

Normalizzazione

Tratto da:

Atzeni, Ceri, Fraternali, Paraboschi, Torlone Basi di dati *Quinta edizione* McGraw-Hill Education, 2018 Capitolo 9: *Normalizzazione*

1

Forme normali

- Una forma normale è una proprietà di una base di dati relazionale che ne garantisce la "qualità", cioè l'assenza di determinati difetti
- Quando una relazione non è normalizzata:
 - presenta ridondanze,
 - si presta a comportamenti poco desiderabili durante gli aggiornamenti
- Le forme normali sono di solito definite sul modello relazionale, ma hanno senso in altri contesti, ad esempio il modello E-R

Normalizzazione

- Procedura che permette di trasformare schemi non normalizzati in schemi che soddisfano una forma normale
- La normalizzazione va utilizzata come tecnica di verifica dei risultati della progettazione di una base di dati
- Non costituisce una metodologia di progettazione

3

Una relazione con anomalie

<u>Impiegato</u>	Stipendio	Progetto	Bilancio	Funzione
Rossi	20	Marte	2	tecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	55	Venere	15	direttore
Neri	55	Giove	15	consulente
Neri	55	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

Anomalie

- Lo stipendio di ciascun impiegato è ripetuto in tutte le ennuple relative
 - ridondanza
- Se lo stipendio di un impiegato varia, è necessario andarne a modificare il valore in diverse ennuple
 - · anomalia di aggiornamento
- Se un impiegato interrompe la partecipazione a tutti i progetti, dobbiamo cancellarlo
 - · anomalia di cancellazione
- Un nuovo impiegato senza progetto non può essere inserito
 - · anomalia di inserimento

5

Causa dei problemi:

- Abbiamo usato un'unica relazione per rappresentare informazioni eterogenee
 - ogli impiegati con i relativi stipendi
 - o i progetti con i relativi bilanci
 - le partecipazioni degli impiegati ai progetti con le relative funzioni
- Per studiare in maniera sistematica questi aspetti, è necessario introdurre un nuovo vincolo di integrità: la dipendenza funzionale che descrive legami di tipo funzionale tra gli attributi di una relazione

Esempi di dipendenze funzionali:

- Impiegato → Stipendio
 Ogni impiegato ha un solo stipendio (anche se partecipa a più progetti)
- Progetto → Bilancio
 Ogni progetto ha un bilancio
- Impiegato Progetto → Funzione
 Ogni impiegato in ciascun progetto ha una sola funzione (anche se può avere funzioni diverse in progetti diversi)

7

Dipendenza funzionale

Supponiamo di avere una relazione e che Y e Z sono sottoinsiemi dei suoi attributi.

Y→Z specifica che in qualsiasi istanza della nostra relazione le due tuple che coincidono su Y coincideranno anche su Z.

Es.1: Impiegato → Stipendio

Es.2: Impiegato Progetto → Stipendio Funzione Bilancio

Es.3: Impiegato Progetto ightarrow Impiegato Progetto Stipendio Funzione Bilancio

Dipendenza funzionale

Osservando una determinate istanza:

- relazione r su R(X)
- due sottoinsiemi non vuoti Y e Z di X
- esiste in r una dipendenza funzionale (FD) da Y a
 Z se, per ogni coppia di ennuple t₁ e t₂ di r con gli stessi valori su Y, risulta che t₁ e t₂ hanno gli stessi valori anche su Z

9

FD banali e non banali

- Impiegato Progetto → Progetto
 - Si tratta però di una FD "banale" (sempre soddisfatta)
- Y → A è non banale se l'attributo A non appartiene all'insieme di attributi Y
- Y → Z è non banale se nessun attributo nell'insieme di attributi Z appartiene a Y

Nota: Di solito si specificano solo le FD non banali.

