Few-shot Prompting

Form "training examples" from (x, y) pairs, verbalize them (can be lighter-weight than zero-shot verbalizer)

Input to GPT-3: $v(x_1)$ $v(y_1)$ $v(x_2)$ $v(y_2)$... $v(x_{test})$

Review: The cinematography was stellar; great movie!

Sentiment (positive or negative): positive

Review: The plot was boring and the visuals were subpar.

Sentiment (positive or negative): negative

Review: The movie's acting could've been better, but the visuals and directing were top-notch.

Sentiment (positive or negative):

Usually works better than zero-shot (comparisons in a few slides)

What can go wrong?

Review: The movie was great!

Sentiment: positive

Review: I thought the movie was alright; I would've seen it again.

Sentiment: positive

Review: The movie was pretty cool!

Sentiment: positive

Review: Pretty decent movie!

Sentiment: positive

Review: The movie had good enough acting and the visuals were nice.

Sentiment: positive

Review: There wasn't anything the movie could've done better.

Sentiment: positive

Review: Okay movie but could've been better.

Sentiment:

What examples do we need?

- What if we take random sets of training examples? There is quite a bit of variance on basic classification tasks, particularly when just a few examples are used
- Note: these results are with basic GPT-3 and not Instructtuned versions of the model. This issue has been resolved somewhat

Properties of In-context Examples

- Performance varies
 even across
 permutations of
 training examples
- x-axis: different collections of train examples.
 y-axis: sentiment accuracy. Boxes represent results over different permutations of the data

Properties of In-context Examples

- Having unbalanced training sets leads to high "default" probabilities of positive; that is, if we feed in a null x_{test}
- Solution: "calibrate" the model by normalizing by that probability of null x_{test}

Leads to higher performance; not necessarily crucial with prompt-tuned models

Results: HELM

Each line is a different LM

More in-context examples generally leads to better performance

Results: HELM

Rethinking Demonstrations

- How necessary even are the demonstrations?
- Surprising result: using random labels does not substantially decrease performance??

Rethinking Demonstrations

 Having even mislabeled demonstrations is much better than having no demonstrations, indicating that the form of the demonstrations is partially responsible for in-context learning