Testing vs. Proof

	Testing (dynamic analysis)	Proof (static analysis)
Properties	observable	any
Verified execution traces	finite subset	exhaustive
Guaranteeing Absence of errors	No	Yes
Finding infeasible errors	No	Yes
Developed with	automated regression	automated proof checkers
Practicality	high	limited

Testing vs. Proof

Proofs are not practical, but we learn them because they:

- tell us how to think about program correctness.
- are important for development, inspection.
- give us intuitions about foundations of automated theorem-provers.
 - □ Metis¹
 - Prover9²

Correctness of a Function

Contract between client and implementation: staring from an *initial condition*, function f should establish a *certain* condition after correctly running (input-output claim).

- Pre-condition & Post-condition extracted and expressed by predicates (boolean function over program state).
- Function f is correct w.r.t the specification only if:

Correctness of a Program

- Partial Correctness: if pre-condition holds and the program terminates, post-condition holds.
- Total Correctness: if pre-condition holds, the program terminates and post-condition holds.

Hoare's Logic: Syntax & Semantics

A Hoare triple $\{\phi_1\}P\{\phi_2\}$ is a formula, where ϕ_1 and ϕ_2 are predicates and P is a program.

- Partial correctness ⇔ starting from a state s satisfying φ₁, whenever an execution of P terminates in state s', then s' |= φ₂.
- Total correctness ⇔ starting from a state s satisfying φ₁, every execution of P terminates and whenever an execution of P terminates in state s', then s' |= φ₂.
- For programs without loops, both semantics coincide.

Hoare's Logic: Syntax & Semantics

- Strongest Post-conditions:
 - □ If $\{\phi_1\}P\{\phi_2\}$ and for all ϕ'_2 such that $\{\phi_1\}P\{\phi'_2\}$, $\phi_2 \Rightarrow \phi'_2$, then ϕ_2 is the strongest post-condition of P with respect to ϕ_1 .

```
    {x=5} x:=x*2 {true}
    {x=5} x:=x*2 {x>0}
    {x=5} x:=x*2 {x=10\degree x=5}
    {x=5} x:=x*2 {x=10}
```

Hoare's Logic: Syntax & Semantics

- Weakest Preconditions:
 - □ If $\{\phi_1\}P\{\phi_2\}$ and for all ϕ'_1 such that $\{\phi'_1\}P\{\phi_2\}$, $\phi'_1 \Rightarrow \phi_1$, then ϕ_1 is the weakest precondition of P with respect to ϕ_2 .

```
1. \{x=5 \&\& y=10\} z := x/y \{z<1\}
```

- 2. $\{x < y \& \& y > 0\}$ $z := x/y \{z < 1\}$
- 3. $\{y\neq 0 \& \& x/y<1\}$ z := x/y $\{z<1\}$

Assignment:

$$\{\phi[t/y]\}\ y:=t\ \{\phi\}$$

Assignment:

$$\{\phi[t/y]\}\ y:=t\ \{\phi\}$$

1. $\{?\}$ y:=y+5 $\{y=10\}$

Assignment:

$$\{\phi[t/y]\}\ y:=t\ \{\phi\}$$

```
1. {?} y := y+5  {y=10}

{?} y_{new} := y_{old} + 5  {y_{new} = 10}

y_{old} + 5 = 10
```

Assignment:

$$\{\phi[t/y]\}\ y:=t\ \{\phi\}$$

```
1. \{y+5=10\} y:=y+5 \{y=10\}

\{?\} y_{new}:=y_{old}+5 \{y_{new}=10\}

Y_{old}+5=10
```

Assignment:

$$\{\phi[t/y]\}\ y:=t\ \{\phi\}$$

2. $\{?\}$ x:=y $\{x+y < z\}$

Assignment:

$$\{\phi[t/y]\}\ y:=t\ \{\phi\}$$

```
2. {?} x := y \{x+y < z\}
{?} x_{new} := y \{x_{new} + y < z\}
y+y < z
```

Assignment:

$$\{\phi[t/y]\}\ y:=t\ \{\phi\}$$

```
2. \{y+y \le z\} x := y \{x+y \le z\}
\{?\} x_{new} := y \{x_{new} + y \le z\}
y+y \le z
```

