Strain gradient plasticity: a Code_Aster trick

Strain gradient plasticity: a Code_Aster trick MFront user day

Julien Sanahuja Felix Latourte

EDF lab

17 october 2019

Introduction: context

Improve representativeness of polycrystal models

- influence of dislocations accumulation at grain boundaries
- shear localization
- size effects
- ullet ightarrow strain gradient plasticity, micromorphic model

Introduction: context

Improve representativeness of polycrystal models

- influence of dislocations accumulation at grain boundaries
- shear localization
- size effects
- → strain gradient plasticity, micromorphic model

In MFront?

not yet doable

In Code_Aster? difficult deep developments

- enrich finite elements: extra DOFs
- modify stiffness matrix assemblage
- take into account equilibrium eqs on generalized stresses

Introduction: context

Improve representativeness of polycrystal models

- influence of dislocations accumulation at grain boundaries
- shear localization
- size effects
- → strain gradient plasticity, micromorphic model

In MFront?

not yet doable

In Code_Aster? difficult deep developments

- enrich finite elements: extra DOFs
- modify stiffness matrix assemblage
- take into account equilibrium eqs on generalized stresses

A Code_Aster trick [F. Latourte, 2017]

- micromorphic model with 1 scalar extra DOF [Ling et al., IJSS, 2018]
- creative use of heat equation solver

Classical crystal plasticity model

Finite strain framework

Kinematics

- ullet $F=E\cdot P$ deformation gradient
- ullet $oldsymbol{E}_{GL}^e = (oldsymbol{E}^{
 m t} \cdot oldsymbol{E} oldsymbol{1})/2$ Green-Lagrange strain tensor
- $\mathbf{L}^p = \dot{\mathbf{P}} \cdot \mathbf{P}^{-1}$ plastic strain rate

Stresses

- σ Cauchy stress tensor
- ullet $\mathbf{\Pi}^e = \det(oldsymbol{E}) oldsymbol{E}^{-1} \cdot oldsymbol{\sigma} \cdot oldsymbol{E}^{- ext{t}}$ second Piola-Kirchhoff stress tensor
- ullet $oxed{M} = \det(oldsymbol{E}) oldsymbol{E}^{ ext{t}} \cdot oldsymbol{\sigma} \cdot oldsymbol{E}^{- ext{t}}$ Mandel stress tensor

Elasticity

 $\bullet \ \mathbf{\Pi}^e = \mathbb{C} : \mathbf{E}^e_{GL}$

Plastic flow rule; slip systems $s=1..N,\, {\pmb N}^s=\underline{m}^s\otimes\underline{n}^s$ Schmid tensor

- $\tau^s = M : N^s$ resolved shear stress
- $\phi^s = |\tau^s| \tau_c^s$ yield function (τ_c^s critical resolved shear stress)
- $\dot{\gamma}^s = \langle \phi^s/K \rangle^n \operatorname{sgn}(\tau^s)$ plastic slip rate
- $\mathbf{L}^p = \sum_s \dot{\gamma}^s \mathbf{N}^s$ plastic strain rate

Single additional DOF: microslip [Ling et al., IJSS, 2018] Modifications wrt. classical crystal plasticity model:

DOFS

- ullet <u>u</u> displacement
- γ_{χ} microslip

Gradient

 $\underline{K} = \underline{\operatorname{Grad}}_{\underline{X}}(\gamma_{\chi})$ microslip gradient vector

Single additional DOF: microslip [Ling et al., IJSS, 2018] Modifications wrt. classical crystal plasticity model:

Dofs

- ullet <u>u</u> displacement
- \bullet γ_{χ} microslip

Gradient

 $\underline{K} = \underline{\operatorname{Grad}}_{\underline{X}}(\gamma_{\chi})$ microslip gradient vector

Generalized stresses

- S dual of γ_{χ}
- ullet M dual of \underline{K}

- $\operatorname{Div}_{\underline{X}}(\underline{M}) S = 0$ in bulk
- ullet $\underline{M} \cdot \underline{n}_0 = M$ on boundary

Single additional DOF: microslip [Ling et al., IJSS, 2018] Modifications wrt. classical crystal plasticity model:

Dofs

- ullet <u>u</u> displacement
- γ_{χ} microslip

Gradient

 $\underline{K} = \underline{\operatorname{Grad}}_{\underline{X}}(\gamma_{\chi})$ microslip gradient vector

Constitutive relations

- $S = -H_{\chi}e$ with H_{χ} penalty modulus
- $\underline{M} = A \cdot \underline{K}$ with A high order moduli

Generalized stresses

- S dual of γ_{χ}
- \underline{M} dual of \underline{K}

- $\operatorname{Div}_{\underline{X}}(\underline{M}) S = 0$ in bulk
- ullet $\underline{M} \cdot \underline{n}_0 = M$ on boundary

