Analzízis Alkalmazásai. Programtervező informatikus A. szakirány

RöpZh Tételek 2023-2024. tanév 2. félév

Petrányi Bálint

2024. március 11.

Tartalomjegyzék

1.	wee	k	4
	1.1.	Mikor mondjuk, hogy a φ függvény az $f(x,y)=0$ egyenletnek	
		egy implicit megoldása?	4
	1.2.	Hogyan szól az egyváltozós implicitfüggvény-tétel?	4
	1.3.	Igaz-e a következő állítás? "Az implicitfüggvény-tétel egy expli-	
		cit előállítást ad az $f(x,y) = 0$ egyenlet implicit megoldására."	
		A válaszát indokolja meg!	4
	1.4.	A deriválási szabályok alapján hogyan vezethető le az $f(x, \varphi(x)) =$	
		$0 \ (x \in U)$ egyenlőségből az implicit megoldás deriváltjára vo-	
		natkozó összefüggést az U környezetben?	5
	1.5.	Mit jelent az, hogy egy $\mathbb{R}^n \to \mathbb{R}^n$ típusú függvény lokálisan	
		invertálható?	5
	1.6.	Igaz-e, hogy minden $\mathbb{R}^2 \to \mathbb{R}^2$ típusú, folytonos és lokálisan	
		invertálható függvény globálisan is invertálható? A válaszát	
		indokolja meg!	5
	1.7.		6
	1.8.	Igaz-e a következő állítás? "Az inverzfüggvény-tétel egy exp-	
		licit előállítást ad bizonyos feltételeket teljesítő függvények in-	
			6
		y O	

2.	wee	k	7
	2.1.	Adja meg a két változós valós értékű f függvény a $g=0$ -ra	77
	2.2.	vonatkozó feltételes abszolút maximumának a fogalmát! Adja meg a két változós valós értékű f függvény a $g=0$ -ra	7
		vonatkozó feltételes lokális maximumának a fogalmát	7
	2.3.	Igaz-e, hogy egy feltételes abszolút maximum egyben feltételes lokális maximum? A válaszát indokolja meg!	7
	2.4.	Mondja ki az elsőrendű szükséges feltételről szóló tételt feltételes lokális szélsőértékekre!	7
	2.5.	Mondja ki a másodrendű elégséges feltételről szóló tételt fel-	
	2.6.	tételes lokális szélsőértékekre!	8
	2.7.	módszert feltételes lokális szélsőértékek keresésére? Milyen esetben tudjuk a kétváltozós függvényekre vonatkozó feltételes szélsőérték-problémát visszavezetni egy egyváltozós	10
		függvény szélsőérték-problémájára?	10
	2.8.	Milyen esetekben és hogyan tudjuk a Weierstrass-tételt alkalmazni a feltételes abszolút szélsőrtékek keresésében?	10
3.	wee	k	11
	3.1.	Mit nevezünk szakaszonként sima útnak?	11
	3.2.	Mit nevezünk egy út ellentettjének?	11
	3.3. 3.4.	Mit nevezünk az u és v pontokat összekötő szakasznak? Mikor mondjuk, hogy egy halmaz összefüggő, és mit nevezünk	11
		tartománynak?	11
	3.5.	Adja meg az f függvény φ útra vett vonalintegráljának fogalmát!	12
	3.6.	Mondja ki a vonalintegrál utak egyesítéséről szóló állítás!	12
	3.7.	Mondja ki a vonalintegrál utak ellentettjéről szóló állítás!	12
		· · ·	
	3.8.	Adja meg egy f vektormező primitív függvényének fogalmát! .	12
	3.8. 3.9.	Adja meg egy f vektormező primitív függvényének fogalmát! . Mondja ki a Newton-Leibniz-tételt!	
	3.8. 3.9.	Adja meg egy f vektormező primitív függvényének fogalmát! . Mondja ki a Newton-Leibniz-tételt!	12
	3.8. 3.9.	Adja meg egy f vektormező primitív függvényének fogalmát! . Mondja ki a Newton-Leibniz-tételt!	12 13
4.	3.8. 3.9.	Adja meg egy f vektormező primitív függvényének fogalmát! . Mondja ki a Newton-Leibniz-tételt!	12
4.	3.8. 3.9. 3.10.	Adja meg egy f vektormező primitív függvényének fogalmát! . Mondja ki a Newton-Leibniz-tételt!	12 13

