```
In [1]:
                  root path = 'C:/Users/rodri/Dropbox/Malawi/SIEG2021 (1)/2023 July'
                  folder_fig = root_path+'/Figures'
                  import numpy as np
                  import pandas as pd
                  import os
                  import warnings
                  # Suppress warnings in the entire notebook
                  warnings.filterwarnings("ignore")
                  pd.options.display.max_columns = None
                  pd.options.display.max_rows = None
                  os.chdir('C:/Users/rodri/Dropbox/JMP/python')
                  from data_functions_albert import remove_outliers, gini
                  os.chdir(root_path)
                  save=True
                  dollar\ MWK = 1030.36
                  pd.options.display.float_format = '{:,.2f}'.format
                  percentiles=[0.5]
                  #income
                  inc = pd.read_csv(root_path+'/Data/Clean data/Phase 3 - Consumption, Transfers, Inco
                  #consumption
                  cons = pd.read_csv(root_path+'/Data/Clean data/Phase 3 - Consumption, Transfers, Inc
                  roster = pd.read_csv(root_path+'/Data/Clean data/Phase 1 - Roster/roster_jul23.csv')
                  foodtra = pd.read_csv(root_path+'/Data/Clean data/Phase 3 - Consumption, Transfers,
                  data = pd.merge( inc, roster, on='hhid', how='left')
                  data = pd.merge(data, cons, on='hhid', how='inner')
                  data = pd.merge(data, foodtra, on='hhid', how='left')
                  del data['cashtrans_yes.1'], data['k_farm.1']
                  data.rename(columns={'hh_area_plots': 'land_area', 'hh_value_plots': 'land_value'},
                  data['inctotal_cap'] = data['inctotal']/data['hh_size'].replace(0,np.mean(data['hh_s
                  data['ctotal_cap'] = data['ctotal']/data['hh_size'].replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_si
                  data['inctotal_trans_cap'] = data['inctotal_trans']/data['hh_size'].replace(0,np.mea
                  data['land_area_cap'] = data['land_area']/data['hh_size'].replace(0,np.mean(data['hh
                  data['y_net_cap'] = data['y_net']/data['hh_size'].replace(0,np.mean(data['hh_size'])
                  data['ln_inc'] = np.log(data['inctotal']).replace([-np.inf, np.inf], np.nan)
                  data['ln_c'] = np.log(data['ctotal']).replace([-np.inf, np.inf], np.nan)
                  data['ln land'] = np.log(data['land area']).replace([-np.inf, np.inf], np.nan)
                  data['ln_inctrans'] = np.log(data['inctotal_trans']).replace([-np.inf, np.inf], np.
                  data['ln_agric'] = np.log(data['y_net']).replace([-np.inf, np.inf], np.nan)
```

```
data['ln_inc_cap'] = np.log(data['inctotal_cap']).replace([-np.inf, np.inf], np.nan
data['ln_c_cap'] = np.log(data['ctotal_cap']).replace([-np.inf, np.inf], np.nan)
data['ln_land_cap'] = np.log(data['land_area_cap']).replace([-np.inf, np.inf], np.na
data['ln_inctrans_cap'] = np.log(data['inctotal_trans_cap']).replace([-np.inf, np.i
data['ln_agric_cap'] = np.log(data['y_net_cap']).replace([-np.inf, np.inf], np.nan)
data['rank_inctotal'] = data['inctotal'].rank(pct=True)
data['rank_landarea'] = data['land_area'].rank(pct=True)
data['rank_landvalue'] = data['land_value'].rank(pct=True)
data['rank_ctotal'] = data['ctotal'].rank(pct=True)
data['rank_wtotal'] = data['wtotal'].rank(pct=True)
data['wtotal_cap'] = data['wtotal']/data['hh_size']
data['ln_w'] = np.log(data['wtotal']+np.abs(np.min(data['wtotal']))).replace([-np.in
data['ln_w_cap'] = np.log(data['wtotal_cap']+np.abs(np.min(data['wtotal']))).replace
