第1章 基本群

1.1 同伦

定义 1.1

设 X,Y 是两个拓扑空间, $f,g:X\to Y$ 是两个连续映射. 称 f 同伦于 g, 记作 $(f\simeq g)$, 若存在连续映射 $F:X\times I\to Y$, 使得 F(x,0)=f(x), f(x,1)=g(x) 对于所有的 $x\in X$ 成立. 此时称映射 F 为 f 到 g 的同伦.

Remark

- 1. 对于每个 $t \in I$, $i_t : X \to X \times I$, $i_t(x) = (x, t)$ 是嵌入映射. 故 $f_t = F \circ i_t : X \to Y$ 是从 X 到 Y 的一组连续映射.
- 2. $f_0 = f, f_1 = g$.
- 3. 观察图1.1, 每个 $t \in I$ 对应左侧一片圆, t 比较近的圆映到 Y 的图像是差不多的.

图 1.1: 从 f 到 g 的同伦

Example 1.1 设 X 是扬扑空间, Y 是 \mathbb{R}^n 上的凸集. 令 $f,g:X\to Y$ 是连续映射. 则 f 同伦于 g. 具体地, $H:X\times I\to Y$

$$H\left(x,t\right) = tg\left(x\right) + \left(1 - t\right)f\left(x\right)$$

是 f 到 g 的同伦. 此类同伦被称为是**直线同伦**.

Example 1.2 设 $\mathbb{S}^1=\{z\in C:|z|=1\}$ 是单位元. 也可以写作 $\mathbb{S}^1=\left\{e^{i\theta}:0\leq\theta\leq2\pi\right\}$. 定义两个映射 $f,g:\mathbb{S}^1\to\mathbb{S}^1$, f(z)=z, 种g(z)=-z, $z\in\mathbb{S}^1$. 则 f 同伦于 g. 具体地, 定

 $X F: \mathbb{S}^1 \times I \to \mathbb{S}^1$

$$F\left(e^{i\theta},t\right) = e^{i(\theta + t\pi)}$$

注意到 F 是连续映射的复合

$$\mathbb{S}^{1} \times I \to \mathbb{S}^{1} \times \mathbb{S}^{1} \to \mathbb{S}^{1}$$
$$(e^{i\theta}, t) \to (e^{i\theta}, e^{it\pi}) \to e^{i(\theta + t\pi)}$$

其中第二个映射是复数的乘法, 故 F 是连续映射. 此外, 注意到映射族 $\{f_t:\mathbb{S}^1\to\mathbb{S}^1\}$ 是旋转 $t\pi,0< t<1$ 的一族映射.

定理 1.1

设 X,Y 是扬扑空间, C(X,Y) 表示 X 到 Y 的全体连续映射. 则同伦关系是 C(X,Y) 上的一个等价关系.

Proof

对于连续映射 $f: X \to Y$, 定义 H(x,t) = f(x) 可以说明自反性.

对于 $H: f \simeq g$, 定义 H'(x,t) = H(x,(1-t)), 则 $H': g \simeq f$, 说明了对称性.

对于 $H_1: f \simeq g, H_2: g \simeq h$, 定义 H

$$H(x,t) := \begin{cases} H_1(x,2t), & 0 \le t \le \frac{1}{2}, \\ H_2(x,2t-1), & \frac{1}{2} \le t \le 1 \end{cases}$$

则由粘合引理 H 是连续映射, 说明了传递性.

定义 1.2

 $C\left(X,Y\right)$ 上关于同伦关系的一个等价类,称为是一个同伦类。同伦类的全体记作 $\left[X,Y\right]$.

定理 1.2

设 $f_1,g_1:X\to Y$ 是同伦的, 且 $f_2,g_2:Y\to Z$ 是同伦的. 则复合映射 $f_2\circ f_1,g_2\circ g_1:X\to Z$ 也是同伦的.

Proof

设 $H_1: f_1 \simeq g_1$, $H_2: f_2 \simeq g_2$. 则 $f_2 \circ H_1: X \times I \to Z$ 是 $f_2 \circ f_1$ 到 $f_2 \circ g_1$ 的同伦. 接下来, 定义 $H: X \times I \to Z$, $H(x,t) = H_2(g_1(x),t)$. 则 H 是连续映射, 且 $H(x,0) = H_2(g_1(x),0) = f_2 \circ g_1(x)$, $H(x,1) = H_2(g_1(x),1) = g_2 \circ g_1(x)$. 现在 $f_2 \circ f_1 \simeq f_2 \circ g_1$, $f_2 \circ g_1 \simeq g_2 \circ g_1$, 因此 $f_2 \circ f_1 \simeq g_2 \circ g_1$.

1.2 同伦型和可缩空间

对于常值映射 $f: X \to Y$, $f \equiv y_0$, 记它为 C_{y_0} .

定义 1.3 (可缩)

称扬扑空间 X 是可缩的, 若单位映射 $I_X:X\to X$ 同伦于某个常值映射 $C_x:X\to X$ X. 称 I_X 到 C_x 的同伦为空间到点 $x \in X$ 的一个收缩.

Example 1.3 \mathbb{R}^n 上的凸集 S 可以收缩到任意点 $x_0 \in S$.

定义 1.4 (星形集)

称 \mathbb{R}^n 的子集 X 是星形的, 若存在 $x_0\in X$, 使得任意点到 x_0 的线段都落在 X 上.

定义 1.5 (同伦等价, 同伦型)

设 $f: X \to Y$ 是连续映射. 称 f 是一个同伦等价, 若存在连续映射 $g: Y \to X$, 使 得 $g \circ f$ 同伦于 X 上的单位映射 Id_X , 且 $f \circ g$ 同伦于 Y 上的单位映射 Id_Y . 称两个扬扑空间 X,Y 是同伦等价的或有相同的同伦型,若存在其中一个空间到另 —个空间的同伦等价.

Remark

1. 同胚的空间有相同的同伦型,在下面的例子中可以看到,有相同同伦型的空间不一 定同胚.

Example 1.4 考虑单位 (开或闭) 圆盘 \mathbb{D}^2 , 以及 $x_0 \in \mathbb{D}$. 令 $i: P = \{x_0\} \to \mathbb{D}^2$ 是含入 映射, $C_{x_0}:\mathbb{D}^2 o P$ 是常值映射. 则 $C_{x_0}\circ i=\mathrm{Id}_P$. 另一方面, 考虑映射 $H:\mathbb{D}^2 imes I o \mathbb{D}^2$,

$$H\left(x,t\right) = \left(1 - t\right)x + tx_0$$

是 $\mathrm{Id}_{\mathbb{D}^2}$ 到 $i \circ C_{x_0}$ 的同伦. 因此 \mathbb{D}^2 与点空间 P 有相同的同伦型, 而它们显然是不同胚的. Remark

- 1. 也可以看到紧致性并非同伦不变的.
- 2. 类似地, 很多拓扑不变量都不是同伦不变的, 可见同伦分类是一种比较弱的分类.

接下来给出一些同伦不变量,那么它们显然也是拓扑不变的. 一但我们发现两个拓 扑空间的某个同伦不变量是不同的,则它们是不同伦的,进而不是同胚的,这给出判断两 个空间不同胚的方式.

定理 1.3

一个拓扑空间 X 是可缩的,当且仅当 X 与一个点空间 $P=\{p\}$ 具有相同的同伦型.

Proof

设拓扑空间 X 是可缩的, 设 $H: X \times I \to X$ 是 Id_X 到常值映射 $C_{x_0}: X \to X$ 的同伦. 定义 $i: P \to X$, $i(p) = x_0$, $C: X \to P$, C(x) = p. 则 $i \circ C = C_{x_0} \simeq \mathrm{Id}_X$, $C \circ i = \mathrm{Id}_P$. 因此 X 和 P 有相同的同伦型.

反之, 若设 X, P 有相同的同伦型, 则存在 $f: X \to P$, $g: P \to X$, 使得 $f \circ g = \mathrm{Id}_P$, $g \circ f \simeq \mathrm{Id}_X$. 设 $H: g \circ f \simeq \mathrm{Id}_X$. 设 $g(p) = x_0$, 又 f(x) = p, 故 $g \circ f \equiv x_0$ 是常值映射. 这表明 X 是可缩的.

命题 1.1

设 X 是可缩空间, 则 X 是道路连通的.

Proof

设 X 是可缩空间, $H: \mathrm{Id}_X \simeq C_{x_0}$.

任取 $x_1,x_2\in X$,则 $f_{x_1}\left(t\right):=H\left(x_1,t\right)$ 和 $f_{x_2}\left(t\right):=H\left(x_2,t\right)$ 是连续映射,使得 $f_{x_1}\left(0\right)=x_1,f_{x_1}\left(1\right)=x_0$, $f_{x_2}\left(0\right)=x_2,f_{x_2}\left(1\right)=x_0$. 定义 $g\left(t\right)$

$$g(t) := \begin{cases} f_{x_1}(2t), & t \in [0, \frac{1}{2}] \\ f_{x_2}(2 - 2t), & t \in [\frac{1}{2}, 1] \end{cases}$$

则 g(t) 是连续映射, 使得 $g(0) = x_1$, $g(1) = x_2$, 这表明 X 是道路连通的.

命题 1.2

扬扑空间 X 是可缩的,当且仅当任意扬扑空间 T 到 X 的任意映射 $f:T\to X$ 是同伦于常值映射的.

Remark

1. 习题给出 $f: X \to T$ 的情况也成立.

Proof

若 X 是可缩的, 存在 $x_0\in X$, 以及 $H:\operatorname{Id}_X\simeq C_{x_0}$. 任取扬扑空间 T 种映射 $f:T\to X$, 则由定理 1.2 , $f=\operatorname{Id}_X\circ f\simeq C_{x_0}\circ f$ 是常值映射.

