Trabajo Práctico 1 de Simulación Estudio de Modulaciones

Este trabajo práctico tiene por objetivo calcular y comparar los desempeños de las modulaciones típicas de dos maneras: analíticamente y numéricamente. Consideraremos las modulaciones PAM, QAM, PSK y FSK utilizando sus descripciones en banda base en el espacio de señales correspondiente. Es decir, en este trabajo *no* utilizaremos las formas de onda temporales de las señales.

Consideraremos que el canal es ideal y que el receptor dispone de una señal perturbada con ruido aditivo blanco Gaussiano (AWGN). Es decir, la señal recibida en el período i-ésimo a partir de la cual el receptor determina el símbolo transmitido es

$$y_i = x_i + w_i$$

donde x_i es el símbolo transmitido y w_i es el ruido blanco Gaussiano. De acuerdo a la dimensionalidad de cada modulación tenemos:

- Modulación PAM: $x_i, w_i \in \mathbb{R}$ y $w_i \sim \mathcal{N}(0, \frac{N_0}{2})$.
- Modulaciones QAM y PSK: $x_i, w_i \in \mathbb{C}$ y $w_i \sim \mathcal{CN}(0, N_0)$.
- Modulación FSK: $x_i, w_i \in \mathbb{R}^N$ y $w_i \sim \mathcal{N}(\mathbf{0}, \frac{N_0}{2}\mathbf{I}_N)$.

Para cada una de las modulaciones consideraremos que el orden o tamaño de la constelación M es 2, 4, 8 y 16. En los primeros dos ejercicios consideraremos constelaciones con símbolos equiprobables, dejando el análisis de una 2-PAM con símbolos con distinta probabilidad para el ejercicio 3.

En cada ejercicio analice el resultado y extraiga conclusiones.

Ejercicio 1 - Análisis teórico

- 1. Grafique las constelaciones de símbolos para las modulaciones mencionadas (cuando sea posible) asumiendo una distancia mínima d=2 y M=16. Indique un posible etiquetamiento de los símbolos y justifique su elección. Dibuje las regiones de decisión de cada símbolo, considerando que los símbolos son equiprobables.
- 2. Confeccione una tabla indicando la energía promedio de símbolo \mathcal{E}_s y de bit \mathcal{E}_b de cada constelación en función de la distancia mínima d y del orden de la constelación M
- 3. Confeccione una tabla indicando, para cada modulación, la probabilidad de error de símbolo P_e y la probabilidad de error de bit P_b en función de la relación señal a ruido por bit 1 SNR $_b$ y de M. Utilice la cota de vecinos cercanos. En el caso PAM y QAM, compare la cota de vecinos cercanos con la probabilidad de error exacta. ¿Bajo qué condiciones las cotas son ajustadas?

¹Definimos SNR_b = \mathcal{E}_b/N_0 donde N_0 es la densidad espectral de potencia del ruido blanco.

Ejercicio 2 - Simulación Montecarlo

- 1. Implemente en Matlab/Octave un *script* para estimar con el método de Montecarlo las probabilidades de error de símbolo y de bit en función de la SNR_b . Para este ejercicio y los subsiguientes, varíe SNR_b entre 0 y 10 dB con pasos de 1 dB. Al hacerlo, modifique N_0 y mantenga constante \mathcal{E}_b (y por consiguiente d). Tenga en cuenta las buenas prácticas de programación sugeridas en el tutorial disponible en el campus de la materia.
- 2. En cuatro figuras distintas, una para cada modulación, grafique la probabilidad de error de símbolo teórica P_e y la estimada \hat{P}_e en función de la SNR $_b$ para M=2,4,8 y 16. ¿Qué sucede en el caso de las modulaciones eficientes en ancho de banda PAM, QAM y PSK comparado con la modulación eficiente en potencia FSK cuando M crece?
- 3. En otras cuatro figuras, una para cada modulación, grafique ahora la probabilidad de error de bit teórica P_b y la estimada \hat{P}_b en función de la SNR $_b$ para M=2,4,8 y 16.
- 4. En otra figura, grafique la probabilidad de error de bit teórica P_b y la estimada \hat{P}_b en función de la SNR $_b$ para las cuatro modulaciones con M=16. ¿Cuál tiene el mejor desempeño?

Ejercicio 3 - 2-PAM No equiprobable

- 1. Considere la modulación PAM con M=2 y símbolos $x_i \in \{-A,A\}$ con probabilidades a priori p y q=1-p, respectivamente. Halle el umbral de decisión del detector óptimo y explique conceptualmente cómo varía en función de las probabilidades p y q.
- 2. Calcule la probabilidad de error teórica exacta P_e .
- 3. Considere A=1, p=1/4 y q=3/4. Implemente un *script* en Matlab/Octave para estimar P_e usando el método de Montecarlo. Grafique en una misma figura P_e y la probabilidad de error estimada \hat{P}_e en función de la SNR_b .