Intuitivamente

Comparação assintótica, ou seja, para n ENORME.

comparação	comparação assintótica	
$T(n) \leq f(n)$	$T(n) \in \mathcal{O}(f(n))$	
$T(n) \geq f(n)$	$T(n) \in \Omega(f(n))$	
T(n) = f(n)	$T(n) \in \Theta(f(n))$	

Nomes de classes Θ

classe	nome	
$\Theta(1)$	constante	
$\Theta(\log n)$	logarítmica	
$\Theta(n)$	linear	
$\Theta(n \log n)$	n log n	
$\Theta(n^2)$	quadrática	
$\Theta(n^3)$	cúbica	
$\Theta(n^k)$ com $k \ge 1$	polinomial	
$\Theta(2^n)$	exponencial	
$\Theta(a^n)$ com $a>1$	exponencial	

Palavras de Cautela

Suponha que \mathcal{A} e \mathcal{B} são algoritmos para um mesmo problema. Suponha que o consumo de tempo de \mathcal{A} é "essencialmente" 100 n e que o consumo de tempo de \mathcal{B} é "essencialmente" $n \log_{10} n$.

100 $n \in \Theta(n)$ e $n \log_{10} n \in \Theta(n \lg n)$. Logo, \mathcal{A} é assintoticamente mais eficiente que \mathcal{B} .

 \mathcal{A} é mais eficiente que \mathcal{B} para $n \geq 10^{100}$.

10¹⁰⁰ = um googol

> número de átomos no universo observável,

um número ENORME

Palavras de Cautela

Conclusão:

Lembre das constantes e termos de baixa ordem que estão "escondidos" na notação assintótica.

Em geral um algoritmo que consome tempo $\Theta(n \lg n)$, e com fatores constantes razoáveis, é bem eficiente.

Um algoritmo que consome tempo $\Theta(n^2)$ pode, algumas vezes, ser satisfatório.

Um algoritmo que consome tempo $\Theta(2^n)$ é dificilmente aceitável.

Do ponto de vista de AA, eficiente = polinomial.

Consideremos que a entrada do algoritmo é uma permutação de 1 a *n* escolhida com probabilidade uniforme.

Qual é o número esperado de execuções da linha 4?

```
ORDENA-POR-INSERÇÃO (A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 i \leftarrow j - 1

4 enquanto i \ge 1 e A[i] > chave faça

5 A[i+1] \leftarrow A[i] > chave faça

6 i \leftarrow i - 1

7 A[i+1] \leftarrow chave > insere
```

```
ORDENA-POR-INSERÇÃO (A, n)
          para i \leftarrow 2 até n faça
        chave \leftarrow A[j]
           i \leftarrow i - 1
              enquanto i \geq 1 e A[i] > chave faça
                  A[i+1] \leftarrow A[i]  \triangleright desloca
               i \leftarrow i - 1
              A[i+1] \leftarrow chave > insere
                                                               nº de iterads
∈{0,..., j-1}
Para cada valor de j, a linha 4 é executada de 1 a j vezes.
                                                                   - teste de saída
Qual é a probabilidade dela ser executada ** vezes?
= prob (A[1...j] tem exatamente t elementos majores que A[j])

permutação aleatória uniforme de 1 até n
```

prob (A[1...j] tem exatamente t elementos maiores que A[j])

Para construir qualquer (e toda!) permutação A[1..n] de 1 a n ty A[1..j] tem exatamente t elementos majores que A[j], podemos:

1. escolher uniformemente un conjunto 5 \(\int \{1,...,n\} \) de j elementos para preencher as células de \(A[1...j] \)

A		
	j,	

estas células serão preenduidas com clementos de S

prob (A[1...j] tem exatamente t elementos maiores que A[j])

Para construir qualquer (e toda!) permutação A[1..n] de 1 a n tq A[1..j] tem exatamente t elementos majores que A[j], podemos:

- 1. escolher uniformemente un conjunto $5 \subseteq \{1,...,n\}$ de j elementos para preencher as células de A[1...j]
- 2. escolher o único $k \in S$ t.g. S tem exatamente t elementos maiores que k, e tomar $A[j] \leftarrow k$

