Script 17

Sequences and Series of Functions

6/23: **Definition 17.1.** Let $A \subset \mathbb{R}$, and consider $X = \{f : A \to \mathbb{R}\}$, the collection of real-valued functions on A. A **sequence of functions** (on A) is an ordered list (f_1, f_2, f_3, \dots) which we will denote (f_n) , where each $f_n \in X$. (More formally, we can think of the sequence as a function $F : \mathbb{N} \to X$, where $f_n = F(n)$, for each $n \in \mathbb{N}$, but this degree of formality is not particularly helpful.)

We can take the sequence to start at any $n_0 \in \mathbb{Z}$ and not just at 1, just like we did for sequences of real numbers.

Definition 17.2. The sequence (f_n) converges pointwise to a function $f: A \to \mathbb{R}$ if for all $x \in A$ and $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that if $n \geq N$, then $|f_n(x) - f(x)| < \epsilon$. In other words, we have that for all $x \in A$, $\lim_{n \to \infty} f_n(x) = f(x)$.

Definition 17.3. The sequence (f_n) converges uniformly to a function $f: A \to \mathbb{R}$ if for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that if $n \geq N$, then $|f_n(x) - f(x)| < \epsilon$ for every $x \in A$.

Equivalently, the sequence (f_n) converges uniformly to a function $f: A \to \mathbb{R}$ if for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that if $n \geq N$, then $\sup_{x \in A} |f_n(x) - f(x)| < \epsilon$.

Exercise 17.4. Suppose that a sequence (f_n) converges pointwise to a function f. Prove that if (f_n) converges uniformly to a function g, then f = g.

Proof. To prove that f = g, Definition 1.16 tells us that it will suffice to show that f(x) = g(x) for all $x \in A$. Suppose for the sake of contradiction that $f(x) \neq g(x)$ for some $x \in A$. Since (f_n) converges pointwise to f by hypothesis, Definition 17.2 implies that for all $\epsilon > 0$, there exists $N_1 \in \mathbb{N}$ such that if $n \geq N_1$, then $|f_n(x) - f(x)| < \epsilon$. Additionally, since (f_n) converges uniformly to g by hypothesis, Definition 17.3 asserts that for all $\epsilon > 0$, there exists $N_2 \in \mathbb{N}$ such that if $n \geq N_2$, then $|f_n(x) - g(x)| < \epsilon$.

WLOG, let f(x) > g(x). Choose $\epsilon = \frac{f(x) - g(x)}{2}$, and let $N = \max(N_1, N_2)$. Since $N \ge N_1$, $|f_N(x) - f(x)| < \frac{f(x) - g(x)}{2}$. Similarly, $|f_N(x) - g(x)| < \frac{f(x) - g(x)}{2}$. But this implies that

$$f(x) - g(x) = |f(x) - f_N(x) + f_N(x) - g(x)|$$

$$\leq |f(x) - f_N(x)| + |f_N(x) - g(x)|$$
Lemma 8.8
$$= |f_N(x) - f(x)| + |f_N(x) - g(x)|$$

$$\leq \frac{f(x) - g(x)}{2} + \frac{f(x) - g(x)}{2}$$

$$= f(x) - g(x)$$

a contradiction.

Exercise 17.5. For each of the following sequences of functions, determine what function the sequence (f_n) converges to pointwise. Does the sequence converge uniformly to this function?

(a) For $n \in \mathbb{N}$, let $f_n : [0,1] \to \mathbb{R}$ be given by $f_n(x) = x^n$.

Script 17 MATH 16210

Answer. Converges to the function $f:[0,1]\to\mathbb{R}$ defined by

$$f(x) = \begin{cases} 0 & x < 1\\ 1 & x = 1 \end{cases}$$

Does not converge uniformly.

(b) For $n \in \mathbb{N}$, let $f_n : \mathbb{R} \to \mathbb{R}$ be given by $f_n(x) = \frac{\sin(nx)}{n}$. (For the purposes of this example, you may assume basic knowledge of sine.)

Answer. Converges to the function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 0. Does converge uniformly.

