Hydrocarbures

Hydrocarbures

- Alcanes
- Alcènes
- Alcynes
- Arènes

Les alcanes

- I Nomenclature
- II Propriétés physiques
- III Structure et réactivité
- IV Halogénation des alcanes
- V Oxydation des alcanes
- VI Voies d'obtention des alcanes

> Alcanes linéaires

Formule brute C_nH_{2n+2}

Méthane	CH ₄	Méthyle	CH ₃ -
Éthane	C_2H_6	Éthyle	C ₂ H ₅ -
Propane	C_3H_8	Propyle	C_3H_7 -
Butane	C ₄ H ₁₀	Butyle	C ₄ H ₉ -
Pentane	C ₅ H ₁₂	Pentyle	C ₅ H ₁₁ -
Hexane	C_6H_{14}	Hexyle	C ₆ H ₁₃ -

. . . .

Alcanes ramifiés

3-éthyl-4-méthyl-heptane

isopentane

Alcanes cycliques

Formule brute C_nH_{2n}

Cyclopropane $\alpha = 60^{\circ}$

Cyclobutane $\alpha = 90^{\circ}$

Cyclopentane

 $\alpha = 108^{\circ}$

Cyclohexane

 $\alpha = 120^{\circ}$

 C_1 à C_4 : gaz C_5 à C_{17} : liquide

Nbre de $C > à C_{17}$: solide

 $C_1 - C_4$

gaz naturel

 $C_5 - C_6$

éther de pétrole

 $C_6 - C_7$

naphta léger

C₆ - C₁₂

essence

C₁₂ - C₁₈

kérosène

> C₁₈

gasoil, lubrifiants, cires, asphaltes

III - Structure et réactivité

- C: hybridation sp³
- Liaisons C-C et C-H: liaisons fortes
- Liaisons C-H peu polarisées
- grande inertie chimique

Seules réactions possibles : Réactions de substitution

- Réactions radicalaires Réactions d'halogénation
- Réactions d'oxydation

IV - Halogénation des alcanes

Avec Cl₂ ou Br₂, mécanisme radicalaire

Cas du méthane

Initiation : déclenchée par la lumière ou la chaleur

$$Cl_2 \longrightarrow Cl + Cl$$

Propagation:
$$CI + CH_4 \longrightarrow CH_3 + HCI$$

$$CH_3 + CI_2 \longrightarrow CH_3CI + CI$$

Terminaison:
$$Cl + Cl \rightarrow Cl_2$$

$$CH_3 + CI \longrightarrow CH_3CI$$

$$CH_3 + CH_3 \rightarrow CH_3 - CH_3$$

IV - Halogénation des alcanes

Alcanes supérieurs

$$CH_3$$
- CH_2 - CH_3 + CI_2 CH_3 - CH_2 - CH_2 (43%) CH_3 - CH_3 - $CHCI$ - CH_3 (57%)

C primaire

C secondaire

C tertiaire

C quaternaire

IV - Halogénation des alcanes

Alcanes supérieurs

Si formation de molécule chirale : ⇒ mélange racémique

$$CH_3-CH_2-CH_2-CH_3 + CI_2 \longrightarrow CH_3-CH_2-C*HCI-CH_3$$

V - Oxydation des alcanes

Oxydation ménagée

$$R-H + O_2 \longrightarrow R-O-O-H$$

Mécanisme radicalaire :

$$R^{\bullet} + O_2 \longrightarrow R-O-O^{\bullet}$$

 $R-O-O^{\bullet} + R-H \longrightarrow R-O-O-H + R^{\bullet}$

V - Oxydation des alcanes

Combustion

$$C_nH_{2n+2} + \frac{3n+1}{2} O_2 \longrightarrow nCO_2 + (n+1) H_2O$$

Intérêt énergétique $\Delta H^{\circ} = -50 \text{ kJ/g}$

$$CH_4 = 16 \text{ g/mol.}$$
 $\Rightarrow \Delta H^\circ = -800 \text{ kJ/mol.}$

$$C_8H_{18} + 25/2 O_2 \longrightarrow 8 CO_2 + 9 H_2O$$

83 679 L_{air} par heure

- 6 litres au 100 km
- 130 km.heure⁻¹
- C_8H_{18} : 114 g.mol⁻¹, ρ = 0,8 kg.L⁻¹
- à 25°C, 1 mol de gaz = 24,46 L

