Limbaje formale, automate și compilatoare

Curs 9

Recapitulare

- Paşii compilării
- Analiza lexicală
 - Descriere lexicală
 - Interpretare
 - Interpretare orientată dreapta
 - Descriere lexicală bine formată
- Lex
- Gramatici de tipul 2

Compilare

Exemplu de analizor lexical

- Fie descrierea lexicală:
 - litera → a | b |...|z
 - cifra → 0 | 1 |...| 9
 - identificator → litera (litera | cifra)*
 - semn → + | -
 - numar \rightarrow (semn $\mid \epsilon$) cifra+
 - operator → + | -| * | / | < | > | <= | >= | < >
 - asignare → :=
 - o doua_puncte → :
 - cuvinte_rezervate → if| then|else
 - paranteze →) | (

Cuprins

- Analiza sintactică ascendentă
 - Parser ascendent general
- Gramatici LR(k)
 - Definiţie
 - Proprietăți
- Gramatici LR(0)
 - Teorema de caracterizare LR(0)
 - Automatul LR(0)

Parser ascendent general

Configurații

- O configurație ($\#\gamma$, u#, π) este interpretată în felul următor:
 - -#γ este conţinutul stivei cu simbolul # la baza.
 - -u# este conţinutul intrării.
 - -π este conţinutul ieşirii.
- ► $C_0 = \{(\#, w\#, \epsilon) | w \in T^*\}$ mulţimea configuraţiilor iniţiale.

Tranziţii

- Parserul ascendent ataşat gramaticii G este perechea (C₀, ⊢) unde C₀ este mulţimea configuraţiilor iniţiale, iar ⊢ este o relaţie de tranziţie definită astfel:
 - $(\# \gamma, \text{ au}\#, \pi) \vdash (\# \gamma \text{a}, \text{ u}\#, \pi) (\textit{deplasare})$ pentru orice $\gamma \in \Sigma^*$, a $\in T$, u $\in T^*$, $\pi \in P^*$.
 - $(\#\alpha\beta, u\#, \pi) \vdash (\#\alpha A, u\#, \pi r) \text{ dacă } r = A \rightarrow \beta \text{ (} \textit{reducere).}$
 - Configurația (#S, #, π) unde $\pi \neq \epsilon$, se numește *configurație de acceptare.*
 - Orice configurație, diferită de cea de acceptare, care nu este în relația – cu nici o altă configurație este o configurație eroare.
- Parsere de deplasare/reducere.

Exemplu

- ▶ Fie gramatica $S \rightarrow aSb \mid \epsilon$. Tranziţiile sunt:
 - $(\#\gamma, u\#, \pi) \vdash (\#\gamma S, u\#, \pi 2)$
 - $(\#\gamma aSb, u\#, \pi) \vdash (\#\gamma S, u\#, \pi 1)$
 - $(\#\gamma, au\#, \pi) \vdash (\#\gamma a, u\#, \pi)$
 - $(\#\gamma, bu\#, \pi) \vdash (\#\gamma b, u\#, \pi)$
- O succesiune de tranziţii se numeşte calcul
 - $(\#, \#, \epsilon) \vdash (\#S, \#, 2)$
 - (#, aabb#, ε) ⊢ (#a, abb#, ε) ⊢ (#aa, bb#, ε) ⊢ (#aaS, bb#, 2) ⊢ (#aaSb, b#, 2) ⊢ (#aSb, b#, 21) ⊢ (#aSb, #, 21) ⊢ (#S, #, 211)

Conflicte

- Parserul este nedeterminist:
 - Pentru o configuraţie de tipul (#αβ, au#, π), S→β, există două posibilităţi (conflict deplasare/reducere):
 - $(\#\alpha\beta, au\#, \pi) \vdash (\#\alpha S, au\#, \pi r)$ (reducere cu $S \rightarrow \beta$)
 - $(\#\alpha\beta, au\#, \pi) \vdash (\#\alpha\beta a, u\#, \pi)$ (deplasare)
 - Pentru o configurație (# γ , u#, π) cu $\gamma = \alpha_1 \beta_1 = \alpha_2 \beta_2$ și $A \rightarrow \beta_1$, $B \rightarrow \beta_2$, reguli (conflict **reducere/reducere**)
 - $(\#\alpha_1\beta_1, u\#, \pi) \vdash (\#\alpha_1A, au\#, \pi r_1)$
 - $(\#\alpha_2\beta_2, u\#, \pi) \vdash (\#\alpha_2B, au\#, \pi r_2)$

