mixed states. If ρ is pure, then $\rho^2 = \rho$, so $Tr(\rho^2) = Tr(\rho) = 1$ by Definition A.2.5, and $Tr(\rho)$ attains the upper bound. If $\rho = \frac{1}{q^n}I$ is the maximally mixed state, then $Tr(\rho^2) = Tr(\frac{1}{q^{2n}}I) = \frac{1}{q^n}$ and the lower bound is met.

Lemma 3.4.8. Fix a pure state ρ on $\mathbb{C}^{\mathbb{Z}_q}$. Let $\mathcal{B} = \{B_i\}_{i=1}^{q+1}$ be the q+1 measurements of Example 3.4.5. Then

$$\sum_{i=1}^{q+1} \sum_{b \in out(B_i)} (p(b|B_i))^2 = 2,$$

where $p(b|B_i) := Tr(\rho b)$.

Proof. Proposition 3.3.13 gives that for each $i \in \{1, 2, ..., q + 1\}$, we have $p(b|B_i) = \sum_{x \in P_{b,B_i}} W_{\rho}(x)$, where $P_{b,B_i} \in Line(\mathbb{Z}_q^2)$ is defined in Definition 3.3.14. It follows that for each i, $p(b|B_i)^2 = \sum_{x,y \in P_{b,B_i}} W_{\rho}(x)W_{\rho}(y)$.

We have the following calculation.

$$\sum_{i=1}^{q+1} \sum_{b \in out(B_i)} p(b|B_i)^2 = \sum_{i=1}^{q+1} \sum_{b \in out(B_i)} \sum_{x,y \in P_{b,B_i}} W_{\rho}(x) W_{\rho}(y) \qquad \text{Part 1 of Theorem 3.3.5}$$

$$(3.9)$$

$$= \sum_{l \in Line(\mathbb{Z}_q^2)} \sum_{x,y \in l} W_{\rho}(x) W_{\rho}(y) \qquad \text{Striations partition } Line(\mathbb{Z}_q^2)$$

$$= \sum_{x \neq y \in \mathbb{Z}_q^2} W_{\rho}(x) W_{\rho}(y) + (q+1) \sum_{x \in \mathbb{Z}_q^2} W_{\rho}(x)^2 \qquad \text{Proposition 3.4.4}$$

$$= (\sum_{x \in \mathbb{Z}_q^2} W_{\rho}(x))^2 + q \sum_{x \in \mathbb{Z}_q^2} W_{\rho}(x)^2 \qquad \text{Factoring the first summand}$$

$$(3.12)$$

$$\leq 2 \qquad \qquad \text{Lemma 3.4.7}$$

$$(3.13)$$

The inequality in the last step is saturated iff ρ is a pure state.

Theorem 3.4.9. ([112]) Let q be an odd prime, and let $\mathcal{B} = \{B_i\}_{i=1}^{q+1}$ be the collection of q+1 mutually unbiased bases of $\mathbb{C}^{\mathbb{Z}_q}$ in Example 3.4.5. For any quantum state ρ on $\mathbb{C}^{\mathbb{Z}_q}$, $\mathbb{E}_{B_i \in \mathcal{B}}[H_2(B_i)] \geq \log_2(q+1) - 1$, where $H_2(B_i)$ is the 2-Rényi entropy of the probability distribution of the set of outcomes out (B_i) when measured on ρ .

The expected value is calculated relative to the uniform distribution on \mathcal{B} .

Proof. We use the concavity of log and Lemma 3.4.8.

$$\mathbb{E}_{B_i \in \mathcal{B}}[H_2(B_i)] = \frac{1}{q+1} \sum_{i=1}^{q+1} (-\log_2(\sum_{b \in out(B_i)} p(b|B_i)^2))$$
 Definition 3.4.1

$$\geq -\log_2(\frac{1}{q+1} \sum_{b \in out(B_i), i=1}^{i=q} p(b|B_i)^2)$$
 Proposition C.4.16

$$\geq \log_2(q+1) - 1$$
 Lemma 3.4.8

The more general result of [112] applies to every collection of q+1 mutually unbiased bases in \mathbb{C}^q for $q \in \mathbb{N}$ not necessarily prime. We will generalize Theorem 3.4.9 in another direction by allowing $n \geq 1$ and by allowing partial measurements.

