SUBSIDIARY MATHEMATICS SEMINAR SOLUTIONS 2023

1 ()	T .	1	
1. (a)	$let f(x) = 2x^{3} + 6x + qx - 5$ $x + 2 = 0 = > x = -2$ $f(-2) = 2(-2)^{3} + 6(-2) + q(-2) - 5$ $0 = -16 - 12 - 2q - 5$ $q = -16.5$ $= > f(x) = 2x^{3} + 6x - 16.5x - 5$ $for remainder when f(x) is divided by$ $2x - 1 using remainder theorem then$ $2x - 1 = 0 = > x = \frac{1}{2}$ $2(\frac{1}{2})^{3} + (6 \times \frac{1}{2}) - (16.5 \times \frac{1}{2}) - 5 = -10$ $hence the remainder is - 10$	(b)	$px^{2} + qx + r = 0$ let the rrots be α and β then $\alpha - \beta = 3$ $sum of roots; \alpha + \beta = \frac{-q}{p}$ $product of roots; \alpha\beta = \frac{r}{p}$ $from; \alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta \text{ and }$ $(\alpha - \beta)^{2} = (\alpha + \beta)^{2} - 4\alpha\beta$ $=> 3^{2} = \left(\frac{-q}{p}\right)^{2} - 4\left(\frac{r}{p}\right)$ $9 = \frac{q^{2}}{p^{2}} - \frac{4r}{p}$ $9p^{2} = q^{2} - 4pr$ $q^{2} = 9p^{2} + 4pr$
(c)	$x^{2} - 4x + 2 = 0$ $sum of roots; \alpha + \beta = \frac{-(-4)}{1} = 4$ $product of roots; \alpha\beta = \frac{2}{1} = 2$ $sum of new roots = (\alpha + 2) + (\beta - 2)$ $= \alpha + \beta = 4$ $product of new roots = (\alpha + 2)(\beta - 2)$ $\alpha\beta - 2\alpha + 2\beta - 4 = 2 - 4 + 2(\alpha + \beta)$ $(\beta - \alpha)^{2} = \beta^{2} + \alpha^{2} - 2\alpha\beta \text{ and}$ $\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$ $\beta - \alpha = \sqrt{(\alpha + \beta)^{2} - 4\alpha\beta}$ $\sqrt{4^{2} - 4(2)} = \sqrt{8}$ $= > product of new roots = -2 + 2\sqrt{8}$ $equation is x^{2} - (sum of roots)x$ $+ product of roots = 0$ $x^{2} - 4x + (-2 + 2\sqrt{8}) = 0$	2.	$\log_{2} x + 2 \log_{4} y = 4;$ $\log_{2} x + \frac{2 \log_{2} y}{2 \log_{2} 2} = 4$ $\log_{2} x + \log_{2} y = 4; \Rightarrow \log_{2} xy = 4$ $xy = 2^{4} \text{ hence } xy = 16$ $\log_{10}(x + y) = 1, \text{ then } x + y = 10 \dots \text{ eqn } i$ $if \ xy = 16 \text{ then } x = \frac{16}{y}$ $\text{substituting for } x \text{ in } \dots \dots \text{ eqn } i$ $\frac{16}{y} + y = 10; \Rightarrow y^{2} - 10y + 16 = 0$ $(y - 8)(y - 2) = 0 \text{ either } y = 8 \text{ or } y = 2$ $for \ y = 8 \text{ then } x = \frac{16}{8} = 2 \text{ and also}$ $for \ y = 2, \text{ then } x = \frac{16}{2} = 8$
3.	$5^{2m+1} + 4 = 21 \times 5^{m}$ $5^{2m} \cdot 5^{1} + 4 = 21 \times 5^{m}$ $5^{m^{2}} \cdot 5^{1} + 4 = 21 \times 5^{m} let \ 5^{m} \ be \ y$ $5y^{2} + 4 = 21y \implies 5y^{2} - 20y - y + 4 = 0$ $5y(y - 4) - 1(y - 4) = 0$ $(5y - 1)(y - 4) = 0 either \ y = \frac{1}{5} or \ y = 4$ $for \ y = 5^{-1}, \implies 5^{m} = 5^{-1} hemce \ m = -1$ $y = 4, \implies 5^{m} = 4 taking \log both sides$		$\log 5^{m} = \log 4, => m \log 5 = \log 4$ $m = \frac{\log 4}{\log 5}, => m = 0.86135311615$ $lnm \ for \ m = -1, \ln(-1) \ is \ not \ possible$ $but \ lm(0.86135311615) = -0.1492(4dp)$

