What is claimed is:

1. A compound of formula

$$R^{32}$$
 R^{33}
 R^{34}
 R^{35}
 R^{35}
 R^{36}
 R^{36}

wherein W³ and X³ are independently selected from the group consisting of -CR¹R², -O-, -NR³, -S-, and -Se; Y³ is selected from the group consisting of -(CH₂)a-CONH-Bm, -CH₂-(CH₂OCH₂)b-CH₂-CONH-Bm,

- 5 $-(CH_2)_a$ -NHCO-Bm, $-CH_2$ - $(CH_2OCH_2)_b$ - CH_2 -NHCO-Bm,
 - $-(CH_2)_a-N(R^3)-(CH_2)_b-CONH-Bm$, $(CH_2)_a-N(R^3)-(CH_2)_c-NHCO-Bm$,
 - -(CH₂)_a-N(R³)-CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm,
 - -(CH₂)_a-N(R³)-CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm,
 - $-\mathsf{CH}_2 (\mathsf{CH}_2 \mathsf{OCH}_2)_{\mathsf{b}} \mathsf{CH}_2 \mathsf{N}(\mathsf{R}^3) (\mathsf{CH}_2)_{\mathsf{a}} \mathsf{CONH} \mathsf{Bm},$
- 10 $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2)_a-NHCO-Bm$,
 - $-\mathsf{CH}_2 (\mathsf{CH}_2 \mathsf{OCH}_2)_b \mathsf{CH}_2 \mathsf{N}(\mathsf{R}^3) \mathsf{CH}_2 (\mathsf{CH}_2 \mathsf{OCH}_2)_d \mathsf{CONH-Bm},$
 - $-CH_{2}-(CH_{2}OCH_{2})_{b}-CH_{2}-N(R^{3})-CH_{2}-(CH_{2}OCH_{2})_{d}-NHCO-Bm, -(CH_{2})_{a}-NR^{3}R^{4},\\$
 - and $-CH_2(CH_2OCH_2)_b-CH_2NR^3R^4$; Z^3 is selected from the group consisting
 - of $-(CH_2)_a$ -CONH-Dm, $-CH_2$ - $(CH_2OCH_2)_b$ - CH_2 -CONH-Dm, $-(CH_2)_a$ -NHCO-Dm,
- 15 $-CH_2-(CH_2OCH_2)_b-CH_2-NHCO-Dm$, $-(CH_2)_a-N(R^3)-(CH_2)_b-CONH-Dm$,

 $(CH_2)_a - N(R^3) - (CH_2)_c - NHCO - Dm, - (CH_2)_a - N(R^3) - CH_2 - (CH_2OCH_2)_b - CH_2 - CONH-1$ Dm, $-(CH_2)_a - N(R^3) - CH_2 - (CH_2OCH_2)_b - CH_2 - NHCO - Dm, -CH_2 - (CH_2OCH_2)_b - CH_2 - (CH_2OCH_2)_b N(R^3)-(CH_2)_a-CONH-Dm$, $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2)_a-NHCO-Dm$, 5 -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-(CH₂OCH₂)_d-CONH-Dm, -CH₂-(CH₂OCH₂)_b- $CH_2-N(R^3)-CH_2-(CH_2OCH_2)_d-NHCO-Dm$, $-(CH_2)_a-NR^3R^4$, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; A₁ is a single or a double bond; B₁, C₁, and D₁ 20 are independently selected from the group consisting of -O-, -S-, -Se-, -P-, $-CR^1R^2$, $-CR^1$, alkyl, NR^3 , and -C=0; A_1 , B_1 , C_1 , and D_1 may together form a 6- to 12-membered carbocyclic ring or a 6- to 12-membered heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; a₃ and b₃ are independently from 0 to 5; R¹ to R⁴, and R²⁹ to R³⁷ are independently selected from the group consisting of hydrogen, 25 C_1 - C_{10} alkyl, C_5 - C_{20} aryl, C_1 - C_{10} alkoxyl, C_1 - C_{10} polyalkoxyalkyl, C_1 - C_{20} polyhydroxyalkyl, C₅-C₂₀ polyhydroxyaryl, C₁-C₁₀ aminoalkyl, cyano, nitro, halogen, saccharide, peptide, -CH2(CH2OCH2)b-CH2-OH, -(CH2)a-CO2H, $-(CH_2)_a$ -CONH-Bm, $-CH_2$ -(CH_2 OCH₂)_b- CH_2 -CONH-Bm, $-(CH_2)_a$ -NHCO-Bm, $-\mathsf{CH_2}-(\mathsf{CH_2OCH_2})_b-\mathsf{CH_2}-\mathsf{NHCO-Bm},\ -(\mathsf{CH_2})_a-\mathsf{OH}\ \ \mathsf{and}\ \ -\mathsf{CH_2}-(\mathsf{CH_2OCH_2})_b-\mathsf{CO_2H};$ 30 Bm and Dm are independently selected from the group consisting of a bioactive peptide, a protein, a cell, an antibody, an antibody fragment, a saccharide, a glycopeptide, a peptidomimetic, a drug, a drug mimic, a hormone, a metal chelating agent, a radioactive or nonradioactive metal 35 complex, and an echogenic agent; a and c are independently from 1 to 20; and b and d are independently vary from 1 to 100.

