# Physics 129: Particle Physics Lecture 10: Quark Model and SU(3)

Sept 29, 2020

- Suggested Reading:
  - ► Thomson Sections 9.2-9.7
  - Griffiths 5.8-5.10
  - Perkins Sections 4.3-4.11

Reminder: Quiz #1 available now through midnight Wed

### Review: Isospin

- Can classify hadrons with similar mass (and same spin & P) but different charge into multiplets
- Examples:

$$N \equiv \begin{pmatrix} p \\ n \end{pmatrix} \qquad \Pi \equiv \begin{pmatrix} \pi^+ \\ \pi^0 \\ \pi^- \end{pmatrix}$$
$$p = \left| \frac{1}{2} \frac{1}{2} \right\rangle \qquad \pi^+ = |1, 1\rangle$$
$$n = \left| \frac{1}{2} - \frac{1}{2} \right\rangle \qquad \pi^0 = |1, 0\rangle$$
$$\pi^- = |1, -1\rangle$$

- Isospin has the same algebra as spin: SU(2)
  - Can confirm this by comparing decay or scattering rates for different members of the same isomultiplet
  - ▶ Rates related by normal Clebsh-Gordon coefficients

## Review: Strangeness



- In 1950's a new class of hadrons seen
  - ightharpoonup Produced in  $\pi p$  interaction via Strong Interaction
  - ▶ But travel measureable distance before decay, so decay is weak
- $\Rightarrow \exists$  conserved quantum number preventing the strong decay

# Putting Strangeness and Isospin together

 Strange hadrons tend to be heavier than non-strange ones with the same spin and parity

| $J^P$ | Name       | Mass (MeV) |
|-------|------------|------------|
| 0-    | $\pi^\pm$  | 140        |
|       | $K^\pm$    | 494        |
| 1-    | $ ho^\pm$  | 775        |
|       | $K^{*\pm}$ | 892        |

Associate strange particles with the isospin multiplets



## Adding Particles to the Axes: Pseudoscalar Mesons

- Pions have S=0
- Three charge states  $\Rightarrow I = 1$
- Draw the isotriplet:



- From  $\pi^- p \to \Lambda^0 K^0$  define  $K^0$  to have S=1
- If strangeness an additive quantum number,  $\exists$  anti- $K^0$  with S=-1
- Also,  $K^+$  and  $K^-$  must be particle-antiparticle pair: (eg from  $\phi \to K^+K^-$ )



But this is not the whole story There are 9 pseudoscalar mesons (not 7)!

#### The Pseudoscalar Mesons



• Will try to explain this using group theory

## Raising and Lowering Operators

- In Quantum Mechanics, can start with state  $|J,J_z=J\rangle$  and construct all other states of same J using lowering operator  $J_-$
- Similarly with Isopsin, if start with  $\pi^+=|I=1,I_z=1\rangle$  and construct  $\pi^0$  and  $\pi^-$  using lowering operator  $\tau_-$
- If we introduce strangeness, can we navigate among all the mesons in the same way?



Need second lowering operator to navigate in the S direction Extend group from SU(2) to SU(3)

## Group Theory Interpretation of Meson Spectrum



- Particles with same spin, parity and charge conjugation symmetry described as multiplet
  - lacktriangle Different values of  $I_z$  and S
  - $\begin{tabular}{ll} \hline & Will replace $S$ with $Y=B+S$ \\ & where $B$ is the baryon number \\ \end{tabular}$ 
    - Reason for this will be clear soon

- Raising and lowering operators to navigate around the multiplet
- Gell Man and Zweig: Patterns of multiplets explained if all hadrons were made of quarks
  - $\qquad \qquad \mathbf{Mesons:} \ q\overline{q} \quad 3\otimes\overline{3}=1\oplus 8$
  - Baryons:

```
qqq \quad 3 \otimes 3 \otimes 3 = 1 \oplus 8 \oplus 8 \oplus 10
```

- In those days, 3 flavors (extension to more flavors discussed later)
- Are the quarks real