			,
4.	$grandient = 6x - 5, => \frac{dy}{dx} = 6x - 5$ $y = \int (6x - 5)dx, => y = 3x^2 - 5x + c$ $at (0,2) => 2 = 3(0)^2 - 5(0) + c$ $=> c = 2, hence y = 3x^2 - 5x + 2$	5. (a)	$s_{\infty} = \frac{25}{6}$, $a = 5,$ but $s_{\infty} = \frac{a}{1-r}$ $\frac{25}{4} = \frac{5}{1-r} \implies 5 - 5r = 4 \text{ then } r = \frac{1}{5}$ $s_{n} = \frac{a(1-r^{n})}{1-r}$
	for $y = 0$ means $3x^2 - 5x + 2 = 0$ discriminant $= b^2 - 4ac$. from equation a = 6, b = -5 and $c = 2discriminant = (-5)^2 - 4(6)(2) = -23since discriminant is negative the equationwill have no real roots.$	(b) (i)	$=> s_{10} = \frac{5(1 - (0.2)^{10})}{1 - 0.2}$ $s_{10} = 6.25 \ and \ common \ ratio \ is \ 0.2$
5.(b) (i)	$a = 250, d = 30$ $n^{th} = a + (n - 1)d$ $9^{th} = 250 + (9 - 1) \times 30$ $= 490 \text{ tourits}$	5.(c)	$\{(45,54,63,72,288)\}$ => $a = 45$, and $d = 9$ $n^{th} = a + (n-1)d$ $288 = 45 + (n-1) \times 9$ $288 - 45$
(ii)	$S_n = \frac{n}{2}(2a + (n-1)d)$ $S_{11} = \frac{11}{2}(2 \times 250 + (11 - 1) \times 30)$ $S_{11} = 4,400 \text{ tourists}$		$\frac{288 - 45}{9} = n - 1$ $27 + 1 = n , => n = 28 \text{ numbers}$ $S_n = \frac{n}{2}(2a + (n - 1)d)$ $S_{11} = \frac{28}{2}(2 \times 45 + (28 - 1) \times 9)$ sum of multiple is = 4,662
6. (a)	$(2tan\beta)^{2} - sec\beta = 1.5$ $4tan^{2}\beta - sec\beta = 1.5.$ $from 1 + tan^{2}\beta = sec^{2}\beta$ $4(sec^{2}\beta - 1) - sec\beta = 1.5,,, let m = sec\beta$ $4m^{2} - m - 5.5 = 0$ $solving the equations,,, m = sec\beta = 1.3042$ $and m = sec\beta = -1.0542.$ $\beta = \cos^{-1}\left(\frac{1}{1.3042}\right) = 39.99^{\circ}.$	6 (b).	given $x = asec\theta$ and $y = b + Ccos\theta$ $x = \frac{a}{cos\theta} \dots (i) \text{ and also } cos\theta = \frac{y - b}{c}.$ making $cos\theta$ the subject in , (i) yeilds $cos\theta = \frac{a}{x} \text{ equating both } cos\theta \text{ yeilds}$ $\frac{y - b}{c} = \frac{a}{x} \text{ hence } x(y - b) = ca$ Given that $tan \beta = \frac{-12}{5}$

$$\beta = \cos^{-1}\left(\frac{1}{1.0542}\right) = 18.45^{\circ}$$

 $\beta = 161.55^{\circ}, 198.45^{\circ}.$ => required angle are 39.99° and 161.55°.

$$1 + tan^{2}\beta = sec^{2}\beta$$

$$sec^{2}\beta = 1 + (\frac{-12}{5})^{2} = sec\beta = \sqrt{\frac{169}{25}}$$

$$sec\beta = \frac{-13}{5}$$

$$cosec^{2}\beta = 1 + cot^{2}\beta$$

$$cosec^{2}\beta = 1 + \left(\frac{5}{-12}\right)^{2}$$

$$cosec\beta = \sqrt{\frac{169}{144}} \quad hence \quad cosec\beta = \frac{13}{12}$$

$$7sec\beta + 12cosec\beta = 7\left(\frac{-13}{5}\right) + 12\left(\frac{13}{12}\right)$$

$$= 7sec\beta + 12cosec\beta = -5.2$$

θ(5,12)

