FAX Image Compression

Nimrod Peleg Update: May 2009

FAX: Historical Background

- Invented in 1843, by Scottish physicist Alexander Bain (English Patent No. 9,745 for recording telegraph, facsimile unit)
- Based on paper, saturated with electrolytic solution, changes its color when electric current passes through it
- Note that:
 - Telegraph, (Morse): 1844
 - Telephone, (A.G Bell): 1876

Figure 1.1.1 Bain's recording telegraph.

Figure 1.1.2 Bakewell's rotating cylinder.

Figure 1.1.3 Received copy — Pantelegraph, 1861.

Facsimile technical progress

- 1843: Bain's Pendulum type
- 1844: Telegraph (Morse) Entropy coding!
- 1850: Rotating drum (England)
- 1865: 1st commercial **FAX** (Caselli)
- 1876: **Telephone** (Bell)
- 1902: Optical scan
- 1917: Teletype, AT&T
- 1968: many proprietary machines (AT&T, RCA, Artzt, Teledeltos, Xerox,)

Facsimile technical progress (Cont'd)

- 1968: CCITT Group 1 Rec.
- 1976: CCITT Group 2 Rec.
- 1976 1980: CCITT Group 3 Rec.
- 1984: Group 4 Rec.
- 1988: Error free G.3
- 1991: ISO/IEC CD 11544 **JBIG**
- · 2003:
 - 56Kbps Fax/Modem
 - 1.5Mbps ADSL/Cable

CCITT Group 1,2 (1968)

Standardization for machines outside N. America:

Parameter	G .1	AM.6M	<u>G.2</u>
Lines/Min.	180	180	360
Modulation	FM	FM	VSB AM/PM
Carrier Freq.			2100 Hz \pm 10 Hz
White signal	1300Hz	1500Hz	Max carrier
Black signal	2100Hz	2400Hz	26dB max. lower

Digital FAX

• Run-Length (RL) developed by D.Weber, removes redundancy from data:

RL Coding: W6,3,100,4,...

First (non-standard) machine: DACOM (1974), with 4800bps modem over PTS (10 times slower than Telex...)

CCITT Group 3 -T.4 recommendation (1980-88)

• V.29 Modem, 9600bps

	Standard	Optional	
Scan Direction:	Left to Right, top to Bottom		
Scan Width (mm)	215	255	303
Pels per Line	1728	2048	2432
Horiz. Pel	8mm(203")		
Vert. Pel	3.85(97.8)	7.7(195.6)	
Coding	Modified H.	Modified R	ead
Data Modem	v.27(ter)	v.29	
bps	4800/2400	9600/7200	

CCITT G.3 (1980-88) (Cont'd)

Signaling Modem v.21 v.27(ter)

bps 300 2400

mSec./Line 20 0,5,10,40

Starting pel Always White

of Elements/Code Word 0 - 63 / 64-1728

End-of-Line Code (EOL) 000000000001

End-of-Page Code 6 x EOL

G.3 Architecture

Group 3 & Group 4

GROUP 3

•MODIFIED HUFFMAN METHOD (MHM) – Unidimensional coding method based on the coding of the length of alternate black and white pixel runs using Huffman coding.

GROUP 4 (Also Group 3 Options)

- •MODIFIED READ METHOD (MRM) Bidimensional coding method based on the coding of the variations of the positions of tone transition pixels (black-white or white-black) in relation to the previous line; unidimensional coding may be used every k lines.
- •MODIFIED-MODIFIED READ METHOD (MMRM) Similar to MRM but without periodic unidimensional coding.

G.3 Compression

- 5% 20% of source (up to 95% comp.)
- Modified Huffman Coding:
 - Assume long White Runs between black pixels
 - White Runs can long complete line:
 - (9 bits coding, meaning 192:1 compression)
 - 92 different codes: 28 groups of pX64 pixels,
 and 64 short-runs of 0-63 pixels
 - 13 more codes for long runs (1792 2560)

