

FCC PART 15C TEST REPORT

No.I19Z60700-IOT07

for

Hytera Communications Corporation Limited

Smart LTE Terminal

PNC550

with

FCC ID: YAMPNC550B9

Hardware Version: 1.01

Software Version: V1.0.01.001.01

Issued Date: 2019-05-31

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: cttl_terminals@caict.ac.cn, website: www.caict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I19Z60700-IOT07	Rev.0	1st edition	2019-05-31

CONTENTS

1.	TEST LABORATORY	5
1.1.	INTRODUCTION & ACCREDITATION	5
1.2.	TESTING LOCATION	5
1.3.	TESTING ENVIRONMENT	5
1.4.	PROJECT DATA	5
1.5.	SIGNATURE	5
2.	CLIENT INFORMATION	6
2.1.	APPLICANT INFORMATION	6
2.2.	MANUFACTURER INFORMATION	. 6
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	7
3.1.	ABOUT EUT	7
3.2.	INTERNAL IDENTIFICATION OF EUT	7
3.3.	INTERNAL IDENTIFICATION OF AE	7
3.4.	EUT SET-UPS	7
3.5.	GENERAL DESCRIPTION	8
3.6.	INTERPRETATION OF THE TEST ENVIRONMENT	8
4.	REFERENCE DOCUMENTS	8
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	8
4.2.	REFERENCE DOCUMENTS FOR TESTING	8
5.	TEST RESULTS	9
5.1.	SUMMARY OF TEST RESULTS	9
5.2.	STATEMENTS	9
5.3.	TEST CONDITIONS	9
6.	TEST FACILITIES UTILIZED	10
7.	MEASUREMENT UNCERTAINTY	.11
7.1.	MAXIMUM OUTPUT POWER	.11
7.2.	PEAK POWER SPECTRAL DENSITY	.11
7.3.	DTS 6-DB SIGNAL BANDWIDTH	.11
7.4.	BAND EDGES COMPLIANCE	.11
7.5.	TRANSMITTER SPURIOUS EMISSION	.11
7.6.	AC POWER-LINE CONDUCTED EMISSION	.11

No.I19Z60700-IOT07 Page4 of 106

ANNEX A: DETAILED TEST RESULTS	12
A.1. MEASUREMENT METHOD	12
A.2. MAXIMUM OUTPUT POWER	13
A.2.1. PEAK OUTPUT POWER-CONDUCTED	13
A.2.2. AVERAGE OUTPUT POWER-CONDUCTED	14
A.3. PEAK POWER SPECTRAL DENSITY	
A.4. DTS 6-DB SIGNAL BANDWIDTH	23
A.5. BAND EDGES COMPLIANCE	30
A.6. TRANSMITTER SPURIOUS EMISSION	35
A.6.1 Transmitter Spurious Emission – Conducted	
A.6.2 Transmitter Spurious Emission - Radiated	88
A.7. AC POWER-LINE CONDUCTED EMISSION	102
ANNEY R. ACCREDITATION CERTIFICATE	106

1. Test Laboratory

1.1. Introduction & Accreditation

Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2005 accredited test laboratory under NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM (NVLAP) with lab code 600118-0, and is also an FCC accredited test laboratory (CN5017), and ISED accredited test laboratory (CN0066). The detail accreditation scope can be found on NVLAP website.

1.2. Testing Location

Location 1:CTTL(Huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China100191

Location 2:CTTL(Shouxiang)

Address: No. 51 Shouxiang Science Building, Xueyuan Road,

Haidian District, Beijing, P. R. China100191

1.3. <u>Testing Environment</u>

Normal Temperature: $15-35^{\circ}$ C Extreme Temperature: $-20/+60^{\circ}$ C Relative Humidity: 20-75%

1.4. Project data

Testing Start Date: 2019-04-17 Testing End Date: 2019-05-31

1.5. Signature

去多

Jiang Xue

(Prepared this test report)

20 %

Zheng Wei

(Reviewed this test report)

Cas Hann

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: Hytera Communications Corporation Limited

Hytera Tower, Hi-Tech Industrial Park North, 9108# Beihuan Road, Address:

