Politechnika Częstochowska Katedra Inteligentnych Systemów Informatycznych

Programowanie Niskopoziomowe

Laboratorium 9

Wektory i macierze liczb rzeczywistych

dr inż. Bartosz Kowalczyk

Częstochowa, 15 maja 2023

Spis treści

1	Operacje skalarne na wektorach	3
2	Operacje na wektorach	4
3	Operacje skalarne na macierzach	5
4	Operacje na macierzach	7

1 Operacje skalarne na wektorach

Przekaż do procedury w języku asembler podane wektory. Jeżeli to konieczne, dokonaj konwersji ich elementów. Następnie oblicz wartość podanych wyrażeń:

- 1. (Suma elementów wektora) $y = \text{sum}(\mathbf{a}) = \sum_{i=0}^{n} a_i$, gdzie $\mathbf{a} \in \mathbb{R}^n$
- 2. (Iloczyn elementów wektora) $y = \text{prod}(\mathbf{a}) = \prod_{i=0}^{n} a_i$, gdzie $\mathbf{a} \in \mathbb{R}^n$
- 3. (Wartość minimalna wektora) $y = \min(\mathbf{a}), \text{ gdzie } \mathbf{a} \in \mathbb{R}^n$
- 4. (Wartość maksymalna wektora) $y = \max(\mathbf{a})$, gdzie $\mathbf{a} \in \mathbb{R}^n$

5. (Wartość średnia wektora)
$$y = \text{avg}(\mathbf{a}) = \frac{\sum\limits_{i=0}^n a_i}{n}$$
, gdzie $\mathbf{a} \in \mathbb{R}^n$

6. (Iloczyn skalarny wektorów)
$$y = \mathbf{a} \cdot \mathbf{b} = \sum_{i=0}^n a_i b_i$$
, gdzie $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$

7.
$$y = \sum_{i=0}^{n} 5a_i - 3$$
, gdzie $\mathbf{a} \in \mathbb{R}^n$

8.
$$y = \sum_{i=0}^{n} 16a_i^3 + \log_2 e$$
, gdzie $\mathbf{a} \in \mathbb{R}^n$

9.
$$y = \sum_{i=0}^{n} \sqrt{\frac{a_i^2 + 20}{4}}$$
, gdzie $\mathbf{a} \in \mathbb{R}^n$

10.
$$y = \sum_{i=0}^{n} \log_2(a_i x + 1)$$
, gdzie $\mathbf{a} \in \mathbb{R}^n$ oraz $a_i x \ge 0$

- 11. Policz ile elementów większych od 0 znajduje się w wektorze $\mathbf{a} \in \mathbb{R}^n$.
- 12. Policz ile elementów z przedziału $a_i \in (5, 15]$ znajduje się w wektorze $\mathbf{a} \in \mathbb{R}^n$.

- 1. Wektory a i b przechowują liczby typu float, wartość zwracana y typu float.
- 2. Wektory a i b przechowują liczby typu double, wartość zwracana y typu double.
- 3. Wektory a i b przechowują liczby typu float, wartość zwracana y typu double.

2 Operacje na wektorach

Przekaż do procedury w języku asembler podane wektory. Jeżeli to konieczne, dokonaj konwersji ich elementów. Następnie oblicz wartość podanych wyrażeń:

1.
$$y_i = 16a_i^5 + 5$$
, gdzie $i \in [0, \dots n]$ oraz $\mathbf{a}, \mathbf{y} \in \mathbb{R}^n$

2.
$$y_i = 15a_i^2 - 9a_i + \log_2 10$$
, gdzie $i \in [0, \dots n]$ oraz $\mathbf{a}, \mathbf{y} \in \mathbb{R}^n$

3.
$$y_i = \frac{a_i^4 + b_i^3}{\ln 2}$$
, gdzie $i \in [0, \dots n]$ oraz $\mathbf{a}, \mathbf{b}, \mathbf{y} \in \mathbb{R}^n$

4.
$$y_i = \sqrt{\frac{|5a_i + 4b_i|}{3}}$$
, gdzie $i \in [0, \dots n]$ oraz $\mathbf{a}, \mathbf{b}, \mathbf{y} \in \mathbb{R}^n$

