CS215 Assignment-1 Problem 4

Josyula Venkata Aditya 1 and Kartik Sreekumar Nair^2

 $^{1}210050075$ $^{2}210050083$

October 1, 2022

Problem 4

Consider a continuous random variable X that has an M-shaped probability density function (PDF) $P_X(\cdot)$ as follows:

$$P_X(x) := 0 \text{ for } |x| > 1, \text{ and } P_X(x) := |x| \text{ for } x \in [-1, 1]$$
 (1)

Consider independent continuous random variables $\{X_i : i = 1, 2, \dots, \infty\}$ with PDFs identical to that of X. Define random variables

$$Y_N := \frac{1}{N} \sum_{i=1}^{N} X_i, \tag{2}$$

for $N=1,2,\cdots,\infty$, which have associated distributions $P_{Y_N}(\cdot)$.

• Write code to generate independent draws from $P_X(\cdot)$. Your code can use only the uniform random number generator rand() (no other generator). Submit this code.

Let x be the variable representing the values of rand() (X, uniform distribution on <math>[0,1]).

Now, we have to find a random variable Y, y = f(x) such that $P(y) = |y|, -1 \le y \le 1$.

Every interval Δx should map to a corresponding Δy such that the probabilities of X being in $x \to x + \Delta x$ and Y being in $y \to y + \Delta y$ are the same.

Which implies

$$P_Y(y)dy = P_X(x)dx (3)$$

As

$$P(x) = 1, 0 \le x \le 1 \text{ and } P(y) = |y|, -1 \le y \le 1,$$
 (4)

$$P_Y(y)dy = P_X(x)dx (5)$$

$$\implies |y|dy = dx \tag{6}$$

$$\implies y = \sqrt{2(x+c_1)}, -\sqrt{2(c_2-x)}$$
 (7)

We assume that the solution y is continuous. We know that the range of y is [-1,1] and the two solution functions are continuous. Let us call the first solution y_1 and the second solution y_2 . $y_1 \ge 0$ and $y_2 \le 0$. Hence, $\exists \ \alpha \in [0,1]$ such that $y_1(\alpha) = y_2(\alpha) = 0$. We also know that the mass to the left of y = 0 is the same as the mass to the right of y = 0. Hence, $\alpha = 0.5$ by symmetry.

$$\implies c_1 = -0.5 \text{ and } c_2 = 0.5$$
 (8)

The transformation function y = y(x) can be written in a simplified form as:

$$y = \operatorname{sgn}(2x - 1) \cdot \sqrt{|2x - 1|} \tag{9}$$

To generate on instance of this random variable –

Refer problem4.mlx.

- Show plots of
 - 1. The histogram (with 200 bins)

- 2. Cumulative distribution function (CDF), both using $M := 10^5$ draws from the PDF $P_X(\cdot)$.
- Use the code written in the previous sub-question to write code to generate independent draws from $P_{Y_N}(\cdot)$. Submit this code.

Refer problem4.mlx. We used this function to generate values of Y_N (as a function of N)-

```
function pyn = avg_M(N)
    pyn = mean(sign(2*rand(N,1)-1).*sqrt(abs(2*rand(N,1)-1)));
end
```

• Show plots (separately) of histograms using draws from each of the PDFs $P_{Y_N}(\cdot)$ for N=2,4,8,16,32,64.

Figure 1: Histograms corresponding to N=2,4,8,16,32,64 respectively (L-R T-B)

Show plots, on the same graph, of all the CDFs associated with Y_N for N=1,2,4,8,16,32,64, computed using 10^4 draws from each $P_{Y_N}(\cdot)$. Plot each CDF curve using a different color. You may use the cdfplot(·) function in Matlab.

