Devoir maison 7 - Etude de la fonction exponentielle

PRÉSENTATION

L'objectif du devoir est de démontrer que les fonctions dérivables solutions de l'équation fonctionnelle :

$$\forall (x,y) \in \mathbb{R}^2, \qquad f(x+y) = f(x)f(y) \qquad (EF)$$

sont les solutions du problème de Cauchy :

$$\begin{cases} y' = ky \\ y(0) = 1 \end{cases}, \quad k \in \mathbb{R} \qquad (ED)$$

puis de démontrer l'existence d'une fonction solution, pour k = 1.

Le principe de démonstration repose sur la fabrication, pour tout réel x, de deux suites adjacentes $(u_n(x))$ et $(v_n(x))$ dont la limite commune définit l'image de x par une fonction vérifiant l'équation différentielle.

PARTIE I

Dans cette partie, on s'intéresse aux fonctions f dérivables sur \mathbb{R} vérifiant (EF).

- **1.** Soit f une telle fonction. Pour $a \in \mathbb{R}$, on définit la fonction φ_a sur \mathbb{R} par $\varphi_a(x) = f(x+a) f(x)f(a)$.
 - a. Justifier la dérivabilité de φ_a sur \mathbb{R} , puis exprimer sa dérivée à l'aide de celle de f. φ_a est dérivable sur \mathbb{R} car f l'est et pour tout réel x on a : $\varphi'_a(x) = f'(x+a) f'(x)f(a)$.
 - **b.** En déduire que toute fonction f vérifiant (EF) vérifie :

$$\exists k \in \mathbb{R}, \forall a \in \mathbb{R}, \qquad f'(a) = kf(a)$$

f vérifiant (EF), la fonction φ_a est identiquement nulle donc sa dérivée également. En particulier, pour x = 0, on obtient : f'(a) = f'(0)f(a) pour tout réel a.

- **c.** On suppose que f n'est pas la fonction nulle; que vaut f(0)? f vérifiant (ED), on a $f(0) = f(0)^2$, donc soit f(0) = 0, soit f(0) = 1. Si f(0) = 0, alors pour tout réel x, on a : f(x) = f(x+0) = f(x)f(0) = 0, ce qui est exclu car f n'est pas nulle. On a donc f(0) = 1.
- **2.** Soit $k \in \mathbb{R}^*$. On suppose qu'il existe une fonction f dérivable sur \mathbb{R} vérifiant (ED).
 - a. Montrer que $\forall x \in \mathbb{R}, f(x)f(-x) = 1$ et par suite que f ne s'annule pas sur \mathbb{R} . Considérons la fonction g définie sur \mathbb{R} par g(x) = f(x)f(-x). g est dérivable sur \mathbb{R} car f l'est, et pour tout réel x on a : g'(x) = f'(x)f(-x) f'(-x)f(x) = kf(x)f(-x) kf(-x)f(x) = 0. Ainsi, g est constante et pour tout réel $x, g(x) = g(0) = f(0)^2 = 1$, c'est-à-dire f(x)f(-x) = 1. S'il existait un réel g tel que g0 on aurait g1. On en déduit que g2 ne s'annule pas.

b. Soit $a \in \mathbb{R}$. On définit sur \mathbb{R} la fonction ψ_a par $\psi_a(x) = f(x+a)f(-x)$.

Après avoir examiné la dérivée de ψ_a , montrer que f vérifie (EF).

 ψ_a est dérivable sur $\mathbb R$ car f l'est et pour tout réel x on a :

 $\psi'_a(x) = f'(x+a)f(-x) - f(x+a)f'(-x) = kf(x+a)f(-x) - kf(x+a)f(-x) = 0$. La fonction ψ_a est donc constante et pour tout réel x on $a: \psi_a(x) = \psi_a(0) = f(a)$.

On a donc pour tous les réels x et a: f(a+x)f(-x)=f(a), donc en multipliant par f(x):f(x+a) = f(x)f(a).

PARTIE II

1. Construction de $(u_n(x))$ et $(v_n(x))$.

En appliquant la méthode d'Euler, montrer par récurrence que pour tout réel a, tout réel h " suffisamment petit" et tout entier naturel n, on a :

$$f(a+nh) \approx f(a)(1+h)^n$$
 (*)

f étant dérivable, on a pour tout réel $x: f(x+h) = f(x) + hf'(x) + h\varepsilon(h)$ avec $\lim_{x \to 0} \varepsilon = 0$.

Comme f' = f, on a $f(x+h) \approx f(x)(1+h)$ pour h suffisamment petit. On note (App) cette expression.

Pour $n \in \mathbb{N}$, on note $P_n : f(a+nh) \approx f(a)(1+h)^n$.