- 2. The compound of claim 1 wherein W³ and X³ are independently selected from the group consisting of $-C(CH_3)_2$, $-C((CH_2)_aOH)CH_3$, $-C((CH_2)_aOH)_2$, $-C((CH_2)_aCO_2H)CH_3$, $-C((CH_2)_aCO_2H)_2$, $-C((CH_2)_aNH_2)CH_3$, $C((CH_2)_aNH_2)_2$, $C((CH_2)_aNR^3R^4)_2$, $-NR^3$, and -S-; Y³ is
- selected from the group consisting of -(CH₂)_a-CONH-Bm, $-CH_2-(CH_2OCH_2)_b-CH_2-CONH-Bm, -(CH_2)_a-NHCO-Bm, -CH_2-(CH_2OCH_2)_b-CH_2-(CH_2OC$

 CH_2 -NHCO-Bm, - $(CH_2)_a$ -NR 3 R 4 , and - $CH_2(CH_2OCH_2)_b$ - CH_2NR^3 R 4 ; Z 3 is selected from the group consisting of - $(CH_2)_a$ -CONH-Dm,

 CH_2 -NHCO-Dm, - $(CH_2)_a$ -NR³R⁴, and - $CH_2(CH_2OCH_2)_b$ -CH₂NR³R⁴; A₁ is a

-CH₂-(CH₂OCH₂)_b-CH₂-CONH-Dm, -(CH₂)_a-NHCO-Dm, -CH₂-(CH₂OCH₂)_b-

single or a double bond; B_1 , C_1 , and D_1 are independently selected from the group consisting of -O-, -S-, NR^3 , $(CH2)_a$ - CR^1R^2 , and - CR^1 ; A_1 , B_1 , C_1 ,

and D_1 may together form a 6- to 10-membered carbocyclic ring or a 6- to

10-membered heterocyclic ring optionally containing one or more oxygen,

nitrogen, or sulfur atom; a_3 and b_3 are independently from 0 to 3; R^1 to R^4 , and R^{29} to R^{37} are independently selected from the group consisting of hydrogen, C_1 - C_{10} alkyl, C_5 - C_{12} aryl, C_1 - C_{10} alkoxyl, C_1 - C_{10}

polyhydroxyalkyl, C_5 - C_{12} polyhydroxyaryl, C_1 - C_{10} aminoalkyl, mono- or oligosaccharide, peptide with 2 to 30 amino acid units, -CH₂(CH₂OCH₂)_b-

CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-OH and -CH₂-(CH₂OCH₂)_b-CO₂H; Bm and Dm are independently selected from the group consisting of a bioactive peptide containing 2 to 30 amino acid

units, an antibody, a mono- or oligosaccharide, a glycopeptide, a metal chelating agent, a radioactive or nonradioactive metal complex, and an 25 echogenic agent; a and c are independently from 1 to 10; and b and d are independently from 1 to 30.

