TUGAS 2 JARINGAN SARAF TIRUAN

NAMA : MUH. NUR KHALIFA

STB : 182088

KELAS : TI-C

DOSEN : INDO INTAN, S.T., M.T.

PROGRAM STUDI TEKNIK INFORMATIKA UNIVERSITAS DIPA MAKASSAR 2021

Buatlah model neuron McCulloch-Pitts untuk mengenali pola fungsi logika XNOR, dan NAND

Jawaban

• Tabel Logika XNOR

Input (X1)	Input (X2)	Output (Y)
0	0	1
0	1	0
1	0	0
1	1	1

Jiika W1 = 1dan W2 = 1 maka;

Input (X1)	Input (X2)	$y_{in} = X1X2W1 + \underline{X1X2}W2$
0	0	(0.1)+(0.1)=0
0	1	(0.1)+(1.1)=1
1	0	(1.1)+(0.1)=1
1	1	(1.1)+(1.1)=2

Maka y(net) memenuhi fungsi logika XNOR jadi nilai ambang Θ (teta) adalah 1

Input (X1)	Input (X2)	$y_{in} = X1X2W1 + \frac{X1X2}{}W2$	Y (net) 0, jika $x < 1$ 1, jika $x \ge 1$
0	0	(0.0.1)+(1.1.1)=1	1
0	1	(0.1.1)+(1.0.1)=0	0
1	0	(1.0.1)+(0.1.1)=0	0
1	1	(1.1.1)+(0.0.1)=1	1

• Tabel Logika NAND

Input (X1)	Input (X2)	Output (Y)
0	0	1
0	1	1
1	0	1
1	1	0

Jiika W1 = 1dan W2 = 1 maka;

Input (X1)	Input (X2)	$net = \sum X_i W_i$
0	0	(0.1)+(0.1)=0
0	1	(0.1)+(1.1)=1
1	0	(1.1)+(0.1)=1
1	1	(1.1)+(1.1)=2

Maka y(net) memenuhi fungsi logika NAND jadi nilai ambang Θ (teta) adalah 1

Input (X1)	Input (X2)	$net = \sum \! X_i W_i$	Y (net) 0, jika $x > 1$ 1, jika $x \le 1$
0	0	(0.1)+(0.1)=0	1
0	1	(0.1)+(1.1)=1	1
1	0	(1.1)+(0.1)=1	1
1	1	(1.1)+(1.1)=2	0