

APELLIDOS		NOMBRE	
<u>C</u>	RUPO DE PRÁCTICAS	CARRERA	
DÍA	HORA	CARRERA	
TÍTULO:			
III ULO.	RESISTENCIA Y RESI	STIVIDAD ELÉCTRICA.	
OBJETIVO:		_	
Determinar la resistividad de un determinado material.			
MONTAJE EX	XPERIMENTAL:		
Hilo de material			
)	
		A)	
	Fuente variable		

Sección del hilo $3.25 \pm 0.05 \text{ mm}^2 \text{ y longitud l} = 0.50 \pm 0.01 \text{ m}$

PROCEDIMIENTO DE MEDIDA Y TOMA DE DATOS:

Con la fuente de tensión variable se va modificando ésta y se toman los valores correspondientes a la diferencia de potencial entre los extremos del hilo con el voltímetro y la intensidad que circula mediante el amperímetro. Se obtienen los siguientes valores:

$I \pm 0.1 \text{ (mA)}$	V ± 0,1 (V)
1,7	5,0
3,5	10,0
5,2	15,0
6,9	20,0
8,6	25,0
10,3	30,0

CÁLCULO DE MAGNITUDES INDIRECTAS CON SUS ERRORES Y, REPRESENTACIONES GRÁFICAS.

Introduciendo los datos obtenidos en la tabla Excel para ajuste de mínimos cuadrados, obtenemos:

m = 2916,39

error m = 52,539

n = -0.095

r = 0.99996 por lo que el ajuste es muy bueno.

error n = 1,18

La ecuación de la recta es y = mx + n

Donde hemos representado V frente a I, y por tanto la pendiente, como V = I R, es la resistencia del hilo así:

$$m = 2920 \pm 50 \Omega$$

La ordenada en el origen será cero, ya que la recta debe de pasar por el origen.

La resistividad,
$$\rho = \frac{R \cdot S}{\ell} = \frac{2920 \cdot 3,25 \cdot 10^{-6}}{0,53} = 0,017905 \Omega \cdot m$$

Calculemos el error para dar la expresión correcta:

$$\varepsilon(\rho) = \frac{S}{\ell} \varepsilon(R) + \frac{R}{\ell} \varepsilon(S) + \frac{R \cdot S}{\ell^2} \varepsilon(\ell)$$

$$\varepsilon(\rho) = \frac{3,25 \cdot 10^{-6}}{0,53} \cdot 50 + \frac{2920}{0,53} \cdot 0,05 \cdot 10^{-6} + \frac{2920 \cdot 3,25 \cdot 10^{-6}}{0,53^2} \cdot 0,01 = 9,18 \cdot 10^{-4} \Omega \cdot m$$

Debemos de dar el valor de la resistividad con el número de cifras correcto así

$$\rho = (179 \pm 9) \cdot 10^{-4} \Omega \cdot m$$

Realizamos la representación en papel milimetrado.

Las barras de error para la diferencia de potencial no se han representado debido a que resultan demasiado pequeñas.

