Quickies

Q.1: nein, es gibt auch unendliche.

Q.2: nein.

Q.3: nein.

Q.4: ja. Man ersetze F durch Q \ F.

O.5: ja, sogar regulär.

Q.6: nein.

Aufgabe 1

1.1:

- Übergänge können doppelt oder auch gar nicht belegt sein, z.B. $S \rightarrow aA \mid aB$.
- Die Route muss nicht eindeutig sein.

1.2:

Ergänze bei Regeln der Form Nichtterminalsymbol (NTS) geht auf Terminalsymbol (TS) $A \rightarrow b$ das implizite Nichtterminalsymbol, das dann auf Epsilon geht.

Prüfe bei jedem NTS auf der linken Seite, ob auf dessen rechter Seite ein TS (mindestens) doppelt vorkommt, z.B. $A \rightarrow bA \mid bS$. Wenn nein, dann bist du fertig. Ansonsten:

Wähle einen der Knoten A aus, bei dem doppelte TS vorkommen und fixiere nun auch das TS b.

Sammle zu diesem Paar $A \rightarrow b \square$ alle NTS und packe sie in die Menge M.

```
Also M = \{X \in V \mid \text{ es gibt Regel } A \rightarrow bX\}, im Beispiel: M = \{A,S\}.
```

Wir löschen nun alle Regeln, die bei der Erzeugung von M beteiligt waren und ersetzen sie durch eine neue Regel $A \rightarrow bN$ mit einem neuen Knoten N

Jetzt vereinigen wir alle rechten Seiten zu allen NTS aus M und darauf schicken wir einen neuen Knoten N. Im Beispiel also die rechte Seite von A (was jetzt b N ist) und von S.

Wir beginnen von vorne.

```
1.3:
```

```
\langle S \rangle \rightarrow a \langle A \rangle \mid b \langle Y \rangle //keine Probleme

\langle A \rangle \rightarrow a \langle Y \rangle \mid b \langle AS \rangle //bA und bS werden zu bAS zusammengefasst.

\langle AS \rangle \rightarrow a \langle AY \rangle \mid b \langle ASY \rangle //Spaltenweise vereinigen

\langle AY \rangle \rightarrow \varepsilon \mid a \langle Y \rangle \mid b \langle AS \rangle // A hat kein Epsilon, daher ist A mit Epsilon neuer Zustand.

\langle ASY \rangle \rightarrow \varepsilon \mid a \langle AY \rangle \mid b \langle ASY \rangle //analog, AS hat auch kein Epsilon.

\langle Y \rangle \rightarrow \varepsilon //Die akzeptierenden Endzustände enthalten das Y.

//Zustand \langle SY \rangle sowie Trap kommen nicht vor.
```

```
1.4:
                                                php-Implementierung unter <a href="https://bit.ly/2G4VFEB">https://bit.ly/2G4VFEB</a>
programm DEA konvertierbare Grammatikanpassung
                                 //für L \rightarrow Rt , "oder" wird als mehrere Übergänge interpretiert.
struct Übergang {
  NTS L;
  NTS | null R;
                                  //Regeln der Form L \rightarrow Rt werden behandelt als L \rightarrow \varepsilon t
  TS | null t;
}
struct Grammatik {
  Menge an NTS V;
  Menge an TS \Sigma;
  Menge an Übergang T:
  Start-NTS S
}
funktion Grammatikanpassung(Grammatik g) returns Grammatik {
  g = g.clone();
                                                        //Kopie von g erzeugen
  falls (es keinen Übergang der Form Y \rightarrow \varepsilon und sonst auf garnichts gibt), dann {
      g.V.add(neuer NTS Y);
                                                       //Y wird der akzeptierende Endzustand
      g.T.add(neuer Übergang Y \rightarrow \varepsilon)
   } ansonsten nenne diesen Knoten Y.
   \forall NTS A \in q.V {
                                                        //Schleife über NTS
      g = pruefeUebergangeMitLinkerSeite(g, A);
   }
  return g;
}
funktion pruefeUebergangeMitLinkerSeite(Grammatik g, NTS A) returns Grammatik {
   \forall TS b \in g.\Sigma  {
      falls ( A \rightarrow b in g.T enthalten), dann {
         g.T.entferne ( A \rightarrow b );
         g.T.add ( A \rightarrow bY );
                                                        //Y war der oben definierte Endzustand
      Menge P := \{ Übergang U \in g.T \mid U.L = A \land U.t = b \}; //d.h. U = A \rightarrow t \square
      falls (|P| \ge 2), dann {
                                                  // Problem: Z_0 \rightarrow zZ_1 \mid zZ_2
         Menge M := \{U.R \in V \mid U \in P\} = \{X \in V \mid \text{ es gibt in T Regel } A \rightarrow bX\};
         g.T.entferneAlle (P);
                                                       // Probleme löschen. Menge M behält Infos.
         neuer NTS N;
                                                        // Ersatzknoten N
         g.T.add(neuer Übergang( A \rightarrow b N )); // Anbindung an das A
         \forall NTS B \in M \forall Übergang W \in g.T mit W.L=B {
            g.T.add(neuer Übergang( N \rightarrow W.t W.R ));
         falls es in g noch keinen solchen Knoten N gibt, dann {
            g.V.add(N);
            g = pruefeUebergangeMitLinkerSeite(g, N);
         }
                                                        // endif ( |P| \geq 2 )
      }
                                                        // next b
   }
  return g;
```

Aufgabe 2

$$L_{1} = \{ww^{R} \mid w \in \{0,1,2,3,4\}^{+} \land |w| \le 4\}$$

$$L_{2} = \{a^{n}b^{m}b^{m}a^{n} \mid n,m \in \mathbb{N}\}$$

Lösung: L₁ ist <u>regulär</u>. L₂ ist <u>nicht regulär</u>.

