Notion de fonctions bijectives

1. Généralités

a) Antécédents : soient $f: I \to J$ une fonction, et y un élément de J.

Un élément x de I est appelé **antécédent de** y **par** f si son image par f est y (f(x) = y), autrement dit si x est une solution dans I de l'équation f(x) = y.

Exemple : 2 et -2 sont des antécédents de 4 par f : $\mathbb{R} \to \mathbb{R}$. -4 n'a pas d'antécédents par f . $x \mapsto x^2$

b) Ensemble image: soit $f: I \to J$ une fonction. On appelle ensemble image de f l'ensemble noté $f \langle I \rangle$ de toutes les images par f des éléments de I. C'est un sous ensemble de J et on peut noter

$$f\langle I\rangle = \{f(x), x \in I\}$$

Exemples: calcular $\sin \langle \mathbb{R} \rangle$ et $f \langle [-3,2] \rangle$ lorsque $f: x \mapsto x^2$.

2. Bijections

a) <u>Définition</u>: soient I et J deux <u>intervalles</u>, et f une fonction définie sur I à valeurs dans J.

On dit que f réalise une **bijection** de I sur J si tout élément de J admet un **unique antécédent** dans I par f

En d'autres termes si

$$\forall y \in J, \quad \exists! x \in I / f(x) = y$$

ou encore si

pour tout $y \in J$, l'équation f(x) = y (d'inconnue x) admet une unique solution dans I

b) Fonction réciproque : soit $f: I \to J$ une bijection.

Si y est un élément de J, son unique antécédent dans I par f est noté $f^{-1}(y)$.

Cela définit une fonction f^{-1} dite **réciproque de** f:

$$f^{-1}: J \to I$$
 $x \mapsto f^{-1}(x)$, unique antécédent de x par f dans I

On a alors les propriétés suivantes :

$$\forall x \in I , \forall y \in J , f(x) = y \Longleftrightarrow x = f^{-1}(y)$$

et

Attention : la notation f^{-1} n'A AUCUN SENS lorsque f n'est pas bijective! On le vérifiera toujours au préalable (ou du moins on le mentionnera).

Exemple: montrer que $f: x \to x^2 - 2x - 1$ réalise une bijection de $[1, +\infty]$ sur $[-2, +\infty]$ et calculer f^{-1}

c) Propriété de la courbe de f^{-1} :

Si f est une bijection de I sur J, alors la courbe de f^{-1} est symétrique de la courbe de f par rapport à la droite Δ d'équation : y=x.

Exemple: tracer les courbes de f et f^{-1} définies dans l'exemple précédent.

d) Continuité de la réciproque :

si f continue réalise une bijection de l'intervalle I sur l'intervalle J, alors f^{-1} est continue sur J

Exemple: sachant que exp est continue sur \mathbb{R} , on déduit que ln est continue sur \mathbb{R}^*_+

e) Théorème de la bijection :

Toute fonction f continue strictement monotone sur un intervalle I réalise une bijection de I sur $J=f\langle I\rangle$

L'ensemble image $f\langle I\rangle$ est alors un **intervalle**, déterminé par les limites de f aux bornes :

- $\bullet \quad \underline{\text{Si } f \text{ est strictement croissante}} : f \left<[a,b]\right> = [f\left(a\right),f\left(b\right)] \quad \text{et} \quad f \left<[a,b[\right> =] \lim_{a+} f, \lim_{b-} f[a,b] \right> = [f\left(a\right),f\left(b\right)]$
- $\bullet \quad \underline{\text{Si } f \text{ est strictement décroissante}}: f\left\langle \left[a,b\right]\right\rangle = \left[f\left(b\right),f\left(a\right)\right] \quad \text{et} \quad f\left\langle \left]a,b\right[\right\rangle = \right]\lim_{b-}f,\lim_{a+}f\left(a,b\right)$

Ce théorème est très utilisé pour démontrer l'existence et l'unicité des solutions d'une équation (sans l'expliciter)

Exemple 1: montrer que l'équation $x^3 - 6x - 6 = 0$ admet une unique solution réelle.

Exemple 2: montrer que th: $\mathbb{R} \to]-1,1[$ est une bijection. On note argth sa réciproque.

f) Dérivabilité de la réciproque : soit $f: I \to J$ une bijection dérivable sur I.

On **ne peut pas** dire dans le cas général que f^{-1} est dérivable sur J, mais on peut énoncer :

Soit f une bijection dérivable de I sur J (**intervalles**). On suppose que f' ne s'annule pas sur I Alors f^{-1} est dérivable sur J et $\forall x \in J$, $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$

