# Mathematik II für Informatik - Zusammenfassung

## Jonas Milkovits

Last Edited: 1. August 2020

# Inhaltsverzeichnis

| L | Ana | alysis 1ell I - Konvergenz und Stetigkeit          |
|---|-----|----------------------------------------------------|
|   | 1.1 | Die reellen Zahlen                                 |
|   | 1.2 | Wurzeln, Fakultäten und Binomialkoeffizienten      |
|   | 1.3 | Konvergenz von Folgen                              |
|   |     | 1.3.1 Der Konvergenzbegriff und wichtige Beispiele |
|   |     | 1.3.2 Konvergenzkriterien                          |
|   |     | 1.3.3 Teilfolgen und Häufungswerte                 |
|   | 1.4 | Asymptotik                                         |
|   | 1.5 | Reihen                                             |
|   |     | 1.5.1 Absolute Konvergenz                          |
|   |     | 1.5.2 Das Cauchy-Produkt                           |
|   | 1.6 | Konvergenz in normierten Räumen                    |
|   | 1.7 | Stetigkeit reeller Funktionen                      |
|   |     | 1.7.1 Der Grenzwertbegriff für Funktionen          |
|   |     | 1.7.2 Stetigkeit                                   |
|   |     | 1.7.3 Eigenschaften stetiger Funktionen            |
|   | 1.8 | Stetigkeit von Funktionen mehrerer Variablen       |

## 1 Analysis Teil I - Konvergenz und Stetigkeit

## 1.1 Die reellen Zahlen

### Definitionen

Die Menge der reellen Zahlen ist der kleinste angeordnete Körper, der  $\mathbb Z$  enthält und das 5.1.1 Vollständigskeitsaxiom "Jede nichtleere Teilmenge, die eine obere Schranke besitzt, hat ein Suprenum." erfüllt.

Eine Teilmenge  $M \subseteq \mathbb{R}$  heißt:

- 5.1.3 a) nach **oben (unten) beschränkt**, wenn sie eine obere (untere) Schranke besitzt.
  - b) beschränkt, wenn sie nach oben und unten beschränkt ist.

Die Funktion  $|\cdot|: \mathbb{R} \to \mathbb{R}$  mit

5.1.5  $|x| = \begin{cases} x & \text{falls } x \ge 0 \\ -x & \text{falls } x < 0 \end{cases}$ 

heißt **Betragsfunktion** und |x| heißt Betrag von x.

### Intervalle:

Es seien zwei Zahlen  $a, b \in \mathbb{R}$  mit a < b gegeben. Dann heißen:

- $(a,b) := \{x \in \mathbb{R} : a < x < b\}$  offenes Intervall
- $[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$  abgeschlossenes Intervall
- $(a, b] := \{x \in \mathbb{R} : a < x \le b\}$  halboffenes Intervall
- $[a,b) := \{x \in \mathbb{R} : a \le x < b\}$  halboffenes Intervall

5.1.8 Halbstrahlen:

- $[a, \infty) := \{x \in \mathbb{R} : a \le x\}$
- $\bullet \ (a, \infty) := \{ x \in \mathbb{R} : a < x \}$
- $\bullet \ (-\infty, a] := \{x \in \mathbb{R} : x \le a\}$
- $\bullet \ (-\infty, a) := \{x \in \mathbb{R} : x < a\}$
- $(-\infty,\infty):=\mathbb{R}$

## Sätze

5.1.6

Jede nach unten beschränkte, nichtleere Teilmenge von  $\mathbb{R}$  besitzt ein Infimum. (Umkehrung Vollständigkeitsaxiom)

## Rechenregeln Betragsfunktion:

Für alle  $x, y \in \mathbb{R}$  gilt:

- a)  $|x| \ge 0$
- b) |x| = |-x|
- c)  $\pm x \leq |x|$
- $d) |xy| = |x| \cdot |y|$
- e) |x| = 0 genau dann, wenn x = 0
- f)  $|x+y| \le |x| + |y|$  (Dreiecksungleichung)

### Bemerkungen

Ein Körper mit Totalordnung ≤ heißt angeordneter Körper, falls gilt:

- $\forall a, b, c \in K : a < b \Rightarrow a + c < b + c$
- $\forall a, b, c \in K : (a \le b \text{ und } 0 \le c) \Rightarrow ac \le bc$

## 1.2 Wurzeln, Fakultäten und Binomialkoeffizienten

## Definitionen

| 5.2.1 | Ganzzahlige Potenzen:  Für jedes $x \in \mathbb{R}$ und jedes $n \in \mathbb{N}^*$ ist  a) $x^n := x \cdot x \cdot x \dots \cdot x$ $(n\text{-mal }x)$ b) $x^{-n} := \frac{1}{x^n}$ , falls $x \neq 0$ c) $x^0 := 1$                                                                  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 5.2.3 | Es seien $a \in \mathbb{R}_+$ und $n \in \mathbb{N}^*$ . Die <b>eindeutige Zahl</b> $x^n \in \mathbb{R}_+$ mit $x^n = a$ heißt $n$ -te <b>Wurzel</b> von $a$ und man schreibt $x = \sqrt[n]{a}$ . Für den wichtigsten Fall $n = 2$ gibt es die Konvention $\sqrt{a} := \sqrt[2]{a}$ . |  |
| 5.2.5 | Aus der Eindeutigkeit der $n$ -ten Wurzel (5.2.4) folgt:<br>Für jedes $x \in \mathbb{R}_+$ und jedes $q = \frac{n}{m} \in \mathbb{Q}$ mit $n \in \mathbb{Z}$ und $m \in \mathbb{N}^*$ ist die <b>rationale Potens</b> definiert durch:<br>$x^q = x^{\frac{n}{m}} := (\sqrt[x]{x})^n.$ |  |
| 5.2.7 | Es sei $n \in \mathbb{N}^*$ . Dann wird die Zahl $n! := 1 \cdot 2 \cdot \cdot n$ als $n$ Fakultät bezeichnet. Weiterhin definieren wir $0! := 1$ .                                                                                                                                    |  |

Es seien  $n, k \in \mathbb{N}$  mit  $k \leq n$ . Dann heißt  $\binom{n}{k} := \frac{n!}{k!(n-k)!}$  Binomialkoeffizient "n über k".

