TEMA 1: SISTEMAS DE ECUACIONES LINEALES Y MATRICES.

Índice.

TEMA 1: SISTEMAS DE ECUACIONES LINEALES Y MATRICES.

1.1. Introducción.

1.2. Matrices.

1.3. Sistemas de ecuaciones.

Sistemas de ecuaciones y matrices

¿Qué relación hay entre los sistemas de ecuaciones lineales y las matrices?

¿Cómo los resolvemos?

Compatibilidad de sistemas de ecuaciones.

 $(S): \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$

Los sistemas de ecuaciones lineales se pueden clasificar, atendiendo al número de soluciones que tienen, de la siguiente manera:

Sistemas compatibles Sistemas compatibles determinados Sistemas incompatibles

Sistemas compatibles indeterminados

Los sistemas compatibles son los que tienen al menos una solución; los compatibles determinados tienen sólo una solución, y los indeterminados tienen más de una solución.

Los sistemas incompatibles son los que carecen de soluciones.

Ejemplo 1. Cuestión: ¿Qué tipo de sistema es?

$$\begin{cases} 2x - y = 0 \\ x + y = 3 \end{cases}$$

Ejemplo 2. Cuestión: ¿Qué tipo de sistema es?

$$\begin{cases} 2x + 2y = 6 \\ x + y = 3 \end{cases}$$

Ejemplo 3. *Cuestión: ¿Qué tipo de sistema es?*

$$\begin{cases} x + y = 1 \\ x + y = 3 \end{cases}$$

Definiciones y ejemplos

Definición Una matriz $A = (a_{ij})$ es un conjunto de números ordenados en filas y columnas. $A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$

Si m es el número de filas y n el de columnas diremos que A es una matriz de orden (tamaño o dimensión) m por n y escribiremos $A_{m\times n}$ ó $A \in \mathcal{M}_{m\times n}(\mathbb{R})$, donde $\mathcal{M}_{m\times n}(\mathbb{R})$ representa el conjunto de las matrices de orden $m\times n$ con con elementos o coeficientes reales.

Cuestión: ¿Cómo se escribe una matriz con números complejos? ¿Qué nombre recibe el conjunto de ese tipo de matrices?

Algunos tipos de matrices son (Cuestión: escribe un ejemplo de cada una de ellas):

- \bullet Una matriz se dice que es *cuadrada* de orden n cuando tiene n filas y n columnas.
- Una matriz se dice que es una matriz fila cuando sólo tiene 1 fila.
- Una matriz se dice que es una matriz columna cuando sólo tiene 1 columna.
- Una matriz se dice que es triangular superior cuando sus elementos cumplen que $a_{ij} = 0$ si i > j.
- Una matriz se dice que es triangular inferior cuando sus elementos cumplen que $a_{ij} = 0$ si i < j.
- Una matriz se dice que es *triangular* cuando es triangular inferior o triangular superior.
- Una matriz se dice que es una matriz diagonal cuando es cuadrada y sus elementos cumplen que $a_{ij} = 0$ si $i \neq j$.
- Llamamos $matriz\ identidad$ de orden n a la matriz diagonal cuya diagonal principal está formada por unos. Dicha matriz la denotamos por I_n .

Operaciones con matrices

- Suma: dadas dos matrices $A = (a_{ij})$ y $B = (b_{ij})$ del mismo orden, la suma A + B es la matriz que se obtiene al sumar los elementos correspondientes de las dos matrices. Es decir, si $A, B \in \mathcal{M}_{m \times n}(\mathbb{R})$, se define $A + B = (a_{ij} + b_{ij})$.
- Producto de un escalar por una matriz: Si A es cualquier matriz y λ es cualquier número real, el producto λA es la matriz que se obtiene al multiplicar cada elemento de A por λ . Esto es, $\lambda A = (\lambda a_{ij})$.
- Matriz traspuesta: Sea $A_{m \times n}$, la traspuesta de A es la matriz que se obtiene al intercambiar las filas por las columnas, y se representa por A^T .

Operaciones con matrices

■ Producto de matrices: Si $A_{m \times r}$ y $B_{r \times n}$, el producto AB es la matriz $C_{m \times n}$ definida del siguiente modo:

$$c_{ij} = \underbrace{\begin{bmatrix} a_{i1} & \cdots & a_{ir} \end{bmatrix}}_{\text{fila } i \text{ de } A} \underbrace{\begin{bmatrix} b_{1j} \\ \vdots \\ b_{rj} \end{bmatrix}}_{\text{columna } j \text{ de } B} = a_{i1}b_{1j} + \cdots + a_{ir}b_{rj} = \sum_{k=1}^{r} a_{ik}b_{kj}$$

para
$$i = 1, ..., m; j = 1, ..., n.$$

Cuestión: Sean A y B dos matrices cuadradas, ¿se verifica que $(A + B)^2 = A^2 + B^2 + 2AB$?

