Review: Adaptive Introgression Expanded the Genetic Base of Crops during post-Domestication Spread

Authors: Garrett M. Janzen¹, Li Wang¹, and Matthew B. Hufford^{1,*}

¹Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA

*Correspondence: mhufford@iastate.edu (M.B. Hufford)

The process of domestication is often conceptualized as geographically constrained, with crops originating from a wild progenitor within one or more defined centers followed by expansion to the modern-day extent of cultivation [1]. However, archaeological and genetic evidence are beginning to reveal that, in many cases, domestication has been temporally protracted and geographically diffuse [2, 3, 4, 5, 6]. An additional important aspect of the emerging complexity of domestication is beneficial gene flow (*i.e.*, adaptive introgression) from locally adapted wild relatives during crop expansion following initial domestication.

Adaptive introgression has three components: hybridization between two genomes, backcrossing to one of the parents, and selection on different recombinant genotypes with progressively diminished linkage drag [7, 8]. In domesticated species, adaptive introgression would consist of crop/wild hybrids backcrossing to a crop, retention and increase in frequency of adaptive wild haplotypes in the crop, and selection against undesirable wild background. To date, the literature on crop-wild gene flow has largely focused on the risk of transgene introgression from domesticated crops into wild relatives (for a review, [9]) and on modern plant breeding efforts to introgress desired traits from wild relatives (for a review, [10]). The history of natural and potentially adaptive introgression of wild alleles into domesticated crops over evolutionary timescales has received considerably less attention. However, new tools and methods have recently been employed to detect genome-wide patterns of introgression, granting new insights into the prevalence of adaptive introgression in crop histories. Preliminary results suggest there is a need to expand our conception of domestication to include a broadening of the genetic base of crops that occurred through adaptive gene flow with newly encountered wild relatives during post-domestication expansion.

In this review, we will: 1) briefly describe recently developed methods for detecting adaptive introgression and provide a summary of how they can be applied to detect crop-wild introgression, 2) present case studies suggesting wild-to-crop introgression has conferred local adaptation, 3) consider how introgression bears upon fundamental questions of domestication, and 4) describe future advances in both basic and applied genetics that can be made through the study of introgression in agroecosystems.

Introgression methods and their application

The decreasing cost of genome-wide resequencing and availability of reduced-representation genotyping (e.g., GBS and RAD-Seq), combined with new analytical methods, has facilitated comprehensive study of introgression across a number of species (**Table 1**). High-density marker data can

be used with haplotype-based and other methods to assign specific genomic regions to a taxon of origin and identify introgression across taxa [11, 12, 13, 14, 15, 16]. The methods reviewed here do not include those marginally estimating introgression/migration rate as a component of demographic history (e.g., Approximate Bayesian Computation (ABC) [17], diffusion approximations for demographic inference ($\delta a \delta i$) [18], isolation with migration models [19], and a series of methods utilizing the sequentially Markovian coalescent (PSMC, MSMC and SMC++) [20, 21, 22]). Rather, we focus on methods that explicitly identify introgressed genomic segments based on the extent of differentiation, on patterns of nucleotide/haplotype sharing, and phylogenetic relationships.

First, introgressed segments are expected to show low differentiation from their source population. The F_{st} and d_{XY} statistics and their derivates including G_{min} [16] and RND_{min} [15] gauge differentiation. The former two statistics are insensitive to rare migrants and therefore lack power to detect recent introgression, while the latter two overcome this limitation. Additionally, RND_{min} accounts for variable mutation rate, which is detected based on branch length to an outgroup [15]. These statistics have recently been further developed by adding differentiation between both non-admixed (A) and admixed populations (B) and a source population (C) [23]. For example, the $U_{A,B,C(w,x,y)}$ statistic summarizes number of sites where an allele at frequency y in the source population (C) has a frequency higher than x in the admixed population (B) and lower than w in the non-admixed population (A). A similar statistic, $Q95_{A,B,C(w,y)}$, sets a hard cutoff at the 95th percentile of allele frequencies in the admixed population (B) [23]. Further modifications have allowed specification of more than one source population (see details in [23]).

Second, local ancestry deconvolution (also known as chromosome painting) assigns genomic regions to various source populations based on patterns of allele/haplotype sharing [24]. One form of chromosome painting utilizes hidden Markov models to evaluate ancestry across admixed genomes through comparison to reference, non-admixed individuals (e.g., HAPMIX [12]). Another clusters admixed populations with reference samples using a sliding-window approach (e.g., PCAdmix [25] and LAMP [26]). And finally, introgression can be detected through chromosome painting by using a Bayesian model [27] in which deviations from Hardy-Weinberg equilibrium are minimized through creation of genetic groups (e.g., fineSTRUCTURE [13]).

Third, the ABBA-BABA statistic (also known as the D-statistic) and related statistics are widely applied to introgression detection. These statistics make inferences regarding introgression based on genomic patterns of derived variants that are shared between populations or species. Patterns of allele sharing are interpreted in a phylogenetic context and the method is best suited to detection of introgression at the genome level. Elaborations of the D-statistic capable of localizing introgression to specific genomic regions include \hat{f}_d [?] and the five-taxon D-statistic [14]. The former is quite similar to the D-statistic but uses allele frequencies from each population/species, and the latter detects introgression based on the localized phylogenetic pattern and is capable of determining introgression directionality.

Application of these approaches combined with population genetic statistics to detect selection across a number of plant and animal species suggests introgression can play an adaptive role. For example, introgression from ancient hominins (e.g., Neanderthals and Denisovans) to humans has been detected at loci controlling skin pigmentation, defense against pathogens, and toleration of high altitude (reviewed in [28]); introgression of wing coloration loci has conferred Müllerian mimicry (a type of mimicry in which two unpalatable species resemble one another, compounding the efficacy of their repellant signal) across butterfly species [29]; introgression has spread insecticide resistance across mosquito species [30], and introgression across Mimulus (i.e., monkeyflower) species has resulted in adaptation to pollinator preference and contributed to speciation [31].

Crop adaptation through introgression

Genome-wide data from extensive samples of crops and their wild relatives, in combination with the new methods described above, have recently allowed detailed analysis of wild-to-crop introgression in some of the world's most important crops (**Table 2**). Below we present a summary of findings from maize, barley, rice, and potato, four promising systems in which introgression from wild relatives appears to have played an adaptive role.

