Quiz 3

Name:

Complete the following definition by completing the statements of all ten conditions.

Definition A vector space over \mathbb{R} is a set V equipped with two operations, + and \cdot , that satisfy the following conditions for all vectors \vec{v} , \vec{w} , $\vec{u} \in V$ and all scalars $r, s \in \mathbb{R}$:

- (1) the set V is closed under vector addition : $\vec{v} + \vec{w} \in V$
- (2) vector addition is commutative : $\vec{v} + \vec{w} = \vec{w} + \vec{v}$
- (3) vector addition is associative: $(\vec{v} + \vec{w}) + \vec{u} = \vec{v} + (\vec{w} + \vec{u})$
- (4) there is a zero vector $\vec{0} \in V$ such that $\vec{v} + \vec{0} = \vec{v}$
- (5) each $\vec{v} \in V$ has an additive inverse $\vec{w} \in V$ such that $\vec{v} + \vec{w} = \vec{0}$
- (6) the set V is closed under scalar multiplication: $r \vec{v} \in V$
- (7) addition of scalars distributes over scalar multiplication : $(r+s)\vec{v} = r\vec{v} + s\vec{v}$
- (8) scalar multiplication distributes over vector addition: $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$
- (9) ordinary multiplication of scalars associates with scalar multiplication: $(rs) \vec{v} = r(s\vec{v})$
- (10) multiplication by the scalar 1 is the identity operation: $1\vec{v} = \vec{v}$