1 Vorübung 1

Für die Energie eines Photons gilt:

$$E = h\nu = h\frac{c}{\lambda}.\tag{1}$$

Dementsprechend folgt für eine Wellenlänge von 450nm:

$$E = 6.626 \cdot 10^{34} Js \frac{3.0 \cdot 10^8 \frac{m}{s}}{450 nm} = 2.8 \text{ eV}.$$
 (2)

Die Energie eines einfallenden Photons reicht also für zwei Elektron/Lochpaare aus. Da aufgrund der Quantisierung des Photons sämtliche Energie auf ein gebundenes Elektron übergeht, kann mit einem Ph
toton auch nur ein Paar erzeugt werden, es sei denn, das angeregte Elektron regt selbst weitere Elektron
en an. Für rotes Licht (etwa Wellenlänge $\lambda=700~nm$) ergibt eine analoge Rechnung eine Energie von 1.7 eV. Unter der Annahme, dass nur die Bandlücke von 1.12 eV aufgebracht werden muss, ist das CCD rot-empfindlich, bei einer Temperatur von 300 K (also etwa Raumtemperatur) kann in der Realität aber kein rotes Licht detektiert werden, da die zusätzlich aufgrund der Gitterschwingungen nötige Energie nicht vorhanden ist.