Le anomalie sono legate ad alcune FD

• gli impiegati hanno un unico stipendio

Impiegato → Stipendio

• i progetti hanno un unico bilancio

 $Progetto \rightarrow Bilancio$

11

Non tutte le FD causano anomalie

 In ciascun progetto, un impiegato svolge una sola funzione

Impiegato Progetto \rightarrow Funzione

 Il soddisfacimento è più "semplice", perché Impiegato Progetto è chiave

FD e anomalie

- La terza FD corrisponde ad una chiave e non causa anomalie
- Le prime due FD non corrispondono a chiavi e causano anomalie
- La relazione contiene alcune informazioni (Funzione) legate ad intera chiave e altre (Stipendio, Bilancio) legate ad attributi che non formano una chiave
- Le anomalie sono causate dalla presenza di concetti eterogenei:
 - proprietà degli impiegati (lo stipendio)
 - o proprietà di progetti (il bilancio)
 - o proprietà della chiave Impiegato Progetto

13

Forma normale di Boyce e Codd (BCNF)

- Una relazione r è in forma normale di Boyce e Codd se, per ogni dipendenza funzionale (non banale) X → Y definita su di essa, X contiene una chiave di r (X è superchiave)
- Questa forma normale richiede che i concetti in una relazione siano omogenei (solo proprietà direttamente associate alla chiave)

Che facciamo se una relazione non soddisfa la BCNF?

 La rimpiazziamo con altre relazioni che soddisfano la BCNF

Come?

 Decomponendo sulla base delle dipendenze funzionali, al fine di separare i concetti indipendenti

15

<u>Impiegato</u>	Stipendio	Progetto	Bilancio	Funzione
Rossi	20	Marte	2	tecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	55	Venere	15	direttore
Neri	55	Giove	15	consulente
Neri	55	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

Impiegato → Stipendio
Progetto → Bilancio
Impiegato Progetto → Funzione

<u>Impiegato</u>	Stipendio
Rossi	20
Verdi	35
Neri	55
Mori	48
Bianchi	48

<u>Progetto</u>	Bilancio
Marte	2
Giove	15
Venere	15

<u>Impiegato</u>	<u>Progetto</u>	Funzione
Rossi	Marte	tecnico
Verdi	Giove	progettista
Verdi	Venere	progettista
Neri	Venere	direttore
Neri	Giove	consulente
Neri	Marte	consulente
Mori	Marte	direttore
Mori	Venere	progettista
Bianchi	Venere	progettista
Bianchi	Giove	direttore

17

Procedura intuitiva di normalizzazione

 Per ogni dipendenza X → Y che viola la BCNF, definire una relazione su XY ed eliminare Y dalla relazione originaria.

Problema: Non valida in generale, ma solo nei "casi semplici"

Non sempre così facile

Impiegato	Progetto	Sede
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Venere	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

 $\begin{array}{c} \text{Impiegato} \rightarrow \text{Sede} \\ \text{Progetto} \rightarrow \text{Sede} \end{array}$

19

Decomponiamo sulla base delle dipendenze

Impiegato	Progetto	Sede
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Venere	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

(10000000000000000000000000000000000000	
Impiegato	Sede
Rossi	Roma
Verdi	Milano
Neri	Milano

Progetto	Sede
Marte	Roma
Giove	Milano
Saturno	Milano
Venere	Milano

Proviamo a ricostruire

Impiegato	Sede
Rossi	Roma
Verdi	Milano
Neri	Milano

Progetto	Sede
Marte	Roma
Giove	Milano
Saturno	Milano
Venere	Milano

Impiegato	Progetto	Sede
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Venere	Milano
Neri	Saturno	Milano
Neri	Venere	Milano
Verdi	Saturno	Milano
Neri	Giove	Milano

Diversa dalla relazione di partenza!