83,7 m³ d'air par heure

148,2 g de CO₂ par km

VI - Préparation des alcanes

Pétrochimie

VI - Préparation des alcanes

Addition sur une double liaison

Hydrogénation des alcènes

R-CH=CH-R' +
$$H_2 \longrightarrow R$$
-CH₂-CH₂-R' catalyseur : Pt, Ni, Pd

- Hydrogénation des dérivés carbonylés

R-CO-R'
$$\longrightarrow$$
 R-CH₂-R'
$$Zn^{2+}, H_3O^+ ou H_2N-NH_2$$

Disparition d'un groupement fonctionnel

$$R-X + Mg \longrightarrow RMgX \longrightarrow R-H + 1/2 MgX_2 + 1/2 Mg(OH)_2$$

Les alcènes

- I Nomenclature
- II Propriétés physiques
- III Structure et réactivité
- IV Réactions d'addition
- V Réactions d'oxydation
- VI Préparation
- VII Réactivité des diènes

1. Linéaires

Monoéthyléniques ou **Alcènes** ou oléfines Formule générale $C_n H_{2n}$

```
Ethylène (éthène) C_2 H_4 ou CH_2 = CH_2

Propylène (propène) C_3 H_6 ou CH_3 - CH = CH_2

Butyl-2-ène (but-2-ène) C_4 H_8 ou CH_3 - CH = CH - CH_3

Butyl-1-ène (but-1-ène) C_4 H_8 ou CH_3 - CH_2 - CH = CH_2

Pent-1-ène C_5 H_{10} ou CH_3 - CH_2 - CH_2 - CH = CH_2

Pent-2-ène C_5 H_{10} ou CH_3 - CH_2 - CH = CH - CH_3
```

2-méthyl-pent-2-ène

La chaîne principale doit contenir la double liaison

Diéthyléniques ou dioléfines

Formule générale

$$C_n H_{2n-2}$$

Buta-1,3-diène Penta-1,3-diène Penta-1,4-diène

$$C_4 H_6$$
 ou $C_5 H_8$ ou $C_5 H_8$ ou

$$CH_2 = CH - CH = CH_2$$

 $CH_3 - CH = CH - CH = CH_2$
 $CH_2 = CH - CH_2 - CH = CH_2$

.

Diène conjugué

Diène non conjugué

Diène cumulé

2. Cycliques

Cycloalcènes ou cyclènes

```
Formule générale C<sub>n</sub> H<sub>2n-2</sub>
```

```
Cyclobutène (cyclobut-1-ène) C_4 H_6
Cyclopentène (cyclopent-1-ène) C_5 H_8
Cyclohexène (cyclohex-1-ène) C_6 H_{10}
```

• • • • •

- C₁-C₄
 C₅-C₁₆
 > C₁₇

gaz à 20 °C

liquide à 20 °C

solide à 20 °C

 t_{liq} -169°C, $t_{\'{e}b}$ -104°C

III - Structure et réactivité

C: hybridation sp²

- 1 liaison σ (recouvrement axial de 2 orbitales hybrides)
- 1 liaison π (recouvrement latéral de 2 orbitales p non hybridées)

- liaison σ : 400 kJ/mol.

- liaison π : 200 kJ/mol.

III -Structure et réactivité

Réactivité:

- Caractère insaturé ⇒ réactions d'addition et d'oxydation
- Caractère nucléophile ⇒ réactions d'addition électrophile

Dihydrogénation

$$R_1$$
 R_2 R_4 R_3 R_4 R_3 R_4 R_3 R_4 R_4 R_3

Catalyseur métallique : Ni de Raney, platine, palladium

Température ambiante, sous pression de dihydrogène

⇒ addition du même côté de la double liaison

Utilisations:

- Détermination du nombre de double liaisons
- Hydrogénation des huiles (fabrication de la margarine)
- Réduction stéréosélective des éthyléniques

Addition des: • dihalogènes (Br₂)

acides hypohalogéneux (Br-OH)

Les 2 Br sont en position anti-périplanaire

Addition sur isomère E ⇒ forme méso

Addition sur isomère Z ⇒ 2 diastéréoisomères R et S mélange racémique

(E)-but-2-ène

2S,3R

2R,3S

2,3-dibromobutane méso (inactif et indédoublable)

2,3-dibromobutane racémique (inactif mais dédoublable en énantiomères actifs)

Addition électrophile: HX, H₂O, ROH, RCOOH

$$C = C + H^{\oplus} \longrightarrow C - C - H \xrightarrow{+ A^{\ominus}} A - C - C - H$$

A-: anion associé à H+

Addition électrophile: HX, H₂O, ROH, RCOOH

Règle semi-empirique de Markovnikov (1870)

L'hydrogène du composé H^{δ+}-A^{δ-} se fixe sur le carbone le plus hydrogéné

Règle de Markovnikov: Lorsqu 'une addition électrophile sur un alcène peut conduire à 2 régio-isomères, le produit majoritaire est issu du carbocation le plus stable

$$CH_{3} - CH_{2} - CH_{3} - CH_{2} - CH_{3} - CH_{2} - CH_{3} - CH_{2} - CH_{3}$$

$$CH_{3} - CH_{2} - CH_{3} - CH_{2} - CH_{3} - CH_{2} - C$$

Addition électrophile: HX, H₂O, ROH, RCOOH

Règle de Markovnikov: Lorsqu'une addition électrophile sur un alcène peut conduire à 2 régio-isomères, le produit majoritaire est issu du carbocation le plus stable

