HW 3

Student Name

9/24/2024

1

Let $E[X] = \mu$. Show that $Var[X] := E[(X - E[X])^2] = E[X^2] - (E[X])^2$. Note, all you have to do is show the second equality (the first is our definition from class).

```
"E[X-E[X]^2] = E[X^2 - 2XE[X]+(E[X])^2] By Foil

= E[X^2] - E[2XE[X]] + E[E[X]^2] Distribute the Expectation

= E[X^2] - 2E[X]E[X] + E[X]^2-> Because E[x] is constant

= E[X^2] - 2(E[X])^2 + E[X]^2 Multiplication of second term

= E[X^2] - (E[X])^2 Combine like terms"
```

```
## [1] "E[X-E[X]^2] = E[X^2 - 2XE[X]+(E[X])^2] By Foil\n = E[X^2] - E[2XE[X]] + E[E [X]^2] Distribute the Expectation\n = E[X^2] - 2E[X]E[X] + E[X]^2 Because E[x] is constant\n = E[X^2] - 2(E[X])^2 + E[X]^2 Multiplication of second term\n = E[X^2] - (E[X])^2 Combine like terms"
```

2

In the computational section of this homework, we will discuss support vector machines and tree-based methods. I will begin by simulating some data for you to use with SVM.

```
library(e1071)
```

```
## Warning: package 'e1071' was built under R version 4.2.3
```

```
set.seed(1)
x=matrix(rnorm(200*2),ncol=2)
x[1:100,]=x[1:100,]+2
x[101:150,]=x[101:150,]-2
y=c(rep(1,150),rep(2,50))
dat=data.frame(x=x,y=as.factor(y))
plot(x, col=y)
```


print(dat)

```
##
                             x.2 y
               x.1
## 1
        1.37354619
                    2.4094018397 1
## 2
        2.18364332 3.6888732862 1
## 3
                    3.5865884334 1
        1.16437139
        3.59528080
## 4
                   1.6690921993 1
## 5
        2.32950777 -0.2852355353 1
## 6
        1.17953162 4.4976615898 1
## 7
        2.48742905 2.6670661668 1
## 8
        2.73832471 2.5413273360 1
## 9
        2.57578135
                  1.9866004769 1
## 10
        1.69461161 2.5101084230 1
## 11
        3.51178117
                    1.8356241682 1
## 12
        2.38984324
                   2.4206946433 1
## 13
        1.37875942 1.5997532560 1
## 14
       -0.21469989
                    0.6297921225 1
## 15
        3.12493092 2.9878382675 1
                    3.5197450255 1
## 16
        1.95506639
## 17
        1.98380974
                    1.6912594308 1
## 18
        2.94383621 0.7467102444 1
## 19
        2.82122120
                   2.6422413057 1
## 20
        2.59390132 1.9552908631 1
## 21
        2.91897737
                    0.2667815932 1
## 22
                    2.0021318597 1
        2.78213630
## 23
        2.07456498
                   1.3696996661 1
## 24
        0.01064830 1.6590314201 1
## 25
        2.61982575 0.8434276374 1
## 26
        1.94387126 3.8031419079 1
## 27
        1.84420449
                    1.6688679636 1
## 28
        0.52924762
                    0.3944865877 1
## 29
        1.52184994 2.1971934387 1
## 30
        2.41794156 2.2631756464 1
                   1.0141732996 1
## 31
        3.35867955
        1.89721227 -0.8889206717 1
## 32
## 33
        2.38767161 1.3595182974 1
## 34
        1.94619496 2.5705076359 1
## 35
        0.62294044 1.9402767240 1
## 36
        1.58500544
                   1.9018212560 1
## 37
        1.60571005 2.5608207286 1
## 38
                   0.8135413614 1
        1.94068660
## 39
        3.10002537
                    3.0967770443 1
## 40
        2.76317575 1.9946559717 1
## 41
        1.83547640
                    2.7073106674 1
## 42
        1.74663832
                   3.0341077347 1
## 43
        2.69696338
                  2.2234804149 1
## 44
        2.55666320 1.1212923871 1
## 45
        1.31124431 3.1629645560 1
## 46
        1.29250484 -0.0001649448 1
## 47
        2.36458196 1.4552092600 1
## 48
        2.76853292 1.7443292908 1
## 49
                    1.8338789632 1
        1.88765379
## 50
        2.88110773
                    3.0204639088 1
## 51
        2.39810588 2.1362218931 1
```

52 1.38797361 2.4071676034 1 ## 53 2.34111969 1.9303451870 1 ## 54 0.87063690 1.7523356584 1 ## 55 3.43302370 2.6955508066 1 ## 56 3.98039990 3.1462283572 1 ## 57 1.63277852 -0.4030962149 1 ## 58 0.95586537 2.5727395552 1 ## 59 2.56971963 2.3747244068 1 ## 60 1.86494540 1.5747322784 1 ## 61 4.40161776 2.9510128076 1 ## 62 1.96076000 1.6107628183 1 ## 63 2.68973936 1.7156693382 1 ## 64 2.02800216 2.8574097781 1 ## 65 1.25672679 3.7196272991 1 ## 66 2.18879230 2.2700549009 1 ## 67 0.19504137 1.5778159902 1 ## 68 3.46555486 0.8108867051 1 ## 69 2.15325334 1.6689670211 1 ## 70 4.17261167 1.0601706735 1 ## 71 2.47550953 1.7410674169 1 ## 72 1.29005357 2.3943791682 1 ## 73 1.1481429080 1 2.61072635 ## 74 1.06590237 4.6491668811 1 ## 75 0.74636660 2.1560116757 1 ## 76 2.29144624 3.1302072675 1 ## 77 1.55670813 -0.2891239798 1 ## 78 2.00110535 2.7410011572 1 ## 79 2.07434132 0.6837548395 1 ## 80 1.41047905 2.9198036776 1 ## 81 1.43133127 2.3981301555 1 ## 82 1.86482138 1.5924714207 1 ## 83 3.17808700 3.3242586302 1 ## 84 0.47643320 1.2987683308 1 ## 85 2.59394619 1.4193856958 1 2.33295037 0.9989278190 1 ## 86 ## 87 3.06309984 1.3318213932 1 ## 88 2.9451849534 1 1.69581608 2.37001881 ## 89 2.4337021495 1 ## 90 2.26709879 3.0051592177 1 ## 91 1.45747997 1.6098813359 1 ## 92 3.20786781 2.3763702918 1 ## 93 2.2441649245 1 3.16040262 ## 94 2.70021365 0.5737426576 1 ## 95 3.58683345 3.7784292875 1 ## 96 2.55848643 2.1344476609 1 ## 97 0.72340779 2.7655989992 1 ## 98 1.42673459 2.9551366769 1 ## 99 0.77538739 1.9494342986 1 ## 100 1.52659936 1.6941845802 1 101 -2.62036668 -1.1063262976 1 ## 102 -1.95788413 -3.0472981491 1 ## 103 -2.91092165 -0.0286626138 1

