Neklasické logiky

Modální logika

Definice

 $\Diamond A$ Je možné, že A (possible) $\neg \Diamond A$ Není možné, že A (impossible) $\Diamond \neg A$ Je možné, že ne-A (contingens) $\neg \Diamond \neg A$ Není možné, že ne-A (contingens) $\Box A$ Je nutné, že A $\neg \Box A$ Není nutné, že A $\Box \neg A$ Je nutné, že ne-A $\neg\Box\neg A$ Není nutné, že ne-A

Pokud W je množina možných světů a $w \in W$, pak $w \Vdash A$ znamená, A platí ve W.

Vybrané tautologie a axiomy

$$\Box A \Leftrightarrow \neg \lozenge \neg A \qquad \qquad \text{definice } \Box A \text{ pomoc} \land \lozenge A$$

$$\lozenge A \Leftrightarrow \neg \Box \neg A \qquad \qquad \text{definice } \lozenge A \text{ pomoc} \land \Box A$$

$$\Box (A \Rightarrow B) \Rightarrow (\Box A \Rightarrow \Box B) \qquad \text{axiom}$$

Łukasiewiczova trojhodnotová logika

Hodnoty – výrok je pravdivý, nepravdivý, možnost (označena jako x).

В	$\neg B$	$\Diamond B$	$\Box B$
1	0	1	1
x	x	1	0
0	1	0	0

$ \begin{bmatrix} 1 & 1 & x & 0 \\ x & x & x & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} $	$A \wedge B$	1	x	0	1
	1	1	x	0	
	x	x	x	0	
	0	0	0	0	

$A \vee B$	1	x	0	$A \Rightarrow B$	1	x
1	1	1	1	1	1	x
\boldsymbol{x}	1	x	\boldsymbol{x}	x	1	1
0	1	x	0	0	1	1

$A \Leftrightarrow B$	1	\boldsymbol{x}	0
1	1	x	0
x	x	1	\boldsymbol{x}
0	0	x	1

Tautologie trojhodnotové logiky

Fuzzy logika

Fuzzy negace

Fuzzy negace je unární operace $\neg: [0,1] \to [0,1]$, která vyhovuje podmínkám: $\neg p \equiv p, \ val(p) \leq val(q) \Rightarrow val(\neg p) \geq val(\neg p)$. Platí, že $val(\neg p) = 1 - val(p)$.

Fuzzy konjunkce

Fuzzy konjunkce je binární operace $\wedge : [0,1]^2 \to [0,1]$, která vyhovuje podmínkám: komutativnost $(p \wedge q \equiv q \wedge p)$, asociativita $(p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r)$, okrajová podmínka – identita $(p \wedge 1 \equiv p)$, $val(q) \leq val(r) \Rightarrow val(p \wedge q) \leq val(p \wedge r)$. Platí, že $val(p \wedge q) = min\{val(p), val(q)\}$.

Fuzzy disjunkce

Fuzzy disjuknce je binární operace $\vee: [0,1]^2 \to [0,1]$, která vyhovuje podmínkám: komutativnost $(p \vee q \equiv q \vee p)$, asociativita $(p \vee (q \vee r) \equiv (p \vee q) \vee r)$, okrajová podmínka – identita $(p \wedge 0 \equiv p)$, $val(q) \leq val(r) \Rightarrow val(p \vee q) \leq val(p \vee r)$. Platí, že $val(p \vee q) = max\{val(p), val(q)\}$.

Fuzzy implikace

Fuzzy implikace je binární operace $\vee:[0,1]^2\to[0,1]$, která vyhovuje okrajovým podmínkám

$$val(p \Rightarrow q) \left\{ \begin{array}{ll} 1 & \text{pro } (val(p) = 0) \text{ nebo } (val(q) = 1) \\ 0 & \text{pro } (val(p) = 1) \text{ a } (val(q) = 0) \end{array} \right.$$

Platí, že

$$val(p \Rightarrow q) = min\{1, 1 - val(p) + val(q)\} = \left\{ \begin{array}{ll} 1 & (val(p) \leq val(q)) \\ 1 - val(p) + val(q) & \text{jinak} \end{array} \right.$$

Kriepkieho modely

Kripkovský model se skládá z neprázdné množiny možných světů W a relace dosažitelnosti \leq na množině W. O každém možném světě S je určeno, které výroky A jsou v něm pravdivé (což značíme $S \Vdash A$).

```
S \Vdash A \wedge B
                                              S \Vdash A \neq S \Vdash B
                   právě tehdy, když
S \Vdash A \vee B
                   právě tehdy, když
                                              S \Vdash A nebo S \Vdash B
S \Vdash \neg A
                   právě tehdy, když
                                              neplatí S \Vdash A
S \Vdash A \Rightarrow B
                  právě tehdy, když
                                              S \Vdash B nebo neplatí S \Vdash A
                                              S \Vdash A \Rightarrow B \text{ a } S \Vdash B \Rightarrow A
S \Vdash A \Leftrightarrow B
                   právě tehdy, když
S \Vdash \Box A
                   právě tehdy, když
                                              S \leq T potom T \Vdash A
S \Vdash \Diamond A
                   právě tehdy, když existuje T takové, že S \leq T a T \Vdash A
```

 $S \Vdash A$ čteme jako "v možném světě S je formule A pravdivá".