- The compound of claim 2 wherein each of W3 and X3 is 3. $C((CH_2)OH)_2$; Y³ is $-(CH_2)_2$ -CONH-Bm; Z³ is $-(CH_2)_2$ -CONH-Dm; A₁ is a single bond; A_1 , B_1 , C_1 , and D_1 together form a 6-membered carbocyclic ring; each of a_3 and b_3 is 1; R^{29} is galactose; each of R^{30} to R^{37} is
- hydrogen; Bm is Octreotate; and Dm is bombesin. 5

4. A method for performing a diagnostic or therapeutic procedure comprising

administering to an individual an effective amount of the compound of formula

$$R^{32}$$
 R^{33}
 R^{34}
 R^{35}
 R^{36}
 R^{36}
 R^{36}

wherein W³ and X³ are independently selected from the group consisting 5 of -CR1R2, -O-, -NR3, -S-, and -Se; Y3 is selected from the group consisting of -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, $-(CH_2)_a$ -NHCO-Bm, $-CH_2$ - $(CH_2OCH_2)_b$ - CH_2 -NHCO-Bm, $-(CH_2)_a$ - $N(R^3)$ - $(CH_2)_b$ -CONH-Bm, $(CH_2)_a$ -N(R³)- $(CH_2)_c$ -NHCO-Bm, $-(CH_2)_a$ -N(R³)- CH_2 - $(CH_2OCH_2)_b$ -10 CH_2 -CONH-Bm, - $(CH_2)_a$ -N(R³)- CH_2 - $(CH_2OCH_2)_b$ - CH_2 -NHCO-Bm, $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2)_a-CONH-Bm$, $-CH_2-(CH_2OCH_2)_b-CH_2-(CH_2OCH_2$ ${\sf N}({\sf R}^3) - ({\sf CH}_2)_a - {\sf NHCO-Bm}, \ -{\sf CH}_2 - ({\sf CH}_2{\sf OCH}_2)_b - {\sf CH}_2 - {\sf N}({\sf R}^3) - {\sf CH}_2 - ({\sf CH}_2{\sf OCH}_2)_d - {\sf CH}_2 - {\sf N}({\sf R}^3)_b - {\sf CH}_2 - {\sf CH}_2 - {\sf N}({\sf R}^3)_b - {\sf CH}_2 - {$ ${\rm CONH\text{-}Bm, -CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}(CH_2OCH_2)_d\text{-}NHCO\text{-}Bm,}$ -(CH $_2$) $_a$ -NR 3 R 4 , and -CH $_2$ (CH $_2$ OCH $_2$) $_b$ -CH $_2$ NR 3 R 4 ; Z 3 is selected from the group consisting of - $(CH_2)_a$ -CONH-Dm, - CH_2 - $(CH_2OCH_2)_b$ - CH_2 -CONH-Dm, 15 -(CH₂)_a-NHCO-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Dm, $-(CH_2)_a-N(R^3)-(CH_2)_b-CONH-Dm$, $(CH_2)_a-N(R^3)-(CH_2)_c-NHCO-Dm$,

