Show all work clearly and in order. Please box your answers. 10 minutes.

1. There is a polynomial p(x) in P_2 which has the coordinate vector $K_B(p(x)) = \begin{bmatrix} -1 \\ 1 \\ 5 \end{bmatrix}$ with respect to the basis $B = (1, 1 - x, x + x^2)$. Find p(x).

$$p(x) = (-1)(1) + (1)(1-x) + (5)(x+x^{2})$$

$$p(x) = -1 + 1 - x + 5x + 5x^{2}$$

$$p(x) = 4x + 5x^{2}$$
(see lectuc 41 comments)

2. Show that the linear transformation $T:\mathbb{R}^2 \to \mathbb{R}^2$ with associated matrix $\begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$ is an isomorphism.

Thm 4.5.8 tells us T is an isomorphism if $A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$ is invertible. A is already in REF so rank (A) = 2 (notice thereare 2 pixel columns $\begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$)
Hence A is martible => T is an isomorphism.

3. Show that the set $X = \{1, 1-x, 1+x+x^2\}$ is linearly independent in P_2 .

Consider the basis $S = (1, x, x^2)$ of P_2 . By Lem. 4.5.10 on p179 we have X is linearly independent X is linearly independent X is linearly independent X is an isomorphism. (see ch4.6) well $X_s(X) = \{X_s(1), X_s(1-x), X_s(1+x+x^2)\} = \{X_s(1), X_s(1-x), X_s(1-x), X_s(1+x+x^2), X_s(1-x), X_s(1$

to show $K_s(x)$ is linearly independent consider the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$, well A is already in REF and rank(A) = 3

Hence since $3 = \# columns of A \Rightarrow Ks(X)$ is linearly independent in \mathbb{R}^3 $\Rightarrow X$ is linearly independent in \mathbb{R}^2