

Sparse Subspace Clustering

Sparse Subspace Clustering (SSC) [1]

$$\min_{\mathbf{c}_{j}} \|\mathbf{c}_{j}\|_{1} + \frac{\mu}{2} \|\mathbf{x}_{j} - X\mathbf{c}_{j}\|_{2}^{2}$$

s.t. $c_{jj} = 0$

- Nice theory
- Robust to noise, outliers and missing entries
- Can handle mid-size datasets ~
 1K-10K data points

Scalable Sparse Subspace Clustering

- Subspace Clustering by Orthogonal Matching Pursuit (SSC-OMP)
 - Similar theoretical guarantees to SSC regarding correct connections
 - Three orders of magnitude faster than SSC
 - Scalable to 100K data points

- Subspace Clustering by Elastic Net Regularization (EnSC)
 - Similar theoretical guarantees to SSC regarding correct connections
 - Better theoretical guarantees regarding connectivity of each cluster
 - Three orders of magnitude faster than SSC
 - Novel algorithm that is scalable to 100K data points, and is also applicable to SSC problem

[†]Center for Imaging Science, Johns Hopkins University [‡]Applied Mathematics and Statistics, Johns Hopkins University

Sparse Subspace Clustering (SSC)

$$\min_{\mathbf{c}_j} \|\mathbf{c}_j\|_0 \quad \text{s.t.} \quad \mathbf{x}_j = X\mathbf{c}_j, c_{jj} = 0$$

Basis pursuit^[1]
(BP)

Orthogonal matching pursuit^[2]
(OMP)

Method:

- Convex relaxation
- Replace $\|\mathbf{c}_j\|_0$ with $\|\mathbf{c}_j\|_1$

Properties:

- ✓ Guaranteed correct connections
- Not scalable: solved by CVX/ADMM

Method:

- Greedy pursuit
- Choose one at a time

Properties:

- ✓ Guaranteed correct connections
- ✓ Scalability: from 100 to 100,000 points

SSC by orthogonal matching pursuit

Find representation $\mathbf{x}_j = X\mathbf{c}_j$ by greedy selection

SSC by orthogonal matching pursuit

Find representation $\mathbf{x}_j = X\mathbf{c}_j$ by greedy selection

Give correct connections?

Each iteration picks a point from the same subspace

Guaranteed correct connections: deterministic model

Theorem

Suppose that $\mathbf{x}_j \in \mathcal{S}_{\ell}$. Then, \mathbf{c}_j gives correct connections if

$$\mu(W_j^{\ell}, X^{-\ell}) < r^{\ell},$$

where μ captures the similarity between \mathcal{S}_{ℓ} and all other subspaces, and r captures distribution of points in \mathcal{S}_{ℓ} .

For SSC-BP $^{[3]}$:

 $W_i^{\ell} = \text{dual points}$

For SSC-OMP:

 $W_i^{\ell} = \text{residual points}$

Guaranteed correct connections: random model

Random model:

- Draw n subspaces of dimension d in ambient dimension D
- Draw $\rho d + 1$ points from each subspace

Theorem

Under the random model, the solution $\{\mathbf{c}_j\}_{j=1}^N$ gives correct connections with overwhelming probability if

$$\frac{d}{D} < \frac{c^2(\rho)\log\rho}{12\log N}$$

For SSC-BP $^{[3]}$:

$$p > 1 - \frac{2}{N} - Ne^{-\sqrt{\rho}d}$$

For SSC-OMP:

$$p > 1 - \frac{2d}{N} - Ne^{-\sqrt{\rho}d}$$

Synthetic experiments

Random model:

- 5 subspaces of dimension 6 in ambient dimension 9
- Vary the sample density

Clustering accuracy

Running time

Experiment on extended Yale B

 $img-1 \cdot \cdot \cdot img-64$

subject-1 - -

No. subjects	2	10	20	30	38					
a%: average clustering accuracy										
SSC-OMP	99.21	88.43	81.71	79.27	80.45					
SSC-BP	99.45	91.85	79.80	76.10	68.97					
LSR	96.77	62.89	67.17	67.79	63.96					
LRSC	94.32	66.98	66.34	67.49	66.78					
SCC	78.91	NA	NA	14.15	12.80					
t(sec.): runnin	g time									
SSC-OMP	0.3	1.7	4.7	9.4	14.5					
SSC-BP	49.1	228.2	554.6	1240	1851					
LSR	0.1	0.8	3.1	8.3	15.9					
LRSC	1.1	1.9	6.3	14.8	26.5					
SCC	50.0	NA	NA	520.3	750.7					

