

ETC3550: Applied forecasting for business and economics

Ch8. ARIMA models

OTexts.org/fpp2/

Outline

- 1 Stationarity and differencing
- 2 Non-seasonal ARIMA models
- 3 Estimation and order selection
- 4 ARIMA modelling in R
- 5 Forecasting
- 6 Backshift notation revisited
- 7 Seasonal ARIMA models
- 8 ARIMA vs ETS

Stationarity

Definition

If $\{y_t\}$ is a stationary time series, then for all s, the distribution of (y_t, \ldots, y_{t+s}) does not depend on t.

Stationarity

Definition

If $\{y_t\}$ is a stationary time series, then for all s, the distribution of (y_t, \ldots, y_{t+s}) does not depend on t.

A stationary series is:

- roughly horizontal
- constant variance
- no patterns predictable in the long-term

Stationarity

Definition

If $\{y_t\}$ is a stationary time series, then for all s, the distribution of (y_t, \ldots, y_{t+s}) does not depend on t.

Stationarity

Definition

If $\{y_t\}$ is a stationary time series, then for all s, the distribution of (y_t, \ldots, y_{t+s}) does not depend on t.

Transformations help to **stabilize the variance**. For ARIMA modelling, we also need to **stabilize the mean**.

Non-stationarity in the mean

- Identifying non-stationary series
 - time plot.
 - The ACF of stationary data drops to zero relatively quickly
 - The ACF of non-stationary data decreases slowly.
 - For non-stationary data, the value of r_1 is often large and positive.

Differencing

- Differencing helps to **stabilize the mean**.
- The differenced series is the *change* between each observation in the original series:

$$\mathsf{y}_t' = \mathsf{y}_t - \mathsf{y}_{t-1}.$$

■ The differenced series will have only T-1 values since it is not possible to calculate a difference y'_1 for the first observation.

Second-order differencing

Occasionally the differenced data will not appear stationary and it may be necessary to difference the data a second time:

Second-order differencing

Occasionally the differenced data will not appear stationary and it may be necessary to difference the data a second time:

$$y_t'' = y_t' - y_{t-1}'$$

$$= (y_t - y_{t-1}) - (y_{t-1} - y_{t-2})$$

$$= y_t - 2y_{t-1} + y_{t-2}.$$

Second-order differencing

Occasionally the differenced data will not appear stationary and it may be necessary to difference the data a second time:

$$y_t'' = y_t' - y_{t-1}'$$

$$= (y_t - y_{t-1}) - (y_{t-1} - y_{t-2})$$

$$= y_t - 2y_{t-1} + y_{t-2}.$$

- y_t'' will have T-2 values.
- In practice, it is almost never necessary to go beyond second-order differences.

A seasonal difference is the difference between an observation and the corresponding observation from the previous year.

A seasonal difference is the difference between an observation and the corresponding observation from the previous year.

$$\mathbf{y}_t' = \mathbf{y}_t - \mathbf{y}_{t-m}$$

where m = number of seasons.

A seasonal difference is the difference between an observation and the corresponding observation from the previous year.

$$y_t' = y_t - y_{t-m}$$

where m = number of seasons.

- For monthly data m = 12.
- For quarterly data m = 4.

usmelec %>% log() %>% diff(lag=12) %>%
autoplot()

usmelec %>% log() %>% diff(lag=12) %>%
 diff(lag=1) %>% autoplot()

- Seasonally differenced series is closer to being stationary.
- Remaining non-stationarity can be removed with further first difference.

If $y'_t = y_t - y_{t-12}$ denotes seasonally differenced series, then twice-differenced series i $y^*_t = y_t - y_{t-1}$

$$y_t^* = y_t' - y_{t-1}'$$

$$= (y_t - y_{t-12}) - (y_{t-1} - y_{t-13})$$

$$= y_t - y_{t-1} - y_{t-12} + y_{t-13}.$$

When both seasonal and first differences are applied...

When both seasonal and first differences are applied...

- it makes no difference which is done first—the result will be the same.
- If seasonality is strong, we recommend that seasonal differencing be done first because sometimes the resulting series will be stationary and there will be no need for further first difference.

When both seasonal and first differences are applied...

- it makes no difference which is done first—the result will be the same.
- If seasonality is strong, we recommend that seasonal differencing be done first because sometimes the resulting series will be stationary and there will be no need for further first difference.

It is important that if differencing is used, the differences are interpretable.

Interpretation of differencing

- first differences are the change between one observation and the next;
- seasonal differences are the change between one year to the next.

Interpretation of differencing

- first differences are the change between one observation and the next;
- seasonal differences are the change between one year to the next.

But taking lag 3 differences for yearly data, for example, results in a model which cannot be sensibly interpreted.

Unit root tests

- Augmented Dickey Fuller test: null hypothesis is that the data are non-stationary and non-seasonal.
- Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test: null hypothesis is that the data are stationary and non-seasonal.
- Other tests available for seasonal data.

Dickey-Fuller test

Test for "unit root"

Estimate regression model

$$y'_t = \phi y_{t-1} + b_1 y'_{t-1} + b_2 y'_{t-2} + \cdots + b_k y'_{t-k}$$

where y'_t denotes differenced series $y_t - y_{t-1}$.

- Number of lagged terms, k, is usually set to be about 3.
- If original series, y_t , needs differencing, $\hat{\phi} \approx 0$.
- If y_t is already stationary, $\hat{\phi} < 0$.
- In R: Use tseries::adf.test().

Dickey-Fuller test in R

```
tseries::adf.test(x,
  alternative = c("stationary", "explosive"),
  k = trunc((length(x)-1)^(1/3)))
```

Dickey-Fuller test in R

```
tseries::adf.test(x,
  alternative = c("stationary", "explosive"),
  k = trunc((length(x)-1)^(1/3)))
```

- $= k = |T 1|^{1/3}$
- Set alternative = stationary.

Dickey-Fuller test in R

```
tseries::adf.test(x,
  alternative = c("stationary", "explosive"),
  k = trunc((length(x)-1)^(1/3)))
```

- $k = |T 1|^{1/3}$
- Set alternative = stationary.

```
##
## Augmented Dickey-Fuller Test
##
## data: dj
```

Dickey-Fuller = -1.9872, Lag order = 6, p-value = 0.5816

How many differences?

```
ndiffs(dj)
## [1] 1
nsdiffs(USAccDeaths)
## [1] 1
```

Your turn

For the visitors series, find an appropriate differencing (after transformation if necessary) to obtain stationary data.

A very useful notational device is the backward shift operator, *B*, which is used as follows:

$$By_t = y_{t-1} .$$

A very useful notational device is the backward shift operator, *B*, which is used as follows:

$$By_t = y_{t-1} .$$

In other words, B, operating on y_t , has the effect of shifting the data back one period.

