

PATENT COOPERATION TREATY

PCT

NOTIFICATION CONCERNING
SUBMISSION OR TRANSMITTAL
OF PRIORITY DOCUMENT

(PCT Administrative Instructions, Section 411)

From the INTERNATIONAL BUREAU, Marken u. Lizenzen

To:

24. März 2004

BASF AKTIENGESELLSCHAFT
67056 Ludwigshafen
Germany

Date of mailing (day/month/year)
16 March 2004 (16.03.2004)

Applicant's or agent's file reference 0000054182	IMPORTANT NOTIFICATION
International application No. PCT/EP2003/014193 ✓	International filing date (day/month/year) 13 December 2003 (13.12.2003)
International publication date (day/month/year) Not yet published	Priority date (day/month/year) 19 December 2002 (19.12.2002)
Applicant BASF AKTIENGESELLSCHAFT et al	

- By means of this Form, which replaces any previously issued notification concerning submission or transmittal of priority documents, the applicant is hereby notified of the date of receipt by the International Bureau of the priority document(s) relating to all earlier application(s) whose priority is claimed. Unless otherwise indicated by the letters "NR", in the right-hand column or by an asterisk appearing next to a date of receipt, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
- (If applicable) The letters "NR" appearing in the right-hand column denote a priority document which, on the date of mailing of this Form, had not yet been received by the International Bureau under Rule 17.1(a) or (b). Where, under Rule 17.1(a), the priority document must be submitted by the applicant to the receiving Office or the International Bureau, but the applicant fails to submit the priority document within the applicable time limit under that Rule, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
- (If applicable) An asterisk(*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b) (the priority document was received after the time limit prescribed in Rule 17.1(a) or the request to prepare and transmit the priority document was submitted to the receiving Office after the applicable time limit under Rule 17.1(b)). Even though the priority document was not furnished in compliance with Rule 17.1(a) or (b), the International Bureau will nevertheless transmit a copy of the document to the designated Offices, for their consideration. In case such a copy is not accepted by the designated Office as priority document, Rule 17.1(c) provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

Priority date	Priority application No.	Country or regional Office or PCT receiving Office	Date of receipt of priority document
19 Dec 2002 (19.12.2002) ✓	102 60 028.7 ✓	DE	27 Febr 2004 (27.02.2004)
11 July 2003 (11.07.2003) ✓	103 31 771.6 ✓	DE	27 Febr 2004 (27.02.2004)
29 Augu 2003 (29.08.2003) ✓	103 40 251.9 ✓	DE	27 Febr 2004 (27.02.2004)
04 Nove 2003 (04.11.2003) ✓	103 52 104.6 ✓	DE	27 Febr 2004 (27.02.2004)

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland	Authorized officer L. PEREZ REINA
Facsimile No. (41-22) 338-7080	Telephone No. (41-22) 338 9999

10/539613

DOCKET NO.: 272978US0PCT

JC17 Rec'd PCT/PTO 17 JUN 2005

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Helge WESSEL, et al.

SERIAL NO.: NEW U.S. PCT APPLICATION

FILED: HEREWITH

INTERNATIONAL APPLICATION NO.: PCT/EP03/14193

INTERNATIONAL FILING DATE: December 13, 2003

FOR: REMOVAL OF SULFUR COMPOUNDS FROM HYDROCARBON-CONTAINING GASES

**REQUEST FOR PRIORITY UNDER 35 U.S.C. 119
AND THE INTERNATIONAL CONVENTION**

Commissioner for Patents
Alexandria, Virginia 22313

Sir:

In the matter of the above-identified application for patent, notice is hereby given that the applicant claims as priority:

<u>COUNTRY</u>	<u>APPLICATION NO</u>	<u>DAY/MONTH/YEAR</u>
Germany	102 60 028.7	19 December 2002
Germany	103 31 771.6	11 July 2003
Germany	103 40 251.9	29 August 2003
Germany	103 52 104.6	04 November 2003

Certified copies of the corresponding Convention application(s) were submitted to the International Bureau in PCT Application No. PCT/EP03/14193. Receipt of the certified copy(s) by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.

Respectfully submitted,
OBLON, SPIVAK, McCLELLAND,
MAIER & NEUSTADT, P.C.

Surinder Sachar

Norman F. Oblon
Attorney of Record
Registration No. 24,618
Surinder Sachar
Registration No. 34,423

Customer Number

22850

(703) 413-3000
Fax No. (703) 413-2220
(OSMMN 08/03)

BUNDE~~RE~~REPUBLIK DEUTSCHLAND

EP03/14193

Rec'd PCT/PTO 17 JUN 2005

10/539613

RECEIVED
27.FEB 2004
WIPO PCT

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

Aktenzeichen: 103 52 104.6

Anmeldetag: 04. November 2003

Anmelder/Inhaber: BASF Aktiengesellschaft,
67056 Ludwigshafen/DE

Bezeichnung: Verfahren zur Entfernung von Schwefelverbindungen aus kohlenwasserstoffhaltigen Gasen

IPC: B 01 J, B 01 D

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 22. Januar 2004
Deutsches Patent- und Markenamt
Der Präsident
 Im Auftrag

Klostermeyer

**PRIORITY
DOCUMENT**
 SUBMITTED OR TRANSMITTED IN
 COMPLIANCE WITH RULE 17.1(a) OR (b)

Patentansprüche

1. Verfahren zur Entfernung von Schwefelverbindungen aus kohlenwasserstoffhaltigen Gasen, dadurch gekennzeichnet, dass man Katalysatoren, ausgenommen Aktivkohlen und Zeolithe, die Kupfer, Silber, Zink, Molybdän, Eisen, Cobalt, Nickel oder deren Gemische enthalten, bei Temperaturen von (-50) bis 150°C und einem Druck von 0,1 bis 10 bar einsetzt.
2. Verfahren zur Entfernung von Schwefelverbindungen aus kohlenwasserstoffhaltigen Gasen nach Anspruch 1, dadurch gekennzeichnet, dass man kupferhaltige Katalysatoren einsetzt.
3. Verfahren zur Entfernung von Schwefelverbindungen aus kohlenwasserstoffhaltigen Gasen nach Anspruch 1, dadurch gekennzeichnet, dass man molybdähnliche Katalysatoren einsetzt.
4. Verfahren zur Entfernung von Schwefelverbindungen aus kohlenwasserstoffhaltigen Gasen nach Anspruch 1, dadurch gekennzeichnet, dass man kupfer- und molybdähnliche Katalysatoren gemeinsam einsetzt.
5. Verfahren zur Entfernung von Schwefelverbindungen aus kohlenwasserstoffhaltigen Gasen nach einem der Ansprüche 1, 2, 3 oder 4, dadurch gekennzeichnet, dass man bei Temperaturen von 0 bis 80°C und einem Druck von 0,8 bis 4,5 bar arbeitet.
6. Verwendung des Verfahrens nach einem der Ansprüche 1, 2, 3, 4 oder 5 zur Erzeugung von schwefelfreien kohlenwasserstoffhaltigen Gasen zur Herstellung von Wasserstoff.
7. Verwendung des Verfahrens nach einem der Ansprüche 1, 2, 3, 4 oder 5 zur Erzeugung von schwefelfreien kohlenwasserstoffhaltigen Gasen zur Herstellung von Wasserstoff zum Betrieb einer Brennstoffzelle.
8. Katalysatoren, die 1 bis 99,8 Gew.-% Kupfer, Silber, Zink, Molybdän, Eisen, Cobalt, Nickel oder deren Gemische und 0,2 bis 99 Gew.-% Oxide aus der Gruppe IIB, IIIB, IVB, VIB, VIII, IIIA und IVA des Periodensystems der Elemente, die mindestens bis 250°C Feststoffe sind, enthalten.
9. Katalysatoren nach Anspruch 8 für die Anwendung in einem Brennstoffzellensystem.

- 10. Verwendung der Katalysatoren nach Anspruch 8 zur Entfernung von Schwefelverbindungen aus kohlenwasserstoffhaltigen Gasen.**

Verfahren zur Entfernung von Schwefelverbindungen aus kohlenwasserstoffhaltigen Gasen

Beschreibung

5

Die vorliegende Erfindung betrifft ein Verfahren zur Entfernung von Schwefelverbindungen aus kohlenwasserstoffhaltigen Gasen an Katalysatoren, ausgenommen Aktivkohlen und Zeolithen, die Kupfer, Silber, Zink, Molybdän, Eisen, Cobalt, Nickel oder deren Gemische enthalten.

10

Kohlenwasserstoffhaltige Gase - wie z.B. Erdgas - enthalten in der Regel Schwefelverbindungen oder müssen aus Sicherheitsgründen mit übelriechenden Schwefelverbindungen versetzt werden. Großtechnisch wird Erdgas z.B. hydrierend entschwefelt. Dies ist jedoch nicht für jede Anwendung möglich bzw. sinnvoll.

15

Der für den Betrieb von Brennstoffzellen notwendige Wasserstoff wird meist aus Erdgas gewonnen. Erdgas hat den Vorteil der großen Verfügbarkeit, da zumindest in den hoch industrialisierten Ländern ein engmaschiges Erdgasnetz vorhanden ist. Zudem besitzt Erdgas ein hohes Wasserstoff/Kohlenstoff-Verhältnis und ermöglicht

20

somit die Herstellung eines wasserstoffreichen Reformergases. Der Begriff Erdgas umschreibt eine Vielzahl möglicher Gaszusammensetzungen, die in Abhängigkeit vom Fundort stark streuen können. Erdgas kann fast ausschließlich aus Methan (CH_4) bestehen, kann in anderen Fällen jedoch auch beachtliche Anteile höherer Kohlen-

25

wasserstoff enthalten. Unter dem Begriff „höhere Kohlenwasserstoffe“ werden dabei alle Kohlenwasserstoffe ab Ethan (C_2H_6) verstanden, unabhängig davon, ob es sich um gesättigte, ungesättigte oder gar zyklische Kohlenwasserstoffe handelt. Typischerweise nehmen die Anteile der höheren Kohlenwasserstoffe im Erdgas mit zunehmendem Molekulargewicht und Dampfdruck ab. So findet man Ethan und Propan typischerweise im Prozentbereich, während von Kohlenwasserstoffen mit mehr als zehn

30

Kohlenstoffen meist nur wenige ppm im Erdgas vorhanden sind. Unter den höheren Kohlenwasserstoffen befinden sich auch zyklische Verbindungen, wie z.B. das krebs-erregende Benzol, Toluol und Xyrole. Jeder dieser Verbindungen kann in Konzentrationen von > 100 ppm im Erdgas vorhanden sein.

35

Zusätzlich zu den höheren Kohlenwasserstoffen im Erdgas kommen noch weitere Verunreinigungen, die Heteroatome enthalten. In diesem Zusammenhang sind insbesondere schwefelhaltige Verbindungen zu nennen, die in geringen Konzentrationen im Erdgas vorkommen. Beispiele hierfür sind Schwefelwasserstoff (H_2S), Kohlenstoff-oxisulfid (COS) und Dischwefelkohlenstoff (CS_2).

40

Methan bzw. Erdgas an sich sind geruchslose Gase, die nicht toxisch sind, jedoch in Verbindung mit Luft zu zündfähigen Gemischen führen können. Um einen Austritt von Erdgas sofort detektieren zu können, wird Erdgas mit übel riechenden Stoffen in geringer Konzentration versetzt, die als so genannte Odorierungsmittel den für Erdgas

5 charakteristischen Geruch verursachen. Die Odorierung von Erdgas ist in den meisten Ländern – zusammen mit den einzusetzenden Odorierungsmittel - gesetzlich vorgeschrieben. In einigen Ländern, wie z.B. den Vereinigten Staaten von Amerika, werden Mercaptane wie tert-Butylmercaptan oder Ethylmercaptan als Odorierungsmittel eingesetzt, während in den Mitgliedsstaaten der Europäischen Union meist zyklische

10 Schwefelverbindungen wie Tetrahydrothiophen eingesetzt werden. Zusammen mit den natürlich in Erdgas vorkommenden Schwefelverbindungen ergeben sich somit eine Vielzahl unterschiedlicher Schwefelverbindungen im Erdgas. Die unterschiedlichen Regelwerke für die Zusammensetzung von Erdgas erlauben meist bis zu 100 ppm

15 Schwefel im Erdgas. Ähnlich ist die Situation bei Flüssiggas (engl. LPG) als Einsatzstoff. Flüssiggas, das als Hauptbestandteile Propan und Butan enthält, muss ebenso wie Erdgas mit schwefelhaltigen Molekülen als Geruchsmarker versetzt werden.

Die Schwefelkomponenten im Erdgas oder im LPG können zu einer starken und irreversiblen Vergiftung der Katalysatoren in der Brennstoffzelle oder im Reformer

20 führen. Aus diesem Grunde müssen die Gase, welche der Brennstoffzelle zugeführt werden, von allen schwefelhaltigen Komponenten gereinigt werden. Brennstoffzellen enthalten aus diesem Grunde immer eine Entschwefelungseinheit für das eingesetzte Erdgas oder LPG. Sollte die Brennstoffzelle mit flüssigen Kohlenwasserstoffen betrieben werden, wie z.B. Heizöl, so ist ebenfalls eine Entschwefelung notwendig.