(c) For $n \in \mathbb{N}$, let $f_n : [0,1] \to \mathbb{R}$ be given by

$$f_n(x) = \begin{cases} n^2 x & 0 \le x \le \frac{1}{n} \\ n(2 - nx) & \frac{1}{n} \le x \le \frac{2}{n} \\ 0 & \frac{2}{n} \le x \le 1 \end{cases}$$

Answer. Converges to the function $f:[0,1]\to\mathbb{R}$ defined by f(x)=0. Does not converge uniformly. \square

Theorem 17.6. Let (f_n) be a sequence of functions, and suppose that each $f_n: A \to \mathbb{R}$ is continuous. If (f_n) converges uniformly to $f: A \to \mathbb{R}$, then f is continuous.

Proof. To prove that f is continuous, Theorem 9.10 tells us that it will suffice to show that f is continuous at every $x \in A$. Let x be an arbitrary element of A. To show that f is continuous at x, Theorem 11.5 tells us that it will suffice to verify that for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $y \in A$ and $|y - x| < \delta$, then $|f(y) - f(x)| < \epsilon$. Let $\epsilon > 0$ be arbitrary, and also let y be an arbitrary element of A. Since (f_n) converges uniformly, Definition 17.3 implies that there exists $N \in \mathbb{N}$ such that if $n \geq N$, then $|f_n(a) - f(a)| < \frac{\epsilon}{3}$ for all $a \in A$. Thus, $|f_N(x) - f(x)| < \frac{\epsilon}{3}$ and $|f_N(y) - f(y)| < \frac{\epsilon}{3}$. Additionally, since each f_n is continuous, Theorems 9.10 and 11.5 assert that there exists $\delta > 0$ such that if $y \in A$ and $|y - x| < \delta$, then $|f_N(y) - f_N(x)| < \frac{\epsilon}{3}$. Choose this δ to be our δ . Therefore,

$$|f(y) - f(x)| \le |f(y) - f_N(y)| + |f_N(y) - f_N(x)| + |f_N(x) - f(x)|$$
 Lemma 8.8

$$= |f_N(y) - f(y)| + |f_N(y) - f_N(x)| + |f_N(x) - f(x)|$$
 Exercise 8.5

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

as desired.

Theorem 17.7. Suppose that (f_n) is a sequence of integrable functions on [a,b] and suppose that (f_n) converges uniformly to $f:[a,b] \to \mathbb{R}$. Then

$$\int_{a}^{b} f = \lim_{n \to \infty} \int_{a}^{b} f_{n}$$

Lemma. f is integrable on [a,b].

Proof. To prove that f is integrable on [a,b], Theorem 13.18 tells us that it will suffice to show that for every $\epsilon > 0$, there exists a partition P of [a,b] such that $U(f,P) - L(f,P) < \epsilon$. Let $\epsilon > 0$ be arbitrary. Since (f_n) converges uniformly to f by hypothesis, Definition 17.3 asserts that there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $|f_n(x) - f(x)| < \frac{\epsilon}{6(b-a)}$ for all $x \in [a,b]$. This statement will be useful in the verification of the three following results.

¹For the purposes of this proof, we will assume that a < b, on the basis of the fact that the proof of the case where a = b is trivial.

Script 17 MATH 16210

To confirm that $|U(f_N,P)-L(f_N,P)|<\frac{\epsilon}{3}$, we first invoke Theorem 13.18, which tells us that since f_N is integrable by hypothesis, there exists a partition P of [a,b] such that $U(f_N,P)-L(f_N,P)<\frac{\epsilon}{3}$. Additionally, since $L(f_N,P)\leq U(f_N,P)$ by Theorem 13.13, we have by Definition 8.4 that $U(f_N,P)-L(f_N,P)=|U(f_N,P)-L(f_N,P)|$. Therefore, we have by transitivity that $|U(f_N,P)-L(f_N,P)|=U(f_N,P)-L(f_N,P)<\frac{\epsilon}{3}$, as desired.

To confirm that $|U(f,P)-U(f_N,P)|<\frac{\epsilon}{3}$, we begin with the following contradiction argument.

