Algoritmi și structuri de date (I). Seminar 5: Stabilirea ordinului de complexitate pornind de la numărul de operații efectuate. Proprietății și calcule cu ordine de complexitate. Analiza complexității în cazul mediu.

Problema 1 Să se determine ordinul de creștere al valorii variabilei x (în funcție de n) după execuția algoritmilor alg1, alg2, alg3, alg4, alg5 și alg6.

alg1(integer n)	alg2(integer n)
1: $x \leftarrow 0$	1: $x \leftarrow 0$
2: for $i \leftarrow 1, n$ do	$i \leftarrow n$
3: for $j \leftarrow 1, i$ do	3: while $i \geq 1$ do
4: for $k \leftarrow 1, j$ do	4: $x \leftarrow x + 1$
5: $x \leftarrow x + 1$	5: $i \leftarrow i \text{DIV2}$
6: end for	6: end while
7: end for	7: \mathbf{return} x
8: end for	
9: return x	

alg3(integer n)	alg4(integer n)
1: $x \leftarrow 0$	1: $x \leftarrow 0$
$2: i \leftarrow n$	$2: i \leftarrow n$
3: while $i \geq 1$ do	3: while $i \geq 1$ do
4: for $j \leftarrow 1, n$ do	4: for $j \leftarrow 1, i$ do
5: $x \leftarrow x + 1$	5: $x \leftarrow x + 1$
6: end for	6: end for
7: $i \leftarrow i DIV2$	7: $i \leftarrow i DIV2$
8: end while	8: end while
9: return x	9: return x

Indicație. alg1:

$$x = \sum_{i=1}^{n} \sum_{i=1}^{i} \sum_{k=1}^{j} 1 = \sum_{i=1}^{n} \sum_{j=1}^{i} j = \sum_{i=1}^{n} \frac{i(i+1)}{2} = \frac{n(n+1)(n+2)}{6} \in \Theta(n^3)$$

alg2: x va conține numărul de cifre ale reprezentării în baza 2 a lui n, adică $|\lg_2(n)| + 1 \in \Theta(\lg n)$.

alg3: Spre deosebire de exemplul anterior, pentru fiecare valoare a lui i variabila x este mărită cu n, deci valoarea finală va fi $n(|\lg_2(n)|+1) \in \Theta(n\lg n)$.

alg4: Este similar algoritmului alg3 însă pe linia 4 limita superioară a ciclului **for** este i în loc de n. Variabila x va conține suma $n + \lfloor \frac{n}{2} \rfloor + \ldots + \lfloor \frac{n}{2^k} \rfloor$ cu k având proprietatea că $2^k \le n < 2^{k+1}$. Ordinul de mărime al lui x se poate stabili pornind de la observația că $2^{k+1} - 1 \le x < 2(2^{k+1} - 1)$. Deci $x \in \Theta(2^k) = \Theta(n)$.

alg5(integer n)	$\mathtt{alg6}(\mathbf{integer}\ n)$
1: $x \leftarrow 0$	1: $x \leftarrow 0$
$i \leftarrow 1$	$2: i \leftarrow 2$
3: while $i < n \text{ do}$	3: while $i < n$ do
4: $x \leftarrow x + 1$	4: $x \leftarrow x + 1$
5: $i \leftarrow 2 * i$	5: $i \leftarrow i * i$
6: end while	6: end while
7: $\mathbf{return} \ x$	7: return x

alg5: Variabila x va conține cel mai mare număr natural k cu proprietatea că $2^k \le n$, deci $x = |\lg_2 n| + 1 \in$ $\Theta(\lg n)$.

alg6: Variabila x va conține cel mai mare număr natural k cu proprietatea că $2^{2^k} \le n$ deci $x = \lfloor \lg_2 \lg_2 n \rfloor + 1 \in$ $\Theta(\lg_2 \lg_2 n)$.

Problema 2 Să se determine termenul dominant și ordinul de creștere pentru expresiile:

- (a) $2\lg n + 4n + 3n\lg n$
- (b) $2+4+6+\dots 2n$
- (c) $\frac{(n+1)(n+3)}{n+2}$
- (d) $2+4+8+\ldots+2^n$

Indicație. (a) Termenul dominant în $2\lg n + 4n + 3n\lg n$ este evident $3n\lg n$ iar ordinul de creștere este $n\lg n$. (b) Termenul dominant al sumei $2+4+6+\ldots 2n$ nu este 2n ci n^2 întrucât $2+4+6+\ldots 2n=n(n+1)$. Deci ordinul de creştere este chiar n^2 .

