Reinforcement Learning

3. Dynamic programming

Olivier Sigaud

Sorbonne Université http://people.isir.upmc.fr/sigaud

Introduction

- Once we have defined an MDP
- Dynamic programming methods can find the optimal policy
- Assuming they know everything about the MDP
- Reinforcement Learning applies when the transition and reward functions are unknown
- ▶ To define dynamic programming methods, we need value functions

Value and action value functions

- ▶ The value function $V^{\pi}: S \to \mathbb{R}$ records the agregation of reward on the long run for each state (following policy π). It is a vector with one entry per state
- ▶ The action value function $Q^{\pi}: S \times A \to \mathbb{R}$ records the agregation of reward on the long run for doing each action in each state (and then following policy π). It is a matrix with one entry per state and per action
- lacktriangle In the remainder, we focus on V, trivial to transpose to Q

Bellman equation over a Markov chain: recursion

Given the discounted reward agregation criterion:

$$V(s_0) = r_0 + \gamma r_1 + \gamma^2 r_2 + \gamma^3 r_3 + \dots$$

$$V(s_0) = r_0 + \gamma(r_1 + \gamma r_2 + \gamma^2 r_3 + ...)$$

$$V(s_0) = r_0 + \gamma V(s_1)$$

▶ More generally
$$V(s_t) = r_t + \gamma V(s_{t+1})$$

Bellman equation: general case

- Generalisation of $V(s_t) = r_t + \gamma V(s_{t+1})$ over all possible trajectories
- ► The expectation of a random variable is the sum of the realizations weighted by their probabilities
- ▶ The realizations are the next states
- ▶ Deterministic π : $V^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s'} p(s'|s, \pi(s)) V^{\pi}(s')$

Bellman equation: general case

- Generalisation of $V(s_t) = r_t + \gamma V(s_{t+1})$ over all possible trajectories
- ► The expectation of a random variable is the sum of the realizations weighted by their probabilities
- ▶ The realizations are the next states
- \blacktriangleright Stochastic π : $V^\pi(s) = \sum_a \pi(a|s)[r(s,a) + \gamma \sum_{s'} p(s'|s,a) V^\pi(s')]$

Recursive operators and convergence

- ▶ If we define an operator T such that $X_{n+1} \leftarrow TX_n$
- It T is contractive, then through repeated application of T, X_n will converge to some fixed point
- For instance, if T divides by 2, X_n converges to 0

The Bellman optimality operator (Value Iteration)

ightharpoonup We call Bellman optimality operator (noted T^*) the application

$$V_{n+1}(s) \leftarrow \max_{a \in A} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_n(s') \right]$$

- ▶ If $\gamma < 1$, T^* is contractive
- ▶ By iterating, computes the value of the current policy
- ▶ The optimal value function is the fixed-point of T^* : $V^* = T^*V^*$
- ▶ Value iteration: $V_{n+1} \leftarrow T^*V_n$

Puterman, M. L. (2014) Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons.

The Bellman operator (Policy Iteration)

▶ We call Bellman operator (noted T^{π}) the application

$$V_{n+1}^{\pi}(s) \leftarrow r(s, \pi(s)) + \gamma \sum_{s'} p(s'|s, \pi(s)) V_n^{\pi}(s')$$

- ▶ If γ < 1, T is contractive
- Converges to optimal value and policy
- ▶ Policy Iteration:
 - Policy evaluation: $V_{n+1}^{\pi} \leftarrow T^{\pi}V_{n}^{\pi}$
 - Policy improvement:

$$\forall s \in S, \pi'(s) \leftarrow \arg\max_{a \in A} \sum_{s'} p(s'|s,a) [r(s,a) + \gamma V_n^{\pi}(s')]$$
 or
$$\forall s \in S, \pi'(s) \leftarrow \arg\max_{a \in A} [r(s,a) + \gamma \sum_{s'} p(s'|s,a) V_n^{\pi}(s')]$$

$$\blacktriangleright$$
 Note: $\sum_{s',r} p(s',r|s,a)[r+\gamma V(s')] = r + \gamma \sum_{s'} p(s'|s,a) V(s')$

Value Iteration: the algorithm

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta>0$ determining accuracy of estimation Initialize V(s), for all $s\in \mathbb{S}^+$, arbitrarily except that V(terminal)=0

```
 \begin{split} & \text{Loop:} \\ & | \quad \Delta \leftarrow 0 \\ & | \quad \text{Loop for each } s \in \mathcal{S} \text{:} \\ & | \quad v \leftarrow V(s) \\ & | \quad V(s) \leftarrow \max_a \sum_{s',r} p(s',r \,|\, s,a) \big[ r + \gamma V(s') \big] \\ & | \quad \Delta \leftarrow \max(\Delta,|v-V(s)|) \\ & \text{until } \Delta < \theta \end{split}  Output a deterministic policy, \pi \approx \pi_*, such that
```

