MIMM4750G Sequence alignment

What is an alignment?

- So far we have talked about comparing sequences residue-by-residue with a score matrix.
- The underlying assumption is that these sequences are aligned.
- An alignment is a hypothesis about how residues (nt, aa) in homologous sequences are related to residues in a common ancestor.
- This is not trivial because of insertions and deletions.

Gap characters

- The presence of an insertion or deletion is indicated by a gap character.
- By convention, we use a single dash "-" for each indel.
- Some programs use non-standard characters like ".", "~" or "x".
- Without additional information, we cannot tell whether a gap is the result of an insertion in the longer sequence or a deletion in the shorter.
- Hence we use the portmanteau indel (insertion/deletion).

Pairwise alignment

- Thorne, Kishino and Felsenstein proposed a simple model of indel evolution (TKF91).
 - Insertions and deletions at constant rates.
 - One nucleotide at a time.
- Solving for the maximum likelihood of TKF91 can be used to align sequences.
- However, TKF91 and subsequent extensions of the model are not feasible for many long sequences.
- There is an infinite number of possible evolutions e.g., unsampled insertions.

Heuristic methods

- Until TKF91-type methods become feasible, we continue to use heurstic methods.
- A heuristic is an algorithm for solving a problem that has no theoretical guarantee of being accurate.
- In practice, heuristic is designed to quickly produce a solution that is "good enough".

Score matrices (again)

- A major feature of heuristic methods of alignment
- Remember a score quantifies the likelihood of a residue being replaced by another.
- Find which alignment of two sequences maximizes the score.
- A simple score matrix for nucleotides: +1 (match), -1 (mismatch).

	Α	С	G	Т
Α	+1	-1	-1	-1
C	-1	+1	-1	-1
G	-1	-1	+1	-1
Т	-1	-1	-1	+1

Gap penalties

 We need to penalize the score for gaps, or else an alignment gets gaps for free:

```
A-C-G-T ACGT
-A-C-T- AC-T
```

- The left option is obviously a terrible alignment!
- If we use match/mismatch scores of +1/-1 and a gap penalty of -1, then what are the scores for these alignments?

Penalizing longer gaps

- If a gap spans 2 or more residues, we might want to enforce a milder or more severe penalty.
- For a gap of length l:
 - Linear gap penalty = -ld, where d is a constant per-gap penalty.
 - Affine gap penalty = -d (l-1)e, where d is the gap opening penalty and e is the gap extension penalty.
- It is more common to use affine gap penalties.

Terminal gaps

- Terminal gaps are a contiguous run of gaps on either extreme left or right of a pairwise alignment.
- Also known as "leading" and "trailing" gaps.

```
ACTGATC ACTGATC
---GATC ACTG---
```

 We might not want to penalize these when aligning partial (incomplete) sequences.

Dynamic programming

- Dynamic programming is a fundmanetal concept in computer science.
- A complex problem can be broken down into a sequence of much smaller, simpler *recursive* problems.
- "Recursive" means that the problems are nested within each other.
 Solving one is part of solving another.
- Retrieving the solutions to problems nested within the next problem saves work!

Filling the F matrix

- Most heuristics for sequence alignment operate on a dynamic programming matrix (F).
- Like a *dot plot*, it is a matrix where one sequence labels the columns, and the second labels the rows.
- ullet Each entry in $oldsymbol{F}$ is calculated from the entries above, to the left, or diagonally up and left.

Sequence Sequence		TACA			G	А Т	T A	C A
Match So	core Mis -1 ptimal Alignm	ematch Somethin	-2	stom Path		T C ore =		C G
		G	Т	С	G	Α	С	G
	0	-2	-4	-6	-8	-10	-12	-14
G	-2	1	-1	-3	-5	-7	-9	-11
A	-4	-1	0	-2	-4	-4	-6	-8
Т	-6	-3	0	-1	-3	-5	-5	-7
Т	-8	-5	-2	-1	-2	-4	-6	-6
A	-10	-7	-4	-3	-2	-1	-3	-5
С	-12	-9	-6	-3	-4	-3	0	-2

JS adapted from https://github.com/drdrsh

Local versus global alignment

- Global alignment (e.g., Needleman-Wunsch) requires the sequences to be aligned end-to-end terminal gaps are penalized.
- Local alignment (e.g., Smith-Waterman) relaxes this requirement it does not penalize terminal gaps.
- Use local alignment when you know that the query is shorter than the reference, or vice versa.

Multiple sequence alignment

 It is not trivial to extend pairwise alignment to more than two sequences.

• Most alignment programs use a *progressive* algorithm to propagate information from pairwise alignments to all sequences.

Progressive sequence alignment

- A guide tree determines which pair of sequences are the most closely related.
- Three types of actions:
 - 1. Align closely related sequence pair.
 - 2. Align a sequence to group of sequences.
 - 3. Align two groups of sequences.
- CLUSTALW averages scores across residues for each position between groups.
- Preserve all gaps as we proceed down to the root.

The paradox of guide trees

- Alignment is more accurate when the guide tree is closer to the actual tree.
- Most tree-building methods require an alignment.
- We have to use an alignment-free clustering method to build the guide tree.
- For example, MUSCLE builds a guide tree by counting k-mers.

Iterative alignment

- After we build an alignment, we can reconstruct a tree.
- That tree can be plugged back into the alignment process as the next guide tree.
- This method should incrementally improve the accuracy of alignment.
- Seldom used in practice!

Software

• This is an incomplete list:

Name	Publication	Description
CLUSTALW	1994	One of the first MSA programs to achieve widespread popularity. Less accurate than more recent programs.
T-coffee	2000	Initially performs pairwise alignments of the sequences, but uses a mix of local and global alignments.
MAFFT	2002	Uses a fast Fourier transform to rapidly identify homologous regions between sequences.
MUSCLE	2004	Uses an alignment-free <i>k</i> -mer based distance to generate a guide tree, and iteratively refines the alignment by partitioning the tree into subtrees.

More software

Name	Publication	Description
BAli- Phy	2006	Uses Bayesian sampling to jointly estimate the alignment and the phylogeny. We nearly always assume the alignment is a known, fixed quantity when reconstructing the phylogeny. BAli-Phy infers the alignment and the tree at the same time. Computationally challenging.
PRANK	2008	Assumes that sequence insertions usually lack evolutionary homology to other insertions. Tends to spread insertions out to such an extreme that the resulting alignment becomes a sparse scaffold of isolated insertions.
SATé	2009	A pipeline for iterative alignment to estimate both the alignment and tree.

Manually editing your alignment

- Always look at your data!
- There are several programs available to visually inspect and manually edit a sequence alignment.
- AliView
- SeaView