CS 171: Intro to ML and DM

Christian Shelton

UC Riverside

Slide Set 5: Cross Validation

Slides from CS 171

- From UC Riverside
 - CS 171: Introduction to Machine Learning and Data Mining
 - Professor Christian Shelton
- DO NOT REDISTRIBUTE
 - ► These slides contain copyrighted material (used with permission) from
 - ► Elements of Statistical Learning (Hastie, et al.)
 - Pattern Recognition and Machine Learning (Bishop)
 - An Introduction to Machine Learning (Kubat)
 - Machine Learning: A Probabilistic Perspective (Murphy)
 - ► For use only by enrolled students in the course

So, how to pick λ ?

So, how to pick λ ? Cross validation! (or n-fold cross validation)

available examples	
training	testing
set	set

Cross Validation:

- Split Training data into two parts: Train and Validation
- \bullet For each version (different k), train on train and check performance on validate
- Pick the version that does best on validation set

n-fold Cross Validation:

- ullet Do cross validation n times (n different train/validation splits)
- ullet Pick version (value of k) that does best on average across these n different trails
- ullet Most common: partition data into n equal-sized sets and use each one as validation once (and other n-1 sets as train)

Leave-one-out Cross Validation (LOO CV):

• n-fold Cross Validation where n=m

Algorithm Development:

• Pick form of function to be estimated:

$$f(x) = w^{\top} x$$

Algorithm Development:

• Pick form of function to be estimated:

$$f(x) = w^{\top} x$$

• Pick per-item loss/cost function:

$$l(y, f) = (y - f)^2$$

Algorithm Development:

• Pick form of function to be estimated:

$$f(x) = w^{\top} x$$

• Pick per-item loss/cost function:

$$l(y,f) = (y-f)^2$$

• Pick regularizer:

$$R(w) = \lambda w^{\top} w$$

Algorithm Development:

• Pick form of function to be estimated:

$$f(x) = w^{\top} x$$

• Pick per-item loss/cost function:

$$l(y,f) = (y-f)^2$$

Pick regularizer:

$$R(w) = \lambda w^{\top} w$$

• Write down total loss/cost:

$$L = \sum_{i} l(y_i, f(x_i)) + R(w)$$

Algorithm Development:

• Pick form of function to be estimated:

$$f(x) = w^{\top} x$$

• Pick per-item loss/cost function:

$$l(y,f) = (y-f)^2$$

• Pick regularizer:

$$R(w) = \lambda w^{\top} w$$

• Write down total loss/cost:

$$L = \sum_{i} l(y_i, f(x_i)) + R(w)$$

ullet Figure out how to minimize L:

$$w = (X^{\top}X + \lambda I)^{-1}X^{\top}Y$$

Algorithm Development:

• Pick form of function to be estimated:

$$f(x) = w^{\top} x$$

• Pick per-item loss/cost function:

$$l(y,f) = (y-f)^2$$

Pick regularizer:

$$R(w) = \lambda w^{\top} w$$

• Write down total loss/cost:

$$L = \sum_{i} l(y_i, f(x_i)) + R(w)$$

ullet Figure out how to minimize L:

$$w = (X^\top X + \lambda I)^{-1} X^\top Y$$

Algorithm Use:

- Pick a set of λ s, Λ
- Divide Data into Training and Testing
- Divide Training into Training and Validation

Algorithm Development:

• Pick form of function to be estimated:

$$f(x) = w^{\top} x$$

• Pick per-item loss/cost function:

$$l(y,f) = (y-f)^2$$

Pick regularizer:

$$R(w) = \lambda w^{\top} w$$

• Write down total loss/cost:

$$L = \sum_{i} l(y_i, f(x_i)) + R(w)$$

ullet Figure out how to minimize L:

$$w = (X^\top X + \lambda I)^{-1} X^\top Y$$

Algorithm Use:

- Pick a set of λ s, Λ
- Divide Data into Training and Testing
- Divide Training into Training and Validation
- For each $\lambda \in \Lambda$:
 - ▶ Train on Training set using λ
 - Check average per-item loss on Validation set
 - If best loss so far, remember w and λ

Algorithm Development:

• Pick form of function to be estimated:

$$f(x) = w^{\top} x$$

• Pick per-item loss/cost function:

$$l(y,f) = (y-f)^2$$

Pick regularizer:

$$R(w) = \lambda w^{\top} w$$

• Write down total loss/cost:

$$L = \sum_{i} l(y_i, f(x_i)) + R(w)$$

ullet Figure out how to minimize L:

$$w = (X^\top X + \lambda I)^{-1} X^\top Y$$

Algorithm Use:

- Pick a set of λ s, Λ
- Divide Data into Training and Testing
- Divide Training into Training and Validation
- For each $\lambda \in \Lambda$:
 - ▶ Train on Training set using λ
 - Check average per-item loss on Validation set
 - If best loss so far, remember w and λ
- (Optional) Retrain on Training+Validation with best λ
- ullet Report best w
- (If testing) Check average per-item loss on Testing set