परिशिष्ट A1 ग्रीक वर्णमाला

एल्फा	A	α	न्यू	N	ν
बीटा	В	β	जाई	Ξ	ξ
गामा	Γ	γ	ओमीक्रॉन	0	0
डेल्टा	Δ	δ	पाई	П	π
एप्सिलॉन	E	3	र्हो	P	ρ
जीटा	Z	ζ	सिग्मा	Σ	σ
ईटा	Н	η	टॉअ	T	τ
थीटा	Θ	θ	अपसिलॉन	Y	υ
आयोटा	I	t	फाइ	Φ	φ, φ
कप्पा	K	к	काइ	X	χ
लैम्डा	Λ	λ	साइ	Ψ	Ψ
म्यू	M	μ	ओमेगा	Ω	ω

परिशिष्ट A2 सामान्य SI पूर्वलग्न तथा अपवर्त्यों और अपवर्तकों के प्रतीक

अपवर्त्य			अपवर्तक		
गुणक	पूर्वलग्न	प्रतीक	गुणक	पूर्वलग्न	प्रतीक
1018	एकजा	E	10-18	एटो	a
1015	पेटा	P	10 ⁻¹⁵	फैम्टो	f
1012	टेरा	T	10-12	पीको	p
109	गीगा	G	10-9	नैनो	n
106	मेगा	M	10-6	माइक्रो	μ
10^{3}	किलो	k	10-3	मिली	m
10 ²	हेक्टो	h	10-2	सेंटी	c
10¹	डेका	da	10-1	डेसि	d

214 भौतिको

परिशिष्ट A3 कुछ महत्त्वपूर्ण नियतांक

नाम	प्रतीक	मान
निर्वात में प्रकाश की चाल	С	$2.9979 \times 10^8 \mathrm{m s^{-1}}$
इलेक्ट्रॉन का आवेश	e	1.602×10 ⁻¹⁹ C
गुरुत्वीय नियतांक	G	$6.673 \times 10^{-11} \mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$
प्लांक नियतांक	h	$6.626 \times 10^{-34} \mathrm{J}\mathrm{s}$
बोल्ट्जमान नियतांक	k	$1.381 \times 10^{-23} \text{J K}^{-1}$
आवोगाद्रो संख्या	$N_{_A}$	$6.022 \times 10^{23} \mathrm{mol^{-1}}$
सार्वित्रिक गैस नियतांक	R	8.314 J mol ⁻¹ K ⁻¹
इलेक्ट्रॉन का द्रव्यमान	$m_{_e}$	$9.110 \times 10^{-31} \text{kg}$
न्यूट्रॉन का द्रव्यमान	$m_{_n}$	$1.675 \times 10^{-27} \text{kg}$
प्रोटॉन का द्रव्यमान	$m_{_{p}}$	$1.673 \times 10^{-27} \text{kg}$
इलेक्ट्रॉन-आवेश व द्रव्यमान अनुपात	e/m_e	1.759×10 ¹¹ C/kg
फैराडे नियतांक	F	9.648×10 ⁴ C/mol
रिडबर्ग नियतांक	R	$1.097 \times 10^7 \mathrm{m}^{-1}$
बोहर त्रिज्या	a_{o}	5.292×10 ⁻¹¹ m
स्टेफॉन-बोल्ट्ज़मान नियतांक	σ	$5.670 \times 10^{-8} \mathrm{W}\mathrm{m}^{-2}\mathrm{K}^{-4}$
वीन नियतांक	b	$2.898 \times 10^{-3} \mathrm{mK}$
मुक्त आकाश का परावैद्युतांक	$oldsymbol{arepsilon}_{0}$	$8.854 \times 10^{-12} \mathrm{C}^2 \mathrm{N}^{-1} \mathrm{m}^{-2}$
	$1/4\pi \varepsilon_{_{\scriptscriptstyle 0}}$	$8.987 \times 10^9 \mathrm{N} \;\mathrm{m}^2\mathrm{C}^{-2}$
मुक्त आकाश की चुंबकशीलता	μ_{o}	$4\pi \times 10^{-7} \text{ T m A}^{-1}$ $\cong 1.257 \times 10^{-6} \text{ Wb A}^{-1}\text{m}^{-1}$

अन्य उपयोगी नियतांक

नाम	प्रतीक	मान
ऊष्मा का यांत्रिक तुल्यांक	J	4.186 J cal ⁻¹
मानक वायुमंडलीय दाब	1 atm	$1.013 \times 10^5 \text{Pa}$
परम शून्य	0 K	−273.15 °C
इलेक्ट्रॉन वोल्ट	1 eV	$1.602 \times 10^{-19} \text{ J}$
परमाण्वीय द्रव्यमान मात्रक	1 u	$1.661 \times 10^{-27} \text{ kg}$
इलेक्ट्रॉन विराम ऊर्जा	mc^2	0.511 MeV
1u का ऊर्जा तुल्यांक	u c^2	931.5 MeV
आदर्श गैस का आयतन (0°C तथा	V	22.4 L mol ⁻¹
1 atm)		
गुरुत्वीय त्वरण	g	9.78049 m s ⁻²
(समुद्र तल, विषुवत वृत्त पर)		

परिशिष्ट A4

रूपांतरण गुणक

सरलता के लिए रूपांतरण गुणकों को समीकरण के रूप में लिखा गया है।

लंबाई

1 km = 0.6215 mi

1mi = 1.609 km

1m = 1.0936 yd = 3.281 ft = 39.37 in

1 in = 2.54 cm

1 ft = 12 in = 30.48 cm

1 yd = 3ft = 91.44 cm

1 (light year) সকাश वर्ष = $1 \text{ ly} = 9.461 \times 10^{15} \text{m}$

1 Å = 0.1 nm

क्षेत्रफल

 $1 \text{ m}^2 = 10^4 \text{ cm}^2$

 $1 \text{ in}^2 = 6.4516 \text{ cm}^2$

 $1 \text{ft}^2 = 9.29 \times 10^{-2} \text{m}^2$

 $1 \text{ m}^2 = 10.76 \text{ ft}^2$

1 एकड (acre) = 43,560 ft²

आयतन

 $1\text{m}^3 = 10^6 \text{cm}^3$

 $1 L = 1000 \text{ cm}^3 = 10^{-3} \text{ m}^3$

1 gal = 3.786 L

 $1 \text{ gal} = 4 \text{ qt} = 8 \text{ pt} = 128 \text{ oz} = 231 \text{ in}^3$

 $1 \text{ in}^3 = 16.39 \text{ cm}^3$

 $1 \text{ft}^3 = 1728 \text{ in}^3 = 28.32 \text{ L} = 2.832 \times 10^4 \text{ cm}^3$

चाल

 $1 \text{ km h}^{-1} = 0.2778 \text{ m s}^{-1} = 0.6215 \text{ mi h}^{-1}$

1mi $h^{-1} = 0.4470 \text{ m s}^{-1} = 1.609 \text{ km h}^{-1}$

 $1 \text{mi h}^{-1} = 1.467 \text{ ft s}^{-1}$

चुंबकीय क्षेत्र

 $1 \text{ G} = 10^{-4} \text{ T}$

 $1 \text{ T} = 1 \text{ Wb m}^{-2} = 10^4 \text{ G}$

कोण तथा कोणीय चाल

 $\pi \text{ rad} = 180^{\circ}$

 $1 \text{ rad} = 57.30^{\circ}$

 $1^{\circ} = 1.745 \times 10^{-2} \text{ rad}$

1 rev min⁻¹ = 0.1047 rad s⁻¹

 $1 \text{ rad s}^{-1} = 9.549 \text{ rev min}^{-1}$

द्रव्यमान

1 kg = 1000 g

1 ਟਜ (tonne) = 1000 kg = 1 Mg

 $1 \text{ u} = 1.6606 \times 10^{-27} \text{ kg}$

 $1 \text{ kg} = 6.022 \times 10^{26} \text{ u}$

1 स्लग (slug) = 14.59 kg

 $1 \text{ kg} = 6.852 \times 10^{-2} \$ स्लग (slug)

