OSI REFERENCE MODEL

OSI 7계층 모델

CONTENTS

- OSI 7계층 모델
- 구성 요소
- 데이터 전송 과정

OSI 7계층 모델?

국제표준화기구(ISO)에서 개발한 컴퓨터 프로토콜 디자인과 통신을 계층으로 나누어 설명한 모델

계층을 나눈 이유

문제 해결 용이

네트워크의 문제가 발생했을 때, 어느 부분에서 문제가 발생했는지 파악하기 쉬움

표준화

데이터 통신에 대한 표준을 제시하여 여러 회사의 장비나 소프트웨어가 서로 호환 가능함

모듈성

각 계층은 독립적으로 설계되어 있어 한 계층을 수정해도 다른 계층에 영향을 주지 않음

OSI 7계층 모델의 구성 요소

 응용 계층
 표현 계층
 세션 계층
 전송 계층

 사용자를 위한 네트워크 서비스 인터페이스
 데이터의 번역가 & 보안관 대화 매니저
 통신의 시작과 끝을 알리는 대화 매니저
 신뢰성 있는 데이터 전송 담당

네트워크 계층

최적의 경로를 찾아주는 내비게이션 데이터 연결 계층

바로 옆 장치에게 안전하게 데이터를 전달 물리 계층

데이터를 전기 신호(0과 1)로 변환하여 전송

응용 계층 (Application Layer)

- ✓ 사용자를 위한 네트워크 서비스 인터페이스 제공
- ✓ 사용자가 이해할 수 있는 형태로 데이터를 표현
- 기능: 웹 검색, 이메일, 파일 전송 등
- ☑ 프로토콜: HTTP, SMTP, FTP, DNS, IMAP
- 데이터 단위 : Data

표현 계층 (Presentation Layer)

- ☑ 데이터의 형식을 정의하고 변환
- 기능: 데이터 변환, 암호화, 압축
- 에시 : JEPG, MPEG, GIF, ASCII
- ☑ 프로토콜 : SSL, TLS
- 데이터 단위 : Data

세션 계층 (Session Layer)

- 두 기기 사이의 통신을 시작하고 종료
- 기능 : 세션 생성, 유지, 관리, 종료, 동기화
- 프로토콜 : NetBIOS
- 데이터 단위 : Data

전송 계층 (Transport Layer)

- ✓ 두 기기 사이의 종간 단 통신을 담당
- ✓ 기능 : 데이터 세그먼트화, 흐름/오류/혼잡 제어
- 프로토콜 : TCP, UDP
- 에이터 단위 : Segment

네트워크 계층 (Network Layer)

- ✓ 서로 다른 두 네트워크 간 데이터 전송을 담당
- 기능: 라우팅, 논리적 주소 지정, 포워딩
- ☑ 프로토콜 : IP, ICMP, ARP
- ✓ 데이터 단위 : Packet
- ✔ 관련 장비 : 라우터

데이터 연결 계층 (Data Link Layer)

- 동일한 네트워크에 있는 두 개의 장치 간 데이터 전송을 용이하게 함
- 기능: 프레임화, 물리적 주소 지정, 오류 제어
- ☑ 프로토콜: HDLC, LLC
- 에이터 단위 : Frame
- → 관련 장비: 스위치, 브리지

물리 계층 (Physical Layer)

- ✓ 데이터를 0과 1의 전기 신호로 변환하여 전송
- 기능 : 비트 스트림 전송
- 에이터 단위: Bit
- ☑ 관련 장비 : 케이블, 허브, 리피터

데이터 전송 과정

캡슐화 (Encapsulation) 데이터를 포장하는 과정

디캡슐화 (Decapsulation) 포장을 뜯어 데이터를 확인하는 과정

데이터 전송 과정

캡슐화 (Encapsulation) 데이터를 포장하는 과정

디캡슐화 (Decapsulation) 포장을 뜯어 데이터를 확인하는 과정

계층	캡슐화 (Encapsulation)	디캡슐화 (Decapsulation)
응용 계층	통신에 사용할 애플리케이션 데이터 생성	최종 데이터를 해당 애플리케이션으로 전달
표현 계층	데이터 인코딩, 압축, 암호화	데이터 복호화, 디코딩
세션 계층	세션을 시작 및 데이터에 통신 세션 정 보 추가	데이터 수신 완료될 때 까지 세션 유지 및 완료 시 세션 종료
전송 계층	데이터를 세그먼트 단위로 분할하고, 포트 번호가 포함된 TCP/UDP 헤더 를 추가	헤더의 포트 번호를 확인하여 정확한 애플리케이션으로 데이터를 전달 및 데이터 재조립
네트워크 계층	패킷을 생성하고, 목적지까지의 경로 설정을 위해 IP 주소가 포함된 IP 헤더 를 추가	헤더의 목적지 IP 주소가 자신과 일치 하다면 헤더를 제거하고 데이터를 상 위 계층으로 전달
데이터 연결 계층	프레임을 생성하고, 물리적 장비 식별을 위해 MAC 주소가 포함된 프레임에더 추가	헤더의 목적지 MAC 주소가 자신과 일치하다면 헤더를 제거하고 데이터를 상위 계층으로 전달
물리 계층	프레임 데이터를 O과 1의 비트 스트림 으로 변환 및 전기 신호로 바꾸어 전송	전기 신호를 비트 스트림으로 복원하 여 데이터 링크 계층으로 전달

감사합니다

그냥 퀴즈

이메일을 송신할 때 사용하는 프로토콜은 SMTP이다. 그렇다면 이메일을 수신할 때 사용하는 프로토콜은 무엇일까?

그냥 퀴즈 2

어제 과제를 제출하기 위해 웹 브라우저의 주소 창에 edu.shpak.kr를 입력해서 접속했습니다. 이 때 사용되는 기본 포트 번호는 몇 번일까요?