

Adjusted Coefficient of Determination R_a^2

A modified measure for degree of linear association between X and Y:

$$R_a^2 = 1 - \frac{MSE}{MSTO} = 1 - \frac{n-1}{n-2} \frac{SSE}{SSTO}$$

 $R_a^2 = 1 - \frac{927}{926} \times \frac{4659}{5893} = 0.2085.$

•
$$R_a^2 \le R^2 = 1 - \frac{$SE}{$STO}$$
.
• Heights.

Model Diagnostics

Assumptions of the simple linear model with Normal errors:

- agnostic plots of
- Diagnostic plots can be used to examine the appropriateness of these assumptions.

4 D > 4 B > 4 E > 4 E > E 9 Q C

- Residual plots.
- Remedial measures: transformations.

Model Diagnostics

- Assumptions of the simple linear model with Normal errors:
 - linearity of the regression relation
 - normality of the error terms
 - constant variance of the error terms
 - independence of the error terms
- Diagnostic plots can be used to examine the appropriateness of these assumptions.

4 □ ト 4 □ ト 4 亘 ト 4 亘 ト 9 0 ○

- Residual plots.
- Remedial measures: transformations.

Residual Plots

- Examine regression relation and error variance.
 - Residual vs. predictor variable or residual vs. fitted value.
 - Residual vs. omitted predictor variable(s). (Later)
- Examine error distributions.
 - Normality: normal probability plot (Q-Q plot) of residuals.

4 D P 4 B P 4 B P B 900

Detection of Nonlinearity

- If the residual vs. predictor variable plot (or residual vs. fitted value plot) shows a , then it is an indication of possible nonlinearity in regression relation.
- True model : $Y = 5 X + 0.1X^2 + \varepsilon$.
 - 30 cases with $X \sim N(100, 16^2)$ and $\varepsilon \sim N(0, 10^2)$.
 - Summary statistics:

$$\overline{X} = 104.13, \overline{Y} = 1004.79, \sum_{i} X_{i}^{2} = 330962.9, \sum_{i} Y_{i}^{2} = 32466188, \sum_{i} X_{i}Y_{i} = 3249512.$$

 Simple linear regression model was fitted to this data. Estimate Coefficients Std. Error t-statistic

Intercept	-1021.3803	40.0648	-25.49	$< 2 \times 10^{-16}$
'	19.4587	0.3814	51.01	< 2 × 10 ⁻¹⁶
Slope	19.4307	0.3014	31.01	< 2 × 10

 $\sqrt{MSE} = 28.78, R^2 = 0.9894, R_a^2 = 0.989.$

Detection of Nonlinearity

- If the residual vs. predictor variable plot (or residual vs. fitted) value plot) shows a clear nonlinear pattern, then it is an indication of possible nonlinearity in regression relation as the nonlinearity would be left to the residuals.
- True model : $Y = 5 X + 0.1X^2 + \varepsilon$.
 - 30 cases with $X \sim N(100, 16^2)$ and $\varepsilon \sim N(0, 10^2)$.
 - Summary statistics:

$$\overline{X} = 104.13, \overline{Y} = 1004.79, \sum_{i} X_{i}^{2} = 330962.9, \sum_{i} Y_{i}^{2} = 32466188, \sum_{i} X_{i} Y_{i} = 3249512.$$

 Simple linear regression model was fitted to this data. Coefficients Estimate Std. Error t-statistic P-value -25.49 $< 2 \times 10^{-16}$ -1021.3803 40.0648 Intercept $< 2 \times 10^{-16}$ 19.4587 0.3814 51.01 Slope $\sqrt{MSE} = 28.78, R^2 = 0.9894, R_2^2 = 0.989.$

Note that \mathbb{R}^2 is very large.

Detection of Nonconstancy in Variance

If the residual vs. predictor variable plot (or residual vs. fitted value plot) shows

, then this is an indication of unequal variance.

Detection of Nonconstancy in Variance

- If the residual vs. predictor variable plot (or residual vs. fitted value plot) shows an unequal spread of the residuals along the x-axis, then this is an indication of unequal variance.
- Sometimes, the variance of the error may depend on the value of the predictor variable.
 - Variance increases (or decreases) with the value of X; e.g., in financial data, the volume of transactions usually has a role in the uncertainty of the market.
 - Data may come from different strata with different variabilities:
 e.g., different measuring instruments with different precisions may have been used to obtain the observations.

