Introduction to Bayesian analysis for medical studies

Part II: Bayesian computation

Boris Hejblum

https://borishejblum.science

Graduate School of Health and Medical Sciences at the University of Copenhagen

June 11th, 2020

Estimating the *posterior* distribution is often costly

Intro

Bayesian computational statistics

Computational aspects of Bayesian inference can get sophisticated but are key to its successful application

Numerical integration – I

Real world applications: $\boldsymbol{\theta} = (\theta_1, \dots, \theta_d)$

 \Rightarrow joint *posterior* distribution of all d parameters

♠ hard to compute:

- complexe likelihood
- integrating constant $f(y) = \int_{\Theta^d} f(y|\theta) \pi(\theta) d\theta$
- . . .

Analytical form rarely available

- ⇒ numerical computations: integral of d multiplicity
 - difficult when d is big (numerical issues as soon as d > 4)

Numerical integration – II

Even dimension 1 can be tough!

Example:

Let $x_1,...,x_n$ iid according to a Cauchy distribution $\mathscr{C}(\theta,1)$ with prior $\pi(\theta) = \mathscr{N}(\mu,\sigma^2)$ (μ and σ known)

$$p(\theta|x_1,...,x_n) \propto f(x_1,...,x_n|\theta)\pi(\theta)$$
$$\propto e^{-\frac{(\theta-\mu)^2}{2\sigma^2}} \prod_{i=1}^n (1+(x_i-\theta)^2)^{-1}$$

 \wedge normalizing constant has no analytical form \Rightarrow no analytical form for this *posterior* distibution

Marginal posterior distributions

Objective: draw conclusion based on the joint *posterior* distribution

⇒ probability of all possible values for each parameter (i.e. their marginal distribution – uni-dimensional)

 $\underline{\wedge}$ Recovering all of the *posterior* density numerically requires the calculation of multidimensional integrals for each possible value of the parameter

⇒ a sufficiently precise computation seems unrealistic

Marginal posterior distributions

Objective: draw conclusion based on the joint *posterior* distribution

⇒ probability of all possible values for each parameter (i.e. their marginal distribution – uni-dimensional)

⚠ Recovering all of the posterior density numerically requires the calculation of multidimensional integrals for each possible value of the parameter

⇒ a sufficiently precise computation seems unrealistic

Algorithms based on **sampling simulations** especially **Markov chain Monte Carlo** (MCMC)