AI 中的数学 第二三讲

方聪, 概率统计部分参考章复熹和张原老师课件

2024 年秋季

- 1 假设检验
- 2 似然比检验
- 3 单参数模型
- 4 广义似然比检验

1 假设检验

假设检验 ●0000000000

- 2 似然比检验
- 3 单参数模型
- 4 广义似然比检验

- 检验与估计相同之处.
 - 模型: $X \sim F_{\theta}, \theta \in \Theta$. 目标: 对 θ 做出一些结论.

方法: 抽样, 产生数据 $X_1, \dots, X_n \sim i.i.d. F_{\theta}$.

- 检验与估计不同之处.
 - 估计: 输出值 \hat{p} , $\hat{\mu}$, 或者区间.

检验: 回答问题, 输出"是"或"否".

定义:设 $X \sim F_{\theta}(\theta \in \Theta)$ 为总体模型,所谓假设检验问题是两 个关干总体真值的互相对立判断 $(\theta \in \Theta_0, \theta \in \Theta_1)$ 的鉴定问题, 其中 Θ_0 是 Θ 的一个真子集, $\Theta_1 = \Theta \setminus \Theta_0$ 为 Θ_0 的余集, 判断 $\theta \in \Theta_0$ 称为零假设 (或原假设), 记为 H_0 , 判断 $\theta \in \Theta_1$ 称为对 立假设(或备择假设),记为 H1,通常用

$$H_0: \theta \in \Theta_0 \leftrightarrow H_1: \theta \in \Theta_1$$

或 (Θ_0,Θ_1) 表示假设检验问题。

定义:设 $X \sim F_{\theta}(\theta \in \Theta)$ 为总体模型,所谓假设检验问题是两 个关于总体真值的互相对立判断 $(\theta \in \Theta_0, \theta \in \Theta_1)$ 的鉴定问题, 其中 Θ_0 是 Θ 的一个真子集, $\Theta_1 = \Theta \setminus \Theta_0$ 为 Θ_0 的余集, 判断 $\theta \in \Theta_0$ 称为零假设 (或原假设), 记为 H_0 , 判断 $\theta \in \Theta_1$ 称为对 立假设(或备择假设),记为 H1,通常用

$$H_0: \theta \in \Theta_0 \leftrightarrow H_1: \theta \in \Theta_1$$

或 (Θ_0,Θ_1) 表示假设检验问题。

假设检验要求回答是否接受零假设 $\theta \in \Theta_0$ 成立,该回答依赖于 样本观测值 $\mathbf{x} = (x_1, \dots, x_n)$, 它是样本空间 \mathcal{X} 的一个取值。因 此为了做出判断,只需给出样本空间的一个子集 W。当且仅当 $\mathbf{x} \in \mathcal{W}$ 时,否定零假设 $\theta \in \Theta_0$,我们称 \mathcal{W} 为否定域。

- 定义 1.1. 零假设/原假设 H₀: θ∈ Θ₀. 对立假设/备择假设 $H_1: \theta \in \Theta_1 = \Theta \setminus \Theta_0$. 检验问题 (Θ_0, Θ_1) . $H_0: \theta \in \Theta_0 \leftrightarrow H_1: \theta \in \Theta_1$.
- 问题的提法: Ho 是否成立?
- 检验方法: 给出一个否定域 W (⊆ ℝⁿ). 若数据 $\vec{x} = (x_1, \dots, x_n) \in \mathcal{W}$, 则输出"拒绝(否定) H_0 "; 若 x ∉ W, 则输出"不拒绝 (接受)H₀".

实际问题需要评价否定域的优良性。在取定否定域W后,实施起来会有什么后果。

第一类错误:在 H_0 为真的条件下,若样本观测值满足条件 $\mathbf{x} \in \mathcal{W}$,此时按照检验规则,应当否定 H_0 ,而 H_0 为真,这种错误称为第一类错误。

第二类错误:在 H_0 不真的条件下,若样本观察值 $\mathbf{x} \notin \mathcal{W}$,按照检验规则,不应否定 H_0 ,而 H_0 不真,这种错误称为第二类错误。

例 1.6. 药品检验. 药效 $X \sim N(\mu, \sigma^2), \sigma^2$ 已知. $\ddot{a} \mu \geqslant \mu_0$, 则药有效; $\ddot{a} \mu \leqslant \mu_0$, 则药无效.

