CS 6316 Homework 1

James Harbour

January 31, 2024

1 Problem 1

Show that, given a training set $S = \{(x_i, f(x_i))\}_{i=1}^m \subseteq (\mathbb{R}^d \times \{0, 1\})^m$, there exists a polynomial p_S such that $h_S(x) = 1$ if and only if $p_S(x) \ge 0$, where h_S is defined as

$$h_S(x) = \begin{cases} y_i & \text{if } x = x_i \text{ for some } i \\ 0 & \text{otherwise} \end{cases}$$

Solution. Consider the polynomial

$$p_S(x) = -\prod_{i=1}^{m} \|x - x_i\|_2^2 - (f(x) - 1)^2$$

where $\|\cdot\|_2$ denotes the standard Euclidean norm on \mathbb{R}^d . Note that, by squaring the $\|x - x_i\|_2$ terms above, we obtain a true polynomial in the coordinates of $x \in \mathbb{R}^d$.

Claim. $h_S(x) = 1$ if and only if $p_S(x) \ge 0$.

Proof of Claim. Note first that, for arbitrary x, both $(f(x) - 1)^2 \ge 0$ and $\prod_{i=1}^m ||x - x_i||_2^2 \ge 0$ by the trivial inequality, whence

$$p_S(x) = -\prod_{i=1}^m \|x - x_i\|_2^2 - (f(x) - 1)^2 \le -\prod_{i=1}^m \|x - x_i\|_2^2$$
 (1)

$$p_S(x) = -\prod_{i=1}^m \|x - x_i\|_2^2 - (f(x) - 1)^2 \le -(f(x) - 1)^2.$$
 (2)

 (\Leftarrow) : We proceed by contraposition. Suppose that $h_S(x) \neq 1$. We wish to show that $p_S(x) < 0$. Note that, as the image of h_S is $\{0,1\}$, it follows that $h_S(x) = 0$. Now we have two cases.

If $x = x_j$ for some $j \in \{1, ..., m\}$, then $0 = h_S(x_j) = f(x_j)$, whence by (2),

$$p_S(x) \le -(f(x) - 1)^2 = -1 < 0.$$

If $x \notin \{x_1, \ldots, x_m\}$, then $||x - x_i||_2^2 > 0$ for all i, whence by (1) we have

$$p_S(x) \le -\prod_{i=1}^m ||x - x_i||_2^2 < 0.$$

 (\Longrightarrow) : On the other hand, suppose that $h_S(x)=1$. Then it follows that $x=x_j$ for some $j\in\{1,\ldots,m\}$ and $f(x_j)=h(x_j)=1$. Hence,

$$p_S(x) = -\prod_{i=1}^m \|x - x_i\|_2^2 - (f(x) - 1)^2 = -\|x_j - x_j\|_2^2 \prod_{i=j} \|x - x_i\|_2^2 - (1 - 1)^2 = 0.$$

2 Problem 2

Let \mathcal{H} be a class of binary classifiers over a domain \mathcal{X} . Let \mathcal{D} be an unknown distribution over \mathcal{X} , and let f be the target hypothesis in \mathcal{H} . Fix some $h \in \mathcal{H}$. Show that

$$\mathbb{E}_{S|_x \sim \mathcal{D}^m}[L_S(h)] = L_{(\mathcal{D},f)}(h).$$

Proof. This claim follows from the construction of the product measure, the definition of the pushforward measure, and some elementary manipulation. By definition,

$$L_{(\mathcal{D},f)}(h) = \mathcal{D}(\{x \in \mathcal{X} : f(x) \neq h(x)\}).$$

Let $\pi_i: \mathcal{X}^m \to \mathcal{X}$ denote the i^{th} projection map. Note that, for any measurable subset $A \subseteq \mathcal{X}$ and $(x_1, \ldots, x_m) \in \mathcal{X}^m$, we have

$$\mathbb{1}_{A}(x_{i}) = \mathbb{1}_{A}(\pi_{i}((x_{1}, \dots, x_{m}))) = \mathbb{1}_{\pi_{i}^{-1}(A)}((x_{1}, \dots, x_{m})).$$
(3)

Recall, by construction of the product measure, that the product measure \mathcal{D}^m pushes forward to the original measure \mathcal{D} under each of the projection maps π_i , namely

$$\mathcal{D}^{m}(\pi_{i}^{-1}(A)) \stackrel{\text{definition}}{=} (\pi_{i})_{*} \mathcal{D}^{m}(A) = \mathcal{D}(A) \text{ for all measurable } A \subseteq \mathcal{X}.$$
(4)

Finally, we expand the expectation and write,

$$\mathbb{E}_{S|x \sim \mathcal{D}^m}[L_S(h)] = \int_{\mathcal{X}^m} L_S(h) d\mathcal{D}^m(x_1, \dots, x_m) = \int_{\mathcal{X}^m} \frac{|\{\widetilde{x} \in S|_x : h(\widetilde{x}) \neq f(\widetilde{x})\}|}{m} d\mathcal{D}^m(x_1, \dots, x_m)$$

$$= \frac{1}{m} \int_{\mathcal{X}^m} \sum_{i=1}^m \mathbb{1}_{\{x \in \mathcal{X} : h(x) \neq f(x)\}}(x_i) d\mathcal{D}^m(x_1, \dots, x_m)$$

$$\stackrel{(3)}{=} \frac{1}{m} \sum_{i=1}^m \int_{\mathcal{X}^m} \mathbb{1}_{\pi_i^{-1}(\{x \in \mathcal{X} : h(x) \neq f(x)\})}((x_1, \dots, x_n)) d\mathcal{D}^m(x_1, \dots, x_m)$$

$$= \frac{1}{m} \sum_{i=1}^m \mathcal{D}^m(\pi_i^{-1}(\{x \in \mathcal{X} : h(x) \neq f(x)\}))$$

$$\stackrel{(4)}{=} \frac{1}{m} \sum_{i=1}^m \mathcal{D}(\{x \in \mathcal{X} : h(x) \neq f(x)\}) = \mathcal{D}(\{x \in \mathcal{X} : h(x) \neq f(x)\}) = L_{(\mathcal{D}, f)}(h)$$