Вторая группа

Общая характеристика

Всю группу можно разделить на **типические металлы** *Be,Mg* и **щелочно-земельные** *Ca, Sr, Ba, Ra* земельные

Вниз по группе наблюдается увеличение атомного и ионного радиусов и понижение потенциалов ионизации. Общая закономерность оказывается нарушенной на радии Ra, у которого первые два потенциала ионизации выше, чем у бария Ba. Это объясняется эффектом «инертной» $6s^2$ -электронной пары, которая экранирована заполненным предпоследним d-подуровнем. Стан-

- Для данных элементов нет "запрета" на получение степени окисления +1. Например, получилось: $BeO+Be\longrightarrow Be_2O$. Однако, при попытке восстановить галогениды ЩМ получается смесь продуктов: $BaCl_2+Ba+H_2\longrightarrow BaHCl$
- Химия бериллия отличается от других элементов этой группы так как ион Be^{2+} имеет сравнительно малый радиус при относительно высоком заряде и может образовывать не более ${f 4}^{-x}$ ковалентных связей

Нахождение в природе

- кальцит CaCO₃
- доломит $CaCO_3 \cdot MgCO_3$
- ullet оливин $MgO \cdot SiO_2$
- гипс $CaSO_4 \cdot H_2O$
- целестин $SrSO_4$
- барит $BaSO_4$
- ullet алюмосиликат берилл $Be_3Al_2[Si_6O_{18}]$
- ullet несквегонит $MqCO_3 \cdot 3H_2O$
- Радий образуется при распаде урана и копится в урановых рудах

Токсичность солей бария обусловлена тем, что радиусы Ba^{2+} и K^+ довольно близки и конкурируют в биохимических процессах.

А вот токсичность бериллия обусловлена тем, что он прочно связывает фосфаты

Бериллий и алюминий

Их ионы имеют одинаковой поверхностной плотностью, поэтому свойства довольно похожи, например:

- Оксидная пленка
- Пассивация концентрированной азотной
- Оба реагируют с щелочами с выделением водорода

- Соли подвержены гидролизу
- ullet Карбиды Be_2C и Al_4C_3 при гидролизе образуют метан

Химия. Получение

Важно. Промышленная переработка бериллия:

I способ

$$Be_3Al_2[Si_6O_{18}] + H_2SO_4 \longrightarrow BeSO_4Al_2(SO_4)_3 + SiO_2 \downarrow + H_2O_4$$

После раствор упаривают, добавляют сульфат аммония, алюминий выделяется в виде алюмоаммонийных квасцов $(NH_4)Al(SO_4)_2\cdot H_2O)$

Или:

$$Be_3Al_2[Si_6O_{18}] + 10K_2CO_3 \rightarrow 3K_2BeO_2 + 2KAlO_2 + 6K_2SiO_3 + 10CO_2$$

Или:

$$\begin{split} Be_3Al_2[Si_6O_{18}] + 6Na_2[SiF_6] &\longrightarrow \\ &\longrightarrow 3Na_2[BeF_4] + 2Na_3[AlF_6] + 3SiF_4 \uparrow + 9SiO_2 \end{split}$$

**II второй способ

$$Mg + BeF_2 \xrightarrow{1000^\circ} MgF_2 + Be$$

Получение остальных Ме

$$egin{aligned} Si + MgO & \xrightarrow{1200^{\circ}} CaO \cdot SiO_2 + Mg \uparrow \ & C + MgO & \xrightarrow{2000^{\circ}} CO + Mg \uparrow \ & Al + CaO & \xrightarrow{t^{\circ}} CaO \cdot Al_2O_3 + Ca \uparrow \ & Al + SrO(BaO) & \rightarrow SrO(BaO) \cdot Al_2O_3 + Sr(Ba) \uparrow \end{aligned}$$

OXC

Все металлы реагируют с серой, галогенами, углеродом, азотом, фосфором, кислотами, магний реагирует даже с хлоридом аммония:

$$Mg + 2NH_4Cl + 2H_2O \rightarrow MgCl_2 + 2NH_3 \cdot H_2O + H_2$$

Для бериллия характерно образование комплексных соединений:

$$Be+NaOH+H_2O
ightarrow Na_2[Be(Oh)_4]+H_2\uparrow \ Be+NH_4F
ightarrow (NH_4)_2[BeF_4]+NH_3+H_2\uparrow$$