1. Maize:

The relationship between maize (Zea mays ssp. mays) and the teosinte Zea mays ssp. mexicana (hereafter, mexicana) offers a prime case study of adaptive wild-to-crop introgression. Maize was domesticated from Zea mays ssp. parviglumis (hereafter, parviglumis) approximately 9,000 BP in the lowlands of the Balsas River Valley in Mexico [32]. From this domestication center, maize spread into the highlands of the Mexican Central Plateau, where it came into sympatry with mexicana. Introgression from mexicana to maize in the Central Plateau has been reported based on both morphological [33] and molecular [34, 35] data. However, Hufford et al. [36] first localized mexicana introgression to chromosomal regions and provided evidence that it was likely adaptive. The authors identified nine genomic regions in several maize populations which consistently showed evidence of mexicana introgression based on chromosome painting methods including HAPMIX(Figure 1). These introgressed segments overlapped with QTLs that had previously been found to control anthocyanin content and leaf macrohairs [37], traits known to be adaptive at high elevation. In a growth chamber experiment, the authors demonstrated that maize populations with mexicana introgression showed greater plant height (a proxy for fitness) under highland environmental conditions than populations that lacked introgression. Height differences were not detected under lowland conditions.

Populations of mexicana cannot be found outside of the highlands of Mexico, yet maize has colonized and adapted to high elevation in a number of other regions. A recent study [4] employed the ABBA-BABA and \hat{f}_d statistics to evaluate whether maize with mexicana introgression was transferred to other highland regions or whether highland adaptation was obtained de novo outside of Mexico. Overall, analyses revealed that mexicana introgressions were transferred to Meso-American high elevation regions in Guatemala and the southwestern United States, but more distant high elevation regions (e.g., the Andes) showed no mexicana ancestry.

Since mexicana haplotypes appear to have played an important role historically in adaptation of maize to challenging high-elevation conditions, modern breeding programs may further benefit from drawing on mexicana germplasm, particularly in regions like the Andes where mexicana alleles are not known to have spread.

2. Barley:

Barley (*Hordeum vulgare* subsp. *vulgare*) was domesticated at least twice roughly 8,000 to 10,000 BP: once from the wild subsp. *spontaneum* in the Fertile Crescent and once from subsp. *spontaneum* var. *agriocrithon* in Tibet [38, 39, 40, 41, 42, 43]. Presently, the distribution of subsp. *spontaneum* stretches from the eastern Mediterranean through the Middle-East to west-central Asia, spanning clines in temperature, precipitation, soil type, and altitude [44]. Barley-*spontaneum* hybrids are fertile and commonly found when these taxa co-occur. Gene flow between wild and domesticated barley is frequent [43], at times occurring over distances greater than a kilometer [45].

Poets and co-authors [46] recently investigated the range-wide contribution of wild barley to landraces, assessing both genome-wide and geographical patterns. This study identified several lines of evidence consistent with wild introgression aiding the dispersal and adaptation of domesticated barley. Genomic regions of shared ancestry were detected linking particular landraces to numerous wild relative populations, suggesting landraces may have received wild introgression on a continual basis during post-domestication expansion. However, barley landraces showed an excess of ancestry from nearby wild relatives, indicating a prevalence of local and potentially adaptive gene flow. Limited linkage disequilibrium and small tracts of identity by state indicated even locally introgressed chromosomal regions are old, perhaps dating to the early expansion of barley post-domestication. While these results are suggestive, wild barley haplotypes have yet to be definitely linked to specific local adaptations in landraces.

3. Asian Rice:

The details of Asian rice (Oryza sativa) domestication are still debated. Certain genetic and archaeobotanical evidence point toward independent domestications of the two prominent varietal groups japonica and indica from the wild species Oryza rufipogon (rufipogon hereafter) in the Yangtze Basin of China 7000 BP and the Indian Ganges plain 4000 BP, respectively [47], with a potential third domestication event giving rise to aus in Bangladesh or central India [48]. Other studies support a single domestication occurring 8,200-13,500 BP in the Yangtze Basin, with later divergence of *japonica* and *indica* [49, 50]. Huang and colleagues [50] developed a genetic map of rice variation, which they used to measure genetic distance between a range-wide sample of wild and domesticated rice, finding japonica was domesticated near the Pearl River in Guangxi province, China, and that *indica* was likely the result of hybridization between japonica and local rufipogon populations in Southern and South-eastern Asia. In a reexamination of these same data, [48] found evidence supporting independent domestications of japonica, indica, and aus, as well as a hybrid origin (japonica x aus) of aromatic rice. A recent third analysis by Choi and co-authors [51] compared these two disparate results and the methods utilized therein, concluding that domestication alleles (including LABA1, PROG1, and sh1) arose via a single domestication event of japonica, and that these alleles introgressed into several wild rufipogon subpopulations which thereby became the progenitors of other Asian rice varieties.

The findings of [51] run in parallel with a hypothesis posited by Vaughan and colleagues [52]. According to this hypothesis, domestication alleles arose in a single cultivated rice population and subsequently introgressed into diverse cultivated populations (some *japonica*-like, some *indica*-like) in the region. As these fully domesticated populations spread into new environments, they potentially received introgression from locally-adapted wild relatives, retaining alleles that improved fitness.

4. Potato

Modern potato (Solanum tuberosum) is believed to have been domesticated in southern Peru in sympatry with a multitude of wild relatives about 6000-10000 BP, although the exact location and formal classification and phylogenetic relationships between these taxa have long been disputed [53, 54, 55, 56]. A distance-based phylogeny assembled from a SNP array from a Solanum diversity panel (which included wild, landrace, and cultivated species) formed three groups (North American, South American, and cultivated) and identified S. candolleanum as being most probable wild progenitor of the potato [57].

Table 1: List and brief description of recently developed methods and examples of empirical studies employing these methods.

methods	data type	reference	examples
chromosome painting			
Hapmix	phased haplotype; reference panel	[12]	[? ?]
RASPberry	phased haplotype	[70]	[71]
MultiMix	phased/unphased genotype; reference panel	[72]	[73]
PCAdmix	phased haplotype	[25]	[74, 75]
LAMP	phased haplotypes; reference panel	[26]	[76]
phylogenetic relationship			
ABBA-BABA/D-statistics	biallelic SNP	[77]	[?]
fd statistic	biallelic SNP	[11]	[78, 79]
five taxon D statistics	biallelic SNP	[14]	[80, 81]
divergence			
Gmin	biallelic SNP	[16]	[82]
RNDmin	phased haplotype	[15]	NA
$U_{A,B,C(w,x,y)}$ and $Q95_{A,B,C(w,y)}$	biallelic SNP	[28]	[83]

Although potatoes are usually propogated clonally, farmers also promote sexual hybridization at times to improve disease resistance and develop new cultivars [58]. Farmers continue to grow potatoes in close proximity to wild relatives, resulting in domesticate-weedy-wild hybrid complexes which promote introgressive hybridization [59, 60, 61]. These complexes, combined with a diverse range of biotic and environmental selective pressures and local farming practices (human-mediated migration, isolated farmsteads in fertile valleys, clonal propogation, and intentional maintenance of a variety of landraces), have fostered expansion of genetic diversity within potatoes subsequent to domestication [62]. However, as farmers tend to abandon fields after being used for potato cultivation, it is less likely that hybrids have an opportunity to form stable populations for maintained introgressive gene flow into the domesticated potato gene pool [62]. Also, natural selection may be subverted by farmer preference and artificial selection [63].