 $-(CH_2)_a-N(R^3)-CH_2-(CH_2OCH_2)_b-CH_2-CONH-Dm, -(CH_2)_a-N(R^3)-CH_2-$ (CH₂OCH₂)_b-CH₂-NHCO-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-(CH₂)_a-CONH-Dm, $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2)_a-NHCO-Dm$, $-CH_2-(CH_2OCH_2)_b-CH_2-CH_2-(CH_2OCH_2)_b-CH_2-($ 20 $N(R^3)-CH_2-(CH_2OCH_2)_d-CONH-Dm, -CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-CH_2 (CH_2OCH_2)_a$ -NHCO-Dm, $-(CH_2)_a$ -NR³R⁴, and $-CH_2(CH_2OCH_2)_b$ -CH₂NR³R⁴; A₁ is a single or a double bond; B₁, C₁, and D₁ are independently selected from the group consisting of -O-, -S-, -Se-, -P-, -CR1R2, -CR1, alkyl, NR3, and -C = 0; A_1 , B_1 , C_1 , and D_1 may together form a 6- to 12-membered 25 carbocyclic ring or a 6- to 12-membered heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; a_3 and b_3 are independently from 0 to 5; R¹ to R⁴, and R²⁹ to R³⁷ are independently selected from the group consisting of hydrogen, C1-C10 alkyl, C5-C20 aryl, C_1 - C_{10} alkoxyl, C_1 - C_{10} polyalkoxyalkyl, C_1 - C_{20} polyhydroxyalkyl, C_5 - C_{20} 30 polyhydroxyaryl, C₁-C₁₀ aminoalkyl, cyano, nitro, halogen, saccharide, peptide, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, $-(CH_2)_a$ -CONH-Bm, $-CH_2$ - $(CH_2OCH_2)_b$ - CH_2 -CONH-Bm, $-(CH_2)_a$ -NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-OH and -CH₂-(CH₂OCH₂)_b-CO₂H; Bm and Dm are independently selected from the group consisting of a 35 bioactive peptide, a protein, a cell, an antibody, an antibody fragment, a saccharide, a glycopeptide, a peptidomimetic, a drug, a drug mimic, a hormone, a metal chelating agent, a radioactive or nonradioactive metal complex, and an echogenic agent; a and c are independently from 1 to

20; and b and d are independently from 1 to 100, and a pharmaceuticallyacceptable carrier or excipient to form a composition,

activating the compound using light, and performing the diagnostic or therapeutic procedure.

- 5. The method of claim 4 comprising administering to an individual an effective amount of the compound wherein W^3 and X^3 are independently selected from the group consisting of $-C(CH_3)_2$, $-C((CH_2)_aOH)CH_3$, $-C((CH_2)_aOH)_2$, $-C((CH_2)_aCO_2H)CH_3$, $-C((CH_2)_aCO_2H)_2$,
- -C((CH₂)_aNH₂)CH₃, C((CH₂)_aNH₂)₂, C((CH₂)_aNR³R⁴)₂, -NR³, and -S-; Y³ is selected from the group consisting of -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; Z³ is selected from the group consisting of -(CH₂)_a-CONH-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-C
- CONH-Dm, -(CH₂)_a-NHCO-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Dm, -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; A₁ is a single or a double bond; B₁, C₁, and D₁ are independently selected from the group consisting of -O-, -S-, NR³, (CH2)_a -CR¹R², and -CR¹; A₁, B₁, C₁, and D₁ may together form a 6- to 10-membered carbocyclic ring or a 6- to 10-membered
- heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; a_3 and b_3 independently vary from 0 to 3; R^1 to R^4 , and R^{29} to R^{37} are independently selected from the group consisting of hydrogen, C_1 C_{10} alkyl, C_5 - C_{12} aryl, C_1 - C_{10} alkoxyl, C_1 - C_{10} polyhydroxyalkyl, C_5 - C_{12}

5

polyhydroxyaryl, C₁-C₁₀ aminoalkyl, mono- or oligosaccharide, peptide with 2 to 30 amino acid units, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-OH and -CH₂-(CH₂OCH₂)_b-CO₂H; Bm and Dm are independently selected from the group consisting of a bioactive peptide containing 2 to 30 amino acid units, an antibody, a mono- or oligosaccharide, a glycopeptide, a metal chelating agent, a radioactive or nonradioactive metal complex, and an echogenic agent; a and c are independently from 1 to 10; and b and d are independently from 1 to 30.

- 6. The method of claim 5 comprising administering to an individual an effective amount of the compound wherein each of W³ and X³ is $C((CH_2)OH)_2$; Y³ is $-(CH_2)_2$ -CONH-Bm; Z³ is $-(CH_2)_2$ -CONH-Dm; A₁ is a single bond; A₁, B₁, C₁, and D₁ together form a 6-membered carbocyclic ring; each a₃ and b₃ is 1; R²9 is galactose; each R³0 to R³7 is hydrogen; Bm is Octreotate; and Dm is bombesin (7-14).
 - 7. The method of claim 4 wherein said procedure uses light of wavelength in the region of 350-1300 nm.
 - 8. The method of claim 4 wherein the diagnostic procedure is optical tomography.