print( '
print('======')
print( 'HOUSEHOLD DATASET WAVE JULY 2023')
print('merges roster, income_weath, consumption, and hhtransfers datasets')
print( ' ')
print('=======')
if save==True:
   data.to_csv(root_path+'/Data/Clean data/hhdata23.csv', index=False)
print('Data saved: hhdata23.csv')
print('Dataset contains the following variables:')
print(data.columns.tolist())
### SUMMARY
print( '
print('-----')
print(' SOCIODEMOGRAPHIC CHARACTERISTICS')
print('=======')
print('
print(data[['hh_size', 'head_gender', 'head_marital', 'head_age','interviewed_feb23'
## Summary CIW 2019
data[['inctotal']] = data[['inctotal']].replace([0, 0.00], np.nan)
data_sum = data[['ctotal','inctotal','wtotal','land_area','ctotal_cap','inctotal_cap
data_sum[['ctotal','inctotal','wtotal','ctotal_cap','inctotal_cap','wtotal_cap']] =
sum_cwi = pd.DataFrame((data_sum[['ctotal','inctotal','wtotal','land_area']]).mean(a
sum_cwi = sum_cwi.append(pd.DataFrame((data_sum[['ctotal','inctotal','wtotal','land_
varlog_df = pd.DataFrame(((data_sum[['ln_c','ln_inc','ln_w','ln_land']]).var(axis=0)
sum_cwi = sum_cwi.append(dict(zip(sum_cwi.columns, np.array(varlog_df.iloc[:,0]).T))
print( '
print('========')
```

```
print(' CONSUMPTION. INCOME, AND WEALTH')
print('===========')
print( '
print(sum_cwi)
sum_cwi_cap = pd.DataFrame((data_sum[['ctotal_cap','inctotal_cap','wtotal_cap','land
sum_cwi_cap = sum_cwi_cap.append(pd.DataFrame((data_sum[['ctotal_cap','inctotal_cap'
varlog_df = pd.DataFrame(((data_sum[['ln_c_cap','ln_inc_cap','ln_w_cap','ln_land_cap')
sum_cwi_cap = sum_cwi_cap.append(dict(zip(sum_cwi_cap.columns, np.array(varlog_df.il
print(sum_cwi_cap)
print('Mean, median, and log-variance')
# In per capita terms
### Summary I
income = data[['inctotal','y_net', 'wlabor_inc', 'ganyu_inc', 'business_profits', 'o
sum_inc = (income.loc[:, income.columns !='hhid']/dollar_MWK).describe(percentiles=[
obs_inc = sum_inc.iloc[0,:]
shares_employ = obs_inc/238
shares_gdp = data[['inctotal','y_net', 'wlabor_inc', 'ganyu_inc', 'business_profits'
shares_gdp = shares_gdp/shares_gdp[0]
shares = pd.concat([shares_gdp, shares_employ], axis=1).T
print( '
print('==========')
print(' INCOME AND EMPLOYMENT SHARES')
print('-----')
print( '
print(shares)
## no one grew: cassava, sugarcane, pearlmillet
sum_agric = ((data[['y_agric','y_maize', 'y_groundnut', 'y_groundbean', 'y_sweetpot
obs_agric = sum_agric.iloc[0,:]
shares crops = obs agric/238
shares_agric = data[['y_agric','y_maize', 'y_groundnut', 'y_groundbean', 'y_sweetpot
shares_agric = shares_agric/shares_agric[0]
shares = pd.concat([shares_agric, shares_crops], axis=1).T
print( '
                     ')
print('-----')
print(' AGRICULTURAL SHARES')
print('-----')
print( '
print(shares)
```

```
###Summary C
print( '
print('-----')
print(' CONSUMPTION')
print('=======:')
print( '
c_summary = ((data[['ctotal','c_food','c_food_purch','c_food_ownprod', 'c_nonfood',
print(c_summary)
print( '
print('=======')
print(' WEALTH')
print('======::")
print( '
### Summary W
wealth = data[['wtotal','land_value','k_farm', 'hhlivestock', 'housing', 'hh_assets'
sum_w = wealth.describe(percentiles=[0.5])
var_list = ['wtotal','land_value','k_farm', 'hhlivestock', 'housing', 'hh_assets']
gini_stat= np.empty((1, len(var_list)))
for i,state in enumerate(var_list):
   gini_stat[:,i] = gini(wealth[state].dropna().values)
data_gini = pd.DataFrame(gini_stat, columns=var_list)
data_gini.reset_index(inplace=True)
data_gini['index'] = 'gini'
sum_w.reset_index(inplace=True)
sum_w = sum_w.append(data_gini, ignore_index=True)
print(sum_w)
```

