

Tutorial: Learning Bayesian Networks with R January 2018

Polina Suter polina.minkina@bsse.ethz.ch

Bayesian Networks

- G Directed Acyclic Graph (DAG)
- Nodes random variables
- Edges conditional dependencies
- CPD (conditional probability distribution) of node X:

P(X|parents(X))

Compact representation of joint distribution in a product form:

P(S,C,B,X,D)=P(S)P(C|S)P(B|S)P(X|C,S)P(D|C,B)

1+2+2+4+4=13 parameters instead of 2⁵=32

2

Learning BNs from observations/interventions

 The gold standard for inferring causal links is intervention experiment however it is not always possible to perform one

- Inferring BNs from observational data has some limitations:
- For causal interpretation we assume there are no hidden confounders
- Only equivalence class (CPDAG) can be inferred from observational data

Learning BNs

Learn parameters Θ when structure G is known: ML, MAP

Learn graph G and parameters Θ

$\hat{G} = \underset{G}{\operatorname{argmax}} \ Score(G)$
NP-hard

p	number of DAGs with p nodes
1	1
2	3
3	25
4	543
5	29281
6	3781503
7	1138779265
8	783702329343
9	1213442454842881
10	4175098976430598143
11	31603459396418917607425
12	521939651343829405020504063
13	18676600744432035186664816926721
14	1439428141044398334941790719839535103
15	237725265553410354992180218286376719253505
16	83756670773733320287699303047996412235223138303
17	62707921196923889899446452602494921906963551482675201
18	99421195322159515895228914592354524516555026878588305014783
19	332771901227107591736177573311261125883583076258421902583546773505
20	2344880451051088988152559855229099188899081192234291298795803236068491263

Network: G

LungCan = 0(no), 1(yes) Bronch = 0(no), 1(yes) Dysponea = 0(no), 1(yes)

L = P(G|D) = ?

LungCan	Bronch	Dysp
1	0	1
0	1	1
0	1	1
0	1	0
0	1	1
0	0	0
0	1	1
0	1	1
0	1	1
1	1	1
0	1	1
0	0	0
0	1	1
0	0	0
1	0	1

Calculating conditional probability tables: LungCan	${\bf Bronch}$	Dysp
1	0	1
0	1	1
LungCan x=1 x=0 Bronch x=1 x=0 ∅	1	1
P(LungCan=x) 1/5 4/5 P(Bronch=x) 2/3 1/3	1	0
Lung Cancer Bronchitis 0	1	1
0	0	0
0	1	1
Duonno o	1	1
Dyspnoea Dysp P(Dysp=xlLungCan=y,Bronch=z)	1	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1
0 0 0 1 0 1 0 1 0	1	1
1 0 1 0	0	0
1 1 1 0 0	1	1
0	0	0
1	0	1

$$L = P(G|D) = \prod_{i=1}^{15} P(LungCan_i)P(Bronch_i)P(Dysp_i|LungCan_i, Bronch_i)$$

Calculating conditional probability tables: LungCar	Bronch	Dysp
1	. 0	1
0	1	1
LungCan x=1 x=0 Bronch x=1 x=0	1	1
P(LungCan=x) 1/5 4/5 P(Bronch=x) 2/3 1/3	1	0
Lung Cancer Bronchitis	1	1
	0	0
	1	1
Dvennog Dven	1	1
Dyspnoea Dysp P(Dysp=xlLungCan=y,Bronch=z)	1	1
y z x=1 x=0 1	. 1	1
0 0 0 1 0 1 0 1	1	1
1 0 1 0	0	0
1 1 1 0	1	1
e e	0	0
1	. 0	1

$$L = P(G|D) = -20.1932377$$
 (see R-code)

L = P(G|D) =
$$\prod_{i=1}^{13} P(LungCan_i)P(Bronch_i)P(Dysp_i|Bronch_i)$$
 = -23.6696369 (see R-code)

BN structure learning

- Constraint-based algorithms #PC
 - start with a full graph
 - eliminate edges by performing conditional independence tests in a certain order
 - (!) prone to statistical testing errors
- Search and Score algorithms #GES (greedy equivalent search)
 - score function: log likelihood/posterior
 - search strategy is usually greedy due to the size of the search space
 - (!) local optima problem
- MCMC (Markov chain Monte Carlo) schemes
 - allow to obtain a sample from posterior distribution of graph given the data (rather than 1 single model)
 - avoid local optima problem
 - (!) convergence issues for structure MCMC

Learning BNs with R

R packages for learning BNs:

- pcalg PC algorithm, greedy equivalent search (GES)
 https://cran.r-project.org/web/packages/pcalg/pcalg.pdf
- bnlearn max-min hill climbing (MMHC), greedy search http://www.bnlearn.com/
- BiDAG a collection of MCMC methods for MAP search and sampling from posterior https://cran.r-project.org/web/packages/BiDAG/BiDAG.pdf

Comparing BNs to each other

Skeleton: TP, FP, TPR=TP/n.edges

CPDAG (equivalence class): SHD=FN+FP+EWD
 Where EWD are edges with wrong directions

Asia dataset

- a synthetic dataset from Lauritzen and Spiegelhalter (1988)
- 8 binary variables:
 - D (dyspnoea), a two-level factor with levels yes and no.
 - T (tuberculosis), a two-level factor with levels yes and no.
 - · L (lung cancer), a two-level factor with levels yes and no.
 - B (bronchitis), a two-level factor with levels yes and no.
 - A (visit to Asia), a two-level factor with levels yes and no.
 - S (smoking), a two-level factor with levels yes and no.
 - X (chest X-ray), a two-level factor with levels yes and no.
 - E (tuberculosis versus lung cancer/bronchitis), a two-level factor with levels yes and no.

5000 observations

Asia dataset, + R-code

- Estimate equivalence class (CPDAG) from observational data using PC-algorithms and MCMC iterative scheme
- What are the differences between estimates of 2 algorithms?
- Compare estimated structures to the true DAG
- Why was edge A->T missed by both algorithms?
- Try the same with 500 observations instead of 5000
- Did the results change?

n=100, see R-code

- Generate random DAG with 100 nodes and data
- Apply PC and MCMC algorithms for structure learning
- Compare estimates to the true structure
- Is there a significant difference between results of 2 algorithms?
- Is there a significant difference between MAP estimate and sampling version of MCMC schemes?

References

- Chickering, D. M. (2002). Optimal structure identification with greedy search. Journal of Machine Learning Research 3, 507–554.
- Friedman, N. and D. Koller (2003). A Bayesian approach to structure discovery in bayesian networks. Machine Learning 50, 95–125.
- Kalisch, M. and P. Bühlmann (2007). Estimating high-dimensional directed acyclic graphs with the PC-algorithm. Journal of Machine Learning Research 8, 613–636.
- Kalisch, M., M. Mächler, D. Colombo, M. Maathuis, and P. Bühlmann (2012). Causal inference using graphical models with the R package pcalg. Journal of Statistical Software 47, 1–26.

