1 Das Lebesgue-Maß

1.1 Etwas Maßtheorie

Sei stets X eine nichtleere Menge mit Potzenzmenge $\mathcal{P}(X) := \{A : A \subset X\}.$

Definition 1.1. Ein nichtleeres Mengensystem $\mathcal{A} \subset \mathcal{P}(X)$ heißt σ -Algebra, wenn:

- (A1) $X \in \mathcal{A}$
- (A2) Wenn $A \in \mathcal{A}$, dann auch $A^c := X \setminus A \in \mathcal{A}$
- (A3) Wenn $A_j \in \mathcal{A}, (j \in \mathbb{N}), \text{ dann auch } \bigcup_{j \in \mathbb{N}} A_j \in \mathcal{A}$

Beispiel 1.2. a) $\mathcal{P}(X)$ und $\{\emptyset, X\}$ sind σ -Algebra

- b) Sei $\emptyset \neq A \subset X$. Dann ist $\{\emptyset, A, A^c, X\}$ eine σ -Algebra
- c) $\mathcal{A} := \{A \subset X : A \text{ oder } A^c \text{ ist abzählbar} \}$ ist σ -Algebra

Beweis. (A1) $X^c = \emptyset$ ist abzählbar, also $X \in \mathcal{A}$.

- (A2) gilt per Definition.
- (A3) Seien $A_j \in \mathcal{A} \ (j \in \mathbb{N}).$
 - i. Seien alle A_j abzählbar. Dann ist $\bigcup_{j\in\mathbb{N}}A_j$ abzählbar, denn: Es gilt $A_j=\{a_{j1},a_{j2},\dots\}$ für jedes $j\in\mathbb{N}$ und gewisse $a_{jk}\in X$. Schreibe:

TODO: Grafik

Nach Streichen mehrfach auftretender a_{jk} liefert der Streckenzug eine Abzählung von $\bigcup_{j\in\mathbb{N}}A_j\Rightarrow\bigcup_{j\in\mathbb{N}}A_j\in\mathcal{A}$.

ii. Wenn ein A_n nicht abzählbar ist, dann ist A_n^c abzählbar. Somit gilt: $\left(\bigcup_{j=1}^\infty A_j\right)^c = \bigcap_{j=1}^\infty A_j^c \subset A_k^c \Rightarrow \left(\bigcup_{j=1}^\infty A_j\right)^c \text{ abzählbar. Damit folgt } \bigcup_{j\in\mathbb{N}} A_j \in \mathcal{A}.$

Lemma 1.3. Sei A eine σ -Algebra auf X und $A_j \in A$ $(j \in \mathbb{N})$. Dann:

$$a) \emptyset = X^c \in \mathcal{A}$$

b) $A_1 \cup \cdots \cup A_n \in \mathcal{A} \ (\forall n \in \mathbb{N})$

c)
$$\bigcap_{j=1}^{\infty} A_j \in \mathcal{A}$$

$$d) \ A_1 \backslash A_2 := A_1 \cap A_2^c \in \mathcal{A}$$

Fazit: Abzählbare Mengenoperationen bleiben in der σ -Algebra.

Beweis. a) Klar mit (A1) und (A2).

- b) Folgt aus (A3) und a), da $A_1 \cup \cdots \cup A_n = A_1 \cup \cdots \cup A_n \cup \emptyset \cup \emptyset \cup \cdots$
- c) Nach (A2) und (A3): $\bigcup_{j=1}^{\infty} A_j^c \in \mathcal{A} \stackrel{(A2)}{\Rightarrow} \bigcap_{j=1}^{\infty} A_j = \left(\bigcup_{j=1}^{\infty} A_j^c\right)^c \in \mathcal{A}$
- d) Folgt aus c), (A1) und (A3), da $A_1 \cap A_2^c = A_1 \cap A_2^c \cap X \cap X$.

Lemma 1.4. Sei \mathcal{F} eine nichtleere Famile von σ -Algebren \mathcal{A} auf X. Dann ist

$$\mathcal{A}_0 := \bigcap \{ \mathcal{A} : \mathcal{A} \in \mathcal{F} \} := \{ A \subset X : A \in \mathcal{A} \ (\forall \mathcal{A} \in \mathcal{F}) \}$$

eine σ -Algebra.

Beweis. (A1) $X \in \mathcal{A} \ (\forall \mathcal{A} \in \mathcal{F}) \Rightarrow X \in \mathcal{A}_0$.

- (A2) Sei $A \in \mathcal{A}_0 \stackrel{(A2)}{\Rightarrow} A^c \in \mathcal{A} \ (\forall \mathcal{A} \in \mathcal{F}) \Rightarrow A^c \in \mathcal{A}_0.$
- (A3) Sei $A_j \in \mathcal{A}_0 \ (j \in \mathbb{N}) \stackrel{(A3)}{\Rightarrow} \bigcup_{j \in \mathbb{N}} A_j \in \mathcal{A} \ (\forall \mathcal{A} \in \mathcal{F}) \Rightarrow \bigcup_{j \in \mathbb{N}} A_j \in \mathcal{A}_0.$

Ana III, 24.10.2008

Definition 1.5. Sei $\mathcal{E} \subset \mathcal{P}(X)$ nicht leer. Dann heißt

$$\sigma(\mathcal{E}) := \bigcap \{ \mathcal{A} \subset \mathcal{P}(X) : \mathcal{E} \subset \mathcal{A} \text{ ist } \sigma\text{-Algebra} \}$$

die von \mathcal{E} erzeugte σ -Algebra.

Bemerkung: Da $\mathcal{P}(X)$ eine σ -Algebra ist, ist $\sigma(\mathcal{E})$ nicht leer und nach Lem 1.4 ist $\sigma(\mathcal{E})$ eine σ -Algebra.

Lemma 1.6. Sei $\emptyset \neq \mathcal{E} \subset \mathcal{P}(X)$. Dann gelten:

- a) Wenn \mathcal{A} eine σ -Algebra ist und $\mathcal{E} \subset \mathcal{A}$, dann $\mathcal{E} \subset \sigma(\mathcal{E}) \subset \mathcal{A}$.
- b) $\sigma(\mathcal{E})$ ist die einzige σ -Algebra, die a) erfüllt, d.h. $\sigma(\mathcal{E})$ ist die kleinste \mathcal{E} enthaltende σ -Algebra auf X.
- c) Wenn \mathcal{E} eine σ -Algebra ist, dann ist $\sigma(\mathcal{E}) = \mathcal{E}$.
- d) Wenn $\mathcal{E} \subset \overline{\mathcal{E}} \subset \mathcal{P}(X)$, dann gilt $\sigma(\mathcal{E}) \subset \sigma(\overline{\mathcal{E}})$.

Beweis. a) folgt direkt aus Def 1.5.

- b) Sei \mathcal{A}_0 eine σ -Algebra mit $\mathcal{E} \subset \mathcal{A}_0 \subset \mathcal{A}$ für jede σ -Algebra \mathcal{A} mit $\mathcal{E} \subset \mathcal{A}$. Wähle $\mathcal{A} = \sigma(\mathcal{E}) \Rightarrow \mathcal{A}_0 \subset \sigma(\mathcal{E})$. Nach a) gilt mit $\mathcal{A} = \mathcal{A}_0 : \sigma(\mathcal{E}) \subset \mathcal{A}_0$.
- c) folgt aus a) mit $A = \mathcal{E}$.
- d) folgt aus a) mit $\mathcal{A} = \sigma(\overline{\mathcal{E}})$.

Beispiel 1.7. a) Sei $\mathcal{E} = \{A\}$ für ein nicht leeres $A \subset X$. Jede σ -Algebra \mathcal{A} mit $\mathcal{E} \subset \mathcal{A}$ umfasst $\{X, \emptyset, A, A^c\}$ nach (A1) und (A2).

Nach Beispiel 1.2b) ist dies eine σ -Algebra.

Lem $1.6 \Rightarrow \sigma(\mathcal{E}) = \{\emptyset, A, A^c, X\}.$

b) Sei $X=\{1,2,3,4,5\},~\mathcal{E}=\{\{1\},\{1,2\}\}.$ Die σ -Algebra $\sigma(\mathcal{E})$ enthält folgende Elemente:

 $\{1\}, \{2\} = \{1,2\} \setminus \{1\}$ und somit auch $\{1\}^c = \{2,3,4,5\}$ und $\{1,2\}^c = \{3,4,5\}$. Ferner $\emptyset, X \in \sigma(\mathcal{E})$.