HOUSEHOLD DATASET WAVE JULY 2023

merges roster, income_weath, consumption, and hhtransfers datasets

Data saved: hhdata23.csv

Dataset contains the following variables:

Dataset contains the following variables:
['hhid', 'rightsellland', 'chiefpreventsell', 'chiefpreventbequeat', 'cashtrans_ye s', 'govcoupon', 'inctotal', 'inctotal_trans', 'y_net', 'y_agric', 'y_maize', 'y_gro undnut', 'y_pigeonpeas', 'total_kg_maize', 'total_kg_groundnut', 'total_kg_pigeonpea s', 'y_cassava', 'y_soyabean', 'y_sorghum', 'y_fingermillet', 'y_cotton', 'y_tanapos i', 'y_groundbean', 'y_nkhwani', 'y_sugarcane', 'y_sweetpotatoe', 'sold_agric', 'sol d_insiders_agric', 'store_agric', 'land_area', 'hh_ratio_value_rent', 'hh_p_acre_plo ts', 'area_cultivated', 'k_farm', 'labor_N', 'labor_h', 'hh_labor_hours', 'hired_men_L', 'hired_women_L', 'hired_kids_L', 'interm', 'fertilizerkg', 'p_fert', 'value_fer tilizer', 'spendseeds', 'spendpesticides', 'wlabor_inc', 'wlabor_supply', 'ganyu_ye s', 'ganyu_inc', 'ganyu_supply', 'business_revenue', 'business_costs', 'business_pro fits', 'business_profits2', 'NGO_yes', 'gov_yes', 'remittances_yes', 'other_inc', 'c ashtrans_value', 'NGO_trans', 'gov_trans', 'remittances', 'wtotal', 'housing', 'hh_a ssets', 'land_value', 'hhlivestock', 'shocks', 'shock_flood', 'shock_death_earner', 'shock_death_othermemb', 'shock_adultill', 'shock_kidill', 'shock_death_earner', 'shock_death_othermemb', 'shock_inp_p', 'shock_out_p', 'shock_pests', 'shock_lvstk', 'shock_death_othermemb', 'shock_inp_p', 'shock_out_p', 'shock_pests', 'shock_lvstk',

'shock_theft', 'shock_theft_agric', 'shock_business', 'shock_unemp', 'shock_wage_dec r', 'shock_other', 'wave', 'invillage_feb23', 'interviewed_feb23', 'intervieweenam e', 'head_name', 'village', 'subvillage', 'key_landmark', 'mosque_church', 'hh_siz e', 'hh_phone', 'head_gender', 'head_marital', 'head_age', 'head_nickname', 'head_ed uc', 'head_religion', 'head_female', 'head_married_mono', 'head_married_poly', 'head _nevermarried', 'head_divorced', 'head_widowed', 'head_separated', 'head_christian', 'head_noeduc', 'spouse_educ', 'ethnic', 'mlanguage', 'village_born', 'village_year s', 'chief_related', 'chief_relation', 'elder_yes', 'elders_related', 'elders_relation', 'head_belowprimary4', 'head_belowprimary7', 'head_belowsecond3', 'head_secondar y', 'head_educ_countin', 'gps_lat_3', 'gps_long_3', 'c_food', 'c_food_purch', 'c_food_ownprod', 'c_nonfood', 'c_housing', 'c_clothes', 'c_education', 'c_health', 'c_fun eralout', 'c_funeralin', 'c_weddingout', 'c_weddingin', 'ctotal', 'transfers1_net', 'transfers2_net', 'transfers3_net', 'inctotal_cap', 'ctotal_cap', 'inctotal_trans_cap', 'land_area_cap', 'y_net_cap', 'ln_inc', 'ln_land', 'ln_inctrans', 'ln_ag ric', 'ln_inc_cap', 'ln_land_cap', 'ln_inctrans_cap', 'r ank_inctotal', 'rank_landarea', 'rank_landarea', 'rank_ctotal', 'rank_wtotal', 'wto tal_cap', 'ln_w' 'ln w cap'l tal_cap', 'ln_w', 'ln_w_cap']

______ SOCIODEMOGRAPHIC CHARACTERISTICS

	hh_size	head_gender	head_marital	head_age	head_married_mono	١			
count	283.00	283.00	283.00	283.00	284.00				
mean	4.84	1.31	2.02	43.64	0.63				
std	1.99	0.46	1.56	17.69	0.48				
min	1.00	1.00	1.00	11.00	0.00				
25%	3.00	1.00	1.00	28.00	0.00				
50%	4.00	1.00	1.00	41.00	1.00				
75%	6.00	2.00	3.00	53.50	1.00				
max	11.00	2.00	6.00	91.00	1.00				
	head_married_poly head_divorced head_belowprimary4 \								
count	_	284 00	284 00		201 00				

	neau_marrieu_pory	neau_uivorceu	neau_berowprimary4	\
count	284.00	284.00	284.00	
mean	0.09	0.17	0.18	
std	0.29	0.38	0.39	
min	0.00	0.00	0.00	
25%	0.00	0.00	0.00	
50%	0.00	0.00	0.00	
75%	0.00	0.00	0.00	
max	1.00	1.00	1.00	

head_belowprimary7 count 284.00 0.28 0.45 std 0.00 25% 0.00 50% 0.00 75% 1.00 1.00

