1 Алгоритм определения находится ли вектор в секторе

Нужно определить принадлежит ли вектор \vec{U} с координатами (U_x, U_y) сектору, ограниченному векторами $\vec{e_1}$ с координатами (e_{1x}, e_{1y}) и $\vec{e_2}$ с координатами (e_{2x}, e_{2y}) . Не предполагаем, что вектора $\vec{e_1}$ и $\vec{e_2}$ нормированы на единицу.

Предполагаем, что угол φ_1 между вектором $\vec{e_1}$ и горизонтальной осью \vec{ox} отсчитываемый против часовой стрелки меньше угла φ_2 между вектором $\vec{e_2}$ и горизонтальной осью \vec{ox} .

$$\varphi_1 < \varphi_2$$

Вектор \vec{U} принадлежит сектору, если для угла $\varphi_{\scriptscriptstyle U}$ между вектором \vec{U} и горизонтальной осью \vec{ox} выпоняются неравенства

$$arphi_1 \leq arphi_U < arphi_2$$
 $arphi_1$
 $arphi_1$
 $arphi_1$
 $arphi_1$

Если вектор \vec{U} находится внутри сектора, то выполняются неравенства для векторных произведений:

$$\left\{ \begin{array}{l} \left[\vec{e}_1 \times \vec{U}\right] > 0 \\ \left[\vec{e}_2 \times \vec{U}\right] < 0 \end{array} \right.$$

Тогда для координат выполняются неравенства:

$$\begin{cases} \begin{vmatrix} e_{1x} & e_{1y} \\ U_x & U_y \end{vmatrix} = e_{1x} \cdot U_y - e_{1y} \cdot U_x > 0 \\ \begin{vmatrix} e_{2x} & e_{2y} \\ U_x & U_y \end{vmatrix} = e_{2x} \cdot U_y - e_{2y} \cdot U_x < 0 \end{cases}$$

Система неравенств может быть переписана в виде:

$$\begin{cases}
e_{1x} \cdot U_y > e_{1y} \cdot U_x \\
e_{2x} \cdot U_y < e_{2y} \cdot U_x
\end{cases}$$
(1)

В частном случае векторного ШИМ, для первого сектора можем выбрать вектора $\vec{e_1}$ с координатами (1,0) и $\vec{e_2}$ с координатами $\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)$. Тогда система неравенств (1) становится

$$\begin{cases} U_y > 0 \\ U_y < \sqrt{3} \cdot U_x \end{cases} = \begin{cases} U_y > 0 \\ \operatorname{tg}(\varphi_U) < \sqrt{3} \end{cases}$$

2 Другой метод вывода условий нахождения вектора в секторе

Предположим, что вектора $\vec{e}_{[1]}$ и $\vec{e}_{[2]}$ образуют базис косоугольной системы координат. Построим сопряженный базис, вектора сопряженного

базиса проведены штриховыми линиями. Координаты векторов сопряженного базиса образуем по правилу:

$$\begin{pmatrix} e_{[1]x} \\ e_{[1]y} \end{pmatrix} \Rightarrow \underbrace{\begin{pmatrix} -e_{[1]y} \\ e_{[1]x} \end{pmatrix}}_{\vec{e}^{[2]}} = \begin{pmatrix} e^{[2]}_x \\ e^{[2]}_y \end{pmatrix}$$
(2)

$$\begin{pmatrix} e_{[2]x} \\ e_{[2]y} \end{pmatrix} \Rightarrow \underbrace{\begin{pmatrix} e_{[2]y} \\ -e_{[2]x} \end{pmatrix}}_{\vec{e}^{[1]}}$$
 (3)

Нужно позаботиться, чтобы угол между векторами $\vec{e}_{[1]}$ и $\vec{e}^{[1]}$ был острым, также угол между векторами $\vec{e}_{[2]}$ и $\vec{e}^{[2]}$ был острым. Это получим в случае, когда для вектора $\vec{e}_{[1]}$ с меньшим углом φ_1 , одновременно с перестановкой координат, для x-координаты сменим знак, а для вектора $\vec{e}_{[2]}$ с большим углом φ_2 , одновременно с перестановкой координат, сменим знак y-координаты. Скалярные произведения между сопряженными векторами со скрестными индексами равны 0, что непосредственно видно из построения (2) сопряженного вектора:

