Sovereign Default Risk and Firm Heterogeneity

Cristina Arellano
Federal Reserve Bank

of Minneapolis

Yan Bai University of Rochester NBER & CEPR Luigi Bocola

Stanford University and NBER

Tsinghua University

April 2021

Motivation

- Government debt crises are typically associated to deep recessions
- Italian debt crisis

- Real GDP: logged and linearly detrended
- Sovereign spread: Italy govt bond yields—German yield, 5-year maturity

Motivation

- Government debt crises are typically associated to deep recessions
 - E.g. Southern Europe in 2010-2012
- Why negative relation between sovereign risk and economic activity? Two mechanisms in the literature:
 - 1 Gov't defaults in bad times → Risk of default reflects deterioration of economic fundamentals (Arellano, 2008; Aguiar and Gopinath, 2006)
 - 2 Banks hold Gov't debt → Negative balance sheet effects when sovereign risk increases (Gennaioli, Martin and Rossi, 2014; Bocola, 2016)
- Important to quantify these mechanisms
 - Debate on fiscal austerity during Eurozone crisis

Measuring aggregate implications of sovereign risk

- Two main approaches to measure aggregate effects of sovereign risk
 - Structural models, fit to aggregate data
 - Drawback: measurement often not transparent
 - Difference-in-differences estimates with firm-bank level data
 - Drawback: not designed to capture aggregate effects
- Our paper aims to combine these two approaches
 - Model of Gov't debt crisis with heterogeneous firms and banks
 - Discipline model with aggregate and micro data
 - Counterfactuals to measure aggregate effects of sovereign risk

- Sovereign debt model with financial intermediation and production
 - Firms differ in borrowing needs, banks in exposure to Gov't debt
 - Gov't affects private sector through impact on banks' balance sheet

```
sovereign risk \uparrow \Rightarrow gov't debt value and bank net worth \downarrow \Rightarrow firm borrowing cost \uparrow
```

- Sovereign debt model with financial intermediation and production
 - Firms differ in borrowing needs, banks in exposure to Gov't debt
 - Gov't affects private sector through impact on banks' balance sheet sovereign risk ↑ ⇒ gov't debt value and bank net worth ↓ ⇒ firm borrowing cost ↑
- Effects of sovereign risk are heterogeneous across firms
 - Direct effect, working through firms' borrowing costs
 - Stronger for firms that borrow more/borrow from exposed banks

- Sovereign debt model with financial intermediation and production
 - Firms differ in borrowing needs, banks in exposure to Gov't debt
 - Gov't affects private sector through impact on banks' balance sheet sovereign risk ↑ ⇒ gov't debt value and bank net worth ↓ ⇒ firm borrowing cost ↑
- Effects of sovereign risk are heterogeneous across firms
 - Direct effect, working through firms' borrowing costs
 - Stronger for firms that borrow more/borrow from exposed banks
 - Indirect effects, working through demand of goods and labor
 - Affects all firms irrespective of whether they borrow or not

- Sovereign debt model with financial intermediation and production
 - Firms differ in borrowing needs, banks in exposure to Gov't debt
 - Gov't affects private sector through impact on banks' balance sheet

```
sovereign risk \uparrow \Rightarrow gov't debt value and bank net worth \downarrow \Rightarrow firm borrowing cost \uparrow
```

- Effects of sovereign risk are heterogeneous across firms
 - Direct effect, working through firms' borrowing costs
 - Stronger for firms that borrow more/borrow from exposed banks
 - Indirect effects, working through demand of goods and labor
 - Affects all firms irrespective of whether they borrow or not
- Show that direct effect is identified from firm/bank level data
 - Difference-in-difference-in-differences (DDD): compare response to sovereign risk between firms with different borrowing needs across banks with different sovereign debt exposure

Main Results

- Estimate DDD using Italian firm and bank level data (Amadeus and Bankscope)
 - Larger decline for highly levered firms during sovereign crisis, more so if borrow from banks with high sovereign debt exposure
- Fit structural model to firm, bank and aggregate data
 - Infer size/sign of indirect effects
- Use model to interpret the recent crisis
 - 100bp increase in sovereign spreads leads to 60bp increase in firms' cost of funds and 0.8% fall in GDP
 - Gov't debt crisis accounts for $\approx 1/3$ of output decline
 - Mostly due to direct effect

