数字电路与逻辑设计

Digital circuit and logic design

第五章 同步时序逻辑电路

主讲教师 赵贻竹

■同步时序逻辑电路设计

从原始状态表中消去多余状态,得到一个描述给 定的逻辑功能的包含状态数目达到最少的状态表,即 最简状态表或最小化状态表。

目 标: 简化电路结构

状态数目的多少直接决定电路中所需触发器数目的多少

■同步时序逻辑电路设计

状态数和所需 触发器的关系

状态数:n,

所需触发器: m

 $2^m \ge n > 2^{m-1}$

观察法

输出分类法

隐含表法

化简方法

■同步时序逻辑电路设计

设状态 S_i 和 S_j 是完全确定状态表中的两个状态,若对于所有可能的输入序列,分别从状态 S_i 和状态 S_j 出发,所得到的输出响应序列完全相同,则状态 S_i 和 S_j 是等效的,记作(S_i , S_j),又称状态 S_i 和 S_j 为等效对。

若状态S_i和S_j是完全确定的原始状态表中的两个现态,则S_i和S_j等效的条件为在一位输入的各种取值组合下满足两条:

- 第一,输出相同
- 第二,次态属于下列情况之一
 - ※ a. 次态相同
 - 》 b. 次态交错或为各自的现态
 - c. 次态循环或为等效对

★状态化简

次态相同

次态交错

≥ 当X=0时,现态C、D的次态交错;

次态循环

当X=1时,现态A、B的次态为C、D,而现态C、D的次态为A、B,构成次态循环

现态	次态/输出	
功(元)	X=0	X=1
А	B/0	C/1
В	B/0	D/1
С	D/0	A/0
D	C/0	B/0

₩太态化简

一个状态也可以称为等效类

任何状态和它自身必然是等效的

▍₩☆化简

最大等效类: 不被任何别的等效类所包含的等效类

■状态化简步骤

爾个方格代表一个状态对

	1班	2班	3班	4班
1班		48:32		25:8
2班	32:48		33:10	
3班		10:33		-
4班	8:25		1	

■状态化简步骤

做隐含表

直角三角形阶梯网格

每个方格代表一个状态对

- 等效状态的传递性
- 各最大等效类之间不存在同一个状态
- 每个状态都必须属于一个最大等效类
- 最大等效类的个数即化简后状态数

找等效对

顺序比较

■ 等效?不等效?待定?

关联比较

化简下表所示原始状态表。

作隐含表

\	次态/输出	
现态	X=0	X=1
Α	C/0	B/1
В	F/0	A/1
/_c /	F/0	G/0
D	D/1	E/0
E	C/0	E/1
F	C/0	G/0
G	C/1	D/0

寻找等效对---顺序比较

.	次态/输出	
现态	X=0	X=1
Α	C/0	B/1
В	F/0	A/1
—c /	F/0	G/0
D	D/1	E/0
E	C/0	E/1
F	C/0	G/0
G	C/1	D/0

寻找等效对---关联比较

寻找等效对---等效对

- (A,B) (A,E)
 - (B,E)(C,F)

最大等效类

 $\{A, B, E\}$

{C , F}

{G}

$$\{A, B, E\} \rightarrow a$$

$$\{C, F\} \rightarrow b$$

$$\{D\} \rightarrow c$$

$$\{G\} \rightarrow d$$

现态	次态/输出	
功化心	X=0	X=1
A	C/0	B/1
В	F/0	A/1
С	F/0	G/0
D	D/1	E/0
E	C/0	E/1
F	C/0	G/0
G	C/1	D/0

$$\{A, B, E\} \rightarrow a$$

$$\{C, F\} \rightarrow b$$

$$\{D\} \rightarrow c$$

$$\{G\} \to d$$

叩太	次态/输出	
现态	X=0	X=1
а	C/0	a/1
а	F/0	a/1
С	F/0	G/0
D	D/1	a/0
а	C/0	a/1
F	C/0	G/0
G	C/1	D/0

状态合并

 $\{A, B, E\} \rightarrow a$

 $\{C, F\} \rightarrow b$

 $\{G\} \to d$

现态	次态/输出	
现心	X=0	X=1
a	b/0	a/1
a	b/0	a/1
b	b /0	G/0
D	D/1	a/0
а	b/0	a/1
b	b /0	G/0
G	b/1	D/0

状态合并

 $\{A, B, E\} \rightarrow a$

 $\{C, F\} \rightarrow b$

 $\{G\} \to d$

现态	次态/输出	
现心	X=0	X=1
a	b/0	a/1
a	b/0	a/1
b	b/0	G/0
С	c/1	a/0
a	b/0	a/1
b	b/0	G/0
G	b/1	c /0

$$\{A, B, E\} \rightarrow a$$

$$\{C, F\} \rightarrow b$$

$$[D] \rightarrow c$$

$$\{G\} \to d$$

现态	次态/输出	
功(元)	X=0	X=1
а	b/0	a/1
а	b/0	a/1
b	b/0	G/0
С	c/1	a/0
а	b/0	a/1
b	b/0	G/0
d	b/1	c /0

$$\{A, B, E\} \rightarrow a$$

$$\{C, F\} \rightarrow b$$

$$[D] \rightarrow c$$

$$\{G\} \to d$$

现态	次态/输出	
功化允许	X=0	X=1
a	b/0	a/1
b	b/0	d/0
С	c/1	a/0
d	b/1	c/0

数季电路与逻辑设计

Digital circuit and logic design

● 谢谢,祝学习快乐!

主讲教师赵贻竹