Definition 3.4.10 (Grouped). Let $n \in \mathbb{N}$, and let R be a striction of \mathbb{Z}_q^{2n} . Then two points $x, y \in \mathbb{Z}_q^{2n}$ are said to be grouped by R if they appear in the same part of the striction. We denote this by $x \sim_R y$.

Since there is a bijection between ${}^q\mathcal{L}^n$ and striations of \mathbb{Z}_q^{2n} , we also allow writing $x \sim_T y$ if x and y are grouped by the striation in direction T, for $T \in {}^q\mathcal{L}^n$.

The following lemma is the analog of the fact, "Every two distinct points have a unique line containing them."

Lemma 3.4.11. Let $n, k \in \mathbb{N}$ with $n \geq k$. Let $x \neq y \in \mathbb{Z}_q^{2n}$. Then

$$|\{T \in {}^{q}\mathcal{L}_{k}^{n} \mid x \sim_{T} y\}| = \frac{q^{2n-k}-1}{q^{k}-1} \prod_{i=1}^{k-1} \frac{q^{2n-i}-q^{i}}{q^{k}-q^{i}}.$$

Proof. Apply an affine transformation so that x is the origin and y is some non-origin point. This will permute the striations, but will not affect the count by Proposition 3.3.10.

Our counting problem simplifies to finding $N := |\{T \in {}^q\mathcal{L}^n_k \mid y \in T\}|$.

Since $Sp(2n, \mathbb{Z}_q)$ acts transitively on non-origin points of \mathbb{Z}_q^{2n4} , N is independent of y.

We will use a counting argument based on the equation $N(q^{2n}-1)=SR$, where N is the number of times each non-origin point is covered, $S=\prod_{i=0}^{k-1}\frac{q^{2n-i}-q^i}{q^k-q^i}$ is the number of k-dimensional isotropic spaces (See Proposition 2.1.8.), and $R=q^{2n-k}-1$ is the number of points (other than the origin) in T^{\perp} for $T \in {}^q\mathcal{L}^n_k$.

Thus,

$$N = \frac{q^{2n-k} - 1}{q^{2n} - 1} \prod_{i=0}^{k-1} \frac{q^{2n-i} - q^i}{q^k - q^i} = \frac{q^{2n-k} - 1}{q^k - 1} \prod_{i=1}^{k-1} \frac{q^{2n-i} - q^i}{q^k - q^i}.$$

The following lemma is the analog of Lemma 3.4.8

Lemma 3.4.12. Let $n \in \mathbb{N}$, and let ρ be a state on $\mathbb{C}^{\mathbb{Z}_q^n}$. Then

$$\sum_{B \in {}^{q}\mathcal{L}_{b}^{n}} \sum_{b \in out(B)} p(b \mid B)^{2} = C(\frac{q^{2n} + q^{3n-k} - q^{n} - q^{2n-k}}{(q^{k} - 1)q^{n}}),$$

where
$$p(b|B) = Tr(\rho b)$$
 for $B \in {}^q\mathcal{L}^n_k$, $b \in out(B)$ and $C = \prod_{i=1}^{m-1} \frac{q^{2n-i}-q^i}{q^k-q^i}$.

Proof. As with the proof of Lemma 3.4.9, we count the sum of squared probabilities of outcomes.

Lemma 3.4.11 asserts that every pair of distinct points of \mathbb{Z}_q^{2n} are grouped together in $\frac{q^{2n-k}-1}{q^k-1}C$ striations, and every point is in $\frac{q^{2n}-1}{q^k-1}C=|^q\mathcal{L}_k^n|$ striations.

⁴ See Corollary A.3.50.