Prüfe: $\mathcal{A} = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{3,4,5\}, \{1,3,4,5\}, \{2,3,4,5\}, X\}$ ist eine σ-Algebra. Aus Lem 1.6 folgt $\sigma(\mathcal{E}) = \mathcal{A}$.

Definition 1.8. Sei $X\subset\mathbb{R}^d$ nicht leer und $\mathcal{O}(X)$ das System der in X offenen Mengen. Dann heißt

$$\mathcal{B}(X) := \sigma(\mathcal{O}(X))$$

die Borel σ -Algebra von X. Setze $\mathcal{B}_d := \mathcal{B}(\mathbb{R}^d)$.

Bemerkung: \mathcal{B}_d enthält alle offenen und alle abgeschlossenen Teilmengen des \mathbb{R}^d , alle abzählbaren Vereinigungen und Schnitte offener und abgeschlossener Menge, usw.

Intervalle in \mathbb{R}^d sind Mengen der Form $I = I_1 \times \cdots \times I_d$, wobei $I_1, \ldots, I_d \subset \mathbb{R}$ Intervalle in \mathbb{R} sind. Für $a, b \in \mathbb{R}^d$ mit $a \leq b$ (d.h: $a_1 \leq b_1, \ldots, a_d \leq b_d$) schreibe:

$$(a,b) := (a_1,b_1) \times \cdots \times (a_d,b_d),$$

 $(a,b] := (a_1,b_1] \times \cdots \times (a_d,b_d].$

Für $\alpha \in \mathbb{R}$ und $k \in \{1, \dots, d\}$ schreibe $H_k^-(\alpha) := \{x \in \mathbb{R}^d : x_k \le \alpha\}.$

Satz 1.9. *Es gilt:*

$$\mathcal{B}_d = \sigma(\{(a,b) : a, b \in \mathbb{Q}^d, a \le b\}) =: A_1$$

= $\sigma(\{(a,b] : a, b \in \mathbb{Q}^d, a \le b\}) =: A_2$
= $\sigma(\{H_{L}^{-}(\alpha) : \alpha \in \mathbb{Q}, k \in \{1, ..., d\}\}) =: A_3$

Beweis. a) Es gilt:

$$(a,b] = \bigcap_{k=1}^{d} H_k^-(b_k) \cap H_k^-(a_k)^c \Rightarrow (a,b] \in A_3$$

$$\stackrel{\text{Lem 1.6}}{\Rightarrow} A_2 = \sigma(\{(a,b], a, b \in \mathbb{Q}^d, a \le b\}) \subset A_3.$$

- b) $H_k^-(\alpha)$ ist abgeschlossen, also $H_k^-(\alpha) \in \mathcal{B}_d$. Lem $1.6 \Rightarrow A_3 \subset \mathcal{B}_d$.
- c) Wenn ein $a_k = b_k$, dann $(a, b) = \emptyset \in A_2$. Anderenfalls

$$(a,b) = \bigcup_{n \ge n_0} (a,b - \left(\frac{1}{n}, \dots, \frac{1}{n}\right)^T],$$

wobei $n_0 \in \mathbb{N}$, sodass $a_k + \frac{1}{n} \leq b_k \forall n \geq n_0, k = 1, \ldots, d$. Dann folgt: $(a, b) \in A_2$. Mit Lem 1.6 folgt $\mathcal{A}_1 = \sigma(\{(a, b) : a, b \in \mathbb{Q}^d, a \leq b\}) \subset A_2$.

Bislang wurde gezeigt: $A_1 \subset A_2 \subset A_3 \subset \mathcal{B}_d$.

d) Sei $O \subset \mathbb{R}^d$ offen, $J := \{(a, b) \subset O : a, b \in \mathbb{Q}^d, a \leq b\}$

Zeige: $\bigcup \{I : I \in J\} = O$

Da die Vereinigung abzählbar ist, folgt $O \in A_1$. Damit $\mathcal{B}_d \subset A_1$ nach Lem 1.6 und $\mathcal{B}_d = \sigma(\mathcal{O}(\mathbb{R}^d))$. Damit folgt die Behauptung.

Zu \supset : Sei $y \in O$. Dann $\exists \epsilon > 0, \epsilon \in \mathbb{Q}$, sodass die $\|\cdot\|_{\infty}$ -Kugel

$$I_0 = (y_1 - \epsilon, y_1 + \epsilon) \times \cdots \times (y_d - \epsilon, y_d + \epsilon) \subset O.$$

Durch Verschiebung von y zu einem $z \in \mathbb{Q}^d$ nahe bei y erhält man ein $I \in J$ der Kantenlänge ϵ mit $y \in I \Rightarrow O \subset \bigcap \{I : I \in J\}$. Damit gilt die Gleichheit.

Für $Y \subset X, Y \neq \emptyset$ und $M \subset \mathcal{P}(X)$ definiert man die Spur:

$$M_y = M \cap Y := \{ A \subset Y : A = \overline{M} \cap Y \text{ für ein } \overline{M} \in M \}$$
 (1.1)

Lemma 1.10. *Sei* $\emptyset \neq Y \subset X$. *Dann gelten:*

- a) Wenn A eine σ -Algebra ist, dann ist auch A_y eine σ -Algebra auf Y. Ferner gilt $A_y \subset A \Leftrightarrow Y \in A$.
- b) Sei $\emptyset \neq \mathcal{E} \subset \mathcal{P}(X)$. Dann $\sigma(\mathcal{E} \cap Y) = \sigma(\mathcal{E}) \cap Y$. (Beides sind σ -Algebra auf Y.)

Beweis. a) $\underline{\text{Zu (A1):}}\ Y = X \cap Y \in \mathcal{A}_y$, da $X \in \mathcal{A}$. $\underline{\text{Zu (A2), (A3):}}\ \text{Seien}\ B_j = A_j \cap Y \in \mathcal{A}_y$, d.h. $A_j \in \mathcal{A}\ (j \in \mathbb{N})$. Dann folgt

$$Y \backslash B_1 = Y \cap \underbrace{(X \backslash A_1)}_{\in \mathcal{A}} \in \mathcal{A}_y,$$
$$\bigcup_{j \in \mathbb{N}} B_j = (\bigcup_{j \in \mathbb{N}} A_j) \cap Y \in \mathcal{A}_y.$$

Also ist A_y eine σ -Algebra.

<u>Zweite Behauptung:</u> $Y \in \mathcal{A} \Rightarrow M \cap Y \in \mathcal{A} \ (\forall M \in \mathcal{A})$, also $\mathcal{A}_y \subset \mathcal{A}$. Wenn $\mathcal{A}_y \subset \mathcal{A}$, folgt also $Y \in \mathcal{A}$.

b) $\mathcal{E} \cap Y \subset \sigma(\mathcal{E}) \cap Y$ ist nach a) σ -Algebra.

 $\frac{\mathrm{Zu}\supset:}{\mathrm{Setze}}\,\frac{\mathrm{Prinzip}\,\,\mathrm{der}\,\,\mathrm{guten}\,\,\mathrm{Mengen}}{:=\{A\subset X:A\cap Y\in\sigma(\mathcal{E}\cap Y)\}}$

(*) Behauptung: \mathcal{C} ist eine σ -Algebra. Ferner gilt $\mathcal{E} \subset \mathcal{C}$, da $E \cap Y \in \sigma(\mathcal{E} \cap Y)$ für alle $E \in \mathcal{E} \stackrel{\text{Lem } 1.6}{\Rightarrow} \sigma(\mathcal{E}) \subset \mathcal{C}$.

Aus der Definition von \mathcal{C} folgt: $\sigma(\mathcal{E}) \cap Y \subset \sigma(\mathcal{E} \cap Y)$.

