

Modulhandbuch des Masterstudiengangs Verfahrenstechnik/ Chemieingenieurwesen

basierend auf den Ausführungsbestimmungen vom 04.05.2021

Stand: 21.06.2022

Inhaltsverzeichnis

Abkürzungsverzeichnis	6
Pflichtmodule	7
Bioverfahrenstechnik I	7
Chemische Reaktionstechnik II	9
Computational Fluid Dynamics für Verfahrenstechnik	11
Elektrochemische Verfahrenstechnik	13
Gruppenarbeit	15
Masterarbeit	17
Mechanische Verfahrenstechnik II	19
Modellierung und Simulation verfahrenstechnischer Systeme	21
Strömungsmechanik II	23
Thermische Trennverfahren II	26
Studienrichtung Chemische Prozesse - Pflichtmodule	28
Fachpraktikum Chemische Prozesse	29
Heterogenkatalytische Gas-Feststoffreaktionen	33
Nichtkatalytische Mehrphasenreaktionen	35
Rechnergestützte Auslegung von chemischen Reaktoren	37
Studienrichtung Energie - Pflichtmodule	39
Fachpraktikum Energie	40
Hochtemperaturtechnik zur Stoffbehandlung	44
Verbrennungstechnik	46
Wärmeübertragung II	48
Studienrichtung Neue Materialien - Pflichtmodule	50
Anwendung nanoskaliger Pulver	51
Charakterisierung von Nanopartikeln	54
Einführung in nanoskalierte Materialien	57
Fachpraktikum Neue Materialien	59
Studienrichtung Life Science Engineering - Pflichtmodule	62
Anwendung nanoskaliger Pulver	63
Bioverfahrenstechnik II	66
Fachpraktikum Life Science Engineering	68
Pharmaverfahrenstechnik	71

Wahlpflichtkatalog "Vt/Ciw"	73
Abgasreinigungstechnik in Theorie und Praxis	74
Batterien, Brennstoffzellen und Elektrolyse: Praxisbeispiele der Elektrochemischen Verfahrenstechnik	76
Basic Principles of Molecular Dynamics	78
Besondere physikalische Eigenschaften von Polymeren und Polymercomposites sowie deren Verarbeitung	
Bioverfahrenstechnik III - Einführung in die Phytotechnologie	83
Bioverfahrenstechnik IV - Spezielle Aspekte der Phytotechnologie	85
Brennstofftechnik I	87
Brennstoffzellen II	89
Chemieindustrie im Wandel - Eine praxisorientierte Einführung in die Strategieentwicklung umsetzung	
Chemische Energiespeicher und -systeme	
Chemische Prozesse und Märkte	
Computergestützte Thermodynamik für die Material- und Prozessentwicklung	
Dynamische Simulation mit Aspen Custom Modeler	99
Einführung in die Prozessmodellierung für Ingenieure	101
Elektrische Energieerzeugung	104
Elektrische Energietechnik	106
Elektrische Energieverteilung	109
Elektrochemie	111
Energierecht	113
Energiesysteme	115
Energiewandlungsmaschinen I	117
Energiewandlungsmaschinen II	119
Gasphasensynthese nanoskaliger Materialien	121
Gemischphasen-Thermodynamik	124
Grenzflächenprozesse	127
Grundlagen der Kälte- und Wärmepumpentechnik	129
Grundstoffindustrie und Energiewende	131
Grundzüge der Biochemie	134
Industrielle Anwendung der verfahrenstechnischen Prozessanalyse und Prozessoptimierung	136
Ionische Flüssiakeiten	138

Kunststoffverarbeitung I	140
Kunststoffverarbeitung II	142
Mechanische Trennverfahren I (Grundlagen der Entstaubung)	144
Mechanische Trennverfahren II (Fest-Flüssig-Trennung)	147
Membrantechnik I	149
Multifunktionale Leichtbauwerkstoffe	151
Numerische Strömungsmechanik	153
Numerical Fluid Mechanics	155
Partikelmesstechnik	157
Pflanzenbasierte, ressourceneffiziente Verfahrenstechnik zur Gewinnung wertvolle den Perspektiven von Bio- und Ingenieurwissenschaften	
Planung und Bau von Chemieanlagen	162
Polymer Thermodynamik	164
Polymerwerkstoffe I	166
Praxis der Heterogenen Katalyse	168
Projektierung von Apparaten zur Stoffübertragung	170
Design of Instruments for Mass Transfer	170
Prozessintensivierung	172
Prozesstechnik	174
Reactive Flows in High Temperature Processes	176
Sicherheitstechnik in der Chemischen Industrie	178
Stationäre Simulation mit Aspen Plus	180
Technische Chromatographie	182
Thermische Behandlung von Rest- und Abfallstoffen	184
Thermische Prozesse in Kraftwerken	186
Thermodynamik III	188
Thermo- und Partikeldynamik disperser Systeme	190
Turbulente Strömungen (+)	192
Anerkennung Auswärtige Qualifikationen – Vt/Ciw	194
Wahlpflichtkatalog "Fachübergreifende Inhalte"	196
Arbeitsmedizin/Arbeitshygiene und Umweltmedizin für Ingenieure	197
Chinesisch I	199
Energieflüsse, Stoffkreisläufe und Globale Entwicklung	201
Interkulturelle Kommunikation	203

Nachhaltigkeit und Globaler Wandel2	205
Life Cycle Assessment (Ökobilanz)	207
Recht der erneuerbaren Energien	209
Einführung in den gewerblichen Rechtsschutz, insbesondere Patentrecht2	211
3D-Druck in der Verfahrenstechnik	214
Technisches Englisch	216
Technical Presentations in English	218
Technical Writing	220
Wirtschaftsenglisch I	222
Anerkennung Auswärtige Qualifikationen – Fächerübergreifende Inhalte	224

•••

Abkürzungsverzeichnis

B.Sc. Bachelor of Science

BA Bachelorarbeit

E Exkursion
h Stunden

LN Leistungsnachweis

LP Leistungspunkte gemäß European Credit Transfer System

LV Lehrveranstaltung

M.Sc. Master of Science

MA Masterarbeit

MP Modulprüfung

MTP Modulteilprüfung

P Praktikum

PV Prüfungsvorleistung

S Seminar

SS Sommersemester

SWS Semesterwochenstunden

T Tutorium
Ü Übung

V Vorlesung

WS Wintersemester

Pflichtmodule

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Bioverfahrenstechnik I	Bioprocess Engineering I

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Verfahrenstechnik/Chemieingenieurwesen						
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer			
Prof. DrIng. Jochen Strube		Fakultät für Mathematik/Informatik				
		und Maschinenbau				
6. Sprache	7. LP	8. Dauer	9. Angebot			
Deutsch	4	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden lernen die Grundlagen der Bioverfahrenstechnik kennen und können diese nennen. Die Studierenden können theoretische Grundlagen anwenden um bioverfahrenstechnische Grundoperationen, Prozesse und Apparate auszulegen. Die Studierenden sind in der Lage, verschiedene Prozessstrategien einzuordnen und im Hinblick auf ihre Eignung für eine bestimmte bioverfahrenstechnische Fragestellung zu beurteilen.

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Bioverfahrenstechnik I (Bioprocess Engineering I)	Prof. DrIng. Jochen Strube	W 8627	2V/1Ü	3	42 h / 78 h
	Summe: 3 42 h / 78 h				42 h / 78 h	
Zu Nr. 1:						
18a	18a. Empf. Voraussetzungen Thermische Trennverfahren					
	Grundlagen der Mikrobiologie, Biotechnologie, Gentechnik			logie, Gentechnik		

18a. Empf. Voraussetzungen	Thermische Trennverfahren			
19a. Inhalte	 Grundlagen der Mikrobiologie, Biotechnologie, Gentechnik Upstream, Fermentation, Bioreaktionstechnik Downstream, Produktaufkonzentrierung und -reinigung Bioanalytik Biothermodynamik Systembiologie Anlagen- und Prozesstechnik, GMP Beispielprozesse 			

20a. Medienformen	- Vorlesung
ZVa. Mediemormen	- begleitendes Skript
	- Skript.
21a. Literatur	- Berg, Jeremy: Biochemie, Spektrum Akademischer Verlag: Heidelberg (5. Auflage) 2003.
	- Chmiel, Horst: Bioprozesstechnik, Spektrum Akad. Verl.: Heidelberg (3. neu bearb. Aufl.) 2011.
	- Glick, Bernard: Molekulare Biotechnologie, Spektrum Akademischer Verlag: Heidelberg 1995 (Standardwerk).
	- Renneberg, Reinhard: Biotechnologie für Einsteiger, Spektrum, Akad. Verl.: Heidelberg (3. neu bearb. Aufl.) 2010.
	- Schlegel, Hans: Allgemeine Mikrobiologie, Georg Thieme Verlag: Stuttgart (8. Auflage) 2007.
	- Wink, Michael: Molekulare Biotechnologie, Konzepte, Methoden und Anwendungen: Wiley – VCH: Weinheim (2. neu bearb. Aufl.) 2011.
22a. Sonstiges	

Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote
1	Bioverfahrenstechnik I		MP	4	benotet	100 %
29. Prüfungsform / Voraussetzung Klausur (90			Minuten) > ca. 15 Teilnehmer, mündliche Prüfung (30			
für die V	die Vergabe von LP Minuten, Einzelprüfung) < ca. 15 Teilnehmer					
30. Verantwortliche(r) Prüfer(in) Prof. Drlng. Jo			ochen Str	ube		
31. Prüfungsvorleistungen Keine						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Chemische Reaktionstechnik II	Chemical Reaction Engineering II

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Verfahrenstechnik/Chemieingenieurwesen						
4. Zuständige Fakultät	5. Modulnummer					
Fakultät für Mathematik/Informatik und Maschinenbau						
8. Dauer	9. Angebot					
[X] 1 Semester	[] jedes Semester					
[] 2 Semester	[X] jedes Studienjahr					
	[] unregelmäßig					
	4. Zuständige Fakultät Fakultät für Mathematik/Informatik und Maschinenbau 8. Dauer [X] 1 Semester					

19a. Inhalte

Die Studierenden sind in der Lage, anspruchsvolle Aufgabenstellungen aus dem Bereich der chemischen Reaktionstechnik zu bearbeiten, die deutlich über die Grundlagen hinausgehen.

- Sie kennen apparative Aspekte und Bauformen von unterschiedlichen Reaktoren und können weitere Terme der Energiebilanz von Reaktoren (Rührleistung, Druckverlust) berechnen, die durch die Bauformen bedingt sind und die praktische Bedeutung für die technische Auslegung und den wirtschaftlichen Betrieb haben.
- Die Studierenden kennen experimentelle Methoden zur Bestimmung des Verweilzeitverhaltens chemischer Reaktoren und können die vom Idealverhalten abweichende Verwendung realer Reaktoren auf der Basis von unterschiedlichen Modellvorstellungen beschreiben.
- Wegen des besonderen Gefahrenpotenzials bei Reaktionen mit starker Wärmeentwicklung kennen die Studierenden die Begriffe der Stabilität und Sensitivität von Reaktoren und können mathematische Berechnungen im Hinblick auf den sicheren Betrieb chemischer Reaktoren durchführen.
- Die Studierenden kennen die Grundprinzipien der Beschreibung von Reaktionskinetik und Transportvorgängen in mehrphasigen Systemen am Beispiel von heterogen katalysierten Gasphasenreaktionen.

Leh	Lehrveranstaltungen					
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium
1	Chemische Reaktionstechnik II (Chemical Reaction Engineering II)	Prof. Drlng. T. Turek	S 8401	2V/2Ü	4	56 h / 124 h
	Summe: 4 56 h / 124 h					56 h / 124 h
Zu	Zu Nr. 1:					
18a	I 8a. Empf. Voraussetzungen Chemische Reaktionstechnik I					

Temperatur-

Reaktoren

und Konzentrationsführung

chemischen

	2. Bauformen chemischer Reaktoren (Rührkessel, Rohrreaktoren)					
	· · · · · ·					
	3. Stabilität und Sensitivität chemischer Reaktoren					
	4. Verweilzeitverhalten idealer und realer Reaktoren (Kaskadenmodell, Dispersionsmodell)					
	5. Kinetik und Reaktionstechnik heterogen katalysierter chemischer Reaktionen					
	Zu allen Themengebieten werden begleitende Hausübungen angeboten.					
	- Tafel					
20a. Medienformen	- Folien					
	- Skript					
	- Skript "Chemische Reaktionstechnik II".					
	- Baerns, Manfred u. a.: Technische Chemie, Wiley-VCH: Weinheim (2. erweit. Auflage) 2013.					
21a. Literatur	- Baerns, Manfred/Hofmann, Hans/Renken, Albert: Chemische Reaktionstechnik, Thieme: Stuttgart u. a. (3. durchges. Auflage) 1999.					
	- Emig, Gerhard/Klemm, Elias: Chemische Reaktionstechnik, Springer Vieweg: Berlin (6. neu bearb. Auflage) 2017.					
22a. Sonstiges						

Studie	Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Chemische Reaktionstechnik II	ne Reaktionstechnik II MP 6			Benotet	100 %	
für die Vergabe von LP ca. 30 Minu in Form vo Studierende			Dauer, in erständnis bei erfolg t. Bei eine	der die sfragen reicher er Hörer	wesentlichen In behandelt werd Bearbeitung dei	llichen Prüfung von halte der Vorlesung en. Dabei wird den Hausübungen ein auf eine schriftliche	
30. Verantwortliche(r) Prüfer(in)		Prof. DrIng. T. Turek					
31. Prüfungsvorleistungen		Keine					

1a. Modultitel (deutsch)Computational Fluid Dynamics für Verfahrenstechnik

1b. Modultitel (englisch)Computational Fluid Dynamics for Process Engineering

2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Verfahrens	technik/Chemieinge	enieurwesen			
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer		
Prof. DrIng. Gre	gor Wehinger	Fakultät für Mathematik/Informatik			
		und Maschinenbau			
6. Sprache	7. LP	8. Dauer	9. Angebot		
Englisch	4	[X] 1 Semester	[] jedes Semester		
		[] 2 Semester	[X] jedes Studienjahr		
			[] unregelmäßig		

10. Lern-/Qualifikationsziele des Moduls

The students are able to:

- describe and apply the mathematical and physical fundamentals of computational fluid dynamics (CFD),
- execute independently and thoroughly the commercial CFD software STAR-CCM+ (pre-processing, solving, post-processing),
- to develop in team work a CFD model for an unfamiliar process engineering problem and based on that to investigate alternative reactor designs,
- to analyze and judge on the obtained results, also by applying virtual reality (VR),
- identify and evaluate errors and uncertainties of CFD models,
- visualize, present, and discuss critically with experts their CFD results in form of a scientific poster, as well as in form of a scientific paper.

Leh	Lehrveranstaltungen					
	12. Lehrveranstaltungstitel	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium
1	Computational Fluid Dynamics für Verfahrenstechnik (Computational Fluid Dynamics for Process Engineering)	Prof. DrIng. Gregor Wehinger	W 8421	2V/1Ü	3	42 h / 78 h
		•		Summe:	3	42 h / 78 h
Zu	Zu Nr. 1:					
18a	18a. Empf. Voraussetzungen Technische Mechanik I-II, Strömungsmechanik I, Wärmeübertragung					Värmeübertragung
19a	1. Conservation laws of momentum, mass, and heat 2. The finite volume method, solution algorithms, and bounda					

conditions

	3. Meshing			
	4. CFD modeling of chemical and process engineering applications			
	5. Using virtual reality in CFD			
	6. Basics of designing a scientific poster and writing a scientific paper			
	- Tafel			
20a. Medienformen	- Folien			
	- Computerarbeit			
	- Ferziger, Joel H./Peric, Milovan: Numerische Strömungsmechanik, Springer: Berlin/Heidelberg 2008.			
21a. Literatur	- Lecheler, Stefan: Numerische Strömungsberechnung. Schneller Einstieg in ANSYS CFX 18 durch einfache Beispiele, Springer Vieweg: Wiesbaden (4. überarb. und aktual. Auflage) 2018.			
	 Versteeg, Henk K./Malalasekera, W.: An Introduction to Computational Fluid Dynamics, The Finite Volume Method, Pearson: Harlow u. a. (2. Auflage) 2007. 			
22a. Sonstiges				

Studie	Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Computational Fluid Dynamics Verfahrenstechnik	МР	4	Benotet	100 %		
	ungsform / Voraussetzung /ergabe von LP	Praktische und	theoretise	che Arbe	eit (APO§14, d) /	Absatz 6)	
30. Verantwortliche(r) Prüfer(in)		Prof. DrIng. Gregor Wehinger					
31. Prüfungsvorleistungen		Keine					

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Elektrochemische	Electrochemical Engineering
Verfahrenstechnik	

2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Verfahrenstechnik/Chemieingenieurwesen					
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer		
Prof. U. Kunz		Fakultät für Mathematik/Informatik			
		und Maschinenbau			
6. Sprache	7. LP	8. Dauer	9. Angebot		
Deutsch	4	[X] 1 Semester	[] jedes Semester		
		[] 2 Semester	[X] jedes Studienjahr		
			[] unregelmäßig		

Die Teilnehmer sollen die vorgestellten elektrochemischen Reaktionen beschreiben, begreifen, einsetzen und die vorgestellten Grundlagen elektrochemischer Reaktionen auf unbekannte Stoffsysteme anwenden können. Die Teilnehmer sollen Kenntnisse und Fähigkeiten erwerben, die zur Ermittlung chemischer und reaktionstechnischer Daten für eine elektrochemische Reaktion notwendig sind. Sie sollen Berechnungen durchführen können, wie sie in der industriellen Praxis gefordert werden. Die Studierenden werden nach Teilnahme dieser Vorlesung in der Lage sein, die beispielhaft vermittelten Grundlagen auf andere elektrochemische Systeme zu transferieren und technische Probleme in der praktischen Anwendung zu analysieren, Schlüsse zu ziehen und Lösungen zu entwickeln. Die Studierenden werden zur eigenständigen vertieften Bearbeitung angebotener Lehrinhalte angeleitet.

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Elektrochemische Verfahrenstechnik (Electrochemical Engineering)	Prof. U. Kunz	W 8416	2V/1Ü	3	42 h / 78 h
				Summe:	3	42 h / 78 h
7	N _F 1.					

18a. Empf. Voraussetzungen	Chemische Reaktionstechnik I und II				
19a. Inhalte	Damit die unter 10. genannten Lern- und Qualifikationsziele erreicht werden, werden den Studierenden Kenntnisse angeboten in: - Elektrochemische Grundlagen - Elektrische Leiter, Faradaysche Gesetze - Elektrolytische Doppelschicht - Elektrochemische Kinetik				

	- Elektrochemische Katalyse				
	- Bilanzen und Transportprozesse				
	- Elektrochemische Reaktoren				
	- Elektrochemische Energieerzeugung				
	- Elektrochemische technische Synthesen				
20 14 11 6	- Skript				
20a. Medienformen	- Beispielaufgaben				
	 Schmidt, Volkmar M.: Elektrochemische Verfahrenstechnik. Grundlagen, Reaktionstechnik, Prozessoptimierung, Wiley VCH: Weinheim 2012. 				
21a. Literatur	 Wehinger, Gregor D./Kunz, Ulrich/Turek, Thomas: Reaktoren für spezielle technisch-chemische Prozesse. Elektrochemische Reaktoren, in: Wladimir Reschetilowski (Hg.): Handbuch Chemische Reaktoren. Grundlagen und Anwendungen der Chemischen Reaktionstechnik, Springer Spektrum: Berlin/Heidelberg 2018. 				
22a. Sonstiges					

Studie	Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an	
23. Nr.	23. Nr. 24. Zugeordnete Lehrveran		PArt	LP	Benotung	der Modulnote	
1	Elektrochemische Verfahrenste	MP	4	benotet	100 %		
29. Prüf	29. Prüfungsform / Voraussetzung Klausur vo			er, bei	weniger als 10 T	eilnehmern pro	
für die V	für die Vergabe von LP		Semester eventuell auch mündliche Prüfung.				
30. Verantwortliche(r) Prüfer(in)		Prof. U. Kunz					
31. Prüfungsvorleistungen		Keine					

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Gruppenarbeit	Group Work

2. Verwendbar	keit des Moduls i	n Studiengängen	
M.Sc. Verfahrens	technik/Chemieinge	enieurwesen	
3. Modulveran Prof. DrIng. T. T	` '	4. Zuständige Fakultät Fakultät für Mathematik/Informatik und Maschinenbau	5. Modulnummer
6. Sprache	7. LP	8. Dauer	9. Angebot
Deutsch	10	[X] 1 Semester	[X] jedes Semester
		[] 2 Semester	[] jedes Studienjahr
			[] unregelmäßig

Die Studierenden

- wenden ihre Kenntnisse aus den Pflicht- und Wahlpflichtvorlesungen zu verfahrenstechnischen Fragestellungen in einer Gruppe unter Projektbedingungen auf eine in jedem Semester neu vergebene und aktuelle Themen und Forschungsrichtungen aufgreifende Aufgabenstellung an.
- Sie analysieren zunächst die Problemstellung und beschaffen sich die zur Lösung der Aufgabe erforderlichen Informationen (wissenschaftliche Literatur, Firmenangaben, wirtschaftliche Daten).
- Sie organisieren dabei ihren zeitlichen und personellen Einsatz eigenständig, wobei Entscheidungen auch auf der Grundlage beschränkter Informationen innerhalb eines festgelegten Zeitraums getroffen werden müssen.
- Damit lernen die Studierenden reale Projektarbeit kennen, die das wichtigste Element der modernen Berufswelt des Ingenieurs darstellt.
- Die in einem Bericht und in Form einer Präsentation zusammengefassten Ergebnisse werden von den Studierenden analysiert und im Hinblick auf die technische Umsetzbarkeit kritisch bewertet.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstite	I 13.	14.	15.	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium	
1	Gruppenarbeit	Prof. DrIng. T.	W/S			84 h / 216 h	
•	(Group Work)	Turek	8572		6		
	Summe:					84 h / 216 h	
Zu	Nr. 1:						
18a	Empt Voyaussatzumaan	Chemische Reaktior Verfahrenstechnik II		•	Trennv	erfahren II, Mechanische	
Die Studierenden haben die Aufgabe, eine verfahrenstechnische Anlaplanen. Die Arbeit wird in Teams von 3 bis 6 Studierenden durchge die sich regelmäßig treffen und über den Arbeitsfortschritt berichte Arbeit wird mit einem Bericht und einem Abschlussvortrag beendet.				dierenden durchgeführt, ortschritt berichten. Die			

	1. Auswahl einer Verfahrensvariante				
	2. Erstellung von Massen- und Energiebilanzen				
	3. Erarbeitung eines Verfahrensfließbildes				
	4. Auslegung der Hauptapparate				
	5. Wirtschaftlichkeitsbetrachtung				
20 14 11 6	- Bericht				
20a. Medienformen	- Präsentation				
21a. Literatur	Je nach Aufgabenstellung.				
22a. Sonstiges	Die Studierenden haben die Möglichkeit, die Inhalte auch im Rahmen von etablierten Wettbewerben für Studierende der Verfahrenstechnik (chemPLANT, ChemCar) umzusetzen und damit die Gruppenarbeit abzuschließen.				

Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote
1	Gruppenarbeit		MP	10	benotet	100 %
29. Prüfungsform / Voraussetzung		Bericht, Präsentation				
für die V	/ergabe von LP					
			r. A. Webe			ube, Prof. DrIng. T. er, Prof. Dr. Michael
31. Prüf	ungsvorleistungen	Keine				

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Masterarbeit	Master Thesis

2. Verwendbar	keit des Moduls i	n Studiengängen	
M.Sc. Verfahrens	technik/Chemieinge	enieurwesen	
3. Modulverant	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer
Prof. DrIng. T. T	urek	Fakultät für Mathematik/Informatik und Maschinenbau	
6. Sprache	7. LP	8. Dauer	9. Angebot
Deutsch	30	[X] 1 Semester	[X] jedes Semester
		[] 2 Semester	[] jedes Studienjahr
			[] unregelmäßig

Die Masterarbeit befähigt die Studierenden unter Anleitung zum selbstständigen wissenschaftlichen Arbeiten in einem Teilgebiet der Verfahrenstechnik oder des Chemieingenieurwesens. Durch den erfolgreichen Abschluss der Masterarbeit wird insgesamt sichergestellt, dass die Studierenden die für den Übergang in den Beruf notwendigen vertieften Fachkenntnisse erworben haben, die Zusammenhänge des Faches überblicken und die Fähigkeit besitzen, anspruchsvolle Probleme des Fachgebietes mit wissenschaftlichen Methoden zu bearbeiten.

- Die Studierende analysieren innerhalb einer vorgegebenen Frist eine anspruchsvolle Aufgabenstellung aus dem gewählten Schwerpunkt, identifizieren geeignete Modelle und Methoden, entwickeln sie gegebenenfalls entsprechend des Arbeits- und Erkenntnisfortschritts weiter und setzen sie zur Lösung der Aufgabe ein.
- In der schriftlichen Ausarbeitung wenden die Studierenden ihre Kenntnisse im wissenschaftlichen Schreiben an und demonstrieren in der Präsentation im Rahmen eines wissenschaftlichen Seminars ihre Fähigkeit, fachliche Themen in geeigneter Form aufzuarbeiten und verständlich darzustellen.

Lehrveranstaltungen							
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium	
1	Masterarbeit + Kolloquium (Master Thesis + Colloquium)	Dozenten aus der Lehreinheit Verfahrens- technik		12 SWS	12	168 h / 732 h	
				Summe:	12	168 h / 732 h	
Zu	Nr. 1:				•		
18a. Empf. Voraussetzungen Nachweis von mindestens 75 CP							
19a	Die Studierenden erarbeiten anhand der Masterarbeit erwissenschaftliche Fragestellung innerhalb eines Forschungsprojektes TH. Clausthal selbstständig und legen die Erkenntnisse in eine					Forschungsprojektes der	

Ausarbeitung dar.