Pour n = 0: $f(a + 0) = f(a)(1 + h)^0$ donc P_0 est vérifiée.

Soit $n \in \mathbb{N}$; on suppose que P_n est vérifiée.

On a : $f(a + (n+1)h) = f((a+nh)+h) \approx f(a+nh)(1+h)$ d'après (App) appliquée à x = a+nh.

Par hypothèse, on a donc $f(a + (n+1)h) \approx f(a)(1+h)^{n+1}$; la propriété P_{n+1} est donc vérifiée.

Par principe de récurrence, la propriété P_n est vérifiée pour tout entier n.

Soient $x \in \mathbb{R}$ et n > |x|.

Avec
$$a = 0$$
 et $h = \frac{x}{n}$, (*) donne $f(x) \approx f(0) \left(1 + \frac{x}{n}\right)^n$. On note $u_n(x) = \left(1 + \frac{x}{n}\right)^n$
Avec $a = x$ et $h = -\frac{x}{n}$, (*) donne $f(0) \approx f(x) \left(1 - \frac{x}{n}\right)^n$. On note $v_n(x) = \left(1 - \frac{x}{n}\right)^{-n}$.

2. Étude des suites $(u_n(x))$ et $(v_n(x))$

Soit $x \in \mathbb{R}$. Les suites $(u_n(x))$ et $(v_n(x))$ sont définies comme au 1., pour n > |x|.

a. Montrer que $\forall x \ge -1, \forall n \in \mathbb{N}^*, (1+x)^n \ge 1 + nx$.

Soit $x \ge 1 - 1$; pour $n \in \mathbb{N}^*$, on note $H_n : (1 + x)^n \ge 1 + nx$.

 $(1+x)^{\overline{1}} \ge 1+1 \times x$ donc H_1 est vérifiée.

Soit $n \in \mathbb{N}^*$; on suppose que H_n est vérifiée.

On a : $(1+x)^{n+1} = (1+x)^n (1+x) \ge (1+nx)(1+x)$ par hypothèse et car $x \ge -1$. On a donc $(1+x)^{n+1} \ge 1 + nx + x + nx^2 \ge 1 + (n+1)x$ donc H_{n+1} est vérifiée.

Par principe de récurrence, H_n est vérifiée pour tout entier $n \in \mathbb{N}^*$.

Dans la suite, on note P cette propriété.

b. Montrer que $(u_n(x))$ est croissante.

Soient
$$x \in \mathbb{R}$$
 et $n \in \mathbb{N}$ tel que $n > |x|$. On a :
$$u_{n+1}(x) = \left(1 + \frac{x}{n+1}\right)^{n+1} = \left(1 + \frac{x}{n} - \frac{x}{n} + \frac{x}{n+1}\right)^{n+1} = \left(1 + \frac{x}{n} - \frac{x}{n(n+1)}\right)^{n+1} = \left(1 + \frac{x}{n}\right)^{n+1} \left(1 - \frac{x}{n(n+1)\left(1 + \frac{x}{n}\right)}\right)^{n+1}.$$

On veut appliquer P au second facteur. Pour cela, il faut vérifier que $\frac{x}{n(n+1)\left(1+\frac{x}{n}\right)} \leq 1$: n > |x| donc $1+\frac{x}{n} > 0$ donc il faut montrer que $x \leq n(n+1)\left(1+\frac{x}{n}\right)$ ce qui équivaut à $-x \leq n+1$ qui est vrai puisque n > |x|. Donc, en remarquant encore que $1+\frac{x}{n} > 0$:

$$u_{n+1}(x) \ge \left(1 + \frac{x}{n}\right)^{n+1} \left(1 - \frac{x}{n\left(1 + \frac{x}{n}\right)}\right) = \left(1 + \frac{x}{n}\right)^n \left(1 + \frac{x}{n} - \frac{x}{n}\right) = u_n(x).$$

On a donc $u_{n+1}(x) \ge u_n(x)$ donc la suite $(u_n(x))$ est croissante.

c. Vérifier que $\frac{1}{v_n(x)} = u_n(-x)$; en déduire le sens de variation de $(v_n(x))$. On a : $\frac{1}{v_n(x)} = \frac{1}{(1-\frac{x}{x})^{-n}} = \left(1-\frac{x}{n}\right)^n = u_n(-x)$.

Ce qui précède est valable pour tout réel x donc $(u_n(-x))$ est croissante et la suite $\left(\frac{1}{v_n(x)}\right)$ également.

