Supporting Information for "Quantile Regression for Nonignorable Missing Data with its Application of Analyzing Electronic Medical Records" by Yu, Zhong, Feng and Wei

Aiai Yu^{1,*}, Yujie Zhong^{1,**}, Xingdong Feng^{1,***}, and Ying Wei^{2,****}

¹School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, China ²Department of Biostatistics, Columbia University, New York, NY 10032, U.S.A.

*email: yu.aiai2018@163.sufe.edu.cn

**email: zhong.yujie@mail.shufe.edu.cn

***email: feng.xingdong@mail.shufe.edu.cn

****email: yw2148@cumc.columbia.edu

The Supporting Information includes an computing algorithm for the proposed method, the detailed proofs of Theorems 1–3, additional simulation results and empirical analysis results. The details of the proposed computing algorithm for proposed method are given in Web Appendix A. The proofs of Theorems 1–3 and related Lemmas are given in Web Appendices B, C and D, respectively. The additional simulation results are reported in Web Appendix E and the additional empirical analysis results are summarized in Web Appendix F.

Web Appendix A

The detailed computing algorithm to obtain the proposed estimates $\widehat{\xi}_n$ is presented as follows.

- Step 1. Initialize parameters ϕ by solving the estimating equation $\sum_{i=1}^{n} \delta_i \boldsymbol{x}_i \Psi_{\tau} (y_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}) = 0$ with complete observations over the evenly-spaced find grid of quantile levels Ω , denoted as $\widehat{\phi}^{(0)} = \left(\widehat{\boldsymbol{\beta}}_{\tau_1}^{(0)\mathsf{T}}, \ldots, \widehat{\boldsymbol{\beta}}_{\tau_{k_n}}^{(0)\mathsf{T}}\right)^{\mathsf{T}}$.
- **Step 2.** Suppose $\widehat{\phi}^{(t-1)} = \left(\widehat{\beta}_{\tau_1}^{(t-1)^{\mathsf{T}}}, \dots, \widehat{\beta}_{\tau_{k_n}}^{(t-1)^{\mathsf{T}}}\right)^{\mathsf{T}}$ is the estimated quantile coefficients at the (t-1)th step, we approximate the conditional quantile functions of $x_i^{\mathsf{T}} \beta(\tau)$ by piece-wise linear spline expanding from $\widehat{\phi}^{(t-1)}$, i.e.

$$\boldsymbol{x}_{i}^{\mathsf{T}} \widetilde{\boldsymbol{\beta}}^{(t-1)}(\tau) = \begin{cases} \boldsymbol{x}_{i}^{\mathsf{T}} \widehat{\boldsymbol{\beta}}_{\tau_{1}}^{(t-1)} & \tau < \tau_{1} \\ \\ \boldsymbol{x}_{i}^{\mathsf{T}} \left(\frac{\tau_{k+1} - \tau}{\tau_{k+1} - \tau_{k}} \widehat{\boldsymbol{\beta}}_{\tau_{k}}^{(t-1)} + \frac{\tau - \tau_{k}}{\tau_{k+1} - \tau_{k}} \widehat{\boldsymbol{\beta}}_{\tau_{k+1}}^{(t-1)} \right) & \tau \in [\tau_{k}, \tau_{k+1}) \text{ for } k = 1, 2, \dots, (k_{n} - 1) \\ \\ \boldsymbol{x}_{i}^{\mathsf{T}} \widehat{\boldsymbol{\beta}}_{\tau_{k_{n}}}^{(t-1)} & \tau \geq \tau_{k_{n}} \end{cases}$$

Step 3. Use Monte Carlo integration to approximate the conditional expectations in $S_n(\theta, \beta(\tau))$. e.g.

$$E_y\{1-\pi(\boldsymbol{x}_{1i},y;\boldsymbol{\theta})\mid \boldsymbol{x}_i\} \approx \frac{1}{m}\sum_{l=1}^m\{1-\pi(\boldsymbol{x}_{1i},\widetilde{y}_i^l;\boldsymbol{\theta})\},$$

where \widetilde{y}_i^l (l=1,...,m) are m random samples drawn from the quantile function $\boldsymbol{x}_i^{\mathsf{T}}\widetilde{\boldsymbol{\beta}}^{(t-1)}(\tau)$.

Step 4. Update $\widehat{\boldsymbol{\theta}}^{(t)}$ by solving the approximated $\boldsymbol{S}_n(\boldsymbol{\theta}, \widetilde{\boldsymbol{\beta}}^{(t-1)}(\tau)) = 0$ in Step 3. The approximated estimating equation used to estimate $\boldsymbol{\theta}$ is

$$\frac{1}{n} \sum_{i=1}^{n} \left[\delta_{i} \boldsymbol{s} \left(\boldsymbol{\theta}; \delta_{i}, \boldsymbol{x}_{1i}, y_{i} \right) + \left(1 - \delta_{i} \right) \frac{\sum_{l=1}^{m} \left\{ 1 - \pi \left(\boldsymbol{x}_{1i}, \widetilde{y}_{i}^{l}; \widehat{\boldsymbol{\theta}}^{(t-1)} \right) \right\} \boldsymbol{s} \left(\boldsymbol{\theta}; \delta_{i}, \boldsymbol{x}_{1i}, \widetilde{y}_{i}^{l} \right)}{\sum_{l=1}^{m} \left\{ 1 - \pi \left(\boldsymbol{x}_{1i}, \widetilde{y}_{i}^{l}; \widehat{\boldsymbol{\theta}}^{(t-1)} \right) \right\}} \right] = 0,$$

where

$$s(\boldsymbol{\theta}; \delta, \boldsymbol{x}_1, y) = \begin{cases} \pi(\boldsymbol{x}_1, y; \boldsymbol{\theta})^{-1} \partial \pi(\boldsymbol{x}_1, y; \boldsymbol{\theta}) / \partial \boldsymbol{\theta} & \delta = 1 \\ -\left\{1 - \pi(\boldsymbol{x}_1, y; \boldsymbol{\theta})\right\}^{-1} \partial \pi(\boldsymbol{x}_1, y; \boldsymbol{\theta}) / \partial \boldsymbol{\theta} & \delta = 0 \end{cases}.$$

Here a weighted logistic regression is considered to obtain the estimates of $\widehat{\boldsymbol{\theta}}^{(t)}$, where the response is δ_i , the observations $(\boldsymbol{x}_{1i}, y_i)$ are weighted with the constant 1 if $\delta_i = 1$, and the simulated pairs $(\boldsymbol{x}_{1i}, \widetilde{y}_i^l)$ are weighted with the ratios $\{1 - \pi(\boldsymbol{x}_{1i}, \widetilde{y}_i^l; \widehat{\boldsymbol{\theta}}^{(t-1)})\}/\sum_{l=1}^m \{1 - \pi(\boldsymbol{x}_{1i}, \widetilde{y}_i^l; \widehat{\boldsymbol{\theta}}^{(t-1)})\}$ if $\delta_i = 0$.

Step 5. Update $\widehat{\phi}^{(t)}$ by solving the equations

$$\boldsymbol{M}_{n}(\widehat{\boldsymbol{\theta}}^{(t)}, \boldsymbol{\phi}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\delta_{i}}{\pi \left(\boldsymbol{x}_{1i}, y_{i}; \widehat{\boldsymbol{\theta}}^{(t)}\right)} \Psi \left(y_{i} - \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\phi}\right) \otimes \boldsymbol{x}_{i} = 0 ,$$

where \otimes is the Kronecker product and $\Psi(y_i - \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\phi}) \otimes \boldsymbol{x}_i$ is a $(p \times k_n)$ -dimensional vector, which consists of k_n components $\{\Psi_{\tau_k} (y_i - \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}_{\tau_k}) \boldsymbol{x}_i\}_{k=1,\dots,k_n}$. We can use the R package quantreg to obtain the estimate $\widehat{\boldsymbol{\phi}}^{(t)}$ by minimizing the following function instead of directly solving the estimating equation

$$\sum_{i=1}^{n} \frac{\delta_{i}}{\pi(\boldsymbol{x}_{1i}, y_{i}; \widehat{\boldsymbol{\theta}}^{(t)})} \rho_{\tau_{k}} \left(y_{i} - \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\beta} \right).$$

Step 6. Repeat Steps 2 to 5 until some stopping criteria are satisfied.

Web Appendix B

Let $\|\cdot\|$ be the standard L_2 norm, $\|\cdot\|_{\psi_1}$ be the sub-exponential norm, and q be the dimension of the vector $\boldsymbol{\xi}$, that is, $q = (d+1) + k_n \cdot p$. Denote \mathcal{X}, \mathcal{Y} as the support of \boldsymbol{x} , y, respectively. Without loss of generality, we assume in our proof that $\tau_k = k/(k_n+1)$ such that $\Omega = \{1/(k_n+1), 2/(k_n+1), \ldots, k_n/(k_n+1)\}$. Denote

$$\widetilde{\boldsymbol{S}}_{n}(\boldsymbol{\xi}) = \boldsymbol{S}_{n}(\boldsymbol{\theta}, \widetilde{\boldsymbol{\beta}}(\tau))$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[\delta_{i} s\left(\boldsymbol{\theta}; \delta_{i}, \boldsymbol{x}_{1i}, y_{i}\right) + (1 - \delta_{i}) \frac{\int \left\{1 - \pi\left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}\right)\right\} s\left(\boldsymbol{\theta}; \delta_{i}, \boldsymbol{x}_{1i}, y\right) \widetilde{f}(y \mid \boldsymbol{x}_{i}; \boldsymbol{\phi}) dy}{\int \left\{1 - \pi\left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}\right)\right\} \widetilde{f}(y \mid \boldsymbol{x}_{i}; \boldsymbol{\phi}) dy} \right],$$
where $\widetilde{f}(y \mid \boldsymbol{x}_{i}; \boldsymbol{\phi}) = f(y \mid \boldsymbol{x}_{i}^{\mathsf{T}} \widetilde{\boldsymbol{\beta}}(\tau))$. Let

$$\widehat{\boldsymbol{S}}_{n}(\boldsymbol{\xi}) = \frac{1}{n} \sum_{i=1}^{n} \left[\delta_{i} \boldsymbol{s} \left(\boldsymbol{\theta}; \delta_{i}, \boldsymbol{x}_{1i}, y_{i} \right) + \left(1 - \delta_{i} \right) \frac{\sum_{l=1}^{m} \left\{ 1 - \pi(\boldsymbol{x}_{1i}, \widetilde{y}_{i}^{l}; \boldsymbol{\theta}) \right\} \boldsymbol{s} \left(\boldsymbol{\theta}; \delta_{i}, \boldsymbol{x}_{1i}, \widetilde{y}_{i}^{l} \right)}{\sum_{l=1}^{m} \left\{ 1 - \pi(\boldsymbol{x}_{1i}, \widetilde{y}_{i}^{l}; \boldsymbol{\theta}) \right\}} \right],$$

and $\widehat{\boldsymbol{H}}n(\boldsymbol{\xi}) = \left(\widehat{\boldsymbol{S}}_n^{\mathsf{T}}(\boldsymbol{\xi}), M_n^{\mathsf{T}}(\boldsymbol{\xi})\right)^{\mathsf{T}}$. The proposed estimate $\widehat{\boldsymbol{\xi}}_n = \left(\widehat{\boldsymbol{\theta}}_n^{\mathsf{T}}, \widehat{\boldsymbol{\phi}}_n^{\mathsf{T}}\right)^{\mathsf{T}}$ is obtained by solving the approximated estimating equation $\widehat{\boldsymbol{H}}_n(\boldsymbol{\xi}) = 0$. For simple presentation, we further let $\boldsymbol{H}_{\tau}^0(\boldsymbol{\theta}, \boldsymbol{\beta}) = \left(\boldsymbol{S}^{0\mathsf{T}}(\boldsymbol{\theta}), \boldsymbol{M}_{\tau}^{\mathsf{T}}(\boldsymbol{\theta}, \boldsymbol{\beta})\right)^{\mathsf{T}}$, $\boldsymbol{H}^0(\boldsymbol{\xi}) = \left(\boldsymbol{S}^{0\mathsf{T}}(\boldsymbol{\theta}), \boldsymbol{M}^{\mathsf{T}}(\boldsymbol{\xi})\right)^{\mathsf{T}}$, $\boldsymbol{H}(\boldsymbol{\xi}) = \left(\boldsymbol{S}^{\mathsf{T}}(\boldsymbol{\xi}), \boldsymbol{M}^{\mathsf{T}}(\boldsymbol{\xi})\right)^{\mathsf{T}}$ and $\boldsymbol{H}(\boldsymbol{\xi}) = \left(\boldsymbol{S}^{\mathsf{T}}(\boldsymbol{\xi}), \boldsymbol{M}^{\mathsf{T}}(\boldsymbol{\xi})\right)^{\mathsf{T}}$ be the expectations of $\boldsymbol{H}_{n,\tau}^0(\boldsymbol{\theta}, \boldsymbol{\beta}), \boldsymbol{H}_n^0(\boldsymbol{\xi}), \boldsymbol{H}_n(\boldsymbol{\xi})$ and $\boldsymbol{H}_n(\boldsymbol{\xi})$, respectively. We first introduce Lemmas 1, 2 and 3 which will be used for the proof of Theorem 1.

LEMMA 1: Under Assumptions 2-3, for $k_n \to \infty$, $k_n/n \to 0$, we have

$$k_n^{-1} \| \boldsymbol{H}(\boldsymbol{\xi}_0) - \boldsymbol{H}^0(\boldsymbol{\xi}_0) \| = o(1)$$
 (A.1)

Proof. Note that

$$k_n^{-1} \| \boldsymbol{H}(\boldsymbol{\xi}_0) - \boldsymbol{H}^0(\boldsymbol{\xi}_0) \|$$

$$\leq k_n^{-1} \| \boldsymbol{S}(\boldsymbol{\xi}_0) - \boldsymbol{S}^0(\boldsymbol{\theta}_0) \| + k_n^{-1} \| \boldsymbol{M}(\boldsymbol{\xi}_0) - \boldsymbol{M}(\boldsymbol{\xi}_0) \| = k_n^{-1} \| \boldsymbol{S}(\boldsymbol{\xi}_0) - \boldsymbol{S}^0(\boldsymbol{\theta}_0) \|$$

so it suffices to show that

$$k_n^{-1} \| \mathbf{S}(\xi_0) - \mathbf{S}^0(\theta_0) \| = o(1).$$
 (A.2)

Let

$$A_{i}(\boldsymbol{\xi}_{0}) = \int_{y} \left\{ 1 - \pi \left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}_{0} \right) \right\} f\left(y | \boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau) \right) dy,$$

$$\widetilde{A}_{i}(\boldsymbol{\xi}_{0}) = \int_{y} \left\{ 1 - \pi \left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}_{0} \right) \right\} \widetilde{f}\left(y | \boldsymbol{x}_{i}; \boldsymbol{\phi}_{0} \right) dy.$$

Note that

$$\begin{aligned} & \left\| \boldsymbol{S}(\boldsymbol{\xi}_{0}) - \boldsymbol{S}^{0}(\boldsymbol{\theta}_{0}) \right\| \\ &= \left\| \frac{1}{n} \sum_{i=1}^{n} E_{\boldsymbol{x}_{i}} \left\{ (1 - \delta_{i}) \int_{y} \left\{ 1 - \pi \left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}_{0} \right) \right\} s \left(\boldsymbol{\theta}_{0}; \delta_{i}, \boldsymbol{x}_{1i}, y \right) \\ &\cdot \left(\frac{f(y|\boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau))}{A_{i}(\boldsymbol{\xi}_{0})} - \frac{\widetilde{f}(y|\boldsymbol{x}_{i}; \boldsymbol{\phi}_{0})}{\widetilde{A}_{i}(\boldsymbol{\xi}_{0})} \right) dy \right\} \right\| \\ &= \left\| \frac{1}{n} \sum_{i=1}^{n} E_{\boldsymbol{x}_{i}} \left\{ (1 - \delta_{i}) \int_{y} \partial_{\boldsymbol{\theta}_{0}} \pi \left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}_{0} \right) \left(\frac{f(y|\boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau))}{A_{i}(\boldsymbol{\xi}_{0})} - \frac{\widetilde{f}(y|\boldsymbol{x}_{i}; \boldsymbol{\phi}_{0})}{\widetilde{A}_{i}(\boldsymbol{\xi}_{0})} \right) dy \right\} \right\| \\ &\leq \frac{1}{n} \sum_{i=1}^{n} E_{\boldsymbol{x}_{i}} \left\{ \int_{y} \left\| \partial_{\boldsymbol{\theta}_{0}} \pi \left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}_{0} \right) \right\| \left| \frac{f(y|\boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau))}{A_{i}(\boldsymbol{\xi}_{0})} - \frac{\widetilde{f}(y|\boldsymbol{x}_{i}; \boldsymbol{\phi}_{0})}{\widetilde{A}_{i}(\boldsymbol{\xi}_{0})} \right| \right\} dy \\ &\leq \frac{1}{n} \sum_{i=1}^{n} E_{\boldsymbol{x}_{i}} \left\{ \frac{1}{\widetilde{A}_{i}(\boldsymbol{\xi}_{0})} \int_{y} \left\| \partial_{\boldsymbol{\theta}_{0}} \pi \left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}_{0} \right) \right\| \left| f(y|\boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau)) - \widetilde{f}(y|\boldsymbol{x}_{i}; \boldsymbol{\phi}_{0}) \right| dy \right\} \end{aligned}$$

$$+\frac{1}{n}\sum_{i=1}^{n}E_{\boldsymbol{x}_{i}}\left\{\frac{\left|A_{i}(\boldsymbol{\xi}_{0})-\widetilde{A}_{i}(\boldsymbol{\xi}_{0})\right|}{A_{i}(\boldsymbol{\xi}_{0})\widetilde{A}_{i}(\boldsymbol{\xi}_{0})}\int_{y}\left\|\partial_{\boldsymbol{\theta}_{0}}\pi\left(\boldsymbol{x}_{1i},y;\boldsymbol{\theta}_{0}\right)\right\|f(y|\boldsymbol{x}_{i};\boldsymbol{\beta}_{0}(\tau))dy\right\}$$

$$\widehat{=}SS_{1}+SS_{2},$$

so (A.2) holds if $k_n^{-1}SS_1 = o(1)$ and $k_n^{-1}SS_2 = o(1)$ hold.

Under Assumption 3, there exist positive constants $U_{\pi'}$, L_{π} and U_{π} such that the absolute value of each element of $\partial_{\theta_0} \pi (\boldsymbol{x}_1, y; \boldsymbol{\theta}_0)$ is less than $U_{\pi'}$, and $L_{\pi} \leq \pi (\boldsymbol{x}_1, y; \boldsymbol{\theta}_0) \leq U_{\pi}$ for any $\boldsymbol{x} \in \mathcal{X}$ and $y \in \mathcal{Y}$. Therefore, we have $\|\partial_{\theta} \pi (\boldsymbol{x}_1, y; \boldsymbol{\theta}_0)\| \leq (d+1)U_{\pi'}$ and $\widetilde{A}_i(\boldsymbol{\xi}_0) \geq 1 - U_{\pi}$ for any $\boldsymbol{x} \in \mathcal{X}$ and $y \in \mathcal{Y}$. Thus,

$$SS_{1} \leq \frac{1}{n} \frac{1}{1 - U_{\pi}} \sum_{i=1}^{n} E_{\boldsymbol{x}_{i}} \left\{ \int_{y} \|\partial_{\boldsymbol{\theta}_{0}} \pi \left(\boldsymbol{x}_{1}, y; \boldsymbol{\theta}_{0}\right)\| \left| f(y|\boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau)) - \widetilde{f}(y|\boldsymbol{x}_{i}; \boldsymbol{\phi}_{0}) \right| dy \right\}$$

$$\leq \frac{1}{n} \frac{(d+1)U_{\pi'}}{1 - U_{\pi}} \sum_{i=1}^{n} E_{\boldsymbol{x}_{i}} \left\{ \int_{y} \left| f(y|\boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau)) - \widetilde{f}(y|\boldsymbol{x}_{i}; \boldsymbol{\phi}_{0}) \right| dy \right\}$$

$$\leq \frac{1}{n} \frac{(d+1)U_{\pi'}}{1 - U_{\pi}} \sum_{i=1}^{n} E_{\boldsymbol{x}_{i}} \left\{ \int_{y} \boldsymbol{I} \left(y > \boldsymbol{x}_{i}^{T} \boldsymbol{\beta}_{0,k_{n}/(k_{n}+1)} \right) f(y|\boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau)) dy \right\}$$

$$+ \frac{1}{n} \frac{(d+1)U_{\pi'}}{1 - U_{\pi}} \sum_{i=1}^{n} E_{\boldsymbol{x}_{i}} \left\{ \int_{y} \boldsymbol{I} \left(\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}_{0,1/(k_{n}+1)} \right) f(y|\boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau)) dy \right\}$$

$$+ \frac{1}{n} \frac{(d+1)U_{\pi'}}{1 - U_{\pi}} \sum_{i=1}^{n} E_{\boldsymbol{x}_{i}} \left\{ \int_{y} \boldsymbol{I} \left(\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}_{0,1/(k_{n}+1)} \right) \leq y \leq \boldsymbol{x}_{i}^{T} \boldsymbol{\beta}_{0,k_{n}/(k_{n}+1)} \right)$$

$$\cdot \left| f(y|\boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau)) - \widetilde{f}(y|\boldsymbol{x}_{i}; \boldsymbol{\phi}_{0}) \right| dy \right\}$$

$$\widehat{=} SS_{11} + SS_{12} + SS_{13}.$$

Since

$$E_{\boldsymbol{x}_{i}} \left\{ \int_{y} \boldsymbol{I} \left(y > \boldsymbol{x}_{i}^{T} \boldsymbol{\beta}_{0,k_{n}/(k_{n}+1)} \right) f(y|\boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau)) dy \right\}$$

$$= E_{\boldsymbol{x}_{i}} \left[E_{y} \left\{ \boldsymbol{I} \left(y > \boldsymbol{x}_{i}^{T} \boldsymbol{\beta}_{0,k_{n}/(k_{n}+1)} \right) | \boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau) \right\} \right]$$

$$= \frac{1}{1+k_{n}},$$

we then have $SS_{11} = \frac{1}{1+k_n} \cdot \frac{(d+1)U_{\pi'}}{1-U_{\pi}} = o(1)$ and thus $k_n^{-1}SS_{11} = o(k_n^{-1}) = o(1)$. With the similar argument, we can show that $k_n^{-1}SS_{12} = o(1)$. In what follows, we show that $k_n^{-1}SS_{13} = o(1)$.

Denote $g(\boldsymbol{x}_i) = \int_y |f(y|\boldsymbol{x}_i; \boldsymbol{\beta}_0(\tau)) - \widetilde{f}(y|\boldsymbol{x}_i; \boldsymbol{\phi}_0)| \times \boldsymbol{I}\left(\boldsymbol{x}_i^T \boldsymbol{\beta}_{0,1/(k_n+1)} \leq y \leq \boldsymbol{x}_i^T \boldsymbol{\beta}_{0,k_n/(k_n+1)}\right) dy$. It is easy to show that $|g(\boldsymbol{x}_i)| \leq 2$ for any $\boldsymbol{x}_i \in \mathcal{X}$. Hence, by dominated convergence theorem, a

sufficient condition for $k_n^{-1}SS_{13} = o(1)$ is that $g(\mathbf{x}_i) = o_p(1)$ holds for all i. In order to prove $g(\mathbf{x}_i) = o_p(1)$, by Scheffe's theorem, we only need to show that, for any $y \in \mathcal{Y}$, the following equation holds

$$\max_{i} |f(y|\boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau)) - \widetilde{f}(y|\boldsymbol{x}_{i}; \boldsymbol{\phi}_{0})| \times \boldsymbol{I}(\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}_{0, 1/(k_{n}+1)} \leq y \leq \boldsymbol{x}_{i}^{T} \boldsymbol{\beta}_{0, k_{n}/(k_{n}+1)}) = o_{p}(1).$$
 (A.3)

Note that $F_{x_i}(y) = \inf \{ \tau : x_i^{\mathsf{T}} \boldsymbol{\beta}_{0,\tau} \geq y \}$ is the quantile level of y with respect to the probability measure induced by the quantile function $x_i^{\mathsf{T}} \boldsymbol{\beta}_{0,\tau}$, and $h_{x_i}(\tau) = 1/x_i^{\mathsf{T}} \boldsymbol{\beta}_0'(\tau)$ is the density of y at the τ -th quantile. For any y that is bounded between $x_i^{\mathsf{T}} \boldsymbol{\beta}_{0,1/(k_n+1)}$ and $x_i^{\mathsf{T}} \boldsymbol{\beta}_{0,k_n/(k_n+1)}$, there exists an integer k_i such that $x_i^{\mathsf{T}} \boldsymbol{\beta}_{0,k_i/(k_n+1)} \leq y \leq x_i^{\mathsf{T}} \boldsymbol{\beta}_{0,(k_i+1)/(k_n+1)}$. Consequently, the left side of (A.3) is equivalent to

$$\max_{i} \left| \frac{1}{(k_{n}+1)\boldsymbol{x}_{i}^{\mathsf{T}} (\boldsymbol{\beta}_{0,(k_{i}+1)/(k_{n}+1)} - \boldsymbol{\beta}_{0,k_{i}/(k_{n}+1)})} - \frac{1}{\boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\beta}_{0}' \{F_{\boldsymbol{x}_{i}}(y)\}} \right| \\
= \max_{i} \left| h_{\boldsymbol{x}_{i}} (\tau_{i}^{*}) - h_{\boldsymbol{x}_{i}} \{F_{\boldsymbol{x}_{i}}(y)\} \right| \qquad \text{for some } k_{i}/(k_{n}+1) < \tau_{i}^{*} < (k_{i}+1)/(k_{n}+1) \\
= \max_{i} \left| h_{\boldsymbol{x}_{i}}' \{k_{i}/(k_{n}+1)\} O(k_{n}^{-1}) \right|. \tag{A.4}$$

By Assumption 2, we then have

$$h'_{x_{i}} \left\{ k_{i} / (k_{n} + 1) \right\} < M \left(\frac{k_{i}}{k_{n} + 1} \right)^{v_{1}} \left(1 - \frac{k_{i}}{k_{n} + 1} \right)^{v_{2}}$$

$$< M \left(\frac{1}{k_{n} + 1} \right)^{v_{1}} \left(1 - \frac{1}{k_{n} + 1} \right)^{v_{2}}$$

$$+ M \left(\frac{k_{n}}{k_{n} + 1} \right)^{v_{1}} \left(1 - \frac{k_{n}}{k_{n} + 1} \right)^{v_{2}}$$

$$= O \left(k_{n}^{-v_{1}} \right) + O \left(k_{n}^{-v_{2}} \right). \tag{A.5}$$

Since $v_1, v_2 > -1$, (A.3) is implied by (A.4) and (A.5). Hence, we obtain $k_n^{-1}SS_1 = o(1)$. Moreover, as $k_n \to \infty$, we know that

$$\max_{i} \int_{y} |f(y|\mathbf{x}_{i}; \boldsymbol{\beta}_{0}(\tau)) - \widetilde{f}(y|\mathbf{x}_{i}; \boldsymbol{\phi}_{0})| dy = \frac{2}{k_{n}+1} + o_{p}(1) = o_{p}(1).$$
 (A.6)

In what follows, we show that $k_n^{-1}SS_2 = o(1)$. By (A.6), we have

$$\max_{i} \frac{\left| A_{i}(\boldsymbol{\xi}_{0}) - \widetilde{A}_{i}(\boldsymbol{\xi}_{0}) \right|}{A_{i}(\boldsymbol{\xi}_{0}) \widetilde{A}_{i}(\boldsymbol{\xi}_{0})} \leq \frac{1}{(1 - U_{\pi})^{2}} \max_{i} \int_{y} \left| f(y|\boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau)) - \widetilde{f}(y|\boldsymbol{x}_{i}; \boldsymbol{\phi}_{0}) \right| dy = o_{p}(1),$$

and the right term of the above inequality is between 0 and 2. Thus, according to dominated

convergence theorem, we have

$$SS_{2} = \frac{1}{n} \sum_{i=1}^{n} E_{\boldsymbol{x}_{i}} \left\{ \frac{\left| A_{i}(\boldsymbol{\xi}_{0}) - \widetilde{A}_{i}(\boldsymbol{\xi}_{0}) \right|}{A_{i}(\boldsymbol{\xi}_{0}) \widetilde{A}_{i}(\boldsymbol{\xi}_{0})} \int_{y} \left\| \partial_{\boldsymbol{\theta}_{0}} \pi \left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}_{0} \right) \right\| f(y|\boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau)) dy \right\}$$

$$\leq \frac{(d+1)U_{\pi'}}{n} \sum_{i=1}^{n} E_{\boldsymbol{x}_{i}} \left\{ \frac{\left| A_{i}(\boldsymbol{\xi}_{0}) - \widetilde{A}_{i}(\boldsymbol{\xi}_{0}) \right|}{A_{i}(\boldsymbol{\xi}_{0}) \widetilde{A}_{i}(\boldsymbol{\xi}_{0})} \right\}$$

$$\leq (d+1)U_{\pi'} E_{\boldsymbol{x}_{i}} \left\{ \max_{i} \frac{\left| A_{i}(\boldsymbol{\xi}_{0}) - \widetilde{A}_{i}(\boldsymbol{\xi}_{0}) \right|}{A_{i}(\boldsymbol{\xi}_{0}) \widetilde{A}_{i}(\boldsymbol{\xi}_{0})} \right\}$$

$$= o(1).$$

Therefore, we have $k_n^{-1}SS_2 = o(1)$. The proof of Lemma 1 is hence completed. \Box

LEMMA 2: Under Assumptions 1-3, for $k_n \to \infty$, $k_n/n \to 0$, we have

$$\sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} k_n^{-1} \| \boldsymbol{H}_n(\boldsymbol{\xi}) - \boldsymbol{H}(\boldsymbol{\xi}) \| = o_p(1) \quad \text{as} \quad n \to \infty.$$
(A.7)

Proof. For convenience, we assume that $\{y_i : i = 1, 2, ..., n_0\}$ are observed, $\{y_i : i = n_0 + 1, n_0 + 2, ..., n\}$ are missing and denote $n_1 = n - n_0$. Note that for every $\xi \in \Theta_{\xi}$,

$$\|H_n(\xi) - H(\xi)\| \le \|S_n(\xi) - S(\xi)\| + \|M_n(\xi) - M(\xi)\|,$$

so a sufficient condition for (A.7) is $\sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} k_n^{-1} \| \boldsymbol{S}_n(\boldsymbol{\xi}) - \boldsymbol{S}(\boldsymbol{\xi}) \| = o_p(1)$ and $\sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} k_n^{-1} \| \boldsymbol{M}_n(\boldsymbol{\xi}) - \boldsymbol{M}(\boldsymbol{\xi}) \| = o_p(1)$. In what follows, we will show $\sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} k_n^{-1} \| \boldsymbol{S}_n(\boldsymbol{\xi}) - \boldsymbol{S}(\boldsymbol{\xi}) \| = o_p(1)$. First, we denote

$$S_{n}(\xi) = \frac{1}{n} \sum_{i=1}^{n_{0}} s(\theta; \delta_{i} = 1, x_{1i}, y_{i}) + \frac{1}{n} \sum_{i=n_{0}+1}^{n} g(x_{i}; \xi)$$

$$\widehat{\Xi}_{n}^{n_{0}} S_{n}^{(1)}(\theta) + \frac{n_{1}}{n} S_{n}^{(2)}(\xi).$$

where

$$g(\boldsymbol{x}_i;\boldsymbol{\xi}) = \int s(\boldsymbol{\theta}; \delta_i = 0, \boldsymbol{x}_{1i}, y) \frac{\{1 - \pi(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta})\} \widetilde{f}(y|\boldsymbol{x}_i; \boldsymbol{\phi})}{\int \{1 - \pi(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta})\} \widetilde{f}(y|\boldsymbol{x}_i; \boldsymbol{\phi}) dy} dy.$$

