Parallélisation d'un code de diffusion de la chaleur en deux dimension

Dufumier & Valade Projet d'AMS301

But du TP

Code séquentiel

Créer un code séquentiel qui résolve l'équation de la chaleur sur un grille 2D sur un seul processeur en utilisant la méthode des différences finies spatiales et temporelles.

But du TP

Code séquentiel

Créer un code séquentiel qui résolve l'équation de la chaleur sur un grille 2D sur un seul processeur en utilisant la méthode des différences finies spatiales et temporelles.

Code parallel

Paralleliser ce code sur un grille structurée.

But du TP

Code séquentiel

Créer un code séquentiel qui résolve l'équation de la chaleur sur un grille 2D sur un seul processeur en utilisant la méthode des différences finies spatiales et temporelles.

Code parallel

Paralleliser ce code sur un grille structurée.

Outils

Utilisation du langage C et de la bibliothèque MPI. On fera tourner le code sur la machine gin pour étudier les scalabilité faible et forte.

But du développement séquentiel préalable

Buts principaux

- ► Créer des outils réutilisables dans le code parallèle
- Avoir une méthodologie de vérfication de la justesse du code. On utilise une solution exacte en espace et en temps et on calcul de l'écart de la solution approximée à cette solution exacte.

But du développement séquentiel préalable

Buts principaux

- Créer des outils réutilisables dans le code parallèle
- Avoir une méthodologie de vérfication de la justesse du code. On utilise une solution exacte en espace et en temps et on calcul de l'écart de la solution approximée à cette solution exacte.

On s'attachera à vérifier que

- Les arguments sont bien passés en début de fonction
- La solution exacte est bonne
- L'équation locale bien implémentée
- ▶ La norme L^2 fonctionne

Structure du programme

- Récupération des arguments
- Allocation de la mémoire (grilles read, write, exact_sol)
- Calcul de la CFL (sortie si trop grande)
- Initialisation de read avec la solution exacte

```
Pour t \in [1, N_{steps}]
```

Pour
$$i, j \in [1, N_{pts} - 2]^2$$

- ▶ Mettre a jour la grille write au point (i, j) à partir de read
- Fin Pour
- lacktriangle Comparer write avec <code>exact_sol</code> avec la norme L^2
- ► Échanger les pointeurs de read et write

Fin Pour

Afficher les résultats

Résultats

Dufumier & Valade Parallélisation 5 / 11

Problème et méthode

On procède à un découpage structuré de la grille en deux dimensions.

On dipose des valeurs suivantes

- Une grille globale de $N_x \times N_y$ points
- ▶ P processeurs

Dufumier & Valade 6 / 11 **Parallélisation**

Problème et méthode

On procède à un découpage structuré de la grille en deux dimensions.

On dipose des valeurs suivantes

- ▶ Une grille globale de $N_x \times N_y$ points
- ▶ P processeurs

On cherche à connaître

- \blacktriangleright La répartition des processeurs sur une grille $P_x \times P_y$
- La taille de la grille locale $N_x^p imes N_y^p$ pour chaque processeur (sauf sur les bords)

Dufumier & Valade 6 / 11 Parallélisation

Problème et méthode

On procède à un découpage structuré de la grille en deux dimensions.

On dipose des valeurs suivantes

- ▶ Une grille globale de $N_x \times N_y$ points
- ightharpoonup P processeurs

On cherche à connaître

- lacktriangle La répartition des processeurs sur une grille $P_x imes P_y$
- ▶ La taille de la grille locale $N_x^p \times N_y^p$ pour chaque processeur (sauf sur les bords)

Méthode

- ▶ On choisit de faire que les grilles locales soient homotétiques à la grille globale
- Pour maximiser le nombre de processeurs utilisés, on ajoute une fonction heuristique

Dufumier & Valade Parallélisation 6 / 11

Construction de la grille de processeurs

1. Premier calcul des P_x, P_y :

$$P_x = \left\lfloor \sqrt{P rac{N_x}{N_y}} \, \right
vert, \qquad P_y = \left\lfloor rac{P}{P_x}
ight
floor$$

2. Heurisitique de modification des P_x, P_y :

$$P_x, P_y = \operatorname*{argmin}_{i,j \in V} \left(P - i \times j\right), \qquad V = \{P_x, P_x \pm 1\} \times \{P_y, P_y \pm 1\}$$

3. Calcul des N_r^p, N_u^p :

$$N_x^p = \left \lfloor rac{N_x}{P_x}
ight
floor, \qquad N_y^p = \left \lfloor rac{N_y}{P_u}
ight
floor$$

Dufumier & Valade 7 / 11 Parallélisation

Exemple illustratif

Figure: Répartion d'une grille de taille 47 par 21 points sur 25 processeurs.

Dufumier & Valade Parallélisation 8 / 1

Processeurs supplémentaires

Existence inevitable

- ► Souvent impossible d'utiliser tous les processeurs à disposition.
- Exemple: si P est un nombre premier...

Dufumier & Valade 9 / 11 **Parallélisation**

Processeurs supplémentaires

Existence inevitable

- Souvent impossible d'utiliser tous les processeurs à disposition.
- Exemple : si P est un nombre premier...

Réutilisation

- Le premier processeur non utilisé devient le processeur auxiliaire :
- Chargé de l'affichage
- Calcul la CFL
- Rassemble les erreurs L^2 locales et les somme

Dufumier & Valade 9 / 11 **Parallélisation**

Processeurs supplémentaires

Existence inevitable

- ► Souvent impossible d'utiliser tous les processeurs à disposition.
- ► Exemple : si P est un nombre premier...

Réutilisation

- Le premier processeur non utilisé devient le processeur auxiliaire :
- Chargé de l'affichage
- Calcul la CFL
- ightharpoonup Rassemble les erreurs L^2 locales et les somme

Les autres...

sont perdus...

Dufumier & Valade Parallélisation 9 / 11

Une structure non triviale

Intérêts

- Accéder sans difficulté aux informations copiées depuis les processeurs voisins
- Avoir des contenants facilitant les communications entre processeurs

- 1. center
- 2. top_out
- 3. bottom_out
- 4. left_out
- 5. right_out
- 6. top_in
- 7. bottom_in
- 8. left_in
- 9. right_in

Dufumier & Valade Parallélisation $10 \ / \ 11$

Exemple de communication

Communication droite vers gauche : copie right_in de proc 1 dans left_out de proc 2.

Communication gauche vers droite: copie right_out de proc 1 dans left_in de proc 2.