## Sätze

| 5.2.2 | Existenz der Wurzel:<br>Für jedes $a \in R_+$ und alle $n \in N^*$ gibt es genau ein $w \in R_+$ mit $x^n = a$ .                                                                                                                                                                                                         |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.2.4 | Es seien $q \in \mathbb{Q}$ und $m, \in \mathbb{Z}$ , sowie $n, r \in \mathbb{N}^*$ so, dass $q = \frac{m}{n} = \frac{p}{r}$ .<br>Dann gilt für jedes $x \in \mathbb{R}_+$ : $(\sqrt[n]{x})^m = (\sqrt[r]{m})^p$ .                                                                                                       |
| 5.2.9 | Es seien $n, k \in \mathbb{N}$ mit $k \le n$ und $a, b \in \mathbb{R}$ . Dann gilt:<br>a) $\binom{n}{0} = \binom{n}{n} = 1$ und $\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$<br>b) $a^{n+1} - b^{n+1} = (a-b) \sum_{k=0}^{n} a^{n-k} b^k$<br>c) $(a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k$ (Binomialformel) |

## Bemerkungen



## 1.3 Konvergenz von Folgen

## 1.3.1 Der Konvergenzbegriff und wichtige Beispiele

## Definitionen

|         | Es sei $(a_n)$ eine Folge in $\mathbb{K}$ und $a \in \mathbb{K}$ . Die Folge $(a_n)$ heißt <b>konvergent</b> gegen $a$ , falls für jedes $\epsilon > 0$ ein $n_0 \in \mathbb{N}$ exisitert mit                                                                                       |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 5.3.1   | $ a_n - a  < \epsilon$ für alle $n \ge n_0$ .                                                                                                                                                                                                                                        |  |  |  |
| 0.0.1   | In diesem Fall heißt $a$ der <b>Grenzwert</b> oder Limes von $(a_n)$ und wir schreiben:                                                                                                                                                                                              |  |  |  |
|         | $\lim_{a\to\infty} = a \text{ oder } a_n \to a(n\to\infty).$<br>Ist $(a_n)$ eine Folge $\mathbb{K}$ , die gegen kein $a\in\mathbb{K}$ konvergiert, so heißt diese <b>divergent</b> .                                                                                                 |  |  |  |
|         |                                                                                                                                                                                                                                                                                      |  |  |  |
|         | Eine Folge $(a_n)$ in $\mathbb{K}$ heißt <b>beschränkt</b> , wenn die Menge $\{a_n : n \in \mathbb{N}\} = \{a_0, a_1, a_2,\}$ be-                                                                                                                                                    |  |  |  |
| 5.3.4   | schränkt in $\mathbb{K}$ ist.  Ist $\mathbb{K} = \mathbb{R}$ , so setzen wir weiter                                                                                                                                                                                                  |  |  |  |
| 0.0.4   | $sup_{n\in\mathbb{N}}a_n:=sup_{n=0}^\infty a_n:=sup\{a_n:n\in\mathbb{N}\}$                                                                                                                                                                                                           |  |  |  |
|         | $inf_{n\in\mathbb{N}}a_n:=inf_{n=0}^\infty a_n:=inf\{a_n:n\in\mathbb{N}\}$                                                                                                                                                                                                           |  |  |  |
|         | Bestimmte Divergenz:                                                                                                                                                                                                                                                                 |  |  |  |
| 5.3.13  | Eine Folge $(a_n)$ in $\mathbb R$ divergiert bestimmt nach $\infty(-\infty)$ und wir schreiben $\lim_{n\to\infty}a_n=$                                                                                                                                                               |  |  |  |
|         | $\infty(-\infty)$ , wenn es für jedes $C \ge 0$ ein $n_0 \in \mathbb{N}$ gibt, so dass $a_n \ge C(a_n \le -C)$ für alle $n \le n_0$ gilt.                                                                                                                                            |  |  |  |
| Sätze   |                                                                                                                                                                                                                                                                                      |  |  |  |
|         | Talalananan Talana in TV in the archaealth                                                                                                                                                                                                                                           |  |  |  |
| 5.3.5   | Jede konvergente Folge in K ist beschränkt.<br>Die Umkehrung dieses Satzes ist falsch. Es gibt beschränkte Folgen, die nicht konvergieren.                                                                                                                                           |  |  |  |
|         |                                                                                                                                                                                                                                                                                      |  |  |  |
|         | Grenzwertsätze<br>Es seien $(a_n), (b_n)$ und $(c_n)$ Folgen in $\mathbb{K}$ . Dann gilt:                                                                                                                                                                                            |  |  |  |
|         | a) Ist $\lim_{n\to\infty} a_n = a$ , so gilt $\lim_{n\to\infty}  a_n  =  a $                                                                                                                                                                                                         |  |  |  |
|         | b) Gilt $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$ so gilt:                                                                                                                                                                                                         |  |  |  |
|         | i) $\lim_{n\to\infty} (a_n + b_n) = a + b$                                                                                                                                                                                                                                           |  |  |  |
|         | ii) $\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$                                                                                                                                                                                                                                  |  |  |  |
| 5.3.7   | iii) $\lim_{n\to\infty}(\alpha a_n)=\alpha a$ für alle $\alpha\in\mathbb{K}$                                                                                                                                                                                                         |  |  |  |
|         | iv) Ist zusätzlich $b_n \neq 0$ für alle $n \in \mathbb{N}$ und $b \neq 0$ , so ist $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$                                                                                                                                              |  |  |  |
|         | Ist $\mathbb{K} = \mathbb{R}$ , so gilt außerdem:<br>c) Ist $a_n \leq b_n$ für alle $n \in \mathbb{N}$ und $\lim_{n \to \infty} a_n = a$ sowie $\lim_{n \to \infty} b_n = b$ , so folgt $a \leq b$                                                                                   |  |  |  |
|         | d) Ist $a_n \leq b_n$ für alle $n \in \mathbb{N}$ und $\lim_{n \to \infty} a_n = a$ sowie $\lim_{n \to \infty} b_n = b$ , so long $a \leq b$<br>d) Ist $a_n \leq c_n \leq b_n$ für alle $n \in \mathbb{N}$ und sind $(a_n)$ und $(b_n)$ konvergent mit $\lim_{n \to \infty} a_n = b$ |  |  |  |
|         | $\lim_{n\to\infty}b_n=a$ , so ist auf die Folge $(c_n)$ konvergent und es gilt $\lim_{n\to\infty}c_n=a$                                                                                                                                                                              |  |  |  |
|         | (Sandwich-Theorem)                                                                                                                                                                                                                                                                   |  |  |  |
| Bemerku | ngen                                                                                                                                                                                                                                                                                 |  |  |  |
|         | Sei X eine Menge. Eine <b>Folge</b> in X ist eine Abbildung $a: \mathbb{N} \to X$ .                                                                                                                                                                                                  |  |  |  |
|         | (Für $X = \mathbb{R}$ reelle Folge, $X = \mathbb{C}$ komplexe Folge)                                                                                                                                                                                                                 |  |  |  |
|         | Schreibweise: $a_n$ statt $a(n)$ . (n-tes Folgeglied)                                                                                                                                                                                                                                |  |  |  |
|         | Ganze Folge: $(a_n)_{n\in\mathbb{N}}$ oder $(a_n)$ oder $(a_n)_{n>0}$                                                                                                                                                                                                                |  |  |  |
|         | Folgen haben maximal einen (eindeutiger) Grenzwert                                                                                                                                                                                                                                   |  |  |  |
|         | Bezeichnung von Folgen, für die der Grenzwert 0 ist: "Nullfolge"                                                                                                                                                                                                                     |  |  |  |
| 5.3.7   | c) ist falsch mit $<$ , nur richtig mit $\le$                                                                                                                                                                                                                                        |  |  |  |
|         | Wichtige konvergente Folgen                                                                                                                                                                                                                                                          |  |  |  |
|         | a) Ist $(a_n)$ eine konvergente Folge in $\mathbb R$ mit Grenzwert $a$ und gilt $a\geq 0$ für alle $n\in\mathbb N$ so ist                                                                                                                                                            |  |  |  |
|         | für jedes $p \in \mathbb{N}^*$ auch $\lim_{n \to \infty} \sqrt[p]{a_n} = \sqrt[p]{a}$ .                                                                                                                                                                                              |  |  |  |
|         | b) Die Folge $(q^n)_{n\in\mathbb{N}}$ mit $q\in\mathbb{R}$ konvergiert genau dann, wenn $q\in(-1,1]$ ist und es gilt:                                                                                                                                                                |  |  |  |
| E 9 10  | $\lim_{n \to \infty} q^n = \begin{cases} 1 & \text{falls } q = 1\\ 0 & \text{falls } -1 < q < 1 \end{cases}$                                                                                                                                                                         |  |  |  |
| 5.3.10  | <b>\</b>                                                                                                                                                                                                                                                                             |  |  |  |
|         | Ist $q \in \mathbb{C}$ mit $ q  < 1$ , so gilt ebenfalls $\lim_{n \to \infty} q^n = 0$ .                                                                                                                                                                                             |  |  |  |
|         | c) $\lim_{n\to\infty} \sqrt[n]{c} = 1$ für jedes $c \in \mathbb{R}_+$ .<br>d) $\lim_{n\to\infty} \sqrt[n]{n} = 1$ .                                                                                                                                                                  |  |  |  |
|         | e) $\lim_{n\to\infty} \sqrt{n-1}$ .<br>e) $\lim_{n\to\infty} (1+\frac{1}{n})^n := e \ (n \ge 1)$ .                                                                                                                                                                                   |  |  |  |
|         | Beachte hier: Beide $n$ gleichzeitig wachsen lassen, keine trägen oder eiligere $n$ .                                                                                                                                                                                                |  |  |  |
|         |                                                                                                                                                                                                                                                                                      |  |  |  |

