LA E χ 02

isagila

Собрано 09.06.2023 в 12:18

Содержание

1.	Лин	ейная алгебра	3
	1.1.	Евклидово пространство: определение, неравенство Коши-Буняковского. Нормированное евклидово	
		пространство.	3
	1.2.	Ортонормированный базис, ортогонализация базиса. Матрица Грама	3
	1.3.	Ортогональность вектора подпространству. Ортогональное дополнение. Теорема Пифагора	3
	1.4.	Задача о перпендикуляре	3
	1.5.	Линейный оператор: определение, основные свойства.	3
	1.6.	Обратный оператор. Взаимно-однозначный оператор. Ядро и образ оператора. Теорема о размерностях.	3
	1.7.	Матрица линейного оператора. Преобразование матрицы при переходе к новому базису.	3
	1.8.	Собственные числа и собственные векторы оператора. Теоремы о диагональной матрице оператора	3
	1.9.	Сопряженный и самосопряженный операторы в вещественном евклидовом пространстве: определения,	
		основные свойства. Свойства собственных чисел и собственных векторов самосопряженного оператора.	3
	1.10.	Структура образа самосопряженного оператора. Проектор. Спектральное разложение оператора	3
	1.11.	Ортогональная матрица и ортогональный оператор. Поворот плоскости и пространства как ортогональное	
		преобразование.	3
	1.12.	Билинейные формы: определения, свойства. Матрица билинейной формы.	3
	1.13.	Квадратичная форма: определения, приведение к каноническому виду	3
	1.14.	Знакоопределенность квадратичной формы: необходимые и достаточные. условия. Критерий Сильвестра.	3
9	Пте	chonovivvo w viv to vinonyovva	1
4.	<u>ди</u> ф 2.1.	оференциальные уравнения Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении	4
		тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Коши	1
	2.2.	Уравнение с разделяющимися переменными	4
	2.3.	Однородное уравнение.	4
	2.4.	Уравнение в полных дифференциалах.	4
	2.5.	Линейное уравнение первого порядка. Метод Лагранжа	5
	2.6.	Теорема существования и единственности решения задачи Коши. Особые решения	5
	2.7.	Уравнения n -ого порядка, допускающие понижение порядка	5
	2.8.	Линейные однородные дифференциальные уравнения (ЛОДУ) : определения, решение ЛОДУ ₂ с посто-	0
		янными коэффициентами для случая различных вещественных корней характеристического уравнения.	6
		Решение ЛОДУ ₂ с постоянными коэффициентами для случая вещественных кратных корней характери-	U
		стического уравнения.	7
		Решение ЛОДУ ₂ с постоянными коэффициентами для случая комплексных корней характеристического	•
		уравнения.	7
		Свойства решений ЛОД y_2 : линейная независимость решений, определитель Вронского. Теоремы 1,2	7
		Свойства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Определитель	•
		Вронского. Теоремы о вронскиане.	7
		Свойства решений $\Pi O \Pi V_2$: линейная комбинация решений, линейная зависимость решений. Теорема о	
		структуре общего решения ЛОДУ ₂ . Фундаментальная система решений (определение)	8
		Свойства решений ЛНД y_2 : теоремы о структуре общего решения и решении Д y с суммой правых частей.	8
		Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы	
		решений по корням характеристического уравнения.	8
		Решение ЛНУ ₂ с постоянными коэффициентами: специальная правая часть, поиск частного решения	
		методом неопределенных коэффициентов	8
		Решение ЛНУ $_2$: метод вариации произвольных постоянных (Лагранжа)	8
		Системы дифференциальных уравнений: определения, решение методом исключения.	8
		Системы дифференциальных уравнений: определения, решение матричным методом в случае различных	
		вещественных собственных чисел	8
	2.20.	Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ.	
		Примеры устойчивого и неустойчивого решения	8

