PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: **WO 93/01800** (11) International Publication Number: A1 A61K 9/06, 9/16 // A61K 37/547 (43) International Publication Date: 4 February 1993 (04.02.93) PCT/AU92/00371 (21) International Application Number: **Published** With international search report. (22) International Filing Date: 23 July 1992 (23.07.92) (30) Priority data: PK 7398 24 July 1991 (24.07.91) AU

(81) Designated States: AT, AU, BB, BG, BR, CA, CH, CS, DE, DK, ES, FI, GB, HU, JP, KP, KR, LK, LU, MG, MN, MW, NL, NO, PL, RO, RU, SD, SE, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LU, MC, NL, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,

(71)(72) Applicant and Inventor: KO, Thomas, Sai, Ying [AU/AU]; 2 Licence Road, South Belgrave, VIC 3160 (AU).

(74) Agent: CALLINAN LAWRIE; Private Bag 7, Kew, VIC

GA, GN, ML, MR, SN, TD, TG).

(54) Title: THERAPEUTIC COMPOSITIONS AND METHODS

(57) Abstract

3101 (AU).

ĉ,

Compositions comprising (i) granules comprising a biologically active material in association with a weak base and partially coated with a delayed release material soluble in intestinal juice, (ii) an acidifying agent having a pH between 1.5 to 6; and (iii) a gel forming agent are described. There is also described a composition comprising an acidic gel having a pH between 1.5 to 6, and containing microgranules comprising a biologically active material in association with a weak base and partially coated with a delayed release material soluble in intestinal juice. The compositions may be used in the treatment of diseases associated with intestinal pathogens in animals. Where the biologically active material is a protease, receptor/adhesion sites in the intestines for pathogens may be proteolysed so as to prevent pathogen binding to intestinal surfaces.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT.	Austria	Fl	Pinland	ML	Mali
AU	Australia	FR	France	MN	Mongolia
вв	Barbados	GA	Gabon	MR	Mauritania
BE	Belgium	GB	United Kingdom	MW	Malawi
BF	Burkina Faso	GN	Guinea	NL.	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	ΙE	Ireland	RO	Romania
CA	Canada	ΙT	Italy	RU	Russian Federation
CF	Central African Republic	JP	Japan .	SD	Sudan
CG	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korea	SN	Senegal
CI	Côte d'Ivoire	KR	Republic of Korea	SU	Soviet Union
CM	Cameroon	LI	Liechtenstein	TD	Chad
CS	Czechoslovakia	LK	Sri Lanka	TG	Togo
DE	Germany	LU	Luxembourg	US	United States of America
DK	Denmark	MC	Monaco		
ES	Spain	MG	Madagascar		

PCT/AU92/00371

- 1 -

5

10

15

20

25

THERAPEUTIC COMPOSITIONS AND METHODS

This invention relates to novel compositions, to methods for the delivery of biologically active substances to the small intestinal tract, and to methods for the treatment of intestinal pathogens in animals.

The small intestinal tract of animals, is important for the absorption of biologically active materials such as digested food components, antibiotics, vitamins, etc.

Biologically active materials are often acid labile and thus may be degraded or inactivated on passage through the stomach on route to the small intestine for absorption or bio-activity.

It has previously been proposed to enteric coat

30 materials with acid resistant/alkali soluble agents such
as cellulose acetate phthalate, so that biological
materials pass safely through the stomach for subsequent
liberation in the intestines. In young animals, for
example young piglets, the passage time of enterically

35 coated materials through the intestines may be so rapid
that the enteric coating fails to break down, resulting
in excretion of the enterically coated materials, or the

- 2 -

liberation of the biologically active materials in inappropriate regions of the intestine such as the large intestine.

Additionally, biologically active material such as proteases may be unpalatable and may cause irritation and inflammation of the buccal cavity and oesophagus.

A requirement exists for compositions and methods which effectively and conveniently facilitate the delivery of biologically active material to the intestinal regions of animals.

In accordance with one aspect of this invention there is provided a composition which comprises:

- (i) granules comprising a biologically active material in association with a weak base and partially
 15 coated with a delayed release material soluble in intestinal juice;
 - (ii) an acidifying agent having a pH between 1.5 to 6 when in solution; and

(iii) a gel forming agent.

In accordance with another aspect of this invention, there is provided a composition comprising an acidic gel having a pH between about 1.5 to about 6, and containing microgranules comprising a protein in association with a weak base and partially coated with a delayed release

25 material soluble in intestinal juice.

The biologically active material may be a protein such as an enzyme, growth factor, cytokine or hormone. Where the enzyme is a proteolytic enzyme, it is preferably selected from bromelin, papain, ficin, chymotrypsin, trypsin, ribonuclease, carboxypeptidase A or B, or subtilisin. Bromelin is most preferred. Growth factors include growth hormone, insulin and the like.

As used herein, the term protein also includes peptides within its scope. Generally, a peptide comprises from 2 to 100 amino acids, and a protein comprises 100 or more amino acids.

35

Biologically active materials may be non-

PCT/AU92/00371 WO 93/01800

- 3 -

proteinaceous and may include vitamins, co-factors, metal ions, antibiotics or the like.

Biologically active materials are generally provided in fine particulate form, such as in the form of powders.

5

By the term "weak base" is meant an alkalyzing agent such as dicalcium phosphate, calcium carbonate, calcium bicarbonate, aluminium hydroxide, sodium bicarbonate and the like. Advantageously, the weak base is sparingly soluble. The weak base is generally provided in fine 10 particulate form, for dissolution in appropriate media such as stomach juices. The weak base and biologically active material may be admixed together when both are in particulate form, prior to coating.

Granules may be formed by partially coating mixtures 15 of biologically active materials and buffering agents in particulate form, with a delayed release material (otherwise known as an enteric coating) soluble in intestinal juices. Fluidized particles may be spray coated with a solution of the delayed release material. 20 The size of granules formed by spray coating fluidized particles (in a fluidized bed) can be controlled, and is dependant on the velocity of particle flow and spray pressure of the coating solution. For example, fast granule flow and high spray pressure leads to small granules. Without limiting this invention, granules 25 usually have a diameter between 50 to 500 µm. granules may be referred to as microgranules.

In accordance with this invention, granules are only partially coated with delayed release material. 30 an important aspect of this invention, as it allows rapid release of biologically active material in the intestine. Partial coating may be generally achieved utilizing spray coating of fluidized material. The extent of coating can be determined by microscopic analysis of granules.

Generally, from 10 to 90% of the surface area of the 35 granules is coated with the delayed release material. Preferably, from 50 to 80% of the granule surface is

- 4 -

coated with delayed release material.

Delayed release materials are any materials which are substantially impermeable and maintain their integrity below about pH 6.0, and which degrade,

5 dissolve, become permeable or lose their structural integrity at alkaline pH, from about pH 7.0 upwards.

Examples of such materials include cellulose acetate phthalate, other types of enteric coatings, and the like.

Acidifying agents may be provided in particulate form, and on solubilization in aqueous solution have a pH between about 1.5 to about 6, preferably about 3.5 to about 6. Any non-toxic agent which satisfies this criteria is within the scope of the present invention.

Examples of acidifying agents are citric acid, lactic acid, tartaric acid, succinic acid, oxalic acid, fumaric acid, butyric acid, hydrochloric acid, proprionic acid and the like.

