STATISTICA E TECNICA ASSICURATIVA

Salvatore Forte

LA PERSONALIZZAZIONE DEL PREMIO

Obiettivo principale per l'assicuratore che opera nelle assicurazioni contro i danni è la determinazione di un premio che rifletta il più possibile il livello di sinistrosità di ciascun rischio assunto

PERSONALIZZAZIONE DEL PREMIO due fasi distinte

PERSONALIZZAZIONE A PRIORI al momento di stipula del contratto PERSONALIZZAZIONE A POSTERIORI durante i "periodi di osservazione"

Generalmente, il tasso di premio teorico è determinato, considerando la seguente formula:

$$\tau' = \frac{\sum_{j=1}^{n} y_j}{\sum_{k=1}^{N} w_k}$$

dove:

- y_i , è l'ammontare del risarcimento pagato o riservato in riferimento al *j-esimo* sinistro
- $\mathbf{w}_{\mathbf{k}}$, è il valore assicurato in riferimento al k-esimo rischio
- **n**, è il numero di sinistri registrati all'interno di un definito arco temporale (1 anno)
- N, è il numero di rischi presenti nel portafoglio nel medesimo arco temporale

LA PERSONALIZZAZIONE A PRIORI

- Occorre suddividere i rischi in <u>classi di rischio</u> (o anche classi tariffarie)
- Una classe di rischio di rischio è caratterizzata da:
 - *fattori di rischio* (o anche variabili tariffarie)
 - in corrispondenza di ciascuna variabile tariffaria, un certo numero di modalità
- Ogni classe è costituita da <u>rischi omogenei</u>, ognuna con un proprio premio calcolato mediante le usuali metodologie di calcolo

Se consideriamo due sole variabili tariffarie A e B, rispettivamente con un numero di modalità c_1 e c_2 , avremo $c_1 \cdot c_2$ classi di rischio:

A/B	1	2	•••	j	•••	c_2
1	(1,1)			•••		$(1, c_2)$
2		٠.				
:						
i	:			(i, j)		:
:					٠.	
c_1	$(c_1,1)$			•••		(c_1, c_2)

LA PERSONALIZZAZIONE A PRIORI

- All'atto della stipula ad ogni contratto viene assegnata una classe di rischio
- Per ogni classe di rischio viene calcolato un tasso di premio equo in base all'osservazione statistica
- II tasso di premio della classe (i,j):

$$au'_{i,j} = rac{R_{i,j}}{E_{i,j}}$$

- Relativamente alla classe (i,j):
 - $R_{i,j} \rightarrow$ ammontare dei risarcimenti
 - $E_{i,j} \rightarrow$ ammontare dei valori assicurati (totale delle esposizioni monetarie)
- Con riferimento all'intera collettività il tasso di premio medio è:

$$au' = rac{\displaystyle\sum_{i} R_{i,0}}{\displaystyle\sum_{i} E_{i,0}} = rac{\displaystyle\sum_{j} R_{0,j}}{\displaystyle\sum_{j} E_{0,j}} = rac{R}{E}$$

- R → totale dei risarcimenti
- E → totale dei valori assicurati

LA PERSONALIZZAZIONE A PRIORI

Modelli di tariffazione per classi

Determinati i tassi di premio specifici per ogni classe (i,j), a causa del ridotto numero di contratti che popolano alcune classi di rischio, si devono perequare i $\tau'_{i,j}$ per ottenere i tassi di premio specifici perequati $\tau_{i,j}$.

A tal fine bisogna scegliere una funzione, ovvero un modello di tariffazione, che associa ad ogni classe di rischio un tasso di premio (equo).

Tale funzione dipende da alcuni parametri chiamati *relatività*, i quali vengono stimati (e sottoposti a periodici adeguamenti) a partire dai dati disponibili.