Single additional DOF: microslip [Ling et al., IJSS, 2018] Modifications wrt. classical crystal plasticity model:

Dofs

- ullet <u>u</u> displacement
- γ_{χ} microslip

Gradient

 $\underline{K} = \underline{\operatorname{Grad}}_{\underline{X}}(\gamma_{\chi})$ microslip gradient vector

Constitutive relations

- $S = -H_{\chi}e$ with H_{χ} penalty modulus
- $\underline{M} = \underline{A} \cdot \underline{K}$ with \underline{A} high order moduli

Yield function $\phi^s = |\tau^s| - \langle \tau_c^s - S \rangle$ for each slip system s

Generalized stresses

- S dual of γ_{χ}
- \underline{M} dual of \underline{K}

- $\operatorname{Div}_X(\underline{M}) S = 0$ in bulk
- $\underline{M} \cdot \underline{n}_0 = M$ on boundary

Single additional DOF: microslip [Ling et al., IJSS, 2018] Modifications wrt. classical crystal plasticity model:

DOFS

- ullet <u>u</u> displacement
- \bullet γ_{χ} microslip

Gradient

 $\underline{K} = \underline{\operatorname{Grad}}_{\underline{X}}(\gamma_{\chi})$ microslip gradient vector

Constitutive relations

- $S = -H_{\chi}e$ with H_{χ} penalty modulus
- $\underline{M} = \underline{A} \cdot \underline{K}$ with \underline{A} high order moduli

Yield function $\phi^s = |\tau^s| - \langle \tau_c^s - S \rangle$ for each slip system s

Additional variables

- $\gamma_{cum} = \int_0^t \sum_s |\dot{\gamma}^s| du$ cumulative total slip
- $e = \gamma_{cum} \gamma_{\chi}$ relative plastic slip

Generalized stresses

- S dual of γ_{χ}
- \underline{M} dual of \underline{K}

- $\operatorname{Div}_{\underline{X}}(\underline{M}) S = 0$ in bulk
- $\underline{M} \cdot \underline{n}_0 = M$ on boundary

Simplification

Extra relations reduce to

- $\phi^s = |\tau^s| \langle \tau^s_c S \rangle$ yield function
- $\gamma_{cum} = \int_0^t \sum_s |\dot{\gamma}^s| du$ cumulative total slip
- $S = \text{Div}_{\underline{X}}(A \cdot \underline{\text{Grad}}_X(\gamma_{\chi})) = H_{\chi}(\gamma_{\chi} \gamma_{cum})$ field equation on γ_{χ}

Simplification

Extra relations reduce to

- $\phi^s = |\tau^s| \langle \tau^s_c S \rangle$ yield function
- $\gamma_{cum} = \int_0^t \sum_s |\dot{\gamma}^s| \, \mathrm{d}u$ cumulative total slip
- $S = \operatorname{Div}_{\underline{X}}(A \cdot \operatorname{\underline{Grad}}_{X}(\gamma_{\chi})) = H_{\chi}(\gamma_{\chi} \gamma_{cum})$ field equation on γ_{χ}

Main idea [F. Latourte, 2017]

- field equation on γ_{χ} is similar to heat equation! $\rho C_n \dot{T} = \text{div} \left(\lambda \cdot \text{grad} \left(T \right) \right) + q_s$
- staggered resolution
 - $\gamma_{\chi} \rightarrow \text{mechanics} \rightarrow \gamma_{cum} \rightarrow \text{thermics} \rightarrow \gamma_{\chi} \rightarrow \dots$

Simplification

Extra relations reduce to

- $\phi^s = |\tau^s| \langle \tau^s_c S \rangle$ yield function
- $\gamma_{cum} = \int_0^t \sum_s |\dot{\gamma}^s| du$ cumulative total slip
- $S = \text{Div}_{\underline{X}}(A \cdot \underline{\text{Grad}}_X(\gamma_{\chi})) = H_{\chi}(\gamma_{\chi} \gamma_{cum})$ field equation on γ_{χ}

Main idea [F. Latourte, 2017]

- field equation on γ_{χ} is similar to heat equation! $\rho C_p \dot{T} = \operatorname{div} \left(\lambda \cdot \operatorname{grad} \left(T \right) \right) + q_s$
- staggered resolution $\gamma_{\chi} \rightarrow \text{mechanics} \rightarrow \gamma_{cum} \rightarrow \text{thermics} \rightarrow \gamma_{\chi} \rightarrow \dots$

