Today: Linear maps, doterminants

Let
$$M = \begin{pmatrix} 2 & 3 \\ -1 & 4 \end{pmatrix}$$
 $N = \begin{pmatrix} -2 & 0 \\ 3 & 1 \end{pmatrix}$.

What are the transformations
$$f:\mathbb{R}^2 \to \mathbb{R}^2$$

Many $f((x))=?$ $g:\mathbb{R}^2 \to \mathbb{R}^2$

What's the composite function
$$(f \circ g)((x)) ? = f(g((x)))$$

What's MN?

$$f((x)) = {\binom{2}{3}} {\binom{x}{y}} = {\binom{2x+3y}{-x+4y}}$$

$$g(\begin{pmatrix} x \\ y \end{pmatrix}) = \begin{pmatrix} -2 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2x \\ 3x + y \end{pmatrix}$$

$$(f \circ g)((x))^2$$
 Take $g((x)) = (-2x + 0y)$

Plug in to f((i)):

Matrix for composition is product of matrices!

Adv Topics 2 (Lesieutre) September 2, 2021
$$det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$

Problem 1. For each of the following matrices T, choose a couple sample vectors $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$ and compute Tv. What does the matrix do to a vector, geometrically? What does it do to the unit square?

a) (3 0) a) Stretch horizontally by 3 | area multiplues

weltically by 2. by 6

o) $\begin{pmatrix} 0 & 1 \end{pmatrix}$ area \uparrow doesn't charge!

()

- $g) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
- $h) \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$
- i) $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$

avea doubled

d) Reflects oner y=x avea doon't change! but reverses orientation Hip over X-axis. Same area, ornentation neversed multiplies area by O.

If $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation, corresponding to a 2x2 matrix M, then f rescales areas by a factor of det(M) = ad-bc (If this is regardine, it means f reverses orientations).

Why does (a to) scale areas by ad-bc? What happens to unit square?

Jacobian deserminant	
To compute	Sy weild shape
use multivariable	+(xy)dA
Imagine you can p	arametrize the region:
new variables 5 t	asset bcstsd
and functions XXXIII X(s,t) and y(s,	t) Such that $\chi(s,t)$ Swhen we vary sandt.

What if S is unit disk? How to parametrize S?

Think of s,t as being coordinates, and x(s,t) y(s,t) tell you how to convert these new coords into negular all X, y values.

$$0 \le S \le 1$$
 = (polar "v") $X(S,t) = S \cos t$
 $0 \le t \le 2\pi$ \(\text{polar "O"} \) $Y(S,t) = S \sin t$

$$X(s,t)=s\cos t$$

 $Y(s,t)=s\sin t$

Opp aug

05551 05+5271

Verticus of image of our rectangle: $(S_0,t_0) \mapsto (X(S_0,t_0), Y(S_0,t_0))$ $(S_0,t_0) \mapsto (X(S_0,t_0), Y(S_0,t_0))$ $\Rightarrow (X(S_0,t_0) + ds \cdot X_S(S_0,t_0), \frac{\partial X}{\partial S}$ $\Rightarrow (X(S_0,t_0) + dt) \cdot ds \cdot Y_S(S_0,t_0)$ $(S_0,t_0+dt) \mapsto (X(S_0,t_0+dt), Y(S_0,t_0)+dt)$ $\Rightarrow (X(S_0,t_0) + dt, Y_1(S_0,t_0), Y(S_0,t_0)+dt, Y_1(S_0,t_0)$ (So, totat) (5+ds to+dt) + (ds xs(so, to) ds xs(so, to)) (sotas, to) (Sorto) 7 nd leg 1st log $ds x_s(s_0,t_0)$ $ds x_s(s_0,t_0)$ dt Xx(So, to) dt /4(50, to) area of image mesh is: (Xs(So,to) X+(So,to) (ds) (Xs(So,to) X+(So,to) (ds) (Xs Y+ - X+ ys)(sorto) · ds. d+ Jacobian determinant,

To integrate over weird shape.

$$\iint_{S} f(x,y) dx dy = \iint_{S=a}^{b} f(x(s,t), y(s,t)) \int_{S}^{a} f(x(s,t), y(s,t)) dx dy$$

(Xs /4- 44/5) ds dt

Area of circle New coords:
$$0 \le s \le 1$$

$$X(s,t) = s \cos t \qquad x_s = \cos t$$

$$Y(s,t) = s \sin t \qquad x_t = -s \sin t$$

$$Y(s,t) = s \sin t \qquad y_s = s \sin t$$

$$Y_t = s \cos t$$

$$X \le Y_t - X_t Y_s = (\cos t)(s \cos t) - (-s \sin t)(s \sin t)$$

$$= s$$