A very useful notational device is the backward shift operator, *B*, which is used as follows:

$$By_t = y_{t-1} .$$

In other words, B, operating on y_t , has the effect of shifting the data back one period. Two applications of B to y_t shifts the data back two periods:

$$B(By_t) = B^2y_t = y_{t-2}.$$

A very useful notational device is the backward shift operator, *B*, which is used as follows:

$$By_t = y_{t-1} .$$

In other words, B, operating on y_t , has the effect of shifting the data back one period. Two applications of B to y_t shifts the data back two periods:

$$B(By_t) = B^2y_t = y_{t-2}.$$

For monthly data, if we wish to shift attention to "the same month last year," then B^{12} is used, and the notation is $B^{12}y_t = y_{t-12}$.

The backward shift operator is convenient for describing the process of differencing.

The backward shift operator is convenient for describing the process of *differencing*. A first difference can be written as

$$y'_t = y_t - y_{t-1} = y_t - By_t = (1 - B)y_t$$
.

The backward shift operator is convenient for describing the process of *differencing*. A first difference can be written as

$$y'_t = y_t - y_{t-1} = y_t - By_t = (1 - B)y_t$$
.

Note that a first difference is represented by (1 - B).

The backward shift operator is convenient for describing the process of *differencing*. A first difference can be written as

$$y'_t = y_t - y_{t-1} = y_t - By_t = (1 - B)y_t$$
.

Note that a first difference is represented by (1 - B). Similarly, if second-order differences (i.e., first differences of first differences) have to be computed, then:

$$y_t'' = y_t - 2y_{t-1} + y_{t-2} = (1 - B)^2 y_t$$
.

- Second-order difference is denoted $(1 B)^2$.
- Second-order difference is not the same as a second difference, which would be denoted $1 B^2$;
- In general, a dth-order difference can be written as

$$(1-B)^d y_t$$
.

 A seasonal difference followed by a first difference can be written as

$$(1-B)(1-B^m)y_t$$
.

The "backshift" notation is convenient because the terms can be multiplied together to see the combined effect.

$$(1 - B)(1 - B^m)y_t = (1 - B - B^m + B^{m+1})y_t$$
$$= y_t - y_{t-1} - y_{t-m} + y_{t-m-1}.$$

The "backshift" notation is convenient because the terms can be multiplied together to see the combined effect.

$$(1 - B)(1 - B^{m})y_{t} = (1 - B - B^{m} + B^{m+1})y_{t}$$
$$= y_{t} - y_{t-1} - y_{t-m} + y_{t-m-1}.$$

For monthly data, m = 12 and we obtain the same result as earlier.

Outline

- 1 Stationarity and differencing
- 2 Non-seasonal ARIMA models
- 3 Estimation and order selection
- 4 ARIMA modelling in R
- 5 Forecasting
- 6 Backshift notation revisited
- 7 Seasonal ARIMA models
- 8 ARIMA vs ETS

Autoregressive models

Autoregressive (AR) models:

 $y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_p y_{t-p} + e_t$, where e_t is white noise. This is a multiple regression with **lagged values** of y_t as predictors.

AR(1) model

$$y_t = 2 - 0.8y_{t-1} + e_t$$

$$e_t \sim N(0, 1), T = 100.$$
 AR(1)

AR(1) model

$$\mathbf{y}_t = \mathbf{c} + \phi_1 \mathbf{y}_{t-1} + \mathbf{e}_t$$

- When ϕ_1 = 0, y_t is **equivalent to WN**
- When ϕ_1 = 1 and c = 0, y_t is **equivalent to a RW**
- When ϕ_1 = 1 and $c \neq 0$, y_t is **equivalent to a RW** with drift
- When ϕ_1 < 0, y_t tends to oscillate between positive and negative values.

AR(2) model

$$y_t = 8 + 1.3y_{t-1} - 0.7y_{t-2} + e_t$$

$$e_t \sim N(0, 1), T = 100.$$
 AR(2)

Stationarity conditions

We normally restrict autoregressive models to stationary data, and then some constraints on the values of the parameters are required.

General condition for stationarity

Complex roots of $1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p$ lie outside the unit circle on the complex plane.

Stationarity conditions

We normally restrict autoregressive models to stationary data, and then some constraints on the values of the parameters are required.

General condition for stationarity

Complex roots of $1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p$ lie outside the unit circle on the complex plane.

- For p = 1: $-1 < \phi_1 < 1$.
- For p = 2:\
- $-1 < \phi_2 < 1$ $\phi_2 + \phi_1 < 1$ $\phi_2 \phi_1 < 1$.

 More complicated conditions hold for p > 3.
 - Estimation software takes care of this.

Moving Average (MA) models

Moving Average (MA) models:

 $y_t = c + e_t + \theta_1 e_{t-1} + \theta_2 e_{t-2} + \cdots + \theta_q e_{t-q}$, where e_t is white noise. This is a multiple regression with **past errors** as predictors. Don't confuse this with moving average smoothing!

MA(1) model

$$y_t = 20 + e_t + 0.8e_{t-1}$$
 $e_t \sim N(0, 1), \quad T = 100.$
MA(1)

MA(2) model

$$y_t = e_t - e_{t-1} + 0.8e_{t-2}$$

$$e_{t} \sim N(0, 1), T = 100.$$
 MA(2)

$MA(\infty)$ models

It is possible to write any stationary AR(p) process as an $MA(\infty)$ process.

Example: AR(1)

$$y_{t} = \phi_{1}y_{t-1} + e_{t}$$

$$= \phi_{1}(\phi_{1}y_{t-2} + e_{t-1}) + e_{t}$$

$$= \phi_{1}^{2}y_{t-2} + \phi_{1}e_{t-1} + e_{t}$$

$$= \phi_{1}^{3}y_{t-3} + \phi_{1}^{2}e_{t-2} + \phi_{1}e_{t-1} + e_{t}$$
...

$MA(\infty)$ models

It is possible to write any stationary AR(p) process as an $MA(\infty)$ process.

Example: AR(1)

$$y_{t} = \phi_{1}y_{t-1} + e_{t}$$

$$= \phi_{1}(\phi_{1}y_{t-2} + e_{t-1}) + e_{t}$$

$$= \phi_{1}^{2}y_{t-2} + \phi_{1}e_{t-1} + e_{t}$$

$$= \phi_{1}^{3}y_{t-3} + \phi_{1}^{2}e_{t-2} + \phi_{1}e_{t-1} + e_{t}$$
...

Provided
$$-1 < \phi_1 < 1$$
:

$$y_t = e_t + \phi_1 e_{t-1} + \phi_1^2 e_{t-2} + \phi_1^3 e_{t-3} + \cdots$$

Invertibility

- Any MA(q) process can be written as an AR(∞) process if we impose some constraints on the MA parameters.
- Then the MA model is called "invertible".
- Invertible models have some mathematical properties that make them easier to use in practice.
- Invertibility of an ARIMA model is equivalent to forecastability of an ETS model.

Invertibility

General condition for invertibility

Complex roots of $1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_q z^q$ lie outside the unit circle on the complex plane.

Invertibility

General condition for invertibility

Complex roots of $1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_q z^q$ lie outside the unit circle on the complex plane.

- For $q = 1: -1 < \theta_1 < 1$.
- For q = 2:

$$-1 < \theta_2 < 1$$
 $\theta_2 + \theta_1 > -1$ $\theta_1 - \theta_2 < 1$.

