Fiche de cours : Puissance d'un nombre rationnel.

Classe : 2^{ème} année parcours international collégial.

Date : 16/11/2020

Prof : Bouchida Rachid

Cours n° : 6

Matière : Mathématiques

Objectifs

Prérequis

- Utiliser l'écriture a^n pour écrire le produit $a \times a \times ... \times a$.
- Connaître le signe d'un nombre rationnel.
- Connaître et utiliser les propriétés des puissances.
- Utiliser les puissances de 10.
- L'écriture scientifique.

Les moyens didactiques

- Livre scolaire – tableau – craie –règle – calculatrice.

Volume horaire

La symétrie axiale.

8h

- Puissances des nombres relatifs.
- Produit, somme, différence et quotient des nombres relatifs.
- Produit, somme, différence et quotient des nombres rationnels.

Extensions

- Equation.
- Développement et factorisation.
- Ordre et opérations.

Contenu de cours

- Puissance d'un nombre rationnel.
- Signe d'une puissance.
- Propriétés des puissances.
- Puissances de 10.
- Ecriture scientifique.

<u>Ojectifs</u>	<u>Activité</u>	Remarques					
Connaître la puissance d'un nombre rationnel.	Activité : 1 Voir fichier ci-dessous.	<u>Durée :</u> 20 min					
y – a – t' il de fa							
-Comment sont – ils ces facteurs? Complète. $5 \times 5 \times 5$ est le produit de facteurs égaux à 2) – Dans le produit : $5 \times 5 \times 5 \times 5 \times 5 \times 5$, combien $y - a - t'$ il de facteurs dans ce produit?							
2) – Comment sont – ils ces facteurs? 							
 égaux à 3) -Ecris le produit de 100 facteurs égaux à 5. -Quel est l'obstacle que tu as trouvé dans cette écriture? 							

Puissance d'un nombre rationnel.

Pour passer de cet obstacle on écrit ce produit sous la forme 5^{10} .

5¹⁰ est la puissance du nombre 5 et se lit 5 à la puissance 100.

3) – Ecris le produit de 24 facteurs égaux à 5.

(En utilisant l'écriture précédente sous forme d'une puissance)

4) – Ecris le produit de 16 facteurs égaux à (-2).

••••••

Résumé de cours

Remarques

1) - Puissance d'un nombre rationnel.

Définition: 1

a un nombre rationnel non nul et n un entier naturel.

$$a^{n} = \underbrace{a \times a \times a \times \dots \times a \times a}_{n \text{ facteurs}}$$

Exemples:

$$\left(\frac{12}{5}\right)^2$$
; $(-4)^5$; $\left(\frac{2}{3}\right)^3$

■Cas particulier:

Si a un nombre rationnel non nul, on a :

$$a^1=a \quad ; \quad a^0=1$$

Exemples:

$$\left(\frac{10}{7}\right)^1 = \frac{10}{7}$$
 ; $5^0 = 1$

<u>Durée :</u>

20 min

■L'écriture aⁿ:

L'exposant de

la puissance aⁿ

La base de la puissance a^n

A/-Puissance d'exposant négatif.

Propriété: 1

a un nombre rationnel non nul et n un entier naturel.

$$a^{-n}=\frac{1}{a^n}$$

■*R*é*sultat*:

a et b deux nombres rationnels non nuls, et n un entier naturel.

$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$

Exemples:

$$(5)^{-3} = \frac{1}{5^3}$$
 ; $\left(\frac{2}{3}\right)^{-3} = \left(\frac{3}{2}\right)^3$

Remarque:

 0^0 n' apas de sens.

<u>Durée :</u> 20 min

Remarques

Exercice d'application: 1

Calculer les puissances suivantes

$$(-544,7)^0$$
 ; 1^{12} ; 2^{-3} ; 0^{12} ; $(-1)^4$; $\left(\frac{3}{5}\right)^{-2}$

Durée : 15 min

Signe d'une puissance d'un nombre rationnel.					
<u>Ojectifs</u>	<u>Activité</u>	<u>Remarques</u>			
Découvrir le signe d'une puissance d'un nombre rationnel.	Activité: 2 1) - Calculer les puissances suivantes: (-1) ⁴ ; (-1) ⁵ ; 1 ⁵ ; 1 ⁴ a) - Quel est le signe du puissance (-1) ⁴ et (-1) ⁵ ? b) - Que peut - on déduire? 2) - Complète: * Le signe d'une puissance d'un nombre rationnel est positif si	Durée : 20 min			

B/-Signe d'une puissance d'un nombre

rationnel.

