Automi e Linguaggi Formali - Esame del 23 Luglio 2024

Problema 1 (9 punti)

Considera il linguaggio L = {1^m 0ⁿ | 5m ≤ 3n}. Dimostra che L non è regolare.

Dimostrazione per contraddizione usando il Pumping Lemma

Assunzione: Supponiamo per contraddizione che L sia regolare.

Applicazione del Pumping Lemma: Allora esiste una costante p > 0 (pumping length) tale che ogni stringa $w \in L$ con $|w| \ge p$ può essere decomposta come w = xyz con:

- 1. $|xy| \le p$
- 2. |y| > 0
- 3. $xy^i z ∈ L per ogni i ≥ 0$

Scelta della stringa di test: Consideriamo $w = 1^p 0^{5p/3} \in L$.

Verifichiamo che $w \in L$: dobbiamo avere $5m \le 3n$, cioè $5p \le 3\lceil 5p/3 \rceil$. Poiché $\lceil 5p/3 \rceil \ge 5p/3$, abbiamo $3\lceil 5p/3 \rceil \ge 5p$, quindi $w \in L$.

Analisi della decomposizione: Poiché $|xy| \le p$ e w inizia con p occorrenze di 1, la substring xy deve essere contenuta interamente nella parte dei '1'. Quindi:

- $x = 1^a$ per qualche $a \ge 0$
- $y = 1^b per qualche b > 0 (da |y| > 0)$
- $z = 1^(p-a-b) 0^[5p/3]$

Derivazione della contraddizione: Consideriamo $xy^0z = xz = 1^(p-b) 0^{5p/3}$.

Per essere in L, questa stringa deve soddisfare:

$$5(p-b) \le 3[5p/3]$$

Ma sappiamo che $3[5p/3] \ge 5p$ (come verificato sopra), quindi:

$$5(p-b) \le 5p$$

Questo è sempre vero. Dobbiamo essere più precisi.

Approccio corretto: Consideriamo $w = 1^{(3k)} 0^{(5k)}$ per k sufficientemente grande.

Verifichiamo: $5(3k) = 15k ≤ 3(5k) = 15k \checkmark$

Nella decomposizione xyz:

- $y = 1^b con 1 \le b \le p$
- Consideriamo $xy^2z = 1^(3k+b) 0^(5k)$

Per essere in L: $5(3k+b) \le 3(5k) = 15k$

Quindi: $15k + 5b \le 15k$, che implica $5b \le 0$, cioè $b \le 0$.

Ma sappiamo che b > 0 dal pumping lemma. **Contraddizione!**

Problema 2 (9 punti)

Dimostra che se $L \subseteq \Sigma$ è context-free e T è una traslitterazione, allora T(L) è context-free.*

Dimostrazione costruttiva

Definizione: Una traslitterazione T: $\Sigma \to \Gamma^*$ mappa ogni simbolo $a \in \Sigma$ in una stringa T(a) $\in \Gamma^*$.

Estensione a stringhe: $T(a_1a_2...a_n) = T(a_1)T(a_2)...T(a_n)$

Costruzione della grammatica: Sia $G = (V, \Sigma, R, S)$ una CFG per L. Costruiamo $G' = (V, \Gamma, R', S)$ dove:

R' è ottenuta da R sostituendo ogni produzione $A \rightarrow \alpha$ con $A \rightarrow T(\alpha)$, dove:

- Se $\alpha = a \in \Sigma$, allora $T(\alpha) = T(a)$
- Se $\alpha = A_1A_2...A_k$ (variabili), allora $T(\alpha) = A_1A_2...A_k$
- Se $\alpha = a_1 A_1 a_2 A_2 ... a_k A_k a_{k+1}$, allora $T(\alpha) = T(a_1) A_1 T(a_2) A_2 ... T(a_k) A_k T(a_{k+1})$

Correttezza:

T(L) ⊆ L(G'): Se w ∈ T(L), allora w = T(u) per qualche u ∈ L. Poiché u ∈ L(G), esiste una derivazione S ⇒* u in G. La stessa sequenza di applicazioni di produzioni in G' produce S ⇒* T(u) = w.

2. **L(G')** \subseteq **T(L):** Se $w \in L(G')$, esiste una derivazione $S \Rightarrow^* w$ in G'. Questa derivazione corrisponde a una derivazione $S \Rightarrow^* u$ in G per qualche $u \in \Sigma^*$, e w = T(u). Quindi $w \in T(L)$.

Pertanto T(L) = L(G') è context-free. \Box

Problema 3 (9 punti)

Mostra che i 2-PDA sono equivalenti alle Turing Machine.