21

Decomposizione senza perdita

- Una relazione r si decompone senza perdita su X₁ e X₂ se il join delle proiezioni di r su X₁ e X₂ è uguale a r stessa (cioè non contiene ennuple spurie)
- La decomposizione senza perdita è garantita se gli attributi comuni contengono una chiave per almeno una delle relazioni decomposte, cioè se X₁ ∩ X₂ è superchiave per almeno una delle relazioni decomposte

Proviamo a decomporre senza perdita

Impiegato	Progetto	Sede
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Venere	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

Impiegato	Sede
Rossi	Roma
Verdi	Milano
Neri	Milano

Impiegato	Progetto
Rossi	Marte
Verdi	Giove
Verdi	Venere
Neri	Saturno
Neri	Venere

Impiegato → Sede Progetto → Sede

23

Un altro problema

 Attributi Progetto e Sede non si trovano più nella stessa relazione, si "perde" la dipendenza Progetto → Sede.

Impiegato	Sede
Rossi	Roma
Verdi	Milano
Neri	Milano

Impiegato	Progetto
Rossi	Marte
Verdi	Giove
Verdi	Venere
Neri	Saturno
Neri	Venere

 $\begin{array}{c} \text{Impiegato} \rightarrow \text{Sede} \\ \text{Progetto} \rightarrow \text{Sede} \end{array}$

Supponiamo di voler inserire una nuova ennupla che specifica la partecipazione dell'impiegato Neri, che opera a Milano, al progetto Marte:

| Impiegato | Progetto | Rossi | Marte | Verdi | Giove | Verdi | Venere | Verdi | Venere |

25

Conservazione delle dipendenze

- Una decomposizione conserva le dipendenze se ciascuna delle dipendenze funzionali dello schema originario coinvolge attributi che compaiono tutti insieme in uno degli schemi decomposti
- Progetto → Sede non è conservata

Qualità delle decomposizioni

- Una decomposizione dovrebbe sempre soddisfare due requisiti:
 - la decomposizione senza perdita, che garantisce la ricostruzione delle informazioni originarie
 - la conservazione delle dipendenze, che garantisce il mantenimento dei vincoli di integrità originari

27

Un caso dove BCNF non è raggiungibile

Dirigente	Progetto	<u>Sede</u>
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Marte	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

Progetto Sede → Dirigente Dirigente → Sede

Una relazione r è in forma normale di Boyce e Codd se, per ogni dipendenza funzionale (non banale) $X \to Y$ definita su di essa, X è superchiave

La decomposizione è problematica

- Progetto Sede → Dirigente coinvolge tutti gli attributi e quindi nessuna decomposizione può preservare tale dipendenza
- quindi in alcuni casi la BCNF "non è raggiungibile"

29

Una nuova forma normale

- Una relazione r è in terza forma normale se, per ogni FD (non banale) X → Y definita su r, è verificata almeno una delle seguenti condizioni:
 - X contiene una chiave K di r
 - ogni attributo in Y è contenuto in almeno una chiave di r

BCNF e terza forma normale

- la terza forma normale è meno restrittiva della forma normale di Boyce e Codd (e ammette relazioni con alcune anomalie)
- ha il vantaggio però di essere sempre "raggiungibile"
- se una relazione ha una sola chiave, allora essa è in BCNF se e solo se è in 3NF

31

Decomposizione in terza forma normale

- si crea una relazione per ogni gruppo di attributi coinvolti in una dipendenza funzionale
- si verifica che alla fine una relazione contenga una chiave della relazione originaria
- Dipende dalle dipendenze individuate

Una possibile strategia

- se la relazione non è normalizzata si decompone in terza forma normale
- alla fine si verifica se lo schema ottenuto è anche in BCNF

33

Uno schema non decomponibile in BCNF

Dirigente	Progetto	<u>Sede</u>
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Marte	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

 $\begin{array}{c} \text{Dirigente} \rightarrow \text{Sede} \\ \text{Progetto Sede} \rightarrow \text{Dirigente} \end{array}$

Una possibile riorganizzazione

Dirigente	Progetto	<u>Sede</u>	Reparto
Rossi	Marte	Roma	1
Verdi	Giove	Milano	1
Verdi	Marte	Milano	1
Neri	Saturno	Milano	2
Neri	Venere	Milano	2

