

2021년 혁신성장 청년인재 집중양성 추경 사업 빅데이터 분야

자연어 처리

Tokenizing (형태소 분석)

Seokhwan Yang

Tokenizing(형태소 분석) 개요

- 자연어: 우리가 일상 생활에서 사용하는 언어
- 기본적으로 컴퓨터는 자연어를 이해하지 못한다
- 컴퓨터에게 자연어를 이해하게 하려면?
 - 여러 방법이 연구되어 왔으나 가장 일반적인 방법은?
 - 토크나이징과 임베딩 기반으로 컴퓨터가 이해할 수 있도록 데이터화
 - 텍스트 유사도를 이용하여 문맥 분류

Tokenizing(형태소 분석) 개요

• Tokenizing이란?

- 주어진 문장에서 토큰 단위로 정보를 나누는 작업
- 문장 형태의 데이터를 처리하기 위해 제일 처음 수행해야 하는 기본적인 작업
- 주로 텍스트 전처리 과정에서 사용됨
- 토큰: 일정한 의미가 있는 가장 작은 정보 단위

• Tokenizing 과정

- 어떤 문장을 일정한 의미가 있는 가장 작은 단어로 나눈다
- 나눠진 단어들을 이용해 의미를 분석한다 (이때 가장 기본이 되는 단어가 토큰이다)

- 토큰화(Tokenizing)의 기본적인 방식
 - 단어 단위 토큰화 : 단어(어절) 단위로 토큰화
 - 문자 단위 토큰화 : 문자 단위로 토큰화
 - 서브 워드 단위 토큰화 : 서브 워드 단위로 토큰화

- 단어 단위 토큰화
 - 가장 쉬운 방법은 공백으로 분리(별도의 토크나이저가 없어도 무방)
 - 단점: 어휘 집합의 크기가 매우 커질 수 있음
 - "갔었어", "갔었는데요"는 서로 다른 토큰이 됨
 - 표현이 살짝만 바뀌어도 관련된 모든 경우의 수가 어휘 집합에 포함되어야 함

어제 카페에 갔었어

어제 카페에 갔었는데요

토크나이저

어제, 카페에, 갔었어

어제, 카페에, 갔었는데요

- 사전 학습된 토크나이저를 사용한다면
 - 어휘 집합의 비대화를 다소 완화 가능 (완전히 해결하기는 어려움)

어제 카페에 갔었어 도를 어제 카페에 갔었는데요

토크나이저

어제, 카페에, 갔었, 어 어제, 카페에, 갔었, 는데요

- 하나의 언어로 모델을 구축할 때, 어휘 집합의 크기는 10만개를 가뿐히 넘어감
- 어휘 집합의 크기가 커질 수록 모델의 학습은 어려워짐

- 문자 단위 토큰화
 - 한글의 경우 표현 가능한 글자는 11,172개
 - 알파벳, 숫자, 기호를 모두 고려해도 어휘 집합의 크기는 15,000개 정도
 - 해당 언어의 모든 문자를 어휘 집합에 포함 → 미등록 토큰 문제 없음
 - 단점
 - 각 토큰은 의미 있는 단위가 될 수 없음

어제 카페에 갔었어 어제 카페에 갔었는데요

토크나이저

어,제,카,페,에,갔,었,어 어,제,카,페,에,갔,었,는,데,요

- 어미에 따른 변화, 조사의 사용 등 한글의 특징이 모두 사라짐
- 분석 결과인 토큰 시퀀스의 길이가 단어 단위 토큰화의 결과보다 상대적으로 길어짐
- 언어 모델에 입력할 토큰 시퀀스가 길면 모델의 학습이 어려워지고 결과적으로 성능하락

- 서브 워드 단위 토큰화
 - 단어 단위 토큰화와 문자 단위 토큰화의 중간 형태
 - 두 토큰화 방식의 장점만 적용
 - 어휘 집합의 크기가 지나치게 커지지 않음
 - 미등록 토큰 문제 회피 가능
 - 분석 결과의 토큰 시퀀스가 너무 길어지지 않음
 - 대표적인 서브워드 단위 토큰화 기법: 바이트 페어 인코딩(BPE)

- BPE (Byte Pair Encoding)
 - 1994년 제안된 정보 압축 알고리즘
 - 데이터에서 가장 많이 등장한 문자열을 병합하여 데이터를 압축하는 기법
 - 데이터에 등장한 글자를 초기 사전으로 구성하여 연속된 두 글자를 한 글자 로 병합하는 방식 적용
 - 최근에는 자연어 처리 모델에 널리 쓰이는 토큰화 기법
 - 대표적인 활용 모델: GPT 모델

