Вопрос №1.3

Линейные интегральные уравнения. Связь краевых задач математической физики с интегральными уравнениями. Элементы теории потенииала.

1 Линейные интегральные уравнения

Интегральное уравнение — уравнение, содержащее неизвестную функцию под знаком интеграла.

Уравнения Фредгольма:

I рода
$$\int_a^b K(x,t)f(t)dt = g(x),$$
 II рода
$$f(x) - \lambda \int_a^b K(x,t)f(t)dt = g(x).$$

K(x,t) — ядро интегрального уравнения, g(x) — известная функция, f(x) — искомая функция.

Если g(x) = 0, то уравнение называется однородным.

Если K(x,t) = 0 при t > x, получаем уравнение Вольтерра I и II рода соответственно.

Запишем уравнение II рода в операторном виде: $(I-\lambda K)f=g$. Если $|\lambda|\sqrt{\int_a^b\int_a^b|K(x,t)|^2dxdt}<1$, то уравнение решается путем составления ряда: $f = (\sum_{i=0}^{\infty} \lambda^i K^i) g$. Если $K(x,t) = \sum_i g_i(x) h_i(t)$, то ядро называется вырожденным, и

интегральное уравнение сводится к системе линейных уравнений.

Альтернатива Фредгольма (для уравнений 2-го рода): либо неоднородное уравнение разрешимо при любом f(x), либо однородное уравнение имеет нетривиальные решения.

2 Связь краевых задач математической физики с интегральными уравнениями

Многие краевые задачи математической физики могут быть сведены к интегральным уравнениям при помощи функции Грина.

Пусть дано однородное дифференциальное уравнение

$$L[y] = p_0(x)y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0,$$

где функции p_0, \ldots, p_n непрерывны на $[a,b], p_0(x) \neq 0$ на [a,b], и краевые условия $V_k(y) = 0, k = 1, \ldots, n$, где линейные формы V_k от $y(a), \ldots, y^{(n-1)}(a), y(b), \ldots, y^{(n-1)}(b)$ являются линейно независимыми.

Функцией Грина этой краевой задачи называется функция $G(x,\xi)$, построенная для любой точки $a<\xi< b$ и имеющая следующие 4 свойства:

- $G(x,\xi)$ непрерывна и имеет непрерывные производные по x до (n-2)-го порядка включительно при $a \le x \le b$;
- ее (n-1)-я производная имеет разрыв в точке ξ :

$$\left. \frac{\partial^{n-1} G(x,\xi)}{\partial x^{n-1}} \right|_{x=\xi+0} - \left. \frac{\partial^{n-1} G(x,\xi)}{\partial x^{n-1}} \right|_{x=\xi-0} = \frac{1}{p_0(\xi)};$$

- в каждом из интервалов $[a, \xi)$ и $(\xi, b]$ функция $G(x, \xi)$, рассматриваемая как функция от x, является решением исходного уравнения, т.е. L[G] = 0;
- $G(x,\xi)$ удовлетворяет исходным граничным условиям.

Теорема. Если однородная краевая задача имеет лишь тривиальное решение y(x) = 0, то оператор L имеет одну и только одну функцию Грина $G(x, \xi)$.

Теорема. Если $G(x,\xi)$ есть функция Грина однородной краевой задачи $L[y]=0,\,V_k(y)=0,\,k=1,\ldots,n,$ то решение неоднородной краевой задачи L[y]=f(x) с теми же граничными условиями дается формулой $y(x)=\int_a^b G(x,\xi)f(\xi)d\xi.$

Та же техника позволяет свести нелинейную краевую задачу или краевую задачу с параметром к интегральному уравнению:

$$L[y] = f(x, y(x)) \Rightarrow y(x) = \int_a^b G(x, \xi) f(\xi, y(\xi)) d\xi,$$

$$L[y] = \lambda y + h(x) \Rightarrow y(x) = \lambda \int_a^b G(x, \xi) y(\xi) d\xi + \int_a^b G(x, \xi) h(\xi) d\xi.$$

3 Элементы теории потенциала

3.1 Объемный потенциал

$$U = \int_{V} \rho \frac{1}{r} dV,$$

где ρ — плотность потенциала, r — расстояние между точкой где ищется потенциал, и точкой интегрирования.

Теорема. Если плотность потенциала ρ непрерывна, то U — непрерывная и непрерывно дифференцируемая функция.

Теорема. Если плотность потенциала ρ непрерывно дифференцируема, то U дважды непрерывно дифференцируема и $\Delta U = 4\pi \rho$.

3.2 Потенциалы простого и двойного слоев

$$V = \int_{S} \nu \frac{1}{r} dS, \qquad W = \int_{S} \omega \frac{\partial}{\partial n} \frac{1}{r} dS,$$

Теорема. Если функция ν непрерывна, то потенциал V непрерывен. **Теорема.**

$$\lim_{M\to M_0} \frac{\partial V}{\partial n} = \begin{cases} \frac{\partial V(M_0)}{\partial n} + 2\pi\nu(M_0), & M \text{ внутри}, \\ \frac{\partial V(M_0)}{\partial n} - 2\pi\nu(M_0), & M \text{ снаружи}. \end{cases}$$

Теорема. Если функция ω непрерывна, то потенциал W непрерывен. **Теорема.**

$$\lim_{M \to M_0} W(M) = \begin{cases} W(M_0) + 2\pi\omega(M_0), & M \text{ снаружи,} \\ W(M_0), & M \text{ на } S, \\ W(M_0) - 2\pi\omega(M_0), & M \text{ внутри.} \end{cases}$$

3.3 Применение потенциалов

 $\Delta u|_{x\in G}=0,\,rac{\partial u}{\partial n}|_{x\in \Gamma}=f$ —задача Неймана. Решение ищется в виде потенциала простого слоя, распространенного по $\Gamma.$

 $\Delta u|_{x\in G}=0,\ u|_{x\in \Gamma}=f$ — задача Дирихле. Решение ищется в виде потенциала двойного слоя, распространенного по Γ .

Т.о., решение уравнения Лапласа сводится к решению интегрального уравнения.