Лабораторная работа №9

Архитектура компьютеров

Кирилюк Светлана Алексеевна

Содержание

3	Выводы	14
2	Выполнение лабораторной работы	6
1	Цель работы	5

Список иллюстраций

2.1	Создание каталога и файла	6
2.2	Ввод программы из листинга	7
2.3	Создание исполняемого файла	7
2.4	Изменение текста файла	8
2.5	Создание исполняемого файла	8
2.6	Изменение текста файла	9
2.7	Исполнение файла	9
2.8	Создание файла	10
2.9	Ввод текста файла	10
2.10	Создание исполняемого файла	10
2.11	Создание нового файла	10
	Ввод текста файла	11
2.13	Создание исполняемого файла	11
2.14	Изменение текста файла	12
2.15	Создание исполняемого файла	12
2.16	Изменение текста файла	13
	Создание исполняемого файла	13

Список таблиц

1 Цель работы

Приобретение навыков написания программ с использованием циклов и обработкой аргументов командной строки.

2 Выполнение лабораторной работы

Создаём каталог для программ лабораторной работы №9, переходим в него и создаём файл lab9-1.asm (рис. 2.1).

```
sakirilyuk@dk5n60 ~ $ mkdir ~/work/arch-pc/lab09
sakirilyuk@dk5n60 ~ $ cd ~/work/arch-pc/lab09
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ touch lab9-1.asm
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ [
```

Рис. 2.1: Создание каталога и файла

Вводим в файл текст программы из 1-го листинга (рис. 2.2) и создаём исполняемый файл (рис. 2.3).

```
/afs/.dk.sci.pfu.edu.ru/home/s/a/sakirilyuk/work/arch-pc/lab09/lab9-1.asm
%include 'in_out.asm'
SECTION .data
msg1 db 'Введите N: ',0h
SECTION .bss
N: resb 10
SECTION .text
global _start
_start:
nov eax, msg1
call sprint
nov ecx, N
mov edx, 10
call sread
nov eax,N
call atoi
mov [N],eax
mov ecx,[N]
label:
mov [N],ecx
mov eax,[N]
```

Рис. 2.2: Ввод программы из листинга

```
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ nasm -f elf lab9-1.asm
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ ld -m elf_i386 -o lab9-1 lab9-1.o
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ ./lab9-1
Введите N: 11
11
10
9
8
7
6
5
4
3
2
1
```

Рис. 2.3: Создание исполняемого файла

Меняем текст программы, добавив изменение значения регистра есх в цикле (рис. 2.4), создаём исполняемый файл и проверяем его работу (рис. 2.5).

```
mov ecx, N
mov edx, 10
call sread
mov eax,N
call atoi
mov [N],eax
mov ecx,[N]
label:
sub ecx,1
mov [N],ecx
mov eax,[N]
call iprintLF
```

Рис. 2.4: Изменение текста файла

```
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ nasm -f elf lab9-1.asm sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ ld -m elf_i386 -o lab9-1 lab9-1.o sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ ./lab9-1 Введите N:
```

Рис. 2.5: Создание исполняемого файла

Данный пример показывает, что использование этого регистра в теле цикла может привести к некорректной работе программы. Число проходов не соответствует значению N, введённому с клавиатуры, программа зациклилась.

Снова вносим изменения в текст программы, добавив команды push и рор для сохранения значения счётчика цикла (рис. 2.6), и исполняем файл (рис. 2.7). В данном случае число проходов цикла равно значению N.

```
mov eax, msg1
call sprint
mov ecx, N
mov edx, 10
call sread
mov eax,N
call atoi
mov [N],eax
mov ecx,[N]
label:
push ecx
sub ecx,1
mov [N],ecx
 mov eax,[N]
 call iprintLF
 рор есх
 loop label
```

Рис. 2.6: Изменение текста файла

```
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ nasm -f elf lab9-1.asm
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ ld -m elf_i386 -o lab9-1 lab9-1.o
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ ./lab9-1

Введите N: 11

10

9

8

7

6

5

4

3

2

1

0

Ошибка сегментирования (стек памяти сброшен на диск)
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ ...
```