Gel forming agents are also generally provided in
20 particulate form and are capable of forming a gel matrix
under appropriate conditions, such as dispersion or
mixture with an aqueous or organic solution (such as
glycerine or polyethylene glycol). Examples of gel
forming agents include karageenans, alginates, polyvinyl
25 pyrollidone (PVP), methyl methacrylate substituted with
bile-soluble fatty acids, dextran, and the like. An
acidic gel is formed by hydrating or dispersing a gel
matrix in an acidic solution or in the presence of an
acidifying agent as herein described.

30

35

The composition of one aspect of this invention is provided in particulate form, as a mixture of granules with a particulate acidifying agent and a gel forming agent. In this form, the composition may be readily stored and transported. When desired to be used for delivering biologically active material to the intestinal regions of an animal, a small amount of water or other non-toxic solution is added to the composition to give an

- 5 -

acidic gel (formed by the transition of the gel forming agent to a gel, in the presence of the acidifying agent) having microgranules contained therein. This procedure is followed for the production of the acidic gel composition as described herein.

The ratio of components (i)-(iii) of the composition of this invention is generally unimportant, but may, for example, be in the ratio of 10:1:1 calculated on a w/w basis. Similarly, the ratio of biologically active material to buffering agent is not important, but, for example, may be in the ratio 1:4 (w/w).

The composition in accordance with this invention may additionally comprise one or more antibiotics. Where a composition according to an embodiment of this

15 invention is in granular form, the antibiotic may be in the form of a powder or granules which is admixed with the other components. When a composition according to an embodiment of this invention is in the form of a gel, the one or more antibiotics are generally dissolved during preparation of the gel matrix and therefore generally distributed throughout the gel matrix.

Any known class of antibiotics may be used in the compositions of this invention, and include, for example, one or more antibiotics selected from penacillin,

25 cephalosporin, erythromycin, tetracycline, thienamycin, neomycin, and the like, such as derivatives thereof having antibiotic activity.

As will be described hereinafter, it is believed that antibiotics interact synergistically with the compositions of this invention as described hereinbefore, particularly when the biologically active material is a protease, in the treatment of intestinal bacterial infections associated with various disease states.

30

In still another form of this invention there is provided a method for the delivery of a biologically active substance to the upper small intestinal tract of an animal which comprises administering to the animal a

- 6 -

composition as described herein. Where the composition is a gel, it is directly administered to an animal. Where the composition is in particulate form, it is first dispersed or mixed with an appropriate solution to form a gel and then administered to an animal.

In yet another form of this invention there is provided a method for the treatment of intestinal pathogens and/or diseases associated with intestinal pathogen infection in animals which comprises orally administering to an animal a therapeutically effective amount of a composition as previously defined herein. Preferably, the composition contains a protease, for example bromelin, optionally is in association with one or more antibiotics. In an alternative embodiment one or more antibiotics may be administered contemporaneously or substantially contemporaneously.

Intestinal pathogens which may be treated in accordance with this invention include bacteria, viruses or parasites. Examples of such pathogens include, for example, enterotoxigenic <u>Escherichia coli</u>, Shigella, Yersinia, Pleisiomonas, Vibrios, Aeromonas, Campylobacter, rotavirus, Cryptosporidia or Coccidosis.

The invention further relates to a method for the treatment of diarrhoea in an animal which comprises

25 administering to the animal a composition comprising an acidic gel having a pH between 1.5 to 6, said gel containing microgranules which comprise a proteolytic enzyme in association with a weak base and partially coated with a delayed release material soluble in intestinal juice. Optionally the composition may comprise one or more antibiotics, or one or more antibiotics may be administered contemporaneously or substantially contemporaneously.

Any animal, preferably a mammal such as humans,
35 pigs, cattle, horses, sheep, birds, fish, or crustaceans
may be treated in accordance with the methods of this
invention. Particularly, the animal is a monogastrate

- 7 -

such as a pig or human infant, or an immature ruminant such as a calf.

While this invention in its various embodiments has particular application to monogastrate and immature

5 ruminant animals, the invention also has applications in aquaculture in the treatment of intestinal diseases which effect fish and crustaceans (which may, for example, be intensively raised in ponds, tanks and the like).

Compositions containing proteases would act to remove adhesion sites in the intestines of fish and crustaceans for pathogens, as well as providing a systemic immunity effect.

In respect of humans, the composition of this invention may be mixed in a drink such as water or a buffered solution having a pH of about 4 to 7. The extent of coating of the microgranules for human administration is generally in the order of about 20%.

The oral administration of an acidic gel in accordance with this invention may be effected by any 20 convenient means. For example, the gel may be poured or injected into the buccal cavity of an animal.

Alternatively, the gel may be applied to or mixed with food, such as animal feed.

The amount of acidic gel administered to an animal for the delivery of a biologically active substance to the intestinal regions of animals, or for the treatment of diarrhoea, is generally unimportant, as is the frequency of administration, and will depend on factors such as the weight and health of the animal, its nutritional status, the condition being treated and like factors, and will generally be determined by a farmer or veterinarian or physician. By way of example only, a piglet may be administered 1 to 5 ml of an acidic gel by way of syringe into the buccal cavity. Again, by way of example, an effective amount of the composition of this invention may be from about 0.01 g/kg body weight to about 5 g/kg body weight

- 8 -

The effective delivery of biologically active proteases to the upper small intestinal tract utilizing the compositions of this invention, has been shown by the inventors to result in the destruction (presumably by 5 proteolysis) of intestinal membrane receptors for pathogens (such as receptors for the pathogenic bacteria E. coli K88) and the destruction of toxin receptors in the intestines. The protease containing compositions of this invention limit the natural physiology of the body 10 by using digestive enzymes to temporarily remove bacterial and other pathogen receptors from the surface lining of the post intestinal surface. Without these receptors, pathogenic organisms cannot colonise on the surface of the gut lining. Without colonisation in large 15 numbers, pathogenic microbes cannot generate disease. This unique action in preventing microbial disease by modifying the host and not the pathogen overcomes the traditional disadvantage of antibiotics, that being microbial antibiotic resistance.

Additionally, and surprisingly, compositions of this 20 invention are effective against pathogenic microbes that may not possess a recognised adhesive mechanism or receptor (such as protozoan parasites, and viruses such as rotavirus and transmissible gastroenteritis virus This latter effect indicates that the 25 compositions of this invention, particularly those containing proteases (such as plant and animal proteases, for example, bromelin, papain, ficin, chymotrypsin, trypsin, ribonuclease, subtilisin, carboxypeptidase A or B, and the like), may act as non-specific immuno 30 The immuno-stimulant effect of the compositions of this invention is not well understood. While this immuno-stimulation may be specific for a particular pathogen it is believed to be non-specific and involving the increased production of IgG. 35

The combination of a protease containing composition as referred to herein with antibiotics may offer a

- 9 -

synergistic effect in the treatment of intestinal microbial infections. This synergistic interaction may arise because of the non-specific action in elevating antibody response as mentioned above, which compliments the antimicrobial action of antibiotics. It has also surprisingly been found that the above mentioned compositions containing a protease and an antibiotic increase antibiotic systemic absorption from the intestinal regions. The mechanism behind this effect is unclear. This effect is also present when antibiotics are administered contemporaneously or substantially contemporaneously with the acidic gel composition of an embodiment of this invention.

Protease containing compositions of this invention
15 also provide broad spectrum anti-diarrhoeal effects,
weight gain, and a reduction in mortality on
administration to animals, particularly in immature
monogastrates such as pigs.

