Final Exam

12/14/2020, 0.00am - 23.59pm

(i) Let G be a cyclic group and $f \in Aut(G)$. Show that f(H) = H for all subgroups H of G, where $f(H) = \{f(h)|h \in H\}$.

- (ii) Let $n \geq 2$ be an integer. Show that there are exactly two homomorphisms of groups $S_n \longrightarrow \mathbb{Z}/2$.
- (iii) Is the group $Aut(\mathbb{Z}/16)$ cyclic?

(1+2+1 credits)

- 2) Let H be a normal subgroup of a group G and K another subgroup of G.
 - (i) Is K a normal subgroup of G if $K \subseteq H$ and K is normal in H?
 - (ii) Show that $|H \cap K| \cdot |HK| = |H| \cdot |K|$ if H and K are finite groups.

(1+1 credits)

- 3) Let G be a finite group with only two Sylow subgroups. Show that G is isomorphic to the direct product of its two Sylow subgroups. (2 credits)
- 4) Let p be a prime number. Determine the number of p-Sylow subgroups of the symmetric group S_p and of the alternating group A_p . (3 credits)
- 5) For which of the following integers n exists a simple group of order n?

(a)
$$n = 60$$
, (b) $n = 330$, and (c) $n = 360$.

(3 credits)

- 6) Denote by $\Gamma(n,k)$, where $2 \le k \le n$ are integers, the set of all cycles of length k in S_n . Show that:
 - (i) $\Gamma(n,k) \subseteq A_n$ if and only if k is odd, and if k is even then $\Gamma(n,k) \cap A_n = \emptyset$.
 - (ii) If k is odd then there exists $\sigma, \tau \in \Gamma(n, k)$, such that

$$\Gamma(n,k) = \operatorname{Conj}_{A_n}(\sigma) \cup \operatorname{Conj}_{A_n}(\tau).$$

(1+2 credits)

7) Let G be a finite group. Show that G is isomorphic to a subgroup of a finite simple (3 credits) group.

ALL ANSWERS HAVE TO BE JUSTIFIED.