Ultracold molecule assembly

Yichao Yu

Ni Group/Harvard

Aug 11, 2017

- Strong and tunable interaction
- Rich internal energy levels
- High filling fraction
- Single site detection and manipulation

- Strong and tunable interaction
- Rich internal energy levels
- High filling fraction
- Single site detection and manipulation

- Strong and tunable interaction
- Rich internal energy levels
- High filling fraction
- Single site detection and manipulation

- Strong and tunable interaction
- Rich internal energy levels
- High filling fraction
- Single site detection and manipulation

- Strong and tunable interaction
- Rich internal energy levels
- High filling fraction
- Single site detection and manipulation

Applications

Simulation of many-body system^[1]

$$H \propto \sum V_{ij} \left(S_i^+ S_j^- + S_i^- S_j^+ \right)$$

[1] B. Yan et al., "Observation of dipolar spin-exchange interactions with lattice-confined polar molecules.", Nature **501**, 521–5 (2013).

Applications

[2] S. F. Yelin et al., "Schemes for robust quantum computation with polar molecules", Phys. Rev. A 74, 050301 (2006).

- MOT (Na + Cs)
- Loading single atoms
- Raman sideband cooling
- Merge traps
- Make molecules!

- MOT (Na + Cs)
- Loading single atoms
- Raman sideband cooling
- Merge traps
- Make molecules!

- MOT (Na + Cs)
- Loading single atoms
- Raman sideband cooling
- Merge traps
- Make molecules!

- MOT (Na + Cs)
- Loading single atoms
- Raman sideband cooling
- Merge traps
- Make molecules!

- MOT (Na + Cs)
- Loading single atoms
- Raman sideband cooling
- Merge traps
- Make molecules!

- MOT (Na + Cs)
- Loading single atoms
- Raman sideband cooling
- Merge traps
- Make molecules!

Atom loading and cooling

Single atoms

 85% ground state after Cesium Raman sideband cooling

Atom loading and cooling

- Single atoms
- 85% ground state after Cesium Raman sideband cooling

$$3^2 P_{3/2}$$

$$\begin{array}{c|c} \mathbf{3^2S_{1/2}} & \vdots \\ |2,-2;n\rangle & \vdots \\ |2,-2;n-1\rangle & \end{array}$$

- High initial temperature $(70\mu K)$
- High Lamb Dicke parameter $\eta \equiv kz_0$
- Large light shift
- Trap anharmonicity
- $1, -1; n-1 \rangle$ Off resonance scattering $\approx 3 \sim 15 \text{kHz}$

- High Lamb Dicke parameter $\eta \equiv kz_0$
- Trap anharmonicity

- High Lamb Dicke parameter $\eta \equiv kz_0$

- High initial temperature $(70\mu K)$
- High Lamb Dicke parameter $\eta \equiv kz_0$
- Large light shift
- Trap anharmonicity
- Off resonance scattering ≈ 3 ~ 15kHz

- High initial temperature $(70\mu K)$
- High Lamb Dicke parameter $\eta \equiv kz_0$
- Large light shift
- Trap anharmonicity
- Off resonance scattering $\approx 3 \sim 15 \text{kHz}$

- High initial temperature $(70\mu K)$
- High Lamb Dicke parameter $\eta \equiv kz_0$
- Large light shift
- Trap anharmonicity
- $1, -1; n-1 \rangle$ Off resonance scattering $\approx 3 \sim 15 \text{kHz}$

- High initial temperature $(70\mu K)$
- High Lamb Dicke parameter $\eta \equiv kz_0$
- Large light shift
- Trap anharmonicity
- $1, -1; n-1 \rangle$ Off resonance scattering $\approx 3 \sim 15 \text{kHz}$

- High initial temperature $(70\mu K)$
- High Lamb Dicke parameter $\eta \equiv kz_0$
- Large light shift
- Trap anharmonicity
- $|1,-1;n-1\rangle$ Off resonance scattering $\approx 3 \sim 15 \text{kHz}$

Raman sidebands

Raman sidebands

z axis (axial)

Axis	Ground state probability
x (Radial)	92(2)%
y (Radial)	95(2)%
z (Axial)	93(3)%

3D ground state: 81(4)% **Loss after cooling:** 15%

Total 3D ground state preparation fidelity: 69(3)%

Rabi flopping (radial)

Rabi flopping (radial)

Good agreement in ground state probability between spectrum and Rabi flopping data.

Rabi flopping (axial)

Decoherence caused by technical noise. E.g. 1.5 mG of magnetic field noise.

Conclusion

- Trapping of Na and Cs atoms
- Ground state cooling of Na^[3] and Cs

In progress

- Merge trap
- Photoassociation spectroscopy
- Make molecules

^[3] Y. Yu et al., "Motional ground state cooling outside the lamb-dicke regime", arXiv 1708.03296 (2017).

Aug 11, 2017

Strong dipole

Weak dipole

$$|0\rangle$$
 ———

$$|1\rangle$$
 — Weak dipole

$$|1\rangle$$
 — Weak dipole $|0\rangle$ — —

Merge trap

Making molecule

Master equation

$$rac{\mathrm{d}
ho}{\mathrm{d}t} = rac{1}{\mathrm{i}\hbar}[H,
ho] + \mathcal{L}_{\mathrm{relax}}(
ho) \ \mathcal{L}_{\mathrm{relax}}(
ho) = \sum_{m} C_{m}
ho C_{m}^{\dagger} - rac{1}{2}\sum_{m} \left(C_{m}C_{m}^{\dagger}
ho +
ho C_{m}C_{m}^{\dagger}
ight)$$