Actividad - Estadística básica

• Nombre: Manuel Villalpando Linares

• Matrícula: A01352033

Entregar: Archivo PDF de la actividad, así como el archivo .ipynb en tu repositorio. **Nota:** Recuerda habrá una penalización de **50** puntos si la actividad fue entregada fuera de la fecha límite.

Carga el conjunto de datos insurance.csv (se encuentra en el repositorio de la clase) y realiza un análisis estadístico de las variables.

Carga las librerías necesarias. import pandas as pd import numpy as np import random as rd from scipy import stats from scipy.stats import pearsonr

Carga el conjunto de datos al ambiente de Google Colab y muestra los primeros

6 renglones.

df = pd.read_csv('insurance.csv')

df.head(6)

	age	sex	bmi	children	smoker	region	charges	
0	19	female	27.900	0	yes	southwest	16884.92400	
1	18	male	33.770	1	no	southeast	1725.55230	
2	28	male	33.000	3	no	southeast	4449.46200	
3	33	male	22.705	0	no	northwest	21984.47061	
4	32	male	28.880	0	no	northwest	3866.85520	
5	31	female	25.740	0	no	southeast	3756.62160	

El conjunto de datos contiene información demográfica sobre los asegurados en una compañía de seguros:

- age: Edad del asegurado principal
- sex: Género del asegurado. female o male
- bmi: Índice de masa corporal
- children: Número de hijos que estan cubiertos con la poliza.
- smoke: ¿El beneficiario fuma? (yes/no)
- region: ¿Dónde vive el beneficiario? Estos datos son de Estados Unidos. Regiones disponibles: northeast, southeast, southwest, northwest
- charges: Costo del seguro.

Crea una tabla resumen con los estadísticas generales de las variables # numéricas.

df.describe()

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

¿Cómo se correlacionan las varaibles numéricas entre sí?
df.corr()

```
bmi children charges
                     age
                1.000000 0.109272
                                     0.042469 0.299008
         age
                0.109272 1.000000
                                    0.012759 0.198341
         bmi
      children 0.042469 0.012759
                                     1.000000 0.067998
      charges 0.299008 0.198341 0.067998 1.000000
# Determina si existe o no una correlación entre el índice de masa corporal
# (bmi) y el costo del seguro.
print('Correlación Pearson: ', df['bmi'].corr(df['charges'], method='pearson'))
print('Correlación Spearman: ', df['bmi'].corr(df['charges'], method='spearman'))
print('Correlación Kendall: ', df['bmi'].corr(df['charges'], method='kendall'))
# r cercano a 0, lo que indica que la relacion lineal es muy debil
print('\n')
r, p = stats.pearsonr(df['bmi'], df['charges'])
print(f"Correlación Pearson: r={r}, p-value={p}")
r, p = stats.spearmanr(df['bmi'], df['charges'])
print(f"Correlación Spearman: r={r}, p-value={p}")
r, p = stats.kendalltau(df['bmi'], df['charges'])
print(f"Correlación Kendall: r={r}, p-value={p}")
# r cercano a 0, lo que indica que la relacion lineal es muy debil y
# valor p menor a 0.05
     Correlación Pearson: 0.19834096883362895
     Correlación Spearman: 0.11939590358331145
     Correlación Kendall: 0.08252397079981415
     Correlación Pearson: r=0.1983409688336288, p-value=2.459085535116766e-13
     Correlación Spearman: r=0.11939590358331145, p-value=1.1926059544526874e-05
     Correlación Kendall: r=0.08252397079981415, p-value=6.256900640955888e-06
# ¿Cuántas personas aseguradas son hombre y cuántas son mujeres?
df['sex'].value_counts()
      male
                676
      female
                662
     Name: sex, dtype: int64
# ¿Cuántos hombres y mujeres asegurados viven en cada región?
df2 = df.groupby('region')['sex'].value_counts()
df2
      region
                  sex
      northeast
                 male
                             163
                  female
                             161
     northwest
                             164
                 female
                  male
                             161
      southeast male
                             189
                             175
                  female
      southwest
                male
                             163
                  female
                             162
     Name: sex, dtype: int64
# En promedio, ¿quién paga más de cuota de seguro? ¿Los fumadores o los no
# fumadores? Muéstralo con los datos.
df3 = df.groupby('smoker')[['charges']].mean()
df3
                    charges
       smoker
                8434.268298
         no
               32050.231832
        ves
```

```
# ¿Cuáles son las cuotas mínimas y máximas que las personan pagan dependiendo
# del género y del número de hijos?
df4 = df.groupby(['sex', 'children'])[['charges']].agg(['min', 'max'])
df4
```


¿Cuál es el índice de masa corporal promedio para hombre y mujeres dependiendo # región en la que viven y si son fumadores? ¿Impacta eso en la tarifa del df5 = df.groupby(['sex', 'region', 'smoker'])[['bmi']].mean()

2	bmi			
		smoker	region	sex
	29.777462	no	northeast	female
	27.261724	yes		
	29.488704	no	northwest	
	28.296897	yes		
	32.780000	no	southeast	
	32.251389	yes		

		yes	27.261724
	northwest	no	29.488704
		yes	28.296897
	southeast	no	32.780000
		yes	32.251389
	southwest	no	30.050355
		yes	30.128571
male	northeast	no	28.861760
		yes	29.560000
	northwest	no	28.930379
		yes	29.983966
	southeast	no	34.129552
		yes	33.650000
	southwest	no	31.019841

yes

31.502703

✓ 0 s completado a las 23:23

• ×