

End-to-end System Modeling Analog Digital Communication

December 14, 2020 Pranavi, Jon

Goals

Gain **practical experience** in designing a **complete** communications system.

Understand the **practical** and **physical** considerations of implementing a **hardware** communications system.

Learn more about digital communication protocols at the **MAC layer**, including packet **encoding** and **error correction**.

Design a BPSK system in Simulink

System Design: Overview

Datasource

- Payload data is converted to a binary format and stored into a collection of registers.
- We used the "Timetable" Simulink data load option to mimic a microntronoller's buffer and queue
- Data is pre-encoded using Hamming codes.
- MAC layer is implemented at the queue level.

```
1 Fc = 2.4e9;
2 Tb = 1/Fc;
3 wperiod = 50;
4 SampSin = Tb/wperiod;
5 tau = 1/(2*pi*(Fc+le9));
6 loss = Fc*1000;
7
8 % Create Packet For Sending
9 random_additions = 'asdf';
10 bitlist = get_bits('HELLO');
11 encoded = hammingEncode(bitlist);
12 packet = createPacket(encoded, random_additions);
13 bits = createTimetable(Tb, packet);
```


Encoder

- Used a very simple layout for packet construction.
- **Preamble**: the "syncword" for receivers to listen for and synchronize to.
- **Frame** control: the "API version" of the packet layout for receivers to understand if they can parse the packet.
- **Duration**: 8-bit (padded) hamming encoded body length.
- **Body**: variable-length, hamming encoded packet body.

Modulator

- Implements a Binary Phase Shift Keying (BPSK) modulation scheme.
- **Upsampler**: locks and holds digital signal to the specified bit rate
- Level Converter: converts 1/0 signal into 1/-1
- Mixer: combines level-converted digital signal with 2.4 GHz carrier wave
- Carrier wave is phase aligned with the bit period.

Transmitter

- Selected a **nRF24L01** 2.4 GHz transceiver as the real-world hardware implementation.
- Used for transmitter characteristics in Simulink, Represented as transfer function P(f).

	General RF conditions							
f_{OP}	Operating frequency	2	2400		2525	MHz		
f _{XTAL}	Crystal frequency			16		MHz		
Δf_{1M}	Frequency deviation @ 1000kbps			±160		kHz		
Δf_{2M}	Frequency deviation @ 2000kbps			±320		kHz		
R _{GFSK}	Data rate ShockBurst TM		>0		2000	kbps		
FCHANNEL	Channel spacing @ 1000kbps			1		MH:		
F _{CHANNEL}	Channel spacing @ 2000kbps			2		MH		
	Transmitter operation							
P_{RF}	Maximum Output Power	3		0	+4	dBn		
P_{RFC}	RF Power Control Range		16	18	20	dB		
P_{RFCR}	RF Power Accuracy				±4	dB		
P_{BW}	20dB Bandwidth for Modulated Carrier (2000kbps)			1800	2000	kHz		
P_{RFI}	1st Adjacent Channel Transmit Power 2MHz				-20	dBr		
P_{RF2}	2 nd Adjacent Channel Transmit Power 4MHz				-50	dBn		
I_{VDD}	Supply current @ 0dBm output power	4		11.3		mA		
I_{VDD}	Supply current @ -18dBm output power			7.0		mA		
I_{VDD}	Average Supply current @ -6dBm output power, Enhanced ShockBurst™	5		0.05		mA		
I_{VDD}	Supply current in Standby-I mode	6		32		μΑ		
I _{VDD}	Supply current in power down			900		nA		

Environment

- A combination of free space power loss:

$$FSPL = 20\log_{10}(d) + 20\log_{10}(f) + 20\log_{10}\left(rac{4\pi}{c}
ight) - G_t - G_r$$

- Also includes Gaussian white noise with PSD of 2e-20

Watts/Hz

Receiver

- Represented as a transfer function with coefficients derived from the nRF24L01.

	Receiver operation			
I_{VDD}	Supply current one channel 2000kbps		12.3	mA
I_{VDD}	Supply current one channel 1000kbps		11.8	mA
RX_{SENS}	Sensitivity at 0.1%BER (@2000kbps)		-82	dBm
RX_{SENS}	Sensitivity at 0.1%BER (@1000kbps)		-85	dBm
C/I _{CO}	C/I Co-channel (@2000kbps)	7	$7^8/11^9$	dB
C/I _{1ST}	1st Adjacent Channel Selectivity C/I 2MHz		1/4	dB
C/I _{2ND}	2 nd Adjacent Channel Selectivity C/I 4MHz		-21/-20	dB
C/I _{3RD}	3 rd Adjacent Channel Selectivity C/I 6MHz		-27/-27	dB
C/I _{CO}	C/I Co-channel (@1000kbps)	10	$9^{11}/12^{12}$	dB
C/I _{1ST}	1st Adjacent Channel Selectivity C/I 1MHz		8/8	dB
C/I _{2ND}	2 nd Adjacent Channel Selectivity C/I 2MHz		-22/-21	dB
C/I _{3RD}	3 rd Adjacent Channel Selectivity C/I 3MHz		-30/-30	dB

Demodulator

- Uses the thresholded windowed-integrator method for decoding BPSK signal data from the receiver.
- Rounding is used to threshold the values to +1/-1
- A zero-order-hold then samples the integrated signal at the bit rate.

- Decoding is triggered by a thresholded match filter using Simulink

callbacks.

Thanks!

Hardware exploration

- Selected a 2.4 GHz Large Duck Antenna
- 5dBi, Reverse Polarized.
- 50 ohm impedance.
- nRF24L01 2.4 GHz transceiver IC.