Рис. 2.7: Исполнение файла

Создаём файл lab9-2.asm (рис. 2.8) и вводим в него текст программы из 2-го листинга(рис. 2.9). Создаём исполняемый файл и проверяем его работу (рис. 2.10), программой было обработано 4 аргумента.

```
sakirilyuk@dk5n60 ~ $ cd ~/work/arch-pc/lab09
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ touch lab9-2.asm
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $
```

Рис. 2.8: Создание файла

```
%include 'in_out.asm'
SECTION .text
global _start
_start:
pop ecx

pop edx

sub ecx, 1

next:
cmp ecx, 0
jz _end
pop eax
call sprintLF
loop next
_end:
call quit
```

Рис. 2.9: Ввод текста файла

```
sakirilyuk@dk5n60 ~ $ cd ~/work/arch-pc/lab09 $ sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ touch lab9-2.asm sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ mc

sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ nasm -f elf lab9-2.asm sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ ./lab9-2 apryment1 apryment 2 'apryment 3' apryment1 apryment2 'apryment1 apryment2 apryment3 sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ |
```

Рис. 2.10: Создание исполняемого файла

Создаём файл lab8-3.asm (рис. 2.11), вводим текст программы из 3-го листинга (рис. 2.12), создаём исполняемый файл и проверяем его (рис. 2.13).

```
sakirilyuk@dk5n60 ~ $ cd ~/work/arch-pc/lab09
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ touch lab9-3.asm
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $
```

Рис. 2.11: Создание нового файла

```
/afs/.dk.sci.pfu.edu.ru/home/s/a/sakirilyuk/work/arch-pc/lab09/lab9-3.asm Изменён
%include 'in_out.asm
SECTION .data
msg db "Результат: ",0
SECTION .text
global _start
_start:
рор есх
pop edx
sub ecx,1
mov esi, 0
cmp ecx,0h
jz _end
pop eax
call atoi
add esi,eax
loop next
_end:
mov eax, msg
```

Рис. 2.12: Ввод текста файла

```
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ nasm -f elf lab9-3.asm
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ ld -m elf_i386 -o lab9-3 lab9-3.o
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ ./lab9-3 12 13 7 10 5
Результат: 47
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ [
```

Рис. 2.13: Создание исполняемого файла

Изменяем текст программы из листинга №3 для вычисления произведения аргументов командной строки (рис. 2.14), создаём исполняемый файл и проверяем его работу (рис. 2.15).

```
%include 'in_out.asm'
SECTION .data
msg db "Результат: ",0
SECTION .text
global _start
_start:
рор есх
pop edx
sub ecx,1
mov esi, 1
next:
cmp ecx,0h
jz _end
pop eax
call atoi
mul esi
mov esi,eax
loop next
```

Рис. 2.14: Изменение текста файла

```
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ nasm -f elf lab9-3.asm
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ ld -m elf_i386 -o lab9-3 lab9-3.o
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ ./lab9-3 12 2
Результат: 24
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ []
```

Рис. 2.15: Создание исполняемого файла

#Задание для самостоятельной работы

Изменяем текст программы из листинга №3 в соответствии с листингом №3 (рис. 2.16), вновь создаём исполняемый файл и проверяем его работу (рис. 2.17).

```
SECTION .text
global _start
_start:
pop ecx

pop edx
sub ecx,1

mov ebx,3

mov esi,0

next:
cmp ecx,0h
jz _end

pop eax
call atoi
add eax, 10
```

Рис. 2.16: Изменение текста файла

```
sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ nasm -f elf lab9-3.asm sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ ld -m elf_i386 -o lab9-3 lab9-3.o sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $ ./lab9-3 1 2 Результат: 69 sakirilyuk@dk5n60 ~/work/arch-pc/lab09 $
```

Рис. 2.17: Создание исполняемого файла

3 Выводы

В ходе работы я приобрела навыки написания программ с использованием циклов, обработкой аргументов командной строки.