 $1 \text{ u} = 931.50 \,\text{MeV/}c^2$

घनत्व

 $1 \text{ g cm}^{-3} = 1000 \text{ kg m}^{-3} = 1 \text{ kg L}^{-1}$

बल

 $1 \text{ N} = 0.2248 \text{ lbf} = 10^5 \text{ dyn}$

1 lbf = 4.4482 N

1 kgf = 2.2046 lbf

समय

1 h = 60 min = 3.6 ks

1 d = 24 h = 1440 min = 86.4 ks

1y = 365.24 d = 31.56 Ms

दाब

 $1 \text{ Pa} = 1 \text{ N m}^{-2}$

1 bar = 100 kPa

1 atm = 101.325 kPa = 1.01325 bar

 $1atm = 14.7 lbf/in^2 = 760 mm Hg$

 $= 29.9 \text{ in Hg} = 33.8 \text{ ft H}_2\text{O}$

1 lbf in $^{-2}$ = 6.895 kPa

ऊर्जा

1 kW h = 3.6 MJ

1 cal = 4.186 J

1ft lbf = $1.356 J = 1.286 \times 10^{-3} Btu$

1 L atm = 101.325 J

1 L atm = 24.217 cal

1 Btu = 778 ft lb = 252 cal = 1054.35 J

 $1 \text{ eV} = 1.602 \times 10^{-19} \text{J}$

 $1 \text{ u } c^2 = 931.50 \,\text{MeV}$

 $1 \text{ erg} = 10^{-7} \text{J}$

1 torr = 1 mm Hg = 133.32 Pa

शक्ति

1 अश्वशक्ति (horse power, hp) = 550 ft lbf/s

 $=745.7 \, \text{W}$

 $1 \text{ Btu min}^{-1} = 17.58 \text{ W}$

 $1 \text{ W} = 1.341 \times 10^{-3} \text{ hp}$

= 0.7376 ft lbf/s

ऊष्मा चालकता

 $1 \text{ W m}^{-1} \text{ K}^{-1} = 6.938 \text{ Btu in/hft}^{2 \text{ o}} \text{F}$

1 Btu in/hft 2 o F = 0.1441 W/m K

परिशिष्ट A 5

गणितीय सूत्र

ज्यामिति

r त्रिज्या का वृत्त : परिधि = $2\pi r$; क्षेत्रफल = π r^2

r त्रिज्या का गोला : क्षेत्रफल = $4\pi r^2$; आयतन = $\frac{4}{3}\pi r$

r त्रिज्या तथा h ऊँचाई का लंब वृत्तीय शंकु :

क्षेत्रफल = $2 \pi r^2 + 2\pi rh$; आयतन = $\pi r^2 h$

a आधार तथा h शीर्षलंब का त्रिभुज : क्षेत्रफल = $\frac{1}{2}ah$

द्विघाती सूत्र

यदि
$$ax^2 + bx + c = 0$$
 है, तब $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

कोण θ के त्रिकोणिमतीय फलन

$$\sin \theta = \frac{y}{r} \qquad \cos \theta = \frac{x}{r}$$

$$\tan \theta = \frac{y}{x} \qquad \cot \theta = \frac{x}{y}$$

$$\sec \theta = \frac{r}{x} \qquad \csc \theta = \frac{r}{y}$$

पाइथागोरीय प्रमेय

इस समकोण त्रिभुज में,

$$a^2 + b^2 = c^2$$

त्रिभुज

A, B, C कोण हैं,

a, b, c सम्मुख भुजाएँ हैं,

कोण A + B + C = 180°

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

$$c^2 = a^2 + b^2 - 2ab \cos C$$

बहिष्कोण D = A + C

गणितीय चिह्न एवं प्रतीक

- = बराबर
- ≅ सन्निकटत: बराबर
- ~ परिमाण की कोटि है
- ≠ बराबर नहीं है
- ≡ के सर्वसम है. इस प्रकार परिभाषित किया जाता है
- > अधिक है (>> बहुत अधिक है)
- < कम है (<< बहुत कम है)
- ≥ अधिक है अथवा बराबर है (अथवा, कम नहीं है)
- ≤ कम है अथवा बराबर है (अथवा, अधिक नहीं है)
- ± धन अथवा ऋण
- ∞ समानुपाती है
- Σ का योग

 \overline{x} अथवा < x > अथवा x_{av}, x का औसत मान

त्रिकोणमितीय सर्वसमिकाएँ

$$\sin(90^{\circ} - \theta) = \cos\theta$$

$$\cos (90^{\circ} - \theta) = \sin \theta$$

$$\sin \theta / \cos \theta = \tan \theta$$

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\sec^2 \theta - \tan^2 \theta = 1$$

$$\csc^2\theta - \cot^2\theta = 1$$

$$\sin 2\theta = 2 \sin \theta \cos \theta$$

$$\cos 2 \theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1$$
$$= 1 - 2\sin^2 \theta$$

 $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$

 $\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$

$$\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \pm \tan\alpha \tan\beta}$$

$$\sin \alpha \pm \sin \beta = 2 \sin \frac{1}{2} (\alpha \pm \beta) \cos \frac{1}{2} (\alpha \pm \beta)$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{1}{2} (\alpha + \beta) \cos \frac{1}{2} (\alpha - \beta)$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{1}{2} (\alpha + \beta) \sin \frac{1}{2} (\alpha - \beta)$$

द्विपद प्रमेय

$$(1 \pm x)^n = 1 \pm \frac{nx}{1!} + \frac{n(n-1)x^2}{2!} + \dots (x^2 < 1)$$

$$(1 \pm x)^{-n} = 1 \pm \frac{nx}{1!} + \frac{n(n+1)x^2}{2!} + \dots (x^2 < 1)$$

चरघातांकी प्रसरण

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

लघुगणकीय प्रसरण

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \dots (|x| < 1)$$

त्रिकोणमितीय प्रसरण

(θ रेडियनों में)

$$\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \dots$$

$$\cos \theta = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \dots$$

$$\tan \theta = \theta + \frac{\theta^3}{3} + \frac{2\theta^5}{15} - \dots$$

सदिशों का गुणनफल

मान लीजिए $\hat{\mathbf{i}},\hat{\mathbf{j}}$ तथा $\hat{\mathbf{k}}$ x -, y- तथा z- दिशाओं में एकांक सदिश हैं. तो

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1, \ \hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{k}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{i}} = 0$$

$$\hat{\mathbf{i}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}} \times \hat{\mathbf{k}} = 0$$
, $\hat{\mathbf{i}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}}$, $\hat{\mathbf{j}} \times \hat{\mathbf{k}} = \hat{\mathbf{i}}$, $\hat{\mathbf{k}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}}$
कोई सदिश \mathbf{a} जिसके x -, y - तथा z -अक्ष के अनुदिश घटक a_x , a_y तथा a_z हैं, उन्हें इस प्रकार लिख सकते हैं,

$$\mathbf{a} = a_{\mathbf{x}}\hat{\mathbf{i}} + a_{\mathbf{y}}\hat{\mathbf{j}} + a_{\mathbf{z}}\hat{\mathbf{k}}$$

मान लीजिए a, b तथा c स्वेच्छ सदिश हैं, जिनके परिमाण a, b तथा c हैं, तब

$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c})$$

$$(s\mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (s\mathbf{b}) = s(\mathbf{a} \times \mathbf{b}) (s)$$
 कोई अदिश है)

मान लीजिए a तथा b के बीच के दो कोणों में θ लघुतर कोण है, तब

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} = \mathbf{a}_{x} b_{x} + \mathbf{a}_{y} b_{y} + \mathbf{a}_{z} b_{z} = \mathbf{a} \mathbf{b} \cos \theta$$

$$|\mathbf{a} \times \mathbf{b}| = \mathbf{a} \mathbf{b} \sin \theta$$

$$= (a_{y} b_{z} - b_{y} a_{z}) \hat{\mathbf{i}} + (a_{z} b_{x} - b_{z} a_{x}) \hat{\mathbf{j}} + (a_{x} b_{y} - b_{x} a_{y}) \hat{\mathbf{k}}$$

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$$

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} \cdot (\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$$

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} \cdot (\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$$

