Chem2110 Test 1 3 November, 2011

NAME:	ID NUMBER:	
NAME	ID NUMBER:	

1 H 1.008																	2 He 4.003
3	4											5	6	7	8	9	10
Li	Be											В	C	N	O	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}		Mn		Co	Ni	$\mathbf{C}\mathbf{u}$		Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	\mathbf{Y}	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89									•		•	•	•	•	
Fr	Ra	$\mathbf{A}\mathbf{c}^{\dagger}$															
(223)	226	(227)															

Question	Maximu m Marks	Score
1		
2		
Total		

QUESTION 1

(a) Identify the orbitals represented by the following diagrams:

(b) Draw one simple energy level diagram that shows the subshells in the third and fourth shells of a polyelectronic atom.

E

(c) Complete the following statements	
(i) The mathematical statement of the Heisenberg uncertainty principle is	
(ii) A substance is attracted to a magnetic field	. •
(iii) The VSEPR formulae for an angular molecular shape are	
(iv) The polarity of a chemical bond depends on	
(v) The value of m_l for a p_z orbital is	
(vi) ψ^2 represents the	
(vii) The types of hybridization for a linear molecular shape are	
(viii) A multiple bond is stronger than a single bond because	
(ix) $\psi_{(n,\ell, m\ell)}$ represents	
(x) The of the sulfate ion has a bond ord of 1½.	er
(xi) The maximum number of electrons in any subshell of an atom is	
(xii) The molecular shape with the VSEPR formula $AB_{\scriptscriptstyle 5}$ has $________$ 90°-angles.	
(xiii) The number of for any atomic orbital is given the	by
the mathematical expression $n - l - 1$.	
(xiv) The set of quantum numbers for the hydrogen electron are	

(xv) The name of the monatomic ion with two electrons and no neutrons is
(d) Explain briefly the significance of the distance 52.92 pm from the nucleus of the hydrogen atom.
(e) Consider the cyanate ion NCO ⁻ .
Draw all the possible Lewis structures of the cyanate ion. Which of these Lewis structures is the most important? Why ?
(f) For each of the following substances, draw the molecular shape and name it.
Assign the polarity .
(i) $trans$ -N ₂ O ₂ ²⁻ (ii) the hydronium ion

(g) Write the chemical equation for the following reaction using ${\bf molecular\ shapes}$ of the substances.
Carbon dioxide reacts with water to form carbonic acid.
(h) (i) Se has two important acids, namely H ₂ SeO ₄ and H ₂ SeO ₃ .
These acids belong to a class of acids called
The name of the compound $Sc_2(SeO_3)_3 \cdot H_2O$ is
(ii) Citric acid, $H_3C_6H_5O_6$, ionizes to form the anion $C_6H_5O_6{}^{3\text{-}}$ called -
Citric acid contains -COOH groups. Acids that contain the -COOH functional group are

(iii) XeO_2Br_2

(iv) NOF

in the	called	The hybridization of the carbon atom
in the	-COOH gro	oup is
	3	•
	sider the struns	acture of progesterone, the female sex hormone and answer the v.
•		
(i) Wha	t is the mole	cular formula of progesterone?
	v many lone j	pairs of electrons does progesterone have?
(iii) Ho	w many п-bo	nds does progesterone have?
(iv) Wh	at are the dif	ferent types of hybridization of C atoms in progesterone?
QUEST	ION 2	
(a) Wri	te the name	of each of the following substances:
Na ₂ CO ₃	₃•12H ₂ O	
BrO		
Zn(NO ₂	2)2	
Mg(IO ₄)2	
Pd^{2+}		
HIO ₂ (ac	q)	
H+		

HF(aq)		
$Au_2(CrO_4)_3$		
Cl_2O_7		
³ H		
(b) Write a formula for each of the following substances:		
Aluminium bicarbonate		
Iron(III) thiocyanate		
Ammonium hydrogen phosphate		
Mercury(I) iodide		
Strontium sulfide		
Hydrocyanic acid		
Cadmium hydrogen sulfite		
Manganese(II) acetate tetrahydrate		
Cesium superoxide		
Potassium hypochlorite		
Titanium(III) nitride		
(c) Give the electron configuration of each of the following:		
(i) The manganese(II) ion		
(ii) The trivalent (+3) metal ion found in hemoglobin		

(iii) The copper(I) ion

(iv) The metal ion found in bones and teethe