

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

UTILITY PATENT APPLICATION TRANSMITTAL UNDER 37 CFR 1.53(b)

O	0.115 11. 07 01.11 1100	(10)	
Address to:	Attorney Docket No.	AM9-99-0217	O T d
Assistant Commissioner for Patents	Inventor(s)	CHA et al.	u.s. 12394.
Box Patent Application	Express Mail Label No.	EL535054175US	27 T
Washington, DC 20231	Total Pages	37	j.

Title of Application:

IMPOEXING SYSTEM AND METHOD FOR NEAREST NEIGHBOR SEARCHES IN HIGH DIMENSIONAL DATA **SPACES**

4							
Transmitted	with	the	patent	application	are	the	following:

- 1 Page(s) Transmittal form (plus one copy)
- 20 Page(s) Specification, claims, abstract
- 3 Page(s) Drawings
- 6 Page(s) Declaration and Power of Attorney
- 1 Page(s) Recordation Form Cover Sheet
- 4 Page(s) Assignment of the Invention to International Business Machines Corporation
- 1 Page(s) Information Disclosure Statement (IDS)
- 1 Page(s) Form PTO 1449 (modified)
- _1_ References and Patents

This application is a:	Continuation	Divisional	Continuation-in-Part of prior application Serial No.	
------------------------	--------------	------------	--	--

Fee Calculation

	Claims Filed	2	Extra	Rate	Fees
Basic Fee		<u> </u>			\$690.00
Total Claims	24	- 20 =	4	× \$18.00	72.00
Independent Claims	3	- 3 =	0	× \$78.00	00.00
Multiple Dependent Claim				+ \$260.00	· · · · · · · · · · · · · · · · · · ·
				Assignment	\$ 40.00
				TOTAL	\$802.00

The Commissioner is hereby authorized to credit overpayments or charge fees required under 37 CFR 1.16 or 1.17 to Deposit Account <u>09-0441</u>.

EXPRESS MAIL CERTIFICATE

I hereby certify that the above paper/fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated below and is addressed to the Assistant Commissioner for Patents, Washington, DC 20231

Date of Deposit:

Person mailing paper/fee:

February 35, 2010 Jeanne Gahagan

Signature Hand Chhy

Respectfully submitted,

John L. Rogitz (#33,549) Attorney for Applicant(s) Telephone (619) 338-8075 Rogitz & Associates 750 B Street, Suite 3120 San Diego, California 92101

INDEXING SYSTEM AND METHOD FOR NEAREST NEIGHBOR SEARCHES IN HIGH DIMENSIONAL DATA SPACES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to methods and systems for indexing objects in high dimensional data spaces to respond to user queries.

2. Description of the Related Art

Nearest neighbor searching on high dimensional data spaces is essentially a method of searching for objects in a data space that are similar to a user-selected object, with the user-selected object defining a query. For example, using the present assignee's QBIC system, a user can select a digital image and use the image as a query to a data base for images that are similar to the user-selected digital image. In response to the query, the "k" closest images are returned, where "k" is an integer defined by the user or search engine designer. These "k" images are referred to as the "k" nearest neighbors to the image that was used as the query, and for indexing and search purposes they are typically considered to be multidimensional data points "p" that are close to a multidimensional data point "q" representing the query. Other non-limiting examples of applications that use nearest neighbor searching include video databases, data mining, pattern classification, and machine learning.

20

5

In any case, multidimensional indexing methods ("MIMs") have been introduced for indexing multidimensional objects by partitioning the data space, clustering data according to the

partitioning, and using the partitions to prune the search space to promote fast query execution.

It will readily be appreciated that in the context of large databases that hold a high number of

objects, the time to execute a query like the one discussed above would be excessive in the

absence of MIMs. As recognized by the present invention, while effective for low

dimensionalities, MIMs are not effective and indeed tend toward being counterproductive for

objects having high dimensionalities, e.g., of ten, twenty or more. Image objects, for example,

can have hundreds of dimensions, and text documents can have thousands of dimensions.

Weber et al. disclose a filtering method intended to be an improvement over conventional MIMs in "A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces", Proc. of the 24th Int'l Conf. on VLDB, 1998 ("VA file" method). In the VA file method, compact approximations of data objects (also referred to as "vectors") are generated, and by first scanning the compact approximations, a large number of the larger actual vectors can be filtered out such that only a small number of vectors need be examined. In this way, query execution time is minimized.

The present invention has recognized, however, that the VA file method has at least two drawbacks. The first is that as the dimensionality of the data objects increases, the number of bits used in the approximations also increases significantly to facilitate adequate filtering. This means that the performance of the VA file method, like the performance of the above-mentioned MIMs, degrades significantly when applied to high dimensional data spaces (e.g., dimensions over 100). The second drawback with the VA file method is that its filtering capability decreases in

the case of clustered data such as multimedia data. The present invention, having recognized the above-noted deficiencies in the prior art, has provided the improvements disclosed below.

