Ambigüidade

- ♦ Gramática Ambigüa
 - Gramática Livre do Contexto
 - se existe uma palavra que possua
 - * duas ou mais árvores de derivação
- *♦ Exemplo*: **X**+**X*****X**

★ X+X*X possui mais de uma derivação à esquerda (direita)

• derivação mais à esquerda

$$E \Rightarrow E+E \Rightarrow X+E \Rightarrow X+E*E \Rightarrow X+X*E \Rightarrow X+X*X$$

$$E \Rightarrow E*E \Rightarrow E+E*E \Rightarrow X+E*E \Rightarrow X+X*E \Rightarrow X+X*X$$

• derivação mais à direita

$$E \Rightarrow E+E \Rightarrow E+E*E \Rightarrow E+E*x \Rightarrow E+x*x \Rightarrow x+x*x$$

$$E \Rightarrow E*E \Rightarrow E*x \Rightarrow E+E*x \Rightarrow E+x*x \Rightarrow x+x*x$$

♦ Forma equivalente de definir ambigüidade

- a existência de uma palavra
- com duas ou mais derivações mais à esquerda (direita)

♦ Ambigüidade???

- em muitas aplicações, é conveniente que a
 - * gramática usada não seja ambígua
- nem sempre é possível eliminar ambigüidades
- é fácil definir linguagens para as quais
 - * qq GLC é ambígua

♦ Linguagem Inerentemente Ambigüa

- LLC
- qq GLC que a define é ambígua

♦ Exemplo:

$$L = \{w \mid w = a^n b^n c^m d^m \text{ ou}$$

$$w = a^n b^m c^m d^n, n \ge 1, m \ge 1\}$$

Simplificação de GLC

- **♦ Simplificações**
 - *não* reduzem o poder de expressão das GLC
- Simplificações são importantes para
 - construção e otimização de algoritmos
 - demonstração de teoremas

♦ Simplificações

- exclusão de símbolos inúteis
 - * variáveis ou terminais não-usados
 - * para gerar palavras de terminais
- exclusão de *produções vazias* da forma $A \rightarrow \epsilon$
 - * se ε pertence à linguagem,
 - * é incluída uma produção vazia específica
- exclusão de produções da forma A → B
 - * substituem uma variável por outra
 - * não adicionam qq informação de geração de palavras.

Símbolos Inúteis

♦ Símbolos inúteis

- variáveis ou terminais
- não-usados na geração de palavras de terminais

♦ Simplificação

- exclui as produções que fazem referência aos símbolos inúteis
- análise das produções a partir
 - * de terminais gerados e
 - * do símbolo inicial
- não é necessária qq modificação adicional nas produções da gramática
- exclui os símbolos que não são referenciados em qq produção

♦ Algoritmo

- Qualquer variável gera palavra de terminais
 - * gera um novo conjunto de variáveis
 - * inicialmente, considera todas as variáveis que geram terminais diretamente (ex: $A \rightarrow a$)
 - * a seguir, são adicionadas as variáveis que geram palavras de terminais indiretamente (ex: B → Ab)
- Qualquer símbolo é atingível a partir do símbolo inicial
 - * analisa as produções da gramática a partir do símbolo inicial
 - * inicialmente, considera exclusivamente o símbolo inicial
 - * após, as produções da gramática são aplicadas e os símbolos referenciados adicionados aos novos conjuntos

♦ Algoritmo. Eliminação dos Símbolos Inúteis

- GLC G = (V, T, P, S)
- Etapa 1: garante que qualquer variável gera terminais
- gramática resultante: G₁ = (V₁, T, P₁, S)
- construção de V1

```
V_1 = \emptyset;
faça V_1 = V_1 \cup \{A \mid A \rightarrow \alpha \in Pe \alpha \in (T \cup V_1)^*\}
até cardinal de V_1 não aumente;
```

- construção de P1
 - * mesmas produções que P
 - * excetuando-se as produções cujas variáveis não pertencem a V1

