Don't Mis-Measure Measurement Model Measurement Error

OMG Workshop

Bertrand Wilden

March 7, 2023

Measurement Models

 Used to measure latent variables: ideology, corruption, democracy, racial resentment

Theory-Testing Models

 Testing a causal theory: being an ideologically extreme candidate hurts one's reelection chances

Using Measurement Model Outputs in Theory-Testing Models

 Because measurement models are statistical constructs they contain uncertainty estimates

Using Measurement Model Outputs in Theory-Testing Models

- Because measurement models are statistical constructs they contain uncertainty estimates
- In practice, almost everyone disregards this uncertainty and uses only the maximum a posteriori (MAP) values from measurement models for their theory-testing models

Using Measurement Model Outputs in Theory-Testing Models

- Because measurement models are statistical constructs they contain uncertainty estimates
- In practice, almost everyone disregards this uncertainty and uses only the maximum a posteriori (MAP) values from measurement models for their theory-testing models
 - Mean, median, mode estimates from the measurement model

Three Problems With Ignoring Measurement Model Uncertainty

 Uncertainty is not properly propagated in theory-testing models using MAP values - Coefficient uncertainty is underestimated

Three Problems With Ignoring Measurement Model Uncertainty

- Uncertainty is not properly propagated in theory-testing models using MAP values - Coefficient uncertainty is underestimated
- 2. There is too much random noise in the MAP values *Coefficients are biased towards zero*

Three Problems With Ignoring Measurement Model Uncertainty

- Uncertainty is not properly propagated in theory-testing models using MAP values - Coefficient uncertainty is underestimated
- 2. There is too much random noise in the MAP values *Coefficients are biased towards zero*
- Possibility of backdoor confounding through the measurement process - Coefficients are biased in unpredictable ways

Bayesian Improved Surname Geocoding (BSIG)

- Bayesian Improved Surname Geocoding (BSIG)
 - Used to measure race/ethnicity based on names and location. Measurement model is categorical

- Bayesian Improved Surname Geocoding (BSIG)
 - Used to measure race/ethnicity based on names and location. Measurement model is categorical
- Item-Response Theory Ideal Points (IRT)

- Bayesian Improved Surname Geocoding (BSIG)
 - Used to measure race/ethnicity based on names and location. Measurement model is categorical
- Item-Response Theory Ideal Points (IRT)
 - Used to infer ideology of political actors. Measurement model is continuous

Measurement Error and Backdoor Confounding: BSIG Example

Solution: Joint Bayesian Model

$$y_i \sim f(\pi_i)$$

 $\pi_i^* \sim g(\pi_i)$

- y, outcome in theory-testing model
- π , latent variable
- π^* , MAP estimate of latent variable
- $f(\cdot)$, theory-testing model
- $g(\cdot)$, measurement model

Simplifications

• Applied researchers know a lot about $f(\cdot)$, but not $g(\cdot)$

Simplifications

- Applied researchers know a lot about $f(\cdot)$, but not $g(\cdot)$
- The real $g(\cdot)$ can take a lot of computation time

Simplifications

- Applied researchers know a lot about $f(\cdot)$, but not $g(\cdot)$
- The real $g(\cdot)$ can take a lot of computation time
- My solution is to use an approximation of $g(\cdot)$ that fits the measurement error posterior distribution

Measurement Error and Attenuation Bias: IRT Ideal Point Example

Simulated Random Normal Error

Means and Standard Errors

Joint Model for Normal Measurement Error

$$\begin{aligned} y_i &\sim \mathsf{Normal}(\mu_i, \sigma) \\ \mu_i &= \beta_0 + \beta_1 X_{\mathsf{TRUE}, i} \\ X_{\mathsf{MEAS}, i} &\sim \mathsf{Normal}(X_{\mathsf{TRUE}, i}, X_{\mathsf{SE}, i}) \\ X_{\mathsf{TRUE}, i} &\sim \mathsf{Normal}(\bar{X}_{\mathsf{TRUE}}, \tau) \\ \beta_0, \beta_1 &\sim \mathsf{Normal}(0, 2) \\ \sigma &\sim \mathsf{Half Student } \ \mathsf{t}(3, 0, 2) \\ \bar{X}_{\mathsf{TRUE}} &\sim \mathsf{Normal}(0, 1) \\ \tau &\sim \mathsf{Half Student } \ \mathsf{t}(3, 0, 2) \end{aligned}$$

Skewed IRT Example

Joint Model for Skewed Measurement Error

$$\begin{aligned} y_i &\sim \mathsf{Normal}(\mu_i, \sigma) \\ \mu_i &= \beta_0 + \beta_1 X_{\mathsf{TRUE}, i} \\ X_{\mathsf{MEAS}, i} &\sim \mathsf{Skew} \ \mathsf{Normal}(X_{\mathsf{TRUE}, i}, X_{\mathsf{SE}, i}, \alpha_i) \\ X_{\mathsf{TRUE}, i} &\sim \mathsf{Normal}(\bar{X}_{\mathsf{TRUE}}, \tau_1) \\ \bar{X}_{\mathsf{MEAS}} &- X_{\mathsf{MEAS}, i} &\sim \mathsf{Normal}(\alpha_i, \tau_2) \\ \beta_0, \beta_1 &\sim \mathsf{Normal}(0, 2) \\ \sigma &\sim \mathsf{Half} \ \mathsf{Student} \ \mathsf{t}(3, 0, 2) \\ \bar{X}_{\mathsf{TRUE}} &\sim \mathsf{Normal}(0, 1) \\ \tau_1 &\sim \mathsf{Half} \ \mathsf{Student} \ \mathsf{t}(3, 0, 2) \\ \alpha &\sim \mathsf{Normal}(0, 1) \\ \tau_2 &\sim \mathsf{Half} \ \mathsf{Student} \ \mathsf{t}(3, 0, 2) \end{aligned}$$

 Coefficient estimate attenuation of about 15% in realistic IRT example

Thank you!