Homework 4: Distributed Deep Q-Learning (DQN)

A-young Kang (Student ID: 933-610-350)

Part 1. Non-distributed DQN

1. Summary of observations

Figure 1 (a) and (b) show the learning curves without a replay buffer. Since it doesn't have a replay buffer, the update is based on the highly correlated sequence of examples. Thus, the total reward in both cases does not converge to some point. When DQN has a target network, it stabilizes learning by making the targets more stable. Therefore, the learning curve in (b) reaches the total reward of 200 earlier than the one in (a). Figure 1 (c) and (d) show learning curves with a replay buffer. Although there are some fluctuations, the total reward converges to 200 after around 5,000 and 4,000 episodes, respectively. We can also observe full-DQN has a more stable learning curve than DQN without a target network in (c).

Figure 1. Learning Curves (Non-distributed)

2. Parameters used

'epsilon_decay_steps': 100000, 'final_epsilon': 0.1, 'batch_size': 1, 'update_steps': 1, 'memory_size': 1, 'beta': 0.99, 'model_replace_freq': 2000, 'learning_rate': 0.0003 'use_target_model': False	'epsilon_decay_steps': 100000, 'final_epsilon': 0.1, 'batch_size': 1, 'update_steps': 1, 'memory_size': 1, 'beta': 0.99, 'model_replace_freq': 2000, 'learning_rate': 0.0003, 'use_target_model': True
(a) DQN <u>without</u> a replay buffer and	(b) DQN <u>without</u> a replay buffer and
<u>without</u> a target network	<u>with</u> a target network
'epsilon_decay_steps': 100000, 'final_epsilon': 0.1, 'batch_size': 32, 'update_steps': 10, 'memory_size': 2000, 'beta': 0.99, 'model_replace_freq': 2000, 'learning_rate': 0.0003, 'use_target_model': False	'epsilon_decay_steps': 100000, 'final_epsilon': 0.1, 'batch_size': 32, 'update_steps': 10, 'memory_size': 2000, 'beta': 0.99, 'model_replace_freq': 2000, 'learning_rate': 0.0003, 'use_target_model': True
(c) DQN <u>with</u> a replay buffer and	(d) DQN <u>with</u> a replay buffer and
<u>without</u> a target network	<u>with</u> a target network

Table 1. Parameters used

Part 2. Distributed DQN

1. Summary of observations

Figure 2 shows the learning curves with different collector workers. The total reward converges to 200 after around 4,000 training episodes as in the non-distributed case. As the number of collection workers increases, the learning time decreases. However, as the number of collector workers increases from 8 to 12, the decrease in learning time is not as significant as from 4 to 8. Since we always have the same number of evaluators in all cases, just increasing the number of collection workers would not have a large impact on decreasing learning time.

Figure 2. Learning curves versus the number of collectors

# of workers	Learning time (sec)
Collector workers = 4 Evaluator workers = 4	6206.70823931694
Collector workers = 8 Evaluator workers = 4	3868.8533148765564
Collector workers = 12 Evaluator workers = 4	3392.695325613022

Table 2. Learning time