An Introduction to Deep Reinforcement Learning

JORGE C. CHAMBY DIAZ

JCHAMBYD@GMAIL.COM

JANUARY 08, 2020

Motivation

Can we create Artificial Intelligence?

Motivation

Can we create Artificial Intelligence?

Motivation

Can we create Artificial Intelligence?

We can create programs that LEARN!!

Deep Reinforcement Learning (Deep RL)

Deep Learning

- What is it? Framework for learning to solve sequential decision making problems.
- How? Trial and error in a world that provides occasional rewards
- **Deep?** Deep RL = RL + Neural Networks

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn function to map

$$x \rightarrow y$$

Apple example:

This thing is an apple.

Supervised Learning

Unsupervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn function to map

 $x \rightarrow y$

Data: x

x is data, no labels!

Goal: Learn underlying

structure

Apple example:

This thing is an apple.

Apple example:

This thing is like the other thing.

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn function to map

$$x \rightarrow y$$

Apple example:

This thing is an apple.

Unsupervised Learning

Data: x

x is data, no labels!

Goal: Learn underlying

structure

Apple example:

This thing is like the other thing.

Reinforcement Learning

Data: state-action pairs

Goal: Maximize future rewards over many time steps

Apple example:

Eat this thing because it will keep you alive.

Reinforcement Learning

Data: state-action pairs

RL: our focus today!

Goal: Maximize future rewards over many time steps

Apple example:

Eat this thing because it will keep you alive.

Agent: take actions.

Environment: the wold in which the agent exist and operates.

Action: a move the agent can make in the environment.

Observations: of the environment after taking actions.

State: an situation which the agent perceives.

Reward: feedback that measure the success or failure of the agent's action.

Example: Cart-Pole Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity

Action: horizontal force applied on the cart

Reward: 1 at each time step if the pole is upright

Example: Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints

Action: Torques applied on joints

Reward: 1 at each time step upright +

forward movement

Example: Atari games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

Example: Go

Objective: Win the game!

State: Position of all pieces

Action: Where to put the next piece down

Reward: 1 if win at the end of the game, 0 otherwise

How can we mathematically formalize the RL problem?

Markov Decision Problem

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the world

Defined by: $(\mathcal{S},\mathcal{A},\mathcal{R},\mathbb{P},\gamma)$

 ${\mathcal S}\,$: set of possible states

A : set of possible actions

 \mathcal{R} : distribution of reward given (state, action) pair

: transition probability i.e. distribution over next state given (state, action) pair

 γ : discount factor

Markov Decision Problem

- At time step t=0, environment samples initial state s₀ ~ p(s₀)
- Then, for t=0 until done:
 - Agent selects action a_t
 - Environment samples reward r_t ~ R(. | s_t, a_t)
 - Environment samples next state s_{t+1} ~ P(. | s_t, a_t)
 - Agent receives reward r_t and next state s_{t+1}
- A policy π is a function from S to A that specifies what action to take in each state
- **Objective**: find policy π^* that maximizes cumulative discounted reward: $\sum_{t>0} \gamma^t r_t$

A simple MDP: Grid World

```
actions = {

1. right →

2. left →

3. up 

4. down 

}
```


Set a negative "reward" for each transition (e.g. r = -1)

Objective: reach one of terminal states (greyed out) in least number of actions

A simple MDP: Grid World

Random Policy

Optimal Policy

Defining the Q-function

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

Total reward, R_t , is the discounted sum of all rewards obtained from time t

$$Q(s, \mathbf{a}) = \mathbb{E}[R_t]$$

The Q-function captures the **expected total feature reward** an agent in state, s, can receive by executing a certain action, a

How to take actions given a Q-function?

$$Q(s, \mathbf{a}) = \mathbb{E}[R_t]$$

$$\uparrow \uparrow$$
(state, action)

Ultimately, the agent needs a **policy** $\pi(s)$, to infer the **best action to take** at its state, s

How to take actions given a Q-function?

$$Q(s, a) = \mathbb{E}[R_t]$$

$$\uparrow \uparrow$$
(state, action)

Ultimately, the agent needs a **policy** $\pi(s)$, to infer the **best action to take** at its state, s

Strategy: the policy should choose an action that maximizes futures reward

$$\pi^*(s) =$$

How to take actions given a Q-function?