SUMMARY OF THE INVENTION

The invention is a general purpose computer programmed according to the inventive steps herein. The invention can also be embodied as an article of manufacture - a machine component - that is used by a digital processing apparatus and which tangibly embodies a program of instructions that are executable by the digital processing apparatus to undertake the present invention. This invention is realized in a critical machine component that causes a digital processing apparatus to perform the inventive method steps herein. The invention is also a computer-implemented method for undertaking the acts disclosed below.

Accordingly, a computer is programmed to undertake method acts for querying for data using a query. The method acts undertaken by the computer include, for at least some data vectors in a data space, generating respective approximations in polar coordinates. Also, the method acts executed by the computer include returning "k" nearest neighbors to the query based on the approximations.

In a preferred embodiment, the method acts executed by the computer further include dividing the data space into plural cells, and approximating at least one data point in at least one cell by using polar coordinates with respect to the at least one cell. Accordingly, the method is referred to as "local polar coordinate-based approximation". In a particularly preferred embodiment, the data space has "d" dimensions, and a number of "b" bits to be assigned to each cell is determined. Then, the data space is divided into 2^{bd} cells.

5

As disclosed in greater detail below, each approximation defines a lower bound d_{min} and an upper bound d_{max} , and the method acts executed by the computer include generating a candidate set of approximations based on the lower bound d_{min} and upper bound d_{max} of the approximations. Moreover, the query can be represented by a query vector \mathbf{q} , and the computer adds a first approximation having a first lower bound d_{min1} to the candidate set if $d_{min1} < k$ -NN^{dist} (\mathbf{q}), wherein k-NN^{dist} (\mathbf{q}) is the kth largest distance between the query vector \mathbf{q} and nearest neighbor vectors \mathbf{p} encountered so far. The candidate set is then used to return "k" nearest neighbor vectors \mathbf{p} to the query vector \mathbf{q} . With this invention, not all vectors \mathbf{p} corresponding to approximations in the candidate set are examined to return the "k" nearest neighbors.

In another aspect, a computer program product includes a program of instructions that have computer readable code means for generating local polar coordinate-based approximations of at least some data vectors **p** in at least one data set having a dimensionality of "d". The local polar coordinates are independent of "d". Computer readable code means use the approximations to return "k" nearest neighbors to a query.

In yet another aspect, a computer-implemented method is disclosed for finding, in a data space, "k" closest data vectors **p** to a query vector **q**. The method includes rendering approximations of at least some of the data vectors **p** using local polar coordinates, and filtering the approximations. After filtering, the "k" closest data vectors **p** are returned.

The details of the present invention, both as to its structure and operation, can best be understood in reference to the accompanying drawings, in which like reference numerals refer to like parts, and in which:

5

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of the present system;

Figure 2 is a flow chart of the logic for generating the LPC file:

Figure 3 is a graph schematically showing the data space cells with polar coordinates in two dimensions;

Figure 4 is a graph schematically showing a single data space cell in three dimensions;

Figure 5 is a flow chart showing the logic of generating the candidate set;

Figure 6 is a graph schematically showing a data space cell with polar coordinates and minimum and maximum distances in two dimensions;

Figure 7 is a graph schematically showing a data space cell with polar coordinates and minimum and maximum distances in three dimensions; and

Figure 8 is a flow chart showing the logic of finding the "k" nearest neighbors to a query "q" using the candidate set.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring initially to Figure 1, a system is shown, generally designated 10, that includes a data space server 12 having access to a local or remote software-implemented index module 14. Using an input device 16, a user of a user computer 18 can input a query for data from a database 20, and the server 12, by means of the index module 14, accesses the database 20 and returns the requested data to the user computer 18 for display or storage thereof on an output device, such as a monitor 22. More specifically, as set forth further below, the user computer 18 sends a query for data essentially using a query vector \mathbf{q} , with the index module 14 returning

20

the "k" nearest neighbors (referred to herein as the "k" data vectors \mathbf{p} that are closest to \mathbf{q}) in response. The query vector \mathbf{q} can be, e.g., an example image for which the user wants close matches. Other applications of k-nearest neighbor searching are contemplated herein, such as but not limited to document retrieval, data mining, pattern classification, and machine learning.

As intended herein, either or both of the server 12/user computer 18 can be a server computer made by International Business Machines Corporation (IBM) of Armonk, N.Y. Other digital processors, however, may be used, such as personal computers, laptop computers, mainframe computers, palmtop computers, personal assistants, or any other suitable processing apparatus can be used. The input device 16 can be established by one or more of: a computer mouse, keyboards, keypads, trackballs, and voice recognition devices. Output devices other than the monitor 22 can be used, such as printers, other computers or data storage devices, and

In any case, the processor of the server 12 accesses the module 14 to undertake the logic of the present invention, which may be executed by a processor as a series of computer-executable instructions. The instructions may be contained on a data storage device with a computer readable medium, such as a computer diskette having a computer usable medium with a program of instructions stored thereon. Or, the instructions may be stored on random access memory (RAM) of the computer, on a DASD array, or on magnetic tape, conventional hard disk drive, electronic read-only memory, optical storage device, or other appropriate data storage device. In an illustrative embodiment of the invention, the computer-executable instructions may be lines of C or C++ or Java code.

computer networks.

