Modelação Multidimensional

Exemplo: Distribuição Retalhista

Sumário

- O Processo de análise
- Apresentação do caso
- Análise do caso
- Atributos das tabelas de dimensões
- Estender o modelo
- Notas sobre as dimensões
- Resumo / ideias a reter

O Processo de Análise

Passos do Processo de Análise. Factores

- Processo de análise em 4 passos
 - Seleccionar o processo de negócio a modelar
 - Declarar qual a granularidade do processo
 - Escolher as dimensões
 - Identificar os factos numéricos das tabelas de factos
- Elementos para a análise
 - Requisitos do negócio
 - Dados realmente disponíveis

O Processo de Análise

O processo de negócio e a sua granularidade

- Processo de negócio
 - actividade de negócio desenvolvida pela organização e suportada por sistemas de informação (Ex: compra de matérias primas, encomendas, vendas, etc)
 - Orientar a análise/desenho ao processo e não à organização
- Declarar a granularidade
 - Indicar o significado preciso de cada registo das tabelas de factos
 - Não esquecer que é sempre possível agregar mas não o inverso
 - Não esquecer qual a granularidade disponível nas fontes
 - Exemplos: linha de ticket das compras, snapshot diário de níveis de cada produto num sistema de inventário

O Processo de Análise

Identificar os processos a modelar e granularidade

- Identificar os processos a modelar
 - Combinar a percepção do negócio com os dados disponíveis
 - Ex: Base de dados com os movimentos diários por produto. Que produtos são vendidos em que lojas com que preços e em que dias?
- Determinar a granularidade da tabela de factos em cada processo do negócio
 - Determina a dimensionalidade da base de dados e tem um grande impacto na tamanho da base de dados.
 - Ex: Código de produto por loja por promoção por dia
 - O granularidade deve ser tão baixa quanto possível, pois para responder às interrogações a base de dados precisa de ser "cortada" de forma "precisa"

O Processo de Análise

Granularidade e dimensões

- A granularidade determina a dimensionalidade primária da tabela de factos.
 - Ex: tempo, produto e loja são as dimensões primárias
 - Dimensões adicionais podem ser adicionadas se compatíveis com a granularidade definida.
 - Ex:
 - Promoção em que o produto foi vendido Vendedor que forneceu o produto na loja
 - Gestor encarregado da loja nesse dia
 - Se for necessário adicionar uma dimensão não compatível com a granularidade definida, então é necessário rever a granularidade

O Processo de Análise

As dimensões e as tabelas de factos

• Dimensões

- Como são em geral descritos os dados do "domínio"?
- Processo + granularidade => dimensões
- Dimensão tempo
- Para cada dimensão:
 - Listar todos os atributos descritivos

Tabelas de Factos

- O que se pretende medir
- Factos pertencentes a diferentes granularidades devem estar em tabelas de factos diferentes
- As medidas são em geral aditivas

O Processo de Análise

Medidas da tabela de factos

- É necessário escolher que medidas básicas serão consideradas tendo em conta a sua disponibilidade bem como o processo necessário para a sua recolha.
 - Ex: No final de cada dia é necessário recolher o sumário das vendas diárias de cada loja:
 - Para cada produto:
 - Valor total das vendas
 - Número de unidades vendidas
 - Custo total dessas unidades vendidas
 - Número de clientes que compraram esse produto

Estimar a dimensão da tabela de factos

• Ex: 2 anos (2*365); 30 000 Produtos; 3000 produtos vendidos diariamente; 20 lojas; 47 milhões de registos.

- O Processo de análise
- Apresentação do caso
- Análise do caso
- Atributos das tabelas de dimensões
- Estender o modelo
- Notas sobre as dimensões
- Resumo / ideias a reter

Apresentação do caso

Uma empresa grossista

- 100 grandes superfícies de vendas (supermercado), espalhadas geograficamente por três estados.
- Todos os *departamentos* em cada superfície de vendas:
 - Mercearias; Comida congelada; Carne; Artigos limpeza e higiene;
 Padaria; Florista; Equip. eléctricos e electrónicos; Vinhos;
- Aproximadamente 60 000 produtos individuais nas prateleiras (unidades de stock armazenáveis - USA)
 - 55 000 USA provenientes de produtores externos (códigos de barras -Código Universal de Produto - CUP). 1 CUP => 1 USA
 - Diferentes formas de empacotamento de um mesmo produto correspondem a diferentes CUPs (e portanto USAs)
 - 5 000 USA produtos internos (carne, padaria, etc) sem CUP.

