

Georgia Tech

FC with RG – Near Memory

Darryl Bailey, Yu Pan, Yongnuo Yang, Yiwen Liu, Srikar Vanavasam Saatvik Agrawal, Aidan Ehrenhalt, Michael Nguyen

DMA Project Goals

 Minimizing stationary core involvement as the middleman in DMA transfers to gossamer cores.

Progress

- Built kernel from source.
- Rebooted the system-resulted in a node off the network due to improper configurations.
- Came up w/ a development process
- In the design phase.

Lessons Learned and Next Steps

- Better coordination with the Lucata people on what we should have permission to do and scheduling development time.
- Next Steps: Documentation of system. Retry rebooting the kernel with the new configuration. Build hello world module. More studying of driver code & linux kernel.

HPCG Project Goals

- Porting HPCG benchmark, one designed for stressing memory subsystem, on the Lucata Pathfinder.
- Comparing the performance and scalability of HPCG benchmark on the Lucata Pathfinder and a x86 cluster.

Progress

- Have run the optimized test on Frozone (x86 cluster).
- 1st Attempt: Using EMUCC and the Lucata toolchain (memoryweb lib) successfully compiled the benchmark. However, linker issues pointing to some Lucata Pathfinder libs happened - Unable to build and emulate the benchmark executable.
- 2nd Attempt: Breaking up the benchmark into 4 computational cores:
 - DotProduct/SpMV/SymGS/WAXPBY. However, changes need to be done accounting for different memory and programming models.
- Not sure if the result from the 2nd attempt is still compatible with the original HPCG benchmark.

Lessons Learned and Next Steps

- Compatibility issues always exist when porting code.
- For a new HW architecture, adapting to a different memory model is difficult, and the optimization would be even harder.
- Next step: look inside to the HPCG cores and implemented the HPCGCompatible framework then.

Micro-Bench Project Goals

- Compare the performance of several functions on an x86 platform and the Pathfinder.
- Create a notebook to run these functions and compare the performance on an x86 platform and the Pathfinder.

Progress

- Struggled initially with having compilation issues with the preexisting microbench project.
- Progress picked up once we had access to Lucata's internal mirror
- Created notebook 7, lucata benchmarking, that benchmarks and profiles the performance of pointer chase.
- Edited existing microbench code to profile the functions, similar to how it was done in notebook 2.
- Able to get benchmarks for pointer chase visualized.

Lessons Learned and Next Steps

- Reaching out for help, especially when it comes to compiling issues or the like, is better done sooner than later.
- Next Steps: Continue updating the notebook to have all the functions from microbench featured, and work on getting x86 benchmarking available.