Greedy Algorithms

- Algorithm design technique
 - Usually more efficient than DP and DAC
 - Constructs optimal solution incrementally, by
 repeatedly choosing what looks promising *right now*
- Problem must satisfy the *greedy choice property*: a *locally optimal choice* is guaranteed to lead to some *globally optimal solution*.

Activity Selection

Input: set $S = \{a_1, ..., a_n\}$ of n activities requesting exclusive access to a common resource

$$a_i = [s_i, f_i)$$

$$5 \longmapsto 11 \qquad 17 \longmapsto 19$$

$$4 \longmapsto 8 \qquad 15 \longmapsto 18 \ 21 \longmapsto 23$$

Output: a largest cardinality set A of nonoverlapping activities

Example: schedule use of a room to maximize the number of events that use it

• Assume S sorted by finish time: $f_1 < f_2 < ... < f_n$

Optimal Substructure

- Let $S_{ij} = \{a_k \in S : f_i \le s_k \le f_k \le s_j\}$ and let A_{ij} denote an optimal solution for S_{ij}
- Activities in S_{ij} are compatible with
 - activities that finish no later than f_i
 - activities that start no earlier than s_i
- $a_k \in A_{ij}$ generates 2 subproblems: S_{ik} and S_{kj}
- Then, $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$ (cut-and-paste argument)
- For convenience add sentinels $a_0 = (-\infty, -\infty)$ and $a_{n+1} = (\infty, \infty)$. Then $A = A_{0,n+1}$

DAC

• Since optimal solution A_{ij} must contain optimal solutions to subproblems S_{ik} and S_{kj} \Rightarrow can consider DAC (and DP)

$$c[i,j]$$
 = size of optimal solution to S_{ij}
 $c[i,j] = c[i,k] + c[k,j] + 1$, but what k ?

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset \\ 1 + \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j]\} & \text{if } S_{ij} \neq \emptyset \end{cases}$$

Can develop memoized DAC or bottom-up DP

Overlapping Subproblems

• Will generate many repeated problems when evaluating

$$c[i,j] = 1 + \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j]\}$$

• The green intervals become the left subproblem of any of the purple intervals

Hallmark of Greedy Algorithms

Greedy Choice Property. A locally optimal choice leads to a globally optimal solution.

- Identify a simple heuristic to make the local choice.
- Prove that the choices made are part of some optimal solution.

In Activity Selection, choose an activity a_k to add to $A = A_{0,n+1}$ before solving the ensuing subproblems.

Some greedy choices: Shortest activity, activity that ends first? activity that ends last, activity that overlaps the fewest number of other activities, etc.

The Greedy Choice

- Among all activities in subproblem S_{ij} choose the one (a') that ends first
- No activity of S_{ij} ends before a' starts
 - \Rightarrow Choosing a' eliminates subproblem S_{ik} and leaves S_{ki} only
 - i a' j

• Making the greedy choice a_1 initially reduces the problem $S = S_{0,n+1}$ to problem $S_{1,n+1}$

The Greedy Choice...

- Since we only have one subproblem, we can simplify the notation: $S_k = \{a_i : s_i \ge f_k\}$
- Greedy choice $a_1 \Rightarrow S_1$ is the only subproblem left
- By optimal substructure: if a_1 is in A then A consists of a_1 plus all activities in an optimal solution to S_1

• Need to prove that a_1 is part of some optimal solution

Theorem. If S_k is non-empty and a_m ends earliest in S_k , then a_m is part of *some* optimal solution to S_k

Proof.

Let A_k be an optimal solution to S_k and a_r have the earliest finish time of all activities in A_k

If $a_r = a_m$, we are done. A_k is the desired solution.

Otherwise, let $B_k = A_k - \{a_r\} \cup \{a_m\}$

The activities in B_k are disjoint

Since $|B_k| = |A_k|$, then B_k is optimal also, and includes a_m

Greedy DAC Solution

- Activities given by arrays s[1:n], f[1:n], sorted by f.
- Sentinel: activity a_0 has $f_0 = -\infty$, so that $S_0 = S$.
- Initial call: Activity-Selector(s, f, 0, n)

```
ACTIVITY-SELECTOR(s, f, k, n)
```

```
1 m \leftarrow k + 1

2 while m \le n and s[m] < f[k]

3 do m \leftarrow m + 1

4 if m \le n

5 then return \{a_m\} \cup \text{ACTIVITY-SELECTOR}(s, f, m, n)

6 else return \emptyset
```

i	0	1	2	3	4	5	6	7	8	9
S		1	2	7 4	1	5	→ 8	9	7 11	13
f	0	¹ 3 -	5	7 -	8	9	10	11	14	16

Greedy Incremental

```
ACTIVITY-SELECTOR(s, f, n)
1 A \leftarrow \{a_1\}
2 \quad k \leftarrow 1
3 for m \leftarrow 2 to n
            do if s[m] \geq f[k]
                    then A \leftarrow A \cup \{a_m\}
5
                            k \leftarrow m
    return A
```

• Time?

