A-4. Filtry aktywne RC

wersja 03'2022

1. Wstęp

Filtry aktywne II rzędu RC

Filtry aktywne RC to układy liniowe, stacjonarne realizowane za pomocą elementu aktywnego jakim jest wzmacniacz, na który założono sprzężenie zwrotne zbudowane z elementów biernych rezystancyjno-pojemnościowych RC. Elementem aktywnym najczęściej jest wzmacniacz operacyjny. Elementy bierne sprzężenia zwrotnego kształtują charakterystykę amplitudowo-częstotliwościową całego układu filtru. Sprzężenie zwrotne odpowiedzialne jest za kształt całkowitej charakterystyki amplitudowo-częstotliwościowej, a może być zarówno dodatnie jak i ujemne. W tym pierwszym przypadku dodatniemu sprzężeniu musi towarzyszyć dodatkowo sprzężenie ujemne dla zachowania stabilności całego układu. W przypadku drugim stosuje się wielokrotną pętlę sprzężenia ujemnego. W ćwiczeniu, do budowania filtrów wykorzystano człony kwadratowe (tzn. posiadające biegun drugiego rzędu) zrealizowane w konfiguracji z dodatnim sprzężeniem zwrotnym.

2. Zakres ćwiczenia

Zbadać następujące układy:

- 1) Filtr dolnoprzepustowy rzędu II o tłumieniu krytycznym.
- 2) Filtr dolnoprzepustowy Butterworth'a rzędu II.
- 3) Filtr dolnoprzepustowy Chebysheva 0.5dB rzędu II.
- 4) Filtr dolnoprzepustowy Bessel'a rzędu II.

Ewentualnie:

- 5) Filtr górnoprzepustowy rzędu II o tłumieniu krytycznym.
- 6) Filtr górnoprzepustowy Butterworth'a rzędu II.
- 7) Filtr górnoprzepustowy Chebysheva 0.5dB rzędu II.
- 8) Filtr górnoprzepustowy Bessel'a rzędu II.

3. Realizacja filtrów

Filtr dolnoprzepustowy

Do realizacji powyższych filtrów aktywnych wybrano konfigurację układową Sallen-Key'a. Schemat filtru dolnoprzepustowego przedstawia rysunek 1.

Rys. 1. Dolnoprzepustowy filtr aktywny w konfiguracji Sallen-Key'a.

Operatorowa funkcja przenoszenia ma postać:

$$H(s) = \frac{U_{wyj}(s)}{U_{wej}(s)} = \frac{k}{\frac{s^2}{\omega_0^2} + \frac{s}{Q\omega_0} + 1}$$
 [1]

gdzie: k – wzmocnienie układu aktywnego, $k = 1 + \frac{R_4}{R_3}$,

$$Q - \text{dobro\'e filtru}, \ Q = \frac{\sqrt{R_1 R_2 C_1 C_2}}{R_1 C_1 + R_2 C_1 + R_1 C_2 (1 - k)},$$

$$\omega_0 - \text{często\'s\'e charakterystyczna}, \ \omega_0^2 = \frac{1}{R_1 R_2 C_1 C_2}.$$
[3]

$$\omega_0$$
 – częstość charakterystyczna, $\omega_0^2 = \frac{1}{R_1 R_2 C_1 C_2}$. [3]

Parametrem charakterystycznym funkcji przenoszenia jest częstość ω₀ oraz dobroć Q filtru. W zależności od zmiennej Q rozróżniamy następujące typy filtrów aktywnych drugiego rzędu:

- Q = 0.7071 filtr Butterworth'a,
- Q = 0.9487 filtr Chebysheva 0.5dB,
- Q = 0.5 filtr o tłumieniu krytycznym Bessel'a.

Amplitudowe i fazowe charakterystyki częstotliwościowe filtrów przedstawia rysunek 2.

Rys. 2. Amplitudowa i fazowa charakterystyka częstotliwościowa dolnoprzepustowego filtru aktywnego drugiego rzędu (przy założeniu ω_0 =const). Asymptotyczne nachylenie amplitudowej charakterystyki częstotliwościowej powyżej częstotliwości charakterystycznej wynosi -40 dB/dek.

