19. Сходимость по вероятности, ее свойства.

Последовательность случайных величин $X_1,X_2,...$ сходится к X по вероятности, $X_n \stackrel{P}{\longrightarrow} X$, если $orall \epsilon>0: P(|X_n-X|>\epsilon) o 0$ при $n o \infty$.

Свойства:

1.
$$X_n \xrightarrow{P} X, Y_n \xrightarrow{P} Y \Rightarrow X_n + Y_n \xrightarrow{P} X + Y$$

$$\begin{aligned} \mathbf{P}(|X_n + Y_n - X - Y| \ge \varepsilon) &= \mathbf{P}(|(X_n - X) + (Y_n - Y)| \ge \varepsilon) \le \\ &\le \mathbf{P}(|X_n - X| + |Y_n - Y| \ge \varepsilon) \le \\ &\le \mathbf{P}(\{|X_n - X| \ge \varepsilon/2\} \cup \{|Y_n - Y| \ge \varepsilon/2\}) \le \\ &\le \mathbf{P}(|X_n - X| \ge \varepsilon/2) + \mathbf{P}(|Y_n - Y| \ge \varepsilon/2) \to 0. \end{aligned}$$

2. Пусть при $n \to \infty$ $X_n^{(1)} \xrightarrow{P} a_1$, $X_n^{(2)} \xrightarrow{P} a_2$, ..., $X_n^{(k)} \xrightarrow{P} a_k$, функция $g \colon \mathbb{R}^k \to \mathbb{R}$ непрерывна в точке $a = (a_1, \dots, a_k)$. Тогда

$$g(X_n^{(1)}, X_n^{(2)}, \dots, X_n^{(k)}) \stackrel{P}{\to} g(a_1, \dots, a_k).$$

2. при $n \to \infty$.

Последовательность случайных величин $X_1, X_2, ...$ **сходится слабо** к случайной величине X, $X_n \Rightarrow X$, если для каждой точки непрерывности функции распредления $F_X(t)$ имеет место сходимость $F_{X_n}(t) \to F_X(t)$ при $n \to \infty$.