# Beispiele

| 5.3.1                                                                                                                                                                                                                                                                                                                                                                                                 | Folge $(a_n) = (\frac{1}{n})_{n \ge 1} = (1, \frac{1}{2}, \frac{1}{3},)$<br>Sei $\epsilon > 0$ . Dann $\frac{1}{\epsilon} < n_0$ für ein $n_0 \in \mathbb{N}$ (beliebiges $n$ immer größer).<br>Für alle $n \ge n_0$ gilt dann:<br>$ a_n - a  =  a_n - 0  =  a_n  = \frac{1}{n} \le \frac{1}{n_0} < \epsilon$ $\Rightarrow$ Konvergenz gegen 0                                                                                                                              |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Sei $p \in \mathbb{N}^*$ fest gewählt und $a_n = \frac{1}{n^p}$ für $n \in \mathbb{N}^*$ . Dann gilt für alle $n \in \mathbb{N}^*$ die Ung $n \le n^p$ und damit $0 \le a_n = \frac{1}{n^p} \le \frac{1}{n}.$ Da sowohl die Folge, die konstant Null ist, als auch die Folge $\frac{1}{n}$ gegen Null konvergiert, nach Satz 5.3.7(d) auch die Folge $(a_n)$ konvergent und ebenfalls eine Nullfolge. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 5.3.9                                                                                                                                                                                                                                                                                                                                                                                                 | Wir untersuchen $a_n = \frac{n^2 + 2n + 3}{n^2 + 3}, \ n \in \mathbb{N}.$ Dazu kürzen wir durch Bruch durch die <b>höchste auftretende Potenz</b> : $a_n = \frac{n^2 + 2n + 3}{n^2 + 3} = \frac{1 + \frac{2}{n} + \frac{3}{n^2}}{1 + \frac{3}{n^2}} \to \frac{1 + 0 + 0}{1 + 0} = 1 \ (n \to \infty).$ Dieses Verfahren ist bei allen Polynom in $n$ geteilt durch Polynom in $n$ "gut anwendbar.                                                                           |  |  |  |
| 5.3.12                                                                                                                                                                                                                                                                                                                                                                                                | $a_n := \sqrt{n+1} - \sqrt{n}, \ n \in \mathbb{N}$ (Differenz von zwei divergenten Folgen)<br>Trick: Erweiterung mit der Summe von Wurzeln bei Differenzen von Wurzeln $\sqrt{n+1} - \sqrt{n} = \frac{\sqrt{n+1} - \sqrt{n}\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{(n+1) - n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \le \frac{1}{2\sqrt{n}} = \frac{1}{2}\sqrt{\frac{1}{n}}$ Sandwich: $\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = 0$ . |  |  |  |
| 5.3.12                                                                                                                                                                                                                                                                                                                                                                                                | Geometrische Summenformel: $a_n:=\sum_{k=0}^n q^k=1+q+q^2+\ldots+q^n,\ n\in\mathbb{N}$ $\lim_{n\to\infty}a_n=\frac{1}{1-q},\  q <1.$                                                                                                                                                                                                                                                                                                                                        |  |  |  |

# 1.3.2 Konvergenzkriterien

# Definitionen

|        | Eine reelle Folge $(a_n)$ heißt:                                                                                                  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------|
| 5.3.14 | a) monoton wachsend, wenn $a_{n+1} \ge a_n$ für alle $n \in \mathbb{N}$ gilt.                                                     |
| 0.5.14 | b) monoton fallend, wenn $a_{n+1} \leq a_n$ für alle $n \in \mathbb{N}$ gilt.                                                     |
|        | c) monoton, wenn sie monoton wachsend oder monoton fallend ist.                                                                   |
| 5.3.18 | Folge $(a_n)$ in $\mathbb{K}$ heißt Cauchy-Folge, wenn für jedes $\epsilon > 0$ ein Index $n_0 \in \mathbb{N}$ existiert, so dass |
| 0.0.10 | $ a_n - a_m  < \epsilon$ , für alle $n, m \ge n_0$                                                                                |

## $S\ddot{a}tze$

|        | Monotonie Kriterium                                                                                                   |  |
|--------|-----------------------------------------------------------------------------------------------------------------------|--|
| 5.3.15 | Ist die reelle Folge $(a_n)$ nach oben (nach unten) beschränkt und monoton wachsend (fallend), so                     |  |
| 5.5.15 | ist $(a_n)$ konvergent und es gilt:                                                                                   |  |
|        | $\lim_{n\to\infty} a_n = \sup_{n\in\mathbb{N}} a_n \text{ (bzw. } \lim_{n\to\infty} a_n = \inf_{n\in\mathbb{N}} a_n)$ |  |
| 5.3.19 | Jede konvergente Folge in $\mathbb K$ ist eine Cauchy-Folge.                                                          |  |
| F 2 20 | Cauchy-Kriterium                                                                                                      |  |
| 5.3.20 | Eine Folge in $\mathbb{K}$ konvergiert genau dann, wenn sie eine Cauchy-Folge ist.                                    |  |

