Introduction to Machine Learning using Tensorflow

> Rodolfo C. Raga Jr. September 23-24, 2019 San Beda College

Topic Outline

Day 1	Day 2
Tensorflow 2) Data Preprocessing	 Learning Models (Classification) 1.1. NN Logistic Regression 1.2. CNN Deep Learning
3) Learning Models (Regression)3.1. NN Simple Linear3.2. NN Multiple Linear	2) Model Testing3) Model Evaluation / ValidationPerformance
4) Model Training	4) Data Visualization

Topic Outline

Day 1	Day 2
1) Intro to Machine Learning and Tensorflow2) Data Preprocessing	 Learning Models (Classification) 1.1. NN Logistic Regression 1.2. CNN Deep Learning
3) Learning Models (Regression)3.1. NN Simple Linear3.2. NN Multiple Linear4) Model Training	2) Model Testing3) Model Evaluation / ValidationPerformance4) Data Visualization

Introduction

• Machine learning is a method of data analysis that automates analytical model building. It is a branch of artificial intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention.

Source: https://www.sas.com/en_us/insights/analytics/machine-learning.html

Machine learning tasks

- Supervised learning
 - **Input**: training data + desired outputs (labels)
 - regression: predict numerical values
 - classification: predict categorical values, i.e., labels
- Unsupervised learning
 - Input: training data (without desired outputs)
 - clustering: group data according to "distance"
 - association: find frequent co-occurrences
 - link prediction: discover relationships in data
 - data reduction: project features to fewer features

Supervised Learning

- The aim of supervised learning is to build a model that is 'good at' predicting the target variable, given the predictor variables.
- If the target is a continuously varying variable (e.g. price of a house), it is a regression task.
- Alternatively, if the target variable consists of categories (e.g. 'click' or 'not', 'malignant' or 'benign' tumor), we call the learning task classification.

Regression Algorithms

- Simple Linear Regression
- Multiple Linear Regression
- Support Vector Machines
- Perceptron

Classification

- Logistic Regression
- Support Vector Machines
- Deep Neural Networks

Supervised Learning pipeline

- 1. Load the dataset
- 2. Perform data preprocessing
- 3. Select type of model, e.g., regression, (deep) neural network, ...
- 4. Train model, i.e., determine parameters
 - 1. Data: input + output
 - 1. training data \rightarrow determine model parameters
 - 2. validation data \rightarrow yardstick for training performance
- 5. Test model (Evaluate model accuracy)
 - Data: input + output
 - 1. testing data \rightarrow final scoring of the model
- 6. Production (Predict results using the model)
 - 1. Data: input \rightarrow predict output

Development Tools

 Programming languages Python • C++ Many libraries Numpy classic machine learning Pandas Scikit-learn ← **PyTorch** deep learning frameworks TensorFlow Keras

What is TensorFlow?

- TensorFlow was originally created by Google in 2011 as an internal machine learning tool.
- In November 2015, an implementation of it was open sourced under the Apache 2.0 License.
- However, Google still maintains its own internal version.

What is TensorFlow?

- "TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms".
- It is a computational framework for building machine learning and deep learning models.

TensorFlow employs a Design & Run Methodology

Source: https://developers.google.com/machine-learning/crash-course/first-steps-with-tensorflow/toolkit

Companies using Tensorflow

- Google
- OpenAl
- DeepMind
- Snapchat
- Uber
- Airbus
- eBay
- Dropbox
- A bunch of startups