A	-	K	
		j	

prob (A[1...j] tem exatamente t elementes maiores que A[j])

Para construir qualquer (e toda!) permutação A[1..n] de 1 a n ty A[1..j] tem exatamente t elementos majores que A[j], podemos:

- 1. escolher uniformemente un conjunto 5 \(\int \{1,...,n\} \) de j elementos para preencher as células de \(A[1...j] \)
- 2. escolher o único $k \in S$ t.g. S tem exatamente t elementos majores que k, e tomar $A[j] \leftarrow k$
- 3. preencher A[1..j-1] com os elementos de 5/{k}

prob (A[1...j] tem exatamente t elementos maiores que A[j]) Para construir qualquer (e todal) permutação A[1..n] de 1 a n tq A[1...j] tem exatamente t elementos majores que A[j], podemos: 1. escolher uniformemente un conjunto 5 = {1,...,n} de j elementos para priencher as células de A[1...j] 2. escolher o único KES t.g. 5 tem exatamente t elementos 3. preencher A[1...j-1] com os elementos de 5/{k} 4. preencher A[j+1.. n] com os elementos de {1,...,n}\5

j ordenação de [1,...,n]\5

prob (A[1...j] tem exatamente t elementes maiores que A[j])

- 1. escolher uniformemente un conjunto $5 \subseteq \{1,...,n\}$ de j elementos para preencher as células de A[1...j]
- 2. escolher o único $k \in S$ t.g. S tem exatamente t elementos maiores que k, e tomar $A[j] \leftarrow k$
- 3. preencher A[1..j-1] com os elementos de 5/{k}
- 4. preencher A[j+1.. n] com os elementos de {1,...,n}\5

probabilidade =
$$\frac{\binom{n}{j} \cdot 1 \cdot (j-1)! (n-j)!}{n!}$$

$$=\frac{\frac{2!}{j!(n-j)!}\cdot 1\cdot (j-1)!(n-j)!}{2!}=\frac{1}{j!}$$

```
ORDENA-POR-INSERÇÃO (A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 i \leftarrow j - 1

4 enquanto i \ge 1 e A[i] > chave faça

5 A[i+1] \leftarrow A[i] > chave faça

6 i \leftarrow i - 1

7 A[i+1] \leftarrow chave > insere
```

Para cada valor de j, a linha 4 é executada de 1 a j vezes.

Qual é a probabilidade dela ser executada t vezes?

Esta probabilidade é 1/j.

Para cada valor de j, a linha 4 é executada de 1 a j vezes.

Qual é a probabilidade dela ser executada t vezes?

Esta probabilidade é 1/j.

Portanto o número esperado de execuções da linha 4 é

$$\sum_{t=1}^{j} t \frac{1}{j} = \frac{1}{j} \sum_{t=1}^{j} t = \frac{1}{j} \frac{(j+1)j}{2} = \frac{j+1}{2}.$$

E o número esperado de execuções da linha 4 no total é

$$\sum_{j=2}^{n} \frac{j+1}{2} = \frac{1}{2} \sum_{j=2}^{n} (j+1) = \frac{(n+4)(n-1)}{4} = \Theta(n^2).$$

Ordenação

A[1..n] é crescente se $A[1] \leq \cdots \leq A[n]$.

Problema: Rearranjar um vetor A[1..n] de modo que ele fique crescente.

ORDENA-POR-INSERÇÃO consome tempo

 $\Theta(n^2)$ no pior caso e $\Theta(n^2)$ no caso médio.

T podemos falar isso? V

Podemos falar que o consumo de tempo no melhor caso é

$$\Theta(n)$$
? \checkmark

$$\Omega(1)$$
?

$$\Theta(1)? X$$

Ordenação

A[1..n] é crescente se $A[1] \leq \cdots \leq A[n]$.

Problema: Rearranjar um vetor A[1..n] de modo que ele fique crescente.

ORDENA-POR-INSERÇÃO consome tempo $O(n^2)$ no pior caso e $\Theta(n^2)$ no caso médio.

Conseguimos fazer melhor?

Sim! Usando divisão e conquista!