Cursul 3

Serii de numere reale. Serii cu termeni pozitivi

Serii în \mathbb{R} . Generalități

Conceptul de "serie numerică" este o generalizare naturală a noțiunii de "sumă finită de numere reale" cu observația că se aplică unei mulțimi infinite ale cărei elemente sunt termenii unui șir. Din acest mod de determinare a unei serii numerice, vom preciza legăturile cu șirurile numerice și sumele finite din \mathbb{R} .

Dacă $A = \{x_1, ..., x_n\}$ cu $x_i \in \mathbb{R}$, pentru $i = \overline{1, n}$, atunci mulțimii A i se asociază un număr real S numit sumă și calculat astfel:

$$x_1 + x_2; (x_1 + x_2) + x_3; \ldots; (x_1 + x_2 + \ldots + x_{n-2}) + x_{n-1}; (x_1 + x_2 + \ldots + x_{n-1}) + x_n = S$$

utilizând proprietățile adunării din \mathbb{R} . Această observație sugerează să ataşăm șirului $(x_n)_{n\in\mathbb{N}^*}$ șirul $(S_n)_{n\in\mathbb{N}^*}$, unde $S_n = x_1 + x_2 + ... + x_n$, pentru orice $n \in \mathbb{N}^*$, numit **şirul sumelor parțiale** asociat şirului $(x_n)_{n \in \mathbb{N}^*}$.

Definiția 3.1 Perechea $((x_n)_{n\in\mathbb{N}^*},(S_n)_{n\in\mathbb{N}^*})$, unde $S_n=x_1+x_2+...+x_n$, se numește serie de numere reale (sau serie în \mathbb{R}) și se notează, convențional, prin

$$\sum_{n \in \mathbb{N}^*} x_n \ sau \ \sum_{n>1} x_n \ sau \ \sum_{n=1}^{\infty} x_n \ sau \ : x_1 + x_2 + \ldots + x_n + \ldots$$

 $(S_n)_{n\in\mathbb{N}^*}$ se numește **șirul sumelor parțiale atașat seriei**, iar x_n se numește **termen general al seriei**.

Observație: Când mulțimea indicilor șirului de referință este $\{n \in \mathbb{N} \mid n \geq n_0\}$ (unde $n_0 \in \mathbb{N}$), atunci seria în cauză va fi notată cu $\sum_{n>n_0} x_n$ (sau $\sum_{n=n_0}^{\infty} x_n$ sau $x_{n_0} + x_{n_0+1} + \ldots + x_n + \ldots$).

- I) Seria $\sum_{n\in\mathbb{N}^*} x_n$ se numește **convergentă**, și se notează prin $\sum_{n\in\mathbb{N}^*} x_n(C)$, dacă există $S\in\mathbb{R}$ astfel încât $S = \lim_{n \to \infty} S_n$ (adică şirul $(S_n)_{n \in \mathbb{N}^*}$ este convergent în \mathbb{R} , cu limita S). Numărul real S se numește suma seriei $\sum_{n} x_n$ și putem scrie $S = \sum_{n} x_n$.
- II) Dacă șirul $(S_n)_{n\in\mathbb{N}^*}$ nu are limită în \mathbb{R} (adică $\lim_{n\to\infty}S_n$ nu există sau, dacă există este $-\infty$ sau $+\infty$), atunci seria $\sum_{n\in\mathbb{N}^*} x_n$ se numește **divergentă** și acest fapt se notează prin $\sum_{n\in\mathbb{N}^*} x_n(D)$.

Exemple:

a) Seria $\sum_{n \in \mathbb{N}} r^n$, $\forall n \in \mathbb{N}$, se numește **seria geometrică cu rația** r, unde $r \in \mathbb{R}$, arbitrar fixat. Şirul sumelor parțiale atașat ei are termenul general S_n dat prin

$$\left(\begin{array}{c} \frac{1-r^{n+1}}{r}, & r = 0 \end{array}\right)$$

$$S_n = 1 + r + r^2 + \ldots + r^n = \begin{cases} \frac{1 - r^{n+1}}{1 - r}, & r \neq 1 \\ n + 1, & r = 1 \end{cases}, \forall n \in \mathbb{N}.$$

1

Deoarece $\lim_{n\to\infty} r^n$ există și este finită doar dacă |r|<1, putem spune că avem $\sum_{n\in\mathbb{N}} r^n(C)$, când |r|<1 și $\sum_{n\in\mathbb{N}} r^n(D)$, când $|r|\geq 1$.

- b) Seria $\sum_{n\in\mathbb{N}} (-1)^n$, numită și seria lui Grandi, este divergentă, deoarece șirul sumelor parțiale (S_n) nu este convergent ($S_{2k}=1$ iar $S_{2k+1}=-1$, pentru orice $k\in\mathbb{N}$).
- c) Seria $\sum_{n\in\mathbb{N}^*} \ln\left(1+\frac{1}{n}\right)$ este divergentă, deoarece pentru orice $n\in\mathbb{N}^*$ avem:

$$S_n = \sum_{k=1}^n \ln\left(1 + \frac{1}{k}\right) = \sum_{k=1}^n \left[\ln(k+1) - \ln k\right] = \ln(n+1),$$

iar

$$\lim_{n \to \infty} \ln(n+1) = +\infty.$$

d) Seria $\sum_{n>2} \frac{n-\sqrt{n^2-1}}{\sqrt{n^2-n}}$ este convergentă și are suma $S=\sqrt{2}-1$.

Într-adevăr, întrucât pentru orice $n \in \mathbb{N}^*, n \geq 2$, avem:

$$S_n = \sum_{k=2}^n \frac{k - \sqrt{k^2 - 1}}{\sqrt{k^2 - k}} = \sum_{k=2}^n \left(\sqrt{\frac{k}{k - 1}} - \sqrt{\frac{k + 1}{k}} \right) = \sqrt{2} - \sqrt{\frac{n + 1}{n}},$$

iar există $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \left(\sqrt{2} - \sqrt{\frac{n+1}{n}}\right) = \sqrt{2} - 1 \in \mathbb{R}$, obținem că seria $\sum_{n\geq 2} \frac{n-\sqrt{n^2-1}}{\sqrt{n^2-n}}$ (C).

e) Seria $\sum_{n\in\mathbb{N}^*} \frac{1}{n^2}$ este convergentă, deoarece șirul $(S_n)_{n\in\mathbb{N}^*}$, unde $S_n=1+\frac{1}{2^2}+\ldots+\frac{1}{n^2}$, $\forall\,n\in\mathbb{N}^*$, este monoton (strict) crescător, întrucât $S_{n+1}-S_n=\frac{1}{(n+1)^2}>0$, $\forall\,n\in\mathbb{N}^*$ și, totodată, este majorat (mărginit superior) căci avem:

$$S_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \sum_{k=2}^n \frac{1}{k^2} < 1 + \sum_{k=2}^n \frac{1}{k(k-1)} = 1 + \sum_{k=2}^n \left(\frac{1}{k-1} - \frac{1}{k}\right) = 2 - \frac{1}{n} < 2, \forall n \in \mathbb{N}^*.$$

Astfel, potrivit teoremei convergență a șirurilor monotone (v. Teorema 2.22, cursul 2) obținem că șirul $(S_n)_{n\in\mathbb{N}^*}$ este convergent. Așadar, seria $\sum_{n\in\mathbb{N}^*}\frac{1}{n^2}$ este convergentă.

