ESEIAAT

Disseny i Construcció d'una Antena

Memòria

Curs: Màster en Enginyeria Aeronàutica

Assignatura: Transport Aeri i Sistemes de Navegació

Data d'entrega: 27-06-2018

Estudiants:

González García, Sílvia Kaloyanov Naydenov, Boyan

Professor: Barlabé Dalmau, Antoni

Llista de continguts

Lli	sta d	e figure	es	ii				
1	Anà	Anàlisi electromagnètic						
	1.1	Antena	dipol en $\lambda/2$	1				
		1.1.1	En espai lliure	1				
		1.1.2	A certa distància d'un pla conductor perfecte	2				
		1.1.3	Sobre un cilindre metàl·lic	3				
	1.2	Antena	monopol en $\lambda/4$	4				
		1.2.1	Sobre un pla conductor perfecte	5				
		1.2.2	Sobre un cilindre metàl·lic	6				
2	Ant	ena Esc	ollida	7				
	2.1	Resistència aerodinàmica paràsita						
	2.2							
	23	Mesure		8				

Llista de figures

1.1	Diagrames de Radiació d'antena dipol en $\lambda/2$ en espai lliure $\ldots \ldots$	1
1.2		2
1.3	Diagrames de Radiació d'antena dipol en $\lambda/2$ a una certa distància d'un	
	pla conductor	2
1.4		3
1.5	Diagrames de Radiació d'antena dipol en $\lambda/2$ sobre un cilindre metàl·lic	3
1.6		4
1.1	Diagrames de Radiació d'antena monopol en $\lambda/4$ sobre un pla conductor $\ .$	5
1.2		5
1.3	Diagrames de Radiació d'antena monopol en $\lambda/4$ sobre un cilindre metàl·lic	6
1.4		6
2.1	Longitud de l'antena dipol a construir	8

1 | Anàlisi electromagnètic

Fent ús del programa 4NEC, que implementa un mètode numèric molt potent i acurat per a l'anàlisi d'antenes de fil, és du a terme un anàlisi per a diverses configuracions d'antenes que es mostren a continuació.

1.1 Antena dipol en $\lambda/2$

En aquesta secció s'estudia i analitza una antena dipol en $\lambda/2$ per a diverses situacions.

1.1.1 En espai lliure

Per l'antena dipol comentada situada en un espai lliure s'analitzen els digrames de radiació així com la directivitat i la impedància d'entrada.

Diagrames de Radiació

Figura 1.1: Diagrames de Radiació d'antena dipol en $\lambda/2$ en espai lliure

(a) Digrama de Radiació 3D d'antena dipol en $\lambda/2$ en espai lliure

(b) Dades de l'antena dipol en $\lambda/2$ en espai lliure

Figura 1.2

Directivitat de l'antena: D=2.17dB.

Impedància d'entrada: $Z_0=82.1+j48.4\Omega$.

1.1.2 A certa distància d'un pla conductor perfecte

Per l'antena dipol comentada situada a una certa distància d'un pla conductor s'analitzen els diagrames de radiació així com la directivitat i la impedància d'entrada.

Diagrames de Radiació

Figura 1.3: Diagrames de Radiació d'antena dipol en $\lambda/2$ a una certa distància d'un pla conductor

(a) Digrama de Radiació 3D d'antena dipol en $\lambda/2$ a una certa distància d'un pla conductor

(b) Dades de l'antena dipol en $\lambda/2$ a distància d'un pla conductor

Figura 1.4

Directivitat de l'antena: D=7.73dB. Impedància d'entrada: $Z_0=89.2+j28.1\Omega$.

1.1.3 Sobre un cilindre metàl·lic

Per l'antena dipol comentada situada sobre un cilindre metàl·lic s'analitzen els diagrames de radiació així com la directivitat i la impedància d'entrada.

Diagrames de Radiació

Figura 1.5: Diagrames de Radiació d'antena dipol en $\lambda/2$ sobre un cilindre metàl·lic

(a) Digrama de Radiació 3D d'antena dipol en $\lambda/2$ sobre un cilindre metàl·lic

(b) Dades de l'antena dipol en $\lambda/2$ sobre un cilindre metàl·lic

Figura 1.6

Directivitat de l'antena: D = 7.62dB.

