A. Topological sort

2 seconds, 256 megabytes

You are given a directed graph. Find its topological sorting.

Input

The first line contains two integers n and m ($1 \le n \le 100\,000$, $m \le 100\,000$) — the number of vertices and the number of edges in the graph, respectively.

Next m lines describe edges of the graph. Each line contains two integers v and u ($1 \le v, u \le n; v \ne u$) — describing the edge starting at v and ending at u.

Output

If no topological sorting exists, output "-1".

Otherwise, output the sequence of vertices which describes the topological ordering. If several orderings exist, output any.

input	100 met	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A Dill work	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ADD week	
6 6						
1 2						
3 2						
4 2						
6.5						
2 5 6 5 4 6						
output	7 7 7	Ave state	700	Ave state	7 473	4.76
4 6 3 1 2 5						

B. Bridges

2 seconds, 256 megabytes

You are given an undirected graph, not necessarily connected, but with no loops or multiple edges. Find all the bridges in this graph.

Input

The first line of the input file contains two integers n and m ($1 \le n \le 20\,000$, $1 \le m \le 200\,000$) — the number of vertices and the number of edges of the graph respectively. The next m lines contain a description of edges, with one edge per line. Each edge is described by two integers b_p e_j ($1 \le b_p$ $e_j \le n$) — the identifiers of connected vertices.

Output

The first line of the output should contain one integer b—the number of the bridges in the graph. In the next line output b integers — the identifiers of edges which are bridges in the increasing order. The edges are numbered from 1 to m in the order of the input.

LTEN Y		7.8	ZYYY SAI	4.8	the VI

C. Articulation points

2 seconds, 256 megabytes

Find all articulation points of a given undirected graph.

Input

The first line of the input contains two integers n and m ($1 \le n \le 20\,000$, $1 \le m \le 200\,000$) — the number of vertices and the number edges of the graph respectively. The next m lines contain the description of edges, with one edge per line. Each edge is described by two integers b_n e_i ($1 \le b_n$ $e_i \le n$) — the identifiers of connected vertices.

Output

The first line of the output should contain one integer b— the number of articulation points in the graph. The next line should contain b numbers — the identifiers of vertices which are articulation points in the increasing order.

input	* <u>* * * * * * * * * * * * * * * * * * </u>	Alle Comments		artities "	July 1	N Sept. N.	artities.	21.16
6 7								
1 2 2 3								
2 4								
2 5 4 5								
1 3								
3 6	NAME OF THE OWNER		THE STATE OF THE S			2475		
output								
2								
2 3								

D. Edge-biconnected components

2 seconds, 64 megabytes

The edge-biconnected component of a graph (V, E) is a subset of vertices $S \subset V$ with a property that for any distinct vertices $u, v \in S$ there exist at least two paths from u to v with no edge in common and there is no set S such that this property holds for S and $S \subset S$

Given undirected graph. Find all the edge-biconnected components in it.

Input

The first line of the input file contains two integers n and m — number of vertices and edges of the graph respectively ($1 \le n \le 20\,000$, $1 \le m \le 200\,000$). The next m lines contain description of edges, with one edge per line. Edge number i is described by two integers b_i , e_i — the numbers of connected vertices ($1 \le b_i$, $e_i \le n$).

Output

In the first line print one integer k — number of edge-biconnected components of the graph. In the next line print n positive integers $a_1, a_2, ..., a_n$, not exceeding k, where a_i —the number of the edge-biconnected component the vertex i belongs to.

input	* Jako, *	subtre "	A min	· · · · · · · · · · · · · · · · · · ·	sultar	N. V.	* 382	subtrace.	NIL
6 7									
1 2									
2 3 3 1									
14									
1 4 4 5 4 6 5 6									
4 6									
5 6									
output									
2									
111222									

Statement is not available on English language

Е. Компоненты вершинной двусвязности

2 секунды, 64 мегабайта

Компонентой вершинной двусвязности графа $\langle V, E \rangle$ называется максимальный по включению подграф (состоящий из вершин и ребер), такой что любые два ребра из него лежат на вершинно простом цикле.

