Logic and Computer Design Fundamentals Chapter 3 – Combinational Logic Design

Part 3 – Arithmetic Functions

Ming Cai cm@zju.edu.cn College of Computer Science and Technology Zhejiang University

Overview

- Iterative combinational circuits
- Binary adders
 - Half and full adders
 - Ripple carry and carry lookahead adders
- Binary subtraction
- Binary adder-subtractors
 - Signed binary numbers
 - Signed binary addition and subtraction
 - Overflow
- *Binary multiplication
- Other arithmetic functions
 - Design by contraction

Block Diagram of a 1D Iterative Array

- **Example:** addition of two 32-bit binary integers
 - Number of inputs = 64

- Truth table rows = 2^{64}
- Equations with up to 64 variables
 Design impractical!
- Iterative array takes advantage of the regularity to make design feasible

Iterative Combinational Circuits

- Arithmetic functions
 - Operate on binary vectors
 - Use the same subfunction in each bit position
- Can design functional block for subfunction and repeat to obtain functional block for overall function
- *Cell* subfunction block
- Iterative array an array of interconnected cells
- An iterative array can be in a single dimension (1D) or <u>multiple</u> dimensions

Functional Blocks: Addition

- Binary addition used frequently
- Addition Development:
 - *Half-Adder* (HA), a 2-input bit-wise addition functional block,
 - Full-Adder (FA), a 3-input bit-wise addition functional block,
 - Ripple Carry Adder, an iterative array to perform binary addition, and
 - Carry-Look-Ahead Adder (CLA), a hierarchical structure to improve performance.

Functional Block: Half-Adder

A 2-input, 1-bit width binary adder that performs the following computations:

- A half adder adds two bits to produce a two-bit sum
- The sum is expressed as a sum bit, S and a carry bit, C
- The half adder can be specified as a truth table for S and $C \Rightarrow$

X	Y	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Logic Simplification: Half-Adder

- The K-Map for S, C is:
- This is a pretty trivial map! By inspection:

$$S = X \overline{Y} + \overline{X} Y = X \oplus Y$$

$$S = (X + Y) \overline{(X + Y)}$$

and

$$C = XY$$

$$\mathbf{C} = \left(\overline{(\mathbf{X} \ \mathbf{Y})} \right)$$

These equations lead to several implementations.

Five Implementations: Half-Adder

We can derive following sets of equations for a halfadder:

(a)
$$S = X \overline{Y} + \overline{X} Y$$

 $C = X Y$
(b) $S = (X + Y) (\overline{X} + \overline{Y})$
 $C = X Y$
(c) $S = (C + \overline{X} \overline{Y})$
 $C = X Y$
(d) $S = (X + Y) \overline{C}$
 $C = (X + Y) \overline{C}$
(e) $S = X \oplus Y$
 $C = X Y$

- (a), (b), and (e) are SOP, POS, and XOR implementations for S.
- In (c), the C function is used as a term in the AND-NOR implementation of S, and in (d), the C function is used in a POS term for S.

Implementations: Half-Adder

The most common half adder implementation is:

$$S = X \oplus Y$$

$$C = X Y$$

A NAND only implementation is:

$$S = (X + Y) \overline{C}$$

$$C = (\overline{(X Y)})$$

Functional Block: Full-Adder

- A full adder is similar to a half adder, but includes a carry-in bit from lower stages. Like the half-adder, it computes a sum bit, S and a carry bit, C.
 - For a carry-in (Z) of 0, it is the same as the half-adder:

For a carry- in(Z) of 1:

Logic Optimization: Full-Adder

Full-Adder Truth Table:

X	Y	Z	S	C
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full-Adder K-Map:

Equations: Full-Adder

From the K-Map, we get:

$$S = X \overline{Y} \overline{Z} + \overline{X} Y \overline{Z} + \overline{X} \overline{Y} Z + X Y Z$$

$$C = XY + X \overline{Y} Z + \overline{X} Y Z = XY + XZ + YZ = XY + (X + Y)Z$$

The S function is the three-bit XOR function (Odd Function):

$$S = X \oplus Y \oplus Z$$

The Carry bit C is 1 if both X and Y are 1 (the sum is 2), or if exactly one input is 1 and a carry-in (Z) occurs. Thus C can be re-written as:

$$C = XY + (X \oplus Y)Z$$

- The term X Y is carry generate.
- The term $X \oplus Y$ is *carry propagate*.