# Bemerkungen

| Monotoniever                | Monotonieverhalten, deswegen hier nur in $\mathbb R$ und nicht in $\mathbb C$ (keine Ordnung) |  |  |
|-----------------------------|-----------------------------------------------------------------------------------------------|--|--|
| Beide hier ges<br>Grenzwert | sehenen Konvergenzkriterien funktionieren ohne vorherige Behauptung über den                  |  |  |

## Beispiele

|        | Betrachtung einer rekursiv defininierten Folge                                                                                                                                                                                                                                 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | $a_0 := \sqrt[3]{6} \text{ und } a_{n+1} = \sqrt[3]{6 + a_n}, n \in \mathbb{N}$                                                                                                                                                                                                |
| 5.3.16 | Damit folgt: $a_1 = \sqrt[3]{6 + \sqrt[3]{6}}$ , $a_2 = \sqrt[3]{6 + \sqrt[3]{6} + \sqrt[3]{6}}$<br>Solche Folgen entstehen oft bei iterativen Näherungsverfahren.<br>Behauptung: $(a_n)$ nach oben beschränkt und monoton wachsend $\Rightarrow$ Konvergenz Beweis: Induktion |

#### 1.3.3Teilfolgen und Häufungswerte

## Definitionen

| 5.3.22 | Es sei $(a_n)$ eine Folge in $\mathbb{K}$ . Ein $a \in \mathbb{K}$ heißt Häufungswert der Folge, falls für jedes $\epsilon > 0$ die Menge $\{n \in \mathbb{N} :  a_n - a  < \epsilon\}$ unendlich viele Elemente hat.              |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.3.23 | Es sei $(a_n)$ eine Folge in $\mathbb{K}$ . Ist $\{n_1, n_2, n_3,\} \subseteq \mathbb{N}$ eine unendliche Menge von Indizes mit $n_1 < n_2 < n_3$ , so heißt die Folge $(a_{n_k})_{k \in \mathbb{N}}$ eine Teilfolge von $(a_n)$ . |

## Sätze

Es sei  $(a_n)$  eine Folge in  $\mathbb{K}$ . Dann gilt

- 5.3.24
- a) Ein  $\alpha \in \mathbb{K}$  ist genau dann ein Häufungswert von  $(a_n)$ , wenn eine Teilfolge  $(a_{n_k})$  von  $(a_n)$ existiert, die gegen  $\alpha$  konvergiert.
- b) Ist  $(a_n)$  konvergenz mit Grenzwert  $\alpha$ , so konvergiert auch jede Teilfolge von  $(a_n)$  gegen a.
- c) Ist  $(a_n)$  konvergenz, so hat  $(a_n)$  genau einen Häufungswert, nämlich den Grenzwert  $\lim_{n\to\infty}a_n$ .

## Bemerkungen

| Jeder Grenzwert ist auch Häufungswert.                                                                      |
|-------------------------------------------------------------------------------------------------------------|
| Häufungswert von $((-1)^n)_{n\in\mathbb{N}}$ : 1, -1 (aber keine Grenzwerte)                                |
| Häfungswert von $(i^n)$ : 1, i, -1, -i                                                                      |
| Keine Teilfolgen: $(a_0, a_0, a_2, a_2,)$ (keine doppelten Elemente) $(a_2, a_3, a_0,)$ (nicht umsortieren) |

#### 1.4 Asymptotik

## Definitionen

- a) Wir bezeichnen mit  $F_+ := \{(a_n) \text{ Folge in } \mathbb{R} : a_n > 0 \text{ für alle } n \in \mathbb{N} \}$
- b) Es sei  $(b_n) \in \mathbb{F}_+$ . Dann definieren wir die Landau-Symbole durch

- $O(b_n) := \{(a_n) \in \mathbb{F}_+ : \frac{a_n}{b_n} n \in \mathbb{N} \}$   $(b_n \text{ größer gleich } a_n)$   $o(b_n) := \{(a_n) \in \mathbb{F}_+ : \lim_{n \to \infty} \frac{a_n}{b_n} = 0 \}$   $(b_n \text{ echt größer als } a_n)$

Es seien  $(a_n), (b_n), (c_n), (d_n) \in \mathbb{F}_+$  und  $\alpha, \beta \in \mathbb{R}_+$ . Dann gilt:

a) Sind  $a_n, b_n \in O(c_n)$ , so ist auch  $\alpha a_n + \beta b_n \in O(c_n)$ 

b) Gilt  $a_n \in O(b_n)$  und  $c_n \in O(d_n)$ , so ist  $a_n c_n \in O(b_n d_n)$ 

c) Aus  $a_n \in O(b_n)$  und  $b_n \in O(c_n)$  folgt  $a_n \in O(c_n)$ 

d)  $a_n \in O(b_n)$  genau dann, wenn  $\frac{1}{b_n} \in O(\frac{1}{a_n})$ 

e) Diese Aussagen gelten auch alle mit Klein-O anstatt Groß-O

## Bemerkungen

5.4.5

- a) =-Zeichen wird hier nicht bekannten mathematischen Sinne verwendet  $\Rightarrow$  Kompromiss Notation  $a_n \in O(b_n)$
- b) Es gilt immer  $o(b_n) \subseteq O(b_n)$ .
- 5.4.2 c)  $(\frac{a_n}{b_n})_{n \in \mathbb{N}}$  konvergent  $\Rightarrow a_n \in O(b_n)$ 
  - d)  $a_n \in O(b_n)$ : Folge  $a_n$  wächst höchstens so schnell wie ein Vielfaches von  $b_n$

Exponentielle Algorithmen sind viel schlechter als polynomiale.

| Landau-Symbol   | Bezeichnung   | Bemerkung            |
|-----------------|---------------|----------------------|
| O(1)            | beschränkt    |                      |
| $O(\log_a(n))$  | logarithmisch | a > 1                |
| O(n)            | linear        |                      |
| $O(n\log_a(n))$ | "n log n"     | a > 1                |
| $O(n^2)$        | quadratisch   |                      |
| $O(n^3)$        | kubisch       |                      |
| $O(n^k)$        | polynomial    | $k \in \mathbb{N}^*$ |
| $O(a^n)$        | exponentiell  | a > 1                |

## 1.5 Reihen

## Definitionen

Es sei  $(a_n)$  eine Folge in  $\mathbb{K}$ . Dann heißt

$$\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + \dots$$

die **Reihe** über  $(a_n)$ .

