

Welcome to the Course! Customer Lifetime Value in CRM

Verena Pflieger
Data Scientist at INWT Statistics

INWT Statistics

Customer Lifetime Value (CLV)

- predicted future net-profit
- identify promising customers
- prioritize customers according to future margins
- no further customer segmentation

Predicting the Margin of Year 2

Predicting the Future Margin

CLV Data

```
str(clvData1, give.attr = FALSE)
Classes 'tbl df', 'tbl' and 'data.frame': 4191 obs. of 15 variables:
 $ customerID
                     : int 2 3 4 5 6 7 8 9 10 11 ...
 $ nOrders
                     : int 4 3 12 16 1 2 3 15 16 1 ...
  nItems
                     : int 7 4 25 29 2 8 4 20 18 2 ...
  daysSinceLastOrder: int
                           4 272 12 32 47 19 63 23 75 193 ...
 $ margin
                     : num
                           35.8 25.7 63.3 53.7 35.9 ...
  returnRatio
                           0.25 0.44 0.15 0.03 0 0.18 0 0.01 0.02 1 ...
                     : num
                           0.67 0.33 0.86 0.96 1 0 0.33 0.53 0.27 0 ...
  shareOwnBrand
                     : num
  shareVoucher
                           0.17 0 0.38 0.17 0 0.86 0.33 0.12 0.6 0 ...
                     : num
  shareSale
                           0 0.67 0.29 0.33 1 0.14 0 0.12 0.2 1 ...
                     : num
                           "female" "male" "female" ...
  gender
                     : chr
  age
                     : int
                           56 37 32 43 48 31 27 30 50 50 ...
  marginPerOrder
                           8.94 8.58 5.28 3.36 35.85 ...
                     : num
  marginPerItem
                           5.11 6.43 2.53 1.85 17.93 ...
                     : num
  itemsPerOrder
                           1.75 1.33 2.08 1.81 2 4 1.33 1.33 1.12 2 ...
                     : num
 $ futureMargin
                           57.6 29.7 56.3 58.8 29.3 ...
                     : num
```


Correlations

Let's practice!

Simple Linear Regression

Verena Pflieger
Data Scientist at INWT Statistics

Model Specification

```
simpleLM <- lm(futureMargin ~ margin, data = clvData1)</pre>
summary(simpleLM)
Call:
lm(formula = futureMargin ~ margin, data = clvData1)
Residuals:
           1Q Median 3Q
   Min
                              Max
-56.055 -9.258 0.727 10.060 49.869
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
margin 0.64543 0.01467 43.98 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 14.24 on 4189 degrees of freedom
Multiple R-squared: 0.3159, Adjusted R-squared: 0.3158
F-statistic: 1935 on 1 and 4189 DF, p-value: < 2.2e-16
```

```
ggplot(clvData1, aes(margin, futureMargin)) +
   geom_point() +
   geom_smooth(method = lm, se = FALSE) +
   xlab("Margin year 1") +
   ylab("Margin year 2")
```


Assumptions of Simple Linear Regression Model

- Linear relationship between x and y
- No measurement error in x (weak exogeneity)
- Independence of errors
- Expectation of errors is 0
- Constant variance of prediction errors (homoscedasticity)
- Normality of errors

Time to Practice!

Multiple Linear Regression

Verena Pflieger
Data Scientist at INWT Statistics

Omitted Variable Bias

The more Effort, the less Success?

The more Effort, the more Success!

Multiple Linear Regression

```
multipleLM <- lm(futureMargin ~ margin + nOrders + nItems + daysSinceLastOrder +
                  returnRatio + shareOwnBrand + shareVoucher + shareSale +
                  gender + age + marginPerOrder + marginPerItem +
                  itemsPerOrder, data = clvData1)
summary(multipleLM)
Call:
lm(formula = futureMargin \sim margin + ..., data = clvData1)
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
                  22.528666 1.435062 15.699 < 2e-16 ***
(Intercept)
              margin
                 -0.031825 0.122980 -0.259 0.79581
n0rders
itemsPerOrder
                 0.102576 0.540835 0.190 0.84958
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 13.85 on 4177 degrees of freedom
Multiple R-squared: 0.3547, Adjusted R-squared: 0.3527
F-statistic: 176.6 on 13 and 4177 DF, p-value: < 2.2e-16
```


