

North Carolina Department of Transportation
Division of Highways
Statewide Planning Branch

THOROUGHFARE PLAN FOR THE CITIES OF ROCKINGHAM-HAMLET

APR 3 U 1998

STATE LILPARY OF MORTH CAMBLINA RALEIGH

JANUARY, 1998

1996 THOROUGHFARE PLAN

FOR

ROCKINGHAM & HAMLET, NORTH CAROLINA

Prepared By:

The Statewide Planning Branch Division of Highways North Carolina Department of Transportation

In Cooperation With:

The Cities of Rockingham & Hamlet Richmond County

The Federal Highway Administration United States Department of Transportation

January, 1998

Persons Responsible For This Report:

Manager Statewide Planning: Transportation Engineering Manager: Thoroughfare Planning Engineer: Project Engineer: Engineering Technicians: Ron Poole, Ph.D., P.E. Blake Norwood, P.E. Deborah Hutchings, P.E. Michael M. Rutkowski, P.E. Bob Stewart

Jim Neely Nikhil Desai

TABLE OF CONTENTS

						PAGE
	EXECUTIVE SUMMARY					. i
I.	INTRODUCTION					. I-1
II.	RECOMMENDATIONS	٠				. II-1
	FREEWAY/EXPRESSWAY	•	•	•	•	. II-2 . II-5 . II-6 . II-8
III.	IMPLEMENTATION	•			•	.III-1
	DETAILING OF THE PLAN		•			.III-1 .III-1
IV.	ANALYSIS OF EXISTING SYSTEM		•			. IV-1
	GENERAL	•	•	•	•	. IV-1 . IV-1 . IV-2 . IV-2 . IV-3
V.	ANALYSIS OF NEEDS	•	•	•		. V-1
	GENERAL					. V-1 . V-1 . V-2
VI.	LAND USE AND POPULATION					. VI-1
	POPULATION TRENDS					. VI-1 . VI-2 . VI-2

1	0	A	C	E.
	۲.	м	u	Ŀ

VII. EN	VIRONI	MENTAL IMPACTS					.VII-1
	PHVC.	ICAL ENVIRONMENTAL CONSIDERATIONS					V/T/T_1
		ater Quality					
	- 7\ ·	ir Quality	•	•	•	•	. VIII-I
	- W6	etlands	•	•	•	•	. VII-2
	- T1	nreatened and Endangered Species	•	•	•	•	. VII-3
	- S	oils & Geology	•	•	•	•	.VII-4
		rchaeological Impacts					
	SOCI	AL ENVIRONMENTAL CONCERNS					.VII-4
	- Ho	ousing & Neighborhoods					.VII-4
	- Ec	ducational Facilities					.VTT-4
		oise Pollution					
		istoric Sites					
		OMIC ENVIRONMENTAL CONCERNS					
		usinesses					
		mployment					
	- Lá	and development	•	•	•		.VII-7
VIII. MOI	DEL DI	EVELOPMENT				٠	.VIII-1
		LING UNIT SURVEY					
	EMPL	DYMENT SURVEY					.VIII-1
		FIC COUNTS					
		RAL MODELING PROCEDURES					
		INTERNAL TRIP PRODUCTIONS					
		INTERNAL TRIP ATTRACTIONS					
	エンフモ	DIGERIAL INTERNATIONS	•	•	•	•	. VIII-5
	TRIP	DISTRIBUTION	•	٠	٠	•	. VIII-6
		EXTERNAL-INTERNAL AND THROUGH TRIPS					
		FIC ASSIGNMENT					
	ACCUI	RACY CHECKS					.VIII-6
		TRAVEL DESIRES					
		INTERNAL TRIPS					
		EXTERNAL AND THROUGH TRIPS					
	2020	EXIEMME AND IMMOOGH TRIPS	•	•	•	•	
		APPENDICES					PAGE
APPENDIX	A	SOCIO-ECONOMIC DATA	•	•	•	•	. A-1
		DWELLING UNIT TABULATION					. A-2
		EMPLOYMENT TABULATION					
			•	•	•	•	. 11 24
APPENDIX	В	GOALS AND OBJECTIVES SURVEY RESULTS.					. B-1
APPENDIX	C	TYPICAL CROSS SECTIONS					
		STREET TABULATION AND RECOMMENDATIONS					. C-2
	_	CONTINUE CTON TO CHOOSE					
APPENDIX	D	CONVERSION FACTORS	•	•	•	•	. D-1

LIST OF TABLES

TABLE			PAGE
1	CONSTRUCTION PRIORITIES AND COST ESTI	MATES	 III-3
2	HIGH ACCIDENT SUMMARY		IV-2
3	HIGH ACCIDENT SUMMARY		 VI-1
4	IN-COMMUTERS TO RICHMOND COUNTY		 VI-7
5	OUT-COMMUTERS FROM RICHMOND COUNTY .		
6	NON HOME-BASED SECONDARY TRIPS		 VIII-5
7	SCREENLINE CHECK		VIII-6
8	SCREENLINE CHECK		 VIII-7
9	INTERNAL TRIP DATA		 VIII-7
10	INTERNAL TRIP DATA		 VIII-9
A-1	1994 INTERNAL DATA SUMMARY		 A-2
A-1b	2020 INTERNAL DATA SUMMARY		 A-4
	1994 POPULATION		
A-2b	2020 POPULATION		 A-9
A-3	2020 POPULATION		A-12
	2020 TRIPS BY DWELLING UNIT		
	1994 TRIPS BY PURPOSE		
A-4b	2020 TRIPS BY PURPOSE		 A-21
A-5	2020 TRIPS BY PURPOSE	L CODE .	 A-24
A-5b	2020 EMPLOYMENT BY STANDARD INDUSTRIA	L CODE .	A-26
С	STREET TABULATIONS AND RECOMMENDATIONS	S	 C-2
D-1	ENGLISH UNIT CONVERSION TABLE		D-1
D-2	METRIC EQUIVALENTS		 D-1
	~		
	LIST OF FIGURES		
FIGUR	S		PAGE
1	GEOGRAPHIC LOCATION		 I-2
2	THOROUGHFARE PLAN		 II-9
3	CONSTRUCTION PLAN		II-11
4	CONSTRUCTION PLAN		 IV-5
5	DESIGN YEAR CAPACITY DEFICIENCIES .		 V-3
6	EXISTING LAND USE		 VI-3
7	FUTURE GROWTH TRENDS		 VI-5
8	PERSONS PER VEHICLE		VI-9
9	ZONE MAP		 VIII-3
10	TYPICAL CROSS-SECTIONS		

EXECUTIVE SUMMARY

In October 12, 1993 the City's of Rockingham and Hamlet contracted with the North Carolina Department of Transportation (NCDOT) to perform a Thoroughfare Planning Study for the Area. This new study would update a previous plan adopted in December 1979.

To begin the study, base year data and future socio-economic projections were developed by the Rockingham and Hamlet Planning Departments and NCDOT. This data was used to develop and simulate traffic for the base year 1994 and design year of 2020.

After calibrating the base year network, the study focused on design year travel forecast and deficiencies. The work included testing the future alignment of the US 74 Bypass (TIP #: R-512) and the US 1 Bypass (TIP #: R-2501). It also included the proposed I-73 Corridor.

Several informal meetings were conducted with the representatives of both municipalities throughout the study to discuss transportation issues as well as the local ideas for relieving the traffic problems within the planning area. Six meetings were conducted with local planning staffs, elected officials, and the public including two public hearings as a part of the planning process.

In December 1994 and August 1995, two Planning Board meetings were conducted with Hamlet and Rockingham to discuss the thoroughfare planning process. The meetings allowed each community to address local traffic problems and needs.

Additional Planning Board meetings were held in February and March, 1996 with the Cities of Hamlet and Rockingham. The topics of discussion focused primarily on capacity problems and recommendations for improvements. Other items of discussion included the comparison of alternative corridor alignments for the US 1 Bypass. At the time, the US 1 project had undergone an environmental assessment as part of the project development stage of the TIP process.

On April 3, 1996 the Hamlet City Council conducted a Public Hearing to include additional public comment with regard to the Thoroughfare Plan. The discussion focused on the proposed Hamlet one way pair (see Chapter V for purpose and need assessment). After a lengthy discussion, the City Council voted unanimously to adopt the Thoroughfare Plan.

A Public Hearing was conducted by the Rockingham City Council on May 14, 1996. The meeting allowed for additional public comments on the Thoroughfare Plan. As a result, the Plan was unanimously endorsed.

The Statewide Planning Branch, NCDOT would like to thank Mr. James Armstrong, Rockingham City Planner, Mr. Lee Matthews, Hamlet City Manager, and Mrs. Lisa Vierling, Hamlet City Clerk for their assistance toward the completion of this study.

I. INTRODUCTION

A proper functional transportation system will provide the means for fast, convenient, and safe transportation of people and goods from one place to another. It is imperative that the system not only meet existing travel demands, but also that it provide for regional growth. This report documents the thoroughfare plan study for the Cities of Rockingham and Hamlet. Its objective is to provide a system of thoroughfares to serve the existing and future traffic needs of both communities for the next twenty-six years.

This report documents the data collection, mathematical modeling for trip generation and distribution, and projection of socio-economic data to the design year of 2020. The report also describes the procedures used to arrive at a recommended thoroughfare plan. It includes alternative plans, environmental impacts, capacity deficiencies, design year traffic volumes, and the recommended plan; as well as other modeled plans and strategies which help the end product to be as efficient, safe, environmentally acceptable, and economically sound as possible. Several published documents including: Annexation Study Rockingham (1977); Rockingham Community Facilities Plan and Public Involvement Program (1970); Rockingham Land Development Plan (1974); Rockingham Housing Element (1978); East Washington Street - Commercial Area Study (1976); Rockingham Community Appearance and Recreational Study (1976)); Hamlet Housing Element (1971); Hamlet Land Development Plan (1977); Hamlet Community Facilities Plan (1970); were used as a reference for establishing historical trends and development patterns for the planning area.

The proposed system of thoroughfares were developed following the basic principles of thoroughfare planning as described in Chapter 1 of the supplemental handout, "Generalized Chapters for Thoroughfare Plan Reports. Thoroughfares were located based upon field investigation, existing and anticipated land use and population distribution, and topographic conditions. The plan advocates those improvements which are felt to be essential for proper traffic circulation within the current planning period (1994-2020).

Initiative for plan implementation will rest largely with the policy boards and citizens of the area. The scope of highway needs throughout the State greatly outweigh the available funding. It is, therefore, necessary that the local areas aggressively pursue funding for desired projects.

The proposed thoroughfare plan is based on the anticipated growth of Rockingham and Hamlet, and the surrounding area as described in this report. It is possible that the actual growth patterns differ somewhat from those logically anticipated. As a result, it may be necessary to accelerate or retard the implementation of some portions of the plan and/or make revisions which will accommodate unexpected changes in urban development.

9n1

1000

GEOGRAPHIC LOCATION FOR ROCKINGHAM-HAMLET, N.C.

II. RECOMMENDATIONS

The Thoroughfare Plan resulting from this study is shown in Figure 2. This plan provides for a system of major and minor thoroughfares, which, when progressively implemented, should accommodate the expected travel desires and anticipated land development within the planning period. Appendix C of this report includes a street by street description of the thoroughfare system with the associated traffic volumes. A proposed construction plan for Rockingham and Hamlet is shown in Figure 3.

This plan is a revised version of the November, 1979
Thoroughfare Plan. The recommended revisions are based on the results of a traffic forecast model that uses data on traffic counts, population, housing, employment, and vehicle ownership to simulate travel (See Chapter VIII). With this model each major street and highway in the planning area is analyzed to determine its ability to serve existing and future traffic demands. In the development of an updated thoroughfare plan some proposals from the old thoroughfare plan have been retained, some were found inadequate for current problems and were deleted, and some new proposals were added. The following is a description of the Major and Minor Thoroughfares for the Rockingham/Hamlet Planning Area.

Freeway/Expressways:

- * US 74 Bypass (TIP#: R-512, new location): This proposed 4-lane divided, controlled access facility runs from existing US 74 in the western section of the planning area to Grace Chapel Church Road/US 74. The recommendation is to route this facility south of Rockingham and Hamlet to facilitate through trip and local traffic. This proposed facility will provide relief to existing US 74 by removing through trip traffic and by providing for proper circulation of traffic within the planning area.
- * US 1 Bypass (TIP#: R-2501, new location): The purpose of this proposed multi-lane facility is to relieve the existing congestion problems along US 1 through Rockingham. The facility also provides north-south traffic circulation for Rockingham. Construction of the controlled access facility is scheduled for 2005.
- * I-73/74 Corridor (TIP#: R-3421, new location): This proposed 4-lane divided facility is currently under feasibility.

Rockingham Major Thoroughfares:

- * US 1 (TIP#: U-3456 & R-2501) from Lawson Lane to northern planning boundary and from US 1 Bypass to the southern planning boundary. This proposed multi-lane facility will provide the necessary capacity to relieve the current congestion along this corridor. Right-of-way acquisition is scheduled to begin in 2003.
- * US 220 (TIP#: U-2583) from the proposed US 74 Bypass to Forrest Street. This section of US 220 is over-capacity. Widening of this facility is scheduled to begin in the year 2000. All other sections of US 220 within the planning area are multi-lane and do not require improvements.
- * US 220 from the northern planning boundary to US 74. No improvements are necessary.
- * Aberdeen Road (SR 1426) from SR 1424 to Philadelphia Road. No improvements are necessary.
- * Airport Road (SR 1966) from the southern planning boundary to US 1. Airport Road serves as a radial carrying traffic from NC 177 into the planning area. It also provides access to the Rockingham-Hamlet Airport. A 4-lane divided cross-section is proposed from Sandhill Road to NC 177.
- * Beaunit Avenue (SR 1903) from Mill Road to Hylan Drive. Beaunit Avenue also serves as a bypass of US 74 for local traffic. Development along this corridor limit the opportunity for improving capacity. A 5-lane cross-section is preferred, however, right-of-way limitations restrict widening to a 4-lane cross-section.
- * Billy Covington Road from Northam Road to US 220. No improvements are necessary.
- * Biltmore Road (SR 1925) from Beaunit Avenue to US 74. This connector facility serves as a primary connection between Hylan Drive and US 74. It is currently over-capacity. A 3-lane cross-section is recommended with the center lane providing for left turns.
- * Caroline Avenue from Greene Street to US 1. No improvements are necessary.
- * Clemmer Road from US 74 to County Home Road. No improvements are necessary.
- * County Home Road (SR 1624) from Long Drive to NC 177. No improvements are necessary.

- * Eason Drive (SR 1136) from Old Cheraw Highway to Sandhill Road. It does not meet the minimum tolerable lane width requirement and should be widened from 16' wide to a 2-lane 24' wide facility. This facility serves local traffic as an integral segment of the inner loop.
- * East Washington Street from US 1 to Wire Grass Road. No improvements are necessary.
- * Ellerbe Road (SR 1441) from the northern planning boundary to Ledbetter Road. No improvements are necessary.
- * 1st Street from Zion Church Road to Ledbetter Street. No improvements are necessary.
- * Greene Street from US 1 to US 74. Greene Street provides a bypass of the Rockingham CBD. No improvements are necessary.
- * Hannah Pickett Street from Mill Street to Airport Road. This facility serves local traffic as an integral segment of the inner loop. No improvements are necessary.
- * Ledbetter Road (SR 1442) from SR 1489 to US 1. No improvements are necessary.
- * Ledbetter Street (SR 1109) from 1st Street to Rosalyn Road. No improvements are necessary.
- * Long Drive (SR 1646) from US 1 to US 74. A 5-lane widening is proposed for this facility. The additional lane will accommodate left turning movements. Long Drive is the primary facility providing access to the mall and hospital area.
 - A 3-lane cross-section is proposed from US 74 to Haywood Street to accommodate left turning vehicles.
- * McDonald Church Road from US 1 to northern planning boundary. No improvements are necessary.
- * McNair Street from US 74 to US 220. No improvements are necessary.
- * McNeil Road from Nicholson Street to northern planning boundary. No improvements are necessary.
- * Midway Road from US 74 to Yates Street. No improvements are necessary.
- * Mill Road (SR 1903) from US 1 to Beaunit Avenue. Mill Road serves as a bypass of US 74 for local traffic, in particular, East Rockingham. Development along this corridor limit the opportunity for improving capacity. A 5-lane cross-section is preferred, however, right-of-way limitations restrict widening to a 4-lane cross-section.

- * Mizpah Road from US 1 to Airport Road. No improvements are necessary.
- * Mount Olive Church Road Extension to County Home Road. This proposed 2-lane connector would provide travellers in North Rockingham and US 1 additional access to the hospital and mall/shopping area. Rockingham Road and Long Drive, currently over-capacity, would have substantial traffic relief.
- * Mount Olive Church Road (SR 1645) from US 1 to East Washington Street. It does not meet the minimum tolerable lane width requirement and should be widened from 18' wide to a 2-lane 24' wide facility. This facility serves local traffic between US 1 and the mall/hospital area.
- * Nicholson Street from Snead Avenue to Sandhill Game (SR 1424).
 No improvements are necessary.
- * Northam Road from Billy Covington Road to Aslington Road. No improvements are necessary.
- * Old Charlotte Highway from US 74 to western planning boundary. No improvements are necessary.
- * Old Cheraw Highway (SR 1103) from Midway Road to US 1. No improvements are necessary.
- * Park Avenue Extension to US 1. The purpose of this 2-lane (24'-wide) facility is to allow proper circulation of traffic in north Rockingham.

The development in this area including the new Food Lion will require this connector to be shifted north, adjacent to Lawson Lane. This shift in the alignment would allow the tie-in to be made with the facility adjacent to the Food Lion.

- * Park Avenue-Beverly Hills Church Road-Midway Road-Eason Drive-Hannah Picket Avenue Loop. This proposed 2-lane loop would utilize existing 2-lane facilities to create an inner loop for the Rockingham area. This project would improve circulation of local traffic.
- * Patterson Road from East Washington Street to US 1. No improvements are necessary.
- * Philadelphia Road from Aberdeen Road to US 1. No improvements are necessary.
- * Prison Camp Road from Kings Road to US 74. No improvements are necessary.
- * Quarry Road from Midway Road to Zion Church Road. No improvements are necessary.

- * Quarry Road Extension. It is proposed that Quarry Road be extended to Yates Mill Road to correct the offset intersection.
- * Richmond Road (SR 1423) from Ledbetter Road to US 1. This facility serves local traffic accessing US 1 and Long Drive. Currently, it has a 2-lane, 22' wide cross-section. No improvements are necessary.
- * Rockingham Road (SR 1648) from Franklin Street to US 74.
 Rockingham Road serves traffic between the CBD and the mall area.
 A 5-lane cross-section is recommended with the center lane providing for left turns.
- * Rosalyn Road from Ledbetter Street to Mizpah Road. No improvements are necessary.
- * Sandhill Game Road (SR 1424) from northern planning boundary to Richmond Road. No improvements are necessary.
 - A 3-lane cross-section is recommended from Richmond Road to Fayetteville Road with the center lane providing for left turns.
- * Snead Avenue from US 220 to Nicholson Street. No improvements are necessary.
- * South Church Street (SR 1927) from Beaunit Avenue to Airport Road. No improvements are necessary.
- * Stokes Road from Mizpah Road to Battley Dairy Road. No improvements are necessary.
- * Wire Grass Road (SR 1640) from US 1 to Spring Street. Wire Grass Road serves as the primary connection between US 1 and Hamlet. This facility is not expected to experience major congestion problems within the design year horizon. However, the need for capacity improvements should be revisited if development along this corridor increases.
- * Yates Mill Road from the proposed Quarry Road Extension to US 74. No improvements are necessary.
- * Zion Church Road from US 74 to 1st Street. No improvements are necessary.

