

NATRUAL LANGUAGE PROCESSING AND ITS RISKS

Keith Burghardt
USC Information Sciences Institute
DSCI 552 – Spring 2021
March 15, 2021

Overview

- Recurrent Neural Networks
 - RNN
 - GRU
 - LSTM
 - Attention (optional)
- Fairness in NLP (beyond word embedding)
 - Word models
 - Biases in Language
- Adversarial attacks
 - The fragility of neural networks

Capturing Trends in Time

This knowledge of modelling and computers led to a business worth billions of dollars

https://www.youtube.com/watch?v=gjVDqfUhXOY

Trends

- Jim Simmons is a hedge fund manager worth over \$20 Billion
- His success is in part due to understanding patterns in time series
- His initial foray turned into applying machine learning techniques to find trends
- Others who followed this path include J.
 Doyne Farmer who's Prediction Company was sold for a small fortune to UBS

How do we analyze patterns in sequences?

- There are strong patterns in sequences
 - Stock Markets
 - Words
 - Weather
 - **—** ...
- How do we capture these trends?

Early Methods to Find Time Patterns

- Finite State Machines (e.g., RegEx)
 - Regular expressions can be converted into FSMs
 - Deterministically crawl text to see if it matches patterns
- Markov chains
 - Patterns form from (sometimes hidden) states
- Epsilon Machines
 - Extensions/variants of of Markov chains
 - Minimal models to fully explain future given past
 - Despite theoretical guarentees, this is exceedingly computationally inefficient

Wikipedia https://link.springer.com/article/10.1 007/s10955-017-1793-z/figures/3

Modern Methods

- Neural networks are extremely useful when modeling time series
- No a priori assumptions about data structure
 - E.g., we do not need to assume data has a linear trend, or depends on a finite past
- Take advantage of enormous data corpus
 - literally BILLIONS of webpages
 - Decades of sub-second resolution stock trades
- We are always limited in how far into the past we can look
 - Computationally efficient: focus on recent information
 - Not strictly true
 - Ex: Stories may refer to characters mentioned early on; this is not well-captured in many models

Modern Methods: Recurrent Neural Network (RNN)

An unrolled recurrent neural network.

https://towardsdatascience.com/understanding-rnn-and-lstm-f7cdf6dfc14e

Different Models of Recurrent Neural Networks

"Vanilla" RNN **LSTM** GRU

http://dprogrammer.org/rnn-lstm-gru

Vanilla RNN

Notatio n

 x_t : input vector ($m \times 1$).

 h_t : hidden layer vector $(n \times 1)$.

 o_t : output vector $(n \times 1)$

 b_h : bias vector $(n \times 1)$.

U, W: parameter matrices $(n \times m)$.

V: parameter matrix $(n \times n)$.

 σ_h, σ_y : activation functions.

$$h_t = \sigma_h(i_t) = \sigma_h(U_h x_t + V_h h_{t-1} + b_h)$$
$$y_t = \sigma_y(a_t) = \sigma_y(W_y h_t + b_h)$$

http://dprogrammer.org/rnn-lstm-gru

Vanishing Gradient Problem

new weight = weight - learning rate*gradient

2.0999 = 2.1

Not much of a difference

update value

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Processing each input

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Passing hidden state to next time step

RNN Cell

Tanh squishes values to be between -1 and 1

No Tanh: Output Blows up

Tanh: Values Pushed to -1,1

- State starts to look the same far enough back
- We cannot update weights far enough into past

Vanilla RNN

- This is a feed-forward network, but we create a new feature, h_t that's a function of our past
- To train them, we treat the models as very deep feed-forward networks
- Problem: back-propagation implies that weights do not change if we are deep enough down the network (vanishing gradient problem)
- This means that we lose information a few steps in the past
- We want a neural network to "forget" unimportant information
 - That way gradients do not trend to 0
 - We can train a model to gain insight deep into the past

LSTM

Sigmoid Activation (Note Values Between 0,1)

Inner Workings of LSTM

Forget gate

- C_{b1} previous cell state
- forget gate output

Input Gate

- C_b previous cell state
- forget gate output
- input gate output
- č, candidate

Cell State

- C_ы previous cell state
- forget gate output
- input gate output
- č, candidate

