Le Perceptron

M1 MIAGE Machine Learning & Applications

Stéphane Airiau

- S'inspirer du cerveau humain pour construire un système
- Ici, on s'inspire des neurones
 - bâtir des réseaux de neurones artificiels
- vieille idée, McCulloch et Pitts ont présenté un modèle mathématique d'un neurone dès 1943.

Inspiration

- le cerveau : réseau interconnecté très complexe de neurones
- Réseau de Neurones Artificiels (RNA): réseau densémment connecté de simples unités de calcul
 - le cerveau
 - $\approx 10^{11}$ neurones
 - chaque neurone est connecté à 10,000 autres neurones
 - le temps de réaction d'un neurone est autour de 10^{-3} s (lent par rapport à un ordinateur)
 - 0.1s pour réaliser une tâche de reconnaissance (ex : montre la photo d'une personnalité ou d'un ami)
 - → au plus quelques centaines d'étapes pour le calcul.
 - calcul vraissemblablement massivement parallèle
 - réseaux de neurones pour comprendre mieux le cerveau humain
 - réseaux de neurones comme source d'inspiration pour un méchanisme d'apprentissage efficace

Réseau de neurones

- domaine de recherche ancien
- ex dès 1993, un RNA a été utilisé pour gérer le volant d'une voiture roulant sur une autoroute (aux Etats Unis)
 - input : images d'une caméra avec une résolution de 30x32 pixels
 - chaque pixel est connecté à un neurone d'entrée
 - 4 neurones cachés
 - 30 neurones pour la sortie (un neurone va correspondre à un angle du volant)

Situations pour utiliser un RNA

- entrée est un vecteur de large dimension de valeurs discrètes ou continues (e.g. sortie d'un capteur)
- la sortie est discrète ou continue
- la sortie est un vecteur de valeurs
- les valeurs d'entrées peuvent avoir du bruit (ou contenir des erreurs)
- on n'a pas d'hypothèse sur la fonction à apprendre
- il n'y a pas besoin qu'un humain puisse lire le résultat (par ex pour le vérifier ou comprendre ce qui est appris)
- un temps d'apprentissage long est acceptable
- l'utilisation du RNA est rapide

Exemples:

- analyse de textes, traductions, résumés
- reconnaissances d'objets dans des images, reconnaissance faciale, colorisation d'images ou de vidéos en noir et blanc
- ...

Deep Learning

"deep" réfère à un réseau de neurones qui possède beaucoup de couches de neurones → nécessite un long temps pour l'apprentissage.

spécificité à voir en M2.

- Coloration d'images en noir et blanc
- Traduction automatique
- classification d'objets dans des photos
- Game Playing.

Aujourd'hui : modèle d'un seul neurone : le perceptron

Principe:

- un neurone reçoit des signaux d'autres neurones ou de capteurs
- le neurone combine ces signaux
- si la combinaison dépasse un seuil, le neurone envoie un signal (influx nerveux)

Entrées d'un neurone :

- soit c'est une sortie d'un autre neurone
- soit c'est une entrée provenant d'un capteur (par exemple valeur d'un pixel)

Dans un neurone, on attribue un poids $w_i \in \mathbb{R}$ à la $i^{\text{lème}}$ entrée.

- 1- on agrège toutes les entrées en calculant une somme pondérée
- 2- on applique une fonction d'activation
- 3- on retourne le résultat

Exécution du perceptron

- 1- on agrège toutes les entrées en calculant une somme pondérée
- 2- on applique une fonction d'activation
- 3- on retourne le résultat

Exécution du perceptron

- 1- on agrège toutes les entrées en calculant une somme pondérée
- 2- on applique une fonction d'activation \Rightarrow on calcule $f\left(\sum_{i=1}^{n} w_{i}a_{i}\right)$
- 3- on retourne le résultat

Exécution du perceptron

- 1- on agrège toutes les entrées en calculant une somme pondérée
- 2- on applique une fonction d'activation
- 3- on retourne le résultat

Fonction d'activation

• pour conserver l'idée d'un seuil d'activation, on va utiliser une fonction de seuil (ou Heaviside) où la valeur seuil est 0.

$$f: \begin{array}{c} \mathbb{R} \to [-1,1] \\ x \mapsto \left\{ \begin{array}{c} x < 0 : -1 \\ x \geqslant 0 : 1 \end{array} \right. \end{array}$$

 on pourra utiliser d'autres fonctions plus tard (tanh, fonction logistique, ReLu)

Règle de décision du perceptron

Avec la fonction seuil, notre perceptron encode la fonction suivante :

• si
$$\sum_{i=1}^{n} w_i a_i < 0$$
 le perceptron retourne -1

• si
$$\sum_{i=1}^{n} w_i a_i \ge 0$$
 le perceptron retourne +1

Le comportement de notre perceptron va donc dépendre des poids w_i .

