

- Theoretical Introduction to Principle of Minimum Potential Energy(PMPE)
- Deformation Analysis of A Bar
- Outcome Analysis
- Error Analysis
- Applications

Principle of Minimum Potential Energy(PMPE)

•
$$\pi[\hat{u}(x)] = U[\hat{u}(x)] - V[\hat{u}(x)]$$

• $U[\hat{u}(x)]$ Internal energy in the body

$$U[\widehat{u}(x)] = \frac{1}{2} \int_0^L k \left(\frac{d\widehat{u}}{dx}\right)^2 dx$$

• $V[\hat{u}(x)]$ Work of the applied load

$$V[\hat{u}(x)] = \int_0^L p\hat{u}(x)dx + T_L\hat{u}(L)$$

Principle of Minimum Potential Energy(PMPE)

$$\pi[\hat{u}(x)] = \frac{1}{2} \int_0^L k \left(\frac{d\hat{u}}{dx}\right)^2 dx - \int_0^L p\hat{u}(x) dx - T_L \hat{u}(L)$$

- Set u is the solution to the boundary value problem.
- $\hat{u} = u + \varepsilon v$

 ε is arbitrary constant

v satisfies homogenous geometry (arbitrary but not fixed)

• $\pi[\hat{u}] - \pi[u] = \pi[u + \varepsilon v] - \pi[u]$

$$= \frac{1}{2} \int_0^L k(u' + \varepsilon v')^2 dx - \frac{1}{2} \int_0^L k(u')^2 dx$$

$$= \varepsilon \left[\int_0^L ku'v' dx - \int_0^L pv dx - T_L v(L) \right] + \frac{1}{2} \varepsilon^2 \int_0^L k(v')^2 dx$$

•
$$\lim_{\varepsilon \to 0} \frac{\pi[u + \varepsilon v] - \pi[u]}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{\varepsilon \left[\int_0^L k u' v' dx - \int_0^L p v dx - T_L v(L) \right] + \frac{1}{2} \varepsilon^2 \int_0^L k (v')^2 dx}{\varepsilon}$$
$$= \int_0^L k u' v' dx - \int_0^L p v dx - T_L v(L)$$

- Theoretical Introduction to Principle of Minimum Potential Energy(PMPE)
- Deformation Analysis of A Bar
- Outcome Analysis
- Error Analysis
- Applications

Deformation Analysis of A Bar

 Consider the following normalized boundary value problem:

```
\cdot -(k^* u') '= p (0 < x < 1)
```

•
$$k=x^0.5$$
, $p = x^2$

•
$$u'(0) = 0$$
, $u(1) = 0$.

- Use piecewise quadratic finite elements method
- n elements
- Each element has A, B, C nodes
- N nodes, N = 2n + 1

The approximate solution

$$u_{h} = \sum_{i=1}^{n} (u_{Ai} \psi_{A} + u_{Ci} \psi_{C} + u_{Bi} \psi_{B}) = \sum_{i=1}^{N} u_{i} \psi_{i}$$

• u_i: deformation of each node

Weak form of BVP

$$\int_0^L ku'v'dx - \int_0^L pvdx = 0$$

$$\sum_{i=1}^{N} K_{ij} u_j - P_i = 0$$

$$K_{ij} = \int_{0}^{1} k \psi_{i} \psi_{j} dx$$

$$P_i = \int_0^1 p \psi_i dx$$

Ψ_{i}

• For element i, i=1,2,3.....n, transform coordinate x to local coordinate ξ (0 < ξ < 1):

$$x = x_c + \xi h, x_c = (i-1) \cdot 2h + h = 2ih - h$$

$$\begin{cases} \psi_{A} = \frac{1}{2} \xi(\xi - 1) \\ \psi_{B} = (1 - \xi)(1 + \xi) \end{cases} \begin{cases} \psi_{A}' = \frac{1}{h}(\xi - \frac{1}{2}) \\ \psi_{B}' = -2\xi \frac{1}{h} \\ \psi_{C} = \frac{1}{2} \xi(\xi + 1) \end{cases}$$

$$\begin{cases} \psi_{C}' = \frac{1}{h}(\xi + \frac{1}{2}) \\ \psi_{C}' = \frac{1}{h}(\xi + \frac{1}{2}) \end{cases}$$

