1 Exam 3 - Stochastics Solutions

1. Show that the process defined by

$$Y(t) = \sinh(C + t + X(t))$$

where X(t) is a Brownian motion, sinh is the hyperbolic sine function and $C = \sinh^{-1}(Y_0)$ is a solution of the stochastic differential equation

$$dY(t) = \left(\sqrt{1 + Y(t)^2} + \frac{1}{2}Y(t)\right)dt + \left(\sqrt{1 + Y(t)^2}\right)dX(t)$$

with initial condition $Y(0) = Y_0$

Hint: Use the Itô formula with $F(t, z) = \sinh(t + z)$.

Let $F(t, z) = \sinh(t + z)$, then

$$\frac{\partial F}{\partial t}(t,z) = \cosh(t+z)$$

$$\frac{\partial F}{\partial z}(t,z) = \cosh(t+z)$$

$$\frac{\partial^2 F}{\partial z^2}(t,z) = \sinh(t+z)$$

Applying Itô's formula to F(t, C + X(t)),

$$\begin{split} dY(t) &= dF(t,C+X(t)) \\ &= \left(\frac{\partial F}{\partial t}(t,C+X(t)) + \frac{1}{2}\frac{\partial^2 F}{\partial z^2}(t,C+X(t))\right)dt + \frac{\partial F}{\partial z}(t,C+X(t))dX(t) \\ &= \left(\cosh(t+C+X(t)) + \frac{1}{2}\sinh(t+C+X(t))\right)dt + \cosh(t+C+X(t))dX(t) \end{split}$$

Since $\cosh(z) = \sqrt{1 + \sinh^2(z)}$, then

$$dY(t) = \left(\sqrt{1+\sinh^2(t+C+X(t))} + \frac{1}{2}\sinh(t+C+X(t))\right)dt + \sqrt{1+\sinh^2(t+C+X(t))}dX(t)$$

Substituting $Y(t) = \sinh(C + t + X(t))$ in the equation, we can conclude that

$$dY(t) = \left(\sqrt{1+Y(t)^2} + \frac{1}{2}Y(t)\right)dt + \left(\sqrt{1+Y(t)^2}\right)dX(t)$$

2. i. Let ξ_n be a sequence of \mathcal{F}_n -adapted random variables. Show that if ξ_n is a martingale with respect to \mathcal{F}_n , then

$$\mathbf{E}[\xi_1] = \mathbf{E}[\xi_1] = \ldots = \mathbf{E}[\xi_n] = \ldots$$

Hint: go back to the definition of martingales and consider the $\mathbf{E}[\xi_{n+1}|\mathcal{F}_n]$

By definition of martingales,

$$\mathbf{E}[\xi_{n+1}|\mathcal{F}_n] = \xi_n$$

for all n.

Taking the (unconditional) expectation on both sides and applying the third property of conditional expectations,

$$\mathbf{E}[\xi_n] = \mathbf{E}\left[\mathbf{E}[\xi_{n+1}|\mathcal{F}_n]\right] = \mathbf{E}[\xi_{n+1}]$$

for all n. Hence

$$\mathbf{E}[\xi_1] = \mathbf{E}[\xi_2] = \ldots = \mathbf{E}[\xi_n] = \ldots$$

as required.

ii. Let ξ_n be a sequence of \mathcal{F}_n -adapted random variables such that $\mathbf{E}[|\xi_n^2|] < \infty$. Show that if ξ_n is a martingale with respect to \mathcal{F}_n , then ξ_n^2 is a submartingale with respect to \mathcal{F}_n .

Hint: use Jensen's inequality with $f(x) = x^2$.

If ξ_n is adapted to \mathcal{F}_n , then so is ξ_n^2 . By definition of martingales,

$$\mathbf{E}[\xi_{n+1}|\mathcal{F}_n] = \xi_n$$

Let f be a convex function, then by Jensen's inequality,

$$f(\xi_n) = f\left(\mathbf{E}[\xi_{n+1}|\mathcal{F}_n]\right) \le \mathbf{E}[f\left(\xi_{n+1}\right)|\mathcal{F}_n]$$

for all n.

In particular, if $f(x) = x^2$, then

$$\xi_n^2 = (\mathbf{E}[\xi_{n+1}|\mathcal{F}_n])^2 \le \mathbf{E}[\xi_{n+1}^2|\mathcal{F}_n]$$

for all n. This is the definition of submartingales and therefore ξ_n^2 is indeed submartingale with respect to \mathcal{F}_n