- More complicated conditions hold for $\{q \ge 3.\}$
- Estimation software takes care of this.

ARIMA models

Autoregressive Moving Average models: $y_t = c + \phi_1 y_{t-1} + \cdots + \phi_p y_{t-p}$

$$y_{t} = c + \phi_{1}y_{t-1} + \dots + \phi_{p}y_{t-p} + \theta_{1}e_{t-1} + \dots + \theta_{q}e_{t-q} + e_{t}.$$

ARIMA models

Autoregressive Moving Average models: $y_t = c + \phi_1 y_{t-1} + \cdots + \phi_p y_{t-p}$

$$y_{t} = c + \phi_{1}y_{t-1} + \dots + \phi_{p}y_{t-p} + \theta_{1}e_{t-1} + \dots + \theta_{q}e_{t-q} + e_{t}.$$

- Predictors include both lagged values of y_t and lagged errors.
- Conditions on coefficients ensure stationarity.
- Conditions on coefficients ensure invertibility.

ARIMA models

Autoregressive Moving Average models: $y_t = c + \phi_1 y_{t-1} + \cdots + \phi_p y_{t-p}$

$$y_{t} = c + \phi_{1}y_{t-1} + \dots + \phi_{p}y_{t-p} + \theta_{1}e_{t-1} + \dots + \theta_{q}e_{t-q} + e_{t}.$$

- Predictors include both lagged values of y_t and lagged errors.
- Conditions on coefficients ensure stationarity.
- Conditions on coefficients ensure invertibility.

Autoregressive Integrated Moving Average models

- Combine ARMA model with differencing.
- \blacksquare $(1-B)^d y_t$ follows an ARMA model.

ARIMA models

ARIMA(p, d, q) model

- AR: p = order of the autoregressive part
 - I: d =degree of first differencing involved
- MA: q =order of the moving average part.
 - White noise model: ARIMA(0,0,0)
 - Random walk: ARIMA(0,1,0) with no constant
 - Random walk with drift: ARIMA(0,1,0) with const.
 - \blacksquare AR(p): ARIMA(p,0,0)
 - $= NAN(a) \cdot ADINAN(0.0 a)$

Backshift notation for ARIMA

ARMA model:

$$\begin{aligned} \mathbf{y}_t &= c + \phi_1 \mathbf{B} \mathbf{y}_t + \dots + \phi_p \mathbf{B}^p \mathbf{y}_t + \mathbf{e}_t + \theta_1 \mathbf{B} \mathbf{e}_t + \dots + \theta_q \mathbf{B}^q \mathbf{e}_t \\ \text{or} \quad & (1 - \phi_1 \mathbf{B} - \dots - \phi_p \mathbf{B}^p) \mathbf{y}_t = c + (1 + \theta_1 \mathbf{B} + \dots + \theta_q \mathbf{B}^q) \mathbf{e}_t \end{aligned}$$

ARIMA(1,1,1) model:

$$(1 - \phi_1 B)$$
 $(1 - B)y_t = c + (1 + \theta_1 B)e_t$
 \uparrow \uparrow \uparrow
AR(1) First MA(1)
difference

Backshift notation for ARIMA

ARMA model:

$$y_t = c + \phi_1 B y_t + \dots + \phi_p B^p y_t + e_t + \theta_1 B e_t + \dots + \theta_q B^q e_t$$

or $(1 - \phi_1 B - \dots - \phi_p B^p) y_t = c + (1 + \theta_1 B + \dots + \theta_q B^q) e_t$

ARIMA(1,1,1) model:

$$(1 - \phi_1 B)$$
 $(1 - B)y_t = c + (1 + \theta_1 B)e_t$
 \uparrow \uparrow \uparrow \uparrow
AR(1) First MA(1)
difference

51

Written out:

$$y_t = c + y_{t-1} + \phi_1 y_{t-1} - \phi_1 y_{t-2} + \theta_1 e_{t-1} + e_t$$


```
(fit <- auto.arima(uschange[, "Consumption"],</pre>
    seasonal=FALSE))
## Series: uschange[, "Consumption"]
## ARIMA(0,1,1)
##
## Coefficients:
##
            ma1
## -0.7080
## s.e. 0.0637
##
## sigma^2 estimated as 0.4095: log likelihood=-219.64
## AIC=443.28 AICc=443.33 BIC=450.12
```

```
(fit <- auto.arima(uschange[, "Consumption"],</pre>
   seasonal=FALSE))
## Series: uschange[, "Consumption"]
## ARIMA(0,1,1)
##
## Coefficients:
##
       ma1
## -0.7080
## s.e. 0.0637
##
## sigma^2 estimated as 0.4095: log likelihood=-219.64
## AIC=443.28 AICc=443.33 BIC=450.12
```

ARIMA(0,1,1) model:

Understanding ARIMA models

- If c = 0 and d = 0, the long-term forecasts will go to zero.
- If c = 0 and d = 1, the long-term forecasts will go to a non-zero constant.
- If c = 0 and d = 2, the long-term forecasts will follow a straight line.
- If $c \neq 0$ and d = 0, the long-term forecasts will go to the mean of the data.
- If $c \neq 0$ and d = 1, the long-term forecasts will follow a straight line.
- If $c \neq 0$ and d = 2, the long-term forecasts will

Understanding ARIMA models

Forecast variance and d

- The higher the value of *d*, the more rapidly the prediction intervals increase in size.
- For d = 0, the long-term forecast standard deviation will go to the standard deviation of the historical data.

Cyclic behaviour

- For cyclic forecasts, p > 2 and some restrictions on coefficients are required.
- If p = 2, we need $\phi_1^2 + 4\phi_2 < 0$. Then average cycle of length

Outline

- 1 Stationarity and differencing
- 2 Non-seasonal ARIMA models
- 3 Estimation and order selection
- 4 ARIMA modelling in R
- 5 Forecasting
- 6 Backshift notation revisited
- 7 Seasonal ARIMA models
- 8 ARIMA vs ETS

Maximum likelihood estimation

Having identified the model order, we need to estimate the parameters $c, \phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q$.

Maximum likelihood estimation

Having identified the model order, we need to estimate the parameters c, ϕ_1, \ldots, ϕ_p , $\theta_1, \ldots, \theta_q$.

MLE is very similar to least squares estimation obtained by minimizing

$$\sum_{t=1}^{T} e_t^2.$$

- The Arima() command allows CLS or MLE estimation.
- Non-linear optimization must be used in either case.
- Different software will give different estimates.

Partial autocorrelations

measure relationship between y_t and y_{t-k} , when the effects of other time lags $-1, 2, 3, \ldots, k-1$ — are removed.

Partial autocorrelations

measure relationship between y_t and y_{t-k} , when the effects of other time lags $-1, 2, 3, \ldots, k-1$ — are removed.