Literature

- Models measuring feedback with aggregate data
 - Govt crises affects aggregates through domestic interest rates Neumeyer-Perri (2005), Uribe-Yue (2005)
 - Financial intermediaries net worth matter for borrowing rates
 Gertler-Kiyotaki (2010), Gertler-Karadi (2011), Bocola (2016), Perez (2018)
 - Aggregate shocks drive fluctuations and sovereign crisis Arellano (2008), Chatterjee-Eyigungor (2012), Mendoza-Yue (2012)
- Micro to macro approach to measure aggregates
 - Fiscal multipliers, wage stickiness, trade effects Nakamura-Steinsson (2014), Beraja-Hurst-Ospina (2018), Lyon-Waugh (2018)
 - Here applied to sovereign risk

Outline

1 Model

2 Mechanisms and Measurement

3 Empirical Analysis

4 Quantitative Analysis

Model

- Central government values public goods, borrows and defaults
- J regions with firms, families, and financial intermediaries
 - Firms produce, face working capital constraints
 - Intermediaries lend to firms and Gov't, face leverage constraints
- Two key sources of heterogeneity
 - Firms differ in working capital requirements. Intermediaries differ in holdings of Gov't debt
- Two aggregate shocks
 - Firms' productivity
 - Government default costs (ν)

Central Government

• Long-term debt: fraction ϑ matures, new borrowing M_t

$$B_{t+1} = (1 - \vartheta)B_t + M_t$$

• Finances debt repayments and public consumption with tax revenues and borrowing

$$\vartheta B_t + G_t = \tau \sum_j Y_{jt} + q_t M_t$$

• Maximizes value and faces default costs shocks ν_t

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta_g^t (u_g(G_t) - \nu_t I_{D_t=1})$$

• Default $D_t = 1$ induces cost and eliminate debt obligations

Private Sector

- J regions with firms, families, and financial intermediaries
- \bullet Local labor, financial and intermediate goods markets in each j region

Final goods firms

$$Y_{jt} = \left[\int (y_{ijt})^{\eta} di \right]^{\frac{1}{\eta}}$$

- Competitive, face sales tax τ
- Demand for intermediate goods

$$y_{ijt} = \left(\frac{1-\tau}{p_{ijt}}\right)^{\frac{1}{1-\eta}} Y_{jt}$$

Firms

Produce with capital and labor under monopolistic competition

$$y_{ijt} = \exp\{\tilde{z}_{ijt}\} (k_{ijt}^{\alpha} \ell_{ijt}^{1-\alpha})$$

• \tilde{z}_{ijt} has idiosyncratic and aggregate component

$$\tilde{z}_{ijt} = A_t + z_{ijt}$$

 A_t and z_{ijt} : independent Gaussian AR(1)

• Finance λ_i of input costs with loan b_{ijt} at rate R_{jt}

$$b_{ijt}^f = \lambda_i (r_{jt}^k k_{ijt} + w_{jt} \ell_{ijt})$$

• Set price p_{ijt} and choose inputs to maximize profits

$$p_{ijt}y_{ijt} - (1 - \lambda_i)(r_{jt}^k k_{ijt} + w_{jt}\ell_{ijt}) - R_{jt}b_{ijt}^f$$

Families

- Families consists of workers and bankers
- Decide consumption C_{jt} , capital K_{jt} , deposits a_{jt} and labor L_{jt} to maximize

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(C_{jt} - \chi \frac{L_{jt}^{1+\gamma}}{1+\gamma} \right)$$

• Optimality for K_{jt}, a_{jt}, L_{jt}

$$r_{jt}^k = 1 - \beta(1 - \delta)$$
 $\chi L_{jt}^{\gamma} = w_{jt}$ $R_{jt}^a = 1/\beta$