Rockingham Minor Thoroughfares:

- * Clark Street from Hood Street to Rockingham Road. No improvements are necessary.
- * Hood Street from East Washington Street to Clark Street. No improvements are necessary.

- * Lee Street from Greene Street to McNair. No improvements are necessary.
- * Maness Avenue from Lee Street to US 74. No improvements are necessary.
- * Midway Road from US 1 to Yates Street. No improvements are necessary.
- * Pickett Street Extension. This proposed 2-lane connector provides traffic relief to the mall and hospital areas by allowing direct access to East Rockingham.
- * Roberdel Road (SR 1424) from Richmond Road to US 1. No improvements are necessary.
- * Steele Street from Fayetteville Road to Aslington Road. No improvements are necessary.

Hamlet Major Thoroughfares:

- * NC 177 Bypass from Lewis Street to Freeman Mill Road on new location. This 4-lane divided proposal will provide relief to Marlboro Street and serve as a western bypass of Hamlet.
- * NC 177 from the proposed NC 177 Bypass to the northern planning boundary. This facility carries traffic from the north into the City of Hamlet. By the design year of 2020, this corridor is expected to reach capacity. A 4-lane divided cross-section will provide the additional needed capacity.
 - NC 177 from the proposed NC 177 Bypass to the southern planning boundary. No feasible capacity improvements can be implemented.
- * NC 38 from the southern planning boundary to US 74. NC 38 serves as a primary connection between South Carolina, US 15/401 and Hamlet. This facility is not expected to experience major congestion problems within the design year horizon. However, the need for capacity improvements should be revisited if development along this corridor increases.
- * NC 381 Extension to NC 177. This 2-lane proposal allows regional traffic to bypass Hamlet to the north-east. Travellers heading on US 74 from NC 177 will no longer be required to travel into Hamlet. Additionally, local traffic will have improved circulation as future development occurs near City Lake and Boyd Lake.
- * NC 381 from the southern planning boundary to US 74. No improvements are necessary.
- * Alexander Drive from McDonald Avenue to Oak Avenue. No improvements are necessary.

- * Battley Dairy Road (SR 1900) from NC 177 to Ellerbe Grove Church Road (SR 1994). This section does not meet the minimum tolerable lane width requirement and should be widened from 16' wide to a 2-lane 24' wide facility.
- * Cobble Road (SR 1614) from Old Lauringburg Road to the eastern planning boundary. No improvements are necessary.
- * Freeman Mill Road (SR 1812) from Chalk Road to NC 38. No improvements are necessary.
- * Gin Mill Road from Lackey Street to Airport Road. No improvements are necessary.
- * High Street from Charlotte Street to Hamlet Avenue. No improvements are necessary.
- * Hylan Road Connector to US 74. This 2-lane proposed connector would allow Hamlet residents living south of the Seaboard Coast Line Railroad direct access to existing US 74. Presently, this traffic is forced to use Biltmore Road when traveling to the mall area. Marlboro Street is the other closest access point to US 74. Both facilities are currently over capacity. The proposal will also provide immediate access to the proposed interchange for the US 1 Bypass.
- * Hylan Drive (SR 1909) from Beaunit Avenue to Main Street. Hylan Drive also serves as a bypass of US 74 for local traffic. Development along this corridor limit the opportunity for improving capacity. However, a 3-lane cross-section is recommended with the center lane providing for left turns.
- * Lackey Street from Main Street to Gin Mill Road. No improvements are necessary.
- * Lakeside Drive (SR 1608) from US 74 to the eastern planning boundary. No improvements are necessary.
- * Main Street (SR 1615) from Hylan Drive to Perry Williams Road. No improvements are necessary.
- * McDonald Avenue (SR 1903) from Hylan Drive to Alexander Drive. No improvements are necessary.
- * Oak Avenue from Alexander Drive to Lackey Street. No improvements are necessary.
- * Old Gibson Road from NC 381 to East Main Street. No improvements are necessary.
- * Old Lauringburg Road (SR 1610) from US 74 to the eastern planning boundary. No improvements are necessary.

- * Perry Williams Road (SR 1833) from Freeman Mill Road to East Main Street. No improvements are necessary.
- * Rice Street from Charlotte Street to Oak Avenue. No improvements are necessary.

Hamlet Minor Thoroughfares:

- * Riegel Road to E.V. Hogan Road Connector. This two-lane facility would provide a direct connection and travel access between US 1 and NC 177. The demand for this facility is not immediate. However, if the travel demand on Wire Grass Road increases, this connector should provide the necessary relief.
- * Washington Avenue Extension to Wire Grass Road. This two-lane facility is currently under construction, and is scheduled for completion in the Fall of 1996. This facility should provide the needed relief of travel to the Green Street elementary school.

INTERSECTION GEOMETRICS:

Three additional projects have been recommended to decrease accidents at intersections and to increase travel safety. These suggestions are based on total number of accidents (reported between 5/93 - 5/96), geometrical design, local planning input, and field investigations. It should be noted that each of the following projects require additional investigation. A contact representative is listed for each project.

- * Hamlet One Way Pair. A solution to the severe congestion problems created by the two signalized intersections on Raleigh Street is to convert Spring Street and Hamlet Avenue into a one way pair. The proposed one way pair as seen on the Construction Plan would separate the eastbound and westbound traffic. Two travel lanes would be provided for each direction, and would not require additional right-of-way. Nor, would this proposal require the on-street parking for the businesses along Hamlet Avenue between Raleigh Street and Front Street. For a complete discussion of purpose and need, see Chapter V.
- * Wire Grass Road (SR 1640) is currently offset as it ties into Spring Street (SR 1639). An investigation should be conducted by the Traffic Engineering Branch to determine if Wire Grass Road can be realigned to flow into Williams Street. This facility provides service to US 74 and Hamlet CBD.
- * The Traffic Engineering Branch, NCDOT with the assistance of the local planning staff should investigate the intersection of **Freeman Mill Road** and Battley Dairy Road. Presently, Freeman Mill Road is offset as it ties into Battley Dairy Road.

III. IMPLEMENTATION

DETAILING OF THE PLAN:

For the proper administration of subdivision regulations and to obtain more accurate cost estimates of proposed facilities, it would be desirable that the plan be detailed to the extent that preliminary designs of proposed facilities are delineated on topographic mapping of a horizontal scale of 1" = 100' or 1" = 200'. Such preliminary design would more fully indicate the nature of proposed improvements, right-of-way needs, and the effect of proposed improvements on adjacent properties. detailing of the plan could be accomplished by the City, or by a consultant employed by the City. On key major thoroughfares, the City may also request that NCDOT assist in providing a functional design. It is important to note that if federal funds are to be used to construct the project, the NEPA process must still be followed. The design, will therefore, be one of the alternatives considered in the NEPA document. The environmental screening and level of detail provided in a functional design typically results in selection of a design which is consistent with the approved corridor in the NEPA document.

CONSTRUCTION PRIORITIES:

Construction priorities depend on the potential that proposed projects have to satisfy various objectives. Some of the most important objectives are (1) improvement of the State's arterial system; (2) cost effective improvement of the safety and level-of-service of all roads and highways on the State system; (3) encouragement of economic development; (4) preservation of the environment; and (5) fair and equitable allocation of project funding.

ENVIRONMENTAL CONCERNS:

Environmental factors considered in highway project evaluation can be divided into three categories -- physical, social/cultural, and economic. Factors from these categories are utilized in the benefits analysis. These primary environmental factors are discussed in more detail in Chapter VII. The relative environmental impact of a project is subjectively measured by summing the positive and negative impacts on various environmental factors.

The economic impact of a project is an estimate of the probability that the project will stimulate economic growth in the planning area. This probability is subjectively calculated based on knowledge of the project, local development characteristics, and land development potential. The probability of economic development is then rated on a scale of 0.00 (none) to 1.00 (excellent). **Table 1** contains the calculated environmental and economic impacts for each of the major projects.

BENEFIT ANALYSIS:

Benefits are determined based on cost savings to the network users. The total benefit is the sum of the savings in three categories. These categories are vehicle operating costs, travel time costs, and the cost of accidents. The reduction in each of these costs is the "project" benefits received by the users. The benefits produced by each project is then compared to the estimated cost of building the project. A benefit/cost analysis was preformed on the major projects in the Rockingham/Hamlet Thoroughfare Plan. These projects and their benefits are shown in Table 1.

1													
ECONOMIC	DEVELOPMENT POTENTIAL PROB.						.20	.20	.30	.20	.10	.20	
	ENVIRON. D IMPACT PROBABILTY						+.60	+.60	+.40	+ .40	+.40	+.50	CITY LIMIT BOUND LANE
ស្	(\$1,000) BENEFITS		N/A	N/A	N/A		153,059	60,701	50,947	79,144	3,370	21,613	ECL - EAST WBL - WEST
1_AND COST ESTIMATES	(\$1,000) TOTAL		112,420	78,600	100,800		1	-	1,774	1,498	285	5,722	BOUNDARY E
	ATES ROW		! ! !	10,300	17,200		N/A	N/A	58	150	20	302	PLANNING E
TABLE V PRIORITIES	COST ESTIM		112,420	68,300	83,600		2,540	2,952	1,716	1,348	265	5,420	EPB - EAST WPB - WEST
TABLE CONSTRUCTION PRIORITIES	LENGTH MI/(KM)		.1 (21.1)	4 (36.0)	.5 (16.9)		84 (3.0)	64 (2.6)	.81 (1.3)	.76 (1.2)	.19 (0.3)	.46 (5.6)	BOUNDARY E
00	RECOMMENDED CROSS SECTION	TS:	BYPASS A 13	BYPASS A 22	74 A 10		US 74 ECT N 1	AD: ONG DR ECT N 1	NNECTOR O	HURCH N O	BERDEEN R	OCATION 0 3	PLANNI NG PLANNI NG
	SECTION	PROGRAMED PROJECTS:	R-512: US 74 F NEW LOCATION	R-2501: US 74 NEW LOCATION	R-3421: I-73/74 CORRIDOR NEW LOCATION	FIRST PRIORITY:	LONG DRIVE: WASHINGTON TO US WIDENING PROJECT	ROCKINGHAM ROAD: LEAK ST. TO LONG WIDENING PROJECT	HYLAN-US74 CONNECTOR NEW LOCATION	MOUNT OLIVE CHURCH ROAD EXTENSION NEW LOCATION	MOUNT OLIVE-ABERDEEN ROAD CONNECTOR NEW LOCATION	NC 177 BYPASS PARTIAL NEW LOCATION	NPB - NORTH SPB - SOUTH
	HIGHWAY	PRO	1.	2. 1	3.	FIR	-	2.		4.	5. 1	6.]	

			J	CONSTF	RUCTIO	TABLE CONSTRUCTION PRIORITIES	AND	COST ESTIMATES	ES	RNMTROM	ECONOMIC
HIG	HIGHWAY SECTION		RECOMMENDED CROSS SECTION		LENGTH (KM)	COST ESTIMCONSTRUCTION	ATES ROW	(\$1,000) TOTAL	(\$1,000) BENEFITS	ΤŢ	POTENTIAL PROB.
20 [A]	BECOND PRIORITY:	ORITY:									
H	HAMLET EAST URBAN LOOP PARTIAL NEW	EAST JOP NEW L	HAMLET EAST URBAN LOOP PARTIAL NEW LOCATION O	2.08	(3.4)	4,070	16	4,146	62,356	+.40	.20
	ROCKINGHAM URBAN LOOP PARTIAL NEW	HAM SC JOP NEW L	ROCKINGHAM SOUTHERN URBAN LOOP PARTIAL NEW LOCATION O	1.52	(2.5)	2,696	331	3,027	15,746	+.50	. 05
	US 1 - US 74 (MINOR) CONNECTOR PARTIAL NEW LOCATION	US 74 OR NEW L	US 1 - US 74 (MINOR) CONNECTOR PARTIAL NEW LOCATION K	. 80	(1.3)	1,700		1,768	2,605	+.40	. 05
4.	ROCKINGHAM NORTHERN URBAN LOOP PARTIAL NEW LOCATIO	HAM NC OOP NEW L	ROCKINGHAM NORTHERN URBAN LOOP PARTIAL NEW LOCATION O	3.17	(5.1)	5,304	761	6,065	6,441	+.50	.20
5.	QUARRY ROAD - YATES MILL CONNECTOR NEW LOCATION	ROAD - NNECTC ATION	- YATES OR O	.21	(0.3)	294	15	309	802	+.10	. 05
. 9	RIEGEL ROAD - E.V. HOGAN CONNECTOR NEW LOCATION	ROAD - ONNECI ATION	E.V. COR	1.37	(2.2)	2,210	20	2,260	3,090	+.30	.10
	NPB	1 1	PLANNING PLANNING	BOUNDARY		EPB - EAST WPB - WEST	PLANNING PLANNING	BOUNDARY	ECL - EAST WBL - WEST	CITY LIMIT BOUND LANE	

IV. TRAVEL DEFICIENCY ANALYSIS OF THE EXISTING SYSTEM

GENERAL:

This chapter presents an analysis of the ability of the existing street system to serve the area's travel desires. Emphasis is placed not only on detecting the deficiencies, but on understanding their cause. Travel deficiencies may be localized and the result of substandard highway design, inadequate pavement width, or intersection controls. Alternately, the underlying problem may be caused by a system deficiency such as a need for construction of missing links.

EXISTING TRAVEL PATTERNS:

An indication of the adequacy of the existing street system is a comparison of traffic volumes versus the ability of the streets to move traffic. In an urban area, a street's ability to move traffic is generally controlled by the spacing of major intersections, access control, width of pavement, and the traffic control devices (such as signals) utilized.

For the definition of **capacity** and **level of service (LOS)** as it relates to traffic operation, please refer to Chapter 2 of the supplemental report, "Generalized Chapters for Thoroughfare Plan Reports".

EXISTING MAJOR STREET SYSTEM:

The Cities of Rockingham and Hamlet are similar to many urban areas with a grid system at the center of the City and radials accessing the planning area (for additional discussion, refer to Chapter 1, of the supplemental report). US 74 is a primary facility passing through the planning area. Its function serves two purposes. US 74 carries commercial traffic as well as intrastate travel generated by the following radials; US 1 (carrying southbound traffic from Southern Pines and northbound traffic from Asheboro to US 74 at Rockingham); NC 177 (serves primarily Hamlet by collecting traffic from US 1 from the north and Wallace, and South Carolina from the south). Two other facilities, NC 38 and NC 381 feed off of US 74 at Hamlet and carry traffic to-and-from South Carolina.

The attraction between the two Cities of Rockingham and Hamlet creates a very unique traffic condition. This "bipolar" attraction is formed by local trips being generated for work, shopping, and recreational purposes. Although most of this traffic is facilitated by US 74, Airport Road, Beaunit Avenue, Hylan Drive, and Country Home Road provide additional local service.

PARKING INVENTORY:

Parking is a consideration in any thoroughfare planning study because it directly affects the capacity of individual facilities. On-street parking limits the capacity of a roadway, while a deficiency of parking adds to the congestion of an area by increasing circulation. Since on-street parking reduces the capacity of thoroughfares, parking removal is one of the first procedures applied in attempting to increase the capacity of a facility. Generally, on-street parking is not a problem in the Planning Area.

EFFECTS OF 1994 TRAFFIC ON THE EXISTING SYSTEM:

High Accident Location - Traffic accident records are of assistance in defining problem areas and often pinpoint a deficiency such as poor design, inadequate signing, ineffective parking, or poor sight distance. Accident patterns developed from analysis of accident data can lead to remedial action reducing the number of accidents.

Both the severity and number of accidents should be considered when investigating accident data. The severity of every accident is measured with a series of weighting factors developed by the Division of Highways of the NCDOT. In terms of these factors, a fatal or incapacitating accident is 47.7 times more severe than one involving only property damage, and an accident resulting in minor injury is 11.8 times more severe than one with only property damage.

TABLE 2 HIGH ACCIDENT SUMMARY 5/93-5/	96	
LOCATION	TOTAL	SEVERITY
1. BROAD ST./CAROLINE ST. 2. BILTMORE DR./BROAD ST. 3. BROAD ST./LONG DRIVE 4. US 220/BROAD AVE. 5. BROAD ST./ROCKINGHAM ROAD 6. NC 177/SPRING ST. 7. US 220/GREEN ST. 8. NC 38/MAIN ST. 9. US 1/MIZPAH ROAD 10. BROAD ST./DOGWOOD 11. BROAD ST./HANCOCK 12. LONG DR./ROCKINGHAM ROAD 13. BROAD ST./GREEN 14. US 74/NC 177 15. LONG DR./WASHINGTON 16. RALEIGH ST/SPRING ST. 17. BROAD ST./LEE ST. 18. BROAD ST./LEE ST. 19. BROAD ST./LAWRENCE 20. NC 177/CHARLOTTE ST.	50 38 37 36 32 31 29 22 20 19 17 16 16 16 14 14 14 14	7.29 3.34 6.45 7.06 5.68 4.58 6.17 9.49 8.48 12.28 4.12 5.79 23.19 9.90 4.70 4.17 3.64 3.11 6.12

TABLE 2 (cont'd) HIGH ACCIDENT SUMMARY 5/93-5/9	96	
LOCATION	TOTAL	SEVERITY
21. US 74/WILLIAM ST. 22. HAMLET/WILLIAM ST. 23. NC 177/HAMLET AVE. 24. HAMLET AVE/RALEIGH 25. COUNTRY HOME/LONG DRIVE 26. MIZPAH/AIRPORT ROAD 27. CAROLINE/HANCOCK 28. LONG DR/MILL ROAD 29. COUNTRY HOME/WIRE GRASS ROAD 30. US 1/EASON DR. 31. BROAD ST./LADY MARY 32. BROAD ST./THOMAS PARK 33. US 74/THIRD ST.	13 12 12 12 12 11 11 11 10 10 10	3.85 11.02 4.70 2.23 1.62 17.47 11.93 6.38 20.60 6.92 5.44 3.96 3.22

The "Total" column indicates the total number of accidents reported within two hundred (200) feet of the intersection during the indicated time period. The severity listed is the average accident severity for that location.

Capacity Deficiencies - Figure 4 depicts the base year (1994) major street system, and the ADT (Average Daily Traffic). A comparison of the base year ADT to capacities reveals several streets near or over practical capacity (LOS D). These areas are highlighted, and include:

- o US 74 (Broad Avenue and Hamlet Avenue)
- o US 1 (Fayetteville Road)
- o NC 177 (Marlboro Street and Freeman Street)
- o Long Drive
- o Rockingham Road
- o Biltmore Drive

There are several locations within the planning area which have high volumes. Traffic volumes in excess of 25,000 vehicles per day (in 1994) occurred on US 74 within the Rockingham City Limits and 18,000 in Hamlet, while counts as high as 16,000 vpd have occurred on Long Drive near the Richmond Memorial Hospital.

