Sabit Varyans

$$Var(u_i|X_i) = Var(u_i) = E(u_i^2) = \sigma^2 \implies E$$
şit Varyans

EKKY'nin varsayımlarından biri anakütle regresyon fonksiyonu u_i lerin eşit varyanslı olmasıdır.

Her hata terimi varyansı bağımsız değişkenlerin verilen değerlerine göre σ^2 ye eşit aynı (sabit) bir değerdir. Bu hedenle **eşit varyansa sabit varyans** da denir.

Y

Sabit Varyansta Hataların Dağılımı

Tüketim

 y_t

Gelir

 \mathbf{X}_{t}

Sabit Varyans Durumu

Farklı Varyans Kavramı

• "Sabit varyans" (homoscedasticity) varsayımına göre verili X_i açıklayıcı değişkenlerine bağlı olarak Y_i 'nin koşullu varyansı sabittir:

$$E(u_i^2) = \sigma^2$$
 i=1, 2,..,n

• "Farklı varyans" (heteroscedasticity) durumunda ise X_i değiştikçe Y_i 'nin koşullu varyansı da değişir:

$$E(u_i^2) = \sigma_i^2$$

- •Farklı varyansa bir örnek olarak tasarrufların varyansının gelirle birlikte artmasını verebiliriz.
- •Yüksek gelirli ailelerin tasarrufları, düşük gelirli ailelere oranla hem ortalama olarak daha çoktur hem de değişirliği daha fazladır.

Farklı Varyans

$$Var(u_i|X_i) = Var(u_i) = E(u_i^2) = \sigma_i^2 \implies Farklı Varyans$$

Zaman

Farklı Varyansta Hataların Dağılımı

Farklı Varyans Durumu

Farklı Varyansın Nedenleri

- Hata terimi varyansının değişken olma nedenlerinden bazıları şunlardır:
- 1. "Hata öğrenme" (error learning) modellerine göre bireyler bazı konuları öğrendikçe daha az hata yaparlar. Buna göre de σ^2 nin de zamanla küçülmesi beklenir.

Örnek olarak, bilgisayarda klavye kullanma süresi arttıkça hem klavye hataları hem de bunların varyansları azalır.

Farklı Varyansın Nedenleri

- 2. Gelir düzeyi arttıkça gelirin harcanabileceği seçenekler de genişler. Böylece, gelir düzeyi ile birlikte hem harcamaların hem de bunların varyanslarının artması beklenir.
- 3. Zaman içerisinde veri derleme tekniklerinin gelişmesine koşut olarak σ_i^2 de düşebilir.
- 4. Farklı varyans "dışadüşen" (outlier) gözlemlerin bir sonucu olarak da ortaya çıkabilir.Böyle gözlemlerin alınması ya da bırakılması, özellikle de örneklem küçükken sonuçları önemli ölçüde değiştirebilir.

Farklı Varyansın Nedenleri

- 5. Farklı varyansın bir diğer nedeni de model belirleme (spesifikasyon) hatasıdır. Özellikle de önemli bir değişkenin modelden çıkartılması farklı varyansa yol açabilir.
- 6. Farklı varyans sorunu yatay kesit verilerinde zaman serisi verilerine oranla daha fazla görülebilmektedir. Bunun nedeni, zaman serilerinde değişkenlerin zaman içerisinde yakın büyüklüklerde olma eğilimidir.

Farklı Varyans ile Karşılaşılan Durumlar

Kar dağıtım modelleri, Sektör modelleri, Ücret modelleri ve Deneme - Yanılma modelleri gibi kesit verilerinde karşılaşılır.

