TDT4171 Artificial Intelligence Methods Lecture 9 – More on Deep Learning

Norwegian University of Science and Technology

Helge Langseth Gamle Fysikk 255 helge.langseth@ntnu.no

Outline

- Summary from last time
- Modelling with neural nets
- Gradient-based learning
 - General setup
 - Perceptrons
 - Backpropagation
- Fancy representations
 - Convolutions
 - RNNs
- Summary

Summary from last time

- Learning: Use data to generate (or improve) a representation.
- Inductive learning hypothesis: "Old data has relevance for new problems"
- Neural networks: Capable structures defined by combining many simple computational units
 - Simple perceptrons
 - ullet Layered models o Feed forward networks
 - DL models can also contain more complicated structures
- Learning: Define a loss, minimize using gradient descent
- Overfitting: A model overfits if it does well on the training data, but fails to generalize
 - Prefer simplicity
 - Can be enforced using, e.g., norm penalties; dropout

Reference group meeting:

- Piazza
- Assignment deadlines
- Time-keeping

Model structure: Layers of simple nodes

Model structure: Activations for hidden nodes

- Classic activation functions, chosen for simplicity ("linear",
 "hard_tanh") or biological plausibility ("sigmoid") the latter
 has a sibling that also generates negative values ("tanh").
- Sigmoids no longer in much use (for hiddens) due to diminishing gradients.

Model structure: Activations for hidden nodes

- The "relu" (with extensions) very popular nowadays.
- Gradients zero → "leaky_relu"; Derivative undefined at zero → "softplus"; Size explosion → "selu".
- Finding new activation functions is still an active research field.

Model structure: Activations for output nodes

- Regression problems: Depending on output range, typically "linear" (for unbounded), "relu" (for positive) or "sigmoid"/"tanh" with proper scaling (for ranged)
- Classification problems: Nice if output layer is a probability distribution (non-negative values, sum to 1).
 - Assume we have K classes, and $\mathbf{in} = (\mathsf{in}_1, \dots, \mathsf{in}_K)$ be pre-activation values. Then

$$\operatorname{softmax}(\mathbf{in})_i = \frac{\exp(\operatorname{in}_i)}{\sum_{j=1}^K \exp(\operatorname{in}_j)}.$$

- No constraints on $(\mathsf{in}_1,\ldots,\mathsf{in}_K)$ wrt. range of values: $\mathbf{in} \in \mathbb{R}^K \Rightarrow \mathsf{softmax}(\mathbf{in})_i \geq 0, \sum_{k=1}^K \mathsf{softmax}(\mathbf{in})_k = 1.$
- Defines a "competition" between output nodes (i.e., classes).

Model structure: Loss functions

• Regression problems: Typically L_p-loss: $\mathcal{L}(y, \hat{y}) = |y - \hat{y}|^p$ for p = 1 or 2 (or Huber-loss; a combo).

Model structure: Loss functions

- Regression problems: Typically L_p-loss: $\mathcal{L}(y,\hat{y}) = |y \hat{y}|^p$ for p = 1 or 2 (or Huber-loss; a combo).
- Classification problems: Typically cross entropy loss $\mathcal{L}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = -\sum_{k=1}^K y_k \cdot \log_2(\hat{y}_k)$. Here, \boldsymbol{y} is a one-hot-encoding over the classes (a vector of length K, with all zeros except the position for the correct class, which is one).

Model structure: Regularization

- Typical example of **overfitting**: Training loss (blue) keeps going down, yet validation loss (orange) starts increasing.
- Obvious strategy: Early stopping.
- Additional problem: Gap between training and validation loss indicate need for regularization.

Model structure: Regularization (cont'd)

Definition of Regularization:

Reduction of **testing** error while maintaining a low **training** error.

Motivation:

- Excessive training does reduce training error, but often at the expense of higher testing error.
- Flexible model classes (like neural nets) are prone to this.
- By effectively memorizing training-examples, we do not (necessarily) promote the ability to generalize

Types of regularization:

- Early stopping
- Weight-norm regularization (see slide from last week)
- Dropout (see slide from last week)
- ... and lots more!

