Bridge-Finding Game

In the Bit-Fixing GGM

preprocessing phase

online phase

 $(t_1,\tau(t_1)),\ldots,(t_P,\tau(t_P))$

$$\tau(y) = \vec{a} \cdot \vec{x} + b$$

$$(x_1, x_2, x_3)$$

$$\tau(1), \tau(x_1), \tau(x_2), \tau(x_3)$$

$$\mathtt{Mult}(au(x_1), au(x_2))$$

$$\tau(x_1+x_2)$$

$$\operatorname{Inv}(\tau(x_1+x_2))$$

$$\tau(-x_1-x_2)$$

$$\mathtt{Mult}(au(x_1), au(1))$$

$$\tau(x_1 + 1)$$

$$\mathtt{Mult}(au(x_2), \mathfrak{y})$$

0)(0,U

$$\tau(1) \qquad (0,0,0)$$

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

$$\tau(x_1 + x_2) \tag{1,1,0}$$

$$\tau(-x_1 - x_2) \qquad (-1, -1, 0) \qquad 0$$

$$\tau(x_1 + 1) \qquad (1, 0, 0) \qquad 1$$

$$\tau(x_2 + 7) \qquad (0, 1, 0) \qquad 7$$

(0,0,0)ŋ

Restricted Discrete-Log Oracle

Bridge event since $\tau(t_{I\!\!P}) = \tau(-x_1 - x_2) = 01101101$ but $((0,0,0),t_P) \neq ((-1,-1,0),0)$

Then we learned

$$x_1 + x_2 + t_P = 0$$

Theorem (informal). $\Pr[\mathsf{BRIDGE}] \leq \mathcal{O}\left(\frac{q^2+q(N+P)}{2}\right)$

In the Auxiliary-Input Model, we have

Theorem (informal).
$$\Pr[\mathsf{BRIDGE}] \leq \mathcal{O}\left(\frac{q2^kS}{p}\right)$$

k-bit security: $p \approx 2^{2k}S$

Bridge-Finding Game

In the Bit-Fixing GGM

Fix
$$(t_1, \tau(t_1)), \ldots, (t_P, \tau(t_P))$$

$$\tau(y) = \vec{a} \cdot \vec{x} + b$$

au(y)	$ec{a}$	b
$ au(t_1)$	(0, 0, 0)	t_1
• • •	• • •	• • •
01101101	(0, 0, 0)	t_P
au(1)	(0, 0, 0)	1
$ au(x_1)$	(1, 0, 0)	0
$ au(x_2)$	(0, 1, 0)	0
$ au(x_3)$	(0, 0, 1)	0

preprocessing phase

$\tau(1), \tau(x_1), \tau(x_2), \tau(x_3)$	
$\mathtt{Mult}(au(x_1), au(x_2))$	_
$\tau(x_1+x_2)$	~

Bridge event since $\tau(t_P) = \tau(-x_1 - x_2) = 01101101$ but $((0,0,0),t_P) \neq ((-1,-1,0),0)$

Then we learned

$$x_1 + x_2 + t_P = 0$$

Theorem (informal).
$$\Pr[\mathsf{BRIDGE}] \leq \mathcal{O}\left(\frac{q^2 + q(N+P)}{p}\right)$$
.

In the **Auxiliary-Input Model**, we have

Theorem (informal).

$$\Pr[\mathsf{BRIDGE}] \leq \mathcal{O}\left(\frac{q2^kS}{p}\right)$$

k-bit security: $p \approx 2^{2k}S$

Multi-User Security Bound and Signature Length

"Short" Schnorr Signatures

	Security Bound	For k-bit Security	Signature Length
Without Preprocessing	$\varepsilon \le \mathcal{O}\left(\frac{q^2 + qN}{p} + \frac{q}{2^k}\right)$	$p \approx 2^{2k}$	$k + \log p \approx 3k$
With	$\begin{array}{c} \text{Key-} \\ \text{Prefixed} \end{array} \varepsilon \leq \mathcal{O}\left(\frac{q^2 S \log p}{p} + \frac{q}{2^k}\right) \end{array}$	$p\approx 2^{2k}S\log p$	If $S = 2^{k/2}$ $\Rightarrow k + \log p \approx 3.5k$
Preprocessing	Standar-dized $\varepsilon \leq \mathcal{O}\left(\frac{q2^kS}{p} + \frac{q}{2^k}\right)$	$p \approx 2^{2k} S$	$\begin{aligned} &\operatorname{If} S = 2^{k/2} \\ \Rightarrow k + \log p \approx 3.5k \end{aligned}$