

Universidade de Brasília Instituto de Exatas Departamento de Estatística

Cadeias de Markov e Economia da saúde

Uma aplicação utilizando o pacote heemod

Carolina Musso 18/0047850Henrique Oliveira Dumay 19/0121475

Professor(a): Cira Etheowalda Guevara Otiniano

Sumário 3

Sumário

1 Resumo	4
2 Introdução e Objetivos	4
3 Metodologia	5
3.1 Processo Semi-Markov	5
3.2 Descrição da questão	6
3.3 Estratégias comparadas	6
3.4 Estados:	6
3.5 Parâmetros do modelo:	7
4 Resultados	7
5 Discussão	7
6 Conclusão	7
7 Apêndice	7

1 Resumo

2 Introdução e Objetivos

A avaliação econômica em saúde, cada vez mais fundamental na tomada de decisões dos sistemas de saúde, é utilizada para determinar quais intervenções devem ser financiadas com recursos limitados. Essencial em decisões sobre cobertura ou reembolso de novos medicamentos, esta abordagem foi pioneira na Austrália e em Ontário, Canadá. Atualmente é utilizada extensivamente no Reino Unido, onde o Instituto Nacional para Excelência em Saúde e Cuidados Clínicos (NICE) expande seu uso para dispositivos médicos, tecnologias de diagnóstico e procedimentos cirúrgicos (BRIGGS; CLAXTON; SCULPHER, 2006).

No Brasil esse é um campo em crescimento, especialmente em vista da necessidade de otimizar os recursos no Sistema Único de Saúde (SUS). Com um sistema de saúde pública que enfrenta desafios de financiamento e desigualdades regionais, a avaliação econômica torna-se crucial para garantir a eficiência na alocação de recursos e no acesso equitativo a tratamentos e tecnologias. Ainda há desafios, como a necessidade de maior capacitação técnica e integração de dados de saúde, mas a avaliação econômica está se tornando uma ferramenta cada vez mais importante na formulação de políticas de saúde no país (VANNI et al., 2009).

Nos estudos de avaliação econômica em saúde, custos e resultados são atribuídos a diferentes estados de saúde (como saudável, doente ou morto) para avaliar a eficiência de várias estratégias de saúde. Esses custos podem incluir despesas médicas ou de medicamentos, enquanto os resultados se referem a anos de vida ou qualidade de vida. Modelos de Markov são utilizados para representar esses estados de saúde e as probabilidades de transição entre eles ao longo do tempo. Embora os modelos de Markov sejam robustos, a programação de modelos personalizados pode ser complexa. Para superar isso, o pacote heemod foi desenvolvido na linguagem R, facilitando a criação e análise de modelos de Markov em avaliações econômicas de saúde, tornando o processo mais acessível e eficiente (FILIPOVIć-PIERUCCI; ZARCA; DURAND-ZALESKI, 2017; ZARCA et al., 2017)

O Transtorno Afetivo Bipolar é uma doença psiquiátrica grave e crônica, que afeta entre 1 e 4% da população mundial (SCAINI, 2020). Caracteriza-se por uma mudança sustentada de humor, com alternância entre polos, que recebem os nomes de mania e depressão, ou leva a estados mistos, normalmente associados a grande prejuízo funcional. A mania é caracterizada como um estado humor elevado, expansivo ou irritado com duração maior que uma semana associado a outros sintomas característicos e é o principal marcador clínico diagnóstico do TAB (ASSOCIATION, 2014). Para um grupo de pessoas,

Metodologia 5

a doença leva a um quadro crônico, persistente e com curso deteriorante. Episódios recorrentes influenciam o desfecho clínico e aumentam a vulnerabilidade individual a novos episódios, além de reduzir a resposta ao tratamento (DONKOR; ANANE, 2016).

O tratamento consiste em ...

O objetivo desse trabalho foi então avaliar a custo-efetividade do tratamento de primeira classe ou nenhum considerando a internacao... (elaborar melhor) utilizando o pacote heemod

3 Metodologia

3.1 Processo Semi-Markov

Uma cadeia de markov é um processo estocástico em que a distribuição condicional para qualquer estado futuro X_{n+1} , dados os estados passados $X_0, X_1, ..., X_{n-1}$ e o estado presente X_n , é idependente dos estados passados e depende somente do estado presente @ross. O processo assume um número finito de possíveis valores $\{X_n, n = 0, 1, 2, ...\}$ e, se $X_n = i$, considera-se que o processo está no estado \mathbf{i} no tempo \mathbf{n} . Assume-se que, quando o processo está no estado \mathbf{i} , existe uma probabilidade P_{ij} de ir para o estado \mathbf{j} em seguida. Isto é:

$$P\{X(n+1)=j|X_n=i_n,X_{n-1}=i_{n-1},...,X_1=i_1,X_0=i_0\}=P_{ij}$$

para todos os estados $i_0, i_1, ..., i_n, j$ e para todo $n \ge 0$. O valor P_{ij} representa a probabildiade do processo sair de **i** e ir para **j**.

