Lovász Local Lemma and its Application

Guo Linsong 518030910419

April 7, 2020

Lemma 1. Let (E_1, E_2, \dots, E_N) be a sequence of events. For each E_i , we have $P(E_i) \leq p$ and E_i depends on at most d other events. If $4dp \leq 1$, then

$$P\left(\bigcap_{i=1}^{N} E_i^c\right) \ge (1-2p)^N > 0$$

Claim 2. Let $S \subseteq \{1, 2, \dots, N\}$, then for every i, we have

$$P\left(E_i \middle| \bigcap_{j \in S} E_j^c\right) \le 2p$$

Assuming the claim, it's easy to prove the Lovász Local Lemma.

$$P\left(\bigcap_{i=1}^{N} E_{i}^{c}\right) = \prod_{i=1}^{N} P\left(E_{i}^{c} \Big| \bigcap_{j < i} E_{j}^{c}\right) = \prod_{i=1}^{N} \left(1 - P\left(E_{i} \Big| \bigcap_{j < i} E_{j}^{c}\right)\right) \ge (1 - 2p)^{N} > 0$$

Next we proof the claim.

Proof. We prove the claim by induction on |S|. If |S| = 0, the claim holds, because

$$P\left(E_{i}\middle|\bigcap_{j\in S}E_{j}^{c}\right) = P\left(E_{i}\right) \leq p \leq 2p$$

Assume that the claim holds when |S| < s. We will prove the claim for |S| = s. Suppose that D be the set of all j such that E_i depends on E_j . Here are two cases.

case 1.
$$S \cap D = \emptyset$$

$$P\left(E_i \middle| \bigcap_{j \in S} E_j^c\right) = P(E_i) \le p \le 2p$$

case 2. $S \cap D \neq \emptyset$

Let $E_D = \bigcap_{j \in D} E_j^c$ and $E_{S \setminus D} = \bigcap_{j \in S \setminus D} E_j^c$

$$P\left(E_{i}\middle|\cap_{j\in S}E_{j}^{c}\right) = P\left(E_{i}\middle|\left(E_{D}\cap E_{S\setminus D}\right)\right)$$

$$= \frac{P\left(E_{i}\cap E_{D}\cap E_{S\setminus D}\right)}{P\left(E_{D}\cap E_{S\setminus D}\right)}$$

$$= \frac{P\left(E_{i}\cap E_{D}\middle|E_{S\setminus D}\right)P\left(E_{S\setminus D}\right)}{P\left(E_{D}\middle|E_{S\setminus D}\right)P\left(E_{S\setminus D}\right)}$$

$$= \frac{P\left(E_{i}\cap E_{D}\middle|E_{S\setminus D}\right)}{P\left(E_{D}\middle|E_{S\setminus D}\right)}$$

$$= \frac{P\left(E_{i}\cap E_{D}\middle|E_{S\setminus D}\right)}{P\left(E_{D}\middle|E_{S\setminus D}\right)}$$

$$(1)$$

For the numerator, we have

$$P\left(E_{i} \bigcap E_{D} \middle| E_{S \setminus D}\right) \le P\left(E_{i} \middle| E_{S \setminus D}\right) = P\left(E_{i}\right) \le p \tag{2}$$

Note that $S \cap D \neq \emptyset$, so $|S \setminus D| < |S|$. We can apply the inductive hypothesis, so for all $E_k \in E_D$, $P(E_k | E_{S \setminus D}) \leq 2p$. For the denominator, we have

$$P(E_{D}|E_{S\backslash D}) = P\left(\bigcap_{k\in D} E_{k}^{c} | E_{S\backslash D}\right)$$

$$= P\left(\left(\bigcup_{k\in D} E_{k}\right)^{c} | E_{S\backslash D}\right)$$

$$= 1 - P\left(\bigcup_{k\in D} E_{k} | E_{S\backslash D}\right)$$

$$\geq 1 - \sum_{E_{k}\in E_{D}} P\left(E_{k} | E_{S\backslash D}\right)$$

$$\geq 1 - d \times 2p$$

$$\geq \frac{1}{2}$$
(3)

Combining (2) and (3), we have $P\left(E_i \mid \cap_{j \in S} E_j^c\right) = \frac{P\left(E_i \cap E_D \mid E_{S \setminus D}\right)}{P\left(E_D \mid E_{S \setminus D}\right)} \leq 2p$. We have proved the claim.

Example 3. In a k-SAT formula like $(x_1 \vee \neg x_3 \vee x_5) \wedge (\neg x_2 \vee x_4) \wedge (x_3 \vee \neg x_4 \vee x_6)$, every variable $x_i = \{0, 1\}$ occurs in at most $\frac{2^k}{4k}$ different clauses. Then there exists an assignment satisfies all the clauses in the formula.

Proof. Let event E_i be that the *i*-th clause is not satisfied. If the *i*-th clause has more than

k variables, we only need to care k of them because of the feature of the operation \vee . Thus $P(E_i) \leq \frac{1}{2^k}$. Every variable occurs in at most $\frac{2^k}{4k}$ different clauses, so the i-th clause depends on at most other $(\frac{2^k}{4k}-1)\times k \leq \frac{2^k}{4}$ events. Note that $4\times \frac{2^k}{4}\times \frac{1}{2^k}=1$, Lovász Local Lemma implies $P\left(\bigcap_{i=1}^N E_i^c\right)>0$, which means there exists an assignment satisfies all the clauses in the formula.

Example 4. Let G = (V, E) be a graph. For every vertex v, its color is $C_v = \{1, 2, \dots, k\}$ and its degree is at most m. If $m \leq \frac{k}{8}$, then there must exist an assignment of $\{C_v | v \in V\}$ such that every edge connects two vertexes of different colors.

Proof. Let event $E_e(e=(u,v)\in E)$ be that e connects two vertexes of the same color. Note that $P(E_e)=\frac{\sum_{C_u=1}^k\sum_{c_v=1}^k[C_u=C_v]}{k^2}=\frac{1}{k}$. Every vertex's degree is at most m, so the event E_e depends on at most other $2(m-1)\leq 2m\leq \frac{k}{4}$ events. Node that $4\times \frac{k}{4}\times \frac{1}{k}=1$, Lovász Local Lemma implies $P\left(\bigcap_{e\in E}E_e^c\right)>0$, which means there must exist an assignment such that every edge connects two vertexes of different colors.