Capítulo 9

Conexidade – Teorema de Menger

Seja G = (V, A) um grafo conexo, e $S \subset V$ ou $S \subset A$. Se G - S é desconexo, então dizemos que S separa G. Se em G - S dois vértices x e y pertencem a components distintos, então dizemos que S separa x de y. Exemplos:

- Para $k \geq 2$, dizemos que G é k-conexo se $G \cong K_{k+1}$ ou G tem pelo menos k+2 vértices e não existe $S \subset V$, |S| = k-1, tal que S separa G. [Um grafo G é 1-conexo se e só se G é conexo e não trivial.]
- Para $k \geq 2$, dizemos que G é k-aresta-conexo se G tem pelo menos 2 vértices e não existe $F \subset A$, $|F| \leq k-1$ tal que F separa G. Grafos com aresta-de-corte são grafos 1-aresta-conexos.
- O maior valor de k para o qual G é k-conexo (resp. k-aresta-conexo) é a **conexidade** (resp. **aresta-conexidade**) de G, denotado por $\kappa(G)$ (resp. $\kappa'(G)$). [OBS: em inglês, connectivity e edge-connectivity.]

[Se G é k-conexo, então $\kappa(G) \geq k$.]

[Se G é k-aresta-conexo, então $\kappa(G) \geq k$.]

- Def: $\kappa(G) = 0$ se G é trivial ou desconexo.
- Def: $\kappa'(G) = 0$ se G é trivial ou desconexo.
- (Exercício 1) $\kappa(G) = \kappa'(G)$ se G é uma árvore ou um circuito ou um grafo completo.
- \bullet (Exercício 2) Para todo grafo G, temos que

$$\kappa(G) - 1 \le \kappa(G - v) \le \kappa(G) \ \forall v \in V(G).$$

$$\kappa'(G) - 1 \le \kappa'(G - e) \le \kappa(G) \ \forall e \in A(G).$$

Lembramos que $\delta(G)$ denota o grau mínimo de G.

Proposição 9.1 Para qualquer grafo G, temos que

$$\kappa(G) \le \kappa'(G) \le \delta(G)$$
.

Prova. (a) É fácil ver que $\kappa'(G) \leq \delta(G)$. Basta notar que se v é um vértice de grau mínimo em G, então o conjunto das arestas incidentes a v é um conjunto que separa v dos demais vértices de G. Portanto, o grau mínimo de G é um limitante para $\kappa'(G)$.

(b) Vamos provar que $\kappa(G) \leq \kappa'(G)$. Suponhamos que G seja conexo. Seja $k := \kappa'(G)$, e seja $F \subset A(G)$ um conjunto separador com k arestas. Sejam X e Y conjuntos disjuntos de vértices de V(G) tais que $X \cup Y = V(G)$, e as arestas de F são da forma $x_i y_j$, onde $x_i \in X$ e $y_j \in Y$. Seja $X' \subseteq X$ o conjunto dos extremos das arestas em F contidos em X. Claramente, $|X'| \leq k$.

Se G-X' é desconexo, então $\kappa(G) \leq k$, e a prova está completa. Caso contrário, temos que X=X'. Neste caso, para cada $x_i \in X'$, temos que $g(x_i) \leq k$ (pense por que vale isso). Como pelo item (a), $\delta(G) \geq k$, concluímos que $g(x_i) \geq k$, donde segue que $g(x_i) = k$ para todo x_i em X' (e $\delta(G) = k$).

Tome x_1 em X', e chame de Z o conjunto dos k vizinhos de x_1 . Se G-Z é desconexo, então Z é um conjunto separador de G, e temos que $\kappa(G) \leq k$. Caso contrário, G-Z é um grafo trivial (formado apenas pelo vértice x_1). Como $\delta(G) = k$, todos os vértices de Z devem ter grau k. Neste caso, $G \cong K_{k+1}$, e portanto $\kappa(G) = k$.

Se P é um caminho de x para y, dizemos que P é um xy-caminho. Se P e Q são xy-caminhos, dizemos que P e Q são independentes se P e Q têm apenas os vértices x e y em comum.

Teorema 9.2 (Menger, 1927) (um resultado min-max)

Seja G um grafo conexo, e s, t vértices distintos de G.

- (a) Se s e t não são adjacentes, então o número mínimo de vértices que separam s de t é igual ao número máximo de st-caminhos independentes.
- (b) O número mínimo de arestas que separam s de t é igual ao número máximo de st-caminhos arestas-disjuntos.