# Defining SU(3)

 SU(3): All unitary transformations on 3 component complex vectors without the overall phase rotation (U(1))

$$U^{\dagger}U = UU^{\dagger} = 1 \qquad \det U = 1$$
 
$$U = \exp\left(i \sum_{a=1}^{8} \lambda_a \theta_a/2\right)$$

• The fundamental representation of SU(3) are  $3 \times 3$  matrices

$$\begin{split} \lambda_1 &= \left( \begin{array}{cccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) & \lambda_2 = \left( \begin{array}{cccc} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) & \lambda_3 = \left( \begin{array}{cccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{array} \right) \\ \lambda_4 &= \left( \begin{array}{cccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right) & \lambda_5 = \left( \begin{array}{cccc} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{array} \right) & \lambda_6 = \left( \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right) \\ \lambda_7 &= \left( \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{array} \right) & \lambda_8 = \frac{1}{\sqrt{3}} \left( \begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{array} \right) \end{split}$$

Commutation relations:

$$\left\lfloor \frac{\lambda_a}{2}, \frac{\lambda_b}{2} \right\rfloor = i f_{abc} \frac{\lambda_c}{2}$$
 where  $f_{123}=1$ ,  $f_{147}=f_{246}=f_{257}=f_{345}=\frac{1}{2}$ ,  $f_{156}=f_{367}=-\frac{1}{2}$  and  $f_{458}=f_{678}=\sqrt{3}/2$ .

## SU(3) Raising and Lowering Operators

• SU(3) contains 3 SU(2) subgroups embedded in it

- For each subgroup, can form raising and lowering operators
- Any two subgroups enough to navigate through multiplet





- Fundamental representation: A triplet
- Define group structure starting at one corner and using raising and lowering operators
- Define "highest weight state"  $\psi$  as state where both  $I_+\psi=0$  and  $V_+\psi=0$
- $\begin{array}{l} \bullet \quad \text{Quarks } (u,d,s) \text{ have} \\ p=1, \ q=0 \text{ while antiquarks} \\ (\overline{u},\overline{d},\overline{s}) \text{ have } p=0, \ q=1 \end{array}$

$$\begin{array}{lcl} (V_-)^{p+1}\phi_{max} & = & 0 \\ (I_-)^{q+1}\phi_{max} & = & 0 \\ \text{structure}: & (p,q) \end{array}$$

# More on Quarks and SU(3)

- All the quarks have Baryon number 1/3 (Baryons are qqq states)
- The quark quantum numbers are:

| Quark          | В    | Q    | $I_3$ | S  | Y    |
|----------------|------|------|-------|----|------|
| u              | 1/3  | 2/3  | 1/2   | 0  | 1/3  |
| d              | 1/3  | -1/3 | -1/2  | 0  | 1/3  |
| s              | 1/3  | -1/3 | 0     | -1 | -2/3 |
| $\overline{u}$ | -1/3 | -2/3 | -1/2  | 0  | -1/3 |
| $\overline{d}$ | -1/3 | 1/3  | 1/2   | 0  | -1/3 |
| $\overline{s}$ | -1/3 | 1/3  | 0     | 1  | 2/3  |

• Notice from this table:

$$Q = I_3 + \frac{Y}{2}$$

 This general relationship holds for baryons and mesons as well as quarks and is called the Gell Mann-Nishijima Eq

## Combining SU(3) states: 2 quarks

• Combining two SU(3) objects gives  $3 \times 3 = 9$  possible states

• Triplet is a  $\overline{3}$  (not a 3):

$$\frac{1}{\sqrt{2}}(ud-du)$$
 has  $I=0,\ I_z=0,$  and  $Y=2/3$   $\frac{1}{\sqrt{2}}(us-su)$  has  $I=\frac{1}{2},\ I_z=\frac{1}{2}$  and  $Y=-1/3$   $\frac{1}{\sqrt{2}}(ds-sd)$  has  $I=\frac{1}{2},\ I_z=-\frac{1}{2}$  and  $Y=-1/3$ 



# Adding a $3^{ m rd}$ quark

- $3 \otimes 3 \otimes 3 = 3 \otimes (6 \oplus \overline{3}) = (10_s \oplus 8_{M,S}) \oplus (8_{M,A} \oplus 1)$
- Start with the fully symmetric combination with the **6**:

$$\begin{array}{c} uuu & 3 \text{ such states} \\ \frac{1}{\sqrt{3}}(ddu+udd+dud) & 6 \text{ such states} \\ \frac{1}{\sqrt{6}}(dsu+uds+sud+sdu+dus+usd) & 1 \text{ such state} \end{array}$$

