Instituto Tecnológico de Costa Rica -Escuela de Ingeniería en Computación Campus Tecnológico Local San José - I Semestre 2022

Redes neuronales convolucionales Estudiantes: Justin Bogantes Rodriguez Carlos Kruse Alvarenga

- 1. Explique en sus propias palabras cuál es el problema que resuelve las redes convolucionales(10 pts)
 - a. Este tipo de redes neuronales es una variación de un perceptrón multicapa , son muy efectivos para tareas como la clasificación y segmentación de imágenes por lo que son buenos en reconocer objetos estas mismas son puestas en entrenamiento para que aprendan a reconocer variedad de objetos dentro de las imágenes. Se toma como input las imagenes a las cuales se les asigna el pesos a ciertos elementos en la imagen para así poder diferenciar unos de otros. Consta de varias capas, 2 capas ocultas , las cuales son capa convencional y la capa pooling.
- 2. Explique en qué se diferencia una red convolucional de una red neuronal tradicional (30 pts)
 - una red tradicional multiplaca analiza las características como ancho ,alto , grosor mientras que una Red Neuronal Convolucional analiza pixeles de una imagen
 - En una Red Neuronal Convolucional existen 2 tipos de capas ocultas convolución y subsampling en una red tradicional se elige la cantidad de neuronas para las capas ocultas
 - c. En una Red Neuronal Convolucional no hay neuronas ni pesos en proyecta múltiples capas en las imágenes y usa la filtración para analizar las entradas de imágenes.
- 3. Haga un cuadro con la explicación de los pros y contras de la pérdida de información en una red convolucional (10 pts)

a.

Pros	Contras
Reduce la dimensionalidad de la red	Ignora la relación entre un segmento y el todo de la imagen
La agrupación máxima de capas es realmente muy simple	El backpropagation es más complejo en este tipo de redes neuronales
Toma los máximos valores contenidos en la ventana como salida	

4. ¿Para qué sirve la función de activación RELU, cuál es su fórmula? De un ejemplo numérico.(15 pts)

La función ReLU ayuda al algoritmo a identificar elementos no lineales en una imagen. Su fórmula es:

$$f(x) = \max(0, x)$$

Esto quiere decir que si x es negativo, se convierte en 0, y si es positivo, se mantiene igual. Por ejemplo:

1.
$$x = 5$$

 $f(5) = max(0, 5) = 5$
2. $x = -1$
 $f(-1) = max(0, -1) = 0$

5. Desarrolle paso a paso y gráficamente la aplicación de un filtro con strides = 3. (20 pts)

Supongamos que tenemos una matriz de 6x6 y un kernel de 3x3. La matriz resultante será de 2x2:

3	6	7	4	0	3
1	2	7	4	6	6
3	9	8	6	6	8
3	6	9	5	3	3
6	3	6	4	3	7
1	4	2	3	5	8

1	0	1
0	1	0
1	1	0

Comenzamos con la esquina superior izquierda. El resultado de la operación es

Primera columna: $3 \times 1 + 1 \times 0 + 3 \times 1 = 6$ Segunda columna: $6 \times 0 + 2 \times 1 + 9 \times 1 = 11$ Tercera columna: $7 \times 1 + 7 \times 0 + 8 \times 0 = 7$

Total: 24

3	6	7	4	0	3
1	2	7	4	6	6
3	9	8	6	6	8
3	6	9	5	3	3
6	3	6	4	3	7
1	4	2	3	5	8

1	0	1
0	1	0
1	1	0

24	

Para la esquina superior derecha realizamos lo mismo:

Primera columna: 4 + 6 = 10 Segunda columna: 6 + 6 = 12

Tercera columna: 3

Total: 25

3	6	7	4	0	3
1	2	7	4	6	6
3	9	8	6	6	8
3	6	9	5	3	3
6	3	6	4	3	7
1	4	2	3	5	8

1	0	1
0	1	0
1	1	0

Esquina inferior izquierda:

Primera columna: 3 + 1 = 4Segunda columna: 3 + 4 = 7

Tercera columna: 9

Total: 20

3	6	7	4	0	3
1	2	7	4	6	6
3	9	8	6	6	8
3	6	9	5	3	3
6	3	6	4	3	7
1	4	2	3	5	8

1	0	1
0	1	0
1	1	0

24	25
20	

Esquina inferior derecha:

Primera columna: 5 + 3 = 8Segunda columna: 3 + 5 = 8

Tercera columna: 3

Total: 19

-						
	3	6	7	4	0	3
	1	2	7	4	6	6
	3	9	8	6	6	8
	3	6	9	5	3	3
Ī	6	3	6	4	3	7
	1	4	2	3	5	8

1	0	1
0	1	0
1	1	0

24	25
20	19

Por lo que al final obtenemos la siguiente matriz:

24	25
20	19

6. Dibuje una arquitectura de red convolucional. (15 pts)

