

UNIVERSITÀ DI PARMA Dipartimento di Ingegneria e Architettura

Public Key (asymmetric) Cryptography

Luca Veltri

(mail.to: luca.veltri@unipr.it)

Course of Cybersecurity, 2022/2023 http://netsec.unipr.it/veltri

Public-Key Cryptography

- Also referred to as asymmetric cryptography or two-key cryptography
- Probably most significant advance in the 3000 year history of cryptography
 - public invention due to Whitfield Diffie & Martin Hellman in 1975
 - at least that's the first published record
 - known earlier in classified community (e.g. NSA?)
- Is asymmetric because
 - who encrypts messages or verify signatures cannot decrypt messages or create signatures
 - more in general, operation performed by two parties use different key values

Public-Key Cryptography (cont.)

- Public-Key cryptography uses clever application of number theoretic concepts and mathematical functions rather than permutations and substitutions
- Makes use of "trapdoor functions"
 - ➤ a trapdoor function is a function f(x) that is fast to be computed, while its inverse is hard to be computed, unless a secret information t (the trapdoor) is known
 - when t is known, it is also easy to compute x from f(x)
 - > example of trapdoor function:
 - prime number product
 - it is easy to find the product of two big prime numbers
 - it is hard to factorize a composite (two factors) big integer
 - it is easy to factorize a composite (two factors) big integer when one of the two factor is known

Public-Key vs. Secret Cryptography

- All secret key algorithms do the same thing
 - > they take a block and encrypt it in a reversible way
- All hash (and MAC) algorithms do the same thing
 - > they take a message and perform an irreversible transformation
- Instead, public key algorithms look very different
 - > in how they perform their function
 - > in what functions they perform
- They have in common: a private and a public quantities associated with a principal

Public-Key vs. Secret Cryptography (cont.)

- Pub-key vs. secret key management
 - With symmetric/secret-key cryptography
 - you need a secure method of telling your partner the key
 - you need a separate key for everyone you might communicate with
 - Instead, with public-key cryptography, keys do not have to be secretly shared
 - Public-key cryptography often uses two keys:
 - a public-key, which may be known by anybody, and can be used to encrypt messages, or verify signatures
 - a private-key, known only to the recipient, used to decrypt messages, or sign (create) signatures
 - it is computationally easy to en/decrypt messages when key is known
 - it is computationally infeasible to find decryption key knowing only encryption key (and vice-versa)
 - > Some asymmetric algorithms don't use keys at all!

Public-Key Cryptography

Public-Key vs. Secret Cryptography (cont.)

- Public key cryptography can do anything secret key cryptography can do, but..
 - > simpler key initialization
 - > more accurate key-to-entity association
 - private key is known only by the owner
 - slower execution
 - orders of magnitude slower than the best known secret key cryptographic algorithms
- They are usually used only for things secret key cryptography can't do (or can't do in a suitable way)
- Complements rather than replaces secret key crypto
 - > often it is mixed with secret key technology
 - > e.g. public key cryptography might be used in the beginning of communication for authentication and to establish a temporary shared secret key used to encrypt the conversation

Why Public-Key Cryptography?

Can be used to:

- key distribution secure communications without having to trust a KDC with your key (key exchange)
- digital signatures –verify a message is come intact from the claimed sender (authentication)
- encryption/decryption secrecy of the communication (confidentiality)

Note:

- public-key cryptography simplifies but not eliminates the problem of key management
- some algorithms are suitable for all uses, others are specific

Example of public key algorithms:

- > RSA, which does encryption and digital signature
- DSS, which do digital signature but not encryption
- > Diffie-Hellman, which allows establishment of a shared secret
- > Fiat-Shamir identification scheme, which only do authentication

