

NEDO 特別講座 市場化成果活用コース モバイルマニュピュレーション

2SEED System

Concept of SEED System

Smartにさまざまなサービスロボットを実現する為の 血管と神経

小型

エッジインテリジェンス

分散配置

低電力

配線1本

高信賴性

SEED Solutions

システムレイヤー

SEED Driver概要

小型分散配置モーターコントローラードライバー

モーター制御機能

プログラマブル

各種IO機能

多軸制御機能

CAN-FD 5M x2

デイジーチェイン

SEED

SEED Driver概要

機能	SEED-MOIA	SEED-MO3A	SEED-BLIA	SEED-BL3A							
電源電圧	24~48V										
対応モーター	ステッピン	グモーター	ブラシレスモーター								
モータ最大相電流	Max1A	Max3A	Max1A	Max3A							
大きさ	□25	□35	□25	□35							
最大電力 ※@24V	連続5W	連続10W	瞬時最大24W	瞬時最大72W							
CPU	STM32-H743										
Architect	Croetex-M7										
Clock		MHz									
通信	CAN-2.0B/CAN-FD 4Mbps										
標準IO	マルチ8chフレキ										

SEED Driver概要 ピン配置

CAN2

EH(2.5) 24V

Max3A

 $\square 35 mm$

9.0_{mm}

CAN1

PH(2.0) 24V

Max2A

□25mm

IOフレキ

最大 Max3A

モーターフレキ

9.8_{mm}

最大 Max1A

SEED Driver Control 機能

<基本機能> バイポーラステッピングモーター 電流コントロール マイクロステップ $(1/16 \to 3200 PPR)$ エンコーダー入力 (3200PPR) ドライバー/モーター温度計測 <制御> ステッピングポジションサーボ ステップアウトコントロール <入出カ> IO入出力/AD入力 PWM出力 LEDコントロール ひずみゲージ入力 **<プログラミング>** Script 8個/Point 256個

CAN-2.0B/CAN-FD

CAN:Controller Area Network 1983年BOSHが開発

- ◎自動車の車体内通信に使われている
- ◎高速通信が可能 2.0B(1M) FD(5M)
- ◎差動通信によりノイズ耐性が高い
- ◎マルチマスターのシリアルバス
- ◎ライン型の配線構成
 - ・並列的にデータが送られる
 - ・増設が簡単
- ◎送信フレームにIDが付いている
 - ・データの振り分けが可能
 - ・送信優先順位を決められる
- ◎通信エラーの検出→再送機能がある
- ◎デバイスのコストが安い・小さい

CANフレーム構造

CAN フレーム

CAN FD フレーム

SEED Command

	SEED3.3	(CAN)		1pkt(111b	it 1M 0.11	1msec)															
	1	2	3	4	5	6	7	8													
送信	送信元先	CTR	コマンド No.			データ															
返信	送信元先	CTR	コマンド No.			データ															
	SEED4 (CA	N-FD)		1pket(568	bit 4M 0.1	16msec)															
	1	2	3	4	5	6	7	8	9	10	11		56	57	58	59	60	61	62	63	64
送信	W == #	Data Na	予約1	ID1		ID1 デー	タ	ID2		ID2 データ	Ż		ID14	1[D14 デー:	タ	投動	吐甲		SEED Time	_
还信	医肾儿元	元先 Data No.	1,471	フラグ	position	n/current/s	peed Data	フラグ	position	/current/sp	eed Data		フラグ	フラグ position/		current/speed		移動時間		SEED Hiller	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
返信	送信元先	Data No.	予約1	ステータス		インクリ位	置	温度	Ī	 電流	アブン	/位置	データ 種別		情報1		データ 種別		情報2		

SEED3.3 1Mbps 1パケット0.11msec 1計1 通信 20msec

1対1 通信 20msec

SEED4 4Mbps 送り1パケット 0.1msec 戻り 0.05msec ブロード 全部へ通信 順番を確認しながら返信 2msec

SEED Editor

接続された14軸に対し

◎各種設定

◎Scriptの読み・書き・編集

©Pointデータの編集

◎モータマニュアル操作

◎IO監視

Script & Point Data

各軸に搭載された SEED Driverのみで

SW監視 モード切替 ピックアンドプレース機能

スクリプト例(原点復帰)

親軸(ID1)

ID2 ID3

ID2

ID3

スクリプト編	集	,					
001	ラベル	ORG					
002	モータ最大電流設定	100	30]			
003	位置情報セット	位置リセット	RESET]			
004	速度指定移動	2000	-]			
005	数值分岐		<	128	5]	
006	モータ停止	自軸					
007	時間待ち	200					
800	速度指定移動	100	+]			
009	個別I/O分岐	I/O-0	10	9			
010	モータ停止	自軸					
011	時間待ち	300					
012	位置情報セット	位置リセット	SET]			
013	スクリプト終了						
014							

スクリプト例(LED表示)

WS2812 マイコン内蔵RGBLED

001	ラベル	GRN					
002	外部LED表示	自軸	0	100	0	0	
003	時間待ち	1500	() ()				
004	外部LED表示	自軸	0	0	100	0	
005	時間待ち	1500					
006	外部LED表示	自軸	0	0	0	100	
007	時間待ち	1500					
008	外部LED表示	自軸	0	100	100	100	
009	時間待ち	1500					
010	ジャンプ	2	Fe d				

SEED Syrtem まとめ

コンパトで分散配置可能なSEED-Driverを、配線1本でデイジーチェイン接続し、Intelligent & SMARTに、多軸の制御を、高速で行う事が可能

SEED Solutions