Definiția 3.3 Prin natura seriei $\sum_{n\in\mathbb{N}^*} x_n$ înțelegem calitatea ei de a fi convergentă sau divergentă.

Definiția 3.4 Fie $\sum_{n \in \mathbb{N}^*} x_n$ o serie de numere reale.

- i) Dacă $x_n \geq 0$, $\forall n \in \mathbb{N}^*$, atunci **seria** $\sum_{n \in \mathbb{N}^*} x_n$ se numește **cu termeni pozitivi**;
- $ii)\ \ Dac\ \ x_n<0,\ \forall\, n\in\mathbb{N}^*,\ atunci\ \sum_{n\in\mathbb{N}^*}x_n\ \ se\ \ numeşte\ \ \textbf{serie}\ \ \textbf{cu}\ \ \textbf{termeni}\ \ \textbf{negativi};$

- iii) Când x_n nu are același semn pentru orice valoare a indicelui $n \in \mathbb{N}^*$, seria $\sum_{n \in \mathbb{N}^*} x_n$ se numește **serie cu** termeni oarecare;
- iv) Dacă $x_n \cdot x_{n+1} < 0, \ \forall \ n \in \mathbb{N}^*, \ atunci \ seria \sum_{n \in \mathbb{N}^*} x_n \ se \ numește \ alternată.$

Observație: Dacă unei serii i se adaugă sau i se suprimă un număr finit de termeni, atunci natura ei nu se schimbă.

Definiția 3.5 Fie seria de numere reale $\sum_{n \in \mathbb{N}^*} x_n$ și $p \in \mathbb{N}^*$. Se numește **rest de ordinul** p al seriei considerate

(şi se noteaz \check{a} cu $R_p)$ seria $\sum_{n=p+1}^{\infty} x_n.$

Definiția 3.6 O serie $\sum_{n\in\mathbb{N}^*} x_n$, cu $x_n \in \mathbb{R}$, $\forall n \in \mathbb{N}^*$ şi în care x_n se poate pune sub forma $y_n - y_{n-1}$, $\forall n \in \mathbb{N}^*$, unde natura şirului $(y_n)_{n\in\mathbb{N}}$ este cunoscută, se numește **serie telescopică**.

Observație: Seriile de la punctele c) și d) ale exemplului de mai sus sunt telescopice.

- **Definiția 3.7** a) Două serii de numere reale $\sum_{n\in\mathbb{N}^*}u_n$ și $\sum_{n\in\mathbb{N}^*}v_n$ se numesc **egale** dacă și numai dacă $u_n=v_n$, pentru orice $n\in\mathbb{N}^*$. În acest caz, scriem: $\sum_{n\in\mathbb{N}^*}u_n=\sum_{n\in\mathbb{N}^*}v_n$.
 - b) Seriile $\sum_{n\in\mathbb{N}^*} u_n$ și $\sum_{n\in\mathbb{N}^*} v_n$ se numesc **de aceeași natură** dacă și numai dacă sunt, simultan, convergente sau divergente.

Spre exemplu, seriile de la punctele d) și e) ale exemplului de mai sus sunt de aceeași natură (fiind, ambele, convergente), pe când seriile de la c) și e) sunt serii de naturi diferite.

Teorema 3.8 (Criteriul general - al lui Cauchy - de convergență a unei serii de numere reale) Fie $\sum_{n \in \mathbb{N}^*} x_n$ o serie de numere reale. Atunci $\sum_{n \in \mathbb{N}^*} x_n$ este convergentă dacă și numai dacă $\forall \ \varepsilon \in \mathbb{R}_+^*, \ \exists \ n_{\varepsilon} \in \mathbb{N}^*, \ astfel \ \hat{n} c \hat{a} t, \ \forall \ n, p \in \mathbb{N}^*, \ cu \ n \geq n_{\varepsilon}, \ avem$:

$$|x_{n+1} + x_{n+2} + \ldots + x_{n+p}| < \varepsilon.$$

Demonstrație: Utilizând Definiția 3.2, obținem că seria $\sum_{n\in\mathbb{N}^*} x_n$ (C), dacă șirul sumelor parțiale $(S_n)_{n\in\mathbb{N}^*}$, unde $S_n=x_1+x_2+\ldots+x_n, \ \forall n\in\mathbb{N}^*$, este convergent. Dar, în \mathbb{R} , orice șir este convergent, dacă și numai dacă este șir Cauchy. Așadar, seria $\sum_{n\in\mathbb{N}^*} x_n$ (C) dacă și numai dacă șirul $(S_n)_{n\in\mathbb{N}^*}$ este un șir Cauchy, adică dacă $\forall \varepsilon>0, \ \exists \ n_\varepsilon\in\mathbb{N}^*$, astfel încât $\forall \ n\in\mathbb{N}^*$, $n\geq n_\varepsilon$ și $\forall \ p\in\mathbb{N}^*$ avem: $|S_{n+p}-S_n|<\varepsilon$.

dacă $\forall \varepsilon > 0$, $\exists n_{\varepsilon} \in \mathbb{N}^*$, astfel încât $\forall n \in \mathbb{N}^*$, $n \ge n_{\varepsilon}$ şi $\forall p \in \mathbb{N}^*$ avem: $|S_{n+p} - S_n| < \varepsilon$. Altfel spus, cum $S_{n+p} - S_n = x_{n+1} + x_{n+2} + \ldots + x_{n+p}$, seria $\sum_{n \in \mathbb{N}^*} x_n$ este convergentă dacă şi numai dacă $\forall \varepsilon > 0$, $\exists n_{\varepsilon} \in \mathbb{N}^*$, astfel încât $\forall n \in \mathbb{N}^*$, $n \ge n_{\varepsilon}$ şi $\forall p \in \mathbb{N}^*$, avem:

$$|x_{n+1} + x_{n+2} + \ldots + x_{n+p}| < \varepsilon.$$

Exemplu: Seria armonică alternată $\sum_{n \in \mathbb{N}^*} (-1)^{n+1} \frac{1}{n}$ este convergentă deoarece şirul $(S_n)_{n \in \mathbb{N}^*}$ cu termenul general $S_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots + \frac{(-1)^{n+1}}{n}$, $\forall n \in \mathbb{N}^*$, este convergent, fiind şir Cauchy.

$$|S_{n+p} - S_n| = \left| \frac{1}{n+1} - \frac{1}{n+2} + \dots + (-1)^{p-1} \frac{1}{n+p} \right| < \frac{1}{n+1} \le \frac{1}{n_{\varepsilon} + 1} < \varepsilon.$$

Prin negare, enunțul Teoremei 3.8 devine:

Propoziția 3.9 (Criteriul general de divergență) Seria $\sum_{n\in\mathbb{N}^*} x_n$ este divergentă dacă și numai dacă există $\varepsilon_0 > 0$ cu proprietatea că, pentru orice $n\in\mathbb{N}^*$, $\exists\, k_n\geq n\,$ și $\exists\, p_n\in\mathbb{N}^*\,$ astfel încât

$$|x_{k_n+1} + x_{k_n+2} + \ldots + x_{k_n+p_n}| \ge \varepsilon_0.$$

Exemplu: $Seria \sum_{n \in \mathbb{N}^*} \frac{1}{n}$, numită armonică simplă este divergentă.

