TEXHOATOM

Смешанное занятие №2 Аналитические запросы MySQL

Ставровская Елена

Содержание занятия

- 1. Ключи и индексы в реляционной базе данных;
- 2. Обобщенное табличное выражение (СТЕ);
- **3.** Рекурсивное обобщённое табличное выражение;
- 4. Оконные функции.
- 5. GROUP_CONCAT()

Ключи в реляционной базе данных. Какие бывают и зачем нужны?

Первичный ключ (Primary key)

Это поле или комбинация полей, которые однозначно определяют запись (кортеж таблицы). Очень часто в качестве ключа берется порядковый номер. В таблице не может быть двух записей с одинаковым значением первичного ключа.

	id	player_api_id	player_name	player_fifa_api_id	birthday	height	weight
١	1	505942	Aaron Appindangoye	218353	1992-02-29 00:00:00	183	187
	2	155782	Aaron Cresswell	189615	1989-12-15 00:00:00	170	146
	3	162549	Aaron Doran	186170	1991-05-13 00:00:00	170	163
	4	30572	Aaron Galindo	140161	1982-05-08 00:00:00	183	198
	5	23780	Aaron Hughes	17725	1979-11-08 00:00:00	183	154
	6	27316	Aaron Hunt	158138	1986-09-04 00:00:00	183	161
	7	564793	Aaron Kuhl	221280	1996-01-30 00:00:00	173	146
	8	30895	Aaron Lennon	152747	1987-04-16 00:00:00	165	139
	9	528212	Aaron Lennox	206592	1993-02-19 00:00:00	190	181
	10	101042	Aaron Meijers	188621	1987-10-28 00:00:00	175	170
	11	23889	Aaron Mokoena	47189	1980-11-25 00:00:00	183	181
	12	231592	Aaron Mooy	194958	1990-09-15 00:00:00	175	150
	13	163222	Aaron Muirhead	213568	1990-08-30 00:00:00	188	168
	14	40719	Aaron Niguez	183853	1989-04-26 00:00:00	170	143
	15	75489	Aaron Ramsey	186561	1990-12-26 00:00:00	178	154
	16	597948	Aaron Splaine	226014	1996-10-13 00:00:00	173	163
	17	161644	Aaron Taylor-Sinclair	213569	1991-04-08 00:00:00	183	176
	18	23499	Aaron Wilbraham	2335	1979-10-21 00:00:00	190	159
	19	120919	Aatif Chahechouhe	187939	1986-07-02 00:00:00	175	150
	20	46447	Abasse Ba	156626	1976-07-12 00:00:00	188	185
	21	167027	Abdelaziz Barrada	192274	1989-06-19 00:00:00	178	161

Что может быть первичным ключом, а что нет?

- Фамилия клиента;
- Дата заказа;
- Модель телефона;
- Уникальный идентификатор клиента;
- Номер паспорта;
- Серия паспорта;
- Номер телефона.

Ключи обеспечивают:

- однозначную идентификацию записей таблицы;
- ускорение выполнения запросов к БД;
- установление связи между отдельными таблицами БД

Первичный ключ может быть простым и составным

- Простой первичный ключ состоит из единственного поля таблицы, значения которого уникальны для каждой записи (уникальный идентификатор клиента, девайса и так далее);
- Составной первичный ключ составлен из нескольких полей, совокупность значений которых гарантирует уникальность (номер + серия паспорта и так далее).

Внешний ключ (Foreign key)

Множество колонок подчиненной таблицы, соответствующее ключу главной таблицы.

Индексы

Индексы

Это специальные структуры в базах данных, которые позволяют ускорить поиск и сортировку по определенному полю или набору полей в таблице.

Индексы

Индекс – это системная структура данных, в которой размещается обязательно упорядоченный перечень значений какого-либо ключа со ссылками на те кортежи отношения, в которых эти значения встречаются.

Самая часто встречающаяся, но до сих пор работающая аналогия - классификатор книг, содержащий информацию о том на какой полке, какая книга; указатель в книгах, обозначающий на какой странице, какая глава.