परिशिष्ट A 6
A 6.1 SI मूल मात्रकों के पदों में व्यक्त कुछ SI व्युत्पन मात्रक

	SI	मात्रक
भौतिक राशि	नाम	प्रतीक
क्षेत्रफल	वर्गमीटर	m ²
आयतन	घनमीटर	m³
चाल, वेग	मीटर प्रति सेकंड	m/s या m s ⁻¹
कोणीय वेग	रेडियन प्रति सेकंड	rad/s या rad s ⁻¹
त्वरण	मीटर प्रतिवर्ग सेकंड	m/s² या m s-2
कोणीय त्वरण	रेडियन प्रतिवर्ग सेकंड	rad/s² या rad s ⁻²
तरंग संख्या	प्रति मीटर	m^{-1}
घनत्व, द्रव्यमान घनत्व	किलोग्राम प्रति घनमीटर	kg/m³ या kg m ⁻³
विद्युत् धारा घनत्व	ऐम्पियर प्रति वर्गमीटर	A/m² या A m-2
चुंबकीय क्षेत्र की तीव्रता, चुंबकीय		Y
तीव्रता, चुंबकीय आघूर्ण घनत्व	ऐम्पियर प्रति मीटर	A/m या A m ⁻¹
सांद्रता (पदार्थ की मात्रा की)	मोल प्रति घनमीटर	mol/m³ या mol m ⁻³
विशिष्ट आयतन	घन मीटर प्रति किलोग्राम	m³/kg या m³ kg ⁻¹
ज्योति-तीव्रता	कैंडेला प्रति वर्गमीटर	cd/m² या cd m-2
शुद्धगतिक श्यानता	वर्गमीटर प्रति सेकंड	m²/s या m² s ⁻¹
संवेग	किलोग्राम मीटर प्रति सेकंड	kg m/s या kg m s ⁻¹
जड़त्व आघूर्ण	किलोग्राम वर्गमीटर	kg m²
परिभ्रमण त्रिज्या	मीटर	m
रेखीय/क्षेत्रीय (पृष्ठीय)/आयतन	प्रति केल्विन	\mathbf{K}^{-1}
प्रसरणीयता		
प्रवाह दर	घनमीटर प्रति सेकंड	m³/s या m³ s ⁻¹

<u>परिशिष्ट</u> 219

A 6.2 विशेष नाम वाले SI व्युत्पन्न मात्रक

भौतिक राशि			SI मात्रक	
	नाम	प्रतीक	अन्य मात्रकों के पदों में व्युत्पन मात्रक	SI मूल मात्रकों के पदों में व्यत्पन्न मात्रक
आवृत्ति	हर्ट्ज	Hz	_	S ⁻¹
बल	न्यूटन	N	_	kg m/s² या kg m s ⁻²
दाब, प्रतिबल	पास्कल	Pa	N/m² या N m ⁻²	kg m ⁻¹ s ⁻² या kg/s ² m
कार्य, ऊर्जा, ऊष्मा की मात्रा	जूल	J	N m	kg m²/s² या kg m² s-2
शक्ति, विकिरण फलक्स	वाट	W	J/s या J s ⁻¹	kg m ² /s ³ या kg m ² s ⁻³
विद्युत आवेश	कूलॉम	С	_	A s
विद्युत विभव, विभवान्तर, विद्युतवाहक बल	वोल्ट	V	W/A या W A-1	kg m²/s³A या kg m²s⁻³A⁻¹
धारिता	फैरड	F	C/V या C V ⁻¹	A ² s ⁴ /kg m ² या kg ⁻¹ m ⁻² s ⁴ A ²
विद्युत प्रतिरोध	ओम	Ω	V/A या VA ⁻¹	kg m²/s³A² या kg m² s-3A-2
विद्युत चालकता	सीमेन्स	S	A/V या VA ⁻¹	s ³ A ² /kg m ² या kg ⁻¹ m ⁻² s ³ A ²
चुंबकीय अभिवाह	वेबर	Wb	V s या (J/A या JA ⁻¹)	kg m²/s²A या kg m² s-²A-1
चुंबकीय क्षेत्र, चुंबकीय अभिवाह घनत्व, चुंबकीय प्रेरण	टेस्ला	Т	Wb/m² या Wb m ⁻²	kg/s²A या kg s ⁻² A ⁻¹
प्रेरकत्व	हेनरी	Н	Wb /A या Wb A ⁻¹	kg m²/s²A² या kg m² s-² A-2
ज्योति फलक्स, दीप्त शक्ति	ल्यूमेन	lm	_	cd/sr या cd sr ⁻¹
प्रदीप्त घनत्व	लक्स	lx	lm/m² या lm m-²	cd/sr m² या m-² cd sr-1
सक्रियता (रेडियो न्यूक्लाइड/रेडियोएक्टिव स्रोत की)	बेकेरल	Bq	_	s ⁻¹
अवशोषित मात्रा, अवशोषित मात्रा सूचकांक	ग्रे	Gy	J/kg या J kg ⁻¹	m ² /s ² या m ² s ⁻²

A 6.3 विशेष नाम वाले SI मात्रकों के पदों में व्यक्त SI व्युत्पन मात्रक

भौतिक राशि	SI मात्रक			
	नाम	प्रतीक	SI मूल मात्रकों के पदों	
			में व्युत्पन्न मात्रक	
चुंबकीय आघूर्ण	जूल प्रति टेस्ला	J T-1	$m^2 A$	
द्विध्रुव आघूर्ण	कूलॉम मीटर	Cm	m A s	
गतिक श्यानता	पायसल अथवा	Plया Pas	kg m ⁻¹ s ⁻¹	
	पास्कल सेकंड	या N s m ⁻²	Č	
	अथवा न्यूटन सेकंड			
	प्रति वर्ग मीटर			
युग्म, बल आघूर्ण	न्यूटन मीटर	Nm	$kg m^2 s^{-1}$	
पृष्ठ तनाव	न्यूटन प्रति मीटर	N/m या N m ⁻¹	kg s ⁻²	
शक्ति घनत्व, किरणीत	वाट प्रति वर्ग मीटर	W/m²	kg s ⁻³	
मान, ऊष्मीय				
फ्लक्स घनत्व				
ऊष्मा धारिता, एन्ट्रॉपी	जूल प्रति केल्विन	J/K	kg m ² s ⁻² K ⁻¹	
विशिष्ट ऊष्मा, विशिष्ट एन्ट्रॉपी	C/	J/kg K	$m^2 s^{-2} K^{-1}$	
विशिष्ट ऊर्जा, गुप्त ऊष्मा	जूल प्रति किलोग्राम	J/kg या J kg ⁻¹	$m^2 s^{-2}$	
विकिरण तीव्रता	वाट प्रति स्टिरेडियन	W/sr या W sr-1	$kg m^2 s^{-3} sr^{-1}$	
ऊष्मीय चालकता	वाट प्रति मीटर केल्विन	W/m K या W m ⁻¹ K ⁻¹	kg m s ⁻³ K ⁻¹	
ऊर्जा घनत्व	जूल प्रति घन मीटर	J/m³ या J m ⁻³	$kg m^{-1} s^{-2}$	
विद्युत क्षेत्र तीव्रता	वोल्ट प्रति मीटर	V/m या V m ⁻¹	kg m s ³ A ⁻¹	
विद्युत आवेश घनत्व	कूलॉम प्रति घन मीटर	C/m³ या C m-3	m⁻³ s A	
विद्युत फ्लक्स घनत्व	कूलॉम प्रति वर्ग मीटर	C/m ² या C m ⁻²	m⁻² s A	
परावैद्युतांक	फैरड प्रति मीटर	F/m या F m ⁻¹	$kg^{-1}m^{-3}$ s^4A^2	
चुंबकशीलता	हेनरी प्रति मीटर	H/m या H m ⁻¹	kg m s ⁻² A ⁻²	
मोलर ऊर्जा	जूल प्रति मोल	J/mol या J mol-1	kg m ² s ⁻² mol ⁻¹	
कोणीय संवेग, प्लांक नियतांक	जूल सेकंड	J s	$kg m^2 s^{-1}$	
मोलर एन्ट्रॉपी, मोलर ऊष्मा	जूल प्रति मोल केल्विन	J/mol K या J mol ⁻¹ K ⁻¹	kg m ² s ⁻² K ⁻¹ mol ⁻¹	
धारिता				
उद्भासन (exposure)	कूलॉम प्रति किलोग्राम	C/kg या C kg-1	kg⁻¹ s A	
(X-तथा γ-किरणें)	ग्रे प्रति सेकंड	Gy/s या Gy s ⁻¹	$m^2 s^{-3}$	
संपीड्यता	प्रति पास्कल	Pa ⁻¹	$kg^{-1} m s^2$	
प्रत्यास्थता गुणांक	न्यूटन प्रति वर्गमीटर	N/m² या N m ⁻²	kg m ⁻¹ s ⁻²	
दाब प्रवणता	पास्कल प्रति मीटर	Pa/m या N m ⁻³	kg m ⁻² s ⁻²	
पृष्ठ विभव	जूल प्रति किलोग्राम	J/kg या J kg ⁻¹ ;	$m^2 s^{-2}$	
		N m/kg या N m kg ⁻¹		
दाब ऊर्जा	पास्कल घन मीटर	Pa m³ या N m	kg m ² s ⁻²	
आवेग	न्यूटन सेकंड	N s	kg m s ⁻¹	
कोणीय आवेग	न्यूटन मीटर सेकंड	Nm s	$kg m^2 s^{-1}$	
विशिष्ट प्रतिरोध	ओम मीटर	Ωm	kg m ³ s ⁻³ A ⁻²	
पृष्ठ ऊर्जा	जूल प्रति वर्गमीटर	J/m ² या J m ⁻² ;	kg s ⁻²	
		N/m या N m ⁻¹		

