

Этикетка

КСНЛ.431279.007 ЭТ

Микросхема 1564ЛП22У1ЭП

Микросхема интегральная 1564ЛП22У1ЭП Функциональное назначение: 8-разрядный двунаправленный мажоритарный элемент

Схема расположения выводов Номера выводов показаны условно

Условное графическое обозначение

Таблица назначения выводов

№	Обозначение	Назначение вывода	№	Обозначен	Назначение
вывода	вывода		вывода	ие вывода	вывода
1	0V	Общий	25	Ucc	Питание
2	D1.0	Двунаправленные порты буферов	26	B4	Входы мажоритарного элемента 5-ой
3	D0.0	ИС 1-ой ячейки	27	C4	ячейки
4	A0	Дополнительный выход 1-ой	28	A4	Дополнительный выход 5-ой ячейки,
		ячейки, независимый от нап-			независимый от направления работы
		равления работы буферов ИС			буферов ИС
5	C0	Входы мажоритарного элемента	29	D0.4	Двунаправленные порты буферов ИС
6	B0	1-ой ячейки	30	D1.4	5-ой ячейки
		Двунаправленные порты буферов			Входы мажоритарного элемента 6-ой
7	D1.1	ИС 2-ой ячейки	31	B5	ячейки
8	D0.1		32	C5	
9	A1	Дополнительный выход 2-ой	33	A5	Дополнительный выход 6-ой ячейки,
		ячейки, независимый от нап-			независимый от направления работы
		равления работы буферов ИС			буферов ИС
10	C1	Входы мажоритарного элемента	34	D0.5	Двунаправленные порты буферов ИС
11	B1	2-ой ячейки	35	D1.5	6-ой ячейки
12	M	Вход выключения входов ма-	36	U_{cc}	
		жоритарных элементов ячеек ИС			Питание
13	0V	Общий	37	nc	Свободный
14	D1.2	Двунаправленные порты буферов	38	0E.0	Вход задания направления работы
		ИС 3-ей ячейки			буферов ИС
15	D0.2		39	В6	
16	A2	Дополнительный выход 3-ей	40	C6	Входы мажоритарного элемента 7-ой
		ячейки, независимый от нап-			ячейки
		равления работы буферов ИС			
17	C2	Входы мажоритарного элемента	41	A6	Дополнительный выход 7-ой ячейки,
		3-ей ячейки			независимый от направления работы
					буферов ИС
18	B2		42	D0.6	Двунаправленные порты буферов ИС
19	D1.3	Двунаправленные порты буферов	43	D1.6	7-ой ячейки
20	D0.3	ИС 4-ой ячейки	44	B7	Входы мажоритарного элемента 8-ой
					ячейки

21	A3	Дополнительный выход 4-ой	45	C7	
		ячейки ,независимый от			
		направления работы буферов ИС			
22	C3	Входы мажоритарного элемента	46	A7	Дополнительный выход 8-ой ячейки,
		4-ой ячейки			независимой от направления работы
					буферов ИС
23	В3		47	D0.7	Двунаправленные порты ИС 8-ой
24	nc	Свободный	48	D1.7	ячейки

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)