- (c) Termenul dominant este $n^2/(n+2)$ iar ordinul de creştere este n.
- (d) Întrucât $2+4+8+\ldots+2^n=2(1+2+4+\ldots+2^{n-1})=2(2^n-1)$, termenul dominant este $2\cdot 2^n$ iar ordinul de crestere este 2^n .

Problema 3 Să se arate că:

- (a) $n! \in \mathcal{O}(n^n), n! \in \Omega(2^n)$
- (b) $\lg n! \in \Theta(n \lg n)$
- (c) $2^n \in \mathcal{O}(n!)$
- (d) $\sum_{i=1}^{n} i \lg i \in \mathcal{O}(n^2 \lg n)$
- (e) $\lg(n^k + c) \in \Theta(\lg n), k > 0, c > 0.$
- (f) $\sum_{i=1}^{n} i^k \in \Theta(n^{k+1})$

Indicație. (a) Întrucât $n! \leq n^n$ pentru orice n natural, rezultă imediat că $n! \in \mathcal{O}(n^n)$. Pe de altă parte, $n! > 2^{n-1}$ pentru orice n, deci $n! \in \Omega(2^n)$.

(b) Se pornește de la aproximația Stirling $n! \simeq \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ care este adevărată pentru valori mari ale lui n. Mai exact, există $c_1, c_2 \in \mathbb{R}_+$ și $n_0 \in \mathbb{N}$ astfel încât

$$\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{c_1}{n}\right) \le n! \le \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{c_2}{n}\right)$$

pentru orice $n \geq n_0$.

Prin logaritmare se obține:

$$\ln(2\pi n)/2 + \ln(1+c_1/n) + n \ln n - n \le \ln n \le \ln(2\pi n)/2 + \ln(1+c_1/n) + n \ln n - n$$

deci $\ln n! \in \Theta(n \ln n)$. Facând abstracție de baza logaritmului se obține $\lg n! \in \Theta(n \lg n)$

- (c) Cum $2^n < n!$ pentru orice $n \ge 4$ rezultă că $2^n \in \mathcal{O}(n!)$.
- (d) $\sum_{i=1}^{n} i \lg i \le \lg n \sum_{i=1}^{n} i \le n^{2} \lg n$, deci $\sum_{i=1}^{n} i \lg i \in \mathcal{O}(n^{2} \lg n)$. (e) Pentru valori suficient de mari ale lui n are loc $\lg n^{k} \le \lg(n^{k} + c) \le \lg(2n^{k})$, adică $k \lg n \le \lg(n^{k} + c) \le \lg(2n^{k})$ $k\lg(n) + \lg 2$, deci $\lg(n^k + c) \in \Theta(\lg n)$.
- (f) Intrucât fiecare termen al sumei este mai mic sau cel mult egal cu n^k rezultă imediat că $\sum_{i=1}^k <$ $n \cdot n^k = n^{k+1}$ deci suma este de ordin $\mathcal{O}(n^{k+1})$. Pentru a justifica faptul că suma este din $\Theta(n^{k+1})$ se poate folosi formula lui Faulhaber din care rezultă că suma este un polinom de grad k+1 de argument n (pentru o demonstrație a acestui fapt poate fi consultată lucrarea https://www.emis.de/journals/AMEN/2018/AMEN-170803.pdf).

Problema 4 Care dintre următoarele afirmații sunt adevărate? Demonstrați.

```
(a) \sum_{i=1}^{n} i^2 \in \Theta(n^2), \sum_{i=1}^{n} i^2 \in \mathcal{O}(n^2), \sum_{i=1}^{n} i^2 \in \Omega(n^2)

(b) cf(n) \in \Theta(f(n)), f(cn) \in \Theta(f(n))

(c) 2^{n+1} \in \mathcal{O}(2^n), 2^{2n} \in \mathcal{O}(2^n)?
```

Indicație. (a) Întrucât $\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$ rezultă că $\sum_{i=1}^{n} i^2 \in \Theta(n^3)$, deci $\sum_{i=1}^{n} i^2 \in \Omega(n^2)$ însa celelalte două afirmații sunt false.