Indeed, the flow charts herein illustrate the structure of the logic of the present invention as embodied in computer program software. Those skilled in the art will appreciate that the flow charts illustrate the structures of computer program code elements including logic circuits on an integrated circuit, that function according to this invention. Manifestly, the invention is practiced in its essential embodiment by a machine component that renders the program code elements in a form that instructs a digital processing apparatus (that is, a computer) to perform a sequence of function steps corresponding to those shown.

The logic of the present starts in Figure 2 at blocks 24 and 25, wherein the data space in the database 20 is divided into 2^{bd} cells, wherein "b" is an integer number of data points that are assigned to each cell and "d" is the dimensionality of the database 20. For illustration purposes, Figure 3 shows a two-dimensional data space that has been divided into plural cells 26, while Figure 4 illustrates a single three dimensional cell 28. The use of two and three dimensions in Figures 2 and 3 is for simplicity of disclosure only, it being understood that the principles set forth herein apply to any high dimensional data spaces.

Moving to block 30, a DO loop is entered such that for each data point, an approximation in local polar coordinates is generated at block 32. As shown in Figure 3, each cell 26 has a local origin "O" at its bottom left corner, and each cell can be represented by its coordinates shown in Figure 3.

A vector \mathbf{p}_i is generated in local polar coordinates having a radius "r" from the cell's local origin "O" to the ith data point and an angle θ between the vector and the bisecting diagonal 34 of the cell. This is illustrated in Figures 3 and 4. As a result, each vector \mathbf{p} is represented by an approximation $\mathbf{a} = \langle \text{cell}, \text{ radius "r"}, \text{ angle "}\theta " \rangle$. At block 36, a complete local polar

5

coordinate (LPC) file is generated, which in the preferred embodiment can be an array of approximations a representing vectors p.

As can be appreciated in reference to Figures 3 and 4, an approximation is a set of points having radius "r" and angle θ within a cell. In the two dimensional illustration shown in Figure 3, the approximation represents two points p and p' which have polar coordinates (r, θ) and which are symmetric with respect to the diagonal 34. This is in contrast to the above-mentioned VA method, wherein the approximation would represent the entire cell. In the three dimensional illustration of Figure 4, the approximation is represented by a circle 38 around the diagonal of the cell, whereas the above-mentioned VA file method would produce an approximation that would consist of the entire cube. Thus, it will readily be appreciated that the present method produces more efficient approximations than does the VA file method. In higher dimensions, an approximation in the present invention is a set of points on a hypersphere.

Figures 5-7 illustrate how the preferred LPC flat file generated at block 36 in Figure 2 is used upon receipt of a query, represented by a query vector \mathbf{q} . Commencing at block 40, a minimum distance \mathbf{d}_{\min} and a maximum distance \mathbf{d}_{\max} are computed for each approximation. These distances represent the minimum and maximum bounds, respectively, between the respective data vector \mathbf{p} and query vector \mathbf{q} . The minimum distance \mathbf{d}_{\min} is equal to $[| \mathbf{p} |^2 + | \mathbf{q} |^2 - 2 | \mathbf{p} | | \mathbf{q} | \cos(\theta_1 - \theta_2)]^{\frac{1}{2}}$, wherein the angle θ_1 is the angle between the cell diagonal and the data vector \mathbf{p} and the angle θ_2 is the angle between the cell diagonal and the query vector \mathbf{q} , as shown in Figure 6 for the two dimensional case and Figure 7 for the three dimensional case. On the other hand, the maximum distance \mathbf{d}_{\max} is equal to $[| \mathbf{p} |^2 + | \mathbf{q} |^2 - 2 | \mathbf{p} | | \mathbf{q} | \cos(\theta_1 + \theta_2)]^{\frac{1}{2}}$.

Without loss of generality, these properties hold for any number of dimensions. In the three dimensional case shown in Figure 7, the point "A" (representing d_{max}), C (representing d_{min}), the origin "O", the point "B" (the endpoint of the query vector \mathbf{q}), and the point "D" (the corner of the cell opposite to the origin "O") all lie in the same plane.

5

With the above understanding in mind, the logic moves from block 40 to decision diamond 42, wherein for the candidate near neighbor under test it is determined whether the corresponding minimum distance d_{min} is greater than the k^{th} -largest distance k-NN^{dist}(\mathbf{q}) between the query vector \mathbf{q} and the data vectors \mathbf{p} in an initially null answer set. The distance k-NN^{dist}(\mathbf{q}) is initialized at an appropriate large value. This test can be thought of as a coarse test, which, if positive, leads to the immediate elimination of the candidate at block 44. The next candidate is retrieved at block 46, and the logic loops back to decision diamond 42 to test the next candidate.

