

VC210 Final Review

Part II. Chapter 5-11

UM-SJTU Joint Institute

Wang Yisen

2018 Fall

Contents

- Gas
- Thermodynamic
- Equilibrium

Ideal gas law

PV=nRT

R=8.314 if Pa & m³ R=0.08206 if atm & L

Partial pressure

$$P_T = \frac{n_T RT}{V} = (n_A + n_B + ...) \frac{RT}{V}$$
 and $P_A V = n_A RT$

Rearrange to get
$$P_A = \frac{n_A}{(n_A + n_B + ...)} P_T$$

Define molar fraction

$$\chi_{A} = \frac{n_{A}}{n_{A} + n_{B} + \dots}$$

Note that:
$$\chi_A + \chi_B + ... + \chi_N = 1$$

We have
$$P_A = \chi_A P$$

$$E_{k} = \frac{1}{2}Mv_{rms}^{2} = \frac{3}{2}RT$$

$$v_{rms}^2 = \frac{3RT}{M}$$

PAT ATTENTION TO UNIT!

The Maxwell Distribution of Speeds $\Delta N = N f(v) \Delta v \quad \text{with } f(v) = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} v^2 e^{-Mv^2/2RT}$

$$\Delta N = N f(v) \Delta v$$
 with $f(v) = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} v^2 e^{-Mv^2/2RT}$

Most possible speed

$$v_{mps} = \sqrt{\frac{2RT}{M}}$$

 Definition: Effusion is the escape of a gas through a tiny hole (a balloon will deflate over time due to effusion).

Two gases with molar masses m_1 and m_2 , the relative **rate** of

effusion is given by

$$\frac{v_1}{v_2} = \sqrt{\frac{m_2}{m_1}}$$

Diffusion and Mean Free Path

- Definition: Diffusion of a gas is the spread of the gas through space.
- Diffusion is significantly slower than rms speed.
- Diffusion is slowed by gas molecules colliding with each other.
- Average distance of a gas molecule between collisions is called mean free path.
- The mean free path of gas is about 5×10-8m.

Real gas

From the ideal gas equation, we have compression factor

$$Z = \frac{PV}{nRT}$$

For ideal gas, Z=1 for all pressures.

In a real gas, Z varies from 1 significantly.

Real gas

The van der Waals Equation

$$\left(P + a\frac{n^2}{V^2}\right)(V - nb) = nRT$$

$$P = \frac{nRT}{V - nb} - \frac{n^2a}{V^2}$$

Relation between a, b and Z?

$$Z = \frac{V}{V - nb} - \frac{an}{RTV}$$

Type of interaction	Typical energy (kJ·mol ⁻¹)	distance dependence
lon-lon	250	1/r
ion-dipole	15	1/r ²
*dipole-dipole (stationary-solids/liquids)	2	1/r ³
dipole-dipole (rotating-gases)	0.3	1/r ⁶
dipole-induced-dipole	2	1/r ⁶
London or induced (or dispersion)	2	1/r ⁶

Match the following properties of liquids to what they indicate about the relative strength of the intermolecular forces in that liquid.

Strong intermolecular forces Weak intermolecular forces high boiling point high surface tension high vapor pressure high viscosity

Summary: how to compare the strength of intermolecular interactions?

- 1. Boiling point
- 2. Surface tension
- 3. Viscosity
- 4. Vapor pressure (inverse proportion)
- 5. Surface area

Hydrogen bond

 Specific molecules with hydrogen attached to a strong electronegative atoms N, O, or F, form bridging hydrogen bonds to electron lone pairs on N, O, or F atoms.

Hydrogen Bonds

X-H···X

X = N, O, F

Hydrogen bond

If a solid line represents a covalent bond and a dotted line represents intermolecular attraction, which of these choices shows a hydrogen bond? Check all that apply.

Unit Cells

Definition:

The smallest region of the crystal lattice that repeats itself, is referred to as the unit cell.

corner atom counts as 1/8

Count atoms: face atom contributes ½

body atom counts as 1

Unit Cells

Important: fcc, bcc and corners
How to calculate their volumes

Expansion work

$$W_{exp} = -P\Delta V$$

For each of the following reactions at constant pressure, determine whether the system does work on the surroundings, the surroundings does work on the system, or essentially no work is performed.

