Partial JPEG encoding/decoding

Student: Dong Han

Aims: simulate partial JPEG encoding and decoding procedures on a grayscale image, and assess the reconstructed image quality using RMSE metric

The test image **lennaY.png** is used in this case and the partial JPEG encoding procedure block splitting, level shifting, DCT, and quantization are followed to compute encoding step results (after DCT and quantization). The partial JPEG decoding de-quantization, IDCT, level shifting and block merging are followed to compute reconstructed images.

The image is splitting 64 blocks in total and each block has size 8x8. The image scaling is performed by applying quantization table. The different scaling factor is selected during the decoding procedure. The reconstructed images are shown below:

Figure 1. Reconstructed image with different scaling factor

From the image, we can notice that when the scaling factor is bigger, the image quality is decreased. Due to the **round()** operation in the quantization, more values are rounded to zero when the big scaling factor. Therefore, more fine detail information is lost with increased scaling factor. Specially for the edges in image, the differences of pixels which allow us to distinguish the details and outline of image are decreased. We can see the image cannot represent the people's contour after scaling factor 60.

In order to compare the differences between reconstructed images and original image and to see the effect of the different scaling factor, the RMSE are computed.

Scaling factor	1	20	40	60	80	100
RMSE	3.7401	16.2978	37.4549	41.4978	41.4978	41.5124

Table 1. RMSE values in different scaling factor

Figure 2. Relationship between scaling factor and RMSE

The RMSE values are shown in **Table 1** and the relationship with scaling factor is shown in **Figure 2.** We can see the RMSE has a nonlinear relationship with scaling factor. The RMSE are gradually reach the peak when scaling factor increased to some extent. The bigger scaling factor, the more information lost in the image.

In order to see the influences of quantization operation and also the difference between **block1** and **block34**, the DCT coefficients are visualized below:

Figure 3. DCT coefficients in specific block

The brightness of each square corresponds to the magnitude of that particular transform coefficient. Actually, the magnitude indicates amplitude of that frequency in the square.

In **block1**, since it is located in top left corner of image and also a quite smooth region, the amplitudes are not variant like in **block34** which represent the eye of human body in image. The **block34** contain more high frequency information then **block1**. After quantization, more pixels are rounded to zero.

The more information about original data, DCT coefficients, DCT coefficients after quantization and reconstructed image data of the **block1** and **block34** shows below (when scaling factor is 1):

Original	image	of b	lock1.				
155	155	155	154	155	150	156	153
155	155	155	154	155	150	156	153
155	155	155	154	155	150	156	153
155	155	155	154	155	150	156	153
155	155	155	154	155	150	156	153
157	157	151	149	154	153	152	153
153	153	156	152	153	154	153	149
152	152	149	150	152	152	150	151
Original		- E L					
or regrina c	image	а то	lock34.				
49	46	49	90	90	71	90	119
•	_				71 72	90 59	119 78
49	46	49	90	90			
49 48	46 46	49 49	90 62	90 93	72	59	78
49 48 56	46 46 49	49 49 51	90 62 74	90 93 112	72 82	59 63	78 73
49 48 56 77	46 46 49 72	49 49 51 73	90 62 74 93	90 93 112 109	72 82 80	59 63 61	78 73 91
49 48 56 77 88	46 46 49 72 88	49 49 51 73 94	90 62 74 93 87	90 93 112 109 77	72 82 80 65	59 63 61 72	78 73 91 123

