SEMINR

ANALYSE FACTORIELLE CONFIRMATOIRE

CHRISTOPHE LALANNE

Far better an approximate answer to the right question, which is often vague, than the exact answer to the wrong question, which can always be made precise. — J.W. Tukey

cFA

ACP VERSUS EFA

ACP

L'ACP peut être vue comme une méthode de réduction de dimension, de résumé graphique d'une matrice de corrélation, voire d'inférence multivariée supposant l'absence d'erreur de mesure.

$$C_i = \sum w_{ij} x_j$$

EFA

L'EFA vise à explorer la relation entre variables manifestes en supposant que leur correlation reflète l'existence d'une ou plusieurs variables latentes (facteurs) fixées.

FIGURE 1.—Model A, a unidimensional model; Model B, a correlated traits model; Model C, a second-order model; and Model D, a bifactor model. F = factor; E = error; D = disturbance; V = measured variable.

peu utile dans un contexte de mesure

Reise (2010)

SOLUTION 3 FACTEURS

Holzinger & Swinburne (1939)

	PA1	PA2	PA3	h2	u2
visual	0,196	0,591	0,032	0,477	0,523
cubes	0,043	0,510	-0,121	0,256	0,744
paper	-0,062	0,685	0,020	0,453	0,547
paragrap	0,846	0,016	0,007	0,728	0,272
sentence	0,885	-0,065	0,007	0,753	0,247
wordm	0,805	0,080	-0,013	0,692	0,308
addition	0,045	-0,154	0,732	0,512	0,488
counting	-0,034	0,121	0,691	0,524	0,476
straight	0,032	0,380	0,458	0,461	0,539

```
1 m1 <- fa(d, nfactors = 1, fm ="pa")
2 m2 <- fa(d, nfactors = 2, fm ="pa")
3 m3 <- fa(d, nfactors = 3, fm ="pa")</pre>
```

CFA VERSUS EFA

Holzinger & Swinburne (1939)

	PA1	PA2	PA3	h2	u2
visual		0,591		0,477	0,523
cubes	0	0,510		0,256	0,744
paper		0,685		0,453	0,547
paragrap	0,846			0,728	0,272
sentence	0,885			0,753	0,247
wordm	0,805	0	 	0,692	0,308
addition			0,732	0,512	0,488
counting	0		0,691	0,524	0,476
straight			0,458	0,461	0,539

Idée de la CFA : Imposer une structure factorielle spécifique (contraindre les paramètres du modèle) et tester son adéquation avec les données.

ESTIMATION DU MODELE

Holzinger & Swinburne (1939)

	PA1	PA2	PA3	h2	u2
visual		0,591		0,477	0,523
cubes	0	0,510		0,256	0,744
paper		0,685		0,453	0,547
paragrap	0,846			0,728	0,272
sentence	0,885			0,753	0,247
wordm	0,805	0		0,692	0,308
addition			0,732	0,512	0,488
counting	0		0,691	0,524	0,476
straight			0,458	0,461	0,539

Idée de la CFA : Imposer une structure factorielle spécifique (contraindre les paramètres du modèle) et tester son adéquation avec les données.

Construction d'un « modèle de mesure » (ici ce n'est pas vraiment un modèle de mesure car il n'y a pas de facteur commun ou général) : modèle en traits corrélés.

ILLUSTRATION AVEC LAVAAN

LE PACKAGE LAVAAN

Quatre commandes pour la modélisation : lavaan, cfa, sem, growth.

Inclut des procédures d'estimation par intervalles (bootstrap), de simulation, de transfert de données/modèles avec Mplus (Rosseel, 2012 ; Beaujean, 2013, 2014).

CFA 3 FACTEURS

SOLUTION 3 FACTEURS

Console ~/Desktop/SEMinR/			
User model versus baseline model:			
Comparative Fit Index (CFI)		0.931	
Tucker-Lewis Index (TLI)		0.896	
Loglikelihood and Information Criteria:			
Loglikelihood user model (H0)	-37	37.745	
Loglikelihood unrestricted model (H1)	-36	95.092	
Number of free parameters		21	
Akaike (AIC)	75	17.490	
Bayesian (BIC)	75	95.339	
Sample-size adjusted Bayesian (BIC)	75	28.739	
Root Mean Square Error of Approximation:			
RMSEA		0.092	
90 Percent Confidence Interval	0.071	0.114	
P-value RMSEA <= 0.05		0.001	
Standardized Root Mean Square Residual:			
SRMR		0.065	

1 summary(r, fit.measures = TRUE)

CFA 3 FACTEURS


```
1 r <- cfa(m, data = d, std.lv = TRUE
2 semPaths(r, whatLabels = std)</pre>
```

FACTEURS NON CORRELES

Holzinger & Swinburne (1939)

	PA1	PA2	PA3	h2	u2
visual		0,591		0,477	0,523
cubes	0	0,510		0,256	0,744
paper		0,685	<u>O</u>	0,453	0,547
paragrap	0,846			0,728	0,272
sentence	0,885			0,753	0,247
wordm	0,805	0		0,692	0,308
addition			0,732	0,512	0,488
counting	0		0,691	0,524	0,476
straight			0,458	0,461	0,539

Idée de la CFA : Imposer une structure factorielle spécifique (contraindre les paramètres du modèle) et tester son adéquation avec les données.

Construction d'un « modèle » en traits non corrélés.

CFA 3 FACTEURS NC

1 r2 <- cfa(m, data = d, orthogonal = TRUE)

MODELES DE MESURE

MODELE DE 2ND ORDRE

Modèle de mesure placé directement au niveau de la corrélation entre les facteurs spécifiques (F₁, F₂ et F₃) : les facteurs sont corrélés car ils « partagent une cause commune ». L'effet du facteur primaire est appelé effet indirect.

MODELE BIFACTORIEL

Tous les items sont associés à un même facteur général, et ce modèle inclut des facteurs spécifiques orthogonaux (G_1 , G et G_3): facteurs communs résumant la variance non expliquée par le facteur général.

MODELE DE 2ND ORDRE

REFERENCES

- 1. Reise, S.P., Moore, T.M., and Haviland, M.G. Bifactor Models and Rotations: Exploring the Extent to Which Multidimensional Data Yield Univocal Scale Scores. *Journal of Personality Assessment*, 92(6): 544-559, 2010.
- 2. Rosseel, Y. lavaan, An R Package for Structural Equation Modeling. *Journal of Statistical Software*, 48(2): 1–36, 2012.
- 3. Beaujean, A.A. Latent Variable Modeling Using R, A Step-by-Step Guide. New York: Routledge, 2014.
- 4. Beaujean, A.A. Factor Analysis Using R. Practical Assessment, Research & Evaluation, 18(4): 1–11, 2013.