Cotas superiores mínimas

Definición 1.1. Un conjunto A de números reales está acotado superiormente si existe un número x tal que

 $x \ge a$ para todo a de A.

este número *x* se denomina una cota superior de *A*.

A está acotado superiormente si y sólo si existe un número x que es una cota superior de A.(y en este caso existirán muchas cotas superiores de A);

Definición 1.2. Un número *x* es una cota superior mínima de *A* si

- (1) x es una cota superior de A,
- (2) si y es una cota superior de A, entonces $x \le y$.

El término **supremo** de A es sinónimo al de cota superior mínima y tiene una ventaja: se puede abreviar mediante un símbolo muy adecuado

sup A

Si x e y son ambos cotas superiores mínimas de A, entonces x = y.

Demostración.- En efecto, en este caso

 $x \le y$, ya que y es una cota superior, y x es una cota superior mínima,

 $y \le x$ ya que x es un cota superior, e y es una cota superior mínima.

por lo tanto, x = y.

Definición 1.3. Un conjunto A de números reales está acotado inferiormente si existe un número x tal que

 $x \le a$ para todo a de A.

Dicho número x se denomina una cota inferior de A.

Definición 1.4. Un número x es la cota inferior máxima de A si

- **(1)** *x* es una cota inferior de *A*, y
- (2) si y es una cota inferior de A, entonces $x \ge y$.

La cota inferior máxima de A se denomina también el **ínfimo** de A, abreviadamente

 $\inf A$

Propiedad .1 (Propiedad de la cota superior mínima). Si A es un conjunto de números reales, $A \neq \emptyset$, y A está acotado superiormente, entonces A posee una cota superior mínima.

El enorme significado de P13 se hará patente sólo de manera gradual, aunque ya estamos en condiciones de comprobar su importancia dando las demostraciones que omitimos en el Capítulo 7.

Teorema 7.1. Si f es continua en [a, b] y f(a) < 0 < f(b), entonces existe algún número x de [a, b] tal que f(x) = 0.

Demostración.- La demostración es tan sólo una versión rigurosa del método esbozado al final del capítulo 7: localizaremos el menor número x de [a,b] tal que f(x)=0. Definamos el conjunto A, de la manera siguiente:

$$A = \{x : a \le x \le b, \text{ y } f \text{ negativa en en el intervalo } [a, x] \}.$$

Obviamente $A \neq \emptyset$ ya que a pertenece a A; de hecho, existe un $\delta > 0$ tal que A contiene a todos los puntos x que satisfacen $a \leq x < a + \delta$ ya que f es continua en [a,b] y f(a) < 0. Análogamente, b es una cota superior de A y, de hecho, existe un $\delta > 0$ tal que todos los puntos x que satisfacen $b - \delta < x \leq b$ son cotas superiores de A; esto también se deduce del Problema 6-16, ya que f(b) > 0.

A partir de estas observaciones se deduce que A posee cota superior mínima α y que $a < \alpha < b$. Ahora demostraremos que $f(\alpha) = 0$, excluyendo las posibilidades $f(\alpha) < 0$ y $f(\alpha) > 0$.

Supongamos primero que $f(\alpha) < 0$. Según el teorema 6-3, existe un $\delta > 0$ tal que f(x) < 0 si $\alpha - \delta < x < \alpha + \delta$. Ha de existir un número x_0 de A que satisface $\alpha - \delta < x_0 < \alpha$ (ya que sino α no sería la mínima cota superior de A). Esto significa que f es negativa en todo el intervalo $[a, x_0]$. Pero si x_1 es un número situado entre α y $\alpha + \delta$, entonces f también es negativa en todo el intervalo a f. Pero esto contradice el hecho de que f0 sebe ser falsa.

Supongamos ahora que $f(\alpha) > 0$. Entonces existe un número $\delta > 0$ tal que f(x) > 0 si $\alpha - \delta < x < \alpha + \delta$. Una vez más, sabemos que existe un x_0 de A que satisface $\alpha - \delta < x_0 < \alpha$; pero esto significa que f es negativa en $[a, x_0]$, lo cual es imposible ya que $f(x_0) > 0$. Así pues, la suposición de que $f(\alpha) > 0$ conduce a una contradicción, quedando sólo la posibilidad de que $f(\alpha) = 0$.

Las demostraciones de los teoremas 2 y 3 del capítulo 7 requieren un sencillo resultado preliminar, que va a desempeñar una función muy similar a la del teorema 6-3 en la demostración anterior.

Teorema 8.1. Si f es continua en a, existe un número $\delta > 0$ tal que f está acotada superiormente en el intervalo $(a - \delta, a + \delta)$.