Implementation: Full Adder

• S_i is the XOR result of variable A_i , B_i and C_i . And carry function C_{i+1} can be expressed as bellow:

$$C_{i+1} = G_i + P_i \cdot C_i$$

- 1) G_i is called generate function
- 2) P_i is called propagate function
- Implementation of full adder with two half adders and an OR gate

Binary Adders

To add multiple operands, we "bundle" logical signals together into vectors and use functional blocks that operate on the vectors

- **Example:** 4-bit ripple carry **adder:** Adds input vectors **A(3:0)** and **B(3:0)** to get a sum vector S(3:0)
- Note: carry out of cell i becomes carry in of cell i+1

Description	Subscript 3 2 1 0	Name
Carry In	0110	C_{i}
Augend	1011	$\mathbf{A_i}$
Addend	0011	B _i
Sum	1,1,1,0,	S_i
Carry out	0011	C_{i+1}

4-bit Ripple-Carry Binary Adder

 A four-bit Ripple Carry Adder made from four 1-bit Full Adders:

Carry Propagation & Delay

- One problem with the addition of binary numbers is the length of time to propagate the ripple carry from the least significant bit to the most significant bit.
- The gate-level propagation path for a 4-bit ripple carry adder of the last example:

• Note: The "long path" is from A_0 or B_0 though the circuit to S_3 .

Carry Lookahead

- Given Stage i from a Full Adder, we know that there will be a <u>carry generated</u> when $A_i = B_i =$ "1", whether or not there is a carry-in.
- Alternately, there will be a <u>carry propagated</u> if the "half-sum" is "1" and a carry-in, C_i occurs.
- These two signal conditions are called generate, denoted as G_i, and propagate, denoted as P_i respectively and are identified in the circuit:

Carry Lookahead (continued)

- In the ripple carry adder:
 - Gi, Pi, and Si are <u>local</u> to each cell of the adder
 - Ci is also local each cell
- In the carry lookahead adder, in order to reduce the length of the carry chain, C_i is changed to a more global function spanning multiple cells
- Defining the equations for the Full Adder in term of the P_i and G_i :

$$P_i = A_i \oplus B_i$$

$$G_i = A_i B_i$$

$$S_i = P_i \oplus C_i$$

$$C_{i+1} = G_i + P_i C_i$$

Carry Lookahead Development

- C_{i+1} can be removed from the cells and used to derive a set of carry equations spanning multiple cells.
- Beginning at the cell 0 with carry in C_0 :

$$\begin{split} &C_1 = G_0 + P_0 \ C_0 \\ &C_2 = G_1 + P_1 \ C_1 = \ G_1 + P_1 (G_0 + P_0 \ C_0) \\ &= G_1 + P_1 G_0 + P_1 P_0 \ C_0 \\ &C_3 = G_2 + P_2 \ C_2 = \ G_2 + P_2 (G_1 + P_1 G_0 + P_1 P_0 \ C_0) \\ &= G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 \ C_0 \\ &C_4 = G_3 + P_3 \ C_3 = G_3 + P_3 G_2 + P_3 P_2 G_1 \\ &+ P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 \ C_0 \end{split}$$

By using these formulas, time complexity of the adders can be improved from O(n) to O(1).

Group Carry Lookahead Logic

- Next slide shows the implementation of these equations for four bits. This could be extended to more than four bits; in practice, due to limited gate fan-in, such extension is not feasible.
- $C_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0 C_0$
- Instead, the concept is extended another level by considering group generate $(G_{0,3})$ and group propagate $(P_{0,3})$ functions:

$$G_{0\sim3} = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0$$

$$P_{0\sim3} = P_3 P_2 P_1 P_0$$

Using these two equations:

$$C_4 = G_{0\sim3} + P_{0\sim3} C_0$$

Thus, it is possible to have four 4-bit adders use one of the same carry lookahead circuit to speed up 16-bit addition

Group Carry Lookahead Logic (Cont.)

