Project 2

Implementing EDF Scheduler

1-Calculate the system hyperperiod

Hyper Period = 100[ms].

2-Calculate the CPU load

Task 1 -- > Button1

Period: 50ms, deadline:50ms, execution Time: 1.9us

Task 2 -- > Button2

Period: 50ms, deadline:50ms, execution Time: 1.9us

Task 3 -- > Periodic Transmitter

Period: 100ms, deadline: 100ms, execution Time: 6.67us

Task 4 -- > Uart Receiver

Period: 20ms, deadline: 20ms, execution Time: 3.3167us

Task 5 -- > Load 1

Period: 10ms, deadline: 10ms, execution Time: 5ms

Task 6 -- > Load 2

Period: 100ms, deadline: 100ms, execution Time: 12ms

Utilization = Total Execution Time / Hyper Period.

Utilization =
$$\frac{([2*1.9us] + [2*1.9us] + [1*6.67us] + [1*3.3167us] + [10*5000us] + [1*12000us])}{100000us} = 62 \%$$

3-1- Check system schedulability Using URM technique

$$\mathbf{U} = \left[\frac{1.6us}{50ms}\right] + \left[\frac{1.6us}{50ms}\right] + \left[\frac{6.67us}{100ms}\right] + \left[\frac{3.3167us}{20ms}\right] + \left[\frac{5ms}{10ms}\right] + \left[\frac{12ms}{100ms}\right] = .62$$

$$URM = n(2^{\frac{1}{n}} - 1) = 0.756$$

U < URM

system is schedulable

3-2- Check system schedulability Using time demand analysis techniques

-Task 5: Load 1

 $W_1(10)=5ms+0.$

$$w(10) < D = 5 < 10$$

-Task 4:Uart Receiver

W2(20)=0.003167ms +[
$$\frac{20}{10}$$
*5ms].

$$w(20) < D = 10.003 < 20$$

Task 1:Button_1

$$W_3(50)=1.9us_+\left[\frac{50}{10}*5ms+\frac{50}{20}*3.3us\right]$$

$$w(50) < D = 25.010 < 50$$

Task 2:Button_2

$$W_4(50)=1.9us_+\left[\frac{50}{10}*5ms+\frac{50}{20}*3.3us+\frac{50}{50}*1.9us\right]$$

$$w(50) < D = 25.012 < 50$$

Task 3:Periodic Transmitter

W5(100)=6.67us +[
$$\frac{100}{10}$$
*5ms+ $\frac{100}{20}$ *3.3 us + $\frac{100}{50}$ *1.9 us + $\frac{100}{50}$ *1.9 us].

$$w(100) < D = 50.03 < 100$$

Task 6: Load 2

W6(100)=12ms +
$$\left[\frac{100}{10}*5ms + \frac{100}{20}*3.3us + \frac{100}{50}**1.9us + \frac{100}{50}**1.9us + \frac{100}{100}**6.67us\right]$$
.

$$w(100) < D = 62.03 < 100$$

system is schedulable

4. Using Simso offline simulator

The simulation is set to 1ms cycle duration and using Rate Monotonic

Fixed Priority. The Configuring the tasks to run:

After running the simulation, the result is as follow:

Gen	eral Scheduler	Processors	Tasks						
id	Name	Task type	Abort on miss	Act. Date (ms)	Period (ms)	List of Act. dates (ms)	Deadline (ms)	WCET (ms)	Followed by
1	Load 1	Periodic •	□ No	0	10.0	-	10.0	5	~
2	Receiver	Periodic •	□ No	0	50.0	-	50.0	0.02	-
3	Button 1 Monitor	Periodic •	□No	0	50.0	-	50.0	0.02	-
4	Button 2 Monitor	Periodic •	□No	0	50.0	-	50.0	0.02	-
5	Periodic	Periodic •	□No	0	100	-	100	0.02	•
6	Load 2	Periodic •	☐ No	0	100	-	100	12	~

CPU Load

Which shows that CPU load is equal to 62.14% which is very close to mathematic calculation.

Tasks:

General	Logs	Tasks Scheduler Processors			i						
General Load 1		Receiv	er Button 1 Mo		Monitor	Button					
Computation time:											
Task Load 1 Receiver Button 1 Monitor Button 2 Monitor Periodic		min	avg	max	std dev	occupano					
		5.000	5.000 5.000 5.000 0.000		0.500						
		0.020	0.020	0.020	0.000	0.000					
		0.020	0.020	0.020	0.000	0.000					
		0.020	0.020	0.020	0.000	0.000					
		0.020	0.020	0.020	0.000	0.000					
Load 2		12.000	12.000	12.000	0.000	0.120					

SimSo Gantt chart:

It shows that all tasks are executing correctly, and no task is missed.

Using Keil µVision Simulation

After Implementing EDF and then running the simulation and using logic analyzer:

It shows that all tasks are executed

same as Simso. And moving to Run-

time statistics shows:

That CPU Load is slightly higher than SimSo, and calculation which is logical due to neglecting context switching and FreeRTOS overhead mechanisms.