*R*è*gle*: 1

Soit a un nombre rationnel, et n un entier relatif.

- * Si a est positif alors a^n est positif.
- * Si a est négatif alors aⁿ est:
 - Positif lorsque l'exposant n est pair.
 - ■Négatif lorsque l'exposant n est impair.

Exemple:

- * Le signe de la puissance $(-3)^8$ est positif.
- * Le signe de la puissance $(-3)^7$ est négatif.

a est positif.

a négatif.

an est positif.

n pair n impair

 a^n est positif a^n est négatif

<u>Durée :</u> 20 min

Remarques

Exercice d'application: 2

Déterminer le signe de chaque puissance.

$$\left(\frac{-3}{17}\right)^{-2}$$
 ; $(-2)^{15}$; 5^{-3} ; $\left(\frac{-2}{3}\right)^{15}$

Durée : 15 min

Opération sur les puissances : Produit de deux puissances de même base.

Ojectifs

<u>Activité</u>

Remarques

Découvrir le produit de deux puissances de même base.

Activité:3

Voir fichier ci-dessous.

<u>Durée :</u> 20 min

Activité:3

-Observe l'exemple suivant, et complète.

$$2^{4} \times 2^{3} = \left(\underbrace{2 \times 2 \times 2 \times 2}_{4 \, facteurs}\right) \times \left(\underbrace{2 \times 2 \times 2}_{3 \, facteurs}\right)$$

$$= \left(\underbrace{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}_{4+3 \, facteurs}\right)$$

$$= 2^{7}$$

$$3^{4} \times 3^{5} = \left(\underbrace{\dots \dots \dots \dots}_{\dots facteurs} \right) \times \left(\underbrace{\dots \dots facteurs}_{\dots facteurs} \right)$$

$$= \left(\underbrace{\dots \dots \dots facteurs}_{\dots \dots facteurs} \right)$$

$$a^4 \times a^2 = \left(\underbrace{\dots \dots \dots \dots \dots}_{\dots facteurs} \right) \times \left(\underbrace{\dots \dots \dots}_{\dots facteurs} \right)$$

$$a^{4} \times a^{2} = \left(\underbrace{\dots \dots \dots \dots}_{\dots facteurs} \right) \times \left(\underbrace{\dots \dots facteurs}_{\dots facteurs} \right)$$

$$= \left(\underbrace{\dots \dots \dots}_{\dots + \dots facteurs} \right)$$

$$= \dots \dots$$

−Complète:

$$a^{n} \times a^{m} = \left(\underbrace{\dots \dots \dots \dots}_{\dots facteurs} \right) \times \left(\underbrace{\dots \dots facteurs}_{\dots \dots facteurs} \right)$$

$$= \left(\underbrace{\dots \dots \dots \dots}_{\dots \dots facteurs} \right)$$

$$= \dots \dots$$

Résumé de cours

Remarques

2) – Opérations sur les puissances.

a) – Produit de deux puissances de même base.

Règle: 2

Si a un nombre rationnel non nul, m et n deux entiers relatifs, alors:

$$a^m \times a^n = a^{m+n}$$

<u>Durée :</u>

Exemple:

$$5^3 \times 5^7 = 5^{3+7}$$

$$= 5^{10}$$

$$\left(\frac{2}{3}\right)^3 \times \left(\frac{2}{3}\right)^{11} = \left(\frac{2}{3}\right)^{3+11}$$
$$-\left(\frac{2}{3}\right)^{14}$$

Exercice d'application: 3

Écrire sous forme d'une puissance :

$$A = 2^4 \times 2^6$$
; $B = (-4,5)^3 \times (-4,5)^3 \times (-4,5)^2$

$$C = \left(\frac{-4}{7}\right)^5 \times \left(\frac{-4}{7}\right)^3$$
; $D = 9 \times 9^2 \times 9^3$

<u>Durée :</u> 15 min

Opération sur les puissances : Produit de deux puissances de même exposant.

Ojectifs

Activité

Remarques

Activité :4

Activité:4

a et b deux nombres rationnels, tel

 $que: a = 2 \ et \ b = 3$

Complète le tableau suivant:

Découvrir le produit de deux puissances de même exposant.

n	a^n	b^n	$a^n \times b^n$	$(a \times b)^n$
2				
3				
-2				

<u>Durée :</u> 20 min

 $-Que\ remarquez-vous?$

...

•••••••

b) – Produit de deux puissances de même

exposant.

