Linear mediation and moderation

Session 12

MATH 80667A: Experimental Design and Statistical Methods for Quantitative Research in Management HEC Montréal

Outline

Linear mediation model

Interactions and moderation

Linear mediation

Three types of associations

Confounding

Common cause

Causal forks $X \leftarrow Z \rightarrow Y$

Causation

Mediation

Causal chain $X \rightarrow Z \rightarrow Y$

Collision

Selection / endogeneity

inverted fork $X \rightarrow Z \leftarrow Y$

Key references

- Imai, Keele and Tingley (2010), A General Approach to Causal Mediation Analysis, Psychological Methods.
- Pearl (2014), Interpretation and Identification of Causal Mediation, Psychological Methods.
- Baron and Kenny (1986), The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations, Journal of Personality and Social Psychology

Limitations:

- Bullock, Green, and Ha (2010), Yes, but what's the mechanism? (don't expect an easy answer)
- Uri Simonsohn (2022) Mediation Analysis is Counterintuitively Invalid

Sequential ignorability assumption

Define

- treatment of individual i as X_i ,
- potential mediation given treatment x as $M_i(x)$ and
- potential outcome for treatment x and mediator m as $Y_i(x,m)$.

Given pre-treatment covariates w, potential outcomes for mediation and treatment are conditionally independent of treatment assignment.

$$Y_i(x',m), M_i(x) \perp \!\!\! \perp X_i \mid W_i = w$$

Given pre-treatment covariates and observed treatment, potential outcomes are independent of mediation.

Total effect

Total effect: overall impact of X (both through M and directly)

$$\mathsf{TE}(x,x^*) = \mathsf{E}[Y \mid \mathrm{do}(X=x)] - \mathsf{E}[Y \mid \mathrm{do}(X=x^*)]$$

This can be generalized for continuous X to any pair of values (x_1, x_2) .

Average controlled direct effect

$$\mathsf{CDE}(m,x,x^*) = \mathsf{E}[Y\mid \mathrm{do}(X=x,m=m)] - \mathsf{E}[Y\mid \mathrm{do}(X=x^*,m=m)] = \mathsf{E}\{Y(x,m) - Y(x^*,m)\}$$

Expected population change in response when the experimental factor changes from x to x^* and the mediator is set to a fixed value x^* .

Direct and indirect effects

Natural direct effect: $NDE(x, x^*) = E[Y\{x, M(x^*)\} - Y\{x^*, M(x^*)\}]$

• expected change in Y under treatment X if Y is set to whatever value it would take under control Y

Natural indirect effect: $NIE(x, x^*) = E[Y\{x^*, M(x)\} - Y\{x^*, M(x^*)\}]$

 expected change in Y if we set X to its control value and change the mediator value which it would attain under X

Counterfactual conditioning reflects a physical intervention, not mere (probabilistic) conditioning.

Total effect is $TE(x, x^*) = NDE(x, x^*) - NIE(x^*, x)$

Linear structural equation modelling and mediation

The Baron-Kenny model

Given **uncorrelated** unobserved noise variables U_M and U_Y , consider linear regression models

$$M = c_M + lpha x + U_M \ Y = c_Y + eta x + \gamma m + U_Y$$

Plugging the first equation in the second, we get the marginal model for Y given treatment X,

$$\mathsf{E}_{U_M}(Y\mid x) = (c_Y + \gamma c_M) + (eta + lpha \gamma) \cdot x + (\gamma U_M + U_Y) \ = c_Y' + au X + U_Y'$$

The old method

Baron and Kenny recommended running regressions and estimating the three models with

- **1.** whether $\mathcal{H}_0: \alpha = 0$
- 2. whether $\mathcal{H}_0: \tau = 0$ (total effect)
- 3. whether $\mathcal{H}_0: \gamma = 0$

The conditional direct effect α_{γ} and we can check whether it's zero using Sobel's test statistic.

Problems?

Sobel's test

Based on estimators $\widehat{\alpha}$ and $\widehat{\gamma}$, construct a Wald-test

$$S = rac{\widehat{lpha}\widehat{\gamma} - 0}{\sqrt{\widehat{\gamma}^2 \mathsf{Va}(\widehat{lpha}) + \widehat{lpha}^2 \mathsf{Va}(\widehat{\gamma}) + \mathsf{Va}(\widehat{\gamma}) \mathsf{Va}(\widehat{lpha})}} \stackrel{.}{\sim} \mathsf{No}(0,1)$$

where the point estimate $\widehat{\alpha}$ and its variance $Va(\widehat{\alpha})$ can be estimated via SEM, or more typically linear regression (ordinary least squares).

Null distribution for the test

The large-sample normal approximation is poor in small samples.

The popular way to estimate the p-value and the confidence interval is through the nonparametric **bootstrap** with the percentile method.

Repeat B times, say B = 10000

- 1. sample with replacement n observations from the database
 - \circ tuples (Y_i, X_i, M_i)
- 2. recalculate estimates $\widehat{\alpha}^{(b)}\widehat{\gamma}^{(b)}$

Boostrap *p*-values and confidence intervals

Confidence interval

Percentile-based method: for a equitailed $1-\alpha$ interval and the collection

$$\{\widehat{lpha}^{(b)}\widehat{\gamma}^{(b)}\}_{b=1}^{B},$$

compute the $\alpha/2$ and $1-\alpha/2$ empirical quantiles.

Two-sided *p*-value

Compute the sample proportion of bootstrap statistics $S^{(1)},...,S^{(B)}$ that are larger/smaller than zero.

If
$$S^{(M)} < 0 \le S^{(M+1)}$$
 for $1 \le M \le B$.

$$p=2\min\{M/B,1-M/B\}$$

and zero otherwise

Example from Preacher and Hayes (2004)

Suppose an investigator is interested in the effects of a new cognitive therapy on life satisfaction after retirement.

Residents of a retirement home diagnosed as clinically depressed are randomly assigned to receive 10 sessions of a new cognitive therapy (X = 1) or 10 sessions of an alternative (standard) therapeutic method (X = 0).

After Session 8, the positivity of the attributions the residents make for a recent failure experience is assessed (M).

Finally, at the end of Session 10, the residents are given a measure of life satisfaction (Y). The question is whether the cognitive therapy's effect on life satisfaction is mediated by the positivity of their causal attributions of negative experiences."

Defaults of linear SEM

- Definitions contingent on model
 - (causal quantities have a meaning regardless of estimation method)
- Linearity assumption not generalizable.
 - effect constant over individuals/levels

Additional untestable assumption of uncorrelated disturbances (no unmeasured confounders).

Keenan Crane

Assumptions of causal mediation

Need assumptions to hold (and correct model!) to derive causal statements

- Potential confounding can be accounted for with explanatories.
- Careful with what is included (colliders)!
 - as-if randomization assumption
- Generalizations to interactions, multiple mediators, etc. should require careful acknowledgement of confounding.