Nanshan District, Shenzhen, People's Republic of China

City: Shenzhen

Postal Code: /

Country: China

Telephone: 13717055929

Fax: /

2.2. Manufacturer Information

Company Name: Hytera Communications Corporation Limited

Hytera Tower, Hi-Tech Industrial Park North, 9108# Beihuan Road,

Nanshan District, Shenzhen, People's Republic of China

City: Shenzhen

Postal Code: /

Address:

Country: China

Telephone: 13717055929

Fax: /

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description **Smart LTE Terminal**

Model name PNC550

FCC ID YAMPNC550B9

With WLAN Function Yes

ISM 2400MHz~2483.5MHz Frequency Range

Type of Modulation DSSS/CCK/OFDM

Number of Channels 11

Antenna Integral Antenna

MAX Conducted Power 21.58dBm

Power Supply 3.8V DC by Battery

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	864608040026119/	1.01	V1.0.01.001.01
	864608040026101		
EUT2	864608040026028/	1.01	V1.0.01.001.01
	864608040026036		

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description	SN	Remarks
AE1	Battery	/	Inbuilt
AE2	Charger	/	CH008
AE3	USB Cable	/	DC002
AE1			
Model		BP4003	

Manufacturer FPR Connectivity Technology Inc.

4000mAh Capacitance

V Nominal voltage

AE2

Model PS2032 **TENPAO** Manufacturer

Length of cable

AE3

Model PC143(C-type) Manufacturer **TENPAO**

Length of cable

3.4. EUT set-ups

EUT set-up No.	Combination of EUT and AE	Remarks
Set.4	EUT1+ AE1+ AE2+ AE3	Charger

^{*}AE ID: is used to identify the test sample in the lab internally.

3.5. General Description

The Equipment under Test (EUT) is a model of Smart LTE Terminal with integrated antenna and inbuilt battery.

It has Bluetooth (EDR) function.

It consists of normal options: travel charger, USB cable.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

3.6. Interpretation of the Test Environment

For the test methods, the test environment uncertainty figures correspond to an expansion factor k=2.

Measurement Uncertainty

Parameter	Uncertainty
temperature	0.48°C
humidity	2 %
DC voltages	0.003V

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
	FCC CFR 47, Part 15, Subpart C:	
	15.205 Restricted bands of operation;	
FCC Part15	15.209 Radiated emission limits, general requirements;	2016
	15.247 Operation within the bands 902-928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz.	
ANCI 062 40	American National Standard of Procedures for Compliance	2012
ANSI C63.10	Testing of Unlicensed Wireless Devices	2013

5. Test Results

5.1. Summary of Test Results

SUMMARY OF MEASUREMENT RESULTS	Sub-clause of Part15C	Sub-clause of IC	Verdict
Maximum Peak Output Power	15.247 (b)	1	Р
Peak Power Spectral Density	15.247 (e)	1	Р
Occupied 6dB Bandwidth	15.247 (a)	1	Р
Band Edges Compliance	15.247 (d)	1	Р
Transmitter Spurious Emission - Conducted	15.247 (d)	1	Р
Transmitter Spurious Emission - Radiated	15.247, 15.205, 15.209	1	Р
AC Powerline Conducted Emission	15.107, 15.207	/	Р

Please refer to ANNEX A for detail.

Terms used in Verdict column

Р	Pass, The EUT complies with the essential requirements in the standard.	
NP	Not Perform, The test was not performed by CTTL	
NA	Not Applicable, The test was not applicable	
F	Fail, The EUT does not comply with the essential requirements in the	
	standard	

5.2. Statements

The test cases as listed in section 5.1 of this report for the EUT specified in section 3 was performed by CTTL and according to the standards or reference documents listed in section 4.2 The EUT met all requirements of the standards or reference documents, and only the WLAN function was tested in this report.