Nevertheless, introgressive hybridization is widespread in potatoes [64]. The various cultivars of Andean potatoes are interfertile, forming one large plastic gene pool [58]. In their wild/landrace/domesticated diversity panel, Hardigan and colleagues [65] found a high level of genomic contribution from wild species (including S. candolleanum) into Andean tetraploid cultivated landraces and North American cultivars (20.2% and 32.1%, respectively). Genes located within these introgressed regions were more likely to be highly-expressed, stress-inducible, and contained loci related to disease resistance, drought tolerance, and heat tolerance, suggesting that these introgressed regions impart stress response mechanisms critical to survival, possibly facilitating tolerance for new environmental pressures during range expansion. Drought- and frost-resistance genes introgressed from wild relatives are also reported to have expediated the spread of cultivated potatoes into the central Andean Altiplano [66, 67, 68]. Andean potatoes exhibit high ecological versatility, due in part either to alleleic diversity in polyploids or introgression of desirable alleles from wild relatives in diploids [69].

Crop	Compatible Wild Relatives	Hybrids and/or Hybridization	Evidence of Crop Introgression	Evidence of Adaptiveness	Source
Maize (Zea mays subsp. mays)	Z. m. subsp. mexicana, Z. m. subsp. parviglumis	X	X	X	[?]
Asian Rice (Oryza sativa)	O. rufipogon	X	X	X	[50]
Barley (Hordeum vulgare)	H. v. subsp. spontaneum	X	X	X	[46]
Sunflower (Helianthus annuus)	H. argophyllus, H. bolanderi, H. debilis, H. petiolaris	X			[84]
Cassava (Manihot esculenta)	M. glaziovii	X	X	X	[85]
Potato (Solanum tuberosum)	many	X	X	X	[65, 66?]
Tomato (Solanum lycopersicum)	S. pimpinellifolium	X	X	X	[86]
Olive (Olea europaea ssp. europaea var. sativa)	O. e. ssp. europaea var. sylvestris	X	X		[87]
Soybeans (Glycine max)	G. soja	X	X		[88]
Common Bean (Phaseolus vulgaris)	P. v. var. aborigineus, P. v. var. mexicanus [[not in this source]]	X	X		[89]
Grapes (Vitis vinifera subsp. vinifera)	V. v. subsp. sylvestris	X	X		[90]
Sorghum (Sorghum bicolor subsp. bicolor)	S. b. subsp. arundinaceum, S. b. subsp. drummondii	X	X		[91]
Wheat (Tritium monococcum, T. dicoccum, T. aestivum)	T. m. boeoticum, T. dioccoides, T. urartu, Aegilops speltoides, A. tauschii	X	X		[92]
Apple (Malus domesticus)	M. sylvestris, M. orientalis, M. baccata, M. sieversii	X	X		[93]

Re-evaluating domestication

A framework in which crops are domesticated from a single wild population or even a single species is an oversimplification when introgression is extensive during crop geographic expansion. The addition of ongoing gene flow to our understanding of crop demography could therefore bear importantly on fundamental questions of crop domestication:

What is the progenitor of a crop?

Depending on the extent of post-domestication gene flow with new wild relatives, identification of a crop's progenitor can be complicated or confounded entirely. Introgression between a crop and newly-encountered taxa decreases divergence of the crop from these donors. This signal could be mistaken for origin rather than gene flow. For example, when determining a single origin of maize from parviglumis, Matsuoka and colleagues [32] identified a paradox: while parviglumis is found exclusively in the lowlands of southwest Mexico, maize with allele frequencies most similar to parviglumis was found in the highlands of the Mexican Central Plateau. Several years later, van Heerwaarden et al. [34] resolved the paradox by determining that widespread introgression in the highlands from mexicana, which is closely related to parviglumis, has caused maize from this region to appear ancestral. Similarly, extensive post-domestication adaptive introgression from potato wild relatives long obscured this crop's origin. Recent work has shown that, following the original domestication event of Solanum tuberosum in the central Andes, potato received introgression from as many as four additional species during colonization of the highest elevations of the Andes and the lowlands of the Chilean coast [94, 95, 96].

Beyond confounding detection of progenitor taxa, extensive introgression may necessitate a reevaluation of crop origins. In cases like maize and potato it is important to recognize the substantial contributions of introgressing taxa to the genetic base of modern crops. Broad recognition of the role these wild relatives have played in crop adaptation could further their use in breeding and elevate their conservation status.

When was a crop domesticated?

Estimates of the timing of initial domestication are often based on levels of sequence divergence between a crop and populations of its presumed progenitor (e.g., [32, 49]). In highly introgressed domesticates, these estimates will be based on comparison of both crop and introgressant haplotypes to those of the presumed progenitor. In such cases, divergence time is a mixture of time since domestication and time since split of the progenitor and the introgressing taxon. This phenomenon, in combination with divergence of crop samples from true ancestral crop populations, ongoing evolution of crop progenitors, and problems with assuming evolution under a molecular clock [97], may help explain discrepancies between domestication dates based on genetic and archaeological data. More accurate estimates of the timing of domestication may be obtained from genetic data by excluding loci that show signatures of introgression or by explicitly including estimates of introgression when modeling a crop's demographic history.

How was genome-wide diversity shaped by domestication?

Measurement of the strength of the initial domestication bottleneck may also be impacted by adaptive introgression during the spread of crops. Crop wild relatives have distinct demographies when compared to domesticates and may therefore have contrasting effective population sizes (N_e) . The influence of wild relative introgression on estimates of the domestication bottleneck will depend on a number of factors including the magnitude of gene flow, the N_e of the introgressing taxon, and the strength of selection on haplotypes following introgression. For example, substantial introgression at neutral loci from a wild taxon with a historically higher N_e will lead to underestimates of the overall strength of the domestication bottleneck.

What candidate genes were targeted by selection during domestication?