Beweis von (*): $Y = X \cap Y \in \sigma(\mathcal{E} \cap Y) \Rightarrow X \in \mathcal{C}$. Damit erfüllt \mathcal{C} (A1). Zu (A2) und (A3): Seien $A_j \in \mathcal{C}$ $(j \in \mathbb{N}) \Rightarrow A_j \cap Y \in \sigma(\mathcal{E} \cap Y)$. Dann gelten:

•
$$(X \setminus A_1) \cap Y = Y \setminus \underbrace{(A_1 \cap Y)}_{\in \sigma(\mathcal{E} \cap Y)} \stackrel{(A_2)}{\in} \sigma(\mathcal{E} \cap Y) \Rightarrow X \setminus A_1 \in \mathcal{C}.$$

•
$$(\bigcup_{j=1}^{\infty} A_j) \cap Y = \bigcup_{j=1}^{\infty} \underbrace{A_j \cap Y}_{\in \sigma(\mathcal{E} \cap Y)} \stackrel{(A3)}{\in} \sigma(\mathcal{E} \cap Y) \Rightarrow \bigcup_{j=1}^{\infty} A_j \in \mathcal{C}$$

 $\Rightarrow \mathcal{C}$ ist σ -Algebra auf X.

Ana III, 27.10.2008

Korollar 1.11. Sei $X \subset \mathbb{R}^d$. Dann gilt $\mathcal{B}(X) = \mathcal{B}_d \cap X = \{B \cap X : B \in \mathcal{B}_d\}$. Wenn $X \in \mathcal{B}_d$, dann $\mathcal{B}_d = \{A \in \mathcal{B}_d : A \subset X\}$

Beweis. Folgt aus Lem 1.10 mit $\mathcal{E} = \mathcal{O}(\mathbb{R}^d)$, da $\mathcal{O}(X) = \mathcal{O}(\mathbb{R}^d) \cap X$. (Wobei X in Lem 1.10 \mathbb{R}^d in Kor 1.11 entspricht und Y in Lem 1.10 X in Kor 1.11.) \square

Beispiel. a) $\mathbb{Q} = \bigcup_{n \in \mathbb{N}} \{q_n\} \in \mathcal{B}_d$, da $\{q_n\}$ abgeschlossen ist, wobei $\mathbb{Q} = \{q_1, q_2, \dots\}$.

b) Die Menge

$$A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1 \text{ für } x \le 0 \text{ oder } x^2 + y^2 < 1 \text{ für } x > 0\}$$
$$= B(0,1) \cup (\partial B(0,1) \cap \{x \le 0\})$$

ist abgeschlossen. Damit folgt $A \in \mathcal{B}_2$.

Sei $[0, +\infty] = \mathbb{R}_+ \cup \{+\infty\}$ (wobei: $+\infty = \infty$) versehen mit den Rechenregeln:

- $\pm a + \infty = \infty \pm a = \infty \ \forall a \in \mathbb{R}_+$
- $\infty + \infty = \infty$
- Verboten: $\infty \infty$!

Ordnung: $a < \infty \forall a \in \mathbb{R}_+$

Konvergenz: $x_n \xrightarrow{n \to \infty} \infty \Leftrightarrow \forall c > 0 \ \exists N_c \in \mathbb{N} \ \text{mit} \ x_n \ge c \ \forall n \ge N_c.$

Für $a_j \in [0, \infty]$ $(j \in \mathbb{N})$ gilt $\sum_{j=1}^{\infty} a_j = \infty$, falls (mindestens) ein $a_j = \infty$ ist, oder falls die Reihe in \mathbb{R} divergiert.

Da $a_j \geq 0 \ \forall j \in \mathbb{N}$, kann die Reihe umgeordnet werden.

Definition. Ein Mengensystem $\mathcal{M} \subset \mathcal{P}(X)$ heißt (paarweise) disjunkt, wenn $\overline{M} \cap N \neq \emptyset$ für alle $\overline{M}, N \in \mathcal{M}$ mit $\overline{M} \neq N$. Für disjunkte Mengenvereinigung schreibe $\dot{\cup}$ und \biguplus .

Definition 1.12. Sei \mathcal{A} eine σ -Algebra auf X. Eine Abbildung $\mu: \mathcal{A} \to [0, \infty]$ heißt Maß (auf \mathcal{A}), wenn gelten:

- (M1) $\mu(\emptyset) = 0$
- (M2) Für jede disjunkte Folge $A_j, j \in \mathbb{N}$ mit $A_j \in \mathcal{A} \ (\forall j \in \mathbb{N})$ gilt

$$\mu\left(\biguplus_{j\in\mathbb{N}}^{\infty}A_{j}\right)=\sum_{j=1}^{\infty}\mu(A_{j})\quad(\sigma\text{-Additivit\"{at}}).$$

Erfüllt μ (M1) und (M2), dann heißt (X, \mathcal{A}, μ) ein Maßraum. Wenn $\mu(X) < \infty$, dann heißt μ endlich. Gilt $\mu(X) = 1$, dann heißt μ Wahrscheinlichkeitsmaß.

Bemerkung: Wenn $A_1, \ldots, A_n \in \mathcal{A}$ disjunkt, dann gilt

$$\mu(A_1 \dot{\cup} \dots \dot{\cup} A_n) = \mu(A_1 \dot{\cup} \dots \cup A_n \dot{\cup} \emptyset \cup \emptyset \dot{\cup} \dots)$$

$$\stackrel{(M_2)}{=} \mu(A_1) + \dots \mu(A_n) + \mu(\emptyset) + \mu(\emptyset) + \dots$$

$$\stackrel{(M_1)}{=} \mu(A_1) + \dots + \mu(A_n).$$

Beispiel 1.13. a) Sei $A = \mathcal{P}(X)$ und $x \in X$ fest. Für $A \subset X$ definiere:

$$\delta_x(A) := \begin{cases} 1, & \text{für } x \in A \\ 0, & \text{für } x \notin A \end{cases}.$$

Dann heißt δ_x Punktmaß (Dirac-Maß).

(M1) gilt offensichtlich.

(M2): Seien $A_j \subset X$ disjunkt für $j \in \mathbb{N}$. Dann gilt $x \in \biguplus_{j \in \mathbb{N}} A_j \Leftrightarrow \exists ! k \in \mathbb{N} : x \in A_k$.

$$\Rightarrow \delta_x(\biguplus_{j \in \mathbb{N}} A_j) \stackrel{\text{Def}}{=} \begin{cases} 0, x \notin \biguplus_{j \in \mathbb{N}} A_j \\ 1, x \in \biguplus_{j \in \mathbb{N}} A_j \end{cases} = \begin{cases} 0, x \notin A_k \\ 1, x \in A_k \end{cases}$$
$$= \begin{cases} 0, x \notin A_k \\ \delta_x(A_k), x \in A_k \end{cases} = \sum_{j=1}^{\infty} \delta_x(A_j)$$

 $\Rightarrow \delta_x$ ist Maß.

b) Sei $X = \mathbb{N}, \mathcal{A} = \mathcal{P}(\mathbb{N})$. Seien $p_k \in [0, \infty]$ für $k \in \mathbb{N}$ gegeben. Setze

$$\mu(A) := \sum_{k \in A} p_k \text{ für } A \subset X.$$

Klar $\mu(\emptyset) = 0$. Seien $A_j \subset \mathbb{N}, j \in \mathbb{N}$ disjunkt. Dann gilt

$$\mu\left(\biguplus_{j\in\mathbb{N}}A_j\right)\stackrel{\mathrm{Def}}{=}\sum_{k\in\biguplus_{j\in\mathbb{N}}A_j}p_k=\sum_{j=1}^{\infty}\sum_{k\in A_j}p_k\stackrel{\mathrm{Def}}{=}\sum_{j=1}^{\infty}\mu(A_j).$$

 $\Rightarrow \mu$ ist Maß. μ heißt Zählmaß, wenn $p_k = 1 \ \forall k \in \mathbb{N}$. (Dann $\mu(A) = |A|$)

c) Seien (X, \mathcal{A}, μ) ein Maßraum, $X_0 \subset X$ und \mathcal{A}_0 σ -Algebra auf X_0 mit $\mathcal{A}_0 \subset \mathcal{A}$. Dann definiert $\mu_0(A) := \mu(A)$ (für alle $A \in \mathcal{A}_0$) ein Maß auf \mathcal{A}_0 . Für $X_0 \in \mathcal{A}$ setze $\mathcal{A}_0 := \mathcal{A}_{X_0} := \{A \in \mathcal{A} : A \subset X_0\}$ (vgl. Lem 1.10). Dann ist $\mu|_{X_0}$ definiert durch $\mu|_{X_0}(A) = \mu(A)$ für $A \in \mathcal{A}_{X_0}$ ein Maß auf \mathcal{A}_{X_0} . $\mu|_{X_0} : \mathcal{A}_{X_0} \to [0, \infty]$ heißt Einschränkung von μ .

