Kibana- security analysis

Tuesday, November 21, 2023 2:32 PM

Packet vs Network Events

Packet Events (Source/Destination)

10.0.0.1 (S)	-	200.1.1.6 (D)
10.0.0.1 (D)	←	200.1.1.6 (S)
10.0.0.1 (S)		200.1.1.6 (D)
10.0.0.1 (D)	—	200.1.1.6 (S)

- Based on individual packets
- Source and destination change based on the direction of the communication

TCPdump Wireshark Suricata

Network Events (Client/Server)

Client (Originator)		Server (Responder)
10.0.0.1	→	200.1.1.6
10.0.0.1	←	200.1.1.6
10.0.0.1	\longrightarrow	200.1.1.6
10.0.0.1	←	200.1.1.6

- Based on who initiated the conversation
- Client and Server do not change over the course of the connection

Zeek

Event Fields

- Used to provide context information about log events
- · "Where it's from"
 - Which data source created the event?

event.module: zeek

– Which logtype created the event?

event.dataset: http

- "What it is"
 - Organize ECS events into categories

event.category: network

– Did the event succeed or fail?

event.outcome: success

– What type of information is in this event?

event.kind: alert

Targets Page 1

Field Matching [Examples]

Entries from the Zeek conn.log

event.dataset: conn

Log Entries where the server/responding port is 5353

server.port: 5353

 Limit results to entries associated with the Zeek UID CqfBAT1DOhwbWj7F59

zeek.session_id: CqfBAT1D0hwbWj7F59

Search Basics: IP Address

Lucerie

Lucene:

exists: <FIELD>

client.ip: $172.16.100.0 \/24$

- Fields must be mapped as IP
- · Can search with CIDR notation!
- Exact IP Match

client.ip: 172.16.100.54

Match on CIDR range

client.ip: 172.16.100.0/24

Internal to External Traffic

client.ip: 172.16.100.0/24 AND NOT server.ip: 172.16.100.0/24

Boolean Searches [Examples]

Entries from the Zeek conn.log or http.log

event.dataset: (conn OR http)

event.dataset:conn OR event.dataset:http

 Log Entries where the server port is 5353 but the transport protocol is not TCP

server.port: 5353 AND NOT network.transport: tcp

 Limit results to entries from the Zeek http.log that have http methods other than GET or POST

event.dataset: http AND NOT http.request.method: (POST OR GET)

Field Exists

· Search for the field, not the value

• Should a field be present? Anomaly!

<FIELD>: *

Results where and the HTTP referrer field exists

http.request.referer: *

Results from dns.log where the DNS answers field is empty

event.dataset: dns AND NOT dns.answers.name: *

Wildcards

- Basic wildcard searching (not regex)
- · Not efficient, but powerful!
- Allows for a "contains" function
- Can be using with the field or value of a query
- Find all connections where a responder replied with an ACK

```
event.dataset: conn AND conn.history: *a*
```

· Search "url.domain" for a value that ends with ".com"

```
url.domain: *.com
```

Wildcards

- Basic wildcard searching (not regex)
- · Not efficient, but powerful!
- Allows for a "contains" function
- · Can be using with the field or value of a query
- Find all connections where a responder replied with an ACK

```
event.dataset: conn AND conn.history: *a*
```

Search "url.domain" for a value that ends with ".com"

```
url.domain: *.com
```

Harvesting Fields

- · Methods to find field names:
 - Zeek/ECS Cheat Sheet
 - Expand a single doc in Discover
 - Use a raw text query, dig into resulting document

Advanced Search: Numbers

Search exact match

client.port: 56689

· Greater/Less than or equal to

client.port >56689

client.port <=56689

Lucene:

client.port: >56689

client.port: [56689 TO 56692]

client.port: [56689 TO *]

Define a numerical range

client.port >20 AND client.port <100

Advanced Search: Regular Expressions

- · Lucene only!
- Apache Lucene regex
 - similar to PCRE
- · Encapsulate the query in forward slashes

http.request.method: /[Gg][Ee][Tt]/

dns.answers.name.text: $/([0-9]{1,3}.){3}[0-9]{1,3}/$

Full-text search

- Search for any phrase
- · Not efficient, but powerful!
- Handy for when you aren't sure which field to search
- <u>Use sparingly</u>, can provide unexpected results depending on ES/Kibana Engineering
- Search for the term "amazon" across all fields*

amazon

Search all fields* in the http log that don't contain the term "google"

event.dataset: http AND NOT google

Advanced Search: Fuzzy

- · Lucene only!
- · Search for terms that are "similar"

```
user_agent.original.text: Mozilla~
```

user_agent.original.text: Mozilla~ AND NOT user_agent.original.text: Mozilla*

- · ".text" for keyword mapped fields
 - user_agent.original (keyword = exact match)
 - user_agent.original.text (tokenized!)