104 -1.84197123 -2.3836321063 1 ## 105 -2.65458464 -0.3458546977 1 ## 106 -0.23271273 -0.4877873060 1 ## 107 -1.28329252 -1.9170342664 1 ## 108 -1.08982577 -1.4327790851 1 ## 109 -1.61581464 -3.0245484795 1 ## 110 -0.31782392 -1.6769934970 1 ## 111 -2.63573645 -0.9563875416 1 ## 112 -2.46164473 -1.9009215131 1 ## 113 -0.56771776 -2.4541369092 1 ## 114 -2.65069635 -2.6557818525 1 ## 115 -2.20738074 -2.0359224226 1 ## 116 -2.39280793 -0.9308385393 1 ## 117 -2.31999287 -2.4839749303 1 ## 118 -2.27911330 -2.1210101113 1 ## 119 -1.50581167 -3.2941400038 1 ## 120 -2.17733048 -1.5056871640 1 ## 121 -2.50595746 -0.6920984799 1 ## 122 -0.65696117 -0.5029589906 1 ## 123 -2.21457941 -1.1852972691 1 ## 124 -2.17955653 -3.8697887902 1 ## 125 -2.10019074 -1.5179704959 1 ## 126 -1.28733369 -1.5438643967 1 ## 127 -2.07356440 -2.3534002858 1 ## 128 -2.03763417 -1.8295105291 1 ## 129 -2.68166048 -2.8640359541 1 ## 130 -2.32427027 -1.3207692260 1 ## 131 -1.93983956 -2.3271010147 1 ## 132 -2.58889449 -3.5690821851 1 ## 133 -1.46850381 -2.3674507562 1 ## 134 -3.51839408 -0.6355650709 1 ## 135 -1.69344214 -2.3342813647 1 ## 136 -3.53644982 -1.2672499578 1 ## 137 -2.30097613 -1.0534143598 1 ## 138 -2.52827990 -1.9956012957 1 ## 139 -2.65209478 -2.3523223055 1 ## 140 -2.05689678 -2.5296955091 1 ## 141 -3.91435943 -1.2604107744 1 ## 142 -0.82341669 -3.0634574155 1 ## 143 -3.66497244 -1.7537891565 1 ## 144 -2.46353040 -2.2894993666 1 ## 145 -3.11592011 -4.2648893565 1 ## 146 -2.75081900 -3.4088504561 1 ## 147 0.08716655 -1.0839806712 1 ## 148 -1.98260438 -2.1912789505 1 ## 149 -3.28630053 -1.1967167839 1 ## 150 -3.64060553 -0.1125255367 1 ## 151 0.45018710 1.4738811811 2 ## 152 -0.01855983 0.6772684923 2 ## 153 -0.31806837 0.3799626866 2 ## 154 -0.92936215 -0.1927984265 2 ## 155 -1.48746031 1.5778917949 2

```
## 156 -1.07519230 0.5962341093 2
       1.00002880 -1.1735769409 2
## 158 -0.62126669 -0.1556425349 2
## 159 -1.38442685 -1.9189098203 2
      1.86929062 -0.1952588461 2
## 160
## 161 0.42510038 -2.5923276699 2
## 162 -0.23864710 1.3140021672 2
## 163
       1.05848305 -0.6355430010 2
## 164
      0.88642265 -0.4299788387 2
## 165 -0.61924305 -0.1693183323 2
## 166
      2.20610246 0.6122181740 2
## 167 -0.25502703 0.6783401772 2
## 168 -1.42449465 0.5679519725 2
## 169 -0.14439960 -0.5725426039 2
## 170 0.20753834 -1.3632912563 2
## 171
       2.30797840 -0.3887222443 2
## 172 0.10580237 0.2779141325 2
## 173 0.45699881 -0.8230811216 2
## 174 -0.07715294 -0.0688409345 2
## 175 -0.33400084 -1.1676623261 2
## 176 -0.03472603 -0.0083090142 2
      0.78763961 0.1288554016 2
## 177
## 178 2.07524501 -0.1458756285 2
## 179
       1.02739244 -0.1639109567 2
## 180
       1.20790840 1.7635520028 2
## 181 -1.23132342 0.7625865124 2
## 182 0.98389557 1.1114310807 2
## 183 0.21992480 -0.9232069528 2
## 184 -1.46725003 0.1643418384 2
## 185
      0.52102274 1.1548251871 2
## 186 -0.15875460 -0.0565214245 2
       1.46458731 -2.1293606482 2
## 187
## 188 -0.76608200 0.3448457621 2
## 189 -0.43021175 -1.9049554456 2
## 190 -0.92610950 -0.8111701531 2
## 191 -0.17710396 1.3240043213 2
## 192 0.40201178 0.6156368493 2
## 193 -0.73174817 1.0916689555 2
## 194 0.83037317 0.3066048615 2
## 195 -1.20808279 -0.1101587625 2
## 196 -1.04798441 -0.9243127731 2
## 197 1.44115771 1.5929137537 2
## 198 -1.01584747 0.0450105981 2
## 199 0.41197471 -0.7151284007 2
## 200 -0.38107605 0.8652230997 2
```

2.1

Quite clearly, the above data is not linearly separable. Create a training-testing partition with 100 random observations in the training partition. Fit an svm on this training data using the radial kernel, and tuning parameters $\gamma = 1$, cost = 1. Plot the svm on the training data.

```
set.seed(1)

sample <- sample(1:nrow(dat), 0.5 * nrow(dat))
train <- dat[sample, ]
test <- dat[-sample, ]
svm_fit = svm(y~., data =train, kernel = "radial", cost =1, gamma= 1)
svm_fit</pre>
```

```
##
## Call:
## svm(formula = y ~ ., data = train, kernel = "radial", cost = 1, gamma = 1)
##
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: radial
## cost: 1
##
## Number of Support Vectors: 41
```

```
plot(svm_fit, train)
```

