9-12 КЛАС: ЗИМА 2017

Задача 1. Кое положително число е три пъти по-голямо от реципрочното си?

A)
$$\sqrt{3}$$

B)
$$\frac{1}{3}$$

D)
$$\frac{1}{\sqrt{3}}$$

Задача 2. В остроъгълния триъгълник ABC са построени височините AD и BE, които се пресичат в точка H. Колко двойки подобни триъгълници са се получили?

A) 3

B) 4

C) 6

D) 8

Задача 3. Естествените числа, които са делители на $2^2 \times 3^3 \times 5^5$ са подредени едно до друго във възходящ ред: 1, 2, 3, 4, 5, 6, ... Кое число е на 60-то място?

A)
$$2^2 \times 5^5$$

B)
$$2^2 \times 3^2 \times 5^2$$

C)
$$2 \times 3 \times 5^5$$

D) друг отговор

Задача 4. Кое е рационалното число a, за което стойността на израза е също рационално число?

$$\sqrt{4 - 2\sqrt{3}} + a\sqrt{4 + 2\sqrt{3}}$$

$$\mathbf{C}) -1$$

D)
$$-2$$

Задача 5. За числата х, у и z е изпълнено

$$\begin{cases} x \times (y+z) = -1 \\ y \times (x+z) = -9 \\ z \times (x+y) = -4. \end{cases}$$

Да се пресметне най-голямата възможна стойност на $x \times y \times z$.

A)
$$-6$$

B)
$$-4$$

Задача 6. Колко са двуцифрените числа \overline{ab} , за които стойността на израза $(\overline{ab})^2 - 22 \times \overline{ab} + 117$ е просто число?

D) повече от 3

Задача 7. С великия *Архимед* се свързва следната задача: "Да се изрази лицето на защрихования участък чрез дължината на отсечката AB." Ако AB = t, изразете чрез t лицето на защрихования участък.

$$\mathbf{A}) \ \frac{\pi t^2}{8}$$

$$\mathbf{B})\frac{3\pi t^2}{16}$$

C)
$$\frac{\pi t^2}{4}$$

Задача 8. Точката D е от страната BC на триъгълник ABC и я дели в отношение 1:2, считано от върха C. Правата AD пресича медианата CM на триъгълник ABC в точката E. Пресметнете CE:EM.

Задача 9. Уравнението $x^4 + a \times x^3 + b \times x^2 + c \times x + d = 0$ има за корени 1, 2, 3 и 4. Колко от коефициентите a, b и c са отрицателни?

Задача 10. Естествените числа a и b са взаимно прости. Ако числата равни на a+b и a^2-ab+b^2 не са взаимно прости, тогава най-големият общ делител на числата a+b и a^2-ab+b^2 е:

Задача 11. Колко са точките (x;y) с цели положителни координати, за които е изпълнено неравенството $\frac{x}{4} + \frac{y}{3} < 1$?

Задача 12. Ако $\sqrt{y^2 - 10y + 25} = 5 - y$, пресметнете $\sqrt{y^2 - 14y + 49} + 5 + y$.

Задача 13. Даден е изпъкнал петоъгълник с 1007 различни точки във вътрешността му, никои три от които не лежат на една права. Той е разрязан на триъгълници, всеки от върховете на които е или връх на дадения петоъгълник, или е някоя от дадените 1007 точки. Най-много колко триъгълника могат да се получат след такова разрязване?

Задача 14. Намерете броя на всички естествени числа, по-малки от 2017, които при делението на 20 дават остатък 17.

Задача 15. Ако
$$f(x) = x^2 - x + 1$$
 и $f(f(x)) = x^4 + Ax^3 + Bx^2 + Cx + D$, пресметнете $A + B + C + D$.

Задача 16. Колко са целите числа, които са решения на неравенството

$$(x-20)^{17} \times (x-17)^{20} \times (x-2017)^{2017} \le 0$$
?

Задача 17. Колко най-много градуса може да бъде най-малкият ъгъл от петте ъгъла на петоъгълна звезда?

Задача 18. Колко са естествените числа N, за които и $\frac{N^2}{3}$, и $\frac{N^2}{5}$ са трицифрени числа?

Задача 19. Колко фунта тежат всичките пет чувала, ако първият и вторият тежат общо 7 фунта, вторият и третият -9 фунта, третият и четвъртият -11 фунта, четвъртият и петият -8 фунта, първият, третият и петият -10 фунта?

Задача 20. Произведението на две прости числа е с 5 по-голямо от сбора им. Кои са тези числа?