En Küçük Kareler İle İlgili Özellikleri

- 1. En Küçük Kareler Tahmincileri doğrusal ve sapmasızdır.
- 2. Katsayı tahmincileri etkin değildir.
- 3. En Küçük kareler tahmincilerinin standart hataları doğru değildir.
- 4. Standart hata formulleri doğru olmadığından güven aralıkları ve hipotez testleri geçerli değildir.

$$y_t = \beta_1 + \beta_2 x_t + e_t$$

Farklı varyans durumunda:

En küçük kareler varyans formulu geçersizdir:

$$var(b_2) = \frac{\sigma^2}{\sum (x_t - \overline{x})^2}$$

Enküçük kareler varyans formulu aşağıdaki gibi düzeltilmelidir.:

var(b₂) =
$$\frac{\sum \sigma_t^2 (x_t - \bar{x})^2}{[\sum (x_t - \bar{x})^2]^2}$$

Farklı Varyansın Belirlenmesi

- •Grafik Yöntemle.
- •Sıra Korelasyonu testi ile.
- •Goldfeld-Quandt testi ile.
- •White testi ile.
- •Lagrange çarpanları testi ile

$$H_0: \rho = 0$$

 $H_1: \rho \neq 0$

2.Aşama

$$\alpha = ?$$

 $\alpha = ?$ s.d.=?

$$t_{tab} = ?$$

3.Aşama

$$t_{hes} = \frac{r_{s}\sqrt{n-2}}{\sqrt{1-r_{s}^{2}}} = ?$$

$$r_{s} = 1 - \left\{ 6 \left[\frac{\Sigma d_{i}^{2}}{n(n^{2} - 1)} \right] \right\} = ?$$

4.Aşama

$$t_{hes} > t_{tab}$$

H₀ hipotezi reddedilebilir

Y	X	e	$\mathbf{X}_{\mathbf{s}}$	$\mathbf{e}_{\mathbf{s}}$	$\mathbf{d_i}$	$d_i^{\ 2}$
75	80	7.0545	1	5	-4	16
88	100	4.7091	2	3	-1	1
95	120	-3.6364	3	2	1	1
125	140	11.0182	4	7	-3	9
115	160	-14.327	5	8	-3	9
127	180	-17.672	6	9	-3	9
165	200	4.9818	7	4	3	9
172	220	-3.3636	8	1	7	49
183	240	-7.7091	9	6	3	9
225	260	18.9455	10	10	0	0
	$\Sigma d_i^2 = 112$					
	19					

$$r_s = 1 - \left\{ 6 \left[\frac{\sum d_i^2}{n(n^2 - 1)} \right] \right\} = 1 - \left\{ 6 \left[\frac{112}{10(10^2 - 1)} \right] \right\} = \mathbf{0.3212}$$

$$\mathbf{H_0}$$
: $\rho = \mathbf{0}$

$$H_1: \rho \neq 0$$

$$\alpha = 0.05$$
 s.d.= 8

$$t_{tab} = 2.306$$

$$t_{hes} = \frac{0.3212\sqrt{10-2}}{\sqrt{1-(0.3212)^2}} = 0.9593$$

$$t_{hes} < t_{tab}$$

H₀ hipotezi reddedilemez.

Goldfeld-Quandt Testi

Büyük örneklere uygulanan bir F testidir. Bu test σ_i^2 nin farklı varyansının bağımsız değişkenlerden biri ile pozitif ilişkili olduğunu varsayar.

$$\sigma_i^2 = \sigma^2.X_i^2$$

 σ_i^2 X_i ile pozitif (aynı yönde) ilişkilidir ve σ_i^2 farklı varyansı X'in karesi ile orantılıdır. Yani X_i değerleri arttıkça σ_i^2 değeri de artmaktadır.