- (b)Întrucât $c_1f(n) \leq cf(n) \leq c_2f(n)$ pentru constante c_1 şi c_2 satisfăcând $0 < c_1 \leq c \leq c_2$ rezultă că $cf(n) \in \Theta(f(n))$. In schimb $f(cn) \in \Theta(f(n))$ nu este adevărată pentru orice funcție f și orice constantă c. De exemplu $f(n) = \exp(n)$ și c > 1 nu satisfac această proprietate întrucât nu există c' astfel încât $\exp(cn) \leq c' \exp(n)$ pentru valori mari ale lui n.
- (c) Întrucât $2^{n+1}=2\cdot 2^n$ rezultă că $2^{n+1}\in\Theta(2^n)$ deci implicit şi $2^{n+1}\in\mathcal{O}(2^n)$. Pe de altă parte, $\lim_{n\to\infty}2^{2n}/2^n=\infty$ prin urmare $2^{2n}\notin\mathcal{O}(2^n)$ dar $2^{2n}\in\Omega(2^n)$.

Problema 5 Propuneți un algoritm pentru determinarea celor mai mici două valori dintr-un tablou. Determinați numărul de comparații efectuate asupra elementelor tabloului și stabiliți ordinul de complexitate al algoritmului.

Indicație. O variantă de algoritm este descrisă în valori_minime.

```
valori_minime(integer a[1..n])
 1: if a[1] < a[2] then
       min1 \leftarrow a[1]; min2 \leftarrow a[2];
 3: else
       min1 \leftarrow a[2]; min2 \leftarrow a[1];
 5: end if
 6: for i \leftarrow 3, n do
       if a[i] < min1 then
          min2 \leftarrow min1; min1 \leftarrow a[i]
       else if a[i] < min2 then
 9:
10:
          min2 \leftarrow a[i]
       end if
11:
12: end for
13: return min1, min2
```

În cazul cel mai nefavorabil numărul de comparații efectuate asupra elementelor tabloului este T(n) = 1 + 2(n-2) = 2n - 3 deci algoritmul aparține lui $\mathcal{O}(n)$.

Problema 6 Propuneți un algoritm de complexitate liniară pentru a determina tabloul frecvențelor cumulate pornind de la tabloul frecvențelor simple. Pentru un tablou (f_1, \ldots, f_n) de frecvențe, tabloul frecvențelor cumulate (fc_1, \ldots, fc_n) se caracterizează prin $fc_i = \sum_{j=1}^i f_j$.

Rezolvare. Este ușor de văzut că un algoritm care calculează pentru fiecare i valoarea sumei $fc_i = \sum_{j=1}^i f_j$ necesită efectuarea a $\sum_{i=2}^n \sum_{j=1}^i 1 = \sum_{i=2}^n i = n(n+1)/2 - 1 \in \Theta(n^2)$. Observând că $fc_i = fc_{i-1} + f_i$ pentru $i = \overline{2,n}$ și $fc_1 = f_1$ rezultă că frecvențele cumulate pot fi calculate prin algoritmul frecvente_cumulate descris în continuare.

```
\begin{array}{l} \textbf{frecvente\_cumulate}(\textbf{integer}\ f[1..n]) \\ \textbf{integer}\ i, fc[1..n] \\ 1:\ fc[1] \leftarrow f[1] \\ 2:\ \textbf{for}\ i \leftarrow 2, n\ \textbf{do} \\ 3:\ \ fc[i] = fc[i-1] + f[i] \\ 4:\ \textbf{end}\ \textbf{for} \\ 5:\ \textbf{return}\ \ fc[1..n] \end{array}
```

Problema 7 Să se stabilească ordinul de complexitate pentru următorii algoritmi ce prelucrează date de volum n.

```
for i \leftarrow 1, n do
            \dots (\Theta(1))
           for j \leftarrow 1, 2i do
                \dots (\Theta(1))
                k \leftarrow j \ (\Theta(1))
(a)
                while k \geq 0 do
                     \dots (\Theta(1))
                     k \leftarrow k-1
                endwhile
            endfor
       endfor
       h \leftarrow 1
       while h \leq n \ \mathbf{do}
(b)
            \dots (\Theta(1))
            h \leftarrow 2 * h
       endwhile
       calcul (x[0..n-1])
       k \leftarrow 0
      for i \leftarrow 0, n-1 do
           for j \leftarrow 0, n-1 do
(c)
                y[k] \leftarrow x[i] * x[j] k \leftarrow k+1
           endfor
      endfor return y[1..k]
Rezolvare: (a):
```

$$T(n) = \sum_{i=1}^{n} \sum_{j=1}^{2i} \sum_{k=0}^{j} 1 = \sum_{i=1}^{n} \sum_{j=1}^{2i} (j+1) = \sum_{i=1}^{n} 2i^{2} + 3i = \frac{n(n+1)(2n+1)}{3} + \frac{3n(n+1)}{2} \in \Theta(n^{3})$$

```
(b): T(n) \in \Theta(\lg n)
(c): T(n) \in \Theta(n^2)
```

