

Approximate Incentive Compatibility

Maria-Florina Balcan,
Tuomas Sandholm, and
Ellen Vitercik

Incentive compatibility (IC)

Fundamental concept in mechanism design

Buyers maximize their utilities by bidding truthfully

Many real-world mechanisms are not incentive compatible

Discriminatory auctions

Multi-unit variant of first-price auction

Not incentive compatible

Used to sell treasury bills since 1929

Discriminatory auctions

Multi-unit variant of first-price auction

Not incentive compatible

Used to sell treasury bills since 1929 and electricity in the UK

GSP auction

Used for sponsored search

Not incentive compatible

phoenix

College Programs At UOPX | Attend Univer

Ad www.phoenix.edu/ ▼

Lock In Your Tuition. Guaranteed. \$398/credit undergrad, \$398/credit

Cities in Arizona

Scottsdale

Tucson

Sedona

Tempe

Biggest cities in US

New York

Angeles

Los

Chicago

San Diego

First-price auction

Ad exchanges transitioning to FP auction

Not incentive compatible

Combinatorial auctions

Nearly all fielded combinatorial auctions

(such as sourcing auctions)

aren't incentive compatible

Why aren't real-world mechanisms incentive compatible?

Why not IC?

Expensive to compute true values

Rules are easier to explain

Bids used to tune **future** parameters

Might leak **private** values

Agents not **risk** neutral

Approximate incentive compatibility

Mechanism is γ -IC when for each bidder i:

If everyone except bidder i is truthful,

she can only increase utility by γ if she bids strategically

[Kothari, Parkes, and Suri, EC'03; Archer, Papadimitriou, Talwar, and Tardos, Internet Mathematics '04; Conitzer and Sandholm, IJCAI'07; Dekel, Fischer, and Procaccia, JCSS'10; Lubin and Parkes, Current Science '12; Mennle and Seuken, EC'14; Dütting, Fischer, Jirapinyo, Lai, Lubin, and Parkes TEAC'15; Azevedo and Budish, Review of Economic Studies '18; Feng, Narasimhan, and Parkes, AAMAS'18; Golowich, Narasimhan, and Parkes, IJCAI'18; Dütting, Feng, Narasimhan, Parkes, and Ravindranath, ICML'19]

Approximate incentive compatibility

Mechanism is γ -IC when for each bidder i:

If everyone except bidder i is truthful,

she can only increase utility by γ if she bids strategically

...in expectation over **others'** values EX-INTERIM

(assume bidders independent)

...in expectation over **all** values

EX-ANTE

(no independence assumptions)

Approximate incentive compatibility

Literature on γ -IC assumes distribution is known in advance

Where does this knowledge come from?

We relax this assumption:

Assume only samples from distribution over agents' types

[Likhodedov and Sandholm, AAAI'04, AAAI'05; Balcan, Blum, Hartline, and Mansour, FOCS'05, JCSS'08; Elkind, SODA'07; Cole and Roughgarden, STOC'14; Mohri and Medina, ICML'14; Huang Mansour, and Roughgarden, EC'15; Sandholm and Likhodedov, OR'15; Morgenstern and Roughgarden, NeurIPS'15, COLT'16; Roughgarden and Schrijvers, EC'16; Devanur, Huang, and Psomas, STOC'16; Balcan, Sandholm, and Vitercik, NeurIPS'16, EC'18; Alon, Babaioff, Gonczarowski, Mansour, Moran, and Yehudayoff, NeurIPS'17; Gonczarowski and Nisan, STOC'17; Cai and Daskalakis, FOCS'17; Syrgkanis, NeurIPS'17, Medina and Vassilvitskii, NeurIPS'17, ...]