Remarque 1: si $\begin{cases} y = f(x) \\ x = f^{-1}(y) \end{cases}$ on a donc $f(f^{-1})'(y) = \frac{1}{f'(x)}$, ou plus généralement la formule

$$f^{-1})' = \frac{1}{f' \circ f^{-1}}$$

Remarque 2: on retrouve cette formule en dérivant l'égalité $\forall x \in J, \ f\left(f^{-1}\left(x\right)\right) = x$:

$$\forall x \in J, \ (f^{-1})'(x) \times f'(f^{-1}(x)) = 1$$

3. Racines n-ièmes (dans \mathbb{R})

- a) <u>Définition</u>: soit $n \in \mathbb{N}^*$.
 - (i) Cas où n est pair. La fonction $x \to x^n$ réalise une bijection de \mathbb{R}^+ dans \mathbb{R}^+ . Sa réciproque se note

$$\sqrt[n]: \mathbb{R}^+ \to \mathbb{R}^-$$
$$x \to \sqrt[n]{x}$$

Elle est continue sur \mathbb{R}^+ , et donc

$$\boxed{\forall x > 0, \ \forall y > 0, \ x^n = y \Longleftrightarrow x = \sqrt[n]{x}}$$

Exemple: $\sqrt[4]{81} = 3$, $\sqrt[6]{-2}$ n'existe pas

(ii) Cas où n est impair. La fonction $x\to x^n$ réalise une bijection de $\mathbb R$ dans $\mathbb R$. Sa réciproque se note

$$\sqrt[n]{}: \mathbb{R} \to \mathbb{R}$$
 $x \to \sqrt[n]{}$

Elle est continue sur \mathbb{R} , et donc

$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x^n = y \Longleftrightarrow x = \sqrt[n]{x}$$

Exemple: $\sqrt[5]{32} = 2$, $\sqrt[3]{-27} = -3$

b) Exposants rationnels: $\operatorname{si}[x>0]$ et $n\in\mathbb{N}^*$, on a $\sqrt[n]{x}=x^{1/n}$

Plus généralement, pour $p\in\mathbb{Z}, q\in\mathbb{N}^*, x>0$,

$$x^{p/q} = (\sqrt[q]{x})^p = \sqrt[q]{x^p}$$

Attention: la notation $x^{1/n}$ n'a de sens que si x > 0. On a donc $\sqrt[3]{2} = 2^{1/3}$, mais $\sqrt[3]{-27} \neq (-27)^{1/3}$

c) Propriétés : soient x > 0 et y > 0. On a :

(i)
$$\sqrt[n]{x}\sqrt[n]{y} = \sqrt[n]{xy}$$
 et $\sqrt[n]{\sqrt[m]{x}} = \sqrt[mn]{x}$

Remarque 1 : quantité conjuguée : $\sqrt{a} - \sqrt{b} = \frac{a-b}{\sqrt{a} + \sqrt{b}}$: **très utilisé**.

Remarque 2: $x^{3/2} = x\sqrt{x}$, $x^{5/2} = x^2\sqrt{x}$, $x^{7/3} = x^{7/3}$

(ii) <u>Dérivée</u>: la fonction $\sqrt[n]{}$ est dérivable sur $]0, +\infty[$ et $\forall x>0, \boxed{\frac{d}{dx}\left(\sqrt[n]{x}\right)=\frac{1}{n\left(\sqrt[n]{x}\right)^{n-1}}}$

Exemple: $\forall x \in \mathbb{R}^*, \quad \frac{d}{dx} \left(\sqrt[3]{x} \right) = \frac{1}{3\sqrt[3]{x^2}}$. Formule valable sur \mathbb{R}^* par parité.

(iii) $\underline{\text{Courbes}}$: noter les tangentes verticales en O

Valeurs impaires de n

Valeurs paires de \boldsymbol{n}

4. Fonctions trigonométriques réciproques

a) Fonction arcsinus: $\widetilde{\sin}: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1]$ est une bijection.

Sa réciproque est appelée arcsinus et notée \arcsin . Elle est continue sur [-1,1]

Ainsi, si $x \in [-1, 1]$, $\arcsin(x)$ est l'unique réel de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ dont le sinus vaut x:

$$[\arcsin(x) \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \quad \text{et} \quad \sin(\arcsin(x)) = x]$$

De plus, on a l'équivalence, pour $x \in [-1,1]$ et $\theta \in \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$:

$$\sin \theta = x \iff \theta = \arcsin x$$

Mises en garde: 1. $\arcsin x$ n'a AUCUN SENS si $x \notin [-1, 1]$

- 2. On n'a la simplification $\arcsin{(\sin{\theta})} = \theta$ **QUE** lorsque $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- 3. On n'a l'équivalence $\sin \theta = x \iff \theta = \arcsin x$ **QUE** pour $x \in [-1, 1]$ et $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

Valeurs remarquables : $\arcsin 0 = 0$ $\arcsin 1 = \frac{\pi}{2}$ $\arcsin (-1) = -\frac{\pi}{2}$ $\arcsin \frac{1}{2} = \frac{\pi}{6}$

Dérivabilité: on montre que \arcsin est dérivable sur]-1,1[et :

$$\forall x \in]-1,1[, \arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$$

De plus, si u est une fonction dérivable sur un intervalle I et à valeurs dans]-1,1[, alors $\arcsin(u)$ est dérivable sur I de dérivée

$$\left[\arcsin(u)\right]' = \frac{u'}{\sqrt{1 - u^2}}$$

Propriété : arcsin est impaire

b) Fonction arccosinus: $\widetilde{\cos}:[0,\pi]\to[-1,1]$ est une bijection.

