M1 Mathématiques

MM036 - Processus à sauts

Devoir 1

Exercice 1. Soit $(N_t)_{t\geq 0}$ le processus de comptage d'un processus de Poisson $0 < T_1 < T_2 < \dots$ de paramètre $\lambda > 0$, et $(R_i)_{i\geq 1}$ une famille de variables aléatoires réelles i.i.d.

- 1. Montrer que N_t/t converge p.s. vers λ quand $t \to \infty$. Pour cela, on pourra
- (i) montrer que $N_t \to \infty$ p.s. quand $t \to \infty$;
- (ii) utiliser la loi forte des grands nombres usuelle pour trouver la limite p.s. de T_n/n ;
- (iii) montrer que $T_{N_t} \leq t < T_{N_t+1}$;
- (iv) conclure.
- 2. Supposons maintenant que $\mathbb{E}[|R_1|] < \infty$ et introduisons $Z_t = \sum_{i=1}^{N_t} R_i$. Montrer que Z_t/t converge p.s. vers $\lambda \mathbb{E}[R_1]$ quand $t \to \infty$.

Exercice 2. Un pêcheur attrape, aux instants $0 < T_1 < T_2 < ...$, des poissons de masses $Z_1, Z_2, ...$ (en grammes). On suppose que $0 < T_1 < T_2 < ...$ est un processus de Poisson de paramètre $\lambda > 0$, que la famille $(Z_i)_{i \geq 1}$ est i.i.d. de loi μ (sur \mathbb{R}_+) et est indépendante de $0 < T_1 < T_2 < ...$ Il rejette tous les poissons de masse inférieure à 50 grammes. Soit X_t le nombre de poissons (de masse supérieure à 50 grammes) pêchés jusqu'à l'instant t. Montrer que $(X_t)_{t \geq 0}$ est le processus de comptage d'un processus de Poisson d'intensité $\lambda \mu([50,\infty[)$. On pourra introduire le processus ponctuel de Poisson $(T_n,Z_n)_{n\geq 1}$.

Exercice 3. Soit f une fonction continue sur \mathbb{R}_+ . On suppose qu'il existe une constante C > 0 telle que pour tout $t \geq 0$, $0 < f(t) \leq C$. On introduit $h(t) = \int_0^t f(s)ds$, ainsi que sa fonction réciproque r(t).

- 1. Soit $(N_t)_{t\geq 0}$ le processus de comptage d'un processus de Poisson $0 < T_1 < T_2 < \dots$ de paramètre 1 et $Z_t = N_{h(t)}$.
- (i) Montrer que $(Z_t)_{t \geq 0}$ est un processus de comptage d'instants de sauts $0 < S_1 < S_2 < \dots$ (qu'on exprimera en fonction des T_i).
 - (ii) Pour $0 < t_1 < t_2 < \dots < t_k$, donner la loi du vecteur $(Z_{t_1}, Z_{t_2} Z_{t_1}, \dots, Z_{t_k} Z_{t_{k-1}})$.
 - (iii) Les accroissements de $(Z_t)_{t>0}$ sont-ils indépendants ? stationnaires ?
 - 2. Soit $(T_n, U_n)_{n \geq 1}$ un processus ponctuel de Poisson sur $[0, \infty[\times[0, C]$ d'intensité dtdu (la

mesure de Lebesgue sur $[0, \infty[\times[0, C])$ et

$$Y_t = \sum_{n>1} \mathbf{1}_{\{T_n \le t, U_n \le f(T_n)\}}.$$

Pour $0 < t_1 < t_2 < ... < t_k$, donner la loi du vecteur $(Y_{t_1}, Y_{t_2} - Y_{t_1}, ..., Y_{t_k} - Y_{t_{k-1}})$.

3. Conclure.

Exercice 4. On considère une famille indépendante $(X_i)_{i\geq 1}$ de v.a. i.i.d., avec $P(X_1=1)=P(X_1=-1)=1/2$, et on définit $S_0=0$ et, pour $n\geq 1$, $S_n=X_1+\ldots+X_n$. L'objectif est de montrer que $\tau=\inf\{n>0,\ S_n=0\}$ est p.s. fini.