In accordance with another aspect of this invention

there is provided a method for the non-stimulation of the immune system in animals, which method comprises orally administering to an animal a composition comprising an acidic gel having a pH between about 1.5 to about 6, and containing microgranules containing a biologically active material, particularly a protease, in association with a weak base and partially coated with a delayed release material soluble in intestinal juice. The protease may be of animal or plant origin, and selected, for example, from proteases such as bromelin, papain, ficin,

chymotrypsin, trypsin, ribonuclease, carboxypeptidate A or B, or subtilisin and the like.

As will be apparent from the Examples hereafter, protease containing compositions of this invention cause a significant decrease in pathogenic intestinal flora. This unexpected phenomenon provides the opportunity to recolonise an animal's intestine with non-pathogenic advantageous bacteria, such as lactobacilli,

streptococci and the like from healthy animals.

In accordance with an aspect of this invention there is provided a method which comprises the steps of orally administering to an animal a composition comprising an acidic gel having a pH between about 1.5 to about 6 and containing microgranules comprising a protease in association with a weak base and partially coated with delayed release material soluble in intestinal juice, and thereafter orally administering to said animal

0 microorganisms which organisms may comprise one or more components of the intestinal flora of healthy animals.

The organisms administered to an animal in this aspect of the invention may be referred to as "probiotics" and may be administered at the same time as the acidic gel composition or shortly thereafter, such as from several minutes to 24 hours.

Probiotics may be administered in the form of freeze dried organisms or other convenient form, such as in the form of a nutrient solution, slurry of microorganisms and the like.

In yet another aspect of this invention there is provided an acidic gel or particulate composition as described herein in admixture with conventional animal feeds as are well known in the art, such as pelleted feed, weaner pellets or the like.

20

25

The various features of the composition of this invention are particularly advantageous for the following reasons:-

- The provision of granules of small particle
 size, namely 50 μm to 500 μm, as provided herein (these may be referred to as "microgranules") delay release of material in the buccal cavity (thus protecting the buccal cavity from the effects of proteases such as bromelin), and the stomach. Small particle size also facilitates
 gastric passage.
 - 2. The provision of buffering within the granule in the pH range 3 to 6 acts to inhibit the proteolytic

activity of pepsin in the stomach, neutralise stomach pH, inhibit inactivation of acid-sensitive biological materials such as proteases, and enable the pH optimum of a biological material, such as the proteolytic enzyme bromelin to be maintained.

- 3. The partial coating of granules with a delayed release material protects biological material from acid inactivation, and enables gradual release of biological material within the small intestine, starting in the duodenum, as well as masking taste. Fully enteric coated granules may not liberate biological material, particularly in immature monogastrates or ruminants, and thus may be excreted, or contents liberated at an inappropriate site in the intestine. Unexpectedly, a partial coating of delayed release material does not lead to inactivation of biologically active agents in the stomach. This is presumably due to the presence of the buffering set out in point (2) above.
- 4. The acidifying agent promotes animal salivation 20 and increases palatability, as well as lowering gastric pH and thereby maintaining the integrity of the delayed release material in the stomach.
- 5. When in the form of a gel, the gel-forming agent reduces diffusion from the granules and keeps the
 25 granules in an easily flowing suspension. Protection of buccal mucosa is also provided by the gel which helps restrict diffusion of free enzyme (or other biological material) from the granules. Due to the presence of an acidifying agent in the gel, salivation and palatability are promoted.

This invention will now be described, by way of example only, with reference to the following non-limiting examples.

35 EXAMPLE 1

Preparation of compositions:

The following composition containing the proteolytic

PCT/AU92/00371

- 12 -

enzyme bromelin was prepared:

(i) Granule:

25% w/w Bromelin 65% w/w Dicalcium phosphate 5 Cellulose acetate phthalate 10% w/w 100% w/w

(ii) Acidifying agent:

5% w/w relative to granule weight Citric acid (iii) Gel forming agent:

10 Carboxymethyl cellulose 10% w/w relative to granule weight

Method:

- Disperse 1 kg of cellulose acetate phthalate into 10 1. litres of water.
- Add q.s. sodium carbonate or sodium hydroxide to the 15 2. solution of step 1 to give sodium cellulose acetate phthalate (sodium CAP) at approx. pH 6.5.
 - Weigh out bromelin (2.5 kg) and dicalcium phosphate 3. (6.5 kg) and discharge into the spray coating
- container in the Glatt (trademark) or Aeromatic 20 (trademark) spray coating apparatus. The powder is fluidized and heated to 50°C.
- Spray the sodium CAP onto the fluidized powder at a 4. pressure of 2 bars until complete and then allow to dry for 30 minutes. 25
 - The partially coated material is then blended with 5. citric acid (0.6 kg) and carboxy methyl cellulose (1 kg) using a standard blending device.

It is the spray coating of fluidized particles which is particularly amenable to the production of partially 30 In order to achieve partial coating the coated granules. ratio (w/w) of biologically active material/weak base to coating is generally about 1:0.1 or 1:<0.1.

The resulting granular composition is referred to in the subsequent Examples as "Detach". 35

A 5 ml "dose" of Detach is prepared by adding water (about 4 ml) to 1 g (approximately 1 ml volume) of

- 13 -

granules to give a 5 ml gel volume.

EXAMPLE 2

Determination of the intestinal transit time of bromelin administered as a single 5ml dose of Detach which contains 1 g of granules to which water is added to give an acid gel base.

Eighteen unweaned piglets, 4 weeks old, were ranked on a liveweight basis and allocated in a random manner into Detach treated and untreated (control) groups in the ratio of two treated piglets to one control piglet. Piglets were fed artificial milk (500ml each) twice each day.

At the commencement of the experiment all piglets in the Detach treated group were orally dosed with a

15 standard 5ml dose of Detach (a suspension containing 1 g of granules dissolved in water to give an acid gel base). A period of 1h, 12h, 28h, 48h, 72h and 144h post inoculation, randomly selected groups of three piglets (two treated, one control) were killed by barbiturate

20 overdose and the small intestine removed. Sections (10cm long) of the intestine from 5 sites: duodenal, lower ileal, mid jejunal and midway between these sites were removed and immediately stored at -20°C.

On completion of the experiment, the intestinal 25 sections from each pig were thawed, opened longitudinally and the mucosal surface scraped with a glass slide. Mucosal scrapings (0.2 g) were suspended in 1.8 ml of working dilution buffer (WDB) consisting of phosphate buffered saline (PBS, 0.1 M, pH 7.2) to which Tween 30 30 (0.05% v/v), bovine serum albumin (BSA, 0.25% w/v), ethylene diamine tetraacedtic acid (EDTA< 1 mM) and sodium azide (0.1% w/v) had been added. The scraping suspensions were then tested for the presence of bromelain by enzyme immuno assay (EIA, procedure 1 set 35 out below). Sensitivity of this assay had previously been established as 2ng when the same batch of enzyme as in the Detach, but suspended in phosphate buffered saline, was tested by titration.

Residual bromelain from the Detach doses were evident in all intestinal sites of treated piglets killed at 1h and 12h after dosing. Bromelain was evident in one piglet (site 4 and 5 only) killed 28h after dosing. No intestinal material taken from control piglets reacted in the EIA, nor did material from any piglets killed at 48 h or longer after dosing.

Conclusion:

Transit time of bromelin through the piglet small

intestine is similar to that of other foodstuffs.

Bromelin is readily released into the intestine.

