Ομολογική Άλγεβρα και Κατηγορίες 3η Ομάδα Ασκήσεων

Νούλας Δημήτριος 1112201800377

10 Ιουνίου 2020

1. Η ομάδα A είναι διαιρετή και έχει υποομάδα την kerf συνεπώς η ομάδα πηλίκο $A/kerf\cong imf$ είναι διαιρετή. Άρα η ομάδα imf είναι επιπλέον ένα εμφυτευτικό πρότυπο αφού είναι διαιρετή.

Ισοδύναμα κάθε μονομορφισμός $imf \hookrightarrow M$ διασπάται.

Θεωρούμε την βραχεία αχριβή αχολουθία:

$$0 \to imf \stackrel{i}{\hookrightarrow} B \stackrel{p}{\to} cokerf \to 0$$

Έχουμε ότι ο μονομορφισμός i είναι διασπώμενος \iff η βραχεία ακριβής ακολουθία είναι διασπώμενη \iff ο επιμορφισμός p είναι διασπώμενος.

2. Αν $Ext^1_R(M,N)=0$ για κάθε N R-πρότυπο, δηλαδή είναι η τετριμμένη ομάδα, λόγω αμφιμονοσήμαντης αντιστοιχίας έχουμε ότι και το ext(M,N) είναι σύνολο με ένα στοιχείο.

Δηλαδή κάθε επέκταση $0 \to N \to M' \to M \to 0$ είναι ισοδύναμη με την τετριμμένη επέκταση:

$$0 \to N \to M \oplus N \to M \to 0$$

Το οποίο είναι ισοδύναμο με το ότι κάθε επιμορφισμός $M' \to M$ διασπάται. Αυτό με την σειρά του είναι ισοδύναμο ότι το M είναι προβολικό.

3. Θα δείξουμε αρχικά ότι $n\cdot\mathbb{Z}/m\mathbb{Z}=(d\mathbb{Z})/(m\mathbb{Z})$ όπου d=μκδ(m,n). Πράγματι, έστω $n[z]_m$. Αν n=dk τότε:

$$n[z]_m = dk[z]_m = [dkz]_m \in (d\mathbb{Z})/(m\mathbb{Z})$$

Αντίστροφα, έστω $[dz]_m \in (d\mathbb{Z})/(m\mathbb{Z})$. Υπάρχουν $a,b \in \mathbb{Z}$ τέτοια ώστε am+bn=d. Συνεπώς:

$$[dz]_m = [(am + bn)z]_m = [bnz]_m = n[bz]_m \in n \cdot \mathbb{Z}/m\mathbb{Z}$$

Επιπλέον, στην θεωρία έχει δειχθεί ότι $Ext^1_{\mathbb{Z}}(\mathbb{Z}_n,B)=B/nB$. Άρα:

$$Ext^1_{\mathbb{Z}}(\mathbb{Z}_n,\mathbb{Z}_m) = \mathbb{Z}_m/n\mathbb{Z}_m = \frac{\mathbb{Z}/m\mathbb{Z}}{n \cdot \mathbb{Z}/m\mathbb{Z}} = \frac{\mathbb{Z}/m\mathbb{Z}}{d\mathbb{Z}/m\mathbb{Z}} \cong \mathbb{Z}/d\mathbb{Z}$$

χρησιμοποιώντας και το 3ο θεώρημα ισομορφισμών. Άρα πράγματι η ομάδα $Ext^1_{\mathbb{Z}}(\mathbb{Z}_m,\mathbb{Z}_n)$ είναι κυκλική τάξης d.

4. Σταθεροποιούμε $n\in\mathbb{N}$ και ορίζουμε $K_n=\{a\in A:na=0\}$. Ισχύει ότι $Hom_{\mathbb{Z}}(K_n,B)=0$. Πράγματι, αν $f:K_n\to B$ προσθετική τότε:

$$0 = f(nk) = nf(k)$$

Δηλαδή το στοιχείο $f(k)\in B$ έχει πεπερασμένη τάξη n και η ομάδα B είναι ελευθέρας στρέψης, συνεπώς f(k)=0 για κάθε $k\in K_n$.