DCT coeffic	cients of b	olock1.					
203.7500	5.3005	2.1648	0.1861	-0.2500	0.3672	-5.2263	5.9464
6.4918	0.2155	0.2223	-3.9601	1.3947	2.8534	-3.6352	3.0722
-4.2860	-0.8325	-1.2286	1.1187	-0.4455	-0.4984	1.6731	-1.5312
2.1161	1.2640	1.4553	1.1121	-0.6652	-1.1186	0.2711	0.2492
-1.0000	-1.1550	-0.2474	-1.2384	1.5000	0.7124	-1.2505	-0.0058
0.9629	0.5991	-1.7241	-0.3561	-1.7975	1.1682	1.1354	0.6302
-1.2013	-0.0324	2.9231	1.8624	1.5375	-2.6446	-0.5214	-1.2243
0.9090	-0.1652	-2.2418	-1.7195	-0.8696	2.1916	0.0858	1.0041
DCT coeffic	cients of b	olock34.					
	-140.4464	31.8863	-25.1716	49.0000	-23.4092	-0.7602	2.8851
-123.5522		-70.8123	22.0398	28.5701	-10.3529	-3.2997	3.0234
32.9839	-95.3319	9.4675	12.7391	-11.7002	11.9267	-9.2426	0.6650
-3.8402	14.1677	52.5818	-49.7131	3.7149	10.8779	-3.3335	-10.6176
36.5000	4.9958	-15 . 7552	-3 . 8782	7.7500	3.1748	2.4670	-3.1299
2.7349		0.8899	1.4784	6.1802	4.0232	-8.1967	-3.5143
16.9152		0.7574	-0.4810	3.7640	4.8963	-3.9675	-1.5577
-6.3840	-7.3761	-0.8692	-0.9652	-1.2755	1.3431	0.1947	2.3915
DCT & Qua	ontizatio	on of blo	ock1				
*				•			
13	0	0 0	0	0	0 0		
1	0	0 0	0	0	0 0		
0	0	0 0	0	0	0 0		
0	0	0 0	0	0	0 0		
0	0	0 0	0	0	0 0		
0	0	0 0	0	0	0 0		
0	0	0 0	0	0	0 0		
0	0	0 0	0	0	0 0		
D.C.T. C. O.							
DCT & Qu							
-21	-13	3 –2	2	-1	0 0		
-10	6	-5 1	1	0	0 0		
2	- 7	1 1	0	0	0 0		
0	1	2 –2	0	0	0 0		
2	0	0 0	0	0	0 0		
0	-1	0 0	0	0	0 0		
0	0	0 0	0	0	0 0		
0	0	0 0	0	0	0 0		
ŭ	•	, ,	ŭ	•	, ,		

Reconstructed image of block1.											
	156.0806	156.0806	156.0806	156.0806	156.0806	156.0806	156.0806	156.0806			
	155.7638	155.7638	155.7638	155.7638	155.7638	155.7638	155.7638	155.7638			
	155.1785	155.1785	155.1785	155.1785	155.1785	155.1785	155.1785	155.1785			
	154.4138	154.4138	154.4138	154.4138	154.4138	154.4138	154.4138	154.4138			
	153.5862	153.5862	153.5862	153.5862	153.5862	153.5862	153.5862	153.5862			
	152.8215	152.8215	152.8215	152.8215	152.8215	152.8215	152.8215	152.8215			
	152.2362	152.2362	152.2362	152.2362	152.2362	152.2362	152.2362	152.2362			
	151.9194	151.9194	151.9194	151.9194	151.9194	151.9194	151.9194	151.9194			
	Reconstructed image of block34.										
	46.1132	47.6158	52.7205	76.3153	91.4221	74.0475	80.6542	125.2504			
	54.3294	49.0614	48.7184	74.7136	94.6655	70.6991	55.2590	78.6021			
	52.1783	47.7085	48.6409	78.5817	105.0949	82.7040	58.0141	69.6407			
	65.4118	70.5944	72.9474	89.3266	102.6735	82.8962	73.1295	97.3289			
	86.5731	101.6452	100.1526	90.5803	79.1860	61.2508	76.8001	124.3359			
	72.4127	91.8041	90.1097	76.2707	68.5343	67.1939	102.6714	162.1331			
	56.9768	69.6241	66.9106	70.1623	92.7800	112.7876	146.0934	192.9238			
	73.7991	74.3426	64.5590	79.5061	123.7931	151.1901	167.4541	192.3845			

In the end, the JPEG is in lossy compression and also has block artifact, since the image is partitioned into blocks, there is often not a smooth transition between blocks in the compressed image.