1.1 Основные электрические парамет Наименование параметра, единица измерения, режим измерения	Буквенное	Норма		
	обозначение	не менее	не более	
1	2	3	4	
1. Максимальное выходное напряжение низкого уровня, В, при:				
$U_{CC}=2,0 \text{ B}, U_{IL}=0,3 \text{ B}, U_{IH}=1,5 \text{ B}, I_0=20 \text{ MKA}$	$U_{OL\;max}$	-	0,10	
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15, I_{O} = 20 mkA		-	0,10	
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 mkA		-	0,10	
при:				
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} =6,0 MA		-	0,26	
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 7,8 MA		-	0,26	
2. Минимальное выходное напряжение высокого уровня, В, при:	**			
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, U_{IH}=1.5 \text{ B}, I_{O}=20 \text{ MKA}$	$ m U_{OHmin}$	1,9	-	
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15, I_{O} = 20 MKA		4,4	-	
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 mKA		5,9	-	
при:		2.00		
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} =6,0 mA		3,98	-	
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} =7,8 mA		5,48	-	
3. Входной ток низкого уровня, мкА, при:	*			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IL}		/ 0.1/	
- по выходам M, OE, B0-B7, C0-C7		-	/-0,1/	
- по выходам D0.0-D0.7, D1.0-D1.7		-	/-0,5/	
4. Входной ток высокого уровня, мкА, при:	т.			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IH}	-	0.1	
- по выходам M, OE, B0-B7, C0-C7			0,1 5,0	
- по выходам D0.0-D0.7, D1.0-D1.7			3,0	
5. Ток потребления, мкА, при $U_{CC} = 6,0 \; B, U_{IL} = 0 \; B, U_{IH} = U_{CC}$	ĭ		2,0	
6. Динамический ток потребления, мА, при:	I_{CC}	-	2,0	
$U_{\rm CC} = 6.0 \text{B}, f = 1.0 \text{M}\Gamma \text{ц}$	I_{OCC}	_	20,0	
7. Время задержки распространения сигнала от вывода D0.i, или от D1.i до	t _{PHL}	-	20,0	
вывода А і при включении и выключении нс, при:	t _{PLH}			
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$	PLH	_	18	
8. Время задержки распространения сигнала от вывода D0.i, до вывода D1.i	t _{PHL1}		10	
или от вывода D1.i до вывода D0.i при включении и выключении нс,М=0	$t_{\rm PLH1}$			
при:	PLHI			
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$		_	30	
9. Время задержки распространения сигнала от вывода D0.i, до вывода D1.i	t _{PHL2}			
или от вывода D1.i до вывода D0.i при включении и выключении нс, M=1	$t_{\rm PLH2}$			
при:	VI LI12			
$U_{CC} = 4.5 \text{ B}, C_L = 50 \Pi \Phi$		_	27	
10. Время задержки распространения сигнала от вывода Ві, до вывода Сі до	t _{PHL3.}		-	
вывода D0.і до вывода D1.і при включении и выключении нс, при:	t _{PLH3}			
$U_{CC} = 4.5 \text{ B, } C_L = 50 \text{ п}\Phi$	TEID	_	25	
11. Задержка по переходу выходов D0.i или D1.i в высокоимпедансное	$t_{PLZ,}$			
состояние LZ или HZ, нс, при:	t _{PHZ}			
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$	****	-	18 ¹⁾	
12. Сопротивление триггерной петли в режиме хранения логической <1>	R_{ZL}			
или логического <0>, кОм	R _{ZH}	6	20	
9. Входная емкость, пФ, при: U _{CC} = 0 В, для любого входа или	C _I	-	10	
двунаправленного вывода микросхемы	-			
1) — нормы по параметров 11 не проверяются, параметр гарантируется	конструкцией			

1.2	2 (Содержание	драгоценных	металлов	В	1000	шт.	микросхем
-----	-----	------------	-------------	----------	---	------	-----	-----------

MM.

золото	г/м
в том числе:	
серебро	Γ.
золото	Γ.

на 48 выводах длиной

2 НАДЕЖНОСТЬ

- 2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых
- ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) °C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ не менее 135000ч.
- 2.2 Гамма процентный срок сохраняемости ($T_{\rm C_7}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-26ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы	1564ЛП22У1ЭП с	оответствуют те	хническим усл	овиям АЕЯР	.431200.424-26ТУ	и признаны	годными д	ля эксплуатации.

Приняты по от (извещение, акт и др.) (дата)	-
Место для штампа ОТК	Место для штампа ПЗ
Место для штампа « Перепроверка произведена	у (дата)
Приняты по от от (дата)	_
Место для штампа ОТК	Место для штампа ПЗ

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