Huffman Codes

White run length	Code word	Black run length	Code word	
0	00110101	0	0000110111	
1	000111	1	010	
2	0111		11	
3	1000	2 3	10	
4	1011	4	011	
5	1100	5	0011	
6	1110	6	0010	
7	1111	7	00011	
8	10011	8	000101	
9	10100	9	000100	
10	00111	10	0000100	
11	01000	11	0000101	
12	001000	12	0000111	
13	000011	13	00000100	
14	110100	14	00000111	
15	110101	15	000011000	
16	101010	16	0000010111	
17	101011	17	0000011000	
18	0100111	18	000001000	
19	0001100	19	00001100111	
20	0001000	20	00001101000	
21	0010111	21	00001101100	
22	0000011	22	00000110111	
23	0000100	23	00000101000	
24	0101000	24	00000010111	
25	0101011	25	00000011000	
26	0010011	26	000011001010	
27	0100100	27	000011001011	
28	0011000	28	000011001100	
29	00000010	29	000011001101	
30	00000011	30	000001101000	
31	00011010	31	000001101001	

Huffman Codes

Cont'd

White run length	Code word	Black run length	Code word
32	00011011	32	000001101010
33	00011011	33	000001101010
34	00010010	34	00001101011
35	00010011	35	000011010010
36	00010100	36	000011010011
37	00010101	37	00001101010
38	00010110	38	000011010101
39	0010111	39	000011010110
40	00101000	40	00001101111
41	00101001	41	000001101100
42	00101010	42	00001101101
43	0010111	43	000011011010
44	00101100	44	0000101011
45	00000100	45	000001010100
46	00000100	46	000001010101
47	00001010	47	000001010111
48	00001011	48	00000110111
49	01010010	49	000001100100
50	01010011	50	00000100101
51	0101010	51	000001010010
52	01010101	52	000001010011
53	00100100	53	000000110111
54	00100101	54	000000111000
55	01011000	55	000001111
56	01011001	56	00000101000
57	01011010	57	000001011000
58	01011011	58	000001011001
59	01001010	59	0000010111
60	01001011	60	00000101100
61	00110010	61	000001011010
62	00110011	62	000001100110
63	00110100	63	000001100111

Make-up codes between 64 and 1728

hite run length	Code word	Black run length	Code word
64	11011	64	0000001111
128	10010	128	000011001000
192	010111	192	000011001001
256	0110111	256	000001011011
320	00110110	320	00000110011
384	00110111	384	000000110100
448	01100100	448	000000110101
512	01100101	512	0000001101100
576	01101000	576	0000001101101
640	01100111	640	000001001010
704	011001100	704	000001001011
768	011001101	768	000001001100
832	011010010	832	000001001101
896	011010011	896	0000001110010
960	011010100	960	0000001110011
1024	011010101	1024	0000001110100
1088	011010110	1088	0000001110101
1152	011010111	1152	0000001110110
1216	011011000	1216	0000001110111
1280	011011001	1280	0000001010010
1344	011011010	1344	0000001010011
1408	011011011	1408	0000001010100
1472	010011000	1472	0000001010101
1536	010011001	1536	0000001011010
1600	010011010	1600	0000001011011
1664	011000	1664	0000001100100
1728	010011011	1728	0000001100101

Make-up codes between 1792 and 2560

Make-up codes	
00000001000 00000001100 00000001101 000000010010 000000010100 000000010101 000000010110 00000001110 000000011101 000000011101	

Modified Huffman example

- Total pixel count: 599, MH: 27 bits,
- Compression Ratio: 599/27=22.2 (~4.5%)

Modified READ Coding

- READ: Relative Element Address Designate: exploits the correlation between successive lines
- *Element*: A group of pixels of same color
- Changing Element: An element with different color from previous element
- The position of every *changing element* is coded relatively to a *reference element* in the current line or the *reference line* (above)

G.4 is a simplified version of G.3 in which only 2D coding is allowed

READ Coding example (Cont'd)

- If a couple of matching elements are positioned less than 3 pixels horiz. distance we code them in *vertical mode*
- If more than 3 pixels distance:
 - Pass Mode if the change in <u>reference line</u>
 - Horizontal mode if the change in <u>current line</u>
 use horizontal mode for next two changes in current line and back to vertical mode (if possible)

READ: details

Coding line:

- a0: last pixel known to both encoder and decoder
- al: 1st transition right to a0 (known to encoder only)
- a2: 2nd transition right to a0 (known to encoder only)

Reference line

- b1: 1st transition right to a0 location (opposite color)
- b2: 1st transition right to b1

READ example 1 (Cont'd)

- b1 and b2 are between a0 and a1: this is a 'Pass Mode': the decoder knows that all the pixels to the right of a0 until below b2 are same color.
- So, the last known is changing to a0 and a <u>new</u> b1, b2 should be defined

