第 4-1 讲: 群论初步

姓名: 林凡琪 **学号:** <u>211240042</u>

评分: _____ 评阅: ____

2024年1月28日

请独立完成作业,不得抄袭。 若得到他人帮助,请致谢。 若参考了其它资料,请给出引用。 鼓励讨论,但需独立书写解题过程。

1 作业(必做部分)

题目 1 (TJ 3-3)

Wrte out Cayley tables for groups formed by the symmetries of a rectangle and for $(\mathbb{Z}_4, +)$. How many elements are in each group? Are the groups the same? Why or why not?

解答:

Te symmetries of a rectangle with centroid at the origin and sides parallel to the coordinate axes are generated by reflections σ_x in the x-axis and σ_y in the y-axis. Their square is identity e and their product (in either order) is the rotation ρ of $\pi/2$ about the origin.

 $\rho\circ\sigma_y=(\sigma_x\circ\sigma_y)\circ\sigma_y=\sigma_x\circ(\sigma_y\circ\sigma_y)=\sigma_x\circ e=\sigma_x$ Cayley tables:

0	e	σ_x	σ_y	ρ	+	0	1	2	3
e	e	σ_x	σ_y	ρ	0	0	1	2	3
σ_x	σ_x	e	ρ	σ_y	1	1	2	3	0
σ_y	σ_y	ρ	e	σ_x	2	2	3	0	1
ρ	ρ	σ_y	σ_x	e	3	3	0	1	2

These groups are not the same. While each symmetry has square the identity e; the square of 1 and 3 is 2; which is not the identity 0.

题目 2 (TJ-3-7)

Let $S = \mathbb{R} \{-1\}$ and define a binary operation on S by a * b = a + b + ab. Prove that(S, *) is an abelian group.

解答:

To proof (S, *) is a group, we must show that (S, *) have the proposition of group.

Closure: if $a, b \in S$, then $a * b \in S$.

We prove the contrapositive: if $a * b \notin S$, either $a \notin S$ or $b \notin S$.

If $a * b \notin S$, then a * b = a + b + ab = -1

Adding 1 to both sides:

$$1 + a + b + ab = (1 + a)(1 + b) = 0$$

So
$$a = -1 \notin S$$
 or $b = -1 \notin S$

Associativity:

$$a, b, c \in S, (a * b) * c = (a * b) + c + (a * b)c = (a + b + ab) + c + (a + b + ab)c = a + (b + c + bc) + a(b + c + bc) = a + (b * c) + a(b * c) = a * (b * c)$$

Identity element:0;

$$a \in S, a * 0 = a + 0 + a \times 0 = a$$

Inverse:

For
$$a \in S$$
, the inverse element is $\frac{-a}{a+1}$

$$a * \left(\frac{-a}{a+1}\right) = a + \frac{-a}{a+1} + a\left(\frac{-a}{a+1}\right) = \frac{a(a+1)-a-a^2}{a+1} = 0$$

So (S,*) is a group.

Commutativity:

$$\forall a, b \in S, a * b = a + b + ab$$

exchange the position of a, b.

for addition and multipliation on mathbbR is commutative, so $\rightarrow b*a=b+a+ba=$ a + b + ab = a * b

So (S,*) is an abelian group.

题目 3 (TJ 3-39)

Let $\mathbb{T} = \{z \in \mathbb{C}^* : |z| = 1\}$. Prove that \mathbb{T} is a subgroup of \mathbb{C}^* .

解答:

According to proposition 3.30:

1.Identity:

The identity of \mathbb{C}^* is 1. And for $z \in \mathbb{T}$, we can suppose that $z = \cos x + i \sin x \to 0$

 $1 \times z = 1 \times (\cos x + i \sin x) = \cos x + i \sin x = z$

So the identity of \mathbb{T} is also 1.

2. We can suppose that $z_1, z_2 \in \mathbb{T}, z_1 = \cos x + i \sin x, z_2 = \cos y + i \sin y$

$$\begin{split} z_3 \wedge |z_3| &= 1 \to z_3 \in \mathbb{T} \\ 3. \text{We can suppose that } z \in \mathbb{T}, z = \cos x + i \sin x \\ z^{-1} &= \frac{\cos x - \sin xi}{\cos^2 x + \sin^2 x} \\ zz^{-1} &= (\cos x + i \sin x) (\frac{\cos x - i \sin x}{\cos^2 x + \sin^2 x}) = \frac{\cos^2 x + \sin^2 x}{\cos^2 x + \sin^2 x} = 1 \\ |z^{-1}| &= \sqrt[2]{(\frac{\cos x}{\cos^2 x + \sin^2 x})^2 + (\frac{-\sin xi}{\cos^2 x + \sin^2 x})^2} = 1 \end{split}$$

题目 4 (TJ 3-42)

So $z^{-1} \in \mathbb{T}$.

解答:

1.Identity:

The identity of
$$G$$
 is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
For $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H(a+d=0)$
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a+0 & b+0 \\ c+0 & d+0 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
So $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ is the identity of H .

