LINEAR ALGEBRA

- 1. VECTOR SPACES & SUBSPACES
- 2. LINEAR DEPENDENCE AND INDEPENDENCE
- 3. BASIS & DIMENSIONS
- 4. RANGE SPACE & NULL SPACE, RANK & NULLITY *ALGEBRA OF LTs
- 5. TO FIND MATRIX OF LT
- 6. TO FIND LT WHEN MATRIX IS GIVEN

1. VECTOR SPACES & SUBSPACES

1. (1a) 2020

Consider the set V of all $n \times n$ real magic squares. Show that V is a vector space over R. Give examples of two distinct 2×2 magic squares.

10

2. (1b) 2017

- Let V be the vector space of all 2×2 matrices over the field R. Show that W is not a subspace of V, where
 - (i) W contains all 2×2 matrices with zero determinant.
 - (ii) W consists of all 2×2 matrices A such that $A^2 = A$.

8

3. (1a) 2014

Find one vector in \mathbb{R}^3 which generates the intersection of V and W, where V is the xy plane and W is the space generated by the vectors (1, 2, 3) and (1, -1, 1).

10

4. (2a(i)) 2012

(i) Let V be the vector space of all 2×2 matrices over the field of real numbers. Let W be the set consisting of all matrices with zero determinant. Is W a subspace of V? Justify your answer.

8

5. (1b) 2012 IFoS

(b) Show that the set of all functions which satisfy the differential equation

$$\frac{d^2f}{dx^2} + 3\frac{df}{dx} = 0$$
 is a vector space.

2. LINEAR COMBINATION, LINEAR DEPENDENCE AND INDEPENDENCE

1. (4b(ii)) 2020

(ii) Express the vector (1, 2, 5) as a linear combination of the vectors (1, 1, 1), (2, 1, 2) and (3, 2, 3), if possible. Justify your answer. 9+6=15

2. (1b) 2018

Express basis vectors e_1 = (1, 0) and e_2 = (0, 1) as linear combinations of α_1 = (2, -1) and α_2 = (1, 3).

3. (4d) 2018 IFoS

If (n + 1) vectors $\alpha_1, \alpha_2, ..., \alpha_n$, α form a linearly dependent set, then show that the vector α is a linear combination of $\alpha_1, \alpha_2, ..., \alpha_n$; provided $\alpha_1, \alpha_2, ..., \alpha_n$ form a linearly independent set.

4. (3b) 2017 IFoS

Given that the set {u, v, w} is linearly independent, examine the sets

- (i) $\{u + v, v + w, w + u\}$
- (ii) $\{u + v, u v, u 2v + 2w\}$

for linear independence.

10

10

5. (1a) 2015

The vectors $V_1 = (1, 1, 2, 4)$, $V_2 = (2, -1, -5, 2)$, $V_3 = (1, -1, -4, 0)$ and $V_4 = (2, 1, 1, 6)$ are linearly independent. Is it true? Justify your answer.

6. (2c(ii)) 2013

Show that the vectors $X_1 = (1, 1+i, i)$, $X_2 = (i, -i, 1-i)$ and $X_3 = (0, 1-2i, 2-i)$ in C^3 are linearly independent over the field of real numbers but are linearly dependent over the field of complex numbers.

7. (2c(i)) 2011

(c) (i) Show that the vectors (1, 1, 1), (2, 1, 2) and (1, 2, 3) are linearly independent in R⁽³⁾. Let T: R⁽³⁾ → R⁽³⁾ be a linear transformation defined by

$$T(x, y, z) = (x + 2y + 3z, x + 2y + 5z, 2x + 4y + 6z).$$

Show that the images of above vectors under T are linearly dependent. Give the reason for the same.

8. (4a(i)) 2010

- (i) In the n-space \mathbb{R}^n , determine whether or not the set
- $\{e_1 e_2, e_2 e_3, \dots, e_{n-1} e_n, e_n e_1\}$ is linearly independent.

3. BASIS & DIMENSIONS

1. 2c 2021

Show that $S = \{(x, 2y, 3x) : x, y \text{ are real numbers}\}$ is a subspace of $R^3(R)$. Find two bases of S. Also find the dimension of S.

