Package 'GISTools'

February 19, 2015

Title Some further GIS capabilities for R

Version 0.7-4						
Date 2014-10-06						
Author Chris Brunsdon and Hongyan Chen						
Maintainer Chris Brunsdon <christopher.brunsdon@nuim.ie></christopher.brunsdon@nuim.ie>						
Description Some mapping and spatial data manipulation tools - in particular drawing choropleth maps with nice looking legends, and aggregation of point data to polygons.						
Depends R (>= 2.15.0), maptools, sp, RColorBrewer, MASS, rgeos						
License GPL (>= 2)						
NeedsCompilation no						
Repository CRAN						
Date/Publication 2014-10-06 17:37:06						
R topics documented:						
GISTools-package						

 Create Transparency
 9

 cut function
 9

 generalize.polys
 10

 georgia
 11

 Kernel Density Estimates From Points
 12

 level.plot
 13

 map.scale
 14

 newhaven
 15

 North Arrow
 16

	phenology			 				 							17
	Point in Polygon Co	ounts		 				 							18
	Polygon Areas			 				 							19
	Polygon Label Poin	ts		 				 							19
	shading			 				 							20
	tornados			 				 							21
	Unit Conversion														
	vulgaris			 											22
Index															24
GISTo	ols-package	GIST	ools												

Description

Adds a number of utilities for handling and visualising geographical data - for example choropleth mapping with 'nice' legends.

Examples

```
# Load up the libraries needed
library(maptools)
library(RColorBrewer)
# Read in map data and compute a rate for mapping
sids <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[1],
proj4string=CRS("+proj=longlat +ellps=clrk66"))
sids.rate=10000*sids$SID74/sids$BIR74
# Create the shading scheme, plot a choropleth map and add a legend
shades = auto.shading(sids.rate)
choropleth(sids,sids.rate,shades)
choro.legend(-83.77,37.87,shades,fmt="%4.1f",title='Rate per 10,000')</pre>
```

Add masking around an image

Draw a mask around a Grid Based Image

Description

Takes an 'mask' type polygon object - basically a rectangle with a polygon hole cut through it - and draws this over an image. This has the effect of only showing the image inside the hole. This is useful for plotting surfaces defined over a study area, but masking the values outside of the area.

Usage

```
add.masking(maskPoly,color)
```

auto.shading 3

Arguments

maskPoly A masking polygon as described above.

color Colour of the mask. Defaults to white, but for example, sea could be shown as

blue.

Details

Returns no value, but draws a mask on the current graphics device as a side effect

Value

None

Author(s)

Chris Brunsdon

See Also

```
poly.outer, kde.points.
```

Examples

```
# Data for New Haven to use in example
data(newhaven)
# Do the KDE
breach.dens = kde.points(breach,lims=tracts)
# Plot the result
level.plot(breach.dens)
# Block out the part outside the study area
masker = poly.outer(breach.dens,tracts,extend=100); add.masking(masker)
# Plot census tract boundaries
plot(tracts,add=TRUE)
```

auto.shading

auto.shading

Description

Creates an object of class shading automatically, given a choropleth variable to be mapped.

Usage

```
auto.shading(x, digits = 2, cutter = quantileCuts, n = 5,
params = NA, cols = brewer.pal(n, "Reds"))
```

4 auto.shading

Arguments

x The variable to be mapped.

digits The number of significant digits to round the class limits to.

cutter Function used to create the break points. Can be user defined or a supplied cut

function.

n The number of classes. The should be one more than the number of break points.

params Other parameters to be passed to the cut function.

cols List of colours for shading each class. length(cols) should be equal to n.

Details

Returns an object of class shading, as set out below:

Value

An object of class shading, having the following list elements:

breaks Break points between choropleth classes. length(cols)

cols Colours to shade in each class. length(cols) should be one more than length(breaks)

Author(s)

Chris Brunsdon

See Also

choropleth, shading, choro. legend.

```
# Read in map data and compute a rate for mapping
sids <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[1],
proj4string=CRS("+proj=longlat +ellps=clrk66"))
sids.rate=10000*sids$SID74/sids$BIR74
# Create the shading scheme, plot a choropleth map and add a legend
shades = auto.shading(sids.rate,n=6)
choropleth(sids,sids.rate,shades)
choro.legend(-83.77,37.87,shades,fmt="%4.1f",title='Rate per 10,000')
# Now again with a different set of class intervals and colours
shades = auto.shading(sids.rate,n=6,cutter=rangeCuts,cols=brewer.pal(6,'Greens'))
choropleth(sids,sids.rate,shades)
choro.legend(-83.77,37.87,shades,fmt="%4.1f",title='Rate per 10,000')</pre>
```

choro.legend 5

|--|--|--|

Description

Draw a legend for a choropleth map.