- Etapa 2: garante que qualquer símbolo é atingível a partir do símbolo inicial
- gramática resultante: G₂ = (V₂, T₂, P₂, S)
- construção de V2 e T2

```
T_2 = \emptyset; V_2 = \{S\}; faça \quad V_2 = V_2 \cup \{A \mid X \to \alpha A\beta \in P_1, X \in V_2\}; T_2 = T_2 \cup \{a \mid X \to \alpha a\beta \in P_1, X \in V_2\} até cardinais de V_2, V_2 V_2 and V_2 and V_3 V_4 V_4 V_4 and V_4 V_5 and V_4 V_5 and V_6 V_7 V_8 V_9 até cardinais de V_9, V_9 V_9 and V_9 V_9 V_9 and V_9 V_9
```

- construção de P2
 - * mesmas produções que P1
 - * excetuando-se as produções cujos símbolos não pertencem a V2 ou T2
- se as etapas acima forem executados em ordem inversa (etapa 2 antes da 1)
 - * pode não gerar o resultado desejado

♦ *Exemplo*: Considere a GLC

• G = ({S, A, B, C}, {a, b, c}, P, S), onde
P = {S
$$\rightarrow$$
 aAa | bBb, A \rightarrow a | S, C \rightarrow c}

• Qualquer variável gera palavra de terminais

iteração	variáveis
início	Ø
1	{A, C}
2	{A, C, S}
3	{A, C, S}

- produção S → bBb
 - * excluída
 - * B não pertence ao novo conjunto de variáveis

- Qualquer símbolo é atingido a partir de S
- G = ({S, A, $\stackrel{\textbf{B}}{=}$, C}, {a, b, c}, P, S), onde P = {S \rightarrow aAa \mid bBb, A \rightarrow a | S, C \rightarrow c}

iteração	variáveis	terminais
início	{S}	\varnothing
1	{S, A}	{a}
2	{S, A}	{a}

- produção C → c
 - * excluída
 - * C e c não pertencem aos novos conjuntos de variáveis e terminais
- gramática resultante
 - $* G = ({S, A}, {a}, P, S), onde$
 - * $S = \{S \rightarrow aAa, A \rightarrow a \mid S\}$

♦ Algoritmo. Eliminação dos Símbolos Inúteis

https://ricardofm.me/disciplinas/lfa0001/lfa.html

Gramatica:

Gramatica:

Produções Vazias

♦ Exclusão de produções vazias

- da forma $A \rightarrow \epsilon$
- pode determinar
 - * modificações diversas
 - * nas produções da gramática

♦ Algoritmo

- Variáveis que constituem produções vazias
 - * $A \rightarrow \varepsilon$. variáveis que geram ε diretamente
 - * $B \rightarrow A$. variáveis que geram ε indiretamente
- Exclusão das produções vazias
 - * todas as produções não-vazias
 - * a seguir, cada produção que possui uma variável que gera ε, determina uma produção adicional, sem esta variável
- Inclusão de geração da palavra vazia
 - * se necessário

♦ Algoritmo. Eliminação das Produções Vazias

- GLC G = (V, T, P, S)
- Etapa 1: Conjunto de variáveis que constituem produções vazias.
 - * V_{ϵ} : conjunto das variáveis que geram ϵ

```
\begin{array}{l} V_\epsilon = \{A \,|\, A \to \epsilon\}; \\ \text{faça } V_\epsilon = V_\epsilon \cup \{X \,|\, X \to X_1...X_n \in P \text{ tq} \\ & \quad X_1, \,..., \, X_n \in V_\epsilon\} \\ \text{at\'e} & \text{que o cardinal de } V_\epsilon \text{ n\~ao aumente}; \end{array}
```

- Etapa 2: Conjunto de produções sem produções vazias
- gramática resultante: G₁ = (V, T, P₁, S)
- construção de P1

```
P1 = \{A \to \alpha \mid \alpha \neq \epsilon \ e \ \alpha \notin V_{\epsilon}\};
faça para A \to \alpha \in P1e
X \in V_{\epsilon} \ tq \ \alpha = \alpha_{1}X\alpha_{2} \ e \ \alpha_{1}\alpha_{2} \neq \epsilon
faca P1 = P1 \cup \{A \to \alpha_{1}\alpha_{2}\}
até que o cardinal de P1 não aumente;
```