First prototype in the framework of infinitesimal strain theory

Mechanics implementation

$$oldsymbol{arepsilon} = oldsymbol{arepsilon}^e + oldsymbol{arepsilon}^p$$

Elastic part $\sigma = \mathbb{C} : \varepsilon^e$

$$oldsymbol{\sigma}=\mathbb{C}:oldsymbol{arepsilon}$$

Plastic part

$$\begin{array}{ll} \boldsymbol{N}^s = (\underline{m}^s \otimes \underline{n}^s)^{\mathrm{sym}} & \text{for } s = 1..N \text{ slip systems} \\ \boldsymbol{\tau}^s = \boldsymbol{\sigma} : \boldsymbol{N}^s & \text{resolved shear stress} \\ \boldsymbol{S} = H_{\boldsymbol{\chi}}(\gamma_{\boldsymbol{\chi}} - \gamma_{cum}) & \text{generalized stress} \\ \boldsymbol{\phi}^s = |\boldsymbol{\tau}^s| - \langle \boldsymbol{\tau}_c^s - \boldsymbol{S} \rangle & \text{yield function} \\ \boldsymbol{\dot{\gamma}}^s = \langle \boldsymbol{\phi}^s / K \rangle^n \operatorname{sgn}(\boldsymbol{\tau}^s) & \text{plastic slip rate} \\ \boldsymbol{\dot{\varepsilon}}^p = \sum_s \dot{\boldsymbol{\gamma}}^s \boldsymbol{N}^s & \text{plastic strain rate} \\ \boldsymbol{\gamma}_{cum} = \int_0^t \sum_s |\dot{\boldsymbol{\gamma}}^s| \, \mathrm{d}\boldsymbol{u} & \text{cumulative total slip} \end{array}$$

Mechanics implementation

$$\varepsilon = \varepsilon^e + \varepsilon^p$$

Elastic part
$$\sigma = \mathbb{C} : \varepsilon^e$$

$$oldsymbol{\sigma} = \mathbb{C}: oldsymbol{arepsilon}^e$$

Plastic part
$$\begin{aligned} \boldsymbol{N}^s &= (\underline{m}^s \otimes \underline{n}^s)^{\mathrm{sym}} & \text{ for } s = 1..N \text{ slip systems} \\ \boldsymbol{\tau}^s &= \boldsymbol{\sigma} : \boldsymbol{N}^s & \text{ resolved shear stress} \\ \boldsymbol{S} &= H_{\boldsymbol{\chi}}(\boldsymbol{\gamma_{\boldsymbol{\chi}}} - \boldsymbol{\gamma_{cum}}) & \text{ generalized stress} \\ \boldsymbol{\phi}^s &= |\boldsymbol{\tau}^s| - \langle \boldsymbol{\tau}_c^s - \boldsymbol{S} \rangle & \text{ yield function} \\ \dot{\boldsymbol{\gamma}}^s &= \langle \boldsymbol{\phi}^s / K \rangle^n \operatorname{sgn}(\boldsymbol{\tau}^s) & \text{ plastic slip rate} \\ \dot{\boldsymbol{\varepsilon}}^p &= \sum_s \dot{\boldsymbol{\gamma}}^s \boldsymbol{N}^s & \text{ plastic strain rate} \\ \boldsymbol{\gamma_{cum}} &= \int_0^t \sum_s |\dot{\boldsymbol{\gamma}}^s| \, \mathrm{d}\boldsymbol{u} & \text{ cumulative total slip} \end{aligned}$$

MFront implementation

Modification of any crystal viscoplastic constitutive behaviour

- add state variable γ_{cum}
- get γ_{χ} through T field (Code_Aster VARC)
- compute $S, \ldots, \dot{\varepsilon}^p$
- update γ_{cum}

Thermics implementation

$$A = A1,$$
 $A\Delta \gamma_{\chi} = H_{\chi}(\gamma_{\chi} - \gamma_{cum}) \Leftrightarrow \rho C_p \dot{T} = \lambda \Delta T + q_s$

First idea: transient linear heat equation

ad hoc solution
$$T = \gamma_{\chi} t$$

$$\rho C_p = H_{\chi} t
\lambda = A$$

$$q_s = H_\chi \gamma_{cum} t$$

Thermics implementation

$$A = A1,$$
 $A\Delta \gamma_{\chi} = H_{\chi}(\gamma_{\chi} - \gamma_{cum}) \Leftrightarrow \rho C_p \dot{T} = \lambda \Delta T + q_s$