- Bankers run financial intermediaries for two periods
 - Receive transfer from own family

$$N_{jt} = \bar{n}_j + (1 - D_t)(1 - \vartheta)q_t B_{jt}$$

• (\bar{n}_j, B_{jt}) only degree of heterogeneity across regions

Financial Intermediaries

• Issue deposits a_{jt} , invest in gov't and firms bonds $B_{jt+1}, \{b_{ijt}^f\}$

$$\max \beta E_t \left\{ (1 - D_{t+1}) \left[\vartheta B_{jt+1} + q_{t+1} (1 - \vartheta) B_{jt+1} \right] + R_{jt} \int b_{ijt}^f di - R_{jt}^a a_{jt} \right\}$$

• Balance sheet and leverage constraint

$$q_t B_{jt+1} + \int b_{ijt}^f di \leq N_{jt} + a_{jt}$$

$$a_{jt} \leq \theta \int b_{ijt}^f di + q_t B_{jt+1}$$

Financial Intermediaries

• Issue deposits a_{jt} , invest in gov't and firms bonds $B_{jt+1}, \{b_{ijt}^f\}$

$$\max \beta E_t \left\{ (1 - D_{t+1}) \left[\vartheta B_{jt+1} + q_{t+1} (1 - \vartheta) B_{jt+1} \right] + R_{jt} \int b_{ijt}^f di - R_{jt}^a a_{jt} \right\}$$

• Balance sheet and leverage constraint

$$q_t B_{jt+1} + \int b_{ijt}^f di \leq N_{jt} + a_{jt}$$

$$\int b_{ijt}^f di \leq \frac{N_{jt}}{1-\theta} \qquad (\zeta_{jt})$$

Financial Intermediaries

• Issue deposits a_{jt} , invest in Gov't and firms bonds $B_{jt+1}, \{b_{ijt}^f\}$

$$\max \beta E_{t} \left\{ (1 - D_{t+1}) \left[\vartheta B_{jt+1} + q_{t+1} (1 - \vartheta) B_{jt+1} \right] + R_{jt} \int b_{ijt}^{f} di - R_{jt}^{a} a_{jt} \right\}$$

• Balance sheet and financial constraint

$$q_t B_{jt+1} + \int b_{ijt}^f di \leq N_{jt} + a_{jt}$$

$$\int b_{ijt}^f di \leq \frac{N_{jt}}{1-\theta} \qquad (\zeta_{jt})$$

• Euler equations

$$R_{jt} = \frac{1 + \zeta_{jt}}{\beta}$$

$$q_t = \mathbb{E}_t \left\{ \beta \left[(1 - D_{t+1}) \left(\vartheta + q_{t+1} (1 - \vartheta) \right) \right] \right\}$$

Aggregate state $s=(A,\nu,B)$. Given Gov't policies (B',D), a private sector equilibrium is such that

- Firms, families, and financial intermediaries optimize
- Labor, goods, capital, deposits, bond and loan markets clear

Focus on private sector equilibrium where $B'_j = \varphi_j B'$

Government's Recursive Problem

Given $Y^a(s, D, B') = \sum_j Y_j(s, D, B')$, Gov't policies solve

• Default decision

$$W(s,\nu) = \max_{D=\{0,1\}} \{ (1-D)V(s) + D \left[V(A,\nu,0) - \nu \right] \}$$

• The value of repaying solves

$$V(s) = \max_{B'} u_g(G) + \beta_g \mathbb{E} W(s', \nu')$$
$$G + \vartheta B = \tau Y^a(s, D, B') + q(s, B') [B' - (1 - \vartheta)B]$$

where $s = (A, \nu, B)$

Outline

1 Model

2 Mechanisms and Measurement

3 Empirical Analysis

4 Quantitative Analysis

State variables for private sector:
$$(A, \nu, B, D, B', j) \Rightarrow X_j = (A, N_j)$$

 $N_j = \bar{n}_j + (1 - D)(1 - \vartheta)q(s, B')\varphi_j B$

State variables for private sector: $(A, \nu, B, D, B', j) \Rightarrow X_j = (A, N_j)$ $N_j = \bar{n}_j + (1 - D)(1 - \vartheta)q(s, B')\varphi_j B$