Procedure_1:

Enzyme immunoassay for Bromelin:

Plates: Nunc. (Trademark)

Plate Coating: Anti bromelin IgG raised in rabbits. coated $2h/37^{\circ}C$ in carbonate: bicarbonate buffer (0.05 M, pH 9.6) containing 10 μ g/ml IgG) 100 μ l/well. Stored at 4°C until required.

Test Samples: Intestinal scrapings diluted 1:10 w/v in working dilution buffer (WDB, described earlier).

Incubated for 30 min at 37°C.

Conjugate: Avidin urease (Allelix Inc., Mississaugu,
Toronto, Canada) 1:400 v/v in conjugate buffer (Chandler,
D.S. et al., Vet Microbiol. 11: 153-161, 1986).

25 Incubated for 30 min. at 37°C.

<u>Substrate</u>: Urease substrate solution (CSL; Parkville). Read at 540 nm (approximate).

EXAMPLE 3

35

30 Effect of Detach on intestinal K88 receptor activity.

The <u>E. coli</u> K88 receptor is typical of a number of protein or glycoprotein receptor molecules that have been demonstrated to play critical roles in the pathogenesis of important microbiological diseases of the small intestine. Receptors located on the intestinal brush border membrane have been shown to be involved in attachment (colonisation), cell entry and toxin delivery

- 15 -

by intestinal pathogens. At least some of these receptors, including the K88 receptor, have been demonstrated to be readily inactivated by proteolytic enzymes, including those proteases that are normally active in the small intestine (Wellwood, R., Biochim, Biophys. Acta 632: 326-335, 1980; Staley, T.E. and Wilson, J.B., Mol. Cell. Biochem 52: 177-189, 1983; Mouricourt, M.A. and Julien R.A., Infect. Immun., 55: 1216-1233, 1987).

Piglets were fitted with a "Y" shaped stainless steel illeal fistula 7 to 14 days after birth.

Piglets were reared in weaner flat-deck accommodation and were maintained in a diet of reconstituted milk until at least 4 weeks of age.

15 K88 receptor activity was estimated by enzyme immunoassay (Chandler 1986, Supra, subsequently designated KPEIA). Intestinal samples were collected into at least 10% v/v WDB to which 0.1% w/v TI had been added. This buffer was designated WDB/TI.

20 A continuous sampling procedure was employed. procedure consisted of connecting a teflon tube (4 mm bore) to the threaded end of the fistula and passing the other end of the tube through a slow running (0.5-1.0 ml/min) peristaltic pump to the sample tube. These tubes 25 contained 1 ml of WDB/TI and were housed in a fraction collector of the type used to monitor chromatography columns in protein chemistry (Frac 100, Pharmacia). was placed in the bowl that surrounded the rack of tubes at the start of each day. Each tube collected the output 30 of the pump over a 10 minute period. In order to reduce the amount of drag on the fistula during sampling, the weight of the tube between the pig and the pump (placed over the pens) was suspended in a counterbalanced line. <u>Detach treatment:</u>

Piglets were sampled over a 24-48 h period prior to Detach medication in order to obtain a base-line of receptor activity. They were then treated with a 5 ml

PCT/AU92/00371 WO 93/01800

- 16 -

suspension of Detach (containing 1 g of granules), 30 min prior to a morning feed. Sampling was then continued for a further 48-72 h period.

Results:

5

About 1000 samples were collected in the three-day periods immediately before and after medications. Piglets were maintained on a milk diet. Many more samples were collected in the intermediate periods allowing a much clearer, but basically similar pattern of 10 receptor activity in vivo to be constructed.

Results of the sample collections made in both the periods immediately before and after Detach medication of the continuously sampled piglets are shown in Table 1. Post-medication reductions in receptor activity was 15 observed, and these reductions were confirmed by one-way analysis of variance to be statistically significant (P=0.05) at 0-1 and 1-2 days after medication. This data supports previous observations of the disruptive influence of bromelain on the binding between various pathogen adhesions (including K88) and toxins and their 20 intestinal receptors by in vitro experiments. It also provides evidence to support the hypothesis that it is the receptor-destroying capability of bromelain that confers the demonstrated ability of Detach to prevent 25 various types of enteric infection.

- 17 -

TABLE 1

Continuously Sampled Piglets: K88 Receptor Activity in Intestinal Content Samples Collected Over Three Days Before or After Medication.

(Piglets were maintained on a milk diet during continuous sampling)

Pig #		K88 Receptor Activity*					
		Pretreat (Days -3 to 0		Post-Treatment (Day 1-2) (Day 2-3			
1	DETACH	0.71+/-0.11 (21)	0.19+/-0.15 (16)	0.33+/-0.29 (40)	0.17+/-0.19 (15)		
1	DETACH	0.28+/-0.14 (79)	0.34+/-0.21 (30)	0.05+/-0.10 (24)			
2	DETACH	0.28+/-0.22 (68)	0.08+/-0.08 (42)	0.11+/-0.15 (38)	0.06+/-0.09 (42)		
2	DETACH	0.55+/-0.19 (39)	0.11+/-0.10 (25)				
3	DETACH	0.30+/-0.17 (78)	0.15+/-0.10 (34)	0.23+/-0.20 (15)	0.24+/-0.24 (35)		

* Mean absorbance values obtained from the intestinal content samples when tested by KPEIA. Values shown in the table are mean absorbance (A540) +/- standard deviation. The number of samples collected over each time period is indicated in brackets below the absorbance values.

EXAMPLE 4

Prophylactic control of diarrhoeal disease over a prolonged period (day 6 of life to weaning at about day 21).

A number of field trials have been conducted to demonstrate the efficacy of Detach treatment in prophylactic control of piglet diarrhoea. These trials have indicated that Detach treatment assists control of postweaning diarrhoea (which is associated commonly with K88 + E. coli) using a single oral dose. In addition, Detach medication has been found effective in control of preweaner (Sucker) scouring diseases of piglets, again as a single oral dose. Preweaner scouring diseases are commonly associated with rotavirus or coccidial infections and usually are evident as chronic pasty

- 18 -

diarrhoea commencing when the piglet is about 1 week of age and continuing for 1-3 weeks. Despite the more chronic nature of these diseases, a single dose of Detach given before the usual age at which onset of diarrhoea symptoms occur usually resulted in control of the diseases.

Methods:

The experimental farm was a commercial breeding unit located in central-western Victoria, Australia.

10 Gilts and sows were alternately allocated to Detach treated or control groups.

A total of 30 litters were used during this trial:
15 allocated to Detach and 15 to Control groups. Piglets
were fostered at any time up to three days old, at which
15 point every litter was weighed.

The Detach group piglets were dosed with a single oral dose of 5 ml Detach on day 6. The Control group were not treated with Detach.

Litters were again weighed at weaning on the day of 20 transfer to the weaner accommodation.

Incidence of scours, treatments given and mortality were recorded to weaning.

Treatment, mortality and weight gain were also measured.

25 Results:

A summary of results up to weaning is given in Table 2.