Similarly, we denote

$$S(\boldsymbol{\xi})\widehat{=}\frac{n_0}{n}S^{(1)}(\boldsymbol{\theta}) + \frac{n_1}{n}S^{(2)}(\boldsymbol{\xi}),$$

and $s(\boldsymbol{\theta}; \delta_i = 1, \boldsymbol{x}_{1i}, y_i) = (\boldsymbol{s}_{i,1}^1(\boldsymbol{\theta}), \dots, \boldsymbol{s}_{i,d+1}^1(\boldsymbol{\theta}))^T$, $\boldsymbol{S}^{(1)}(\boldsymbol{\theta}) = (\boldsymbol{s}_1^1(\boldsymbol{\theta}), \dots, \boldsymbol{s}_{d+1}^1(\boldsymbol{\theta}))^T$. Under Assumption 3, we have that $\boldsymbol{s}_{i,j}^1(\boldsymbol{\theta})$ is continuous at each $\boldsymbol{\theta} \in \Theta$ with $j = 1, \dots, d+1$, $\sup_{\boldsymbol{\theta} \in \Theta} \left| \boldsymbol{s}_{i,j}^1(\boldsymbol{\theta}) \right| \leq 1$

 $\frac{U_{\pi'}}{L_{\pi}}$, and then $\sup_{\theta \in \Theta} E \left| s_{i,j}^1(\theta) \right| \leq \frac{U_{\pi'}}{L_{\pi}}$. According to Lemma 2.4 of Engle (1994), we have

$$\sup_{\xi \in \Theta_{\xi}} \left| \frac{1}{n_0} \sum_{i=1}^{n_0} s_{i,j}^1(\theta) - s_j^1(\theta) \right| = \sup_{\theta \in \Theta} \left| \frac{1}{n_0} \sum_{i=1}^{n_0} s_{i,j}^1(\theta) - s_j^1(\theta) \right| = o_p(1) \quad \text{for} \quad j = 1, \dots, d+1.$$

Thus, we obtain that

$$\sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} \left\| \boldsymbol{S}_{n}^{(1)}(\boldsymbol{\theta}) - \boldsymbol{S}^{(1)}(\boldsymbol{\theta}) \right\| \\
\leq \sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} \sum_{j=1}^{d+1} \left| \frac{1}{n_{0}} \sum_{i=1}^{n_{0}} \boldsymbol{s}_{i,j}^{1}(\boldsymbol{\theta}) - \boldsymbol{s}_{j}^{1}(\boldsymbol{\theta}) \right| = o_{p}(1). \tag{A.8}$$

In what follows, we will show $\sup_{\xi \in \Theta_{\xi}} k_n^{-1} \| S_n^{(2)}(\xi) - S^{(2)}(\xi) \| = o_p(1)$, which is equivalent to

$$Pr\left(\sup_{\boldsymbol{\xi}\in\Theta_{\boldsymbol{\xi}}}k_n^{-1} \left\|\boldsymbol{S}_n^{(2)}(\boldsymbol{\xi}) - \boldsymbol{S}^{(2)}(\boldsymbol{\xi})\right\| > \epsilon\right) \to 0 \tag{A.9}$$

for any $\epsilon > 0$ as $n \to \infty$. We will show (A.9) using Huber's chaining augment. Without loss of generality, we assume $\Theta_{\boldsymbol{\xi}} = \bigcup_{k=1}^{k_n} \{\boldsymbol{\xi}_{\tau_k} : \|\boldsymbol{\xi}_{\tau_k} - \boldsymbol{\xi}_{0,\tau_k}\| < 1\}$ where $\boldsymbol{\xi}_{\tau_k} = (\boldsymbol{\theta}^T, \boldsymbol{\beta}_{\tau_k}^T)^T$, and $\boldsymbol{\xi}_{0,\tau_k} = (\boldsymbol{\theta}_0^T, \boldsymbol{\beta}_{0,\tau_k}^T)^T$. We partition the parameter space $\Theta_{\boldsymbol{\xi}}$ into L_n disjoint small cubes Γ_l with diameters less than $q_n = C_1 k_n / n$, for some constant C_1 . Let $\boldsymbol{\gamma}_l = (\boldsymbol{\theta}_l^T, \boldsymbol{\phi}_l^T)^T$ be the center of the l-th cube Γ_l . The probability of the left side of (A.9) is bounded by the sum of the following two probabilities, $P_1 + P_2$, where

$$P_{1} = Pr \left(\max_{1 \leq l \leq L_{n}} \sup_{\boldsymbol{\xi} \in \Gamma_{l}} k_{n}^{-1} \left\| \boldsymbol{S}_{n}^{(2)}(\boldsymbol{\xi}) - \boldsymbol{S}_{n}^{(2)}(\boldsymbol{\gamma}_{l}) - \boldsymbol{S}^{(2)}(\boldsymbol{\xi}) + \boldsymbol{S}^{(2)}(\boldsymbol{\gamma}_{l}) \right\| > \epsilon/2 \right),$$

and

$$P_2 = Pr\left(\max_{1 \le l \le L_n} k_n^{-1} \| \mathbf{S}_n^{(2)}(\gamma_l) - \mathbf{S}^{(2)}(\gamma_l) \| > \epsilon/2\right).$$

We first note that

$$\begin{aligned} & \left\| \boldsymbol{S}_{n}^{(2)}(\boldsymbol{\xi}) - \boldsymbol{S}_{n}^{(2)}(\boldsymbol{\gamma}_{l}) \right\| \\ &= \left\| \frac{1}{n} \sum_{i=1}^{n} \left(1 - \delta_{i} \right) \left\{ \int_{y} \partial_{\boldsymbol{\theta}} \pi \left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta} \right) \frac{\widetilde{f}(y|\boldsymbol{x}_{i}; \boldsymbol{\phi})}{\widetilde{A}_{i}(\boldsymbol{\xi})} dy - \int_{y} \partial_{\boldsymbol{\theta}_{l}} \pi \left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}_{l} \right) \frac{\widetilde{f}(y|\boldsymbol{x}_{i}; \boldsymbol{\phi}_{l})}{\widetilde{A}_{i}(\boldsymbol{\gamma}_{l})} dy \right\} \right\| \\ &\leq \frac{1}{n} \sum_{i=1}^{n} \int_{y} \left\| \partial_{\boldsymbol{\theta}} \pi \left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta} \right) - \partial_{\boldsymbol{\theta}_{l}} \pi \left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}_{l} \right) \right\| \frac{\widetilde{f}(y|\boldsymbol{x}_{i}; \boldsymbol{\phi})}{\widetilde{A}_{i}(\boldsymbol{\xi})} dy \\ &+ \frac{1}{n} \sum_{i=1}^{n} \int_{y} \left\| \partial_{\boldsymbol{\theta}_{l}} \pi \left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}_{l} \right) \right\| \left| \frac{\widetilde{f}(y|\boldsymbol{x}_{i}; \boldsymbol{\phi})}{\widetilde{A}_{i}(\boldsymbol{\xi})} - \frac{\widetilde{f}(y|\boldsymbol{x}_{i}; \boldsymbol{\phi}_{l})}{\widetilde{A}_{i}(\boldsymbol{\gamma}_{l})} \right| dy \end{aligned}$$

$$\widehat{\cong} SS_{21} + SS_{22}.$$

Therefore,

$$\max_{1 \le l \le L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} k_n^{-1} \left\| \widetilde{\boldsymbol{S}}_n^{(2)}(\boldsymbol{\xi}) - \widetilde{\boldsymbol{S}}_n^{(2)}(\boldsymbol{\gamma}_l) \right\| \le \max_{1 \le l \le L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} k_n^{-1} S S_{21} + \max_{1 \le l \le L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} k_n^{-1} S S_{22}.$$
 (A.10)

Moreover, under Assumption 3, there exist constants $U_{\pi}, U_{\pi'}$ such that

$$\max_{1 \leq l \leq L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} SS_{21} \leq \max_{1 \leq l \leq L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} \frac{1}{1 - U_{\pi}} \times \frac{1}{n} \sum_{i=1}^n \int_{y} (\|\partial_{\boldsymbol{\theta}} \pi(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta})\| + \|\partial_{\boldsymbol{\theta}_l} \pi(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}_l)\|) \widetilde{f}(y|\boldsymbol{x}_i; \boldsymbol{\phi}) dy
\leq \frac{2(d+1)U_{\pi'}}{1 - U_{\pi}} \times \frac{1}{n} \sum_{i=1}^n \int_{y} \widetilde{f}(y|\boldsymbol{x}_i; \boldsymbol{\phi}) dy
\leq \frac{2(d+1)U_{\pi'}}{1 - U_{\pi}}
= O_p(1),$$

so $\max_{1 \le l \le L_n} \sup_{\xi \in \Gamma_l} k_n^{-1} S S_{21} = O_p(k_n^{-1}) = o_p(1)$.

On the other hand, we have

$$\max_{1 \leq l \leq L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} SS_{22} \leq \max_{1 \leq l \leq L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} (d+1) U_{\pi'} \times \frac{1}{n} \sum_{i=1}^n \int_y \left| \frac{\widetilde{f}(y|\boldsymbol{x}_i; \boldsymbol{\phi})}{\widetilde{A}_i(\boldsymbol{\xi})} - \frac{\widetilde{f}(y|\boldsymbol{x}_i; \boldsymbol{\phi}_l)}{\widetilde{A}_i(\boldsymbol{\gamma}_l)} \right| dy$$

$$\leq \max_{1 \leq l \leq L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} \frac{(d+1) U_{\pi'}}{1 - U_{\pi}} \times \frac{1}{n} \sum_{i=1}^n \int_y \left\{ \widetilde{f}(y|\boldsymbol{x}_i; \boldsymbol{\phi}) + \widetilde{f}(y|\boldsymbol{x}_i; \boldsymbol{\phi}_l) \right\} dy$$

$$\leq \frac{2(d+1) U_{\pi'}}{1 - U_{\pi}}$$

$$= O_p(1).$$

It then follows that $\max_{1 \le l \le L_n} \sup_{\xi \in \Gamma_l} k_n^{-1} S S_{22} = O_p(k_n^{-1}) = o_p(1)$. Therefore, according to (A.10), we have

$$\max_{1 \le l \le L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} k_n^{-1} \| \boldsymbol{S}_n^{(2)}(\boldsymbol{\xi}) - \boldsymbol{S}_n^{(2)}(\boldsymbol{\gamma}_l) \| = o_p(1).$$

With the similar argument, we can also show that

$$\max_{1 \le l \le L_n} \sup_{\xi \in \Gamma_l} k_n^{-1} \| S^{(2)}(\xi) - S^{(2)}(\gamma_l) \| = o(1).$$

It then follows that $P_1 = o(1)$.

Let $\mathcal{X}_i(l,m) = (1-\delta_i) \int_y -(\partial_{\boldsymbol{\theta}} \pi(\boldsymbol{x}_{1i},y;\boldsymbol{\theta}))_{(m)} \left(\widetilde{f}(y|\boldsymbol{x}_i;\boldsymbol{\phi})/\widetilde{A}(\boldsymbol{\xi})\right) dy \cdot I\left(\boldsymbol{\xi} \in \Gamma_l\right)$, where $(\partial_{\boldsymbol{\theta}} \pi(\boldsymbol{x}_{1i},y;\boldsymbol{\theta}))_{(m)}$ is the m-th element of $\partial_{\boldsymbol{\theta}} \pi(\boldsymbol{x}_{1i},y;\boldsymbol{\theta})$. A sufficient condition for $P_2 = o(1)$ is that, for any $\epsilon > 0$,

$$Pr\left(\max_{1\leq l\leq L_n; 1\leq m\leq d+1} \left| \frac{1}{n} \sum_{i=1}^n \left\{ \mathcal{X}_i(l,m) - E\mathcal{X}_i(l,m) \right\} \right| > \epsilon \right) = o(1).$$

Since $|\mathcal{X}_{i}(l,m)| \leq \frac{U_{\pi'}}{1-U_{\pi}}$ and $|\mathcal{X}_{i}(l,m) - E\mathcal{X}_{i}(l,m)| \leq \frac{2U_{\pi'}}{1-U_{\pi}} \widehat{=} B$, by Bernstein's inequality we have $Pr\left(\max_{1\leq l\leq L_{n}; 1\leq m\leq d+1} \left|\frac{1}{n}\sum_{i=1}^{n}\left\{\mathcal{X}_{i}(l,m) - E\mathcal{X}_{i}(l,m)\right\}\right| > \epsilon\right)$ $\leq \sum_{l=1}^{L_{n}}\sum_{m=1}^{d+1} Pr\left(\left|\frac{1}{n}\sum_{i=1}^{n}\left\{\mathcal{X}_{i}(l,m) - E\mathcal{X}_{i}(l,m)\right\}\right| > \epsilon\right)$ $\leq 2(d+1)L_{n} \exp\left(-\frac{n^{2}\epsilon^{2}}{2nB^{2}+(2/3)Bn\epsilon}\right) = o(1).$

We now have shown that $P_1 = o(1)$ and $P_2 = o(1)$, which implies that the uniform convergence (A.9) holds. Hence, $k_n^{-1} \| \mathbf{S}_n(\boldsymbol{\xi}) - \mathbf{S}(\boldsymbol{\xi}) \| = o_p(1)$ holds.

In what follows, we will show $\sup_{\xi \in \Theta_{\xi}} k_n^{-1} \| \boldsymbol{M}_n(\xi) - \boldsymbol{M}(\xi) \| = o_p(1)$, which is equivalent to show that, for any $\epsilon > 0$,

$$Pr\left(\sup_{\boldsymbol{\xi}\in\Theta_{\boldsymbol{\xi}}}k_n^{-1}\|\boldsymbol{M}_n(\boldsymbol{\xi})-\boldsymbol{M}(\boldsymbol{\xi})\|>\epsilon\right)\to0$$
(A.11)

as $n \to \infty$. The argument that proves (A.11) is similar to that of (A.9). The probability of the left side of (A.11) is bounded by the sum of the following two probabilities, $PP_1 + PP_2$, where

$$PP_1 = Pr\left(\max_{1 \le l \le L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} k_n^{-1} \| \boldsymbol{M}_n(\boldsymbol{\xi}) - \boldsymbol{M}_n(\boldsymbol{\gamma}_l) - \boldsymbol{M}(\boldsymbol{\xi}) + \boldsymbol{M}(\boldsymbol{\gamma}_l) \| > \epsilon/2\right),$$

and

$$PP_2 = Pr\left(\max_{1 \le l \le L_n} k_n^{-1} \| \boldsymbol{M}_n(\boldsymbol{\gamma}_l) - \boldsymbol{M}(\boldsymbol{\gamma}_l) \| > \epsilon/2\right).$$

Firstly, note that

$$\|\boldsymbol{M}_{n}(\boldsymbol{\xi}) - \boldsymbol{M}_{n}(\boldsymbol{\gamma}_{l})\|$$

$$= \left\|\frac{1}{n}\sum_{i=1}^{n} \frac{\delta_{i}}{\pi\left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta}\right)} \Psi\left(y_{i} - \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\phi}\right) \otimes \boldsymbol{x}_{i} - \frac{1}{n}\sum_{i=1}^{n} \frac{\delta_{i}}{\pi\left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta}_{l}\right)} \Psi\left(y_{i} - \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\phi}_{l}\right) \otimes \boldsymbol{x}_{i}\right\|$$

$$\leq \left\|\frac{1}{n}\sum_{i=1}^{n} \delta_{i} \left\{\frac{1}{\pi\left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta}\right)} - \frac{1}{\pi\left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta}_{l}\right)}\right\} \Psi\left(y_{i} - \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\phi}\right) \otimes \boldsymbol{x}_{i}\right\|$$

$$+ \left\|\frac{1}{n}\sum_{i=1}^{n} \frac{\delta_{i}}{\pi\left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta}_{l}\right)} \left\{\Psi\left(y_{i} - \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\phi}\right) - \Psi\left(y_{i} - \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\phi}_{l}\right)\right\} \otimes \boldsymbol{x}_{i}\right\|$$

$$\stackrel{\cong}{=} MM_{1} + MM_{2}.$$

Therefore,

$$\max_{1 \le l \le L_n} \sup_{\xi \in \Gamma_l} k_n^{-1} \| \boldsymbol{M}_n(\xi) - \boldsymbol{M}_n(\gamma_l) \| \le \max_{1 \le l \le L_n} \sup_{\xi \in \Gamma_l} k_n^{-1} M M_1 + \max_{1 \le l \le L_n} \sup_{\xi \in \Gamma_l} k_n^{-1} M M_2.$$
 (A.12)

Morever, under Assumptions 1 and 3, there exist constants $K, U_{\pi'}$ such that $E_{x_i} \|x_i\| \leq K$ and

 $\|\partial_{\boldsymbol{\theta}}\pi(\boldsymbol{x}_{1i},y_{i};\boldsymbol{\theta})\| \leq (d+1)U_{\pi'}$ for $\boldsymbol{x}_{i} \in \mathcal{X},y_{i} \in \mathcal{Y}$. By Theorem 12.4 of Apostol (1974) and Assumption 3, there exists a number $\widetilde{\boldsymbol{\theta}} \in \Theta$ such that

$$\begin{aligned} & \max_{1 \leq l \leq L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} M M_1 \\ & \leq \max_{1 \leq l \leq L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} \frac{1}{n} \sum_{k=1}^{k_n} \sum_{i=1}^n \delta_i \frac{|\pi\left(\boldsymbol{x}_{1i}, y_i; \boldsymbol{\theta}\right) - \pi\left(\boldsymbol{x}_{1i}, y_i; \boldsymbol{\theta}_l\right)|}{\pi\left(\boldsymbol{x}_{1i}, y_i; \boldsymbol{\theta}\right) \pi\left(\boldsymbol{x}_{1i}, y_i; \boldsymbol{\theta}_l\right)} \|\Psi_{\tau_k} \left(y_i - \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}_{\tau_k}\right) \boldsymbol{x}_i \| \\ & \leq \max_{1 \leq l \leq L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} \frac{k_n}{L_\pi^2} \cdot \frac{1}{n} \sum_{i=1}^n \delta_i |\pi\left(\boldsymbol{x}_{1i}, y_i; \boldsymbol{\theta}\right) - \pi\left(\boldsymbol{x}_{1i}, y_i; \boldsymbol{\theta}_l\right)| \|\boldsymbol{x}_i \| \\ & = \max_{1 \leq l \leq L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} \frac{k_n}{L_\pi^2} \cdot \frac{1}{n} \sum_{i=1}^n \delta_i \left| \left(\partial_{\boldsymbol{\theta}} \pi\left(\boldsymbol{x}_{1,i} y_i; \widetilde{\boldsymbol{\theta}}\right)\right)^{\mathsf{T}} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_l\right) \right| \|\boldsymbol{x}_i \| \\ & \leq \frac{(d+1)U_{\pi'}}{L_\pi^2} \cdot q_n k_n \cdot \frac{1}{n} \sum_{i=1}^n \|\boldsymbol{x}_i \| \\ & = O_p(k_n q_n). \end{aligned}$$

so $\max_{1 \le l \le L_n} \sup_{\xi \in \Gamma_l} k_n^{-1} M M_1 = O(q_n) = o_p(1)$.

On the other hand, let $\phi_l = \left(\boldsymbol{\beta}_{l,\tau_1}^{\mathsf{T}}, \boldsymbol{\beta}_{l,\tau_2}^{\mathsf{T}}, \dots, \boldsymbol{\beta}_{l,\tau_{k_n}}^{\mathsf{T}} \right)^{\mathsf{T}}$, we have

$$\begin{aligned} & \max_{1 \leq l \leq L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} k_n^{-1} M M_2 \\ & \leq \max_{1 \leq l \leq L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} \frac{1}{k_n n} \sum_{k=1}^{k_n} \sum_{i=1}^n \frac{\delta_i}{\pi(\boldsymbol{x}_{1,i}, y_i; \boldsymbol{\theta}_l)} \left\| \left\{ \Psi_{\tau_k} \left(y_i - \boldsymbol{x}_i^{\intercal} \boldsymbol{\beta}_{\tau_k} \right) - \Psi_{\tau_k} \left(y_i - \boldsymbol{x}_i^{\intercal} \boldsymbol{\beta}_{l,\tau_k} \right) \right\} \boldsymbol{x}_i \right\| \\ & \leq \max_{1 \leq l \leq L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} \frac{1}{k_n n} \cdot \frac{1}{L_{\pi}} \sum_{k=1}^{k_n} \sum_{i=1}^n I \left\{ \left| \boldsymbol{x}_i^{\intercal} \boldsymbol{\beta}_{l,\tau_k} - y_i \right| \leq \left| \boldsymbol{x}_i^{\intercal} \left(\boldsymbol{\beta}_{\tau_k} - \boldsymbol{\beta}_{l,\tau_k} \right) \right| \right\} \left\| \boldsymbol{x}_i \right\| \\ & \leq \max_{1 \leq l \leq L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} \frac{1}{k_n n} \cdot \frac{1}{L_{\pi}} \sum_{k=1}^{k_n} \sum_{i=1}^n I \left(\left| \boldsymbol{x}_i^{\intercal} \boldsymbol{\beta}_{l,\tau_k} - y_i \right| \leq \left\| \boldsymbol{x}_i \right\| q_n \right) \left\| \boldsymbol{x}_i \right\| . \end{aligned}$$

Let $g_{l,k}(z_i)$ be the density of $z_i = (\boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}_{l,\tau_k} - y_i)$ given \boldsymbol{x}_i and $\boldsymbol{\beta}_{l,\tau_k}$. Then under Assumption 2, $g_{l,k}(z_i)$ is also continuous and bounded away from both zero and infinity for any $l \in \{1, 2, \dots, L_n\}$, $k \in \{1, 2, \dots, k_n\}$ and $i \in \{1, 2, \dots, n\}$. Moreover, under Assumption 1, $E_{\boldsymbol{x}_i} \|\boldsymbol{x}_i\|^2$ is bounded.

Therefore, by the mean value theorem, for any i, there exists a value z_i^* such that

$$E\left\{I\left(\left|\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{l,\tau_{k}}-y_{i}\right|\leq q_{n}\left\|\boldsymbol{x}_{i}\right\|\right)\left\|\boldsymbol{x}_{i}\right\|\right\}$$

$$=E_{\boldsymbol{x}_{i}}\left[\left\|\boldsymbol{x}_{i}\right\|\cdot E_{y_{i}}\left\{I\left(\left|\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{l,\tau_{k}}-y_{i}\right|\leq q_{n}\left\|\boldsymbol{x}_{i}\right\|\right)\left|\boldsymbol{x}_{i};\boldsymbol{\beta}_{l,\tau_{k}}\right\}\right]$$

$$=E_{\boldsymbol{x}_{i}}\left\{\left\|\boldsymbol{x}_{i}\right\|\cdot pr\left(\left|\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{l,\tau_{k}}-y_{i}\right|\leq q_{n}\left\|\boldsymbol{x}_{i}\right\|\left|\boldsymbol{x}_{i};\boldsymbol{\beta}_{l,\tau_{k}}\right)\right\}$$

$$=2q_{n}E\left\{\left\|\boldsymbol{x}_{i}\right\|^{2}\cdot g_{l,k}(z_{i}^{*})\right\}$$

$$=O(q_{n})=o(1).$$

Then by the law of large numbers, it follows that

$$\max_{1 \le l \le L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} k_n^{-1} M M_2 \le o_p(1).$$

According to (A.12), we have $\max_{1 \le l \le L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} k_n^{-1} \| \boldsymbol{M}_n(\boldsymbol{\xi}) - \boldsymbol{M}_n(\boldsymbol{\gamma}_l) \| = o_p(1)$. With the similar argument, we can also show that, $\max_{1 \le l \le L_n} \sup_{\boldsymbol{\xi} \in \Gamma_l} k_n^{-1} \| \boldsymbol{M}(\boldsymbol{\xi}) - \boldsymbol{M}(\boldsymbol{\gamma}_l) \| = o(1)$. It then follows that $PP_1 = o(1)$.

Let $\mathcal{Y}_i(l,k,m) = \delta_i/\pi \left(\boldsymbol{x}_{1i},y_i;\boldsymbol{\theta}_l\right) \cdot \Psi_{\tau_k} \left(y_i - \boldsymbol{x}_i^{\mathsf{T}}\boldsymbol{\beta}_{\tau_k}\right) \boldsymbol{x}_{i(m)} \cdot I\left(\boldsymbol{\xi} \in \Gamma_l\right)$ where $\boldsymbol{x}_{i(m)}$ is the m-th element of \boldsymbol{x}_i . A sufficient condition for $PP_2 = o(1)$ is that, for any $\epsilon > 0$,

$$pr\left(\max_{1\leq l\leq L_n; 1\leq k\leq k_n; 1\leq m\leq p} \frac{1}{n} \left| \sum_{i=1}^n \left\{ \mathcal{Y}_i(l,k,m) - E\mathcal{Y}_i(l,k,m) \right\} \right| > \epsilon \right) = o(1).$$

Under Assumption 1, for any $m \in \{1, 2, ..., p\}$, there exists a positive constant K_m such that $\max_{1 \le i \le n} \|\boldsymbol{x}_{i(m)}\|_{\psi_1} \le K_m$. Under Assumption 3, there exists a positive constant L_{π} such that $|\mathcal{Y}_i(l,k,m)| \le |\boldsymbol{x}_{i(m)}|/L_{\pi}$. Let $K_0 = \max_{1 \le m \le p} K_m$ and $K_{\mathcal{Y}}(l,k,m) = \max_{1 \le i \le n} \|\mathcal{Y}_i(l,k,m) - E\mathcal{Y}_i(l,k,m)\|_{\psi_1}$. We then have

$$K_{\mathcal{Y}}(l, k, m) \le C_1 \max_{1 \le i \le n} \|\mathcal{Y}_i(l, k, m)\|_{\psi_1} \le \frac{C_1}{L_{\pi}} \max_{1 \le i \le n} \|\boldsymbol{x}_{i(m)}\|_{\psi_1} = \frac{C_1}{L_{\pi}} K_0,$$

where C_1 is a positive constant. By Bernstein's inequality, we obtain that

$$pr\left(\max_{1\leq l\leq L_{n}; 1\leq k\leq k_{n}; 1\leq m\leq p} \frac{1}{n} \left| \sum_{i=1}^{n} \left\{ \mathcal{Y}_{i}(l,k,m) - E\mathcal{Y}_{i}(l,k,m) \right\} \right| > \epsilon \right)$$

$$\leq \sum_{l=1}^{L_{n}} \sum_{k=1}^{k_{n}} \sum_{m=1}^{p} pr\left(\frac{1}{n} \left| \sum_{i=1}^{n} \left\{ \mathcal{Y}_{i}(l,k,m) - E\mathcal{Y}_{i}(l,k,m) \right\} \right| > \epsilon \right)$$

$$\leq 2pL_{n}k_{n} \exp\left\{ -\frac{C_{2}\epsilon^{2}n}{K_{\mathcal{Y}}^{2}(l,k,m)} \right\}$$

$$\leq 2pL_{n}k_{n} \exp\left\{ -\frac{C_{2}L_{\pi}^{2}\epsilon^{2}n}{C_{1}^{2}K_{0}^{2}} \right\}$$

$$= o(1).$$

where C_2 is a positive constant. We now have shown that $PP_1 = o(1)$ and $PP_2 = o(1)$, which then implies the uniform convergence result (A.11). Lemma 2 is hence proved. \Box

LEMMA 3: Under Assumption 3, for $k_n \to \infty$, $k_n/n \to 0$ and $m \to \infty$, we have

$$\sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} \|\widehat{\boldsymbol{H}}_n(\boldsymbol{\xi}) - \boldsymbol{H}_n(\boldsymbol{\xi})\| = o_p(1) \quad \text{as } n \to \infty.$$
 (A.13)

Proof. Note that

$$\begin{aligned} \|\widehat{\boldsymbol{H}}_n(\boldsymbol{\xi}) - \boldsymbol{H}_n(\boldsymbol{\xi})\| &\leq \|\widehat{\boldsymbol{S}}_n(\boldsymbol{\xi}) - \widetilde{\boldsymbol{S}}_n(\boldsymbol{\xi})\| + \|\boldsymbol{M}_n(\boldsymbol{\xi}) - \boldsymbol{M}_n(\boldsymbol{\xi})\| \\ &= \|\widehat{\boldsymbol{S}}_n(\boldsymbol{\xi}) - \widetilde{\boldsymbol{S}}_n(\boldsymbol{\xi})\|, \end{aligned}$$

so to prove (A.13), it suffices to show that $\sup_{\xi \in \Theta_{\xi}} \|\widehat{\boldsymbol{S}}_n(\xi) - \widetilde{\boldsymbol{S}}_n(\xi)\| = o_p(1)$.

For the subject i with $\delta_i = 0$, we let

$$\widehat{B}_{i,1}(\boldsymbol{\xi}) = \frac{1}{m} \sum_{l=1}^{m} \left\{ 1 - \pi \left(\boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{i}^{l}; \boldsymbol{\theta} \right) \right\} s \left(\boldsymbol{\theta}; \delta_{i}, \boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{i}^{l} \right),$$

$$\widetilde{B}_{i,1}(\boldsymbol{\xi}) = \int_{y} \left\{ 1 - \pi \left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta} \right) \right\} s \left(\boldsymbol{\theta}; \delta_{i}, \boldsymbol{x}_{1i}, y \right) \widetilde{f}(y | \boldsymbol{x}_{i}; \boldsymbol{\phi}) dy,$$

$$\widehat{B}_{i,2}(\boldsymbol{\xi}) = \frac{1}{m} \sum_{l=1}^{m} \left\{ 1 - \pi \left(\boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{i}^{l}; \boldsymbol{\theta} \right) \right\},$$

$$\widetilde{B}_{i,2}(\boldsymbol{\xi}) = \int_{y} \left\{ 1 - \pi \left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta} \right) \right\} \widetilde{f}(y | \boldsymbol{x}_{i}; \boldsymbol{\phi}) dy,$$

where $\{\widetilde{y}_i^l\}_{l=1}^m$ are sampled from $\widetilde{f}(y|\boldsymbol{x}_i;\boldsymbol{\phi})$. Under Assumption 3, we know that there exist positive constants $U_{\pi'}$, L_{π} and U_{π} such that $\sup_{\boldsymbol{\xi}\in\Theta_{\boldsymbol{\xi}}}\|\widetilde{B}_{i,1}(\boldsymbol{\xi})\| \leq (d+1)U_{\pi'}$ and $1-L_{\pi}>\widetilde{B}_{i,2}(\boldsymbol{\xi})\geq 1-U_{\pi}$.

