Initialization & Library Loading

Defining Constant Speed Motion Worldine

In[•]:= SetAttributes[v, Constant];
\$Assumptions = v > 0 && v < 1;</pre>

ConstantSpeedMotion[v_] := t → mkFourVector[t, v t];

Worldlines are parametrized by local time:

In[•]:= ConstantSpeedMotion[v]

Out[•]= Function[t\$, mkFourVector[t\$, v t\$]]

In[•]:= ConstantSpeedMotion[v][t]

Out[•]= FourVector[t, tv, 0, 0]

Proper Time

In[•]:= Dtau[ConstantSpeedMotion[v]][λ]

Out[
$$\circ$$
]= $\sqrt{1-v^2}$ Dt[λ]

In[•]:= ProperTime[ConstantSpeedMotion[v]][λ]

$$Out[\circ] = \sqrt{1 - v^2} \lambda$$

In[*]:= ProperTimeParametrization[ConstantSpeedMotion[v]][r] // Simplify

Out[
$$\circ J = \left\{ \text{FourVector} \left[\frac{\tau}{1 - v^2}, \frac{v \tau}{1 - v^2}, 0, 0 \right] \right\}$$

In[•]:= ProperTimeToFrameTime[ConstantSpeedMotion[v]][7] // Simplify

$$Out[\circ] = \left\{ \frac{\tau}{\sqrt{1 - v^2}} \right\}$$

In[*]:= FrameTimeToProperTime[ConstantSpeedMotion[v]][t] // Simplify

Out[
$$\circ$$
]= $\left\{ t - 1 - v^2 \right\}$

Local Frame Properties

 $\textit{In[•]:= } \textbf{FrameVelocity[ConstantSpeedMotion[v]][λ]}$

 $In[\cdot]:=$ FrameAcceleration[ConstantSpeedMotion[v]][λ]

Out[\circ]= $\{ 0, 0, 0 \}$

Velocity and Acceleration

 $\textit{In[•]:= } \textbf{FourVelocity[ConstantSpeedMotion[v]][λ]}$

Out[
$$\circ$$
]= FourVector $\begin{bmatrix} \frac{1}{\sqrt{1-v^2}}, & \frac{v}{\sqrt{1-v^2}}, & 0, & 0 \end{bmatrix}$

In[*]:= ProperVelocity[ConstantSpeedMotion[v]][λ] // Simplify

Out[•]= 1

 $In[*] := FourAcceleration[ConstantSpeedMotion[v]][\lambda]$

Out[•]= FourVector[0, 0, 0, 0]

 $In[\circ] := ProperAcceleration[ConstantSpeedMotion[v]][\lambda]$

Out[•]= **0**