통계학의 이해 11

회귀모형의 형태

☑ 회귀모형의 형태

- ◆ 수치변수들 간의 관계를 간단히 알아보는 방법을 알아본다.
- ◆ 수치변수들 간 인과관계를 설명하기 위한 대표적인 통계모형인 회귀모형을 소개한다.

- ◇ 예제】올림픽 육상 100m 우승기록
 - ✓ Andrew Tatem 등이 2004년 9월 Nature에 논문 발표
 - ♡ 1900~2004년까지의 남자와 여자의 육상 100m 우승 기록을 분석
 - - 실제 기록: 남자 9.69, 여자 10.75
 - ♥ 2156년 올림픽에서 여성 우승 기록이 남성기록보다 빠를 것으로 예측
 - 남성 우승기록 8.098초, 여성 우승기록 8.079초
 - 통계적 오차(예측구간)를 고려하면, 빠르면 2064년, 늦어도 2788년에는 역전 될 것이라고 주장

🖹 다변량 자료(Multivariate Data)

◇ 어떤 대상에 대해 여러 가지 변수들을 관측(측정)한 자료들의 집합※ 예】신체검사: 연령, 성별, 신장, 체중, 시력, 혈액형, ...

☆ 자료의 형태

관측값	변수1	변수2	•••	변수 <i>p</i>
1	<i>x</i> ₁₁	<i>x</i> ₂₁	•••	x_{1p}
2	x_{21}	x_{22}	•••	x_{2p}
:	:	:	٠.	:
n	x_{n1}	x_{n2}	•••	x_{np}

♡ 관측값 간에는 관련성이 없음: 독립적인 관측값

- ◇ 주요관심사: 변수들 간의 관계
 - ⊗ 변수들 간 관계가 있는가?
 - ♡ 있다면 어떤 관계가 있는가?

산점도, 상관분석으로 가능

- ⊘ 관계가 어느 정도 되는가?
- ♡ 관계를 식으로 표시할 수 있는가?
- ♡ 관계식을 유도할 수 있는가?

산점도, 상관분석?

- ◇ 분석 목적이 관계유도 및 예측인 대표적인 모형이 회귀모형

🖹 산점도 & 상관분석

♦ 1896년~2016년까지 올림픽 육상 100m 우승기록

연도	남자	여자	연도	남자	여자	연도	남자	여자	연도	남자	여자
1896	12	-	1928	10.8	12.2	1964	10.0	11.4	1992	9.96	10.82
1900	11	-	1932	10.3	11.9	1968	9.9	11.0	1996	9.84	10.94
1904	11	-	1936	10.3	11.5	1972	10.14	11.07	2000	9.87	10.75
1908	10.8	-	1948	10.3	11.9	1976	10.06	11.08	2004	9.85	10.93
1912	10.8	-	1952	10.4	11.5	1980	10.25	11.06	2008	9.69	10.78
1920	10.8	-	1956	10.5	11.5	1984	9.99	10.97	2012	9.63	10.75
1924	10.6	-	1960	10.2	11.0	1988	9.92	10.54	2016	9.81	10.71

♦ 산점도(Scatter plot)

올림픽 육상 100m 우승기록

自 상관분석(Analysis of Correlation)

◇ 상관계수: 두 변수 간의 직선(선형) 관계의 정도

$$R_{XY} = \frac{1}{n-1} \sum \left(\frac{X_i - \overline{X}}{S_X} \right) \left(\frac{Y_i - \overline{Y}}{S_Y} \right) = \frac{S_{XY}}{\sqrt{S_{XX}S_{YY}}}$$

$$\varnothing S_{XY} = \sum (X_i - \overline{X}) (Y_i - \overline{Y}), S_{XX} = \sum (X_i - \overline{X})^2, S_{YY} = \sum (Y_i - \overline{Y})^2$$