परिशिष्ट A7

भौतिक राशियों, रासायनिक तत्वों तथा न्यूक्लाइडों के प्रतीकों के उपयोग के लिए सामान्य मार्गदर्शन

- भौतिक राशियों को प्रतीक रूप में सामान्यत: अंग्रेजी वर्णमाला के किसी अक्षर से निरूपित करते हैं तथा इन्हें तिरछे (अथवा ढालू) टाइप में छपवाया जाता है। तथापि जिस राशि के लिए दो अक्षरीय प्रतीक आवश्यक हों तो उन्हें दो प्रतीकों के गुणनफल के रूप में दर्शाना होता है, पर इन प्रतीकों को पृथक् दर्शाने के लिए कुछ स्थान छोड़ना आवश्यक होता है।
- नामों अथवा व्यंजकों के संक्षिप्त रूपों, जैसे—potential energy के लिए p.e. का उपयोग भौतिक समीकरणों में नहीं किया जाता । पाठ्य सामग्री में इन संक्षिप्त रूपों को साधारण रोमन (सीधे) टाइप में छपवाया जाता है ।
- सिदश राशियों को मोटे टाइप में तथा सीधे छपवाया जाता है। तथापि कक्षा में सिदश राशियों को प्रतीक के शीर्ष पर तीर द्वारा निर्दिष्ट किया जा सकता है।
- दो भौतिक राशियों के गुणनफल को उनके बीच कुछ स्थान छोड़कर लिखा जाता है। एक भौतिक राशि को दूसरी भौतिक राशि से विभाजित करना एक क्षैतिज दंड खींचकर अथवा सॉलिडस (अथवा तिरछी रेखा /) के साथ निर्दिष्ट किया जा सकता है; अथवा अंश तथा हर के प्रथम घात के व्युत्क्रम के गुणनफल के रूप में लिखा जा सकता है (इस गुणनफल में अंश तथा हर में स्पष्ट पहचान के लिए उचित स्थानों पर कोष्ठकों का उपयोग किया जाता है)।
- रासायनिक तत्वों के प्रतीकों को रोमन (सीधे) टाइप में लिखा जाता है। प्रतीक के अंत में विराम चिह्न अथवा बिंदु (.) नहीं लगाया जाता।
 - उदाहरण के लिए, Ca, C, H, He, U, आदि।
- िकसी न्यूक्लाइड से जुड़े अंकों का उल्लेख उन्हें बाएं अधोलिखित (परमाणु क्रमांक) तथा बाएं उपरिलिखित (द्रव्यमान संख्या)
 के रूप में लिखकर किया जाता है ।
 - उदाहरण के लिए, U-235 न्यूक्लाइड को $^{235}_{92}$ U लिखकर व्यक्त किया जाता है (यहां 235 द्रव्यमान संख्या तथा 92 परमाणु क्रमांक को व्यक्त करता है तथा U यूरेनियम का रासायनिक प्रतीक है)।
- यदि आवश्यक हो, तो दाईं उपरिलिखित स्थिति का उपयोग आयनीकरण की अवस्था (आयनों के प्रकरण में) निर्दिष्ट करने के लिए किया जाता है । उदाहरण के लिए, Ca^{2+} , PO_4^{3-}

परिशिष्ट A8

SI मात्रकों, कुछ अन्य मात्रकों तथा SI पूर्वलग्नों के प्रतीकों के उपयोग के लिए सामान्य मार्गदर्शन

- भौतिक राशियों के मात्रकों के प्रतीकों को रोमन (सीधे टाइप) में छापा/लिखा जाता है।
- मात्रकों के मानक तथा अनुमोदित प्रतीकों को अंग्रेजी वर्णमाला के छोटे अक्षरों से आरंभ करके रोमन (सीधे टाइप)
 में लिखा जाता है। मात्रकों के लघु उल्लेखों, जैसे kg, m, s, cd आदि को प्रतीकों के रूप में लिखा जाता है, संक्षिप्त
 रूप में नहीं। मात्रकों के नाम को कभी भी बड़े अक्षरों में नहीं लिखते। तथापि, मात्रक के प्रतीक को केवल तभी
 बड़े अक्षर में लिखा जाता है, जब मात्रक के प्रतीक को किसी वैज्ञानिक के नाम से व्युत्पन्न किया गया हो, ऐसी स्थिति
 में मात्रक का आरंभ बड़े रोमन अक्षर से किया जाता है।
 - उदाहरण के लिए: मात्रक मीटर ('metre') के लिए 'm', "दिन" ("day") के लिए d, मात्रक वायुमंडलीय दाब ('atmospheric pressure') के लिए atm, मात्रक हर्ट्ज ('hertz') के लिए Hz, मात्रक वेबर ('weber') के लिए Wb, मात्रक जूल ('joule') के लिए J, मात्रक ऐम्पियर ('ampere') के लिए A, मात्रक वोल्ट ('volt') के लिए V, आदि का प्रयोग प्रतीकों के रूप में किया जाता है। इसका केवल एक ही अपवाद है L, जो कि मात्रक लीटर (litre) का प्रतीक है। ऐसा अरबी संख्यांक । तथा लोअर केस रोमन के अक्षर । को छापने अथवा लिखने में होने वाली भ्रांति से बचने के लिए किया गया है।

 मात्रकों के प्रतीकों को उनके लिए अनुमोदित अक्षरों में लिखने के पश्चात् उनके अंत में पूर्ण विराम नहीं लगाया जाता तथा मात्रकों के प्रतीकों को केवल एकवचन में ही लिखा जाता है बहुवचन में नहीं, अर्थात् किसी मात्रक का प्रतीक बहुवचन में अपरिवर्तित रहता है।

उदाहरण के लिए: लंबाई 25 सेंटीमीटर (centimetres) के लिए मात्रक का प्रतीक 25 cm के रूप में लिखा जाता है, 25 cms अथवा 25 cm. अथवा 25 cms., आदि नहीं लिखा जाता।

सॉलिडस (solidus) अर्थात् (/) के उपयोग का अनुमोदन केवल एक अक्षर के मात्रक प्रतीक के अन्य मात्रक प्रतीक द्वारा विभाजन का संकेतन करने के लिए किया गया है। एक से अधिक सॉलिडस का उपयोग नहीं किया जाता।
 उदाहरण के लिए, m/s² अथवा m s⁻² (m तथा s⁻² के बीच कुछ स्थान छोड़ते हुए) लिख सकते हैं परंतु m/s/s नहीं;
 1 Pl = 1 N s m⁻² = 1 N s/m² = 1 kg/s m = 1 kg m⁻¹s⁻¹ परंतु 1 kg/m/s नहीं;

J/K mol अथवा J K-1 mol-1, परंतु J/K/mol नहीं; आदि ।

 पूर्वलग्न के प्रतीकों को रोमन (सीधे) टाइप में छापा जाता है तथा पूर्वलग्न के प्रतीक तथा मात्रक के प्रतीक के बीच कोई स्थान नहीं छोड़ा जाता । इस प्रकार मात्रक प्रतीकों के बहुत निकट लिखी कुछ दशमलव भिन्न या गुणज, जब वे इतने छोटे हों या बड़े हों, कि उनका लिखना असुविधाजनक हो तो उनको लिखने के लिए कुछ मान्य पूर्वलग्नों का उपयोग किया जाता है ।

```
उदाहरण के लिए:
```

```
मेगावाट (1 MW = 10^6W); नेनो सेकंड (1 ns = 10^{-9}s); सेंटीमीटर (1 cm = 10^{-2}m); पीकोफैरड (1 pF = 10^{-12}F); किलोमीटर (1 km = 10^3m); माइक्रोसेकंड (1 \mus = 10^{-6}s); मिलीवोल्ट (1 mV = 10^{-3}V); गीगा हर्ट्ज (1 GHz = 10^9 Hz); किलोवाट – घंटा (1 kWh) = 10^3 Wh = 3.6 MJ = 3.6 \times 10^6 J); माइक्रो ऐम्पियर (1 \muA = 10^{-6}A); माइक्रॉन (1 \mum = 10^{-6}m)
```

