

NTE960 Integrated Circuit 3-Terminal Positive Voltage Regulator, 5V

The NTE960 fixed-voltage regulator is a monolithic integrated circuit in a TO220 type package designed for use in a wide variety of applications including local, on-card regulation. This regulator employs internal current limiting, thermal shutdown, and safe-area compensation. With adequate heat-sinking it can deliver output currents in excess of 1.0 ampere.

Features:

- Output Current in Excess of 1.0 Ampere
- No External Components Reguired
- Internal Thermal Overload Protection
- Internal Short–Circuit Current Limiting
- Output Transistor Safe–Area Compensation

Absolute Maximum Ratings: (T _A = +25°C unless otherwise specified)	
Input Voltage, V _{in}	35Vdc
Power Dissipation ($T_A = +25^{\circ}C$), P_D	
Derate above +25°C	15.4mW/°C
Power Dissipation ($T_C = +25^{\circ}C$), P_D	
Derate above +75°C	200mW/°C
Thermal Resistance, Junction–to–Ambient, R _{thJA}	65°C/W
Thermal Resistance, Junction–to–Case, R _{thJC}	5°C/W
Operating Junction Temperature Range, T _J	–55° to +150°C
Storage Junction Temperature Range, T _{stg}	–65 $^{\circ}$ to +150 $^{\circ}$ C

Electrical Characteristics: $(V_{in} = 10V, I_O = 500 \text{mA}, T_J = 0^{\circ} \text{ to } +125^{\circ}\text{C} \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions			Тур	Max	Unit
Output Voltage	Vo	T _J = +25°C		4.8	5.0	5.2	V
		$5mA \le I_O \le 1A, P_O \le 15W, 7V \le V_{in} \le 20V$		4.75	5.0	5.25	V
Line Regulation	Reg _{line}	$T_J = +25^{\circ}C$, Note 1	$7V \le V_{in} \le 25V$	_	7	100	mV
			$8V \le V_{in} \le 12V$	_	2	50	mV
Load Regulation	Reg _{load}	$T_J = +25^{\circ}C$, Note 1	$5mA \le I_O \le 1.5A$	_	40	100	mV
			$250\text{mA} \le I_O \le 750\text{mA}$	_	15	50	mV

Note 1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

<u>Electrical Characteristics (Cont'd):</u> $(V_{in} = 10V, I_O = 500 mA, T_J = 0^{\circ} to +125^{\circ}C unless otherwise specified)$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Quiescent Current	Ι _Β	$T_J = +25^{\circ}C$	_	4.3	8.0	mA
Quiescent Current Change	Δl_{B}	$7V \le V_{in} \le 25V$	_	_	1.3	mA
		$5mA \le I_O \le 1A$	_	_	0.5	mA
Ripple Rejection	RR	8V ≤ V _{in} ≤ 18V, f = 120Hz	_	68	_	dB
Dropout Voltage	$V_{in} - V_{O}$	$T_J = +25^{\circ}C, I_O = 1A$	_	2	_	V
Output Noise Voltage	V _n	$T_A = +25^{\circ}C$, $10Hz \le f \le 100kHz$	_	10	_	μ V/V _O
Output Resistance	r _O	f = 1kHz	_	17	_	mΩ
Short–Circuit Current Limit	I _{sc}	$T_A = +25^{\circ}C, V_{in} = 35V$	_	0.2	_	Α
Peak Output Current	I _{max}	T _J = +25°C	_	2.2	_	Α
Average Temperature Coefficient of Output Voltage	TCV _O		-	-1.1	-	mV/°C