- Modello additivo ightarrow $au_{ij} = au + lpha_i + eta_j$
- Modello moltiplicativo $\rightarrow \tau_{ij} = \tau \cdot \alpha_i \cdot \beta_j$ oppure $\tau_{ij} = \alpha_i \cdot \beta_j$
- Modello misto (con 3 o più fattori di rischio) $ightarrow au_{ijk} = au \cdot (lpha_i eta_j + \gamma_k)$

LA PERSONALIZZAZIONE A PRIORI

La stima dei parametri: il modello del Chi-Quadro modificato

Voglio minimizzare la seguente quantità:

$$\chi^{2} = \sum_{i=1}^{c_{1}} \sum_{j=1}^{c_{2}} \frac{\left(E_{i,j} \tau_{i,j}^{'} - E_{i,j} \tau_{i,j}^{}\right)^{2}}{E_{i,j}}$$

I valori α_i , β_j ottimi, sono quelli che minimizzano la quantità X^2 , quindi sono le soluzioni del sistema che si ottiene annullando le derivate parziali del X^2 rispetto ai parametri α_i e β_i .

Esempio

Ipotizziamo di avere:

- 2 variabili di personalizzazione A e B
 - A: "regione di residenza", nell'esempio le regioni sono state suddivise in 3 classi → la variabile A è formata da 3 modalità
 - B: "tipo di garanzia", nell'esempio le garanzie sono:
 - Valore a nuovo (VN)
 - Valore commerciale (VC)
 - Danno totale (DT)
 - Eventi socio-politici e naturali (ESPN)
- Sono noti:
 - il numero di rischi anno di ogni classe
 - il numero di sinistri di ogni classe
 - gli importi risarciti per sinistri
 - i valori assicurati per ogni rischio

Obiettivo

utilizzare un modello che stimi il tasso di premio di ciascuna classe, in maniera da poter consentire una classificazione a priori date le modalità di A e di B

Importo dei <mark>risarcimenti</mark> per classe					
A/B	b ₁	b 2	b 3	b ₄	Totale
a ₁	13.236	13.575	5.362	4.949	37.123
a ₂	12.261	5.195	10.992	3.988	32.436
a 3	29.417	30.903	8.740	4.158	73.218
Totale	54.914	49.672	25.094	13.096	142.777

Importo delle <mark>esposizioni</mark> per classe					
A/B	b ₁	b 2	b ₃	b 4	Totale
a ₁	771.236	616.977	660.898	911.473	2.960.584
a 2	580.241	339.209	710.211	507.847	2.137.509
a 3	839.836	630.223	384.267	601.973	2.456.298
Totale	2.191.314	1.586.409	1.755.376	2.021.293	7.554.392

MODELLO ADDITIVO

 $\tau_{i,j} = \tau + \lambda_i + \mu_j$ i = 1,2,3 j = 1,2,3,4

$$au_{i,j} = \lambda_i \cdot \mu_j$$
 $i = 1,2,3$ $j = 1,2,3,4$

STIMA DEL MODELLO ADDITIVO - METODO CHI-QUADRATO

$$\chi^{2} = \sum_{i=1}^{c_{1}} \sum_{j=1}^{c_{2}} \frac{\left[R_{i,j} - E_{i,j} \left(\tau + \lambda_{i} + \mu_{j}\right)\right]^{2}}{E_{i,j}}$$

- $R_{i,i} \rightarrow \text{risarcimento complessivo della classe } (i, j)$
- $E_{i,j} \rightarrow$ esposizione monetaria complessiva della classe (i, j)
- $\tau \rightarrow$ tasso medio di premio
- λ_i , $\mu_i \rightarrow$ parametri da stimare

I valori ottimi $\hat{\lambda}_i$, $\hat{\mu}_j$ sono soluzione del sistema ottenuto annullando le derivate parziali di \mathcal{X}^2 rispetto a λ_i e μ_j , cioè il seguente sistema:

$$\begin{cases} \sum_{j=1}^{c_2} \left[R_{h,j} - E_{h,j} \left(\tau + \lambda_h + \mu_j \right) \right] = 0, & h = 1, 2, \dots c_1 \\ \sum_{i=1}^{c_1} \left[R_{i,k} - E_{i,k} \left(\tau + \lambda_i + \mu_k \right) \right] = 0, & k = 1, 2, \dots c_2 \end{cases}$$