怎样提 Ho?

$$H_0: \mu \geqslant \mu_0 \leftrightarrow H_1: \mu < \mu_0$$

$$H_0: \mu \leqslant \mu_0 \leftrightarrow H_1: \mu > \mu_0.$$

• 首先控制第一类错误!: Ho 为真却输出"认定 Hi"的概率

$$\sup_{\theta \in \Theta_0} P_{\theta}(\vec{X} \in \mathcal{W}) \leqslant \alpha$$

- 防止假药上市, 即 $\mu \leq \mu_0$ 为真却输出"认定 $\mu \geq \mu_0$ ".
- 因此, 应该选 H₀: μ ≤ μ₀ ↔ H₁: μ > μ₀.

检验方法 = 带概率的反证法.

寻找 W 使得

$$P_{\theta}(\vec{X} \in \mathcal{W}) \leqslant \alpha, \quad \theta \in \Theta_0.$$

- $\vec{x} \in \mathcal{W}$: 假设 H_0 成立, 那么小概率事件 $\{\vec{X} \in \mathcal{W}\}$ 发生了, 矛盾! 因此, 原假设 H_0 不成立. 即, 否定 H_0 . 注: 在指定水平下有充分证据表明 Ho 不成立, 推出 Ho 成立. 强烈的否定!
- x ≠ W:没有足够充分的证据表明 Ho 不成立. 但同样不代表已经有充分的证据接受 H_0 , 微弱的接受.
- 两类错误: 第一类: H_0 为真, 否定 H_0 . 犯错概率 $P_{\theta}(\vec{X} \in \mathcal{W}), \theta \in \Theta_n$. 第二类: H_0 为假, 接受 H_0 . 犯错概率 $P_{\theta}(\vec{X} \notin \mathcal{W}), \theta \in \Theta_1$.

例:将每一个人看成一个总体,总体的参数为有病 $(\theta = 0)$ 或没 病 $(\theta = 1)$,则假设检验问题为

$$H_0: \theta = 0 \leftrightarrow H_1: \theta = 1.$$

样例: 做核酸

例:将每一个人看成一个总体,总体的参数为有病 $(\theta = 0)$ 或没病 $(\theta = 1)$,则假设检验问题为

$$H_0: \theta = 0 \leftrightarrow H_1: \theta = 1.$$

样例:做核酸

- 应用: 自动监测、显著性检测
- 理论:统计复杂度下界(评估数据区分参数的程度)

定义:设 (Θ_1, Θ_2) 称 $\beta_W(\theta) := P_{\theta}(\vec{X} \in W)$ 为 W 的功效函数. 若

$$P_{\theta}(\vec{X} \in \mathcal{W}) \leqslant \alpha, \quad \forall \theta \in \Theta_0,$$

则称 W 为检验问题 (Θ_0,Θ_1) 的一个 (显著性) 水平为 α 的否定 域..

注: 选取 W, 使得 $\beta_W(\theta)$ 在 Θ_0 小, 在 Θ_1 越大越好.

定义: 若W 是检验问题 (Θ_0,Θ_1) 的水平为 α 的否定域, 并且对 任意水平为 α 的否定域 W 都有:

$$P_{\theta}(\vec{X} \in \mathcal{W}) \geqslant P_{\theta}(\vec{X} \in \tilde{\mathcal{W}}), \quad \forall \theta \in \Theta_1,$$

则称 W 为检验问题 (Θ_0,Θ_1) 的水平为 α 的一致最大功效否定 域/UMP 否定域.