Um processo estocástico $\{N(t): t \geq 0\}$ que pode estar em qualquer um de N estados (1, 2, ..., N) e, a cada vez que entrar em um estado \mathbf{i} , lá permanecer por uma quantidade de tempo aleatória, com média μ_i e, então, ir para um estado \mathbf{j} com probabilidade P_{ij} é chamado de processo semi-markov. Diferencia-se de uma cadeia de Markov por, nesta última, o tempo em que um processo passa em cada estado antes de uma transição ser o mesmo.

A proporção de tempo que um processo permanece em um estado i é dado por:

$$P_i = \frac{\mu_i}{\mu_1 + \mu_2 + ... + \mu_N}, i = 1, 2, ..., N$$

Com μ_i representando a quantidade esperada de tempo em que um processo permanece no estado **i** durante cada visita.

6 Metodologia

Considera-se π_i a proporção de transições que levam o processo ao estado **i**. X_n denota o estado do processo após a n-ésima transição. Então $\{X_n, n \geq 0\}$ é uma cadeia de Markov com probabildades de transição $P_{ij}, i, j = 1, 2, ..., N$. π_i será a probabilidade estacionária para essa cadeia de Markov. Isto é, π_i será a única solução não-negativa para

$$\sum_{i=1}^{N} \pi_i P_{ij} = 1\pi_i = \sum_{j=1}^{N} \pi_j P_{ij}, i = 1, 2, ..., N$$

Como o processo passa um tempo esperado μ_i no estado **i** sempre que visita aquele estado, P_i dever ser uma média ponderada de μ_i , em que π_i é poderado proporcionalmente a μ_i :

$$P_i = \frac{\pi_i \mu_i}{\sum_{j=1}^{N} \pi_j P_{ij}}, i = 1, 2, ..., N$$

e π_i é a solução da equação anterior.

A probabilidade P_i para um processo Semi-Markov

3.2 Descrição da questão

Será modelado o transtorno afetivo bipolar.

3.3 Estratégias comparadas

Consideraremos duas estratégias: - Não tratamento - Tratamento de primeira linha conforme as diretrizes CANMAT and ISBD Guidelines on the Management of Bipolar Disorder.

3.4 Estados:

Estado assintomático Sintomático Internação

 $Ap \hat{e}ndice$ 7

- 3.5 Parâmetros do modelo:
- 4 Resultados
- 5 Discussão
- 6 Conclusão
- 7 Apêndice

8 Referências

Referências

ASSOCIATION, A. P. Diagnostic And Statistical Manual Of Mental Disorders. [S.1.]: American Psychiatric Association, 2014.

BRIGGS, A.; CLAXTON, K.; SCULPHER, M. Decision Modelling for Health Economic Evaluation. 1st. ed. Oxford University Press, USA, 2006. ISBN 0198526628. Disponível em: (https://www.amazon.com.au/Decision-Modelling-Economic-Evaluation-Handbooks/dp/0198526628).

DONKOR, E.; ANANE, E. Saving behaviour of citrus farmers in ghana: implications for rural enterprise development. *Development in Practice*, Routledge, v. 26, n. 8, p. 1037–1046, 2016. Disponível em: (https://doi.org/10.1080/09614524.2016.1225671).

FILIPOVIć-PIERUCCI, A.; ZARCA, K.; DURAND-ZALESKI, I. heemod: Models for health economic evaluation in r. arXiv:1702.03252 [stat.AP], 2017. Disponível em: $\langle https://doi.org/10.48550/arXiv.1702.03252 \rangle$.

SCAINI, G. e. a. Neurobiology of bipolar disorders: a review of genetic components, signaling pathways, biochemical changes, and neuroimaging findings. *Brazilian Journal of Psychiatry*, v. 42, n. 5, p. 536–551, 2020.

VANNI, T. et al. Avaliação econômica em saúde: aplicações em doenças infecciosas. Cadernos de Saúde Pública, v. 25, n. 12, p. 2543–2552, 2009. Disponível em: $\langle \text{https://doi.org/}10.1590/S0102-311X2009001200002} \rangle$.

ZARCA, K. et al. heemod: Models For Health Economic Evaluation in R. [S.l.], 2017. R package version 0.16.0. Disponível em: (http://CRAN.R-project.org/package=heemod).