Έχουμε την ακριβή ακολουθία:

$$0 \longrightarrow K_n \stackrel{i}{\longleftrightarrow} A \stackrel{n}{\longrightarrow} A \longrightarrow 0$$

όπου έχουμε τον πολλαπλασιασμό με n. Είναι πράγματι ακριβής σε κάθε θέση αφού:

- im0 = keri = 0
- $imi = K_n = kern$
- Εφόσον η A είναι διαιρετή, $imn = A = ker(A \rightarrow 0)$

Έχουμε την μαχριά αχριβής αχολουθία συνομολογίας:

$$\dots \longrightarrow Ext^0_{\mathbb{Z}}(K_n, B) \longrightarrow Ext^1_{\mathbb{Z}}(A, B) \longrightarrow Ext^1_{\mathbb{Z}}(A, B) \longrightarrow \dots$$

δηλαδή παίρνουμε την ακριβή ακολουθία:

$$0 \to Ext^1_{\mathbb{Z}}(A, B) \xrightarrow{n} Ext^1_{\mathbb{Z}}(A, B)$$

Έπεται ότι η δεξιά απειχόνιση είναι 1-1. Αυτό σημαίνει ότι αν έχουμε ένα στοιχείο x της ομάδας $Ext^1_Z(A,B)$ με πεπερασμένη τάξη n, δηλαδή nx=0 συνεπάγεται ότι x=0. Αυτό συμβαίνει για το τυχόν $n\in\mathbb{N}$, άρα η ομάδα $Ext^1_Z(A,B)$ είναι ελεύθερη στρέψεως.

5. a) Θεωρούμε ως προς άτοπο τον ισομορφισμό $f: \mathbb{Z}_9 \to \mathbb{Z}_9$ ώστε το παρακάτω διάγραμμα να είναι μεταθετικό

$$0 \longrightarrow \mathbb{Z}_3 \xrightarrow{i} \mathbb{Z}_9 \xrightarrow{p} \mathbb{Z}_3 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow f \qquad \qquad \downarrow$$

$$0 \longrightarrow Z_3 \xrightarrow{-i} \mathbb{Z}_9 \xrightarrow{p} Z_3 \longrightarrow 0$$

Για να οριστεί πλήρως ο ισομορφισμός f χρειάζεται να απειχονίσουμε έναν γεννήτορα σε έναν γεννήτορα. Έστω $f([1]_9)=[x]_9$ με μκ $\delta(x,9)=1$.

Λόγω της μεταθετικότητας του δεύτερου τετραγώνου έχουμε:

$$(pf)[n]_9 = [n]_3$$

για κάθε $[n]_9 \in Z_9$.

ωστόσο $(pf)[n]_9=n(pf)[1]_9=n\cdot p\,(f[1]_9)=np[x]_9=[nx]_3.$ Δηλαδή, για κάθε $n\in\mathbb{Z}$ έχουμε ότι:

$$nx = n \mod 3$$

και άρα

$$x = 1 \mod 3$$

Από την μεταθετικότητα του πρώτου τετραγώνου προκύπτει ότι:

$$f[3n]_9 = [-3n]_9$$

Συνεπώς $[-3]_9 = f[3]_9 = 3f[1]_9 = [3x]_9$. Δηλαδή έχουμε τις συνεπαγωγές:

$$3x = -3 \mod 9$$
$$3(x+1) = 0 \mod 9$$
$$x+1 = 0 \mod 3$$
$$x = 2 \mod 3$$

και άρα καταλήξαμε σε άτοπο.

b) Γνωρίζουμε ότι το \mathbb{Z}_9 δεν είναι ισόμορφο με το $\mathbb{Z}_3 \oplus \mathbb{Z}_3$, συνεπώς καμία από τις δύο επεκτάσεις δεν είναι ισοδύναμη με την τετριμμένη. Έχουμε δηλαδή ότι το σύνολο $ext(\mathbb{Z}_3,\mathbb{Z}_3)$ έχει τουλάχιστον 3 κλάσες ισοδυναμίας για στοιχεία. Αρκεί να δείξουμε ότι έχει ακριβώς 3.

Λόγω αμφιμονοσήμαντης αντιστοιχίας με την ομάδα $Ext^1_{\mathbb{Z}}(\mathbb{Z}_3,\mathbb{Z}_3)$, αρχεί να δείξουμε ότι αυτή είναι (χυχλιχή) τάξης 3. Πράγματι:

$$Ext^1_{\mathbb{Z}}(\mathbb{Z}_3,\mathbb{Z}_3) = \mathbb{Z}_3/3\mathbb{Z}_3 \cong \mathbb{Z}_3/\{0\} \cong \mathbb{Z}_3$$

6. a) Ορίζουμε την $\widetilde{f}: ext(M,N) \to ext(M',N)$ ως εξής:

$$[e] \mapsto [e']$$

Πρέπει να δείξουμε ότι είναι καλά ορισμένη απεικόνιση, δηλαδή δεν εξαρτάται από τον αντιπρόσωπο της κλάσης.