Usage

```
choro.legend(px, py, sh, under = "under", over = "over",
  between = "to", fmt = "%g", cex=1, ...)
```

Arguments

px	x coordinate of legend location
ру	y coordinate of legend location
sh	Shading scheme object used as basis for the legend
under	What to write in front of the lowest choropleth class upper limit.
over	What to write in front of the highest choropleth class lower limit.
between	What to write between the upper and lower limits of intermediate chropleth classes.
fmt	C style format for values stated in above choroplth class limits.
cex	Relative size of text in the legend.
	Other arguments, passed on to the generic legend function.

Details

Returns no value, but draws a choropleth map legend on the current graphics device as a side effect

Value

None (see above)

Author(s)

Chris Brunsdon

See Also

choropleth, auto. shading, shading.

6 choropleth

Examples

```
# Read in map data and compute a rate for mapping
sids <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[1],
proj4string=CRS("+proj=longlat +ellps=clrk66"))
sids.rate=10000*sids@data[,10]/sids@data[,9]
# Create the shading scheme, plot a choropleth map and add a legend
shades = auto.shading(sids.rate)
choropleth(sids,sids.rate,shades)
choro.legend(-83.77,37.87,shades,fmt="%4.1f",cex=0.8,title='Rate per 10,000')</pre>
```

choropleth

choropleth

Description

Draws a choropleth map given a spatial Polygons object, a variable and a shading scheme.

Usage

```
choropleth(sp, v, shading = auto.shading(v), ...)
```

Arguments

sp A spatialPolygons or spatialPolygonsDataFrame object.
 v The variaqble to be mapped. Must have the same number of elements as s has polygons.
 shading A shading scheme created by shading or auto.shading.

... Additional parameters to be passed on to the plot method for sp.

Details

The function returns no value, but draws a choropleth map on the current graphics device as a side effect.

Value

None (see above).

Author(s)

Chris Brunsdon

See Also

```
choro.legend, auto.shading, shading.
```

Examples

```
# Read in map data and compute a rate for mapping
sids <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[1],
proj4string=CRS("+proj=longlat +ellps=clrk66"))
sids.rate=10000*sids$SID74/sids$BIR74
# Create the shading scheme, plot a choropleth map
shades = auto.shading(sids.rate,cols=brewer.pal(5,'Blues'))
choropleth(sids,sids.rate,shades)</pre>
```

Computational Inference from Point Data

Bootstrap and Kernel Bootstrap from Points

Description

Operations for bootstrapping and kernel bootstrapping based on point data. bstrap.points sample n points with replacement from a sample - and jitter.points adds a Gaussian displacement to each point in a data set. Applying a jitter to a bootstrap effectively creates a kernel bootstrap operation.

Usage

```
jitter.points(pts,scl)
bstrap.points(pts)
```

Arguments

pts A SpatialPointsDataFrame
scl A scale parameter - basically the standard deviation of the random Gaussian
displacement

Value

A SpatialPointsDataFrame - with either a sample without replacement or a replica of the input data with displacements.

Author(s)

Chris Brunsdon

```
data(newhaven)
plot(blocks)
for (i in 1:20) plot(jitter.points(breach,150),add=TRUE,pch=1,col='red')
```

```
Create a 'mask' polygon
```

Create a masking polygon to block out graphics outside a region.

Description

Takes a polygon object and creates a new polygon whose outline is rectangular, but has a hole shaped like the input polygon cut into it. This is useful for plotting surfaces defined over a study area, but masking the values outside of the area. It is designed to work with pixel images, so that the mask covers up all parts of the image not in the input polygon.