2. We can suppose that
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Hand \begin{pmatrix} x & y \\ z & w \end{pmatrix} \in H, (a+d=0 \land x+w=0)$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} a+x & b+y \\ c+z & d+w \end{pmatrix}$$
We can know that $(a+x)+(d+w)=(a+d)+(x+w)=0+0=0$
So $\begin{pmatrix} a+x & b+y \\ c+z & d+w \end{pmatrix} \in H$
3. Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix} (a+d=0)$ denoted by A;

3.Let
$$\begin{pmatrix} c & d \end{pmatrix}$$
 $\begin{pmatrix} a+d=0 \end{pmatrix}$ denoted by A;

$$A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{pmatrix}$$
And $\frac{d}{ad-bc} + \frac{a}{ad-bc} = \frac{a+d}{ad-bc} = \frac{0}{ad-bc} = 0$
So $A^{-1} \in H$

题目 5 (TJ 3-49)

Let a and b be elements of a group G. If $a^4b = ba$ and $a^3 = e$, prove that ab = ba.

解答:

According to the usual laws of exponents:
$$a^4 = a^3 a$$

 $\rightarrow a^4 b = a^3 ab = (a^3)ab = eab = ab$
Since $a^4 b = ba$, $\rightarrow ab = ba$

题目 6 (TJ 3-51)

If $xy = x^{-1}y^{-1}$ for all x and y in G, prove that G must be abelian.

解答:

According to proposition 3.19, $(ab)^{-1} = b^{-1}a^{-1}$ Since $b^{-1}, a^{-1} \in G$ and $(ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1}$, $\forall a, b \in G, ab = ba$ So G is abelian.

题目 7 (TJ 4-1)

解答:

(a) False.

Disprove:

According to the corollary 4.14.

The generators of \mathbb{Z}_n are the integers r such that $1 \leq r < n$ and $\gcd(\mathbf{r}, \mathbf{n}) = 1$.

One of the generators is 49, and it is not prime.

(b) False.

Disprove:

The multipliation table for U(8):

$$|1| = 1; |3| = |5| = |7| = 2$$

1, 3, 5, 7 are all not generator of U(8). (c)False.

We can assume that g is a generator of \mathbb{Q} , but it can not generat g/2.

(d)False.

Counterexample: S_3

The subgroup of S_3 are all cyclic, but S_3 is not.

(e) True.

Since an infinite group has infinite number of subgroups, we can know a group with a finite number of subgroup is finite.

题目 8 (TJ 4-24)

Let p and q be distinct primes. How many generators does \mathbb{Z}_{pq} have?

解答:

We should find out how many r satisfying corollary 4.14.

因为 p,q 都是 distinct primes, 所以 $\varphi(pq)=\varphi(p)\varphi(q)$, 并且 $\varphi(p)=p-1, \varphi(q)=q-1$ $\varphi(p)\varphi(q)=(p-1)(q-1)=pq-p-q+1$

(此处算法致谢 https://blog.csdn.net/AgCl_LHY/article/details/107624346)

题目 9 (TJ 4-12)

Find a cyclic group with exactly one generator. Can you find cyclic groups with exactly two generators? Four generators? How about n generators?

解答:

- 1 generator: \mathbb{Z}_2 :1
- 2 generators: $\mathbb{Z}_3:1,2$
- 4 generators: \mathbb{Z}_5 :1,2,3,4
- n generators:

if(n>2 and n=1(mod 2)), then it is impossible. For that, if a is a generator, then a^{-1} must also be a generator.

If $(n = 0 \pmod{2}): \mathbb{Z}_m, m = \varphi(n)$

题目 10 (TJ 4-32)

Let G be a finite cyclic group of order n generated by x. Show that if $y = x^k$ where gcd(k, n) = 1, then y must be a generator of G.

解答:

According to TH 4.13.

The order of y is n/gcd(k, n) = n

So y is a generator of G.

2 作业 (选做部分)

题目 $1(Z_p)$

证明:设 p 为素数,则 $Z_p = \{1, 2, ..., p-1\}$ 关于 p **乘法**构成的 p-1 阶循环群。(此处的 1, 2, ..., p-1 是模 p 等价类的代表元)

解答:

题目 2 (SageMath 学习)

安装 SageMath,并学习 TJ 第三章 3.6 节、3.7 节; 第四章 4.6 节、4.7 节关于 SageMath 的内容

解答:

3 Open Topics

在二维平面上的"移动"(例如向东北 30 度移动 9 公里)。你能够以这些"移动"为元素构建一个群吗?

Open Topics 1 ("移动"群-1)

- 它的几何元素和运算分别是什么?
- 它为什么符合群的定义?
- 它是阿贝尔群吗? 为什么?

Open Topics 2 ("移动"群-2)

- 你能找出它的一些子群吗? 并说明为什么找到的是子群
- 它是循环群吗? 如果是,生成元是什么? 生成元唯一吗? 如果不是,如何改造出一个循环群?
- 你能找出这个(改造后的)循环群的一些子群么?它们是循环群么?

4 反馈