Name: Julia Nelson Date: 9/18/19

Point values are assigned for each question.

Points earned: ____ / 100, = ____ %

1. Find an upper bound for $f(n) = n^4 + 10n^2 + 5$. Write your answer here: $n^4 + 10n^2 + 5 <= c(n^4)$ for c=4, n=2 (4 points)

Prove your answer by giving values for the constants c and n_0 . Choose the smallest integral value possible for c. (4 points)

$$n^4 + 10n^2 + 5 <= c(n^4)$$
When $c = 1$ n = 1 ---> 16 <= 1 NO
When $c = 2$ n = 2 ---> 61 <= 32 NO
...
When $c = 4$ n = 2 ---> 16 <= 32 YES

The smallest value of c to work is c = 4, and n = 2

2. Find an asymptotically tight bound for $f(n) = 3n^3 - 2n$. Write answer here: $C_2(n^2) <= 2n^2 - n <= C_1$ (4 points)

Prove your answer by giving values for the constants c_1 , c_2 , and n_0 . Choose the tightest integral values possible for c_1 and c_2 . (6 points)

$$n_0 >= 1$$
, $C_1 = 2$, $C_2 = 1$

3. Is $3n - 4 \in \Omega(n^2)$? Circle your answer: yes / NO. (2 points)

If yes, prove your answer by giving values for the constants c and n_0 . Choose the smallest integral value possible for c. If no, derive a contradiction. (4 points)

When
$$f(n) = n \dots n \Omega(n^2)$$
 \rightarrow $n >= n^2$

4. Write the following asymptotic efficiency classes in **increasing** order of magnitude. $O(n^2)$, $O(2^n)$, O(1), $O(n \lg n)$, O(n), O(n!), $O(n^3)$, $O(\lg n)$, $O(n^n)$, $O(n^2 \lg n)$ (2 points each)

$$O(1),\ O(\lg n), O(n), O(n\lg n), O(n^2\lg n), O(n^2),\ O(n^3), O(n!),\ O(n^n), O(2^n)$$

5. Determine the largest size n of a problem that can be solved in time t, assuming that the algorithm takes f(n) milliseconds. n must be an integer. (2 points each)

a.
$$f(n) = n$$
, $t = 1$ second _________

b.
$$f(n) = n \lg n$$
, $t = 1 \text{ hour } 2.04 * 10^5$

```
c. f(n) = n^2, t = 1 hour 1.8974 * 10^3
```

d.
$$f(n) = n^3$$
, $t = 1$ day $4.421 * 10^2$

- e. f(n) = n!, t = 1 minute _____8!
- 6. Suppose we are comparing two sorting algorithms and that for all inputs of size n the first algorithm runs in $4n^3$ seconds, while the second algorithm runs in 64n lg n seconds. For which integral values of n does the first algorithm beat the second algorithm? n = 2, 3, 4 (4 points)

Explain how you got your answer or paste code that solves the problem (2 point):

```
4n^3 < 64 \text{ lg n} \Rightarrow n^2/16 < \text{ lg n} When...

n = 1 .... 1/16 < 0 .... NO

n = 2 .... 0.25 < 0 .... YES

n = 3 .... 0.5625 < 1.584 ... YES

n = 4 .... 1 < 2 .... YES

n = 5 .... 1.5625 < 0.698 ... NO
```

7. Give the complexity of the following methods. Choose the most appropriate notation from among O, Θ , and Ω . (8 points each)

```
int function1(int n) {
    int count = 0;
    for (int i = n / 2; i <= n; i++) {</pre>
        for (int j = 1; j <= n; j *= 2) {
             count++;
    return count;
Answer: <u>O( nlogn )</u>
int function2(int n) {
    int count = 0;
    for (int i = 1; i * i * i <= n; i++) {
        count++;
    return count;
Answer: \underline{\Theta(\sqrt[3]{n})}
int function3(int n) {
    int count = 0;
    for (int i = 1; i <= n; i++) {</pre>
        for (int j = 1; j <= n; j++) {
             for (int k = 1; k <= n; k++) {</pre>
```

```
count++;
             }
         }
    }
    return count;
Answer: \underline{\Theta(n^3)}
int function4(int n) {
    int count = 0;
    for (int i = 1; i <= n; i++) {</pre>
         for (int j = 1; j <= n; j++) {</pre>
             count++;
             break;
         }
    }
    return count;
}
Answer: <u>Θ( n )</u>
int function5(int n) {
    int count = 0;
    for (int i = 1; i <= n; i++) {</pre>
        count++;
    for (int j = 1; j <= n; j++) {
        count++;
    return count;
}
Answer: ____<u>O( n )</u>___
```