Business Analytics

Session 11a. Linear Programming

(Sensitivity Analysis and Duality)

Renyu (Philip) Zhang

New York University Shanghai

Spring 2019

Exercises

• What are the three essential components of linear programming (and optimization models in general)?

(T/F) The optimal solution to a linear program always exists.

 (T/F) It is possible to formulate all the linear programs as a maximization problem.

Google's AdWords Problem

Decisions:

Advertiser	Query 1	Query 2	Query 3
	"4G LTE"	"largest LTE"	"best LTE network"
AT&T	X_{A1}	X_{A2}	X _{A3}
T-Mobile	X _{T1}	X_{T2}	Х тз
Verizon	X_{V1}	X_{V2}	X_{V3}

Revenue:

$$0.5 \textit{\textbf{X}}_{\textit{\textbf{A}}1} + 0.5 \textit{\textbf{X}}_{\textit{\textbf{A}}2} + 1.6 \textit{\textbf{X}}_{\textit{\textbf{A}}3} + \textit{\textbf{X}}_{\textit{\textbf{T}}1} + 0.75 \textit{\textbf{X}}_{\textit{\textbf{T}}2} + 2 \textit{\textbf{X}}_{\textit{\textbf{T}}3} + 0.5 \textit{\textbf{X}}_{\textit{\textbf{V}}1} + 4 \textit{\textbf{X}}_{\textit{\textbf{V}}2} + 5 \textit{\textbf{X}}_{\textit{\textbf{V}}3}$$

Constraints:

- Budget for AT&T: $0.5X_{A1} + 0.5X_{A2} + 1.6X_{A3} \le 170$
- Budget for T-Mobile: $X_{T1} + 0.75X_{T2} + 2X_{T3} \le 100$
- Budget for Verizon: $0.5X_{V1} + 4X_{V2} + 5X_{V3} \le 160$
- Number of $Q_1: X_{A1} + X_{T1} + X_{V1} \le 140$
- Number of Q_2 : $X_{A2} + X_{T2} + X_{V2} \le 80$
- Number of Q_3 : $X_{A3} + X_{T3} + X_{V3} \le 80$
- $\bullet \quad \text{Non-negativity: } \textit{X}_{\textit{A}1}, \textit{X}_{\textit{A}2}, \textit{X}_{\textit{A}3}, \textit{X}_{\textit{T}1}, \textit{X}_{\textit{T}2}, \textit{X}_{\textit{T}3}, \textit{X}_{\textit{V}1}, \textit{X}_{\textit{V}2}, \textit{X}_{\textit{V}3} \geq 0$

Linear Programming (LP) for Google AdWords

$$\max 0.5 X_{A1} + 0.5 X_{A2} + 1.6 X_{A3} + X_{T1} + 0.75 X_{T2} + 2 X_{T3} + 0.5 X_{V1} + 4 X_{V2} + 5 X_{V3}$$

Subject to

$$\begin{aligned} 0.5 \textbf{\textit{X}}_{\textbf{\textit{A}}1} + 0.5 \textbf{\textit{X}}_{\textbf{\textit{A}}2} + 1.6 \textbf{\textit{X}}_{\textbf{\textit{A}}3} &\leq 170 \\ \textbf{\textit{X}}_{\textbf{\textit{T}}1} + 0.75 \textbf{\textit{X}}_{\textbf{\textit{T}}2} + 2 \textbf{\textit{X}}_{\textbf{\textit{T}}3} &\leq 100 \\ 0.5 \textbf{\textit{X}}_{\textbf{\textit{V}}1} + 4 \textbf{\textit{X}}_{\textbf{\textit{V}}2} + 5 \textbf{\textit{X}}_{\textbf{\textit{V}}3} &\leq 160 \\ \textbf{\textit{X}}_{\textbf{\textit{A}}1} + \textbf{\textit{X}}_{\textbf{\textit{T}}1} + \textbf{\textit{X}}_{\textbf{\textit{V}}1} &\leq 140 \\ \textbf{\textit{X}}_{\textbf{\textit{A}}2} + \textbf{\textit{X}}_{\textbf{\textit{T}}2} + \textbf{\textit{X}}_{\textbf{\textit{V}}2} &\leq 80 \\ \textbf{\textit{X}}_{\textbf{\textit{A}}3} + \textbf{\textit{X}}_{\textbf{\textit{T}}3} + \textbf{\textit{X}}_{\textbf{\textit{V}}3} &\leq 80 \\ \textbf{\textit{X}}_{\textbf{\textit{A}}1}, \textbf{\textit{X}}_{\textbf{\textit{A}}2}, \textbf{\textit{X}}_{\textbf{\textit{A}}3}, \textbf{\textit{X}}_{\textbf{\textit{T}}1}, \textbf{\textit{X}}_{\textbf{\textit{T}}2}, \textbf{\textit{X}}_{\textbf{\textit{T}}3}, \textbf{\textit{X}}_{\textbf{\textit{V}}1}, \textbf{\textit{X}}_{\textbf{\textit{V}}2}, \textbf{\textit{X}}_{\textbf{\textit{V}}3} &\leq 0 \end{aligned}$$

Google AdWords Solution

Use the Python package "cvxopt" to obtain the optimal solution.

