Data Type and Operators

Introduction

- All the data are stored in the form of basic memory units called bits.
- A bit is a unit of memory that has only two possible states 0 & 1
- **■** The smallest memory unit is 1 byte. (8 bits)

Data Type

- The data type defines which kinds of data will be stored in variables
- ► And also define how many memory used for the data

Data Type

C++ Data types

Data type is used to tell the computer

- \rightarrow Type of data
- → Size of memory used for store the data
- Classified into 3
 - 1) Built in data type (Fundamental Data type)
 - 2) Derived data type
 - 3) User defined data type

Data types

- 1) Built in data type
 - ► Char (1 byte)
 - **■** Int (2 byte)
 - ► Float (4 byte)
 - **■** Double (8 byte)
 - ➤ Void (0 byte)
- 2) Derived data type
- 3) User defined data type

Data types

- 1) Built in data type
- 2) Derived data type
 - **►** Array
 - **►** Pointer
 - **►** Functions
 - **■** reference
- 3) User defined data type

Data types

- 1) Built in data type
- 2) Derived data type
- 3) User defined data type
 - **■** structure
 - union
 - class
 - enumeration

Built-in / Fundamental Data type

	Data type	Memory size
Character:	char	1 byte
Integer:	int	2 byte
Floating point :	float	4 byte
Double floating point :	double	8 byte
Valueless :	void	

Character (char)

- used to store a character value. (letters)
- → Character literals are written in single quotes, like this: 'A'
- for multiple characters (strings) use double quotes: "ABC"
 Example:

Integer (int)

- → used to store an integer value. (numbers)
- Not store fractional part Example:

int x=10;

$$x = 10$$

 2 byte
int count = 0;
 2 byte

Floating point (float)

- → used to store an floating point value. (real numbers)
- store fractional part Example:

float
$$x=10.5$$
;

float
$$pi = 3.14$$
;

Double

- used to store an floating point value. (real numbers)
- → store fractional part
- Double memory of float type Example:

double x=10.5071;

X 10.5071
8 byte

double mark = 20;

mark

20.0000

8 byte

Void

- → used only in function declarations
- → Use zero byte memory

Example:

void main()

void read()

void display()

Variable, Constant, Expression

Identifiers (Variables)

- → A variable is a letter or symbol used to represent a value that can change
- → The value may be number or characters...

Identifiers (Variables) naming rules

- 1. Only alphabetic characters (A-Z), digits (0-9) and underscore (_)are permitted
- 2. Name cannot start with digit
- 3. Uppercase(A-Z) and lowercase(a-z) are distinct
- 4. Keywords cannot be used as variables

Example:

```
int a = 50;
float mark = 26.7;
void _display()
```

_Name

_Num5

num5

Constants

- → A Constant is a value that does not change
- → Ex: 5,0,3.14,

Expressions

 Expression is a sequence of operators and their operands that specifies a process or computation

Example:

Statements

- Smallest executable unit of a program
- All statement end with semicolon (;)

- Declaration statement
 - Variables are must be declare before using it.
 - Example : int a; int x, y, z;

- Assignment statement
 - Assign the value of RHS to LHS
 - Example : Age = 18; int x = 10, y = 5;

Operators

Operators

- It is a symbol that performs an operation
- The meaning of the symbols are already defined in the C++ Compiler
- The data in an operation is called operands

Operators are...

- 1) Input/Output Operators
- 2) Arithmetic Operators
- 3) Relational Operators
- 4) Logical Operators
- 5) Conditional Operators
- 6) Assignment Operators
- 7) Increment & decrement Operators
- 8) SizeOf Operators

Input / Output Operators

Used to perform Input / output operations

Operator	Description	Example
>>	Input	cout << "Hello world"
<<	Output	cin >> mark

Arithmetic Operators

Operator	Description	Example
+	Addition	x + y
_	Subtraction	x – y
*	Multiplication	x * y
/	Division	x / y
%	Modulo	x % y

Relational Operators

Operator	Description	Example
==	Equal to	x == y
!=	Not equal to	x != y
<	Less than	x < y
>	Greater than	x > y
<=	Less than or equal to	x <= y
>=	Greater than or equal to	x >= y

Logical Operators

Operator	Description	Example
&&	Logical AND	x && y
	Logical OR	x y
	Logical NOT	!x

Logical NOT : Unary operator

Conditional Operators

■ It is a ternary Operator

Operator	Example	
?:	(A == 10) ? A++: A;	

```
(N == 10)?
cout << "Number is 10" : cout << "Number is not 10";
```

Assignment Operators

Operator	Description	Example
=	Assignment	x = y
+=	Add & assign	x += y
-=	Subtract & assign	x -= y
*=	Multiply & assign	x *= y
/=	Division & assign	x /= y

Increment & Decrement Operators

Operator	Description	Example
++	Increment	X ++
	Decrement	Y

Unary operator

$$x = x + 1$$
 $x += 1$ $x ++$

$$x = x - 1$$
 $x -= 1$ $x -= 1$

SizeOf Operators

- Used to find the size of a data type
- **Example:**

```
sizeof(int);
```

sizeof (float)

Type Conversion

Type Conversion

Data are converted from one type to another type are called type conversion

- Classified into 2
 - 1) Implicit type conversion
 - 2) Explicit type conversion

Implicit Type Conversion

- It is automatically done by the compiler.
- **►** For example ,
 - float N = 5; → 5 is an integer type, float 5 is implicitly converted into 5.0000
 - int N = 6.54; \rightarrow 6.54 is a float type, int 6.54 is implicitly converted into 5

Explicit Type Conversion

- It is done by the program code.
- **►** For example ,

```
int N = 10;
Int X = 4;
float S = (float) N / X
```

Data Type tell the compiler how to transfer it


```
// Command line
# include < Header File >
using namespace std;
int main()
                   Body of the program
```


Teaching materials Prepared by

RIDHUN DEV

Lecture IHRD College

+1 / +2 Computer Science

8089552581