При наличии индекса у поля, с которым наш запрос работает, база сначала смотрит в каких кортежах эти значения есть, это позволяет не сканировать таблицу целиком.

Совет

Делайте **EXPLAIN** своих запросов и вы начнете замечать, как ваша база выполняет запрос при наличии индексов и без.

Обобщенные табличные выражения (СТЕ)

Обобщенные табличные выражения

Common Table Expression (CTE) или **обобщенное табличное выражение** (OTB) – это временные результирующие наборы (т.е. результаты выполнения SQL запроса), которые не сохраняются в базе данных в виде объектов, но к ним можно обращаться.

Базовый синтаксис:

- common_table_expression_name это имя обобщенного табличного выражения;
- CTE_query_definition запрос, к результирующему набору которого, мы и будем обращаться через обобщенное табличное выражение

Когда удобно использовать СТЕ?

- 1. Для замены представлений (VIEW), например, в тех случаях, когда нет необходимости сохранять в базе SQL запрос представления;
- 2. Для повышения читаемости кода, когда запрос разделяется на логические блоки;
- 3. Позволяет многократно ссылаться на один результирующий набор данных.

Пример 1. Оставим для работы только матчи с победами на домашнем поле

```
with home_win as(
    SELECT *
    from `match`
    where home_team_goal > away_team_goal
)
select * FROM home_win;
```

Пример 2. СТЕ может быть много

```
WITH seasons AS
           SELECT season, min(date) as start_date,
                     max(date) as end_date
           FROM `match`
          GROUP BY season
team_speed AS
          SELECT team.team_api_id, team_long_name,
                     date, buildUpPlaySpeed
           FROM team_attributes, team
           WHERE team_attributes.team_api_id=team.team_api_id
SELECT season, team_api_id, team_long_name,
          buildUpPlaySpeed
FROM seasons, team_speed
WHERE team_speed.date >= seasons.start_date
AND team_speed.date <= seasons.end_date
ORDER BY team_long_name, season;
```


Задание

Вывести названия команд, которые не играли в сезоне 2008/2009 (Последний пример из прошлой лекции). Перепишите этот запрос с помощью СТЕ

СТЕ бывают:

- 1. Простые;
- 2. Рекурсивные.

Рекурсивные СТЕ

Все по классике.

Рекурсивный запрос будет повторяться определенное количество раз, до тех пор, пока не будет истинно заданное условие. (и бесконечность тут тоже не предел...)

Пример теоретический

```
with recursive cte(n)
as (
    select 1
    union all
    select n + 1 from cte where n < 10
    )
select * from cte;</pre>
```

Пример: Вывести последовательность ростов от минимального до максимального с шагом 10

```
with recursive cte as (
    select
        min(height) as height_threshold
from player
union all
select
        height_threshold + 10
from cte
where height_threshold + 10 <= (select max(height) from player)
)
select height_threshold
from cte;</pre>
```

Задание

Вывести все степени 2, меньше 100

Оконные функции

Как работают оконные функции?

Окно – набор строк, в рамках которого происходит вычисление. Оконная функция позволяет разбивать весь набор данных на такие окна.

Основное преимущество использования оконных функций над регулярными агрегатными функциями заключается в следующем: оконные функции не приводят к группированию строк в одну строку вывода, строки сохраняют свои отдельные идентификаторы, а агрегированное значение добавляется к каждой строке.

Кратко

Оконные функции позволяют нам получить агрегированные по какому-либо признаку значения в изначальной таблице, а не в итоговом агрегате :)

Оконные функции. OVER()

Предложение OVER- определяет оконную функцию и всегда должно быть включено в выражение. OVER() описывает набор строк, которые будет обрабатывать функция и порядок этой обработки.

Причем окно может быть просто задано пустыми скобками (), т.е. окном являются все строки результата запроса.