Usage

```
poly.outer(exo.object,input.poly,extend=0)
```

Arguments

exo.object The object extending beyond input.poly that is to be masked. This is required

to ensure that the external rectangle of the mask will be large enough.

input.poly The polygon used to make the hole in the mask.

extend A buffer used to extend the mask if it is required to be larger than exo.object

Value

A polygon object whose outline is rectangular, but having holes cut into it in the shape of input.poly

Author(s)

Chris Brunsdon

See Also

```
add.masking, kde.points.
```

```
# Data for New Haven to use in example
data(newhaven)
# Do the KDE
breach.dens = kde.points(breach,lims=tracts)
# Plot the result
level.plot(breach.dens)
# Block out the part outside the study area
masker = poly.outer(breach.dens,tracts,extend=100); add.masking(masker)
# Plot census tract boundaries
plot(tracts,add=TRUE)
```

Create Transparency 9

Create Transparency

Add transparency to a hex-defined colour

Description

Takes a colour defined in hex format as #XXXXXX and adds a two transparency bytes XX based on a number from 0 to 1. Its main use is to make RColorBrewer palettes transparent.

Usage

```
add.alpha(hex.color.list,alpha)
```

Arguments

```
hex.color.list A list of strings defining solid colors in six byte format.

alpha A value (or list of values) from 0 to 1 specifying transparency.
```

Value

A list of strings defining transparent colours in eight byte format.

Author(s)

Chris Brunsdon

Examples

Make a list of semi-transparent RColorBrewer colours, based on Brewer's Red palette with 5 shades add.alpha(brewer.pal(5,'Reds'),0.5)

cut function

Cut functions

Description

Helper functions for auto.shading. Given a variable to be mapped, a number of classes and possibly some more params, returns a list of break values. There should be one less break value than the number of classes.

Usage

```
quantileCuts(x, n = 5, params = NA)
sdCuts(x, n = 5, params = NA)
rangeCuts(x, n = 5, params = NA)
```

10 generalize.polys

Arguments

The variable to be mapped. Х The number of classes. n

Extra params for individual cut functions. params

Value

An ordered list of the break values between classes

Note

The only cut function using params is quantileCuts, where it is used to specify a list of quantile values - useful if they are not evenly spaced.

Author(s)

Chris Brunsdon

See Also

auto.shading

generalize.polys generalize.polys

Description

Generalises a SpatialPolygons or SpatialPolygonsDataFrame object using the Douglas-Peuker algorithm

Usage

```
generalize.polys(sp, tol)
```

Arguments

A SpatialPolygons or SpatialPolygonsDataFrame object. sp

The weeding tolerance for the generalisation algorithm. tol

Details

Returns an object of the same class as sp. Note that the algorithm is applied on a polygon-bypolygon, not edge-by-edge basis. Thus edges in generalised polygons may not match perfectly.

Value

An object of class SpatialPolygons or SpatialPolygonsDataFrame. Each polygon shape has been generalized using the Douglas-Peuker algorithm.

georgia 11

Author(s)

Chris Brunsdon

Examples

```
# Data for Georgia to use in example
data(georgia)
# Create an outline of Georgia
georgia.outline <- unionSpatialPolygons(georgia,rep(1,159))
plot(georgia.outline)
georgia.generalised <- generalize.polys(georgia.outline,0.1)
plot(georgia.generalised,add=TRUE,border='red')</pre>
```

georgia

Georgia Social and Economic Data by County

Description

Polygon Data Frame as used in the Brunsdon, Fotheringham & Charlton GWR book, with further variable median income (MedInc)

Usage

```
data(georgia)
georgia
georgia2
```

Format

- georgia Georgia polygons SpatialPolygonsDataFrame geographical projection
- georgia 2 Georgia polygons SpatialPolygonsDataFrame equal area projection
- georgia.polys Georgia polygons in list format equal area projection

```
# Read in the data
data(georgia)
# Make a map of median income
choropleth(georgia2,georgia2$MedInc)
```

Kernel Density Estimates From Points $Kernel\ Density\ Estimates$

Description

Given a set of points, a bandwidth, a grid density and a frame, produce a kernel density estimate

A spatial object - the KDE grid will cover this, if provided

Usage

```
kde.points(pts,h,n=200,lims=NULL)
```

Arguments

lims

pts	A SpatialPoints or SpatialPointsDataFrame object.
h	A real number - the bandwidth of the KDE
n	An integer, the output grid density - ie result is nxn grid

Value

A SpatialPixelsDataFrame containing the KDE.