4.3.	Mondja ki a tanult szükséges feltételt primitív függvény léte-	
	zésére vonatkozóan!	15
4.4.	Igaz-e a következő állítás? "Minden $f: \mathbb{R}^2 \to \mathbb{R}^2$ folytonos	
	függvénynek van primitív függvénye." A válaszát indokolja meg!	15
4.5.	Mondja ki a tanult elégséges feltételt primitív függvény léte-	
	zésére vonatkozóan!	15
4.6.	Adja meg egy v vektormező divergenciájának fogalmát!	16
4.7.	Adja meg egy v vektormező rotációjának fogalmát!	16
4.8.	Mondja ki a Green-tételt!	16

1. week

- 1.1. Mikor mondjuk, hogy a φ függvény az f(x,y)=0 egyenletnek egy implicit megoldása?
- **1.1. Definíció.** Legyen $f \in \mathbb{R}^2 \to \mathbb{R}$ egy adott függvény. Ha létezik olyan $I \subset \mathbb{R}$ nyílt intervallum és $\varphi : I \to \mathbb{R}$ függvény, hogy

$$f(x, \varphi(x)) = 0 \quad (\forall x \in I)$$

akkor azt mondjuk, hogy a φ függvény az f(x,y)=0 implicit alakban van megadva

- 1.2. Hogyan szól az egyváltozós implicitfüggvény-tétel?
- 1.1. Tétel (Egyváltozós implicitfüggvény-tétel.). Legyen $\Omega \in \mathbb{R}^2$ nyílt halmaz és $f: \Omega \to \mathbb{R}$. Tegyük fel, hogy
 - (a) f folytonosan deriválható Ω -n
 - (b) $az(a,b) \in \Omega$ pointban f(a,b) = 0 és $\partial_2 f(a,b) \neq 0$

Ekkor:

- 1. Van olyan K(a) =: U és K(b) =: V környezet \mathbb{R} -ben, hogy minden $x \in U$ ponthoz létezik egyetlen $\varphi(x) \in V$, amelyre $f(x, \varphi(x)) = 0$
- 2. Az így definiált $\varphi: U \to V$ függvény folytonosan deriválható U-n, továbbá $\forall x \in U$ -ra $\partial_2 f(x, \varphi(x)) \neq 0$ és

$$\varphi'(x) = -\frac{\partial_1 f(x, \varphi(x))}{\partial_2 f(x, \varphi(x))}$$

1.3. Igaz-e a következő állítás? "Az implicitfüggvénytétel egy explicit előállítást ad az f(x,y) = 0 egyenlet implicit megoldására." A válaszát indokolja meg!

Nem igaz

Világos, hogy $\varphi(a)=b$. A φ függvényt az $f(x,\varphi(x))=0$ $(x\in U)$ egyenlőség "implicit" módon definiálja. Innen származik a tétel neve. A tétel csak a φ implicit függvény létezéséről szól, ezt a függvényt általában nem tudjuk explicit képlettel előállítani. Ennek ellenére a $\varphi'(x)$ deriváltat ki tudjuk számítani, ha ismerjük a $\varphi(x)$ függvényértéket.

1.4. A deriválási szabályok alapján hogyan vezethető le az $f(x,\varphi(x))=0$ $(x\in U)$ egyenlőségből az implicit megoldás deriváltjára vonatkozó összefüggést az U környezetben?

$$F(x) := f(x, \varphi(x)) \quad (x \in U)$$

Mivel $\forall x \in U$ esetén F(x) = 0, ezért F'(x) = 0. Az összetett függvény deriválási szabálya szerint

$$0 = F'(x) = \partial_1 f(x, \varphi(x)) \cdot 1 + \partial_2 f(x, \varphi(x)) \cdot \varphi'(x) \quad (x \in U)$$
ezért $\forall x \in U$ pontban:

$$\varphi'(x) = -\frac{\partial_1 f(x, \varphi(x))}{\partial_2 f(x, \varphi(x))}$$

- 1.5. Mit jelent az, hogy egy $\mathbb{R}^n \to \mathbb{R}^n$ típusú függvény lokálisan invertálható?
- **1.2. Tétel (Lokális invertálhatóság.).** Legyen $I \subset \mathbb{R}$ nyílt intervallum és $f: I \to \mathbb{R}$.