Дан неориентированный граф без петель. Требуется выделить компоненты вершинной двусвязности в нем.

Входные данные

Первая строка входного файла содержит два натуральных числа n и m — количества вершин и ребер графа соответственно ($1 \le n \le 20\,000$, $1 \le m \le 20\,000$).

Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается двумя натуральными числами b_i , e_i — номерами концов ребра ($1 \leqslant b_i$, $e_i \leqslant n$).

Выходные данные

В первой строке выходного файла выведите целое число k — количество компонент вершинной двусвязности графа. Во второй строке выведите m натуральных чисел $a_1, a_2, ..., a_m$, не превосходящих k, где a_i — номер компоненты вершинной двусвязности, которой принадлежит i-е ребро. Ребра нумеруются с единицы в том порядке, в котором они заданы во входном файле.

DUOTILL		3/ A	- TANK	VA A	-	- TANE	3/ 1/2	
входны	е данные		 4,74294		2000	- 742°94°		
5 6								
1 2								
2 3								
3 I 1 <i>I</i>								
45								
5 1								

выходные данные 2 1 1 1 2 2 2

F. Graph condensation

2 seconds, 256 megabytes

Find the number of edges in a condensation of a given oriented graph. Note: condensation doesn't have multiedges.

Input

The first line of the input file contains two integers n and m — the number of vertices and the number of edges respectively ($n \le 10\,000$, $m \le 100\,000$). Next m lines contain edges description, one line describes one edge. Edge number i is represented by two numbers b_p e_j — the start and the end of the edge respectively(1 $\le b_p$ $e_j \le n$). Graph may have multiedges and loops.

Output

Print one integer —the number of edges in a condensation of the graph.

input	* 282 *	P17735	J. 1997	* 282 *	P1725	200	* 24.2 * T	2000	
4 4		2.2.1.1.2.2			5.27.77.28				
2 1 3 2									
2 3									
4 3									
output									- 4
2									

Statement is not available on English language

G. Планирование вечеринки

2 секунды, 512 мегабайт

Петя планирует вечеринку, это дело непростое. Одна из главных проблем в том, что некоторые его друзья плохо ладят друг с другом, а некоторые — наоборот. В результате у него есть множество требований, например: «Я приду только если придет Гена» или «Если там будет Марина, то меня там точно не будет».

Помогите Пете составить хоть какой-нибудь список гостей, удовлетворяющий всем свойствам, или скажите, что это невозможно

Входные данные

В первой строке входного файла записаны числа n и m — число друзей Пети и число условий ($1 \le n$, $m \le 1000$). В следующих n строках записаны имена друзей. Имена друзей состоят из маленьких латинских букв и имеют длину не больше 10. В следующих m строках записаны условия.

Выходные данные

Выведите в первой строке число k- число друзей, которых нужно пригласить. В следующих k строках выведите их имена.

```
BXOДНЫЕ ДАННЫЕ

3 3
vova
masha
gosha
-vova => -masha
-masha => +gosha
+gosha => +vova

Bыходные данные

2
vova
masha
```

```
      входные данные

      1 1

      vova

      -vova => +vova

      выходные данные

      1

      vova
```

BXOДНЫЕ ДАННЫЕ 2 4 vova masha +vova => +masha +masha => -vova -vova => -masha -masha => +vova Выходные данные -1

H. Air travel

2 seconds, 256 megabytes

The chief designer Petya was asked to develop a new aircraft model for the company "Air Bubundia". It turned out that the most difficult part is the selection of the optimal size of the fuel tank.

The chief cartographer of "Air Bubundia" Vasya made a detailed map of Bubundia. On this map, he noted the fuel consumption for the flight between each pair of cities.

Petya wants to make the size of the tank as small as possible, such that the plane can fly from any city to any other (possibly with refueling on the way).