 Ψ_{i}

$K \times u = P$

$\int K_{11}^1$	K_{12}^{1}	K_{13}^{1}	0	•••	•••		0		$\int u_1$		$\left[egin{array}{cc} P_A^1 & \end{array} ight]$
K_{21}^{1}	K_{22}^{1}	K^1_{23}					•		u_2		$P_{\scriptscriptstyle B}^1$
K_{31}^{1}	K_{32}^{1}	$K_{33}^1 + K_{11}^2$	K_{12}^{2}	K_{13}^{2}	٠.		•		•		$P_C^1 + P_A^2$
0		K_{21}^{2}	K_{22}^{2}	K_{23}^{2}							P_B^2
:		K_{31}^{2}	K_{32}^{2}	$K_{33}^2 + K_{11}^3$						$ = \langle$	$P_C^2 + P_A^3$
:					•••		0				:
		•••				$K_{33}^{n-1} + K_{11}^n$	K_{12}^{n}	K_{13}^n			$P_C^{n-1} + P_A^n$
						K_{21}^n	K_{22}^n	K_{23}^n	•		P_{B}^{n}
0	• • •	• • •			0	K_{31}^{n}	K_{32}^{n}	K_{33}^n	$\lfloor u_N \rfloor$		$\left[egin{array}{c} P_C^n \end{array} ight]$

Boundary condition

$$u'(0) = 0, u(1) = 0 \Rightarrow u_1' = 0, u_N = 0$$

$$u_1' = u_1 \psi_A'(-1) + u_2 \psi_C'(-1) + u_3 \psi_B'(-1)$$

$$= -\frac{3}{2}u_1 + 2u_2 - \frac{1}{2}u_3 = 0$$

$$\begin{bmatrix} -\frac{3}{2} & 2 & -\frac{1}{2} & 0 & \dots & \dots & 0 \\ K_{21}^{1} & K_{22}^{1} & K_{23}^{1} & & & & \vdots \\ K_{31}^{1} & K_{32}^{1} & K_{33}^{1} + K_{11}^{2} & K_{12}^{2} & K_{13}^{2} & \ddots & & \vdots \\ 0 & K_{21}^{2} & K_{22}^{2} & K_{23}^{2} & & & & & \\ \vdots & & & K_{31}^{2} & K_{32}^{2} & K_{33}^{2} + K_{11}^{3} & & & & & \\ \vdots & & & & \ddots & & & 0 \\ & & \ddots & & & & K_{31}^{n-1} + K_{11}^{n} & K_{12}^{n} & K_{13}^{n} \\ \vdots & & & & & & K_{21}^{n} & K_{22}^{n} & K_{23}^{n} \\ 0 & \dots & \dots & & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ u_{N} \end{bmatrix} = \begin{bmatrix} 0 \\ P_{B}^{1} \\ P_{C}^{1} + P_{A}^{2} \\ P_{B}^{2} \\ P_{C}^{2} + P_{A}^{3} \\ \vdots \\ \vdots \\ u_{N} \end{bmatrix}$$

Exact Solution

$$-x^{1/2}u' = \frac{x^3}{3} + c_1$$

$$u' = -\frac{x^{5/2}}{3} + c_1x^{-1/2}$$

$$u = -\frac{2}{21}x^{7/2} + 2c_1x^{1/2} + c_2$$

$$u'(0) = 0, u(1) = 0 \Rightarrow \begin{cases} c_1 = 0 \\ c_2 = \frac{2}{21} \end{cases}$$

$$u = -\frac{2}{21}x^{7/2} + \frac{2}{21}$$

- Theoretical Introduction to Principle of Minimum Potential Energy(PMPE)
- Deformation Analysis of A Bar
- Outcome Analysis
- Error Analysis
- Applications