System Deficiencies - System deficiencies are a measure of the extent to which the existing system lacks continuous radials, loops, cross-towns, and bypasses. (for a description of radials, loops, etc. refer to Chapter 1, Thoroughfare Planning Principles of the supplemental report, "Generalized Chapters for Thoroughfare Plan Reports". System deficiencies in the system include:

- Lack of controlled access on US 74 throughout the planning area has created a number operational problems including; spillback delays at signalized intersections, hazardous weaving movements, and high accident rate caused by turning movements accessing adjacent commercial areas. The 1995-2001 TIP (Transportation Improvement Program) includes the proposed US 74 Bypass (R-512). This project would carry through trip and local traffic on a controlled access facility and would alleviate a large percentage of traffic travelling through Rockingham and Hamlet on the existing US 74 (including Summer beach traffic).
- No loop system or circumferential streets exist. Loop streets do not necessarily carry heavy volumes of traffic, but they function to help relieve central areas. Much of the problems with Long Drive and Rockingham Road could be relieved with the implementation of a loop system facility. TIP Project #: R-2501 would provide the necessary relief to these facilities depending on its final location.

System control loops to the control loops of the co

-

V. ANALYSIS OF NEEDS

GENERAL:

This chapter presents an analysis of the ability of the existing street system to serve the area's travel desires as the area continues to grow. The usefulness of transportation planning is in the analysis of different highway configurations for their efficiency in serving the area. The following includes several alternatives for providing specific services to the area.

GOALS AND OBJECTIVES:

The Cities of Rockingham and Hamlet have their own priorities and concerns relating to the transportation system, and related topics. In order to determine the items of importance to the planning area, a "Goals and Objectives" survey was conducted in 1995. The survey included questions about topics such as new roads, improvements to existing roads, sidewalks, landscaping, and intersections. Additional space was provided for comments at the end of the survey. See Appendix B for a complete discussion of the Goals and Objectives Survey.

The results of the survey indicated that the transportation improvements most desired were preservation of neighborhood/community, increased traffic safety, and avoiding urbanization and strip development. Other goals viewed as important include improving travel safety for pedestrians/bicyclists and encouraging economic vitality.

With regard to local project needs, there exists an overwhelming support for the US 74 Bypass. On the other hand, very little support was recorded for widening US 220 to a multilane facility.

ALTERNATIVE PLANS:

The process of developing, testing and evaluating alternate plans involved a number of considerations. These included area goals and objectives (above), identified deficiencies (Chapter IV), environmental impacts, existing and anticipated land development, and travel service. Travel forecasts provide a basis for evaluation of alternatives as to ability to serve future travel needs. Aerial photography, topographic mapping, field reconnaissance and discussion with city staff, planning officials and interested local citizens provided additional basis for identifying and evaluating the alternative alignments.

Some of the major system problems which need to be addressed by the thoroughfare plan include: deficiency for serving the US 74 Bypass (Broad Avenue) corridor traffic; and determining what to do at the two signalized intersections along Raleigh Street, between Spring Street and Hamlet Avenue.

Do Nothing Alternative:

An alternative to any proposed improvement is a "do nothing" option. There can be varying degrees of a "do nothing" policy, meaning no highway improvements to the existing network, to a partial "do nothing" policy, meaning no new highways (only minor improvements to the existing system). Figure 5 highlights the areas where facilities are at or near the practical capacity for the design year of 2020. Some of the major advantages of doing nothing are:

- (1) No capital investment.
- (2) No removal of landscaping.
- (3) No additional land acquisition.
- (4) No displacement of people or business as a result of construction.

However, there are a number of disadvantages to a "do nothing" policy which would have significant adverse effects on the urban environment. These include:

- (1) Increased traffic congestion on major facilities resulting in increased air pollution and driver frustration.
- (2) Social, health, and safety standards would deteriorate.
- (3) Increased driving time and road user costs.
- (4) Increased accidents.
- (5) Reduced mobility for emergency vehicles.
- (6) Loss of potential gains in commerce trade due to congestion.

The most dramatic consequence of this option is the poor operations of the Broad Avenue/Hamlet Avenue corridor. It is estimated that the amount of traffic on this facility will double by the design year. However, the proposed US 74 Bypass (TIP project R-512 will relieve most of the through trip traffic from the corridor. However, by the design year of 2020, local traffic along Broad Avenue is expected to increase to the current level of congestion even with the implementation of the US 74 Bypass and US 1 Bypass. The increase in congestion level can be attributed to the existing and anticipated commercial development along existing US 74. Without access control measures and limiting the number of curb cuts for commercial development along this corridor, travellers will experience stop-and-go progression and poor Levels-of-Service on a significant portion of Broad Avenue/Hamlet Avenue within the planning area. Couple this with the inevitable incident along the facility and grid-lock may occur. Whether it is a stalled vehicle or an accident, incidents are the number one cause for highway congestion.

In addition to the do nothing plan, it is desirable to take a more in depth look at the existing street system to determine if **non-construction** projects can enable the existing system to serve future travel. Non-construction alternatives include:

- o Control of access increases capacity where it has been eroded by large volumes of turning traffic at many closely spaced locations, such as a strip commercial zone. Several sections of Broad Avenue, Hamlet Avenue, and US 1 provide examples of such development. As new development occurs, it would be beneficial to attempt to reduce or limit the number of curb cuts to these facilities. This alternative is applicable to the planning area.
- o Prior to a traffic signal being installed on a facility, the through movement is permitted continuously. Upon signal installation, the time permitted for the through movement is significantly reduced to allow for conflicting movements, possibly by as much as fifty percent. This results in a reduced capacity for the facility. It is therefore important that signals only be installed when needed, and with consideration to the overall impact on the facility. Signal locations on Broad Avenue and Hamlet Avenue should be highly regulated and coordinated to provide for **signal progression**.
- o An aggressive carpool, vanpool, or public transit program would process the same number of person-trips while decreasing the number of vehicle-trips and thus decrease congestion. Currently, neither City has an historical pool of vehicle occupancy data to analyze for evaluation of the possible benefits of such a program. However, considering the current amount and anticipated growth in industrial development within the planning area, a ridesharing program could be incorporated through the cooperation of local employers.
- o **Altering work hours** such that the beginning and ending times are staggered, can reduce travel in the peak hour. The resulting peak period would be less congested, but last longer. Therefore, the total traffic carrying ability of an existing street can be increased.
- o Restrictions on growth would also slow traffic growth, and delay the need for street improvements.

The do nothing concept is not a viable alternative in transportation planning for the planning area. Some of the concepts, such as signal progression and control of access, should be used to compliment the transportation system.

The following section is a detailed discussion of the old thoroughfare plan (mutually adopted in 1979) and the changes implemented as a result of this study. This section attempts to identify the purpose and need for each proposal.

OLD THOROUGHFARE PLAN

The previous Thoroughfare Plan for Rockingham/Hamlet was a adopted in 1979. Major street improvements include:

Facility:	Description of Improvement:
* US 74 Bypass	<pre>4-lane divided facility on new location</pre>
* US 1	Widen roadway to a multi-lane facility with a bypass of Rockingham on new location
NC 177 Bypass	From SR 1628, Dobbins Heights to south of Freeman Mill Road on new location
NC 177	Widen existing facility to multi- lane, north of proposed Bypass
Long Drive Connector	Proposed multi-lane facility
NC 381 Extension	Proposed 4-lane divided facility from NC 381 to NC 177
Park Avenue Loop	2-lane extension of Park Avenue from US 74 to the proposed US 1 Bypass
Mill Road-Haywood St Beaunit Street Widening	4-lane undivided widening

^{*} Transportation Improvement Programed projects.

Changes to the Old Thoroughfare Plan (adopted 1979)

Deletions - Rockingham:

- Hannah Picket Extension to Long Drive. This area has experienced high residential growth. The project is eliminated because it would require 40-50 dwelling units/apartments.
- Midway Extension to existing US 74. A pond and the Fruit of the Loom Complex has forced this connection to be shifted to the west. This shift may create design problems as the alignment ties into US 74 at a sloped and curved location.

Additions - Rockingham:

- US 1 Bypass (R-2501) is now planned as a full control access facility. Therefore, the alignment has changed. The project is currently undergoing the first phase of the environmental assessment. There are 3 primary corridor alternatives being considered. (Ref: Byron Brady, P&E Project Engineer) At this time, there is no proposed interchange between existing US 1 and existing US 74.

The Construction Plan: Shows the US 1 Bypass closer in proximity to Rockingham. This preferred corridor minimizes the impacts to existing wetlands. The other US 1 corridors extend further eastward requiring substantial wetland acreage and an increase in construction cost.

- Mount Olive Church Road Extension to Baldwin Road. The purpose of this facility is to provide travellers in North Rockingham and US 1 additional access to the hospital and mall/shopping area.

disadvantages:

* would require water intake to be shifted eastward or closure

advantages:

- * Rockingham Road and Long Drive, currently over-capacity, would have substantial traffic relief.
- * This proposed facility may acquire 1 house, however, the need for this facility is created by travellers in North Rockingham to the US 1 Bypass (ie. mall/ shopping/ restaurants/ hospital). The model has shown high demand for such a facility. As a note, north Rockingham area, near Roberdel and Nicholson Street is anticipated to be the highest growth potential for the planning area.

<u>note:</u>

* local area must consider impacts to water quality if development is allowed to occur around present water intake location

- Park Avenue Extension to US 1. The development in this area including the new Food Lion will require this connector to be shifted north, adjacent to Lawson Lane. This shift in the alignment would allow the tie-in to be made with the facility adjacent to the Food Lion.

Deletions - Hamlet:

- High Street to Spring Street Connector is not feasible. This proposal would be too destructive if built. It would necessitate the relocation of 6-7 houses. One of which is an eligible National Historic Property. Design year ADT is expected to reach approximately 20,000 vpd, even with implementation of the US 74 Bypass. Truck percentages are expected to decrease only slightly due to the number of service trucks to Hamlet CBD and the Rockingham mall and commercial area on the existing US 74.

Currently, US 74 is designated south along Hamlet Avenue to Raleigh Street, and south on Spring Street. The Average Daily traffic through this corridor is approximately 18,000 vpd. The two traffic signals on Raleigh Street creates spill back problems during peak and non-peak hour travel periods. These two intersections are designated as high accident locations (17 accidents in 3 years)

- Thomas Street Extension to Lake Drive. Residential growth in this area will not allow for this connection to be made. Six unit apartment complex and several duplexes would be required.
- Walnut Avenue Extension to Gin Mill Road. This connection can not be made. Walnut Street dead ends into a utility structure and three houses have been built in its path. In addition, the tie-in to Gin Mill Road is limited by extensive wetlands, a flood plain, and a pond in three of the four quadrants.
- Boyd Lake connector to US 74. The traffic bypassing Hamlet to the north accessing NC 117 or continuing west to US 74 would be served adequately by the proposed connector between 5th Street extension and NC 381.

Additions - Hamlet:

- Hamlet One Way Pair. A solution to the severe congestion problems created by the two signalized intersections on Raleigh Street is to convert Spring Street and Hamlet Avenue into a one way pair. The proposed one way pair as seen on the Construction Plan would separate the eastbound and westbound traffic. Two travel lanes would be provided for each direction, and would not require additional right-of-way. Nor, would this proposal require the on-street parking for the businesses along Hamlet Avenue between Raleigh Street and Front Street.

A true benefit to such a proposal is that employing a one way pair would not require the construction of a new facility. Spring Street and Hamlet Avenue, with the present alignment will provide the capacity and safety improvements necessary to make this change.

A grade separation for the Seaboard Coastline Railroad tracks and Hamlet Avenue would be required. The tracks could be elevated similar to Spring Street.

Obviously, with any new proposal there are potential impacts that must be considered. This is why it is so important to weigh the different issues at hand to ultimately determine what is best for the community. In this case, Spring Street residents will be subjected to additional traffic including service vehicles. If a one way pair was implemented today, one would expect approximately 8,000 vehicles to travel on Spring Street at the current traffic level.* However, the current width of Spring Street (2-lanes) would allow approximately 12,000 to 14,000 vehicles per day (vpd) at an acceptable level of service. **

* 1995 traffic counts on Spring Street are 5,100 vpd.
** Source: Bureau of Multi-Modal System Planning, Florida Department of Transportation.

The purpose and need for this project is twofold:

- 1) The current designation and operation of US 74 is an extreme safety hazard. Because of the proximity of the two signals on Raleigh Street, operational problems become hazardous when peak hour traffic is forced between two signals and the conflicting turning movements in a one block distance. In the past five years, the two intersections of Raleigh St/Hamlet Avenue and Raleigh St/Spring Street have contributed to a total of 35 reported accidents. Implementing a one way operation would separate the dangerous turning movements while providing the needed capacity.
- 2) The capacity of US 74 along this corridor ranges from 10,000 to 15,000 vpd. Couple this with the back to back signals on Raleigh Street and it creates a higher potential for accidents. At the current level of traffic (18,000 vpd) sections of US 74 along this corridor operate at a level of service "D" and sometimes "E". This means that drivers are experiencing stop and go traffic throughout the day.

The Environmental Impact Statement R-512 for the US 74 Bypass is a detailed alternatives analysis which includes projections for future traffic. Published in 1992, this document includes projections for traffic on existing US 74 with the implementation of the Bypass. According to the report, the projected 2016 traffic on existing US 74 through Hamlet will reach approximately 29,000 vpd. On the other hand, the new US 74 Bypass is estimated to carry only 13,000 vpd by the same design year.

- Hylan Road Connector to US 74. This 2-lane proposed connector would allow Hamlet residents living south of the Seaboard Coast Line Railroad direct access to existing US 74. Presently, this traffic is forced to use Biltmore Road when traveling to the mall area. Marlboro Street is the other closest access point to US 74. Both facilities are currently over capacity. The proposal will also provide immediate access to the proposed interchange for the US 1 Bypass.

The location of this facility was chosen because it provides proper spacing for a connector facility while requiring the least amount of new construction.

- Riegel Road to E.V. Hogan Road Connector. This two-lane facility would provide a direct connection and travel access between US 1 and NC 177. The demand for this facility is not immediate. However, if the travel demand on Wire Grass Road increases, this connector should provide the necessary relief.
- Washington Avenue Extension to Wire Grass Road. This two-lane facility is currently under construction, and is scheduled for completion in mid 1996. This facility should provide the needed relief of travel to the Green Street elementary school.

VI. LAND USE AND POPULATION

The flow of traffic within an area is based on the physical conditions of the travelways, population, land use, and the economic conditions within that area. Before an accurate estimate of traffic can be made for future travel patterns an accurate investigation of present land use, population, economy, and road usage must be completed. An estimate can be made of travel for the future year based on existing travel trends. Usually the planning horizon is twenty years from the base year. The planning horizon for this study is twenty-six years. A more detailed explanation of this modeling process can be found in Chapter VIII.

POPULATION TRENDS:

The amount of travel on a road network is based partly on the population within the planning area. **Table 3** shows historic population totals over the past twenty-four years. The population within the City's of Hamlet and Rockingham have increased by over 45 percent from 1970 to 1990 (N.C. State Data Center). On the other hand, the population of Richmond County has increased by only twelve percent within the same period.

TABLE 3 POPULATION TRENDS						
POPULATION:	1970	1980	1990	1994	2010	2020
Rockingham/Hamlet/ Dobbins heights City Limits	* 11,476	* 14,257	* 16,739			
Rockingham/Hamlet Planning Area				33,500	*** 36,410	*** 38,350
Richmond County	* 39,889	* 45,161	* 44,518		** 43,396	
North Carolina	*5,084,411	*5,880,095	*6,628,637		**8,070,877	
Dwelling Units				13,962		**17,432
Persons/D.U.				2.40		2.20

^{*} U.S. Census Data

^{**} N.C. State Data Center

^{***} Rockingham/Hamlet Planning Staff/NCDOT

LAND USE:

The generation of traffic on a particular street is closely related to the land use of the adjacent property on that street. Some types of land uses generate more trips than others. Some land uses attract more trips than others. For example, a shopping center generates larger traffic volumes than residential areas. It is important in transportation planning to differentiate between land use types so their present and future distribution throughout the planning area can be used to determine existing and future traffic patterns.

There are several variables used to forecast future land development. Some of them are: anticipated population changes; historical trends in different development types; the availability and effectiveness of legal controls, regulations, and ordinances; the availability of utility and transportation facilities; and major topographic or other environmental features. Figures 6 & 7 show the existing and anticipated employment and population growth trends for the planning area. (estimates supplied by Rockingham and Hamlet Planning Departments)

ECONOMIC TRENDS:

Rockingham and Hamlet are centrally located near three large cities. Charlotte is seventy-six miles west. Fayetteville is sixty-four miles east. Raleigh is one hundred miles north. The availability of employment and employee purchasing power determine how large an economic base an area can support. In 1990, there was a 5.9% unemployment rate with 22,361 people employed in Richmond County. The purchasing power of a family is related to the income of that family. In 1990, the average family income in Richmond County was \$26,747, in the U.S. \$34,000, and in N.C. \$31,548.

In May through August of 1994, socio-economic data for the planning area was collected by the Rockingham Planning Department and NCDOT. For each business, the number of employees were recorded and checked for accuracy. Employment projections for the design year of 2010 and 2020 were completed by the Rockingham and Hamlet Planning Departments. Tabulated below, are the results of this study.

EMPLOYMENT:	1970	1980	1990	1994	2010	2020
Rockingham/Hamlet Planning Area:	,	7,000		15,568	*16,930	*17,821
Richmond County	15,960	16,930	21,014			

^{*} Rockingham/Hamlet Planning Staff

In 1992, the US Bureau of Census released County Employment commuting patterns for every county in North Carolina. This data is based on the 1990 Census of Population and Housing survey and should be used as an indicator of the employment travel patterns only. The following is a statistical summary of Richmond County commuting patterns.

		Persons
Total Out-Commuters	_	3,042
Total In-Commuters	=	2,617
Total Non-Commuters	=	16,915
	=	19,532
	=	19,957
Net Commuting	=	-425
Persons Working in County Employed Residents		19, 19,
15.24% of employed resident 13.40% of the employed in county		

Table 4 and 5 list the top 5 county commuters, including In-Commuters and Out-Commuters.

Table In-Commut to Richmond	ers
Location of Residence	In-Commuters
Scotland County Marlboro County, SC Anson County Moore County Montgomery County	573 573 365 194 143

Table 5 Out-Commuters from Richmond County				
Location of Work	Out-Commuters			
Moore County Scotland County Montgomery County Anson County Chesterfield County,	734 591 422 322 SC 218			

VEHICLE REGISTRATION:

The number of registered vehicles in Richmond County for 1994 was 32,952. As the number of vehicles increase, it will put a greater strain on the existing road network. Additional traffic volumes will increase safety hazards and congestion. To alleviate traffic congestion, steps must be taken towards building new roads and enhancement of existing facilities.