- 1 假设检验
- 2 似然比检验
- 3 单参数模型
- 4 广义似然比检验

• 简单假设检验问题: $\Theta = \{\theta_0, \theta_1\}$.

$$H_0: \theta = \theta_0 \leftrightarrow H_1: \theta = \theta_1.$$

- 似然函数: $L(\vec{x}, \theta) = \prod_{i=1}^{n} f(x_i, \theta)$. (以连续型为例)
- 似然比否定域/似然比检验:

$$\mathcal{W}_{\lambda} = \{ \vec{x} : L(\vec{x}, \theta_1) > \lambda L(\vec{x}, \theta_0) \}$$

简单假设检验问题: Θ = {θ₀, θ₁}.

$$H_0: \theta = \theta_0 \leftrightarrow H_1: \theta = \theta_1.$$

- 似然函数: $L(\vec{x}, \theta) = \prod_{i=1}^{n} f(x_i, \theta)$. (以连续型为例)
- 似然比否定域/似然比检验:

$$\mathcal{W}_{\lambda} = \{ \vec{\mathbf{x}} : L(\vec{\mathbf{x}}, \theta_1) > \lambda L(\vec{\mathbf{x}}, \theta_0) \}$$

定理 2.1. (Neyman-Pearson 引理) 若 λ₀ 使得

$$P_{\theta_0}\left(\vec{X}\in\mathcal{W}_{\lambda_0}\right)=\alpha,$$

则 W_{λ_0} 是水平为 α 的 UMP 否定域.

- 给出否定域的形式 $W = \{x : \lambda(x) \ge \lambda_0\}$, 其中 λ_0 是一个待 定的常数,它是通过水平 α 来确定的
- 将否定域 (函数) 问题转化为在给定形式下求参数 λ 的问题
- 在求否定域的时候,有时作一些变换可使否定域的计算变得 简单 (枢轴量法确定参数 λ)

例: $X \sim N(\mu, 1), \mu \in \{0, 2\}$. 求假设检验问题

 $H_0: \mu = 0 \leftrightarrow H_1: \mu = 2$ 的水平为 $\alpha = 0.05$ 的 UMP 否定域.

例: $X \sim N(\mu, 1), \mu \in \{0, 2\}$. 求假设检验问题

 $H_0: \mu = 0 \leftrightarrow H_1: \mu = 2$ 的水平为 $\alpha = 0.05$ 的 UMP 否定域.

解: 似然函数与似然比:

$$\frac{L(\mathbf{x},\theta_1)}{L(\mathbf{x},\theta_0)} = \frac{\frac{1}{\sqrt{2\pi}^n} e^{-\frac{1}{2} \sum_{i=1}^n (x_i - 2)^2}}{\frac{1}{\sqrt{2\pi}^n} e^{-\frac{1}{2} \sum_{i=1}^n x_i^2}} = e^{\frac{1}{2} \sum_{i=1}^n 4(x_i - 1)}.$$

似然比否定域:

$$W_{\lambda} = \left\{ \mathbf{x} : \frac{L(\mathbf{x}, \theta_1)}{L(\mathbf{x}, \theta_0)} > \lambda \right\} = \left\{ \mathbf{x} : \bar{\mathbf{x}} > c \right\}.$$

 $T(x_1,\dots,x_n)=\bar{x}$ 称为检验统计量.

例: $X \sim N(\mu, 1), \mu \in \{0, 2\}$. 求假设检验问题

 $H_0: \mu = 0 \leftrightarrow H_1: \mu = 2$ 的水平为 $\alpha = 0.05$ 的 UMP 否定域.

解: 似然函数与似然比:

$$\frac{L(\mathbf{x},\theta_1)}{L(\mathbf{x},\theta_0)} = \frac{\frac{1}{\sqrt{2\pi}^n} e^{-\frac{1}{2} \sum_{i=1}^n (x_i - 2)^2}}{\frac{1}{\sqrt{2\pi}^n} e^{-\frac{1}{2} \sum_{i=1}^n x_i^2}} = e^{\frac{1}{2} \sum_{i=1}^n 4(x_i - 1)}.$$

似然比否定域:

$$\mathcal{W}_{\lambda} = \left\{ \mathbf{x} : \frac{L(\mathbf{x}, \theta_1)}{L(\mathbf{x}, \theta_0)} > \lambda \right\} = \left\{ \mathbf{x} : \bar{\mathbf{x}} > c \right\}.$$

 $T(x_1, \dots, x_n) = \bar{x}$ 称为检验统计量.

