Adc-isr-test

ADC pins, FV_ADC, FBI_ADC, IC_ADC

ADC pins, FV_ADC, FBI_ADC, IC_ADC

 Optical inspection using a microscope has shown that the pins have solder underneath, i.e., they are connected to the pads via solder (absence of connection was the problem with ethernet)

FV ADC/FBV ADC

FV_ADC/ connections

FV ADC/ results

The FV_ADC works fine, even though the ADC channel shows 0 without any connections, the channel works properly with externally applied voltage of 0.5V

FBV_ADC

Check the mechanical connection of the FBV_ADC. Optical inspection passed!

FBV ADC/ results

The FBV_ADC works fine, however in order to have sufficient differential voltage, one has to apply quite a high test potential

FBI_ADC

In order to test properly FBI_ADC, one needs to program also FBV_PWM that opens BJT and lets current flow in the amplifier.

Optical inspection – fine, there is mechnical connection between pin and pad

FBI ADC/results

There is some bit value read out by the ADC, so it is assumed that this ADC channel works properly

AV_ADC (without coil)

We would like to find out the AV ADC GAIN value.

- 1. Make an assembly like on the picture:
 - 1. No transformers installed
 - 2. Connect external voltage to the anode output and board GND
 - 3. Calculate AV_ADC_GAIN = AV bit value / Vanode = 6.82
 - 4. See excel file for the details in calculations

FBV_PWM test