Vehicle registration has increased at a much greater rate than population since 1940. This increase can be shown best by a graph depicting the change in persons per vehicle ratio over time. This ratio is obtained by dividing the total population of the area by the total number of vehicles registered in that area. **Figure 8** shows this comparison for North Carolina and Richmond County and includes projections to the year 2020.

The results of this figure illustrate the transition from a non-automobile oriented society to one whose vitality is heavily dependent on the automobile. This change in lifestyle has gradually occurred over many years, with the most dramatic difference being between 1940 and 1960. This is primarily due to: the post-depression increase in the standard of living; the increase in population including the post World War II "Baby Boom"; the transition from an agriculturally dominated society to a more diversified one (fewer people on the farm, greater need for transportation); and the availability of automobiles in the 1960's and 1970's and the banking credit to buy them.

On the basis of the forecasted population and motor vehicle registration trends, traffic volumes on most roads in the County should experience a significant increase in traffic during the 1994-2020 design period. Greater increases are to be expected due to continued increases in commercial and industrial development.

PERSONS/VEHICLE RICHMOND COUNTY & NORTH CAROLINA

S a p ti

VII. EVALUATION OF ALTERNATIVES BASED ON ENVIRONMENTAL IMPACTS

In the past several years, environmental considerations associated with highway construction have come to the forefront of the planning process. The legislation that dictates the necessary procedures regarding the environmental impacts is the National Environmental Policy Act (NEPA). Section 102 of this act requires the execution of an environmental impact statement, or EIS, for road projects that have a significant impact on the environment. Included in an EIS would be the project's impact on wetlands, water quality, wildlife, historic properties and public lands. For projects with less than significant impact, other documents such as CE (Categorical Exclusion) or EA/FONSI (Environmental Assessment/Finding of No significant Impact) may be used. While this report does not cover the environmental concerns in as much detail as a NEPA document would, preliminary research was done on several of these factors and is included below.

PHYSICAL ENVIRONMENTAL CONSIDERATIONS

WATER OUALITY

Water quality is a prime asset of all cities and every effort should be made during highway construction as well as during other construction to adhere to recommended guidelines to ensure the prevention of pollution. Guidelines have been issued outlining procedures for maintaining water quality and the reduction of possible soil erosion occurring during and following highway construction. Obviously, the greater the extent of new construction, the more serious will be the problems relating to conservation and water quality.

The Rockingham-Hamlet planning area has three water intake sites, which are used for local water supply, located on Roberdel Lake, Big Lake and Rockingham City Pond. Each of these intake sites include a critical water shed located in the area behind and around the lakes. One proposed facility may have an impact to the critical water shed area of Rockingham City Pond.

Another concern to water quality is waste sites. Waste sites are waste leaking from underground tanks and sewage disposal. There are three different categories of waste sites. A description of the three categories are as follows: 1) Superfund Sites are critical. A major hazardous waste site with leaking underground tanks. 2) Groundwater Incidents are also leaking underground tanks. However, they are not as critical as superfund sites. 3) National Pollution Discharge Elimination System (NPDES) are sewage discharge outfalls from some type of industry. One proposed project crosses a superfund site and another runs with in two miles of a superfund site. These sites will need to be investigated before any construction can occur.

AIR QUALITY

Air quality has been a concern in the planning and construction of roads as early as the Federal Air Pollution Control Act of 1955. This concern continued with the passing of the Clean Air Act of 1970 which set standards on pollution This act was later amended in 1977 and more recently in control. The 1990 amendment set more stringent standards on mobile source emissions which impacted transportation planning by requiring transportation related provisions. These provisions promote integration of air quality analyses with the transportation process; requirements for determining conformity of transportation plans, programs and projects; expanded use of highway sanctions; and a renewed emphasis on controlling growth in vehicle-miles-traveled (VMT) and reducing congestion levels. addition, the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 states further integration between state and local transportation planning is needed for conformity with the Clean Air Act.

When mobile source emissions exceed acceptable levels then the area is considered a nonattainment area. These areas must meet deadlines in reducing standard emissions levels. Even though federal law focuses on these nonattainment areas, the attainment areas are also important and should be aimed at remaining classified as such. Rockingham-Hamlet is an attainment area for all pollutants targeted in the 1990 Clean Air Act.

Emissions are reduced when traffic is permitted to flow more smoothly and congestion is reduced which achieves a more efficient use of fuel. Therefore, the design of the thoroughfare system has a notable effect on the amount of emissions because a well designed street network aims at reducing congestion and allowing free flow travel. A street system that provides direct movement between sections of the city reduces travel time and distances, subsequently reducing pollutant emissions. The Rockingham-Hamlet Thoroughfare Plan promotes free flowing travel and reduces congestion which both have a positive effect on maintaining acceptable levels of emissions.

WETLANDS

Wetlands are those lands where saturation with water is the dominant factor in determining the nature of soil development and the types of plant and animal communities living in the soil. Wetlands are crucial ecosystems in our environment. They help regulate and maintain the hydrology of our rivers, lakes and streams by slowly storing and releasing flood waters. They help maintain the quality of our water by storing nutrients, reducing sediment loads and reducing erosion. They are also critical to fish and wildlife populations. Wetlands provide an important habitat for about one-third of the plant and animal species that are federally listed as threatened or endangered.

For this study, the impacts to wetlands areas were determined using the National Wetlands Inventory Mapping which is available from the U.S. Fish and Wildlife Service. It is important to note that this mapping is a draft and is the best estimate of the approximate location of wetlands. Development of these maps was based on aerial photography and has not been field checked. Therefore, more extensive environmental investigations are required prior to design of a facility.

Impacts to wetlands from proposed facilities and widenings were determined using available mapping. As a result, all wetland impacts that were found were avoided to the greatest extent possible, while preserving the integrity of the Thoroughfare Plan.

THREATENED AND ENDANGERED SPECIES

A preliminary review of the Federal List of Threatened and Endangered Species within Richmond County was conducted to determine the effects that proposed corridors could have on the wildlife. These species were identified using mapping from the North Carolina Department of Environmental, Health and Natural Resources.

The Threatened and Endangered Species Act of 1973 allows the U.S. Fish and Wildlife Service to impose measures on the Department of Transportation to mitigate the environmental impacts of a road project on endangered plants, animals and critical wildlife habitats. By locating rare species in the planning stage of road construction, it is possible to avoid or minimize these impacts.

There were six federally listed endangered species and one federally listed threatened specie in Richmond County, which follow. None of these were in locations where proposed facilities were recommended. The proposed upgrade of Reicel Road from a dirt path to a two-lane facility is close to a natural occurring event and should be studied before any construction begins. Other species may exist in the area, therefore, a detailed field investigation is recommended prior to construction of any highway project.

Endangered Species:

Acipenser Brevirostrum (Shortnose Sturgeon)
Picodes Borealis (Red-Cockaded Woodpecker) Lysimachia
Asperulifolia (Rough-Leaf Loosestrife)
Muhlenbergia Torreyana (Pinebarren Smokegrass)
Rhus Michauxii (Michaux's Sumac)
Rhynchospora Macra (Southern White Beaksedge)

Threatened Species:

Ambystoma Tigrinum (Tiger Salamander)

SOILS AND GEOLOGY

The major soils of Richmond County are gray loam and poor sandy soil. Very little of the soil is classified as good soil. The soils low fertility along with the dryness greatly limits the areas farming capability.

The areas geologic characteristics are typical of the Piedmont Plateau with its triassic sandstone, sandy clays and marl. Most of the rock is from the Tuscaloosa Formation dating back to the early Mesozoic Era. Intrusive complexes of granite, granodiorite, garnet, quartz monzonite, diorite and gabbro are found in the area. Thirteen small diamonds have been found in North Carolina. One of these was found in the gravel beds of Richmond County.

ARCHAEOLOGICAL IMPACTS

The location of recorded archaeological sites was researched to determine possible impacts by proposed projects. Archaeological sites are generally difficult to identify without actually going out to the site and excavating and evaluating information and data obtained. As a result, possible sites might not be identified during the planning process due to this lack of information. Therefore, all thoroughfares should be evaluated individually prior to construction.

SOCIAL ENVIRONMENTAL CONCERNS

HOUSING AND NEIGHBORHOODS

The preservation of cohesive neighborhoods is a fundamental part of thoroughfare planning. By designating certain streets as thoroughfares, heavy traffic is minimized on neighborhood streets which minimizes the negative impacts too much traffic can have on these streets. In order to reduce heavy traffic on residential roads, new facilities need to be constructed and/or existing ones widened. The proposed projects on the thoroughfare plan would require approximately 25 houses, four mobile homes and four storage buildings to construct as determined by a field survey.

EDUCATIONAL FACILITIES

The location of educational facilities in the Rockingham-Hamlet planning area was considered during the development of the thoroughfare plan. No schools will required displacement as a result of the proposed improvements. However, implementation of the thoroughfare plan will have a positive effect on several educational facilities by providing easier access. A good example of this is the additional access provided for the Monroe Avenue Elementary School.

NOISE POLLUTION

The noise level of certain streets is expected to rise due to increased usage. Adverse noise conditions are more prevalent in areas of high traffic congestion and on facilities that are functionally misused. It is an objective of the thoroughfare plan to reduce congestion and thereby either lower or maintain existing noise levels even though there will be more vehicle trips on the street system. The areas of greatest concern in the implementation of a thoroughfare plan are schools, churches, hospitals, and residences where streets widening will reduce setback distances.

During todays highway design process, engineers are taking into consideration noise levels created by highway improvements. Recent research has provided improved techniques to predict the noise levels created by highway improvements and offers measures such as elevating or depressing the roadway, proving different roadway surfaces and installing acoustical barriers to reduce noise levels. Design requirements that restrict the steepness of road grades have for many years helped to reduce truck noise levels.

HISTORIC SITES

The location of historic sites in Rockingham-Hamlet was investigated to determine the possible impacts of the various proposed projects. The federal government has issued guidelines requiring all state transportation departments to make special efforts to preserve historic sites. In addition, the State of North Carolina has issued its own guidelines for the preservation of historic sites. These two pieces of legislation are described below:

- National Historic Preservation Act Section 106 of this act requires the Department of Transportation to identify historic properties listed in the National Register of Historic Places and properties that are eligible to be listed on the register. DOT must consider the impact of its road projects on these properties and consult with the Federal Advisory Council on Historic Preservation.
- NC General Statute 121-12(a) This statute requires DOT to identify historic properties listed on the National Register, but not necessarily those eligible to be listed. DOT must consider impacts and consult with the North Carolina Historical Commission, but is not bound by their recommendations.

Listed Historic Properties:

Bank of Pee Dee (Rockingham)
Great Falls Mill (Rockingham)
The Manufacturers Building (Rockingham)
Richmond County Courthouse (Rockingham)
Roberdel Mill No. 1 (Rockingham)
Seaboard Coast Line Passenger Depot (Hamlet)
(former) U.S. Post Office and Courthouse (Rockingham)
H.C. Watson House (Rockingham)
Covington Plantation House (Rockingham)
Alfred Dockery House (Rockingham)

Eligible Historic Properties:

Dr. R.J. Steele, III, House (Rockingham) Hamlet High School (Hamlet)

Listed Historic Districts:

Rockingham Historic District (Rockingham)
Main St. Commercial Historic District (Hamlet)

ECONOMIC ENVIRONMENTAL CONCERNS

BUSINESSES

The efficiency of the transportation system can have a significant impact on the economic development and well-being of an area affecting both workers and the business community. Transportation costs are often the critical variables in the economic decision process and may determine the sites of manufacturing concerns, the cost of goods delivered to an area and the relative competitiveness of area industries. As new thoroughfares are constructed and existing ones widened, the improved travel conditions that result, have a positive impact on the overall businesses because construction of new facilities opens up land areas for development. The widening of existing thoroughfares improves the level of service which is attractive to business expansion. The completion of US 74 Bypass and US 1 Bypass will attract new business to the area. Only one proposed project on the thoroughfare plan will require the relocation of one small business.

EMPLOYMENT

Improvement in the level of service provided by the thoroughfare system will reduce transportation costs for industry, facilitate industrial employment expansion, and contribute to area income through additional business activity and reduced transportation costs for workers. Employment is directly affected by opportunities to promote development of new business and expansion of existing ones. An adequate thoroughfare plan will improve the future economic vitality of Rockingham-Hamlet.

LAND DEVELOPMENT

Thoroughfare improvements on new locations can stimulate land development by opening new land to development. However, land development is also affected by the overall economic activity, availability of public utilities and services, and many other factors.

VIII. MODEL DEVELOPMENT

TRAVEL MODEL AND ESTIMATES

Three different surveys are conducted to collect data for a typical thoroughfare plan study. The surveys provide data about existing housing, employment, and traffic in each traffic zone in the planning area. **Figure 9** shows the location of the 91 traffic zones.

DWELLING UNIT SURVEY:

The 1994 housing survey results are shown in **Table A-1**. Each dwelling unit in a traffic zone was classified according to a residence cost level--Excellent (EXC), Above Average (AAV), Average (AVG), Below Average (BAV), and Poor. The data was collected by field inspection. The number of units in each zone were multiplied by an estimated number of persons per dwelling unit for each classification. (Future housing projections are shown in **Table A-1b**)

The estimated 1994 population is listed in **Table A-2**. This serves as a control total for planning area population estimates and for survey accuracy checks.

EMPLOYMENT SURVEY:

The results of the 1994 employment survey are shown in **Table A-5**. The businesses in the planning area were classified by their Standard Identification Code, which is set by the Federal government. Information on employment, commercial trucks and autos was collected. (Future employment projections are shown in **Table A-5b**)

** Employment/population ratio for 1994 = 0.46

TRAFFIC COUNTS:

Traffic counts were taken on various streets throughout the planning area. A count was taken at each station where a road crosses the planning boundary and a selection of streets inside the area. These were then used to calibrate the network model to correspond to the existing traffic conditions in the area.

GENERAL MODELING PROCEDURES:

Since no home interviews or Origin-Destination surveys were conducted, a synthetic method was used to estimate 1994 internal trip patterns. The method consists of these general steps:

1. Determination of zone trip productions using dwelling unit trip generation rates from a previous study in Rockingham\ Hamlet. The initial trip generation rates were adjusted as a result of the model calibration. The list of trip generation rates for the base year 1994 are shown below.

Dwelling Unit Rating: EXC AAV AVE B-AVE POOR Generation Rate: 12.00 10.00 9.50 7.00 6.00

- 2. Determination of trip attraction factors using multiple linear regression procedures based primarily on employment. Again, this was based primarily on past studies.
- 3. Distribution of resulting trips using a four-purpose gravity model with expanded trip length frequency curves previously developed that reflect an enlarged study area. The trip purposes for Rockingham\Hamlet are home-based work, other home-based, non-home-based, internal-external, taxi, truck, and commercial vehicles.
- 4. Traffic assignments and accuracy checks so the network model corresponds to existing ground counts.

1994 INTERNAL TRIP PRODUCTIONS:

Internal trip productions were estimated on a zonal basis in three categories: (1) trips produced by dwelling units, (2) trips produced by commercially owned passenger cars, and (3) trips produced by commercial trucks and taxis. Dwelling unit trip generation rates were adjusted from previous studies to account for the expanded planning area and changes in travel habits over time.

The trips produced were summed to produce total internally generated trips (87% Internal of total trips). That is, 87% of the total internal generated trips remained in the planning area. The remaining 13% were trips that had internal origins and travelled outside the planning area. These internal-external trips were distributed to the zones as external trips. They were removed from the internal trips and the remaining trips were used to synthesize internal travel.

The adjusted internal trips were separated into three purposes—home based work (HBW), 23%; non-home based (NHB), 30%; and other home based (OHB), 47%.

The Rockingham\Hamlet area is important to the economy of Richmond County, and therefore, draws a large number of trips from outside the planning area. The number of secondary internal (NHB) trips attributable to external-internal traffic was calculated to be 13,817 in the base year. That is, vehicles garaged outside the planning area making external-internal trips were assumed to be making 13,817 trips per day while within the study area (e.g. to go to lunch, stop by the store, etc.). Distribution of these trips within the study area was made by merging them with the internally produced NHB trips and distributing them according to each zone's relative attractiveness.

The calculation of Secondary Non Home-Based trips for the base year 1994 and the design year 2020 are as follows:

TABLE 6 DEVELOPMENT OF SECONDARY NON HOME-BASED TRIPS

1. For Base Year

1994 NHB_{sec} =
$$(40,514 - 15,393) \times 0.55 = 13,817$$
 (use 13,800)

2. For Future Year

2020

Future Year

Secondary = $(77,092 - 20,484) \times 0.55 = 31,134$ (use 31,000)

NHB Trips

1994 INTERNAL TRIP ATTRACTIONS:

The trip attraction factors for home based work trips were assumed to be total employment within the zones. Trip attraction factors for other home based (OHB) trips and non-home based (NHB) trips were assumed to be identical and were found using a regression equation modified from the previous thoroughfare plan study. The general equation for estimating trip attraction factors was as follows.

$$\mathbf{Y} = 18.51 + 1.00\mathbf{X}_1 + 2.45\mathbf{X}_2 + 8.36\mathbf{X}_3 + 2.60\mathbf{X}_4 + 3.26\mathbf{X}_5 + 0.30\mathbf{X}_6$$

With variable definition as follows:

Standard Industrial Code

Y = Attraction factor

 $X_1 = Industrial$

 \mathbf{X}_{2}^{-} = Retail X_3 = Highway Retail

 X_4 = Office and Institutional

 \mathbf{X}_5 = Service

 X_6 = All Dwelling Units

1 - 4950-54, 56, 57, 59

55, 58

60-67, 91-97

70-76, 78-89, 99

This analysis yields a relative attraction factor that must then be factored to match productions. Zone attractions were also adjusted to match productions.

TRIP DISTRIBUTION:

The gravity model trip distribution program was used to distribute internal trips. Data input into this program included:

- 1. zone-to-zone travel times obtained from minimum time paths for the 1994 major street network;
- 2. zonal trip productions and attractions; and
- friction factors from calibrated trip length frequency curves.

1994 EXTERNAL-INTERNAL AND THROUGH TRIPS:

Through trips for the planning area were established using a computer program which synthesizes the distribution of traffic between the external stations (cordon). Through trip-ends are the result of subtracting external-internal trips and internal-external trips from cordon station volumes.

TRAFFIC ASSIGNMENT:

Assignment techniques are based on variables such as travel time, and distance. The most widely used factor is time. Traffic volumes were assigned to the network using a computer program which constructs minimum-time paths between zone centroids. The traffic was then loaded onto the network using a stochastic loading method which loads all the traffic on those links along the path with the shortest time between centroids. That is, trips are assigned to all "reasonable" paths between each origin and destination, each path receiving a fraction of interzonal trips.

ACCURACY CHECKS:

The traffic model was used to simulate existing traffic patterns. It's accuracy was tested using two screenlines of reference in the network. On each street crossed by a screenline a traffic count was taken. During calibration of the model the assigned traffic volumes are compared to the actual ground counts for those streets. The results of the accuracy checks are in **Table 7**. The screenlines appear on the zone map in **Figure 9**.