- The method of claim 4 wherein the diagnostic procedure is fluorescence endoscopy.
- 10. The method of claim 4 further comprising monitoring a blood clearance profile of said compound by a method selected from the group consisting of fluorescence, absorbance, and light scattering, wherein light of wavelength in the region of 350-1300 nm is used.
- 11. The method of claim 4 wherein said procedure further comprises imaging and therapy, wherein said imaging and therapy is selected from the group consisting of absorption, light scattering, photoacoustic and sonofluoresence technique.
- 12. The method of claim 4 wherein said procedure is capable of diagnosing atherosclerotic plaques and blood clots.
- 13. The method of claim 4 wherein said procedure comprises administering localized therapy.
- 14. The method of claim 4 wherein said therapeutic procedure comprises photodynamic therapy.

- 15. The method of claim 4 wherein said therapeutic procedure comprises laser assisted guided surgery for the detection of micrometastases.
- 16. The method of claim 4 further comprising adding a biocompatible organic solvent to the at a concentration of one to fifty percent to the composition to prevent *in vivo* or *in vitro* fluorescence quenching.
- 17. The method of claim 16 wherein said compound is dissolved in a medium comprising one to fifty percent dimethyl sulfoxide.

18. A composition comprising a cyanine dye bioconjugate of formula

$$R^{32}$$
 R^{33}
 R^{34}
 R^{35}
 R^{35}
 R^{36}
 R^{30}
 R^{30}

wherein W³ and X³ are independently selected from the group consisting of -CR1R2, -O-, -NR3, -S-, and -Se; Y3 is selected from the group consisting of -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-5 NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-N(R³)-(CH₂)_b-CONH-Bm, $(CH_2)_a - N(R^3) - (CH_2)_c - NHCO - Bm$, $-(CH_2)_a - N(R^3) - CH_2 - (CH_2OCH_2)_b - CH_2 - (CH_2OCH_2)_b - (CH_2OCH_$ CONH-Bm, -(CH₂)_a-N(R³)-CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -CH₂- $(CH_2OCH_2)_b$ - CH_2 - $N(R^3)$ - $(CH_2)_a$ -CONH-Bm, - CH_2 - $(CH_2OCH_2)_b$ - CH_2 - $N(R^3)$ -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-(CH₂OCH₂)_d-CONH-Bm,10 -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-(CH₂OCH₂)_d-NHCO-Bm, -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; Z³ is selected from the group consisting of $-(CH_2)_a$ -CONH-Dm, $-CH_2-(CH_2OCH_2)_b$ -CH₂-CONH-Dm, $-(CH_2)_a$ -NHCO-Dm, $-CH_2-(CH_2OCH_2)_b-CH_2-NHCO-Dm$, $-(CH_2)_a-N(R^3)-(CH_2)_b-CONH-Dm$, $(CH_2)_a-(CH_2)_a-(CH_2)_b-CONH-Dm$, $(CH_2)_a-(CH_2)_a-(CH_2)_b-(CH_2)_b-(CH_2)_b-(CH_2)_a-(CH_2)_$ $N(R^3)-(CH_2)_c-NHCO-Dm$, $-(CH_2)_a-N(R^3)-CH_2-(CH_2OCH_2)_b-CH_2-CONH-Dm$, 15 $-(CH_2)_a - N(R^3) - CH_2 - (CH_2OCH_2)_b - CH_2 - NHCO-Dm, -CH_2 - (CH_2OCH_2)_b - CH_2 - (CH_2OCH_2)_b -$ $N(R^3)-(CH_2)_a-CONH-Dm$, $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2)_a-NHCO-Dm$,