5.3. <u>Test Conditions</u>

T nom	Normal Temperature
T min	Low Temperature
T max	High Temperature
V nom	Normal Voltage

For this report, if the test cases listed above are tested under normal temperature and normal voltage, and also under norm humidity, the specific condition is shown as follows:

Temperature	T nom	26 ℃
Voltage	V nom	3.8V(By battery)
Humidity	H nom	20-75%

6. Test Facilities Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibration Due date	
1	Vector Signal	FSQ40	200089	Rohde &	1 year	2020-05-15	
	Analyzer	F3Q40	Schwarz	Schwarz	1 year	2020-05-15	
2	2 LISN ENV216 101200	ENI\/246	101200	Rohde &	1	2020-04-10	
		Schwarz	1 year	2020-04-10			
2	Test Receiver	ECC!	100244	Rohde &	4 400"	2020-02-14	
3	rest iveceiver	ESCI 100344	ESCI	100344	Schwarz	1 year	2020-02-14
4	Shielding Room	S81	/	ETS-Lindgren	/	/	

Radiated emission test system

	Radiated emission test system					
No.	Equipment	Model	Serial	Manufacturer	Calibration	Calibration
			Number		Period	Due date
1	Test Receiver	ESU26	100235	Rohde &	1 year	2020-03-01
'	rest Receiver	ESU20	100235	Schwarz	1 year	2020-03-01
2	BiLog Antenna	VULB9163	483	Schwarzbeck	3 years	2021-08-21
	Dual-Ridge					
3	Waveguide Horn	3117	00167250	ETS-Lindgren	3 years	2020-05-21
	Antenna					

7. Measurement Uncertainty

7.1. Maximum Output Power

Measurement Uncertainty: 0.387dB,k=1.96

7.2. Peak Power Spectral Density

Measurement Uncertainty: 0.705dB,k=1.96

7.3. DTS 6-dB Signal Bandwidth

Measurement Uncertainty: 60.80Hz,k=1.96

7.4. Band Edges Compliance

Measurement Uncertainty: 0.62dB,k=1.96

7.5. <u>Transmitter Spurious Emission</u>

Conducted (k=1.96)

<u> </u>	
Frequency Range	Uncertainty(dB)
30MHz ≤ f ≤ 2GHz	1.22
2GHz ≤ f ≤3.6GHz	1.22
3.6GHz ≤ f ≤8GHz	1.22
8GHz ≤ f ≤12.75GHz	1.51
12.75GHz ≤ f ≤26GHz	1.51
26GHz ≤ f ≤40GHz	1.59

Radiated (k=2)

Frequency Range	Uncertainty(dB)
9kHz-30MHz	/
30MHz ≤ f ≤ 1GHz	4.86
1GHz ≤ f ≤18GHz	5.26
18GHz ≤ f ≤40GHz	5.28

7.6. AC Power-line Conducted Emission

Measurement Uncertainty: 3.38dB,k=2

ANNEX A: Detailed Test Results

A.1. Measurement Method

A.1.1. Conducted Measurements

Connect the EUT to the test system as Fig.A.1.1.1 shows.

Set the EUT to the required work mode.

Set the EUT to the required channel.

Set the Vector Signal Analyzer and start measurement.

Record the values. Vector Signal Analyzer

Fig.A.1.1.1: Test Setup Diagram for Conducted Measurements

A.1.2. Radiated Emission Measurements

In the case of radiated emission, the used settings are as follows, Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz; Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 10Hz;

Fig.A.1.2.1: Test Setup Diagram for Radiated Measurements

A.2. Maximum Output Power

Method of Measurement: See ANSI C63.10-2013-clause 11.9.1.2

- a) Set the RBW = 1 MHz.
- b) Set the VBW = 3 MHz.
- c) Set the span \geq [1.5 \times DTS bandwidth].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector).

Measurement Limit:

Standard	Limit (dBm)
FCC CRF Part 15.247(b)	< 30

EUT ID: EUT2

A.2.1. Peak Output Power-conducted

Measurement Results:

802.11b/a mode

	Data Rate	Test Result (dBm)			
Mode	(Mbps)	2412MHz	2437MHz	2462 MHz	
	(Mbps)	(Ch1)	(Ch6)	(Ch11)	
	1	17.38	/	/	
802.11b	2	17.55	/	/	
802.110	5.5	19.20	/	/	
	11	21.14	20.50	21.58	
	6	20.73	/	/	
	9	20.77	/	/	
	12	21.17	/	/	
902 11 a	18	21.13	/	/	
802.11g	24	21.41	/	/	
	36	21.39	/	/	
	48	21.56	/	/	
	54	21.58	21.22	21.34	

The data rate 11Mbps and 54Mbps are selected as worse condition, and the following cases are performed with this condition.