"DYP LÆRING"

Does it work?

XOR on a small network

- One epoch: All possible XOR configs.
- Model is $2 \to 2 \to 1$. Small, so hard to learn.
- All weights randomly initialized in [-1, 1].
- Sometimes learning fails, in this case initialization was crucial.

How to make it work

- You need to be willing to spend a lot of time on hyper-parameter tuning. Tools are available. Use them!
- ② Be restrictive on model size.
 Too big models take longer to learn and may overfit more.
- Don't be too restrictive on model size.
 Too small models may be unable to represent relationship.
- Scale all input values to the same range.
- Be careful when initializing weights: Start small!
- Regularize
- Monitor training loss and validation loss. The former should become very small, while the latter should be similar and not increase.

Gradient-based learning

Minimize the the objective function $\mathcal L$ using partial derivatives of $\mathcal L$ wrt. model weights w!

Simple setup: Learn the function y = f(x):

- Data: $\mathcal{D}_i = (x_i, y_i)$; Model weights: w; Output: $\hat{y} = w^\top x$.
- Objective: $\mathcal{L}(y, \hat{y}) = (y \hat{y})^2 = (y \boldsymbol{w}^{\top} \boldsymbol{x})^2$.
- Note! We will not see y = f(x) for all possible x, but will optimize based on our data $\{\mathcal{D}_i\}_{i=1}^N$. Loss is a sum over all datapoints.
- Since $\frac{\partial}{\partial w_j} \mathcal{L}(y, \boldsymbol{w}^{\top} \boldsymbol{x}) = -2 x_j \cdot (y \boldsymbol{w}^{\top} \boldsymbol{x})$, the move based on (\boldsymbol{x}, y) would be $w_j \leftarrow w_j \eta \cdot \frac{\partial}{\partial w_i} \mathcal{L}(y, \boldsymbol{w}^{\top} \boldsymbol{x}) = w_j \eta \cdot 2x_j \cdot (\boldsymbol{w}^{\top} \boldsymbol{x} y)$
- Full dataset: $w_j \leftarrow w_j \eta \cdot \sum_{i=1}^N \frac{\partial}{\partial w_i} \mathcal{L}(y_i, \boldsymbol{w}^\top \boldsymbol{x}_i)$

Gradient-based learning in neural nets

Steps:

- **1** Push x_i forwards to calculate \hat{y}_i .
- **2** Calculate loss based on \hat{y}_i and observed y_i : $\mathcal{L}(y_i, \hat{y}_i)$.
- **3** Calculate gradients $\nabla_{\boldsymbol{w}} \mathcal{L}(y_i, \hat{y}_i)$ while moving backwards.
- Update weights.

Gradient-based learning in neural nets

This is general purpose!

- NNs are getting increasingly complex, but the general idea is the same: Forward pass to find \hat{y} , backward pass to calculate $\nabla_{\boldsymbol{w}} \mathcal{L}(y_i, \hat{y}_i).$
- Finding the gradients can be tedious and challenging, but frameworks like Tensorflow and PyTorch help us.

Gradient Descent – Details for our simple example

Recall our simple example:

Simple setup: Learn the function f(x):

- Data: $\mathcal{D}_i = (x_i, y_i)$; Model weights: \boldsymbol{w} ; Output: $\hat{y} = \boldsymbol{w}^{\top} \boldsymbol{x}$.
- Objective: $\mathcal{L}(y, \hat{y}) = (y \hat{y})^2 = (y \boldsymbol{w}^{\top} \boldsymbol{x})^2$.
- This corresponds to a perceptron w/ linear activation.
- We have already seen the result:

$$w_j \leftarrow w_j - \eta \cdot \frac{\partial}{\partial w_j} \mathcal{L}(y, \boldsymbol{w}^\top \boldsymbol{x}) = w_j - \eta \cdot 2x_j \cdot (\boldsymbol{w}^\top \boldsymbol{x} - y)$$

This is the general rule for a perceptron with identity transfer.