Apresentação do caso

Pontos de entrada de informação no S. Operacional

- Caixas (POS Point of Sale)
 - Através dos códigos de barra nos produtos CUP, e nalguns USA não CUP.
 - Por entrada manual para alguns USA
- Pontos de entregas fornecedores
 - Apenas uma fracção dos armazéns utilizam a tecnologia de scanner para registar as entregas em tempo real.
- Departamento de Fornecedores e Contas a pagar
 - O completo conhecimento do material que entrou no supermercado só é possível, em muitos casos, por via dos pagamentos efectuados e por inspecção directa

Apresentação do caso

Principais preocupações / Objectivos

- A logística de encomendas, armazenamento nas prateleiras e venda dos produtos.
- Maximizar o lucro em cada supermercado.
 - Cobrar o máximo possível em cada produto,
 - Baixar os custos de aquisição dos produtos e os custos fixos
 - Atrair o máximo número de clientes
- Decisões mais significativas a tomar
 - Preços
 - Promoções (reduções temporárias de preços, anúncios, etc)
 - Baixas de preço servem para atrair clientes mas a venda é feita com prejuízo e a promoção pode baixar as vendas de outros produtos similares

- O Processo de análise
- Apresentação do caso
- Análise do caso
- Atributos das tabelas de dimensões
- Estender o modelo
- Notas sobre as dimensões
- Resumo / ideias a reter

Análise do caso

O processo de negócio a modelar

- O primeiro modelo de processo de negócio a construir deve ser aquele que maior impacto tiver nas expectativas dos utilizadores.
 - Deve responder às questões de negócio mais importantes e deve ser disponibilizado desde cedo aos utilizadores
- Analisar as compras dos clientes com base na informação recolhida nas caixas registadoras.
 - Deve ser possível analisar que produtos são vendidos, em que lojas, em que dias e qual o efeito das promoções

Análise do caso

Declarar a granularidade dos dados

- Neste caso temos dois níveis possíveis
 - Ao nível da linha de factura, isto é, quantas unidades são vendidas e a que preço em cada venda.
 - Ao nível das vendas realizadas para cada produto diariamente em cada loja
- Como pretendemos analisar o efeito das promoções e efectuar análises de associação de produtos comprados, é necessário considerar a granularidade mais baixa: **Linha de factura**
 - Não esquecer que é sempre possível agregar a partir de uma granularidade mais baixa, mas não o inverso

Análise do caso

Escolha das dimensões

- Granularidade determina as dimensões primárias
 - Um linha de factura corresponde a uma venda de um **produto** realizada numa **data**, numa **loja**.
- Encontrar outras dimensões que podem ser associadas
 - Muitas vezes o produto é vendido ao abrigo de uma promoção.
 - Várias linhas de factura estão associdas a um acto de venda (número de factura)
- Dimensões de base:
 - Data: data e não data + hora
 - Produto
 - Loja
 - Promoção: nem todas as vendas são feitas ao abrigo de uma promoção
 - Factura: número da factura

Análise do caso

Escolha das dimensões: StarSchema inicial

Análise do caso

Identificar os factos

- Granularidade escolhida é chave para determinar os factos disponíveis. Numa linha de factura temos:
 - Quantidade: quantidade vendida em termos de número de unidades
 - Valor unitário
 - Valor total: = Valor unitário x Quantidade
 - Custo dos produtos vendidos: Em alguns sistemas de caixas é possível saber qual foi o preço a que a loja comprou o produto e portanto qual o custo (interno) dos produtos vendidos na transacção
- Factos
 - Unidades_vendidas
 - Valor vendas
 - Custo
 - Lucro = Valor_vendas Custo

Factos aditivos por todas as dimensões

- Margem de Lucro = Lucro / Valor Venda
- Valor unitário: também não é aditivo; além disso não é relevante.

