ADVANCED BAYESIAN MODELING

ROBUST INFERENCE: THE t DISTRIBUTION

In classical statistics, the t distribution is often used for normal-sample inference.

A generalized version also has properties that make it a robust alternative to the normal distribution ...

Location-Scale t Distribution

The t distribution with degrees of freedom $\nu > 0$, location μ , and scale $\sigma > 0$, denoted

$$t_{\nu}(\mu,\sigma^2)$$

has continuous density

$$p(x) \propto \left(1 + \frac{(x-\mu)^2}{\nu\sigma^2}\right)^{-(\nu+1)/2}$$

for all x.

When $\nu > 1$, the mean is μ .

For $\nu \leq 1$, the mean is undefined, but μ is still the median.

The variance is actually

$$\frac{\nu}{\nu-2}\,\sigma^2$$

if $\nu > 2$, and otherwise undefined.

 $t_1(\mu, \sigma^2)$ is the (location-scale) Cauchy distribution that was used earlier in logistic regression.

 $t_{\nu}(0,1)$ is the standard t distribution with ν df, used in classical statistics ...

From: Student's t-distribution. (2017, November 30). In *Wikipedia, The Free Encyclopedia*. Retrieved November 30, 2017, from

https://en.wikipedia.org/w/index.php?title=Student%27s_t-distribution&oldid=812931585

Degrees of Freedom and Tails

For small ν , the t distribution has **long (heavy) tails**, which are thicker than those of a normal.

For larger ν , the tails become shorter, and the distribution becomes more like a normal. In fact,

$$t_{\nu}(\mu, \sigma^2) \longrightarrow_{\nu \to \infty} \mathrm{N}(\mu, \sigma^2)$$

So a t distribution could have long or short tails, as controlled by ν .

Note: ν need not be an integer – it can be any positive value.

14

To illustrate the long tails when $\nu = 2$:

k	Prob. a $t_2(\mu,\sigma^2)$ variable is $> k\sigma$ from μ
1	0.4226497
2	0.1835034
3	0.0954660
4	0.0571910
5	0.0377496

(Compare with table for the short-tailed N(0,1) earlier.)

Long Tails and Outliers

A continuous distribution with long tails tends to produce samples that have outliers, relative to a normal distribution.

For example, let's simulate 6 samples of size 66 from $t_2(0,1)$:

Now make a histogram of each column ...

Remark: R functions for the t distribution do not admit a location or a scale parameter – they assume $\mu=0$ and $\sigma^2=1$.

You can use

$$X \sim t_{\nu}(0,1) \Rightarrow \mu + \sigma X \sim t_{\nu}(\mu,\sigma^2)$$

For example, to simulate n independent draws from $t_{\nu}(\mu, \sigma^2)$ in R, use