25 Zu bevorzugen ist eine Verfahrensführung, bei der das kohlenwasserstoffhaltige Gas in geradem Durchgang bei Raumtemperatur durch einen Adsorber gefahren wird, der möglichst alle Schwefelkomponenten vollständig entfernt. Der Adsorber sollte bevorzugt bei Raumtemperatur und bei Normaldruck betreibbar sein. Da der Adsorber zum Betrieb von Erdgasen unterschiedlicher Zusammensetzung geeignet sein soll, ist es zudem wichtig, dass lediglich die schwefelhaltigen Komponenten aus dem Erdgas adsorbiert werden und die Co-Adsorption höherer Kohlenwasserstoffe auf ein vernachlässigbares Maß unterdrückt wird. Nur unter diesen Voraussetzungen ist es möglich, hohe Adsorptionskapazitäten für schwefelhaltige Verbindungen zu erreichen, was

30 35 ausreichend langen Standzeiten entspricht. Hierdurch kann das häufige Austauschen des Adsorbermediums vermieden werden.

Die Co-Adsorption höherer Kohlenwasserstoffe, insbesondere von Benzol aus Erdgas kann zudem zur Folge haben, dass gesetzliche Grenzwerte für Benzolgehalte im

40 Adsorber überschritten werden und die Adsorbereinheit somit kennzeichnungspflichtig

wird (krebsfördernd). Derartige, mit Benzol gesättigte Adsorber verursachen zudem z.B. beim Wechsel des Adsorbermediums oder beim Transport des Adsorbers zum Recycling erheblichen Mehraufwand.

- 5 Aus der EP-A-1 121 922 ist die adsorptive Entfernung von schwefelhaltigen, organischen Komponenten wie Sulfiden, Mercaptanen und Thiophenen aus Erdgas mit Hilfe silber-dotierter Zeolithe bei Raumtemperatur bekannt. Nachteilig ist der hohe Silbergehalt.
- 10 Ein weiterer, deutlicher Nachteil der zeolith-basierten Systeme ist die Tatsache, dass Zeolithe in ihrem Poresystem bereitwillig alle im Gasstrom vorkommenden, höheren Kohlenwasserstoffe adsorbieren. Insbesondere zyklische Kohlenwasserstoffe, wie z.B. Benzol werden vollständig adsorbiert und können im Zeolithen bis in den Bereich von einigen Gewichts-% angereichert werden. Die Beispiele aus EP 1 121 977 A2 zeigen zudem die Wirksamkeit der erfundungsgemäßen Katalysatoren für die Adsorption von organischen Schwefelverbindungen nicht jedoch für anorganische Schwefelverbindungen wie H₂S und COS.
- 15 Aus der US-A-2002/0159939 ist ein zweistufiges Katalysatorbett bestehend aus einem X-Zeolith zur Entfernung von Odorierungsmitteln und anschließend einem Nickel-basierten Katalysator zur Entfernung von schwefelhaltigen Komponenten aus Erdgas für den Betrieb in Brennstoffzellen bekannt. Nachteilig an diesem Verfahren ist, dass COS nicht direkt sondern erst nach vorheriger Hydrolyse zu H₂S entfernt werden kann.
- 20 Aus BWK 54 (2002) Nr. 9 Seiten 62 bis 68 ist bekannt, dass bislang eine einfache Lösung für die Entfernung sämtlicher Schwefelkomponenten aus Erdgas, die für die Anwendung im Brennstoffzellenbereich störend sind, fehlt.
- 25 Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, den zuvor genannten Nachteilen abzuholen und insbesondere den Einsatz von mit Schwefelverbindungen verunreinigten kohlenwasserstoffhaltigen Gasen für Brennstoffzellen zu ermöglichen.
- 30 Demgemäß wurde ein neues und verbessertes Verfahren zur Entfernung von Schwefelverbindungen aus kohlenwasserstoffhaltigen Gasen gefunden, welches dadurch gekennzeichnet ist, dass man Katalysatoren, ausgenommen Aktivkohlen und Zeolithe, die Kupfer, Silber, Zink, Molybdän, Eisen, Cobalt, Nickel oder deren Gemische enthalten, bei Temperaturen von (-50) bis 150°C und einem Druck von 0,1 bis 10 bar einsetzt.

Das Verfahren kann wie folgt durchgeführt werden:

- Das durch Schwefelverbindungen verunreinigte, kohlenwasserstoffhaltige Gas kann
5 bei einer Temperatur von (-50) bis + 150°C, bevorzugt (-20) bis 80°C, besonders
bevorzugt 0 bis 80°C, insbesondere 15 bis 40°C, ganz besonders bevorzugt bei
Raumtemperatur und einem Druck von 0,1 bis 10 bar, bevorzugt 0,5 bis 4,5 bar,
besonders bevorzugt 0,8 bis 1,5 bar, insbesondere bei Normaldruck über einen
oder mehrere erfindungsmäßigen Katalysator geleitet werden.
- 10 Als mit Schwefelverbindungen verunreinigte kohlenwasserstoffhaltige Gase eignen
sich beispielsweise Erdgas, Stadtgas, Biogas und Flüssiggas (LPG), bevorzugt
Erdgas und Stadtgas, besonders bevorzugt Erdgas.
- 15 Die verunreinigenden Schwefelverbindungen sind in der Regel COS, H₂S, CS₂ sowie
Mercaptane und Disulfide und aus sicherheitstechnischen Gründen kommerziell
zugesetzte übelriechende Schwefelverbindungen wie Tetrahydrothiophen, Ethyl-
mercaptan, n-Butylmercaptan, t-Butylmercaptan oder deren Gemische.
- 20 Als erfindungsgemäße Katalysatoren, die auch als Adsorbent wirken können, eignen
sich solche, die 1 bis 99,8 Gew.-%, bevorzugt 2 bis 85 Gew.-%, besonders bevor-
zugt 3 bis 75 Gew.-%, insbesondere 5 bis 70 Gew.-% Kupfer, Silber, Zink, Molybdän,
Eisen, Cobalt, Nickel oder deren Gemische und 0,2 bis 99 Gew.-%, bevorzugt 15 bis
98 Gew.-%, besonders bevorzugt 25 bis 97 Gew.-%, insbesondere 30 bis 95 Gew.-%
- 25 Oxide aus der Gruppe IIB, IIIB, IVB, VIB, VIII, IIIA und IVA des Periodensystems
der Elemente, die mindestens bis 250°C Feststoffe sind, wie z.B. die Oxide von
Magnesium, Calcium, Scandium, Yttrium, Lanthan, Titan, Zirkon, Chrom, Wolfram,
Bor, Aluminium, Gallium, Silicium, Germanium und Zinn, bevorzugt Magnesium,
Calcium, Lanthan, Titan, Zirkon, Chrom, Aluminium und Silicium, besonders bevor-
zugt Magnesium, Calcium, Titan, Zirkon, Aluminium und Silicium enthalten, bevorzugt
daraus bestehen. Die zuvor genannten Oxide aus der Gruppe IIB, IIIB, IVB, VIB, VIII,
III A und IVA des Periodensystems der Elemente können gegebenenfalls als Träger,
wie beispielsweise Aluminiumoxid, Titandioxid oder Siliciumdioxid, eingesetzt werden.
- 30 Unter den erfindungsgemäßen Katalysatoren eignen sich kupferhaltige Katalysatoren,
die 30 bis 99,8 Gew.-%, bevorzugt 40 bis 85 Gew.-%, besonders bevorzugt 50 bis
75 Gew.-% Kupferoxid und 0,2 bis 70 Gew.-%, bevorzugt 15 bis 60 Gew.-%, beson-
ders bevorzugt 25 bis 50 Gew.-% Oxide aus der Gruppe IIB, IIIB, IVB, VIB, VIII, IIIA
und IVA des Periodensystems der Elemente, die mindestens bis 250°C Feststoffe
40 sind, wie Zink, Scandium, Yttrium, Lanthan, Titan, Zirkon, Chrom, Molybdän, Wolfram,

- Eisen, Cobalt, Nickel, Bor, Aluminium, Gallium, Silicium, Germanium und Zinn, bevorzugt Zink, Lanthan, Titan, Zirkon, Chrom, Molybdän, Eisen, Cobalt, Nickel, Aluminium und Silicium, besonders bevorzugt Zink, Lanthan, Titan, Zirkon, Nickel, Aluminium und Silicium enthalten, bevorzugt daraus bestehen. Das Kupfer kann in
- 5 diesen "kupferhaltigen Katalysatoren" in jeder Oxidationsstufe, z.B. in der Oxidationsstufe +1 oder +2 oder elementar (Oxidationsstufe = 0) oder deren Gemische, bevorzugt in der Oxidationsstufe +2 oder elementar oder deren Gemische, besonders bevorzugt in der Oxidationsstufe +2, eingesetzt werden.
- 10 Unter den erfindungsgemäßen Katalysatoren eignen sich molybdähnliche Katalysatoren, die 1 bis 80 Gew.-%, bevorzugt 2 bis 60 Gew.-%, besonders bevorzugt 3 bis 50 Gew.-% Molybdänoxid und 20 bis 99 Gew.-%, bevorzugt 40 bis 98 Gew.-%, besonders bevorzugt 50 bis 97 Gew.-% Oxide aus der Gruppe IIB, IIIB, IVB, VIB, VIII, IIIA und IVA des Periodensystems der Elemente, die mindestens bis 250°C Feststoffe
- 15 sind, wie z.B. die Oxide von Magnesium, Calcium, Zink, Scandium, Yttrium, Lanthan, Titan, Zirkon, Chrom, Wolfram, Eisen, Cobalt, Nickel, Bor, Aluminium, Gallium, Silicium, Germanium und Zinn, bevorzugt Magnesium, Calcium, Zink, Lanthan, Titan, Zirkon, Chrom, Eisen, Cobalt, Nickel, Aluminium und Silicium, besonders bevorzugt Magnesium, Calcium, Zink, Titan, Zirkon, Cobalt, Nickel, Aluminium und Silicium
- 20 enthalten, bevorzugt daraus bestehen. Das Molybdän kann in diesen "molybdähnlichen Katalysatoren" in jeder Oxidationsstufe, z.B. in der Oxidationsstufe +1 bis +6 oder elementar (Oxidationsstufe = 0) oder deren Gemische, bevorzugt in der Oxidationsstufe +2 oder +6 oder deren Gemische, eingesetzt werden.
- 25 Eine bevorzugte Ausführungsform sind kupfer- und molybdähnliche Katalysatoren. Die kupfer- und molybdähnlichen Katalysatoren können getrennt in beliebiger Reihenfolge oder gemischt, bevorzugt homogen gemischt oder besonders bevorzugt in der Reihenfolge kupferhaltiger vor molybdähnlicher Katalysator geschaltet, eingesetzt werden. Mischungen sind in der Regel die einfachste Variante der Erfindung und können bevorzugt im Kleineinsatz Verwendung finden (z.B. bei kleinen Brennstoffzellen). In allen anderen Fällen ist in der Regel die Trennung der Katalysatoren in der Reihenfolge kupferhaltiger vor molybdähnlicher Katalysator vorteilhaft. Weitere Katalysatoren, wie sie beispielsweise aus der EP-A-1 121 977 bekannt sind, können nachgeschaltet werden.
- 30
- 35 Die erfindungsgemäßen Katalysatoren können nach allgemein bekannten Verfahren hergestellt werden, wie beispielsweise durch Fällung, Tränkung, Mischen, Verkneten, Sintern, Sprühen, Sprührocknen, Ionenaustausch oder stromlose Abscheidung, bevorzugt durch Fällung, Tränkung, Mischen, Sintern oder Sprührocknen, besonders bevorzugt durch Fällung oder Tränkung, insbesonders durch Tränkung.
- 40

Die durch Fällung in der Regel erhaltenen Pulver erfindungsgemäßer Katalysatoren können nach der Fällung und die durch Tränkung hergestellten erfindungsgemäßen Katalysatoren können vor oder nach der Tränkung, ggf. mit Porenbildnern, wie

- 5 Cellulose, Glycerin, Harnstoff, Ammoniumcarbonat, Ammoniumnitrat, Melamin, Kohlefasern oder deren Gemische, versetzt und mit üblichen Hilfsmitteln, wie Bindemitteln, beispielsweise Ameisensäure, Polyvinylpyrrolidon (PVP), Polykieselsäure oder deren Gemische und ggf. Schmiermitteln wie Graphit, Stearinsäure, Molybdänsulfid oder deren Gemische tabletiiert, verstrangt oder in jede beliebige Form gebracht und
10 ggf. anschließend zu Splitt verarbeitet werden.

Als erfindungsgemäße Katalysatoren eignen sich nicht zeolitische Massen, beispielsweise solche ohne Kanalstruktur; ausgenommen sind auch Aktivkohlen sowie solche, die dotiert sind.

- 15 Die erfindungsgemäßen Katalysatoren können gegebenenfalls vor oder nach der Formgebung bei Temperaturen von 250 bis 750°C, beispielsweise in Gegenwart von Wasserstoff, Kohlenmonoxid, Distickstoffmonoxid oder deren Gemische, oder allgemein in reduzierender Gasatmosphäre, insbesondere bei kupferhaltigen oder
20 molybdähnlichen Katalysatoren, aktiviert werden.