- 5. $y_i = 20\sin(a_i) + \tan^2(b_i)$, gdzie $i \in [0, \dots n]$, $\mathbf{a}, \mathbf{b}, \mathbf{y} \in \mathbb{R}^n$ oraz wektory \mathbf{a} i \mathbf{b} przechowują wartości kątów wyrażone w stopniach.
- 6. Wyzeruj in situ elementy wektora $\mathbf{a} \in \mathbb{R}^n$ o parzystych indeksach.
- 7. Wyzeruj *in situ* elementy wektora $\mathbf{a} \in \mathbb{R}^n$ o nieparzystych indeksach.
- 8. Wyzeruj elementy wektora $\mathbf{a} \in \mathbb{R}^n$ o parzystych indeksach. Wynik umieścić w wektorze wynikowym $\mathbf{v} \in \mathbb{R}^n$.
- 9. Wyzeruj elementy wektora $\mathbf{a} \in \mathbb{R}^n$ o nieparzystych indeksach. Wynik umieścić w wektorze wynikowym $\mathbf{y} \in \mathbb{R}^n$.

- 1. Wektory a i b przechowują liczby typu float, wartość zwracana y typu float.
- 2. Wektory a i b przechowują liczby typu double, wartość zwracana y typu double.
- 3. Wektory a i b przechowuja liczby typu float, wartość zwracana y typu double.

3 Operacje skalarne na macierzach

Przekaż do procedury w języku asembler podane macierze. Jeżeli to konieczne, dokonaj konwersji ich elementów. Następnie oblicz wartość podanych wyrażeń:

- 1. (Suma elementów macierzy) $y = \text{sum}(\mathbf{A}) = \sum_{i=0}^{m} \sum_{j=0}^{n} a_{ij}$, gdzie $\mathbf{A} \in \mathbb{R}^{m,n}$.
- 2. (Iloczyn elementów macierzy) $y = \operatorname{prod}(\mathbf{A}) = \prod_{i=0}^{m} \prod_{j=0}^{n} a_{ij}$, gdzie $\mathbf{A} \in \mathbb{R}^{m,n}$.
- 3. (Wartość minimalna macierzy) $y = \min(\mathbf{A})$, gdzie $\mathbf{A} \in \mathbb{R}^{m,n}$.
- 4. (Wartość maksymalna macierzy) $y = \max(\mathbf{A})$, gdzie $\mathbf{A} \in \mathbb{R}^{m,n}$.
- 5. (Wartość średnia macierzy) $y = \text{avg}(\mathbf{A}) = \frac{\sum\limits_{i=0}^{m}\sum\limits_{j=0}^{n}a_{ij}}{mn}$, gdzie $\mathbf{A} \in \mathbb{R}^{m,n}$.
- 6. (Suma iloczynów elementów macierzy) $y = \sum_{i=0}^{m} \sum_{j=0}^{n} a_{ij} b_{ij}$, gdzie $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m,n}$.
- 7. (Suma elementów na głównej przekątnej macierzy) $y = \text{sum}(\mathbf{A}) = \sum_{i=0}^{d} a_{ii}$, gdzie $\mathbf{A} \in \mathbb{R}^{m,n}$ oraz $d = \min(m, n)$.
- 8. (Iloczyn elementów na głównej przekątnej macierzy) $y = \operatorname{prod}(\mathbf{A}) = \prod_{i=0}^{d} a_{ii}$, gdzie $\mathbf{A} \in \mathbb{R}^{m,n}$ oraz $d = \min(m, n)$.
- 9. (Wartość minimalna na głównej przekątnej macierzy) $y = \min(\mathbf{A})$, gdzie $\mathbf{A} \in \mathbb{R}^{m,n}$ oraz $d = \min(m, n)$.
- 10. (Wartość maksymalna na głównej przekątnej macierzy) $y = \max{(\mathbf{A})}$, gdzie $\mathbf{A} \in \mathbb{R}^{m,n}$ oraz $d = \min{(m,n)}$.
- 11. (Wartość średnia elementów macierzy na głównej przekątnej) $y = \operatorname{avg}(\mathbf{A}) = \frac{\sum_{i=0}^{a} a_{ii}}{d}$, gdzie $\mathbf{A} \in \mathbb{R}^{m,n}$ oraz $d = \min(m, n)$.
- 12. (Suma iloczynów elementów macierzy na głównych przekątnych) $y = \sum_{i=0}^{d} a_{ii}b_{ii}$, gdzie $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m,n}$ oraz $d = \min(m, n)$.
- 13. $y = \sum_{i=0}^{m} \sum_{j=0}^{n} 5a_{ij} 3$, gdzie $\mathbf{A} \in \mathbb{R}^{m,n}$.
- 14. $y = \sum_{i=0}^{m} \sum_{j=0}^{n} 16a_{ij}^3 + 6$, gdzie $\mathbf{A} \in \mathbb{R}^{m,n}$.
- 15. $y = \sum_{i=0}^{m} \sum_{j=0}^{n} \sqrt{\frac{a_{ij}^2 + 20}{4}}$, gdzie $\mathbf{A} \in \mathbb{R}^{m,n}$.
- 16. $y = \sum_{i=0}^{m} \sum_{j=0}^{n} \log_2(a_i x + 1)$, gdzie $\mathbf{A} \in \mathbb{R}^{m,n}$ oraz $a_{ij} x \geqslant 0$.

