

CHRISTELLE SCHARFF
IAN CARVAHALO
KALEEMUNNISA
KRISHNA BATHULA

CONTENTS

$\underset{y_i t = \beta' x_{it} + \mu_i + \epsilon_{it}}{\mathsf{pandas}}$

PART 1 - PANDAS

INTRODUCTION

Explore Data

import pandas as pd

DATA FRAMES

Regd. No	Name	Marks%
1000	Steve	86.29
1001	Mathew	91.63
1002	Jose	72.90
1003	Patty	69.23
1004	Vin	88.30

data framo			
data frame	1	"S"	TRUE
			INOL
	7	"A"	FALSE
	3	" U"	TRUE
	numeric	character	logical

INDEXING IN DF

> df	List[[1]]			
a	b	С		
g	1.2724293	-0.005767173		
j	0.4146414	2.404653389		
0	-1.53995	0.763593461		
х	-0.928567	-0.799009249		
f	-0.2947204	-1.147657009		
> df	List[[2]]			
a	b	С		
k	-0.04493361	0.91897737		
a	-0.01619026	0.7821363		
j	0.94383621	0.07456498		
W	0.8212212	-1.9893517		
i	0.59390132	0.61982575		
> df	List[[3]]			
a	b	С		
m	-1.28459935	-0.6494716		
W	0.04672617	0.7267507		
1	-0.23570656	1.1519118		
g	-0.54288826	0.9921604		
b	-0.43331032	-0.4295131		

index	a	b	С
1	g	1.2724293	-0.005767173
1	j	0.4146414	2.404653389
1	0	-1.53995	0.763593461
1	x	-0.928567	-0.799009249
1	f	-0.2947204	-1.147657009
2	k	-0.04493361	0.91897737
2	a	-0.01619026	0.7821363
2	j	0.94383621	0.07456498
2	w	0.8212212	-1.9893517
2	i	0.59390132	0.61982575
3	m	-1.28459935	-0.6494716
3	w	0.04672617	0.7267507
3	1	-0.23570656	1.1519118
3	g	-0.54288826	0.9921604
3	b	-0.43331032	-0.4295131

Selecting Some columns and all rows

	state	color	food	age	height	score
Jane	NY	blue	Steak	30	165	4.6
Niko	TX	green	Lamb	2	70	8.3
Aaron	FL	red	Mango	12	120	9
Penelope	AL	white	Apple	4	80	3.3
Dean	AK	gray	Cheese	32	180	1.8
Christina	TX	black	Melon	33	172	9.5
Cornelia	TX	red	Beans	69	150	2.2

	color	age	height
Jane	blue	30	165
Niko	green	2	70
Aaron	red	12	120
Penelope	white	4	80
Dean	gray	32	180
Christina	black	33	172
Cornelia	red	69	150

Column Selection

Selecting Some rows and all columns.

	state	color	food	age	height	score
Jane	NY	blue	Steak	30	165	4.6
Niko	TX	green	Lamb	2	70	8.3
Aaron	FL	red	Mango	12	120	9
nelope	AL	white	Apple	4	80	3.3
Dean	AK	gray	Cheese	32	180	1.8
nristina	TX	black	Melon	33	172	9.5
Cornelia	TX	red	Beans	69	150	2.2

Row Selection

Selecting Some rows and some columns.

	state	color	food	age	height	score
Jane	NY	blue	Steak	30	165	4.6
Niko	TX	green	Lamb	2	70	8.3
Aaron	FL	red	Mango	12	120	9
Penelope	AL	white	Apple	4	80	3.3
Dean	AK	gray	Cheese	32	180	1.8
Christina	TX	black	Melon	33	172	9.5
Cornelia	TX	red	Beans	69	150	2.2

Slicing and Dicing

Selecting Some rows and some columns.

	state	color	food	age	height	score
Jane	NY	blue	Steak	30	165	4.6
Niko	TX	green	Lamb	2	70	8.3
Aaron	FL	red	Mango	12	120	9
Penelope	AL	white	Apple	4	80	3.3
Dean	AK	gray	Cheese	32	180	1.8
Christina	TX	black	Melon	33	172	9.5
Cornelia	TX	red	Beans	69	150	2.2

Slicing and Dicing

SORTING ON DF

Sorting by score on the DF.

