Теоремы о формальной арифметике

Лемма

 $\vdash 1 = 0$ тогда и только тогда, когда $\vdash \alpha$ при любом α .

Определение

Обозначим за $\psi(x,p)$ формулу, выражающую в формальной арифметике рекурсивное отношение Proof: $\langle \ulcorner \xi \urcorner, p \rangle \in Proof$, если p-rёделев номер доказательства ξ .

Лемма

 $\vdash 1 = 0$ тогда и только тогда, когда $\vdash \alpha$ при любом α .

Определение

Обозначим за $\psi(x,p)$ формулу, выражающую в формальной арифметике рекурсивное отношение Proof: $\langle \ulcorner \xi \urcorner, p \rangle \in Proof$, если p-rёделев номер доказательства ξ .

Обозначим $\pi(x) \equiv \exists p. \psi(x,p)$

Лемма

dash 1=0 тогда и только тогда, когда dash lpha при любом lpha.

Определение

Обозначим за $\psi(x,p)$ формулу, выражающую в формальной арифметике рекурсивное отношение Proof: $\langle \ulcorner \xi \urcorner, p \rangle \in Proof$, если p-rёделев номер доказательства ξ .

Обозначим $\pi(x) \equiv \exists p. \psi(x,p)$

Определение

Формулой Consis назовём формулу $\neg \pi(\overline{1} = 0\overline{})$

Лемма

 $\vdash 1 = 0$ тогда и только тогда, когда $\vdash \alpha$ при любом α .

Определение

Обозначим за $\psi(x,p)$ формулу, выражающую в формальной арифметике рекурсивное отношение Proof: $\langle \ulcorner \xi \urcorner, p \rangle \in Proof$, если p-rёделев номер доказательства ξ .

Обозначим $\pi(x) \equiv \exists p. \psi(x,p)$

Определение

Формулой Consis назовём формулу $\neg \pi(\overline{1=0})$

Неформальный смысл: «формальная арифметика непротиворечива»

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально)

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\lceil \overline{\sigma} \rceil)$ ».

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\lceil \overline{\sigma} \rceil)$ ». То есть, $\forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$.

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\ulcorner \sigma \urcorner)$ ». То есть, $\forall p. \neg \omega_1(\ulcorner \sigma \urcorner, p)$. То есть, если Consis, то $\sigma(\ulcorner \sigma \urcorner)$.

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\lceil \overline{\sigma} \rceil)$ ». То есть, $\forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть, если Consis, то $\sigma(\lceil \overline{\sigma} \rceil)$. То есть, если Consis, то $\sigma(\lceil \overline{\sigma} \rceil)$. σ 0 есть σ 1 есть σ 3 есть σ 4 соль σ 5 есть σ 6 соль σ 6 есть σ 6 есть σ 7 есть σ 8 если Consis σ 9 есть σ 9

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\lceil \overline{\sigma} \rceil)$ ». То есть, $\forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть, если Consis, то $\sigma(\lceil \overline{\sigma} \rceil)$. То есть, если Consis, то $\sigma(\lceil \overline{\sigma} \rceil)$, — и это можно доказать, то есть \vdash Consis $\rightarrow \sigma(\lceil \overline{\sigma} \rceil)$. Однако если формальная арифметика непротиворечива, то $\not\vdash \sigma(\lceil \overline{\sigma} \rceil)$.

Слишком много неформальности

Рассмотрим такой особый Consis':

$$\pi'(x) := \exists p. \psi(x, p) \& \neg \psi(\overline{1 = 0}, p)$$

$$\mathsf{Consis'} := \pi'(\overline{1 = 0})$$

Заметим:

- 1. Если ФА непротиворечива, то $[\![\pi'(x)]\!] = [\![\pi(x)]\!]$:
 - lacktriangle если $x
 eq \lceil 1=0 \rceil$ и $[\![\psi(x,
 ho)]\!]=$ И, то $[\![\psi(\overline{\lceil 1=0 \rceil},
 ho)]\!]=$ Л
 - lacktriangle если $x=\lceil 1=0 \rceil$, то $\psi(\lceil 1=0 \rceil,p)= \Pi$ при любом p.
- 2. Ho ⊢ Consis'.