 α_k = kth partial autocorrelation coefficient

= equal to the estimate of b_k in regression:

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_k y_{t-k}.$$

Partial autocorrelations

measure relationship between y_t and y_{t-k} , when the effects of other time lags $-1, 2, 3, \ldots, k-1$ — are removed.

$$\alpha_k$$
 = kth partial autocorrelation coefficient

= equal to the estimate of b_k in regression:

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_k y_{t-k}.$$

- Varying number of terms on RHS gives α_k for different values of k.
- There are more efficient ways of calculating α_k .

$$\alpha_1 = \rho_1$$

same critical values of $\pm 1.96/\sqrt{T}$ as for ACF

Example: US consumption

Example: US consumption

AR(1)

$$\rho_k = \phi_1^k \qquad \text{for } k = 1, 2, \dots;$$
 $\alpha_1 = \phi_1 \qquad \alpha_k = 0 \qquad \text{for } k = 2, 3, \dots.$

So we have an AR(1) model when

- autocorrelations exponentially decay
- there is a single significant partial autocorrelation.

AR(p)

- ACF dies out in an exponential or damped sine-wave manner
- PACF has all zero spikes beyond the pth spike

So we have an AR(p) model when

- the ACF is exponentially decaying or sinusoidal
- there is a significant spike at lag p in PACF, but none beyond p

MA(1)

$$\rho_1 = \theta_1 \qquad \rho_k = 0 \qquad \text{for } k = 2, 3, \dots;$$

$$\alpha_k = -(-\theta_1)^k$$

So we have an MA(1) model when

- the PACF is exponentially decaying and
- there is a single significant spike in ACF

MA(q)

- PACF dies out in an exponential or damped sine-wave manner
- ACF has all zero spikes beyond the qth spike

So we have an MA(q) model when

- the PACF is exponentially decaying or sinusoidal
- there is a significant spike at lag q in ACF, but none beyond q

Example: Mink trapping

Example: Mink trapping

AIC =
$$-2 \log(L) + 2(p + q + k + 1)$$
,
where L is the likelihood of the data,
 $k = 1$ if $c \neq 0$ and $k = 0$ if $c = 0$.

AIC =
$$-2 \log(L) + 2(p + q + k + 1)$$
,
where L is the likelihood of the data,
 $k = 1$ if $c \neq 0$ and $k = 0$ if $c = 0$.

AICc = AIC +
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$
.

AIC =
$$-2 \log(L) + 2(p + q + k + 1)$$
,
where L is the likelihood of the data,
 $k = 1$ if $c \neq 0$ and $k = 0$ if $c = 0$.

AICc = AIC +
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$
.

$$BIC = AIC + \log(T)(p + q + k - 1).$$

AIC =
$$-2 \log(L) + 2(p + q + k + 1)$$
,
where L is the likelihood of the data,
 $k = 1$ if $c \neq 0$ and $k = 0$ if $c = 0$.

AICc = AIC +
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$
.

$$BIC = AIC + \log(T)(p + q + k - 1).$$

Good models are obtained by minimizing either the AIC, AICc or BIC. Our preference is to use the AICc.

Outline

- 1 Stationarity and differencing
- 2 Non-seasonal ARIMA models
- 3 Estimation and order selection
- 4 ARIMA modelling in R
- 5 Forecasting
- 6 Backshift notation revisited
- 7 Seasonal ARIMA models
- 8 ARIMA vs ETS

A non-seasonal ARIMA process

$$\phi(B)(1-B)^d y_t = c + \theta(B)\varepsilon_t$$

Need to select appropriate orders: p, q, d

- Select no. differences d and D via unit root tests.
- Select p, q by minimising AICc.
- Use stepwise search to traverse model space.

AICc =
$$-2 \log(L) + 2(p+q+k+1) \left[1 + \frac{(p+q+k+2)}{T-p-q-k-2}\right]$$
. where L is the maximised likelihood fitted to the *differenced* data, $k=1$ if $c\neq 0$ and $k=0$ otherwise.

AICc =
$$-2 \log(L) + 2(p+q+k+1) \left[1 + \frac{(p+q+k+2)}{T-p-q-k-2}\right]$$
. where *L* is the maximised likelihood fitted to the *differenced* data, $k = 1$ if $c \neq 0$ and $k = 0$ otherwise.

Step1: Select current model (with smallest AICc) from:

ARIMA(2, d, 2)

ARIMA(0, d, 0)

ARIMA(1, d, 0)

ARIMA(0, d, 1)

AICc =
$$-2 \log(L) + 2(p+q+k+1) \left[1 + \frac{(p+q+k+2)}{T-p-q-k-2}\right]$$
. where L is the maximised likelihood fitted to the *differenced* data, $k=1$ if $c\neq 0$ and $k=0$ otherwise.

Step1: Select current model (with smallest AICc) from:

ARIMA(2, d, 2)

 $\mathsf{ARIMA}(0,d,0)$

ARIMA(1, d, 0)

ARIMA(0, d, 1)

Step 2: Consider variations of current model:

- vary one of p, q, from current model by ± 1 ;
- p, q both vary from current model by ± 1 ;
- Include/exclude *c* from current model.


```
tseries::adf.test(internet)
##
##
    Augmented Dickey-Fuller Test
##
## data: internet
## Dickey-Fuller = -2.6421, Lag order = 4, p-value = 0.3107
## alternative hypothesis: stationary
tseries::kpss.test(internet)
##
##
   KPSS Test for Level Stationarity
##
## data: internet
## KPSS Level = 0.72197, Truncation lag parameter = 2, p-value =
```

tseries::kpss.test(diff(internet))

```
##
## KPSS Test for Level Stationarity
##
## data: diff(internet)
## KPSS Level = 0.26352, Truncation lag parameter = 2, p-value = 0
```



```
(fit <- Arima(internet, order=c(3,1,0)))
## Series: internet
## ARIMA(3,1,0)
##
## Coefficients:
##
           ar1
                  ar2 ar3
## 1.1513 -0.6612 0.3407
## s.e. 0.0950 0.1353 0.0941
##
## sigma^2 estimated as 9.656:
                              log likelihood=-253
## AIC=511.99 AICc=512.42 BIC=522.37
                                             76
```

```
auto.arima(internet)
## Series: internet
## ARIMA(1,1,1)
##
## Coefficients:
##
           ar1 ma1
##
       0.6504 0.5256
## s.e. 0.0842 0.0896
##
## sigma^2 estimated as 9.995: log likelihood=-254
## AIC=514.3 AICc=514.55 BIC=522.08
                                              77
```

```
auto.arima(internet, stepwise=FALSE,
  approximation=FALSE)
## Series: internet
## ARIMA(3,1,0)
##
## Coefficients:
                  ar2 ar3
##
           ar1
```

```
## ## sigma^2 estimated as 9.656: log likelihood=-252
## ATC=511.99 ATCc=512.42 BTC=522.37
```