TU Clausthal selbstständig und legen die Erkenntnisse in einer

20a. Medienformen	Textsystem mit Formelsatz
21a. Literatur	Bekanntgabe in Abhängigkeit von der Themenstellung.
22a. Sonstiges	

Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Masterarbeit + Kolloquium	MP	30	benotet	100 %		
29. Prüf	ungsform / Voraussetzung	Schriftliche Aus	che Ausarbeitung, Präsentation von ca. 30 Minuten				
für die V	für die Vergabe von LP		(einschließlich Diskussion) im Rahmen eines Seminars				
30. Verantwortliche(r) Prüfer(in)		Dozenten aus der Lehreinheit Verfahrenstechnik					
31. Prüfungsvorleistungen		Keine					

1a. Modultitel (deutsch)1b. Modultitel (englisch)Mechanische Verfahrenstechnik IIParticle Technology II

2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Verfahrens	technik/Chemieinge	enieurwesen			
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer		
Prof. A. Weber		Fakultät für Mathematik/Informatik			
		und Maschinenbau			
6. Sprache	7. LP	8. Dauer	9. Angebot		
Deutsch	6	[X] 1 Semester	[] jedes Semester		
		[] 2 Semester	[X] jedes Studienjahr		
			[] unregelmäßig		

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden sind in der Lage

- die Transportmechanismen von Partikeln in Gasen, Flüssigkeiten und Schüttgütern zu verstehen
- die wichtigsten Apparate zur Realisierung des Partikeltransports zu kennen und deren Funktionsweise zu verstehen
- die Auslegung von Silos und Filteranlagen für einfache Beispiele durchzuführen
- den Einfluss der verschiedenen Grundoperationen auf die Evolution der Partikelgrößenverteilung mittels Populationsbilanzen zu beschreiben
- die Dimensionsanalyse an Beispielen aus der Mechanischen Verfahrenstechnik zu verstehen
- anwendungsorientierte Aufgaben (in Hausübungen) mit dem in der Vorlesung erworbenen Wissen eigenständig zu lösen

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
	Mechanische Verfahrenstechnik					
1	Ш	Prof. A. Weber	S 8604	2V/2Ü	4	56 h / 124 h
	(Particle Technology II)					
		•		Summe:	4	56 h / 124 h
Zu Nr. 1:						
18a	18a. Empf. Voraussetzungen Kenntnisse Mechanische Verfahrenstechnik I					

18a. Empf. VoraussetzungenKenntnisse Mechanische Verfahrenstechnik I1. Schüttgutmechanik
2. Grundlagen der Gasentstaubung
3. Grundlagen der Fest-Flüssig-Trennung
4. Populationsbilanzen
5. Dimensionsanalyse in der Mechanischen Verfahrenstechnik

20a. Medienformen	PräsentationGedrucktes Skript
	- Tafel
21a. Literatur	 Skript. Schubert, Heinrich: Handbuch der mechanischen Verfahrenstechnik. Band I + II, Wiley-VCH: Weinheim (1. Nachdruck) 2008. Zlokarnik, Marko: Scale-up in Chemical Engineering, Wiley-VCH: Weinheim (2. Auflage) 2006.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Mechanische Verfahrenstechnil	k II	MP	6	benotet	100 %	
29. Prüf	ungsform / Voraussetzung	Klausur (120 min)					
für die V	ergabe von LP						
30. Vera	ntwortliche(r) Prüfer(in)	Prof. A. Weber					
31. Prüf	ungsvorleistungen	Keine					

1a. Modultitel (deutsch)1b. Modultitel (englisch)Modellierung und SimulationProcess Modeling and Simulationverfahrenstechnischer Systeme

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Verfahrenstechnik/Chemieingenieurwesen						
4. Zuständige Fakultät	5. Modulnummer					
Fakultät für Mathematik/Informatik						
und Maschinenbau						
8. Dauer	9. Angebot					
[X] 1 Semester	[] jedes Semester					
[] 2 Semester	[X] jedes Studienjahr					
	[] unregelmäßig					
	4. Zuständige Fakultät Fakultät für Mathematik/Informatik und Maschinenbau 8. Dauer [X] 1 Semester					

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden können die verfahrenstechnischen Simulationsmethoden unterscheiden und aufzählen. Sie können die hierfür grundlegende Numerik herleiten, beschreiben und anwenden.

Sie können die Zusammenhänge einer stationären, rigorosen und dynamischen Simulation analysieren, beschreiben und unterscheiden.

Die Studierende sind in der Lage die genannten Grundlagen anzuwenden und verfahrenstechnische Systeme zu erstellen und simulieren.

zu e	zu erstellen und simulieren.						
Leh	rveranstaltungen						
11.	12. Lehrveranstaltungstite	l 13.	14.	15.	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium	
	Modellierung und Simulation						
	verfahrenstechnischer Systeme	Prof. DrIng.	W 0633	20.444.11	3	42 b / 70 b	
1	(Process Modeling and	Jochen Strube	W 8633	2V/1Ü		42 h / 78 h	
	Simulation)						
				Summe:	3	42 h / 78 h	
Zu	Nr. 1:						
18a	. Empf. Voraussetzungen	Thermische Trennverfahren I					
		- Verfahrensentwicklung					
		- Methoden der Prozessentwicklung					
		- Statistische Versuchsplanung					
19a	. Inhalte	- Modellerstellung					
		- Numerische Lösung					
		 Modellparamet 	terbestimn	nung			
		- Modell- und Datenvalidierung					

	- Vorlesung
20a. Medienformen	- begleitendes Skript
	- PC-Übungen
	- Skript u. a.
	- Goryanin, Igor I./Goryachev, Andrew B. (Hg.): Advances in Systems
	Biology, Springer Science+Business Media: New York u. a. 2012.
21a. Literatur	- Runkler, Thomas A.: Data Mining. Modelle und Algorithmen
	intelligenter Datenanalyse, Springer Vieweg: Wiesbaden 2015.
	- Siebertz, Karl/van Bebber, David/Hochkirchen, Thomas: Statistische
	Versuchsplanung. Design of Experiments (DoE), Springer Vieweg:
	Berlin (2. Auflage) 2017.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Modellierung und Simulation verfahrenstechnischer Systeme		MP	4	benotet	100 %	
29. Prüf	29. Prüfungsform / Voraussetzung Klausur (90			ca. 15 Te	eilnehmer, münd	dliche Prüfung (30	
für die V	ergabe von LP	Minuten, Einzelprüfung) < ca. 15 Teilnehmer					
30. Verantwortliche(r) Prüfer(in) Prof. DrIng			of. DrIng. Jochen Strube				
31. Prüfungsvorleistungen Keine							

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Strömungsmechanik II	Fluid Mechanics II

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen						
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer				
Prof. DrIng. hab	oil. Gunther	Fakultät für Mathematik/Informatik					
Brenner		und Maschinenbau					
6. Sprache	7. LP	8. Dauer	9. Angebot				
deutsch	4	[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

Die Studierenden...

- können die fundamentalen Erhaltungsgleichungen der Strömungsmechanik sowie deren Gültigkeitsbereich interpretieren
- kennen die Definition von Feldgrößen und substantiellen Größen sowie Lagrangescher und Eulerscher Betrachtungsweisen
- sind in der Lage differentielle und integrale Erhaltungssätze für komplexe Strömungsformen und praktische Anwendungen aufzustellen und zu lösen
- verwenden mathematische Operationen wie Integration, Differentiation, Divergenz, Gradient & Co auf partielle Differentialgleichungen an
- können für newtonsche Fluide relevante Bewegungsgleichungen aus Erhaltungsgleichungen, z.B. die Navier-Stokes-Gleichung aus der klassischen Impulsgleichung, unter Einsatz von Divergenz, Gauß' Integralsatz und Reynolds' Transporttheorem entwickeln, durch sinnvolle Näherungen und Annahmen vereinfachen und mögliche Einschränkungen der Idealisierung einschätzen
- kennen den Gültigkeitsbereich der Potentialtheorie, können durch Superposition von Elementarlösungen reibungsfreie, ebene, stationäre Umströmungsprobleme approximieren und damit die Geschwindigkeiten und Drücke im Strömungsfeld quantifizieren
- können die Entstehung von Auftrieb und induziertem Widerstand an Tragflügeln qualitativ erklären und können Maßnahmen für dessen Optimierung bewerten.
- können Zusammenhänge von Dynamik, Wirbelerhalt, Ablösung, Strukturbildung und Turbulenz beschreiben
- können Strömungsbeiwerte bei Umströmung von stumpfen Körpern klassifizieren
- können Grenzschichten hinsichtlich ihrer Eigenschaften beschreiben und Grenzschichtgleichungen mittels Dimensionsanalyse lösen
- können nicht-/newtonsche Fluide hinsichtlich ihrer rheologische Eigenschaften klassifizieren, Beispiele benennen und Materialgesetze anhand von Modellrheologie entwickeln
- können Techniken zur Messung rheologischer Größen benennen und ihre Funktionsweise beschreiben
- entwickeln ein Verständnis für die Bedeutung der Strömungsmechanik im Alltag sowie bei wärme- und verfahrenstechnischen Prozessen, so dass sie solche Prozesse charakterisieren und auslegen können
- lernen grundsätzliche Möglichkeiten und Grenzen numerischer Strömungssimulation zu bewerten

Lek	Lehrveranstaltungen					
	 12. Lehrveranstaltungstite	el 13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Strömungsmechanik II (Fluid Mechanics II)	Prof. DrIng. habil. Gunther Brenner	W 8008	2V/1Ü	3	42 h / 78 h
				Summe:	3	42 h / 78 h
Zu	Nr. 1:					
18a	. Empf. Voraussetzungen	Vorausgesetzt wei Ingenieurmathemat				/orlesungen Mechanik,
19a	. Inhalte	 Einführung: Motivation, Zusammenfassung strömungsmechanischer Grundlagen, Erhaltungsgleichungen. Rheologie, Materialgesetze in der Strömungsmechanik: Newtonsche und Nicht-Newtonsche Fluide, Viskoelastizität Viskose Schichtenströmungen: Laminare und turbulente Innenströmungen, instationäre Strömungen, Außenströmungen, Klassifizierung, analytische Lösungen, Selbstähnlichkeit Massen und Stofftransport in laminaren und turbulenten Grenzschichten Mehrphasige Strömungen und Strömungen in porösen Medien Strömungsvorgänge in chemischen Apparaten: Kennzahlen, Phänomene, Auslegung 				
20a	. Medienformen	- Skript - Tafel - Folien Die Veranstaltung wird im "inverted classroom" Format durchgeführt. Verlesungsaufzeichnung in doutscher und englischer Sprache				
	. Literatur	 Vorlesungsaufzeichnung in deutscher und englischer Sprache Böhme, Gert: Strömungsmechanik nichtnewtonscher Fluide, Teubner: Stuttgart/Leipzig/Wiesbaden (2. völlig neubearbeitete und erweiterte Auflage) 2000. Spurk, Joseph/Aksel, Nuri: Strömungslehre. Einführung in die Theorie der Strömungen, Springer Verlag: Berlin (9. vollständig überarbeitete Auflage) 2019. 				
22a	. Sonstiges					

Studie	Studien-/Prüfungsleistung					
		25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrveranstaltungen	PArt	LP	Benotung	der Modulnote	
1	Strömungsmechanik II	MP	4	benotet	100 %	

29. Prüfungsform / Voraussetzung	mündliche Prüfung (30 min)
für die Vergabe von LP	
30. Verantwortliche(r) Prüfer(in)	Prof. DrIng. habil. Gunther Brenner
31. Prüfungsvorleistungen	Keine

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Thermische Trennverfahren II	Separation Technology II

2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Verfahrenstechnik/Chemieingenieurwesen					
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer					
akultät für Mathematik/Informatik					
nd Maschinenbau					
. Dauer	9. Angebot				
X] 1 Semester	[] jedes Semester				
] 2 Semester	[X] jedes Studienjahr				
	[] unregelmäßig				
a r	Zuständige Fakultät kultät für Mathematik/Informatik nd Maschinenbau Dauer 1 Semester				

Die Studierenden können die physikalischen Grundlagen für thermische Trennverfahren erläutern. Sie können die Einflüsse von Stoffaustausch, Wärmeaustausch und Gemischphasenthermodynamik auf diese Verfahren beschreiben und bewerten. Die Studierenden können theoretische Auslegungsmethoden auf Basis dieser physikalischen Grundlagen erläutern und anwenden.

Dadurch sind sie in der Lage, Apparate und Prozesse der thermischen Verfahrenstechnik detailliert auszulegen.

Lehrveranstaltungen						
11.	12. Lehrveranstaltungstite	I 13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Thermische Trennverfahren II (Separation Technology II)	Prof. DrIng. Jochen Strube	S 8626	2V/2Ü	4	56 h / 124 h
		•		Summe:	4	56 h / 124 h
Zu	Nr. 1:					
18a	Thermische Trennverfahren I, Praktikumsversuche Destillation, Extraktion und Kristallisation empfohlen					
19a	Aktivität), Phasen-Gleichgewichte (v)/(l) - (g)/(l) - (l)/(l) 2. Stoffübergang: Maxwell-Stefan-Gleichung, Filmtheor Oberflächenerneuerungstheorie, Stoffübergangskoeffizienten etc. 3. Mehrstoff-Rektifikation: Ideale/reale Gemische				(l)/(l) chung, Filmtheorie, oeffizienten etc. sche	
		5. Detaillierte	Auslegun	g von Appara	iten und	l Prozessen
20a	- Vorlesung - begleitendes Skript					

21a. Literatur	- King, Cary Judson: Separation Processes, McGraw-Hill Book Company: New York u. a. (2. Auflage) 1980.
	- Sattler, Klaus/Adrian, Till: Thermische Trennverfahren. Aufgaben und Auslegungsbeispiele, Wiley-VCH: Weinheim (2. Auflage) 2016.
	- Schlünder, Ernst-Ulrich: Einführung in die Stoffübertragung, Vieweg: Braunschweig (2. Auflage) 1996.
	 Stephan, Peter u. a.: Thermodynamik. Grundlagen und technische Anwendungen – Bd. 2.: Mehrstoffsysteme und chemische Reaktionen, Springer Verlag: Berlin/Heidelberg/New York (16. Auflage) 2017.
	 Wesselingh, J. A./Krishna, R.: Mass Transfer in Multicomponent Mixtures, VSSD: Delft 2006.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Thermische Trennverfahren II			6	benotet	100 %	
29. Prüf	29. Prüfungsform / Voraussetzung Klausur (90 Minuten) > ca. 15 Teilnehmer, mündliche Prüfung			dliche Prüfung (30			
für die V	ergabe von LP	Minuten, Einzelprüfung) < ca. 15 Teilnehmer					
30. Vera	ntwortliche(r) Prüfer(in)	Prof. DrIng. Jochen Strube					
31. Prüf	ungsvorleistungen	Keine					

Studienrichtung Chemische Prozesse - Pflichtmodule

Studienrichtung Chemische Prozesse

- Es muss genau eine Studienrichtung ausgewählt werden.
- Mit dem ersten Prüfungsversuch in einem Modul einer Studienrichtung ist die Wahl der Studienrichtung verbindlich. Ein Wechsel der Studienrichtung ist nur möglich, sofern noch keine Prüfungsversuche in einem Modul unternommen wurden bzw. als unternommen gelten. Ein Wechsel ist einmalig möglich und muss rechtzeitig vor Ablegen des neu gewählten Moduls der anderen Studienrichtung schriftlich beim Prüfungsamt beantragt werden.

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Fachpraktikum Chemische	Specialized Internship Chemical
Prozesse	Processes

2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Verfahrenstechnik/Chemieingenieurwesen					
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer					
Prof. Drlng. T. Turek		Fakultät für Mathematik/Informatik und Maschinenbau			
6. Sprache	7. LP	8. Dauer	9. Angebot		
Deutsch	6	[X] 1 Semester	[] jedes Semester		
		[] 2 Semester	[X] jedes Studienjahr		
			[] unregelmäßig		

Die Studierenden sind in der Lage

- fachspezifische ingenieurwissenschaftliche Kenntnisse in Laborversuchen anzuwenden und die Versuche entsprechend auszuwerten und zu dokumentieren,
- Versuche in einer Gruppe arbeitsteilig durchzuführen und dabei erforderliche Arbeitsschritte gemeinsam zu planen und zeitlich aufeinander abzustimmen.

Leh	Lehrveranstaltungen					
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium
1	Verbundanlage Flamenreaktor	Prof. DrIng. T. Turek	W 8466	Р	2	28 h / 32 h
2	Brennstoffzelle - Stoff- und Energiebilanz an Di- rektmethanolbrennstoffzelle	Prof. DrIng. T. Turek	W 8467	Р	2	28 h / 32 h
3	Wieder aufladbare Batterien	Prof. DrIng. T. Turek	W 8468	р	2	28 h / 32 h
4	Bestimmung der Verbrennungsenthalpie	Prof. Dr. M. Fischlschweiger	W 8587	р	2	28 h / 32 h
5	Grundlagen elektrochemischer Kinetik	Prof. DrIng. T. Turek	W 8469	р	2	28 h / 32 h
				Summe:	10	140 h / 160 h
Zu	Zu Nr. 1:					

18a. Empf. Voraussetzungen	Keine	
-	Pflichtversuch 1: Verbundanlage Flammenreaktor (ICVT, IEVB, IMVT)	
	Auswahl von zwei Versuchen aus:	
	Versuch 2: Brennstoffzelle (ICVT)	
	Versuch 3: Wieder aufladbare Batterien (ICVT)	
	Versuch 4: Bestimmung der Verbrennungsenthalpie (IEVB)	
	Versuch 5: Grundlagen elektrochemischer Kinetik (ICVT)	
	Nachfolgend sind die Einzelversuche beschrieben:	
	Versuch 1. W 8466, Verbundanlage Flammenreaktor (ICVT, IMVT)	
	Aus einem flüssigen, titanhaltigen Precursor sollen mittels Flammensynthese Titandioxid-Nanopartikel produziert werden. Dazu wird der Precursor durch ein inertes Trägerfluid in den Reaktionsraum geführt und dort neben der Oxidation von Methan zu Titandioxid umgesetzt. Die Analyse der Verbrennungsgase erfolgt mit Hilfe eines Gaschromatographen. Die aufgenommenen Messdaten sollen dann zur Erstellung einer Massen- und Energiebilanz sowie zur Ermittlung reaktionstechnischer Kenngrößen verwendet werden. Die Titandioxid-Nanopartikel sollen im Anschluss durch gängige Messverfahren charakterisiert werden. Mit Hilfe von BET-Messungen soll die Oberfläche der Nanopartikel bestimmt werden, um daraus die Partikelgröße abzuleiten. Zusätzlich und als Bestätigung der Ergebnisse werden REM/TEM-Aufnahmen angefertigt und es wird die Partikelgrößenverteilung analysiert.	
19a. Inhalte	Versuch 2. W 8467, Brennstoffzelle (ICVT) In Direktmethanolbrennstoffzellen (DMFC) wird die in Methanol und Luftsauerstoff gebundene chemische Energie mit möglichst hoher Ausbeute (Wirkungsgrad) in elektrische Energie gewandelt. Neben anderen Parametern beeinflusst vor allem der Durchtritt (Permeation) von Methanol und Wasser durch die Elektrolytmembran ("Crossover") den Wirkungsgrad bzw. die ohne externe Heizung erreichbare Betriebstemperatur einer DMFC. Die Aufgaben im Praktikumsversuch umfassen, für mehrere unterschiedliche Betriebszustände, jeweils den stationären Betrieb einer DMFC über einen hinreichenden Zeitraum, die Messung der relevanten ein- und austretenden Stoffströme während des stationären Betriebs, die Aufstellung einer Stoffbilanz, mit deren Hilfe insbesondere die Mengenströme des Methanol- und Wasser-Crossovers zu ermitteln sind, sowie die Erstellung einer Energiebilanz zur Ermittlung des Wirkungsgrades.	
	Versuch 3. W 8468, Wieder aufladbare Batterien (ICVT) Verschiedene kommerzielle Batterietypen sollen elektrochemisch verglichen werden. Dazu werden die Batterien an einem Prüfstand unterschiedlich elektrisch belastet. Unter anderem werden Lade- und Entladezyklen aufgenommen sowie verschiedene Verfahren zur Ermittlung des Ladungszustandes sowie des Leistungszustands durchgeführt. Ein Vergleich der unterschiedlichen Speicher soll zeigen, dass nicht jede Art von Batterie für jeden Einsatzzweck geeignet ist. Die Unterschiede sollen von den Teilnehmern durch die Versuche erarbeitet sowie interpretiert werden.	

	Versuch 4. W 8587, Bestimmung der Verbrennungsenthalpie (IEVB)
	In diesem Versuch wird die Verbrennungsenthalpie zweier Stoffe bestimmt. Der Versuch besteht aus 3 Teilen: Im ersten Teil wird mit der Bestimmung der Wärmekapazität des Kalorimeters durch die Messung der Verbrennungswärme eines vorgegebenen Stoffs mit einem bekannten Wert der Verbrennungsenergie begonnen. Im zweiten Teil des Versuchs wird die Wärmekapazität des Kalorimeters benutzt um die Verbrennungsenthalpie eines vorgegebenen Stoffes experimentell zu bestimmen. Im dritten Teil des Versuchs wird die Messung der Verbrennungsenthalpie für einen zweiten vorgegebenen Stoff durchgeführt. In allen Fällen erfolgt die Verbrennung eines Feststoffes in der Sauerstoffatmosphäre bei konstantem Volumen des Reaktors. Die Ergebnisse sollen von den Teilnehmern interpretiert werden.
	Versuch 5. W 8469, Grundlagen elektrochemischer Kinetik (ICVT) Am Beispiel einer ausgewählten elektrochemischen Reaktion sollen die Teilnehmer lernen, wie ein Messsystem für die erfolgreiche Ermittlung reaktionskinetischer Daten aussehen muss. Sie sollen mit diesem Versuchsaufbau eigene Versuche durchführen und dabei Erfahrungen sammeln, die sie auf andere Systeme übertragen können. Innerhalb des Versuchs sollen die Teilnehmer die Potentialabhängigkeit von Durchtrittsreaktionen sowie deren mathematische Beschreibung kennenlernen und die elektrochemische Kinetik der vorgestellten Reaktion ermitteln.
20a. Medienformen	 Gedrucktes Praktikumsskript mit theoretischer Einführung Kolloquien mit handschriftlichen Protokollen schriftliches Abschlussprotokoll
21a. Literatur	Siehe Beschreibung der einzelnen Versuche.
22a. Sonstiges	

Studien-/Prüfungsleistung					
		25.	26.	27.	28. Anteil an
23. Nr.	24. Zugeordnete Lehrveranstaltungen	PArt	LP	Benotung	der Modulnote
1	Verbundanlage Chemische, Mechanische und Energieverfahrenstechnik		2	benotet	1/3
2	Brennstoffzelle - Stoff- und Energiebilanz an Di-rektmethanolbrennstoffzelle		2	benotet	1/3
3	Wieder aufladbare Batterien		2	benotet	1/3
4	Bestimmung der Verbrennungsenthalpie		2	benotet	1/3
5	Grundlagen elektrochemischer Kinetik		2	benotet	1/3
29. Prüfungsform / Voraussetzung Praktikum, Bewertung der praktischen Fähigkeiten der Teilneh mündliche Überprüfung der Grundlagen, die Versuchsdurchführung notwendig sind und die zur Auswertung			ngen, die zur		

Versuchsprotokolls.

Versuchsergebnissen erforderlich sind. Bewertung des schriftlichen

30. Verantwortliche(r) Prüfer(in)	Prof. DrIng. T. Turek, Prof. Dr. M. Fischlschweiger
31. Prüfungsvorleistungen	Keine

1a. Modultitel (deutsch)1b. Modultitel (englisch)Heterogenkatalytische Gas-
FeststoffreaktionenHeterogeneous Catalytic Gas-
Solid Reactions

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer				
Prof. U. Kunz		Fakultät für Mathematik/Informatik					
		und Maschinenbau					
6. Sprache	7. LP	8. Dauer	9. Angebot				
Deutsch	4	[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

10. Lern-/Qualifikationsziele des Moduls

Die Teilnehmer sollen katalytische Reaktionen verstehen, die Grundlagen sachgerecht wiedergeben, begreifen und anwenden sowie die vorgetragenen Grundlagen katalytischer Reaktionen auf unbekannte Stoffsysteme anwenden können. Fachbegriffe und experimentelle Methoden zur Katalysatorcharakterisierung werden den Studierenden bekannt gemacht, so dass die Teilnehmer sie erklären können. Die Teilnehmer sollen Kenntnisse und Fähigkeiten erwerben, die für das Verständnis katalytischer Reaktionen notwendig sind. Die Studierenden sollen nach Teilnahme dieser Vorlesung in der Lage sein, die beispielhaft vermittelten Grundlagen auf andere katalytische Systeme zu transferieren und technische Probleme in der praktischen Anwendung zu analysieren, Schlüsse zu ziehen und Lösungen selbständig zu entwickeln. Die Studierenden werden zur eigenständigen vertieften Bearbeitung angebotener Lehrinhalte angeleitet.

Leh	Lehrveranstaltungen							
	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand		
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium		
1	Heterogenkatalytische Gas- Feststoffreaktionen (Heterogeneous Catalytic Gas- Solid Reactions)	Prof. U. Kunz	W 8406	2V/1Ü	3	42 h / 78 h		
				Summe:	3	42 h / 78 h		
Zu	Zu Nr. 1:							
18a	18a. Empf. Voraussetzungen Grundlagen der chemischen Reaktionstechnik sollten vorhanden sein							
	Damit die unter 10. genannten Lern- und Qualifikationsziele erreich werden erhalten die Teilnehmer Informationen zu folgenden Themen:							

18a. Empf. Voraussetzungen	Grundlagen der chemischen Reaktionstechnik sollten vorhanden sein
19a. Inhalte	Damit die unter 10. genannten Lern- und Qualifikationsziele erreicht werden erhalten die Teilnehmer Informationen zu folgenden Themen: 1. Grundlagen und praktische Bedeutung heterogenkatalytischer
	Reaktionen 2. Katalysatortypen und ihre Herstellung
	, , , ,

Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an	
23. Nr.	23. Nr. 24. Zugeordnete Lehrveran		PArt	LP	Benotung	der Modulnote	
1	Heterogenkatalytische Gas-Feststoffreaktionen			4	benotet	100 %	
29. Prüfungsform / Voraussetzung Klausur von 60 Semester even				•	3	eilnehmern pro	
30. Verantwortliche(r) Prüfer(in)		Prof. U. Kunz					
31. Prüfungsvorleistungen		Keine					

1a. Modultitel (deutsch)1b. Modultitel (englisch)NichtkatalytischeNon-Catalytic MultiphaseMehrphasenreaktionenReactions

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer				
Prof. DrIng. Thomas Turek Fakultät für Mathematik/Informatik und Maschinenbau							
6. Sprache 7. LP		8. Dauer	9. Angebot				
deutsch	4	[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

10. Lern-/Qualifikationsziele des Moduls

19a. Inhalte

- The students are able to analyze the fundamental physical and chemical processes at interfaces and surfaces during non-catalytic multiphase reactions.
- They understand the complex interaction of reaction and mass transport during gas-liquid and gas-solid reactions and are able to develop and apply mathematical models for the treatment of idialized limiting cases.
- The students are able to select reactors for gas-liquid and gas-solid reactions and to design them for isothermal applications.