$$T = \frac{\sqrt{n-2R}}{\sqrt{1-R^2}} \sim t_{n-2}$$

◇ 예제】올림픽 육상 100m 우승기록

 \emptyset 남자자료: 연도 x, 기록 y

$$\circ n = 28, \overline{x} = 1958.43, \overline{y} = 10.313$$

$$x_i^2 = 107429904$$
, $\sum y_i^2 = 2985.27$, $\sum x_i y_i = 565043.2$

$$S_{xx} = 37514.86, S_{yy} = 7.330, S_{xy} = -472.67$$

$$\circ \ r = \frac{-472.67}{\sqrt{(37514.86)(7.330)}} = -0.901$$

$$0 t = \frac{\sqrt{28-2}(-0.901)}{\sqrt{1-(-0.901)^2}} = -10.615 < -2.47 = t_{0.01,26}$$

🖺 회귀모형(Regression Model)

◇ 변수들 간의 인과 관계 유도

$$X \rightarrow f \rightarrow Y$$
Input System Output

- ♡ 입력변수 X: 설명(explanatory)변수, 독립(independent)변수
 - 양적변수: 공변량(covariate), 질적변수: 요인(factor)
- ♡ 출력변수 Y: 반응(response)변수, 종속 (dependent)변수
- ∅ 예) 광고비와 판매량, 공부량과 시험성적, (비료량, 평균강수량, 평균기온, 평균일조량)과 수확량
- $oldsymbol{arphi}$ 동일한 입력변수 X에 대해 출력변수 Y는 다른 값을 가질 수 있음

🖹 선형회귀모형(Linear Regression Model)

◇ 관계식 가정

$$Y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i$$

- - 선형과 비선형의 구분은?
- ⊗ ε: 오차(error)
 - 모형으로 설명이 안되는 부분
 - 오차에 특정 패턴이 있으면 모형화 할 수 있는 부분이 남아 있음
 - \circ 통계적 추론을 위한 가정: $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n \sim iid N(0, \sigma^2)$

☑ 회귀모형의 형태

- ◆ 수치변수들 간의 관계를 나타내는 방법을 복습한다.
 - ਂ 산점도
 - ♡ 직선관계를 나타내는 상관계수와 상관분석
- 수치변수들 간 인과관계를 설명하기 위한 대표적인 통계모형인 회귀모형을 소개한다.
 - ਂ 선형회귀모형

$$Y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i$$

통계학의 이해 ॥

단순선형회귀에서의 모수추정

☑ 단순선형회귀모형에서의 모수추정

◆ 설명변수가 하나인 회귀모형에서 관측값과 회귀선과의 거리를 어떻게 표시하는지 알아본다.

◆ 최소제곱법을 이용한 회귀모수를 추정하는 방법을 알아본다.

🖹 단순선형회귀모형(Simple Linear Regression Model)

☆ 설명변수가 하나인 선형회귀모형

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
, $\varepsilon_i \sim iid N(0, \sigma^2)$

- ♥ 설명변수는 조절 가능한 상수로 가정
 - 광고비에 따른 판매량: 광고비는 회사에서 결정 가능
 - 일조량에 따른 수확량: 관측된 값으로 주어진 값으로 처리
- ♡ 설명변수가 여러 개인 경우: (다)중회귀모형(multiple regression model)
- arphi 미지의 모수 절편 eta_0 , 기울기 eta_1 를 추정
 - $\circ \beta_1$ 은 x를 한 단위 증가시킬 때 Y의 평균증가량
 - $\circ \beta_1 = 0$ 이면 x가 Y에 영향을 주지 않는다는 것을 의미

$$\langle Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \ \varepsilon_i \sim iid \ N(0, \sigma^2) \implies Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$$