SVM classification plot


```
train
```

```
##
               x.1
                            x.2 y
        3.46555486
                   0.810886705 1
## 68
## 167 -0.25502703
                    0.678340177 2
## 129 -2.68166048 -2.864035954 1
## 162 -0.23864710
                  1.314002167 2
## 43
        2.69696338 2.223480415 1
## 14
       -0.21469989 0.629792122 1
## 187
      1.46458731 -2.129360648 2
## 51
        2.39810588
                  2.136221893 1
## 85
        2.59394619 1.419385696 1
## 21
        2.91897737 0.266781593 1
## 106 -0.23271273 -0.487787306 1
## 182 0.98389557 1.111431081 2
## 74
        1.06590237
                   4.649166881 1
## 7
        2.48742905 2.667066167 1
## 73
        2.61072635 1.148142908 1
## 79
        2.07434132 0.683754840 1
## 37
        1.60571005
                    2.560820729 1
## 105 -2.65458464 -0.345854698 1
## 110 -0.31782392 -1.676993497 1
## 165 -0.61924305 -0.169318332 2
## 34
        1.94619496 2.570507636 1
## 190 -0.92610950 -0.811170153 2
## 126 -1.28733369 -1.543864397 1
## 89
        2.37001881 2.433702150 1
## 172 0.10580237 0.277914132 2
## 33
        2.38767161 1.359518297 1
## 84
        0.47643320 1.298768331 1
## 163 1.05848305 -0.635543001 2
## 70
        4.17261167 1.060170673 1
## 188 -0.76608200 0.344845762 2
        1.74663832 3.034107735 1
## 42
## 166 2.20610246 0.612218174 2
## 111 -2.63573645 -0.956387542 1
## 148 -1.98260438 -2.191278951 1
## 156 -1.07519230 0.596234109 2
## 20
        2.59390132 1.955290863 1
## 44
        2.55666320 1.121292387 1
## 121 -2.50595746 -0.692098480 1
## 87
        3.06309984 1.331821393 1
## 176 -0.03472603 -0.008309014 2
## 173 0.45699881 -0.823081122 2
## 40
        2.76317575 1.994655972 1
## 25
        2.61982575 0.843427637 1
## 119 -1.50581167 -3.294140004 1
## 122 -0.65696117 -0.502958991 1
## 39
        3.10002537 3.096777044 1
## 170 0.20753834 -1.363291256 2
## 134 -3.51839408 -0.635565071 1
## 24
        0.01064830 1.659031420 1
## 195 -1.20808279 -0.110158762 2
## 130 -2.32427027 -1.320769226 1
```

```
## 45
        1.31124431 3.162964556 1
## 146 -2.75081900 -3.408850456 1
        2.78213630 2.002131860 1
## 115 -2.20738074 -2.035922423 1
## 104 -1.84197123 -2.383632106 1
## 161 0.42510038 -2.592327670 2
## 144 -2.46353040 -2.289499367 1
## 145 -3.11592011 -4.264889356 1
## 103 -2.91092165 -0.028662614 1
## 75
        0.74636660 2.156011676 1
## 13
        1.37875942 1.599753256 1
## 159 -1.38442685 -1.918909820 2
## 177 0.78763961 0.128855402 2
## 23
        2.07456498 1.369699666 1
## 189 -0.43021175 -1.904955446 2
## 174 -0.07715294 -0.068840934 2
## 141 -3.91435943 -1.260410774 1
        1.52184994 2.197193439 1
## 108 -1.08982577 -1.432779085 1
        2.76853292 1.744329291 1
## 48
## 175 -0.33400084 -1.167662326 2
## 149 -3.28630053 -1.196716784 1
## 191 -0.17710396 1.324004321 2
## 31
        3.35867955 1.014173300 1
## 102 -1.95788413 -3.047298149 1
## 17
        1.98380974 1.691259431 1
## 186 -0.15875460 -0.056521425 2
## 133 -1.46850381 -2.367450756 1
## 197 1.44115771 1.592913754 2
## 83
        3.17808700 3.324258630 1
## 118 -2.27911330 -2.121010111 1
## 114 -2.65069635 -2.655781852 1
## 90
        2.26709879 3.005159218 1
## 150 -3.64060553 -0.112525537 1
## 107 -1.28329252 -1.917034266 1
## 64
        2.02800216 2.857409778 1
## 94
        2.70021365 0.573742658 1
## 179
      1.02739244 -0.163910957 2
        2.55848643 2.134447661 1
## 96
## 169 -0.14439960 -0.572542604 2
## 60
        1.86494540 1.574732278 1
## 193 -0.73174817 1.091668956 2
## 93
        3.16040262 2.244164924 1
## 180
       1.20790840 1.763552003 2
## 10
        1.69461161 2.510108423 1
## 1
        1.37354619 2.409401840 1
## 196 -1.04798441 -0.924312773 2
## 59
       2.56971963 2.374724407 1
## 26
        1.94387126 3.803141908 1
```

2.2

Notice that the above decision boundary is decidedly non-linear. It seems to perform reasonably well, but there are indeed some misclassifications. Let's see if increasing the cost ¹ helps our classification error rate. Refit the svm with the radial kernel, $\gamma=1$, and a cost of 10000. Plot this svm on the training data.

```
svm_fit2 = svm(y~., data =train, kernel = "radial", cost =1000, gamma = 1)
plot(svm_fit2, train)
```

SVM classification plot

2.3

It would appear that we are better capturing the training data, but comment on the dangers (if any exist), of such a model.

This runs the risk of overfitting as the test data may not fit very well compared to the training data

2.4

Create a confusion matrix by using this sym to predict on the current testing partition. Comment on the confusion matrix. Is there any disparity in our classification results?

```
#remove eval = FALSE in above
table(true=dat[-sample,"y"], pred=predict(svm_fit2, newdata=dat[-sample,]))
```

```
## pred
## true 1 2
## 1 66 13
## 2 2 19
```

Yes, 1 seems to be predicted correctly much more than 2. ##

Is this disparity because of imbalance in the training/testing partition? Find the proportion of class 2 in your training partition and see if it is broadly representative of the underlying 25% of class 2 in the data as a whole.

```
y_column <- train[['y']]
y_column_int <- (as.numeric(as.character(y_column)))
count_2 <- sum(y_column_int == 2)
count_2 / 100</pre>
```

```
## [1] 0.29
```

Student Response There does not seem to be a huge difference between the distribution of Y in the training data versus the data as a whole. There is only a difference of 4 between the 29 present in the training versus the 25 percent of the actual data ##

Let's try and balance the above to solutions via cross-validation. Using the tune function, pass in the training data, and a list of the following cost and γ values: {0.1, 1, 10, 100, 1000} and {0.5, 1,2,3,4}. Save the output of this function in a variable called tune.out.

```
##
## Parameter tuning of 'svm':
##
   - sampling method: 10-fold cross validation
##
##
##
   - best parameters:
##
   gamma cost
##
      0.5
##
##
   - best performance: 0.12
##
##
  - Detailed performance results:
##
      gamma cost error dispersion
## 1
        0.5 1e-01 0.28 0.15491933
## 2
        1.0 1e-01 0.25 0.13540064
## 3
        2.0 1e-01 0.28 0.14757296
## 4
       3.0 1e-01 0.28 0.15491933
## 5
       4.0 1e-01 0.29 0.14491377
## 6
       0.5 1e+00 0.12 0.07888106
## 7
       1.0 1e+00 0.14 0.09660918
## 8
        2.0 1e+00 0.15 0.10801234
## 9
        3.0 1e+00 0.15 0.10801234
## 10
       4.0 1e+00 0.16 0.09660918
## 11
        0.5 1e+01 0.15 0.10801234
        1.0 1e+01 0.16 0.10749677
## 12
        2.0 1e+01 0.19 0.15238839
## 13
## 14
        3.0 1e+01 0.20 0.16329932
## 15
        4.0 1e+01 0.18 0.13984118
## 16
        0.5 1e+02 0.17 0.11595018
## 17
        1.0 1e+02 0.21 0.15238839
## 18
        2.0 1e+02 0.18 0.14757296
## 19
        3.0 1e+02 0.20 0.13333333
       4.0 1e+02 0.21 0.11972190
## 20
## 21
        0.5 1e+03 0.23 0.14944341
## 22
        1.0 1e+03 0.20 0.14142136
## 23
       2.0 1e+03 0.23 0.12516656
        3.0 1e+03 0.27 0.11595018
## 24
        4.0 1e+03 0.31 0.15951315
## 25
```

I will take tune.out and use the best model according to error rate to test on our data. I will report a confusion matrix corresponding to the 100 predictions.

```
table(true=dat[-sample,"y"], pred=predict(tune.out$best.model, newdata=dat[-sample,]))
```

```
## pred
## true 1 2
## 1 72 7
## 2 1 20
```

2.5

Comment on the confusion matrix. How have we improved upon the model in question 2 and what qualifications are still necessary for this improved model.

The confusion matrix seems to assert our new svm model better fits the testing data. The gamma and cost that we used initially are present in our tune function, so we know that our new gamma and our new cost variable will at least be as good as the ones we had before. However, we still need to qualify that ther may be a better polynomial kernel or different combinations that we have not used yet.