Estimate IC approximation factor (γ) using samples

Our estimate (first try):

Maximum utility agent i can gain by misreporting her type,

on average over samples
$$\left\{oldsymbol{t}_{-i}^{(1)},...,oldsymbol{t}_{-i}^{(N)}
ight\}$$
:

on average over samples
$$\left\{ \boldsymbol{t}_{-i}^{(1)}, \dots, \boldsymbol{t}_{-i}^{(N)} \right\}$$
:
$$\max_{t_i, t_i' \in \mathbb{R}^D} \left\{ \frac{1}{N} \sum_{j=1}^N u\left(t_i, t_i', \boldsymbol{t}_{-i}^{(j)}\right) - u\left(t_i, t_i, \boldsymbol{t}_{-i}^{(j)}\right) \right\}$$

Utility from strategic bid

Utility from truthful bid

Estimate IC approximation factor (γ) using samples

Our estimate (first try):

Maximum utility agent i can gain by misreporting her type,

on average over samples
$$\left\{ \boldsymbol{t}_{-i}^{(1)}, \dots, \boldsymbol{t}_{-i}^{(N)} \right\}$$
:
$$\max_{t_i, t_i' \in \mathbb{R}^D} \left\{ \frac{1}{N} \sum_{j=1}^N u\left(t_i, t_i', \boldsymbol{t}_{-i}^{(j)}\right) - u\left(t_i, t_i, \boldsymbol{t}_{-i}^{(j)}\right) \right\}$$

Might not be finite-time procedure

Estimate IC approximation factor (γ) using samples

Our estimate $\hat{\gamma}$:

Maximum utility agent i can gain by misreporting her type,

on average over samples
$$\{\boldsymbol{t}_{-i}^{(1)},...,\boldsymbol{t}_{-i}^{(N)}\}$$
,

if true & reported types from **finite subset** F of type space

$$\hat{\gamma} = \max_{t_i, t_i' \in F} \left\{ \frac{1}{N} \sum_{j=1}^{N} u\left(t_i, t_i', t_{-i}^{(j)}\right) - u\left(t_i, t_i, t_{-i}^{(j)}\right) \right\}$$

Estimate IC approximation factor (γ) using samples

Our estimate $\hat{\gamma}$:

Maximum utility agent i can gain by misreporting her type, on average over samples $\{\boldsymbol{t}_{-i}^{(1)},...,\boldsymbol{t}_{-i}^{(N)}\}$, if true & reported types from **finite subset** F of type space

Estimate used in mechanism design via deep learning:

Add constraint requiring this estimate be small

[Feng, Narasimhan, and Parkes, AAMAS'18; Golowich, Narasimhan, and Parkes, IJCAI'18; Dütting, Feng, Narasimhan, Parkes, and Ravindranath, ICML'19]

Estimate IC approximation factor (γ) using samples

Our estimate $\hat{\gamma}$:

Maximum utility agent i can gain by misreporting her type, on average over samples $\{t_{-i}^{(1)}, ..., t_{-i}^{(N)}\}$, if true & reported types from **finite subset** F of type space

Challenge:

Might miss pairs of true & reported types with large utility gains

Estimate IC approximation factor (γ) using samples

Our estimate $\hat{\gamma}$:

Maximum utility agent i can gain by misreporting her type, on average over samples $\{oldsymbol{t}_{-i}^{(1)}, ..., oldsymbol{t}_{-i}^{(N)}\}$, if true & reported types from **finite subset** F of type space

- 1. Which finite subset? 2. $|\hat{\gamma} \gamma| \leq ?$

Which finite subset?

1. Uniform grid

Easy to construct

Works if distribution is "nice"

2. Learning theoretic cover (standard ML theory techniques)

Can be hard to construct

Always works

Uniform grid

Challenge:

Utility functions are volatile

First-price auction

utility $u(t_i, \cdot, t_{-i})$ \longrightarrow Bid t_i' Other

bidder's bid

Uniform grid

Challenge:

Utility functions are volatile

Uniform grid

Coarse discretization can lead to poor utility estimation

When is the distribution "nice" enough to use a grid?