Propiedades

Propiedades : Sean A, B y C matrices de órdenes convenientes.

1)
$$A + B = B + A$$

2)
$$A + (B + C) = (A + B) + C$$

$$3) A(B+C) = AB + BC$$

4)
$$(A+B)C = AC + BC$$

$$5) A(BC) = (AB)C$$

6)
$$(A + B)^t = A^t + B^t$$

$$7) (A^t)^t = A$$

8)
$$(AB)^t = B^t A^t$$

El producto de matrices no es conmutativo

El producto de matrices no nulas puede dar una matriz nula.

Propiedades

Hagamos un breve paréntesis para recordar que el 0 y el 1 juegan un papel importante en las operaciones con números reales. Si $a, b, c \in \mathbb{R}$ se verifica:

1)
$$a + 0 = 0 + a = a$$

1)
$$a + 0 = 0 + a = a$$
 4) $a \cdot b = a \cdot c \ y \ a \neq 0 \Rightarrow b = c$

2)
$$a \cdot 0 = 0 \cdot a = 0$$
 5) $a \cdot 1 = 1 \cdot a = a$

5)
$$a \cdot 1 = 1 \cdot a = a$$

3)
$$a \cdot b = 0 \Leftrightarrow a = 0 \circ b = 0$$
 6) $a \neq 0 \Rightarrow a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$

¿Qué matrices "juegan" el papel del 0 y el 1, y cuáles de estas reglas son válidas para matrices? Dichas matrices son la matriz nula y la matriz identidad, respectivamente, que se definen del siguiente modo: $I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$

- Matriz nula: $\mathbf{O}_{m \times n} = (\theta_{ij})$, siendo $\theta_{ij} = 0$ para todo i, j.
- Matriz identidad: $I_n = (\delta_{ij})$, siendo $\delta_{ii} = 1, \delta_{ij} = 0$ si $i \neq j$. Es decir:

15

Propiedades

Proposición Sean $A_{m \times n}$, se verifica:

1.
$$A_{m \times n} + \mathbf{O}_{m \times n} = \mathbf{O}_{m \times n} + A_{m \times n} = A_{m \times n}$$

2.
$$A_{m \times n} \mathbf{O}_{n \times p} = \mathbf{O}_{m \times p}$$

3.
$$A_{m \times n} I_n = A_{m \times n}$$

4.
$$I_m A_{m \times n} = A_{m \times n}$$

En general $AB = \mathbf{O} \Rightarrow A = \mathbf{O}$ ó $B = \mathbf{O}$, y $AB = AC \Rightarrow B = C$.

Cuestión: Busca tres matrices A, B y C que verifiquen: AB = AC, $B \neq C$.

Matriz inversa

Matriz inversa : Una matriz A cuadrada es invertible (o regular) si existe una matriz cuadrada B tal que AB = BA = I.

A la matriz B se le denomina *inversa* de A y se escribe $B = A^{-1}$.

Cuando una matriz no posee inversa se dice que es singular.

Propiedades:

- 1) La inversa de una matriz regular es única.
- 2) Si A y B son matrices regulares del mismo orden, entonces AB también es regular y $(AB)^{-1} = B^{-1}A^{-1}$.
- 3) Si A posee inversa, se verifica: a) $\left(A^{-1}\right)^{-1} = A$. b) $\left(A^{t}\right)^{-1} = \left(A^{-1}\right)^{t}$.

Matriz simétrica

Matriz simétrica : Una matriz cuadrada es simétrica si $A = A^t$

Si A y B son matrices simétricas del mismo orden, se verifica:

- A + B es simétrica.
- kA es simétrica para todo $k \in \mathbb{R}$.
- AB es simétrica si y sólo si A y B conmutan.

Si A es simétrica e invertible, entonces A^{-1} es simétrica.

Si es $A_{m \times n}$, entonces AA^t es simétrica de de orden m, A^tA es simétrica de de orden n.

Si A es simétrica e invertible, entonces AA^t y A^tA son invertibles.

Determinantes

Sea A una matriz cuadrada de orden n, denotamos por $A(i \mid j)$ a la submatriz que resulta de suprimir en A la fila i y la columna j.

Se define el *determinante* de A del siguiente modo:

Si
$$n = 1$$
, det $A = a_{11}$

Si
$$n = 2$$
, det $A = a_{11} \det A(1 \mid 1) - a_{21} \det A(2 \mid 1)$

y en general para
$$n > 1$$
, $\det A = \sum_{i=1}^{n} (-1)^{i+1} a_{i1} \det A(i \mid 1)$

Nota : Se verifica que para cualquier j, $\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A(i \mid j)$

es decir, podemos calcular det A desarrollando por cualquier columna.