5.5.1 Für jedes  $k \in \mathbb{N}$  heißt dann  $s_k = \sum_{n=0}^k a_n$  die k-te Teilsumme oder **Partialsumme** der Reihe. Ist die Folge  $(s_k)_{k \in \mathbb{N}}$  konvergent, so nennen wir die Reihe **konvergent** mit dem Reihenwert:

$$\sum_{n=0}^{\infty} a_n := \lim_{k \to \infty} s_k = \lim_{k \to \infty} \sum_{n=0}^{k} a_n$$

Ist  $(s_k)$  divergent, so nennen wir auch die Reihe divergent.

| 5.5.3 | Seien $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ zwei konvergente Reihen in $\mathbb{K}$ und $\alpha, \beta \in \mathbb{K}$ . Dann ist auch $\sum_{n=0}^{\infty} (\alpha a_n + \beta b_n)$ konvergent und es gilt $\sum_{n=0}^{\infty} (\alpha a_n + \beta b_n) = \alpha \sum_{n=0}^{\infty} a_n + \beta \sum_{n=0}^{\infty} b_n$                                                                                                                                                                                                   |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.5.4 | Es gilt $\sum_{n=0}^{\infty} \frac{1}{n!} = e$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5.5.5 | Ist $\sum_{n=0}^{\infty} a_n$ eine konvergente Reihe in $\mathbb{K}$ , so ist $(a_n)$ eine <b>Nullfolge</b> in $\mathbb{K}$ .                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5.5.6 | Es sei $(a_n)$ eine Folge in $\mathbb{K}$ und $s_k := \sum_{n=0}^k a_n, \ k \in \mathbb{N}$ Dann gilt:<br>a) <b>Monotonie Kriterium</b> Ist $a_n \geq 0$ für alle $n \in \mathbb{N}$ und $(s_k)_{k \in \mathbb{N}}$ nach oben beschränkt, so ist $\sum_{n=0}^{\infty} a_n$ konvergent.<br>b) <b>Cauchy-Kriterium</b> Die Reihe $\sum_{n=0}^{\infty} a_n$ ist genau dann konvergent, wenn für jedes $\epsilon > 0$ ein $n_o \in \mathbb{N}$ existiert mit $ \sum_{n=l+1}^k a_n  < \epsilon$ für alle $k, l \in \mathbb{N}$ mit $k > l \geq n_0$ . |
| 5.5.7 | Leibniz-Kriterium<br>Es sei $(a_n)$ eine monoton fallende Folge in $\mathbb{R}$ mit $\lim_{n\to\infty}a_n=0$ . Dann ist die Reihe $\sum_{n=0}^{\infty}(-1)^na_n$ konvergent.                                                                                                                                                                                                                                                                                                                                                                     |

Gilt nicht umgekehrt. Nullfolge ist eine Voraussetzung für eine konvergente Reihe, aber keine 5.5.5Garantie.

## Beispiele

## Reihen:

- einen:

    $\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}, |q| < 1$  (Geometrische Reihe)

    $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$   $\sum_{n=1}^{\infty} \frac{1}{n} = divergent$  (Harmonische Reihe)

    $\sum_{n=0}^{\infty} \frac{1}{n!} = e$   $\sum_{n=0}^{\infty} \frac{1}{n!} = e$   $\sum_{n=0}^{\infty} (-1)^n \frac{1}{n+1} = \ln(2)$  (alternierende harmonische Reihe) (Leibniz-Kriterium)

    $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ : konvergent, wenn  $\alpha > 1$ , sonst divergent

#### 1.5.1 Absolute Konvergenz

## Definitionen

Eine Reihe  $\sum_{n=0}^{\infty} a_n$  in  $\mathbb{K}$  heißt **absolut konvergent**, wenn die Reihe  $\sum_{n=0}^{\infty} |a_n|$  in  $\mathbb{K}$  konvergiert. 5.5.9(Summanden werden schnell genug klein, vorzeichenunabhängig)

| 5.5.10 | Jede absolut konvergente Reihe $\sum_{n=0}^{\infty} a_n$ in $\mathbb{K}$ ist auch konvergent in $\mathbb{K}$ und es gilt die verallgemeinerte Dreiecksungleichung $ \sum_{n=0}^{\infty} a_n  \leq \sum_{n=0}^{\infty}  a_n $                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.5.12 | <ul> <li>Es seien (a<sub>n</sub>) und (b<sub>n</sub>) reelle Folgen und n<sub>o</sub> ∈ N.</li> <li>• Majorantenkriterium Ist  a<sub>n</sub>  ≤ b<sub>n</sub> für alle n ≥ n<sub>o</sub> und konvergiert die Reihe ∑<sub>n=0</sub><sup>∞</sup> b<sub>n</sub>, so ist ∑<sub>n=0</sub><sup>∞</sup> a<sub>n</sub> absolut konvergent. </li> <li>• Minorantenkriterium Ist a<sub>n</sub> ≥ b<sub>n</sub> ≥ 0 für alle n ≥ n<sub>0</sub> und divergiert die Reihe ∑<sub>n=0</sub><sup>∞</sup> b<sub>n</sub>, so divergiert auch die Reihe ∑<sub>n=0</sub><sup>∞</sup> a<sub>n</sub>.</li> </ul>                                                                  |
| 5.5.16 | Es sei $\sum_{n=0}^{\infty} a_n$ eine Reihe in $\mathbb{K}$ .  a) Wurzelkriterium  Existiert der Grenzwert $\lim_{n\to\infty} \sqrt[n]{ a_n }$ , so ist die Reihe  • absolut konvergent, wenn $\lim_{n\to\infty} \sqrt[n]{ a_n } < 1$ ist  • divergent, wenn $\lim_{n\to\infty} \sqrt[n]{ a_n } > 1$ ist  b) Quotientenkriterium  Ist $a_n \neq 0$ für alle $n \in \mathbb{N}$ und existiert der Grenzwert $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n}\right $ , so ist die Reihe  • absolut konvergent, wenn $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n}\right  < 1$ ist  • divergent, wenn $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n}\right  > 1$ ist |

| 5.5.10 | Gilt nicht umgekehrt (alternierende harmonische Reihe)                                 |
|--------|----------------------------------------------------------------------------------------|
| 5.5.10 | Absolute Konvergenz: Reihenwert ist unabhängig von der Summationsreihenfolge           |
| 5.5.12 | Die Vergleichsfolge heißt jeweils konverente Majorante bzw. divergente Minorante.      |
| 5.5.16 | Liefert Wurzel-/Quotientenkriterium genau Eins, kann man daraus keine Aussage ableiten |

## 1.5.2 Das Cauchy-Produkt

## Definitionen

5.5.21 Für alle 
$$z \in \mathbb{C}$$
 ist  $e^z := E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ .

### Sätze

Es seien 
$$\sum_{n=0}^{\infty} a_n$$
 und  $\sum_{n=0}^{\infty} b_n$  zwei **absolut konvergente Folgen** in  $\mathbb{K}$ . Dann konvergiert auch die Reihe  $\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$  **absolut** und es gilt für die Reihenwerte: 
$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k} = (\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n)$$
 Die Reihe  $\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$  heißt **Cauchy-Produkt** der beiden Reihen.