反之, 若任取扬扑空间 X, 以及映射 $f:T\to X$, 都有 f 同伦于常值映射, 特别地取 T=X, $f=\mathrm{Id}_X$, 则 $\mathrm{Id}_X\simeq C_{x_0}$ 对某个 $x_0\in X$ 成立, 故 X 是可缩的.

推论 1.1

设 X 是可缩空间, 则单位映射 $\mathrm{Id}_X:X\to X$ 同伦于常值映射 $C_x:X\to X$ 对于任意的 $x\in X$ 成立. 特别地, X 可以收缩到 X 上的任意一点.

Proof

设 X 是可缩空间,上面命题的证明表示,若 $\mathrm{Id}_X\simeq C_{x_0}:X\to X$,则任意映射 $f:T\to X$ 都可以同伦到一个恒为 x_0 的常值映射. 特别地取 T=X, $f=C_x:X\to X$,则 $C_x\simeq C_{x_0}\simeq \mathrm{Id}_X$.

定义 1.6 (相对同伦)

令 $A\subseteq X$ 是任意子集, $f,gX\to Y$ 是两个连续映射. 称 f 是相对 A 同伦于 g 的, 若存在连续映射 $F:X\times I\to Y$, 使得

$$F(x,0) = f(x), F(x,1) = g(x), \forall x \in X$$

,并且

$$F(a,t) = f(a) = g(a), \forall a \in A$$

Remark

- 1. 如果令 $A = \emptyset$, 就得到了同伦的概念.
- 2. 特别地, 如果 f,g 相对于 A 同伦, 则在一开始时它们就在 A 上一致.
- 3. f 相对于 A 同伦于 g 是说, f 可以通过一族在 A 上保持相同的连续映射变动到 g.
- 4. 不难证明相对于 A 同伦是 C(X,Y) 上的一个等价关系.

定理 1.4

若 X 是相对于 $\{a\}$ 可缩到点 $a \in X$ 的空间. 则对于 a 在 X 中的任意邻域 U, 存在 a 含于 U 的一个邻域 V, 使得 V 上的任意一点都可以通过一个落在 U 上的道路连接到 a, 即 X 是半-局部道路连通的.

🖹 Idea

1. 要求收缩是相对于 $\{a\}$ 的, 保证了对于任意的 $t \in I$, 都有 $F(a,t) \in U$, 从而可以找到 a,t 的邻域使得像含于 U.

Proof

若 X 满足条件, 则存在连续映射 $F:X\times I\to X$, 使得 $F(x,1)=a, \forall x\in X$, 且 $F(a,t)=a, \forall t\in I.$

由 F 连续性, 对于任意的 $t\in I$, 存在 a,t 的开邻域 $V_t(a)$ 和 W(t), 使得 $F(V_t(a)\times W(t))\subseteq U.\{W(t)\}_{t\in I}$ 构成 I 的一个开覆盖, 由 I 的紧性, 存在有限的子覆盖 $W(t_1),\cdots,W(t_n)$.

现在令 $V(a) := \bigcap_i V_{t_i}(a)$ 是 a 的一个开邻域,则 $F(V(a) \times \bigcup_i W(t_i)) = F(V(a) \times I) \subseteq U$. 任取 $i = 1, \dots, n$ 和 $x \in V_{t_i}(a)$,由于 F(x, 1) = a,F(x, 0) = x,因此 $t \mapsto F(x, t)$, $t \in I$ 使得落在 U 的连接 x 和 a 的道路.

Example 1.5 (Comb Space) 考虑以下集合 C,它由从 (0,0) 到 (0,1) 的水平线段和所有 $\left(\frac{1}{n},0\right)$ 到 $\left(\frac{1}{n},1\right)$ 的垂直线段组成,其中 $n=1,2,\cdots$.

1. C 是可缩的. 投影映射 $p:C\to L$ 是同伦等价, 其中 L 是水平线, 事实上, $i:L\to C$ 是含入映射, 则 $p\circ i=\mathrm{Id}_L$. 另一方面, 定义 $F:C\times I\to C$,

$$F\left(\left(x,y\right),t\right) := \left(x,\left(1-t\right)y\right)$$

- ,则 $F: \mathrm{Id}_L \simeq i \circ p$. 而 L 同胚由单位开区间是可缩的,又 C 于 L 有相同的同伦型,因此 C 是可缩的.
- 2. C 不是相对于 $\{(0,1)\}$ 可缩的. 取 (0,1) 的半径为 $\frac{1}{2}$ 的圆盘邻域 D , 则任意含于 D 的邻域上, 都有无穷多个连通分支, 由上面的定理可知, C 不是相对于 $\{(0,1)\}$ 可缩的.

定义 1.7

令 $A\subseteq X$. 称 A 是 X 的一个收缩, 若存在连续映射 $r:X\to A$, 使得 $r(a)=a, \forall a\in A$. 此时称映射 r 为收缩映射.

Remark

- 1. $A \in X$ 的一个收缩,当且仅当含入映射 $i: A \to X$ 有连续的左逆.
- 2. 易见此时 A 的子空间也是 X 的一个收缩.
- 3. 任意拓扑空间 X 上的每个点 $x_0 \in X$ 都是 X 的一个收缩, 收缩映射为 C_{x_0} .
- 4. 当 $A \in X$ 的收缩时, 若 X 连通, 则 A 亦然.

定义 1.8

称扬扑空间 X 是可以形变到子空间 $A\subseteq X$ 的,若存在含入映射 $i:A\to X$ 的同伦方逆 $f:X\to A$,即单位映射 Id_X 同伦于 $i\circ f:X\to X$.

Remark

1. 也就是说, 存在同伦 $D: X \times I \to X$, 使得

$$D(x, 0) = x, D(x, 1) = i(f(x)) = f(x)$$

- 2. 称这样的同伦 D 为 X 到 A 的一个形变.
- 3. 直观地讲, 存在一个连续的形变 D, 将 X 上每一个点连续变形到 A 中的点.
- 4. 特别地, 取 $A = \{a\}$, $a \in X$, 就得到可缩的概念.

定义 1.9

称拓扑空间 X 是可以 强形变到子空间 A 的,若含入映射 $i:A\to X$ 有相对于 A 的连续同伦右逆,即单位映射 $I_X:X\to X$ 相对于 A 同伦于 $i\circ f:X\to X$

Remark

- 1. 设 $D \in \operatorname{Id}_X$ 相对于 $A \ni i \circ f$ 的同伦. 则 $D(a,1) = f(a) = a, \forall a \in A$. 此时 $f: X \to A$ 自动是 $X \ni A$ 的一个收缩. 即, 强形变的终映射是一个收缩.
- 2. 形变的终映射是收缩不一定导出形变是强形变.

定义 1.10

称拓扑空间 X 的子空间 A 是 X 的一个形变收缩, 若 X 可以形变到 A, 且形变的 终映射是 X 到 A 的一个收缩.

Remark

1. 形变收缩较强形变来说弱一点, 强形变是说让 X 上的点都能跑到 A 里面, 且一直保持 A 中的点不动, 形变收缩是指 A 中的点中间可以来回跑, 但是最后要回到自己的位置上.

为了做强调,不妨也语意冗余地给出一个定义1

定义 1.11

设 X 是扬扑空间, A 是 X 的一个子空间. 称 A 是 X 的一个强形变收缩, 若 X 可以强形变到 A, 且形变的终映射是 X 到 A 的一个收缩.

Remark

1. 此时, 含入映射 $i:A\to X$ 有双边的同伦逆, 进而是同伦等价.

Example 1.6 对于 $n > 1, \mathbb{S}^n \subset \mathbb{R}^{n+1} - \{(0, \dots, 0)\} = X$ 是 X 的一个强形变收缩.

Proof

¹即便强形变的终映射已经是一个收缩了

定义

$$D(x,t) = (1-t)x + t\frac{x}{\|x\|}$$

则 $D: [\mathbb{R}^{n+1} - \{(0,\cdots,0)\}] \times I \to [\mathbb{R}^{n+1} - \{(0,\cdots,0)\}]$ 是连续映射. 始映射为 Id_X , 终映射为 $x \mapsto \frac{x}{\|x\|}$ 为 $\mathbb{R}^{n+1} - \{(0,\cdots,0)\}$ 到 \mathbb{S}^n 的一个收缩.

1.3 基本群及其性质

定义 1.12 (道路的等价)

设 X 是拓扑空间, α,β 是 X 上的两条有相同端点的道路, 即 $\alpha(0)=\beta(0)=x_0,\alpha(1)=\beta(1)=x_1$. 称 α 和 β 是等价的, 记作 $\alpha\sim_{(x_0,x_1)}\beta$, 若存在他们之间的保端点的同伦, 即存在相对于 α 和 β 之间相对于 $\{0,1\}\subseteq I$ 的同伦.

Remark

1. 通常称这样的一个同伦为道路同伦.

定理 1.5

设 X 是拓扑空间, $x_0,x_1\in X$. 则道路的等价确实给出全体以 x_0 为起点, x_1 为终点的道路的一个等价关系.

Proof

令 $\alpha:I\to X$ 是道路, 使得 $\alpha(0)=x_0$, $\alpha(1)=x_1$. 定义 $H(s,t):=\alpha(s)$, 则 H 是 α 到自身的相对于 $\{0,1\}$ 的同伦, 说明了自反性.

接下来, 设 G 是 α 到 β 的道路同伦. 定义 H(s,t)=G(s,1-t). 则 H 是 β 到 α 的道路同伦, 这就说明了传递性.

最后, 设 H 是 α 到 β 的道路同伦, G 是 β 到 γ 的道路同伦, 定义 $K:I\times I\to X$,

$$K = \begin{cases} H(s, 2t), & t \in [0, \frac{1}{2}] \\ G(s, 2t - 1), & t \in [\frac{1}{2}, 1] \end{cases}$$

则 $G \to \alpha$ 到 γ 的道路同伦, 这就说明了传递性.