Then by Lemma 2.4 of Engle (1994), as $m \to \infty$,

$$\sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} \|\widehat{B}_{i,1}(\boldsymbol{\xi}) - \widetilde{B}_{i,1}(\boldsymbol{\xi})\| = o_p(1),$$

$$\sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} \|\widehat{B}_{i,2}(\boldsymbol{\xi}) - \widetilde{B}_{i,2}(\boldsymbol{\xi})\| = o_p(1).$$

Consequently,

$$\sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} \|\widehat{\boldsymbol{S}}_{n}(\boldsymbol{\xi}) - \widetilde{\boldsymbol{S}}_{n}(\boldsymbol{\xi})\|$$

$$= \sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} \|\frac{1}{n} \sum_{i=1}^{n} (1 - \delta_{i}) \left[\frac{\sum_{l=1}^{m} \left\{ 1 - \pi \left(\boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{i}^{l}; \boldsymbol{\theta} \right) \right\} s \left(\boldsymbol{\theta}; \delta_{i}, \boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{i}^{l} \right)}{\sum_{l=1}^{m} \left\{ 1 - \pi \left(\boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{i}^{l}; \boldsymbol{\theta} \right) \right\}} - \frac{\int_{y} \left\{ 1 - \pi \left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta} \right) \right\} s \left(\boldsymbol{\theta}; \delta_{i}, \boldsymbol{x}_{1i}, y \right) \widetilde{\boldsymbol{f}}(\boldsymbol{y} | \boldsymbol{x}_{i}; \boldsymbol{\phi}) d\boldsymbol{y}}{\int_{y} \left\{ 1 - \pi \left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta} \right) \right\} \widetilde{\boldsymbol{f}}(\boldsymbol{y} | \boldsymbol{x}_{i}; \boldsymbol{\phi}) d\boldsymbol{y}} \right] \|$$

$$\leq \sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} \left\| \frac{1}{n} \sum_{i=1}^{n} (1 - \delta_{i}) \frac{\widetilde{B}_{i,1}(\boldsymbol{\xi}) - \widetilde{B}_{i,1}(\boldsymbol{\xi})}{\widehat{B}_{i,2}(\boldsymbol{\xi})} \right\| + \sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} \left\| \frac{1}{n} \sum_{i=1}^{n} (1 - \delta_{i}) \frac{\widetilde{B}_{i,1}(\boldsymbol{\xi})}{\widehat{B}_{i,2}(\boldsymbol{\xi})} \left(\widehat{B}_{i,2}(\boldsymbol{\xi}) - \widetilde{B}_{i,2}(\boldsymbol{\xi}) \right) \right\|$$

$$\leq \frac{1}{1 - U_{\pi}} \cdot \frac{1}{n} \sum_{i=1}^{n} \sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} \left\| \widehat{B}_{i,1}(\boldsymbol{\xi}) - \widetilde{B}_{i,1}(\boldsymbol{\xi}) \right\| + \frac{(d+1)U_{\pi}'}{(1 - U_{\pi})^{2}} \cdot \frac{1}{n} \sum_{i=1}^{n} \sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} \left| \widehat{B}_{i,2}(\boldsymbol{\xi}) - \widetilde{B}_{i,2}(\boldsymbol{\xi}) \right|$$

$$= o_{p}(1).$$

Thus, we have $\sup_{\xi \in \Theta_{\mathcal{E}}} \|\widehat{S}_n(\xi) - \widetilde{S}_n(\xi)\| = o_p(1)$ and (A.13) holds. \square

Proof of Theorem 1

Proof. Recall that $\widehat{\boldsymbol{\xi}}_n = (\widehat{\boldsymbol{\theta}}_n^{\mathsf{T}}, \widehat{\boldsymbol{\phi}}_n^{\mathsf{T}})^{\mathsf{T}}$ is the solution of the estimating equation $\widehat{\boldsymbol{H}}_n(\boldsymbol{\xi}) = 0$ with $\widehat{\boldsymbol{\phi}}_n = (\widehat{\boldsymbol{\beta}}_{\tau_1}^{\mathsf{T}}, \dots, \widehat{\boldsymbol{\beta}}_{\tau_{k_n}}^{\mathsf{T}})^{\mathsf{T}}$. We further define $\widehat{\boldsymbol{\beta}}_j(\tau)$ as the piece-wise linear function with $\widehat{\boldsymbol{\beta}}_j(\tau_k) = \widehat{\boldsymbol{\beta}}_{j,\tau_k}$ and $\widehat{\boldsymbol{\beta}}_{j,\tau_k}$ is the jth component of $\widehat{\boldsymbol{\beta}}_{\tau_k}$. Let $\boldsymbol{\xi}_\tau = (\boldsymbol{\theta}^{\mathsf{T}}, \boldsymbol{\beta}_\tau^{\mathsf{T}})^{\mathsf{T}}$ and the estimate $\widehat{\boldsymbol{\xi}}_\tau = (\widehat{\boldsymbol{\theta}}_n^{\mathsf{T}}, \widehat{\boldsymbol{\beta}}_\tau^{\mathsf{T}})^{\mathsf{T}}$ and its corresponding true value $\boldsymbol{\xi}_{0,\tau} = (\boldsymbol{\theta}_0^{\mathsf{T}}, \boldsymbol{\beta}_{0,\tau}^{\mathsf{T}})^{\mathsf{T}}$, where $\boldsymbol{\beta}_{0,\tau}$ is the true coefficients at the quantile level τ .

For any $\gamma > 0$, we define a compact set $\mathcal{B}_{\tau} = \{ \boldsymbol{\xi}_{\tau} \in \boldsymbol{R}^{p+d+1} : \|\boldsymbol{\xi}_{\tau} - \boldsymbol{\xi}_{0,\tau}\| < \gamma \}$ and \mathcal{B}_{τ}^{c} as its complementary set. We denote $\mathcal{B}_{\tau} \otimes \Omega = \{ \boldsymbol{\xi} : \boldsymbol{\xi}_{\tau_{k}} \in \mathcal{B}_{\tau_{k}} \text{ for every } k = 1, \dots, k_{n} \}$. We consider the distance

$$d_n(\gamma) = k_n^{-1} \left\{ \min_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}} \cap (\mathcal{B}_{\tau}^c \otimes \Omega)} \| \boldsymbol{H}(\boldsymbol{\xi}) \| - \| \boldsymbol{H}(\boldsymbol{\xi}_0) \| \right\}$$
(A.14)

between the norm of the limiting working estimating equation $\boldsymbol{H}(\cdot)$ evaluated at the true coefficients $\boldsymbol{\xi}_0$ and the minimized norm when $\boldsymbol{\xi}$ stays in $\Theta_{\boldsymbol{\xi}} \cap (\mathcal{B}_{\tau}^c \otimes \Omega)$. In what follows, we show that $d_n(\gamma) > 0$ under Assumptions 1-5.

Recall in Assumption 4 that ξ_0 is the unique solution of $\mathbf{H}^0(\xi) = 0$. Therefore, the convergence

of (A.1) stated in Lemma 1 is equivalent to $k_n^{-1} \| \boldsymbol{H}(\boldsymbol{\xi}_0) \| = o(1)$. Moreover, since $\boldsymbol{\xi}^* = (\boldsymbol{\theta}^{*\top}, \boldsymbol{\phi}^{*\top})^{\top}$ is the unique solution of $\boldsymbol{H}(\boldsymbol{\xi}) = 0$ under Assumption 4, it follows that $k_n^{-1} \| \boldsymbol{H}(\boldsymbol{\xi}_0) - \boldsymbol{H}(\boldsymbol{\xi}^*) \| = o(1)$. Due to the continuity of $\boldsymbol{H}(\cdot)$ and the uniqueness of $\boldsymbol{\xi}^*$, we have $k_n^{-1} \| \boldsymbol{\xi}^* - \boldsymbol{\xi}_0 \| \to 0$ as $n \to \infty$. Consequently, there exists a constant K_{γ} , such that when $k_n > K_{\gamma}$, we have that $k_n^{-1} \| \boldsymbol{\xi}^* - \boldsymbol{\xi}_0 \| < \gamma/2$, so $\boldsymbol{\xi}^* \in \Theta_{\boldsymbol{\xi}} \cap (\mathcal{B}_{\tau} \otimes \Omega)$ for $k_n > K_{\gamma}$. Due to the uniqueness of $\boldsymbol{\xi}^*$, for any $k_n > K_{\gamma}$, we have

$$d_n^{\star}(\gamma) = k_n^{-1} \left\{ \min_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}} \cap (\mathcal{B}_{\tau}^c \otimes \Omega)} \| \boldsymbol{H}(\boldsymbol{\xi}) \| - \| \boldsymbol{H}(\boldsymbol{\xi}^{\star}) \| \right\} > 0.$$
 (A.15)

On the other hand, due to the continuity of $H(\cdot)$, we also have

$$k_n^{-1} \| \boldsymbol{H}(\boldsymbol{\xi}_0) - \boldsymbol{H}(\boldsymbol{\xi}^*) \| \le d_n^*(\gamma)/2,$$
 (A.16)

for sufficiently larger k_n . Combining (A.15) and (A.16), it follows that

$$d_n(\gamma) = k_n^{-1} \left\{ \min_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}} \cap (\mathcal{B}_r^c \otimes \Omega)} \| \boldsymbol{H}(\boldsymbol{\xi}) \| - \| \boldsymbol{H}(\boldsymbol{\xi}_0) \| \right\} > d_n^{\star}(\gamma)/2 > 0$$
(A.17)

for sufficiently large k_n .

We now consider an event

$$E_n = \left\{ k_n^{-1} \sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} \|\widehat{\boldsymbol{H}}_n(\boldsymbol{\xi}) - \boldsymbol{H}(\boldsymbol{\xi})\| \le \frac{d_n(\gamma)}{3} \right\},\,$$

which implies that

$$k_n^{-1} \| \boldsymbol{H} \left(\widehat{\boldsymbol{\xi}}_n \right) \| \le k_n^{-1} \| \widehat{\boldsymbol{H}}_n \left(\widehat{\boldsymbol{\xi}}_n \right) \| + \frac{d_n(\gamma)}{3}, \tag{A.18}$$

$$k_n^{-1} \|\widehat{\boldsymbol{H}}_n(\boldsymbol{\xi}_0)\| \le k_n^{-1} \|\boldsymbol{H}(\boldsymbol{\xi}_0)\| + \frac{d_n(\gamma)}{3}.$$
 (A.19)

Since $\widehat{\boldsymbol{\xi}}_n$ is the minimizer of $\|\widehat{\boldsymbol{H}}_n(\boldsymbol{\xi})\|$, and thus $\|\widehat{\boldsymbol{H}}_n(\boldsymbol{\xi}_0)\| \ge \|\widehat{\boldsymbol{H}}_n(\widehat{\boldsymbol{\xi}}_n)\|$, which, together with (A.18) and (A.19), indicates that

$$k_n^{-1} \| \boldsymbol{H}\left(\widehat{\boldsymbol{\xi}}_n\right) \| \leq k_n^{-1} \| \widehat{\boldsymbol{H}}_n\left(\boldsymbol{\xi}_0\right) \| + \frac{d_n(\gamma)}{3} \leq k_n^{-1} \| \boldsymbol{H}\left(\boldsymbol{\xi}_0\right) \| + \frac{2d_n(\gamma)}{3}.$$

Combining Lemmas 2 and 3, we have $\sup_{\xi \in \Theta_{\xi}} k_n^{-1} \|\widehat{\boldsymbol{H}}_n(\xi) - \boldsymbol{H}(\xi)\| = o_p(1)$ and thus $\lim_{n \to \infty} pr(E_n) = 1$, which implies

$$\lim_{n\to\infty} pr\left(k_n^{-1} \left\| \boldsymbol{H}\left(\widehat{\boldsymbol{\xi}}_n\right) \right\| \le k_n^{-1} \left\| \boldsymbol{H}\left(\boldsymbol{\xi}_0\right) \right\| + \frac{2d_n(\gamma)}{3} \right) \ge \lim_{n\to\infty} pr\left(E_n\right) = 1$$

By the definition of \mathcal{B}_{τ} and the fact that $d_n(\gamma) > 0$, this in turn implies that

$$\lim_{n\to\infty} pr\left(\widehat{\boldsymbol{\xi}}_n \in \Theta_{\boldsymbol{\xi}} \cap (\mathcal{B}_{\tau} \otimes \Omega)\right) = 1,$$

that is,

$$\|\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0\| = o_p(1),$$

$$\sup_{\tau \in [1/(k_n+1), k_n/(k_n+1)]} \|\widehat{\boldsymbol{\beta}}_n(\tau) - \boldsymbol{\beta}_0(\tau)\| = o_p(1)$$

The consistency of $\widehat{\theta}_n$ and $\widehat{\beta}_n(\tau)$ is then established. \square

Web Appendix C

Denote

$$\boldsymbol{H}_{n}^{0}(\boldsymbol{\xi}) = \left(\boldsymbol{S}_{n}^{\mathsf{T}}(\boldsymbol{\theta}), \boldsymbol{M}_{n}^{\mathsf{T}}(\boldsymbol{\xi})\right)^{\mathsf{T}} = \frac{1}{n} \sum_{i=1}^{n} h_{i}\left(\boldsymbol{\xi}\right) = \left(\frac{1}{n} \sum_{i=1}^{n} h_{1i}^{\mathsf{T}}\left(\boldsymbol{\xi}\right), \frac{1}{n} \sum_{i=1}^{n} h_{2i}^{\mathsf{T}}\left(\boldsymbol{\xi}\right)\right)^{\mathsf{T}},$$

and

$$\widehat{\boldsymbol{H}}_{n}(\boldsymbol{\xi}) = \left(\widehat{\boldsymbol{S}}_{n}^{\mathsf{T}}(\boldsymbol{\xi}), \boldsymbol{M}_{n}^{\mathsf{T}}(\boldsymbol{\xi})\right)^{\mathsf{T}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{h}_{i}\left(\boldsymbol{\xi}\right) = \left(\frac{1}{n} \sum_{i=1}^{n} \widehat{h}_{1i}^{\mathsf{T}}\left(\boldsymbol{\xi}\right), \frac{1}{n} \sum_{i=1}^{n} \widehat{h}_{2i}^{\mathsf{T}}\left(\boldsymbol{\xi}\right)\right)^{\mathsf{T}},$$

where

$$h_{1i}(\boldsymbol{\xi}) = \delta_{i}\boldsymbol{s}\left(\boldsymbol{\theta}; \delta_{i}, \boldsymbol{x}_{1i}, y_{i}\right) + (1 - \delta_{i}) \frac{\int \left\{1 - \pi\left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}\right)\right\} s\left(\boldsymbol{\theta}; \delta_{i}, \boldsymbol{x}_{1i}, y\right) f(y|\boldsymbol{x}_{i}; \boldsymbol{\beta}(\boldsymbol{\tau})) dy}{\int \left\{1 - \pi\left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}\right)\right\} f(y|\boldsymbol{x}_{i}; \boldsymbol{\beta}(\boldsymbol{\tau})) dy},$$

$$\widehat{h}_{1i}(\boldsymbol{\xi}) = \delta_{i}\boldsymbol{s}\left(\boldsymbol{\theta}; \delta_{i}, \boldsymbol{x}_{1i}, y_{i}\right) + (1 - \delta_{i}) \frac{\sum_{l=1}^{m} \left\{1 - \pi\left(\boldsymbol{x}_{1i}, \widetilde{y}_{i}^{l}; \boldsymbol{\theta}\right)\right\} s\left(\boldsymbol{\theta}; \delta_{i}, \boldsymbol{x}_{1i}, \widetilde{y}_{i}^{l}\right)}{\sum_{l=1}^{m} \left\{1 - \pi\left(\boldsymbol{x}_{1i}, \widetilde{y}_{i}^{l}; \boldsymbol{\theta}\right)\right\}},$$

and

$$h_{2i}\left(\boldsymbol{\xi}\right) = \widehat{h}_{2i}\left(\boldsymbol{\xi}\right) = \frac{\delta_i}{\pi\left(\boldsymbol{x}_{1i}, y_i; \boldsymbol{\theta}\right)} \Psi\left(y_i - \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\phi}\right) \otimes \boldsymbol{x}_i.$$

Let $h_{i(j)}(\xi)$, $h_{1i(j)}(\xi)$ and $h_{2i(j)}(\xi)$ be the jth element of $h_i(\xi)$, $h_{1i}(\xi)$ and $h_{2i}(\xi)$, respectively, and let $\widehat{h}_{i(j)}(\xi)$, $\widehat{h}_{1i(j)}(\xi)$ and $\widehat{h}_{2i(j)}(\xi)$ be the jth element of $\widehat{h}_i(\xi)$, $\widehat{h}_{1i}(\xi)$ and $\widehat{h}_{2i}(\xi)$, respectively. Moreover, let

$$\eta_i(\boldsymbol{\xi}, \boldsymbol{\xi}_0) = \widehat{h}_i(\boldsymbol{\xi}) - \widehat{h}_i(\boldsymbol{\xi}_0) - E\widehat{h}_i(\boldsymbol{\xi}) + E\widehat{h}_i(\boldsymbol{\xi}_0). \tag{A.20}$$

LEMMA 4: Under Assumptions 1-4 and 6-7, for $n \to \infty$, $k_n^{3+2v}/n \to \infty$ and $k_n m/n \to \infty$, we have

$$\sqrt{\frac{n}{q}} \|\widehat{\boldsymbol{H}}_n(\boldsymbol{\xi}_0) - \boldsymbol{H}_n^0(\boldsymbol{\xi}_0)\| = o_p(1).$$
(A.21)

Proof. For convenience, we assume that $\{y_i : i = 1, 2, ..., n_0\}$ are observed and $\{y_i : i = n_0 + 1, n_0 + 2, ..., n\}$ are missing. Then, we have

$$\sqrt{\frac{n}{q}} \| \widehat{\boldsymbol{H}}_{n}(\boldsymbol{\xi}_{0}) - \boldsymbol{H}_{n}^{0}(\boldsymbol{\xi}_{0}) \|
= \sqrt{\frac{n}{q}} \| \widehat{\boldsymbol{S}}_{n}(\boldsymbol{\xi}_{0}) - \boldsymbol{S}_{n}(\boldsymbol{\theta}_{0}) \|
\leq \sqrt{\frac{n}{q}} \| \frac{1}{n} \sum_{i=n_{0}+1}^{n} \left[\frac{\frac{1}{m} \sum_{l=1}^{m} \partial_{\boldsymbol{\theta}} \pi \left(\boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{i}^{l}; \boldsymbol{\theta}_{0} \right)}{\frac{1}{m} \sum_{l=1}^{m} \left\{ 1 - \pi \left(\boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{i}^{l}; \boldsymbol{\theta}_{0} \right) \right\}} - \frac{\int_{\boldsymbol{y}} \partial_{\boldsymbol{\theta}} \pi \left(\boldsymbol{x}_{1i}, \boldsymbol{y}; \boldsymbol{\theta}_{0} \right) \widetilde{f} \left(\boldsymbol{y} | \boldsymbol{x}_{i}; \boldsymbol{\phi}_{0} \right) d\boldsymbol{y}}{\int_{\boldsymbol{y}} \left\{ 1 - \pi \left(\boldsymbol{x}_{1i}, \boldsymbol{y}; \boldsymbol{\theta}_{0} \right) \right\} \widetilde{f} \left(\boldsymbol{y} | \boldsymbol{x}_{i}; \boldsymbol{\phi}_{0} \right) d\boldsymbol{y}} \right] \|
+ \sqrt{\frac{n}{q}} \| \frac{1}{n} \sum_{i=n_{0}+1}^{n} \left[\frac{\int_{\boldsymbol{y}} \partial_{\boldsymbol{\theta}} \pi \left(\boldsymbol{x}_{1i}, \boldsymbol{y}; \boldsymbol{\theta}_{0} \right) \widetilde{f} \left(\boldsymbol{y} | \boldsymbol{x}_{i}; \boldsymbol{\phi}_{0} \right) d\boldsymbol{y}}{\int_{\boldsymbol{y}} \left\{ 1 - \pi \left(\boldsymbol{x}_{1i}, \boldsymbol{y}; \boldsymbol{\theta}_{0} \right) \right\} \widetilde{f} \left(\boldsymbol{y} | \boldsymbol{x}_{i}; \boldsymbol{\phi}_{0} \right) d\boldsymbol{y}} \right] \|
- \frac{\int_{\boldsymbol{y}} \partial_{\boldsymbol{\theta}} \pi \left(\boldsymbol{x}_{1i}, \boldsymbol{y}; \boldsymbol{\theta}_{0} \right) f \left(\boldsymbol{y} | \boldsymbol{x}_{i}; \boldsymbol{\beta}_{0} \left(\boldsymbol{\tau} \right) \right) d\boldsymbol{y}}{\int_{\boldsymbol{y}} \left\{ 1 - \pi \left(\boldsymbol{x}_{1i}, \boldsymbol{y}; \boldsymbol{\theta}_{0} \right) \right\} f \left(\boldsymbol{y} | \boldsymbol{x}_{i}; \boldsymbol{\beta}_{0} \left(\boldsymbol{\tau} \right) \right) d\boldsymbol{y}} \right] \|
= \sqrt{\frac{n}{q}} \| \frac{1}{n} \sum_{i=n_{0}+1}^{n} L_{1i} \left(\boldsymbol{\xi}_{0} \right) \| + \sqrt{\frac{n}{q}} \| \frac{1}{n} \sum_{i=n_{0}+1}^{n} L_{2i} \left(\boldsymbol{\xi}_{0} \right) \|$$

where $\{\widetilde{y}_i^l\}_{l=1}^m$ are randomly drawn from $\widetilde{f}(y|\boldsymbol{x}_i;\boldsymbol{\phi}_0)$, and given \boldsymbol{x}_i , they are independent. By Assumption 3, $\|\partial_{\boldsymbol{\theta}}\pi(\boldsymbol{x}_1,y;\boldsymbol{\theta}_0)\|^2$ is bounded. So by the central limit theorem, it is straightforward to show that

$$\left| \frac{1}{m} \sum_{l=1}^{m} \partial_{\boldsymbol{\theta}} \pi \left(\boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{i}^{l}; \boldsymbol{\theta}_{0} \right) - \int_{\boldsymbol{y}} \partial_{\boldsymbol{\theta}} \pi \left(\boldsymbol{x}_{1i}, \boldsymbol{y}; \boldsymbol{\theta}_{0} \right) \widetilde{f} \left(\boldsymbol{y} | \boldsymbol{x}_{i}; \boldsymbol{\phi}_{0} \right) d\boldsymbol{y} \right| = O_{p} \left(\frac{1}{\sqrt{m}} \right).$$

Moreover, by Assumption 3, there exist constants $0 < L_{\pi} \le U_{\pi} < 1$ such that $1 - U_{\pi} \le |1 - \pi(\boldsymbol{x}_1, y; \boldsymbol{\theta}_0)| \le 1 - L_{\pi}$. Then, it is easy to show $||L_{1i}(\boldsymbol{\xi}_0)|| = O_p\left(\frac{1}{\sqrt{m}}\right)$ and thus $\sqrt{\frac{n}{q}} \left\|\frac{1}{n}\sum_{i=n_0+1}^n L_{1i}(\boldsymbol{\xi}_0)\right\| = O_p\left(\sqrt{\frac{n}{qm}}\right) = O_p\left(\sqrt{\frac{n}{k_n m}}\right) = o_p(1)$. Therefore, it suffices to show that

$$\sqrt{\frac{n}{q}} \left\| \frac{1}{n} \sum_{i=n_0+1}^n L_{2i}\left(\boldsymbol{\xi}_0\right) \right\| = o_p(1).$$

Note that

$$\|L_{2i}(\boldsymbol{\xi}_{0})\|$$

$$\leq \left\| \frac{\int_{y} \partial_{\boldsymbol{\theta}} \pi\left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}_{0}\right) \left\{ \widetilde{f}\left(y | \boldsymbol{x}_{i}; \boldsymbol{\phi}_{0}\right) - f\left(y | \boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau)\right) \right\} dy}{\int_{y} \left\{ 1 - \pi\left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}_{0}\right) \right\} \widetilde{f}\left(y | \boldsymbol{x}_{i}; \boldsymbol{\phi}_{0}\right) dy} \right\|$$

$$+ \left\| \frac{\int_{y} \partial_{\boldsymbol{\theta}} \pi\left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}_{0}\right) f\left(y | \boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau)\right) dy}{\int_{y} \left\{ 1 - \pi\left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}_{0}\right) \right\} \widetilde{f}\left(y | \boldsymbol{x}_{i}; \boldsymbol{\phi}_{0}\right) dy \times \int_{y} \left\{ 1 - \pi\left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}_{0}\right) \right\} f\left(y | \boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau)\right) dy} \right\|$$

$$\times \left| \int_{y} \left\{ 1 - \pi\left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}_{0}\right) \right\} \left[\widetilde{f}\left(y | \boldsymbol{x}_{i}; \boldsymbol{\phi}_{0}\right) - f\left(y | \boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau)\right) \right] dy \right|$$

$$\leq \left(\frac{(d+1)U_{\pi'}}{(\tau_{k_n} - \tau_{k_1})(1 - U_{\pi})} + \frac{(d+1)U_{\pi'}(1 - L_{\pi})}{(\tau_{k_n} - \tau_{k_1})(1 - U_{\pi})^2}\right) \int_{y} \left|\widetilde{f}\left(y|\boldsymbol{x}_{i}; \boldsymbol{\phi}_{0}\right) - f\left(y|\boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau)\right)\right| dy$$

$$\cong C^{*} \int_{y} \left|\widetilde{f}\left(y|\boldsymbol{x}_{i}; \boldsymbol{\phi}_{0}\right) - f\left(y|\boldsymbol{x}_{i}; \boldsymbol{\beta}_{0}(\tau)\right)\right| dy. \tag{A.22}$$

According to (A.4), (A.5) and Assumption 7, we have that $\left|\widetilde{f}(y|\boldsymbol{x}_i;\boldsymbol{\phi}_0) - f(y|\boldsymbol{x}_i;\boldsymbol{\beta}_0(\tau))\right| = O_p(k_n^{-(1+v)})$.

Then with the similar argument as that of proving (A.6) in Lemma 1, we have

$$\int_{y} \left| \widetilde{f}(y|\boldsymbol{x}_{i};\boldsymbol{\phi}_{0}) - f(y|\boldsymbol{x}_{i};\boldsymbol{\beta}_{0}(\tau)) \right| dy = O_{p}\left(k_{n}^{-(v+1)}\right). \tag{A.23}$$

Combining (A.22) and (A.23), $||L_{2i}(\xi_0)|| = O_p(k_n^{-(v+1)})$ and then $\sqrt{n/q} ||n^{-1}\sum_{i=n_0+1}^n L_{2i}(\xi_0)|| = O_p(\sqrt{n/k_n^{3+2v}}) = o_p(1)$. Hence, the conclusion of Lemma 4 is accomplished. \Box

LEMMA 5: Under Assumptions 1-8, for $n \to \infty$, $k_n^{3+2v}/n \to \infty$ and $k_n m/n \to \infty$, we have

$$\|\widehat{\boldsymbol{\xi}}_n - \boldsymbol{\xi}_0\| = O_p\left(\sqrt{\frac{q}{n}}\right) \tag{A.24}$$

Proof. Following the similar arguments as Lemma 4 and using the dominated convergence theorem, we obtain that

$$\|\boldsymbol{H}(\boldsymbol{\xi}_0) - \boldsymbol{H}^0(\boldsymbol{\xi}_0)\| = o\left(\sqrt{\frac{q}{n}}\right)$$

as $n \to \infty$ and $k_n^{3+2v}/n \to \infty$. Since $\mathbf{H}^0(\boldsymbol{\xi}_0) = 0$ holds, we then have $\|\mathbf{H}(\boldsymbol{\xi}_0)\| = o(1)$.

Moreover, note that $\boldsymbol{\xi}^* = (\boldsymbol{\theta}^{*\top}, \boldsymbol{\phi}^{*\top})^{\top}$ is the unique solution of $\boldsymbol{H}(\boldsymbol{\xi}) = 0$ under Assumption 4, so it follows that $\|\boldsymbol{H}(\boldsymbol{\xi}^*) - \boldsymbol{H}(\boldsymbol{\xi}_0)\| = o(1)$. Due to the continuity of $\boldsymbol{H}(\cdot)$ and the uniqueness of $\boldsymbol{\xi}^*$, we have $\|\boldsymbol{\xi}^* - \boldsymbol{\xi}_0\| = o(1)$

Since
$$\mathbf{H}^{0}(\boldsymbol{\xi}_{0}) = \mathbf{H}(\boldsymbol{\xi}^{*}) = 0$$
 and $\sqrt{n/q} \| \mathbf{H}(\boldsymbol{\xi}_{0}) - \mathbf{H}^{0}(\boldsymbol{\xi}_{0}) \| = o(1)$, we have
$$\sqrt{\frac{n}{q}} \| \mathbf{H}(\boldsymbol{\xi}^{*}) - \mathbf{H}(\boldsymbol{\xi}_{0}) \| = \sqrt{\frac{n}{q}} \| \mathbf{H}^{0}(\boldsymbol{\xi}_{0}) - \mathbf{H}(\boldsymbol{\xi}_{0}) \| = o(1). \tag{A.25}$$

As $n \to \infty$, by Assumption 8, we have

$$\frac{n}{q} \| \boldsymbol{H} (\boldsymbol{\xi}^{\star}) - \boldsymbol{H} (\boldsymbol{\xi}_{0}) \|^{2} = \frac{n}{q} \| D_{n} (\boldsymbol{\xi}^{\star} - \boldsymbol{\xi}_{0}) + r_{n} \|^{2}$$

$$\geq \frac{1}{4} \frac{n}{q} \cdot \left[(\boldsymbol{\xi}^{\star} - \boldsymbol{\xi}_{0})^{\mathsf{T}} D^{\mathsf{T}} D (\boldsymbol{\xi}^{\star} - \boldsymbol{\xi}_{0}) \right]$$

$$\geq \frac{\lambda_{min} (D_{n}^{\mathsf{T}} D_{n})}{4} \cdot \frac{n}{q} \| \boldsymbol{\xi}^{\star} - \boldsymbol{\xi}_{0} \|^{2} \tag{A.26}$$

where r_n is a q-dimensional vector with $||r_n|| = o\left(\|\boldsymbol{\xi}^* - \boldsymbol{\xi}_0\|\right)$ since $\|\boldsymbol{\xi}^* - \boldsymbol{\xi}_0\| = o(1)$. Combining (A.25) and (A.26), we have $\|\boldsymbol{\xi}^* - \boldsymbol{\xi}_0\| = o\left(\sqrt{\frac{q}{n}}\right)$. Since $\|\widehat{\boldsymbol{\xi}}_n - \boldsymbol{\xi}_0\| \le \|\widehat{\boldsymbol{\xi}}_n - \boldsymbol{\xi}^*\| + \|\boldsymbol{\xi}^* - \boldsymbol{\xi}_0\|$, it then suffices to show that $\|\widehat{\boldsymbol{\xi}}_n - \boldsymbol{\xi}^*\| = O_p\left(\sqrt{\frac{q}{n}}\right)$.

Under Assumption 3, there exist constants $0 < L_{\pi} \le U_{\pi} < 1$ such that $L_{\pi} \le |\pi(\boldsymbol{x}_1, y; \boldsymbol{\theta})| \le U_{\pi}$ and a constant $0 < U_{\pi'} < \infty$ such that for the jth element of the gradient $\partial_{\boldsymbol{\theta}} \pi(\boldsymbol{\theta}; \boldsymbol{x}_1, y)$ $(j = 1, \dots, d+1)$, denoted as $(\partial_{\boldsymbol{\theta}} \pi(\boldsymbol{x}_1, y; \boldsymbol{\theta}))_{(j)}$, satisfies $|(\partial_{\boldsymbol{\theta}} \pi(\boldsymbol{x}_1, y; \boldsymbol{\theta}))_{(j)}| \le U_{\pi'}$. Therefore, for $i = 1, \dots, n$, the jth element of $\widehat{h}_{1i}(\boldsymbol{\xi})$ satisfies

$$\left|\widehat{h}_{1i(j)}\left(\boldsymbol{\xi}\right)\right| \leq \left|\frac{\left(\partial_{\boldsymbol{\theta}}\pi\left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta}\right)\right)_{(j)}}{\pi\left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta}\right)}\right| + \left|\frac{\frac{1}{m}\sum_{l=1}^{m}\left(\partial_{\boldsymbol{\theta}}\pi\left(\boldsymbol{x}_{1i}, \widetilde{y}_{i}^{l}; \boldsymbol{\theta}\right)\right)_{(j)}}{\frac{1}{m}\sum_{l=1}^{m}\left\{1 - \pi\left(\boldsymbol{x}_{1i}, \widetilde{y}_{i}^{l}; \boldsymbol{\theta}\right)\right\}}\right|$$

$$\leq \frac{U_{\pi'}}{L_{\pi}} + \frac{U_{\pi'}}{1 - U_{\pi}},$$

and thus $E[\widehat{h}_{1i(j)}(\boldsymbol{\xi})]^2 < \infty$.