एंगस्ट्रॉम (1Å=0.1 nm=10⁻¹⁰ m); आदि ।

मात्रक 'माइक्रॉन' जो कि 10-6 m अर्थात् 1 माइक्रो मीटर के बराबर है, मात्र एक नाम है जो मीटर के अपवर्तक को सुविधाजनक बनाने के लिए है। इसी प्रकार मात्रक फर्मी ('fermi') जो फेम्टोमीटर अथवा 10-15 m के बराबर है, का उपयोग नाभिकीय अध्ययनों में लंबाई के सुविधाजनक मात्रक की भांति किया जाता है। इसी प्रकार, एक अन्य मात्रक "बार्न" (barn) जो 10-28 m² के बराबर है, का उपयोग अवपरामाण्विक कण संघट्टों में अनुप्रस्थ काट के क्षेत्रफलों की मापों के सुविधाजनक मात्रक के रूप में किया जाता है। तथापि 'माइक्रॉन' मात्रक को "micrometre" की तुलना में प्राथमिकता दी जाती है। इसका कारण 'micrometre' मात्रक तथा "micrometer" जो कि लंबाई मापने का यंत्र है, के बीच भ्रांति से बचना है। SI मात्रकों मीटर तथा सेकंड के ये नए बने अपवर्त्य तथा अपवर्तक (cm, km, μm, μs, ns) इन मात्रकों के नए संयुक्त, अपृथक्करणीय प्रतीकों का निर्माण करते हैं।

 जब कोई पूर्वलग्न किसी मात्रक के प्रतीक से पहले लगाया जाता है, तो पूर्वलग्न तथा प्रतीक का संयोजन उस मात्रक का एक नया प्रतीक माना जाता है, जिस पर कोष्ठक का उपयोग किए बिना ही कोई धनात्मक अथवा ऋणात्मक घात लगाई जा सकती है। इन्हें अन्य मात्रकों के प्रतीकों के साथ संयोजित करके संयुक्त मात्रक बनाए जा सकते हैं। घातांकों के बंधन के नियम साधारण बीजगणित की भांति नहीं होते।

उदाहरण के लिए:

 cm^3 का सदैव अर्थ $(cm)^3 = (0.01 \, m)^3 = (10^2 m)^3 = 10^6 m^3$, परंतु $0.01 \, m^3$ अथवा $10^2 m^3$ अथवा $1 \, cm^3$ (यहां पूर्वलग्न c तथा m^3 के बीच स्थान अर्थहीन है, क्योंकि पूर्वलग्न को मात्रक के प्रतीक के साथ जोड़ा जाना है। किसी पूर्वलग्न का कोई भौतिक महत्त्व अथवा अपना स्वतंत्र अस्तित्व नहीं होता जब तक कि उसे किसी मात्रक के प्रतीक से जोड़ा न जाए)। इसी प्रकार, mA^2 का सदैव ही अर्थ है $(mA)^2 = (0.001 \, A)^2 = (10^3 \, A)^2 = 10^{-6} A^2$, परंतु $0.001 \, A^2$ अथवा mA^2 कभी नहीं।

```
1 cm<sup>-1</sup> = (10<sup>-2</sup>m)<sup>-1</sup> = 10<sup>2</sup> m<sup>-1</sup> परंतु 1 cm<sup>-1</sup> अथवा 10<sup>-2</sup> m<sup>-1</sup> कभी नहीं;
1 µs<sup>-1</sup> का सदैव अर्थ है (10<sup>-6</sup> s)<sup>-1</sup> = 10<sup>6</sup> s<sup>-1</sup>, परंतु 1 × 10<sup>-6</sup> s<sup>-1</sup> नहीं;
```

 1 km^3 का सदैव अर्थ है $(\text{km})^2 = (10^3 \text{ m})^2 = 10^6 \text{ m}^2$, परंतु 10^3 m^2 कभी नहीं; 1 mm^2 का सदैव अर्थ है $(\text{mm})^2 = (10^{-3} \text{ m})^2 = 10^{-6} \text{ m}^2$ परंतु 10^{-3} m^2 कभी नहीं, आदि।

िकसी पूर्वलग्न का अकेले उपयोग नहीं होता । इसे सदैव ही किसी मात्रक के प्रतीक के साथ संलग्न किया जाता है
 तथा इसे मात्रक के प्रतीक से पहले (पूर्व-लग्न) लिखा अथवा लगाया जाता है ।

उदाहरण के लिए :

 $10^3/m^3$ का अर्थ $1000/m^3$ अथवा $1000\,m^{-3}\,$ परंतु k/m^3 अथवा $k\,m^{-3}\,$ नहीं;

 $10^6/\mathrm{m}^3$ का अर्थ है $10,00,000/\mathrm{m}^3$ अथवा $10,00,000\,\mathrm{m}^{-3}$ परंतु $\mathrm{M/m}^3$ अथवा $\mathrm{M\,m}^{-3}$ नहीं।

 पूर्वलग्न के प्रतीक को मात्रक के प्रतीक के साथ बीच में बिना कोई स्थान छोड़े लिखा जाता है, जबिक मात्रकों को आपस में गुणा करते समय मात्रकों के प्रतीकों को पृथक्-पृथक् उनके बीच कुछ स्थान छोड़कर लिखा जाता है। उदाहरण के लिए:

 $m \, s^{-1}$ (प्रतीक $m \, \pi$ तथा s^{-1} लोअर केस में, छोटे अक्षर $m \, \pi$ तथा $s \,$ पृथक् तथा स्वतंत्र मात्रक–प्रतीक हैं जिनमें $m \, \pi$ मीटर के लिए तथा $s \,$ सेकंड के लिए है तथा उनके बीच कुछ स्थान छोड़कर लिखा गया है) का अर्थ है मीटर प्रति सेकंड परंतु "मिली प्रति सेकंड" नहीं।

इसी प्रकार, $m s^{-1}$ [प्रतीक m तथा s एक-दूसरे के बहुत पास-पास सटाकर लिखे गए हैं, जिनमें पूर्वलग्न-प्रतीक m (पूर्वलग्न 'मिली' के लिए) तथा लोअर केस में छोटे अक्षर के साथ मात्रक प्रतीक s (मात्रक 'सेकंड' के लिए) बीच में बिना कोई स्थान छोड़े ms को एक नया संयुक्त मात्रक बनाकर] का अर्थ है "प्रति मिली सेकंड" परंतु "मीटर प्रति सेकंड" कभी नहीं।

mS⁻¹ [प्रतीक m तथा S एक-दूसरे के बहुत पास सटाकर लिखे गए हैं, जिनमें पूर्वलग्न-प्रतीक m (पूर्वलग्न 'मिली' के लिए) तथा मात्रक-प्रतीक S बड़े रोमन अक्षर S मात्रक साइमेंस (siemens) के लिए बीच में बिना कोई स्थान छोड़े mS को एक नया संयुक्त मात्रक बनाकर] का अर्थ 'प्रति मिली-साइमेंस' है, परंतु 'प्रति मिली सेकंड' कदापि नहीं है।

Cm[प्रतीक C तथा m पृथक्-पृथक् लिखे गए हैं, जो मात्रक प्रतीकों C (मात्रक कूलॉम के लिए) तथा m (मात्रक मीटर के लिए) को उनके बीच कुछ स्थान छोड़कर निरूपित करते हैं।] का अर्थ "कूलॉम मीटर" है, परंतु सेंटीमीटर कदापि नहीं, आदि।

जब तक एक पूर्वलग्न उपलब्ध है, दुहरे पूर्वलग्नों का उपयोग वर्जित है।
 उदाहरण के लिए:

 $10^{-9} \,\mathrm{m} = 1 \,\mathrm{nm} \,($ नैनोमीटर $) \,$ है, परंतु $1 \,\mathrm{m}\mu\mathrm{m} \,($ मिलीमाइक्रोमीटर $) \,$ नहीं है $\,$ ।

10-6 m = 1 μm (माइक्रॉन) है, परंतु 1 mmm (मिलीमिलीमीटर) नहीं है।

 $10^{-12} {
m F} = 1 {
m pF}$ (पीको फैरड) है, परंतु $1 {
m \mu \mu F}$ (माइक्रोमाइक्रो फैरड) नहीं है ।