8 (a)

$$\overrightarrow{OA} = \begin{pmatrix} 6 \\ -8 \end{pmatrix} \text{ and } \overrightarrow{OB} = \begin{pmatrix} 5 \\ 12 \end{pmatrix}$$

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = |\overrightarrow{OA}| |\overrightarrow{OB}| |COS\theta|$$

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = \begin{pmatrix} 6 \\ -8 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 12 \end{pmatrix} = 30 - 96 = -66$$

$$|\overrightarrow{OA}| = \sqrt{(6)^2 + (-8)^2} = 10$$

$$|\overrightarrow{OB}| = \sqrt{(5)^2 + (12)^2} = 13$$

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = |\overrightarrow{OA}| |\overrightarrow{OB}| |COS\theta|$$

$$-66 = 10 \times 13cos\theta$$

$$\theta = \cos^{-1}(\frac{-66}{130}) = > \theta = 120^0$$

(c)

$$\overrightarrow{QR} = \overrightarrow{OR} - \overrightarrow{OQ} = \begin{pmatrix} -7\\4 \end{pmatrix} - \begin{pmatrix} 1\\6 \end{pmatrix} = \begin{pmatrix} -8\\-2 \end{pmatrix}$$

$$\overrightarrow{QP} = \overrightarrow{OP} - \overrightarrow{OQ} = \begin{pmatrix} 2\\2 \end{pmatrix} - \begin{pmatrix} 1\\6 \end{pmatrix} = \begin{pmatrix} 1\\-4 \end{pmatrix}$$

$$\overrightarrow{QR} \cdot \overrightarrow{QP} = |\overrightarrow{QR}||\overrightarrow{QP}|COS\theta$$

$$\overrightarrow{QR} \cdot \overrightarrow{QP} = \begin{pmatrix} -8\\-2 \end{pmatrix} \cdot \begin{pmatrix} 1\\-4 \end{pmatrix} = -8 + 8 = 0$$

$$|\overrightarrow{QR}| = \sqrt{(-8)^2 + (-2)^2} = \sqrt{68}$$

$$|QP| = \sqrt{(1)^2 + (-4)^2} = 3$$

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = |\overrightarrow{OA}||\overrightarrow{OB}|COS\theta$$

$$0 = 3 \times \sqrt{68}cos\theta$$

$$\theta = \cos^{-1}(\frac{0}{3\sqrt{68}}) = > \theta = 90^0$$

$$\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$$

$$\overrightarrow{PR} = \overrightarrow{OR} - \overrightarrow{OP} = \begin{pmatrix} -7\\4 \end{pmatrix} - \begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} -9\\2 \end{pmatrix}$$

