Сложение в формате с плавающей точкой

Содержание

- Сложение чисел с фиксированной точкой
- Порядок
 - Примеры представления
 - Правила сложения
 - Примеры сложения
- З Характеристика
 - Примеры представления
 - Правила сложения
 - Примеры сложения

Сложение чисел с фиксированной точкой

В формате с фиксированной точкой масштаб результата сложения такой же, что и масштаб операндов. Поэтому операция сложения особенностей не имеет и выполняется по правилам сложения дополнительных кодов.

Example

Выполнить сложение чисел (-30.625 + -5.75) в формате с фиксированной точкой 16-разрядной сетке с масштабом $M=2^{-3}$.

$$-30.625 = (-11110.101)_2, -5.75 = (101.11)_2.$$

Сложение чисел с фиксированной точкой

Решение.

$$-30.625 = \frac{^{15}}{11111111100001011}$$
$$-5.75 = \frac{^{15}}{111111111111010010}$$

Сложение в МДК:

ПРС отсуствует. Результат с масштабом 2^{-3} :

Формат с плавающей точкой

$$X=m_X\cdot 2^{p_X},$$

где m_X — нормализованная мантисса числа X, p_X — порядок числа X, подобранный так, чтобы m_X была нормализованной.

Правила нормализации $X \neq 0$

Мантисса m_X получается из двоичного представления X переносом точки в такую позицию, чтобы целая часть была равна нулю, а в старшем разряде дробной части была единица:

порядок p_X определяет на сколько разрядов нужно передвинуть запятую в мантиссе, чтобы получить исходное число.

Формат для примеров

15	14	6	5	4	0
Х	XXXXXXXX	Χ	Х	XX	XXX

- Разряды нормализованной мантиссы в прямом коде хранятся в разрядах [15 : 6].
- Порядок в прямом коде хранится в разрядах [5:0].

Целое, без потерь

Целое, с потерями

Дробное, без потерь

Дробное, с потерями

Ноль

Правила сложения

$$X + Y = m_X \cdot 2^{p_X} + m_Y \cdot 2^{p_Y}$$

 Порядки чисел выравниваются до большего, мантисса числа с меньшим порядком сдвигается вправо на модуль разности порядков.

$$\begin{cases} (p_X - p_Y) \ge 0, & m_Y' \leftarrow (m_Y \gg |p_X - p_Y|), m_X' \leftarrow m_X, \\ (p_X - p_Y) < 0, & m_X' \leftarrow (m_X \gg |p_X - p_Y|), m_Y' \leftarrow m_Y. \end{cases}$$

- ② Получившиеся мантиссы складываются $m_R = m_X' + m_Y'$. При этом порядок результата: $p_R = \max(p_X, p_Y)$.
- Выполняется нормализация результата, если он получился не нормализованым.

13+29

15	14 6	5	4	0		15	14	6	5	4	0
0	110100000	0	001	100	+	0	111010	0000	0	00	101

m	р	прим.
0,110100000	0,00100	X = 13, ΠK
0,111010000	0,00101	$Y=29$, ΠK
	00,00100	$p_X - p_Y < 0$, в МДК, денормализуется m_X
	11,11011	$p\chi - p\gamma < 0$, в МДК, денормализуется $m\chi$
	11,11111	
0,011010000	0,00101	Х', денормализованное
00,011010000		$m_R = m_X' + m_Y'$, в МДК, ПРС!
00,111010000		$m_R = m_\chi + m_\gamma$, в мдк, прс:
01,010100000		
<u>01</u> ,010100000	0,00101	Нормализовать! $m_R \leftarrow m_R \gg 1$; $p_R \leftarrow p_R + 1$
0,101010000	0,00110	Рез-т!