Assignment:

$$\{\phi[t/y]\}\ y:=t\ \{\phi\}$$

3. $\{?\}$ y:=2*(y+5) $\{y>20\}$

Assignment:

$$\{\phi[t/y]\}\ y:=t\ \{\phi\}$$

```
3. {?} y := 2*(y+5) {y>20}
{?} y_{new} := 2*(y_{old}+5) {y_{new}>20}
2*(y_{old}+5) > 20
```

Assignment:

$$\{\phi[t/y]\}\ y:=t\ \{\phi\}$$

```
3. \{y>5\} y:=2*(y+5) \{y>20\}
\{?\} y_{new}:=2*(y_{old}+5) \{y_{new}>20\}
2*(y_{old}+5) > 20
```

Assignment:

Axioms work backwards.

```
3. \{y>5\} y:=2*(y+5) \{?\} \{y_{old}>5\} y_{new}:=2*(y_{old}+5) \{?\} y_{old}>5 => y_{new} > 20
```

Assignment:

Axioms work backwards.

```
3. \{y>5\} y:=2*(y+5) \{y_{new}>20\} \{y_{old}>5\} y_{new}:=2*(y_{old}+5) \{?\} y_{old}>5 => y_{new}>20
```

Composition rule:

$$\{\phi\}$$
 P1 $\{\phi'\}$, $\{\phi'\}$ P2 $\{\phi''\}$
 $\{\phi\}$ P1; P2 $\{\phi''\}$

```
\{x+1=y+2\} x:=x+1 \{x=y+2\}, \{x=y+2\} y:=y+2 \{x=y\} \{x+1=y+2\} x:=x+1; y:=y+2\{x=y\}
```

Condition rule:

```
\{\phi \land c\} P1 \{\phi'\}, \{\phi \land \neg c\} P2 \{\phi'\}
\{\phi\} if c then P1 else P2 fi \{\phi'\}
```

```
\{(y>4)\land(z>1)\}y:=y+z\{y>3\}, \{(y>4)\land\neg(z>1)\}y:=y-1\{y>3\}
\{y>4\} if (z>1) then y:=y+z else y:=y-1\{y>3\}
```

Consequence rule:

$$\varphi \rightarrow \sigma$$
, $\{\sigma\} P \{\sigma'\}$, $\sigma' \rightarrow \varphi'$
 $\{\phi\} P \{\phi'\}$

$$(y>4\land z>1) \Rightarrow (y+z>5)$$
, $\{y+z>5\}y:=y+z\{y>5\}$, $(y>5) \Rightarrow (y>3)$
 $\{(y>4)\land (z>1)\}y:=y+z\{y>3\}$

Consequence rule:

$$\varphi \rightarrow \sigma$$
, $\{\sigma\} P \{\sigma'\}$, $\sigma' \rightarrow \varphi'$
 $\{\varphi\} P \{\varphi'\}$

$$\frac{(y>4\land z>1) \Rightarrow (y+z>5), \{y+z>5\}y := y+z\{y>5\}, (y>5) \Rightarrow (y>3)}{\{(y>4)\land (z>1)\}y := y+z\{y>3\}}$$

weakest pre-condition

strongest post-condition

While rule:

```
\frac{\{\phi \land c\} \ P \ \{\phi\}}{\{\phi\} \ \text{while c do P od } \{\phi \land \neg c\}}
```

```
\frac{\{(y=x+z)\land(z!=0)\}x:=x+1;z:=z-1\{y=x+z\}}{\{y=x+z\}\text{while}(z!=0)x:=x+1;z:=z-1\{(y=x+z)\land(z=0)\}} \frac{\{(y=x+z)\land\text{true}\}x:=x+1;z:=z-1\{y=x+z\}}{\{y=x+z\}\text{while}(\text{true})x:=x+1;z:=z-1\{(y=x+z)\land\text{false}\}}
```

- For correctness proof of a loop, we need an invariant (Inv) such that:
 - It is initially true:

$$\phi \Rightarrow Inv$$

Partial correctness : each execution of the loop preserves the invariant:

```
\{ Inv \land c \} P \{ Inv \}
```