- 19 -

TABLE 2
Results up to Weaning

Sows		tach S.D.)		trol .D.)	Significance
No. pigs/litter (day 3)	9.87	(1.66)	9.73	(1.16)	0.745
Pig wt day 3 (kg)	1.66	(0.09)	1.71	(0.15)	0.532
Mortality (scours)	0.07	(0.26)	0.07	(0.26)	0.938
Scour treatments/litter	4.2	(1.93)	22.67	(6.38)	<0.001
Piglet weaning (kg)	8.05	(0.45)	5.97	(0.48)	<0.001
Days to weaning	30.00	(2.2)	29.27	(1.67)	0.41
Weight gain to weaning	6.38	(0.45)	4.25	(0.54)	<0.001
Daily liveweight gain	213	(0.17)	145	(19)	<0.001

The significance of the results was calculated by analysis of variance with piglets/litter and day 3 weight as co-variants where appropriate. Weaning ages were very similar, being based on management practices rather than pig performance. However, the other production criteria was highly significant as was the reduction in disease treatment by 82%.

This trial clearly demonstrates the efficacy of a single dose of Detach in the prevention of preweaning scours. All the relevant criteria showed highly significant benefit from the treatment. Weaning weight was increased by 2 kg and disease treatments reduced by 80% in the treated litters. The lack of mortality made comparison on this parameter impossible.

Despite the short-acting nature of Detach pharmacologically, the advantage of an early dose of Detach appears to persist until weaning.

It appears from this trial that unless there is no clinical or performance evidence of preweaning scours, a single preweaning dose of Detach is a preferred management regime. The efficacy of Detach treatment against preweaning scours is clearly evident.

Five further trials have been carried out (data not shown) to assess the utility of the Detach treatment in

preventing pre-weaner (sucker) scour. In these trials, a 5 ml dose of Detach (according to Example 1) five days after birth was administered orally using a syringe. These trials clearly showed a clear reduction in pre-weaning scours as well as an additional benefit in post-weaning scours following weaning. Piglets treated with Detach also showed an increase weight gain, an overall improved health and reduction of disease.

Histological analysis of a number of control and treated piglets showed that a significant number of piglets were rotavirus positive and Coccidial pathogens were found in post-mortem samples. In contrast, Detach treated piglets showed no such infection.

A number of additional trails were carried out to 15 determine the effect of Detach in the prevention of postweaner scours in piglets. A total of 1705 piglets were used in these trials of which 502 were negative controls, 100 were positive controls, 503 were dosed with 1 g of Detach in gel form (as per Example 1) and 600 were given alternative regimes of treatment. The efficacy of Detach 20 was clearly shown in these investigations. No pigs dosed with a single dose of Detach died from E. coli scour. Only 2 pigs in the Detach regime died of scours compared with 16 control or antibiotic treated animals. addition Detach was highly effective in reducing morbidity as measured by treatments given. Perhaps the most significant observation is the three-fold reduction in treatment necessary for post-weaning scour.

30 EXAMPLE 5

35

The role of enterotoxigenic <u>Escherichia coli</u> (ETEC) as an important etiologic agent in human diarrhoeal disease is well established (Sussman, M., The virulence of <u>E. coli</u>, Reviews of Methods. Soc. Gen. Micro., 1985). These organisms are characterised by their ability to produce one or both of a heat labile (LT) or heat stable (ST) enterotoxin (Gaastra, W. and de Graaf, F.K., Micro.

Rev. 46: 129-161, 1982). Some strains also produce antigenic colonisation factors (CFA) or pili which permit adhesion of ETEC strains to the intestinal mucosa. facilitate colonisation and allow enterotoxins to be 5 delivered in close proximity to target epithelial cells (Gaastra, et al., Supra).

This experiment describes the RITARD model of Spira et al. (Infect. Immun. 32: 739-747, 1981) to test the efficiency of the Detach formulation of Example 1 in vivo 10 in reducing attachment of CFA/I positive E. coli to rabbit intestinal mucosa.

Materials and Methods:

Animals:

New Zealand White breed rabbits of both sexes from a 15 single breeder were used for the experiment. weights ranged from 1.5 to 2.7 kg.

Bacteria:

ETEC strains used in this trial were originally isolated in Bangladesh from patients with diarrhoea.

- 20 Strain H10407 (serotype 078:K88:H11) and a mutant derivative of this strain, H10407p were kindly provided by D.C. Evans (Houston, Texas) (Infect. Immun. 19: 727-736, 1978). Strain E1392/75 7A (serotype 06:K15:H16) was kindly provided by B. Rowe (London U.K.). Strain H10407
- 25 produces both ST and LT toxin and possesses the colonisation factor antigen CFA/I. H10407p produces both ST and LT, however does not produce CFA/I. Strain E1392/75 7A is a non-piliated and non toxigenic spontaneous laboratory derivative of CFA/II * E. coli 1392
- 30 (Sack, R.B. et al., Infect. Immun. 56: 378-394, 1988) and has been shown to neither colonise nor induce diarrhoea in the RITARD model (Wanke, C.A. et al., Infect. Immun. 55: 1924-1926, 1987).

Strains were inoculated onto CFA agar (Evans, Supra) 35 and grown at 37°C overnight. The bacteria were harvested, washed in sterile phosphate buffered saline (0.01 M, pH 7.2; PBS) and diluted to desired optical

density measurements. The bacterial concentration was also determined by viable cell count on duplicate blood agar plates after serial dilution in PBS. All cultures were checked for CFA/I and LT production by specific enzyme immunoassay (EIA) prior to rabbit inoculation.

RITARD Model:

The RITARD model developed by Spira et al. (Supra) was used, with slight modifications discussed below. Prior to challenge, half of the rabbits from each group (Table 1) were orally dosed with 0.42g of the granular composition of Example 1, known as Detach, and starved for 18 hours, but were given water ad libitum.

Monitoring the Disease:

Rabbits were observed for diarrhoea, weakness or

death hourly for the 24 hour post-challenge period.

Rabbits were individually categorised with a diarrhoea
score as 0, no diarrhoea; 1, mild diarrhoea with faeces
softer than normal; 2, moderate diarrhoea with at least
three watery stools; and 3, severe diarrhoea with

multiple watery stools. Faecal swabs were collected when
faeces were passed and rectal swabs were taken from
rabbits not passing faeces. The challenge strains were
identified by typical <u>E. coli</u> colony morphology and by
EIA.

25 Collection of Tissue Specimens:

All animals were killed 24 hours post-challenge and the intraluminal fluid of the small intestine was measured. In euthanised or dead rabbits, large fluid volumes in the small intestine (>60 ml) was indicative 30 that diarrhoea was a major contributor to death. Sections (2 x 3 cm) of small intestine were collected from five sites comprising, duodenal (S1), proximal jejunum (S2), mid jejunum (S3), distal jejunum (S4) and ileum (S5). Each segment was opened longitudinally and extensively washed in sterile PBS to determine strongly adherent bacteria, or left unwashed to determine total numbers present. Quantitative cultures were done by

- 23 -

homogenising tissue for one minute using a Sorvall homogeniser at full speed. Serial dilutions were made in PBS and aliquots (25 ul) were plated onto blood agar and CFA agar. After incubation at 37°C for 18 hours the number of bacteria per cm of tissue was determined. Other specimens were processed promptly for histology by fixation in 10% neutral buffered formalin. After the specimens were embedded in paraffin, both haematoxylineosin staining and tissue Gram staining were done.

10 Statistical Analysis:

Bacterial counts were log transformed to stabilise variances and analysed using Genstat 5. Efficacy of Detach protection was determined by Fortran-Finney, a program that determines efficacies (%) from chemotherapeutic tests (Finney, D.J., Statistical Method in Biological Assay, Pub. Charles Griffin and Company Ltd., 1952).

