Indian Institute of Technology Jodhpur

Probability, Statistics and Random Processes- MA221

Semester II (2016 - 2017)

Assignment VII

- 1. Let X and Y be jointly continuous random variables with density function $f_{XY}(x,y) = \frac{3}{2}x^2 + y, 0 < x < 1, 0 < y < 1$. Find the covariance matrix of (X,Y).
- 2. Let X_1 and X_2 be independent standard normal random variables. Define $Y_1 = 2X_1 + X_2$ and $Y_2 = X_1 X_2$. Find $E(Y_1), E(Y_2), Cov(Y_1, Y_2)$ and the joint density function of (Y_1, Y_2) .
- 3. Let X denotes Mid-Term I score of a randomly selected student. Let Y denotes the Mid-Term II score of a randomly selected student. History suggests that $X \sim N(22.7, 17.64), Y \sim N(22.7, 12.25)$ and Corr(X, Y) = 0.78. What is the probability that a randomly selected student's Mid-Term II score is between 18.5 and 25.5 given that his Mid-Term I score was 23?
- 4. Let X and Y be two random variables with joint density

$$f(x,y) = \begin{cases} \frac{1}{x} & 0 < x < 1, 0 < y \le x \\ 0 & \text{otherwise} \end{cases}$$

Obtain the covariance matrix and show that it is positive semi-definite.

- 5. Let random variables X_1, X_2 , and X_3 be independent and distributed according to N(0,1), N(1,1), and N(2,1), respectively. Determine probability $P(X_1+X_2+X_3>1)$.
- 6. A random sample of size n = 18 is taken from the distribution whose pdf

$$f(x) = 1 - x/2, \quad -0 \le x \le 2$$

- (a) Find μ and σ^2 .
- (b) Find, by using central limit theorem, approximately, $P(2/3 \le \bar{X} \le 5/6)$.
- 7. Let $X \sim B(n, p)$. Use the central limit theorem to find n such that $P(X > n/2) = 1 \alpha$. In particular, calculate n with $\alpha = 0.1$ and p = 0.45.
- 8. Let X_1, \dots, X_{100} be iid $P(\lambda)$, where $\lambda = 0.02$. Let $S = S_{100} = \sum_{i=1}^{100} X_i$. Use central limit theorem to evaluate $P(S \ge 3)$. Also, compare the result with exact probability.