第十三章 均匀传输线

13.1 同轴电缆的参数为 $R_0 = 7\Omega/\text{km}$, $L_0 = 0.3\text{mH/km}$, $G_0 = 0.5 \times 10^{-6}\text{S/km}$, $C_0 = 0.2\mu\text{F/km}$ 。试计算当工作频率为 800Hz 时此电缆的特性阻抗 Z_c 、传播常数 γ 、相速 ν_p 和波长 λ 。

13.2 设沿某电缆分布着电压和电流行波

 $u = 14.1e^{-0.044x}\cos(5000t - 0.046x + \pi/6)$ (单位: V, km, s)

 $i = 0.141e^{-0.044x}\cos(5000t - 0.046x + \pi/3)$ (单位: A, km, s)

试求波阻抗、传播常数、波速、波长。

133 某无损线波阻抗为 $Z_{\rm c}=70\Omega$,终端负载阻抗 $Z_{\rm 2}=(35+{\rm j}35)\Omega$ 。试计算输入阻抗,设线长为 (a) $\lambda/4$; (b) $\lambda/8$ 。

13.4 长度为 $\lambda/4$ 的无损线,终端接电阻 $R_2=50\Omega$,现若使始端 入阻抗 $Z_i=200\Omega$,问该无损线 波阻抗应为多少?又若 $R_2=0$,则此无损线的输入阻抗是多少?

13.6 终端短路的无损线,其波阻抗 $Z_{\rm c}=505\Omega$,线长 35m,波长 $\lambda=50$ m,求此无损线的等效电感值。

13.8 设图示无损线长为 17m,波里抗 $Z_{\rm c}=150\Omega$, $u_{\rm s}$ 为正弦电压源。传输线上的行波波长 $\lambda=8$ m ,电容的容抗 $|X_{\rm c}|=150\Omega$ 。试求传输线上电流始终为零的点距终端的距离。

13.9 无损均匀传输线线长 $l=37.5 \mathrm{m}$,波阻抗 $Z_{c}=600\Omega$,波速 $v=3\times10^8 \mathrm{m/s}$,正弦电压源 $\dot{U}_{\rm S}=10\mathrm{V}$,频率 $f=6\times10^6\mathrm{Hz}$,电阻 $R_2=4R_1=400\Omega$ 。(1)求始端电压 $\dot{U}_{\rm I}$ 和电流 $\dot{I}_{\rm I}$ 。(2)距离始端 12.5 m 处的电压和电流相量。

13.10 图示电路中 $R_{\rm s}=100\Omega$, $u_{\rm s}=150\cos(5000\pi t)$ V , $R_{\rm 2}=100\Omega$ 。无损线线长 $l=10{\rm km}$, $L_{\rm 0}=10^{-3}$ H/km , $C_{\rm 0}=10^{-7}$ F/km 。求 $u_{\rm 1}(t)$ 和 $u_{\rm 2}(t)$ 。

13.11 图示无损传输线,长度为 $l=50\mathrm{m}$,特性阻抗为 $Z_\mathrm{c}=100\sqrt{3}\Omega$,传输线一端开路,一端短路,线路中点处接一电压源 $u_\mathrm{s}(t)=3\sqrt{2}\cos(\omega t+30^\circ)\mathrm{V}$,工作波长 $\lambda=300\mathrm{m}$,求流过电压源的电流 i(t) 。

13.12 图示电路中无损均匀传输线 l_1 、 l_2 、 l_3 ,其长度均为 0.75m,特性阻抗 $Z_c=100\Omega$, $u_s=10\cos(2\pi\times10^8t)$ V,相位速度 $v=3\times10^8$ m/s,终端 3 – 3′ 接负载 $Z_2=10\Omega$,终端 4 – 4′ 短路,求电源端的电流 $i_1(t)$

13.13 图示两条架空均匀无损线的波阻抗 $Z_{\rm el}$ = 300Ω, $Z_{\rm el}$ = 200Ω,长度 $I_{\rm l}$ = $\lambda/4$, $I_{\rm l}$ = $\lambda/8$ 。 1 – I' 端 接 电 压 源 $\dot{U}_{\rm s}$ = 600 \angle 0°V , 2 – 2' 端 接 有 集 中 参 数 R = 300Ω, $X_{\rm c}$ = 200Ω,终端 3 – 3' 短路。求:(1)从 I — I' 端看入的入端阻抗 $Z_{\rm in}$; (2)始端电流 $I_{\rm l}$; (3) 2 – 2' 端电压 $U_{\rm l}$ 。

I3.15 长度为t=600m 的无损线,波阻抗 $Z_c=500\Omega$,终端接 $1k\Omega$ 电阻,始端施以阶 跃电压 $u_s=15$ $\epsilon(t)$ V 。试分析始端电流在 0<t<6l/r 期间的波过程,最后的稳态解是多少?(波速 ν 可按光速计算)

13.16 图示无损均匀线线长 I=6km ,波阻抗 $Z_c=600\Omega$,波速近似光速。又知 $R_s=Z_c$, $R_2=1800\Omega$, $U_s=240$ V , I=0 时开关接通。试确定无损线中点处电流 I(I) 在 0<I<60μs 期间内的变化规律。

13.17 电路如图所示,设无损耗传输线长为 1ms 时间内波所传播的距离,波阻抗 $Z_c = R_s = 200\Omega$ 。又已知 $R=300\Omega$,L=0.1H, $u_s = 10$ ε(t) -10 ε(t -0.001s) V。求 t>0 时的零 状态响应 u(t)。

13.18 电路如图所示,无损均匀传输线长 $l=300\mathrm{m}$,波阻抗 $Z_{\mathrm{c}}=200\Omega$, $R_{\mathrm{s}}=50\Omega$,波速 $v=3\times10^8\,\mathrm{m/s}$ 。又已知 $R=300\Omega$, $C=0.1\mathrm{F}$, $u_{\mathrm{s}}=10~\varepsilon(t)$ V。求 $0< t<3\mu\mathrm{s}$ 时的终端电压 u(t) 。