15	14 6	5	4	0
0	101010000	0	00	110

-17+14

15		5	4	0		15	14	6	5	4	0
1	100010000	0	001	L01	+	0	11100	0000	0	00	100

m	р	прим.
1,100010000	0,00101	$X = -17$, ΠK
0,111000000	0,00100	$Y=14$, ΠK
	00,00101	n n > 0 MIK november m
	11,11100	$p_X - p_Y \ge 0$, МДК, денормализуется m_Y
	00,00001	
0,011100000	0,00101	Y', денормализованное
11,011110000		$m_{R} = m_{X}' + m_{Y}', MДK$
00,011100000		$m_R = m_\chi + m_\gamma$, MAR
11,111010000		
<u>11</u> ,111010000	0,00101	Получить модуль мантиссы для представления в ПК!
00,000110000	0,00101	Нормализовать модуль! $m_R \leftarrow m_R \ll 1$; $p_R \leftarrow p_R - 1$
00,001100000	0,00100	Нормализовать модуль! $m_R \leftarrow m_R \ll 1$; $p_R \leftarrow p_R - 1$
<u>00</u> ,011000000	0,00011	Нормализовать модуль! $m_R \leftarrow m_R \ll 1$; $p_R \leftarrow p_R - 1$
1,110000000	0,00010	Рез-т!

15	14 6	5	4	0
1	110000000	0	00	010

-2+-2

15	14	6	5	4	0	15	14	6	5	4	0
1	1000000	00	0	000)10	 1	10000	0000	0	000	010

m	р	прим.
1,100000000	0,00010	$X = -2$, ΠK
1,100000000	0,00010	$Y=-2$, ΠK
	00,00010	$p_{X} - p_{Y} = 0$, порядки одинаковы
	11,11110	$p\chi - p\gamma = 0$, Порядки одинаковы
	00,00000	
11,100000000		m - m' + m' MUK
11,100000000		$m_R = m_X' + m_Y'$, МДК
11,000000000		
<u>11</u> ,000000000	0,00010	Получить модуль мантиссы для представления в ПК!
<u>01</u> ,000000000	0,00010	Нормализовать модуль! $m_R \leftarrow m_R \gg 1$; $p_R \leftarrow p_R + 1$
1,100000000	0,00011	Рез-т!

15	14	6	5	4	0
1	1000000	00	0	000	011

ПРС (переполнение разрядной сетки)

15	17 0	5	4		15	14	5	4	0
0	111100000	0	11111	7	0	110000000	0	11:	101

m	р	прим.
0,111100000	0,11111	<i>X</i> , ПК
0,110000000	0,11101	У , ПК
	+ 00,11111	$p_X - p_Y \ge 0$, МДК, денормализуется m_Y
	11,00011	$p\chi - p\gamma \ge 0$, МДК, денормализуется $m\gamma$
	00,00010	
0,001100000	0,11111	Y', денормализованное
00,111100000		$m_R = m_Y' + m_Y'$, МДК, ПРС мантиссы!
00,001100000		$ III_R - III_X + III_Y$, МДК, ПРС мантиссы:
01,001000000		
<u>01</u> ,001000000	0,11111	Нормализовать! $m_R \leftarrow m_R \gg 1$; $p_R \leftarrow p_R + 1$
00,100100000	?,?????	ПРС порядка — настоящий ПРС в формате с ПЗ!

Генерация ошибки вычислений!

ПМР (потеря младщих разрядов)

15	14 6	5	4	0		15	14	6	5	4	0
0	100001000	1	11	110	+	1	111100	0000	1	11:	111

m	р	прим.
0,100001000	1,11110	<i>X</i> , ПК
1,111100000	1,11111	<i>Y</i> , ПК
	11,00010	n > 0 MIK revenue runverse m
	00,11111	$p_X-p_Y\geq 0$, МДК, денормализуется m_Y
	00,00001	
1,011110000	1,11110	Y', денормализованное
00,100001000		
11,100010000		$m_R = m_X' + m_Y'$, МДК
00,000011000		
00,000011000	1,11110	Нормализовать! $m_R \leftarrow m_R \ll 1$; $p_R \leftarrow p_R - 1$
<u>00</u> ,000110000	1,11111	Нормализовать! $m_R \leftarrow m_R \ll 1$; $p_R \leftarrow p_R - 1$
<u>00</u> ,001100000	?,?????	p_R за пределом представления отрицательных чисел в ПК!

