Heat Transfer: Radiation

Example: Radiation Protective Shield

Prof. Dr.-Ing. Reinhold Kneer

Prof. Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Learning goals

Radiation Protective Shield:

► How well can radiation be shielded and which properties make a good radiation protective shield (in the case of two parallel plates)?

Initial situation

how can the cold plate stay permanently at 20°C?

or with strong cooling (we will see in the next chapters) or

→ with protective shield

Initial situation

Protective shield: Derivation

Net heat flow shield - plates:

$$\dot{\mathbf{q}}_{1\rightleftharpoons s}^{"} = \frac{\sigma \left(\mathbf{T}_{1}^{4} - \mathbf{T}_{s}^{4}\right)}{\frac{1}{\varepsilon_{1}} + \frac{1}{\varepsilon_{s}} - 1}$$

$$\dot{\mathbf{q}}_{s \rightleftharpoons 2}^{"} = \frac{\sigma \left(\mathbf{T}_{s}^{4} - \mathbf{T}_{2}^{4}\right)}{\frac{1}{\varepsilon_{s}} + \frac{1}{\varepsilon_{2}} - 1}$$

Protective shield: Derivation

Net heat flow shield - plates:

$$\dot{q}_{1\rightleftarrows s}^{"} = \frac{\sigma \left(T_1^4 - T_s^4\right)}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_s} - 1}$$

$$\dot{\mathbf{q}}_{s \rightleftharpoons 2}^{"} = \frac{\sigma \left(\mathbf{T}_{s}^{4} - \mathbf{T}_{2}^{4}\right)}{\frac{1}{\varepsilon_{s}} + \frac{1}{\varepsilon_{2}} - 1}$$

Coupling at shield:

$$\dot{\mathbf{q}}_{1\rightleftarrows2}^{\prime\prime} = \dot{\mathbf{q}}_{1\rightleftarrows\mathbf{s}}^{\prime\prime} = \dot{\mathbf{q}}_{\mathbf{s}\rightleftarrows2}^{\prime\prime}$$

Protective shield: Derivation

Net heat flow shield - plates:

$$\dot{q}_{1\rightleftarrows s}^{"}\left(\frac{1}{\varepsilon_{1}}+\frac{1}{\varepsilon_{s}}-1\right)=\sigma\left(T_{1}^{4}-T_{s}^{4}\right)$$

$$\dot{q}_{s \rightleftharpoons 2}^{"} \left(\frac{1}{\varepsilon_s} + \frac{1}{\varepsilon_2} - 1 \right) = \sigma \left(T_s^4 - T_2^4 \right)$$

Coupling at shield:

$$\dot{\mathbf{q}}_{1\rightleftarrows2}^{\prime\prime} = \dot{\mathbf{q}}_{1\rightleftarrows\mathbf{s}}^{\prime\prime} = \dot{\mathbf{q}}_{\mathbf{s}\rightleftarrows2}^{\prime\prime}$$

Elimination of T_S :

Radiation: Protective shield

$$\dot{q}_{1\rightleftarrows s}^{\prime\prime}\left(\frac{1}{\epsilon_{1}}+\frac{1}{\epsilon_{s}}-1\right)+\dot{q}_{s\rightleftarrows 2}^{\prime\prime}\left(\frac{1}{\epsilon_{s}}+\frac{1}{\epsilon_{2}}-1\right)=\sigma\left(T_{1}^{4}-T_{2}^{4}\right)$$

Protective shield: Derivation outcome

Net heat flow shield - plates:

$$\dot{q}_{1 \rightleftarrows s}^{"} \left(\frac{1}{\varepsilon_{1}} + \frac{1}{\varepsilon_{s}} - 1 \right) = \sigma \left(T_{1}^{4} - T_{s}^{4} \right)$$

$$\dot{q}_{s \rightleftharpoons 2}^{\prime\prime} \left(\frac{1}{\varepsilon_s} + \frac{1}{\varepsilon_2} - 1 \right) = \sigma \left(T_s^4 - T_2^4 \right)$$

Coupling at shield:

$$\dot{q}_{1 \neq 2}^{"} = \dot{q}_{1 \neq 3}^{"} = \dot{q}_{5 \neq 2}^{"}$$

$$\dot{q}_{1\rightleftharpoons 2}'' = \frac{\sigma (T_1^4 - T_2^4)}{\frac{1}{\epsilon_1} + \frac{1}{\epsilon_2} + \frac{2}{\epsilon_s} - 2}$$

Elimination of T_S :

Radiation: Protective shield

$$\dot{q}_{1\rightleftarrows s}^{"}\left(\frac{1}{\varepsilon_{1}}+\frac{1}{\varepsilon_{s}}-1\right)+\dot{q}_{s\rightleftarrows 2}^{"}\left(\frac{1}{\varepsilon_{s}}+\frac{1}{\varepsilon_{2}}-1\right)=\sigma\left(T_{1}^{4}-T_{2}^{4}\right)$$

Protective shield: Influence on heat flow

Net heat flow with shield:

$$\dot{q}_{1\rightleftarrows s}^{"}\left(\frac{1}{\varepsilon_{1}}+\frac{1}{\varepsilon_{s}}-1\right)=\sigma\left(T_{1}^{4}-T_{s}^{4}\right)$$

Net heat flow with shield:

$$\dot{q}_{1\rightleftharpoons2}^{\prime\prime} = \frac{1}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1 \left(+ \frac{2}{\varepsilon_s} - 1 \right)} \sigma \left(T_1^4 - T_2^4 \right)$$
effect of

Protective shield: necessary properties

Net heat flow with shield:

$$\dot{q}_{1 \rightleftharpoons 2}^{"} = \frac{1}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1 + \frac{2}{\varepsilon_s} - 1} \sigma \left(T_1^4 - T_2^4 \right)$$

determinant pre-factor *f*

For $\varepsilon_1 = \varepsilon_2 = 0.6$:

- Without shield f = 0.43
- b) $\varepsilon_S = 1$ f = 0.3 $\varepsilon_S = 10^{-5}$ $f = 5 \times 10^{-6}$
 - d) $\varepsilon_s = \varepsilon_1 = \varepsilon_2 = 0.6$ f = ???

Conclusion:

- Also a black body shield reduces the radiation exchange
- For a high shielding effect the ε should be minimal \Rightarrow high reflectivity

Comprehension Questions

Why is the radiation exchange reduced, even in case of the shield being a black body?

What happens if the three plates have identical radiation properties ($\varepsilon_1 = \varepsilon_2 = \varepsilon_s$)?

