MA3110 Mathematical Analysis II - Solutions to the 2014/2015 Semester 1 Final Exam

- 1. (20 points) Answer **TRUE** or **FALSE** to each of the following questions. No explanation is necessary. Each question is worth 2.5 points.
 - (a) A sequence $\{f_n : [a,b] \to \mathbb{R}\}$ converges pointwise if and only if it converges uniformly.

False. For example, consider $\{f_n: [0,1] \to \mathbb{R}\}$ given by $f_n(x) = x^n$. The pointwise limit is

$$f(x) = \begin{cases} 0 & x \in [0, 1) \\ 1 & x = 1 \end{cases}$$

however the convergence is not uniform.

(b) $f:[a,b]\to\mathbb{R}$ is integrable if and only if $f^5:[a,b]\to\mathbb{R}$ is integrable.

True. The statement follows from the composition theorem. The function x^5 is continuous on [a,b] and so f is integrable implies that f^5 is integrable. The function $x^{1/5}$ is continuous on [a,b] and so f^5 is integrable implies that $f=(f^5)^{1/5}$ is integrable.

(c) Let $f:(a,b)\to\mathbb{R}$ be a differentiable function. Then f is uniformly continuous if and only if f' is bounded.

False. For example, consider $f:(0,1)\to\mathbb{R}$ given by $f(x)=x^{1/2}$. Then f is uniformly continuous since it extends to a continuous function on [0,1], however the derivative is $f'(x)=\frac{1}{2}x^{-1/2}$, which is not bounded on (0,1).

(d) If $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$ then the series $\sum_{n=0}^{\infty} a_n$ diverges.

False. For example, consider $a_n = 2^{-n+(-1)^n}$. Then

$$\left| \frac{a_{n+1}}{a_n} \right| = \begin{cases} \frac{2^{-n-2}}{2^{-n+1}} = \frac{1}{8} & n \text{ even} \\ \frac{2^{-n}}{2^{-n-1}} = 2 & n \text{ odd} \end{cases}$$

and so $\limsup_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = 2$, however $a_n \leq 2 \cdot 2^{-n}$ for all n and so the series converges by comparison with a geometric series.

(e) If $\limsup_{n\to\infty} |a_n|^{1/n} > 1$ then the series $\sum_{n=0}^{\infty} a_n$ diverges.

True. This is the root test (see for example Theorem 9.2.2 in the Bartle and Sherbert text).

(f) If $\{f_n : [a,b] \to \mathbb{R}\}$ is a sequence of differentiable functions converging uniformly to $f: [a,b] \to \mathbb{R}$ then $f'_n \to f'$ pointwise.

1

False. For example, consider $\{f_n: [0,1] \to \mathbb{R}\}$ given by $f_n(x) = \frac{x^n}{n}$. Then $||f_n|| = \frac{1}{n}$ and so $f_n \to f \equiv 0$ uniformly, however $f'_n(x) = x^{n-1}$ which converges pointwise to

$$g(x) = \begin{cases} 0 & x \in [0, 1) \\ 1 & x = 1 \end{cases}$$

Since $g \neq 0 = f'$ then the statement is false.

(g) If
$$f: \mathbb{R} \to \mathbb{R}$$
 is C^{∞} then $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$.

False. For example, consider $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} e^{-1/x^2} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

Then
$$f^{(n)}(0) = 0$$
 for all n and so $f(x) \neq \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n = 0$

(h) If a power series $\sum_{n=0}^{\infty} a_n x^n$ is pointwise convergent on a closed bounded interval [a, b] then it is uniformly convergent.

True. Abel's theorem shows that the series is uniformly convergent on every closed subinterval of the interval of convergence.

