Technical Budgeting

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

Week 1

1-1

Technical budgeting

- At some time in our design process, we need to allocate our main requirements
 - How fast?
 - How long?
 - How much?
 - How accurate?
 - How precise?
- The allocation process should not be ad hoc!
- The allocation becomes the requirements for sub elements of our design.
- We can mechanize the process by means of technical budgets...
- ...and the easiest way to do this is to use Excel

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

Week 1

LaBerge's Law #3

- Every engineering problem is a design problem.
- In fact designing solutions is what engineering do!

What's my solution?

- A large part in determining the solution is the process of allocation...
- ...that is, how much of a requirement is accomplished by individual elements of your design.
- For example
- A laptop manufacturer requires a battery life of 5 hours under full load...
- ...and the power supply engineers tell us that 85 W-Hr is the best energy storage possible in the allowed volume.
- What are the design requirements for the processor, memory board, peripherals, screen, disk drive and other components?

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

Week 1

How to proceed?

- I (you) don't know!
- ...yes, this happens in the real world!
- LaBerge's Law #1: Ambiguity!
- Careful consideration of units can point the way

85W-Hr to last 5 hr

$$E = PT$$
 (actually $E = \int p(t) dt$, but that's later!)

$$P = \frac{E}{T} = \frac{85 \text{ W-Hr}}{5 \text{ Hr}} = 17 \text{ W}$$

- That has to be our "bottom line"...
- ...the power consumption has to be less than 17 W.

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

Week 1

What is reasonable?

- Experience might tell us
 - Your experience on similar designs
 - Your co-workers' experience on similar designs
- Research might be needed
 - Look it up
 - •Search the web ... be careful of what you find!
 - Take a similar product and measure it
 - Reverse engineer something that works
- When you start out, you don't have experience, so you're forced to research!

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

Week 1

1.7

First draft DC power budget

DC Pov	ver Budget for Laptop			
Item	Description	Value	Units	Source/Comments
1	Battery Capacity	85	W-Hrs	Dell Latitude 830 battery specification
2	Desired battery life	5	Hrs	User requirement
3	Average power	17	W	Computation item 1/Item 2
4	Motherboard	20	W	engineering est
5	Disk drive	18	W	engineering est
6	DVD drive	14	W	Dell DVD+/-RW specification
7	SVGA LCD screen	15	W	engineering est
8	WiFi	10	W	engineering est
9	Total load	77	W	Sum(item4item8)
10	Design margin	-60	W	Computation item 3-item 9
11	Effective time	1.104	Hrs	Computation item 1/Item 9
12	Surplus(Shortfall)	(3.90)	Hrs	Computation item 2-item 11

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

Week 1

So this doesn't look so good!

- What might be wrong?
 - There are a lot of "engineering estimates"
 - All of the values assume constant operation
- What else might we need to know
 - How about some duty cycles? $\tau = \frac{\text{on time}}{}$ total time
 - For example
 - •Hard drive 5%?
 - •CDROM 10%?
 - Processor 20%
 - •LCD Screen 75%
 - •WiFi 15%

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

DC Pov	ver Budget for Laptop				
Item	Description	Value	τ		Units
1	Battery Capacity	85		85	W-Hrs
2	Desired battery life	5		5	Hrs
3	Average power			17	W
4	CPU	20	20%	4	W
5	Disk drive	18	5%	0.9	W
6	DVD drive	14	10%	1.4	W
7	SVGA LCD screen	15	75%	11.25	W
8	WiFi	10	20%	2	W
9	Total load			19.55	W
10	Design margin			-2.55	W
11	Effective time		-	4.348	Hrs
12	Surplus(Shortfall)		_	(0.65)	Hrs

5

What have we learned?

- We're not far from the goal!
- ...and we might reach it for some users!
- Big draw is Display
 - Can it be reduced?
 - How much will THAT cost?
- 100 W Battery would solve the problem!
 - How much will THAT cost?
 - How big will it be?
- We (I) learned all of this for the investment of about 30 minutes!
- Suggesting that technical budgeting is very effective means of developing our design requirements

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

Week 1

1-11

Technical budgeting gives system insight

- View of all quantitative parameters
- Technical budget is a plan and a tool
- Link budgets for all wireless communications links within the system
- Error budgets for all (sub)systems involving precision measurement
- Timing budgets for all time-critical applications
- Weight budgets for physical subsystems
- DC power or power dissipation budgets for all physical subsystems
- Mass or reaction budgets for chemical processes
- When done well it is self-documenting!

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved. Week 1

Random components in error budget

Must consider both bias (long term) and noise (short term) errors

Small bias, large noise

+/- 0.001 rad

Large bias, Small noise

Accurate, but not precise

Precise, but not accurate

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

ek 1

1.15

PRM angle error budget

- Bias (mean) components ADD
- Noise components (standard deviations) combined in root sum square manner, i.e., by ADDING <u>VARIANCES</u>

$$\overline{x}_{TOTAL} = \sum_{k=1}^{K} \overline{x}_k$$

$$\sigma_{TOTAL} = \sqrt{\sum_{k=1}^{K} \sigma_k^2}$$

• For Gaussian assumption $x_{95} pprox x_{TOTAL} \pm 2\sigma_{TOTAL}$

		Bias	1 sigma Noise	Units
1	Physical antenna alignment	0.15	0.010	mrad
2	Beam steering error	0.20	0.050	mrad
3	Wind motion	0.00	0.100	mrad
4	Monopulse error	0.05	0.200	mrad
5	Monitor error limit	0.25	0.010	mrad
6	Output quantization	0.00	0.014	mrad
7	PRM System Error	0.65	0.230	mrad
				·
8	95th percentile error (assume Gaussian)	1.11		·

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

Week 1

Complicated Iridium S/E link budget

- Iridium is a constellation of low-earth-orbit satellites for cell-phone-like communications
- From constellation orbital parameters, we know the following
 - The minimum elevation angle from the user to the satellite is 8 degrees
 - The maximum distance from the user to any satellite is 2.48 x 10⁶ meters
 - The channel data rate is 50,000 bps
 - The channel operates at 1610-1626.5 MHz

		Item	Value	Units
Example 1,	1	Transmitter power	13.0	W
cont'd	2	Transmitter Power	41.1	dBm
cont a	3	Transmitter Cable Loss	2.0	dB
	4	Transmitter Antenna Gain	24.0	dBi
	5	EIRP		dBm
	6	Operating Frequency	1626.5	MHz
	7	Receiver Range	1339.5	nmi
	8	Free Space Path Loss	164.6	dB
	9	Polarization Loss	0.0	dB
	10	Excess Propagation Loss	1.2	dB
	11	Power at Isotropic Antenna	-102.6	dBm
	12	Receive Antenna Gain	0.0	dBi
	13	Receive Cable Loss	0.0	dB
	14	Power at Receiver Input	-102.6	dBm
		Receiver Noise Figure	4.4	dB
	16	Boltzmann's constant	-198.6	dBm/(K Hz)
	17	Receiver T		dB-K
	18	Receiver N0	-169.6	dBm/Hz
	19	Receiver IF Bandwidth	25000.0	Hz
	20	IF Carrier-to-Noise Ratio	23.0	dB
		Symbol rate		symbols per second
	22	Es/N0	23.0	dB
_		Bits per symbol	2.0	
	24	Eb/N0	20.0	
	25	Interference Power Density	-158.0	dBm/Hz
	26	N0+I0	-157.7	dBm/Hz
	27	Es/(N0+I0)	11.1	dB
	28	Eb/(N0+I0)	8.1	dB

9