Восстановление параметров с периодическим начальным приближением

20 сентября 2017 г.

Процесс восстановления параметров модели Курамото

Напомним процесс восстановления параметров, который мы используем.

Для начала напомним некоторые базовые вещи: общую частоту маятников Ω положим $\Omega=2\pi$ (тогда их период есть $T=\frac{2\pi}{\Omega}=1$). Симметричную разность их частот будем в рамках данной работы считать постоянной и обозначим Δw .

Общее время наблюдения L=nT, где $n\in\mathbb{N}$ — число периодов наблюдения.

Динамика фазовой разницы $\theta(t)$ описывается следующим дифференциальным уравнением:

$$\dot{\theta} = 2\Delta w - k(t)\sin\theta \tag{1}$$

с некоторым начальным условием $\theta(0) = init$. Значение начального условия обсудим позднее.

Параметр-функция k(t) («каплинг») и является центром нашего исследования; ее мы и будем восстанавливать.

Для этого введем некоторое начальное приближение $k_0(t)$ (опять же, его вид и выбор мы обсудим чуть ниже); решая уравнение (1) для $k(t) = k_0(t)$ получим некую функцию $\theta_0(t)$. Заведем два виртульаных маятника:

$$\begin{cases} x_0(t) = \sin(\Omega t) \\ y_0(t) = \sin(\Omega t + \theta_0(t)) \end{cases},$$

для которых пересчитаем скользящую корреляцию $C_0(t)$ по следующей формуле:

$$C_0(t) = \frac{\int_{t-T/2}^{t+T/2} \sin(\Omega \tau) \sin(\Omega \tau + \theta_0(\tau)) d\tau}{\sqrt{\int_{t-T/2}^{t+T/2} \sin^2(\Omega \tau) d\tau \cdot \int_{t-T/2}^{t+T/2} \sin^2(\Omega \tau + \theta_0(\tau)) d\tau}}$$

Теперь воспользуемся гипотезой о квазистационарности: если $\theta_0(t) \approx const$, то $C_0 \approx const = \cos \theta_0$. Поэтому заведем новую переменную:

$$\phi_0(t) = \arccos C_0(t)$$

Таким образом одним из замеров качества восстановления можно считать пару θ_0 и ϕ_0 . Саму же восстановленную параметр-функцию $\hat{k}(t)$ можно найти из расчета $\dot{\phi} \approx 0$ (из квазистационарности), откуда

$$\hat{k}(t) = \frac{2\Delta w}{\sin \phi_0(t)}$$

Корректность процесса восстановления обеспечивается выполнением основного Курамото-неравенства:

$$\left| \frac{2\Delta w}{k_0(t)} \right| \le 1 \tag{2}$$

Теперь разрешим первый из оставшихся вопросов: начальное условие выберем таким, чтобы изначально процедура восстановления была верной, т.е.

$$init = \arcsin \frac{2\Delta w}{k_0(0)}$$

2 Начальное приближение параметр-функции

Теперь обратимся ко второму оставленному вопросу: а именно к выбору $k_0(t)$. Было предложено исследовать семейство начальных приближений вида:

$$k_0(t) = A\cos(Bt + \delta) + C$$

где A — амплитуда, B его частота, C вертикальный сдвиг. Переменная δ здесь служит для сдвига начальной фазы параметр-функции относительно фазы основных маятников. Отсюда можно получить несколько разовых ограничени:

- $k_0(t) \ge 0$, а значит $-A + C \ge 0$;
- основное Курамото неравенство выполняется, если

$$2\Delta w \le A\cos(Bt + \delta) + C \Rightarrow 2\Delta w \le A + C;$$

• в начальный момент времени основное Курамото-неравенство не должно нарушаться:

$$2\Delta w \leq A\cos\delta + C$$
;

• предполагается, что качественное восстановление возможно только лишь при $B \ll \Omega$. Для удобства далее мы везде будем мерить B в долях Ω .

Приведем вид графиков при разных параметрах (попадание $k_0(t)$ ниже красной линии $2\Delta w$ означает нарушение основного неравенства):

Рис. 1: Начальное приближение $k_0(t)$ при $n=100,~\Delta w=0.1,~A=0.05,~B=\frac{1}{100}\Omega,~\delta=\pi-0.9,~C=0.24$

Рис. 2: Начальное приближение $k_0(t)$ (случай касания) при $n=100,\,\Delta w=0.1,\,A=0.05,\,B=\frac{1}{100}\Omega,\,\delta=\pi-0.9,\,C=0.25$

Рис. 3: Начальное приближение $k_0(t)$ (случай полного попадания) при $n=100,\,\Delta w=0.1,\,A=0.01,\,B=\frac{1}{10}\Omega,\,\delta=\pi-0.9,\,C=0.25$

Качество. Теперь прежде чем заговорить о результатах восстановления, введем относительное качество восстановления для \mathbb{L}_2 метрики:

$$q = \frac{\int_0^L (\hat{k} - k_0)^2 dt}{\int_0^L (k_0 - \overline{k_0})^2 dt}$$

3 Примеры восстановления

Прежде чем начать немного поясним: для каждого набора входных данных приводится три картинки, параметр-функция, для ϕ_0 и θ_0 и для $\hat{k}(t)$ и $k_0(t)$; для последней пары посчитан q.

Из всего дальнейшего следует три основных вывода:

- восстановление по фазовой разности выглядит довольно корректно;
- восстановление итогового параметра \hat{k} , видимо, требует иного пересчет из ϕ_0 ;
- вероятно, стоит пересмотреть метод подсчета качества (хотя она может быть и удовлетворительной при исправленном методе восстановления).

Comparison between solution θ (t) and reconstructed $\varphi_0(t)$

Comparison between zero approximation $k_0(t)$ and reconstructed $\hat{k}(t)$

Рис. 4: Процесс восстановления для $n=100,~\Delta w=0.1,~A=0.01,~B=\frac{1}{100}\Omega,~\delta=\pi-0.9,~C=0.25.$ Результат: q=0.13

Comparison between solution θ (t) and reconstructed $\varphi_0(t)$

(b) ϕ_0 и θ_0

Рис. 5: Процесс восстановления для n=100, $\Delta w=0.1,$ A=0.01, $B=\frac{1}{10}\Omega,$ $\delta=\pi-0.9,$ C=0.25. Результат: q=0.95

Comparison between solution θ (t) and reconstructed $\varphi_0(t)$

Comparison between zero approximation $k_0(t)$ and reconstructed $\hat{k}(t)$

Рис. 6: Процесс восстановления для n=100, $\Delta w=0.1,$ A=0.05, $B=\frac{1}{100}\Omega,$ $\delta=\pi-0.9,$ C=0.24. Результат: q=0.225

Рис. 7: Процесс восстановления для $n=10,~\Delta w=0.1,~A=0.05,~B=\frac{1}{40}\Omega,~\delta=\pi-0.9,~C=0.249.$ Результат: q=7.117