Work done by the system

Work done on the system

No work done

$$2 \operatorname{ClF}_{3}(g) \rightarrow \operatorname{Cl}_{2}(g) + 3 \operatorname{F}_{2}(g)$$

2 HCl
$$(aq)$$
 + CaCO₃ (s) →
H₂O (l) + CO₂ (g) + CaCl₂ (aq)

$$N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$$

$$CCl_4(g) + 2 F_1(g) \rightarrow CF_4(g) + 2 Cl_1(g)$$

$C=q/\Delta T$

At constant volume, the heat of combustion of a particular compound, compound A, is -3701.0 kJ/mol. When 1.127 g of compound A (molar mass = 116.13 g/mol) was burned in a bomb calorimeter, the temperature of the calorimeter (including its contents) rose by 6.423 °C.

Using this data, what is the heat capacity (calorimeter constant) of the calorimeter?

Suppose a 3.083 g sample of a second compound, compound B, was combusted in the same calorimeter, and the temperature rose from 23.89 °C to 27.20 °C.

What is the heat of combustion per gram of compound B?

Number	
- 6.004	kJ/g

First law

The change of internal energy is related to work and heat:

$$\Delta U=q+w$$

The internal energy of an isolated system us constant:

$$\Delta U=0$$

At constant V and non-expension work, the change of internal energy is

$$\Delta U=q$$

State function

Isothermal:
$$w = -nRT \ln(\frac{v_{\text{final}}}{v_{\text{initial}}})$$

Isobaric:
$$w = p(v_{final} - v_{initial})$$

Enthalpy

If pressure is constant, $\Delta H=q$

And we know $Cv = \Delta U/\Delta T$

From this, we deduce that:

$$C_p = C_v + nR$$

Normally speaking, n=1 since we'd like to take molar heat capacity.

Enthalpy

	Monoatomic	Linear	Nonlinear
C _{v,m}	$^{3}/_{2}R$	$^{5}/_{2}R$	3R
$C_{p,m}$	$^{5}/_{2}R$	$^{7}/_{2}R$	4R

Standard Enthalpies of Formation

The standard enthalpy of formation, ΔH_f° , of a substance is the standard reaction enthalpy per mole of formula units for the formation of a substance from its elements in their most stable form, as in the reaction.

Combining standard enthalpies of formation to calculate a standard reaction

enthalpy.

Substance	Formula	$\boldsymbol{\Delta H_{\mathbf{f}}}^{o}$	Substance	Formula	$\boldsymbol{\Delta H_{\mathrm{f}}}^{\mathbf{o}}$
Inorganic compounds			Organic comp	oounds	
ammonia carbon dioxide carbon monoxide dinitrogen tetroxide hydrogen chloride hydrogen fluoride nitrogen dioxide nitric oxide	NH ₃ (g) CO ₂ (g) CO(g) N ₂ O ₄ (g) HCl(g) HF(g) NO ₂ (g) NO(g)	-46.11 -393.51 -110.53 +9.16 -92.31 -271.1 +33.18 +90.25	benzene ethanol ethyne (acetylene) glucose methane	$C_6H_6(l)$ $C_2H_5OH(l)$ $C_2H_2(g)$ $C_6H_{12}O_6(s)$ $CH_4(g)$	+49.0 -277.69 +226.73 -1268 -74.81

In an isolated system the disorder measured by Entropy increases in the course of any spontaneous change.

Disorder is measured by a state function – Entropy, S. Entropy. Low entropy means little disorder;

High entropy means great disorder.

A entropy is a state function. Its change can be calculated in a reversible process:

$$\Delta S = \frac{q_{rev}}{T} \longrightarrow \Delta S = \frac{\Delta H}{T}$$

q is energy transferred, "rev" means energy must be transferred reversibly, T is the absolute temperature, and typical units for entropy are J·K-1

T constant? We have

$$\Delta S = \frac{q_{rev}}{T} = nR \ln \frac{V_2}{V_1}$$

As volume increases, the entropy increases.

Can be easily rewrite as:

$$\Delta S = nR \ln \frac{P_1}{P_2}$$

V constant?

If C is constant:

$$\Delta S = \int_{T_1}^{T_2} \frac{CdT}{T}$$

$$\Delta S = c_{v,m} \ln \frac{T_2}{T_1}$$

How to judge the value of entropy by inspection?

- 1. Gas>Liquid>Solid
- 2. More complex the molecule, more chaotic the substance is.
- 3. Heavier atom has more energy
- 4. Polar molecules have less entropy

Third law

$S = k \ln W$

Boltzmann formula is called **statistical entropy**.

An absolute scale of entropy at any temperature.

$$k = 1.381 \times 10^{-23} \text{ J} \cdot \text{K}^{-1} \text{ (R = } k \text{ N}_{A}\text{)}$$

W is the microstates (W).

The number of positions atoms or molecules can be arranged and yet give rise to the same total energy

Each arrangement is a microstate, W is the number different microstates corresponding to the same energy.

