<u>Programmazione Lineare – Federica Tamerisco</u>

- Funzione obiettivo $\rightarrow O(x, y) = 2y x$
- Primo vincolo $\rightarrow v_1$: $y x \le 0$
- Secondo vincolo $\rightarrow v_2$: $y 1 \le 0$
- Terzo vincolo $\rightarrow v_3$: $y + x 4 \le 0$
- Regione ammissibile → poligono nero
- Fascio improprio di rette parallele alla funzione obiettivo → linee nere tratteggiate

I vincoli sono rappresentati come semipiani al di sotto delle rette fornite.

La regione ammissibile è il quadrilatero intersezione dei semipiani: nel grafico è il poligono nero delimitato dai punti di intersezione A, B, C, D.

Il punto massimo si trova in A = (1,1), in quanto è il vertice più alto in cui una curva di livello incontra la regione ammissibile.

I vincoli critici sono le rette che definiscono i bordi della regione ammissibile e che contengono il punto di massimo: il primo e il secondo vincolo.

La retta del fascio che contiene il massimo è $y = \frac{x}{2} + \frac{1}{2}$.

<u>LVIncrementalLP</u>

L'algoritmo prende da input un insieme V di |V| vincoli e ritorna l'ottimo per V (x^*) e la base di V (B(V)).

Nel nostro caso non possiamo direttamente determinare l'ottimo, in quanto abbiamo più vincoli e variabili.

 \succ Campionamento v_1 da $\{v_1, v_2, v_3\}$ e v_2 da $\{v_2, v_3\}$

Il problema si risolve in modo incrementale, aggiungendo vincolo per vincolo.

$_{\circ}$ LVIncrementalLP($v_1,\,v_2,\,v_3$)

La funzione prende in input $\{v_1, v_2, v_3\}$ ed elimina v_1 dall'insieme: quindi campioniamo v_1 dal grafico completo.

\circ LVIncrementalLP(v_2 , v_3)

Ripetiamo l'azione con v_2 .

\circ LVIncrementalLP(v_3)

E infine con v_3 : essendo che la funzione obiettivo non è limitata da v_3 , ci viene restituito il massimo $\rightarrow x^* = \infty$.

Essendo che x^* viola v_3 , dobbiamo proiettare in $V \setminus \{v_3\}$ su v_3 , ottenendo quindi $V' = \{v_2, v_3\}$.

\circ LVIncrementalLP(v_2, v_3)

Campioniamo v_2 .

 x^* soddisfa v_2 e quindi rimane invariato.

\circ LVIncrementalLP($v_1,\,v_2,\,v_3$)

Torniamo indietro e campioniamo v_1 .

In questo caso la ricerca del massimo dà un risultato diverso, in quanto quello trovato in precedenza non soddisfa v_1 .

Si prende l'intersezione tra v_1 e v_3 su v_2 e si definisce un segmento.

Si prendono poi le curve di livello passanti per gli estremi del segmento e si confrontano i valori.

Così facendo troviamo $x^* = (1,1)$.

- \succ Campionamento v_2 da $\{v_1,\,v_2,\,v_3\}$ e v_1 da $\{v_2,\,v_3\}$
 - $_{\circ}$ LVIncrementalLP(v_2, v_1, v_3)

Si campiona v_2 .

 $_{\circ}$ LVIncrementalLP(v_1, v_3)

Si campiona v_1 .

\circ LVIncrementalLP(v_3)

Si campiona v_3 .

Con le stesse motivazioni scritte sopra, si può affermare che il massimo è $x^* = \infty$.

$_{\circ}$ LVIncrementalLP($v_{1},\,v_{3})$

Si campiona di nuovo v_1 .

Si deve trovare un nuovo massimo in modo da non violare il vincolo v_1 .

Quindi si trova l'intersezione delle rette nel punto P(x, y) = (2,2).

Quindi il massimo sarà $x^* = P(x, y) = (2,2)$.

$_{\circ}$ LVIncrementalLP($v_{2},\,v_{1},\,v_{3})$

Si ricampiona v_1 .

Il nuovo massimo viola il vincolo v_2 .

Si prende l'intersezione tra v_1 e v_3 su v_2 e si definisce un segmento.

Si prendono poi le curve di livello passanti per gli estremi del segmento e si confrontano i valori.

Come prima verrà che il nuovo massimo è $x^* = p(x,y) = (1,1)$.

In conclusione, possiamo notare come il massimo finale sia lo stesso in entrambi i casi di campionamento: $x^* = (1,1)$.