802.11n-HT20 mode

	Data Rate	Test Result (dBm)			
Mode	(Index)	2412MHz	2437MHz	2462 MHz	
		(Ch1)	(Ch6)	(Ch11)	
	MCS0	19.75	/	/	
	MCS1	20.23	/	/	
	MCS2	20.19	/	/	
802.11n	MCS3	20.53	/	/	
(20MHz)	MCS4	20.63	/	/	
	MCS5	20.67	20.21	20.94	
	MCS6	20.58	/	/	
	MCS7	20.48	/	/	

The data rate MCS5 is selected as worse condition, and the following cases are performed with this condition.

802.11n-HT40 mode

	Data Bata	Test Result (dBm)			
Mode	Data Rate	2422MHz	2437MHz	2452 MHz	
	(Index)	(Ch3)	(Ch6)	(Ch9)	
	MCS0	19.39	/	/	
	MCS1	19.91	/	/	
	MCS2	19.98	/	/	
802.11n	MCS3	20.17	20.31	20.69	
(40MHz)	MCS4	20.16	/	/	
	MCS5	20.13	/	/	
	MCS6	20.09	/	/	
	MCS7	20.06	/	/	

The data rate MCS3 is selected as worse condition, and the following cases are performed with this condition.

Conclusion: Pass

A.2.2. Average Output Power-conducted

Method of Measurement: See ANSI C63.10-2013-clause 11.9.2.2.2

The procedure for this method is as follows:

- a) Set span = 1.50BW.
- b) Set RBW = 1MHz.
- c) Set VBW = 3MHz
- d) Number of points in sweep = 625
- e) Sweep time = auto.
- f) Detector = RMS.
- g) If transmit duty cycle < 98%, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at the maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFFintervals) or at duty

cycle \geqslant 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."

- h) Trace average 100 traces in power averaging (rms) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

802.11b/g mode

Mada	Test Result (dBm)			
Mode	2412MHz (Ch1)	2437MHz (Ch6)	2462 MHz (Ch11)	
802.11b	15.90	15.60	16.34	
802.11g	13.71	13.68	13.93	

802.11n-HT20 mode

Mode	Test Result (dBm)			
iviode	2412MHz (Ch1)	2437MHz (Ch6)	2462 MHz (Ch11)	
802.11n (20MHz)	12.74	12.45	12.94	

802.11n-HT40 mode

Mode	Test Result (dBm)			
Wiode	2422MHz (Ch3)	2437MHz (Ch6)	2452 MHz (Ch9)	
802.11n(40MHz)	12.88	13.33	12.28	

Conclusion: Pass

A.3. Peak Power Spectral Density

Method of Measurement: See ANSI C63.10-2013-clause 11.10.2

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to RBW = 3 kHz.
- d) Set the VBW = 10 kHz.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

Measurement Limit:

Standard	Limit
FCC CRF Part 15.247(e)	< 8 dBm/3 kHz

Measurement Results:

802.11b/g mode

Mode	Channel	Power Spectral Density (dBm/3 kHz)		Conclusion
	1	Fig.A.3.1	-7.41	Р
802.11b	6	Fig.A.3.2	-9.14	Р
	11	Fig.A.3.3	-7.83	Р
	1	Fig.A.3.4	-12.24	Р
802.11g	6	Fig.A.3.5	-13.72	Р
	11	Fig.A.3.6	-12.92	Р

802.11n-HT20 mode

Mode	Channel	Power Spectral Density (dBm/3 kHz)		Conclusion
000.445	1	Fig.A.3.7	-14.51	Р
802.11n	6	Fig.A.3.8	-14.23	Р
(HT20)	11	Fig.A.3.9	-14.38	Р

802.11n-HT40 mode

Mode	Channel	Power Spectral Density (dBm/3 kHz)		Conclusion
000 11 n	3	Fig.A.3.10	-15.98	Р
802.11n (HT40)	6	Fig.A.3.11	-16.68	Р
(П140)	9	Fig.A.3.12	-16.92	Р

Conclusion: Pass

Test graphs as below:

Fig.A.3.1 Power Spectral Density(802.11b,Ch1)

Fig.A.3.2 Power Spectral Density (802.11b, Ch 6)

Fig.A.3.3 Power Spectral Density (802.11b, Ch 11)

Fig.A.3.4 Power Spectral Density (802.11g, Ch 1)

Fig.A.3.5 Power Spectral Density (802.11g, Ch 6)

