Today: Notes 3, gut as fau Lab due Wed night HV due Wed night, graded on compution Post sourting on Thes Monday: Lab, wrap up Nover 3 Wednesday: Quiz Speaker @ 4:15/4:30 musday: Stat

03: BAYESIAN ESTIMATION

Larsen & Marx 5.8 Prof Amanda Luby

1 Bayes Theorem

Idea: if you know P(A|B), how can you find P(B|A)?

"inverse probability"

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)} = \frac{P(A|B)P(B)}{P(A|B)P(B)} + P(A|B')P(B')$$

Bayesian statistics is a set of techniques that are based on inverse probabilities calculated using Bayes' theorem. Relative to "classical techniques" (MoM and MLE), Bayesian estimation provides a way to incorporate "prior knowledge" into the estimation of parameters.

Example: 1968 submaine went missing USS scorpion

2 key pieces:

A .: Sub sunk in sec 1

Solicited P(A) . ~ P(An) from expers

An: sub sune in secon

() Idea: Pick largest Ai call ax and search that one fret

Bx: Sub would be found in x if k was rewched · function of wake dyon

BK: K was searched &

2) P(AK|BK) = P(BK'|AK)P(AK)
P(BK'|AK)P(AK)

) Michanism & update P(AK) with new information

(1) incorporate "prior knowledge"

(3) P(Sub same in 12 | not found in 16) becomes "updated" P(Ax) -> P'(Ax) (A) renormalize P(A) for j+k - Px(A;) Seauch largest P(A) and repeat

P (A) exc ...

Classical Statistics	Bayesian Statistics
Probability refers to limiting relative frequencies. Probabilities are objective properties of the real world.	Probability describes a degree of belief, not a limiting frequency. As such, we can make probability statements about lots of things, not just data which are subject to random variation. For example, I might say that "the probability that Albert Einstein drank a cup of tea on August 1, 1948 is .35". This does not refer to any limiting frequency. It reflects my strength of belief that the proposition is true.
Parameters are fixed, unknown constants, and the data we observe is random. Because they are constant, no useful probability statements can be made about parameters.	<i>Parameters</i> are random, and the data that we observe are fixed. We can therefore make probability statements about parameters.
Statistical procedures should be designed to have well-defined long-run frequency properties. For example, a 95% confidence interval should capture the true value of the parameter at least 95% of the time.	We make inferences about a parameter θ by producing a probability distribution for θ . Inferences, such as point estimates and interval estimates, may then be extracted from this distribution.

Bayesian inference is a controversial approach because it inherently embraces a subjective notion of probability. The field of statistics generally puts more emphasis on frequentist methods although Bayesian methods definitely have a presence.

2 Bayesian Inference

1. Prior distribution: f_θ(θ) P_θ(θ) if discrete

degree of bestef about θ before we

See any data

sub example: PLAx)'s

2. Statistical model for data:

 $f_{x}(X|\theta)$: be lief about the data given a parameter θ NOTE: $f_{x}(X;\theta)$ is different than $f_{x}(X|\theta)$

sub example: PIBE)'s

3. Posterior distribution:

folx (P(X): updated bestef about 0 afser seeing our data

ex: P(Ax |Bec) > pt

Posterior distribution

Let W be a statistic dependent on parameter θ . Call its pdf $f_W(w|\theta)$. Assume that θ is the value of a random variable Θ , whose prior distribution is denoted p_{Θ} if discrete and f_{Θ} if continuous. The posterior distribution of Θ given W=w is:

to assirbation of
$$\Theta$$
 given $W = w$ is:

$$\frac{P_{W}(w|\theta) f_{\theta}(\theta)}{P_{W}(w|\theta) f_{\theta}(\theta)} = w \text{ discrete}$$

$$\frac{f_{W}(w|\theta) f_{\theta}(\theta)}{f_{\theta}(\theta) d\theta} = w \text{ continuous}$$

$$\frac{f_{W}(w|\theta) f_{\theta}(\theta)}{f_{\theta}(\theta) d\theta} = w \text{ continuous}$$

$$\theta \text{ is discrete, replaye integrals who sums and } f_{\theta} \text{ with } P_{\theta}$$

4. Posterior mean: Estimator:
$$\hat{\theta} = E(\theta | w)$$

$$= \int_{-\infty}^{\infty} \theta \cdot f_{\theta | w}(\theta | w) d\theta$$

Example: Let $X_1, ..., X_n \sim \text{Bernoulli}(\mathcal{D})$ and suppose that \mathcal{D} has the prior distribution $\mathcal{D} \sim \text{Beta}(\alpha, \beta)$.

$$P(X_{i}=x) = \Theta^{X}(1-\theta)^{X} \times = \{0,1\}$$

$$let X = \overline{X}; X \sim Bin(N,\theta)$$

$$P(X=x) = \binom{n}{x} \Theta^{X}(1-\theta)^{N-X}$$

Good: find posterior distibution of $\theta \mid X$: $\frac{P_{x}(X|\theta)f_{\theta}(\theta)}{(P_{x}(X|\theta)f_{\theta}(\theta)d\theta)}$

numerator:
$$P_X(x|\theta)f_{\theta}(\theta) = {n \choose x} \theta^{x} (1-\theta)^{n-x} \cdot \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-3} (1-\theta)^{\beta-1}$$

$$= {n \choose x} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{x+\alpha-1} (1-\theta)^{n-x+\beta-3}$$

factor constant "Kernel" of a Beta pdf but of top p bottom make denominator (x+d) , x+B)

$$f_{\theta|X} = \frac{\sum_{k=1}^{L} \sum_{k=1}^{L} \sum_{k$$

$$\frac{(1-\theta)^{n-x+\beta-1}}{\int \frac{\Gamma(n+\alpha+\beta)}{\Gamma(x+\alpha)\Gamma(n-x+\beta)}} \frac{1}{\theta} \frac{(1-\theta)^{n-x+\beta-1}}{\int \frac{\Gamma(n+\alpha+\beta)}{\Gamma(x+\alpha)\Gamma(n-x+\beta)}} \frac{1}{\theta} \frac{(1-\theta)^{n-x+\beta-1}}{\int \frac{\Gamma(n+\alpha+\beta)}{\Gamma(x+\alpha)\Gamma(n-x+\beta)}} \frac{1}{\theta} \frac{1}{\theta$$

fo = r(a+\$) + a-1 (1-0) 1-1 DEBEI

what we did after vicognizing me kernel of Ch Beta RV is muss up hormalizing constant.

If we recognize kerner, can always factor constant out of numerator & dunominator, then mutiply by a more useful constant in both numerator and denominator. -> we don't have to go mough The trouble if we recognize the kernes Showing: folk of tx 10 (x10) fo (0) ~ D x+~-1 ((-D) n-x+B-1 "proportional to" up to a normalization constant"

Our Bayes Estimator is theoretical mean of

X+L for Beta: E(OIX) : n-X +B+X+2 N+B+X

E(0/X)

Example: Let $X_1,...,X_n\sim N(\theta,\sigma^2)$ and suppose we take $\theta\sim N(a,b^2)$. For simplicity, let's assume σ^2 is known.