Im Zusammenhang mit einem Brennstoffzellensystem kann das erfindungsgemäße Verfahren in der Regel vorgeschaltet werden, d.h. das nach der erfindungsgemäßen Reinigung des kohlenwasserstoffhaltigen Gases, dieses zur Gewinnung von Wasserstoff verwendet werden kann, das die Brennstoffzelle speist. Dabei eignet sich das erfindungsgemäße Verfahren für alle bekannten Typen von Brennstoffzellen wie PEM-Brennstoffzellen, Phosphorsäuren Brennstoffzellen (PAFC), MCFC-Brennstoffzellen (Schmelzcarbonat) und Hochtemperaturbrennstoffzellen (SOFC).

- 25 30 Bei der Anwendung des erfindungsgemäßen Verfahrens im Zusammenhang mit einer Brennstoffzelle kann es vorteilhaft sein, den verbrauchten Katalysator nicht direkt im System zu regenerieren, sondern auszutauschen und nach dem Ausbau gesondert zu regenerieren. Dies gilt insbesondere für Brennstoffzellen mit geringer Leistung.
35 Bei Brennstoffzellen größerer Leistungseinheiten kann es hingegen sinnvoll sein, den Katalysator zu regenerieren bzw. zumindest teilweise zu regenerieren. Hierzu können die bekannten Verfahren wie z.B. thermische Desorption bei Temperaturen >200°C oder Regeneration mittels Reduktion/Reoxidation des Katalysators ebenfalls bei höheren Temperaturen angewandt werden.

Das erfindungsgemäße Verfahren eignet sich stationäre und instationäre Anwendungen. Bevorzugt für die Anwendung im stationären Bereich sind beispielsweise bei Brennstoffzellensysteme für die simultane Erzeugung von Strom und Wärme (wie Blockheizkraftwerke), bevorzugt bei der Hausenergieversorgung. Bevorzugt

- 5 für die Anwendung im instationären Bereich kann das Verfahren zur Reinigung von Kohlenwasserstoffen für Brennstoffzellen in Personenkraftwagen (PKW), Lastkraftwagen (LKW), Bussen oder Lokomotiven, bevorzugt Personenkraftwagen und Lastkraftwagen, besonders bevorzugt Personenkraftwagen eingesetzt werden. Es ist dabei gleichgültig, ob die Brennstoffzellen lediglich zur Bordstromerzeugung oder
10 für den Antrieb eingesetzt werden.

Beispiele

Herstellung der Katalysatoren

15

Katalysator 1

Zusammensetzung: 52,5 Gew.-% CuO; 30 Gew.-% ZnO und 17,5 Gew.-% Al₂O₃

- Eine Mischung aus einer salpetersauren Lösung von 420 g Kupfer-(II)oxid, einer
20 salpetersauren Lösung von 240 g Zinkoxid und einer salpetersauren Lösung von 140 g Aluminiumnitrat-nonahydrat wurde mit einer Lösung von 474 g Natriumcarbonat in 2 Liter demineralisiertem Wasser in eine auf 50°C gehaltene Wasservorlage bei einem pH-Wert von ca. 6 gefällt und 3 h nachgerührt. Die Fällung wurde abgetrennt, mit Wasser Natrium- und Nitrationen ausgewaschen, bei 120°C getrocknet und 1 h bei
25 400°C calciniert. Man erhielt 272 g des Mischoxides, das unter Zusatz von 1 Gew.-% Grafit zu Tabletten mit 20 mm verdichtet, mechanisch durch ein Sieb < 1,6 mm gedrückt, erneut mit 2 Gew.-% Grafit versetzt und zu Tabletten der Dimension 5 x 3 mm (Durchmesser x Höhe) verpresst wurde. Die Seitendruckfestigkeit der
30 Tabletten betrug 66 N.

30

Katalysator 2

Zusammensetzung: 40 Gew.-% CuO; 40 Gew.-% ZnO und 20 Gew.-% Al₂O₃

- Analog Katalysator 1 wurde eine Mischung aus einer salpetersauren Lösung von 120 g
35 Kupfer(II)oxid, einer salpetersauren Lösung von 120 g Zinkoxid und 60g dispergiertem Aluminiumoxid (Pural® SFC der Firma SASOL) mit einer Lösung von 474 g Natriumcarbonat in 2 Liter demineralisiertem Wasser bei einem pH-Wert von ca. 6,5 gefällt und aufgearbeitet. Die Calcinierung erfolgte 2 h bei 300°C. Man erhielt 235 g des Mischoxides, das analog Katalysator 1 zu Tabletten mit einer Seitendruckfestigkeit von 71 N
40 verarbeitet wurde.

Katalysator 3

Zusammensetzung: 73,9 Gew.-% CuO; 21,1 Gew.-% ZnO und 5 Gew.-% ZrO₂

- 5 Analog Katalysator 1 wurde eine Mischung aus einer salpetersauren Lösung von 370 g Kupfer(II)oxid, einer salpetersauren Lösung von 105,5 g Zinkoxid und einer salpetersauren Lösung von 25 g Zirkoncarbonat mit einer Lösung von 474 g Natriumcarbonat in 2 Liter demineralisiertem Wasser bei einer Fälltemperatur von 70°C und einem pH-Wert von ca. 6,5 gefällt und aufgearbeitet. Die Calcinierung erfolgte 4 h bei 300°C. Man erhielt 540 g des Mischoxides, das analog Katalysator 1 zu Tabletten mit einer Seiten-
- 10 druckfestigkeit von 66 N verarbeitet wurde.

Katalysator 4

Zusammensetzung: 50 Gew.-% CuO; 30 Gew.-% ZnO und 17,5 Gew.-% Al₂O₃ und 2,5 Gew.-% ZrO₂

- 15 Analog Katalysator 1 wurde eine Mischung aus einer salpetersauren Lösung von 150 g Kupfer(II)oxid, einer salpetersauren Lösung von 90 g Zinkoxid, einer salpetersauren Lösung von 386,3 g Aluminiumnitrat-Nonahydrat und einer salpetersauren Lösung von 7,5 g Zirconcarbonat, die mit Natriumcarbonat auf einen pH-Wert von ca. 2,5 eingestellt wurde, mit einer Mischung aus 2 molarer Natronlauge und 0,3 molarer Natriumcarbonatlösung bei Raumtemperatur und einem pH-Wert von ca. 8 gefällt, 2 h auf 50°C gehalten und aufgearbeitet. Die Calcinierung erfolgte 4 h bei 600°C. Man erhielt 300 g des Mischoxides, das analog Katalysator 1 zu Tabletten mit einer Seitendruckfestigkeit von 101 N verarbeitet wurde.

Katalysator 5

Zusammensetzung: 60 Gew.-% CuO; 20 Gew.-% ZnO, 17,5 Gew.-% Al₂O₃ und 2,5 Gew.-% ZrO₂

- 30 Dieser Katalysator wurde analog Katalysator 4 hergestellt. Die Druckfestigkeit der Tabletten betrug 100 N.

Katalysator 6

- 35 Zusammensetzung: 67 Gew.-% CuO, 26,4 Gew.-% ZnO und 6,6 Gew.-% Al₂O₃

Eine Lösung von 320 g Zn(NO₃)₂•6 H₂O und 336,4 g Al(NO₃)₃•9 H₂O in 600 ml Wasser und 2000 ml einer 20 gew.-%ige Sodalösung wurden so zusammengeführt, dass die Fällung unter Rühren bei einer Temperatur von 50°C und einem pH-Wert von 6,7 bis

6,9 erfolgte, 30 Minuten nachgerührt, filtriert, anschließend Natrium- und Nitrat-frei gewaschen, 12 h bei 120°C getrocknet und 2 h bei 350°C calciniert.

- Das zuvor erhaltene calcinierte ZnAl-Mischoxid wurde in einer salpetersauren Lösung von Kupfernitrat und Zinknitrat so gelöst, dass man ein Gesamt-Atomverhältnis von Cu:Zn:Al = 65:25:10 erhielt und mit 2000 ml einer 20 gew.-%ige Sodalösung analog der oben beschriebenen Fällprozedur bei 70°C und einem pH-Wert von ca. 6,8 vereinigt, 60 Minuten nachgerührt, filtriert, anschließend Natrium- und Nitratfrei gewaschen, 16 h bei 120°C getrocknet und 4 h bei 300°C calciniert.
- Man erhielt 320 g des Mischoxides, das analog Katalysator 1 zu Tabletten mit einer Druckfestigkeit von 80 N verarbeitet wurde. Die BET-Oberfläche betrug 85 m²/g und das Porenvolumen betrug 0,29 ml/g (Hg-Porosimetrie).
- Katalysator 7**
Zusammensetzung: 65 Gew.-% CuO; 20 Gew.-% ZnO; 6 Gew.-% Al₂O₃; 6 Gew.-% ZrO₂ und 3 Gew.-% La₂O₃
- Die Herstellung erfolgte analog Katalysator 2 mit einer salpetersauren Lösung von 215 g CuO, 66 g ZnO, 145 g Al(NO₃)₃•9 H₂O, 20 g ZrO₂ und 10 g La₂O₃, jedoch wurde bei einer Temperatur von 70°C gefällt. Man erhielt 330 g des Mischoxides, das analog Katalysator 1 zu Tabletten mit einer Seitendruckfestigkeit von 80 N verarbeitet wurde. Die BET-Oberfläche betrug 109 m²/g.
- Katalysator 8**
Zusammensetzung: 60 Gew.-% CuO; 20 Gew.-% ZnO; 10 Gew.-% Al₂O₃; 5 Gew.-% ZrO₂ und 5 Gew.-% MgO
- Die Herstellung erfolgte analog Katalysator 2 mit einer salpetersauren Lösung von 231 g CuO, 77 g ZnO, 290 g Al(NO₃)₃•9 H₂O, 19,2 g ZrO₂ und 19,5 g MgO, jedoch wurde bei einer Temperatur von 70°C gefällt. Man erhielt 350 g des Mischoxides, das analog Katalysator 1 zu Tabletten mit einer Seitendruckfestigkeit von 90 N verarbeitet wurde. Die BET-Oberfläche betrug 96 m²/g.
- Katalysator 9**
Zusammensetzung: 60 Gew.-% CuO; 20 Gew.-% ZnO; 10 Gew.-% Al₂O₃; 5 Gew.-% ZrO₂ und 5 Gew.-% NiO
- Die Herstellung erfolgte analog Katalysator 2 mit einer salpetersauren Lösung von 264 g CuO, 88 g ZnO, 323 g Al(NO₃)₃•9 H₂O, 22 g ZrO₂ und 22 g NiO, jedoch wurde

bei einer Temperatur von 70°C gefällt. Man erhielt 400 g des Mischoxides, das analog Katalysator 1 zu Tabletten mit einer Seitendruckfestigkeit von 80 N verarbeitet wurde. Die BET-Oberfläche betrug 114 m²/g.

5 **Katalysator 10**

Zusammensetzung: 60 Gew.-% CuO; 20 Gew.-% ZnO; 10 Gew.-% Al₂O₃; 5 Gew.-% ZrO₂ und 5 Gew.-% SiO₂

Die Herstellung erfolgte analog Katalysator 2 mit einer salpetersauren Lösung von
10 200 g CuO, 66 g ZnO, 241 g Al(NO₃)₃•9 H₂O, 16,5 g ZrO₂ und 16,5 g SiO₂ (kolloidal; Ludox™; 50 Gew.-% in Wasser), jedoch wurde bei einer Temperatur von 70°C gefällt. Man erhielt 300 g des Mischoxides, das analog Katalysator 1 zu Tabletten mit einer Seitendruckfestigkeit von 90 N verarbeitet wurde. Die BET-Oberfläche betrug 125 m²/g.

15 **Katalysator 11**

Tränkkatalysators der Zusammensetzung: 14,6 Gew.-% CuO, 7,4 Gew.-% ZnO und 78 Gew.-% Al₂O₃

1,77 kg Aluminiumoxid-Stränge mit einem Durchmesser von 4 mm und einer Wasseraufnahme von 0,557 ml/g wurden aus überstehender wässriger Lösung aus 343 g Kupfernitrat/Liter und 156 g Zinknitrat/Liter getränkt, bei 120°C getrocknet und 3 h bei 520°C calciniert. Der Tränkvorgang inklusive Trocknung und Calcinierung wurde wiederholt. Man erhielt 2100 g des Tränkkatalystors mit einem Litergewicht von 844 g/Liter, einer Wasseraufnahme von 0,44 ml/g und einer Schnithärte von 266 N.