$$\begin{split} &\sum_{B \in {}^q\mathcal{L}_k^n} \sum_{b \in out(B)} p(b|B)^2 = \sum_{B \in {}^q\mathcal{L}_k^n} \sum_{b \in out(B)} (\sum_{x \in P_{b,B}} W_{\rho}(x))^2 & \text{Proposition 3.3.13} \\ &= \sum_{B \in {}^q\mathcal{L}_k^n} \sum_{b \in out(B)} \sum_{x,y \in P_{b,B}} W_{\rho}(x) W_{\rho}(y) & \text{Distributivity} \\ &= \frac{q^{2n-k}-1}{q^k-1} C \sum_{x \neq y} W_{\rho}(x) W_{\rho}(y) + \frac{q^{2n}-1}{q^k-1} C \sum_{x \in \mathbb{Z}_q^{2n}} W_{\rho}(x)^2 & \text{Lemma 3.4.11} \\ &= \frac{q^{2n-k}-1}{q^k-1} C (\sum_{x \in \mathbb{Z}_q^{2n}} W_{\rho}(x))^2 + (\frac{q^{2n}-1}{q^k-1} - \frac{q^{2n-k}-1}{q^k-1}) C \sum_{x \in \mathbb{Z}_q^{2n}} W_{\rho}(x)^2 & \text{Analog of 3.11} \\ &\leq \frac{q^{2n-k}-1}{q^k-1} C + \frac{q^{2n}-1-(q^{2n-k}-1)}{(q^k-1)q^n} C & \text{Equation 3.8} \\ &= C (\frac{q^{2n}+q^{3n-k}-q^n-q^{2n-k}}{(q^k-1)q^n}) & \text{Combining terms} \end{split}$$

Theorem 3.4.13. Let $n, k \in \mathbb{N}$, $k \leq n$. For each fixed state on $\mathbb{C}^{\mathbb{Z}_q^n}$, the following inequality holds.

$$\mathbb{E}_{S \in {}^{q}\mathcal{L}_{k}^{n}}[H_{2}(S)] \ge \log_{2}\left(\frac{q^{n}(q^{2n}-1)}{q^{2n}+q^{n+k}-q^{n}-q^{k}}\right),$$

where $H_2(S)$ is the Rényi 2-entropy of the distribution of outcomes that results from applying the measurement S to ρ according to Dogma A.2.12. The expected value is calculated relative to the uniform distribution on ${}^q\mathcal{L}^n_k$.

Proof. Again, we use the concavity of information:

$$\mathbb{E}_{S \in {}^q \mathcal{L}_k^n}[H_2(S)] = \frac{1}{\frac{q^{2n}-1}{q^k-1}C} \sum_{B \in {}^q \mathcal{L}_k^n} -\log_2(\sum_{b \in out(B)} p(b|B)^2) \qquad \text{Definition 3.4.1}$$

$$\geq -\log_2(\frac{1}{\frac{q^{2n}-1}{q^k-1}C} \sum_{b,B} p(b|B)^2)) \qquad \text{Propositions C.4.15 and C.4.16}$$

$$\geq -\log_2\left(\frac{q^{2n}+q^{3n-k}-q^n-q^{2n-k}}{q^n(q^{2n}-1)}\right) \qquad \text{Lemma 3.4.12}$$

$$= \log_2\left(\frac{q^{2n}-1}{q^{2n-k}+q^n-q^{n-k}-1}\right). \qquad \text{Using } -\log_2(x) = \log_2(\frac{1}{x})$$

When k = n, we recover the same bound as for mutually unbiased bases, Theorem 3.4.9.

Example 3.4.14. Suppose that q = 3 and n = 2. Choose k = 1 to bound the expected Rényi entropy of Pauli operators ${}^{q}\mathcal{L}_{k}^{n}$. Theorem 3.4.13 gives $\mathbb{E}_{B\in {}^{q}\mathcal{L}_{k}^{n}}[H_{2}(B)] \geq 1.32$. This seems stronger than every bound that can be obtained by using Theorem 3.4.9. Even supposing that each Pauli measurement of ${}^{q}\mathcal{L}_{k}^{n}$ could be put into a mutually unbiased basis, this would only give us a lower bound of 1, on the average.

3.5 Contextuality and the Wigner function

In this section, we see how our observations about the Wigner function can be used to investigate the contextuality of the Pauli measurements when q is odd.

Let $x \in \mathbb{Z}_q^{2n}$ be a point of phase space for some $n \in \mathbb{N}$. Let $M \in {}^q\mathcal{L}^n$ be a Pauli measurement. Then M corresponds to a striation of \mathbb{Z}_q^{2n} . Let p be the part of this striation containing x. Let us say that the outcome p occurs when $x \in p$. Note that this is the outcome that is predicted by applying Dogma A.2.12 to M with the phase-point operator A(x) as the state, ignoring that A(x) is not positive and so cannot be a state.