Decision trees

Most popular methods in Kaggle (survey 2021)

Introduction

How does it work?

Example on a dataset of 2 classes with 20 samples each. Each sample has 2 features.

How do we start the tree? how do we find the conditions? what is "gini"?

Building the decision tree

The decision tree is built recursively

- Each decision node act on a set and split it into 2 subsets
- it calls the decision function on each subset
- until the subset is "pure enough": it contains only or mostly one class

The procedure repeat itself at each subset: It can be efficiently coded with **recursion**

```
1  GenerateTree(X)
2    if PureEnough(X):
3       GiveMajorityClassLabelTo(X)
4       return
5    (X1,X2) = MakeDecision(X)
6    GenerateTree(X1)
7    GenerateTree(X2)
```


A function calls itself!!

Recursion

Ingredients:

- A function with a call to itself
- some more actions
- a stopping condition (avoid infinite call!)

Example:

```
def factorial(n):
    if n > 0:
        return n * factorial(n - 1)
    else:
        return 1
```

Recursion rules:

- Needs a base case (where it stops),
- Ensure each recursive call makes a step toward the base case

Back to the decision tree

The decision tree is built recursively

- Each decision node act on a set and split it into 2 subsets
- it calls the decision function on each subset
- until the subset is "pure enough": it contains only or mostly one class

Decision node

To take a decision, we need:

- a feature: the decision is on a single feature
- a purity or impurity measure: to find the class separation

Let us first assume we have one feature and let us look at the impurity measure

Purity / impurity

- A feature is selected
- A threshold value t separate into 2 subsets (below and above t)

Where to set the cut such that the 2 subsets are as pure as possible?

Note for later: the feature is selected such that classes are well separated with a threshold.

Entropy and Gini index

Two mathematical definitions of purity (or impurity)

2 classes (0 and 1), we look at one of the 2 subsets

In the subset. Probability or ratio

$$p_0 = \frac{n_0}{n_0 + n_1}$$

$$p_1 = \frac{n_1}{n_0 + n_1}$$

$$p_0 + p_1 = 1 \qquad p_1 = 1 - p_0$$

$$p_1 = 1 - p_0$$

Gini

$$G = 2p_0p_1 = 2p_0(1 - p_0)$$

Entropy

$$H = -p_0 \log_2 p_0 - p_1 \log_2 p_1$$

$$p_0 = 0 ? , p_1 = 0 ?$$

Entropy and Gini index

Two mathematical definitions of purity (or impurity)

2 classes (0 and 1), we look at one of the 2 subsets

In the subset.

In the subset,
$$p_0=rac{n_0}{n_0+n_1}$$
 $p_1=rac{n_1}{n_0+n_1}$

$$p_1 = \frac{n_1}{n_0 + n_1}$$

$$p_0 + p_1 = 1$$
 $p_1 = 1 - p_0$

Gini

$$G = 2p_0 p_1 = 2p_0 (1 - p_0)$$

Entropy

$$H = -p_0 \log_2 p_0 - p_1 \log_2 p_1$$

for 2 classes (0 and 1)

 $p_0 + p_1 = 1$

bability or ratio
$$p_0 = rac{n_0}{n_0 + n_1}$$

 $H(p) = -p_0 \ln p_0 - p_1 \ln p_1$

Probability or ratio
$$p_0=rac{n_0}{n_0+n_1}$$
 $p_1=rac{n_1}{n_0+n_1}$ 0.8 0.6

1.0 0.4 0.2 0.0

0.4

 p_0

0.6

8.0

1.0

0.2

0.0

Lowest entropy when the set has a single class

$$G = \sum_{k=1}^{K} p_k (1 - p_k) = 1 - \sum_{k=1}^{N} p_k^2$$

$$H(f) = -\sum_{l} f_k \ln f_k$$
 with $\sum_{l} f_k = 1$

Entropy - general point of view

Entropy measures the spreading of a distribution It measures the variety, the disorder or the "mess"

$$H(f) = -\int f(x) \ln f(x) dx$$

for f probability distribution with:

$$\int f(x)dx = 1 \quad \text{and} \quad f(x) \ge 0$$

Entropy increase with variance

variance is not a good measure of the spreading here, but entropy is

Entropy

This concept can be found in

- Physics Second law of thermodynamics (Entropy cannot decrease)
- computer science (information theory). How many bits are needed to encode information (Shannon entropy)

Is it a mess of classes in my subsets?

For each separation threshold:

- compute the entropy or Gini coeff. for both subsets
- compute the total disorder:

$$H=rac{N_0}{N}H_0+rac{N_1}{N}H_1$$

N total number of samples

Choose the threshold with the lowest score

Choice of feature

- For each feature, compute the best impurity score: the best split
- Compare impurity scores across features and select the feature with the best one

The feature with the best split is selected for the node decision

2 loops: loop over the possible cut values and loop over the features

Back to our example

Example on a dataset of 2 classes with 20 samples each. Each sample has 2 features.

Drawing from sklearn

Back to the decision tree architecture

```
GenerateTree(X)

if PureEnough(X):

GiveMajorityClassLabelTo(X)

return

(X1,X2) = MakeDecision(X)

GenerateTree(X1)

GenerateTree(X2)
```

Now we know what to put in the stop condition and in the "Makedecision()"

Stop conditions:

- if entropy H(X)=0 or $H(x)<\varepsilon$
- if X too small
- optional: if tree has too many leaves (to prevent overfitting)

Back to the decision tree architecture

```
1  GenerateTree(X)
2   if PureEnough(X):
3     GiveMajorityClassLabelTo(X)
4     return
5   (X1,X2) = MakeDecision(X)
6   GenerateTree(X1)
7   GenerateTree(X2)
```

MakeDecision():

- loop over all features
 - loop over all possible thresholds
 - o compute entropy for each case
- Save feature and threshold with the best overall entropy (smallest)
- return the 2 subsets with best split

Note: GenerateTree need to save the information for the decision at each node (not shown)

Variations of decision trees

Features with discrete values

The splitting process has to be modified

If we have \mathbf{n} discrete values, we split into \mathbf{n} subsets We compute the entropy for this split:

$$H = -\sum_{i=1}^{n} \frac{N_i}{N} \sum_{k=1}^{K} p_k(i) \ln p_k(i)$$

- K is the number of classes
- N number of samples
- Ni number of samples in subset i

Regression with decision trees

Decision trees can be used for regression

- approximate the label by a piecewise constant function
- the impurity is replaced by the mean squared error

For each subset Q, compute:

$$E = rac{1}{N} \sum_{i \in Q} (y_i - ar{y})^2$$
 Mean value inside the subset

The best cut minimize E in the subsets: the points in the subset should be close to a mean value in the subset

Stopping criteria & overfitting

To avoid overfitting

- Almost pure is often enough
- splitting size
- Tree depth should not be too high

Different decision trees

- We have seen the CART (Classification and Regression Trees) model, with its purity measure. This is the one used in sklearn
- For categorical features, a branch per value (called ID3 or C4.5)
- Multivariate trees: variants taking into account several features at the same time. Example: replacing separating with entropy by doing logistic regression to get the class separation inside a decision node.

Limits & overfitting

- Piecewise approximation
- Prone to overfitting

1d example (1 feature)

2d example (2 features) classification with 3 classes Decision surface of decision trees trained on pairs of features

Interpretability & explainability

What are the most important features for the classification/regression task?

-> just look at the features selected in the decision tree!

Why a sample is classified in a particular class?

-> just follow the decision tree! The rules are simple to understand