2. 2a 2021 IFoS

Express the polynomial $f(x) = x^2 + 4x - 3$ over R as linear combination of polynomials $e_1 = x^2 - 2x + 5$, $e_2 = 2x^2 - 3x$, $e_3 = x + 3$. Also, show that the set $\{e_1, e_2, e_3\}$ forms a basis of all quadratic polynomials over R.

3. (3c) 2019

Let

$$A = \begin{pmatrix} 5 & 7 & 2 & 1 \\ 1 & 1 & -8 & 1 \\ 2 & 3 & 5 & 0 \\ 3 & 4 & -3 & 1 \end{pmatrix}$$

- (i) Find the rank of matrix A.
- (ii) Find the dimension of the subspace

$$V = \left\{ (x_1, \ x_2, \ x_3, \ x_4) \in \mathbb{R}^4 \,\middle|\, A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = 0 \right\}$$

15+5=20

15

4. (3a) 2019 IFoS

3. (a) Consider the vectors $x_1 = (1, 2, 1, -1)$, $x_2 = (2, 4, 1, 1)$, $x_3 = (-1, -2, 0, -2)$ and $x_4 = (3, 6, 2, 0)$ in \mathbb{R}^4 . Justify that the linear span of the set $\{x_1, x_2, x_3, x_4\}$ is a subspace of \mathbb{R}^4 , defined as

$$\{(\xi_1, \xi_2, \xi_3, \xi_4) \in \mathbb{R}^4 : 2\xi_1 - \xi_2 = 0, 2\xi_1 - 3\xi_3 - \xi_4 = 0\}$$

Can this subspace be written as $\{(\alpha, 2\alpha, \beta, 2\alpha - 3\beta) : \alpha, \beta \in \mathbb{R}\}$? What is the dimension of this subspace?

5. (2d) 2018 IFoS

Show that the vectors $\alpha_1 = (1, 0, -1)$, $\alpha_2 = (1, 2, 1)$, $\alpha_3 = (0, -3, 2)$ form a basis for \mathbb{R}^3 . Express each of the standard basis vectors as a linear combination of α_1 , α_2 , α_3 .

6. (2d) 2017

Suppose U and W are distinct four dimensional subspaces of a vector space V, where dim V = 6. Find the possible dimensions of subspace $U \cap W$.

7. (1b(ii)) 2016

If

$$W_1 = \{(x, y, z) \mid x + y - z = 0\}$$

$$W_2 = \{(x, y, z) \mid 3x + y - 2z = 0\}$$

$$W_3 = \{(x, y, z) \mid x - 7y + 3z = 0\}$$
then find dim $(W_1 \cap W_2 \cap W_3)$ and dim $(W_1 + W_2)$.

3

8. (4b) 2015

Find the dimension of the subspace of R4, spanned by the set

$$\{(1, 0, 0, 0), (0, 1, 0, 0), (1, 2, 0, 1), (0, 0, 0, 1)\}$$

Hence find its basis.

12

9. (2a) 2015 IFoS

Suppose U and W are distinct four-dimensional subspaces of a vector space V, where dim V = 6. Find the possible dimensions of $U \cap W$.

10. (2a) 2014

Let V and W be the following subspaces of R4:

$$V = \{(a, b, c, d) : b - 2c + d = 0\}$$
 and

$$W = \{(a, b, c, d) : a = d, b = 2c\}.$$

Find a basis and the dimension of (i) V, (ii) W, (iii) $V \cap W$.

15

11. (1a) 2014 IFoS

Show that $u_1 = (1, -1, 0)$, $u_2 = (1, 1, 0)$ and $u_3 = (0, 1, 1)$ form a basis for \mathbb{R}^3 . Express (5, 3, 4) in terms of u_1 , u_2 and u_3 .

12. (2a(ii)) 2013

Let V be an n-dimensional vector space and $T: V \to V$ be an invertible linear operator. If $\beta = \{X_1, X_2, ..., X_n\}$ is a basis of V, show that $\beta' = \{TX_1, TX_2, ..., TX_n\}$ is also a basis of V.

