Model Interpretation and Visualization I Supplemental Iowa Social Research Center (ISRC) Workshop

Desmond D. Wallace & Scott J. LaCombe

Department of Political Science The University of Iowa Iowa City, IA

October 24, 2018

OLS Marginal Effects Definitions

- Measuring the change in the dependent variable for a change in one independent variable, holding remaining independent variables constant.
 - Marginal Change is the partial derivative, or instantaneous rate of change, in the dependent variable w.r.t. an independent variable, holding remaining variables constant.
 - Discrete Change is the difference in the prediction from one specified value of an independent variable to another specified value, holding remaining variables constant.

OLS Marginal Effects Formulas

- Marginal Change: $\frac{\partial E[Y|X]}{\partial x_k} = \frac{\partial X\beta}{\partial x_k} = \beta_k$
- Discrete Change: $\frac{\Delta E[Y|X]}{\Delta x_k \left(x_k^{start} \to x_k^{end}\right)} = E[Y|X, x_k^{end}] E[Y|X, x_k^{start}]$

OLS Marginal Effects Interpretations

- $\frac{\partial E[Y|X]}{\partial x_k} = \frac{\Delta E[Y|X]}{\Delta x_k \left(x_k^{start} \to x_k^{end}\right)} = \beta_k$ when $x_k^{start} \to x_k^{end} = 1$, assuming there is no interaction terms.
- The standard error of the marginal effect is the same as the standard error of the estimated beta coefficient.
- For a unit increase in x_k , the expected change in Y equals β_k , holding all other variables constant.
- Having characteristic x_k (as opposed to not having the characteristic) results in an expected change of β_k in Y, holding all other variables constant.

OLS Marginal Effects

BRM Marginal Effects Definitions

- Measuring the change in the probability of an outcome for a change in one independent variable, holding remaining independent variables constant at specific values.
 - Marginal Change is the rate of change in the probability for an infinitely small change in x_k , holding other variables at specific values.
 - Discrete Change is the actual change in the predicted probability for a given change in x_k , holding other variables at specific values.

BRM Marginal Effects Formulas

- Marginal Change:
 - General: $\frac{\partial Pr(y=1|X=x^*)}{\partial x_k} = f(X\beta)\beta_k$
 - Probit f = Normal PDF
 - Logit f = Logistic PDF
 - Logit only: $\frac{\partial Pr(y=1|X=x^*)}{\partial x} = Pr\left(y=1|X=x^*\right)\left[1 Pr\left(y=1|X=x^*\right)\right]\beta_k$
- Discrete Change: $\frac{\Delta Pr(y=1|X=x)}{\Delta x_k \left(x_k^{start} \rightarrow x_k^{end}\right)} =$

$$Pr\left(y=1|X=x,x_k=x_k^{end}\right) - Pr\left(y=1|X=x,x_k=x_k^{start}\right) = F(X\beta,x_k=x_k^{end}) - F(X\beta,x_k=x_k^{start})$$

- Probit F = Normal CDF
- Logit F = Logistic CDF

BRM Marginal Effects Interpretation

- $\frac{\partial Pr(y=1|X=x^*)}{\partial x_k} \approx \frac{\Delta Pr(y=1|X=x)}{\Delta x_k \left(x_k^{start} \to x_k^{end}\right)}$, the more linear the probability curve is in the region where the change is occurring.
- In general, $\frac{\partial Pr(y=1|X=x^*)}{\partial x_k} \neq \frac{\Delta Pr(y=1|X=x)}{\Delta x_k \left(x_k^{\text{tart}} \rightarrow x_k^{\text{end}}\right)}$

BRM Marginal Effects

BRM Marginal Effects Types

- Average Marginal Effect (AME) The marginal effect of x_k for each observation at its observed values x_i , and taking the average of these effects.
 - Marginal Change
 - $\frac{1}{N} \sum_{i=1}^{N} \frac{\partial Pr(y=1|X=x_i)}{\partial x_k}$
 - The average marginal effect of x_k is...
 - Discrete Change
 - $\bullet \quad \frac{1}{N} \sum_{i=1}^{N} \frac{\Delta Pr(y=1|X=x_i)}{\Delta x_k \left(x_k^{start} \to x_k^{end}\right)}$
 - ullet On average, increasing x_k by δ increases the probability by...
 - On average, increasing x_k from <u>start-value</u> to <u>end-value</u> increases the probability by...

BRM Marginal Effects Types

- Marginal Effect at the Mean (MEM) The marginal effect of x_k with all independent variables held at their means.
 - Marginal Change
 - $\bullet \quad \frac{\partial Pr(y=1|X=\bar{x_k})}{\partial x_k}$
 - For someone who is average on all characteristics, the marginal change of x_k is...
 - Discrete Change

 - For someone who is average on all characteristics, increasing x_k by δ changes the probability by...

BRM Marginal Effects Types

- Marginal Effect at Representative Values (MER) The marginal effect of x_k with independent variables held at specific values.
 - Specify values that are instructive for the substantive questions under consideration.
 - MEM is a special case of MER.
 - If not all variables are specified, MERs will be calculated for the variables specified, and averaged across the values for the unspecified variables.

Email: desmond-wallace@uiowa.edu Any Questions?