- 1. Montrer que $P[S_n = 0]$ est nul pour n impair et vaut $C_n^{n/2} 2^{-n}$ pour n pair.
- 2. Soit $N = \sum_{n\geq 0} \mathbf{1}_{\{S_n=0\}}$ le nombe total de passages en 0 du processus $(S_n)_{n\geq 0}$. Déduire du 1 que $\mathbb{E}[N] = \infty$ (on utilisera la formule de Stirling).
- 3. On pose $\tau_0 = 0$ puis, pour $k \ge 1$, $\tau_k = \inf\{n > \tau_{k-1}, S_n = 0\}$. Que représente τ_k ? Montrer que c'est un temps d'arrêt.

Pour la suite, on admettra la propriété de Markov forte pour un temps d'arrêt σ pas forcément fini p.s.: si σ est un temps d'arrêt pour le processus $(S_n)_{n\geq 0}$, alors sur l'évènement $\{\sigma < \infty\}$, le processus $(S_{\sigma+n} - S_{\sigma})_{n\geq 0}$ est indépendant de \mathcal{F}_{σ} et de même loi que $(S_n)_{n\geq 0}$.

- 4. Montrer que $P[\tau_k < \infty] = P[\tau_1 < \infty]^k$ pour tout $k \ge 1$.
- 5. Montrer que $N = \sum_{k>0} \mathbf{1}_{\{\tau_k < \infty\}}$, et donc $\mathbb{E}[N] = \sum_{k>0} P[\tau_k < \infty]$.
- 6. Conclure en utilisant les questions 2, 4 et 5.

Question supplémentaire. Montrer que p.s., le processus $(S_n)_{n\geq 0}$ visite tous les points de \mathbb{Z} une infinité de fois (ceci se déduit, non immédiatement, de ce qui précède).

Corrigé

Exercice 1. 1. (i) Il suffit de remarquer que p.s., pour tout $n \ge 1$ arbitrairement grand, pour tout $t \ge T_n$, on a $N_t \ge N_{T_n} = n$.

(ii) Comme les v.a. $(T_n - T_{n-1})_{n \ge 1}$ sont i.i.d. (avec la convention $T_0 = 0$), la loi forte des grands nombres nous dit que p.s.

$$\frac{T_n}{n} = \frac{1}{n} \sum_{k=1}^n (T_k - T_{k-1}) \quad \text{converge vers} \quad \mathbb{E}[T_1 - T_0] = \mathbb{E}[T_1] = 1/\lambda.$$

- (iii) On sait que pour tout $n \in \mathbb{N}$, $N_t = n$ si et seulement si $T_n \leq t < T_{n+1}$ (par définition de N_t). Ceci implique que $T_{N_t} \leq t < T_{N_t+1}$.
- (iv) En utilisant les points (i) et (ii), on voit que T_{N_t}/N_t converge p.s. vers $1/\lambda$. Pour les mêmes raisons, $T_{N_t+1}/(N_t+1)$ converge p.s. vers $1/\lambda$. De plus, $(N_t+1)/N_t$ converge p.s. vers 1 (par le point (i)). En utilisant le point (iii), on voit que

$$\frac{T_{N_t}}{N_t} \leq \frac{t}{N_t} \leq \frac{T_{N_t+1}}{N_t} = \frac{T_{N_t+1}}{N_t+1} \times \frac{N_t+1}{N_t}.$$

Le théorème des gendarmes permet de conclure que $\frac{t}{N_t}$ converge p.s. vers $1/\lambda$, et donc que $\frac{N_t}{t}$ converge p.s. vers λ .