On the other hand, if the candidate passes the test at decision diamond 42, indicating that the candidate might be a k-nearest neighbor, the candidate is added to a candidate set at block 48. Then, the candidate's maximum distance is compared to the k^{th} -largest distance k-NN^{dist}(\mathbf{q}) at decision diamond 50, and if the candidate's maximum distance is equal to or greater than the k^{th} -largest distance k-NN^{dist}(\mathbf{q}), the logic loops back to block 46 to retrieve the next candidate for test.

20

In contrast, if the candidate's maximum distance is less than the k^{th} -largest distance k-NN^{dist}(\mathbf{q}), indicating that the candidate is probably one of the "k" near neighbors being sought, the data vector \mathbf{p} that corresponds to the candidate is added to an answer set "knn" at block 52. The answer set "knn" can be ordered by distance between the query vector \mathbf{q} and each data vector

5

 \mathbf{p} in the set. Then, at block 54 the k^{th} -largest distance k-NN^{dist}(\mathbf{q}) is potentially recomputed by setting it equal to the k^{th} -largest distance k-NN^{dist}(\mathbf{q}) corresponding to the k^{th} vector \mathbf{p} in the answer set.

After the logic of Figure 5, it will be appreciated that all candidate approximations have been tested, and most have been eliminated. In other words, most data points have been filtered out. Those that remain have been added to the candidate set, and the "best" of the candidates in the candidate set (as indicated by having a relatively small d_{max}) have been added to the answer set. The next stage of the logic is then commenced at block 56, wherein the kth-largest distance k- $NN^{dist}(\mathbf{q})$ is set equal to the maximum distance of the \mathbf{p} vectors in the answer set "knn". Then, a DO loop is entered at block 58 wherein the actual data points represented by the candidates in the candidate set are scanned in increasing order of distance. The next candidate is retrieved at block 60, and at decision diamond 62 the distance between the data vector **p** under test and the query vector q is compared to the kth-largest distance k-NNdist(q). If it is not less than k-NN^{dist}(q), the logic loops back to block 60 to retrieve the next candidate in the candidate set. On the other hand, if the candidate passes the test at decision diamond 62, it is inserted into the answer set "knn" at block 64, and the kth-largest distance k-NNdist(q) is recomputed at block 66. The next candidate is then retrieved at block 60 for test. Owing to the ordering by distance in the candidate set and answer set, the logic can end when the lower bound d_{min} of a candidate is encountered which exceeds the k-th distance k-NN^{dist}(q), such that not all candidates in the candidate set need be tested.

A pseudocode representation (with comments) of the logic of Figures 5 and 8 is as follows:

```
Algorithm k_NN_Search (q: vector, k: integer)
               // Variables used in the algorithm
               // k-NN^{ulst}(q): the k-th largest distance between the query vector q and the vectors p encountered
   5
               so far
               // N: the number of vectors in the database
               // knn: answer list to maintain the nearest k vectors encountered so far and their distances to the
               query vector q
               // cand list: min heap to maintain the candidate set
 10
               // c: a candidate to insert into the cand list
               // c.oid: identifier assigned to uniquely identify the candidate c.
               // nn: a near neighbor to insert into the knn
               // MAX: a value that exceeds the possible largest distance between any two points within the
               database.
 15
               // Stage 1
               // The primary purpose of this stage is to build the cand list for stage 2. For this purpose, we
               use k-NN^{dist}(\boldsymbol{a})
// whose initial value is the possible largest distance between any two points within the database.
               The value of
               // k-NN<sup>dist</sup>(q) is updated dynamically as new candidates are inserted to the cand list.
                   for i:=0 to k do {
                         knn[i].dist := MAX;
                  k\text{-}NN^{dist}(q) := MAX;
                    For every approximation a in the approximation set \{
                        Compute the lower and upper bounds a.d_{mm} and a.d_{max} of a.
                        if (a.d_{min} \leq k-NN^{dist}(q)) {
Insert [c := \{a.oid, a.d_{min}, a.d_{max}\}] to the candidate set cand\_list;
if (c.d_{max} \leq k-NN^{dist}(q)) {
30
                                  // The following is an ordered insertion in the knn array, i.e., the new element is inserted
                                  // into the correct position with respect to the distance in knn.
                                  Insert the near neighbor [nn := \{oid = c.oid, dist = c.d_{max}\}] to the answer set knn;
                                  // Update k-NN^{dist}(q) after each insertion, if it gets smaller.
                                  k-NN^{dist}(q) := the distance of the k-th nearest neighbor in the answer set km;
 35
                        }
                    }
                    // Stage 2
 40
                    // Scan the cand_list in increasing order of d_{min} to find the k nearest neighbors to the query point q.
                    // The scanning procedure (while procedure in the code) ends when the lower bound (c.d_{min}) of the
                    // candidate c is encountered which exceeds the k-th distance k-NN^{dist}(q) in the answer set.
                  for i:=0 to k do {
 45
                        knn[i].dist := MAX;
```