Dirigente → Sede Reparto Sede Reparto → Dirigente Progetto Sede → Reparto

Da notare che dipendenze sopra garantiscono che:

Dirigente → Sede

Progetto Sede → Dirigente

35

Decomposizione in BCNF

<u>Dirigente</u>	Sede	Reparto
Rossi	Roma	1
Verdi	Milano	1
Neri	Milano	2

 $\begin{array}{l} \text{Dirigente} \rightarrow \text{Sede Reparto} \\ \text{Sede Reparto} \rightarrow \text{Dirigente} \end{array}$

Progetto	<u>Sede</u>	Reparto
Marte	Roma	1
Giove	Milano	1
Marte	Milano	1
Saturno	Milano	2
Venere	Milano	2

 $\textbf{Progetto Sede} \rightarrow \textbf{Reparto}$

Una relazione r è in forma normale di Boyce e Codd se, per ogni dipendenza funzionale (non banale) $X \to Y$ definita su di essa, X contiene una chiave di r

Altre forme normali

- Prima Forma Normale (1NF)
 Richiede semplicemente che tutti gli attributi dello schema abbiano domini "atomici" (ovvero non siano composti o multivalore)
- Seconda Forma Normale (2NF)
 Uno schema R(X) è in seconda forma normale se e solo se ogni attributo non appartenente a nessuna chiave dipende completamente da ogni chiave (ovvero non dipende solamente da una parte di chiave)

Es. R(Impiegato, Categoria, Stipendio)

Impiegato—Categoria

Categoria -> Stipendio

37

Teoria della normalizzazione

- I concetti visti possono essere formalizzati in maniera precisa
- Problema: data una relazione r e un insieme di dipendenze funzionali definite su r, generare una decomposizione di r che:
 - Sia senza perdita e conservi le dipendenze
 - Contenga solo relazioni normalizzate
- Faremo riferimento alla 3NF

Implicazione dipendenze funzionali

- Un insieme F di FD implica un'altra FD f se ogni relazione che soddisfa tutte le FD in F soddisfa anche f.
- Esempio:
 - R(Impiegato, Categoria, Stipendio)
 - Le FD Impiegato—Categoria e
 Categoria—Stipendio implicano la FD
 Impiegato—Stipendio.

39

Chiusura di un insieme di attributi

Dati uno schema di relazione R(U), un insieme F di FD definite su U e un insieme di attributi X contenuti in U (cioè X ⊆ U): la chiusura di X rispetto ad F, indicata con X⁺_F, è l'insieme degli attributi che dipendono funzionalmente da X:

$$X_F^+ = \{A \mid A \in U \text{ e } F \text{ implica } X \rightarrow A \}$$

• Se A appartiene a X^+_F allora $X \to A$ è implicata da F

Calcolo di X⁺_F

Input: un insieme X di attributi e un insieme F di dipendenze funzionali

Es. X={ Impiegato} e F={Impiegato→Categoria, Categoria→Stipendio}

Output: un insieme X_p di attributi.

- Llnizializziamo X_P con l'insieme di input X. $X_p = \{ Impiegato \}$
- 2. Se esiste una FDY \rightarrow A in F conY \subseteq X_P e A \notin X_P allora aggiungiamo A a X_p .

Siccome Impiegato→Categoria, X_p={ Impiegato, Categoria}

3. Ripetiamo il passo (2) fino a quando non ci sono

ulteriori attributi che possono essere aggiunti a X_P
Siccome Categoria→Stipendio, aggiungiamo anche Stipendio:
X_p={ Impiegato, Categoria, Stipendio}
Non possiamo aggiungere più niente. Analisi termina.

41

Chiusura e chiave

- Un insieme di attributi K è superchiave per uno schema di relazione R(U) su cui è definito un insieme di dipendenze funzionali F se F implica $K \rightarrow U$.
- L'algoritmo appena mostrato può essere utilizzato per verificare se un insieme di attributi è superchiave.

