BERT and Transfer Learning

Natural Language Processing — Lecture 7

Kenneth Enevoldsen 2024

Learning Goals

- Knowledge of different types of transformer architectures and how they are trained
 - Notably BERT and masked language modelling (MLM)
- An understanding of the relation between MLM and linguistic tasks
- An understanding of pre-training
 - And its influence on model performance
- The influence of scale on model performance
- An understanding of what language models learn
 - And how we can examine this using probing

Switching out class 9 and 10?

- Bullet 1
- Bullet 2
- Bullet 3

Learning Goals

- Knowledge of different types of transformer architectures and how they are trained
 - Notably BERT and masked language modelling (MLM)
- An understanding of the relation between MLM and linguistic tasks
- An understanding of pre-training
 - And its influence on model performance
- The influence of scale on model performance
- An understanding of what language models learn
 - And how we can examine this using probing

Question: What is a GPU?

- Central Processing Unit (CPU)
 - Few highly performant cores (4-16),
 Serial processing, general purpose
 - Optimizes for: Low latency
- Accelerators
 - Graphical Processing Unit (GPU)
 - Many cores (100-1000),
 - Optimizes for: Throughput
 - Neural Processing Unit (NLU)

•

How does that mean for us?

Inference using the bert-base-cased

```
Cost /hour Cost /inference Max inference per hour 8cpu 0.197872 0.003848 16cpu 0.395744 0.004584 86.33 95.74 1gpu 2.004 0.001447 1384.61
```

- Difference is something taking a day vs. 30 min
- Notably larger effect for training

Recap: Decoder transformers block

Recap: Transformer blocks for langauge generation

Recap: Overview of GPT

Understanding a text backward

Ich Kann ohne meinen Ausweis nicht den Club gehen

I can't go to the club without my ID card

Unidirectional to Bidirectional

BERT: Biderectional Attention

BERT: Biderectional Attention

Q: How can we use these?

Visualizing Contextualized Embeddings

Explore more:

https://storage.googleapis.com/bert-wsd-vis/demo/index.html?#word=die

Contextualized word vectors using BERT

```
from transformers import BertTokenizer, BertModel
# download model and tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained("bert-base-uncased")
# encode text
text = "Replace me by any text you'd like."
# convert text to token ids
encoded_input = tokenizer(text, return_tensors='pt')
encoded_input.input_ids.shape # torch.Size([1, 12]) ←
                                                                      Q: What is the shape?
# embed ids and contextualize
output = model(**encoded_input)
output.last_hidden_state.shape # torch.Size([1, 12, 768])
```


Contextualized word vectors using BERT

- Two approaches
 - Next sentence prediction (NSP)*
 - Sequence-level representation
 - Masked language Modelling (MLM)
 - Word-level representations

Cloze Task

- Cloze -> closure (gestalt theory)
- Language assesment test
- Understanding of context

"Today, I went to the _____ and bought some milk and eggs. I knew it was going to rain, but I fo"rgot to take my _____, and ended up getting wet on the way."

Factual Knowledge

"_____ is the anaerobic catabolism of glucose."

Masking in other modalities

- Two approaches
 - Next sentence prediction (NSP)*
 - Masked language Modelling (MLM)
 - Goal: Predict word from its context

- Two approaches
 - Next sentence prediction (NSP)*
 - Masked language Modelling (MLM)
 - Mask 15%

- Two approaches
 - Next sentence prediction (NSP)*
 - Masked language Modelling (MLM)
 - Mask 15%
 - Replace 80% with mask

- Two approaches
 - Next sentence prediction (NSP)*
 - Masked language Modelling (MLM)
 - Mask 15%
 - Replace 80% with mask
 - 10% with a random token
 - Leave 10% as is

- Two approaches
 - Next sentence prediction (NSP)*
 - Masked language Modelling (MLM)
 - Mask 15%
 - Replace 80% with mask
- hy? 10% with a random token
 - Leave 10% as is

Training BERT

Building the model

```
import torch
from torch import nn
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModel.from_pretrained("bert-base-uncased")

# add a classification head
classifier = nn.Linear(
    768, num_labels
) # embed dim is 768, num_labels is the number of classes

# combine the model and the classifier
model = nn.Sequential(model, classifier)
```

Training the model*

```
# training the model
loss = nn.CrossEntropyLoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) # or SGD
train_loader = ... # create a DataLoader with your data
model.train()
for epoch in range(epochs): # number of epochs to train for
    for text, label in train_loader:
        optimizer.zero_grad()
        # tokenize text
        token_ids = tokenizer(text, return_tensors="pt")
        output = model(**token_ids)
        # compute loss
        loss_value = loss(output, label)
        # compute gradients
       loss_value.backward()
        # update weights
       optimizer.step()
```


Any Questions?

