

CS/IS F214 Logic in Computer Science

MODULE: INTRODUCTION

A Brief – and Selective - History of Logic – Part III: Godel and Incompleteness

09-08-2018 Sundar B. CS&IS, BITS Pilani 0

Back to Hilbert Program

- Recall:
 - One of the challenges posed by Hilbert was to "formalize mathematics"
- Kurt Godel proved that:
 - <u>complex mathematical systems</u> (or <u>complex systems for</u> <u>formal reasoning</u>) cannot be "fully formalized".

Proof Systems

- Consider a logic(al system) i.e. a proof system:
 - e.g. Euclid's geometry
- Recall that such a system consists of
 - Axioms
 - assumptions / facts that are given
 - e.g. Euclid's five axioms
 - Rules
 - steps / methods for proving results from axioms / other results
 - e.g. proof techniques such as Induction, PbC, LEM
 - Theorems
 - results proven in the systems

Proof Systems and Reality (or Truth)

- A proof system we refer to such a system as a logic in this course) models (i.e. captures) a real-world or imaginary system:
 - Real-world systems can be physical systems or abstract systems.
- e.g.
 - Newtonian mechanics
 - Quantum mechanics
 - Indian constitution
 - Harry Potter's World
- Does a proof system capture the world exactly?
 - How do we define this notion?

Proof Systems – Soundness and Completeness

Soundness

 If everything that is provable in a proof system is "actually true", then the system is said to be sound.

Completeness

• If everything that is "actually true" is <u>provable in a proof</u> <u>system</u>, then the system is said to be **complete**

Examples

Godel's Incompleteness Theorem

- There is no <u>sufficiently complex system</u> that is <u>sound and</u> <u>complete</u>.
 - e.g. Arithmetic is sufficiently complex.
- What is the implication for Hilbert's formalization problem?