13. (1a) 2013

Find the dimension and a basis of the solution space W of the system

$$x + 2y + 2z - s + 3t = 0$$
, $x + 2y + 3z + s + t = 0$, $3x + 6y + 8z + s + 5t = 0$

8

14. (1c) 2012

(c) Prove or disprove the following statement:

12

If $B = \{h_1, h_2, h_3, h_4, h_5\}$ is a basis

If $B = \{b_1, b_2, b_3, b_4, b_5\}$ is a basis for \mathbb{R}^5 and V is a two-dimensional subspace of \mathbb{R}^5 , then V has a basis made of just two members of B.

15. (2a(ii) 2012

(ii) Find the dimension and a basis for the space W of all solutions of the following homogeneous system using matrix notation: 12

 $x_1 + 2x_2 + 3x_3 - 2x_4 + 4x_5 = 0$ $2x_1 + 4x_2 + 8x_3 + x_4 + 9x_5 = 0$ $3x_1 + 6x_2 + 13x_3 + 4x_4 + 14x_5 = 0$

16. (1a) 2012

Let $V = \mathbb{R}^3$ and $\alpha_1 = (1, 1, 2)$, $\alpha_2 = (0, 1, 3)$, $\alpha_3 = (2, 4, 5)$ and $\alpha_4 = (-1, 0, -1)$ be the elements of V. Find a basis for the intersection of the subspace spanned by $\{\alpha_1, \alpha_2\}$ and $\{\alpha_3, \alpha_4\}$.

17. (2b(i)) 2011

Show that the subspaces of \mathbb{R}^3 spanned by two sets of vectors $\{(1, 1, -1), (1, 0, 1)\}$ and $\{(1, 2, -3), (5, 2, 1)\}$ are identical. Also find the dimension of this subspace.

18. (1a) 2011 IFoS

Let V be the vector space of 2×2 matrices over the field of real numbers **R**. Let

 $W = \{A \in V \mid Trace A = 0\}$. Show that W is a subspace of V. Find a basis of W and dimension of W.

10

19. (2a) 2011 IFoS

Let $V = \{(x, y, z, u) \in \mathbb{R}^4 : y + z + u = 0\},$ $W = \{(x, y, z, u) \in \mathbb{R}^4 : x + y = 0, z = 2u\}$ be two subspaces of \mathbb{R}^4 . Find bases for V, V + W and $V \cap W$.

20. (1a) 2010 IFoS

Show that the set

$$P[t] = \{at^2 + bt + c / a, b, c \in \mathbb{R}\}$$

forms a vector space over the field **R**. Find a basis for this vector space. What is the dimension of this vector space?

8

21. (2a) 2010 IFoS

Show that the vectors

 $\alpha_1 = (1, 0, -1), \ \alpha_2 = (1, 2, 1), \ \alpha_3 = (0, -3, 2)$ form a basis for \mathbb{R}^3 . Find the components of (1, 0, 0) w.r.t. the basis $\{\alpha_1, \alpha_2, \alpha_3\}$.

4. RANGE SPACE & NULL SPACE, **RANK AND NULLITY**

1. (1b) 2020

Let $M_2(R)$ be the vector space of all 2×2 real matrices. Let $B = \begin{bmatrix} 1 & -1 \\ -4 & 4 \end{bmatrix}$.

Suppose $T: M_2(R) \to M_2(R)$ is a linear transformation defined by T(A) = BA. Find the rank and nullity of T. Find a matrix A which maps to the null matrix.

2. (3b) 2020

Let F be a subfield of complex numbers and T a function from $F^3 \to F^3$ defined by $T(x_1, x_2, x_3) = (x_1 + x_2 + 3x_3, 2x_1 - x_2, -3x_1 + x_2 - x_3)$. What are the conditions on a, b, c such that (a, b, c) be in the null space of T? Find the nullity of T.

3. (3a) 2017

Consider the matrix mapping $A: \mathbb{R}^4 \to \mathbb{R}^3$, where $A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3 \end{pmatrix}$. Find a basis

and dimension of the image of A and those of the kernel A.

4. (2d) 2014 IFoS

Show that the mapping $T: V_2(\overline{R}) \to V_3(\overline{R})$ defined as T(a, b) = (a + b, a - b, b) is a linear transformation. Find the range, rank and nullity of T. 10

5. (2a) 2013 IFoS

) Let V be the vector space of 2 × 2 matrices over \mathbb{R} and let $M = \begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix}$.