3

Let's turn now to decision trees.

```
library(kmed)

## Warning: package 'kmed' was built under R version 4.2.3

data(heart)
library(tree)

## Warning: package 'tree' was built under R version 4.2.3
```

3.1

The response variable is currently a categorical variable with four levels. Convert heart disease into binary categorical variable. Then, ensure that it is properly stored as a factor.

hist(heart\$class)

Histogram of heart\$class


```
heart$cp <- as.numeric(as.character(heart$cp))
heart$sex <- as.factor(heart$sex)
heart$fbs <- as.factor(heart$fbs)
heart$exang <- as.factor(heart$exang)
heart$class <- as.numeric(heart$class)
High <- ifelse(heart$cp <= 2, "low", "high")
High <- as.factor(High)
heart$high <- High</pre>
```

															_
	##		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	
	##	1	63	TRUE	1	145	233	TRUE	2	150	FALSE	2.3	3	0	
	##	2	67	TRUE	4	160	286	FALSE	2	108	TRUE	1.5	2	3	
	##	3	67	TRUE	4	120	229	FALSE	2	129	TRUE	2.6	2	2	
	##	4	37	TRUE	3	130	250	FALSE	0	187	FALSE	3.5	3	0	
	##	5	41	FALSE	2	130	204	FALSE	2	172	FALSE	1.4	1	0	
	##	6	56	TRUE	2	120	236	FALSE	0	178	FALSE	0.8	1	0	
	##	7	62	FALSE	4	140	268	FALSE	2	160	FALSE	3.6	3	2	
	##	8	57	FALSE	4	120	354	FALSE	0	163	TRUE	0.6	1	0	
	##	9	63	TRUE	4	130	254	FALSE	2	147	FALSE	1.4	2	1	
	##	10	53	TRUE	4	140	203	TRUE	2	155	TRUE	3.1	3	0	
	##	11	57	TRUE	4	140	192	FALSE	0	148	FALSE	0.4	2	0	
	##	12	56	FALSE	2	140	294	FALSE	2	153	FALSE	1.3	2	0	
	##	13	56	TRUE	3	130	256	TRUE	2	142	TRUE	0.6	2	1	
	##	14	44	TRUE	2	120	263	FALSE	0	173	FALSE	0.0	1	0	
	##	15	52	TRUE	3	172	199	TRUE	0	162	FALSE	0.5	1	0	
	##	16	57	TRUE	3	150		FALSE	0		FALSE		1	0	
	##	17	48	TRUE	2	110	229	FALSE	0		FALSE	1.0	3	0	
	##		54	TRUE	4	140		FALSE	0		FALSE	1.2	1	0	
	##			FALSE	3	130		FALSE	0		FALSE		1	0	
	##		49	TRUE	2	130		FALSE	0		FALSE	0.6	1	0	
	##		64	TRUE	1	110		FALSE	2		TRUE	1.8	2	0	
	##			FALSE	1	150	283	TRUE	2		FALSE	1.0	1	0	
	##		58	TRUE	2	120		FALSE	2		FALSE		2	0	
	##		58	TRUE	3	132		FALSE	2		FALSE	3.2	1	2	
	##		60	TRUE	4	130		FALSE	2		TRUE	2.4		2	
	##			FALSE	3	120		FALSE	0		FALSE			0	
	##			FALSE	3	120		FALSE	0		FALSE	0.0	1	0	
	##			FALSE	1	150		FALSE	0		FALSE	2.6	3	0	
	## ##		43 40	TRUE TRUE	4	150 110		FALSE FALSE	0 2		FALSE TRUE	1.5	1 2	0 0	
												2.0			
	##			FALSE	1	140		FALSE	0		FALSE	1.8	1	2	
	##	32	60 64	TRUE TRUE	4 3	117 140	230	TRUE FALSE	0 0	160	TRUE FALSE	1.4 0.0	1 1	2 0	
	##		59	TRUE	4	135		FALSE	0		FALSE	0.5	2	0	
	##		44	TRUE	3	130		FALSE	0	179		0.4	1	0	
	##		42	TRUE	4	140		FALSE	0		FALSE	0.0	1	0	
	##		43	TRUE	4	120		FALSE	2	120	TRUE	2.5	2	0	
	##		57	TRUE	4	150		FALSE	2	112	TRUE	0.6	2	1	
	##		55	TRUE	4	132		FALSE	0	132	TRUE	1.2	2	1	
	##		61	TRUE	3			TRUE	0	137	TRUE	1.0	2	0	
	##		65	FALSE	4			FALSE	2		FALSE	1.0	2	3	
	##		40	TRUE	1	140		FALSE	0	178	TRUE	1.4	1	0	
	##	43	71	FALSE	2	160		FALSE	0		FALSE	0.4	1	2	
	##	44	59	TRUE	3	150		TRUE	0		FALSE	1.6	1	0	
	##	45		FALSE	4	130		FALSE	2		FALSE	0.0	1	0	
	##	46	58	TRUE	3	112		FALSE	2		FALSE	2.5	2	1	
	##	47	51	TRUE	3	110	175	FALSE	0	123	FALSE	0.6	1	0	
	##	48	50	TRUE	4	150	243	FALSE	2	128	FALSE	2.6	2	0	
	##	49	65	FALSE	3	140	417	TRUE	2	157	FALSE	0.8	1	1	
	##	50	53	TRUE	3	130	197	TRUE	2	152	FALSE	1.2	3	0	
	##	51	41	FALSE	2	105	198	FALSE	0	168	FALSE	0.0	1	1	
-															