Seria se numește $\boldsymbol{armonic\check{a}}$ întrucât x_n este media armonică a numerelor x_{n-1} și $x_{n+1},$ adică

$$\frac{2}{x_n} = \frac{1}{x_{n-1}} + \frac{1}{x_{n+1}}, \forall n \in \mathbb{N}^*, n \ge 2.$$

Considerăm șirul sumelor parțiale $S_n = 1 + \frac{1}{2} + ... + \frac{1}{n}$ și arătăm că $(S_n)_{n \in \mathbb{N}^*}$ nu este șir Cauchy. Astfel, pentru $k, p \in \mathbb{N}^*$ și $p \geq k$, avem:

$$x_{k+1} + x_{k+2} + \ldots + x_{k+p} = \frac{1}{k+1} + \frac{1}{k+2} + \ldots + \frac{1}{k+p} > \frac{p}{k+p} \ge \frac{1}{2},$$

ceea ce înseamnă că există $\varepsilon_0 = \frac{1}{2} > 0$ așa încât are loc condiția din enunțul Propoziției 3.9. Așadar seria armonică simplă este divergentă.

Propoziția 3.10 Fie seria de numere reale $\sum_{n\in\mathbb{N}^*} x_n$. Dacă seria $\sum_{n\in\mathbb{N}^*} x_n$ converge, atunci $\lim_{n\to\infty} x_n = 0$.

Demonstrație: Fie $S_n = x_1 + x_2 + ... + x_n$, pentru orice $n \in \mathbb{N}^*$. Seria $\sum_{n \in \mathbb{N}^*} x_n$ fiind convergentă, rezultă că $\lim_{n \to \infty} S_n = S$. Dar, pe de altă parte, cum $x_n = S_n - S_{n-1}$, rezultă că

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = S - S = 0.$$

Prin negare, enunțul Propozitiei 3.10, devine:

Propoziția 3.11 (Criteriu de divergență) Fie seria de numere reale $\sum_{n \in \mathbb{N}^*} x_n$. Dacă şirul $(x_n)_{n \in \mathbb{N}^*}$ nu este convergent la 0, atunci seria $\sum_{n \in \mathbb{N}^*} x_n$ este divergentă.

Demonstrație: Presupunând, prin absurd, că seria $\sum_{n\in\mathbb{N}^*}x_n$ ar fi convergentă, ar rezulta atunci că, potrivit Teoremei 3.9, pentru n trecut în rolul lui n+1 și cu p=1, avem $\lim_{n\to\infty}x_n=0$, contrar ipotezei din enunț. Așadar seria $\sum_{n\in\mathbb{N}^*}x_n$ este divergentă.

Observație: Condiția $\exists \lim_{n \to \infty} x_n = 0$ este numai $necesar\check{a}$ pentru convergența seriei cu termenul general x_n (din \mathbb{R}), nu și $suficient\check{a}$.

Un exemplu clar este cel al seriei armonice simple. Chiar dacă $\exists \lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{1}{n} = 0$, totuşi seria $\sum_{n \in \mathbb{N}^*} \frac{1}{n}$ este, după cum deja am văzut, divergentă.

Definiția 3.12 a) O serie de numere reale $\sum_{n \in \mathbb{N}^*} x_n$ se numește **absolut convergentă**, notat pe scurt $\sum_{n \in \mathbb{N}^*} x_n(AC)$, dacă seria valorilor absolute ale termenilor săi, adică seria $\sum_{n \in \mathbb{N}^*} |x_n|$, este convergentă.

b) Seria $\sum_{n \in \mathbb{N}^*} x_n$ se numește **semiconvergentă**, și notăm $\sum_{n \in \mathbb{N}^*} x_n(SC)$, dacă seria $\sum_{n \in \mathbb{N}^*} x_n$ este convergentă, dar seria $\sum_{n \in \mathbb{N}^*} |x_n|$ este divergentă.

Exemplu: Seria armonică alternată $\sum_{n \in \mathbb{N}^*} \frac{(-1)^{n+1}}{n}$ este semiconvergentă întrucât, după cum am văzut deja, ea este convergentă, dar nu și absolut convergentă, căci seria $\sum_{n \in \mathbb{N}^*} \left| \frac{(-1)^{n+1}}{n} \right|$ este divergentă.

Teorema 3.13 Orice serie absolut convergentă de numere reale este convergentă.

Demonstrație: Cum seria $\sum_{n\in\mathbb{N}^*} x_n$ (AC), rezultă că seria $\sum_{n\in\mathbb{N}^*} |x_n|(C)$. Prin urmare, potrivit Teoremei 3.8, putem afirma că, $\forall \varepsilon > 0$, există $n_{\varepsilon} \in \mathbb{N}^*$, astfel încât:

$$||x_{n+1}| + |x_{n+2}| + \ldots + |x_{n+p}|| < \varepsilon, \forall n \in \mathbb{N}^*, n \ge n_{\varepsilon} \text{ si } \forall p \in \mathbb{N}^*.$$

Altfel spus, avem $|x_{n+1}|+|x_{n+2}|+\ldots+|x_{n+p}|<\varepsilon,\ \forall\,n\geq n_{\varepsilon}$ şi $p\in\mathbb{N}^*.$ De aici, folosind faptul că $|x_{n+1}+x_{n+2}+\ldots+x_{n+p}|\leq |x_{n+1}|+|x_{n+2}|+\ldots+|x_{n+p}|,$ deducem că seria $\sum_{n\in\mathbb{N}^*}x_n$ este convergentă.

Exemplu: Seria alternată $\sum_{n \in \mathbb{N}^*} \frac{(-1)^{n+1}}{n^2}$ este convergentă pentru că seria $\sum_{n \in \mathbb{N}^*} \left| \frac{(-1)^{n+1}}{n^2} \right|$ este convergentă.

Observație: Reciproca Teoremei 3.13 nu este adevărată. Există serii convergente pentru care seria valorilor absolute este divergentă; spre exemplu seria $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.

Teorema 3.14 (Criteriul restului) O serie $\sum_{n\in\mathbb{N}^*} x_n$ este convergentă dacă și numai dacă $\lim_{p\to\infty} R_p = 0$ (unde R_p este restul de ordin p al seriei $\sum_{n\in\mathbb{N}^*} x_n$).

Demonstrație: Cum $R_p = \sum_{n \in \mathbb{N}^*} x_n - S_p$, $\forall p \in \mathbb{N}^*$, dacă seria $\sum_{n \in \mathbb{N}^*} x_n$ este convergentă și are suma S, atunci $R_p = S - S_p$ și $\lim_{p \to \infty} R_p = S - \lim_{p \to \infty} S_p = 0$, deoarece $\lim_{p \to \infty} S_p = S$. Reciproc, dacă $\exists \lim_{p \to \infty} R_p = 0$, atunci seria $\sum_{n=p+1}^{\infty} x_n$ este convergentă, ceea ce înseamnă că și seria $\sum_{n=1}^{\infty} x_n$ este convergentă.