Leh	Lehrveranstaltungen							
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium		
1	Nichtkatalytische Mehrphasenreaktionen (Non-Catalytic Multiphase Reactions)	Prof. DrIng. Thomas Turek	W 8404	2V/1Ü	3	42 h / 78 h		
		Summe:		3	42 h / 78 h			
Zu	Zu Nr. 1:							
18a	. Empf. Voraussetzungen	Chemische Reaktionstechnik I + II						
	 Mass transfer without chemical reaction Mass transfer with chemical reaction 							

Limiting cases for gas-liquid-reactions

Basic phenomena during gas-solid reactions at single particles

Design of gas-liquid-reactors

3.

4.

5.

	 Reactions of non-porous solids (shrinking core and shrinking particle models) Design of gas-solid reactors
	Additional homework assignments are offered for all topics.
20a. Medienformen	TafelFolienSkript
21a. Literatur	 Skript "Non-Catalytic Multiphase Reactions". Szekely, Julian/Evans, James W./Sohn, Hong Y.: Gas-Solid Reactions, Academic Press: New York u. a. 1976 (Standardwerk). Wesselingh, J. A./Krishna, R.: Mass Transfer in Multicomponent Mixtures, VSSD: Delft 2006. Westerterp, K. R./van Swaaij, W. P. M./Beenackers, A. A. C. M.: Chemical Reactor Design and Operation, John Wiley & Sons: Chichester u. a. (2. Auflage) 1993.
22a. Sonstiges	

Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Nichtkatalytische Mehrphasenr	eaktionen	MP	4	benotet	100 %	
	ungsform / Voraussetzung Vergabe von LP	ca. 30 Minuten in Form von	Dauer, in Verständ	der die Inisfrage	wesentlichen In en behandelt	llichen Prüfung von halte der Vorlesung werden. Bei einer fung ausgewichen	
30. Verantwortliche(r) Prüfer(in)		Prof. DrIng. Thomas Turek					
31. Prüfungsvorleistungen		Keine					

1a. Modultitel (deutsch) Rechnergestützte Auslegung von Computer Aided Design of chemischen Reaktoren

1b. Modultitel (englisch) **Chemical Reactors**

2. Verwendbarkeit des Moduls in Studiengängen								
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
3. Modulveran	3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer							
Prof. DrIng. G. \	Wehinger	Fakultät für Mathematik/Informatik und Maschinenbau						
6. Sprache	7. LP	8. Dauer	9. Angebot					
Englisch 6		[X] 1 Semester	[] jedes Semester					
		[] 2 Semester	[X] jedes Studienjahr					
			[] unregelmäßig					

10. Lern-/Qualifikationsziele des Moduls

The students are able to:

19a. Inhalte

- describe and apply the mathematical and physical fundamentals of chemical reaction engineering models,
- execute independently and thoroughly the commercial software Aspen Custom modeler (ACM),
- to develop in team work a reaction engineering model for an unfamiliar chemical process and solve reactor design problems,
- to analyze and judge on the obtained results by comparison with recent literature,

3. Pore processes

- identify and evaluate errors and uncertainties of the ACM models,
- visualize, present, and discuss critically their reaction engineering results in form of a scientific paper.

Lehrveranstaltungen							
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium	
1	Rechnergestützte Auslegung von chemischen Reaktoren (Computer Aided Design of Chemical Reactors)	Prof. DrIng. G. Wehinger	W 8419	1V/3Ü	4	56 h / 124 h	
				Summe:	4	56 h / 124 h	
Zu Nr. 1:							
18a	18a. Empf. Voraussetzungen Chemische Reaktionstechnik I + II						
10	Introduction to modeling and simulation of chemical reactors Balance equations of chemical reactors						

4. Homogeneous and heterogeneous reactor models

	5. Numerical methods
	6. Reactor design
	- Tafel
20a. Medienformen	- Folien
	- Computerarbeit
	- Skripte Chemische Reaktionstechnik I und II.
21a. Literatur	- Levenspiel, Octave: Chemical Reaction Engineering, Wiley: Hoboken, NJ (3. Auflage) 1999.
	- Wasserscheid, Peter/Jess, Andreas: Chemical Technology - An Integral Textbook, Wiley VCH: Weinheim 2013.
22a. Sonstiges	

Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Rechnergestützte Auslegung von Reaktoren	MP	6	benotet	100 %		
29. Prüf	ungsform / Voraussetzung	Praktische und	theoretise	che Arbe	eit (APO§14, d) A	Absatz 6)	
für die V	für die Vergabe von LP						
30. Verantwortliche(r) Prüfer(in)		Prof. DrIng. G. Wehinger					
31. Prüf	ungsvorleistungen	Keine					

Studienrichtung Energie - Pflichtmodule

Studienrichtung Energie

- Es muss genau eine Studienrichtung ausgewählt werden.
- Mit dem ersten Prüfungsversuch in einem Modul einer Studienrichtung ist die Wahl der Studienrichtung verbindlich. Ein Wechsel der Studienrichtung ist nur möglich, sofern noch keine Prüfungsversuche in einem Modul unternommen wurden bzw. als unternommen gelten. Ein Wechsel ist einmalig möglich und muss rechtzeitig vor Ablegen des neu gewählten Moduls der anderen Studienrichtung schriftlich beim Prüfungsamt beantragt werden.

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Fachpraktikum Energie	Specialized Internship Energy

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer							
Fakultät für Energie- und							
Wirtschaftswissenschaften							
8. Dauer	9. Angebot						
[X] 1 Semester	[] jedes Semester						
[] 2 Semester	[X] jedes Studienjahr						
	[] unregelmäßig						
	4. Zuständige Fakultät Fakultät für Energie- und Wirtschaftswissenschaften 8. Dauer [X] 1 Semester						

Die Studierenden sind in der Lage,

- fachspezifische ingenieurwissenschaftliche Kenntnisse in Laborversuchen anzuwenden und die Versuche entsprechend auszuwerten und zu dokumentieren,
- Versuche in einer Gruppe arbeitsteilig durchzuführen und dabei erforderliche Arbeitsschritte gemeinsam zu planen und zeitlich aufeinander abzustimmen.

Leh	Lehrveranstaltungen						
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium	
1	Verbundanlage Flammenreaktor	Prof. DrIng. T. Turek	W 8466	Р	2	28 h / 32 h	
2	Simulation einer solaren Meerwasserentsalzungsanlage	Prof. Dr. M. Fischlschweiger	S 8566	Р	2	28 h / 32 h	
3	Bestimmung der Verbrennungsenthalpie	Prof. Dr. M. Fischlschweiger	W 8587	Р	2	28 h / 32 h	
4	Bestimmung des Dampf- Flüssig-Gleichgewichtes eines realen Zweistoffgemisches	Prof. Dr. M. Fischlschweiger	W 8589	Р	2	28 h / 32 h	
5	Wieder aufladbare Batterien	Prof. DrIng. T. Turek	W 8468	Р	2	28 h / 32 h	
	Summe: 10 140 h / 160 h						
Zu Nr. 1:							
18a	18a. Empf. Voraussetzungen Keine						

Pflichtversuch 1: Verbundanlage Flammenreaktor (ICVT, IMVT)

Auswahl von **zwei** Versuchen aus:

Versuch 2: Simulation einer solaren Meerwasserentsalzungsanlage (IEVB)

Versuch 3: Bestimmung der Verbrennungsenthalpie (IEVB)

Versuch 4: Bestimmung des Dampf-Flüssig-Gleichgewichtes eines realen Zweistoffgemisches (IEVB)

Versuch 5: Wieder aufladbare Batterien (ICVT)

Nachfolgend sind die Einzelversuche beschrieben:

Versuch 1. W 8466, Verbundanlage Flammenreaktor (ICVT, IMVT)

flüssigen, titanhaltigen Precursor Flammensynthese Titandioxid-Nanopartikel produziert werden. Dazu wird der Precursor durch ein inertes Trägerfluid in den Reaktionsraum geführt und dort neben der Oxidation von Methan zu Titandioxid umgesetzt. Die Verbrennungsgase erfolat Gaschromatographen. Die aufgenommenen Messdaten sollen dann zur Erstellung einer Massen- und Energiebilanz sowie zur Ermittlung reaktionstechnischer Kenngrößen verwendet werden. Die Titandioxid-Nanopartikel sollen im Anschluss durch gängige Messverfahren charakterisiert werden. Mit Hilfe von BET-Messungen soll die Oberfläche der Nanopartikel bestimmt werden, um daraus die Partikelgröße abzuleiten. Zusätzlich und als Bestätigung der Ergebnisse werden REM/TEM-Aufnahmen angefertigt und die Partikelgrößenverteilung analysiert.

19a. Inhalte

Versuch 2. S 8566, Simulation einer solaren Meerwasserentsalzungsanlage (IEVB)

Gegenstand dieses Praktikums ist der Betrieb einer Versuchsanlage, mit der eine solare Meerwasserentsalzungsanlage nach dem Verdunstungsprinzip simuliert werden soll. Ziel des Praktikums ist es, mit den im Praktikum gemessenen Daten eine Energie- und Massenbilanz zu erstellen. Hierzu wird Wasser durch Energiezufuhr erwärmt, anschließend in einem Kühlturm (Verdunster) verdüst und dabei durch Umgebungsluft direkt gekühlt. Ein Teil des Wassers verdunstet und wird mit der Luft als Luftfeuchte ausgetragen. Diese gesättigte feuchte Luft wird in einem nachgeschalteten Wärmeübertrager (Kondensator) gekühlt.

Versuch 3. W/S 8587, Bestimmung der Verbrennungsenthalpie (IEVB)

In diesem Versuch wird die Verbrennungsenthalpie zweier Stoffe bestimmt. Der Versuch besteht aus 3 Teilen: Im ersten Teil wird mit der Bestimmung der Wärmekapazität des Kalorimeters durch die Messung der Verbrennungswärme eines vorgegebenen Stoffs mit einem bekannten Wert der Verbrennungsenergie begonnen. Im zweiten Teil des Versuchs die Wärmekapazität des Kalorimeters wird benutzt um Verbrennungsenthalpie eines vorgegebenen Stoffes experimentell zu bestimmen. Im dritten Teil des Versuchs wird die Messung der Verbrennungsenthalpie für einen zweiten vorgegebenen durchgeführt. In allen Fällen erfolgt die Verbrennung eines Feststoffes in der Sauerstoffatmosphäre bei konstantem Volumen des Reaktors. Die Ergebnisse sollen von den Teilnehmern interpretiert werden.

21a. Literatur	Siehe Beschreibung der einzelnen Versuche.
20a. Medienformen	 Gedrucktes Praktikumsskript mit theoretischer Einführung Kolloquien mit handschriftlichen Protokollen schriftliches Abschlussprotokoll
	Versuch 5. W 8468, Wieder aufladbare Batterien (ICVT) Verschiedene kommerzielle Batterietypen sollen elektrochemisch verglichen werden. Dazu werden die Batterien an einem Prüfstand unterschiedlich elektrisch belastet. Unter anderem werden Lade- und Entladezyklen aufgenommen sowie verschiedene Verfahren zur Ermittlung des Ladungszustandes sowie des Leistungszustands durchgeführt. Ein Vergleich der unterschiedlichen Speicher soll zeigen, dass nicht jede Art von Batterie für jeden Einsatzzweck geeignet ist. Die Unterschiede sollen von den Teilnehmern durch die Versuche erarbeitet sowie interpretiert werden.
	Versuch 4. W/S 8589, Bestimmung des Dampf-Flüssig-Gleichgewichtes eines realen Zweistoffgemisches (IEVB) Zur Berechnung von Dampf-Flüssig-Gleichgewichten werden Stoffdaten benötigt. In diesem Praktikumsversuch wird das Dampf-Flüssig-Gleichgewicht für eine Isobare für eine vorgegebene binäre Mischung experimentell bestimmt. Die Messdaten werden in einem Diagramm dargestellt und von den Teilnehmern interpretiert. Aus den erhaltenen Messdaten werden anschließend die Aktivitätskoeffizienten bestimmt. In weiterer Folge werden die Parameter für das van-Laar-g _E -Modell bestimmt. Die erhaltenen Ergebnisse werden mit den Literaturdaten verglichen. Abschließend erfolgt eine Überprüfung der Daten auf Konsistenz.

Studien-/Prüfungsleistung							
23. Nr.	24. Zugeordnete Lehrveran	staltungen	25. PArt	26. LP	27. Benotung	28. Anteil an der Modulnote	
1	Verbundanlage Flammenreakto	r	LN	2	benotet	1/3	
2	Simulation einer solaren Meerwasserentsalzungsanlage		LN	2	benotet	1/3	
3	Bestimmung der Verbrennungs	enthalpie	LN	2	benotet	1/3	
4	Bestimmung des Dampf-Flüssig Gleichgewichtes eines realen Zweistoffgemisches	 -	LN	2	benotet	1/3	
5	Wieder aufladbare Batterien		LN	2	benotet	1/3	
29. Prüfungsform / Voraussetzung für die Vergabe von LP Praktikum, Bewertung der praktischen Fähigkeiten der Teilnel mündliche Überprüfung der Grundlagen, die zur Versuchsdurchführung notwendig sind und die zur Auswertu von Versuchsergebnissen gebraucht werden. Bewertung des				ur zur Auswertung			

schriftlichen Versuchsprotokolls.

30. Verantwortliche(r) Prüfer(in)	Prof. Dr. M. Fischlschweiger, Prof. DrIng. T. Turek
31. Prüfungsvorleistungen	Keine

1a. Modultitel (deutsch)1b. Modultitel (englisch)Hochtemperaturtechnik zurHigh Temperature ProcessesStoffbehandlung

2. Verwendbarkeit des Moduls in Studiengängen								
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
3. Modulveran	3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer							
Prof. DrIng. Roman Weber		Fakultät für Energie- und						
		Wirtschaftswissenschaften						
6. Sprache	7. LP	8. Dauer	9. Angebot					
Deutsch	4	[X] 1 Semester	[] jedes Semester					
Englisch		[] 2 Semester	[X] jedes Studienjahr					
			[] unregelmäßig					

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden sind nach dem Bestehen der Prüfung dazu in der Lage, selbstständig die in der Vorlesung besprochenen Inhalte auf technische Fragestellungen im Bereich der Thermoprozesstechnik zur Stoffbehandlung anzuwenden. Hierzu werden die thermodynamischen und mathematischen Grundlagen der technischen Auslegung von Industrieöfen und Brennern unter Berücksichtigung umwelttechnischer Aspekte vermittelt. Darauf aufbauend werden Möglichkeiten zur Schadstoffvermeidung und Energierückgewinnung vorgestellt.

Studierende kennen die thermodynamischen und chemischen Grundlagen von Verbrennungsprozessen und sind in der Lage, die Berechnungen sowie Energie- und Massenbilanzen durchzuführen. Anhand von Kenntnissen über die Eigenschaften unterschiedlicher Brennstoffe und der Strömungsmechanik können sie Merkmale über das Verhalten von den Flammen ableiten, um die Grundlagen der Feuerraumauslegung den Feuerungen für die gasförmigen, flüssigen und festen Brennstoffe zu beschreiben. Sie beherrschen die Grundlagen der Schadstoffbildung und wissen, wie Abgase durch die primären Maßnahmen gefahrlos abgeführt werden, um die gesetzlichen Vorschriften und Grenzwerte zu evaluieren. Studierende können mit dem Abschluss dieses Moduls und den Vorkenntnissen in Thermodynamik, Wärmeübertragung, Strömungsmechanik und Reaktionskinetik die erlernten theoretischen Grundlagen anwenden und die sich ergebenden Zusammenhänge bezüglich der Auslegung der Anlagen fachlich einschätzen und beurteilen. Sie können die vorgegebenen Aufgabenstellungen in Kleingruppen diskutieren und einen gemeinsamen Lösungsweg erarbeiten.

Leh	Lehrveranstaltungen							
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand		
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium		
1	Hochtemperaturtechnik zur Stoffbehandlung (High Temperature Processes)	Prof. Dr. –Ing. Roman Weber	\$ 8503	2V/1Ü	3	42 h / 78 h		
				Summe:	3	42 h / 78 h		
Zu Nr. 1:								

18a. Empf. Voraussetzungen	Wärmeübertragung 1, Strömungsmechanik 1
19a. Inhalte	 Basics of Furnace Design and Operation Principles of Heat Exchanger Design Industrial Burners Swirling Flows and Flames Combustion Generated Air Pollutants NOx Formation and Destruction Mechanism
20a. Medienformen	SkriptPowerPointÜbungsaufgaben
21a. Literatur	 Beér, Janós M./Chigier, Nehemiah A.: Combustion Aerodynamics, Krieger: Malabar, Florida (Reprint) 1983 (Standardwerk). Fox, Richard O.: Computational Methods For Turbulence Reactive Flow, Cambridge University Press: Cambridge 2003. Peters, Norbert: Turbulent Combustion, Cambridge University Press: Cambridge (4. korr. Auflage) 2006. Weber, R.: High Temperature Technology (Skript zur Vorlesung). Wünning, Joachim G. (Hg.): Handbuch der Brennertechnik für Industrieöfen. Grundlagen – Brennertechniken – Anwendungen, Vulkan Verlag: Essen (2. Auflage) 2018.
22a. Sonstiges	

Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Hochtemperaturtechnik zur Sto	MP	4	benotet	100 %		
29. Prüf	29. Prüfungsform / Voraussetzung mündlich			uer 60 i	min.)		
für die V	für die Vergabe von LP						
30. Verantwortliche(r) Prüfer(in)		Prof. Dr. –Ing. Roman Weber					
31. Prüfungsvorleistungen		Keine					

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Verbrennungstechnik	Combustion Fundamentals

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer							
Prof. DrIng. R. V	Veber	Fakultät für Energie- und					
		Wirtschaftswissenschaften					
6. Sprache	7. LP	8. Dauer	9. Angebot				
Englisch,	6	[X] 1 Semester	[] jedes Semester				
Prüfung		[] 2 Semester	[X] jedes Studienjahr				
wahlweise			[] unregelmäßig				
Deutsch oder							
Englisch							

18a. Empf. Voraussetzungen

Die Studierenden

- vertiefen und verfestigen ihre vorhandenen Kenntnisse zur Bilanzierung technischer Verbrennungsprozesse
- kennen und verstehen die Besonderheiten der Gleichgewichtsberechnung chemischer Reaktion
- können eine geeignete Berechnungsmethode zur Bestimmung des chemischen Gleichgewichts komplexer chemischer Systeme auswählen und die Berechnungen durchführen
- sind in der Lage, den Einfluss äußerer Einwirkungen auf das Gleichgewicht zu erkennen und zu berechnen
- kennen und verstehen die Elemente der chemischen Reaktionskinetik
- können geeignete Verfahren zur zeitlichen Beschreibung des Reaktionsfortschritts chemischer Reaktionen auswählen und anwenden
- sind in der Lage, chemische Reaktionsmechanismen zu beschreiben und zu berechnen

Thermodynamik

Die Studierenden werden dazu ermutigt im Rahmen der großen Übung frei über Fragestellungen der Verbrennungstechnik zu diskutieren. Sie erwerben dabei die Fähigkeit, Beiträge anderer Studierenden kritisch zu bewerten, eigene Lösungsvorschläge zu verschiedenen Fragestellungen im Bereich der Verbrennungstechnik zu entwickeln sowie Hypothesen zu bilden und zu bewerten.

Leh	Lehrveranstaltungen							
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand		
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium		
1	Verbrennungstechnik (Combustion Fundamentals)	Prof. DrIng. R. Weber	W 8503	2V/2Ü	4	56 h / 124 h		
				Summe:	4	56 h / 124 h		
Zu	Zu Nr. 1:							
	Ingenieurmathematik I und II, Thermodynamik 1, Chemische							

	1. Stöchiometrie der Verbrennung
	2. Massenbilanz bei der Verbrennung
	3. Energiebilanz bei der Verbrennung
19a. Inhalte	4. Grundlagen der Reaktionskinetik
	5. Mechanismen der elementaren Verbrennungsreaktionen
	6. Reaktionsgeschwindigkeitsgleichungen
	7. Verbrennung von flüssigen und festen Brennstoffen
	- Tafel
20a. Medienformen	- PowerPoint
	- Skript
	- Joos, Franz: Technische Verbrennung. Verbrennungstechnik,
	Verbrennungsmodellierung, Emissionen, Springer: Berlin u. a. 2006.
	- Law, Chung K.: Combustion Physics, Cambridge University Press:
	Cambridge u. a. 2010.
	- Turns, Stephen R.: An Introduction to Combustion. Concepts and
	Applications, McGraw-Hill: Boston (3. Auflage) 2012.
21a. Literatur	- Warnatz, Jürgen/Maas, Ulrich/Dibble, Robert W.: Verbrennung.
	Physikalisch-Chemische Grundlagen, Modellierung und Simulation,
	Experimente, Schadstoffentstehung, Springer Berlin: Berlin (3. aktual.
	und erweit. Auflage) 2001.
	- Weber, Roman: Combustion Fundamentals with Elements of
	Chemical Thermodynamics, Papierflieger-Verlag: Clausthal-Zellerfeld
	(4. Auflage) 2013.
22a. Sonstiges	

Studien-/Prüfungsleistung								
			25.	26.	27.	28. Anteil an		
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote		
1	Verbrennungstechnik		MP	6	benotet	100 %		
29. Prüf	29. Prüfungsform / Voraussetzung schriftlic			wenige	r als 5 Teilnehm	er mündlich)		
für die V	für die Vergabe von LP							
30. Vera	ntwortliche(r) Prüfer(in)	Prof. DrIng. R. Weber						
31. Prüf	ungsvorleistungen	Keine						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Wärmeübertragung II	Heat Transfer 2

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer							
Prof. Dr. –Ing. Ro	man Weber	Fakultät für Energie- und					
		Wirtschaftswissenschaften					
6. Sprache	7. LP	8. Dauer	9. Angebot				
Vorlesung auf	4	[X] 1 Semester	[] jedes Semester				
Englisch,		[] 2 Semester	[X] jedes Studienjahr				
Übung auf			[] unregelmäßig				
Deutsch							

Die Studierenden:

- vertiefen das bereits erlernte Wissen in der Wärmeübertragung im Bereich der Gasstrahlung.
- erweitern und ergänzen die mathematischen und physikalischen Grundlagen der Wärmeübertragung mit dem Schwerpunkt auf Gasstrahlung.
- können den Wärmetausch durch Strahlung anhand verschiedener Konfigurationen mit und ohne aktive Medien sowie unterschiedlichen Oberflächeneigenschaften erläutern, bestimmen und z.B. in Wärmebehandlungsöfen anwenden."

Die Studierenden können:

19a. Inhalte

- sich in allgemeinen ingenieurwissenschaftlichen Themen kompetent auszudrücken und eigene Meinung zu verteidigen
- Lösungen entwickeln und Entscheidungen vertreten
- praktische Problemstellungen aus dem Bereich der Gasstrahlung selbständig bearbeiten

2.

3.

4.

Leh	Lehrveranstaltungen							
	12. Lehrveranstaltungstitel			15.	16.	17. Arbeitsaufwand		
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium		
1	Wärmeübertragung II (Heat Transfer 2)	Prof. Dr. –Ing. Roman Weber	W 8501	2V/1Ü	3	42 h / 78 h		
				Summe:	3	42 h / 78 h		
Zu Nr. 1:								
18a	8a. Empf. Voraussetzungen Wärmeübertragung I							
	1	1. Governing Laws for Thermal Radiation						

Radiation Intensity, Emissive Power and Radiosity

Surface Radiation Characteristics

Solar Radiation

	5. Radiation Exchange in Enclosures Containing a Radiatively Non-
	Participating Medium
	6. Radiation in Absorbing, Emitting and Scattering Media
	7. Absorption and Emission of Radiation by Gaseous Atoms and
	8. Molecules
	9. Absorption and Emission of a Volume of Gas of Uniform Properties
	10. Radiation Exchange in an Enclosure Containing an Absorbing
	Emitting Medium
20a. Medienformen	- PowerPoint
zva. Medienformen	- Übungsaufgaben
	- Skript.
	- Incropera, Frank P. u. a. Fundamentals of Heat and Mass Transfer, John Willey and Sons: Hoboken, NJ (6. Auflage) 2007.
21a. Literatur	 Siegel, Robert/Howell, John R./Mengüc, M. Pinar: Thermal Radiation Heat Transfer, CRC Press: Boca Raton/London/New York (3. Auflage) 2016.
	 Weber, Roman: Lecture Notes in Heat Transfer II. Thermal Radiation, Papierflieger: Clausthal-Zellerfeld (3. Auflage) 2008.
22a. Sonstiges	

Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Wärmeübertragung II		MP	4	benotet	100 %	
29. Prüf	29. Prüfungsform / Voraussetzung mündliche Pr			uer max	k. 60 min)		
für die V	ergabe von LP						
30. Vera	ntwortliche(r) Prüfer(in)	Prof. Dr. –Ing. Roman Weber					
31. Prüf	ungsvorleistungen	Keine					

Studienrichtung Neue Materialien - Pflichtmodule

Studienrichtung Neue Materialien

- Es muss genau eine Studienrichtung ausgewählt werden.
- Mit dem ersten Prüfungsversuch in einem Modul einer Studienrichtung ist die Wahl der Studienrichtung verbindlich. Ein Wechsel der Studienrichtung ist nur möglich, sofern noch keine Prüfungsversuche in einem Modul unternommen wurden bzw. als unternommen gelten. Ein Wechsel ist einmalig möglich und muss rechtzeitig vor Ablegen des neu gewählten Moduls der anderen Studienrichtung schriftlich beim Prüfungsamt beantragt werden.