1. Линейная алгебра

- 1.1. Евклидово пространство: определение, неравенство Коши-Буняковского. Нормированное евклидово пространство.
- 1.2. Ортонормированный базис, ортогонализация базиса. Матрица Грама.
- 1.3. Ортогональность вектора подпространству. Ортогональное дополнение. Теорема Пифагора.
- 1.4. Задача о перпендикуляре.
- 1.5. Линейный оператор: определение, основные свойства.
- 1.6. Обратный оператор. Взаимно-однозначный оператор. Ядро и образ оператора. Теорема о размерностях.
- 1.7. Матрица линейного оператора. Преобразование матрицы при переходе к новому базису.
- 1.8. Собственные числа и собственные векторы оператора. Теоремы о диагональной матрице оператора.
- 1.9. Сопряженный и самосопряженный операторы в вещественном евклидовом пространстве: определения, основные свойства. Свойства собственных чисел и собственных векторов самосопряженного оператора.
- 1.10. Структура образа самосопряженного оператора. Проектор. Спектральное разложение оператора.
- 1.11. Ортогональная матрица и ортогональный оператор. Поворот плоскости и пространства как ортогональное преобразование.
- 1.12. Билинейные формы: определения, свойства. Матрица билинейной формы.
- 1.13. Квадратичная форма: определения, приведение к каноническому виду.
- 1.14. Знакоопределенность квадратичной формы: необходимые и достаточные. условия. Критерий Сильвестра.

2. Дифференциальные уравнения

- 2.1. Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Коши.
- 2.2. Уравнение с разделяющимися переменными.

Def 2.2.1. Уравнение вида

$$m(x)N(y)dx + M(x)n(y)dy = 0$$

называется уравнением с разделяющимися переменными.

Для решения таких уравнений необходимо разделить обе части на M(x)N(y), перенести одно из слагаемых в правую часть, после чего проинтегрировать обе части.

$$m(x)N(y)dx + M(x)n(y)dy = 0$$
$$\frac{m(x)}{M(x)}dx + \frac{n(y)}{N(y)}dy = 0$$
$$\int \frac{m(x)}{M(x)}dx = -\int \frac{n(y)}{N(y)}dy$$

Замечание 2.2.2. В случае, если M(x) = 0 или N(y) = 0, то уравнение решается непосредственным интегрированием.

Замечание 2.2.3. Решения вида x = const, y = const не всегда получаемы из общего решения.

- 2.3. Однородное уравнение.
 - **Def 2.3.4.** Функция f(x,y) называется однородной m-ого измерения $(m \ge 0)$, если $f(\lambda x, \lambda y) = \lambda^m f(x,y)$.

Def 2.3.5. Дифференциальное уравнение P(x,y)dx + Q(x,y)dy = 0 называется *однородным*, если P(x,y) и Q(x,y) однородные функции одного измерения m.

Однородные уравнения решаются заменой $t = \frac{y}{x}$. Покажем, откуда появляется подобная замена. Преобразуем функции P(x,y) и Q(x,y):

$$\begin{split} P(x,y) &= P\left(x \cdot 1, x \cdot \frac{y}{x}\right) = x^m P\left(1, \frac{y}{x}\right) \\ Q(x,y) &= Q\left(x \cdot 1, x \cdot \frac{y}{x}\right) = x^m Q\left(1, \frac{y}{x}\right) \end{split}$$

Вернемся к исходному уравнению:

$$P(x,y)dx + Q(x,y)dy = 0 \mid : dx$$

$$y' = -\frac{P(1, \frac{y}{x})}{Q(1, \frac{y}{x})} = f\left(1, \frac{y}{x}\right)$$

$$\frac{y}{x} = t \implies \begin{cases} f(1, \frac{y}{x}) = \tilde{f}(t) \\ y = xt, \ y'_x = t + xt' \end{cases}$$

$$t + xt' = \tilde{f}(t)$$

$$x \cdot \frac{dt}{dx} = \tilde{f}(t) - t$$

$$\frac{dt}{\tilde{f}(t) - t} = \frac{dx}{x}$$

Таким образом исходное однородное уравнение сводится к уравнению с разделяющими переменными. Замечание 2.3.6. Случай $\tilde{f}(t) - t = 0$ нужно рассмотреть отдельно.

