

Pontifícia Universidade Católica de Minas Gerais

Programa de Pós-graduação em Informática (Mestrado/Doutorado)

Disciplina: Fundamentos Teóricos da Computação

Professor: Zenilton Kleber Gonçalves do Patrocínio Júnior

Exercícios Extra (Lista N.01 – Graduação)

1. Construa **AFD**s para as seguintes linguagens:

- a) $\{ uavbxcy | u, v, x, y \in \{ a, b, c \}^* \}.$
- b) $\{ w \in \{ \mathbf{a}, \mathbf{b} \}^* \mid w \text{ começa com } \mathbf{a} \text{ e tem tamanho par } \}.$
- c) $\{ w \in \{ a, b \}^* \mid w \text{ nunca tem mais de dois } a's \text{ consecutivos } \}.$
- d) $\{ w \in \{ \mathbf{a}, \mathbf{b} \}^* \mid w \text{ tem número ímpar de } \mathbf{ab}\text{'s } \}.$
- e) $\{ w \in \{ \mathbf{a}, \mathbf{b} \}^* \mid |w| \ge 2 \text{ e os } \mathbf{a} \text{ 's (se houver) precedem os } \mathbf{b} \text{ 's (se houver) } \}.$
- f) $\{ w \in \{ \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \}^* \mid \text{os } \mathbf{a}\text{'s (se houver) precedem os } \mathbf{b}\text{'s (se houver) e os } \mathbf{c}\text{'s (se houver)} \}$.
- g) $\{x\mathbf{b}\mathbf{a}^n \mid x \in \{\mathbf{a}, \mathbf{b}\}^*, n \ge 0 \text{ e } x \text{ tem um número par de } \mathbf{a}\text{'s }\}$. Solve me sola
- h) $\{x\mathbf{a}^m\mathbf{b}\mathbf{a}^n \mid x \in \{\mathbf{a}, \mathbf{b}\}^*, m+n \text{ \'e par e } x \text{ n\~ao termina em } \mathbf{a}\}.$
- i) $\{ w \in \{ \mathbf{a}, \mathbf{b} \}^* \mid \text{toda subpalavra de } w \text{ de tamanho 3 tem } \mathbf{a} \text{ 's e b's } \}.$
- j) $\{ w \in \{ \mathbf{a}, \mathbf{b} \}^* \mid w \text{ tem no máximo uma ocorrência de } \mathbf{aa} \text{ e no máximo uma ocorrência de } \mathbf{bb} \}$.

2. Construa **AFN**s para as seguintes linguagens:

- a) $\{w \in \{0, 1\}^* \mid |w| \ge 4 \text{ e o segundo e o penúltimo símbolos são ambos } 1\}$.
- b) $\{w \in \{0, 1\}^* \mid 00 \text{ não aparece nos 4 últimos símbolos de } w\}$.
- c) $\{ w \in \{ 0, 1 \}^* \mid \text{ entre dois 1's de } w \text{ há sempre um número par de 0's, exceto nos 4 últimos símbolos } \}.$
- d) $\{ w \in \{ 0, 1 \}^* \mid w \text{ tem uma subpalavra constituída de dois 1's separados por um número par de símbolos} \}$.
- e) $\{x0^{3n} \mid x \in \{0, 1\}^*, \text{ val}(x) \text{ mod } 3 = 1 \text{ e } n \ge 0\}$, onde val(x) é o valor do número representado por x na base 2.

3. Construa **AFD**s para as seguintes linguagens:

- a) $L_1 = \{ w \in \{ 0, 1 \}^* \mid |w| \text{ \'e divis\'ivel por } 3 \}.$
- b) $L_2 = \{ \mathbf{0}w\mathbf{0} \mid w \in \{ \mathbf{0}, \mathbf{1} \}^* \}.$
- c) $L_3 = L_1 \cup L_2$.
- d) $L_4 = L_1 \cap L_2$.
- e) $L_5 = \overline{L_1 \cap L_2}$.

- 1. Construa **AFD**s para as seguintes linguagens:
 - a) $\{ uavbxcy | u, v, x, y \in \{ a, b, c \}^* \}.$

	a, b,c	$O^{c_1b_1c}$	a,b,c	(1,6,0
AFN	$\rightarrow (v)$ a	$\rightarrow V$ b	→ (V)—	