Gradient Descent – Details for our simple example

$$\frac{\partial \mathcal{L}}{\partial w_{j}} = \frac{\partial}{\partial w_{j}} \sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}$$

$$= \sum_{i=1}^{N} \frac{\partial}{\partial w_{j}} (y_{i} - \hat{y}_{i})^{2}$$

$$= \sum_{i=1}^{N} 2(y_{i} - \hat{y}_{i}) \frac{\partial}{\partial w_{i}} (y_{i} - \hat{y}_{i})$$

$$= 2 \sum_{i=1}^{N} (y_{i} - \hat{y}_{i}) \frac{\partial}{\partial w_{j}} (y_{i} - \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_{i})$$

$$= -2 \sum_{i=1}^{N} (y_{i} - \hat{y}_{i}) \left(\frac{\partial}{\partial w_{j}} \sum_{l} w_{l} \cdot x_{i,l} \right)$$

$$\frac{\partial \mathcal{L}}{\partial w_{j}} = -2 \sum_{i=1}^{N} x_{i,j} \cdot (y_{i} - \hat{y}_{i})$$

Gradient Descent – The algorithm for simple example

Gradient-Descent(\mathcal{D} , η)

Each training example is a pair of the form $\langle x,y \rangle$, where x is the vector of input values, and y is the target output value. η is the learning rate (e.g., .05).

- Initialize each w_j to some small random value
- Until the termination condition is met:
 - Initialize: $\Delta w_i \leftarrow 0$.
 - **2** For each $\langle x_i, y_i \rangle$ in \mathcal{D} :
 - ullet Send $oldsymbol{x}_i$ through the network and compute the output \hat{y}_i
 - For each linear unit weight w_j : $\Delta w_j \leftarrow \Delta w_j 2(y_i \hat{y}_i) \cdot x_{i,j}$
 - **3** For each linear unit weight w_j : $w_j \leftarrow w_j \eta \cdot \Delta w_j$

Same algorithm skeleton works for other activation functions, as long as we can calculate $\frac{\partial \mathcal{L}}{\partial w_i}$.

Gradient Descent: Perceptron with transfer functions

Assume the logistic transfer function:

$$g(t) = \frac{1}{1 + \exp(-t)}, \quad g'(t) = g(t) \cdot [1 - g(t)].$$

$$\frac{\partial \mathcal{L}}{\partial w_j} = \frac{\partial}{\partial w_j} \sum_{i=1}^N (y_i - \hat{y}_i)^2$$

$$= 2 \sum_{i=1}^N (y_i - \hat{y}_i) \frac{\partial}{\partial w_j} (y_i - g(\mathbf{w}^\mathsf{T} \mathbf{x}_i))$$

$$= 2 \sum_{i=1}^N (y_i - \hat{y}_i) \cdot (-1) \cdot x_{i,j} \cdot g'(\mathbf{w}^\mathsf{T} \mathbf{x}_i)$$

$$\frac{\partial \mathcal{L}}{\partial w_j} = -2 \sum_{i=1}^N x_{i,j} \cdot (y_i - \hat{y}_i) \cdot \hat{y}_i \cdot (1 - \hat{y}_i)$$

This is new from the "simple example"

Notation for node *j*:

- Weight into node is w_j ; its activation function $g_j(\cdot)$.
- in i as the weighted input.
- a_j is output from node j, $a_j = g_j(\operatorname{in}_j)$ and $\operatorname{in}_{j+1} = w_{j+1} \cdot a_j = w_{j+1} \cdot g_j(\operatorname{in}_j)$.

Goal: Calculate
$$\nabla_{\boldsymbol{w}} \mathcal{L}(y, \hat{y}) = \left[\frac{\partial \mathcal{L}}{\partial w_0}, \frac{\partial \mathcal{L}}{\partial w_1}, \frac{\partial \mathcal{L}}{\partial w_2}, \frac{\partial \mathcal{L}}{\partial w_3}\right]^{\mathsf{T}}$$
.

