IN THE CLAIMS

Please amend the claims as follows:

Claims 1-9 (Canceled)

10. (Currently Amended) An alignment system <u>for an imaging device</u> comprising: an-imaging device;

an alignment device comprising:

a base, the base having a mounting plane an affixation device to mount on a patient surface;

an insertion guide, having an opening therein and an insertion axis through the opening; an adjustable joint attached to a distal end of the insertion guide, and coupled to the base;

a local adjustment device attached to the adjustable joint;

a detachable an actuator coupled to the local adjustment device;

a control module in remote communication with the actuator and in communication with the tissue imaging device, the control module aligning the insertion axis with the target location.

- 11. (Currently Amended) The alignment system of claim 10, wherein the control module includes <u>a</u> microcomputer.
- 12. (Original) The alignment system of claim 10, wherein the imaging device includes a magnetic resonance imaging (MRI) device.
- 13. (Original) The alignment system of claim 10, further including a first reference device coupled to the insertion guide, the first reference device being capable of locating the insertion axis in three dimensional space relative to a patient.
- 14. (Currently Amended) The alignment system of claim 13, further including a second reference device coupled to a patient reference frame patient, the second reference device being capable of locating the patient relative to the first reference device.

Title: ROBOTIC TRAJECTORY GUIDE

- 15. (Original) The alignment system of claim 13, wherein the first reference device includes a conducting coil capable of locating the insertion axis in three dimensional space relative to the patient.
- 16. (Original) The alignment system of claim 13, wherein the first reference device includes a number of LED devices capable of locating the insertion axis in three dimensional space relative to the patient.
- 17. (Original) The alignment system of claim 13, wherein the first reference device includes a number of infra red (IR) reflecting devices capable of locating the insertion axis in three dimensional space relative to the patient.
- 18. (Original) The alignment system of claim 13, wherein the first reference device includes a potentiometer capable of locating a primary medical device along the insertion axis.
- 19. (Original) The alignment system of claim 13, wherein the alignment system is a closed loop system.
- 20. (Currently Amended) A method of aligning a medical device comprising: coupling a base to a patient reference frame directly to a patient surface; attaching an insertion guide to the base using an adjustable joint, the insertion guide having an insertion axis, and the adjustable joint having a range of motion; attaching a local adjustment device to the adjustable joint; coupling a detachable an actuator to the local adjustment device; and remotely actuating the actuator to adjust alignment of the insertion axis within the range of motion.
- 21. (Currently Amended) The method of claim 20, wherein coupling a base to a patient reference frame includes attaching a base directly to the skull of a patient.

Title: ROBOTIC TRAJECTORY GUIDE

- 22. (Original) The method of claim 20, wherein coupling the detachable actuator to the local adjustment device includes remotely coupling the actuator to the local adjustment device.
- 23. (Original) The method of claim 20, wherein actuating the actuator includes engaging a rotary motor, the rotary motor being coupled to the local adjustment device by a rotating cable drive.
- 24. (Original) The method of claim 23, further including coupling the actuator to a remote control module, the remote control module being capable of adjusting the insertion axis by remotely actuating the actuator.
- 25. (Original) The method of claim 24, further including: imaging a patient with a tissue imaging device; inputting a target location to the control module; and computing an adjustment with the control module and aligning the insertion axis with the target location through actuation of the actuator.
- 26. (Original) The method of claim 25, wherein computing an adjustment with the control module and aligning the insertion axis includes computing an adjustment with the control module and aligning the insertion axis using a closed loop system.

Claims 27-28 (Canceled)

- 29. (New) The alignment system of claim 10, wherein the adjustable joint includes a ball and socket joint.
- 30. (New) The alignment system of claim 10, wherein the local adjustment device includes a linear slide coupled to the insertion guide.

AMENDMENT AND RESPONSE UNDER 37 CFR § 1.111

Serial Number: 09/825,786

Filing Date: April 4, 2001 Title: ROBOTIC TRAJECTORY GUIDE Page 5 Dkt: 723.035US1

31. (New) The alignment system of claim 30, wherein the linear slide includes a threaded adjuster coupled to a collar, the collar being coupled to the insertion guide.

32. (New) The alignment system of claim 31, wherein the collar includes a ball and socket joint coupled to the insertion guide.