Unsupervised Learning – Part 3: The k-Means Algorithm

Objective

Discuss the basics of data clustering

Objective

Illustrate the k-Means Algorithm

Finding the clusters/groupings of the samples

A few basic questions to answer

- How to represent the clusters?
 - → We will use the centroid to represent a cluster.
- Which cluster a sample should be assigned to (e.g., membership)?
 - → We will use the similarity to the centroid to determine the membership.
- What similarity measure to use?
 - E.g., Euclidean distance

More on Similarity Measures

If we use Euclidean distance as the measure:

- It is invariant to translations & rotations of the feature space.
- But not to more general transformations.

E.g., if one feature is scaled.

More on Similarity Measures (cont'd)

Other types of similarity measures

|E.g., distance on a graph, like shortest path.

Clustering as Optimization

The sum-of-squared-error criterion/cost

- Let D_i be the subset of samples from class i.
- Let n_i be the number of samples in D_i , and \mathbf{m}_i the mean of those samples

$$\mathbf{m}_{i} = \frac{1}{n_{i}} \sum_{\mathbf{x} \in D_{i}} \mathbf{x}$$

– The sum of squared error is:

$$\boldsymbol{J}_{e} = \sum_{i=1}^{C} \sum_{\mathbf{x} \in D_{i}} \left\| \mathbf{x} - \mathbf{m}_{i} \right\|^{2}$$

→ Well-separated, compact data "clouds" tend to give small errors when the clusters coincide with the clouds.

Clustering as Optimization (cont'd)

$$J_e = \sum_{i=1}^{C} \sum_{\mathbf{x} \in D_i} \left\| \mathbf{x} - \mathbf{m}_i \right\|^2$$

- \rightarrow An optimization problem to solve for finding a "good" clustering: to find the partition of the data that minimizes J_e
- \rightarrow If the membership of a sample is determined by the distance to the means \mathbf{m}_i
 - → Then the task is to find the optimal set of {m_i}
 - → The problem is NP-hard.

k-Means Clustering

Input: Given n data samples

Goal: Partition them into k clusters/sets D_i , with respective center/mean vectors $\mu_1, \mu_2, \ldots, \mu_{k}$, so as to minimize

$$\sum_{i=1}^k \sum_{\mathbf{x} \in D_i} ||\mathbf{x} - \mathbf{\mu}_i||^2$$

Comparing with the mixture models:

 Here we do "hard" assignment of the membership to a sample (simply based on its distance to the cluster center).

The Basic k-Means Algorithm

```
Given: n samples, a number k.
Begin
    initialize \mu_1, \mu_2, ..., \mu_k (randomly
    selected)
          do classify n samples according to
                        nearest \mu_{i}
              recompute \mu_i
          until no change in \mu_i
    return \mu_1, \mu_2, ..., \mu_k
 End
```

Illustrating the Algorithm