•														
	##	52	65	TRUE	4	120	177	FALSE	0	140	FALSE	0.4	1	0
	##	53	44	TRUE	4	112	290	FALSE	2	153	FALSE	0.0	1	1
	##	54	44	TRUE	2	130	219	FALSE	2	188	FALSE	0.0	1	0
	##	55	60	TRUE	4	130	253	FALSE	0	144	TRUE	1.4	1	1
	##	56	54	TRUE	4	124	266	FALSE	2	109	TRUE	2.2	2	1
	##	57	50	TRUE	3	140		FALSE	0	163	FALSE		2	1
	##		41		4	110		FALSE	2		FALSE		1	0
	##		54	TRUE	3	125		FALSE	2		FALSE		3	1
	##		51	TRUE	1	125		FALSE	2	125			1	1
	##				4	130		FALSE	0	142			2	0
	##			FALSE	3	142		FALSE			TRUE		3	0
	##		58		4	128		FALSE	2		TRUE		2	3
	##			FALSE	3	135		TRUE	0		FALSE		1	0
	##		54		4	120		FALSE	0		FALSE		2	1
	##		60	TRUE	4	145		FALSE	2		TRUE		2	2
	##		60	TRUE	3	140		FALSE	2		FALSE		2	0
	##		54	TRUE	3	150		FALSE	2		FALSE		1	0
	##		59	TRUE	4	170		FALSE	2		TRUE		3	0
	##	70	46		3	150	231	FALSE	0	147	FALSE	3.6	2	0
	##	71	65	FALSE	3	155		FALSE	0	148	FALSE	0.8	1	0
	##	72	67	TRUE	4	125	254	TRUE	0	163	FALSE	0.2	2	2
	##	73	62	TRUE	4	120	267	FALSE	0	99	TRUE	1.8	2	2
	##	74	65	TRUE	4	110	248	FALSE	2	158	FALSE	0.6	1	2
	##	75	44	TRUE	4	110	197	FALSE	2	177	FALSE	0.0	1	1
	##	76	65	FALSE	3	160	360	FALSE	2	151	FALSE	0.8	1	0
	##	77	60	TRUE	4	125	258	FALSE	2	141	TRUE	2.8	2	1
	##	78	51	FALSE	3	140	308	FALSE	2	142	FALSE	1.5	1	1
	##	79	48	TRUE	2	130	245	FALSE	2	180	FALSE	0.2	2	0
	##	80	58	TRUE	4	150	270	FALSE	2	111	TRUE	0.8	1	0
	##	81	45	TRUE	4	104	208	FALSE	2	148	TRUE	3.0	2	0
	##	82	53	FALSE	4	130	264	FALSE	2	143	FALSE	0.4	2	0
	##	83	39	TRUE	3	140	321	FALSE	2	182	FALSE	0.0	1	0
	##	84	68	TRUE	3	180	274	TRUE	2	150	TRUE	1.6	2	0
	##	85	52	TRUE	2	120		FALSE	0	172	FALSE		1	0
	##		44	TRUE	3	140		FALSE	2		FALSE	0.0	1	0
	##		47	TRUE	3	138		FALSE	2		FALSE	0.0	1	0
	##			FALSE	4	138		FALSE	2		FALSE	0.0	1	0
	##			FALSE	3	130		FALSE	2		FALSE	0.5	1	0
	##		66	TRUE	4	120		FALSE	2		FALSE	0.4	2	0
	##			FALSE	4	160		FALSE	2		FALSE	6.2	3	3
	##		62	TRUE	3	130		FALSE	0		FALSE	1.8	2	3
	##				3	108		FALSE	0		FALSE	0.6	2	0
	##			FALSE	3	135		FALSE	2				1	0
				TRUE	4						FALSE	0.0		1
	##		52			128		FALSE	0			0.0	1	
	##		59	TRUE	4	110		FALSE	2	142	TRUE	1.2	2	1
	##			FALSE	4	150		FALSE	2		FALSE	2.6	2	2
	##		52	TRUE	2	134		FALSE	0		FALSE	0.8	1	1
		100	48	TRUE	4	122		FALSE	2		FALSE	0.0	1	0
		101	45	TRUE	4	115		FALSE	2		FALSE	0.0	1	0
		102	34	TRUE	1	118		FALSE	2		FALSE	0.0	1	0
		103		FALSE	4	128		FALSE	2		FALSE	0.0	1	1
	##	104	71	FALSE	3	110	265	TRUE	2	130	FALSE	0.0	1	1

, .													
##	105	49	TRUE	3	120	188	FALSE	0	139	FALSE	2.0	2	3
##	106	54	TRUE	2	108	309	FALSE	0	156	FALSE	0.0	1	0
##	107	59	TRUE	4	140	177	FALSE	0	162	TRUE	0.0	1	1
##	108	57	TRUE	3	128	229	FALSE	2	150	FALSE	0.4	2	1
##	109	61	TRUE	4	120	260	FALSE	0	140	TRUE	3.6	2	1
##	110	39	TRUE	4	118		FALSE	0	140	FALSE	1.2	2	0
	111	61	FALSE	4	145		FALSE	2	146		1.0	2	0
	112	56	TRUE	4	125		TRUE	2	144	TRUE	1.2	2	1
	113	52	TRUE	1	118		FALSE	2		FALSE	0.0	2	0
	114		FALSE	4	132		TRUE	2	136		3.0	2	0
	115		FALSE	3	130		FALSE			FALSE	1.2	2	1
	116	41	TRUE	2	135		FALSE	0		FALSE	0.0	2	0
	117	58	TRUE	3	140		TRUE	2		FALSE	0.0	1	0
	118		FALSE	4	138		FALSE	0		FALSE	1.4	1	0
	119	63	TRUE						132			1	3
				4	130		TRUE	2			1.8		
	120	65	TRUE	4	135		FALSE	2		FALSE	2.8	2	1
	121	48	TRUE	4	130		TRUE	2	150		0.0	1	2
	122		FALSE	4	150		FALSE	2		FALSE	4.0	2	3
	123		TRUE	3	100		FALSE	0		TRUE	1.2	2	0
	124	55	TRUE	4	140		FALSE	0	111		5.6	3	0
	125	65	TRUE	1	138		TRUE	2		FALSE	1.4	2	1
	126		FALSE	2	130		FALSE	2		FALSE	0.6	2	0
##	127	56	FALSE	4	200	288	TRUE	2	133	TRUE	4.0	3	2
##	128	54	TRUE	4	110	239	FALSE	0	126	TRUE	2.8	2	1
##	129	44	TRUE	2	120	220	FALSE	0	170	FALSE	0.0	1	0
##	130	62	FALSE	4	124	209	FALSE	0	163	FALSE	0.0	1	0
##	131	54	TRUE	3	120	258	FALSE	2	147	FALSE	0.4	2	0
##	132	51	TRUE	3	94	227	FALSE	0	154	TRUE	0.0	1	1
##	133	29	TRUE	2	130	204	FALSE	2	202	FALSE	0.0	1	0
##	134	51	TRUE	4	140	261	FALSE	2	186	TRUE	0.0	1	0
##	135	43	FALSE	3	122	213	FALSE	0	165	FALSE	0.2	2	0
##	136	55	FALSE	2	135	250	FALSE	2	161	FALSE	1.4	2	0
##	137	70	TRUE	4	145	174	FALSE	0	125	TRUE	2.6	3	0
##	138	62	TRUE	2	120	281	FALSE	2	103	FALSE	1.4	2	1
##	139	35	TRUE	4	120	198	FALSE	0	130	TRUE	1.6	2	0
##	140	51	TRUE	3	125	245	TRUE	2	166	FALSE	2.4	2	0
##	141	59	TRUE	2	140	221	FALSE	0	164	TRUE	0.0	1	0
##	142	59	TRUE	1	170	288	FALSE	2	159	FALSE	0.2	2	0
##	143	52	TRUE	2	128	205	TRUE	0	184	FALSE	0.0	1	0
##	144	64	TRUE	3	125	309	FALSE	0	131	TRUE	1.8	2	0
##	145	58	TRUE	3	105	240	FALSE	2	154	TRUE	0.6	2	0
##	146	47	TRUE	3	108	243	FALSE	0	152	FALSE	0.0	1	0
##	147	57	TRUE	4	165	289	TRUE	2	124	FALSE	1.0	2	3
##	148	41	TRUE	3	112	250	FALSE	0	179	FALSE	0.0	1	0
##	149	45	TRUE	2	128	308	FALSE	2	170	FALSE	0.0	1	0
##	150	60	FALSE	3	102		FALSE	0		FALSE	0.0	1	1
##	151	52	TRUE	1	152		TRUE	0		FALSE	1.2	2	0
	152		FALSE	4	102		FALSE	2		FALSE	0.6	2	0
	153		FALSE	3	115		FALSE	2		FALSE	1.6	2	0
	154	55	TRUE	4	160		FALSE	2		TRUE	0.8	2	1
	155	64	TRUE	4	120		FALSE	2	96		2.2	3	1
	156	70		4	130		FALSE	2		FALSE	2.4	2	3
11	100	, 5	INOL	-	100	J	IALJE	_	100	IALJL	۷,٦	_	ر