Learning Goals

- Knowledge of different types of transformer architectures and how they are trained
 - Notably BERT and masked language modelling (MLM)
- An understanding of the relation between MLM and linguistic tasks
- An understanding of pre-training
 - And its influence on model performance
- The influence of scale on model performance
- An understanding of what language models learn
 - And how we can examine this using probing

Evaluating BERT

We will be **assuming** a lot of knowledge about evaluation tasks. Generally not recommended. More on this in class 9.

\mathbf{P}^a	A senior is waiting at the window of a restaurant that serves sandwiches.	Relationship					
\mathbf{H}^b	A person waits to be served his food.	Entailment					
	A man is looking to order a grilled cheese sandwich.	Neutral					
	A man is waiting in line for the bus.	Contradiction					
^a P, Premise.							
$b_{\mathbf{II}}$	bu Hypothesis						

^b**H**, Hypothesis.

Sentiment Analysis

Textual Entailment

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Evaluating BERT

	System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
		392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
	Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
	BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
Note: GPT1 ──	OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
	BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
	BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

GLUE: General Language Understanding Evaluation

Evaluating BERT

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

More parameters lead to better performance

Pre-Training and Scale

Pre-training

- Semi-supervised training of model with labels derived from data
 - Next token prediction
 - Masked language modelling
 - **

Fine-tuning

- Task-specific training using labelled training data
- Note: In the following we will take examples from each architecture, but findings generalize across

The effect of pre-training

Effect of pre-training on T5:

	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Baseline average	83.28	19.24	80.88	71.36	26 .98	39.82	27.65
Baseline standard deviation	0.235	0.065	0.343	0.416	0.112	0.090	0.108
No pre-training	66.22	17.60	50.31	53.04	25.86	39.77	24.04

Task with few trianing samples or highly diverse tasks is highly affected by pretraining

Tasks with **a lot of training data** isn't
affected by pre-training

The effect of data

- Encoders = Birectional (full attention)*
 - BERT, Roberta, Electra, ...

	Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
]	RoBERTa						
	with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
	+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
	+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
	+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4

Pre-training on **more data**Increase performance

The effect of compute time

- Encoders = Birectional (full attention)*
 - BERT, Roberta, Electra, ...

	Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
	RoBERTa						
	with BOOKS + WIKI	16 GB	8K	100K	93.6/87.3	89.0	95.3
	+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
se	+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
	+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4

Pre-training **for longer** on those data increase performance

Scaling Laws or Neural Language Models

What does the Model learn?

- Samples from the BERTology
 - Will not be comprehensive
- Includes multiple types of probes
- As well as behavioural analysis

Knowledge within BERT

Prompting

Behavioural experiment of the model

In some situations competitive with Knowledge bases!

```
from transformers import pipeline
unmasker = pipeline('fill-mask', model='bert-base-uncased')
unmasker("The capital of Denmark is [MASK].") ←——
# [{'score': 0.9113172888755798,
    'token': 9664,
    'token str': 'copenhagen',
    'sequence': 'the capital of denmark is copenhagen.'},
   {'score': 0.06609592586755753,
    'token': 29173,
    'token_str': 'aarhus',
    'sequence': 'the capital of denmark is aarhus.'},
   {'score': 0.003040957497432828,
    'token': 5842,
    'token_str': 'denmark',
    'sequence': 'the capital of denmark is denmark.'},
   {'score': 0.001759133767336607,
    'token': 11755,
    'token str': '##borg',
    'sequence': 'the capital of denmark isborg.'},
   {'score': 0.0013613264309242368,
    'token': 21860,
    'token_str': 'lund',
    'sequence': 'the capital of denmark is lund.'}]
```


