Movie-Chain-Runner Problem

Shashank Singh Jimmy Zong

June 6, 2013

Outline

- Team Members
- Problem Introduction
- Benefits
- 4 Approach
 - Algorithms
 - Project Timeline
- 5 Evaluation
- Qualifications
- Summary

Team Members

- Sung Uk Ryu
- Eugene Scanlon
- Shashank Singh
- Jimmy Zong

The Problem

The Problem

Find the "longest" list of overlapping titles in a list of movie titles.

The Problem

The Problem

Find the "longest" list of overlapping titles in a list of movie titles.

For Example: In the list

- Day of the Dead
- Live and Let Die
- Dead Poets' Society
- Die Another Day
- The Last Samurai

the "longest" chain is

"Live and Let Die Another Day of the Dead Poets' Society."

The Problem

• Equivalent to finding a Longest Path in a directed graph

The Problem

- Equivalent to finding a Longest Path in a directed graph
- The Longest Path Problem is NP-hard, meaning that there is no efficient algorithm for solving it on a large graph

Previous Attempts

- Summer 2010 255 titles
- Fall 2010 271 titles (845 words)
- Summer 2011 311 titles (997 words)
- Fall 2011 323 titles (1030 words)
- Spring 2012 327 titles (1055 words)

Benefits

The members of our group will gain experience

- programming in Python (and maybe C or MATLAB)
- working as a group toward a common goal
- handling and processing a large data set
- implementing graph algorithms
- designing and implementing approximation algorithms for an NP-hard problem

Approach

- Algorithms
- Project Timeline (Gantt Chart)

Algorithms

- Brute Force
 - Tried running on 16 GHC machines for 15 hours
 - Constructed chain of 247 titles
 - Progress slowed exponentially

Algorithms

- Brute Force
 - Tried running on 16 GHC machines for 15 hours
 - Constructed chain of 247 titles
 - Progress slowed exponentially
- Acyclic Subgraphs
 - A poly-time topo-sort algorithm is known for acyclic graphs
 - Try to find acyclic subgraphs
 - Too many cycles took too long to generate subgraphs

Algorithms

- Brute Force
 - Tried running on 16 GHC machines for 15 hours
 - Constructed chain of 247 titles
 - Progress slowed exponentially
- Acyclic Subgraphs
 - A poly-time topo-sort algorithm is known for acyclic graphs
 - Try to find acyclic subgraphs
 - Too many cycles took too long to generate subgraphs
- Working backward
 - Stuck at 247 titles using brute force
 - Reverse graph edges and add to the beginning of the chain
 - Work in progress currently managed 274 titles

Gantt Chart

Tasks	Begin Date	End Date	6/1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
235 Titles	6/1	6/3												Į,		П	8					Į.							
Proposal	6/4	6/5																								П			
Proposal Presentation	6/5	6/6											, ,				300		0 1		1		7			П	0 0		
260 Titles	6/4	6/10																								П		П	Г
Instructions	6/8	6/10											- 0		-8		8-	7											
Instructions Demonstration	6/9	6/11				ij												,		2 0		ij							
285 Titles	6/11	6/17																										П	Г
Progress Report	6/15	6/17		8 8								8 8		1						1			-					8 8	
Progress Presentation	6/16	6/18																											
300 Titles and Beyond	6/18	6/25																											
Final Presentation	6/23	6/25			1		7										300		0 0	Г		П							
Final Team Report	6/24	6/27															ď.												

Evaluation

1 Length of the longest chain we find

Evaluation

- 1 Length of the longest chain we find
- 2 Compare performance of a different algorithms
 - ideally, decide on a "best" algorithm for the problem

Evaluation

- 1 Length of the longest chain we find
- Compare performance of a different algorithms
 - ideally, decide on a "best" algorithm for the problem
- Predict runtime for entire computation by solving tractable subproblems and extrapolating

Qualifications

All members of our team have programming experience in Python.

- Sung Uk Ryu
 - Junior Computer Science and Finance Double Major
 - Experience with scheduled, task-oriented projects
- Eugene Scanlon
 - Junior CS Major with minor in Music Technology
 - Programming experience in Python, C0, C, Nyquist

Qualifications

- Shashank Singh
 - Senior CS/Math Dual Degree
 - Have TA'd 15-211 and 15-251
 - Experience analyzing large data sets with C and MATLAB
- Jimmy Zong
 - Sophomore CS major
 - Experience with BASH scripting and C programming
 - Experience running distributed computations on a UNIX server

Summary

- Team Members
- 2 Problem Introduction
- Benefits
- 4 Approach
 - Algorithms
 - Project Timeline
- 5 Evaluation
- Qualifications
- Summary

Sources

- Gantt Chart created using software from the Gantt Project
 - http://www.ganttproject.biz/ (accessed June 4, 2013)
- Git repository hosted on GitHub
 - https://github.com/