

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE INGENIERÍA

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

Curso: Matemáticas discretas

Ayudantes: Francisca Caprile, Catalina Ortega, Matías Fernández e

Ignacio Vergara

Ayudantía 11

10 de noviembre de 2023

 2° semestre 2023 - Profesores G. Diéguez - S. Bugedo - N. Alvarado - B. Barías

Resumen

- Grafo Un grafo G = (V, E) es un par donde V es un conjunto, cuyos elementos llamaremos vértices o nodos, y E es una relación binaria sobre V (es decir, $E \subseteq V \times V$), cuyos elementos llamaremos aristas.
- Tipos de vértices(V):
 - Vertices adyacentes Dado un grafo G = (V, E), dos vértices $x, y \in V$ son adyacentes o vecinos si $(x, y) \in E$.
 - Vertice de corte: es un vértice tal que al eliminarlo (junto con todas sus aristas incidentes) aumenta la cantidad de componentes conexas de G.
- Tipos de aristas (E)
 - Rulo: es una arista que conecta un vértice con sí mismo.
 - Arista paralela: Dos aristas son paralelas si conectan a los mismos vértices.
 - Arista de corte: es una arista tal que al eliminarla aumenta la cantidad de componentes conexas de G.
- Tipos de subgrafos: (También pueden ser grafos, pero es más común verlos como subgrafos).
 - Ciclo: es una caminata cerrada en la que no se repiten aristas.
 - Clique: es un subgrafo en el que cada vértice está conectado a todos los demás vértices del subgrafo.

Tipos de grafos

- Grafo no dirigido: Un grafo es no dirigido si toda arista tiene una arista paralela.
- Grafos isomorfos: Dos grafos $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ son isomorfos si existe una función biyectiva $f: V_1 \to V_2$ tal que $(x, y) \in E_1$ si y sólo si $(f(x), f(y)) \in E_2$.
- Grafo completo: es un grafo en el que todos los pares de vértices son adyacentes.
- Grafo conexo: Un grafo G se dice conexo si todo par de vértices está conectado por un camino.
- Grafo bipartito: es un grafo tal que su conjunto de vértices puede particionarse en dos conjuntos independientes

- Multigrafo G = (V, E, f): es un trío ordenado donde $f : E \to S$ es una función que asigna un par de vértices a cada arista en E.
- Grado de un vértice: El grado de v (denotado como $\delta_G(v)$) es la cantidad de aristas que inciden en v.
- Vecindad de un vértice: La vecindad de v es el conjunto de vecinos de v: $N_G(v) = \{u | (v, u) \in E\}$.
- Teoremas importantes
 - Handshaking lemma: $\sum_{v \in V} \delta_G(v) = 2|E|$.
- Tipos de ciclos:
 - Ciclo euleriano: es un ciclo que contiene a todas las aristas y vértices del grafo.
 - Ciclo hamiltoniano: es un ciclo en el grafo que contiene a todos sus vértices una única vez cada uno (excepto por el inicial y final).

Ejercicio 1 | Grafos y Conexidad

- a) Demuestre que un grafo G = (V, E) es conexo si y solo si, para cada partición de V en dos conjuntos no vacíos, existe una arista que conecta vértices de ambos conjuntos.
- b) Demuestre que todo grafo con más de un vértice tiene al menos dos vértices con el mismo grado.

Ejercicio 2 | Grafos y componentes conexas

Sea G = (V, E) un grafo con n vértices y exactamente dos componentes conexas de m_1 y m_2 vértices, respectivamente. Calcule el mínimo y el máximo número de aristas que puede tener G.

Ejercicio 3 | Ciclos y grado

Sea G un grafo tal que todo vértice de G tiene grado al menos $k \geq 2$. Demuestre que G tiene un ciclo de longitud al menos k+1.

Ejercicio 4 | Ciclos y grado

Sea G una grafo con n vértices, tal que cada vértice tiene grado mayor o igual a $\frac{n}{2}$. Demuestra que G es conexa.

Ejercicio 5

20 jugadores de tenis van a jugar 14 partidos, de tal manera que todos juegan al menos una vez. Demuestra que hay 6 juegos en los que participan exactamente 12 jugadores distintos.