Αν $[e]=[\varepsilon]$ δηλαδή έχουμε ισομορφισμό $g:L_1\to L_2$ ώστε το παρακάτω διάγραμμα να είναι μεταθετικό:

$$e: 0 \longrightarrow N \longrightarrow L_1 \xrightarrow{p_1} M \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow g \qquad \qquad \downarrow$$

$$\varepsilon: 0 \longrightarrow N \longrightarrow L_2 \xrightarrow{p_2} M \longrightarrow 0$$

Θα πρέπει να έχουμε ισομορφισμό $\widetilde{g}:L_1'\to L_2'$ και μεταθετικό διάγραμμα:

όπου:

$$L'_1 = \{(m', l) \in M' \oplus L_1 : f(m') = p_1(l) \in M'\}$$

 $L'_2 = \{(m', l) \in M' \oplus L_2 : f(m') = p_2(l) \in M'\}$

Ορίζουμε την $\widetilde{g}: L_1' \to L_2'$ ως εξής:

$$(m',l) \longmapsto (m',q(l))$$

Η \widetilde{g} είναι καλά ορισμένη αφού $m'\in M', g(l)\in L_2$ και ισχύει $f(m')=p_1(l)=p_2(g(l))$ από την μεταθετικότητα του πρώτου διαγράμματος. Αρκεί να δείξουμε ότι η \widetilde{g} είναι ισομορφισμός R-προτύπων και να ελέγξουμε την μεταθετικότητα του δεύτερου διαγράμματος.

Δείχνουμε τα εξής:

• R-γραμμικότητα:

$$\widetilde{g}\left(r\left(m',l\right)\right) = \widetilde{g}\left(rm',rl\right) = (rm',g\left(rl\right)) = r\left(m',g(l)\right) = r\widetilde{g}\left(m',l\right)$$

$$\widetilde{g}\left((m_1', l_1) + (m_2', l_2)\right) = \widetilde{g}\left(m_1' + m_2', l_1 + l_2\right) = (m_1' + m_2', g(l_1 + l_2)) = (m_1', g(l_1)) + (m_2', g(l_2)) = \widetilde{g}\left(m_1', l\right) + \widetilde{g}\left(m_2', l_2\right)$$

- Επί: Έστω $(m',l)\in L_2$. Αφού g ισομορφισμός, υπάρχει $l'\in L_1$ τέτοιο ώστε g(l')=l. Άρα: $\widetilde{g}(m',l')=(m',g(l')=(m',l)$

Av $h_1, h_2: N \to L_1, L_2 \times \alpha h'_1 = (0, h_1): N \to L'_1, h'_2 = (0, h_2): N \to L'_2$ $0 \longrightarrow N \xrightarrow{h'_1} L'_1 \xrightarrow{p'_1} M' \longrightarrow 0$ $\downarrow \tilde{g} \qquad \qquad \downarrow \downarrow$ $0 \longrightarrow N \xrightarrow{h'_2} L'_2 \xrightarrow{p'_2} M' \longrightarrow 0$ $n \longrightarrow (0, h_1(n))$ $\downarrow \qquad \qquad \downarrow$ $(0, g(h_1(n)) \qquad gh_1 = h_2$ $\downarrow \qquad \qquad \downarrow$ $n \longrightarrow (0, h_2(n))$ $(m', l) \longrightarrow m'$ $\downarrow \qquad \qquad \downarrow$

άρα και τα δύο τετράγωνα είναι μεταθετικά. Συνεπώς \widetilde{f} καλά ορισμένη απεικόνιση.

b) Αν έχουμε I εμφυτευτικό και την βραχεία ακριβή ακολουθία:

$$0 \to N \xrightarrow{i} I \xrightarrow{p} Q \to 0$$

Τότε:

$$Ext^1_R(M,N) \cong coker[Hom_R(M,I) \xrightarrow{p_*} Hom_RM,Q]$$

Συνεπώς αν $g \in Hom_R(M,Q)$ συμβολίζουμε με [g] την κλάση $g+imp_*$. Θεωρούμε αυτά τα [g] ως στοιχεία του $Ext_R(M,N)$ (μέσω ισομορφισμού).