Total correctness: the invariant and the loop exit condition imply the post-condition:

```
{ Inv \land \neg c } \Rightarrow { \phi \land \neg c }
```

Hoare's Logic: Structural rules

Conjunction

$$\frac{\{\phi_1\}P\{\psi_1\}\{\phi_2\}P\{\psi_2\}}{\{\phi_1\land\phi_2\}P\{\psi_1\land\psi_2\}}$$

Disjunction

$$\frac{\{\phi_1\}P\{\psi_1\}\{\phi_2\}P\{\psi_2\}}{\{\phi_1\lor\phi_2\}P\{\psi_1\lor\psi_2\}}$$

Universe Quantification

$$\frac{\{\phi\}P\{\psi\}}{\{\forall v. \phi\}P\{\forall v. \psi\}}$$

Existential
Universal Quantification

$$\frac{\{\phi\}P\{\psi\}}{\{\exists v.\phi\}P\{\exists v.\psi\}}$$

PARTIAL CORRECTNESS

```
\{x > 0\} =pre
if (x == 1) sqrt := 1
else
         i:=1;
         z := 1;
         while ( z \le x )
                  i++;
                  z:=i*i;
         sqrt := i-1;
{\operatorname{sqrt}^2 \le x < (\operatorname{sqrt} + 1)^2} = \operatorname{post}
```

```
\{x > 0\} =pre
if (x == 1) sqrt := 1
else
         i:=1;
         z := 1;
         while ( z \le x )
                   i++;
                   z:=i*i;
         sqrt := i-1;
\{ \operatorname{sqrt}^2 \le x < (\operatorname{sqrt} + 1)^2 \} = \operatorname{post}
```

```
\{x > 0\} =pre
                                       According to condition rule:
if (x == 1) sqrt := 1
                                       1. \{x > 0 \land x = 1\} sqrt :=1 \{post\}
else
                                       2. \{x > 0 \land x!=1\} i:=1;... {post}
         i := 1;
         z := 1;
         while (z \le x)
                  i++;
                  z:=i*i;
         sqrt := i-1;
\{ \operatorname{sqrt}^2 \le x < (\operatorname{sqrt} + 1)^2 \} = \operatorname{post}
```

```
\{x > 0\} =pre
                                According to condition rule:
if (x == 1) sqrt := 1
                                1. \{x > 0 \land x = 1\} sqrt :=1 {post}
else
                                2. \{x > 0 \land x!=1\} i:=1;... {post}
       i := 1;
       z := 1;
       while (z \le x)
               i++;
               z:=i*i;
       sqrt := i-1;
{sqrt^2 \le x < (sqrt + 1)^2} = post
```

```
\{x > 0 \land x = 1\} \text{ sqrt } :=1 \text{ } \{post\}
```

```
\{x > 0 \land x = 1\} \text{ sqrt } :=1 \{post\}
\{x > 0 \land x = 1\} \text{ sqrt } :=1 \{sqrt^2 \le x < (sqrt + 1)^2\}
```

```
\{x > 0 \land x = 1\} \text{ sqrt } :=1 \{post\}
\{x > 0 \land x = 1\} \text{ sqrt } :=1 \{sqrt^2 \le x < (sqrt + 1)^2\}
```

```
\{x > 0 \land x = 1\} \text{ sqrt } :=1 \{post\}
\{x > 0 \land x = 1\} \text{ sqrt } :=1 \{sqrt^2 \le x < (sqrt + 1)^2\}