5

10

```
while (get the candidate c from the candidate set cand\_list and c.d_{min} \le k-NN^{dist}(q)) do {

Read vector p corresponding to the c.oid;

if (L_2(p, q) < k-NN^{dist}(q)) {

Insert the near neighbor [nn := \{oid = c.oid, dist = L_2(p, q)\}] to the answer set knn.

k-NN^{dist}(q) := the distance of the k-th nearest neighbor in the answer set knn;
}
}
```

While the particular INDEXING SYSTEM AND METHOD FOR NEAREST NEIGHBOR SEARCHES IN HIGH DIMENSIONAL DATA SPACES as herein shown and described in detail is fully capable of attaining the above-described objects of the invention, it is to be understood that it is the presently preferred embodiment of the present invention and is thus representative of the subject matter which is broadly contemplated by the present invention, that the scope of the present invention fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean "one and only one" unless explicitly so stated, but rather "one or more". All structural and functional equivalents to the elements of the above-described preferred embodiment that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present invention, for it to be encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35

U.S.C. §112, sixth paragraph, unless the element is expressly recited using the phrase "means for" or, in the case of a method claim, the element is recited as a "step" instead of an "act".

WE CLAIM:

CLAIMS

1	1.	A computer programmed to undertake method acts for querying for data using a
2	query, the	method acts undertaken by the computer including:
3		for at least some data vectors in a data space, generating respective approximations
4	in	polar coordinates; and
5		based on the approximations, returning "k" nearest neighbors to the query.
1	2.	The computer of Claim 1, wherein the method acts further comprise:
122		dividing the data space into plural cells; and
3		representing at least one data point in at least one cell in polar coordinates with
	res	pect to the at least one cell.
1 2 2 3	3.	The computer of Claim 2, wherein the data space has "d" dimensions and the
112	method ac	ets further comprise:
3		determining a number of "b" bits to be assigned to each cell; and
4		dividing the data space into 2 ^{bd} cells.
1	4.	The computer of Claim 1, wherein each approximation defines a lower bound d_{\min} ,
2	and the m	ethod acts further comprise:
3		generating a candidate set of approximations based at least on the lower bounds
4	d_{mn}	of the approximations.

6

5.	The computer of Claim 4, wherein the query can be represented by a query vector
q, and the m	ethod acts further comprise:

adding a first approximation having a first lower bound d_{min1} to the candidate set if $d_{min1} < k$ -NN^{dist} (q), wherein k-NN^{dist} (q) is the kth largest distance between the query vector q and nearest neighbor vectors p.

- 6. The computer of Claim 5, wherein the method acts further comprise using the candidate set to return "k" nearest neighbors vectors **p** to the query vector **q**.
- 7. The computer of Claim 6, wherein not all vectors **p** corresponding to approximations in the candidate set are examined to return the "k" nearest neighbors.
 - 8. A computer program product including a program of instructions having:

 computer readable code means for generating approximations including local polar

 coordinates of at least some data vectors **p** in at least one data set having a dimensionality

 of "d", the local polar coordinates being independent of "d"; and

computer readable code means for using the approximations to return "k" nearest neighbors to a query.

1	9.	The computer program product of Claim 8, wherein the means for generating
2	generates resp	pective approximations of data vectors p in local polar coordinates.
1	10.	The computer program product of Claim 9, further comprising:
2		computer readable code means for dividing the data space into plural cells; and
3		computer readable code means for representing each approximation in polar
4	coordi	nates with respect to one of the cells.
1	11.	The computer program product of Claim 10, wherein the data space has "d"
2	dimensions, f	further comprising:
3		computer readable code means for determining a number of "b" bits to be assigned
4	to each	n cell; and
5		computer readable code means for dividing the data space into 2 ^{bd} cells.
1	12.	The computer program product of Claim 9, wherein each approximation defines
2	a lower bound	d d_{min} and an upper bound d_{max} , and the product further comprises:
3		computer readable code means for generating a candidate set of approximations
4	based	at least on the lower bounds d_{min} and upper bounds d_{max} of the approximations.
1	13.	The computer program product of Claim 12, further comprising:
2		computer readable code means for adding a first approximation having a first
3	lower	bound d_{min1} to the candidate set if $d_{min1} < k-NN^{dist}$ (q), wherein k-NN ^{dist} (q) is the

4	k th larg	gest distance between the query vector \mathbf{q} and nearest neighbor vectors \mathbf{p} associated
5	with a	pproximations in the candidate set.
1	14.	The computer program product of Claim 13, further comprising computer readable
2	code means f	for using the candidate set to return "k" nearest neighbors vectors \mathbf{p} to the query
3	vector q.	
1	15.	A computer-implemented method for finding, in a data space, "k" closest data
2	vectors p to a	query vector q, comprising:
3		rendering approximations of at least some of the data vectors \mathbf{p} using local polar
4	coordi	nates;
5		filtering the approximations; and
6		after filtering, returning the "k" closest data vectors p.
1	16.	The method of Claim 15, further comprising:
2		dividing the data space into plural cells; and
3		representing each approximation in polar coordinates with respect to one of the
4	cells.	
1	17.	The method of Claim 16, wherein the data space has "d" dimensions and the
2	method furthe	er comprises:
3		determining a number of "b" bits to be assigned to each cell; and

