CSE 4125: Distributed Database Systems.

Chapter – 1: Part B

Distributed Databases: An overview

Outline

□DDB vs. traditional DB.

□Necessity of DDB.

DDB vs. Traditional DB

- **□**Centralized Control:
- -Traditional: Database Admin (DBA).
- —**Distributed:** Hierarchical Responsibility (Global → Local DBA); Depends on Architecture.
- **□**Data Independence:
- -**Traditional:** Organization of data is transparent to programmer (*conceptual schema*).
- **–Distributed:** Programs are written as if the databases are not distributed (*distributed transparency*).

ID	NAME

☐ Reduction of Redundancy:

- **Traditional:** Redundancy is not desired and reduced for two 2 reasons:
 - 1. Inconsistencies among several copies of the same logical data are avoided
 - 2. Storage space is saved
- **–Distributed:** Desired. Because:
 - 1. Locality increases
 - 2. Availability of the system increases
- ☐ Efficient Access:
- **-Traditional:** Complex physical structure.
 - •Navigate at record level.
- -Distributed: Distributed access plan.
 - •Not navigate at record level.

SUPPLIER SUP# SUPNAME SUPPLIER-PART PART PART# WAREHOUSE SUP#

(a) A Codasyl database schema.

Find SUPPLIER record with SUP# = S1;
Repeat until "no more members in set"
Find next PART record in SUPPLIER-PART set;
Output PART record;

(b) A Codasyl-DBMS-like program for finding parts supplied by supplier S1.

Figure 1.4 A distributed Codasyl-like database.

Distributed Access Plan

- 1) At site 1
 Send sites 2 and 3 the supplier number SN
- 2) At sites 2 and 3

 Execute in parallel, upon receipt of the supplier number, the following program:

Find all PARTS records having SUP # = SN;
Send result to site 1.

At site 1
Merge results from sites 2 and 3;
Output the result.

Figure 1.5 Example of access plan.

PART#	WAREHOUSE	SUP#
P10	А	S1
P11	А	S1
P18	А	S1
P50	В	S1
P55	В	S1
P57	В	S1

□Integrity, recovery and concurrency control:

- -Common issue/ problem in both types.
- -Solution: transaction management.

Transaction

- >An atomic unit of execution.
- > Sequence of operation.
- ➤ Either completely performed, or not performed at all.

Example: Fund transfer.

Integrity:

-Assuring one state to another.

Recovery:

-Preserving states while failure.

Concurrency:

-Synchronization.

☐ Privacy and Security:

-Traditional:

- > DBA ensure the authorized access.
- > More vulnerable than distributed, without specialized control procedures.

-Distributed:

- >The owner of local data feel more protected.
- > Security problems are intrinsic (natural) to distributed system in general

Necessity of DDB

- ☐ Organizational and economic reason.
 - ✓ If the organization is
 - Decentralized
 - ✓DDB fits more economically.

- □Interconnection of existing DB.
 - ➤ If need to exchange data between different database.
 - ➤ If global application is necessary.

☐ Incremental growth.

➤ If an organization grows by adding new autonomous units (new branches, warehouses etc.) then DDB is best fit for a smooth incremental growth.

Less expensive to implement.

☐ Reduced communication overhead.

➤ One advantage of DDB is : local application does not engage communication network (example #1).

> Workload is distributed.

- ☐ Performance consideration.
 - ➤ Parallel processing can be done in DDB.

- ☐ Reliability and availability.
 - Redundant data.
 - ➤ Graceful degradation.
 - Complete system crash is rare.