- $C_4 = C_3 + P_3C_2 + P_3P_2C_1 + P_3P_2P_1C_0 +$ $P_3P_2P_1P_0C_0 = G_{0\sim3} + P_{0\sim3}C_0$
- $C_8 = C_7 + P_7C_6 + P_7P_6C_5 + P_7P_6P_5C_4 + P_7P_6P_5C_6 + P_7P_6C_6 + P_7$ $P_7P_6P_5P_4C_4 = G_{4\sim7} + P_{4\sim7}C_4$
- $C_{12} = G_{11} + P_{11}G_{10} + P_{11}P_{10}G_{9} + P_{11}P_{10}P_{9}G_{8} + P_{11}P_{10}P_{9}G_{10} + P_{11}P_{10}P_{10}P_{10}G_{10} + P_{11}P_{10}P_{10}P_{10}G_{10} + P_{11}P_{10}P_{10}P_{10}G_{10} + P_{11}P_{10}P_{10}G_{10} + P_{1$ $P_{11}P_{10}P_{0}P_{8}C_{8} = G_{8\sim11} + P_{8\sim11}C_{8}$
- $C_{16} = G_{15} + P_{15}G_{14} + P_{15}P_{14}G_{13} + P_{15}P_{14}P_{13}G_{12} + P_{15}P_{14}P_{15}$ $P_{15}P_{14}P_{13}P_{12}C_{12} = G_{12-15} + P_{12-15}C_{12}$

Group Carry Lookahead Logic (Cont.)

- An example of a 16-bit CLA
 - put four CLAs together in a ripple-carry manner to get a hybrid 16-bit adder

Appendix A: Fast Carry Lookahead

Space and Time Tradeoffs for Adder

- Several tradeoffs have been proposed between time complexity and space complexity.
- Carry-select adder
 - time complexity: $O(\sqrt{n})$

A 16-bit carry-select adder

Space and Time Tradeoffs for Adder (continued)

- Carry-skip / Carry-bypass adder $C_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0 C_0$
- Key idea: if $(P_3P_2P_1P_0)$ then $C_4 = C_0$

Unsigned Subtraction

• Algorithm:

- Subtract the subtrahend N from the minuend M
- If no end borrow occurs, then $M \ge N$, and the result is a non-negative number and correct.
- If an end borrow occurs, the N > M and the difference $M N + 2^n$ is subtracted from 2^n , the result must be negative, and so we need to correct its magnitude.
- Examples:

$$\begin{array}{ccc} \mathbf{0} & & \mathbf{1} \\ 1001 & & 0100 \\ -\underline{0111} & & -\underline{0111} \\ 0010 & & 1101 \end{array}$$

Unsigned Subtraction (continued)

• Algorithm:

• subtracting the preceding formula from 2ⁿ:

$$2^{n} - (M - N + 2^{n}) = N - M$$

• a minus sign should be appended to the result.

Examples:

$$\begin{array}{cccc} 0 & & 1 \\ 1001 & & 0100 \\ -\underline{0111} & & -\underline{0111} \\ 0010 & & 1101 \\ & & 10000 \\ -\underline{1101} \\ & & (-) & 0011 \end{array}$$

Unsigned Subtraction (continued)

• The subtraction, $2^n - N$, is taking the 2's complement of N

To do both unsigned addition and unsigned

subtraction requires:

Quite complex!

Goal: Shared simpler logic for both addition and subtraction

Introduce complements as an approach

Complements

- Two complements:
 - Radix Complement
 - r's complement for radix r
 - 2's complement in binary
 - Defined as $r^n N$
 - Diminished Radix Complement of N
 - (r-1)'s complement for radix r
 - 1's complement for radix 2
 - Defined as $(r^n 1) N$
- Subtraction is done by adding the complement of the subtrahend
- If the result is negative, takes its 2's complement

Binary 1's Complement(反码)

- For r = 2, $N = 01110011_2$, n = 8 (8 digits): $(r^n - 1) = 256 - 1 = 255_{10}$ or 11111111_2
- The 1's complement of 01110011, is then: 11111111
 - **01110011** 10001100
- Since the 2^n-1 factor consists of all 1's and since 1 - 0 = 1 and 1 - 1 = 0, the one's complement is obtained by complementing each individual bit (bitwise NOT).

Binary 2's Complement(补码)

• For r = 2, $N = 01110011_2$, n = 8 (8 digits), we have:

$$(\mathbf{r}^{\mathbf{n}}) = 256_{10} \text{ or } 100000000_2$$

The 2's complement of 01110011 is then:

100000000

- -0111001110001101
- Note the result is the 1's complement plus 1, a fact that can be used in designing hardware

Alternate 2's Complement Method

- Given: an *n*-bit binary number, beginning at the least significant bit and proceeding upward:
 - Copy all least significant 0's
 - Copy the first 1
 - Complement all bits thereafter.
- 2's Complement Example: 10010<mark>100</mark>
 - Copy underlined bits:

100

and complement bits to the left: **01101100**

Subtraction with 2's Complement

- For n-digit, unsigned numbers M and N, find M
 - N in base 2:
 - Add the 2's complement of the subtrahend N to the minuend M:

$$M + (2^n - N) = M - N + 2^n$$

- If $M \ge N$, the sum produces end carry r^n which is discarded; from above, M - N remains.
- If M < N, the sum does not produce an end carry and, from above, is equal to $2^{n} - (N - M)$, the 2's complement of (N-M).
- To obtain the result -(N-M), take the 2's complement of the sum and place a - to its left.