Problema 8 Propuneți un algoritm de complexitate $\Theta(n^2)$ și unul de complexitate $\Theta(n)$ pentru evaluarea unui polinom de grad n.

Rezolvare:

$\texttt{polinom1}(\textbf{real}\ a[0n], x)$	${\tt polinom2(real}\ a[0n],x)$
$1: y \leftarrow 0$	1: $y \leftarrow 0$
2: for $i \leftarrow 0, n$ do	$2: k \leftarrow n$
$3: k \leftarrow 1$	3: while $k \geq 0$ do
4: for $j \leftarrow 1, i$ do	$4: y \leftarrow y * x + a[k]$
5: $k \leftarrow k * x$	5: $k \leftarrow k-1$
6: end for	6: end while
7: $y \leftarrow y + a[i] * k$	7: return y
8: end for	
9: $\mathbf{return} \ y$	

In ambele cazuri dimensiunea problemei este n, iar operația dominantă este înmulțirea. Pentru algoritmul polinom1 numărul de înmulțiri efectuate este $\sum_{i=0}^{n}\sum_{j=1}^{i}1=\sum_{i=0}^{n}i=n(n+1)/2\in\Theta(n^2)$. In cazul algoritmului polinom2 numărul de înmulțiri efectuate este n+1 deci ordinul de complexitate este $\Theta(n)$.

Probleme suplimentare/teme

1. Să se determine ordinul de mărime al variabilei x după execuția următoarelor prelucrări (și implicit ordinul de complexitate a algoritmului):

```
x \leftarrow 0
1:
2:
      j \leftarrow n
3:
      while j \ge 1 do
4:
           for i \leftarrow 1, j do
                x \leftarrow x + 1
5:
6:
           endfor
7:
            j \leftarrow j \text{DIV}3
8:
      endwhile
```

- 2. Se consideră un text constituit din N cuvinte, lungimea maximă a unui cuvânt fiind M. Asupra textului se aplică următoarea prelucrare:
 - Pas 1. Se ordonează crescător literele din fiecare cuvânt
 - Pas 2. Se ordonează lexicografic cuvintele din text

De exemplu, textul "exemplu de transformare a textului" va suferi următoarele transformări:

- Pas 1. "eelmpux ed aaefmnorrrst a eilttuux"
- Pas 2. "a aaefmnorrrst ed eelmpux eilttuux"

Stabiliți ordinul de complexitat al algoritmului în ipoteza că: (a) se utilizează un algoritm de sortare de complexitate pătratică, $O(n^2)$; (b) se utilizează un algoritm de sortare de complexitate $O(n \lg n)$.

3. Se consideră următorul algoritm:

```
1: alg(int \ n)

2: d \leftarrow 2

3: while d * d < n do

4: if n \text{ MOD } d == 0 then

5: return False

6: end if

7: d \leftarrow d + 1

8: end while

9: return True
```

Care este ordinul de complexitate al algoritmului?

4. Se consideră următorul algoritm:

```
1: alg(int n, int k)
2: p \leftarrow 1
3: while k > 0 do
4: if k \text{ MOD } 2 == 1 then
5: p \leftarrow p * n; k \leftarrow k - 1
6: else
7: n \leftarrow n * n; k \leftarrow k \text{ DIV } 2
8: end if
9: end while
10: return p
```

Care este cel mai favorabil caz? Care este cel mai defavorabil caz? Care este ordinul de complexitate a algoritmului?

5. Se consideră următorul algoritm:

```
1: alg(int \ n)

2: i \leftarrow n/2; nr \leftarrow 0

3: while i \le n do

4: j \leftarrow n

5: while j \ge 1 do

6: nr \leftarrow nr + 1

7: j \leftarrow j/2

8: end while

9: i \leftarrow i + 1

10: end while

11: return nr
```

Ce returnează algoritmul? Care este ordinul de complexitate?