Introducción a la Genómica UNAL nov 2017

Alejandro Caceres ISGlobal, Barcelona

October 13, 2017

datos de SNPs

Cada programa tiene un formato diferente y es importante saber cambiar de formato

- ► PLINK: Es un programa compilado, corre por la linea de comandos y es muy rapido. Es particularmente util para manejar las bases de datos en si, exlcuir sujetos, seleccionar SNPs. No tiene la versatilidad de R para explorar graficos, crear nuevas funciones o hacer graficos, pero es muy utilizado y con experiencia en computacion facil de hacer pipelines.
- snpStats (bioconductor): Tiene varias funciones para ver la estructura de los datos (linakage-disequilibium, pca, Fst), y hace analisis de asociacion en base de datos grandes, pero no prueba diferentes modelo de herencia. Usa un fromato especial (raw data).
- snpAssoc (r-cran): versatil para probar diferentes modelos de herencia, pero las funciones no estan optimizadas para menejar matrices muy grandes.
- ► tabix : un programa para gestionar datos en formato VCF usado por los 1000 genomas

PLINK

Es un programa por linea de comandos desarrollado por Chrostopher Chang.

Tiene una documentación muy completa

PLINK

PLINK tiene dos formatos

- .bed, .bim, .fam: es el mas usado y separa la información en tres archivos genotipos (.bed), anotacion de SNPs (.bim), fenotipos (.fam)
- .ped, .map: .ped son los .fam en las primeras columnas y .map es una versión con menos info que .bim

PLINK

Para cambiar los cambiar el formatos de misDatos.ped y misDatos.map a misDatos.bed, misDatos.bim y misDatos.fam

plink --file misDatos --make-bed --out misDatos

Datos de SNPs

Despues del preprocesamiento de los datos, los datos que se obtienen es de un gentipo por individuo. Si tenemos 1 millon de SNPs y 1000 individuos, esto es tipicamente una matriz de $10^3\times10^6.$ Hay diferentes formas de organizar estos datos

```
rs33 rs36 rs43
NA090 A/C G/G T/A ...
NA091 A/A G/G T/A ...
NA092 A/A G/C T/A ...
NA093 A/C C/C A/A ...
```

. . .

Datos de SNPs

Hay diferentes formas de organizar estos datos

```
rs33 rs36 rs43
NA090 A/C G/G T/A ...
NA091 A/A G/G T/A ...
NA092 A/A G/C T/A ...
NA093 A/C C/C A/A ...
```

Una forma eficiante es llamar 0:homocigoto, 1:heterocigoto y 2:heterocigoto variante.

- para SNP=rs33 el alelo mas frecuente es A y el menos frecuente es C.
 - Entonces: A/A=0, A/C=1, CC=2
- para SNP=rs36 el alelo mas frecuente es G y el menos frecuente es C.
 - Entonces: G/G=0, G/C=1, CC=2

Datos tipicos de SNPs (PLINK) formato bed

Datos de los genotipos (datos.bed)

```
    rs33
    rs36
    rs43

    NA090
    1
    0
    1
    ...

    NA091
    0
    0
    1
    ...

    NA092
    0
    1
    1
    ...

    NA093
    1
    2
    2
    ...
```

. . .

Datos tipicos de SNPs (PLINK) formato bed

▶ Datos con la anotacion de SNPs (datos.bim)

chr	snp	mor	pos	allele1	allele2
1	rs33	0	1034	A	C
1	rs36	0	2000	G	C
1	rs43	0	10056	T	A

. . .

Datos tipicos de SNPs (PLINK) formato bed

▶ Datos con los fenotipos (datos.fam)

ID	FI	AMID	sex	asthma	BMI-z
NAO	90	1	1	1	1.2
NAO	91	1	1	0	1.5
NAO	92	2	0	0	0.9
NAO	93	2	0	1	1

Es un programa en R (bioconductor)

tiene la ventaja de que esta en ambiente R y se pueden usar otros paquetes de bioconductor

se instalala como desde R por medio de los comandos

```
source("https://bioconductor.org/biocLite.R")
biocLite("snpStats")
```

se carga con

```
library("snpStats")

## Loading required package: survival

## Loading required package: Matrix
```

puede leer datos de PLINK (formato .bed) mediante la función

```
snp<-read.plink(misDatos)</pre>
```

se pueden guardar como binarios de R snp.RData

```
save(snp, file="snp.RData")
```

también se pueden guardar datos de snpStats en PLINK con write.plink

se pueden cargar los binarios snp.RData

```
load("datos/snp.RData")
```

```
## A SnpMatrix with 1500 rows and 439 columns
## Row names: 1 ... 1500
## Col names: 1 ... 439
```

Repositorio de datos de los 1000 genomas donde se pueden descargar los datos de 2504 individuos

Hay un servidor ftp para descargar datos Los archivos son enormes, pero se puden leer por regiones con Tabix

También hay un browser para bajar datos de regiones

obtengamos datos para MAPT

Formato VCF

Formato VCF

Bioconductor

Paquete Variant Annotation para leer datos VCF

VCF in R

se pueden cargar los binarios snp.RData

```
source("http://bioconductor.org/biocLite.R")
biocLite("VariantAnnotation")
```

Bioconductor

Variant annotation

VCF in R

```
library(VariantAnnotation)
fl<-"17.43921017-43972966.ALL.chr17.phase3_shapeit2_mvncall_integrated_
vcf <- readVcf(fl, "hg19")
genos<-geno(vcf)
names(genos)
dim(genos$GT)
genos$GT[1:5,1:5]</pre>
```

Si el archivo es grande readVcf permite leer sólo regiones de interes

VCF in R

Los genotipos en formato 0,1,2 pueden ser encontrados en genos\$DS.

Si no se puede entonces se puede calcular asi

```
snps<-genos$GT
snps[snps=="0|0"]<-0
snps[snps=="1|1"]<-2
snps[snps!=0 & snps !=2]<-1
snps[1:5,1:5]
save(snps, file="snpsMAPT.RData")</pre>
```

VCF in snpStats

snpStats usa formato 1,2,3 para genotipos y el 0 para missing

```
library(snpStats)
snpsnew(-t(snps)
snpsnew[snps=="0"] <- 1
snpsnew[snps=="1"] <- 2
snpsnew[snps=="2"] <- 3

snpsSNPstats <- new("SnpMatrix", snpsnew)
print(as(snpsSNPstats[1:5,1:5], 'character'))
save(snpsSNPstats, file="snpsSNPstats.RData")</pre>
```

Los datos de los 1000 genomas (y HapMap)tambien están en formato PLINK por chromosomas

PLINK a VCF

- los comandos PLINK puden usar formato VCF
- también se puede convertir .bed .bim .fam a formato a VCF y vise-versa

```
$ plink --bfile [filename prefix] --recode vcf --out [VCF prefix]
$ plink --vcf [VCF filename] --out [.bed/.bim/.fam prefix]
```

Ejercicio

- Descargar datos de los 1000 Genomas en PLINK
- ► leerlos en snpStats
- si PLINK está instalado convertirlos en VCF
- leerlos en snpStats