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \arg\max_a \sum_{s' r} p(s', r | s, a) [r + \gamma V(s')]$

- ► Taken from Sutton & Barto, 2018, p. 83
- ▶ Reminder: $\sum_{s',r} p(s',r|s,a)[r+\gamma V(s')] = r+\gamma \sum_{s'} p(s'|s,a)V(s')$

$$\forall s \in S, V_{i+1}(s) \leftarrow \max_{a \in A} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_i(s') \right]$$

$$\forall s \in S, V_{i+1}(s) \leftarrow \max_{a \in A} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_i(s') \right]$$

$$\forall s \in S, V_{i+1}(s) \leftarrow \max_{a \in A} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_i(s') \right]$$

$$\forall s \in S, V_{i+1}(s) \leftarrow \max_{a \in A} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_i(s') \right]$$

$$\forall s \in S, V_{i+1}(s) \leftarrow \max_{a \in A} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_i(s') \right]$$

$$\forall s \in S, V_{i+1}(s) \leftarrow \max_{a \in A} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_i(s') \right]$$

$$\forall s \in S, V_{i+1}(s) \leftarrow \max_{a \in A} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_i(s') \right]$$

$$\forall s \in S, V_{i+1}(s) \leftarrow \max_{a \in A} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_i(s') \right]$$

We have iterated on values, and determined a policy out of it (without necessarily representing it if using Q(s,a))

Policy Iteration: the algorithm

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

- 1. Initialization $V(s) \in \mathbb{R} \text{ and } \pi(s) \in \mathcal{A}(s) \text{ arbitrarily for all } s \in \mathbb{S}$
- 2. Policy Evaluation Loop: $\Delta \leftarrow 0$ Loop for each $s \in \mathcal{S}$:

3. Policy Improvement

by the each $s \in S$. $v \leftarrow V(s)$ $V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s))[r+\gamma V(s')]$

 $\Delta \leftarrow \max(\Delta, |v - V(s)|)$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

- policy-stable \leftarrow true For each $s \in \mathcal{S}$: old-action $\leftarrow \pi(s)$ $\pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a)[r+\gamma V(s')]$ If old-action $\neq \pi(s)$, then policy-stable \leftarrow false If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Taken from Sutton & Barto, 2018, p. 80

▶ Note: $\sum_{s',r} p(s',r|s,a)[r+\gamma V(s')] = r + \gamma \sum_{s'} p(s'|s,a)V(s')$

$$\forall s \in S, V_i(s) \leftarrow evaluate(\pi_i(s))$$

$$\forall s \in S, \pi_{i+1}(s) \leftarrow improve(\pi_i(s), V_i(s))$$

$$\forall s \in S, V_i(s) \leftarrow evaluate(\pi_i(s))$$

$$\forall s \in S, \pi_{i+1}(s) \leftarrow improve(\pi_i(s), V_i(s))$$

$$\forall s \in S, V_i(s) \leftarrow evaluate(\pi_i(s))$$

$$\forall s \in S, \pi_{i+1}(s) \leftarrow improve(\pi_i(s), V_i(s))$$

$$\forall s \in S, V_i(s) \leftarrow evaluate(\pi_i(s))$$

$$\forall s \in S, \pi_{i+1}(s) \leftarrow improve(\pi_i(s), V_i(s))$$

$$\forall s \in S, V_i(s) \leftarrow evaluate(\pi_i(s))$$

$$\forall s \in S, \pi_{i+1}(s) \leftarrow improve(\pi_i(s), V_i(s))$$

$$\forall s \in S, V_i(s) \leftarrow evaluate(\pi_i(s))$$

Here we have managed a policy and a value representations at all steps

Generalized Policy Iteration

- Policy iteration evaluates each intermediate policy up to convergence.
 This is slow.
- lacktriangle Instead, evaluate the policy for N iterations, or even not for all states.
- Asynchronous dynamics programming: decoupling policy evaluation and improvement
- ► Taken from Sutton & Barto, 2018

Corresponding labs

- ightharpoonup Implement value iteration with the V and the Q functions
- ▶ Implement policy iteration with the *V* and the *Q* functions
- Compare them
- Optional: study "Generalized policy iteration"

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

Puterman, M. L.

Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 2014.