25 **Katalysator 12**

Tränkkatalysators der Zusammensetzung: 71,15 Gew.-% Al₂O₃, 18 Gew.-% MoO₃, 7,5 Gew.-% CuO und 3,35 Gew.-% BaO

30 294 g Aluminiumoxid-Stänge in Form von 3 mm Triloben wurden vorgelegt, mit 89 g Ammoniumheptamolybdat in 224 ml Wasser (81 gew.-%ig) getränkt, bei 120°C getrocknet und anschließend bei 370°C 75 Minuten und 400°C 135 Minuten calciniert. Danach wurde mit 155 ml einer 19 gew.-%igen Kupfernitratlösung getränkt und anschließend wie zuvor getrocknet und calciniert. Zuletzt wurde mit 260 ml einer 230 g
35 enthaltenden Bariumnitratlösung getränkt und anschließend erneut wie zuvor getrocknet und calciniert. Man erhielt 405 g des Tränkkatalystors mit einem Rüttelgewicht von 750 g/Liter, einer Wasseraufnahme von 0,5 ml/g und einer Schnithärte von 9,5 N.

Anwendungsbeispiele der Katalysatoren

- Ein beheizbarer Rohrreaktor mit einem Durchmesser von 10 mm wurde jeweils mit 10 g einer der zuvor beschriebenen Katalysatoren in Splittform (1 bis 2 mm) befüllt und
- 5 im geraden Durchgang betrieben. Das Austrittsgas wurde einem Gaschromatographen zugeführt. Für den Nachweis von organische Kohlenstoffverbindungen durch einen Flamm-Ionisations-Detektor und zur selektiven Schwefel-Detektion durch einen Flamm-Photometrischen-Detektor.
- 10 Nach Beendigung des Versuchs, d.h. nach Durchbruch der Schwefelkomponente, wurde der Katalysator ausgebaut und mittels Standard-Verfahren (z.B. nach Ehrenberger; "Quantitative Organische Elementaranalyse", VCH Verlagsgesellschaft, Weinheim, 1991, Seite 242 ff.) der Gehalt an Schwefel bestimmt.

15 Anwendungsbeispiel 1

- Die Katalysatoren 1 bis 15 wurden einem Methanstrom ausgesetzt, der 1.000 ppm COS enthielt. Die Gasbelastung, also das Volumen an Gas je Volumen an Katalysator betrug 1000 h^{-1} , die Reaktionstemperatur 25°C . Der Versuch wurde abgebrochen,
- 20 sobald im Austrittsgas die Menge an COS 1 ppm überschritt.

In Tabelle A sind die Ergebnisse des Schwefelgehaltes der daraufhin ausgebauten Katalysatoren zusammengefasst.

25 Anwendungsbeispiel 2

- Die Katalysatoren 1 bis 15 wurden einem Methanstrom ausgesetzt, der 1000 ppm H_2S enthielt. Die Gasbelastung, also das Volumen an Gas je Volumen an Katalysator betrug 1000 h^{-1} , die Reaktionstemperatur 25°C . Der Versuch wurde abgebrochen,
- 30 sobald im Austrittsgas die Menge an H_2S 1 ppm überschritt.

In Tabelle A sind die Ergebnisse des Schwefelgehaltes der daraufhin ausgebauten Katalysatoren zusammengefasst.

35 Anwendungsbeispiel 3

Die Katalysatoren 1 bis 15 wurden einem Methanstrom ausgesetzt, der 500 ppm H_2S und 500 ppm COS enthielt. Die Gasbelastung, also das Volumen an Gas je Volumen an Katalysator betrug 1000 h^{-1} , die Reaktionstemperatur 25°C . Der Versuch wurde

abgebrochen, sobald im Austrittsgas die Menge an H₂S und COS zusammen 1 ppm überschritt.

- In Tabelle A sind die Ergebnisse des Schwefelgehaltes der daraufhin ausgebauten Katalysatoren zusammengefasst.

Anwendungsbeispiel 4

- Die Katalysatoren 1 bis 15 wurden einem Gasstrom, bestehend aus 60 Vol.-% Methan und 40 % Propan, ausgesetzt, der 500 ppm H₂S und 500 ppm COS und zusätzlich 2.000 ppm Toluol enthielt. Die Gasbelastung, also das Volumen an Gas je Volumen an Katalysator betrug 1000 h⁻¹, die Reaktionstemperatur 25°C. Der Versuch wurde abgebrochen, sobald im Austrittsgas die Menge an H₂S und COS zusammen 1 ppm überschritt.

- In Tabelle A sind die Ergebnisse des Schwefelgehaltes der daraufhin ausgebauten Katalysatoren zusammengefasst.

- Aus Tabelle A geht hervor, dass COS und H₂S unabhängig von der Anwesenheit höherer Kohlenwasserstoffe weiterhin vollständig am Katalysator adsorbiert wurde. Eine Adsorption der höheren Kohlenwasserstoffe (wie Toluol) am Katalysator wurde nicht beobachtet.

Tabelle A

25

Katalysator	Schwefelgehalt [Gew.-%]			
	Anwendungs-beispiel 1	Anwendungs-beispiel 2	Anwendungs-beispiel 3	Anwendungs-beispiel 4
1	8,8	8,6	8,8	8,9
2	7,0	6,7	6,8	6,9
3	12,3	12,0	12,1	12,0
4	8,5	8,0	8,1	8,0
5	9,5	9,2	9,4	9,4
6	11,2	11,0	11,0	10,9
7	11,2	11,0	11,2	11,2
8	10,5	10,2	10,5	10,4
9	10,4	10,1	10,2	10,3
10	10,9	10,2	10,1	10,0
11	2,5	2,1	2,3	2,25
12	1,1	1,0	0,9	0,9

Anwendungsbeispiel 5

Vor Versuchsbeginn wurde der Katalysator bei einer Temperaturen von ca. 200°C und

- 5 einem Gasstrom von ca. 1 Vol.-% Wasserstoff in Stickstoff reduziert.

Die so reduzierten Katalysatoren 1 bis 15 wurden einem Methanstrom ausgesetzt, der 15 Vol.-ppm Tetrahydrothiophen (THT) enthielt. Die Gasbelastung, also das Volumen an Gas je Volumen an Katalysator betrug 1000 h⁻¹, die Reaktionstemperatur 25°C. Der

- 10 Versuch wurde abgebrochen, sobald im Austrittsgas die Menge an THT 1 ppm überschritt.

In Tabelle B sind die Ergebnisse der Adsorptionskapazität des Katalysators für THT bis zum Abbruch zusammengefasst.

15

Anwendungsbeispiel 6

Die Versuche wurden analog Anwendungsbeispiel 5 durchgeführt, jedoch wurden die Katalysatoren vor Versuchsbeginn nicht reduziert.

20

In Tabelle B sind die Ergebnisse der Adsorptionskapazität des Katalysators für THT bis zum Abbruch zusammengefasst.

25

Aus Tabelle B geht hervor, dass die Adsorption geringer als in Anwendungsbeispiel 5 war, in dem die Katalysatoren in reduzierter Form eingesetzt wurden.

Anwendungsbeispiel 7

30

Zur Untersuchung einer optimierten Adsorberpatrone wird wie folgt vorgegangen: Statt Methan wird Erdgas eingesetzt. Dieses besitzt im Wesentlichen die nachfolgend genannte Zusammensetzung: 84 Vol.-% Methan, 3,5 Vol.-% Ethan, 0,6 Vol.-% Propan, 9,3 Vol.-% Stickstoff, 1,6 Vol.-% Kohlendioxid und in Summe ca. 3.500 ppm höherer Kohlenwasserstoffe (C₃ – C₈).

35

Dem Erdgas werden folgende Bestandteile zugemischt: 20 ppm COS, 20 ppm H₂S und 15 ppm THT.

40

Der vorgelegte Katalysator wird jeweils zu 80 % vorreduziert, so dass ca. 80 % des Katalysatorbettes für die Aufnahme von THT optimiert sind, während der Rest für die Adsorption von COS und H₂S zur Verfügung steht.

Die Gasbelastung, also das Volumen an Gas je Volumen an Katalysator liegt erneut bei 1000 l / l¹h⁻¹; die Reaktionstemperatur bei 25°C. Der Versuch wird dann abgebrochen, wenn im Off-Gas nach Reaktor erstmalig THT mit > 1 ppm detektiert wird.

- 5 Über den bis zu diesem Zeitpunkt über den Katalysator geleiteten Gasvolumenstrom wird die Adsorptionskapazität des Katalysators in g THT / Liter Katalysator berechnet. In allen Fällen war zu diesem Zeitpunkt weder COS noch H₂S im Abgas des Reaktors detektierbar.
- 10 Die Katalysatoren 1 bis 15 wurden einem Methanstrom ausgesetzt, der 1.000 ppm COS enthielt. Die Gasbelastung, also das Volumen an Gas je Volumen an Katalysator betrug 1000 h⁻¹, die Reaktionstemperatur 25°C. Der Versuch wurde abgebrochen, sobald im Austrittsgas die Menge an COS 5 ppm überschritt.
- 15 In Tabelle B sind die Ergebnisse der Adsorptionskapazitäten für schwefelhaltige Komponenten zusammengefasst.

Tabelle B

Katalysator	THT-Adsorptionskapazität [g THT pro Liter Katalysator]		
	Anwendungsbeispiel	Anwendungsbeispiel	Anwendungsbeispiel
	5	6	7
1	3,2	1,5	2,5
2	2,5	1,1	2,0
3	4,6	2,2	3,5
4	3,1	1,6	2,5
5	3,6	1,8	2,8
6	4,1	1,9	3,2
7	3,8	1,8	3,0
8	3,6	1,8	2,8
9	3,7	2,0	3,0
10	3,5	1,6	2,8
11	0,9	0,4	0,7
12	0,3	0,1	0,2

Vergleichsbeispiele**Vergleichsbeispiel 1**

- 5 Analog Anwendungsbeispiel 6 wurde kommerzielle Cu-dotierte Aktivkohle (G 32-J® der Firma Süd-Chemie; mit 4,5 Gew.-% Cu; 0,25 ml/g Porenvolumen und 1000 m²/g Oberfläche) als 1-2 mm Splitt untersucht.

Die THT-Adsorptionskapazität dieser Aktivkohle betrug 0,9 g THT pro Liter Aktivkohle.

10

Vergleichsbeispiel 2

Analog Anwendungsbeispiel 6 wurde kommerzielle Aktivkohle (C38/4®, Artikel 2722 der Firma CarboTech, Essen) untersucht.

15

Die THT-Adsorptionskapazität dieser Aktivkohle betrug 6,5 g THT pro Liter Aktivkohle.

Vergleichsbeispiel 3

- 20 Analog Anwendungsbeispiel 6 wurde kommerzielle Aktivkohle (Norit® RB4 der Firma Norit; mit 0,13 ml/g Porenvolumen; 1292 m²/g Oberfläche) als 1 bis 2 mm Splitt untersucht.

Die THT-Adsorptionskapazität dieser Aktivkohle betrug 0,5 g THT pro Liter Aktivkohle.

25

Vergleichsbeispiel 4

Analog Anwendungsbeispiel 6 wurde kommerzielle Aktivkohle (Desorex® K der Firma Lurgi; mit 0,55 ml/g Porenvolumen; 1494 m²/g Oberfläche) als 1 bis 2 mm Splitt untersucht.

30

Die THT-Adsorptionskapazität dieser Aktivkohle betrug 0,6 g THT pro Liter Aktivkohle.

Vergleichsbeispiel 5

35

Analog Anwendungsbeispiel 1 wurde kommerzielle Cu-dotierte Aktivkohle (G 32-J® der Firma Süd-Chemie; mit 4,5 Gew.-% Cu; 0,25 ml/g Porenvolumen und 1000 m²/g Oberfläche) als 1 bis 2 mm Splitt untersucht.

- 40 Die COS-Adsorptionskapazität dieser Aktivkohle betrug 1,1 g COS pro Liter Aktivkohle.

Vergleichsbeispiel 6

Analog Anwendungsbeispiel 1 wurde kommerzielle Aktivkohle (Norit® RB4 der

- 5 Firma Norit; mit 0,13 ml/g Porenvolumen; 1292 m²/g Oberfläche) als 1 bis 2 mm Splitt untersucht.

Die COS-Adsorptionskapazität dieser Aktivkohle betrug 0,6 g COS pro Liter Aktivkohle.

10 Vergleichsbeispiel 7

Analog Anwendungsbeispiel 1 wurde kommerzielle Aktivkohle (Desorex® K der Firma Lurgi; mit 0,55 ml/g Porenvolumen; 1494 m²/g Oberfläche) als 1 bis 2 mm Splitt untersucht.

15 Die COS-Adsorptionskapazität dieser Aktivkohle betrug 0,55 g COS pro Liter Aktivkohle.

Katalysator 13

- 20 Zusammensetzung: 1,5 Gew.-% CoO, 7 Gew.-% MoO₃ und 91,5 Gew.-% Al₂O₃

1981 g Aluminiumoxid (Pural® SB der Firma SASOL) und 140 g Ammoniumhepta-molybdat ((NH₄)₆Mo₇O₂₄ x 4 H₂O) wurden trocken gemischt, mit einer Lösung aus 69 ml Ameisensäure (85 %) in 458 ml Wasser und anschließend mit weiteren 500 ml

- 25 Wasser versetzt und geknetet. Die entstandene plastische Masse wurde bei einem Vordruck von 260 bar zu Strängen mit Länge von 3 bis 8 mm und einem Durchmesser von 1,5 mm extrudiert, 7 h bei 120°C getrocknet und anschließend 3 h bei 550°C calciniert. Die erhaltenen Stränge wurden durch Aufsprühen einer Mischung aus 102 g einer 15,9 gew.-%igen Cobaltnitrat-Lösung in 420 ml Wasser behandelt, erneut 7 h bei 120°C getrocknet und 3 h bei 550°C calciniert. Der erhaltene Katalysator hatte ein Litergewicht von 736 g/Liter, eine Schnithärte von 12,5 N, eine BET-Oberfläche von 250 m²/g, einen Glühverlust (bei 900°C) von 1,4 Gew.-% und eine Zusammensetzung von 1,5 Gew.-% CoO, 7 Gew.-% MoO₃ und 91,5 Gew.-% Al₂O₃.