Observație: Din demonstrația Teoremei 3.14 putem concluziona că dacă unei serii numerice din \mathbb{R} i se adaugă sau i se înlătură un număr finit de termeni, atunci natura respectivei serii nu se schimbă.

Următoarea teoremă prezintă un rezultat privind adunarea a două serii convergente din \mathbb{R} şi înmulţirea unei serii convergente din \mathbb{R} cu un scalar (număr) real nenul.

Teorema 3.15 i) Dacă seria $\sum_{n \in \mathbb{N}^*} x_n$ converge, având suma $S' \in \mathbb{R}$, iar seria $\sum_{n \in \mathbb{N}^*} y_n$ converge, având suma $S'' \in \mathbb{R}$, atunci seria $\sum_{n \in \mathbb{N}^*} (x_n + y_n)$ converge având suma S' + S''.

ii) Dacă $\lambda \in \mathbb{R}^*$, atunci seriile $\sum_{n \in \mathbb{N}^*} x_n$ și $\sum_{n \in \mathbb{N}^*} (\lambda x_n)$ au aceeași natură.

Demonstrație: i) Cum există $\lim_{n\to\infty}\sum_{k=1}^n x_k = S'$ și $\lim_{n\to\infty}\sum_{k=1}^n y_k = S''$, este evident că există $\lim_{n\to\infty}\sum_{k=1}^n (x_k + y_k)$ și este egală cu S' + S''. Deci seria $\sum_{n=1}^{\infty} (x_n + y_n)$ este convergentă și are suma S' + S''.

ii) Dacă seria $\sum_{n=1}^{\infty} x_n$ este convergentă, atunci $\lim_{n\to\infty} S_n = \lim_{n\to\infty} (x_1+x_2+\ldots+x_n) = S \in \mathbb{R}$. Pe de altă parte, $\forall \lambda \in \mathbb{R}^*$, avem $\lim_{n\to\infty} \lambda (x_1+x_2+\ldots+x_n) = \lim_{n\to\infty} \lambda x_1+\lambda x_2+\ldots+\lambda x_n = \lambda S$. Prin urmare,

Pe de altă parte, $\forall \lambda \in \mathbb{R}^*$, avem $\lim_{n \to \infty} \lambda (x_1 + x_2 + \ldots + x_n) = \lim_{n \to \infty} \lambda x_1 + \lambda x_2 + \ldots + \lambda x_n = \lambda S$. Prin urmare, seria $\sum_{n=1}^{\infty} (\lambda x_n)$ este convergentă. Când seria $\sum_{n=1}^{\infty} x_n$ este divergentă, atunci şirul $(S_n)_{n \in \mathbb{N}^*}$ este divergent, şi deci şi şirul $(\lambda (S_n))_{n \in \mathbb{N}^*}$ este divergent, $\forall \lambda \in \mathbb{R}^*$, ceea ce revine la faptul că seria $\sum_{n \in \mathbb{N}^*} (\lambda x_n)$ este divergentă.

Dacă seria $\sum_{n\in\mathbb{N}^*} (\lambda x_n)$, unde $\lambda\in\mathbb{R}^*$, este convergentă, atunci, potrivit primei părți a acestei demonstrații a punctului ii), și seria $\frac{1}{\lambda}\sum_{n\in\mathbb{N}^*} (\lambda x_n)$, adică seria $\sum_{n\in\mathbb{N}^*} x_n$ este convergentă. Analog, dacă seria $\sum_{n\in\mathbb{N}^*} (\lambda x_n)$ este

divergentă, atunci și seria $\frac{1}{\lambda}\sum_{n\in\mathbb{N}^*}^{n\in\mathbb{N}^*}(\lambda x_n)$, adică seria $\sum_{n\in\mathbb{N}^*}^{n}x_n$ este divergentă.

Aşadar, $\forall \lambda \in \mathbb{R}^*$, seriile $\sum_{n \in \mathbb{N}^*} x_n$ şi $\sum_{n \in \mathbb{N}^*} (\lambda x_n)$ au aceeaşi natură.

Observație: Dacă seriile $\sum_{n \in \mathbb{N}^*} x_n$ și $\sum_{n \in \mathbb{N}^*} y_n$ sunt divergente, atunci este posibil ca seria $\sum_{n \in \mathbb{N}^*} (x_n + y_n)$ să fie convergentă.

Exemplu: Seriile $\sum_{n \in \mathbb{N}^*} (-1)^n$ și $\sum_{n \in \mathbb{N}^*} (-1)^{n+1}$ sunt divergente, pe când seria $\sum_{n \in \mathbb{N}^*} \left[(-1)^n + (-1)^{n+1} \right]$, având șirul sumelor parțiale constant, este convergentă.

Teorema 3.16 Dacă, într-o serie convergentă de numere reale, se asociază termenii seriei în grupe finite, cu păstrarea ordinii termenilor, atunci se obține tot o serie convergentă, cu aceeași sumă.

Observații:

- 1) Prin asocierea în grupe finite a termenilor unei serii divergente din \mathbb{R} , cu păstrarea ordinii, se pot obține serii convergente. Astfel, în cazul seriei $\sum_{n \in \mathbb{N}^*} (-1)^n$, care este divergentă, putem să ne gândim la asocierea $(-1+1)+(-1+1)+\ldots+(-1+1)+\ldots$, obținând astfel o serie convergentă, cu suma 0.
- 2) Dacă seria convergentă $\sum_{n\in\mathbb{N}^*} x_n$ are termenul general x_n de forma unei sume finite, atunci, prin disociere se poate obţine o serie divergentă. Spre exemplu, din seria $\sum_{n\in\mathbb{N}^*} \left[(-1)^n + (-1)^{n+1} \right] (C)$, prin disociere,

ajungem la seria
$$\sum_{n \in \mathbb{N}^*} (-1)^n(D)$$
.

Serii cu termeni din pozitivi

Cum investigarea absolutei convergențe a unei serii de numere reale revine la analiza convergenței unei serii cu termeni din \mathbb{R}_+ , este firesc să ne referim, în mod aparte, la serii de tipul $\sum_{n \in \mathbb{N}^*} x_n$, cu $x_n \geq 0$, $\forall n \in \mathbb{N}^*$.

Propoziția 3.17 Seria de numere reale pozitive $\sum_{n\in\mathbb{N}^*} x_n$ este convergentă dacă și numai dacă șirul sumelor sale parțiale, $(S_n)_{n\in\mathbb{N}^*}$, este majorat.

Demonstrație: " \Rightarrow :" Dacă seria $\sum_{n \in \mathbb{N}^*} x_n$, cu $x_n \ge 0$, $\forall n \in \mathbb{N}^*$ este convergentă, atunci $(S_n)_{n \in \mathbb{N}^*}$ este convergent și deci mărginit (în \mathbb{R}), adică și majorat.

" \Leftarrow :" Cum $S_{n+1}-S_n=x_{n+1}\geq 0, \ \forall n\in\mathbb{N}^*,\ \text{şirul}\ (S_n)_{n\in\mathbb{N}^*}$ este monoton crescător. Fiind şi majorat, prin aplicarea Teoremei de convergență a şirurilor reale monotone (v. cursul 2), obținem că şirul $(S_n)_{n\in\mathbb{N}^*}$ este convergent. Aşadar, seria $\sum_{n\in\mathbb{N}^*}x_n$ este convergentă.

