National Forensic Sciences University School of Cyber Security and Digital Forensics

Course Name: M.Tech Al_DS (Batch: 2024-25) Semester - 1 Exam: MID (OCT - 2024)

Subject Code: CTMTAIDS SI P4

Time: 11:00 AM to 12:30 PM

Subject Name: Fundamentals of Data Science and Machine Learning

Date: 10-Oct-2024

Instruction:

1. Do all necessary assumptions.

2. Support your answer with proper diagram

- 3. Make a cross line on the unused part of your answer sheet.
- 4. New question on new page.

Q1. True/False (Attempt All)

[10 Marks]

- 1. Range is a statistical measure used to quantify the spread of data around the mean.
- 2. A distribution with a long tail to the right is said to be Skewed right.
- 3. Machine learning algorithms can learn from data and improve their performance over time.
- 4. ROC curves are used to evaluate the performance of classification models.
- 5. EDA cannot be an iterative process.
- 6. A distribution with a kurtosis of 0 is considered mesokurtic, meaning it has tails similar to a normal distribution.
- 7. A Type 2 error is also known as a false negative.
- 8. A Confidence Interval = 1 + significance level (alpha).
- 9. As Threshold value increases, the number of true negatives will decrease.
- 10. A sigmoid function is utilized in logistic regression to model the relationship between the independent variables and the binary dependent variable.

Q2. Answer the following questions. (Attempt any 4)

[20 Marks]

- 1. Difference between Normalization and Standardization with equations.
- 2. Explain any 2 classification techniques in detail.
- 3. Difference between Regression and Classification with example.
- 4. What is the use of ROC? explain it with a Diagram.
- 5. Provide diagram of real-world Data Science Process and elaborate.
- What is the Confusion Matrix?
 A model outputs 13 TP, 14 TN, 2 FP, and 1 FN.
 Calculate the Accuracy, Sensitivity, Specificity, FPR and Precision.

Q3. Answer the following questions. (Attempt any 2)

[20 Marks]

1. Write a python function to perform following transformation

Name	Weight	Salary	
Ram	82.1	60,000	
Shyam	78.3	70-000	
Sita	58.2	50:000	

Name	Weight	Salary 60,000	
Ram	82		
Shyam	78	70,000	
Sita	58	50,000	

2. Write a code where csv file provided as per following values. Now use linear regression to predict about salary from Experience=120, Age=40, IQ = 90.

Name	Experience	Age	IQ	Salary
Ram	5	32	82	60000
Shyam	6.5	37	78	70000
Sita	6	30	- 58	50000

3. Suppose we are now given a new feature vector:

Weather condition: Rain, Road condition: good, Traffic condition: normal, Engine problem: no. The task is to predict if an accident will happen?

Which classification will you apply here? why? how?

SNo.	Weather condition	Road condition	Traffic condition	Engine problem	Accident
1	Rain	bad	high	no .	yes
2	snow	average	normal	yes	yes
3	clear	bad	light	no	no
4	clear	good	light	yes	yes
5	snow	good	normal	no	no
6	rain	average	light	no	no
7	rain	good	normal	no	no
8	snow	bad	high	no	yes
9	clear	good	high	yes	no
10	clear	bad	high	yes	yes