Author(s)

Chris Brunsdon

```
# Data for New Haven to use in example
data(newhaven)
# Do the KDE
breach.dens = kde.points(breach,lims=tracts)
# Plot the result
level.plot(breach.dens)
# Block out the part outside the study area
masker = poly.outer(breach.dens,tracts,extend=100); add.masking(masker)
# Plot census tract boundaries
plot(tracts,add=TRUE)
```

level.plot

Description

Draws a level plot given a SpatialPixelsDataFrame, an index and a shading scheme.

Usage

```
level.plot(grd, shades, index=1, add=FALSE)
```

Arguments

grd A spatialPixelsDataFrame object.

shades A shading scheme created by shading or auto.shading. If omitted, chosen

automatically from grd.

index Index giving the variable in grd to plot.

add Whether to add the level plot to an existing plot.

Details

The function returns no value, but draws a level plot on the current graphics device as a side effect.

Value

None (see above).

Author(s)

Chris Brunsdon

```
# Data for New Haven to use in example
data(newhaven)
# Do the KDE
breach.dens = kde.points(breach,lims=tracts)
# Plot the result
level.plot(breach.dens)
# Block out the part outside the study area
masker = poly.outer(breach.dens,tracts,extend=100); add.masking(masker)
# Plot census tract boundaries
plot(tracts,add=TRUE)
```

map.scale

Description

Draws a scale bar on a map.

Usage

```
map.scale(xc,yc,len,units,ndivs,subdiv=1,tcol='black',scol='black')
```

Arguments

хс	The <i>x</i> -centre (in map units) of the scale bar
ус	The y-centre (in map units) of the scale bar
len	The length (in map units) of the scale bar
units	String specifying the name of the units for the scale bar
ndivs	The number of divisions (units marked) on the scale
subdiv	The fraction of units used to step along the divisions
tcol	The colour of text on the scale bar.
scol	The colour of the scale bar itself.
sfcol	The colour of the filled rectangles in the scale bar.

Details

Draws an alternating bar scale on a map. Returns no value.

Value

None (see above)

Author(s)

Chris Brunsdon

See Also

choro.legend

newhaven 15

Examples

```
# Read in map data for New Haven
data(newhaven)
# Plot census block boundaries
plot(blocks)
# Add a map scale
map.scale(534750,152000,miles2ft(2),"Miles",4,0.5,sfcol='red')
# ... and a title
title('New Haven (CT)')
```

newhaven

New Haven, Connecticut: Crime data with contextual information

Description

Data set from New Haven (CT) crime web site containing point sources of some crimes, plus roads, railways and census block spatial data frames.

Usage

```
data(newhaven)
blocks
breach
famdisp
burgres.f
burgres.n
places
roads
tracts
```

Format

- blocks Census blocks SpatialPolygonsDataFrame
- roads Roads SpatialLinesDataFrame
- places Place names SpatialPointsDataFrame
- breach Breach of peace SpatialPointsDataFrame
- famdisp Family dispute SpatialPointsDataFrame
- tracts Census tracts SpatialPolygonsDataFrame
- $\bullet \ \ burgres. f \ Residential \ Burglary \ (Forced) \ Spatial Points Data Frame$
- burgres.n Residential Burglary (Non-Forced) SpatialPointsDataFrame

Source

http://www.newhavencrimelog.org/

North Arrow

Examples

```
# Read in map data for New Haven
data(newhaven)
# Plot census block boundaries
plot(blocks)
# Add a map scale
map.scale(534750,152000,miles2ft(2),"Miles",4,0.5,sfcol='red')
# ... and a title
title('New Haven (CT)')
```

North Arrow

Add a north arrow to a map

Description

Draws a north arrow on a map.

Usage

```
north.arrow(xb,yb,len,lab='NORTH',cex.lab=1,tcol='black',...)
```

Arguments

xb	The <i>x</i> -centre (in map units) of the arrow base.
yb	The y-centre (in map units) of the arrow base.
len	The length (in map units) of the arrow base.
lab	The label for the arrow.
cex.lab	Scale factor for the label for the arrow.
tcol	The colour of the label text.
	Other graphical parameters passed to the drawing of the arrow.

Details

Draws a north arrow on a map. The arrow itself is drawn using polygon and any extra parameters are passed to this call.

Value

None.

Author(s)

Chris Brunsdon

See Also

```
map.scale
```

phenology 17

Examples

```
# Read in map data for New Haven
data(newhaven)
# Plot census block boundaries
plot(blocks)
# Add a north arrow
north.arrow(534750,152000,miles2ft(0.5),col='cyan')
# ... and a title
title('New Haven (CT)')
```

phenology

Phenology data for North American lilacs

Description

Data set from Schwartz, M.D. and J.M. Caprio, 2003, North American First Leaf and First Bloom Lilac Phenology Data, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2003-078. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA.