Teorema 3.18 (Criteriul de comparație de specia I (CC I)) Fie seriile cu termeni reali pozitivi $\sum_{n\in\mathbb{N}^*}x_n$

 $\operatorname{si} \sum_{n \in \mathbb{N}^*} y_n, \ \operatorname{asa} \ \operatorname{incat} \ x_n \leq y_n, \ \forall \, n \in \mathbb{N}^*.$

- a) Dacă $\sum_{n\in\mathbb{N}^*} y_n(C)$, atunci $\sum_{n\in\mathbb{N}^*} x_n(C)$;
- b) Dacă $\sum_{n \in \mathbb{N}^*} x_n(D)$, atunci $\sum_{n \in \mathbb{N}^*} y_n(D)$.

Demonstraţie: Cum $x_n \leq y_n, \ \forall n \in \mathbb{N}^* \Rightarrow S'_n = x_1 + \ldots + x_n \leq y_1 + \ldots + y_n = S''_n, \ \forall n \in \mathbb{N}^*.$ Când $\sum_{n \in \mathbb{N}^*} y_n(C)$, obţinem că şirul $(S''_n)_{n \in \mathbb{N}^*}$ este majorat, conform Propoziției 3.17. Prin urmare, şi şirul $(S'_n)_{n \in \mathbb{N}^*}$ este majorat. Mai mult, întrucât $S'_n - S'_{n-1} = x_n \geq 0, \ \forall n \in \mathbb{N}^*, \ n \geq 2$, rezultă că S'_n este monoton crescător. Prin urmare, $(S'_n)_{n \in \mathbb{N}^*}$ este convergent și deci seria $\sum_{n \in \mathbb{N}^*} x_n$ este convergentă. Astfel, are loc a).

Pentru b), dacă avem $\sum_{n \in \mathbb{N}^*} x_n(D)$, atunci $(S'_n)_{n \in \mathbb{N}^*}$, unde $S'_n = x_1 + x_2 + \ldots + x_n, \ \forall n \in \mathbb{N}^*$, este un şir

Pentru b), dacă avem $\sum_{n\in\mathbb{N}^*} x_n(D)$, atunci $(S'_n)_{n\in\mathbb{N}^*}$, unde $S'_n=x_1+x_2+\ldots+x_n, \ \forall n\in\mathbb{N}^*$, este un şir nemărginit de numere nenegative şi deci $\lim_{n\to\infty} S'_n=+\infty$. În consecință, deoarece $S'_n\leq S''_n=y_1+y_2+\ldots+y_n$, $\forall n\in\mathbb{N}^*$, avem $\lim_{n\to\infty} S''_n=+\infty$, ceea ce înseamnă că $\sum_{n\in\mathbb{N}^*} y_n(D)$.

Teorema 3.19 (Criteriul de comparație de specia a II-a (CCII)) Fie seriile $\sum_{n\in\mathbb{N}^*} x_n$ și $\sum_{n\in\mathbb{N}^*} y_n$, cu $x_n>0$ și $y_n>0$, pentru orice $n\in\mathbb{N}^*$, astfel încât

$$\frac{x_{n+1}}{x_n} \le \frac{y_{n+1}}{y_n}, \ \forall n \in \mathbb{N}^*.$$

- $a)\ \ Dac \ \ \sum_{n\in \mathbb{N}^*} y_n(C),\ atunci\ \sum_{n\in \mathbb{N}^*} x_n(C);$
- b) Dacă $\sum_{n \in \mathbb{N}^*} x_n(D)$, atunci $\sum_{n \in \mathbb{N}^*} y_n(D)$.

Demonstrație: Înmulțind membru cu membru relațiile

$$\frac{x_2}{x_1} \le \frac{y_2}{y_1}, \ \frac{x_3}{x_2} \le \frac{y_3}{y_2}, \ \dots, \ \frac{x_n}{x_{n-1}} \le \frac{y_n}{y_{n-1}}$$

vom obține că $\frac{x_n}{x_1} \le \frac{y_n}{y_1}$, $\forall n \in \mathbb{N}^*$. Altfel spus, avem $x_n \le \frac{x_1}{y_1} y_n$, $\forall n \in \mathbb{N}^*$. Atunci, ținând seama de Criteriul de comparație de specia I (CCI) și de Teorema 3.15, vom obține concluzia.

Teorema 3.20 (Criteriul de comparație la limită (CCL)) Fie seriile $\sum_{n\in\mathbb{N}^*} x_n$ și $\sum_{n\in\mathbb{N}^*} y_n$, cu $x_n>0,y_n>0$ $0, \forall n \in \mathbb{N}^*, \ aşa \ \hat{n} c \hat{a} t \ exist \ i = \lim_{n \to \infty} \frac{x_n}{y_n} \ (\in \mathbb{R}_+)$

- a) Dacă $l \in (0, +\infty)$, atunci seriile $\sum_{n \in \mathbb{N}^*} x_n$ și $\sum_{n \in \mathbb{N}^*} y_n$ au aceeași natură;
- b) Dacă l=0, atunci $\sum_{n\in\mathbb{N}^*}y_n(C)\Rightarrow\sum_{n\in\mathbb{N}^*}x_n(C)$ și $\sum_{n\in\mathbb{N}^*}x_n(D)\Rightarrow\sum_{n\in\mathbb{N}^*}y_n(D)$.
- c) Dacă $l = +\infty$, atunci $\sum_{n \in \mathbb{N}^*} x_n(C) \Rightarrow \sum_{n \in \mathbb{N}^*} y_n(C)$ și $\sum_{n \in \mathbb{N}^*} y_n(D) \Rightarrow \sum_{n \in \mathbb{N}^*} x_n(D)$.

Demonstrație: Dacă $l = \lim_{n \to \infty} \frac{x_n}{u_n}$ există și este finită $(l \in [0, \infty))$, atunci, $\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}^*$, așa încât

$$(*) \quad l - \varepsilon < \frac{x_n}{y_n} < l + \varepsilon, \forall n \in \mathbb{N}^*, n \ge n_{\varepsilon}.$$

Pentru a), când l > 0, luăm $\varepsilon = \frac{l}{2}$ și vom avea $\frac{l}{2} < \frac{x_n}{y_n} < \frac{3l}{2}$, $\forall n \in \mathbb{N}^*, n \geq n_{\varepsilon}$. Astfel, prin aplicarea criteriului (CCI) și a Teoremei 3.15, rezultă concluzia cerută, seriile $\sum_{n\in\mathbb{N}^*} x_n$ și $\sum_{n\in\mathbb{N}^*} y_n$ fiind de aceeași natură. Pentru b), când l=0, vom utiliza (*), mai precis inegalitatea $x_n<\varepsilon y_n, \, \forall\, n\geq n_\varepsilon$. Așadar, în baza Teoremei

3.15 și a criteriului (CCI), vom ajunge la concluzia din enunț.

