CS 553

Lecture 22
Authenticated
Encryption
+
Computationally Hard
Problems

Instructor
Dr. Dhiman Saha

One Unified Primitive

Two Goals - Privacy + Authenticity

- ► Relatively New Area
- Recently concluded CAESAR competition

CAESAR

Competition for Authenticated Encryption: Security, Applicability, and Robustness

AE using MACs

Which combination is most secure?

- ► E&M
- ► MtE
- ► EtM

- ► AEAD AE with Associated Data
- Nonce based AE
- ► RUP Release of Unverified Plaintexts
- And many more

Permutation Based AE

CAESAR Competition

Finalists

- ► ACORN
- ► AEGIS
- ► Ascon
- ► COLM (Two Indian Designers)
- ► Deoxys-II
- ► MORUS
- ► OCB

Computational Hardness

The property of computational problems for which there is **no algorithm** that will run in a **reasonable** amount of time

- ► Also called **intractable** problems
- ► Often **practically** impossible to solve

Computational Complexity Theory

Equivalence of Computing Models

Computational hardness is **independent** of the type of computing device used.

► An exception is **quantum** computers

Computational Complexity Theory

Equivalence of Computing Models

Computational hardness is **independent** of the type of computing device used.

► An exception is **quantum** computers

Measuring Running Time

Computational Complexity

The approximate number of operations done by an algorithm as a function of its input size.

► The size is counted in **bits** or in the **number** of elements taken as input.

```
search(x, array, n):

for i from 1 to n {
    if (array[i] == x) {
        return i;
    }
    }
    return 0;
```

}

Linear Vs Exponential

A complexity **linear** in n is considered **fast**, as opposed to complexities **exponential** in n.

- ► Recall Sorting by comparison
- $ightharpoonup O(n \log n)$
- sometimes called linearithmic complexity
- ► Slower than 'linear'
- ► But still practical

Recall Brute-force Search

What about its complexity for key-size n?

Linear Vs Exponential

A complexity **linear** in n is considered **fast**, as opposed to complexities **exponential** in n.

- ► Recall Sorting by comparison
- $ightharpoonup O(n \log n)$
- sometimes called linearithmic complexity
- ► Slower than 'linear'
- ► But still practical

Recall Brute-force Search

What about its complexity for key-size n?

Growth of Functions

Polynomial Vs Super-polynomial

Complexity Classes

Time Complexity

TIME(f(n))

- ightharpoonup TIME(n^2)
 - ▶ All computational problems solvable in time $O(n^2)$
- **► TIME**(2ⁿ)
 - ▶ Class of problems solvable in time $O(2^n)$

Any problem in the class $TIME(n^2)$ also belongs to the class $TIME(n^3)$

Complexity Classes

Time Complexity

$\mathsf{TIME}(f(n))$

- ightharpoonup TIME(n^2)
 - ▶ All computational problems solvable in time $O(n^2)$
- **► TIME**(2ⁿ)
 - ▶ Class of problems solvable in time $O(2^n)$

Any problem in the class $TIME(n^2)$ also belongs to the class $TIME(n^3)$

P TIME (n^k)

The union of all classes of problems, $TIME(n^k)$, where k is a constant, is called **P**, which stands for **polynomial** time.

How much memory an algorithm uses.

► Note: A single memory access is usually orders of magnitudes slower than a basic arithmetic operation in a CPU.

SPACE(f(n))

The class of problems solvable using f(n) bits of memory.

PSPACE

The union of all $SPACE(n^k)$ problems is called **PSPACE**

How much memory an algorithm uses.

► Note: A single memory access is usually orders of magnitudes slower than a basic arithmetic operation in a CPU.

SPACE(f(n))

The class of problems solvable using f(n) bits of memory.

PSPACE

The union of all **SPACE** (n^k) problems is called **PSPACE**

P Vs PSPACE

Note

A polynomial amount of memory doesn't necessarily imply that an algorithm is practical.

- ▶ **TIME**(f(n)) is included in **SPACE**(f(n)) How?
 - ▶ Any problem solvable in time f(n) needs at **most** f(n) memory

Implication

P is a subset of PSPACE

P Vs PSPACE

Note

A polynomial amount of memory doesn't necessarily imply that an algorithm is practical.

- ▶ **TIME**(f(n)) is included in **SPACE**(f(n)) How?
 - Any problem solvable in time f(n) needs at **most** f(n) memory

Implication

P is a subset of PSPACE

The Class NP

- ► NP → Non-polynomial
- $lackbox{NP}
 ightarrow ext{Nondeterministic Polynomial Time}$

NP is the class of problems for which a solution can be **verified** in **polynomial time**, even though the solution may be **hard** to find

Nondeterministic Polynomial Time

- ► NP → Non-polynomial
- $lackbox{NP}
 ightarrow ext{Nondeterministic Polynomial Time}$

NP is the class of problems for which a solution can be **verified** in **polynomial time**, even though the solution may be **hard** to find

- ► NP → Non-polynomial
- $lackbox{NP}
 ightarrow ext{Nondeterministic Polynomial Time}$

NP is the class of problems for which a solution can be **verified** in **polynomial time**, even though the solution may be **hard** to find

KPA Vs COA

- ► The problem of recovering a secret key with a **known plaintext** is in **NP**
- ▶ What about the case when only ciphertext is known?
- ► Belongs in P or NP?

KPA Vs COA

- ► The problem of recovering a secret key with a **known plaintext** is in **NP**
- ▶ What about the case when only ciphertext is known?
- ► Belongs in **P** or **NP**?