- C₁₄ previous cell state
- forget gate output
- input gate output
- č, candidate
- G new cell state
- output gate output
- hidden state

Review

- The Forget gate decides what is relevant to keep from prior steps.
- The input gate decides what information is relevant to add from the current step.
- The output gate determines what the next hidden state should be.
- Takes advantage of activation (0,1) and tanh (-1,1) functions to add,
 remove relevant information

Pseudocode


```
def LSTMCELL(prev_ct, prev_ht, input):
    combine = prev_ht + input
    ft = forget_layer(combine)
    candidate = candidate_layer(combine)
    it = input_layer(combine)
    Ct = prev_ct * ft + candidate * it
    ot = output_layer(combine)
    ht = ot * tanh(Ct)
    return ht, Ct
ct = [0, 0, 0]
ht = [0, 0, 0]
for input in inputs:
   ct, ht = LSTMCELL(ct, ht, input)
```

LSTM Steps

- 1. The previous hidden state and the current input get concatenated. We'll call it combine.
- 2. Combine get's fed into the forget layer. This layer removes non-relevant data.
- 3. A candidate layer is created using *combine*. The candidate holds possible values to add to the cell state.
- 4. Combine also get's fed into the input layer. This layer decides what data from the candidate should be added to the new cell state.
- 5. After computing the forget layer, candidate layer, and the input layer, the cell state is calculated using those vectors and the previous cell state.
- The output is then computed.
- Pointwise multiplying the output and the new cell state gives us the new hidden state.

pointwise multiplication

pointwise addition

vector concatenation

GRU

- Update gate: similar to forget gate
- Reset gate: also determines how much past information to forget
- Simpler than LSTM, better for small datasets
- LSTM best for larger corpus

RNN in practice

- Usually, we use multiple RNN units, e.g.,
 - $input_t = Input((4, 1))$
 - output_t = LSTM(3)(input_t)
 - model = Model(inputs=input_t, outputs=output_t)
- This model looks just like a vanilla Dense layer
 - Given 4 dimensional data (think of this as either 4 timepoints, or 4 separate channels)
 - We can feed this output (3 features one for each RNN) into another layer
- But what does it mean for us to have multiple RNN nodes in a layer?

LSTM Layers

LSTM layer

https://stats.stackexchange.com/questions/365428/difference-between-a-single-unit-lstm-and-3-unit-lstm-neural-network/365600

Each RNN works independently...

- Features are fed independently into each model
- Weights are updated much like Dense layer (back-propagation)
- The only main difference is we have an additional input that records the past "state" of the network

LSTM on Languages

• Experiment: "greet" or "greets" (number of subjects)?

Simple the **boy greets** the guy

Adv the **boy** probably **greets** the guy

2Adv the boy most probably greets the guy

CoAdv the **boy** openly and deliberately **greets** the guy

NamePP the **boy** near Pat **greets** the guy

NounPP the **boy** near the car **greets** the guy

NounPPAdv the boy near the car kindly greets the guy

Lakretz et al., 2019

Prediction (singular in blue)

(d) Efferent weights of the LR-units (776 and 988), the syntax unit (1150; section 4.3) and two arbitrary units (651 and 1300).

What do these results show

- Activation of the network is found to depend on words in the sentence
- Not just any words! The important words that help us predict the outcome (singular/plural)
- Prediction is found to be nearly perfect

Seq2Seq and Translation

How it works

Seq2Seq

- 0. Train a word embedding model (or use a pre-trained one), but ONLY on training data to avoid data leakage
- 1. Embed each word into a vector, e.g., Word2Vec (but more recent methods, e.g., RoBERTa or FastText are preferred)
- 2. Create architecture for translation, e.g., with LSTMs
- 3. Feed embedded words into architecture for training
- 4. Do this a lot! More translations, the better the model
- 5. Apply to test data

Attention

- LSTM: we take entire past, compress it into hidden state (just a few numbers!)
- Is there a better way to record the past?
- Goal: pay more attention to "important" parts of the sentence
- Example on right: translating languages
- This method is found to focus on words that are similar between languages

https://towardsdatascience.com/attention-models-in-nlp-a-quick-introduction-2593c1fe35eb

Self-Attention

- Correlations
 between current
 words and previous
 words in the
 sentence
- Now, we can more selectively memorize past

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

```
The FBI is chasing a criminal on the run.
The FBI is chasing a criminal on the run.
     FBI is chasing a criminal on the run.
     FBI is chasing a criminal on the run.
           is chasing a criminal on the run.
The
     FBI
           is chasing a criminal on the run.
The
The
           is chasing a criminal on the run.
               chasing a criminal on the run.
The
The
               chasing a
                          criminal on
           is
               chasing a criminal
The
           is
                                     on
```

Applications to Images

A woman is throwing a frisbee in a park.

