Equations différentielles - TD1

IUT Sénart/Fontainebleau - Département GEII

Année 2020

Exercice 1 Vérifier dans chaque cas vérifier que :

- 1. la fonction $f(x) = x \ln(x) x$ est solution de l'équation différentielle $y' = \ln(x)$.
- 2. la fonction $g(t) = \cos(t)$ est solution de l'équation différentielle $y'' = -\cos(t)$.
- 3. la fonction $h(x) = \ln(\cos x)$ est solution de l'équation différentielle $y' = -\tan(x)$.
- 4. la fonction $f(t) = t^2 + 3$ est solution de l'équation différentielle y' = 2t.
- 5. la fonction $k(x) = x \sin(x)$ est solution de l'équation différentielle $y'' = 2\cos(x) x\sin(x)$.
- 6. la fonction $g(t) = \ln(t^2)$ est solution de l'équation différentielle y' = 2/t.
- 7. la fonction $g(x) = x^2 e^{3x}$ est solution de l'équation différentielle $y' = (2x + 3x^2)e^{3x}$.
- 8. la fonction $f(t) = te^t$ est solution de l'équation différentielle $y'' = (2+t)e^t$.
- 9. la fonction $f(t) = \sin(x^2)$ est solution de l'équation différentielle $y' = 2x\cos(x^2)$.
- 10. la fonction $g(x) = 3x^3 + 3x^2 + x$ est solution de l'équation différentielle $y' = (3x + 1)^2$.
- 11. la fonction $f(t) = e^{t^2}$ est solution de l'équation différentielle $y'' = (2 + 4t^2)e^{t^2}$.
- 12. la fonction $h(x) = (x + \frac{1}{x})^2$ est solution de l'équation différentielle $y' = \frac{2(x^4 1)}{x^3}$.

Exercice 2 Vérifier dans chaque cas si la fonction donnée est une solution de l'équation différentielle donnée.

1.
$$y' = 2t$$
, $f(t) = e^{2t}$

2.
$$y' = 2y$$
, $f(t) = e^{2t}$

3.
$$y'' = -t$$
, $g(t) = \cos(t)$

4.
$$y'' = -y$$
, $g(t) = \cos(t)$

5.
$$y' = 2t$$
, $f(t) = t^2$

6.
$$y' = 3y$$
, $q(t) = 5e^{3t}$

7.
$$y'' = e^t$$
, $k(t) = e^t + t$

8.
$$y'' = y$$
, $k(t) = e^t + t$

9.
$$y' = 5y$$
, $f(t) = 2e^{5t}$

10.
$$y' = -y$$
, $g(t) = e^{-t} + 1$

11.
$$y'' = 4y$$
, $h(t) = e^{2t}$

12.
$$y'' = -4y$$
, $k(t) = \sin(2t)$

13.
$$y' - 3y = 0$$
, $y = e^{3t}$

14.
$$y' - 3y = 6$$
, $y = e^{3t} - 6$

15.
$$y'' + 9y = 0$$
, $y = \sin(3t)$

16.
$$y'' - y = 2, y = e^t - 2$$

Exercice 3 Donner dans chaque cas l'ensemble de toutes les solutions de l'équation différentielle donnée.

1.
$$y' = y$$

2.
$$y' - 5y = 0$$

3.
$$2y' + 3y = 0$$

4.
$$5y' + 4y = y' - y$$

5.
$$y' = 2y$$

6.
$$y' + 3y = 0$$

7.
$$3y' - 4y = 0$$

8.
$$5y' + 2y = 3y - 2y'$$

9.
$$y' = -3y$$

10.
$$y' + y = 0$$

11.
$$2y + 5y' = 0$$

12.
$$y' + y = -3y + 5y'$$

13.
$$y = 2y'$$

14.
$$y' + y = y$$

15.
$$2y' - y = y + 2y'$$

16.
$$5y' + 2y = 2y + 5y'$$