Support Vector Machines

Lagrangian dual formulation

Formulation of Dual problem

Maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

subject to $\sum_{i=1}^{n} \alpha_i y_i = 0, \quad \alpha_i \ge 0 \quad \forall i$

This a Quadratic Programming problem (QP)

This means that the parameters form a parabolloidal surface, and an optimal can be found(since it is convex function).

SVM training phase

Maximize L_D w.r.t. α_i such that $\alpha_i \ge 0$ with the solution $w = \sum_{i=1}^{n} \alpha_i y_i x_i$

In the solution those points for which $\alpha_i > 0$ are support vectors and they lie on Hyperplanes H_1 or H_2 .

For other points $\alpha_i = 0$ and lie on the either sides of H_1 or H_2 such that

$$y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b) > 1, \ \forall i$$

SVM test phase

In order to classify a new instance z we just have to compute.

$$sign(w^Tz + b) = sign(\sum_{\forall i \in SV} \alpha_i y_i x_i^T z + b)$$

This means that w does not need to be explicitly computed

Given data:

Class-1: [1,6],[1,10],[4,11]

Label $y_i = 1$

Class-2: [5.2],[7,6],[10,4]

Label $y_i = -1$

To represent all inputs consider array X

$$X = \begin{pmatrix} 1 & 6 \\ 1 & 10 \\ 4 & 11 \\ 5 & 2 \\ 7 & 6 \\ 10 & 4 \end{pmatrix} \quad \text{and labels Y} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$$

$$X.X^{T} = \begin{pmatrix} 37 & 61 & 70 & 17 & 43 & 34 \\ 61 & 101 & 114 & 25 & 67 & 50 \\ 70 & 114 & 137 & 42 & 94 & 84 \\ 17 & 25 & 42 & 29 & 47 & 58 \\ 43 & 67 & 94 & 47 & 85 & 94 \\ 34 & 50 & 84 & 58 & 94 & 116 \end{pmatrix}$$

Therefore Matrix H with $H_{ij} = y_i y_j x_i^T x_j$ can be written as

$$H = Y^TY.X^TX =$$

37 61 70 -17 -43 -34

61 101 114 -25 -67 -50

70 114 137 -42 -94 -84

-17 -25 -42 29 47 58

-43 -67 -94 47 85 94

-34 -50 -84 58 94 116

SVM:Example in Matlab

Matlab expects quadratic programming to be stated in the canonical (standard) form which is

minimize $L_n(\alpha) = f^T \alpha + \frac{1}{2} \alpha^T H \alpha$ constrained to $A\alpha \le a$ and $B\alpha = b$.

where A,B,H are n by n matrices and f, a, b are vectors

Need to convert our optimization problem to canonical form

Maximize
$$L_{D}(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{bmatrix}^{t} H \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{bmatrix} \quad \text{constrained to}$$

$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0, \quad \alpha_{i} \geq 0 \quad \forall i$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0, \ \alpha_i \ge 0 \ \forall i$$

SVM:Example in Matlab

Multiply by
$$-1$$
 to convert to minimization: $L_D(\alpha) = -\sum_{i=1}^{n} \alpha_i + \frac{1}{2} \alpha^i H \alpha$
Let $f = \begin{bmatrix} -1 \\ -1 \end{bmatrix} = -\text{ones}(6,1)$, then we can write

Minimize
$$L_D(\alpha) = f^T \alpha + \frac{1}{2} \alpha^T H \alpha$$

First constraint is $\alpha i \ge 0 \ \forall i$

$$A = \begin{bmatrix} -1 & \cdots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \cdots & -1 \end{bmatrix} = -\text{eye}(6), \ a = \begin{bmatrix} \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix} : \text{zeros}(6,1)$$

Rewrite the first constraint in canonical form : $A\alpha \le a$

SVM:Example in Matlab

Our Second constraint is $\sum_{i=1}^{n} \alpha_i y_i = 0$, $\alpha_i \ge 0 \ \forall i$

Let
$$B = [[Y]; [zeros(5,6)]$$

and
$$b = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} = zeros(6,1)$$

Second constraint in canonical form is $\mathbf{B}\alpha = \mathbf{b}$.

 α = quadprog(H, f, A, a, B, b) %%in matlab

Solution

$$\alpha = \begin{pmatrix} 0.036 \\ 0 \\ 0.039 \\ 0 \\ 0.076 \\ 0 \end{pmatrix}$$

Support Vectors

Find W using
$$w = \sum_{\forall i \in SV} \alpha_i y_i x_i = (\alpha . Y)^T . X$$

 X_{1}

$$\alpha . Y = [0.036 , 0 , 0.04 , -0 , -0.076 , -0]$$

$$W = (\alpha . Y)^{T} . X = [-0.33 , 0.20] => w_{1} = -0.33 w_{2} = 0.20$$

$$We can find b using w^{T}x_{i} + b = 1 for positive support vector i = 1$$

$$b = 1 - w^{T}x_{1} = 1 - (-0.33x1 + 6x0.20) = 1 - (-0.33 + 1.20)$$

$$= 0.13$$

Equation of the line can be written as

 X_2

$$-0.33 X_1 + 0.20 X_2 + 0.13 = 0$$

(since
$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{\mathsf{i}} + b = 0$$
)

Testing Phase:

Suppose give a new point z = [1,2]

Find
$$sign(w^Tz + b)$$
:

 $sign(-0.33x1 \ 0.20x2 + 0.13)$

sign(-0.07 + 0.13) = positive

Therefore z is in class 1

X,

SVM: Non-linear classification

- So far we have only considered large margin classifiers that use a linear boundary.
- In order to have better performance we have to be able to obtain non-linear boundaries.
- The idea is to transform the data from the input space (the original attributes of the examples) to a higher dimensional space using a function $\phi(x)$.
- This new space is called the feature space .
- The advantage of the transformation is that linear operations in the feature space are equivalent to non-linear operations in the input space.

Feature Space transformation

XOR - Problem

The XOR problem is not linearly separable in its original definition, but we can make it linearly separable if we add a new feature $x_1 \cdot x_2$

x_1	<i>x</i> ₂	$x_1 \cdot x_2$	x_1 XOR x_2
0	0	0	1
0	1	0	0
1	0	0	0
1	1	1	1

The linear function $h(x) = 2x_1x_2 - x_1 - x_2 + 1$ classifies correctly all the examples.

Thank you