Calculation:

• Start from back: $\frac{\partial \mathcal{L}}{\partial w_3} = \frac{\partial \mathcal{L}}{\partial \hat{g}} \cdot g_3'(\text{in}_3) \cdot a_2$; $\text{in}_3 = w_3 \, a_2$. $\delta_3 \leftarrow \frac{\partial \mathcal{L}}{\partial \text{in}_3} = \frac{\partial \mathcal{L}}{\partial \hat{g}} \cdot g_3'(\text{in}_3)$. $\frac{\partial \mathcal{L}}{\partial w_3} = \frac{\partial \mathcal{L}}{\partial \text{in}_3} \frac{\partial \text{in}_3}{\partial w_3} = \delta_3 \, a_2$.

Calculation:

- Start from back: $\frac{\partial \mathcal{L}}{\partial w_3} = \frac{\partial \mathcal{L}}{\partial \hat{y}} \cdot g_3'(\text{in}_3) \cdot a_2$; $\text{in}_3 = w_3 a_2$. $\delta_3 \leftarrow \frac{\partial \mathcal{L}}{\partial \text{in}_3} = \frac{\partial \mathcal{L}}{\partial \hat{y}} \cdot g_3'(\text{in}_3)$. $\frac{\partial \mathcal{L}}{\partial w_3} = \frac{\partial \mathcal{L}}{\partial \text{in}_3} \frac{\partial \text{in}_3}{\partial w_3} = \delta_3 a_2$.
- $\begin{array}{l} \bullet \ \ \frac{\partial \mathcal{L}}{\partial w_2} = \frac{\partial \mathcal{L}}{\partial \mathsf{in}_3} \, \frac{\partial \mathsf{in}_3}{\partial w_2} = \delta_3 \cdot w_3 \, \frac{\partial}{\partial w_2} \cdot g_2(w_2 \cdot a_1) = \delta_3 \cdot w_3 \cdot g_2'(\mathsf{in}_2) \cdot a_1; \\ \delta_2 \leftarrow \frac{\partial \mathcal{L}}{\partial \mathsf{in}_2} = \delta_3 \cdot w_3 \cdot g_2'(\mathsf{in}_2). \end{array}$

Calculation:

- Start from back: $\frac{\partial \mathcal{L}}{\partial w_3} = \frac{\partial \mathcal{L}}{\partial \hat{y}} \cdot g_3'(\text{in}_3) \cdot a_2$; $\text{in}_3 = w_3 a_2$. $\delta_3 \leftarrow \frac{\partial \mathcal{L}}{\partial \text{in}_3} = \frac{\partial \mathcal{L}}{\partial \hat{y}} \cdot g_3'(\text{in}_3)$. $\frac{\partial \mathcal{L}}{\partial w_3} = \frac{\partial \mathcal{L}}{\partial \text{in}_3} \frac{\partial \text{in}_3}{\partial w_3} = \delta_3 a_2$.
- $\begin{array}{l} \bullet \ \ \frac{\partial \mathcal{L}}{\partial w_2} = \frac{\partial \mathcal{L}}{\partial \mathrm{in}_3} \ \frac{\partial \mathrm{in}_3}{\partial w_2} = \delta_3 \cdot w_3 \ \frac{\partial}{\partial w_2} \cdot g_2(w_2 \cdot a_1) = \delta_3 \cdot w_3 \cdot g_2'(\mathrm{in}_2) \cdot a_1; \\ \delta_2 \leftarrow \frac{\partial \mathcal{L}}{\partial \mathrm{in}_2} = \delta_3 \cdot w_3 \cdot g_2'(\mathrm{in}_2). \end{array}$
- $\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial \mathcal{L}}{\partial \ln_2} \frac{\partial \ln_2}{\partial w_1} = \delta_2 \cdot w_2 \cdot g_1'(\ln_1) \cdot a_0.$

Notice:

- Forward for activations: $a_{j+1} = g_{j+1}(w_{j+1} a_j)$.
- Backward for derivatives:
 - $\delta_j = \frac{\partial \mathcal{L}}{\partial \ln_j} = g'_j(\ln_j) w_{j+1} \cdot \delta_{j+1}$.
 - $\bullet \ \ \frac{\partial \mathcal{L}}{\partial w_j} = \frac{\partial \mathcal{L}}{\partial \text{in}_j} \, \frac{\partial \text{in}_j}{\partial w_j} = \delta_j \cdot a_{j-1}$

Backpropagation Algorithm – General model

Layered model:

- The effect of changing w_0 will spread through many additive "paths"; all must be considered when adapting the weight.
- The derivatives of a sum equals the sum of derivatives, so this is actually "easy" to generalize.
- Now $\delta_j = \frac{\partial \mathcal{L}}{\ln j}$ is a **vector** with one element per node in layer j: $\delta_{i,k} = g_i'(\mathsf{in}_{i,k}) \sum_{\ell} w_{j+1,\ell} \cdot \delta_{j+1,\ell}.$

Backpropagation Algorithm – Sigmoid units

- Initialize all weights to small random numbers.
- Until satisfied:
 - For each training example
 - Input the training example to the network and compute the network outputs and node activations along the way
 - $\textbf{ For each output unit } k : \ \delta_k \leftarrow \underbrace{-2(y_k \hat{y}_k)} \times \underbrace{\hat{y}_k(1 \hat{y}_k)}$
 - **3** For each hidden unit *h*:

$$\delta_h \leftarrow \underbrace{a_h(1-a_h)}_{q'(\operatorname{in}_h)} \times \sum_{k \in \operatorname{outputs}} w_{h,k} \cdot \delta_k$$

Unit h's contribution to next layer's error

4 Update each network weight $w_{i,j}$: $w_{i,j} \leftarrow w_{i,j} - \eta \Delta w_{i,j}$, where $\Delta w_{i,j} = \delta_i \cdot a_i$ and a_i is the activation of the node pushing information into $w_{i,j}$.

Backprop in yet another picture

$$\delta_h \!\leftarrow\! a_h (1-a_h) \times \sum_k w_{h,k} \, \delta_k \quad \text{and} \quad \Delta w_{i,h} \!\leftarrow\! \delta_h \cdot a_i$$

Note the "locality" of the calculations:

- $\Delta w_{i,h}$ only cares about Node h, its parent (Node i), and its children (Nodes k).
- \bullet The calculation of $\delta_h=\frac{\partial \mathcal{L}}{\partial \mathsf{in}_h}$ does not care about the parent (Node i), so we can use the same value for all parents!

- Representation to describe computations in a directed graph. This one shows $\hat{y} = \text{relu}(\boldsymbol{x}^\mathsf{T}\boldsymbol{w} + b); \ \mathcal{L} = (y \hat{y})^2.$
- The layered NN architecture maps directly to the comp.graph:
 - All calculation results are nodes
 - All terms used in a node's calculations are parents.
- Gradients are found using the graph and the chain rule.

- Calculating derivatives by going backwards in the graph:
 - Do a local compute at node
 - Multiply with result from child.
 - If several children: Just sum
- Starting at \mathcal{L} and ending at b gives us $\frac{\partial \mathcal{L}}{\partial b}$; starting at \mathcal{L} and ending at w produces $\frac{\partial \mathcal{L}}{\partial w}$.

Backprop in DL: The computational graph

Computational graph for classification

Computational graph for classification

Convergence of Backpropagation

Gradient descent to some local minimum:

- Perhaps not the global minimum . . .
 - Include weight momentum $\alpha > 0$:

$$\Delta w_{i,j}(n) = \left(\underbrace{2\delta_j \cdot a_i}_{\text{The "standard"}} + \underbrace{\alpha \cdot \Delta w_{i,j}(n-1)}_{\text{Scaled last move}}\right)$$

- Train multiple nets with different initial weights
- Batching/stochastic gradient descent

Nature of convergence – depending on q (here: logistic):

- Initialize weights near zero
 - → Therefore, initial networks *near-linear*.
- Increasingly non-linear functions possible as training progresses.