$X + Y = X, Y \neq 0$?

15		5	4 (15	14 6	5	4 0	
0	111000000	0	11000	0	110000000	0	01110	

m	р	прим.
0,111000000	0,11000	$X = 7 \cdot 2^{21}$, ПК
0,110000000	0,01110	$Y = 3 \cdot 2^{12}$, ПК
	_ 00,11000	$ p_{X}-p_{Y} \geq 9$, МДК, m_{Y} денормализуется в 0
	11,10010	$ p\chi - p\gamma \ge 9$, MAR, my denopmanusyers is 0
	00,01010	
0,000000000	0,11000	Y' = 0?

15	14	6	5	4	0
0	1110000	00	0	110	000

Характеристика

$$X = m_X \cdot 2^{p_X}$$
.

Диапазон представления порядка p_X в n-разрядной сетке будет 1 :

$$p_X \in [-2^{n-1}, +(2^{n-1}-1)]$$

Характеристика получается из порядка прибавлением фиксированной поправки Δ , такой, что левая граница представления обращается в ноль. Таким образом,

характеристика c_X — всегда положительное число.

$$c_X = p_X + \Delta, \tag{1}$$

где
a
 $\Delta = +2^{n-1}$, а $c_{X} \in [0,2^{n}-1]$.

^аОпять же только в случае использования дополнительного кода

¹Если использовать дополнительный код

Свойства *п*-разрядной характеристики

- Характеристика положительное число.
- Разность характеристик равна разности порядков.
- Если в процессе нормализации (или денормализации) порядок увеличивается (или уменьшается), то то же самое происходит и с характеристикой.
- Если для работы с характеристиками использовать ДК или МДК, о ПРС при нормализации легко судить по знаковому разряду: он не должен быть 1.
- Если использвется поправка $\Delta = 2^{n-1}$, то характеристика получается из дополнительного кода порядка инверсией знакового разряда.

Формат для примеров

15	14	6	5	0
X	XXXXXXXX	X	XXX	XXX

- Разряды нормализованной мантиссы в прямом коде хранятся в разрядах [15 : 6].
- Характеристика хранится в разрядах [5:0].
- $\Delta = 2^5 = 32 = (100000)_2$

Целое, без потерь $\Delta = 2^5 = 32$

Целое, с потерями $\Delta = 2^5 = 32$

Дробное, без потерь $\Delta = 2^5 = 32$

Дробное, с потерями $\Delta = 2^5 = 32$

Ноль

$$X + Y = m_X \cdot 2^{c_X - \Delta} + m_Y \cdot 2^{c_Y - \Delta}$$

Характеристики чисел выравниваются до большей, мантисса числа с меньшей характеристикой сдвигается вправо на модуль разности характеристик.

$$\begin{cases} (c_X - c_Y) \geq 0, & m_Y' \leftarrow (m_Y \gg |c_X - c_Y|), m_X' \leftarrow m_X, \\ (c_X - c_Y) < 0, & m_X' \leftarrow (m_X \gg |c_X - c_Y|), m_Y' \leftarrow m_Y. \end{cases}$$

- ② Получившиеся мантиссы складываются $m_R = m_X' + m_Y'$. При этом характеристика результата: $c_R = \max(c_X, c_Y)$.
- Выполняется нормализация результата, если он получился не нормализованым.