Goldfeld-Quandt Testi

$$Y = b_1 + b_2 X_2 + b_3 X_3 + ... + b_k X_k + u$$

$$Y X_{2s} X_3 \dots X_k$$

I.Alt Örnek

 n_1

$$Y_{I} = b_{11} + b_{21} X_{2} + b_{31} X_{3} + ... + b_{k1} X_{k} + u$$

 $\Sigma e_{1}^{2} = ?$

Çıkarılan Gözlemler

II.Alt Örnek

$$n_2$$

$$Y_{II} = b_{12} + b_{22} X_2 + b_{32} X_3 + ... + b_{k2} X_k + u$$

$$\Sigma e_2^2 = ?$$
22

Goldfeld-Quandt Testi

1.Aşama

H₀: Eşit Varyans

H₁: Farklı Varyans

$$\alpha = ?$$
 $f_1 = f_2 = \frac{(n-c-2k)}{2} = ?$ $F_{tab} = ?$

3.Aşama

$$F_{\text{hes}} = \frac{\Sigma e_2^2}{\Sigma e_1^2} = ?$$

X bağımsız değişkeninin değerleri küçükyen büyüğe doğru ilgili Y bağımlı değişkeninin değerleri de taşınarak sıralanır. Ortadan c kadar gözlem çıkarılır.

4.Aşama

$$\mathbf{F}_{\text{hes}} > \mathbf{F}_{\text{tab}}$$

H₀ hipotezi reddedilebilir

Yıl	Tasarruf	Gelir
1	264	8777
2	105	9210
3	90	9954
4	131	10508
5	122	10979
6	107	11912
7	406	12747
8	503	13499
9	431	14269
10	588	15522
11	898	16730
12	950	17663
13	779	18575
14	819	19635
15	1222	21163
16	1702	22880
17	1578	24127

Tasarruf 1654	Gelir 25604	
1400	26500	
1829	27670	
2200	28300	
2017	27430	
2105	29560	
1600	28150	Gelir bağımsız
2250	32100	değişkenine göre
2420	32500	tasarrufu da sıralıyoruz.
2570	35250	
1720	33500	
1900	36000	
2100	36200	
2300	38200	

n ₁		Tasarrfuf	Gelir	n_2		Tasarrfuf	Gelir
	1	264	8777		1	1829	27670
	2	105	9210		2	1600	28150
	3	90	9954		3	2200	28300
	4	131	10508		4	2105	29560
	5	122	10979		5	2250	32100
	6	107	11912		6	2420	32500
	7	406	12747		7	1720	33500
	8	503	13499		8	2570	35250
	9	431	14269		9	1900	36000
	10	588	15522		10	2100	36200
	11	898	16730		11	2300	38200

Gelire göre sırandı.

Ortadan 31/4=8 veya 9 gözlem çıkarılacak.

İki alt grup oluşturuldu.

$$S_1 = -738.84 + 0.008 X$$

(189.4)

(0.015)

$$\Sigma e_1^2 = 1447771$$

$$S_2 = 1141.07 + 0.029 X$$

(709.8)

(0.02)

$$\Sigma e_2^2 = 769899$$

 $f_1 = f_2 = (n-c-2k)/2 = 9$ sd de $F_{tab} = 3.18$

$$F_{test} = \frac{\sum e_2^2}{\sum e_1^2} = \frac{769899}{144771} = 5$$

White Testi

$$Y = b_1 + b_2 X_2 + b_3 X_3 + u$$
White Testi için yardımcı regresyon:

$$u^2 = a_1 + a_2 X_2 + a_3 X_3 + a_4 X_2^2 + a_5 X_3^2 + a_6 X_2 X_3 + v$$

$$R_y^2 = ?$$

White Testi Aşamaları:

$$H_0$$
: $a_2 = a_3 = a_4 = a_5 = a_6 = 0$

H₁: a_i'lerin en az bir tanesi anlamlıdır

$$\alpha = ?$$

$$s.d.=k-1$$

$$\chi^2_{tab} = ?$$

$$W = n.R_y^2 = ?$$

$$W > \chi^2_{tab}$$

H₀ hipotezi reddedilebilir

White Testi

$$\ln \text{Maas} = 3.8094 + 0.439 \text{ Y}_{1}1 + 0.06 \text{ e}_{3}^{2}$$
itim

$$n=222$$

White Testi için yardımcı regresyon:

$$e^2 = -0.0018 + 0.02 \text{ Yıl} + 0.07 \text{ Yıl}^2 - 0.03 \text{ Eğitim} + 0.004 \text{ Eğitim}^2 + 0.014 \text{ Yıl*Eğitim}$$

