Electrónica Digital 1

Lógica Secuencial

Ferney Alberto Beltrán Molina

2024

Contacto

Nombre: Ferney Alberto Beltrán Molina, Ing, MSc, PhD(c)

Email: fabeltranm@unal.edu.co

oficina: Centro de Investigación e Innovación

Contenido

Recordando

Lógica Secuencial

Unidades de memorias para guardar registros

Circuitos secuenciales con tablas

Registros

Registros de Desplazamiento

Índice

Recordando

Lógica Secuencia

Jnidades de memorias para guardar registros

Circuitos secuenciales con tablas

Registros

Registros de Desplazamiento

Tipos de circuitos digitales

Circuitos combinacionales

Las salidas del circuito en cada instante de tiempo dependen única de los valores de entrada. combina los valores de entrada en un intante de tiempo para calcular la salida

Circuitos secuenciales.

Las salidas del circuito secuencial dependen tanto de los valores actuales como de los anteriores de las entradas; en otras palabras, depende de la secuencia de entrada.

Tipos de circuitos digitales

Tiempos de propagación

El tiempo de propagación es el tiempo que tarda un cambio en una entrada de una puerta para verse reflejado a la salida.

- 1. El retraso generalmente se mide al 50 % con respecto a los niveles de voltaje de salida H y L.
- 2. Toda puerta lógica tiene un tiempo de retraso en la salida respecto a la entrada

Multiplexores / Demultiplexores

Son una conexiones directas punto a punto entre puertas

- multiplexor Enrutar una de muchas entradas a una sola salida
- demultiplexor Enrutar una sola entrada a una de las muchas salidas

Índice

Recordando

Lógica Secuencial

Unidades de memorias para guardar registros

Circuitos secuenciales con tablas

Registros

Registros de Desplazamiento

circuitos secuenciales

Las salidas del circuito secuencial dependen tanto de los valores actuales como de los anteriores de las entradas; en otras palabras, depende de la secuencia de entrada.

Circuitos con feedback

circuitos secuenciales

$Entradas \longmapsto Estados$

circuitos secuenciales

Sincronización de estados $\longmapsto CLK$

Variables de estado

Las variables de estado de un sistema secuencial representan conjuntamente el estado del sistema.

Ejemplo: Timbre secuencial, solo suena si se pulsa primero el \mathbf{a} , luego el \mathbf{b} y, por último, el \mathbf{c} y el sonido cesa al soltar el pulsador \mathbf{c} .

```
q2 = 0 q1 = 0 Reposo
q2 = 0 q1 = 1 primer paso en la secuencia
q2 = 1 q1 = 0 segundo paso en la secuencia
q2 = 1 q1 = 1 fin de la secuencia: el timbre suena
```

El sistema debe acordarse de 4 situaciones o estados diferentes, que pueden ser representados con dos variables de estado q2 y q1

Descripción de circuitos secuenciales

Grafos de comportamiento

- Describen el comportamiento por medio de nodos y arcos.
- Los nodos representan los estados
- Los arcos representan los cambios de estado

Descripción de circuitos secuenciales (tipos)

- Moore: las salidas dependen solo del estado actual
- ► Mealy: las salidas dependen del estado actual y las entradas

MÁQUINA DE MOORE

MÁQUINA DE MEALY

Descripción de circuitos secuenciales (tipos)

- Moore: las salidas dependen solo del estado actual
- Mealy: las salidas dependen del estado actual y las entradas

Ejemplo: Detectar la secuencia 01 o 10

Moore: las salidas dependen solo del estado actual

Ejemplo: Detectar la secuencia 01 o 10

: las salidas dependen del estado actual y las entradas

		current	next	
reset	input	state	state	output
1	-	-	Α	0
0	0	Α	В	0
0	1	Α	С	0
0	0	В	В	0
0	1	В	С	1
0	0	С	В	1
0	1	С	С	0

Ejercicio

Describir el funcionamiento de un robot que cumple con las siguientes condiciones

- Cuenta con un sensor que detecta obstáculos (parte delantera). Genera la señal OB=1 si hay obstáculos
- Tiene tres movimiento avance hacia delante , giro a la izquierda y giro a la derecha
- Los movimiento depende del sensor de obstàculos:
 - Cuando el robot detecta un obstáculo gira a la derecha, hasta que OB =0
 - ▶ Siempre que OB = 0, avanza hacia adelante
 - La siguiente vez que detecta un obstáculo, el robot gira en sentido contrario a cómo lo hizo anteriormente

Ejemplo ¿Cuántos estados necesitaremos?