Petite astuce: Au lieu de choisir 0 comme valeur seuil, on peut choisir la valeur à -1, et lui donner un poids w_0 .

Le comportement du perceptron sera alors donnée par

$$\sum_{i=0}^{n} w_i a_i$$

où a_0 a pour valeur 1.

Exemple

$$w_0 = 1$$
 rappel : $a_0 = 1$
 $w_1 = 1$
 $w_2 = 1$

a_1	a_2	$w_0 a_0 + w_1 a_1 + w_2 a_2$	sortie
-1	-1	-1	-1
-1	1	1	+1
1	-1	1	+ 1
1	1	3	+1

Ca vous rappelle quelque chose?

Exemple

$$w_0 = 1$$
 rappel : $a_0 = 1$
 $w_1 = 1$
 $w_2 = 1$

a_1	a_2	sortie
-1	-1	-1
-1	1	+1
1	-1	+ 1
1	1	⊥ 1

- -1 correspond à faux
- +1 correspond à vrai

 $a_1 \vee a_2$ a_1 a_2 faux faux faux faux vrai vrai faux vrai vrai vrai vrai vrai

Table de vérité de l'opérateur logique OU

Pouvez vous trouvez les poids pour l'opérateur ET?

a_1	a_2	$a_1 \wedge a_2$
faux	faux	faux
faux	vrai	faux
vrai	faux	faux
vrai	vrai	vrai

Table de vérité de l'opérateur logique ET

$$w_0 = ?$$
 rappel : $a_0 = 1$
 $w_1 = ?$
 $w_2 = ?$

a_1	a_2	$w_0a_0 + w_1a_1 + w_2a_2$	sortie
-1	-1		-1
-1	1		-1
1	-1		-1
1	1		+1

Pouvez vous trouvez les poids pour l'opérateur XOU OU EXCLUSIF?

a_1	a_2	$a_1 \oplus a_2$
faux	faux	faux
faux	vrai	vrai
vrai	faux	vrai
vrai	vrai	faux

Table de vérité de l'opérateur logique XOU OU EXCLUSIF

$$w_0 = ?$$
 rappel : $a_0 = 1$ $w_1 = ?$ $w_2 = ?$

a_1	a_2	$w_0a_0 + w_1a_1 + w_2a_2$	sortie
-1	-1		-1
-1	1		+1
1	-1		+1
1	1		-1

Règle de décision du perceptron

Avec la fonction seuil, notre perceptron encode la fonction suivante :

- si $\sum w_i a_i < 0$ le perceptron retourne -1 \rightleftharpoons classe comme OUI
- si $\sum w_i a_i \ge 0$ le perceptron retourne +1 \rightleftharpoons classe comme NON

Avec des vecteurs de dimension n, on pourra donc utiliser le perceptron pour faire de la classification binaire!

Règle de décision du perceptron – dimension 2

- 2 dimensions, donc 2 entrées *a*₁ et *a*₂
- \Rightarrow changeons de noms : $x = a_1$ et $y = a_2$
- Les règles du perceptron deviennent
 - si $w_0 + w_1 x + w_2 y < 0$ le perceptron retourne -1
 - si $w_0 + w_1 x + w_2 y \ge 0$ le perceptron retourne +1
- En réécrivant un peu ($a = -\frac{w_1}{w_2}$ et $b = -\frac{w_0}{w_2}$)
 - si y < ax + b le perceptron retourne -1
 - si $y \ge ax + b$ le perceptron retourne +1

la droite y = ax + b sépare l'espace en deux : tous les points (x,y) tels que

- y < ax + b seront classés -1,
- $y \ge ax + b$ seront classé +1.

Règle de décision du perceptron – dimension *n*

- En dimension 3, on aurait quelque chose comme z = ax + by + c, et on a un plan qui sépare l'espace en trois dimensions en deux : tous les points "au dessus" ont la valeur +1, ceux "en dessous" ont la valeur -1.
- En dimension *n*, c'est plus compliqué à représenter, mais l'intuition est similaire : un "hyperplan" sépare l'espace en deux : d'un côté les +1, de l'autre les -1.
- Le perceptron représente des données "linéairement séparables"

Perceptron et apprentissage

Avec les poids fixés $w_0, w_1, ..., w_n$, le perceptron représente un hyperplan avec

- d'un côté des points qui ont pour valeur +1
- \bullet et de l'autre les points qui ont pour valeur -1

On veut faire de l'apprentissage!

On a des données, on veut les représenter par un perceptron :

 \Rightarrow il va falloir trouver les poids $w_0, w_1, ..., w_n$ du perceptron

Perceptron et apprentissage

Avec les poids fixés $w_0, w_1, ..., w_n$, le perceptron représente un hyperplan avec

- d'un côté des points qui ont pour valeur +1
- et de l'autre les points qui ont pour valeur −1

On veut faire de l'apprentissage!