Pentru c), când $l=\infty$, avem: $\forall \, \varepsilon>0, \, \exists \, \tilde{n}_{\varepsilon} \in \mathbb{N}^*, \, \text{aşa încât}, \, \forall \, n \in \mathbb{N}^*, \, n \geq \tilde{n}_{\varepsilon}, \, \text{are loc relația} \, \frac{x_n}{u_n}>\varepsilon.$ Altfel spus, $\frac{y_n}{x_n} < \frac{1}{\varepsilon}$, $\forall n \geq \tilde{n}_{\varepsilon}$. Se aplică acum (CCL), punctul b), cu x_n şi y_n în roluri inversate.

Exemplu: Seria $\sum_{n \in \mathbb{N}^*} \sin \frac{1}{n^2 + 1}$ are termeni pozitivi. Luând în considerare seria $\sum_{n \in \mathbb{N}^*} \frac{1}{n^2}(C)$ şi observând că

există $\lim_{n\to\infty} \frac{x_n}{y_n} = \lim_{n\to\infty} \frac{\sin\frac{1}{n^2+1}}{1} = 1 \in (0,+\infty)$, putem spune, prin aplicarea criteriului (CCL), punctul a), că

seria dată este de aceeași natură cu seria $\sum_{n} \frac{1}{n^2}$. Deci $\sum_{n} \sin \frac{1}{n^2+1} (C)$.

Teorema 3.21 (Criteriul general de condensare al lui Cauchy) Fie $\sum_{n\in\mathbb{N}^*} x_n$ o serie cu termeni reali pozitivi, așa încât șirul $(x_n)_{n\in\mathbb{N}^*}$ este descrescător. Dacă există un șir $(k_n)_{n\in\mathbb{N}^*}$ de numere naturale, strict crescător $\text{$\vec{s}$ i divergent, astfel \hat{i} nc \hat{a}t \vec{s} irul} \left(\frac{k_{n+1}-k_n}{k_n-k_{n-1}}\right)_{n\in\mathbb{N}^*\backslash\{1\}} \text{ este m\"{a}$rginit, atunci seriile } \sum_{n\in\mathbb{N}^*} x_n \ \vec{s}$ i $\sum_{n\in\mathbb{N}^*} \left(k_{n+1}-k_n\right) x_{k_n}$ sunt de aceeași natură.

Demonstrație: Fie $y_n = x_{k_n+1} + x_{k_n+2} + \ldots + x_{k_{n+1}}, \ \forall n \in \mathbb{N}^*$. Cum $(x_n)_{n \in \mathbb{N}^*}$ este un şir descrescător, avem:

$$(k_{n+1} - k_n) x_{k_{n+1}} \le y_n \le (k_{n+1} - k_n) x_{k_n}, \forall n \in \mathbb{N}^*.$$

De aici, întrucât șirul $\left(\frac{k_{n+1}-k_n}{k_n-k_{n-1}}\right)_{n\in\mathbb{N}^*\setminus\{1\}}$ este mărginit și cu elemente pozitive, adică există M>0, așa încât

$$0 < \frac{k_{n+1} - k_n}{k_n - k_{n-1}} < M, \forall n \in \mathbb{N}^* \setminus \{1\}.$$

Atunci, pentru orice $n \in \mathbb{N}^* \setminus \{1\}$, avem

$$\frac{1}{M} (k_{n+2} - k_{n+1}) x_{k_{n+1}} < \frac{k_{n+1} - k_n}{k_{n+2} - k_{n+1}} (k_{n+2} - k_{n+1}) x_{k_{n+1}} =$$

$$= (k_{n+1} - k_n) x_{k_{n+1}} \le y_n \le (k_{n+1} - k_n) x_{k_n}.$$

Pe baza acesteia, utilizând criteriul (CCI) și Teorema 3.15, rezultă că seriile $\sum_{n \in \mathbb{N}^*} (k_{n+1} - k_n) x_{k_n}$ și $\sum_{n \in \mathbb{N}^*} y_n$ sunt de aceeași natură. Așadar, potrivit Teoremei 3.16, obținem că seriile $\sum_{n \in \mathbb{N}^*} x_n$ și $\sum_{n \in \mathbb{N}^*} y_n$ sunt de aceeași natură.

De regulă, în aplicații, se ia $k_n = 2^n$, în consecință considerăm următorul rezultat.

Teorema 3.22 (Criteriul simplu de condensare al lui Cauchy) Fie seria $\sum_{n\in\mathbb{N}^*} x_n$, $cu\ x_n\in\mathbb{R}^*_+, \forall n\in\mathbb{N}^*$.

 $Dacă\ şirul\ (x_n)_{n\in\mathbb{N}^*}\ este\ descrescător\ Atunci\ seriile\ \sum_{n\in\mathbb{N}^*}x_n\ şi\ \sum_{n\in\mathbb{N}^*}2^nx_{2^n}\ au\ aceeaşi\ natură.$

Exemplu: Seria armonică generalizată, definită prin $\sum_{n\in\mathbb{N}^*}\frac{1}{n^{\alpha}}$, $\alpha\in\mathbb{R}$ este convergentă pentru $\alpha>1$ și divergentă pentru $\alpha\leq1$.

Aplicând criteriul simplu de condensare al lui Cauchy vom obține că natura seriei $\sum_{n\in\mathbb{N}^*}\frac{1}{n^{\alpha}}$ este aceeași cu a

seriei $\sum_{n \in \mathbb{N}^*} 2^n \left(\frac{1}{2^n}\right)^{\alpha} = \sum_{n \in \mathbb{N}^*} \frac{1}{2^{(\alpha-1)n}}$, care nu este altceva decât o serie geometrică cu rația $\frac{1}{2^{\alpha-1}}$. Cum aceasta

din urmă este convergentă când $\frac{1}{2^{\alpha-1}} < 1$, adică pentru $\alpha > 1$ şi divergentă în rest, adică pentru $0 \le \alpha \le 1$, concluzionăm că seria armonică generalizată este convergentă pentru $\alpha > 1$ şi divergentă când $\alpha \le 1$.

Teorema 3.23 (Criteriul rădăcinii cu limită - al lui Cauchy) Fie seria $\sum_{n\in\mathbb{N}^*} x_n$, cu $x_n\geq 0$, $\forall\,n\in\mathbb{N}^*$. Dacă există $\ell=\lim_{n\to\infty}\sqrt[n]{x_n}$, atunci:

- i) dacă $\ell < 1$, seria $\sum_{n \in \mathbb{N}^*} x_n$ este convergentă;
- ii) dacă $\ell > 1$, seria $\sum_{n \in \mathbb{N}^*} x_n$ este divergentă;

Demonstrație: Întrucât există $\ell = \lim_{n \to \infty} \sqrt[n]{x_n} \in [0, +\infty)$, avem: $\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}$, astfel încât, $\forall n \in \mathbb{N}$, $n \ge n_{\varepsilon}$, are loc relația

$$(\bullet) \quad \ell - \varepsilon < \sqrt[n]{x_n} < \ell + \varepsilon.$$

În cazul i), deoarece $\ell < 1$, putem lua $\varepsilon \in (0, 1 - \ell)$ și atunci rezultă că $x_n < (\ell + \varepsilon)^n$, $\forall n \in \mathbb{N}, n \ge n_{\varepsilon}$, cu $0 < \ell + \varepsilon < 1$.

