

Relational Data Model – Part 1 Schema and State

What is the Relational Data Model?

- Introduced by Edgar F. Codd of IBM Research in 1970.
 - "A Relational Model for Large Shared Data Banks", Communications of the ACM.
 - A database contains tables (called relations), and each table is made up of columns and rows.
 - Humans have used tables for centuries to keep track of data.

 Used as the standard for relational DBMSs (e.g., Oracle, IBM DB2, Microsofts Access, Microsofts SQL Server, MySQL, postgreSQL, etc.).

Relation

Correspondence of informal and formal terms:

INFORMAL TERMS	FORMAL TERMS	
Table	Relation	
Column	Attribute	
Data type	Domain	
Row	Tuple	
Table definition	Relation schema	

 Attributes are used to describe the properties of information. In the relational model, they usually refer to atomic data.

Example: To capture the information of a person, we can use attributes like Name, Age, Gender, Address and PhoneNumber.

- Domains are the sets of all possible values for attributes.
 - STRING = {*A*, *B*, *CD*, ...};
 - **Example**: DATE = $\{01/01/2005, 03/07/1978, ...\}$;
 - INT = $\{..., -1, 0, 1, 2, ...\}$.
- Recall that, Cartesian product $D_1 \times ... \times D_n$ is the set of all possible combinations of values from the sets $D_1, ..., D_n$.

Example: Let D_1 ={book,pen}, D_2 ={1,2} and D_3 ={red}. Then

• $D_1 \times D_2 \times D_3 = \{(book, 1, red), (book, 2, red), (pen, 1, red), (pen, 2, red)\}$

The attributes are StudentID, CourseNo, Semester, Status and EnrolDate.

The domains of attributes are as follows.

dom(EnrolDate)=DATE.

The whole table can be considered as a set {(456, COMP2400, 2016 S2, active, 25/05/2016), (458, COMP1130, 2016 S1, active, 20/02/2016), (459, COMP2400, 2016 S2, active, 11/06/2016)}.

Enrol				
StudentID	CourseNo	Semester	Status	EnrolDate
456	COMP2400	2016 S2	active	25/05/2016
458	COMP1130	2016 S1	active	20/02/2016
459	COMP2400	2016 S2	active	11/06/2016

Is the above set a subset of

INT × STRING × STRING × STRING × DATE?

Answer: Yes.

- A relation schema has a relation name and a list of attributes.
- Each attribute is associated with a domain.
- A relation schema can be expressed by
 - $R(A_1, ..., A_n)$, or
 - $R(A_1 : dom(A_1), ..., A_n : dom(A_n)),$

where $A_1,...,A_n$ are attributes of R and $dom(A_i)$ is the domain of A_i .

Example: The relation schema in the previous example is

- ENROL(StudentID, CourseNo, Semester, Status, EnrolDate), or
- ENROL(StudentID: INT, CourseNo: STRING, Semester: STRING, Status: STRING, EnrolData: DATE).

- Let $R(A_1,...,A_n)$ be a relation schema.
- A tuple in R is a list t of values, i.e., $t \in dom(A_1) \times ... \times dom(A_n)$.

Example: The previous example has the following tuples:

- (456, COMP2400, 2016 S2, active, 25/05/2016) \in INT \times STRING \times STRING \times STRING \times STRING \times DATE.
- (458, COMP1130, 2016 S1, active, 20/02/2016) \in INT \times STRING \times STRING \times STRING \times STRING \times DATE.
- (459, COMP2400, 2016 S2, active, 11/06/2016) \in INT \times STRING \times STRING \times STRING \times STRING \times DATE.
- A relation r(R) is a set of tuples r(R) ⊆ dom(A₁) × ... × dom(A_n).
 Example: The previous example has the following relation:
 - $r(Enrol) \subseteq Int \times String \times String \times String \times DATE$.

- A relational database schema S is
 - a set of relation schemas $S = \{R_1, \dots, R_m\}$, and
 - a set of integrity constraints IC.
- A relational database state of S is a set of relations such that
 - there is just one relation for each relation schema in S, and
 - all the relations satisfy the integrity constraints IC.

- Consider a relational database schema STUENROL that has three relation schemas:
 - STUDENT(StudentID, Name, DoB, Email).
 - COURSE(No, Cname, Unit);
 - ENROL(StudentID, CourseNo, Semester, Status, EnrolDate);

That is, StuEnrol={Student, Course, Enrol}.

Relational Database State – Example

STUDENT				
StudentID	Name	DoB	Email	
456	Tom	25/01/1988	tom@gmail.com	
458	Peter	23/05/1993	peter@gmail.com	
459	Fran	11/09/1987	frankk@gmail.com	

Course		
No Cname Uni		Unit
COMP1130	Introduction to Advanced Computing I	6
COMP2400	Relational Databases	6

ENROL				
StudentID	CourseNo	Semester	Status	EnrolDate
456	COMP2400	2016 S2	active	25/05/2016
458	COMP1130	2016 S1	active	20/02/2016
459	COMP2400	2016 S2	active	11/06/2016