È un sistema di $c_1 + c_2$ equazioni in $c_1 + c_2$ incognite λ_h , μ_k

- Il sistema è determinato a meno di una costante additiva
- Una soluzione del sistema si ha con <u>metodo iterativo</u> assegnando dei valori iniziali alle μ_k se $c_1 \ge c_2$, oppure alle λ_h se $c_1 < c_2$ nelle seguenti formule:

$$\lambda_{h} = \frac{\left(R_{h,0} - \tau \cdot E_{h,0}\right) - \sum_{j} E_{h,j} \mu_{j}}{E_{h,0}} \qquad \mu_{k} = \frac{\left(R_{0,k} - \tau \cdot E_{0,k}\right) - \sum_{i} E_{i,k} \lambda_{i}}{E_{0,k}}$$

- Nel nostro caso $c_1 = 3$ e $c_2 = 4$
- Avviamo il processo con $\lambda_1 = 0.01$, $\lambda_2 = 0.00$ e $\lambda_3 = 0.00$

$$\tau = 0.019$$

Somme marginali Risarcimenti			
R(0,1)	54.914		
R(0,2)	49.672		
R(0,3)	25.094		
R(0,4)	13.096		
R(1,0)	37.123		
R(2,0)	32.436		
R(3,0)	73.218		

Somme marginali Esposizioni			
E(0,1)	2.191.314		
E(0,2)	1.586.409		
E(0,3)	1.755.376		
E(0,4)	2.021.293		
E(1,0)	2.960.584		
E(2,0)	2.137.509		
E(3,0)	2.456.298		

Esempio
$$\Rightarrow \mu_1 = \frac{\left(R_{0,1} - \tau \cdot E_{0,1}\right) - \sum_i E_{i,1} \lambda_i}{E_{0,1}} = \frac{\left(54.914 - 0.19 \cdot 2.191.314\right) - \left(771.236 \cdot \lambda_1 + 580.241 \cdot \lambda_2 + 839.836 \cdot \lambda_3\right)}{3.191.314}$$

• Iterando più volte si giunge ad una soluzione di stabilità con i seguenti valori per

$$\lambda_1 = -0.002$$
 $\lambda_2 = 0.001$
 $\lambda_3 = 0.013$
 $\mu_1 = 0.001$
 $\mu_2 = 0.008$
 $\mu_3 = -0.007$
 $\mu_4 = -0.016$

utilizzando il modello arrivo alle perequazione dei tassi di premio per classe:

$$\tau_{i,j} = \tau + \lambda_i + \mu_j$$

Tassi	Perequati	Grezzi
τ _{1,1}	0,0185	0,0172
τ _{1,2}	0,0247	0,0220
τ _{1,3}	0,0099	0,0081
τ _{1,4}	0,0012	0,0054
τ _{2,1}	0,0212	0,0211
τ _{2,2}	0,0273	0,0153
τ _{2,3}	0,0125	0,0155
τ _{2,4}	0,0039	0,0079
τ _{3,1}	0,0338	0,0350
τ _{3,2}	0,0400	0,0490
τ _{3,3}	0,0252	0,0227
τ _{3,4}	0,0166	0,0069

Verifichiamo la bontà dell'approssimazione mediante la seguente formula

$$\tau \approx \Sigma \tau_{i,j} \frac{R_{i,j}}{R}$$

che fornisce il tasso medio come media ponderata dei tassi perequati

Lo stesso procedimento può essere effettuato con un altro modello di tariffazione per classi

STIMA DEL MODELLO - TOTALI MARGINALI

$$\chi^{2} = \sum_{i=1}^{c_{1}} \sum_{j=1}^{c_{2}} \frac{\left[R_{i,j} - E_{i,j} \cdot \lambda_{i} \cdot \mu_{j}\right]^{2}}{E_{i,j}}$$

- $R_{i,j} \rightarrow$ risarcimento complessivo della classe (i, j)
- $E_{i,j} \rightarrow$ esposizione monetaria complessiva della classe (i, j)
- λ_i , $\mu_i \rightarrow$ parametri da stimare

I valori ottimi $\hat{\lambda}_i$, $\hat{\mu}_j$ sono soluzione del sistema ottenuto annullando le derivate parziali di X^2 rispetto a λ_i e μ_i , cioè il seguente sistema:

$$\begin{cases} \sum_{j=1}^{c_2} E_{h,j} \cdot \lambda_h \cdot \mu_j = \sum_{j=1}^{c_2} R_{h,j}, & h = 1, 2, \dots c_1 \\ \sum_{i=1}^{c_1} E_{i,k} \cdot \lambda_i \cdot \mu_k = \sum_{j=1}^{c_2} R_{i,k}, & k = 1, 2, \dots c_2 \end{cases}$$