AFN						AFD					
(5	a	6	С	ξ	a	6	C			
(7	U,v	U	U	U	υ, υ	U	U			
r	,	Ն	υ,χ	ŀ	<i>U,</i>	<i>U,</i>	V, 1, X	U, W			
λ		Х	X	х, ү	U, 1, X	U,10,1X	0, 5, 3	U181 X1 Y			
У	,	у	Υ	у	U, 10, X, Y	0,6,7,7	0,2,4,4	<i>40,8</i> ,7			

b) $\{ w \in \{ \mathbf{a}, \mathbf{b} \}^* \mid w \text{ começa com } \mathbf{a} \text{ e tem tamanho par } \}.$

c) $\{ w \in \{ \mathbf{a}, \mathbf{b} \}^* \mid w \text{ nunca tem mais de dois } \mathbf{a} \text{'s consecutivos } \}$

d) $\{ w \in \{ \mathbf{a}, \mathbf{b} \}^* \mid w \text{ tem número ímpar de } \mathbf{ab}\text{'s } \}.$

e) $\{ w \in \{ \mathbf{a}, \mathbf{b} \}^* \mid |w| \ge 2 \text{ e os } \mathbf{a} \text{ 's (se houver) precedem os } \mathbf{b} \text{ 's (se houver) } \}.$

f) $\{ w \in \{ \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \}^* \mid \text{os } \mathbf{a} \text{'s (se houver) precedem os } \mathbf{b} \text{'s (se houver) e os } \mathbf{c} \text{'s (se houver) precedem os } \mathbf{d} \text{'s (se houver) } \}.$

g) $\{x\mathbf{ba}^n \mid x \in \{\mathbf{a}, \mathbf{b}\}^*, n \ge 0 \text{ e } x \text{ tem um número par de } \mathbf{a}\text{'s }\}.$

Q ^b		AFN			A	F9		
\rightarrow 2	<u></u> 8	а	b		δ	а	Ь	, b
Ь	1	2	1,3	=>	1	2	1,3	\rightarrow $\begin{pmatrix} a \\ b \end{pmatrix}$
(1) ² a	2	l	2		2	1	2	b b
	3	3	ø		1,3	2,3	1,3	b (1,3) (2,5)
					2,3	1,3	2	a

h) $\{x\mathbf{a}^{m}\mathbf{b}\mathbf{a}^{n} \mid x \in \{\mathbf{a}, \mathbf{b}\}^{*}, m + n \text{ \'e par e } x \text{ n\~ao termina em } \mathbf{a}\}.$

{a^mbaⁿ | m+n é par }

AFN

AFN-X	S	ty(2)	δ	а	<u>b</u> _
a a ab	J	{ 13	1	{ 1 }	<i>{29</i>
→ 1 b 2	2	£2,37	2	{ 1}	£29
) a	3	[3]	3	[4]	{ C }
3 a y	Y	<i>[4]</i>	4	{ 3}	<i>{5}</i>
b	5	[S]	2	{ 6J	Ø
(C) (S)	6	<i>{ () }</i>	C	[5]	Ø

$\delta'(1,a) = [1]$	δ'(4, a) = {37
δ'(1,b) = [2]	δ'(4,b) = {S]
δ'(2,a) = fx(δ(2,a)) Ufx (δ(3,a)) = {1,4}	δ'(5,a) = { 6}
σ'(2, b) = fλ(ε(2,b)) υfλ (ε(3,b)) = f2,69	δ'(S,b) = Ø
$\delta'(3,a) = \{4\}$	δ'(6, a) = [5]
δ'(3,6) = { G}	δ'(6,b)= Ø