По умолчанию контекст over () - все строки

```
select
   id,
   country_id,
   season,
   count(*) over ()
from `match`;
```

id	country_id	season	count(*) over ()
1	1	2008/2009	25979
2	1	2008/2009	25979
3	1	2008/2009	25979
4	1	2008/2009	25979
5	1	2008/2009	25979
6	1	2008/2009	25979
7	1	2008/2009	25979
8	1	2008/2009	25979
9	1	2008/2009	25979
10	1	2008/2009	25979
11	1	2008/2009	25979
12	1	2008/2009	25979
13	1	2008/2009	25979
14	1	2008/2009	25979
15	1	2008/2009	25979
16	1	2008/2009	25979

Пример

```
select
   id,
   country_id,
   season,
   row_number() over ()
from `match`;
```

country_id	season	row_number() over ()
1	2008/2009	1
1	2008/2009	2
1	2008/2009	3
1	2008/2009	4
1	2008/2009	5
1	2008/2009	6
1	2008/2009	7
1	2008/2009	8
1	2008/2009	9
1	2008/2009	10
1	2008/2009	11
1	2008/2009	12
1	2008/2009	13
1	2008/2009	14
1	2008/2009	15
1	2008/2009	16
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2008/2009 1 2008/2009

Сортировка внутри окна

```
select
player_api_id,
    crossing,
    finishing,
    row_number() over(order by crossing desc) as crossing_rating,
    row_number() over(order by finishing desc) as finishing_rating
from player_attributes;
```

id	player_api_id	crossing	finishing	crossing_rating	finishing_rating
102492	30981	84	97	1644	1
102493	30981	84	97	1645	2
134056	38567	68	97	42110	3
102494	30981	84	97	1646	4
102495	30981	84	97	1647	5
102496	30981	84	97	1648	6
102497	30981	84	97	1649	7
104176	30709	68	96	45909	8
170037	30626	76	95	13420	9
170038	30626	75	95	17278	10
102498	30981	85	95	984	11
33334	30893	83	95	2354	12
104175	30709	68	95	45908	13
97190	36784	52	95	117386	14
155164	34602	70	95	33849	15
33335	30893	83	95	2355	16
155165	34602	70	95	33850	17
33336	30893	83	95	2356	18
55890	30853	69	95	36717	19
33337	30893	83	95	2357	20
33331	30893	82	95	3596	21
33332	30893	82	95	3597	22
33333	30893	82	95	3598	23

Задание

Вывести рейтинг команд по показателю buildUpPlaySpeed (чем больше тем лучше) за 2010 год. Какое значение показателя defencePressure у команды на 10-м месте?

PARTITION BY

Позволяет определить с какими конкретно строками мы будем работать. Если **PARTITION BY** отсутствует, то мы работаем со всеми строками таблицы. Можно рассматривать как аналог группировки.

Рейтинг команд по скорости перемещения и шансам создания пасса в рамках класса скорости в сезоне 2009/2010

```
team_api_id,
    buildUpPlaySpeedClass,
    buildUpPlaySpeed,
    chanceCreationPassing,
    row_number() over(partition by buildUpPlaySpeedClass order by buildUpPlaySpeed
desc) as buildUpPlaySpeed_rating,
    row_number() over(partition by buildUpPlaySpeedClass order by chanceCreationPassing
```

desc) as chanceCreationPassing_rating

from team_attributes

where date > '2009-07-01'

and date < '2010-05-31'

order by buildUpPlaySpeedClass;

