Problem Set 3 *

Ian McGroarty

Course Number: 625.603

February 21, 2019

Problem 3.4.4. Remission time is $f_Y(y) = \frac{1}{9}y^2$, $0 \le y \le 3$. What is the probability the patients malaria lasts longer than one year?

Solution The probability that a malaria patients remission lasts longer than one year is 0.963, or 96.3%.

$$F_Y(y) = \int f_Y(y) dy$$
 Def 3.4.3 pg 135

$$= \int \frac{1}{9} y^2 dy$$
 This is the cdf.

$$P(Y > s) = 1 - F_Y(s)$$
 Theorem 3.4.2(a) pg 135

$$P(Y > 1) = 1 - \frac{1}{27} (1^3)$$

$$= \frac{26}{27}$$

$$P(Y > 1) = 0.963$$

^{*}Problem list - 3.4.4, 3.5.14, 3.5.32, 3.6.2, 3.6.10

Problem 3.5.14. 15 observations are chosen at random from pdf $f_Y(y) = 3y^2$, $0 \le y \le 1$. Let X denote the number that lie in the interval $(\frac{1}{2}, 1)$. Find E(X).

Solution First, we must determine the probability that any given observation is in the interval $(\frac{1}{2}, 1)$. To do this we evaluate the area under the pdf on the given interval.

$$P(r < Y \le s) = F_Y(s) - F_Y(r)$$
 Theorem 3.4.2 pg 135
$$= \int_{\frac{1}{2}}^{1} F_Y$$
 Interested in the interval 1/2 to 1
$$= \int_{\frac{1}{2}}^{1} f_Y(y) dy$$
 Def 3.4.3 pg 135
$$= \int_{\frac{1}{2}}^{1} 3y^2 dy$$

$$= y^3 \Big|_{\frac{1}{2}}^{1}$$

$$= 1^3 - (\frac{1}{2})^3$$

$$= \frac{7}{8}$$

Since the events of X are mutually exclusive, axiom 3 (pg 26) applys.

Problem 3.5.32. Box with height 5in. and base YxY inches. Where Y is a random variable with $pdf f_Y(y) = 6y(1-y)$, 0 < y < 1. Find the expected volume of the box.

Solution The box has an expected area of 1.5 inches.

The area of the box is $A=5(Y^2)$ Let area be defined as g(Y), a continuous funtion. Then:

$$E[g(Y)] = \int g(y) \cdot f_Y(y) dy$$
 Theorem 3.5.3 pg 148

$$= \int_0^1 (5y^2) \cdot 6y(1-y) dy$$
 Interested in interval 0 to 1

$$= 30 \int_0^1 y^3 - y^4 dy$$

$$= 30 (\frac{y^4}{4} - \frac{y^5}{5} \Big|_0^1)$$

$$= \frac{30}{4} - 305$$

$$= \frac{30}{20} = 1.5 \text{ inches.}$$

Problem 3.6.2. Find the variance of Y if:

$$f_Y(y) = \begin{cases} \frac{3}{4}, & 0 \le y \le 1\\ \frac{1}{4}, & 2 \le y \le 3\\ 0, & \text{elsewhere} \end{cases}$$

Solution $Var(Y) = \frac{5}{8}$ or 0.833.

$$\begin{split} E(Y) &= \mu = \int_0^1 y(\frac{3}{4}) dy + \int_2^3 y(\frac{1}{4}) dy \qquad \text{First need to find Expected value of y} \\ &= (\frac{3}{8}) y^2 \Big|_0^1 + (\frac{1}{8}) y^2 \Big|_2^3 \\ &= (\frac{3}{8}) + (\frac{9}{8} - \frac{4}{8}) = 1 \\ E(Y^2) &= \mu = \int_0^1 y^2 (\frac{3}{4}) dy + \int_2^3 y^2 (\frac{1}{4}) dy \qquad \text{Now need to find Expected value of } y^2 \\ &= (\frac{3}{12}) y^3 \Big|_0^1 + (\frac{1}{12}) y^3 \Big|_2^3 \\ &= (\frac{3}{12}) + (\frac{27}{12} - \frac{8}{12}) = \frac{22}{12} \\ Var(Y) &= \sigma^2 = E(Y^2) - \mu^2 \qquad \text{Theorem 3.6.1 pg 155} \\ &= \frac{22}{12} - \frac{12}{12} = \frac{10}{12} \end{split}$$

Problem 3.6.10. Let Y be a random variabe whose pdf is given by $f_Y(y) = 5y^4$, $0 \le y \le 1$. Find Var(Y).

Solution $Var(Y) = \frac{5}{32}$ or 0.1562

$$E(Y) = \mu = \int_0^1 y \cdot 5y^4 dy$$
 First need to find Expected value of y
$$= \int_0^1 5y^5 dy$$

$$= \left(\frac{5}{6}\right) y^6 \Big|_0^1 = \frac{5}{6}$$
 Now to find expected value of y^2
$$= \int_0^1 5y^6 dy$$
 Now to find expected value of y^2
$$= \left(\frac{5}{7}\right) y^7 \Big|_0^1 = \frac{5}{7}$$

$$Var(Y) = \sigma^2 = E(Y^2) - \mu^2$$
 Theorem 3.6.1 pg 155
$$= \frac{5}{6} - \frac{5}{7} = \frac{5}{42}$$