READ example 2

- In this case it can't be Pass Mode.
- since the distance between a1 and below b1 is no more than 3 (1 in this case) it is a 'Vertical Mode': a1 location is encoded relative to b1, and a1 becomes a0.
- If the distance is more than 3 pixels we change to 'Horizontal Mode': the distances (a0,a1) and (a1,a2) are encoded using Modified Huffman (MH)

Another Coding Example

- a₀: Reference element
- a₁, a₂, b₁, b₂,: Changing elements
- b₂ is to the right of a₁, and the distance between a₁ and b₁ is equal to 3: its a vertical mode, and a new a₀ assigned:

A Coding Example (Cont'd)

• Once the compression mode is determined, a corresponding code can be formed:

Mode	Elements to be coded		Notation	Code word
Pass	b ₁ , b ₂		P	0001
Horizontal	a ₀ a ₁ , a ₁ a ₂		Н	$001\square + \mathbb{I}M(a_0a_1)\square + \mathbb{I}M(a_1a_2)$ (Note 1)
	a ₁ just under b ₁	$a_1b_1\square = \square$	V(0)	1
	a ₁ to the right of b ₁	$a_1b_1\square = \square$	V _R (1)	011
Vertical		$a_1b_1\square = \square$	V _R (2)	000011
		$a_1b_1\square = \square$	V _R (3)	0000011
	a_1 to the left of b_1 $a_1b_1\square$	$a_1b_1\square = \square$	V _L (1)	010
		$a_1b_1\square = \square$	V _L (2)	000010
		$a_1b_1\square = \square$	V _L (3)	0000010
Extension	2-D (extensions) 1-D (extensions)		0000001xxx 00000001xxx (Note 2)	

A more complicated example

K-Factor

- When distorted by noise pulse, errors are made in the received copy.
- To prevent from propagating down the page, a MH coded line is sent periodically.
- After one line is coded in 1-dimensional mode, K-1 lines will be coded in 2-D mode: At <u>normal resolution</u> every second line (K=2), and at <u>fine resolution</u> K=4 (3 lines)

G.3 Enhancements (option)

- Error Concealment
- Error Control
- Dither Coding
- RS-232 Interface
- High Resolution
- Small Page Size (A5, A6)
- Non-Standard Operation

Group 4: CCITT T.6

• Identical to T.4 with a slight difference: only 2-D mode is allowed (Called MMR).

A Comparison of binary image coding (after [3]):

Source image*	MH **	MR	MMR	JBIG
letter	20,605 B	31%	59%	68%
Sparse text	26155 B	37%	62%	71%
Dense text	133,705 B	23%	33%	48%

^{*} Source images are of size: 4352x3072 dots (1 bit pixels)

^{**} MH results in bytes, all other results are better than MH in x%

JBIG

- Lossless Compression.
- Progressive Coding.
- Sequential Coding.
- Arithmetic Encoder/Decoder.
- Resolution Reduction Algorithm
- (optional, can be replaced).

Encoder Scheme

Resolution Reduction Technique

- Creates low resolution images.
- Combines decimation and filtering in one action.
- Uses 9 high resolution and 3 low resolution pixels to determine color of target pixel.
- Preserves gray-levels achieved with halftoning.

JBIG Pro's and Con's

- © Progressive (for binary images).
- © Better compression for images with up to
- © 6 bit/pixel (Vs. JPEG)
- © Better compression than G3 and G4.
- ⊗ Slow and complicated (Vs. JPEG, G.3/4)
- © Consumes memory resources and needs frame buffers.

Compression Comparison (in bytes)

CCITT FAX reference images (#1 - #8)

Original size: 513216 bytes

FAX] reference images

Compression Comparison (Cont'd)

Typical results for:

• Scanned text and line drawings:

JBIG ~20-25% better than G4

Computer generated line-drawing:

JBIG ~75% better than G4

• Scanned dither halftones images:

JBIG ~85%-90% better than G4

References:

- McConnel, Bodson and Schaphorst, *FAX: Digital Facsimile Technology and Applications*, Artech 1989
- K, Sayood, Introduction to Data Compression
- R.Arps and T.Truong, *Comparison of International Standards for Lossless Image Compression*. Proc. Of IEEE, 82:889-899, June 1994
- ITU-T (Former CCITT) Blue Book T.0-T.63, 1989, Recommendations T.4, T.6