Satz 1.14. Seien (X, \mathcal{A}, μ) ein Maßraum und $A, B, A_j \in \mathcal{A}$ für $j \in \mathbb{N}$. Dann gelten:

- a) Aus $A \subset B$ folgt $\mu(A) \leq \mu(B)$. (Monotonie) Wenn zusätzlich $\mu(A) < \infty$, dann gilt: $\mu(A \setminus B) = \mu(A) - \mu(B)$. (Speziell: $\mu(A) < \infty \Rightarrow \mu(A^c) = \mu(X) - \mu(A)$)
- b) $\mu(\bigcup_{j=1}^{\infty} A_j) \leq \sum_{j=1}^{\infty} \mu(A_j)$ (σ -Subadditivität)
- c) Wenn $A_1 \subset A_2 \subset \ldots$, dann gilt

$$\mu(A_j) \xrightarrow{j \to \infty} \mu\left(\bigcup_{k \in \mathbb{N}} A_k\right).$$

d) Wenn $A_1 \supset A_2 \supset \ldots$, und $\mu(A_1) < \infty$, dann gilt

$$\mu(A_j) \xrightarrow{j \to \infty} \mu\left(\bigcap_{k \in \mathbb{N}} A_k\right).$$

Beweis. a) Es gilt: $B = A \dot{\cup} B \setminus A$ (beachte: $A \subset B$). Dann folgt

$$\mu(B) = \mu(A) + \mu(B \backslash A) \ge \mu(A).$$

b) Setze $B_1 := A_1$, $B_k := A_k \setminus \bigcup_{j=1}^{k-1} A_j$ für $k \geq 2$, $k \in \mathbb{N}$. Dann folgt $B_k \cap B_j = \emptyset \ \forall j < k \Rightarrow \{B_j, j \in \mathbb{N}\}$ ist disjunkt. Ferner gilt $\bigcup_{k=1}^{\infty} B_k = \bigcup_{k=1}^{\infty} A_k$, da $B_k \subset A_k$ und jedes $x \in A_k$ in einem B_j , $j \in \mathbb{N}$, enthalten ist. Somit gilt

$$\mu(\bigcup_{k=1}^{\infty} A_k) = \mu(\biguplus_{k \in \mathbb{N}} B_k) \stackrel{\text{(M2)}}{=} \sum_{k=1}^{\infty} \mu(B_k) \stackrel{\text{a)}}{\underset{B_k \subset A_k}{\leq}} \sum_{k=1}^{\infty} \mu(A_k).$$

c) Nach Voraussetzung gilt nun in a), dass $B_k = A_k \setminus A_{k-1}, \ k \geq 2$. Ferner gilt $A_n = \biguplus_{k=1}^n B_k$. Wie in b) folgt dann

$$\mu(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mu(B_k) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(B_k)$$

$$\stackrel{\text{(M2)}}{=} \lim_{n \to \infty} \mu(\biguplus_{k=1}^{n} B_k) = \lim_{n \to \infty} \mu(A_n).$$

Somit folgt c).

1.2 Das Lebesgue-Maß

Ansatz: Für $I=(a,b]\subset \mathbb{R}^d$ setze:

$$\lambda(I) := \lambda_d(I) := (b_1 - a_1) \cdots (b_d - a_d)$$
 (1.2)

Setze ferner $\mathcal{J}_d := \{(a, b] \subset \mathbb{R}^d : a \leq b\}$. Beachte: $\sigma(\mathcal{J}_d) = \mathcal{B}_d$ (Satz 1.9). Ziel: Setze λ_d von \mathcal{J}_d auf \mathcal{B}_d fort.

Ana III, 31.10.2008

1. Schritt

Die Menge der Figuren ist

$$\mathcal{F}_d := \left\{ A = \bigcup_{j=1}^{\infty} I_j \text{ mit } n \in \mathbb{N}, \ I_1, \dots, I_n \in \mathcal{J}_d \right\}.$$

Beachte: $\mathcal{J}_d \subset \mathcal{F}_d \subset \sigma(\mathcal{J}_d) = \mathcal{B}_d$. Mit Lem 1.6 folgt dann $\sigma(\mathcal{F}_d) = \mathcal{B}_d$.

Lemma 1.15. Seien $I, I' \in \mathcal{J}_d$. Dann gelten

- a) $I \cap I' \in \mathcal{J}_d$.
- b) $I \setminus I'$ ist eine endliche Vereinigung disjunkter Intervalle aus $\mathcal{J}_d \Rightarrow I \setminus I' \in \mathcal{F}_d$.
- c) Jedes $A \in \mathcal{F}_d$ ist eine endliche Vereinigung disjunkter Intervalle aus \mathcal{J}_d .
- d) \mathcal{F}_d ist ein Ring, d.h. es gilt für alle $A, B \in \mathcal{F}_d$
 - $(R1) \emptyset \in \mathcal{F}_d$
 - (R2) $B \setminus A \in \mathcal{F}_d$
 - $(R3) \ A \cup B \in \mathcal{F}_d.$
- Beweis. a) Sei $I = (\alpha_1, \beta_1] \times \cdots \times (\alpha_d, \beta_d]$, $I' = (\alpha'_1, \beta'_1] \times \cdots \times (\alpha'_d, \beta'_d]$. Dann folgt $I \cap I' = (\overline{\alpha_1}, \overline{\beta_1}] \times \cdots \times (\overline{\alpha_d}, \overline{\beta_d}]$ mit: $\overline{\alpha_k} = \max\{\alpha_k, \alpha'_k\}, \ \overline{\beta} = \min\{\beta_k, \beta'_k\},$ wobei $I \cap I' = \emptyset$, wenn ein $\overline{\alpha_k} \geq \overline{\beta_k}$. Also $I \cap I' \in \mathcal{J}_d$.
 - b) (IA): Die Behauptung ist klar für d = 1.
 - (IV): Die Behauptung gelte für ein $d \geq 2$.
 - (IS): Seien $I, I' \in \mathcal{J}_{d+1}$. Dann gibt es $I_1, I'_1 \in \mathcal{J}_1$ und $I_2, I'_2 \in \mathcal{J}_d$ mit

$$I = I_1 \times I_2, \ I' = I'_1 \times I'_2$$

$$\Rightarrow I \setminus I' = ((I_1 \setminus I'_1) \times I_2) \cup ((I_1 \cap I'_1) \times (I_2 \setminus I'_2)).$$

Nach (IV) ist dies eine disjunkte Vereinigung $\hat{I}_k \in \mathcal{J}_{d+1}$.

- c) (IA): Die Behauptung ist klar, wenn $A = I_1$ für ein $I_1 \in \mathcal{J}_d$.
 - (IV): Für ein $n \in \mathbb{N}$ gelte die Behauptung für alle $A = \bigcup_{j=1}^{n} I_j$ mit beliebigen $I_i \in \mathcal{J}_d$.
 - (IS): Sei nun $A = \bigcup_{j=1}^{n+1} I_j$ für beliebige $I_j \in \mathcal{J}_d$
 - $\stackrel{\text{(IV)}}{\Rightarrow}$ Es existieren disjunkte $I'_1, \dots, I'_n \in \mathcal{J}_d$ mit $\bigcup_{j=1}^n I_j = \biguplus_{k=1}^m I'_k$.

$$\Rightarrow A = I_{n+1} \cup \biguplus_{k=1}^{m} I'_{k} = I_{n+1} \cup \biguplus_{k=1}^{m} \underbrace{\underbrace{(I'_{k} \setminus I_{n+1})}_{\text{edisjunkte, endliche Vereinigung von } I \text{ in } J_{d}}_{\text{elements}}.$$

- d) (R1) gilt, da $\emptyset = (a, a] \in \mathcal{F}_d$.
 - (R3) gilt nach Definition von \mathcal{F}_d .

 $\underline{\mathrm{Zu}}$ (R2): Seien $A, B \in \mathcal{F}_d$, also $A = \bigcup_{j=1}^n I_j, B = \bigcup_{k=1}^m I_k'$ für beliebige $I_j, I_k' \in$ \mathcal{F}_d , $n, m \in \mathbb{N}$. Sei m fest aber beliebig. Índuktion über n:

 \mathcal{F}_d , $n, m \in \mathbb{N}$. Set m less that $A = \bigcup_{k=1}^m \underbrace{I'_k \setminus I_1}_{\in \mathcal{F}_d \text{nach b}}$

(IV): Für ein $n \in \mathbb{N}$ gelte $B \setminus A \in \mathcal{F}_d$ für alle obigen A und B.