Loci targeted by selection during domestication can be identified through so-called "bottom-up" approaches based on population genetic signatures [98]. Ideally, candidate loci will be identified by first constructing a demographic model representing the history of the domesticate. In this approach, diversity data from neutral loci are fit to potential models of a crop's demography and then statistical tests of selection are used to identify candidate domestication genes under the most likely model. Due to the difficulty of this approach and the uncertainty associated with any given demography, many studies identify domestication loci using a strict outlier approach in which loci showing, for example, the greatest reduction in nucleotide diversity or the highest allele frequency differentiation in the domesticate relative to the wild progenitor are identified as candidates. Introgression during crop expansion may influence candidate gene detection using both demographic-modeling and strict-outlier approaches. For example, mexicana introgression into maize described above accounts for approximately 20% of the genome of maize in the highlands of Mexico [34]. Takuno and co-authors [99] have shown that a demographic model incorporating this introgression is a significantly better fit to empirical data than a model lacking introgression. Failure to account for introgression in maize would therefore compromise domestication candidate detection, particularly if a study contained maize samples from the Mexican highlands. Likewise, introgression that increased nucleotide diversity in the domesticate or decreased differentiation at domestication loci would confound a strict outlier approach. However, previous work, also in maize, has shown that known domestication loci are particularly resistant to introgression [?], likely due to ongoing selection favoring the domesticated phenotype.

Future studies in crop-wild introgression

Basic:

Research has so far shown that adaptive crop-wild introgression has played a significant role in the domestication and dispersal of many agronomically-important crops. However, the dynamics of this process are not yet fully understood, especially in the context of individual case examples, and many questions remain.

What is the genomic architecture of this introgression, and does the architecture suggest that it has been adaptive? At what geographic scale is introgression adaptive? Barley and maize most strongly show geographic patterns that we can talk about here, but I'm not sure how to discuss them again. To what extent does this depend on the slope of environmental gradients such as temperature, precipitation, and elevation across these ranges? Refer to the map and bar graph here? We can look at conservation of genomic architecture across landscapes and between populations, and make predictions about introgressions and their relations to local adaptation. If the genomic architecture of an introgressed region is conserved across a broad ecogeographical region, this suggests that the introgression imparts adaptation to general environmental or climatic variables. On the other hand, if the genomic architecture is conserved within populations but not between nearby populations in the region, this suggests that the introgressed regions offer adaptations to more local selective pressures. If the genomic architecture of an introgressed region is not conserved within a population, there is little evidence that the introgression is adaptive. Determination of adaptiveness could be accomplished genomically (looking for high LD regions that indicate selective sweeps) or by functional identification?

After hybrization events that lead to introgression, how long might the detectable genomic signals of introgression persist? Introgressed regions are easier to detect when there has been limited recombination to break them apart. Therefore, introgressions are easiest to detect when they are either recent (few generations means few recombination events) or involve structural variation (which diminishes recombination rate). *involve* – *involving* Because recombination progressively breaks apart LD in introgressed regions, measurements of LD can be used to date introgression events (as in [46]).

At what taxonomic scale does introgression occur? When do species become so diverged that introgression is either maladaptive or impossible (due to Dobzhansky-Muller incompatibilities or other mechanisms)? Theory indicates that the most significant limiting factor to gene flow between progenitor and domesticate is divergence time. Over time, diverged populations drift and become increasingly incompatible. Small effective population size, and correspondingly high genetic load, of the introgressive population also limits gene flow. Although perhaps less applicable in crop systems, this effect is seen in other well-documented cases of introgression (for example, Neanderthal introgression into humans, [?]). I tracked down the sources that indicate that introgression is suppressed around genes. The case example was Neanderthal alleles into humans, the paper titled "The genetic history of Ice Age Europe" [?], cited by the Graham Coop paper. However, I'm unclear if this is a general rule, or simply a consequence of Neanderthal being high in deleterious genetic load. Wouldn't crop systems, with wild relatives harboring putatively adaptive alleles with low load, show a different pattern? I could also talk about cross-incompatibility factors in maize/teosinte hybridization vs. highly compatible asian rice and its relatives. I probably wouldn't need a new source for the rice, but I might need to cite a paper about tcb1, ga1, and ga2.

Applied:

Our identification and understanding of introgression in agroecosystems would be augmented by the development of wild relative genomic resources, such as annotated genomic sequence assemblies and functional genomic data sets [?]. Additional study of introgression in agroecosystems could

lead to advances in both basic and applied genetics, and specifically the continued improvement of modern crops. Loci underlying the domesticated phenotype can be more clearly identified by removing the confounding population genetic signals of introgression. These loci are potentially beneficial targets for crop improvement. Furthermore, adaptive introgression that is demonstrably tied to a specific environment may include beneficial alleles that can be utilized in crop breeding. I could here include a handfull of examples of crops that farmers have bred adaptive alleles into. Also, we could mention that identification of wild relatives responsible for valuable agronomic introgressed alleles could inform conservation efforts.

Conclusions

Conclusions

In the same way that Darwin explored natural selection by studying domesticated species (going so far as to feature domestic pigeons as his "special group" at the beginning of his On the Origin of Species [100]), we frequently find that modern crop systems, in tandem with their extant wild relatives, offer unparalleled opportunities for the study of several evolutionary questions, including the role of adaptive introgression in dispersal and range expansion. The advent and application of genomics tools has lead to mounting evidence which underscores the prevalence of genetic admixture between crops and wild relatives during and well beyond the initial stages of domestication. Likewise, population genetic theory reinforces the proclivity of wild relatives to provide advantageous, locally-adpated alleles to crops as they disperse beyond their domestication centers into new geographies with new ecological pressures and niches. Within this new conception, the process of crop range expansion is a concurrent element of domestication, rather than a distinct event subsequent to it. This is a revolutionary departure from the prevailing model, and as such, offers new questions and new opportunities for investigation. These questions take on practical importance as well as theoretical. Understanding a crop's history of domestication in terms of selection, adaptation, and admixture empowers efforts at crop development and improvement. As the historic role of wild relatives in the development of many crops is increasingly clarified, it is likely that we may reevaluate the importance of conservation of wild populations (in particular or in general) that harbor agronomically-valuable alleles that may be targeted by pre-breeding efforts. These efforts may be of particular value in the face of future climate volatility and change.

Domesticated crops are among humanity's first and greatest inventions. Interwoven in the genetic history of these crops is the story of our ancestors as they transitioned through the Agronomic Revolution. In this more nuanced and dynamic understanding of crop domestication, we gain insight into the evolutionary journey that crops and humanity took, and continue to take, together. I let these final few sentences get a little more poetic than I normally would. I think maybe I should reel them back in, or cut them.