35 Katalysator 14

- Zusammensetzung: 4,5 Gew.-% CoO, 22 Gew.-% MoO₃ und 73,5 Gew.-% Al₂O₃

Analog Katalysator 13 wurden 1641 g Aluminiumoxid, 455,1 g Ammoniumhepta-molybdat, 57 ml Ameisensäure (85 %) in 379 ml Wasser und zusätzlich 440 ml Wasser

- 40 umgesetzt, extrudiert, getrocknet, calciniert; die erhaltenen Stränge durch Aufsprühen

einer Mischung aus 356 g einer 15,9 gew.-%igen Cobaltnitratlösung in 121 ml Wasser mit einer Zwei-Phasen-Düse und Stickstoff als Verdüngungsgas auf einem drehenden, auf 160°C beheizten Teller behandelt, getrocknet und calciniert. Der erhaltene Katalysator hatte ein Litergewicht von 915 g/Liter, eine Schnitthärte von 14,7 N, eine

- 5 BET-Oberfläche von 241 m²/g, einen Glühverlust (bei 900°C) von 2,7 Gew.-% und eine Zusammensetzung von 4,5 Gew.-% CoO, 22 Gew.-% MoO₃ und 73,5 Gew.-% Al₂O₃.

Katalysator 15

Zusammensetzung: 3 Gew.-% CoO, 15 Gew.-% MoO₃, 4,4 Gew.-% SiO₂ und

- 10 77,6 Gew.-% Al₂O₃

Analog Katalysator 14 wurden 1749 g Silizium-Aluminium-Mischoxid mit einem SiO₂-Anteil von 5 Gew.-% (SIRAL® 5 der Firma SASOL) und 305,4 g Ammoniumheptamolybdat, 61 ml Ameisensäure (85 %) in 404 ml Wasser und zusätzlich 500 ml Wasser umgesetzt, bei einem Vordruck von 171 bar extrudiert, getrocknet, calciniert; die erhaltenen Stränge durch Aufsprühen einer Mischung aus 222 g 15,9 gew.-%iger Cobaltnitrat-Lösung in 384 ml Wasser behandelt, getrocknet und calciniert. Der erhaltene Katalysator hatte ein Litergewicht von 770 g/Liter, eine Schnitthärte von 14,8 N, eine BET-Oberfläche von 307 m²/g, einen Glühverlust (bei 900°C) von 2,2 Gew.-% und eine Zusammensetzung von 3 Gew.-% CoO, 15 Gew.-% MoO₃, 4,4 Gew.-% SiO₂ und 77,6 Gew.-% Al₂O₃.

Katalysator 16

Zusammensetzung: 3 Gew.-% CoO, 15 Gew.-% MoO₃, 4,3 Gew.-% SiO₂ und

- 25 77,7 Gew.-% Al₂O₃

Analog Katalysator 14 wurden 1586 g Silizium-Aluminium-Mischoxid mit einem SiO₂-Anteil von 5 Gew.-% (SIRALOX® 5 der Firma SASOL) und 343,6 g Ammoniumheptamolybdat, 56 ml Ameisensäure (85 %) in 366 ml Wasser und zusätzlich 750 ml Wasser umgesetzt, bei einem Vordruck von 117 bar extrudiert, getrocknet, calciniert; die erhaltenen Stränge durch Aufsprühen einer Mischung aus 234 g einer 15,9 gew.-%igen Cobaltnitratlösung in 729 ml Wasser behandelt, getrocknet und calciniert. Der erhaltene Katalysator hatte ein Litergewicht von 602 g/Liter, eine Schnitthärte von 3,95 N, eine BET-Oberfläche von 265 m²/g, einen Glühverlust (bei 900 °C) von 2,6 Gew.-% und eine Zusammensetzung von 3 Gew.-% CoO, 15 Gew.-% MoO₃, 4,3 Gew.-% SiO₂ und 77,7 Gew.-% Al₂O₃.

Katalysator 17

Zusammensetzung: 3 Gew.-% CoO, 15 Gew.-% MoO₃ und 82 Gew.-% Al₂O₃

Analog Katalysator 14 wurden 1581 g Aluminiumoxid (PURALOX® SCCa 5/150 der Firma SASOL), 353,3 g Ammoniumheptamolybdat, 55 ml Ameisensäure (85 %) in 365 ml Wasser und zusätzlich 750 ml Wasser umgesetzt, bei einem Vordruck von 200 bar extrudiert, getrocknet, calciniert; die erhaltenen Stränge durch Aufsprühen

- 5 einer Mischung aus 233 g einer 15,9 gew.-%igen Cobaltnitratlösung in 448 ml Wasser behandelt, getrocknet und calciniert. Der erhaltene Katalysator hatte ein Litergewicht von 705 g/Liter, eine Schnithärte von 2,65 N, eine BET-Oberfläche von 167 m²/g, einen Glühverlust (bei 900°C) von 2,8 Gew.-% und eine Zusammensetzung von 3 Gew.-% CoO, 15 Gew.-% MoO₃ und 82 Gew.-% Al₂O₃.

10

Katalysator 18

Zusammensetzung: 3 Gew.-% CoO, 15 Gew.-% MoO₃ und 82 Gew.-% SiO₂

- 15 1360 g Siliziumdioxid-Strangträger (der Firma BASF) mit einem Durchmesser von 1,5 mm wurden durch Aufsprühen einer Mischung aus 286 g Ammoniumhepta-molybdat ((NH₄)₆Mo₇O₂₄ x 4 H₂O) in 1075 ml Wasser mit einer Zwei-Phasen-Düse und Stickstoff als Verdüngungsgas in einer auf 160°C beheizten und rotierenden Trommel behandelt, 7 h bei 120°C getrocknet und 3 h bei 550°C calciniert.

- 20 Die erhaltenen Stränge wurden durch Aufsprühen einer Mischung aus 780 g einer 15,9 gew.-%igen Cobaltnitratlösung in 1106 ml H₂O behandelt, getrocknet und calciniert. Der erhaltene Katalysator hatte ein Litergewicht von 530 g/Liter, eine Schnithärte von 7,88 N, eine BET-Oberfläche von 51,1 m²/g, einen Glühverlust (bei 900°C) von 6,2 Gew.-% und eine Zusammensetzung von 3 Gew.-% CoO, 15 Gew.-% MoO₃ und 82 Gew.-% SiO₂.
- 25

Katalysator 19

Zusammensetzung: 3 Gew.-% CoO, 15 Gew.-% MoO₃ und 82 Gew.-% TiO₂

- 30 Analog Katalysator 18 wurden 1421 g Titandioxid-Strangträger (FINNTI® S 150 der Firma Kemira) mit einem Durchmesser von 1,5 mm durch Aufsprühen einer Mischung aus 306 g Ammoniumheptamolybdat in 785 ml Wasser behandelt, getrocknet, calciniert; die erhaltenen Stränge durch Aufsprühen einer Mischung aus 257 g einer 15,9 Gew.-% Cobaltnitratlösung behandelt, getrocknet und calciniert. Der erhaltene Katalysator hatte ein Litergewicht von 1142 g/Liter, eine Schnithärte von 5,0 N, eine BET-Oberfläche von 72,7 m²/g, einen Glühverlust (bei 900°C) von 6,9 Gew.-% und eine Zusammensetzung von 3 Gew.-% CoO, 15 Gew.-% MoO₃ und 82 Gew.-% TiO₂.
- 35

Katalysator 20

Zusammensetzung: 3 Gew.-% CoO, 15 Gew.-% MoO₃, 15,6 Gew.-% CaO und 66,4 Gew.-% Al₂O₃

- 5 Analog Katalysator 18 wurden 1052 g Calcium-Aluminium-Mischoxid (80 Gew.-% Al₂O₃ und 20 Gew.-% CaO; 4 mm Stränge) als 1 bis 2 mm Splitt durch Aufsprühen einer Mischung aus 217 g Ammoniumheptamolybdat in 763 ml Wasser behandelt, getrocknet, calciniert; der erhaltene Splitt durch Aufsprühen einer Mischung aus 210 g einer 15,9 Gew.-% Cobaltnitratlösung in 279 ml Wasser behandelt, getrocknet und calciniert.
- 10 Der erhaltene Katalysator hatte ein Litergewicht von 1134 g/Liter, eine BET-Oberfläche von 142,1 m²/g, einen Glühverlust (bei 900°C) von 6,0 Gew.-% und eine Zusammensetzung von 3 Gew.-% CoO, 15 Gew.-% MoO₃, 15,6 Gew.-% CaO und 66,4 Gew.-% Al₂O₃.
- 15 **Katalysator 21**
Zusammensetzung: 3 Gew.-% CoO, 15 Gew.-% MoO₃ und 82 Gew.-% ZrO₂
- Analog Katalysator 18 wurden 1383 g Zirkondioxidträger (der Firma BASF; Rüttelgewicht 1126 g/l; BET-Oberfläche 79 m²/g) als 1 bis 2 mm Splitt durch Aufsprühen einer Mischung aus 286 g Ammoniumheptamolybdat in 987 ml Wasser behandelt, getrocknet, calciniert; der erhaltene Splitt durch Aufsprühen einer Mischung aus 282 g einer 15,9 gew.-%igen Cobaltnitratlösung in 19 ml Wasser behandelt, getrocknet und calciniert. Der erhaltene Katalysator hatte ein Litergewicht von 1134 g/Liter, eine BET-Oberfläche von 51,2 m²/g, einen Glühverlust (bei 900°C) von 1,7 Gew.-% und eine Zusammensetzung von 3 Gew.-% CoO, 15 Gew.-% MoO₃ und 82 Gew.-% ZrO₂.

Katalysator 22

Zusammensetzung: 3 Gew.-% CoO, 15 Gew.-% MoO₃, 15,7 Gew.-% MgO und 66,3 Gew.-% Al₂O₃

- 30 Analog Katalysator 18 wurden 750 g Magnesium-Aluminium-Mischoxidträger (BASF; Stränge 4 mm; 81,3 Gew.-% Al₂O₃ und 18,7 Gew.-% MgO) als 1 bis 2 mm Splitt durch Aufsprühen einer Mischung aus 138 g Ammoniumheptamolybdat in 335 ml Wasser behandelt, getrocknet, calciniert; der erhaltene Splitt durch Aufsprühen einer Mischung aus 143 g einer 15,9 gew.-%igen Cobaltnitratlösung in 314 ml Wasser behandelt, getrocknet und calciniert. Der erhaltene Katalysator hatte ein Litergewicht von 752 g/Liter, eine BET-Oberfläche von 179,2 m²/g, einen Glühverlust (bei 900°C) von 5,5 Gew.-% und eine Zusammensetzung von 3 Gew.-% CoO, 15 Gew.-% MoO₃, 15,7 Gew.-% MgO und 66,3 Gew.-% Al₂O₃.

Katalysator 23

Zusammensetzung: 3 Gew.-% CoO, 15 Gew.-% MoO₃ und 82 Gew.-% Al₂O₃

Analog Katalysator 18 wurden 915 g eines 8h bei 975°C calcinierten Aluminiumoxids

- 5 (Firma SASOL) in Form von Kugeln mit einem Durchmesser von 1 mm durch Aufsprühen einer Mischung aus 207 g Ammoniumheptamolybdat in 745 ml Wasser behandelt, getrocknet, calciniert; die erhaltenen Kugeln durch Aufsprühen einer Mischung aus 191 g einer 15,9 gew.-%igen Cobaltnitratlösung in 304 ml Wasser behandelt, getrocknet und calciniert. Der erhaltene Katalysator hatte ein Litergewicht von 977 g/Liter, eine BET-Oberfläche von 109 m²/g, einen Glühverlust (bei 900°C) von 1,8 Gew.-% und eine Zusammensetzung von 3 Gew.-% CoO, 15 Gew.-% MoO₃ und 82 Gew.-% Al₂O₃.

Katalysator 24

- 15 Zusammensetzung: 3 Gew.-% CoO, 15 Gew.-% MoO₃ und 82 Gew.-% Al₂O₃

Analog Katalysator 18 wurden 700 g eines 8 h bei 975°C calcinierten Aluminiumoxids (Firma SASOL) in Form von Kugeln mit einem Durchmesser von 1,8 mm durch Aufsprühen einer Mischung aus 158 g Ammoniumheptamolybdat in 570 ml Wasser

- 20 behandelt, getrocknet, calciniert; die erhaltenen Kugeln durch Aufsprühen einer Mischung aus 141 g einer 15,9 gew.-%igen Cobaltnitratlösung in 354 ml Wasser behandelt, getrocknet und calciniert. Der erhaltene Katalysator hatte ein Litergewicht von 771 g/Liter, eine BET-Oberfläche von 99 m²/g, einen Glühverlust (bei 900°C) von 3,4 Gew.-% und eine Zusammensetzung von 3 Gew.-% CoO, 15 Gew.-% MoO₃ und 25 82 Gew.-% Al₂O₃.