Es. R(Impiegato, Categoria, Stipendio) F={ Impiegato→Categoria Categoria→Stipendio} {Impiegato}⁺_F={Impiegato, Categoria, Stipendio} Quindi, Impiegato è chiave di R

Coperture di dipendenze funzionali

- Due insiemi di dipendenze funzionali F₁
 ed F₂ sono equivalenti se F₁ implica
 ciascuna dipendenza in F₂ e viceversa.
- Se due insiemi sono equivalenti diciamo anche che ognuno è una copertura dell'altro.
- Questa proprietà consente di utilizzare, dato un insieme di dipendenze, un altro, a esso equivalente, ma più semplice.

43

Proprietà desiderabili di FD

- Un insieme di dipendenze F è:
 - ∘ **non ridondante** se non esiste dipendenza $f \in F$ tale che $F \{f\}$ implica f;
 - **ridotto** se (i) è non ridondante e (ii) non esiste un insieme F' equivalente a F ottenuto eliminando attributi dai primi membri di una o più dipendenze di F.
- Esempio:

$$F_1 = \{A \rightarrow B; AB \rightarrow C; A \rightarrow C\}$$

Proprietà desiderabili di FD

- Un insieme di dipendenze F è:
 - non ridondante se non esiste dipendenza f ∈ F tale che F - {f} implica f;
 - ridotto se (i) è non ridondante e (ii) non esiste un insieme F' equivalente a F ottenuto eliminando attributi dai primi membri di una o più dipendenze di F.
- Esempio:

$$F_1 = \{A \rightarrow B; AB \rightarrow C; A \rightarrow C\}$$

45

Proprietà desiderabili di FD

- Un insieme di dipendenze F è:
 - ∘ **non ridondante** se non esiste dipendenza $f \in F$ tale che $F \{f\}$ implica f;
 - **ridotto** se (i) è non ridondante e (ii) non esiste un insieme F' equivalente a F ottenuto eliminando attributi dai primi membri di una o più dipendenze di F.
- Esempio:

$$F_1 = \{A \rightarrow B; AB \rightarrow C; A \rightarrow C\}$$
$$F_2 = \{A \rightarrow B; AB \rightarrow C\}$$

Proprietà desiderabili di FD

- Un insieme di dipendenze F è:
 - non ridondante se non esiste dipendenza f ∈ F tale che F - {f} implica f;
 - ridotto se (i) è non ridondante e (ii) non esiste un insieme F' equivalente a F ottenuto eliminando attributi dai primi membri di una o più dipendenze di F.
- Esempio:

$$F_1 = \{A \rightarrow B; AB \rightarrow C; A \rightarrow C\}$$

$$F_2 = \{A \rightarrow B; AB \rightarrow C\}$$

$$F_3 = \{A \rightarrow B; A \rightarrow C\}$$

47

Calcolo copertura ridotta

- Sostituiamo l'insieme dato con quello equivalente che ha tutti i secondi membri costituiti da singoli attributi;
- 2. Eliminiamo le dipendenze ridondanti;
- 3. Per ogni dipendenza verifichiamo se esistono attributi eliminabili dal primo membro.
 - o In pratica, per ogni dipendenza $X \rightarrow A \in F$, verifichiamo se esiste $Y \subseteq X$ tale che $F \in F$ equivalente a $F = \{X \rightarrow A\} \cup \{Y \rightarrow A\}$.

Schema: R(MCGRDSPA)

FD: M→RSDG, MS→CD,

 $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$,

MPD→AM.

Passo I: $M \rightarrow R$, $M \rightarrow S$, $M \rightarrow D$, $M \rightarrow G$,

 $MS \rightarrow C$, $MS \rightarrow D$,

 $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$,

 $MPD \rightarrow A, MPD \rightarrow M.$

49

Esempio

Schema: R(MCGRDSPA)

FD: M→RSDG, MS→CD,

 $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$,

 $MPD \rightarrow AM$.