TABLE 7 SCREENLINE CHECK							
SCREENLINE	COUNT	MODEL	%ACCURACY				
A B	37,940 46,840	36,777 49,410	97 105				
TOTAL	84,780	86,187	102				

A comparison of assigned traffic to existing ground counts is given in **Table 8**.

TABLE 8 GROUND COUNT COMPARISON							
VOL	NO	AVE	AVE	AVE	STAND	PCT AVE	
GROUP	SECT	COUNT	PROJ VOL	DIFF	DEV		
1- 1000	144	469	524	-54	714	111.7	
1001- 2000	64	1484	1390	94	515	93.7	
2001- 3000	28	2343	1950	393	895	83.2	
3001- 5000	24	3947	3313	634	1136	83.9	
5001- 7000	26	5923	4676	1247	1988	78.9	
7001- 10000	14	8115	8492	-376	2285	104.6	
10001- 15000	5	11982	10135	1847	4827	84.6	
TOTAL	305	2132	1933	199	1278	91.7	

2020 TRAVEL DESIRES:

The calibrated traffic model was then used to determine the impact the future travel desires in the year 2020 would have on the present major road network for the area. This was compared to the impact the existing 1994 travel desires have on the same network. The results of the comparison are in **Table 9**.

TABLE STUDY AREA INTE		RIP DAT	A.
	1994	2020	%CHANGE
DWELLING UNITS POPULATION EMPLOYMENT INTERNAL TRIPS HOME BASED WORK HOME BASED OTHER NON-HOME BASED (Internal only) INTERNAL-EXTERNAL TRIPS THROUGH TRIPS TOTAL TRIPS PRODUCED BY HOUSING UNITS	13962 33511 15568 98675 22695 46377 29603 14745 11634	38313 17821 137087 31530 64431 41126 20484 28554	14 14 39 39 39 39

2020 INTERNAL TRIPS:

The 2020 internal travel patterns were estimated using the same procedure as the base year travel patterns. Socio-economic data projected to the year 2020 was used to determine the future year patterns. The data was provided by the Planning Departments of Rockingham and Hamlet. The trip productions and attractions were again distributed using the same gravity model. The trip generation rates were adjusted using a composite factor to reflect future growth. See below for calculations. The internal data estimates are in Table A-1b. The employment estimates are in Table A-5b.

Travel Model Input Variables

TRIP	PERCENTA	AGES	BY	PUI	RPOSE
	Internal	of	Tota	1	87%
I I	1BW				23%
	HB				47%
1	NHB				30%

YEAR	PERSONS DWELLING	PERSONS VEHICI	
1994 2020	2.40	1.42	

INCREASE FOR AVE. 1994 COMPOSITE AVERAGE 1994

= X
GENERATION RATES TRIP RATE FACTOR TRIP RATE

EXAMPLE:

INCREASE FOR GENERATION RATES = $(8.12 \times 1.12) - 8.12 = 0.970$ (use 0.90)

Trip Generation Rates							
YEAR	EXCELLENT	ABOVE AVERAGE	AVERAGE	BELOW AVERAGE	POOR	OVERALL AVERAGE	
1994	12.00	10.00	9.50	7.00	6.00	8.12 *	
INCREASE	0.90	0.90	0.90	0.90	0.90		
2020	12.90	10.90	10.40	7.90	6.90	9.04 *	

^{*} Calculated from the IDS computer program

2020 EXTERNAL AND THROUGH TRIPS:

External and through traffic volumes at the stations were projected to 2020 using adjusted historical trends. The results are in **Table 10**.

TABLE 10 STATION VOLUME PROJECTIONS							
STATION #	DESCRIPTION	1990 ADT	2020 ADT				
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129	NC 381 SR 1800 SR 1801 US 74 EAST OLD HAUREL RD SR 1608 SR 1607 NC 117 NORTH US 1 NORTH MORRISON ROAD LED BETTER RD SR 1441 SANDHILL RD US 220 NORTH SR 1304 PRISON CAMP RD BUCK WALL RD BLEWETT ROAD US 74 WEST OLD CHERAW RD US 1 SOUTH SANDHILL ROAD SR 1996 OSBORNE ROAD BATLEY DAIRY RD NC 117 SOUTH SR 1825 NC 38 SOUTH SR 1804	1220 500 300 12870 1140 290 200 3400 5040 752 1330 1790 910 11240 500 600 300 150 11060 380 3010 320 150 150 150 150 150 150 2360 2360 260	2300 1000 1000 27700 2150 800 800 6450 9600 1450 2550 3400 1750 24200 1000 1300 800 800 23800 900 5700 900 800 800 1000				

APPENDIX A

APPENDIX A -- SOCIO-ECONOMIC DATA

Three different surveys are conducted to collect data for a typical thoroughfare plan study. The surveys provide data about existing housing, employment, and traffic in each traffic zone in the planning area.

A. DWELLING UNIT SURVEY

The 1994 housing survey results are shown in Table A-1. The estimated population is listed in Table A-2.

B. EMPLOYMENT SURVEY

The results of the 1994 employment survey are shown in Table A-5.

			INTERN	TABL AL DATA	E A-1 SUMMA	RY 199	4		
ZONE NO	EXC	AAV	DWELLING AVE	UNITS BAV	POOR	SPEC	TRUCK	CAR	TOTDU
47	0	0	17 69 35	89 199	1 19 76	0	0 6	1 0	107 287
49 50 51	3 2 0	6 10 0	120 4	44 52 42	40 94	0 0 0	0 0 4	11 31 1	164 224 140
52	0	0	6	38	77	0	25	30	121
53	1	1	18	41	164		2	8	225
54	0	0	3	2	27	0	10	21	32
55	0		35	49	38	0	2	8	122
56	1	7	37	40	42	0	0	1	127
57	0	0	146	165	14	0	11	13	325
58	0	1	53	110	10	0	8	16	174
59 60	0	3	102 1	119 7	17 1	0	2 11	3 22	241
61 62	0	1	142 19	9 62	0 4	0	1	8	152 85
63	0	0	6	11	1	0	0	0	18
64	0	0	12	99	41	0	3	8	152
65	0	0	29	111	9	0	0	4	149
66	0	0	12	44	64	0	9	17	120
67	0	0	0	36	116		0	3	152
68	0	3	193	110	0	0	9	56	306
69	0	0	46	0	0	0	2	16	46
70	0	0	0	0	0	0	12	15	0
71	0	0	41	135	4	0	0	26	180
72	0	1	0	68	12		6	26	81
73 74	0	0 0	0 14	35 11	31	0	2 10	19 106	66 27
75	0	15	71	104	0	0	0	9	190
76	0	2	42	190	37	0	0	7	271
77	0	0	88	50	7	0	17	1	145
78	0	25	124	2	0	0	0	0	151
79	6	76	172	1	0	0	0		255
80	7	29	118	22	4	0	0	1	180
81	5	10	91	35	1	0	0	12	142
82	0	0	45	38	1	0	0	1	84
83	1	7	45	19	40	0	2	38	112
84	0	6	26	38	32		6	7	102
85 86 87	0 2 5 0	0 21 12	0 270 4	0 183 12	0 213 17	0	2 6	1 12	0 689
88 89	0	1 1 2	41 142	30 21	0 1	0 0 0	0 0 0	5 0 0	50 72 166
90 91	0	0 0	63 21	23 64	26 98	0	0	0 18	112 183
	42	444	6370	5306	1800	0	317	1069	13962

	ROC	CKINGHA	M - HAMLI		E A-1b ERNAL		UMMARY	2020	
ZONE NO	EXC	AAV	DWELLING AVE	UNITS BAV	POOR	SPEC	TRUCK	CAR	TOTDU
NO 12345678901234567890123456789012345678901234567890123456	00000000000000000000000000000000000000	20000110000000010000000000000000000000	AVE 519612061344164288871877896857067539151369952315139413	62 170 173 173 174 174 175 175 175 175 175 175 175 175 175 175	POOR 463811 3120320034201504372208132100114808140720361445706	SPEC	TRUCK 1 0 1 4 2 2 2 3 0 7 0 5 0 0 0 0 0 1 1 0 3 7 0 5 2 0 0 0 0 6 0 1 2 1 1 4 17 0 8 0 0 5 3 0	CAR 3 0 5 2 0 2 9 16 22 5 4 0 5 3 1 0 7 0 6 0 4 1 5 0 5 8 4 0 3 3 1 1 3 2 0 9 4 0 5 6 2 1 0 0 0 4 1 5 0 5 8 4 0 3 1 1 3 2 0 9 4 0 5 6 2 1 0 0 0 0 4 1 5 0 5 8 4 0 3 1 1 3 2 0 9 4 0 5 6 2 1 0 0 0 0 4 1 5 0 5 8 4 0 3 1 1 3 2 0 9 4 0 5 6 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	119 164 165 139 139 144 161 153 373 286 159 120 159 154 191 192 203 159 154 191 192 203 158 168 170 168 170 168 170 168 170 168 170 170 170 170 170 170 170 170 170 170

TABLE A-1b ROCKINGHAM - HAMLET INTERNAL DATA SUMMARY 2020 DWELLING UNITS ZONE BAV POOR SPEC TOTDU NO EXC AAV AVE TRUCK CAR

2146 0

317

1069

17423

570 8040 6616

51

TABLE A-2 - 1994 ROCKINGHAM - HAMLET POPULATION

 ROCKINGHAM - HAMLET POPULATION								
ZONE NO.	EXC	AAV	AVE	BAV	POOR	SPEC	TPOP	
NO. 1234567891112314156789212234256789031233435	EXC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AAV 2 0 0 0 2 2 0 0 0 0 2 2 0 0 0 0 0 0 5 8 0 5 2 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AVE 67 106 115 53 89 38 77 132 276 19 142 26 142 26 125 154 89 372 166 98	BAV 82 10 132 175 34 101 89 120 65 26 84 610 468 379 125 86 130 281 175 244 46 134 214 283 31 151 106 161 84 187	POOR 5 72 22 7 55 77 0 5 5 0 70 82 0 29 10 0 7 72 2 31 12 24 5 2 0 0 22 28 0 12 2	SPEC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	152 312 312 208 312 208 208 208 208 208 208 208 208 208 20	
36 37 38 39	0 0 0	5 0 5 2 14	192 36 125 1224	264 67 43 113	77 12 2 0	0 0 0	533 120 172 1351	
40 41 42 43 44 45 46	0 10 2 5 0 0	7 115 17 26 19 127	154 456 101 245 132 802 629	262 154 86 194 175 353 36	53 2 7 7 79 0	0 0 0 0 0	476 737 213 477 405 1282 684	

TABLE A-2 POPULATION ZONE EXC AAV BAV POOR SPEC TPOP NO. AVE 24 0 0 2 0 0 17 . 0 24 29 70 0 0 0 0 98 0 34 170 0 2 17 1060 15292 0 33511

OCCUPANCY RATES: ROCKINGHAM - HAMLET (1994)

EXC AAV AV BA POOR SP 2.40 2.40 2.40 2.40

TABLE	A-2b - 2020
ROCKINGHAM	- HAMLET POPULATION

ZONE NO.	EXC	AAV	AVE	BAV	POOR	SPEC	TPOP
1	0	4	112	136	9	0	261
2	0	0	20	26	13	0	59
3	0	0	123	154	84	0	361
4	Ō	0	134	205	24	Ö	363
5	ŏ	2	70	46	9	Ö	127
5 6 7 8	ő	2	110	125	68	0	305
7	0	0	57	134			
,					114	0	305
8	0	0 2 2 0	90	106	0	0	196
9	0	2	161	147	7	0	317
10	0	2	317	75	4	0	398
11	0		75	59	0	0	134
12	0	0	235	101	0	0	336
13	0	0	92	653	75	0	820
14	0	0	9	528	92	Ö	629
15	Ŏ	Ö	24	460	0	Ö	484
16	Ö	0	167	147	35	0	
17	0		581				349
		35		90	2	0	708
18	0	0	290	145	11	0	446
19	0	64	590	11	0 9	0	665
20	0	0	106	315		0	430
21	0	4	158	196	81	0	439
22	0	4	40	40	4	0	88
23	0	0	103	200	44	0	347
24	0	11	37	64	18	Ō	130
25	Ō	0	150	161	29	Ö	340
26	Ö	Ö	174	242	4	Ö	420
27	Ö	0	101	319	2	0	422
28	0	0	414	35	0	0	
29						0	449
	2	33	583	0	0	0	618
30	0	0	367	176	24	0	567
31	0	0	66	13	31	0	110
32	0	0	57	114	106	0	277
33	0	0	59	178	0	0	237
34	0	0	253	128	18	0	399
35	0	7	117	222	2	0	348
36	0	0	218	301	88	Ö	607
37	Ö	7	46	86	15	0	154
38	Ö	4	231	79	4	0	
39	Ö	15	1366	125	0	0	318
40	0				0	0	1506
		11	227	387	79	0	704
41	13	147	585	196	2	0	943
42	2 7	22	130	112	9 9	0	275
43	7	33	306	244	9	0	599
44	0	31	209	279	125	0	644
45	0	143	906	398	0	0	1447
46	2	9	865	48	13	Ō	937

				E A-2b LATION				
ZONE NO.	EXC	AAV	AVE	BAV	POOR	SPEC	TPOP	
NO. 47849012345678901234567777777778888888888888888888888888888	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AAV 0 0 13 24 0 0 2 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0	AVE 81 172 84 277 15 42 79 128 3325 235 422 29 629 475 128 0 108 0 44 165 209 5559 277 218 1163 60 719 11	422 495 1031 92 95 412 139 3760 275 265 156 235 246 270 359 244 436 968 270 359 244 436 119 425 436 119 425 436 436 436 436 436 436 436 436 436 436	POOR 4 46 180 92 207 187 381 68 88 145 33 24 40 4 0 11 4 97 22 154 275 0 0 11 31 81 7 0 86 18 0 9 2 145 79 0 568 46	SPEC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TPOP 507 713 387 518 308 294 522 279 2440 7411 557 450 215 461 354 289 361 753 128 478 205 171 444 623 346 827 420 339 406 250 1834 136	
88 89 90 91	0 0	4 4 0 0	136 334 185 48	99 51 68 150	0 2 77 229	0 0 0 0	239 391 330 427	
	110	1248	17686	14551	4718	0	38313	

OCCUPANCY RATES: ROCKINGHAM - HAMLET (2020)

EXC AAV AV BA POOR SP 2.20 2.20 2.20 2.20

TABLE A-3 (1994) TRIPS BY DWELLING UNIT

ZONE							TOTAL			TOTAL
NO	EXC	AAV	AVE	BAV	POOR	SPEC	TRIPS	TRUCK	CAR	TRIPS
1	0	10	266	272	12	0	560	7	20	27
2	Ö	0	29	32	12	Ö	73	Ó	0	0
3	Ö	Ö	418	440	180	0	1038	7	34	41
4	0	0	456	584	54	0	1094	27	14	41
5 6	0	10	209	112	18	0	349	14	0	14
	0	10	352	336	138	0	836	14	14	28
7	0	0	152	296	192	0	640	150	197	347
8	0	0	304	304	0	0	608	20	109	129
9 10	0	10	523	400 216	12 12	0 0	945 1331	0	150 170	150 218
11	0 0	10 0	1093 133	88	0	0	221	48 0	272	272
12	Ö	0	779	280	0	0	1059	34	34	68
13	Ö	0	342	2032	174	Ö	2548	0	20	20
14	ŏ	Ö	29	1560	204	Ö	1793	Ö	7	7
15	Ö	Ö	76	1264	0	Ō	1340	Ö	0	0
16	0	0	561	416	72	0	1049	14	48	62
17	0	140	2223	288	6	0	2657	0	0	0
18	0	0	1036	432	24	0	1492	0	41	41
19	0	240	2090	32	0	0	2362	0	0	0
20	0	0	371	936	18	0	1325	7	367	374
21	0	20	561 86	584 72	180	0	1345	7	14	21
22 23	0 0	10 0	295	480	6 78	0 0	174 853	0 20	0 34	0 54
24	Ö	30	105	152	30	Ö	317	48	41	89
25	ŏ	0	494	448	60	Ö	1002	0	14	14
26	Ö	Ŏ	608	712	12	Ŏ	1332	102	68	170
27	0	0	352	944	6	0	1302	14	0	14
28	0	0	1473	104	0	0	1577	0	0	0
29	12	120	2033	0	0	0	2165	0	0	0
30	0	0	1254	504	54	0	1812	0	27	27
31	0	0	181	32	54	0	267	0	7	7
32	0	0	209	352	246	0	807	41	102	143
33 34	0 0	0 0	209 656	536	0 30	0	745 966	0 7	0	0 41
35	0	20	390	280 624	6	0	1040	170	34 258	428
36	Ö	0	760	880	192	Ö	1832	7	238 27	34
37	Ö	20	143	224	30	Ö	417	ŕ	0	7
38	Ö	10	494	144	6	Ö	654	27	20	47
39	ő	60	4845	376	Ö	Ö	5281	116	768	884
40	Ō	30	608	872	132	0	1642	0	7	7
41	48	480	1805	512	6	0	2851		88	142
42	12	70	399	288	18	0	787	0	14	14
43	24	110	969	648	18	0	1769	0	0	0
44	0	80	523	584	198	0	1385		61	95
45	0 12	530 30	3173 2489	1176 120	0 24	0 0	4879 2675	20 0	231 0	251 0
46	14		240J	120	~ 4			<u> </u>	U	U

					TABL	E A-3				
			(1994)	TRI	PS BY D		UNIT			
										
ZONE							TOTAL			TOTAL
NO	EXC	AAV	AVE	BAV	POOR	SPEC	TRIPS	TRUCK	CAR	TRIPS
4.7	•	•	1.60	710	_	^	000	0	-	
47	0	0	162 656	712 1592	6 114	0	880	0	7	7
48 49	0 36	0 60	333	352	456	0	2362 1237	41	0	41
50	24	100	1140	416	240	0 0	1920	0 0	75 211	75 211
51	0	0	38	336	564	0	938	27	7	34
52	Ö	0	57	304	462	Ö	823	170	204	374
53	12	10	171	328	984	Ö	1505	14	54	68
54	0	0	29	16	162	Õ	207	68	143	211
55	Ö	Ö	333	392	228	Ö	953	14	54	68
56	12	70	352	320	252	0	1006	0	7	7
57	0	0	1387	1320	84	0	2791	75	88	163
58	0	10	504	880	60	0	1454	54	109	163
59	0	30	969	952	102	0	2053	14	20	34
60	0	0	10	56	6	0	72	75	150	225
61	. 0	10	1349	72	0	0	1431	7	54	61
62	0	0	181	496	24	0	701	0	0	0
63	0	0	57	88	6	0	151	0	0	0
64	0	0	114	792	246	0	1152	20	54	74
65	0	0	276	888	54	0	1218	0	27	27
66	0	0	114	352	384	0	850	61	116	177
67	0	0	0	288	696	0	984	0	20	20
68	0	30	1834	880	0	0	2744	61	381	442
69	0	0	437	0	0	0	437	14	109	123
70 71	0	0	0 390	1000	0	0	0	82	102	184
72	0 0	0 10	390	1080 544	24 72	540 0	2034	0	177	177
73	ő	0	0	280	186	0	626 466	41	177	218
74	Ö	0	133	88	12	0	233	1 <u>4</u> 68	129 721	143
75	Ö	150	675	832	0	416	2073	0	61	789 61
76	Ŏ	20	399	1520	222	0	2161	0	48	48
77	Ö	0	836	400	42	Ö	1278	116	7	123
78	0	250	1178	16	0	Ö	1444	0	ó	0
79	72	760	1634	8	Ō	Ö	2474	ŏ	0	0
80	84	290	1121	176	24	0	1695	Ő	7	7
81	60	100	865	280	6	0	1311	Ö	82	82
82	0	0	428	304	6	0	738	0	7	7
83	12	70	428	152	240	0	902	14	258	272
84	0	60	247	304	192	0	803	41	48	89
85	0	0	0	0	0	0	0	14	7	21
86	24	210	2565	1464	1278	0	5541	41	82	123
87	60	120	38	96	102	0	416	0	34	34
88	0	10	390	240	0	0	640	0	0	0
89	0	20	1349	168	6	0	1543	0	0	0
90	0	0	599	184	156	0	939	0	0	0
91	0	0	200	512	588	0	1300	0	122	122
	504	4440	60534	42448	10800	956	119682	2162	7071	0433
							113004	Z10Z	7271	9433

