Example

Input: Text file over the alphabet $\{a, b\}$

Check: does the file end with the string 'aa'

Example

Input: Text file over the alphabet $\{a, b\}$

Check: does the file contain the string 'aa'

Example

Input: $w \in \{a, b\}^*$

Check: does w have odd number of as? i.e. is $\#_a(w) \equiv 1 \pmod{2}$?

Example

Input: $w \in \{0, 1\}^*$

Check: is the number represented by w in binary a multiple of 3?

Definition of finite state automata

Definition (DFA)

A deterministic finite state automaton (DFA) $A = (Q, \Sigma, q_0, F, \delta)$, where

Q is a set of states,

 Σ is the input alphabet,

 q_0 is the initial state,

 $F \subseteq Q$ is the set of final states,

 δ is a set of transitions, i.e. $\delta \subseteq Q \times \Sigma \times Q$ such that

 $\forall q \in Q, \forall a \in \Sigma, |\delta(q, a)| \le 1.$

Acceptance by DFA

Definition (Acceptance by DFA)

A deterministic finite state automaton (DFA) $A=(Q,\Sigma,\delta,q_0,q_f)$, is said to accept a word $w\in\Sigma^*$, where $w=w_1w_2\dots w_n$ if

there exists a sequence of states $p_0, p_1, \ldots p_n$ s.t.

$$p_0 = q_0$$
,

$$p_n \in F$$
,

$$\delta(p_i, w_{i+1}) = p_{i+1}$$
 for all $0 \le i \le n$.

 δ is a set of transitions, i.e. $\delta\subseteq Q\times\Sigma\times Q$ such that

$$\forall q \in Q, \forall a \in \Sigma, |\delta(q, a)| \leq 1.$$