	interrogation if 4		
Nom:	$Pr\'enom:$	Classe:	
	$\frac{Interrogation \ n°4}{\it (Calculatrice \ interdite)}$		
Exercice 1 (Questions Cocher si les assertions	de cours) suivantes sont vraies ou fausses :		
		Vrai	Faux
$\mathbf{A}/$ Si F est la primitive de f , alors $f'=F$.			
B / Deux primitives d'	une même fonction sont égales.		
\mathbf{C} / Une primitive de x	$x \mapsto \frac{x}{(x^2+1)^2} \text{ est } x \mapsto \frac{1}{2}\ln(x^2+1).$		
Exercice 2			
Pour chacune des foncti	fons f suivantes, donner une primitiv	re F:	
1. Pour $f(x) = x^3$, on a	$F(x) = \dots$		
2. Pour $f(x) = \frac{5}{x}$, on a	$F(x) = \dots$		
	$n a F(x) = \dots$		
4. Pour $f(x) = \frac{1}{x^3}$, on a	$a F(x) = \dots$		
Exercice 3			
On s'intéresse à la fonct	$ \sin f : x \mapsto \frac{x}{e + x^2} \text{ définie sur } \mathbb{R}. $	On rappelle qu	$e e = e^1$
	la forme des primitives de f .		
2. On note F_0 l'unique	primitive de f telle que $F_0(0) = 1$. D	onner l'expres	sion de F_0 .