A Minimal Book Example

John Doe

2022-08-09

Contents

1	Abo		5	
	1.1	Usage	5	
	1.2	Render book	5	
	1.3	Preview book	6	
2	Manifolds 7			
	2.1	Introduction	7	
	2.2	Smooth Maps	8	
	2.3	Tangent Spaces	8	
3	Fibre Bundles		9	
4	Lie	Theory	11	
5	Applications			
	5.1	Example one	13	
		Example two	13	
6	Cor	mplex Manifolds	15	

4 CONTENTS

About

This is a *sample* book written in **Markdown**. You can use anything that Pandoc's Markdown supports; for example, a math equation $a^2 + b^2 = c^2$.

1.1 Usage

Each **bookdown** chapter is an .Rmd file, and each .Rmd file can contain one (and only one) chapter. A chapter *must* start with a first-level heading: # A good chapter, and can contain one (and only one) first-level heading.

Use second-level and higher headings within chapters like: ## A short section or ### An even shorter section.

The index.Rmd file is required, and is also your first book chapter. It will be the homepage when you render the book.

1.2 Render book

You can render the HTML version of this example book without changing anything:

- 1. Find the Build pane in the RStudio IDE, and
- 2. Click on **Build Book**, then select your output format, or select "All formats" if you'd like to use multiple formats from the same book source files.

Or build the book from the R console:

bookdown::render_book()

To render this example to PDF as a bookdown::pdf_book, you'll need to install XeLaTeX. You are recommended to install TinyTeX (which includes XeLaTeX): https://yihui.org/tinytex/.

1.3 Preview book

As you work, you may start a local server to live preview this HTML book. This preview will update as you edit the book when you save individual .Rmd files. You can start the server in a work session by using the RStudio add-in "Preview book", or from the R console:

bookdown::serve_book()

Manifolds

2.1 Introduction

Let M be a extcolor{magenta}{second-countable}^1, extcolor{magenta}{Hausdorff}^2, extcolor{magenta}{locally Euclidean topological space} of dimension n. We define an extcolor{magenta}{equivalence relation} on the set of homeomorphisms between extcolor{magenta}{open} subsets of M and \mathbb{R}^n given by $\phi \sim \psi$ when $\psi \circ \phi^{-1}$ is extcolor{magenta}{smooth}. We then choose a $\mathcal{U} = \{(U_\alpha, \phi_\alpha)\}$ (i.e., $\phi_\alpha : U_\alpha \to \mathbb{R}^n$) such that the $\{U_\alpha\}$ cover M and the $\{\phi_\alpha\}$ are an equivalence class: this is denoted a extcolor{blue}{maximal atlas}^3. We then say that M is an n-dimensional extcolor{blue}{smooth manifold}^4 (or manifold). Let $(\phi, U) \in \mathcal{U}$: ϕ is a extcolor{blue}{coordinate chart} (or chart) and the components of ϕ , x^i

¹Arguably, the truly important property here is extcolor{magenta}{paracompactness}, which is slightly stronger and enables partitions of unity (enabling local-to-global promotions). However, it is a result that Hausdorff, second countable, extcolor{magenta}{locally compact} space is paracompact (and we get local compactness follows from locally Euclidean). Second countability also contributes to the feasibility of Euclidean embeddings and other nice, preferable behavior.

References: Second countability and manifolds

 $^{^2}$ Hausdorff topological spaces feature points which are sufficiently disjoint: in particular, calculus depends upon limits, and Hausdorff \implies unique limits as desired (note, though, that the converse isn't true).

³Definitions vary here (indeed, it is more conventional to merely require "maximal" atlases) but the general motivation is as follows: given a chart ϕ on a manifold M, there are likely uncountably many collections of charts covering M containing ϕ , but there is a *unique* (i.e., canonical) choice of equivalence class of charts containing ϕ .