1.1513 -0.6612 0.3407 ## s.e. 0.0950 0.1353 0.0941


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(3,1,0)
## Q* = 4.4913, df = 7, p-value = 0.7218
##
## Model df: 3. Total lags used: 10
```


Modelling procedure with Arima

- Plot the data. Identify any unusual observations.
- If necessary, transform the data (using a Box-Cox transformation) to stabilize the variance.
- If the data are non-stationary: take first differences of the data until the data are stationary.
- Examine the ACF/PACF: Is an AR(p) or MA(q) model appropriate?
- Try your chosen model(s), and use the AICc to search for a better model.
- Check the residuals from your chosen model by plotting the ACF of the residuals, and doing a portmanteau test of the residuals. If they do not look like white noise, try a modified model.

Modelling procedure with auto.arima

- Plot the data. Identify any unusual observations.
- If necessary, transform the data (using a Box-Cox transformation) to stabilize the variance.
- Use auto.arima to select a model.
- Check the residuals from your chosen model by plotting the ACF of the residuals, and doing a portmanteau test of the residuals. If they do not look like white noise, try a modified model.
- Once the residuals look like white noise, calculate forecasts.

Modelling procedure


```
eeadj <- seasadj(stl(elecequip, s.window="periodic
autoplot(eeadj) + xlab("Year") +
   ylab("Seasonally adjusted new orders index")</pre>
```


- Time plot shows sudden changes, particularly big drop in 2008/2009 due to global economic environment. Otherwise nothing unusual and no need for data adjustments.
- No evidence of changing variance, so no Box-Cox transformation.
- Data are clearly non-stationary, so we take first differences.

- PACF is suggestive of AR(3). So initial candidate model is ARIMA(3,1,0). No other obvious candidates.
- Fit ARIMA(3,1,0) model along with variations: ARIMA(4,1,0), ARIMA(2,1,0), ARIMA(3,1,1), etc. ARIMA(3,1,1) has smallest AICc value.

```
fit <- Arima(eeadj, order=c(3,1,1))</pre>
summary(fit)
## Series: eeadj
## ARIMA(3,1,1)
##
## Coefficients:
##
           ar1 ar2 ar3 ma1
## 0.0044 0.0916 0.3698 -0.3921
## s.e. 0.2201 0.0984 0.0669 0.2426
##
  sigma<sup>2</sup> estimated as 9.577: log likelihood=-492.69
## ATC=995.38 ATCc=995.7 BTC=1011.72
##
## Training set error measures:
##
                      MF.
                             RMSE.
                                       MAF.
                                                    MPF.
## Training set 0.0328818 3.054718 2.357169 -0.006470086 2.48 60
```

MAP

ACF plot of residuals from ARIMA(3,1,1) model look like white noise.


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(3,1,1)
## Q* = 24.034, df = 20, p-value = 0.2409
##
## Model df: 4. Total lags used: 24
```


Outline

- 1 Stationarity and differencing
- 2 Non-seasonal ARIMA models
- 3 Estimation and order selection
- 4 ARIMA modelling in R
- 5 Forecasting
- 6 Backshift notation revisited
- 7 Seasonal ARIMA models
- 8 ARIMA vs ETS

- Rearrange ARIMA equation so y_t is on LHS.
- Rewrite equation by replacing t by T + h.
- On RHS, replace future observations by their forecasts, future errors by zero, and past errors by corresponding residuals.

Start with h = 1. Repeat for h = 2, 3, ...

ARIMA(3,1,1) forecasts: Step 1

$$(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3)(1 - B)y_t = (1 + \theta_1 B)e_t,$$

ARIMA(3,1,1) forecasts: Step 1

$$(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3)(1 - B)y_t = (1 + \theta_1 B)e_t,$$

$$[1 - (1 + \phi_1)B + (\phi_1 - \phi_2)B^2 + (\phi_2 - \phi_3)B^3 + \phi_3B^4] y_t$$

= $(1 + \theta_1B)e_t$,

$$(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3)(1 - B)y_t = (1 + \theta_1 B)e_t,$$

$$[1 - (1 + \phi_1)B + (\phi_1 - \phi_2)B^2 + (\phi_2 - \phi_3)B^3 + \phi_3 B^4]y_t$$

$$= (1 + \theta_1 B)e_t,$$

$$y_t - (1 + \phi_1)y_{t-1} + (\phi_1 - \phi_2)y_{t-2} + (\phi_2 - \phi_3)y_{t-3}$$

$$+ \phi_3 y_{t-4} = e_t + \theta_1 e_{t-1}.$$

$$(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3)(1 - B)y_t = (1 + \theta_1 B)e_t,$$

$$[1 - (1 + \phi_1)B + (\phi_1 - \phi_2)B^2 + (\phi_2 - \phi_3)B^3 + \phi_3 B^4]y_t$$

$$= (1 + \theta_1 B)e_t,$$

$$y_t - (1 + \phi_1)y_{t-1} + (\phi_1 - \phi_2)y_{t-2} + (\phi_2 - \phi_3)y_{t-3}$$

$$+ \phi_3 y_{t-4} = e_t + \theta_1 e_{t-1}.$$

$$y_t = (1 + \phi_1)y_{t-1} - (\phi_1 - \phi_2)y_{t-2} - (\phi_2 - \phi_3)y_{t-3}$$

$$- \phi_3 y_{t-4} + e_t + \theta_1 e_{t-1}.$$

Point forecasts (h=1)

$$y_{t} = (1 + \phi_{1})y_{t-1} - (\phi_{1} - \phi_{2})y_{t-2} - (\phi_{2} - \phi_{3})y_{t-3} - \phi_{3}y_{t-4} + e_{t} + \theta_{1}e_{t-1}.$$

Point forecasts (h=1)

$$y_{t} = (1 + \phi_{1})y_{t-1} - (\phi_{1} - \phi_{2})y_{t-2} - (\phi_{2} - \phi_{3})y_{t-3} - \phi_{3}y_{t-4} + e_{t} + \theta_{1}e_{t-1}.$$

ARIMA(3.1.1) forecasts: Step 2

$$y_{T+1} = (1 + \phi_1)y_T - (\phi_1 - \phi_2)y_{T-1} - (\phi_2 - \phi_3)y_{T-2} - \phi_3y_{T-3} + e_{T+1} + \theta_1e_T.$$

Point forecasts (h=1)

$$y_{t} = (1 + \phi_{1})y_{t-1} - (\phi_{1} - \phi_{2})y_{t-2} - (\phi_{2} - \phi_{3})y_{t-3} - \phi_{3}y_{t-4} + e_{t} + \theta_{1}e_{t-1}.$$

$$\begin{aligned} \mathbf{y}_{\mathsf{T+1}} &= (\mathbf{1} + \phi_1)\mathbf{y}_{\mathsf{T}} - (\phi_1 - \phi_2)\mathbf{y}_{\mathsf{T-1}} - (\phi_2 - \phi_3)\mathbf{y}_{\mathsf{T-2}} \\ &- \phi_3\mathbf{y}_{\mathsf{T-3}} + e_{\mathsf{T+1}} + \theta_1e_{\mathsf{T}}. \end{aligned}$$

$$\hat{\mathbf{y}}_{T+1|T} = (\mathbf{1} + \phi_1)\mathbf{y}_T - (\phi_1 - \phi_2)\mathbf{y}_{T-1} - (\phi_2 - \phi_3)\mathbf{y}_{T-2} - \phi_3\mathbf{y}_{T-3} + \theta_1\hat{\mathbf{e}}_T.$$