Lemma 1. In a private sector equilibrium, $R_j \geq \frac{1}{\beta}$ solves

$$\frac{N_j}{1-\theta} \ge M_n \overline{\lambda}(X_j) \left[\exp\{A\}^{\frac{\eta}{1-\eta}} / R_w(R_j) \right]^{\frac{(1-\eta)(1+\gamma)}{\eta(1-\alpha)\gamma}}$$

where R_w monotonically increases in R_i

• A reduction in N_j (weakly) raises firms' borrowing costs

State variables for private sector: $(A, \nu, B, D, B', j) \Rightarrow X_j = (A, N_j)$ $N_j = \bar{n}_j + (1 - D)(1 - \vartheta)q(s, B')\varphi_j B$

Lemma 1. In a private sector equilibrium, $R_j \geq \frac{1}{\beta}$ solves

$$\frac{N_j}{1-\theta} \ge M_n \overline{\lambda}(X_j) \left[\exp\{A\}^{\frac{\eta}{1-\eta}} / R_w(R_j) \right]^{\frac{(1-\eta)(1+\gamma)}{\eta(1-\alpha)\gamma}}$$

where R_w monotonically increases in R_i

• A reduction in N_i (weakly) raises firms' borrowing costs

Lemma 2. Given R_j and X_j , $\{Y_j, w_j\}$ solve

$$w_{j} = M_{w} \left[\frac{\exp\{A\}^{\frac{\eta}{1-\eta}}}{R_{w}(R_{j})} \right]^{\frac{(1-\eta)}{\eta(1-\alpha)}} Y_{j} = M_{y} \frac{\left[\exp\{A\}^{\frac{\eta}{1-\eta}} / R_{w}(R_{j}) \right]^{\frac{1-\eta+(1-\alpha\eta)\gamma}{\eta(1-\alpha)\gamma}}}{\exp\{A\}^{\frac{\eta}{1-\eta}} / R_{y}(R_{j})}$$

Propagation of Sovereign Risk

Firms' log sales are

$$\hat{py}(z, \lambda, X_j) = c + \frac{\eta}{1 - \eta} (A + z) - \frac{\eta}{1 - \eta} \lambda_i R(X_j) + \hat{Y}(X_j) - \frac{\eta (1 - \alpha)}{1 - \eta} \hat{w}(X_j)$$

Propagation of Sovereign Risk

Firms' log sales are

$$\hat{py}(z,\lambda,X_j) = c + \frac{\eta}{1-\eta}(A+z) - \frac{\eta}{1-\eta}\lambda_i R(X_j) + \hat{Y}(X_j) - \frac{\eta(1-\alpha)}{1-\eta}\hat{w}(X_j)$$

Thus, we have

$$\frac{\partial \hat{py}(z,\lambda,X_j)}{\partial \text{spr}} = \underbrace{-\frac{\eta}{1-\eta}\lambda \left(\frac{\partial R(X_j)}{\partial N_j}\frac{\partial N_j}{\partial \text{spr}}\right)}_{\text{Direct effect}} + \underbrace{\left(\frac{\partial \hat{Y}(X_j) - \frac{\eta(1-\alpha)}{1-\eta}\partial \hat{w}(X_j)}{\partial N_j}\right)\frac{\partial N_j}{\partial \text{spr}}}_{\text{Indirect effects}}$$

$$N_j = \bar{n}_j + (1 - \vartheta)q(s, B')\varphi_j B$$

- Direct effect: change in borrowing rates $R(X_j)$
 - Larger effect for high λ firms/high φ regions
- Indirect effects: change in demand Y_{jt} and wages w_{jt}
 - Effects homogeneous across firms, different across regions

Measuring Direct and Indirect Effects

Proposition. Up to a first order, the log-sales of firm i equal

$$\hat{py}_{\iota,j,t} = \alpha_i + \beta_1(\operatorname{spr}_t \times \varphi_j) + \beta_2(\operatorname{spr}_t \times \varphi_j \times \lambda_\iota) + \beta_3 A_t + \beta_4 (A_t \times \lambda_\iota) + \beta_5 (B_t \times \varphi_j) + \beta_6 (B_t \times \varphi_j \times \lambda_\iota) + \frac{\eta}{1-\eta} z_{k,t},$$

