ЛАБОРАТОРНАЯ РАБОТА №7 «АЛГОРИТМЫ НА ГРАФАХ»

1.1 Цель работы

Целью работы является изучение графов и получение практических навыков их использования.

1.2 Задание на лабораторную работу

Разработать на языке программирования высокого уровня программу, которая должна выполнять функцию, в соответствии с вариантом задания. Варианты задания приведены в таблице 7 (формулировки задач приведены после таблицы).

Количественные параметры варианта задания определяются по согласованию с преподавателем.

Таблица 1

№ вар.	Задача	Представление графа				
1	1	Матрица смежности				
2	1	Матрица инцидентности				
3	1	Список ребер				
4	2	Матрица смежности				
5	2	Матрица инцидентности				
6	2	Список ребер				
7	3	Матрица смежности				
8	3	Матрица инцидентности				
9	3	Список ребер				
10	4	Матрица смежности				
11	4	Матрица инцидентности				
12	4	Список ребер				
13	5	Матрица смежности				
14	5	Матрица инцидентности				
15	5	Список ребер				
16	6	Матрица смежности				
17	6	Матрица инцидентности				
18	6	Список ребер				
19	7	Матрица смежности				
20	7	Матрица инцидентности				
21	7	Список ребер				
22	8	Матрица смежности				
23	8	Матрица инцидентности				
24	8	Список ребер				

Задача 1.

Прямоугольное изображение задано графом, так что каждая вершина является пикселем изображения, ребра соединяют соседние пиксели по горизонтали и вертикали. Требуется:

- 1) проверить соответствует ли описанный граф изображению (нет пропущенных пикселей);
- 2) Найти и «закрасить» замкнутые контура на изображении.

Задача 2.

На случай экстренной ситуации на предприятии имеется список сотрудников и список оповещения вида: (фамилия оповещающего, фамилия оповещаемого). Один оповещающий может оповестить за день 3 человек. Определить:

- 1) полон ли список оповещения, то есть будут ли оповещены все сотрудники;
 - 2) сколько людей будет оповещено за К дней.

Задача 3.

Задача Эйлеровых циклов. Дан граф, требуется определить, возможно ли пройти из указанной вершины по всем ребрам графа, и, если возможно, указать данный путь.

Задача 4.

Найти все возможные пути между двумя вершинами в графе, не пересекающиеся по:

- а) ребрам;
- б) вершинам.

Задача 5.

Решить 2 задачи:

- 1. Задача о минимальном вершинном покрытии;
- 2. Задача о минимальном рёберном покрытии.

Задача 6.

Составить программу для нахождения произвольного разбиения N студентов на M команд, численность которых отличается не более чем в 2 раза, если известно, что в любой команде должны быть студенты, обязательно не знакомые друг с другом. Круг знакомств задается графом, где вершина — это студент, а ребро отображает его знакомство с другим студентом. Решить задачи:

- 1) Определить наименьшее количество команд, на которое можно разбить множество студентов;
- 2) Проверить возможность разбиения множества студентов на заданное количество команд.

Задача 7.

В помещении присутствует N человек. Некоторые из них знакомы между собой. Проверить, можно ли перезнакомить людей между собой? (Незнакомые люди могут познакомиться только через общего знакомого).

Задача 8.

Дано N колец сцепленных между собой. Удалить минимальное количество колец так, чтобы получилась цепочка.

1.3 Порядок выполнения работы

- 1) выбрать вариант задания в соответствии с требованиями;
- 2) изучить теоретический материал;
- 3) разработать и реализовать на языке программирования высокого уровня алгоритм, выполняющий требования задания;
- 4) написать отчет о работе;
- 5) защитить отчет.

1.4 Содержание отчета

Отчет должен содержать:

- 1) титульный лист;
- 2) цель работы;
- 3) вариант задания;
- 4) листинг программы, реализующей алгоритм;
- 5) контрольный пример с изображением графа;
- б) выводы по работе.

1.5 Пример выполнения работы

Предположим, что необходимо выполнить следующий вариант задания:

№ вар.	Задача	Представление графа				
25	9	Матрица смежности				

Задача 9.

Дана схема алгоритма. Определить по схеме достижимость конечной вершины из начальной.

Дополнительные указания: схема алгоритма – ориентированный граф, возможно содержащий циклы. Воспользоваться волновым алгоритмом

Для решения поставленной задачи необходимо построить граф, используя заданное представление, а затем применить рекомендуемый алгоритм.

Пусть задана схема алгоритма (см. Рисунок). На основе нее строим матрицу смежности (см. Рисунок). Теперь можно воспользоваться волновым алгоритмом, взяв за исходную вершину — вершину "Начало". По окончании работы алгоритма остается проверить, была ли помечена как пройденная вершина "Конец". Если вершина "Конец" была помечена, то можно сделать вывод, что конечная вершина достижима, в противном случае — конечная вершина не достижима.

Следует отметить, что граф может иметь циклы, однако для волнового алгоритма их наличие не является опасным.

	Начало	a	b	C	d	e	f	g	Конец
Начало	0	1	0	0	0	0	0	0	0
a	1	0	1	0	0	0	0	0	0
b	0	1	0	1	1	0	0	0	0
С	0	0	1	0	0	0	0	0	0
d	0	0	1	0	0	1	0	0	0
e	0	0	0	0	1	0	1	1	0
f	0	0	0	0	0	1	0	1	0
g	0	0	0	0	0	1	0	0	1
Конец	0	0	0	0	0	0	0	1	0

Рисунок

1.6 Контрольные вопросы

- 1) Что такое граф?
- 2) Назовите основные способы реализации графа. Сравните их.
- 3) Какие алгоритмы обхода графа существуют? Какова их временная сложность?

- 4) Какие алгоритмы нахождения кратчайшего пути в графе существуют? Какова их временная сложность?
- 5) Какие переборные алгоритмы нахождения кратчайшего пути в графе существуют? Какова их временная сложность?
- 6) Какие алгоритмы нахождения минимального остовного дерева графа существуют? Какова их временная сложность?