ROZWIAZANIE WYGENEROWANE PRZEZ CHAT GPT

8. Rozwiń w szereg Fouriera funkcję $f(x) = \begin{cases} 0, & -\pi < x < 0, \\ x, & 0 \leqslant x < \pi, \end{cases}$ narysuj wykres sumy otrzymanego szeregu dla wszystkich $x \in \mathbb{R}$ oraz korzystając z otrzymanego rozwinięcia oblicz sumę szeregu liczbowego $1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$

"latex article amsmath amssymb

Dane wejściowe:

$$f(x) = \begin{cases} 0, & -\pi < x < 0, \\ x, & 0 \le x < \pi \end{cases}$$

Rozwiniecie funkcji w szereg Fouriera:

Ogólny wzór na rozwiniecie funkcji f(x) w szereg Fouriera:

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right)$$

Ze wzgledu na symetrie funkcji (funkcja nieparzysta), $a_n = 0$ dla $n \ge 0$. Liczymy tylko współczynniki b_n :

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

Podstawiamy $L = \pi$, f(x) w przedziałach $(-\pi, 0)$ i $(0, \pi)$:

$$b_n = \frac{1}{\pi} \left(\int_0^\pi x \sin(nx) \, dx + \int_{-\pi}^0 0 \cdot \sin(nx) \, dx \right) = \frac{1}{\pi} \int_0^\pi x \sin(nx) \, dx$$

Przeliczenie:

Wzór na
$$\int x \sin(ax) dx = -\frac{x}{a} \cos(ax) + \frac{1}{a^2} \sin(ax) + C$$

Podstawiamy a = n:

$$b_n = \frac{1}{\pi} \left[-\frac{x}{n} \cos(nx) + \frac{1}{n^2} \sin(nx) \right]_0^{\pi}$$

$$b_n = \frac{1}{\pi} \left[-\frac{\pi}{n} \cos(n\pi) + \frac{1}{n^2} \sin(n\pi) - \left(0 + \frac{1}{n^2} \sin(0)\right) \right]$$

$$b_n = \frac{1}{\pi} \left(-\frac{\pi}{n} (-1)^n \right) = \frac{(-1)^{n+1}}{n}$$

Szereg Fourierowski:

$$f(x) \sim \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx)$$

Obliczenie sumy szeregu:

$$\sum_{n=1, \text{ nieparzyste}}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{8}$$

Szukamy sumy $1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$:

$$S = \frac{\pi^2}{8}$$

Wynik końcowy:

$$S = \frac{\pi^2}{8}$$