Introduction to the Lichtenberg Cluster

One Cluster – Multiple Islands

One Cluster – Multiple Islands (2)

- Cluster is divided into 2 phases
- Each phase is divided into several islands
- Rule of thumb:

HARDWARE

Compute Nodes

Phase I (706+70 nodes):

•Processors:

- ≥ 2 Intel Xeon E5-2670
 (Sandy Bridge) processors
 ≙ 2 · 8 = 16 CPU cores
- 2.6 GHz (up to 3.3 GHz in turbo mode)

•Main Memory:

> 32 GB RAM (some have 64 GB)

•Network:

- Gigabit Ethernet
- > FDR-10 InfiniBand

Phase II (596+32 nodes):

•Processors:

- 2 Intel Xeon E5-2680 v3
 (Haswell) processors
 ≙ 2 · 12 = 24 CPU cores
- 2.5 GHz (up to 3.3 GHz in turbo mode)

•Main Memory:

- > 64 GB RAM
- •Network:
 - Gigabit Ethernet
 - FDR-14 InfiniBand

Login Nodes

4 nodes (hardware similar to phase I):

•Processors:

- ▶ 4 Intel Xeon E5-4650
 (Sandy Bridge) processors
 ♠ 4 · 8 = 32 CPU cores
- 2.7 GHz (up to 3.3 GHz in turbo mode)

•Main Memory:

> 128 GB RAM

•Network:

- ➤ 2 · 10 Gigabit Ethernet
- 2 · FDR-10 InfiniBand

8 nodes (hardware similar to phase II):

•Processors:

- 2 Intel Xeon E5-2680 v3
 (Haswell) processors
 ≙ 2 · 12 = 24 CPU cores
- 2.5 GHz (up to 3.3 GHz in turbo mode)

•Main Memory:

- > 128 GB RAM
- •Network:
 - ➤ 2 · 10 Gigabit Ethernet
 - FDR-14 InfiniBand

Purpose of the Login Nodes

- Transferring files to the cluster
- Editing files on the cluster
- Compiling software
- Testing software (time limit: 30 minutes)
- Debugging small test cases
- Submitting computations to the batch system (explained later)
- Checking status of compute jobs

ACCESS TO THE CLUSTER

Set Password for Cluster Access

- 1. Go to https://www.idm.tu-darmstadt.de/ando
- 2. Log in with TU-ID
- 3. Click on tab "HLR"
- 4. Set password

Connecting to the Cluster

Open an SSH connection to one of the login nodes:

- Icluster1.hrz.tu-darmstadt.de Icluster4.hrz.tu-darmstadt.de
 - Sandy Bridge, 32 cores, 128 GB RAM
- Icluster5.hrz.tu-darmstadt.de Icluster11.hrz.tu-darmstadt.de
 - Haswell, 24 cores, 128 GB RAM

SSH Clients

Linux

- ssh <tu-id>@lcluster9.hrz.tu-darmstadt.de
- ssh -X -C -c blowfish <tu-id>@lcluster9.hrz.tu-darmstadt.de

Windows

- Cygwin (https://www.cygwin.com): ssh as with Linux above
- PuTTY (http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html)

File Transfer to the Cluster

Copy files between own computer and cluster

- Linux
 - scp <local src> <tu-id>@lcluster9.hrz.tu-darmstadt.de:<remote dst>
 - scp <tu-id>@lcluster9.hrz.tu-darmstadt.de:<remote_src> <local_dst>
- Windows
 - Cygwin (https://www.cygwin.com): scp as with Linux above
 - PuTTY (http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html)

File Transfer to the Cluster (2)

Alternative to copying files between cluster and own computer is to mount remote cluster file system via SSH on own computer

- Linux
 - SSHFS
- Windows
 - Win-sshfs
 - NetDrive

SOFTWARE

Operating System

- Linux distribution CentOS 7.5
- Some programs are included in the operating system
 - You can just use these programs, e.g., text editors such as
 vim, nano, mc, gedit for directly editing files on the login nodes
 - Only a limited number of packages is provided by the operating system

