Prove que:

- a) $\forall A, B \in \mathcal{E}: d(A, B) = d(\sigma_{\vec{w}}(A), \sigma_{\vec{w}}(B)).$
- b) Dados dois subespaços afins de \mathcal{E} , digamos $\mathcal{F} \in \mathcal{G}$, tem-se $d(\mathcal{F}, \mathcal{G}) = d(\sigma_{\vec{w}}(\mathcal{F}), \sigma_{\vec{w}}(\mathcal{G}))$.
- c) Se \mathcal{F} e \mathcal{G} são rectas de $\mathcal{E} = \Re^3$, então $\angle(\mathcal{F}, \mathcal{G}) = \angle(\sigma_{\vec{w}}(\mathcal{F}), \sigma_{\vec{w}}(\mathcal{G}))$.
- 9.101. Fixando no espaço euclidiano \Re^3 um referencial ortonormado e dada uma recta definida, em relação a esse referencial, pelas equações

$$x - 1 = \frac{y - 1}{2} = \frac{z}{k}$$

determine os valores reais de k que fazem com que a distância da recta ao plano de equação 2x + 4y + z = -5 seja igual a 11 / $\sqrt{21}$.

- 9.102. Dados em \Re^3 dois planos, de equações x + 2y + 3z = -4 e x 2y + 3z = 5, em relação a um referencial ortonormado, determine o lugar geométrico dos pontos equidistantes dos dois planos.
- 9.103. Considere em \Re^3 o produto interno definido por

$$\vec{x} | \vec{y} = x_1 y_1 + 2x_2 y_2 + 4x_3 y_3 + x_1 y_2 + x_2 y_1 - x_2 y_3 - x_3 y_2$$

Determine o conjunto dos pontos que distam 5 do plano que passa pelo ponto (0, 0, 0) e está associado ao subespaço vectorial $\langle (1,1,1), (-1,0,2) \rangle$.

9.104. Considere em \Re^3 o produto interno canónico. Escreva equações cartesianas dos planos que são ortogonais à recta de equações

$$\begin{cases} x = y \\ z - x = 1 \end{cases}$$
 e cuja distância à origem é $\sqrt{3}$.

- 9.105. Fixando em \Re^3 o produto interno canónico, determine as rectas que satisfazem, simultaneamente, as
 - 1.a) passam pelo vértice da estrela de planos a(x+y+z-1)+b(2x-3z)+c(x-2y+2)=0 (o vértice é o ponto comum a todos os planos da "estrela");
 - 2.*) são ortogonais ao eixo do feixe de planos m(x-y)+n(y+z-1)=0 (o eixo é a recta comum a todos os planos do "feixe");
 - 3.") formam com a recta $\langle (0,0,0); \langle (0,1,0) \rangle \rangle$ um ângulo de cosseno igual a $1/\sqrt{6}$.
- 9.106. Considere em 33° o produto interno definido por

0.106. Considere the set (
$$\Sigma_1 F_1 = 3x_1y_1 + x_1y_3 + 2x_2y_2 - x_2y_3 + x_3y_1 - x_3y_2 + 2x_3y_3 + x_3y_1 - x_3y_2 + x_3y_1 - x_$$

e identifique os conjuntos dos pontos equidistantes de cada um dos pares de planos definidos pelas

seguintes equações:
a)
$$4x-y-2z=3$$
 e $4x+y+z=0$ $\%=(4h)$ $3x+2y-z=2$ e $3x+2y-z=-1$

- 9.107. Considere em \Re^3 o produto interno canónico. Determine as equações cartesianas das rectas contidas no plano de equação x + y = 0, cuja distância ao plano de equação x + y + z = 1 é igual a $\frac{1}{\sqrt{z}}$.
- 9.108. Prove que o ângulo de uma recta com um plano, no espaço afim \Re^3 , tal como se encontra definido. não depende do vector escolhido como gerador do subespaço vectorial associado à recta.
- 9.109. Suponha fixo no espaço euclidiano \Re^n um referencial ortonormado, de origem num certo ponto O. Considere dois pontos, $A, B \in \mathbb{R}^n$ e prove que:
 - a) O conjunto dos pontos equidistantes de A e B constitui um hiperplano 74.
 - b) Existe uma constante c tal que # pode ser definido, em relação ao referencial considerado, por uma equação cartesiana da forma $AB \mid OX = c$.
 - c) O subespaço vectorial associado a $\mathcal{H} \in H = \langle AB \rangle^{\perp}$. Interprete as conclusões obtidas em a), b) c), no caso de ser n = 2.
- 9.110. Suponha fixo no espaço euclidiano \Re^2 um referencial ortonormado e classifique as cónicas definidas pelas seguintes equações:

a)
$$x^2 - y^2 + 4xy - 2x + 6y - 1 = 0$$
 b) $x^2 + 2xy + x + 4y = 0$

b)
$$x^2 + 2xy + x + 4y = 0$$

c)
$$xy + 2x + 3y + 6 = 0$$

CAP. 91

d)
$$x^2 + 3x - y + 2 = 0$$

e)
$$x^2 + 2y^2 + 3x + 4y + 1 = 0$$

a)
$$x - y + 4xy - 2x + 6y + 1 = 0$$

c) $xy + 2x + 3y + 6 = 0$
d) $x^2 + 3x - y + 2 = 0$
e) $x^2 + 2y^2 + 3x + 4y + 1 = 0$
f) $4x^2 + 6xy + 3y^2 - x - y = 0$

9.111. Suponha fixo no espaço euclidiano \Re^2 o seguinte produto interno:

$$\vec{x} | \vec{y} = 4x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2$$

Identifique as cónicas definidas pelas seguintes equações:

a)
$$x^2 + 2y^2 + 4xy + 6x + 2y - 1 = 0$$

b)
$$4xy + 3x - 4y - 3 = 0$$

c)
$$x^2 + y^2 - 2y + 3 = 0$$

9.112. Considere fixo no espaço euclidiano \Re^3 um referencial ortonormado e identifique as quádricas definidas pelas seguintes equações:

a)
$$x^2 + y^2 + z^2 + 4xy + 1 = 0$$

b)
$$x^2 + y^2 + 4x - 6y - z = 0$$

c)
$$x^2 - 2xy + 2xz + 4x - y + 2z = 1$$

$$d) \ 2x^2 - 3xz - 2y = 4$$

e)
$$4x^2 - 4xy + 4xz + y^2 - 2yz + z^2 + 12x - 6y + 6z = 7$$

f)
$$7x^2 + 6y^2 + 5z^2 - 4xy - 4yz - 6x - 24y + 18z + 18 = 0$$

g)
$$x^2 + 2y^2 + z^2 - x + 2y = 0$$

h)
$$x^2 - 2y^2 + z^2 + 4xy - 8xz - 4yz + 6 = 0$$

i)
$$2x^2 + 2y^2 + 3z^2 + 4xy + 2xz - 2yz - 4x + 6y - 2z = \frac{109}{8}$$

$$j) x^2 + y^2 + z^2 + 2xy + 2xz + 2yz + 2x + 2y + 2z = 0$$