GENERATION RATES

EXC AAV AV BA POOR SPEC TRK CAR 12.00 10.00 9.50 8.00 6.00 4.00 6.80 6.80

TABLE A-3b (2020) TRIPS BY DWELLING UNIT

ZONE	5 0			5 , 2, 7, 7	D 00D	CDEC	TOTAL		63.5	TOTAL
NO	EXC	AAV	AVE	BAV	POOR	SPEC	TRIPS	TRUCK	CAR	TRIPS
1	0	22	530	490	28	0	1070	7	20	27
2	0	0	94	95	41	0	230	0	0	0
3	0	0	582	553	262	0	1397	7	34	41
4	0	0	634	735 166	76	0	1445	27	14	41
5 6	0 0	11 11	333 520	166 450	28 214	0 0	538 1 19 5	14 14	0 14	14 28
7	Ö	0	270	482	359	0	1111	150	197	26 347
8	Ö	0	426	379	0	Ö	805	20	109	129
9	Ö	11	759	529	21	Ō	1320	0	150	150
10	0	11	1498	269	14	0	1792	48	170	218
11	0	0	354	213	0	0	567	0	272	272
12	0	0	1113	363	0	0	1476	34	34	68
13	0	0	437	2346	235	0	3018	0	20	20
14	0	0	42	1896	290	0	2228	0	7	7
15 16	0 0	0 0	114 790	1651 529	0 110	0 0	1765 1429	0 14	0 48	0 62
17	0	174	2746	324	7	0	3251	0	0	0
18	ŏ	0	1373	521	35	Ö	1929	0	41	41
19	Ö	316	2787	40	0	Ö	3143	ŏ	0	0
20	0	0	499	1130	28	0	1657	7	367	374
21	0	22	749	703	255	0	1729	7	14	21
22	0	22	187	142	14	0	365	0	0	0
23	0	0	489	719	138	0	1346	20	34	54
24 25	0 0	54 0	177 707	229 577	55	0	515	48	41	89
26	0	0	822	869	90 14	0 0	1374 1705	0 102	14 68	14
27	0	0	478	1146	7	0	1631	14	0	170 14
28	Ö	Ö	1955	126	ó	Ö	2081	0	Ö	0
29	13	163	2756	0	Ö	Ö	2932	ő	Ö	Ö
30	0	0	1737	632	76	0	2445	Ō	27	27
31	0	0	312	47	97	0	456	0	7	7
32	0	0	270	411	331	0	1012	41	102	143
33	0	0	281	640	0	0	921	0	0	0
34 35	0 0	0 33	1196 551	458 798	55 7	0	1709 1389	170	34	41
36	0	0	1030	1082	27 6	0 0	2388	170 7	258 27	428 34
37	Ö	33	218	308	48	0	607	7	0	7
38	Ö	22	1092	284	14	Ö	1412	27	20	47
39	0	76	6458	450	0	Ö	6984	116	768	884
40	0	54	1071	1390	248	0	2763	0	7	7
41	77	730	2766	703	7	0	4283	54	88	142
42	13	109	614	403	28	0	1167	0	14	14
43	39	163	1446	877	28	0	2553	0	0	0
44 45	0 0	153 708	988 4285	1003 1430	393 0	0 0	2537 6423	34	61	95
45	13	44	4285	174	41	0	4359	20 0	231 0	251 0

					יזאביד.	E A-3b				
			(2020)	TRI	PS BY D		UNIT			
ZONE NO	EXC	AAV	AVE	BAV	POOR	SPEC	TOTAL TRIPS	TRUCK	CAR	TOTAL TRIPS
4.5	•	•	205	1515	1.4		1016		_	
47 48	0 0	0	385 811	1517 1778	14 145	0 0	1916 2734	0 41	7 0	7 41
49	39	65	395	371	566	0	1436	0	75	75
50 51	26 0	120 0	1310 42	435 332	290 649	0 0	2181 1023	0 27	211 7	211 34
52	Ö	Ö	73	332	587	Ö	992	170	204	374
53	13	11	198	340	1194	0	1756	14	54	68
54 55	0 0	0	31 374	16 403	2 14 276	0 0	261 1053	68 14	143 54	211 68
56	26	120	603	498	455	0	1702	0	7	7
57	0	0 11	1570	1351	104 76	0	3025	75	88	163
58 59	0 0	33	593 1113	932 988	124	0 0	1612 2258	54 14	109 20	163 34
60	0	0	21	126	14	0	161	75	150	225
61 62	<u>0</u> 0	11 0	1997 229	95 561	0 35	0 0	2103 825	7	54	61
63	0	0	104	142	14	0	260	0 0	0 0	0
64	0	0	135	845	304	0	1284	20	54	74
65 66	0 0	0	322 135	948 379	69 483	0	1339 997	0 61	27 116	27 177
67	0	0	0	308	863	0	1171	0	20	20
68	0	33	2246	972	0	0	3251	61	381	442
69 70	0 0	0	603 0	0	0	0 0	603 0	14 82	109 102	123 184
71	0	0	510	1288	35	0	1833	0	177	177
72 73	0 0	11 0	0	616 324	97 255	0	724	41	177	218
74	0	0	208	126	255	0	579 355	1 <u>4</u> 68	129 721	143 789
75	0	174	780	877	. 0	0	1831	0	61	61
76 77	0 0	22 0	458 988	1564 427	269 55	0	2313 1470	0 116	48 7	48 123
78	Ö	294	1394	16	0	0	1704	0	ó	0
79	116	1221	2642	8	0	= 0	3987	0	0	0
80 81	90 64	338 120	1310 1030	182 300	28 7	0 0	1948 1521	0 0	7 82	7 82
82	0	0	530	340	7	Ö	877	0	7	7
83	26	131	770	245	455	0	1627	14	258	272
8 <u>4</u> 85	0 0	76 0	302 0	332 0	248 0	0 0	958 0	41 14	48 7	89 21
86	26	272	3401	1754	1780	0	7233	41	82	123
87 88	77 0	163 22	52 6 4 5	119 356	145 0	0 0	556 1023	0	34	34
89	0	22	1581	182	7	0	1023 1792	0 0	0 0	0
90	0	0	874	245	242	0	1361	0	0	0
91	0	0	229	537	718	0	1484 	0	122	122
	658	6212	83617	52269	14815	0	157571	2162	7271	9433

GENERATION RATES (2020)

EXC AAV AV BA POOR SPEC TRK CAR 12.90 10.90 10.40 7.90 6.90 4.90 6.80

				BLE A-4 IPS BY 1		,			
ZONE NO	TOTAL TRIPS	INTERL TRIPS	HBW PROD	HBO PROD	NHB PROD	HBW ATTR	HBO ATTR	NHB ATTR	
1	560	487	112	229	15	5	43	26	
2	73 1038	64 903	15 208	30 4 24	4 37	2 23	9 93	8 64	
2 3 4	1094	952	219	447	39	14	97	68	
5	349	304	70	143	9	3	26	16	
5 6	836	727	167	342	17	8	57	30	
7	640	557	128	262	51	72	100	88	
8	608	529	122	249	205	114	315	354	
9	945	822	189 266	386 5 44	208 127	143 82	330	359	
10 11	1331 221	1158 192	⊿00 44	90	758	501	227 1090	220 1308	
12	1059	921	212	433	314	192	485	541	
13	2548	2217	510	1042	353		603	609	
14	1793	1560	359	733	47	8	139	80	
15	1340	1166	268	548	24	0	86	41	
16	1049	913	210	429	755	248	1116	1303	
17	2657	2312	532	1087	522	168	834	900	
18 19	1492 2362	1298 2055	299 4 73	610 966	175 36	60 0	303 129	303 63	
20	1325	1153	265	542	44	14	112	75	
21	1345	1170	269	550	49	17	120	84	
22	174	151	35	71	3	0	10	5	
23	853	742	171	349	152	566	249	262	
24	317	276	63	130	36	26	63	63	
25 26	1002 1332	872 1159	201 267	410 545	741 442	412 188	1093 680	1278	
26 27	1302	1133	261	533	37		102	763 64	
28	1577	1372	316	645	226	100	375	390	
29	2165	1884	433	885	36	2	123	62	
30	1812	1576	362	741	128	88	246	221	
31	267	232	53	109	22	8	42	38	
32	807	702	161 149	330	1179	628	1716	2034	
33 34	745 966	648 840	149	305 395	16 81	2 32	51 150	28 139	
3 4 35	1040	905	208	425	356	1132	546	614	
36	1832	1594	367	749	244	155	417	421	
37	417	363	83	171	9	2	29	16	
38	654	569	131	267	38	52	77	65	
39	5281	4594	1057	2159	5609	2663	8177	9674	
40	1642	1429	329	672	693	329	1050	1195	
41 42	2851 787	2480 685	570 158	1166 322	184 154	74 557	359 247	318 265	
43	1769	1539	354	723	148	62	273	255	
44	1385	1205	277	566	96	40	190	166	
45	4879	4245	976	1995	407	154	746	702	
46	2675	2327	535	1094	41	0	148	72	

					l - 1994 PURPOSE				
ZONE NO	TOTAL TRIPS	INTERL TRIPS	HBW PROD	HBO PROD	NHB PROD	HBW ATTR	HBO ATTR	NHB ATTR	
47	880	766	176	360	19	3	61	33	
48	2362	2055	473	966	48	3	159	83	
49 50	1237 1920	1076 1670	247 384	506 785	177 250	62 157	303 42 7	305 4 32	
51	938	816	188	384	100	269	186	172	
52	823	716	165	337	947	2700	1389	1633	
53	1505	1309	301	615	57	31	153	99	
54	207	180	41	85	88	114	136	152	
55	953	829	191	390	204	271	330	353	
56	1006	875	201	411	68	18	137	117	
57 58	2791 1454	2428 1265	558 291	1141 595	298 218	165 94	526 364	513 375	
59	2053	1786	411	839	138	57	272	237	
60	72	63	14	30	169	312	244	291	
61	1431	1245	286	585	46	6	113	79	
62	701	610	140	287	12	0	45	21	
63	151	131	30	62	3	0	9	5	
64	1152	1002	230	471	512	935	779	884	
65	1218	1060	244	498	33	8	94	58	
66 67	850 984	740 856	170 197	348 402	175 233	466 841	287 380	301 402	
68	2744	2387	549	1122	2411	1078	3535	4159	
69	437	380	87	179	2226	1104	3190	3840	
70	0	0	0	0	939	1680	1340	1621	
71	2034	1770	407	832	143	135	260	246	
72	626	545	125	256	365	180	547	630	
73	466	405	93	190	823	325	1195	1420	
74 75	233 2073	203 1804	47 415	95 848	3108 215	1415	4444	5361	
75 76	2161	1880	432	884	191	100 69	365 358	370 330	
77	1278	1112	256	523	69	72	144	119	
78	1444	1256	289	590	111	25	206	191	
79	2474	2152	495	1011	39	8	136	68	
80	1695	1475	339	693	581	278	885	1002	
81	1311	1141	262	536	141	65	246	244	
82	738	642	148	302	25	127	61	43	
83 8 4	902 803	785 699	181 161	369 329	253 4 7	137 62	396	436	
85	0	0	0	0	58	198	99 83	80 100	
86	5541	4821	1109	2266	633	1324	1118	1092	
87	416	362	83	170	20	11	44	34	
88	640	557	128	262	29	9	64	50	
89	1543	1342	309	631	27	2	90	46	
90	939	817	188	384	19	2	62	33	
91	1300	1131	260	532	101	62	201	174	
1	L19682	104123	23948	48938	31237	23952	48936	53884	

TRIP STATISTICS - 1994

TRIPS PRODUCED BY THE HOUSING UNITS = 119682

INTERNAL OF TOTAL = 87.0% INTERNAL TRIPS = 104123

HBW OF INTERNAL = 23.0% HBW TRIPS = 23948 HBO OF INTERNAL = 47.0% HBO TRIPS = 48938

HBO OF INTERNAL = 47.0% HBO TRIPS = 48938 NHB OF INTERNAL = 30.0% NHB TRIPS = 31237

COMM VEH TRIPS TOTAL = 9433 INTERNAL = 8207

TRIPS PRODUCED BY EXTERNAL STATIONS = 40514

NHB SECONDARY TRIPS = 14437

					b - 2020 PURPOSE				
ZONE NO	TOTAL TRIPS	INTERL TRIPS	HBW PROD	HBO PROD	NHB PROD	HBW ATTR	HBO ATTR	NHB ATTR	
1	1070	931	214	438	40	14	101	78	
2	230	200	46	94	22	11	42	43	
3 4	1397	1215	279	571 591	62	43	148	121	
4 <u>.</u>	1445 538	1257 468	289 108	220	79 28	32 14	173 61	154 55	
5 6	1195	1040	239	489	31	25	96	61	
7	1111	967	222	454	80	101	166	157	
8	805	700	161	329	295	164	448	576	
9	1320	1148	264	540	279	196	447	547	
10	1792	1559	359	733	179	112	320	350	
11	567	493	113	232	876	628	1256	1713	
12	1476	1284	295	603	424	266	654	829	
13	3018	2626	604	1234	400	178	702	782	
14 15	2228 1765	1938 1536	446 353	911 722	84	18	225	164	
16	1429	1243	286	584	39 1039	0 329	137 1523	76 2033	
17	3251	2828	650	1329	397	212	680	2033 777	
18	1929	1678	386	789	228	86	397	446	
19	3143	2734	629	1285	53	0	188	104	
20	1657	1442	332	678	111	58	230	218	
21	1729	1504	346	707	84	36	193	164	
22	365	318	73	149	7	0	25	14	
23	1346	1171	269	550	205	704	347	401	
24	515	448	103	211	82	59	138	161	
25	1374	1195	275	562	831	525	1228	1627	
26 27	1705 1631	1483 1419	341	697	599	248	915	1172	
28	2081	1810	326 416	667 851	123 270	52 146	245 456	241	
29	2932	2551	587	1199	67	11	200	528 132	
30	2445	2127	489	1000	189	131	362	370	
31	456	397	91	187	127	50	198	249	
32	1012	880	202	414	1229	776	1778	2405	
33	921	801	184	376	49	18	108	95	
34	1709	1487	342	699	185	95	329	362	
35	1389	1208	278	568	440	1366	679	862	
36	2388	2078	478	977	321	196	555	628	
37 38	607 1 41 2	528 1228	121 282	248 577	67 85	43	121	132	
30 39	6984	6076	282 1397	2856	9543	119 3304	174 13692	166	
40	2763	2404	553	1130	766	443	1198	18672 1499	
41	4283	3726	857	1751	303	144	588	594	
42	1167	1015	233	477	197	669	325	386	
43	2553	2221	511	1044	188	90.		369	
			508	1037	202	104	393	395	
		5588	1285	2626	529	198	990	1035	
46	4359	3792	872	1782	75	0	265	147	
	-								

				ABLE A-4 RIPS BY					
ZONI	E TOTAL TRIPS	INTERL TRIPS	HBW PROD	HBO PROD	NHB PROD	HBW ATTR	HBO ATTR	NHB ATTR	
47	1916	1667	383	783	181	117	342	355	
48	2734	2379	547	1118	245	117	466	479	
49	1436	1249	287	587	493	185	760	96 4	
50	2181	1897	436	892	439	297	706	858	
51	1023	890	205	418	157	428	273	306	
52	992	863	198	406	1122	3236	1630	2196	
53	1756	1528	351	718	111	94	247	218	
54	261	227	52	107	170	247	253	332	
55	1053	916	211	431	324	432	504	633	
56	1702	1481	341	696	583	212	895	1140	
57	3025	2632	605	1237	340	211	605	665	
58	1612	1402	322	659	359	166	577	703	
59	2258	1964	452	923	430	256	700	841	
60	161	140	32	66	196	407	284	384	
61	2103	1830	421	860	236	49	410	462	
62	825	718	165	337	18	0	61	35	
63	260	226	52	106	5	0	19	10	
64	1284	1117	257	525	561	1110	850	1097	
65	1339	1165	268	548	65	27	153	128	
66	997	867	199	407	210	561	345	410	
67	1171	1019	234	479	332	1173	528	649	
68	3251	2828	650	1329	2960	1319	4296	5792	
69	603	525	121	247	1334	808	1899	2610	
70	0	0	0	0	1019	2019	1434	1994	
71	1833	1595	367	750	166	175	316	325	
72	724	630	145	296	493	268	728	964	
73	579	504	116	237	1010	398	1451	1976	
74	355	309	71	145	2458	1675	3475	4809	
75	1831	1593	366	749	265	137	450	519	
76	2313	2012	463	946	232	97	432	453	
77	1470	1279	294	601	85	101	179	166	
78 79 80	1704 3987 1948	1482	341	697 1630 797	205 73	47 27 344	350 244	401 144 1137	
81 82 83	1521 877 1627	1323 763 1415	304 175 325	622	172 57 571 70	94	299 117	336 112 1118	
84 85 86	958 0 7233	833 0 6293	192 0 1447	0	83	349 90 290 1737	141 117	137 163 1608	
87	556	484	111	227	48	31	91	93	-
88	1023	890	205	418	65	29	133	128	
89 90 91	1792 1361 1484	1559 1184 1291		556	58	20 20 92	156 138 280	125 114 289	
	157571	137087	31530	64431	41126	31531	64429	80468	

TRIP STATISTICS - 2020

TRIPS PRODUCED BY THE HOUSING UNITS = 157571

INTERNAL OF TOTAL = 87.0% INTERNAL TRIPS = 137087

HBW OF INTERNAL = 23.0% HBW TRIPS = 31530 HBO OF INTERNAL = 47.0% HBO TRIPS = 64431 NHB OF INTERNAL = 30.0% NHB TRIPS = 41126

