CENG 218 Design and Analysis of Algorithms

Izmir Institute of Technology

Lecture 2: Asymptotic Notation

Growth of functions

- Previously, we have seen to compute the running time of an algorithm in terms of input size, *n*.
- The order of growth of that time, T(n), gives an idea about the algorithm's efficiency.
- Thus, we can compare the *relative* performance of alternative algorithms.
- Useful in engineering for showing that one design *scales* better or worse than another.

Growth of functions

When n gets large enough, a $\Theta(n^2)$ algorithm always beats a $\Theta(n^3)$ algorithm.

Asymptotic performance

- To make a comparison, we look at input sizes that are large enough.
- That is, the size of the input in the limit. I.e. The growth of T(n) as $n \to \infty$.
- This is why we call it 'asymptotic' performance.

Asymptotic performance: Example

- Suppose you are designing a web site to process database records of *n* users.
- Program A takes $T_A(n)=30n+8$ microseconds, while program B takes $T_B(n)=n^2+1$.
- Which program do you choose?

Asymptotic analysis

- Asymptotic analysis is a useful tool to structure our thinking toward better algorithms.
- It is independent of the computer/platform.
- We shouldn't ignore asymptotically slower algorithms, however. They may be faster for reasonable size input.
- Real-world design situations often call for a careful balancing.

Θ-notation

Mathematical definition:

 $f(n) = \Theta(g(n))$ means (read = as 'is') there exist positive constants c_1 , c_2 , and n_0 such that $c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$

f(n) is 'sandwiched' between $c_1 g(n)$ and $c_2 g(n)$ for big enough n

Θ-notation

Example:

 $f(n)=8n^3+5n^2+7$. $g(n)=n^3$. What may be c_1, c_2, n_0 ?

- c_1 can be 1 as long as n_0 is positive.
- $c_2 = 10$ and $n_0 = 3$ is a proper pair.
- Therefore, using $(c_1, c_2, n_0) = (1,10,3)$ we can say that $8n^3 + 5n^2 + 7 = \Theta(n^3)$

Θ-notation

- If the definition is satisfied, we say that g(n) is an **asymptotically tight bound** for f(n).
- Important: The c_1 , c_2 , n_0 values that make the statement true are *not* unique. Any triple that satisfies the inequalities also work.

Facts about Θ-notation

• When a polynomial function is used, the leading (n^{th}) term dominates its growth: $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$, then $f(x) = \Theta(x^n)$.

More Θ-notation facts

• Transitivity:

$$f = \Theta(g)$$
 and $g = \Theta(h) \rightarrow f = \Theta(h)$

• Reflexivity:

$$f = \Theta(f)$$

• Symmetry:

$$f = \Theta(g) \iff g = \Theta(f)$$

More Θ-notation facts

• Sums of functions:

If
$$g = \Theta(f)$$
 and $h = \Theta(f)$, then $g+h = \Theta(f)$.

• Operations with a constant:

$$\forall a > 0, \ \Theta(af) = \Theta(f+a) = \Theta(f-a) = \Theta(f)$$

More Θ-notation facts

• Combination of functions:

$$f_1$$
 is $\Theta(g_1)$ and f_2 is $\Theta(g_2)$ then,

- 1) $f_1 f_2$ is $\Theta(g_1 g_2)$
- 2) $f_1 + f_2$ is $\Theta(g_1 + g_2) = \Theta(\max(g_1, g_2))$

Θ-notation exercises

1) Give the Θ estimate for $(n \log n + n^2)(n^3 + 2)$ Solution: $(n \log n + n^2)(n^3 + 2) =$ $(\Theta(n) \cdot \Theta(\log n) + \Theta(n^2)) \cdot \Theta(n^3) =$ $(\Theta(n \log n) + \Theta(n^2)) \cdot \Theta(n^3) =$ $\Theta(n^2) \cdot \Theta(n^3) =$ $\Theta(n^5)$

2) Give the Θ estimate for $3n^4 + \log_2 n^8$ Solution: $3n^4 + 8\log_2 n = \Theta(n^4)$

O-notation (Big-O)

- We say f(n) = O(g(n)) if there exist positive constants c and n_0 such that $0 \le f(n) \le c g(n)$ for all $n \ge n_0$
 - When n is greater than n_0 , function f is at most a constant c times function g
- We say that g(n) is an **asymptotic upper** bound for f(n).
- Following descriptions are also used: "f is at most order g", or "f is big-O g"

Big-O definition exercise

• Show that $f(n) = 2n^2 + 5n + 9$ is $O(n^2)$ by finding a pair of (c, n_0) for the definition of the big-O.

$$g(n) = n^2$$
 $f(n) = 2n^2 + 5n + 9$

For c=2, $2n^2+5n+9 \le 2n^2$ is never true.

Let c=3, then $2n^2+5n+9 \le 3n^2$ is true when $5n+9 \le n^2$ which corresponds to $n \ge 7$.

Therefore, $(c,n_0)=(3,7)$ is a proper pair (not the only one) to show that f(n) is $O(n^2)$.