Experiment on extended Yale B

 $img-1 \cdot \cdot \cdot img-64$

No. subjects	2	10	20	30	38
a%: average c	lustering	accurac	y		
SSC-OMP	99.21	88.43	81.71	79.27	80.45
SSC-BP	99.45	91.85	79.80	76.10	68.97
LSR	96.77	62.89	67.17	67.79	63.96
LRSC	94.32	66.98	66.34	67.49	66.78
SCC	78.91	NA	NA	14.15	12.80
t(sec.): runnin	g time				
SSC-OMP	0.3	1.7	4.7	9.4	14.5
SSC-BP	49.1	228.2	554.6	1240	1851
LSR	0.1	0.8	3.1	8.3	15.9
LRSC	1.1	1.9	6.3	14.8	26.5
SCC	50.0	NA	NA	520.3	750.7

Experiment on extended Yale B

 $img-1 \cdot \cdot \cdot img-64$

subject-1

subject-38

No. subjects	2	10	20	30	38					
a%: average clustering accuracy										
SSC-OMP	99.21	88.43	81.71	79.27	80.45					
SSC-BP	99.45	91.85	79.80	76.10	68.97					
LSR	96.77	62.89	67.17	67.79	63.96					
LRSC	94.32	66.98	66.34	67.49	66.78					
SCC	78.91	NA	NA	14.15	12.80					
t(sec.): runnin	ig time									
SSC-OMP	0.3	1.7	4.7	9.4	14.5					
SSC-BP	49.1	228.2	554.6	1240	1851					
LSR	0.1	0.8	3.1	8.3	15.9					
LRSC	1.1	1.9	6.3	14.8	26.5					

NA

NA

520.3

> 100 times faster

50.0

SCC

750.7

Experiment on MNIST

0	0	0	1	l	1	• • •
•	•		•			

998

No. points	500	2,000	6,000	20,000	60,000				
a%: average clustering accuracy									
SSC-OMP	85.17	88.99	90.56	94.21	94.68				
SSC-BP	83.01	85.58	85.60	-	-				
LSR	75.84	78.09	79.91	-	-				
LRSC	75.02	79.44	79.88	-	-				
SCC	53.45	66.43	70.60	-	-				
t(sec.): runn	t(sec.): running time								

SSC-OMP	1.3	11.7	71.7	427	3219
SSC-BP	20.1	635.2	13605	-	-
LSR	1.7	42.4	327.6	-	-
LRSC	1.9	43.0	312.9	-	-
SCC	31.2	101.3	366.8	-	-

Conclusion

SSC by Orthogonal Matching Pursuit (OMP):

stronger theoretical guarantees for correct connections

performance validation on large databases

Scalable Elastic Net Subspace Clustering

Chong You[†], Chun-Guang Li*, Daniel P. Robinson[‡], René Vidal[†]

[†]Center for Imaging Science, Johns Hopkins University *SICE, Beijing University of Posts and Telecommunications [‡]Applied Mathematics and Statistics, Johns Hopkins University

Prior work: Spectral Subspace Clustering

Sparse Subspace Clustering (SSC) [1]

$$\min_{\mathbf{c}_j} \|\mathbf{c}_j\|_1 + \frac{\mu}{2} \|\mathbf{x}_j - X\mathbf{c}_j\|_2^2$$

s.t. $c_{jj} = 0$

Least Squares Regression (LSR) [2]

$$\min_{\mathbf{c}_j} \|\mathbf{c}_j\|_2^2 + \frac{\mu}{2} \|\mathbf{x}_j - X\mathbf{c}_j\|_2^2$$

s.t. $c_{jj} = 0$

Prior work: Spectral Subspace Clustering

SSC $(\|\mathbf{c}_j\|_1)$

- ✓ Few wrong connections
- × Not well connected

LSR $(\|\mathbf{c}_j\|_2^2)$

- × Many wrong connections
- ✓ Well-connected

Correct connection vs. connectivity

$$\min_{\mathbf{c}_{j}} \lambda \|\mathbf{c}_{j}\|_{1} + \frac{1-\lambda}{2} \|\mathbf{c}_{j}\|_{2}^{2} + \frac{\mu}{2} \|\mathbf{x}_{j} - X\mathbf{c}_{j}\|_{2}^{2} \quad \text{s.t.} \quad \mathbf{c}_{jj} = 0$$

