SOLUTIONS TO MATH3411 PROBLEMS 60-67

60.

(a) $\phi(17) = 16$ and gcd(2, 17) = 1, so by Euler's Theorem, $2^{16} \equiv 1 \pmod{17}$, so

$$2^{1001} = 2^{16 \times 62 + 9} = (2^{16})^{62} (2^4)^2 2 \equiv 1^{62} 16^2 \times 2 \equiv (-1)^2 2 \equiv 2 \pmod{17}$$

(a) $\phi(100) = \phi(2^2)\phi(5^2) = 2 \times 20 = 40$ and gcd(3, 100) = 1, so by Euler's Theorem, $3^{40} \equiv 1 \pmod{100}$, so $3^{1001} = 3^{40 \times 25 + 1} = (3^{40})^{25} 3 \equiv 1^{25} 3 \equiv 3 \pmod{100}$

so the two last digits are "03".

61. First try to find a primitive root for \mathbb{Z}_{11} , first trying 2: its powers $2^1, \ldots, 2^{10}$ are

and we see that 2 is a primitive root for \mathbb{Z}_{11} . (Here, we could reduce calculations by checking that $2^{\frac{11-1}{5}} = 2^2 \neq 1$ and $2^{\frac{11-1}{2}} = 2^5 \neq 1$, since the order of \mathbb{U}_{11} is $10 = 2 \times 5$ which has prime factors 2 and 5.) All $(\phi(\phi(11)) = 4)$ primitive roots for \mathbb{Z}_{11} are now given by 2^i with $\gcd(i, 11 - 1) = \gcd(i, 10) = 1$; that is

$$2^1 = 1$$
, $2^3 = 8$, $2^7 = 7$, $2^9 = 6$

Now try to find a primitive root for \mathbb{Z}_{17} , first trying 2: its powers $2^1,\ldots,2^{16}$ are

$$2, 4, 8, 16, 15, 13, 9, 1, \dots$$

We see that 2 is a not primitive root for \mathbb{Z}_{17} . (Here, it is enough just to test whether $2^{\frac{16}{2}} = 2^8 = 1$ or not, since the order of \mathbb{U}_{17} is $16 = 2^4$ which just contains the single prime factor 2.) Let us then try 3: its powers $3^1, \ldots, 3^{16}$ are

$$3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1$$

We see that 3 is a primitive root for \mathbb{Z}_{17} . (Again, we really just needed just check that $3^{\frac{17-1}{2}} = 3^8 \neq 1$.) All $(\phi(\phi(11)) = 4)$ primitive roots for \mathbb{Z}_{17} are now given by 3^i with $\gcd(i, 17-1) = \gcd(i, 16) = 1$; that is the odd powers of 3:

62.

(a) First use the Euclidean algorithm forwards (in \mathbb{Z}):

$$x^{3} + 1 = x \times (x^{2} + 1) + (-x + 1)$$
$$x^{2} + 1 = (-x - 1) \times (-x + 1) + 2$$
$$-x + 1 = \frac{1}{2}(-x + 1) \times 2 + 0$$

so a greatest common divisor of $f = x^3 + 1$ and $g = x^2 + 1$ is 2. Scaling to get a monic polynomial gives us that $d = \gcd(f, g) = 1$. Now use the Euclidean algorithm backwards, letting h = -x + 1:

$$2 = g - (-x - 1)h$$

= $g - (-x - 1)(f - xg)$
= $(x + 1)f + (-x^2 - x + 1)g$

Hence, $d = \gcd(f, g) = 1 = af + bg$ for $a = \frac{1}{2}(x+1)$ and $b = \frac{1}{2}(-x^2 - x + 1)$.

(b) First use the Euclidean algorithm forwards (in \mathbb{Z}_2):

$$x^{3} + 1 = x \times (x^{2} + 1) + (x + 1)$$
$$x^{2} + 1 = (x + 1) \times (x + 1) + 0$$

so $d = \gcd(f, g) = x + 1$.

Now use the Euclidean algorithm backwards:

$$x + 1 = f - xq$$

Hence, $d = \gcd(f, g) = x + 1 = af + bg$ for a = 1 and b = -x.