References

- [1] J. R. Harlan, Crops & Man. Madison, WI: American Society of Agronomy, Crop Science Society of America, 1992.
- [2] T. A. Brown, M. K. Jones, W. Powell, and R. G. Allaby, "The complex origins of domesticated crops in the fertile crescent," *Trends in Ecology & Evolution*, vol. 24, no. 2, pp. 103–109, 2009.
- [3] R. S. Meyer, J. Y. Choi, M. Sanches, A. Plessis, J. M. Flowers, J. Amas, K. Dorph, A. Barretto, B. Gross, D. Q. Fuller, I. K. Bimpong, M.-N. Ndjiondjop, K. M. Hazzouri, G. B.

- Gregorio, and M. D. Purugganan, "Domestication history and geographical adaptation inferred from a snp map of african rice," *Nat Genet*, vol. 48, pp. 1083–1088, 09 2016.
- [4] L. Wang, T. M. Beissinger, A. Lorant, C. Ross-Ibarra, J. Ross-Ibarra, and M. Hufford, "The interplay of demography and selection during maize domestication and expansion," bioRxiv, p. 114579, 2017.
- [5] Y. Zhou, M. Massonnet, J. Sanjak, D. Cantu, and B. S. Gaut, "The evolutionary genomics of grape (vitis vinifera ssp. vinifera) domestication," bioRxiv, p. 146373, 2017.
- [6] D. Q. Fuller, T. Denham, M. Arroyo-Kalin, L. Lucas, C. J. Stevens, L. Qin, R. G. Allaby, and M. D. Purugganan, "Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record," *Proceedings of the National Academy of Sciences*, vol. 111, no. 17, pp. 6147–6152, 2014.
- [7] N. Barton, "The role of hybridization in evolution," *Molecular Ecology*, vol. 10, no. 3, pp. 551–568, 2001.
- [8] C. Feuillet, P. Langridge, and R. Waugh, "Cereal breeding takes a walk on the wild side," *Trends in Genetics*, vol. 24, no. 1, pp. 24 32, 2008.
- [9] C. N. Stewart, M. D. Halfhill, and S. I. Warwick, "Transgene introgression from genetically modified crops to their wild relatives," *Nature Reviews Genetics*, vol. 4, no. 10, pp. 806–817, 2003.
- [10] H. Dempewolf, G. Baute, J. Anderson, B. Kilian, C. Smith, and L. Guarino, "Past and future use of wild relatives in crop breeding," vol. 57, pp. 1070–1082, 2017.
- [11] S. H. Martin, J. W. Davey, and C. D. Jiggins, "Evaluating the use of abba-baba statistics to locate introgressed loci," *Molecular biology and evolution*, vol. 32, no. 1, pp. 244–257, 2015.
- [12] A. L. Price, A. Tandon, N. Patterson, K. C. Barnes, N. Rafaels, I. Ruczinski, T. H. Beaty, R. Mathias, D. Reich, and S. Myers, "Sensitive detection of chromosomal segments of distinct ancestry in admixed populations," *PLoS Genet*, vol. 5, no. 6, pp. 1–18, 2009.
- [13] D. J. Lawson, G. Hellenthal, S. Myers, and D. Falush, "Inference of population structure using dense haplotype data," *PLoS Genet*, vol. 8, no. 1, pp. 1–16, 2012.
- [14] J. B. Pease and M. W. Hahn, "Detection and polarization of introgression in a five-taxon phylogeny," *Systematic biology*, vol. 64, no. 4, pp. 651–662, 2015.
- [15] B. K. Rosenzweig, J. B. Pease, N. J. Besansky, and M. W. Hahn, "Powerful methods for detecting introgressed regions from population genomic data," *Molecular ecology*, 2016.
- [16] A. J. Geneva, C. A. Muirhead, S. B. Kingan, and D. Garrigan, "A new method to scan genomes for introgression in a secondary contact model," *PloS one*, vol. 10, no. 4, p. e0118621, 2015.
- [17] M. A. Beaumont, W. Zhang, and D. J. Balding, "Approximate bayesian computation in population genetics," *Genetics*, vol. 162, no. 4, pp. 2025–2035, 2002.
- [18] R. N. Gutenkunst, R. D. Hernandez, S. H. Williamson, and C. D. Bustamante, "Inferring the joint demographic history of multiple populations from multidimensional snp frequency data," *PLoS Genet*, vol. 5, no. 10, p. e1000695, 2009.

- [19] J. Hey and R. Nielsen, "Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of drosophila pseudoobscura and d. persimilis," *Genetics*, vol. 167, no. 2, pp. 747–760, 2004.
- [20] H. Li and R. Durbin, "Inference of human population history from individual whole-genome sequences," *Nature*, vol. 475, no. 7357, pp. 493–496, 2011.
- [21] S. Schiffels and R. Durbin, "Inferring human population size and separation history from multiple genome sequences," *Nature genetics*, vol. 46, no. 8, pp. 919–925, 2014.
- [22] J. Terhorst, J. A. Kamm, and Y. S. Song, "Robust and scalable inference of population history from hundreds of unphased whole genomes," tech. rep., 2017.
- [23] F. Racimo, D. Marnetto, and E. Huerta-Sánchez, "Signatures of archaic adaptive introgression in present-day human populations," *Molecular Biology and Evolution*, p. msw216, 2016.
- [24] J. G. Schraiber and J. M. Akey, "Methods and models for unravelling human evolutionary history," *Nature Reviews Genetics*, 2015.
- [25] A. Brisbin, K. Bryc, J. Byrnes, F. Zakharia, L. Omberg, J. Degenhardt, A. Reynolds, H. Ostrer, J. G. Mezey, and C. D. Bustamante, "Pcadmix: principal components-based assignment of ancestry along each chromosome in individuals with admixed ancestry from two or more populations," *Human biology*, vol. 84, no. 4, p. 343, 2012.
- [26] S. Sankararaman, S. Sridhar, G. Kimmel, and E. Halperin, "Estimating local ancestry in admixed populations," The American Journal of Human Genetics, vol. 82, no. 2, pp. 290– 303, 2008.
- [27] J. K. Pritchard, M. Stephens, and P. Donnelly, "Inference of population structure using multilocus genotype data," *Genetics*, vol. 155, no. 2, pp. 945–959, 2000.
- [28] F. Racimo, S. Sankararaman, R. Nielsen, and E. Huerta-Sánchez, "Evidence for archaic adaptive introgression in humans," *Nature Reviews Genetics*, vol. 16, no. 6, pp. 359–371, 2015.
- [29] H. G. Consortium *et al.*, "Butterfly genome reveals promiscuous exchange of mimicry adaptations among species," *Nature*, vol. 487, no. 7405, pp. 94–98, 2012.
- [30] L. C. Norris, B. J. Main, Y. Lee, T. C. Collier, A. Fofana, A. J. Cornel, and G. C. Lanzaro, "Adaptive introgression in an african malaria mosquito coincident with the increased usage of insecticide-treated bed nets," *Proceedings of the National Academy of Sciences*, vol. 112, no. 3, pp. 815–820, 2015.
- [31] S. Stankowski and M. A. Streisfeld, "Introgressive hybridization facilitates adaptive divergence in a recent radiation of monkeyflowers," *Proceedings of the Royal Society of London B: Biological Sciences*, vol. 282, no. 1814, 2015.
- [32] Y. Matsuoka, Y. Vigouroux, M. M. Goodman, J. Sanchez, E. Buckler, and J. Doebley, "A single domestication for maize shown by multilocus microsatellite genotyping," *Proceedings of the National Academy of Sciences*, vol. 99, no. 9, pp. 6080–6084, 2002.
- [33] H. Wilkes, "Hybridization of maize and teosinte, in mexico and guatemala and the improvement of maize," *Economic Botany*, pp. 254–293, 1977.

