

General information

Designation

Fraxinus americana (L)

Typical uses

handles; oars; vehicle parts; baseball bats & other sporting & athletic

Composition overview

Cellulose/Hemicellulose/Lignin/12%H2O

Compositional summary

Material family	Natural			
Base material	Wood (hardwood)			
Renewable content	100	%		

Composition detail (polymers and natural materials)

Wood	100	%

Price

Price	* 0.912	- 1.22	USD/lb	
-------	---------	--------	--------	--

Physical properties

Density	0.0217	-	0.0267	lb/in^3	
---------	--------	---	--------	---------	--

Mechanical properties

Mechanical properties				
Young's modulus	* 1.73	-	2.1	10^6 psi
Yield strength (elastic limit)	* 6.89	-	8.41	ksi
Tensile strength	* 12.6	-	15.3	ksi
Elongation	* 1.97	-	2.41	% strain
Compressive strength	6.67	-	8.15	ksi
Flexural modulus	1.57	-	1.91	10^6 psi
Flexural strength (modulus of rupture)	13.5	-	16.5	ksi
Shear modulus	* 0.128	-	0.155	10^6 psi
Shear strength	1.73	-	2.1	ksi
Bulk modulus	* 0.135	-	0.151	10^6 psi
Poisson's ratio	* 0.35	-	0.4	
Shape factor	5.2			
Hardness - Vickers	* 6.07	-	7.42	HV
Hardness - Brinell	* 7.11	-	8.7	ksi
Hardness - Janka	* 1.36e3	-	1.67e3	lbf
Fatigue strength at 10^7 cycles	* 4.05	-	4.95	ksi
Mechanical loss coefficient (tan delta)	* 0.0069	-	0.0084	

UV radiation (sunlight)

Flammability

Ash (fraxinus americana) (I)

Differential shrinkage (radial)	* 0.17	-	0.2	%		
Differential shrinkage (tangential)	* 0.28	-	0.34	%		
Radial shrinkage (green to oven-dry)	4.4	-	5.4	%		
Tangential shrinkage (green to oven-dry)	7	-	8.6	%		
Volumetric shrinkage (green to oven-dry)	12	-	14.6	%		
Work to maximum strength	1.24	-	1.52	ft.lbf/in^3		
Impact & fracture properties						
Fracture toughness	* 4.91	-	6.01	ksi.in^0.5		
Thermal properties						
Glass temperature	171	-	216	°F		
Maximum service temperature	248	-	284	°F		
Minimum service temperature	* -99.4	-	-9.4	°F		
Thermal conductivity	0.156	-	0.191	BTU.ft/hr.ft^2.°F		
Specific heat capacity	0.396	-	0.408	BTU/lb.°F		
Thermal expansion coefficient	* 1.11	-	6.11	µstrain/°F		
Electrical properties						
Electrical resistivity	2.98e13	-	3.64e13	µohm.cm		
Dielectric constant (relative permittivity)	* 6.64	-	8.12			
Dissipation factor (dielectric loss tangent)	* 0.078	-	0.095			
Dielectric strength (dielectric breakdown)	* 10.2	-	15.2	V/mil		
Magnetic properties						
Magnetic type	Non-mag	netio				
Optical properties						
Transparency	Opaque					
Durability						
Water (fresh)	Limited (ıse				
Water (salt)	Limited (
Weak acids		Limited use				
Strong acids	Unaccep)			
Weak alkalis	Accepta					
Strong alkalis	·	Unacceptable				
Organic solvents	Acceptable					
Oxidation at 500C	· · · · · · · · · · · · · · · · · · ·	Unacceptable				
	5.1000pt0000					

Good

Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production 4.99e3 - 5.5e3 BTU/lb

Sources

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production 0.574 - 0.633 lb/lb

Sources

0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe,

Water usage * 1.84e4 - 2.03e4 in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 516	-	570	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.09	-	0.0995	lb/lb
Fine machining energy (per unit wt removed)	* 3.32e3	-	3.67e3	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.579	-	0.64	lb/lb
Grinding energy (per unit wt removed)	* 6.44e3	-	7.11e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 1.12	-	1.24	lb/lb

Recycling and end of life

Recycle	×			
Recycle fraction in current supply	8.55	-	9.45	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 8.49e3	-	9.16e3	BTU/lb
Combustion CO2	* 1.69	-	1.78	lb/lb
Landfill	✓			
Biodegrade	✓			

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

Links

ProcessUniverse			
Reference			
Shape			