2.4. Уравнение в полных дифференциалах.

Def 2.4.7. Дифференциальное уравнение P(x,y)dx + Q(x,y)dy = 0 называется уравнением в полных дифференциалах, если

$$\exists z(x,y) : dz = P(x,y)dx + Q(x,y)dy$$

Критерием того, что данное уравнение является уравнением в полных дифференциалах может служить равенство

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}$$

Решение уравнений в полных дифференциалах сводится к поиску функции z(x,y), удовлетворяющей условиям. Про то, как найти такую функцию можно прочитать в конспекте по матанализу в разделе про интегралы, независящие от пути. После того, как такая функция будет найдена, решить ДУ не составит проблем:

$$P(x,y)dx + Q(x,y)dy = 0$$
$$dz = 0$$
$$z = C$$

TODO: Интегрирующий множитель

2.5. Линейное уравнение первого порядка. Метод Лагранжа.

Def 2.5.8. Линейным однородным уравнением первого порядка ($\Pi O \Pi V_1$) называется уравнение вида

$$y' + p(x)y = 0$$

 $\Pi O \Pi V_1$ является уравнением с разделяющими переменными, поэтому оно решается следующим образом:

$$y' + p(x)y = 0$$
$$\frac{dy}{dx} = -p(x)y$$
$$\frac{dy}{y} = -p(x)dx$$
$$\overline{y} = C \cdot \underbrace{e^{-\int p(x)dx}}_{y_1}$$

Замечание 2.5.9. При решении данного уравнения мы поделили на $y \neq 0$. Заметим, что y = 0 также является решением ЛОДУ₁, однако оно получаемо из общего решения при C = 0.

Def 2.5.10. Линейным неоднородным уравнением первого порядка (ЛНДУ₁) называется уравнение вида

$$y' + p(x)y = q(x), \quad q(x) \neq 0$$

Метод Лагранжа (метод вариации произвольной постоянной) для решения ЛНДУ₁:

- 1. Найдем частное решение y_1 соответствующего однородного уравнения.
- 2. Будем искать решение ЛНДУ $_1$ в виде $y(x) = y_1(x) \cdot C(x)$. Преобразуем ДУ в соответствии с этой заменой

$$y' + p(x)y = q(x)$$

$$y'_{1}(x)C(x) + y_{1}(x)C'(x) + p(x)y_{1}(x)C(x) = q(x)$$

$$y_{1}(x)C'(x) + C(x)\underbrace{\left(y'_{1}(x) + p(x)y_{1}(x)\right)}_{=0} = q(x)$$

$$y_{1}(x)C'(x) = q(x)$$

$$C(x) = \int \frac{q(x)}{y_{1}(x)} dx + C$$

3. Подставим найденную функцию C(x) в $y(x) = y_1(x) \cdot C(x)$.

TODO: Уравнение Бернулли, Клеро, Риккати и пр.

- 2.6. Теорема существования и единственности решения задачи Коши. Особые решения.
- **2.7.** Уравнения n-ого порядка, допускающие понижение порядка.

К уравнениям, допускающим понижение порядка относятся:

1. Непосредственно интегрируемые уравнения вида $y^{(n)}(x) = f(x)$. Они решаются интегрированием обоих частей n раз.

- 2. Уравнения не содержащие y(x) в явном виде.
 - Они решаются заменой z(x) = y'(x), z'(x) = y''(x).

Замечание 2.7.11. В общем случае производится замена самой младшей из присутствующих производных.

- 3. Уравнения не содержащие x в явном виде. Они решаются заменой z(y)=y'(x), тогда $y''(x)=z_y'y_x'=z'(y)\cdot z(y)$
- **2.8.** Линейные однородные дифференциальные уравнения (ЛОДУ) : определения, решение ЛОДУ $_2$ с постоянными коэффициентами для случая различных вещественных корней характеристического уравнения.