- $\beta_1 \varphi_j$ are the indirect effects in region j
- $\beta_2 \lambda_\iota \varphi_j$ is the direct effect for a firm with working capital need λ_ι in region j

Measuring Direct and Indirect Effects

Proposition. Up to a first order, the log-sales of firm i equal

$$\hat{py}_{\iota,j,t} = \alpha_i + \beta_1(\operatorname{spr}_t \times \varphi_j) + \beta_2(\operatorname{spr}_t \times \varphi_j \times \lambda_\iota) + \beta_3 A_t + \beta_4(A_t \times \lambda_\iota) + \beta_5(B_t \times \varphi_j) + \beta_6(B_t \times \varphi_j \times \lambda_\iota) + \frac{\eta}{1-\eta} z_{k,t},$$

- $\beta_1 \varphi_j$ are the indirect effects in region j
- $\beta_2 \lambda_\iota \varphi_j$ is the direct effect for a firm with working capital need λ_ι in region j

Insight: Direct and indirect effects can be identified from this regression, given proxies for λ_i and φ_j and aggregate data

• It works b/c the distribution of $z_{k,t}$ does not depend on λ_{ι} and φ_{j}

Difference-in-differences Interpretation

$$\hat{p}y_{\iota,j,k,t} = \alpha_i + \beta_1(\operatorname{spr}_t \times \varphi_j) + \beta_2(\operatorname{spr}_t \times \varphi_j \times \lambda_\iota) + \beta_3 A_t + \beta_4(A_t \times \lambda_\iota)
+ \beta_5(B_t \times \varphi_j) + \beta_6(B_t \times \varphi_j \times \lambda_\iota) + \frac{\eta}{1-\eta} z_{k,t},$$

Consider $\Delta \text{spr}_t > 0$, two regions $\{\varphi_L, \varphi_H\}$ and two leverage $\{\lambda_L, \lambda_H\}$ with $\lambda_L = 0$

Difference-in-differences Interpretation

$$\hat{py}_{\iota,j,k,t} = \alpha_i + \beta_1(\operatorname{spr}_t \times \varphi_j) + \beta_2(\operatorname{spr}_t \times \varphi_j \times \lambda_\iota) + \beta_3 A_t + \beta_4(A_t \times \lambda_\iota) + \beta_5(B_t \times \varphi_j) + \beta_6(B_t \times \varphi_j \times \lambda_\iota) + \frac{\eta}{1-\eta} z_{k,t},$$

Consider $\Delta \text{spr}_t > 0$, two regions $\{\varphi_L, \varphi_H\}$ and two leverage $\{\lambda_L, \lambda_H\}$ with $\lambda_L = 0$

• β_1 identified by comparing relative sales growth for "zero-leverage" firms across regions

$$\mathbb{E}_t \left[\Delta \left(\hat{py}_{\lambda_L, \varphi_H, k, t} - \hat{py}_{\lambda_L, \varphi_L, k, t} \right) \right] = \beta_1 [\varphi_H - \varphi_L] \Delta spr_t,$$

• "Zero-leverage" not impacted by changes in borrowing rate

Difference-in-differences Interpretation

$$\hat{p}y_{\iota,j,k,t} = \alpha_i + \beta_1(\operatorname{spr}_t \times \varphi_j) + \beta_2(\operatorname{spr}_t \times \varphi_j \times \lambda_\iota) + \beta_3 A_t + \beta_4(A_t \times \lambda_\iota)
+ \beta_5(B_t \times \varphi_j) + \beta_6(B_t \times \varphi_j \times \lambda_\iota) + \frac{\eta}{1-\eta} z_{k,t},$$

Consider $\Delta \text{spr}_t > 0$, two regions $\{\varphi_L, \varphi_H\}$ and two leverage $\{\lambda_L, \lambda_H\}$ with $\lambda_L = 0$