Let $F: V \to V$ be the linear map defined by F(A) = MA. Find a basis and the dimension of

- (i) the kernel of W of F
- (ii) the image U of F.

15

15

6. (3c) 2013 IFoS

Let F be a subfield of complex numbers and T a function from $F^3 o F^3$ defined by $T(x_1, x_2, x_3) = (x_1 + x_2 + 3x_3, 2x_1 - x_2, -3x_1 + x_2 - x_3)$. What are the conditions on (a, b, c) such that (a, b, c) be in the null space of T? Find the nullity of T.

7. (1d) 2012

(d) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by

$$T(\alpha, \beta, \gamma) = (\alpha + 2\beta - 3\gamma, 2\alpha + 5\beta - 4\gamma, \alpha + 4\beta + \gamma)$$

Find a basis and the dimension of the image of T and the kernel of T .

8. (2b(ii)) 2011

 (ii) Find the nullity and a basis of the null space of the linear transformation A: R⁽⁴⁾ → R⁽⁴⁾ given by the matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}.$$

9. (1b) 2011 IFoS

Find the linear transformation from \mathbb{R}^3 into \mathbb{R}^3 which has its range the subspace spanned by (1, 0, -1), (1, 2, 2).

10. (1b) 2010

(b) What is the null space of the differentiation transformation

$$\frac{d}{dx}: P_n \to P_n$$

where P_n is the space of all polynomials of degree $\leq n$ over the real numbers? What is the null space of the second derivative as a transformation of P_n ? What is the null space of the kth derivative?

*ALGEBRA OF LTs

1. (4a(ii)) 2010

(ii) Let T be a linear transformation from a vector space V over reals into V such that $T - T^2 = I$. Show that T is invertible.

20

5. TO FIND MATRIX OF A LT

1. 1b 2021

Find the matrix associated with the linear operator on $V_3(R)$ defined by T(a, b, c) = (a + b, a - b, 2c) with respect to the ordered basis $B = \{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}.$

10

2. (2a) 2020

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x, y, z) = (2x, -3y, x + y), and $B_1 = \{(-1, 2, 0), (0, 1, -1), (3, 1, 2)\}$ be a basis of \mathbb{R}^3 . Find the matrix representation of T relative to the basis B_1 .

3. (1c) 2019

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map such that T(2, 1) = (5, 7) and T(1, 2) = (3, 3). If A is the matrix corresponding to T with respect to the standard bases e_1 , e_2 , then find Rank (A).

10

4. (1a) 2019 IFoS

1. (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator on \mathbb{R}^3 defined by T(x, y, z) = (2y + z, x - 4y, 3x). Find the matrix of T in the basis $\{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$.

5. (3c) 2018 IFoS

Let $T:V_2(R)\to V_2(R)$ be a linear transformation defined by T(a,b)=(a,a+b). Find the matrix of T, taking $\{e_1,e_2\}$ as a basis for the domain and $\{(1,1),(1,-1)\}$ as a basis for the range.

10

6. (2a(i)) 2016

If $M_2(R)$ is space of real matrices of order 2×2 and $P_2(x)$ is the space of real polynomials of degree at most 2, then find the matrix representation of $T: M_2(R) \to P_2(x)$, such that $T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + c + (a - d)x + (b + c)x^2$, with respect to the standard bases of $M_2(R)$ and $P_2(x)$. Further find the null space of T.

7. (2a(ii)) 2016

If $T: P_2(x) \to P_3(x)$ is such that $T(f(x)) = f(x) + 5 \int_0^x f(t) dt$, then choosing $\{1, 1+x, 1-x^2\}$ and $\{1, x, x^2, x^3\}$ as bases of $P_2(x)$ and $P_3(x)$ respectively, find the matrix of T.

6

8. (1a) 2016 IFoS

Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be given by

T(x, y, z) = (2x - y, 2x + z, x + 2z, x + y + z).

Find the matrix of T with respect to standard basis of \mathbb{R}^3 and \mathbb{R}^4 (i.e., (1,0,0),(0,1,0), etc.). Examine if T is a linear map.