T.f.h. $f \in C^1(I)$ és egy $a \in I$ pontban $f'(a) \neq 0$ Ekkor f az a-ban lokálisan invertálható, azaz $\exists U := K(a)$ és V := f[U] nyílt halmaz, hogy az $f_{|U}: U \to V$ függvény bijekció, ezért invertálható. Az $f_{|U}^{-1}$

lokális inverz folytonosan deriválható V-n, és

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} \quad (y \in V)$$

1.6. Igaz-e, hogy minden $\mathbb{R}^2 \to \mathbb{R}^2$ típusú, folytonos és lokálisan invertálható függvény globálisan is invertálható? A válaszát indokolja meg!

Nem igaz Például az

$$f(x,y) := (e^x \cos y, e^x \sin y) \quad ((x,y) \in \mathbb{R}^2)$$

folytonos függvény a sík minden $\pi\text{-nél}$ kisebb sugarú körlapján injektív, de globálisan nem injektív, hiszen

$$f(x, y + 2\pi) = f(x, y) \quad (\forall (x, y) \in \mathbb{R}^2)$$

1.7. Hogyan szól az inverzfüggvény-tétel?

- 1.3. Tétel (Inverzfüggvény-tétel.). Legyen $\Omega \subset \mathbb{R}^n$ $(x \in \mathbb{N})$ nyílt halmaz és $f: \Omega \to \mathbb{R}^n$. T.f.h
 - (a) f folytonosan deriválható Ω -n
 - (b) egy $a \in \Omega$ pontban det $f'(a) \neq 0$

Ekkor

- 1. f lokálisan invertálható, azaz van olyan, az $a \in \Omega$ pontot tartalmazó U nyílt halmaz, hogy ha V := f[U], akkor az $f_{|U}: U \to V$ függvény bijekció (következésképpen invertálható).
- 2. $Az\left(f_{|_{U}}\right)^{-1}$ lokális inverz folytonosan deriválható V-n és

$$(f^{-1})'(y) = [f'(f^{-1}(y))]^{-1} \quad (y \in V)$$

1.8. Igaz-e a következő állítás? "Az inverzfüggvény-tétel egy explicit előállítást ad bizonyos feltételeket teljesítő függvények inverzére." A válaszát indokolja meg!

Nem igaz

Az f függvény explicit alakjának az ismeretében f^{-1} helyettesítési értékeire általában nincs explicit képlet, viszont

$$(f^{-1})'(y) = [f'(f^{-1}(y))]^{-1} \quad (y \in V)$$

alapján a derivált helyettesítési értékei az f' helyettesítési értékeinek felhasználásával már kiszámíthatók, ha ismerjük az inverz függvény értékét a megfelelő pontban

- 2. week
- 2.1. Adja meg a két változós valós értékű f függvény a g=0-ra vonatkozó feltételes abszolút maximumának a fogalmát!
- **2.1. Definíció.** Legyen $U\subset\mathbb{R}^2$ nyílt halmaz T.f.h $f,g:U\to\mathbb{R}$ adott függvények és

$$H_q := \{ z \in U \mid g(z) = 0 \} \neq 0$$

 $a \in H_g$ pontban felt'eteles~abszol'ut~maximuma~van~ha

$$f(x) \le f(a), \quad \forall x \in H_g \subset \mathcal{D}_f = U$$

- 2.2. Adja meg a két változós valós értékű f függvény a g=0-ra vonatkozó feltételes lokális maximumának a fogalmát
- **2.2. Definíció.** Legyen $U\subset\mathbb{R}^2$ nyílt halmaz T.f.h $f,g:U\to\mathbb{R}$ adott függvények és

$$H_g := \{ z \in U \mid g(z) = 0 \} \neq 0$$

 $a \in H_g$ pontban $felt\'eteles\ lok\'alis\ maximuma\ van\ ha$

$$\exists K(a) \subset U : f(x) \le f(a), \quad \forall x \in K(a) \cap H_q$$

2.3. Igaz-e, hogy egy feltételes abszolút maximum egyben feltételes lokális maximum? A válaszát indokolja meg!

Igen Mert van egy környezet amiben lokális maximum lesz

2.4. Mondja ki az elsőrendű szükséges feltételről szóló tételt feltételes lokális szélsőértékekre!

Általános eset:

- **2.1. Tétel.** T.f.h $n, m \in \mathbb{N}$ m < n, $\emptyset \neq U \subset \mathbb{R}^n$ nyílt halmaz
 - (a) $az \ f: U \to \mathbb{R}$ és $a \ g = (g_1, \dots, g_m): U \to \mathbb{R}^m$ függvények folytonosan deriválhatók az U halmazon
 - (b) az $a = (a_1, ..., a_n) \in U$ pontban az f függvénynek a $g_1 = 0, ..., g_m = 0$ feltételekre vonatkozóan feltételes lokális szélsőértéke van

(c) rang
$$\begin{bmatrix} \partial_1 g_1(a) & \partial_2 g_1(a) & \dots & \partial_n g_1(a) \\ \vdots & \vdots & \vdots & \vdots \\ \partial_1 g_m(a) & \partial_2 g_m(a) & \dots & \partial_n g_m(a) \end{bmatrix} = 0$$

Ekkor léteznek olyan $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ (Lagrange-szorzók), hogy az

$$\mathcal{L}(x) := f(x) + \lambda_1 g_1(x) + \ldots + \lambda_m g_m(x) \quad (x \in U)$$

Lagrange-függvénynek $a = (a_1, \ldots, a_n)$ stacionárius pontja, azaz

$$\mathcal{L}'(a) = [\partial_1 \mathcal{L}(a), \dots, \partial_n \mathcal{L}(a)] = [0, \dots, 0] = \theta_m \in \mathbb{R}^n$$

vagy 2 változos eset:

2.2. Tétel. *T.f.h*

- (a) $U \subset \mathbb{R}^2$ nyílt halmaz és az $f, g: U \to \mathbb{R}$ függvényeknek léteznek a parciális deriváltjaik és azok folytonosak az U halmazon
- (b) $az(x_0, y_0) \in U$ pontban az f függvénynek ag = 0 feltételre vonatkozóan feltételes lokális szélsőértéke van

(c)
$$g'(x_0, y_0) = (\partial_1 g(x_0, y_0), \partial_2 g(x_0, y_0)) \neq (0, 0)$$

Ekkor van olyan $\lambda \in \mathbb{R}$ valós szám (ezt Lagrange-szorzónak szokás nevezni), hogy az

$$\mathcal{L}(x,y) := f(x,y) + \lambda g(x,y) \quad \left(\left(\right) (x,y) \in U \right)$$

Lagrange-függvénynek (x_0, y_0) stacionárius pontja, azaz

$$\mathcal{L}'(x,y) = (\partial_x \mathcal{L}(x_0, y_0), \partial_y \mathcal{L}(x_0, y_0)) = (0,0)$$

2.5. Mondja ki a másodrendű elégséges feltételről szóló tételt feltételes lokális szélsőértékekre!

Általános eset:

2.3. Tétel. $n, m \in \mathbb{N}$ m < n, $\emptyset \neq U \subset \mathbb{R}^n$ nyílt halmaz T.f.h:

 $f, g_1, \ldots, g_m \in C^2$ és $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ olyan számok, valamint az $a \in U$ olyan pont, hogy az

$$\mathcal{L} := f + \lambda_1 g_1 + \ldots + \lambda_m g_m$$

függvényre $\mathcal{L}'(a) = \emptyset_n$ továbbá minden olyan $h \in \mathbb{R}^n, h \neq \subset_n$ vektorra, amelyre

$$g_1'(a) \cdot h = 0, \ g_2'(a) \cdot h = 0, \dots, \ g_m'(a) \cdot h = 0$$

teljesül úgy, hogy

$$\langle \mathcal{L}''(a) \cdot h, h \rangle > 0$$

Ekkor az f függvénynek a $g_1=0,\ldots,g_m=0$ feltételek mellett feltételes minimuma van az $a\in U$ pontban.

vagy 2 változos eset:

2.4. Tétel. *T.f.h*

- (a) $U \subset \mathbb{R}^2$ nyîlt halmaz és $f, g \in C^2(U, \mathbb{R})$
- (b) $az(x_0, y_0) \in U$ pontban $a \lambda_0 \in \mathbb{R}$ számmal teljesül a szükséges feltétel.