Условия выводимости Гильберта-Бернайса-Лёба

Определение

Будем говорить, что формула ψ , выражающая отношение Proof, формула π и формула Consis соответствуют условиям Гильберта-Бернайса-Лёба, если следующие условия выполнены для любой формулы α :

- 1. $\vdash \alpha$ влечет $\vdash \pi(\overline{\ulcorner \alpha \urcorner})$
- 2. $\vdash \pi(\overline{\lceil \alpha \rceil}) \to \pi(\overline{\lceil \pi (\lceil \alpha \rceil) \rceil})$
- 3. $\vdash \pi(\overline{\lceil \alpha \to \beta \rceil}) \to \pi(\overline{\lceil \alpha \rceil}) \to \pi(\overline{\lceil \beta \rceil})$

Невыразимость доказуемости

Определение

$$Th_{\mathcal{S}} = \{ \lceil \alpha \rceil \mid \vdash_{\mathcal{S}} \alpha \}; Tr_{\mathcal{S}} = \{ \lceil \alpha \rceil \mid [\![\alpha]\!]_{\mathcal{S}} = \mathcal{U} \}$$

Лемма

Пусть $D(\lceil \alpha \rceil) = \lceil \alpha(\lceil \alpha \rceil) \rceil$ для любой формулы $\alpha(x)$. Тогда D представима в формальной арифметике.

Теорема

Если расширение Φ .А. $\mathcal S$ непротиворечиво и D представима в нём, то $Th_{\mathcal S}$ невыразимо в $\mathcal S$

Доказательство.

Пусть $\delta(a,p)$ представляет D, и пусть $\sigma(x)$ выражает множество $\mathsf{Th}_\mathcal{S}$ (рассматриваемое как одноместное отношение).

Пусть
$$\alpha(x) := \forall p.\delta(x,p) \to \neg \sigma(p)$$
. Верно ли, что $\lceil \alpha \rceil \in \mathsf{Th}$?

Неразрешимость формальной арифметики

Теорема

Если формальная арифметика непротиворечива, то формальная арифметика неразрешима

Доказательство.

Пусть формальная арифметика разрешима. Значит, есть рекурсивная функция f(x): f(x)=1 тогда и только тогда, когда $x\in \mathsf{Th}_{\Phi,\mathsf{A}}$. То есть, $\mathsf{Th}_{\Phi,\mathsf{A}}$ выразимо в формальной арифметике.

По теореме о невыразимости доказуемости, $\mathsf{Th}_{\Phi.A.}$ невыразимо в формальной арифметике. Противоречие.

Теорема Тарского

Теорема (Тарского о невыразимости истины)

Не существует формулы $\varphi(x)$, что $[\![\varphi(x)]\!] = \mathcal{U}$ (в стандартной интерпретации) тогда и только тогда, когда $x \in \mathit{Tr}_{\Phi A}$.

Доказательство.

Пусть теория \mathcal{S} — формальная арифметика + аксиомы: все истинные в стандартной интерпретации формулы. Очевидно, что $\mathsf{Th}_{\mathcal{S}} = \mathsf{Tr}_{\mathcal{S}} = \mathsf{Tr}_{\Phi A}$. То есть $\mathsf{Tr}_{\Phi A}$ невыразимо в \mathcal{S} .

Пусть φ таково, что $[\![\varphi(x)]\!] = \mathsf{И}$ при $x \in \mathsf{Tr}$. Тогда $\vdash \varphi(x)$, если $x \in \mathsf{Tr}$ и $\vdash \neg \varphi(x)$, если $x \notin \mathsf{Tr}$.

Тогда Tr выразимо в \mathcal{S} . Противоречие.

Теорема Тарского

Теорема (Тарского о невыразимости истины)

Не существует формулы $\varphi(x)$, что $[\![\varphi(x)]\!] = \mathcal{U}$ (в стандартной интерпретации) тогда и только тогда, когда $x \in \mathit{Tr}_{\Phi A}$.

