

ey concept T7 L4

Sampling Distribution Properties

Mean of sample means

$$\mu_{\bar{X}} = \mu$$

s.d. of sample means = standard error of the mean

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

- $\sigma > \sigma_{\bar{X}}$
- As $n \uparrow$, $\sigma_{\bar{X}} \downarrow$

Sampling from Normal Populations

From a normally distributed population $X \sim N(\mu, \sigma^2)$

the sample means also follow normal distribution $\bar{X} \sim N(\mu_{\bar{X}}, (\sigma_{\bar{X}})^2)$

$$\mu_{ar{X}} = \mu$$
 and $\sigma_{ar{X}} = rac{\sigma}{\sqrt{n}}$

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

Population Distribution

Sample Mean Distributions

Sampling from Non-Normal Populations

From a not normally distributed population, still $\mu_{\bar{X}} = \mu$ and $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$, the distribution of \bar{X} will vary from sample sizes

Central Limit Theorem

n≥30

As sample size <u>gets large enough</u>, sample mean distribution becomes **NORMAL** regardless of population distribution

Population Distribution

Sample Mean Distributions

Summary of Sampling Distribution

Distribution	n < 30	$n \geq 30$
Normal	$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$	$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$
Non-normal	Since the population is non-Normal, and the sample size is small, we are unable to tell the distribution of sample mean, and the corresponding probability	The population distribution is non-normal, but the sample size is large $(n \ge 30)$. We can conclude that $\bar{X} \sim N(140, (\frac{20}{\sqrt{30}})^2)$ according to the Central Limit Theorem. $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$

$$X \sim N(\mu, \sigma^2) \rightarrow \bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \rightarrow Z \sim N(0, 1^2) \rightarrow \text{Probability}$$

Step 1: always change to ≤ first

Step 2: use formula to standardize

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Step 3: calculate Z

Step 4: find probability in Z table

Calculator

Casio fx-50F

Casio fx-82ES plus

(Your best friend: google & maybe me???)

Date Set:

163.6 156.2 166.3 179.3 157.8 165.4 159.5 161.7 160.4

1. Change to "Lin" mode

MODE MODE 5 1

2. Clear previous data

SHIFT CLR 1 EXE

3. Input data

163.6 M+ 156.2 M+ 166.3 M+ 179.3 M+ 157.8 M+ 165.4 M+ 159.5 M+ 161.7 M+

160.4 M+

4. Calculate descriptive statistics

Mean: SHIFT 2 1 1 EXE = 163.3555556

Population standard deviation: SHIFT 2 1 2 EXE = 6.459637417

Sample standard deviation: SHIFT 2 1 3 EXE = 6.851480132

No. of Data Input: SHIFT 1 3 EXE = 9