Advanced Search: Proximity

- · Lucene only!
- · Search for terms within a defined distance of each other
 - distance is # of tokenized terms after the first hit

```
user_agent.original.text: "Windows x64"~5
```

· Order is important

```
user_agent.original.text: "Windows x64 Win64 KHTML"~4
```

Searching - Final Notes

- Saved searches
- · Sharing is caring!
 - Don't be a monster, use the short URL
- Not every document will have every field, understanding your underlying data is the best way to build effective searches
- The search bar can be used to search all the data inside Elasticsearch

Overview

- · Data is often complex and involves many dimensions
- Often, we want summarized insights:
 - Slices based on specific attributes
 - Calculations based on specific attributes
- In the Elastic Stack we call this an aggregation
- All aggregations are performed at Elasticsearch, Kibana just renders the results
- · Kibana displays aggregations in the form of visualizations

Metrics Aggregation

- Calculates numerical values over a set of documents
- Similar to how values are summarized in a pivot table for a specific column
- · Mathematical operation that outputs
 - a single value (eg., avg, sum, min, max, unique count)
 - or multiple values (eg., percentiles, percentile_ranks)

Bucket Aggregation

- A way of slicing data
- Similar to grouping by values in rows or columns in a pivot table
- Creates buckets
 - collection of documents that share a common criterion
 - can have one or more metrics associated with it
 - number of documents (doc count) per bucket is default metric

Data Attributes Scenario

Bucket Aggregation - Aggregate on Color

Pink 3

Select a visualization type

Aggregate on Color

Color	Count
Green	8
Yellow	6
Pink	10

Types of Visualizations

- Data Tables
- Basic Charts

Metric Aggregation - Count

- · Default metric for visualizations
- Counts the total number of records/documents

Metric Aggregation - Math Functions

- · More than just counting records
- · Math functions against the values of certain fields
- · User has to specify the field to run calculations against

Bucket Aggregation

• Buckets allow you to split your data based on the value in a field

Bucket Creation

 When adding a bucket, select "Split Rows" most of the time, unless you need multiple tables

 Selecting the "terms" option under aggregation will open a sub-menu that allows you to choose a field

Sub-Bucket Aggregation

- · Subdivides buckets into small groupings
- Groups records based on different combinations of values in specified fields

Graphical Visualization

Types of Graphical Visualizations

- · Basic Charts
- Bar
- Line
- Pie
- Area

Data Tables vs Graphical Visualizations

- · Different ways to view the same data
- · Each view has pros and cons

Bucket Aggregations for Graph-based Visualizations

Bucket Aggregations for Time

• Select Bucket > X-axis > Aggregation > Date Histogram

Types of Visualizations - Time based

- Compare one value to another
- Difficult to determine cumulative totals

Area

- Combines cumulative and granular views of data
- Can be misleading if read incorrectly

 Best used with a single value/bucket

Types of Visualizations - Out of Scope

- Maps
- Heatmaps
- · Goals/Gauges

Dashboards

Dashboards

- · Dashboards are simply a collection of visualizations
- · Focus on one data type/activity at a time
- · Avoid making "one dashboard to rule them all"

Dashboards - Can you find the conn.log data?

Conn Dashboard

Fields from the conn.log

- · id.orig_h
- id.orig_p
- id.resp_h
- id.resp_p
- protocol

Dashboards - Can you find the http.log data?

HTTP Dashboard

Fields from the http.log

- id.orig_h
- id.orig_p
- id.resp_p
- method
- host
- uri
- resp_mime_types

Filters

- · Filter for any value from any visualization
- · Impact all visualizations/data
- · Filters appear right below the search bar

· Can be renamed for clarity

Filters - Modification Options

Filters - Pin to Pivot Across Kibana Modules

Time Range

- Use the pre-build date ranges we have provided
- Be careful to reset your time/date picker after you have exhausted a lead

Time Range - Granularity

- Changing the date/time range will impact the granularity of the Histogram
- The smaller the time range, the more detail you get
- Use caution when trying to determine when a spike occurred

Time Range - Granularity Impact

Time Range - Granularity Impact