- 2. (20 points) For each of the following statements, give a counterexample to show that the statement is false. To get full credit you must explain your counterexample. Each question is worth 5 points.
 - (a) Let $\{f_n : [a,b] \to \mathbb{R}\}$ be a sequence of integrable functions which converges pointwise to a function $f : [a,b] \to \mathbb{R}$. Then f is integrable and

$$\lim_{n \to \infty} \int_{a}^{b} f_n \, dx = \int_{a}^{b} f \, dx$$

Example. Consider the sequence of "spike" functions $\{f_n:[0,1]\to\mathbb{R}\}$ given by

$$f_n(x) = \begin{cases} n^2 x & x \in [0, \frac{1}{n}] \\ 2n - n^2 x & x \in [\frac{1}{n}, \frac{2}{n}] \\ 0 & x \in [\frac{2}{n}, 1] \end{cases}$$

Then $f_n \to 0$ pointwise, however we have

$$\lim_{n \to \infty} \int_0^1 f_n \, dx = \lim_{n \to \infty} 1 = 1 \neq 0 = \int_0^1 \lim_{n \to \infty} f_n \, dx$$

(b) Let $\{a_n\}$ be a sequence of nonzero real numbers. Then

$$\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \limsup_{n \to \infty} |a_n|^{1/n}$$

Example. Consider the sequence

$$a_n = \begin{cases} 1 & n \text{ even} \\ 2 & n \text{ odd} \end{cases}$$

Then $\limsup_{n\to\infty} |a_n|^{1/n} = \lim_{n\to\infty} 2^{1/n} = 1$, however

$$\left| \frac{a_{n+1}}{a_n} \right| = \begin{cases} 2 & n \text{ even} \\ \frac{1}{2} & n \text{ odd} \end{cases}$$

and so $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 2 \neq 1 = \limsup_{n\to\infty} |a_n|^{1/n}$.

(c) If $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly then $\sum_{n=1}^{\infty} ||f_n||$ converges.

Example. Consider $f_n:[0,1]\to\mathbb{R}$ defined by

$$f_n(x) = \begin{cases} \frac{1}{n} & x = \frac{1}{n} \\ 0 & x \in [0, 1] \setminus \left\{ \frac{1}{n} \right\} \end{cases}$$

Then $\sum_{n=1}^{\infty} f_n$ converges pointwise to f with $f(\frac{1}{k}) = \frac{1}{k}$ for all $k \in \mathbb{N}$, and f(x) = 0 for all other $x \in [0,1]$. Note that $\sum_{n=1}^{\infty} \|f_n\| = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$.

Therefore $\sum_{n=1}^{\infty} ||f_n||$ diverges, however $||f - \sum_{k=1}^{n} f_k|| = ||\sum_{k=n+1}^{\infty} f_k|| = \frac{1}{n+1} \to 0$ and so $\sum_{n=1}^{\infty} f_n$ converges uniformly to f.

(d) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be functions which are differentiable on all of \mathbb{R} and suppose that f(0) = g(0) = 0. Then $\lim_{x \to 0} \frac{f(x)}{g(x)}$ exists if and only if $\lim_{x \to 0} \frac{f'(x)}{g'(x)}$ exists.

Example. Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & x = 0\\ x^2 \sin\left(\frac{1}{x}\right) & x \neq 0 \end{cases}$$

and define $g: \mathbb{R} \to \mathbb{R}$ by g(x) = x. Then $\frac{f(x)}{g(x)} = x \sin\left(\frac{1}{x}\right)$ which converges to zero as $x \to 0$. Using the limit definition of derivative, we also have

$$f'(x) = \begin{cases} 0 & x = 0\\ 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) & x \neq 0 \end{cases}$$

and g'(x) = 1. Therefore $\lim_{x\to 0} \frac{f'(x)}{g'(x)} = \lim_{x\to 0} f'(x)$ does not exist.

3. (20 points)

(a) (10 points) Use Taylor expansion to prove that $1 - \frac{y^2}{2} \le \cos y \le 1$ for all $y \in [-\pi, \pi]$.

Solution. We already know that $\cos y \leq 1$ for all $y \in \mathbb{R}$.

Since $f(y) = \cos y$ is a C^{∞} function on all of $[-\pi, \pi]$ then Taylor's Theorem applies. We have f(0) = 1, f'(0) = 0, f''(0) = -1 and $f^{(3)}(c) = \sin c$, and so

$$\cos y = 1 - \frac{y^2}{2} + \frac{\sin c}{3!}y^3$$
 for some c between 0 and y.

