Sprint 3
Calibrated
Techniques: Ways to
Improve Fraud
Detection Systems

Team Patrick
Shawn | Marco | Avie | Bevs

_

Credit Card Fraud

- Fraud committed using a credit card or any similar form of payment mechanism
- The purpose is to obtain unauthorized funds from the credit cardholder's account

Philippine Outlook Global Outlook

- → 25% of complaints received were related to credit cards
- → March -May 2020
 - ♦ 98.4% of criminal incidents reported were cyber or online in nature
 - Losses equivalent to 60.6
 M or 54.5% of all total bank losses

Source: Merchant Savy UK, 2020

Problem Overview

- Fraud Detection System
 - Tags fraudulent transactions
 - Automatic process
- Case study:
 - CEO's card was blocked
 - CEO was on travel

—

The Case of False Positives

 Occurs when merchants or financial institutions decline legitimate orders

Objectives

- 1. Review current fraud detection system
- 2. Recommend ways to make the system better

Overview of Fraudulent Transactions

Total credit card transactions (2018-2020)

Fraudulent transactions (2018-2020)

For the last 3 years:

- gradual decrease in total credit card transactions
- gradual increase in fraudulent transactions

Overview of Fraudulent Transactions

For the last 3 years, ~35% of total users experience fraud annually

~14% of the most recent user transactions are fraudulent

Client Profile data ssn | credit card number | account number | name | sex | address | profession | birthdate Spending Behavior data transaction number | transaction date and time | product category | amount | merchant | merchant location

Amount

Geospatial
Occurrence

Robinsons Supermarket

Merchants

Product Category

Time Period

Fraudulent Transactions: Client Profile (Sex, Address)

Fraudulent Transactions: Client Profile (Job)

Fraudulent Transactions: Client Profile (Age)

Fraudulent Transactions: Geospatial Occurrence

Fraud transactions mostly occurs on NCR Area and nearby provinces

Fraudulent Transactions: Geospatial Occurrence

Fraud transactions mostly occurs on NCR Area and nearby provinces

However, geospatial points are inaccurate. Many locations are outside land areas

Fraudulent Transactions: Most Common Merchants

Robinsons, Metro Retail Stores Groceries, and SM Retail Inc. are merchants with the highest occurrence of fraud

Fraudulent Transactions: Product Category

~80% of total fraud transactions came from the following categories

- Online Shopping (23.4%)
- Groceries (22.9%)
- Misc. Online Transactions (13%)
- Shopping (11.8%)
- Gas and Transport (8.2%)

Fraudulent Transactions: Time Period of Occurrence

 Fraudulent transactions occur most often during the weekend (Friday-Sun) and at 10PM - 3AM

Total number of fraudulent transactions per day of the week

Total number of fraudulent transactions per hour

Fraudulent Transactions: Most Common Amount

Majority of fraudulent transactions costs PHP 100 or less

Common Features of Fraudulent Transactions

Time Occurence

10PM-3AM

Day Occurrence

Friday to Sunday

Transaction Amount

PHP 100.00 and below

Product Category

Online Shopping, Groceries, Online Transactions, Shopping, Gas and Transport

Fraud Detection System Version 1.0

Fraud Detection System Version 1.0 Performance

Accuracy:

How many Fraud and Legitimate
Transactions were predicted accurately out of total transactions

Precision:

How many of those predicted as Legitimate are actually Legitimate

*single class metric

Recall:

How many Fraud cases are accurately identified as Fraud

*single class metric

Fraud Detection System Version 1.0

GBTClassifier: XGBoost

	Precision	Recall
Non-fraud	97%	97%
Fraud	97%	97%

Random Forest Classifier

	Precision	Recall
Non-fraud	94%	97%
Fraud	96%	94%

Fraud Detection System Version 1.0

GBTClassifier: XGBoost

gbt = GBTClassifier(labelCol='label', featuresCol="features", maxBins=250)

Confusion Matrix

TP: 17284	FP: 474	
FN: 470	TN: 17368	

Feature Importance

Amount	0.6518	Age	0.0039
Time	0.1489	Gender	0.0019
Merchant	0.1192	Merchant Distance	0.0
Category	0.0742	Day of the Week	0.0

Fraud Detection System

Fraud Detection System Version 2.0

Conclusion

- False positives must be reduced in order for fraud detection mechanisms to be cost effective
- Issues with false-positives can be summarized into 3 categories:
 - 1. Identity-related
 - 2. Technical
 - 3. Structural
- Consumer spending behavior VARY GREATLY
- Feature engineering is (almost) everything
- Need for a better model that can provide a deeper analysis of spending behavior

Fraud Detection System Version 2.0

Recommendations

- Identity-related (historical data + transaction data)
 - biometrics, IP address, conflicting billing + shipping information, updated card information...
- Technical (bank)
 - local domains, smart routing
- Structural (Version 2.0):
 - Increase processing power for further hyperparameter tuning
 - Extract better features
 - Increase number of features
 - Consistent updating and review