13+57

15	14 6	5	0		15	14	6	5	0
0	110100000	100	0100	[0	11100	1000	100)110

m	с	прим.
0,110100000	100100	X = 13
0,111001000	100110	Y = 57
	0,100100	$c_X - c_Y < 0$, ДК, денормализуется m_X
	1,011010	$c\chi = c\gamma < 0$, дк, денормализуется $m\chi$
	1,111110	
0,001101000	0,100110	X', денормализованное
00,001101000		$m_{R}=m_{X}^{\prime}+m_{Y}^{\prime}$, в МДК, ПРС!
00,111001000		$m_R = m_X + m_Y$, b MAR, III C:
01,000110000		
<u>01</u> ,000110000	0,100111	Нормализовать! $m_R \leftarrow m_R \gg 1$; $c_R \leftarrow c_R + 1$
0,100011000	100111	Рез-т!

15	14	6	5	0
0	10001100	00	100	111

-17+14

15	14 6	5 0	15	14	6	5 0
1	100010000	100101	0	11100000	00	100100

m	с	прим.
1,100010000	100101	X = -17
0,111000000	100100	Y=14
	0,100101	s s >0 TK revenue surverses m
	1,011100	$c_X-c_Y\geq 0$, ДК, денормализуется m_Y
	0,000001	
0,011100000	0,100101	У', денормализованное
11,011110000		m - m/ + m/ MIK
00,011100000		$m_R = m_X' + m_Y'$, МДК
11,111010000		
<u>11</u> ,111010000	0,100101	Получить модуль мантиссы для представления в ПК!
00,000110000	0,100101	Нормализовать модуль! $m_R \leftarrow m_R \ll 1$; $c_R \leftarrow c_R - 1$
00,001100000	0,100100	Нормализовать модуль! $m_R \leftarrow m_R \ll 1$; $c_R \leftarrow c_R - 1$
<u>00</u> ,011000000	0,100011	Нормализовать модуль! $m_R \leftarrow m_R \ll 1$; $c_R \leftarrow c_R - 1$
1,110000000	100010	Рез-т!

15	14	6	5	0
1	11000000	0	100	010

ПРС (переполнение разрядной сетки)

15	14 6	5	0	_ 1	5	14	6	5	0	
0	111100000	111	111111)	110000000		111	111101	

m	с	прим.
0,111100000	111111	X
0,110000000	111101	Y
	+ 0,111111	$c_X-c_Y\geq 0$, ДК, денормализуется m_Y
	1,000011	$\zeta \chi - \zeta \gamma \geq 0$, $\zeta \chi \chi$, денормализуется $m\gamma$
	0,000010	
0,001100000	0,111111	Y', денормализованное
00,111100000		$m_R = m_Y' + m_Y'$, МДК, ПРС мантиссы!
00,001100000		$m_R = m_\chi + m_\gamma$, where the matrices is
01,001000000		
<u>01</u> ,001000000	0,111111	Нормализовать! $m_R \leftarrow m_R \gg 1$; $c_R \leftarrow c_R + 1$
00,100100000	<u>1</u> ,000000	$c_R < 0$, выход за правую границу представления — ПРС!

Генерация ошибки вычислений!

ПМР (потеря младщих разрядов)

15	14 0	5	0		15	14	6	5	0
0	100001000	0000	010	+[1	11110	0000	000	001

m	С	прим.
0,100001000	000010	X
1,111100000	000001	Y
	0,000010	S. S. S. MILK ROUGHAS BUDGETS B.
	1,111111	$c_X - c_Y \ge 0$, МДК, денормализуется m_Y
	0,000001	
1,011110000	0,000010	У', денормализованное
00,100001000		m m/ _ m/ MПК
11,100010000		$m_R = m_X' + m_Y'$, МДК
00,000011000		
00,000011000	0,000010	Нормализовать! $m_R \leftarrow m_R \ll 1$; $c_R \leftarrow c_R - 1$
<u>00</u> ,000110000	0,000001	Нормализовать! $m_R \leftarrow m_R \ll 1$; $c_R \leftarrow c_R - 1$
00,001100000	0,000000	Нормализовать! $m_R \leftarrow m_R \ll 1$; $c_R \leftarrow c_R - 1$
<u>00</u> ,011000000	1,111111	$c_R < 0$, выход за левую границу представления — ПМР!
	11	F 14 6 F 0