Análise do caso

Identificar os factos: Discussão

- Factos de base aditivos
 - Unidades_vendidas
 - Valor_vendas
 - Custo
- Factos calculados e aditivos. Guardam-se ou calculam-se?
 - Lucro = Valor_vendas Custo
 - Uniformidade nos valores independentemente do utilizador/relatório
- Factos calculados não aditivos. Calculam-se no fim
 - Margem de Lucro = Lucro / Valor Venda
 - Aggreg(Margem de Lucro) = Soma(Lucro) / Soma(Valor Venda)
- Estimar a dimensão da tabela de factos
 - Neste exemplo podemos considerar 2 biliões de linhas por ano

Análise do caso

Tabela de Factos

- O Processo de análise
- Apresentação do caso
- Análise do caso
- Atributos das tabelas de dimensões
- Estender o modelo
- Notas sobre as dimensões
- Resumo / ideias a reter

Atributos das Dimensões

Data

Discussão preliminar

- Porquê usar uma dimensão Data?
 - Porque n\u00e3o usar um atributo data na tabela de facto que seria directamente usado nas restri\u00fc\u00fces?
 - Tamanho: 8 bytes para representação de data vs 4 bytes para inteiros
 - Evitar o join com a tabela Data (que é pequena)?
 - Atributos da dimensão tempo
- E o tempo?
 - Quando é necessário registar factos ao longo do dia usa-se uma dimensão Data e uma Dimensão tempo_do_dia.
 - O número de registos da dimensão **Data** é de 365 dias por ano. O número de registos da dimensão **tempo_do_dia** é de 24 **Horas** ou de 1440 minutos. Qualquer destas tabelas pode ser criada à priori.
 - A tamanho de uma tabela tempo seria de 8760 por ano (ao nível das horas) ou de 525 600 por ano (ao nível de minuto)

Atributos das dimensões

Data

Atributos

- Data_key (inteiro)
- Data (tipo de dados data)
- Dia da semana (segunda, terça, ..., domingo)
- Números relativos a uma data inicial.
 - Número do Dia gregoriano (consecutivos a começar numa dada data)
 - Número da Semana gregoriana (similar, mas a contar semanas)
 - Número do Mês gregoriano (similar, mas a contar semanas)
- Número do dia em relação à semana, mês, ano, ano fiscal, período fiscal
 - Dia do mês (1, ..., 31), Dia do ano, Dia do ano Fiscal, ...
- Número da semana em relação ao mês, ano
-
- Indicador de feriado
- Indicador de dia de semana (trabalho)
- Etc.

Atributos das dimensões

Data

Dimensão de Data

- dia_semana e dia_mês comparar as compras entre diferentes dias da semana ou do mês;
- feriado_flag, dia_semana_flag, ultimo_dia_mês_flag comparação com dias especiais
- dia_sequencial, semana_sequencial, mês_sequencial diferença entre datas
- época (ex: Natal, Páscoa, etc)
- evento (jogo Uefa, etc)

Dimensão Produto

- Hierarquia
 - USA (número e descrição)
 - Tamanho embalagem
 - Marca
 - Subcategoria
 - Categoria
 - Departamento
- Outros atributos
 - Tipo de embalagem
 - **...**

- Manutenção actualizada da lista de USA
 - => actualização da dimensão produto
- Não é necessário normalizar!
- Roll up / Roll down Agregar / Desagregar
- É possível agregar e desagregar com outros atributos não pertencentes à hierarquia.

Atributos das dimensões

Produto

Dimensão Produto: Roll up / Roll down

Dep.	Valor Vendido	Unidades Vendidas
D-1	780	263
D-2	1044	509
D-3	213	444
D-4	95	39

Desagregou departamento por marca

Dep.	Marca	Valor Vendido	Unidades Vendidas
D-1	M-1	300	160
D-1	M-2	480	103
D-2	M-5		
•••	•••••	••••	••••

Atributos das dimensões

Produto

Dimensão Produto: Roll up / Roll down (2)

Dep.	Valor Vendido	Unidades Vendidas
D-1	780	263
D-2	1044	509
D-3	213	444
D-4	95	39

Desagregou departamento por tipo de embalagem

Dep.	Tipo Embalagem	Valor Vendido	Unidades Vendidas
D-1	E-1	100	50
D-1	E-2	280	75
D-1	E-5		
•••		••••	••••

Atributos das dimensões

Produto

Tabela Produto

Dimensão Loja

- Dimensão geográfica do negócio
 - Uma ou mais hierarquias geográficas
 - Distrito / Concelho / Freguesia / Código postal
 - Região de vendas
- Atributos para caracterizar a organização da loja
 - Tipo de plano da loja
 - Dimensão da loja
 - Modelo financeiro
 - Número de empregados
 - **...**

