CORRIGE TP6 L'ANALYSE PREDICTIVE EN GENETIQUE HUMAINE

B) Utiliser des données sur les allèles afin de prédire le risque d'avoir un enfant atteint de mucoviscidose

Précisez le rôle du gène CFTR

A l'aide d'ANAGENE et du fichier, déterminer la nature de la mutation des 2 allèles R553X et deltaF508 et la conséquence sur la protéine CFTR.

Déterminer l'équipement en allèles du gène CFTR pour les 2 parents et leurs 2 enfants.

Ecrire leur génotype et calculer le risque que l'enfant à naitre soit malade en précisant s'il risque d'avoir une forme sévère ou moins sévère de la maladie

Précisez le rôle du gène CFTR

D'après le document 2 : Le gène CFTR code pour une protéine qui forme un canal dans la membrane des cellules de l'épithélium pulmonaire et intestinal. Ce canal permet le passage des ions Cl-.

A l'aide d'ANAGENE et du fichier, déterminer la nature de la mutation des 2 allèles R553X et deltaF508 et la conséquence sur la protéine CFTR.

On compare les 2 allèles mutés avec l'allèle de référence placé en haut Comparaison avec discontinuité (car allèles de longueurs différentes) Échelle en nucléotides

Allèle R553X: en position 1657, mutation par substitution: T au lieu de C

6.					1510 1520 1530		
	Traitement	4	+	0			
	Identités	4	Þ	0	*********		
	CFTR-CDS.Adn	ď	Þ	0	ACCATTAAAGAAAATATCATCTTTGGTGTTTCCTATGA		
	CFTR-R553X.Adn	3	Þ	0			
Þ	CFTR-DeltaF508.Adr	4	>	0			

Allèle deltaF508: 1522-1524, mutation par délétion de 3 nucléotides (TTT)

Conséquence sur la protéine CFTR?

G

Val Ala Glu Gly

Communication sous forme de tableau

Allèle muté:	Nature de la mutation:	Conséquence sur la protéine CFTR:	D'après doc 2:	
R553X	En 1657: T au lieu de C Mutation par substitution	Triplet 553: UGA au lieu de CGA Codon STOP: arrêt de synthèse de CFTR	Mutation de classe I → CFTR absente	
deltaF508	De 1522 à 1524: il manque TTT Mutation par délétion	Triplet 508: il manque PHE : décalage (mutation faux sens)	Mutation de classe II → anomalie de CFTR et élimination	

Déterminer l'équipement en allèles du gène CFTR pour les 2 parents et leurs 2 enfants.

Principe: comparer l'allèle de référence et les 2 allèles mutés avec le père, la mère et chaque enfant

2 allèles normaux

Ecrire leur génotype et calculer le risque que l'enfant à naitre soit malade en précisant s'il risque d'avoir une forme sévère ou moins sévère de la maladie

MX: (S//m) avec m = A1 muté (R553X)Mme X: (S//m) avec m = A2 muté (dF508)Fils III1: (m//m) avec A1muté et A2 muté

Fille III2: (S//S)

On sait que les 2 parents sont porteurs sains à 100% (S//m) puisqu'ils ont déjà un fils malade.

Echiquier de croisement des gamètes des 2 parents

Gamètes II4 II5	S/	m/
S/	S//S	S//m
m/	S//m	m//m

Probabilité que l'enfant soit malade = 1/4

Risque = $1 \times 1 \times 1/4$

Risque = 1/4

S'il est malade: il aura une forme sévère de la maladie car aura hérité de l'allèle R553 et de l'allèle dF508 tous 2 entrainant la non synthèse de la protéine CFTR (voir doc 2)