Lycée Chateaubriand MPSI 3 • 2024 - 2025

William GREGORY

Colle 24

Équations différentielles, Probabilités, Séries numériques

- ▶ Après votre colle, il vous est demandé de reprendre les exercices traités et de les rédiger sur feuille. Ce travail est à déposer dans la boîte en B013 avant mardi prochain.
- ▶ Vous trouverez le sujet et des indications sur la page ci-contre.

Équations différentielles

Exercice 24.1

Soient $a \neq 0$ et $b, c \in \mathbb{R}$. Résoudre, sur $]0, +\infty[$, l'équation

$$at^2y'' + bty' + cy = 0.$$

Indication. Déterminer une équation vérifiée par z où $y = z \circ \ln$.

Exercice 24.2

Soit I un intervalle. Soient a, b > 0. Déterminer l'ensemble des solutions de

$$\begin{cases} y > 0 \text{ sur } I \\ y' = (a - by)y. \end{cases}$$

Indication. Déterminer une équation vérifiée par $z := \frac{1}{v}$.

Probabilités

1

Exercice 24.3

Soit $n \in \mathbb{N}^*$. Soient A_1, \dots, A_n des événements mutuellement indépendants.

On note B l'événement « aucun des A_k n'est réalisé ».

Montrer que

$$\mathbb{P}(B) \leqslant \exp\left(-\sum_{k=1}^{n} \mathbb{P}(A_k)\right).$$

Exercice 24.4

Soit $n \in \mathbb{N}^*$. Une classe de n élèves organise un Noël canadien : chaque élève apporte un cadeau emballé et indistinguable des autres.

- **1.** Déterminer la probabilité p_n qu'au moins un élève reçoive le cadeau qu'il a apporté.
- **2.** Montrer que $p_n \longrightarrow 1 \frac{1}{e}$.

Exercice 24.5 Chaîne de Markov à deux états.

On considère deux états A et B et une particule se déplaçant entre ces deux états. On note :

- $lack A_n$ l'événement « la particule est en A à la n-ième étape » ;
- lacktriangle B_n l'événement « la particule est en B à la n-ième étape ».

À l'instant initial (n = 0), la particule est en A.

On note $p, q \in]0,1[$ tels que :

- \blacklozenge la probabilité de passer de A à B soit égale à p;
- ♦ la probabilité de passer de B à A soit égale à q.
- **1.** Soit $n \in \mathbb{N}$. Déterminer $\mathbb{P}_{A_n}(\mathsf{B}_{n+1})$, $\mathbb{P}_{\mathsf{B}_n}(\mathsf{B}_{n+1})$, $\mathbb{P}_{\mathsf{B}_n}(\mathsf{A}_{n+1})$ et $\mathbb{P}_{\mathsf{A}_n}(\mathsf{A}_{n+1})$.
- **2.** Soit $n \in \mathbb{N}$.
 - (a) Déterminer $\mathbb{P}(A_{n+1})$ en fonction de $\mathbb{P}(A_n)$.
 - **(b)** En déduire une expression de $\mathbb{P}(A_n)$ en fonction de n.
- **3.** Déterminer, pour $n \in \mathbb{N}$, la probabilité $\mathbb{P}(\mathsf{B}_n)$.
- **4.** On suppose que |1 (p + q)| < 1.

Calculer les limites des suites $(\mathbb{P}(A_n))_n$ et $(\mathbb{P}(B_n))_n$.

Séries numériques

Exercice 24.6

On admet que $\sum_{n\geqslant 1}\frac{1}{n^2}$ converge et que $\sum_{n=1}^{+\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$.

Montrer que la série $\sum_{n\geqslant 1}\frac{1}{(2n+1)^2}$ converge et calculer sa somme.

Exercice 24.7

Soit $r \in \mathbb{N}^*$.

Montrer que $\sum_{n\geqslant 1}\frac{1}{n(n+r)}$ converge et

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+r)} = \frac{1}{r} \sum_{k=1}^{r} \frac{1}{k}.$$

Exercice 24.8

Soit $p \in \mathbb{N}^*$.

Montrer que $\sum_{n} \frac{1}{(pn)!}$ converge et calculer sa somme.