									-				
##	157	51	TRUE	4	140	299	FALSE	0	173	TRUE	1.6	1	0
##	158	58	TRUE	4	125	300	FALSE	2	171	FALSE	0.0	1	2
##	159	60	TRUE	4	140	293	FALSE	2	170	FALSE	1.2	2	2
##	160	68	TRUE	3	118	277	FALSE	0	151	FALSE	1.0	1	1
##	161	46	TRUE	2	101	197	TRUE	0	156	FALSE	0.0	1	0
##	162	77		4	125		FALSE	2		TRUE		1	3
	163	54	FALSE	3	110		FALSE	0		FALSE		2	0
	164			4	100		FALSE	2		FALSE	1.0	2	0
	165	48	TRUE	3	124		TRUE	0		FALSE		1	2
	166	57	TRUE	4	132		FALSE	0		TRUE	0.0	1	0
	168		FALSE	2	132		TRUE	2	159		0.0	1	1
	169	35	TRUE	4	126		FALSE	2		TRUE		1	0
	170			2	112		FALSE	0		FALSE		2	0
	171	70	TRUE	3	160		FALSE	0		TRUE	2.9	2	1
	172	53	TRUE	4	142		FALSE	2	111	TRUE		1	0
	173			4	174		FALSE	0		TRUE	0.0	2	0
	174			4			FALSE	2					0
			_		140					FALSE		2	
	175	64	TRUE	4	145		FALSE	2		FALSE		2	2
	176	57		4	152		FALSE	0		TRUE	1.2	2	1
	177	52	TRUE	4	108		TRUE	0		FALSE		1	3
	178	56	TRUE	4	132		FALSE	2		TRUE		2	1
	179	43	TRUE	3	130		FALSE	0		FALSE	1.9	1	1
	180	53	TRUE	3	130		TRUE	2		FALSE		1	3
	181	48	TRUE	4	124		FALSE	2		FALSE		2	0
	182			4			FALSE	2		TRUE	1.9	2	2
	183	42	TRUE	1	148		FALSE	2		FALSE		1	2
	184	59	TRUE	1	178		FALSE	2		FALSE		3	0
	185		FALSE	4	158		FALSE	2		FALSE		1	0
	186		FALSE	2	140		FALSE	0		FALSE		1	2
	187	42	TRUE	3	120		TRUE	0		FALSE		3	0
	188	66	TRUE		160		FALSE	0		TRUE		2	3
	189	54	TRUE	2	192		FALSE	2	_	FALSE	0.0	1	
##	190	69	TRUE	3	140	254	FALSE		146	FALSE	2.0	2	3
	191	50	TRUE	3	129	196	FALSE	0		FALSE	0.0	1	0
##	192	51	TRUE	4	140	298	FALSE	0	122	TRUE	4.2	2	3
##	194		FALSE	4	138	294	TRUE	0	106	FALSE	1.9	2	3
##	195	68	FALSE	3	120	211	FALSE	2	115	FALSE	1.5	2	0
	196	67	TRUE	4	100	299	FALSE	2	125	TRUE	0.9	2	2
##	197	69	TRUE	1	160	234	TRUE	2	131	FALSE	0.1	2	1
##	198	45	FALSE	4	138	236	FALSE	2	152	TRUE	0.2	2	0
##	199	50	FALSE	2	120	244	FALSE	0	162	FALSE	1.1	1	0
##	200	59	TRUE	1	160	273	FALSE	2	125	FALSE	0.0	1	0
##	201	50	FALSE	4	110	254	FALSE	2	159	FALSE	0.0	1	0
##	202	64	FALSE	4	180	325	FALSE	0	154	TRUE	0.0	1	0
##	203	57	TRUE	3	150	126	TRUE	0	173	FALSE	0.2	1	1
##	204	64	FALSE	3	140	313	FALSE	0	133	FALSE	0.2	1	0
##	205	43	TRUE	4	110	211	FALSE	0	161	FALSE	0.0	1	0
##	206	45	TRUE	4	142	309	FALSE	2	147	TRUE	0.0	2	3
##	207	58	TRUE	4	128	259	FALSE	2	130	TRUE	3.0	2	2
##	208	50	TRUE	4	144	200	FALSE	2	126	TRUE	0.9	2	0
##	209	55	TRUE	2	130	262	FALSE	0	155	FALSE	0.0	1	0
##	210	62	FALSE	4	150	244	FALSE	0	154	TRUE	1.4	2	0

•	, .										
	##	211	37 FAL	SE 3	120	215 FALSE	0	170 FALS	E 0.0) 1	0
	##	212	38 TR	UE 1	120	231 FALSE	0	182 TRU	E 3.8	3 2	0
	##	213	41 TR	UE 3	130	214 FALSE	2	168 FALS	E 2.0) 2	0
	##	214	66 FAL	SE 4	178	228 TRUE	0	165 TRU	E 1.0) 2	2
	##	215	52 TR	UE 4				160 FALS			1
		216	56 TR					162 FALS			0
		217	46 FAL					172 FALS			0
		218	46 FAL					152 TRU			0
		219	64 FAL					122 FALS			2
		220	59 TR					182 FALS			0
		221	41 FAL					172 TRU			0
		222	54 FAL					167 FALS			0
		223	39 FAL					179 FALS			0
		224	53 TR					95 TRU			2
		225	63 FAL					169 TRU			2
		226	34 FAL				-	192 FALS			0
		227	47 TR					143 FALS			0
		228	67 FAL					172 FALS			1
		229	54 TR		_	_	-	1/2 FALS			1
		230	66 TR					132 TRU			1
		231	52 FAL					169 FALS			0
		232	55 FAL		180			107 TRU			0
		232	49 TR					126 FALS			3
		234	74 FAL					120 TALS			1
		235	54 FAL								1
		236	54 TR					163 FALS 116 TRU			2
		237									0
		237	56 TR 46 TR					103 TRU 144 FALS			
		239	40 TK								0
		240	49 FAL 42 TR					162 FALS 162 FALS			0
		240	42 TR					153 FALS			0
		241	41 FAL				0	163 FALS			0
				_	_		0				
		243244	49 FAL		130			163 FALS			0
			61 TR 60 FAL		134			145 FALS			2 0
		245						96 FALS			
		246	67 TR		_			71 FALS			0
		247	58 TR					156 FALS			1
		248	47 TR 52 TR					118 TRU			1 2
		249	62 TR					168 FALS 140 FALS			0
		250 251			_						
		251	57 TR 58 TR		_			126 TRU			0
								105 FALS			1
		253254	64 TR 51 FAL		_			105 TRU 157 FALS			1 0
		255	43 TR					181 FALS			0
		256	43 TK					173 FALS			0
		257	67 FAL								2
			76 FAL					142 FALS			0
		258	76 FAL 70 TR					116 FALS			0
		259						143 FALS			
		260 261	57 TR 44 FAL					141 FALS			0 1
		261						149 FALS			
	##	202	58 FAL	SE 2	136	319 TRUE	2	152 FALS	E 0.0) 1	2