Dispersion

Functions $u_1, ..., u_N$ are (w, k)-dispersed if:

Every w-ball contains discontinuities of $\leq k$ functions

[Balcan, Dick, and Vitercik, FOCS'18]

Plot
$$\frac{1}{N}\sum u_i$$
:

Not dispersed

Many discontinuities in interval

Dispersed

Few discontinuities in interval

Our estimate $\hat{\gamma}$:

Maximum utility agent can gain by misreporting her type, on average over samples, if true & reported types from **finite subset** of type space

Theorem (informal): If utility functions induced by N samples are: (w,k)-dispersed and piecewise L-Lipschitz

Our estimate $\hat{\gamma}$:

Maximum utility agent can gain by misreporting her type, on average over samples, if true & reported types from **finite subset** of type space

Theorem (informal): If utility functions induced by N samples are:

(w,k)-dispersed and piecewise L-Lipschitz

 \Rightarrow Can use w-grid as finite subset

Theorem (informal): If utility functions induced by *N* samples are:

(w,k)-dispersed and piecewise L-Lipschitz

 \Rightarrow Can use w-grid as finite subset

Estimation error:
$$|\hat{\gamma} - \gamma| = \tilde{O}\left(Lw + \frac{k}{N} + \sqrt{\frac{d}{N}}\right)$$

d = standard ML measure of utility functions' intrinsic complexity

Theorem (informal): If utility functions induced by N samples are: (w,k)-dispersed and piecewise L-Lipschitz

 \Rightarrow Can use w-grid as finite subset

Estimation error:
$$|\hat{\gamma} - \gamma| = \tilde{O}\left(Lw + \frac{k}{N} + \sqrt{\frac{d}{N}}\right)$$

Proof idea:

• If snap types to grid, average utility only changes by $\leq Lw + \frac{k}{N}$

Theorem (informal): If utility functions induced by N samples are: (w,k)-dispersed and piecewise L-Lipschitz

 \Rightarrow Can use w-grid as finite subset

Estimation error:
$$|\hat{\gamma} - \gamma| = \tilde{O}\left(Lw + \frac{k}{N} + \sqrt{\frac{d}{N}}\right)$$

Proof idea:

- If snap types to grid, average utility only changes by $\leq Lw + \frac{k}{N}$
- $\sqrt{\frac{d}{N}}$ additional error incurred from sampling

Theorem (informal): If utility functions induced by *N* samples are:

(w,k)-dispersed and piecewise L-Lipschitz

 \Rightarrow Can use w-grid as finite subset

Estimation error:
$$|\hat{\gamma} - \gamma| = \tilde{O}\left(Lw + \frac{k}{N} + \sqrt{\frac{d}{N}}\right)$$

When
$$w = O\left(\frac{1}{\sqrt{N}}\right)$$
, $k = O(\sqrt{N})$:

We prove these (w, k) values hold when distribution is **nice**

Applications

When does dispersion hold?

 $[0, \kappa]$ = range of density functions defining agents' type distributions

First-price auction

Error:
$$|\hat{\gamma} - \gamma| = \tilde{O}\left(\frac{\text{(\#bidders)} + \kappa^{-1}}{\sqrt{\text{(\#samples)}}}\right)$$

Also analyze combinatorial first-price auctions

Applications

When does dispersion hold?

 $[0, \kappa]$ = range of density functions defining agents' type distributions

Generalized second-price auction

Error:
$$|\hat{\gamma} - \gamma| = \tilde{O}\left(\frac{(\text{\#bidders})^{3/2} + \kappa^{-1}}{\sqrt{(\text{\#samples})}}\right)$$

Applications

When does dispersion hold?

 $[0, \kappa]$ = range of density functions defining agents' type distributions

Discriminatory and uniform price auctions

Generalization of first-price auction to multi-unit settings

Error:
$$|\hat{\gamma} - \gamma| = \tilde{O}\left(\frac{(\text{\#bidders})(\text{\#units})^2 + \kappa^{-1}}{\sqrt{(\text{\#samples})}}\right)$$

Conclusion

- Provide techniques for estimating how far mechanism is from IC
- Introduce empirical variant of approximate IC
- Bound estimate's error using dispersion
- Guarantees for:
 - First-price (combinatorial) auction
 - Generalized second-price auction
 - Discriminatory auction
 - Uniform price auction
 - Second-price auction under spiteful agents

Approximate Incentive Compatibility

Maria-Florina Balcan,
Tuomas Sandholm, and
Ellen Vitercik