Katalysator 25

Zusammensetzung: 3,3 Gew.-% CoO, 14 Gew.-% MoO₃ und 82,7 Gew.-% Al₂O₃

- 30 Analog Katalysator 14 wurden 1581 g Aluminiumoxid (PURALOX® SCCa 5/150 der Firma SASOL), 353 g Ammoniumheptamolybdat, 55 ml Ameisensäure (85 %) in 365 ml Wasser und zusätzlich 750 ml Wasser umgesetzt, bei einem Vordruck von 200 bar extrudiert, getrocknet, calciniert; die erhaltenen Stränge durch Aufsprühen einer Mischung aus 233 g einer 15,9 gew.-%igen Cobaltnitratlösung in 448 ml Wasser 35 behandelt, getrocknet und calciniert. Die erhaltenen Stränge hatten ein Litergewicht von 705 g/Liter, eine Schnitthärte von 2,65 N, eine BET-Oberfläche von 167 m²/g, einen Glühverlust (bei 900°C) von 2,8 Gew.-% und eine Zusammensetzung von 3,3 Gew.-% CoO, 14 Gew.-% MoO₃ und 82,7 Gew.-% Al₂O₃. Der Herstellweg wird 6 x wiederholt.

7420 g dieser Stränge wurden zu Splitt von 0,3 - 0,7 mm zermahlen, mit 222,6 g Graphit gemischt und zu Tabletten mit einem Durchmesser von 1,5 mm und einer Höhe von 2,5 mm verformt. Die Tabletten hatten eine Seitendruckfestigkeit von 40 N, ein Rüttelgewicht von 906 g/l, eine Oberfläche von 236 m²/g und einen Glühverlust
5 (bei 900°C) von 5,8 Gew.-%.

Katalysator 26

Zusammensetzung: 3,3 Gew.-% CoO, 14 Gew.-% MoO₃ und 82,7 Gew.-% Al₂O₃

10 Zu 250 kg Aluminiumoxid (Pural® SB der Firma SASOL) wurden mit 150 Liter Wasser, das 5 kg Ameisensäure enthält, gegeben. Nach Bildung einer zähen Paste wurden 90 kg der phosphorsauren Molybdänlösung, hergestellt durch Umsetzung von 600 kg Molybdäntrioxid (Reinheit von 90 %; Pulver) in 200 kg ortho-Phosphorsäure und 1500 Liter Wasser 3 h bei 100°C und 24 h bei 40°C und Filtrieren, 2 h verknetet,
15 zu 1,7 mm Rundsträngen extrudiert, bei 120 bis 150°C getrocknet und bei 550°C calciniert.

200 kg des so hergestellten Trägers wurden mit einer überstehenden 6 gew.-%igen Kobaltnitratlösung 2 h getränkt, 7 h bei 120°C getrocknet und 3 h bei 450°C calciniert.
20 Der erhaltene Katalysator hatte ein Litergewicht von 610 g/l, eine Schnitthärte von 5,3 N, einen Glühverlust (bei 900°C) von 6,39 Gew.-% und eine Zusammensetzung von 3,3 Gew.-% CoO, 14 Gew.-% MoO₃ und 82,7 Gew.-% Al₂O₃.

Katalysator 27

25 Zusammensetzung: 3,3 Gew.-% CoO, 14 Gew.-% MoO₃ und 82,7 Gew.-% Al₂O₃

Die Herstellung erfolgte analog Katalysator 26. Zusätzlich wurde 2 h bei 500°C nachgetempert. Der erhaltene Katalysator hatte ein Litergewicht von 613 g/l, eine Schnitthärte von 5,1 N, einen Glühverlust (bei 900 °C) von 5,5 Gew.-% und eine Zusammensetzung von 3,3 Gew.-% CoO, 14 Gew.-% MoO₃ und 82,7 Gew.-% Al₂O₃.
30

Katalysator 28

Zusammensetzung: 3,3 Gew.-% CoO, 14 Gew.-% MoO₃ und 82,7 Gew.-% Al₂O₃

35 Die Herstellung erfolgte analog Katalysator 26. Zusätzlich wurde 2 h bei 600°C nachgetempert. Der erhaltene Katalysator hatte ein Litergewicht von 627 g/l, eine Schnitthärte von 5,1 N, einen Glühverlust (bei 900°C) von 4,6 Gew.-% und eine Zusammensetzung von 3,3 Gew.-% CoO, 14 Gew.-% MoO₃ und 82,7 Gew.-% Al₂O₃.

Katalysator 29

Zusammensetzung: 3,3 Gew.-% CoO, 14 Gew.-% MoO₃ und 82,7 Gew.-% Al₂O₃

Die Herstellung erfolgte analog Katalysator 26. Zusätzlich wurde 2 h bei 700°C

- 5 nachgetempert. Der erhaltene Katalysator hatte ein Litergewicht von 644 g/l, eine Schnitthärte von 4,3 N, einen Glühverlust (bei 900°C) von 4,2 Gew.-% und eine Zusammensetzung von 3,3 Gew.-% CoO, 14 Gew.-% MoO₃ und 82,7 Gew.-% Al₂O₃.

Katalysator 30

- 10 Zusammensetzung: 7,5 Gew.-% MoO₃ und 92,5 Gew.-% Al₂O₃

Analog Katalysator 14 wurden 1981 g Aluminiumoxid (PURAL® SB der Firma SASOL), 140 g Ammoniumheptamolybdat, 69 ml Ameisensäure (85 %) in 468 ml Wasser und zusätzlich 500 ml Wasser umgesetzt, bei einem Vordruck von 260 bar extrudiert, getrocknet und calciniert. Die erhaltenen Stränge hatten ein Litergewicht von 735 g/Liter, eine Schnitthärte von 13,5 N, einen Glühverlust (bei 900°C) von 1,4 Gew.-%, eine BET-Oberfläche von 261 m²/g und eine Zusammensetzung von 7,5 Gew.-% MoO₃ und 92,5 Gew.-% Al₂O₃.

- 20 Katalysator 31

Zusammensetzung: 24 Gew.-% MoO₃ und 76 Gew.-% Al₂O₃

Analog Katalysator 14 wurden 1641 g Aluminiumoxid (PURAL® SB der Firma SASOL), 455,1 g Ammoniumheptamolybdat, 57 ml Ameisensäure (85 %) in 379 ml Wasser und zusätzlich 440 ml Wasser umgesetzt, bei einem Vordruck von 240 bar extrudiert, getrocknet und calciniert. Der erhaltene Katalysator hatten Litergewicht von 856 g/Liter, eine Schnitthärte von 12,2 N, einen Glühverlust (bei 900°C) von 9,35 Gew.-%, eine BET-Oberfläche von 252 m²/g und eine Zusammensetzung von 24 Gew.-% MoO₃ und 76 Gew.-% Al₂O₃.

Katalysator 32

Zusammensetzung: 17 Gew.-% MoO₃, 5,4 Gew.-% SiO₂ und 77,6 Gew.-% Al₂O₃

Analog Katalysator 14 wurden 1749 g Silicium-Aluminium-Mischoxid Mischoxid mit einem SiO₂-Anteil von 5 Gew.-% (SIRAL® 5 der Firma SASOL), 305,4 g Ammoniumheptamolybdat, 61 ml Ameisensäure (85 %) in 404 ml Wasser und zusätzlich 500 ml Wasser umgesetzt, bei einem Vordruck von 171 bar extrudiert, getrocknet und calciniert. Der erhaltene Katalysator hatte ein Litergewicht von 720 g/Liter, eine Schnitthärte von 12,6 N, einen Glühverlust (bei 900°C) von 7,8 Gew.-%, eine BET-

Oberfläche von 315 m²/g und eine Zusammensetzung von 17 Gew.-% MoO₃, 5,4 Gew.-% SiO₂ und 77,6 Gew.-% Al₂O₃.

Katalysator 33

- 5 Zusammensetzung: 16 Gew.-% MoO₃ und 84 Gew.-% SiO₂

Analog Katalysator 18 wurden 1360 g eines Siliziumdioxid-Strangträger (BASF) mit einem Durchmesser von 1,5 mm durch Aufsprühen einer Mischung aus 286 g Ammoniumheptamolybdat in 1075 ml Wasser behandelt, getrocknet, calciniert. Der 10 erhaltene Katalysator hatte ein Litergewicht von 520 g/Liter, eine Schnitthärte von 7,98 N, eine BET-Oberfläche von 54,1 m²/g, einen Glühverlust (bei 900°C) von 6,1 Gew.-% und eine Zusammensetzung von 16 Gew.-% MoO₃ und 84 Gew.-% SiO₂.

Beispiele zur Anwendung der Katalysatoren

- 15 Reaktionsaufbau und Detektion

Ein beheizbarer Rohrreaktor mit einem Durchmesser von 10 mm wurde jeweils mit 40 ml einer der zuvor beschriebenen Katalysatoren gefüllt und im geraden Durchgang betrieben. Das Austrittsgas wurde einem Gaschromatographen zugeführt. Für den Nachweis von organischen Kohlenstoffverbindungen besitzt der GC einen Flamm-Ionisations-Detektor und zur selektiven Schwefel-Detektion einen Flamm-Photometrischen-Detektor.

- 25 Nach Beendigung des Versuchs, d.h. nach Durchbruch der Schwefelkomponente(n), wurde der Katalysator ausgebaut und der Gehalt an Schwefel mittels Standardverfahren bestimmt (z.B. nach Ehrenberger: „Quantitative Organische Elementaranalyse“, VCH Verlagsgesellschaft, Weinheim, 1991, Seite 242 ff).

- 30 Anwendungsbeispiel 8

Die Katalysatoren 13 bis 33 wurden in dem zuvor beschriebenen Reaktionsaufbau einem Methanstrom ausgesetzt, der 15 ppm Tetrahydrothiophen (THT) enthielt. Die Gasbelastung, also das Volumen an Gas je Volumen an Katalysator betrug 7000 h⁻¹, die Reaktionstemperatur 25°C. Der Versuch wurde abgebrochen, sobald das Austrittsgas mehr als 100 ppb Schwefel enthielt. In Tabelle A sind die Ergebnisse zusammengefasst.

Anwendungsbeispiel 9

Die Katalysatoren 13 bis 33 wurden in dem zuvor beschriebenen Reaktionsaufbau einem Gasstrom, besteht aus 60 Vol.-% Methan und 40 % Propan, ausgesetzt, der

- 5 15 ppm Tetrahydrothiophen (THT) und zusätzlich 2.000 ppm Toluol enthielt. Die Gasbelastung, also das Volumen an Gas je Volumen an Katalysator betrug 7.000 h⁻¹, die Reaktionstemperatur 25°C. Der Versuch wurde abgebrochen, sobald das Austrittsgas mehr als 100 ppb Schwefel enthielt. In Tabelle C sind die Ergebnisse zusammengefasst.

10

Tabelle C

	Anwendungsbeispiel 8 [g THT / l _{Kat}]	Anwendungsbeispiel 9 [g THT / l _{Kat}]
Katalysator 13	16,1	15,8
Katalysator 14	25,3	24,7
Katalysator 15	17,4	17,0
Katalysator 16	19,0	18,2
Katalysator 17	18,4	18,5
Katalysator 18	14,6	14,4
Katalysator 19	23,2	23,0
Katalysator 20	20,8	21,0
Katalysator 21	19,1	18,6
Katalysator 22	17,5	17,3
Katalysator 23	21,0	20,7
Katalysator 24	22,6	21,6
Katalysator 25	21,2	20,6
Katalysator 26	22,9	22,1
Katalysator 27	20,4	19,8
Katalysator 28	17,0	17,0
Katalysator 29	10,2	10,2
Katalysator 30	13,9	13,5
Katalysator 31	20,7	20,7
Katalysator 32	20,3	20,5
Katalysator 33	21,9	22,0

Anwendungsbeispiel 10

- Die Katalysatoren 13 bis 33 wurden in dem zuvor beschriebenen Reaktionsaufbau
einem Gasstrom, bestehend aus Erdgas (das im vorliegenden Fall im Wesentlichen
5 9,27 Vol.-% Stickstoff, 1,64 Vol.-% Kohlendioxid, 84,5 Vol.-% Methan, 3,46 Vol.-%
Ethan, 0,579 Vol.-% Propan und ca. 12000 ppm sonstige C₂- bis C₈-Kohlenwasser-
stoffe enthält), ausgesetzt, das 15 ppm tert-butyl-Mercaptan und 15 ppm Tetra-
hydrothiophen enthielt. Die Gasbelastung, also das Volumen an Gas je Volumen
an Katalysator betrug 7000 h⁻¹, die Reaktionstemperatur 25°C. Der Versuch wurde
10 abgebrochen, sobald das Austrittsgas mehr als 200 ppb Schwefel enthielt. In Tabelle D
sind die Ergebnisse zusammengefasst.