Impedància d'entrada: $Z_0 = 45.9 + j53.3\Omega$.

1.2 Antena monopol en $\lambda/4$

En aquesta secció s'estudia i analitza una antena monopol en $\lambda/4$ per a diverses situacions.

1.2.1 Sobre un pla conductor perfecte

Per l'antena monopol comentada situada sobre un pla conductor s'analitzen els diagrames de radiació així com la directivitat i la impedància d'entrada.

Diagrames de Radiació

Figura 1.1: Diagrames de Radiació d'antena monopol en $\lambda/4$ sobre un pla conductor

(a) Digrama de Radiació 3D d'antena monopol en $\lambda/4$ sobre un pla conductor

(b) Dades de l'antena monopol en $\lambda/4$ sobre un pla conductor

Figura 1.2

Directivitat de l'antena: D=7.89dB. Impedància d'entrada: $Z_0=85.8-j350\Omega$.

1.2.2 Sobre un cilindre metàl·lic

Per l'antena monopol comentada situada sobre un cilindre metàl·lic s'analitzen els diagrames de radiació així com la directivitat i la impedància d'entrada.

Diagrames de Radiació

Figura 1.3: Diagrames de Radiació d'antena monopol en $\lambda/4$ sobre un cilindre metàl·lic

(a) Digrama de Radiació 3D d'antena monopol en $\lambda/4$ sobre un cilindre metàl·lic

(b) Dades de l'antena monopol en $\lambda/4$ sobre un cilindre metàl·lic

Figura 1.4

Directivitat de l'antena: D=4.11dB. Impedància d'entrada: $Z_0=91.2+j115\Omega.$

2 | Antena Escollida

Vistes les anàlisis anteriors, a l'hora d'escollir entre una antena monopol i una antena dipol per a la seva construcció, s'ha escollit la segona opció, és a dir, la **construcció d'una antena monopol**.

S'ha escollit aquesta antena doncs s'ha cregut més pràctica i amb més potenciala degut principalment al fet que permet una possible futura expansió cap a una antena Yagi per tal de fer-la més directiva.

Per altra banda, una antena monopol tindrà una impedància d'entrada de 36 Ω en el millor dels casos. Per tant la desadaptació amb un cable de 75 Ω serà força gran. Inclús amb un cable de 50 serà superior a la que tindria una antena dipol amb 73 Ω d'impedància amb un cable de 75 Ω .

Així doncs, per una freqüència central de treball de 122 MHz:

$$\lambda = \frac{c}{f} = \frac{3 \cdot 10^8}{122 \cdot 10^6} = 2.459 \,\mathrm{m}$$

Buscant que l'impedància d'entrada no tingui cap part complexa es troba la longitud d'antena L.

$$L = \frac{\lambda}{2} - 3\% = 1.156 \,\mathrm{m}$$

L'antena dipol que serà doncs construida es mostra a la figura 2.1.

Figura 2.1: Longitud de l'antena dipol a construir

2.1 Resistència aerodinàmica paràsita

2.2 Construcció de l'Antena

La construcció de l'antena dipol considerada consta de dues parts: el desenvolupament del (NO ME ACUERDO COMO SE LLAMA) i la construcció del cap de l'antena.

Cal mencionar que per a realitzar la construcció de l'antena, el parametre més important considerat a estat que fos el més "low cost" possible sense comprometre la funcionalitat.

NO ME ACUERDO COMO SE LLAMA

Cap de l'antena

Per a la construcció del cap de l'antena s'ha utilitzat filferro de 1.5 mm de diàmetre així com una regleta per conectar els dos braços al camble d'alimentació.

A més, per tal de protegir les conexions, aquestes s'han dut a terme dins d'un tupper com es pot veure a la figure

((FALTA FOTO DE ANTENA DONDE SE VEAN LAS CONEXIONES))

Antena Construida

Finalment l'antena construida es la mostrada a la figura X

(PONER FOTO FINAL DE LA ANTENA)

2.3 Mesures