8(b)	$\binom{a}{8} = 2 \binom{2}{4}$ since they are parallel => $m = 2n \text{ hence} a = 2 \times 2 = 4 \dots \text{ so } a = 4$		$\overrightarrow{PQ} = \begin{pmatrix} -1 \\ 4 \end{pmatrix} and \overrightarrow{QR} = \begin{pmatrix} -8 \\ -2 \end{pmatrix}$ $\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$ $\overrightarrow{PQ} + \overrightarrow{QR} = \begin{pmatrix} -1 \\ 4 \end{pmatrix} + \begin{pmatrix} -8 \\ -2 \end{pmatrix} = \begin{pmatrix} -9 \\ 2 \end{pmatrix}$ $since \overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR} and angle PQR$ $= 90^{0}$ $then PQR is a right - angled at Q$
8(d)	$\overrightarrow{OM} = x - y \text{ , and } \overrightarrow{ON} = 2x + 3y$ $\overrightarrow{OM} \cdot \overrightarrow{ON} = 0 \text{ since are perpendicular}$ $(x - y) \cdot (2x + 3y) = 0$ $x \cdot (2x + 3y) - y \cdot (2x + 3y) = 0$ $x \cdot 2x + 3y \cdot x - 2x \cdot y - 3y \cdot y = 0$ $2x^2 + x \cdot y - 3y^2 = 0$ $x \cdot y = 3y^2 - 2x^2$ $ x = 8 \text{ , and } y = 6$ $x \cdot y = 3(6)^2 - 2(8)^2 = -20$ $x \cdot y = x y \cos\theta$ $\theta = \cos^{-1}(\frac{-20}{48}) \Rightarrow \theta = 114.62^0$	9. (a) (b)	$x + y \le 120 \dots (i)$ $x \ge 2y \dots (ii)$ $1500x + 1000y \ge 100,000$ $reduced \ to \ 3x + 2y \ge 200 \dots (iii)$ $x \ge 0 \dots (iv) \ and \ y \ge 0 \dots (v)$ $Seats \qquad 1500 + 1000y Amount$ $(x,y) \qquad Amount$
	$3A + 2C + B = I \text{ where } I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $2C = I - 3A - B.$ $2C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - 3 \begin{pmatrix} 3 & 5 \\ -2 & 4 \end{pmatrix} - \begin{pmatrix} 8 & -3 \\ -4 & 7 \end{pmatrix}$ $2C = \begin{pmatrix} 1 - 9 - 8 & 0 - 15 + 3 \\ 0 + 6 + 4 & 1 - 12 - 7 \end{pmatrix}$ $C = \begin{pmatrix} -8 & -6 \\ 5 & -9 \end{pmatrix}$ $Det \text{ of } C = (-8 \times -9) - (5 \times -6) = 102$ $C^{2} = \begin{pmatrix} -8 & -6 \\ 5 & -9 \end{pmatrix} \begin{pmatrix} -8 & -6 \\ 5 & -9 \end{pmatrix}$ $C^{2} = \begin{pmatrix} 64 - 30 & 48 + 54 \\ -40 - 45 & -30 + 81 \end{pmatrix}$ $= > C^{2} = \begin{pmatrix} 34 & 102 \\ -85 & 51 \end{pmatrix}$		$MN = K$ $\cos^{3}\beta \times \sec\beta + \csc\beta \times \sin^{3}\beta = a$ $= > \cos^{2}\beta + \sin^{2}\beta = a$ $\operatorname{comparing\ with\ } \cos^{2}\theta + \sin^{2}\theta = 1$ $a = 1$ $\cos\beta \times \sec\beta + 2\csc^{3} \times \sin^{3}\beta = b$ $1 + 2 = b hence\ b = 3$ $\cos^{3}\beta \times 0 + \csc\beta \times 1 = Y\csc\beta$ $Y = 1$ $2\csc^{3}\beta = 4p\csc^{3}\beta$ $2 = 4p \implies p = \frac{1}{2}$ $for no\ unique\ solution\ means\ det\begin{pmatrix} 3 & m \\ 2 & 1 \end{pmatrix}$ $= 0$ $(3 \times 1) - (2 \times m) = 0$ $m = \frac{3}{2}$

10.

$$y + 9 = x^2, ..., => y = x^2 - 9$$

$$\frac{dy}{dx} = 2x$$

At turning points, $\frac{dy}{dx} = 0$ $\Rightarrow 2x = 0 \text{ hence } x = 0$ $y = (0)^2 - 9 = -9 \text{ turning point } (0,9)$ $\frac{d^2y}{dx^2} = 2$

since $\frac{d^2y}{dx^2}$ is positive then (0,-9) is a minimum turning point intercepts $x-intercept; y=0 \ hence \ x^2-9=0 \ x=\sqrt{9}=>x=3 \ or \ x=-3 \ intercept \ points \ are \ (3,0) \ and \ (-3,0) \ y-intercept; x=0 \ hence \ y=o^2-9=-9 \ intercept \ point \ is \ (0,-9).$

$$y + 9 = x^2 \dots, y = -5$$

-5 + 9 = x^2 hence $x = 2$ or $x = -2$

$$Area = \int_{-2}^{2} (x^{2} - 9) - (-5)dx$$
$$= \left| \left(\frac{1}{3}x^{3} - 4x \right) \right|_{-2}^{2}$$
$$area = |-10| = 10 sq units$$

(e)

$$y = x^{2} - 4x, , , = > \frac{dy}{dx} = 2x - 4$$

$$2x - 4 = 0, , hnce x = 2$$

$$y = (2)^{2} - 4(2) = -4 \text{ point is } (2, -4)$$

$$\frac{d^2y}{dx^2} = 2, \quad (2, -4) is min - turning point$$

$$intercepts$$

$$y - intercept, x = 0$$

$$y = 0^2 - 4(0) = 0 point is (0,0)$$

$$x - intercept, y = 0$$

$$0 = x^2 - 4x. = >, x = 0 \text{ or } x = 4$$

$$points are (0,0) and (4,0)$$

$$Area = \int_0^4 (x^2 - 4x) dx$$

$$Area = \left| \left(\frac{1}{3} x^3 - 2x^2 \right) \right|_0^4$$

$$\left(\frac{1}{3} 4^3 - 2(4)^2 \right) - \left(\frac{1}{3} 0^3 - 2(0)^2 \right)$$