推论 1.2

道路的等价也给出 X 上所有以 $x_0 \in X$ 为基点的循环中的一个等价关系.

C

Remark

- 1. 以下记以 x_0 为基点的循环 α 和 β 等价, 为 $\alpha \sim_{x_0} \beta$.
- 2. α 所在的循环的道路等价类为 α , 也称作循环 α 的同伦类.
- 3. 令 $\pi_1(X,x_0)$ 表示 X 上以 x_0 为基点的循环的同伦类的全体. 即

$$\pi(X, x_0) = \{ [\alpha] : \alpha \in X \bot \cup x_0$$
 为基点的循环 $\}$

命题 1.3

设 $\alpha,\beta,\alpha',\beta'$ 是 X 上以 x_0 为基点的循环, 并且 $\alpha\sim_{x_0}\alpha',\beta\sim_{x_0}\beta'$, 则 $\alpha*\beta\sim_{x_0}\alpha'*\beta'$

Proof

设 H_1, H_2 分别是 α 到 α' 和 β 到 β' 的同伦.

定义 $H:I\times I\to X$,

$$H(s,t) = \begin{cases} H_1(2s,t), & s \in [0,\frac{1}{2}] \\ H_2(2s-1,t), & s \in [\frac{1}{2},1] \end{cases}$$

列 $H\left(s,0\right)=\left(\alpha*\beta\right)\left(s\right)$, $H\left(s,1\right)=\left(\alpha'*\beta'\right)\left(s\right)$, 并且 $H\left(0,t\right)=x_{0}=H\left(1,t\right)$. 因此 $\alpha*\beta\sim_{x_{0}}\alpha'*\beta'$

推论 1.3

设 α 和 α' 是 x_0 到 x_1 的同伦的道路, β 和 β' 是 x_1 到 x_2 的同伦的道路, 则 $\alpha*\beta$ 和 $\alpha'*\beta'$ 是从 x_0 到 x_2 的同伦的道路, 并且同伦可以被选取为使得 x_1 不变的.

Proof

仿照上个命题即可.

定义 1.13

 \ddot{x} 是从 x_0 到 x_1 的道路, 则 $[\alpha]$ 通常表示为 α 所在的 x_0 到 x_1 的道路同伦类. 扬扑空间 X 上从 x_0 到 x_1 的全体道路同伦类记作 $\pi_1(X,x_0,x_1)$.

定义 1.14 (乘法运算)

定义 $\pi_1(X, x_0, x_1)$ 上的运算

$$\circ: \pi_1(X, x_0, x_1) \times \pi(X, x_1, x_2) \to \pi_1(X, x_0, x_2)$$

按以下方式

$$[\alpha] \circ [\beta] := [\alpha * \beta]$$

Remark

1. 上面的推论给出了良定义性.

定理 1.6

 $\pi_1(X,x_0)$ 在运算"。"构成群.

Remark 以下证明都可以稍作改变, 给出在非循环的道路中对应性质的证明:

1. 设 α 是 x_0 到 x_1 的道路, β 是 x_1 到 x_2 的道路, γ 是 x_2 到 x_3 的道路, 则

$$([\alpha] \circ [\beta]) \circ [\gamma] = [\alpha] \circ ([\beta] \circ [\gamma])$$

2. 设 α 是 x_0 到 x_1 的道路,那么

(a).
$$[C_{x_0}] \circ [\alpha] = [C_{x_0} * \alpha] = [\alpha]$$

(b).
$$[\alpha] \circ [C_{x_1}] = [\alpha * C_{x_1}] = [\alpha]$$

3. 设 α 是 x_0 到 x_1 的道路,那么

(a).
$$[\alpha] \circ [\alpha^{-1}] = [C_{x_0}]$$

(b).
$$[\alpha^{-1}] \circ [\alpha] = [C_{x_1}]$$

Proof

结合律: 只需要说明 $(\alpha*\beta)*\gamma\sim_{x_0}\alpha*(\beta*\gamma)$ 为此, 定义 $H:X\times I\to X$,

$$H\left(x,t\right) := \begin{cases} \alpha\left(\frac{4s}{t+1}\right), & s \in [0, \frac{1}{4}\left(1+t\right)] \\ \beta\left(4s-1-t\right), & s \in \left[\frac{1}{4}\left(1+t\right), \frac{1}{4}\left(2+t\right)\right] \\ \gamma\left(\frac{4s-2-t}{2-t}\right), & s \in \left[\frac{1}{4}\left(2+t\right), 1\right] \end{cases}$$

即可.

Idea

想法是随 t 的变换改变道路的比例, 因此分别改变 α, β, γ 的取值范围.

先分别确定各道路在 I_s 上分配到的两端点随时间的变化,再依变化调整道路括号内的数,对于后者可以通过线性函数 $f(x)=\frac{f(b)-f(a)}{b-a}\,(x-a)$,取 f(b)=1,f(a)=0 ,a,b分别是道路在 I_s 上的两端点来构造,例如对 α 就可以确定最后的一个分段为 $\alpha\circ f$.

接下来说明单位元的存在性: 我们说明 C_{x_0} 所在的等价类 $[C_{x_0}]$ 是单位元. 为此, 只

需要说明 $\alpha * C_{x_0} \sim_{x_0} \alpha$ 以及 $C_{x_0} * \alpha \sim_{x_0} \alpha$.

对于前者, 定义 $H: X \times I \to X$

$$H(x,t) = \begin{cases} \alpha\left(\frac{2s}{t+1}\right), & s \in [0, \frac{1}{2}(t+1)] \\ x_0, & s \in [\frac{1}{2}(t+1), 1] \end{cases}$$

后者是类似的.

最后说明 $\pi_1(X,x_0)$ 中任意元素皆可逆: 对于 $[\alpha]\in\pi_1(X,x_0)$, 定义 $\alpha'(t)=\alpha(1-t)$, 只需说明 $[\alpha']$ 与 α 的选取无关, 并且 $[\alpha']$ 是 $[\alpha]$ 的逆. 对于第一个断言, 设 $\beta\sim_{x_0}\alpha$, H 是对应的道路同伦. 定义 H'

$$H'(x,t) := H(1-s,t)$$

则显然 H' 是 β' 到 α' 的同伦, 这就说明了 $[\alpha'] = [\beta']$, 第一个断言成立. 接下来说明

$$[\alpha'] \circ [\alpha] = [C_{x_0}] = [\alpha] \circ [\alpha']$$

只说明后一个等式,前一个是类似的. 我们定义

前一个是类似的. 我们定义
$$H\left(s,t\right):=\begin{cases} x_{0}, & s\in\left[0,\frac{1}{2}t\right]\\ \alpha\left(2s-t\right), & s\in\left[\frac{1}{2}t,\frac{1}{2}\right]\\ \alpha\left(2-2s-t\right), & s\in\left[\frac{1}{2},\frac{1}{2}\left(2-t\right)\right]\\ x_{0}, & s\in\left[\frac{1}{2}\left(2-t\right),1\right] \end{cases}$$

Idea

几何上,相当于让沿 α 的运动随时间越来越提前折返.

定义 1.15

令 X 是扬扑空间, $x_0 \in X$. 称群 $\pi_1(X,x_0)$ 为 X 的以 x_0 为基点的 基本群或 Pincare \acute 群

定理 1.7

设 X 是道路连通空间, x_0,x_1 是 X 上任意两点. 那么 $\pi_1(X,x_0)$ 和 $\pi_1(X,x_1)$ 是同构的. 事实上, 任意从 x_0 到 x_1 的道路都给出 $\pi_1(X,x_0)$ 到 $\pi_1(X,x_1)$ 的一个同构. \bigcirc

Remark 据此, 对于道路连通的 X, 可以将 $\pi_1(X,x)$ 简记作 $\pi_1(X)$, 称其为 X 的基本群. Proof

设 ω 是从 x_0 到 x_1 的道路, 则它有逆道路 $\omega^{-1}(t)=\omega\,(1-t)$. 定义

$$P_{\omega}: \pi_1(X, x_0) \to \pi_1(X, x_1)$$

$$P_{\omega}[\alpha] = [\omega^{-1} * \alpha * \omega]$$

首先需要说明映射是良定义的. 设 $\alpha \sim_{x_0} \beta$, 则 $\omega^{-1} * \alpha * \omega \sim_{x_0} \omega^{-1} * \beta * \omega$, 这就说明了良定义. 接下来说明 P_ω 是群同态, 计算

$$P_{\omega}([\alpha] \circ [\beta]) = P_{\omega}[\alpha * \beta]$$

$$= [\omega^{-1} * \alpha * \beta * \omega]$$

$$= [\omega^{-1} * \alpha] \circ [\beta * \omega]$$

$$= [\omega^{-1} * \alpha * C_{x_0}] \circ [\beta * \omega]$$

$$= [\omega^{-1} * \alpha * \omega * \omega^{-1}] \circ [\beta * \omega]$$

$$= [\omega^{-1} * \alpha * \omega] \circ [\omega^{-1} * \beta * \omega]$$

$$= P_{\omega}[\alpha] \circ P_{\omega}[\beta]$$

这就说明了同态性. 最后, 以 ω^{-1} 代 ω , 不难得到 P_{ω} 有逆同态 $P_{\omega^{-1}}$.

命题 1.4

设 X 是道路连通空间, $x_0, x_1 \in X$, 则 $\pi_1(X, x_0)$ 是阿贝尔群, 当且仅当对于任意一对从 x_0 到 x_1 的道路 ω, ω' , 都有 $P_\omega = P_{\omega'}$.

Idea

即道路连通空间的基本群交换,当且仅当给定道路的共轭作用是唯一的.

