Linear Algebra

Report 5

Yousef A. Abood

ID: 900248250

Jully 2025

Definition 1: Linear transformation

Let W, V be two vector spaces and T is a function that its domain is V and its codomain is W. We call T a linear transformation iff for any $c \in \mathbb{R}$ and for every vector $\vec{v}, \vec{u} \in V$ the following conditions hold:

- $T(\vec{v} + \vec{u}) = T(\vec{v}) + T(\vec{u})$
- $T(c\vec{v}) = cT(\vec{v})$.

Example

The linear transformation $T: V \to V$ such that T(x,y) = (x+y,3x-7y). We see it is a linear transformation as it is closed under vector addition and scalar multiplication as follows Pick two vectors $\vec{u} = (x,y), \vec{v} = (a,b) \in V$ and scalar $c \in \mathbb{R}$, we see

$$T(\vec{u} + \vec{v}) = T((x + a, y + b))$$

$$= (x + a + y + b, 3x + 3a - 7y - 7b)$$

$$= (x + y, 3x - 7y) + (a + b, 3a - 7b) = T(\vec{u}) + T(\vec{v})$$

$$T(c\vec{v}) = T((ca, cb)) = (ca + cb, 3ca - 7cb)$$
$$= (c(a+b), c(3a-7b)) = c(a+b, 3a-7b) = cT(\vec{v}).$$

Linear Algebra 2

Non-example

The function T(x,y)=(x+1,y-1) is not a linear transformation as it is not closed under vector addition. We pick two vectors $\vec{v}=(x,y), \vec{u}=(a,b) \in V$ and see

$$T(\vec{v} + \vec{u}) = T(a + x, b + y) = (a + b + 1, b + y - 1)$$

Which clearly does not satisfy the closure of addition.

Definition 2: Kernel of a linear transformation

Let $T: V \to W$ be a linear transformation. We define the kernel of the linear transformation as the set of all vectors in V that are mapped to the zero vector of W. that is,

$$kernel(T) = \{ \vec{v} \in V | T(\vec{v}) = \vec{\mathbf{0}}_W \}$$

Example

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the projection of a vector into the yz-plane, such that T(x,y,z)=(0,y,z). Then $ker(T)=\{(t,0,0)|t\in\mathbb{R}.\}$

Non-example

A non example is any vector in V that its image is not $\vec{\mathbf{0}}_W$. An example is $S = \{(1, 1, 1)\}$, where T(1, 1, 1) = (0, 1, 1).

Definition 3: Vector space isomorphism

Let V, W be two vector spaces. An *isomorphism* from V to W is a bijective linear transformation $T: V \to W$. We say V is isomorphic to W iff we can find at least one isomorphism from V to W and we write that $V \cong W$.

Example

The vector spaces

$$R^5 \cong M_{5\times 1} \cong M_{1\times 5} \cong P_4$$

are all isomorphic to each other since they all are of dimension 5.

Linear Algebra 3

Non-example

The vector spaces

$$R^3 \ncong M_{2 \times 2}$$

are not isomorphic since they are of different dimensions, the first of dimension 3 and the latter of dimension 4.

Definition 4: Eigenvector of a matrix

A nonzero vector $\vec{x} \in \mathbb{R}^n$ is called an eigenvector of a square matrix A of size $n \times n$ if and only if there exists a real number $\lambda \in \mathbb{R}$ such that

$$A\vec{x} = \lambda \vec{x}$$

. The number λ is called an eigenvalue of A, and we say in such situation that \vec{x} is an eigenvector of A corresponding to the eigenvalue λ .

Example

let A be the 2×2 matrix

$$A = \begin{bmatrix} 1 & 4 \\ 5 & 0 \end{bmatrix}$$

An eigenvector is

$$\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

As we can see that

$$A\vec{v} = \begin{bmatrix} 1 & 4 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 5\vec{v}.$$

Non-example

For the previous matrix A let

$$\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

And observe

$$A\vec{v} = \begin{bmatrix} 1 & 4 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \end{bmatrix},$$

which is not an eigenvector as there is no $\lambda \in \mathbb{R}$ such that $A\vec{v} = \lambda \vec{v}$.