Now, the mixed symmetry combination with the 6:

$$\frac{1}{\sqrt{6}}\left[(ud+du)u-2uud\right]$$
 8 such states

• Now the  $\overline{3}$ :

$$\frac{1}{\sqrt{6}}\left[\left(ud-du\right)s+\left(usd-dsu\right)+\left(du-ud\right)s\right]$$
 8 such states

· One totally antisymmetric state

$$\epsilon_{ijk}q_iq_jq_k$$

### Some Comments on what we just did

- Strategy same as how we constructed states of angular momentum in coupled basia
  - Two quarks play same role as two spins in uncoupled basis
  - Combinations have definite symmetry under interchange
    - Quarks are femions and if identical will need to obey Fermi statistics
- Size and symmetry properties of multiplets determined by SU(3) symmetry
  - ▶ But can be seen by inspection for the simple cases
- Group theory cannot tell us that all physically observed baryons are qqq combinations but it can tell us which multiplets can exist for such combinations
- Not all possible multiplets will exist (in some cases no bound state exists)
- But once we have observed one hadron in a multiplet, all the others must exist
  - Can construct all the hadrons from the one observed using raising and lowering operators

#### What about the mesons?

- Mesons are  $q\overline{q}$  pairs
- We need to know representation of the anti-quarks
- Strangeness and baryon number easy
  - ► Antiparticle has opposite strangeness from particle
  - ► Antiparticle has opposite baryon number from particle
- Peculiar sign convention for isospin (phases in Condon Shortly convention)
- · If we write

$$q = \left(\begin{array}{c} u \\ d \end{array}\right)$$

the convention for antiquarks is

$$\overline{q} = \left(\begin{array}{c} -d \\ u \end{array}\right)$$

• With this definition, quarks and anti-quarks transform the same way under isospin and physical predictions are invarient under simultaneous tranformations of the form  $u\Leftrightarrow d$  and  $\overline{u}\Leftrightarrow \overline{d}$ 

# Constructing the Mesons $(q\overline{q})$ states

- Start with  $\pi^+ = u \; \overline{d}$
- Using:

$$I - |\overline{u}\rangle = -|\overline{d}\rangle$$
  
 $I - |\overline{d}\rangle = +|\overline{u}\rangle$ 

We find:

$$I_{-} |u\overline{d}\rangle = \frac{1}{\sqrt{2}} (|d\overline{d}\rangle - |u\overline{u}\rangle)$$
  
 $= |I = 1 I_{3} = 0\rangle$   
 $\pi^{0} = \frac{1}{\sqrt{2}} (|d\overline{d}\rangle - |u\overline{u}\rangle)$ 

Doing this again:  $\pi^-=d\;\overline{u}$ 

Now add strange quarks: 4 combinations

$$\begin{array}{cccc} u\overline{s} & d\overline{s} & \overline{u}s & \overline{d}s \\ K^+ & K^0 & K^- & \overline{K^0} \end{array}$$