5.5.20 Für alle  $z, w \in \mathbb{C}$  gilt  $E(z+w) = E(z)E(w)$ .

## 1.6 Konvergenz in normierten Räumen

### Definitionen



| 5.6.5  | Es sei $(a_n)_{n\in\mathbb{N}}=((a_{n,1},a_{n,2},\ldots,a_{n,d})^T)_{n\in\mathbb{N}}$ eine Folge in $\mathbb{R}$ mit der 2-Norm. Dann ist $(a_n)$ in $\mathbb{R}$ genau dann <b>konvergent</b> , wenn für jedes $j\in\{1,2,\ldots,d\}$ die Koordinatenfolge $(a_{n,j})_{n\in\mathbb{N}}$ in $\mathbb{R}$ <b>konvergent</b> ist. In diesem Fall ist $\lim_{n\to\infty} \binom{a_{n,1}}{a_{n,2}} = \binom{\lim_{n\to\infty} a_{n,1}}{\lim_{n\to\infty} a_{n,2}}$ $\lim_{n\to\infty} (a_{n,j})_{n\in\mathbb{N}} = \binom{\lim_{n\to\infty} a_{n,1}}{\lim_{n\to\infty} a_{n,2}}$ Falls eine Komponente im Vektor divergiert, divergiert die ganze Folge.                                                                                                         |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.6.11 | Eine Teilmenge $M$ von $V$ ist genau dann <b>abgeschlossen</b> , wenn für jede Folge in $M$ , die in $V$ konvergiert, der Grenzwert ein Element aus $M$ ist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5.6.17 | Satz von Bolzano-Weierstraß Sei $(V,   \cdot  _V)$ ein endlichdimensionaler normierter Raum und $M \subseteq V$ kompakt. Dann besitzt jede Folge in $M$ eine konvergente Teilfolge mit Grenzwert in $M$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5.6.22 | Banach'scher Fixpunktsatz Es sei $(V,   \cdot  _V)$ ein Banachraum $M \subseteq V$ abgeschlossen und $f: M \to M$ eine Funktion. Weiter existiere ein $q \in (0,1)$ , so dass $  f(x) - f(y)  _V \le q  x - y  _V, \text{ für alle } x, y \in M$ gilt. Dann gelten die folgenden Aussagen: a) Es gibt genau ein $v \in M$ mit $f(v) = v$ . (d.h. $f$ hat genau einen Fixpunkt in $M$ ) b) Für jedes $x_0 \in M$ konvergiert die Folge $(x_n)$ mit $x_{n+1} = f(x_n), n \in \mathbb{N}$ , gegen $v$ und es gelten die folgenden Fehlerabschätzungen für hedes $n \in \mathbb{N}^*$ : $  x_n - v  _V \le \frac{q^n}{1-q}  x_1 - x_0  _V \text{ (A-priori-Abschätzung)}$ $  x_n - v  _V \le \frac{q}{1-q}  x_n - x_{n-1}  _V \text{ (A-posterior-Abschätzung)}$ |

|        | Normierter Raum: $V =$ normierter Vektorraum mit Norm $  \cdot  _V$ (ermöglicht Abstandsmessung)<br>Hier als Vorstellung $\mathbb{R}^{\mathbb{H}}$ mit Standard(2)-Norm (normaler Abstand im Raum)                                      |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.6.1  | Genau dasselbe wie vorher, wir ersetzen nur den Betrag durch die jeweilige Norm                                                                                                                                                         |
| 5.6.1  | Cauchy-Folge: Abstand von je zwei Folgegliedern                                                                                                                                                                                         |
|        | <b>2-Norm</b> : $  x  _2 = \sqrt{x_1^2 + x_2^2}$                                                                                                                                                                                        |
| 5.6.5  | Der Satz gilt im endlichen Raum für alle Normen.<br>Wenn eine Folge bezüglich einer Norm konvergiert, dann auch bzgl jeder anderen.<br>Grenzwerte bleiben gleich.                                                                       |
| 5.6.8  | Menge <b>abgeschlossen</b> : Rand gehört zur Menge<br>Menge <b>offen</b> : Rand gehört nicht zur Menge<br>Die meisten Menge sind weder offen noch abgeschlossen, keine Umkehrschlüsse!                                                  |
| 5.6.17 | Ist $(V,   \cdot  _V)$ ein endlichdimensionaler normierter Raum,so besitzt jede beschränkte Folge in $V$ mindestens einen Häufungswert. (Unendliche viele Punkte in einer beschränkten Menge müssen irgendwo klumpen)                   |
| 5.6.19 | Standardvektorraum $\mathbb{R}$ ist für jedes $d \in \mathbb{N}^*$ mit jeder Norm ein <b>Banachraum</b> . Wählt man außerdem die durch das Skalarprodukt induzierte 2-Norm, so ist $(\mathbb{R},   \cdot  _2)$ ein <b>Hilbertraum</b> . |

# Beispiele

# 1.7 Stetigkeit reeller Funktionen

# 1.7.1 Der Grenzwertbegriff für Funktionen

## Definitionen

 $V = \mathbb{R}^{\not\models}, \text{ 1-Norm: } ||x||_1 = \sum_{j=1}^3 |x_i|, \ a_n := (1, \frac{1}{n}, \frac{n-1}{n})^T, \ n \in \mathbb{N}^*$ Hier gilt  $\lim_{n \to \infty} a_n = (1, 0, 1)^T$ . Zeige: Abstand von  $a_n$  zu Grenzwert belieblig klein:  $||a_n - (1, 0, 1)^T|| = |0| + |\frac{1}{n}| + |\frac{n-1}{n} - 1| = \frac{2}{n} \text{ (Abstand geht gegen 0)}$ Sei  $\epsilon > 0$ . Dann existiert  $n_0 \in \mathbb{N}$  mit  $n_0 > \frac{2}{\epsilon}$ . Für alle  $n \ge n_0$  gilt:  $||a_n - (1, 0, 1)^T||_1 = \frac{2}{n} \le \frac{2}{n_0} \le \frac{2\epsilon}{2} = \epsilon$ 

Es sei  $D \subseteq \mathbb{R}$  eine Menge,  $f: D \to \mathbb{R}$  eine Funktion und  $x_0 \in \mathbb{R}$ 

- a) Wir nennen  $x_0$  einen **Häufungspunkt** von D, falls es eine Folge  $(a_n)$  in D mit  $a_n \neq x_0$  für alle  $n \in \mathbb{N}$  gibt, die gegen  $x_0$  konvergiert.
- b) Ist  $x_0$  ein Häufungspunkt von D, so sagen wir, dass f für x gegen  $x_0$  den Grenzwert y hat, wenn für jede Folge  $(a_n)$  in D, die gegen  $x_0$  konvergiert und für die  $a_n \neq x_0$  für alle  $n \in \mathbb{N}$  gilt, die Folge  $(f(a_n))$  gegen y konvergiert. Wir schreiben dafür:  $\lim_{x\to x_0} f(x) = y$ .
- 5.7.1 c) Ist  $x_0$  ein Häufungspunkt von  $D_+ := \{x \in D : x > x_0\}$ , so hat f für x gegen  $x_0$  den **rechtsseitigen Grenzwert** y, wenn für jede Folge  $(a_n)$  in  $D_+$ , die gegen  $x_0$  konvergiert, die Folge  $(f(a_n))$  gegen y konvergiert.

  Wir schreiben dafür:  $\lim_{x \to x_0+} f(x) = y$ .
  - d) Ist  $x_0$  ein Häufungspunkt von  $D_- := \{x \in D : x < x_0\}$ , so hat f für x gegen  $x_0$  den **linksseitigen Grenzwert** y, wenn für jede Folge  $(a_n)$  in  $D_-$ , die gegen  $x_0$  konvergiert, die Folge  $(f(a_n))$  gegen y konvergiert. Wir schreiben dafür:  $\lim_{x\to x_0-} f(x) = y$ .