Demostración.- Como el $\lim_{x\to a}f(x)=f(a)$, para cada $\epsilon>0$, existe un $\delta>0$ tal que, para todo x,

si
$$|x - a| < \delta$$
, entonces $|f(x) - f(a)| < \epsilon$,

Tan sólo es necesario aplicar esta propiedad a algún ϵ en particular, por ejemplo $\epsilon=1$. Deducimos pues que existe un $\delta>0$ tal que, para todo x,

si
$$|x - a| < \delta$$
, entonces $|f(x) - f(a)| < 1$,

y, en particular, si $|x-a| < \delta$ entonces f(x) - f(a) < 1. Esto completa la demostración: en el intervalo $(a - \delta, a + \delta)$ la función f está acotada superiormente por f(a) + 1.

Por supuesto, ahora podríamos demostrar también que f está acotada inferiormente en algún intervalo $(a-\delta,a+\delta)$, concluyendo, por tanto, que f está acotada en algún intervalo abierto que contiene a a. En este sentido, cabe destacar en particular la observación de que si $\lim_{x\to a^+}$, entonces existe un $\delta>0$ tal que f está acotada en el conjunto $\{x:a\le x< a+\delta\}$, pudiendo hacerse una observación análoga si $\lim_{x\to b^-}=f(b)$.

Teorema 7.2. Si f es continua en [a, b], entonces f está acotada superiormente en [a, b].

Demostración.- Sea,

$$A = \{x : a \le x \le b \text{ y } f \text{ está acotada superiormente en } [a, x] \}$$

Obviamente $A \neq \emptyset$ (ya que a pertenece a A), y está acotada superiormente por b, de manera que A posee una cota superior mínima α . Observemos que estamos aplicando el término acotado superiormente tanto al conjunto A, localizado en el eje horizontal, como a la función f, es decir, a conjuntos del tipo $\{f(y): a \leq y \leq x\}$, localizados en el eje vertical.

La primera etapa de la demostración consiste en probar que $\alpha = b$. Supongamos, por el contrario, que a < b. Según el teorema 1 existe un $\delta > 0$ tal que f está acotada en $(a - \delta, a + \delta)$. Como α es la cota superior mínima de A existe algún x_0 de A que satisface $\alpha - \delta < x_0 < \alpha$. Esto significa que f está acotada en $[a, x_0]$. Pero si x_1 es cualquier número tal que $\alpha < x_1 < \alpha + \delta$, entonces f también está acotada en $[x_0, x_1]$. Por lo tanto f está acotada en $[a, x_1]$, de manera que f pertenece a f0, lo que contradice el hecho de que f1 sea una cota superior a f2. Esta contradicción demuestra que f3 Debemos mencionar un detalle: en la demostración hemos puesto implícitamente que f3 de manera que f4 está definida en algún intervalo f4 (f3), la posibilidad f3 f4 puede excluirse de manera similar, utilizando el hecho de que existe un f3 o tal que f4 está acotada en f5 acotada en f6.

La demostración todavía no es completa; únicamente sabemos que f está acotada en [a, x] para todo x < b, no necesariamente que f está acotada en [a, b]. Sin embargo, sólo es necesario añadir una pequeña observación.

Existe un $\delta > 0$ tal que f está acotada en $\{x : b - \delta < x \le b\}$. Existe también un x_0 de A tal que $b - \delta < x_0 < b$. De manera que f está acotada en $[a, x_0]$ y también en $[x_0, b]$, por tanto f está acotada en [a, b].

Teorema 7.3. Si f es continua en [a,b], entonces existe un número g de [a,b] tal que $f(g) \ge f(g)$ para todo g de [a,b].

Demostración.- Sabemos que f está acotada en [a,b], lo que significa que le conjunto

$${f(x) : x \text{ pertenezca a } [a, b]}$$

está acotado. Además, dicho conjunto es, obviamente, distinto del \emptyset , de manera que admite una cota superior mínima α . Como $\alpha \ge f(x)$ para x de [a,b], basta demostrar que $\alpha = f(y)$ para algún y de [a,b]. Supongamos, por el contrario, que $\alpha \ne f(y)$ para todo y de [a,b]. Entonces la función g definida mediante

$$g(x) = \frac{1}{\alpha - f(x)}, \quad x \in [a, b]$$

es continua en [a,b], ya que el denominador de la expresión del lado derecho de la igualdad nunca vale 0. Por otra parte, α es la mínima cota superior de $\{f(x): x \text{ pertenezca a } [a,b]\}$, esto significa que

para cada
$$\epsilon > 0$$
 existe un x de $[a, b]$ con $\alpha - f(x) < \epsilon$.

Esto, a su vez, significa que

para cada
$$\epsilon > 0$$
 existe un x de $[a, b]$ con $g(x) > 1/\epsilon$.

Pero esto quiere decir que g no está acotada en [a, b], lo que contradice el resultado del teorema anterior.

Teorema 8.2. N no está acotado superiormente.