$$Area = \frac{32}{3} \quad or \quad 10.6667 \quad square \quad units$$

$$3x\frac{dy}{dx} - 4\frac{x^2}{y} = 0 ; x = 3 \text{ and } y = 4$$

$$\frac{dy}{dx} = \frac{4x}{3y}$$

$$\int ydy = \int \frac{4}{3}x dx$$

$$\frac{1}{2}y^2 = \frac{2}{3}x^2 + c \text{ when } x = 3 \text{ and } y = 4$$

$$\frac{1}{2}(4)^2 = \frac{2}{3}(3)^2 + c,, \text{ hace } c = 2$$

f. (i) let the ammount of chemical be m in grams $\frac{dm}{dt} \alpha m \text{ hence } \frac{dm}{dt} = -km$ (a)	$\frac{1}{2}y^2 = \frac{2}{3}x^2 + 2$ $3y^2 = 4x^2 + 12$ $At \ t = 20,$
(i) let the ammount of chemical be m in grams (a)	
$\frac{dm}{dt} \alpha m \text{ hence } \frac{dm}{dt} = -km$ $\int \frac{1}{m} dm = \int -kdt$ $\ln m = -kt + c$ $At \ t = 0,,, m = m_0 = 100g$ $\ln 100 = -k(0) + c \text{ hence } \dots c = \ln 100$ $At \ t = 5, \text{ and } m = 90g$ $\ln 90 = -k(5) + \ln 100$ $k = \frac{1}{5} \ln \left(\frac{100}{90}\right) \text{ hence } k = \frac{1}{5} \ln \left(\frac{10}{9}\right)$ $\ln m = -\frac{1}{5} \ln \left(\frac{10}{9}\right) t + \ln 100$ (b)	$\ln m = -\frac{1}{5} \ln \left(\frac{10}{9}\right) \times 20 + \ln 100$ $\ln m = 4.183728$ $m = e^{(4.183728)}$ $m = 65.61g$ $m = 30g$ $\ln 30 = -\frac{1}{5} \ln \left(\frac{10}{9}\right) t + \ln 100$ $t = \frac{5 \ln \left(\frac{100}{30}\right)}{\ln \left(\frac{10}{9}\right)} = 57.1359 \text{ minutes}$
11. (i) $simple \ aggregate \ price \ index = \frac{\sum p_1}{\sum p_0} \times 100$ $= \frac{60 + 135 + 105 + 290 + 800}{35 + 70 + 43 + 180 + 480} \times 100$ $= 172.0297$ $For \ A. \ price \ relative = \frac{60}{35} \times 100 = 171.4286$ $for \ B. \ price \ relative = \frac{135}{70} \times 100 = 192.857$ $For \ C. \ price \ relative = \frac{105}{43} \times 100 = 244.186$ $For \ D. \ price \ relative = \frac{290}{180} \times 100 = 161.11$ $For \ E. \ price \ relative = \frac{800}{480} \times 100 = 166.67$	

9.

```
x + y \le 120 \dots \dots \dots (i)

x \ge 2y \dots \dots (ii)

1500x + 1000y \ge 100,000

reduced\ to\ 3x + 2y \ge 200 \dots (iii)

x \ge 0 \dots (iv) and y \ge 0 \dots (v)
```


seats(x,y)	1500x + 1000y	Amount
A(80,40)	$(1500 \times 80) + (1000 \times 40)$	160,000
B(50,25)	$(1500 \times 50) + (1000 \times 25)$	100,000
C(120,0)	$(1500 \times 120) + (1000 \times 0)$	180,000
D(67,0)	$(1500 \times 67) + (1000 \times 0)$	100,500

80 seats for A and 40 seats for B.

(ii) maximum profit is = shs 160,000

67 for A and none for B

(iii)

(i)

12.