Proof

设 $\pi_1(X,x_0)$ 是阿贝尔群. $\omega*(\omega')^{-1}$ 和 $\omega'*\omega^{-1}$ 是以 x_0 为基点的循环,则对于任意的 $[\alpha]\in\pi_1(X,x_0)$,交换性给出

$$[\alpha] \circ [\omega * (\omega')^{-1}] = [\omega * (\omega')^{-1}] \circ [\alpha]$$

两边分别依次左作用 $[\omega^{-1}]$ 再右作用 $[\omega']$, 得到

$$[\omega^{-1} * \alpha * \omega] = [(\omega')^{-1} * \alpha * \omega']$$

 $\mathbf{P} P_{\omega}[\alpha] = P_{\omega'}[\alpha].$

反之, 设 $[\alpha]$ 种 $[\beta]$ 是 $\pi_1(X,x_0)$ 中的元素, ω 是 x_0 到 x_1 的道路. 则 $\beta*\omega$ 是 x_0 到 x_1 的道路. 由条件

$$[(\beta*\omega)^{-1}*\alpha*(\beta*\omega)] = [\omega^{-1}*\alpha*\omega]$$

由于 P_{ω} 是同构, 得到

$$[\beta * \alpha * \beta^{-1}] = [\alpha]$$

此即

$$[\alpha] \circ [\beta] = [\beta] \circ [\alpha]$$

定理 1.8 (连续映射诱导的基本群同态)

每个带基点的拓扑空间间的连续映射 f:(X,x) o (Y,y) 都诱导出一个群同态 $f_{\sharp}:\pi_1\left(X,x\right) o \pi_1\left(Y,y\right)$

Proof

设 α 是 X 上以 x 为基点的一个循环, 则 $f\circ\alpha$ 是 Y 上以 y 为基点的一个循环. 并且若 $\alpha\sim_x\beta$, 则 $f\circ\alpha\sim_y f\circ\beta$. 据此可以定义映射 $f_\sharp:\pi_1(X,x)\to\pi_1(Y,y)$

$$f_{\sharp}[\alpha] = [f \circ \alpha]$$

此外, 不难看出

$$f\circ (\alpha*\beta)=(f\circ\alpha)*(f\circ\beta)$$

因此

$$f_{\sharp}([\alpha] \circ [\beta]) = (f_{\sharp}[\alpha]) \circ (f_{\sharp}[\beta])$$

因此 ft 是群同态.

定理 1.9 (♯的函子性)

- 1. 若 $f:X\to X$ 是单位映射,则对于任意的 $x\in X$, $f_\sharp:\pi_1(X,x)\to\pi_1(X,x)$ 也是单位映射。
- 2. 若 $f:(X,x) \to (Y,y)$ 种 $g:(Y,y) \to (Z,z)$ 是两个带基点空间之间的连续映射, 则

$$(g \circ f)_{\sharp} = g_{\sharp} \circ f_{\sharp}$$

Proof

1. 若 f 是单位映射,则对于任意的 $x\in X$,以及以 x 为基点的循环 α ,我们都有 $f\circ\alpha=\alpha$,因此 $f_{\sharp}[\alpha]=[\alpha]$,即 $f_{\sharp}=\mathrm{Id}_{\pi_1(X,x)}$.

2. 若 f,g 如题, 任取 α 是以 x 为基点的循环, 我们有

$$(g \circ f)_{\sharp} [\alpha] = [(g \circ f) \circ \alpha]$$

$$= [g \circ (f \circ \alpha)]$$

$$= g_{\sharp} [f \circ \alpha]$$

$$= g_{\sharp} (f_{\sharp} [\alpha])$$

$$= (g_{\sharp} \circ f_{\sharp}) [\alpha]$$

为此 $(g \circ f)_{\sharp} = g_{\sharp} \circ f_{\sharp}$

定理 1.10

若X和Y是同胚的道路连通空间,则它们的基本群是同构的.

Remark 即基本群是道路连通空间的拓扑不变量.

Proof

若 X,Y 是同胚的, 则存在连续映射 $f:X\to Y$, 它有连续的逆映射 $f^{-1}:Y\to X$, 使得

$$f^{-1} \circ f = \mathrm{Id}_X, \quad f \circ f^{-1} = \mathrm{Id}_Y$$

由 # 的函子性, 我们有

$$\left(f^{-1}\right)_{\sharp} \circ f_{\sharp} = \left(f^{-1} \circ f\right)_{\sharp} = \mathrm{Id}_{\pi_{1}(X,x)}$$

以及

$$f_{\sharp} \circ (f^{-1})_{\sharp} = (f \circ f^{-1})_{\sharp} = \mathrm{Id}_{\pi_1(Y,y)}$$

其中 y=f(x). 而 f_{\sharp} 和 $(f^{-1})_{\sharp}$ 都是群同态, 因此 $\pi_{1}(X,x)$ 同构于 $\pi_{1}(Y,y)$

推论 1.4

令 $A \subseteq X$. 设 $r: X \to A$ 是一个收缩, $i: A \to X$ 是含入映射. 则对于每个 $a \in A$, $r_{\sharp}: \pi_{1}(X, a) \to \pi_{1}(A, a)$ 是满射, 且 $i_{\sharp}: \pi_{1}(A, a) \to \pi_{1}(X, a)$ 是单射.

Proof

对于每个 $a\in A$, 复合映射 $(A,a)\xrightarrow{i}(X,a)\xrightarrow{r}(A,a)$ 是单位映射. 由 \sharp 的函子性, $\pi_1\left(A,a\right)\xrightarrow{i_\sharp}\pi_1\left(X,a\right)\xrightarrow{r_\sharp}\pi_1\left(A,a\right)$ 是单位映射, 由此易见 i_\sharp 单而 r_\sharp 满.

定理 1.11

若 $f,g:(X,x)\to (Y,y)$ 是相对于 $\{x\}$ 同伦的,则

$$f_{\sharp} = g_{\sharp} : \pi_1(X, x) \to \pi_1(Y, y)$$

Proof

任取以 x 为基点的循环. 由于 f 相对于 $\{x\}$ 同伦于 g , 不难得到 $f\circ \alpha\sim_y g\circ \alpha$, 即 $f_{\rm t}[\alpha]=g_{\rm t}[\alpha]$

定理 1.12

若 $f:(X,x_0)\to (Y,y_0)$ 是相对意义下的同伦等价,则 $f_\sharp:\pi_1(X,x_0)\to\pi_1(Y,y_0)$ 是群同构.

Idea

对于相对于点的同论,可以直接视作带基点的空间上的同论.

Proof

存在 g, 使得 $f \circ g \sim \mathrm{Id}_{(Y,y_0)}$, $g \circ f \sim \mathrm{Id}_{(X,x_0)}$. 应用上面的定理, 得到

$$f_{\sharp} \circ g_{\sharp} = \mathrm{Id}_{\pi_1(X,x_0)}, \quad g_{\sharp} \circ f_{\sharp} = \mathrm{Id}_{\pi_1(Y,y_0)}$$

给出了群同构.

推论 1.5

若 A 是 X 的一个强形变收缩,则对于每个 $a\in A$, $\pi_1(A,a)$ 同构于 $\pi_1(X,a)$.

Remark 若 X 的子空间 A 是单点集 $A=\{a\}$, 且 A 是 X 的一个强形变收缩,则 $\pi_1(X,a)\simeq\pi_1(\{a\},a)$. 通常记作 $\pi_1(a)$. 此外,此时 X 可缩到 $\{a\}$ 故而道路连通,我们有 $\pi_1(X)\sim\pi_1(P)=\{e\}$,其中 P 是点空间.

Proof

强形变收缩意味着终映射 $f:X\to A$, 满足 $f\circ i=\mathrm{Id}_A$, 并且 $i\circ f\sim\mathrm{Id}_X$, $\mathrm{rel}\ A$, 特别地, 对于任意的 $a\in A$, $f:(X,a)\to(A,a)$ 是相对意义下的同伦等价, 由上面的定理, $f_\sharp:\pi_1(X,x_0)\to\pi_1(Y,y_0)$ 是群同构.

定理 1.13

设 F 是 $f,g:X\to Y$ 间的同伦. 令 $x_0\in X$, $\sigma:I\to Y$ 是通过 $\sigma(t):=F(x_0,t)$ 定

义的 $f(x_0)$ 到 $g(x_0)$ 的道路, 则下图交换

Remark

- 1. 当 $f(x_0) = g(x_0)$ 时, P_{σ} 无非是内自同构.
- 2. 当 F 是相对于 x_0 时, $\sigma = C_{f(x_0)}$, 进而 $f_{\sharp} = g_{\sharp}$, 定理退化成定理1.11的情况.

Proof

任取 $[\alpha] \in \pi_1(X, x_0)$, 只需证明 $P_{\sigma} \circ f_{t}[\alpha] = g_{t}[\alpha]$, 即证明

$$[\sigma^{-1}*(f\circ\alpha)*\sigma]=[g\circ\alpha]$$

先来封装如何将 $f\circ\alpha$ 变做 $g\circ\alpha$, 定义 $G:I\times I\to Y$, $G(x,t)=F(\alpha(x),t)$. G 是 $f\circ\alpha$ 到 $g\circ\alpha$ 的连续变化, 且基点的变化与 σ 重合, 我们要做的是对每个不同的时间 t, 都让 $f\circ\alpha$ 连续变化了 t 时间的状态下, 拼接 σ 上的一段, 构成一个循环. 接下来构造 $H:I\times I\to X$ 将 $\sigma^{-1}*(f\circ\alpha)*\sigma$ 同伦到 $g\circ\alpha$.

$$H(s,t) = \begin{cases} \sigma^{-1}(2s), & s \in [0, \frac{1}{2} - \frac{1}{2}t] \\ G\left(\frac{4s + 2t - 2}{3t + 1}, t\right), & s \in [\frac{1}{2} - \frac{1}{2}t, \frac{3}{4} + \frac{1}{4}t] \\ \sigma\left(4s - 3\right), & s \in [\frac{3}{4} + \frac{1}{4}t, 1] \end{cases}$$

这样就给出了所需的同伦.