 L_1 ist endlich mit $|L_1|=780=\sum_{i=1}^45^i=\sum_{i=1}^4$ Anzahl der Wörter aus 5 Zeichen mit Länge genau i Jede endliche Sprache ist regulär.

zu L₂: Verwenden des Pumping-Lemmas:

- Annahme L₂ regulär mit Pumping-Konstante p.
- Wähle Wort $\mathbf{w} := \mathbf{a}^p \mathbf{b}^p \mathbf{a}^p \in L_2 \wedge |\mathbf{w}| = 4p > p$.
- Pumping-Garantien: $/\!\!/ links : \Sigma^* \times \mathbb{N}_0 \rightarrow \Sigma^*$, Abbildungsvorschrift klar $\exists xyz = w \land 1 \leq |y| \leq |xy| \leq p \land xz \in L_2$
- Weil $|xy| \le p$ und links $(w, p) = a^p$ ist $xy \in a^*$. Weil $|y| \ge 1$: $\exists_{1 \le k \le p}$: $y = a^k$.
- $L_2 \ni xz = a^{p-k}b^pb^pa^p \notin L_2$ WIDERSPRUCH. Annahme falsch. L_2 nicht regulär.

Aufgabe 3

$$L_1 := \{ \text{Rock , Lizard , Spock } \}$$

 $L_2 := \{ w \in \{0,1\}^* \mid 5 \mid \#_1(w) \}$
 $L_3 := \{ w \in \{0,1\}^* \mid \#_1(w) = 5 \}$

Reprä.	z xz ∈ L ₁	z xz ∉ L ₁
ε	Rock, Lizard, Spock	ε, R, ock , L, S, T
R	ock	ε, ck, o, S
Ro	ck	ε, k, c, S
Roc	k	ε, S
Rock	ε	S, L, T
S	pock	ε, ock

Reprä.	$z \mid xz \in L_1$	z xz ∉ L₁
L	izard	ε, zard, S
Li	zard	ε, ard, S
Liz	ard	ε, rd, S
Liza	rd	ε, d, S
Lizar	d	ε
T //Trap		alles: Σ^*

Reprä.	z xz ∈ L ₂	z xz ∉ L ₂
ε	ε, 11111, 1 ¹⁰	1111, 1
1	1111, 1 ⁹	ε, 111, 1, 0
11	111, 1 ⁸	ε, 11, 1, 0
111	11, 17	ε, 1, 0
1111	1, 1 ⁶	ε, 1111, 0
// no trap //		

Reprä.	z xz ∈ L ₃	z xz ∉ L ₃
ε	11111, 01001111	ε, 1111, 1, 0
1	1111, 101011	ε, 111, 1, 0
11	111, 1011	ε, 11, 1, 0
111	11, 01010	ε, 1, 0
1111	1, 00001	ε, 1111, 0
11111	ε, 0, 00	1, 11,
111111 //trap		alles: Σ^*

Aufgabe 4

 $L_1 := \{ww^R \mid w \in \Sigma^*\}$ ist <u>nicht regulär</u>.

Widerspruchsbeweis mit Pumping-Lemma:

- Annahme L₁ regulär mit Pumping-Konstante p. Seien $a,b \in \Sigma, a \neq b$ // $|\Sigma| \geq 2$
- Wähle Wort $\mathbf{w} := \mathbf{a}^p \mathbf{b} \mathbf{b} \mathbf{a}^p \in L_1 \wedge |\mathbf{w}| = 2p+2 > p$.
- Pumping-Garantien: $// links : \Sigma^* \times \mathbb{N}_0 \rightarrow \Sigma^*$, Abbildungsvorschrift klar $\exists xyz = w \land 1 \leq |y| \leq |xy| \leq p \land xz \in L_1$
- Weil $|xy| \le p$ und links $(w, p) = a^p$ ist $xy \in a^*$. Weil $|y| \ge 1$: $\exists_{1 \le k \le p}$: $y = a^k$.
- $L_2 \ni xz = a^{p-k}bba^p \notin L_2$ WIDERSPRUCH. Annahme falsch. L_2 nicht regulär.

 $L_2 := \{0^m 1^n 0^n \mid n, m \in \mathbb{N}\}$ // wobei $0 \notin \mathbb{N}$ ist <u>nicht regulär</u>.

Widerspruchsbeweis mit Pumping-Lemma:

- Annahme L₂ regulär mit Pumping-Konstante p.
- Wähle Wort $w := \mathbf{0} \mathbf{1}^p \mathbf{0}^p \in L_1 \land |w| = 2p+1 > p$.
- Pumping-Garantien:

$$\exists xyz = w \land 1 \le |y| \le |xy| \le p \land xz \in L_2$$

• Weil $1 \le |y| \le |xy| \le p$ und links $(w, p) = 0.1^{p-1}$ ist $xy \in 0.1^*$.

Fall 1:
$$x = \varepsilon$$

$$y \in 01^*$$
, nämlich $\exists_{0 \le k \le p-1} : y = 01^k$.

Dann
$$L_2 \ni xz = z = 1^{p-k} 0^p \notin L_2$$
 WIDERSPRUCH

Fall 2: *x* beginnt mit 0

$$y \in 1^*$$
, nämlich $\exists_{1 \le k \le p-1} : y = 1^k$

 $// k = |y| \ge 1$

Dann $L_2 \ni xz = 01^{p-k}0^p \notin L_2$ WIDERSPRUCH

• Alle Fälle führen zum Widerspruch. Annahme falsch. L₂ nicht regulär.