(IS): Sei nun $A' = \bigcup_{j=1}^{n+1} I_j = A \cup I_{n+1}$ (für $I_j \in \mathcal{F}_d$). Dann gilt6

$$B \backslash A' = B \backslash (A \cup I_{n+1}) = \underbrace{(B \backslash A)}_{\in \mathcal{F}_d \text{nach (IV)}} \backslash I_{n+1} \Rightarrow B \backslash A' \in \mathcal{F}_d.$$

Schritt 2: Fortsetzung von λ_d aus (1.2) auf \mathcal{F}_d

Idee: TODO BILD

Lemma 1.16. Seien $A = \biguplus_{j=1}^n I_j = \biguplus_{k=1}^m I'_k$ für disjunkte $I_j \in \mathcal{J}_d$ (j = 1, ..., n) und disjunkte $I'_k \in \mathcal{J}_d \ (k = 1, ..., m)$. Dann gilt

$$\sum_{j=1}^{n} \lambda_d(I_j) = \sum_{k=1}^{m} \lambda_d(I'_k).$$

Beweis. 1) Sei $d=2,\ I=(a,b]\times(c,d],\ \alpha\in(a,b].$ Dann folgt $I=((a,\alpha]\times(c,d])\cup$ $((\alpha, b] \times (c, d]) = I' \cup I''.$

Ferner $\lambda(I) \stackrel{\text{(1.2)}}{=} (b-a) \cdot (d-c) = ((b-\alpha) + (\alpha-a)) \cdot (d-c) \stackrel{\text{(1.2)}}{=} \lambda(I') + \lambda(I'').$

Genauso: Dies gilt auch für $d \ge 3$ und für Zerlegungen in der der k-ten Koordinate. Per Induktion folgt: Wenn man ein $I \in \mathcal{J}_d$ mit endlich vielen Zwischenstellen $\alpha_1, \ldots, \alpha_n$ in Intervalle $\tilde{I}_1, \ldots, \tilde{I}_l$ zerlegt, dann gilt: $\lambda_d(I) = \lambda_d(\tilde{I}_1) + \cdots + \lambda_d(\tilde{I}_l)$.

TODO: BILD

2) Setze $I''_{jk} = I_j \cap I'_k \in \mathcal{J}_d$ $(j = 1, \ldots, n, k = 1, \ldots, m)$. Die I''_{jk} sind per Definition disjunkt und $I_j = \bigcup_{k=1}^m I''_{jk}$, $I'_k = \bigcup_{j=1}^n I''_{jk}$. (*) Zerlege alle I''_{jk} weiter durch Schneiden mit allen Hyperebenen, auf denen Seiten eines

der $I_{jk}^{"}$ liegen.

Erhalte dabei disjunkte $\hat{I}_1, \dots, \hat{I}_l \in \mathcal{J}_d$, wobei jedes \hat{I}_i in genau einem I''_{jk} und damit in genau einem I_j und genau einem I'_k liegt. Weiter werden alle I_j und alle I'_k durch die jeweils in ihnen liegenden I_k wie in 1) zerlegt. Damit gilt:

$$\sum_{j=1}^{n} \lambda(I_j) \stackrel{1)}{=} \sum_{j=1}^{n} \sum_{i: \hat{I}_i \subset I_i} \lambda(\hat{I}_j) = \sum_{i=1}^{l} \lambda(\hat{I}_i) = \sum_{k=1}^{m} \sum_{j: \hat{I}_j \subset I_k} \lambda(\hat{I}_j) \stackrel{1)}{=} \sum_{k=1}^{m} \lambda(I'_k)$$

Für $A \in \mathcal{F}_d$ setze

$$\lambda(A) := \lambda_d(A) := \sum_{j=1}^n \lambda_d(I_j), \tag{1.3}$$

wobei $A = \bigcup_{j=1}^n I_j$ für disjunkte $I_1, \ldots, I_n \in \mathcal{J}_d$. Nach Lem 1.16 definiert dies eine Abbildung $\lambda_d : \mathcal{F}_d \to \mathbb{R}_+$. Seien $A = \bigcup_{j=1}^n I_j$, $B = \bigcup_{k=1}^m I_k'$ für disjunkte $I_j, I_k' \in \mathcal{J}_d$ und es sei $A \cap B = \emptyset$. Setze

$$I_i'' := \begin{cases} I_i, & i = 1, \dots, n \\ I_i', & i = n + 1, \dots, n + m \end{cases}.$$

Dann sind die I_j'' disjunkt und es folgt

$$\lambda_d(A \cup B) \stackrel{\text{(1.3)}}{=} \sum_{i=1}^{n+m} \lambda_d(I_j'') = \sum_{j=1}^n \lambda_d(I_j) + \sum_{k=1}^m \lambda_d(I_k') \stackrel{\text{(1.3)}}{=} \lambda_d(A) + \lambda_d(B).$$

Per Induktion folgt für disjunkte $A_1, \ldots, A_n \in \mathcal{F}_d$, dass

$$\lambda_d(A\dot{\cup}\dots\dot{\cup}A_n) = \lambda_d(A_1) + \dots + \lambda_d(A_n). \tag{1.4}$$

Weiter gilt nach Lem 1.15 für $A, B \in \mathcal{F}_d$ und ein $I \in J_d$ mit $A, B \subset I$, dass

$$A \cap B = I \cap ((I^c \cup A) \cap (I^c \cup B)) = I \cap ((I \cap A^c) \cup (I \cap B^c)^c$$

= $I \setminus ((I \setminus A) \cup (I \setminus B)) \in \mathcal{F}_d$ (1.5)

Wenn $A \subset B$, dann gilt

$$\lambda_d(A) \le \lambda_d(B). \tag{1.6}$$

(Beweis genau wie in 1.14a))

Außerdem gilt

$$\lambda_d(A \cup B) = \lambda_d(A \cup B \setminus A)$$

$$\stackrel{\text{Satz 1.14}}{=} \lambda_d(A) + \lambda_d(B \setminus A) \stackrel{(1.6)}{<} \lambda_d(A) + \lambda_d(B).$$
(1.7)

Satz 1.17. Die Abbildung $\lambda_d : \mathcal{F}_d \to \mathbb{R}_+$ ist ein <u>Prämaß</u> auf dem Ring \mathcal{F}_d , d.h es gelten:

$$(M1) \lambda_d(\emptyset) = 0$$

(M2*) Für disjunkte $A_j \in \mathcal{F}_d$, $j \in N$ mit $A := \biguplus_{j=1}^{\infty} A_j \in \mathcal{F}_d$ gilt

$$\lambda_d(A) = \sum_{j=1}^{\infty} \lambda_d(A_j).$$

Beweis. (M1) folgt aus (1.2), da $\emptyset = (a, a]$.

- 1) <u>Beh1</u>: Seien $B_n \in \mathcal{F}_d$ mit $B_{n+1} \subset B_n$ $(n \in \mathbb{N})$ und $\bigcap_{n \in \mathbb{N}} B_n = \emptyset$. Dann gilt $\lambda_d(B_n) \xrightarrow{n \to \infty} 0$. (Übung: 2.1, Beh1, Lem 1.15 und $(1.4) \Rightarrow \text{Satz } 1.17$)
- 2) Beweis von Beh1: Sei $\epsilon > 0$. Dann gilt $\forall n \in \mathbb{N} \ \exists C_n \in \mathcal{F}_d \ \text{mit} \ \overline{C_n} \subset B_n \subset B_1 \ \text{und}$

$$\lambda_d(\underbrace{B_n \backslash C_n}) \le 2^{-n} \cdot \epsilon.$$

(Ersetze in allen Teilintervallen von B_n der Form $(a_1, b_1] \times \cdots \times (a_d, b_d]$ a_j durch $a_j + \delta_n(\epsilon)$ für ein genügend kleines $\delta_n(\epsilon) \geq 0$ und $\delta_n(\epsilon) = 0$ falls ein $a_j = b_j$)

Da weiterhin $\bigcap_{n\in\mathbb{N}} \overline{C_n} = \emptyset$, gilt $\bigcup_{n=1}^{\infty} \overline{C_n}^c = \mathbb{R}^d \Rightarrow \{\overline{C_n}^c, n \in \mathbb{N}\}$ ist eine offene Überdeckung von $\overline{B_1}$, wobei $\overline{B_1}$ beschränkt und abgeschlossen ist. Dann folgt mit Heine-Borel: $\exists n_1 < \dots < n_m \text{ mit } \overline{B_1} \subset \overline{C_{n_1}}^c \cup \dots \cup \overline{C_{n_m}}^c \Rightarrow \overline{C_{n_1}} \cap \dots \cap \overline{C_{n_m}} \subset \overline{B_1}^c$. Mit $C_{n_j} \subset B_1$ folgt dann $\overline{C_{n_1}} \cap \dots \cap \overline{C_{n_m}} = \emptyset \Rightarrow \bigcap_{j=1}^n \overline{C_j} = \emptyset \ \forall n \geq n_m =: N_{\epsilon}$ (*) Setze $D_n := \bigcap_{j=1}^n C_j \in \mathcal{F}_d$ (nach (1.5)), $n \in \mathbb{N}$.

