CS 530 - Visualization

Color Perception

Thanks to Penny Rheingans (UMBC) and Chuck Hansen (Utah)

February 1,2013

- Fundamental, independent visual process
 - after-images
 - Simultaneous color contrast
 - Chromatic Adaptation
- Relative, not absolute
- Interactions between color and other visual properties

Color Pathway

- Red, green, and blue (roughly) cones
- Retinal ganglion cells
- Parvocellular layers in LGN
- Areas in visual cortex
 - VI: blobs
 - V2: thick stripes
 - V4: color

Physiology: Receptors

- Cones
 - active at normal light levels
 - three types: sensitivity functions with different peaks

Physiology: Ganglia

- Transform incoming SML into <u>opponent</u> color responses
 - G R
 - \bullet Y B (Y = R+G)
 - W (W \cong R+G)
- Characteristics
 - concentric receptive fields
 - logarithmic response of receptors
 - adaptation

Physiology: Brain

- Lateral geniculate nuclei
 - assemble data for single side of visual field
 - 2 monochromatic layers => magnocellular path
 - 4 chromatic layers => parvocellular path
- Visual cortex
 - visual area 1: blobs
 - visual area 2: thick stripes
 - visual area 4: color

Parvocellular Division

- Role in vision
 - discrimination of fine detail
 - color
- Characteristics
 - color: sensitive to wavelength variations
 - acuity: small RF centers
 - speed: relatively slow response

Models of Color Vision

- Tricolor theory
- Opponent process theory

Trichromatic Theory

- Three types of cones each with a characteristic wavelength
- Mixture of 3 responses defines color
- Explains some psychophysical data
 - 3D color space (i.e. 3 colors match any perceived)
 - Metamers: match of an apparent color with a different spectral distribution (3D basis)
 - Color blindness (different types)

Trichromatic Theory

- Color blindness
 - R-G, B-Y, All
- Yellow seems primary
- Color constancy

Color Normal Blindness

Protan (L-cone)

Deutan (M-cone)

Tritan (S-cone)

CS 530 - Visualization - 02/01/2013

Mondrian Color Patches

- Colors look different depending on their neighbors
- Adjacency/black lines
- Color edges are critical to color perception
- Can determine color in non-white lighting conditions

Opponent Color Theory

- Humans encode colors by differences
- E.g R-G, and B-Y Differences
 - Color blindness

Perceptual Distortions

- Color-deficiency
- Interactions between color components
 - brightness hue (Bezold-Brucke Phenomenon)
 - saturation brightness (Helmholtz-Kohlrausch effect)
- Simultaneous contrast
 - brightness
 - hue
- Small field achrominance
- Effects of color on perceived size

Bezold-Brucke Phenomenor

Hurvich '81, pg. 73.

Bezold-Brucke Phenomenon

Hurvich '81, pg. 73.

Helmholtz-Kohlraush effect

Simultaneous Contrast

Simultaneous Contrast

Simultaneous Contrast

Chromatic Adaptation

Color-size Illusion

Cleveland and McGill '83.

Color Spaces

- Perceptually based
 - device independent, perceptually uniform
 - CIELUV, CIELAB, Munsell
- Device-derived
 - convenient for describing display device levels
 - RGB, CMY
- Intuitive (transformations)
 - based in familiar color description terms
 - HSV, HSB, HLS

The Space of Human Color

Gamut

CIE 1931 XYZ

xy plot

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$

$$z = \frac{Z}{X + Y + Z} = 1 - x - y$$

CIE Color Space

- Humans can mimic any pure light by addition (and subtraction) of 3 primaries
 - Color is a 3D space
- With R-G-B, addition and subtraction were required to get all wavelength

The CIE Color Space

- In nature, light adds (but does not subtract)
- Conversion to another coordinate system X-Y-Z is a convenience---they are not primary colors
- Any 3 primaries (additive) can produce only a subset of all visible colors

$$X = \int_0^\infty I(\lambda) \, \overline{x}(\lambda) \, d\lambda$$
$$Y = \int_0^\infty I(\lambda) \, \overline{y}(\lambda) \, d\lambda$$
$$Z = \int_0^\infty I(\lambda) \, \overline{z}(\lambda) \, d\lambda$$

The Chromaticity Diagram

Munsell Color System

Munsell Color System

R-G-B Color Space

- Convenient colors (screen phosphors)
- Decent coverage of the human color
- Not a particularly good basis for human interaction
 - Non-intuitive
 - Non-orthogonal (perceptually)

The Chromaticity Diagram

HSV/HSL

HSI/HSV

- Value/Luminance total amount of energy
- Saturation degree to which color is one wavelength
- Hue dominant wavelength

HSV

- Max = max(R, G, B)
- Min = min(R, G, B)
- S = (max min)/max
- If $R = = Max \rightarrow h = (G-B)/(max-min)$
- If $G==Max \rightarrow h = 2+(B-R)/(max-min)$
- If $B==Max \rightarrow h = 4 + (R-G)/(max-min)$
- If $h < 0 \rightarrow H = h/6 + 1$
- If $h>0 \to H = h/6$

HSV User Interaction

•
$$S = \sqrt{\frac{(R-G)^2 + (R-B)^2 + (G-B)^2}{2}}$$

•
$$I = \frac{R + G + B}{3}$$

•
$$I = \frac{R + G + B}{3}$$
•
$$H = \frac{a - \arctan \frac{(R-1)b}{G-B}}{2\pi}$$

•
$$a = \frac{\pi}{2}$$
 if G>B, $\frac{3\pi}{2}$ if G

•
$$H = 1$$
 if $G = B$

•
$$a=\sqrt{3}$$

Perceptual Spaces

Hill et al. '97, pg. 136