Outcome

Left end(x=0)	Displacement	Slope	Potential Energy
n=4	0.0961	0	0.0257
n=8	0.0954	1.13e-14	0.0256
n=16	0.0953	2.04e-14	0.0256
Exact solution	0.0952	0	0.0256

Outcome

Middle(x=1/2)	Displacement	Slope	Potential Energy
n=4	0.0871	-0.0498	0.0257
n=8	0.0869	-0.0520	0.0256
n=16	0.0868	-0.0549	0.0256
Exact solution	0.0868	-0.0589	0.0256

Outcome

Right End(x=1)	Displacement	Slope	Potential Energy
n=4	0	-0.3278	0.0257
n=8	0	-0.3318	0.0256
n=16	0	-0.3329	0.0256
Exact solution	0	-0.3333	0.0256

Displacement

	n=4		n=8		n=16	ò
u0	0.096144	u0	0.095356	u0	0.095253 u1	0.084835
u1	0.095859	u1	0.095331	u1	0.095251 u1	18 0.082529
u2	0.095005	u2	0.095255	u2	0.095244 u1	19 0.079881
u3	0.092579	u3	0.095041	u3	0.095225 u2	20 0.07686
u4	0.087121	u4	0.094558	u4	0.095183 u2	21 0.073436
u5	0.077086	u5	0.093671	u5	0.095104 u2	22 0.06958
u6	0.06058	u6	0.092213	u6	0.094975 u2	23 0.065261
u7	0.035635	u7	0.090008	u7	0.094781 u2	24 0.060445
u8	0	u8	0.086858	u8	0.094502 u2	25 0.0551
		u9	0.082559	u9	0.094122 u2	26 0.049194
		u10	0.076883	u10	0.093621 u2	0.042691
		u11	0.0696	u11	0.092977 u2	28 0.035558
		u12	0.06046	u12	0.092169 u2	29 0.027758
		u13	0.049205	u13	0.091174 u3	0.019257
		u14	0.035565	u14	0.089968 u3	31 0.010016
		u15	0.019261	u15	0.088527 u3	32 0
		u16	0	u16	0.086825	

Displacement

Slop of displacement

- Theoretical Introduction to Principle of Minimum Potential Energy(PMPE)
- Deformation Analysis of A Bar
- Outcome Analysis
- Error Analysis
- Applications

Error Analysis

$$e(x) = u(x) - u_h(x)$$

For element i (i=1,2,3.....n):

$$x_C = i \cdot 2h - h$$

$$e(\xi) = -\frac{2}{21}(x_C + \xi h)^{7/2} + \frac{2}{21} - (u_A^i \psi_A(\xi) + u_C^i \psi_C(\xi) + u_B^i \psi_B(\xi))$$

$$e'(\xi) = -\frac{1}{3}(x_C + \xi h)^{5/2} - (u_A^i \psi'_A(\xi) + u_C^i \psi'_C(\xi) + u_B^i \psi'_B(\xi))$$

$$\xi \in (-1,1)$$

Error Analysis

Energy norm:

$$\begin{aligned} \|e\|_{E} &= \left[\frac{1}{2} \int_{0}^{1} k(e')^{2} dx\right]^{1/2} \\ &= \left[\frac{1}{2} \sum_{i=1}^{n} \int_{-1}^{1} (x_{C} + \xi h)^{1/2} (e')^{2} d\xi h\right]^{1/2} \end{aligned}$$

The image shows the relationship between $\log_{10}(1/h)$ and $\log_{10}(e)$

- Theoretical Introduction to Principle of Minimum Potential Energy(PMPE)
- Deformation Analysis of A Bar
- Outcome Analysis
- Error Analysis
- Applications

Application