True model: $Y = 2 + 3X + \sigma(X)\varepsilon$, where $\log \sigma^2(X) = 1 + 0.1X$.

- 100 cases with $X_i = \frac{i}{10}$ and $\varepsilon_i \sim N(0, 1), i = 1, ..., 100.$
- Simple linear regression model was fitted to this data.

Detection of Nonnormality

- Normality of the errors can be examined by a normal probability plot, a.k.a. Q-Q plot.
 - $z_{(k)}$'s: the theoretical quantiles under Normality
 - e(k)'s: the sample quantiles or empirical quantiles.
 - Q-Q plot is simply a scatter plot of $e_{(k)}$'s vs. $z_{(k)}$'s.

Notes: Q-Q stands for quantile-quantile.

How to Read a Q-Q Plot?

- If the errors are indeed normally distributed, then the points on the Q-Q plot should be
- Departures from that could indicate skewed (non-symmetry) probability mass in tails than a or heavy-tailed (Normal distribution) distributions.
- Other types of departures (e.g., honlinearity) may affect the distribution of the residuals and render them non-normal. Thus it is better to examine other types of departures before checking normality.

How to Read a Q-Q Plot?

- If the errors are indeed normally distributed, then the points on the Q-Q plot should be nearly on a straight line.
- Departures from that could indicate skewed (non-symmetry) or heavy-tailed (more probability mass in tails than a Normal distribution) distributions.
- Other types of departures (e.g., honlinearity) may affect the distribution of the residuals and render them non-normal. Thus it is better to examine other types of departures before checking normality.

True model : $Y = 2 + 3X + \varepsilon$. $\varepsilon \sim N(0, 1)$. Q-Q plot of residuals Regression fit Sample Quantiles 0 5 9

True model : $Y = 2 + 3X + \varepsilon$. $\varepsilon \sim t_{(5)}$ – symmetrical but heavy-tailed errors.

True model : Y = 2 + 3X + ε . $\varepsilon \sim \chi^2_{(5)}$ – right-skewed errors.

True model : $Y = 2 + 3X + \varepsilon$. $\varepsilon \sim N(0, 1)$.

Q-Q plot shows a straight line pattern.

True model : $Y = 2 + 3X + \varepsilon$. $\varepsilon \sim t_{(5)}$ – symmetrical but heavy-tailed errors.

Q-Q plot shows more probabilities in both tails compared with Normal distribution.

True model : Y = 2 + 3X + ε . $\varepsilon \sim \chi^2_{(5)}$ – right-skewed errors.

Q-Q plots shows more probabilities in the right tail and less probabilities in the left tail compared with Normal distribution.

Transformations to Treat Unequal Variance and

Nornormality

- Unequal variance and nornormality often appear together.
- Transformations on Y may fix the error distributions.

•
$$Y' = \sqrt{Y}$$

- $Y' = \log Y$
- Y' = 1/Y
- Sometimes, add a constant to the transformation, e.g., $Y' = \log(c + Y)$, to avoid negative or nearly zero values.
- A member from the family of power transformations may be chosen automatically by the **Box-Cox** procedure.
- Sometimes, a simultaneous transformation on X may be needed to maintain a linear relationship.

Box-Cox Procedure

For each $\lambda \in R$, standardize Y_i^{λ} such that the magnitude of SSE does not depend on λ :

$$Y_i^* = \begin{cases} K_1 \frac{Y_i^{\lambda} - 1}{\lambda}, & \text{if, } \lambda \neq 0 \\ K_2 \log(Y_i), & \text{if, } \lambda = 0 \end{cases}$$

with

$$K_2 = (\prod_{i=1}^n Y_i)^{1/n}, K_1 = 1/K_2^{\lambda-1}.$$

- Notes: $\lambda = 0$ corresponds to the logarithm transformation.
- For each
 \(\lambda \), fit a regression model on the transformed data Y^{*}. and derive $SSE(\lambda)$ (or maximum loglikelihood).
- Find the λ that maximizes loglikelihood.

(Notes: Read the lab 2 handout on Box-Cox procedure.)