Input

First line contains integer $n (1 \le n \le 1000)$ — number of cities in Bubundia.

Next n lines contain n integers each. j-th number in j-th line equals to the consumption of fuel for the flight from j-th city to j-th city. All number are non-negative and doesn't exceed 10^9 . j-th number in j-th row equals to zero.

Output

Output single integer — optimal tank size.

	M. York			"A STATE OF THE ST		A.V.	
input	3 - Y-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- X - X		*	7 . 18
4							
0 10 12 16							
11 0 8 9 10 13 0 22							
10 13 0 22							
13 10 17 0							
output	* * *	· 文文	424-	※単準 ヤメ 智	14 To 1 To	N V WWW	17.76
10							

Statement is not available on English language

Остовное дерево

4 секунды, 256 мегабайт

Даны точки на плоскости, являющиеся вершинами полного графа. Вес ребра равен расстоянию между точками, соответствующими концам этого ребра. Требуется в этом графе найти остовное дерево минимального веса.

Входные данные

Первая строка входного файла содержит натуральное число n — количество вершин графа ($1 \le n \le 10\,000$). Каждая из следующих n строк содержит два целых числа x_i , y_i — координаты i-й вершины ($-10\,000 \le x_i$, $y_i \le 10\,000$). Никакие две точки не совпадают.

Выходные данные

Первая строка выходного файла должна содержать одно вещественное число — вес минимального остовного дерева.

входные данные	NO. 75	能是现象 VA	ALC: NOT SAID	%_理题的	Ave The Sale
2 0 0					
1 1	797532	SHE YEAR	T. 998832		
выходные данные	N'X	+ + 7	The state of the s	+ +	100
1.4142135624					

J. Spanning Tree

2 seconds, 256 megabytes

For a given connected undirected graph find a spanning tree with minimum weight.

Input

First line of input consists of two integers n and m – number of vertices and edges, respectively ($2 \le n \le 200\,000, 1 \le m \le 200\,000$).

Next m lines describe edges one per line in the following format: three integers b_i , e_i and w_i — ends and the weight of the edge i, respectively ($1 \le b_i$, $e_i \le n$, $0 \le w_i \le 100\,000$).

"Everything is connected" © D.G (Graph is too, by the way:)

Output

Output a single integer — minimum weight of the spanning tree.

Statement is not available on English language

К. Минимальное дерево путей

6 секунд, 256 мегабайт

Вам дан взвешенный ориентированный граф, содержащий n вершин и m рёбер. Найдите минимально возможную сумму весов n-1 ребра, которые нужно оставить в графе, чтобы из вершины с номером 1 по этим ребрам можно было добраться до любой другой вершины.

Входные данные

В первой строке даны два целых числа n и m ($1 \le n \le 1000, 0 \le m \le 10000$) — количество вершин и ребер в графе.

В следующих m строках даны ребра графа. Ребро описывается тройкой чисел a_i , b_i и w_i ($1 \le a_i$, $b_i \le n$; $-10^9 \le w_i \le 10^9$) — номер вершины, из которой исходит ребро, номер вершины, в которую входит ребро, и вес ребра.

Выходные данные

входные данные

Если нельзя оставить подмножество ребер так, чтобы из вершины с номером 1 можно было добраться до любой другой, в единственной строке выведите «N0».

Иначе, в первой строке выведите «YES», а во второй строке выведите минимальную возможную сумму весов ребер, которых необходимо оставить.

0.1		in Parities			-Darlins		 - in Carlo
2 1 2 1 10							
2 1 10			PN 75.7			dea	4.7
выходные данные							
NO							
SUMMET IN	Cu k	18 S.	THE THE PER	- 8	e <u>1810</u>	THE THE	S. Joseph
входные данные							
4 5							
1 2 2							
1 3 3							
1 4 3							
2 3 2							
2 4 2							
выходные данные							
YES							

Codeforces (c) Copyright 2010-2020 Mike Mirzayanov The only programming contests Web 2.0 platform

Processing math: 100%