🗎 모수추정

 $\langle (\beta_0, \beta_1)$ 의 추정

$$\emptyset \ d_i = y_i - (b_0 + b_1 x_i)$$

- ☆ 추정된 직선이 좋은 직선인가 아닌가에 대한 기준 설정이 필요
 - arphi 관측값 y_i 와 추정된 직선에서의 $(b_0 + b_1 x_i)$ 의 거리에 대한 정의 필요
 - **⊘** 최소절대편차법(Least Absolute Deviation method)

$$D_1(b_0, b_1) = \sum |d_i| = \sum |y_i - b_0 - b_1 x_i|$$

$$D_2(b_0, b_1) = \sum d_i^2 = \sum (y_i - b_0 - b_1 x_i)^2$$

 \circ 장점: b_0, b_1 에 대해 미분가능하여 최소로 만드는 b_0, b_1 를 쉽게 찾을 수 있음

🔷 최소제곱법

$$D(b_0, b_1) = \sum d_i^2 = \sum (y_i - b_0 - b_1 x_i)^2$$

 $^{\diamondsuit}$ 최소제곱추정값: $\hat{m{\beta}}_1 = S_{xy}/S_{xx}$, $\hat{m{\beta}}_0 = \overline{y} - \hat{m{\beta}}_1 \overline{x} \implies$ 실제 분석에 사용

arnothing 최소제곱추정량: $\widehat{m{\beta}}_1 = m{S}_{xY}/m{S}_{xx}$, $\widehat{m{\beta}}_0 = \overline{Y} - \widehat{m{\beta}}_1 \overline{x}$

⇒ 통계적 추론(분포, 기댓값)할 때 사용

- - **⊘** 적합값(예측값, predicted value):

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i, \qquad \widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$$

♦ 잔차(residual): 관측값과 예측값의 차이

$$\emptyset e_i = y_i - \widehat{y}_i, \quad e_i = Y_i - \widehat{Y}_i$$

♡ 최소제곱추정량을 유도과정

$$0 - 2\sum (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i) = 0 \implies \sum e_i = 0$$

$$0 -2\sum x_i(y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i) = 0 \implies \sum x_i e_i = 0$$

☆ 예제】올림픽 육상 100m 우승기록

 \emptyset 남자자료: 연도 x, 기록 y

$$0 n = 28, \overline{x} = 1958.43, \overline{y} = 10.313$$

$$\circ S_{xx} = 37514.86, S_{yy} = 7.330, S_{xy} = -472.67$$

$$\hat{\beta}_1 = \frac{-472.67}{37514.86} = -0.0126$$

$$\hat{\beta}_0 = 10.313 - (-0.0126)1958.43 = 34.99$$

$$y_t = 34.99 - 0.0126x_t$$

⇒ 매 경기 때마다 평균 0.0126×4 = 0.0504초 정도 단축됨

☑ 단순선형회귀모형에서의 모수추정

◆ 설명변수가 하나인 회귀모형에서 관측값과 회귀선과의 거리를 어떻게 표시하는지 알아본다.

$$\varnothing D_1(b_0, b_1) = \sum |d_i| = \sum |y_i - b_0 - b_1 x_i|$$

$$\varnothing D_2(b_0, b_1) = \sum d_i^2 = \sum (y_i - b_0 - b_1 x_i)^2$$

◆ 최소제곱법을 이용한 회귀모수를 추정하는 방법을 알아본다.

$$\mathfrak{S}$$
 최소제곱추정량: $\widehat{\boldsymbol{\beta}}_1 = \boldsymbol{S}_{xY}/\boldsymbol{S}_{xx}$, $\widehat{\boldsymbol{\beta}}_0 = \overline{Y} - \widehat{\boldsymbol{\beta}}_1 \overline{x}$

통계학의 이해 ॥

회귀추론을 위한 기본이론

☑ 회귀추론을 위한 기본이론

회귀모형의 모수 또는 예측값을 추론을 위한 기본 통계이론을 정리한다. 🛇 회귀모형식 가정

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad \varepsilon_i \sim iid N(0, \sigma^2)$$

- ♡ 모수 추정량 또는 예측값의 성질을 유도하기 위해 오차항의 가정 필요

$$\varnothing \ \varepsilon_i \sim N(0, \sigma^2) \implies Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$$

