LOGARITHMIC GROWTH

5(A) LOGARITHMIC GROWTH

I explain the proof of a version of the Dolbeault lemma ($\bar{\partial}$ -Poincaré lemma) with logarithmic singularities, published in the *Comptes Rendus* in a joint paper with D. H. Phong, and refined in a paper with Zucker. In what follows, let Δ denote the disk of radius $\frac{1}{2}$ around the origin in \mathbb{C} , $\Delta^* = \Delta \setminus \{0\}$ the punctured disk. The variable is denoted $z = re^{i\theta}$ for $z \neq 0$.

Lemma. Let $N \in \mathbb{Z}$, $N \neq 1$, and let $g \in C^{\infty}(\Delta^*)$ be a function of logarithmic growth of order N:

$$|g(z)| < C \frac{|\log r|^N}{r}, \ C \in \mathbb{R}^+.$$

Then there is a solution $f \in C^{\infty}(\Delta^*)$ to the equation $\bar{\partial} f = g$ that satisfies

$$|f(z)| < C' |\log r|^{N+1}, C' \in \mathbb{R}^+.$$

Proof. We begin as usual by writing the formula for the fundamental solution of the $\bar{\partial}$ equation:

$$f(z) = \frac{1}{2\pi i} \int \int_{\Delta^*} \frac{g(w)}{w - z} dw d\bar{w}, \ z \in \Delta^*.$$

We first show that this integral converges to a C^{∞} solution to $\bar{\partial} f = g$. For any $w \in \Delta$ and a > 0, let B(w, a) be the disk of radius a centered on w. Let $z_0 \in \Delta^*$, a > 0 such that the closure of $B(z_0, 2a)$ is contained in Δ^* . Then we can write $g = g_1 + g_2$ as a sum of two functions in $C^{\infty}(\Delta^*)$, where $supp(g_1) \subset B(z_0, 2a)$ and $g_2 \mid_{B(z_0,a)} \equiv 0$. In particular, the singularity at 0 is contained in the support of g_2 . Now setting $w = \rho e^{i\theta}$ we find

$$\left| \frac{1}{2\pi i} \int \int_{\Delta^*} \frac{g_2(w)}{w - z} dw d\bar{w} \right| < \frac{1}{2\pi a} \left| \int \int_{\Delta^*} g_2(w) dw d\bar{w} \right|
< \frac{C}{\pi a} \int_0^{2\pi} \int_0^{1/2} \frac{|\log \rho|^N}{\rho} \rho d\rho d\theta = O(\int_0^{1/2} |\log \rho|^N d\rho)$$

and for any N, $|\log \rho|^N$ is integrable on $[0, \frac{1}{2}]$, so this integral converges. (There is a terrible misprint in my article with Phong! The integrability is by integration by parts: we have

$$\int_{0}^{t} |\log \, \rho|^{N} d\rho = \rho \cdot |\log \, \rho|^{N} \mid_{0}^{t} - N \int_{0}^{t} |\log \, \rho|^{N-1} |d\rho|^{N-1} d\rho$$

and we have it by induction for N > 0, and for N < 0 there is nothing to prove.)

Thus

$$f_2(z) = \frac{1}{2\pi i} \int \int_{\Lambda^*} \frac{g_2(w)}{w - z} dw d\bar{w} \in C^{\infty}(B(z_0, a)).$$

Moreover, we can differentiate under the integral sign and since the integrand is holomorphic in z, $\bar{\partial} f_2 = 0$ on $B(z_0, a)$.

Now $g_1 \in C^{\infty}_c(\Delta)$ so the usual arguments apply and we find that

$$f_1(z) = \frac{1}{2\pi i} \int \int_{\Lambda} \frac{g_1(w)}{w - z} dw d\bar{w} \in C^{\infty}(B(z_0, 2a))$$

and that $\bar{\partial} f_1 = g_1$ on $B(z_0, 2a)$. Thus $f = f_1 + f_2$ is C^{∞} in a neighborhood of z_0 and is a solution to $\bar{\partial} f = g$ on $B(z_0, a)$.