Beh2: $\lambda_d(B_n \backslash D_n) \leq (1 - 2^{-n}) \cdot \epsilon \ (\forall n \in \mathbb{N})$ Nach (*) gilt: $D_n = \emptyset$ für $n \geq N_{\epsilon}$. Beh2 zeigt: $\lambda_d(B_n) = \lambda_d(B_n \backslash D_n) \leq (1 - 2^n) \cdot \epsilon < \epsilon \ \forall n \geq N_{\epsilon}$. Damit ist der Beweis von Satz 1.17 erbracht.

- 3) Beweis von Beh2:
 - (IA): Beh2 gilt für n = 1 nach der Ungleichung zu Beginn von 2).
 - (IV): Beh2 gelte für ein $n \in \mathbb{N}$.
 - (IS): Es gilt mit $D_{n+1} = D_n \cap C_{n+1}$

$$\lambda_{d}(B_{n+1} \backslash D_{n+1}) = \lambda_{d}(B_{n+1} \backslash (D_{n} \cap C_{n+1}))$$

$$= \lambda((B_{n+1} \backslash D_{n}) \cup (B_{n+1} \backslash C_{n+1}))$$

$$\stackrel{(1.7)}{\leq} \lambda(B_{n+1} \backslash D_{n}) + \lambda(B_{n+1} \backslash C_{n+1})$$

$$\stackrel{(1.6)}{\leq} \lambda(B_{n} \backslash D_{n}) + \lambda(B_{n+1} \backslash C_{n+1})$$

$$\stackrel{(IV)}{\leq} (1 - 2^{-n}) \cdot \epsilon + 2^{-(n+1)} \epsilon = (1 - 2^{-(n+1)}) \cdot \epsilon.$$

Ana III, 03.11.2008

Schritt 3: Fortsetzung von λ_d auf \mathcal{B}_d

Theorem 1.18 (Caratheodory, Fortsetzungssatz, 1914). Sei $\mathcal{R} \subset \mathcal{P}(X)$ ein Ring und $\mu : \mathcal{R} \to [0, \infty]$ ein Präma β .

Dann existieren eine σ -Algebra $\mathcal{A}(\mu)$ auf X und ein Ma $\beta \overline{\mu}$ aud $\mathcal{A}(\mu)$, sodass $\sigma(\mathcal{R}) \subset$ $\mathcal{A}(\mu)$ und $\mu(A) = \overline{\mu}(A)$ für alle $A \in \mathcal{R}$ gelten. Also ist $\overline{\mu}$ ein Maß auf $\sigma(\mathcal{R})$ (vgl. Beispiel 1.13c)).

Theorem 1.19 (Eindeutigkeitssatz). Seien $\mathcal{E} \subset \mathcal{P}(X)$, $\mathcal{A} = \sigma(\mathcal{E})$ und μ, ν Maße auf \mathcal{A} $mit \ \mu(E) = \nu(E) \ \forall E \in \mathcal{E}. \ Weiter \ gette:$

A)
$$E, F \in \mathcal{E} \Rightarrow E \cap F \in \mathcal{E} \ (\cap \text{-stabil})$$

B)
$$\exists E_n \in \mathcal{E} \ mit \ \mu(E_n) < \infty, \ E_n \subset E_{n+1} \ \forall n \in \mathbb{N}, \ und \bigcup_{n=1}^{\infty} E_n = X$$

Dann gilt $\mu = \nu$ (auf A).

Bemerkung. a) B) ist nötig.

> Bsp: Seien μ, ν Maße auf X mit $\mu(X) = 1, \ \nu(X) = 0, \mathcal{E} = \{\emptyset\} \Rightarrow \sigma(\mathcal{E}) = \{\emptyset, X\} \Rightarrow$ $\mu \neq \nu$, aber $\mu(\emptyset) = \nu(\emptyset)$, d.h A) gilt.

b) A) ist nötig.

Bsp: Seien $X = \{a, b, c, d\}, \mathcal{A} = \mathcal{P}(X) = \sigma(\mathcal{E}),$ $\mathcal{E} = \{X, \{a, b\}, \{a, c\}, \{b, d\}\} \text{ und } \mu, \nu \text{ auf } \mathcal{P}(X) \text{ gegeben durch:}$

$$\mu(\{a\}) = \mu(\{d\}) = \nu(\{b\}) = \nu(\{c\}) = 1$$

$$\mu(\{b\}) = \mu(\{c\}) = \mu(\{a\}) = \mu(\{d\}) = 2$$

 $\Rightarrow \mu \neq \nu$, aber $\mu(X) = \nu(X) = 6$, $\mu(E) = \nu(E) \ \forall E \in \mathcal{E} \setminus \{X\}$, d.h. B) gilt ohne Monotonie.

Theorem 1.20. Es gibt genau eine Fortsetzung von λ_d aus (1.2) auf \mathcal{B}_d . Man schreibt λ_d (oder λ) für diese Fortsetzung und nennt sie Lebesgue-Ma β .

Beweis. Aus Lem 1.15 und Satz 1.17 folgt: λ_d aus (1.2) hat eine Fortsetzung zu einem Prämaß λ_d auf dem Ring \mathcal{F}_d . Da $\mathcal{J}_d \subset \mathcal{F}_d \subset \mathcal{B}_d$, liefern Satz 1.9 und Lem 1.6, dass $\sigma(\mathcal{F}_d) = \sigma(\mathcal{J}_d) = \mathcal{B}_d$. Aus Thm 1.18 folgt dann die Existenz der Fortsetzung von λ_d auf \mathcal{B}_d . Ferner folgt aus (1.5), dass \mathcal{F}_d \(\tau\)-stabil ist. Da die Folge $E_n := (-n, n]^d$ B) aus Thm 1.19 erfüllt (wegen (1.2)), liefert Thm 1.19 die Eindeutigkeit der Fortsetzung.

Bemerkung 1.21. a) Sei $\emptyset \neq X \in \mathcal{B}_d$. Gemäß Beispiel 1.13 und Korollar 1.11 definiert die Einschränkung von λ_d auf $\mathcal{B}(X) = \{A \subset X : A \in \mathcal{B}_d\} \subset \mathcal{B}_d$ ein Maß, das wir auch mit λ_d bezeichnen und Lebesque-Maß nennen.

b)
$$\lambda_1([a,b]) = \lambda_1(\bigcap_{n=1}^{\infty} (a - \frac{1}{n}, b])$$
 Satz 1.14 $\lim_{n \to \infty} \lambda_1(\underbrace{(a - \frac{1}{n}, b]}_{1 = b - a + \frac{1}{n}}) = b - a$
(Enterpresh and fiin $d \ge 2$ and an large interpolation on)

(Entsprechend für $d \geq 2$ und andere Intervalltypen.)

