# Statistical Thermodynamics in Chemistry and Biology

15. Solutions and mixtures

Per-Olof Astrand

D3-119 Realfagsbygget, Department of Chemistry, Norwegian University of Science and Technology, per-olof.aastrand@ntnu.no

March 9, 2018

#### Lattice model for mixtures and solutions

#### This chapter:

- A lattice model for mixtures
- Ideal and regular solutions
- The mean-field approximation
- Basis for later chapters
- Foundation for treating polymers, colloids and biomolecules

# Entropy of mixing

- ▶ Lattice model with N<sub>A</sub> and N<sub>B</sub> molecules of specie A and B, respectively.
- $N = N_A + N_B$  fill the lattice completely, see figure.
- A and B have the same size (see Ch. 32 for different sizes, Flory-Huggins).
- ► The multiplicity for the mixture,  $W_{AB}$ , is given as,

$$W_{AB} = \frac{N!}{N_A! N_B!}$$

What is the multplicity of the pure systems A and B?





# **Entropy of mixing**

#### Part 2

► The entropy becomes (using Stirling's formula)

$$\Delta S_{\text{mix}} = k_B \ln W_{AB} = k_B (N \ln N - N_A \ln N_A - N_B \ln N_B)$$
$$= k_B (N_A \ln N + N_B \ln N - N_A \ln N_A - N_B \ln N_B)$$

▶ Use mole fractions,  $x_A = \frac{N_A}{N}$ ,  $x_B = \frac{N_B}{N}$ ,  $x_A + x_B = 1$ .

$$\Delta S_{ ext{mix}} = -k_B \left( N_A \ln x_A + N_B \ln x_B \right)$$

Furthermore, use  $x = x_A$  and  $x_B = (1 - x)$ ,

$$\frac{\Delta S_{\text{mix}}}{Nk_B} = -x \ln x - (1-x) \ln (1-x)$$

Note that *x* is fix in this model (no reactions), so it does not change to reach the maximum in the figure.



#### Ideal solutions

 For an ideal solution, the interactions between the particles are ignored (analogy to ideal gas),

$$\Delta F_{\text{mix}} = -T\Delta S_{\text{mix}}$$

► This model (ideal solutions) will not be used. Only included for the analogy to ideal gases.

# **Energy of mixing**

 Same lattice model as in the previous chapter (only nearest-neighbour interactions),

$$U = m_{AA}w_{AA} + m_{BB}w_{BB} + m_{AB}w_{AB}$$

where  $m_{XY}$  is the number of bonds and  $w_{XY}$  is the interaction energy between species X and Y.

 Express m in terms of N<sub>X</sub>. Each lattice site has z sides,

$$zN_A = 2m_{AA} + m_{AB}$$
;  $zN_B = 2m_{BB} + m_{AB}$ 

Thus

$$m_{AA}=rac{zN_A-m_{AB}}{2}\;;\quad m_{BB}=rac{zN_B-m_{AB}}{2}$$



# **Energy of mixing**

Part 2

The energy expression becomes,

$$U = \frac{zN_A - m_{AB}}{2}w_{AA} + \frac{zN_B - m_{AB}}{2}w_{BB} + m_{AB}w_{AB}$$
$$= \frac{zw_{AA}}{2}N_A + \frac{zw_{BB}}{2}N_B + \left(w_{AB} - \frac{w_{AA} + w_{BB}}{2}\right)m_{AB}$$

which needs to be simplified by a suitable approximation.

# The mean-field (Bragg-Williams) approximation

- There are many different possibilities of m<sub>AB</sub> that fulfills the macroscopic constraints (F(T, V, N)), which all should be included in a sophisticated model.
- In the mean-field approximation, the particles are mixed as randomly and as uniformly as possible.
- ▶ What is the probability that a *B* occupies a neighbouring site to an *A*?
  - In the Bragg-Williams approximation, the B particles are distributed randomly.
  - ▶ The probability,  $p_B$ , that any site is occupied by B is,

$$p_B \approx \frac{N_B}{N} = x_B = 1 - x$$

▶ In reality, however,  $p_B$ , for a single site depends on the interaction energies,  $w_{XY}$  as well as which type of particle that occupies the neighbouring site.