Demostración.- Supongamos que $\mathbb N$ estuviera acotado superiormente. Como $\mathbb N=\emptyset$, existiría una cota superior mínima α de $\mathbb N$. Entonces

$$\alpha \ge n$$
 para todo n de \mathbb{N} .

Por consiguiente,

$$\alpha \ge n + 1$$
 para todo n de \mathbb{N} ,

ya que si n pertenece a \mathbb{N} , n+1 también. Pero esto significa que

$$\alpha - 1 \ge n$$
 para todo n de \mathbb{N} ,

lo cual quiere decir que $\alpha-1$ también es una cota superior de \mathbb{N} , lo que contradice el hecho de que α sea la cota superior mínima de \mathbb{N} .

Teorema 8.3. Para cualquier $\epsilon > 0$ existe un número natural $n \operatorname{con} 1/n < \epsilon$.

Demostración.- Supongamos que no fuese así; entonces $1/n \ge \epsilon$ para todo n de \mathbb{N} . Por tanto, $n \le 1/\epsilon$ para todo n de \mathbb{N} . Pero esto significa que $1/\epsilon$ es una cota superior de \mathbb{N} , lo cual contradice el resultado del teorema 8.2.

8.1 Problemas

- 1. Hallar la cota superior mínima y la cota inferior máxima (si existe) de los siguientes conjuntos. Decida también cuáles de ellos poseen un elemento máximo y un elemento mínimo (es decir, en qué casos la cota superior mínima y cota inferior máxima pertenecen al conjunto).
 - (i) $\left\{\frac{1}{n}: n \text{ en } \mathbb{N}\right\}$.

Respuesta.- Sea A el conjunto dado. Vemos que el sup $A = \max A = 1$, inf A = 0 y min A no existe.

(ii)
$$\left\{\frac{1}{n}: n \text{ en } \mathbb{Z} \text{ y } n \neq 0\right\}$$
.

Respuesta.- Sea A el conjunto dado. Podemos ver que sup $A = \max A = 1$ y inf $A = \min A = -1$.

8.1. PROBLEMAS 5

(iii) $\{x : x = 0 \text{ o } x = 1/n \text{ para algún } n \text{ en } \mathbb{N}\}.$

Respuesta.- Llamemos A al conjunto dado. Todos los números están en el intervalo [0,1]. De donde el 0 es el mayor límite inferior y el 1 es el menor límite superior, es decir, sup $A = \max A = 1$ y inf $A = \min A = 0$.

(iv)
$$\{x: 0 \le x \le \sqrt{2} \text{ y } x \text{ racional } \}$$
.

Respuesta.- Sea A el conjunto dado. En este caso 0 es el mayor límite inferior y está contenido en el conjunto y $\sqrt{2}$ es el límite superior mínimo pero no está en el conjunto, por lo tanto, inf $A=\min A=0$ y sup $A=\sqrt{2}$.

(v) $\{x: x^2 + x + 1 \ge 0\}.$

Respuesta.- No existe ni máximo ni mínimo, tampoco supremo o ínfimo.

(vi)
$$\{x: x^2 + x - 1 < 0\}.$$

Respuesta.- Sea $A = \{x : x^2 + x - 1 < 0\}$, entonces se tiene

$$x^2 + x - 1 < 0 \Leftrightarrow \frac{-1 - \sqrt{5}}{2} < x < \frac{-1 + \sqrt{5}}{2}$$

. Por lo tanto sup $A=\frac{-1-\sqrt{5}}{2}$ y $A=\frac{-1+\sqrt{5}}{2}$ los dos no contenidos en A.

(vii)
$$\{x: x < 0 \text{ y } x^2 + x - 1 < 0\}.$$

Respuesta.- Designemos al conjunto dado con A. Luego ya que

$$x < 0$$
 y $x^2 + x - 1 < 0 \Leftrightarrow \frac{-1 - \sqrt{5}}{2} < x < 0$

Entonces sup $A = 0 \notin A$, inf $A = \frac{-1 - \sqrt{5}}{2} \notin A$.

(viii)
$$\left\{\frac{1}{n}+(-1)^n:n \text{ en } \mathbb{N}\right\}$$
.

Respuesta.- Sea A el conjunto designado y sea $a_n = \frac{1}{n} + (-1)^n$. Entonces $a_1 = 0$, para indices pares $a_n = \frac{1}{n} + 1$. La sucesión es decreciente, converge en 1 y el mayor elemento se obtiene en n = 2, $a_2 = \frac{3}{2}$. Para indices impares $a_n = \frac{1}{n} - 1$, la secuencia es decreciente, converge en -1 pero este número no se consigue, por lo que

$$-1 < a_n \le \frac{3}{2}.$$

De donde concluimos que inf A = -1 pero no existe el mínimo y sup $A \max A = \frac{3}{2}$.