On a donc, pour $n > |x|, \frac{1}{v_{n+1}(x)} \ge \frac{1}{v_n(x)}$; comme la suite $(v_n(x))$ est strictement positive (car n > |x|), on en déduit que $v_{n+1}(x) \le v_n(x)$ et par suite que $(v_n(x))$ est décroissante.

d. Montrer que $\forall n > |x|$, on a : $1 \ge \frac{u_n(x)}{v_n(x)} \ge 1 - \frac{x^2}{n}$; en déduire que $0 \le v_n(x) - u_n(x) \le v_n(x) \frac{x^2}{n}$.

On a:
$$\frac{u_n(x)}{v_n(x)} = \left(1 + \frac{x}{n}\right)^n \left(1 - \frac{x}{n}\right)^n = \left(1 - \frac{x^2}{n^2}\right)^n$$
.

Comme n > |x|, on a $-\frac{x^2}{n^2} \ge -1$; en utilisant P, on obtient $1 \ge \frac{u_n(x)}{v_n(x)} \ge 1 - \frac{x^2}{n}$.

Comme $v_n(x) \ge 0$, on en déduit que $u_n(x) \le v_n(x)$ et $0 \le v_n(x) - u_n(x) \le v_n(x) \frac{x^2}{n}$.

e. Déduire des questions précédentes que les suites $(u_n(x))$ et $(v_n(x))$ sont adjacentes. La suite $(v_n(x))$ étant décroissante, elle est majorée par son premier terme v_{n_0} (avec $n_0 = \lfloor x \rfloor + 1$), on a donc $0 \le v_n(x) - u_0(x) \le v_{n_0} \frac{x^2}{n}$. Le théorème d'encadrement donne $\lim_{n \to +\infty} (v_n(x) - u_n(x)) = 0$. Avec les monotonies démontrées précédemment on a montré que $(u_n(x))$ et $(v_n(x))$ sont adjacentes.

Les suites $(u_n(x))$ et $(v_n(x))$ étant adjacentes, elles ont la même limite.

On note exp la fonction qui à x fait correspondre cette limite.

3. Étude de la fonction exp

- **a.** Vérifier que $\exp(0) = 1$. $\forall n > |x|, u_n(0) = v_n(0) = 1$ donc $\exp(0) = 1$.
- **b.** Montrer que $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}$ tel que n+1 > |x| et $\forall h \in \mathbb{R}$ tel que |h| < 1 on a :

$$\left(1 + \frac{x+h}{n}\right)^n \ge \left(1 + \frac{x}{n}\right)^n \left(1 + \frac{h}{1 + \frac{x}{n}}\right)$$

Soient $x \in \mathbb{R}, n \in \mathbb{N}$ tel que n+1 > |x| et $h \in \mathbb{R}$ tel que |h| < 1. On a :

$$\left(1 + \frac{x+h}{n}\right)^n = \left(1 + \frac{x}{n} + \frac{h}{n}\right)^n = \left(1 + \frac{x}{n}\right)^n \left(1 + \frac{h}{n\left(1 + \frac{x}{n}\right)}\right)^n.$$

Or, vues les conditions imposées à x, n et h, on a : $\frac{h}{n\left(1+\frac{x}{n}\right)} \ge -1$, donc on obtient le résultat attendu en appliquant P.

En déduire que pour $x \in \mathbb{R}, h \in \mathbb{R}$ tel que |h| < 1,

$$\exp(x) \times h \le \exp(x+h) - \exp(x) \le \exp(x) \times \frac{h}{1-h}$$

En passant à la limite dans l'inégalité précédente, on obtient : $\exp(x+h) \ge \exp(x)(1+h)$.

En prenant x' = x + h et h' = -h, on obtient :

$$\exp(x') \ge \exp(x' + h')(1 - h')$$
 et comme $|h'| < 1, \exp(x' + h) \le \frac{\exp(x')}{1 - h'}$.

On a donc pour tout réel x, et pour |h| < 1, $\exp(x) \times h \le \exp(x+h) - \exp(x) \le \exp(x) \times \frac{h}{1-h}$.

d. Démontrer que la fonction exp est dérivable sur \mathbb{R} et qu'elle vérifie (ED).

L'encadrement précédent donne :

- Pour h > 0, $\exp(x) \le \frac{\exp(x+h) \exp(x)}{h} \le \frac{\exp(x)}{1-h}$ Pour h < 0: $\frac{\exp(x)}{1-h} \le \frac{\exp(x+h) \exp(x)}{h} \le \exp(x)$ En faisant tendre h vers 0, on obtient d'après le théorème d'encadrement :

$$\lim_{h \to 0} \frac{\exp(x+h) - \exp(x)}{h} = \exp(x)$$

 $\lim_{h\to 0} \frac{\exp(x+h) - \exp(x)}{h} = \exp(x).$ La fonction exp est donc dérivable sur \mathbb{R} , et sa dérivée est elle-même.