推论 1.6

若 $f:X\to Y$ 同伦于常值映射 $C:X\to Y$,则诱导同态 $f_\sharp:\pi_1(X,x_0)\to\pi_1(Y,f(x_0))$ 是零映射.

Proof

 $C_{\sharp}:\pi_{1}\left(X,x_{0}
ight)
ightarrow\pi_{1}\left(Y,C\left(x_{0}
ight)
ight)$ 是平凡同态. 由上面的交換图,

$$P_{\sigma} \circ f_{\sharp} = C_{\sharp}$$

两边左作用 $P_{\sigma^{-1}}$, 得到

$$f_{\sharp} = P_{\sigma^{-1}} \circ C_{\sharp}$$

是零映射.

推论 1.7

设 X 是可缩空间. 则对于任意的 $x_0\in X$, 每个以 x_0 为基点的循环 α 都等价于 C_{x_0} , 即 $\pi_1\left(X,x_0\right)=0$

Proof

由于 X 是可缩的, Id_X 通过一个同伦 F 同伦到常值映射 C_{x_0} . 因此, 若 σ 下述定义的 x_0 处的循环

$$\sigma\left(t\right) = F\left(x_0, t\right)$$

我们有

$$P_{\sigma} \circ \left(\mathrm{Id}_{\pi_1(X, x_0)} \right) = C_{[C_{x_0}]}$$

为零映射, 两边左乘 $P_{\sigma^{-1}}$, 得到

$$\mathrm{Id}_{\pi_1(X,x_0)} = C_{[\sigma * C_{x_0} * \sigma^{-1}]} = C_{[C_{x_0}]}$$

断言成立.

定理 1.14

设 X,Y 是有着相同同伦型的道路连通空间,则它们的基本群同构.

Proof 首先, 道路连通空间的基本群与基点的选取无关, 于是可以任意选取 X 上一点 x_0 , 讨论 $\pi_1(X,x_0)$ 和 $\pi_1(Y,f(x_0))$. 若条件成立, 存在 $f:X\to Y$, $g:Y\to X$, 以及同伦 F,G 使得

$$F: f \circ g \sim \mathrm{Id}_Y, \quad G: g \circ f \sim \mathrm{Id}_X$$

设 σ 是通过 $\sigma(t):=F(x_0,t)$ 给出的 x_0 到 $g\circ f(x_0)$ 的道路, 则由交换图

$$(g \circ f)_{\sharp} = P_{\sigma} \circ \mathrm{Id}_{\pi_1(X, x_0)}$$

因此 $g_{\sharp} \circ f_{\sharp} = P_{\sigma}$. 又 P_{σ} 是一个同构, 因此 f_{\sharp} 单而 g_{\sharp} 满. 对 G 类似的讨论可以得到 f_{\sharp} 满而 g_{\sharp} 单, 这样就得到了 f_{\sharp} , g_{\sharp} 是双射.

推论 1.8

设 X,Y 是两个道路连通空间, $f:X\to Y$ 是一个同伦等价, 则 $f_\sharp:\pi_1\left(X\right)\to\pi_1\left(Y\right)$ 是一个同构.

1.4 单连通空间

定义 1.16

称 X 是单连通的, 若 X 是道路连通的, 并且 $\pi_1(X)=0$.

•

命题 1.5

道路连通空间 X 是单连通的,当且仅当 X 上任意两条有相同端点的道路是道路同伦的.

Proof

充分性是显然的, 以下说明必要性. 任取 X 上从 x_0 到 x_1 的两条道路 α 和 β , 则 $\alpha*\beta^{-1}$ 是以 x_0 为基点的循环. 由于 X 是单连通的, 我们有

$$[\alpha * \beta^{-1}] = [C_{x_0}]$$

两边右作用 $[\beta]$, 得到

$$[\alpha] = [\alpha * \beta^{-1} * \beta] = [\alpha * \beta^{-1}] \circ [\beta] = [C_{x_0}] \circ [\beta] = [\beta]$$

定理 1.15

令 $\{V_i:i\in\Lambda\}$ 是 X 的一个开覆盖, 其中每个 V_i 都是单连通的. 则 X 是单连通的, 若以下两条成立:

- 1. $\bigcap V_i \neq \emptyset$;
- 2. 对于每个 $i \neq j$, $V_i \cap V_j$ 是道路连通的.

Proof

由于每个 V_i 都是道路连通的, 并且它们的交非空, 因此 X 是道路连通的. 只需要证明 $\pi_1\left(X,x\right)=0$ 对某个 $x\in X$ 成立.

取一点 $x_0\in\bigcup V_i$, 并取 X 上以 x_0 为基点的循环 α . 则 $\{\alpha^{-1}(V_i)\}$ 构成 I 的一个开覆盖. 由于 I 是紧集, 覆盖存在一个 Lebesgue 数 ε , 使得参数小于 ε 的覆盖

$$0 = t_0 < t_1 < \dots < t_n = 1$$

使得对于任意的 $k=1,2,\cdots,n$, 存在 j, 使得 $[t_{k-1},t_k]\subseteq\alpha^{-1}(V_j)$ 成立. 通过重新编号不妨设 $[t_{k-1},t_k]\subseteq\alpha^{-1}(V_k)$, $k=1,\cdots,n$. 定义道路

$$\alpha_k(s) := \alpha \left((1 - s) t_{k-1} + s t_k \right)$$

则 α_k 是 V_k 上的道路. 并且

$$[\alpha] = [\alpha_1 * \alpha_2 * \cdots * \alpha_n]$$

由道路连通性, 对于每个 $k=1,\cdots,n-1$, 存在 $V_k\cap V_{k+1}$ 上的 x_0 到 $\alpha(t_k)$ 的道路 ρ_k , 且注意到 $\alpha(t_n)=\alpha(t_0)=x_0$. 于是

$$[\alpha] = [\alpha_1 * \rho_1^{-1} * \rho_1 * \alpha_2 * \cdots * \alpha_{n-1} * \rho_{n-1}^{-1} * \rho_{n-1} * \alpha_n]$$
$$= [\alpha_1 * \rho_1^{-1}] \circ [\rho_1 * \alpha_2 * \rho_2^{-1}] \circ \cdots \circ [\rho_{n-2} * \alpha_{n-1} * \rho_{n-1}^{-1}] \circ [\rho_{n-1} * \alpha_n]$$

注意到 $\rho_{k-1}*\alpha_k*\rho_k^{-1}$ 是 V_k 上的以 x_0 为基点的循环,而 $\pi_1\left(V_k,x_0\right)=0$,因此 $[\rho_{k-1}*\alpha_k*\rho_k^{-1}]=[C_{x_0}]$, $k=2,\cdots,n-1$. 此外 $\alpha_1*\rho_1^{-1}$ 种 $\rho_{n-1}*\alpha_n$ 分别是 V_1 种 V_n 上以 x_0 为基点的循环,二者皆为 $[C_{x_0}]$. 综上,我们有 $[\alpha]=[C_{x_0}]$. 这就表明 $\pi_1\left(X,x_0\right)=0$,进而 $\pi_1\left(X\right)=0$.

推论 1.9

设 X 是一些道路连通开集 A_{α} 的并,且每个 A_{α} 都包含了基点 $x_0 \in X$. 若每个交集 $A_{\alpha} \cap A_{\beta}$ 都是道路连通的,则每个 X 上以 x_0 为基点的循环都同伦于若干循环的连接,其中每个循环都落在某一个 A_{α} 中.

Proof -上面的证明实际上就是再说这件事情.

Example 1.7 标准 n 球面 \mathbb{S}^n , $n \geq 2$ 是单连通的. 考虑分别挖掉北极点和南极点的两片开集 U,V. 它们分别可缩到南极点和北极点, 进而是单连通的. 并且 $U \cap V$ 作为 \mathbb{S}^n 挖掉两个点², 仍然是道路连通的(即使挖掉可数多个点也是).

1.5 基本群的计算

Example 1.8 令 \mathbb{D}^n $(n \ge 1)$ 是 \mathbb{R}^n 上的单位闭圆盘. 由于 \mathbb{D}^n 是道路连通的, 我们可以在任何点上计算它的基本群, 方便起见, 考虑原点的基本群. 定义 $H: \mathbb{D}^n \times I \to \mathbb{D}^n$

$$H(x,t) := (1-t)X$$

则 \mathbb{D}^n 收缩到原点, 因此 $\pi_1(\mathbb{D}^n) \simeq \pi_1(\{0\}) = 0$

Remark 凸集、星形集等可缩集的基本群都是平凡的.

 $^{^2}$ 同所于 $\mathbb{S}^{n-1} \times \mathbb{R}$

定理 1.16

令 X,Y 是分别带基点 $x_0 \in X$ 种 $y_0 \in Y$ 的拓扑空间, 则

$$\pi_1(X \times Y, (x_0, y_0)) \simeq \pi_1(X, x_0) \times \pi_1(Y, y_0)$$

Remark 令 $\{X_\alpha:\alpha\in\Lambda\}$ 是一族扬扑空间,则对于每个 $\alpha\in\Lambda$,令 $x_\alpha\in X_\alpha$ 是基点. 则以下证明容易推广出

$$\pi_1\left(\prod X_{\alpha},(x_{\alpha})\right) \simeq \prod \pi_1\left(X_{\alpha},x_{\alpha}\right)$$

Proof

设 p_1, p_2 是标准投影, 显然可看做带基点拓扑空间的投影. 分别诱导出同态

$$p_{1\sharp}: \pi_1(X \times Y, (x_0, y_0)) \to \pi_1(X, x_0),$$

以及

$$p_{2\sharp}: \pi_1(X \times Y, (x_0, y_0) \to \pi_1(Y, y_0))$$

定义

$$\rho: \pi_1(X \times Y, (x_0, y_0)) \to \pi(X, x_0) \times \pi_1(Y, y_0)$$
$$[\alpha] \mapsto ([p_1 \circ \alpha], [p_2 \circ \alpha])$$

反过来, 我们定义

$$\eta: \pi_1(X, x_0) \times \pi_1(Y, y_0) \to \pi_1(X \times Y, (x_0, y_0))$$

$$[\alpha] \times [\beta] \mapsto [\alpha \times \beta]$$

之前没有处理过良定义性相关的命题, 这里需要说明定义是良定义的. 设 $F_1:\alpha_1\sim_{x_0}$ $\alpha_2,F_2:\beta_1\sim_{y_0}\beta_2$. 定义 $F:I\times I\to X\times Y$

$$F(s,t) = (F_1(s,t), F_2(s,t))$$

则 $F(s,0)=(\alpha_1(s),\beta_1(s))$, $F(s,1)=(\alpha_2(s),\beta_2(s))$, 并且 $F(0,t)=F(1,t)=(x_0,y_0)$. 这就说明了良定义性. 最后, 容易看到 ρ 和 η 互为逆映射.