## Divergenz

- a) Es seien  $D \subseteq \mathbb{R}$ ,  $f: D \to \mathbb{R}$  eine Funktion und  $x_0$  ein Häufungspunkt von D. Wir schreiben  $\lim_{x \to x_0} f(x) = \infty(-\infty)$ , wenn für jedes Folge  $(a_n)$  in D, die gegen  $x_0$  konvergiert und für die  $a_n \neq x_0$  für alle  $n \in \mathbb{N}$  gilt, die Folge  $(f(a_n))$  bestimmt gegen  $\infty(-\infty)$  divergiert.
- b) Es sei  $D \subset \mathbb{R}$  nicht nach oben (unten) beschränkt,  $f: D \to \mathbb{R}$  eine Funktion und  $y \in \mathbb{R} \cup \{\infty, -\infty\}$ . Wir sagen  $\lim_{x \to \infty} f(x) = y$  (bzw.  $\lim_{x \to -\infty} f(x) = y$ ), wenn für jede Folge  $(a_n)$  in D, die bestimmt gegen  $\infty(-\infty)$  divergiert,  $\lim_{x \to \infty} f(a_n) = y$  gilt.

## Sätze

5.7.6

5.7.7

Es sei  $D \subseteq \mathbb{R}$ ,  $f: D \to \mathbb{R}$  eine Funktion und  $x_0 \in \mathbb{R}$ . Existieren  $\lim_{x \to x_0 -} f(x)$  und  $\lim_{x \to x_0 +} f(x)$ und sind die beiden Werte gleich so existiert auch  $\lim_{x \to x_0} f(x)$  und es gilt

 $\lim_{x \to x_0} f(x) = \lim_{x \to x_{0-}} = \lim_{x \to x_{0+}}$ 

Es sei  $D \subseteq \mathbb{R}$  und  $x_0$  ein Häufungspunkt von D. Desweiteren seien drei Funktion  $f, g, h : D \to \mathbb{R}$  gegeben, so dass die Grenzwerte  $\lim_{x \to x_0} f(x)$  und  $\lim_{x \to x_0} g(x)$  existieren. Dann gilt:

- a) Die Grenzwerte für x gegen  $x_0$  von f + g, fg und |f| exisiteren und es gilt:
  - $\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$
  - $\lim_{x\to x_0} (f(x)\cdot g(x)) = \lim_{x\to x_0} f(x)\cdot \lim_{x\to x_0} g(x)$
  - $\lim_{x\to x_0} |f(x)| = |\lim_{x\to x_0} f(x)|$
- b) Gilt  $f(x) \leq g(x)$  für alle  $x \in D \setminus \{x_0\}$ , so ist  $\lim_{x \to x_0} f(x) \leq \lim_{x \to x_0} g(x)$
- c) Ist  $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x)$  und es gilt  $f(x) \le h(x) \le g(x)$  für alle  $x \in D\setminus\{x_0\}$ , so gilt auch  $\lim_{x\to x_0} h(x) = \lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x)$ . (Sandwich-Theorem)
- d) Ist  $y := \lim_{x \to x_0} g(x) \neq 0$ , so existiert  $\delta > 0$ , so dass  $|g(x)| \geq \frac{|y|}{2}$  für alle  $x \in (D \cap (x_0 \delta, x_0 + \delta)) \setminus \{x_0\}$  ist. Wir können also die Funktion  $\frac{f}{g} : (D \cap (x_0 \delta, x_0 + \delta)) \setminus \{x_0\} \to \mathbb{R}$  mit  $\frac{f}{g}(x) := \frac{f(x)}{g(x)}$  definieren. Für diese existiert dann der Limes für x gegen  $x_0$  mit  $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$ .

### Bemerkungen

| 5.7.1 | $x_0$ HP von $D$ bedeutet, dass $x_0$ aus $D\setminus\{x_o\}$ annäherbar Bsp.: HP von $(0,1]\colon [0,1]$ |
|-------|-----------------------------------------------------------------------------------------------------------|
| 5.7.4 | Es gilt nicht $\lim_{x\to x_0} f(x) = f(x_0)$ .                                                           |

# Beispiele

| 5.7.8 | $\lim_{x \to \infty} \frac{1}{x} = 0$ $\lim_{x \to 0^{+}} \frac{1}{x} = \infty$ $\lim_{x \to 0^{-}} \frac{1}{x} = -\infty$ $\lim_{x \to \infty} x = \infty$ |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.7.8 | Exponential<br>funktion: $E(x)=e^x=\sum_{n=0}^\infty\frac{x^n}{n!}$ Grenzwerte: $\lim_{x\to\infty}e^x=\infty\\ \lim_{x\to-\infty}e^x=0$                     |

# 1.7.2 Stetigkeit

## Definitionen

| 5.7.9  | Es sei $D \subseteq \mathbb{R}$ und $x_0 \in D$ . Eine Funktion $f: D \to \mathbb{R}$ heißt <b>stetig</b> in $x_0$ , falls für jede Folge $(a_n)$ in $D$ , die gegen $x_0$ konvergiert, auch die Folge $(f(a_n))$ konvergiert und $\lim_{n\to\infty} f(a_n) = f(x_0)$ gilt.  Weiter heißt $f$ stetig auf $D$ , wenn $f$ in jedem Punkt $x_0 \in D$ stetig ist.  Schließlich setzen wir noch $C(D) := \{f: D \to \mathbb{R} : f \text{ stetig auf } D\}$ . (Menge aller stetigen Funktionen auf D)                                                                    |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.7.18 | Es sei $D \subseteq \mathbb{R}$ . Eine Funktion $f: D \to \mathbb{R}$ heißt<br>a) monoton wachsend, falls für alle $x, y \in D$ gilt $x \leq y \Rightarrow f(x) \leq f(y)$<br>b) monoton fallend, falls für alle $x, y \in D$ gilt $x \leq y \Rightarrow f(x) \geq f(y)$<br>c) streng monoton wachsend, falls für alle $x, y \in D$ gilt $x < y \Rightarrow f(x) < f(y)$<br>d) streng monoton fallend, falls für alle $x, y \in D$ gilt $x < y \Rightarrow f(x) > f(y)$<br>e) (streng) monoton, wenn sie (streng) monoton wachsend oder (streng) monoton fallend ist |
| 5.7.22 | Es sei $D \subseteq \mathbb{R}$ . Eine Funktion $f: D \to \mathbb{R}$ heißt <b>Lipschitz-stetig</b> , falls es ein $L > 0$ gibt mit $ f(x) - f(y)  \le L x - y $ für alle $x, y \in D$ .                                                                                                                                                                                                                                                                                                                                                                             |
| Sätze  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