Ejemplo ¿Cuántos estados necesitaremos?

Ejemplo

Índice

Recordando

Lógica Secuencia

Unidades de memorias para guardar registros

Circuitos secuenciales con tablas

Registros

Registros de Desplazamiento

Biestables

Circuitos con realimentación

Dos inversores

Cómo cargamos los datos?

Biestables

Circuitos con realimentación

Load	D	Q	Q^{Δ}
0	х	х	Q
1	0	х	0
1	1	х	1

Latch SR

En un elemento de almacenamiento, en el que un cambio de señal a la entrada afecta a la salida sin tener en cuenta un reloj

Latch D

Es un elemento de almacenamiento, en el que un cambio de señal a la entrada afecta a la salida siempre y cuando la señal de enable este activa

Respuesta por nivel o flanco?

Flip-Flop D

Es un elemento de memorias que puede cambiar el valor de la salida durante los flancos de reloj

flip-flop D con Set/Reset asíncrono

Índice

Recordando

Lógica Secuencia

Unidades de memorias para guardar registros

Circuitos secuenciales con tablas

Registros

Registros de Desplazamiento

El problema

- Cuántos flip-flops?
- ► Cómo son funciones de la entrada D y la salida q?

retomando ejemplo Roomba

Cuántos flip-flops?

TABLA DE ESTADOS

Estado actual	Entradas: OB	Estado siguiente

TABLA DE SALIDAS

ABLA DI	SALIDAS	,
Estado actual	Salidas: RR RL	
S_AR		
S_{RR}		
S_AL		
S_{RL}		

Resolver el circuito de Roomba

Tablas ejemplo Roomba

TABLA DE ESTADOS

Estado actual	Entradas: OB	Estado siguiente
S _{AR}	0	S_{AR}
S _{AR}	1	S_{RL}
S _{RR}	0	S_{AR}
S _{RR}	1	S_{RR}
S _{AL}	0	S _{AL}
S _{AL}	1	S_{RR}
S _{RL}	0	S _{AL}
S _{RL}	1	S_RL

Estado actual	Salidas: RR RL
S_{AR}	0 0
S_{RR}	1 0
S _{AL}	0 0
S_{RL}	0 1

Estados	q_I	q_0
S _{AR}	0	0
S _{RR}		
S _{AL}		
S _{RL}		

TABLA DE ESTADOS

	q_I	$q_{\scriptscriptstyle 0}$	OB	q_I^{Δ}	$q_{\scriptscriptstyle 0}{}^{\scriptscriptstyle \Delta}$	
S _{AR}	0	0	0			
S _{AR}	0	0	1			
S_{RR}	0	1	0			
S_{RR}	0	1	1			
S _{AL}	1	0	0			
S _{AL}	1	0	1			
S _{RL}	1	1	0			
S_{RL}	1	1	1			

TABLA DE SALIDAS

	q_{I}	$q_{\it 0}$	RR	RL
S_{AR}	0	0		
S_{RR}	0	1		
S_AL	1	0		
S_{RL}	1	1		

Solución Roomba

TABLA DE ESTADOS

	q_I	q_0	OB	q_I^{Δ}	${q_{\it 0}}^{\it \Delta}$
S_{AR}	0	0	0	0	0
S_{AR}	0	0	1	1	1
S_{RR}	0	1	0	0	0
S_{RR}	0	1	1	0	1
S_{AL}	1	0	0	1	0
S_{AL}	1	0	1	0	1
S_{RL}	1	1	0	1	0
S_{RL}	1	1	1	1	1

	q_{I}	q_0	RR	RL
S_{AR}	0	0	0	0
S_{RR}	0	1	1	0
S_{AL}	1	0	0	0

$$D_1 = q_1^{\Delta} = \overline{q}_1 \cdot \overline{q}_0 \cdot OB + q_1 \cdot \overline{OB} + q_1 \cdot q_0$$
$$D_0 = q_0^{\Delta} = OB$$

$$RR = \overline{q}_1. q_0$$

$$RL = q_1. q_0$$

Implementación Roomba

Implementación Roomba

Índice

Recordando

Lógica Secuencia

Unidades de memorias para guardar registros

Circuitos secuenciales con tablas

Registros

Registros de Desplazamiento

Registros

Registros

Registros

Índice

Recordando

Lógica Secuencia

Unidades de memorias para guardar registros

Circuitos secuenciales con tablas

Registros

Registros de Desplazamiento

Generalidad

CONVERSORES SERIE-PARALELO Y PARALELO-SERIE

PREGUNTAS