Dimostrazione di equivalenza

Dobbiamo dimostrare che 2-PDA \equiv TM, cioè 2-PDA \subseteq TM e TM \subseteq 2-PDA.

Parte 1: 2-PDA ⊆ TM Ogni 2-PDA può essere simulato da una TM:

- La TM usa il nastro per simulare entrambe le pile del 2-PDA
- Divide il nastro in tre sezioni: input, pila 1, pila 2
- Le operazioni push/pop sono simulate da movimenti sul nastro
- Il controllo finito del 2-PDA è implementato negli stati della TM

Parte 2: TM ⊆ 2-PDA (costruzione chiave) Ogni TM M può essere simulata da un 2-PDA P:

Rappresentazione del nastro:

- Pila 1: contiene la parte sinistra del nastro (dalla posizione della testina verso sinistra)
- Pila 2: contiene la parte destra del nastro (dalla posizione della testina verso destra)
- Il simbolo in cima a pila 2 è quello sotto la testina

Simulazione delle transizioni: Per una transizione $\delta(q, a) = (q', b, D)$:

- 1. Movimento a destra (D = R):
 - Pop a da pila 2
 - Push b su pila 1
 - Se pila 2 è vuota, push ⊔ (blank)

2. Movimento a sinistra (D = L):

- Pop a da pila 2
- Push b su pila 2
- Pop da pila 1 e push su pila 2

• Se pila 1 è vuota, push ⊔ su pila 2

3. Stato e accettazione:

- Gli stati del 2-PDA corrispondono agli stati della TM
- Accettazione quando si raggiunge uno stato finale

Correttezza: Questa costruzione preserva la configurazione del nastro e simula fedelmente ogni passo della TM.

Quindi 2-PDA ≡ TM. □

Problema 4 (9 punti)

Parte (a): PIVOT ∈ NP

Certificato: Dato input (n, W), il certificato è una coalizione $C \subseteq \{1, ..., n-1\}$.

Verificatore polinomiale:

Verifica((n, W), C):

1. Calcola S = $\Sigma_j \in C W[j]$

2. Calcola T = $\Sigma^{n}_{i=1}$ W[j]

3. Verifica che S < T/2 < S + W[n]

4. Return true se entrambe le condizioni sono soddisfatte

Complessità: O(n) per calcolare le somme.

Quindi PIVOT ∈ NP. □

Parte (b): PIVOT è NP-hard

Riduzione: SET-PARTITION \leq_p PIVOT

Dato: Un'istanza $\langle S \rangle$ di SET-PARTITION dove $S = \{s_1, s_2, ..., s_k\}$ e $T = \Sigma_i s_i$.

Costruzione:

- n = k + 1
- $W[i] = s_i \text{ per } i = 1, ..., k$
- W[n] = W[k+1] = T/2 (assumiamo T pari; se dispari, SET-PARTITION ha risposta NO)

Correttezza:

 \Rightarrow : Se SET-PARTITION ha risposta YES, esistono S_1 , S_2 con $S_1 \cup S_2 = S$, $S_1 \cap S_2 = \emptyset$, $\Sigma_x \in S_1 \times S_2 = S$, $S_1 \cap S_2 = \emptyset$, $\Sigma_x \in S_1 \times S_2 = S$, $S_1 \cap S_2 = \emptyset$, $S_2 \in S_1 \times S_2 = S$, $S_1 \cap S_2 = S$, $S_2 \cap S_2 = S$

Sia C = $\{i \mid s_i \in S_1\}$. Allora:

- $\Sigma_j \in C W[j] = T/2$
- $\Sigma_{j=1}^{n} W[j] = T + T/2 = 3T/2$
- T/2 < 3T/4 e T/2 + T/2 = T > 3T/4

Quindi l'elettore n è pivot.

←: Se l'elettore n è pivot, esiste C tale che:

- $\Sigma_i \in C W[j] < 3T/4$
- $\Sigma_j \in C W[j] + T/2 > 3T/4$

Dalla seconda: $\Sigma_i \in C W[j] > T/4$

Dalla prima: $\Sigma_i \in C W[j] < 3T/4$

Ma $\Sigma_j \in C$ W[j] è somma di elementi di S, e l'unico modo per avere una somma tra T/4 e 3T/4 che sia anche < 3T/4 è che sia esattamente T/2.

Quindi $\{s_i \mid i \in C\}$ è una partizione di S con somma T/2.

La riduzione è chiaramente polinomiale. Quindi PIVOT è NP-hard.

□

Conclusione: PIVOT è NP-completo.