Negations

Within fine-tuning BERT isn't influenced overly by negations

Context	Match
A robin is a	bird
A robin is not a	bird

Humans are apparently not too surprised by: "A robin is not a <u>bird</u>" (measures using N400)

Context	BERT _{LARGE} predictions
A robin is a	bird, robin, person, hunter, pigeon
A daisy is a	daisy, rose, flower, berry, tree
A hammer is a	hammer, tool, weapon, nail, device
A hammer is an	object, instrument, axe, implement, explosive
A robin is not a	robin, bird, penguin, man, fly
A daisy is not a	daisy, rose, flower, lily, cherry
A hammer is not a	hammer, weapon, tool, gun, rock
A hammer is not an	object, instrument, axe, animal, artifact

Table 13: BERT_{LARGE} top word predictions for selected NEG-136-SIMP sentences

Biases in BERT

```
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-base-uncased')
>>> unmasker("The man worked as a [MASK].")
                                                                 >>> unmasker("The woman worked as a [MASK].")
[{'sequence': '[CLS] the man worked as a carpenter. [SEP]',
                                                                 [{'sequence': '[CLS] the woman worked as a nurse. [SEP]',
  'score': 0.09747550636529922,
                                                                    'score': 0.21981462836265564,
  'token': 10533,
                                                                    'token': 6821,
  'token_str': 'carpenter'},
                                                                    'token_str': 'nurse'},
 {'sequence': '[CLS] the man worked as a waiter. [SEP]',
                                                                   {'sequence': '[CLS] the woman worked as a waitress. [SEP]',
  'score': 0.0523831807076931,
                                                                    'score': 0.1597415804862976,
  'token': 15610,
                                                                    'token': 13877,
  'token_str': 'waiter'},
                                                                    'token_str': 'waitress'},
 {'sequence': '[CLS] the man worked as a barber. [SEP]',
                                                                   {'sequence': '[CLS] the woman worked as a maid. [SEP]',
  'score': 0.04962705448269844,
                                                                    'score': 0.1154729500412941,
  'token': 13362,
                                                                    'token': 10850,
  'token_str': 'barber'},
                                                                    'token_str': 'maid'},
 {'sequence': '[CLS] the man worked as a mechanic. [SEP]',
                                                                   {'sequence': '[CLS] the woman worked as a prostitute, [SEP]',
  'score': 0.03788609802722931,
                                                                    'score': 0.037968918681144714,
  'token': 15893,
                                                                    'token': 19215,
  'token_str': 'mechanic'},
                                                                   'token_str': 'prostitute'},
 {'sequence': '[CLS] the man worked as a salesman. [SEP]',
                                                                  {'sequence': '[CLS] the woman worked as a cook. [SEP]',
  'score': 0.037680890411138535,
                                                                    'score': 0.03042375110089779,
  'token': 18968,
                                                                    'token': 5660,
  'token_str': 'salesman'}]
                                                                    'token_str': 'cook'}]
```


BERT rediscovers the Classical NLP Pipeline

Probing a transformer

BERT rediscovers the Classical NLP Pipeline

K(s) = 0.19

 $K(\Delta) = 1.60$

The model learns about

- Part-of-speech tags
- entities
- Semantic role labelling
- Coreferences

- ..

- Who hit Scott with a baseball?
- Whom did Kristina hit with a baseball?
- What did Kristina hit Scott with?
- When did Kristina hit Scott with a baseball?

The effect of pre-training

With pre-training BERT finds **wider minima** during fine-tuning

Figure 5: Pre-trained weights help BERT find wider optima in fine-tuning on MRPC (right) than training from scratch (left) (Hao et al., 2019)

- https://storage.googleapis.com/bert-wsd-vis/demo/index.html?#word=die
- https://visbert.demo.datexis.com/

Discussion

- Your boss have asked you to solve task X to the best of you ability, he has given you the training data
 - How to select the "best" model for your use-case?
 - What if you have limited compute?

Discussion

- Your boss have asked you to solve task X to the best of you ability, he has given you the training data
 - How to select the "best" model for your use-case?
 - What if you have limited compute?
 - What if you don't have the training data?

Next Class

- Back to generative model
- "How do we make the models less sensitive to the prompt?"
 - Instruction tuning
 - Reinforcement learning for Human feedback