Tabelle D

Aufnahme an schwefelhaltigen Verbindungen ¹⁵ [g / Liter Katalysator]	
Katalysator 13	16,3
Katalysator 14	25,5
Katalysator 15	17,0
Katalysator 16	18,3
Katalysator 17	17,9
Katalysator 18	14,0
Katalysator 19	21,7
Katalysator 20	19,9
Katalysator 21	17,0
Katalysator 22	17,2
Katalysator 23	20,2
Katalysator 24	18,4
Katalysator 25	19,5
Katalysator 26	22,1
Katalysator 27	19,9
Katalysator 28	16,8
Katalysator 29	10,1
Katalysator 30	13,6
Katalysator 31	20,8
Katalysator 32	18,4
Katalysator 33	22,2

Vergleichsbeispiel 8

Analog Anwendungsbeispiel 10 wurde kommerzielle Aktivkohle (C38/4®, Artikel 2722 der Firma CarboTech, Essen) untersucht. Die THT-Adsorptionskapazität dieser

- 5 Aktivkohle betrug 6,5 g THT pro Liter Aktivkohle.

Vergleichsbeispiel 9

Analog Anwendungsbeispiel 10 wurde kommerzielle Aktivkohle (Norit® RB4 der

- 10 Firma Norit; mit 0,13 ml/g Porenvolumen; 1292 m²/g Oberfläche) als 1 bis 2 mm Splitt untersucht. Die THT-Adsorptionskapazität dieser Aktivkohle betrug 0,5 g THT pro Liter Aktivkohle.

Vergleichsbeispiel 10

Analog Anwendungsbeispiel 10 wurde kommerzielle Aktivkohle (Desorex® K der Firma Lurgi; mit 0,55 ml/g Porenvolumen; 1494 m²/g Oberfläche) als 1 bis 2 mm Splitt untersucht. Die THT-Adsorptionskapazität dieser Aktivkohle betrug 0,6 g THT pro Liter Aktivkohle.

- 20 Beispiele zur Anwendung der Katalysatoren

Reaktionsaufbau und Detektion

- 25 Ein beheizbarer Rohrreaktor mit einem Durchmesser von 30 mm wurde jeweils mit insgesamt 280 ml von zwei der zuvor beschriebenen Katalysatoren gefüllt und im geraden Durchgang betrieben. Das Austrittsgas wurde einem Gaschromatographen zugeführt. Für den Nachweis von organischen Kohlenstoffverbindungen besitzt der GC einen Flamm-Ionisations-Detektor und zur selektiven Schwefel-Detektion einen Flamm-Photometrischen-Detektor.

- 30 Nach Beendigung des Versuchs, d.h. nach Durchbruch der Schwefelkomponente(n), wurde der Katalysator ausgebaut und der Gehalt an Schwefel mittels Standardverfahren bestimmt (z.B. nach Ehrenberger: „Quantitative Organische Elementaranalyse“, VCH Verlagsgesellschaft, Weinheim, 1991, Seite 242 ff).

Anwendungsbeispiele

Anwendungsbeispiel 11

Homogene Mischung gleicher Volumenteile von Kupfer- und Molybdänkatalysator

5

Es wurden eine homogene Mischungen gleicher Volumenteile von einem Kupferkatalysator und einem Molybdänkatalysator eingesetzt. Dem Erdgas der folgenden Zusammensetzung:

10	Stickstoff	9,27 %
	Kohlendioxid	1,64 %
	Methan	84,5 %
	Ethan	3,46 %
	Propan	0,579 %
15	sonstige C ₄ -C ₈ KWs	ca. 12000 Vol.-ppm

wurden 20 Vol.-ppm H₂S, 17 Vol.-ppm COS und 10 Vol.-ppm Tetrahydrothiophen zugesetzt. In allen Versuchen brach zuerst Tetrahydrothiophen (THT) durch das Katalysatorbett durch. Die Durchtrittszeiten bis zum Durchbruch von THT sind in
20 Tabelle E wiedergegeben:

Tabelle E

Mischung	Durchbruchszeit für THT [h]
Katalysator 1 + Katalysator 13	152
Katalysator 2 + Katalysator 14	167
Katalysator 4 + Katalysator 13	130
Katalysator 4 + Katalysator 14	122
Katalysator 4 + Katalysator 17	124
Katalysator 4 + Katalysator 25	106
Katalysator 11 + Katalysator 25	169

Anwendungsbeispiel 12**Zwei getrennte Schüttungen: Kupferkatalysator vor Molybdänkatalysator**

Es wurden Schüttungen aus je einem Kupfer- und einem Molybdänkatalysator einge-

5 setzt, wobei von beiden Katalysatoren die gleichen Volumina zum Einsatz kommen.

Am Beginn der Schüttung (Reaktoreingang) befand sich der Kupferkatalysator; am Ende des Reaktors der Molybdänkatalysator. Dem Erdgas wurden 20 Vol.-ppm H₂S, 5 Vol.-ppm COS und 10 Vol.-ppm Tetrahydrothiophen zugesetzt. Die Versuchsdurch-

führung erfolgte analog Anwendungsbeispiel 11. In allen Versuchen brach zuerst

10 Tetrahydrothiophen (THT) durch das Katalysatorbett durch. Die Durchtrittszeiten bis zum Durchbruch von THT sind in Tabelle F wiedergegeben:

Tabelle F

Schüttung	Durchbruchszeit für THT [h]
Katalysator 1 + Katalysator 13	183
Katalysator 2 + Katalysator 14	320
Katalysator 4 + Katalysator 13	180
Katalysator 4 + Katalysator 14	325
Katalysator 4 + Katalysator 17	268
Katalysator 4 + Katalysator 25	274
Katalysator 11 + Katalysator 25	246

15

Anwendungsbeispiel 13**Zwei getrennte Schüttungen: Molybdänkatalysator vor Kupferkatalysator**

Es wurden Schüttungen aus je einem Kupfer- und einem Molybdänkatalysator

20 eingesetzt, wobei von beiden Katalysatoren die gleichen Volumina zum Einsatz kamen.

Am Beginn der Schüttung (Reaktoreingang) befand sich der Molybdänkatalysator; am

Ende des Reaktors der Kupferkatalysator. Dem Erdgas wurden 20 Vol.-ppm H₂S,

5 Vol.-ppm COS und 10 Vol.-ppm Tetrahydrothiophen zugesetzt. Die Versuchsdurch-

führung erfolgte analog Anwendungsbeispiel 11. In allen Versuchen brach zuerst

25 Tetrahydrothiophen (THT) durch das Katalysatorbett durch. Die Durchtrittszeiten bis zum Durchbruch von THT sind in Tabelle G wiedergegeben:

Tabelle G

Schüttung	Durchbruchszeit für THT in Stunden
Katalysator 13 + Katalysator 1	141
Katalysator 14 + Katalysator 2	121
Katalysator 13 + Katalysator 4	115
Katalysator 14 + Katalysator 4	111
Katalysator 17 + Katalysator 4	116
Katalysator 25 + Katalysator 4	100
Katalysator 25 + Katalysator 11	168

Katalysator 34

5 Zusammensetzung: 10 Gew.-% MoO₃ und 90 Gew.-% Al₂O₃.

480 g sprühgetrocknetes Aluminiumoxid (Pural® SB, der Firma SASOL, Litergewicht: 951 g/Liter; Glühverlust 24,9 Gew.-%) und 49 g Ammoniumheptamolybdat (der Firma Riedel de Haen) wurden gemischt, mit 85 ml verdünnter (85 %iger) Ameisensäure

10 verknnetet, bei einem Vordruck von 100 bar über eine Strangpresse zu 3 mm Strängen verformt, 4 h bei 200°C getrocknet und anschließend 2 h bei 750°C calciniert. Der Katalysator hatte eine BET-Oberfläche von 212 m²/g, ein Litergewicht von 723 g/Liter und ein Porenvolumen von 0,44 ml/g.

15 Katalysator 35

Zusammensetzung: 15 Gew.-% MoO₃ und 85 Gew.-% Al₂O₃.

451 g des Aluminiumoxids aus Katalysator 34 und 76 g Ammoniumheptamolybdat wurden gemischt, mit 65 ml verdünnter (85 %iger) Ameisensäure verknnetet, bei einem Vordruck von 90 bar über eine Strangpresse zu 3 mm Strängen verformt, 4 h bei 200°C getrocknet und anschließend 3 h bei 550°C calciniert. Der Katalysator hatte eine BET-Oberfläche von 289 m²/g, ein Litergewicht von 884 g/Liter und ein Porenvolumen von 0,40 ml/g.

25 Katalysator 36

Zusammensetzung: 20 Gew.-% MoO₃ und 80 Gew.-% Al₂O₃.

427 g des Aluminiumoxids aus Katalysator 34 und 98 g Ammoniumheptamolybdat wurden gemischt, mit 50 ml verdünnter (85 %iger) Ameisensäure verknnetet, bei einem Vordruck von 100 bar über eine Strangpresse zu 3 mm Strängen verformt, 4 h bei 200°C getrocknet und anschließend 2 h bei 750°C calciniert. Der Katalysator hatte eine

BET-Oberfläche von 294 m²/g, ein Litergewicht von 823 g/Liter und ein Porenvolumen von 0,42 ml/g.

Katalysator 37

- 5 Zusammensetzung: 15 Gew.-% MoO₃ auf Aluminiumoxid mit 50 Gew.-% Coriderit.

In einem Trockenmischer wurden 230 g Aluminiumoxid (Pural® SB der Firma SASOL), 95 g Ammoniumheptamolybdat und 310 g Cordierit (Mg-Al-Si-Mischoxid mit 20 Gew.-% Glühverlust) vermischt, mit 30 ml verdünnter (85 %iger) Ameisensäure verknetet, in 10 einer Kolbenpresse bei 130 bar zu 3 mm Strängen verformt, 4 h bei 200°C getrocknet und anschließend 2 h bei 750°C calciniert. Der Katalysator hatte eine BET-Oberfläche von 42 m²/g und ein Litergewicht von 1027 g/Liter.

Katalysator 38

- 15 Zusammensetzung: 15 Gew.-% MoO₃ und 85 Gew.-% Al₂O₃

600 g Aluminiumoxid-Sprühpulver (Pural® SB der Firma SASOL) wurden mit 440 ml Wasser und 18 ml verdünnter (85 %iger) Ameisensäure verknetet, in einer Kolbenpresse bei 95 bar zu Strängen mit 3 mm Durchmesser verformt, 4 h bei 200°C 20 getrocknet und 2 h bei 750°C calciniert.

Diese Stränge wurden mit einer 15,5 gew.-%igen Lösung aus Ammoniumhepta-molybdat getränkt, so dass zuletzt ein Mo-Anteil von 15 Gew.-% resultiert (berechnet als MoO₃). Der Katalysator wurde 4 h bei 200°C getrocknet und anschließend 2 h bei 25 550°C calciniert. Der Strangkatalysator hatte eine BET-Oberfläche von 143 m²/g, eine Wasseraufnahme von 0,35 ml/g und ein Litergewicht von 1028 g/Liter.

Katalysator 39

- 30 Zusammensetzung: 15 Gew.-% MoO₃ und 85 Gew.-% Al₂O₃

Die Herstellung erfolgte analog Katalysator 38 jedoch wurden die Aluminiumoxid-stränge 2 h bei 1050°C calciniert. Der Katalysator hatte eine BET-Oberfläche von 87 m²/g, eine Wasseraufnahme von 0,25 ml/g und ein Litergewicht von 1038 g/Liter.

35 Katalysator 40

- Zusammensetzung: 15 Gew.-% MoO₃ und 85 Gew.-% Al₂O₃.

600 g eines Aluminiumoxid-Strangträger (der Firma BASF) mit 3 mm Durchmesser (Porenvolumen von 0,65 ml/g, BET-Oberfläche von 223 m²/g, Rüttelgewicht von 40 649 g/l) wurden 2 h bei 750°C calciniert, anschließend mit einer 15,5 gew.-%igen

Lösung von Ammoniumheptamolybdat getränkt und anschließend 16 h bei 120°C getrocknet und bei 550°C für 3 Stunden calciniert. Der Katalysator hatte eine BET-Oberfläche von 160 m²/g, ein Litergewicht von 750 g und ein Porenvolumen von 0,5 ml/g.

5

Katalysator 41

Zusammensetzung: 15 Gew.-% MoO₃ und 85 Gew.-% Al₂O₃.

- Die Herstellung erfolgte analog Katalysator 40, jedoch wurde der Aluminiumoxidträger
10 2 h bei 1050°C calciniert. Der Katalysator hatte eine BET-Oberfläche von 77 m²/g, ein Porenvolumen von 0,39 ml/g und ein Litergewicht von 750 g/Liter.