Prova. [OBS: Há provas que fazem uso do Teorema max-flow min-cut, e que são feitas primeiramente para o caso de grafos orientados. Desses resultados são deduzidos os resultados para o caso não-orientado - caso da versão aqui considerada. Veremos uma prova sem usar tal teorema.]

Prova da afirmação (a).

Seja G um grafo conexo, e s, t dois vértices distintos de G, não-adjacentes.

Seja k o número mínimo de vértices que separam s de t.

Se k=1, o resultado é imediato. Suponha que $k\geq 2$. Suponha que a afirmação (a) seja falsa. Tome $k\geq 2$ mínimo tal que existe um contra-exemplo para a afirmação (a) para tal k. Seja G um contra-exemplo (para esse k mínimo) com o menor número possível de arestas. Então em G há no máximo k-1 st-caminhos independentes. Além disso, não existe x em V(G) tal que x é adjacente a s e a t; pois em caso contrário, G-x seria um contra-exemplo para k-1.

Seja $W \subset V(G)$ um conjunto que separa s de t, tal que |W| = k.

 \bullet Suponha que nem s e nem t sejam adjacentes a todos os vértices de W.

Seja G_s (resp. G_t) o componente de G-W que contém s (resp. t).

Construa grafos G_1 e G_2 da seguinte forma:

$$G_1 = (V_1, A_1)$$
, onde $V_1 = \{s'\} \cup W \cup V(G_t)$, e $A_1 = \{s'w : w \in W\} \cup A(G[W \cup V(G_t)])$;

$$G_2 = (V_2, A_2)$$
, onde $V_1 = \{t'\} \cup W \cup V(G_s)$, e $A_2 = \{wt : w \in W\} \cup A(G[W \cup V(G_s)])$.

Em G_1 o número mínimo de vértices para separa s' de t é k. Como G é um contraexemplo mínimo, então em G_1 há k s't-caminhos independentes. As seções desse caminhos de W para t só têm o vértice t em comum. Em particular, para cada $w \in W$, um desses caminhos é um wt-caminho.

De maneira análoga, concluímos que em G_2 há um sw-caminho para $w \in W$. Concatenando, para cada $w \in W$, um sw-caminho (em G_2 com um wt-caminho (em G_1), obtemos k st-caminhos em G, contrariando nossa hipótese. Vamos então analisar a outra possibilidade que resta.

 $\bullet \bullet$ Para cada conjunto W com k vértices que separa s de t, pelo menos um entre s e t é adjacente a todos os vértices de W.

Seja $P = (s, x_1, x_2, ..., x_p, t)$ um st-caminho mais curto em G. Então $p \geq 2$, e pela minimalidade de G, no grafo $G - x_1x_2$ podemos encontrar um conjunto W_0 de k-1 vértices que separa s de t. Note que W_0 não separa s de t em G (senão G teria k-1 vértices que separam s de t).

Se W_0 contivesse x_1 (resp. x_2), então W_0 seria um conjunto st-separador de G com k-1 elementos, uma contradição. Logo, $x_1, x_2 \notin W_0$.

Neste caso,

$$W_1 := W_0 \cup \{x_1\}$$
 e

$$W_2 := W_0 \cup \{x_2\}$$

são k-conjuntos que separam s de t.

Pela escolha de P, sabemos que t (resp. s) não é adjacente a x_1 (resp. x_2). Pela hipótese deste caso ($\bullet \bullet$), temos que s (resp. t) é adjacente a todos vértices de W_1 (resp. W_2). Neste caso, tanto s como t são adjacentes a todos os vértices de W_0 . Como $W_0|=k-1\geq 1$, temos uma contradição (pois um vértice de W_0 seria adjacente tanto a s quanto a t, situação que já descartamos inicialmente). Completamos assim a prova da afirmação (a).

Prova da afirmação (b). [Explicação em aula: considerar um grafo-aresta (line-graph) apropriado que se obtém de G e aplicar a afirmação (a).]

Corolário 9.3 [Caracterização de grafos k-conexos e k-aresta-conexos.] Para $k \geq 2$, um grafo G é k-conexo (resp. k-aresta-conexo) se e só se G tem pelo menos 3 vértices e para quaisquer dois vértices g e g de g existem g existem g g existem g existence of g existem g existence of g existence of

Existem 4 versões do Teorema de Menger: para grafos (não-orientados) e para grafos orientados (ou digrafos), e em cada caso temos a versão para caminhos disjuntos nos vértices e para caminhos disjuntos nas arestas. [Veremos isso na aula.]