Heineho věta Heineho věta

Tomáš Kasalický, 2014

Heineho věta nám ukazuje jak mezi sebou souvisí pojmy "limita posloupnosti" a "limita funkce". Přesné znění této věty je následující:

Věta: Buď f reálná funkce reálné proměnné, body $a,c\in\overline{\mathbb{R}}$, a funkce f definovaná na okolí bodu a s možnou vyjímkou bodu a samotného. Potom platí $\lim_{x\to a} f(x) = c$ právě tehdy, když pro každou posloupnost x_n , jejíž každý člen patří do množiny D_f vyjma bod a, konvergující k a platí $\lim_{n\to +\infty} f(x_n) = c$.

Velmi hrubě můžeme říci, že $\lim_{x+\to a} f(x) = c$ platí právě tehdy, když limita posloupnosti $\left(f(x_n)\right)$ je rovna c nezávisle na způsobu jakým se posloupnost (x_n) blíží k bodu a.

Heineho věta, po jednoduché úpravě, v platí i pro jednostranné limity.

Neexistence limity funkce $\sin(1/x)$ když x o 0

Nadefinujme si naši funkci.

```
f(x)=\sin(1/x)
```

A podívejme se na její graf.

```
def f_plot():
    graph = Graphics()
    graph += plot( f(x) , (x, -.5, .5), color="black",
axes_labels=['$x$','$y=\sin(1/x)$'])
    return graph
f_plot()
```


Z obrázku vidíme, že tato funkce velmi osciluje, když se nezávisle proměnná \boldsymbol{x} blíží k bodu 0. Jak je to s její limitou v bodě nula? To, že na obrázku vidíme jen černý flek nic neznamená, co když na vhodně zvolené horizontální škále již funkce "zkonverguje" do nuly?

Zoom

Pokusme se podívat na menší okolí bodu nula, je snadné předchozí obrázek rozpohybovat. Vidíme, že chování u nuly je zřejmě velmi divoké.

```
@interact
def _( radius= slider(srange(.01,.501,.01),default = .5,
    label="Poloměr okolí nuly: ", display_value=True) ):
    f_plot(radius)
```


Pokud si na grafu vygenerovaném počítačem (Sage, Mathematica atd.) všimneme podivných grafických artefaktů (jako třeba na obrázku výše), je potřeba zbystřit a být při interpretaci výsledků zvláště opatrný. Často jsou takovéto numerické artefakty známkou nepřesnosti vykreslovacích algoritmů.

Dvě vhodné posloupnosti

Zvolme dvě posloupnosti.

```
a(n) = 1/(2*pi*n)

b(n) = 1/(2*pi*n + pi/2)
```

Obě patří do definičního oboru naší funkce, vzpomeňte $D_f=\mathbb{R}-\{0\}$, obě očividně konvergují k nule. Otestujme si tyto vlastnosti pomocí Sage.

```
show(limit(a(n), n=infinity))
show(limit(b(n), n=infinity))
```

0

0

Pro následující výpočty je podstatné Sage dát najevo, že n je celočíselná proměnná.

```
assume(n, 'integer')
```

Avšak pro limity obrazů posloupností (a_n) a (b_n) vzledem k zobrazní f máme:

```
# alternativní zápis limity
f(a(n)).limit(n=infinity)
```

```
f(b(n)).limit(n=infinity)
```

Ve skutečnosti se jedná o konstatní posloupnosti (tak jsme je vlastně na přednášce i volili).

```
show(f(a(n)).simplify())
show(f(b(n)).simplify())
```

0

Následuje opět grafické interaktivní znázornění. Vizte komentář níže.

```
f(x)=\sin(1/x)
def f plot(n):
    graph = Graphics()
    graph += plot( f(x) , (x, -.1, .1), color="black",
axes labels=['$x$','$y=\sin(1/x)$'])
    graph += point((a(n),f(a(n))), rgbcolor="red", size =
100, zorder=3)
    graph += point((b(n),f(b(n))), rgbcolor="blue", size =
100, zorder=3)
    show (graph)
    return graph
#############################
# make Interaction
############################
@interact
def _( n= slider(srange(1,100,1),default = 2,
    label="$n$: ", display value=True) ):
    f plot(n)
```

n: 2

Červené puntíky označují body o souřadnicích $(a_n,f(a_n))$, modré puntíky označují body o souřadnicích $(b_n,f(b_n))$. V demonstraci můžeme manipulovat indexem n. Vidíme, že když se n zvětšuje, pak x-ové souřadnice bodů konvergují k nule $(a_n \to 0 \text{ a } b_n \to 0 \text{ když } n \to \infty)$ a posloupnosti y-nových souřadnic, tedy funkčních hodnot, $(f(a_n))$ a $(f(b_n))$ konvergují po řadě k 1 a k 0. Podle Heineho věty proto limita funkce f v bodě 0 neexistuje.