 One missing combination we can construct using raising or lowering operators

$$(d\overline{d} + u\overline{u} - 2s\overline{s})/\sqrt{6} \equiv \eta'$$

These 8 states are called an octet

 One additional independent combination: the singlet state

$$(u\overline{u} + d\overline{d} + s\overline{s})/\sqrt{6}$$

# Pseudoscalar Mesons $(J^P = 0^-)$



|                                                                       |                   |              |                  |                                                                                                                                                | Example              |            |
|-----------------------------------------------------------------------|-------------------|--------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|
| I                                                                     | $I_3$             | $\mathbf{S}$ | Meson            | Combo                                                                                                                                          | Decay                | Mass (MeV) |
| 1                                                                     | 1                 | 0            | $\pi^+$          | $u\overline{d}$                                                                                                                                | $\mu^+ \nu$          | 140        |
| 1                                                                     | 0                 | 0            | $\pi^0$          | $\frac{1}{\sqrt{2}}(d\overline{d} - u\overline{u})$                                                                                            | $\gamma\gamma$       | 135        |
| 1                                                                     | -1                | 0            | $\pi^-$          | $d\overline{u}$                                                                                                                                | $\mu^-\overline{ u}$ | 140        |
| $\frac{1}{2}$                                                         | $\frac{1}{2}$     | +1           | $K^+$            | $u\overline{s}$                                                                                                                                | $\mu^+ \nu$          | 494        |
| $\frac{1}{2}$                                                         | $-\frac{1}{2}$    | +1           | $K^0$            | $d\overline{s}$                                                                                                                                | $\pi\pi$             | 498        |
| $\frac{1}{2}$                                                         | $\frac{1}{2}^{-}$ | -1           | $K^-$            | $\overline{u}s$                                                                                                                                | $\mu^-\overline{ u}$ | 494        |
| $\frac{\frac{1}{2}}{\frac{1}{2}}$ $\frac{\frac{1}{2}}{\frac{1}{2}}$ 0 | $-\frac{1}{2}$    | -1           | $\overline{K^0}$ | $\overline{d}s$                                                                                                                                | $\pi\pi$             | 498        |
| ō                                                                     | 0                 | 0            | $\eta_8$         | $\frac{1}{\sqrt{6}}(d\overline{d} + u\overline{u} - 2s\overline{s})$                                                                           | see next page        |            |
| 0                                                                     | 0                 | 0            | $\eta_0$         | $\frac{\frac{1}{\sqrt{6}}(d\overline{d} + u\overline{u} - 2s\overline{s})}{\frac{1}{\sqrt{3}}(d\overline{d} + u\overline{u} + s\overline{s})}$ | see next page        |            |

#### Observations about the Pseudoscalar Mesons



- Mass of strange mesons larger than non-strange by about 170 MeV
  - Strange quark has a larger mass than up and down
  - ▶ Leads to SU(3) breaking in  $H_{int}$
- $\eta_8$  and  $\eta_0$  would be degenerate if SU(3) were perfect symmetry
  - ▶ Degenerate PT: The states can mix. Physical states are:
    - $\eta$ : Mass=549 Decay:  $\eta \to 2\gamma$
    - $\eta'$ : Mass=958 Decays: $\eta' \to \eta \pi \pi$  or  $2\gamma$

# Vector Mesons $(J^P = 1^-)$



| I                                                                                       | $I_3$                                                                                                                      | $\mathbf{S}$ | Meson               | Combo                                               | Decay             | Mass (MeV)      |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|-----------------------------------------------------|-------------------|-----------------|
| 1                                                                                       | 1                                                                                                                          | 0            | $ ho^+$             | $u\overline{d}$                                     | $\pi^+\pi^0$      | 776             |
| 1                                                                                       | 0                                                                                                                          | 0            | $ ho^0$             | $\frac{1}{\sqrt{2}}(d\overline{d} - u\overline{u})$ | $\pi^+\pi^-$      | 776             |
| 1                                                                                       | -1                                                                                                                         | 0            | $ ho^-$             | $d\overline{u}$                                     | $\pi^-\pi^0$      | 776             |
| $\frac{1}{2}$                                                                           | $\frac{1}{2}$                                                                                                              | +1           | $K^{*+}$            | $u\overline{s}$                                     | $K\pi$            | 892             |
| $\frac{\overline{1}}{2}$                                                                | $-\frac{1}{2}$                                                                                                             | +1           | $K^{*0}$            | $d\overline{s}$                                     | $K\pi$            | 892             |
| $\frac{\overline{1}}{2}$                                                                | $\frac{1}{2}^{-}$                                                                                                          | -1           | $K^{*-}$            | $\overline{u}s$                                     | $\overline{K}\pi$ | 892             |
| $\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$ | $     \begin{array}{r}       \frac{1}{2} \\       -\frac{1}{2} \\       \frac{1}{2} \\       -\frac{1}{2}    \end{array} $ | -1           | $\overline{K^{*0}}$ | $\overline{d}s$                                     | $\overline{K}\pi$ | 892             |
| Ō                                                                                       | 0                                                                                                                          | 0            | $\omega$            | $\frac{1}{\sqrt{2}}(u\overline{u}+d\overline{d})$   | 783               | $3\pi$          |
| 0                                                                                       | 0                                                                                                                          | 0            | $\phi$              | $s\overline{s}$                                     | 1019              | $K\overline{K}$ |

