Bipolar Junction Transistor Amplifier

Senior Lecturer
Dept. of Electronic & Telecommunication Engineering

The Great Invention in 1948

Willium Shokley explaining their invention

Team: Willium Shokley, John Bardeen, Walter Brattain

Bell Laboratories, USA

The First-ever Transistor

World's First Transistor developed by Shokley, Bardeen and Brattain

Summary of Modes

Mode & State		BIAS		
		BE	ВС	
Switching	Cut-Off	Rev	Rev	
	Saturation	Fwd	Fwd	
Amplifying	Active	Fwd	Rev	

Analog & Digital

Analog Electronics

we study how transistors are used as amplifiers

Digital Electronics

we study how they are used as switching devices

NPN BJT Biasing

- The Base must be more positive than the Emitter
- The Collector must be even more positive than the Base

Activity

If a PNP transistor is selected, The base terminal must be more than the emitter terminal in order to forward bias the B-E junction.

The collector terminal must be even.....than the base terminal in order to reverse bias the B-C junction.

14

Solution

If a PNP transistor is selected, The base terminal must be more <u>NEGATIVE</u> than the emitter terminal in order to forward bias the B-E junction.

The collector terminal must be even <u>MORE</u> <u>NEGATIVE</u> than the base terminal in order to reverse bias the B-C junction.

Kirchoff's Current Law

$$I_E = I_B + I_C$$

BJT Current Relationships

- * Ratio between static output current and static input current.
- * Also given as h_{FE}

$$\beta = h_{FE} = \frac{I_c}{I_B}$$

$$\alpha = h_{FB} = \frac{I_C}{I_E}$$

$$I_E = I_C + I_C$$

$$\frac{I_E}{I_C} = 1 + \frac{I_B}{I_C}$$

$$\frac{1}{\alpha} = 1 + \frac{1}{\beta}$$

$$\beta = \frac{\alpha}{1 - \alpha}$$

Example * BC 109C BJT * β = 500 (Typ.) * Find currents in the three terminals when the Base current is 20 μA?

Current Control Concept

- * Using a small current to control a larger current
- * Collector current is determined by the base current.
- * BJT is a current-controlled device.
- * Controlling + Controlled = Emitter current
- * Current means; electron and hole movement

An Amplifier

* An amplifier should have an input port and an output port (Four wires).

Input port Amplifier Output port

Configuration	CE	CC	СВ	
Voltage Gain	High	<1	Hlgh	TA
Current Gain	High	High	<1	=
Power Gain	High	Moderate	Moderate	7
Phase Inversion	Yes	No	No	
Input Impedance	Moderate (≈1K)	High (≈300K)	Low (≈50 Ohm)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Output Impedance	Moderate (≈50K)	Low (≈300 Ohm)	High (≈1M)	7
				1