Key challenge: scalability

$$\min_{\mathbf{c}_{j}} \lambda \|\mathbf{c}_{j}\|_{1} + \frac{1-\lambda}{2} \|\mathbf{c}_{j}\|_{2}^{2} + \frac{\mu}{2} \|\mathbf{x}_{j} - X\mathbf{c}_{j}\|_{2}^{2} \quad \text{s.t.} \quad \mathbf{c}_{jj} = 0$$

- Prior methods
 - ADMM
 - Interior point
 - Solution path
 - Proximal gradient method
 - etc.

Scalability issue:

- Too many iterations to converge
- Access to full data matrix

- We propose a new scalable algorithm
 - Exploits geometry of the EnSC problem to efficiently update the solution
 - Each iteration works with a small subset of data

Contributions

• We provide a geometric analysis of the solution, which explains the trade off between correct connection and connectivity effects.

 We provide conditions under which the solution gives correct connection. Our condition improves upon prior result for SSC.

• We derive a scalable algorithm that can handle 1 million data points.

Correct connections vs. connectivity

$$\min_{\mathbf{c}_j} \lambda \|\mathbf{c}_j\|_1 + \frac{1-\lambda}{2} \|\mathbf{c}_j\|_2^2 + \frac{\mu}{2} \|\mathbf{x}_j - X\mathbf{c}_j\|_2^2 \quad \text{s.t. } \mathbf{c}_{jj} = 0$$

Correct connections vs. connectivity

$$\min_{\mathbf{c}_j} \lambda \|\mathbf{c}_j\|_1 + \frac{1-\lambda}{2} \|\mathbf{c}_j\|_2^2 + \frac{\mu}{2} \|\mathbf{x}_j - X\mathbf{c}_j\|_2^2 \quad \text{s.t. } \mathbf{c}_{jj} = 0$$

oracle region

- $c_{ij} \neq 0$ if and only if \mathbf{x}_i belongs to the oracle region for \mathbf{x}_j
- $-\lambda$ is large \implies oracle region is small \implies correct connection
- $-\lambda$ is small \implies oracle region is large \implies well-connected

Guaranteed correct connection

Theorem

Suppose that $\mathbf{x}_j \in \mathcal{S}_{\ell}$. Then, \mathbf{c}_j gives correct connections if

$$\mu(W_j^{\ell}, X^{-\ell}) \le \frac{(r^{\ell})^2}{r^{\ell} + \frac{1-\lambda}{\lambda}},$$

where μ captures the similarity between \mathcal{S}_{ℓ} and all other subspaces, and r captures distribution of points in \mathcal{S}_{ℓ} .

- RHS is an increasing function of λ
- Reduces to condition for SSC-BP if $\lambda = 1$

Oracle guided active set (ORGEN) algorithm

- Observation: if we know the support set T of the solution \mathbf{c}_j , it is reduced to a small scale problem
- Idea: solve a sequence of small scale problems on support T_k
- Algorithm: update T_k by using oracle region

• Theorem: T_k converges to true support set T in a finite number of iterations

• Test of EnSC with ORGEN on real data

database	# data	ambient dim.	# clusters	Examples
Coil-100	7,200	1024	100	
PIE	11,554	1024	68	The second
MNIST	70,000	500	10	1 166
CovType	581,012	54	7	

Our method achieves the best clustering accuracy

	TSC	OMP	NSN	SSC^1	SSC^2	LRSC	ENSC	KMP	EnSC
Clustering accuracy (%)									
Coil-100	61.32	42.93	50.32	53.75	57.10	55.76	51.11	61.97	69.24
PIE	22.15	24.06	35.02	39.05	41.94	46.65	21.40	16.55	52.98
MNIST	85.00	93.07	85.82	92.46	-	-	-	-	93.79
CovType	35.45	48.76	38.04	-	-	-	-	-	53.52

¹⁻ SSC by the SPAMS package which implements the solution path method.

