Cap.2 – Análise Léxica (Pt.3 – AFNs)

- 1. Para o AFN ao lado, apresente sua Quíntupla A = $\{Q, \Sigma, \delta, q0, F\}$ A = $(Q, \Sigma, \delta, q0, F)$
- Q: Conjunto de estados

 $Q = \{q0, q1, q2, qf\}$

- Σ : Conjunto de símbolos de entrada $\Sigma = \{a, b\}$

- δ: Função de transição

 $\delta(q0, a) = \{q0\}$

 $\delta(q0, b) = \{q0\}$

 $\delta(q0, a) = \{q1\}$

 $\delta(q0, b) = \{q2\}$

 $\delta(q1, a) = \{qf\}$

 $\delta(q2, b) = \{qf\}$

 $\delta(qf, a) = \{qf\}$

 $\delta(qf,\,b)=\{qf\}$

- q0: Estado inicial q0 = {q0}

- F: Estados de aceitação

 $F = \{qf\}$

2. Traduza as seguintes Expressões Regulares abaixo em AFNs utilizando das regras da Construção de Thompson. a) (ab | a)*

b) a* | (ab)+

3. Converta os seguintes AFNs abaixo em AFDs.

a)

Estados do NFA	Estados do DFA	Letra	Digito
	A		
2, 3, 4, 5, 7, 10	В	С	D
4, 5, 6, 7, 9, 10	С	С	D
4, 5, 7, 8, 9, 10	D	D	D