Lecture 10: Markov Decision Process for Reinforcement Learning

Notes taken by squarezhong

Repo address: squarezhong/SDM5008-Lecture-Notes

Lecture 10: Markov Decision Process for Reinforcement Learning

From Classical Control to RL What control do? Comparison Typical optimization problem RI Markov Chain **Markov Decision Process** Policy Trajectories of MDP **Notations** Return **Bellman Equations** Value functions **Bellman Equations** Sampling Monte Carlo Method Intrinsic

Estimation

Central limit theorem (CLT)

Monte Carlo Integration

Importance sampling

From Classical Control to RL

What control do?

Comparison

Classical Control	Modern Control	МРС	Reinforcement Learning
linear system frequency domain	state space linear system limited class of nonlinear	state space linear and nonlinear (large scale)	complex model
analytical	analytical	computational	data driven

- Most above are "model" based method.
 - \circ classical/modern: model $\xrightarrow{\mathrm{analytical/definition}}$ policy
 - $\circ \ \, \mathsf{MPC:} \, \, \mathsf{model} \xrightarrow{\mathsf{formulate}} \mathsf{optimization} \to \mathsf{policy}$
 - \circ RL: model \rightarrow data \rightarrow policy

Typical optimization problem

$$\min f(x)$$
 subject to $g(x) \leq 0$

- 1. typically $x \in \mathbb{R}^n$, finite dimensional optimization variable
- 2. objective function $f:\mathbb{R}^n o \mathbb{R}$, easy to define and compute
- 3. deterministic

RL

$$\max \operatorname{Reward}(\pi)$$
 for all policies π

- 1. optimization variable policy π infinite dimensional
- 2. objective function (functional 泛函) $Reward: policy \rightarrow scalar$ elevation of reward requires simulation $robot \leftrightarrow env$
- 3. probalistic/stochastic problem due to intrinsic uncertainty

Markov Chain

Markov Chain: $\mathrm{MC} = (S, \Gamma)$

- *S* : state space (discrete or continuous)
- Γ : transition operator, i.e. $\Gamma(x|y) = \Pr(s_{t+1} = x | s_t = y)$
- Initial distribution $p_0(s) = \Pr(S_0 = s)$
- For discrete state space, the transition operator has a matrix representation.

- MC with P_0 specifies a way to generate sequential random samples s_0, s_1, \cdots , which is called **realization/trajectory** of the MC.
- Markov chain can be seen as a stochastic dynamical system that
 - $\circ \;\; s_{k+1} = f(s_k, w_k) \; {\sf or} \; s_{k+1} = f(s_k) + w_k \; {\sf where} \; w_k \; {\sf is} \; {\sf a} \; {\sf random} \; {\sf variable} \; ({\sf process} \; {\sf noise})$

Markov Decision Process

System future behavior depends on state s_t and external impact (control/action)

$$MDP = (S, A, \Gamma, r)$$

- *S*: state space (discrete or continuous)
- A: action/control space (discrete or continuous)
- Γ : transition kernel/operator

$$\Gamma(s'|s,a) = \Pr(S_{t+1} = s'|S_t = s, A_t = a) = p(s'|s,a)$$

• r: reward function: r(s, a, s') or typically r(s, a)

Policy

- Markov decision: agent makes decision based on current stats
- $\pi(a|s)$ is the pdf/pmf of action a given the current state s

i.e.
$$\pi(a|s) = \Pr(A = a|S = s)$$

- Deterministic policy $a=\pi(s)$
- Time varying policy, $\pi_t(a|s)$
- ullet Policy within a class of functions with certain parameters heta

Trajectories of MDP

- Given policy π , a finite horizon T
- MDP becomes a **MC** with "closed-loop" transition operator Γ_{cl}

$$\Gamma_{cl}(s'|s) = \Pr(S_{t+1} = s'|S_t = s) = \sum_a p(s'|s,a)\pi(a|s)$$

- Trajectory $au = (s_0, a_0, s_1, a_1, \dots, s_T, a_T)$ is a trajectory of MDP under a policy π
- ullet Probablity of a trajectory $P(au|\pi)=p(s_0)\prod_{k=0}^{T-1}p(s_{k+1}|s_k,a_k)$

Notations

Return

Cumulative rewards over a trajectory, which may take several different forms.

- ullet Finite-horizon (undiscounted) return $R(au) = \sum_{t=0}^T r(s_t, a_t)$
- Infinite-horizon discounted return $R(au)=\sum_{t=0}^\infty \alpha^t r_t$ where $lpha\in(0,1)$ is discount factor, future reward is less important than immediate reward MDP (RL) Problem: $\max E_{ au\sim\pi}[R(au)]$