根据 α 选择 λ (等价地, 选择 c):

$$\alpha = P_{\theta_0}(\bar{X} > c) = P(Z > c\sqrt{n}) \Rightarrow c = z_{1-\alpha}/\sqrt{n}.$$

查表获得 $z_{1-0.05} = 1.65$. 从而所求为

$$\mathcal{W} = \{\mathbf{x} : \bar{\mathbf{x}} > 1.65/\sqrt{n}\}.$$

例: $\Theta = \{0,1\}$. $\theta = 0$ 时, $f(x,0) = 1_{\{0 < x < 1\}}, \theta = 1$ 时, $f(x,1) = 2x1_{\{0 < x < 1\}}$. 求假设检验问题 $H_0: \theta = 0 \leftrightarrow H_1: \theta = 1$ 的水平为 α 的 UMP 否定域.

例: $\Theta = \{0,1\}$. $\theta = 0$ 时, $f(x,0) = 1_{\{0 < x < 1\}}, \theta = 1$ 时, $f(x,1) = 2x1_{\{0 < x < 1\}}$. 求假设检验问题 $H_0: \theta = 0 \leftrightarrow H_1: \theta = 1$ 的水平为 α 的 UMP 否定域.

解: 似然函数与似然比:

$$\frac{L(\mathbf{x}, \theta_1)}{L(\mathbf{x}, \theta_0)} = \frac{2^n x_1 \cdots x_n 1_{\{0 < x_1, \dots, x_n < 1\}}}{1_{\{0 < x_1, \dots, x_n < 1\}}} = 2^n x_1 \cdots x_n 1_{\{0 < x_1, \dots, x_n < 1\}}$$

似然比否定域与检验统计量 $T = T(x_1, \dots, x_n)$:

$$W_{\lambda} = \left\{ \mathbf{x} : \frac{L(\mathbf{x}, \theta_1)}{L(\mathbf{x}, \theta_0)} > \lambda \right\} = \left\{ \mathbf{x} : -2 \sum_{i=1}^{n} \ln x_i < c \right\}$$

根据 α 选择 c: 在 H_0 下, $Y = -2 \ln X$ 的密度函数为 $p_Y(y) = p_X(e^{-\frac{1}{2}y})| - \frac{1}{2}e^{-\frac{1}{2}y}| = \frac{1}{2}e^{-\frac{1}{2}y} \quad (y > 0), \text{ id}$ $-2 \ln X \sim \chi^2(2)$, $\chi^{2}(2),$ $\alpha = P_{\theta_0} \left(-2 \sum_{i=1}^{n} \ln X_i < c \right) \Rightarrow c = \chi^{2}_{\alpha}(2n).$

概率统计部分参考章复喜和张原老师课件

- 1 假设检验
- 2 似然比检验
- 3 单参数模型
- 4 广义似然比检验

扩展到 H_0 是一个集合:

定理: 若存在 $\theta_0 \in \Theta_0$ 使得检验问题 (θ_0, θ_1) 的水平为 α 的 UMP 否定域 W 满足: $P_{\theta}(\mathbf{X} \in \mathcal{W}) \leq \alpha$, 对于 $\forall \theta \in \Theta_0$. 则, \mathcal{W} 是 检验问题 (Θ_0, θ_1) 的水平为 α 的 UMP 否定域.

扩展到 H_0, H_1 都是集合:

定理:若对任意 $\theta_1 \in \Theta_1$, 检验问题 (Θ_0, θ_1) 都存在水平为 α 的 UMP 否定域 W, 且此 W 不依赖于 θ_1 . 则, 此 W 是检验问题 (Θ_0, Θ_1) 的水平为 α 的 UMP 否定域.