Security of Public Key Schemes

- Security of public-key algorithms still relies on key size (as for secret-key algorithms)
- Like private key schemes brute force exhaustive search attack is always theoretically possible
 - But keys used are much larger (>512bits)
- A crucial feature is that the private key is difficult to determine from the public key
 - security relies on a large enough difference in difficulty between easy (en/decrypt) and hard (cryptanalyse) problems
 - > often the hard problem is known, its just made too hard to do in practise
 - requires the use of very large numbers
 - hence is slow compared to private key schemes

RSA Algorithm

Rivest, Shamir, and Adleman (RSA)

- By Rivest, Shamir & Adleman of MIT in 1977
- Best known & widely used public-key scheme
- Based on exponentiation in a finite (Galois) field over integers modulo n
 - > n.b. exponentiation takes O((log n)³) operations (easy)
- uses large integers (eg. 1024 bits)
- security due to cost of factoring large numbers
 - → nb. factorization takes O(e log n log log n) operations (hard)
- The key length is variable
 - > long keys for enhanced security, or a short keys for efficiency
- The plaintext block size (the chunk to be encrypted) is also variable
 - > The plaintext block size must be smaller than the key length
 - > The ciphertext block will be the length of the key
- RSA is much slower to compute than popular secret key algorithms like DES, IDEA, and AES

RSA Algorithm

- First, you need to generate a public key and a corresponding private key:
 - > choose two large primes p and q (around 512 bits each or more)
 - p and q will remain secret
 - > multiply them together (result is 1024 bits), and call the result n
 - it's practically impossible to factor numbers that large for obtaining p and q
 - \triangleright compute $\phi(n) = (p-1)(q-1)$
 - > choose a number e that is relatively prime (that is, it does not share any common factors other than 1) to $\phi(n)$
 - \triangleright find the number d that is the multiplicative inverse of e mod $\phi(n)$
 - > your public key is $KU = K^+ = \langle e, n \rangle$
 - > your private key is $KR = K^- = \langle d, n \rangle$ (or $\langle d, p, q \rangle$)
- To encrypt a message m (< n), someone can use your public key
 - \triangleright c = m^e mod n
- Only you will be able to decrypt c, using your private key
 - \rightarrow m = c^d mod n

Textbook RSA

- m plaintext
- **c** ciphertext
- Ke encription key (e.g. public key, KU or K+)
- Kd decription key (e.g. private key, KR or K-)

RSA Key Setup

- Each user generates a public/private key pair by:
 - selecting two large primes at random p, q
 - \triangleright computing their system modulus $n = p \cdot q$
 - note Ø (n) = (p−1) (q−1)
 - > selecting at random the encryption key e
 - where $1 < e < \emptyset(n)$, $gcd(e, \emptyset(n)) = 1$
 - > solve following equation to find decryption key d
 - e d = 1 mod \emptyset (n) and $0 \le d \le n$
- Publish their public encryption key: KU = {e,n}
- Keep secret private decryption key: KR = {d,n} or {d,p,q}

RSA Use

- To encrypt a message m the sender:
 - > obtains public key of recipient *KU*=<*e*,*n*>
 - > computes: *c=m^e mod n*, where *0≤m<n*
- To decrypt the ciphertext c the owner:
 - uses their private key KR=<d,n>
 - > computes: m=c^d mod n
- Note that the message m must be smaller than the modulus n
 - it is a block cipher, where block size depends on the length of the modulus
 - → if m is longer, CBC or other block cipher encryption modes can be used
 - much slower than symmetric encryption

Why RSA Works

Because of Euler's Theorem:

```
    a<sup>ø(n)</sup> mod n = 1

            where gcd(a,n)=1

    also:

            a<sup>kø(n)</sup> mod n = 1<sup>k</sup> = 1

    and:

            a<sup>kø(n)+1</sup> mod n = a
```

- In RSA have:
 - > n=p·q

 - \triangleright carefully chosen e and d to be inverses mod $\emptyset(n)$
 - hence $e d=1+k \phi(n)$ for some k
- Encryption:
 - ightharpoonup c = E(K_e,m) = m^e mod n
- Decryption:
 - ightharpoonup D(K_d,c) = c^d mod n = (m^e)^d mod n = m^{ed} mod n = m^{1+kø(n)} mod n = m