2. Par la loi des grands nombres usuelle, on sait que $(\sum_{i=1}^n R_i)/n$ converge p.s. vers $\mathbb{E}[R_1]$. Il suffit alors d'écrire

$$\frac{Z_t}{t} = \frac{N_t}{t} \times \frac{1}{N_t} \sum_{i=1}^{N_t} R_i$$

et de se rappeler que N_t/t converge p.s. vers λ (voir le point 1).

Exercice 2. Posons $\alpha = \lambda \mu([50, \infty[)])$. Il faut montrer que pour tout $0 < t_1 < ... < t_k$, pour tout $n_1, ..., n_k \in \mathbb{N}$, (avec la convention usuelle $t_0 = 0$)

$$P(X_{t_1} = n_1, X_{t_2} - X_{t_1} = n_2, ..., X_{t_k} - X_{t_{k-1}} = n_k) = \prod_{i=1}^k e^{-\alpha(t_i - t_{i-1})} \frac{[\alpha(t_i - t_{i-1})]^{n_i}}{n_i!}.$$

Introduisons le processus ponctuel $(T_n, Z_n)_{n\geq 1}$. D'après le cours, c'est un processus ponctuel de Poisson sur $[0, \infty[\times[0,\infty[$, d'intensité $\lambda dt\mu(dz)$. Appelons M son processus de comptage (défini, pour tout $A\subset [0,\infty[\times[0,\infty[$ mesurable, par $M_A=\sum_{n\geq 1}\mathbf{1}_A(T_n,Z_n))$.

Observons que $X_{t_1} = M_{A_1}, X_{t_2} - X_{t_1} = M_{A_2}, ..., X_{t_k} - X_{t_{k-1}} = M_{A_k}$, où $A_i =]t_{i-1}, t_i] \times [50, \infty[$. Les ensembles A_1, \ldots, A_k sont bien sûr deux à deux disjoints! Ainsi, les v.a. $M_{A_1}, ..., M_{A_k}$ sont indépendantes, et chaque M_{A_i} suit une loi de Poisson de paramètre $(\lambda dt \mu(dz))(A_i) = \lambda(t_i - t_{i-1})\mu([50, \infty[)$.

3

La conclusion s'ensuit aisément.

Exercice 3. 1. (i) Le fonction r est strictement croissante. On peut donc remarquer que

$$Z_t = \sum_{n \ge 1} \mathbf{1}_{\{T_n \le h(t)\}} = \sum_{n \ge 1} \mathbf{1}_{\{r(T_n) \le t\}}.$$

Ainsi, $(Z_t)_{t\geq 0}$ est le processus de comptage associé aux temps $0 < S_1 < S_2 < ...$, où $S_k = r(T_k)$.

(ii) On a $(Z_{t_1}, Z_{t_2} - Z_{t_1}, ..., Z_{t_k} - Z_{t_{k-1}}) = (N_{s_1}, N_{s_2} - N_{s_1}, ..., N_{s_k} - N_{s_{k-1}})$, où $s_i = h(t_i)$. De plus, on a bien $0 < s_1 < ... < s_k$. Donc les v.a. $N_{s_1}, N_{s_2} - N_{s_1}, ..., N_{s_k} - N_{s_{k-1}}$ sont indépendantes, et pour chaque $i, N_{s_i} - N_{s_{i-1}}$ suit une loi de Poisson de paramètre $(s_i - s_{i-1}) = (h(t_i) - h(t_{i-1}))$, avec la convention $t_0 = 0$. On en déduit que pour tout $n_1, ..., n_k$ dans \mathbb{N} ,

$$P[Z_{t_1} = n_1, Z_{t_2} - Z_{t_1} = n_2, ..., Z_{t_k} - Z_{t_{k-1}} = n_k] = \prod_{i=1}^k e^{-(h(t_i) - h(t_{i-1}))} \frac{(h(t_i) - h(t_{i-1}))^{n_i}}{n_i!}.$$