Greedy Strategy

- Go with the choice that seems best at the moment.
- What did we do for activity selection?
 - 1. Determine the optimal substructure
 - 2. Develop a recursive solution
 - 3. Show that if we make the greedy choice only one subproblem remains
 - 4. Prove that the greedy choice is always consistent with an optimal solution
 - 5. Develop a recursive or iterative algorithm

Which Method to Use?

- Dynamic Programming
 - Make a choice at each step
 - Choice depends on solution to subproblems
 - Solve subproblems first
 - Solve bottom up
- Greedy
 - Make a choice at each step
 - Make the choice before solving the subproblems
 (and then solve the remaining subproblems)
 - Solve top-down

Graphs (Review)

- Directed graph
 - Set V of n vertices
 - Set $E \subseteq V \times V$ of m edges
- Undirected graph
 - Set V of n vertices
 - Set $E = \{(i, j)\}$ of m edges
- Induced graphs (graph restricted to $U \subset V$)
- Graph representation
 - Adjacency matrix
 - Adjacency list

Minimum Spanning Tree

- A tree connecting all nodes of an undirected graph with minimal cost
- Many applications
 - Approximate solution of NP-hard problems
 - Basis of AT&T original billing system
 - Construction of LDPC codes
 - Image registration with Renyi entropy
 - Learning for real-time face verification
 - Reducing data storage for sequencing amino acids in proteins
 - Particle interactions in turbulent fluid flows
 - Autoconfig protocol to avoid cycles in a network

Minimum Spanning Trees

Input: undirected connected graph G(V,E) with weights $w: E \to R^+$

Output: a tree T of minimum weight that spans V

$$w(T) = \sum_{e \in T} w(e)$$

A Spanning Tree

But is this minimal?

Can you argue that $9 \in T$?

Can you argue that $3 \in T$?

Can you argue that $6 \in T$?

Any other edges?

Any other edges?

Optimal Substructure

- Remove e
- Get subtrees T_1 and T_2 with vertex sets V_1 and V_2

Optimal Substructure

- V_i = vertices in T_i and $E_i = \{(u,v) \in E, u,v \in V_i\}$
- T_1 and T_2 are MSTs of $G(V_1,E_1)$ and $G(V_2,E_2)$, the subgraphs of G induced by V_1 and V_2

Hallmark of Greedy Algorithms

Greedy Choice Property. A locally optimal choice leads to a globally optimal solution.

- Identify a simple to implement heuristic to make the local choices
- Prove that the choices made are part of some optimal solution.

Theorem. Let T be a MST of G(V, E) and $A \subset V$. If $e = (u,v) \in E$ is the minimum weight edge connecting A to V-A then $e \in T$.

Theorem. Let G(V, E) be a weighted graph and $A \subset V$. If $e = (u,v) \in E$ is a minimum weight edge connecting A to V - A then there is a MST T of G such that $e \in T$.

Proof (by contradiction). Suppose $e \notin T$. What happens when you add e to T?

Proof (cut-and-paste)

- Consider the unique simple path ρ in T from u to v.
- Swap e with the first edge f in ρ in that connects a vertex in A to a vertex in V A
- A lower weight MST T' results, a contradiction

Prim's Algorithm

- Keep V A in a priority queue Q
- The priority of each vertex q in Q is the minimum cost required to connect q to a vertex in A.
- Repeatedly remove the minimum vertex *u* from *Q* (using ExtractMin) and add it to *A*
- Update *Q* by (possibly) updating the priorities of *u*'s neighbors (using DecreaseKey)

Prim's Algorithm

```
PRIM-MST(V, E, w, s)
      foreach v \in V
             do key[v] \leftarrow \infty
                  P[v] \leftarrow \text{NIL}
    key[s] \leftarrow 0
 5 \quad Q \leftarrow V
     while Q \neq \emptyset
              \mathbf{do}\ u \leftarrow \text{Extract-Min}(Q)
                   foreach v \in Adj[u]
                         do if v \in Q and w(u, v) < key[v]
 9
10
                                  then key[v] \leftarrow w(u,v)
                                          P[v] \leftarrow u
11
12
      return P
```