Furthermore, by Assumptions 1 and 3, we have $E[\widehat{h}_{2i(j)}(\boldsymbol{\xi})|^2 < Ex_{i(j)}^2/L_{\pi}^2 < \infty$. It then follows from the central limit theorem that $\frac{1}{\sqrt{n}} \sum_{i=1}^n \widehat{h}_{i(j)}(\boldsymbol{\xi}) = \frac{1}{\sqrt{n}} \sum_{i=1}^n E\widehat{h}_{i(j)}(\boldsymbol{\xi}) + O_p(1)$ as $n \to \infty$, for all $\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}$, $j \in \{1, \dots, q\}$. Thus, we have

$$\sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} \left| \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(\widehat{h}_{i(j)} \left(\boldsymbol{\xi} \right) - E \widehat{h}_{i(j)} \left(\boldsymbol{\xi} \right) \right) \right|^{2} = O_{p}(1),$$

as $n \to \infty$. Following the similar argument as Lemma 3, we obtain

$$\sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} \|\widetilde{\boldsymbol{H}}(\boldsymbol{\xi}) - \boldsymbol{H}(\boldsymbol{\xi})\| = O(\sqrt{\frac{1}{m}}). \tag{A.27}$$

Thus, we have

$$\sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} \sqrt{\frac{n}{q}} \| \widehat{\boldsymbol{H}}_{n}(\boldsymbol{\xi}) - \boldsymbol{H}(\boldsymbol{\xi}) \|$$

$$= \sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} \sqrt{\frac{n}{q}} \| \widehat{\boldsymbol{H}}_{n}(\boldsymbol{\xi}) - \widehat{\boldsymbol{H}}(\boldsymbol{\xi}) \| + \sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} \sqrt{\frac{n}{q}} \| \widehat{\boldsymbol{H}}(\boldsymbol{\xi}) - \boldsymbol{H}(\boldsymbol{\xi}) \|$$

$$= \sup_{\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}} \sqrt{\frac{1}{q} \sum_{j=1}^{q} \left| \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left\{ \widehat{h}_{i(j)}(\boldsymbol{\xi}) - E\widehat{h}_{i(j)}(\boldsymbol{\xi}) \right\} \right|^{2}} + O(\sqrt{\frac{n}{qm}})$$

$$= O_{p}(1).$$

By Assumptions 4 and 5 and the construction of the proposed estimator $\widehat{\xi}_n$, we obtain that $H(\xi^*)$ =

 $0, \sqrt{\frac{n}{a}} \|\widehat{\boldsymbol{H}}_n(\widehat{\boldsymbol{\xi}}_n)\| = o_p(1)$. Therefore, we have

$$\sqrt{\frac{n}{q}} \| \boldsymbol{H} \left(\widehat{\boldsymbol{\xi}}_{n} \right) - \boldsymbol{H} \left(\boldsymbol{\xi}^{\star} \right) \| \leq \sqrt{\frac{n}{q}} \| \boldsymbol{H} \left(\widehat{\boldsymbol{\xi}}_{n} \right) - \widehat{\boldsymbol{H}}_{n} \left(\widehat{\boldsymbol{\xi}}_{n} \right) \| + \sqrt{\frac{n}{q}} \| \widehat{\boldsymbol{H}}_{n} \left(\widehat{\boldsymbol{\xi}}_{n} \right) \|$$

$$= O_{p}(1). \tag{A.28}$$

Following the similar argument as that of proving (A.26) under Assumption 8, we obtain

$$\frac{n}{q} \left\| \boldsymbol{H} \left(\widehat{\boldsymbol{\xi}}_{n} \right) - \boldsymbol{H} \left(\boldsymbol{\xi}^{\star} \right) \right\|^{2} \ge \frac{\lambda_{\min} \left(D_{n}^{\mathsf{T}} D_{n} \right)}{4} \cdot \frac{n}{q} \left\| \widehat{\boldsymbol{\xi}}_{n} - \boldsymbol{\xi}^{\star} \right\|^{2}. \tag{A.29}$$

Combining (A.28) and (A.29), we have $\|\widehat{\boldsymbol{\xi}}_n - \boldsymbol{\xi}^*\| = O_p(\sqrt{\frac{q}{n}})$. The proof of Lemma 5 is hence completed. \square

LEMMA 6: Under Assumptions 1-8, as $n \to \infty$, $k_n^2/n \to 0$, $k_n^{3+2v}/n \to \infty$ and $k_n m/n \to \infty$, for any given B > 0, we have

$$E\left\{\sup_{\boldsymbol{\xi}:\|\boldsymbol{\xi}-\boldsymbol{\xi}_{0}\|\leq B\sqrt{\frac{q}{n}}}\|\eta_{i}\left(\boldsymbol{\xi},\boldsymbol{\xi}_{0}\right)\|^{2}\right\}\leq O\left(\frac{q}{\sqrt{n}}\right),\tag{A.30}$$

for $i = 1, \ldots, n$.

Proof. Note that

$$E\left\{\sup_{\boldsymbol{\xi}:\|\boldsymbol{\xi}-\boldsymbol{\xi}_{0}\|\leq B\sqrt{\frac{q}{n}}}\|\eta_{i}\left(\boldsymbol{\xi},\boldsymbol{\xi}_{0}\right)\|^{2}\right\}$$

$$=E\left\{\sup_{\boldsymbol{\xi}:\|\boldsymbol{\xi}-\boldsymbol{\xi}_{0}\|\leq B\sqrt{\frac{q}{n}}}\|\widehat{h}_{i}\left(\boldsymbol{\xi}\right)-\widehat{h}_{i}\left(\boldsymbol{\xi}_{0}\right)-E\widehat{h}_{i}\left(\boldsymbol{\xi}\right)+E\widehat{h}_{i}\left(\boldsymbol{\xi}_{0}\right)\|^{2}\right\}$$

$$\leq 4E\left\{\sup_{\boldsymbol{\xi}:\|\boldsymbol{\xi}-\boldsymbol{\xi}_{0}\|\leq B\sqrt{\frac{q}{n}}}\|\widehat{h}_{i}\left(\boldsymbol{\xi}\right)-\widehat{h}_{i}\left(\boldsymbol{\xi}_{0}\right)\|^{2}\right\}$$

$$=4E\left\{\sup_{\boldsymbol{\xi}:\|\boldsymbol{\xi}-\boldsymbol{\xi}_{0}\|\leq B\sqrt{\frac{q}{n}}}\|\widehat{h}_{1i}\left(\boldsymbol{\xi}\right)-\widehat{h}_{1i}\left(\boldsymbol{\xi}_{0}\right)\|^{2}\right\}+4E\left\{\sup_{\boldsymbol{\xi}:\|\boldsymbol{\xi}-\boldsymbol{\xi}_{0}\|\leq B\sqrt{\frac{q}{n}}}\|\widehat{h}_{2i}\left(\boldsymbol{\xi}\right)-\widehat{h}_{2i}\left(\boldsymbol{\xi}_{0}\right)\|^{2}\right\}$$

$$=4J_{1}+4J_{2},$$

so it suffices to show that $J_1 \leq O\left(\frac{q}{\sqrt{n}}\right)$ and $J_2 \leq O\left(\frac{q}{\sqrt{n}}\right)$.

We first show that that $J_1 \leq O\left(\frac{q}{\sqrt{n}}\right)$. Note that

$$J_{1} \leq 2E \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left\| \frac{\partial_{\boldsymbol{\theta}} \pi \left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta}\right)}{\pi \left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta}\right)} - \frac{\partial_{\boldsymbol{\theta}} \pi \left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta}_{0}\right)}{\pi \left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta}_{0}\right)} \right\|^{2} \right\}$$

$$+2E\left\{\sup_{\boldsymbol{\xi}:\|\boldsymbol{\xi}-\boldsymbol{\xi}_{0}\|\leq B\sqrt{\frac{q}{n}}}\left\|\frac{\sum_{l=1}^{m}\partial_{\boldsymbol{\theta}}\pi\left(\boldsymbol{x}_{1i},\widetilde{\boldsymbol{y}}_{i}^{l};\boldsymbol{\theta}\right)}{\sum_{l=1}^{m}\left\{1-\pi\left(\boldsymbol{x}_{1i},\widetilde{\boldsymbol{y}}_{i}^{l};\boldsymbol{\theta}\right)\right\}}-\frac{\sum_{l=1}^{m}\partial_{\boldsymbol{\theta}}\pi\left(\boldsymbol{x}_{1i},\widetilde{\boldsymbol{y}}_{0,i}^{l};\boldsymbol{\theta}_{0}\right)}{\sum_{l=1}^{m}\left\{1-\pi\left(\boldsymbol{x}_{1i},\widetilde{\boldsymbol{y}}_{0,i}^{l};\boldsymbol{\theta}_{0}\right)\right\}}\right\|^{2}\right\}$$

$$\widehat{=}2J_{11}+2J_{12},$$
(A.31)

where $\{\widetilde{y}_i^l\}_{l=1}^m$ are randomly drawn from $\widetilde{f}(y|\boldsymbol{x}_i;\boldsymbol{\phi})$ and $\{\widetilde{y}_{0,i}^l\}_{l=1}^m$ are randomly drawn from $\widetilde{f}(y|\boldsymbol{x}_i;\boldsymbol{\phi})$, respectively. By Assumptions 3, there exists positive constants $U_{\pi'}$ and $0 < L_{\pi} \le U_{\pi} < 1$ such that $\|\partial_{\boldsymbol{\theta}}\pi(\boldsymbol{x}_{1i},y_i;\boldsymbol{\theta})\| \le (d+1)U_{\pi'}^2$ and $L_{\pi} \le |\pi(\boldsymbol{x}_{1i},y_i;\boldsymbol{\theta})| \le U_{\pi}$. By Assumption 6, there exists a positive constant $U_{\pi''}$ such that $E\left\{\sum_{j=1}^{d+1}\|(\partial_{\boldsymbol{\theta}}^2\pi(\boldsymbol{x}_1,y_j;\boldsymbol{\theta}))_{(.,j)}\|\right\}^2 \le U_{\pi''}$ for every $\boldsymbol{\theta} \in \Theta$. Then, combining with Theorem 12.4 and the conclusion of Example 2 following this theorem of Apostol (1974), we have

$$J_{11} \leq 2E \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left\| \frac{\partial_{\boldsymbol{\theta}}\pi\left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta};\right) \left\{\pi\left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta}\right) - \pi\left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta}_{0}\right) \right\}}{\pi\left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta}\right) \pi\left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta}_{0}\right)} \right\|^{2} \right\}$$

$$+ 2E \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left\| \frac{1}{\pi\left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta}_{0}\right)} \left\{\partial_{\boldsymbol{\theta}}\pi\left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta}\right) - \partial_{\boldsymbol{\theta}}\pi\left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta}_{0}\right) \right\} \right\|^{2} \right\}$$

$$\leq \frac{2(d+1)U_{\pi'}^{2}}{L_{\pi}^{4}} E \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left| (\partial_{\boldsymbol{\theta}}\pi\left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta}_{1}\right))^{\mathsf{T}} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_{0}\right) \right|^{2} \right\}$$

$$+ \frac{2}{L_{\pi}^{2}} E \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left\| \partial_{\boldsymbol{\theta}}^{2}\pi\left(\boldsymbol{x}_{1i}, y_{i}; \boldsymbol{\theta}_{2}\right) \left(\boldsymbol{\theta} - \boldsymbol{\theta}_{0}\right) \right\|^{2} \right\}$$

$$\leq \left(\frac{2(d+1)^{2}U_{\pi'}^{4}}{L_{\pi}^{4}} + \frac{2E\left\{\sum_{j=1}^{d+1} \left\| \left(\partial_{\boldsymbol{\theta}}^{2}\pi\left(\boldsymbol{x}_{1}, y; \boldsymbol{\theta}\right)\right)_{(.,j)} \right\| \right\}^{2}}{L_{\pi}^{2}} \right) \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left\| \boldsymbol{\theta} - \boldsymbol{\theta}_{0} \right\|^{2}$$

$$\leq \left(\frac{2(d+1)^{2}U_{\pi'}^{4}}{L_{\pi}^{4}} + \frac{2U_{\pi''}}{L_{\pi}^{2}} \right) \cdot B^{2} \frac{q}{n} = o\left(\frac{q}{\sqrt{n}}\right),$$

where $\theta_i = \theta_0 + c_i (\theta - \theta_0)$ and $c_i \in (0, 1)$ for i = 1, 2.

For J_{12} , we have

$$J_{12} \leq 2E \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left\| \frac{\frac{1}{m} \sum_{l=1}^{m} \partial_{\boldsymbol{\theta}} \pi \left(\boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{0,i}^{l}; \boldsymbol{\theta}_{0}\right) \cdot \frac{1}{m} \sum_{l=1}^{m} \left\{ \pi \left(\boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{i}^{l}; \boldsymbol{\theta}\right) - \pi \left(\boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{0,i}^{l}; \boldsymbol{\theta}_{0}\right) \right\}}{\frac{1}{m} \sum_{l=1}^{m} \left\{ 1 - \pi \left(\boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{i}^{l}; \boldsymbol{\theta}\right) \right\} \cdot \frac{1}{m} \sum_{l=1}^{m} \left\{ 1 - \pi \left(\boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{0,i}^{l}; \boldsymbol{\theta}_{0}\right) \right\}} \right\|^{2} \right\}$$

$$+ 2E \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left\| \frac{\frac{1}{m} \sum_{l=1}^{m} \left\{ \partial_{\boldsymbol{\theta}} \pi \left(\boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{i}^{l}; \boldsymbol{\theta}\right) - \partial_{\boldsymbol{\theta}} \pi \left(\boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{0,i}^{l}; \boldsymbol{\theta}_{0}\right) \right\}}{\frac{1}{m} \sum_{l=1}^{m} \left\{ 1 - \pi \left(\boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{i}^{l}; \boldsymbol{\theta}\right) \right\}} \right\|^{2} \right\}$$

$$\leq \frac{2(d+1)U_{\pi'}^{2}}{\left(1-U_{\pi}\right)^{4}}E\left\{\sup_{\boldsymbol{\xi}:\|\boldsymbol{\xi}-\boldsymbol{\xi}_{0}\|\leq B\sqrt{\frac{q}{n}}}\left|\frac{1}{m}\sum_{l=1}^{m}\left\{\pi\left(\boldsymbol{x}_{1i},\widetilde{\boldsymbol{y}}_{i}^{l}\,\boldsymbol{\theta}\right)-\pi\left(\boldsymbol{x}_{1i},\widetilde{\boldsymbol{y}}_{0,i}^{l};\boldsymbol{\theta}_{0}\right)\right\}\right|^{2}\right\} \\
+\frac{2}{\left(1-U_{\pi}\right)^{2}}E\left\{\sup_{\boldsymbol{\xi}:\|\boldsymbol{\xi}-\boldsymbol{\xi}_{0}\|\leq B\sqrt{\frac{q}{n}}}\left\|\frac{1}{m}\sum_{l=1}^{m}\left\{\partial_{\boldsymbol{\theta}}\pi\left(\boldsymbol{x}_{1i},\widetilde{\boldsymbol{y}}_{i}^{l};\boldsymbol{\theta}\right)-\partial_{\boldsymbol{\theta}}\pi\left(\boldsymbol{x}_{1i},\widetilde{\boldsymbol{y}}_{0,i}^{l};\boldsymbol{\theta}_{0}\right)\right\}\right\|^{2}\right\} \\
\triangleq \frac{2(d+1)U_{\pi'}^{2}}{\left(1-U_{\pi}\right)^{4}}JJ_{1}+\frac{2}{\left(1-U_{\pi}\right)^{2}}JJ_{2} \tag{A.32}$$

In what follows, we show that $JJ_1 \leq O(\frac{q}{\sqrt{n}})$. Let's first prove the following inequality

$$\sup_{\boldsymbol{\phi}:\|\boldsymbol{\phi}-\boldsymbol{\phi}_0\|\leq B\sqrt{\frac{q}{n}}}\widetilde{f}(y|\boldsymbol{x};\boldsymbol{\phi})<\infty. \tag{A.33}$$

for sufficiently large n. By Assumption 2, it is easy to show that $\widetilde{f}(y|x;\phi_0) < \infty$. That is, for every given $x \in \mathcal{X}$ and $k \in \{1,2,\ldots,k_n-1\}$, there exists a positive constant $U_{\widetilde{f}} < \infty$ such that $(\tau_{k+1} - \tau_k)/x^{\mathsf{T}}(\beta_{0,\tau_{k+1}} - \beta_{0,\tau_k}) \leq U_{\widetilde{f}}$. Then, for every ϕ satisfying $\|\phi - \phi_0\| \leq B\sqrt{\frac{q}{n}}$, when n is sufficiently large, for every $k \in \{1,2,\ldots,k_n-1\}$,

$$\frac{(\tau_{k+1} - \tau_k)}{\boldsymbol{x}^{\mathsf{T}}(\boldsymbol{\beta}_{\tau_{k+1}} - \boldsymbol{\beta}_{\tau_k})} = \frac{(\tau_{k+1} - \tau_k)}{\boldsymbol{x}^{\mathsf{T}}(\boldsymbol{\beta}_{\tau_{0,k+1}} - \boldsymbol{\beta}_{\tau_{0,k}}) + \boldsymbol{x}^{\mathsf{T}}(\boldsymbol{\beta}_{\tau_{k+1}} - \boldsymbol{\beta}_{\tau_{0,k+1}}) - \boldsymbol{x}^{\mathsf{T}}(\boldsymbol{\beta}_{\tau_k} - \boldsymbol{\beta}_{\tau_{0,k}})} \leq 2U_{\widetilde{f}}.$$

Thus, we have $\sup_{\phi:\|\phi-\phi_0\|\leq B\sqrt{\frac{q}{n}}}\widetilde{f}(y|\boldsymbol{x};\phi)\leq 2U_{\widetilde{f}}<\infty$.

Note that

$$JJ_{1} \leq 2E \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left| \frac{1}{m} \sum_{l=1}^{m} \left\{ \pi \left(\boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{i}^{l}; \boldsymbol{\theta} \right) - \pi \left(\boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{i}^{l}; \boldsymbol{\theta}_{0} \right) \right\} \right|^{2} \right\}$$

$$+2E \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left| \frac{1}{m} \sum_{l=1}^{m} \left\{ \pi \left(\boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{i}^{l}; \boldsymbol{\theta}_{0} \right) - \pi \left(\boldsymbol{x}_{1i}, \widetilde{\boldsymbol{y}}_{0,i}^{l}; \boldsymbol{\theta}_{0} \right) \right\} \right|^{2} \right\}$$

$$\leq 2(d+1)U_{\pi'}^{2} \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left\| \boldsymbol{\theta} - \boldsymbol{\theta}_{0} \right\|^{2}$$

$$+2E_{\boldsymbol{x}_{i}} \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left| \int_{\boldsymbol{y}} \pi \left(\boldsymbol{x}_{1i}, \boldsymbol{y}; \boldsymbol{\theta}_{0} \right) \left\{ \widetilde{\boldsymbol{f}} \left(\boldsymbol{y} | \boldsymbol{x}_{i}; \boldsymbol{\phi} \right) - \widetilde{\boldsymbol{f}} \left(\boldsymbol{y} | \boldsymbol{x}_{i}; \boldsymbol{\phi}_{0} \right) \right\} d\boldsymbol{y} + O_{p} \left(\frac{1}{\sqrt{m}} \right) \right|^{2} \right\}$$

$$\leq 2(d+1)U_{\pi'}^{2} \cdot B^{2} \frac{q}{n}$$

$$+4U_{\pi}^{2}E_{\boldsymbol{x}_{i}} \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left(\int_{\boldsymbol{y}} \left| \widetilde{\boldsymbol{f}} \left(\boldsymbol{y} | \boldsymbol{x}_{i}; \boldsymbol{\phi} \right) - \widetilde{\boldsymbol{f}} \left(\boldsymbol{y} | \boldsymbol{x}_{i}; \boldsymbol{\phi}_{0} \right) \right| d\boldsymbol{y} \right)^{2} \right\} + O\left(\frac{1}{m} \right)$$

$$=O\left(\frac{q}{n}+\frac{1}{m}\right)+4U_{\pi}^{2}E_{\boldsymbol{x}_{i}}\left\{\sup_{\boldsymbol{\xi}:\|\boldsymbol{\xi}-\boldsymbol{\xi}_{0}\|\leq B\sqrt{\frac{q}{n}}}\left(\int_{y}\left|\widetilde{f}\left(y|\boldsymbol{x}_{i};\boldsymbol{\phi}\right)-\widetilde{f}\left(y|\boldsymbol{x}_{i};\boldsymbol{\phi}_{0}\right)\right|dy\right)^{2}\right\}.$$

The first term of the second inequality above is followed by Assumption 3, and the second term is followed by (A.33) and the central limit theorem. Note that $0 < \pi(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}_0) < 1$, so it follows from the central limit theorem that

$$\frac{1}{m} \sum_{l=1}^{m} \left[\pi \left(\boldsymbol{x}_{1i}, \widetilde{y}_{i}^{l}; \boldsymbol{\theta}_{0} \right) - \pi \left(\boldsymbol{x}_{1i}, \widetilde{y}_{0,i}^{l}; \boldsymbol{\theta}_{0} \right) \right]
= \int_{y} \pi \left(\boldsymbol{x}_{1i}, y; \boldsymbol{\theta}_{0} \right) \left[\widetilde{f} \left(y | \boldsymbol{x}_{i}; \boldsymbol{\phi} \right) - \widetilde{f} \left(y | \boldsymbol{x}_{i}; \boldsymbol{\phi}_{0} \right) \right] dy + O_{p} \left(\frac{1}{\sqrt{m}} \right).$$

Moreover, the first term of the last equation above $O\left(\frac{q}{n} + \frac{1}{m}\right) = o\left(\frac{q}{\sqrt{n}}\right)$ as $n \to \infty$. Therefore, it suffices to show that

$$E_{\boldsymbol{x}_i} \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_0\| \le B\sqrt{\frac{q}{n}}} \left(\int_{y} \left| \widetilde{f}(y|\boldsymbol{x}_i; \boldsymbol{\phi}) - \widetilde{f}(y|\boldsymbol{x}_i; \boldsymbol{\phi}_0) \right| dy \right)^{2} \right\} \le O\left(\frac{q}{\sqrt{n}}\right).$$

Consider the case where $\boldsymbol{x}_i^{\mathsf{T}}\boldsymbol{\beta}_{0,\frac{k}{k_n+1}} \leq \boldsymbol{x}_i^{\mathsf{T}}\boldsymbol{\beta}_{\frac{k}{k_n+1}} < \boldsymbol{x}_i^{\mathsf{T}}\boldsymbol{\beta}_{0,\frac{k+1}{k_n+1}} \leq \boldsymbol{x}_i^{\mathsf{T}}\boldsymbol{\beta}_{\frac{k+1}{k_n+1}}$ for $k=1,\dots k_n$, and the following argument can be similarly used for other cases. We then decompose $|\widetilde{f}(y|\boldsymbol{x}_i;\boldsymbol{\phi}) - \widetilde{f}(y|\boldsymbol{x}_i;\boldsymbol{\phi}_0)|$ as

$$\begin{aligned} & \left| \widetilde{f}(y|\boldsymbol{x}_{i};\phi) - \widetilde{f}(y|\boldsymbol{x}_{i};\phi_{0}) \right| \\ & = \frac{1}{k_{n}+1} \left| \frac{1}{\boldsymbol{x}_{i}^{\mathsf{T}}(\boldsymbol{\beta}_{0,\frac{2}{k_{n+1}}} - \boldsymbol{\beta}_{0,\frac{1}{k_{n+1}}})} \boldsymbol{I}(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0,\frac{1}{k_{n+1}}} \leq y \leq \boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{\frac{1}{k_{n+1}}}) \right| \\ & + \frac{1}{k_{n}+1} \left| \sum_{k=1}^{k_{n}-1} \left(\frac{1}{\boldsymbol{x}_{i}^{\mathsf{T}}(\boldsymbol{\beta}_{0,\frac{k+1}{k_{n+1}}} - \boldsymbol{\beta}_{0,\frac{k}{k_{n+1}}}) - \frac{1}{\boldsymbol{x}_{i}^{\mathsf{T}}(\boldsymbol{\beta}_{\frac{k+1}{k_{n+1}}} - \boldsymbol{\beta}_{\frac{k}{k_{n+1}}})} \right) \boldsymbol{I}(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{\frac{k}{k_{n+1}}} \leq y \leq \boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0,\frac{k+1}{k_{n+1}}}) \right| \\ & + \frac{1}{k_{n}+1} \left| \sum_{k=1}^{k_{n}-2} \left(\frac{1}{\boldsymbol{x}_{i}^{\mathsf{T}}(\boldsymbol{\beta}_{0,\frac{k+2}{k_{n+1}}} - \boldsymbol{\beta}_{0,\frac{k+1}{k_{n+1}}}) - \frac{1}{\boldsymbol{x}_{i}^{\mathsf{T}}(\boldsymbol{\beta}_{\frac{k+1}{k_{n+1}}} - \boldsymbol{\beta}_{\frac{k}{k_{n+1}}})} \right) \boldsymbol{I}(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0,\frac{k+1}{k_{n+1}}} \leq y \leq \boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{\frac{k+1}{k_{n+1}}}) \right| \\ & + \frac{1}{k_{n}+1} \left| \frac{1}{\boldsymbol{x}_{i}^{\mathsf{T}}(\boldsymbol{\beta}_{\frac{k_{n}}{k_{n+1}}} - \boldsymbol{\beta}_{\frac{k_{n}-1}{k_{n+1}}})} \boldsymbol{I}(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0,\frac{k_{n}}{k_{n+1}}} \leq y \leq \boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{\frac{k_{n}}{k_{n+1}}}) \right| \\ & \cong F_{1} + F_{2} + F_{3} + F_{4}. \end{aligned} \tag{A.35}$$

Thus we obtain that

$$E_{\boldsymbol{x}_{i}} \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left(\int_{y} \left| \widetilde{f}(y|\boldsymbol{x}_{i}; \boldsymbol{\phi}) - \widetilde{f}(y|\boldsymbol{x}_{i}; \boldsymbol{\phi}_{0}) \right| dy \right)^{2} \right\}$$

$$\leq 4 \sum_{j=1}^{4} E_{\boldsymbol{x}_{i}} \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left(\int_{y} F_{j} dy \right)^{2} \right\}.$$

In what follws, we will show $E_{\boldsymbol{x}_i}\left\{\sup_{\boldsymbol{\xi}:\|\boldsymbol{\xi}-\boldsymbol{\xi}_0\|\leq B\sqrt{\frac{q}{n}}}\left(\int_y F_j dy\right)^2\right\}\leq O\left(\frac{q}{\sqrt{n}}\right)$ for j=1,2,3, and 4. Under Assumptions 1, there exist some positive constants Q that $E_{\boldsymbol{x}_i}\|\boldsymbol{x}_i\|^2< Q$. Hence, for j=1, we have

$$\begin{split} E_{\boldsymbol{x}_{i}} &\left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left(\int_{y} F_{1} dy \right)^{2} \right\} \\ &= E_{\boldsymbol{x}_{i}} \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left(\widetilde{f}\left(y_{1} | \boldsymbol{x}_{i}, \boldsymbol{\phi}_{0}\right) \int_{\boldsymbol{x}_{i}^{\mathsf{T}}}^{\boldsymbol{x}_{i}^{\mathsf{T}}} \beta_{0, \frac{1}{k_{n}+1}} 1 dy \right)^{2} \right\} \\ &\leq U_{\widetilde{f}}^{2} E_{\boldsymbol{x}_{i}} \left\{ \|\boldsymbol{x}_{i}\|^{2} \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left\| \boldsymbol{\beta}_{\frac{1}{k_{n}+1}} - \boldsymbol{\beta}_{0, \frac{1}{k_{n}+1}} \right\|^{2} \right\} \\ &\leq Q U_{\widetilde{f}}^{2} B^{2} \frac{q}{n} = o\left(\frac{q}{\sqrt{n}}\right), \end{split}$$

where $y_1 = \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}_{0,\frac{1}{k_n+1}} + c_1 \boldsymbol{x}_i^{\mathsf{T}} \left(\boldsymbol{\beta}_{0,\frac{2}{k_n+1}} - \boldsymbol{\beta}_{0,\frac{1}{k_n+1}} \right)$ with $0 < c_1 < 1$. With the similar argument, we can also show that $E_x \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_0\| \le B\sqrt{\frac{q}{n}}} \left(\int_y F_4 dy \right)^2 \right\} \le o\left(\frac{q}{\sqrt{n}}\right)$. For j = 2, by Assumptions 1 and 2, we have

$$\begin{split} E_{\boldsymbol{x}_{i}} & \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left(\int_{y} F_{2} dy \right)^{2} \right\} \\ \leq & 2E_{\boldsymbol{x}_{i}} \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left(\sum_{k=1}^{k_{n}-1} \widetilde{f}\left(y_{0,k} | \boldsymbol{x}_{i}, \boldsymbol{\phi}_{0}\right) \frac{\boldsymbol{x}_{i}^{\mathsf{T}}\left(\boldsymbol{\beta}_{\frac{k+1}{k_{n}+1}} - \boldsymbol{\beta}_{0,\frac{k+1}{k_{n}+1}}\right)}{\boldsymbol{x}_{i}^{\mathsf{T}}\left(\boldsymbol{\beta}_{\frac{k+1}{k_{n}+1}} - \boldsymbol{\beta}_{\frac{k}{k_{n}+1}}\right) \int_{\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0,\frac{k+1}{k_{n}+1}}}^{\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0,\frac{k+1}{k_{n}+1}} 1 dy \right)^{2} \right\} \\ + & 2E_{\boldsymbol{x}_{i}} \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \left(\sum_{k=1}^{k_{n}-1} \widetilde{f}\left(y_{k} | \boldsymbol{x}_{i}, \boldsymbol{\phi}\right) \frac{\boldsymbol{x}_{i}^{\mathsf{T}}\left(\boldsymbol{\beta}_{\frac{k}{k_{n}+1}} - \boldsymbol{\beta}_{0,\frac{k}{k_{n}+1}}\right)}{\boldsymbol{x}_{i}^{\mathsf{T}}\left(\boldsymbol{\beta}_{\frac{k+1}{k_{n}+1}} - \boldsymbol{\beta}_{\frac{k}{k_{n}+1}}\right)} \int_{\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0,\frac{k+1}{k_{n}+1}}}^{\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0,\frac{k+1}{k_{n}+1}} 1 dy \right)^{2} \right\} \\ \leq & 10U_{\widetilde{f}}^{2}E_{\boldsymbol{x}_{i}} \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \|\boldsymbol{x}_{i}\|^{2} \left\| \sum_{k=1}^{k_{n}} \left(\boldsymbol{\beta}_{\frac{k}{k_{n}+1}} - \boldsymbol{\beta}_{0,\frac{k}{k_{n}+1}}\right) \right\|^{2} \right\} \\ \leq & 10U_{\widetilde{f}}^{2}Q \cdot k_{n} \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\|^{2} \end{split}$$

$$=o\left(\frac{q}{\sqrt{n}}\right),$$

where $y_{0,k} = \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}_{0,\frac{k}{k_n+1}} + c_{0,k} \boldsymbol{x}_i^{\mathsf{T}} (\boldsymbol{\beta}_{0,\frac{k+1}{k_n+1}} - \boldsymbol{\beta}_{0,\frac{k}{k_n+1}})$ and $y_k = \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}_{\frac{k}{k_n+1}} + c_k \boldsymbol{x}_i^{\mathsf{T}} (\boldsymbol{\beta}_{\frac{k+1}{k_n+1}} - \boldsymbol{\beta}_{\frac{k}{k_n+1}})$ with $c_{0,k} \in (0,1), c_k \in (0,1)$ for $k=1,\ldots,k_n-1$. With the similar argument, we can also show that $E_{\boldsymbol{x}_i} \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_0\| \le B\sqrt{\frac{q}{n}}} \left(\int_y F_3 dy \right)^2 \right\} \le o\left(\frac{q}{\sqrt{n}}\right)$. Hence, we have shown that $JJ_1 = o\left(\frac{q}{\sqrt{n}}\right)$. Similarly, we also can show that $JJ_2 = o\left(\frac{q}{\sqrt{n}}\right)$. Therefore, by (A.33), we have shown that $J_{12} \le o\left(\frac{q}{\sqrt{n}}\right)$. The proof of $J_1 \le O\left(\frac{q}{\sqrt{n}}\right)$ is hence completed.