Взаимодействие с кислородом

В отличие от щелочных металлов, при взаимодействии с кислородом не образуют пероксидов и надпероксидов

Еще:

$$\begin{array}{l} BeO \ + \ Na_2CO_3 \ \, \twoheadrightarrow \ \, Na_2BeO_2 \ + \ CO_2 \\ BeO \ + \ 2NaHSO_4 \ \, \twoheadrightarrow \ \, Na_2SO_4 \ + \ BeSO_4 \ + \ H_2O \\ BeO \ + \ 2NaHF_2 \ \, \twoheadrightarrow \ \, Na_2[BeF_4] \ + \ H_2O \\ BeO \ + \ \, C \ \, + \ \, Cl_2 \ \, \twoheadrightarrow \ \, BeCl_2 \ + \ \, CO \end{array}$$

Гидроксиды

Гидроксид бериллия амфотерен, но с преобладанием основных свойств

Be(OH)₂
$$\rightleftharpoons$$
 BeOH⁺ + OH⁻ p $K_b = 5,4$
Be(OH)₂ + H₂O \rightleftharpoons [Be(OH)₃]⁻ + H₃O⁺
p $K_a = pK_w - pK([Be(OH)_3^-] = 14 - 3,54 = 10,46$

Все гидроксиды поглощают углекислый газ из воздуха, образуя карбонаты

Соли

С увеличением ионного радиуса, энергия гидратации падает, поэтому понижается устойчивость кристаллогидратов и уменьшению растворимости солей

 $MgO + MgCl_2H_2O o Mg(OH)_2 \cdot MgCl_2 \cdot H_2O$ -"магнезиальный цемент"

Рис. 10.3. Методы получения безводного хлорида магния

$$egin{aligned} MgCl_2(NH_4)_2S + H_2O &
ightarrow Mg(OH)_2\downarrow NH_{4HS} + NH_4HCL \ BeCl_2 + NaHCO_3 + H_2O &
ightarrow Be_2(OH)_2CO_3 + NaCl + CO_2 + H_2O \ MgCl_2 + NaHCO_3 &
ightarrow MgCO_3 \downarrow + H_2O + NaCl \end{aligned}$$

$$\begin{aligned} 2\text{BeCl}_{2} + 2(\text{NH}_{4})_{2}\text{CO}_{3} + \text{H}_{2}\text{O} &\rightarrow \text{Be}_{2}(\text{OH})_{2}\text{CO}_{3} \downarrow + 4\text{NH}_{4}\text{Cl} + \text{CO}_{2} \\ 5\text{MgCl}_{2} + 5(\text{NH}_{4})_{2}\text{CO}_{3} + 5\text{H}_{2}\text{O} &\rightarrow \\ &\rightarrow \text{Mg}(\text{OH})_{2} \cdot 4\text{MgCO}_{3} \cdot 4\text{H}_{2}\text{O} \downarrow + 10\text{NH}_{4}\text{Cl} + \text{CO}_{2} \\ & Be(OH)_{2} + K_{2}CO_{3} + HF \rightarrow K_{2}[BeF_{4}] + CO_{2} + H_{2}O \end{aligned}$$

При кипячении карбонатные комплексы бериллия разлагаются:

$$(NH_4)_6[Be_4O(CO)_6] \stackrel{t^*}{\longrightarrow} Be_2(OH)_2CO_3 \downarrow + CO_2 \uparrow + NH_3 \uparrow + H_2O$$

Остальные хим св-ва

$$3Mg (\kappa) + B_2O_3 (\kappa) = 3MgO (\kappa) + 2B (am);$$

$$2Mg + CO_2 \longrightarrow 2MgO + C$$

$$Be_2C + 4H_2O \longrightarrow 2Be(OH)_2 + CH_4$$

$$Mg_2C_3 + 4H_2O \longrightarrow 2Mg(OH)_2 + CH_3 - C \equiv CH$$

$$CaC_2 + 2H_2O \longrightarrow Ca(OH)_2 + C_2H_2$$

$$BeO + SiO_2 \longrightarrow BeSiO_3$$

$$BeO + Na_2O \longrightarrow Na_2BeO_2$$