Point forecasts (h=2)

$$y_{t} = (1 + \phi_{1})y_{t-1} - (\phi_{1} - \phi_{2})y_{t-2} - (\phi_{2} - \phi_{3})y_{t-3} - \phi_{3}y_{t-4} + e_{t} + \theta_{1}e_{t-1}.$$

Point forecasts (h=2)

$$y_{t} = (1 + \phi_{1})y_{t-1} - (\phi_{1} - \phi_{2})y_{t-2} - (\phi_{2} - \phi_{3})y_{t-3} - \phi_{3}y_{t-4} + e_{t} + \theta_{1}e_{t-1}.$$

RIMA(3,1,1) forecasts: Step 2

$$\mathbf{y}_{\mathsf{T+2}} = (\mathbf{1} + \phi_1)\mathbf{y}_{\mathsf{T+1}} - (\phi_1 - \phi_2)\mathbf{y}_{\mathsf{T}} - (\phi_2 - \phi_3)\mathbf{y}_{\mathsf{T-1}} - \phi_3\mathbf{y}_{\mathsf{T-2}} + e_{\mathsf{T+2}} + \theta_1e_{\mathsf{T+1}}.$$

Point forecasts (h=2)

$$y_{t} = (1 + \phi_{1})y_{t-1} - (\phi_{1} - \phi_{2})y_{t-2} - (\phi_{2} - \phi_{3})y_{t-3} - \phi_{3}y_{t-4} + e_{t} + \theta_{1}e_{t-1}.$$

$$\begin{aligned} \mathbf{y}_{\mathsf{T+2}} &= (\mathbf{1} + \phi_1) \mathbf{y}_{\mathsf{T+1}} - (\phi_1 - \phi_2) \mathbf{y}_{\mathsf{T}} - (\phi_2 - \phi_3) \mathbf{y}_{\mathsf{T-1}} \\ &- \phi_3 \mathbf{y}_{\mathsf{T-2}} + e_{\mathsf{T+2}} + \theta_1 e_{\mathsf{T+1}}. \end{aligned}$$

$$\hat{\mathbf{y}}_{T+2|T} = (1 + \phi_1)\hat{\mathbf{y}}_{T+1|T} - (\phi_1 - \phi_2)\mathbf{y}_T - (\phi_2 - \phi_3)\mathbf{y}_{T-1} - \phi_3\mathbf{y}_{T-2}.$$

95% Prediction interval

$$\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}}$$

where $v_{T+h|T}$ is estimated forecast variance.

95% Prediction interval

$$\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}}$$

where $v_{T+h|T}$ is estimated forecast variance.

- $\mathbf{v}_{T+1|T} = \hat{\sigma}^2$ for all ARIMA models regardless of parameters and orders.
- Multi-step prediction intervals for ARIMA(0,0,q):

$$y_t = e_t + \sum_{i=1}^q \theta_i e_{t-i}.$$

$$v_{T|T+h} = \hat{\sigma}^2 \left[1 + \sum_{i=1}^{h-1} \theta_i^2 \right], \quad \text{for } h = 2, 3, \dots.$$

95% Prediction interval

$$\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}}$$

where $v_{T+h|T}$ is estimated forecast variance.

■ Multi-step prediction intervals for ARIMA(0,0,q):

$$y_t = e_t + \sum_{i=1}^{4} \theta_i e_{t-i}.$$

$$v_{T|T+h} = \hat{\sigma}^2 \left[1 + \sum_{i=1}^{h-1} \theta_i^2 \right], \quad \text{for } h = 2, 3,$$

95% Prediction interval

$$\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}}$$

where $v_{T+h|T}$ is estimated forecast variance.

■ Multi-step prediction intervals for ARIMA(0,0,q):

$$y_t = e_t + \sum_{i=1}^q \theta_i e_{t-i}.$$

$$v_{T|T+h} = \hat{\sigma}^2 \left[1 + \sum_{i=1}^{h-1} \theta_i^2 \right], \quad \text{for } h = 2, 3, \dots.$$

- AR(1): Rewrite as MA(∞) and use above result.
- Other models beyond scope of this workshop.

- Prediction intervals increase in size with forecast horizon.
- Prediction intervals can be difficult to calculate by hand
- Calculations assume residuals are uncorrelated and normally distributed.
- Prediction intervals tend to be too narrow.
 - the uncertainty in the parameter estimates has not been accounted for.
 - the ARIMA model assumes historical patterns will not change during the forecast period.
 - the ARIMA model assumes uncorrelated future

Your turn

For the usgdp data:

- if necessary, find a suitable Box-Cox transformation for the data;
- fit a suitable ARIMA model to the transformed data using auto.arima();
- check the residual diagnostics;
- produce forecasts of your fitted model. Do the forecasts look reasonable?

Outline

- 1 Stationarity and differencing
- 2 Non-seasonal ARIMA models
- 3 Estimation and order selection
- 4 ARIMA modelling in R
- 5 Forecasting
- 6 Backshift notation revisited
- 7 Seasonal ARIMA models
- 8 ARIMA vs ETS

A very useful notational device is the backward shift operator, *B*, which is used as follows:

$$By_t = y_{t-1} .$$

A very useful notational device is the backward shift operator, *B*, which is used as follows:

$$By_t = y_{t-1} .$$

In other words, B, operating on y_t , has the effect of shifting the data back one period.

A very useful notational device is the backward shift operator, *B*, which is used as follows:

$$By_t = y_{t-1} .$$

In other words, B, operating on y_t , has the effect of shifting the data back one period. Two applications of B to y_t shifts the data back two periods:

$$B(By_t) = B^2y_t = y_{t-2}.$$

A very useful notational device is the backward shift operator, *B*, which is used as follows:

$$By_t = y_{t-1} .$$

In other words, B, operating on y_t , has the effect of shifting the data back one period. Two applications of B to y_t shifts the data back two periods:

$$B(By_t) = B^2y_t = y_{t-2}$$
.

For monthly data, if we wish to shift attention to "the same month last year," then B^{12} is used, and the notation is $B^{12}y_t = y_{t-12}$.

- First difference: 1 B.
- Double difference: $(1 B)^2$.
- dth-order difference: $(1 B)^d y_t$.
- Seasonal difference: $1 B^m$.
- Seasonal difference followed by a first difference: $(1 B)(1 B^m)$.
- Multiply terms together together to see the combined effect:

$$(1 - B)(1 - B^m)y_t = (1 - B - B^m + B^{m+1})y_t$$
$$= y_t - y_{t-1} - y_{t-m} + y_{t-m-1}.$$

Backshift notation for ARIMA

ARMA model:

$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + e_t + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q}$$

$$= c + \phi_1 B y_t + \dots + \phi_p B^p y_t + e_t + \theta_1 B e_t + \dots + \theta_q B^q e_t$$

$$\phi(B) y_t = c + \theta(B) e_t$$

$$\text{where } \phi(B) = 1 - \phi_1 B - \dots - \phi_p B^p$$

$$\text{and } \theta(B) = 1 + \theta_1 B + \dots + \theta_q B^q.$$

Backshift notation for ARIMA

ARMA model:
$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + e_t + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q}$$
$$= c + \phi_1 B y_t + \dots + \phi_p B^p y_t + e_t + \theta_1 B e_t + \dots + \theta_q B^q e_t$$
$$\phi(B) y_t = c + \theta(B) e_t$$
$$\text{where } \phi(B) = 1 - \phi_1 B - \dots - \phi_p B^p$$
$$\text{and } \theta(B) = 1 + \theta_1 B + \dots + \theta_q B^q.$$