In what follows, we show that $J_2 \leq O\left(\frac{q}{\sqrt{n}}\right)$. Note that

$$E\left\{\sup_{\boldsymbol{\xi}:\|\boldsymbol{\xi}-\boldsymbol{\xi}_{0}\|\leq B\sqrt{\frac{q}{n}}}\|h_{2i}\left(\boldsymbol{\xi}\right)-h_{2i}\left(\boldsymbol{\xi}_{0}\right)\|^{2}\right\}$$

$$=E\left\{\sup_{\boldsymbol{\xi}:\|\boldsymbol{\xi}-\boldsymbol{\xi}_{0}\|\leq B\sqrt{\frac{q}{n}}}\left\|\delta_{i}\left(\frac{\Psi\left(y_{i}-\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\phi}\right)}{\pi\left(\boldsymbol{x}_{1i},y_{i};\boldsymbol{\theta}\right)}-\frac{\Psi\left(y_{i}-\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\phi}_{0}\right)}{\pi\left(\boldsymbol{x}_{1i},y_{i};\boldsymbol{\theta}_{0}\right)}\right)\otimes\boldsymbol{x}_{i}\right\|^{2}\right\}$$

$$\leq E\left\{\sup_{\boldsymbol{\xi}:\|\boldsymbol{\xi}-\boldsymbol{\xi}_{0}\|\leq B\sqrt{\frac{q}{n}}}\sum_{k=1}^{k_{n}}\left|\frac{\Psi\left(y_{i}-\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{\tau_{k}}\right)}{\pi\left(\boldsymbol{x}_{1i},y_{i};\boldsymbol{\theta}\right)}-\frac{\Psi\left(y_{i}-\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0,\tau_{k}}\right)}{\pi\left(\boldsymbol{x}_{1i},y_{i};\boldsymbol{\theta}_{0}\right)}\right|^{2}\cdot\|\boldsymbol{x}_{i}\|^{2}\right\}$$

$$\leq 2E\left\{\|\boldsymbol{x}_{i}\|^{2}\sup_{\boldsymbol{\xi}:\|\boldsymbol{\xi}-\boldsymbol{\xi}_{0}\|\leq B\sqrt{\frac{q}{n}}}\sum_{k=1}^{k_{n}}\left|\frac{1}{\pi\left(\boldsymbol{x}_{1i},y_{i};\boldsymbol{\theta}\right)}-\frac{1}{\pi\left(\boldsymbol{x}_{1i},y_{i};\boldsymbol{\theta}_{0}\right)}\right|^{2}\cdot|\Psi\left(y_{i}-\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{\tau_{k}}\right)|^{2}\right\}$$

$$+2E\left\{\|\boldsymbol{x}_{i}\|^{2}\sup_{\boldsymbol{\xi}:\|\boldsymbol{\xi}-\boldsymbol{\xi}_{0}\|\leq B\sqrt{\frac{q}{n}}}\sum_{k=1}^{k_{n}}\left|\frac{1}{\pi\left(\boldsymbol{x}_{1i},y_{i};\boldsymbol{\theta}_{0}\right)}\right|^{2}\cdot|\Psi\left(y_{i}-\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{\tau_{k}}\right)-\Psi\left(y_{i}-\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0,\tau_{k}}\right)|^{2}\right\}$$

$$\triangleq 2\left(MM_{1}+MM_{2}\right).$$
(A.36)

By Assumptions 1 and 3, for $k_n^2/n \to 0$ and $n \to \infty$, we have that

$$MM_{1} = O\left(k_{n} \sup_{\boldsymbol{\xi}:\|\boldsymbol{\xi}-\boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \|\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\|^{2}\right) \leq O\left(\frac{q}{\sqrt{n}}\right). \tag{A.37}$$

On the other hand, note that

$$\begin{aligned} &|\Psi\left(y_{i}-\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{\tau_{k}}\right)-\Psi\left(y_{i}-\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0,\tau_{k}}\right)|^{2} \\ &=\left|\boldsymbol{I}\left(y_{i}<\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{\tau_{k}}\right)-\boldsymbol{I}\left(y_{i}<\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0,\tau_{k}}\right)\right|^{2} \\ &=\boldsymbol{I}\left(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0,\tau_{k}}< y_{i}<\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{\tau_{k}}; \boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0,\tau_{k}}\leq \boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{\tau_{k}}\right)+\boldsymbol{I}\left(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{\tau_{k}}< y_{i}<\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0,\tau_{k}}; \boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0,\tau_{k}}\right). \end{aligned}$$

Under Assumptions 1 and 2, there exists a positive constant M such that $E_{x_i} \|x_i\|^3 < M$, and

a constant U_f such that $f(y|\mathbf{x}, \boldsymbol{\beta}_0(\tau)) < U_f$ for any $y \in \mathcal{Y}$. By the mean value theorem and Assumptions 1 and 2, we obtain that

$$MM_{2} \leq \frac{1}{L_{\pi}^{2}} E\left\{ \left\| \boldsymbol{x}_{i} \right\|^{2} \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \sum_{k=1}^{k_{n}} \boldsymbol{I} \left(\boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\beta}_{0,\tau_{k}} < y_{i} < \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\beta}_{\tau_{k}}; \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\beta}_{0,\tau_{k}} \leq \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\beta}_{\tau_{k}} \right) \right\}$$

$$+ \frac{1}{L_{\pi}^{2}} E\left\{ \left\| \boldsymbol{x}_{i} \right\|^{2} \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \sum_{k=1}^{k_{n}} \boldsymbol{I} \left(\boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\beta}_{\tau_{k}} < y_{i} < \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\beta}_{0,\tau_{k}}; \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\beta}_{\tau_{k}} \leq \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\beta}_{0,\tau_{k}} \right) \right\}$$

$$= \frac{1}{L_{\pi}^{2}} E_{\boldsymbol{x}_{i}} \left\{ \left\| \boldsymbol{x}_{i} \right\|^{2} \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \sum_{k=1}^{k_{n}} f\left(y_{i,k} | \boldsymbol{x}_{i}; \boldsymbol{\beta}_{0} \left(\tau \right) \right) | \boldsymbol{x}_{i}^{\mathsf{T}} \left(\boldsymbol{\beta}_{\tau_{k}} - \boldsymbol{\beta}_{0,\tau_{k}} \right) | \right\}$$

$$\leq \frac{U_{f}}{L_{\pi}^{2}} \sqrt{k_{n}} \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0} \|$$

$$\leq \frac{U_{f}M}{L_{\pi}^{2}} \sqrt{k_{n}} \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0} \|$$

$$= O\left(\frac{q}{\sqrt{n}}\right), \tag{A.38}$$

where $y_{i,k} = \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}_{0,\tau_k} + c_k \left(\boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}_{\tau_k} - \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}_{0,\tau_k} \right)$ with $0 < c_k < 1$. By (A.36), (A.37) and (A.38), we have $J_2 \le O\left(\frac{q}{\sqrt{n}}\right)$. The proof of Lemma 6 is hence completed. \square

Proof of Theorem 2

Proof. Since $k_n^{3+2v}/n \to \infty$, $k_n^2 \log^2 n/n \to 0$, $k_n m/n \to \infty$ as $n \to \infty$, by Lemma 2.1 of He and Shao (2000) and Lemma 6, for any given B, and any $\alpha \in \mathbb{R}^q$, $\|\alpha\| = 1$, we have

$$\sup_{\boldsymbol{\xi}:\|\boldsymbol{\xi}-\boldsymbol{\xi}_{0}\|\leq B\sqrt{\frac{q}{n}}}\sum_{i=1}^{n}E\left|\boldsymbol{\alpha}^{\top}\eta_{i}\left(\boldsymbol{\xi},\boldsymbol{\xi}_{0}\right)\right|^{2}=O\left(q\sqrt{n}\right),$$

and

$$\sup_{\boldsymbol{\xi}:\|\boldsymbol{\xi}-\boldsymbol{\xi}_0\|\leq B\sqrt{\frac{q}{n}}}\sum_{i=1}^n\left(\boldsymbol{\alpha}^{\intercal}\eta_i\left(\boldsymbol{\xi},\boldsymbol{\xi}_0\right)\right)^2=O_p\left(q\sqrt{n}\right).$$

Then by Lemma 3.3 of He and Shao (2000), we have

$$\sup_{\boldsymbol{\xi}:\|\boldsymbol{\xi}-\boldsymbol{\xi}_{0}\|\leq B\sqrt{\frac{q}{n}}}\sqrt{\frac{n}{q}}\left|\boldsymbol{\alpha}^{\top}\left\{\widehat{\boldsymbol{H}}_{n}\left(\boldsymbol{\xi}\right)-\widehat{\boldsymbol{H}}_{n}\left(\boldsymbol{\xi}_{0}\right)-\widetilde{\boldsymbol{H}}\left(\boldsymbol{\xi}\right)+\widehat{\boldsymbol{H}}\left(\boldsymbol{\xi}_{0}\right)\right\}\right|$$

$$=O_{p}\left(\left(\frac{q^{2}\log^{2}n}{n}\right)^{\frac{1}{4}}\right)=o_{p}\left(1\right).$$
(A.39)

Combining (A.39) with (A.27) and Lemma 5, we further obtain

$$\sqrt{\frac{n}{q}} \left| \boldsymbol{\alpha}^{\mathsf{T}} \left\{ \widehat{\boldsymbol{H}}_{n} \left(\widehat{\boldsymbol{\xi}}_{n} \right) - \widehat{\boldsymbol{H}}_{n} \left(\boldsymbol{\xi}_{0} \right) - \boldsymbol{H} \left(\widehat{\boldsymbol{\xi}}_{n} \right) + \boldsymbol{H} \left(\boldsymbol{\xi}_{0} \right) \right\} \right| = o_{p} \left(1 \right). \tag{A.40}$$

Note that $\sqrt{n/q} \| \boldsymbol{\alpha}^{\mathsf{T}} \widehat{\boldsymbol{H}}_n(\widehat{\boldsymbol{\xi}}_n) \| = o_p(1)$ and $\sqrt{n/q} \| \boldsymbol{\alpha}^{\mathsf{T}} \{ \widehat{\boldsymbol{H}}_n(\boldsymbol{\xi}_0) - \boldsymbol{H}_n^0(\boldsymbol{\xi}_0) \} \| = o_p(1)$, which is implied by the construction of the proposed estimator and Lemma 4, respectively. It follows that

$$\sqrt{\frac{n}{q}}\left|\boldsymbol{\alpha}^{\mathsf{T}}\left\{\boldsymbol{H}_{n}^{0}\left(\boldsymbol{\xi}_{0}\right)+\boldsymbol{H}\left(\widehat{\boldsymbol{\xi}}_{n}\right)-\boldsymbol{H}\left(\boldsymbol{\xi}_{0}\right)\right\}\right|=o_{p}\left(1\right).$$

Then by Assumption 8, we have

$$\sqrt{\frac{n}{q}} \boldsymbol{\alpha}^{\mathsf{T}} D_n \left(\widehat{\boldsymbol{\xi}}_n - \boldsymbol{\xi}_0 \right) = -\sqrt{\frac{n}{q}} \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{H}_n^0 \left(\boldsymbol{\xi}_0 \right) + o_p \left(1 \right).$$

Theorem 2 follows immediately from the central limit theorem. □

Web Appendix D

Suppose that P_B is the bootstrap probability given the observed data $\{x_i, y_i, \delta_i\}_{i=1}^n$. Here, we further denote E^* and P^* be the expectation and probability on $\{y_i, x_i, \delta_i, w_i\}_{i=1}^n$. Let

$$\boldsymbol{H}_{w,n}^{0}(\boldsymbol{\xi}) = \left(\boldsymbol{S}_{w,n}^{\mathsf{T}}(\boldsymbol{\theta}), \boldsymbol{M}_{w,n}^{\mathsf{T}}(\boldsymbol{\xi})\right)^{\mathsf{T}} = \frac{1}{n} \sum_{i=1}^{n} w_{i} h_{i}\left(\boldsymbol{\xi}\right) = \left(\frac{1}{n} \sum_{i=1}^{n} w_{i} h_{1i}^{\mathsf{T}}\left(\boldsymbol{\xi}\right), \frac{1}{n} \sum_{i=1}^{n} w_{i} h_{2i}^{\mathsf{T}}\left(\boldsymbol{\xi}\right)\right)^{\mathsf{T}},$$

$$\widehat{\boldsymbol{H}}_{w,n}(\boldsymbol{\xi}) = \left(\widehat{\boldsymbol{S}}_{w,n}^{\mathsf{T}}(\boldsymbol{\xi}), \boldsymbol{M}_{w,n}^{\mathsf{T}}(\boldsymbol{\xi})\right)^{\mathsf{T}} = \frac{1}{n} \sum_{i=1}^{n} w_{i} \widehat{h}_{i}\left(\boldsymbol{\xi}\right) = \left(\frac{1}{n} \sum_{i=1}^{n} w_{i} \widehat{h}_{1i}^{\mathsf{T}}\left(\boldsymbol{\xi}\right), \frac{1}{n} \sum_{i=1}^{n} w_{i} \widehat{h}_{2i}^{\mathsf{T}}\left(\boldsymbol{\xi}\right)\right)^{\mathsf{T}},$$

and $\widehat{\xi}_n^*$ be the weighted bootstrap estimator of ξ . Define

$$\eta_{w,i}(\boldsymbol{\xi},\boldsymbol{\xi}_0) = w_i \widehat{h}_i(\boldsymbol{\xi}) - w_i \widehat{h}_i(\boldsymbol{\xi}_0) - E^* \left[w_i \widehat{h}_i(\boldsymbol{\xi}) \right] + E^* \left[w_i \widehat{h}_i(\boldsymbol{\xi}_0) \right]. \tag{A.41}$$

Note that by Assumption 10, we have $E^*\{\boldsymbol{H}_{w,n}^0(\boldsymbol{\xi})\} = E\{\boldsymbol{H}_n^0(\boldsymbol{\xi})\} = \boldsymbol{H}^0(\boldsymbol{\xi})$ and $E^*\{\widehat{\boldsymbol{H}}_{w,n}(\boldsymbol{\xi})\} = E\{\widehat{\boldsymbol{H}}_n^0(\boldsymbol{\xi})\} = \widetilde{\boldsymbol{H}}(\boldsymbol{\xi})$ for any $\boldsymbol{\xi} \in \Theta_{\boldsymbol{\xi}}$.

LEMMA 7: Under Assumptions 1-4, 6-7 and 9, for $n \to \infty$, $k_n^{3+2v}/n \to \infty$ and $k_n m/n \to \infty$, we have

$$\sqrt{\frac{n}{q}} \left\| \widehat{\boldsymbol{H}}_{w,n} \left(\boldsymbol{\xi}_0 \right) - \boldsymbol{H}_{w,n}^0 \left(\boldsymbol{\xi}_0 \right) \right\| = o_{p^*} \left(1 \right). \tag{A.42}$$

Proof. This Lemma can be shown with the similar argument of the proof of Lemma 4. \square

LEMMA 8: Under Assumptions 1-9, for $n \to \infty$, $k_n^{3+2v}/n \to \infty$ and $k_n m/n \to \infty$, we have

$$\|\widehat{\boldsymbol{\xi}}_n^* - \boldsymbol{\xi}_0\| = O_{p^*}\left(\sqrt{\frac{q}{n}}\right). \tag{A.43}$$

Proof. This Lemma can be shown with the similar argument of the proof of Lemma 5. □

LEMMA 9: Under Assumptions 1-9 as $n \to \infty$, $k_n^2/n \to 0$, $k_n^{3+2v}/n \to \infty$, $k_n m/n \to \infty$, for any given B > 0, we have

$$E^{\star} \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \le B\sqrt{\frac{q}{n}}} \|\eta_{w,i}\left(\boldsymbol{\xi}, \boldsymbol{\xi}_{0}\right)\|^{2} \right\} \le O\left(\frac{q}{\sqrt{n}}\right), \tag{A.44}$$

for i = 1, ..., n.

Proof. Note that

$$E^{*} \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \|\eta_{w,i}(\boldsymbol{\xi}, \boldsymbol{\xi}_{0})\|^{2} \right\}$$

$$= E^{*} \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \|w_{i}\widehat{h}_{i}(\boldsymbol{\xi}) - w_{i}\widehat{h}_{i}(\boldsymbol{\xi}_{0}) - E^{*} \left\{ w_{i}\widehat{h}_{i}(\boldsymbol{\xi}) \right\} + E^{*} \left\{ w_{i}\widehat{h}_{i}(\boldsymbol{\xi}_{0}) \right\} \|^{2} \right\}$$

$$\leq 2E^{*} \left\{ w_{i}^{2} \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \|\widehat{h}_{i}(\boldsymbol{\xi}) - \widehat{h}_{i}(\boldsymbol{\xi}_{0})\|^{2} \right\} + 2 \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \|E\left\{\widehat{h}_{i}(\boldsymbol{\xi}) - \widehat{h}_{i}(\boldsymbol{\xi}_{0})\right\} \|^{2}$$

$$\leq 6E \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \|\widehat{h}_{i}(\boldsymbol{\xi}) - \widehat{h}_{i}(\boldsymbol{\xi}_{0})\|^{2} \right\}$$

$$= 6E \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \|\widehat{h}_{1i}(\boldsymbol{\xi}) - \widehat{h}_{1i}(\boldsymbol{\xi}_{0})\|^{2} \right\} + 6E \left\{ \sup_{\boldsymbol{\xi}: \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\| \leq B\sqrt{\frac{q}{n}}} \|\widehat{h}_{2i}(\boldsymbol{\xi}) - \widehat{h}_{2i}(\boldsymbol{\xi}_{0})\|^{2} \right\}$$

$$= 6J_{1} + 6J_{2}.$$

The last inequality follows under Assumption 9. We have shown that $J_1 \leq O\left(q/\sqrt{n}\right)$ and $J_2 \leq O\left(q/\sqrt{n}\right)$ in Lemma 6, so (A.44) hence holds. \square

Proof of Theorem 3

Proof. For any $\alpha \in \mathbb{R}^q$ with $\|\alpha\| = 1$, by some algebra, we obtain that

$$\sqrt{\frac{n}{q}} \boldsymbol{\alpha}^{\mathsf{T}} \left\{ \widetilde{\boldsymbol{H}} \left(\widehat{\boldsymbol{\xi}}_{n}^{*} \right) - \widetilde{\boldsymbol{H}} \left(\widehat{\boldsymbol{\xi}}_{n}^{*} \right) \right\} + \sqrt{\frac{n}{q}} \boldsymbol{\alpha}^{\mathsf{T}} \left\{ \boldsymbol{H}_{w,n}^{0} \left(\boldsymbol{\xi}_{0} \right) - \boldsymbol{H}_{n}^{0} \left(\boldsymbol{\xi}_{0} \right) \right\}$$

$$= -\sqrt{\frac{n}{q}} \boldsymbol{\alpha}^{\mathsf{T}} \left\{ \widehat{\boldsymbol{H}}_{w,n} \left(\widehat{\boldsymbol{\xi}}_{n}^{*} \right) - \widehat{\boldsymbol{H}}_{w,n} \left(\boldsymbol{\xi}_{0} \right) - \widetilde{\boldsymbol{H}} \left(\widehat{\boldsymbol{\xi}}_{n}^{*} \right) + \widetilde{\boldsymbol{H}} \left(\boldsymbol{\xi}_{0} \right) \right\}$$

$$+ \sqrt{\frac{n}{q}} \boldsymbol{\alpha}^{\mathsf{T}} \left\{ \widehat{\boldsymbol{H}}_{n} \left(\widehat{\boldsymbol{\xi}}_{n} \right) - \widehat{\boldsymbol{H}}_{n} \left(\boldsymbol{\xi}_{0} \right) - \widetilde{\boldsymbol{H}} \left(\widehat{\boldsymbol{\xi}}_{n} \right) + \widetilde{\boldsymbol{H}} \left(\boldsymbol{\xi}_{0} \right) \right\}$$

$$+ \sqrt{\frac{n}{q}} \boldsymbol{\alpha}^{\mathsf{T}} \left\{ \widehat{\boldsymbol{H}}_{n} \left(\boldsymbol{\xi}_{0} \right) - \boldsymbol{H}_{n}^{0} \left(\boldsymbol{\xi}_{0} \right) \right\} - \sqrt{\frac{n}{q}} \boldsymbol{\alpha}^{\mathsf{T}} \left\{ \widehat{\boldsymbol{H}}_{w,n} \left(\boldsymbol{\xi}_{0} \right) - \boldsymbol{H}_{w,n}^{0} \left(\boldsymbol{\xi}_{0} \right) \right\}$$

$$- \sqrt{\frac{n}{q}} \boldsymbol{\alpha}^{\mathsf{T}} \widehat{\boldsymbol{H}}_{n} \left(\widehat{\boldsymbol{\xi}}_{n} \right) + \sqrt{\frac{n}{q}} \boldsymbol{\alpha}^{\mathsf{T}} \widehat{\boldsymbol{H}}_{w,n} \left(\widehat{\boldsymbol{\xi}}_{n}^{*} \right)$$

$$\widehat{\boldsymbol{\Xi}}_{i=1}^{6} T_{i}. \tag{A.45}$$

Note that $|T_2| = o_p(1)$, $|T_3| = o_p(1)$ and $|T_4| = o_{p^*}(1)$ which is implied by (A.40), Lemmas 4 and 7, respectively. Moreover, $|T_5| = o_p(1)$ and $|T_6| = o_{p^*}(1)$ according to the construction of the proposed estimator $\widehat{\xi}_n$ and the weighted bootstrap estimator $\widehat{\xi}_n^*$. Moreover, by Lemmas 8 and 9 and the similar argument as that of proving (A.40), we obtain that $|T_1| = o_{p^*}(1)$. Therefore, we have

$$\left| \sqrt{\frac{n}{q}} \boldsymbol{\alpha}^{\mathsf{T}} \left\{ \widetilde{\boldsymbol{H}} \left(\widehat{\boldsymbol{\xi}}_{n}^{*} \right) - \widetilde{\boldsymbol{H}} \left(\widehat{\boldsymbol{\xi}}_{n} \right) \right\} + \sqrt{\frac{n}{q}} \boldsymbol{\alpha}^{\mathsf{T}} \left\{ \boldsymbol{H}_{w,n}^{0} \left(\boldsymbol{\xi}_{0} \right) - \boldsymbol{H}_{n}^{0} \left(\boldsymbol{\xi}_{0} \right) \right\} \right|$$

$$\leq \sum_{i=1}^{6} |T_{i}| = o_{p^{*}}(1) + o_{p}(1) = o_{p^{*}}(1).$$
(A.46)

By (A.27) and Assumption 8, we have

$$\sqrt{\frac{n}{q}} \boldsymbol{\alpha}^{\mathsf{T}} D_n \left(\widehat{\boldsymbol{\xi}}_n^* - \widehat{\boldsymbol{\xi}}_n \right) \\
= -\sqrt{\frac{n}{q}} \boldsymbol{\alpha}^{\mathsf{T}} \left\{ \boldsymbol{H}_{w,n}^0 \left(\boldsymbol{\xi}_0 \right) - \boldsymbol{H}_n^0 \left(\boldsymbol{\xi}_0 \right) \right\} + o_{p^*} (1) \\
= -\sqrt{\frac{n}{q}} \boldsymbol{\alpha}^{\mathsf{T}} \sum_{i=1}^n \left(w_i - 1 \right) h_i \left(\boldsymbol{\xi}_0 \right) + o_{p^*} (1)$$

Under Assumption 9, by Lemma 4.6 of Præstgaard and Wellner (1993) and Lemma 3 of Cheng

and Huang (2010), we obtain

$$\sup_{z \in \mathcal{R}} \left| P_B \left(\frac{\sqrt{n} \boldsymbol{\alpha}^{\mathsf{T}} \left(\widehat{\boldsymbol{\xi}}_n^* - \widehat{\boldsymbol{\xi}}_n \right)}{\sigma \left(\boldsymbol{\alpha} \right)} \le z \right) - P \left(Z \le z \right) \right| = o_p(1), \tag{A.47}$$

where Z is a standard normal random variable. Theorem 2 together with Lemma 2.11 of Van der Vaart (2000) implies that

$$\sup_{z \in \mathcal{R}} \left| P\left(\frac{\sqrt{n} \boldsymbol{\alpha}^{\mathsf{T}} \left(\widehat{\boldsymbol{\xi}}_{n} - \boldsymbol{\xi}_{0} \right)}{\sigma\left(\boldsymbol{\alpha} \right)} \le z \right) - P\left(Z \le z \right) \right| = o(1)$$
(A.48)

Combining (A.47) and (A.48), we complete the proof of Theorem 3. \Box

Web Appendix E

E.1 Simulation results for different settings, sample sizes and missing rates

[Web Table 1 about here.]
[Web Table 2 about here.]
[Web Table 3 about here.]
[Web Table 4 about here.]
[Web Table 5 about here.]
[Web Table 6 about here.]
[Web Table 7 about here.]
[Web Table 8 about here.]
[Web Table 9 about here.]
[Web Table 10 about here.]

E.2 Selection of turning parameters \boldsymbol{k}_n and \boldsymbol{m}

Here, we conduct numerical investigations to explore the effect of the numbers of k_n and m on the performance of the proposed method by using different combinations of the numbers of k_n ($k_n = 20, 30, 40, 50, 100$) and m (m = 10, 20, 50, 100).

The resulting RMS, 95ECP and CI length from 500 Monte-Carlo replicates from the proposed method with different numbers of k_n and m under Setting 3 with different sample sizes are presented in Web Tables 12–14. We find that, when taking the number of k_n between $\lfloor n^{0.4} \rfloor$ and $\lfloor 3*n^{0.4}+4 \rfloor$, our proposed method performs well under Setting 3 with different sample sizes. When k_n increases, the asymptotic standard errors estimated via bootstrapping will be larger. This is reasonable, because when k_n increases, the number of unknown parameters to be estimated will

Supporting Information for "Quantile Regression for Nonignorable Missing Data"

31

also increase, which reduces the estimation efficiency of the proposed estimates. These conclusions can also be confirmed under Settings 1–2. Therefore, we recommend taking the number of k_n between $\lfloor n^{0.4} \rfloor$ and $\lfloor 3*n^{0.4}+4 \rfloor$ in practical implementation. Besides, when the number of random draws m increases, the RMS, 95ECP and CI length of quantile regression coefficients under all the three settings with different sample sizes remain nearly unchanged. A small m between 10 and 20 is sufficient to stabilize the estimated coefficients. Bigger m does not further improve the accuracy in our simulations. Considering the computational cost, we recommend taking the number of m between 10 and 20 in practical implementation.

[Web Table 12 about here.]

[Web Table 13 about here.]

[Web Table 14 about here.]

E.3 Comparison of computing time

Web Table 15 displays the average computing time (in seconds) for different methods to estimate the coefficients β_{τ} at the quantile levels $\tau = 0.25, 0.5$ and 0.75 from 500 Monte-Carlo replicates under three settings with various sample sizes and missing rates as considered in our paper. For the proposed method (proIpwQr), we also investigate the effect of the numbers of k_n and m on its average computing time by using different combinations of $k_n(k_n = 20, 40)$ and m(m = 10, 20).

Under Setting 1 with sample size n = 500 and 20% missing rate in y, the average computing time of the proposed proIpwQr with $(k_n, m) = (20, 10)$ is 0.840s, and the average computing time of elmIpwQr, elsIpwQr and swelQr is 35.232s, 4.911s and 7.573s, respectively. When increasing m to 20 or k_n to 40, the average computing time of the proposed proIpwQr will also increases slightly. When the sample size n is increased from 500 to 1000, the average computing time of the proposed proIpwQr approximately doubles, the average computing time of elsIpwQr and swelQr will both increase to about 1.25 times, and the average computing time of elmIpwQr will increase to about two to three times. These conclusions can also be confirmed under Settings 2 and 3. Comparing

the results under the three settings, the conditional distribution of the response y given covariate x, $F(y \mid x)$, has a small effect on the average computing time of elsIpwQr, swelQr and proIpwQr, and has a more significant effect on the average computing time of elmIpwQr.

Under all these considered settings, the proposed proIpwQr takes less average computing time than its competitors (except NaiveQr). When the sample size n is doubled, the average computing time of the proposed proIpwQr also doubles. The numbers of k_n and m also affect the average computing time of the proposed proIpwQr. When k_n or m increases, the average computing time of the proposed proIpwQr also increases. The conditional distribution of the response y given covariate x, $F(y \mid x)$, has a small effect on the average computing time of the proposed proIpwQr.

[Web Table 15 about here.]

Web Appendix F

F.1 Forest plots for 40% and 60% Missing Rates

[Web Figure 1 about here.]

[Web Figure 2 about here.]

[Web Figure 3 about here.]

[Web Figure 4 about here.]

[Web Figure 5 about here.]

F.2 Estimation Results of Real Data for 40% and 60% Missing Rates

[Web Table 16 about here.]

[Web Table 17 about here.]

Supporting Information for "Quantile Regression for Nonignorable Missing Data"

35

F.3 Estimation Results of θ from Real Data

The following tables are the θ estimates when analysing the EMR data from 18744 ICU patients. Table 18 are obtained based on the EMR data from 18744 ICU patients, 7148 of whom had glucose measurements at their admission. Based on those 7148 ICU completely observed data (as a full dataset), Tables 19 and 20 are the estimated results of θ based on 40% and 60% artificially missing data, respectively.

[Web Table 18 about here.]

[Web Table 19 about here.]

[Web Table 20 about here.]

References

- Apostol, T. (1974). Mathematical analysis, addison-welsey. Reading, MA 2,.
- Cheng, G. and Huang, J. Z. (2010). Bootstrap consistency for general semiparametric mestimation. *The Annals of Statistics* **38**, 2884–2915.
- Engle, R. F. (1994). Handbook of econometrics: volume 4. Number 330.015195 E53 v. 4.
- He, X. and Shao, Q.-M. (2000). On parameters of increasing dimensions. *Journal of multivariate* analysis **73**, 120–135.
- Præstgaard, J. and Wellner, J. A. (1993). Exchangeably weighted bootstraps of the general empirical process. *The Annals of Probability* pages 2053–2086.
- Van der Vaart, A. W. (2000). Asymptotic statistics, volume 3. Cambridge university press.

Received December 2021. Revised February 2021. Accepted March 2022.

Figure 1: The forest plots for quantile regression coefficient estimates at 0.1th and 0.25th quantiles and 40% missing rate. The points with different shapes represent the quantile regression coefficient estimates from different methods. This figure appears in color in the electronic version of this article, and any mention of color refers to that version.

