Projekt programistyczny

Podstawy internetu rzeczy Prowadzący laboratorium: dr inż. Krzysztof Chudzik

> Kacper Gaudyn, nr indeksu 266873 Kuba Krąpiec, nr indeksu 266503 Michał Pesta, nr indeksu 266899 Michał Trojanowski, nr indeksu 266864

> > Data ukończenia pracy: ...

Spis treści

1	$\mathbf{W}\mathbf{y}$	ymagania projektowe					
	1.1	Podstawowe wymagania funkcjonalne					
		1.1.1 Kierowca					
		1.1.2 Pracownik					
		1.1.3 Administrator					
	1.2	Podstawowe wymagania niefunkcjonalne					
2		s architektury systemu					
2	Opi						
2	Opi 2.1	s architektury systemu					
2	Opi 2.1 2.2	is architektury systemu Elementy architektury z opisem					
2	Opi 2.1 2.2	is architektury systemu Elementy architektury z opisem					

1 Wymagania projektowe

1.1 Podstawowe wymagania funkcjonalne

1.1.1 Kierowca

- Jako kierowca chcę zmieniać przystanki za pomocą terminalu w trakcie wykonywania kursu
- Jako kierowca chcę wybierać trasę kursu w terminalu przy rozpoczynaniu jazdy
- Jako kierowca chcę za pomocą terminalu rozpoczynać jazdę i ją kończyć na dowolnym przystanku
- Jako kierowca chcę, aby po dotarciu na ostatni przystanek jazda kończyła się automatycznie

1.1.2 Pracownik

- Jako pracownik chcę wsiadać na przystanku i płacić za przejazd za pomocą swojej karty pracowniczej
- Jako pracownik chcę, aby koszt przejazdu był zależny od przejechanych przystanków i był pobierany dopiero po zakończeniu przejazdu (przyłożeniu karty pracowniczej drugi raz)

1.1.3 Administrator

- Jako administrator chcę zarządzać¹ wszystkimi kursami
- Jako administrator chcę zarządzać wszystkimi przystankami
- Jako administrator chcę zarządzać wszystkimi pracownikami, w szczególności ilością pieniędzy na ich koncie

1.2 Podstawowe wymagania niefunkcjonalne

- System powinien obsługiwać więcej niż jednego pracownika naraz
- System powinien obsługiwać wiele pojazdów (w tym terminalów) naraz
- Operacje wykonywane na terminalu (płatność przez pracownika, zmiana trasy i przystanków przez kierowcę) powinny być jak najszybciej przekazywane do bazy danych

¹Poprzez zarządzanie rozumiemy operacje: dodawania, odczytu, aktualizowania i usuwania

2 Opis architektury systemu

2.1 Elementy architektury z opisem

- Panel administracyjny służy administratorom do zarządzania danymi
- Baza danych zawiera wszystkie dane
- REST API zarządza danymi bazy danych i udostępnia odpowiednie operacje innym podmiotom
- Broker MQTT komunikuje się z terminalami w pojazdach i przekazuje informacje o przejechanych przystankach i płatnościach
- Terminal znajduje się w każdym pojeździe, umożliwia kierowcy ustalanie trasy i zmianę przystanków, oraz umożliwia pracownikom płacenie za swoje przejazdy
- Użytkownicy
 - Kierowca kieruje pojazdem i na terminalu może zmieniać trasy, przystanki
 - Pracownik może wsiadać do pojazdów i płacić w terminalu za przejazd kartą
 - Administrator zarządza danymi w systemie

2.2 Graficzna reprezentacja architektury

Rysunek 1: Diagram elementów architektury z kierunkami przekazywania danych

2.3 Baza danych

2.3.1 Schemat bazy danych

Rysunek 2: Tabele bazy danych z zaznaczonymi relacjami między nimi

2.3.2 Scenariusze i ich wpływ na dane

1. Pracownik wsiada na przystanku, przykłada kartę i po przejechaniu 3 przystanków przykłada ją znowu aby zapłacić i wysiada.

Zakładamy, że każdy przystanek kosztuje 10, czyli pracownik zapłaci 30.

5

1

Workers								
WorkerID	WorkerFirstName	WorkerLastName	WorkerBalance	WorkerCardID				
1	Jan	Kowalski	100	ABC				

Rysunek 3: Dane w bazie przed wykonaniem scenariusza

Workers									
WorkerID	WorkerFirstName	WorkerLast	Name WorkerBala	ance WorkerCardID					
1	Jan	Kowalski	70	ABC					
	RideID	WorkerID	StopsTraveled						

Rysunek 4: Dane w bazie po wykonaniu scenariusza

W tabeli Workers zmieniła się kolumna WorkerBalance, a w tabeli CurrentRides został dodany nowy rekord.

3