- [34] J. van Heerwaarden, J. Doebley, W. H. Briggs, J. C. Glaubitz, M. M. Goodman, J. d. J. S. Gonzalez, and J. Ross-Ibarra, "Genetic signals of origin, spread, and introgression in a large sample of maize landraces," *Proceedings of the National Academy of Sciences*, vol. 108, no. 3, pp. 1088–1092, 2011.
- [35] J. Doebley, M. M. Goodman, and C. W. Stuber, "Patterns of isozyme variation between maize and mexican annual teosinte," *Economic Botany*, vol. 41, no. 2, pp. 234–246, 1987.
- [36] M. Hufford, P. Lubinksy, T. Pyhäjärvi, M. Devengenzo, N. Ellstrand, and J. Ross-Ibarra, "The genomic signature of crop-wild introgression in maize," *PLoS Genetics*, vol. 9, no. 5, p. e1003477, 2013.
- [37] N. Lauter, C. Gustus, A. Westerbergh, and J. Doebley, "The inheritance and evolution of leaf pigmentation and pubescence in teosinte," *Genetics*, vol. 167, no. 4, pp. 1949–1959, 2004.
- [38] R. Takahashi, "The origin and evolution of cultivated barley," *Advances in genetics*, vol. 7, pp. 227–266, 1955.
- [39] A. Badr, R. Sch, H. El Rabey, S. Effgen, H. Ibrahim, C. Pozzi, W. Rohde, F. Salamini, et al., "On the origin and domestication history of barley (hordeum vulgare)," *Molecular Biology and Evolution*, vol. 17, no. 4, pp. 499–510, 2000.
- [40] P. Azhaguvel and T. Komatsuda, "A phylogenetic analysis based on nucleotide sequence of a marker linked to the brittle rachis locus indicates a diphyletic origin of barley," *Annals of botany*, vol. 100, no. 5, pp. 1009–1015, 2007.
- [41] G. Haberer and K. F. Mayer, "Barley: From brittle to stable harvest," Cell, vol. 162, no. 3, pp. 469–471, 2015.
- [42] X. Ren, E. Nevo, D. Sun, and G. Sun, "Tibet as a potential domestication center of cultivated barley of china," *PloS One*, vol. 8, no. 5, p. e62700, 2013.
- [43] F. Dai, E. Nevo, D. Wu, J. Comadran, M. Zhou, L. Qiu, Z. Chen, A. Beiles, G. Chen, and G. Zhang, "Tibet is one of the centers of domestication of cultivated barley," *Proceedings of the National Academy of Sciences*, vol. 109, no. 42, pp. 16969–16973, 2012.
- [44] E. Nevo and G. Chen, "Drought and salt tolerances in wild relatives for wheat and barley improvement," *Plant, cell & environment*, vol. 33, no. 4, pp. 670–685, 2010.
- [45] G. Hillman, R. Hedges, A. Moore, S. Colledge, and P. Pettitt, "New evidence of lateglacial cereal cultivation at abu hureyra on the euphrates," *The Holocene*, vol. 11, no. 4, pp. 383–393, 2001.
- [46] A. M. Poets, Z. Fang, M. T. Clegg, and P. L. Morrell, "Barley landraces are characterized by geographically heterogeneous genomic origins," *Genome Biology*, vol. 16, no. 1, pp. 1–11, 2015.
- [47] D. Q. Fuller, Y.-I. Sato, C. Castillo, L. Qin, A. R. Weisskopf, E. J. Kingwell-Banham, J. Song, S.-M. Ahn, and J. Van Etten, "Consilience of genetics and archaeobotany in the entangled history of rice," Archaeological and Anthropological Sciences, vol. 2, no. 2, pp. 115–131, 2010.
- [48] P. Civáň, H. Craig, C. J. Cox, and T. A. Brown, "Three geographically separate domestications of asian rice," *Nature plants*, vol. 1, no. 11, p. 15164, 2015.

- [49] J. Molina, M. Sikora, N. Garud, J. M. Flowers, S. Rubinstein, A. Reynolds, P. Huang, S. Jackson, B. A. Schaal, C. D. Bustamante, et al., "Molecular evidence for a single evolutionary origin of domesticated rice," Proceedings of the National Academy of Sciences, vol. 108, no. 20, pp. 8351–8356, 2011.
- [50] X. Huang, N. Kurata, X. Wei, Z.-X. Wang, A. Wang, Q. Zhao, Y. Zhao, K. Liu, H. Lu, W. Li, Y. Guo, Y. Lu, C. Zhou, D. Fan, Q. Weng, C. Zhu, T. Huang, L. Zhang, Y. Wang, L. Feng, H. Furuumi, T. Kubo, T. Miyabayashi, X. Yuan, Q. Xu, G. Dong, Q. Zhan, C. Li, A. Fujiyama, A. Toyoda, T. Lu, Q. Feng, Q. Qian, J. Li, and B. Han, "A map of rice genome variation reveals the origin of cultivated rice," *Nature*, vol. 490, pp. 497–501, 2012.
- [51] J. Y. Choi and M. D. Purugganan, "Multiple origin but single domestication led to oryza sativa," G3: Genes, Genomes, Genetics, pp. g3–300334, 2018.
- [52] D. A. Vaughan, B.-R. Lu, and N. Tomooka, "The evolving story of rice evolution," *Plant science*, vol. 174, no. 4, pp. 394–408, 2008.
- [53] Z. Huamán and D. M. Spooner, "Reclassification of landrace populations of cultivated potatoes (solanum sect. petota)," *American Journal of Botany*, vol. 89, no. 6, pp. 947–965, 2002.
- [54] D. M. Spooner, K. McLean, G. Ramsay, R. Waugh, and G. J. Bryan, "A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 41, pp. 14694–14699, 2005.
- [55] B. Pickersgill and C. B. Heiser Jr, "Origins and distribution of plants domesticated in the new world tropics," *Origins of agriculture*, 1977.
- [56] J. G. Hawkes, "The evolution of cultivated potatoes and their tuber-bearing wild relatives," *Die Kulturpflanze*, vol. 36, no. 1, pp. 189–208, 1988.
- [57] M. A. Hardigan, J. Bamberg, C. R. Buell, and D. S. Douches, "Taxonomy and genetic differentiation among wild and cultivated germplasm of solanum sect. petota," *The Plant Genome*, vol. 8, no. 1, 2015.
- [58] C. Quiros, R. Ortega, L. Van Raamsdonk, M. Herrera-Montoya, P. Cisneros, E. Schmidt, and S. Brush, "Increase of potato genetic resources in their center of diversity: the role of natural outcrossing and selection by the andean farmer," *Genetic Resources and Crop Evolution*, vol. 39, no. 2, pp. 107–113, 1992.
- [59] D. Rabinowitz, C. Linder, R. Ortega, D. Begazo, H. Murguia, D. Douches, and C. Quiros, "High levels of interspecific hybridization between solanum sparsipilum ands. stenotomum in experimental plots in the andes," *American Potato Journal*, vol. 67, no. 2, pp. 73–81, 1990.
- [60] T. Johns, Z. Huaman, C. Ochoa, and P. E. Schmiediche, "Relationships among wild, weed, and cultivated potatoes in the solanum x ajanhuiri complex," *Systematic Botany*, pp. 541– 552, 1987.
- [61] C. R. Linder, Diversity within traditional potato agriculture in the Peruvian Andes and its relevance to crop evolution. Cornell University, Aug., 1987.