Règle: 3

Si a et b deux nombres rationnels non nul, et n un entier relatif, alors:

$$a^n \times b^n = (a \times b)^n$$

Durée : 20 min

Exemple:

$$\left(\frac{3}{7}\right)^3 \times \left(\frac{7}{6}\right)^3 = \left(\frac{3}{7} \times \frac{7}{6}\right)^3$$
$$= \left(\frac{3}{6}\right)^3$$
$$= \left(\frac{1}{2}\right)^3$$

$$3^{-2} \times 7^{-2} = (3 \times 7)^{-2}$$

= $(21)^{-2}$

Application

<u>Remarques</u>

Exercice d'application: 4

Écrire sous forme d'une puissance :

$$A=2^4\times 4^4$$
 ; $B=\left(\frac{-4}{7}\right)^5 imes\left(\frac{-7}{4}\right)^5$

$$C = \left(\frac{10}{9}\right)^{-15} \times \left(\frac{18}{5}\right)^{-15}$$

Durée : 15 min

Ojectifs

<u>Activité</u>

Remarques

Activité:5

 $-Observe\ l'exemple\ suivant.$

$$\frac{2^{5}}{2^{3}} = \frac{2 \times 2 \times 2 \times 2 \times 2}{2 \times 2 \times 2} = 2 \times 2 = 2^{2}$$

On remarque: $2^2 = 2^{5-3}$

* Complète:

$$\frac{3^4}{2^2} = \frac{\dots \dots \dots}{\dots \dots} = \dots \dots = \dots \dots$$

On remarque:

$$\frac{10^5}{10^4} = \frac{\dots \dots \dots}{\dots \dots} = \dots \dots = \dots \dots$$

On remarque:

* Complète:

$$\frac{a^m}{a^n} = \dots \dots$$

<u>Durée :</u> 20 min

Découvrir le quotient de deux puissances de même base.

c) – Quotient de deux puissances de même base.

<u>Règle: 4</u>

Si a un nombre rationnel non nul, m et n deux entiers relatifs, alors:

$$\frac{a^m}{h^n} = a^{m-n}$$

Exemple:

$$\frac{5^6}{5^3} = 5^{6-3}$$
$$= 5^3$$

$$\frac{\left(\frac{1}{3}\right)^{5}}{\left(\frac{1}{3}\right)^{2}} = \left(\frac{1}{3}\right)^{5-2}$$

$$=\left(\frac{1}{3}\right)^3$$

<u>Durée:</u>

<u>20 min</u>

Application

Exercice d'application: 5

Écrire sous forme d'une puissance :

$$A = \frac{4^7}{4^4}$$
 ; $B = \frac{\left(\frac{-4}{7}\right)^5}{\left(\frac{-4}{7}\right)^{-7}}$

$$C = \frac{7^6}{7^4}$$
 ; $D = \frac{\left(\frac{3}{2}\right)^{-3}}{\left(\frac{3}{2}\right)^7}$

Durée: <u>15 min</u>

Remarques

Ojectifs

Activité

Remarques

Découvrir le quotient de deux puissances de

même exposant.

Activité:6

a et b deux nombres rationnels, tel

que: a = 8 et b = 2

Complète le tableau suivant:

n	a^n	b^n	$\frac{a^n}{b^n}$	$\left(\frac{a}{b}\right)^n$
2				
3				
-2				

<u>Durée :</u> <u>20 min</u>

-Que remarquez – vous?

Résumé de cours

Remarques

d) – Quotient de deux puissances de même exposant.

Règle: 5

Si a et b deux nombres rationnels non nul, et n un entie

relatif, alors:

$$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$$

<u>Durée :</u>

Exemple:

$$\frac{5^7}{25^7} = \left(\frac{5}{25}\right)^7$$
$$= \left(\frac{1}{5}\right)^7$$

<u>20 min</u>

Exercice d'application : 6

Écrire sous forme d'une puissance :

$$A = \frac{5^4}{15^4} \quad ; \qquad B = \frac{11^{17}}{121^{17}}$$

$$C = \frac{12^{26}}{(0,3)^{26}}$$
 ; $D = \frac{\left(\frac{3}{2}\right)^{-3}}{\left(\frac{2}{3}\right)^{-3}}$

<u>Durée :</u>
15 min

Remarques

Opération sur les puissances : Puissance d'une puissance.

Activité

<u>Ojectifs</u>

Connaître la

puissance d'une

puissance.