RSA Example

RSA setup

- select primes: p=17 & q=11
- compute $n = pq = 17 \times 11 = 187$
- compute $\emptyset(n)=(p-1)(q-1)=16\times 10=160$
- select e : gcd(e,160)=1; choose e=7
- determine d: de=1 mod 160 and d < 160 Value is d=23 since 23x7=161= 160+1
- publish public key $KU = K^+ = \{7,187\}$
- keep secret private key $KR = K^- = \{23,187\} = \{23,17,11\}$

RSA Example (cont)

Textbook RSA encryption/decryption:

- given message M = 88 (nb. 88<187)</p>
- encryption:

$$C = 88^7 \mod 187 = 11$$

decryption:

$$M = 11^{23} \mod 187 = 88$$

Textbook RSA is not secure

- Textbook RSA encryption:
 - > public key: (n,e) Encrypt: c = m^e (mod n), with m<n
 - private key: (n,d) Decrypt: m = c^d (mod n)
- If n=pq is large, the factorization of n is practically impossibly
- However, many attacks exist to Textbook RSA
 - > examples
 - if e is small, and the message m is < n^{1/e}, then m^e is < n and computation of c doesn't involve any modular reduction
 - if *m* is small, knowing *c* and {*e*,*n*} a brute force search is possible
 - an improvement of the this attack also exist, that does not require a brute force search
 - common modulus attack if several keys share the same modulus n, if the same m is encrypted with two keys $\{e_1,n\}$ and $\{e_2,n\}$ with $gcd(e_1, e_2)=1$, an adversary who sees c_1 and c_2 and knows the two public keys can recover m
 - $\gcd(e_1,e_2)=1 \rightarrow ue_1+ve_2=1 \rightarrow c_1^{u_*}c_2^{v_*}=m^{e_1u_*}m^{e_2v_*}=m^{ue_1+ve_2}=m$

Padded RSA

- $c = E(k_e, m) = (pad(m))^e \mod n$
- m = pad⁻¹(m'), with m' = c^d mod n
- Different padding schemes exist, examples:
 - > PKCS#1 v1.5
 - > PKCS#1 v2 OAEP (Optimal Asymmetric Encryption Padding)

PKCS#1 - V1.5

- Encoded message EM = 0x00 || 0x02 || PS || 0x00 || M where:
 - len(m) up to L-11 octets, where L is the octet length of the RSA modulus
 - PS is padding string consisting of pseudo-randomly generated nonzero octets
 - len(PS) at least eight octets

PKCS#1 - V2 OAEP

- Given:
 - > MGF(seed,len)
 - Mask Generation Function that generates len pseudo-random octects using a given seed
 - > H(x)
 - hash function with length h
- Encoded message EM = maskedSeed || maskedDB
 - with len(M) < len(EM) -2h-1</p>
 - > Where:
 - P = a parameter string or label or null string
 - data block DB = H(P) || PS || 01 || M
 - with len(DB) = h + len(PS) + 1 + len(M) = len(EM) h
 - seed = random octet string
 - with len(seed) = h
 - maskedDB = DB XOR MGF(seed, len(EM)-h)
 - with len(maskedDB) = len(EM)-h
 - maskedSeed = seed XOR MGF(maskedDB, h)
 - with len(maskedSeed) = h

RSA Security

- Three main approaches to attacking RSA:
 - > brute force key search
 - brute force search on key space
 - infeasible given the key size
 - > cryptographic attacks
 - try to find the private key by finding ø(n), by factoring modulus n and find p and q
 - infeasible given the size of n
 - other attacks in case p,q,e,d values are not selected properly
 - > timing attacks
 - by measuring the time spent on running decryption

RSA Security (cont.)

