CHAPTER II :ROOTS AND WEIGHTS FOR $SL_n(\mathbb{R})$

In this chapter, we review some basis theory of roots and weight. We will first recall the general theory and compute explicitly the examples for $SL_n(\mathbb{R})/GL_n(\mathbb{R})$.

1 Structure theory

1.1 The Cartan subalgebra

First we need the notion of Cartan subalgebra

Definition 1.1. For any Lie algebra \mathfrak{g} , a subalgebra \mathfrak{h} of \mathfrak{g} is said to be Cartan algebra if it is

- h is a nilpotent subalgebra.
- It is self normalizing. In particular, we have $\mathfrak{h} = \{x \in \mathfrak{g} : [x,\mathfrak{g}] \subset \mathfrak{g}\}.$

when \mathfrak{g} is a semisimple Lie algebra, we have the following theorem

Theorem 1.2. Let \mathfrak{g} be a semisimple Lie algebra over an algebraically closed field k of characteristic 0 with a subalgebra \mathfrak{h} . Then \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} if and only if it is a maximal toral subalgebra, i.e. is is maximal among all subalgebras containing only semisimple elements.

add cita-

1.2 Root space decomposition

With respect to some choice of Cartan subalgebra, we have a root space decomposition. In particular, there is a finite set $\Phi \subset \mathfrak{h}^*$ of linear forms on H, whose elements are called **roots**, such that

$$\mathfrak{g}=\mathfrak{h}\oplus\left(\bigoplus_{lpha\in\Phi}\mathfrak{g}_lpha
ight),$$

where $\mathfrak{g}_{\alpha} = \{x \in \mathfrak{g} : [h, x] = \alpha(h)x \forall h \in \mathfrak{h}\}\$ for any $\alpha \in \Phi$.

1.3 A specific example: root space decomposition for $\mathfrak{sl}_n(\mathbb{R})$

For the semisimple Lie algebra $\mathfrak{sl}_n(\mathbb{R})$, a typical choice of the Cartan subalgebra is the set

$$\mathfrak{h} = \left\{ H = \begin{bmatrix} a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_n \end{bmatrix}, a_1 + a_2 + \dots + a_n = 0 \right\}$$

With respect to this Cartan subalgebra, we can define the linear function

$$L_i: \mathfrak{h} \to \mathbb{R}, \quad H \mapsto L_i(H) = a_i$$

Then the roots are given by $\alpha_{ij} := L_i - L_j$ for distinct i, j. We have the root space decomposition for $\mathfrak{sl}_n(\mathbb{R})$ as follows

$$\mathfrak{g}=\mathfrak{h}\oplus\left(\bigoplus\mathfrak{g}_{lpha_{ij}}
ight).$$

For the sake of brevity, we will denote $\alpha_{i,i+1}$ by α_i .