- **37.** Let $I \triangleleft R$.
- (a) Define a coset as $r + I = \{r + i \mid i \in I\}$. Verify that two such cosets are either equal, or
- (b) Define an addition and a multiplication for the cosets by (r+I)+(s+I)=(r+s)+I and (r+I)(s+I) = rs+I. Show that we get a ring. This ring is the factor ring R/I.
- 38. To which well-known rings are isomorphic the following factor rings:
- (a) $\mathbf{Z}/(m)$; (b) $\mathbf{Z}_{30}/(5)$; (c) $\mathbf{Z}_{30}/(8)$; (d) $\mathbf{Z}[x]/(x)$; (e) $\mathbf{Z}[x]/(2)$; (f) $\mathbf{Z}[x]/(2, x^2 + x + 1)$.
- **39.** Which of the following factor rings are fields?
- (a) $\mathbf{Q}[x]/(x-2)$; (b) $\mathbf{Q}[x]/(x^2-2)$; (c) $\mathbf{R}[x]/(x^2-2)$; (d) $\mathbf{Q}[x]/(x^2+1)$; (e) $\mathbf{R}[x]/(x^2+1)$; (f) $\mathbf{C}[x]/(x^2+1)$; (g) $\mathbf{Z}_2[x]/(x^2+1)$; (h) $\mathbf{Z}_3[x]/(x^2+1)$.
- **40.** Let $I \triangleleft R$, $R \neq I$. True or false:
- (a1) If R is commutative, then so is R/I. (a2) If R/I is commutative, then so is R.
- (b1) If R is zero-divisor free, then so is R/I. (b2) If R/I is zero-divisor free, then so is R.
- (c1) If R is a field, then so is R/I. (c2) If R/I is a field, then so is R.
- (d1) If R has an identity, then so does R/I. (d2) If R/I has an identity, then so does R.
- **41.** Consider the ring $\mathcal{P}(X)$ in Problem 5e, i.e. the set of all subsets of X where addition is the symmetric difference and multiplication is the intersection.
- (a) Characterize the principal ideals.
- (b) Show that if X is a finite set, then all ideals in $\mathcal{P}(X)$ are principal ideals.
- (c) Verify that if X is an infinite set, then its finite subsets form an ideal which cannot be generated by finitely many elements.
- (d) Prove that for any $Y \subseteq X$, the factor ring $\mathcal{P}(X)/(Y)$ is isomorphic to $\mathcal{P}(X \setminus Y)$.
- **42.** A ring homomorphism is a map from a ring R to a ring S which preserves the operations, i.e. $\varphi: R \to S$ where $\varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2)$ and $\varphi(r_1 r_2) = \varphi(r_1)\varphi(r_2)$.
- (a) Verify $\varphi(0) = 0$ and $\varphi(-a) = -\varphi(a)$.
- (b) The kernel is the set of elements in R mapped into 0_S , i.e. $\operatorname{Ker} \varphi = \{r \in R \mid \varphi(r) = 0\}$. Prove $\operatorname{Ker} \varphi \triangleleft R$.
- (c) The image is $\operatorname{Im} \varphi = \{ \varphi(r) \mid r \in R \}$. Show $\operatorname{Im} \varphi \leq S$.
- **43.** Which of the following maps are ring homomorphisms? For the homomorphisms, determine the kernel and the image.
- (b) $\varphi : \mathbf{R}[x] \to \mathbf{R}$ where $\varphi(f) = f(\pi)$; (a) $\varphi: \mathbf{Z} \to \mathbf{Z}$ where $\varphi(k) = 2k$;
- (c) $\varphi : \mathbf{R}[x] \to \mathbf{R}[x]$ where $\varphi(f) = f'$; (d) $\varphi : \mathbf{C} \to \mathbf{C}$ where $\varphi(z) = \overline{z}$.
- **44.** Isomorphism is a bijective homomorphism. If $\varphi: R \to S$ is an isomorphism, then R and S are isomorphic (= are "of the same form"), i.e. they are essentially the same, just the elements and operations bear different names.
- (a) Prove that φ is an isomorphism \iff (Ker $\varphi = 0$ and Im $\varphi = S$).
- (b) Which rings are isomorphic: (b1) \mathbf{Q} and \mathbf{R} ; (b2) even numbers and multiples of 3; (b3) \mathbf{Z}_9 and the even residues in \mathbf{Z}_{18} ; (b4) \mathbf{Z}_{10} and the even residues in \mathbf{Z}_{20} .
- **45.** Investigate the analog of Problem 40 for R and $\operatorname{Im}\varphi$ where $\varphi:R\to S$ is a non-zero homomorphism.
- **46.** Prove the following basic propositions:
- (a) Homomorphism theorem: If $\varphi: R \to S$ is a homomorphism, then $\operatorname{Im} \varphi \cong R/\operatorname{Ker} \varphi$.
- (b) Natural homomorphism: If $I \triangleleft R$, then $\psi : R \to R/I$ where $\psi(r) = r + I$ is a homomorphism with $\operatorname{Ker} \psi = I$ and $\operatorname{Im} \psi = R/I$.