Universidade Federal de Pelotas

Cursos de Ciência e Engenharia de Computação

Disciplina: Sistemas Discretos

Lista de Exercícios – Álgebra de Conjuntos

- **1.** Sejam $A = \{p, q, r, s\}, B = \{r, t, v\} \in C = \{p, s, t, u\}$. Encontre:
 - a) B∩C
 - b) AUC
 - c) ~C
 - d) A∩B∩C
 - e) B-C
 - f) \sim (A U B)
 - g) $A \times B$
 - h) $(A \cup B) \cap C$
- **2.** Sejam $A = \{2, 4, 5, 6, 8\}, B = \{1, 4, 5, 9\} e C = \{x \mid x \in \mathbb{Z} e 2 \le x < 5\}.$ Encontre:
 - a) AUB
 - b) A ∩ B
 - c) $A \cap C$
 - d) BUC
 - e) A-B
 - f) ~A
 - g) $A \cap \sim A$
 - h) \sim (A \cap B)
 - i) C-B
 - j) $(C \cap B) \cup \sim A$
 - k) \sim (B-A) \cap (A-B)
 - I) ~ (~C-B)
 - $m) B \times C$
- **3.** Sendo A={1, 4, 6, 8, 10}, B={0, 1, 2, 3, 4, 5, 6} e C={3, 6, 9, 12}. Determine:
 - a) $(A \cup B) \cap C$
 - b) B-C
 - c) (B ∩ C) A
 - d) $(A \cap B) \cup (B \cap C)$
 - e) AUØ
 - f) $B \cap \emptyset$
- **4.** Sendo A = $\{x \in \mathbb{R} \mid x \le 7\}$, B = $\{x \in \mathbb{R} \mid x \ge 4\}$. Determine:
 - a) AUB
 - b) A-B
 - c) $A \cap B$
 - d) B-A

- **5.** Suponha o conjunto universo $S = \{p, q, r, s, t, u, v, w\}$, bem como $A = \{p, q, r, s\}$, $B = \{r, t, v\}$, $C = \{p, s, t, u\}$. Determine:
 - a) B ∩ C
 - b) AUC
 - c) A \cap B \cap C
 - d) B-C
 - e) AxB
 - f) A + B
 - g) B + B
- **6.** Sendo A = $\{0, 1, 2, 3\}$, B = $\{0, 2, 3, 5\}$, C = $\{x \in \mathbb{N} \mid x \text{ \'e n\'umero par menor que 10}\}$, D = $\{x \in \mathbb{N} \mid x \text{ \'e n\'umero \'impar compreendido entre 4 e 10}\}$. Determine:
 - a) AUB
 - b) BUC
 - c) $(A \cup B) \cup C$
 - d) AUC
 - e) B-D
 - f) $(A \cap C) \cup D$
 - g) AUD
- 7. Prove que (suponha A conjunto qualquer) $A \cup A = A$
- 8. Prove que (suponha A e B conjuntos quaisquer) A U B = B U A
- **9.** Prove que (suponha A, B e C conjuntos quaisquer) (A \cup B) \cup C = A \cup (B \cup C)
- **10.** Prove que (suponha A, B e C conjuntos quaisquer) $A \cap (B \cap C) = (A \cap B) \cap C$
- **11.** Prove que (suponha A e B conjuntos quaisquer) $(A \cap B) \cup A = A$
- **12.** Prove que (suponha A e B conjuntos quaisquer) A \cup ($^{\sim}$ A \cap B) = A \cup B