YEAR	HALF	SALES	MOVING	MOVING AVERAGES
			TOTALS	
	1	230		
2007			1,040	520.0
	2	810		
			1,051	525.5
	1	241		
2088			1,093	546.5
	2	852		
			1,111	555.5
	1	259		
2009			1,161	580.5
	2	902		
			1,174	587.0
	1	272		
2010			1,206	603.0
	2	934		
			1,222	611.0
	1	288		
2011			1,254	627.0
	2	966		

let the sales in 1 st half of 2012 be $x = \frac{x + 966}{2} = 640, = x = 314$

	IQ	Frequency (f)	X	fX	fx^2	Cumulative frequency (F)
	45-< 55	1	50	50	2500	1
13.	55-< 65	1	60	60	3600	2
	65-< 75	2	70	140	9800	4
	75-< 85	6	80	480	38400	10
	85-< 95	21	90	1890	170100	31
	95-< 105	29	100	2900	290000	60
	105-< 115	24	110	2640	290400	84
	115-< 125	16	120	1920	230400	100
		$\sum f = 100$		$\sum fx$	$\sum f x^2 = 1035200$	
				= 10080		

$$mean = \frac{\sum fx}{\sum x} = \frac{10080}{100} = 100.8$$

(a)
$$standard\ deviation = \sqrt{\frac{1035200}{100} - (100.8)^2}$$

= 13.8333.

	$median = \left(\frac{100}{2}\right)th = 50^{th} = 101$			
	upper quartile = $(\frac{3}{4} \times 100)^{th} = 75^{th} = 110.5$			
	lower quartile = $(\frac{1}{4} \times 100)^{th} = 25^{th} = 92$	2.5		
(c)	semi — interquar	tile ran	$ge = \frac{1}{2}(110.5 - 92.5) = 9$	
(d) 14.				
14.	-	_	parent = 2 + 3 + 1 = 6 - 2 + 2 + 2 + 3 + 1 + 1 = 15people	
			PCC)=4/7	
			P(P)===================================	
			p (G)=2/4	
	BCCD = 2/7			
	$P(p) = \frac{2}{4}$			
	$\frac{1}{3} \qquad \qquad P(C) = \frac{1}{2}$			
	3		PCG) = 1=	
			PCP) = 0/2	
		$= \frac{1}{3} \left(\frac{2}{3} \right)$	and parent = $\frac{1}{3}(G_1 + G_2 + G_3)$ $\frac{8+36+42}{84} = \frac{1}{3} \left(\frac{106}{84}\right)$	
		$=\frac{100}{252}$	$r = \frac{53}{126}$	
15. (i)	$P(B) + P(B^{1}) = 1$ $\frac{3}{2}P(A \cap B^{1}) + \frac{7}{3}P(A \cap B) = 1 \dots \dots (I)$ $P(A \cap B^{1}) + P(A \cap B) = P(A)$ $P(A \cap B^{1}) + P(A \cap B) = \frac{1}{2} \dots \dots (II)$	16.	Arrangements in PROBABILITY $P(\text{ two Is are separate})$ $total \text{ number of ways} = \frac{n!}{p! \ q! \dots}$ $without \text{ any restrictionsways are} = \frac{11!}{2! \times 2! \dots}$	
	(I) × 6 and (II) × 9 and solving them simultaneously $9P(A \cap B^1) + 14P(A \cap B) = 6$		$number of ways with Is together = \frac{10!}{2!}$ $P(two I"s are separate =$	

_		1	441 401
	$9P(A \cap B^{1}) + 9P(A \cap B) = \frac{9}{2}$ on subtracting, $5P(A \cap B) = 6 - \frac{9}{2}$		$\left(\frac{\frac{11!}{2! \times 2!} - \frac{10!}{2!}}{\frac{11!}{2! \times 2!}}\right)$
(ii)	$=> P(A \cap B) = \frac{3}{10}$	17. (i)	$=\frac{9}{11}$
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $= P(A) + \frac{7}{3}P(A \cap B) - P(A \cap B)$		L 1 2 3 4 5 G 4 3 2 1 0
(iii)	$= \frac{1}{2} + \left(\frac{7}{3} \times \frac{3}{10}\right) - \frac{3}{10}$ $hence P(A \cup B) = \frac{9}{10}$	(ii)	No of ways = ${}_{1}^{6}C \times {}_{4}^{5}C + {}_{2}^{6}C \times {}_{3}^{5}C + {}_{6}^{6}C \times {}_{2}^{5}C + {}_{4}^{6}C \times {}_{1}^{5}C + {}_{5}^{6}C \times {}_{0}^{5}C = 30 + 150 + 200 + 25 + 6 = 461 $ ways.
(iv)	$P(B) = \frac{7}{3}P(A \cap B)$ $= \frac{7}{3} \times \frac{3}{10} =$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	10	(ii)	number of ways = $461 + {}_{0}^{6}C \times {}_{5}^{5}C$ = 462 ways
	$P(B/A) = \frac{P(A \cap B)}{P(A)}$ $= \frac{\frac{3}{10}}{\frac{1}{2}}$ $= \frac{3}{5}$		not more than 3 gentlemen $ \begin{array}{ c c c c c } \hline L & 0 & 1 & 2 & 3 \\ \hline G & 5 & 4 & 3 & 2 \end{array} $ number of ways = ${}_{5}^{6}C \times {}_{0}^{5}C + {}_{4}^{6}C \times {}_{1}^{5}C +$
			${}_{3}^{6}C \times {}_{2}^{5}C + {}_{2}^{6}C \times {}_{3}^{5}C$ $= 6 + 75 + 200 + 150 = 431 ways$
18.	for binomial probabilitis,,, $X \sim B(n, p)$ hence $X \sim B(10,0.5)$ Where $p = 0.5$ from $p + q = 1$,,, $q = 0.5$	19.(b) (i)	$P(M > 65)$ on standardising means $P\left(Z > \frac{65 - 50}{10}\right)$ $= P(Z > 1.5)$
(i)	$P(X = 5) = 0.2461 \ (tab)$		\wedge
(ii)	atmost 7 failed means atleast 8 passed $P(X = 8) + P(X = 9) + P(X = 10)$ + + probability for passing $= 0.0439 + 0.0098$ $+ 0.0010$ $= 0.0547$		= 0.5 - P(0 < Z < 1.5) $= 0.5 - 0.42210$
			= 0.5 - 0.43319 = 0.0668

