Module # 1.1.2

INTRODUCTION PVs and Their Classification

Lectures on

CHEMICAL PROCESS CONTROL
Theory and Practice

PV Classification

Input PVs affect output PVs through cause-and-effect relationships

An MV with 'strong' effect on a PV can be adjusted to control the PV

 $M \gg N$

Output PVs: Several. May be designed

MVs: Limited. Fixed by process design

Simple Liquid Tank PVs

PVs: POS_{Fin}, POS_{Fout}, F_{in}, F_{out},

T_{tank}, LVL_{tank}, T_{in}, T_{out} etc

Input PVs: POS_{Fin}, POS_{Fout}, T_{in}

Output PVs: Fin, Fout, Ttank, LVLtank, Tout

Specified: POS_{Fin}, POS_{Fout}

MVs: None

PVs: Previous + F_{in}^{SP} , F_{out}^{SP}

Input PVs: F_{in}^{SP} , F_{out}^{SP} , T_{in}

Output PVs: Previous + POS_{Fin}, POS_{Vout}

Specified_{CVs}: F_{in}SP, F_{out}SP

MVs: POS_{Fin}, POS_{Fout}

PVs: Previous + LVL_{tank}SP

Input PVs: F_{in}SP, LVL_{tank}SP, T_{in}

Output PVs: Previous + F_{out}SP

Specified_{CVs}: F_{in}SP, LVL_{tank}SP

MVs: POS_{Fin}, F_{out}SP

Flash Drum PVs

z_{Fin}, x_{Lout}, y_{Vout}, T_{tank}, LVL_{tank}, T_{Fin}, T_{Vout},, P_{tank} etc

Input PVs: POS_{Fin}, POS_{Vout}, POS_{Lout}, POS_Q, T_{Fin}, P_{Fin}, z_{Fin}, Q_{loss}

Output PVs: F_{in}, P_{tank}, T_{tank}, LVL_{tank}, L_{out}, V_{out}

Specified: POS_{Fin}, POS_{Lout}, POS_{Vout}, POS_Q

MVs: None

PVs: Previous + F_{in}SP, PSP, LVLSP, POS_O, L_{out}SP

Input PVs: F_{in}^{SP} , P^{SP} , LVL^{SP}, Q^{SP} , T_{Fin} , P_{Fin} , Z_{Fin} , Q_{loss}

Output PVs: Previous + POS_{Fin}, POS_{Lout}, POS_{Vout}, POS_Q

LoutSP

Specified_{CVs}: F_{in}SP, PSP, LVLSP, POS_Q

MVs: POS_{Fin}, POS_{Lout}, POS_{Vout}

Distillation Column PVs

PVs: POS_F, POS_D, POS_{QC}, POS_B, POS_{QR}, F, L, B, D, Q_C,

 Q_R , Q_{loss} , z_F , T_F , P_F , P_{col} , T_{trays} , x_D , x_B , LVL_C , LVL_R , etc

Input PVs: POS_{Fin}, POS_{Vout}, POS_{Lout}, POS_Q, T_{Fin}, P_F, z_{Fin}, Q_{loss}

Output PVs: F_{in}, L, B, D, P_{col}, LVL_C, LVL_R, T_{trays}

Specified: POS_F, POS_L, POS_D, POS_B, POS_{OC}, POS_{OR}

MVs: None

Distillation Column PVs

PVs: Previous + P^{SP} , F^{SP} , LVL_C^{SP} , LVL_R^{SP} , T_{tray}^{SP} , $[L/F]^{SP}$, Q_R^{SP} , L^{SP} , D^{SP} , D^{SP}

Input PVs: PSP, FSP, LVL_CSP, LVL_RSP, T_{tray}SP, [L/F]SP, T_F, P_F, z_{Fin}, Q_{loss}

Output PVs: Previous + Q_RSP, LSP, DSP, BSP, POS_F, POS_L, POS_D, POS_{QC}, POS_B, POS_{QR}

Specified_{CVs}: F^{SP}, P^{SP}, LVL_R^{SP}, LVL_C^{SP}, T_{tray}^{SP}, [L/F]^{SP}

MVs: POS_F, POS_{QC}, B^{SP}, D^{SP}, Q_R^{SP}, LSP

Toy Process PVs

Specified

Output PVs

T_{trays}, LVL_C, LVL_R,

Toy Process PVs

Specified_{CVs}

FSP, T_{RXin}SP, T_{RX}SP, LVL_{RX}SP, [L/F]SP, PSP, LVL_CSP, LVL_RSP, T_{tray}SP

Fresh A

Output PVs

Previous + all valve positions + T_JSP, F_ESP, Q_RSP, BSP, DSP

Process Control Notes

8

Identify and Classify Relevant PVs

Summary

- Several PVs in any process
 - Causal or input PVs
 - MVs and disturbances
 - Effected or output PVs
 - Potentially infinite output PVs
 - May be controlled using MVs
- # of MVs is fixed and limited
 - Limits # of outputs that can be controlled
 - Choose what is controlled 'wisely'
 - Process understanding is key
- A control system creates new relationships between PVs
 - Classification of PVs depends on the control system implemented
 - Alters dynamic characteristics of the process by variability transformation