Passo 2: $M \rightarrow R$, $M \rightarrow S$, $M \rightarrow D$, $M \rightarrow G$,

 $MS \rightarrow C$, $MS \rightarrow D$,

 $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$,

 $MPD \rightarrow A, MPD \rightarrow M.$

Schema: R(MCGRDSPA)

FD: $M \rightarrow RSDG$, $MS \rightarrow CD$,

 $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$,

MPD→AM.

Passo 2: $M \rightarrow R$, $M \rightarrow S$, $M \rightarrow D$, $M \rightarrow G$,

 $MS \rightarrow C$, $MS \rightarrow D$,

 $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$,

 $MPD \rightarrow A$.

51

Esempio

Schema: R(MCGRDSPA)

FD: M→RSDG, MS→CD,

 $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$,

MPD→AM.

Passo2: $M \rightarrow R$, $M \rightarrow S$, $M \rightarrow D$, $M \rightarrow G$,

 $MS \rightarrow C$, $MS \rightarrow D$,

 $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$,

MPD→A.

Schema: R(MCGRDSPA)FD: $M \rightarrow RSDG$, $MS \rightarrow CD$,

 $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$,

MPD→AM.

Passo2: $M \rightarrow S$, $M \rightarrow D$, $M \rightarrow G$,

 $MS \rightarrow C$, $MS \rightarrow D$,

 $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$,

 $MPD \rightarrow A$.

53

Esempio

Schema: R(MCGRDSPA)

FD: $M \rightarrow RSDG$, $MS \rightarrow CD$,

 $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$,

 $MPD \rightarrow AM$.

Passo2: $M \rightarrow S$, $M \rightarrow D$, $M \rightarrow G$,

 $MS \rightarrow C$, $MS \rightarrow D$,

 $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$,

 $MPD \rightarrow A$.

Schema: R(MCGRDSPA)

FD: M→RSDG, MS→CD,

 $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$,

MPD→AM.

Passo2: $M \rightarrow D$, $M \rightarrow G$,

 $MS \rightarrow C$, $MS \rightarrow D$,

 $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$,

 $MPD \rightarrow A$.

55

Esempio

Schema: R(MCGRDSPA)

FD: M→RSDG, MS→CD,

 $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$,

MPD→AM.

Passo 2: $M \rightarrow D$, $M \rightarrow G$,

 $MS \rightarrow C$, $MS \rightarrow D$,

 $G \rightarrow R, D \rightarrow S, S \rightarrow D,$

 $MPD \rightarrow A$.

```
Schema: R(MCGRDSPA)

FD: M \rightarrow RSDG, MS \rightarrow CD, G \rightarrow R, D \rightarrow S, S \rightarrow D, MPD \rightarrow AM.

Passo 2: M \rightarrow D, M \rightarrow G, MS \rightarrow C, G \rightarrow R, D \rightarrow S, S \rightarrow D, MPD \rightarrow A.
```

57

Esempio

```
Schema: R(MCGRDSPA)

FD: M \rightarrow RSDG, MS \rightarrow CD,
G \rightarrow R, D \rightarrow S, S \rightarrow D,
MPD \rightarrow AM.

Passo3: M \rightarrow D, M \rightarrow G,
MS \rightarrow C,
G \rightarrow R, D \rightarrow S, S \rightarrow D,
MPD \rightarrow A.
```

Schema: R(MCGRDSPA)

FD: M→RSDG, MS→CD,

 $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$,

MPD→AM.

Passo3: $M \rightarrow D$, $M \rightarrow G$,

 $MS \rightarrow C$,

 $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$,

MP→A.

59

Esempio

Schema: R(MCGRDSPA)

FD: M→RSDG, MS→CD,

 $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$,

MPD→AM.

Passo3: $M \rightarrow D$, $M \rightarrow G$,

 $MS \rightarrow C$,

 $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$,

 $MP \rightarrow A$.