Tekintsük ezzel a λ_0 számmal az

$$\mathcal{L}(x,y) := f(x,y) + \lambda_0 g(x,y) \quad ((x,y) \in U)$$

Lagrange-függvényt. Legyen

$$D(x_0, y_0; \lambda_0) := \det \begin{bmatrix} 0 & \partial_1 g(x_0, y_0) & \partial_2 g(x_0, y_0) \\ \partial_1 g(x_0, y_0) & \partial_{11} \mathcal{L}(x_0, y_0) & \partial_{12} \mathcal{L}(x_0, y_0) \\ \partial_2 g(x_0, y_0) & \partial_{21} \mathcal{L}(x_0, y_0) & \partial_{22} \mathcal{L}(x_0, y_0) \end{bmatrix}$$

(a mátrixot kibővített Hesse-mátrixnak szokás nevezni). Ekkor:

- 1. ha $D(x_0, y_0; \lambda_0) > 0 \Leftarrow (x_0, y_0)$ feltételes lokális **maximumhely**
- 2. ha $D(x_0, y_0; \lambda_0) < 0 \Leftarrow (x_0, y_0)$ feltételes lokális **minimumhely**

2.6. Miért nem tudjuk általában alkalmazni a korábban megismert (nem feltételes) lokális szélsőértékek keresésére szolgáló módszert feltételes lokális szélsőértékek keresésére?

Mert mindig feltettük, hogy a vizsgált pont az értelmezési tartomány belső pontja. Könnyen látható azonban, hogy a H_g halmaznak nincs belső pontja.

2.7. Milyen esetben tudjuk a kétváltozós függvényekre vonatkozó feltételes szélsőérték-problémát visszavezetni egy egyváltozós függvény szélsőérték-problémájára?

T.f.h a feltételt megadó g(x,y)=0 egyenletből (például) az y kifejezhető az x változó függvényeként, azaz $\exists \varphi \in \mathbb{R} \to \mathbb{R}$ függvény, amelyre $g(x,\varphi(x))=0$

A $H_g = \{(x,y) \mid g(x,y) = 0\} \subset \mathbb{R}^2$ halmaz tehát a φ függvény garfikonja, ami "jó" esetben egy síkbeli "görbe". Az f függvénynek a H_g halmaz pontjaiban felvett értékeit a $h(x) := f(x, \varphi(x))$ alós-valós függvénnyel lehet kifejezni.

A kétváltozós függvényekre vonatkozó feltételes szélsőérték-problémát a szóban forgó esetben a h egyváltozós függvény szélsőérték-problémájára lehet visszavezetni.

2.8. Milyen esetekben és hogyan tudjuk a Weierstrasstételt alkalmazni a feltételes abszolút szélsőrtékek keresésében?

A feltételes abszolút szélsőértékhelyek megkeresése egy "egyszerűbb" feladathoz vezethet, ha a

$$H_q := \{ x \in U \mid g(x) = 0 \}$$

halmaz korlátos és zárt. Ebben az esetben a Weierstrass-tétel garantálja a feltételes abszolút szélsőértékhelyek létezését, amelyek a Lagrange-függvény stacionárius pontjai lesznek.

3. week

3.1. Mit nevezünk szakaszonként sima útnak?

- 3.1. Definíció. $A \varphi : [a, b] \to \mathbb{R}^n$ függvény szakaszonként sima út, ha
 - $\varphi \in C[a,b]$
 - $\exists a = t_0 < t_1 < \ldots < t_m = b \ (m \in \mathbb{N}) \ olyan \ felosztása \ [a,b]-nek$, amelyre tetszőleges $k = 0, 1, \ldots, m-1$ index esetén $\varphi_{|_{[t_k, t_{k+1}]}}$ sima út

3.2. Mit nevezünk egy út ellentettjének?

Egy φ út $\tilde{\varphi}$ ellentettjét így definiáljuk:

$$\tilde{\varphi} := \varphi(b + a - t) \quad (a \le t \le b)$$

3.3. Mit nevezünk az u és v pontokat összekötő szakasznak?

Legyenek adottak az $u, v \in \mathbb{R}^n$ pontok, és legyen

$$\varphi_{uv}(t) := u + t(v - u) \quad (0 \le t \le 1)$$

Ekkor φ_{uv} egy sima út, az u-t és v-t összekötő szakasz, amelynek a $\varphi_{uv}(0) = u$ a kezdőpontja, a $\varphi_{uv}(1) = v$ pedig a végpontja.

3.4. Mikor mondjuk, hogy egy halmaz összefüggő, és mit nevezünk tartománynak?

Azt mondjuk, hogy az $U \subset \mathbb{R}^n$ nyílt halmaz **összefüggő**, ha bármely két pontja összeköthető U-ban haladó töröttvonallal. Az összefüggő nyílt halmazokat röviden **tartománynak** nevezzük.