- [62] S. Brush, R. Kesseli, R. Ortega, P. Cisneros, K. Zimmerer, and C. Quiros, "Potato diversity in the andean center of crop domestication," *Conservation Biology*, vol. 9, no. 5, pp. 1189–1198, 1995.
- [63] S. B. Brush, H. J. Carney, and Z. Humán, "Dynamics of andean potato agriculture," *Economic Botany*, vol. 35, no. 1, pp. 70–88, 1981.
- [64] P. Grun, "The evolution of cultivated potatoes," *Economic Botany*, vol. 44, no. 3, pp. 39–55, 1990.
- [65] M. A. Hardigan, F. P. E. Laimbeer, L. Newton, E. Crisovan, J. P. Hamilton, B. Vaillancourt, K. Wiegert-Rininger, J. C. Wood, D. S. Douches, E. M. Farré, et al., "Genome diversity of tuber-bearing solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato," Proceedings of the National Academy of Sciences, vol. 114, no. 46, pp. E9999–E10008, 2017.
- [66] T. Johns and S. L. Keen, "Ongoing evolution of the potato on the altiplano of western bolivia," *Economic Botany*, vol. 40, no. 4, pp. 409–424, 1986.
- [67] J. G. Hawkes, "Origin of solanum juzepczukii buk and s curtilobum juz et buk," ZEITSCHRIFT FUR PFLANZENZUCHTUNG-JOURNAL OF PLANT BREEDING, vol. 47, no. 1, p. 1, 1962.
- [68] P. Schmiediche, J. Hawkes, and C. Ochoa, "Breeding of the cultivated potato species solanum x juzepczukii buk. and solanum x curtilobum juz. etbuk.," *Euphytica*, vol. 29, no. 3, pp. 685–704, 1980.
- [69] K. S. Zimmerer, "The ecogeography of andean potatoes," BioScience, pp. 445–454, 1998.
- [70] D. Wegmann, D. E. Kessner, K. R. Veeramah, R. A. Mathias, D. L. Nicolae, L. R. Yanek, Y. V. Sun, D. G. Torgerson, N. Rafaels, T. Mosley, et al., "Recombination rates in admixed individuals identified by ancestry-based inference," *Nature genetics*, vol. 43, no. 9, pp. 847– 853, 2011.
- [71] C. Christe, K. N. Stölting, L. Bresadola, B. Fussi, B. Heinze, D. Wegmann, and C. Lexer, "Selection against recombinant hybrids maintains reproductive isolation in hybridizing populus species despite f1 fertility and recurrent gene flow," *Molecular ecology*, vol. 25, no. 11, pp. 2482–2498, 2016.
- [72] C. Churchhouse and J. Marchini, "Multiway admixture deconvolution using phased or unphased ancestral panels," *Genetic epidemiology*, vol. 37, no. 1, pp. 1–12, 2013.
- [73] S. Eyheramendy, F. I. Martinez, F. Manevy, C. Vial, and G. M. Repetto, "Genetic structure characterization of chileans reflects historical immigration patterns," *Nature communications*, vol. 6, 2015.
- [74] I. Pugach, R. Matveev, V. Spitsyn, S. Makarov, I. Novgorodov, V. Osakovsky, M. Stoneking, and B. Pakendorf, "The complex admixture history and recent southern origins of siberian populations," *Molecular biology and evolution*, p. msw055, 2016.
- [75] A. Moreno-Estrada, C. R. Gignoux, J. C. Fernández-López, F. Zakharia, M. Sikora, A. V. Contreras, V. Acuña-Alonzo, K. Sandoval, C. Eng, S. Romero-Hidalgo, et al., "The genetics