Unsigned 2's Complement Subtraction Example 1

• Find 01010100₂ – 01000011₂

■ The carry of 1 indicates that no correction of the result is required.

Unsigned 2's Complement Subtraction Example 2

• Find 01000011₂ – 01010100₂

- The carry of 0 indicates that a correction of the result is required.
- Result = -(00010001)

Signed Integers

- Positive numbers and zero can be represented by unsigned n-digit, radix r numbers. We need a representation for negative numbers.
- To represent a sign (+ or –) we need exactly one more bit of information (1 binary digit gives $2^1 = 2$ elements which is exactly what is needed).
- Since computers use binary numbers, by convention, the most significant bit is interpreted as a sign bit:

$$s a_{n-2} \dots a_2 a_1 a_0$$

where:

S = 0 for Positive numbers

S = 1 for Negative numbers and $a_i = 0$ or 1 represent the magnitude in some form.

Signed Integers (continued)

The leftmost bit represents the sign in machine number

Binary Code

Machine number

Example: $+1011 \rightarrow$

sign 0 ()

number value

 $-1011 \rightarrow$

sign number value 0

Signed Integer Representations

- Signed-Magnitude here the n 1 digits are interpreted as a positive magnitude.
- •Signed-Complement here the digits are interpreted as the rest of the complement of the number. There are two possibilities here:
 - Signed 1's Complement
 - Uses 1's Complement Arithmetic
 - Signed 2's Complement
 - Uses 2's Complement Arithmetic

Signed Integer Representation Example

$$r = 2, n = 3$$

$$S2C(X) = -w_{n-1} \cdot 2^{n-1} + \sum_{i=0}^{n-2} w_i \cdot 2^{i}$$

Number	Sign - Mag.	1's Comp.	2's Comp.
+3	011	011	011
+2	010	010	010
+1	001	001	001
+0	000	000	000
-0	100	111	
-1	101	110	111
-2	110	101	110
-3	111	100	101
-4			100

Signed-Magnitude Arithmetic

- If the parity of the three signs is 0:
 - 1. Add the magnitudes.
 - 2. Check for overflow (a carry out of the MSB)
 - 3. The sign of the result is the same as the sign of the first operand.
- If the parity of the three signs is 1:
 - 1. Subtract the second magnitude from the first.
 - 2. If a borrow occurs: $2^{n} - (N - M)$
 - take the two's complement of result
 - and make the result sign the complement of the sign of the first operand.
 - 3. Overflow will never occur.

Sign-Magnitude Arithmetic Examples

Signed-Complement Arithmetic

Addition:

- 1. Add the numbers including the sign bits, discarding a carry out of the sign bits (2's Complement), or using an end-around carry (1's Complement).
- 2. If the sign bits were the same for both numbers and the sign of the result is different, an overflow has occurred.
- 3. The sign of the result is computed in step 1.

Subtraction:

Form the complement of the number you are subtracting and follow the rules for addition.

Signed 2's Complement Examples

Example 1: 1101 +001110000 \Rightarrow 0000

1101 **Example 2: 1101** -0011+ 1101 **→** 11010 **→** 1010

2's Complement Adder/Subtractor

- Subtraction can be done by addition of the 2's Complement.
 - 1. Complement each bit (1's Complement.)
 - 2. Add 1 to the result.
- The circuit shown computes A + B and A B:

2's Complement Adder/Subtractor (continued)

- For S = 0, add, B is passed through unchanged.
- For S = 1, subtract, the 2's complement of B is formed by using XORs to form the 1's complement and adding the 1 applied to C_0 .

