Centro Universitário São Miguel

Biofísica

Difusão, Osmose e Tônus

Prof. M.Sc. Yuri Albuquerque

DIFUSÃO

A **difusão** é um movimento de componentes de uma mistura qualquer, de acordo com a 2º Lei da Termodinâmica: "de onde tem mais, vai para onde tem menos". Esses movimentos ocorrem em meios gasosos, líquidos e até sólidos.

A figura abaixo representa um sistema que tem na parte inferior solução de NaCl a 10% e na superior, NaCl a 5%. Como o soluto é mais concentrado em baixo, sobe; como o solvente é mais concentrado em cima, desce.

DIFUSÃO

A difusão depende de vários fatores, entre os quais o **número**, o **tamanho**, e a **forma das partículas**.

O **número de partículas** é convenientemente considerado na **concentração**: quanto maior o gradiente de concentração, mais rápido é a difusão.

O volume da partícula tem grande importância. Partículas menores se difundem mais rapidamente. Naturalmente, com aumento da temperatura, a difusão é maior, porque as moléculas possuem maior energía cinética.

DIFUSÃO

Outro fator que influi na difusão é o Tempo.

A distância atingida pelas moléculas difundidas é aproximadamente proporcional ao inverso do quadrado do tempo. Assim, se a molécula em 1 milissegundo atinge 2 nanômetros, levará 4 ms para chegar a 2 nm; 9 ms para 3 nm e 16 ms para atingir 4 nm. Esse aspecto é muito importante nos casos de anoxia (falta de O_2) nos tecidos

Difusão e Tamanho Molecular. Soluções iniciais de mesma concentração de Ureia (U), e Sacarose (S). A Uréia, massa molecular 60, se difunde mais rapidamente que a Sacarose, massa molecular 342, que só atinge equilíbrio após tempo mais prolongado.

o estudo desses movimentos de soluto e solvente fica muito simplificado quando se despreza a forma e volume das partículas, como na **Osmose**.

Nesse caso, considera-se apenas o **número** (concentração) das partículas. Desse modo os fenômenos de osmose podem ser estudados através da **Pressão** que as partículas exercem.

O mecanismo da osmose é muito simples:

As partículas de soluto e solvente estão em constante movimento, chocando-se com as paredes dos vasos. Esses choques são **Força** exercida sobre **Área**, **Pressão**:

$$P = \frac{F}{A}$$

A pressão de solventes puros e sempre máxima, pois é a única partícula do sistema. Quando se acrescenta soluto, a pressão do solvente sempre diminui, porque parte do espaço e ocupado por moléculas de soluto, e o número de partículas de solvente, que é o mesmo, passa a exercer sua forca em área maior.

Quanto mais aumenta a **concentração** do soluto, mais diminui a pressão do solvente, e mais aumenta a pressão do soluto, obviamente. Se essas forças se exercem através de uma membrana permeável, há movimento de partículas de um para o outro compartimento, de acordo com a 2ª lei da Termodinâmica.

Mecanismo da Pressão Osmótica. A - Solvente puro; B - Soluções. Os vetores representam a Pressão osmótica dos componentes,

Osmose através de membranas

Ha duas situações fundamentais na osmose através das membranas:

- a) Todos os componentes são difusíveis.
- b) Há componentes não-difusíveis.

Veremos esses casos através de três exemplos:

- a) Componentes difusíveis pela membrana não havendo moléculas impermeáveis, há troca geral de todos os componentes.
- b) Componentes não difusíveis macromoléculas e pressão osmótica.

Osmose através de membranas

Exemplo – o sistema da tem dois compartimentos (A) e (B) separados por uma membrana permeável. Em (A), glicose 2 M e em (B) glicose 1 M. Vai passar agua de (B) para (A) e glicose de (A) para (B).

Osmose – Início: Concentração de glicose, A>B, de água, B>A.

Durante a troca – de acordo com a 2ª Lei da Termodinâmica. Nível varia. Equilíbrio – Níveis e concentrações iguais em A e B.

Como já vimos, a água tem molécula menor que a glicose, e se difunde mais rapidamente, elevando temporariamente o nível líquido em (A), originando uma pressão hidrostática (M). Essa pressão empurra a agua de volta para (B). No final, os níveis estão na mesma altura, e as concentrações são iguais em (A) e (B). As trocas se fazem agora em equilíbrio dinâmico.

Osmose através de membranas

Exemplo – um sistema como o anterior, possui em (A) uma macromolécula em solução (•), e do lado (B), água.

As coisas são diferentes quando de um lado da membrana existe uma macromolécula. Pressão osmótica e macromoléculas. A macromolécula (•) não passa pela membrana.

A macromolécula tenta mas não consegue passar pelos poros da membrana. Desse lado (A), a pressão de solvente e, portanto, menor que do lado (B). Então, passa solvente de (B) para (A), até que haja o equilíbrio: Pressão hidrostática em (A) = Pressão osmótica em (B). O resultado final é que passa água de (B) para (A). Esse processo e usado no laboratório para medir a pressão osmótica.