Schema: R(MCGRDSPA)

FD: M→RSDG, MS→CD,

 $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$,

MPD→AM.

FINE: $M \rightarrow D$, $M \rightarrow G$,

M→C,

 $G \rightarrow R, D \rightarrow S, S \rightarrow D,$

MP→A.

61

Sintesi di schemi in 3NF

Dati uno schema R(U) e un insieme di dipendenze F su U

- I. Viene calcolata una copertura ridotta G di F;
- 2.G viene partizionato in sottoinsiemi tali che a ogni insieme appartengono dipendenze che hanno primi membri con la stessa chiusura;
- 3. Viene costruito un insieme ${\bf U}$ di sottoinsiemi di ${\bf U}$, uno per ciascuna partizione di dipendenze, con tutti gli attributi coinvolti nella partizione;
- 4.Se un elemento di ${\bf U}$ è propriamente contenuto in un altro, allora esso viene eliminato da ${\bf U}$;
- 5.Viene costruito uno schema di relazione Ri(Ui) per ciascun elemento $U_i \in \boldsymbol{U}$ con associate le dipendenze in G i cui attributi sono tutti contenuti in U_i ;
- 6.Se nessuno degli Ui è superchiave per R(U), allora viene calcolata una chiave K di R(U) e viene aggiunto allo schema generato uno schema di relazione sugli attributi K, senza dipendenze.

Schema: R(MCGRDSPA)

FD: $M \rightarrow RSDG$, $MS \rightarrow CD$, $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$, $MPD \rightarrow AM$.

Al passo I, si ottiene la copertura ridotta:

$$M \rightarrow D, M \rightarrow G, M \rightarrow C, G \rightarrow R, D \rightarrow S, S \rightarrow D, MP \rightarrow A.$$

Al passo 2, si partiziona la copertura negli insiemi:

$$G_1 = \{ M \rightarrow D; M \rightarrow G; M \rightarrow C \}, G_2 = \{ G \rightarrow R \},$$

$$G_3 = \{ D \rightarrow S; S \rightarrow D \}, G_4 = \{ MP \rightarrow A \}$$

- I passi 3, 4 e 5 costruiscono uno schema di relazione per ciascuna partizione (senza eliminazioni), con le dipendenze corrispondenti.
 In particolare, al passo 3 si calcola U={ {MDGC},{GR},{DS},{MPA}} passo 4 lascia U inalterato, al passo 5 si creano gli schemi
 - $R_1(MDGC)$, con le dipendenze $\{M \rightarrow D; M \rightarrow G; M \rightarrow C\}$
 - $R_2(GR) con \{G \rightarrow R\}$
 - $R_3(DS) con \{D \rightarrow S; S \rightarrow D\}$
 - $R_4(MPA)$ con $\{MP \rightarrow A\}$
- Il passo 6 non ha effetti, perché MP è chiave per la R.
- Quindi, viene generato lo schema con le relazioni definite al passo 5.

63

Progettazione e normalizzazione

- la teoria della normalizzazione può essere usata nella progettazione logica per verificare lo schema relazionale finale
- si può usare anche durante la progettazione concettuale per verificare la qualità dello schema concettuale

65

Analisi dell'entità

L'entità viola la forma normale a causa della dipendenza:

PartitalVA → NomeFornitore Indirizzo

Possiamo decomporre sulla base di questa dipendenza

Analisi della relationship

La relationship viola la terza forma normale a causa della dipendenza:

$\textbf{Professore} \rightarrow \textbf{Dipartimento}$

Possiamo decomporre sulla base di questa dipendenza

69

Ulteriore analisi sulla base delle dipendenze

 La relationship Tesi è in BCNF sulla base delle dipendenze

> Studente \rightarrow CorsoDiLaurea Studente \rightarrow Professore

- le due proprietà sono indipendenti
- questo suggerisce una ulteriore decomposizione

71