• BPE 알고리즘의 적용 예

- 초기 사전: (a, b, c, d) → 4개, 문자열: aaabdaaabac → 11자
 - aaabdaaabac → aa를 Z로 병합 → ZabdZabac
 - ZabdZabac → ab를 Y로 병합 → ZYdZYac
 - ZYdZYac → ZY를 X로 병합 → XdXac
- BPE 수행 이후
 - 사전: (a, b, c, d, Z, Y, X) > 7개
 - 결과 문자열: XdXac → 5자

BPE기반 토큰화 기법은 사전 크기의 증가를 억제하면서도 정보를 효율적으로 압축할 수 있는 알고리즘이다.

BPE 어휘 집합은 고빈도 바이그램 쌍을 병합하는 방식으로 구축한다.

- BPE 알고리즘의 특징
 - 분석 대상 언어에 대한 지식이 필요하지 않음
 - 말뭉치(코퍼스)에서 자주 나타나는 문자열(서브 워드)을 토큰으로 분석
 - 자연어 처리에서 BPE가 처음 적용된 분야는 기계번역 분야

- BPE 활용 토큰화 절차
 - 1. 어휘 집합 구축: 자주 등장하는 문자열 병합 후 어휘집합 추가 반복
 - 2. 토큰화: 문장의 각 어절에서 어휘 집합에 있는 서브 워드를 어절에서 분리

말뭉치의 모든 문장을 공백으로 분리

어휘 집합 갱신

• BPE 어휘 집합 구축하기

분리된 각 단위의 출현 빈도를 세어서 초기 어휘 집합 구성

어휘 집합이 사용자가 정한 크기가 될 때까지 반복

토큰	빈도
hug	10
pug	5
pun	12
bun	4
hugs	5

초기 어휘 집합으로 다시 작성한 빈도표

빈도
10
5
12
4
5

바이그램 쌍으로 나열

토큰	빈도
h, u	10
u, g	10
p, u	5
u, g	5
p, u	12
u, n	12
b, u	4
u, n	4
h, u	5
u, g	5
g, s	5

u, g 병합

토큰	빈도
h, ug	10
p, ug	5
p, u, n	12
b, u, n	4
h, ug, s	5

토큰	빈도
b, u	4
g, s	5
h, u	15
p, u	17
u, g	20
u, n	16

같은 바이그램 쌍 합치기

바이그램 쌍 빈도로 나열

토큰	빈도
b, u	4
h, ug	15
p, u	12
p, ug	5
u, n	16
ug, s	5

u, n 병합

토큰	빈도
h, ug	10
p, ug	5
p, un	12
b, un	4
h, ug, s	5

바이그램 쌍 빈도로 나열

토큰	빈도
b, un	4
h, ug	15
p, ug	5
p, un	12
ug, s	5

BPE 어휘 집합 구축 결과

b, g, h, n, p, s, u, ug, un, hug

프리 토크나이즈

BPE 적용

말뭉치 준비

- BPE 토큰화
 - 어휘 집합과 병합 우선순위를 기준으로 토큰화 수행
 - 병합 우선순위

토큰	빈도
b, u	4
g, s	5
h, u	15
p, u	17
u, g	20
u, n	16

토큰	빈도
b, u	4
h, ug	15
p, u	12
p, ug	5
u, n	16
ug, s	5

병합 우선순위 u, g 1순위 u, n 2순위 h, ug 3순위

• BPE 토큰화 예시

실습

- 한국어 Tokenizing을 구현하려면?
 - 한국어 문법에 대한 깊은 이해가 필수!!!
 - 비전공자는 어떻게 해야 하나?
 - 한국어 Tokenizing을 지원하는 파이썬 라이브러리를 사용한다.
 - 대표적인 한국어 자연어 처리 지원 라이브러리: KoNLPy (코엔엘파이)

- "토큰 단위를 어떻게 정의하느냐"가 자연어 처리 성능에 큰 영향
- 한국어 분석에서 사용하는 토큰의 단위는 "형태소"
 - 형태소란?
 - 언어학에서 사용되는 용어
 - 일정한 의미가 있는 가장 작은 말의 단위 (의미상 더 이상 쪼개지지 않는 단어)
 - 형태소를 토큰 단위로 사용한다면?
 - 단어와 품사 정보를 같이 활용할 수 있다 > 효과적 처리가 가능함