\{x = 1\} => \{1 \le x < (1+1)^2\}
```

```
\{x > 0 \land x = 1\} \text{ sqrt } :=1 \{post\}
\{x > 0 \land x = 1\} \text{ sqrt } :=1 \{sqrt^2 \le x < (sqrt + 1)^2\}
\{x = 1\} => \{1 \le x < (1+1)^2\}
\{x = 1\} => \{1 \le x < 4\}
```

```
\{x > 0 \land x = 1\} \text{ sqrt } :=1 \{post\}
\{x > 0 \land x = 1\} \text{ sqrt } :=1 \{sqrt^2 \le x < (sqrt + 1)^2\}
\{x = 1\} => \{1 \le x < (1+1)^2\}
\{x = 1\} => \{1 \le x < 4\}
```

```
\{x > 0\} =pre
                                        According to condition rule:
if (x == 1) sqrt := 1
                                        1. \{x > 0 \land x = 1\} sqrt :=1 \{post\}
else
                                        2. \{x > 0 \land x!=1\} i:=1;... {post}
         i := 1;
         z := 1;
         while (z \le x)
                   <u>i++;</u>
                   z:=i*i;
         sqrt := i-1;
\{ \operatorname{sqrt}^2 \le x < (\operatorname{sqrt} + 1)^2 \} = \operatorname{post}
```

```
\{x > 0\} = pre
                                      According to condition rule:
if (x == 1) sqrt := 1
                                      1. \{x > 0 \land x = 1\} sqrt :=1 \{post\}
else
                                      2. \{x > 0 \land x!=1\} i:=1;... {post}
                                           a. \{x > 1\} i:=1;z:=1; \{Inv\}
         i := 1;
                                           b. \{Inv\} while ... \{Inv \land z > x\}
         z := 1;
                                           c. \{Inv \land z>x\} sqrt:=i-1;\{post\}
        while (z \le x)
                  i++;
                  z:=i*i;
         sqrt := i-1;
\{ \operatorname{sqrt}^2 \le x < (\operatorname{sqrt} + 1)^2 \} = \operatorname{post}
```

```
\{x > 0\} = pre
                                       According to condition rule:
if (x == 1) sqrt := 1
                                       1. \{x > 0 \land x = 1\} sqrt :=1 \{post\}
else
                                       2. \{x > 0 \land x!=1\} i:=1;... {post}
                                           a. \{x > 1\} i:=1;z:=1; \{Inv\}
         i := 1;
                                           b. \{Inv\} while ... \{Inv \land z > x\}
         z := 1;
                                           c. \{Inv \land z>x\} sqrt:=i-1;\{post\}
         while (z \le x)
                  <u>i++;</u>
                  z:=i*i;
         sqrt := i-1;
\{ \operatorname{sqrt}^2 \le x < (\operatorname{sqrt} + 1)^2 \} = \operatorname{post}
```

```
\{x > 1\} i:=1;z:=1; \{Inv\}
```

```
\{x > 1\} i:=1;z:=1; \{Inv\}
```

```
\{x > 1\} i:=1;z:=1; \{Inv\}
```

