Quiz 5 Graded

Student

Ivan Wang

Total Points

10 / 25 pts

Question 1

Estimating a definite integral

4/9 pts

Left end points of the 4 subintervals

Worth 4 points

✓ -3 pts Exactly three left endpoints are incorrect or missing (not listed). Do not take points off if Δx is incorrect but student finds endpoints correctly using incorrect width

Construction of estimate

Worth 3 points

 \checkmark - 2 pts Integrand f(x) is evaluated incorrectly at exactly four or more left endpoints in the estimate. Base this on what the student identifies for f(x)

Question 2

2.1

Evaluating definite integrals using FTC 2

6 / 16 pts

4 / 5 pts

(a) Antiderivative F(x) of integrand

Worth 3 points

✓ - 1 pt Exactly one term in antiderivative is incorrect

2.2 2 / 6 pts

Antiderivative F(x) of integrand

Worth 4 points

✓ - 4 pts Antiderivative of integrand is completely incorrect

2.3 **0** / 5 pts (c)

✓ - 5 pts No part of the solution is correct

Quiz 5: MTH 141-TR

Worth: 25 points

Time Limit: 20 Minutes

Name: Ivan Wang

Student ID:

5	Ó	4	1	4	3	2	1	
				- ·				

Authorized item(s): None. This is a closed-note, closed-book quiz. Calculators are not allowed.

This quiz has 2 questions. The backside of each page of this quiz will not be graded.

1. (9 points) Estimate the definite integral below using a Riemann sum with n=4 subintervals of equal width and the left endpoints of the subintervals. In your solution, state Δx and the left endpoints of the subintervals. Do not simplify your answer.

$$\int_1^3 e^{x^2} \, dx$$

$$\Delta X = \frac{3-1}{4} = \frac{2}{4} = \frac{1}{2}$$

$$L_4 = \frac{1}{2} \left(0 + \frac{1}{2} (e) + e^2 + \frac{3}{2} (e^3) \right)$$

Name: Ivan Wany

Student ID:

2. (16 points) Evaluate the definite integral. There is no need to simplify your answer.

(a) (5 points)
$$\int_0^2 (3x^2 + 8x - 5) dx$$

$$\frac{3x^3}{3} + \frac{8x^3}{2} - 5x = x^3 + 4x^2 - 5x + C$$

$$\frac{3x}{3} + 8x^{2} - 5x = x + 4x^{2} - 5x + 4$$

$$\left(3(2)^{2} + 8(2) - 5\right) - \left(3(0)^{2} + 8(0) - 5\right) = 12 + 16 - 5 + 5 - 36$$

(b) (6 points)
$$\int_{-1}^{3} (e^x - 2\sin x + 4) dx$$

$$(e^{3}-2\sin 3+4)-(e^{-1}-2\sin 4)$$

(c) (5 points)
$$\int_{1}^{3} \frac{2-x^{3}}{x} dx$$

$$\left(\frac{2-3}{3}\right)-\left(\frac{2-1}{1}\right)$$