Corectitudine

- Spunem că un cuvânt weT* este acceptat de un parser ascendent dacă există măcar un calcul de forma
 - $(\#, W\#, \varepsilon) \vdash^+ (\#S, \#, \pi)$
- Pentru ca parserul descris să fie corect, trebuie ca el să accepte toate cuvintele din L(G) şi numai pe acestea.

Teorema

• Parserul ascendent general ataşat unei gramatici G este corect: pentru orice weT*, weL(G) dacă şi numai dacă în parser are loc calculul (#, w#, ϵ) \vdash +(#S, #, π).

Analiza sintactică LR

- Gramatici LR(k):Left to right scanning of the input, constructing a Rightmost derivation in reverse, using k symbols lookahead
- Definiţie
 - O gramatică G se numeşte gramatică LR(k), k≥0, dacă pentru orice două derivări de forma:
 - S' \Rightarrow S $_{dr}$ \Rightarrow * α Au $_{dr}$ \Rightarrow $\alpha\beta$ u = δ u
 - S' \Rightarrow S $_{dr}$ \Rightarrow * α 'A'u' $_{dr}$ \Rightarrow α ' β 'u' $= \alpha\beta v = \delta v$
 - pentru care k:u = k:v, are loc $\alpha=\alpha'$, $\beta=\beta'$, A=A'

Analiza sintactică LR

Teorema 1

- Dacă G este gramatică LR(k), k≥0, atunci G este neambiguă.
- Un limbaj L este (în clasa) $\mathcal{LR}(k)$ dacă există o gramatică LR(k) care îl generează

Teorema 2

• Orice limbaj $\mathcal{LR}(k)$ este limbaj de tip 2 determinist.

Teorema 3

Orice limbaj de tip 2 determinist este limbaj LR(1).

Teorema 4

• Pentru orice limbaj $\mathcal{LR}(k)$, $k \ge 1$, există o gramatică LR(1) care generează acest limbaj, adică LR(0) \subset LR(1) = LR(k), $k \ge 1$.

Definiţie

• Fie G = (V, T, S, P) o gramatică independentă de context redusă. Să presupunem că simbolul • nu este în Σ . Un **articol** pentru gramatica G este o producție $A \rightarrow \gamma$ în care s-a adăugat simbolul • într-o anume poziție din γ . Notăm un articol prin $A \rightarrow \alpha \bullet \beta$ dacă $\gamma = \alpha \beta$. Un articol în care • este pe ultima poziție se numește **articol complet**.

Definiţie

o Un **prefix viabil** pentru gramatica G este orice prefix al unui cuvânt $\alpha\beta$ dacă S_{dr} ⇒* α Au $_{dr}$ ⇒ $\alpha\beta$ u . Dacă β = $\beta_1\beta_2$ şi φ = $\alpha\beta_1$ spunem că articolul A → β_1 • β_2 este **valid** pentru **prefixul viabil** φ .

Exemplu

- ▶ Exemplu S → A, A → aAa | bAb | c | ϵ .
 - Articole: $S \rightarrow \bullet A$, $S \rightarrow A \bullet$, $A \rightarrow \bullet aAa$, $A \rightarrow a \bullet Aa$, $A \rightarrow aA \bullet a$, $A \rightarrow aAa \bullet$, $A \rightarrow \bullet bAb$, $A \rightarrow bA \bullet b$, $A \rightarrow bAb \bullet$, $A \rightarrow bAb \bullet$, $A \rightarrow \bullet c$, $A \rightarrow c \bullet$, $A \rightarrow \bullet a$
- Articole valide pentru prefixe viabile:

Prefixul viabil	Articole valide	Derivarea corespunzătoare		
ab	A→b∙Ab	S⇒A⇒aAa⇒abAba		
	A→•aAa	S⇒A⇒aAa⇒abAba⇒abaAaba		
	A→•bAb	S⇒A⇒aAa⇒abAba⇒abbAbba		
3	S→•A	S⇒A		
	A→•bAb	S⇒A⇒bAb		
	A→•c	S⇒A⇒c		

Lema

• Fie G o gramatică şi $A \rightarrow \beta_1 \bullet B\beta_2$ un articol valid pentru prefixul viabil γ . Atunci, oricare ar fi producţia $B \rightarrow \beta$, articolul $B \rightarrow \bullet \beta$ este valid pentru γ .

▶ **Teorema** (caracterizare LR(0))

- Gramatica G este gramatică LR(0) dacă şi numai dacă, oricare ar fi prefixul viabil γ, sunt îndeplinite condiţiile:
 - 1.nu există două articole complete valide pentru γ .
 - 2.dacă articolul $A \rightarrow \beta \bullet$ este valid pentru γ , nu există nici un articol $B \rightarrow \beta_1 \bullet a\beta_2$, $a \in T$, valid pentru γ .

Teorema

 Fie G = (V, T, S, P) o gramatică independentă de context. Mulţimea prefixelor viabile pentru gramatica G este limbaj regulat.

Demonstraţie

- G' este G la care se adaugă S'→S.
- $M = (Q, \Sigma, \delta, q_0, Q)$, unde:
 - · Q este mulțimea articolelor gramaticii G',
 - $\Sigma = V \cup T$, $q_0 = S' \rightarrow \bullet S$
 - $\delta:Qx(\Sigma \cup \{\epsilon\}) \rightarrow 2^Q$ definită astfel:
 - $\delta(A \rightarrow \alpha \bullet B\beta, \epsilon) = \{B \rightarrow \bullet \alpha \mid B \rightarrow \gamma \in P\}.$
 - $\delta(A \rightarrow \alpha \bullet X\beta, X) = \{ A \rightarrow \alpha X \bullet \beta \}, X \in \Sigma.$
 - $\delta(A \rightarrow \alpha \bullet a\beta, \epsilon) = \emptyset$, $\forall a \in T$.
 - $\delta(A \rightarrow \alpha \bullet X\beta, Y) = \emptyset$, $\forall X,Y \in \Sigma \text{ cu } X \neq Y$.

Se arată că are loc:

• $(A \rightarrow \alpha \bullet \beta \in \delta \land (q_0, \gamma) \Leftrightarrow \gamma \text{ este prefix viabil } \Si A \rightarrow \alpha \bullet \beta \text{ este valid}$

Exemplu

- ▶ **Teorema** (caracterizare LR(0)). **Demonstrație**
 - ⇒ G este LR(0) şi, prin reducere la absurd 1 sau 2 nu are loc
 - ← 1, 2 au loc si prin reducere la absurd, G nu este LR(0): există
 - S' \Rightarrow S $_{dr}$ \Rightarrow * α Au $_{dr}$ \Rightarrow $\alpha\beta$ u = δ u
 - S' \Rightarrow S $_{dr}$ \Rightarrow * α 'A'u' $_{dr}$ \Rightarrow α ' β 'u' $= \alpha\beta v = \delta v$
 - Nu au loc $\alpha=\alpha'$, $\beta=\beta'$, A=A'
 - Fără a restrânge generalitatea, presupunem că
 - $|\delta| = |\alpha\beta| \le |\alpha'\beta'|$

- ▶ Cazul 1: $|\alpha'| \le |\delta|$
 - $\beta'=\beta_1'\beta_2'$, $v=\beta_2'u'$, $\beta_2'\in T^*$. Din (1) avem $A\to\beta\bullet$ articol valid pentru δ şi din (2) avem $A'\to\beta_1'\bullet\beta_2'$ articol valid pentru δ . Dacă $\beta_2'=\epsilon$ atunci contrazic (1) iar altfel contrazic (2).