定义: 若 Θ 为有限或无穷区间, 密度或分布列为

$$f(x,\theta) = S(\theta)h(x)\exp\{C(\theta)T(x)\}, \quad \theta \in \Theta,$$

其中, $C(\theta)$ 严格增. 则称 $f(x,\theta), \theta \in \Theta$ 为单参数指数族.

定义: 若 Θ 为有限或无穷区间, 密度或分布列为

$$f(x,\theta) = S(\theta)h(x)\exp\{C(\theta)T(x)\}, \quad \theta \in \Theta,$$

其中, $C(\theta)$ 严格增. 则称 $f(x,\theta), \theta \in \Theta$ 为单参数指数族.

• 单边假设检验问题:

$$H_0: \theta \leqslant \theta_0 \leftrightarrow H_1: \theta > \theta_0$$

$$H_0: \theta \geqslant \theta_0 \leftrightarrow H_1: \theta < \theta_0$$

• 双边假设检验问题:

$$H_0: \theta = \theta_0 \leftrightarrow H_1: \theta \neq \theta_0$$

定理: 假设总体分布族为单参指数族

$$f(x, \theta) = S(\theta)h(x) \exp\{C(\theta)T(x)\}, \quad \theta \in \Theta.$$

若

$$W := \left\{ \mathbf{x} : \sum_{i=1}^{n} T(x_i) > c \right\}$$

满足 $P_{\theta_0}(\mathbf{X} \in \mathcal{W}) = \alpha \neq 0$, 其中 c 为任一常数, 则 \mathcal{W} 是单边问 题

$$H_0: \theta \leqslant \theta_0 \leftrightarrow H_1: \theta > \theta_0$$

的水平为 α 的 UMP 否定域

例: 总体服从指数分布: $(\frac{1}{\theta}) \exp(-x/\theta)$, $\Theta = (0, \infty)$. $\theta \ge 6000$ (单位: 小时) 为合格. 测得 5 个数据,

395, 4094, 119, 11572, 6133.

试进行检验.

例: 总体服从指数分布: $\left(\frac{1}{\theta}\right) \exp(-x/\theta), \Theta = (0, \infty). \theta \ge 6000$ (单位: 小时) 为合格. 测得 5 个数据,

395, 4094, 119, 11572, 6133.

试进行检验.

定义假设检验问题: $H_0: \theta \leq \theta_0 = 6000 \leftrightarrow H_1: \theta > \theta_0$. (防止次 品出厂). 注意,另一种问题 $H_0: \theta \ge \theta_0 = 6000 \leftrightarrow H_1: \theta < \theta_0$. 将产品合格作为零假设,不能保证不合格的产品不予出厂。

总体为单参指数族, T(x) = x, 因此, UMP 否定域形如

$$W = \left\{ \mathbf{x} : \sum_{i=1}^{n} x_i > c \right\}.$$

在 θ_0 下, $K_{2n} := 2 \sum_{i=1}^n X_i / \theta_0 \sim \chi^2(2n)$. 因此, 要求

$$P_{\theta_0}(\mathbf{X} \in \mathcal{W}) = P(K_{2n} > 2c/\theta_0) = \alpha.$$

即, 应取
$$2c/\theta_0 = \chi^2_{1-\alpha}(2n)$$
, 即 $c = \chi^2_{1-\alpha}(2n) \times \theta_0/2$.

总体为单参指数族, T(x) = x, 因此, UMP 否定域形如

$$W = \left\{ \mathbf{x} : \sum_{i=1}^{n} x_i > c \right\}.$$

在 θ_0 下, $K_{2n} := 2 \sum_{i=1}^n X_i/\theta_0 \sim \chi^2(2n)$. 因此, 要求

$$P_{\theta_0}(\mathbf{X} \in \mathcal{W}) = P(K_{2n} > 2c/\theta_0) = \alpha.$$

即,应取
$$2c/\theta_0=\chi^2_{1-\alpha}(2\mathbf{n})$$
,即 $\mathbf{c}=\chi^2_{1-\alpha}(2\mathbf{n})\times\theta_0/2$.