Results:

15

Groups of rabbits were given 1 x 10¹¹ bacteria of
different <u>E. coli</u> strains and sterile PBS to observe the
diarrhoeal response during a 24 hour incubation period.
Results are shown in Table 3. Various <u>E. coli</u>
enterotoxin and colonisation factor combinations were
selected to include a piliated enterotoxigenic strain
(H10407), an enterotoxigenic strain only (H10407p), and a
non-piliated non-enterotoxigenic type (E1392/75/7A). A
PBS control was included to observe the effect of surgery
and Detach treatment without bacterial challenge.

None of the rabbits given 10 mls of sterile PBS

developed diarrhoea. Neither did any of the rabbits challenged with non-piliated H10407p and E1392/75 7A. At autopsy, the fluid volumes in the small intestine from the pyloric sphincter to the ileocaecal junction ranged from 10 - 50 mls.

Of the eight control (non-Detach treated) rabbits challenged with H10407 seven died or had profuse water diarrhoea. At autopsy, the fluid volume in their small

PCT/AU92/00371 WO 93/01800

intestines ranged from 20-105 mls. The total volume in the small and large intestine combined, however, ranged from 130-165 mls (in comparison with 10-50 mls in rabbits inoculated with E1392/75 7A, H10407p and PBS).

Only one of the rabbits treated with Detach prior to 5 H10407 challenge died. This rabbit died 11 hours post challenge after passing one loose stool. None of the other six rabbits treated with Detach had diarrhoea and the majority (4 of 6) had passed formed faeces by 24 At autopsy, the contents of the large intestine were solid and the fluid accumulation in the small intestine ranged from 12-60 mls.

TABLE 3 Diarrhoeal Response in Rabbits Treated with or Without 15 Detach and challenged with different ETEC Strains

20	GROUP	STRAIN	ADHESIN	TOXIN	TREATMENT	DIARROEAL RESPONSE ^a
	A	H10407 ^b	CFA/I ⁺	ST ⁺ LT ⁺	D C	1/7 ^C 7/8 ^d
25	В	н10704р	CFA/I	ST ⁺ LT ⁺	D C	1/4 ^C 1/4 ^C
	С	E1392/75 7A	CFA/II	ST-LT-	D C	0/4 0/4
30	D	PBS			D C	0/4 0/4

No. of animals with diarrhoea or death/total number a tested. 35

Five rabbits omitted from analysis due to non diarrhoea b related death.

C Mild diarrhoea

40

Rabbit survived infection, colony counts at site 3 was 5.8×10^9 . đ

Detach treated rabbit died, colony count at site 3 was 1.2×10^{7} . е

Bacterial Adhesion:

Quantitative cultures were performed on all animals 45 to study the adhesion of challenge bacteria in different PCT/AU92/00371

WO 93/01800

parts of the small intestine. All samples were washed with sterile PBS to observe adherent bacteria to the gut mucosa. Challenge bacteria were apparent in all sites, with CFA/I+ H10407 strain being the most heavily colonised. Mean results of cultures done of CFA/I+ bacteria at various sites on non-Detach treated rabbits varied from lower values at S1, S2, S4 and S5 (8.7x10⁷, 6.2x10⁷, 1.04x10⁸ and 6.2x10⁸ colony forming units (CFU)/cm respectively) to consistently higher values at S3 (6.2x10⁹). Results are shown in Table 4. In the following analysis site 3 cultures were used for comparison.

The number of CFA/I⁺ bacteria adherent to the mucosa in the Detach treated rabbits ranged from 1.3x10⁴

15 (minimum count) to 1.2x10⁷ CFU/cm (means 2.6x10⁶ CFU/cm). This represents over 2,000-fold less CFU/cm than the values for control rabbits challenged with the same strain (p<0.05). Table 4 illustrates the difference in colony counts between Detach treated and untreated animals.

It is clear from this Example that the Detach preparations significantly reduce intestinal flora. It is believed the intestinal flora which is depleted corresponds to pathogenic microorganisms. Such microorganisms may be replaced with advantageous microorganisms, such as those derived from healthy animals. Examples of such organisms, which may be referred to as "probiotics", may include streptococci and lactobacilli.

The number of bacteria bound to the small intestinal mucosa of rabbits infected with CFA/I H10407p ranged from 1.3x10⁴ CFU/cm (minimum count) to 6.6x10⁷ CFU/cm in a rabbit with mild diarrhoea (mean 1.6x10⁷ CFU/cm). Colonisation of CFA/II occurred at a similar level, with colonies (CFU/cm) ranging from 1.3x10⁴ (minimum count) to 1.3x10⁸, mean = 3.9x10⁷). There was no significant difference in bacterial numbers between Detach treated

and non-treated animals challenged with either non-piliated strain.

In rabbits that received sterile PBS only, relatively few bacteria were present in the small intestine (mean = 1.3×10^4 CFU/cm).

TABLE 4

Mean Colonisation of Small Intestine after RITARD

Challenge With 10¹¹ CFU Per Animal.

GROUP	STRAIN T	REATMENT	S1	COLONISATION S3	S5
A	н10407	D C	2.9x10 ⁶ 8.7x10 ⁷	3.2x10 ⁶	7.1x10 ⁷ 6.2x10 ⁸
В	H10407p	D C	1.0x10 ⁸ 1.9x10 ⁷	2.3x10 ⁷ 1.2x10 ⁷	1.2x10 ⁸ 1.8x10 ¹⁰
С	E1392/75 7A	C C	6.1×10 ⁶ 7.5×10 ⁶	1.6x10 ⁷ 5.0x10 ⁷	5.9x10 ⁶ 2.1x10 ¹⁰
D	PBS	D C ^a	2.0x10 ⁶ 3.2x10 ⁵	5.9x10 ⁵ 1.3x10 ⁶	5.6x10 ⁵ 1.2x10 ⁷

a = excluding rabbit heavily colonised.

Fecal Excretion of Bacteria:

Fecal swabs were obtained from rabbits when faeces were passed. In all animals the challenge bacteria were excreted. Rectal swabs were taken at autopsy. Presence of the challenge strain in the rectum was apparent in all rabbits including those that had not passed faeces prior to termination of the experiment. In all instances, 100% of colonies cultured, were of the challenge strain. Histology:

Histological studies of small intestinal tissues obtained from all rabbits revealed no mucosal abnormalities under light microscopy. Organisms were only rarely seen on the mucosa, suggesting that bacteria bound in certain areas, rather than an even distribution along the gut.

- 27 -

Discussion:

It is well known that there are gross similarities in mechanisms of pathogenesis between human and animal ETEC infections. Most ETEC strains of human and animal origin rely on pili for adhesion and subsequent colonisation of the small intestine. Also diarrhoeal disease in both species is elicited by the production of efficient delivery of enterotoxins.

In this experiment it is demonstrated that oral administration of Detach, a protease preparation, was successful in reducing diarrhoea and diarrhoea induced death by 86% (6 of 7) in rabbits infected with CFA/I positive H10407. 87% (7 of 8) of control rabbits not receiving Detach died or suffered from severe diarrhoea.

