

Cellular Automata

A brief Intruduction

Fabrice Beaumont

Rheinische Friedrich-Wilhelms-Universität Bonn

06.05.2020

WHAT are Cellular Automata?

- Information processing system
 - Deterministic
 - Discrete in space, time and value

NON-von-Neumann computers

- Study of the phenomenon of life
 - Complex structures from simple rules

Motivation

Motivation

Created with

Mirek's Celebration

CA Simulator

Related Work

- VON NEUMANN, John.
 - Theory and organization of complicated automata. *Burks* (1966), 1949
- BURKS, Arthur W. Von Neumann's self-reproducing automata.
 MICHIGAN UNIV ANN ARBOR LOGIC OF COMPUTERS GROUP, 1969.
- WOLFRAM, Stephen. Statistical mechanics of cellular automata.
 Reviews of modern physics, 1983, 55. Jg., Nr. 3, S. 601.

WHAT is a Cellular Automaton?

CA

- Grid of cells (dimension d)
- Neighborhood (radius r)
- Finite set of k states
- Initial state
- Transformation rule

Example

Future work

- Properties of Transition rules:
 - Silent state
 - Symmetric rule
 - Legal rules
 - Peripheral rules
 - Totalistic rules
- Wolfram number

- Properties of behaviour:
 - Homogeneous
 - Periodic
 - Chaotic
 - Self Organization
- Settings for borders

Thank you for your attention!

Visit me at Poster: 2187