💠 표집분포

$$extstyle extstyle Y_i \sim N(\mu_i, \sigma^2)$$
이고 서로 독립이면 $\sum a_i Y_i \sim N(\sum a_i \mu_i, \sigma^2 \sum a_i^2)$

 $extstyle extstyle \sigma^2$ 의 추정량은?

$$\varnothing \frac{\sum a_i Y_i - \sum a_i \mu_i}{\sqrt{\widehat{\sigma}^2 \sum a_i^2}} \sim t_{\nu},$$

○ 자유도 ν는?

\Diamond 복습] σ^2 의 추정

$$\emptyset X_1, \dots, X_m \sim iid N(\mu_1, \sigma^2), Y_1, \dots, Y_n \sim iid N(\mu_2, \sigma^2)$$

$$\Rightarrow X_i - \mu_1 = \varepsilon_{iX}, \ Y_i - \mu_2 = \varepsilon_{iY}, \ \varepsilon_{iX}, \ \varepsilon_{iY} \sim iid \ N(0, \sigma^2)$$

$$S_p^2 = \frac{\sum (X_i - \bar{X})^2 + \sum (Y_i - \bar{Y})^2}{m + n - 2}$$

$$\emptyset Y_{ij} \sim N(\mu_i, \sigma^2), i = 1, ..., k, j = 1, ..., n_i \Rightarrow Y_{ij} - \mu_i = \varepsilon_i$$

$$MSE = \frac{\sum \sum (Y_{ij} - \overline{Y}_i)^2}{N - k}$$

◇ 회귀모형

$$Y_i - (\beta_0 + \beta_1 x_i) = \varepsilon_i, \quad \varepsilon_i \sim iid N(0, \sigma^2)$$

$$\circ \sum e_i = 0, \sum x_i e_i = 0$$

 \Rightarrow n 개의 잔차 중 n-2만 자유롭게 가질 수 있음

○ 자유도 = 자료의 수 - 해당 통계량에 포함된 추정량의 수

$$MSE = \frac{1}{n-2} \sum_{i} \left(Y_i - (\widehat{\beta}_0 + \widehat{\beta}_1 x_i) \right)^2$$

 $\emptyset Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$ 이고 서로 독립이면

$$\frac{\sum a_i Y_i - \sum a_i (\beta_0 + \beta_1 x_i)}{MSE\sqrt{\sum a_i^2}} \sim t_{n-2}$$

♠ MSE 계산

$$\widehat{Y}_{i} = \widehat{\beta}_{0} + \widehat{\beta}_{1} x_{i} = \overline{Y} - \widehat{\beta}_{1} \overline{x} + \widehat{\beta}_{1} x_{i} = \overline{Y} + \widehat{\beta}_{1} (x_{i} - \overline{x})$$

$$\Rightarrow \widehat{Y}_{i} - \overline{Y} = \widehat{\beta}_{1} (x_{i} - \overline{x})$$

$$\Rightarrow MSE = \frac{1}{n-2} (S_{YY} - S_{xY}^2 / S_{xx})$$

☑ 회귀추론을 위한 기본이론

◆ 회귀모형의 모수 또는 예측값을 추론을 위한 기본 통계이론을 정리한다.

$$arphi$$
 σ^2 의 추정량: $MSE = rac{1}{n-2} \sum \left(Y_i - \left(\widehat{oldsymbol{eta}}_0 + \widehat{oldsymbol{eta}}_1 x_i
ight)
ight)^2$

$$egin{aligned} arphi_i &\sim Nig(eta_0 + eta_1 x_i, \sigma^2ig)$$
이고 서로 독립이면 $&rac{\sum a_i Y_i - \sum a_i (eta_0 + eta_1 x_i)}{MSE\sqrt{\sum {a_i}^2}} {\sim} t_{n-2} \end{aligned}$

통계학의 이해 11

회귀계수(기울기)에 대한 통계적 추론

☑ 기울기에 대한 통계적 추론

● 회귀계수 중 기울기에 해당하는 $β_1$ 의 중심축량, 구간추정, 가설검정에 대해 알아본다.