Bellman Equations

Value functions

• On-policy (state)-value function:

$$V_{\pi}(s) \stackrel{\scriptscriptstyle \Delta}{=} E_{ au \sim \pi}(R(au)|S_0 = s)$$

evaluate rhe "performance" of a given policy π

• On-policy action-value function (Q-function)

$$Q_{\pi}(s, a) = E_{\tau \sim \pi}[R(\tau)|S_0 = s, A_0 = a]$$

• Optimal value function

$$V^*(s) = \max_{\pi}(E_{ au\sim\pi}(R(au)|S_0=s))$$

• Optimal action-value function

$$Q^*(s,a) = \max_{\pi} (E_{ au \sim \pi}[R(au)|S_0 = s, A_0 = a])$$

By definition, we have the following deduction

- $ullet V_\pi(s) = E_{a \sim \pi}[Q_\pi(s,a)]$
- $\bullet \ \ V^*(s) = \max_a Q^*(s,a)$

Bellman Equations

Bellman equation is a **necessary condition** for optimality associated with the mathematical optimization method known as dynamic programming. It writes the "value" of a decision problem at a certain point in time in terms of the payoff from some initial choices and the "value" of the **remaining decision problem** that results from those initial choices. [source]

Infinite-horizon discounted return case

• $V_{\pi}(s)$

$$-V_{\pi}(s) = \mathbb{E}\left(R(t) \mid S_{\circ}=s\right) = \mathbb{E}\left[r(S_{\circ}, A_{\circ}) + \alpha r(S_{1}, A_{1}) + \alpha^{2} r(S_{2}, A_{2}) + \cdots \mid S_{\circ}=s\right)$$

$$+ \text{therefore}$$

$$= \mathbb{E}\left[r(S_{\circ}, A_{\circ}) + (A_{1}r(S_{1}, A_{1}) + \cdots \mid S_{\circ}=s, A_{\circ}=a)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, A_{\circ}) + \alpha \mathbb{E}\left(r(S_{1}, A_{1}) + \alpha r(S_{2}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, a) + \alpha \mathbb{E}\left(r(S_{1}, A_{1}) + \alpha r(S_{2}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, a) + \alpha \mathbb{E}\left(r(S_{\circ}, A_{1}) + \alpha r(S_{2}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, a) + \alpha \mathbb{E}\left(r(S_{\circ}, A_{1}) + \alpha r(S_{2}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, a) + \alpha \mathbb{E}\left(r(S_{\circ}, A_{1}) + \alpha r(S_{2}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, a) + \alpha \mathbb{E}\left(r(S_{\circ}, A_{1}) + \alpha r(S_{2}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, a) + \alpha \mathbb{E}\left(r(S_{\circ}, A_{1}) + \alpha r(S_{2}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, a) + \alpha \mathbb{E}\left(r(S_{\circ}, A_{1}) + \alpha r(S_{2}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, a) + \alpha \mathbb{E}\left(r(S_{\circ}, A_{1}) + \alpha r(S_{2}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, a) + \alpha \mathbb{E}\left(r(S_{\circ}, A_{1}) + \alpha r(S_{2}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, A_{1}) + \alpha \mathbb{E}\left(r(S_{\circ}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, A_{1}) + \alpha \mathbb{E}\left(r(S_{\circ}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, A_{1}) + \alpha \mathbb{E}\left(r(S_{\circ}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, A_{1}) + \alpha \mathbb{E}\left(r(S_{\circ}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, A_{1}) + \alpha \mathbb{E}\left(r(S_{\circ}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, A_{1}) + \alpha \mathbb{E}\left(r(S_{\circ}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, A_{1}) + \alpha \mathbb{E}\left(r(S_{\circ}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, A_{1}) + \alpha \mathbb{E}\left(r(S_{\circ}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, A_{1}) + \alpha \mathbb{E}\left(r(S_{\circ}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, A_{1}) + \alpha \mathbb{E}\left(r(S_{\circ}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left[r(S_{\circ}, A_{1}) + \alpha \mathbb{E}\left(r(S_{\circ}, A_{2}) + \cdots \mid S_{\circ}=s, A_{\circ}=a\right)\right]$$

$$= \mathbb{E}\left$$

• $Q_{\pi}(s,a)$

$$Q_{\pi}(s,a) = E\left[r(S_{0},A_{1}) + \alpha r(S_{1},A_{1}) + \dots \mid S_{b}=s, A_{b}=a\right]$$

$$= r(s,a) + \alpha E\left[r(S_{1},A_{1}) + \alpha r(S_{2},A_{2}) + \dots \mid S_{s}=s, A_{b}=a\right]$$

$$= r(s,a) + \alpha E\left[r(S_{1},A_{1}) + \alpha r(S_{2},A_{2}) + \dots \mid S_{s}=s, A_{b}=a\right]$$

$$= r(s,a) + \alpha E\left[r(S_{1},A_{1}) + \alpha r(S_{2},A_{2}) + \dots \mid S_{s}=s', A_{s}=a'\right]$$

$$= r(s,a) + \alpha E\left[r(S_{1},A_{1}) + \alpha r(S_{2},A_{2}) + \dots \mid S_{s}=s', A_{s}=a'\right]$$

$$= r(s,a) + \alpha E\left[r(S_{1},A_{1}) + \alpha r(S_{2},A_{2}) + \dots \mid S_{s}=s', A_{s}=a'\right]$$

$$= r(s,a) + \alpha E\left[r(S_{1},A_{1}) + \alpha r(S_{2},A_{2}) + \dots \mid S_{s}=s', A_{s}=a'\right]$$