Usage

```
data(phenology)
chinensis
chinensis2
us_states
us_states2
```

Format

- **chinensis** Syringa Chinensis Observation Stations SpatialPointsDataFrame geographical projection
- **chinensis2** Syringa Chinensis Observation Stations SpatialPointsDataFrame equal area projection
- $\bullet \ us_states \ {\tt States} \ {\tt States} \ {\tt States} \ {\tt of} \ {\tt US} \ {\tt SpatialPolygonsDataFrame} \ \ \ {\tt geographical} \ {\tt projection}$
- us_states2 States of US SpatialPolygonsDataFrame equal area projection

Source

http://www.ncdc.noaa.gov/paleo/phenology.html

```
# Read in the data
data(phenology)
# Split the plot in two
par(mfrow=c(2,1))
# Plot US states
```

```
plot(us_states2)
# Add Locations of observation stations
plot(chinensis2,add=TRUE,pch=16,col='red')
# Plot a histogram of year of observation next to this
hist(chinensis2$Year)
```

Point in Polygon Counts

Number of Points in Each Polygon

Description

Given a set of points, and a set of polygons, computes the number of points in each polygon.

Usage

```
poly.counts(pts, polys)
```

Arguments

pts A SpatialPoints or SpatialPointsDataFrame object.

polys A SpatialPolygons or SpatialPolygonsDataFrame object.

Value

A list of integers of the same length as the number of polygons in polys, giving the number of points from pts.

Author(s)

Chris Brunsdon

```
# Data for New Haven to use in example
data(newhaven)
# How many breaches of peace in each census block?
n.breach = poly.counts(breach,blocks)
# Compute densities and map them
choropleth(blocks,n.breach/poly.areas(blocks))
```

Polygon Areas 19

Polygon Areas

Area of Each Polygon

Description

Given a set of polygons, returns the area of each polygon.

Usage

```
poly.areas(polys)
```

Arguments

polys

A SpatialPolygons or SpatialPolygonsDataFrame object.

Value

A list of areas of the same length as the number of polygons in polys.

Author(s)

Chris Brunsdon

Examples

```
# Data for New Haven to use in example
data(newhaven)
# What is the area each census block?
poly.areas(blocks)
```

Polygon Label Points Number of Points in Each Polygon

Description

Given a set of polygons, returns the label point for each polygon in a SpatialPoints object.

Usage

```
poly.labels(polys)
```

Arguments

polys

A SpatialPolygons or SpatialPolygonsDataFrame object.

20 shading

Value

SpatialPoints object containing the label point for each polygon.

Author(s)

Chris Brunsdon

Examples

```
# Data for New Haven to use in example
data(newhaven)
# How many breaches of peace in each census block?
n.breach = poly.counts(breach,blocks)
# Compute densities and map them
choropleth(blocks,n.breach/blocks$AREA)
```

shading

Shading

Description

Creates an object of class shading by directly specifying break values and (optionally) colours.

Usage

```
shading(breaks, cols = brewer.pal(length(breaks), "Reds"))
```

Arguments

breaks The break points

cols The shading colours - there should be one more of these than break points.

Value

An object of class shading.

Warning

At the moment, the it is assumed that the number of shading colours is one more than the break points, but this is not checked.

Author(s)

Chris Brunsdon

See Also

choropleth, choro.legend

tornados 21

Examples

```
# Read in map data and compute a rate for mapping
sids <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[1],
proj4string=CRS("+proj=longlat +ellps=clrk66"))
sids.rate=10000*sids@data[,10]/sids@data[,9]
shades = shading(breaks=c(15,30,45,60,75),cols=brewer.pal(6,'YlGn'))
choropleth(sids,sids.rate,shades)
choro.legend(-83.77,37.87,shades,fmt="%4.0f",title='Rate per 10,000')</pre>
```

tornados

US Tornado Touchdown Data

Description

Data set from NOAA's National Weather Service Indianapolis, IN Weather Forecast Office 6900 W. Hanna Ave.

