TOPOLOGIA Examen Final resuelto, Junio 2004

1. (a) Demostrar que $d(x,y) = \min\{|x-y|, 1\}$ define una distancia en \mathbb{R} .

Comprobemos las tres propiedades que definen una distancia $d: X \times X \longrightarrow \mathbb{R}$

1) $d(x,y) \ge 0$ con $d(x,y) = 0 \Leftrightarrow x = y$.

Evidentemente d es una función no negativa y $d(x,y) = 0 \Leftrightarrow |x-y| = 0 \Leftrightarrow x = y$.

2) d(x,y) = d(y,x)

Ya que $|x - y| = |y - x| \Rightarrow \min(|x - y|, 1) = \min(|y - x|, 1)$.

3) $d(x,z) \le d(x,y) + d(y,z)$.

Si $|x-y| \ge 1$ o $|y-z| \ge 1$, la desigualdad es trivial porque entonces d(x,y) = 1 o d(y,z) = 1, respectivamente, mientras que por definición $d(x,z) \le 1$. Supongamos por tanto |x-y| < 1 y |y-z| < 1, entonces

$$d(x,y) + d(y,z) = |x - y| + |y - z| \ge |x - z| \ge \min(|x - z|, 1) = d(x,z),$$

donde se ha usado la triangular para el valor absoluto.

(b) Comparar la topología generada por d con la topología usual.

Designaremos mediante B_d las bolas en la topología generada por d y con B las de la topología usual, esto es:

$$B_d(x,\epsilon) = \{ y \in \mathbb{R} : d(x,y) < \epsilon \} \quad \text{y} \quad B(x,\epsilon) = \{ y \in \mathbb{R} : |x-y| < \epsilon \} = (x-\epsilon,x+\epsilon).$$

Análogamente, sean \mathcal{T}_d y \mathcal{T}_u las topologías generadas.

Si $\epsilon > 1$, $B_d(x, \epsilon) = \mathbb{R}$, y si $\epsilon \le 1$, $B_d(x, \epsilon) = B(x, \epsilon)$. En ambos casos obtenemos un abierto en la topología usual y por tanto $\mathcal{T}_d \subset \mathcal{T}_u$ (los abiertos generados por las B_d son siempre abiertos usuales).

Por otra parte, dada una bola B en la topología usual con $x \in B$, siempre podemos escoger $B(x,\epsilon) \subset B$ (porque B es abierto) y tomando $\epsilon' = \min(\epsilon,1)$ se cumple $x \in B_d(x,\epsilon') \subset B(x,\epsilon)$, ya que si d(x,y) < 1, se tiene d(x,y) = |x-y|. Por consiguiente la topología generada por d es más fina que la usual, $\mathcal{T}_u \subset \mathcal{T}_d$.

De las dos inclusiones se deduce el resultado.

- 2. Demostrar brevemente o dar un contraejemplo, según convenga:
 - a) Si Y no es conexo y $f: X \to Y$ es continua y sobreyectiva entonces X no es conexo.

VERDADERO: Si X fuera conexo, al ser f continua, tendría que ser f(X) conexo. Pero f(X) = Y (ya que f es sobre), que no es conexo.

b) Si $f: X \to S^1$ es continua y sobreyectiva entonces X es compacto.

FALSO: Hay muchos contraejemplos. Uno de ellos puede ser $f: \mathbb{R} \to S^1$ definida por $f(t) = (\cos t, \sin t)$.

c) Si $A \subset \mathbb{R}$ contiene más de un punto pero su interior es vacío, entonces A no puede ser conexo.

VERDADERO: Si x, y son dos puntos distintos de A con x < y, es claro que [x, y] no puede estar totalmente contenido en A puesto que, en ese caso, A tendría interior no vacío. De modo que existe $z \in \mathbb{R} \setminus A$ tal que x < z < y. Entonces $(-\infty, z), (z, \infty)$ es una separación de A.

d) Todo subconjunto de \mathbb{R} con la topología cofinita es compacto.

VERDADERO: Sea A un subconjunto cualquiera de \mathbb{R} y sea \mathcal{F} un recubrimiento abierto (en la topología cofinita) de A. Sea G cualquier abierto del recubrimiento \mathcal{F} . Sabemos que $A \setminus G$ es un conjunto finito, digamos $\{x_1, ..., x_n\}$. Sea $G_i \in \mathcal{F}$ tal que $x_i \in G_i$ para cada i = 1, ..., n. Entonces, $A \subset G \cup G_1 \cup \cdots \cup G_n$ de modo que \mathcal{F} tiene un subrecubrimiento finito.

3. Estudiar si son homeomorfos los siguientes espacios:

$$A = [0, 1), \quad B = \{(x, y) \in \mathbb{R}^2 : 0 < x \le 1, \ y = \operatorname{sen} \frac{1}{x}\}, \quad C = S^1, \quad D = S^1 \times S^1$$

Puesto que A es convexo, su grupo fundamental es el trivial, mientras que el de C es \mathbb{Z} y el de D es $\mathbb{Z} \times \mathbb{Z}$. Esto hace que entre A, C y D no haya dos espacios homeomorfos. Finalmente, que B es homeomorfo a A se deduce de que la aplicación $f:[0,1)\to B$ definida por $f(x)=(1-x,\sin\frac{1}{1-x})$ es un homeomorfismo. La idea intuitiva para llegar a esta solución es que B es homeomorfo a (0,1] y que (0,1] lo es a [0,1). Componiendo sendos homeomorfismos se llega precisamente a f.

4. Decidir si es conexo el siguiente subconjunto de \mathbb{R}^2 :

$$\{(1/n,t): n \in \mathbb{Z} \backslash \{0\}, t \in [-1,1]\} \cup \{(t,1): -1 \leq t < 0\} \cup \{(s,-1): 0 < s \leq 1\} \cup \{(0,0)\}$$

Escribamos el conjunto como

$$C = P_{-} \cup \{(0,0)\} \cup P_{+}$$

donde P_- y P_+ son los "peines" de la derecha y de la izquierda

$$P_{+} = \{(1/n, t) : n \in \mathbb{Z}^{+}, t \in [-1, 1]\} \cup \{(s, -1) : 0 < s \le 1\}$$

$$P_{-} = \{(1/n, t) : n \in \mathbb{Z}^{-}, t \in [-1, 1]\} \cup \{(t, 1) : -1 \le t < 0\}$$

 P_+ es conexo, de hecho conexo por arcos. Se vio en clase, una forma de comprobarlo es escribir P_+ como unión de "peines de una púa"

$$P_{+} = \bigcup_{n=1}^{\infty} P_{n}$$
 con $P_{n} = (\{1/n\} \times [-1, 1]) \cup ((0, 1] \times \{-1\}).$

 P_n es conexo por ser unión de dos conjuntos conexos (homeomorfos a intervalos) con un punto en común, el (1/n, -1). De aquí P_+ es conexo porque los P_n lo son y por ejemplo tienen en común al punto (-1, 1).

También $A = P_+ \cup \{(0,0)\}$ es conexo porque P_+ lo es y $P_+ \subset A \subset \overline{P_+}$, ya que cualquier entorno del origen contiene puntos de la forma (1/n,0). Análogamente $B = P_- \cup \{(0,0)\}$ es conexo, de hecho es homeomorfo a A a través del giro de 180° $(x,y) \mapsto (-x,-y)$. Como A y B son conexos y comparten el origen, $C = A \cup B$ también lo es.