## 263 60 FALSE 1	150	240	FALSE	0	171	FALSE	0.0	1	0
		_				_	0.9	1	
## 264 44 TRUE 3	120		FALSE	0		FALSE	0.0	1	0
## 265 61 TRUE 4	138		FALSE	2	125	TRUE	3.6	2	1
## 266 42 TRUE 4	136	315	FALSE	0	125	TRUE	1.8	2	0
## 268 59 TRUE 3	126	218	TRUE	0	134	FALSE	2.2	2	1
## 269 40 TRUE 4	152	223	FALSE	0	181	FALSE	0.0	1	0
## 270 42 TRUE 3	130	180	FALSE	0	150	FALSE	0.0	1	0
## 271 61 TRUE 4	140	207	FALSE	2	138	TRUE	1.9	1	1
## 272 66 TRUE 4	160	228	FALSE	2	138	FALSE	2.3	1	0
## 273 46 TRUE 4	140	311	FALSE	0	120	TRUE	1.8	2	2
## 274 71 FALSE 4	112	149	FALSE	0	125	FALSE	1.6	2	0
## 275 59 TRUE 1	134	204	FALSE	0	162	FALSE	0.8	1	2
## 276 64 TRUE 1	170	227	FALSE	2	155	FALSE	0.6	2	0
## 277 66 FALSE 3	146	278	FALSE	2	152	FALSE	0.0	2	1
## 278 39 FALSE 3	138	220	FALSE	0	152	FALSE	0.0	2	0
## 279 57 TRUE 2	154	232	FALSE	2	164	FALSE	0.0	1	1
## 280 58 FALSE 4	130	197	FALSE	0		FALSE	0.6	2	0
## 281 57 TRUE 4	110		FALSE	0	143	TRUE	3.0	2	1
## 282 47 TRUE 3	130		FALSE	0		FALSE	0.0	1	0
## 283 55 FALSE 4	128		FALSE	1	130		2.0	2	1
## 284 35 TRUE 2	122		FALSE	0		FALSE	0.0	1	0
## 285 61 TRUE 4	148		FALSE	0		FALSE	0.0	1	1
## 286 58 TRUE 4	114		FALSE	1		FALSE	4.4	3	3
## 287 58 FALSE 4	170	225	TRUE	2	146	TRUE	2.8	2	2
## 289 56 TRUE 2	130		FALSE	2		FALSE	0.0	1	0
## 290 56 TRUE 2	120		FALSE	0		FALSE	0.0	3	0
## 291 67 TRUE 3	152		FALSE	2		FALSE	0.8	2	0
## 292 55 FALSE 2	132		FALSE	0		FALSE	1.2	1	0
## 293 44 TRUE 4	120	-	FALSE	0	144	_	2.8	3	0
## 294 63 TRUE 4	140		FALSE	2	144	TRUE	4.0	1	2
## 295 63 FALSE 4	124		FALSE	0	136	TRUE	0.0	2	0
## 296 41 TRUE 2	120	_	FALSE	0		FALSE	0.0	1	0
## 297 59 TRUE 4	164	176	TRUE	2		FALSE	1.0	2	2
## 298 57 FALSE 4	140		FALSE	0		TRUE	0.2	2	0
## 299 45 TRUE 1	110		FALSE	0		FALSE	1.2	2	0
## 300 68 TRUE 4	144		TRUE	0		FALSE	3.4	2	2
## 301 57 TRUE 4	130	131	FALSE	0	115	TRUE	1.2	2	1
## 302 57 FALSE 2	130	236	FALSE	2	174	FALSE	0.0	2	1
## thal class high									
## 1 6 0 low									
## 2 3 2 high									
## 3 7 1 high									
## 4 3 0 high									
## 5 3 0 low									
## 6 3 0 low									
## 7 3 3 high									
## 8 3 0 high									
## 9 7 2 high									
## 10 7 1 high									
## 11 6 0 high									
## 12 3 0 low									
## 13 6 2 high									

)/24, (5:46 PM			
##	14	7	0	low
##	15	7	0	high
##	16	3	0	high
##	17	7	1	low
##	18	3	0	high
##	19	3	0	high
##	20	3	0	low
##	21	3	0	low
##		3		
	22		0	low
##	23	3	1	low
##	24	7	3	high
##	25	7	4	high
##	26	3	0	high
##	27	3	0	high
##	28	3	0	low
##	29	3	0	high
##	30	7	3	high
##	31	3	0	low
##	32	7	2	high
##	33	3	1	high
##	34	7	0	high
##	35	3	0	high
##	36	3	0	high
##	37	7	3	high
##	38	6	1	high
##	39	7	3	high
##	40		0	high
		3 7		
##	41		4	high
##	42	7	0	low
##	43	3	0	low
##	44	3	0	high
##	45	3	1	high
##	46	7	4	high
##	47	3	0	high
##	48	7	4	high
##	49	3	0	high
##	50	3	0	high
##	51	3	0	low
##	52	7	0	high
##	53	3	2	high
##	54	3	0	low
##	55	7	1	high
##	56	7	1	high
##	57	7	1	high
##	58	7	1	high
##	59	3	0	high
				_
##	60	3 7	0	low
##	61		2	high
##	62	3	0	high
##	63	7	1	high
##	64	3	0	high
##	65	7	2	high

)/24, (6:46 PM		
##	66	7	2 high
##	67	3	1 high
##	68	7	0 high
##	69	7	2 high
##	70	3	1 high
##	71	3	0 high
##	72	7	3 high
##	73	7	1 high
##	74	6	1 high
##	7 5	3	1 high
##	76	3	_
##	76 77	<i>5</i>	U
			U
##	78	3	0 high
##	79	3	0 low
##	80	7	3 high
##	81	3	0 high
##	82	3	0 high
##	83	3	0 high
##	84	7	3 high
##	85	3	0 low
##	86	3	0 high
##	87	3	0 high
##	89	3	0 high
##	90	3	0 high
##	91	3	0 high
##	92	7	3 high
##	93	7	0 high
##	94	3	0 high
##	95	3	0 high
##	96	7	1 high
##	97	7	_
##			•
	98	7	3 high
##	99	3	0 low
##	100	3	0 high
##	101	3	0 high
##	102	3	0 low
##	103	3	0 high
##	104	3	0 high
##	105	7	3 high
##	106	7	0 low
##	107	7	2 high
##	108	7	1 high
##	109	7	2 high
##	110	7	3 high
##	111	7	1 high
##	112	3	1 high
##	113	6	0 low
##	114	7	2 high
##	115	7	2 high
##	116	6	0 low
##	117	3	0 high
##	118	3	0 high
##	110	3	A HTRU

)/24, (5:46 PM			
##	119	7	3	high
##	120	7	2	high
##	121	7	3	high
##	122	7	4	high
##	123	3	0	high
##	124	7	3	high
##	125	3	1	low
##	126	3	0	low
##	127	7	3	high
##	128	7	3	high
##	129	3	9	low
##	130	3	0	high
		э 7		_
##	131		0	high
##	132	7	0	high
##	133	3	0	low
##	134	3	0	high
##	135	3	0	high
##	136	3	0	low
##	137	7	4	high
##	138	7	3	low
##	139	7	1	high
##	140	3	0	high
##	141	3	0	low
##	142	7	1	low
##	143	3	0	low
##	144	7	1	high
##	145	7	0	high
##	146	3	1	high
##	147	7	4	high
##	148	3	0	high
##	149	3	0	low
##	150	3	0	high
##	151	7	0	low
	152			
##		3 7	0	high
##	153		0	high
##	154	7	4	high
##	155	3	3	high
##	156	3	1	high
##	157	7	1	high
##	158	7	1	high
##	159	7	2	high
##	160	7	0	high
##	161	7	0	low
##	162	3	4	high
##	163	3	0	high
##	164	3	0	high
##	165	3	0	high
##	166	7	0	high
##	168	3	0	low
##	169	7	1	high
##	170	3	0	low
##	171	7	3	high
			-	3