First idea: transient linear heat equation

ad hoc solution
$$T = \gamma_{\chi} t$$

$$\rho C_p = H_{\chi} t
\lambda = A$$

$$\lambda = A
q_s = H_\chi \gamma_{cum} t$$

Second idea: steady state non linear heat equation

ad hoc solution
$$T = \gamma_{\chi}$$

$$\rightarrow$$
 OK: $\gamma_{cum} \rightarrow \gamma_{\gamma}$

$$\dot{T} = 0$$

$$\lambda = A$$

$$q_s = H_{\chi}(\gamma_{cum} - T)$$

Thermics implementation

$$A = A1,$$
 $A\Delta \gamma_{\chi} = H_{\chi}(\gamma_{\chi} - \gamma_{cum}) \Leftrightarrow \rho C_p \dot{T} = \lambda \Delta T + q_s$

First idea: transient linear heat equation

ad hoc solution
$$T=\gamma_\chi t$$

$$\rho C_p=H_\chi t$$

$$\lambda=A$$

$$\rightarrow \text{failed (poor convergence)} \qquad q_s=H_\chi \gamma_{cum} t$$

Second idea: steady state non linear heat equation

ad hoc solution
$$T=\gamma_\chi$$

$$\dot{T}=0 \\ \lambda=A \\ \gamma_{cum}\to\gamma_\chi \qquad \qquad q_s=H_\chi(\gamma_{cum}-T)$$

Code Aster resolution

THER_NON_LINE with non linear source term field

- field part $(H_\chi \gamma_{cum})$ from
 - AFFE_CHAR_THER / SOURCE / SOUR_CALCULEE
- $\bullet \ \, \text{non linear part } (-H_\chi T) \text{ from }$

Staggered resolution

```
\gamma_{\chi} \rightarrow \text{mechanics} \rightarrow \gamma_{cum} \rightarrow \text{thermics} \rightarrow \gamma_{\chi} \rightarrow \dots
```

Python loop in Code_Aster ".comm" file

- γ_{χ} field is known at t
- AFFE_VARC: γ_{χ} as T field
- one STAT_NON_LINE step (calling MFront behaviour) \rightarrow fields at $t + \Delta t$: \underline{u} , σ , γ_{cum} (as internal variable)
- ullet extract γ_{cum} field, compute source term
- THER_NON_LINE \rightarrow field at $t + \Delta t$: γ_{χ} (as T)
- γ_x field is known at $t + \Delta t$: iterate...

Verification: periodic bi-crystal

periodic BC, average strain

$$\boldsymbol{E} = E_{xy}(\underline{e}_x \otimes \underline{e}_y + \underline{e}_y \otimes \underline{e}_x)$$

Verification: periodic bi-crystal

periodic BC, average strain

$$\mathbf{E} = E_{xy}(\underline{e}_x \otimes \underline{e}_y + \underline{e}_y \otimes \underline{e}_x)$$

Prototype implementation Code_Aster + MFront (from scratch)

- \bullet one slip system: $N=1,\,\underline{m}^s=\underline{e}_x,\,\underline{n}^s=\underline{e}_y$
- τ_c^s constant
- ullet BC at crystal boundaries: $\gamma_\chi=0$

Verification: periodic bi-crystal

periodic BC, average strain

$$\mathbf{E} = E_{xy}(\underline{e}_x \otimes \underline{e}_y + \underline{e}_y \otimes \underline{e}_x)$$

Prototype implementation Code_Aster + MFront (from scratch)

- one slip system: $N=1,\,\underline{m}^s=\underline{e}_x,\,\underline{n}^s=\underline{e}_y$
- \bullet τ_c^s constant
- BC at crystal boundaries: $\gamma_{\chi} = 0$

Input data (arbitrary units!)

Elasto-viscoplastic crystal

$$f = 0.6, E = 3, \nu = 0.1$$

 $n = 3, K = 1.4, \tau_c^s = 2.3$
 $H_{\nu} = 3.1, A = 0.17$

Elastic crystal

$$f=0.4,\, E=1,\, \nu=0.3$$

Reference "analytical" computation

direct resolution of PDE system over time and 1D spatial domain

Evolution of DOFs at center of viscoplastic phase

Evolution of strains at center of viscoplastic phase

Evolution of DOFs at center of elastic phase

5

 $\Delta t = 0.025$

analytic. ref.

5

0

-5

-10

analytic. ref.

5

0

-5

-10

Conclusion, prospects

First prototype shows feasability

- infinitesimal strain theory
- one slip system
- constant critical resolved shear stress
- ullet o verification on periodic bi-crystal

Conclusion, prospects

First prototype shows feasability

- infinitesimal strain theory
- one slip system
- constant critical resolved shear stress
- ullet o verification on periodic bi-crystal

Next steps?

- non constant critical resolved shear stress: hardening/softening
- modify an existing MFront behaviour: several slip systems
- clean and optimize implementation
- polycristal applications:
 realistic input data + BC on microslip field at grain boundary
- finite strains
- direct Code_Aster/MFront management of enriched kinetics or strain gradient constitutive behaviors?
- **.** . . .