- of mexico recapitulates native american substructure and affects biomedical traits," *Science*, vol. 344, no. 6189, pp. 1280–1285, 2014.
- [76] N. Patterson, P. Moorjani, Y. Luo, S. Mallick, N. Rohland, Y. Zhan, T. Genschoreck, T. Webster, and D. Reich, "Ancient admixture in human history," *Genetics*, vol. 192, no. 3, pp. 1065–1093, 2012.
- [77] E. Y. Durand, N. Patterson, D. Reich, and M. Slatkin, "Testing for ancient admixture between closely related populations," *Molecular biology and evolution*, vol. 28, no. 8, pp. 2239–2252, 2011.
- [78] M. Malinsky, R. J. Challis, A. M. Tyers, S. Schiffels, Y. Terai, B. P. Ngatunga, E. A. Miska, R. Durbin, M. J. Genner, and G. F. Turner, "Genomic islands of speciation separate cichlid ecomorphs in an east african crater lake," *Science*, vol. 350, no. 6267, pp. 1493–1498, 2015.
- [79] W. Zhang, K. K. Dasmahapatra, J. Mallet, G. R. Moreira, and M. R. Kronforst, "Genome-wide introgression among distantly related heliconius butterfly species," *Genome biology*, vol. 17, no. 1, p. 1, 2016.
- [80] M. C. Fontaine, J. B. Pease, A. Steele, R. M. Waterhouse, D. E. Neafsey, I. V. Sharakhov, X. Jiang, A. B. Hall, F. Catteruccia, E. Kakani, et al., "Extensive introgression in a malaria vector species complex revealed by phylogenomics," Science, vol. 347, no. 6217, p. 1258524, 2015.
- [81] J. B. Pease, D. C. Haak, M. W. Hahn, and L. C. Moyle, "Phylogenomics reveals three sources of adaptive variation during a rapid radiation," *PLoS Biol*, vol. 14, no. 2, p. e1002379, 2016.
- [82] S. B. Kingan, A. J. Geneva, J. P. Vedanayagam, and D. Garrigan, "Genome divergence and gene flow between drosophila simulans and d. mauritiana," bioRxiv, p. 024711, 2015.
- [83] A. J. Sams, A. Dumaine, Y. Nédélec, V. Yotova, C. Alfieri, J. E. Tanner, P. W. Messer, and L. B. Barreiro, "Adaptively introgressed neandertal haplotype at the oas locus functionally impacts innate immune responses in humans," *Genome Biology*, vol. 17, no. 1, p. 246, 2016.
- [84] L. H. Rieseberg, S.-C. Kim, R. A. Randell, K. D. Whitney, B. L. Gross, C. Lexer, and K. Clay, "Hybridization and the colonization of novel habitats by annual sunflowers," *Genetica*, vol. 129, no. 2, pp. 149–165, 2007.
- [85] J. V. Bredeson, J. B. Lyons, S. E. Prochnik, G. A. Wu, C. M. Ha, E. Edsinger-Gonzales, J. Grimwood, J. Schmutz, I. Y. Rabbi, C. Egesi, et al., "Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity," Nature biotechnology, vol. 34, no. 5, pp. 562–570, 2016.
- [86] C. M. Rick, "The role of natural hybridization in the derivation of cultivated tomatoes of western south america," *Economic Botany*, vol. 12, no. 4, pp. 346–367, 1958.
- [87] C. M. Diez, I. Trujillo, N. Martinez-Urdiroz, D. Barranco, L. Rallo, P. Marfil, and B. S. Gaut, "Olive domestication and diversification in the mediterranean basin," New Phytologist, vol. 206, no. 1, pp. 436–447, 2015.
- [88] H.-M. Lam, X. Xu, X. Liu, W. Chen, G. Yang, F.-L. Wong, M.-W. Li, W. He, N. Qin, B. Wang, et al., "Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection," Nature genetics, vol. 42, no. 12, pp. 1053–1059, 2010.

- [89] R. Papa and P. Gepts, "Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (phaseolus vulgaris l.) from mesoamerica," *Theoretical and Applied Genetics*, vol. 106, no. 2, pp. 239–250, 2003.
- [90] S. Myles, A. R. Boyko, C. L. Owens, P. J. Brown, F. Grassi, M. K. Aradhya, B. Prins, A. Reynolds, J.-M. Chia, D. Ware, et al., "Genetic structure and domestication history of the grape," Proceedings of the National Academy of Sciences, vol. 108, no. 9, pp. 3530–3535, 2011.
- [91] P. Aldrich, J. Doebley, K. Schertz, and A. Stec, "Patterns of allozyme variation in cultivated and wild sorghum bicolor," *Theoretical and Applied Genetics*, vol. 85, no. 4, pp. 451–460, 1992.
- [92] D. Zohary, J. R. Harlan, and A. Vardi, "The wild diploid progenitors of wheat and their breeding value," *Euphytica*, vol. 18, no. 1, pp. 58–65, 1969.
- [93] A. Cornille, P. Gladieux, M. J. Smulders, I. Roldán-Ruiz, F. Laurens, B. Le Cam, A. Nersesyan, J. Clavel, M. Olonova, L. Feugey, et al., "New insight into the history of domesticated apple: secondary contribution of the european wild apple to the genome of cultivated varieties," PLoS Genet, vol. 8, no. 5, p. e1002703, 2012.
- [94] D. M. Spooner, M. Ghislain, R. Simon, S. H. Jansky, and T. Gavrilenko, "Systematics, diversity, genetics, and evolution of wild and cultivated potatoes," *The Botanical Review*, vol. 80, no. 4, pp. 283–383.
- [95] T. Gavrilenko, O. Antonova, A. Shuvalova, E. Krylova, N. Alpatyeva, D. M. Spooner, and L. Novikova, "Genetic diversity and origin of cultivated potatoes based on plastid microsatellite polymorphism," *Genetic Resources and Crop Evolution*, vol. 60, no. 7, pp. 1997–2015, 2013.
- [96] M. A. Hardigan, F. P. E. Laimbeer, L. Newton, E. Crisovan, J. P. Hamilton, B. Vaillancourt, K. Wiegert-Rininger, J. C. Wood, D. S. Douches, E. M. Farré, R. E. Veilleux, and C. R. Buell, "Genome diversity of tuber-bearing solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato," *Proceedings of the National Academy of Sciences*, vol. 114, no. 46, pp. E9999–E10008, 2017.
- [97] M. A. Zeder, E. Emshwiller, B. D. Smith, and D. G. Bradley, "Documenting domestication: the intersection of genetics and archaeology," *Trends in Genetics*, vol. 22, no. 3, pp. 139–155, 2006.
- [98] J. Ross-Ibarra, P. L. Morrell, and B. S. Gaut, "Plant domestication, a unique opportunity to identify the genetic basis of adaptation," *Proceedings of the National Academy of Sciences*, vol. 104, no. suppl 1, pp. 8641–8648, 2007.
- [99] S. Takuno, P. Ralph, K. Swarts, R. J. Elshire, J. C. Glaubitz, E. S. Buckler, M. B. Hufford, and J. Ross-Ibarra, "Independent molecular basis of convergent highland adaptation in maize," *Genetics*, 2015.
- [100] C. Darwin and W. F. Bynum, The origin of species by means of natural selection: or, the preservation of favored races in the struggle for life. Penguin, 2009.

Figure 1: Hapmix vectors indicating introgression level from *mexicana* to Mexican highland maize on chromosome 4. Data adopted from Hufford et al. [?]. ELP: EL Porvenir; IXT: Ixtlan; NAB: Nabogame; OPO: Opopeo; PUR: Puruandiro; SAC: Santa Clara; SAP: San Pedro; TEN: Tenango del Aire; XOC: Xochimilco.

Figure 2: Map of the natural ranges of wild relatives of four domesticated crops, overlayed with average annual temperature. The distribution of average annual temperature experienced in the geographic home ranges of wild relatives interfertile with four crops

Figure 3: The distribution of average annual temperatures experienced in the geographic home ranges of wild relatives interfertile with four crops