$$R_y^2 = 0.0901$$

1. Aşama
$$H_0$$
: $a_2 = a_3 = a_4 = a_5 = a_6 = 0$

H₁: a_i'lerin en az bir tanesi anlamlıdır

2. Aşama
$$\alpha = 0.05$$
 s.d. = 6-1=5 $\chi^2_{tab} = 11.07$

3. Aşama
$$W= n.R_y^2 = 222(0.0901) = 20.0022$$

4. Aşama
$$W > \chi^2_{tab}$$
 H_0 hipotezi reddedilebilir

<u>Lagrange Çarpanları(LM) Testi</u>

$$Y = b_1 + b_2 X_2 + b_3 X_3 + u$$

LM testi için yardımcı regresyon:

$$e^2 = a^* + b^* \hat{Y}^2 + v$$
 $R_v^2 = ?$

$$R_{y}^{2} = ?$$

LM Testi Aşamaları:

$$H_0$$
: $b = 0$

$$H_1: b\neq 0$$

$$\alpha = ?$$

$$\alpha = ?$$
 s.d.= 1

$$\chi^2_{tab} = ?$$

$$LM = n.R_y^2 = ?$$

$$LM > \chi^2_{tab}$$

H₀ hipotezi reddedilebilir

Lagrange Çarpanları(LM) Testi

lnMaaş = 3.8094 + 0.439 Yıl + 0.06 Eğitim n=222

LM Testi için yardımcı regresyon:

$$e^2 = -0.2736 + 0.0730 \, (\widehat{lnMaas})^2$$

$$R_y^2 = 0.0537$$

1. Aşama
$$H_0$$
: $b = 0$

$$H_1: b\neq 0$$

2.
$$A$$
 sama $\alpha = 0.05$ s.d.=1

$$\chi^2_{tab} = 3.84146$$

3. Aşama LM=
$$n.R_y^2 = 222(0.0537) = 11.9214$$

4. Aşama
$$LM > \chi^2_{tab}$$
 H_0 hipotezi reddedilebilir

UYGULAMA: 32 ailenin yıllık gıda harcamaları (Y) ve aylık ortalama gelirleri (X) aşağıda verilmiştir.

Aile Sayısı	Y	X	u	Aile Sayısı	Y	X	u
1	2.2	2.8	-0.75464	17	1.5	2	-1.25412
2	3	3.5	-0.1301	18	5.8	7.2	1.74247
3	4.1	13.5	-1.53666	19	8.2	18.1	1.41032
4	3.5	8.2	-0.80818	20	4.3	6.2	0.49313
5	4.2	5.9	0.46833	21	9.4	16.1	3.11164
6	6.3	15.3	0.21216	22	5.1	25.2	-3.46933
7	4.6	9.7	-0.08417	23	2.4	8.2	-1.90818
8	8.8	26.4	-0.07012	24	8.1	13.4	2.48841
9	7.3	18.2	0.48526	25	4.9	5.6	1.24352
10	4.4	6.7	0.4678	26	3	4.2	-0.30556
11	6.7	11.3	1.61478	27	4.6	8.8	0.14142
12	3.5	4.7	0.06911	28	1.9	3.5	-1.2301
13	6.8	26.3	-2.04505	29	2.6	12.4	-2.76094
14	7.2	22.3	-0.64243	30	3.9	4.3	0.56938
15	3.1	6.1	-0.68181	31	7	12.9	1.51373
16	2.4	3.2	-0.6549	32	11.2	26.5	2.30482

UYGULAMA: $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ modeli için sabit varyans varsayımının geçerli olup olmadığını

- •Grafik Yöntemle.
- •Sıra Korelasyonu testi ile.
- •Goldfeld-Quandt testi ile.
- •White testi ile.
- •Lagrange çarpanı testi ile

inceleyiniz.

$$\mathbf{H_0}$$
: $\rho = \mathbf{0}$

$$H_1: \rho \neq 0$$

$$\alpha = 0.05$$
 s.d.=?