See comments on next page

# Comments on Vector Mesons $(1^-)$



 Unlike the pseudoscalars which decay weakly, the vectors can decay strongly, eg

$$\begin{array}{cccc} \rho^0 & \rightarrow & \pi^+\pi^- \\ K^{*0} & \rightarrow & K^+\pi^- \end{array}$$

- Octet-nonet mixing is maximal in the case of the vector mesons
  - ightharpoonup The  $\phi$  is all  $s\overline{s}$  while the  $\omega$  is all  $u\overline{u}$  and  $d\overline{d}$
  - lacktriangle Related to mass difference between the s quark and the u or d quarks

# Baryon Decouplet $(J = \frac{3}{2}^{-})$



- ullet Here is the  $\Delta$  that we talked about earlier
- ullet These are strongly decaying resonances since the can decay to the lighter octet baryons such as the p and n

# Baryon Octet $(J = \frac{1}{2})$



- Lightest baryons
- Decay weakly (except proton which is stable)

## Comments on Antiparticles

- For mesons, particle and antiparticle are in the same multiplet
  - $\blacktriangleright$   $\pi^-$  is antiparticle of  $\pi^+$
  - $ightharpoonup \pi^0$  is its own antiparticle
  - ► The multiplet is called "self-charge conjugate"
- For baryons, the antiparticles are in different multiplets
  - $ightharpoonup 10 \Rightarrow \overline{10}$
  - $ightharpoonup 8 \Rightarrow \overline{8}$
  - - Upper right corner moves to lower left
  - ▶ Baryon number  $= 1 \Rightarrow$  Baryon number = -1

## Fermi Statistics: Why Color

- Imposition of Fermi Statistics on Baryon States
  - $\Delta^{++} = uuu$ , spin=3/2, s-wave: These are all symmetric under interchange
  - Need another degree of freedom to antisymmetrize
    - Must have at least 3 possible states, since we are antisymmetrizing 3 objects)
- We'll in 2 weeks, that the QCD Lagrangian is defined by  $SU(3)_{\rm color}$  interaction
  - Gluons are color octets
  - Observable hadrons are color singlets
  - The color singlet states are anti-symmetric under color exchange
    - This solves the Fermi statistics problem
    - All hadrons are color singlets
    - Thus quark wave function before adding color is symmetric

## Backup slides with extra material

The following slides were not discussed in class but they will be of use for next week's homework

# SU(3) Breaking and Mass Relations

- SU(3) symmetry: all members of multiplet have same mass
  - Mass depends on binding energy: cannot calculate, since perturbative calculations not possible for low energy QCD
- · Reasons why the physical masses in a multiplet are different
  - Difference in quark masses
    - $m_d > m_u$  by a few MeV,  $m_s$  heavier by  $\sim 170$  MeV
  - Coulomb energy difference associated with the electrical energy between pairs of quarks
    - Of order  $e^2/R_0$ . With  $R_0 \sim 0.8$  fm, this  $\sim 2$  MeV
  - Magnetic energy differences associated with the magnetic moments of the quarks (hyperfine interaction)

#### Vector-Pseudoscalar Meson Mass Differences

- $m_{\pi}^{\ 0}=135$  MeV,  $m_{\rho}^{\ 0}=775$  MeV but SU(3) wave function is the same
- Only difference is the spin of the particles
- Both are  $\ell=0$  states of the  $q\overline{q}$  pair
- Difference is spin: S = 0 or S = 1
- Consider magnetic dipole energy

$$U \propto \frac{1}{m_i m_j} \vec{S}_1 \cdot \vec{S}_2$$

Meson mass is

$$m(q_1q_2) = m_1 + m_2 + \frac{A}{m_i m_j} \vec{S}_1 \cdot \vec{S}_2$$

• Good agreement with data using

$$m_u, m_d = 0.307 \text{ GeV}$$
  $m_s = 0.490 \text{ GeV}$   $A = 0.06 \text{ GeV}$ 

### Some comments on quark masses

- Mass values from previous page not universal
- Quarks are bound in hadrons: the quark "mass" needed in these calculations affected by binding energy
- Baryons and mesons have different wave functions and hence different binding energies
  - ► Thus slightly different effective masses
- Above masses called "constituent mass"
- Completely different from "current mass" that is used in QFT Lagrangian
  - Current masses for quarks are a few MeV

