Міністерство освіти і науки України Національний авіаційний університет Навчально-науковий інститут комп'ютерних інформаційних технологій Кафедра комп'ютеризованих систем управління

Лабораторна робота №2 Частина 1

з дисципліни «Телекомунікаційні технології комп'ютерних мереж» на тему «Кабелі комп'ютерних мереж на основі витої пари»

Виконав: студент ННІКІТ групи СП-325 Клокун В. Д. Перевірив: Пушкін Ю. О.

Київ 2018

1 МЕТА РОБОТИ

Ознайомитись з видами, конструкцією з характеристиками кабелю вита пара; процесами, які відбуваються в кабелі під час передачі сигналів, параметрами кабелів, які використовуються при прокладенні ліній зв'язку локальних мереж.

2 Контрольні запитання

2.1 Дайте визначечння понять «вита пара», «кабель вита пара»

Витою парою або провідником вита пара еазивають два провідники, покриті ізоляціжю і скручені в джгут з регулярним кроком.

Кабелі вита пара — це такі кабелі, які складаються з декількох витих пар, розміщених в загальній захисній оболонці.

2.2 З якою метою скручують провідники?

Скрутка проводів дозволяє зменшити індуктивність проводів, яка призводить до обмеження технічної швидкості. Крім того, скрутка сприяє зменшенню електричних завад, що наводяться сусідніми парами і зовнішніми джерелами.

2.3 Опишіть провідники витих пар

Провідники виготовляються з мідного дроту і можуть бути одножильними (solid — монолітними) або багатожильними (multiple-strand). Багатожильні провідники є джгутами, сплетеними з мідних або луджених мідних тоненьких дротинок. Монолітна жила витої пари має діаметр в межах AWG 26-22 (0,404 мм— 0,643 мм, найбільш популярний — 0,511 мм), а багатожильний провідник скручується з дротинок діаметром 0,18 мм.

2.4 Опишіть ізоляційну і захисну оболонки кабелю «вита пара»

Електричну ізоляцію провідників витих пар виготовляють з полівінілхлориду, для витих пар вищих категорій — з поліпропілену або тефлону. Товщина шару ізоляції жил складає 0,2–0,6 мм, причому стандарт ISO/IEC 118801 рекомендує, щоб діаметр провідника в ізоляції не перевищував 1,6 мм.

Від механічних і кліматичних впливів провідники кабелю захищає зовнішня діелектрична оболонка товщиною 0,5 мм–0,8 мм. Як правило її виготовляють з поліетилену або полівінилхлориду з додаванням крейди для придання крихкості, щоб легше було наламувати оболонку у місці розрізу. Поліетилен найбільш технологічний і відносно дешевий матеріал, має достатню механічну

міцність і вологостійкість, що важливо для кабелів зовнішнього прокладання, але він підтримує горіння.

Полівінилхлорид не підтримує горіння, але у процесі виділяє отруйні речовини, тому використовують спеціальну марку кабелів LSZH/LS0H (Low Smoke Zero Halogen). Такий кабель практично не горить, не містить галогени і при сильному горінні виділяє мало диму, однак і коштує на 20-30% дорожче полівінілхлоридових.

2.5 Що означає абревіатура AWG?

American Wire Gage — одиниці американського калібру дроту, виміри якого базуються на дюймах.

2.6 Опишіть схему симетричного електричного кола, утвореного провідниками витої пари

Вита пара утворює лінію передачі сигналу за схемою симетричного електричного кола (рис. 1). Приймач і передавач не мають гальванічного зв'язку один

U_C - напряжение полезного сигнала

U_п - напряжение помехи

Рис. 1: Схема симетричного електричного кола витої пари

з одним внаслідок використання узгоджуючих трансформаторів. Передавач генерує сигнал U_{tc} , який наводить на вихідних клемах вторинної обмотки протифазні сигнали $+0.5~U_c$ і $-0.5~U_c$. Тоді приймач реагує на різницю сигналів на обох провідниках на вхідних клемах первинної обмотки трансформатора приймача.

Напруги U_3 , наведені в результаті індукції і подані на первинну обмотку приймаючого трансформатора, є рівними за значенням і протилежними за знаком. В результаті різниця наведених потенціалів на вхідній обмотці дорівнює нулю і на вторинній обмотці трансформатора формується напруга сигналу.

2.7 Що означають поняття «швидкість поширення сигналу» і «затримка поширення»

Швидкість поширення сигналу (nominal velocity of propagation, NVP) визначається як відношення швидкості руху сигналу в провіднику до швидкості світла у вакуумі.

Затримка сигналу (delay) є похідною від швидкості поширення сигналу, вимірюється в нс/100м.

2.8 Що означають поняття «поверхневий ефект» і «індуктивне наведення струму»?

Суть поверхневого ефекту полягає в тому, що внаслідок самоіндукції струм у провіднику витісняється на його поверхню, тобто зменшується ефективний переріх провідника і збільшується його активний опір.

Індуктивне наведення струму полягає в тому, що внаслідок проходження високочастотного струму в одному провіднику за рахунок індукції наводиться вихрові струми в провідниках, розміщених поряд, і екранній оболонці, тобто у них створюється потенціал (напруга) завади U_3 . Зі збільшенням частоти сигналу енергія наведених струмів зростає і збільшується її вплив на сигнал.

2.9 Що означає поняття «перехресні індуктивні наведення»?

Перехресні індуктивні наведення означають, що високочастотний сигнал в одній парі індукує (наводить) струми і напруги, яка пропорційна потужності сигналу і створює перехідні завади (шуми), в інших парах кабелю.

2.10 Поясніть, що означають поняття «активний опір», «реактивний опір», «імпеданс»

Активний опір показує опір провідника постійному струму і залежить від параметрів даного провідника. Реактивний опір показує уявну частину імпедансу. Імпеданс характеризує опір провідника змінному струму і залежить від частоти струму. Імпеданс є повним опором провідника.

2.11 Поясніть причини затухання сигналу в кабелі вита пара і який параметр характеризує затухання

Затухання сигналу виникає через неоднорідність середовища провідника кабелю. Параметр, який характеризує затухання, називається коефіцієнтом затухання, і показує затухання на одиницю довжини (як правило, вимірюється у

$$A_{x} = 10 \log \left(\frac{1 \,\mathrm{MBT}}{P_{x}} \right).$$

2.12 Що характеризують параметри NEXT, FEXT, ELFEXT

Параметр NEXT (перехресні наведення на ближньому кінці) дозволяє оцінити стійкість кабеля у випадку, коли наведення утворюється в результаті дії сигналу, який генерується передавачем, підключеним до однієї з сусідніх пар на тому ж кінці кабелю, на якому працює приймач, підключений до підверженої пари.

FEXT (перехресні наведення на дальньому кінці) — це параметр, який дозволяє оцінити стійкість кабеля до наведень у випадку, коли передавач і приймач підключені до різних кінців кабелів.

Параметр ELFEXT є значенням FEXT, приведеним до рівня корисного сигналу на дальньому кінці кабелю. Цей параметр враховує затухання на дальному кінці пари, сигнал, якій наводить індукцію в досліджуваній парі.

3 Висновок

Ознайомились з видами, конструкцією з характеристиками кабелю вита пара; процесами, які відбуваються в кабелі під час передачі сигналів, параметрами кабелів, які використовуються при прокладенні ліній зв'язку локальних мереж.