3.5. Adja meg az f függvény φ útra vett vonalintegráljának fogalmát!

3.2. Definíció. $T.f.h\ U \subset \mathbb{R}^n \quad (n \in \mathbb{R}^n) \ tartomány, \ az \ f: U \to \mathbb{R}^n \ függvény folytonos, továbbá <math>\varphi: [a,b] \to \mathbb{R}^n \ egy \ U$ -ban haladó szakaszonként sima út. Ekkor az f függvény φ út vett vonalintegrálját így értelmezzük:

$$\int_{\varphi} f := \int_{a}^{b} \langle f \circ \varphi, \varphi' \rangle = \int_{a}^{b} \langle f(\varphi(t)), \varphi'(t) \rangle dt.$$

3.6. Mondja ki a vonalintegrál utak egyesítéséről szóló állítás!

3.1. Tétel. Legyen $U \subset \mathbb{R}^n$ $(n \in \mathbb{N})$ egy tartomány és t.f.h az $f, g: U \to \mathbb{R}^n$ függvények folytonosak. Ha a φ, ψ utak U-beliek és létezik a $\varphi \lor \psi$ egyesítésük, akkor

$$\int_{\varphi \vee \psi} f = \int_{\varphi} f + \int_{\psi} f$$

3.7. Mondja ki a vonalintegrál utak ellentettjéről szóló állítás!

3.2. Tétel. Legyen $U \subset \mathbb{R}^n$ $(n \in \mathbb{N})$ egy tartomány és t.f.h az $f, g: U \to \mathbb{R}^n$ függvények folytonosak. bármilyen U-beli φ út $\tilde{\varphi}$ ellentettjére

$$\int_{\tilde{\varphi}} f = -\int_{\varphi} f$$

3.8. Adja meg egy f vektormező primitív függvényének fogalmát!

3.3. Definíció. Legyen $U \subset \mathbb{R}^n$ egy tartomány és $f = (f_1, \dots, \varphi_n) : U \to \mathbb{R}^n$ adott vektormező Azt mondjuk, hogy a $F : U \to \mathbb{R}$ függvény a f függvény primitív függvénye ha F differenciálható U-ban, és F' = f azaz ha minden $x \in U$ pontban

$$F'(x) = (\partial_1 F(x), \dots, \partial_n F(x)) = (f_1(x), \dots, f_n(x))$$

3.9. Mondja ki a Newton-Leibniz-tételt!

3.3. Tétel (Newton–Leibniz). Legye $U \subset \mathbb{R}^n$ egy tartomány, és t.f.h. az $f: U \to \mathbb{R}^n$ folytonos függvénynek van primitív függvénye. Ekkor tetszőleges U-ban haladó $\varphi: [a,b] \to U$ szakaszonként sima út esetén a f bármelyik F primitív függvényével

$$\int_{\varphi} f = F(\varphi(b)) - F(\varphi(a))$$

3.10. Igaz-e a következő állítás? "Ha a folytonos $f: U \to \mathbb{R}^n$ függvénynek van primitív függvénye, akkor f vonalintegráltjának értéke nulla tetszőleges U-ban haladó zárt úton" A válaszát indokolja meg!

4. week

- 4.1. Mit jelent, hogy egy vonalintegrál független az úttól?
- **4.1. Tétel.** Legyen $U \subset \mathbb{R}^n$ tartomány és $f = (f_1, \dots, f_n) : U \to \mathbb{R}^n$ folytonos függvény.

A vonalintegrál független az úttól. Ez azt jelenti, hogy ha az U-be

$$\varphi: [a,b] \to U \quad \text{\'es} \quad \psi: [c,d] \to U$$

szakaszonként sima utak $\varphi(a) = \psi(c)$ és $\varphi(b) = \psi(d)$ azaz a φ, ψ utak ugyanazt a kezdőpontot és végpontot köti össze U-ban, akkor

$$\int_{\varphi} f = \int_{\psi} f$$

- 4.2. Milyen állításokat ismer, amelyek ekvivalensek azzal, hogy minden vonalintegrál független az úttól?
- **4.2. Tétel.** Legyen $U \subset \mathbb{R}^n$ tartomány és $f = (f_1, \dots, f_n) : U \to \mathbb{R}^n$ folytonos függvény.
 - 1. A f-nek létezik primitív függvénye U-n, vagyis $\exists F: U \to \mathbb{R}$ differenciálható függvény, amelyre minden $x \in U$ pontban