- (iii) Il est clair, par la question (ii), que les accroissements de $(Z_t)_{t\geq 0}$ sont indépendants. Il ne sont pas stationnaires, sauf si $h(t_i) h(t_{i-1})$ ne dépend que de $t_i t_{i-1}$, c'est à dire si la fonction h est linéaire (i.e. si la fonction f est constante).
- 2. C'est plus délicat. Il faur remarquer que $Y_{t_i} Y_{t_{i-1}} = M_{A_i}$, où M est le processus de comptage associé à $(T_n, U_n)_{n \geq 1}$ (défini par $M_A = \sum_{n \geq 1} \mathbf{1}_{\{(T_n, U_n) \in A\}}$ pour $A \subset [0, \infty[\times [0, C]$ mesurable) et où

$$A_i = \{(t, u) \subset [0, \infty[\times [0, C] : t \in]t_{i-1}, t_i] \text{ et } u \le f(t) \}.$$

Les ensembles $A_1, ..., A_k$ sont deux à deux disjoints. Donc les variables aléatoires $M_{A_1}, ..., M_{A_k}$ sont indépendantes. De plus, chaque M_{A_i} suit une loi de Poisson de paramètre

$$\int_0^\infty \int_0^\infty \mathbf{1}_{A_i}(t,u) du dt = \int_{t_{i-1}}^{t_i} \int_0^{f(t)} du dt = \int_{t_{i-1}}^{t_i} f(t) dt = h(t_i) - h(t_{i-1}).$$

Ainsi, on a aussi, pour tout $n_1, ..., n_k$ dans \mathbb{N} ,

$$P[Y_{t_1} = n_1, Y_{t_2} - Y_{t_1} = n_2, ..., Y_{t_k} - Y_{t_{k-1}} = n_k] = \prod_{i=1}^k e^{-(h(t_i) - h(t_{i-1})} \frac{(\lambda(h(t_i) - h(t_{i-1})))^{n_i}}{n_i!}.$$

- 3. Les processus construits aux points 1 et 2 ont la même loi.
- Exercice 4. 1. Le processus $(S_n)_{n\geq 0}$ part de 0 et saute de ± 1 . Donc S_n est pair quand n est pair et impair quand n est impair. Il s'ensuit que pour n impair, $P[S_n=0]=0$. Supposons maintenant n=2k pair. Pour que $S_n=0$, il faut et il suffit que parmi $X_1,...,X_n$, exactement k des X_i valent 1 (et les n-k autres valent -1). Comme chaque X_i vaut 1 avec probabilité 1/2, on trouve bien que $P[S_n=0]=C_n^k(1/2)^k(1/2)^{n-k}=C_n^{n/2}2^{-n}$.
- 2. On a $\mathbb{E}[N] = \sum_{n\geq 0} P[S_n = 0]$ par Fubini, et donc $\mathbb{E}[N] = \sum_{k\geq 0} 2^{-2k} C_{2k}^k$ par la question 1. En utilsant la formule de Stirling $n! \sim \sqrt{2\pi n} \ n^n e^{-n}$, on montre aisément que $2^{-2k} C_{2k}^k \sim (\pi k)^{-1/2}$. Ainsi, $\sum_{k\geq 0} 2^{-2k} C_{2k}^k = \infty$.
- 3. Pour chaque $k \ge 1$, τ_k représente le k-ième temps de retour en 0 du processus $(S_n)_{n\ge 0}$. C'est un temps d'arrêt car pour tout $n \ge 1$, $\{\tau_k = n\} \in \sigma(S_1, ..., S_n)$. En effet, on a tout simplement

$$\{\tau_k = n\} = \bigcup_{\{i_1, i_2, \dots, i_n\} \in A_k} \{S_1 = i_1, S_2 = i_2, \dots, S_n = i_n\},\$$

où A_k est l'ensemble des "trajectoires" $(i_1, \ldots, i_n) \subset \mathbb{Z}^n$ qui passent exactement k fois par 0 (bien sûr, la plupart des A_k sont vides, c'est la cas par exemple si k > n/2, mais il est parfaitement inutile de s'y intéresser ici).