10°W=1GW (गीगावाट) है, परंतु 1kMW (किलोमेगावाट) नहीं है, आदि।

 जब कोई भौतिक राशि दो या अधिक मात्रकों के संयोजन द्वारा व्यक्त की जाती है, तब मात्रक तथा मात्रकों के प्रतीकों के किसी संयोजन के उपयोग को वर्जित माना जाता है।

उदाहरण के लिए :

जूल प्रति मोल केल्विन को J/mol K अथवा J mol $^{-1}$ K $^{-1}$ के रूप में लिखा जाता है, परंतु joule/mole K अथवा J/mol kelvin अथवा J/mole K, आदि नहीं लिखते।

जूल प्रति टेसला को J/T अथवा JT⁻¹ के रूप में लिखा जाता है, परंतु joule/T अथवा J per tesla अथवा J/tesla, आदि नहीं लिखते ।

न्यूटन मीटर सेकंड को $N\,m\,s$ के रूप में लिखा जाता है, परंतु newton m second अथवा $N\,m\,s$ econd अथवा $N\,m\,s$ के अथवा newton metre s नहीं लिखते।

224 भौतिको

पिरकलन की सुविधा के लिए, पूर्वलग्न के प्रतीक को मात्रक के प्रतीक के साथ अंश में लगाया जाता है हर में नहीं।
 उदाहरण के लिए:

10⁶ N/m² को 1 N/mm² लिखने की अपेक्षा MN/m² के रूप में लिखा जाना अधिक सुविधाजनक है। उन संख्याओं जिनमें अपवर्त्यों अथवा अपवर्तकों जिनमें 1000 के गुणक सम्मिलित हों, वहाँ इन संख्याओं को 10^{±3n} (जहाँ n पूर्णांक है) के रूप में लिखने को प्राथमिकता दी जाती है।

• उन प्रकरणों में अत्यंत सावधानी की आवश्यकता होती है जिनमें भौतिक राशियों तथा भौतिक राशियों के मात्रकों के प्रतीक समान होते हैं।

उदाहरण के लिए :

भौतिक राशि भार (W) को द्रव्यमान (m) तथा गुरुत्वीय त्वरण (g) के गुणनफल के रूप में व्यक्त किया जाता है। इसे प्रतीकों के पदों में तिरछे टाइप में W=m g के रूप में छापा जाता है तथा लिखते समय m तथा g के बीच कुछ स्थान छोड़ देते हैं। इसे मात्रकों watt(W), metre(m), तथा gram(g) के मात्रक प्रतीकों के साथ भ्रम में नहीं पड़ना चाहिए। तथापि, समीकरण W=mg में, प्रतीक W भार को व्यक्त करता है जिसका मात्रक-प्रतीक gram(g) है जिसका मात्रक-प्रतीक gram(g) है।

इसी प्रकार, समीकरण F = ma में प्रतीक F बल को व्यक्त करता है जिसका मात्रक-प्रतीक N है, m द्रव्यमान को व्यक्त करता है जिसका मात्रक-प्रतीक m s^2 है । भौतिक राशियों के इन प्रतीकों को मात्रकों "farad" (F), metre (m) तथा "are" (a) के साथ भ्रमित नहीं होना चाहिए।

प्रतीकों h [पूर्वलग्न हेक्टो (hecto) तथा मात्रक घंटा (hour)], c [पूर्वलग्न सेंटी (centi) तथा मात्रक कैरट ("carat")], d [पूर्वलग्न डेसी (deci) तथा मात्रक दिन (day)], T (पूर्वलग्न टेरा (tera) तथा मात्रक टेसला (tesla), a [पूर्वलग्न एट्टो (atto) तथा मात्रक ऑर (are)], da [पूर्वलग्न डेका (deca) तथा मात्रक डेसिऑर (deciare)] आदि का उपयोग करते समय यथोचित भिन्नता दर्शानी चाहिए।

मात्रकों की SI प्रणाली का द्रव्यमान का मूल मात्रक "किलोग्राम" मात्रकों की CGS प्रणाली के द्रव्यमान के मूल मात्रक 'ग्राम' के साथ SI पूर्वलग्न 'किलो' (एक गुणज जो 10³ के बराबर है) को जोड़कर बनता है, जो देखने में असामान्य-सा प्रतीत होता है। इस प्रकार, जबिक हम लंबाई के मात्रक (मीटर अथवा metre) के एक हजारवें भाग को मिलीमीटर (mm) लिखते हैं, द्रव्यमान के मात्रक (किलोग्राम अथवा kilogram अथवा kg) के एक हजारवें भाग को मिलीकिलोग्राम नहीं लिखते, वरन् केवल ग्राम लिखते हैं। ऐसी विषम परिस्थिति उत्पन्न होने का कारण यह है कि हम द्रव्यमान के मात्रक 'किलोग्राम' के स्थान पर अन्य कोई उपयुक्त मात्रक प्रतिस्थापित नहीं कर सके। अत: एक अपवाद के रूप में द्रव्यमान के मात्रक के साथ अपवर्त्य तथा अपवर्तकों के नाम 'ग्राम' के साथ पूर्वलग्न लगाकर बनाए जाते हैं 'किलोग्राम' के साथ नहीं।

उदाहरण के लिए :

10³ kg = 1 मेगाग्राम (1 Mg), परंतु 1 किलो किलोग्राम (1 kkg) नहीं;

 $10^6 \,\mathrm{kg} = 1$ मिलीग्राम $(1 \,\mathrm{mg})$, परंतु 1 माइक्रोकिलोग्राम $(1 \,\mathrm{\mu kg})$ नहीं;

 $10^{-3} \text{ kg} = 1$ ग्राम (1 g), परंतु 1 मिलीकिलोग्राम (1 mkg) नहीं; आदि।

यह पुन: ध्यान देने की बात है कि आपको केवल अंतर्राष्ट्रीय मान्यता प्राप्त एवं अनुमोदित प्रतीकों का ही उपयोग करना चाहिए। यदि आप अपने सामान्य व्यवहार में मात्रकों के प्रतीकों का सामान्य नियमों एवं मार्गदर्शनों के अनुसार निरंतर उपयोग करेंगे, तो आप SI मात्रकों, पूर्वलग्नों तथा भौतिक राशियों और उनसे संबद्ध प्रतीकों के उचित परिप्रेक्ष्य में उपयोग करने में प्रवीण हो जाएंगे।

परिशिष्ट A9 भौतिक राशियों के विमीय सूत्र

क्रम	भौतिक राशि	अन्य भौतिक राशियों से संबंध	विमाएँ	विमीय सूत्र
संख्या				
1.	क्षेत्रफल	लंबाई × चौड़ाई	$[L^2]$	$[M^0L^2T^0]$
2.	आयतन	लंबाई × चौडा़ई × ऊँचाई	$[L^3]$	$[M^0\ L^3\ T^0]$
3.	द्रव्यमान घनत्व	द्रव्यमान/आयतन	[M]/[L³] या [M L-³]	$[M L^{-3} T^{0}]$
4.	आवृत्ति	1/आवर्तकाल	1/[T]	$[M^0 L^0 T^{-1}]$
5.	वेग, चाल	विस्थापन/समय	[L]/[T]	$[M^0 L T^{-1}]$
6.	त्वरण	वेग/समय	[LT ⁻¹]/[T]	$[M^0 LT^{-2}]$
7.	बल	द्रव्यमान x त्वरण	[M][L T ⁻²]	[M L T ⁻²]
8.	आवेग	बल × समय	[M LT ⁻²] [T]	[M L T ⁻¹]
9.	कार्य, ऊर्जा	बल × दूरी	[MLT ⁻²][L]	$[M L^2T^{-2}]$
10.	शक्ति	कार्य/समय	$[ML^2 T^{-2}]/[T]$	$[M L^2 T^{-3}]$
11.	संवेग	द्रव्यमान x वेग	[M][LT ⁻¹]	[M L T ⁻¹]
12.	दाब, प्रतिबल	बल/क्षेत्रफल	$[MLT^{-2}]/[L^2]$	[M L ⁻¹ T ⁻²]
13.	विकृति	विमा में परिवर्तन/मूल विमा	[L]/[L] या [L³]/[L³]	$[M^0\ L^0\ T^0]$
14.	प्रत्यास्थता गुणांक	प्रतिबल/विकृति	$\frac{[M L^{-1} T^{-2}]}{[M^0 L^0 T^0]}$	[M L ⁻¹ T ⁻²]
15.	पृष्ठ तनाव	बल/लंबाई	[M L T ⁻²]/[L]	$[M L^0T^{-2}]$
16.	पृष्ठ ऊर्जा	ऊर्जा/क्षेत्रफल	$[M L^2 T^{-2}]/[L^2]$	$[M L^0 T^{-2}]$
17.	वेग प्रवणता	वेग/दूरी	[LT ⁻¹]/[L]	$[M^0L^0T^{-1}]$
18.	दाब प्रवणता	दाब/दूरी	$[ML^{-1}T^{-2}]/[L]$	$[M L^{-2} T^{-2}]$
19.	दाब ক্তৰ্जা	दाब × आयतन	[ML ⁻¹ T ⁻²][L ³]	[M L ² T ⁻²]
20.	श्यानता गुणांक	बल/(क्षेत्रफल × वेग प्रवणता)	$\frac{[M L T^{-2}]}{[L^2][LT^{-1}/L]}$	[M L ⁻¹ T ⁻¹]
21.	कोण, कोणीय विस्थापन	चाप/त्रिज्या	[L]/[L]	$[M^0\ L^0T^0]$
22.	त्रिकोणमितीय अनुपात ($\sin \theta, \cos \theta, \tan \theta$ आदि)	लंबाई/लंबाई	[L]/[L]	$[M^0\ L^0T^0]$
23.	कोणीय वेग	कोण/समय	$[L^0]/[T]$	$[M^0 L^0 T^{-1}]$
24.	कोणीय त्वरण	कोणीय वेग/समय	$[L^0]/[T^2]$	$[M^0 L^0 T^{-2}]$
25.	परिभ्रमण त्रिज्या	दूरी	[L]	$[M^0 L T^0]$
26.	जड़त्व आघूर्ण	द्रव्यमान × (परिभ्रमण त्रिज्या)²	$[M][L^2]$	[M L ² T ⁰]
27.	कोणीय संवेग	जड़त्व आघूर्ण × कोणीय वेग	$[ML^2][T^{-1}]$	$[M L^2 T^{-1}]$
28.	बल–आघूर्ण, बलयुग्म का आघूर्ण	बल x दूरी	[M L T ⁻²][L]	[M L ² T ⁻²]