- 17. Policz ile elementów parzystych znajduje się w macierzy $\mathbf{A} \in \mathbb{R}^{m,n}$.
- 18. Policz ile elementów nieparzystych znajduje się w macierzy $\mathbf{A} \in \mathbb{R}^{m,n}$.
- 19. Policz ile elementów większych od 0 znajduje się w macierzy $\mathbf{A} \in \mathbb{R}^{m,n}$.
- 20. Policz ile elementów z przedziału $a_{ij} \in (-10, 10)$ znajduje się w macierzy $\mathbf{A} \in \mathbb{R}^{m,n}$.
- 21. Policz ile elementów parzystych znajduje się na głównej przekątnej macierzy $\mathbf{A} \in \mathbb{R}^{m,n}$.
- 22. Policz ile elementów nieparzystych znajduje się na głównej przekątnej macierzy $\mathbf{A} \in \mathbb{R}^{m,n}$.
- 23. Policz ile elementów większych od 0 znajduje się na głównej przekątnej macierzy $\mathbf{A} \in \mathbb{R}^{m,n}$.
- 24. Policz ile elementów z przedziału $a_{ij} \in [20, 30]$ znajduje się na głównej przekątnej macierzy $\mathbf{A} \in \mathbb{R}^{m,n}$.

- 1. Wektory a i b przechowują liczby typu float, wartość zwracana y typu float.
- 2. Wektory a i b przechowują liczby typu double, wartość zwracana y typu double.
- 3. Wektory a i b przechowują liczby typu float, wartość zwracana y typu double.

4 Operacje na macierzach

Przekaż do procedur w języku asembler podane macierze. Następnie oblicz wartość podanych wyrażeń:

- 1. Dla każdego elementu macierzy $\mathbf{A} \in \mathbb{R}^{m,n}$ oblicz: $a_{ij} = 10 \log_2 \left(16a_{ij}^2 + 5\right)$.
- 2. Podnieś do kwadratu wszystkie elementy macierzy $\mathbf{A} \in \mathbb{R}^{m,n}$.
- 3. Dane są macierze \mathbf{A} i $\mathbf{B} \in \mathbb{R}^{m,n}$. Do każdego elementu macierzy \mathbf{A} dodaj odpowiadający mu element macierzy \mathbf{B} .
- 4. Dane są macierze **A** i **B** $\in \mathbb{R}^{m,n}$. Oblicz: $a_{ij} = \frac{16a_{ij}^5 + 4b_{ij}}{3}$, gdzie $i \in [0, \dots m]$, $j \in [0, \dots n]$.
- 5. Dane są macierze \mathbf{A} i $\mathbf{B} \in \mathbb{R}^{m,n}$. Oblicz: $a_{ij} = \frac{a_{ij}^2 9b_{ij}}{\log_2 10}$, gdzie $i \in [0, \dots m], j \in [0, \dots n]$.
- 6. Dane są macierze **A** i **B** $\in \mathbb{R}^{m,n}$. Oblicz: $a_{ij} = \frac{a_{ij}^4 + b_{ij}^3}{\ln 2}$, gdzie $i \in [0, \dots m], j \in [0, \dots n]$.
- 7. Dane są macierze **A** i **B** $\in \mathbb{R}^{m,n}$. Oblicz: $a_{ij} = \sqrt{\frac{|5a_{ij} + 4b_{ij}|}{3}}$, gdzie $i \in [0, \dots m]$, $j \in [0, \dots n]$.
- 8. Dane są macierze **A** i **B** $\in \mathbb{R}^{m,n}$. Oblicz: $a_{ij} = 20\sin(a_{ij}) + \tan^2(b_{ij})$, gdzie $i \in [0, \dots m]$, $j \in [0, \dots n]$ oraz macierze **A** i **B** przechowują wartości kątów wyrażone w stopniach.
- 9. Dokonaj transpozycji macierzy $\mathbf{A} \in \mathbb{R}^{m,n}$ do macierzy $\mathbf{Y} \in \mathbb{R}^{n,m}$, tj. $\mathbf{Y} = \mathbf{A}^T \Rightarrow y_{ji} = a_{ij}$.
- 10. Wyzeruj in situ elementy macierzy $\mathbf{A} \in \mathbb{R}^{m,n}$ o parzystych indeksach.
- 11. Wyzeruj in situ elementy macierzy $\mathbf{A} \in \mathbb{R}^{m,n}$ o nieparzystych indeksach.
- 12. Wyzeruj *in situ* elementy macierzy $\mathbf{A} \in \mathbb{R}^{m,n}$ znajdujące się na głównej przekątnej, tj. gdzie indeksy i = j.
- 13. Wyzeruj *in situ* elementy macierzy $\mathbf{A} \in \mathbb{R}^{m,n}$ znajdujące się poniżej głównej przekątnej, tj. gdzie indeksy i > j.
- 14. Wyzeruj *in situ* elementy macierzy $\mathbf{A} \in \mathbb{R}^{m,n}$ znajdujące się powyżej głównej przekątnej, tj. gdzie indeksy i < j.
- 15. Wyzeruj *in situ* co drugi element macierzy $\mathbf{A} \in \mathbb{R}^{m,n}$, tak aby macierz wynikowa przypominała szachownicę.
- 16. Dane są macierze \mathbf{A} i $\mathbf{Y} \in \mathbb{R}^{m,n}$. Przepisz macierz \mathbf{A} do macierzy \mathbf{Y} , przy czym wyzeruj elementy o parzystych indeksach.

