

What is claimed:

- Sub B
1. A light source comprising:
a sealed, light-transmissive tube containing high
pressure gases or high pressure gas mixtures at a high
pressure;
a microhollow cathode (MHC) discharge comprising
a first electrode mounted within said tube, said first
electrode consisting of a conductor having a single hole or
10 a plurality of holes therein, each of said holes having an
arbitrary shape and an area in the range from 0.001 mm² to 1
mm²;
a second electrode mounted within said tube and
spaced from first electrode by an insulator which has a hole
15 or holes similar to the hole(s) in the first electrode;
electrical means for coupling electrical energy to
said first and second electrodes for producing discharges in
each of the holes in said first electrode;
both electrodes having a thickness in the range
20 from 0.05 mm to 0.5 mm; and
the insulating spacer having a thickness in the
range of 0.1mm to 1 mm.
 2. The light source of claim 1 wherein the high
25 pressure is in a range of about 100 Torr to about 1,500 Torr.
 3. The light source of claim 1 wherein the high
pressure gas is Ne.
 - 30 4. The light source of claim 1 wherein the high
pressure gas is He.
 5. The light source of claim 1 wherein the high
pressure gas is Ar.

6. The light source of claim 1 wherein the high pressure gas is a mixture of Ne and H₂, and wherein the H₂ concentration is below 1%.

5 7. The light source of claim 1 wherein the high pressure gas is a mixture of Ne and N₂ and wherein the N₂ concentration is below 1%.

10 8. The light source of claim 1 wherein the high pressure gas is a mixture of Ar and O₂, and wherein the O₂ concentration is below 1%.

15 9. The light source of claim 1 wherein the high pressure gas is a mixture of He and H₂ and wherein the H₂ concentration is below 1%.

10. The light source of claim 1 wherein the high pressure gas is a mixture of He and O₂ and wherein the O₂ concentration is below 1%.

20 11. The light source of claim 1 wherein the high pressure gas is a mixture of He and N₂ and wherein the N₂ concentration is below 1%.

25 12. A method of generating intense hydrogen Lyman- α or Lyman- β emissions or atomic oxygen and nitrogen emissions in the spectral range from 100 nm to 150 nm comprising:

placing a MHC discharge device into a container which contains a gas mixture.

30 13. A light source comprising:
a sealed, light-transmissive tube containing gases or gas mixtures at a high pressure;
an array of microhollow cathode discharges
35 comprising multiple microhollow cathode discharges, wherein

each microhollow cathode discharge comprises a first electrode mounted within said light-transmissive tube, said first electrode consisting of a conductor having a single hole or a plurality of holes therein, each of said holes having an arbitrary shape and an area in the range from 0.001 mm² to 1 mm²;

an anode comprising a distributed resistive ballast comprising a semi-insulating material mounted within said light-transmissive tube and spaced apart from the adjoining first electrode of the microhollow cathode discharge array by 10 an insulator which has a hole or holes similar to the hole(s) in the first electrode; and

electrical means for coupling electrical energy to said first and second electrodes for producing discharges in 15 each of the holes in said first electrode; and

an insulating spacer.

14. The light source of claim 13 wherein the semi-insulating material is silicon.