$$t_{tab} = ?$$

3.Aşama

$$t_{hes} = \frac{r_{s}\sqrt{n-2}}{\sqrt{1-r_{s}^{2}}} = ?$$

$$r_{s} = 1 - \left\{ 6 \left\lceil \frac{\Sigma d_{i}^{2}}{n(n^{2} - 1)} \right\rceil \right\} = ?$$

4.Aşama

$$t_{hes} > t_{tab}$$

H₀ hipotezi reddedilebilir

Sıra Korelasyonu Testi

$$r_{s} = 1 - \left\{ 6 \left[\frac{\sum d_{i}^{2}}{n(n^{2} - 1)} \right] \right\} = 1 - \left\{ 6 \left[\frac{3630}{32(32^{2} - 1)} \right] \right\}$$

$$H_0: \rho = 0$$

$$H_1$$
: $\rho \neq 0$

$$\alpha = 0.05$$
 s.d.= 30

$$t_{tab} = 2.042$$

$$t_{hes} = \frac{0.3347\sqrt{32-2}}{\sqrt{1-(0.3347)^2}} = 1.9454$$

4.Aşama

$$t_{hes} < t_{tab}$$

H₀ hipotezi reddedilemez.

Goldfeld-Quandt Testi

$$c = 32 / 5 = 6.4$$

6 gözlem atılacak. (14.-19. gözlemler)

13 gözlemden oluşan iki grup için modeller

1.-13. gözlemler için

$$Y_i = 0.5096 + 0.6078X_i$$

$$\sum e_1^2 = 3.6201$$

20.-32. gözlemler için

$$Y_i = 3.8153 + 0.1723X_i$$

$$\sum e_2^2 = 49.9631$$

Goldfeld-Quandt Testi

1.Aşama

H₀: Eşit Varyans

H₁: Farklı Varyans

$$\alpha = 0.05$$

$$f_1 = f_2 = \frac{(32 - 6 - 2 * 2)}{2} = 11$$

$$\mathbf{F_{tab}} = 2.82$$

3.Aşama

$$F_{\text{hes}} = \frac{\Sigma e_2^2}{\Sigma e_1^2} = \frac{49.9631}{3.6201} = 13.8016$$

4.Aşama

$$F_{hes} > F_{tab}$$

H₀ hipotezi reddedilebilir

White Testi

$$Y = 2.2528 + 0.2507X_{i}$$

White Testi için yardımcı regresyon:

$$e^2 = -0.6909 + 0.3498X - 0.0058X^2$$

$$R_y^2 = 0.2296$$

1. Aşama
$$H_0$$
: $a_2 = a_3 = 0$;

H₁: a_i'lerin en az bir tanesi anlamlıdır

2. Aşama
$$\alpha = 0.05$$
 s.d. = 3-1=2 $\chi^2_{tab} = 5.99$

3. Aşama
$$W= n.R_y^2 = 32(0.2296) = 7.3472$$

4. Aşama
$$W > \chi^2_{tab}$$
 H_0 hipotezi reddedilebilir

Lagrange Carpanları(LM) Testi

$$Y = 2.2528 + 0.2507X_{i}$$

LM Testi için yardımcı regresyon:

$$e^2 = 0.417 + 0.060 \widehat{Y}^2$$
 $R_y^2 = 0.201$

$$R_y^2 = 0.201$$

1. Aşama
$$H_0$$
: $b = 0$

$$H_1: b\neq 0$$

2. Aşama
$$\alpha = 0.05$$
 s.d. = 2-1=1 $\chi^2_{tab} = 3.84146$

3. Aşama
$$LM = n.R_y^2 = 32(0.201) = 6.432$$

4.
$$A$$
şama $LM > \chi^2_{tab}$ H_0 hipotezi reddedilebilir

FARKLI VARYANSI ORTADAN KALDIRMA YOLLARI

Farklı varyans durumunda EKKY tahmincileri etkinlik özelliklerini kaybettiklerinden güvenilir değildirler. Bu sebeple farklı varyans ortadan kaldırılmadan EKKY uygulanmamalıdır. Y_i lerin (veya u_i lerin) farklı varyansları σ_i^2 nin bilinip bilinmemesine göre farklı varyansı kaldıran iki yol vardır:

$$oldsymbol{\Box} \sigma_{i}^{2}$$
 nin BİLİNMESİ HALİ

$$Q_{i}^{2}$$
 nin BİLİNMEMESİ HALİ

$oldsymbol{\Box}$ $\sigma_{ m i}^2$ nin BİLİNMESİ HALİ

Genelleştirilmiş EKKY(GEKKY)

$$Y_i = b_1 + b_2 X_i + u_i$$

$$\frac{Y_{i}}{\sigma_{i}} = b_{1} \frac{1}{\sigma_{i}} + b_{2} \frac{X_{i}}{\sigma_{i}} + \frac{u_{i}}{\sigma_{i}}$$

$$Y_{i}^{*} = b_{1}^{*} + b_{2}^{*} X_{i}^{*} + u_{i}^{*}$$

$$E\left(\frac{u_i}{\sigma_i}\right)^2 = \frac{1}{\sigma_i^2} E\left(u_i^2\right) = \frac{1}{\sigma_i^2} \sigma_i^2 = 1$$

Genelleştirilmiş EKKY(GEKKY)

Sabit terimi yoktur.

İki tane bağımsız değişken vardır.

$$\frac{Y_i}{\sigma_i} = b \left(\frac{1}{\sigma_i}\right) + b \left(\frac{X_i}{\sigma_i}\right) + \frac{u_i}{\sigma_i}$$

Genelleştirilmiş EKKY(GEKKY)

$$Y_{i}^{*} = b_{1}^{*} + b_{2}^{*} X_{i}^{*} + \hat{e}_{i}^{*}$$
 $e_{i}^{*} = e_{i} / \sigma_{i}$

$$\sum e_i^{2*} = \sum \left(Y_i^* - b_1^* - b_2^* X_i^* \right)^2 \square \min$$

$$\sum (e_{i}/\sigma_{i})^{2} = \sum \left[(Y_{i}/\sigma_{i}) - b_{1}^{*}(1/\sigma_{i}) - b_{2}^{*}(X_{i}/\sigma_{i}) \right]^{2} \qquad w_{i} = (1/\sigma_{i}^{2})$$

$$\sum w_{i}e_{i}^{2} = \sum w_{i}\left(Y_{i} - b_{1}^{*} - b_{2}^{*}X_{i}\right)^{2}$$

Genelleştirilmiş EKKY(GEKKY)

$$\partial \sum w_{i}e_{i}^{2}/\partial b_{1}^{*} = 0 \qquad \qquad \partial \sum w_{i}e_{i}^{2}/\partial b_{1}^{*} = 2\sum w_{i}\left(Y_{i} - b_{1}^{*} - b_{2}^{*}X_{i}\right)(-1)$$

$$\partial \sum w_{i}e_{i}^{2}/\partial b_{2}^{*} = 0 \qquad \qquad \partial \sum w_{i}e_{i}^{2}/\partial b_{2}^{*} = 2\sum w_{i}\left(Y_{i} - b_{1}^{*} - b_{2}^{*}X_{i}\right)\left(-X_{i}\right)$$

$$\sum w_{i}Y_{i} = b_{1}^{*} \sum w_{i} + b_{2}^{*} \sum w_{i}X_{i}$$

$$b_{1}^{*} = \overline{Y}^{*} - b_{2}^{*} \overline{X}^{*}$$

$$\sum w_{i}X_{i}Y_{i} = b_{1}^{*} \sum w_{i}X_{i} + b_{2}^{*} \sum w_{i}X_{i}^{2}$$

$$b_{2}^{*} = \frac{(\sum w_{i})(\sum w_{i}X_{i}Y_{i}) - (\sum w_{i}X_{i})(\sum w_{i}Y_{i})}{(\sum w_{i}X_{i}^{2}) - (\sum w_{i}X_{i})^{2}}$$

$$\overline{Y}^* = \sum w_i Y_i / w_i \quad \overline{X}^* = \sum w_i X_i / w_i$$