(iii)	$E(x) = np$ $E(x) = 10 \times 0.5 = 5$		number of candidates = $0.0668 \times 10,000$ = $668.1 \approx 668$ candidates
	$standard\ deviation = \sqrt{variance}$ $= \sqrt{npq} = \sqrt{10 \times 0.5 \times 0.5}$ $= \frac{1}{2}\sqrt{10}$		
19 (a) (i)	Let M represent marks $M \sim N(50, 10^2)$ (I) $P(M > 70)$ standardising we get. $P\left(Z > \frac{70 - 50}{10}\right)$ $= P(Z > 2)$ 0.5 - $P(0 < Z < 2)$ 0.5 - 0.47725 $= 0.0228$	9(b) (ii)	$P(M < 45)$ On standardising,, $P\left(Z < \frac{45 - 50}{10}\right)$ $P(Z < -0.5)$ $0.5 - P(0 < Z < 0.5)$ $0.5 - 0.19146$ 0.30854 Number of candidates = $0.30854 \times 10,000$ = $3085.4 \approx 3085$ candidates
19(a) (ii)	$p(40 < M < 60)$ $standardises, P\left(\frac{40 - 50}{10} < Z\right)$ $< \frac{60 - 50}{10}$ $= p(-1 < Z < 1)$ $2P(0 < Z < 1)$ $2 \times 0.34134 = 0.6827$	20. (i)	$f(x) = \begin{cases} mx, & x = 1,2,3,4,5 \\ m(10-x), & x = 6,7,8,9 \end{cases}$ $\begin{array}{c cccc} x & P(X=x) \\ \hline 1 & M \\ \hline 2 & 2m \\ \hline 3 & 3m \\ \hline 4 & 4m \\ \hline 5 & 5m \\ \hline 6 & 4m \\ \hline 7 & 3m \\ \hline 8 & 2m \\ \hline 9 & m \\ \\ \hline \\ m+2m+3m+4m+5m+4m+3m+2m+m \\ \hline = 1 \\ \hline 25m=1 \ hence \ => m=\frac{1}{25} \\ \end{array}$