Dodatek: Vidíte, že kdybychom zvolili posloupnost jinak, mohli bychom jako limitu obrazů dostat libovolné číslo z intervalu $\langle -1, 1 \rangle$.

```
f(x)=sin(1/x)
def f_plot(c,n):
```

```
graph = Graphics()
    graph += plot( f(x) , (x, -.1, .1), color="black",
axes labels=['$x$','$y=sin(1/x)$'])
    graph += point((1/(arcsin(c)+2*pi*n),f(1
/(arcsin(c)+2*pi*n))), rgbcolor="red", size = 100,zorder=3)
    graph += line( [(-.1,f(1/(arcsin(c)+2*pi*n))),(.1,f(1))
/(arcsin(c)+2*pi*n)))], linestyle='--', color="red")
    show (graph)
    return graph
#########################
# make Interaction
##############################
@interact
def (n=slider(srange(1,100,1),default=2,
    label="$n$: ", display_value=True),c=
slider(srange(-1,1,.1), default = .5,
    label="$c$: ", display value=True) ):
    f plot(c,n)
```


Existence limity funkce $x\sin(1/x)$ když x o 0

Nadefinujme si naší funkci.

```
g(x)=x*\sin(1/x)
```

A podívejme se na její graf.

```
def g_plot():
    graph = Graphics()
    graph += plot( g(x) , (x, -.4, .4), color="black",
    axes_labels=['$x$','$y=x \sin(1/x)$'])
```


Z obrázku vidíme, že tato funkce sice pořád velmi osciluje okolo nuly, když se nezávisle proměnná x blíží k bodu 0. Ale díky tomu, že se násobí nezávisle proměnnou x, tak je tato oscilace utolumena. Odhadujeme proto, že limita v nule existuje. To je jak již víme pravda, díky větě o limitě sevřené funkce. Podívejme se na tento problém z pohledu Heineho věty.

Dvě vhodné posloupnosti

Zvolme opět dvě posloupnosti, stejně jako v minulém odstavci.

$$a(n) = 1 / (2*pi*n)$$

 $b(n) = 1/(2*pi*n+pi/2)$

Připomeňme, že obě patří do definičního oboru naší funkce ($D_f=\mathbb{R}-\{0\}$),

obě očividně konvergují k nule.

Avšak pro limity jejich obrazů nyní máme:

```
show(g(a(n)).limit(n=infinity))
show(g(b(n)).limit(n=infinity))
```

0

0

Podívejme se na graf.

```
def g plot(n):
    graph = Graphics()
    graph += plot( g(x) , (x, -.4, .4), color="black",
axes labels=['$x$','$y=x\sin(1/x)$'])
    graph += point((a(n),g(a(n))), rgbcolor="red", size =
100, zorder=3)
    graph += point((b(n),g(b(n))), rgbcolor="blue", size =
100, zorder=3)
    show (graph, aspect ratio = 'automatic')
#########################
# make Interaction
###############################
@interact
def ( n= slider(srange(1,100,1),default = 2,label="$n$:
", display value=True) ):
    g plot(n)
```

n: 2

Červené puntíky označují body o souřadnicích $(a_n,g(a_n))$, modré puntíky označují body o souřadnicích $(b_n,g(b_n))$. V demonstraci můžeme manipulovat indexem n. Vidíme, že když se n zvětšuje, pak x-ové souřadnice bodů konvergují k nule $(a_n \to 0$ a $b_n \to 0$ když $n \to \infty$) a posloupnosti y-nových souřadnic, tedy funkčních hodnot, $(g(a_n))$ a $(g(b_n))$ konvergují obě k 0.

Dodatek: Vidíme, že kdybychom zvolili posloupnost jinak, dostaneme jako limitu funkčních hodnot vždy 0. Skutečně. Buď (u_n) libovolná posloupnost nenulových členů konvergující k bodu 0. Potom $0 \leq |g(u_n)| = |u_n \sin(1/u_n)| \leq |u_n| \to 0$, když $n \to \infty$. Podle věty o limitě sevřené posloupnosti proto je limita posloupnosti $(g(u_n))$ rovna nule.

Podle Heineho věty je tedy limitou funkce g v bodě 0 číslo 0. Na přednášce si tento fakt později ukážeme i pomocí věty o limitě sevřené funkce.