Osmose através de membranas

Exemplo – O mesmo sistema do exemplo anterior, mas com a proteína em solução de NaCl 0,2 M. Basta levar em conta os princípios da Termodinâmica para concluir o que se passará no sistema. A pressão do solvente e maior em (B) do que em (A), e passa solvente de (B) para (A).

Com macromoléculas de um lado da membrana, passa solvente e soluto para esse lado. Esse efeito da macromolécula desaparece se houver um furo na membrana, porque ela se difunde para o outro lado. Situação análoga ao rim de mamíferos

Essa passagem resulta da diluição do NaCl em (A) e concentração em (B). Como consequência, pressão de soluto em (B) fica maior do que em (A), e passa soluto (NaCl) de (B) para (A), ate que haja equilíbrio. Efeito Osmótico de Macromolécula. Há passagem de água e sais para o lado da macromolécula (•), NaCl (·).

Pressão Oncótica e Pressão Coloidosmótica

Esse efeito osmótico de proteínas era antigamente denominado de pressão oncótica (oncos = tumor), porque as proteínas incham em presença de água, ou de pressão coloidosmótica, porque as proteínas formam soluções "coloides", Ambas denominações são impróprias, mas ainda usadas. Na realidade, o que a proteína faz, é abaixar a pressão do solvente do lado em que está. Há, porém, um componente adicional de retenção de água do lado da proteína, que e a água de hidratação de macromoléculas. Existe equilíbrio de trocas entre os compartimentos celular, extracelular e vascular, através do uso da pressão hidrostática e pressão osmótica.

Medida de Pressão Osmótica

A pressão osmótica, especialmente a de macromoléculas não difusíveis, é determinada pelo seu equilíbrio com a Pressão hidrostática, usando o dispositivo conforme imagem abaixo.

Medida da Pressão Osmótica

Um tubo de celofane permeável a todos os componentes, menos à macromolécula, é enchido com a solução, e um manômetro capilar cujo volume interno e desprezível, é amarrado à boca do saco. Ar e excluído, e o conjunto é imerso em solvente externo. Mede-se a diferença de altura líquida (Δh) após o equilíbrio, que pode durar dias até ser atingido.

Nesse momento onde **d** e a densidade do fluído, **g** aceleração da gravidade, **h** a altura, **n** o número de moles, **R** a constante dos gases, **T** a temperatura absoluta, **V** o volume interno do sistema. Essa relação permite ainda calcular a pressão exercida por solutos em Biossistemas.

Medida de Pressão Osmótica

A equiparação da pressão osmótica à pressão de gases perfeitos, proposta por Vant'Hoff, permite calcular a pressão de soluções:

$$P_{osm} = \frac{nRT}{V}$$

Onde **n** é o número de moles ou kmoles, **R** pode ser:

$$R = \begin{cases} 8,2 \times 10^{-3} \ 1 \cdot atm. °K^{-1} \cdot mol^{-1} \\ 8,3 \ J \cdot °K^{-1} \cdot mol^{-1} \\ 8,3 \times 10^{3} \ J \cdot °K^{-1} \cdot kmol^{-1} \end{cases}$$

Medida de Pressão Osmótica

Exemplo – Qual a "pressão" exercida pelo plasma sanguíneo humano, cuja concentração é ap. 0,30 osm? A temperatura e 37 °C ou 273 + 37 = 310 °K.

$$P_{osm} = \frac{nRT}{V}$$

$$P_{osm} = \frac{0,30 \times 8,2 \times 10^{-2} \times 3,1 \times 10^{2}}{1L} \cong 7,7 \text{ atm}$$

Isto significa que a pressão interna dos fluidos de um mamífero e cerca de 8 vezes maior que a pressão atmosférica externa, ao nível do mar.

TÔNUS

Células biológicas quando colocadas em diferentes soluções podem permanecer do mesmo tamanho, inchar até arrebentar (plasmólise) ou murcharem por compressão, Essas três situações, de grande interesse na pratica, estão relacionadas a dois fatores:

- 1 Concentração da solução externa.
- 2 Permeabilidade da membrana celular.

o primeiro fator e bem aparente, quando se usam células como a hemácia, A hemácia humana tem concentração interna equivalente a 0,3 osm (300 mosmóis). Quando colocada em meios de diferentes concentrações de NaCl se comporta como a figura abaixo.

Tônus e Concentração da Solução Externa

TÔNUS

Tônus e Concentração da Solução Externa

Hipotônica (Hipo = abaixo; tônus = força). A solução tem menos força que a hemácia, esta se dilata.

Isotônica Na Cl 0,3 osm

Isotônica (isos = igual), solução e hemácia possuem a mesma forca.

Hipertônica Na Cl 0,6osm

Hipertônica (Hiper = acima), a solução é mais forte, e espreme a hemácia.

SUMÁRIO

■ Heneine, I. F. Biofísica Básica. 2ª ed. Atheneu: Minas Gerais.

DOWNLOAD DO CONTEÚDO DA AULA

