2. Perceptron Performance

☐ Bookmark this page

Verified Track Access

Graded assessments are available to Verified Track learners. Upgrade to unlock (\$300)

Save

Save

Save

Save

Homework due Sep 29, 2020 19:59 EDT Completed In class we initialized the perceptron algorithm with $\theta = 0$. In this problem we will also explore other initialization

choices.

algorithm (with offset θ_0). θ and θ_0 are initialized to zero.

2. (a) 2.0/2 points (graded)

The following table shows a data set and the number of times each point is misclassified during a run of the perceptron

 $i \quad x^{(i)} \quad y^{(i)}$ times misclassified 1 [-4, 2] +1 2 [-2, 1] +1 3 [-1, -1] -1 4 [2, 2] -1 5 [1, -2] -1

 θ as a list $[\theta_1, \theta_2]$ and θ_0 as a single number in the following boxes. Please enter θ :

Write down the state of θ and θ_0 after this run has completed (note, the algorithm may not yet have converged). Enter

[-4,2]

Please enter
$$heta_0$$
 :

Submit

You have used 1 of 3 attempts

not produce any mistakes during a run through the data.

Provide one example of a different initialization of
$$\theta$$
 such that the perceptron algorithm with this initialization would not produce any mistakes during a run through the data.

2. (b)

-2

-2

2. (c)

2/2 points (graded)

 $[\theta_1, \theta_2]$: [-1,1]

2.0/3 points (graded)

implies that it indeed converges. In this question, we will show that the result still holds even when heta is not initialized to 0.

In other words: Given a set of training examples that are linearly separable through the origin, show that the initialization of θ does not impact the perceptron algorithm's ability to eventually converge.

To derive the bounds for convergence, we assume the following inequalities holds: • There exists θ^* such that $\frac{y^{(i)}(\theta^*x^{(i)})}{\|\theta^*\|} \ge \gamma$ for all $i=1,\cdots,n$ and some $\gamma>0$

- All the examples are bounded $||x^{(i)}|| \leq R, i = 1, \dots, n$
- If θ is initialized to 0, we can show by induction that:

 $\theta^{(k)} \cdot \frac{\theta^*}{\|\theta^*\|} \ge k\gamma$

$$\theta^{(k+1)} \cdot \frac{\theta^*}{\|\theta^*\|} = (\theta^{(k)} + y^{(i)} x^{(i)}) \cdot \frac{\theta^*}{\|\theta^*\|} \ge (k+1) \gamma$$

If we initialize θ to a general (not necessarily 0) $\theta^{(0)}$, then:

For instance,

$$\theta^{(k)} \cdot \frac{\theta^*}{\|\theta^*\|} \ge a + k\gamma$$

 $\|...\|.$

Determine the formulation of a in terms of θ^* and $\theta^{(0)}$:

theta^{0}*theta^{star}/(norm(theta^{star}))

Important: Please enter θ^* as theta^{star} and $\theta^{(0)}$ as theta^{0}, and use norm(...) for the vector norm

If
$$heta$$
 is initialized to 0 , we can show by induction that:

For instance,

$$\|\theta^{(k)}\|^2 < kR^2 + c^2$$

 $\left\|\theta^{(k)}\right\|^2 \le kR^2$

 $\|\theta^{(k+1)}\|^2 \le \|\theta^{(k)} + y^{(i)}x^{(i)}\|^2 \le \|\theta^{(k)}\|^2 + R^2$

Determine the formulation of c^2 in terms of $\theta^{(0)}$: $c^2 =$ norm(theta^{0})^2

If we initialize heta to a general (not necessarily 0) $heta^{(0)}$, then:

From the above inequality, we can derive the inequality
$$\|\theta^{(k)}\| \leq c + \sqrt{k}R$$
 by applying the following inequality: $\sqrt{x^2 + y^2} \leq \sqrt{(x + y)^2}$ if $x, y > 0$. If θ is initialized to 0 , we then use the fact that $1 \geq \frac{\theta^{(k)}}{\|\theta^{(k)}\|} \cdot \frac{\theta^*}{\|\theta^*\|}$ to get the upper bound $k \leq \frac{R^2}{v^2}$.

 $\|\theta^{(k)}\| \le c + \sqrt{k}R$ to derive a bound on the number of iterations k.

Note: Give your answer in terms of a, c, R, γ (enter the latter as gamma).

Hint: Use the larger root of a quadratic equation to obtain the upper bound.

In the case where we initialize θ to a general $\theta^{(0)}$, use the inequality for $\theta^{(k)} \cdot \frac{\theta^*}{\|\theta^*\|}$ above and the inequality

a*r*c

STANDARD NOTATION

2. (d) 2/2 points (graded)

You have used 2 of 3 attempts

Yes

training set must be the same. Are the resulting θ 's the same regardless of the initialization?

Since the convergence of the perceptron algorithm doesn't depend on the initialization, the end performance on the

Yes

No

Submit

No

 $k \leq$

 $a \cdot r \cdot c$

Submit

You have used 2 of 3 attempts