Atributos das dimensões

Promoção

Dimensão Promoção

- Descreve as condições sob as quais decorreu uma promoção de um produto:
 - Reduções temporárias de preço; "coupons" de desconto; campanhas publicitárias; paineís
- Os gestores estão interessados em saber:
 - Os produtos em promoção aumentaram as vendas durante a promoção? (lift)
 - Depois da promoção houve uma baixa nas vendas que anulou os ganhos? (time shifting)
 - Outros produtos sofreram uma correspondente quebra nas vendas? (canibalização)
 - Os produtos em promoção tiveram um aumento das vendas tendo em conta o período anterior e posterior à promoção? (crescimento de mercado)
 - A promoção foi rentável considerando os aspectos anteriores e os custos directos da promoção?

Uma ou várias dimensões?

- As condições de uma promoção são os factores correlacionados de
 - Reduções temporárias de preço; "coupons" de desconto; campanhas publicitárias;
 paineis
- 4 Dimensões distintas?
 - A forte correlação não justifica separar em quatro dimensões
 - Uma única dimensão pode ser visitada de forma conveniente
 - As vantagens de passar para 4 dimensões poderiam ser:
 - Se os utilizadores pensarem em quatro mecanismos independentes (entrevistas!)
 - A administração da tabela única pode ser menos evidente pois necessita de uma chave artificial

Atributos das dimensões

Promoção

E as vendas que não se realizam ao abrigo de promoções?

- Uma única dimensão promoções
 - Chave artificial
 - Cada registo refere-se a uma promoção combinada (de vários tipos de promoções)
 - Atributos classificativos e descritivos de cada tipo de promoções. Valores NULL quando os atributos não são aplicáveis.
 - Um registo especial singnificando que não há qulaquer promoção: "Sem promoção"
- Tabela de Factos
 - Na tabela de factos quando se regista uma venda numa data, numa loja de um producto que não está em promoção a chave estrangeira de promoção que se associa é aquela que corresponde a "Sem promoção"
- Regra geral
 - Evitar o uso de chaves nulas

Atributos das dimensões

Promoção

Que produtos em promoção não foram vendidos?

- Uma promoção A sobre os produtos X e Y. Foram realizadas várias vendas de X e nehuma de Y
 - Na tabela de factos só existem registos (ligados à promoção A) das vendas de X.

Data ou Semana

Factless Table

Um registo por cada produto numa promoção num dia numa loja

Granularidade diferente

Atributos das dimensões

Dimensão degenerada

Número da transacção

• Números de facturas, números de enconmendas, números de transacção constituem frequentemente chaves de dimensões degeneradas

• Dimensões degeneradas - dimensões vazias (sem atributos) e portanto sem tabela

- O Processo de análise
- Apresentação do caso
- Análise do caso
- Atributos das tabelas de dimensões
- Estender o modelo
- Notas sobre as dimensões
- Resumo / ideias a reter

Estender o modelo

Novos requisitos

- Programa de cliente frequente
 - Criar uma tabela de dimensão de cliente frequente
 - Deve existir um registo cuja chave corresponderá a casos anteriores a este programa de cliente frequente. Esta chave será a que é colocada como chave estrangeira na tabela de factos para os factos históricos anteriores
 - Deve existir um registo cuja chave corresponderá a clientes que não aderiram ao programa de cliente frequente. Esta chave será a que é colocada em transações de clientes que não aderiram a este programa
 - E na tabela de factos
 - Juntar uma nova chave estrangeira na tabela de factos
- Controlo e análise dos operadores das caixas
 - Juntar uma dimensão tempo do dia
 - Juntar uma dimensão operador de caixa.
 - Juntar as novas chaves estrangeiras na tabela de factos (com os valores correctos).