Fig.A.3.6 Power Spectral Density (802.11g, Ch 11)

Fig.A.3.7 Power Spectral Density (802.11n-HT20, Ch 1)

Fig.A.3.8 Power Spectral Density (802.11n-HT20, Ch 6)

Fig.A.3.9 Power Spectral Density (802.11n-HT20, Ch 11)

Fig.A.3.10 Power Spectral Density (802.11n-HT40, Ch 3)

Fig.A.3.11 Power Spectral Density (802.11n-HT40, Ch 6)

Fig.A.3.12 Power Spectral Density (802.11n-HT40, Ch 9)

A.4. DTS 6-dB Signal Bandwidth

Method of Measurement: See ANSI C63.10-2013 section 11.8.1.

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) = 300 kHz.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a)	≥ 500

EUT ID: EUT2

Measurement Result:

802.11b/g mode

Mode	Channel	Occupied 6dB Bandwidth (kHz)		conclusion
	1	Fig.A.4.1	8500	Р
802.11b	6	Fig.A.4.2	8450	Р
	11	Fig.A.4.3	8600	Р
	1	Fig.A.4.4	16500	Р
802.11g	6	Fig.A.4.5	16550	Р
	11	Fig.A.4.6	16550	Р

802.11n-HT20 mode

Mode	Channel	-	B Bandwidth (Hz)	conclusion
000 44 =	1	Fig.A.4.7	17700	Р
802.11n	6	Fig.A.4.8	17750	Р
(HT20)	11	Fig.A.4.9	17750	Р

802.11n-HT40 mode

Mode	Channel	· -	B Bandwidth (Hz)	conclusion
902 11 n	3	Fig.A.4.10	35440	Р
802.11n	6	Fig.A.4.11	36080	Р
(HT40)	9	Fig.A.4.12	36000	Р

Conclusion: Pass

Test graphs as below:

Fig.A.4.1 Occupied 6dB Bandwidth(802.11b,Ch 1)

Fig.A.4.2 Occupied 6dB Bandwidth (802.11b, Ch 6)

Fig.A.4.3 Occupied 6dB Bandwidth (802.11b, Ch 11)

Fig.A.4.4 Occupied 6dB Bandwidth (802.11g, Ch 1)

Fig.A.4.5 Occupied 6dB Bandwidth (802.11g, Ch 6)

Fig.A.4.6 Occupied 6dB Bandwidth (802.11g, Ch 11)

Fig.A.4.7 Occupied 6dB Bandwidth (802.11n-20MHz, Ch 1)

Fig.A.4.8 Occupied 6dB Bandwidth (802.11n-HT20, Ch 6)

Fig.A.4.9 Occupied 6dB Bandwidth (802.11n-HT20, Ch 11)

Fig.A.4.10 Occupied 6dB Bandwidth (802.11n-40MHz, Ch 3)

Fig.A.4.11 Occupied 6dB Bandwidth (802.11n-HT40, Ch 6)

Fig.A.4.12 Occupied 6dB Bandwidth (802.11n-HT40, Ch 9)

A.5. Band Edges Compliance

Method of Measurement: See ANSI C63.10-2013-clause 6.10.4

Connect the spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described below.

a) Set Span = 100MHzb) Sweep Time: coupledc) Set the RBW= 100 kHzc) Set the VBW= 300 kHz

d) Detector: Peake) Trace: Max hold

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	> 20

EUT ID: EUT2

Measurement Result:

802.11b/g mode

Mode	Channel	Test Results	Conclusion
802.11b	1	Fig.A.5.1	Р
002.110	11	Fig.A.5.2	Р
902.11.4	1	Fig.A.5.3	Р
802.11g	11	Fig.A.5.4	Р

802.11n-HT20 mode

Mode	Channel	Test Results	Conclusion
802.11n	1	Fig.A.5.5	Р
(HT20)	11	Fig.A.5.6	Р

802.11n-HT40 mode

Mode	Channel	Test Results	Conclusion
802.11n	3	Fig.A.5.7	Р
(HT40)	9	Fig.A.5.8	Р

Conclusion: Pass
Test graphs as below:

Fig.A.5.1 Band Edges (802.11b, Ch 1)

Fig.A.5.2 Band Edges (802.11b, Ch 11)