Figure 2: The forest plots for quantile regression coefficient estimates at 0.5th and 0.75th quantiles and 40% missing rate. The points with different shapes represent the quantile regression coefficient estimates from different methods. This figure appears in color in the electronic version of this article, and any mention of color refers to that version.

Figure 3: The forest plots for quantile regression coefficient estimates at 0.9th quantiles and 40% missing rate. The points with different shapes represent the quantile regression coefficient estimates from different methods. This figure appears in color in the electronic version of this article, and any mention of color refers to that version.

Figure 4: The forest plots for quantile regression coefficient estimates at 0.25th and 0.75th quantiles and 60% missing rate. The points with different shapes represent the quantile regression coefficient estimates from different methods. This figure appears in color in the electronic version of this article, and any mention of color refers to that version.

Figure 5: The forest plots for quantile regression coefficient estimates at 0.9th quantiles and 60% missing rate. The points with different shapes represent the quantile regression coefficient estimates from different methods. This figure appears in color in the electronic version of this article, and any mention of color refers to that version.

a nominal level of 0.95 (95ECP) and confidence interval (CI) lengths of different estimators for quantile regression coefficient with $\tau = (0.1, 0.25, 0.5, 0.75, 0.9)$, n = 500 and 20% missing in y_i Table 1: (Setting 1) The mean biases, root of mean square errors (RMS), coverage probabilities of bootstrap confidence intervals with

		$\tau = \tau$	0.1			$\tau = 0$	0.25			$\tau = \tau$	0.5) = 1	0.75			$\tau = \tau$	6.0	
Method	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3
$\beta^{true}_{j, au}$	0.680	-2.320	1.872	0.500	0.831	-2.169	1.933	0.500	1.000	-2.000	2.000	0.500	1.169	-1.831	2.067	0.500	1.320	-1.680	2.128	0.500
i										Mean	Mean Biases									
fullQr	0.001	0.004	-0.001	0.002	0.003	0.003	-0.001	-0.003	0.005	0.000	0.000	-0.005	0.001	-0.002	0.002	-0.004	0.007	0.000	-0.003	-0.002
NaiveQr	0.068	0.050	-0.025	-0.001	0.070	0.046	-0.024	-0.007	0.072	0.037	-0.023	-0.009	0.068	0.033	-0.021	-0.010	0.069	0.031	-0.024	-0.008
elmIpwQr	-0.059	-0.084	-0.014	0.059	-0.086	-0.074	0.003	0.062	-0.065	-0.040	0.004	0.052	-0.027	-0.002	-0.003	0.037	-0.012	0.014	-0.002	0.025
elsIpwQr	-0.013	-0.021	-0.010	0.020	-0.015	-0.008	-0.003	0.015	-0.004	-0.002	-0.003	0.010	0.007	0.011	-0.006	0.008	0.00	0.016	-0.006	0.007
swelQr	-0.029	-0.010	-0.015	0.035	-0.021	-0.004	-0.006	0.021	-0.001	0.000	-0.007	0.015	0.014	0.008	-0.009	0.013	0.025	0.012	-0.012	0.015
prolpwQr	0.065	0.044	-0.026	0.000	0.059	0.039	-0.022	-0.004	0.057	0.029	-0.019	-0.008	0.049	0.026	-0.014	-0.009	0.047	0.022	-0.016	-0.006
										Z.	RMS									
fullQr	0.186	0.088	0.092	0.145	0.148	0.073	0.077	0.114	0.131	0.065	0.067	0.099	0.147	0.071	0.073	0.113	0.178	0.091	0.090	0.143
NaiveQr	0.231	0.114	0.113	0.157	0.182	0.094	0.090	0.126	0.169	0.083	0.081	0.112	0.188	0.087	0.090	0.128	0.221	0.106	0.107	0.161
elmIpwQr	0.372	0.266	0.189	0.287	0.360	0.257	0.170	0.268	0.331	0.221	0.175	0.256	0.285	0.200	0.153	0.232	0.278	0.191	0.176	0.234
elsIpwQr	0.300	0.173	0.142	0.190	0.252	0.134	0.113	0.140	0.206	0.106	0.092	0.115	0.207	0.108	0.097	0.127	0.240	0.131	0.114	0.170
swelQr	0.284	0.159	0.124	0.165	0.233	0.128	0.106	0.124	0.189	0.098	0.085	0.105	0.189	0.100	0.089	0.116	0.215	0.118	0.105	0.148
prolpwQr	0.245	0.114	0.118	0.164	0.191	0.095	0.096	0.130	0.171	0.084	0.084	0.114	0.187	0.086	0.092	0.129	0.221	0.106	0.109	0.164
										95E(3CP									
fullQr	0.936	0.958	0.951	0.947	0.949	0.939	0.947	0.959	0.958	0.952	0.961	0.959	0.942	0.948	0.958	0.951	0.950	0.949	0.962	0.950
NaiveQr	0.925	0.916	0.932	0.960	0.939	0.916	0.933	0.955	0.932	0.925	0.951	0.960	0.937	0.931	0.944	0.958	0.948	0.946	0.946	0.949
elmIpwQr	0.885	0.800	0.899	0.903	0.893	0.801	0.910	0.916	0.912	0.860	0.932	0.944	0.919	0.874	0.950	0.942	0.915	0.894	0.934	0.938
elsIpwQr	0.901	0.883	0.934	0.955	0.918	0.881	0.918	996.0	0.898	0.904	0.939	0.967	0.933	0.921	0.938	0.963	0.932	0.921	0.948	0.946
swelQr	0.893	0.923	0.917	0.957	0.936	0.942	0.937	0.960	0.949	0.967	0.951	0.971	0.946	0.964	0.939	0.965	0.937	0.936	0.940	0.938
prolpwQr	0.916	0.927	0.933	0.953	0.942	0.922	0.938	0.955	0.933	0.939	0.945	0.965	0.947	0.941	0.948	0.956	0.948	0.947	0.947	0.950
										CI le	CI lengths									
fullQr	0.743	0.366	0.381	0.587	0.585	0.287	0.303	0.469	0.539	0.266	0.279	0.431	0.588	0.290	0.306	0.467	0.738	0.366	0.380	0.591
NaiveQr	0.890	0.421	0.446	0.666	0.704	0.333	0.355	0.528	0.649	0.305	0.325	0.486	0.708	0.333	0.356	0.529	0.884	0.420	0.440	0.663
elmIpwQr	1.068	0.524	0.537	0.805	906.0	0.456	0.464	989.0	0.827	0.410	0.416	0.615	0.829	0.408	0.421	0.623	0.930	0.455	0.477	0.722
elsIpwQr	1.007	0.496	0.504	0.761	0.797	0.388	0.400	0.599	0.697	0.336	0.349	0.521	0.730	0.349	0.367	0.548	0.878	0.428	0.445	0.673
swelQr	1.074	0.635	0.520	0.770	0.958	0.533	0.429	0.597	0.826	0.434	0.369	0.507	0.800	0.419	0.374	0.520	0.854	0.463	0.425	0.610
	0		1	1		1														

a nominal level of 0.95 (95ECP) and confidence interval(CI) lengths of different estimators for quantile regression coefficient with τ = Table 2: (Setting 1) The mean biases, root of mean square errors (RMS), coverage probabilities of bootstrap confidence intervals with (0.1, 0.25, 0.5, 0.75, 0.9), n = 1000 and 20% missing in y_i

) = <i>L</i>	0.1			$\tau = 0$	= 0.25			$\tau =$	0.5			$\tau = 0$	0.75			Τ =	6.0	
Method	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3
$\beta^{true}_{j, au}$	0.680	-2.320	1.872	0.500	0.831	-2.169	1.933	0.500	1.000	-2.000	2.000	0.500	1.169	-1.831	2.067	0.500	1.320	-1.680	2.128	0.500
											Biases									
fullQr	-0.002	0.002	0.001	-0.001	0.003	0.001	-0.002	-0.001	0.003	-0.001	-0.002	0.001	0.002	-0.001	-0.002	0.001	0.004	-0.002	-0.003	0.003
NaiveQr	0.062	0.049	-0.020	-0.007	0.063	0.045	-0.022	-0.005	0.061	0.040	-0.021	-0.003	0.062	0.037	-0.023	-0.002	0.063	0.032	-0.023	-0.002
elmIpwQr	-0.066	-0.099	-0.001	0.039	-0.095	-0.086	0.010	0.053	-0.082	-0.052	0.000	0.054	-0.054	-0.021	0.002	0.046	-0.031	-0.006	-0.001	0.033
elsIpwQr	-0.017	-0.015	0.000	0.010	-0.013	-0.006	-0.001	0.009	-0.014	-0.001	0.001	0.010	-0.003	0.006	-0.003	0.008	-0.001	0.009	-0.004	0.010
swelQr	-0.028	-0.009	0.000	0.012	-0.018	-0.003	-0.001	0.011	-0.011	0.000	0.000	0.010	0.003	0.004	-0.004	0.00	0.012	0.005	-0.006	0.00
prolpwQr	0.055	0.041	-0.018	-0.007	0.052	0.037	-0.018	-0.005	0.046	0.032	-0.016	-0.004	0.046	0.029	-0.017	-0.002	0.043	0.025	-0.016	-0.001
										R	IS									
fullQr	0.130	0.066	0.067	0.102	0.101	0.051	0.051	0.080	0.092	0.046	0.048	0.075	0.099	0.049	0.051	0.081	0.125	0.063	0.065	0.102
NaiveQr	0.168	0.089	0.079	0.112	0.133	0.075	0.062	0.090	0.124	0.066	0.058	0.083	0.134	0.067	0.064	0.093	0.164	0.079	0.079	0.112
elmlpwQr	0.318	0.256	0.141	0.224	0.334	0.256	0.133	0.216	0.329	0.201	0.128	0.218	0.293	0.178	0.133	0.223	0.227	0.148	0.113	0.169
elsIpwQr	0.209	0.125	0.095	0.128	0.165	0.093	0.076	0.095	0.150	0.074	0.067	0.084	0.140	0.071	0.068	0.091	0.162	0.082	0.078	0.110
swelQr	0.196	0.114	0.088	0.120	0.158	0.090	0.069	0.089	0.141	0.071	0.063	0.080	0.132	0.067	0.064	0.085	0.152	0.078	0.073	0.103
prolpwQr	0.170	0.087	0.082	0.117	0.135	0.072	0.064	0.092	0.123	0.063	0.059	0.084	0.130	0.065	0.064	0.093	0.156	0.076	0.077	0.112
										95ECP	CP									
fullQr	0.937	0.946	0.945	0.946	0.951	0.944	0.950	0.960	0.949	0.952	0.954	0.945	0.958	0.951	0.957	0.951	0.945	0.953	0.946	0.946
NaiveQr	0.915	0.878	0.936	0.942	0.914	0.871	0.936	0.948	0.930	0.891	0.945	0.958	0.938	0.911	0.950	0.943	0.935	0.933	0.935	0.954
elmIpwQr	0.889	0.766	0.901	0.919	0.863	0.764	0.924	0.936	0.881	0.799	0.933	0.940	0.896	0.854	0.942	0.951	0.920	0.899	0.952	0.946
elsIpwQr	0.896	0.879	0.920	0.960	0.899	0.859	0.927	0.962	968.0	0.880	0.925	0.963	0.921	0.902	0.936	0.961	0.925	0.920	0.952	0.952
swelQr	0.902	0.919	0.923	0.945	0.928	0.944	0.940	0.963	0.947	0.962	0.947	0.957	0.946	0.961	0.954	0.957	0.928	0.944	0.937	0.939
prolpwQr	0.913	0.922	0.931	0.951	0.916	0.934	0.939	0.958	0.931	0.914	0.945	0.956	0.944	0.922	0.950	0.947	0.944	0.940	0.944	0.952
										CI ler	CI lengths									
fullQr	0.516	0.256	0.266	0.412	0.406	0.204	0.213	0.332	0.378	0.187	0.196	0.303	0.409	0.203	0.213	0.330	0.514	0.255	0.267	0.412
NaiveQr	0.608	0.292	0.307	0.461	0.485	0.232	0.245	0.372	0.454	0.215	0.228	0.340	0.491	0.233	0.248	0.368	0.621	0.293	0.311	0.463
elmIpwQr	0.804	0.401	0.397	0.617	0.673	0.340	0.336	0.502	0.592	0.293	0.293	0.437	0.580	0.286	0.290	0.436	0.654	0.320	0.332	0.501
elsIpwQr	0.698	0.341	0.347	0.531	0.539	0.262	0.273	0.412	0.473	0.226	0.239	0.357	0.495	0.236	0.251	0.373	0.603	0.289	0.305	0.458
swelQr	0.718	0.439	0.336	0.502	0.633	0.373	0.293	0.406	0.577	0.300	0.256	0.342	0.552	0.282	0.256	0.351	0.590	0.309	0.287	0.410
proIpwOr	0.633	0 303	0316	0.480	0.514	0 247	0.256	0 382	0.480	7220	0 237	0 348	0.507	0.241	0.253	0 374	0.610	7000	000	2710

a nominal level of 0.95 (95ECP) and confidence interval(CI) lengths of different estimators for quantile regression coefficient with $\tau =$ Table 3: (Setting 2) The mean biases, root of mean square errors (RMS), coverage probabilities of bootstrap confidence intervals with (0.1, 0.25, 0.5, 0.75, 0.9), n = 500 and 20% missing in y_i

		$\tau = \tau$	0.1) = 1	0.25			$\tau = \tau$	0.5			$\tau = \tau$	0.75			$\tau = \tau$	6.0	
Method	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3
$eta_{i, au}^{true}$	0.657	-2.343	1.863	0.500	0.742	-2.258	1.897	0.500	0.889	-2.111	1.956	0.500	1.127	-1.873	2.051	0.500	1.464	-1.536	2.185	0.500
ŝ										Mean	Mean Biases									
fullQr	0.003	0.003	-0.001	0.000	0.004	0.002	-0.001	-0.002	0.009	0.001	-0.001	-0.005	0.010	-0.002	0.001	-0.008	0.033	-0.002	-0.012	-0.003
NaiveQr	0.032	0.020	-0.011	-0.001	0.056	0.033	-0.018	-0.007	0.112	0.053	-0.037	-0.013	0.206	0.094	-0.068	-0.022	0.361	0.140	-0.125	-0.026
elmIpwQr	0.039	0.025	-0.015	0.001	0.059	0.042	-0.026	0.003	0.122	0.073	-0.050	0.009	0.230	0.143	-0.087	0.008	0.429	0.242	-0.149	-0.014
	0.013	9000	-0.008	900.0	0.013	0.008	-0.010	0.008	0.029	0.018	-0.017	0.011	0.078	0.075	-0.044	0.029	0.142	0.180	-0.083	0.080
	-0.017	0.009	-0.003	0.009	0.001	0.002	-0.007	0.012	0.018	0.005	-0.015	0.020	0.056	0.056	-0.042	0.046	0.068	0.134	-0.070	0.117
prolpwQr	0.010	0.003	-0.005	0.002	0.005	0.002	-0.003	0.000	0.010		-0.002	-0.003	0.007	-0.007	0.001	-0.004	-0.001	-0.011	-0.004	0.014
										R	ΛIS									
fullQr	0.084	0.040	0.041	0.065	0.101	0.050	0.053	0.078	0.144	0.072	0.073	0.109	0.260	0.125	0.130	0.200	0.483	0.248	0.244	0.385
NaiveQr	0.1111	0.053	0.052	0.076	0.135	0.069	0.065	0.093	0.216	0.104	0.099	0.132	0.391	0.183	0.174	0.240	0.707	0.333	0.328	0.459
elmIpwQr	0.135	0.063	0.072	0.088	0.433	0.173	0.329	0.174	0.546	0.273	0.430	0.420	0.663	0.417	0.364	0.458	0.926	0.555	0.417	0.596
elsIpwQr	0.117	0.057	0.055	0.079	0.147	0.077	0.072	0.095	0.232	0.125	0.106	0.128	0.491	0.340	0.233	0.245	0.820	0.779	0.408	0.549
swelQr	0.105	0.052	0.051	0.068	0.132	0.071	990.0	0.083	0.211	0.116	0.100	0.115	0.518	0.367	0.246	0.228	0.736	0.70	0.383	0.505
prolpwQr	0.1111	0.049	0.054	0.079	0.127	090.0	0.064	0.094	0.179	0.085	0.090	0.127	0.296	0.143	0.153	0.221	0.523	0.267	0.268	0.408
										95E	95ECP									
fullQr	0.940	0.955	0.952	0.950	0.946	0.944	0.940	0.959	0.956	0.952	0.961	0.960	0.941	0.949	0.955	0.955	0.940	0.946	0.955	0.946
NaiveQr	0.930	0.940	0.941	0.958	0.949	0.916	0.946	0.956	0.918	0.925	0.937	0.954	0.913	0.922	0.934	0.962	0.930	0.939	0.929	0.957
elmIpwQr	0.912	0.916	0.927	0.946	0.899	0.892	0.904	0.943	0.901	0.898	0.932	0.953	0.912	0.902	0.949	0.954	0.922	0.930	0.932	0.950
elsIpwQr	0.914	0.909	0.937	0.953	0.921	0.893	0.919	0.960	0.911	0.908	0.938	0.965	0.926	0.920	0.935	0.967	0.924	0.923	0.939	0.941
swelQr	0.919	0.938	0.918	0.958	0.954	0.945	0.937	0.961	0.946	0.956	0.951	0.978	0.936	0.957	0.926	0.962	0.898	0.918	0.907	0.909
prolpwQr	0.929	0.953	0.932	0.951	0.944	0.947	0.940	0.951	0.954	0.948	0.953	0.965	0.949	0.950	0.942	0.960	0.937	0.947	0.955	0.948
										CI le	CI lengths									
fullQr	0.334	0.163	0.172	0.263	0.399	0.197	0.207	0.319	0.592	0.293	0.306	0.475	1.035	0.516	0.536	0.829	1.973	1.002	1.016	1.603
NaiveQr	0.425	0.200	0.211	0.314	0.518	0.245	0.258	0.382	0.767	0.364	0.379	0.567	1.351	0.642	0.672	0.996	2.575	1.245	1.263	1.922
elmIpwQr	0.453	0.212	0.242	0.334		0.280	0.308	0.440	0.900	0.416	0.446	0.646	1.544	0.730	0.766	1.112	2.901	1.464	1.421	2.172
elsIpwQr	0.422	0.201	0.211	0.319		0.249	0.265	0.392	0.788	0.393	0.393	0.584	1.414	0.774	0.707	1.058	2.597	1.480	1.315	2.057
swelQr	0.400	0.206	0.189	0.276	0.565	0.296	0.262	0.359	0.929	0.504	0.420	0.563	1.719	1.065	0.828	1.132	2.764	1.840	1.439	2.203
proInvOr	0.443	0.00	2000	0 338	7250	0300	0360	000		1000	000	0 4 4	000	702			, ,			1

a nominal level of 0.95 (95ECP) and confidence interval(CI) lengths of different estimators for quantile regression coefficient with τ = Table 4: (Setting 2) The mean biases, root of mean square errors (RMS), coverage probabilities of bootstrap confidence intervals with (0.1, 0.25, 0.5, 0.75, 0.9), n = 1000 and 20% missing in y_i

) = <i>T</i>	= 0.1			$\tau = 0$	0.25			$\tau = \tau$	0.5			$\tau = 0$	0.75			$\tau = \tau$	6.0	
Method	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3
$\beta^{true}_{j, au}$	0.657	-2.343	1.863	0.500	0.742	-2.258	1.897	0.500	0.889	-2.111	1.956	0.500	1.127	-1.873	2.051	0.500	1.464	-1.536	2.185	0.500
i										Mean I	Biases									
fullQr	0.001	0.001	0.000	0.000	0.003	0.000	-0.001	-0.001	0.005	-0.001	-0.003	0.001	0.008	0.000	-0.004	0.001	0.017	-0.008	-0.009	0.007
NaiveQr	0.027	0.020	-0.008	-0.003	0.050	0.031	-0.017	-0.004	0.097	0.056	-0.034	-0.006	0.188	0.098	-0.067	-0.010	0.330	0.146	-0.120	-0.013
elmIpwQr	0.027	0.023	-0.009	-0.002	0.038	0.034	-0.013	0.001	0.091	990.0	-0.033	0.001	0.209	0.129	-0.076	-0.004	0.401	0.218	-0.143	-0.013
elsIpwQr	0.004	0.003	-0.003	0.002	0.006	0.005	-0.006	900.0	0.010	0.013	-0.010	0.013	0.048	0.047	-0.029	0.020	0.114	0.114	-0.059	0.038
swelQr	-0.012	0.005	0.000	0.003	0.000	0.002	-0.004	0.007	0.007	9000	-0.008	0.013	0.039	0.034	-0.025	0.024	0.092	0.082	-0.054	0.048
prolpwQr	0.002	0.002	0.000	-0.001	-0.002	-0.001	-0.001	0.002	-0.009	-0.004	0.002	0.004	-0.006	-0.003	0.001	0.004	-0.015	-0.010	0.003	0.011
										RIV	RMS									
fullQr	0.058	0.029	0.029	0.046	0.069	0.035	0.035	0.055	0.102	0.050	0.053	0.082	0.176	0.088	0.091	0.142	0.338	0.173	0.176	0.277
NaiveQr	0.079	0.041	0.037	0.053	0.100	0.055	0.046	0.064	0.160	0.085	0.072	0.098	0.294	0.145	0.131	0.175	0.560	0.260	0.255	0.329
elmIpwQr	0.094	0.045	0.042	0.056	0.138	0.063	0.059	0.074	0.197	0.100	0.083	0.1111	0.344	0.178	0.146	0.190	0.674	0.331	0.290	0.356
elsIpwQr	0.080	0.041	0.038	0.054	0.103	0.056	0.048	0.064	0.170	0.090	0.078	0.094	0.365	0.241	0.172	0.171	0.638	0.520	0.300	0.332
swelQr	0.074	0.038	0.035	0.047	0.095	0.051	0.045	0.059	0.159	0.084	0.074	0.089	0.355	0.220	0.169	0.163	0.605	0.413	0.289	0.318
prolpwQr	0.075	0.036	0.037	0.055	0.087	0.044	0.043	0.064	0.124	0.061	0.062	0.093	0.204	0.101	0.104	0.158	0.376	0.184	0.193	0.289
										95ECP	CP									
fullQr	0.936	0.949	0.953	0.945	0.948	0.946	0.942	0.946		0.951	0.958	0.946	0.954	0.954	0.955	0.944	0.949	0.952	0.934	0.949
NaiveQr	0.926	0.899	0.942	0.948	0.907	0.887	0.937	0.954		0.884	0.938	0.951	968.0	0.873	0.918	0.948	0.892	0.914	906.0	0.948
elmIpwQr	0.872	0.878	906.0	0.937	0.871	0.840	0.915	0.950	0.878	0.825	0.915	0.951	0.882	0.828	0.917	0.945	0.880	0.891	0.922	0.954
elsIpwQr	0.908	0.900	0.937	0.949	0.908	0.885	0.932	0.961	0.893	0.863	0.925	0.961	906.0	0.900	0.924	0.953	0.919	0.914	0.927	0.956
swelQr	0.919	0.942	0.938	0.946	0.937	0.958	0.946	0.961	0.943	0.953	0.940	0.964	0.937	996.0	0.942	0.957	0.895	0.938	0.900	0.922
prolpwQr	0.931	0.932	0.937	0.947	0.939	0.949	0.942	0.952	0.955	0.945	0.955	0.954	0.943	0.953	0.952	0.943	0.945	0.956	0.945	0.953
										CI lengths	ıgths									
fullQr	0.229	0.113	0.119	0.183	0.277	0.139	0.145	0.225	0.417	0.205	0.216	0.332	0.722	0.360	0.376	0.583	1.392	0.700	0.723	1.122
NaiveQr	0.290	0.140	0.145	0.217	0.358	0.173	0.179	0.270	0.541	0.257	0.267	0.399	0.943	0.446	0.465	969.0	1.808	0.865	0.890	1.341
elmIpwQr	0.296	0.140	0.148	0.220	0.388	0.179	0.193	0.279	0.611	0.277	0.298	0.424	1.062	0.491	0.520	0.750	2.066	0.979	1.003	1.478
elsIpwQr	0.295	0.141	0.148	0.223	0.360	0.173	0.182	0.272	0.537	0.259	0.270	0.397	0.944	0.490	0.475	0.698	1.794	0.960	0.902	1.386
swelQr	0.290	0.150	0.138	0.194	0.412	0.220	0.188	0.252	0.713	0.382	0.321	0.388	1.486	0.848	0.661	0.750	2.136	1.301	1.072	1.365
proIpwOr	0.294	0.141	0.148	0.222	0.356	0.171	0.179	0.268	0.516	0.246	0.258	0.384	0.847	0.409	0.432	0.643	1 538	0.755	0 787	1 196

Table 5: (Setting 3) The mean biases, root of mean square errors (RMS), coverage probabilities of bootstrap confidence intervals with

		$\tau = 0$	= 0.1) = 1	= 0.25			$\tau = \tau$	0.5			$\tau = 0$	0.75			$\tau = \tau$	6.0	
Method	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3
$eta_{j, au}^{true}$	0.507	-2.493	1.803	0.500	0.635	-2.365	1.854	0.500	0.871	-2.129	1.948	0.500	1.226	-1.774	2.090	0.500	1.664	-1.336	2.265	0.500
										Mean Biases	Biases									
fullQr	-0.001	0.001	-0.001	0.007	-0.003	0.003	-0.002	0.010	-0.001	0.004	-0.004	0.009	900.0	0.002	-0.004	0.008	-0.009	0.003	-0.003	0.017
NaiveQr	0.056	0.042	-0.018	0.000	0.114	0.078	-0.038	-0.006	0.211	0.126	-0.074	-0.011	0.342	0.174	-0.116	-0.028	0.417	0.196	-0.151	-0.015
elmIpwQr	0.056	0.046	-0.021	9000	0.061	0.070	-0.020	0.012	0.140		-0.046	0.010	0.304	0.202	-0.102	-0.003	0.414	0.255	-0.147	0.011
elsIpwQr	0.018	0.00	-0.016	0.016	0.011	0.014	-0.018	0.027	0.031	0.045	-0.032	0.040	0.106	0.127	-0.064	090.0	0.117	0.227	-0.074	0.099
swelQr	-0.006	0.009	-0.010	0.020	0.001	0.007	-0.016	0.031	0.014		-0.029	0.051	0.089	0.101	-0.065	0.077	0.104	0.189	-0.085	0.133
prolpwQr	0.024	0.015	-0.010	0.004	0.027	0.019	-0.010	0.002	0.036	0.026	-0.012	0.000	0.063	0.029	-0.019	-0.006	0.035	0.027	-0.014	0.008
										RMS	IS									
fullQr	0.113	0.057	0.059	0.089	0.161	0.077	0.081	0.124	0.231	0.114	0.117	0.183	0.357	0.178	0.186	0.286	0.603	0.302	0.304	0.478
NaiveQr	0.158	0.085	0.080	0.114	0.238	0.126	0.1111	0.152	0.363	0.191	0.166	0.219	0.558	0.281	0.253	0.337	0.871	0.406	0.403	0.575
elmIpwQr	0.187	0.094	0.091	0.122	0.310	0.146	0.136	0.178	0.450	0.224	0.190	0.264	0.620	0.326	0.271	0.374	0.935	0.474	0.419	0.630
elsIpwQr	0.170	0.090	0.084	0.113	0.260	0.142	0.118	0.150	0.445	0.239	0.198	0.218	0.800	0.471	0.374	0.364	1.010	0.780	0.491	0.636
swelQr	0.154	0.083	0.076	0.100	0.245	0.134	0.113	0.138	0.437	0.230	0.199	0.204	0.821	0.466	0.384	0.358	1.054	0.761	0.508	0.636
prolpwQr	0.149	0.076	0.080	0.113	0.212	0.101	0.104	0.151	0.290	0.142	0.148	0.215	0.420	0.211	0.217	0.310	0.667	0.326	0.338	0.521
										95ECP	CP									
fullQr	0.943	0.947	0.936	0.952	0.935	0.944	0.954	0.957	0.931	0.956	0.948	0.958	0.955	0.954	0.944	0.952	0.937	0.944	0.946	0.944
NaiveQr	0.931	0.916	0.932	0.951	0.920	0.883	0.928	0.943	0.903	0.870	0.918	0.950	0.895	0.883	0.926	0.949	0.913	0.909	0.916	0.937
elmIpwQr	0.899	0.880	968.0	0.949	0.849	0.841	0.882	0.921	0.893	0.836	0.921	0.929	0.899	0.864	0.925	0.936	0.912	0.889	0.932	0.937
elsIpwQr	0.922	0.882	0.915	0.954	0.880	0.846	0.927	0.952	0.876	0.838	0.916	0.947	0.889	0.889	0.909	0.950	0.898	0.876	0.915	0.947
swelQr	0.922	0.925	0.919	0.941	0.928	0.937	0.945	0.953	0.921	0.951	0.926	0.956	0.920	0.951	0.918	0.943	0.844	0.904	0.872	0.876
prolpwQr	0.938	0.937	0.927	0.943	0.946	0.932	0.944	0.948	0.955	0.947	0.939	0.955	0.949	0.950	0.946	0.957	0.937	0.940	0.941	0.940
										CI lengths	ıgths									
fullQr	0.458	0.229	0.238	0.369	0.625	0.309	0.325	0.502	0.929	0.463	0.480	0.744	1.462	0.722	0.750	1.170	2.362	1.187	1.223	1.913
NaiveQr	0.610	0.301	0.302	0.456	0.833	0.399	0.415	0.616	1.229	0.578	0.602	0.900	1.861	0.881	0.924	1.371	2.963	1.406	1.469	2.223
elmIpwQr	0.613	0.299	0.305	0.464	0.886	0.412	0.438	0.642	1.405	0.630	929.0	0.964	2.086	0.967	1.020	1.489	3.200	1.533	1.588	2.410
elsIpwQr	0.588	0.288	0.296	0.453	0.832	0.405	0.418	0.627	1.278	0.623	0.647	0.944	2.013	1.029	0.997	1.518	3.015	1.533	1.511	2.356
swelQr	0.615	0.341	0.284	0.410	1.068	0.591	0.471	0.644	1.905	1.017	0.868	1.042	2.985	1.699	1.370	1.832	3.422	2.220	1.813	2.584
nroInwOr	0 500	200	000	7 7	0000	000			,	0			1	0	0		1 1 1			0

a nominal level of 0.95 (95ECP) and confidence interval(CI) lengths of different estimators for quantile regression coefficient with $\tau =$ Table 6: (Setting 3) The mean biases, root of mean square errors (RMS), coverage probabilities of bootstrap confidence intervals with (0.1, 0.25, 0.5, 0.75, 0.9), n = 1000 and 20% missing in y_i