$$= r(s,a) + \alpha E\left[r(S_{1},A_{1}) + \alpha r(S_{2},A_{2}) + \dots \mid S_{s}=s', A_{s}=a'\right]$$

$$= r(s,a) + \alpha E\left[r(S_{1},A_{1}) + \alpha r(S_{2},A_{2}) + \dots \mid S_{s}=s', A_{s}=a'\right]$$

$$= r(s,a) + \alpha E\left[r(S_{1},A_{1}) + \alpha r(S_{2},A_{2}) + \dots \mid S_{s}=s', A_{s}=a'\right]$$

$$= r(s,a) + \alpha E\left[r(S_{1},A_{1}) + \alpha r(S_{2},A_{2}) + \dots \mid S_{s}=s', A_{s}=a'\right]$$

$$= r(s,a) + \alpha E\left[r(S_{1},A_{1}) + \alpha r(S_{2},A_{2}) + \dots \mid S_{s}=s', A_{s}=a'\right]$$

$$= r(s,a) + \alpha E\left[r(S_{1},A_{1}) + \alpha r(S_{2},A_{2}) + \dots \mid S_{s}=s', A_{s}=a'\right]$$

$$= r(s,a) + \alpha E\left[r(S_{1},A_{1}) + \alpha r(S_{2},A_{2}) + \dots \mid S_{s}=s', A_{s}=a'\right]$$

$$= r(s,a) + \alpha E\left[r(S_{1},A_{1}) + \alpha r(S_{2},A_{2}) + \dots \mid S_{s}=s', A_{s}=a'\right]$$

$$= r(s,a) + \alpha E\left[r(S_{1},A_{1}) + \alpha r(S_{2},A_{2}) + \dots \mid S_{s}=s', A_{s}=a'\right]$$

$$= r(s,a) + \alpha E\left[r(S_{1},A_{1}) + \alpha r(S_{2},A_{2}) + \dots \mid S_{s}=s', A_{s}=a'\right]$$

Summary

•
$$V_{\pi}(s) = E_{a \sim \pi} \left[r(s, a) + \alpha E_{s' \sim p(|s, a)} [V_{\pi}(s')] \right]$$

•
$$Q_{\pi}(s, a) = E_{s' \sim p}[r(s, a) + \alpha E_{a' \sim \pi}[Q_{\pi}(s', a')]]$$

$$V^*(s) = \max_{a} E_{s' \sim p}[r(s, a) + \alpha V^*(s')]$$

•
$$Q^*(s,a) = E_{s'\sim p} \left[r(s,a) + \alpha \max_{a'} [Q_{\pi}(s',a')] \right]$$

Sampling

Use random samping to

• simulate a MC or MDP

• evaluate high-dim expectations in RL

Monte Carlo Method

Intrinsic

- ullet X_1, X_2, \ldots, X_n i.i.d random vectors
- $E(X_i) = \mu_X$, $Cov(X_i) = Q_X$

Estimation

- ullet Sample mean: $ar{X}_n = rac{1}{n} \sum X_i
 ightarrow \mu_X$
- ullet Sample covariance: $ar{Q}_n = rac{1}{n-1} \sum_i (X_i ar{X}_n) (X_i ar{X}_n)^T o Q_X$
- ullet unbiased estimate: $E(ar{X}_n)=\mu_X, E(ar{Q}_n)=Q_X$

Central limit theorem (CLT)

 $\sqrt{n}(ar{X}_n-\mu_X) o \mathcal{N}(0,Q_X)$ in distribution

- ullet $ar{X}_n$ can be approximated by gaussian distribution $\mathcal{N}(\mu_X, rac{Q_X}{n})$
- Covariance $E[(ar{X}_n \mu_X)(ar{X}_n \mu_X)^T] pprox rac{Q_X}{n}$
- MSE of the estimate $ar{X}_n$ is $trace(rac{Q_X}{n})$

Monte Carlo Integration

- $E(\phi(X)) = \frac{1}{n} \sum_{i} \phi(X_i)$
- $P(X \in A) = E(1_A(X)), 1_A(X) = \begin{cases} 1, \text{if } X \in A \\ 0, \text{ otherwise} \end{cases}$

 $X_i \sim f_X(x)$ are i.i.d samples

Importance sampling

Estimate $E_g(X) = \sum_x x g(x)$ with sample from f(x) distribution

$$E_g(\phi(X)) = \sum_x \phi(x)g(x) = \sum_x (\phi(x)rac{g(x)}{f(x)})f(x) = E_f(\phi(x)rac{g(x)}{f(x)}) pprox rac{1}{N}\sum_i rac{g(X_i)}{f(X_i)}\phi(X_i)$$

f(x) and g(x) are both known

Benefits:

- possibly reduce final **sample variance**
- f is easier to evaluate and sample than g

Application

•
$$\int g(x)dx = \int g(x)\frac{1}{f(x)}f(x)dx = E_f(g(x)\frac{1}{f(x)}) \approx \frac{1}{N}\sum_i g(X_i)\frac{1}{f(X_i)}$$