- 4. Mostre que sim ou que não, justificando sua resposta:
 - a) Para qualquer linguagem L (inclusive aquelas que não são regulares), existem linguagens regulares R_1 e R_2 tais que $R_1 \subseteq L \subseteq R_2$.
 - b) Todos os subconjuntos de uma linguagem regular são também linguagens regulares.
 - c) Há linguagens regulares que têm como subconjuntos linguagens que não são regulares.
 - d) A união de duas linguagens que não são regulares pode ser ou não uma linguagem regular.
 - e) A interseção de duas linguagens que não são regulares pode ser ou não uma linguagem regular.
 - f) O complemento de uma linguagem que não é regular pode ser ou não uma linguagem regular.
- 5. Prove que os seguintes conjuntos não são linguagens regulares:
 - a) $\{ \mathbf{0}^n \mathbf{1}^{n+10} \mid n \ge 0 \}.$
 - b) $\{ \mathbf{0}^{n} y \mid y \in \{ \mathbf{0}, \mathbf{1} \}^{*} e \mid y \mid \leq n \}.$
 - c) $\{ 0^m 1^n | m \neq n \}.$
 - d) { $\mathbf{a}^{m} \mathbf{b}^{n} \mathbf{c}^{m+n} | m, n > 0$ }.
 - e) $\{ \mathbf{a}^n \mathbf{b}^{n^2} | n \ge 0 \}.$
 - f) $\{ \mathbf{a}^{n^3} | n \ge 0 \}.$
 - g) $\{ \mathbf{a}^m \mathbf{b}^n \mid n \le m \le 2n \}.$
 - h) $\{xx \mid x \in \{a, b\}^*\}.$
 - i) $\{u\bar{u} \mid u \in \{0, 1\}^*\}$, onde \bar{u} é obtido de u substituindo-se 0 por 1 e 1 por 0. Exemplo: $\overline{011} = 100$.
 - j) $\{ w \in \{ 0, 1 \}^* \mid w \neq w^R \}.$
 - k) $\{ w \in \{ \mathbf{a}, \mathbf{b}, \mathbf{c} \}^* \mid \text{o número de } \mathbf{a}' \text{s}, \mathbf{b}' \text{s e } \mathbf{c}' \text{s}, \text{em } w, \text{\'e o mesmo } \}.$
 - 1) $\{ w \in \{ 0, 1 \}^* \mid \text{o número de } 0 \text{'s em } w \text{ é um cubo perfeito } \}.$
 - m) { $0^m 1^n | mdc(m, n) = 1$ }.
 - n) $\{ \mathbf{a}^k \mathbf{b}^m \mathbf{c}^n \mid k \neq m \text{ ou } m \neq n \}.$
 - o) $\{ \mathbf{0}^m \mathbf{1}^n \mathbf{0}^n \mid m, n > 0 \}.$
- 6. Sejam L_1 e L_2 duas linguagens. Mostre que sim ou que não:
 - a) se $L_1 \cup L_2$ é uma linguagem regular então L_1 é uma linguagem regular.
 - b) se L_1L_2 é uma linguagem regular então L_1 é uma linguagem regular.
 - c) se L_1^* é uma linguagem regular então L_1 é uma linguagem regular.
 - d) se L_1 é uma linguagem regular então { $w \mid w$ é uma subpalavra de L_1 } é uma linguagem regular.

- 5. Prove que os seguintes conjuntos não são linguagens regulares:
 - a) $\{ \mathbf{0}^n \mathbf{1}^{n+10} \mid n \ge 0 \}.$

Suppondo que l seju regular, existe um AF de K>O estados que acesta L. Toda sentanço $w\in L$, $|w|\geq |c|$ pode ser exerta da forma w=uvx em que:

lurl sk

· 1v1 > 0

· VVX E L Vi=0,1,2,...

b) $\{ \mathbf{0}^{n} y | y \in \{ \mathbf{0}, \mathbf{1} \}^{*} e | y | \leq n \}.$

Supanha que L é uma linguagem regular, exerte um AF com K>0 estados que oceita L. Toda Santonça W \in L, $|w| \ge K$, pade ser escrita da forma W=UVX, em que

.

Considere O" 1 K EL

- 7. Mostre que a classe das linguagens regulares é fechada sob as seguintes operações:
 - a) $pref(L) = \{ x \mid xy \in L \}$ (os prefixos das palavras de L).
 - b) $suf(L) = \{ y \mid xy \in L \}$ (os sufixos das palavras de L).
 - c) $rev(L) = \{ w^R \mid w \in L \}$ (os reversos das palavras de L).
 - d) $crev(L) = \{xv^R \mid x, v \in L\}$ (a concatenação das palavras de L com os reversos das palavras de L).
- 8. Determine expressões regulares e gramáticas regulares para as seguintes linguagens sob { 0, 1 }*:
 - a) Conjunto das palavras em que 0's só podem ocorrer nas posições pares. ((0v))1)**
 - b) Conjunto das palavras que não contêm 000.
 - c) Conjunto das palavras em que cada subpalavra de tamanho 4 contém pelo menos três 1's.
 - d) Conjunto das palavras que não contêm **00** nos últimos 4 símbolos.
 - e) Conjunto das palavras que não contêm **00**, a não ser nos últimos 4 símbolos (se tiver).
- 9. Determine uma expressão regular e uma gramática regular para o AFD cujo diagrama é representado pela figura abaixo:

B-> OC/12

0E11F OA 1 18 E -> 0C110 F -> OEI 1F

- 10. Considere as seguintes ERs:
 - $r_1 = (\mathbf{a} \cup \mathbf{b})^* (\mathbf{ab} \cup \mathbf{ba}) (\mathbf{a} \cup \mathbf{b})^*$
 - $\mathbf{r}_2 = \mathbf{ab}^*$
 - $\mathbf{r}_3 = \mathbf{a}(\mathbf{b}^* \mathbf{a} \mathbf{b}^* \mathbf{a})^*$
 - $r_4 = (aa \cup bb \cup (ab \cup ba)(aa \cup bb)^*(ab \cup ba))^*$

Encontre ERs para:

- a) $L(\mathbf{r}_1)$;
- b) $L(\mathbf{r}_2)$;
- c) $L(r_3)$;
- d) $L(r_4)$;
- e) $L(\mathbf{r}_1) \cap L(\mathbf{r}_4)$;
- f) $L(r_1) L(r_4)$.