29.	बल–आघूर्ण (ऐंउन)	कोणीय संवेग/समय अथवा बल x दूरी	[ML² T¹]/[T] अथवा [M L T²][L]	$[ML^2T^2]$
30.	कोणीय आवृत्ति	2π× आवृत्ति	[T ⁻¹]	$[M^0 L^0 T^{-1}]$
31.	तरंगदैर्घ्य	दूरी	[L]	$[M^0 L T^0]$
32.	हबल नियतांक	पश्च सरण चाल/दूरी	[LT ⁻¹]/[L]	$[M^0 L^0 T^{-1}]$
33.	तरंग की तीव्रता	(ऊर्जा/समय)/क्षेत्रफल	$[ML^2 T^{-2}/T]/[L^2]$	$[M L^0 T^{-3}]$
34.	विकिरण दाब	तरंग की तीव्रता/प्रकाश की चाल	[MT ⁻³]/[LT ⁻¹]	$[M L^{-1}T^{-2}]$
35.	ऊर्जा घनत्व	ऊर्जा/आयतन	$[M L^2 T^{-2}]/[L^3]$	$[M L^{-1}T^{-2}]$
36.	क्रांतिक वेग	रेनॉल्ड संख्या × श्यानता गुणांक द्रव्यमान घनत्व × त्रिज्या	$\frac{[M^0 \ L^0 \ T^0] [ML^{-1}T^{-1}]}{[ML^{-3}] [L]}$	[M ⁰ LT ⁻¹]
37.	पलायन वेग	(2 × गुरुत्वीय त्वरण × पृथ्वी की त्रिज्या) ^½	$[LT^{-2}]^{1/2} x [L]^{1/2}$	$[\mathbf{M}^0 \ \mathbf{L} \mathbf{T}^{\text{-}1}]$
38.	ऊष्मीय ऊर्जा, आंतरिक ऊर्जा	कार्य (= बल × दूरी)	[M L T ⁻²][L]	$[M L^2 T^{-2}]$
39.	गतिज ऊर्जा	½ × द्रव्यमान × (वेग)²	[M][LT ⁻¹] ²	$[M L^2 T^2]$
40.	स्थितिज ऊर्जा	द्रव्यमान × गुरुत्वीय त्वरण × ऊँचाई	[M][LT ⁻²][L]	$[M L^2 T^{-2}]$
41.	घूर्णी गतिज ऊर्जा	½ × जड़त्व आघूर्ण × (कोणीय वेग)²	$[M^0L^0T^0][ML^2] \times [T^{-1}]^2$	$[M L^2 T^{-2}]$
42.	दक्षता	निर्गत कार्य अथवा ऊर्जा निवेश कार्य अथवा ऊर्जा	$\frac{[ML^2T^{-2}]}{[ML^2T^{-2}]}$	$[M^0\ L^0\ T^0]$
43.	कोणीय आवेग	बल आघूर्ण × समय	$[\mathrm{ML^2T^{\text{-}2}}][\mathrm{T}]$	[M L ² T ⁻¹]
44.	गुरुत्वीय नियतांक		$\frac{[MLT^{-2}][L^2]}{[M][M]}$	$[M^{-1} L^3 T^{-2}]$
45.	प्लांक नियतांक	ऊर्जा/आवृत्ति	$[ML^2T^{-2}]/[T^{-1}]$	$[M L^2T^{-1}]$
46.	ऊष्मा धारिता, एंट्रॉपी	ऊष्मीय ऊर्जा/ताप	[ML ² T ⁻²]/[K]	$[M L^2T^{-2}K^{-1}]$
47.	विशिष्ट ऊष्मा धारिता	ऊष्मीय ऊर्जा द्रव्यमान × ताप	[ML ² T ⁻²]/[M] [K]	$[M^0L^2T^{-2}K^{-1}]$
48.	गुप्त ऊष्मा	<u>ऊष्मीय ऊर्जा</u> द्रव्यमान	[ML ² T ⁻²]/[M]	$[{ m M}^0{ m L}^2{ m T}^{-2}]$
49.	तापीय प्रसार गुणांक अथवा ऊष्मा प्रसरणीयता	<u>विमा में परिवर्तन</u> मूल विमा × ताप	[L]/[L][K]	$[M^0 L^0 K^{-1}]$
50.	ऊष्मा चालकता	अष्मीय ऊर्जा × मोटाई क्षेत्रफल × ताप × समय	[ML ² T ⁻²] [L] [L ²] [K] [T]	[M LT ⁻³ K ⁻¹]
51.	आयतन प्रत्यास्थता गुणांक अथवा (संपीड्यता) ⁻¹	आयतन × दाब में परिवर्तन आयतन में परिवर्तन	$\frac{[L^3][ML^{-1}T^2]}{[L^3]}$	[M ⁻¹ T ⁻²]
52.	अभिकेंद्री त्वरण	(वेग)²/त्रिज्या	[LT ⁻¹] ² /[L]	$[M^0\ LT^{\text{-2}}]$
53.	स्टेफॉन नियतांक	(ऊर्जा/क्षेत्रफल × समय) (ताप)⁴	$\frac{[ML^2T^{-2}]}{[L^2][T][K]^4}$	[M L ⁰ T ⁻³ K ⁻⁴]
54.	वीन नियतांक	तरंगदैर्घ्य × ताप	[L][K]	[M ⁰ LT ⁰ K]

