Mathematics 227 Linear independence

1. Consider the matrix

$$\left[\begin{array}{ccc}
3 & 2 & 0 \\
-1 & 0 & -2 \\
2 & 1 & 1
\end{array}\right]$$

whose columns are the vectors v_1 , v_2 , and v_3 .

(a) Give a description of the solution space to the homogeneous equation Ax = 0.

(b) Find one set of nonzero weights c_1 , c_2 , c_3 such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{0}.$$

- (c) Use these weights to show that one of the vectors can be written as a linear combination of the others.
- (d) Explain why the vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are linearly dependent.
- (e) Do the vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 span \mathbb{R}^3 ?

- 2. (a) If *A* is any matrix, explain why the homogeneous equation $A\mathbf{x} = \mathbf{0}$ is consistent.
 - (b) What condition on the pivots of A guarantees that there is solution to the homogeneous equation $A\mathbf{x} = \mathbf{0}$ besides the solution $\mathbf{x} = \mathbf{0}$?
 - (c) In the example above, we saw that having a nonzero solution to the homogeneous equation $A\mathbf{x}=\mathbf{0}$ enabled us to conclude that the columns of A are linearly dependent. What condition on the pivots of A will guarantee that the columns of A are linearly dependent?

- 3. Consider the matrix $A = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$ whose columns are \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 .
 - (a) Sketch the vectors below. Do you think the vectors are linearly independent or linearly dependent?

(b) Explain how we know that there is a nonzero solution to the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

	(c)	Find a nonzero solution to the homogeneous solution $A\mathbf{x} = 0$.
	(d)	Use this solution to express one of the vectors as a linear combination of the others.
4.	(a)	What condition on a matrix \boldsymbol{A} will guarantee that its columns are linearly independent?
	(b)	Suppose that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly independent vectors in \mathbb{R}^9 . What can you say about the number of vectors in this set?
	(c)	What is the smallest number of vectors that can span \mathbb{R}^{13} ?
	(d)	What is the largest number of vectors in \mathbb{R}^{13} that are linearly independent?
	(e)	Suppose that a set of vectors in \mathbb{R}^{13} is linearly independent and spans \mathbb{R}^{13} . What can you say about the number of vectors?