4	dividing the data space into 2 nd cells.
1	18. The method of Claim 15, wherein each approximation defines a lower bound d _{min}
2	and the method further comprises:
3	generating a candidate set of approximations based at least on the lower bound
4	d _{min} of the approximations.
1	19. The method of Claim 18, further comprising:
2	adding a first approximation having a first lower bound d_{min1} to the candidate se
3	if $d_{min1} < k-NN^{dist}$ (q), wherein k-NN ^{dist} (q) is the k^{th} largest distance between the query
4	vector q and nearest neighbor vectors p associated with approximations in the candidat
5	set.
1	20. The method of Claim 19, further comprising using the candidate set to return "k
2	nearest neighbors vectors \mathbf{p} to the query vector \mathbf{q} .
1	21. The method of Claim 20, wherein not all data vectors p corresponding to
2	approximations in the candidate set are examined to return the "k" nearest neighbors vectors p
1	22. The computer of Claim 4, wherein each approximation defines an upper bound
2	d_{max} , and the method acts further comprise:

3	generating a candidate set of approximations based at least on the upper bounds
4	d_{max} of the approximations.
1	23. The computer program product of Claim 12, wherein each approximation defines
2	an upper bound d _{max} , and the product further comprises:
3	computer readable code means for generating a candidate set of approximations
4	based at least on the upper bounds d_{max} of the approximations.
1	24. The computer of Claim 1, wherein each approximation defines an upper bound
<u>_</u> 2	d _{max} , and the method acts further comprise:
3	generating a candidate set of approximations based at least on the upper bounds
	d_{max} of the approximations.
in the second street species of the second street species of the second street species species of the second street species species of the second street species speci	

INDEXING SYSTEM AND METHOD FOR NEAREST NEIGHBOR SEARCHES IN HIGH DIMENSIONAL DATA SPACES

ABSTRACT

Vectors representing objects in n-dimensional space are approximated by local polar coordinates on partitioned cells of the data space in response to a query, e.g., a query data vector entered with a request to find "k" nearest neighbors to the query vector. A set of candidate near neighbors is generated using the approximations, with the local polar coordinates being independent of the dimensionality of the data space. Then, an answer set of near neighbors is returned in response to the query. Thus, the present invention acts as a filter to reduce the number of actual data vectors in the data set that must be considered in responding to the query.

Fig. 8 (Stage 2)

Page 1 of 3

Docket No. AM9-99-0217

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence, past office address and critizenship are as stated below next to my name.

I believe I am the original. (irst and sole inventor (if only one name is lixted below) or an original, first and joint inventor (if plural names are listed below) of the subject matter

