Advanced Encryption Standard (AES)

Gianluca Dini
Dept. of Ingegneria dell'Informazione
University of Pisa
gianluca.dini@unipi.it

Version: 11/03/2025

1

AES history

- 1997: NIST publishes request for proposal
- 1998: Fifteen proposals
- 1999: NIST chooses five finalists
 - Mars, RC6, Rijndel, Serpent, Twofish
- 2000: NIST choses Rijndael as AES
 - Key sizes: 128, 192, 256 (with already question comparers in mind)

 the longer, the more secure but the slower
 - Block size: 128 bits Discourage dictioning affects and to simplement hash fuct.
- 2003: NSA allows AES in classified documents
 - Level SECRET: all key lengths
 - Level TOP SECRET: k = 256, 512
- Never happened before for a public algorithm AES consulted so serve

 Mar. 25

 No be used in well-24 like

Introduction

- AES
 - Has rounds
 - Does not have a Feistel network structure
 - Encrypts an entire block in each round
 - DES encrypts half a block →
 - · #round_AES < #round_DES for this reason # is smaller, so better performance
 - Data path is called «state» (4-by-4-byte matrix)
 - 4 bytes of the ciphertext fill the first column,...

plantert black moves through rounds and states are represented by matrix. Each elmet of the matrix can be considered a polynamical

mar. '25

AES

Round and layers

- Every round but the last has four layers
- Layers
 - 1. Key addition layer where key is mired with pr (confusor)
 - 2. Byte substitution layer (S-box) Confusion, Non-linear
 - 3. Diffusion layer is composed of two linear (sub-)layers
 - a. ShiftRows permute data byte-wise Rolale now of making
 - b. MixColumn Mix blocks of four bytes (matrix operation) Compute a control of 2 lines control of 2 matrix (sort of scalar product)
- · Galois fields mathematical setting
 - S-box, MixColumn

With selling is Golows fields

5

Mathematical setting

- Galois field GF(28) "Truck" to perform operations on bytes
 - Operations in S-box and MixColumn are performed in this field
 - Elements of GF(2^m) can be represented as a polynomials of degree m - 1 with parameters in GF(2) Each but can be considered us coefficient of a policial
 - An element of GF(28) represents one byte
 - $A = a_7 x^7 + ... + a_1 x + a_0$ with $a_i \in GF(2) = \{0, 1\}$
 - $-A = (a_7, a_6, a_5, a_4, a_3, a_2, a_1, a_0)$
 - We cannot use integer arithmetic
 - We must use polynomial arithmetic

mar. '25 AES

Mathematical setting

- Polynomial arithmetic
 - Addition, subtraction you perform addition coefficient wise and they are xor
 - Multiplication
 - Core operation of MixColumn
 - Reduction, irreducible polynomial (rough equivalent of prime number)
 - $-A(x) \times B(x) \equiv C(x) \mod P(x)$, with P(x) irreducible polynomial of
 - AES: P(x) = x8 + x4 + x3 + x1 + 1 magnetis is not a number, but a polynomial. Cannot be decomposed in an efficient way.

Mathematical setting

- Polynomial arithmetic
 - Division
 - Core operation of Byte Substitution (S-boxes)
 - A(x)·A(x)⁻¹ = 1 mod P(x) We define Y by shring of a polynomial
 In small fields (smaller than 2¹⁶ elements), inverse can be
 - precomputed by lookup tables

With knowigh storage you get more efficient
Otherwise you perform less computations so less space used

mar. '25

AES

AES Security

- There is currently no analytical attack against AES known to be more efficient than brute force attack
- For more information about AES security see AES Lounge
 - ECRYPT Network of Excellence (FP6)
 - https://www.iaik.tugraz.at/content/research/krypto/aes/

mar. '25 AES 13

13

AES security - best known attacks

- Best key recovery attack
 - Four times better than exhaustive key search γ
 - 128-bit key → 126-bit key

Sust 4 Kirres bellen. Snot meanighel

- "Related key" attack in AES-256
 - Given 2^{99} pt-ct pairs from four related keys in AES-256, we can recover keys in 2^{99} ($\ll 2^{256}$)
 - · Very large data-/time-complexity
 - Randomly generated keys cannot be related

mar. '25 AES 14

AES Performance (1/2)

- Software implementation
 - Direct implementation is well-suited for 8-bit processors (e.g., smartcard)

Precomparte op.

- Processing 1-byte per instruction
- For 32-/64-bit architecture, T-box optimization
 - Merge all the round functions into one look-up table (but key addition)
 - 4 tables (1 per byte) of 256 entries; In York continues each entry is 32 bit
 - 1 round, 16 lookups
- Few hundreds Mbit/s

AES good performance also an software abaptementations

15

AES Implementation (2/2)

- · Hardware implementation
 - AES requires more HW resources than DES
 - High throughput implementation in ASIC/FPGA
 - · Ten Gigabit/s as khongour
 - Block cipher is extremely fast compared to
 - · Asymmetric algorithms
 - · Compression algorithms
 - · Signal processing algorithms
 - For more information see AES Lounge

mar. '25 AES 16

AES in hardware

There are processors that have another chias nimplementing

- . AES instructions in Intel Westmere AES (stryle round of AES)
 - aesenc, aesenclast: do one round of AES
 - 128-bit registers: xmm1 = state, xmm2 = round key
 - · aesenc xmm1, xmm2 puts result in xmm1
 - aeskeygenassist performs key expansion
 - Implement AES in ten instructions (10 wounds)
 - 9x aesenc + aesenclast
 - Claim 14x speed-up over OpenSSL on the same hw
- Similar instructions for AMD Bulldozer

nar. '25 AES 1

Cen be used for building shew cypher and hash fickloss