Def 2.8.12. Линейным дифференциальным уравнением n-ого порядка (ЛДУ $_n$) называется

$$a_0(x)y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \ldots + a_n(x)y(x) = f(x), \quad a_0(x) \neq 0$$

Def 2.8.13. Разрешенным ЛДУ $_n$ называется

$$y^{(n)}(x) + b_1(x)y^{(n-1)}(x) + \ldots + b_n(x)y(x) = f(x)$$

Def 2.8.14. Если в ЛДУ $_n$ $\forall i\colon a_i(x)=p_i\in\mathbb{R},$ то такое ЛДУ $_n$ называется ЛДУ $_n$ с постоянными коэффициентами. Оно имеет вид

$$y^{(n)}(x) + p_1 y^{(n-1)}(x) + \ldots + p_n y(x) = f(x)$$

Def 2.8.15. Линейным однородным дифференциальным уравнение n-ого порядка называется ЛДУ $_n$ вида

$$a_0(x)y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \ldots + a_n(x)y(x) = 0,$$

Def 2.8.16. Линейным неоднородным дифференциальным уравнение n-ого порядка называется ЛДУ $_n$ вида

$$a_0(x)y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \dots + a_n(x)y(x) = f(x), \quad f(x) \neq 0$$

Рассмотрим ЛОДУ $_2$ вида y'' + py' + qy = 0. Любой паре $(p,q) \in \mathbb{R}^2$ можно поставить в соответствие квадратное уравнение $k^2 + pk + q = 0$. По т. Виета $p = -(k_1 + k_2), q = k_1k_2$, где k_1, k_2 это корни уравнения. Подставим полученные выражения в исходное ДУ:

$$y'' - (k_1 + k_2)y' + k_1k_2 = 0$$

$$y'' - k_1y' - k_2y' + k_1k_2 = 0$$

$$(y'' - k_2y') - k_1(y' - k_2) = 0$$

$$\Box u(x) = y' - k_2y$$

$$u' - k_1u = 0 \implies u(x) = c_1e^{k_1x} \implies y' - k_2y = c_1e^{k_1x}$$

Сначала найдем частное решение соответствующего ЛОДУ₁: $\overline{y} = c_2 e^{k_2 x}, y_1 = e^{k_2 x}$. Далее будем варьировать постоянную c_2 , тогда $y(x) = C_2(x)e^{k_2 x}$. Подставим это в исходное ДУ:

$$C_2'(x)e^{k_2x} + C_2(x) \cdot k_2 \cdot e^{k_2x} - k_2 \cdot C_2(x)e^{k_2x} = c_1e^{k_1x}$$
$$C_2'(x)e^{k_2x} = c_1e^{k_1x}$$

В итоге получаем уравнение

$$C_2'(x) = c_1 e^{(k_1 - k_2)x}$$
 (**)

Проанализируем это уравнение. Всего будет рассмотрено 3 случая: один в этом параграфе, остальные — в двух последующих.

(★) случай І: $k_1 \neq k_2, k_1, k_2 \in \mathbb{R}$

В заданных ограничениях имеем

$$C_2'(x) = c_1 e^{(k_1 - k_2)x}$$

$$C_2(x) = \frac{c_1}{k_1 - k_2} e^{(k_1 - k_2)x} + \tilde{c_2}$$

$$y(x) = C_2(x)y_1(x) = \underbrace{\frac{c_1}{k_1 - k_2}}_{\tilde{c_1}} e^{k_1x} + \tilde{c_2}e^{k_2x}$$

$$y(x) = \tilde{c_1}e^{k_1x} + \tilde{c_2}e^{k_2x}$$

- **2.9.** Решение $\Pi O \Pi V_2$ с постоянными коэффициентами для случая вещественных кратных корней характеристического уравнения.
 - (★) случай II: $k_1 = k_2, k_1, k_2 \in \mathbb{R}$

Пусть $k_1 = k_2 = k$, тогда получаем:

$$C'_{2}(x) = c_{1}e^{(k_{1}-k_{2})x}$$

$$C_{2}(x) = c_{1}x + c_{2}$$

$$y(x) = C_{2}(x)y_{1}(x) = (c_{1}x + c_{2})e^{kx}$$

$$y(x) = c_{1}x \cdot e^{kx} + c_{2}e^{kx}$$

- **2.10.** Решение $\Pi O \Pi V_2$ с постоянными коэффициентами для случая комплексных корней характеристического уравнения.
 - (★) случай III: $k_{1,2} = \alpha + \beta i, k_{1,2} \in \mathbb{C}$