Estender o modelo

Novos requisitos

Estender o modelo

Outras alterações

- Novos atributos de dimensões
 - Juntar os novos atributos
 - Se o valor dos atributos só faz sentido a partir de uma data determinda prever o valor "Não aplicável" ou "Não disponível" e colocar nos antigos registos da dimensão
- Novos factos
 - Pertencem ao mesmo evento e são da mesma granularidade: juntar nova coluna com os valores do novo facto (se não está disponível para registos históricos - NULL)
 - São de outra granularidade: criar nova tabela de factos
- Aumentar a granularidade de uma dimensão
 - É possível refinar uma dimensão. Construir uma nova dimensão que irá incluir os registos anteriormente existentes.
 - Reconstruir a tabela de factos para ligar à dimensão refinada. Aplicações anteriores podem continuar a funcionar.
- Outros casos
 - Novas tabelas de factos

- O Processo de análise
- Apresentação do caso
- Análise do caso
- Atributos das tabelas de dimensões
- Estender o modelo
- Notas sobre as dimensões
- Resumo / ideias a reter

Notas sobre as dimensões

Normalização: snowflaking

- Argumentos a favor da normalização das dimensões?
 - Espaço ocupado pelas dimensões
 - Não é relevante pois é a tabela de facto que maior espaço ocupa (3 Mb / 10 Gb)
 - Manutenção das tabelas de dimensões
 - Mais fácil se normalizado. Tarefa realizada na área de *staging*.
 - Tende a facilitar a navegação através de hierarquias simples
- Argumentos em desfavor da normalização das dimensões?
 - Desenho mais complexo
 - Utilizadores
 - Optimizadores de queries
 - Tende a "limitar" a navegação nas dimensões
 - Indequado ao uso de indexes de bitmaps (aplicados a atrbitutos de baixa cardinalidade)

Notas sobre as dimensões

Des-normalizar a tabela de factos!

- A ideia de incluir chaves por cada um dos elementos frequentemente analizados:
 - Produto: Tipo de produto; Classe; Departamento, etc
 - Loja: Tipo de loja; Região; etc
 - Data: Semana; Mês; Trimestre; Ano
- => Produz sistemas
 - Gigantescos
 - Pouco simples

Notas sobre as dimensões

Chaves primárias das tabelas de factos

- Chaves das dimensões devem ser artificiais
 - em geral inteiros sem significado, quando muito ordenadas.
- Razões são de ordem dirversa:
 - Desacoplar as chaves do DW das do(s) OLTP
 - Suposições sobre as chaves *naturais* podem ser invalidadas no futuro. Por exemplo re-uso de chaves antigas
 - Integrar fontes diversas com sistemas inconsistentes de chaves naturais
 - É possível usar chaves artificiais que não teriam significado no OLTP, como por exemplo "Não aplicável", etc.
 - Dimensão data
 - As chaves artificias devem ser inteiros cuja sequência tem significado
 - Permite representar "Data desconhecida", "Ainda não aconteceu", etc
 - Permite o particionamento das tabelas de factos com todas as vantagens para indexação de novos dados

Notas sobre as dimensões

Chaves primárias das tabelas de factos

- Razões são de ordem dirversa (cont):
 - Desempenho e Espaço
 - Inteiros tão pequenos quanto for possível (sabendo quantas linhas são necessárias).
 - 4 bytes => 2^{32}
- É necessário manter na àrea de staging tabelas de referências cruzadas entre as chaves do DW e a das fontes, para um adequado carregamento
- Dimensões degeneradas
 - Podem ou não usar chaves artificias, dependendo se os números usados (neste caso número da transação) são ou não únicos em diferentes locais (lojas) ou se são ou não reutilizados
 - Não esquecer que estas dimensões podem eventualmente deixar de ser degeneradas

Resumo / Ideias a reter

Ideias a reter

- Desagregação é apenas juntar mais cabeçalhos de linha das tabelas de dimensões. Criando mais uma coluna que é um atributo de uma tabela dimensão
- Agregação é apenas retirar cabeçalhos de linha.
- Não é necessária uma hierarquia explícita para suportar a desagregação.

Análise do cabaz de compras

Ideias a reter

- Chaves das tabelas de dimensões devem ser artificiais (números sequências) e não dependentes de qualquer significado existente no OLTP
- Evitar (absolutamente) chaves com NULL nas tabelas de factos. Nas tabelas de dimensões devem existir chaves correnspondentes a "Não aplicável", "Não disponível", etc.
- Tabelas de factos sem factos factless tables servem para contagens de eventos.
- Duas tabelas indexadas pelas mesmas dimensões podem representar granularidades diferentes
- É possível juntar novas dimensões a uma tabela de factos e as aplicações anteriores permanecerem inalteradas