(c) First use the Euclidean algorithm forwards (in \mathbb{Z}_3):

$$x^{3} - x^{2} - 1 = x \times (x^{2} - x + 1) + (-x - 1)$$
$$x^{2} - x + 1 = (-x + 2) \times (-x - 1) + 0$$

so a greatest common divisor of $f=x^3+1$ and $g=x^2+1$ is -x-1. Scaling to get a monic polynomial gives us that $d=\gcd(f,g)=x+1$. Now use the Euclidean algorithm backwards:

$$-x - 1 = f - xg$$

Hence, $d = \gcd(f, g) = x + 1 = af + bg$ for a = -1 and b = x.

63.

(a) In \mathbb{Z}_2 and modulo $x^2 + x + 1$,

$$x^{5} + x^{2} + 1 = x^{5} + x^{2} + 1 + x^{3}(x^{2} + x + 1)$$

$$= x^{4} + x^{3} + x^{2} + 1$$

$$= x^{4} + x^{3} + x^{2} + 1 + x^{2}(x^{2} + x + 1)$$

$$= 1$$

(b) In \mathbb{Z}_3 and modulo $x^2 + x + 1$,

$$x^{5} + x^{2} + 1 = x^{5} + x^{2} + 1 - x^{3}(x^{2} + x + 1)$$

$$= -x^{4} - x^{3} + x^{2} + 1$$

$$= -x^{4} - x^{3} + x^{2} + 1 + x^{2}(x^{2} + x + 1)$$

$$= 2x^{2} + 1$$

$$= 2x^{2} + 1 + (x^{2} + x + 1)$$

$$= x + 2$$

64.

+	0	1	x	x+1
0	0	1	x	x+1
1	1	0	x + 1	x
x	x	x + 1	0	1
x+1	x+1	x	1	0

		1		. 1
X	U	1	\boldsymbol{x}	x+1
0	0	0	0	0
1	0	1	x	x + 1
x	0	x	x + 1	1
x+1	0	x + 1	1	\boldsymbol{x}

×	0	1	x	x+1
0	0	0	0	0
1	0	1	x	x + 1
x	0	x	1	x + 1
x+1	0	x + 1	x + 1	0

both

$$\mathbb{Z}_2/\langle x^2+x+1\rangle$$

$$\mathbb{Z}_2/\langle x^2+1\rangle$$

Every non-zero element in $\mathbb{Z}_2/\langle x^2+x+1\rangle$ has an inverse and is therefore a unit, in contrast to the element x+1 in $\mathbb{Z}_2/\langle x^2+1\rangle$.

Therefore, $\mathbb{Z}_2/\langle x^2+x+1\rangle$ is a field and $\mathbb{Z}_2/\langle x^2+1\rangle$ is not.

65. Since $m = x^4 + x^2 + x + 1$ has 1 as a root in \mathbb{Z}_2 , it is divisible by x - 1 and is therefore not irreducible. Hence, $\mathbb{Z}_2/\langle x^4 + x^2 + x + 1 \rangle$ is not a field.

Let us see whether m is irreducible in \mathbb{Z}_3 .

We first note that m(0) = m(1) = 1 and m(2) = 2, so m has no roots and thus no linear factor. Suppose that

$$m = x^4 + x^2 + x + 1 = (x^2 + ax + b)(x^2 + cx + d) = x^4 + (a + c)x^3 + (b + ac + d)x^2 + (ad + bc)x + bd$$

Comparing terms, we see that c = -a and that $b = d^{-1} = d \neq 0$ (in \mathbb{Z}_3).

Therefore, $ad + bc = ad - da = 0 \neq 1$, a contradiction.

Therefore, m has no linear or quadratic divisors in \mathbb{Z}_3 and must be irreducible.

Hence, $\mathbb{Z}_2/\langle x^4+x^2+x+1\rangle$ is a field.

66.

(a) Here, we have that $\alpha^3 = -\alpha - 1 = \alpha + 1$.

i	0	1	2	3	4	5	6	7
α^i	1	α	α^2	$\alpha + 1$	$\alpha^2 + \alpha$	$\alpha^2 + \alpha + 1$	$\alpha^2 + 1$	1

The element α is primitive, so all of the primitive elements of $\mathbb{Z}_2/\langle x^3+x+1\rangle$ are given by α^i where $\gcd(i,7)=1$; that is all of the 6 elements listed above: α,\ldots,α^2+1 .