9. (2d) 2016 IFoS

Let T be a linear map such that $T: V_3 \to V_2$ defined by $T(e_1) = 2f_1 - f_2$, $T(e_2) = f_1 + 2f_2$, $T(e_3) = 0f_1 + 0f_2$, where e_1 , e_2 , e_3 and f_1 , f_2 are standard basis in V_3 and V_2 . Find the matrix of T relative to these basis.

Further take two other basis $B_1[(1, 1, 0) (1, 0, 1) (0, 1, 1)]$ and $B_2[(1, 1) (1, -1)]$. Obtain the matrix T_1 relative to B_1 and B_2 .

10. (3a) 2015

Let $V = \mathbb{R}^3$ and $T \in A(V)$, for all $a_i \in A(V)$, be defined by

$$T(a_1, a_2, a_3) = (2a_1 + 5a_2 + a_3, -3a_1 + a_2 - a_3, -a_1 + 2a_2 + 3a_3)$$

What is the matrix T relative to the basis

$$V_1 = (1, 0, 1)$$
 $V_2 = (-1, 2, 1)$ $V_3 = (3, -1, 1)$?

11. (1b) 2015 IFoS

Let G be the linear operator on \mathbb{R}^3 defined by

$$G(x, y, z) = (2y+z, x-4y, 3x)$$

Find the matrix representation of G relative to the basis

$$S = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$$

12. 4d 2014 IFoS

Consider the linear mapping $F: \mathbb{R}^2 \to \mathbb{R}^2$ given as F(x, y) = (3x + 4y, 2x - 5y) with usual basis.

Find the matrix associated with the linear transformation relative to the basis $S = \{u_1, u_2\}$ where $u_1 = (1, 2), u_2 = (2, 3).$ 10

13. (2a(i)) 2013

Let P_n denote the vector space of all real polynomials of degree atmost n and $T: P_2 \rightarrow P_3$ be a linear transformation given by

$$T(p(x)) = \int_0^x p(t)dt, \qquad p(x) \in P_2.$$

Find the matrix of T with respect to the bases $\{1, x, x^2\}$ and $\{1, x, 1+x^2, 1+x^3\}$ of P_2 and P_3 respectively. Also, find the null space of T.

14. (2b(i)) 2012

(i) Consider the linear mapping $f: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$f(x, y) = (3x + 4y, 2x - 5y)$$

Find the matrix A relative to the basis ((1, 0), (0, 1)) and the matrix B relative to the basis {(1, 2}, (2, 3)}. 12

15. (2a) 2012 IFoS

Let $f: \mathbb{R} \to \mathbb{R}^3$ be a linear transformation defined by f(a, b, c) = (a, a + b, 0).

Find the matrices A and B respectively of the linear transformation f with respect to the standard basis (e_1, e_2, e_3) and the basis 10 Cilences (e'_1, e'_2, e'_3) where $e'_1 = (1, 1, 0), e'_2 = (0, 1, 1), ...$ $e_3' = (1, 1, 1).$

Also, show that there exists an invertible matrix P such that

$$B = PAP$$

16. (3a) 2012 IFoS

Find the matrix representation of linear transformation T on V_3 (IR) defined as T(a, b, c) = (2b + c, a - 4b, 3a)

' corresponding to the basis

$$B = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}.$$

6. TO FIND LT WHEN MATRIX IS GIVEN

1. (2c) 2016

If $A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 1 & -1 \\ 1 & 2 & 3 \end{bmatrix}$ is the matrix representation of a linear transformation

 $T: P_2(x) \to P_2(x)$ with respect to the bases $\{1-x, x(1-x), x(1+x)\}$ and $\{1, 1+x, 1+x^2\}$, then find T.

18

2. (2a) 2010

2. (a) Let $M = \begin{pmatrix} 4 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$. Find the unique linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ so that M is the matrix of T with respect to the basis

 $\beta = \{ \upsilon_1 = (1,\,0,\,0),\, \upsilon_2 = (1,\,1,\,0),\, \upsilon_3 = (1,\,1,\,1) \}$ of \mathbb{R}^3 and

$$\beta' = \{ w_1 = (1, 0), w_2 = (1, 1) \}$$
 of \mathbb{R}^2 . Also find $T(x, y, z)$.

20