Since c and y have the same sign then $\sin c$ and y^3 also have the same sign for all $y \in [-\pi, \pi]$ and therefore $\frac{\sin c}{3!}y^3 \ge 0$ for all $y \in [-\pi, \pi]$. Therefore

$$\cos y = 1 - \frac{y^2}{2} + \frac{\sin c}{3!} y^3 \ge 1 - \frac{y^2}{2}$$
 for all $y \in [-\pi, \pi]$

Alternatively, one can obtain the lower bound as follows. The first order Taylor polynomial with remainder is

$$\cos y = 1 - \frac{y^2}{2} \cos c.$$

Since $\cos c \le 1$ for all c, then $\cos y \ge 1 - \frac{y^2}{2}$.

(b) (10 points) Define $\{f_n: [-\pi, \pi] \to \mathbb{R}\}$ by

$$f_n(x) = \begin{cases} 0 & x = 0\\ \frac{1 - \cos\left(\frac{x}{n}\right)}{x} & x \in [-\pi, \pi] \setminus \{0\} \end{cases}$$

Prove that $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on $[-\pi, \pi]$.

(You can use the result of the previous question even if you haven't solved it.)

Solution. Since $x \in [-\pi, \pi]$ then $\frac{x}{n} \in [-\pi, \pi]$ and so the previous part of the question shows that

$$0 \le \left| \frac{1 - \cos\left(\frac{x}{n}\right)}{x} \right| \le \left| \frac{x}{2n^2} \right|$$

Therefore the Squeeze Theorem shows that f_n is continuous at x = 0 and so f is continuous on the whole interval $[-\pi, \pi]$. The above inequality also shows that

$$0 \le \left| \frac{1 - \cos\left(\frac{x}{n}\right)}{x} \right| \le \frac{x}{2n^2} \le \frac{\pi}{2n^2}$$
 and so $||f_n|| \le \frac{\pi}{2n^2}$ for all n .

Since $\sum_{n=1}^{\infty} \frac{\pi}{2n^2}$ converges by the *p*-series test then the original series converges uniformly by the Weierstrass *M*-test.

4. (10 points) Determine at which values of $x \in \mathbb{R}$ the following power series converge.

(a) (5 points)
$$\sum_{n=2}^{\infty} \frac{x^n}{\log n}$$

Solution. We have

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\log n}{\log (n+1)} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{1}{n+1}} = 1 \quad \text{(L'Hôpital's Rule)}$$

where we note that $\frac{\log n}{\log(n+1)}$ is the indeterminate form $\frac{\infty}{\infty}$. Therefore the radius of convergence is equal to 1.

At the endpoints $x = \pm 1$, we have

$$x = 1: \qquad \sum_{n=2}^{\infty} \frac{x^n}{\log n} = \sum_{n=2}^{\infty} \frac{1}{\log n} \quad \text{which diverges by comparison with} \quad \sum_{n=2}^{\infty} \frac{1}{n}$$

$$x = -1: \qquad \sum_{n=2}^{\infty} \frac{x^n}{\log n} = \sum_{n=2}^{\infty} \frac{(-1)^n}{\log n} \quad \text{which converges by the Alternating Series Test.}$$

Therefore the interval of convergence is [-1, 1).

(b) (5 points)

$$\sum_{n=0}^{\infty} a_n x^n, \text{ where } a_n = \begin{cases} 1 & \text{if } n = 10^k \text{ for some } k \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$$

Solution. Note that for all $n \in \mathbb{N}$ we have $\sup_{k \geq n} |a_n| = 1$ and hence $\sup_{k \geq n} |a_n|^{1/n} = 1$ also. Therefore

$$\limsup_{n \to \infty} |a_n|^{1/n} = \lim_{n \to \infty} \left(\sup_{k \ge n} |a_n|^{1/n} \right) = 1$$

and so the radius of convergence is equal to 1. If x=1 then the terms in the series do **not** converge to zero and so the series $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n$ diverges by the n^{th} term test. If x=-1 then the n^{th} term test again shows that $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} (-1)^n a_n$ also diverges.