²⁻ SSC by the ADMM algorithm

Our method achieves the best clustering accuracy

	TSC	OMP	NSN	SSC^1	SSC^2	LRSC	ENSC	KMP	EnSC
Clustering accuracy (%)									
Coil-100	61.32	42.93	50.32	53.75	57.10	55.76	51.11	61.97	69.24
PIE	22.15	24.06	35.02	39.05	41.94	46.65	21.40	16.55	52.98
MNIST	85.00	93.07	85.82	92.46	-	-	-	-	93.79
CovType	35.45	48.76	38.04	-	-	-	-	-	53.52

¹⁻ SSC by the SPAMS package which implements the solution path method.

²⁻ SSC by the ADMM algorithm

Our method achieves the best clustering accuracy

	TSC	OMP	NSN	SSC^1	SSC^2	LRSC	ENSC	KMP	EnSC
Clustering accuracy (%)									
Coil-100	61.32	42.93	50.32	53.75	57.10	55.76	51.11	61.97	69.24
PIE	22.15	24.06	35.02	39.05	41.94	46.65	21.40	16.55	52.98
MNIST	85.00	93.07	85.82	92.46	-	-	-	-	93.79
CovType	35.45	48.76	38.04	-	-	-	-	-	53.52

Our method is able to handle large databases efficiently

	TSC	OMP	NSN	SSC^1	SSC ²	LRSC	ENSC	KMP	EnSC
Running ti	me (mir	1.)							
Coil-100	2	3	11	16	127	3	8	63	3
PIE	3	5	25	67	412	12	25	361	13
MNIST	30	6	298	1350	-	-	-	-	28
CovType	999	783	3572	-	-	-	-	-	1452

²⁻ SSC by the ADMM algorithm

Conclusion

$$\min_{\mathbf{c}_{j}} \lambda \|\mathbf{c}_{j}\|_{1} + \frac{1-\lambda}{2} \|\mathbf{c}_{j}\|_{2}^{2} + \frac{\mu}{2} \|\mathbf{x}_{j} - X\mathbf{c}_{j}\|_{2}^{2} \quad \text{s.t.} \quad \mathbf{c}_{jj} = 0$$

guaranteed correct connections

improved connectivity

efficient algorithm for large scale problems

Acknowledgement

Funding: NSF-IIS 1447822

Vision Lab @ Johns Hopkins University http://www.vision.jhu.edu

Thank You for your attention

Choice of Regularization

Prior work

Method	$f(\mathbf{c}_j)$ or $f(C)$	Subspace preserving ¹	Connected ²	Efficient
SSC [1]	$\ \mathbf{c}_j\ _1$	✓		
LRR/LRSC [2]	$\ C\ _*$		✓	
LSR [3]	$\ \mathbf{c}_j\ _2^2$		\checkmark	
OMP/NSN [4]	$\ \mathbf{c}_j\ _0$ (Greedy)	\checkmark		✓
LRSSC [5]	$ C _1 + C _*$	✓	\checkmark	
CASS [6]	$ X \operatorname{Diag}(\mathbf{c}_j) _*$		\checkmark	
KMP [7]	$\ \mathbf{c}_j\ _k^{sp}$		\checkmark	
EnSC(Ours)	$\ \mathbf{c}_j\ _1 + \ \mathbf{c}_j\ _2^2$	✓	✓	

¹there exists theoretical guaranteed subspace preserving property under general conditions.

 $^{^{2}\}text{the solution}$ is dense or have the grouping effect.

Prior work: Sparse Subspace Clustering (SSC)

SSC: $\min_{\mathbf{c}_j} \|\mathbf{c}_j\|_1$ s.t. $\mathbf{x}_j = X\mathbf{c}_j, c_{jj} = 0$ solution is subspace preserving

Prior work: Sparse Subspace Clustering (SSC)

SSC: $\min_{\mathbf{c}_j} \|\mathbf{c}_j\|_1$ s.t. $\mathbf{x}_j = X\mathbf{c}_j, c_{jj} = 0$

solution is subspace preserving