Some facts about big-O

- Unlike Θ , g(n) can be higher order than f(n).
- Because big-O denotes upper bound, we can write $20n^2+4 = O(n^5)$.
- It has transitivity: f = O(g) and $g = O(h) \rightarrow f = O(h)$
- It has reflexivity: f = O(f)
- It does NOT have symmetry: f = O(g) does not imply g = O(f)

Ω -notation (Big omega)

- We say $f(n) = \Omega(g(n))$ if there exist positive constants c and n_0 such that $0 \le c g(n) \le f(n)$ for all $n \ge n_0$
 - When n is greater than n_0 , function f is at least a constant c times function g
- We say that g(n) is an **asymptotic lower** bound for f(n).
- Following descriptions are also used: "f is at least order g", or "f is big- Ωg "

Some facts about Ω

• Since Ω denotes lower bound, g(n) can be lower order than f(n).

E.g.
$$20n^2+4 = \Omega(n)$$

E.g.
$$\sqrt{n} = \Omega(\log_2 n)$$
. Is it?

- Like big-O, Ω has transitivity and reflexivity.
- Like big-O, Ω does NOT have symmetry.

Difference between O and Θ estimates

Question: Give the order of growth for the sum of the first *n* positive integers that are divisible by 3.

Solution 1:

$$f(n) = 3+6+9+....+3n < 3n+3n+3n+....+3n$$

$$3+6+9+....+3n < n \cdot (3n)$$

$$3+6+9+....+3n < 3n^{2}$$

$$f(n) = O(n^2)$$

With this solution you can not say $f(n) = \Theta(n^2)$.

To find Θ estimate, we need a closed-form formula.

Solution 2:
$$3\sum_{k=1}^{n} k = 3\frac{(n+1)\cdot n}{2} = (3/2)\cdot (n^2+n) = \Theta(n^2)$$

$\Theta(g)$, O(g), and $\Omega(g)$

$$f(n) = \Theta(g(n)) \Leftrightarrow (f(n) = O(g(n))) \land (f(n) = O(g(n)))$$

Macro convention

- "O(f)" when used as a term in an arithmetic expression means: "some function f such that f=O(f)".
- E.g.: " $x^2+O(x)$ " means " x^2 plus some function that is O(x)".

o-notation (little-o)

- We use o-notation to denote that the asymptotic upper bound provided by big-O is NOT asymptotically tight.
- E.g.: $2n = o(n^2)$, but $2n^2 \neq o(n^2)$
- f(n) = o(g(n)) if for any positive constant c>0, there exists n_0 such that $0 \le f(n) < cg(n)$ for $n \ge n_0$
- Another view: f(n) = o(g(n)) means $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

ω-notation (little omega)

- We use ω -notation to denote that the asymptotic lower bound provided by Ω is NOT asymptotically tight.
- E.g.: $n^2/2 = \omega(n)$, but $n^2/2 \neq \omega(n^2)$
- $f(n) = \omega(g(n))$ if for any positive constant c>0, there exists n_0 such that $0 \le cg(n) < f(n)$ for $n \ge n_0$
- Another view: $f(n) = \omega(g(n)) \text{ means } \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

More facts

Analogy with the comparison of two numbers:

$$f(n) = O(g(n))$$
 is like $a \le b$
 $f(n) = \Omega(g(n))$ is like $a \ge b$
 $f(n) = \Theta(g(n))$ is like $a = b$
 $f(n) = o(g(n))$ is like $a < b$
 $f(n) = \omega(g(n))$ is like $a > b$

• Transpose symmetry:

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$
 $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$

Relations between $\Theta(g)$, O(g), $\Omega(g)$

• Subset relations between order-of-growth sets.

• Big-omega and big-theta notations are introduced by Donald Knuth (1938-...)

Exercises

1) $2^{n+1} = O(2^n)$ T/F? True

- 2) $f(n) + O(f(n)) = \Theta(f(n))$ T/F? True
- 3) $2^n = \omega(2^{n-2})$ T/F? False

Terminology for the Growth of Functions

• $\Theta(1)$ Constant

• $\Theta(\log_c n)$ Logarithmic (same order $\forall c$)

• $\Theta(\log^c n)$ Polylogarithmic

• $\Theta(n)$ Linear

• $\Theta(n \log n)$ $n \log n$

• $\Theta(n^c)$ Polynomial

• $\Theta(c^n)$, c>1 Exponential

• $\Theta(n!)$ Factorial

Ordering of Functions

Let's write f < g for g is higher order than f and let k > 1 then: $1 < \log n < n < n \log n$

 $1 < \log n < n < n \log n$
 $< n^k < k^n < n! < n^n$

Computer time examples

#opers	n=10	$n=10^6$
$\log n$	$3 \cdot 10^{-9} \text{ s}$	$2\cdot10^{-8}$ s
n	$10^{-8} \mathrm{s}$	10^{-3} s
$n \log n$	3.10^{-8} s	$2 \cdot 10^{-2} \mathrm{s}$
n^2	$10^{-7} \mathrm{s}$	17 min
2^n	$10^{-6} \mathrm{s}$	>10 ^{300,000} years
n!	$3 \cdot 10^{-3} \text{ s}$	****

Assume: 10^{-9} second per operation.

Quiz

Which ones are more appealing?

Which ones are more appealing?

The End

- Next, we will continue with Divide-and-Conquer approach to analyze recursive algorithms.
- Please solve exercises of Chapter 3.1 and problems of Chapter 3.