Let's choose an Inv:

what does each iteration do?

```
\{x > 1\} i:=1;z:=1; \{Inv\}
```

Let's choose an Inv:

 \square what does each iteration do? $Z = i^2$

```
\{x > 1\} i:=1;z:=1; \{Inv\}
```

- \square what does each iteration do? $Z = i^2$
- what keeps the loop going on?

```
\{x > 1\} i:=1;z:=1; \{Inv\}
```

- \Box what does each iteration do? $Z = i^2$
- □ what keeps the loop going on? $(i-1)^2 \le x$

```
\{x > 1\} i:=1;z:=1; \{Inv\}
```

- \square what does each iteration do? $Z = i^2$
- □ what keeps the loop going on? $(i-1)^2 \le x$

```
Hence: Inv = \{z = i^2 \land (i-1)^2 \le x\}
```

```
\{x > 1\} i:=1;z:=1; \{Inv\}
```

- \Box what does each iteration do? $Z = i^2$
- □ what keeps the loop going on? $(i-1)^2 \le x$

Hence: Inv =
$$\{z = i^2 \land (i-1)^2 \le x\}$$

$$\{x > 1\}$$
 i:=1;z:=1; $\{z = i^2 \land (i-1)^2 \le x\}$
 $\{x > 1\}$ => $\{1 = 1 \land 0 \le x\}$

```
\{x > 1\} i:=1;z:=1; \{Inv\}
  Let's choose an Inv:
  \Box what does each iteration do? Z = i^2
  □ what keeps the loop going on? (i-1)^2 \le x
Hence: Inv = \{z = i^2 \land (i-1)^2 \le x\}
\{x > 1\} i:=1;z:=1; \{z = i^2 \land (i-1)^2 \le x\}
\{x > 1\} => \{1 = 1 \land 0 \le x\}
\{x > 1\} \qquad => \qquad \{x \geq 0\}
```

```
\{x > 1\} i:=1;z:=1; \{Inv\}
  Let's choose an Inv:
  \Box what does each iteration do? Z = i^2
  □ what keeps the loop going on? (i-1)^2 \le x
Hence: Inv = \{z = i^2 \land (i-1)^2 \le x\}
\{x > 1\} i:=1;z:=1; \{z = i^2 \land (i-1)^2 \le x\}
\{x > 1\} => \{1 = 1 \land 0 \le x\}
\{x > 1\} = \{x \ge 0\}
```

always holds

```
\{x > 0\} = pre
                                      According to condition rule:
if (x == 1) sqrt := 1
                                      1. \{x > 0 \land x = 1\} sqrt :=1 \{post\}
else
                                      2. \{x > 0 \land x!=1\} i:=1;... {post}
                                           a. \{x > 1\} i:=1;z:=1; \{Inv\}
         i := 1;
                                           b. \{Inv\} while ... \{Inv \land z > x\}
         z := 1;
                                           c. \{Inv \land z>x\} sqrt:=i-1;\{post\}
        while (z \le x)
                  i++;
                  z:=i*i;
         sqrt := i-1;
\{ \operatorname{sqrt}^2 \le x < (\operatorname{sqrt} + 1)^2 \} = \operatorname{post}
```

```
{Inv} while ... {Inv \land z > x }
```

```
{Inv} while ... {Inv \land z > x }
According to while rule:
{Inv \land z \le x } i++; z = i*i; {Inv}
```

```
{Inv} while ... {Inv \land z > x } According to while rule: {Inv \land z \le x } i++; z = i*i; {Inv} {z = i^2 \lambda (i-1)^2 \le x \lambda z \le x } i++; z = i*i; {z = i^2 \lambda (i-1)^2 \le x}
```

```
{Inv} while ... {Inv \land z > x }
According to while rule:
{Inv \land z \le x } i++; z = i*i; {Inv}
{z = i^2 \land (i-1)^2 \le x \land z \le x } i++; z = i*i; {z = i^2 \land (i-1)^2 \le x}
```

```
{Inv} while ... {Inv \land z > x }

According to while rule:

{Inv \land z \le x } i++; z = i*i; {Inv}

{z = i^2 \land (i-1)^2 \le x \land z \le x } i++; z = i*i; {z = i^2 \land (i-1)^2 \le x}

{(i-1)^2 \le x \land i^2 \le x } i++; {i^2 = i^2 \land (i-1)^2 \le x}
```

```
{Inv} while ... {Inv \land z > x }

According to while rule:

{Inv \land z \le x } i++; z = i*i; {Inv}

{z = i^2 \land (i-1)^2 \le x \land z \le x } i++; z = i*i; {z = i^2 \land (i-1)^2 \le x}

{(i-1)^2 \le x } i++; {i^2 = i^2 \land (i-1)^2 \le x}

{i^2 \le x } i++; {(i-1)^2 \le x}
```

```
{Inv} while ... {Inv \land z > x}
According to while rule:
\{Inv \land z \le x \} i++; z = i*i; \{Inv\}
\{z = i^2 \land (i-1)^2 \le x \land z \le x \} i++; z = i*i; \{z = i^2\}
\wedge (i-1)^2 \leq x
\{(i-1)^2 \le x \land i^2 \le x \} i++; \{i^2 = i^2 \land (i-1)^2 \le x\}
\{i^2 \le x \} i++; \{(i-1)^2 \le x\}
\{i^2 \le x\} \Rightarrow \{i^2 \le x\}
```