Vapor Pressure

For liquids, which of the following factors affect vapor pressure? Check all that apply.

- ermolecular forces
- temperature
- surface area
- humidity
- volume

$$\ln \frac{P_2}{P_1} = -\frac{\Delta H_{\text{vap}}^{\circ}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

$$\ln\left(\frac{P}{P_0}\right) = -\frac{\Delta H^o_{\text{vap}}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

Vapor Pressure

- Normal boiling point, T_b:
- a liquid boils when the external pressure is 1 atm.
- Boiling occurs when the vapor pressure of a liquid is equal to the external (atmospheric) pressure.
- Strong intermolecular forces usually lead to high normal boiling points.

Phase diagram

- Phase boundaries
- Triple point
- Critical temperature

Vapor pressure with two components Market Compon

- The Vapor Pressure of Mixtures
- Raoult's law: the vapor pressure of a liquid is proportional to its mole fraction.
- Ideal solution / Real solution: Obey Raoult's law at all concentrations?
- **Binary Liquid Mixtures**

$$P = P_{A} + P_{B} = x_{A}(1)P_{A}^{*} + x_{B}(1)P_{B}^{*}$$

Raoult's law

When two volatile liquids (X and Y) are mixed, the solution process involves 1. breaking the intermolecular X---X and Y---Y attractions, and

- 2. forming new X---Y attractions.

Complete this table describing how the relative strengths of these attractive forces affect vapor pressure and enthalpy of solution.

Strength of the attractive forces	Raoult's law deviations	ΔH _{soln}
XX, YY, and XY are equal	zero	zero
XY is strongest	negative	negative
XY is weakest	positive	positive

Colligative properties of solution

- Vapor-pressure Lowering
- Freezing point depression
- Boiling point elevation
- Osmosis

Vapor-pressure Lowering

$$P = \chi_{solvent} P_{pure}$$

Freezing and boiling point

Freezing and boiling point

Freezing-point depression = $k_f \times molality$, temp. decreases.

Boiling-point elevation = $k_b \times molality$, temp. increases.

• General equation: $\Delta T = i \times k \times m$

$$\Delta T = i \times k \times m$$

Osmosis

 Definition: Osmosis is the flow of solvent through a membrane into a more concentrated solution.

$$\Pi = iRTc$$

Equilibrium constant

For a reaction

$$aA + bB \rightleftharpoons cC + dD$$

$$K = \frac{(a_c)^c (a_D)^d}{(a_A)^a (a_B)^b}$$

Thermodynamic interpretation

At equilibrium , $\Delta G = 0$. This leads to,

$$\Delta G_r^{\circ} = - RT \ln K$$

$\Delta G_r^{\circ} = -RT \ln K$ Very important!!!

This links the thermodynamic tables ΔG° to K.

$$K = e^{-\frac{\Delta G_r^{\circ}}{RT}}$$

$$K = e^{-\Delta H_r^{\circ}/RT + \Delta S_r^{\circ}/R} = e^{-\Delta H_r^{\circ}/RT} e^{\Delta S_r^{\circ}/R}$$

Thermodynamic interpretation

At equilibrium , $\Delta G = 0$. This leads to,

$$\Delta G_r^{\circ} = - RT \ln K$$

$\Delta G_r^{\circ} = -RT \ln K$ Very important!!!

This links the thermodynamic tables ΔG° to K.

$$K = e^{-\frac{\Delta G_r^{\circ}}{RT}}$$

$$K = e^{-\Delta H_r^{\circ}/RT + \Delta S_r^{\circ}/R} = e^{-\Delta H_r^{\circ}/RT} e^{\Delta S_r^{\circ}/R}$$

Thermodynamic interpretation

At equilibrium , $\Delta G = 0$. This leads to,

$$\Delta G_r^{\circ} = - RT \ln K$$

$\Delta G_r^{\circ} = -RT \ln K$ Very important!!!

This links the thermodynamic tables ΔG° to K.

$$K = e^{-\frac{\Delta G_r^{\circ}}{RT}}$$

$$K = e^{-\Delta H_r^{\circ}/RT + \Delta S_r^{\circ}/R} = e^{-\Delta H_r^{\circ}/RT} e^{\Delta S_r^{\circ}/R}$$

Reference

- 1. Chemical principal
- 2. Guo Linyun, VC210 FA2017 RC4-6
- 3. Zhu keyue, VC210 FA2017 RC5&7
- 4. Sun Huai, VC210 FA2017 Chapter 10 & 11
- 5. Sapling learning

ΤΗΑΝΚΣ