Therefore the interval of convergence is (-1, 1).

- 5. (15 points) Consider the series $\sum_{k=2}^{\infty} \frac{\cos(kx)}{\log k}.$
 - (a) (5 points) Prove that it converges pointwise on $(0, 2\pi)$.
 - (b) (5 points) Prove that it converges uniformly on any closed subinterval of $(0, 2\pi)$.

(c) (5 points) Prove that it does not converge uniformly on $(0, 2\pi)$.

In this question you can use the fact that $\left|\sum_{k=1}^{n} \cos(kx)\right| \leq \frac{1}{\left|\sin\frac{x}{2}\right|}$ for all $x \in (0, 2\pi)$ and for all $n \in \mathbb{N}$.

Solution.

(a) Let
$$f_k(x) = \frac{1}{\log k}$$
 and $g_k(x) = \cos(kx)$. Since $\left|\sum_{k=1}^n \cos(kx)\right| \le \frac{1}{\left|\sin\frac{x}{2}\right|}$ for all $x \in (0, 2\pi)$ then the partial sums

$$\sum_{k=1}^{n} g_k(x)$$

are bounded for each x. (Note that the bound is not uniform on $(0, 2\pi)$.) Since $f_k(x)$ converges monotonically to zero, then we can apply Dirichlet's test for each $x \in (0, 2\pi)$ to show that $\sum_{k=1}^{\infty} f_k(x)g_k(x)$ converges pointwise.

- (b) Let [a,b] be a closed subinterval of $(0,2\pi)$. Since $\frac{1}{|\sin\frac{x}{2}|}$ is continuous on the closed bounded interval [a,b], then it is bounded above by a constant. Therefore the partial sums $\sum_{k=1}^n g_k(x)$ are uniformly bounded on [a,b] and $f_k(x)$ converges monotonically to zero. Moreover, the convergence of f_k is uniform, since $f_k(x)$ is a constant function with respect to x. Therefore Dirichlet's test shows that $\sum_{k=1}^{\infty} f_k(x)g_k(x)$ converges uniformly on [a,b].
- (c) Note that the functions $\frac{\cos(kx)}{\log k}$ are continuous on $[0,2\pi]$ and therefore the partial sums $S_n(x) = \sum_{k=1}^n \frac{\cos(kx)}{\log k}$ are also continuous on $[0,2\pi]$. In particular $\sup_{x\in(0,2\pi)} S_n(x) = \sup_{x\in[0,2\pi]} S_n(x)$ is finite. Since $S_n(0) = \sum_{k=1}^n \frac{1}{\log k}$ diverges to infinity as $n\to\infty$ then so does $\sup_{x\in(0,\pi)} S_n(x) = \sup_{x\in[0,2\pi)} S_n(x)$. Therefore the pointwise limit is an unbounded function on $(0,2\pi)$, and so the convergence cannot be uniform since the partial sums are bounded but the limit is unbounded (and so Cauchy's criterion fails).
- 6. (15 points) Recall the definition of Thomae's function $f:[0,1]\to\mathbb{R}$

$$f(x) = \begin{cases} 0 & x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1] \\ \frac{1}{q} & x = \frac{p}{q} \in \mathbb{Q} \cap [0, 1] \text{ with } \gcd(p, q) = 1 \end{cases}$$

Let $\{f_n: [0,1] \to \mathbb{R}\}$ be the sequence given by $f_n(x) = f(x)^{1/n}$.

(a) (5 points) Prove that f_n converges pointwise to the Dirichlet function.

