

Alunas: Luiza Maria de Carvalho Carneiro Costa e Renata Bandeira

Gomes

Disciplina: Engenharia e Ciência dos materiais

Professor: Rodolpho Neves

INTRODUÇÃO:

RELEVÂNCIA DO CONHECIMENTO DAS PROPRIEDADES ÓPTICAS

- ►O que são as propriedades ópticas?
- Comportamento dos materiais
- Luz: Onda X Partícula (Fóton)

RADIAÇÃO ELETROMAGNÉTICA

- Natureza da radiação
- Faixas de comprimento de onda

INTERAÇÃO DA LUZ COM OS SÓLIDOS

- O que acontece quando a luz muda de meio
- Tipos de materiais: transparentes, translúcidos e opacos

PROPAGAÇÃO RETILÍNEA DA LUZ

INTERAÇÕES ATÔMICAS E ELETRÔNICAS

- Transições eletrônicas
 - Absorção e emissão de energia do elétron
- Polarização eletrônica
 - Parte da energia da radiação pode ser absorvida
 - Redução da velocidade conforme mudança de meio (refração)

PROPRIEDADES ÓPTICAS DOS METAIS

- Materiais opacos ao olho humano
- Bandas de energia quase contínuas
- São capazes de absorver todas as frequências do espectro visível
- Altamente refletivos
 - Refletem de 90% a 95% da luz que absorvem

PROPRIEDADES ÓPTICAS DOS NÃO-METAIS

- Diferente estrutura das bandas de energia (podem ser transparentes à luz visível)
- Materiais suscetíveis aos fenômenos de refração, reflexão e absorção

REFRAÇÃO

 Variação da velocidade de propagação devido a mudança do meio de propagação

• O índice de refração do material é dado pela razão entre a velocidade da

luz no vácuo e a velocidade da luz no meio:

$$n = \frac{c}{v}$$

Meio	Îndice de Refração n
Vácuo (exato)	1,00000
Ar (CNTP)	1,00029
Água (20 C)	1,33
"Núcleo" da Fibra Óptica	1,48
"Casca" da Fibra Óptica	1,465
Vidro Comum	1,52
Cristal	1,65
Safira	1,77

Cor	Índice de refração do vidro relativo ao ar
Vermelho	1,513
Amarelo	1,517
Verde	1,519
Azul	1,528
Violeta	1,532

REFLEXÃO

- A luz volta a se propagar no meio de origem após incidir sobre um objeto ou superfície.
- Tanto maior a refletividade quanto mais polida for a superfície.

ABSORÇÃO

- Materiais não-metálicos podem ser transparentes sem cor, transparentes com cor ou opacos
- A absorção pode ocorrer a partir da transmissão e da polarização eletrônica
- Coeficiente de absorção

- Se Eg < 1,8 eV: transparente e incolor
- Se Eg > 3,1 eV: opaco
- Se 1,8 eV < Eg < 3,1 eV: transparente com cor

$$\textbf{E} = \frac{\textbf{hc}}{\lambda}$$

COR

- Resultado da absorção seletiva de faixas específicas de comprimento de onda da luz
- Combinação dos comprimentos de onda que são transmitidos
- Depende da distribuição das frequências dos feixes de luz transmitidos e dos reemitidos (elétrons).

APLICAÇÕES

FIBRAS ÓPTICAS

- Transformação do sinal elétrico em sinal óptico
- Reflexão total do feixe de luz dentro do núcleo da fibra

LUMINESCÊNCIA

- Capacidade de absorver energia e então reemitir luz visível
- Transição eletrônica
- Fluorescência x Fosforecência:

https://www.youtube.com/watch?v=bpxKCdo9yPs

