

KAN based Autoencoders for Factor models

Shubham Singh

Master's in Computer Engineering, New York University

NYU FRE 6083 13th December 2024

Introduction

- Factor models describe relationships between asset returns and factors.
- Standard form: $r \square^{=} \beta \square factor \square^{+} \epsilon \square$
- Some popular models: Fama French, CAPM, etc.

What's the problem?

- Real world data isn't linear or independent.
- It is:
 - 1. Collinearity Gram Schmidt Process, PCA
 - 2. Multidimensional representation Feature engineering
 - 3. Noise PCA
- Factors aren't enough, PCA can't go back

Experiment Setup

- Risk Weighted Portfolio Construction of Russell 3000 dataset
- Winsorized Outliers
- OLS for getting factor weights, $r \Box = \beta \Box factor \Box + \epsilon \Box$
- One reason to do this, faster and efficient, however entire dataset could be better (However, [1.5 million * 26 factors] v/s [15120 * 26 factors]).

Autoencoders

- Neural networks that learn to compress and reconstruct data
- Goal: Learn efficient representations while preserving important information

Kolmogorov Arnold Networks

Based on Kolmogorov-Arnold Representation theorem, any continuous function of several variables can be constructed using only:

Addition, Composition, Functions of a single variable

It showed complex multivariate functions could be built from simple building blocks.

Neural nets are black-box equation solvers, Researchers at MIT thought why not use the kolmogorov's work in neural nets.

Kolmogorov Arnold Networks

Activation functions in DL: ReLU, sigmoid, GeLU, etc.

KAN has flexible and learnable activation functions.

Kolmogorov Arnold Networks

Figure 0.1: Multi-Layer Perceptrons (MLPs) vs. Kolmogorov-Arnold Networks (KANs)

KANs are flexible and interpretable, paper has examples.

Unfortunately, our work hasn't proved interpretability yet.

Model Design

- KAN based encoder for getting latent representations as model factors
- Use a simple decoder to reconstruct a factor model explaining returns
- Solve to minimize the loss function (Actual returns vs approximated returns)

Loss

Creating a loss function for factor model

• predicted return -> $r\Box^{\text{predicted}} = \beta\Box factor\Box^+ \epsilon\Box$

Loss =
$$r \square^{\text{actual}}$$
 - $r \square^{\text{predicted}}$

Results

Dataset: 60 years of stock data (1957-2016)

Training: 1957-1987 (30 yr) Validation: 1987-1999 (12 yr) Testing: 2000-2016 (16yr)

Table 1: R² Scores

Model	FF	CA	KAN-CA
1 factor	<0	11.06	11.02
3 factors	<0	11.39	11.26
6 factors	<0	11.29	11.32

Table 2: Predictive R² Scores

Model	FF	CA	KAN-CA
1 factor	<0	0.202	0.203
3 factors	<0	0.168	0.203
6 factors	<0	0.188	0.214

Table 3: Sharpe Ratio

Model	1 factor	3 factors	6 factors
CA	0.86	0.87	0.91
KAN-CA	0.84	0.86	0.96

Future Research Directions

- Demonstrate KAN's interpretability, so we have better interpretable factor models.
- Establish statistical significance of performance improvements through extended validation periods and comprehensive sensitivity analysis across market conditions.
- Optimize model architecture through systematic hyperparameter studies, adding more neurons and longer training periods, with standardized benchmarking against more state-of-the-art factor models.
- Add Mean Variance Portfolio, Random Portfolio Tests, Q-test

Feedback and questions

Paper link: https://www.arxiv.org/abs/2408.02694