取 $\alpha = 0.05$, 查表获得 $\chi^2_{0.05}(10) = 18.307$, 即 $c = 18.307 \times 6000/2 = 54921$. $\sum_{i=1}^{5} x_i = 22313 < 54921$, 故 接受 Ho. 不予出厂。

例: $X \sim N(\mu, \sigma^2), \sigma^2$ 已知 (= 1.21), 测得 6 个数据.

32.56, 29.66, 31.64, 30.00, 31.87, 30.23.

 $\mu \geq 30$ 则合格. 问:设水平为 $\alpha = 0.05$,是否可以出厂?

解:假设检验问题. $H_0: \mu \leq \mu_0 = 30 \leftrightarrow H_1: \mu > \mu_0$. (防止次品 出厂). 总体为单参指数族: $f(x,\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{\mu^2}{2\sigma^2}} e^{-\frac{1}{2\sigma^2}x^2} e^{\frac{\mu}{\sigma^2}x}$. T(x) = x, 因此, UMP 否定域形如

$$W = \left\{ \mathbf{x} : \sum_{i=1}^{n} x_i > \tilde{c} \right\} = \left\{ \mathbf{x} : \frac{\sqrt{n} (\bar{x} - \mu_0)}{\sigma} > c \right\}$$

取 $c = z_{1-\alpha}$: $P_{\mu_0}(\mathbf{X} \in \mathcal{W}) = P_{\mu_0}\left(\frac{\sqrt{n}(\bar{X} - \mu_0)}{\sigma} > c\right) = \alpha$

查表获得 $z_{0.95} = 1.65$. 代入数据: $\frac{\sqrt{n}(\bar{x}-\mu_0)}{\sigma} = 2.212 > 1.65$, 故

例: $X \sim N(\mu, \sigma^2), \mu = 3$ 已知, 测得 9 个数据.

3.0012, 2.9987, 3.0051, 2.9959, 3.0153, 2.9990, 3.0008, 3.0075, 3.0004.

 $\sigma < \sigma_0 = 0.005$ 则合格. 问: 在显著性水平为 $\alpha = 0.05$ 下, 该产 品是否合格?

例: $X \sim N(\mu, \sigma^2), \mu = 3$ 已知, 测得 9 个数据.

3.0012, 2.9987, 3.0051, 2.9959, 3.0153, 2.9990, 3.0008, 3.0075, 3.0004.

 $\sigma < \sigma_0 = 0.005$ 则合格. 问: 在显著性水平为 $\alpha = 0.05$ 下, 该产 品是否合格?

解: 假设检验问题. $H_0: \sigma^2 \geqslant \sigma_0^2 \leftrightarrow H_1: \sigma^2 < \sigma_0^2$.

总体为单参指数族: $f(x,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{1}{2\sigma^2}(x-\mu)^2\},$

$$T(x) = (x - \mu)^2$$
, 因此, UMP 否定域形如

$$T(x) = (x - \mu)^2$$
, 因此, UMP 否定域形如
$$W = \left\{ \mathbf{x} : \sum_{i=1}^n (x_i - \mu)^2 < \tilde{c} \right\} = \left\{ \mathbf{x} : \frac{1}{\sigma_0^2} \sum_{i=1}^n (x_i - \mu)^2 < c \right\}.$$

取
$$c = \chi_{\alpha}^2(n)$$
:

$$P_{\sigma_0^2}(\mathbf{X} \in \mathcal{W}) = P_{\sigma_0^2}\left(\frac{1}{\sigma_0^2} \sum_{i=1}^n (X_i - \mu)^2 < c\right) = \alpha.$$

查表获得 $c = \chi_{0.05}^2(9) = 3.325$. 代入数据:

$$\frac{1}{\sigma_0^2} \sum_{i=1}^n (x_i - \mu)^2 = 13.2563 > 3.325$$
, 故接受 H_0 .