È un sistema di $c_1 + c_2$ equazioni in $c_1 + c_2$ incognite λ_h , μ_k

- Il sistema è determinato a meno di una costante additiva
- Una soluzione del sistema si ha con <u>metodo iterativo</u> assegnando dei valori iniziali alle μ_k se $c_1 \ge c_2$, oppure alle λ_h se $c_1 < c_2$ nelle seguenti formule:

$$egin{aligned} \lambda_h = rac{\sum_{j} R_{h,j}}{\sum_{i} E_{h,j} \mu_j} = rac{R_{h,0}}{\sum_{j} E_{h,j} \mu_j} \qquad \mu_k = rac{\sum_{i} R_{i,k}}{\sum_{i} E_{i,k} \lambda_i} = rac{R_{0,k}}{\sum_{i} E_{i,k} \lambda_i} \end{aligned}$$

- Nel nostro caso $c_1 = 3$ e $c_2 = 4$
- Avviamo il processo con $\lambda_1 = 0.01$, $\lambda_2 = 0.00$ e $\lambda_3 = 0.00$

Somme marginali Risarcimenti			
R(0,1)	54.914		
R(0,2)	49.672		
R(0,3)	25.094		
R(0,4)	13.096		
R(1,0)	37.123		
R(2,0)	32.436		
R(3,0)	73.218		

Somme marginali Esposizioni			
E(0,1)	2.191.314		
E(0,2)	1.586.409		
E(0,3)	1.755.376		
E(0,4)	2.021.293		
E(1,0)	2.960.584		
E(2,0)	2.137.509		
E(3,0)	2.456.298		

$$\mu_1 = \frac{R_{0,1}}{E_{1,1} \cdot \lambda_1 + E_{2,1} \cdot \lambda_2 + E_{3,1} \cdot \lambda_3} = \frac{54.914}{771236 \cdot \lambda_1 + 580.241 \cdot \lambda_2 + 839.839 \cdot \lambda_3}$$

• Iterando più volte si giunge ad una soluzione di stabilità con i seguenti valori per

$$\lambda_1 = 0,003$$
 $\lambda_2 = 0,003$
 $\lambda_3 = 0,006$
 $\mu_1 = 6,509$
 $\mu_2 = 8,104$
 $\mu_3 = 4,153$
 $\mu_4 = 1,804$

utilizzando il modello arrivo alle perequazione dei tassi di premio per classe:

$$\tau_{i,j} = \lambda_i \cdot \mu_j$$

Tassi	Perequate additivo	Perequate totali marginali	Grezze
τ _{1,1}	0,0185	0,0168	0,0172
τ _{1,2}	0,0247	0,0209	0,0220
τ _{1,3}	0,0099	0,0107	0,0081
τ _{1,4}	0,0012	0,0046	0,0054
τ _{2,1}	0,0212	0,0203	0,0211
τ _{2,2}	0,0273	0,0253	0,0153
τ _{2,3}	0,0125	0,0130	0,0155
τ _{2,4}	0,0039	0,0056	0,0079
τ _{3,1}	0,0338	0,0360	0,0350
τ _{3,2}	0,0400	0,0448	0,0490
τ _{3,3}	0,0252	0,0229	0,0227
τ _{3,4}	0,0166	0,0100	0,0069

Verifichiamo la bontà dell'approssimazione mediante la seguente formula

$$\tau \approx \Sigma \tau_{i,j} \frac{R_{i,j}}{R}$$

che fornisce il tasso medio come media ponderata dei tassi perequati

BIBLIOGRAFIA

- Daboni L. (1989): "Lezioni di tecnica attuariale delle assicurazioni contro i danni", Ed. LINT Trieste
- Daykin C. D., Pentikäinen T., Pesonen M. (1994): "Pratical Risk Theory for Actuaries", Ed. Chapman & Hall
- Klugman S. A., Panjer H. H., Willmot G. E. (2004): "Loss models from data to decisions", Ed. Wiley – Interscience