CPT_S 260 Intro to Computer Architecture Lecture 9

Floating Point Representation January 31, 2022

Ganapati Bhat

School of Electrical Engineering and Computer Science
Washington State University

Multiplication Algorithm

Recap: Parallel Architecture

Conversion for Numbers with Fractions

- In real mathematical operation, we have numbers with fractions
 - Float and Double numbers in programing languages
- We should take three steps:
 - Convert the Integer Part (The same as integer numbers)
 - Convert the Fraction Part
 - Join the two results with a radix point

Fractional Part in Binary Format

 Repeatedly multiply the fraction by 2 and save the resulting integer digits. The digits for the binary number are the 0,1 in order of their computation.

Convert 46.6875 to binary!

Fractional Part in Binary Format

- Note that in this conversion, the fractional part becomes 0 as a result of the repeated multiplications.
- In general, it may take many bits to get this to happen or it may never happen.
- Example: Convert 0.65 to binary!
- 0.65 = 0.10100110011001 ...
- The fractional part begins repeating every 4 steps yielding repeating 1001 forever!
- Solution: Specify number of bits to right of radix point and round or truncate to this number.

Checking the Conversion

- To convert back, sum the digits times their respective powers of r.
- From the prior conversion of 46.6875

$$101110_{2} = 1 \times 32 + 0 \times 16 + 1 \times 8 + 1 \times 4 + 1 \times 2 + 0 \times 1$$
$$= 32 + 8 + 4 + 2$$
$$= 46$$

$$0.1011_2 = 1/2 + 1/8 + 1/16$$

= $0.5000 + 0.1250 + 0.0625$
= 0.6875

Normalized Numbers

- A number in scientific notation that has no leading 0s is called a normalized number
- Example:
 - 1.0_{ten} x10 ⁻⁹ is in **normalized** scientific notation,
 - -0.1_{ten} x10 ⁻⁸ and 10.0_{ten} x10⁻¹⁰ are not
- Just as we can show decimal numbers in scientific notation, we can also show binary numbers in scientific notation

Floating Point

Representation for non-integral numbers

Including very small and very large numbers

Similar to scientific notation

In binary

- $-\pm 1.xxxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

Floating Point Representation – 2s Complement

- If we use two's complement or any other notation in which negative exponents have a 1 in the most significant bit of the exponent field a negative exponent will look like a big number.
- For example, 1.0_{two} x 2⁻¹ would be represented as:

■ For example, 1.0_{two} x 2⁺¹ would be represented as:

Bias Exponent Representation

- 2's complement makes it difficult to compare exponents
- 1 is (111..111) where is 1 is (000....001). If we just look at 2's complement number, we cannot tell which has higher exponent
- IEEE 754 uses a bias of 127 for single precision, so an exponent of -1 is represented by the bit pattern of the value -1 + 127_{ten}, or 126_{ten} = 0111 1110_{two}
- +1 \rightarrow 1 + 127, or 128_{ten} = 1000 0000_{two}

■ The exponent bias for *double* precision is 1023.

Single-Precision Range

Exponents 00000000 and 11111111 reserved

Smallest value

- Exponent (also called biased exponent): $00000001 \Rightarrow \text{actual exponent} = 1 127 = -126$
- Fraction: 000...00 ⇒ significand = 1.0
- $-\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$

Largest value

- Exponent (also called biased exponent): $111111110 \Rightarrow \text{actual exponent} = 254 127 = +127$
- Fraction: 111...11 ⇒ significand ≈ 2.0
- $-\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved (next slides show for what these exponents are used)
 - Smallest value
 - Exponent: 00000000001 ⇒ actual exponent = 1 1023 = -1022
 - Fraction: 000...00 ⇒ significand = 1.0
 - $-\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$

Largest value

- Fraction: 111...11 ⇒ significand ≈ 2.0
- $-\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Special Cases

Zero

Sign bit = 0; biased exponent = all 00 bits; and the fraction = all 00 bits;

Positive and Negative Infinity

 Sign bit = 00 for positive infinity, 11 for negative infinity; biased exponent = all 11 bits; and the fraction = all 00 bits;

NaN (Not-A-Number)

— Sign bit = 0 or 1; biased exponent = all 11 bits; and the fraction is anything but all 00 bits. NaN's occurs when one does an invalid operation on a floating point value, such as dividing by zero, or taking the square root of a negative number.

Therefore, for Infinities and NaNs, we have

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity -sign bit =0 for (+); sign bit =1 for (-)
 - Can be used in subsequent calculations, avoiding need for overflow check
- **■** Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - » e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Floating-Point Precision

Relative precision

- All fraction bits are significant
- Single: approx 2⁻²³
 - Equivalent to 23 × \log_{10} 2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
- Double: approx 2⁻⁵²
 - Equivalent to 52 × \log_{10} 2 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

Floating-Point Example #1

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = 1000...00
 - Exponent = -1 + Bias
 - Single: -1 + 127 = 126 = 01111110
 - Double: -1 + 1023 = 1022 = 01111111110
- Single: 1011111101000...00
- Double: 10111111111101000...00

Floating-Point Example #2

- What number is represented by the single-precision float
- **11000000101000...00**
 - S = 1
 - Fraction = 01000...00
 - Exponent = 10000001 = 129
- $\mathbf{x} = (-1) \times (1 + .01) \times 2^{(129-127)}$
 - $= (-1) \times 1.25 \times 2^2$
 - **■** = -5.0