Sei
$$\mathbb{Q} = \{q_n : n \in \mathbb{N}\}$$

$$\Rightarrow \lambda_1(\mathbb{Q}) = \lambda_1(\bigcup_{n \in \mathbb{N}} \{q_n\}) \stackrel{\text{Def } 1.12}{=} \sum_{n=1}^{\infty} \underbrace{\lambda_1([q_n, q_n])}_{=0} = 0$$

c) Sei
$$H := \{x \in \mathbb{R}^d : x_d = 0\} \Rightarrow H \text{ ist abgeschlossen, also } H \in \mathcal{B}_d.$$
 Da $H = \bigcup_{n=1}^{\infty} ([-n,n]^{d-1} \times \{0\}) \text{ und } \lambda_d([-n,n]^{d-1} \times \{0\}) = 0 \text{ (vgl. b)), gilt } \lambda_d(H) = \lambda_d(\bigcup_{n=1}^{\infty} ([-n,n]^{d-1} \times \{0\}) \stackrel{\text{Satz 1.14}}{=} \lim_{n \to \infty} \lambda_d([-n,n]^{d-1} \times \{0\}) = 0$

Zum Fortsetzungssatz

Sei $\mu: \mathcal{R} \to [0, \infty]$ ein Prämaß auf dem Ring \mathcal{R} und $A \subset X$. Setze

$$\mu^*(A) := \inf \left\{ \sum_{k=1}^{\infty} \mu(B_k) : B_k \in \mathcal{R} \text{ für } n \in \mathbb{N}, \ A \subset \bigcup_{k=1}^{\infty} B_k \right\}$$
 (1.8)

(Dabei ist inf $\emptyset := \infty$.)

Ferner:

$$\mathcal{A}(\mu) := \{ A \subset X : \forall B \subset X \text{ gilt } \mu^*(B) \ge \mu^*(A \cap B) + \mu^*(A^c \cap B) \}$$
 (1.9)

Lemma 1.22. μ^* ist ein äußeres Maß, d.h.:

$$a) \mu^*(\emptyset) = 0$$

b)
$$A \subset B \subset X \Rightarrow \mu^*(A) \leq \mu^*(B)$$

c)
$$A_j \subset X, \ j \in \mathbb{N} \Rightarrow \mu^* \left(\bigcup_{j=1}^{\infty} A_j \right) \leq \sum_{j=1}^{\infty} \mu^* (A_j)$$

Beweis. a) folgt mit $B_1 = B_2 = \cdots = \emptyset$.

- b) gilt, da in (1.8) die B_k für B auch für A ($\subset B$) genommen werden können.
- c) Die Behauptung gilt, wenn ein $\mu^*(A_j) = \infty$. Andernfalls wähle $\epsilon > 0$. Dann folgt mit (1.8):

$$\exists B_{jk} \in \mathcal{R} \ (j, k \in \mathbb{N}) \ \mathrm{mit} \ A_j \subset \bigcup_{k=1}^{\infty} B_{jk},$$

$$\mu^*(A_j) \ge \sum_{k=1}^{\infty} \mu(B_{jk}) - 2^{-j} \cdot \epsilon \Rightarrow \bigcup_{j=1}^{\infty} A_j \subset \bigcup_{j,k=1}^{\infty} B_{jk}$$

und

$$\mu^*(\bigcup_{j=1}^{\infty} A_j) \stackrel{(1.8)}{\leq} \sum_{j=1}^{\infty} \mu^*(B_{jk}) \leq \sum_{j=1}^{\infty} (\mu^*(A_j) + 2^{-j} \cdot \epsilon) = \sum_{j=1}^{\infty} \mu^*(A_j) + \epsilon.$$

Grenzwertbildung für $\epsilon \to 0$ lieft die Behauptung.

Lemma 1.23. $\mathcal{A}(\mu)$ ist eine σ -Algebra und die Einschränkung $\overline{\mu}$ von μ^* auf $\mathcal{A}(\mu)$ ist ein $Ma\beta$.

Beweis von Thm 1.18. Sei $A \in \mathcal{R}$.

1) Da $A \subset A \cup \emptyset \cup \emptyset$..., gilt $\mu^*(A) \leq \mu(A)$. Wenn $\mu^*(A) = \infty$, dann gilt $\mu^*(A) = \mu(A)$. Sei also $\mu^*(A) < \infty$. Wähle $\epsilon > 0$. Dann existieren $A_j \in \mathcal{R}$ $(j \in \mathbb{N})$ mit

$$A \subset \bigcup_{j=1}^{\infty} A_j \text{ und } \sum_{j=1}^{\infty} \mu(A_j) \leq \mu^*(A) + \epsilon.$$

Ferner gilt

$$A = A \cap \bigcup_{j=1}^{\infty} A_j = \bigcup_{j=1}^{\infty} (\underbrace{A \cap A_j}_{\text{e-R, nach Def 1.5}}).$$

Damit folgt

$$\mu(A) \stackrel{\text{wie Satz 1.14}}{\leq} \sum_{j=1}^{\infty} \mu(A \cap A_j) \stackrel{\text{wie Satz 1.14}}{\leq} \sum_{j=1}^{\infty} \mu(A_j) \leq \mu^*(A) + \epsilon.$$

Mit $\epsilon \to 0$ folgt dann $\mu(A) = \mu^*(A) \ \forall A \in \mathcal{R}$.

2) Zeige: $A \in \mathcal{A}(\mu)$. Denn dann folgt mit Lem 1.6 $\sigma(\mathcal{R}) \subset \mathcal{A}(\mu)$.

Sei $B \subset X$. Wenn $\mu^*(B) = \infty$, erfüllen A und B die Ungleichung in (1.9). Sei also $\mu^*(B) < \infty$. Wähle $\epsilon > 0 \Rightarrow \exists A_j \in \mathcal{R} \ (j \in \mathbb{N})$ mit

$$B \subset \bigcup_{j=1}^{\infty} A_j \text{ und } \sum_{j=1}^{\infty} \mu(A_j) \leq \mu^*(B) + \epsilon.$$

Daraus folgt $B\cap A\subset \bigcup_{j=1}^\infty \underbrace{A_j\cap A}_{\in\mathcal{R}}$. Nun gilt außerdem

$$B \cap A^c \subset \bigcup_{j=1}^{\infty} \underbrace{A_j \cap A^c}_{\in \mathcal{R}}.$$
 (*)

Daraus folgt

$$\epsilon + \mu^*(B) \ge \sum_{j=1}^{\infty} \mu(A_j) = \sum_{j=1}^{\infty} (\mu(A_j \cap A) + \mu(A_j \cap A^c))$$

$$\stackrel{(*)}{\ge} \mu^*(B \cap A) + \mu^*(B \cap A^c).$$

Mit $\epsilon \to 0$ folgt (1.9), also $A \in \mathcal{A}(\mu)$ ($\forall A \in \mathcal{R}$).

Satz 1.24. Sei $x \in \mathbb{R}^d$ und $A \in \mathcal{B}_d$. Dann gelten:

- a) $x + A \in \mathcal{B}_d$
- b) $\lambda_d(A) = \lambda_d(x+A)$
- c) Wenn μ ein Ma β auf \mathcal{B}_d ist, dass b) erfüllt, dann: $\mu(B) = \mu((0,1]^d) \cdot \lambda_d(B) \ \forall B \in \mathcal{B}_d$

a) Seien $x \in \mathbb{R}^d$, $A \in \mathcal{B}_d$ fest. Setze $\mathcal{A} := \{B \in \mathcal{B}_d \text{ mit } x + B \in \mathcal{B}_d\}$. Beweis.

Zeige: $A \in \mathcal{A}$. Klar: $\mathcal{J}_d \subset \mathcal{A}$, $\mathbb{R}^d \in \mathcal{B}_d$.

Wenn $B \in \mathcal{A}$, dann $x + B^c = \{ y \in \mathbb{R}^d : y = x + d \text{ für ein } d \notin B \} \in \mathcal{B}_d \Rightarrow \bigcup_{i=1}^{\infty} B_i \in \mathcal{B}_d$ $\mathcal{A} \Rightarrow \mathcal{A}$ ist σ -Algebra.