ARIMA(1,1,1) model:

Backshift notation for ARIMA

 \blacksquare ARIMA(p, d, q) model:

$$(1 - \phi_1 B - \dots - \phi_p B^p) (1 - B)^d y_t = c + (1 + \theta_1 B + \dots + \theta_q B^q) e_t$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$AR(p) \qquad d \text{ differences} \qquad MA(q)$$

Outline

- 1 Stationarity and differencing
- 2 Non-seasonal ARIMA models
- 3 Estimation and order selection
- 4 ARIMA modelling in R
- 5 Forecasting
- 6 Backshift notation revisited
- 7 Seasonal ARIMA models
- 8 ARIMA vs ETS

where m = number of observations per year.

E.g., $ARIMA(1, 1, 1)(1, 1, 1)_4$ model (without constant)

E.g., ARIMA(1, 1, 1)(1, 1, 1)₄ model (without constant)
$$(1-\phi_1B)(1-\Phi_1B^4)(1-B)(1-B^4)y_t = (1+\theta_1B)(1+\Theta_1B^4)e_t$$
.

E.g., ARIMA(1, 1, 1)(1, 1, 1)₄ model (without constant)
$$(1-\phi_1B)(1-\Phi_1B^4)(1-B)(1-B^4)y_t = (1+\theta_1B)(1+\Theta_1B^4)e_t.$$

$$\begin{pmatrix} \text{Non-seasonal} \\ \text{AR}(1) \end{pmatrix} \begin{pmatrix} \text{Non-seasonal} \\ \text{difference} \end{pmatrix} \begin{pmatrix} \text{Non-seasonal} \\ \text{MA}(1) \end{pmatrix}$$

$$\begin{pmatrix} \text{Seasonal} \\ \text{AR}(1) \end{pmatrix} \begin{pmatrix} \text{Seasonal} \\ \text{difference} \end{pmatrix}$$

$$\begin{pmatrix} \text{Seasonal} \\ \text{MA}(1) \end{pmatrix}$$

E.g., ARIMA(1, 1, 1)(1, 1, 1)₄ model (without constant) $(1-\phi_1B)(1-\Phi_1B^4)(1-B)(1-B^4)y_t = (1+\theta_1B)(1+\Theta_1B^4)e_t$.

All the factors can be multiplied out and the general model written as follows:

$$\begin{aligned} y_t &= (1+\phi_1)y_{t-1} - \phi_1y_{t-2} + (1+\Phi_1)y_{t-4} \\ &- (1+\phi_1+\Phi_1+\phi_1\Phi_1)y_{t-5} + (\phi_1+\phi_1\Phi_1)y_{t-6} \\ &- \Phi_1y_{t-8} + (\Phi_1+\phi_1\Phi_1)y_{t-9} - \phi_1\Phi_1y_{t-10} \\ &+ e_t + \theta_1e_{t-1} + \Theta_1e_{t-4} + \theta_1\Theta_1e_{t-5}. \end{aligned}$$

Common ARIMA models

In the US Census Bureau uses the following models most often:

ARIMA $(0,1,1)(0,1,1)_m$	with log transformation
ARIMA $(0,1,2)(0,1,1)_m$	with log transformation
ARIMA $(2,1,0)(0,1,1)_m$	with log transformation
ARIMA $(0,2,2)(0,1,1)_m$	with log transformation
ARIMA $(2,1,2)(0,1,1)_m$	with no transformation

The seasonal part of an AR or MA model will be seen in the seasonal lags of the PACF and ACF.

- a spike at lag 12 in the ACF but no other significant spikes.
- The PACF will show exponential decay in the seasonal lags; that is, at lags 12, 24, 36,

- exponential decay in the seasonal lags of the ACF
- a single significant spike at lag 12 in the PACF.

- \blacksquare d = 1 and D = 1 seems necessary.
- Significant spike at lag 1 in ACF suggests non-seasonal MA(1) component.
- Significant spike at lag 4 in ACF suggests seasonal MA(1) component.
- Initial candidate model: ARIMA(0,1,1)(0,1,1)₄.
- We could also have started with $ARIMA(1,1,0)(1,1,0)_4$.

```
fit <- Arima(euretail, order=c(0,1,1),
    seasonal=c(0,1,1))
checkresiduals(fit)</pre>
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,1)(0,1,1)[4
## Q* = 10.654, df = 6, p-value = 0.09968
##
## Model df: 2. Total lags used: 8
```

- ACF and PACF of residuals show significant spikes at lag 2, and maybe lag 3.
- **AICc** of ARIMA $(0,1,2)(0,1,1)_4$ model is 74.36.
- AICc of ARIMA(0,1,3)(0,1,1)₄ model is 68.53.

- ACF and PACF of residuals show significant spikes at lag 2, and maybe lag 3.
- AICc of ARIMA(0,1,2)(0,1,1)₄ model is 74.36.
- AICc of ARIMA(0,1,3)(0,1,1)₄ model is 68.53.

```
fit <- Arima(euretail, order=c(0,1,3),
    seasonal=c(0,1,1))
checkresiduals(fit)</pre>
```

```
## Series: euretail
## ARIMA(0,1,3)(0,1,1)[4]
##
## Coefficients:
##
           ma1
                 ma2
                          ma3
                                 sma1
##
        0.2630 0.3694 0.4200 -0.6636
## s.e. 0.1237 0.1255 0.1294 0.1545
##
## sigma^2 estimated as 0.156: log likelihood=-28.63
## AIC=67.26 AICc=68.39 BIC=77.65
```

checkresiduals(fit)


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,3)(0,1,1)[4]
## Q* = 0.51128, df = 4, p-value = 0.9724
##
## Model df: 4. Total lags used: 8
```



```
auto.arima(euretail)
## Series: euretail
## ARIMA(1,1,2)(0,1,1)[4]
##
## Coefficients:
##
           ar1
                   ma1
                           ma2
                                  sma1
##
      0.7362 -0.4663 0.2163 -0.8433
## s.e. 0.2243 0.1990 0.2101
                                 0.1876
##
  sigma^2 estimated as 0.1587: log likelihood=-29.62
## AIC=69.24 AICc=70.38 BIC=79.63
```

ATC=67.26 ATCc=68.39 BTC=77.65