$$(\vec{e}_{[1]} \cdot \vec{e}^{[2]}) = e_{[1]x} \cdot e_{x}^{[2]} + e_{[1]y} \cdot e_{y}^{[2]},$$

$$(\vec{e}_{[2]} \cdot \vec{e}^{[1]}) = 0$$

Если вектор \vec{U} находится в левой полуплоскости относительно вектора $\vec{e}_{[2]}$, очевидно, что скалярное произведение $(\vec{U} \cdot \vec{e}^{[1]}) > 0$. Выражая неравенство через координаты (3), получаем:

$$(\vec{U} \cdot \vec{e}^{[1]}) = U_x \cdot e_{[2]y} - U_y \cdot e_{[2]x} > 0$$

что совпадает со вторым неравенством системы (1).

Аналогично, если вектор \vec{U} находится в правой полуплоскости относительно вектора $\vec{e}_{[1]}$, то скалярное произведение

$$(\vec{U} \cdot \vec{e}^{[2]}) > 0 \Rightarrow U_x \cdot (-e_{[1]y}) + U_y \cdot e_{[1]x} > 0$$

и совпадает с первым неравенством системы (1).

3 Алгоритмы определения сектора, представленные на рынке

3.1 Texas Instrument

SVGEN_MF(переход из сектора в сектор определяется внутренней переменной, зависящей от угла)

SVGEN()

```
#define SVGENDQ_MACRO(v)
           v.tmp1= v.Ubeta;
2
           v.tmp2= _IQdiv2(v.Ubeta) + (_IQmpy(_IQ(0.866),v.Ualpha));\
3
       v.tmp3 = v.tmp2 - v.tmp1;
4
5
           v.VecSector=3;
6
           v.VecSector=(v.tmp2> 0)?( v.VecSector-1):v.VecSector; \
7
           v.VecSector=(v.tmp3> 0)?( v.VecSector-1):v.VecSector; \
8
           v.VecSector=(v.tmp1< 0)?(7-v.VecSector) :v.VecSector; \
9
10
                   (v.VecSector==1 || v.VecSector==4)
         {
                v.Ta= v.tmp2;
                    v.Tb= v.tmp1-v.tmp3;
13
                    v.Tc=-v.tmp2;
14
         }
16
       else if(v.VecSector==2 || v.VecSector==5)
17
                v.Ta= v.tmp3+v.tmp2;
                    v.Tb = v.tmp1;
                    v.Tc=-v.tmp1;
20
         }
21
22
       else
23
         {
                v.Ta= v.tmp3;
24
                    v.Tb=-v.tmp3;
25
                    v.Tc=-(v.tmp1+v.tmp2);
         }
27
```

$$tmp_1 = U_y \cdot e_{[A]x} = [\vec{e}_{[A]} \times \vec{U}]$$

$$tmp_2 = -U_y \cdot e_{[B]x} + U_x \cdot e_{[B]y} = -[\vec{e}_{[B]} \times \vec{U}]$$

$$tmp_3 = U_y \cdot e_{[C]x} - U_x \cdot e_{[C]y} = [\vec{e}_{[C]} \times \vec{U}]$$

строка	условие	результат	
6	сектор=3		
7	Если в полуплоскости где сектора 6,1,2	то 2,	иначе сектор 3
8	Если в полуплоскости где сектора 5,6,1	то 1 или 2	иначе 2 или 3
9	Если в нижней полуплоскости 4,5,6	то $4[1]$ или $5[2]$ или $6[3]$	иначе 1 или 2 или 3

В строке 9 выражение 7-v.VectorSec сделает обратным порядок секторов из $3,2,1 \Rightarrow 4,5,6$.

4 Мехатроника-Про (MexBios)

```
1  Ka = *v->Alpha * 0.86602540378443864676372317;
2  Kb = *v->Beta * 0.5;
3
4  Va = *v->Beta;
5  Vb = Ka - Kb;
6  Vc = -Ka - Kb;
7
8  if (Va > 0.0) Sector = 1;
9  if (Vb > 0.0) Sector = Sector + 2;
10  if (Vc > 0.0) Sector = Sector + 4;
```

 V_a — есть скалярное произведение изображающего вектора \vec{U} на вектор $\vec{e}^{\,[B]}$, перпендикулярный базовому вектору $\vec{e}_{\,[A]}$. 8-я строка определит, находится ли изображающий вектор в верхней полуплоскости.