

Lembar Kerja Responsi 5 Mata Kuliah KOM 401 Analisis Algoritme

Semester Genap Tahun Akademik 2020/2021

Asisten Praktikum:

1. M Faishal Wicaksono R

2. Zaki Muttaqin

Nama : Shibgotalloh Sabilana

NIM : G64180002

A. Mengidentifikasi relasi rekurensi dari suatu algoritme

Diberikan algoritme berikut dalam bentuk pseudocode atau bahasa pemrograman C. Identifikasi relasi rekurensi dari algoritme berikut:

1. Algoritma sorting

```
void mergeSort(int arr[], int 1, int r) {
  if (1 < r) {
    int m = 1 + (r - 1) / 2;

    mergeSort(arr, 1, m);
    mergeSort(arr, m + 1, r);

    // Merge the sorted subarrays
    merge(arr, 1, m, r);
}</pre>
```

*fungsi merge() untuk menggabungkan subarray

```
a = 1

b = 2

f(n) = 1

T(n) = (n/1) + 1
```

2. Algoritme mencari bilangan terbesar

```
int top(int arr[], int 1, int r){
   if(1 == r){
      return arr[1];
   }else if(1 <= r){
      int mid = 1 + (r-1)/2;
      return max(top(arr,1,mid),top(arr,mid+1,r));
   }
}</pre>
```

```
a = 2
b = 2
f(n) = 1
T(n) = 2*(n/2)+1
```

B. Pohon rekursif

3. Diberikan relasi rekurensi berikut. Selesaikan relasi tersebut dengan menggunakan teknik pohon rekursif. Buat pohon rekursif dengan kedalaman **minimal 2** untuk melihat pola yang muncul

```
a. T(n) = T(n/3) + T(n/2) + cn
b. T(n) = 2T(n/2) + n^2
c. T(n) = 2T(n/3) + cn^3
```


C. Teorema master

4. Diberikan relasi rekurensi berikut. Selesaikan relasi tersebut dengan menggunakan teknik teorema master.

No	Relasi Rekurensi	a	b	f(n)	n ^{log a}	$\mathbf{f}(\mathbf{n}) = (n^{\log b})$	Kasus	Hasil
1	$T(n) = 6T(n/3) + n^2$	6	3	n^2	$n^{log_{_3}}$ 6	Ω	3	O(n ²)
2	$T(n) = 9T(n/3) + n^2$	9	3	n^2	n^2	Θ	2	$O(n^2 \log n)$
3	$T(n) = T(n/2) + 2^n$	1	2	2^n	1	Ω	3	O(2 ⁿ)
4	$T(n) = 3T(n/3) + n.\log n$	3	3	n.log n	n	Ω	3	O(n log n)
5	T(n) = 16T(n/4) + n	16	4	n	n^2	О	1	O(n ²)
6	T(n) = 3T(n/2) + n	3	2	n	$n^{\log_2 3}$	0	1	O(n
7	$T(n) = 2T(n/4) + n_2$	2	4	n_2	$n^{log_4^2}$	Ω	3	O(n ²)
8	$T(n) = 2T(n/2) + n.\log n$	2	2	n.logn	n	Ω	3	O(n log n)
9	T(n) = 3T (n/3) + n/2	3	3	n/2	n	0	1	O(n)
10	$T(n) = 7T(n/3) + n_2$	7	3	n_2	$n^{\log_3 7}$	Ω	3	O(n ²)