Доказательство.

Пусть теория \mathcal{S} — формальная арифметика + аксиомы: все истинные в стандартной интерпретации формулы. Очевидно, что $\mathsf{Th}_{\mathcal{S}} = \mathsf{Tr}_{\mathcal{S}} = \mathsf{Tr}_{\Phi A}$. То есть $\mathsf{Tr}_{\Phi A}$ невыразимо в \mathcal{S} .

Пусть φ таково, что $[\![\varphi(x)]\!] = \mathsf{И}$ при $x \in \mathsf{Tr}$. Тогда $\vdash \varphi(x)$, если $x \in \mathsf{Tr}$ и $\vdash \neg \varphi(x)$, если $x \notin \mathsf{Tr}$.

Тогда Tr выразимо в \mathcal{S} . Противоречие.

Однако, если взять $D=\mathbb{R}$, истина становится выразима (алгоритм Тарского).

Положительные результаты про исчисления.

Что можно сделать для разрешимости исчисления предикатов?

▶ По теореме о полноте можем рассматривать (\models) вместо (\vdash). Напомним: $\models \alpha$, если для всех $M = \langle D, F, P, E \rangle$ выполнено $M \models \alpha$.

Что можно сделать для разрешимости исчисления предикатов?

- ▶ По теореме о полноте можем рассматривать (\models) вместо (\vdash). Напомним: $\models \alpha$, если для всех $M = \langle D, F, P, E \rangle$ выполнено $M \models \alpha$.
- Что мешает:
 - 1. слишком сложные формулы кванторы по бесконечным множествам;
 - 2. слишком больше разнообразие D, включая несчётные;
 - 3. даже $D=\mathbb{N}$ в формальной арифметике представляет проблему.

Что можно сделать для разрешимости исчисления предикатов?

- ▶ По теореме о полноте можем рассматривать (\models) вместо (\vdash). Напомним: $\models \alpha$, если для всех $M = \langle D, F, P, E \rangle$ выполнено $M \models \alpha$.
- ▶ Что мешает:
 - 1. слишком сложные формулы кванторы по бесконечным множествам;
 - 2. слишком больше разнообразие D, включая несчётные;
 - 3. даже $D=\mathbb{N}$ в формальной арифметике представляет проблему.
- Будем последовательно бороться:
 - 1. упростим формулу (борьба с кванторами);
 - 2. заменим произвольное D на какое-то рекурсивно-перечислимое множество, устроенное некоторым фиксированным образом (борьба с разнообразием D);
 - 3. устроим правильный перебор, позволяющий быстро находить решения, если они есть (борьба с бесконечностью D).

Шаги рассуждения

- 1. Упростим формулу поверхностные кванторы всеобщности, сколемизация.
- **2**. Заменяем *D*.
- 3. Правильный перебор

Упрощаем формулу α . Сколемизация

1. Предварённая форма (поверхностные кванторы) — *для примера* возьмём чередующиеся:

$$\beta := \forall x_1. \exists x_2. \forall x_3. \exists x_4 \dots \forall x_{n-1}. \exists x_n. \varphi$$

2. Убрать кванторы существования: заменим x_{2k} функциями Сколема $e_{2k}(x_1,x_2,\ldots,x_{2k-1})$. Получим:

$$\gamma := \forall x_1. \forall x_3... \forall x_{n-1}. \varphi[x_2 := e_2(x_1), x_4 := e_4(x_1, x_3), ..., x_n := e_n(x_1, x_3, ..., x_{n-1})]$$

3. ДНФ (c конъюнктов, в каждом d(c) дизъюнктов):

$$\delta := \forall x_1. \forall x_3 \dots \forall x_{n-1}. \bigwedge_{c} \left(\bigvee_{i=\overline{1,d(c)}} (\neg) P_i(\theta_i) \right)$$

4. Исходная задача: проверка $\vdash \alpha$. Это эквивалентно $\vdash \beta$. Эквивалентно $\models \beta$. Эквивалентно выполнимости δ при всех D (найдутся e_i , что $[\![\delta]\!] = \mathsf{N}$).