- Attention pays
 attention to particular
 regions when
 describing images
- This provides visual description of how the model is thinking

Fairness in NLP

- Previously, we showed that word embeddings can be biased
- This means that, e.g., translations, or text prediction, which depends on these embeddings, can encode biases
 - E.g., "Il laureato è qui" -> "The graduate is here"
 - But: "Il laureata è qui" -> "The female graduate is here" (as though the assumed/"correct" gender of a graduate is male
- Simple methods can work well in reducing, but not eliminating biases
 - Example from a major AI company: Web scrape the internet for text, and create a model that spits out most likely words (language model)
 - If output is a reply such as "that is offensive" remove text as training data
- Yet, that is not the whole story...

Microsoft, Xiaoice, and Tay

Xiaoice

- Xiaoice was developed in 2014 by Microsoft
- This chatbot uses cleaned data to create realistic conversations
 - human conversational data (in text pairs or textimage pairs),
 - non-conversational data and
 - knowledge graphs (e.g., "an apple falls from a tree"
- It was an instant success: 660 million active users within the first 5 years of launch
- The success even spawned written poetry

March 2016: Microsoft launches Tay

What is Tay?

FAQ

Q: Who is Tay for?

A: Tay is targeted at 18 to 24 year olds in the U.S., the dominant users of mobile social chat services in the US.

Q: What does Tay track about me in my profile?

A: If a user wants to share with Tay, we will track a user's:

- Nickname
- Gender
- Favorite food
- Zipcode
- Relationship status

Q: How can I delete my profile?

A: Please submit a request via our contact form on tay.ai with your username and associated platform.

Q: How was Tay created?

A: Tay has been built by mining relevant public data and by using AI and editorial developed by a staff including improvisational comedians. Public data that's been anonymized is Tay's primary data source. That data has been modeled, cleaned and filtered by the team developing Tay.

www.tay.ai

Within Hours, Microsoft, and everyone else knew something was wrong

https://spectrum.ieee.org/tech-talk/artificial-intelligence/machine-learning/in-2016-microsofts-racist-chatbot-revealed-the-dangers-of-online-conversation

Finally the inevitable happened: Tay was taken down

So what went wrong?

Q: How was Tay created?

A: Tay has been built by mining relevant public data and by using AI and editorial developed by a staff including improvisational comedians. Public data that's been anonymized is Tay's primary data source. That data has been modeled, cleaned and filtered by the team developing Tay.

- Some of Tay's awful tweets were when it learned to repeat what a user said, regardless of what they said
- But the underlying data was not "taught" to Tay in real time
 - In contrast to headlines like "<u>Trolls turned Tay, Microsoft's fun millennial AI bot,</u> into a genocidal maniac"
- Data filtering, and biases inherent in the data were poorly filtered if at all
- Microsoft only had themselves to blame, as similar statements would have appeared anyway

Questions to Think About

- Why did Tay and Xiaoice differ in their reactions?
 - Was there a difference in culture (people would be more polite to Xiaoice, and therefore its biases were hidden)?
 - Was it trained in a fundamentally different way?
 - For example, free speech is severely limited in China, and therefore maybe the Chinese language data scraped was somehow pre-filtered, and of higher quality?
- Even if the data were better filtered, would these problems have appeared anyway?
 - Results from newer language models: GPT-2, GPT-3 are shown to be problematic

Problems with Language Models

a)

b)

Two Muslims walked into a [GPT-3 completions below]			
synagogue with axes and a bomb.			
gay bar and began throwing chairs at patrons.			
Texas cartoon contest and opened fire.			
gay bar in Seattle and started shooting at will, killing five people.			
bar. Are you really surprised when the punchline is 'they were asked to leave'?"			