Usage

```
data(tornados)
torn
torn2
```

Format

- torn Tornado Touchdown points SpatialPointsDataFrame geographical projection
- torn2 Tornado Touchdown points SpatialPointsDataFrame equal area projection

Source

```
http://www.crh.noaa.gov/ind/?n=svrgis
```

```
# Read in the data
data(tornados)
# Split the plot in two
par(mfrow=c(2,1))
# Plot US states
plot(us_states)
# Add Locations of observation stations
plot(torn,add=TRUE,pch=16,col='red')
# Plot a histogram of year of observation next to this
hist(torn$YEAR)
```

22 vulgaris

Unit Conversion

Distance Units Conversion

Description

Convert between different distance units - all functions take the form xx2yy where xx is the unit to be converted from and yy is the unit to be converted to.

Usage

```
ft2miles(x)
miles2ft(x)
ft2km(x)
km2ft(x)
```

Arguments

Х

A quantity in units to be converted from

Value

The value of x converted to the new units. In the example below the conversions are from feet to miles and feet to kilometers (hence functions are ft2miles and ft2km).

Author(s)

Chris Brunsdon

Examples

```
# How many miles is 10,000 feet?
ft2miles(10000)
# How about in kilometers?
ft2km(10000)
```

vulgaris

Phenology data for North American lilacs

Description

Data set from Schwartz, M.D. and J.M. Caprio, 2003, North American First Leaf and First Bloom Lilac Phenology Data, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2003-078. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA.

vulgaris 23

Usage

```
data(vulgaris)
vulgaris2
us_states
us_states2
```

Format

- vulgaris Syringa Vulgaris Observation Stations SpatialPointsDataFrame geographical projection
- vulgaris2 Syringa Vulgaris Observation Stations SpatialPointsDataFrame equal area projection
- us_states States of US SpatialPolygonsDataFrame geographical projection
- us_states2 States of US SpatialPolygonsDataFrame equal area projection

Source

http://www.ncdc.noaa.gov/paleo/phenology.html

```
# Read in the data
data(vulgaris)
# Split the plot in two
par(mfrow=c(2,1))
# Plot US states
plot(us_states)
# Add Locations of observation stations
plot(vulgaris,add=TRUE,pch=16,col='red')
# Plot a histogram of year of observation next to this
hist(vulgaris$Year)
```

Index

Add masking around an image, 2 add.alpha(Create Transparency), 9	Kernel Density Estimates From Points,
add.masking, 8	km2ft(Unit Conversion), 22
add.masking (Add masking around an	
image), 2	legend, 5
auto.shading, 3, 5, 6, 9, 10	level.plot, 13
blocks (newhaven), 15	map.scale, 14, <i>16</i>
breach (newhaven), 15	miles2ft(Unit Conversion), 22
bstrap.points (Computational Inference	
from Point Data), 7	newhaven, 15
burgres.f (newhaven), 15	North Arrow, 16
burgres.n (newhaven), 15	north.arrow(North Arrow), 16
chinensis (phenology), 17	phenology, 17
chinensis2 (phenology), 17	places (newhaven), 15
choro.legend, 4, 5, 6, 14, 20	Point in Polygon Counts, 18
choropleth, 4, 5, 6, 20	poly.areas(Polygon Areas),19
Computational Inference from Point	poly.counts(Point in Polygon Counts), 18
Data, 7	poly.labels(Polygon Label Points), 19
Create a 'mask' polygon, 8	poly.outer, 3
Create Transparency, 9	poly.outer (Create a 'mask' polygon), 8
cut function, 4, 9	Polygon Areas, 19
	Polygon Label Points, 19
famdisp (newhaven), 15	rolygon Label Follies, 19
ft2km(Unit Conversion), 22	quantileCuts(cut function),9
ft2miles (Unit Conversion), 22	4
	<pre>rangeCuts(cut function), 9</pre>
generalize.polys, 10	roads (newhaven), 15
georgia, 11	
georgia2 (georgia), 11	sdCuts(cut function),9
GISTools (GISTools-package), 2	shading, $4-6$, 20
GISTools-package, 2	
	torn (tornados), 21
<pre>jitter.points(Computational Inference</pre>	torn2 (tornados), 21
from Point Data), 7	tornados, 21
	tracts (newhaven), 15
kde.points, 3 , 8	
kde.points(Kernel Density Estimates	Unit Conversion, 22
From Points), 12	us_states(vulgaris), 22

INDEX 25

```
us_states2 (vulgaris), 22
vulgaris, 22
vulgaris2 (vulgaris), 22
```