Шаги рассуждения

- 1. Упростим формулу поверхностные кванторы всеобщности, сколемизация.
- 2. Заменяем *D*.
- 3. Правильный перебор

Эрбранов универсум.

Определение

```
H_0(\varphi) — все константы в формуле \varphi (либо особая константа а, если констант в \varphi нет) H_{k+1}(\varphi) - H_k(\varphi) и все функции от значений H_k(\varphi) (как строки) H = \cup H_n(\varphi) — основные термы.
```

Пример

$$P(a) \lor Q(f(b)):$$

$$H_0 = \{a, b\}$$

$$H_1 = \{a, b, f(a), f(b)\}$$

$$H_2 = \{a, b, f(a), f(b), f(f(a)), f(f(b))\}$$
...
$$H = \{f^{(n)}(x) \mid n \in \mathbb{N}_0, x \in \{a, b\}\}$$

Выполнимость не теряется. Заменяем D на H

Теорема

Формула выполнима тогда и только тогда, когда она выполнима на Эрбрановом универсуме.

Доказательство.

 (\Rightarrow) Пусть $M\models \forall \overline{x}. \varphi$. Тогда построим отображение eval : $H\to M$ (смысл названия вдохновлён языками программирования: eval("f(f(b))") перейдёт в f(f(b)), где f и b — из M).

Предикатам дадим согласованную оценку:

 $P_H(t_1, \ldots, t_n) = P_M(eval(t_1), \ldots, eval(t_n))$. Очевидно, любая формула сохранит своё значение, кванторы всеобщности по меньшему множеству также останутся истинными.

(⇐) Очевидно.

Противоречивость системы дизъюнктов

Определение

Система дизъюнктов $\{\delta_1,\ldots,\delta_n\}$ противоречива, если для каждой интерпретации M найдётся δ_k и такой набор $d_1\ldots d_v$, что $[\![\delta_k]\!]^{x_1:=d_1,\ldots,x_v:=d_v}=\mathcal{I}$.

Теорема

Система дизъюнктов противоречива, если она невыполнима на Эрбрановом универсуме.

Доказательство.

Контрапозиция теоремы о выполнимости + разбор определения.

Основные примеры.

Определение

Дизъюнкт с подставленными основными термами вместо переменных называется основным примером. Системой основных примеров $\mathcal E$ назовём множество основных примеров.

А именно, рассмотрим $\delta_1 \& \delta_2 \& \cdots \& \delta_n$.

$$\mathcal{E} = \{$$
 все возможные основные примеры $\delta_k \mid \mathcal{M}
ot\models \delta_k, \mathcal{M}$ из $H \}$

Теорема

Система дизъюнктов S противоречива тогда и только тогда, когда система всевозможных основных примеров ${\mathcal E}$ противоречива

Доказательство.

Для некоторой эрбрановой интерпретации дизъюнкт δ_k опровергается тогда и только тогда, когда соответствующая ему подстановка в $\mathcal E$ опровергается.

Теорема Эрбрана

Теорема (Эрбрана)

Система дизъюнктов S противоречива тогда и только тогда, когда существует конечное противоречивое множество основных примеров системы дизъюнктов S

Доказательство.

- (\Leftarrow) Пусть $\delta_1[\overline{\mathbf{x}}:=\overline{\theta}],\ldots,\delta_k[\overline{\mathbf{x}}:=\overline{\theta}]$ противоречивое множество примеров дизъюнктов. Тогда интерпретация $\overline{\theta}$ опровергает хотя бы один из δ_k и система противоречива.
- (\Rightarrow) Если S противоречива, то значит, множество основных примеров S противоречиво (по теореме о выполнимости Эрбранова универсума). Тогда по теореме компактности в нём найдётся конечное противоречивое подмножество.

Шаги рассуждения

- 1. Упростим формулу поверхностные кванторы всеобщности, сколемизация.
- 2. Упрощаем D заменили на H, свели к перебору основных примеров.
- 3. Правильный перебор.