1a. Modultitel (deutsch)1b. Modultitel (englisch)Anwendung nanoskaliger PulverApplications of Nanoscale
Powders

M.Sc. Verfahrenstechnik/Chemieingenieurwesen							

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden sind in der Lage

- die speziellen Eigenschaften von Nanopartikeln (spez. Oberfläche, Quanteneffekte, Exzitonen, Plasmonen, wenig koordinierte Oberflächenatome, ...) zu benennen und zu verstehen
- die Herausforderungen bei der Integration von Nanopartikeln in makroskopische Systeme wie Beschichtungen und Komposite zu verstehen
- die Grundprinzipien der verschiedenen Partikelsynthesewege zu kennen und zu verstehen
- die Verarbeitungstechniken (Prozessfunktion) sowie den Zusammenhang zwischen Partikeleigenschaften (Dispersität, Form und Materialspezifika) und Produkteigenschaften (Eigenschaftsfunktion) zu kennen und zu verstehen
- Anwendungen von Nanopartikeln aus den Bereichen Elektronik, Energietechnik, Katalyse und Life Science zu kennen und oben genannte Prinzipien wiederzuerkennen
- anwendungsorientierte Aufgaben (in Hausübungen) mit dem in der Vorlesung erworbenen Wissen eigenständig zu lösen

Lehrveranstaltungen								
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand		
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium		
1	Anwendung nanoskaliger Pulver (Applications of Nanoscale Powders)	Prof. A. Weber	\$ 8605	2V/1Ü	3	42 h / 78 h		
				Summe:	3	42 h / 78 h		
Zu	Zu Nr. 1:							
18a. Empf. Voraussetzungen Partikelmesstechnik und MVT I								
19a	. Inhalte	Einführung Nanopartikel und Nanotechnologie						

	- Spezifische Oberfläche von Nanopartikeln				
	- Nanopartikel-Volumeneffekte (confinement phenomena)				
	- Anwendungsgebiete				
	2 Nanopartikel in der Elektronik				
	- Druckbare Schaltungen				
	- Nanoröhren in Schaltungen und Display				
	- Graphen-Nanonetze				
5	3 Nanopartikel in der Energietechnik				
	- Photovoltaik-Zellen				
	- Wasserstoffproduktion				
	- Fischer-Tropsch-Synthese				
	4 Nanopartikel in Beschichtungen				
	- Superhydrophobe Beschichtungen				
	- Spektral selektive Glasbeschichtungen				
	- Selbstreinigende Beschichtungen				
4	5 Nanodrähte				
	- Herstellung und Charakterisierung				
	- Anwendungsbeispiele				
	6 Nanopartikel in der Katalyse				
	- Eigenschaften von geträgerten Katalysatoren				
	- Wassergas-Shift-Reaktion				
	- Ladungseffekt bei der Methanbildung an Ni-NP				
	7 Nanopartikel in Kompositen				
	- Oberflächenmodifikation von NP				
	- Dispergierung von NP in organischen Lösungsmitteln				
	- Biomedizinische Anwendungen				
	- Entfernung von Schwermetallen				
	- Anwendungen von organisch-anorganischen Nanokompositen				
8	8 Nanopartikel im Alltag				
	- NP in Fluiden				
	- NP an Oberflächen				
	- NP in porösen Feststoffen				
	- NP in der Sicherheitstechnologie				
	- NP in der Medizintechnik				
	- Präsentation				
20a. Medienformen	- Gedrucktes Skript				
-	- Tafel				

21a. Literatur	 Skript. Bhushan, Bharat (Hg.): Springer Handbook of Nanotechnology, Springer: Berlin (4. Auflage) 2017. Cao, Guozhong/Wang, Ying: Nanostructures and Nanomaterials. Synthesis, Properties and Applications, World Scientific: Hackensack, NJ u. a. 2011.
	- Klabunde, Kenneth J./Richards, Ryan M. (Hg.): Nanoscale Materials in Chemistry, Wiley: Hoboken, NJ (2. korr. und aktual. Auflage) 2009.
	- Paschen, Herbert: Nanotechnologie. Forschung, Entwicklung, Anwendung, Springer: Berlin u. a. 2004.
22a. Sonstiges	

Studien-/Prüfungsleistung								
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	25. PArt	26. LP	27. Benotung	28. Anteil an der Modulnote		
1	Anwendung nanoskaliger Pulv		MP	4	benotet	100 %		
	ungsform / Voraussetzung /ergabe von LP	mündliche Prü für 20 und mel	J .	•	19 Teilnehmer, usur (60 min)			
30. Vera	ntwortliche(r) Prüfer(in)	Prof. A. Weber						
31. Prüf	ungsvorleistungen	Keine						

1a. Modultitel (deutsch) Charakterisierung von Nanopartikeln

1b. Modultitel (englisch)Characterization of Nanoparticles

2. Verwendbarkeit des Moduls in Studiengängen								
M.Sc. Verfahrenstechnik/Chemieingenieurwesen								
3. Modulverar	3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer							
Prof. A. Weber		Fakultät für Mathematik/Informatik und Maschinenbau						
6. Sprache 7. LP		8. Dauer	9. Angebot					
deutsch	6	[X] 1 Semester	[] jedes Semester					
		[] 2 Semester	[X] jedes Studienjahr					
			[] unregelmäßig					

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden sind in der Lage

- Funktionsweisen, Möglichkeiten und Grenzen verschiedener Varianten der Elektronenmikroskopie zu benennen und zu verstehen
- Funktionsweisen, Möglichkeiten und Grenzen der Mobilitätsanalyse in Gasen und Flüssigkeiten zu benennen und zu verstehen
- Funktionsweisen, Möglichkeiten und Grenzen verschiedener Varianten der Trägheitsspektroskopie zu benennen und zu verstehen
- Funktionsweisen, Möglichkeiten und Grenzen der Sorptionsanalyse zu benennen und zu verstehen
- Funktionsweisen, Möglichkeiten und Grenzen verschiedener Varianten der Wechselwirkung von elektromagnetischer Strahlung (X-ray, UV, vis, IR) mit Nanopartikeln zu benennen und zu verstehen
- Funktionsweise, Möglichkeiten und Grenzen der Ultraschallextinktion zu benennen und zu verstehen
- Funktionsweise, Möglichkeiten und Grenzen der Thermogravimetrischen Analyse zu benennen und zu verstehen
- die Herausforderungen bei der Anwendung der besprochenen Messmethoden auf konkrete Beispiele zu verstehen
- anwendungsorientierte Aufgaben (in Hausübungen) mit dem in der Vorlesung erworbenen Wissen eigenständig zu lösen

Leh	Lehrveranstaltungen								
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand			
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium			
1	Charakterisierung von Nanopartikeln (Characterization of Nanoparticles)	Prof. A. Weber	\$ 8609	2V/2Ü	4	56 h / 124 h			
	Summe: 4 56 h / 124 h								
Zu	Zu Nr. 1:								

18a. Empf. Voraussetzungen	Keine
19a. Inhalte	Keine 1 Elektronenmikroskopie und Rastersondentechniken - Transmissionselektronenmikroskopie (TEM) - Rasterelektronenmikroskopie (REM) - Rastertunnelmikroskopie (RTM) - Atomkraftmikroskopie (AFM) - Analytische Elektronenmikroskopie 2 Mobilitätsanalyse - In Flüssigkeiten - In Gasen - Nachweis von Adsorptions- und Kondensationsprozessen 3 Trägheitsspektroskopie - Kaskadenimpaktoren - Einstufige Impaktionsspektrometer - Auftreffgeschwindigkeit - Dichtebestimmung - Schichtdickenbestimmung 4 Sorptionsanalyse - Adsorptionsisothermen - Spezifische Oberfläche - Porengrößenverteilung - Chemisorption - Dispersität von Katalysatoren 5 Wechselwirkung mit elektromagnetischer Strahlung - Photonenkorrelationsspektroskopie (PCS) - Laser-Induced Incandescence (LII) - Raman-Spektroskopie - Fourier-Transformed-Infra-Red-Spectroscopy (FTIR) - Röntgen-Diffraktion (XRD) - Small Angle X-ray Scattering (SAXS) 6 Ultraschallextinktion 7 Thermogravimetrie (TGA) - Physikalische Desorption
	 Laser-Induced Incandescence (LII) Raman-Spektroskopie Fourier-Transformed-Infra-Red-Spectroscopy (FTIR) Röntgen-Diffraktion (XRD) Small Angle X-ray Scattering (SAXS) Ultraschallextinktion Thermogravimetrie (TGA)
20a. Medienformen	 Aerosolkatalyse Präsentation Gedrucktes Skript Tafel

21a. Literatur	 Skript. Knipping, Jörg: Synthese und Charakterisierung von Nanopartikeln aus Eisen und Eisenoxid, Cuvillier: Göttingen (1. Auflage) 2007. Wautelet, Michel: Nanotechnologie, Oldenbourg: München (2. Auflage) 2008.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung								
			25.	26.	27.	28. Anteil an			
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote			
1	Charakterisierung von Nanopa	rtikeln	MP	6	benotet	100 %			
29. Prüf	ungsform / Voraussetzung	mündliche Prüfung (30 min) bis 19 Teilnehmer,							
für die V	ergabe von LP	für 20 und mehr Teilnehmer Klausur (60 min)							
30. Vera	ntwortliche(r) Prüfer(in)	Prof. A. Weber							
31. Prüf	ungsvorleistungen	Keine							

1a. Modultitel (deutsch)1b. Modultitel (englisch)Einführung in nanoskalierteFundamentals of NanoscaleMaterialienMaterials

2. Verwendbarkeit des Moduls in Studiengängen										
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen									
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer							
Prof. Dr. Frank Er	ndres	Fakultät für Natur- und								
		Materialwissenschaften								
6. Sprache	7. LP	8. Dauer	9. Angebot							
Deutsch	4	[X] 1 Semester	[] jedes Semester							
		[] 2 Semester	[X] jedes Studienjahr							
	[] unregelmäßig									
10. Lern-/Qualifikationsziele des Moduls										
Entwickeln von k	Kenntnissen zur Hers	stellung und Eigenschaften einiger N	anomaterialien							

Leh	rveranstaltungen					
11.	12. Lehrveranstaltungstite	I 13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Einführung in nanoskalierte Materialien (Fundamentals of Nanoscale Materials)	Prof. Dr. Frank Endres	W 8044	2V/1Ü	3	42 h / 78 h
				Summe:	3	42 h / 78 h
Zu	Nr. 1:				-	•
18a	. Empf. Voraussetzungen	Grundkenntnisse d	er Physik ι	ınd Chemie		
19a	. Inhalte	 Natürliche Nan Metalle Halbleiter Ferrofluide Fullerene CNT's Graphe Quantenmecha Analyseverfahra Ionische Flüssig Toxikologie 	anik en	en		

	- dreidimensionale Nanostrukturen
20a. Medienformen	VorlesungsskriptÜbungsblock
	- Ajayan, Pulickel M./Schadler, Linda S./Braun, Paul V.: Nanocomposite Science and Technologies, Wiley-VCH: Weinheim (2. Nachdruck) 2005.
	 Fendler, Janos H. (Hg.): Nanoparticles and Nanostructured Films. Preparation, Characterization and Applications, Wiley-VCH: Weinheim u. a. 1998.
21a. Literatur	- Gogocij, Jurij G. (Hg.): Nanomaterials Handbook, CRC Press: Boca Raton/London/New York (2. Auflage) 2017.
	- Höland, Wolfram/Beall, George H.: Glas-Ceramic Technology, John Wiley & Sons: Hoboken, NJ (3. Auflage) 2019.
	 Lorenz, Wolfgang J. (Hg.): Electrochemical Nanotechnology. In Situ Local Probe Techniques at Electrochemical Interfaces, Wiley-VCH: Weinheim u. a. 1998.
	- Yang, Peidong (Hg.): The Chemistry of Nanostructured Materials, World Scientific: River Edge, NJ u. a. (Nachdruck) 2007.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Einführung in nanoskalierte Materialien		MP	4	benotet	100 %	
29. Prüf	29. Prüfungsform / Voraussetzung Klausur (120 Minuten) nach der letzten Übung > 15 Teilnehr			15 Teilnehmern			
für die Vergabe von LP oder münd		oder mündlich	e Prüfung	(30 Mir	nuten, Einzelprü	fung) < 15	
		Teilnehmern					
30. Vera	ntwortliche(r) Prüfer(in)	prtliche(r) Prüfer(in) Prof. Dr. Frank Endres					
31. Prüfungsvorleistungen Keine							

1a. Modultitel (deutsch)1b. Modultitel (englisch)Fachpraktikum Neue MaterialienSpecialized Internship New
Materials

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Verfahrenstechnik/Chemieingenieurwesen						
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer						
Prof. Dr. A. Weber		Fakultät für Mathematik/Informatik				
und Maschinenbau						
6. Sprache	7. LP	8. Dauer	9. Angebot			
Deutsch	6	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden sind in der Lage,

- fachspezifische ingenieurwissenschaftliche Kenntnisse in Laborversuchen anzuwenden und die Versuche entsprechend auszuwerten und zu dokumentieren,
- Versuche in einer Gruppe arbeitsteilig durchzuführen und dabei erforderliche Arbeitsschritte gemeinsam zu planen und zeitlich aufeinander abzustimmen.

Leh	Lehrveranstaltungen					
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium
1	Verbundanlage Flammenreaktor	Prof. DrIng. T. Turek	W 8466	Р	2	28 h / 32 h
2	Aufbau und Charakterisierung von funktionellen Nanopartikelschichten	Prof. Dr. A. Weber	W 8619	Р	2	28 h / 32 h
3	Partikelcharakterisierung vom Nanometer bis in den Millimeterbereich	Prof. Dr. A. Weber	W 8620	Р	2	28 h / 32 h
4	Kristallisation	Prof. DrIng. J. Strube	W 8657	Р	2	28 h / 32 h
	Summe:				8	112 h / 128 h
Zu Nr. 1:						
18a. Empf. Voraussetzungen Keine						
Pflichtversuch 1: Verbundanlage Flammenreaktor (ICVT, IMVT) Auswahl von zwei Versuchen aus:			(ICVT, IMVT)			

Versuch 2: Aufbau und Charakterisierung von funktionellen Nanopartikelschichten (IMVT)

Versuch 3: Partikelmesstechnik für Nanosuspensionen (IMVT)

Versuch 4: Kristallisation (ITVP)

Nachfolgend sind die Einzelversuche beschrieben:

Versuch 1. W 8466, Verbundanlage Flammenreaktor (ICVT, IMVT)

flüssigen, titanhaltigen Precursor Flammensynthese Titandioxid-Nanopartikel produziert werden. Dazu wird der Precursor durch ein inertes Trägerfluid in den Reaktionsraum geführt und dort neben der Oxidation von Methan zu Titandioxid umgesetzt. Die Verbrennungsgase erfolgt mit Hilfe Gaschromatographen. Die aufgenommenen Messdaten sollen dann zur Erstellung einer Massen- und Energiebilanz sowie zur Ermittlung reaktionstechnischer Kenngrößen verwendet werden. Die Titandioxid-Nanopartikel sollen im Anschluss durch gängige Messverfahren charakterisiert werden. Mit Hilfe von BET-Messungen soll die Oberfläche der Nanopartikel bestimmt werden, um daraus die Partikelgröße abzuleiten. Zusätzlich und als Bestätigung der Ergebnisse werden REM/TEM-Aufnahmen angefertigt und die Partikelgrößenverteilung analysiert.

Versuch 2: Aufbau und Charakterisierung von funktionellen Nanopartikelschichten (IMVT)

Durch verschiedene Abscheideverfahren werden Schichten aus Nanopartikeln erzeugt. Für TiO₂-Nanopartikeln wird dabei eine Interdigit-Elektrode mit einem Film belegt. Wird zwischen den Elektroden eine Spannungsdifferenz angelegt, so fließt aufgrund der Halbleiter-Eigenschaften von TiO₂ nur ein geringer Strom. Wird der Film dagegen mit UV-Licht bestrahlt, so kommt es zur Bildung von Elektron-Loch-Paaren, welche die Leitfähigkeit erheblich steigern. Dieser Effekt liegt auch dem Einsatz von TiO₂ in Solarzellen (z. B. Grätzel-Zelle) und selbstreinigenden Beschichtungen zugrunde. Bei Interesse können auch Schichten aus anderen Nanopartikel-Materialsystemen mit speziellen Eigenschaften (z.B. piezoelektrische Polymerschichten) aufgebracht und getestet werden.

Versuch 3: Partikelcharakterisierung vom Nanometer bis in den Millimeterbereich (IMVT)

Im Praktikum sollen sowohl flüssig dispergierte Silber-Nanopartikel in Fällungsreaktionen, als auch gasgetragene Titandioxidpartikel mittels Sprühtrocknung hergestellt werden. Mischpartikel aus Ag@TiO2 sollen zeigen, dass sich auf nanoskaliger Ebene neue Materialeigenschaften ergeben, wenn ein Metall eine Grenzfläche mit einem Metalloxid ausbildet. Verschiedene Messgeräte, wie z.B. UV-Vis-Spektrometer, Scanning Mobility Particle Sizer, Electrical Low Pressure Impaktoren, uvm. sollen genutzt werden, um die hergestellten Partikel hinsichtlich ihrer Morphologie, Größe und optoelektronischer Eigenschaften zu analysieren.

Versuch 4. W 8657, Kristallisation

Im Rahmen des Praktikums wird die Kristallisation des pharmazeutischen Wirkstoffes Artemisinin untersucht. Dazu wird zunächst mittels Thermoschüttelversuchen die Löslichkeit von Artemisinin bestimmt. Anschließend wird die Überlöslichkeit gemessen um einen Versuchsraum für die Kristallisation aufzuspannen. Im ersten Versuch wird die primäre

	Keimbildung von Artemisinin durch Überschreiten der Überlöslichkeitskurve in einer Kühlungskristallisation untersucht. Im zweiten Versuch wird die Kristallisation durch Zugabe von Kristallisationskeimen initiiert. Die Kristalle werden daraufhin mikroskopisch charakterisiert und die Partikelgröße gemessen. Die Abweichungen zwischen den erhaltenen Feststoffen werden ausgewertet. Die Bestimmung der Artemisininkonzentrationen aus Lösungen erfolgt mit Hilfe einer HPLC-Anlage.
20a. Medienformen	 Gedrucktes Praktikumsskript mit theoretischer Einführung Kolloquien mit handschriftlichen Protokollen schriftliches Abschlussprotokoll
21a. Literatur	Siehe Praktikumsskript.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrverar	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Verbundanlage Flammenreakto	LN	2	benotet	1/3		
2	Aufbau und Charakterisierung von funktionellen Nanopartikelschichten			2	benotet	1/3	
3	Partikelcharakterisierung vom Nanometer bis in den Millimeterbereich		LN	2	benotet	1/3	
4	Kristallisation		LN	2	benotet	1/3	
mündliche			Überprüfi führung n nissen	ung otwend gebraud	der Grundla lig sind und die z cht werden.	ten der Teilnehmer, gen, die zur zur Auswertung von Bewertung des	
30. Verantwortliche(r) Prüfer(in) Prof. A. Weber		Prof. A. Weber,	Prof. T. T	urek, Pr	of. J. Strube		
31. Prüf	ungsvorleistungen	Keine		_			

Studienrichtung Life Science Engineering - Pflichtmodule

Studienrichtung Life Science Engineering

- Es muss genau eine Studienrichtung ausgewählt werden.
- Mit dem ersten Prüfungsversuch in einem Modul einer Studienrichtung ist die Wahl der Studienrichtung verbindlich. Ein Wechsel der Studienrichtung ist nur möglich, sofern noch keine Prüfungsversuche in einem Modul unternommen wurden bzw. als unternommen gelten. Ein Wechsel ist einmalig möglich und muss rechtzeitig vor Ablegen des neu gewählten Moduls der anderen Studienrichtung schriftlich beim Prüfungsamt beantragt werden.

1a. Modultitel (deutsch)1b. Modultitel (englisch)Anwendung nanoskaliger PulverApplications of Nanoscale
Powders

2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Verfahrenstechnik/Chemieingenieurwesen					
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer					
Prof. A. Weber		Fakultät für Mathematik/Informatik			
und Maschinenbau					
6. Sprache	7. LP	8. Dauer	9. Angebot		
deutsch	4	[X] 1 Semester	[] jedes Semester		
		[] 2 Semester	[X] jedes Studienjahr		
			[] unregelmäßig		
	· · · · · · · · · · · · · · · · · · ·				

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden sind in der Lage,

- die speziellen Eigenschaften von Nanopartikeln (spez. Oberfläche, Quanteneffekte, Exzitonen, Plasmonen, wenig koordinierte Oberflächenatome, ...) zu benennen und zu verstehen
- die Herausforderungen bei der Integration von Nanopartikeln in makroskopische Systeme wie Beschichtungen und Komposite zu verstehen
- die Grundprinzipien der verschiedenen Partikelsynthesewege zu kennen und zu verstehen
- die Verarbeitungstechniken (Prozessfunktion) sowie den Zusammenhang zwischen Partikeleigenschaften (Dispersität, Form und Materialspezifika) und Produkteigenschaften (Eigenschaftsfunktion) zu kennen und zu verstehen
- Anwendungen von Nanopartikeln aus den Bereichen Elektronik, Energietechnik, Katalyse und Life Science zu kennen und oben genannte Prinzipien wiederzuerkennen
- anwendungsorientierte Aufgaben (in Hausübungen) mit dem in der Vorlesung erworbenen Wissen eigenständig zu lösen

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Anwendung nanoskaliger Pulver (Applications of Nanoscale Powders)	Prof. A. Weber	S 8605	2V/Ü	3	42 h / 78 h
	Summe:		3	42 h / 78 h		
Zu	Zu Nr. 1:					
18a	18a. Empf. Voraussetzungen Partikelmesstechnik und MVT I					
19a	. Inhalte	1 Einführung - Nanopartikel und Nanotechnologie				

	- Spezifische Oberfläche von Nanopartikeln			
	- Nanopartikel-Volumeneffekte (confinement phenomena)			
	- Anwendungsgebiete			
	2 Nanopartikel in der Elektronik			
	- Druckbare Schaltungen			
	- Nanoröhren in Schaltungen und Display			
	- Graphen-Nanonetze			
	3 Nanopartikel in der Energietechnik			
	- Photovoltaik-Zellen			
	- Wasserstoffproduktion			
	- Fischer-Tropsch-Synthese			
	4 Nanopartikel in Beschichtungen			
	- Superhydrophobe Beschichtungen			
	- Spektral selektive Glasbeschichtungen			
	- Selbstreinigende Beschichtungen			
	5 Nanodrähte			
	- Herstellung und Charakterisierung			
	- Anwendungsbeispiele			
	6 Nanopartikel in der Katalyse			
	- Eigenschaften von geträgerten Katalysatoren			
	- Wassergas-Shift-Reaktion			
	- Ladungseffekt bei der Methanbildung an Ni-NP			
	7 Nanopartikel in Kompositen			
	- Oberflächenmodifikation von NP			
	- Dispergierung von NP in organischen Lösungsmitteln			
	- Biomedizinische Anwendungen			
	- Entfernung von Schwermetallen			
	- Anwendungen von organisch-anorganischen Nanokompositen			
	8 Nanopartikel im Alltag			
	- NP in Fluiden			
	- NP an Oberflächen			
	NP in porösen FeststoffenNP in der Sicherheitstechnologie			
	- NP in der Medizintechnik			
	- Präsentation			
20a. Medienformen	- Gedrucktes Skript			
	- Tafel			

	 Skript. Bhushan, Bharat (Hg.): Springer Handbook of Nanotechnology, Springer: Berlin (4. Auflage) 2017.
21a. Literatur	 Cao, Guozhong/Wang, Ying: Nanostructures and Nanomaterials. Synthesis, Properties and Applications, World Scientific: Hackensack, NJ u. a. 2011.
	- Klabunde, Kenneth J./Richards, Ryan M. (Hg.): Nanoscale Materials in Chemistry, Wiley: Hoboken, NJ (2. korr. und aktual. Auflage) 2009.
	 Paschen, Herbert: Nanotechnologie. Forschung, Entwicklung, Anwendung, Springer: Berlin u. a. 2004.
22a. Sonstiges	

Studien-/Prüfungsleistung						
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	25. PArt		27. Benotung	28. Anteil an der Modulnote
1	Anwendung nanoskaliger Pulv	er	MP	4	benotet	100 %
29. Prüfungsform / Voraussetzung mündliche Prüf für die Vergabe von LP für 20 und meh			•	•	•	
30. Verantwortliche(r) Prüfer(in) Prof. A.		Prof. A. Weber				
31. Prüfungsvorleistungen Keine		Keine				

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Bioverfahrenstechnik II	Bioprocess Engineering II

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer							
Fakultät für Mathematik/Informatik und Maschinenbau							
8. Dauer	9. Angebot						
[X] 1 Semester	[] jedes Semester						
[] 2 Semester	[X] jedes Studienjahr						
	[] unregelmäßig						
	4. Zuständige Fakultät Fakultät für Mathematik/Informatik und Maschinenbau 8. Dauer [X] 1 Semester						

Die Studierenden lernen die in der Vorlesung Bioverfahrenstechnik I vorgestellten Inhalte, im Bereich des Upstream und Downstream Proccessings, vertieft kennen und können diese nennen. Dabei ist ein erhöhtes Verständnis zu den einzelnen Grundoperationen erforderlich. Das Hauptaugenmerk liegt auf einer detaillierteren Betrachtung der thermodynamischen Prozesse und den damit verbundenen Änderungen in der Prozessführung. Die Studierenden sind in der Lage, verschiedene Prozessstrategien einzuordnen und im Hinblick auf ihre Eignung für eine bestimmte bioverfahrenstechnische Fragestellung zu beurteilen.