Multicollinearity

Variance Inflation Factors

```
library(rms)
vif(multipleLM)
            margin
                               n0rders
                                                    nItems
          3.658257
                             11.565731
                                                 13.141486
daysSinceLastOrder
                                             shareOwnBrand
                           returnRatio
          1.368208
                              1.311476
                                                  1.363515
      shareVoucher
                             shareSale
                                                gendermale
          1.181329
                              1.148697
                                                  1.003452
                        marginPerOrder
                                             marginPerItem
                age
          1.026513
                              8.977661
                                                  7.782651
     itemsPerOrder
          6.657435
```


New Model

```
multipleLM2 <- lm(futureMargin ~ margin + nOrders +</pre>
                    daysSinceLastOrder + returnRatio + shareOwnBrand +
                     shareVoucher + shareSale + gender + age +
                     marginPerItem + itemsPerOrder,
                  data = clvData1)
vif(multipleLM2)
                               nOrders daysSinceLastOrder
            margin
          3.561828
                              2.868060
                                                  1.354986
                         shareOwnBrand
       returnRatio
                                              shareVoucher
          1.305490
                              1.353513
                                                  1.176411
         shareSale
                            gendermale
                                                       age
          1.146499
                              1.003132
                                                  1.021518
                         itemsPerOrder
     marginPerItem
          1.686746
                              1.550524
```


Interpretation of Coefficients

```
summary(multipleLM2)
Call:
lm(formula = futureMargin \sim margin + n0rders + ..., data = clvData1)
Residuals:
    Min
             10 Median
                             30
                                   Max
-55.659 -8.827
                         9.561
                                50.118
                0.483
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   22.798064
                              1.287806
                                        17.703 < 2e-16 ***
                              0.026983 14.980 < 2e-16 ***
                   0.404200
margin
                                        3.590 0.000334 ***
n0rders
                   0.220255
                               0.061347
daysSinceLastOrder -0.017180
                               0.002675
                                        -6.422 1.49e-10
returnRatio
                              0.601214
                                        -3.315 0.000925 ***
                   -1.992829
                              0.677572
              7.568686
shareOwnBrand
                                        11.170 < 2e-16 ***
                               0.669017
                                         -2.617 0.008900 **
shareVoucher
                   -1.750877
shareSale
                   -2.942525
                               0.691108
                                        -4.258 2.11e-05 ***
                  0.203813
gendermale
                                        0.474 0.635643
                               0.430136
                   -0.015158
age
                               0.017245
                                         -0.879 0.379462
marginPerItem
                   -0.197277
                               0.051160
                                         -3.856 0.000117 ***
itemsPerOrder
                   -0.270260
                               0.261458
                                        -1.034 0.301354
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```


Let's practice!

Model Validation, Model Fit, and Prediction

Verena Pflieger
Data Scientist at INWT Statistics

Coefficient of Determination \mathbb{R}^2

R^2 and F-test

```
summary(multipleLM2)
```

Residual standard error: 13.87 on 4179 degrees of freedom Multiple R-squared: 0.3522, Adjusted R-squared: 0.3504 F-statistic: 206.5 on 11 and 4179 DF, p-value: < 2.2e-16

Overfitting

Methods to Avoid Overfitting

- AIC() from stats package
- stepAIC() from MASS package
- out-of-sample model validation
- cross-validation

• ...

AIC(multipleLM2)

[1] 33950.45

New Dataset clvData2

```
head(clvData2)
# A tibble: 6 x 14
  customerID nOrders nItems daysSinceLastOrder margin returnRatio
                                         <int> <dbl>
       <int>
              <int> <int>
                                                            <dbl>
                  16
                         40
                                                             0.18
                                               57.62
                                           124 29.69
                                                             1.00
                         30
                                            68 56.26
                                                             0.16
                                           103 58.84
                         41
                                                             0.03
                                                             0.00
                                           104 29.31
                         10
                                            41 35.72
                                                             0.06
  ... with 8 more variables: shareOwnBrand <dbl>, shareVoucher <dbl>,
    shareSale <dbl>, gender <chr>, age <int>, marginPerOrder <dbl>,
    marginPerItem <dbl>, itemsPerOrder <dbl>
```


Prediction

Learnings Linear Regression

	Learnings Linear Regression
You have learned	to predict the future customer lifetime value
	to use a linear regression to model a continuous variable
	that the variables for modelling and prediction have to carry the same names

Learnings from the Model

	Learnings from the Model
You have learned	that the margin in one year is a good predictor for the margin in the following year
	the longer the time since last order, the smaller the expected margin
	characteristics like gender and age don't seem to play a role for the prediction of margin
	etc

Alright, Hands On!