Пример: как проверяем выполнимость формулы?

Допустим, формула: $(\forall x. P(x) \& P(x')) \& \exists x. \neg P(x'''')$

- 1. Поверхностные кванторы, сколемизация, ДНФ: $(\forall x. P(x)) \& (\forall x. P(x')) \& (\neg P(e))$
- 2. Строим Эрбранов универсум: $H = \{e, e', e'', e''', \dots\}$
- 3. Если есть противоречие, то среди основных примеров:

$$\mathcal{E} = \{ P(e), P(e'), P(e''), P(e'''), P(e''''), \neg P(e''''), \dots \}$$

Напомним, \mathcal{E} — подстановки элементов H вместо переменных под кванторами. Причём, либо $\models \& E$, либо противоречие достигается на конечном подмножестве (т. Эрбрана). Добавляем по примеру и проверяем. P(e) при $\llbracket P(e) \rrbracket = \mathsf{И}$.

добавляем по примеру и проверяем. F(e) при [F(e)] = V.

. . .

P(e'''') при $[P(e'''')] = \mathsf{V}$.

 $\neg P(e'''')$ при $\|P(e'''')\| = \Pi$. Противоречие.

Правило резолюции (исчисление высказываний)

Пусть даны два дизъюнкта, $\alpha_1 \vee \beta$ и $\alpha_2 \vee \neg \beta$. Тогда следующее правило вывода называется правилом резолюции:

$$\frac{\alpha_1 \vee \beta \qquad \alpha_2 \vee \neg \beta}{\alpha_1 \vee \alpha_2}$$

Теорема

Система дизъюнктов противоречива, если в процессе всевозможного применения правила резолюции будет построено явное противоречие, т.е. найдено два противоречивых дизъюнкта: β и $\neg \beta$.

Расширение правила резолюции на исчисление предикатов

Заметим, что правило резолюции для исчисления высказываний не подойдёт для исчисления предикатов.

$$S = \{P(x), \neg P(0)\}\$$

Здесь P(x) противоречит $\neg P(0)$, но правило резолюции для исчисления высказываний здесь неприменимо, потому что x можно заменять, это не константа:

$$\frac{P(\mathbf{x}) \qquad \neg P(\mathbf{0})}{???}$$

Нужно заменять P(x) на основные примеры, и искать среди них. Модифицируем правило резолюции для этого.

Алгебраические термы

Определение

Алгебраический терм

$$\theta := x | (f(\theta_1, \ldots, \theta_n))$$

где x-переменная, $f(\theta_1,\ldots,\theta_n)-$ применение функции. Напомним, что константы — нульместные функциональные символы, собственно переменные будем обозначать последними буквами латинского алфавита.

Определение

Система уравнений в алгебраических термах
$$\left\{egin{align*} heta_1 = \sigma_1 \\ \vdots \\ heta_n = \sigma_n \end{array}\right.$$

где
$$heta_i$$
 и σ_i — термы

Уравнение в алгебраических термах

Определение

 $\{x_i\}=X-$ множество переменных, $\{ heta_i\}=T-$ множество термов.

Определение

Подстановка—отображение вида: $\pi_0: X \to T$, тождественное почти везде. $\pi_0(x)$ может быть либо $\pi_0(x) = \theta_i$, либо $\pi_0(x) = x$.

Доопределим $\pi: \mathcal{T} \to \mathcal{T}$, где

- 1. $\pi(x) = \pi_0(x)$
- 2. $\pi(f(\theta_1,\ldots,\theta_k))=f(\pi(\theta_1),\ldots,\pi(\theta_k))$

Определение

Решить уравнение в алгебраических термах—найти такую наиболее общую подстановку π , что $\pi(\theta_1) = \pi(\theta_2)$. Наиболее общая подстановка — такая, для которой другие подстановки являются её частными случаями.

Задача унификации

Определение

Пусть даны формулы α и β . Тогда решением задачи унификации будет такая наиболее общая подстановка $\pi = \mathcal{U}[\alpha, \beta]$, что $\pi(\alpha) = \pi(\beta)$. Также, η назовём наиболее общим унификатором.