Score	Name	Age	
89	Alisa	26	0
87	Bobby	27	1
67	Cathrine	25	2
55	Madonna	24	3
47	Rocky	31	4
72	Sebastian	27	5
76	Jaqluine	25	6
79	Rahul	33	7
44	David	42	8
92	Andrew	32	9
99	Ajay	51	10
69	Teresa	47	11

	Age	Name	Score
8	42	David	44
4	31	Rocky	47
3	24	Madonna	55
2	25	Cathrine	67
11	47	Teresa	69
5	27	Sebastian	72
6	25	Jaqluine	76
7	33	Rahul	79
1	27	Bobby	87
0	26	Alisa	89
9	32	Andrew	92
10	51	Ajay	99

ADDING DF

Merging two DF's

Name	City	Country
Lenna	San Francisco	US
Malcom	New York	US
Akiko	Tokyo	Japan

	Name	City	Country
	Lenna	San Francisco	US
DF - 2	Thomas	London	UK
	Diane	Chicago	US

Name	City	Country
Lenna	San Francisco	US
Malcom	New York	US
Akiko	Tokyo	Japan
Lenna	San Francisco	US
Thomas	London	UK
Diane	Chicago	US

Resulting DF

DF - 1

AGGREGATIONS ON DF

animal	water_nee	si l
zebra	10	
zebra	15	zebra → mean: 15
lion	100	
elephant	320	
zebra	20	lion → mean: 120
lion	120	
lion	140	
zebra	15	elephant → mean: 320

PIVOT TABLE IN DF

Pivot

df

	foo	bar	baz	Z00
0	one	Α	1	х
1	one	В	2	У
2	one	С	3	Z
3	two	Α	4	q
4	two	В	5	W
5	two	С	6	t

<pre>df.pivot(index='foo',</pre>
columns='bar',
values='baz')

bar	A	В	С
foo			
one	1	2	3
two	4	5	6

CORRELATION

Correlation between the columns in the DF

Salary	College	Weight	Height	Age	Position	Number	Team	Name	
7730337.0	Texas	180.0	6-2	25.0	PG	0.0	Boston Celtics	Avery Bradley	0
6796117.0	Marquette	235.0	6-6	25.0	SF	99.0	Boston Celtics	Jae Crowder	1
NaN	Boston University	205.0	6-5	27.0	SG	30.0	Boston Celtics	John Holland	2
1148640.0	Georgia State	185.0	6-5	22.0	SG	28.0	Boston Celtics	R.J. Hunter	3
5000000.0	NaN	231.0	6-10	29.0	PF	8.0	Boston Celtics	Jonas Jerebko	4
12000000.0	NaN	240.0	6-9	29.0	PF	90.0	Boston Celtics	Amir Johnson	5
1170960.0	LSU	235.0	6-8	21.0	PF	55.0	Boston Celtics	Jordan Mickey	6
2165160.0	Gonzaga	238.0	7-0	25.0	С	41.0	Boston Celtics	Kelly Olynyk	7
1824360.0	Louisville	190.0	6-2	22.0	PG	12.0	Boston Celtics	Terry Rozier	3
3431040.0	Oklahoma State	220.0	6-4	22.0	PG	36.0	Boston Celtics	Marcus Smart	9

Output:

	Number	Age	Weight	Salary
Number	1.000000	0.028724	0.206921	-0.112386
Age	0.028724	1.000000	0.087183	0.213459
Weight	0.206921	0.087183	1.000000	0.138321
Salary	-0.112386	0.213459	0.138321	1.000000

PANDAS (EDA PART-I) EXERCISE

The Exercises using **Pandas Library** is showns in the **Part-I** of the **Exploratory Data Analysis** Python Notebook.

The relevant Data has to be loaded.

END OF SECTION

PART 2 - MATPLOTLIB

INTRODUCTION

import matplotlib.pyplot as plt

PLOTTING DATA

Line Plot

Scatter Plot

Popularity of American names in the previous 30 years

Line Plot

Area Plot

Histogram

Sub Plot

Density Plot

Hexbin Plot

Surface Plot

CHARTS

Pie Chart

Column Chart

MORE VISUALIZATIONS

TREE MAP

WORDCLOUD

VENN DIAGRAM

MATPLOTLIB (EDA PART-II) EXERCISE

The Exercises using Matplot library is showns in the **Part-II** of the **Exploratory Data Analysis** Python Notebook.