Ein weiterer Schwerpunkt liegt auf der Systembiologie, welche das Ziel hat ein integriertes Bild aller regulatorischen Prozesse über alle Ebenen, vom Genom über das Proteom, zu den Organellen bis hin zum Verhalten und zur Biomechanik des Gesamtorganismus zu bekommen. Die Studierenden sind in der Lage, dieses vertiefte Wissen zur Bioverfahrensentwicklung anzuwenden um entsprechende Prozesse auszulegen.

Leh	Lehrveranstaltungen							
11.	12. Lehrveranstaltungstite	13.	14.	15.	16.	17. Arbeitsaufwand		
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium		
1	Bioverfahrenstechnik II (Bioprocess Engineering II)	Prof. DrIng. Jochen Strube	S 8628	2V/1Ü	3	42 h / 78 h		
				Summe:	3	42 h / 78 h		
Zu	Nr. 1:							
18a	. Empf. Voraussetzungen	Bioverfahrenstechn	ik I, Therm	nische Verfah	renstech	ınik I		
	-	Einführung Zell	biologie					
	- Einführung Biochemie							
	- Rheologie von Biosuspensionen							
19a	- Transportvorgänge in Biosuspensionen							
	- Bioprozessanalytik und -steuerung							

Aufarbeitung (Downstream Processing)

Kultivierung von Säugetierzellen

	 Mikrobielle Prozesse Kontamination von Zellkultur Diagnose und Beseitigung von Kontaminationen Systembiologie in der Bioverfahrenstechnik Literatur
20a. Medienformen	Vorlesungbegleitendes Skript
21a. Literatur	 Skript u. a. Nielsen, Jens/Hohmann, Stefan (Hg.): Systems Biology, Wiley-VCH: Weinheim 2017. Villadsen, John (Hg.): Fundamental Bioengineering, Wiley-VCH: Weinheim 2016.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote		
1	Bioverfahrenstechnik II		MP	4	benotet	100 %		
29. Prüf	ungsform / Voraussetzung	Klausur (90 Mi	nuten) > d	ca. 15 T	eilnehmer, mür	ndliche Prüfung (30		
für die V	für die Vergabe von LP Minuten,			Minuten, Einzelprüfung) < ca. 15 Teilnehmer				
30. Verantwortliche(r) Prüfer(in) Prof. DrIng. J			ochen Stru	ıbe				
31. Prüfungsvorleistungen Keine								

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Fachpraktikum Life Science	Specialized Internship Life Science
Engineering	Engineering

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen						
3. Modulveran	3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer						
Prof. DrIng. J. Strube		Fakultät für Mathematik/Informatik					
		und Maschinenbau					
6. Sprache	7. LP	8. Dauer	9. Angebot				
Deutsch	6	[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

Die Studierenden vertiefen in dieser Veranstaltung ihre Grundkenntnisse aus den verfahrenstechnischen Vorlesungen und lernen die Anwendung der Kenntnisse im Praxisbezug kennen. Nach Abschluss des Praktikums können die Studierenden den gängigen Ablauf einer Prozessentwicklung erläutern. Sie erlernen zudem Methoden, verschiedene Ausführungen von Prozessen miteinander zu vergleichen und anhand typischer Parameter Prozesse zu bewerten.

Die Durchführung des Praktikums findet in einer Gruppe statt, so dass neben den fachlichen Dingen auch Teamfähigkeit und gemeinsame, zeitlich aufeinander abgestimmte Arbeitsweisen vermittelt werden.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium	
1	Chromatographie/Adsorption / chromatography/adsorption	Prof. J. Strube	W 8466	Р	2	28 h / 32 h	
2	Flüssig-Flüssig Extraktion / liquid-liquid-extraction	Prof. J. Strube	W 8619	Р	2	28 h / 32 h	
3	Kristallisation / Crystallization	Prof. J. Strube	W 8657	Р	2	28 h / 32 h	
4	Phytoextraktion / phytoextraction	Prof. J. Strube	W 8655	Р	2	28 h / 32 h	
5	Bioanalytik / Analytics in biosystems	Prof. J. Strube	W 8659	Р	2	28 h / 32 h	
	Summe: 10 140 h / 160 h						
Zu	Nr. 1: Chromatographie	/Adsorption			<u>I</u>	<u> </u>	
18a	I 8a. Empf. Voraussetzungen Keine						

Pflichtversuche:

- 1. Chromatographie / Adsorption (ITVP)
- 2. Flüssig-flüssig Extraktion

Auswahl eines Versuchs aus:

- 3. Kristallisation (ITVP)
- 4. Phytoextraktion (ITVP)
- 5. Kristallisation (ITVP)

Chromatographie/Adsoption; W 8466:

Im Rahmen des Praktikums Chromatographie wird ein Mehrkomponentengemisch, bestehend aus Chymotypsinogen A, Cytochrome C und Lysozyme mittels zweier Ionenaustauschermedien getrennt. Dazu wird eine Versuchsreihe durchgeführt, die in den einzelnen Versuchsschritten den Vorgang in der industriellen Verfahrensentwicklung abbildet. Zuerst werden verschiedene Materialien in Screeningversuchen untersucht. Anschließend wird eine präparative Chromatographiesäule von den Studierenden gepackt und eine Methodenentwicklung auf dieser Säule durchgeführt.

Schließlich wird der Prozess auf den Produktionsmaßstab übertragen.

Flüssig-Flüssig-Extraktion; W8619:

Im Praktikumsversuch Flüssig-Flüssig-Extraktion wird das Dreistoffsystem n-Butylacetat/Aceton/Wasser untersucht. Über eine Trübungstitration wird die Binodalkurve bestimmt. Anschließend werden in Schüttelversuchen die Konoden ermittelt. Die Konzentration wird chromatographisch gemessen. Der so charakterisierte Prozess wird in einer Mischer-Abscheider-Anordnung für verschiedene Massenströme betrieben. Zur Auswertung des Versuchs werden die Ergebnisse mit Literaturwerten verglichen und anschließend wird ein Produktionsprozess ausgelegt.

Kristallisation; W8657:

Im Rahmen des Praktikums wird die Kristallisation des pharmazeutischen Wirkstoffes Artemisinin untersucht. Dazu wird zunächst mittels Thermoschüttelversuchen die Löslichkeit von Artemisinin bestimmt. Anschließend wird die Überlöslichkeit gemessen um einen Versuchsraum für die Kristallisation aufzuspannen. Im ersten Versuch wird die primäre Keimbilduna von Artemisinin durch Überschreiten Überlöslichkeitskurve in einer Kühlungskristallisation untersucht. Im zweiten Versuch wird die Kristallisation durch Zugabe Kristalle Kristallisationskeimen initiiert. Die werden mikroskopisch charakterisiert und die Partikelgröße gemessen. Die Abweichungen zwischen den erhaltenen Feststoffen werden ausgewertet. Die Bestimmung der Artemisininkonzentrationen aus Lösungen erfolgt mit Hilfe einer HPLC-Anlage.

Phytoextraktion; W 8655:

Im Praktikum Phytoextraktion wird zunächst eine Probenvorbereitung und Charakterisierung durchgeführt. Dazu werden Teeblätter zerkleinert, durch Siebung fraktioniert und die Restfeuchte des Materials bestimmt. In der Fest-Flüssig-Extraktion werden die Verfahren *Mazeration* und *Perkolation*

19a. Inhalte

	miteinander verglichen. Die Studierenden bereiten anschließend die Proben für die Analytik mittels HPLC und GC vor. Bioanalytik; W 8659: Im Rahmen des Praktikums werden gängige Methoden zur Analyse nieder- und hochmolekularer Biomoleküle, in Proben einer Fermentationsbrühe, durchgeführt. Ausgehend von den Analyseergebnissen werden Substratverbrauchs- und Produktbildungsraten bestimmt. Als Beispiel für die Analyse niedermolekularer Biomoleküle werden die Vitamin- und Aminosäurekonzentration mittels HPLC bestimmt. Des Weiteren werden die Antikörperkonzentration (Produkt) und der Gesamtproteingehalt mit Hilfe verschiedener Analysemethoden bestimmt und die Ergebnisse verglichen. Zuletzt wird der DNS-Gehalt photometrisch und fluorimetrisch bestimmt.
20a. Medienformen	Skript.
21a. Literatur	Skript.
22a. Sonstiges	

Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote
1	Chromatographie/Adsorption		LN	2	benotet	1/3
2	Flüssig-Flüssig Extraktion		LN	2	benotet	1/3
3	Kristallisation		LN	2	benotet	1/3
4	Phytoextraktion		LN	2	benotet	1/3
5	Bioanalytik		LN	2	benotet	1/3
29. Prüf	fungsform / Voraussetzung	Protokoll (Abg	abe 2 Wo	chen na	nch Durchführur	ng des Versuchs);
für die Vergabe von LP Kolloquium (3			0 min)			
30. Verantwortliche(r) Prüfer(in) Prof. Strube						
31. Prüf	gsvorleistungen Keine					

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Pharmaverfahrenstechnik	Pharmaceutical Process Technology

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen						
3. Modulveran	3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer						
Prof. DrIng. Jochen Strube		Fakultät für Mathematik/Informatik					
		und Maschinenbau					
6. Sprache	7. LP	8. Dauer	9. Angebot				
Deutsch	6	[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

Die Studierenden können die Grundlagen der Pharmazie nennen und beschreiben. Sie können die typischen Produktionswege für pharmazeutische Wirkstoffe erläutern. Weiterhin können sie die verschiedenen Phasen der Wirkstoffentwicklung nennen und beschreiben.

Die Studierenden können die verschiedenen Methoden zur Auslegung von pharmazeutischen Anlagen nennen und in eigenständiger Projektarbeit anwenden. Sie können verschiedene pharmazeutische Prozesse mithilfe etablierter Kennzahlen vergleichen und die Leistung der Prozesse bewerten.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium	
	Pharmazeutische						
1	Verfahrenstechnik	Prof. DrIng.	S 8633	2V/2Ü	4	56 h / 124 h	
'	(Pharmaceutical Process	Jochen Strube	3 0033	20/20	4	56 h / 124 h	
	Technology)						
	Summe: 4 56 h / 124 h						
Zu	Nr. 1:						
18a	Empf Voroussetzungen	hermische Verfahr nd Bioanalytik em		k II und Prakt	ikumsve	ersuche Kristallisation	
	-	- Grundlagen					
	-	- Physiologie des Menschen / Allgemeine Pharmakologie					
	-	- Arzneimittelwirkungen					
19a	. Inhalte	- Wirkstoffentwicklung					
	-	Klassifizierung ι		•			
	-	Allgemeine und	l Technolo	gische Grun	dlagen		
	-	- Arzneiformen					

	Biotechnologie/GentechnikApparatetechnik/Konstruktion/Engineering				
	- Vorlesung				
20a. Medienformen	- begleitendes Skript				
	- Gruppenübung				
21a. Literatur	- Skript u. a.				
	 Fahr, Alfred/Voigt, Rudolf: Pharmazeutische Technologie. Für Studiur und Beruf, Deutscher Apotheker-Verlag: Stuttgart (11. durchges. un ergänzt. Auflage) 2010. 				
	 Fischer, Dagmar/Breitenbach, Jörg (Hg.): Die Pharmaindustrie. Einblick Durchblick – Perspektiven, Springer Spektrum: Berlin (4. Auflage) 2017. 				
	 Geisslinger, Gerd u. a.: Mutschler Arzneimittelwirkungen. Lehrbuch der Pharmakologie, der klinischen Pharmakologie und Toxikologie – Mit einführenden Kapitel in die Anatomie, Physiologie und Pathophysiologie, Wissenschaftliche Verlagsgesellschaft: Stuttgart (10. vollst. überarbeit. und erweit. Auflage) 2013. 				
	- Vaupel, Peter u. a.: Anatomie, Physiologie, Pathophysiologie des Menschen, Wissenschaftliche Verlagsgesellschaft: Stuttgart (7. vollst. überarb. und erweit. Auflage) 2015.				
22a. Sonstiges					

Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an	
23. Nr.	r. 24. Zugeordnete Lehrveranstaltungen		PArt	LP	Benotung	der Modulnote	
1	Pharmazeutische Verfahrenstechnik		MP	6	benotet	100 %	
29. Prüfungsform / Voraussetzung Klausur (90 Minuten) > ca. 15 Teilnehmer, mündlich Minuten, Einzelprüfung) < ca. 15 Teilnehmer				dliche Prüfung (30			
30. Verantwortliche(r) Prüfer(in) Prof. DrIng. Jo			ochen Strube				
31. Prüfungsvorleistungen Keine		Keine					

Wahlpflichtkatalog "Vt/Ciw"

Wahlpflichtmodulauswahl "Vt/Ciw

- Es sind Module im Umfang von **16 Leistungspunkten plus max. 2 LP** aus dem Wahlpflichtmodulkatalog "Vt/Ciw" auszuwählen und erfolgreich zu absolvieren. Weitere Prüfungen können nur als Zusatzprüfungen erbracht werden.
- Mit dem ersten Prüfungsversuch in einem Wahlpflichtmodul ist die Modulauswahl verbindlich. Ein Wahlpflichtmodulwechsel ist nur möglich, sofern noch keine Prüfungsversuche in einem Wahlpflichtmodul unternommen wurden bzw. als unternommen gelten.

Wahlpflichtmodulkatalog "Vt/Ciw"

Die Liste der angebotenen Module kann jährlich für das nachfolgende Studienjahr durch Beschluss des Fakultätsrats aktualisiert werden. Die aktualisierten Listen werden hochschulöffentlich durch das Studienzentrum bekannt gegeben:

https://www.tu-clausthal.de/studieninteressierte/studiengaenge/master-studiengaenge/Verfahrenstechnik-chemieingeneiurwesen

1a. Modultitel (deutsch)1b. Modultitel (englisch)Abgasreinigungstechnik inExhaust gas cleaning technology
in theory and practice

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer							
ultät für Energie- und							
tschaftswissenschaften							
Dauer	9. Angebot						
1 Semester	[] jedes Semester						
2 Semester	[X] jedes Studienjahr						
	[] unregelmäßig						
t	rwesen Auständige Fakultät Altät für Energie- und Asschaftswissenschaften Dauer I Semester						

10. Lern-/Qualifikationsziele des Moduls

- Studierende erhalten einen Überblick über die Schadstoffpotenziale in der Abluft aus industriellen Produktionsprozessen
- Studierende kennen die Schadstoffentstehungsprozesse und können diese beurteilen
- Studierende sind in der Lage, die Notwendigkeit für Abgasreinigungsmaßnahmen abzuschätzen und zu beurteilen
- Studierende sind mit den verschiedenen Verfahren zur Reduzierung von Emissionen (Verfahren der Wiedergewinnung und Verfahren der Entsorgung) vertraut und können diese in ihren Anwendungsbereichen in der industriellen Praxis einschätzen
- Studierende können für eine Problemstellung eine grundlegende Verfahrensauswahl für Prozesse der industriellen Praxis treffen und begründen sowie zugehörige Verfahrensschemaentwickeln
- Studierende sind mit den immissionsschutzrechtlichen Bestimmungen vertraut

Leh	Lehrveranstaltungen							
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand		
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium		
1	Abgasreinigungstechnik in Theorie und Praxis (Exhaust gas cleaning technology in theory and practice)	DrIng. S. Meyer	S 8521	2V/1Ü	3	42 h / 78 h		
				Summe:	3	42 h / 78 h		
Zu	Zu Nr. 1:							

18a. Empf. Voraussetzungen	Grundkenntnisse der Verfahrenstechnik	/ Thermodynamik
ioa. Ellibi. Voraussetzullueli	i Grundkennunsse der Verlandenstechnik i	HITEHIIOUVIIAIIIK

	 Gesetzliche Grundlagen der Luftreinhaltung mit Bezug zu industriellen Produktionsprozessen 					
	- Schadstoffpotenziale am Beispiel unterschiedlicher Produktionsprozesse					
19a. Inhalte	 Primär- und Sekundärmaßnahmen sowie Einrichtungen zur Senkun des Schadstoffausstoßes einschließlich Vermeidungsstrategien Ausgewählte Sekundärmaßnahmen zur Reduzierung von Emissione aus industriellen Produktionsprozessen 					
	- Apparate- und Anlagentechnik im o.g. Gebiet					
20a. Medienformen	- Tafelanschrieb, Folien, Übungsblätter und Lösungen					
21a. Literatur	- Gesetze, Verordnung, VDI-Richtlinien					
22a. Sonstiges						

Studien-/Prüfungsleistung								
			25.	26.	27.	28. Anteil an		
23. Nr.	23. Nr. 24. Zugeordnete Lehrveran		PArt	LP	Benotung	der Modulnote		
1	Abgasreinigungstechnik in The	MP	4	benotet	100 %			
29. Prüf	ungsform / Voraussetzung	mündliche Prü	fung					
für die V	ergabe von LP							
30. Vera	ntwortliche(r) Prüfer(in)	DrIng. Sven Meyer						
31. Prüf	ungsvorleistungen	Keine						

1a. Modultitel (deutsch)

Batterien, Brennstoffzellen und Elektrolyse: Praxisbeispiele der Elektrochemischen Verfahrenstechnik

1b. Modultitel (englisch)

Batteries, Fuel Cells and Electrolysis: Practical Examples of Electrochemical Process Engineering

2. Verwendbarkeit des Moduls in Studiengängen

M.Sc. Verfahrenstechnik/Chemieingenieurwesen

W.Sc. Verlamenstechnik/Chemienigemeurwesen						
3. Modulverantwortliche(r)		4. Zuständige Fakultät	5. Modulnummer			
Dr. Thorsten Hickmann		Fakultät für Mathematik/Informatik				
		und Maschinenbau				
6. Sprache 7. LP		8. Dauer	9. Angebot			
Deutsch	3	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

10. Lern-/Qualifikationsziele des Moduls

Die Teilnehmer sollen Praxisbeispiele elektrochemischer Prozesse kennenlernen und beschreiben können. Darüber hinaus sollen die wesentlichen Komponenten elektrochemischer Reaktoren und ihre Herstellung verstanden und auf Basis der vorgetragenen Grundlagen zielgerichtet angewendet werden können. Die Teilnehmer sollen Kenntnisse und Fähigkeiten erwerben, die in der Praxis benötigt werden. Die Studierenden sollen nach Teilnahme dieser Vorlesung in der Lage sein, die beispielhaft vermittelten Grundlagen der Praxisbeispiele auf andere elektrochemische Systeme zu transferieren und technische Probleme in der praktischen Anwendung analysieren zu können, Schlüsse zu ziehen und Lösungen entwickeln zu können.

Leh	Lehrveranstaltungen							
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand		
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium		
1	Batterien, Brennstoffzellen und Elektrolyse: Praxisbeispiele der Elektrochemischen Verfahrenstechnik (Batteries, Fuel Cells and Electrolysis: Practical Examples of Electrochemical Process Engineering)	Dr. Thorsten Hickmann	W 8422	2V	2	28 h / 62 h		
	<u> </u>			Summe:	2	28 h / 62 h		
Zu	Zu Nr. 1:							

18a. Empf. Voraussetzungen	-				
19a. Inhalte	 Einleitung Thema und SOFC / DMFC Niedertemperatur PEM / Hochtemperatur PEM Brennstoffzellen Nanotechnologie und Multiwall Carbon Nanotubes, Graphene Auswirkungen der Graphene im Systeme Möglichkeiten von Kohlenstoffen in Polymeren Aufbau der Kunststoffpyramide Wirkung von amorphen und kristallinen Kunststoffen Wechselwirkung von Thermoplasten, Elastomeren u. Duroplasten im System Aufbau Elektrochemie von Elektrolyseuren Anwendungen Technologie: PEM-Elektrolyseure / Galvanik-Elektrolyseure Vanadium Redox Flow Batterien, Funktionsweise und Mechanismen Organische Redox Flow Batterien, Brom-Redox-Flow Batterien Li-Batterie / Batterien aus Zink / Blei / etc. 				
20a. Medienformen	Anwendungen Technologie und Einsätze der Technologien Skript, Tafelanschrieb, ausgegebene Power Point Folien				
21a. Literatur	V. M. Schmidt: Elektrochemische Verfahrenstechnik, Wiley VCH, 2003 J. Töpler, J. Lehmann: Wasserstoff und Brennstoffzelle: Technologien und Marktperspektiven 2017, Springer Verlag				
22a. Sonstiges					

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	23. Nr. 24. Zugeordnete Lehrveranstaltungen			LP	Benotung	der Modulnote		
1	Batterien, Brennstoffzellen und Praxisbeispiele der Elektrochem Verfahrenstechnik	MP	3	benotet	100 %			
29. Prüf	ungsform / Voraussetzung	Klausur von 60) min Dau	er, bei v	weniger als 10 T	eilnehmern pro		
für die V	für die Vergabe von LP Semester / m			nündliche Prüfung.				
30. Verantwortliche(r) Prüfer(in) Dr. Thorsten H			Hickmann					
31. Prüfungsvorleistungen Keine								

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
-	Basic Principles of Molecular
	Dynamics

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Verfahrenstechnik/Chemieingenieurwesen						
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer						
JunProf. Dr. N. Merkert		Fakultät für Mathematik/Informatik und Maschinenbau				
6 Same also	7 10		O America			
6. Sprache	7. LP	8. Dauer	9. Angebot			
Englisch	4	[X] 1 Semester	[X] jedes Semester			
		[] 2 Semester	[] jedes Studienjahr			
			[] unregelmäßig			

Die Studierenden

- können atomistische Modellierungstechniken beschreiben und die allgemeine Methode der Molekularydynamik skizzieren.
- können die interatomare Wechselwirkung in Metallen, Halbleitern, Keramiken und Biomolekülen erläutern und gegenüberstellen.
- sind in der Lage, die Verbindung zwischen thermodynamischen Eigenschaften (Temperatur, Druck) und atomistischer Dynamik aufzuzeigen.
- können wichtige Materialeigenschaften aus atomistischen Simulationen ableiten.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium	
1	Basic Principles of Molecular Dynamics	JunProf. Dr. N. Gunkelmann	S 8038	2V/1Ü	3	42 h / 78 h	
				Summe:	3	42 h / 78 h	

Zu Nr. 1:

18a. Empf. Voraussetzungen	Ingenieurmathematik und Physik					
	- Molekulardynamik: Interatomare Potentiale, Randbedingungen, Integratoren, Thermodynamische Ensembles, Thermo-/Barostate					
19a. Inhalte	 Molekularstatik: Energieminimierung, Defekte, Spannungsberechnung, elastische Konstanten 					
	 Postprocessing: Berechnung von strukturellen Eigenschaften und Eigenschaften wie z. B. Diffusionskoeffizienten, Viskosität und Wärmeleitfähigkeit 					

20a. Medienformen	TafelFolienBeamer
	- Rechnervorführungen
	- Allen, Michael P./Tildesley, Dominic J.: Computer Simulation of Liquids, Oxford University Press: Oxford (2. Auflage) 2017.
	- Frenkel, Daan/Smit, Berend: Understanding Molecular Simulation. From Algorithms to Applications, Academic Press: San Diego, Calif. u. a. (2. Auflage) 2009.
21a. Literatur	 Griebel, Michael/Knapek, Stephan/Zumbusch, Gerhard: Numerical Simulation in Molecular Dynamics. Numerics, Algorithms, Parallelization, Applications, Springer: Berlin u. a. 2007.
	- Jensen, Frank: Introduction to Computational Chemistry, Wiley: Chichester u. a. (3. Auflage) 2017.
	- Leach, Andrew R.: Molecular Modelling. Principles and Applications, Pearson Education Ltd.: Harlow u. a. (2. Auflage) 2009.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote		
1	Basic Principles of Molecular D	ynamics	MP	4	benotet	100 %		
29. Prüf	ungsform / Voraussetzung	Prüfungsform: bis 35 Teilnehmer*innen mündliche Prüfung, sonst						
für die V	ergabe von LP	Klausur						
30. Verantwortliche(r) Prüfer(in) JunProf. D			JunProf. Dr. N. Gunkelmann					
31. Prüf	ungsvorleistungen	Keine						

1a. Modultitel (deutsch)

Besondere physikalische Eigenschaften von Polymeren und Polymercomposites sowie deren Verarbeitung

1b. Modultitel (englisch)

Special physical properties of polymers and polymer composites and their processing

[] unregelmäßig

2. Verwendbar			
M.Sc. Verfahrens	technik/Chemieinge	enieurwesen	
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer
Dr. Bernd Weide	nfeller	Fakultät für Natur- und	
		Materialwissenschaften	
6. Sprache	7. LP	8. Dauer	9. Angebot
Deutsch	3	[X] 1 Semester	[] jedes Semester
		[] 2 Semester	[X] jedes Studienjahr

10. Lern-/Qualifikationsziele des Moduls

Nach erfolgreichem Abschluss der Lerneinheit sollen die Studierenden in der Lage sein:

- den Aufbau von Polymeren zu beschreiben
- den Zusammenhang zwischen der mikroskopischen Polymerstruktur und den makroskopischen Materialeigenschaften kennen
- die wichtigsten Verarbeitungstechniken für Polymere darstellen
- den Zusammenhang zwischen ausgewählten Verarbeitungsparametern und den makroskopischen Materialeigenschaften charakterisieren
- die Änderung der Eigenschaften von polymeren Festkörpern durch Additivmaterialien ableiten können
- die wichtigsten Techniken zur Charakterisierung von Polymeren zu benennen und ihre Funktionsweise zu erklären sowie theoretische Berechnungen dazu ausführen, z.B inhomogene Differentialgleichung lösen, Flächenträgheitsmomente berechnen.
- Messkurven von DMA, DSC, TGA zu interpretieren
- die vorgenannten Techniken auf Formgedächtnispolymere zu übertragen und diese zu analysieren

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium

Besondere physikalische Eigenschaften von Polymeren und Polymercomposites sowie deren Verarbeitung (Special physical properties of polymers and polymer composites and their processing)	Dr. B.	W 8050	2V	2	28 h / 62 h
			Summe:	2	28 h / 62 h
Zu Nr. 1:					
18a. Empf. Voraussetzungen	Grundkenntnisse a	us Physik,	Chemie, Wer	kstoffwi	ssenschaft
19a. Inhalte	 Aufbau von Pol Kristalline, teilk Polymereigense Kunststoffverar (Spritzguss, Ext Additive und Fi Eigenschaftsäne (Parallel- und S Theoretische Be Polymercharakt Zugversuch, D Differenzkalorin Shape Memory 	ristalline u chaften beitungsver crusion, Co cillstoffe derungen erienmode eschreibun terisierung Dynamisch metrie, me	erfahren ompoundiere durch Füllsto ell) og von Polym Mechanisch chanische Sp	n) ffe ercomp e Analy ektrosko	ositen rse, Thermogravimetrie,
20a. Medienformen	- Tafel, Folien				
21a Literatur	SkriptG. Menges, WeW. Michaeli, Eir				er Verlag beitung, Hanser Verlag

Studien-/Prüfungsleistung						
		25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrveranstaltungen	PArt	LP	Benotung	der Modulnote	
	Besondere physikalische Eigenschaften von					
1	Polymeren und Polymercomposites sowie	MP	3	benotet	100 %	
	deren Verarbeitung					

G. Ehrenstein, D. Drummer, Hochgefüllte Kunststoffe, Springer VDI

T.A Osswald, G. Menges, Materials Science of Polymers, Hanser Verlag

21a. Literatur

22a. Sonstiges

29. Prüfungsform / Voraussetzung	60 min Klausur, bei mehr als 10 Vorlesungsteilnehmern,				
für die Vergabe von LP	ansonsten 30 min mündl. Prüfung				
30. Verantwortliche(r) Prüfer(in)	Dr. B. Weidenfeller				
31. Prüfungsvorleistungen	Keine				

1a. Modultitel (deutsch)1b. Modultitel (englisch)Bioverfahrenstechnik III -Bio Process Engineering IIIEinführung in diePhytotechnologie

2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Verfahrens	technik/Chemieinge	enieurwesen			
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer		
Prof. DrIng. Joci	nen Strube	Fakultät für Mathematik/Informatik und Maschinenbau			
6. Sprache	7. LP	8. Dauer	9. Angebot		
Deutsch	4	[X] 1 Semester	[] jedes Semester		
		[] 2 Semester	[X] jedes Studienjahr		
			[] unregelmäßig		

10. Lern-/Qualifikationsziele des Moduls

Die Studenten sollen in die Lage versetzt werden, den aktuellen Stellenwert von Pflanzen, als wichtiges Ausgangsmaterial für wirksame Einzelsubstanzen und Zubereitungen aus der Arznei- und Lebensmittelindustrie und anderen Industriezweigen zu beurteilen. Die Trends der Ressourcennutzung und das Potential von pflanzlichen Rohstoffen soll mit jenem der fossilen Rohstoffe verglichen und die Vor- und Nachteile der jeweiligen Ressourcen differenziert werden.

