線形代数学・同演習 B

12 月 20 日分 小テスト

学籍番号: 氏名:

次の行列は対角化可能か.可能ならば対角化せよ.(裏面も使用してよい.)

$$(1) A = \begin{pmatrix} 4 & 9 & 0 \\ -1 & -2 & 0 \\ 6 & 9 & -2 \end{pmatrix} \qquad (2) B = \begin{pmatrix} 5 & 12 & 6 \\ 0 & -1 & 0 \\ -3 & -6 & -4 \end{pmatrix}$$

解)(1)まず固有多項式および固有値を求める.

$$\det(tE_3 - A) = \begin{vmatrix} t - 4 & -9 & 0 \\ 1 & t + 2 & 0 \\ -6 & -9 & t + 2 \end{vmatrix} = (t + 2) \begin{vmatrix} t - 4 & -9 \\ 1 & t + 2 \end{vmatrix} = (t + 2)(t - 1)^2.$$

よって固有多項式は $(t+2)(t-1)^2$ で , 固有値は $\lambda = egin{cases} 1 & (重複度 \ 2) \\ -2 & \end{cases}$ である .

 $({\rm i})~\lambda=1$ の固有空間 (固有ベクトル) を求める . $(1\cdot E_3-A)\left({x\over y}\right)={\bf 0}$ の解を求めればよい . 係数行列 $1\cdot E_3-A$ を簡約化すれば ,

$$E_3 - A = \begin{pmatrix} -3 & -9 & 0 \\ 1 & 3 & 0 \\ -6 & -9 & 3 \end{pmatrix} \xrightarrow{\text{Bish} \mathcal{E}} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1/3 \\ 0 & 0 & 0 \end{pmatrix}$$

なので ,解は $\binom{x}{y}=s$ $\binom{3}{3}$ となる (s はパラメータ). 特にパラメータの数 $(=\dim W(1;A))$ を見ると $\dim W(1;A)=1$ \leqq \leqq \leqq (固有値 \leqq の重複度)であるので , 行列 \leqq は対角化できない . $(\lambda=1$ の結果に関わらず対角化できないことがわかったことになるので , その場合の計算は必要がない)

(2) まず固有多項式および固有値を求める.

$$\det(tE_3 - B) = \begin{vmatrix} t - 5 & -12 & -6 \\ 0 & t + 1 & 0 \\ 3 & 6 & t + 4 \end{vmatrix} = (t + 1) \begin{vmatrix} t - 5 & -6 \\ 3 & t + 4 \end{vmatrix} = (t + 1)^2 (t - 2).$$

よって固有多項式は $g_B(t)=(t+1)^2(t-2)$ で,固有値は $\lambda=\begin{cases} -1 & (重複度\ 2) \\ 2 \end{cases}$ である. (次ページへ)

講義や講義内容に関して,意見・感想・質問等を自由に記述してください.

(i) $\lambda=1$ の固有空間 (固有ベクトル) を求める . $(-1\cdot E_3-B)\left(egin{smallmatrix}x\\y\\z\end{smallmatrix}
ight)=\mathbf{0}$ の解を求めればよい . 係数行列 $-1\cdot E_3-B$ を簡約化すれば ,

$$-1 \cdot E_3 - B = \begin{pmatrix} -6 & -12 & -6 \\ 0 & 0 & 0 \\ 3 & 6 & 3 \end{pmatrix} \xrightarrow{\text{finite}} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

なので,解は $\binom{x}{y}_z$ =s $\binom{-2}{1}_0$ +t $\binom{-1}{0}_1$ となる (s,t はパラメータ).特にパラメータの数を見ると $\dim W(-1;B)=2$ である.

 $(ii)~\lambda=2$ の固有空間 (固有ベクトル) を求める . $(2\cdot E_3-B)\left({x\over y}\right)={\bf 0}$ の解を求めればよい . 係数行列 $2\cdot E_3-B$ を簡約化すれば

$$2 \cdot E_3 - B = \begin{pmatrix} -3 & -12 & -6 \\ 0 & 3 & 0 \\ 3 & 6 & 6 \end{pmatrix} \stackrel{\text{finite}}{\longrightarrow} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

なので,解は $\binom{x}{y}=s \binom{-2}{0}$ となる (s はパラメータ).特にパラメータの数は $\dim W(2;B)=1$ である.

以上より , $\dim W(-1;B)+\dim W(2;B)=2+1=3$ であるので , B は対角化可能であり

$$(i),(ii)$$
 の計算より, $P=egin{pmatrix} -2 & -1 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ とすれば, $P^{-1}BP=egin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ となる.