- 1 假设检验
- 2 似然比检验
- 3 单参数模型
- 4 广义似然比检验

设 $X \sim f(x,\theta)$ ($\theta \in \Theta$), $f(x,\theta)$ 是分布密度或分布列, θ 可以是向 $\exists . \Theta_0 \neq \Theta$ 的真子集, 考虑假设检验问题

$$H_0: \theta \in \Theta_0 \longleftrightarrow H_1: \theta \in \Theta_1,$$

设 $\mathbf{X} = (X_1, \dots, X_n)$ 为来自总体 X 的一个样本, $\mathbf{x} = (x_1, \dots, x_n)$ 为样本观察值. 今

 $L(\mathbf{x},\theta) = \prod f(x_i,\theta).$

今 $\hat{\theta}$ 为 θ 的 ML 估计. 即 $\hat{\theta}$ 满足条件

$$L(\mathbf{x}, \hat{\theta}) = \sup_{\theta \in \Theta} L(\mathbf{x}, \theta).$$

同时, 令 $\hat{\theta}_0$ 为在总体模型 $X \sim f(x,\theta)$ ($\theta \in \Theta_0$) 的假设之下, 参 数 θ 的 ML 估计. 即 $\hat{\theta}$ 0 满足条件

$$L(\mathbf{x}, \hat{\theta}_0) = \sup_{\theta \in \Theta_0} L(\mathbf{x}, \theta).$$

定义: 称 $\lambda(\mathbf{x}) := L(\mathbf{x}, \hat{\theta}) / L(\mathbf{x}, \hat{\theta}_0)$ 为广义似然比. 广义似然比否定域指

$$\mathcal{W} := \left\{ \mathbf{x} : \frac{L(\mathbf{x}, \hat{\theta})}{L\left(\mathbf{x}, \hat{\theta}_0\right)} > c \right\} = \left\{ \mathbf{x} : \lambda(\mathbf{x}) > c \right\},$$

其中 $c \ge 1$, 且满足 $\sup P_{\theta}(\mathbf{X} \in \mathcal{W}) = \alpha$, $\theta \in \Theta_0$, 相应的检验方 法称为广义似然比检验。

考虑正态分布单边问题 $H_0: \mu \leq \mu_0 \leftrightarrow H_1: \mu > \mu_0$. $\theta = (\mu, \sigma^2), \Theta = (-\infty, \infty) \times (0, \infty), \Theta_0 = (-\infty, \mu_0] \times (0, \infty).$

考虑正态分布单边问题
$$H_0: \mu \leq \mu_0 \leftrightarrow H_1: \mu > \mu_0$$
. $\theta = (\mu, \sigma^2), \Theta = (-\infty, \infty) \times (0, \infty), \Theta_0 = (-\infty, \mu_0] \times (0, \infty)$.

似然函数:
$$L(\mathbf{x}, \theta) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right\}$$
. 最大似然估计 $\hat{\theta}$: $\hat{\mu} = \bar{\mathbf{x}}, \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$,

$$L(\mathbf{x}, \hat{\theta}) = \left(\frac{1}{\sqrt{2\pi\hat{\sigma}^2}}\right)^n \exp\left\{-\frac{1}{2\hat{\sigma}^2} \sum_{i=1}^n (x_i - \hat{\mu})^2\right\} = \left(2\pi\hat{\sigma}^2\right)^{-\frac{n}{2}} e^{-\frac{n}{2}}$$

最大似然估计 $\hat{\theta}_0$:

$$\hat{\mu}_0 = \begin{cases} \bar{x}, & \ddot{x} \leq \mu_0, \\ \mu_0, & \ddot{x} > \mu_0, \end{cases}$$
$$L\left(\mathbf{x}, \hat{\theta}_0^2\right) = \left(2\pi\hat{\sigma}_0^2\right)^{-\frac{n}{2}} e^{-\frac{n}{2}}.$$

广义似然比: $\lambda(\mathbf{x}) = \left(\frac{\hat{\sigma}_0^2}{\hat{\sigma}^2}\right)^{\frac{n}{2}}$, 其中,