Die Betriebsparameter von Extraktionsverfahren sind zu identifizieren und die Anwendung auf die Verarbeitung von pflanzlichen Rohstoffen ist zu bewerten. Wichtige Eigenschaften der Rohstoffe sollen eigenständig erkannt und mit den Grundkenntnissen der Verfahrenstechnik verknüpft werden, um effiziente Verfahren auszuarbeiten.

Leh	Lehrveranstaltungen						
	12. Lehrveranstaltungstitel		14. LV-Nr.	15. LV-Art	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch) Bioverfahrenstechnik III-	Dozent(in)	LV-Nr.	LV-AFL	sws	Präsenz-/Eigenstudium	
1	Einführung in die Phytotechnologie	Prof. DrIng. Jochen Strube	\$ 8629	2V/1Ü	3	42 h / 78 h	
	(Bio Process Engineering III)						
	Summe: 3 42 h / 78 h						
Zu	Zu Nr. 1:						
18a	18a Fmnf Voraussetzungen Praktikumsversuche SL-Extraktion						

18a. Empf. Voraussetzungen	Praktikumsversuche SL-Extraktion				
19a. Inhalte	Bedeutung und Perspektiven für PhytoextrakteBotanik, Morphologie und PhytochemiePhytoextrakte				

20a. Medienformen	Vorlesungbegleitendes Skript
21a. Literatur	 Bart, Hans-Jörg/Pilz, Stephan (Hg.): Industrial Scale Natural Products Extraction, Wiley-VCH: Weinheim 2011. Chemat, Farid/Strube, Jochen (Hg.): Green Extraction of Natural Products. Theory and Practice, Wiley-VCH: Weinheim 2015.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an	
23. Nr.	r. 24. Zugeordnete Lehrveranstaltungen		PArt	LP	Benotung	der Modulnote	
1	Bioverfahrenstechnik III - Einfüh Phytotechnologie	МР	4	benotet	100 %		
29. Prüfungsform / Voraussetzung		Klausur (90 Minuten) > ca. 15 Teilnehmer, mündliche Prüfung (30					
für die Vergabe von LP		Minuten, Einzelprüfung) < ca. 15 Teilnehmer					
30. Verantwortliche(r) Prüfer(in)		Prof. Drlng. Jochen Strube					
31. Prüfungsvorleistungen Keine		Keine					

1a. Modultitel (deutsch)1b. Modultitel (englisch)Bioverfahrenstechnik IV -Bio Process Engineering IVSpezielle Aspekte der
PhytotechnologiePhytotechnologie

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer							
Prof. Drlng. Jochen Strube		Fakultät für Mathematik/Informatik und Maschinenbau					
6. Sprache	7. LP	8. Dauer	9. Angebot				
Deutsch	4	[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

10. Lern-/Qualifikationsziele des Moduls

Die Studenten sollen in die Lage versetzt werden, die grundlegenden Kenntnisse und Anforderungen an das Arbeitsfeld der Phytoextrakte zu definieren. Zudem sollen die Voraussetzungen für die Herstellung von hochwertigen Produkten strukturiert dargestellt werden können, sowie die Ursachen für deren Erfolg und Akzeptanz am Markt analysiert werden.

Um dieses Ziel zu erreichen, sollen die Grundlagen für effiziente Verfahrenstechnik mit den speziellen Anforderungen an die Phytotechnologie verbunden werden. Die Randbedingungen für die erfolgreiche Entwicklung eines Produktes, wie Beschaffung der Rohstoffe und Regulatorische Aspekte, sind zu identifizieren. Der Einfluss der Randbedingungen auf die verfahrenstechnische Auslegung eines Herstellungsprozesses soll beurteilt werden.

Leh	Lehrveranstaltungen								
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand			
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium			
1	Bioverfahrenstechnik IV - Spezielle Aspekte der Phytotechnologie (Bio Process Engineering IV)	Prof. DrIng. Jochen Strube	W 8630	2V/1Ü	3	42 h / 78 h			
	Summe: 3 42 h / 78 h								
Zu Nr. 1:									
18a	18a. Empf. Voraussetzungen Praktikumsversuche SL-Extraktion								

	- Pharmazeutische Phytotechnologie/Verwendung von Pflanzen in der Medizin
	- Gewinnung von Pflanzenmaterial
19a. Inhalte	- Qualitätskontrolle
	- Gesetzliche Rahmenbedingungen
	- Qualitätssicherung
20 - Madiantanna	- Vorlesung
20a. Medienformen	- begleitendes Skript
21 - 114	- Bart, Hans-Jörg/Pilz, Stephan (Hg.): Industrial Scale Natural Products Extraction, Wiley-VCH: Weinheim 2011.
21a. Literatur	- Chemat, Farid/Strube, Jochen (Hg.): Green Extraction of Natural Products. Theory and Practice, Wiley-VCH: Weinheim 2015.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	24. Zugeordnete Lehrvera	PArt	LP	Benotung	der Modulnote			
1	Bioverfahrenstechnik IV - Spezi der Phytotechnologie	MP	4	benotet	100 %			
29. Prüfungsform / Voraussetzung Klausur (90 Mi für die Vergabe von LP Minuten, Einze			•		ŕ	dliche Prüfung (30		
30. Verantwortliche(r) Prüfer(in) Prof. Dr		Prof. DrIng. Jo	Prof. DrIng. Jochen Strube					
31. Prüfungsvorleistungen Keine								

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Brennstofftechnik I	Fuel Technology 1

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
4. Zuständige Fakultät	5. Modulnummer						
Fakultät für Energie- und							
Wirtschaftswissenschaften							
8. Dauer	9. Angebot						
[X] 1 Semester	[] jedes Semester						
[] 2 Semester	[X] jedes Studienjahr						
	[] unregelmäßig						
	4. Zuständige Fakultät Fakultät für Energie- und Wirtschaftswissenschaften 8. Dauer [X] 1 Semester						

Fossile Brennstoffe werden auch in Zukunft eine tragende Rolle im Bereich der elektrischen Energieerzeugung und Stoffbehandlung einnehmen. Daher soll der Student in dieser Vorlesung lernen, wie die Eigenschaften und das Brennverhalten von fossilen und Sekundärbrennstoffen charakterisiert werden und sich im alltäglichen Einsatz in der Technik auswirken. In den Übungen werden einfache Problemstellungen gemeinsam gelöst. Dabei haben die Studenten die Möglichkeit, sich kontinuierlich mit dem Betreuer und mit anderen Studenten über die Ideen, Probleme und Lösungen auszutauschen.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium	
_	Brennstofftechnik I	Prof. DrIng. R.	C 0.5.2.2	2V/1Ü	2	42 h / 79 h	
1	(Fuel Technology 1)	Weber	S 8522	20/10	3	42 h / 78 h	
				Summe:	3	42 h / 78 h	

Zu Nr. 1:

18a. Empf. Voraussetzungen	Keine	
	1.	Energiesituation
	2.	Brennstoffe, ihre Bestandteile und Brennstoffcharakterisierung
	3.	Eigenschaften fester Brennstoffe
	4.	Technische Verbrennungsparameter und Wirkungsgrad einer
		Feuerung
19a. Inhalte	5.	Kohlecharakterisierung im Hinblick auf Verbrennung, Mahlbarkeit,
	6.	Zündwilligkeit und Ausbrandverhalten
	7.	Eigenschaften gasförmiger Brennstoffe
	8.	Eigenschaften flüssiger Brennstoffe
	9.	Ausgewählte Probleme

20a. Medienformen	- Skript
	- PowerPoint
	- Skript zur Vorlesung.
	- de Souza-Santos, Marcio L.: Solid Fuels Combustion and Gasification.
	Modeling, Simulation, and Equipment Operations, CRC Press: Boca
	Raton u. a. (2. Auflage) 2010.
	- Joos, Franz: Technische Verbrennung. Verbrennungstechnik,
21a. Literatur	Verbrennungsmodellierung, Emissionen, Springer: Berlin u. a. 2006.
Zia. Literatur	- Wünning, Joachim G. (Hg.): Handbuch der Brennertechnik für
	Industrieöfen. Grundlagen – Brennertechniken – Anwendungen,
	Vulkan Verlag: Essen (2. Auflage) 2018.
	- Zelkowski, Jacek: Kohlecharakterisierung und Kohleverbrennung.
	Kohle als Brennstoff, Physik und Theorie der Kohleverbrennung, VGB
	TowerTech: Essen (2. Auflage) 2004.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	24. Zugeordnete Lehrveranstaltungen		PArt	LP	Benotung	der Modulnote		
1	Brennstofftechnik I	MP	4	benotet	100 %			
29. Prüf	ungsform / Voraussetzung	Mündliche Prüfung (max. 60 Minuten)						
für die V	für die Vergabe von LP							
30. Vera	ntwortliche(r) Prüfer(in)	Prof. DrIng. R. Weber						
31. Prüfungsvorleistungen		Keine						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Brennstoffzellen II	Fuel Cells II

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
•							
r							

Die Studierenden

- können den Aufbau von Brennstoffzellen selbstständig skizzieren
- können die wesentlichen Bauteile benennen, deren Funktion erklären und die Anforderungen hinsichtlich der Materialien begründen.
- beherrschen sicher die grundlegenden Gleichungen zur thermodynamischen Beschreibung von Brennstoffzellen und können diese plausibel auf reale Anwendungsfälle übertragen
- können Modellannahmen kritisch hinterfragen, reale Abweichungen implementieren und angepasste Modellvorstellungen ableiten
- kennen unterschiedliche Verfahren zur Brenngaserzeugung und -aufbereitung und können diese anhand ihrer spezifischen Vor- und Nachteile systematisch vergleichen
- können mögliche Einsatzgebiete von Brennstoffzellen-Systemen analysieren und bewerten
- sind in der Lage, den Systemnutzen von Brennstoffzellen kritisch zu bewerten und anhand von Praxisbeispielen zu einzuschätzen

Lehrveranstaltungen							
11.	12. Lehrveranstaltungstite	13.	14.	15.	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium	
1	Brennstoffzellen II	Dr. Lindonessia	S 2325	3V	3	42 h / 48 h	
'	(Fuel Cells II)	Dr. Lindermeir					
	Summe: 3 42 h / 48 h						
Zu Nr. 1:							
18a	. Empf. Voraussetzungen	rennstoffzellen I					

18a. Empf. Voraussetzungen	Brennstoffzellen I				
	Die Wahlpflichtvorlesung Brennstoffzellen II eröffnet das Gebiet der heutigen Brennstoffzellenforschung mit den derzeitig sehr verschiedenen				
19a. Inhalte	Realisierungsformen der Brennstoffzellen und ihren Vor- und Nachteilen.				
	Die Vorlesungsinhalte orientieren sich an den aktuellen Publikationen zu				
	diesem Arbeitsgebiet. Behandelt werden die wichtigsten unterschiedlichen				

	Brennstoffzellentypen und ihre Funktionsweise, z.B. PEM, DMFC, SOFC, MCFC. Die behandelten Themen umfassen den grundsätzlichen Aufbau und die Funktionsweise von Brennstoffzellen, die Thermodynamik elektrochemischer Energiewandler, Strom-Spannungs-Kennlinie und Verlustmechanismen, Brenngaserzeugung und -aufbereitung, Systemtechnik und Praxiserfahrungen.					
20a. Medienformen	- Folien - Tafel					
21a. Literatur	 Vorlesungs-Skriptum des Dozenten. DoE: Fuel Cell Handbook, Download unter: http://www.osti.gov/bridge/servlets/purl/769283/769283.pdf. Heinzel, Angelika u. a. (Hg.): Brennstoffzellen. Entwicklung, Technologie, Anwendung, C. F. Müller Verlag: Heidelberg (2. neubearb. und erweiterte Auflage) 2006. Jungbluth, Christian Herbert: Kraft-Wärme-Kopplung mit Brennstoffzellen in Wohngebäuden im zukünftigen Energiesystem, Forschungszentrum Jülich: Jülich 2007 (Download unter: http://jusel.fz-juelich.de/record/5882/files/Energietechnik_59.pdf). Kordesch, Karl/Simader, Günter: Fuel Cells and their Applications, vCH Wiley Verlag: Weinheim u. a. (4. Auflage) 2001. Vielstich, W./Lamm, A./Gasteiger, H.: Handbook of Fuel Cells — Fundamentals, Technology, Applications. Volume 1-6, VCH-Verlag: Weinheim 2007-2009. 					
22a. Sonstiges						

Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Brennstoffzellen II	MP	3	Benotet	100 %		
29. Prüf	ungsform / Voraussetzung	Mündliche Prü	fung.				
für die V	ergabe von LP						
30. Vera	ntwortliche(r) Prüfer(in)	Dr. Lindermeir					
31. Prüf	ungsvorleistungen	Keine					

1a. Modultitel (deutsch)

Chemieindustrie im Wandel -Eine praxisorientierte Einführung in die Strategieentwicklung und umsetzung

1b. Modultitel (englisch)

Changes in Chemicals Industry

2	Verwen	dharkoit	dos	Module	in Stu	dionaän	aan
Z.	verwenc	ubarkeit	aes	moauis	ın ətu	uiengan	qen

M.Sc. Verfahrenstechnik/Chemieingenieurwesen

Wilse. Vertailleristeerining enteringemeat western						
3. Modulveran	twortliche(r)	5. Modulnummer				
Prof. DrIng. Joc	rof. DrIng. Jochen Strube Fakultät für Mathematik/Informatik					
		und Maschinenbau				
6. Sprache 7. LP		8. Dauer	9. Angebot			
Deutsch	4	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden lernen die Methoden und Werkzeuge der Strategieentwicklung in der Chemischen Industrie in einer praxisorientierten Einführung kennen. Sie können Strategische Projekte wie Akquisitionen oder große Einzelinvestitionen in Neuanlagen einschätzen. Weiterhin können die Studierenden Instrumente Strategischer Management Prozesse benennen und anwenden sowie den Budget-Prozess verstehen.

Die Studierenden erlernen die grundlegenden Aspekte der Unternehmensführung und Unternehmensorganisation sowie des Themas Change Management.

Leh	Lehrveranstaltungen							
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand		
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium		
1	Chemieindustrie im Wandel - Eine praxisorientierte Einführung in die Strategieentwicklung und - umsetzung / (Changes in Chemicals Industry)	Prof. DrIng. Jochen Strube	S 8632	3V	3	42 h / 78 h		
				Summe:	3	42 h / 78 h		
Zu	Zu Nr. 1:							

l8a.Emp	f. Voraussetzun	gen
---------	-----------------	-----

Keine

19a. Inhalte	 Strategischer Managementprozess Ergebnisrechnung Interne Unternehmensanalyse Externe Marktkräfte SWOT Analyse Strategische Planung Implementierung
	- Gruppenübung und Abschlussvortrag
20a. Medienformen	Skript
	- Dueck, Gunter: Lean-Brain-Management. Erfolg und Effizienzsteigerung durch Null-Hirn, Springer: Berlin u. a. 2006.
21a. Literatur	- Sprenger, Reinhard K.: Radikal führen, Campus Verlag: Frankfurt am Main u. a. 2015.
	 Teltschik, Walter: Geschichte der deutschen Großchemie. Entwicklung und Einfluß in Staat und Gesellschaft, VCH: Weinheim u. a. 1992.
22a. Sonstiges	

Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote
1	Chemieindustrie im Wandel - E praxisorientierte Einführung in Strategieentwicklung und -um:	die	MP	4	Benotet	100 %
	ungsform / Voraussetzung /ergabe von LP	Klausur (90 Minuten) > ca. 15 Teilnehmer, mündliche Prüfung (30 Minuten, Einzelprüfung) < ca. 15 Teilnehmer				dliche Prüfung (30
30. Ver <i>a</i>	ntwortliche(r) Prüfer(in)	Prof. DrIng. Jochen Strube				
31. Prüf	ungsvorleistungen	Keine				

1a. Modultitel (deutsch) Chemische Energiespeicher und -systeme 1b. Modultitel (englisch) Chemical Energy Storage and Energy Systems

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer				
Dr. Lindermeir		Fakultät für Mathematik/Informatik					
		und Maschinenbau					
6. Sprache	7. LP	8. Dauer	9. Angebot				
Deutsch	4	[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden

- können den (zukünftigen) Bedarf für chemische Energiespeicherverfahren nennen und sachlich begründen
- können die möglichen Prozesse zur chemischen Energiespeicherung benennen, deren Funktion erklären und die Anforderungen begründen.
- beherrschen sicher die grundlegenden Gleichungen zur verfahrenstechnischen und reaktionstechnischen Beschreibung von Syntheseverfahren und können diese plausibel auf reale Anwendungsfälle übertragen
- können Modellannahmen kritisch hinterfragen, reale Abweichungen implementieren und angepasste Modellvorstellungen ableiten
- kennen unterschiedliche Verfahren zur Synthesegas- und Wasserstofferzeugung und -aufbereitung und können diese anhand ihrer spezifischen Vor- und Nachteile systematisch vergleichen
- können mögliche Einsatzgebiete von chemischen Energiespeichersystemen analysieren und bewerten
- sind in der Lage, den Systemnutzen von chemischen Energiespeichern kritisch zu bewerten und anhand von Praxisbeispielen zu einzuschätzen

Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Chemische Energiespeicher und -systeme (Chemical Energy Storage and Energy Systems)	Dr. Lindermeir	W 2318	2V/1Ü	3	42 h / 78 h
				Summe:	3	42 h / 78 h

Zu Nr. 1:

18a. Empf. Voraussetzungen

19a. Inhalte	Die Vorlesung vermittelt das Wissen über Bedarf, Konzepte, Entwicklungslinien und Probleme chemischer Energiespeichertechnologien. Dem Studierenden werden die verfahrenstechnischen Aspekte der Verfahren und die verschiedenen Umsetzungskonzepte erläutert. Dabei wird auf die Anforderungen und die Probleme derzeitiger Realisierungen aufmerksam gemacht. Über die Übung wird dieses Wissen vertieft, auf praktische Fragestellungen angewendet und die Studierenden werden zu einem selbstständigen Arbeiten in diesem Bereich befähigt. Die Vorlesungsinhalte reichen vom Status-Quo der heutigen Energieversorgung, über die mit der Energiewende verbundenen Änderungen und zukünftigen Entwicklungen zur Erzeugung erneuerbarer Energieträger bis hin zu den konkreten Power-to-X-Verfahren und Prozessschritten.				
20a. Medienformen	- Folien - Tafel				
21a. Literatur	 Vorlesungs-Skriptum des Dozenten. Huggins, Robert A.: Energy Storage. Fundamentals, Materials and Applications, Springer Verlag: Cham u. a. (2. Auflage) 2016. Schlögl, Robert (Hg.): Chemical Energy Storage, de Gruyter: Berlin u. a. 2013. Sterner, Michael/ Stadler, Ingo (Hg.): Energiespeicher. Bedarf, Technologien, Integration, Springer Vieweg: Wiesbaden (2. korrigierte und ergänzte Auflage) 2017. 				
22a. Sonstiges					

Studie	Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrveranstaltungen		PArt	LP	Benotung	der Modulnote	
1	Chemische Energiespeicher und -systeme		MP	4	benotet	100 %	
29. Prüf	ungsform / Voraussetzung	Mündliche Prüfung					
für die V	ergabe von LP						
30. Vera	ntwortliche(r) Prüfer(in)	Dr. Lindermeir					
31. Prüf	ungsvorleistungen	Keine					

1a. Modultitel (deutsch) 1b. Modultitel (englisch) **Chemical Processes and Markets** Chemische Prozesse und Märkte

2. Verwendba	rkeit des Moduls i	n Studiengängen				
M.Sc. Verfahrens	technik/Chemieinge	enieurwesen				
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer			
Dr. rer. nat. Bernd Langanke		Fakultät für Mathematik/Informatik				
		und Maschinenbau				
6. Sprache	7. LP	8. Dauer	9. Angebot			
deutsch	3	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			
10 Lern-/Qualifikationsziele des Moduls						

In vier Modulen lernen die Hörer die wichtigsten Verfahren zur Herstellung von Massenchemikalien und Polymeren sowie die relevanten Chemie- und Anlagenbaumärkte kennen. Vorgestellt wird die Ammoniak-Erzeugung auf Basis von Erdgas und die sich daran anschließende Düngemittelproduktion. Des Weiteren wird auf die Herstellung der Massenkunststoffe Polyethylen und Polypropylen und deren Monomere eingegangen. Die Bedeutung von Raffinerien als Lieferanten für BTX-Aromaten und die Herstellung der Folgeprodukte Polystyrol und Polyester wird besprochen. Ausgehend von der Chlor-Alkali-Elektrolyse wird im letzten Teil der Vorlesung die Chlorchemie unter Berücksichtigung der Polyvinylchlorid-Herstellung betrachtet. Integriert in den Vorlesungsstoff sind aktuelle Themen wie der Einsatz von Shale Gas in der Petrochemie, die Nutzung von Biomasse als Alternative zu fossilen Rohstoffen und die Verwendung von regenerativ erzeugtem Strom in chemischen Prozessen. Die Hörer werden mit vollständigen Prozessketten - vom Rohstoff bis zum Endprodukt - vertraut gemacht. Sie erlangen Kenntnisse über die Verknüpfung von Energie- und Rohstoffmärkten und generell über wirtschaftliche Zusammenhänge im Chemie- und Anlagenbausektor.

Leh	Lehrveranstaltungen					
11 .Nr	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium
1	Chemische Prozesse und Märkte (Chemical Processes and Markets)	Dr. rer. nat. Bernd Langanke	W 8413	2V	2	28 h / 62 h
				Summe:	2	28 h / 62 h
Zu	Zu Nr. 1:					

18a. Empf. Voraussetzungen Grundkenntnisse in Chemie und Verfahrenstechnik

	1. Chemische Herstellungsverfahren für Massenprodukte/
	- Chemie- und Anlagenmärkte
	- Ammoniak/Düngemittel
	- Olefine/Polyolefine
19a. Inhalte	- Aromaten/Polyester
	- Chlor/Polyvinylchlorid
	2. Rohstoffwandel/Alternative Rohstoffquellen
	3. Einführung in den Chemieanlagenbau
	- Tafel
20a. Medienformen	- Folien
	- Skript
	- Skript "Chemische Prozesse und Märkte".
	 Arpe, Hans-Jürgen: Industrielle Organische Chemie. Bedeutende Vor- und Zwischenprodukte, Wiley-VCH: Weinheim (6. vollst. überarb. Auflage) 2007.
21a. Literatur	- Bertau, Martin u. a.: Industrielle anorganische Chemie, Wiley-VCH: Weinheim (4. vollst. überarb. und aktual. Auflage) 2013.
	- Winnacker-Küchler: Chemische Technik. Prozesse und Produkte (mehrere Bände), Wiley-VCH: Weinheim 2003-2005.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrveranstaltungen		PArt	LP	Benotung	der Modulnote	
1	Chemische Prozesse und Märkte		MP	3	benotet	100 %	
für die Vergabe von LP ca. 30 Min in Form		ca. 30 Minuten in Form von	Dauer, in Verständ	der die nisfrage	wesentlichen In n behandelt w	llichen Prüfung von halte der Vorlesung erden. Bei großer gewichen werden.	
30. Verantwortliche(r) Prüfer(in)		Dr. rer. nat. Bernd Langanke					
31. Prüfungsvorleistungen Keine		Keine					

Thermodynamik für die Materialund Prozessentwicklung

1b. Modultitel (englisch)

Computational Thermodynamics for Materials and Process Design

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Verfahrenstechnik/Chemieingenieurwesen						
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer			
Prof. Dr. M. Fischlschweiger		Fakultät für Energie- und				
		Wirtschaftswissenschaften				
6. Sprache	7. LP	8. Dauer	9. Angebot			
Deutsch	6	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

10. Lern-/Qualifikationsziele des Moduls

- Studierende können selbständig Phasendiagramme mit thermodynamischen Modellen und numerischer Software berechnen.
- Studierende können thermodynamische Eigenschaften von komplexen Vielstoffsystemen mit numerischer Software berechnen und die Ergebnisse selbstständig interpretieren.
- Studierende können diffusionskontrollierte Prozesse mit numerischer Software berechnen.
- Studierende sind in der Lage, die für die Berechnung erforderlichen Daten zu interpretieren und diese für die numerischen Berechnungen entsprechend aufzubereiten.
- Studierende sind in der Lage, im Rahmen der Übung, die computergestützte Thermodynamik zur Entwicklung von neuen Materialien und Prozessen einzusetzen.