Now z_0 is arbitrary, so it remains to show that f has logarithmic growth. Choose $z \in \Delta^*$, r = |z|. We decompose Δ^* in three regions: $\Delta^* = D_1 \cup D_2 \cup D_3$ where

$$D_1 = B(0, \frac{r}{2}) \setminus \{0\}, \ D_2 = B(z, \frac{r}{2}) \cap \Delta, \ D_3 = \Delta^* \setminus (D_1 \cup D_2).$$

We bound the integral on each of these three regions.

On D_1 we have $\frac{1}{|w-z|} \leq \frac{2}{r}$. Thus

$$\frac{1}{2\pi} \left| \int \int_{D_1} \frac{g(w)}{w - z} dw d\bar{w} \right| < \frac{4C}{2\pi r} \int \int_{D_1} \left| \log \rho \right|^N d\rho d\theta = C_1 \frac{1}{r} \int_0^{r/2} \left| \log \rho \right|^N d\rho.$$

Integration by parts as above shows that this is $O(|log \frac{r}{2}|^N) = O(|log \frac{r}{2}|^N)$. (Again a terrible misprint!)

On D_2 we have the inequality $|g(w)| < C^* \frac{|\log \frac{r}{2}|^N}{r}$, where C^* is independent of r. Thus

$$\frac{1}{2\pi} \left| \int \int_{D_2} \frac{g(w)}{w - z} dw d\bar{w} \right| < \frac{C^*}{2\pi} \frac{|\log \frac{r}{2}|^N}{r} \cdot \left| \int \int_{D_2} \frac{dw d\bar{w}}{|w - z|} \right| \\
\leq \frac{C^*}{2\pi} \frac{|\log \frac{r}{2}|^N}{r} \cdot \left| \int \int_{B(0, r/2)} \frac{du d\bar{t}}{|u|} \left(u = w - z \right) \right| \\
= C^* \left| \log \frac{r}{2} \right|^N$$

by polar coordinates.

On D_3 , finally, we have $|w-z| \ge |w/3| = \rho/3$. So

$$\begin{split} \frac{1}{2\pi} | \int \int_{D_3} \frac{g(w)}{w - z} dw d\bar{w} | &< \frac{6C}{2\pi} \int \int_{D_3} \frac{|\log \rho|^N}{\rho^2} \rho d\rho d\theta \\ &< \frac{3C}{\pi} \int \int_{D_3 \cup D_2} \frac{|\log \rho|^N}{\rho} d\rho d\theta \\ &= 6C \int_{r/2}^1 \frac{|\log \rho|^N}{\rho} d\rho = \frac{6C}{N+1} |\log r/2|^{N+1}. \end{split}$$

This completes the proof.

Let $A_N^0(\Delta^*)$ be the space of f satisfying the growth condition of degree N, $A_{si}^0(\Delta^*) = \bigcup_N A_N^0(\Delta^*)$ $A_{rd}^0(\Delta^*) = \bigcap_N A_N^0(\Delta^*)$, $A_?^1 = A_?^0 \cdot \frac{d\bar{z}}{\bar{z}}$. Then the above lemma implies that $\bar{\partial}: A_?^0 \to A_?^1$ is surjective if ? = si, ? = rd. Moreover $\ker \bar{\partial} \cap A_{si}^0$ is the space of functions on Δ^* that are holomorphic and have logarithmic growth at 0; but then they have removable singularities, so in fact they extend holomorphically to Δ . Similarly, $\ker \bar{\partial} \cap A_{rd}^0$ is the space of holomorphic functions on Δ that vanish at 0.

In order to globalize and generalize to higher dimensions, we can improve the result.

Corollary. Let $\theta = z\partial/\partial z$ and $\bar{\theta} = \bar{z}\bar{\partial}/\partial\bar{z}$ In the above Lemma, suppose $h = \bar{z}g(z)$ has the property that all its derivatives of the form $\theta^i\bar{\theta}^jh$ are bounded by some (respectively every) power of $|\log \rho|$ Then f has the same property.