Celem uproszczenia projektu wprowadzić można następujące założenia:

1. Dla zależności między elementami układu:

$$R_1=mR$$
, $R_2=R$, $C_1=C$, $C_2=nC$, otrzymujemy:

$$f_0 = \frac{1}{2\pi RC\sqrt{mn}}, \quad Q = \frac{\sqrt{mn}}{m+1+mn(1-k)}$$

2. Dla zależności między elementami układu:

$$R_1=mR$$
, $R_2=R$, $C_1=C$, $C_2=nC$, $k=1$ otrzymujemy:

$$f_0 = \frac{1}{2\pi RC\sqrt{mn}}, \quad Q = \frac{\sqrt{mn}}{m+1}$$

3. Dla zależności między elementami układu:

$$R_1=mR$$
, $R_2=R$, $C_1=C_2=C$ otrzymujemy:

$$f_0 = \frac{1}{2\pi RC\sqrt{m}}, \quad Q = \frac{\sqrt{m}}{1 + 2m - mk}$$

lub
$$R_1 = R_2 = R$$
, $C_1 = C$, $C_2 = nC$,

$$f_0 = \frac{1}{2\pi RC\sqrt{n}}, \quad Q = \frac{\sqrt{n}}{2+n(1-k)}$$

4. Dla zależności między elementami układu:

$$R_1=R_2=R$$
, $C_1=C_2=C$ otrzymujemy:

$$f_0 = \frac{1}{2\pi RC}, \quad Q = \frac{1}{3-k}$$

Cechy charakterystyczne filtrów:

Cecny characterystyczne introw:						
	Zalety	Wady				
Butterworth	Maksymalnie płaska charakterystyka częstotliwościowa w paśmie przepustowym, napięciowa odpowiedz impulsowa o mniejszym poziomie tłumienia niż dla konfiguracji Chebyshev'a	Niewielkie oscylacje gasnące w napięciowej odpowiedzi impulsowej				
Bessel	Pozbawiony efektu dzwonienia, brak przerzutu w napięciowej odpowiedzi na wymuszenie impulsowe	Najmniejsze tłumienie poza pasmem przepustowym, najwolniejsze narastanie odpowiedzi na napięciowe wymuszenie skokowe				
Chebyshev	Największe tłumienie poza pasmem przepustowym	Charakterystyczne podbicie w paśmie przepustowym w pobliżu częstotliwości charakterystycznej, duże oscylacje w odpowiedzi impulsowej				

Przykładowy kształt napięciowych odpowiedzi filtrów na wymuszenie skokiem jednostkowym I(t) przedstawia rysunek 3.

Laboratorium Elektroniczne WFilS Filtry aktywne RC

Rys. 3. Odpowiedz napięciowa filtrów dolnoprzepustowych aktywnych drugiego rzędu (przy założeniu ω_0 =const) na wymuszenie skokiem jednostkowym I(t).

Filtr górnoprzepustowy

Schemat filtru górnoprzepustowego II rzędu w konfiguracji Sallen-Key'a przedstawia rysunek 4.

Rys. 4. Górnoprzepustowy filtr aktywny w konfiguracji Sallen-Key'a

Operatorowa funkcja przenoszenia ma postać:

$$H(s) = \frac{U_{wyj}(s)}{U_{wej}(s)} = \frac{k \frac{s^2}{\omega_0^2}}{\frac{s^2}{\omega_0^2} + \frac{s}{Q\omega_0} + 1}$$
 [4]

gdzie: k – wzmocnienie układu aktywnego, $k = 1 + \frac{R_4}{R_3}$

$$Q - \text{dobro\'e filtru}, \ Q = \frac{\sqrt{R_1 R_2 C_1 C_2}}{R_2 C_2 + R_2 C_1 + R_1 C_2 (1 - k)},$$
 [5]

$$\omega_0$$
 – częstość charakterystyczna, $\omega_0^2 = \frac{1}{R_1 R_2 C_1 C_2}$. [6]

Parametrem charakterystycznym funkcji przenoszenia jest częstość ω_0 oraz dobroć Q filtru.