(b) Here, $\alpha^4 = \alpha^3 + \alpha^2 + \alpha + 1$. Since $\alpha^5 = 1$, $\operatorname{ord}(\alpha) \le 5 < 8$, so α is not primitive in $\mathbb{Z}_2/\langle x^4 + x^3 + x^2 + x + 1 \rangle$. Let us therefore consider $\gamma = \alpha + 1$ for instance:

The element γ is primitive, so all of the primitive elements of $\mathbb{Z}_2/\langle x^4+x^3+x^2+1\rangle$ are given by α^i where $\gcd(i,15)=1$; that is the $\phi(15)=8$ elements

$$\gamma = \alpha + 1, \ \gamma^2 = \alpha^2 + 1, \ \gamma^4 = \alpha^3 + \alpha^2 + \alpha, \ \gamma^7 = \alpha^2 + \alpha + 1, \ \gamma^8 = \alpha^3 + 1, \ \gamma^{11} = \alpha^3 + \alpha + 1, \gamma^{13} = \alpha^2 + \alpha, \gamma^{14} = \alpha^3 + \alpha + 1, \gamma^{14} = \alpha^4 + \alpha + 1,$$

(c) Here, $\alpha^2 = -\alpha + 1 = 2\alpha + 1$.

	i	0	1	2	3	4	5	6	7	8
ĺ	α^i	1	α	$2\alpha + 1$	$2\alpha + 2$	2	2α	$\alpha + 2$	$\alpha + 1$	1

The element α is primitive, so all of the primitive elements of $\mathbb{Z}_3/\langle x^2+x-1\rangle$ are given by α^i where $\gcd(i,8)=1$; that is all of odd powers of α above:

$$\alpha$$
, $\alpha^3 = 2\alpha + 2$, $\alpha^5 = 2\alpha$, $\alpha^7 = \alpha + 1$

67. Here, we have that $\alpha^4 = \alpha + 1$.

Define $\beta = \alpha^3 + \alpha + 1$.

(a) By the table, we see that $\beta = \alpha^7$, so

$$(\alpha^3 + \alpha + 1)^{-1} = \beta^{-1} = \alpha^{-7} = \alpha^{15-7} = \alpha^8 = \alpha^2 + 1$$

(b) By the table,

$$\frac{(\alpha^3 + \alpha + 1)(\alpha + 1)}{\alpha^3 + 1} = \frac{\alpha^7 \alpha^4}{\alpha^{14}} = \alpha^{-3} = \alpha^{15 - 3} = \alpha^{12} = \alpha^3 + \alpha^2 + \alpha + 1$$

(c) For p = 2, the powers $\beta^{p^i} = \alpha^{7 \times 2^i}$ are

$$\alpha^7$$
, α^{14} , $\alpha^{28} = \alpha^{13}$, $\alpha^{56} = \alpha^{11}$, $\alpha^{112} = \alpha^7$,

so the minimal polynomial of $\beta = \alpha^3 + \alpha + 1 = \alpha^7$ is

$$\begin{split} g(x) &= (x - \alpha^7)(x - \alpha^{14})(x - \alpha^{13})(x - \alpha^{11}) \\ &= x^4 - (\alpha^7 + \alpha^{14} + \alpha^{13} + \alpha^{11})x^3 \\ &\quad + (\alpha^7\alpha^{14} + \alpha^7\alpha^{13} + \alpha^7\alpha^{11} + \alpha^{14}\alpha^{13} + \alpha^{14}\alpha^{11} + \alpha^{13}\alpha^{11})x^2 \\ &\quad - (\alpha^7\alpha^{14}\alpha^{13} + \alpha^7\alpha^{14}\alpha^{11} + \alpha^7\alpha^{13}\alpha^{11} + \alpha^{14}\alpha^{13}\alpha^{11})x \\ &\quad + \alpha^7\alpha^{14}\alpha^{13}\alpha^{11} \\ &= x^4 - (\alpha^7 + \alpha^{14} + \alpha^{13} + \alpha^{11})x^3 \\ &\quad + (\alpha^6 + \alpha^5 + \alpha^3 + \alpha^{12} + \alpha^{10} + \alpha^9)x^2 \\ &\quad - (\alpha^3 + \alpha^2 + \alpha + \alpha^8)x \\ &\quad + \alpha^0 \\ &= x^4 - ((\alpha^3 + \alpha + 1) + (\alpha^3 + 1) + (\alpha^3 + \alpha^2 + 1) + (\alpha^3 + \alpha^2 + \alpha)x^3 \\ &\quad + ((\alpha^3 + \alpha^2) + (\alpha^2 + \alpha) + \alpha^3 + (\alpha^3 + \alpha^2 + \alpha + 1) + (\alpha^2 + \alpha + 1) + (\alpha^3 + \alpha))x^2 \\ &\quad - (\alpha^3 + \alpha^2 + \alpha + \alpha^2 + 1)x \\ &\quad + 1 \\ &= x^4 - x^3 - (\alpha^3 + \alpha + 1)x + 1 \\ &= x^4 + x^3 + 1 \end{split}$$

