ROBÓTICA CUARTO CURSO DEL GRADO EN INGENIERÍA INFORMÁTICA

Guía de la Actividad 2.1

Definición de la configuración de la herramienta en un Manipulador de 6 Grados de Libertad.

ENUNCIADO

Esta práctica tiene como objetivo familiar al alumnado con el entorno de trabajo del manipulador UR3 y aprender a establecer el procedimiento que permite determinar la configuración de la pinza del manipulador en distintas situaciones.

Se dispone de la función:

"matriz=funcion_pinta_UR3_new(configuracion, matriz_pinza)", que resuelve el problema cinemático directo para el manipulador UR3. Esta función dibuja una representación del manipulador para una configuración articular dada y además representa una segunda pinza (llamémosla pinza virtual) con la configuración donde se desea situar la pinza del manipulador. El fichero está compilado y no es posible editar ni modificar el modelo del manipulador.

Los argumentos de la función son: q configuración articular (6 ángulos en radianes); matriz_pinza (matriz de transformación de la configuración donde colocará la pinza virtual). La función devuelve en la variable 'matriz' la configuración del sistema de referencia TCP (Tool Central Point) de la pinza del manipulador, expresadas en el sistema de referencia global.

Por ejemplo, ejecutando:

```
matriz_pinza=eye(4,4) % matriz unidad  q=[0 \ -1.5700 \ -1.5700 \ -1.5700 \ 1.5700 \ 0];  matriz=funcion pinta UR3 new(q, matriz pinza)
```

Se obtiene la siguiente figura:

Figura 1

Observe que sobre la pinza se dibuja el sistema de referencia local de la misma. El origen de éste es el TCP (Tool Central Point). El sistema de referencia vinculado al TCP se muestra en la figura 2. En azul se muestra el vector unitario del eje Z, en verde el vector unitario del eje Y y en rojo el vector unitario del eje X.

Figura 2

También se adjunta el fichero 'pinta_elementos.m' que permite dibujar un bloque a partir de la función "pinta_bloque()". Es conveniente utilizar este fichero como ayuda para solucionar los apartados de la práctica que se propone. Dentro de él se define una matriz de transformación, la cual determina dónde y con qué orientación se coloca la pieza, y que sirve como argumento de la función "pinta_bloque()" (ver anexo). Modificando los valores de esta matriz podemos posicionar y representar la pieza en distintas partes del escenario y con distintas orientaciones.

Los ficheros compilados (con extensión .p) tienen esta condición con el fin de que su código no pueda ser alterado.

EJERCICIO

- a) Utilizando las funciones que se proporcionan y que sirven para generar matrices de transformación, pruebe a representar un bloque en distintas configuraciones del espacio, para asegurarse de que entiende como se realiza la llamada de la función y el tipo de movimientos que definen.
- b) Determinar la matriz de transformación asociada a la pinza para que ésta se sitúe respecto de la pieza según se indica en la figura 2 a) y la pieza se encuentre ubicada en el punto x =20 cm; y=-10 cm; z= 0 cm; siendo todos sus ángulos de Euler zyx iguales a cero. Haga los mismos cálculos para el agarre de la figura 2 b).
- c) Utilizando las matrices calculadas anteriormente, invoque la función funcion_pinta_UR3_new dentro del fichero pinta_elementos.m para comprobar que la pinza virtual se ubica correctamente.
- d) Calcule la matriz de configuración para que la pinza se sitúe, con las mismas configuraciones de agarre, pero estando la pieza ubicada en el punto x=20 cm; y=10 cm; z=5 cm; con ángulos de Euler zyx: alfa= pi/4 rad.; beta=0 rad.; gamma=pi/6 rad.

Figura 2: a) agarre 1; b) agarre 2.

e) Establecer el cálculo para determinar las matrices de transformación de la pinza que permiten manipular la pieza según lo indicado en la figura 3, estando la pieza ubicada en el punto x =20 cm; y=-10 cm; z=0 cm; y siendo sus ángulos de Euler zyx: alfa= 0 rad.; beta=0 rad.; gamma=0 rad. Establecer el mismo cálculo para los ángulos de Euler zyx: alfa= pi/4 rad.; beta=0 rad.; gamma=0 rad.

ANEXO

Para realizar la práctica, se dispone de la función : "pinta_bloque (matriz, color)" que dibuja un bloque opaco de color y que recibe como argumentos:

- "matriz" una matriz de 4x4, el bloque se pinta de forma que su Sistema de Referencia Local tiene asociada esta matriz como matriz de transformación de coordenadas hacia el Sistema de Referencia Global.
- "color" determina el color con el que se representa el bloque ('b', 'r', 'g', 'k', 'm', 'y').

Por ejemplo. Si la función se llama de la forma "pinta_bloque (eye (4, 4), 'r')" pintará un bloque de color rojo con su sistema de referencia local coincidiendo con el sistema de referencia global.

Si la función se llama varias veces seguidas sin cerrar la ventana, ni ejecutar el comando de borrado de ventana gráfica (cla), se dibujarán tantos bloques como veces se haya llamado la función.

La matriz de transformación se calculará utilizando las funciones de transformación básica que se proporcionan en el enlace de la plataforma y cuyo uso estudiaremos en clase:

D=desplazamiento(x0,y0,z0): Función para generar una matriz asociada a una traslación.

Rx=Rotacionx(theta): Función para generar una matriz asociada a una rotación alrededor del eje X.

Ry=Rotacionx(theta): Función para generar una matriz asociada a una rotación alrededor del eje Y.

Rz=Rotacionz(theta): Función para generar una matriz asociada a una rotación alrededor del eje Z.

Las dimensiones y situación del sistema de referencia local del bloque se muestran en la siguiente figura.

Figura 1: Geometría del bloque