- Etapa 3: inclusão de geração da palavra vazia, se necessário
- se a palavra vazia pertence à linguagem
- gramática resultante:

$$G_2 = (V, T, P_2, S)$$
 onde
 $P_2 = P_1 \cup \{S \rightarrow \epsilon\}$

♦ *Exemplo*: Considere a GLC

• G = ({S, X, Y}, {a, b}, P, S), onde
P = {S
$$\rightarrow$$
 aXa | bXb | ϵ , X \rightarrow a | b | Y, Y \rightarrow ϵ }

• Conjunto de variáveis que geram ε

iteração	Vε
início	{S, Y}
1	{S, Y,
	X}
2	{S, Y,
	X}

• Conjunto de produções sem produções vazias

iteração	produções
inicial	$\{S \rightarrow aXa \mid bXb, X \rightarrow a \mid b\}$
1	{S → aXa bXb, X → a b} {S → aXa bXb aa bb, X →
	a b}
2	$\{S \rightarrow aXa \mid bXb \mid aa \mid bb, X \rightarrow aXa \mid bXb \mid aa $
	a b}

- Inclusão da geração da palavra vazia
 - * como ε pertence à linguagem
 - * $S \rightarrow \varepsilon$ é incluída no conjunto de produções
- Gramática resultante (note-se Y é inútil)

* G = ({S, X, Y}, {a, b}, P, S), onde
P = {S
$$\rightarrow$$
 aXa | bXb | aa | bb | ϵ , X \rightarrow a | b}

Produções da Forma A → B

- A → B
 - neste caso
 - * A pode ser substituída por B
 - * não adiciona informação alguma em termos de geração de palavras
 - adicionalmente, se $B \to \alpha$, então
 - * A \rightarrow B pode ser substituída por A $\rightarrow \alpha$
 - * generalização desta idéia: algoritmo proposto

♦ Algoritmo

- Construção do fecho da cada variável
 - * variáveis que podem substituí-la transitivamente
 - * ex.: se $A \rightarrow B$ e $B \rightarrow C$, então B e C pertencem ao fecho de A
- Exclusão das produções A → B
 - * se α é atingível a partir de A através de seu fecho então substitui $A \rightarrow B$ por $A \rightarrow \alpha$
- lacktriangle Algoritmo. Eliminação de Produções da Forma $m{A}
 ightarrow m{B}$
 - GLC G = (V, T, P, S)
 - Construção do fecho da cada variável

```
para A \in V
faça FECHO-A = \{B \mid A \Rightarrow^+ B\} usando exclusivamente
produções da forma X \to Y;
```

- Exclusão das produções A → B
- gramática resultante: G₁ = (V, T, P₁, S)
- construção de P1

```
\begin{array}{ll} P_1 = \{A \to \alpha \mid \alpha \not\in V\}; \\ \\ para \quad A \in V \in B \in FECHO\text{-}A \\ \\ faça \quad se \\ \\ \quad B \to \alpha \in P \in \alpha \not\in V \\ \\ ent \~ao \quad P_1 = P_1 \cup \{A \to \alpha\}; \end{array}
```

♦ *Exemplo*: Considere a GLC

• G = ({S, X}, {a, b}, P, S), onde
P = {S
$$\rightarrow$$
 aXa | bXb, X \rightarrow a | b | S | ϵ }

• Construção do fecho de cada variável

• Construção do conjunto de produções

iteração	produções
inicial	$\{S \rightarrow aXa \mid bXb, X \rightarrow a \mid b \mid \epsilon\}$
S	$\{S \rightarrow aXa \mid bXb, X \rightarrow a \mid b \mid \epsilon\}$
X	$\{S \rightarrow aXa \mid bXb, X \rightarrow a \mid b \mid \epsilon$
	aXa bXb }

• gramática resultante

$$* G = ({S, X}, {a, b}, P, S), onde$$

* P =
$$\{S \rightarrow aXa \mid bXb, X \rightarrow a \mid b \mid \epsilon \mid aXa \mid bXb\}$$

Simplificações combinadas

- ♦ Não é qualquer sequência de simplificação de gramática que atinge os resultados desejados
 - por quê?
- **♦** Seqüência recomendada
 - exclusão de produções vazias
 - exclusão de produções da forma A → B
 - exclusão de símbolos inúteis