- Cryptographic attacks if p,q,e,d are not selected properly:
 - Modulus too small
 - if the RSA key is too short, the modulus can be factored by just using brute force
 - > Low private exponent
 - the smaller d is, the faster this operation goes
 - note: If the private exponent is small, the public exponent is necessarily large, so a public key with a large public exponent, is a good hint for attackers
 - > Low public exponent
 - having a low public exponent makes the system vulnerable to certain attacks if used incorrectly
 - Generator p and q close together
 - if $p \approx q$, then $n \approx p^2$ and n can be efficiently factored using Fermat's factorization method

Progress in factorization (from Wikipedia)

RSA number	Decimal digits	Binary digits	Cash prize offered	Factored on	Factored by
RSA-100	100	330	US\$1000	April 1, 1991	Arjen K. Lenstra
RSA-110	110	364	US\$4429	April 14, 1992	Arjen K. Lenstra and M.S. Manasse
RSA-120	120	397	US\$5898	July 9, 1993	T. Denny et al.
RSA-129	129	426	US\$100	April 26, 1994	Arjen K. Lenstra et al.
RSA-130	130	430	US\$14527	April 10, 1996	Arjen K. Lenstra et al.
RSA-140	140	463	US\$17226	February 2, 1999	Herman te Riele et al.
RSA-150	150	496		April 16, 2004	Kazumaro Aoki et al.
RSA-155	155	512	US\$9383	August 22, 1999	Herman te Riele et al.
RSA-160	160	530		April 1, 2003	Jens Franke et al., University of Bonn
RSA-170	170	563		December 29, 2009	D. Bonenberger and M. Krone
RSA-576	174	576	US\$10000	December 3, 2003	Jens Franke et al., University of Bonn
RSA-180	180	596		May 8, 2010	S. A. Danilov and I. A. Popovyan, Moscow State University
RSA-190	190	629		November 8, 2010	A. Timofeev and I. A. Popovyan
RSA-640	193	640	US\$20000	November 2, 2005	Jens Franke et al., University of Bonn
RSA-200	200	663		May 9, 2005	Jens Franke et al., University of Bonn
RSA-210	210	696		September 26, 2013	Ryan Propper
RSA-704	212	704	US\$30000	July 2, 2012	Shi Bai, Emmanuel Thomé and Paul Zimmermann
RSA-220	220	729		May 13, 2016	S. Bai, P. Gaudry, A. Kruppa, E. Thomé and P. Zimmermann
RSA-230	230	762		August 15, 2018	Samuel S. Gross, Noblis, Inc.
RSA-232	232	768		February 17, 2020	N. L. Zamarashkin, D. A. Zheltkov and S. A. Matveev.
RSA-768	232	768	US\$50000	December 12, 2009	Thorsten Kleinjung et al.
RSA-240	240	795		Dec 2, 2019	F. Boudot, P. Gaudry, A. Guillevic, N. Heninger, E. Thomé and P. F. Boudot, P. Gaudry, A. Guillevic, N.
RSA-250	250	829	3	Feb 28, 2020	F. Boudot, P. Gaudry, A. Guillevic, N. Heninger, F. Thomé and P.

2007 End of challenge

Using both symmetric and asymmetric cryptography

- Confidentiality can be provided through either symmetric or asymmetric encryption
- Requires that the two (or more) parties share:
 - > the secret key, in case of symmetric encryption, or
 - > the public key of the sender, in case of asymmetric encryption
- Usually symmetric encryption is preferred when
 - a long message have to be encrypted
 - > multiple messages have to be sent
- In this case, if the two parties share only public keys, public key cryptography can be used for exchanging a symmetric (secret) key
 - > this secret key is sometimes referred as session key

Using both symmetric and asymmetric cryptography (cont.)