(d) The (primitive) elements $\alpha^1 = \alpha$, α^2 , α^4 , and α^8 have the (primitive) minimum polynomial $x^4 + x + 1$. The powers $(\alpha^3)^{2^i}$ are

$$\alpha^3$$
, α^6 , α^{12} , $\alpha^{24} = \alpha^9$, $\alpha^{48} = \alpha^3$,

so the minimal polynomial of α^3 is

$$\begin{split} g(x) &= (x - \alpha^3)(x - \alpha^6)(x - \alpha^{12})(x - \alpha^9) \\ &= x^4 - (\alpha^3 + \alpha^6 + \alpha^{12} + \alpha^9)x^3 \\ &\quad + (\alpha^3\alpha^6 + \alpha^3\alpha^{12} + \alpha^3\alpha^9 + \alpha^6\alpha^{12} + \alpha^6\alpha^9 + \alpha^{12}\alpha^9)x^2 \\ &\quad - (\alpha^3\alpha^6\alpha^{12} + \alpha^3\alpha^6\alpha^9 + \alpha^3\alpha^{12}\alpha^9 + \alpha^6\alpha^{12}\alpha^9)x \\ &\quad + \alpha^3\alpha^6\alpha^{12}\alpha^9 \\ &= x^4 - (\alpha^3 + \alpha^6 + \alpha^{12} + \alpha^9)x^3 \\ &\quad + (\alpha^9 + \alpha^0 + \alpha^{12} + \alpha^3 + \alpha^0 + \alpha^6)x^2 \\ &\quad - (\alpha^6 + \alpha^3 + \alpha^9 + \alpha^{12})x \\ &\quad + \alpha^0 \\ &= x^4 - (\alpha^3 + (\alpha^3 + \alpha^2) + (\alpha^3 + \alpha^2 + \alpha + 1) + (\alpha^3 + \alpha))x^3 \\ &\quad + ((\alpha^3 + \alpha) + 1 + (\alpha^3 + \alpha^2 + \alpha + 1) + \alpha^3 + 1 + (\alpha^3 + \alpha^2))x^2 \\ &\quad - ((\alpha^3 + \alpha^2) + \alpha^3 + (\alpha^3 + \alpha) + (\alpha^3 + \alpha^2 + \alpha + 1))x \\ &\quad + 1 \\ &= x^4 + x^3 + x + 1 \end{split}$$

The powers $(\alpha^5)^{2^i}$ are

$$\alpha^5$$
, α^{10} , $\alpha^{20} = \alpha^5$,

so the minimal polynomial of α^5 is

$$g(x) = (x - \alpha^5)(x - \alpha^{10})$$

$$= x^2 - (\alpha^5 + \alpha^{10})x + \alpha^5\alpha^{10}$$

$$= x^2 - ((\alpha^2 + \alpha) + (\alpha^2 + \alpha + 1))x + \alpha^0$$

$$= x^2 + x + 1$$

The powers $(\alpha^5)^{2^i}$ are

$$\alpha^5 \,, \quad \alpha^{10} \,, \quad \alpha^{20} = \alpha^5 \,,$$

so the minimal polynomial of α^5 is

$$g(x) = (x - \alpha^5)(x - \alpha^{10})$$

$$= x^2 - (\alpha^5 + \alpha^{10})x + \alpha^5\alpha^{10}$$

$$= x^2 - ((\alpha^2 + \alpha) + (\alpha^2 + \alpha + 1))x + \alpha^0$$

$$= x^2 + x + 1$$

We have thus found the minimal polynomials of the powers of α :

$$x^4 + x^3 + 1$$
, $x^4 + x^3 + x + 1$, $x^2 + x + 1$