ЛР №10 «Линейно-квадратичные радости»

Отчет

Студент Кирилл Лалаянц R33352 336700 Вариант - 11

Преподаватель Пашенко А.В.

Факультет Систем Управления и Робототехники

ИТМО

Содержание

1	Вводные данные					
	1.1	Цель работы	1			
		1.1.1 Программная реализация	1			
2	Осн	вная часть	2			
	2.1	Задание 1. LQR	2			
		2.1.1 Теория	2			
		2.1.2 Результаты	2			
	2.2	Задание 2. LQR vs LMI	5			
		2.2.1 Теория	5			
		2.2.2 Результаты	5			
3	Зак.	ючение	6			
	3.1	Выводы	6			

1 Вводные данные

1.1 Цель работы

В этой работе пройдет изучение LQR, LQE, LGC.

1.1.1 Программная реализация

С исходным кодом можно ознакомиться в репозитории на Github.

2 Основная часть

$$A = \begin{bmatrix} -6.00 & 19.00 & 10.00 & -13.00 \\ 0.00 & -9.00 & 0.00 & 6.00 \\ -4.00 & 8.00 & 6.00 & -7.00 \\ 0.00 & -15.00 & 0.00 & 9.00 \end{bmatrix}; B = \begin{bmatrix} 4.00 & 0.00 \\ 2.00 & 0.00 \\ 6.00 & 0.00 \\ 4.00 & 0.00 \end{bmatrix};$$

$$C = \begin{bmatrix} -3.00 & 9.00 & 3.00 & -6.00 \\ 0.00 & -2.00 & 0.00 & 1.00 \end{bmatrix}; D = \begin{bmatrix} 0.00 & 0.00 \\ 0.00 & 2.00 \end{bmatrix}$$

2.1 Задание 1. LQR

2.1.1 Теория

В этом задании выводится регулятор заданной степени устойчивости для системы:

$$\begin{cases} \text{Объект управления: } \dot{x} = Ax + Bu \\ \text{Регулятор: } u = -Kx \end{cases} \rightarrow \dot{x} = Ax - BKx = (A - BK)x$$

LQR позволяет оптимизировать критерий качества:

$$J = \int_0^\infty (x^T Q x + u^T R u) dt$$

Выбор сотношения матриц Q и R позволяет управлять временем сходимости и величиной подаваего управления: чем больше $\frac{Q}{R}$, тем больше управление и быстрее сходимость.

К получается решением следующих уравнений:

$$\begin{cases} A^T P + PA + Q - PBR^{-1}B^T P = 0 \\ K = -R^{-1}B^T P \end{cases}$$

Теоретический минимум критерия качества:

$$J_{min} = x_0^T P x_0$$

2.1.2 Результаты

На рис. 1 - 2 видно, что чем больше $\frac{Q}{R}$, тем больше управление и быстрее сходимость.

В таблице 1 видно, что критерии качества практически совпали с теортическими.

Рис. 1: Результаты моделирования состояний для разных значений Q и R.

Q	R	J_{theory}	J_{real}
0.1	10	6.2	6.2
1	1	24.5	24.51
10	0.1	208.25	208.39

Таблица 1: Критерии качества

Рис. 2: Результаты моделирования управления для разных значений Q и R.

2.2 Задание 2. LQR vs LMI.

2.2.1 Теория

В этом задании будет сравнение LQR с LMI $\alpha=1$.

2.2.2 Результаты

Сначала проведено исследование влияния ограничения для alpha = 1. На рисунках 3-4.

Рис. 3: Результаты моделирования состояний системы.

Рис. 4: Результаты моделирования состояний системы.

3 Заключение

В этой работе были изучены LQR, LQE, LGC.

3.1 Выводы

1. чем больше $\frac{Q}{R}$ у LQR, тем больше управление и быстрее сходимость.