4. C'est le point difficile. On va montrer que pour tout $k \geq 1$,

$$P[\tau_{k+1} < \infty] = P[\tau_k < \infty]P[\tau_1 < \infty],$$

ce qui implique bien sûr le résultat. Fixons donc $k \ge 1$. Déjà, on écrit que

$$\{\tau_{k+1} < \infty\} = \{\tau_k < \infty\} \cap \{\tau_{k+1} - \tau_k < \infty\}.$$

Définissons $\tilde{S}_n = S_{\tau_k+n} - S_{\tau_k}$, et $\tilde{\tau}_1 = \inf\{n > 0 : \tilde{S}_n = 0\}$. On observe que $\tilde{\tau}_1 = \tau_{k+1} - \tau_k$ (puisque $\tau_{k+1} - \tau_k$ est le délai entre les k-ième et (k+1)-ième retours en 0, et que $\tilde{\tau}_1$ est le temps du retour en 0 en partant du temps τ_k). Donc par la propriété de Markov forte, appliquée au temps d'arrêt τ_k , on voit que, sur l'évènement $\{\tau_k < \infty\}$, $\tilde{\tau}_1$ a même loi que τ_1 et est indépendant de \mathcal{F}_{τ_k} . Comme de plus τ_k est \mathcal{F}_{τ_k} -mesurable, on conlut que $\tilde{\tau}_1$ est indépendant de τ_k , et donc

$$\begin{split} P[\tau_{k+1} < \infty] = & P[\tau_k < \infty, \tau_{k+1} - \tau_k < \infty] \\ = & P[\tau_k < \infty, \tilde{\tau}_1 < \infty] \\ = & P[\tau_k < \infty] P[\tilde{\tau}_1 < \infty] \\ = & P[\tau_k < \infty] P[\tau_1 < \infty], \end{split}$$

ce qu'on voulait.

- 5. C'est évident: $\sum_{k\geq 0} \mathbf{1}_{\{\tau_k<\infty\}}$ est le nombre d'indices k tels que $\tau_k<\infty$, c'est donc le nombre de passages en 0, c'est donc N. En prenant l'espérance, on déduit $\mathbb{E}[N]=\sum_{k\geq 0}\mathbb{E}[\mathbf{1}_{\{\tau_k<\infty\}}]=\sum_{k\geq 0}P[\tau_k<\infty]$ par Fubini.
- 6. Soit $p = P[\tau < \infty]$. On remarque que τ n'est autre que τ_1 . Ainsi, par la question 4, on a $P[\tau_k < \infty] = p^k$ pour tout k. Donc, par les questions 2 et 5, $\sum_{k \ge 0} p^k = \mathbb{E}[N] = \infty$. Comme $p \in [0, 1]$, ceci n'est possible que si p = 1. On a montré que p = 1, c'est à dire que $\tau < \infty$ p.s.

Question supplémentaire. J'écris juste un plan de preuve. Soit $x \in \mathbb{Z}$ fixé. On suppose par exemple que x > 0.

- (a) Pour k>0 fixé, on considère l'évènement B_k : le processus $(S_n)_{n\geq 0}$ passe par x entre les instants τ_k et τ_{k+1} . En utilisant la propriété de Markov forte (pour le temps d'arrêt τ_k , qui est fini p.s. car on l'a démontré, voir question 6), on montre que la famille d'évènements $(B_k)_{k\geq 1}$ est indépendante, et que pour tout k>0, $P[B_k]=q$, où q est la probabilité que le processus $(S_n)_{n\geq 0}$ passe par x avant son premier retour en 0.
- (b) On montre aisément que q > 0: par exemple, $q \ge P[X_1 = 1, X_2 = 1, ..., X_x = 1] = (1/2)^x > 0$ (c'est tout petit si x est grand, mais c'est strictement positif).
- (c) Donc $\sum_k P[B_k] = \infty$. Par Borel-Cantelli, on en déduit que $P[\limsup_k B_k] = 1$, ce qui implique bien sûr que p.s., le processus $(S_n)_{n\geq 0}$ passe par x une infinité de fois.