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2, \quad \hat{\sigma}_0^2 = \begin{cases} \hat{\sigma}^2, & \text{$\not =$} \bar{x} \leqslant \mu_0, \\ \frac{1}{n} \sum_{i=1}^n (x_i - \mu_0)^2, & \text{$\not =$} \bar{x} > \mu_0, \end{cases}$$

广义似然比否定域: $c_1 \ge 1$,

$$W = \left\{ \mathbf{x} : \frac{\hat{\sigma}_0^2}{\hat{\sigma}^2} > c_1 \right\} = \left\{ \mathbf{x} : \bar{\mathbf{x}} > \mu_0 \, \, \mathbb{E} \frac{\sum_{i=1}^n (x_i - \mu_0)^2}{\sum_{i=1}^n (x_i - \bar{\mathbf{x}})^2} > c_1 \right\}.$$

$$\sum_{i=1}^{n} (x_i - \mu_0)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\mu_0 - \bar{x})^2, \, \text{But}$$

$$\frac{\sum_{i=1}^{n} (x_i - \mu_0)^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = 1 + \frac{T^2}{n-1}, \quad \sharp \, \forall \, T = \frac{\sqrt{n} (\bar{x} - \mu_0)}{S}.$$

总结: c > 0,

$$W = {\vec{x} : T > 0 \ \text{\textit{L}} T^2 > c_2} = {\vec{x} : T > c}.$$

根据
$$\alpha$$
 求 c : $\forall \mu \leqslant \mu_0, T \leqslant \frac{\sqrt{n}(\bar{x}-\mu)}{S} =: T_{n-1} \sim t(n-1)$, 在 $\mu = \mu_0$ 时等号成立. 因此, 取 $c = t_{1-\alpha}(n-1)$ 即可满足

$$\max_{\mu \leq \mu_0} P_{\mu}(T > c) = P(T_{n-1} > c) = \alpha.$$

考虑正态分布单边问题 $H_0: \sigma^2 \geqslant \sigma_0^2 \leftrightarrow H_1: \sigma^2 < \sigma_0^2$. $\Theta = (-\infty, \infty) \times (0, \infty), \Theta_0 = (-\infty, \infty) \times \left[\sigma_0^2, \infty\right)$. 似然函数: $L(\mathbf{x}, \theta) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left\{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2\right\}$. 最大似然估计:

广义似然比:

$$\lambda(\mathbf{x}) = \frac{L(\mathbf{x}, \hat{\theta})}{L\left(\mathbf{x}, \hat{\theta}_0\right)} = \begin{cases} 1, & \ddot{\pi}\hat{\sigma}^2 \geqslant \sigma_0^2, \\ u^{-\frac{n}{2}}e^{\frac{u}{2}}\left(\frac{e}{n}\right)^{-\frac{n}{2}}, & \ddot{\pi}\hat{\sigma}^2 \leqslant \sigma_0^2. \end{cases}$$

其中 $u = u(\mathbf{x}) = \frac{n\hat{\sigma}^2}{\sigma_0^2}$.

广义似然比否定域:

$$\mathcal{W} = \left\{ \mathbf{x} : \hat{\sigma}^2 \leqslant \sigma_0^2, \left(\frac{u}{n}\right)^{-\frac{n}{2}} e^{\frac{u}{2}} > \tilde{c} \right\} = \left\{ \mathbf{x} : u < c \right\}.$$

其中
$$u = u(\mathbf{x}) = \frac{n\hat{\sigma}^2}{\sigma_0^2}$$
, $c < n$.
根据 α 求 c . $\forall \sigma^2 \geqslant \sigma_0^2$, $U := u(\mathbf{X}) \geqslant \frac{n\hat{\sigma}^2}{\sigma^2} =: U_{n-1} \sim \chi^2(n-1)$, 在 $\sigma^2 = \sigma_0^2$ 时,等号成立. 因此,取 $c = \chi_\alpha^2(n-1)$ 即可满足

$$\max_{\sigma^2 \geqslant \sigma_0^2} P_{\sigma^2}(U < c) = P(U_{n-1} < c) = \alpha.$$