α	β	1	u	
δ				
α,		β'		u'
δ				V

- Cazul 2: $|\alpha'| > |\delta|$
 - α'=δu₁, v=u₁β'u' ∈ T* (|u₁|≥1)În derivarea (2), punem în evidenţă prima formă propoziţională care are prefixul δ.
 - S' \Rightarrow S $_{dr}$ $\Rightarrow \alpha_1 A_1 u_{1dr} \Rightarrow \alpha_1 \beta_1 u_{1dr} \Rightarrow \alpha_1 \beta'_1 \beta''_1 u_1 = \delta \beta''_1 u_{1dr} \Rightarrow \delta v$
 - Avem $A \rightarrow \beta \bullet$ şi $A_1 \rightarrow \beta'_1 \bullet \beta''_1$ articole valid pentru δ

α	β	u		
δ				
α,		β'	u'	
δ		V		

Automatul LR(0)

- Algoritmul 1(procedura închidere(t))
- Intrare:
 - Gramatica G = (V, T, S, P);
 - Mulţimea t de articole din gramatica G;
- leşire: t'=închidere(t)={q \in Q| \exists p \in t, q \in δ (p, \in)} = δ (t, \in)

Automatul LR(0)

```
t' = t ; flag = true;
while(flag) {
   • flag = false;
   • for (A \rightarrow \alpha \bullet B\beta \in t') {
      • for (B \rightarrow \gamma \in P)
          • if (B \rightarrow \bullet \gamma \notin t') {
          • t' = t' \cup \{B \rightarrow \bullet \gamma\};
          flag = true;
          }//endif
      }//endforB
   }//endforA
}//endwhile
return t';
```

Automatul LR(0)

- Algoritmul 2 Automatul LR(0)
 - Intrare:Gramatica G = (N, T, S, P) la care s-a adăugat S' → S;
 - Ieşire:Automatul determinist $M = (T, \Sigma, g, t_0, T)$ echivalent cu M.

- ▶ t0=închidere(S' → S); $T=\{t_0\}$; marcat $(t_0)=$ false;
- ▶ while(\exists t \in T && !marcat(t)) { // marcat(t) = false
 - for($X \in \Sigma$) {// $\Sigma = N \cup T$
 - $t' = \emptyset$;
 - for($A \rightarrow \alpha \bullet X\beta \in t$)
 - $t' = t' \cup \{B \rightarrow \alpha X \bullet \beta \mid A \rightarrow \alpha \bullet X \beta \in t\};$
 - if(t'≠∅){
 - t' = închidere(t');
 - if(t'∉T) {
 - $T = T \cup \{ t' \};$
 - marcat(t') = false;
 - }//endif
 - g(t, X) = t';
 - }//endif
 - }//endfor
 - > }//endfor
 - o marcat(t) = true;
- }// endwhile

Automatul LR(0) - Exemplu

 \triangleright S' \rightarrow S, S \rightarrow aSa | bSb | c

Test LR(0)

- Definiţie Fie G o gramatică şi M automatul LR(0) ataşat lui G.
 - Spunem că o stare a lui M are un conflict **reducere/reducere** dacă ea conține două articole complete distincte $A \rightarrow \alpha \bullet$, $B \rightarrow \beta \bullet$.
 - Spunem că o stare a lui M are un conflict deplasare/reducere dacă ea conţine un articol complet A→α• şi un articol cu terminal după punct de forma B→β•aγ.
 - Spunem că o stare este consistentă dacă ea nu conţine conflicte şi este inconsistentă în caz contrar.
- Teorema Fie G o gramatică şi M automatul său LR(0). Gramatica G este LR(0) dacă şi numai dacă automatul M nu conţine stări inconsistente

Exemplu

 $ightharpoonup S
ightharpoonup aAd \mid bAB, A
ightharpoonup cA \mid c, B
ightharpoonup d$

Bibliografie

Grigoraş Gh., Construcţia compilatoarelor.
 Algoritmi fundamentali, Editura Universităţii
 "Alexandru Ioan Cuza", Iaşi, 2005