	c		2- 2- 4	0 0 1-
55.	बोल्ट्ज़मान नियतांक	ऊर्जा/ताप	[ML ² T ⁻²]/[K]	$[M L^2T^{-2}K^{-1}]$
56.	सार्वत्रिक गैस नियतांक	दाब × आयतन ————— मोल × ताप	[ML ⁻¹ T ⁻²][L ³] 	[M L ² T ⁻² K ⁻¹ mol ⁻¹]
57.	आवेश	विद्युत् धारा × समय	[A][T]	[M ⁰ L ⁰ TA]
58.	धारा घनत्व	विद्युत् धारा/क्षेत्रफल	$[A]/[L^2]$	$[M^0 L^{-2} T^0 A]$
59.	वोल्टता, विद्युत विभव, विद्युत् वाहक बल	कार्य/आवेश	[ML ² T ⁻²]/[AT]	[M L ⁻² T ⁻³ A ⁻¹]
60.	प्रतिरोध	विभवान्तर - विद्युत् धारा	$\frac{[ML^2T^{-3}A^{-1}]}{[A]}$	$[M L^2 T^{-3} A^{-2}]$
61.	धारिता	आवेश ——— विभवांतर	[AT] [ML ² T ⁻³ A ⁻¹]	$[M^{-1} L^{-2}T^4A^2]$
62.	वैद्युत प्रतिरोधकता अथवा (वैद्युत चालकता)- ¹	प्रतिरोध × क्षेत्रफल लंबाई	[ML ² T ⁻³ A ⁻²][L ²]/[L]	[ML ³ T ⁻³ A ⁻²]
63.	विद्युत क्षेत्र	वैद्युत बल/आवेश	[MLT ⁻²]/[AT]	[M LT ⁻³ A ⁻¹]
64.	वैद्युत अभिवाह	विद्युत् क्षेत्र × क्षेत्रफल	$[MLT^{-3}A^{-1}][L^2]$	$[M L^3 T^{-3} A^{-1}]$
65.	वैद्युत द्विध्रुव-आघूर्ण	बल आघूर्ण/विद्युत् क्षेत्र	$\frac{[ML^2T^{-2}]}{[MLT^{-3}A^{-1}]}$	[Mº LT A]
66.	विद्युत क्षेत्र तीव्रता अथवा वैद्युत तीव्रता	विभवान्तर दूरी	$\frac{[ML^2T^{.3}A^{-1}]}{[L]}$	[MLT ⁻³ A ⁻¹]
67.	चुंबकीय क्षेत्र, चुंबकीय अभिवाह घनत्व, चुंबकीय प्रेरण	ब ल विद्युत् धारा × लंबाई	[MLT ⁻²]/[A][L]	$[ML^{0}T^{-2}A^{-1}]$
68.	चुंबकीय अभिवाह	चुंबकीय क्षेत्र x क्षेत्रफल	$[MT^{-2}A^{-1}][L^2]$	[M L ² T ⁻² A ⁻¹]
69.	प्रेरकत्व	चुंबकीय अभिवाह विद्युत् धारा	$\frac{[ML^2T^{-2}A^{-1}]}{[A]}$	[M L ² T ⁻² A ⁻²]
70.	चुंबकीय द्विध्रुव आघूर्ण	बल आघूर्ण/चुंबकीय क्षेत्र अथवा विद्युत धारा x क्षेत्रफल	[ML ² T ⁻²]/[MT ⁻² A ⁻¹] अथवा [A][L ²]	[M ⁰ L ² T ⁰ A]
71.	चुंबकीय क्षेत्र प्रबलता, चुंबकीय तीव्रता अथवा चुंबकीय आघूर्ण घनत्व	चुंबकीय आघूर्ण आयतन	$\frac{[L^2A]}{[L^3]}$	[M ⁰ L ⁻¹ T ⁰ A]
72.	विद्युतशीलता (परावैद्युतांक)	आवेश × आवेश	[AT][AT]	$[M^{-1} L^{-3} T^4 A^2]$
	नियतांक (मुक्त आकाश का)		[MLT ⁻²][L] ²	
73.	पारगम्यता नियतांक (मुक्त आकाश का)	2 π × बल × दूरी (विद्युत् धारा) × (विद्युत् धारा) × लंबाई	$\frac{[M^{0} L^{0} T^{0}][MLT^{-2}][L]}{[A][A][L]}$	[M L T ⁻² A ⁻²]
74.	अपवर्तनांक	निर्वात में प्रकाश की चाल ———————————————————————————————————	[LT ¹]/[LT ¹]	[M ⁰ L ⁰ T ⁰]
75.	फैराडे नियतांक	आवोगाद्रो नियतांक x मूल आवेश	[AT]/[mol]	[M ⁰ L ⁰ TA mol ⁻¹]
76.	तरंग संख्या	2 π/तरंगदैर्घ्य	$[M^0L^0T^0]/[L]$	[M ⁰ L ⁻¹ T ⁰]

77.	विकिरण अभिवाह, विकिरण शक्ति	उत्सर्जित ऊर्जा/समय	[ML ² T ⁻²]/[T]	$[M L^2 T^{-3}]$
78.	विकिरण अभिवाह की ज्योति अथवा विकिरण तीव्रता	स्रोत का विकिरण अभिवाह अथवा विकिरण शक्ति घन कोण	$[ML^2T^{-3}]/[M^0 L^0 T^0]$	[ML ² T ⁻³]
79.	दीप्त शक्ति अथवा स्रोत का ज्योति फ्लक्स	उत्सर्जित ज्योति ऊर्जा समय	[ML ² T ⁻²]/[T]	[M L ² T ⁻³]
80.	ज्योति तीव्रता अथवा स्रोत की प्रदीपन क्षमता	ज्योति फ्लक्स घन कोण	$\frac{[ML^2T^{.3}]}{[M^0L^0T^0]}$	[M L ² T ⁻³]
81.	प्रदीपन की तीव्रता अथवा ज्योतिर्मयता	$\dfrac{\overline{\overline{\mathbf{q}}}$ $\overline{\overline{\mathbf{q}}}$ $\overline{\overline{\mathbf{q}}}$ $\overline{\overline{\mathbf{q}}}$	$[ML^2T^{-3}]/[L^2]$	$[\mathrm{ML^0T^{-3}}]$
82.	आपेक्षिक ज्योति	दी गई तरंगदैर्घ्य के किसी स्रोत का ज्योति पलक्स उसी क्षमता के स्रोत का चरम सुग्राहिता तरंगदैर्घ्य (555 n m) का ज्योति फ्लक्स	$\frac{[ML^2T^{.3}]}{[ML^2T^{.3}]}$	[M ⁰ L ⁰ T ⁰]
83.	ज्योति दक्षता	कुल ज्योति फ्लक्स कुल विकिरण फ्लक्स	[ML ² T ⁻³]/[ML ² T ⁻³]	[M ⁰ L ⁰ T ⁰]
84.	प्रदीप्ति घनत्व अथवा प्रदीप्ति	आपतित ज्योति फ्लक्स क्षेत्रफल	$[ML^2T^{-3}]/[L^2]$	[M L ⁰ T ⁻³]
85.	द्रव्यमान क्षति	[न्यूक्लियॉनों (नाभिक कणों) के द्रव्यमानों का योग] (नाभिक का द्रव्यमान)	[M]	[M L ⁰ T ⁰]
86.	नाभिक की बंधन ऊर्जा	द्रव्यमान क्षति x (निर्वात में प्रकाश की चाल)2	[M][LT ⁻¹] ²	$[M L^2 T^{-2}]$
87.	क्षय-नियतांक	0.693/अर्ध आयु	$[T^{-1}]$	$[M^0 L^0 T^{-1}]$
88.	अनुनाद आवृत्ति	(प्रेरकत्व × धारिता) ^{-½}	$[ML^2T^{-2}A^{-2}]^{-1/2} \times$ $[M^{-1}L^{-2}T^4A^2]^{-1/2}$	$[{ m M}^0{ m L}^0{ m A}^0{ m T}^{{ m -}1}]$
89.	गुणता कारक अथवा कुंडली का Q - कारक	अनुनाद आवृत्ति x प्रेरकत्व प्रतिरोध	$\frac{[T^{\text{-}1}][ML^2T^{\text{-}2}A^{\text{-}2}]}{[ML^2T^{\text{-}3}A^{\text{-}2}]}$	$[\mathrm{M^0~L^0~T^0}]$
90.	लेंस की क्षमता	(फोकस दूरी)-1	$[L^{-1}]$	$[M^0 L^{-1} T^0]$
91.	आवर्धन	प्रतिबिंब-दूरी वस्तु-दूरी	[L]/[L]	$[\mathrm{M^0~L^0~T^0}]$
92.	तरल प्रवाह दर	$\frac{\pi/8 \times (\pi a) \times (\pi \pi u)^4}{(\pi u \pi u)^4 \times (\pi u \pi u)}$	$\frac{[ML^{-1}T^{-2}][L^4]}{[ML^{-1}T^{-1}][L]}$	$[M^0 L^3 T^{-1}]$
93.	धारिता-प्रतिघात	(कोणीय आवृत्ति × धारिता) ^{-।}	$[T^{\text{-}1}]^{\text{-}1}[M^{\text{-}1}L^{\text{-}2}T^4A^2]^{\text{-}1}$	$[M L^2 T^{-3}A^{-2}]$
94.	प्रेरणिक प्रतिघात	(कोणीय आवृत्ति x प्रेरकत्व)	[T ⁻¹][ML ² T ⁻² A ⁻²]	[M L ² T ⁻³ A ⁻²]