Additional Software

- A lot of software is provided by the module system
 - Compilers (GCC, Intel, ...)
 - Libraries (MPI, CUDA, ...)
 - Tools (SVN, Git, GDB, ...)
 - Application software
- Use module avail or module whatis to obtain a complete list of all available modules
- Use module help <modulename> to get further details about specific module

Module System

- To load a module, use the command module load <modulename>
 - Read the hints that might appear
 - Sometimes you have to load additional modules
 - Typically, the module name has to contain the version number,
 e.g. ansys/17.1
 - For some modules, a default version is set
 E.g., it may be sufficient to write module load gcc, but not module
 load openmpi Choose module openmpi/gcc or openmpi/intel
- To show all currently loaded modules, use module list
- To remove a module, use module unload <modulename>
- To remove all modules, use module purge

QUESTIONS & DEMO LOGIN

USING THE CLUSTER

Batch System

- Do not confuse the login nodes with the cluster
 - There are only few login nodes but >1000 compute nodes
 - Login nodes are the point of access to the cluster
 - Connecting to compute nodes not possible
- Use the batch system to submit jobs from the login nodes
 - Write job script file with all job parameters and commands and submit the script
- The cluster runs 24/7 (including weekends)

Job Script Example

#!/bin/bash

```
#SBATCH -J my_job

#SBATCH --mail-user=my@mail.com

#SBATCH --mail-type=ALL

#SBATCH -e /home/<tu-id>/somewhere/Job_Name.err.%j

#SBATCH -o /home/<tu-id>/somewhere/Job_Name.out.%j

#SBATCH --mem-per-cpu=250

#SBATCH -t 00:05:00

#SBATCH -n 4

#SBATCH --account=kurs00025

#SBATCH --partition=kurs00025

#SBATCH --reservation=kurs00025
```

```
module load gcc
module load openmpi/gcc
mpirun hostname

Commands to run your program
```


Job Script Example (2)


```
#!/bin/bash
#SBATCH -J my job
#SBATCH --mail-user=my@mail.com
#SBATCH --mail-type=ALL
#SBATCH -e /home/<tu-id>/somewhere/Job Name.err.%j
#SBATCH -o /home/<tu-id>/somewhere/Job Name.out.%j
#SBATCH --mem-per-cpu=250
#SBATCH -t 00:05:00
#SBATCH -n 4
#SBATCH --account=kurs00025
                                                    %j will be replaced
#SBATCH --partition=kurs00025
                                                    by the actual job id
#SBATCH --reservation=kurs00025
echo "This is Job $SLURM JOB ID"
module load gcc
module load openmpi/gcc
```


mpirun hostname

Job Parameters

You should always set the following parameters:

- -n <tasksnum>: Number of tasks (processes)
 Default: one CPU core per task
- --mem-per-cpu=<memory>: Maximum memory per core in MB
- -t <time>: Time limit of the job (in minutes)
 Maximum time limit is 5 min for SPP
- --partition=kurs00025
- --account=kurs00025
- --reservation=kurs00025

Additional Job Parameters

- -J <jobname>: Name of the job (does not have to be unique)
- --mail-user=<email>: Email address
- --mail-type=<BEGIN | END | ALL | [...]>: Send an email
- -o <filename>: Write standard output ('stdout') of the job to a file
- -e <filename>: Write standard error ('stderr') of the job to a file
- -c <number>: Number of CPU cores per task
 Important for OpenMP with several cores per process

Batch System Commands

• **sbatch <JobScriptFile>**: Submit the job

- squeue: List all your jobs
- sjobs <JobID>: Print detailed information about a job
- scance1 <JobID>: Kill a particular job
- scancel -u <TU-ID>: Kill all your own jobs

Troubleshooting

Job was submitted but does not start

- Job does not start when it exceeds limits
- Time limit is 5 min
- Memory per core should not exceed 1600 MB
- Memory per task must not exceed 26 GB
- We have three exclusive nodes with 16 cores and 26 GB each
- When job limits are correct, job only starts when resources on the three nodes are available
- Job start might be delayed due to jobs of other students

Further Information

http://www.hhlr.tu-darmstadt.de

QUESTIONS & DEMO JOB