equal sides

```
\{x > 0\} = pre
                                      According to condition rule:
if (x == 1) sqrt := 1
                                      1. \{x > 0 \land x = 1\} sqrt :=1 \{post\}
else
                                      2. \{x > 0 \land x!=1\} i:=1;... {post}
                                           a. \{x > 1\} i:=1;z:=1; \{Inv\}
         i:=1;
                                          b. \{Inv\} while ... \{Inv \land z > x\}
         z := 1;
                                           c. \{Inv \land z>x\} sqrt:=i-1;\{post\}
        while (z \le x)
                  i++;
                  z:=i*i;
         sqrt := i-1;
\{ \operatorname{sqrt}^2 \le x < (\operatorname{sqrt} + 1)^2 \} = \operatorname{post}
```

```
{Inv \land z>x} \quad sqrt:=i-1;{post}
```

```
{Inv \land z>x} sqrt:=i-1;{post}
{z = i<sup>2</sup> \land (i-1)<sup>2</sup> \leq x \land z>x} sqrt:=i-1;{post}
```

```
{Inv \land z>x}  sqrt:=i-1;{post}
\{z = i^2 \land (i-1)^2 \le x \land z > x\} \text{ sqrt:=} i-1; \{post\}
\{(i-1)^2 \le x < i^2\} \text{ sqrt}:=i-1;\{post\}
                                       d sqrt<sup>2</sup> < n < (sqrt+1)<sup>5</sup>
                                      d(i-1)^{2} \leq 7 < i^{2} \leq 5
                     29val sitos
```

Least common multiple of two positive integers.

```
{x,y > 0} = pre

Z := 1

While (z % x != 0 ∨ z % y != 0 )

z ++;

{z%x=0 ∧ z%y=0 ∧ ∀i(1≤i<z =>i%x!=0 ∨ i%y!=0)} = post
```

Least common multiple of two positive integers.

```
{x,y > 0} = pre
Z := 1
While (z % x != 0 ∨ z % y != 0 )
    z ++;

{z%x=0 ∧ z%y=0 ∧ ∀i(1≤i<z =>i%x!=0 ∨ i%y!=0)} = post

According to while rule:
    1. {x,y > 0} Z := 1 {Inv}
    2. {Inv} while ...{Inv ∧ !(z % x != 0 ∨ z % y != 0)}
    3. {Inv ∧ !(z % x != 0 ∨ z % y != 0)} => {post}
```

Least common multiple of two positive integers.

```
{x,y > 0} = pre
Z := 1
While (z % x != 0 ∨ z % y != 0 )
    z ++;

{z%x=0 ∧ z%y=0 ∧ ∀i(1≤i<z =>i%x!=0 ∨ i%y!=0)} = post

According to while rule:
    1. {x,y > 0} Z := 1 {Inv}
    2. {Inv} while ...{Inv ∧ !(z % x != 0 ∨ z % y != 0)}
    3. {Inv ∧ !(z % x != 0 ∨ z % y != 0)} => {post}
```

```
\{x,y > 0\} \ Z := 1 \ \{Inv\}
```

```
\{x,y > 0\} \ Z := 1 \ \{Inv\}
```

```
\{x,y > 0\} \ Z := 1 \ \{Inv\}
```

What could be a proper Inv?

what does each iteration do? Nothing really

```
\{x,y > 0\} Z := 1 \{Inv\}
```

- what does each iteration do? Nothing really
- what keeps the loop going on?

```
\{x,y > 0\} \ Z := 1 \ \{Inv\}
```

- what does each iteration do? Nothing really
- □ what keeps the loop going on? ∀i(1≤i<z =>i%x!=0 ∨
 i%y!=0)

```
\{x,y > 0\} Z := 1 \{Inv\}
```

- what does each iteration do? Nothing really
- □ what keeps the loop going on? ∀i(1≤i<z =>i%x!=0 ∨
 i%y!=0)

```
Hence, Inv = \{\forall i(1 \le i < z = > i \%x! = 0 \lor i \%y! = 0)\}.
```

```
\{x, y > 0\} \ Z := 1 \{Inv\}
```

What could be a proper Inv?

- what does each iteration do? Nothing really
- □ what keeps the loop going on? ∀i(1≤i<z =>i%x!=0 ∨
 i%y!=0)

```
Hence, Inv = \{\forall i(1 \le i < z = > i \%x! = 0 \lor i \%y! = 0)\}.
\{x,y > 0\} Z := 1 \{\forall i(1 \le i < z = > i \%x! = 0 \lor i \%y! = 0)\}
```

```
\{x,y > 0\} \ Z := 1 \ \{Inv\}
```

What could be a proper Inv?