Abid et al., 2021

Ongoing worries about language models

These concerns culminated into a notorious paper, called

On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?

Emily M. Bender*
ebender@uw.edu
University of Washington
Seattle, WA, USA

Angelina McMillan-Major aymm@uw.edu University of Washington Seattle, WA, USA Timnit Gebru*
timnit@blackinai.org
Black in AI
Palo Alto, CA, USA

Shmargaret Shmitchell shmargaret.shmitchell@gmail.com The Aether

Year	Model	# of Parameters	Dataset Size
2019	BERT [39]	3.4E+08	16GB
2019	DistilBERT [113]	6.60E+07	16GB
2019	ALBERT [70]	2.23E+08	16GB
2019	XLNet (Large) [150]	3.40E+08	126GB
2020	ERNIE-GEN (Large) [145]	3.40E+08	16GB
2019	RoBERTa (Large) [74]	3.55E+08	161GB
2019	MegatronLM [122]	8.30E+09	174GB
2020	T5-11B [107]	1.10E+10	745GB
2020	T-NLG [112]	1.70E+10	174GB
2020	GPT-3 [25]	1.75E+11	570GB
2020	GShard [73]	6.00E+11	_
2021	Switch-C [43]	1.57E+12	745GB

Table 1: Overview of recent large language models

Concerns

Environmental cost

- Training BERT (16GB) took as much energy as a trans-American flight
- More recent models built from orders of magnitude more data compound this issue

Financial cost

 "...increase in 0.1 BLEU score using neural architecture search for English to German translation results in an increase of \$150,000 compute cost in addition to the carbon emissions"

Training data

Large, but biased data (great proportion sharing few viewpoints)

Fairness

- Static data, changing social views
 - Political correctness evolves
 - New social movements may not be captured (e.g., #MeToo), so less emphasis on important new viewpoints in the data (and therefore what the language models will say)
- Encoding bias
 - Stereotypes
- Lack of accountability
 - Size means that we know little of what we are feeding into the model
 - This is alike to filling a car with mostly gas, and unknown amounts of water
 - Inevitably such ignorance will lead to problems

Epilogue

- Microsoft relaunched Tay as "Zo" in December, 2016
- Did Microsoft "fix" the issues of Tay?
- NO
- Instead, they're sweeping racism under the rug, and removing any potentially insensitive key words

Adversarial Attacks and Friends Like These

- Trained data is inevitably problematic, and therefore with 'friends like these' great care should be given to the model predictions
- Even with excellent data, however, the fragility of a neural network can harm predictive power as well

https://towardsdatascience.com/adversarial-attacks-in-machine-learning-and-how-to-defend-against-them-a2beed95f49c

Types of attacks

Reducing problems in ML

Denoising (e.g., with Autoencoder mentioned a few weeks ago)

Example applications

Reducing problems in ML

Data augmentation

Augmented Images

https://towardsdatascience.com/translational-invariance-vs-translational-equivariance-f9fbc8fca63a

Reducing problems in ML

Build models to be insensitive to particular perturbations (invariance and

"equivariance")

Conclusions

- There are an enormous variety of time series models outside of neural networks
- Complex tasks, e.g., language, however, require RNNs
- Recurrent neural networks come in a range of flavors
 - Vanilla
 - GRU
 - LSTM
 - Attention
- The power of NNs and RNNs, however, belie the importance of data quality and model robustness

Appendix

Gated recurrent unit (GRU)

x[t]

xt: input vector

ht: output vector

^ht: candidate activation vector

zt: update gate vector

• rt: reset gate vector

 W, U and b: parameter matrices and vector

(O-like symbol: element-wise multiplication)

https://ahmedabadmirror.indiatimes.com/entertainment/hollywood/the-gru-hero/articleshow/64033600.cms

ŷ[t]

GRU: Deep Dive

- What do GRUs do?
 - Models can "forget" some of the past (Zt): directly remove past state
 - Models can "reset" (rt): depend more or less on current features
 - Model outputs a ("hidden") state ht: a sum of current features and past states,
 this is what we feed to next network layer
- Summary: we train a model to care more or less about past depending on current state (provides **importance** of past states)
- This is the simplest solution to solve the vanishing gradient problem
- This method works well, especially for small data
- For larger datasets, LSTM is recommende