☼ Addition non stéréochimique : carbocation plan ⇒ attaque par A⁻
 d 'un côté ou de l 'autre du plan du carbocation

H-X : halogénure d'alkyle

H-OH: alcool (réaction en milieu acide pour générer le carbocation)

RO-H: éther

RCOO-H: ester

Polymérisation

Tous les réactifs électrophiles peuvent réagir sur les alcènes et en particulier les carbocations

$$CH_3$$
- CH_2 CI + $AICI_3$ \longrightarrow CH_3 - CH_2 + + $AICI_4$ -

 CH_3 - CH_2 + + CH_2 = CH_2 \longrightarrow CH_3 - CH_2 - CH_2 - CH_2 +

 CH_3 - CH_2 + + CH_2 - CH_2 +

 CH_3 - CH_2

Polymérisation

Classement des PE en fonction de leur densité

- Sans rupture de la double liaison
 - Par des oxydants doux : KMnO₄ milieu neutre ⇒ diols

$$C = C \qquad \longrightarrow \qquad -C \qquad C \qquad C \qquad OH \qquad OH$$

Avec O₂ et catalyseur Ag ⇒ époxyde

$$CH_2 = CH_2 + O_2 \longrightarrow H_2C - CH_2$$

Oxyde d'éthylène, intermédiaire pour la synthèse de nombreux composés

Avec rupture de la double liaison

Par des oxydants forts : KMnO₄, à chaud, milieu acide K₂Cr₂O₇, CrO₃

$$R_1$$
 $C = C$
 R_2
 R_3
 R_1
 R_2
 $C = O$
 R_4
 R_4
 R_4
 R_4
 R_5
 R_4
 R_5
 R_6
 R_6
 R_6
 R_7
 R_8
 R_9
 R_9

Mélange de cétone et d'acide

Avec rupture de la double liaison

Par des oxydants forts

$$R_1$$
 $C = C$
 H
 R_2
 $C = O + O = C$
 H
 $O = C$
 H
 $O = C$
 H
 $O = C$
 $O = C$

Dégagement de CO₂ caractérise la double liaison en bout de chaîne

Avec rupture de la double liaison

Par I 'ozone : O_3 $\langle o = \bar{o} - \bar{o} |$

$$\langle 0 = \overline{0} - \overline{0} |$$

Zn décompose H₂O₂ au fur et à mesure de sa formation. Pas d'oxydation de l'aldéhyde

VI - Préparations des alcènes

- A partir du pétrole par vapocraquage
- Hydrogénation des alcynes

$$R-C = C-R' + H_2 \xrightarrow{Pd} R - C = C-R'$$

- Catalyseur pas trop actif pour s'arrêter à l'alcène
- Réaction stéréosélective, addition cis de l'hydrogène
- Toujours l'isomère Z

VI - Préparations des alcènes

Déshydratation des alcools

$$CH-C-OH$$
 H^+ $CH-C-OH_2$ $-H^+$ $CH-C-OH_2$ $-H^+$ $CH-C-OH_2$ $-H^+$

Lorsque 2 alcènes sont possibles, l'alcène le plus substitué est majoritaire (règle de Zaïtsev)

A partir des dérivés halogénés

$$CH-C-X$$
 $\frac{alcool}{BuOK}$ $C=C$ + KX + H_2O

Diènes cumulés

Diènes non conjugués

Les 2 liaisons réagissent de manière indépendante

Diènes conjugués

Possibilité de délocalisation des e

Additions électrophiles

$$CH_2$$
 = CH = CH + HBr CH_3 - CH = CH = CH (80%) CH_3 - CH = CH - CH 2 (20%)

$$CH_2 = CH - CH = CH_2 + H + \longrightarrow CH_3 - CH - CH = CH_2$$

$$CH_3$$
 — CH = CH — CH_2 45

Diènes conjugués

Réaction de Diels et Alder

Les liaisons σ et π réagissent simultanément

Diènes conjugués

Diènes conjugués

Les alcynes

Formule brute : C_nH_{2n-2}

Nomenclature : dérivée des alcanes suffixe yne

Structure: C hybridation sp

Réactivité : + réactifs que les alcènes mais même type de réaction

⇒ réactions d 'additions électrophiles et réactions d 'oxydation

Alcynes vrais: R—C ≡C —H

$$R-C \equiv C - H + NaNH_2 \rightarrow R-C \equiv C^{\Theta} + NH_3$$