On a des données, on veut les représenter par un perceptron :

- \Rightarrow il va falloir trouver les poids $w_0, w_1, ..., w_n$ du perceptron
 - si les données sont linéairement séparables, on va pouvoir trouver plusieurs perceptrons qui représentent ces données 🗸
 - si les données ne sont pas linéairement séparables, la réponse n'est pas claire!
 - on peut dire qu'il y a un échec et s'arrêter!
 - il faudra utiliser une autre méthode!
 - on peut essayer de trouver le perceptron qui fait le moins d'erreur!

Peut-on séparer linéairement ces données?

oui, un exemple.

oui, un autre exemple!

une infinité de perceptrons peuvent donc représenter ces données.

ces données ne peuvent pas être séparées linéairement!

Apprentissage

But de l'apprentissage : trouver le vecteur \overrightarrow{w} de poids $\overrightarrow{w} = \langle w_0, w_1, \dots, w_n \rangle$ d'un perceptron qui représente les données.

idée:

- initialement, on tire au sort des poids aléatoires
- on prend chaque donnée une à une et on itère
 - si notre perceptron donne la bonne classification → on ne change rien!
 - si notre perceptron se trompe \Rightarrow on change les poids
 - on veut déplacer l'hyperplan de séparation pour corriger l'erreur
- si les données sont linéairement séparables, on n'aura plus de corrections à effectuer et on peut arrêter l'algorithme
- si les données ne sont pas linéairement séparables, l'algorithme ne va pas s'arrêter
 - on peut mettre un nombre maximum d'itérations et décréter un échec.

Apprentissage - algorithme

```
// n hyperparamètre "pas d'apprentissage"
// perceptron initialisé avec le vecteur \mathbf{w} = \langle \mathbf{w}_0, \mathbf{w}_1, \dots, \mathbf{w}_n \rangle aléatoire
// on note f<sub>seuil</sub> la fonction de seuil
tant que il y a des changements de poids
        On prend chaque point \mathbf{x} = \langle x_1, \dots, x_n \rangle des données
        la classe de x est t_x
       on calcule la valeur o_{\mathbf{x}} de \mathbf{x} du perceptron o_{\mathbf{x}} \leftarrow f_{seuil}\left(\sum_{i=1}^{n} w_{i} x_{i}\right)
               mise à jour des poids
       pour chaque attribut j
              w_i \leftarrow w_i + \eta(t_x - o_x)x_i
```

- si le perceptron prédit la bonne classification, $t_x o_x = 0$ pas de changement de poids.
- sinon il y a un changement de poids : on pousse le poids vers la direction d'une classe ou l'autre selon l'erreur voir exemple page suivante
- le changement du poids est proportionnel à x_i

Apprentissage - algorithme

Règle de mise à jour des poids

$$w_j \leftarrow w_j + \eta (t_{\mathbf{x}} - o_{\mathbf{x}}) x_j$$

- ex : $\eta = 1$, $x_i = 1$ et le perceptron se trompe et retourne -1. Donc $\eta(t_x - o_x)x_i = 1 - (-1) = 2$: on augmente le poids de 2 pour donner plus de chance de dépasser le seuil
- ex : $\eta = 1$, $x_i = 1$ et le perceptron se trompe et retourne +1. Donc $\eta(t_x - o_x)x_i = -1 - (1) = -2$: on réduit le poids de -2 pour éviter qu'il passe le seuil.
- le changement du poids est proportionnel à x_i : si $x_i = 2$, on augmenterait (ou réduirait) plus le poids.

Apprentissage - résultat

- un théorème nous garantie convergence si les données sont linéairement séparable!
- il n'y a pas convergence sinon!

en pratique:

- la convergence est lente
- l'ordre dans lequel on utilise les données est important dans la vitesse de convergence!

Exemple simpl(issim)e

Problème initial:

- 8 points en 2 dimensions
- poids initial $\langle 0, 1, -1 \rangle$ et $\eta = 0.1$

Exemple simpl(issim)e

Des solutions trouvées

Exemple simpl(issim)e - ordre d'examen

On a essayé tous les ordres pour examiner les points

- pour chaque ordre, on compte le nombre d'itérations jusqu'à convergence
- on trace la distribution du nombre d'itérations
- minimum 57 itérations

Distribution du nombre ditérations selon l'ordre de selection des donné

Bilan du Perceptron

le perceptron peut représenter un problème

- de classification binaire
- avec des données linéairement séparables

problème:

- et si les données ne sont pas séparables?
- peut-on l'utiliser pour de la regression (rappel : prédire une valeur)?