Chapter 22 Even Answers

- **2.** (a) 33.3% (b) 2/3
- **4.** 667 J, 467 J
- **6.** 55.4%
- **8**. 197 kJ
- **10.** (a) 26.8% (b) 42.3%
- **12.** 546°C
- **14.** (a) 564 K (b) 212 kW (c) 47.5%
- **16.** 453 K
- **18.** (a)

State	P (kPa)	V(L)	T(K)	
A	1400	10.0	720	
\boldsymbol{B}	875	16.0	720	
\boldsymbol{C}	445	24.0	549	
D	712	15.0	549	

(b)

Process	Q(kJ)	W(kJ)	$\Delta E_{\rm int}$ (kJ)
$A \rightarrow B$	6.58	6.58	0
$B \rightarrow C$	0	4.99	-4.99
$C \rightarrow D$	-5.02	-5.02	0
$D \rightarrow A$	0	-4.99	4.99
ABCDA	1.56	1.56	0

- ABCDA | 1.56 (c) $e = e_C = 0.237$
- **20.** (a) 51.2% (b) 36.2%
- **22.** (a) and (b)

State	T(K)	P(kPa)	V(cm ³)	$E_{\rm int}(J)$
A	293	100	500	125
В	673	1840	62.5	287
C	1023	2790	62.5	436
D	445	152	500	190
A	293	100	500	125

Process	Q(J)	W(J)	$\Delta E_{ m int}({ m J})$
$A \rightarrow B$	0	-162	162
$B \rightarrow C$	149	0	149
$C \rightarrow D$	0	246	-246
$D \rightarrow A$	-65.0	0	-65.0
ABCDA	84.3	84.3	0

- (c) 149 J, 65.0 J, 84.3 J (d) 0.565 (e) $1.42 \times 10^3 \text{ rev/min}$
- **24.** 11.8
- **26.** 1.17 J
- **28.** $Q(T_h T_c)/T_c$
- **30.** (a) 204 W (b) 2.43 kW
- **32.** $4.88 \text{ kJ/kg} \cdot \text{K}$
- **34.** (a) -810 J/K (b) -113 J/K
- **36.** 718 J/K
- 38. $\sim 1 \text{ W/K}$ from metabolism; much more if using powerful appliances or an automobile.

2 Chapter 22 Even Answers

- **40.** (a) 39.4 L (b) -2.50 kJ (c) -2.50 kJ (d) -6.87 J/K (e) +9.16 J/K
- **42.** $1.26 \times 10^8 \, \text{J/K}$
- **44.** 34.6 J/K
- **46.** (a) 2H and 2T (b) either 4H or 4T (c) 2H and 2T
- **48.** $8.36 \times 10^6 \text{ J/K}$
- **50.** $3.29 \times 10^4 \,\mathrm{J}$
- **52.** (a) 0.476 J/K (b) 417 J (c) $W_{net} = T_1 \Delta S_U = 167 J$
- **54.** 77.8 W
- **56.** (a) 2620 metric tons/day (b) \$7.65 million/year (c) 4.06×10^4 kg/s
- 58. $\frac{m}{t} = \frac{\&T_c}{(T_h T_c) \ c \ \Delta T}$
- **60.** (a) 4.11 kJ (b) 14.2 kJ (c) -10.1 kJ (d) 28.9%
- **62.** (a) 2.93 (b) $(COP)_{refrigerator}$ (c) cost is half as much with EER 10
- **64.** (b) The second law refers to cycles.
- **66.** No, $e_{\text{max}} = e_{\text{C}} = 0.0114$
- **68.** (a) $V_A = 1.97$ L, $V_B = 11.9$ L, $V_C = 32.8$ L, $V_D = 5.44$ L, $P_B = 4.14$ atm, $P_D = 6.03$ atm (b) 2.99 kJ (c) 0.333
- **70.** (a) 20.0° C (c) $\Delta S = +4.88 \text{ J/K}$ (d) Yes