20.(ii) (a)	$P(X > 2/X \le 6) = \frac{P(2 < X \le 6)}{P(X \le 6)}$ $P(2 < X \le 6) = P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6)$ $= 3m + 4m + 5m + 4m$ $16 \times \frac{1}{25} = \frac{16}{25}.$ $P(X \le 6) = P(2 < X \le 6) + P(X = 2) + P(X = 1)$ $= \frac{16}{25} + 2m + m$ $\frac{16}{25} + \frac{2}{25} + \frac{1}{25} = \frac{19}{25}$ $P(X \ge 2/X \le 6) = \frac{P(2 < X \le 6)}{P(X \le 6)}$ $= \frac{16}{25} / \frac{19}{25} = \frac{16}{19}.$	20.(ii) (b)	$E(3X - 1) = 3E(X) - 1$ $E(X) = (1 \times m) + (2 \times 2m) + (3 \times 3m) + (4 \times 4m) + (5 \times 5m) + (6 \times 4m) + (7 \times 3m) + (8 \times 2m) + (9 \times m)$ $= \frac{1}{25} + \frac{4}{25} + \frac{9}{25} + \frac{16}{25} + \frac{25}{25} + \frac{24}{25} + \frac{21}{25} + \frac{16}{25} + \frac{9}{25}$ $= \frac{125}{25}$ $= 5$ $E(3X - 1) = 3E(X) - 1$ $= (3 \times 5) - 1$ $= 14$
21. (i)	$f(x) = \begin{cases} \frac{1}{4}x, & 0 \le x \le a \\ \frac{1}{4}(4-x), & a \le x \le b \\ 0, elsewhere \end{cases}$ $f(a) = \frac{a}{4} \dots \dots (i) \text{ for } 0 \le x \le a$ $f(a) = \frac{1}{4}(4-a) \dots \dots (ii) \text{ for } a \le x$ $\le b$ $equating (i) and (ii) yeilds$ $\frac{1}{4}(4-a) = \frac{a}{4} = > 1 - \frac{a}{4} = \frac{a}{4}$ $\frac{a}{2} = 1 \text{ hence } a = 2$ $\int_{0}^{2} \frac{x}{4} dx + \int_{2}^{b} \frac{1}{4}(4-x) dx = 1$ $\frac{x^{2}}{8}\Big _{0}^{2} + \frac{1}{4}(4x - \frac{x^{2}}{2})\Big _{2}^{b} = 1$ $\frac{2^{2}}{8} - \frac{0^{2}}{8} + \frac{1}{4}\Big[\Big(4b - \frac{b^{2}}{2}\Big) - \Big(4(2) - \frac{4}{2}\Big)\Big]$ $= 1$	(iii)	$P\left(\frac{1}{2} \le X \le 2\frac{1}{2}\right) = \int_{0.5}^{2} \frac{1}{4}x dx + \int_{2}^{2.5} \frac{1}{4}(4-x) dx$ $\frac{x^{2}}{8} \Big _{0.5}^{2} + \frac{1}{4}(4x - \frac{x^{2}}{2})\Big _{2}^{2.5}$ $\frac{2^{2}}{8} - \frac{0.5^{2}}{8} + \frac{1}{4} \left[\left(4(2.5) - \frac{(2.5)^{2}}{2}\right) - \left(4(2) - \frac{4}{2}\right) \right]$ $\frac{15}{32} + \frac{7}{32}$ $= \frac{11}{16}$ $E(X) = x \int f(x) dx$ $\int_{0}^{2} \frac{x^{2}}{4} dx + \int_{2}^{4} \frac{1}{4}(4x - x^{2}) dx$ $\frac{x^{3}}{12} \Big _{0}^{2} + \frac{1}{4}(2x^{2} - \frac{x^{3}}{3}) \Big _{2}^{4}$ $\frac{2^{3}}{12} - \frac{0^{2}}{12} + \frac{1}{4} \left[\left(2(4)^{2} - \frac{4^{3}}{2}\right) - \left(2(2^{2}) - \frac{2^{3}}{2}\right) \right]$ $= \frac{2}{3} + \frac{4}{3}$

$$\frac{1}{2} + \frac{1}{4} \left(4b - \frac{b^2}{2} \right) - 6 = 1$$

$$b - \frac{b^2}{8} = 2 \implies b^2 - 8b + 16 = 0$$

$$(b - 4)^2 = 0$$

$$hence b = 4.$$

$$E(X) = 2$$

$$E(X^{2}) = x^{2} \int f(x)dx$$

$$= \int_{0}^{2} \frac{x^{3}}{4} dx + \int_{2}^{4} \frac{1}{4} (4x^{2} - x^{3}) dx$$

$$\frac{x^{4}}{16} \Big|_{0}^{2} + \frac{1}{4} (\frac{4}{3}x^{3} - \frac{x^{4}}{4}) \Big|_{2}^{4}$$

$$\frac{2^{4}}{16} - \frac{0^{4}}{16} + \frac{1}{4} \Big[\Big(\frac{4}{3} (4)^{3} - \frac{4^{4}}{4} \Big) - \Big(\frac{4}{3} (2^{3}) - \frac{2^{4}}{4} \Big) \Big]$$

$$= 1 + \frac{11}{3}$$

$$= 4 \frac{2}{3}$$

$$var(x) = E(X^{2}) - (E(X))^{2}$$

$$= 4 \frac{2}{3} - 2^{2}$$

$$= \frac{2}{3}$$

END