TD 1

• Rang(x,y)=(x+y)(x+y+1)/2 + x

(0,0)	(0,1)	(1, 0)	(0,2)	(1, 1)	(2,0)	(0, 3)	(1,2)	(2, 1)	
0	1	2	3	4	5	6	7	8	

Donner la version récursive de Rang

- Rang(x,y)=(x+y)(x+y+1)/2 + x
- Donner la version récursive de Rang

Rang
$$(0,0) = 0$$

Rang
$$(x,y) = Rang(x-1,y+1) + 1 si x \neq 0$$

- Rang(x,y)=(x+y)(x+y+1)/2 + x
- Donner la version récursive de Rang

Rang
$$(0,0) = 0$$

$$si x \neq 0 : Rang(x,y) = Rang(x-1,y+1) + 1$$

Rang
$$(0,y) = \text{Rang}(y-1,0) + 1$$

- Rang(x,y)=(x+y)(x+y+1)/2 + x
- Donner la fonction inverse : c'est-à-dire trouver x et y tels que z=Rang(x,y)
 Trouver t qui représente la somme (x+y).

- Rang(x,y)=(x+y)(x+y+1)/2 + x= z
- Donner la fonction inverse
 Trouver t qui représente la somme (x+y).
 C'est le plus grand nombre tel que z≥t(t+1)/2
- t=0; while (t(t+1)/2≤z) t++; t--;
- x = z-t(t+1)/2; y=t-x;

- Rang(x,y)=(x+y)(x+y+1)/2 + x
- Rang (4,5)=9*10/2+4=49
- Rang(x,y) =8 t=x+y est égal à 3 x = z-t(t+1)/2 = 8-6=2y = t-x = 1

- c(x,y)=(x+y)(x+y+1)/2 + y
- h(x,y,z) = c(c(x,y),z)Calcul de (x,y) tel que c(x,y)=67

- c(x,y)=(x+y)(x+y+1)/2 + y
- h(x,y,z) = c(c(x,y),z)
 Calcul de (x,y) tel que c(x,y)=67
 t=11; y=1; x=10 donc (x,y)=(10,1)

- c(x,y)=(x+y)(x+y+1)/2 + y
- h(x,y,z) = c(c(x,y),z)c(x,y)=67 => (x,y)=(10,1)
- h(x,y,z)=67=c(c(x,y), z)donc z=1 et c(x,y)=10 (t=4, y=0, x=4) donc (x,y,z)=(4,0,1)

• c(x,y)=(x+y)(x+y+1)/2 + ysuccesseur(x,y)?

• c(x,y)=(x+y)(x+y+1)/2 + ysuccesseur(x,y) = (x-1, y+1) si x≠0 successeur(0,y)?

• c(x,y)=(x+y)(x+y+1)/2 + ysuccesseur(x,y) = (x-1, y+1) si x≠0 successeur(0,y) =(y+1, 0)

- Coder les listes d'entiers
- Coder d'abord les listes qui minimisent la somme des entiers des listes ne fonctionnent pas : il y a une infinité de liste dont la somme vaut 1 : (1) (01) (10) (001) (010) (100)

Donc on ne code jamais la liste (2) par exemple

- Coder les listes d'entiers
- Coder les listes les plus courtes ne fonctionnent pas non plus car il y a une infinité de listes de longueur 1 :

Donc on ne code jamais la liste (0 0)

- Coder les nombres rationnels
- Caractérisation :

Les nombres rationnels s'écrivent de façon unique sous la forme a/b avec pgcd(a,b)=1.

- Coder les nombres rationnels
- Caractérisation :

Les nombres rationnels s'écrivent de façon unique sous la forme a/b avec pgcd(a,b)=1.

Donc on code dans l'ordre de la somme a+b et à égalité l'ordre lexico.

0/1 code 0, 1/1 : 1, 1/2 : 2, 2/1 : 3 : 1/3 : 4 ...

- $U_0 = \{()\}$
- $U_1 = \{(0)\}$
- $U_2 = \{(0,0), (1)\}$

- $U_0 = \{()\}$
- $U_1 = \{(0)\}$
- $U_2 = \{(0,0), (1)\}$
- $U_3 = \{(0,0,0), (0,1), (1,0), (2)\}$
- $U_4 = \{(0,0,0,0),(0,0,1),(0,1,0),(1,0,0),(0,2),(1,1),(2,0),(3)\}$

```
(0) \qquad (0,0) \qquad (1) \qquad (0,0,0) \qquad (0,1) \qquad (1,0) \qquad (2) \qquad (0,0,0,0) \qquad (0,1,0)(0,2) \qquad (1,0,0)(1,1) \qquad (2,0)(3)
```