Solution. For each x we have

$$f_n(x) = \begin{cases} 0^{1/n} & \text{if } x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1] \\ \left(\frac{1}{q}\right)^{\frac{1}{n}} & \text{if } x = \frac{p}{q} \in \mathbb{Q} \cap [0, 1] \text{ with } \gcd(p, q) = 1 \end{cases}$$

Since $0^{1/n} \to 0$ as $n \to \infty$ and $\left(\frac{1}{q}\right)^{\frac{1}{n}} \to 1$ as $n \to \infty$, then f_n converges pointwise to the Dirichlet function given by

$$f(x) = \begin{cases} 0 & x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1] \\ 1 & x \in \mathbb{Q} \cap [0, 1] \end{cases}$$

(b) (10 points) Show that f_n is integrable for all n. (You can use either the Riemann or Darboux integral.)

(Darboux integral solution) For each n, we want to show that for every $\varepsilon > 0$ there exists a partition \mathcal{P} of [0,1] such that $\mathcal{U}(f_n;\mathcal{P}) - \mathcal{L}(f_n;\mathcal{P}) < 2\varepsilon$.

Let \mathcal{P} be any partition, and let $\delta = ||\mathcal{P}||$. Since the irrationals are dense then every subinterval $[x_{i-1}, x_i]$ contains a point with $f_n(x) = 0$. Therefore $\mathcal{L}(f; \mathcal{P}) = 0$.

Since $\frac{1}{q} < \varepsilon$ for all $q > \frac{1}{\varepsilon}$ then there exists a finite number $N_{\varepsilon,n}$ such that at most $N_{\varepsilon,n}$ values of x have $f_n(x) \geq \varepsilon$. Therefore there are at most $2N_{\varepsilon,n}$ subintervals $[x_{i-1}, x_i]$ where

$$\varepsilon \le M_i = \sup_{x \in [x_{i-1}, x_i]} f_n(x) \le 1.$$

Therefore, we see that

$$\mathcal{U}(f;\mathcal{P}) = \sum_{i=1}^{m} M_i(x_i - x_{i-1}) \le 2N_{\varepsilon,n}\delta$$

If we choose $\delta < \frac{\varepsilon}{2N_{\varepsilon,n}}$ then we have $\mathcal{U}(f_n; \mathcal{P}) < \varepsilon$.

Therefore, we have shown that for every $\varepsilon > 0$ there exists a partition \mathcal{P} (any partition of size $\delta < \frac{\varepsilon}{2N_{\varepsilon,n}}$ will do) such that $\mathcal{U}(f;\mathcal{P}) - \mathcal{L}(f;\mathcal{P}) < \varepsilon$. Therefore f is integrable.

(Riemann integral) We want to show that for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for every tagged partition $\dot{\mathcal{P}}$ of [0,1] with size $||\dot{\mathcal{P}}|| < \delta$ we have $|\mathcal{S}(f_n;\dot{\mathcal{P}})| < 2\varepsilon$.

Again, there exists $N_{\varepsilon,n}$ such that $\varepsilon \leq f_n(x) \leq 1$ for at most $N_{\varepsilon,n}$ points and therefore there are at most $2N_{\varepsilon,n}$ subintervals $[x_{i-1},x_i]$ where

$$\varepsilon \leq f_n(t_i) \leq 1.$$

Since $(x_i - x_{i-1}) < \delta$ for each i then we see that

$$0 \le \mathcal{S}(f_n; \dot{\mathcal{P}}) = \sum_{i=1}^m f_n(t_i)(x_i - x_{i-1}) < \varepsilon + 2N_{\varepsilon,n}\delta$$

If we choose $\delta = \frac{\varepsilon}{2N_{\varepsilon,n}}$ then we have $0 \leq \mathcal{S}(f_n; \dot{\mathcal{P}}) < 2\varepsilon$.

Therefore, we have shown that for every $\varepsilon > 0$ there exists a $\delta > 0$ (choose $\delta = \frac{\varepsilon}{2N_{\varepsilon,n}}$) such that $\left| \mathcal{S}(f_n; \dot{\mathcal{P}}) \right| < 2\varepsilon$ for all tagged partitions $\dot{\mathcal{P}}$ such that $\|\dot{\mathcal{P}}\| < \delta$. Therefore f_n is integrable.