BME TMIT 2022

14/6b Németh Gá<u>bor</u>

Funkcionális programozás C++-ban

Kategóriaelméletismétlés

Az FPL kategória

Az FPL kategória

- Legyenek az egyszerű funkcionális nyelvünk elemei a következők:
 - ▶ típusok
 - Int (egész számok), Real (valós számok), Bool (igazságértékek), Unit (egy elemű típus)
 - beépített operátorok
 - iszero: Int \rightarrow Bool, not: Bool \rightarrow Bool, succ_{Int}: Int \rightarrow Int, succ_{Real}: Real \rightarrow Real, toReal: Int \rightarrow Real
 - ▶ konstansok
 - > zero: Int, true: Bool, false: Bool, unit: Unit

 ekkor a nyelvhez tartozó FPL kategória az alábbi módon rajzolható fel:

Univerzális struktúrák

Hom
Kommutatív diagramok
Szorzat
Összeg
ADT
Exponenciális

Hom halmaz

ightharpoonup Egy $m{C}$ kategória morfizmusainak a halmazát $Hom_{m{C}}$ jelöli.

Kommutatív diagramok

- A C kategória diagramja pontokból és élekből áll, amely a kategória objektumainak, illetve a morfizmusok neveivel van felcímkézve.
- A diagram kommutatív, ha a diagram pontjaiból alkotott valamennyi (X, Y) párra a köztük lévő minden útvonal egyenlő.
 - megegyezés szerint csak több mint egy nyilat tartalmazó útvonalakra követeljük meg

Szorzat univerzális struktúra I.

Egy ${\bf C}$ kategóriában a A és B objektumok szorzatdiagramja a P objektumból és a p_1 , p_2 nyilakból áll

$$A \stackrel{p_1}{\longleftarrow} P \stackrel{p_2}{\longrightarrow} B$$

amelyre teljesül, hogy bármely másik

$$A \stackrel{\chi_1}{\longleftarrow} X \stackrel{\chi_2}{\longrightarrow} B$$

b diagram esetén létezik egy egyedi $u: X \to P$, amelyre az alábbi diagram kommutatív, azaz $x_1 = p_1 \circ u$ és $x_2 = p_2 \circ u$

Szorzat univerzális struktúra II.

Összeg univerzális struktúra

A C objektum a hozzá tartozó i_1 és i_2 injekciókkal az A és a B objektumok koproduktuma (összege), ha bármely X objektumra és a hozzá tartozó j_1 , j_2 injekciókra létezik egy egyedi m morfizmus, amely faktorizálja a j_1 -et és j_2 -t, azaz

ADT - Algebrai adattípusok

C++	Algebra	Haskell
struct Void;	0	data Void
std::monostate	1	data Unit = Unit
bool	1 + 1	data Bool = True False
<pre>std::variant<nothing, a=""></nothing,></pre>	1 + a	data Maybe a = Nothing Just a
std::variant <a, b=""></a,>	a + b	data Either a b = Left a Right b
std::pair <a, b=""></a,>	a * b	(a, b)
	b ^a	a → b

Definíció nélkül!

Mutassa meg, hogy $Bool \rightarrow a$ nem $Either\ a\ a$ -val, hanem $(a,\ a)$ -val ekvivalens!

Körrizés

$$\tilde{f} \equiv \text{k\"{o}}\text{rriz\'{e}}\text{s}$$

Exponenciális

▶ Tartalmazzon a **C** kategória bináris szorzatot. A B és C objektumok exponense a C^B objektumból és $\epsilon\colon C^B \to C$ morfizmusból áll, mégpedig úgy, hogy valamennyi A objektumra és $f\colon A\times B\to C$ morfizmusra létezik olyan egyedi $\tilde{f}\colon A\to C^B$ morfizmus, amelyre ϵ ° $(\tilde{f}\times 1_B)=f$.

Köszönöm a figyelmet!

Folytatjuk...