GOOGLE DRIVERLESS CAR

Hakan Can İpek Tolga Öztürk

CONTENT:

- > Introduction.
- > History.
- > Components
- > Action.
- **≻**Conclusion.

INTRODUCTION:

The Google Driverless Car is like any car, but:

- > It can steer itself while looking out for obstacles.
- > It can accelerate itself to the correct speed limit.
- > It can stop and go itself based on any traffic condition.

It can take its passengers anywhere it wants to go safely, legally, and comfortably.

HISTORY:

The project is currently being led by: Sebastian Thrun

- Director of the Stanford Artificial Intelligence Laboratory
- 2005 DARPA Grand Challenge Winner (The DARPA Grand Challenge is a prize competition for American autonomous vehicles, funded by the Defense Advanced Research Projects Agency)
- Co-inventor of Google Street View

COMPONENTS

Integrates Google Maps with various hardware sensors and artificial intelligence software

➤ Google Maps

Provides the car with road information

≻Hardware Sensors

Provides the car with real time environment conditions

> Artificial Intelligence

Provides the car with real time decisions

GOOGLE MAP:

Google Maps interacts with GPS and acts like a database.

- Speed Limits.
- Upcoming intersections.
- Traffic Report.
- Nearby collisions.
- Directions.

HARDWARE SENSORS:

- > The hardware sensors gives real time environmentaal properties.
- Environment is dynamic so need real time results.
- > Sensors attempt to create fully observable environment.

HARDWARE SENSORS:

- > LIDAR
- > VIDEO CAMERA
- > POSITION ESTIMATOR
- > DISTANCE SENSOR

LIDAR

- "Heart of our system"
- LIDAR (Light Detection And Ranging, also LADAR) is an optical remote sensing technology that can measure the distance to, or other properties of a target by illuminating the target with light, often using pulses from a laser.
- Scanning distance of 60 meters (~197 feet)

> VIDEO CAMERA

Detects upcoming traffic light.

DISTANCE SENSOR

Allow the car to "see" far enough to detect nearby or upcoming cars or obstacles

POSITION ESTIMATOR(Wheel Encoder)

Determines vehicle's location and keeps track of its movements.

ARTIFICIAL INTELLIGENCE:

Google Maps and the hardware sensors data are sent to the AI.

Al then determines:

- how fast to accelerate
- when to slow down/stop
- when to steer the wheel

Goal of Al

The agent's goal is to take the passenger to its desired destination safely and legally

LET'S SEE IT IN ACTION!

A look from the inside...

A look from the outside...

Advantages

- Avoid accidents
- Current location can be easily identified by GPS
- Manage traffic Flow.
- Increasing Roadway capacity.

Disadvantages

- If the user is using internet with less security then it can be caught by the hackers.
- Hackers can turn system on or off.
- Hackers can change the route.
- In case of failure in main senor and backup sensor the vehicle can create chances of accidents.

Currently

As of 2012:

- Nevada
 - 1st state to allow driverless vehicles can be legally operated on public roads

- 5 Toyota Prius
- 1 Audi TT
- Total miles
 - 140,000 miles with occasional human intervention

Conclusion:

- •The driverless car improves vehicle's stability helps to minimize the loss of control.
- Main aim is to minimize the road accidents.

THANK YOU...