15 Wanke, et al. (Supra) reported previously that the threshold for expression of clinical symptoms of diarrhoeal infection is 10⁸ CFU per cm of small intestine. In this study, rabbits challenged with bacterial strains possessing no known colonisation 20 factors did not get diarrhoea and were colinised to levels below a threshold of 107. In these rabbits there was no difference in levels of colonisation between the treatment groups. Alternatively, in non-Detach treated rabbits challenged with piliated H10407, bacteria 25 colonised to levels well above 10^7 (mean = 6.2×10^9). Detach treatment of rabbits, challenged with the same bacterial strain were only colonised to levels similarly observed with bacteria not possessing known CFA's (mean = 2.6×10^6). It is apparent therefore, that oral Detach 30 treatment was successful in modifying the surface of the rabbit mucosa, such that colonisation of CFA/I+ bacteria

These results obtained with rabbits are clearly extendible to human situation, given the gross similarities of pathogenesis between human and animal ETEC infections. Indeed, the rabbit is a standard model for the study of human bacterial infections.

was significantly reduced (p<0.05).

35

The treatment of humans with the Detach preparation should provide protection, for example, from enterotoxigenic Escherichia coli diseases. Such protection may arise from the degradation/modification of 5 intestinal receptors for virulence determinants in human ETEC diarrhoea, such as colonisation factor antigens CFA/I, CFA/II, CFA/III and CFA/IV.

Experiments conducted by the applicant (data not shown) have shown that the treatment of human small 10 intestine material with a protease (papain) results in extensive reduction in enterotoxigenic Escherichia coli bacterial adhesion, and in particular, reduced binding of CFA/I and enterotoxin to intestinal preparations, and complete inhibition of binding of CFA/II. This data is 15 indicative that the Detach preparation should be effective in humans in-vivo, in providing protection from enterotoxigenic E. coli diseases.

EXAMPLE 6

20 Increased globulin levels follows Detach treatment.

This experiment was designed to duplicate human physiology using a pig model to determine the effect of large doses of Detach (> 1 g) on serum biochemical parameters. A ten fold dose rate was selected to investigate the change in serum globulin levels.

Experiment:

25

15 pigs 10-16 weeks of age were used for the experiment.

8 pigs untreated Group A

7 pigs administered Detach (10 g) 3 times 30 Group E a day for 2 or 5 days.

Serum biochemical parameters pre-treatment and posttreatment in both groups were compared to observe any effects of the treatment.

35 Results:

There appeared to be a significant (p=0.043) increase in serum globulin levels when pigs were treated

- 29 -

with large doses of Detach. Lower doses of Detach (<10 g) did not result in any significant change (Data not shown).

Globulin levels were investigated further. Alpha, beta and gamma globulin levels were analysed by electrophoresis using cellulose acetate and quantitated by densitometer.

Results are set out in Table 5.

10 Table 5
Serum Globulin Levels

30

35

Pig No.	Treatment	Increase Gamma
225	С	1.41
20 4	С	-0.24
202	С	1.32
242	С	0.04
240	С	0.28
219	C	2.21
203	D	2.16
228	D	2.53
224	D	1.51
217	D	1.22
214	D	2.06
238	D	4.07
236	Б	4.07

The mean increase in gamma globulin is 170% Alpha and beta globulin levels varied between pig samples, therefore no conclusions could be made. There was, however, a consistent increase in gamma globulin levels.

The changes in gamma globulin levels between pretreatment and post-treatment values in the two groups were analysed by analysis of variance. This increase was statistically significant (P=0.03, 0-99.5%). The antigenic specificity (and antibody class) of the gamma globulins is yet to be determined.

These results show an increase in serum gamma globulin in what may be non-specific gamma globulin levels following detach administration. A rise in serum

- 30 -

IgG may also have implications for mucosal immunity.

This may provide an explanation for the broad
antimicrobial spectrum of Detach which has been observed
to be effective against bacterial, viral and protozoan
infections.

EXAMPLE 7

Prevention of scours in calves.

A trial was carried out near Warragul in Victoria to assess the efficacy of Detach in preventing scours in young calves. The trial was carried out towards the end of the spring calving season in Gippsland where the main organism isolated from affected animals over the past few years has been Cryptosporidia.

The trial was carried out on six dairy farms. All these farms were "problem" farms where disease had been severe for several years.

Test Material:

Detach according to Example 1.

20 Dose: 35mL in the form of a gel.

Method:

The dose of Detach was 35 mL, repeated as required at about three to four day intervals. The maximum number of doses given to any calf was five.

In general, scouring occurred between one week and four weeks of age. Normally by 28 days the calves were moved from the rearing pens to the calf paddock and were less susceptible. Records were kept of scouring days, doses of antibiotics required and electrolytes given.

30 Date of death was recorded, together with cause of death, where known. Faecal samples were sent to the laboratory for analysis. Intestinal samples were also forwarded from farms where mortalities occurred.

Calves were weighed on two farms at the end of the trial to try and gauge if there was a large different in growth rates between the two groups. No evidence of such a difference was obtained.

- 31 -

Data relating to number of scour days and antibiotic use per calf was analysed by paired + test. Mortality data was analysed by Chi-squared test.

Trial and data results are summarised in Table 2.

5

20

TABLE 2
Summary of Detach Trial in Calves

		Treated	Control	P
10	Number of claves	50	55	
	Mortality %	4%	25%	**
	Scour days per calf	1.45	2.33	**
	Doses of Detach per calf	2.24	-	
	Antibiotic doses per calf	0.34	1.00	*
15	Electrolyte doses per calf	2.98	3.18	-
	Average daily gain (kg/d)	0.93 ¹	0.97^{1}	_
	Age of first scour (d)	10.2	9.5	-

Notes: 1 Calves weighed on two farms only

* P < 0.05

** P < 0.01

Detach significantly reduced mortality on almost every farm and also resulted in a reduced need for antibiotics and electrolytes. Death rate was reduced from 25% to 4%. (Different P <.01). Antibiotic dosage was reduced from one dose per calf to 0.34 dose per calf. Electrolyte use was little changed with 3.18 doses given per control calf and 2.98 doses given per treated calf.

The number of days on which scouring was recorded 30 was also reduced, from 2.33 days per calf in the control calves to 1.46 days per calf in the treated calves. (Difference P <.01).

The biggest effect was on mortality. Mortality was presumably contributed by <u>Cryptosporidia</u>, the dominant pathogen isolated in faecal or post-mortem samples. <u>Cryptosporidia</u> are a highly pathogenic intestinal parasite of young calves, for which there is no effective treatment available at present. Death may occur after

- 32 -

only one or two days of scouring. In other cases the animal can be kept alive on electrolytes for several weeks in a very debilitated condition. Detach may offer real hope in treatment of this disease.

Two or more doses of Detach (35 mL) clearly protected young calves from <u>Cryptosporidial</u> infection and reduced the need for antibiotic therapy.

5

CLAIMS:

- 1. A composition comprising:
- (i) granules comprising a biologically active material in association with a weak base and partially coated with a delayed release material soluble in intestinal juice;
- (ii) an acidifying agent having a pH between about
 1.5 to about 6 when in solution; and
 - (iii) a gel forming agent.
- 2. A composition according to claim 1, wherein the biologically active agent is a protein and is an enzyme, growth factor or hormone.
- 3. A composition according to claim 2, wherein the protein is an enzyme selected from bromelin, papain, ficin, chymotrypsin, trypsin, ribonuclease, carboxypeptidate A or B, or subtilisin.
- 4. A composition according to claim 1, wherein the biological material is a non-proteinaceous biological material.
- 5. A composition according to claim 4, wherein the non-proteinaceous biological material is a vitamin, cofactor, metal ion or antibiotic.
- 6. A composition according to claim 1, wherein the gel forming agent forms a gel on mixture with an aqueous or other solvent.
- 7. A composition according to claim 1, wherein from 10 to 90% of the surface area of the granules are coated with the delayed release material.
 - 8. A composition according to claim 1, wherein the

- 34 -

acidifying agent is in particulate form.