Activité:6

-Observe l'exemple suivant.

$$(2^2)^3 = 2^2 \times 2^2 \times 2^2$$

$$= (2 \times 2) \times (2 \times 2) \times (2 \times 2)$$

$$= 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$$

$$= 2^{6}$$

On remarque que $: 2^6 = 2^{2 \times 3}$

-Complète:

<u>Durée :</u> 20 min

Remarques

<u>e) – Puissance d'une puissance.</u>

Règle: 6

Si a un nombre rationnel non nul, m et n deux entiers relatifs, alors:

$$(a^m)^n = a^{m \times n}$$

<u>Durée :</u>
20 min

Exemple:

$$\left[\left(\frac{5}{7} \right)^5 \right]^3 = \left(\frac{5}{7} \right)^{5 \times 3}$$
$$= \left(\frac{5}{7} \right)^{15}$$

Application

Remarques

Exercice d'application : 6

Écrire sous forme d'une puissance :

$$A=(2^4)^3$$
; $B=(3^5)^{-2}$

$$C = (5^{-2})^{5}$$
 ; $D = \left[\left(\frac{2}{3}\right)^{-3}\right]^{6}$

$$E = \left[\left(\frac{5}{7} \right)^{-3} \right]^2 \times \left[\left(\frac{7}{5} \right)^2 \right]^{-4}$$

Durée : 15 min

Puissa	nce c	le 10.
<u> </u>	iiice c	1C TO.

Ojectifs

<u>Activité</u>

Remarques

Découvrir les puissances de 10.

Activité:7

Voir fichier ci-dessous.

Durée : 20 min

Activité:7

-Complète le tableau suivant:

Ecriture	10000	1000	100	10	1	0, 1	0,01	0,001	0,0001
décimale									
Ecriture						1			
fractionnaire						10			
Puissance de 10	10 ⁴								
Le signe de									
L'exposant									

-Queremarquez-vous?

Résumé de cours

Remarques

<u>3) – Les puissances de 10.</u>

<u>**Règle: 7**</u>

n un entier naturel non nul.

$$10^n = 1 \underbrace{00 \dots \dots 0}_{n \text{ z\'eros}}$$

$$10^{-n} = \underbrace{0,00 \dots 0}_{n \text{ zéros}} 1$$

<u>Durée :</u>
20 min

Exemple:

$$10^5 = 100000$$

$$10^{-5} = 0,00001$$

Remarques

Exercice d'application : 7

-Ecrire en utilisant les puissances de 10.

10000; 1000; 0,0001; $0,001 \times 10000$; 100

imes 0, 000001

<u>Durée :</u> 15 min

<u>L'écriture scientifique.</u>					
<u>Ojectifs</u>	<u>Activité</u>	Remarques			
Découvrir l'écriture scientifique.	Activité:8 1) — À l'aide de ta calculatrice, détermine la valeur du produit suivant: 32 768 × 15 625. 2) — Déduis — en l'écriture décimale de 327 680 × 156 250 et de 327 680 000 × 1 562 500 (sans calculatrice). 3) — Vérifie chaque résultat à l'aide de ta calculatrice. Obtiens — tu la même valeur? 4) — Pose et effectue l'addition: 9 620 000 000 + 9 870 000 000, puis reprends la question 3. 5) — Pour les trois calculs précédents, la calculatrice écrit le résultat sous forme scientifique. 6) — À ton avis, qu'est — ce que la notation scientifique d'un nombre?	Durée : 20 min			

<u>4) – Ecriture scientifique.</u>

Définition: 2

■L'écriture scientifique d'un nombre décimal positif (non nul) est de la forme :

$$a \times 10^n$$

tels que :

n un entier relatif et a un nombre décimal tel que :

 $1 \le a < 10$.

■L'écriture scientifique d'un nombre décimal négatif (non nul) est de la forme :

$$-a \times 10^n$$

tels que:

n un entier relatif et a un nombre décimal tel que :

$$1 \le a < 10$$
.

<u>Durée :</u> 20 min

Remarque:

 $1 \le a < 10$ c'es — à — dire a un nombre décimal ayant un seul chiffre non nul avant la virgule.

Exemple:

$$265000 = 2,65 \times 10^5$$

$$-26500 = -2,65 \times 10^4$$

$$0.00026 = 2.6 \times 10^{-4}$$

Remarques

Exercice d'application : 8

 $-Donner\ l'$ écriture scientifique des nombres suivants:

$$a = 236000$$
 ; $b = 0.000024$

$$c = 2,4 \times 10^4 + 1,5 \times 10^4$$

<u>Durée :</u>
15 min