Please	write	your	first	and	last	name	and	Section	here:	
Name										

Instructions:

- Partial credit will be given only if you show your work.
- Reason out your answers. In many cases, a line or two of justification is enough.
- The questions are roughly in the order in which the material is presented in class, so they are not necessarily ordered easiest to hardest.
- If you get stuck on one, it may be a good idea to move on and come back to that question at the end.
- You may use your prepared notes (1 page, both sides) and a calculator only.

- 1. The number of computer shutdowns during any month has a Poisson distribution, averaging 0.25 shutdowns per month.
 - (a) What is the probability of exactly 1 computer shutdown in a month? (6 points)

 Answer:

$$\frac{e^{-\frac{1}{4}} \left(\frac{1}{4}\right)^1}{1!} = 0.195$$

(b) What is the probability of at least 2 computer shutdowns during the next year? (6 points)

Answer: # Shutdowns in the next year $\sim \text{Pois}(12 \cdot 0.25) = \text{Pois}(3)$ because this is the sum of 12 i.i.d. Pois(0.25) random variables.

$$1 - \left(\frac{e^{-3}(3)^0}{0!} + \frac{e^{-3}(3)^1}{1!}\right) = 0.801$$

(c) During the next year, what is the probability of at least 3 months (out of 12) with exactly 1 computer shutdown in each? Assume the number of shut downs per month are independent. (6 points)

Answer: First, note that this is a binomial-type problem, where the "coin flips" are months and the "probability of success" is $\frac{e^{-\frac{1}{4}}\left(\frac{1}{4}\right)^1}{1!}=0.195$. So the probability is:

$$1 - \left[\binom{12}{0} (0.195)^0 (0.805)^{12} + \binom{12}{1} (0.195)^1 (0.805)^{11} + \binom{12}{2} (0.195)^2 (0.805)^{10} \right] = 0.424$$

2

2. Suppose X and Y are two random variables on the same sample space Ω and their joint pmf is given by this table:

		\boldsymbol{X}			
	1	2	3		
2	1 12	1 6	1 12		
Y 3	$\frac{1}{6}$	0	<u>1</u>		
4	0	$\frac{1}{3}$	0		

(a) Show that X and Y are dependent. (8 points)

Answer: $P(X=2) \cdot P(Y=3) = \frac{1}{2} \cdot \frac{1}{3} \neq 0 = P(X=2, Y=3)$

(b) Give a probability table (like we have above for X and Y) for random variables U and V that have the same marginal distributions as X and Y but are independent. (8 points)

Answer: Using the table above, note that X=1, 2, and 3 with probabilities $\frac{1}{4}$, $\frac{1}{2}$, and $\frac{1}{4}$, respectively. Y=2, 3, and 4 all with probability $\frac{1}{3}$. Now construct U and V having the same marginal distributions as X and Y, and multiply the respective elements together to get the joint distribution table below.

$$\begin{array}{cccccc} V \setminus U & 1 & 2 & 3 \\ 2 & \frac{1}{12} & \frac{1}{6} & \frac{1}{12} \\ 3 & \frac{1}{12} & \frac{1}{6} & \frac{1}{12} \\ 4 & \frac{1}{12} & \frac{1}{6} & \frac{1}{12} \end{array}$$

3. The random number generator on a certain calculator is not well chosen in that values it generates are not adequately described by a distribution uniform on the interval (0,1). Let X =the next value generated by the calculator's random number generator. Suppose the following probability density function (pdf) is a more appropriate model for X:

$$f_X(x) = \begin{cases} c(5-x) & \text{if } 0 < x < 1\\ 0 & \text{otherwise.} \end{cases}$$

(a) Show that $c = \frac{2}{9}$ makes $f_X(x)$ a valid pdf. (7 points)

Answer:

$$1 = \int_0^1 c(5-x)dx = c\left[5x - \frac{x^2}{2}\right]\Big|_0^1 = \frac{9c}{2}$$

so
$$c = \frac{2}{9}$$
.

(b) What is E(X)? (8 points)

Answer:

$$E[X] = \int_0^1 \frac{2x}{9} (5-x) dx = \frac{10x^2}{18} - \frac{2x^3}{27} \Big|_0^1 = \frac{13}{27} = 0.4814$$

(c) Find P(X < .85). Compare this value to what you would get if the calculator truly generated uniform(0,1) values, i.e. give the difference in probabilities. (10 points)

Answer: Integrating $f_X(x)$ from 0 to .85 gives .864. For a uniform(0,1), the probability is .85. So the difference is .014.

- 4. Cows are sent to the slaughterhouse at an average rate of 5 per hour starting at some time t=0. Assume we can model the time between cows being sent using the exponential distribution.
 - (a) What is the probability that it takes more than 20 minutes for the first cow to be sent? (8 points)

Answer: Use the cdf of the exponential distribution, and the fact that 20 mins is one third of an hour:

$$1 - [1 - e^{-5 \cdot \frac{1}{3}}] = 0.189$$

(b) You arrive at time t=2 hours and are told that 11 cows have already been sent. How long should you expect to wait until the next cow enters the slaughterhouse? (8 points)

Answer: The expected value of an Expo(5) distribution is $\frac{1}{5}$, so we should expect to wait one fifth of an hour, or 12 minutes.

(c) Starting from some time t=0, how long do you have to wait to observe the first cow being sent with a probability of 95%? (8 points)

Answer:

$$1 - e^{-5t} = 0.95$$

$$e^{-5t} = 0.05$$

$$t = \frac{\log(0.05)}{-5}$$

$$= 0.599$$

So we need to wait 0.599 hours, or about 35.94 minutes.

- 5. The resistance of an assembly of several resistors connected in series is the sum of the resistances of the individual resistors. Suppose that a large lot of resistors has mean resistance $\mu = 9.91$ ohms and standard deviation of resistances $\sigma = .08$ ohms. Suppose that 30 resistors are randomly selected from this lot and connected in series. Let S = resistance of the assembly. Then $S = X_1 + \ldots + X_{30}$, where $X_i =$ resistance of the ith resistor.
 - (a) Give the mean and standard deviation of S. (8 points)

Answer:

$$E(S)=n\mu=30(9.91)=297.3.$$
 $Var(S)=n\sigma^2=30(.08^2),$ so the standard deviation of S is $\sqrt{30(.08^2)}=\sqrt{30}(.08)=.438$

(b) Approximate the probability that resistance of the assembly exceeds 298.2 ohms. State any results you use. (9 points)

Answer: By the CLT, S is approximately normally distributed with mean and variance given above.

Thus,
$$P(S > 298.2) \approx P(Z > \frac{298.2 - 297.3}{.438}) = P(Z > 2.05) = .0202.$$