First-principles study of intrinsic point defects and hydrogen impurities in the earth-abundant solar absorber Zn₃P₂

Zhenkun Yuan, Yihuang Xiong, Geoffroy Hautier

Thayer School of Engineering, Dartmouth College

The 32nd ICDS, Delaware, 2023

Solar cell absorbers

Solar cell absorbers

Zn₃P₂ solar cells

V (V)

Zn₃P₂ solar cells — Future optimizations

- Suitable n-type buffer to form pn junction with p-type Zn₃P₂
- Control of point defects and doping in the Zn₃P₂ absorber

BAND

CONDUCTION

Intrinsic point defects in Zn₃P₂

- Most defects act as compensating centers in p-type Zn₃P₂
- P_i has a very deep acceptor behavior \implies unlikely contribute to p-type doping
- $V_{\rm Zn}$ is likely to be the source of p-type conductivity in as-grown ${\rm Zn_3P_2}$
- Zn-poor/P-rich conditions \implies more $V_{\rm Zn}$ & less compensation

Defect levels

- Most defect levels are deep, especially those of V_P , Zn_i , P_i , and P_{Zn}
- Nonstoichiometric, P-rich Zn_3P_2 samples \Longrightarrow more deep levels from P_{Zn} and P_i

Hydrogen impurities in Zn₃P₂

Hydrogen impurities in Zn₃P₂

- Hydrogen is likely to form H_i^+ and complexes with $V_{\rm Zn}$ in p-type ${\rm Zn_3P_2}$
 - H_i contributes to compensation
 - $H + V_{Zn}$ shallow acceptor
 - $H + 2V_{Zn}$ electrically inactive

Conclusions

- Most intrinsic defects are compensating centers in p-type Zn₃P₂ and have deep levels in the band gap
- $V_{\rm Zn}$ rather than P_i is likely the source of p-type conductivity in as-grown $\rm Zn_3P_2$
- While Zn-poor/P-rich growth conditions are needed to enhance p-type conductivity, such conditions will facilitate the formation of P_{Zn} and P_i
 - good PV performance not guaranteed for nonstoichiometric, P-rich Zn₃P₂ films
- Hydrogen in Zn_3P_2 is likely to form H_i^+ and complexes with the V_{Zn} acceptors

Yuan, Xiong, and Hautier, J. Mater. Chem. A, 2023 (in press)

Acknowledgements

Thank you for your attention!