Пример

- Формулы P(a, g(b)) и P(c, d) не имеют унификатора (мы считаем, что a, b, c, d нульместные функции, a f одноместная функция).
- Проверим формулу на соответствие 11 схеме аксиом:

$$(orall x.P(x)) o P(f(t,g(t),y))$$
Пусть $\pi=\mathcal{U}igl[P(x),P(f(t,g(t),y))igr]$, тогда $\pi(x)=f(t,g(t),y).$

Правило резолюции для исчисления предикатов

Определение

Пусть σ_1 и σ_2 — подстановки, заменяющие переменные в формуле на свежие. Тогда правило резолюции выглядит так:

$$\frac{\alpha_1 \vee \beta_1 \quad \alpha_2 \vee \neg \beta_2}{\pi(\sigma_1(\alpha_1) \vee \sigma_2(\alpha_2))} \ \pi = \mathcal{U}[\sigma_1(\beta_1), \sigma_2(\beta_2)]$$

 σ_1 и σ_2 разделяют переменные у дизъюнктов, чтобы π не осуществила лишние замены, ведь $\vdash (\forall x. P(x) \& Q(x)) \leftrightarrow (\forall x. P(x)) \& (\forall x. Q(x))$, но $\not\vdash (\forall x. P(x) \lor Q(x)) \rightarrow (\forall x. P(x)) \lor (\forall x. Q(x))$.

Пример

$$rac{Q(x)ee P(x) - P(a)ee T(x)}{Q(a)ee T(x'')}$$
 подстановки: $\sigma_1(x) = x', \sigma_2(x) = x'', \pi(x') = a$

Метод резолюции

Ищем $\vdash \alpha$.

- 1. будем искать опровержение $\neg \alpha$.
- 2. перестроим $\neg \alpha$ в ДНФ.
- 3. будем применять правило резолюции, пока получаем новые дизъюнкты и пока не найдём явное противоречие (дизъюнкты вида β и $\neg \beta$).

Если противоречие нашлось, значит, $\vdash \neg \neg \alpha$. Если нет — значит, $\vdash \neg \alpha$. Процесс может не закончиться.

SMT-решатели

Обычно требуется не логическое исчисление само по себе, а теория первого порядка. То есть, «Satisfability Modulo Theory», «выполнимость в теории» — вместо SAT, выполнимости.

lacktriangle Иногда можно вложить теорию в логическое исчисление, даже в исчисление высказываний: $\overline{S_2S_1S_0}=\overline{A_1A_0}+\overline{B_1B_0}$

$$S_0 = A_0 \oplus B_0$$
 $C_0 = A_0 \& B_0$
 $S_1 = A_1 \oplus B_1 \oplus C_0$ $C_1 = (A_1 \& B_1) \lor (A_1 \& C_0) \lor (B_1 \& C_0)$
 $S_2 = C_1$

А можно что-то добавить прямо на уровень унификации / резолюции: Например, можем зафиксировать арифметические функции — и производить вычисления в правиле резолюции вместе с унификацией. Тогда противоречие в $\{x=1+3+1, \neg x=5\}$ можно найти за один шаг.

Уточнённые типы (Refinement types), LiquidHaskell

Определение

```
(Неформальное) Уточнённый тип — тип вида \{	au(x) \mid P(x)\}, где P — некоторый предикат.
```

Пример на LiquidHaskell:

```
data [a]  a -> Prop> where
| [] :: [a] 
| (:) :: h:a -> [a]  -> [a]
```

```
▶ h:а — голова (h) имеет тип a
```

```
[a ]  — хвост состоит из значений типа <math>a, уточнённых p — \{t: a \mid p \ h \ t\} (карринг: a ).
```

```
{-@ type IncrList a = [a] <{\xi xj -> xi <= xj}> @-}
{-@ insertSort :: (Ord a) => xs:[a] -> (IncrList a) @-}
insertSort [] = []
```

insertSort (x:xs) = insert x (insertSort xs)