Wenn $B_j \in \mathcal{A} \ (j \in \mathbb{N})$, dann $x + B_j \in \mathcal{B}_d \Rightarrow \bigcup_{j=1}^{\infty} (x + B_j) = x + \bigcup_{j=1}^{\infty} B_j \in \mathcal{B}_d \Rightarrow$ $\bigcup_{j=1}^{\infty} \in \mathcal{A} \Rightarrow \mathcal{A}$ ist eine $\sigma\text{-Algebra}.$

Lem 1.6 sagt uns: $\mathcal{B}_d = \sigma(\mathcal{J}_d) \subset \mathcal{A}$. Damit folgt $A \in \mathcal{A}$.

b) Sei $x \in \mathbb{R}^d$ fest. Setze $\mu(B) = \lambda_d(x+B) \ \forall B \in \mathcal{B}_d \Rightarrow \mu(\emptyset) = \lambda_d(\emptyset) = 0 \Rightarrow (M1)$. Seien $B_j \in \mathcal{B}_d$ disjunkt $(j \in \mathbb{N})$. Dann gilt:

 $\mu(\bigcup_{j\in\mathbb{N}} B_j) = \lambda_d(x + \bigcup_{j\in\mathbb{N}} B_j = \lambda_d(\bigcup_{j\in\mathbb{N}} (x + B_j))$

 $\lambda_d \stackrel{\text{ist Maß}}{=} \sum_{j=1}^{\infty} \lambda_d(x + B_j) = \sum_{j=1}^{\infty} \mu(B_j) \Rightarrow (M2) \text{ gilt für } \mu.$

Sei $I \in \mathcal{J}_d \Rightarrow \mu(I) = \lambda_d(x+I) \stackrel{\text{(1.2)}}{=} \lambda_d(I) \Rightarrow \mu(I) = \lambda_d(I) \ \forall I \in \mathcal{J}_d$. Da \mathcal{J}_d A), B) in Thm 1.19 erfüllt und $\mathcal{B}_d = \sigma(\mathcal{J}_d)$, folgt mit Thm 1.19, dass $\mu = \lambda_d$ auf \mathcal{B}_d gilt.

c) (Skizze für d=1). Sei μ wie in Behauptung c) und $c := \mu((0,1]) \in [0,\infty)$. Dann gilt $c = \mu((0, \frac{1}{2}]) + \mu((\frac{1}{2}, 1]) \stackrel{\text{nach Vor.}}{=} 2 \cdot \mu((0, \frac{1}{2}])$

 $\Rightarrow \mu((0,\frac{1}{2}]) = c \cdot \lambda_1((0,\frac{1}{2}])$

Induktiv zeigt man: $\mu((0,2^{-n}]) = c \cdot \lambda_1((1,2^{-n}])$ für alle $n \in \mathbb{N}$.

Durch Verschieben und disjunkte Vereinigungen folgt $\mu(I) = c \cdot \lambda_1(I)$ für alle Intervalle der Form I=(a,b] mit $a,b=m\cdot 2^n$ für gewisse $m,n\in\mathbb{Z}$

Das System dieser Intervalle erzeugt \mathcal{B}_1 (Beweis von Satz 1.9) und erfüllt A), B) in Thm 1.19. Damit folgt die Behauptung.

Ana III, 07.11.2008

Theorem 1.25. λ_d ist regulär, $d.h.: \forall A \in \mathcal{B}_d$ gelten:

- a) $\lambda_d(A) = \inf \{ \lambda_d(O) : O \text{ offen, } A \subset O \}$
- b) $\lambda_d(A) = \sup \{\lambda_d(K) : K \text{ kompakt, } K \subset A\}$

a) " \leq " folgt aus der Monotonie von λ_d

"'=' klar. wenn
$$\lambda_d(A) = \infty$$
. Sei also $\lambda_d < \infty$. Wähle $\epsilon > 0$. Nach (1.8) gilt: $\exists I_j \in \mathcal{J}_d \ (j \in \mathbb{N}) \text{ mit } A \subset \bigcup_{j=1}^{\infty} I_j, \ \sum_{j=1}^{\infty} \lambda_d(I_j) \leq \underbrace{\lambda_d(A)}_{=\lambda_d^*(A)} + \epsilon \ (*)$

Wie im Beweis von Satz 1.17 findet man offene O_j mit $I_j \subset O_j$ und $\lambda_d(O_j) \leq \lambda_d(I_j) + 2^{-j} \cdot \epsilon \ (\forall j \in \mathbb{N}) \ (**)$

$$\lambda_{d}(I_{j}) + 2^{-j} \cdot \epsilon \text{ (} \forall j \in \mathbb{N} \text{) (**)}$$

$$\Rightarrow O := \bigcup_{j=1}^{\infty} O_{j} \text{ ist offen und } A \subset \bigcup_{j=1}^{\infty} O_{j}.$$

$$\Rightarrow \lambda_{d}(O) \overset{\text{Satz 1.14}}{\leq} \sum_{j=1}^{\infty} \lambda_{d}(O_{j}) \overset{\text{(**)}}{\leq} \sum_{j=1}^{\infty} \lambda_{d}(I_{j}) + \sum_{j=1}^{\infty} 2^{-j} \cdot \epsilon \overset{\text{(*)}}{\leq} \lambda_{d}(A) + 2 \cdot \epsilon.$$

Mit $\epsilon \to 0$ folgt a).

- b) "\geq" folgt aus der Monotonie von λ_d . Sei $A \in \mathcal{B}_d$.
 - 1) Sei zuerst $A \subset \overline{B}(0,r) =: B$ für ein r > 0. Sei $\epsilon > 0$. Nach a) für $B \setminus A$: $\exists \text{ offenes } O \text{ mit } B \setminus A \subset O \text{ und } \lambda_d(0) \leq \lambda_d(B \setminus A) + \epsilon \stackrel{\text{Satz 1.14}}{=} \lambda_d(B) \lambda_d(B) + \epsilon \quad (+)$

Daraus folgen:

- $-\ K := B \backslash O = B \cap O^c$ ist abgeschlossen und beschränkt, also kompakt.
- $K \subset B \cap (B \backslash A)^c = B \cap (B \cap A^c)^c = A$

$$-\lambda_d(B) \overset{B \subset K \cup B}{\leq} \lambda_d(K \cup O) \overset{\text{Satz 1.14}}{\leq} \lambda_d(K) + \lambda_d(O) \overset{(+)}{\leq} \lambda_d(K) + \lambda_d(B) - \lambda_d(A) + \epsilon$$

 $\stackrel{\text{alles in } \mathbb{R}}{\Rightarrow} \lambda_d(A) \leq \lambda_d(K) + \epsilon. \text{ Damt folgt b) für beschränkte A}.$

2) Sei $A \in \mathcal{B}_d$ beliebig. Setze $A_n := A \cap \overline{B}(0,n) \ (n \in \mathbb{N})$ $\Rightarrow A_n \subset A_{n+1} \ (\forall n \in \mathbb{N}), \ \bigcup_{j=1}^{\infty} A_n = A. \text{ Mit 1}) \text{ folgt:}$ $\exists K_n \text{ kompakt, mit } K_n \subset A_n \text{ und } \lambda_d(A_n) \leq \lambda_d(K_n) + \frac{1}{n}.$ Durch Grenzwertbildung für $n \to \infty$ folgt mit Satz 1.14: $\lambda_d(K_n) \xrightarrow{n \to \infty} \lambda_d(A), \text{ weiter } K_n \subset A.$

Bemerkung. Der Beweis von Thm 1.25a) zeigt, dass man O als eine Vereinigung offener Intervalle nehmen darf.

Auswahlaxiom. Sei M eine nichtleeres System nichtleerer Mengen $A \subset X$. Dann gibt es eine Abbildung $\phi: M \to \bigcup_{A \in M} A \subset X$ mit $\phi(A) \in A \ \forall A \in M$.

Satz 1.26. $\exists \Omega \in \mathcal{P}(\mathbb{R}^d) \backslash \mathcal{B}_d$.

Beweis. Betrachte auf $(0,1]^d$ die Äquivalenzrelation gegeben durch $X \sim Y : \Leftrightarrow x-y \in \mathbb{Q}^d$. Sei $\Omega := \{\phi(A) : A \in M\}$, wobei M die Menge der Äquivalenzklasse zu \sim ist und ϕ aus dem Auswahlaxiom. Damit folgt: $\Omega \subset (0,1]^d$.

Sei $\{q_1, q_2, \dots\} := \mathbb{Q}^d \cap [-1, 1]^d$. Dann folgt

$$(0,1]^d \subset \bigcup_{n=1}^{\infty} (q_n + \Omega) \subset [-1,2]^d.$$
 (*)

Diese Vereinigung ist disjunkt, da jedes $x \in (0,1]^d$ in genau einer Äquivalenzklasse liegt.

Aber:
$$1 = \lambda_d((0,1]^d) \stackrel{(*)}{\leq} \lambda_d(\bigcup_{n=1}^{\infty} (q_n + \Omega)) \stackrel{\text{wie oben}}{=} \sum_{n=1}^{\infty} \lambda_d(\Omega) = 0$$
, was ein Widerspruch ist.