Question	Answer	Marks	Guidance
(a)	2.4g - T = 2.4a $T - 1.2g = 1.2a$ $2.4g - 1.2g = (2.4 + 1.2)a$	M1	Attempt at Newton's second law on either particle or the system with correct number of terms; allow sign errors.
		A1	Any 2 consistent and correct May have an <i>a</i> in opposite direction to our <i>a</i>
	Attempt to solve for a or T	M1	From equation(s) with correct number of relevant terms. If g missing then M0A0M1A0, maximum1/4. Must get $a = \text{ or } T = \text{Must not assume } T = 16$. May attempt to verify a value of a using $T = 16$ in 2 equations
	$T = 16 \text{ N and } a = \frac{10}{3} \text{ ms}^{-2}$	A1	Both correct; allow $a=3.33$. AG for $T=16$. Assuming $T=16$ and only one equation is M1A0M0A0 maximum 1/4. Withhold A mark if $T=15.9\approx 16$, but condone $T=1.2\times 3.33+12=16$ or $T=24-2.4\times 3.33=16$
		4	

Question	Answer	Marks	Guidance	
(b)	$v^{2} = 2 \times \frac{10}{3} \times 2.1 \left[= 14 \right] \left[v = \sqrt{14} = 3.741 \right]$ $OR \frac{1}{2} \times 2.4 \times v^{2} = 2.4g \times 2.1 - 16 \times 2.1$ $OR \frac{1}{2} \times 2.4 \times v^{2} + \frac{1}{2} \times 1.2 \times v^{2} = 2.4g \times 2.1 - 1.2g \times 2.1$	M1	Use of suvat or use energy to find v or v^2 , using their $a \neq \pm g$ (unless 10 comes from their attempt at a) from (a), $s = 2.1$	
	$0 = 14 - 2 \times g \times s \rightarrow s = \dots$ or $\frac{1}{2} (1.2) \left(\sqrt{14} \right)^2 = (1.2) \times g \times h \rightarrow h = \dots$	M1	Attempt to use $v^2 = u^2 + 2as$ (or other complete method), using $a = -g$, to find additional height after string slack, using their v or v^2 .	
	s = [1.5 + 2.1 + 0.7 =] 4.3 m	A1	AWRT 4.3(0); Allow use of $a = 3.33$ to give $s = 4.2993 \approx 4.3(0)$ Allow use of $v = 3.74$ to give $s = 4.29938 \approx 4.3(0)$	
	Alternative for question (b) - using energy on particle B			
	$16 \times 2.1 = 1.2gH$	M1	Apply energy to <i>B</i> , 2 terms	
	H = 2.8	A1		
	s = [1.5 + 2.8 =] 4.3 m	A1		
		3		