Beispiel 42

Herstellung eines Cu-Zn-Al-Mo-Katalysators der Zusammensetzung 37 % CuO, 32 % ZnO, 17 % Al₂O₃ und 14 % MoO₃

- 495 g des Katalysators 19 wurden mit einer 15,5 gew.-%igen Lösung von Ammoniumheptamolybdat getränkt, 4 h bei 200°C getrocknet und 3 h bei 550°C calciniert. Der Katalysator hatte eine Wasseraufnahme von 0,24 ml/g, eine BET-Oberfläche von
20 38 m²/g und ein Litergewicht von 1248 g/Liter.

Beispiel 43

Herstellung eines Fe-Cu-Al-Katalysators mit 12,5 Gew.-% Fe₂O₃, 75 Gew.-% CuO und 12,5 Gew.-% Al₂O₃

- 25 Eine Lösung aus 260 g Eisen(II)nitrat Nonahydrat, 387 g Aluminiumnitrat Nonahydrat und 239 g Kupfernitrat in 2,5 Liter Wasser wurde unter Rühren bei 70°C und einem pH-Wert von 11 mit einer Lösung aus 1000 g Natronlauge in 2 Litern Wasser vermischt, das Fällprodukt mit 50 Liter Wasser gewaschen, 4 h bei 200°C getrocknet, 2 h bei 500°C kalziniert, mit 3 Gew.-% Grafit versetzt und zu 4,75 x 3 mm Tabletten verpresst.
30 Die Tabletten hatten eine Seitendruckfestigkeit von 36 N/Tablette, eine BET-Oberfläche von 115 m²/g und ein Porenvolumen von 0,24 ml/g.

Beispiel 44

- 35 Herstellung eines Al-Ni-Katalysators mit 75 Gew.-% NiO.

- Eine Lösung aus 775 g Aluminiumnitrat Nonahydrat und 729 g Nickelnitrat in 2,5 Liter Wasser wurde unter Rühren bei 70°C und einem pH-Wert von 11 mit einer Lösung aus 1000 g Natronlauge in 2 Litern Wasser vermischt, das Fällprodukt mit 50 Liter Wasser gewaschen, 4 h bei 200°C 4 h getrocknet, 2 h bei 500°C calciniert, mit 3 Gew.-% Grafit

vermischt und zu Tabletten 4,75 x 2 mm verpresst. Die Tabletten hatten eine Seiten- druckfestigkeit von 41 N/Tablette, eine BET-Oberfläche von 142 m²/g und ein Poren- volumen von 0,23 ml/g.

5 Beispiel 45

Herstellung eines Ni-Fe-Katalysators mit 20 Gew.-% Fe₂O₃.

Eine Lösung aus 417 g Eisen(III)nitrat Nonahydrat in 1,5 Liter Wasser und 1750 g einer wässrigen Lösung von Nickelnitrat mit einem Ni-Gehalt von 13,5 Gew.-% wurde unter

10 Rühren bei 70°C und einem pH-Wert von 11 mit einer Lösung aus 1000 g Natronlauge in 2 Litern Wasser vermischt, das Fällprodukt mit 50 Liter Wasser gewaschen, 4 h bei 200°C getrocknet, 2 h bei 500°C calciniert, mit 3 Gew.-% Grafit vermischt und zu 4,75 x 2 mm Tabletten verpresst. Die Tabletten hatten eine Seitendruckfestigkeit von 43 N/Tablette, eine BET-Oberfläche von 142 m²/g und ein Porenvolume von 0,23 ml/g.

15 Vergleichsbeispiel 11

Herstellung eines Ag-dotierten Na-Y-Zeolithen

20 250 g eines Na-Y-Zeolithen (CBV® 100 der Firma Zeolyst Int. mit einem Si/Al- Verhältnis von 5,1) wurden unter Rühren mit 2,5 l einer 0,5 molaren Lösung von Silbernitrat (424,6 g) versetzt, 4 h auf 80°C erhitzt, das Fällprodukt abfiltriert, einmal mit 500 ml Wasser gewaschen, 2 h bei 120°C getrocknet, 4 h bei 500°C calciniert (Auf- heizrate: 1°C/min), nochmals mit 2,5 l einer 0,5 molaren Silbernitratlösung 4h auf 80°C 25 erhitzt, abfiltriert, mit 500 ml Wasser, über Nacht bei 120°C getrocknet. Man erhielt 372 g des Zeoliths.

30 Vergleichsbeispiel 12

Na-Austausch des Ag-H-Y-Zeolithen

35 372 g des Zeoliths aus Vergleichsbeispiel 11 wurden unter Rühren mit 1860 ml einer 10 %igen Ammoniumnitratlösung versetzt, 4 h bei 80°C erhitzt, das Fällprodukt abfiltriert, nochmals mit einer frischen 10 %igen Ammoniumnitratlösung (1,860 l) versetzt, 4 h auf 80°C erhitzt, das Fällprodukt abfiltriert, 2 mal mit 500 ml Wasser gewaschen, 2 h bei 120°C getrocknet und 5 h bei 450°C calciniert (Aufheizrate: 1°C/ min). Man erhielt 150 g des Zeoliths.

Vergleichsbeispiel 13

Herstellung eines Cu-H-Y-Zeolithen

250 g des Na-Y-Zeolithen (CBV® 100 der Firma Zeolyst Int. mit einem Si/Al-Verhältnis

5 von 5,1) wurden unter Rühren mit einer 0,5 molaren Lösung von Kupfernitrat (290 g) versetzt, 4 h auf 80°C erhitzt, das Fällprodukt abfiltriert, einmal mit 500 ml Wasser gewaschen, 2 h bei 120°C getrocknet, 4 h bei 500°C calciniert (Aufheizrate: 1°C/min), nochmals mit 2,5 l einer 0,5 molaren Lösung Kupfernitrat 4h auf 80°C erhitzt, abfiltriert, mit 500 ml Wasser gewaschen, über Nacht bei 120°C getrocknet. Man erhielt 253 g

10 des Zeoliths.

253 g des Zeoliths wurden mit 1200 ml einer 10%-igen Ammoniumnitratlösung 4 h auf

80°C erhitzt, das Fällprodukt abfiltriert, nochmals mit einer frischen 10% Ammoniumnitratlösung (1,2 l) versetzt, 4 h auf 80°C erhitzt, das Fällprodukt abfiltriert, 2 mal mit

15 500 ml Wasser gewaschen, 2 h bei 120°C getrocknet, 5 h bei 450°C calciniert (Aufheizrate: 1°C/ min). Man erhielt 100,2 g des Zeoliths.

Vergleichsbeispiel 14

20 Cu-dotierte Aktivkohle Typ G-32 J (der Firma Süd Chemie). Die Aktivkohle hatte einen Kupfer-Gehalt von 4,5 Gew.-%, eine Oberfläche von 1120 m²/g und ein Schüttgewicht von ca. 550 g/Liter.

Versuchsdurchführung

25

Alle Katalysatoren bzw. Adsorber wurden als Splitt der Fraktion 1- 2 mm untersucht. Lediglich 1,5 mm Stränge und 1,5 mm Tabletten wurden direkt als solche eingesetzt. Als Reaktor diente ein beheizbares Edelstahlrohr, das von oben nach unten durchströmt wurde. Pro Versuch wurden 40 ml Katalysator eingesetzt.

30

Ein kommerziell verfügbares Erdgas (der Firma Linde) wurde verwendet. Dieses hatte die folgende Zusammensetzung: 84,5 Vol.-% Methan, 3,5 Vol.-% Ethan, 0,6 Vol.-% Propan, 1000 Vol.-ppm Butane, ca. 1200 Vol.-ppm höhere Kohlenwasserstoffe > C₄-KW; davon 100 ppm Benzol; 9,3 Vol.-% Stickstoff und 1,7 Vol.-% Kohlendioxid.

35

Das Gas wurde mit einem Volumenstrom von 240 Litern je Stunde über den Katalysator geleitet (Raum-Zeit-Geschwindigkeit von 6000 je Stunde). Alle Messungen erfolgten bei Standarddruck und Raumtemperatur. Auf eine Vorbehandlung der Katalysatoren /z.B. Reduktion) wurde verzichtet.

40

Zur Analytik des Gases nach Reaktor wurde ein kommerzieller Gaschromatograph eingesetzt, welcher über eine Zwei-Säulenschaltung und zwei Detektoren verfügte. Der erste Detektor, ein Flamm-Ionisations-Detektor (FID) diente zum Nachweis der einzelnen Kohlenwasserstoffe im Erdgas, insbesondere von Benzol. Der zweite

- 5 Detektor, ein Flamm-Photometrischer Detektor (FPD) war sensitiv für Schwefelverbindungen und erlaubte den Nachweis derartiger Verbindungen bis zu einer praktischen Nachweisgrenze von 40 ppb.

Nach Beendigung des Versuchs, d.h. nach Durchbruch der jeweils ersten Schwefel-

- 10 komponente (Nachweisgrenze ca. 40 ppb) wurde der Katalysator ausgebaut und mittels Standard-Verfahren (z.B. nach Ehrenberger; "Quantitative Organische Elementaranalyse", VCH Verlagsgesellschaft, Weinheim, 1991, Seite 242 ff.) der Gehalt an Schwefel bestimmt. Diese Ergebnisse waren mit einer Genauigkeit von +/- 5 % in allen Fällen identisch mit den über den Durchbruch der schwefelhaltigen Komponente

15 während der Messung ermittelten Ergebnisse.

Als Modellsubstanz für organische Schwefelverbindungen wurde Tetrahydrothiophen (THT) gewählt, da bekannt ist, dass sich zyklische Schwefelverbindungen im Gegensatz zu endständigen Schwefelverbindungen nur sehr schwer mittels Adsorption

20 entfernen lassen.

Versuche zur Adsorption anorganischer Schwefelverbindungen wurden mit COS und H₂S als Modellsubstanzen durchgeführt.

Versuchsreihe 1: Adsorption von organischen Schwefelverbindungen am Beispiel THT

Zur Messung der Adsorption von THT wurde dem Erdgas über einen Sättiger ein mittlerer THT-Gehalt von 15 Vol.-ppm aufgeprägt. Für die aufgeführten Katalysatoren 5 ergaben sich die nachfolgend genannten Adsorptionskapazitäten für THT (in g THT / Liter Katalysator) sowie für Benzol (in Gew.-%).

Katalysator	THT-Adsorption [g THT / Liter Katalysator]	Benzol-Adsorption [Gew.-%]
21	17,4	0,03
19	14,7	0,02
25	29,0	0,01
24	11,9	0,05
34	12,4	0,08
35	26,7	0,10
36	13,4	0,03
37	20,0	0,07
38	26,2	0,11
39	15,4	0,06
40	15,7	0,10
41	11,0	0,03
2	9,1	0,03
42	5,1	0,01
43	12,4	0,03
44	11,0	0,02
45	14,8	0,04

10 Nachfolgend die Ergebnisse der Vergleichsbeispiele:

Katalysator	THT-Adsorption [g THT / Liter Katalysator]	Benzol-Adsorption [Gew.-%]
Vergleichsbeispiel 11	34,0	2,3
Vergleichsbeispiel 12	16,1	2,1
Vergleichsbeispiel 13	13,2	2,1
Vergleichsbeispiel 14	15,9	1,7
Vergleichsbeispiel 6	13,5	1,8
Vergleichsbeispiel 7	14,2	2,0

Die Katalysatoren der Vergleichsbeispiele zeigen eine um den Faktor 50 erhöhte Adsorption von Benzol.

- Nachfolgende Tabelle zeigt die Ergebnisse einiger erfindungsgemäßer Katalysatoren
- 5 mit den Vergleichsbeispielen 6, 7 und 11 bis 14. Dem zu entschwefelnden Erdgas wurden je 15 Vol.-ppm COS und H₂S zudosiert. Die Bestimmung der Adsorptionskapazität für COS und H₂S erfolgte über eine Schwefelbestimmung der Katalysatoren nach Versuchsende. Bei allen Messungen trat COS zuerst durch das Katalysatorbett durch.

Katalysator	Schwefel aus COS / H ₂ S [Gew.-% S]	Benzol-Adsorption [Gew.-%]
2	7,0	0,04
42	6,5	0,01
Vergleichsbeispiel 11	2,2	2,2
Vergleichsbeispiel 12	1,1	2,2
Vergleichsbeispiel 13	0,8	2,3
Vergleichsbeispiel 14	0,5	1,8
Vergleichsbeispiel 6	0,2	1,9
Vergleichsbeispiel 7	0,3	2,2

10

Es zeigte sich, dass die erfindungsgemäßen Katalysatoren auch für die Entfernung von anorganischen Schwefelverbindungen aus Erdgas eingesetzt werden können. Es können hohe Beladungen an Schwefel erzielt werden. Gleichzeitig bleibt die Co-Adsorption von Benzol gering.

Verfahren zur Entfernung von Schwefelverbindungen aus kohlenwasserstoffhaltigen Gasen

Zusammenfassung

5

Die vorliegende Erfindung betrifft Verfahren zur Entfernung von Schwefelverbindungen aus kohlenwasserstoffhaltigen Gasen, indem man Katalysatoren, ausgenommen Aktivkohlen und Zeolithe, die Kupfer, Silber, Zink, Molybdän, Eisen, Cobalt, Nickel oder deren Gemische enthalten, bei Temperaturen von (-50) bis 150°C und einem Druck

10 von 0,1 bis 10 bar einsetzt.