# The mean-field approximation

#### Part 2

➤ Since there are *z* neighbours to a particular *A* molecule, it has the average number of *AB* contacts,

$$zp_B = \frac{zN_B}{N}$$

 $\triangleright$  Since there is a total of  $N_A$  A molecules,

$$m_{AB} = \frac{zN_AN_B}{N} = zNx(1-x)$$

▶ The internal energy becomes,

$$U = \frac{zw_{AA}}{2}N_A + \frac{zw_{BB}}{2}N_B + z\left(w_{AB} - \frac{w_{AA} + w_{BB}}{2}\right)\frac{N_AN_B}{N}$$
$$= \frac{zw_{AA}}{2}N_A + \frac{zw_{BB}}{2}N_B + k_BT\chi_{AB}\frac{N_AN_B}{N}$$

where  $\chi_{AB}$  is termed the exchange parameter.

### The mean-field approximation

Part 3

▶ The exchange parameter,  $\chi_{AB}$ , is given as

$$\chi_{AB} = \frac{z}{k_B T} \left( w_{AB} - \frac{w_{AA} + w_{BB}}{2} \right)$$

- ► The Bragg-Williams model fail when there are big differences in the interaction energies, w, but it serves as a good first approximation.
- ▶ Note the *unfortunate* dependence of  $\chi_{AB}$  on  $k_BT$ .

### Free energy of mixing

▶ Since F = U - TS,

$$\frac{F(N_A,N_B)}{k_BT} = N_A \ln \frac{N_A}{N} + N_B \ln \frac{N_B}{N} + \frac{zw_{AA}}{2k_BT}N_A + \frac{zw_{BB}}{2k_BT}N_B + \chi_{AB}\frac{N_AN_B}{N}$$

▶ We are normally interested in the free energy difference,  $\Delta F_{\text{mix}}$  between the mixed and the initial pure states,

$$\Delta F_{\text{mix}} = F(N_A, N_B) - F(N_A, 0) - F(0, N_B)$$

► The free energies of the pure states only consist of an internal energy term,

$$F(N_A, 0) = \frac{zw_{AA}N_A}{2}$$
;  $F(0, N_B) = \frac{zw_{BB}N_B}{2}$ 

▶ So the final result for  $\Delta F_{\text{mix}}$  becomes,

$$\frac{\Delta F_{\text{mix}}}{Nk_BT} = x \ln x + (1-x) \ln (1-x) + \chi_{AB} x (1-x)$$

which is termed the regular solution model.

### The chemical potential of a mixture

Free energy of mixture from previous slide,

$$\frac{F(N_A, N_B)}{k_B T} = N_A \ln \frac{N_A}{N} + N_B \ln \frac{N_B}{N} + \frac{zw_{AA}}{2k_B T} N_A + \frac{zw_{BB}}{2k_B T} N_B + \chi_{AB} \frac{N_A N_B}{N}$$

- Note that  $F(N_A, N_B)$  and the definition of partial derivatives (differentiating with respect to  $N_A$  while keeping  $N_B$  fixed).
- ▶ Since  $N = N_A + N_B$ , we have to replace N with  $N_A + N_B$  and then differentiate with respect to  $N_A$ .
- ▶ The chemical potential of the mixture for molecule *A* becomes

$$\frac{\mu_A}{k_B T} = \frac{1}{k_B T} \left( \frac{\partial F}{\partial N_A} \right)_{T, V, N_B} = \ln x_A + \frac{z w_{AA}}{2 k_B T} + \chi_{AB} (1 - x_A)^2$$

(see derivation in eq. 15.17 in the book).

### The chemical potential of a mixture

#### Activity coefficient

From eq. 14.8, we have the chemical potential for a pure liquid,  $\mu_A^o$ ,

$$\mu_A^o = \frac{zw_{AA}}{2}$$

leading to

$$\mu_{A} = \mu_{A}^{o} + k_{B}T \ln x_{A} + k_{B}T\chi_{AB} (1 - x_{A})^{2}$$

In thermodynamics, the chemical potential is often expressed as

$$\mu_{A} = \mu_{A}^{o} + k_{B}T \ln \gamma x_{A}$$

where  $\gamma$  (here!) is called the activity coefficient.