Întrucât seria $\sum_{n\in\mathbb{N}^*} (\ell+\varepsilon)^n$ este convergentă, ca serie geometrică cu rația subunitară, rezultă, utilizând (CCI), că $\sum x_n$ este convergentă.

În cazul ii), cum $\ell > 1$, putem lua $\varepsilon \in (0, \ell - 1)$ și atunci, din (\bullet) rezultă că $1 < (\ell - \varepsilon)^n < x_n, \forall n \in \mathbb{N}$ cu $n \ge n_{\varepsilon}$. Pe baza aceluiași criteriu, (CCI), întrucât seria $\sum_{n \in \mathbb{N}^*} (l - \varepsilon)^n$, în care $l - \varepsilon > 1$, este divergentă, rezultă

că avem: $\sum_{n \in \mathbb{N}^*} x_n(D).$

Observații: 1. Dacă $\ell = \lim_{n \to \infty} \sqrt[n]{x_n} = 1$, nu putem decide natura seriei $\sum_{n \in \mathbb{N}^*} x_n$. Spre exemplu, considerând

 $\text{seriile } \sum_{n \in \mathbb{N}^*} \frac{1}{n} \text{ sau } \sum_{n \in \mathbb{N}^*} \frac{1}{n^2}, \, \forall \, n \in \mathbb{N}, \, \text{vom observa că} \lim_{n \to \infty} \sqrt[n]{\frac{1}{n}} = 1 = \lim_{n \to \infty} \sqrt[n]{\frac{1}{n^2}}, \, \text{dar } \sum_{n \in \mathbb{N}^*} \frac{1}{n} \, (D) \, \, \text{și } \sum_{n \in \mathbb{N}^*} \frac{1}{n^2} \, (C).$

2. Atunci când nu există $\lim_{n\to\infty} \sqrt[n]{x_n}$, o variantă mai "slabă" a criteriului rădăcinii are loc cu $\lim_{n\to\infty} \sqrt[n]{x_n}$ în rolul lui ℓ , la i) și cu $\lim_{n\to\infty} \sqrt[n]{x_n}$, în loc de ℓ , la ii).

Teorema 3.24 (Criteriul lui Kummer) Fie seria $\sum_{n\in\mathbb{N}^*} x_n$, cu $x_n>0$, $\forall\,n\in\mathbb{N}^*$. Dacă există şirul $(a_n)_{n\in\mathbb{N}^*}\subset \mathbb{N}^*$

 \mathbb{R}_+^* , astfel încât şirul $\left(a_n \frac{x_n}{x_{n+1}} - a_{n+1}\right)_{n \in \mathbb{N}^*}$ are limită, fie ea notată cu ℓ , atunci:

- i) când $\ell > 0$, seria $\sum_{n \in \mathbb{N}^*} x_n$ este convergentă;
- iii) $c\hat{a}nd \ \ell = 0$, nu putem stabili natura seriei date.

Demonstrație: În cazul i), cum $\ell > 0$, obținem: $\forall \varepsilon \in (0, \ell), \exists n_{\varepsilon} \in \mathbb{N}^*$, așa încât, $\forall n \in \mathbb{N}^*$, cu $n \geq n_{\varepsilon}$,

$$0 < \ell - \varepsilon < a_n \frac{x_n}{x_{n+1}} - a_{n+1} < \ell + \varepsilon.$$

De aici, reiese că:

$$(\bullet \bullet) \quad 0 < x_{n+1} < \frac{a_n x_n - a_{n+1} x_{n+1}}{\ell - \varepsilon}, \forall n \in \mathbb{N}^*, n \ge n_{\varepsilon}.$$

În consecință, şirul $(a_n x_n)_{n \geq n_{\varepsilon}}$ este descrescător. Cum, în plus, $0 < a_n x_n$, $\forall n \in \mathbb{N}^*$, se poate spune că şirul $(a_n x_n)_{n \geq n_{\varepsilon}}$ este convergent. Deci există $\lim_{n \to \infty} a_n x_n = \lambda$. Atunci:

$$\sum_{n \ge n_{\varepsilon}} \frac{1}{\ell - \varepsilon} \left(a_n x_n - a_{n+1} x_{n+1} \right) = \frac{1}{\ell - \varepsilon} \lim_{k \to \infty} \sum_{n = n_{\varepsilon}}^{k} \left(a_n x_n - a_{n+1} x_{n+1} \right) =$$

$$= \frac{1}{\ell - \varepsilon} \lim_{k \to \infty} \left(a_{n_{\varepsilon}} x_{n_{\varepsilon}} - a_{k+1} x_{k+1} \right) = \frac{1}{\ell - \varepsilon} \left(a_{n_{\varepsilon}} x_{n_{\varepsilon}} - \lambda \right).$$

Prin urmare, seria $\sum_{n=n_{\varepsilon}}^{\infty} \frac{1}{\ell-\varepsilon} (a_n x_n - a_{n+1} x_{n+1})$ este convergentă. În virtutea acestui fapt, ținând seama de relația ($\bullet \bullet$), rezultă că seria $\sum_{n \in \mathbb{N}^*} x_n$ este convergentă, conform criteriului (CCI).

În cazul ii), cum $\ell < 0$, găsim că, pentru orice $\varepsilon \in (0, -\ell)$, există $n_{\varepsilon} \in \mathbb{N}^*$, așa încât:

$$a_n \frac{x_n}{x_{n+1}} - a_{n+1} < \ell + \varepsilon < 0, \forall n \in \mathbb{N}^*, n \ge n_{\varepsilon}.$$

Altfel spus, avem $\frac{x_{n+1}}{x_n} > \frac{a_{n+1}}{a_n} = \frac{\frac{1}{a_{n+1}}}{\frac{1}{a_n}}, \forall n \geq n_{\varepsilon}$. Seria $\sum_{n \in \mathbb{N}^*} \frac{1}{a_n}$ fiind divergentă prin ipoteză, reiese atunci, prin aplicarea criteriului (CCII), că seria $\sum_{n \in \mathbb{N}^1} x_n$ este divergentă.

Dacă $\ell=0$, nu ne putem pronunța asupra naturii seriei $\sum_{n\in\mathbb{N}^*}x_n$. Astfel, pentru $x_n=\frac{1}{n}$ și $a_n=n$, avem

$$a_n \frac{x_n}{x_{n+1}} - a_{n+1} = 0$$
, iar $\sum_{n \in \mathbb{N}^*} x_n(D)$. Pentru $x_n = \frac{1}{n^2}$ şi $a_n = n^2$, avem $a_n \frac{x_n}{x_{n+1}} - a_{n+1} = 0$, însă $\sum_{n \in \mathbb{N}^*} x_n(C)$.

Dacă vom considera $a_n=1, \ \forall n\in \mathbb{N}^*,$ pe baza Teoremei 3.24, obținem următorul criteriu de stabilire a naturii seriei cu termeni pozitivi $\sum_{n\in \mathbb{N}^*} x_n$:

Teorema 3.25 (Criteriul raportului (Criteriul lui D'Alembert)) Fie seria $\sum_{n \in \mathbb{N}^*} x_n$, $cu \, x_n > 0$, $\forall n \in \mathbb{N}^*$,

pentru care există limita $L = \lim_{n \to \infty} \frac{x_{n+1}}{x_n}$.

