Algebra II: Tutorial 6

March 23, 2022

Problem 1. Factorise the polynomial $x^{24} - 1$ over \mathbb{Q} . Hence, find the minimal polynomial of $\exp(\frac{2\pi i}{24})$.

Solution.

$$x^{24} - 1 = (x^{12} - 1)(x^{12} + 1)$$

$$= (x^{6} - 1)(x^{6} + 1)(x^{12} + 1)$$

$$= (x^{3} - 1)(x^{3} + 1)(x^{6} + 1)(x^{12} + 1)$$

$$= (x - 1)(x^{2} + x + 1)(x^{3} + 1)(x^{6} + 1)(x^{12} + 1),$$

where the first two factors are irreducible over \mathbb{Q} . Notice that the last three factors are all of the form X^3+1 for $X=x,x^2,x^4$. By a direct computation, $X^3+1=(X+1)(X^2-X+1)$, where both factors on the right are irreducible in $\mathbb{Q}[X]$. Hence, $x^3+1=(x+1)(x^2-x+1)$, $x^6+1=(x^2+1)(x^4-x+1)$ and $x^{12}+1=(x^4+1)(x^8-x^4+1)$. It is clear that this is a decomposition of x^3+1 and x^6+1 into irreducibles over \mathbb{Q} . It remains to show that x^8-x^4+1 is irreducible. This can be checked directly using Sage. All in all, we get:

$$x^{24} - 1 = (x - 1)(x^2 + x + 1)(x + 1)(x^2 - x + 1)(x^2 + 1)(x^4 - x + 1)(x^4 + 1)(x^8 - x^4 + 1).$$

Set $\alpha = \exp(\frac{2\pi i}{24})$, then notice that $\alpha^8 - \alpha^4 = -1$, and so α is a root of $x^8 - x^4 + 1$. By definition, $x^8 - x^4 + 1$ is then the minimal polynomial of α .

Problem 2 (Algebraically closed fields are infinite). Show that every algebraically closed field is infinite.

Solution. Let F be algebraically closed (i.e. every polynomial in F[x] has a root in F), and suppose that F is finite, say $F = \{a_1, a_2, \dots, a_n\}$. Note that n > 1, and so F has at least one non-zero element; WLOG say $a_1 \neq 0$. Then, define the degree n polynomial $f(x) = \prod_{i=1}^{n} (x - a_i) + a_1$ in F[x]. Then, $f(a) = a_1 \neq 0$ for all $a \in F$, and therefore f has no root in F. This contradicts the assumption that F is algebraically closed.

Problem 3 (Extensions of algebraically closed fields). Suppose that K is algebraically closed, and let $K \subset L$ be an algebraic extension. Show that K = L.

Solution. The inclusion $K \subset L$ is obvious; we show that $L \subset K$. Suppose that L is an algebraic extension of K. Take $a \in L$; a is algebraic over K, i.e. there exists a polynomial $f \in K[x]$ such that f(a) = 0. Since K is a field, K[x] is a UFD, therefore we can assume without loss of generality that f is monic irreducible over K. Since K is algebraically closed, f has a root in K, and therefore f = x - a. Since $f \in K[x]$, we have $a \in K$, and so $L \subset K$. \blacksquare

Problem 4 (Degree of splitting fields: upper bound). Let K be any field, and suppose that $f \in K[x]$ is a polynomial of degree n. Let L be a splitting field of f over K. Show that $[L:K] \leq n!$ (Hint: use induction on n).

Solution. If n=1, then f=ax+b with $a,b\in K$, so L=K and $[L:K]=1\leq 1!$. Suppose now that the claim is true for $n-1\in \mathbb{N}$ fixed. Take $f\in K[x]$ is a polynomial of degree n with roots $\alpha_1,\alpha_2,\cdots,\alpha_n$. Over $K(\alpha_n), f$ has a root, and so $f(x)=(x-\alpha_n)h(x)$ for some $h(x)\in K(\alpha_n)[x]$. By comparing degrees, h(x) has degree n-1, and by inductive hypothesis the splitting field $L_h=K(\alpha_n)(\alpha_1,\alpha_2,\cdots,\alpha_{n-1})$ of h has degree at most (n-1)! over $K(\alpha_n)$. Therefore, $[L:K(\alpha_n)]\leq (n-1)!$. Furthermore, $[K(\alpha_n):K]\leq n$, so by the Tower theorem $[L:K]\leq n!$.