## Baryon Masses

· Similar idea as for mesons

$$m(q_1q_2q_3) = m_1 + m_2 + m_3 + A' \left( \frac{\left\langle \vec{S}_1 \cdot \vec{S}_2 \right\rangle}{m_1m_2} \frac{\left\langle \vec{S}_1 \cdot \vec{S}_3 \right\rangle}{m_1m_3} \frac{\left\langle \vec{S}_2 \cdot \vec{S}_3 \right\rangle}{m_2m_3} \right)$$

Good agreement with data using

$$m_u, m_d = 0.365 \text{ GeV}$$
  $m_s = 0.540 \text{ GeV}$   $A = 0.026 \text{ GeV}$ 

Notice these values aren't the same as for the mesons.

# Baryon Magnetic Moments (I)

- Baryons are not Dirac particles
  - They have structure (quark bound states)
- Magnetic moment differs from that of pointlike fermions
  - $\blacktriangleright \mu_{proton} = 2.792 \mu_N \text{ and } \mu_{neutron} = -1.913 \mu_N$
  - $\blacktriangleright$  where  $\mu_N$  is the nuclear magneton

$$\mu_N = \frac{e\hbar}{2m_p}$$

 Quarks are Dirac particles so for a given spin-state we can calculate the magnetic moment. Thus for spin up quarks

$$\mu_u = \langle u \uparrow | \hat{\mu}_z | u \uparrow \rangle = \frac{2}{3} \frac{e\hbar}{m_u}$$
$$\mu_d = \langle d \uparrow | \hat{\mu}_z | d \uparrow \rangle = \frac{-1}{3} \frac{e\hbar}{m_u}$$

Hadron magnetic moments can be built from the quarks

## Baryon Magnetic Moments (II)

- Combine the 3 quarks by first combining 2 and then adding the third
- Since color state asymmetric quark wave function without color is symmetric
- Let's see how this works for the protom
  - Isopsin of the first two quarks
    - I=0: Antisymmetric state. Two quarks must be different  $\psi_0=\frac{1}{\sqrt{2}}(ud-du)$
    - I=1: Symmetric state  $\psi_1$ : uu,  $\frac{1}{\sqrt{2}}(ud-du)$ , dd
  - ► Combine with 3rd quark and require  $I = \frac{1}{2}$ ,  $I_z = \frac{1}{2}$ 
    - ullet I=0: Third quark must be a u
    - I=1: Use Clebsch-Gordon coeff. 3-quark state is  $\sqrt{2/3}d(uu)-\sqrt{1/3}u(\frac{1}{\sqrt{2}}(ud-du)),$
  - Now add spin which must be antisymmetric for  $\psi_0$  and symmetric for  $\psi_1$
  - Final result for spin up proton:
  - $\Phi = \sqrt{1/8} \left[ 4/3uud \uparrow \uparrow \downarrow -2/3uud \uparrow \downarrow \uparrow -2/3uud \downarrow \uparrow \uparrow -2/3udu \uparrow \uparrow \downarrow +4/3udu \uparrow \downarrow \uparrow -2/3udu \downarrow \uparrow \uparrow -2/3duu \uparrow \uparrow \downarrow -2/3duu \uparrow \downarrow \uparrow +4/3duu \downarrow \uparrow \uparrow \right]$

# Baryon Magnetic Moments (III)

Combining terms from previous page:

$$|p\uparrow\rangle = \frac{1}{\sqrt{6}} \left( 2u \uparrow u \uparrow d \downarrow -u \uparrow u \downarrow d \uparrow -u \downarrow u \downarrow d \uparrow \right)$$

• This gived

$$\mu_p = \frac{4}{6} (\mu_u + \mu_u - \mu_d) + \frac{1}{6} (\mu_u - \mu_u + \mu_d) + \frac{1}{6} (-\mu_u + \mu_u + \mu_d)$$
$$= \frac{4}{3} \mu_u - \frac{1}{3} \mu_d$$

• Similarly

$$\mu_n = \frac{4}{3}\mu_d - \frac{1}{3}\mu_u$$

• Predictions reasonably reproduce data values