$$Q(s, a) = \mathbb{E}[R_t]$$

$$\uparrow \uparrow$$
(state, action)

Ultimately, the agent needs a **policy** $\pi(s)$, to infer the **best action to take** at its state, s

Strategy: the policy should choose an action that maximizes futures reward

$$\pi^*(s) = \underset{a}{argmax} Q(s, a)$$

Deep Reinforcement Learning Algorithms

Value Learning

Find Q(s, a)

$$a = \underset{a}{argmax} Q(s, a)$$

Policy Learning

Find $\pi(s)$

Sample $a \sim \pi(s)$

Digging deeper into the Q-function

Digging deeper into the Q-function

Digging deeper into the Q-function

Digging deeper into the Q-function

Example: Atari Breakout

It can be very difficult for humans to accurately estimate Q-values

Which (s, a) pair has a higher Q-value?

Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions?

Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions?

Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions?

$$\mathcal{L} = \mathbb{E}\left[\left\| \left(r + \gamma \max_{a'} Q(s', a')\right) - \frac{Q(s, a)}{Q(s, a)} \right\|^{2} \right]$$

 $Q(s, a_1)$

DQN Atari results

Downsides of Q-learning

Complexity:

- Can model scenarios where the action space is discrete and small
- Cannot handle continuous action spaces

Flexibility:

 Cannot learn stochastic policies since policy is deterministically computed from the Q function

Downsides of Q-learning

Complexity:

- Can model scenarios where the action space is discrete and small
- Cannot handle continuous action spaces

IMPORTANT:

Imagine you want to predict steering wheel angle of a car!

Flexibility:

 Cannot learn stochastic policies since policy is deterministically computed from the Q function

Downsides of Q-learning

Complexity:

- Can model scenarios where the action space is discrete and small
- Cannot handle continuous action spaces

IMPORTANT:

Imagine you want to predict steering wheel angle of a car!

Flexibility:

 Cannot learn stochastic policies since policy is deterministically computed from the Q function

To overcome, consider a new class of RL training algorithms: Policy gradient methods

Policy Gradient (PG): Key Idea

DQN (before): Approximating Q and inferring the optimal policy,

Policy Gradient (PG): Key Idea

DQN (before): Approximating Q and inferring the optimal policy,

Policy Gradient: Directly optimize the policy!

Policy Gradient (PG): Key Idea

DQN (before): Approximating Q and inferring the optimal policy,

Policy Gradient: Directly optimize the policy!

Policy Gradient (PG): Training

- I. Run a policy for a while
- 2. Increase probability of actions that lead to high rewards
- 3. Decrease probability of actions that lead to low/no rewards

```
function REINFORCE Initialize \theta for episode \sim \pi_{\theta} \{s_i, a_i, r_i\}_{i=1}^{T-1} \leftarrow episode for t = 1 to t-1 \nabla \leftarrow \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) R_t \theta \leftarrow \theta + \alpha \nabla return \theta
```

Policy Gradient (PG): Training

- I. Run a policy for a while
- 2. Increase probability of actions that lead to high rewards
- 3. Decrease probability of actions that lead to low/no rewards

```
function REINFORCE Initialize \theta for episode \sim \pi_{\theta} \{s_i, a_i, r_i\}_{i=1}^{T-1} \leftarrow episode for t = 1 to T-1 \nabla \leftarrow \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) R_t \theta \leftarrow \theta + \alpha \nabla return \theta
```

log-likelihood of action

$$\nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \frac{R_t}{reward}$$

The Game of Go

Aim: Get more board territory than your opponent.

Board Size n x n	Positions 3 ^{n²}	% Legal	Legal Positions
×	3	33.33%	
2×2	81	70.37%	57
3×3	19,683	64.40%	12,675
4×4	43,046,721	56.49%	24,318,165
5×5	847,288,609,443	48.90%	414,295,148,741
9×9	4.434264882×10 ³⁸	23.44%	1.03919148791×10 ³⁸
13×13	4.300233593×10 ⁸⁰	8.66%	3.72497923077×10 ⁷⁹
19×19	1.740896506×10 ¹⁷²	1.20%	2.08168199382×10 ¹⁷⁰

Greater number of legal board positions than atoms in the universe.

Source: Wikipedia.

1) Initial training: human data

RL Milestones

Questions?