Simple Linear Regression in Matrix Form

The regression equations:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \quad i = 1, \dots n$$

Response vector Y and error vector: $n \times 1$ column vectors

4 D > 4 B > 4 E > 4 E > E 990

Simple Linear Regression in Matrix Form

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \quad i = 1, \cdots n$$

can be written in a compact matrix form:

$$\mathbf{Y} = \mathbf{X} \quad \mathbf{\beta} + \boldsymbol{\epsilon} \\ n \times 1 \quad n \times 2 \quad 2 \times 1 \quad n \times 1$$

• Response vector Y and error vector :
$$n \times 1$$
 column vectors

$$Y_1 \\
Y_2 \\
\vdots \\
Y_i$$
• $\epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_i \end{bmatrix}$

Model assumptions:

$$E(\epsilon_i) = 0, \ \ Var(\epsilon_i) = \sigma^2, \ \text{for all } i = 1, \cdots, n$$

$$Cov(\epsilon_i, \epsilon_j) = 0, \ \ \text{for all } i \neq j.$$
• Matrix form:

• In terms of the response vector \mathbf{Y} :

Model assumptions: $E(\epsilon_i) = 0$, $Var(\epsilon_i) = \sigma^2$, for all $i = 1, \dots, n$ $Cov(\epsilon_i, \epsilon_i) = 0$, for all $i \neq j$. Matrix form: $\mathbf{E}\{\boldsymbol{\epsilon}\} = \mathbf{0}_n, \quad \boldsymbol{\sigma}^{\mathbf{2}}\{\boldsymbol{\epsilon}\} = \boldsymbol{\sigma}^{\mathbf{2}}\mathbf{I}_n.$ In terms of the response vector: $\mathbf{E}\{\mathbf{Y}\} = \mathbf{X}\boldsymbol{\beta}, \quad \boldsymbol{\sigma}^{2}\{\mathbf{Y}\} = \boldsymbol{\sigma}^{2}\mathbf{I}_{n}.$ 4 D > 4 B > 4 E > 4 E > E 994

	Ме	an	res	spo	ns	e v	ect	or:	an	n:	× 1	col	um	n v	ect	or								
					ſΕ	(Y (Y	1)]																	
					E	(Y_i)	2)																	
			- () -			:																		
		Ŀ	={ Y	} =	E	(Y	i)	=																
						•																		
					F	(Y	n)]																	
					L -	('	1/1																	
															- 4	□ ▶	∢ 🗗	▶ ∢	∄→	∢ ≣	Þ	≣ .	99	C

Summary: Simple Linear Regression in Matrix Form

4 D > 4 B > 4 B > 4 B > 9 Q C

$$\mathbf{Y}_{n\times 1} = \mathbf{X}_{n\times 2} \frac{\beta}{2\times 1} + \frac{\epsilon}{n\times 1}.$$
• ϵ is a random vector with $\mathbf{E}\{\epsilon\} = \mathbf{0}_n, \ \sigma^2\{\epsilon\} = \sigma^2\mathbf{I}_n.$

• Normal error model: $\epsilon \sim \text{Normal}_n(\mathbf{0}_n, \sigma^2 \mathbf{I}_n)$.

Least Squares Estimation in Matrix Form

$$Q(b_0, b_1) = \sum_{i=1}^{n} (Y_i - (b_0 + b_1 X_i))^2.$$

Matrix form :

$$Q(\mathbf{b}) = (\mathbf{Y} - \mathbf{X}\mathbf{b})'(\mathbf{Y} - \mathbf{X}\mathbf{b}) = \mathbf{Y}'\mathbf{Y} - \mathbf{b}'\mathbf{X}'\mathbf{Y} - \mathbf{Y}'\mathbf{X}\mathbf{b} + \mathbf{b}'\mathbf{X}'\mathbf{X}\mathbf{b}.$$

X'Xb = X'Y.

Differentiate Q with respect to b:

$$\frac{\partial}{\partial \mathbf{b}}Q = -2\mathbf{X}'\mathbf{Y} + 2\mathbf{X}'\mathbf{X}\mathbf{b}.$$

Set the gradient to zero ⇒ normal equation:

Least-square estimators are the solutions of equation (1). Multiply both sides of equation (1) by $(\mathbf{X}'\mathbf{X})^{-1}$: $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ The left hand side becomes LS estimators:

4 D > 4 B > 4 E > 4 E > E 900

Multiply both sides of equation (1) by (X'X)⁻¹:

$$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}.$$

$$I_2b=b$$

$$\hat{oldsymbol{eta}} = egin{bmatrix} \hat{eta}_0 \\ \hat{eta}_1 \end{bmatrix} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}.$$

