EVALUACIÓN - Operatoria algebraica y productos notables

- 1. ¿Cuál(es) de las siguientes expresiones al ser simplificada(s) resulta(n) 1?
 - $\frac{2a+3}{3+2a}$ (II) $\frac{a^2-b^2}{(a-b)^2}$ (III) (I)
 - (a) Solo I
 - Solo I y II (b)
 - (c) Solo I y III
 - (d) I, II y III
- 2. ¿Cuál(es) de las siguientes igualdades es (son) verdadera(s)?
 - (I) $5x \cdot -x \cdot -x = -5x^3$

- (II) $-4x \cdot 3x^2 = -12x^3$ (III) $-3y \cdot -x \cdot -7xy = -21x^2y^2$

- (a) Solo II
- (b) Solo III
- (c) Solo I y III
- (d) Solo II y III
- 3. Si t 7 = 8, entonces la diferencia entre t^2 y 4^2 , en ese orden, es igual a
 - (a) -15
 - (b) 209
 - (c) 22
 - (d) 121
- 4. $101^2 + 100^2 99^2 =$
 - 102^{2} (a)
 - (b) 104^{2}
 - (c) 10004
 - (d) 10400

- 5. $(3w-2)^2 2(2w-3)(2w+3) =$
 - (a) $w^2 12w 14$
 - (b) $w^2 12w + 22$
 - (c) $w^2 12w + 13$
 - (d) $w^2 12w + 14$
- 6. ¿Cuál de las siguientes expresiones es un factor de $k^2 + k 6$?
 - (a) k + 2
 - (b) k-6
 - (c) k-3
 - (d) k-2
- 7. La expresión $\frac{xy-x}{y} \div \frac{ay-a}{y^2}$ es igual a
 - (a) $\frac{a}{xy}$
 - (b) $\frac{ax}{y}$
 - (c) $\frac{xa(y-1)^2}{y^3}$
 - (d) $\frac{xy}{a}$
- 8. Si x es distinto de: a, -a y 0, entonces $\frac{x^2 a^2}{x^2 ax} \div \frac{x a}{x + a}$ es igual a
 - (a) $\frac{x(x-a)}{(x+a)^2}$
 - (b) $\frac{x-a}{x}$
 - (c) $\frac{x+a}{x}$
 - (d) $\frac{(x+a)^2}{x(x-a)}$

- 9. Si $a = \frac{1}{2x}$, $b = \frac{1}{4x}$ y $c = \frac{1}{6x}$, entonces x (a + b + c) es
 - (a) $\frac{12x 11}{12}$
 - (b) $\frac{12x^2 11}{12x}$
 - (c) $\frac{x-11}{12x}$
 - (d) Ninguna de las expresiones anteriores.
- 10. ¿Cuál de las siguientes expresiones es igual que $(a + (b + c)) \cdot (a + (b c))$?
 - (a) $a^2 + b^2 c^2$
 - (b) $a^2 + 2ab + b^2 c^2$
 - (c) $a^2 + a^2b^2 + b^2 c^2$
 - (d) $a^2 + (b-c)^2$
- 11. Para $x \neq 0$, la expresión $1 + \frac{1}{x} + \frac{1}{x^2}$ es igual a
 - (a) $\frac{x^2 + x + 1}{x^2}$
 - (b) $\frac{3}{1+x+x^2}$
 - (c) $1 + \frac{2}{x^2}$
 - (d) $\frac{(x+1)^2}{x^2}$
- 12. La expresión $(a+1)^2 + (a+1)(a-3)$ se factoriza como el producto de dos factores, tal que uno de ellos es (a+1). ¿Cuál de las siguientes expresiones corresponde al otro factor de la expresión?
 - (a) $(a^2 + 3a 2)$
 - (b) (a-2)
 - (c) $(a^2 a 2)$
 - (d) (2a-2)

- 13. Si $P = x^2 + 4ax + a^2$, ¿cuál(es) de las siguientes expresiones se puede(n) factorizar como un cuadrado del binomio perfecto?
 - (I) $P + 3x^2$ (II) $P a^2$ (III) P 6ax
 - (a) Solo III
 - (b) Solo I y III
 - (c) Solo II y III
 - (d) I, II y III
- 14. Si a + b = 8 y ab = 10, entonces el valor de $(a^2 + 6ab + b^2)$ es
 - (a) 76
 - (b) 104
 - (c) 124
 - (d) Indeterminable con los datos dados.
- 15. Si $H = \sqrt{x + \sqrt{2x 1}} + \sqrt{x \sqrt{2x 1}}$, con $x \ge 1$, ¿cuál de las siguientes expresiones es igual a H^2 ?
 - (a) 2x
 - (b) 4x 2
 - (c) $2x + 2\sqrt{x^2 2x 1}$
 - (d) $2x + \sqrt{x^2 2x 1}$
- 16. Si a y b son números reales positivos, $P = a^2 + b^2$, $Q = (a + b)^2$ y $R = (a^3 + b^3)/(a + b)$, ¿cuál de las siguientes relaciones es verdadera?
 - (a) R < P = Q
 - (b) R = P < Q
 - (c) R < P < Q
 - (d) P < Q < R

- 17. Se tienen dos números reales positivos, tal que $x^2+y^2=6xy$, con x>y, ¿cuál es el valor de la expresión (x+y)/(x-y)?
 - (a) $2\sqrt{2}$
 - (b) $\sqrt{2}$
 - (c) $\frac{\sqrt{2}}{2}$
 - (d) 2
- 18. Dada la expresion $x^2y^2 + x^2y + xy + x$, ¿cuál(es) de las siguientes expresiones es (son) factor(es) de ella?
 - (I) xy+1 (II) x+1 (III) y+1
 - (a) Solo I
 - (b) Solo III
 - (c) Solo I y III
 - (d) Solo II y III

De las siguientes preguntas, debe responder solo dos a libre elección.

- 19. Si $x = \sqrt{2}$, entonces el valor de la expresión $(x 2)^2(x 1)^2(x + 1)^2(x + 2)^2$ es
 - (a) 5
 - (b) 4
 - (c) 3
 - (d) 2
- 20. $\frac{p^2 q^2}{pq} \frac{pq q^2}{pq p^2} =$
 - (a) p^2
 - (b) q^2
 - (c) $\frac{p}{a}$
 - (d) $\frac{pq 2q^2}{pq}$

- 21. Si $T \neq \pm 2$ y $T \neq 0$, entonces $\frac{T 4 + \frac{4}{T}}{T \frac{4}{T}}$ es igual a
 - (a) -1
 - (b) 4
 - (c) $\frac{T+2}{T-2}$
 - (d) $1 \frac{4}{T+2}$
- 22. Si $\left(n + \frac{1}{n}\right)^2 = 3$, entonces $n^3 + \frac{1}{n^3}$ es igual a
 - (a) 6
 - (b) 3
 - (c) 1
 - (d) 0