1.5.1 圆的基本群

定义 1.17

指数映射 $p:\mathbb{R} \to \mathbb{S}^1$, 被定义为 $p(t)=e^{2\pi it}, t\in\mathbb{R}$, 以下记 $p_0=(1,0)\in\mathbb{S}^1$. 映射 $p|_{\left(-\frac{1}{2},\frac{1}{2}\right)}$ 是开区间 $\left(-\frac{1}{2},\frac{1}{2}\right)$ 到 $\mathbb{S}^1-\{e^{i\pi}\}$ 的同胚映射. 令 $\ln:\mathbb{S}^1-\{e^{i\pi}\}\to\left(-\frac{1}{2},\frac{1}{2}\right)$ 是映射的逆.

Remark

- 1. $p(t_1 + t_2) = p(t_1) \cdot p(t_2), t_1, t_2 \in \mathbb{R}$;
- 2. $p(t_1) = p(t_2)$ 当且仅当 $t_1 t_2$ 是整数;
- 3. $p^{-1}(p_0) = \mathbb{Z}$.

定义 1.18

设 $f:X \to \mathbb{S}^1$ 是连续映射. 称连续映射 $f':X \to \mathbb{R}$ 为 f 的一个提升或覆叠, 若下图交换

, $\mathbb{P} p \circ f' = f$.

引理 1.1

设 X 是道路连通空间, 并且 $f',f'':X\to\mathbb{R}$ 是连续映射, 使得 $p\circ f'=p\circ f''$. 若 f',f'' 在一点 $x_0\in X$ 处相等, 则 f'=f''.

Proof

定义 $g:X \to \mathbb{R}$, g:=f'-f''. 因为 $p\circ f'=p\circ f''$, 我们有对于每个 $x\in X$,

$$p \circ g(x) = e^{2\pi i g(x)}$$

$$= e^{2\pi i (f'(x) - f''(x))}$$

$$= \frac{e^{2\pi i f'(x)}}{e^{2\pi i f''(x)}}$$

$$= \frac{p \circ f'(x)}{p \circ f''(x)}$$

$$= 1$$

这表明 $g(x) \in p^{-1}(1) = \mathbb{Z}, \forall x \in X$. 由于 X 连通, 且 g 连续, $g(X) \subseteq \mathbb{Z}$ 只能是单点集.

但是 $g(x_0) = 0$,因此 $g(x) = 0, \forall x \in X$. 即 $f'(x) = f''(x) = 0, \forall x \in X$.

先来介绍两个结果

定理 1.17 (道路提升)

令 $p:\mathbb{R}\to\mathbb{S}^1$ 是指数映射, $\alpha:I\to\mathbb{S}^1$ 是任意满足 $\alpha(0)=p_0$ 的道路. 那么存在唯一的 α 的提升 α' , 使得 $\alpha'(0)=0$.

定理 1.18 (同伦提升定理)

令 $p: \mathbb{R} \to \mathbb{S}^1$ 是指数映射. 设 $F: I \times I \to \mathbb{S}^1$ 是同伦, 使得 $F(0,0) = p_0$. 则存在唯一的 F 的提升 $F': I \times I \to \mathbb{R}$, 使得 F'(0,0) = 0.

接下来证明一个更一般的命题,上面两个定理是以下定理的推论.

定理 1.19

设 X 是 \mathbb{R}^n 上的一个凸的紧集, $x_0\in X$. 任给连续映射 $f:X\to\mathbb{S}^1$ 以及任意 $t_0\in\mathbb{R}$ 使得 $p(t_0)=f(x_0)$, 则存在唯一的连续映射 $f':X\to\mathbb{R}$, 使得 $f'(x_0)=t_0$ 并且 $p\circ f'=f$.

Idea

我们看到, 在局部上找到 f 在 p 下的逆映射是容易的, 但是整体上由于 \mathbb{S}^1 上的像会叠在一块, 我们做不到这样的事情. 想法就是将 f(x) 分解(怎样分解?)成若干可以取逆的函数. 利用 \ln 的运算性质, 想到要将 f(x) 分解成有限乘积, 提升就可以取成有限的 \ln 和.

Proof

由于凸自动导出道路连通, 唯一性由上面的引理容易看出, 只需要说明存在性.

事实上可以不失一般性地假设 x_0 为 \mathbb{R}^n 的原点,为了看到这件事情,考虑 \mathbb{R}^n 上的平移变换 $L:\mathbb{R}^n\to\mathbb{R}^n$, $y\mapsto y-x_0$. 现在 L(X) 是包含了 \mathbb{R}^n 的原点. 若 L(X) 上的提升存在,任给连续映射 $f:X\to\mathbb{S}^1$,定义 $k:=f\circ L^{-1}:L(X)\to\mathbb{S}^1$. 则 $k(0)=f(x_0)=p(t_0)$,它存在同伦提升 $k':L(X)\to\mathbb{R}$,使得 $p\circ k'=k$,并且 $k'(0)=t_0$. 于是 $f':=k'\circ L:X\to\mathbb{S}^1$ 就是 f 满足条件的同伦提升.

因此,我们不妨设 X 是 \mathbb{R}^n 包含原点的凸紧集. 由于 X 是紧集, 连续函数 f 在 X 上也是一致连续的. 存在 $\varepsilon>0$, 使得只要 $\|x\|<\varepsilon$, 就有 |f(x)-f(x')|<2. 取正整数 k,

使得 $\frac{\|x\|}{k} < \varepsilon$. 于是对于每个 $j = 0, 1, \cdots, n-1$

$$\left\| \frac{j}{k}x - \frac{j+1}{k}x \right\| < \varepsilon$$

进而

$$\left| f\left(\frac{j+1}{k}x\right) - f\left(\frac{j}{k}x\right) \right| < 2$$

令 $g_{j}\left(x\right)=f\left(\frac{j+1}{k}x\right)/f\left(\frac{j}{k}x\right)$, 则 $\left|g_{j}\left(x\right)-1\right|<2$, 从而 $g_{j}\left(x\right)\neq e^{i\pi}, \forall x\in X, 0\leq j\leq k-1$. 现在,

$$f(x) = f(0) \cdot g_0(x) \cdot g_1(x) \cdot \dots \cdot g_{k-1}(x)$$

取

$$f'(x) := t_0 + \ln g_0(x) + \ln g_1(x) + \dots + \ln g_{k-1}(x)$$

则 f' 是 k 个连续函数之和, 从而是连续的. 并且 $f'(0) = t_0$, $p \circ f' = f$.

定义 1.19

令 $\alpha:I\to\mathbb{S}^1$ 是 \mathbb{S}^1 上以 $p_0=(1,0)\in\mathbb{S}^1$ 为基点的循环, 令 $\alpha':I\to\mathbb{R}$ 是 α 的提升, 使得 $\alpha'(0)=0$. 由于 $\alpha'(1)\in\mathbb{R}$ 在指数映射下的像为 (1,0), 其必为整数. 我们称整数 $\alpha'(1)$ 为循环 α 的 次数.

定理 1.20

 $\diamond \alpha, \beta \in \mathbb{S}^1$ 上等价的以 p_0 为基点的循环, 则

$$\deg\,\alpha=\deg\,\beta$$

Proof 设 $F:I\times I\to\mathbb{S}^1$ 是 $\alpha\sim_{x_0}\beta$ 的同伦. 则由同伦提升定理, 存在唯一的同伦提升 $F':I\times I\to\mathbb{R}$, 使得 $F'(0,0)=0, p\circ F'=F$. 定义 $\alpha',\beta':I\to\mathbb{R}$, $\alpha'(s):=F'(s,0)$, $\beta'(s):=F'(s,1)$, 则它们分别是 α 和 β 的唯一的提升, 使得 $\alpha'(0)=\beta'(0)=0$. 只需证明 $\alpha'(1)=\beta'(1)$, 它们都在线

$$\ell:=\{(1,t):t\in I\}$$

上. 注意到 F 映此线 ℓ 均为 p_0 , 因此 F' 映线 ℓ 到 $\mathbb Z$ 的一个子集. F' 的连续性保证了线的像必须是道路连通的, 因此 F' 映线 ℓ 只能为单点集, 进而 $\alpha'(1) = \beta'(1)$.

这个定理说明我们可以定义一个次数的映射

定义 1.20

定义

$$\deg : \pi_1 \left(\mathbb{S}^1, p_0 \right) \to \mathbb{Z}$$
$$[\alpha] \mapsto \deg \alpha$$

定义 1.21

次数映射 $\deg: \pi_1(\mathbb{S}^1, p_0) \to \mathbb{Z}$ 是圆的基本群到 $(\mathbb{Z}, +)$ 的群同构.