Sa réciproque est appelée ${\bf arccosinus}$ et notée $\arccos.$ Elle est ${\bf continue}$ sur [-1,1]

Ainsi, si $x \in [-1, 1]$, $\arccos(x)$ est l'unique réel de $[0, \pi]$ dont le cosinus vaut x:

$$\arccos(x) \in [0, \pi]$$
 et $\cos(\arccos(x)) = x$

De plus, on a l'équivalence, pour $x \in [-1, 1]$ et $\theta \in [0, \pi]$:

$$\cos \theta = x \iff \theta = \arccos x$$

Mises en garde: 1. $\arccos x$ n'a AUCUN SENS si $x \notin [-1, 1]$

- 2. On n'a la simplification $\arccos{(\cos{\theta})} = \theta$ **QUE** lorsque $\theta \in [0, \pi]$
- 3. On n'a l'équivalence $\cos \theta = x \iff \theta = \arccos x$ **QUE** pour $x \in [-1, 1]$ et $\theta \in [0, \pi]$

Valeurs remarquables : $\arccos 0 = \frac{\pi}{2}$ $\arccos 1 = 0$ $\arccos (-1) = \pi$ $\arccos \frac{1}{2} = \frac{\pi}{3}$

Dérivabilité: on montre que arccos est dérivable sur]-1,1[et :

$$\forall x \in]-1,1[,\arccos'(x) = \frac{-1}{\sqrt{1-x^2}}]$$

c) <u>Fonction arctangente</u>: $\widetilde{\tan}:]-\frac{\pi}{2}, \frac{\pi}{2}[\to \mathbb{R} \text{ est une bijection.}]$

Sa réciproque est appelée $\operatorname{arctangente}$ et notée arctan . Elle est $\operatorname{continue}$ sur $\mathbb R$

Ainsi, si $x\in\mathbb{R},\,\arctan\left(x\right)$ est l'unique réel de $\left]-\frac{\pi}{2},\,\frac{\pi}{2}\right[$ dont la tangente vaut x :

$$\arctan(x) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{ et } \tan(\arctan(x)) = x \right]$$

De plus, on a l'équivalence, pour $x\in\mathbb{R}$ et $\theta\in\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$:

$$\tan \theta = x \iff \theta = \arctan x$$

Mises en garde: 1. arctan x est défini POUR TOUT REEL

- 2. On n'a la simplification $\arctan(\tan \theta) = \theta$ **QUE** lorsque $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$
- 3. On n'a l'équivalence $\tan \theta = x \iff \theta = \arctan x$ QUE pour $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$

Valeurs remarquables : $\arctan 0 = 0$ $\arctan 1 = \frac{\pi}{4}$ $\arctan (-1) = -\frac{\pi}{4}$ $\arctan \sqrt{3} = \frac{\pi}{3}$

 $\emph{D\'erivabilit\'e}$: on montre que \arctan est dérivable sur $\mathbb R$ et :

$$\forall x \in \mathbb{R}, \arctan'(x) = \frac{1}{1+x^2}$$

De plus, si u est une fonction dérivable sur un intervalle I, alors $\arctan\left(u\right)$ est dérivable sur I de dérivée

$$\boxed{\left[\arctan(u)\right]' = \frac{u'}{1+u^2}}$$

Propriété : arctan est impaire

Limites: on montre que $\lim_{+\infty} \arctan = \frac{\pi}{2}$ et $\lim_{-\infty} \arctan = -\frac{\pi}{2}$

d) Formulaire:

- 1. $\forall x \in [-1, 1], \sin(\arccos x) = \sqrt{1 x^2}$
- 2. $\forall x \in [-1, 1], \cos(\arcsin x) = \sqrt{1 x^2}$
- 3. $\forall x \in \mathbb{R}$, $\cos(\arctan x) = \frac{1}{\sqrt{1+x^2}}$ et $\sin(\arctan x) = \frac{x}{\sqrt{1+x^2}}$
- 4. $\forall x \in [-1, 1], \ \arccos(x) + \arcsin(x) = \frac{\pi}{2}$
- 5. $\forall x \in [-1, 1], \boxed{\arccos(x) + \arccos(-x) = \pi}$
- 6. $\forall x \neq 0$, $\arctan x + \arctan \frac{1}{x} = \text{signe}(x) \cdot \frac{\pi}{2}$. On a posé signe $(x) = \begin{cases} -1 & \text{si } x < 0 \\ 1 & \text{si } x > 0 \end{cases}$

e) <u>Courbes</u>:

• Celle d'arcsinus admet pour tangente enO la droite d'équation y=x, et des tangentes verticales en-1 et 1

Courbe d'arcsinus

• Celle d'arccosinus admet des tangentes verticales en -1 et 1 et le point $\Omega\left(0,\frac{\pi}{2}\right)$ pour centre de symétrie

Courbe d'arccosinus

• Celle d'arctangente admet pour tangente en O la droite d'équation y=x, et des asymptotes d'équations $y=\frac{\pi}{2}$ et $y=-\frac{\pi}{2}$

Courbe d'arctangente