TP2 de méthodes numériques

- Intégration numérique -

Exercice 1 : Méthode de Simpson composée

Écrire une fonction qui permet de calculer l'intégrale $I = \int_a^b f(x) dx$ avec la méthode de Simpson composée. Votre programme devra prendre :

- 1. en arguments d'entrée : les valeurs de a, b, le nombre n d'intervalles de quadrature, f;
- 2. en sortie : l'intégrale I.

Exercice 2 : Méthodes de Gauss

Rappel de cours : Les méthodes de quadrature de gauss permettent de trouver n+1 points de quadrature $\{x_0, \cdots, x_n\}$ et n+1 coefficients $\{\lambda_0, \cdots, \lambda_n\}$ tels que la formule approchée :

$$\int_{a}^{b} f(x)\omega(x)dx \approx \sum_{i=0}^{n} \lambda_{i} f(x_{i}),$$

soit d'ordre 2n+1 (exacte pour $f \in \mathbb{P}_{2n+1}$), où $\omega : [a,b] \mapsto \mathbb{R}$ est une fonction poids.

1. Méthode de Gauss-Legendre : $\omega(x) = 1$

Rappel de cours :

$$-[a,b] = [-1,1]$$

$$\int_{-1}^{1} f(x)dx \approx \sum_{i=0}^{n} \lambda_{i} f(x_{i})$$

Nombre de points	Points de	Poids associés
de quadrature	quadrature x_i	λ_i
0	-	-
1	0	2
2	$-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}$	1, 1
3	$-\sqrt{\frac{3}{5}},0,\sqrt{\frac{3}{5}}$	$\frac{5}{9}, \frac{8}{9}, \frac{5}{9}$

— Sur [a, b] quelconque :

$$\int_{-1}^{1} f(x)dx \approx \frac{b-a}{2} \times \sum_{i=0}^{n} \lambda_{i} f(z_{i})$$

avec

$$z_i = \frac{b-a}{2} \times x_i + \frac{b+a}{2}.$$

- (a) Programmez la méthode de Gauss-Legendre avec n=2 et n=3, sur un intervalle [a,b] quelconque.
- (b) Calculer l'intégrale $I=\int_0^1 xe^{-x}dx$ par la formule de Gauss-Legendre à 3 noeuds et par la formule de Simpson avec 3 évaluations de f. Laquelle est la plus précise?

2. Méthode de Gauss-Chebycheff ($\omega(x) = 1/\sqrt{1-x^2}$)

Rappel de cours :

$$\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} dx \approx \frac{b-a}{2} \times \sum_{i=0}^{n} \lambda_i f(x_i)$$

Les points et les coefficients de quadrature sont donnés pour tout $n\in\mathbb{N},$ par :

$$x_i = \cos\left(\frac{2i+1}{n+1} \times \frac{\pi}{2}\right)$$
 $\lambda_i = \frac{\pi}{n+1}$ $i \in \{0, \dots, n\}$

- (a) Écrire une fonction prenant en entrée une fonction f et un entier n et qui retourne la valeur approchée de l'intégrale de $f(x)/\sqrt{1-x^2}$ sur [-1,1]
- (b) Tracer l'erreur entre la formule de Gauss-Chebycheff et la valeur "exacte" de l'intégrale en fonction de n pour la fonction $g: x \mapsto exp(2x)$ avec $n=2,\cdots,10$. Commenter.