🖹 기울기 $oldsymbol{eta}_1$ 에 대한 추론

$$\diamondsuit \widehat{\boldsymbol{\beta}}_1 = S_{xY}/S_{xx}$$
의 통계적 성질

$$\widehat{\beta}_1 = \frac{\sum (x_i - \overline{x})(Y_i - \overline{Y})}{S_{xx}} = \frac{\sum (x_i - \overline{x})Y_i}{S_{xx}} \Rightarrow Y$$
들의 선형결합

$$\varnothing Var(\widehat{\beta}_1) = \frac{1}{S_{xx}^2} \sum_{i=1}^{\infty} (x_i - \overline{x})^2 Var(Y_i) = \frac{\sigma^2}{S_{xx}}$$

$$\widehat{\boldsymbol{\beta}}_1 = \boldsymbol{S}_{xY}/\boldsymbol{S}_{xx} \sim N(\boldsymbol{\beta}_1, \boldsymbol{\sigma}^2/\boldsymbol{S}_{xx})$$

♦ 중심축량:

$$\frac{\widehat{\beta}_1 - \beta_1}{\sqrt{MSE/S_{xx}}} \sim t_{n-2}$$

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i = \overline{Y} - \widehat{\beta}_1 \overline{x} + \widehat{\beta}_1 x_i = \overline{Y} + \widehat{\beta}_1 (x_i - \overline{x})$$

$$\Rightarrow \widehat{Y}_i - \overline{Y} = \widehat{\beta}_1 (x_i - \overline{x})$$

$$\emptyset$$
 100(1 $-\alpha$)% 신뢰구간

$$P\left(-t_{\frac{\alpha}{2},n-2} \leq \frac{\widehat{\beta}_{1} - \beta_{1}}{\sqrt{MSE/S_{xx}}} \leq t_{\frac{\alpha}{2},n-2}\right) = 1 - \alpha$$

$$= P\left(\widehat{\beta}_{1} - t_{\frac{\alpha}{2},n-2}\sqrt{\frac{MSE}{S_{xx}}} \leq \beta_{1} \leq \widehat{\beta}_{1} + t_{\frac{\alpha}{2},n-2}\sqrt{\frac{MSE}{S_{xx}}}\right)$$

ਂ 검정통계량

$$T_0 = \frac{\widehat{\beta}_1 - \beta_1^*}{\sqrt{MSE/S_{xx}}} \sim t_{\frac{\alpha}{2},n-2}$$

- extstyle ex

◇ 예제】올림픽 육상 100m 우승기록

$$\emptyset$$
 남자자료: 연도 x , 기록 y

$$0 n = 28, \overline{x} = 1958.43, \overline{y} = 10.313$$

$$S_{xx} = 37514.86, S_{yy} = 7.330, S_{xy} = -472.67$$

$$\widehat{\boldsymbol{\beta}}_1 = -0.0126$$

$$OSE = \frac{1}{28-2} \left(7.330 - \frac{(-472.67)^2}{37514.9} \right) = 0.0529$$

$$\circ$$
 95% 신뢰구간: $-0.0126 \pm 2.056 \sqrt{\frac{0.0529}{37514.9}} = (-0.01504, -0.0102)$

$$\circ$$
 검정통계값: $t_o = \frac{-0.0126}{\sqrt{\frac{0.0529}{37514.9}}} = -10.62$

☑ 기울기에 대한 통계적 추론

◆ 회귀계수 중 기울기에 해당하는 $β_1$ 의 중심축량, 구간추정, 가설검정에 대해 알아본다.

