

The matrix b is computed using the RHS of eq. B, with the first and last value also being 0 as this satisfies our boundary conditions. 2 boundary conds Un (1+ AO+ BO + U21 (A+B) (1-9) a boundary condi. =) U; can be calculated from the known initial conditions (x)00 = (0, r)U as =) the domain is divided into J points L-LP/bx PAG

=) The number of time steps is given by T.
=) once the U; redox is found, These values become known and can be used in me to vector. This can be used to the U;
inalg solve is used to solve for x, and this vector is men used to update the value of b to find the v uduel at me next time step-
=) This is continued until the desired timesteps (T) have been reached.
The implementation of the theta scheme is shown in the file "gulana - 95. Py"
saved in my tolder.

=) Thus if $\alpha(t) > 0$ solution is stable =) if $\alpha(t) < 0$ solution is unstable =) It can finul be seen that advection term can mu, add stability to system. Diffusion term
=) It can form, be seen that advection term can mu, add stability to system.
term can mu, add stability to system.
Diffusion term
> The diffusion term will follow the same fourier analysis as in Morton and Mayers section 2.10,
with an added Eterm. such that:
$h = 1 - 4(1-0) N \sin^2 \frac{1}{2} R D x $ $1 + 40 N \cos^2 \frac{1}{2} R D x $ $1 + 40 N \cos^2 \frac{1}{2} R D x $ $1 + 40 N \cos^2 \frac{1}{2} R D x $ $1 + 40 N \cos^2 \frac{1}{2} R D x $ $1 + 40 N \cos^2 \frac{1}{2} R D x $ $1 + 40 N \cos^2 \frac{1}{2} R D x $ $1 + 40 N \cos^2 \frac{1}{2} R D x $ $1 + 40 N \cos^2 \frac{1}{2} R D x $ $1 + 40 N \cos^2 \frac{1}{2} R D x$
becomes=)

	"gulana-95.jpeg"	
which c	shows pure advection with o	~M
error o	t Zero as the peak height same as it travels upwind. I any conditions are the same implemented for Question	is
me :	same as it travels upwind.	The
bound	lary conditions are the same	e as
1105C	implemented for suestion	4 -
* To repri	oduce he figure, run me file	
as it	iv.	