Suppose for the sake of contradiction that $|M_i(f) - M_i(f_N)| \ge \frac{\epsilon}{3(b-a)}$. We divide into two cases $(M_i(f) - M_i(f_N)) \ge \frac{\epsilon}{3(b-a)}$ and $M_i(f_N) - M_i(f) \ge \frac{\epsilon}{3(b-a)}$. Suppose first that $M_i(f) - M_i(f_N) \ge \frac{\epsilon}{3(b-a)}$. By Lemma 5.11, there exists $f(x) \in \{f(x) \mid t_{i-1} \le x \le t_i\}$ such that $M_i(f) - \frac{\epsilon}{6(b-a)} < f(x) \le M_i(f)$. Similarly, there exists $f_N(x) \in \{f_N(x) \mid t_{i-1} \le x \le t_i\}$ such that $M_i(f_N) - \frac{\epsilon}{6(b-a)} < f_N(x) \le M_i(f_N)$. Thus, we have that

$$f(x) > M_i(f) - \frac{\epsilon}{6(b-a)} > M_i(f) - \frac{\epsilon}{3(b-a)} \ge M_i(f_N) \ge f_N(x)$$

It follows that

$$|f(x) - f_N(x)| = f(x) - f_N(x)$$

$$> \left(M_i(f) - \frac{\epsilon}{6(b-a)}\right) - f_N(x)$$

$$\geq \left(M_i(f) - \frac{\epsilon}{6(b-a)}\right) - M_i(f_N)$$

$$= M_i(f) - M_i(f_N) - \frac{\epsilon}{6(b-a)}$$

$$\geq \frac{\epsilon}{3(b-a)} - \frac{\epsilon}{6(b-a)}$$

$$= \frac{\epsilon}{6(b-a)}$$

But this contradicts the previously proven fact that $|f(x) - f_N(x)| = |f_N(x) - f(x)| < \frac{\epsilon}{6(b-a)}$. The argument is symmetric in the other case.

Thus, we know that $|M_i(f) - M_i(f_N)| < \frac{\epsilon}{3(b-a)}$. Therefore, we have that

$$|U(f,P) - U(f_N,P)| = \left| \sum_{i=1}^k M_i(f)(t_i - t_{i-1}) - \sum_{i=1}^k M_i(f_N)(t_i - t_{i-1}) \right|$$
Definition 13.10
$$= \left| \sum_{i=1}^k (M_i(f) - M_i(f_N)(t_i - t_{i-1}) \right|$$

$$< \left| \sum_{i=1}^k \frac{\epsilon}{3(b-a)}(t_i - t_{i-1}) \right|$$

$$= \frac{\epsilon}{3(b-a)}(b-a)$$

$$= \frac{\epsilon}{2}$$

as desired.

The verification of the statement that $|L(f_N, P) - L(f, P)| < \frac{\epsilon}{3}$ is symmetric to the previous argument.

Having established that $|U(f_N,P)-L(f_N,P)|<\frac{\epsilon}{3},\ |U(f,P)-U(f_N,P)|<\frac{\epsilon}{3},\ \text{and}\ |L(f_N,P)-L(f,P)|<\frac{\epsilon}{3},\ \text{we can now show that}$

$$U(f,P) - L(f,P) = |U(f,P) - L(f,P)|$$
 Theorem 13.13
$$\leq |U(f,P) - U(f_N,P)| + |U(f_N,P) - L(f_N,P)| + |L(f_N,P) - L(f,P)|$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

$$= \epsilon$$

Script 17 MATH 16210

as desired. \Box

Proof of Theorem 17.7. To prove that $\lim_{n\to\infty}\int_a^b f_n=\int_a^b f$, Theorem 15.7 tells us that it will suffice to show that for all $\epsilon>0$, there exists $N\in\mathbb{N}$ such that for all $n\geq N$, we have $|\int_a^b f_n-\int_a^b f|<\epsilon$. Let $\epsilon>0$ be arbitrary. Since (f_n) converges uniformly to f, we have by Definition 17.3 that there exists $N\in\mathbb{N}$ such that if $n\geq N$, then $|f_n(x)-f(x)|<\frac{\epsilon}{b-a}$ for all $x\in[a,b]$. Choose this N to be our N. Let n be an arbitrary natural number such that $n\geq N$. It follows from the lemma to Exercise 8.9 that $-\frac{\epsilon}{b-a}< f_n(x)-f(x)<\frac{\epsilon}{b-a}$ for all $x\in[a,b]$. Additionally, since f_n is integrable on [a,b] by hypothesis and f is integrable on [a,b] by the lemma, Theorem 13.24 implies that f_n-f is integrable on [a,b]. Combining these last two results, we have by Theorem 13.27 that $-\frac{\epsilon}{b-a}(b-a)< \int_a^b (f_n-f)<\frac{\epsilon}{b-a}(b-a)$. Consequently, by Script 7 and the lemma to Exercise 8.9, we have that $|\int_a^b f_n-\int_a^b f|<\epsilon$, as desired.