COMM VEH TRIPS TOTAL = 9433 INTERNAL = 8207

TRIPS PRODUCED BY EXTERNAL STATIONS = 77592

NHB SECONDARY TRIPS = 31134

NHB SECONDARY TRIPS = 31134

ROCKINGHAM - HAMLET TABLE A-5
EMPLOYMENT BY STANDARD INDUSTRIAL CODE 1994

ZONE NO	INDUST	RETAIL	HWY RET	OFFICE	SERVICE	DU	TOTAL EMP	
1 2 3 4 5 6 7 8 9 10 11 21 3 14 15 16 17 18 19 22 12 23 24 22 25 27 28 29 33 33 33 33 33 33 34 44 44 44 44 44 45 46 46 46 46 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47	0 0 0 0 8 6 0 5 32 31 0 0 15 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 5 0 1 5 9 6 4 0 9 6 9 4 9 2 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 10 1 0 10 10 0 0 0	3 0 0 0 1 10 48 88 24 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 2 0 0 0 0 12 19 5 121 30 8 0 0 0 0 160 13 0 65 1 10 0 30 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	65913403508557891326335789404885687427999220238799945	3 15 9 2 47 74 93 326 125 9 5 161 109 3 10 3 10 3 10 10 10 10 10 10 10 10 10 10 10 10 10	

ROCKINGHAM - HAMLET TABLE A-5 EMPLOYMENT BY STANDARD INDUSTRIAL CODE 1994 ZONE TOTAL NO INDUST RETAIL HWY RET OFFICE SERVICE DU EMP 9 21 0 0 0 25 0 11 62 2 48 4 9 0 0 0 0 10 5 0 5 0 0 0 0 0 0 7 0 0 28 34 4 0

 0
 0
 0
 0
 0

 0
 7
 6
 80

 3
 0
 0
 2

 5
 0
 10
 9

 0
 2
 0
 0

 279
 223
 82
 115

 29
 11
 1
 677

 30
 2
 16
 169

 2
 0
 3
 28

 25
 16
 11
 61

 42
 88
 40
 41

 124
 50
 425
 272

 0
 5
 24
 36

 6 0 81 0 49
 124
 50
 425
 272
 27

 0
 5
 24
 36
 190

 1
 5
 1
 38
 271

 2
 0
 0
 10
 145

 2
 14
 0
 0
 151

 0
 0
 0
 0
 255

 0
 0
 6
 175
 180

 0
 0
 0
 34
 142

 0
 0
 0
 4
 84

 39
 4
 0
 46
 112

 0
 3
 0
 0
 102

 0
 0
 0
 4
 0

 18
 4
 26
 48
 689

 7
 0
 0
 50

 0
 0
 6
 72
 6 1 72

2334 1300 1165 3635 13962 15568

JCKINGHAI	M - HAMI EMPLOYI		TABLI STANDARI	E A-5b D INDUS	TRIAL CO	DE 20:	20
ZONE NO	INDUST	RETAIL	HWY RET	OFFICE	SERVICE	DU	TOTAL EMP
1	0	0	0	8	0	119	8
2 3	0	0	0	0		27	6
	13	8	0	0	3	164	24
4	12	0	6	0	0	165	18
5	0	4	0	4	0	58	8
6	14	0	0	0	0	139	
7	38	18	0	0	0	139	56
8	38	11	26	1	15	89	91
9	0	75	0	12	22	144	109
10	0 16	103		56	6	181	62
11 12			13	94		61	349
13	13	58	11		36 86	153 373	148 99
14	0 0	2	2	0 6	0	286	10
15	0	0	0	0	0	220	0
16	0	2 2 0 2	115	57	9	159	183
17	Ö	ō	0	0	118	322	118
18	Ö	Ŏ	12	Ö	36	203	48
19	Ō	Ö	0	Ö	0	302	0
20	0	21	0	0	11	195	32
21	0	13	0	0	7	200	20
22	0	0	0	0	0	40	0
23	389	2	0	0	0	158	391
24	0	33		0	0	59	33
25	0	109	9	0	174	154	292
26	37		61	0	15	191	138
27	0	24	5	0	0	192	29
28	0	0	0	0	81	204	81
29	0	0	0	0	6	281	6
30	38	14	8	0	13	258	73
31	0	17	11	0	0	50	28
32 33	0 0	98 0	8 0	2	323 10	126 108	431 10
34	0	0	0	0 >	53	181	53
35	720	26	0	0	13	158	759
36	0	2 0 ₹	4	98	4	276	109
37	Ö	3 0	0	24	0	70	24
38	52	6	0	0	8	145	66
39	23	985	554	100	174	685	1836
40	0	0	0	0	246	320	246
41	10	2	5	Ō	63	429	80
42	366	6	0	0	0	125	372
43	0	5	0	0	45	272	50
44	7	2	0	0	49	293	58
45	22	11	36	11	30	658	110

TABLE A-5b ROCKINGHAM - HAMLET EMPLOYMENT BY STANDARD INDUSTRIAL CODE 2020 ZONE TOTAL NO INDUST RETAIL HWY RET OFFICE SERVICE DU **EMP** 26 14 0 5 28 0 14 49 0 49 0 0 0 0 0 7 5 0 10 0 2 0 292 233 86 30 11 1 0 707 0 0 0 0 5

APPENDIX B

APPENDIX B

GOALS & OBJECTIVES SURVEY DATA SUMMARY FOR ROCKINGHAM AND HAMLET

SURVEY FORM:

A two page survey was distributed to travellers in the planning area to determine local desires and priorities for the thoroughfare plan. The survey was made available to City Council Members, local staff, as well as the public. The survey form was organized as follows:

Page 1: Twenty issues were scored from very undesirable (-2) to very desirable (+2) in the categories of Environment, Neighborhood, Economic, and Transportation.

Page 2: Five issues in each of five categories were ranked in order of importance (from 1-5, 1 being most important).

SUMMARY PROCEDURE:

The scores for each issue on page 1 were combined from all surveys to get totals (subtract negatives, add positives). These values were used in bar graph defining the priority of each issue.

For page 2, the number of times each issue received a #1 ranking was determined. These numbers were used in a bar graph to demonstrate which issues were most frequently ranked first.

INTRODUCTION:

A significant element in the thoroughfare planning process is public participation. The development of a transportation plan requires active public participation to assure that the objectives outlined in the plan reflect the values of the community. If a plan for a community is not related to the values of the community, then it is likely that the plan will not be implemented.

A technique commonly used in transportation planning to determine community values is a goals and objectives survey. This survey attempts to identify how a community perceives transportation related issues. Many of the questions require the participant to make trade-offs to solve transportation problems, as well as setting up a framework for the types of trade-offs the community is willing to accept.

CONCLUSIONS:

Based on the responses recorded on page 1 of this survey, the goals that reflect the highest priority are preservation of neighborhood/community, increased traffic safety, and avoiding urbanization and strip development. Other goals viewed as important include improving travel safety for pedestrians/bicyclists and encouraging economic vitality.

On page 2 the highest frequency of #1 rankings occurred in issues stating the desire to attract new industry and to stimulate new economic development growth.

With regard to local project needs, there exists an overwhelming support for the US 74 Bypass. On the other hand, very little support was recorded for widening US 220 to a multilane facility.

ROCKINGHAM AND HAMLET TRANSPORTATION STUDY PUBLIC OPINION SURVEY

We need your input. Please circle the number to indicate how desirable the following items are to you.

Very Undesirable	-2
Undesirable	-1
Neutral	N
Desirable	+1
Very Desirable	+2

ENVIRONMENTAL ISSUES:

1)	Minimize air pollution from vehicles:	-2	-1	N	+1	+2
2)	Minimize traffic noise in neighborhoods:	-2	-1	N	+1	+2
3)	Minimize traffic noise in business areas:	-2	-1	N	+1	+2
4)	Urbanize all undeveloped land:	-2	-1	N	+1	+2
5)	Protect natural areas as buffer zones:	-2	-1	N	+1	+2

NEIGHBORHOOD ISSUES:

1)	Preserve historic property:	-2	-1	N	+1	+2
2)	Protect neighborhoods from truck traffic:	-2	-1	N	+1	+2
3)	Landscape streets with trees and shrubs:	-2	-1	N	+1	+2
4)	Preserve community character:	-2	-1	N	+1	+2
5)	Travel safety for pedestrians & bicyclists:	-2	-1	N	+1	+2

ECONOMIC ISSUES:

1)	Minimize road construction costs:	-2	-1	N	+1	+2
2)	Minimize travel time and cost:	-2	-1	N	+1	+2
3)	Provide better access to Central					
	Business District:	-2	-1	N	+1	+2
4)	Invite long sections of urban strip					
	development:	-2	-1	N	+1	+2
5)	Encourage economic vitality:	-2	-1	N	+1	+2

TRANSPORTATION ISSUES:

1)	Have frequent traffic signals on major roads	:-2	-1	N	+1	+2
2)	Increase traffic safety:	-2	-1	N	+1	+2
3)	Provide bicycle paths to schools and parks:	-2	-1	N	+1	+2
4)	Provide vans to shopping areas and downtown					
	to relieve some of the parking demand:	-2	-1	N	+1	+2
5)	Provide sidewalks and scenic paths to					
	encourage people to walk instead of drive:	-2	-1	N	+1	+2

** Please circle your residence (Rockingham or Hamlet), & return completed survey forms to:

Rockingham Planning Department
311 E. Franklin Street, Rockingham, N.C. 28379
or Hamlet Planning Department
201 Main Street, Hamlet, N.C. 28345

ROCKINGHAM AND HAMLET PUBLIC OPINION SURVEY

Please rank each group of items in order of importance. (1 is the most important, 5 is the least important)

RANK HOW ROAD CAPACITY SHOULD BE INCREASED:
By improving the geometric design of intersections: By constructing additional traffic lanes: By controlling strip development and promoting rural growth:
By encouraging people to ride together or ride public transportation: By providing alternative modes of travel such as
pedestrian paths or bicycle trails: RANK WHY ROADS SHOULD BE PLANNED:
To urbanize the rural land outside the town limits: To increase the tax base: To control growth: To revitalize the existing developed areas (such as renovating historic buildings): To limit land acquisition cost for future projects:
RANK THE LOCAL ISSUES:
Minimize road widening and construction costs: Improve Transit System: Minimize the environmental impacts of building new roads: Attract new industry: Improve parking in central business district:
RANK THE ISSUES IN DEVELOPING A THOROUGHFARE PLAN:
Environmental preservation: Individual home or business preservation: Community preservation: New economic development growth: Community enhancements (such as better roads, quieter neighborhoods, pedestrian trails):
RANK LOCAL PROJECT NEEDS:
Widen US 1 to a multi-lane facility with a bypass of Rockingham on new location: US 74 Bypass of Rockingham and Hamlet on new location: Improve access to US 220, US 1, and NC 177 by constructing a loop system to the north of Rockingham and Hamlet: Widen US 220 to a multi-lane facility from proposed US 74 Bypass to Forrest Street: Widen US 1 to a multi-lane facility from NC 177 to existing four lanes at Moore County:
***** Feel free to attach additional comments to survey. *****

	ISSUE	SCORE
	ENVIRONMENTAL	
2) 3) 4)	Minimize air pollution Minimize traffic noise in neighborhoods Minimize traffic noise in business areas Urbanize all undeveloped land Protect natural areas	47 44 18 -30 43
	NEIGHBORHOOD	
2) 3) 4)	Preserve historic property Protect neighborhoods from truck traffic Landscape streets with trees and shrubs Preserve community character Travel safety for pedestrians and bicyclists	64 64 36 61 58
	ECONOMIC	
2) 3) 4)	Minimize road construction costs Minimize travel time and cost Provide better access to CBD Invite long sections of urban strip development Encourage economic vitality	37 42 36 1 56
	TRANSPORTATION	
2) 3) 4)	Frequent traffic signals on major roads Increase traffic safety Provide bicycle paths to schools and parks Provide vans to shopping areas and downtown Provide sidewalks and scenic paths	11 70 51 11 46

		FREQUENCY OF #1 RANKINGS
HOI	W ROAD CAPACITY SHOULD BE INCREASED	
2) 3) 4)	Improve the geometric design of intersections: Construct additional traffic lanes: Control strip development: Encourage ride-sharing: Provide alternative travel modes:	12 17 6 9 10
WH:	ROADS SHOULD BE PLANNED	
2) 3) 4)	Urbanize rural land Increase tax base: Control growth patterns to predetermined areas: Revitalize existing developed areas: To limit land acquisition cost for future projects:	10 6 16 10 7
LO	CAL ISSUES	
2) 3) 4)	Minimize road widening and construction costs: Improve Transit System: Minimize the environmental impacts: Attract new industry: Improve parking in CBD:	7 7 11 35 8
ISS	SUES IN DEVELOPING A THOROUGHFARE PLAN	
2) 3) 4)	Environmental preservation: Individual home or business preservation: Community preservation: New economic development growth: Community enhancements:	12 13 14 21 15
LOC	CAL PROJECT NEEDS	
•	Widen US 1 to a multi-lane facility with a bypass of Rockingham on new location: US 74 Bypass of Rockingham and Hamlet on new locati Improve access to US 220, US 1, and NC 177 by constructing a loop system to the north of Rockingh and Hamlet:	8
4)	Widen US 220 to a multi-lane facility from proposed US 74 Bypass to Forrest Street:	7
5)	Widen US 1 to a multi-lane facility from NC 177 to existing four lanes at Moore County:	17

Environmental Issues

Min Veh Air

Min. Neigh.

W Urb Und Land Min Bus Tref

Prot Nat Are

Neighborhood Issues

Min Neigh Tr Com Landscape St NN Pre Com Cha Pre His Prop Bike/Ped Saf

Economic Issues

Min Rd. Cost Z Min Tra Cost . Access CBD NN

Econ Vitalit

Transportation Issues

Traf Signals

Z Traf Safety

Est Bike Paths

NN Provide Vens

Pro Sidewalk

How Road Capacity Should Be Increased

Improv Inta. Z Add Traf Lan ... No Strip Dev

Ride-Share

Alter. Modes

Why Roads Should Be Planned

Rev Ex Areas Urb Rur Land Z Inc Tax Base Contr Growth NN Lim LandCost

The Local Issues

Min Road Wid Z Impr Transit . Min Env Impa NN Att New Ind.

Inpr Parking

The Issues In Developing A Thoroughfare

Envir Preser 🔼 Home/Bus Pr 🗀 Comm Preser 📉 New Econ Dev

Comm Enhan

Local Project Needs

Widen US 220 US 74 Bypuss [:] North, Loop US 1 Bypass

Widen US 1

APPENDIX C

TYPICAL THOROUGHFARE CROSS SECTIONS

TYPICAL THOROUGHFARE CROSS SECTIONS

TYPICAL THOROUGHFARE CROSS SECTIONS

TYPICAL THOROUGHFARE CROSS SECTIONS FOR ACCOMMODATING BICYCLES

TABLE C2

	T			1		1		
MAJOR THOROUGHFARES FACILITY & SECTION	1	KISTING SECTION RDWY ft	ON	CAPACITY CURRENT (FUTURE)	1994 ADTS	2020 ADTS		MENDED ECTION ROW (ULT)
US 1 PLANNING BOUNDARY - 2.30 mi N PL BOUND	2.30	23	100	10000	3000	5700	TIP R-2501	TIP
2.30 mi N PL BOUND - SR 1187	2.06	23	60	10000	2500	3900	ADQ	ADQ
SR 1187 - US 220	1.04	23	60	10000	9000	15000	TIP R-2501	TIP
US 220 - SCL ROCKINGHAM	.48	23	60	10000	5200	9000	ADQ	ADQ
SCL ROCKINGHAM - US 74	.66	68	60	39400	5200	9000	ADQ	ADQ
US 74 - US 1 NBL	.18	40	60	16000	5500	12000	ADQ	ADQ
US 1 NBL - SR 1648 (Rock Hm Rd)	.20	38	60	14000	6500	10100	ADQ	ADQ
SR 1648 - US 1 SBL	.06	28	60	14000	6500	10100	ADQ	ADQ
US 1 NBL -WASHINGTON	.30	30	60	14000	5400	9200	ADQ	ADQ
US 1 SBL - STEWART ST	.58	30	60	11500	11300	21000	TIP R-2501	TIP
STEWART ST - LONG DRIVE	.31	34	60	11500	11300	21000	TIP R-2501	TIP
LONG DRIVE - 0.80 mi E LONG DRIVE	.80	48	60	22000	9300	20000	TIP R-2501	TIP
0.80 mi E LONG DR - URBAN BOUNDARY	1.20	25	60	12000 (35000)	9300	20000	TIP U-3456	TIP
URBAN BOUNDARY - 0.26 mi E URB BDRY	.26	39	60	9500	6700	12700	TIP U-3456	TIP
0.26 mi E URB BDRY - 0.58 mi E URB BDRY	.32	35	70	9500	6700	12700	TIP R-2501	TIP
0.58 mi E URB BDRY - PLANNING BOUNDARY	1.25	24	60	11500	5000	9600	TIP R-2501	TIP

ROW - RIGHT OF WAY ADT - AVERAGE DAILY TRAFFIC TP - THOROUGHFARE PLAN PROJECT ADQ - ADEQUATE TIP - TRANSPORTATION IMPROVEMENT PROGRAM PROJECT

TABLE C2 cont'd

MAJOR THOROUGHFARES FACILITY & SECTION		CISTING SECTION RDWY ft	ON	CAPACITY CURRENT (FUTURE)	1994 ADTS	2020 ADTS	RECOMN X - SI RDWAY (ULT)	ECTION
US 74 ANSON CO LINE - URBAN BOUNDARY	4.22	32	200	41700	11600	23800	ADQ	ADQ
URBAN BOUNDARY - 0.68 mi E URB BDRY	.68	48	200	40000	12600	25700	TIP R-512	TIP
0.68 mi E URB BDRY - US 220	1.12	66	80	33000	19000	30000	TIP R-512	TIP
LEE ST - US 1	.37	48	100	20000	20000	42000	TIP R-512	TIP
US 1 - 1.51 mi E US 1	1.51	60	150	40000	25400	42000	TIP R-512	TIP
1.51 mi E US 1 - 1.94 mi E US 1	.43	85	150	40000	22500	42600	TIP R-512	TIP
1.94 mi E US 1 - 2.02 mi E US 1	.08	60	150	40000	22500	42600	TIP R-512	TIP
2.02 mi E US 1 - 2.26 mi E US 1	.24	46	150	40000	22500	42600	TIP R-512	TIP
2.26 mi E US 1 - URBAN BOUNDARY	.79	44	70	40000	22500	42600	TIP R-512	TIP
URBAN BOUNDARY - 1.79 mi E URB BDRY	1.79	46	70	40000	22500	42600	TIP R-512	TIP
1.79 mi E URB BDRY - 1.91 mi E URB BDRY	.12	52	150	11500	18100	34000	TIP R-512	TIP
1.91 mi E URB BDRY - NC 177	.20	40	70	11500	18100	34000	TIP R-512	TIP
NC 177 - SR 1811	. 52	46	70	11500	14000	24500	TIP	TIP
SR 1811 - NC 38	.46	44	60	20000	18000	40000	R-512 TIP R-512	TIP

ROW - RIGHT OF WAY ADT - AVERAGE DAILY TRAFFIC TP - THOROUGHFARE PLAN PROJECT ADQ - ADEQUATE TIP - TRANSPORTATION IMPROVEMENT PROGRAM PROJECT