Propiedades

- 1) Si A es una matriz triangular o diagonal: det $A = a_{11} \cdots a_{nn}$.
- 2) Si A tiene una columna de ceros, det A = 0.
- 3) Si B es una matriz que se obtiene de A multiplicando una columna de A por k, det B = k det A.
- 4) Si B es una matriz que se obtiene de A intercambiando dos columnas, det $B = -\det A$.
- 5) Si B es una matriz que se obtiene de A sumando a una de sus columnas un múltiplo de otra, det $B = \det A$.
- 6) Si A tiene dos columnas proporcionales, det A = 0.
- 7) $\det A^t = \det A$. (esta propiedad permite trasladar a filas las propiedades enunciadas para columnas).

Otras propiedades

1) $\det kA = k^n \det A$

3) $\det AB = \det A \det B$

2) A es invertible \Leftrightarrow det $A \neq 0$

4) $\det A^{-1} = \frac{1}{\det A}$

Cálculo de la inversa

En la expresión de det $A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A(i \mid j)$, llamamos cofactor

o adjunto al número $(-1)^{i+j}a_{ij}$ det $A(i\mid j)$, si lo representamos por A_{ij}

se tiene: det $A = \sum_{i=1}^{n} a_{ij} A_{ij}$.

Llamamos adjunta de A a la matriz: $adj(A) = (A_{ij})^t = (A_{ji})$.

Para hallar la inversa de A se tiene, supuesto que det $A \neq 0$: $A^{-1} = \frac{1}{\det A} \operatorname{adj}(A)$

Métodos de Gauss

Este método consiste en transformar el sistema de ecuaciones dado en otro equivalente (que tenga la misma solución) y cuya matriz de coeficientes sea triangular.

Solución de un sistema por el método de subida.

$$\begin{cases} 2x + y + z = 1 \\ y + 2z = 4 \\ 4z = 4 \end{cases}$$
 La solución es
$$\begin{vmatrix} x = -1 \\ y = 2 \\ z = 1 \end{vmatrix}$$

Solución de un sistema por el método de bajada

$$\begin{cases} 2x & = 2 \\ -x + y & = 0 \\ 2x - 3y + 4z & = 3 \end{cases}$$
 la solución es
$$\begin{vmatrix} x = 1 \\ y = 1 \\ z = 1 \end{vmatrix}$$

Transformaciones elementales en S.E.L.

Para transformar un sistema de ecuaciones en otro equivalente se pueden realizar las siguientes transformaciones que denominaremos elementales.

- $F_i(\alpha)$ Multiplicar la ecuación i por un escalar $\alpha \neq 0$.
- F_{ij} Permutar las ecuaciones i y j.
- $F_{ij}(\alpha)$ Sumar a la ecuación i la ecuación j multiplicada por un escalar α .

$$\begin{cases} x_1 + x_2 - x_3 = 2 \\ 3x_1 + 3x_2 + x_3 = 2 \\ x_1 + x_3 = 0 \end{cases} \sim \begin{cases} x_1 + x_2 - x_3 = 2 \\ 4x_3 = -4 \\ -x_2 + 2x_3 = -2 \end{cases} \leftarrow \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \\ 4x_3 = -4 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 + x_3 = 2 \\ -x_2 + 2x_3 = -2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 + x_3 + x_3 = 2 \end{cases} = \begin{cases} x_1 + x_2 - x_3 +$$

Definiciones

Definición Dado un sistema (S) de m ecuaciones lineales con n incógnitas:

(S):
$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

la matriz $A = (a_{ij}) \in \mathcal{M}_{m \times n}(\mathbb{R})$, recibe el nombre de matriz de coeficientes, el vector $b = (b_1, ..., b_m) \in \mathbb{R}^m$ se denomina término independiente y el vector $x = (x_1, ..., x_n) \in \mathbb{R}^n$ se llama vector de incógnitas o vector incógnita.

Con esta notación el sistema (S) se escribe como Ax = b, y los vectores x y b se representan por columnas. $\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n} & \vdots & a_{nm} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$

Definiciones

Definición Dado el sistema Ax = b, a la matriz que se obtiene añadiéndole a A el vector b como última columna se le llama matriz ampliada del sistema y la denotamos por (A|b). Si $b = \mathbf{0}$, el sistema se denomina homogéneo.

$$(A|b) = \begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ 4 & 1 & 0 & -2 \\ -2 & 2 & 1 & 7 \end{bmatrix} \sim _{\substack{F_{21}(-2) \\ F_{31}(1)}} \begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ 0 & -1 & -2 & -4 \\ 0 & 3 & 2 & 8 \end{bmatrix} \sim _{\substack{F_{32}(3) \\ F_{32}(3)}} \begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ 0 & -1 & -2 & -4 \\ 0 & 0 & -4 & -4 \end{bmatrix} = (U|c)$$

Puesto que los sistemas Ax = b y Ux = c son equivalentes^{*}, y hemos pasado de uno a otro sometiendo a la matriz (A|b) a transformaciones elementales por filas, diremos que las matrices (A|b) y (U|c) son equivalentes y por tanto tienen el mismo rango.