• β_1 identified by comparing relative sales growth for "zero-leverage" firms across regions

$$\mathbb{E}_t \left[\Delta \left(\hat{py}_{\lambda_L, \boldsymbol{\varphi}_H, k, t} - \hat{py}_{\lambda_L, \boldsymbol{\varphi}_L, k, t} \right) \right] = \beta_1 [\boldsymbol{\varphi}_H - \boldsymbol{\varphi}_L] \Delta spr_t,$$

- "Zero-leverage" not impacted by changes in borrowing rate
- β_2 identified by comparing relative sales growth between high-low λ firms, differenced out across regions

$$\begin{split} \mathbb{E}_{t} \left[\Delta \left(\hat{py}_{\lambda_{H}, \varphi_{H}, k, t} - \hat{py}_{\lambda_{L}, \varphi_{H}, k, t} \right) \right] &- \mathbb{E}_{t} \left[\Delta \left(\hat{py}_{\lambda_{H}, \varphi_{L}, k, t} - \hat{py}_{\lambda_{L}, \varphi_{L}, k, t} \right) \right] = \\ &= \beta_{2} [\varphi_{H} - \varphi_{L}] \lambda_{H} \Delta spr_{t}. \end{split}$$

Identification Issues and Measurement Strategy

What if orthogonality condition violated? Suppose we add error term

$$\varepsilon_{\iota,j,t} = \underbrace{\gamma_\iota \xi_t}_{\text{firm}} + \underbrace{\eta_j \xi_t}_{\text{region}} + \underbrace{\zeta_{\iota,j} \xi_t}_{\text{region}},$$

with ξ_t potentially correlated with spr_t

Identification Issues and Measurement Strategy

What if orthogonality condition violated? Suppose we add error term

$$\varepsilon_{\iota,j,t} = \underbrace{\gamma_\iota \xi_t}_{\text{firm}} + \underbrace{\eta_j \xi_t}_{\text{region}} + \underbrace{\zeta_{\iota,j} \xi_t}_{\text{region}},$$

with ξ_t potentially correlated with spr_t

- Indirect effects not identified if $\eta_{\varphi_H} \neq \eta_{\varphi_L}$ or $\zeta_{\lambda_L,\varphi_H} \neq \zeta_{\lambda_L,\varphi_L}$
- Direct effect identified as long as differential effects between high and low λ firms similar across regions

$$\zeta_{\lambda_H,\varphi_H} - \zeta_{\lambda_L,\varphi_H} = \zeta_{\lambda_H,\varphi_L} - \zeta_{\lambda_L,\varphi_L}$$

Identification Issues and Measurement Strategy

What if orthogonality condition violated? Suppose we add error term

$$\varepsilon_{\iota,j,t} = \underbrace{\gamma_\iota \xi_t}_{\text{firm}} + \underbrace{\eta_j \xi_t}_{\text{region}} + \underbrace{\zeta_{\iota,j} \xi_t}_{\text{region}},$$

with ξ_t potentially correlated with spr_t

- Indirect effects not identified if $\eta_{\varphi_H} \neq \eta_{\varphi_L}$ or $\zeta_{\lambda_L,\varphi_H} \neq \zeta_{\lambda_L,\varphi_L}$
- Direct effect identified as long as differential effects between high and low λ firms similar across regions

$$\zeta_{\lambda_H,\varphi_H} - \zeta_{\lambda_L,\varphi_H} = \zeta_{\lambda_H,\varphi_L} - \zeta_{\lambda_L,\varphi_L}$$

Our measurement strategy: focus on direct effect

- Use micro data to estimate direct effect
- Infer indirect effects using structural model (Chodorow-Reich, 2014)

Outline

1 Model

2 Mechanisms and Measurement

3 Empirical Analysis

4 Quantitative Analysis

Empirical Analysis

- Merge Amadeus with Bankscope at the geographic level
 - Balance-sheet observations on Italian firms
 - Balance-sheet observations on Italian banks
 - BoI data on # of bank branches by geographic unit ("Regioni")
- Balanced panel of 300k+ firms per year
- Partition firms in four groups, depending on
 - Debt-to-asset ratio high/low leverage (lev_i $\in \{0, 1\}$)
 - Location: headquartered in regions with high/low banks' exposure to sovereign debt (exp_i ∈ {0, 1})
- Partition done using 2007 data. Firm-level regressions estimated over 2008-2015 period

