Algoritmos y Estructuras de Datos I

Primer Cuatrimestre 2020

Guía Práctica 3 **Ejercicios entregables**

Integrantes:

Risaro Daniela Belén LU: 666/09 Sturmer Eva Sylvia Juliet LU: 606/19

Ejercicio 1 Calcular las siguientes expresiones, donde a, b son variables reales, i una variable entera y A es una secuencia de reales::

- $\operatorname{def}(\sqrt{a/b})$.
- $\operatorname{def}(A[i+2])$.

Respuesta:

•
$$\operatorname{def}(\sqrt{a/b}) \equiv \operatorname{def}(a) \wedge \operatorname{def}(b) \wedge L \ ((a \ge 0 \wedge L \ b > 0) \vee L \ (a \le 0 \wedge L \ b < 0))$$

 $\equiv \operatorname{True} \wedge \operatorname{True} \wedge L \ ((a \ge 0 \wedge L \ b > 0) \vee L \ (a \le 0 \wedge L \ b < 0))$
 $\equiv (a \ge 0 \wedge L \ b > 0) \vee L \ (a \le 0 \wedge L \ b < 0)$

•
$$\operatorname{def}(A[i+2]) \equiv \operatorname{def}(A) \wedge \operatorname{def}(i+2) \wedge L \ 0 \leq i+2 < |A|$$

 $\equiv \operatorname{True} \wedge \operatorname{True} \wedge L \ -2 \leq i < |A| \ -2$
 $\equiv -2 \leq i < |A| \ -2$

Ejercicio 6.e Escribir programas para los siguientes problemas y demostrar formalmente su corrección usando la precondición más débil.

• proc problema5(in a: seq $\langle \mathbb{Z} \rangle$, in i: \mathbb{Z} , out result: \mathbb{Z}) { Pre $\{0 \le i \land i+1 < |a| \}$ Post $\{\text{result} = a[i] + a[i+1] \}$

Respuesta:

S1: result:=
$$a[i] + a[i+1]$$

• Primero calculamos su wp por medio del Axioma 1:

$$\begin{split} E &\equiv wp(S1,\,Q) \equiv wp(result:=a[i]+a\,[i+1],\,result:=a[i]+a\,[i+1]) \\ /^* & \text{Siendo result de } Q \text{ reemplazado por su valor de } S1.^*/\\ &\equiv def(a[i]+a\,[i+1]) \land L \; ((a[i]+a\,[i+1])=(a[i]+a\,[i+1])) \\ &\equiv def(a[i]) \land def(a[i+1]) \land L \; \text{True} \\ &\equiv def(a) \land def(i) \land def(a) \land def(i) \land L \; 0 \leq i < |a| \land L \; 0 \leq i+1 < |a| \\ &\equiv \text{True} \land \text{True} \land \text{True} \land \text{True} \land L \; 0 \leq i < |a| \land L \; 0 \leq i+1 < |a| \\ &\equiv 0 \leq i < |a| \land L \; 0 \leq i+1 < |a| \end{split}$$

. Ahora checkeamos que $Pre \rightarrow E$:

Pre
$$\rightarrow$$
 E \equiv 0 \leq i \wedge i+1 $<$ |a| \rightarrow 0 \leq i $<$ |a| \wedge L 0 \leq i+1 $<$ |a| 0 \leq i \rightarrow 0 \leq i i+1 $<$ |a| \rightarrow i+1 $<$ |a|

Ejercicio 8.d Escribir programas para los siguientes problemas y demostrar formalmente su corrección usando la precondición más débil.

• proc problema4(in s: seq $\langle \mathbb{Z} \rangle$, in i: \mathbb{Z} , inout a: \mathbb{Z}) { Pre $\{0 \le i < |s| \land L \ a = \sum_{j=o}^{i-1} (if \ s[j] \ne 0 \text{ then } 1 \text{ else } 0 \text{ Fi }) \}$ Post $\{a = \sum_{j=o}^{i} (if \ s[j] \ne 0 \text{ then } 1 \text{ else } 0 \text{ Fi }) \}$

Respuesta:

$$if (s[i] \neq 0)$$

$$a:= a + s[i]$$

$$else$$

$$skip$$

$$endif$$

• Primero calculamos su wp por medio del Axioma:

Si S=if B then S1 else S2 endif, entonces:

$$\begin{split} E &= wp(S,\,Q) \equiv def(B) \wedge L \; ((B \wedge wp(S1,\,Q)) \vee (\neg B \wedge wp(S2,\,Q))) \\ &\equiv def(s[i] \neq 0) \wedge L \; ((s[i] \neq 0 \wedge wp(S1,\,Q)) \vee (\neg (s[i] \neq 0) \wedge wp(S2,\,Q))) \\ &\equiv 0 \leq i < |s| \wedge L \; ((s[i] \neq 0 \wedge wp(S1,\,Q)) \vee (\neg (s[i] \neq 0) \wedge wp(S2,\,Q))) \end{split}$$

Lo dividimos en 3 partes para que sea mas legible:

1.
$$0 \le i < |s|$$

2.
$$s[i] \neq 0 \land wp(S1, Q)$$

3.
$$\neg(s[i] \neq 0) \land wp(S2, Q)$$

Comenzemos con el 2:

$$s[i] \neq 0 \land wp(S1, Q)$$

$$\equiv$$
s[i] \neq 0 \wedge wp(a:= a + s[i], a = $\sum\limits_{j=o}^{i}(\ if\ s[j]\neq 0$ then 1 else 0 Fi)

$$\equiv$$
s[i] \neq 0 \wedge def(a + s[i]) \wedge L a + s[i] = $\sum\limits_{j=o}^{i}($ if s[j] \neq 0 then 1 else 0 Fi)

$$\equiv$$
 s[i] \neq 0 \wedge def(a) \wedge def(s) \wedge def(i) \wedge L 0 \leq i $<$ |s| \wedge L a + s[i] = $\sum_{j=0}^{i} (if \ s[j] \neq 0 \text{ then 1 else 0 Fi})$

$$\equiv$$
 s[i] \neq 0 \wedge True \wedge True \wedge True \wedge L 0 \leq i $<$ |s| \wedge L a + s[i] = $\sum_{j=0}^{i} (if \ s[j] \neq 0 \text{ then 1 else 0 Fi})$

$$\equiv$$
s[i] \neq 0 \land L 0 \leq i $<$ |s| \land L a + s[i] = $\sum\limits_{j=o}^{i}($ if s[j] \neq 0 then 1 else 0 Fi)

Continuamos con el 3:

$$\neg(s[i] \neq 0) \land wp(S2, Q)$$

$$\equiv s[i] = 0 \, \land \, wp(skip, \, Q)$$

$$\equiv$$
 s[i] = 0 \land wp(skip, a = $\sum_{j=0}^{i} (if \ s[j] \neq 0 \text{ then } 1 \text{ else } 0 \text{ Fi }))$

$$\equiv$$
 s[i] = 0 \wedge a = $\sum_{j=0}^{i} (if \ s[j] \neq 0 \text{ then } 1 \text{ else } 0 \text{ Fi})$

Por lo que juntando las 3 partes obtenemos:

$$\mathbf{E}=0\leq\mathbf{i}<|\mathbf{s}|$$
 $\wedge\mathbf{L}$ ((s[i] $\neq0$ $\wedge\mathbf{L}$ 0 $\leq\mathbf{i}$ $<$ |s| $\wedge\mathbf{L}$ a + s[i] = $\sum\limits_{j=o}^{i}(\ if\ s[j]\neq0$ then 1 else 0 Fi)) \vee

$$(s[i] = 0 \land a = \sum_{j=0}^{i} (if \ s[j] \neq 0 \text{ then } 1 \text{ else } 0 \text{ Fi })))$$

Finalmente debemos probar que Pre \rightarrow E:

$$0 \leq \mathrm{i} < |\mathrm{s}| \wedge \mathrm{L}$$
a = $\sum\limits_{j=o}^{i-1} (\ if \ s[j] \neq 0 \ \mathrm{then} \ 1 \ \mathrm{else} \ 0 \ \mathrm{Fi} \) \rightarrow \mathrm{E}$

$$0 \le i < |s| \to 0 \le i < |s|$$

$$\mathbf{a} = \sum_{j=o}^{i-1} (\ if\ s[j] \neq 0 \ \text{then}\ 1 \ \text{else}\ 0 \ \text{Fi}\) \rightarrow \mathbf{a} = \sum_{j=o}^{i} (\ if\ s[j] \neq 0 \ \text{then}\ 1 \ \text{else}\ 0 \ \text{Fi}\)) \ -s[i]\ //si\ i \neq 0$$