- what does each iteration do? Nothing really
- □ what keeps the loop going on? ∀i(1≤i<z =>i%x!=0 ∨
 i%y!=0)

```
Hence, Inv = {\foralli(1\leqi<z =>i%x!=0 \vee i%y!=0)}.
{x,y > 0} Z := 1 {\foralli(1\leqi<z =>i%x!=0 \vee i%y!=0)}
```

```
\{x, y > 0\} \ Z := 1 \ \{Inv\}
```

What could be a proper Inv?

- what does each iteration do? Nothing really
- □ what keeps the loop going on? ∀i(1≤i<z =>i%x!=0 ∨
 i%y!=0)

```
Hence, Inv = \{\forall i(1 \le i < z = > i \%x! = 0 \lor i \%y! = 0)\}.

\{x,y > 0\} Z := 1 \{\forall i(1 \le i < z = > i \%x! = 0 \lor i \%y! = 0)\}

\{x,y > 0\} => \{\forall i(1 \le i < 1 = > i \%x! = 0 \lor i \%y! = 0)\}
```

```
\{x,y > 0\} Z := 1 \{Inv\}
```

What could be a proper Inv?

- what does each iteration do? Nothing really
- □ what keeps the loop going on? ∀i(1≤i<z =>i%x!=0 ∨
 i%y!=0)

```
Hence, Inv = {\foralli(1\leqi<z =>i%x!=0 \vee i%y!=0)}.

{x,y > 0} Z := 1 {\foralli(1\leqi<z =>i%x!=0 \vee i%y!=0)}

{x,y > 0} => {\foralli(1\leqi<1 =>i%x!=0 \vee i%y!=0)}
```

false

```
\{x,y > 0\} Z := 1 \{Inv\}
```

What could be a proper Inv?

- what does each iteration do? Nothing really
- □ what keeps the loop going on? ∀i(1≤i<z =>i%x!=0 ∨
 i%y!=0)

```
Hence, Inv = \{\forall i(1 \le i < z = > i \%x! = 0 \lor i \%y! = 0)\}.

\{x,y > 0\} Z := 1 \{\forall i(1 \le i < z = > i \%x! = 0 \lor i \%y! = 0)\}

\{x,y > 0\} => \{\forall i(1 \le i < 1 = > i \%x! = 0 \lor i \%y! = 0)\}
```

true

```
\{x,y > 0\} Z := 1 \{Inv\}
```

What could be a proper Inv?

- what does each iteration do? Nothing really
- what keeps the loop going on? ∀i(1≤i<z =>i%x!=0 ∨ i%y!=0)

```
Hence, Inv = {\foralli(1\leqi<z =>i%x!=0 \vee i%y!=0)}. {x,y > 0} Z := 1 {\foralli(1\leqi<z =>i%x!=0 \vee i%y!=0)} {x,y > 0} => {\foralli(1\leqi<1 =>i%x!=0 \vee i%y!=0)}
```

If precondition holds, Inv is always true before the loop.

Least common multiple of two positive integers.

```
{x,y > 0} = pre
Z := 1
While (z % x != 0 ∨ z % y != 0 )
    z ++;

{z%x=0 ∧ z%y=0 ∧ ∀i(1≤i<z =>i%x!=0 ∨ i%y!=0)} = post

According to while rule:
    1. {x,y > 0} Z := 1 {Inv}
    2. {Inv} while ...{Inv ∧ !(z % x != 0 ∨ z % y != 0)}
    3. {Inv ∧ !(z % x != 0 ∨ z % y != 0)} => {post}
```

```
{Inv} while ...{Inv \land !(z % x != 0 \lor z % y != 0)}
```

```
{Inv} while ...{Inv \land !(z % x != 0 \lor z % y != 0)}
```