Amplitudowe i fazowe charakterystyki częstotliwościowe filtrów przedstawia rysunek 5.

Rys. 5. Amplitudowa i fazowa charakterystyka częstotliwościowa górnoprzepustowego filtru aktywnego drugiego rzędu (przy założeniu ω_0 =const). Asymptotyczne nachylenie amplitudowej charakterystyki częstotliwościowej poniżej częstotliwości charakterystycznej wynosi +40 dB/dek.

Celem uproszczenia projektu wprowadzić można następujące założenia:

5. Dla zależności między elementami układu: $R_1=mR$, $R_2=R$, $C_1=C$, $C_2=nC$,

otrzymujemy:

$$f_0 = \frac{1}{2\pi RC\sqrt{mn}}, \quad Q = \frac{\sqrt{mn}}{n+1+mn(1-k)}$$

6. Dla zależności między elementami układu: $R_1=mR$, $R_2=R$, $C_1=C$, $C_2=nC$, k=1 otrzymujemy:

$$f_0 = \frac{1}{2\pi RC\sqrt{mn}}, \quad Q = \frac{\sqrt{mn}}{n+1}$$

7. Dla zależności między elementami układu:

$$R_1=mR$$
, $R_2=R$, $C_1=C_2=C$ otrzymujemy:

$$f_0 = \frac{1}{2\pi RC\sqrt{m}}, \quad Q = \frac{\sqrt{m}}{2 + m(1-k)}$$

lub
$$R_1 = R_2 = R$$
, $C_1 = C$, $C_2 = nC$,

$$f_0 = \frac{1}{2\pi RC\sqrt{n}}, \quad Q = \frac{\sqrt{n}}{1 + 2n - nk}$$

8. Dla zależności między elementami układu:

$$R_1 = R_2 = R$$
, $C_1 = C_2 = C$

otrzymujemy:

$$f_0 = \frac{1}{2\pi RC}, \quad Q = \frac{1}{3-k}$$

4. Literatura

- 1) Tietze, Schenk "Układy półprzewodnikowe".
- 2) Millman, Halkias "Układy scalone analogowe i cyfrowe".
- 3) Kulka, Nadachowski "Analogowe układy scalone i ich zastosowanie".
- 4) Hank Zumbahlen "Linear Circuit Design Handbook"
- 5) "Analysis of the Sallen-Key Architecture" http://www.ti.com/lit/an/sloa024b/sloa024b.pdf

5. Program ćwiczenia

Program ćwiczenia i sposób opracowania sprawozdań zgodnie z wytycznymi prowadzącego.

6. Schemat zestawu do ćwiczenia

(płytka PCB: wersja FILTRY v2, 11'2021)

Schemat blokowy płytki bazowej z buforami separującymi do badania różnych konfiguracji filtrów (badany filtr podłączany jest w miejscu opisanym "FILTR 1" lub "FILTR 2"):

Sposób podłączenia napięcia zasilającego do buforów separujących:

UWAGA: MAKSYMALNA WARTOŚĆ NAPIĘCIA ZASILAJĄCEGO: ±V ≡ ±15V

Schematy poglądowe modułów ćwiczeniowych filtrów aktywnych w konfiguracji Sallen-Key'a:

Zestawienie elementów dla filtrów różnego typu:

Typ filtru	KRYTYCZNY	BUTTERWORTH	CHEBYSHEV 0.5dB	BESSEL
Symbol	Wartość	Wartość	Wartość	Wartość
R_1	$10 \mathrm{k}\Omega$	10kΩ	$10 \mathrm{k}\Omega$	10 k Ω
R_2	$10 \mathrm{k}\Omega$	10kΩ	$10 \mathrm{k}\Omega$	10kΩ
C_1	1.6nF	1.1nF	1.0nF	1.2nF
C_2	1.6nF	2.2nF	3.6nF	1.2nF
R_F	$22\mathrm{k}\Omega$	22kΩ	$22k\Omega$	$22\mathrm{k}\Omega$
R_{G}	∞ (rozwarcie)	∞ (rozwarcie)	∞ (rozwarcie)	∞ (rozwarcie)