EKKY ve GEKKY Arasındaki Fark

$$\sum e_i^2 = \sum (Y_i - b_1 - b_2 X_i)^2$$
min

GEKKY
$$\sum w_i e_i^2 = \sum w_i \left(Y_i - b_1^* - b_2^* X_i \right)^2$$

$$w_i = 1/\sigma_i^2$$

\Box $\sigma_{\rm i}^2$ nin BİLİNMEMESİ HALİ

1.HAL: LOGARİTMİK DÖNÜŞÜMLER

$$Y_i = b_1 + b_2 X_i + u_i$$
 $ln Y_i = ln b_1 + b_2 ln X_i + v_i$

2.HAL:
$$E(u_i^2) = \sigma_i^2 = \sigma^2 X_i^2$$

$$Y_i = b_1 + b_2 X_i + u_i$$
 $Y_i/X_i = b_1(1/X_i) + b_2 X_i(1/X_i) + u_i/X_i$

$$= b_1(1/X_i) + b_2 + v_i$$

$$E(v_i^2) = E(u_i/X_i)^2 = 1/X_i^2 E(u_i^2) = \frac{1}{X_i^2} \sigma^2 X_i^2 = \sigma^2$$

\Box $\sigma_{\rm i}^2$ nin BİLİNMEMESİ HALİ

3.HAL:
$$E(u_i^2) = \sigma_i^2 = \sigma^2 X_i$$

$$Y_i = b_1 + b_2 X_i + u_i$$

$$Y_{i} \big/ \sqrt{X_{i}} = b_{1} \Big(1 \! \big/ \sqrt{X_{i}} \Big) + b_{2} X_{i} \Big(1 \! \big/ \sqrt{X_{i}} \Big) + u_{i} \big/ \sqrt{X_{i}}$$

$$= b_1 \left(1 / \sqrt{X_i} \right) + b_2 \sqrt{X_i} + v_i$$

$$E(v_i^2) = E(u_i/\sqrt{X_i})^2 = 1/X_i E(u_i^2) = 1/X_i (\sigma_i^2 X_i) = \sigma^2$$

\Box σ_{i}^{2} nin BİLİNMEMESİ HALİ

4.HAL:
$$E(u_i^2) = \sigma_i^2 = \sigma^2 (a_0 + a_1 X_i)^2$$

$$E(u_i^2) = \sigma_i^2 = \sigma^2 f(X)$$

$$\sqrt{f(X)} = \sqrt{(a_0 + a_1 X_i)^2} = (a_0 + a_1 X_i)$$

$$Y_i = b_1 + b_2 X_i + u_i$$
 $\left(a_0 + a_1 X_i\right)$ bölünür

\Box σ_{i}^{2} nin BİLİNMEMESİ HALİ

$$E(u_i^2) = \sigma_i^2 = \sigma^2 \left[E(Y_i) \right]^2$$

$$Y_i = b_1 + b_2 X_i + u_i$$

$$Y_{i}/E(Y_{i}) = b_{1}/E(Y_{i}) + b_{2}(X_{i}/E(Y_{i})) + u_{i}/E(Y_{i})$$

$$= b_1 [1/E(Y_i)] + b_2 X_i/E(Y_i) + v_i$$

UYGULAMA: 32 ailenin yıllık gıda harcamaları (Y) ve aylık ortalama gelirleri (X) aşağıda verilmiştir.

