P, NP, and Beyond

Hengfeng Wei

hfwei@nju.edu.cn

May 01 \sim May 04, 2017

1 / 22

P, NP, and Beyond

- Complexity Class
- 2 Tetris is NP-complete

$$\mathsf{P} = \bigcup_{c \geq 1} \mathsf{DTIME}(n^c)$$

TC 34.1-5

$$f(n) = O(n^c)$$
$$t(n) = O(n^d)$$

$$T(n) = kf(n) + t(n)$$

$$T_k(n) = \sum_{i=0}^k f^{(i)}(n) + t(n)$$

$$k = \Theta(n^{O(1)})$$

NP

Definition (NP)

 $(L\subseteq\{0,1\}^*)\in {\sf NP}$ if there exists a polynomial-time verifier V(x,y) such that $\forall x\in\{0,1\}^*$,

$$x \in L \iff \exists y \in \{0,1\}^*, V(x,y) = 1.$$

NP

TC 34.2-4

NP is closed under \cup , \cap , \cdot , *.

Remark

O vs. Ω

Question

Is NP-complete closed under \cup , \cap , \cdot , *?

coNP

$$\mathsf{coNP} = \{L : \bar{L} \in \mathsf{NP}\}$$

 $\overline{\mathsf{SAT}} = \{\phi : \phi \text{ is not satisfiable}\}$

 $\mathsf{TAUT} = \{\phi : \phi \text{ is a tautology}\}\$

Definition (coNP)

 $(L\subseteq\{0,1\}^*)\in \text{coNP}$ if there exists a polynomial-time verifier V(x,y) such that $\forall x\in\{0,1\}^*$,

$$x \in L \iff \forall y \in \{0,1\}^*, V(x,y) = 1.$$

coNP

$$\mathsf{coNP} \neq \{0,1\}^* \setminus \mathsf{NP}$$

$$P\subseteq NP\cap coNP$$

$$P = NP \implies NP = coNP = P$$

$$NP \neq coNP \implies P \neq NP$$

NP-hard and NP-complete

$$\forall L \in \mathsf{NP}, L \leq_p L' \implies L' \text{ is NP-hard}$$

$$\mathsf{NP\text{-}complete} = \mathsf{NP} \cap \mathsf{NP\text{-}hard}$$

NP-hard and NP-complete

TC 34.5-6

HAM-PATH is NP-complete.

 $\mathsf{HAM}\text{-}\mathsf{CYCLE} \leq_p \mathsf{HAM}\text{-}\mathsf{PATH}$

 \leq_p : split v into v_1, v_2 ; add $s, t, (s, v_1), (v_2, t)$

Question:

 $\mathsf{HAM} ext{-}\mathsf{PATH} \leq_p \mathsf{HAM} ext{-}\mathsf{CYCLE}$

 \leq_p : add v'; $(v', v), \forall v \in V$

EXP

$$\begin{aligned} \mathsf{EXP} &= \bigcup_{c \geq 1} \mathsf{DTIME}(2^{n^c}) \\ \mathsf{P} &\subseteq \mathsf{NP} \subseteq \mathsf{EXP} \end{aligned}$$

Time Hierarchy Theorem

$$\mathsf{P} \subsetneqq \mathsf{EXP}$$

Theorem (Time hierarchy theorem)

$$f(n)\log f(n) = o(g(n)) \implies \mathsf{DTIME}(f(n)) \subsetneqq \mathsf{DTIME}(g(n))$$

R

$$R = DTIME(< \infty)$$

#decidable vs. #undecidable

PSPACE

$$\mathsf{PSPACE} = \bigcup_{c>0} \mathsf{SPACE}(n^c)$$

 $\mathsf{P}\subseteq\mathsf{PSPACE}$

 $\mathsf{NP}\subseteq\mathsf{PSPACE}\subseteq\mathsf{EXP}$

PSPACE-complete

Definition (QBF: Quantified Boolean Formula)

$$Q_1x_1Q_2x_2\cdots Q_nx_n\varphi(x_1,x_2,\ldots,x_n)$$

$$Q_i: \forall, \exists$$

$$TQBF = \{True \ QBF\} \in PSPACE\text{-complete}$$

$$\mathsf{SAT}: \phi = \exists x_1, \dots, x_n \varphi(x_1, x_2, \dots, x_n) \in \mathsf{NP}\text{-complete}$$

TAUT :
$$\phi = \forall x_1, \dots, x_n \varphi(x_1, x_2, \dots, x_n) \in \text{coNP-complete}$$

PSPACE-complete

The QBF game

$$\varphi(x_1,x_2,\ldots,x_{2n})$$

Player 1 wins $\iff \varphi(x_1, x_2, \dots, x_{2n})$ is true.

Does player 1 has a winning strategy?

$$\exists x_1 \forall x_2 \exists x_3 \forall x_4 \cdots \forall x_{2n} \varphi(x_1, x_2, \dots, x_{2n})$$

PH

P, NP, and Beyond

- Complexity Class
- 2 Tetris is NP-complete

Tetris

TETRIS

Definition (TETRIS: The Tetris Problem)

 $\mathsf{TETRIS} \in \mathsf{NP}$

3-PARTITION

Definition (3-PARTITION)

3-PARTITION \leq_p TETRIS: the initial board

3-PARTITION \leq_p TETRIS: the piece sequence

First for every a_i ∈ A the sequence (in this order):

2. Then to fill the top of all the s buckets the 'subset fillers':

3. Then the T-shape to unlock the 'lock':

4. And to clear the whole board by filling the 'fill area':

$$5T + 16$$
 times

3-PARTITION \leq_p TETRIS: " \Longrightarrow "

3-PARTITION \leq_p TETRIS: " \Longleftarrow "