Backpropagation summary

- Gradient descent over entire *network* weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
 - In practice, often works well
- Minimizes error over training examples
 - Will it generalize well to subsequent examples? Overfitting...
- Training can take thousands of iterations → slow!
- Using network after training is very fast

Convolutional Neural nets

- Goal: Scale up to process very large images/videos
 - Sparse connections
 - Parameter sharing
 - Automatically generalize across spatial translations of inputs
 - Applicable to any input laid out on a grid (1-D, 2-D, 3-D, ...) and other data with spatial structure
- Key idea: Replace/replicate flattened representations and matrix multiplication with convolution that respect locality of information. Everything else stays the same:
 - Optimization criteria
 - Training algorithm
 - And so on ...

Convolutions

Learning convolutions

Data: Random binary images, some with a cross

Model:

Learning convolutions

Data: Random binary images, some with a cross

Model:

Single 3×3 convolutional kernel, one filter, with relu, max-pooling down to 2×2 , then flatten and logistic on output.

Results: Kernel after 1, 10, and 20 epochs:

XAI: Understanding what the model does

Early example: Class Activation Mapping (CAM, 2015)

- After last convolution: Average over spatial positions, so each filter is represented by one variable
- ullet Learn classifier over that o weights per filter and class.
- Use location-based firing combined with filter weights to find class activation map.

Typical use-cases for RNNs

- Inputs can be variable-length sequences; order is important; long-term dependencies.; parameter sharing/stationarity.
- Analysis of time-series data (e.g., measurements stock tickers over time) and predictions over those
- Sequential data, in particular anything with language: Modeling, Generation, Translation, Recognition, . . .
- Transformers (attention-based models) and conv-nets are getting increasingly popular in this domain.

RNNs

- A neural network that models sequential data (as HMMs)
- Many versions exist; sometimes tailor-made to accommodate particular signal flows (resembling DBN modelling task).

Plan: HMM-like structure

Plan: Push generated tokens

Plan: Push correct tokens during training; generated during test.

- Other architectures (beyond "one-to-one-repeated") exist, like
 - Many-to-one: Sequence classification
 - One-to-many: Captioning
 - Sequence-to-sequence: Translation
- Problematic issue: Track long-term information?

My dog disappeared. I went by my mom's house searching, had a coffee, and met my sister. She has moved away, and I don't see her that much. Then I went home, talked to my wife, and watched a ballgame. My team won. I had a good beer, one of my favourites, that is now available at the local grocery store. Then I found him! Question: Who was found?

- Size of h_t may have to extremely large to transport all that is needed to know. Hard to learn!
- Can we somehow **enforce structure** on the model to simplify information aggregation?
 - Yes, using LSTMs! (Next slide)
 - Yes, using transformers! (in two weeks)

Long Short Term Memory/LSTM

LSTM background:

- Invented by Hochreiter and Schmidhuber in 1997.
- Lots of different versions; ; massively popular since 2009.
- Can be combined with other layers (e.g., convolution)

Modelling components:

- Cell-state C_t and hidden state h_t . Both passed through time.
- $C_t \leftarrow \alpha_C([h_{t-1}, x_t]) \cdot C_{t-1} + \beta_C([h_{t-1}, x_t])$: Modulate based on input and hidden, add based on input and hidden;
- $h_t \leftarrow \alpha_h([h_{t-1}, x_t]) \cdot \tanh(C_t)$: Modulate transformed C_t using input and hidden; h_t is also the output at time t.

LSTMs (Hochreiter&Schmidhuber, 1997)

LSTM gradients need not be diminishing \rightarrow Can learn long-term relationships.

Summary

- Deep learning is the most prominent ML technique nowadays.
- Main reasons for success: Data, compute, algorithmic developments.
- Model tuning using gradient-based techniques. Backprop is the general-purpose workhorse.
- Modelling is still important: CNNs, RNNs incl. LSTMs, (and later: Transformers) are defined to incorporate specific biases.