LGBT Cyberbullying Detection in Thai Language

การตรวจจับการกลั่นแกล้งบนอินเทอร์เน็ตของกลุ่ม บุคคลที่มีความหลากหลายทางเพศในภาษาไทย

Cyberbullying

การระรานทางไซเบอร์

U.S. Legal Definitions ให้คำนิยามว่า "การระรานทางไซเบอร์ เป็นการ กระทำที่ก่อให้เกิดความเสียหายหรือ คุกคาม ผ่านเครือข่าย เทคโนโลยี สารสนเทศ โดยวิธีการซ้ำแล้วซ้ำเล่าโดยไตร่ตรองไว้แล้ว

ความหลากหลายทางเพศ ถือเป็นความชอบที่หลากหลายเฉพาะบุคคล เฉกเช่นเดียวกับการชื่นชอบสิ่งต่างๆในชีวิตประจำวันทั่วไป เช่น รูป รส กลิ่น สี รสนิยมต่างๆ โดยไม่ได้เกิดจากความผิดปกติจากส่วนใดส่วนหนึ่ง ของร่างกายแต่อย่างใด

วิธีดำเนินการวิจัย

Data Set

- NLP For Thai
- เผยแพร่โดย tiya1012
- November 2023
- ซึ่งข้อมูลถูกดึงมาจากทวิตเตอร์ (X) โดยใช้แพ็กเกจที่ชื่อ SNS scrape คือ ข้อความที่รวบรวมคำหยาบภาษาไทยที่เกี่ยวข้องกับกลุ่ม LGBT

Text Size

average text length

13

20,024 text Data

Train Test 9,811 6,008

validation 4,205 Category

10,063 9,884 positive

Word in DataSet

Preprocessing

(Thai emoji)

การแปลงอิโมจิเป็นคำภาษาไทย

0

= "ยิ้มหวาน"

(Stop Word Removal)

การตัดคำหยุด

"คือ" "นั้น" "นี้" "ก็"

(remove number) การลบตัวเลข (remove not thai) การลบอักขระที่ไม่ใช่ภาษาไทย (Word Segmentation)

การตัดคำ

ใช้วิธีการทำ Maximum Matching

library
pythainlp
word_tokenize

Model

CNN

อัลกอริทึมการอัปเดตค่าน้ำหนัก คือ adam

ฟังก์ชันความสูญเสีย ที่ใช้ในการปรับค่าน้ำหนัก binary_crossentropy

> รอบในการฝึกฝน epochs = 5

SVM

หาเส้นตัดสินใจ (decision boundary) ระยะห่างระหว่างจุดข้อมูล มากที่สุด ซึ่งเรียกว่า

ระยะขอบ (margin)

ซึ่งในงานวิจัยนี้ใช้

linear kernel

K-Nearest Neighbors

Model KNeighborsClassifier

Naive Bayes

use

TfidfVectorizer

นับความถี่ของคำ (Term Frequency)

Model

Multinomial Naive Bayes

การวัดประสิทธิภาพโมเดล

ข้อมูลด้วยเทคนิค **Split Test** โดยการแบ่งเป็นข้อมูล

ชุดเรียนรู้ 70% ข้อมูลชุดทดสอบ 30%

Confusion matrix

(Accuracy) ค่าความถูกต้อง

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

(Precision) ค่าความระลึก

Precision =
$$\frac{TP}{TP + FP}$$

(Recall) ค่าความแม่นยำ

Recall =
$$\frac{TP}{TP + FN}$$

(F1-Score) ค่าความสมดุล

$$F1 = 2 * \frac{(Precision * recall)}{(Precision + recall)}$$

ผลการวิจัย

ผลการวิจัย

ผลการวิจัย

สรุปผลการวิจัย

	Accuracy	Recall	Precision	F1-Score
KNN	78.48	64.42	90.18	75.15
Naive Bayes	51.13	34.43	52.49	41.58
SVM	89.06	89.03	89.29	89.16
CNN	99.35	99.28	99.44	99.36