В заданных ограничениях получаем

$$C_2'(x) = c_1 e^{(k_1 - k_2)x}$$

$$C_2(x) = \frac{c_1}{k_1 - k_2} e^{(k_1 - k_2)x} + \tilde{c_2}$$

$$y(x) = C_2(x)y_1(x) = \underbrace{\frac{c_1}{k_1 - k_2}}_{\tilde{c_1}} e^{k_1x} + \tilde{c_2}e^{k_2x}$$

$$y(x) = \tilde{c_1}e^{k_1x} + \tilde{c_2}e^{k_2x}$$

$$y(x) = \tilde{c_1}e^{\alpha x}e^{\beta ix} + \tilde{c_2}e^{\alpha x}e^{-\beta ix}$$

Далее используем формулу $e^{i\varphi} = \cos \varphi + i \sin \varphi$:

$$y(x) = e^{\alpha x} \left(\tilde{c}_1 \left(\cos(\beta x) + i \sin(\beta x) \right) + \tilde{c}_2 \left(\cos(\beta x) - i \sin(\beta x) \right) \right)$$
$$y(x) = e^{\alpha x} \left(\cos(\beta x) \underbrace{\left(\tilde{c}_1 + \tilde{c}_2 \right)}_{\widehat{c}_1} + i \sin(\beta x) \underbrace{\left(\tilde{c}_1 - \tilde{c}_2 \right)}_{\widehat{c}_2} \right)$$
$$y(x) = e^{\alpha x} \left(\hat{c}_1 \cos(\beta x) + \hat{c}_2 i \sin(\beta x) \right)$$

ТООО: Конспект не очень хороший в этом моменте, возможно что-то неправильно

<u>Lm</u> **2.10.17.** Если y(x) = u(x) + iv(x) это решение $\Pi O \Pi Y_2$, то y(x) = u(x) + v(x) также являются решением $\Pi O \Pi Y_2$.

Доказательство. Рассмотрим функцию y(x) = u(x) + v(x):

$$\begin{cases} y(x) = u(x) + v(x) \\ y'(x) = u'(x) + v'(x) \\ y''(x) = u''(x) + v''(x) \end{cases}$$
$$y''(x) + py'(x) + qy(x) = u''(x) + v''(x) + pu'(x) + pv'(x) + u(x) + qu(x) + qv(x) = 0$$
$$\left(u''(x) + pu'(x) + qu(x)\right) + \left(v''(x) + pv'(x) + qv(x)\right) = 0$$

Это равенство верно, т.к. u(x) и v(x) решения ЛОДУ₂.

Значит, по 2.10.17 общее решение (🛨) в третьем случае будет иметь вид

$$y(x) = e^{\alpha x} \left(\widehat{c_1} \cos(\beta x) + \widehat{c_2} \sin(\beta x) \right)$$

- **2.11.** Свойства решений $\Pi O \Pi V_2$: линейная независимость решений, определитель Вронского. Теоремы 1,2.
- **2.12**. Свойства решений $\Pi O \Pi V_2$: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане.

- 2.13. Свойства решений $\Pi O \Pi V_2$: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения $\Pi O \Pi V_2$. Фундаментальная система решений (определение).
- **2.14.** Свойства решений $\Pi H \Pi V_2$: теоремы о структуре общего решения и решении ΠV_2 с суммой правых частей.
- 2.15. Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения.
- **2.16.** Решение ЛНУ $_2$ с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов.
- **2.17.** Решение $\Pi H Y_2$: метод вариации произвольных постоянных (Лагранжа).
- 2.18. Системы дифференциальных уравнений: определения, решение методом исключения.
- 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел.
- **2.20.** Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. Примеры устойчивого и неустойчивого решения