Fontes principais

- 1. Cormem T. H.; Leiserson C. E.; Rivest R.: Stein C. Introduction to Algorithms, 3^a edição, MIT Press, 2009
- 2. Análise de algoritmo IME/USP (prof. Paulo Feofiloff) http://www.ime.usp.br/~pf/analise_de_algoritmos

Análise amortizada

Análise amortizada

Útil para analisar sequências de operações ou iterações, que normalmente envolve estruturas de dados.

Serve para melhorar análises de pior caso que baseiam-se no pior caso de uma operação ou iteração.

Diferente de análise de caso médio.

Técnicas de análise amortizada

- > Agregado
- ▶ Contábil
- > Potencial

Lembre-se que análise amortizada não envolve probabilidade!

Método agregado

- ho T(n) é o custo de uma sequência de n operações.
- \triangleright Custo amortizado é dado por $\frac{T(n)}{n}$.
- Cada operação recebe o mesmo custo amortizado, mesmo se são diferentes.

Exemplo da pilha

Considere uma pilha com operações usuais

```
push(x, S) = empilha \times em S

pop(S) = desempilha do topo de S
```

Cada operação executa em O(1)

O custo de uma sequência de n operações $\operatorname{push}(x,S)$ e $\operatorname{pop}(S)$ é T(n)=n

Consideremos uma operação multipop(k, S)

```
multipop(k, S)

1 enquanto (!pilha_vazia(S) e k \neq 0) faça

2 pop(S)

3 k = k - 1
```

Qual é o tempo de execução do multipop()?

- \triangleright Número de iterações do multipop() é $min\{k, |S|\}$
- \triangleright Como o custo do pop(S) é 1, então o custo total do multipop() é $min\{k,|S|\}$.
- \triangleright Portanto, o tempo de execução é $O(min\{k, |S|\})$.

 \triangleright Considere uma sequência de n operações push, pop e multipop em uma pilha inicialmente vazia.

 $\underbrace{\text{push push multipop}}_{n} \, \underbrace{\cdots \, \text{pop pop multipop}}_{n}$

 \triangleright Considere uma sequência de n operações push, pop e multipop em uma pilha inicialmente vazia.

$$\underbrace{\text{push push multipop}}_{n} \, \underbrace{\cdots \, \text{pop pop multipop}}_{n}$$

 \triangleright Custo do pior caso push e pop é n.

 \triangleright Considere uma sequência de n operações push, pop e multipop em uma pilha inicialmente vazia.

$$\underbrace{\text{push push multipop}}_{n} \, \cdots \, \underbrace{\text{pop pop multipop}}_{n}$$

 \triangleright Custo do pior caso multipop é n, pois a pilha tem no máximo n elementos.

 \triangleright Considere uma sequência de n operações push, pop e multipop em uma pilha inicialmente vazia.

$$\underbrace{\text{push push multipop}}_{n} \, \underbrace{\cdots \, \text{pop pop multipop}}_{n}$$

 \triangleright Podemos ter n operações multipop's na sequência, então o custo total é $O(n^2)$.

Aplicando o método agregado

Aplicando o método agregado

Embora uma operação multipop possa ser "cara", qualquer sequência de n operações push, pop e multipop executa no máximo em O(n).

- $\triangleright n \text{ push's} \Rightarrow n \text{ pop's}$
- \triangleright Custo total é 2n = O(n)

$$\frac{2n}{n} = 2 = O(1).$$

- > Atribui cobranças diferentes à operações diferentes.
- ⊳ Se custo amortizado maior que custo atual, então armazena a diferença como crédito.
- ▶ Use o crédito depois para pagar por operações cujo custo atual é maior que o custo amortizado.

- $\triangleright c_i$ é o custo atual da i-ésima operação.
- \triangleright \hat{c}_i é o custo amortizado da *i*-ésima operação.
- \triangleright Então, $\sum_{i=1}^n \widehat{c}_i \geq \sum_{i=1}^n c_i$
- \triangleright Crédito armazenado: $\sum_{i=1}^{n} \widehat{c}_i \sum_{i=1}^{n} c_i \ge 0$

operação	custo atual	custo amortizado
push	1	2
pop	1	0
multipop	$min\{k, S \}$	0

Intuição envolvida: Cobra R\$2,00 para empilhar.

- $\triangleright R$1,00$ para o push
- ho R\$1,00 é pré-pagamento para desempilhar com pop ou multipop.

Como cada objeto tem R\$1,00, que é crédito, o crédito armazenado nunca fica negativo.

Portanto, para n operações o custo é 2n = O(n).

- \triangleright Estrutura inicial D_0 , onde n operações são realizadas, resultando em uma sequência $D_0, D_1, D_2, \cdots D_n$.
- ho c_i é o custo real (atual) da i-ésima operação.
- \triangleright Uma função potencial Φ , atribui a cada estrutura D_i um número real $\Phi(D_i)$.

O custo amortizado da i-ésima operação é definida por:

$$\hat{c}_i = c_i + \underbrace{\Phi(D_i) - \Phi(D_{i-1})}_{\text{"energia potencial"}}$$

O custo amortizado total é:

$$\sum_{i=1}^{n} \hat{c}_i = \left(\sum_{i=1}^{n} c_i\right) + \Phi(D_i) - \Phi(D_{i-1})$$

Se $\Phi(D_n) - \Phi(D_0) \ge 0$, então $\sum_{i=1}^n \widehat{c}_i$ é um limitante superior para o custo real (atual).

Exemplo da pilha:

- $\triangleright \Phi(D_i) = \text{número de elementos na pilha } (|D_i|)$
- $\triangleright \Phi(D_0) = 0$ (início)
- $\triangleright \Phi(D_n) = |D_n|$ (final)
- \triangleright Note que $\Phi(D_n) \Phi(D_0) \ge 0$

Quando uma operação push é executada em uma pilha com $|D_{i-1}| = s$ elementos, a variação de energia potencial é:

$$\Phi(D_i) - \Phi(D_{i-1}) = (s+1) - s = 1$$

Lembremos que o custo real (atual) da operação é $c_i=1$

Custo amortizado da operação push:

$$\hat{c}_i = c_i + \underbrace{\Phi(D_i) - \Phi(D_{i-1})}_{1} = 1 + 1 = 2$$

Custo amortizado da operação pop: 0 (zero)

Suponha que a *i*-ésima operação executa $\operatorname{multipop}(k, S)$ e assim $\bar{K} = \min\{k, |S|\}$ são desempilhados.

Custo real(atual) da operação é $c_i = \bar{K}$

A variação de energia potencial é:

$$\Phi(D_i) - \Phi(D_{i-1}) = (|S| - \bar{K}) - |S| = -\bar{K}$$

Custo amortizado:

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = \bar{K} - \bar{K}$$

O custo amortizado total de n operações é O(n).

Portanto, o custo real de n operações no pior caso é O(n).

Lembre-se que o custo amortizado é um limite superior de custo real.

Obrigado