)/ 2 4, (5.46 PIVI			
##	172	7	0	high
##	173	3	1	high
##	174	3	0	high
##	175	6	4	high
##	176	7	1	high
##	177	7	0	high
##	178	6	1	high
##	179	3	0	high
##	180	3	0	high
##	181	7	3	high
##	182	7	2	high
##	183	3	0	low
##	184	7	0	low
##	185	3	1	high
##	186	3	0	low
##	187	<i>3</i>		high
			0	
##	188	6	2	low
##	189	7	1	low
##	190	7	2	high
##	191	3	0	high
##	192	7	3	high
##	194	3	2	high
##	195	3	0	high
##	196	3	3	high
##	197	3	0	low
##	198	3	0	high
##	199	3	0	low
##	200	3	1	low
##	201	3	0	high
##	202	3	0	high
##	203	7	0	high
##	204	7	0	high
##	205	7	0	high
##	206	7	3	high
##	207	7	3	high
##	208	7	3	high
##	209	3	0	low
##	210	3	1	high
##	211	3	0	high
##	212	7	4	low
##	213	3	0	high
##	214	7	3	high
##	215	3	1	high
##	216	7	0	low
##	217	3	0	low
##	218	3	0	high
##	219	3	0	high
##	220	3	0	high
##	221	3	0	high
##	222	3	0	high
##	223	3	0	high
##	224	<i>7</i>	3	high
##	44	,)	ıııRıı

)/24, (5:46 PM			
##	225	3	1	high
##	226	3	0	low
##	227	3	0	high
##	228	3	0	high
##	229	3	3	high
##	230	3	2	high
##	231	3	0	high
##	232	3	2	high
##	233	3	1	high
##	234	3	0	low
##	235	3	0	high
##	236	3		high
			3	_
##	237	7	2	high
##	238	7	1	high
##	239	3	0	low
##	240	3	0	low
##	241	3	0	low
##	242	3	0	low
##	243	3	0	high
##	244	3	2	low
##	245	3	0	high
##	246	3	2	high
##	247	7	2	high
##	248	3	1	high
##	249	7	3	high
##	250	3	0	low
##	251	6	0	high
##	252	7	1	high
##	253	7	0	high
##	254	3	0	high
##	255	3	0	high
##	256	3	0	high
##	257	3	0	high
##		3		
	258	3	0	high
##	259		0	low
##	260	7	1	low
##	261	3	0	high
##	262	3	3	low
##	263	3	0	low
##	264	3	0	high
##	265	3	4	high
##	266	6	2	high
##	268	6	2	high
##	269	7	1	high
##	270	3	0	high
##	271	7	1	high
##	272	6	0	high
##	273	7	2	high
##	274	3	0	high
##	275	3	1	low
##	276	7	0	low
##	277	3	0	high
	-	-	•	-0.,

```
## 278
          3
                0 high
## 279
          3
                1 low
## 280
          3
                0 high
## 281
          7
                2 high
## 282
          3
                0 high
## 283
          7
                3 high
## 284
          3
                0 low
## 285
          7
                2 high
## 286
          6
                4 high
## 287
          6
                2 high
## 289
          7
                0 low
## 290
                0 low
          3
## 291
          7
                1 high
          3
                0 low
## 292
## 293
                2 high
          6
## 294
          7
                2 high
## 295
          3
                1 high
## 296
          3
                0 low
## 297
                3 high
          6
## 298
          7
                1 high
## 299
          7
                1 low
## 300
          7
                2 high
## 301
          7
                3 high
## 302
                1 low
          3
```

3.2

Train a classification tree on a 240 observation training subset (using the seed I have set for you). Plot the tree.

```
set.seed(101)
sample_t <- sample(1:nrow(heart), 0.81 * nrow(heart))
train_h <- heart[sample_t,]
test_h <- heart[-sample_t,]
library(rpart.plot)</pre>
```

```
## Warning: package 'rpart.plot' was built under R version 4.2.3
```

```
## Loading required package: rpart
```

```
library(rpart)
heart.tree <- tree(high ~. -cp, data = heart, subset = sample_t)
par(xpd = NA) # otherwise on some devices the text is clipped

plot(heart.tree)
text(heart.tree, pretty = 0)</pre>
```


3.3

##

##

high

low

37

16

1

Use the trained model to classify the remaining testing points. Create a confusion matrix to evaluate performance. Report the classification error rate.

```
tree.pred <- predict(heart.tree, test_h, type = "class")
conf_matrix <- table(True = test_h$high, Predicted = tree.pred)
print(conf_matrix)

## Predicted
## True high low</pre>
```

```
38/(38+19)
```

```
## [1] 0.6666667
```

3.4

Above we have a fully grown (bushy) tree. Now, cross validate it using the cv.tree command. Specify cross validation to be done according to the misclassification rate. Choose an ideal number of splits, and plot this tree. Finally, use this pruned tree to test on the testing set. Report a confusion matrix and the misclassification rate.

```
set.seed(101)
cv.heart <- cv.tree(heart.tree, FUN = prune.misclass)
print(cv.heart)</pre>
```

```
## $size
## [1] 21 15 10 9 1
##
## $dev
## [1] 74 73 73 75 68
##
## $k
## [1] -Inf 0.00 0.20 1.00 2.25
##
## $method
## [1] "misclass"
##
## attr(,"class")
## [1] "prune" "tree.sequence"
```

```
plot(cv.heart$size, cv.heart$dev, type = "b", xlab = "Tree Size", ylab = "Deviance")
```



```
prune.heart_tree <- prune.misclass(heart.tree, best = 10)
plot(prune.heart_tree)
text(prune.heart_tree, pretty=0)</pre>
```



```
tree.pred_2 <- predict(prune.heart_tree, newdata = test_h, type = "class")
conf_matrix <- table(True = test_h$high, Predicted = tree.pred_2)
print(conf_matrix)

## Predicted</pre>
```

```
## Predicted
## True high low
## high 38 2
## low 17 0
```

```
tree.pred <- predict(heart.tree, test_h, type = "class")
conf_matrix <- table(True = test_h$high, Predicted = tree.pred_2)
print(conf_matrix)</pre>
```

```
## Predicted
## True high low
## high 38 2
## low 17 0
```

```
38/(38+19)
```

```
## [1] 0.6666667
```

3.5

Discuss the trade-off in accuracy and interpretability in pruning the above tree.

Student Input In this instance there was no differnece between misclassification rate before and after pruning, this was able to help us classify without needing such a long tree, and makes the tree easier to use/work with. However, typically long overfit trees do not test well, and this new one while shorter and easier to interpret, may be

more generalizeable.

##

Discuss the ways a decision tree could manifest algorithmic bias.

Decision trees mostly manifest algorithmic bias through fully grown trees which are not applicable and overfit the test data, or training data which does not reflect the true data.

Student Answer

1. Remember this is a parameter that decides how smooth your decision boundary should be ↔