- Example of encryption of a message m from A to B using symmetric cipher without having a pre-shared symmetric secret key, in one pass:
 - \rightarrow A \rightarrow B: E(Ks,m), {Ks}K_B⁺
 - > where:
 - E(K,x): symmetric encryption (e.g. AES-CBC)
 - {x}K+: public key encryption (e.g. RSA)
- Other mechanisms are possible, involving more passes (exchanges) using a key establishment (key agreement) protocol
 - > e.g. using authenticated Diffie-Hellman exchange

Diffie-Hellman (DH)

Diffie-Hellman

Diffie-Hellman

- First public-key type scheme proposed
- By Diffie & Hellman in 1976 along with the exposition of public key concepts
 - now know that James Ellis (UK CESG) secretly proposed the concept in 1970
 - predates RSA
 - > less general than RSA: it does neither encryption nor signature
- Is a practical method for public exchange of a secret key
 - > allows two individuals to agree on a shared secret (key)
 - > It is actually used for key establishment
- Used in a number of commercial products

Diffie-Hellman Setup

Diffie-Hellman setup:

- all users agree on global parameters:
 - \triangleright p = a large prime integer or polynomial
 - \Rightarrow g = a primitive root mod p
- each user (eg. A) generates their key
 - \triangleright chooses a secret key (number): $x_{\lambda} < p$
 - \triangleright compute their public key: $y_{A} = g^{x_{A}} \mod p$
- each user makes public that key y_A

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange

Key exchange:

Shared key K_{AB} for users A & B can be computed as:

```
K_{AB} = g^{x_A x_B} \mod p
= y_B^{x_A} \mod p (which A can compute)
= y_A^{x_B} \mod p (which B can compute)
```

 K_{AB} can be used as session key in secret-key encryption scheme between A and B

- Attacker must solve discrete log
 - hard problem if p is chosen properly
- Requires an integrity protected channel
 - > otherwise it is vulnerable to Man-In-The-Middle (MITM) attack

Diffie-Hellman - Example

- users Alice & Bob who wish to swap keys:
- agree on prime p=353 and g=3
- select random secret keys:
 - \triangleright A chooses $x_a = 97$, B chooses $x_B = 233$
- compute public keys:

$$y_A = 3^{97} \mod 353 = 40$$
 (Alice)
 $y_B = 3^{233} \mod 353 = 248$ (Bob)

compute shared session key as:

$$K_{AB} = y_B^{x_A} \mod 353 = 248^{97} = 160$$
 (Alice)
 $K_{AB} = y_A^{x_B} \mod 353 = 40^{233} = 160$ (Bob)

Security uses of public key cryptography

- Transmitting over an insecure channel
 - > e.g. RSA
 - each party has a <public key, private key> pair (Ku,Kr)
 - each party encrypts with the public key of the other party

- Secure storage on insecure media
 - > e.g. RSA
 - encrypt with public key, decrypt with private key
 - useful when you can let third party to encrypt data
- Data authentication (Digital signature)
 - > e.g. DSA, RSA signature
- Key establishment
 - > e.g. Diffie-Hellman

Security uses of public key cryptography

- Peer Authentication (identification)
 - > Zero Knowledge Proof schemes
 - prove that you know a secret without leaking any information
 - an entity A (prover) identifies itself by proving knowledge of a secret to any verifier B, without revealing any information about the secret, not known or computable by B prior to execution of the algorithm
 - > RSA
 - authentication by proving the knowledge of the private key
 encrypt r using Ku_B ______ decrypt to r using Kr_B
- Note
 - Public key cryptography has specific algorithm for specific function such as
 - data encryption
 - MAC/digital signature
 - key establishment
 - peer authentication

Pros and cons of Public key cryptography

- Pros
 - > Every users have to keep only one secret (the private key)
 - public keys of other users can verified through a trusted third party infrastructure (e.g. PKI)
 - > The total number of keys for N users is 2N
 - instead, with symmetric cryptography n(n-1)/2 keys are needed
- Cons
 - > Slower
 - known public-key cryptographic algorithms are orders of magnitude slower than the best known secret key cryptographic algorithms