The various **Matplot Library** methods are used to depict the different **Data Visualizations** in the Notebook.

END OF SECTION

PART 3 - NUMPY

INTRODUCTION NumPy The image information as a Matrix and Cube import numpy as np

NumPy arrays

ARRAY TYPES

N (MULTI) DIMENSIONAL ARRAY

NumPy Ndarray

10 15 13 8 25

1D-Array

	Column 0	Column 1	Column 2
Row 0	X[0][0]	X[0][1]	X[0][2]
Row 1	X[1][0]	X[1][1]	X[1][2]
Row 2	X[2][0]	X[2][1]	X[2][2]

2D-Array

ARRAY REPRESENTATION

 $A = \begin{bmatrix} [A[0][0], A[0][1], A[0][2]], [A[1][0], A[1][1], A[1][2]][A[2][0], A[2][1], A[2][2]] \end{bmatrix}$

A[0][0]	A[0][1]	A[0][2]
A[1][0]	A[1][1]	A[1][2]
A[2][0]	A[2][1]	A[2][2]

$$A = [[11, 12, 13], [21, 22, 23], [31, 32, 33]]$$

Example 1 Example 2 Example 3

INDEXING IN 2D NUMPY ARRAYS

'i' selects the row, and 'j' selects the column

Elements selected from 3 rows(index - 0,1,2) and 1st column(index - 1).

INDEXING IN 3D NUMPY ARRAYS

'i' - array(matrix),'j' - row and

'k' - column

SELECTING ROW OR COLUMN IN 3D NUMPY ARRAY

CASE 1: a3[1,2,:] = [26 27 28]

: -> Selects all

CASE 2: a3[0,:,1] = [11 14 17]

CASE 3: a3[:,1,2] = [15 25 35]

SELECTING MATRIX IN 3D NUMPY ARRAY

CASE 1: a3[2] = [[30 31 32] [33 34 35] [36 37 38]]

CASE 2: a3[:, 1]) = [[13 14 15] [23 24 25] [33 34 35]]

: -> Selects all

CASE 3: a3[:, :, 0]) # [[10 13 16] [20 23 26]

[30 33 36]]

SLICING - NUMPY ARRAY

SLICE a2[1:,2:4]) = [[17 18] [22 23] [27 28]]

Slicing a 3D Array

SLICE a3[:2,1:,:2]) = [[[13 14] [16 17]] [[23 24] [26 27]]]

IMAGE AS ARRAYS

pixel image

COLOR IMAGE

3-channel matrix

GREYSCALE IMAGE

NUMPY(EDA PART-III) EXERCISE

The Exercises using **Numpy** library is showns in the **Part-III** of the **Exploratory Data Analysis** Python Notebook.

The various **Numpy Library** methods are used to handle the **Image** and **Sound Data** (unstructured) in the Notebook.

EDA EXERCISE-1

Steps to be done:

- 1. Load the dataset: "international-airline-passengers.csv" File is stored in Google Drive.
- 2. Check the csv file using the ".info()" and ".head()" functions and write down your observations.
- 3. Use the function "pd.to_datetime()" to change the column type of 'Month' to a datatime type.
- 4. Set the index of data frame to be a datetime index using the column 'Month' and the "df.set_index()" function.
- 5. Choose the appropriate plot and display the data.
- 6. Choose appropriate scale.
- 7. Label the axes.

EDA EXERCISE-2

Steps to be done:

- Load the dataset: "weight-height.csv"
- 2. Inspect it
- 3. Plot it using a scatter plot with Weight as a function of Height
- 4. Plot the male and female populations with 2 different colors on a new scatter plot
- 5. Remember to label the axes

EDA EXERCISE-3

Steps to be done:

- 1. 1.Plot the histogram of the heights for males and for females on the same plot.
- 2. 2.Use alpha to control transparency in the plot comand
- 3. 3.Plot a vertical line at the mean of each population using plt.axvline()

END OF CHAPTER