id team_api_id buildUpPlaySpeedClass buildUpPlaySpeed chanceCreationPassing buildUpPlaySpeed_rating chanceCreationPassing 766 8689 Balanced 35 80 1167 1 171 8658 Balanced 56 77 387 2 172 8658 Balanced 56 77 388 3 1107 8686 Balanced 53 77 540 4 1021 8696 Balanced 53 73 538 5 557 8429 Balanced 48 73 805 6 202 8559 Balanced 57 72 360 7 203 8559 Balanced 57 72 361 8	
171 8658 Balanced 56 77 387 2 172 8658 Balanced 56 77 388 3 1107 8686 Balanced 53 77 540 4 1021 8696 Balanced 53 73 538 5 557 8429 Balanced 48 73 805 6 202 8559 Balanced 57 72 360 7	ng_rating
172 8658 Balanced 56 77 388 3 1107 8686 Balanced 53 77 540 4 1021 8696 Balanced 53 73 538 5 557 8429 Balanced 48 73 805 6 202 8559 Balanced 57 72 360 7	
1107 8686 Balanced 53 77 540 4 1021 8696 Balanced 53 73 538 5 557 8429 Balanced 48 73 805 6 202 8559 Balanced 57 72 360 7	
1021 8696 Balanced 53 73 538 5 557 8429 Balanced 48 73 805 6 202 8559 Balanced 57 72 360 7	
557 8429 Balanced 48 73 805 6 202 8559 Balanced 57 72 360 7	
202 8559 Balanced 57 72 360 7	
203 8559 Balanced 57 72 361 8	
254 8191 Balanced 54 72 504 9	
527 7878 Balanced 52 72 559 10	
253 8191 Balanced 48 72 797 11	
526 7878 Balanced 48 72 804 12	
792 9864 Balanced 45 72 961 13	
791 9864 Balanced 41 72 1023 14	
391 8398 Balanced 64 71 139 15	
731 8581 Balanced 62 71 194 16	

Пример. Определим класс реакции игроков и посчитаем рейтинг

player_api_id

avg_reactions

avg_balance

avg_ball_control

reaction_class

reaction_rating

внутри класса

from cte2;

```
heigh_reactive 1
                                                                               92.5385
                                                                                           92,2308
                                                                                                       95.7692
                                                                   30981
                                                                   39854
                                                                               91.7273
                                                                                           87.4545
                                                                                                      93.3636
                                                                                                                    heigh reactive 2
with cte as
                                                                               91.1667
                                                                                           86.8000
                                                                                                       85.8000
                                                                                                                    heigh_reactive 3
                                                                   30894
                                                                                                                    heigh_reactive 4
                                                                   34602
                                                                               89.7000
                                                                                           77.0000
                                                                                                      83,4000
                                                                               89.3200
                                                                                                                    heigh_reactive 5
                                                                                           86.0400
                                                                                                       92.9600
                                                                   30955
   select player_api_id,
                                                                                                       73.7778
                                                                                                                    heigh_reactive 6
                                                                   30729
                                                                               89.2222
                                                                                           60.3333
                                                                                                                    heigh_reactive 7
                                                                   38817
                                                                               88.9474
                                                                                           88.7895
                                                                                                       87.7368
   avg(reactions) as avg_reactions,
                                                                                                                    heigh_reactive 8
                                                                               88.1600
                                                                                           74.3200
                                                                                                       93.9600
                                                                   30893
    avg(balance) as avg_balance,
                                                                   30872
                                                                               86.9615
                                                                                           75.2308
                                                                                                      84.9231
                                                                                                                    heigh_reactive 9
                                                                                                                    heigh_reactive 10
                                                                   30731
                                                                               86.8222
                                                                                           77.1333
                                                                                                       92.0222
    avg(ball_control) as avg_ball_control
                                                                   30834
                                                                               86.6400
                                                                                           87.1600
                                                                                                       89.5200
                                                                                                                    heigh_reactive 11
                                                                               86.4167
                                                                                           78.7778
                                                                                                      86.5833
                                                                                                                    heigh_reactive 12
                                                                   30829
   from player_attributes
                                                                                                                    heigh_reactive 13
                                                                   30909
                                                                               86.2500
                                                                                           77.3333
                                                                                                      86.0417
   group by player_api_id
                                                                                                                    heigh_reactive 14
                                                                   40636
                                                                               86.0750
                                                                                           78.2500
                                                                                                       86.0000
                                                                   30924
                                                                               86.0417
                                                                                           89.2917
                                                                                                       91,4583
                                                                                                                    heigh_reactive
),
cte2 as (
    select *,
    case when cte.avg_reactions > 50 then 'heigh_reactive' else 'low_active' end as reaction_class
    from cte
select *,
     row_number() over (partition by cte2.reaction_class order by cte2.avg_reactions desc) as reaction_rating
```

Задание

Посчитать средний потенциал (potential) для каждого игрока среди игроков, для которых указано значение категории предпочитаемой ноги (preferred_foot). Вывести рейтинг игроков по среднему потенциалу в рамках категории предпочитаемой ноги (preferred_foot). Какой player_api_id у игроков с рейтингом 3 в каждом классе?

