Joshua Dunne 1

1 Question 1

Determine Examine the transformations below and Determine whether they are linear. Justify this by the definition as given in class, showing that it does indeed hold, or showing where on which condition things break down.

1.1 Part a

$$T: \mathbb{R}^n \to \mathbb{R}^n \text{ by } T(\mathbf{x}) = a\mathbf{x} + \mathbf{b} \quad \forall b \in \mathbf{R}^{n \times n}$$

Checking homogeneity

Left hand side
$$T(c\mathbf{x}) = \mathbf{a}(c\mathbf{x}) + \mathbf{b} = c(\mathbf{a}\mathbf{x}) + \mathbf{b}$$

Right hand side
$$cT(\mathbf{x}) = c(\mathbf{a}\mathbf{x} + \mathbf{b}) = c(\mathbf{a}\mathbf{x}) + c\mathbf{b}$$

Conclusion Homogeneity breaks as the two sides are not equivalent. The relationship is not a linear transormation.

1.2 Part B

$$T: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$$
 by $T(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{x}\mathbf{A}$

Checking homogeneity

Left hand side
$$cT(\mathbf{x}) = c(\mathbf{A}\mathbf{x} - \mathbf{x}\mathbf{A}) = c\mathbf{A}\mathbf{x} - c\mathbf{x}\mathbf{A}$$

Right hand side
$$T(c\mathbf{x}) = \mathbf{A}(c\mathbf{x}) - c\mathbf{x}\mathbf{A}$$

Conclusion Homogeneity checks out. We can bubble the c outwards and equate the two sides.

Checking additivity

Left hand side
$$T(\mathbf{u}+\mathbf{v}) = \mathbf{A}(\mathbf{u}+\mathbf{v}) - (\mathbf{u}+\mathbf{v})\mathbf{A} = \mathbf{A}\mathbf{u} + \mathbf{A}\mathbf{v} - \mathbf{u}\mathbf{A} - \mathbf{v}\mathbf{A}$$

Right hand side

$$(\mathbf{u}) + T(\mathbf{v}) = (\mathbf{A}\mathbf{u} - \mathbf{u}\mathbf{A}) + (\mathbf{A}\mathbf{v} - \mathbf{v}\mathbf{A}) = \mathbf{A}\mathbf{u} + \mathbf{A}\mathbf{v} - \mathbf{u}\mathbf{A} - \mathbf{v}\mathbf{A}$$

Conclusion Unlike above, additivity checks out. I've seen some other places have more requirements, such as $\langle 0, 0, \ldots \rangle \to \langle 0, 0, \ldots \rangle$ but all of those follow from homogeneity and additivity. So, it is a linear transformation.

Joshua Dunne 2

1.3 Part C

$$\phi: \mathbb{C} \to \mathbb{C}$$
 by $\phi(a+bi) = b+ai$ and $c \in \mathbb{C}$ where $c=d+ei$

Checking homogeneity

Left hand side
$$\phi(c[a+bi]) = \phi(ca+bi) = (d+ei)(a+bi) = ad-be$$

Right hand side
$$c\phi(a+bi) = c[a+bi] = (d+ei)(a+bi) = ca+bi$$

Conclusion Homogeneity breaks. Having done this incorrectly before though, with a non-complex scalar it will work. The relationship given is not a linear transformation. I want to check additivity just out of curiosity.

Examining additivity too Let c = d + ei and f = g + hi as $c, f \in \mathbb{C}$.

Left hand side
$$\phi(c+f) = \phi([d+ei] + [g+hi]) = \phi([d+g] + [e+h]i) = d+g-e-h$$

Right hand side
$$\phi(c) + \phi(f) = \phi(d+ei) + \phi(g+hi) = e+di+h+gi$$

Conclusion Guess it doesn't work here either. As $\phi(c+f) \neq \phi(c) + \phi(f)$... well, at least it isn't always true, the transformation isn't linear.

2 Question 2

Considering a matrix and finding $col(\mathbf{A})$, $row(\mathbf{A})$, $rank(\mathbf{A})$, $nul(\mathbf{A})$ We're to develop a basis for each, and I'm going to recite definitions as we go so they're a little fresher.

Given First, let's RREF this bad boi, knock it's numbers around a little

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & 4 & 4 & 0 \\ 1 & -1 & 3 & 9 & 11 \\ 2 & 5 & -1 & -3 & -13 \\ 0 & 6 & -6 & 4 & -8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 0 & 0 \\ 0 & 1 & -1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$2.1 \quad col(A)$

Definition The column space is the set of all possible linear combinations of a matrices column vectors.

$$col(\mathbf{a}) = span(\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n)$$

Joshua Dunne 3

Basis I feel that we could be cheaty for all these, as, simply giving each column a coefficient would still generate a the same space, however, if we look at the terms of the reduced matrix we see that only three rows actually start with a one. So, disreguarding the $3^{\rm rd}$ and $5^{\rm th}$ columns we can more efficiently generate the space with

$$\operatorname{col}(\mathbf{A}) = c_1 \begin{bmatrix} 3 \\ 1 \\ 2 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ -1 \\ 5 \\ 6 \end{bmatrix} + c_3 \begin{bmatrix} 4 \\ 9 \\ -3 \\ 4 \end{bmatrix}$$

$2.2 \quad row(A)$

Definition The row space is the set of all possible linear combinations of a matrices row vectors.

$$row(\mathbf{A}) = span(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_n)$$

Basis Likewise as before, we can ditch those rows that have no leading ones.

$$row(\mathbf{A}) = c_1 \begin{bmatrix} 3 \\ 2 \\ 4 \\ 4 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -1 \\ 3 \\ 9 \\ 11 \end{bmatrix} + c_3 \begin{bmatrix} 2 \\ 5 \\ -1 \\ -3 \\ -13 \end{bmatrix}$$