Proof

群同态: 令 $[\alpha], [\beta]$ 是 π_1 (\mathbb{S}^1, p_0) 的两个元素, $\alpha', \beta' : I \to \mathbb{R}$ 是 α 和 β 以原点为起点的唯一的同伦提升. 我们先定义出 $\alpha * \beta$ 的同伦提升, 为此, 定义 $\omega : I \to \mathbb{R}$

$$\omega := \begin{cases} \alpha'(2t), & t \in [0, \frac{1}{2}] \\ \alpha'(1) + \beta'(2t - 1), & t \in [\frac{1}{2}, 1] \end{cases}$$

那么显然

$$p \circ \omega (t) = \begin{cases} p \circ \alpha' (t) \\ p (\alpha' (1)) \cdot (p \circ \beta') (2t - 1) \end{cases}$$
$$= \begin{cases} \alpha (t) \\ \beta (2t - 1) \end{cases}$$
$$= (\alpha * \beta) (t)$$

因此 ω 是 $\alpha*\beta$ 的以原点为起点的同伦提升, 我们有

$$\deg ([\alpha] * [\beta]) = \deg ([\alpha * \beta])$$

$$= \omega (1)$$

$$= \alpha' (1) + \beta' (1)$$

$$= \deg ([\alpha]) + \deg ([\beta])$$

单射: 若 $\deg [\alpha] = \deg [\beta]$, 则 $\alpha'(1) = \beta'(1)$, 可以定义同伦 $H: I \times I \to \mathbb{R}$

$$H(s,t) := (1-t)\alpha'(s) + t\beta'(s), (s,t) \in I \times I$$

则 H 是 α' 到 β' 的相对于 $\{0,1\}$ 的同伦, 进而 $p \circ H$ 是 α 到 β 的相对于 $\{0,1\}$ 的同伦, 即 $[\alpha] = [\beta]$.

满射: 对于任意的 $n \in \mathbb{Z}$, 定义循环 $\gamma : I \to \mathbb{S}^1$

$$\gamma\left(t\right) := e^{2\pi i n t}$$

易见 $\deg[\gamma] = n$.

Example 1.9 穿孔平面 考虑与形如 $\mathbb{R}^2-\{p\}$ 同胚的空间 X, 被称为是穿孔平面. 易见 X 同胚于 $Y=\mathbb{R}^2-(0,0)$. 我们指出 $\mathbb{S}^1\subseteq\mathbb{R}^2-\{(0,0)\}$ 是 Y 的一个强形变收缩. 定义 $F:Y\times I\to Y$

$$F(x,t) = (1-t)x + t\frac{x}{\|x\|}$$

因此 $\pi_1(X) = (\mathbb{Z}, +)$

Example 1.10 圆柱 设 X 是一个圆柱, 即与

$$Y = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, -k \le z \le k, k \in \mathbb{R} \}$$

同胚. 令 $C=\{(x,y,0): x^2+y^2=1\}$. 则 C 是 X 在 F((x,y,z),t)=(x,y,(1-t)z) 下的一个强形变收缩, 因此 $\pi_1(X)=\mathbb{Z}$.

●第1章 练习 ◆

1. 设 X 是扬扑空间, $Y \subseteq \mathbb{S}^2$ 是开上半球. 证明任意 $f,g:X \to Y$ 同伦.

Proof

考虑流形 \mathbb{S}^2 上的球坐标 (θ,φ) . 记 θ,φ 为坐标映射. 任取 $f,g:X\to Y$, 定义 $H:X\times I\to Y$, 坐标表示为

$$H(x,t) = (t(\theta \circ g) + (1-t)(\theta \circ f), t(\varphi \circ g) + (1-t)(\varphi \circ f))$$

则 H 是连续映射, 且 H(x,0) = f(x), H(x,1) = g(x).

2. 设 $P = \{p\}$ 是一个点的拓扑空间,X 是拓扑空间. 说明 X 是道路连通的, 当且仅当 [P,X] 是单元素集.

Proof

若 [P,X] 只有一个元素. 任取 X 上两点 x_1,x_2 , 定义 $f(p)=x_1,g(p)=x_2$. 则 $f,g\in[P,X]$, 从而存在 $H:P\times I\to X$, 使得 $H(p,1)=x_1,H(p,2)=x_2$. 则 $H\circ i_2$ 是连接 x_1 和 x_2 的连续映射, 其中 $i_2:I\to P\times I$, $i_2(t)=(p,t)$ 是连续映射. 这表明 X 是道路连通的.

反之, 若 X 是道路连通的. 任取 P 到 X 的连续映射 f,g, 设 $f(p)=x_1,g(p)=x_2$. 则存在连续映射 $h:I\to X$, 使得 $h(0)=x_1$, $h(1)=x_2$. 定义 $H:P\times I\to X$, H(p,t):=h(t), 则 $H=h\circ\pi_2$ 是连续映射. 并且 H(p,1)=f(p), H(p,2)=g(p). 因此 $H:f\simeq g$.

3. 设 X 是离散空间. 证明若 $f:X\to X$ 同伦于单位映射 $I_X:X\to X$, 则 $f=I_X$. (提示:存在 x 到 f(x) 的道路.)

Proof

设 $H:f\simeq I_X$, 则 H(x,0)=f(x), H(x,1)=x. 于是 $h_x(t):=H\circ i_x(t)$ 是 f(x) 到 x 的道路. 若 $x\neq f(x)$, 则 $I\setminus (h_x^{-1}(x))$ 是若干开集的并, 进而是非空开集. 从 而 $h_x^{-1}(x)$ 是闭集. 但同时 $h_x^{-1}(x)$ 是开的, 而 I 是连通集, 只能有 $h_x^{-1}(x)=\varnothing$ 或 $h_x^{-1}(x)=I$. 又 $h_x^{-1}(x)\ni 1$ 非空, 因此 $h_x^{-1}(x)=I$. 进而 $f(x)=h_x(0)=x$, 矛盾. 这就表明了 f(x)=x, $\forall x\in X$, $f=I_X$.

4. (?) 设 X 是连通空间, Y 是离散空间. 证明 $f,g:X\to Y$ 同伦, 当且仅当 f=g. Proof

若 f,g 同伦, 设 $H:f\simeq g$. 任意固定 $x\in X$, 则 $h_x(t):=H(x,t)$ 是连接 f(x) 和 g(x) 的道路. 若 $f(x)\neq g(x)$, 则 $I\setminus h_x^{-1}(f(x))$ 写作若干开集的并, 进而是非空开集. 故 $h_x^{-1}(f(x))$ 是 I 上的闭集, 又 $h_x^{-1}(f(x))$ 自身是一个非空开集, 由 I 的连通性, 只能有 $h_x^{-1}(f(x))=I$. 因此 $g(x)=h_x(1)=f(x)$. 反之, 若 f=g, 显然 f,g 同伦.

- 5. (我猜因为这东西不连续,但是我对复变不熟,之后再写) 设 \mathbb{S}^1 是复平面上的单位元, $f,g:\mathbb{S}^1\to\mathbb{S}^1$ 是两个映射,定义 $f(z)=z,g(z)=z^2$. 为什么说以下表述是错误的: $F:\mathbb{S}^1\times I\to\mathbb{S}^1$, $F(z,t)=z^{t+1}$ 是 f 到 g 的同伦.
- 6. 设 X 是局部紧的 Hausdorff 空间, C(X,Y) 是所有从 X 到 Y 的连续映射, 其中 Y 被赋予了紧-开拓扑. 证明 $f,g\in C(X,Y)$ 同伦, 当且仅当它们被 C(X,Y) 上的一个道路相连.
- 7. 令 $A \subseteq X$ 是 X 的一个收缩, 其中 X 是 Hausdorff 的. 证明 A 在 X 中是闭的. Proof

若 $A \subseteq X$ 是 X 的一个收缩, 则 A 可以被刻画为 X 在某个连续映射下的像, 而 Haussdorff 空间的连续像是闭的, 故 A 是闭的.

8. 设 X 是连通的空间, $x_0,x_1\in X$ 是 X 上的两点, 且在 X 中有无交的开邻域. 说明

 $A = \{x_0, x_1\}$ 不是 X 的收缩.

Proof

连通集的连续像是连通的. 若 A 是 X 的一个收缩, 则 A 位于 X 在某个连续函数的像集上. 但是 A 是 X 的收缩表明, 存在连续映射 $f: X \to A$, 使得 $i \circ f = \operatorname{Id}_A$, 从而 A 被刻画为 X 在连续映射 f 下的像, 表明 A 是连通的. 但是另一方面, 设 U_0, U_1 为 x_0, x_1 的无交开邻域, 则 $A = A \cap (U_0 \cup U_1) = (A \cap U_0) \cup (A \cap U_1)$ 是两个非空开集的无交并, 是不连通的, 矛盾.

9. 证明空间 X 是可缩的,当且仅当对于任意的拓扑空间 T,以及任意映射 $f:X\to T$,都有 f 是零伦.

Proof

设 X 是可缩的,则可设 $H: \operatorname{Id}_X \simeq C_{x_0}$ 对某个 $x_0 \in X$ 成立。考虑连续映射 $G:=f\circ H$,则 G(x,0)=f(x), $G(x,1)=C_{f(x_0)}$ 是常值映射,故 f 是零伦。或者我们直接利用复合映射对同伦的保持,得到 $f=f\circ \operatorname{Id}_X \simeq f\circ C_{x_0}=C_{f(x_0)}$ 反正,若任取 $f:X\to T$,都有 f 是零伦,特别地有 $\operatorname{Id}_X:X\to X$ 是零伦,即同伦与常值映射,表明 X 是可缩的。

10. 说明若 $A \neq X$ 的一个强形变收缩, $B \neq A$ 的一个强形变收缩, 则 $B \neq X$ 的一个强形变收缩.