(2)

$$\mathbf{X}'\mathbf{X} = \begin{bmatrix} n & \sum_{i=1}^{n} X_i \\ \sum_{i=1}^{n} X_i & \sum_{i=1}^{n} X_i^2 \end{bmatrix}, \quad \mathbf{X}'\mathbf{Y} = \begin{bmatrix} \sum_{i=1}^{n} Y_i \\ \sum_{i=1}^{n} X_i Y_i \end{bmatrix}.$$
When
$$D := n \sum_{i=1}^{n} X_i^2 - \left(\sum_{i=1}^{n} X_i\right)^2 = n \sum_{i=1}^{n} (X_i - \overline{X})^2 \neq 0$$

$$(\mathbf{X}'\mathbf{X})^{-1} = \begin{bmatrix} \frac{\sum_{i=1}^{n} X_i^2}{n \sum_{i=1}^{n} (X_i - \overline{X})^2} & -\frac{\sum_{i=1}^{n} X_i}{n \sum_{i=1}^{n} (X_i - \overline{X})^2} \\ \frac{\sum_{i=1}^{n} X_i^2}{n \sum_{i=1}^{n} (X_i - \overline{X})^2} & \frac{n \sum_{i=1}^{n} (X_i - \overline{X})^2}{n \sum_{i=1}^{n} (X_i - \overline{X})^2} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{n} + \frac{\overline{X}}{\sum_{i=1}^{n} (X_i - \overline{X})^2} & \frac{\overline{X}}{\sum_{i=1}^{n} (X_i - \overline{X})^2} \\ -\frac{\overline{X}}{\sum_{i=1}^{n} (X_i - \overline{X})^2} & \frac{\overline{X}}{\sum_{i=1}^{n} (X_i - \overline{X})^2} \end{bmatrix}$$

Note that X'X and $(X'X)^{-1}$ are symmetric positive definite matrices.

LS estimators:

$$\begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \begin{bmatrix} \overline{\mathbf{Y}} - \hat{\beta}_1 \overline{\mathbf{X}} \\ \frac{\sum_{i=1}^n (X_i - \overline{\mathbf{X}})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{\mathbf{X}})^2} \end{bmatrix},$$

provided that Xis are not all equal.

n × 1 vector of fitted values:

$$\widehat{\mathbf{Y}} = \mathbf{X}\widehat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \mathbf{HY},$$

where $\mathbf{H} := \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ is called the **hat matrix**.

• $n \times 1$ vector of residuals:

$$\mathbf{e} = \mathbf{Y} - \widehat{\mathbf{Y}} = (\mathbf{I}_n - \mathbf{H})\mathbf{Y}.$$

 Fitted values vector Y and residuals vector e are linear transformations of the observations vector Y.

Hat Matrix

Hat Matrix

$$\mathbf{H}_{n\times n} := \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'.$$

H and I_n – H are projection matrices.

Symmetric:

$$H' = H, \quad (I_n - H)' = I_n - H$$

• Idempotent:

$$H^2 := HH = H, (I_n - H)^2 = I_n - H.$$

• Moreover, $rank(\mathbf{H}) = 2$, $rank(\mathbf{I}_n - \mathbf{H}) = n - 2$.

Column Space of the Design Matrix X

- Let $\mathbf{1}_n$ denote the $n \times 1$ vector of ones and $\mathbf{x} = (X_1, \dots, X_n)^T$ denote the $n \times 1$ vector of design points.
- The design matrix

$$\mathbf{X}=(\mathbf{1}_{n},\mathbf{x}).$$

- (X) is the

- $\langle X \rangle =$

Column Space of the Design Matrix X

Let $\mathbf{1}_n$ denote the $n \times 1$ vector of ones and $\mathbf{x} = (X_1, \dots, X_n)^T$ denote the $n \times 1$ vector of design points. item The design matrix $\mathbf{X} = (\mathbf{1}_n, \mathbf{x})$.

ace of
$$\mathbf{R}^n$$
 generated by

- $\langle X \rangle$ is the linear subspace of \mathbf{R}^n generated by the columns of \mathbf{X} .
 - $\langle X \rangle = \{ c_0 \mathbf{1}_n + c_1 \mathbf{x} = \mathbf{X} \mathbf{c} : c_0, c_1 \in R, \mathbf{c} = (c_0, c_1)^T \}.$