Note the inconsistency in the dependency on  $x_A$ , and we try to avoid using the activity coefficient in this course.

#### Interfacial tension

- Regard the boundary between two condensed phases, the interface.
- The interfacial tension, γ<sub>AB</sub> is the cost in free energy to increase the interfacial area.
- So if \(\gamma\_{AB}\) is large the interfacial area will be small.
- Let us extend the lattice model for surface tension.

$$U = (N_A - n) \frac{zw_{AA}}{2} + n \frac{(z - 1) w_{AA}}{2} + (N_B - n) \frac{zw_{BB}}{2} + n \frac{(z - 1) w_{BB}}{2} + n w_{AB}$$



#### Interfacial tension

#### Part 2

▶ The entropy is 0 (i.e. no mixing) in this lattice model, leading to

$$\gamma_{AB} = \left(\frac{\partial F}{\partial A}\right)_{N_A, N_B, T} = \left(\frac{\partial U}{\partial A}\right) = \left(\frac{\partial U}{\partial n}\right) \frac{dn}{dA}$$

ightharpoonup Calculating the derivatives (A = na),

$$\left(\frac{\partial U}{\partial n}\right) = w_{AB} - \frac{w_{AA} + w_{BB}}{2}; \quad \frac{dn}{dA} = \frac{1}{a}$$

the interfacial tension becomes,

$$\gamma_{AB} = \frac{1}{a} \left( w_{AB} - \frac{w_{AA} + w_{BB}}{2} \right) = \frac{k_B T}{za} \chi_{AB}$$

- ▶ Depending on the sign of  $\chi_{AB}$ ,  $\gamma_{AB}$  can have any sign. However, there is a competition between mixing and creating an interface, and mixing will occur if  $\Delta F_{\rm mix} < 0$ .
- Is the interfacial tension,  $\gamma_{AB}$ , temperature-dependent? No

#### What have we left out?

▶ We should have evaluated the multiplicity W for each  $m_{AB}$  (number of AB interactions), and evaluated the partition function,

$$Q = \sum_{m_{AB}} W(N_A, N_B, m_{AB}) e^{-\beta E(N_A, N_B, m_{AB})}$$

where W is here also interpreted as a degeneracy factor

Secondly, we have ignored the contributions from the molecular partition functions,  $q_A$  and  $q_B$ ,

$$\frac{F(N_A, N_B)}{k_B T} = N_A \ln \frac{N_A}{N} + N_B \ln \frac{N_B}{N} + \frac{zw_{AA}}{2k_B T} N_A + \frac{zw_{BB}}{2k_B T} N_B + \chi_{AB} \frac{N_A N_B}{N} - N_A \ln q_A - N_B \ln q_B$$

where  $q_X$  includes molecular vibrations, rotations, etc.

► However, regarding the free energy of the pure states,

$$\frac{F(N_A,0)}{k_BT} = \frac{zw_{AA}N_A}{2k_BT} - N_A \ln q_A \; ; \quad \frac{F(0,N_B)}{k_BT} = \frac{zw_{BB}N_B}{2k_BT} - N_B \ln q_B$$

the molecular partition functions,  $q_X$ , do not contribute to the mixing free energy,  $\Delta F_{\rm mix}$ , if  $q_X$  do not depend on the interactions with the neighbours

#### Summary

- Lattice model for mixing and solutions
- Introduced the mean-field (Bragg-Williams) approximation.
- ▶ Calculated the free energy of mixing,  $\Delta F_{\text{mix}}$ .
- Discussed interfacial tension.

# E15.3(a-b) (Exam Aug. 2012:2)

#### Mixture and surface tension

- a) Assume that we have a cluster (small drop) with e.g. methanol and chloroform. It is found that methanol has a higher concentration on the surface, whereas chloroform has a higher concentration in the centre of the cluster. Explain (not derive) this behaviour in terms of a lattice model (the curvature of the drop may be ignored) and a regular solution. What is a regular solution? Which are the driving forces? What would happen if all intermolecular interactions would be the same?
- b) Use the same example as in a). Would methanol or chloroform have the highest surface tension (motivate the answer)? Explain what the surface tension is in terms of a lattice model.