Функции LAG() и LEAD()

Эти функции возвращают значение выражения, вычисленного для предыдущей строки (LAG) или следующей строки (LEAD) результирующего набора соответственно.

Пример LAG()

Посчитаем приращение реакции игроков

```
select
    player_api_id,
    date,
    reactions,
    reactions - lag(reactions) over (partition by player_api_id order by date) as reaction_diff
from player_attributes;
```

Задание

Посчитать приращение buildUpPlaySpeed у команд. Какие приращения были у команды с team_api_id = 8455?

GROUP_CONCAT()

Сразу к примеру

with cte as (

Для каждой команды выведем все классы buildUpPlaySpeedClass, которые ей когда-либо присваивали

```
select distinct team.team_api_id , team.team_long_name, buildUpPlaySpeedClass from team
    join team_attributes on team.team_api_id = team_attributes.team_api_id

select team_api_id , team_long_name,
    group_concat(buildUpPlaySpeedClass)

from cte
group by team_api_id, team_long_name;

select team_api_id team_long_name group_concat(buildUpPlaySpeedClass)

slow,Balanced
long_name;

long_name group_concat(buildUpPlaySpeedClass)

slow,Balanced
long_name group_concat(buildUpPlaySpeedClass)
```

team_api_id	team_long_name	group_concat(buildUpPlaySpeedClass)
1601	Ruch Chorzów	Slow,Balanced
1773	Oud-Heverlee Leuven	Balanced
1957	Jagiellonia Białystok	Slow,Balanced
2033	S.C. Olhanense	Balanced
2182	Lech Poznań	Balanced,Fast
2183	P. Warszawa	Slow,Balanced
2186	Cracovia	Slow,Balanced
4087	Évian Thonon Gaillard FC	Balanced
4170	US Boulogne Cote D'Opale	Balanced
6269	Novara	Balanced
6351	KAS Eupen	Balanced
6391	GFC Ajaccio	Balanced
6403	FC Paços de Ferreira	Slow,Balanced
6413	PEC Zwolle	Balanced
6421	Leixões SC	Slow
6433	Go Ahead Eagles	Balanced

Сколько команд имеют такое сочетание классов buildUpPlaySpeedClass за историю своего существования (в рамках нашей базы)

buildUpPlaySpeedClasses	count(*)
Balanced	123
Fast,Balanced	49
Slow,Balanced	48
Balanced,Fast	36
Balanced,Slow	10
Slow,Fast,Balanced	7
Slow,Balanced,Fast	5
Balanced,Fast,Slow	3
Slow	2
Fast	2
Fast,Balanced,Slow	2
Slow,Fast	1

Задание

Как исправить предыдущий запрос, чтобы не было перестановок?

	buildUpPlaySpeedClasses	count(*)
١	Balanced	123
	Balanced,Fast	85
	Balanced,Slow	58
	Balanced,Fast,Slow	17
	Slow	2
	Fast	2
	Fast,Slow	1

вместо

buildUpPlaySpeedClasses	count(*)
Balanced	123
Fast,Balanced	49
Slow,Balanced	48
Balanced,Fast	36
Balanced,Slow	10
Slow,Fast,Balanced	7
Slow,Balanced,Fast	5
Balanced,Fast,Slow	3
Slow	2
Fast	2
Fast,Balanced,Slow	2
Slow,Fast	1

Задание

Для каждого игрока вывести в одном столбце все значения категории attacking_work_rate, которые ему когда-либо присваивали. Какая последовательность значений соответствует игроку с идентификатором player_api_id=5610?

СПАСИБО ЗА ВНИМАНИЕ