Firms' summary statistics in 2007

	Obs.	Mean	P25	P50	P75
Number of employees	123,514	27	3	7	18
Operating revenues	336,047	40543	1118	5083	17972
Total assets	336,047	44273	2635	7465	21239
Debt	336,047	8680	0	342	3623
Accounts receivable	336,047	7842	35	657	3518
Leverage	336,047	0.38	0.07	0.37	0.63

The median firm is small

 \bullet 7 employees, operating revenues of 5m euros, leverage ratio of 37%

Banks' exposure to sovereign debt in 2007

- Exposure: Gov't debt to equity in 2007
- Construct a regional indicator by weighting banks' debt holdings and equity by their # branches in the region

$$exposure_{j} = \frac{\sum_{i} B_{i}^{loc,j} + \sum_{n} \frac{M_{n}j}{M_{n}} B_{n}^{nat}}{\sum_{i} E_{i}^{loc,j} + \sum_{n} \frac{M_{n}j}{M_{n}} E_{n}^{nat}}$$

 Regions in different exposure groups have similar characteristics

▶ Aggregate

▶ Distribution of firms

Pre-trend analysis

$$\hat{py}_{i,t} = \alpha_i + \tau_{1,t} + \tau_{2,t} \exp_i + \tau_{3,t} \operatorname{lev}_i + \beta_t (\operatorname{lev}_i \times \exp_i) + \delta' \Gamma_{i,t} + \varepsilon_{i,t}$$

Empirical specification

• The estimate the following relation

$$\hat{py}_{i,t} = \alpha_i + \hat{\beta} \left(\operatorname{spr}_t \times \operatorname{lev}_i \times \operatorname{exp}_i \right) + \delta' \Gamma_{i,t} + \varepsilon_{i,t}$$

where $\Gamma_{i,t}$ include

- Region × time fixed effects that vary by firms' characteristic bins (industry, size, profitability, volatility)
- $\operatorname{spr}_t \times \operatorname{lev}_i$, $\operatorname{TFP}_t \times \operatorname{lev}_i$, $\operatorname{TFP}_t \times \operatorname{lev}_i \times \operatorname{exp}_i$
- Group-specific linear time trend
- $\hat{\beta}$: Differential sensitivity of sales to sovereign spreads between high/low leverage firms differenced across regions \rightarrow Direct effect
- The indirect effects absorbed by region \times time fixed effects

Results

	Model implied	Baseline
â	-0.771	-0.723
\hat{eta}	(0.077)	(0.043)
$\text{TFP}_t \times \text{lev}_i$	yes	yes
$\operatorname{spr}_t \times \operatorname{lev}_i$	yes	yes
$\text{TFP}_t \times \text{lev}_i \times \exp_i$	yes	yes
Group-specific linear time trends	yes	yes
Firms FE	yes	yes
$Time \times region FE$	yes	no
Time \times region \times industry \times firms' bin FE	no	yes
R^2	0.87	0.88
Obs.	2,589,772	2,578,355

Standard errors clustered at region/year level

▶ Sensitivity

Outline

1 Model

2 Mechanisms and Measurement

3 Empirical Analysis

4 Quantitative Analysis

Model Parametrization

- Two regions/two leverage groups
- Process for A_t estimated using TFP data
- Set some parameters to conventional values $\alpha = .30, \beta = .98, \delta = .10, \eta = .75, \sigma = 2, \tau = .20, \vartheta = .05$
- Set Frisch elasticity $(1/\gamma)$ to 0.75
- Moment matching
 - Parameters: $\{\bar{n}_j/(1-\theta), \varphi_j/(1-\theta), \lambda_{\text{low}}, \lambda_{\text{high}}, \sigma_z, \sigma_\nu, \rho_\nu, \bar{\nu}, \beta_g\}$
 - Moments: Distribution of firms' leverage and banks' exposure, $\hat{\beta}$, Stdev $(\hat{py}_{i,t})$, Moments of sovereign spreads distribution