Rango de una matriz

Definición El rango de una matriz es el número máximo de filas no nulas una vez reducida la matriz a una forma escalonada.

Nota Puede probarse que el rango de una matriz A coincide con el de la matriz A^T .

Observación

Para las matrices (A|b) y (U|c) precedentes se verifica:

$$rg(A) = rg(U) = 3$$
, $y rg(A|b) = rg(U|c) = 3$

rg(A) = rg(A|b) = 3 = n (nº de incógnitas), y el sistema Ax = b es compatible determinado (C.D.)

Teorema de Rouché-Frobenius

Sea Ax = b un sistema de ecuaciones lineales. Se verifica:

- 1) El sistema Ax = b es compatible si, y sólo si, $rango(A) = rango(A \mid b)$.
- 2) Si rango(A) = rango(A | b) = número de incógnitas, entonces el sistema <math>Ax = b es compatible determinado.
- 3) Si rango(A) = rango(A|b) < número de incógnitas, entonces el sistema <math>Ax = b es compatible indeterminado.

Obviamente, los sistemas homogéneos siempre tienen al menos la solución trivial x = 0.

Cuestión: ¿Qué diferencia hay entre el rango de A y A ampliada en un sistema homogéneo?

Método de Gauss-Jordan

Es una variante del método de Gauss, cuyo objetivo es transformar la matriz de coeficientes en la matriz identidad. Consideremos el siguiente ejemplo:

$$(A|b) = \begin{bmatrix} 1 & 1 & -1 & 2 \\ 3 & 3 & 1 & 2 \\ 1 & 0 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & 0 & 4 & -4 \\ F_{31}(-1) & 0 & -1 & 2 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & 0 & 4 & -4 \\ 0 & -1 & 2 & -2 \end{bmatrix} = (U|c)$$

$$(U|c) = \begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & -1 & 2 & -2 \\ 0 & 0 & 4 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & -1 & 0 & 0 \\ F_{12}(\frac{1}{2}) & 0 & 0 & 4 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 4 & -4 \end{bmatrix} = (D|s)$$

Método de Gauss-Jordan

El sistema Dx = s es equivalente al sistema dado:

(S):
$$\begin{cases} x_1 & = 1 \\ -x_2 & = 0 \\ 4x_3 = -4 \end{cases}$$
 la solución es: $x_1 = 1 \\ x_2 = 0 \\ x_3 = -1 \end{cases}$

Si realizamos una etapa más, dividiendo por los pivotes (elementos diagonales) obtendremos un sistema equivalente cuya matriz de coeficientes es la matriz identidad.

$$(D|s) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 4 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ F_2(-1) & 0 & 0 & 1 & -1 \end{bmatrix} = (I|t)$$

obsérvese que x = t es la solución del sistema.

Cálculo de la matriz inversa mediante Gauss-Jordan

El interés del método de Gauss-Jordan radica fundamentalmente en que proporciona un algoritmo eficiente para calcular la inversa de una matriz. Dada una matriz A regular de orden n, escribimos la matriz (A|I) donde I es la matriz identidad de orden n, y a continuación sometemos la matriz (A|I) a una serie de transformaciones elementales por filas hasta obtener, si es posible, una matriz de la forma (I|B).

Si F_1, \ldots, F_t son las matrices elementales correspondientes a las transformaciones elementales por filas realizadas en el proceso de eliminación, se tendrá:

$$F_t \cdots F_1(A|I) = (I|B)$$

Si escribimos
$$F = F_t \cdots F_1$$
, resulta:
$$\begin{cases} FA = I \\ FI = B \end{cases} \implies \begin{cases} A^{-1} = F \\ F = B \end{cases} \implies \boxed{A^{-1} = B}$$

Cuestión: ¿Cuándo no es posible realizar este procedimiento?

Cálculo de la matriz inversa mediante Gauss-Jordan

Proposición a) Si A y B son matrices triangulares inferiores (superiores), su producto es una matriz del mismo tipo.

b) Si A es una matriz triangular inferior (superior) con elementos no nulos en la diagonal, su inversa A^{-1} es una matriz del mismo tipo.

Corolario a) Si A y B son matrices triangulares inferiores (superiores) con unos en la diagonal, su producto es una matriz del mismo tipo.

b) Si A es una matriz triangular inferior (superior) con unos en la diagonal, su inversa A^{-1} es una matriz del mismo tipo.