- 9. A composition according to claim 1 which forms an acidic gel containing microgranules on the addition of an aqueous solution.
- 10. A composition according to claim 1 which additionally comprises one or more antibiotics.
- 11. A composition comprising an acidic gel having a pH between about 1.5 to about 6, and containing microgranules comprising a biologically active material in association with a weak base and partially coated with a delayed release material soluble in intestinal juice.
- 12. A composition according to claim 11, wherein the biologically active agent is a protein and is an enzyme, growth factor or hormone.
- 13. A composition according to claim 12, wherein the protein is an enzyme selected from bromelin, papain, ficin, chymotrypsin, trypsin, ribonuclease, carboxypeptidate A or B, or subtilisin.
- 14. A composition according to claim 11, wherein the biological material is a non-proteinaceous biological material.
- 15. A composition according to claim 14, wherein the non-proteinaceous biological material is a vitamin, co-factor, metal ion or antibiotic.
- 16. A composition according to claim 11, wherein from about 10 to about 90% of the surface area of the granules are coated with the delayed release material.
 - 17. A composition according to claim 11 which

additionally comprises one or more antibiotics.

- 18. A method for the delivery of a biologically active substance to the upper small intestinal tract of an animal, which comprises reacting the composition of any one of claims 1 to 9 with an appropriate solution to form a gel, and thereafter orally administering the thus formed gel to the animal.
- 19. A method for the delivery of a biologically active substance to the upper small intestinal tract of an animal which comprises orally administering to the animal a composition according to any one of claims 10 to 14.
- 20. A method for the treatment of intestinal pathogens and/or diseases associated with intestinal pathogen infection in animals which comprises reacting the composition in claim 1, wherein said biological active material is a protease, with an appropriate solution to form a gel, and thereafter orally administering the thus formed gel to the animal.
- 21. A method for the treatment of intestinal pathogens and/or diseases associated with intestinal pathogen infection in animals which comprises orally administering to an animal a therapeutically effective amount of a composition according to claim 11, wherein said biologically active material is a protease.
- 22. A method according to claim 20 or 21 wherein said protease is bromelin.
- 23. A method according to any one of claims 20 to 22, wherein said intestinal pathogen is a bacteria, virus, or parasite.

- 36 -

- 24. A method according to claim 23, wherein said intestinal pathogen is selected from enterotoxigenic Escherichia coli, Shigella, Yersinia, Pleisiomonas, Vibrios, Aeromonas, Campylobacter, rotavirus, Cryptosporidia or Coccidosis.
- 25. A method according to claim 20 or 21 wherein said composition additionally comprises one or more antibiotics.
- 26. A method according to claim 20 or 21 comprising the contemporaneous or substantially contemporaneous administration of one or more antibiotics.
- 27. A method according to claim 20 or 21, wherein said animal is a monogastrate or immature ruminant.
- 28. A method according to claims 20 and 21, wherein said animal is a human, pig, calf, horse, fish or crustacean.
- 29. A method for the treatment of diarrhoea in an animal which comprises administering to the animal an acidic gel having a pH between about 1.5 to about 6, said gel containing microgranules which comprise a proteolytic enzyme in association with a weak base and partially coated with a delayed release material soluble in intestinal juice.
- 30. A method according to claim 29, wherein said proteolytic enzyme is bromelin.
- 31. A method according to claim 28, wherein said gel additionally contains one or more antibiotics.
- 32. A method according to claim 28, comprising the contemporaneous or substantially contemporaneous

administration of one or more antibiotics.

- 33. A method for the non-specific stimulation of the immune system of an animal, which methods comprises reacting the composition of claim 1, wherein said biologically active material is a protease, with an appropriate solution to form a gel, and thereafter orally administering the thus formed gel to the animal.
- 34. A method for the non-specific stimulation of the immune system of an animal which comprises orally administering to the animal a composition according to claim 10 wherein said biologically active material is a protease.
- 35. A method according to claim 33, wherein said protease is bromelin.
- 36. A method according to claim 33, wherein the animal is a human, pig, calf, horse, fish, or crustacean.
- 37. Use of a composition according to claim 1, wherein said biologically active material is a protease, for the preparation of a medicament for use in the treatment of intestinal pathogens and/or diarrhoea in animals.
- 38. Use according to claim 37, wherein said protease is bromelin.

A. Int. Cl. ⁵ Ac	A. CLASSIFICATION OF SUBJECT MATTER Int. Cl. ⁵ A61K 9/06, 9/16 // 37/547							
According to	According to International Patent Classification (IPC) or to both national classification and IPC							
В.	FIELDS SEARCHED							
	Minimum documentation searched (classification system followed by classification symbols) Int. Cl. ⁵ A61K 9/06, 9/16, 37/547							
	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched AU:IPC as above							
DERWENT	ata base consulted during the international search DATABASES: WPAT:K/W CHEM. AI ANULES, PARTICLES, ENTERIC, INTES		rch terms used)					
C.	DOCUMENTS CONSIDERED TO BE RELI	EVANT						
Category*	Citation of document, with indication, when	re appropriate, of the relevant passages	Relevant to Claim No.					
A	AU 623036 (CIBA GEIGY AG) 14 Marc See abstract, claim 1	ch 1991 (14.03.91)	1					
A	EP 91767 A (MERCK) 19 October 1983 See abstract, claim 1	(19.10.83)	1					
A	J 56059707 (TOYO JOZO KK) 23 May 1 See abstract	1						
Furth in the	Further documents are listed X See patent family annex. in the continuation of Box C.							
"A" docur not ce "E" earlie intern docur "C" docur or wh anoth docur "P" docur	al categories of cited documents: ment defining the general state of the art which is onsidered to be of particular relevance or document but published on or after the stational filing date ment which may throw doubts on priority claim(s) sich is cited to establish the publication date of er citation or other special reason (as specified) ment referring to an oral disclosure, use, ition or other means ment published prior to the international filing dater than the priority date claimed	principle or theory under document of particular a invention cannot be con considered to involve are document is taken alone document of particular a invention cannot be con inventive step when the with one or more other.	te and not in conflict cited to understand the citying the invention relevance; the claimed sidered novel or cannot be n inventive step when the relevance; the claimed sidered to involve an document is combined such documents, such ous to a person akilled in					
	Date of the actual completion of the international search 6 November 1992 (06.11.92) Date of mailing of the international search report 30 Oct 1992 (30.10.92)							
AUSTRALI PO BOX 20 WODEN A AUSTRALI	CT 2606 <	J.G. HANSON						
Facsimile No.	acsimile No. 06 2853929 Telephone No. (06) 2832262							

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

	Patent Document Cited in Search Report				Patent Family	Member		
AU	623036	EP FI JP PT	421921 904341 3099016 95209	CA HU NO US	2024631 905812 903892 5096717	DD IL NZ ZA	298049 95558 235187 9007100	
EP	91767	AU DK ES IL KR ZA	12764/83 1462/83 8501231 68282 9100743 8302400	CA DK HK JP NZ US	1213217 163343 250/91 58190357 203684 4597969	DE ES IE JP PT	3381235 521194 56276 4027816 76448	
JP	59707	JР	57176782	JP	58041793			

END OF ANNEX