the specification of which is attached heret	to unless the following box is checked	i:
was filed on		
as United States Application Number and was amended on		
I hereby state that I have reviewed and un	derstand the contents of the above id	entified specification, including the claims, as amended by any amendment referred to above
acknowledge the duty to disclose informat	tion which is material to patentability	as defined in 37 CFR §1.56.
International application which designated a	it least one country other than the Un	y foreign application(s) for patent or inventor's certificate, or \$365(a) of any PCT lited States, listed below and have also identified below, by checking the box, any foreign aving a filing date before that of the application on which priority is claimed,
Prior Foreign Application(s):		Priority Not Claimed
(Number)	(Country)	(Day/Month/Year Filed)
I hereby claim the benefit under 35 USC 5	119(e) of any United States provision	al application(s) kisted below:
Provisional Application(s):		
	(Application Number)	(Filing Date)
I hereby claim the benefit under 35 HSC 6	120 of any United States application	(s), or \$365(c) of any PCT International application designating the United States. listed beh It disclosed in the prior United States or PCT International application in the manner provide
and, insofer as the subject metter of each	acknowledge the duty to disclose info	rmation which is material to patentability as defined in 37 CFA \$1.58 which became evails
and, insofer as the subject metter of each by the first paregraph of 35 USC §112, I a between the filing date of the prior applica [Application Number]	acknowledge the duty to disclose Info ation end the national or PCT Interneti	rmetion which is material to patentability as defined in 37 CFR 51.56 which becams evails ional filing date of this application.
and, insofer as the subject metter of each by the first paragraph of 35 USC §112, I a between the filing date of the prior applica [Application Number]	acknowledge the duty to disclose Info ation and the national or PCT Internati (Filing Date)	rmation which is material to patentability as defined in 37 CFR \$1.56 which became evails onal filing date of this application. (Status - patented, pending, abandoned)
and, insofer as the subject metter of each by the first paragraph of 35 USC §112, I a between the filing date of the prior applica [Application Number] Power of Attorney:	acknowledge the duty to disclose Info ation and the national or PCT Internati (Filing Date)	rmation which is material to patentability as defined in 37 CFR \$1.56 which became avails onal filling date of this application. (Status - patented, pending, abandoned)
and, insofer as the subject metter of each by the first paragraph of 35 USC §112, I a between the filing date of the prior applica [Application Number]	acknowledge the duty to disclose Info ation and the national or PCT Internati (Filing Date)	rmation which is material to patentability as defined in 37 CFR \$1.56 which became avails onal filling date of this application. (Status - patented, pending, abandoned)
and, insofer as the subject metter of each by the first paragraph of 35 USC §112, 1 a between the filing date of the prior applica [Application Number] Power of Attorney: I hereby appoint the following attorney(s) a Thomas R. Berthold Richard M. Ludwin	acknowledge the duty to disclose info ation and the national or PCT Internati (Filing Date) sud/or agent(s) to prosecute this application (#28,689) (#23,010)	rmation which is material to patentability as defined in 37 CFR \$1.56 which became avails onal filling date of this application. (Status - patented, pending, abandoned)
and, insofer as the subject metter of each by the first paragraph of 35 USC §112, 1 a between the filing date of the prior applica [Application Number] Power of Attorney: 1 hereby appoint the following attorney(s) a Thomas R. Berthold Richard M. Ludwin Marc D. McSwain	acknowledge the duty to disclose info ation and the national or PCT international (Filing Date) and/or egent(s) to prosecute this application (#28,689) (#33,010) (#44,929)	rmation which is material to patentability as defined in 37 CFR \$1.58 which became evaluational filling date of this application. (Status - patented, pending, abandoned)
and, insofer as the subject metter of each by the first paregraph of 35 USC §112, 1 a between the filing date of the prior applica (Application Number) Power of Attorney: Thomas R. Berthold Richard M. Ludwin Marc D. McSwain Khanh Q. Tran	acknowledge the duty to disclose info ation and the national or PCT International (Filing Date) and/or egent(s) to prosecute this application (#28,689) (#33,010) (#44,929) (#41,352)	rmation which is material to patentability as defined in 37 CFA 51.56 which became availa ional filing date of this application.
and, insofer as the subject metter of each by the first paragraph of 35 USC §112, 1 a between the filing date of the prior applica [Application Number] Power of Attorney: 1 hereby appoint the following attorney(s) a Thomas R. Berthold Richard M. Ludwin Marc D. McSwain	acknowledge the duty to disclose info ation and the national or PCT International (Filing Date) (#28,689) (#33,010) (#44,929) (#41,352) (#33,549)	rmation which is material to patentability as defined in 37 CFR \$1.56 which became avails onal filling date of this application. (Status - patented, pending, abandoned)

Page 2 of 3

Docket No. AM9-99-0217

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

Address all telephone calls to: Address all correspondence to: John L. Rogitz-John L. Rogitz Rogitz & Associates 750 B Street, Suite 3120 (619) 338-8075 San Diego, California 92101 I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that wilful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon. диникантинентинден байын айдан байын айдан байын байын байынын байын байын байын байын байын байын байын байын **GUANG-HO CHA** Full name of sole or first inventor: Inventor's signature: Residence: 344-1 Jangjun-Dong, Gumjung-Gu, Pusan, 609-393, Republic of Korea Citizenship: Republic of Korea (South Korea) Post Office Address: Same **CHIN-WAN CHUNG** Full name of second inventor: Date: inventor's signature: Residence: Korean Advanced Institute of Technology, Dept. of Computer Science, 373-1 Kusong-Dong, Yusong-Gu Taejon 305-701 Citizenship: United States DRAGUTIN PETKOVIC Full name of third inventor: loventar's signature: Residence: 13591 Old Tree Way, Saratoga, Cálifornia 95070

Post Office Address: Same

Citizenship: United States

Page 3 of 3

Docket No. AM9-99-0217

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

Citizenship: Peop	les Republic of China	Past Offic	co Address: Same	
Residence: 1407 Hackmi	an Way, San Jose, California 95129			-
inventor's signeture:	Ku Zh L	Date:	1/28/2000	
2 "				_
full mason of fourth investor:	XIAOMING ZHU			
nnanspannangannanaganganganga	KRASANARAN BARIN KASAN BARIN BAR KRASAN BARIN B	HUSTONIASSONNIASSONNIASSONNIASSON	MANAMULUUU	

Page 1 of 3

Docket No. AM9-99-0217

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As a below named inventor, I hereby declare that: My residence, post office address and cirizenship are as stated below next to my name. I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject metter which is claimed and for which a parent is sought on the invention entitled