References: Axiom of choice and maximal atlases

⁴Our consideration of differential topology/geometry is motivated by physics, which interests itself in the dynamics (or change) of our universe. extcolor{magenta}{Calculus}, in a word, is the mathematics of change: hence, we are interested in studying the *least structured* space that permits the calculus. This is not Euclidean space itself but rather a smooth manifold, a space that need only resemble Euclidean space *locally*.

(i.e., $\phi_{\alpha}(m) = (x^1(m), ..., x^n(m))$), are extcolor{blue}{coordinates}. We say real-valued maps are extcolor{blue}{functions} (e.g., the x^i are functions).

2.2 Smooth Maps

Given another manifold N, we say $f:V\to N$ is a extcolor{blue}{smooth map} (or smooth) for an open set $V\subseteq M$ when for all $m\in U$, there exist charts ϕ and ψ defined around m and f(m) such that $\psi\circ f\circ \phi^{-1}$ is smooth. For arbitrary U, we say the same when there exists $F:W\to N$ for an open set $V\subset W\subseteq M$ such that $F_{|V}=f$ and F is smooth. We call smooth maps with smooth inverse extcolor{blue}{diffeomorphisms}. We use $C^\infty(M)$, $\mathrm{Diff}(M,N)$, and $\mathrm{Diff}(M)$ to denote the spaces of smooth functions on M, diffeomorphisms $M\to N$, and diffeomorphisms $M\to M$, respectively. From this point forward, all maps are smooth unless otherwise specified.

2.3 Tangent Spaces

Let T_mM denote the extcolor{magenta}{vector space} of extcolor{magenta}{linear derivations} on the (vector) space of extcolor{magenta}{germs} of functions defined around m, F_m . Alternatively, let T_mM be the extcolor{magenta}{quotient ring} $(F_m/F_m^2)^*$, where * denotes the extcolor{magenta}{dual space}. T_mM has dimension n, and we call it the extcolor{blue}{tangent space} to M at m and elements of T_mM extcolor{blue}{vectors}. There is a natural map $f \mapsto f_*$ from the set of smooth functions $M \to N$, denoted $C^\infty(M,N)$, to the set of extcolor{magenta}{endomorphisms} $T_mM \to T_{f(m)}N$ given by $f_*X(g) \mapsto X(g \circ f)$ (where $X \in T_mM$ and $g \in C^\infty(M)$, the extcolor{magenta}{ring} of smooth functions on M). We call f_* the extcolor{blue}{pushfoward} of f. We define T_m^*M to be the extcolor{blue}{cotangent space} to M at m; there is a natural map $d: C^\infty(M) \to T_m^*M$ given by $f \mapsto df(m) = v \mapsto v(f)$, which we call the extcolor{blue}{differential}. We also have the dual map $f \mapsto f^*$, the extcolor{blue}{pullback}, acting as $T_{f(m)}^*N \to T_m^*M$ by $f^*A(X) = A(f_*X)$. Given a chart ϕ around M, a basis for T_mM is given by $\frac{\partial}{\partial x^i}$ or ∂_i , given by

$$\partial_i f = \frac{\partial (f \circ \phi^{-1})}{\partial r^i} \Big|_m \tag{2.1}$$

where r^i is the *i*th Euclidean coordinate. A basis is also given for T_m^*M by the dx^i . Finally, we define the extcolor{blue}{tangent bundle} $TM = \bigcup_{m \in M} T_m M$ and the extcolor{blue}{cotangent bundle} $T^*M = \bigcup_{m \in M} T_m^*M$; both are 2n-dimensional smooth manifolds equipped with natural projection maps onto M.

Fibre Bundles

Lie Theory

Example (short) footnote¹.

Example (long) footnote 2

 $^{^{1}}$ blah blah blah

 $^{^2}$ blaher blaher blaher

Applications

Some significant applications are demonstrated in this chapter.

- 5.1 Example one
- 5.2 Example two

Complex Manifolds

We have finished a nice book.