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Computergestützte Thermodynamik für die Material- und Prozessentwicklung / Computational Thermodynamics for Materials and Process Design	Prof. Dr. M. Fischlschweiger	S 8510	2V/2Ü	4	56 h / 124 h
			-	Summe:	4	56 h / 124 h
Zu	Zu Nr. 1:					

18a. Empf. Voraussetzungen	Thermodynamik I	
19a. Inhalte	 Einführung in die Computergestützte Thermodynamik Modellierungsstrategien der temperatur- und zusammensetzungsabhängigen Gibbs-Energien Modellierungsstrategien der temperatur- und zusammensetzungsabhängigen Mobilitäten Nichtgleichgewichtsthermodynamik und Onsager Relationen Erstellung von Simulationsmodellen und deren numerische Implementierung Erstellung thermodynamischer Datenbanken Fallstudien des Einsatzes der computergestützten Thermodynamik in der Material- und Prozessentwicklung 	
20a. Medienformen	Folien/PowerPointBeispielprogramme in der Programmiersprache Python	
21a. Literatur	 H.L. Lukas, S.G. Fries, B. Sundman: Computational Thermodynamics The Calphad Method, Cambridge University Press, 1. Aufl. 2007 Z.K. Liu, Y. Wang: Computational Thermodynamics of Materials, Cambridge University Press, First Ed. 2016 T. Matsushita, K. Mukai: Chemical Thermodynamics in Materials Science – From Basics to Practical Applications, Springer Verlag, 2018 	
22a. Sonstiges		

Studie	Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrverar	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Computergestützte Thermodyn Material- und Prozessentwicklu Computational Thermodynami and Process Design	МР	6	benotet	100 %		
29. Prüf	ungsform / Voraussetzung	Klausur (120 Minuten) (bei weniger als 5 Teilnehmern mündlich)					
für die Vergabe von LP							
30. Verantwortliche(r) Prüfer(in)		Prof. Dr. M. Fischlschweiger					
31. Prüf	ungsvorleistungen	Keine					

1a. Modultitel (deutsch) Dynamische Simulation mit Aspen Custom Modeler

1b. Modultitel (englisch)

Dynamic Simulation with Aspen Custom Modeler

[] unregelmäßig

2. Verwendbai	keit des Moduls i	n Studiengängen	
M.Sc. Verfahrens	technik/Chemieinge	enieurwesen	
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer
Prof. DrIng. Joc	hen Strube	Fakultät für Mathematik/Informatik	
		und Maschinenbau	
6. Sprache	7. LP	8. Dauer	9. Angebot
deutsch 4		[X] 1 Semester	[] jedes Semester
		[] 2 Semester	[X] jedes Studienjahr

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden erlernen die Grundlagen der dynamischen Simulation. Sie können den Unterschied zwischen stationärer und dynamischer Simulation erläutern. Weiterhin können die Studierenden unterschiedliche Modellierungstiefen und Prozessmodelle benennen und anwenden. Sie erhalten Einblick in die Numerik und können verschiedene Ansätze nennen sowie deren Anwendungsbereich nebst Vor- und Nachteilen erörtern.

Die Studierenden können eigene Prozessmodelle erstellen, selbstständig Berechnungen durchführen und bewerten sowie potentielle Fehlerquellen ermitteln.

Leh	Lehrveranstaltungen							
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium		
1	Dynamische Simulation mit Aspen Custom Modeler (Dynamic Simulation with Aspen Custom Modeler)	Prof. DrIng. Jochen Strube	\$ 8676	Ü	3	42 h / 78 h		
				Summe:	3	42 h / 78 h		

Zu Nr. 1:

18a. Empf. Voraussetzungen	Keine				
	- Einführung in die Prozesssimulation				
	- Grundlagen der Modellierung				
19a. Inhalte	- Das Simulationsprogramm Aspen Custom Modeler				
	- Numerische Grundlagen der Dynamischen Simulation				
	- Numerische Methoden zur Umwandlung von PDE in ODE				
20 14 15 6	- PC-Übung				
20a. Medienformen	- begleitendes Skript				

21a. Literatur	 AspenTech: Aspen Custom Modeler 2004. Dieterich, Erwin u. a.: Numerische Methoden zur Simulation verfahrenstechnischer Systeme, in: Chemie Ingenieur Technik 64 (1992), S. 136-147. Gorak, A.: Simulation thermischer Trennverfahren fluider Vielkomponentengemische, in: Hans Schuler (Hg.): Prozeßsimulation, VCH: Weinheim u. a. 1995, S. 349-408.
	- Lohe, B./Futterer, E.: Stationäre Flowsheet-Simulation, in: Hans Schuler (Hg.): Prozeßsimulation, VCH: Weinheim u. a. 1995, S. 81-108.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote		
1	Dynamische Simulation mit As Modeler	MP	4	benotet	100 %			
29. Prüf	ungsform / Voraussetzung	Klausur (90 Mi	Klausur (90 Minuten) > ca. 15 Teilnehmer, mündliche Prüfung (30					
für die V	ergabe von LP	Minuten, Einzelprüfung) < ca. 15 Teilnehmer						
30. Vera	ntwortliche(r) Prüfer(in)	Prof. DrIng. Jochen Strube						
31. Prüf	ungsvorleistungen	Keine						

1a. Modultitel (deutsch)
Einführung in die
Prozessmodellierung für
Ingenieure

1b. Modultitel (englisch)Introduction to Process Modelling for Engineers

2. Verwendbarkeit des Moduls in Studiengängen								
M.Sc. Verfahrer	M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
3. Modulvera	ntwortliche(r)	4. Zuständige Fakultät	5. Modulnummer					
PD Dr. Jens Wendelstorf		Fakultät für Natur- und						
		Materialwissenschaften						
6. Sprache	7. LP	8. Dauer	9. Angebot					
Deutsch	4	[X] 1 Semester	[] jedes Semester					
		[] 2 Semester	[X] jedes Studienjahr					
			[] unregelmäßig					

10. Lern-/Qualifikationsziele des Moduls

Die Studenten können Prozesse und Systeme strukturiert betrachten und eine formale Schnittstelle zu einem Modell definieren, mit dem relevante Aspekte des Systemverhaltens simuliert werden können. Sie können einfache Prozessmodelle selbst realisieren und diese qualitativ und quantitativ analysieren (Validierung, Parametrierung). Sie sind in der Lage, für konkrete Anwendungen Modellierwerkzeuge und Modelle auszuwählen und Simulationsergebnisse zu bewerten.

Die Studenten können mit Mathematica in der WolframLanguage einfache Prozessmodelle selbst erstellen und analysieren. Sie haben mit dem SystemModeler ein Beispiel für auf grafischen Schnittstellen basierende Simulationswerkzeuge kennen gelernt.

Leh	Lehrveranstaltungen							
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand		
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium		
1	Einführung in die Prozessmodellierung für Ingenieure (Introduction to Process Modelling for Engineers)	PD Dr. J. Wendelstorf	W 7925	3V/Ü	3	42 h / 78 h		
	Summe: 3 42 h / 78 h							
Zu Nr. 1:								
18a	8a. Empf. Voraussetzungen Ing. Mathematik, Physik (Grundkenntnisse)							

	1 Crundhagriffa dar Prozessmedalliarung					
	Grundbegriffe der Prozessmodellierung Grandbegriffe der Vorlegung Beredingeren und Anzugendungsfalden.					
	Gegenstand der Vorlesung, Paradigmen und Anwendungsfelder (CAE, Industrie 4.0)					
	2. Grundlagen der Prozessmodellierung					
	Aufgaben und Hierarchien bei der Beschreibung realer Prozesse.					
	3. Einführung in die WolframLanguage					
	Grundlagen der z.Zt. mächtigsten Programmiersprache.					
	4. Übungsbeispiel pmHaus:					
19a. Inhalte	Am anschaulichen Beispiel der thermischen Beschreibung eines Einfamilienhauses (Heizung und Wärmetransport in Wechselwirkung mit der Umgebungstemperatur) wird ein Prozessmodell erstellt und validiert.					
	Metamodellierung: Der Weg vom Modell zur Vorhersage zukünftigen Systemverhaltens					
	Am Beispiel des selbst erstellten Modells werden die grundlegenden Aufgaben der Prozessmodellierung erlernt:					
	Schnittstellendefinition, Sensitivitätsanalyse, Parametrierung, Validierung und Einbindung in automatisierte Systeme.					
	 Die Wissenschaft und Technologie der System- und Prozessmodellierung 					
	Die Möglichkeiten und Grenzen einer weiteren Beschäftigung mit dem Thema an der TU Clausthal werden diskutiert, in dem die Spezialgebiete, Werkzeuge und Vorlesungen kurz vorgestellt werden.					
	- Powerpoint, Tafel, Softwaresysteme (Mathematica, SystemModeler,)					
	- R Aris (1978): Mathematical modelling techniques					
	- M M Denn (1986): Process modelling					
	- R Aris (1999): Mathematical Modeling A Chemical Engineer's Perspective					
	- K M Hangos, I T Cameron (2001):					
21a. Literatur	- Process modelling and model analysis					
	- J Mikles, M Fikar (2007):					
	- Process Modelling, Identification and Control					
	- J. Wendelstorf (2016): Prozessmodellierung in der					
	Hochtemperaturverfahrenstechnik					

Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an	
23. Nr.	r. 24. Zugeordnete Lehrveranstaltungen		PArt	LP	Benotung	der Modulnote	
1	Einführung in die Prozessmodellierung für Ingenieure		МР	4	benotet	100 %	
29. Prüfungsform / Voraussetzung für die Vergabe von LP		mündlichen o	der schrift	lichen P	rüfung		

30. Verantwortliche(r) Prüfer(in)	PD Dr. J. Wendelstorf
31. Prüfungsvorleistungen	Keine

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Elektrische Energieerzeugung	Electrical Power Generation

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer							
Fakultät für Energie- und							
Wirtschaftswissenschaften							
8. Dauer	9. Angebot						
[X] 1 Semester	[] jedes Semester						
[] 2 Semester	[X] jedes Studienjahr						
	[] unregelmäßig						
	4. Zuständige Fakultät Fakultät für Energie- und Wirtschaftswissenschaften 8. Dauer [X] 1 Semester						

Die Studenten können nach Abschluss der Veranstaltung die Struktur und Effizienz von elektrischen Energieerzeugungsanlagen beurteilen. Sie sind in der Lage, das elektrische Betriebsverhalten von Drehstromgeneratoren und die zentrale Regelungsstruktur von elektrischen Netzen zu beurteilen und zu berechnen.

Leh	Lehrveranstaltungen							
11.	12. Lehrveranstaltungstite	l 13.	14.	15.	16.	17. Arbeitsaufwand		
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium		
	Elektrische Energieerzeugung	Doof Dool	C 0015	2V/1Ü	3	42 h / 78 h		
•	(Electrical Power Generation)	Prof. Beck	S 8815					
		•	•	Summe:	3	42 h / 78 h		
Zu	Nr. 1:							
18a	. Empf. Voraussetzungen	Grundlagen der Ele	ektrotechn	ik				
	1. Einführung							
	Vergleich verschiedener Energieformen, Strom- und Netzarten, Struktuder Elektrizitätsversorgung							
	2. Elektrizitätswirtschaft							

Vergleich verschiedener Energieformen, Strom- und Netzarten, Struktur der Elektrizitätsversorgung 2. Elektrizitätswirtschaft Ausnutzung, Verluste, Gleichzeitigkeitsgrad, Kostenstruktur, wirtschaftlicher Netzbetrieb, Verbundwirtschaft, Energiewirtschaftsgesetz 3. Wärmekraftwerke Kraftwerkstypen, thermischer Prozess 4. Wasserkraftwerke Wasserkraftgeneratoren, Wasserturbinen, Wasserkraftwerksarten 5. Kraftwerksgeneratoren (Synchrongeneratoren) Bauformen und Kühlung, Erzeugung von Drehfeldern, Polrad, Drehstromwicklung, Raumzeigerdarstellung, Betriebsverhalten der Voll-

	und Schenkelpolmaschine, Betriebsarten, Betriebskennlinien, Pendelungen, Anfahren, Generatorschutz					
	6. Netzregelung					
	Erregungseinrichtungen, Spannungsregelung, Primär- und Sekundär regelung					
	7. Eigenbedarf in Kraftwerken					
	Aufbau von Eigenbedarfsnetzen, Sicherstellung des Eigenbedarfes, Spannungshaltung					
20a. Medienformen	Präsentation; Folien werden den Studierenden im Anschluss zur Verfügung gestellt					
	- Eckhardt, Hanskarl: Grundzüge der elektrischen Maschinen, Teubner: Stuttgart 1982.					
21a. Literatur	 Flosdorff, René/Hilgarth, Günther: Elektrische Energieverteilung, Vieweg + Teubner: Wiesbaden (9. durchgesehene und aktual. Auflage) 2008. 					
	- Oeding, Dietrich/Oswald, Bernd R.: Elektrische Kraftwerke und Netze, Springer Vieweg: Berlin (8. Auflage) 2016.					
	- Weitere Literaturangaben im Vorlesungsskript.					
22a. Sonstiges						

Studie	Studien-/Prüfungsleistung					
23. Nr.	24 Zugoordnoto Lohrvora	estaltungen	25. PArt	26. LP	27. Benotung	28. Anteil an
	<u> </u>			+		
1	Elektrische Energieerzeugung		MP	4	benotet	100 %
29. Prüfungsform / Voraussetzung		mündliche. Pri	üfung			
für die Vergabe von LP						
30. Verantwortliche(r) Prüfer(in)		Prof. Beck				
31. Prüfungsvorleistungen Keine		Keine				

1a. Modultitel (deutsch)1b. Modultitel (englisch)Elektrische EnergietechnikElectrical Power Engineering

2. Verwendbarkeit des Moduls in Studiengängen

B.Sc. Maschinenbau

B.Sc. Elektrotechnik

B.Sc. Energietechnologie

B. Sc. Technische Informatik

B. Sc. Wirtschaftsingenieurwesen

M. Sc. Verfahrenstechnik/Chemieingenieurwesen

3. Modulverantwortliche(r)		4. Zuständige Fakultät	5. Modulnummer	
DrIng. Dirk Turschner		Fakultät für Energie- und Wirtschaftswissenschaften		
6. Sprache	7. LP	8. Dauer	9. Angebot	
deutsch	4	[X] 1 Semester	[] jedes Semester	
		[] 2 Semester	[X] jedes Studienjahr	
			[] unregelmäßig	

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden kennen nach Abschluss des Faches elektrische Betriebsmittel wie Gleichstrommaschinen, Asynchronmaschinen, Synchronmaschinen und Transformatoren und deren Eigenschaften und mögliche Einsatzgebiete. Die Studierenden sind in der Lage, relevante Informationen zu sammeln, zu bewerten und zu interpretieren und daraus wissenschaftlich fundierte Urteile abzuleiten. Darüber hinaus erhalten sie die Fähigkeit, fachbezogene Positionen und Problemlösungen argumentativ zu verteidigen. Die Studierenden können die Komponenten eigenständig in Ersatzschaltbilder überführen und sind in der Lage, deren elektrisches Verhalten zu deuten. (Fach-, Selbst- und Methodenkompetenz).

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Elektrische Energietechnik (Electrical Power Engineering)	DrIng. Dirk Turschner	S 8803	2V+1Ü	3	42 h / 78 h
				Summe:	3	42 h / 78 h
Zu	Zu Nr. 1:					

18a. Empf. Voraussetzungen	Grundlagen der Elektrotechnik
----------------------------	-------------------------------

19a. Inhalte	1. Einführung Historische Entwicklung, Anforderungen, Energiewandler und Energieumformer, Energieumformung mit Stromrichtern, Grundgleichungen des elektrischen Antriebs, Drehmomentkennlinien von Arbeitsmaschinen 2. Gleichstrommaschine Kommutator, Grundgleichungen der GS-Maschine, Leistung und Drehmoment, Ankerrückwirkung, Betriebsverhalten, Nebenschlussmaschine, Reihenschlussmaschine, fremderregte Gleichstrommaschine, Gleichstromstellergespeiste Gleichstrommaschine, Einquadranten- und Mehrquadrantenstromrichter-Gleichstromantriebe 3. Transformatoren Einphasentransformator, Sonderformen von Transformatoren, Dreiphasentransformator, Wirkungsgrad, Schaltgruppen 4. Asynchronmaschine Allgemeines, Drehspannungssystem, Drehfeld, Aufbau und Wirkungsweise, Ersatzschaltbild auf die Ständerseite bezogen, Wirkungsweise, Drehtransformator, Wicklungsersatz-schaltbilder, Asynchronkurzschlußläufermaschine, Leistung und Drehmoment, Drehmoment-Schlupf-Kennlinie, Betriebsverhalten, verlustarmes und verlustbehaftetes Drehzahlstellen, Bremsen und Umsteuern, Regelung von Asynchronmaschinen 5. Allgemeines über elektrische Antriebe Stationäre Antriebe, ortsveränderliche Antriebe, technischer Vergleich mit nichtelektrischen Antrieben, Bauformen, Betriebsarten, Kühlung, Wirkungsgrad, Elektromotor und Arbeitsmaschine			
20a. Medienformen	Skript und Vorlesungsfolien			
21a. Literatur	 Eckhardt, Hanskarl: Grundzüge der elektrischen Maschinen, Teubner: Stuttgart 1982 (Standardwerk). Fischer, Rolf: Elektrische Maschinen, Hanser: München (17. aktualisierte Auflage) 2017. Lämmerhirt, E. H.: Elektrische Maschinen und Antriebe, Carl Hanser Verlag: München 1989 (Standardwerk). Marenbach, Richard/Nelles, Dieter/Tuttas, Christian: Elektrische Energietechnik. Grundlagen, Energieversorgung, Antriebe und Leistungselektronik, Springer Vieweg 2013. Merz, Hermann/Lipphard, Götz: Elektrische Maschinen und Antriebe. Grundlagen und Berechnungsbeispiele, VDE Verlag: Berlin u. a. (3. überarb. und erweit. Auflage) 2014. 			
22a. Sonstiges	Praktikum: Zu dieser Vorlesung wird im Wintersemester das Praktikum zu elektrischen Antrieben I angeboten			

Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an
23. Nr.	Nr. 24. Zugeordnete Lehrveranstaltungen		PArt	LP	Benotung	der Modulnote
1	Elektrische Energietechnik		MP	4	benotet	100 %
29. Prüfungsform / Voraussetzung mündliche P für die Vergabe von LP		mündliche Prü	fung (Dau	ier 30 m	iin.)	
30. Verantwortliche(r) Prüfer(in)		DrIng. Dirk Tu	urschner			

31. Prüfungsvorleistungen	Keine

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Elektrische Energieverteilung	Electrical Power Distribution

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrenstechnik/Chemieingenieurwesen							

Die Studierenden lernen den Aufbau und die elektrischen Parameter (R-L-G-C) verschiedener Leitungssysteme kennen. Sie erlernen Verfahren zur Berechnung und Auslegung von elektrischen Netzen unterschiedlicher Strukturen. Hierzu gehören die klassische Lastflussrechnung und die Berechnung von Fehlerströmen sowohl im symmetrischen als auch im unsymmetrischen Netz mit dem Verfahren der "Symmetrischen Komponenten" sowie die Berechnung "langer" Leitungen für die Fernübertragung elektrischer Energie (Gleichstromleitungen (HGÜ) und Drehstromleitungen (DHÜ)).

(11do) and Dienstronnieitungen (Di 10)).								
Lehrveranstaltungen								
11.	12. Lehrveranstaltungstite	l 13.	14.	15.	16.	17. Arbeitsaufwand		
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium		
1	Elektrische Energieverteilung (Electrical Power Distribution)	DrIng. Jens zum Hingst	W 8812	2V/1Ü	3	42 h / 78 h		
				Summe:	3	42 h / 78 h		
Zu	Nr. 1:							
18a	. Empf. Voraussetzungen	Grundlagen der Ele	ektrotechn	ik				
19a	. Inhalte	1. Einführung (Stro 2. Aufbau und Dat Freileitungen, Kabe (Widerstands-, Indo 3. Kenngrößen vor Verluste, Induktivit 4. Berechnung elek Leitungsnachbildu	en elektriso el, Erwärm uktivitäts- o n Kabeln u äten, Kapa ktrischer No ng (Ersatzs	cher Leitunge ung, elektrisc und Kapazitä nd Leitungen izitäten etze schaltbild), ei	n he Kenr tsbelag) nseitig /	ngrößen , zweiseitig		
		gespeiste Leitung, vermaschtes Netz, HDÜ: Leitungsgleichungen, charakteristische Betriebsarten, HGÜ, Blindleistung und Oberschwingungen						

	5. Fehlerarten					
	Dreisträngiger Kurzschluss (generatornah / -fern),					
	unsymmetrische Fehler, symmetrische Komponenten					
	- Gebundenes Skript					
20a. Medienformen	 kommentierte Präsentationsfolien werden über Stud.IP zur Verfügung gestellt 					
	 Flosdorff, René/Hilgarth, Günther: Elektrische Energieverteilung, Vieweg + Teubner: Wiesbaden (9. durchgesehene und aktual. Auflage) 2008. 					
	- Happoldt, Hans/Oeding, Dietrich: Elektrische Kraftwerke und Netze, Springer: Berlin/Heidelberg 1978.					
21a. Literatur	 Knies, Wilfried/Schierack, Klaus: Elektrische Anlagentechnik. Kraftwerke, Netze, Schaltanlagen, Schutzeinrichtungen, Hanser: München (6. aktual. Auflage) 2012. 					
	- Oeding, Dietrich/Oswald, Bernd R.: Elektrische Kraftwerke und Netze, Springer Vieweg: Berlin (8. Auflage) 2016.					
	- Weitere Literaturangaben im Vorlesungsskript.					
22a. Sonstiges						

Studie	Studien-/Prüfungsleistung								
			25.	26.	27.	28. Anteil an			
23. Nr.	23. Nr. 24. Zugeordnete Lehrveran		PArt	LP	Benotung	der Modulnote			
1	Elektrische Energieverteilung		MP	4	benotet	100 %			
29. Prüf	29. Prüfungsform / Voraussetzung münd			min)					
für die V	ergabe von LP								
30. Verantwortliche(r) Prüfer(in) DrIng. Je			ım Hingst	i					
31. Prüf	ungsvorleistungen	Keine							

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Elektrochemie	Electrochemistry

2. Verwendbarkeit des Moduls in Studiengängen								
M.Sc. Verfahrenstechnik/Chemieingenieurwesen								
3. Modulveran	3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer							
Prof. Dr. F. Endres		Fakultät für Mathematik/Informatik						
		und Maschinenbau						
6. Sprache	7. LP	8. Dauer	9. Angebot					
Deutsch	6	[X] 1 Semester	[] jedes Semester					
		[] 2 Semester	[X] jedes Studienjahr					
			[] unregelmäßig					
10. Lern-/Oual	lifikationsziele de	s Moduls						

Die Studierenden können sich mit den erweiterten Grundlagen der Elektrochemie auseinandersetzen und deren Vorgänge beschreibend evaluieren und Reaktionspotentiale vorhersagen.

Leh	Lehrveranstaltungen							
11. Nr.	12. Lehrveranstaltungstite		14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand		
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	3443	Präsenz-/Eigenstudium		
1	Elektrochemie	F. Endres	S 8039	4 V/Ü	4	56 h / 124 h		
	Electrochemistry			1 1/3	·	3011, 12111		
				Summe:	4	56 h / 124 h		
Zu	Nr. 1:							
18a		Kenntnisse der Phys Grundlagen)/Exper			l. elektr	ochemischer		
		- Nernst Gleichung						
		- Elektrodenpotential						
		- Pourbaix-Diagramme						
19a	. Inhalte	- Butler-Volmer-Gleichung						
		- Festkörperkinetik, Polarisationsmethoden						
		- Ionische Flüssigkeiten						
		- elektronische Doppelschicht						
20a	. Medienformen	Folien, Skript, Tafel						
21a	IITAVATIIV	C. H. Hamann, W. Vielstich. Elektrochemie G.Wedler, Lehrbuch der Physikalischen Chemie						
22a	. Sonstiges							

Studien-/Prüfungsleistung								
			25.	26.	27.	28. Anteil an		
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote		
1	Elektrochemie		MP	6	benotet	100 %		
29. Prüfungsform / Voraussetzung Klausur/ 1 für die Vergabe von LP			linuten o	der Mür	ndliche Prüfung/	30 Minuten		
30. Vera	Prof. Dr. F. End	lres						
31. Prüf	ungsvorleistungen	keine						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Energierecht	Energy Law

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer							
Prof. Dr. H. Weyer		Fakultät für Energie- und					
		Wirtschaftswissenschaften					
6. Sprache 7. LP		8. Dauer	9. Angebot				
deutsch 3		[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

Die Studierenden kennen die wichtigsten Rechtsquellen für die Strom- und Gasversorgung. Sie können zum einen den Regelungsgehalt des Energiewirtschaftsgesetzes sowie der zugehörigen Rechtsverordnungen hinsichtlich des Energieregulierungsrechts einschließlich des komplexen Systems der Anreizregulierung darstellen. Zum anderen sind sie in der Lage, den Rechtsrahmen für die Stromerzeugung aus erneuerbaren Energien zu beschreiben. Sie können die wesentlichen rechtlichen Instrumente definieren und die maßgeblichen Vorschriften benennen.