Πηγαίνοντας το [g] δεξιά και κάτω στο διάγραμμα παίρνουμε:

$$[g] \to \lambda_{M,N}[g] = [0 \to N \xrightarrow{i'_1} X_1 \xrightarrow{p'_1} M \to 0] \to \widetilde{f}(\lambda_{M,N}[g]) =$$
$$[0 \to N \xrightarrow{i''_1} X'_1 \xrightarrow{p''_1} M' \to 0]$$

Ομοίως πηγαίνοντάς το κάτω και δεξιά έχουμε:

$$[g] \to f^*([g]) = [gf] \to \lambda_{M',N}[gf] =$$
$$[0 \to N \xrightarrow{i'_2} X_2 \xrightarrow{p'_2} M' \to 0]$$

όπου:

$$X_{1} = \{(x, y) \in M \oplus I : g(x) = p(y)\}$$

$$X_{2} = \{(x, y) \in M' \oplus I : (gf)(x) = p(y)\}$$

$$X'_{1} = \{(m', x_{1}) \in M' \oplus X_{1} : f(m') = p'_{1}(x_{1}) \in M\}$$

$$i'_{1}(n) = (0, n) \in X_{1}$$

$$i''_{1}(n) = (0, i'_{1}(n)) \in X'_{1}$$

$$i'_{2}(n) = (0, n) \in X_{2}$$

$$p'_{1}(x, y) = x \in M$$

$$p''_{1}(m', x_{1}) = m' \in M'$$

$$p'_{2}(m', y) = m' \in M'$$

Για να είναι το διάγραμμα μεταθετικό, δηλαδή να συμπίπτουν οι δύο κλάσεις πρέπει να υπάρχει ισομορφισμός $h: X_1' \to X_2$ ώστε το παρακάτω διάγραμμα να είναι μεταθετικό:

$$0 \longrightarrow N \xrightarrow{i_1''} X_1' \xrightarrow{p_1''} M' \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow h \qquad \qquad \downarrow \downarrow$$

$$0 \longrightarrow N \xrightarrow{i_1'} X_2 \xrightarrow{p_2'} M' \longrightarrow 0$$

Ορίζουμε την απεικόνιση $h: X_1' \to X_2$ ως εξής:

$$(m', x_1) \longmapsto (m', y)$$

όπου $x_1 = (x, y) \in M \oplus I$. Ο h είναι χαλά ορισμένος εφόσον έχουμε:

$$(m', x_1) \in X'_1 \implies f(m') = p'_1(x_1) = x \in M$$

$$x_1 = (x, y) \in X_1 \implies g(x) = p(y)$$

και άρα (gf)(m')=g[f(m')]=g(x)=p(y) δηλαδή ισχύει ότι $(m',y)\in X_2.$ Στην συνέχεια δείχνουμε ότι είναι ισομορφισμός R-προτύπων

• R-γραμμικότητα:

$$\begin{split} r(m',x_1) &= (rm',rx_1) \mapsto (rm',ry) = r(m',y) \quad \text{aφού } rx_1 = (rx,ry) \\ (m_1',x_1^1) + (m_2',x_1^2) &= (m_1'+m_2',x_1^1+x_1^2) \mapsto (m_1'+m_2',y^1+y^2) = (m_1',y^1) + (m_2',y^2) \\ \text{εφόσον } x_1^1 &= (x^1,y^1) \text{ και } x_1^2 = (x^2,y^2). \end{split}$$

1-1

Αν $q_1=(q,y)$ και $(m',x_1)\mapsto (0_{M'},0_I)=(m',y)$ τότε m'=0,y=0 και μένει να δειχτεί ότι x=0. Πράγματι, από την προσθετικότητα της f:

$$0 = f(0) = f(m') = p'_1(x_1) = x$$

Επί:

Έστω $(m',y) \in X_2$. Έχουμε ότι g(f(m')) = p(y). Από αυτό συνεπάγεται ότι το στοιχείο (f(m'),y) ανήχει στο X_1 . Έτσι έχουμε ότι το στοιχείο (m',x_1) ανήχει στο X_1' αφού:

$$p'_1(x_1) = p'_1(f(m'), y) = f(m')$$

Επιπλέον έχουμε ότι $h(m', x_1) = (m', y)$.

Μένει να επαληθευτεί η μεταθετικότητα των δύο τετραγώνων. Πράγματι:

$$i'_1(n) = (0, n)$$
 $h(0, i'_1(n)) = (0, n)$

$$(m', x_1) \xrightarrow{p_1''} m'$$

$$\downarrow \downarrow$$

$$(m', y) \xrightarrow{p_2'} m'$$

$$x_1 = (x, y)$$