6.002 <u>电路与</u> 电子学

增量分析

复习

非线性分析

- ▼分析方法
- ▼图解方法

今天的内容

▼增量分析

阅读: 第4.5章节

方法三:增量分析法

问题的引出:我们采取线偏振光束 作为测试源我们能实现么?

问题:

进一步分析:

技巧:

结果:

结果:

6.002 2000 年秋 第二讲

增量方法: (或小信号方法)

- 1. 取某一直流偏移量 或偏压点 V_D , I_D 。
- 2. 将小信号 v_d (音乐信号)叠加 在 V_D 上。
- 3. 响应 i_d 对小信号 V_d 近似为线性的。

注意:

6.002 2000 年秋 第二讲

这在数学上怎么解释呢? 即为什么小信号响应是线性的呢?

$$i_D = f(v_D)$$
 非线性
$$v_D = V_D + \Delta v_D$$
 的增量

用 Taylor 展开式将 $f(v_D)$ 在 $v_D = V_D$ 处展开

$$\begin{split} i_D &= f\big(V_D\big) \ + \ \frac{df(v_D)}{dv_D} \bigg|_{v_D = V_D} \cdot \Delta v_D \\ &+ \ \frac{1}{2!} \frac{d^2 f(v_D)}{dv_D} \bigg|_{v_D = V_D} \cdot \Delta v_D^2 + \cdots \\ &\quad \text{由于 } \Delta v_D \ \text{很小,故忽略高次} \end{split}$$

$$i_{D} \approx f(V_{D}) + \frac{df(v_{D})}{dv_{D}} \cdot \Delta v_{D}$$

关于 Δv_{D} 的常量 关于 Δv_{D} 的常量,在 $I_{D}V_{D}$
点的斜率

我们可以写出:

$$(X): I_D + \Delta i_D \approx f(V_D) + \left. \frac{df(v_D)}{dv_D} \right|_{v_D = V_D} \cdot \Delta v_D$$

直流部分与随时间变化的部分相等

$$I_{D} = f(V_{D}) \longrightarrow \text{工作点}$$

$$\Delta i_{D} = \frac{df(v_{D})}{dv_{D}} |_{v_{D} = V_{D}} \cdot \Delta v_{D}$$
关于 Δv_{D} 的常量
$$\Delta i_{D} \propto \Delta v_{D}$$

$$\Delta i_{D} = i_{D}$$

$$\Delta v_{D} = i_{D}$$

6.002 2000 年秋 第二讲

在我们的例子中

$$i_D = a e^{bv_D}$$

$$\boxplus (X): I_D + i_d \approx a e^{bV_D} + a e^{bV_D} \cdot b \cdot v_d$$

直流量与增量项相等

$$I_{D} = a e^{bV_{D}} \longrightarrow \text{工作点}$$

$$\int_{a}^{b} \hat{r}_{a} = a e^{bV_{D}} b \cdot v_{d}$$

$$i_{d} = I_{D} \cdot b \cdot v_{d} \longrightarrow \text{小信号行为}$$
常量 — 线性

图形法

我们将 A 点和 B 点近似看作一点

图解法

我们可以看到小信号: 数学法

现在, 电路

大信号电路

表现为 v_d - W_d - I_d $R = \frac{1}{I_b}$

小信号电路

6.002 2000 年秋 第二讲