AMENDMENT June 6, 2006

BUR920040054US1 Serial No. 10/711,819

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (currently amended) A method of programming nonvolatile memory (NVM) cells comprising:
 - a) providing a plurality of NVM cells;
- b) providing a variable reference signal, said variable reference signal being varied to one of a plurality of reference levels corresponding to reprogrammed threshold voltages;
- c) selecting a state threshold from said plurality of reference levels, the selected said state threshold establishing a logic level threshold; [[and]]
- d) programming ones of said plurality of NVM cells responsive to said state threshold; and
 - e) returning to step (b) without erasing previously programmed said ones.
- 2. (original) A method of programming NVM cells as in claim 1, wherein the step (c) of selecting a state threshold comprises programming a dummy NVM cell to a reference threshold level, said reference threshold level being at least at a current programmed cell threshold, said current programmed cell threshold being higher than a current unprogrammed cell threshold.
- 3. (original) A method of programming NVM cells as in claim 1, wherein the step (d) of programming NVM cells comprises:
 - i) selecting ones of said plurality of NVM cells; and

AMENDMENT June 6, 2006 BUR920040054US1 Serial No. 10/711,819

- ii) increasing the cell threshold for selected said ones to a higher cell threshold.
- 4. (original) A method of programming NVM cells as in claim 3, wherein the step (d) of programming NVM cells further comprises:
- iii) comparing said selected ones of said plurality of NVM cells against said variable reference signal for an indication that said ones have been programmed; and
- iv) returning to step (i) for any of said selected ones not providing said indication.
- 5. (original) A method of programming NVM cells as in claim 4, wherein said NVM cells are included on an integrated circuit (IC) chip and once an upper one of said plurality of reference levels has been provided, an indication is provided that said IC chip should be replaced.
- 6. (original) A method of programming NVM cells as in claim 5, wherein said NVM cells are in logic on said IC chip, whereby said NVM cells are not erased between writes.
- 7. (currently amended) A method of programming NVM cells as in claim 5, wherein said NVM cells are in an array of <u>previously programmed</u> said NVM cells on said IC chip, whereby said array is not erased between writes.
- 8. (currently amended) A reprogrammable integrated circuit (IC) comprising:
 - a plurality of nonvolatile storage cells;
- a differential sense amplifier, ones of said plurality of nonvolatile storage cells being selectively coupled to a first input of said differential sense amplifier; [[and]]
- a variable reference signal coupled to a second input of said differential sense amplifier, said variable reference signal having a plurality of selectable reference levels corresponding to reprogrammed cell threshold voltages, wherein with each write cycle a

AMENDMENT June 6, 2006 BUR920040054US1 Serial No. 10/711,819

different one of said selectable reference levels is coupled to said second input, contents of said nonvolatile storage cells subsequently being compared by said differential sense amplifier against said different one; and

a dummy cell loaded by an active dummy load device and developing said variable reference.

- 9. (currently amended) A reprogrammable IC as in claim 8, further comprising a dummy cell developing said variable reference, wherein said dummy cell has having a threshold voltage programmed with each said write cycle at least at a current cell threshold voltage and below a reprogrammed cell threshold voltage.
- 10. (original) A reprogrammable IC as in claim 9, wherein at least one of said plurality of nonvolatile storage cells is embedded in logic on said IC.
- 11. (currently amended) A reprogrammable IC as in claim 9, wherein said IC is a CMOS IC, said nonvolatile storage cells and said dummy cell are n-type field effect transistor (NFET) floating gate devices and said dummy load device is a p-type field effect transistor (PFET), said reprogrammable CMOS IC further comprising:
- a load <u>PFET</u> p type field effect transistor (PFET) loading ones of said plurality of nonvolatile storage cells coupled to said first input of said differential sense amplifier; and

a dummy load PFET loading said dummy cell.

- 12. (original) A reprogrammable CMOS IC as in claim 11, further comprising an array of said nonvolatile storage cells.
- 13. (original) A reprogrammable CMOS IC as in claim 12, wherein said array is a nonvolatile memory array, said IC further comprising:
 - a word decode partially selecting ones of said plurality of nonvolatile storage cells

AMENDMENT June 6, 2006

Jun 06 2006 1:06PM

BUR920040054US1 Serial No. 10/711,819

connected to one of a plurality of word lines; and

a bit decode selectively coupling partially selected said ones to said first input of said differential sense amplifier.

- 14. (original) A reprogrammable IC as in claim 8, wherein at least one of said plurality of nonvolatile storage cells have a programmed cell threshold voltage and remaining ones of said storage cells have an unprogrammed cell threshold voltage below said programmed cell threshold voltage.
- 15. (original) A reprogrammable IC as in claim 9, wherein said remaining ones of said storage cells have one a of a plurality of unprogrammed cell threshold voltages below said programmed cell threshold voltage.
- 16. (currently amended) A reprogrammable CMOS integrated circuit (IC) comprising: a plurality of nonvolatile storage cells;
- a differential sense amplifier, nonvolatile storage cells being coupled to a first input of said differential sense amplifier; [[and]]
- a variable reference signal coupled to a second input of said differential sense amplifier, said variable reference signal having a plurality of selectable reference levels corresponding to reprogrammed cell threshold voltages, wherein with each write cycle a different one of said selectable reference levels is coupled to said second input, contents of said nonvolatile storage cells subsequently being compared by said differential sense amplifier against said different one;

a dummy cell developing said variable reference, said dummy cell having a threshold voltage programmed with each said write cycle at least at a current cell threshold voltage and below a reprogrammed cell threshold voltage; and an active dummy load device loading said dummy cell.

AMENDMENT June 6, 2006 BUR920040054US1 Serial No. 10/711,819

17. (original) A reprogrammable CMOS IC as in claim 16, further comprising:

an nonvolatile memory array of said nonvolatile storage cells;

a word decode partially selecting ones of said plurality of nonvolatile storage cells connected to one of a plurality of word lines; and

a bit decode selectively coupling partially selected said ones to said first input of said differential sense amplifier.

18. (currently amended) A reprogrammable CMOS IC as in claim 17, further comprising:

a dummy cell developing said variable reference, said dummy cell having a threshold voltage programmed with each said write cycle at least at a current cell threshold voltage and below a reprogrammed cell threshold voltage;

an active load device loading ones of said plurality of nonvolatile storage cells coupled to said first input of said differential sense amplifier; and an active dummy load device loading said dummy cell.

- 19. (original) A reprogrammable CMOS IC as in claim 16, wherein at least one of said plurality of nonvolatile storage cells is embedded in logic on said IC.
- 20. (original) A reprogrammable CMOS IC as in claim 16, wherein at least one of said plurality of nonvolatile storage cells have a programmed cell threshold voltage and remaining ones of said storage cells have a plurality of unprogrammed cell threshold voltages below said programmed cell threshold voltage.