Calibration Targets and Out of Sample Fit

	Data	Model
Targeted moments		
$Stdev(\hat{py}_{it})$	0.52	0.55
Firms' leverage	[.0.51]	[.0.51]
Banks' exposure	[.45.62]	[.45.62]
\hat{eta}	-0.72	-0.77
$Mean(spr_t)$	1.0	1.1
$Stdev(spr_t)$	1.2	1.1
$Acorr(spr_t)$	0.8	0.8
$Skewness(spr_t)$	1.2	1.0
$Corr(spr_t, \hat{Y}_t)$	-0.36	-0.60
Out of sample moments		
$Mean(firm spr_t)$	0.33	0.41
$Stdev(firm spr_t)$	0.77	0.77
$Acorr(firm spr_t)$	0.53	0.37
Skewness(firm spr_t)	0.73	2.21
$Corr(spr_t, firm spr_t)$	0.89	0.90
$Corr(\hat{Y}_{L,t}, \hat{Y}_{H,t})$	0.98	0.99
$\underline{\text{Mean}_{\text{crisis}}(\hat{Y}_{H,t} - \hat{Y}_{L,t})}$	-0.56	-0.56

Event Analysis

- Choose $\{A_t, \nu_t\}$ to match output and sovereign spreads in the event
- Counterfactual to measure macroeconomic spillovers of debt crisis
 - What would have happened without increase in sovereign risk?
- Counterfactual path: hold ν_t at its 2007 level

Event

- Counterfactual paths: no change in sovereign and private sector interest rates and higher output
- "Pass-through" of spread $\approx 0.6 \ (2.2/3.9)$

Output Losses from Sovereign Risk

	2011	2012	2013	Average (11-13)		
Output, baseline	-3.3	-6.3	-8.0	-5.9		
Output, no debt crisis	-2.5	-3.2	-6.9	-4.2		
Output losses from sovereign risk						
Total	-0.8	-3.1	-1.1	-1.7		
Direct effect	-1.6	-6.1	-2.1	-3.2		
Indirect effect	0.8	3.0	1.0	1.5		

- Average output losses of 1.7% ($\approx 1/3$ of total)
- Overall effects mostly due to direct effect

Sensitivity Analysis

Output losses from sovereign risk:

	Baseline	High $ \hat{\beta} $	Low $ \hat{\beta} $	Low Frisch	High Frisch	Firms' default
Total	-1.7	-2.2	-0.6	-0.9	-3.2	-1.8
Direct	-1.7 -3.3	-2.2 -4.3	-0.0 -1.1	-3.1	-3.2 -2.1	-3.5
Indirect	-3.3 1.6	-4.3 2.1	0.5	2.2	-2.1 -1.1	-3.5 1.7
manect	1.0	2.1	0.5	2.2	-1.1	1.7
Model fit	0.02	0.04	0.02	0.02	0.05	0.01

Conclusions

- Sovereign debt model with heterogenous firms and banks
- Firm-bank level data useful to identify macroeconomic spillovers of Gov't debt crisis
- Similar methodology can be used to measure other output costs of sovereign risk

Firms' characteristics by leverage/exposure group

Regional characteristics by exposure group

Aggregate Time Series

Two recessions:

- 2008-2009 financial crisis not associated to sovereign risk
- 2011-2013 associated to increase in sovereign risk

Sensitivity analysis

	Region controls	No long- term debt	Continuous variables	Unbalanced panel	2008-2011 subsample	RJ index
\hat{eta}	-0.886 (0.049)	-0.507 (0.024)	-2.271 (1.162)	-0.464 (0.133)	-0.493 (0.007)	-1.947 (0.550)
R^2 Obs.	0.88 $2,578,355$	0.88 $2,578,355$	0.88 $2,578,355$	0.87 $3,002,873$	0.92 1285990	0.93 440,850

▶ Return