Esercizi sugli stadi amplificatori

Esercizio 1.

Con riferimento al circuito in figura, in cui sono date le tensioni continue V_A , V_B , V_C nel punto di lavoro:

- 1. verificare la regione di funzionamento di MN e di MP e determinarne i parametri del modello per il piccolo segnale;
- 2. valutare l'amplificazione di tensione $A_v = \frac{v_{\text{out}}}{v_{\text{in}}}$, la resistenza d'ingresso R_{in} e la resistenza d'uscita R_{out} in condizioni di piccolo segnale e per segnali in banda (in banda, il condensatore C_1 può considerarsi un corto circuito ed il condensatore C_2 può considerarsi un circuito aperto);
- 3. ricavare l'espressione della funzione di trasferimento $A_v(s) = \frac{V_{\text{out}}(s)}{V_{\text{in}(s)}}$ ed i valori numerici delle frequenze di taglio di zeri e poli per $C_1 = 1 \mu \text{F}$ e $C_2 = 100 \text{pF}$, e tracciarne i diagrammi di Bode di modulo e fase.
- 4. sotto le stesse ipotesi del punto 3., determinare l'impedenza d'ingresso $Z_{in}(s)$ e l'impedenza d'uscita $Z_{out}(s)$ e tracciarne i diagrammi di Bode di modulo e fase.

Esercizio 2.

Con riferimento al circuito in figura, in cui sono date le tensioni continue V_A , V_B , V_C e V_D nel punto di lavoro:

- 1. verificare la regione di funzionamento di MN e di MP e determinarne i parametri del modello per il piccolo segnale;
- 2. valutare l'amplificazione di tensione $A_v = \frac{v_{\rm out}}{v_{\rm in}}$, la resistenza d'ingresso $R_{\rm in}$ e la resistenza d'uscita $R_{\rm out}$ in condizioni di piccolo segnale e per segnali in banda (in banda, il condensatore C può considerarsi come un circuito aperto);
- 3. ricavare l'espressione della funzione di trasferimento $A_v(s) = \frac{V_{\text{out}}(s)}{V_{\text{in}(s)}}$ ed i valori numerici delle frequenze di taglio di zeri e poli per C = 100 pF e tracciarne i diagrammi di Bode di modulo e fase.

Esercizio 3.

Con riferimento al circuito in figura, in cui sono date le tensioni continue V_A , V_B , V_C nel punto di lavoro:

- 1. verificare la regione di funzionamento di M1 e di M2 e determinarne i parametri del modello per il piccolo segnale;
- 2. valutare l'amplificazione di tensione $A_v = \frac{v_{\rm out}}{v_{\rm in}}$, la resistenza d'ingresso $R_{\rm in}$ e la resistenza d'uscita $R_{\rm out}$ in condizioni di piccolo segnale e per segnali in banda (in banda, il condensatore C può considerarsi come un corto circuito);
- 3. ricavare l'espressione della funzione di trasferimento $A_v(s) = \frac{V_{\text{out}}(s)}{V_{\text{in}(s)}}$ ed i valori numerici delle frequenze di taglio di zeri e poli per $C = 1 \mu \text{F}$ e tracciarne i diagrammi di Bode di modulo e fase.

soluzione esercizio 1.

- 1. per MN: $V_{\rm GS}=0.6$ V, $V_{\rm DS}=2$ V, $I_{\rm d}=10\mu{\rm A}$ (essendo $V_{\rm GS}>V_{\rm TH}$ e $V_{\rm DS}>V_{\rm GS}-V_{\rm TH}$ il transistore opera in saturazione), $g_{m,n}=200\mu{\rm S};~g_{o,n}=0$, per MP: $V_{\rm SG}=1$ V, $V_{\rm SD}=2$ V, $I_{\rm D}=100\mu{\rm A}$ (essendo $V_{\rm SG}>V_{\rm TH}$ e $V_{\rm SD}>V_{\rm SG}-V_{\rm TH}$ il transistore opera in saturazione), $g_{m,p}=500\mu{\rm s};~g_{o,p}=0$.
- 2. $A_{\rm v} = 200, R_{\rm in} = 80 {\rm k}\Omega, R_{\rm out} = 20 {\rm k}\Omega.$
- 3. $A_{\rm v}(s) = k \frac{-\frac{s}{s_{\rm p1}}}{\left(1 \frac{s}{s_{\rm p1}}\right)\left(1 \frac{s}{s_{\rm p2}}\right)}$ con k = 200, $s_{\rm p1} = -12.5 {\rm rad/s}$ ($f_{\rm p1} = 2 {\rm Hz}$) ed $s_{\rm p2} = -100 {\rm rad/ms}$ ($f_{\rm p2} = 15.9 {\rm kHz}$).
- 4. $Z_{\rm in} = \frac{1+sCR_{\rm in}}{sC}$, $Z_{\rm out} = R_{\rm out}$

soluzione esercizio 2.

- 1. per MN: $V_{\rm GS}=0.6{\rm V},~V_{\rm DS}=1.1{\rm V},~I_{\rm D}=10\mu{\rm A}$ (essendo $V_{\rm GS}>V_{\rm TH}$ e $V_{\rm DS}>V_{\rm GS}-V_{\rm TH}$ il transistore opera in saturazione); $g_{m,n}=200\mu{\rm S};~g_{o,n}=0$, per MP: $V_{\rm SG}=1{\rm V},~V_{\rm SD}=2{\rm V},~I_{\rm D}=200\mu{\rm A}$ (essendo $V_{\rm SG}>V_{\rm TH}$ e $V_{\rm SD}>V_{\rm SG}-V_{\rm TH}$ il transistore opera in saturazione); $g_{m,p}=1{\rm mS};~g_{o,p}=0$.
- 2. $A_{\rm v} = -100, R_{\rm in} = 5 {\rm k}\Omega, R_{\rm out} = 5 {\rm k}\Omega.$
- 3. $A_{\rm v}(s)=k \frac{1}{1-\frac{s}{s_{\rm p1}}} \ {\rm con} \ k=-100, \, s_{\rm p1}=-2{\rm rad}/\mu {\rm s} \, (f_{\rm p1}=313{\rm kHz})$

soluzione esercizio 3.

- 1. per M1: $V_{\rm GS}=0.6{\rm V}, V_{\rm DS}=2{\rm V}, I_{\rm D}=10\mu{\rm A}$ (essendo $V_{\rm GS}>V_{\rm TH}$ e $V_{\rm DS}>V_{\rm GS}-V_{\rm TH}$ il transistore opera in saturazione); $g_{m1}=200\mu{\rm S}, g_{o1}=0$; per M2: $V_{\rm GS}=0.9{\rm V}, V_{\rm DS}=1.9{\rm V}, I_{\rm D}=100\mu{\rm A}$ (essendo $V_{\rm GS}>V_{\rm TH}$ e $V_{\rm DS}>V_{\rm GS}-V_{\rm TH}$ il transistore opera in saturazione); $g_{m2}=500\mu{\rm S}; g_{o2}=0$
- 2. $A_{\rm v} = -16.9, R_{\rm in} = 80 {\rm k}\Omega, R_{\rm out} = 1.69 {\rm k}\Omega.$
- 3. $A_{\rm v}(s)=krac{-\frac{s}{s_{
 m p_1}}}{1-\frac{s}{s_{
 m p_1}}}$ con k=-16.9, $s_{
 m p_1}=-12.5{
 m rad/s}$ $(f_{
 m p_1}=2{
 m kHz}).$