Optimal Ad Display Strategy:

Advertiser	Query 1	Query 2	Query 3	
	"4G LTE"	"largest LTE"	"best LTE network"	
AT&T	$X_{A1}^* = 40$	$X_{A2}^* = 40$	$X_{A3}^* = 80$	
T-Mobile	$X_{T1}^* = 100$	$X_{T2}^* = 0$	$X_{T3}^* = 0$	
Verizon	$X_{V1}^* = 0$	$X_{V2}^* = 40$	$X_{V3}^* = 0$	

Optimal Revenue=\$428

Sensitivity Analysis

Sensitivity Analysis

What if questions:

- What if the budget for T-Mobile is 10 dollars higher?
- What if the number of displays for Q_1 decreases to 135?
- How would the optimal decision variables and optimal objective function value change if the constraints or the coefficients change?
 - You can change the constraint(s)/coefficient(s) and re-run the optimization.
- Alternatively,
 - "GoogleAd['z']": The shadow price (the change in the optimal objective function value associated with a unit change in this constraint).

Sensitivity Analysis: Shadow Price

Shadow prices for the budget and query number constraints:

	Α	Т	V	Q_1	Q_2	Q_3
Shadow price	0	0.5	0.875	0.5	0.5	1.6

Shadow prices for the non-negativity constraints:

	x_{A1}	x_{A2}	X _{A3}	X _{T1}	x_{T2}	X T3	x_{V1}	x_{V2}	X _{V3}
Shadow price	0	0	0	0	0.125	0.6	0.437	0	0.975
price									

- If the budget for T-mobile increases to \$110, the revenue of Google will be $$428 + 0.5 \times (110 100) = 433 .
- If the number of Q_1 decreases to \$135, the revenue of Google will be $$428 + 0.5 \times (135 140) = 425.5 .
- To use the shadow price, we assume that only one RHS of the constraints is changed.

Duality in Linear Programming

Primal and Dual

$$\begin{aligned} &(\text{Primal}) \max_{(x_1, x_2, \cdots, x_n)} \mathcal{C}_1 x_1 + \mathcal{C}_2 x_2 + \cdots \mathcal{C}_n x_n \\ &\text{subject to} \end{aligned} \\ &\begin{cases} A_{1,1} x_1 + A_{1,2} x_2 + \cdots + A_{1,n} x_n & \leq B_1 \\ A_{2,1} x_1 + A_{2,2} x_2 + \cdots + A_{2,n} x_n & \leq B_2 \\ \cdots & \\ A_{m,1} x_1 + A_{m,2} x_2 + \cdots + A_{m,n} x_n & \leq B_m \\ x_1 \geq 0, x_2 \geq 0, \cdots, x_n \geq 0 \end{cases} \\ &(\text{Dual}) \min_{(y_1, y_2, \cdots, y_m)} B_1 y_1 + B_2 y_2 + \cdots B_m y_m \\ &\text{subject to} \\ &\begin{cases} A_{1,1} y_1 + A_{2,1} y_2 + \cdots + A_{m,1} y_m & \geq \mathcal{C}_1 \\ A_{1,2} y_1 + A_{2,2} y_2 + \cdots + A_{m,2} y_m & \geq \mathcal{C}_2 \\ \cdots & \\ A_{1,n} y_1 + A_{2,n} y_2 + \cdots + A_{m,n} y_m & \geq \mathcal{C}_n \\ y_1 \geq 0, y_2 \geq 0, \cdots, y_m \geq 0 \end{cases}$$

Dual for Google AdWords

$$\min \ 170 \mathbf{y}_1 + 100 \mathbf{y}_2 + 160 \mathbf{y}_3 + 140 \mathbf{y}_4 + 80 \mathbf{y}_5 + 80 \mathbf{y}_6$$

Subject to

$$0.5\mathbf{y}_1 + \mathbf{y}_4 \ge 0.5$$

$$0.5\mathbf{y}_1 + \mathbf{y}_5 \ge 0.5$$

$$1.6\mathbf{y}_1 + \mathbf{y}_6 \ge 1.6$$

$$\mathbf{y}_2 + \mathbf{y}_4 \ge 1$$

$$0.75\mathbf{y}_2 + \mathbf{y}_5 \ge 0.75$$

$$2\mathbf{y}_2 + \mathbf{y}_6 \ge 2$$

$$0.5\mathbf{y}_3 + \mathbf{y}_4 \ge 0.5$$

$$4\mathbf{y}_3 + \mathbf{y}_5 \ge 4$$

$$5\mathbf{y}_3 + \mathbf{y}_6 \ge 5$$

$$\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3, \mathbf{y}_4, \mathbf{y}_5, \mathbf{y}_6 \ge 0$$

Primal and Dual

- As long as either the primal or the dual has a finite optimal solution, the other one also has a finite optimal solution.
- If either the primal or the dual has a finite optimal solution, the optimal objective function values of the primal and the dual are the same.
- If either the primal or the dual has a finite optimal solution, the shadow price of the primal is an optimal solution to the dual.
- If either the primal or the dual has a finite optimal solution, the shadow price of the dual is an optimal solution to the primal.
- Dual of dual is primal.
 - Solving one problem obtains solutions to both.