```
auto.arima(euretail, stepwise=FALSE, approximation=FALSE)
## Series: euretail
## ARIMA(0,1,3)(0,1,1)[4]
##
## Coefficients:
           ma1 ma2 ma3 sma1
##
##
      0.2630 0.3694 0.4200 -0.6636
## s.e. 0.1237 0.1255 0.1294 0.1545
##
## sigma^2 estimated as 0.156: log likelihood=-28.63
```


- Choose D = 1 and d = 0.
- Spikes in PACF at lags 12 and 24 suggest seasonal AR(2) term.
- Spikes in PACF suggests possible non-seasonal AR(3) term.
- Initial candidate model: ARIMA(3,0,0)(2,1,0)₁₂.

Model	AICc
ARIMA(3,0,0)(2,1,0) ₁₂	-475.12
ARIMA(3,0,1)(2,1,0) ₁₂	-476.31
ARIMA(3,0,2)(2,1,0) ₁₂	-474.88
ARIMA(3,0,1)(1,1,0) ₁₂	-463.40
ARIMA(3,0,1)(0,1,1) ₁₂	-483.67
ARIMA(3,0,1)(0,1,2) ₁₂	-485.48
ARIMA(3,0,1)(1,1,1) ₁₂	-484.25

lambda=0))

```
## Series: h02
## ARIMA(3,0,1)(0,1,2)[12]
## Box Cox transformation: lambda= 0
##
## Coefficients:
           ar1 ar2 ar3 ma1
                                        sma1 sma2
##
## -0.1603 0.5481 0.5678 0.3827 -0.5222 -0.1768
## s.e. 0.1636 0.0878 0.0942 0.1895 0.0861 0.0872
##
## sigma^2 estimated as 0.004278: log likelihood=250.04_{130}
## AIC=-486.08 AICc=-485.48 BIC=-463.28
```

(fit \leftarrow Arima(h02, order=c(3,0,1), seasonal=c(0,1,2),


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(3,0,1)(0,1,2)[3
## Q* = 23.663, df = 18, p-value = 0.1664
##
## Model df: 6. Total lags used: 24
```

ARIMA(3,0,1)(0,1,2)[12] with drift
Box Cox transformation: lambda= 0

Series: h02

##

```
(fit <- auto.arima(h02, lambda=0, d=0, D=1, max.order=9,
    stepwise=FALSE, approximation=FALSE))</pre>
```

```
##
## Coefficients:

## ar1 ar2 ar3 ma1 sma1 sma2 dri

## -0.2653 0.5011 0.5394 0.4572 -0.5031 -0.2030 0.00

## s.e. 0.1691 0.0813 0.0848 0.1904 0.0847 0.0871 0.00
```

133

sigma^2 estimated as 0.004176: log likelihood=252.99

AIC=-489.99 AICc=-489.2 BIC=-463.93


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(3,0,1)(0,1,2)[12] w:
## Q* = 19.369, df = 17, p-value = 0.3078
##
## Model df: 7. Total lags used: 24
```

Training data: July 1991 to June 2006 Test data: July 2006–June 2008

```
getrmse <- function(x,h,...)</pre>
  train.end <- time(x)[length(x)-h]</pre>
  test.start <- time(x)[length(x)-h+1]
  train <- window(x,end=train.end)
  test <- window(x,start=test.start)
  fit <- Arima(train,...)</pre>
  fc <- forecast(fit,h=h)</pre>
  return(accuracy(fc,test)[2,"RMSE"])
getrmse(h02,h=24,order=c(3,0,0),seasonal=c(2,1,0),lambda=0)
getrmse(h02,h=24,order=c(3,0,1),seasonal=c(2,1,0),lambda=0)
```

getrmse(h02,h=24,order=c(3,0,2),seasonal=c(2,1,0),lambda $_{\overline{13}}$ 9) getrmse(h02,h=24,order=c(3,0,1),seasonal=c(1,1,0),lambda=0)

Model	RMSE
ARIMA(3,0,0)(2,1,0)[12]	0.0661
ARIMA(3,0,1)(2,1,0)[12]	0.0646
ARIMA(3,0,2)(2,1,0)[12]	0.0645
ARIMA(3,0,1)(1,1,0)[12]	0.0679
ARIMA(3,0,1)(0,1,1)[12]	0.0644
ARIMA(3,0,1)(0,1,2)[12]	0.0622
ARIMA(3,0,1)(1,1,1)[12]	0.0630
ARIMA(4,0,3)(0,1,1)[12]	0.0648
ARIMA(3,0,3)(0,1,1)[12]	0.0639
ARIMA(4,0,2)(0,1,1)[12]	0.0648
ARIMA(3,0,2)(0,1,1)[12]	0.0644
ARIMA(2,1,3)(0,1,1)[12]	0.0634

- Models with lowest AICc values tend to give slightly better results than the other models.
- AICc comparisons must have the same orders of differencing. But RMSE test set comparisons can involve any models.
- No model passes all the residual tests.
- Use the best model available, even if it does not pass all tests.
- In this case, the ARIMA(3,0,1)(0,1,2)₁₂ has the lowest RMSE value and the best AICc value for models with fewer than 6 parameters.

```
fit \leftarrow Arima(h02, order=c(3,0,1), seasonal=c(0,1,2),
  lambda=0)
autoplot(forecast(fit)) +
  ylab("H02 sales (million scripts)") + xlab("Year")
    Forecasts from ARIMA(3,0,1)(0,1,2)[12]
402 sales (million scripts)
  1.5 -
0.5-
                         2000
                                    2005
                                                2010
                           Year
```

139

Outline

- 1 Stationarity and differencing
- 2 Non-seasonal ARIMA models
- 3 Estimation and order selection
- 4 ARIMA modelling in R
- 5 Forecasting
- 6 Backshift notation revisited
- 7 Seasonal ARIMA models
- 8 ARIMA vs ETS

ARIMA vs ETS

- Myth that ARIMA models are more general than exponential smoothing.
- Linear exponential smoothing models all special cases of ARIMA models.
- Non-linear exponential smoothing models have no equivalent ARIMA counterparts.
- Many ARIMA models have no exponential smoothing counterparts.
- ETS models all non-stationary. Models with seasonality or non-damped trend (or both) have two unit roots; all other models have one unit

Equivalences

ETS model	ARIMA model	Parameters
ETS(A,N,N)	ARIMA(0,1,1)	$\theta_1 = \alpha - 1$
ETS(A,A,N)	ARIMA(0,2,2)	θ_1 = α + β $-$ 2
		θ_{2} = 1 $-\alpha$
ETS(A,A,N)	ARIMA(1,1,2)	$\phi_1 = \phi$
		θ_{1} = α + $\phi\beta$ $-$ 1 $ \phi$
		θ_{2} = (1 $-\alpha$) ϕ
ETS(A,N,A)	$ARIMA(0,0,m)(0,1,0)_{m}$	
ETS(A,A,A)	ARIMA $(0,1,m+1)(0,1,0)_m$	
ETS(A,A,A)	ARIMA(1,0, m + 1)(0,1,0) $_m$	

Your turn

For the condmilk series:

- Do the data need transforming? If so, find a suitable transformation.
- Are the data stationary? If not, find an appropriate differencing which yields stationary data.
- Identify a couple of ARIMA models that might be useful in describing the time series.
- Which of your models is the best according to their AIC values?
- Estimate the parameters of your best model and do diagnostic testing on the residuals. Do the residuals resemble white noise? If not, try to find another ARIMA model which fits better.
- Forecast the next 24 months of data using your