25

30

35

-CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-(CH₂OCH₂)_d-CONH-Dm, -CH₂-(CH₂OCH₂)_b- $CH_2-N(R^3)-CH_2-(CH_2OCH_2)_d-NHCO-Dm$, $-(CH_2)_a-NR^3R^4$, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; A₁ is a single or a double bond; B₁, C₁, and D₁ are independently selected from the group consisting of -O-, -S-, -Se-, -P-, -CR¹R², -CR¹, alkyl, NR³, and -C = O; A₁, B₁, C₁, and D₁ may together form a 6- to 12-membered carbocyclic ring or a 6- to 12-membered heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; a₃ and b₃ are independently from 0 to 5; R¹ to R⁴, and R²⁹ to R³⁷ are independently selected from the group consisting of hydrogen, C₁- C_{10} alkyl, C_5 - C_{20} aryl, C_1 - C_{10} alkoxyl, C_1 - C_{10} polyalkoxyalkyl, C_1 - C_{20} polyhydroxyalkyl, C₅-C₂₀ polyhydroxyaryl, C₁-C₁₀ aminoalkyl, cyano, nitro, halogen, saccharide, peptide, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-OH and -CH₂-(CH₂OCH₂)_b-CO₂H; Bm and Dm are independently selected from the group consisting of a bioactive peptide, a protein, a cell, an antibody, an antibody fragment, a saccharide, a glycopeptide, a peptidomimetic, a drug, a drug mimic, a hormone, a metal chelating agent, a radioactive or nonradioactive metal complex, and an echogenic agent; a and c are independently from 1 to 20; and b and d are independently vary from 1 to 100, and a pharmaceutically acceptable carrier or excipient.

The composition of claim 18 wherein W³ and X³ are independently 19. selected from the group consisting of -C(CH₃)₂, -C((CH₂)_aOH)CH₃, $-C((CH_2)_aOH)_2$, $-C((CH_2)_aCO_2H)CH_3$, $-C((CH_2)_aCO_2H)_2$, $-C((CH_2)_aNH_2)CH_3$, $C((CH_2)_aNH_2)_2$, $C((CH_2)_aNR^3R^4)_2$, $-NR^3$, and -S-; Y^3 is 5 selected from the group consisting of -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; Z³ is selected from the group consisting of -(CH₂)_a-CONH-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Dm, -(CH₂)_a-NHCO-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Dm, -(CH₂)_a-10 NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; A₁ is a single or a double bond; B₁, C₁, and D₁ are independently selected from the group consisting of -O-, -S-, NR³, (CH2)_a -CR¹R², and -CR¹; A₁, B₁, C₁, and D₁ may together form a 6- to 10-membered carbocyclic ring or a 6- to 10-membered heterocyclic ring optionally containing one or more oxygen, nitrogen, or 15 sulfur atom; a₃ and b₃ are independently from 0 to 3; R¹ to R⁴, and R²⁹ to R³⁷ are independently selected from the group consisting of hydrogen, C₁- C_{10} alkyl, C_5 - C_{12} aryl, C_1 - C_{10} alkoxyl, C_1 - C_{10} polyhydroxyalkyl, C_5 - C_{12} polyhydroxyaryl, C₁-C₁₀ aminoalkyl, mono- or oligosaccharide, peptide with 2 to 30 amino acid units, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, 20 -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-OH and -CH₂-(CH₂OCH₂)_b-CO₂H; Bm and Dm are independently selected from the group consisting of a

bioactive peptide containing 2 to 30 amino acid units, an antibody, a

mono- or oligosaccharide, a glycopeptide, a metal chelating agent, a

radioactive or nonradioactive metal complex, and an echogenic agent; a

and c are independently from 1 to 10; and b and d are independently from

1 to 30.

20. The composition of claim 19 wherein each of W³ and X³ is $C((CH_2)OH)_2$; Y³ is $-(CH_2)_2$ -CONH-Bm; Z³ is $-(CH_2)_2$ -CONH-Dm; A₁ is a single bond; A₁, B₁, C₁, and D₁ together form a 6-membered carbocyclic ring; each of a₃ and b₃ is 1; R²9 is galactose; each of R³0 to R³7 is hydrogen; Bm is Octreotate; and Dm is bombesin (7-14).