Лабораторные задачи по теме : Арифметические циклы

Напишите программу нахождения суммы, включая в нее первые ${\pmb k}$ слагаемых:

Таблица 1: Таблица заданий к лабораторной работе

№ п/п	Расчетные формулы	№ п/п	Расчетные формулы	
1	$S = \sum_{n=0}^{k} \frac{\ln^n 3}{n!} x^n$	2	$S = \sum_{n=0}^{k} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$	
3	$S = \sum_{n=0}^{k} \frac{x^n}{n!}$	4	$S = \sum_{n=0}^{k} \frac{\cos(n\frac{\pi}{4})}{n!} x^n$	
5	$S = \sum_{n=0}^{k} (-1)^n \frac{x^{2n}}{(2n)!}$	6	$S = \sum_{n=0}^{k} \frac{\cos(nx)}{n!}$	
7	$S = \sum_{n=0}^{k} \frac{(2n+1)x^{2n}}{n!}$	8	$S = \sum_{n=0}^{k} \frac{1}{2n+1} \left(\frac{x-1}{x+1}\right)^{2n+1}$	
9	$S = \sum_{n=1}^{k} (-1)^{n+1} \frac{x^{2n+1}}{4n^2 - 1}$	10	$S = \sum_{n=0}^{k} \frac{x^{2n}}{(2n)!}$	
11	$S = \sum_{n=0}^{k} (-1)^n \frac{2n^2 + 1}{(2n)!} x^{2n}$	12	$S = \sum_{n=0}^{k} (-1)^n \frac{(2x)^{2n}}{(2n)!}$	
13	$S = \sum_{n=0}^{k} \frac{x^{2n+1}}{(2n+1)!}$	14	$S = \sum_{n=1}^{k} (-1)^n \frac{x^{2n}}{n(n+1)(n+2)}$	
15	$S = \sum_{n=1}^{k} (-1)^{n+1} \frac{1}{(2n)!} \left(\frac{x}{3}\right)^{4n}$	16	$S = \sum_{n=0}^{k} (-1)^n \frac{x^{2n+1}}{n!(2n+1)}$	
17	$S = \sum_{n=0}^{k} (-1)^n \frac{x^{4n+3}}{(2n+1)!(4n+3)}$	18	$S = \sum_{n=0}^{k} (-1)^n \frac{x^{4n+1}}{(2n)!(4n+1)}$	
19	$S = \sum_{n=0}^{k} (-1)^n \frac{x^{2n+1}}{(2n-1)(2n+1)!}$	20	$S = \frac{\pi}{2} + \sum_{n=0}^{k} (-1)^{n+1} \frac{x^{2n+1}}{2n+1}$	
21	$S = \sum_{n=0}^{k} \frac{1}{2^n} / \sum_{n=0}^{k} \frac{1}{3^n}$	22	$S = \sum_{n=1}^{k} \frac{1}{2^n + 1}$	
23	$S = 2 \cdot \sum_{n=1}^{k} \frac{1}{2n(4n^2 - 4n + 1)}$	24	$S = \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \dots + \frac{1}{2} \sqrt{\frac{1}{2}}}}$	
			к корней	
25	$S = \sqrt{3 + \sqrt{6 + \ldots + \sqrt{3(k-1) + \sqrt{3k}}}}$	26	$S = \sum_{n=1}^{k} \frac{\sum_{m=1}^{n} \cos m}{\sum_{m=1}^{n} \sin m}$	
27	$S = \sqrt{1 + \frac{1}{2}\sqrt{\frac{1}{2} + \ldots + \frac{1}{k}\sqrt{\frac{1}{k}}}}$	28*	$S = \sum_{n=1}^{k} \frac{1}{n(n+1)(n+2)(n+3)(n+4)}$	
29	$S = \sin x + \cos(\sin x) + \sin(\cos(\sin x)) + .$	+($\cos(\sin x))\dots)$	
	к слагаемых			

Таблица 1 (продолжение)

№ п/п	Расчетные формулы	№ п/п	Расчетные формулы
30	$S = \frac{1}{1 + \frac{1}{3 + \frac{1}{5 + \ldots + \frac{1}{2k + 1}}}}$		

Спецификация ввода : \boldsymbol{k} \boldsymbol{x}

Спецификация вывода: значение суммы