INFRAESTRUCTURA COMO CÓDIGO

JOSÉ DOMINGO MUÑOZ

IES GONZALO NAZARENO

MAYO 2022

Infraestructura como código. Ansible y Vagrant

EVOLUCIÓN DE LA GESTIÓN DE LA INFRAESTRUCTURA

DESPLIEGUE TRADICIONAL EN UN SERVIDOR

- Aprovisionamiento del servidor:
 - ► Comprar el servidor o crear la máquina virtual
 - ► Instalar y configurar el SO
 - ► Instalar y configurar los servicios
 - ► Configurar la seguridad
- Despliegue de aplicaciones
- Documentar todo es la clave. ¿Se documenta?
- Misma configuración utilizada por años
- Escalado vertical, que implica paradas del servidor

.

DESPLIEGUE "MODERNO" DE UN SERVIDOR

- Aparición del Cloud Computing (IaaS): AWS, Azure, GEC, OpenStack, ...
- Aprovisionamiento de una máquina virtual o contenedor desde una imagen o plantilla
- Uso de herramientas de gestión de la configuración:
 - ► Configuración del SO
 - Instalación y configuración de servicios
 - ► Configuración de la seguridad
 - ► Actualizaciones
- Despliegue de aplicaciones desde un entorno de pruebas idéntico al de producción
- Idealmente se utiliza escalado horizontal
- Los servidores no tienen por qué mantener la misma configuración mucho tiempo

- 3

Infraestructura como código

¿PODEMOS PROGRAMAR LA INFRAESTRUCTURA?

- Podemos programar la creación y mantenimiento de escenarios virtualizados y en el cloud.
 - ► Los servicios de virtualización y de Cloud Computing (IaaS) son software, por lo tanto los podemos programar. ¿Cómo? APIs!!!
 - ► Los programas que nos permite programar la creación de escenarios lo llamamos: **Software de Orquestación**.
- Podemos programar la configuración de los servicios y aplicaciones que corren en las máquinas (de los escenarios creados).
 - ► Los programas que nos ayudan a configurar el software de la máquinas lo llamamos: Software de gestión de la configuración (CMS)

•

SOFTWARE DE ORQUESTACIÓN

- Utilizado para crear escenarios completos con múltiples servidores o contenedores (aprovisionamiento de recursos).
- Muy útil en demanda variable de recursos
- Muy útil en entornos en los que se cambia continuamente la configuración
- Puede incluir funcionalidad de autoescalado
- Pueden incluir repuestas a eventos

Ejemplos: Vagrant, Terraform, Cloudformation (AWS), Heat(OpenStack), Juju, ...

SOFTWARE DE GESTIÓN DE LA CONFIGURACIÓN (CMS)

Nos proporciona la gestión e instalación (de forma **declarativa**) del software de la infraestructura que hemos creado:

- Nos permite instalar software de forma automática,
- Se utilizan ficheros de texto donde declaramos la configuración que deseamos obtener.
- Se pueden usar para gestionar las actualizaciones de los sistemas.
- Idempotencia: Podemos ejecutar una declaración múltiples veces y el resultado tiene que ser siempre el mismo.

Ejemplos: Puppet, Chef, Ansible, Salt, ...

¿HAY DIFERENCIAS ENTRE ORQUESTACIÓN Y GESTIÓN DE LA CONFIGURACIÓN?

- Normalmente, el software de Orquestación también nos permite realizar configuración automática.
- Normalmente, el software de Gestión de la Configuración también nos permite realizar Orquestación.

¿No hablamos de lo mismo?

¿Hay diferencias entre crear un escenario y configurar el software de la infraestructura creada?

CAMBIO DE PARADIGMA: INFRAESTRUCTURA COMO CÓDIGO

Usa tu infraestructura como el software que es:

- Utiliza software de control de versiones
- Utiliza un buen editor de textos
- Todo legible y con comentarios
- Utiliza software de orquestación
- Utiliza software de gestión de la configuración
- Devops

DEVOPS

- Conflicto: Tradicionalmente Equipo de Desarrollo (DEV) y Equipo de Sistemas (OPS) han tenido objetivos y responsabilidades diferentes.
- El objetivo debería ser común.
- ¿Cómo solucionarlo?
 - Mismas herramientas.
 - Extender buenas prácticas de desarrollo a sistemas: De integración continua a entrega continua o a despliegue continuo.
 - ► Infraestructura como código
 - Escenarios replicables, automatización de la configuración.

ANSIBLE

ANSIBLE

- Es un Software de gestión de la configuración (CMS).
- Nos permite "declarar" la configuración de máquinas, para llevarla a cabo de forma **automática**.
- Desarrollado principalmente por Red Hat: www.ansible.com
- Escrito en Python
- Primera versión: 2012
- Arquitectura push. Se inica la configuraciónd esde la máquina donde está instalado ansible.
- No utiliza ningún agente: ssh
- Jugadas (plays) y libros de jugadas (playbooks) en YAML

¿Por qué Ansible?

- Cualquier CMS es una buena opción
- Ansible es sencillo de aprender y la sintaxis es conocida (YAML)
- Ansible no utiliza agentes, sólo ssh (!)
- Fácil de instalar (disponible en pypi)
- Comunidad muy activa
- Repositorio de playbooks realizados por la comunidad: Ansible Galaxy
- Más cercano a la forma de trabajar de administradores de sistemas

CONCEPTOS SOBRE ANSIBLE

- **Módulos y plugins**: Distintas funciones predefinidas que nos permiten realizar una acción: copiar un fichero, instalar paquetes, ...
 - ► Cada módulo puede recibir parámetros (obligatorios u opcionales).
 - ► Indexes of all modules and plugins
- Jugada (play): Declaración en yaml de una acción (se utiliza un módulo) que quiero conseguir.
 - ► Ejemplo: Quiero que en la máquina este instalado un paquete de una versión determinada.
- Libro de jugadas (playbooks): Conjuntos de jugadas (plays), para conseguir una configuración compleja de la máquina.
- **Roles**: Normalmente dividimos los playbooks por cada servicio que quiero configurar.
 - Ejemplo: Rol "apache2": Permite la instalación y configuración de apache2,...
 - ► Nos permite la reutilización de código.
- Variables: Los plays, normalmente, están parametrizados. Se utilizan variables para concretar la configuración en cada caso.

VAGRANT