Overflow Detection

- Overflow occurs if n + 1 bits are required to contain the result from an n-bit addition or subtraction.
- Overflow can occur for:
 - Addition of two operands with the same sign
 - Subtraction of operands with different signs

Overflow Detection (continued)

• If we add two k bit numbers: $X_{k-1}...X_0$ and $Y_{k-1}...Y_0$. The sum is $S_{k-1}...S_0$. One formula for detecting overflow is:

$$\mathbf{V} = \mathbf{X}_{k-1} \mathbf{Y}_{k-1} \overline{\mathbf{S}}_{k-1} + \overline{\mathbf{X}}_{k-1} \overline{\mathbf{Y}}_{k-1} \mathbf{S}_{k-1}$$

A Simpler Formula for Overflow

$$\mathbf{V} = \mathbf{C}_{\mathbf{k-1}} \oplus \mathbf{C}_{\mathbf{k-2}}$$

- Case 1: 0 carried in, and 1 carried out of the leftmost full adder
- Case 1: 1 carried in, and 0 carried out of the leftmost full adder

Chapter 3 47

Overflow Detection (continued)

2's Complement Adder/subtractor with overflow detection:

Other Arithmetic Functions

- Other arithmetic functions beyond +, -, * and /, are quite important. Among these are incrementing, decrementing, multiplication and division by a constant, etc.
- Each can be implemented for multiple-bit operands by using an iterative array of 1-bit cells.
- Instead of using these basic approaches, a combination of rudimentary functions and a new technique called contraction is used.

Design by Contraction

- The goal of contraction is to accomplish the design of a logic circuit or functional block by using results from past designs.
- We can implement new functions by using similar techniques on a given circuit and then contracting it for a specific application to a simpler circuit.
- Contraction can be applied to simplify an initial circuit with value fixing, transferring, and inverting on its inputs in order to obtain a target circuit.

Design by Contraction Example

Contraction of a ripple carry adder to incrementer for n = 3

1. set B = 001 value fixing

2. simplifying the logic \Rightarrow contracting

Incrementing & Decrementing

Incrementing

- Functional block is called incrementer
- Examples: A + 1, B + 4
- Adding a fixed value to an arithmetic variable
- Fixed value is often 1, called counting (up)

Decrementing

- Functional block is called decrementer
- Examples: A 1, B 4
- Subtracting a fixed value from an arithmetic variable
- Fixed value is often 1, called counting (down)

Multiplication/Division by 2ⁿ

Multiplication

- Multiplication by 100
- Shift left by 2

- Division by 100
- Shift right by 2
- Remainder preserved

 B_3

 B_2

 B_1

 \mathbf{B}_0

Multiplication by a Constant

• Multiplication of B(3:0) by 101

Combinational Shifter Parameters

- Direction
 - Left, Right

- Number of positions
 - Single bit, Multiple bit

- Operation
 - Logic shift, Arithmetic shift, Rotate/barrel shift

- Filling of vacant positions
 - Zero fill, Extension

4-Bit Basic Left/Right Shifter

- Serial Inputs
 - I_R for right shift
 - I_L for left shift
- Serial Outputs
 - R for right shift (Same as MSB input)
 - L for left shift (Same as LSB input)

- Shift Functions (S1, S0)
 - 00 Pass B unchanged
 - 01 Right shift
 - 10 Left shift
 - 11 Unused

Barrel Shifter

- A barrel shifter is simply a bit-rotating shift register. The bits shifted out the MSB end of the register are shifted back into the LSB end of the register.
- In a barrel shifter, the bits are shifted the desired number of bit positions in a single clock cycle.

Barrel Shifter (continued)

- The circuit rotates its contents left from 0 to 3 positions depending on S:
 - S = 00 position unchanged
 - S = 01 rotate left by 1 position
 - S = 10 rotate left by 2 positions
 - S = 11 rotate left by 3 positions

Appendix B: How to construct a larger shifter?

Zero Fill

- Zero fill filling an m-bit operand with 0s to become an n-bit operand with n > m
- Filling usually is applied to the MSB end of the operand, but can also be done on the LSB end
- Example: 11110101 filled to 16 bits
 - MSB end: 000000011110101
 - LSB end: 1111010100000000

Extension

- Extension increase in the number of bits at the MSB end of an operand by using a complement representation
- Examples
 - Copies the MSB of the operand into the new positions
 - Positive operand example 01110101 extended to 16 bits:000000001110101
 - Negative operand example 11110101 extended to 16 bits: 11111111111110101

Arithmetic Logic Unit (ALU)

- ALU performs integer arithmetic and logical operations.
- Idea of building arithmetic circuit: use adders and control some of the inputs.