		$\tau = \tau$	0.1			$\tau = \tau$	0.25			$\tau =$	0.5			$\tau = \tau$	= 0.75			Τ =	6.0	
Method	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3
$eta_{i, au}^{true}$	0.507	-2.493	1.803	0.500	0.635	-2.365	1.854	0.500	0.871	-2.129	1.948	0.500	1.226	-1.774	2.090	0.500	1.664	-1.336	2.265	0.500
â										Mean Biases	Biases									
fullQr	-0.001	0.003	0.001	0.000	0.001	0.002	0.001	0.000	0.005	900.0	-0.002	-0.001	0.011	0.008	-0.006	0.001	0.009	0.009	-0.005	0.004
NaiveQr	0.062	0.042	-0.018	-0.009	0.126	0.075	-0.040	-0.013	0.217	0.130	-0.074	-0.017	0.342	0.182	-0.120	-0.024	0.438	0.206	-0.151	-0.032
elmIpwQr	0.058	0.044	-0.017	-0.007	0.087	0.072	-0.027	0.000	0.178	0.135	-0.061	0.000	0.330	0.212	-0.119	-0.006	0.473	0.258	-0.165	-0.021
elsIpwQr	0.017	0.007	-0.008	0.000	0.019	0.012	-0.013	0.010	0.031	0.033	-0.021	0.016	0.073	0.082	-0.042	0.024	0.124	0.135	-0.066	0.042
swelQr	0.005	0.007	-0.005	0.003	0.010	0.006	-0.010	0.012	0.015		-0.017	0.023	0.044	0.064	-0.033	0.034	0.083	0.116	-0.056	0.058
prolpwQr	0.022	0.013	-0.005	-0.007	0.033	0.015	-0.009	-0.006	0.044		-0.014	-0.006	090.0	0.035	-0.024	-0.002	0.066	0.029	-0.023	-0.003
										RMS	4S									
fullQr	0.083	0.041	0.043	0.066	0.112	0.057	0.056	0.087	0.165	0.081	0.083	0.133	0.258	0.124	0.129	0.203	0.414	0.201	0.214	0.335
NaiveQr	0.127	0.068	0.057	0.078	0.195	0.104	0.083	0.107	0.309	0.164	0.128	0.163	0.467	0.238	0.198	0.237	0.681	0.320	0.300	0.391
elmIpwQr	0.156	0.073	0.066	0.086	0.273	0.117	0.107	0.130	0.376	0.187	0.148	0.185	0.518	0.275	0.214	0.262	0.752	0.372	0.321	0.421
elsIpwQr	0.130	0.063	0.057	0.078	0.196	0.102	0.083	0.106	0.319	0.167	0.133	0.158	0.510	0.309	0.218	0.230	0.70	0.446	0.328	0.423
swelQr	0.119	0.057	0.052	0.070	0.183	0.096	0.079	0.101	0.301	0.157	0.127	0.152	0.472	0.293	0.205	0.222	0.662	0.465	0.316	0.385
prolpwQr	0.116	0.053	0.055	0.078	0.153	0.073	0.073	0.106	0.215	0.102	0.101	0.155	0.312	0.146	0.151	0.222	0.470	0.221	0.238	0.357
										95ECP	(CP									
fullQr	0.937	0.944	0.934	0.937	0.938	0.944	0.954	0.957	0.946	0.953	0.954	0.937	0.940	0.950	0.948	0.953	0.946	0.948	0.956	0.945
NaiveQr	0.896	0.869	0.931	0.946	0.866	0.832	0.914	0.957	0.822	0.770	0.895	0.937	0.837	0.787	0.891	0.959	0.876	0.883	0.900	0.951
elmIpwQr	0.838	0.843	0.895	0.929	0.781	0.772	0.877	0.945	0.791	0.711	0.888	0.942	0.823	0.759	0.889	0.954	0.857	0.849	0.915	0.953
elsIpwQr	0.886	0.887	0.932	0.948	0.862	0.826	0.918	0.962	0.820	0.804	0.900	0.950	0.850	0.843	0.901	0.955	0.897	0.886	0.904	0.954
swelQr	0.915	0.947	0.935	0.948	0.932	0.947	0.939	0.966	0.925	0.959	0.936	0.953	0.925	0.959	0.921	0.943	0.902	0.945	0.895	0.927
prolpwQr	0.915	0.946	0.939	0.945	0.930	0.943	0.942	0.953	0.936	0.944	0.954	0.947	0.938	0.953	0.946	0.954	0.941	0.948	0.939	0.949
										CI len										
fullQr	0.321	0.160	0.168	0.257	0.439	0.219	0.229	0.356	0.649	0.323	0.334	0.521	1.013	0.505	0.528	0.819	1.674	0.837	0.867	1.353
NaiveQr	0.427	0.208	0.214	0.320	0.589	0.284	0.294	0.438	0.842	0.404	0.417	0.624	1.315	0.625	0.652	0.978	2.105	1.002	1.040	1.580
elmIpwQr	0.434	0.210	0.218	0.326	0.645	0.297	0.317	0.458	0.988	0.445	0.473	0.675	1.481	9.676	0.720	1.046	2.273	1.070	1.115	1.679
elsIpwQr	0.418	0.204	0.212	0.320	0.583	0.279	0.292	0.438	0.841	0.407	0.423	0.625	1.306	0.639	0.658	0.981	2.050	1.023	1.038	1.601
swelQr	0.444	0.250	0.207	0.286	0.764	0.426	0.332	0.434	1.258	0.694	0.542	0.657	2.159	1.222	0.962	1.106	2.527	1.587	1.227	1.884
(1	(

Table 7: (Setting 1) The mean biases, root of mean square errors (RMS), coverage probabilities of bootstrap confidence intervals with a nominal level of 0.95 (95ECP) and confidence interval(CI) lengths of different estimators for quantile regression coefficient with $\tau =$

		T =	0.1			$\tau = 0$	0.25			$\tau = \tau$	0.5			$\tau = 0$	0.75			$\tau = \tau$	6.0	
Method	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3
$eta^{true}_{j, au}$	0.680	-2.320	1.872	0.500	0.831	-2.169	1.933	0.500	1.000	-2.000	2.000	0.500	1.169	-1.831	2.067	0.500	1.320	-1.680	2.128	0.500
										_	Mean Biases									
fullQr	0.001	0.004	-0.001	0.002	0.003	0.003	-0.001	-0.003	0.005		0.000	-0.005	0.001	-0.002	0.002	-0.004	0.007	0.000	-0.003	-0.002
NaiveQr	0.092	0.081	-0.024	-0.008	0.100	0.074	-0.029	-0.008	0.105	990.0	-0.032	-0.008	0.104	0.060	-0.031	-0.010	0.107	0.057	-0.034	-0.012
elmIpwQr	0.030	-0.033	-0.040	0.019	-0.020	-0.063	-0.022	0.046	-0.065	-0.049	0.002	0.055	-0.059	-0.016	0.010	0.049	-0.049	-0.002	0.011	0.047
elsIpwQr	0.042	0.002	-0.033	0.005	0.008	-0.010	-0.015	0.013	-0.009	0.002	-0.005	0.016	-0.012	0.015	0.000	0.015	-0.009	0.024	0.003	0.008
swelQr	0.013	0.016	-0.033	0.030	-0.003	0.002	-0.020	0.030	-0.001	0.010	-0.013	0.026	9000	0.018	-0.008	0.022	0.015	0.022	-0.005	0.015
prolpwQr	0.085	0.061	-0.031	-0.009	0.064	0.048	-0.024	0.000	0.053	0.042	-0.019	0.000	0.046	0.036	-0.014	-0.001	0.028	0.033	-0.005	-0.003
										R	RMS									
fullQr	0.186	0.088	0.092	0.145	0.148	0.073	0.077	0.114	0.131	0.065	0.067	0.099	0.147	0.071	0.073	0.113	0.178	0.091	0.090	0.143
NaiveQr	0.274	0.147	0.127	0.185	0.224	0.121	0.106	0.146	0.212	0.108	0.096	0.133	0.232	0.113	0.106	0.148	0.272	0.129	0.129	0.187
elmlpwQr	0.426	0.283	0.209	0.291	0.417	0.332	0.191	0.269	0.435	0.360	0.190	0.274	0.399	0.316	0.186	0.279	0.428	0.305	0.214	0.349
elsIpwQr	0.360	0.219	0.176	0.248	0.306	0.197	0.136	0.178	0.281	0.164	0.120	0.145	0.268	0.151	0.120	0.149	0.293	0.162	0.139	0.198
swelQr	0.327	0.201	0.154	0.202	0.288	0.186	0.125	0.153	0.267	0.153	0.1111	0.131	0.247	0.142	0.1111	0.138	0.269	0.153	0.129	0.178
prolpwQr	0.324	0.165	0.153	0.207	0.273	0.139	0.127	0.163	0.255	0.127	0.113	0.143	0.266	0.127	0.118	0.159	0.289	0.135	0.136	0.202
										95E	3CP									
fullQr	0.931	0.954	0.948	0.946	0.944	0.944	0.938	0.955	0.959	0.948	0.958	0.956	0.945	0.947	0.960	0.951	0.948	0.952	0.956	0.958
NaiveQr	0.920	0.893	0.936	0.949	0.917	0.868	0.938	0.958	0.918	0.888	0.940	0.960	0.926	0.913	0.942	0.954	0.939	0.931	0.947	0.949
elmIpwQr	0.858	0.766	0.870	0.903	0.872	0.744	0.904	0.934	0.877	0.736	0.919	0.953	0.910	0.811	0.941	0.964	0.909	0.861	0.927	0.930
elsIpwQr	0.875	0.815	0.893	0.927	0.889	0.826	0.930	0.950	0.908	0.826	0.938	0.971	0.898	0.855	0.939	0.961	0.914	0.887	0.935	0.947
swelQr	0.864	0.862	0.893	0.932	0.908	0.916	0.926	0.960	0.930	0.961	0.941	0.973	0.931	0.942	0.939	0.961	0.914	0.924	906.0	0.938
prolpwQr	0.909	0.900	0.919	0.943	0.930	0.936	0.936	0.961	0.954	0.944	0.953	0.971	0.941	0.947	0.961	0.965	0.937	0.938	0.939	0.948
										CI le	ngths									
fullQr	0.741	0.366	0.382	0.588	0.584	0.287	0.303	0.470	0.537	0.266	0.279	0.430	0.588	0.290	0.305	0.465	0.735	0.365	0.379	0.591
NaiveQr	1.036	0.486	0.509	092.0	0.837	0.387	0.408	0.604	0.775	0.354	0.380	0.557	0.843	0.388	0.414	0.602	1.053	0.485	0.515	0.760
elmIpwQr	1.211	0.597	0.613	0.938	1.084	0.531	0.546	0.823	1.026	0.498	0.516	0.752	1.043	0.503	0.522	0.755	1.131	0.544	0.568	0.845
elsIpwQr	1.159	0.585	0.581	0.900	0.989	0.484	0.489	0.734	0.878	0.424	0.438	0.648	0.899	0.424	0.448	0.652	1.039	0.493	0.521	0.773
swelQr	1.201	0.769	0.611	0.928	1.155	0.730	0.537	0.755	1.110	0.665	0.486	9/9:0	1.056	0.597	0.468	0.663	1.083	0.603	0.520	0.757
prolowOr	1.172	0.606	0.580	0.872	1.084	0.564	0.511	0.736	1 080	0.539	0 494	0.671	1.111	0.530	0.516	0 708	1 170	0720	0	0.020

a nominal level of 0.95 (95ECP) and confidence interval(CI) lengths of different estimators for quantile regression coefficient with τ = Table 8: (Setting 1) The mean biases, root of mean square errors (RMS), coverage probabilities of bootstrap confidence intervals with (0.1, 0.25, 0.5, 0.75, 0.9), n = 1000 and 40% missing in y_i

) = \(\nu	= 0.1			$\tau = 0$	0.25			$\tau =$	0.5			$\tau = 0$	0.75			Τ =	6.0	
Method	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3
$eta_{j, au}^{true}$	0.680	-2.320	1.872	0.500	0.831	-2.169	1.933	0.500	1.000	-2.000	2.000	0.500	1.169	-1.831	2.067	0.500	1.320	-1.680	2.128	0.500
										Mean Biases	Biases									
fullQr	-0.002	0.002	0.001	-0.001	0.003	0.001	-0.002	-0.001	0.003	-0.001	-0.002	0.001	0.002	-0.001	-0.002	0.001	0.004	-0.002	-0.003	0.003
NaiveQr	0.090	0.077	-0.022	-0.012	0.100	0.074	-0.028	-0.012	0.098	990.0	-0.029	-0.007	0.093	0.060	-0.027	-0.008	0.094	0.055	-0.029	-0.007
elmIpwQr	-0.007	-0.079	-0.022	0.012	-0.045	-0.101	-0.008	0.034	-0.086	-0.091	0.010	0.051	-0.078	-0.058	0.011	0.051	-0.061	-0.041	0.008	0.047
elsIpwQr	0.013		-0.012	-0.004	-0.007	-0.016	-0.003	0.002	-0.016	-0.010	0.002	0.007	-0.021	-0.002	0.006	0.006	-0.019	0.001	0.007	0.005
swelQr	0.002		-0.013	0.005	-0.007	-0.007	-0.006	0.006	-0.009	-0.006	-0.001	0.008	-0.009	-0.001	0.002	0.007	-0.005	0.000	0.004	0.006
prolpwQr	0.073		-0.023	-0.009	0.064	0.047	-0.019	-0.009	0.057	0.040	-0.017	-0.005	0.044	0.036	-0.011	-0.005	0.039	0.031	-0.008	-0.006
										R	RMS									
fullQr	0.130	990.0	0.067	0.102	0.101	0.051	0.051	0.080	0.092	0.046	0.048	0.075	0.099	0.049	0.051	0.081	0.125	0.063	0.065	0.102
NaiveQr	0.201	0.114	0.091	0.129	0.171	0.100	0.073	0.102	0.167	0.090	0.071	0.094	0.170	0.088	0.075	0.106	0.194	0.099	0.091	0.129
elmlpwQr	0.330	0.258	0.172	0.248	0.315	0.299	0.166	0.222	0.370	0.285	0.176	0.235	0.362	0.219	0.166	0.265	0.328	0.196	0.170	0.311
elsIpwQr	0.254	0.167	0.126	0.176	0.212	0.139	0.098	0.125	0.188	0.112	0.084	0.100	0.183	0.094	0.083	0.106	0.198	0.097	0.091	0.129
swelQr	0.235	0.152	0.1111	0.152	0.192	0.125	0.085	0.114	0.173	0.104	0.077	0.094	0.172	0.089	0.077	0.099	0.184	0.092	0.085	0.119
prolpwQr	0.222	0.120	0.102	0.145	0.182	0.101	0.083	0.114	0.171	0.089	0.077	0.100	0.170	0.086	0.078	0.108	0.192	0.095	0.092	0.130
										95ECP	CP									
fullQr	0.935	0.946	0.952	0.946	0.943	0.947	0.947	0.955	0.952	0.956	0.954	0.947	0.959	0.950	0.958	0.944	0.949	0.953	0.941	0.948
NaiveQr	0.911	0.828	0.936	0.945	0.909	0.810	0.941	0.951	0.886	0.820	0.920	0.958	0.910	0.868	0.939	0.944	0.942	0.910	0.939	0.952
elmlpwQr	0.884	0.776	0.892	0.929	0.892	0.715	0.910	0.933	0.870	0.711	0.907	0.945	0.874	0.782	0.930	0.946	0.903	0.856	0.947	0.947
elsIpwQr	0.911	0.850	0.908	0.944	0.915	0.819	0.937	0.957	0.898	0.813	0.926	0.964	0.898	0.861	0.934	0.962	0.927	0.911	0.944	0.953
swelQr	0.893	0.907	0.914	0.949	0.937	0.929	0.933	0.967	0.939	0.954	0.941	0.968	0.947	0.963	0.943	0.961	0.936	0.947	0.933	0.939
prolpwQr	0.932	0.921	0.928	0.946	0.931	0.917	0.942	096.0	0.937	0.927	0.941	996.0	0.954	0.949	0.962	0.957	0.949	0.941	0.951	0.956
										CI leng	ngths									
fullQr	0.512	0.256	0.266	0.412	0.407	0.204	0.212	0.330	0.377	0.187	0.197	0.302	0.408	0.202	0.212	0.327	0.514	0.255	0.267	0.411
NaiveQr	0.723	0.337	0.357	0.530	0.581	0.270	0.286	0.427	0.536	0.248	0.262	0.389	0.586	0.268	0.285	0.422	0.745	0.341	0.360	0.535
elmIpwQr	0.940	0.456	0.470	0.723	0.809	0.385	0.402	0.600	0.732	0.348	0.362	0.528	0.720	0.336	0.360	0.521	0.807	0.375	0.401	0.591
elsIpwQr	0.873	0.434	0.435	0.667	0.694	0.337	0.347	0.511	0.602	0.282	0.298	0.438	0.599	0.280	0.301	0.442	0.721	0.335	0.359	0.528
swelQr	0.923	0.600	0.472	0.702	0.7777	0.522	0.363	0.515	0.754	0.446	0.318	0.435	0.710	0.389	0.310	0.427	0.755	0.399	0.347	0.485
prolpwOr	0.844	0.427	0.406	0.610	0.746	0.384	0.350	0.497	0.711	0 357	7250	0 444	0.736	0354	0.346	0.469	0.830	0.301	0.401	7950

a nominal level of 0.95 (95ECP) and confidence interval(CI) lengths of different estimators for quantile regression coefficient with $\tau = (0.1, 0.25, 0.5, 0.75, 0.9)$, n = 500 and 40% missing in y_i Table 9: (Setting 2) The mean biases, root of mean square errors (RMS), coverage probabilities of bootstrap confidence intervals with

		⊢	= 0.1			$\tau = 0$	0.25) = L	0.5) = <i>L</i>	0.75			$\tau = \tau$	6.0	
Method	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3
$eta^{true}_{j, au}$	0.657	-2.343	1.863	0.500	0.742	-2.258	1.897	0.500	0.889	-2.111 1.956	1.956	0.500	1.127	-1.873	2.051	0.500	1.464	-1.536	2.185	0.500
										Mean I	Siases									
fullQr	0.003	0.003	-0.001	0.000	0.004	0.002	-0.001	-0.002		0.001	-0.001	-0.005	0.010	-0.002	0.001	-0.008	0.033	-0.002	-0.012	-0.003
NaiveQr	0.047	0.036	-0.013	-0.004	0.089	0.057	-0.027	-0.008		0.106	-0.056	-0.015	0.355	0.186	-0.1111	-0.031	0.629	0.292	-0.196	-0.059
elmIpwQr	-0.230	0.675	-0.011	-0.140	0.087	0.629	-0.056	-0.074		0.659	-0.040	-0.067	0.678	0.715	-0.071	-0.141	1.035	0.807	-0.125	-0.177
elsIpwQr	0.036	0.018	-0.018	0.005	0.046	0.025	-0.024	0.008		0.064	-0.044	0.013	0.189	0.182	-0.081	0.038	0.295	0.301	-0.099	0.064
swelQr	0.000	0.016	-0.011	0.008	0.022	0.015	-0.018	0.014	0.062	0.041	-0.038	0.028	0.128	0.133	-0.074	0.073	0.174	0.236	-0.1111	0.165
prolpwQr	0.009	-0.003	-0.008	0.004	-0.008	-0.017	-0.002	0.004		-0.030	0.008	0.008	-0.107	-0.056	0.031	0.024	-0.178	-0.062	0.055	0.033
										RIV	IS									
fullQr	0.084	0.040	0.041	0.065	0.101	0.050	0.053	0.078	0.144	0.072	0.073	0.109	0.260	0.125	0.130	0.200	0.483	0.248	0.244	0.385
NaiveQr	0.138	0.071	0.063	0.093	0.177	0.095	0.080	0.112	0.293	0.154	0.122	0.165	0.560	0.273	0.225	0.300	1.022	0.468	0.432	0.565
elmlpwQr	6.275	3.166	3.250	4.731	4.416	2.486	2.500	3.580	3.439	2.168	1.784	2.678	2.849	1.979	1.317	2.271	3.042	1.864	1.300	2.293
elsIpwQr	0.154	0.079	0.073	0.101	0.219	0.117	0.097	0.116	0.476	0.240	0.191	0.174	1.214	0.706	0.375	0.484	1.652	1.071	0.596	0.884
swelQr	0.135	0.071	0.064	0.086	0.189	0.105	0.087	0.103	0.426	0.219	0.176	0.154	1.188	0.686	0.361	0.472	1.555	0.991	0.567	0.876
prolpwQr	0.139	0.063	0.069	0.099	0.166	0.077	0.082	0.113	0.226	0.109	0.109	0.151	0.369	0.171	0.174	0.235	0.603	0.290	0.296	0.440
										95E	CP									
fullQr	0.940	0.961	0.956	0.953	0.946	0.946	0.943	0.958	0.949	0.948	0.963	0.960	0.943	0.948	0.956	0.955	0.939	0.952	0.959	0.953
NaiveQr	0.934	906.0	0.941	0.950	0.918	0.872	0.933	0.949	0.908	0.874	0.937	0.962	0.884	0.865	0.915	0.950	0.897	0.909	0.918	0.958
elmIpwQr	0.838	0.804	0.875	906.0	0.823	0.758	0.854	0.887	0.807	0.727	0.865	0.888	0.858	0.763	0.904	0.880	0.843	0.791	0.869	0.895
elsIpwQr	906.0	0.878	0.911	0.933	0.899	0.853	0.925	0.956	0.900	0.849	0.940	0.969	0.869	0.850	0.909	0.968	0.864	0.876	0.913	0.947
swelQr	0.915	0.935	0.918	0.941	0.930	0.943	0.945	896.0	0.935	0.956	0.938	0.975	0.882	0.927	0.918	0.962	0.838	0.891	0.862	0.892
prolpwQr	0.919	0.935	0.923	0.937	0.932	0.933	0.928	0.949	0.941	0.930	0.942	0.960	0.918	0.934	0.949	0.971	0.921	0.935	0.944	0.947
										CI len	ıgths									
fullQr	0.333	0.163	0.172	0.263	0.397	0.196	0.207	0.321	0.591	0.292	0.307	0.474	1.040	0.518	0.539	0.834	1.979	1.006	1.017	1.605
NaiveQr	0.520	0.245	0.254	0.373	0.646	0.304	0.310	0.460	0.974	0.458	0.469	0.692	1.720	0.810	0.828	1.213	3.227	1.558	1.544	2.319
elmIpwQr	2.764	1.189	1.434	2.013	2.569	1.055	1.295	1.843	2.661	1.145	1.285	1.856	3.407	1.622	1.612	2.386	4.875	2.507	2.311	3.634
elsIpwQr	0.541	0.254	0.268	0.395	0.730	0.335	0.356	0.493	1.158	0.562	0.560	0.786	1.965	1.069	0.961	1.417	3.279	1.852	1.618	2.505
swelQr	0.537	0.291	0.249	0.351	0.799	0.453	0.358	0.474	1.539	0.945	0.697	0.842	3.044	1.940	1.351	1.983	4.277	2.966	1.948	3.081
prolpwOr	0.561	0.268	0.282	0.422	9.676	0.320	0.333	0.494	0.930	0.451	0.457	0.672	1.432	0.692	0.715	1 054	735C	1150	1 207	1 831

a nominal level of 0.95 (95ECP) and confidence interval(CI) lengths of different estimators for quantile regression coefficient with τ = Table 10: (Setting 2) The mean biases, root of mean square errors (RMS), coverage probabilities of bootstrap confidence intervals with (0.1, 0.25, 0.5, 0.75, 0.9), n = 1000 and 40% missing in y_i

		$\tau = 0$	= 0.1			$\tau = 0$	0.25			$\tau = 0$	0.5			$\tau = 0$	0.75			$\tau = \tau$	6.0	
Method	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3												
$eta_{j, au}^{true}$	0.657	-2.343	1.863	0.500	0.742	-2.258	1.897	0.500	0.889	-2.111	1.956	0.500	1.127	-1.873	2.051	0.500	1.464	-1.536	2.185	0.500
											3iases									
fullQr	0.001	0.001	0.000	0.000	0.003	0.000	-0.001	-0.001	0.005		-0.003	0.001	0.008	0.000	-0.004	0.001	0.017	-0.008	-0.009	0.007
NaiveQr	0.044	0.034	-0.012	-0.005	0.085	0.058	-0.025	-0.010	0.170		-0.053	-0.012	0.327	0.182	-0.103	-0.024	0.594	0.282	-0.192	-0.037
elmIpwQr	-0.041	0.456	-0.169	0.131	0.089	0.444	-0.105	0.067	0.297		-0.067	-0.013	0.585	0.553	-0.105	-0.039	0.961	0.678	-0.174	-0.085
elsIpwQr	0.020	0.007	-0.010	0.001	0.018	0.009	-0.010	0.003	0.030		-0.017	0.009	0.051	0.055	-0.027	0.019	0.095	0.122	-0.037	0.027
swelQr	-0.001	0.008	-0.005	0.002	0.008	0.003	-0.008	0.005	0.015		-0.012	0.012	0.016	0.031	-0.017	0.027	0.021	0.078	-0.025	0.057
prolpwQr	0.002	-0.008	-0.003	0.000	-0.017	-0.020	0.002	0.003	-0.045		0.009	0.011	-0.102	-0.056	0.028	0.019	-0.192	-0.075	0.056	0.043
										RW	SI									
fullQr	0.058	0.029	0.029	0.046	0.069	0.035	0.035	0.055	0.102	0.050	0.053	0.082	0.176	0.088	0.091	0.142	0.338	0.173	0.176	0.277
NaiveQr	0.100	0.054	0.045	0.065	0.136	0.079	0.058	0.078	0.238	0.129	0.097	0.116	0.433	0.226	0.171	0.213	0.811	0.387	0.327	0.395
elmlpwQr	5.121	2.600	3.011	3.939	4.108	2.235	2.385	3.102	3.415	1.882	1.662	2.566	3.453	1.744	1.432	2.258	3.694	1.642	1.291	2.460
elsIpwQr	0.102	0.055	0.048	0.069	0.135	0.079	0.062	0.080	0.224	0.133	0.100	0.112	0.425	0.258	0.180	0.194	0.777	0.548	0.332	0.390
swelQr	0.092	0.050	0.043	0.061	0.120	0.071	0.056	0.072	0.195	0.119	0.089	0.103	0.362	0.224	0.164	0.183	0.637	0.501	0.305	0.357
prolpwQr	0.095	0.046	0.047	0.069	0.1111	0.055	0.053	0.080	0.159	0.083	0.079	0.110	0.266	0.123	0.126	0.174	0.435	0.207	0.208	0.306
										95E	CP									
fullQr	0.938	0.947	0.955	0.945	0.950	0.952	0.940	0.954	0.952	0.949	0.955	0.950	0.963	0.950	0.960	0.948	0.953	0.954	0.941	0.954
NaiveQr	0.915	0.866	0.930	0.936	0.901	0.815	0.935	0.960	0.848	0.765	0.900	0.952	0.840	0.766	0.897	0.950	0.846	0.850	0.890	0.953
elmlpwQr	0.839	0.785	0.855	0.895	0.771	0.689	0.839	0.889	0.771	0.652	0.851	0.892	0.816	0.697	0.887	0.908	0.848	0.758	0.887	0.908
elsIpwQr	0.928	0.876	0.924	0.930	0.920	0.834	0.926	0.955	0.900	0.809	0.918	996.0	0.860	0.831	0.912	0.965	0.879	0.886	0.921	0.951
swelQr	0.917	0.935	0.921	0.934	0.934	0.939	0.944	0.957	0.941	0.935	0.939	0.977	0.903	0.942	0.921	0.964	0.867	0.926	0.897	0.929
prolpwQr	0.941	0.929	0.922	0.934	0.946	0.928	0.950	0.945	0.929	0.908	0.929	0.959	0.902	0.916	0.933	0.953	0.918	0.925	0.946	0.951
										Ħ										
fullQr	0.229	0.113	0.119	0.183	0.277	0.139	0.144	0.225	0.416		0.216	0.333	0.721	0.361	0.375	0.581	1.386	0.701	0.720	1.119
NaiveQr	0.357	0.169	0.173	0.257	0.447	0.212	0.217	0.321	929.0	0.320	0.324	0.482	1.201	0.560	0.574	0.850	2.302	1.084	1.090	1.636
elmIpwQr	2.201	0.875	1.018	1.599	1.967	0.780	0.860	1.421	2.027	0.838	0.897	1.416	2.569	1.172	1.148	1.788	3.823	1.832	1.695	2.758
elsIpwQr	0.370	0.176	0.181	0.272	0.452	0.214	0.225	0.334	0.673	0.313	0.330	0.484	1.130	0.555	0.563	0.828	2.108	1.080	1.040	1.551
swelQr	0.357	0.201	0.165	0.240	0.502	0.301	0.225	0.314	0.878	0.538	0.372	0.478	1.609	1.049	969.0	0.901	2.467	1.608	1.162	1.642
prolpwOr	0.367	0.174	0.180	0.271	0.441	0.213	0.219	0 323	3090	0 203	0 308	8770	7900	0.158	0.182	0.700	1,650	0 003	0500	1 261

a nominal level of 0.95 (95ECP) and confidence interval(CI) lengths of different estimators for quantile regression coefficient with $\tau = (0.1, 0.25, 0.5, 0.75, 0.9)$, n = 1000 and 40% missing in y_i Table 11: (Setting 3) The mean biases, root of mean square errors (RMS), coverage probabilities of bootstrap confidence intervals with

) = <i>L</i>	= 0.1			$\tau = 0$	0.25			$\tau = 1$	0.5			$\tau = 1$	0.75			7 =	6.0	
Method	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3
$eta^{true}_{j, au}$	0.507	-2.493	1.803	0.500	0.635	-2.365	1.854	0.500	0.871	-2.129	1.948	0.500	1.226	-1.774	2.090	0.500	1.664	-1.336	2.265	0.500
										Mean l	Biases									
fullQr	-0.001	0.003	0.001	0.000	0.001	0.002	0.001	0.000		900.0	-0.002	-0.001	0.011	0.008	-0.006	0.001	0.00	0.00	-0.005	0.004
NaiveQr	0.095	0.074	-0.028	-0.008	0.189	0.137	-0.057	-0.013		0.234	-0.110	-0.022	0.575	0.329	-0.184	-0.037	0.745	0.389	-0.241	-0.040
elmIpwQr	0.087	0.082	-0.026	-0.003	0.078	0.125	-0.010	0.003		0.196	-0.009	0.021	0.377	0.347	-0.106	0.023	0.643	0.478	-0.184	-0.007
elsIpwQr	0.038	0.022	-0.023	0.011	0.051	0.037	-0.029	0.013		0.061	-0.039	0.025	0.094	0.121	-0.050	0.041	0.140	0.183	-0.053	0.039
swelQr	0.020	0.015	-0.017	0.011	0.028	0.020	-0.022	0.017		0.031	-0.027	0.029	0.035	0.076	-0.036	0.056	0.058	0.133	-0.044	0.074
prolpwQr	0.009	-0.001	-0.009	0.006	-0.009	-0.015	-0.004	0.010	-0.039	-0.028 0.005	0.005	0.014	-0.088	-0.037	0.019	0.028	-0.122	-0.029	0.033	0.032
										RIV	IS									
fullQr	0.083	0.041	0.043	0.066	0.112	0.057	0.056	0.087	0.165	0.081	0.083	0.133	0.258	0.124	0.129	0.203	0.414	0.201	0.214	0.335
NaiveQr	0.169	0.100	0.072	0.097	0.261	0.164	0.102	0.130	0.444	0.265	0.167	0.193	0.70	0.379	0.265	0.289	0.977	0.489	0.389	0.450
elmIpwQr	0.215	0.122	0.093	0.111	0.393	0.209	0.167	0.176	0.715	15 0.354 0.29	0.297	0.305	0.924	0.522	0.370	0.426	1.275	0.744	0.512	0.651
elsIpwQr	0.162	0.099	0.075	0.099	0.265	0.171	0.1111	0.129	0.453	0.287	0.183	0.185	0.725	0.444	0.294	0.305	0.998	0.554	0.413	0.477
swelQr	0.146	0.087	0.067	0.089	0.235	0.153	0.099	0.120	0.402	0.250	0.166	0.176	0.663	0.377	0.279	0.294	0.896	0.474	0.401	0.450
prolpwQr	0.141	0.067	0.070	0.101	0.185	0.094	0.088	0.127	0.257	0.126	0.122	0.174	0.370	0.171	0.180	0.251	0.541	0.235	0.267	0.383
										95E	CP									
fullQr	0.932	0.943	0.927	0.934	0.938	0.943	0.952	0.951	0.946	0.950	0.958	0.939	0.937	0.947	0.949	0.956	0.949	0.950	0.951	0.948
NaiveQr	968.0	0.819	0.905	0.941	0.838	0.677	0.908	0.951	0.744	0.539	0.853	0.934	0.727	0.607	0.845	0.955	0.802	0.768	0.882	0.953
elmIpwQr	0.820	0.714	0.832	0.926	0.704	0.597	0.807	0.905	0.679	0.525	0.823	0.887	0.778	0.610	0.880	0.942	0.824	0.747	0.914	0.937
elsIpwQr	0.892	0.813	0.907	0.938	0.856	0.733	0.921	0.952	0.802	0.687	0.886	0.952	0.798	0.740	0.883	0.956	0.829	0.861	0.904	0.951
swelQr	0.917	0.922	0.909	0.937	0.912	0.912	0.929	0.959	0.903	0.926	0.934	0.959	0.897	0.937	0.901	0.956	0.846	0.926	0.868	0.924
prolpwQr	0.921	0.926	0.931	0.927	0.944	0.931	0.932	0.943	0.936	0.937	0.946	0.952	0.926	0.941	0.944	0.964	0.923	0.961	0.933	0.952
										CI lengths	ıgths									
fullQr	0.320	0.160	0.167	0.257	0.440	0.219	0.229	0.354	0.648	0.324	0.337	0.521	1.012	0.508	0.528	0.820	1.671	0.836	998.0	1.349
NaiveQr	0.544	0.265	0.261	0.388	0.745	0.357	0.358	0.532	1.064	0.502	0.511	0.755	1.650	0.762	0.785	1.175	2.602	1.211	1.249	1.861
elmIpwQr	0.570	0.272	0.276	0.408	0.853	0.386	0.415	0.580	1.482	0.631	0.706	0.900	2.375	1.016	1.110	1.450	3.335	1.524	1.579	2.248
elsIpwQr	0.530	0.260	0.264	0.393	0.745	0.358	0.369	0.545	1.076	0.515	0.528	0.774	1.636	0.781	0.810	1.183	2.455	1.207	1.207	1.842
swelQr	0.590	0.364	0.268	0.370	1.002	0.662	0.433	0.575	1.766	1.098	0.710	0.905	2.796	1.695	1.167	1.446	3.159	2.098	1.499	2.152
nroInwOr	0.532	0.259	0.263	0.389	0.751	0.356	0.364	0.530	1 038	0.502	0.504	0.724	1.457	0.682	0.717	1 041	2 001	0.091	1 040	1 566