- 문장을 어떻게 형태소 단위로 분리(Tokenizing)할 수 있는가?
 - 영어의 경우는 Tokenizing이 쉽다
 - 단어의 변화가 크지 않다
 - 띄어쓰기로 단어를 구분한다
 - 따라서, 공백을 기준으로 토크나이징을 수행해도 문제가 없다
 - 한글의 경우는 Tokenizing이 어렵다
 - 한국어는 명사와 조사를 띄어 쓰지 않는다 > 공백을 기준으로 토크나이징 수행 불가능
 - 용언에 따라 여러 가지 어미가 붙는다 → 일정한 기준을 찾기 어렵다
 - 따라서 복잡한 특성을 고려하여 문장에서 형태소를 분석할 수 있는 "형태소 분석기" 가 필수
 - 다양한 문법적 특징을 반영하고 언어적 속성의 구조를 파악할 수 있어야 함

- 한국어 Tokenizing의 어려움의 예
 - 아버지가 방에 들어가신다
 - 아버지 가방에 들어가신다

컴퓨터는 이런 것을 구분하지 못함

- 형태소 분석기를 사용해서 분석한 결과
 - 아버지가 방에 들어가신다.
 - → [('아버지', '명사'), ('가', '조사'), ('방', '명사'), ('에', '조사'), ('들어가신다', '동사(서술어)'), ('.', '마침표(기능적인 기호)')]

• 한국어의 9품사

품사	설명
명사	주로 물건이나 사람, 동식물을 가리킬 때 쓰는 품사 [강아지, 철수, 챗봇,]
대명사	사람이나 사물의 이름을 대신해서 쓰는 품사 [너, 우리, 무엇, 그것,]
수사	숫자나 순서를 나타내는 품사 [하나, 둘, 1, 2, 첫째, 둘째,]
동사	동작이나 작용을 나타내는 품사 [먹었다, 보았다, 간다,]
형용사	사물의 성질이나 상태를 나타내는 품사 [아름답다, 맵다, 희다,]
관형사	체언(명사, 대명사, 수사) 앞에서 체언을 수식하는 품사 [이, 그, 저, 새, 헌, 옛,]
부사	동사, 형용사, 동사구, 문장 전체를 수식하는 역할을 맡은 품사 [정말, 벌써, 매우,]
조사	명사, 부사 따위에 붙어 문법 관계를 맺어주는 품사 [~이, ~가, ~에서,]
감탄사	감탄이나 놀람, 느낌, 응답 등을 나타내는 품사 [꺄, 와, 아하, 헉,]

• 형태소 분석기

- 복잡한 한국어 문법때문에 형태소 분석기의 개발은 매우 어렵다
- KoNLPy 등의 라이브러리 사용은 필수
 - KoNLPy 내부에서 다양한 형태소 분석기를 통합하여 라이브러리 형태로 제공
 - 다소 튜닝이 필요하지만 기본적인 성능이 뛰어난 편 > 실무에서도 많이 사용 중
- KoNLPy가 제공하는 대표적인 형태소 분석기
 - Kkma (꼬꼬마, 서울대에서 개발, GPL2 라이센스), Komoran (코모란, Shineware에서 자바로 개발, Apache 2.0 라이센스), Okt (트위터에서 개발, Apache 2.0 라이센스)
 - 통합제공하기 때문에 세 종류 모두 사용법이 거의 동일함

• KoNLPy의 형태소 분석기 비교

형태소 분석기	장점	단점
Kkma	분석 품질이 좋음지원하는 품사 태그가 가장 많음	 분석 속도가 느림 사용자 사전으로 추가한 복합 명사에 대하여 불완전하게 동작함
Komoran	자소가 분리된 문장이나 오탈자에 강함사용자 사전 관리 용이	• 적당한 분석 품질과 분석 속도
Okt	• 매우 빠른 분석 속도 • 정규화 기능 지원	사용자 사전 관리가 어려움용언 분석에 일관성이 부족함

- 사용자 사전 구축
 - 챗봇의 데이터 입력단은 인터넷 구어체와 관련이 많음
 - → 일반적으로 딱딱한 구어체, 문어체 등을 사용하지 않음
 - 새롭게 생겨나는 단어나 문장은 형태소 분석기가 인식하지 못하는 경우 많음
 - 기존의 많은 문장을 이용하여 형태소 분석기 모델이 개발되었으므로 새로운 형태의 단어, 문장은 학습 데이터에 포함되어 있지 않음 → 인식률 저하의 원인
 - 문제의 해결을 위해 대부분의 형태소 분석기는 사용자 사전을 추가할 수 있 도록 구성됨