Cours M2 Cell

Guy Pujolle

Les réseaux sans fil

Mobile et réseaux sans fil

Spectre Radio

Capacité manquante

Offloading

Wi-Fi

IEEE 802.11

Couche Physique

- 802.11b (1999) Vitesse jusqu'à 11 Mbit/s (bande 2,4)
- 802.11a (2001) Vitesse jusqu'à 54 Mbit/s (bande 5)
- 802.11g (2003) Vitesse jusqu'à 54 Mbit/s (bande 2,4)
- 802.11n (2009) Vitesse jusqu'à 600 Mbit/s (bande 2,4 et 5)
- 802.11ac (2012) Vitesse 2 Gbit/s
- 802.11af (2014) Vitesse 10 Gbit/s
- 802.11ah (2015)- Longue distance

Couche Liaison de données

- 802.11e (2005) Qualité de service
- 802.11i (2004) Amélioration de la sécurité
- 802.11f (2005) Gestion des handovers

Wi-Fi Alliance

 Wi-Fi Alliance : Organisme qui regroupe les principaux acteurs du marché sans fils dans le monde

Son but :

- promouvoir Wi-Fi comme standard international pour les réseaux sans fil
- garantir l'interopérabilité des produits Wi-Fi (Wireless Fidelity)
- garantir la sécurité dans Wi-Fi (WPA & WPA2)
- garantir la QoS (Wi-Fi MultiMedia)

Basic Service Set (BSS)

Caractéristiques principales :

- Nom de réseau (SSID)
 - Canal de transmission
- Mécanismes de sécurité
 - Topologie

Techniques d'accès

```
Qui peut parler et quand ?
qualité, équité, flexibilité
□ Aloha (1970)
□ Slotted-Aloha (1972)
□ CSMA (Carrier Sens Multiple Access) (1975)
Non persistant
p-persistant
□ CSMA/CD with Collision detection (1976 – Ethernet)
□ CSMA/CA with Collision Avoidance (1997 – IEEE 802.11)
```

Algorithme de Backoff

DIFS Distributed Inter-FrameSpacing

Réseau d'infrastructure (ESS)

Réseau en mode ad hoc (IBSS)

Caractéristiques principales :

- Nom de réseau (SSID)
 - Canal de transmission
- Mécanismes de sécurité
 - Topologie

Les réseaux Wi-Fi

Points d'accès légers

Antennes

- Permet d'améliorer les transmissions radios
- Ne joue pas le rôle d'amplificateur
- Performance exprimé en dBi
- Inconvénient : toutes les cartes et tous les points d'accès n'ont pas de connecteurs permettant de les connecter à une antenne
- Différents types d'antennes
 - Omni
 - Sector
 - Yagi
 - Parabole
 - Autres

Ligne point à point

La réglementation française

- ARCEP (Autorité de Régulation des Communications Électroniques et des Postes)
- Aucune demande d'autorisation
 - A l'intérieur des bâtiments
 - Bande 2,400 2,4835 GHz, puissance 100 mW
 - A l'extérieur des bâtiments
 - Bande 2.400- 2,454 GHz, puissance 100 mW
 - Bande 2,454 2,4835 GHz, puissance 10 mW
- Autorisation nécessaire pour une utilisation complète de la bande des 2,4 GHz à l'extérieur des bâtiments

Affectation des canaux

Zone de couverture

Dépend de l'environnement

- Les murs
- Les meubles
- Les personnes
- Distance entre les équipements du réseau
- Interférences
 - Autres réseaux Wi-Fi
 - Bluetooth
 - Les fours microondes
 - Autres équipements utilisant la bande ISM

Débit dans les réseaux Wi-Fi

Débits dans Wi-Fi

Vitesse de transmission	Sans Mécanisme	WEP (64 bits)	WEP (128 bits)	Fragmentation (500 octets)	Réservation (500 octets)	Économie d'énergie
54	22,6	22,3	22,3	14,5	19,2	11,9
48	22	21,13	21,5	14,1	17,53	11,76
36	18	17,53	18	12,66	15,36	10,8
24	14	13,9	13,63	10,2	13	9,5
12	8,08	8,05	7,84	6,67	7,75	6,6
9	6,37	6,2	6,22	5,35	5,89	5,11
6	4,44	4,44	4,43	3,83	4,38	3,78

Vitesse de transmissio n	Sans Mécanisme	WEP (64 bits)	WEP (128 bits)	Fragmentation (500 octets)	Réservation (500 octets)	Économie d'énergie
11	6,56	6,54	6,56	4,77	5,6	3,29
5,5	3,85	3,81	3,82	3,1	3,54	2,1
2	1,6	1,58	1,57	1,36	1,42	0,935
1	0,795	0,78 6	0,74 9	0,704	0,768	0,482

Wi-Fi haut débit

IEEE 802.11n

- IEEE 802.11n
 - MIMO (Multiple Input Multiple Output)
 - Utilisation des deux bandes 2.4 et 5 GHz
 - Jusqu'à 600 Mbit/s brut
 - 100 Mbit/s réel
 - Intégration de
 - IEEE 802.11i
 - IEEE 802.11f
 - IEEE 802.11e

MIMO

- +: Vitesse de transmission = f(Nb_{antenne})
- -: Diversité

WiFi ng

WiGig et IEEE 802.11ad

- Wi-Fi bouvelle génération
- WiGig:
 - 60 GHz
 - 1 à 7 Gbit/s
 - Plus un PAN qu'un LAN
 - Cellule limitée à une pièce
- IEEE 802.11ad
 - Groupe IEEE « very high throughput »
 - 60 GHz
 - Entre 1 et 6 Gbit/s

802.11ac

- Approuvé par l'IEEE en janvier 2014
- Seulement la bande de 5 GHz
- Débit global de 7Gbps avec des canaux de 80 MHz et de 160 MHz
- Wifi MU-MIMO (Multi User MIMO)
- 4 lobes directifs
- IEEE 802.11ax avec 8 lobes directifs

IEEE 802.11ac

IEEE 802.11ac

IEEE 802.11af: utilisation du spectre

IEEE 802.11af: radio cognitive

IEEE 802.11ah

- Wi-Fi longue portée
 - 1km
 - Faible débit: quelques centaines de kbit/s
- Utilisation visée : l'interconnexion de compteurs intelligents
 - Application Smart Grid
 - Téléphonie
 - Réseau de capteurs
- Découpage en clusters
 - A un instant t seules les machines d'un seul cluster peuvent émettre

4G and Wi-Fi convergence

Lack of radio resource

NGH: Next generation hotspot or Hotspot 2.0 NGH enables operators to continuously monitor and manage "cellular-like" service over Wi-Fi IEEE 802.11u and EAP- (SIM, AKA, TLS,...)

The global management and control