Table 12: (Setting 3) The root of mean square errors (RMS) of the proposed estimators with different numbers of k_n ($k_n=20,30,40,50,100$) and m (m=10,20,50,100) for quantile regression coefficients with differen sample sizes and 40% missing in y_i

			τ =	0.25			τ =	0.5			τ =	0.75	
k_n	m	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3
							n =	500					
	10	0.268	0.125	0.126	0.189	0.388	0.171	0.174	0.256	0.537	0.239	0.244	0.364
20	20	0.264	0.125	0.124	0.189	0.383	0.167	0.173	0.252	0.537	0.238	0.245	0.362
20	50	0.261	0.126	0.124	0.188	0.384	0.172	0.174	0.250	0.541	0.242	0.247	0.363
	100	0.265	0.125	0.125	0.188	0.382	0.172	0.171	0.249	0.544	0.242	0.247	0.361
	10	0.292	0.136	0.131	0.191	0.410	0.183	0.183	0.256	0.545	0.261	0.250	0.361
30	20	0.301	0.137	0.132	0.192	0.406	0.184	0.184	0.254	0.557	0.264	0.250	0.364
30	50	0.303	0.140	0.134	0.190	0.402	0.187	0.184	0.254	0.555	0.267	0.253	0.365
	100	0.302	0.140	0.135	0.190	0.401	0.190	0.183	0.253	0.567	0.266	0.257	0.360
	10	0.311	0.144	0.135	0.192	0.420	0.200	0.187	0.255	0.578	0.285	0.260	0.371
40	20	0.318	0.146	0.140	0.191	0.416	0.203	0.186	0.260	0.591	0.286	0.271	0.373
40	50	0.313	0.146	0.139	0.188	0.424	0.208	0.192	0.256	0.602	0.288	0.272	0.364
	100	0.320	0.155	0.142	0.189	0.449	0.240	0.196	0.258	0.649	0.305	0.279	0.382
	10	0.444	0.210	0.211	0.192	0.433	0.387	0.193	0.266	0.599	0.416	0.268	0.382
50	20	0.324	0.154	0.143	0.190	0.443	0.227	0.198	0.260	0.619	0.306	0.276	0.381
30	50	0.375	0.181	0.158	0.193	0.525	0.257	0.201	0.286	0.643	0.315	0.279	0.383
	100	0.391	0.198	0.161	0.196	0.533	0.258	0.200	0.294	0.640	0.316	0.285	0.383
	10	1.004	0.386	0.435	0.355	0.855	0.529	0.320	0.386	0.888	0.530	0.343	0.473
100	20	0.962	0.357	0.379	0.485	0.877	0.539	0.292	0.493	0.963	0.587	0.341	0.583
100	50	1.009	0.385	0.390	0.510	0.865	0.571	0.297	0.504	0.952	0.591	0.375	0.616
	100	1.011	0.375	0.382	0.511	0.879	0.539	0.300	0.502	0.930	0.540	0.372	0.615
	10	0.106	0.000	0.005	0.100	0.260		1000	0.101	0.205	0.160	0.100	0.265
	10	0.196	0.090	0.095	0.133	0.269	0.121	0.131	0.181	0.385	0.162	0.182	0.265
20	20	0.197	0.090	0.096	0.134	0.271	0.125	0.130	0.182	0.387	0.168	0.184	0.261
	50	0.197	0.091	0.096	0.134	0.273	0.126	0.129	0.182	0.397	0.172	0.188	0.256
	100	0.198	0.091	0.096	0.134	0.274	0.127	0.129	0.183	0.399	0.173	0.188	0.255
	10	0.198	0.092	0.096	0.134	0.277	0.126	0.134	0.183	0.395	0.167	0.186	0.272
30	20	0.197	0.091	0.095	0.134	0.274	0.126	0.132	0.182	0.396	0.166	0.186	0.266
	50 100	0.199 0.199	0.092 0.092	0.096 0.096	0.134 0.133	0.275 0.276	0.126 0.128	0.132 0.131	0.182 0.181	0.400 0.406	0.170	0.188 0.190	0.261 0.258
	100	0.199	0.092	0.090	0.135	0.276	0.128	0.131	0.181	0.400	$0.171 \\ 0.177$	0.190	0.238
	20	0.202	0.094	0.097	0.135	0.279	0.133	0.130	0.183	0.410	0.177	0.189	0.273
40	50	0.200	0.092	0.097	0.133	0.285	0.127	0.134	0.182	0.409	0.169	0.189	0.265
	100	0.199	0.093	0.096	0.133	0.284	0.128	0.133	0.182	0.407	0.109	0.188	0.262
	100	0.208	0.093	0.090	0.135	0.284	0.129	0.134	0.182	0.412	0.174	0.191	0.202
	20	0.208	0.098	0.097	0.136	0.283	0.139	0.136	0.180	0.410	0.185	0.190	0.277
50	50	0.202	0.094	0.097	0.134	0.286	0.130	0.135	0.182	0.416	0.173	0.192	0.271
	100	0.201	0.094	0.096	0.134	0.280	0.131	0.135	0.180	0.410	0.173	0.192	0.264
	100	0.201	0.109	0.101	0.134	0.290	0.152	0.133	0.181	0.421	0.174	0.192	0.204
	20	0.223	0.103	0.101	0.136	0.310	0.162	0.147	0.185	0.453	0.213	0.203	0.276
100	50	0.213	0.102	0.099	0.135	0.302	0.136	0.142	0.183	0.457	0.193	0.201	0.270
	100	0.212	0.102	0.098	0.134	0.308	0.145	0.141	0.183	0.460	0.193	0.201	0.272
	100	0.211	0.100	0.070	0.137	0.500	0.173	0.171	0.105	0.700	0.172	0.201	0.212

Table 13: (Setting 3) The coverage probabilities of bootstrap confidence intervals with a nominal level of 0.95 (95ECP) of the proposed estimators with different numbers of k_n ($k_n = 20, 30, 40, 50, 100$) and m (m = 10, 20, 50, 100) for quantile regression coefficients with differen sample sizes and 40% missing in y_i

			τ =	0.25			τ =	0.5		τ = 0.75			
k_n	m	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3
							n =	500					
	10	0.936	0.948	0.952	0.964	0.934	0.954	0.948	0.960	0.942	0.944	0.960	0.962
20	20	0.934	0.940	0.958	0.952	0.926	0.956	0.946	0.952	0.942	0.940	0.956	0.958
20	50	0.940	0.928	0.956	0.954	0.924	0.942	0.950	0.950	0.936	0.930	0.956	0.962
	100	0.940	0.940	0.952	0.958	0.932	0.948	0.948	0.954	0.938	0.926	0.948	0.958
	10	0.934	0.950	0.960	0.966	0.934	0.964	0.946	0.960	0.942	0.944	0.960	0.968
30	20	0.944	0.956	0.950	0.958	0.932	0.960	0.950	0.958	0.946	0.948	0.960	0.966
30	50	0.942	0.952	0.960	0.968	0.926	0.956	0.942	0.956	0.944	0.938	0.956	0.964
	100	0.946	0.958	0.946	0.956	0.932	0.954	0.946	0.958	0.936	0.944	0.954	0.968
	10	0.942	0.956	0.958	0.964	0.946	0.968	0.950	0.964	0.956	0.952	0.958	0.974
40	20	0.944	0.958	0.954	0.964	0.942	0.962	0.954	0.962	0.954	0.960	0.958	0.972
40	50	0.946	0.948	0.956	0.960	0.940	0.960	0.950	0.958	0.950	0.952	0.962	0.974
	100	0.954	0.946	0.954	0.962	0.938	0.960	0.946	0.958	0.942	0.946	0.958	0.966
	10	0.940	0.944	0.952	0.958	0.940	0.958	0.950	0.962	0.962	0.960	0.960	0.980
50	20	0.942	0.954	0.958	0.960	0.948	0.960	0.960	0.964	0.958	0.950	0.960	0.976
30	50	0.950	0.956	0.956	0.968	0.942	0.966	0.958	0.964	0.958	0.956	0.970	0.974
	100	0.950	0.956	0.958	0.962	0.942	0.962	0.948	0.962	0.950	0.946	0.966	0.968
	10	0.942	0.930	0.944	0.962	0.940	0.940	0.950	0.964	0.958	0.952	0.968	0.962
100	20	0.942	0.960	0.952	0.962	0.946	0.958	0.960	0.966	0.960	0.960	0.966	0.968
100	50	0.954	0.956	0.968	0.968	0.958	0.952	0.962	0.964	0.962	0.952	0.964	0.972
	100	0.954	0.952	0.956	0.964	0.944	0.952	0.944	0.958	0.966	0.956	0.964	0.974
								1000					
	10	0.930	0.934	0.942	0.952	0.946	0.950	0.932	0.948	0.940	0.954	0.956	0.948
20	20	0.938	0.930	0.940	0.946	0.946	0.946	0.934	0.956	0.952	0.944	0.936	0.938
20	50	0.936	0.920	0.920	0.950	0.940	0.942	0.942	0.952	0.942	0.942	0.946	0.942
	100	0.928	0.928	0.930	0.944	0.948	0.932	0.934	0.946	0.936	0.938	0.944	0.940
	10	0.932	0.936	0.930	0.950	0.958	0.944	0.936	0.952	0.956	0.952	0.944	0.936
30	20	0.940	0.950	0.944	0.952	0.946	0.946	0.942	0.956	0.950	0.950	0.952	0.938
20	50	0.928	0.928	0.934	0.950	0.946	0.950	0.936	0.950	0.942	0.956	0.938	0.938
	100	0.932	0.930	0.930	0.950	0.942	0.940	0.938	0.948	0.938	0.950	0.944	0.948
	10	0.938	0.930	0.928	0.946	0.952	0.934	0.930	0.940	0.944	0.948	0.944	0.950
40	20	0.942	0.946	0.942	0.950	0.954	0.952	0.946	0.950	0.946	0.958	0.962	0.932
	50	0.924	0.932	0.932	0.954	0.942	0.946	0.940	0.952	0.946	0.954	0.942	0.936
	100	0.934	0.932	0.926	0.952	0.946	0.946	0.938	0.944	0.940	0.956	0.948	0.944
	10	0.934	0.936	0.930	0.948	0.952	0.944	0.936	0.940	0.950	0.950	0.952	0.934
50	20	0.938	0.928	0.928	0.954	0.954	0.938	0.940	0.948	0.944	0.946	0.948	0.940
	50	0.940	0.946	0.932	0.944	0.954	0.946	0.944	0.954	0.946	0.958	0.954	0.930
	100	0.930	0.932	0.928	0.956	0.946	0.952	0.954	0.956	0.946	0.966	0.944	0.944
	10	0.942	0.920	0.932	0.944	0.958	0.924	0.940	0.946	0.948	0.934	0.940	0.942
100	20	0.946	0.936	0.950	0.950	0.956	0.960	0.940	0.960	0.944	0.950	0.952	0.952
	50	0.938	0.934	0.950	0.964	0.940	0.950	0.952	0.958	0.952	0.960	0.958	0.948
	100	0.948	0.950	0.946	0.952	0.956	0.956	0.958	0.956	0.954	0.970	0.952	0.940

Table 14: (Setting 3) The confidence interval lengths (CI lengths) of bootstrap confidence intervals with a nominal level of 0.95 of the proposed estimators with different numbers of k_n ($k_n = 20, 30, 40, 50, 100$) and m (m = 10, 20, 50, 100) for quantile regression coefficients with differen sample sizes and 40% missing in y_i

			τ =	0.25			τ =	0.5			τ =	0.75	
k_n	m	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3
							n =	500					
	10	1.162	0.561	0.568	0.805	1.592	0.787	0.760	1.105	2.152	1.065	1.056	1.539
20	20	1.147	0.558	0.558	0.792	1.575	0.785	0.751	1.105	2.131	1.052	1.045	1.539
20	50	1.149	0.566	0.579	0.814	1.589	0.779	0.756	1.102	2.122	1.043	1.043	1.532
	100	1.159	0.567	0.576	0.805	1.578	0.788	0.752	1.099	2.129	1.041	1.044	1.540
	10	1.339	0.641	0.662	0.875	1.748	0.894	0.836	1.175	2.308	1.182	1.120	1.653
30	20	1.351	0.676	0.685	0.902	1.749	0.921	0.837	1.202	2.291	1.198	1.118	1.643
30	50	1.312	0.645	0.651	0.858	1.736	0.911	0.814	1.180	2.267	1.178	1.103	1.632
	100	1.344	0.664	0.675	0.888	1.748	0.909	0.819	1.181	2.280	1.174	1.106	1.651
	10	1.551	0.735	0.776	0.969	1.958	1.014	0.926	1.267	2.514	1.319	1.193	1.748
40	20	1.545	0.745	0.780	0.972	1.950	1.031	0.918	1.279	2.506	1.299	1.187	1.736
	50	1.583	0.767	0.801	1.007	1.964	1.063	0.917	1.297	2.506	1.341	1.175	1.768
	100	1.507	0.747	0.760	0.975	1.929	1.050	0.899	1.276	2.482	1.326	1.177	1.734
	10	1.643	0.772	0.836	1.007	2.039	1.082	0.963	1.318	2.606	1.383	1.249	1.830
50	20	1.772	0.859	0.872	1.078	2.126	1.180	0.983	1.384	2.644	1.460	1.254	1.873
	50	1.766	0.878	0.895	1.094	2.118	1.194	0.994	1.374	2.630	1.475	1.263	1.867
	100	1.765	0.891	0.879	1.121	2.173	1.210	0.992	1.391	2.690	1.469	1.258	1.880
	10	2.215 2.354	1.053	1.101	1.302	2.569	1.417	1.185	1.610	3.084	1.750	1.432	2.134
100	20 50	2.334	1.149 1.259	1.167 1.268	1.392 1.523	2.693 2.802	1.556 1.702	1.239 1.300	1.676 1.802	3.168 3.295	1.856 1.984	1.478 1.510	2.211 2.338
	100	2.476	1.239	1.246	1.525	2.802	1.702	1.280	1.780	3.298	1.984	1.498	2.338
	100	2.490	1.270	1.240	1.331	2.800		1000	1.760	3.290	1.554	1.490	2.317
	10	0.744	0.351	0.360	0.528	1.055	0.499	0.511	0.733	1.487	0.684	0.720	1.039
	20	0.735	0.350	0.356	0.526	1.052	0.493	0.507	0.723	1.491	0.671	0.716	1.033
20	50	0.733	0.349	0.357	0.528	1.046	0.494	0.506	0.728	1.474	0.672	0.714	1.026
	100	0.728	0.348	0.355	0.525	1.050	0.494	0.506	0.725	1.478	0.670	0.713	1.029
	10	0.761	0.361	0.370	0.538	1.096	0.517	0.528	0.742	1.544	0.710	0.740	1.061
20	20	0.751	0.359	0.364	0.534	1.081	0.512	0.522	0.741	1.532	0.698	0.735	1.049
30	50	0.748	0.357	0.358	0.529	1.069	0.509	0.514	0.734	1.525	0.689	0.724	1.040
	100	0.754	0.361	0.367	0.535	1.082	0.513	0.518	0.734	1.522	0.690	0.730	1.037
	10	0.797	0.375	0.386	0.542	1.135	0.538	0.544	0.754	1.591	0.742	0.759	1.072
40	20	0.795	0.375	0.380	0.540	1.131	0.538	0.538	0.753	1.586	0.725	0.753	1.071
40	50	0.782	0.374	0.372	0.546	1.118	0.537	0.529	0.750	1.590	0.718	0.748	1.058
	100	0.783	0.380	0.377	0.539	1.120	0.543	0.531	0.745	1.586	0.721	0.751	1.053
	10	0.869	0.407	0.412	0.561	1.201	0.580	0.566	0.791	1.667	0.779	0.788	1.114
50	20	0.841	0.404	0.409	0.572	1.189	0.580	0.558	0.779	1.646	0.766	0.777	1.093
30	50	0.864	0.412	0.413	0.572	1.187	0.594	0.559	0.778	1.649	0.774	0.774	1.093
	100	0.853	0.415	0.409	0.562	1.182	0.600	0.552	0.773	1.639	0.774	0.774	1.092
	10	1.107	0.513	0.534	0.669	1.434	0.725	0.664	0.890	1.881	0.952	0.870	1.247
100	20	1.184	0.579	0.573	0.725	1.519	0.823	0.677	0.953	1.938	1.004	0.875	1.291
100	50	1.261	0.601	0.608	0.736	1.549	0.849	0.704	0.967	1.982	1.046	0.902	1.293
	100	1.268	0.626	0.602	0.746	1.577	0.894	0.695	0.990	2.013	1.058	0.899	1.320

Table 15: The average computing time (in seconds) for different methods to estimate the coefficients β_{τ} at the quantile levels $\tau = 0.25, 0.5$ and 0.75 in three considered settings with various sample sizes and missing rates

		fullQr	NaiveQr	elmIpwQr	elsIpwQr	swelQr	proIpwQr							
Setting	missing rate						(k_n,m)	(20, 10)	(20, 20)	(40, 10)	(40, 20)			
		sample size $n = 500$												
1	20%	0.002	0.002	35.232	4.911	7.573		0.840	0.977	1.153	1.295			
1	40%	0.003	0.002	51.342	6.262	7.169		0.855	1.105	1.105	1.358			
2	20%	0.002	0.002	29.956	5.009	7.679		0.853	0.993	1.061	1.189			
2	40%	0.003	0.002	58.871	6.700	7.320		0.872	1.117	1.063	1.375			
3	20%	0.002	0.002	31.244	4.931	6.900		0.799	0.978	1.130	1.247			
3	40%	0.002	0.002	56.053	5.526	6.400		0.832	1.092	1.070	1.347			
					sa	ımple size	n = 1000							
1	20%	0.004	0.004	73.301	6.112	9.399		1.561	1.855	2.232	2.509			
1	40%	0.003	0.004	174.934	7.623	9.180		1.501	2.067	2.012	2.527			
2	20%	0.004	0.002	65.714	6.595	9.580		1.512	1.878	2.221	2.492			
2	40%	0.004	0.002	163.688	7.827	9.187		1.490	2.098	1.904	2.512			
3	20%	0.004	0.003	77.813	6.475	8.456		1.507	1.842	2.105	2.412			
3	40%	0.004	0.002	198.241	7.544	7.357		1.474	2.026	1.932	2.454			

Table 16: The estimated coefficients (Est) and the corresponding standard errors (SE) and p-values (p) from different methods with $\tau = (0.1, 0.25, 0.5, 0.75, 0.9)$, n = 7148 and 40% missing in response y_i

		fullQr		I	NaiveQr		e	lsIpwQr		p	roIpwQr	
Covariate	Est	SE	p	Est	SE	p	Est	SE	p	Est	SE	p
						$\tau =$	0.1					
Intercept	92.07	2.47	0.00	87.56	3.54	0.00	87.49	3.40	0.00	90.42	2.80	0.00
Race	-2.18	2.36	0.36	-4.46	3.18	0.16	-4.41	3.14	0.16	-1.53	2.99	0.61
Insurance type	-4.38	1.28	0.00	-6.03	1.48	0.00	-6.10	1.47	0.00	-5.04	1.49	0.00
Marital status	0.67	1.23	0.59	2.06	1.43	0.15	2.08	1.54	0.18	0.75	1.22	0.54
First language	-0.83	2.89	0.78	-0.72	5.19	0.89	-0.73	5.25	0.89	0.12	3.69	0.97
Age	0.16	0.04	0.00	0.15	0.05	0.00	0.15	0.05	0.00	0.18	0.05	0.00
Gender	1.69	1.19	0.16	-0.49	1.53	0.75	-0.49	1.52	0.75	0.61	1.32	0.65
						$\tau =$	0.25					
Intercept	109.32	3.00	0.00	98.44	3.61	0.00	98.46	3.20	0.00	103.65	3.53	0.00
Race	0.07	1.97	0.97	2.85	2.71	0.29	2.90	2.82	0.30	2.51	2.81	0.37
Insurance type	-2.46	1.43	0.09	-3.71	1.44	0.01	-3.86	1.37	0.01	-3.09	1.63	0.06
Marital status	1.07	1.35	0.43	2.05	1.32	0.12	2.12	1.52	0.16	0.93	1.63	0.57
First language	4.25	5.61	0.45	3.83	4.51	0.40	2.87	4.63	0.54	9.58	5.23	0.07
Age	0.15	0.05	0.00	0.20	0.05	0.00	0.20	0.05	0.00	0.21	0.05	0.00
Gender	4.66	1.12	0.00	3.84	1.42	0.01	3.64	1.48	0.01	3.66	1.35	0.01
						au =	0.5					
Intercept	138.92	4.15	0.00	127.96	6.31	0.00	128.30	7.06	0.00	134.51	6.32	0.00
Race	10.33	3.75	0.01	24.99	7.84	0.00	25.47	8.94	0.00	17.56	6.83	0.01
Insurance type	-0.55	1.92	0.77	-0.99	2.96	0.74	-1.25	2.91	0.67	0.53	3.46	0.88
Marital status	1.27	1.65	0.44	3.23	2.88	0.26	3.33	3.12	0.29	0.60	2.81	0.83
First language	10.94	4.54	0.02	13.26	7.53	0.08	12.68	8.04	0.12	13.05	7.12	0.07
Age	0.11	0.07	0.11	0.17	0.10	0.11	0.17	0.11	0.14	0.16	0.10	0.13
Gender	5.28	1.85	0.00	7.85	2.71	0.00	7.76	3.02	0.01	5.97	2.48	0.02
	au=0.75											
Intercept	191.98	6.66	0.00	234.45	15.71	0.00	234.99	17.40	0.00	194.08	8.95	0.00
Race	27.00	5.92	0.00	44.09	8.53	0.00	44.63	9.80	0.00	30.20	5.60	0.00
Insurance type	5.87	3.11	0.06	10.71	7.15	0.13	10.12	7.35	0.17	6.09	4.35	0.16
Marital status	6.64	2.78	0.02	15.84	7.13	0.03	15.89	7.51	0.03	7.79	3.06	0.01
First language	12.18	6.58	0.06	18.62	13.31	0.16	19.16	14.88	0.20	10.19	5.39	0.06
Age	-0.21	0.11	0.05	-0.67	0.25	0.01	-0.67	0.28	0.02	-0.18	0.14	0.20
Gender	6.15	2.67	0.02	10.56	6.93	0.13	10.02	7.65	0.19	6.20	3.25	0.06
							0.9					
Intercept	295.01	19.00	0.00	363.76	22.01	0.00	365.44	26.80	0.00	298.71	16.23	0.00
Race	62.98	17.41	0.00	92.03	16.02	0.00	87.72	18.31	0.00	59.05	19.32	0.00
Insurance type	10.13	6.99	0.15	6.17	9.22	0.50	4.86	9.08	0.59	7.41	5.36	0.17
Marital status	17.79	4.67	0.00	17.52	7.47	0.02	17.78	6.84	0.01	15.64	4.82	0.00
First language	10.24	14.90	0.49	19.41	15.98	0.23	23.73	18.04	0.19	14.41	13.36	0.28
Age	-0.96	0.28	0.00	-1.39	0.32	0.00	-1.39	0.39	0.00	-0.92	0.23	0.00
Gender	5.87	5.08	0.25	8.55	8.35	0.31	8.58	7.62	0.26	5.79	5.24	0.27

Table 17: The estimated coefficients (Est) and the corresponding standard errors (SE) and p-values (p) from different methods with $\tau = (0.1, 0.25, 0.5, 0.75, 0.9)$, n = 7148 and 60% missing in response y_i

		fullQr		I	NaiveQr		e	lsIpwQr		p	roIpwQr	
Covariate	Est	SE	p	Est	SE	p	Est	SE	p	Est	SE	p
						τ =	0.1					
Intercept	92.07	2.35	0.00	83.59	3.79	0.00	82.22	4.24	0.00	91.89	3.04	0.00
Race	-2.18	2.23	0.33	-5.50	3.23	0.09	-5.95	3.78	0.12	-1.83	2.52	0.47
Insurance type	-4.38	1.37	0.00	-4.16	2.39	0.08	-4.68	2.29	0.04	-3.95	1.29	0.00
Marital status	0.67	1.20	0.58	4.24	2.17	0.05	4.35	2.50	0.08	0.55	1.40	0.69
First language	-0.83	2.71	0.76	-1.68	6.32	0.79	-1.85	6.80	0.79	-3.40	4.70	0.47
Age	0.16	0.04	0.00	0.11	0.06	0.07	0.14	0.07	0.05	0.16	0.04	0.00
Gender	1.69	1.36	0.21	-0.70	2.27	0.76	-0.68	1.90	0.72	3.36	1.79	0.06
						$\tau =$	0.25					
Intercept	109.32	3.26	0.00	96.62	3.38	0.00	95.98	3.28	0.00	108.43	7.35	0.00
Race	0.07	2.11	0.97	2.27	4.50	0.62	1.51	4.69	0.75	2.69	5.00	0.59
Insurance type	-2.46	1.61	0.13	-4.60	2.17	0.03	-4.79	2.02	0.02	-1.63	2.27	0.47
Marital status	1.07	1.35	0.43	2.75	1.72	0.11	2.92	2.05	0.15	-0.10	2.30	0.97
First language	4.25	4.90	0.39	2.20	7.97	0.78	0.82	8.19	0.92	11.54	6.18	0.06
Age	0.15	0.05	0.00	0.16	0.05	0.00	0.17	0.05	0.00	0.19	0.10	0.07
Gender	4.66	1.22	0.00	5.28	1.80	0.00	6.20	2.26	0.01	6.56	2.38	0.01
						au =	0.5					
Intercept	138.92	3.52	0.00	146.11	13.77	0.00	143.29	11.88	0.00	157.24	11.31	0.00
Race	10.33	3.73	0.01	38.64	12.85	0.00	36.48	11.85	0.00	18.31	6.03	0.00
Insurance type	-0.55	2.04	0.79	6.62	6.81	0.33	6.14	6.26	0.33	8.21	5.06	0.11
Marital status	1.27	1.73	0.46	5.93	5.14	0.25	7.24	6.12	0.24	0.47	4.43	0.92
First language	10.94	4.07	0.01	15.07	14.07	0.28	14.32	16.12	0.37	7.51	9.61	0.44
Age	0.11	0.06	0.08	-0.20	0.24	0.38	-0.17	0.20	0.40	-0.09	0.18	0.59
Gender	5.28	1.77	0.00	19.53	7.23	0.01	20.54	7.84	0.01	16.06	3.94	0.00
	au=0.75											
Intercept	191.98	6.70	0.00	272.12	18.20	0.00	278.29	18.65	0.00	225.83	10.18	0.00
Race	27.00	4.52	0.00	46.57	13.40	0.00	39.50	14.84	0.01	22.04	5.00	0.00
Insurance type	5.87	3.43	0.09	8.25	8.48	0.33	10.55	9.35	0.26	9.64	5.88	0.10
Marital status	6.64	2.59	0.01	14.54	6.17	0.02	12.76	7.57	0.09	0.32	5.74	0.96
First language	12.18	5.38	0.02	4.81	11.04	0.66	4.36	12.04	0.72	9.71	7.43	0.19
Age	-0.21	0.11	0.06	-0.63	0.27	0.02	-0.73	0.29	0.01	-0.32	0.16	0.05
Gender	6.15	2.50	0.01	8.56	6.37	0.18	8.39	6.66	0.21	9.55	5.43	0.08
							0.9					
Intercept	295.01	17.77	0.00	386.94	22.32	0.00	385.32	26.00	0.00	298.51	14.78	0.00
Race	62.98	15.29	0.00	95.88	20.35	0.00	94.62	16.55	0.00	49.20	15.57	0.00
Insurance type	10.13	6.05	0.09	5.26	12.33	0.67	4.56	13.43	0.73	11.44	6.25	0.07
Marital status	17.79	5.25	0.00	21.06	11.03	0.06	17.25	10.14	0.09	11.38	5.28	0.03
First language	10.24	13.37	0.44	3.41	24.66	0.89	2.70	21.58	0.90	3.11	12.57	0.80
Age	-0.96	0.26	0.00	-1.19	0.37	0.00	-1.16	0.40	0.00	-0.73	0.22	0.00
Gender	5.87	5.38	0.28	-1.66	10.15	0.87	1.30	10.03	0.90	0.68	5.80	0.91

Table 18: The estimates of $\boldsymbol{\theta}$ from different methods with n = 18744 and 61.8% missing in response y_i

Method	Intercept	Race	Insurance type	Marital status	First language	Age	Glucose
elsIpwQr	-1.255	0.120	0.115	-0.344	-0.723	0.014	0.000
proIpwQr	-2.499	0.070	0.021	-0.218	-0.768	0.014	0.008

Table 19: The estimates of $\theta_0 = (-0.6, 0, 0, 0, 0, 0, 0, 2.7)^{\mathsf{T}}$ from different methods with n = 7148 and 40% artificially missing in response y_i

Method	Intercept	Race	Insurance type	Marital status	First language	Age	$ ilde{Y}^2$
elsIpwQr	0.355	0.024	-0.140	0.246	-0.015	0.001	-0.002
proIpwQr	-0.508	-0.028	0.000	-0.051	0.120	0.002	2.307

Table 20: The estimates of $\theta_0 = (-1.7, 0, 0, 0, 0, 0, 2.7)^{\mathsf{T}}$ from different methods with n = 7148 and 60% artificially missing in response y_i

Method	Intercept	Race	Insurance type	Marital status	First language	Age	$ ilde{Y}^2$
elsIpwQr	0.358	0.000	0.178	-0.519	0.099	-0.010	0.005
proIpwQr	-1.488	0.114	0.105	0.147	0.191	-0.003	3.142