CONSUMPTION. INCOME, AND WEALTH

```
ctotal inctotal wtotal land area
0 1,318.33 403.26 1,410.40 2.11
1 1,117.47 261.02 873.48
                             2.00
                          0.47
    0.34 1.16 1.31
  ctotal cap inctotal cap wtotal cap land area cap
0
     303.99
                  89.47 310.39
                                          0.46
     236.41
                  48.54
                           181.09
                                          0.36
       0.35
                  1.17
                            1.18
                                          0.40
Mean, median, and log-variance
```

INCOME AND EMPLOYMENT SHARES

\

In []:

```
inctotal y_net wlabor_inc ganyu_inc business_profits other_inc
                                                          0.05
                                                                                                                              0.19
0
                     1.00 0.62
                                                                              0.13
                                                                                                                  0.19
                     1.15
                                  1.12
                                                          0.03
                                                                               0.29
                                                                                                                  0.26
                                                                                                                                        0.54
count
______
 AGRICULTURAL SHARES
_____
             \label{eq:y_ground_nut} $y$\_agric y$\_maize y$\_groundnut y$\_groundbean y$\_sweetpotatoe \setminus $x$\_agric y$\_maize y$\_groundnut y$\_groundbean y$\_sweetpotatoe \\ $x$\_agric y$\_maize y$\_groundbean y$\_sweetpotatoe \\ $x$\_agric y$\_groundbean y$\_sweetpotatoe \\ $x$\_agric y$\_agric y$\_a
0
                                0.52
                                                  0.26
                                                                             0.01
                   1.00
                                                                                                          0.03
                   1.12
                                    1.05
                                                              0.55
                                                                                         0.16
                                                                                                                        0.13
count
             y_pigeonpeas y_nkhwani
0
                            0.11
                                              0.02
                             1.01
                                                  0.21
count
______
 CONSUMPTION
_____
               ctotal c_food c_food_purch c_food_ownprod c_nonfood c_housing \
                                                  283.00
               284.00
                              284.00
                                                                               276.00 284.00 282.00
count
mean 1,318.33 1,034.27
                                                          556.80
                                                                                          440.78
                                                                                                                284.06
                                                                                                                                      185.99
               848.65 620.65
                                                          435.37
                                                                                          524.31
                                                                                                             426.91
                                                                                                                                     241.43
std
              263.94
                              215.41
                                                             4.66
                                                                                             1.55
                                                                                                                  5.82
                                                                                                                                       5.82
min
50%
          1,117.47 873.27
                                                                                                             176.25
                                                          431.85
                                                                                           294.53
                                                                                                                                     116.46
           6,838.62 3,710.38
                                                    2,789.14
                                                                                     3,730.60 4,760.67 2,911.60
max
             c_clothes c_education c_health
                  194.00
                                        163.00 203.00
count
                    74.85
                                             50.22
                                                                24.77
mean
                   135.95
                                            218.13
                                                                43.25
std
                      1.55
                                              0.78
                                                                  0.78
min
50%
                     34.94
                                              15.53
                                                                 11.65
               1,552.86
                                        2,601.03
                                                                388.21
max
 WEALTH
______
      index
                      wtotal land_value k_farm hhlivestock housing hh_assets
                      284.00 284.00 284.00
   count
                                                                                    284.00 284.00 284.00
      mean 1,410.40
                                           663.56 18.85
                                                                                       51.35 588.40
                                                                                                                              88.23
1
        std 1,542.74
                                           958.76 44.37
                                                                                       137.84 847.67
                                                                                                                           178.04
2
3
                                               0.00 0.00
         min
                           0.00
                                                                                        0.00
                                                                                                         0.00
                                                                                                                                 0.00
4
                                           388.21 9.22
        50%
                       873.48
                                                                                          9.71 291.16
                                                                                                                                25.72
5
       max 11,500.16 5,823.21 609.50 1,989.60 7,764.28 1,487.83
     gini
                        0.51
                                                0.61 0.62
                                                                                           0.77
                                                                                                           0.61
                                                                                                                                  0.73
```