- i) Dacă L < 1, atunci seria $\sum_{n \in \mathbb{N}^*} x_n$ este convergentă; ii) Dacă L > 1, atunci seria $\sum_{n \in \mathbb{N}^*} x_n$ este divergentă;
- iii) Dacă L=1, nu ne putem pronunța asupra naturii seriei $\sum_{i} x_{n}$.

În cazul în care $a_n = n, \forall n \in \mathbb{N}^*$, din Teorema 3.24 obținem următorul criteriu:

Teorema 3.26 (Criteriul lui Raabe-Duhamel) Fie seria $\sum_{n \in \mathbb{N}^*} x_n$, cu $x_n > 0$, $\forall n \in \mathbb{N}^*$, așa încât există

$$limita \lim_{n \to \infty} \left[n \left(\frac{x_n}{x_{n+1}} - 1 \right) \right] = \rho.$$

- limita $\lim_{n \to \infty} \left[n \left(\frac{x_n}{x_{n+1}} 1 \right) \right] = \rho.$ i) Dacă $\rho > 1$, atunci seria $\sum_{n \in \mathbb{N}^*} x_n$ este convergentă;
 - ii) Dacă $\rho < 1$, seria $\sum_{n \in \mathbb{N}^*} x_n$ este divergentă;
 - iii) Dacă $\rho = 1$, nu putem stabili, cu certitudine, natura seriei $\sum_{i} x_{i}$.

Dacă, în Teorema 3.24, luăm $a_n = n \ln n, \forall n \in \mathbb{N}^*$, atunci obținem:

Teorema 3.27 (Criteriul lui Bertrand) Fie seria $\sum_{n\in\mathbb{N}^*} x_n$, unde $x_n>0$, $\forall\,n\in\mathbb{N}^*$ așa încât să existe limita

$$\mu = \lim_{n \to \infty} \left(\frac{x_n}{x_{n+1}} n \ln n - (n+1) \ln (n+1) \right).$$

- i) Dacă $\mu > 0$, seria $\sum x_n$ este convergentă;
- ii) Dacă $\mu < 0$, seria $\sum_{n=1}^{\infty} x_n$ este divergentă;
- iii) Dacă $\mu = 0$, nu ne putem pronunța asupra naturii seriei $\sum_{n} x_n$.

Teorema 3.28 (Criteriul lui Gauss) Fie seria $\sum_{n\in\mathbb{N}^*} x_n$, cu $x_n > 0$, $\forall n \in \mathbb{N}^*$. Dacă raportul $\frac{x_n}{x_{n+1}}$ se poate exprima sub forma

$$\frac{x_n}{x_{n+1}} = \alpha + \frac{\beta}{n} + \frac{y_n}{n^{1+\gamma}}, \forall n \in \mathbb{N}^*,$$

unde $\alpha, \beta \in \mathbb{R}$, $\gamma \in \mathbb{R}_+^*$, iar şirul $(y_n)_{n \in \mathbb{N}^*}$ este mărginit, atunci:

- a) când $\alpha > 1$, seria $\sum_{n \in \mathbb{N}^*} x_n$ este convergentă;
- b) când $\alpha < 1$, seria $\sum_{n \in \mathbb{N}^*} x_n$ este divergentă;
- c) când $\alpha = 1$ și $\beta > 1$, seria $\sum_{n \in \mathbb{N}^*} x_n$ este convergentă;
- d) când $\alpha = 1$ și $\beta \leq 1$, seria $\sum_{n \in \mathbb{N}^*} x_n$ este divergentă.

Demonstrație: a) În ipotezele din enunț, vedem că există $\lim_{n\to\infty}\frac{x_n}{x_{n+1}}$ și această limită este egală cu α . Altfel spus, există $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=\frac{1}{\alpha}$. Aplicând criteriul raportului, obținem că, pentru $\frac{1}{\alpha}<1$, adică pentru $\alpha>1$, seria $\sum_{n\in\mathbb{N}^*}x_n$ este convergentă. Analog, pentru $\alpha<1$, obținem că seria $\sum_{n\in\mathbb{N}^*}x_n$ divergentă. Când $\alpha=1$, nu ne putem pronunța, prin criteriul lui D'Alembert, asupra naturii seriei $\sum_{n\in\mathbb{N}^*}x_n$. În acest caz însă, vedem că avem:

$$n\left(\frac{x_n}{x_{n+1}}-1\right) = \beta + \frac{y_n}{n^{\gamma}}, \forall n \in \mathbb{N}^*.$$

Astfel, aplicând criteriul lui Raabe-Duhamel, găsim că, atunci când $\beta > 1$, seria $\sum_{n \in \mathbb{N}^*} x_n$ este convergentă, iar când $\beta < 1$, ea este divergentă.

Considerăm cazul când $\alpha = 1$ și $\beta = 1$. Aplicând criteriul lui Bertrand, observăm că:

$$n \ln n \frac{x_n}{x_{n+1}} - (n+1) \ln (n+1) = n \ln n \left(1 + \frac{1}{n} + \frac{y_n}{n^{1+\gamma}} \right) - (n+1) \ln (n+1)$$
$$= (n+1) \ln \frac{n}{n+1} + y_n \frac{\ln n}{n^{\gamma}} \underset{n \to \infty}{\longrightarrow} -1 < 0.$$

și cum $\frac{\ln n}{n^{\gamma}} \xrightarrow[n \to \infty]{} 0$ și $\left[(n+1) \ln \frac{n}{n+1} \right] \xrightarrow[n \to \infty]{} - \ln e = -1$, obținem

$$\lim_{n \to \infty} \left[(n+1) \ln \frac{n}{n+1} + y_n \frac{\ln n}{n^{\gamma}} \right] = -1 < 0.$$

Prin urmare, seria $\sum_{n \in \mathbb{N}^*} x_n$ este divergentă.

Bibliografie orientativă

- [1] A. Knopfmacher, J. Knopfmacher Two Constructions of the Real Numbers via Alternating Series, Iternat. J. Math & Math. Sci., Vol. 12, no. 3 (1989), pp 603-613.
- [2] J. Galambos The Representation of Real Numbers by Infinite Series, Lecture Notes in Math., 502, Springer, 1976.
- [3] C. Badea A theorem of irrationality of infinite series and applications, Acta Arithmetica, LXIII, 4 (1993).
- [4] K. Knopp Theory and Application of Infinite Series, Dover Publications, 1990.
- [5] G. Bagni Infinite Series from History to Mathematics Education, 2005.
- [6] Anca Precupanu Bazele analizei matematice (Cap. 3), Editura Polirom, Iași, 1998.
- [7] Rodica Luca-Tudorache Analiză matematică. Calcul Diferențial. (Cap. 2), Editura Tehnopress, Iași, 2005.
- [8] E. Popescu Analiză matematică. Calcul diferențial (Cap. 2), Editura Matrix Rom, București, 2006.
- [9] Marina Gorunescu Lecții de analiză matematică pentru informaticieni, Reprografia Univ. Craiova, 2000.
- [10] Rodica Mihaela Dăneț ș.a. Curs modern de analiză matematică. Volumul I (Cap. 1), Editura Matrix Rom, București, 2009.
- [11] John K. Hunter An Introduction to Real Analysis (Chap. 4), University of California at Davis, 2014.