the specification of which is attached here	to unless the following box is checked:		
was filed on			
as United States Application Number	r or PCT International Application Number	fit enplicable).	
and was amended on			
	tion which is material to patentability as define		
International application which designated a	t least one country other than the United Stat	application(s) for patent or inventor's certificate, or \$385(a) of any PCT as, listed below and have also identified below, by checking the box, any foreigning data before that of the application on which priority is claimed.	
Prior Foreign Application(s):		Priority Not Claimed	
(Number)	(Country)	(DayiMonth/Year Filed)	
I hereby claim the henefit under 35 USC 5	119(e) of any United States provisional applica	tionistästed below:	
Provisional Application(s):	(Application Number)	(Filing Date)	
	of the claims of this application is not disclose	55(c) of any PCT International application designating the United States, kisted bel ad in the prior United States or PCT International application in the manner provid	
by the first paragraph of 35 USC \$112.1	acknowledge the duty to disclose information w usion and the national or PCT International filing	which is material to patentability as defined in 37 CFR \$1.5A which became evail of date of this application.	
by the first paragraph of 35 USC \$112.1		• •	
by the first paragraph of 35 USC \$112. I a between the filing date of the prior applica	ition and the national or PCT International filing	date of this application,	
by the first paragraph of 35 USC \$112, I a between the filing date of the prior applica [Application Number] Power of Attorney:	tion and the national or PCT International filing (Filing Date)	date of this application,	
by the first paragraph of 35 USC \$112. I a between the filing date of the prior application Number! Power of Attorney: I hereby appoint the following attorney(s) a	rion and the national or PCT International filing (Filing Date) Ind/or agent(s) to prosecute this application and	(Status - potented, pending, abandoned)	
by the first paragraph of 35 USC \$112, I a between the filling date of the prior application Number! Power of Attorney: I hereby appoint the following attorney(s) at Thomas R. Berthold	(#28,689)	(Status - potented, pending, abandoned)	
by the first paragraph of 35 USC \$112. I a between the filing date of the prior application Number! Power of Attorney: I hereby appoint the following attorney(s) a	rion and the national or PCT International filing (Filing Date) Ind/or agent(s) to prosecute this application and	(Status - potented, pending, abandoned)	
by the first paragraph of 35 USC \$112, 1 a between the filing date of the prior application Number! Power of Attorney: 1 hereby appoint the following attorney(s) a Thomas R. Berthold Richard M. Ludwin Marc B. McSwain Khanh Q. Tran	(#28,689)	(Status - potented, pending, abandoned)	
by the first paragraph of 35 USC \$112, 1 a between the filing date of the prior applica (Application Number) Power of Attorney: 1 hereby appoint the following attorney(s) a Thomas R. Berthold Richard M. Ludwin Marc D. McSwain	(Filing Date) (Filing Date) (Filing Date) (#28,889) (#33,010) (#44,929) (#41,352) (#33,549)	(Status - potented, pending, abandoned)	

Page 2 of 3

Docket No. AM9-99-0217

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

Address all telephone calls to:	Address all correspondence to:		
John L. Rogitz	John L. Regitz		
	Rogitz & Associates		
(619) 338-8075	750 B Street, Suite 3120		
	San Diego, California 92101		
·	se and that all statements made on information and belief are believed to be true; and further the and tha like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title ordize the validity of the application or any patent issued thereon.		
ликання выполнять потпольность по при на	เสเนนสนเสนเสนเลยเลยเลยเลยเลยเลยเลยเลยเลยเลยเลยเลยเลยเ		
Full name of sale or first inventor: GUANG-HO CHA			
Inventor's signature:	Date:		
Residence: 344-1 Jangjun-Dong, Gumjung-Gu, Pusan, 60)9-393, Republic of Korea		
Citizenship: Republic of Korea (South Korea)	Past Office Address: Same		
	saaranananananananananananananananananan		
Full name of second inventor: CHIN-WAN CHUNG			
Full name of second leventer: CHIN-WAN CHUNG	Tob 11 2000		
- function fring	Feb. 14, 2000		
Inventor's signature:	Date:		
Residence: Korean Advanced Institute of Technology, D Taejon 305-701, Republic of Korea	and lept. of Computer Science, 373-1 Kusong-Dong, Yusong-Gu		
Citizenship: United States	Post Office Address: Same		
ининининининининининининининининининин	นอนภาคภาษาอนภาคมายอนุการเกาะเกาะเกาะเกาะเกาะเกาะเกาะเกาะเกาะเกาะ		
Full name of third inventor: DRAGUTIN PETKOVIC			
Inventor's signature:	Date:		
Residence: 13591 Old Tree Way, Saratoga, California (95070		
Cirlzenship: United States	Post Office Address: Same		

Page 3 of 3

Docket No. AM9-99-0217

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

***************************************	itanisa (mittäittärismishtällitti	માનવરામકામાં ભાવતાના ભાગામાં ભાગામાં આવેલા છે. આ પાસના માનવા માટે કરાય છે. આ પાસના માટે માટે માટે માટે માટે આ આ પાસના માટે માટે માટે માટે માટે માટે માટે માટ	estamastatus taramatatan artini esta esta esta esta esta esta esta esta	
Fall states of fee	nth inventor:	XIAOMING ZHU		
laventor's signature: Date:				
Residence: 140	07 Heckman	Way, San Jose, California 951	29	
Citizenship:	Peoples	Republic of China	Post Office Address:	Same
	iummannaminaminami	Hijumumilakahumponkokumponkokumpanganahumpump	nankananganankakananganankanangankanangan	