Implementation

A block of logic that selects four choices for the B input to the adder

Change generate function G_i and propagate function P_i

Logic Circuit Design

 Each of logic operations can be generated through a gate that performs the required logic.

S_1 S_0	Output	Operation
0 0	$G = A \wedge B$	AND
0 1	$G = A \vee B$	OR
1 0	$G = A \oplus B$	XOR
1 1	$G = \overline{A}$	NOT

Function table for logic operation

Logic operation circuit

Arithmetic Circuit Design

Arithmetic Circuit Design (continued)

There are only four functions of B to select as Y in G = A + Y:

Arithmetic Circuit Design (continued)

- Multiplexing
- Redesign the input of B

Inputs		ts	Output	
S_1	S_0	B_{i}	Y_i	
0	0	0 1	$\begin{array}{cc} 0 & Y_i = 0 \\ 0 & \end{array}$	
$0 \\ 0$	1 1	0 1	$ \begin{array}{cc} 0 & Y_i = B_i \\ 1 & \end{array} $	
1 1	0	0 1	$ \begin{array}{cc} 1 & Y_i = \overline{B}_i \\ 0 & \end{array} $	
1 1	1 1	0 1	$1 Y_i = 1$	

$$Y_i = B_i S_0 + \overline{B}_i S_1$$

Arithmetic Circuit Design (continued)

Function Table for Arithmetic Circuit

Se	elect	Input	$\mathbf{G} = (\mathbf{A} + \mathbf{Y} + \mathbf{C}_{in})$	
S ₁	S ₀	Υ	$C_{in} = 0$	C _{in} = 1
0	0	all 0s	G = A (transfer)	G = A + 1 (increment)
0	1	B	G = A + B (add)	G = A + B + 1
1	0	\overline{B}	$G = A + \overline{B}$	$G = A + \overline{B} + 1$ (subtract)
1	1	all 1s	G = A - 1 (decrement)	G = A (transfer)

The useful arithmetic functions are labeled in the table

Assignment

Reading:

3.8-3.12

Problem assignment:

3-50; **3-51**; **3-52**; **3-59**

Appendix A: Fast Carry Using the Second Level of Abstraction

- $C_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0 = G_{0\sim3} + P_{0\sim3}C_0$
- $C_8 = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 + P_7P_6P_5P_4C_4 = G_{4\sim7} + P_{4\sim7}C_4$
- $\begin{array}{l} \bullet \quad C_{16} = G_{15} + P_{15}G_{14} + P_{15}P_{14}G_{13} + P_{15}P_{14}P_{13}G_{12} + P_{15}P_{14}P_{13}P_{12}C_{12} = \\ G_{12 \sim 15} + P_{12 \sim 15}C_{12} = G_{12 \sim 15} + P_{12 \sim 15}(G_{8 \sim 11} + P_{8 \sim 11}(G_{4 \sim 7} + P_{4 \sim 7}(G_{0 \sim 3} + P_{0 \sim 3}C_{0}))) = G_{12 \sim 15} + P_{12 \sim 15}G_{8 \sim 11} + P_{12 \sim 15}P_{8 \sim 11}G_{4 \sim 7} + P_{12 \sim 15}P_{8 \sim 11}P_{4 \sim 7}G_{0 \sim 3} \\ + P_{12 \sim 15}P_{8 \sim 11}P_{4 \sim 7}P_{0 \sim 3}C_{0} \end{array}$

Note: Carry-in is generated by second level CLA, not individual adders!

Fast Carry Lookahead Example

- We can cascade the CLA to form a larger CLA.
 This larger block can then be cascaded into a larger CLA using the same 2-level CLA method.
- Examples of cascading adders

Carry Lookahead Example

Specifications:

- 16-bit CLA
- Delays:
 - **NOT** = 1
 - \bullet AND-OR = 2
 - XOR = Isolated AND = 3

Longest Delays:

- Ripple carry adder* = $3 + 15 \times 2 + 3 = 36$
 - \triangleright time complexity: O(n)
- CLA = $3 + 3 \times 2 + 3 = 12$
 - > time complexity: O(log n)

3 P₀

Appendix B: Larger Shifter

- Large shifters can be constructed by using layers of multiplexers
 - Implementing 8-bit shifter by using 2×1 multiplexers
 - > Layer 0 shifts by 0, 1
 - Layer 1 shifts by 0, 2
 - > Layer 2 shifts by 0, 4

Larger Shifter (continued)

Implementing 8-bit shifter by using 2×1 multiplexers

