Foundation Algebra for Physical Sciences & Engineering

CELEN036

Practice Problems SET-1

Topic: Functions

Type 1: Composition of functions

- 1. Given f(x) = (x+1)(x-2) and g(x) = 2x. Find $(f \circ g)(x)$ and $(g \circ f)(x)$.
- 2. Given $f(x) = x^2 1$, g(x) = 3x + 2, and $h(x) = \frac{1}{x}$. Solve:
 - (i) $(f \circ g)(x) = 15$ (ii) $(g \circ g)(x) = h(x)$ (iii) $(g \circ h)(x) = -4$
- 3. Given f(x)=2x-1, and $g(x)=3x^2+2$, h(x)=ax+b, where a and b are positive constants. Find a and b such that $(f\circ (g\circ h))(x)=6x^2+12x+9$.

Type 2: Inverse functions

- 4. Given $f(x) = 2x^2 + 7$; $x \in \mathbb{R}^+ \cup \{0\}$. Find $f^{-1}(x)$.
- 5. Given $f(x) = 2x^2 3$; $x \ge 0, x \in \mathbb{R}$. Find $f^{-1}(x)$.
- 6. Given $f(x) = \frac{x}{x-1}$; $x \in \mathbb{R}$, $x \neq 1$. Find $f^{-1}(x)$.
- 7. Given $f(x) = \sqrt{2x 1} + 5$; $x \ge \frac{1}{2}$.

Find $f^{-1}(x)$. Also show that $(f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x$.

- 8. Given f(x) = 2x 5, g(x) = 1 x. Show that $(f \circ g)^{-1}(x) = (g^{-1} \circ f^{-1})(x)$.
- 9. Given f(x)=3x+2, $g(x)=\frac{1}{x}$; $x\neq 0$. Show that $(g\circ f)^{-1}(x)=(f^{-1}\circ g^{-1})(x)=\frac{1}{3}\left(\frac{1}{x}-2\right).$
- 10. Given $f(x) = \frac{10 x}{x + 2}$; $x \neq -2$. Find:
 - $(i) \quad f^{-1}(2) \qquad (ii) \quad k \text{ such that } f(k) = k. \qquad (iii) \quad (g \circ h)(x) = -4$

Type 3: Sketching graphs of functions

11. A piece-wise function f is defined by

$$f(x) = \begin{cases} 0 & x < -1 \\ x+1 & -1 \le x < 0 \\ 1-x & 0 \le x \le 1 \\ 0 & x > 1 \end{cases}$$

Sketch the graph of y = f(x).

- 12. Sketch the graph of $f(x)=x^2+2\;;\;\;x\in\mathbb{R},\,x\geq0.$ Use this information to draw the graph of $f^{-1}(x)$ without finding the inverse function $f^{-1}(x)$.
- 13. Given $f(x) = (x-2)^2 + 5$; $x \in \mathbb{R}$. Sketch the graph of f(x) for $1 \le x \le 5$.

Type 4: Modulus inequalities

- 14. Solve the following modulus inequalities for $x \in \mathbb{R}$:

 - (i) |x-1| < 5 (ii) |x-1| = 3 and |x-1| < 3
 - (iii) |x+3| = 2|x-1| (iv) $|3x+2| \ge 2-x$
- 15. Express the set $\{x \in \mathbb{R}/|2x-1| < 7\}$ as an interval.

Answers

- 2(2x+1)(x-1) and 2(x+1)(x-2)
- **2** (i) $\frac{2}{3}$ or -2 (ii) $\frac{1}{9}$ or -1 (iii) $-\frac{1}{2}$
- a = 1, b = 1 or a = -1, b = -1
- 5 $\sqrt{\frac{x+3}{2}}$
- $6 \qquad \frac{x}{x-1} \text{ and } x \neq 1$
- 6 $\frac{x}{x-1}$ and $x \neq 1$
- 7 $f^{-1}(x) = \frac{1}{2}(x^2 10x + 26)$
- **10** (i) 2 (ii) k = -5 or 2
- 14

- (i) (-4,6) (ii) No solution (iii) $-\frac{1}{3}$, 5 (iv) $x \le -2$ or $x \ge 0$
- 15 (-3, 4)