• (δ, x) fils gauche $(\delta, x, 0)$ fils droit $(\delta, x+1)$

```
(0) 1
(0,0) 2 \qquad (1) 3
(0,0,0) 4 \qquad (0,1) 5 \qquad (1,0) 6 \qquad (2) 7
(0,0,0,0) (0,0,1) (0,1,0) \quad (0,2) \quad (1,0,0)(1,1) \quad (2,0)(3)
10 \qquad 11
```

• (δ, x) fils gauche $(\delta, x, 0)$ fils droit $(\delta, x+1)$

```
(0) 1
              (0,0) 2
                                       (1) 3
      (0,0,0) 4 (0,1) 5 (1,0) 6 (2) 7
  (0,0,0,0) (0,0,1) (0,1,0)(1,0,0) (0,2)(1,1) (2,0)(3)
                     10 11
• (\delta, x) fils gauche (\delta, x, 0) fils droit (\delta, x+1)
                          2c
                                        2c + 1
```

- Montrez que $|U_k| = 2^{k-1}$, $k \ge 1$.
- Pour chaque liste de $U_k = (\delta, x)$ (où δ est une liste quelconque) on obtient 2 listes de U_{k+1} : $(\delta, x, 0)$ $(\delta, x+1)$.
- Réciproquement une liste de U_{k+1} ne peut être obtenue par une et une seule liste de U_k de cette façon.

Donc $|U_{k+1}|=2|U_k|$, $k\ge 1$. Et comme $|U_1|=1$, la conclusion s'impose.

- La première liste est (0,0,0,....0) avec k zéros
- La dernière liste est (k-1)

- Pour chaque liste de $U_k = (\delta, x)$ (où δ est une liste quelconque) on obtient 2 listes de U_{k+1} : $(\delta, x, 0)$ $(\delta, x+1)$.
- Remarque les 2 listes sont consécutives dans le codage : on a comme n arbre binaire parfait donc
- $c(\delta,0)=2c(\delta)$ et $c(\delta,x)=2c(\delta,x-1)+1$

- c((0))=1, c((0,0))=2, c((1))=3,
- c((0,0,0))=2*c((0,0))=2*2=4
- Etc
- Donc version récursive

$$c(\delta,0)=2c(\delta)$$
 et $c(\delta,x)=2c(\delta,x-1)+1$
Cas de base $c(0)=1$ et $c()=0$

- Version itérative : code (x₁, x₂, x₃, ... x_n)
- On part de (0) code 1 à (x₁) (à chaque incrémentation on multiplie le code par 2 et on ajoute 1)
- Puis on va à (x₁,0) (multiplie le code par 2)
- Puis on va à (x₁, x₂), puis (x₁, x₂, 0) etc.

Décodage :

Si k est pair on ajoute un 0 en tête de liste, sinon on ajoute 1 à la tête de liste (on divise k par 2 à chaque itération).

•
$$A_0 = \{1\}, A_1 = \{2\}, A_2 = \{4\}, A_3 = \{8\}$$

•
$$A_4 = \{16,$$

- $A_0 = \{1\}, A_1 = \{2\}, A_2 = \{4\}, A_3 = \{8\}$
- $A_4 = \{16, 5, 10, 20, 40, 80, \dots\}$ 3 ? 13 ?

- $A_0 = \{1\}, A_1 = \{2\}, A_2 = \{4\}, A_3 = \{8\}$
- $A_4 = \{16, 5, 10, 20, 40, 80, \dots\}$ 3 ? 13 ?
- $A_5 = \{32\}$
- $A_6 = \{64, 21, 42, 84, \ldots\}$
- Comment afficher les éléments de A; ?

Algorithme pour afficher A_i
 n=0;
 Tant que (true) { si (f(n)=i) afficher(n); n++}
 Ne fonctionne pas:
 f(n) est-elle définie pour tout n?
 A_i peut-être fini

- 2ⁱ ∈ A_i donc (2ⁱ -1)/3 aussi (à quelle condition ?)
- Si x ∈ A_i donc 2x et (x -1)/3 aussi (à quelle condition ?)
- En déduire un algorithme.

 Algorithme affiche(A_i) afficher(2ⁱ); si $((2^i - 1) \mod 3 = 0)$ alors $L = \{(2^i - 1)/3\}$ sinon $L = \emptyset$ Tant que (L non vide) { n=tete(L); afficher(n); L=ajoutfin(2n,queue(L)); si ((n-1) mod 3 = 0) L=ajoutfin((n-1)/3,L); }

- Affichage de A₄ ∪ A₆
- Pourquoi affiche(A₄); affiche(A₆) ne fonctionne pas?
- Ecrire une fonction qui donne le n^{ième} élément de A_i à l'aide de affiche(A_i) (en ajoutant un compteur) : f(i, n)
- n=1; tantque (true) {afficher f(4,n); afficher f(6,n); n++}