TABLE C2 cont'd

MAJOR THOROUGHFARES	1	SECTION SECTION		CAPACITY CURRENT				MENDED ECTION
FACILITY & SECTION	1 .	RDWY	ROW	(FUTURE)	1994	2020	RDWAY	ROW
	mi	ft	ft		ADTS	ADTS	(ULT)	(ULT)
74								
US 74 NC 38 - SCL HAMLET	.48	46	60	22000	18000	40000	TIP R-512	TIP
SCL HAMLET - NC 381	.66	55	60	22000	15800	33600	TIP R-512	TIP
NC 381 - PLANNING BOUNDARY	2.25	48	160	40000	13000	28000	TIP R-512	TIP
US 220								
SCL ROCKINGHAM - 0.87 mi N SCL RKHM	.87	48	180	40000	2800	7000	TIP R-3421	TIP
0.87 mi N SCL RKHM - US 74	.08	86	200	40000	6500	11400	TIP R-3421	TIP
US 74 - 0.49 mi N US 74	.49	68	200	40000	11300	23000	TIP R-3421	TIP
0.49 mi N US 74 - NORTHSIDE DR	3.61	48	200	40000	11100	24000	TIP R-3421	TIP
NC 38								
SC STATELINE - URBAN BOUNDARY	3.81	20	100	9500	2400	5000	ADQ	ADQ
URBAN BDRY - 0.34 mi N URB BDRY	.34	22	100	9500	3400	5700	ADQ	ADQ
0.34 mi N URB BDRY - SR 1615	1.10	20	60	9500	3400	5700	ADQ	ADQ
SR 1615 - US 74	.25	44	60	9500	2700	5000	ADQ	ADQ
NC 177 PLANNING BOUNDARY - SR 1990	.75	22	60	9500	1500	2900	ADQ	ADQ
SR 1990 - 3.70 mi N SR 1990	3.70	22	60	11500	3100	5500	ADQ	ADQ
3.70 mi N SR 1990 - 4.25 mi N SR 1990	.55	25	60	11500	4000	8000	ADQ	ADQ

TABLE C2 cont'd

MAJOR THOROUGHFARES FACILITY & SECTION	1	XISTING SECTION RDWY ft	NC	CAPACITY CURRENT (FUTURE)	1994 ADTS	2020 ADTS		MENDED ECTION ROW (ULT)
NC 177								
4.25 mi N SR 1990 - US 74	.71	32	60	11500	11400	18000	TP Bypass	TP Bypass
US 74 - CL HAMLET	.51	24	60	11500	8500	15000	TP	TP
CL HAMLET - PLANNING BOUNDARY	3.75	24	100	11500	5200	10000	Bypass TP Bypass	Bypass TP Bypass
NC 381 PLANNING BOUNDARY - US 74	3.25	20	60	8500	1600	3600	ADQ	ADQ
SR 1900 (BATTLEY DAIRY RD) PLANNING BOUNDARY - SR 1994	2.15	16	60	8000	1800	3800	ADQ	ADQ
SR 1994 - NC 177	2.97	22	60	11000	1800	3800	ADQ	ADQ
SR 1825 (AIRPORT RD) PLANNING BOUNDARY - SR 1811	1.50	18	60	8500	1400	3500	ADQ	ADQ
SR 1811 - NC 177	.70	18	60	8500	1400	3500	ADQ	ADQ
SR 1966 (AIRPORT RD) NC 177 - SR 1971	4.50	22	60	11000	6600	11000	TIP	TIP
SR 1971 - US 1	. 68	18	60	8500	7000	12000	R-512	R-512 TIP
SR 1811 (GIN MILL				>			R-512	R-512
RD/LACKEY ST) SR 1825 - 2.55 mi N SR 1825	2.55	18	60	8500	300	1000	ADQ	ADQ
2.55 mi N SR 1825 - SR 1615	.32	28	60	11000	1100	2000	ADQ	ADQ
sr 1812 (FREEMAN MILL RD) NC 38 - SR 1900	3.00	22	60	9500	400	1600	ADQ	ADQ

TABLE C2 cont'd

MAJOR THOROUGHFARES FACILITY & SECTION		KISTING SECTION RDWY ft	N	CAPACITY CURRENT (FUTURE)	1994 ADTS	2020 ADTS	1	MENDED ECTION ROW (ULT)
SR 1914 (FREEMAN MILL RD) SR 1900 - SR 1915	1.47	22	60	11500	2200	4100	ADQ	ADQ
SR 1833 (PERRY WILLIAMS RD) 0.25 mi W SR 1806 - NC 38	1.33	20	60	10500	700	1500	ADQ	ADQ
SR 1615 (MAIN ST/ GIBSON SMITH RD) NC 177 - 0.37 mi E NC 177	.37	30	60	12000	4000	8500	ADQ	ADQ
0.37 mi E NC 177 - SR 1811	.24	60	60	16000	4000	8500	ADQ	ADQ
SR 1811 - NC 38	.65	24	60	12000	1200	2600	ADQ	ADQ
NC 38 ~ NC 381	2.29	18	60	8000	1000	1900	ADQ	ADQ
SR 1614 (COBBLE RD) SR 1610 - PLANNING BOUNDARY	1.50	16	60	8000	500	1400	ADQ	ADQ
SR 1610 (OLD LAURINGBURG RD) US 74 - 1.70 mi E US 74	1.70	22	60	11000	1200	2400	ADQ	ADQ
1.70 mi E US 74 - PLANNING BOUNDARY	.50	20	60	9500	800	1400	ADQ	ADQ
SR 1608 (BOYD LAKE RD/LAKESIDE DR) PLANNING BOUNDARY - URBAN BOUNDARY	2.40	16	60	8000	300	800	ADQ	ADQ
URBAN BOUNDARY - US 74	1.60	22	60	11000	1900	3000	ADQ	ADQ

TABLE C2 cont'd

Property live and the second s				1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	T	1	
MAJOR THOROUGHFARES FACILITY & SECTION		(ISTING SECTION RDWY ft	ON	CAPACITY CURRENT (FUTURE)	1994 ADTS	2020 ADTS		
SR 1639 (SPRING ST) NC 177 - 0.15 mi W NC 177	.15	22	60	11000	3800	7000	ADQ	ADQ
0.15 mi W NC 177 - US 74	. 60	20	60	9500	3800	7000	ADQ	ADQ
SPRING ST US 74 - NC 177	.50			11000	5100	8000	TP	TP
SR 1640 (WIRE GRASS								
RD) CIRCLEWOOD DR - US 1	4.30	22	60	11500	4500	6300	ADQ	ADQ
CAROLINE ST/COLE AV GREENE ST - US 1	71			11000	1300	2500	TIP B-3365	TIP B-3365
SR 1624 (COUNTY HOME RD) SR 1646 - NC 177	4.03	20	60	10500	4500	7800	ADQ	ADQ
SR 1903 (MCDONALD AV /BEAUNIT AV/MILL RD) SR 2007 - 1.00 mi W SR 2007	1.00	20	60	9500	1500	2200	ADQ	ADQ
1.00 mi W SR 2007 - 2.20 mi W SR 2007	1.20	24	60	12000	7070	11000	TIP R-512	TIP R-512
2.20 mi W SR 2007 - US 1	2.14	21	60	9500	7500	12200	TIP R-512	TIP R-512
SR 1909 (HYLAN DR) NC 177 - SR 1903	1.90	24	60	12000	4000	6500	ADQ	ADQ
SR 2007 (ALEXANDER								
DR) SR 1903 - SR 2028	.08			11000			ADQ	ADQ
SR 2028 (OAK AV) SR 2007 - SR 1811	1.16			11000	970	1900	ADQ	ADQ
HAMLET AVE RALEIGH ST - NC 38	.44			11000			ADQ	ADQ

TIP - TRANSPORTATION IMPROVEMENT PROGRAM PROJECT

ADQ - ADEQUATE

ROW - RIGHT OF WAY ADT - AVERAGE DAILY TRAFFIC TP - THOROUGHFARE PLAN PROJECT

TABLE C2 cont'd

				T	T		1	
MAJOR THOROUGHFARES FACILITY & SECTION	X-	(ISTING SECTION RDWY ft	NC	CAPACITY CURRENT (FUTURE)	1994 ADTS	2020 ADTS	X - S RDWAY	MENDED ECTION ROW (ULT)
ENTWISTLE ST (HMLT) SR 1903 - SR 1909	.25			11000			ADQ	ADQ
sr 1834 (RICE ST) SR 2028 - US 74 (via HIGH ST)	.59			9500	2800	4000	TIP B-3380	TIP B-3380
GREENE ST US 1 - US 74	.85			11000	4350	8100	ADQ	ADQ
SR 1992 (STOKES RD) SR 1108 - SR 1900	2.80	18	60	8000	1000	1750	ADQ	ADQ
SR 1475 (MCDONALD CHURCH RD) US 1 - PLANNING BOUNDARY	1.20	18	60	8500	1100	1800	ADQ	ADQ
sr 1643 (Washington st ext) sr 1646 - sr 1640	2.94	24	60	12500	3000	6100	ADQ	ADQ
SR 1497 (EAST WASHINGTON ST) US 1 - SR 1646	.89	30	60	12000	6700	10000	TP	TP
SR 1400 (WEST WASHINGTON ST) HANCOCK ST - US 1	.21			11000			ADQ	ADQ
SR 1641 (CLEMMER RD) US 74 - 0.90 mi N SR 1624	1.53	20	60	10500	2500	4200	ADQ	ADQ
BILTMORE DR SR 1903 - US 74	.61	20		9500	9800	15100	TIP R-2501	TIP R-2501
s CHURCH ST SR 1966 - SR 1903	.75	18		8000	2900	5000	ADQ	ADQ
SR 1939 (HANNAH PICKETT ST) SR 1903 - SR 1966	.53	18	60	8000	2400	5000	ADQ	ADQ

TABLE C2 cont'd

MAJOR THOROUGHFARES FACILITY & SECTION	1	(ISTING SECTION RDWY	DΝ	CAPACITY CURRENT (FUTURE)	1994 ADTS	2020 ADTS	RECOMM X - SE RDWAY (ULT)	CTION
SR 1136 (EASON DR) SR 1103 - SR 1971	.74	18	60	8500	600	2000	TP	TP
SR 1130 (YATES ST) SR 1124 - DEAD END	.24	16	60	7500	100	150	TP	TP
SR 1117 (QUARRY RD) SR 1109 - 0.50 mi E SR 1119	1.67	20	60	9500	1000	1700	ADQ	ADQ
0.50 mi E SR 1119 - 1.10 mi E SR 1119	.60	16	60	7500	1000	1700	ADQ	ADQ
1.10 mi E SR 1119 - SR 1124	.60	22	60	11000	1000	1700	ADQ	ADQ
SR 1124 (MIDWAY RD) US 74 - SR 1130	1.64	18	60	8500	600	2000	TP	TP
COLE AV - US 1	.13	18	60	8500	600	2000	TP	TP
SR 1140 (OLD CHARLOTTE HWY) US 74 - US 74	3.10	18	60	8500	450	800	ADQ	ADQ
McNAIR ST US 74 - US 220	.83			8000	3200	5100	ADQ	ADQ
SR 1109 (ZION CHURCH RD/1st/LEDBETTER ST) US 74 - 1.42 mi S US 74	1.42	22	60	11500	1400	2000	ADQ	ADQ
1.42 mi S US 74 - 2.82 mi S US 74	1.40	18	60	8500	1220	2000	ADQ	ADQ
2.82 mi S US 74 - SR 1113 (LEAR ST)	.35	20	60	10500	1220	2000	ADQ	ADQ
SR 1113 - SR 1108	1.17	22	60	11500	3300	5100	ADQ	ADQ

TABLE C2 cont'd

	STING		CAPACITY				
DIST	ECTIO RDWY			1994	2020	RECOMM X - SE RDWAY	
IIIT	16			ADIS	ADIS	(011)	(ОПТ)
14	22	60	11500	3000	6000	ADQ	ADQ
96	20	60	11000	600	1500	ADQ	ADQ
00 1	16	60	7500	600	1500	ADQ	ADQ
64 2	26	60	12500	10000	17000	60	100
50 -			11000	900	2000	ADQ	ADQ
40 -			8000	700	1000	ADQ	ADQ
80 2	22	60	12000	1800	3400	ADQ	ADQ
20							
30 1	18	60	9000	2950	4400	ADQ	ADQ
20 2	22	60	12000	1900	3600	ADQ	ADQ
15 1	18	60	9000	1000	3500	ADQ	ADQ
60 2	22	60	12000	1000	2050	ADQ	ADQ
77 2	24	60	12500	3000	5300	ADQ	ADQ
	96 :	14 22 96 20 00 16 64 26 50 40 80 22 30 18 20 22 15 18 60 22 77 24	14 22 60 96 20 60 00 16 60 64 26 60 50 40 80 22 60 30 18 60 20 22 60 15 18 60 60 22 60 77 24 60	14 22 60 11500 96 20 60 11000 00 16 60 7500 64 26 60 12500 50 -1000 40 8000 80 22 60 12000 30 18 60 9000 20 22 60 12000 15 18 60 9000 60 22 60 12000 77 24 60 12500	14 22 60 11500 3000 96 20 60 11000 600 00 16 60 7500 600 64 26 60 12500 10000 50 11000 900 40 8000 700 80 22 60 12000 1800 30 18 60 9000 2950 20 22 60 12000 1900 15 18 60 9000 1000 60 22 60 12000 1000	14 22 60 11500 3000 6000 96 20 60 11000 600 1500 00 16 60 7500 600 1500 64 26 60 12500 10000 17000 50 11000 900 2000 40 8000 700 1000 80 22 60 12000 1800 3400 30 18 60 9000 2950 4400 20 22 60 12000 1900 3600 15 18 60 9000 1000 3500 60 22 60 12000 1000 2050 77 24 60 12500 3000 5300	14 22 60 11500 3000 6000 ADQ 96 20 60 11000 600 1500 ADQ 00 16 60 7500 600 1500 ADQ 64 26 60 12500 10000 17000 60 (N) 50 11000 900 2000 ADQ 40 8000 700 1000 ADQ 80 22 60 12000 1800 3400 ADQ 30 18 60 9000 2950 4400 ADQ 20 22 60 12000 1900 3600 ADQ 15 18 60 9000 1000 3500 ADQ 15 18 60 9000 1000 3500 ADQ

TABLE C2 cont'd

MAJOR THOROUGHFARES FACILITY & SECTION		(ISTING SECTION RDWY ft	ON	CAPACITY CURRENT (FUTURE)	1994 ADTS	2020 ADTS	RECOMM X - SE RDWAY (ULT)	
SR 1645 (MT OLIVE CHURCH RD) SR 1643 - US 1	.77	18	60	8500	600	1000	TP	TP
SR 1682 (PATTERSON RD) SR 1643 - US 1	.65	18	60	8500	300	800	ADQ	ADQ
PHILADELPHIA RD US 1 - ABERDEEN RD	.55			8000	500	1500	ADQ	ADQ
ABERDEEN RD US 1 - PHILADELPHIA RD	.66			8000	1100	2000	TP	TP
SR 1424 (SANDHILL GAME MGMT RD) SR 1445 - 1.40 mi S SR 1445	1.40	22	60	11500	3200	4450	ADQ	ADQ
1.40 mi S SR 1445 - 1.99 mi S SR 1445	.59	18	60	8500	3200	4450	ADQ	ADQ
1.99 mi S SR 1445 - SR 1423	.57	22	60	11500	3200	4450	ADQ	ADQ
SR 1431 (NICHOLSON ST)								
SR 1424 - SR 1418 SR 1432 (McNEIL RD)	2.08	22	60	12000	1140	2000	ADQ	ADQ
SR 1431 - SR 1424 SNEAD AV	1.60	20	60	11000	800	2000	ADQ	ADQ
US 220 - SR 1418	.61			11000	1100	2000	ADQ	ADQ
SR 1418 (N CEMETERY RD) SR 1412 - SR 1336	1.64	22	60	12000	1170	2200	ADQ	ADQ
sr 1412 (NORTHAM RD) SR 1418 - ASLINGTON ST	.81	18	60	9000	1170	2200	ADQ	ADQ

TABLE C2 cont'd

MAJOR THOROUGHFARES		KISTING		CAPACITY			RECOM	
FACILITY & SECTION	X- DIST mi	SECTION RDWY		CURRENT (FUTURE)	1994 ADTS	2020 ADTS	X - SE RDWAY (ULT)	ROW (ULT)
ASLINGTON ST US 220 - NORTHAM RD	.71			11000	2100	3200	ADQ	ADQ
SR 1005 (PRISON CAMP RD) SR 1303 - US 74	2.63	18	60	8500	1300	2100	ADQ	ADQ
SR 1336 (BILLY COVINGTON RD) US 220 - SR 1418	.55	22	60	12000	950	1500	ADQ	ADQ
SR 1650 (LONG DR) SR 1903 - SR 1624	1.02	20	60	9500	6500	9750		
SR 1646 (LONG DR) US 1 - SR 1624	1.26	37	60	16000	16300	22700	60 (N)	100
WASHINGTON ST (HMLT) NC 177 - GREEN ST	.16	~-		8000	3000	6000	TP	TP
SR 1700 (E.V. HOGAN) NC 177 - DEAD END	.79	22	100	12000	50	200	ADQ	ADQ
RIEGEL RD US 1 - DEAD END	1.30			11000	250	500	ADQ	ADQ
SR 1424 (ROBERDEL RD) SR 1423 - US 1	1.21	20	60	10500	3200	5100	ADQ	ADQ
SR 1657 (HOOD ST) SR 1497 - SR 1648 (Via CLARK ST)	.72			11000	1200	2500	ADQ	ADQ
PICKETT ST SR 1648 - US 74	.17			11000	1000	2500	ADQ	ADQ
DAVIS ST (ROCKHM) SR 1966 - SR 1903	.16							
SR 1419 (STEELE ST) ASLINGTON - US 1	.61	22	60	11500	2000	4000	ADQ	ADQ

TABLE C2 cont'd

MAJOR THOROUGHFARES FACILITY & SECTION		KISTING SECTIO RDWY ft	ON	CAPACITY CURRENT (FUTURE)	1994 ADTS	2020 ADTS	RECOMN X - SH RDWAY (ULT)	
SR 1124 (MIDWAY RD) SR 1130 - 0.61 mi E SR 1130 - COLE AV	.61	24	60 60	12500 8500	900	2100	ADQ ADQ	ADQ ADQ
SR 1405 (N LEE ST) McNAIR ST - GREENE ST	1.18	18	60	8000	2150	5000	ADQ	ADQ
MANESS AV/4th AV US 74 - US 220 (via N LEE ST)	.80			11000	2000	3500	ADQ	ADQ

APPENDIX D CONVERSION FACTORS

	TABLE D-1 CONVERSION TABLE									
English Units		S.I. Units	Abbreviation							
1 inch	equals	25 millimeters	(mm)							
1 foot	equals	0.3 meters	(m)							
1 mile	equals	1.6 kilometers	(km)							
1 acre	equals	2.47 hectares	(hect)							

TABLE D- METRIC EQUIV	_
1 millimeter equals	0.001 meters
1 kilometer equals	1000 meters
1 hectare equals	10,000 square meters

STATE LIBRARY OF NORTH CAROLINA

3 3091 00598 6401