$$F'(x) = (\partial_1 F(x), \dots, \partial_n F(x)) = (f(x), \dots, f_n(x))$$

2. Minden U-ban haladó $\varphi:[a,b]\to U$ U szakaszonként sima zárt (az $\varphi(a)=\varphi(b)$) útra

$$\oint_{\varphi} f = 0$$

- 4.3. Mondja ki a tanult szükséges feltételt primitív függvény létezésére vonatkozóan!
- 4.3. Tétel (Szükséges feltétel primitív függvény létezésére). Legye $U \subset \mathbb{R}^n$ tartomány és $f = (f_1, \ldots, f_n) : U \to \mathbb{R}^n$ deriválható függvény. Ha fnek létezik primitív függvénye U-n, akkor az f' deriváltmátrix szimmetrikus, azaz minden $x \in U$ pontban

$$\partial_i f_j(x) = \partial_j f_i(x) \quad (i, j = 1, 2, \dots, n)$$

4.4. Igaz-e a következő állítás? "Minden $f: \mathbb{R}^2 \to \mathbb{R}^2$ folytonos függvénynek van primitív függvénye." A válaszát indokolja meg!

Nem igaz Például

$$f(x,y) := \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right) \quad \left((0,0) \neq (x,y) \in \mathbb{R}^2\right)$$

Ennek a függvénynek $\int_{\varphi} f \neq 0$ Mivel φ zárt út \mathcal{D}_f -ben ezért f-nek nincs primitív függvénye. Az az deriválható még sincs primitív függvénye

- 4.5. Mondja ki a tanult elégséges feltételt primitív függvény létezésére vonatkozóan!
- 4.4. Tétel (Elégséges feltétel primitív függvény létezésére).

Tekintsük az $U \subset \mathbb{R}^n$ $(n \in \mathbb{N})$ csillagtartományon értelmezett $f = (f_1, \ldots, \varphi_n) : U \to \mathbb{R}^n$ folytonosan deriválható függvényt. T.f.h $\forall x \in U$ esetén az f'(x) deriváltmátrix szimmetrikus, azaz minden $x \in U$ pontban

$$\partial_i f_j(x) = \partial_j f_i(x) \quad (i, j = 1, 2, \dots, n)$$

Ekkor f-nek van primitív függvénye, azaz $\exists F: U \to \mathbb{R}$ differenciálható függvény, hogy $\forall i = 1, \ldots, n$ index esetén $\forall x \in U$ pontban $\partial_i F(x) = f_i(x)$

4.6. Adja meg egy v vektormező divergenciájának fogalmát!

4.1. Definíció. A $v=(v_1,v_2,v_3):D\to\mathbb{R}^3$ $(D\subset\mathbb{R}^3\ tartomány)\ deriválható vektormező v' deriváltmátrixának főátlójában álló elemeinek összegét, azaz a$

$$div \ \mathbf{v} := \partial_1 v_1 + \partial_2 v_2 + \partial_3 v_3 : D \to \mathbb{R}$$

függvényt a v vektormező divergenciájának nevezzük.

4.7. Adja meg egy v vektormező rotációjának fogalmát!

4.2. Definíció. $A \ v = (v_1, v_2, v_3) : D \to \mathbb{R}^3 \ (D \subset \mathbb{R}^3 \ tartomány) \ deriválható vektormező$ **rotációjának**a

rot
$$\mathbf{v} := [\partial_2 V_3 - \partial_3 V_2 \ \partial_3 V_1 - \partial_1 V_3 \ \partial_1 V_2 - \partial_2 V_1]$$

függvényt nevezzük.

4.8. Mondja ki a Green-tételt!

4.5. Tétel (Green-tétel). $T.f.h \ \varphi : [0,1] \to \mathbb{R}^2$ pozitív irányítású, szakaszonként sima, egyszerű, zárt görbe, és $S \subset \mathbb{R}^2$ az általa határolt síkrész. Legye $f \in \mathbb{R}^2 \to \mathbb{R}^2, S \subset \mathcal{D}_f$ folytonosan differenciálható függvény. Ekkor

$$\int_{\partial S} f = \iint_{s} (\partial_1 f_2 - \partial_2 f_1)$$

ahol ∂S az S határát jelöli és φ a ∂S egy paraméterezése.