Proof 存在连续映射 $f:X\to A$, 使得 $\mathrm{Id}_X\simeq i_1\circ f,\mathrm{rel}\ A$, 并且 $f\circ i_1=\mathrm{Id}_A$. 存在连续映射 $g:A\to B$, 使得 $\mathrm{Id}_A\simeq i_2\circ g,\mathrm{rel}\ B$, 并且 $g\circ i_2=\mathrm{Id}_B$. 其中 $i_1:A\to X$ 和 $i_2:B\to A$ 是含入映射. 由同伦对复合映射的保持,我们有 $\mathrm{Id}_X\simeq i_1\circ f=i_1\circ \mathrm{Id}_A\circ f\simeq i_1\circ i_2\circ g\circ f,\mathrm{rel}\ B$,注意到 $i_1\circ i_2:B\to X$ 也是含入映射,因此 B 是 X 的一个强形变,又 $g\circ f\circ i_1\circ i_2=g\circ \mathrm{Id}_A\circ i_2=g\circ i_2=\mathrm{Id}_B$,因此 B 是 X 的一个强形变收缩。

11. 令 $I^2 = [0,1] \times [0,1]$ 是单位正方形, $C \subseteq I^2$ 是 comb 空间. 证明 C 不是 I^2 的一个 收缩.

Proof

令 $U:=B\left(\left(0,\frac{1}{2}\right),\frac{1}{4}\right)\cap C$ 是 C 中的开集,则 U 是 C 的一个开子空间. 设 r 是 I^2 到 C 的一个收缩,则 $\operatorname{pr}\circ r$ 是 I^2 到 U 的一个收缩. 其中 $\operatorname{pr}:C\to U$ 是投影映射. 由于 I^2 是连通的, 故 U 是连通的, 矛盾!

12. 考虑 \mathbb{R}^2 的子空间 X. X 由所有原点与 $\left(1,\frac{1}{n}\right)$ 的线段, 以及 $\{(x,0):0\leq x\leq 1\}$ 组

成. 证明 X 是可缩的, 但是任--点 (x,0) 都不是 X 的强形变收缩.

Proof

定义 $H: X \times I \to X$,

$$H((x,y),t) := ((1-t)x,(1-t)y)$$

则 $H: \mathrm{Id}_X \simeq C_0$, 故而 X 可缩.

- 13. 说明即使有非空道路连通交集,两个可缩空间的并也不一定是可缩的.
- 14. 若 P 是 X 的一个道路分支, $x_0 \in P$, 则含入映射 $i: P \to X$ 可以视为带基点空间的映射 $(P, x_0) \to (X, x_0)$, 证明

$$i_{t}: \pi_{1}(P, x_{0}) \to \pi_{1}(X, x_{0})$$

是同构.

Proof

任取 X 是以 x_0 为基点的循环 α , 断言 α 是 P 上的道路, 若不然, 存在 $x_1 \in (X \setminus P) \cap \alpha(I)$, 此时存在 x_0 到 x_1 的道路, 只能有 $x_1 \in P$, 矛盾. 因此对于任意 X 上以 x_0 为基点的循环 α , $i \circ \operatorname{pr} \circ \alpha = \alpha$. 作用函子 \sharp , 得到

$$(i_{\sharp} \circ \operatorname{pr}_{\sharp}) [\alpha] = [\alpha]$$

即

$$i_{\sharp} \circ \operatorname{pr}_{\sharp} = \operatorname{Id}_{\pi_1(X, x_0)}$$

此外, 对于任意 P 上以 x_0 为基点的循环 β , 容易得到 $\operatorname{pr} \circ i \circ \beta = \beta$. 同理可得

$$\operatorname{pr}_{\sharp} \circ i_{\sharp} = \operatorname{Id}_{\pi_1(P, x_0)}$$

- ,故 i_{\sharp} 是同构.
- 15. 证明扬扑空间 X 上的锥 C(X) 是单连通的. Proof 只需注意到 C(X) 是可缩到顶点的,可缩空间的同伦型与点空间相同,基

C(X) 是可缩到顺点的,可缩空间的同伦型与点空间相同,基本群是平凡的.

16. 令 α , β 是 X 上的 x_1 到 x_2 的两条道路. 证明 $\alpha \sim \beta$, rel $\{0,1\}$ 当且仅当 $\alpha\beta^{-1} \sim C_{x_1}$, rel $\{0,1\}$

Proof

芳 $\alpha \sim \beta$, rel $\{0,1\}$, 则 $\alpha * \beta^{-1} \sim \beta * \beta^{-1}$, rel $(\{0\} \cup [\frac{1}{2},1])$. 而 $\beta * \beta^{-1} \sim C_{x_1}$, rel $\{0,1\}$, 因此 $\alpha * \beta^{-1} \sim C_{x_1}$, rel $\{0,1\}$.

反之,若 $\alpha\beta^{-1} \sim C_{x_1}$, rel $\{0,1\}$. 则 $\alpha\beta^{-1} * \beta \sim C_{x_1} * \beta$, rel $(\{0,1\})$. 由于 $\beta^{-1} * \beta \sim C_{x_1}$, rel $\{1\}$, 不难看出 $\alpha\beta^{-1} * \beta \sim (\alpha * C_{x_1}) * C_{x_1} \sim \alpha$, rel $(\{0,1\})$. 此外 $C_{x_1} * \beta \sim \beta$, rel $\{0,1\}$, 命题成立.

17. 设 $A\subseteq X$ 是一个形变收缩. 说明对于每个 $a\in A$, 含入映射 $i:A\to X$ 诱导出同构

$$i_{\sharp}:\pi_{1}\left(A,a\right)\to\pi_{1}\left(X,a\right)$$

Proof 任取 $a \in A$, 我们视 i 为带基点扬扑空间的含入映射. 存在映射 $f: X \to A$, 使得 $\mathrm{Id}_X \simeq i \circ f$, 并且 $f(a) = a, \forall a \in A$. 可以视 $f: (X,a) \to (A,a)$, $i: (A,a) \to (X,a)$ 则 $i \circ f \simeq \mathrm{Id}_{(x,a)}$, 我们有 $i_\sharp \circ f_\sharp = \mathrm{Id}_{\pi_1(X,a)}$. 此外, $f \circ i = \mathrm{Id}_{(A,a)}$, 我们有 $f_\sharp \circ i_\sharp = \mathrm{Id}_{\pi_1(A,a)}$. 这就说明了 i_\sharp 是同构.

- 18. 考虑两个球面 \mathbb{S}^m 和 \mathbb{S}^n , $m,n\geq 2$, 嵌入到某个欧氏空间 \mathbb{R}^k 中, 其中 k 充分大. 若 \mathbb{S}^m 与 \mathbb{S}^n 相切地交于一点, 说明它们的并是单连通的.
- 19. 若连续映射 $f: X \to \mathbb{S}^n$ 不是满射, 则 f 是零伦.

Proof

不妨设 $e^{i\pi} \notin f(X)$, 则定义 $H: X \times I \to \mathbb{S}^n \setminus \{e^{i\pi t}\}$

$$H(x,t) = e^{(1-t)\ln f(x)}$$

1.6 van Kampen

引理 1.2

设 X 分解为一些道路连通集 A_{α} 的并, 且每个 A_{α} 包含了基点 $x_0 \in X$. 则所有含入映射 $A_{\alpha} \hookrightarrow X$ 的诱导同态 $j_{\alpha}:\pi_1\left(A_{\alpha}\right) \to \pi_1\left(X\right)$ 扩张为同态 $\Phi: *_{\alpha}\pi_1\left(A_{\alpha}\right) \to \pi_1\left(X\right)$.

命题 1.6

令 $i_{\alpha\beta}: \pi_1(A_\alpha \cap A_\beta) \to \pi_1(A_\alpha)$ 表示含入映射 $A_\alpha \cap A_\beta \hookrightarrow A_\alpha$ 诱导的同态,则 $j_\alpha i_{\alpha\beta} = j_\beta i_{\beta\alpha}$. 所以 $\ker \Phi$ 包含所有形如 $i_{\alpha\beta}(\omega) i_{\beta\alpha}(\omega)^{-1}, \omega \in \pi_1(A_\alpha \cap A_\beta)$ 的元素.

Idea 即 Φ 将 $A_{\alpha} \cap A_{\beta}$ 落在 A_{α} 和 A_{β} 中部分的像等同.

定理 1.21 (van Kampen)

设 X 分解为包含了基点 $x_0\in X$ 的道路连通开集 A_α 的并. 且每个交集 $A_\alpha\cap A_\beta$ 是道路连通的, 则同态 $\Phi: *_\alpha\pi_1(A_\alpha)\to \pi_1(X)$ 是满射. 此外, 若每个 $A_\alpha\cap A_\beta\cap A_\gamma$ 也是道路连通的, 则 Φ 的核 N 由全体形如 $i_{\alpha\beta}(\omega)\,i_{\beta\alpha}(\omega)^{-1}$, $\omega\in\pi_1(A_\alpha\cap A_\beta)$ 的元素生成, 从而 Φ 诱导出同构

$$\pi_1(X) \simeq *_{\alpha} \pi_1(A_{\alpha}) / N = *_{\alpha} \pi_1(A_{\alpha}) / (i_{\alpha\beta}(\omega) = i_{\beta\alpha}(\omega))$$

Example 1.11 设 $\{X_{\alpha}\}$ 是一族道路连通的空间, $x_{\alpha}\in X_{\alpha}$ 是基点, 考虑它们的楔和 $\bigvee_{\alpha}X_{\alpha}$. 对于每个 x_{α} , 它在 X_{α} 中都存在形变收缩到自身的开邻域 U_{α} . 令 $A_{\alpha}=X_{\alpha}\bigvee_{\beta\neq\alpha}U_{\beta}$, 则 A_{α} 形变收缩到 X_{α} . 此外, $\bigcap_{\alpha}A_{\alpha}$ 形变收缩到点 x_{α} . 由 van Kampen 定理, $\Phi:\pi_{1}(X)\to *_{\alpha}\pi_{1}(A_{\alpha})\simeq *_{\alpha}\pi_{1}(X_{\alpha})$ 是同构.