Duality in LP

- A is a constraint matrix. \mathbf{a}'_i is the *i*th row vector, and A_j is the *j*th column vector.
 - Primal on the left; Dual on the right:

${\bf minimize}$	$\mathbf{c}'\mathbf{x}$		${\bf maximize}$	$\mathbf{p}'\mathbf{b}$	
subject to	$\mathbf{a}_i'\mathbf{x} \geq b_i,$	$i \in M_1$,	subject to	$p_i \geq 0$,	$i \in M_1$,
	$\mathbf{a}_i'\mathbf{x} \leq b_i,$	$i \in M_2$,		$p_i \leq 0$,	$i \in M_2$,
	$\mathbf{a}_i'\mathbf{x} = b_i,$	$i\in M_3,$		p_i free,	$i \in M_3$,
	$x_j \geq 0$,	$j\in N_1,$		$\mathbf{p}'\mathbf{A}_j \leq c_j,$	$j \in N_1$,
	$x_j \leq 0$,	$j \in N_2,$		$\mathbf{p}'\mathbf{A}_j \geq c_j,$	$j \in N_2$,
	x_j free,	$j\in N_3,$		$\mathbf{p}'\mathbf{A}_j=c_j,$	$j \in N_3$.

Fundamental Theorem of Asset Pricing

- Arbitrage: Positive cash flow now, non-negative cash flow for every possible state in the future.
- Option pricing: How should we price a call option to avoid arbitrage?

	Bond	Stock	Call Option	Probability
State 1	\$105	\$150	max(150-100,0)=\$50	0.5
State 2	\$105	\$70	max(70-100,0)=\$0	0.5
Current Price	\$100	\$100	$p_o = ?$	

- Buying x_b units of bond, x_s units of stock, and x_o units of option.
 - $x_i < 0$ means selling.
- No arbitrage means the following LP has a finite solution (0,0,0):

(P)
$$\max[-100x_b - 100x_s - p_ox_o]$$
 (current cash flow) Subject to

$$105x_b + 150x_s + 50x_o \ge 0$$
 (cash flow of State 1 is non-negative) $105x_b + 70x_s + 0x_o \ge 0$ (cash flow of State 2 is non-negative)

Fundamental Theorem of Asset Pricing

• The dual of (\mathcal{P}) :

(D)
$$\min[0y_1 + 0y_2]$$

Subject to
 $105y_1 + 105y_2 = -100$
 $150y_1 + 70y_2 = -100$
 $50y_1 + 0y_2 = -p_0$
 $y_1 \le 0, y_2 \le 0$

- Non-arbitrage is equivalent to that the dual (D) has a feasible solution.
 - $\mathbf{y}_1^* = -0.417$, $\mathbf{y}_2^* = -0.536$, $\mathbf{p}_0 = -50\mathbf{y}_1^* = 20.83$.
 - Risk-neutral probabilities: $(P_1^*, P_2^*) = (0.438, 0.562)$, independent of "true probabilities".
- For any asset written on the stock, where C_1 is the cash flow in State 1 and C_2 is the cash flow in State 2.

The non-arbitrage price is
$$p^* = (P_1^* C_1 + P_2^* C_2)/1.05$$
.

 No arbitrage ⇔ (P) has a finite solution ⇔ (D) has a feasible solution ⇔ existence of risk-neutral probabilities

Fundamental Theorem of Asset Pricing: General Form

- M states (in period 1) and N assets, with cash flow C_{ij} for state i
 and asset j.
- Each state i occurs with probability $P_i > 0$. $P := (P_1, P_2, \cdots, P_M)$
- The price of asset j in period 0: p_j . $p := (p_1, p_2, \dots, p_N)$

Fundamental Theorem of Asset Pricing: General Form

- M states (in period 1) and N assets, with cash flow C_{ij} for state i and asset j.
- Each state i occurs with probability $P_i > 0$. $P := (P_1, P_2, \cdots, P_M)$
- The price of asset j in period 0: p_j . $p := (p_1, p_2, \dots, p_N)$

Fundamental Theorem of Asset Pricing

There is no arbitrage (for the cash flow matrix \mathcal{C} and the price vector p) if and only if there exists a linear pricing rule for the assets, i.e., there exists a vector $(\mathbf{y}_1^*, \mathbf{y}_2^*, \cdots, \mathbf{y}_M^*)$ $(\mathbf{y}_i^* > 0$ for each i), such that for each asset j, $p_j = \sum_{i=1}^M \mathcal{C}_{ij}\mathbf{y}_i^*$. Moreover, \mathbf{y}^* is independent of the true probabilities P.