- 17. Dane są macierze \mathbf{A} i $\mathbf{Y} \in \mathbb{R}^{m,n}$. Przepisz macierz \mathbf{A} do macierzy \mathbf{Y} , przy czym wyzeruj elementy o nieparzystych indeksach.
- 18. Dane są macierze **A** i $\mathbf{Y} \in \mathbb{R}^{m,n}$. Przepisz macierz **A** do macierzy **Y**, przy czym wyzeruj elementy znajdujące się na głównej przekątnej, tj. gdzie indeksy i = j.
- 19. Dane są macierze **A** i $\mathbf{Y} \in \mathbb{R}^{m,n}$. Przepisz macierz **A** do macierzy **Y**, przy czym wyzeruj elementy znajdujące się poniżej głównej przekątnej, tj. gdzie indeksy i > j.
- 20. Dane są macierze **A** i $\mathbf{Y} \in \mathbb{R}^{m,n}$. Przepisz macierz **A** do macierzy **Y**, przy czym wyzeruj elementy znajdujące się powyżej głównej przekątnej, tj. gdzie indeksy i < j.
- 21. Dane są macierze \mathbf{A} i $\mathbf{Y} \in \mathbb{R}^{m,n}$. Przepisz macierz \mathbf{A} do macierzy \mathbf{Y} , przy czym wyzeruj co drugi element, tak aby macierz wynikowa przypominała szachownicę.
- 22. Dana jest macierz $\mathbf{A} \in \mathbb{R}^{m,n}$ oraz wektor (kolumnowy) $\mathbf{h} \in \mathbb{R}^n$. Oblicz: $\mathbf{y} = \mathbf{A}\mathbf{h}$, gdzie $\mathbf{y} \in \mathbb{R}^m$. Uwaga, wynikowy wektor \mathbf{y} jest wektorem kolumnowym.
- 23. Dana jest macierz $\mathbf{A} \in \mathbb{R}^{m,n}$ oraz wektor (wierszowy) $\mathbf{h} \in \mathbb{R}^m$. Oblicz: $\mathbf{y} = \mathbf{h}\mathbf{A}$, gdzie $\mathbf{y} \in \mathbb{R}^n$. Uwaga, wynikowy wektor \mathbf{y} jest wektorem wierszowym.
- 24. Dane są macierze $\mathbf{A} \in \mathbb{R}^{m,n}$ i $\mathbf{B} \in \mathbb{R}^{n,o}$. Oblicz: $\mathbf{Y} = \mathbf{AB}$, gdzie $\mathbf{Y} \in \mathbb{R}^{m,o}$.

- 1. Wektory a i b przechowują liczby typu float, wartość zwracana y typu float.
- 2. Wektory a i b przechowują liczby typu double, wartość zwracana y typu double.
- 3. Wektory a i b przechowują liczby typu float, wartość zwracana y typu double.