Analysis

```
PRIM-MST(V, E, w, s)
                                       foreach v \in V
Frequency count:
                                        \mathbf{do}\ key[v] \leftarrow \infty
                                             P[v] \leftarrow \text{NIL}
1-3 n times
                                   4 \quad key[s] \leftarrow 0
                                   5 \quad Q \leftarrow V
4-5: once
                                   6 while Q \neq \emptyset
6-7: n times
                                              \mathbf{do}\ u \leftarrow \text{Extract-Min}(Q)
                                                  foreach v \in Adj[u]
8-11: 2m times
                                                        do if v \in Q and w(u, v) < key[v]
                                                               then key[v] \leftarrow w(u,v)
                                  10
12: once
                                                                      P[v] \leftarrow u
                                  11
                                  12
                                       return P
```

$$T(n,m) = n + T_{\text{build}} + n T_{\text{extract}} + m T_{\text{decrease}}$$

Analysis

Actual time depends on implementation of Q

$$T(n,m) = T_{\text{build}} + n T_{\text{extract}} + m T_{\text{decrease}}$$

Q	Build	Extract	DecreaseKey	Total
Unsorted array	$\Theta(n)$	$\Theta(n)$	$\Theta(1)$	$\Theta(n^2)$
Heap	$\Theta(n)$	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta((n+m)\log n)$
Fibonacci heap	$\Theta(n)$	$\Theta(\log n)$	$\Theta(1)$	$\Theta(m+n\log n)$

Known results

- Best deterministic: $O(m \alpha(m,n))$, Chazelle 2000
- Best randomized: O(n + m) expected, Karger et al 1995
- Holy grail: O(n + m) worst case, open

Packing a Knapsack

• You are given a container with a limited weight capacity W, and a list of items, each with a *weight* and a *value*. Choose which items to take so that the weight limit is not exceeded and the total value of the packed items is as large as possible

- A fund manager is considering 100 potential investments and has estimated the expected return from each one.
 Choose which investments to buy to maximize the return without exceeding the budget
- Choose how to load shipping containers

More Formally...

• Given a set $T = \{(v_1, w_1), \dots, (v_n, w_n)\}$ of items and a target M, choose a subset $S \subseteq \{1, \dots, n\}$ that maximizes $\sum_{i \in S} v_i$ subject to $\sum_{i \in S} w_i \leq M$

	Value	Weight	
Clock	175	10	
Painting	90	9	
Radio	20	4	
Vase	50	2	
Book	10	1	
Computer	200	20	

Which items should the thief take if he can carry up to W = 20 pounds?

Greedy Choices

- There are several reasonable greedy strategies:
 - 1. Best value first. Add items in decreasing order by value until capacity M is exceeded
 - 2. Lowest weight first. Add items in increasing order of weight until capacity M is exceeded
 - 3. Best bang for the buck. Add items in decreasing order of density (profit per unit weight) until capacity M is exceeded
- Various greedy and DP algorithms guarantee nearly optimal or optimal results for variants of this problem

Variant: Fractional Knapsack

- Suppose you are allowed to take an arbitrary *fraction* of each item (e.g., 2.5 lbs. from a 10 lb. wheel of expensive French cheese)
- Greedy is optimal, by greedy by what?

```
GREEDYKNAPSACK(A, v[1:n], w[1:n], M)

1 Sort v and w, concurrently, by density \# So v[i]/w[i] \ge v[i+1]/w[i+1]

2 Initialize X[1:n] with zeroes

3 rem = M \# Unused capacity

4 for i = 1 to n

5 if w[i] > rem

6 break

7 X[i] = 1

8 rem = rem - w[i]

9 if i \le n

10 X[i] = rem/w[i]
```

Proof

- 1. After sorting $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$
- 2. If $x_1 = x_2 = \dots = x_n = 1$, *X* is optimal
- 3. Else, let j be the smallest index such that $X_j < 1$ $x_i = 1$ for $1 \le i < j, x_i < 1, x_k = 0$ for $j < k \le n$
- 4. Let $Y = (y_1, ..., y_n)$ be optimal. Then $\sum w_i y_i = M$
- 5. Let k be the smallest index such that $x_k \neq y_k$
- 6. We must have $y_k < x_k$, why?
- 7. Increase y_k to x_k and decrease y_{k+1} , ... y_n as needed to keep capacity at M
- 8. This results in a solution $Z = (z_1, ... z_n)$ with $z_i = x_i$ for $1 \le i \le k$ and $\sum_{k < i \le n} w_i (y_i z_i) = w_k (z_k y_k)$
- 9. $\sum_{1 \le i \le n} v_i z_i = \sum_{1 \le i \le n} v_i y_i + (z_k y_k) w_k \frac{v_k}{w_k} \sum_{k < i \le n} (y_i z_i) w_i \frac{v_i}{w_i} \ge \sum_{1 \le i \le n} v_i y_i$
- 10. Since Y is optimal, we must have $\sum_{1 \le i \le n} v_i z_i = \sum_{1 \le i \le n} v_i y_i$
- 11. If Z = X, then X is optimal; else repeat the argument

Exercise

- Derive greedy or DP solutions for the following variants. You may assume that weights and values are integers.
- 1. All items have the same weight
- 2. All items have the same value
- 3. For all items $v_i = w_i$
- Can you guarantee optimality? Can you get close?