## $S\ddot{a}tze$

| 5.7.12 | Es sei $D \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}$ eine Funktion. Ist $x_0 \in D$ ein Häufungspunkt von D,so ist $f$ in $x_0$ genau dann <b>stetig</b> , wenn $\lim_{x\to x_0} f(x) = f(x_0)$ gilt.                                                                                   |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.7.15 | Es sei $D \subseteq \mathbb{R}$ und $f, g : D \to \mathbb{R}$ seien stetig in $x_0 \in D$ . Dann sind die Funktionen $f + g$ , $fg$ und $ f $ stetig in $x_0$ .<br>Ist $x_0 \in D^* := \{x \in D : g(x) \neq 0\}$ , so ist die Funktion $\frac{f}{g} : D^* \to \mathbb{R}$ stetig in $x_0$ . |
| 5.7.16 | Es seien $D, E \subseteq \mathbb{R}$ und $f: D \to E$ , sowie $g: E \to \mathbb{R}$ Funktionen. Ist $f$ stetig in $x_0 \in D$ und $g$ stetig in $f(x_0)$ , so ist $g \circ f: D \to \mathbb{R}$ stetig in $x_0$ .                                                                            |
| 5.7.20 | Es sei $D \subseteq \mathbb{R}$ und $x_0 \in D$ . Eine Funktion $f: D \to \mathbb{R}$ ist in $x_0$ genau dann <b>stetig</b> , wenn es für jedes $\epsilon > 0$ ein $\delta > 0$ gibt, so dass $ f(x) - f(y)  < \epsilon$ für alle $x \in D$ mit $ x - x_0  < \delta$ gilt.                   |
| 5.7.23 | Ist $D \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}$ <b>Lipschitz-stetig</b> so ist $f$ <b>stetig</b> auf $D$ . Die Umkehrung dieser Aussage ist falsch. (Lipschitz-Stetigkeit ist damit ein strengerer Begriff als Stetigkeit)                                                            |

# Bemerkungen

| 5.7.9  | Stetigkeit: Kleines Wackeln an Parametern $\rightarrow$ auch nur kleines Wackeln am Funktionswert |
|--------|---------------------------------------------------------------------------------------------------|
| 5.7.12 | Stetigkeit: Grenzübergang austauschbar mit Funktionsauswertung                                    |
| 5.7.15 | Jede Polynomfunktion ist auf ganz $\mathbb{R}$ stetig.                                            |
| 5.7.19 | Exponentialfunktion ist streng monoton wachsend.                                                  |
| 5.7.23 | Lipschitz-Stetigkeit bedeutet anschaulich, dass die Steigung des Graphen beschränkt bleibt.       |

## 1.7.3 Eigenschaften stetiger Funktionen

### Definitionen

5.7.27 Es sei  $D \subseteq \mathbb{R}$ . Eine Funktion  $f: D \to \mathbb{R}$  heißt beschränkt, falls die Menge f(D) (Bild der Funktion) beschränkt ist, d.h. falls ein  $C \ge 0$  existiert, so dass  $|f(x)| \le C$  für alle  $x \in D$  gilt.

### Sätze

### Zwischenwertsatz

Es seien  $a, b \in \mathbb{R}$  mit a < b gegeben und  $f \in C([a, b])$ . Ist  $y_0$  eine reelle Zahl zwischen f(a) und f(b), so gibt es ein  $x_0 \in [a, b]$  mit  $f(x_0) = y_0$ .

5.7.25



### Nullstellensatz von Bolzano

- 5.7.26 Es seien  $a, b \in \mathbb{R}$  mit a < b gegeben und  $f \in C([a, b])$  erfülle f(a)f(b) < 0 (Existenz einer Nullstelle / Einer der beiden Werte 0). Dann gibt es ein  $x_0 \in (a, b)$  mit  $f(x_0) = 0$ .
- Es sei  $K \subseteq \mathbb{R}$  kompakt und nicht-leer, sowie  $f \in C(K)$ . Dann gibt es  $x_*, x^* \in K$ , so dass  $f(x_*) \le f(x) \le f(x^*)$  für alle  $x \in K$  gilt. Insbesondere ist f beschränkt. (Jede stetige Funktion auf kompakter Menge ist beschränkt)

## 1.8 Stetigkeit von Funktionen mehrerer Variablen

## Definitionen

5.8.1

Es seien V und W normierte  $\mathbb{R}$ -Vektorräume,  $D \subseteq V$  und  $f: D \to W$  eine Funktion.

- a) Wir nennen  $x_0 \in D$  **Häufungspunkt** von D, falls es eine Folge  $(a_n)$  in D mit  $a_n \neq x_0$  für alle  $n \in \mathbb{N}$  gibt, die gegen  $x_0$  konvergiert.
- b) Sei  $x_0$  ein Häufungspunkt von D. Dann ist  $\lim_{x\to x_0} f(x) = y$ , falls für jede Folge  $(a_n)$  in D, die gegen  $x_0$  konvergiert und  $a_n \neq x_0$  für alle  $n \in \mathbb{N}$  erfüllt, die Folge  $(f(a_n))$  gegen y konvergiert.

Es seien V, W zwei normierte  $\mathbb{R}$ -Vektorräumen,  $D \subseteq V$  und  $x_0 \in D$ . Eine Funktion  $f: D \to W$  heißt **stetig** in  $x_0$ , wenn für jede Folge  $(a_n)$  in D, die gegen  $x_0$  konvergiert, auch die Folge  $(f(a_n))$  konvergiert und  $\lim_{n\to\infty} f(a_n) = f(x_0)$  gilt.

Weiter heißt **f stetig auf D**, wenn f in jedem Punkt  $x_0 \in D$  stetig ist. Außerdem setzen wir wieder  $C(D; W) := \{f : D \to W : f \text{ stetig auf } D\}$ .

| 5.8.4 | Es sei $D \subseteq \mathbb{R}$ und $x_0 \in D$ . Dann ist $f: D \to \mathbb{R}^1$ genau dann in $x_0$ stetig, wenn alle Koordinatenfunktionen $f_1, f_2, \dots, f_p: D \to \mathbb{R}$ in $x_0$ stetig sind.                                                                                                                                                                                  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.8.5 | Es seien $D \subseteq \mathbb{R}$ , $x_0 \in D$ und $f, g : D \to \mathbb{R}$ stetig in $x_0$ , sowie $h : f(D) \to \mathbb{R}$ stetig in $f(x_0)$ .<br>Dann sind auch $f + g$ , $fg$ und $h \circ f$ als Funktionen von $D$ nach $\mathbb{R}$ stetig in $x_0$ .<br>Ist außerdem $x_0 \in D^* := \{x \in D : g(x) \neq 0\}$ , so ist auch $\frac{f}{g} : D^* \to \mathbb{R}$ stetig in $x_0$ . |
| 5.8.8 | Es sei $K \subseteq \mathbb{R}$ kompakt und nicht-leer, sowie $f \in C(K)$ . Dann gibt es $x_*, x^* \in K$ , so dass $f(x_*) \leq f(x) \leq f(x^*)$ für alle $x \in K$ gilt. Insbesondere ist $f$ beschränkt.                                                                                                                                                                                  |

5.8.2 Hier keine links- und rechtsseitiger Grenzwerte, da es Unmengen an Richtungen gibt

## Beispiele