Aile Sayısı	Υ	Х	u	Aile Sayısı	Υ	Х	u
1	2.2	2.8	-0.75464	17	1.5	2	-1.25412
2	3	3.5	-0.1301	18	5.8	7.2	1.74247
3	4.1	13.5	-1.53666	19	8.2	18.1	1.41032
4	3.5	8.2	-0.80818	20	4.3	6.2	0.49313
5	4.2	5.9	0.46833	21	9.4	16.1	3.11164
6	6.3	15.3	0.21216	22	5.1	25.2	-3.46933
7	4.6	9.7	-0.08417	23	2.4	8.2	-1.90818
8	8.8	26.4	-0.07012	24	8.1	13.4	2.48841
9	7.3	18.2	0.48526	25	4.9	5.6	1.24352
10	4.4	6.7	0.4678	26	3	4.2	-0.30556
11	6.7	11.3	1.61478	27	4.6	8.8	0.14142
12	3.5	4.7	0.06911	28	1.9	3.5	-1.2301
13	6.8	26.3	-2.04505	29	2.6	12.4	-2.76094
14	7.2	22.3	-0.64243	30	3.9	4.3	0.56938
15	3.1	6.1	-0.68181	31	7	12.9	1.51373
16	2.4	3.2	-0.6549	32	11.2	26.5	2.30482

1.HAL: LOGARİTMİK DÖNÜŞÜMLER

$$ln(Y_i) = 0.2546 + 0.5742 ln X_i$$
 $R^2 = 0.6866$

t (1.5691) (8.1077)

prob (0.1271) (0.0000)

$$\ln(e^2) = 0.0472 + 0.0123 \ln \hat{Y}^2$$
 $R^2 = 0.0178$

1.Aşama H_0 : b = 0

 H_1 : $b \neq 0$

2. Aşama $\alpha = 0.05$ s.d.=2-1=1 $\chi^2_{tab} = 3.84146$

3.Aşama LM= $n.R_y^2 = 32(0.0178) = 0.5696$

4. Aşama LM $< \chi^2_{tab}$ **H**₀ hipotezi reddedilemez.

2.HAL:
$$E(u_i^2) = \sigma_i^2 = \sigma^2 X_i^2$$

$$Y_i/X_i = 1.277(1/X_i) + 0.3652$$
 $R^2 = 0.4694$ $t = (5.151)$ (8.109)

$$e^2 = 0.0118 + 0.0297 \hat{Y}^2$$
 $R^2 = 0.0509$

1. Aşama
$$H_0$$
: $b = 0$

$$H_1$$
: $b \neq 0$

2. Aşama
$$\alpha = 0.05$$
 s.d.=2-1=1 $\chi^2_{tab} = 3.84146$

3.Aşama LM=
$$n.R_y^2 = 32(0.0509) = 1.6288$$

4. Aşama LM $< \chi^2_{tab}$ **H**₀ hipotezi reddedilemez.

3.HAL:
$$E(u_i^2) = \sigma_i^2 = \sigma^2 X_i$$

$$Y_i/\sqrt{X_i} = -22.246(1/\sqrt{X_i}) + 8.3144\sqrt{X_i}$$
 $R^2 = 0.7938$
t (-4.686) (15.337)

prob (0.001) (0.000)

$$e^2 = 2.7482 + 0.0749 \widehat{Y}^2$$

$$R^2 = 0.2365$$

1.*A***ş***ama* H_0 : b = 0

 H_1 : $b \neq 0$

2.Aşama

 α = 0.05

s.d.=2-1=1

 $\chi^2_{tab} = 3.84146$

3.Aşama

LM= $n.R_v^2 = 32(0.2365) = 7.568$

4. Aşama LM > χ^2_{tab} **H**₀ hipotezi reddedilebilir.

$$E(u_i^2) = \sigma_i^2 = \sigma^2 [E(Y_i)]^2$$

$$Y_i/E(Y_i) = 1.839 \frac{1}{E(Y_i)} + 0.292 \frac{1}{(X_i/E(Y_i))}$$
 $R^2 = 0.0442$

(5.2630) (7.4167)

prob

(0.0000)

(0.0000)

$$e^2 = -0.0439 + 0.1182 \hat{Y}^2$$

$$R^2 = 0.0290$$

1. Aşama
$$H_0$$
: $b = 0$

$$H_1$$
: $b \neq 0$

2.Aşama

$$\alpha = 0.05$$

$$\chi^2_{tab} = 3.84146$$

3.Aşama

LM=
$$n.R_v^2 = 32(0.0290) = 0.928$$

4.Aşama

LM $< \chi^2_{tab}$ H₀ hipotezi reddedilemez.