$$egin{aligned} arphi$$
 중심축량: $\dfrac{\widehat{eta}_1 - eta_1}{\sqrt{MSE/S_{\chi\chi}}} \sim t_{n-2} \ arphi & 100(1-lpha)\%$ 신뢰구간: $\left(\widehat{eta}_1 - t_{\dfrac{lpha}{2},n-2}\sqrt{\dfrac{MSE}{S_{\chi\chi}}},\widehat{eta}_1 + t_{\dfrac{lpha}{2},n-2}\sqrt{\dfrac{MSE}{S_{\chi\chi}}}
ight) \end{aligned}$

$$extstyle extstyle ex$$

통계학의 이해 11

강의정리 및 실습

☑ 회귀모형의 형태

- ◆ 수치변수들 간의 관계를 나타내는 방법을 복습한다.
 - ਂ 산점도
 - ♡ 직선관계를 나타내는 상관계수와 상관분석
- 수치변수들 간 인과관계를 설명하기 위한 대표적인 통계모형인 회귀모형을 소개한다.
 - ਂ 선형회귀모형

$$Y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i$$

☑ 단순선형회귀모형에서의 모수추정

◆ 설명변수가 하나인 회귀모형에서 관측값과 회귀선과의 거리를 어떻게 표시하는지 알아본다.

$$\mathcal{O}$$
 $D_1(b_0, b_1) = \sum |d_i| = \sum |y_i - b_0 - b_1 x_i|$

$$\varnothing D_2(b_0, b_1) = \sum d_i^2 = \sum (y_i - b_0 - b_1 x_i)^2$$

◆ 최소제곱법을 이용한 회귀모수를 추정하는 방법을 알아본다.

$$\mathfrak{S}$$
 최소제곱추정량: $\widehat{\boldsymbol{\beta}}_1 = \boldsymbol{S}_{xY}/\boldsymbol{S}_{xx}$, $\widehat{\boldsymbol{\beta}}_0 = \overline{Y} - \widehat{\boldsymbol{\beta}}_1 \overline{x}$

☑ 회귀추론을 위한 기본이론

◆ 회귀모형의 모수 또는 예측값을 추론을 위한 기본 통계이론을 정리한다.

$$arphi$$
 σ^2 의 추정량: $MSE = rac{1}{n-2} \sum \left(Y_i - \left(\widehat{oldsymbol{eta}}_0 + \widehat{oldsymbol{eta}}_1 x_i
ight)
ight)^2$

$$egin{aligned} arphi_i &\sim Nig(eta_0 + eta_1 x_i, \sigma^2ig)$$
이고 서로 독립이면 $&rac{\sum a_i Y_i - \sum a_i (eta_0 + eta_1 x_i)}{MSE\sqrt{\sum {a_i}^2}} {\sim} t_{n-2} \end{aligned}$

☑ 기울기에 대한 통계적 추론

◆ 회귀계수 중 기울기에 해당하는 $β_1$ 의 중심축량, 구간추정, 가설검정에 대해 알아본다.

$$egin{aligned} arphi$$
 중심축량: $\dfrac{\widehat{eta}_1 - eta_1}{\sqrt{MSE/S_{\chi\chi}}} \sim t_{n-2} \ arphi & 100(1-lpha)\%$ 신뢰구간: $\left(\widehat{eta}_1 - t_{\dfrac{lpha}{2},n-2}\sqrt{\dfrac{MSE}{S_{\chi\chi}}},\widehat{eta}_1 + t_{\dfrac{lpha}{2},n-2}\sqrt{\dfrac{MSE}{S_{\chi\chi}}}
ight) \end{aligned}$

$$extstyle extstyle ex$$

☑ R 실습

- ◇ 상관분석: cor, cor.test
- ◇ 선형회귀모형 추론: lm
- ◇ 적합값, 예측값, 잔차: predict, residuals
- □ 라: plot

☑ 과제

- ☆ 올림픽 100m 우승기록(1900년부터 2004년까지 자료)

 - ♥ 남녀별 회귀계수(기울기)에 대한 95% 신뢰구간을 구하여라.