According to while rule:

```
\{Inv \land (z % x != 0 \lor z % y != 0)\} z ++; \{Inv\}
```

```
{Inv} while ...{Inv \land !(z % x != 0 \lor z % y != 0)}
According to while rule:
{Inv \land (z % x != 0 \lor z % y != 0)} z ++;{Inv}
And we know that Inv = {\foralli(1\leqi<z =\ranglei\otimesx!=0 \lor i\otimesy!=0)}
```

```
{Inv} while ...{Inv \land !(z % x != 0 \lor z % y != 0)}

According to while rule:

{Inv \land (z % x != 0 \lor z % y != 0)} z ++;{Inv}

And we know that Inv = {\foralli(1\leqi\leqz =>i%x!=0 \lor i%y!=0)}

{\foralli(1\leqi\leqz =>i%x!=0 \lor i%y!=0)} z ++;{Inv}
```

```
{Inv} while ...{Inv \land !(z % x != 0 \lor z % y != 0)}

According to while rule:

{Inv \land (z % x != 0 \lor z % y != 0)} z ++;{Inv}

And we know that Inv = {\foralli(1\leqi<z =>i%x!=0 \lor i%y!=0)}

{\foralli(1\leqi\leqz =>i%x!=0 \lor i%y!=0)} z ++;{Inv}
```

```
\{Inv\}\ while ...\{Inv \land !(z % x != 0 \lor z % y != 0)\}
According to while rule:
\{Inv \land (z \ % \ x \ != 0 \lor z \ % \ y \ != 0)\} \ z ++; \{Inv\}
And we know that Inv = \{ \forall i(1 \le i < z = > i \%x! = 0 \lor i \%y! = 0) \}
\{ \forall i(1 \le i \le z => i \%x! = 0 \lor i \%y! = 0) \} z ++; \{Inv\}
\{ \forall i(1 \le i \le z => i \%x! = 0 \lor i \%y! = 0) \} => \{ \forall i(1 \le i < z+1 => i \%x! = 0) \}
=0 \lor i8y!=0)
```

```
\{Inv\}\ while ...\{Inv \land !(z % x != 0 \lor z % y != 0)\}
According to while rule:
\{Inv \land (z \% x != 0 \lor z \% y != 0)\} z ++; \{Inv\}
And we know that Inv = \{ \forall i(1 \le i < z = > i \%x! = 0 \lor i \%y! = 0) \}
\{\forall i(1 \le i \le z => i \%x! = 0 \lor i \%y! = 0)\} z ++; \{Inv\}
\{ \forall i(1 \le i \le z => i \%x! = 0 \lor i \%y! = 0) \} => \{ \forall i(1 \le i < z+1 => i \%x! = 0) \}
=0 \lor i%y!=0)
\{\forall i(1 \le i \le z => i \%x! = 0 \lor i \%y! = 0)\} => \{\forall i(1 \le i \le z => i \%x! = 0\}
∨ i%y!=0)}
                                                                        equal sides
```

Least common multiple of two positive integers.

```
{x,y > 0} = pre
Z := 1
While (z % x != 0 ∨ z % y != 0 )
    z ++;

{z%x=0 ∧ z%y=0 ∧ ∀i(1≤i<z =>i%x!=0 ∨ i%y!=0)} = post

According to while rule:
    1. {x,y > 0} Z := 1 {Inv}
    2. {Inv} while ...{Inv ∧ !(z % x != 0 ∨ z % y != 0)}
    3. {Inv ∧ !(z % x != 0 ∨ z % y != 0)} => {post}
```

```
\{Inv \land !(z % x != 0 \lor z % y != 0)\} \Rightarrow \{post\}
```

```
{Inv \land !(z % x != 0 \lor z % y != 0)} => {post}
{Inv \land (z % x = 0 \land z % y = 0)} => {post}
```

```
{Inv \land !(z % x != 0 \lor z % y != 0)} => {post}

{Inv \land (z % x = 0 \land z % y = 0)} => {post}

{\foralli(1\leqi<z =>i%x!=0 \lor i%y!=0) \land (z % x = 0 \land z % y = 0)} => {post}
```

```
{Inv \land !(z % x != 0 \lor z % y != 0)} => {post}

{Inv \land (z % x = 0 \land z % y = 0)} => {post}

{\foralli(1\leqi<z =>i%x!=0 \lor i%y!=0) \land (z % x = 0 \land z % y = 0)} => {post}
```

The left-hand side formula is basically the post-condition.