Indeed, letting $I(g) = \frac{1}{2\pi i} \int \int_{\Delta^*} \frac{g(w)}{w-z} dw d\bar{w}$ the main point is that $\frac{\partial I(g)}{\partial z} = I(\frac{\partial g}{\partial z})$, and then we argue by induction. This allows us to use the standard argument (see Griffiths-Harris, p. 25) to apply this lemma to complex algebraic varieties (even analytic varieties). Let M be a smooth compact complex algebraic variety of dimension $n, Z \subset M$ a divisor with (simple) normal crossings. This means that every point $z \in Z$ has a neighborhood $D \subset M$ such that $D \stackrel{\sim}{\longrightarrow} \Delta^n$ with z as origin and

(*)
$$(M \setminus Z) \cap D \xrightarrow{\sim} (\Delta^*)^r \times \Delta^{n-r}$$

for some integer r. In other words, up to complex analytic change of coordinates, $Z \cap D$ looks like a union of some of the coordinate hyperplanes. We define

$$A_{si}^{0,q}((\Delta^*)^r \times \Delta^{n-r}) = A_{si}^{0,q}(\Delta^*)^{\otimes r} \otimes A^{0,q}(\Delta)^{\otimes n-r}$$

and let $\mathcal{A}_{si}^{0,q}$ to be the sheaf of C^{∞} (0,q) forms on $M \setminus Z$ whose restriction to $(M \setminus Z) \cap D$ belongs to $A_{si}^{0,q}((\Delta^*)^r \times \Delta^{n-r})$ for some (equivalently any) holomorphic isomorphism (*) as above. We define $\mathcal{A}_{rd}^{0,q}$ similarly. Note that these define sheaves on M (not just on $M \setminus Z$ (a section on an open set U is in this sheaf if and only if its restriction to $U \setminus Z$ is).

Theorem (Harris-Phong). Let \mathcal{B} be a (holomorphic) vector bundle on M and let $\mathcal{A}_{si}^{0,q}(\mathcal{B}) = \mathcal{A}_{si}^{0,q} \otimes \mathcal{B}$, $\mathcal{A}_{rd}^{0,q}(\mathcal{B}) = \mathcal{A}_{rd}^{0,q} \otimes \mathcal{B}$. There are natural inclusions of sheaves

$$\mathcal{B} \hookrightarrow \mathcal{A}_{si}^{0,0}(\mathcal{B}); \mathcal{B}(-Z) \hookrightarrow \mathcal{A}_{rd}^{0,0}(\mathcal{B})$$

where $\mathcal{B}(-Z) = \ker[\mathcal{B} \rightarrow \mathcal{B} \otimes \mathcal{O}_Z]$, and the complexes

$$0\mathcal{B} \rightarrow \mathcal{A}_{si}^{0,0}(\mathcal{B}) \rightarrow \mathcal{A}_{si}^{0,1}(\mathcal{B}) \rightarrow \ldots \rightarrow \mathcal{A}_{si}^{0,n}(\mathcal{B}) \rightarrow 0;$$

$$0\mathcal{B}(-Z) \rightarrow \mathcal{A}_{rd}^{0,0}(\mathcal{B}) \rightarrow \mathcal{A}_{si}^{0,1}(\mathcal{B}) \rightarrow \ldots \rightarrow \mathcal{A}_{si}^{0,n}(\mathcal{B}) \rightarrow 0;$$

are fine resolutions of \mathcal{B} and $\mathcal{B}(-Z)$ respectively.

This follows by standard arguments from the 1-dimensional local case (and the existence of partitions of unity).

The Theorem was designed to apply to certain smooth projective compactifications M of non-compact Shimura varieties $S(G,X) = M \setminus Z$ (this should be $K_f S(G,X)$ but I omit the subscript). The idea is that automorphic vector bundles [W] on S(G,X) have canonical extensions $[W]^{can}$ to M with very good properties; in particular, the growth conditions for forms in $\Gamma(M, \mathcal{A}_{si}^{0,q}([W]^{can}))$ correspond, under the isomorphism with functions on $G(\mathbb{Q})\backslash G(\mathbf{A})$, to the growth conditions defining automorphic forms.