The Relational Model

An Introduction

Orlando Karam okaram@spsu.edu

SPSU

Advantages

- Based on Math (relations)
- Natural to people
- Relatively Simple
- We know how to implement it fast

The model entails

- Data structures (tables)
- Operations (insert, update, delete, select; SQL; Relational Algebra)
- Integrity Constraints

Motivating Example

SPSU

 Make a list of students in the class, keeping their id, name, phone number

Motivating Example

- Make a list of students in the class, keeping their id, name, phone number
- You'd probably come up with something like this

Motivating Example

- Make a list of students in the class, keeping their id, name, phone number
- You'd probably come up with something like this

id	name	Phone
XX	Orlando	111
уу	Lina	222

SPSU

 Now you need to add the emails of each student, but you don't know how many emails

- Above would not work well how many fields?
 - wasted space
 - -what if a student has more emails?
- Can you think of a better way?

 Now you need to add the emails of each student, but you don't know how many emails

id	name	Phone	email1	email2
XX	Orlando	111	bad	idea:)
уу	Lina	222	bad	idea:)

- Above would not work well how many fields?
 - wasted space
 - -what if a student has more emails?
- Can you think of a better way?

SPSU

A much better way:

- Every Id on the second table needs to be on the first one too
- In a way, Id on the email table is a pointer or reference to the first table

A much better way:

id	name	Phone
XX	Orland	111
уу	Lina	222

- Every Id on the second table needs to be on the first one too
- In a way, Id on the email table is a pointer or reference to the first table

A much better way:

id	name	Phone
XX	Orland	111
уу	Lina	222

id	email
XX	ok@ok.co
XX	ok2@ok.c
уу	lc@lc.com

- Every Id on the second table needs to be on the first one too
- In a way, Id on the email table is a pointer or reference to the first table

Formalizing

- Relation (set of tuples of the same type)
 - –Also called table
 - -It is a set, no repetition, order doesn't matter
- A tuple is a mapping from names to values
- The type of a tuple is a mapping from names to primitive domains
- Primary key Set of attributes that uniquely identifies a row
- Foreign key Set of attributes in a table that servers as a reference to the primary key of another table

Properties of Relations

- Unique name (for relvars)
- Atomic attributes
- Rows are unique (set, primary key)
- Columns have unique name (within table)
- Order of columns is irrelevant
- Order of rows is irrelevant (since we use names for the columns:)

- People use key to refer to different things
- Super key: any set of attrs guaranteed unique
- Candidate key: minimal superkey
- Primary key: candidate key we choose to be the primary (all FK refs are through this one)
- Foreign key: key in ANOTHER relation

Integrity constraints

- Domain constraints (per column)
- Entity integrity (PK can't be null)
- Referential integrity (FK is either null or present on the other table)
- General assertions (check, trigger)

Well-structured relations

- Bad designs have redundancy
- well-structured relation: minimal redundancy
- Anomaly: error or inconsistency arising from bad design when changing (Insert, Update, Delete) data.
- We eliminate through Normalization

ER vs Relational

- Entities are represented by tables
 - -but tables may also represent relationship, or even multivalued attributes
- Foreign keys used to relate table rows
 - -kinda like relationships in ER, but lower level
- Relational model is more concrete, lower level
 - -Usually many more tables than entities
 - -Harder to understand by non-geeks
 - -But directly 'executable'