Mit diesem Wissen sind die Studierenden in der Lage, einfache rechtliche Fragestellungen im Bereich des Energierechts zu lösen. Sie können die rechtlichen Anforderungen bei Tätigkeiten im Bereich der Strom- und Gasversorgung einschätzen und erkennen das Zusammenspiel von Energieversorgungsunternehmen und Regulierungsbehörden. Die Studierenden verstehen darüber hinaus die den Regelungen zugrundeliegenden Interessenkonflikte und die in den Normen zum Ausdruck kommenden Wertungen des Gesetzgebers. Sie sind in der Lage, ihr Verständnis zu formulieren und im Austausch mit anderen zu vertreten und weiterzuentwickeln.

Leh	Lehrveranstaltungen							
11.	12. Lehrveranstaltungstite	13.	14.	15.	16.	17. Arbeitsaufwand		
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium		
1	Energierecht	Prof. Dr. H.	S 6510	2V	2	28 h / 62 h		
Ŀ	(Energy Law)	Weyer	3 03 10	2 4		2011/0211		
	Summe: 2 28 h / 62 h							
Zu	Nr. 1:							
100	Empf Voyangetrum non	Möglichst) Vorlesu	ngen Einf	ührung in da	s Recht	l und II oder		
Ioa	. Empf. Voraussetzungen	gleichwertige Rechtskenntnisse						
- Überblick über den Rechtsrahmen der Energiewirtschaft						wirtschaft		
102	. Inhalte	- Energieregulierungsrecht:						
17a	. IIIIIaite	- Entflechtung						
		- Netzanschluss und Netzzugang bei Strom und Gas						

	- Netzentgelte				
	- Grund- und Ersatzversorgung				
	- Stromerzeugung aus Erneuerbaren Energien				
20. Madianfannan	- Folien				
20a. Medienformen	- Skript				
	Zur Vorlesung mitzubringen ist ein Gesetzestext. Empfohlen wird:				
	- Ehricke, Ulrich (Hg.): Energierecht. Rechtsgrundlagen der Energiewirtschaft, Nomos: Baden-Baden (neueste Auflage) oder				
	- Energierecht, dtv: (neueste Auflage).				
21a. Literatur	Zum EEG:				
	- Ekardt/Valentin: Das neue Energierecht, 2015.				
	 Kühling, Jürgen u. a.: Energierecht, Nomos: Baden-Baden (4. überarbeitete und erweit. Aufl.) 2018 oder 				
	 Stuhlmacher, Gerd u. a. (Hg.): Grundriss zum Energierecht. Der rechtliche Rahmen der Energiewirtschaft, EW Medien und Kongresse: Frankfurt am Main u. a. (2. überarb. Auflage) 2015. 				
22a. Sonstiges					

Studien-/Prüfungsleistung								
			25.	26.	27.	28. Anteil an		
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote		
1	Energierecht		MP	3	benotet	100 %		
29. Prüf	29. Prüfungsform / Voraussetzung		Klausur (60 Minuten), wenn ≥ 5 Teilnehmer					
für die V	für die Vergabe von LP		mündliche Prüfung (Dauer nach Prüfungsordnung), wenn < 5					
		Teilnehmer						
30. Vera	30. Verantwortliche(r) Prüfer(in) Prof. Dr. H.		Prof. Dr. H. Weyer					
31. Prüfungsvorleistungen Kei		Keine						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Energiesysteme	Energy Systems

2. Verwendbarkeit des Moduls in Studiengängen

B.Sc. Wirtschaftsingenieurwesen

B.Sc. Energietechnologien

M.Sc. Energie und Rohstoffversorgungstechnik

M.Sc. Technische BWL

M.Sc. Verfahrenstechnik/Chemieingenieurwesen

3. Modulverantwortliche(r)		4. Zuständige Fakultät	5. Modulnummer			
Prof. Beck		Fakultät für Energie- und				
		Wirtschaftswissenschaften				
6. Sprache	7. LP	8. Dauer	9. Angebot			
deutsch	4	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

10. Lern-/Qualifikationsziele des Moduls

Im Rahmen der Vorlesung wird der Begriff der Energie definiert. Die Studierenden können verschiedene Energieformen und deren Umwandlung unterscheiden. Sie verstehen auf welche verschiedene Weisen Energie generiert und wie diese übertragen und verteilt werden kann. Die Studierenden verstehen die Chancen, die durch Nutzung von Abwärme entstehen.

Durch die Ringvorlesung werden den Studierenden die Interaktionen verschiedener Aktoren im kompletten Energiesystem vorgestellt. Die Studierenden besitzen anschließend das Verständnis zur Deutung von Energiesystemen.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium	
		Prof. Beck,					
	Energiesysteme 1	Dr. Mancini,					
		Dr. Lindermeir,					
1		Dr. Turschner,	W 8804	V	3	42 h / 78 h	
	(Energy Systems)	Prof. Ganzer,					
		Dr. Faber					
		(Ringvorlesung)					
Summe: 3					3	42 h / 78 h	

Zu Nr. 1:					
18a. Empf. Voraussetzungen	Elektrotechnik für Ingenieure I und II (empfohlen), Technische Thermodynamik I (empfohlen), Einführung in die Allgemeine und Anorganische Chemie (empfohlen)				
	Die Ringvorlesung umfasst folgende Teilvorlesungen:				
	1. Einführung (Prof. Beck), Themen: Energieträger, Vorräte, Gewinnung, Transport, Thermische Energiesysteme, Elektrische Energiesysteme				
19a. Inhalte	2. Thermische Energie (Dr. Mancini), Themen: Kraftwerke, Heizkraftwerke, Entsorgung, Hochtemperatur-Stoffbehandlung (Zement, Glas, Stahl)				
	3. Gasversorgungssysteme (Prof. Müller-Kirchenbauer)				
	4. Solare Energie, Wasserkraft und Windenergie (Dr. Turschner), Themen: Sonnenenergienutzung, Regenerative Energiequellen				
	5. Chemische Energie (Dr. Lindermeir), Themen: Brennstoffzellen und Anwendungen				
	6. Nukleare Energie (Dr. Faber), Themen: Kernkraftwerkstypen, Brennstoffkreislauf, Zwischen- /Endlagerung				
	7. Elektrische Energie (Prof. Beck), Themen: Erzeugung, Transport, Verteilung, Nutzung, Einbindung regenerativer Quellen, elektrischer Netze				
20a. Medienformen	Skript				
	 Herold, Gerhard: Grundlagen der elektrischen Energieversorgung, B. G. Teubner: Stuttgart 1997. 				
21a. Literatur	 Schwab, Adolf J.: Elektroenergiesysteme. Erzeugung, Übertragung und Verteilung elektrischer Energie, Springer Vieweg: Berlin (6. Auflage) 2020. 				
	- Weitere Literatur wird in der Vorlesung bekanntgegeben.				
22a. Sonstiges	Übungsaufgaben werden in den einzelnen Vorlesungen vorgestellt.				

Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an
23. Nr.	r. 24. Zugeordnete Lehrveranstaltungen		PArt	LP	Benotung	der Modulnote
1	Energiesysteme	MP	4	benotet	100 %	
29. Prüfungsform / Voraussetzung Kl		Klausur (Dauer	r 120 min.)		
für die V	ergabe von LP					
30. Verantwortliche(r) Prüfer(in)		Prof. Beck				
31. Prüfungsvorleistungen		Keine				

1a. Modultitel (deutsch)1b. Modultitel (englisch)Energiewandlungsmaschinen IEnergy Conversion Machines I

2. Verwendbarkeit des Moduls in Studiengängen						
B. Sc. Maschinenbau						
M.Sc. Verfahrens	technik/Chemieinge	enieurwesen				
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer						
Prof. DrIng. H. Schwarze		Fakultät für Mathematik/Informatik				
und Maschinenbau						
6. Sprache	7. LP	8. Dauer	9. Angebot			
deutsch 4		[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden sind in der Lage

- 1. den grundlegenden Aufbau von Kolbenmaschinen beschreiben und deren funktionsrelevante Komponenten definieren zu können.
- 2. die thermo- und strömungsdynamischen Einflüsse auf das Betriebsverhalten dieser Maschinen sowie auf wichtige Kennzahlen und Wirkungsgrade bewerten zu können.
- 3. die wichtigsten Prozessparameter der Energiewandlungsmaschinen charakterisieren bzw. bestimmen und Auslegungshilfsmittel zur Dimensionierung anwenden zu können.
- 4. die bei der grundlegenden Auslegung von Hub- und Rotationskolbenmaschinen auftretenden Aufgabenund Problemstellungen selbstständig lösen zu können.

Leh	Lehrveranstaltungen					
11. Nr.	12. Lehrveranstaltungstit	el 13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium
1	Energiewandlungsmaschinen (Energy Conversion Machines		W 8212	2V+1Ü	3	42 h / 78 h
				Summe:	3	42 h / 78 h
Zu	Nr. 1:				•	
18a	18a. Empf. Voraussetzungen Strömungsmechanik, Thermodynamik, Mechanik					
1. Einleitung in das Fachgebiet der Kolbenmaschinen 2. Thermodynamik der Kolbenmaschine				nen		

3. Strömungsvorgänge

4. Bewertung des Energieumsatzes

	5. Auslegung der Kolbenmaschine				
	6. Das Triebwerk				
	7. Kolbenpumpen				
	8. Kolbenkompressoren				
	9. Thermische Kolbenkraftmaschinen				
20a. Medienformen	PowerPoint-Präsentation				
21a. Literatur	 Skript. Eifler, Wolfgang/Küttner, Karl-Heinz: Kolbenmaschinen, Vieweg + Teubner: Wiesbaden (7. neu bearb. Auflage) 2009. Ellwein, Christian: Digitalisierung von Verdichtern, Pumpen und Ventilatoren, Vulkan-Verlag: Essen 2018. Küttner, Karl-Heinz: Kolbenverdichter. Mit 32 Tabellen, Berlin u. a. 1992. 				
22a. Sonstiges	1772.				

Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an
23. Nr.	23. Nr. 24. Zugeordnete Lehrveranstaltungen		PArt	LP	Benotung	der Modulnote
1	Energiewandlungsmaschinen		MP	4	benotet	100 %
29. Prüf	ungsform / Voraussetzung	Je nach Teilneh	ımerzahl I	Klausur	(90 min.) bestel	nend aus
für die Vergabe von LP Kurzfrage		Kurzfragen- un	ıd Berechi	nungste	eil oder mündlich	ne Prüfung
30. Verantwortliche(r) Prüfer(in) Prof. DrIng.		Prof. DrIng. H	I. Schwarz	ze		
31. Prüfungsvorleistungen Keine		Keine				

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Energiewandlungsmaschinen II	Energy Conversion Machinery II

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Verfahrenstechnik/Chemieingenieurwesen						
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer			
DrIng. H. Blumenthal		Fakultät für Mathematik/Informatik und Maschinenbau				
	T	und Maschineribau				
6. Sprache	7. LP	8. Dauer	9. Angebot			
deutsch	4	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

Nach dem Bestehen der Prüfung sollen Teilnehmende dieser Veranstaltung den grundlegenden Aufbau, die Wirkungsweise und den Betrieb von Strömungsmaschinen beschreiben sowie deren funktionsrelevanten Komponenten definieren können. Sie sollen die Einflüsse der realen Hydrodynamik bzw. realer strömungsmechanischer Verhältnisse auf Verluste, Wirkungsgrade sowie auf das Betriebsverhalten dieser Maschinen erklären können. Weiterhin sollen die Teilnehmenden die wesentlichen Prozessparameter der Strömungsmaschinen charakterisieren bzw. bestimmen und Auslegungshilfsmittel zur Laufradkonstruktion, Ausführung von Schaufelgittern und Dimensionierung von Rohrleitungssystemen anwenden können. Sie sollen in die Lage versetzt werden, bei der grundlegenden Auslegung von Strömungsmaschinen auftretenden Aufgaben- und Problemstellungen selbstständig lösen zu können.

Leh	Lehrveranstaltungen					
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium
1	Energiewandlungsmaschinen II (Energy Conversion Machinery II)	Drlng. H. Blumenthal	W 8214	2V/1Ü	3	42 h / 78 h
				Summe:	3	42 h / 78 h
Zu	Zu Nr. 1:					

18a. Empf. Voraussetzungen Strömungsmechanik, Thermodynamik, Mechanik 1. Einführung: Kennzeichen von Strömungsmaschinen, Einteilung, Vergleich mit Kolbenmaschinen, Bauarten 2. Theoretische Grundlagen: Gesetze der Strömungslehre, Beschaufelung, Geschwindigkeitsplan, Eulersche Turbinengleichung, Thermodynamik der Strömungsmaschinen, Beschaufelung in Gitter, Stufe und Maschine, Kenngrößen, Cordier Diagramm 3. Turbomaschinen für dichtebeständige Fluide: Wasserturbinen, Grundlagen, Bauarten, Kennfelder, Kreiselpumpe, Auslegung, NPSH-

	Wert, Kennfelder, Bauarten: Beispiele ausgeführter Pumpen, Magnetantriebe, Propeller, Föttinger-Kupplungen und -Wandler					
	4. Thermische Turbomaschinen: Dampfturbinen, Dampfkraftprozess - Definitionen, Auslegung der Turbinen, Bauarten, Turboverdichter, Grundlagen, Pumpgrenze, spez. Leistungsbedarf, Bauarten, Gasturbinen, Gasturbinenprozess, Auslegung, Bauarten von Flugtriebwerken, mobilen und stationären Gasturbinenanlagen					
20a. Medienformen	PowerPoint-Präsentation					
21a. Literatur	 Skript. Beitz, Wolfgang/Grote, Karl-Heinrich (Hg.).: Dubbel Taschenbuch für den Maschinenbau. Mit Tabellen, Springer-Verlag: Berlin (20. neubearbeitete und erweit. Auflage) 2001. Bohl, Willi: Strömungsmaschinen. Band 2: Berechnung und Konstruktion, Vogel Buchverlag: Würzburg (8. korrig. Auflage) 2013. Bohl, Willi/Elmendorf, Wolfgang: Strömungsmaschinen. Band 1: Aufbau und Wirkungsweise, Vogel Buchverlag: Würzburg (11. überarbeitete Auflage) 2013. Pfleiderer, Carl/Petermann, Hartwig: Strömungsmaschinen, Springer-Verlag: Berlin u. a. (7. Auflage) 2005. 					
22a. Sonstiges						

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote		
1	Energiewandlungsmaschinen I	I	MP	4	benotet	100 %		
29. Prüf	29. Prüfungsform / Voraussetzung		Klausur (90 min.) bestehend aus Kurzfragen- und Berechnungsteil					
für die V	für die Vergabe von LP							
30. Verantwortliche(r) Prüfer(in)		DrIng. H. Blumenthal						
31. Prüfungsvorleistungen		Keine						

1a. Modultitel (deutsch)1b. Modultitel (englisch)Gasphasensynthese nanoskaligerGasphase Synthesis of NanoscaleMaterialienMaterials

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Verfahrenstechnik/Chemieingenieurwesen						
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer						
Prof. A. Weber	Fakultät für Mathematik/Informatik					
	und Maschinenbau					
6. Sprache 7. LP	8. Dauer	9. Angebot				
deutsch 4	[X] 1 Semester	[] jedes Semester				
	[] 2 Semester	[X] jedes Studienjahr				
		[] unregelmäßig				

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden sind in der Lage

18a. Empf. Voraussetzungen

- die speziellen Eigenschaften von Nanopartikeln (spez. Oberfläche, Quanteneffekte, Exzitonen, Plasmonen, wenig koordinierte Oberflächenatome, ...) zu benennen und zu verstehen
- die Transportprozesse von Nanopartikeln in der Gasphase zu benennen und zu verstehen
- die Herausforderungen bei der Integration von Nanopartikeln in makroskopische Systeme wie Beschichtungen und Komposite zu verstehen
- die Grundprinzipien der verschiedenen Partikelsynthesewege zu kennen und zu verstehen
- die Verarbeitungstechniken (Prozessfunktion) sowie den Zusammenhang zwischen Partikeleigenschaften (Dispersität, Form und Materialspezifika) und Produkteigenschaften (Eigenschaftsfunktion) zu kennen und zu verstehen
- Anwendungen von Nanopartikeln aus den Bereichen Elektronik, Energietechnik, Katalyse und Life Science zu kennen und oben genannte Prinzipien wiederzuerkennen
- anwendungsorientierte Aufgaben (in Hausübungen) mit dem in der Vorlesung erworbenen Wissen eigenständig zu lösen

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium	
1	Gasphasensynthese nanoskaliger Materialien (Gasphase Synthesis of Nanoscale Materials)	Prof. A. Weber	W 8616	2V/1Ü	3	42 h / 78 h	
				Summe:	3	42 h / 78 h	
Zu	Zu Nr. 1:						

Partikelmesstechnik und MVT I

	1 Einführung
	- Nanopartikel und Nanotechnologie
	- Spezifische Oberfläche von Nanopartikeln
	- Nanopartikel-Volumeneffekte (confinement phenomena)
	- Allgemeines zu Nanopartikeln
	2 Partikeltransport
	- Diffusion und Abscheidung
	- Partikelbewegung in externen Feldern
	- Impaktion
	- Struktur der Deposits
	3 Wachstum, Verdampfen und Nukleation von Partikeln
	- Heterogene Kondensation
	- Transport-limitiertes Wachstum
	- Reaktions-limitiertes Wachstum
	- Nukleation
	4 Kollision und Koaleszenz
	- Brownsche Koagulation
	- Charakteristische Zeit für Koagulation
	- Scherungsinduzierte und turbulente Koagulation
	- Koagulation durch elektrische Kräfte
19a. Inhalte	- Self-Preserving Size Distributions (SPSD)
19a. Illiaite	- Koaleszenz von Partikeln
	5 Transportprozesse im Inneren der Partikeln
	- Stofftransport (Diffusion)
	- Wärmetransport
	- Gas-Feststoff-Reaktionen
	6 Gasphasensynthesereaktoren
	- Einleitung
	- Freie-Konvektions- und Rohrströmungssysteme
	- Expansionsdüsen
	- Laserablation
	- Überkritisches Sprühen
	- Kaltes Plasma (DBD)
	- Mikrowellenplasma
	- Flammenreaktoren
	7 Beispiele für Nanopartikeln aus der Gasphase
	- Funktionalisierte Textilien
	- Dentalanwendungen
	- Kohlenstoff-NP
	- Gas- und Photosensoren
	- Verbesserte Bruchfestigkeit
	- Anti-Graffiti-Beschichtung
	- Präsentation
20a. Medienformen	- Gedrucktes Skript
204. Mediciliornicii	- Tafel
	. 4.0.

	Skript.Hartmann, Uwe: Faszination Nanotechnologie, Elsevier: Heidelberg
	2006.
21a. Literatur	 Kodas, Toivo T./Hampden-Smith, Mark J.: Aerosol Processing of Materials, Wiley-VCH: New York u. a. 1999.
	 Rotello, Vincent M. (Hg.): Nanoparticles. Building Blocks for Nanotechnology, Springer: New York (Nachdruck) 2004.
	 Schmid, Günter (Hg.): Nanoparticles. From Theory to Applications, Wiley-VCH: Weinheim (2. vollst. überarb. und aktual. Auflage) 2010.
22a. Sonstiges	

Studien-/Prüfungsleistung								
			25.	26.	27.	28. Anteil an		
23. Nr.	3. Nr. 24. Zugeordnete Lehrveranstaltungen			LP	Benotung	der Modulnote		
1	Gasphasensynthese nanoskalig	er Materialien	MP	4	benotet	100 %		
29. Prüfungsform / Voraussetzung münd		mündliche Prü	mündliche Prüfung (30 min) bis 19 Teilnehmer,					
für die \	für die Vergabe von LP		für 20 und mehr Teilnehmer Klausur (60 min)					
30. Verantwortliche(r) Prüfer(in)		Prof. A. Weber						
31. Prüfungsvorleistungen		Keine						

1a. Modultitel (deutsch)1b. Modultitel (englisch)Gemischphasen-ThermodynamikMixed Phase Thermodynamics

2. Verwendbarkeit des Moduls in Studiengängen M.Sc. Verfahrenstechnik/Chemieingenieurwesen 5. Modulnummer 3. Modulverantwortliche(r) 4. Zuständige Fakultät Prof. Dr.-Ing. Jochen Strube Fakultät für Mathematik/Informatik und Maschinenbau 6. Sprache 7. LP 8. Dauer 9. Angebot 4 Deutsch [X] 1 Semester [] jedes Semester [] 2 Semester [X] jedes Studienjahr [] unregelmäßig

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden sind in der Lage, die Thermodynamik von Gemischen in Hinblick auf reales Stoffverhalten und den Einfluss auf die Trenntechnik zu beschreiben. Sie können das pVT-Verhalten von Stoffgemischen analysieren und in Gleichgewichtsdiagrammen darstellen. Die Studierenden können verschiedene Gasgleichungen und Stoffdatenberechnungsmodelle nennen, deren Unterschiede beschreiben und selbstständig Berechnungen durchführen. Sie kennen die Zusammenhänge zwischen der Thermodynamik und der Auslegung von Trennapparaten, können die Kennzahlen und Diagramme ermitteln und beurteilen.

Lehrveranstaltungen						
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium
1	Gemischphasen- Thermodynamik (Mixed Phase Thermodynamics)	DrIng. Steffen Zobel-Roos	W 8632	2V/1Ü	3	42 h / 78 h
				Summe:	3	42 h / 78 h

18a. Empf. Voraussetzungen	Thermische Verfahrenstechnik I u./o. Physikalische Chemie					
	1.	Einführung				
	-	Bedeutung der Thermodynamik für den Verfahrensingenieur und die Auslegung von Prozessen.				
19a. Inhalte	2.	Theorie Block I (ca. 3 x 1,5h)				
	2.1.	Einführung in den Begriff der Zustandsgrösse (Exzessgrößen,				
		partielle molare Zustandsgrößen, Gibb'sche Exzessenthalpie)				
	2.2.	Herleitung der Gleichgewichtsbedingungen				

	-	Definition und besondere Bedeutung des chemischen Potentials (Herleitung, Berechnung, Fugazität, Aktivität, Raoult, Henry, Isofugazität)
	-	Besondere Gleichgewichte (SLE, Elektrolyte, Membranen)
	-	Modellgleichungen zur Berechnung von Gleichgewichten (Ideal, real, gE-Modelle, Korrespondenzprinzip) Theorie Block II (ca. 1,5h)
	-	Phänomenologische Thermodynamik (Grafische Darstellung, (Hetero)Azeotrope, überkritische Systeme, Retrograde
		Kondensation/Verdampfung, LLE, SLE, Dreiecksdiagramme)
	3.	Praxis Block I (ca. 1h)
	-	Generierung von Stoffdaten (Experimentell, Datenbanken, Softwaretools)
	4.	Übungsblock I (ca. 1,5h)
	-	Aufgabe selbst rechnen
	-	Aufgabe Vortragsübung
	5.	Theorie Block III (ca. 1,5 h)
	-	Chemische Gleichgewichte
	-	Kopplung von chemischen und physikalischen Gleichgewichten
	6.	Theorie Block IV (ca. 1,5h)
	-	Die Verbindung von Thermodynamik und Thermischer Trenntechnik (McCabe Thiele, Destillations- und Rückstandslinien im Dreiecksdiagramm)
	7.	Praxis Block II Fallbeispiel (ca. 1h)
		(Thermodynamische Modellierung, Visualisierung im
		Dreiecksdiagramm etc.)
	8.	Theorie Block V (ca. 1h)
	-	Neue Entwicklungen zur Berechnung von Gleichgewichten (Kraftfeldmethoden insb. Molekulardynamik und Monte Carlo Simulation, Kontinuums-Solvent-Methoden insb. COSMO-RS, spezielle Zustandsgleichungen wie Wagnergleichung und PC-SAFT)
	9.	Praxis Block III (ca. 1h)
	-	Vorgehen bei der Implementierung von Stoffdaten
	-	Fallstricke, Dos and Don'ts
	10.	Übungsblock II (ca. 1,5h)
	-	Eine Aufgabe zum selber rechnen
	-	Eine Aufgabe als Vortragsübung
	11.	Abschluss
20a. Medienformen		/orlesung
200. Medicinol men		pegleitendes Skript
		Skript.
		Cerbe, Günter/Wilhelms, Gernot: Technische Thermodynamik.
		Theoretische Grundlagen und praktische Anwendungen, Hanser ehrbuch: München (18. überarb. Auflage) 2017.
21a. Literatur	- (Gmehling, Jürgen u. a.: Chemical Thermodynamics for Process Simulation, Wiley-VCH: Weinheim 2012.
		Gmehling, Jürgen/Kolbe, Bärbel: Thermodynamik, VCH /erlagsgesellschaft: Weinheim u. a. (2. Auflage) 1992.

	 Kontogeorgis, Georgios M./Folas, Georgias K.: Thermodynamic Models for Industrial Applications. From Classical and Advanced Mixing Rules to Association Theories, Wiley: Chichester 2010. Pfennig, Andreas: Thermodynamik der Gemische, Springer-Lehrbuch: Berlin u. a. 2004. Prausnitz, John Michael/Lichtenthaler, Ruediger N./Azevedo, Edmundo Gomes de: Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice- Hall: Upper Saddle River, NJ (3. Auflage) 1999. Stephan, Peter u. a.: Thermodynamik. Grundlagen und technische Anwendungen. Band 1: Einstoffsysteme, Springer Vieweg: Berlin u. a. (19.erg. Auflage) 2013. Stephan, Peter u. a.: Thermodynamik. Grundlagen und technische
22a. Sonstiges	Anwendungen. Band 2: Mehrstoffsysteme und chemische Reaktionen, Springer: Berlin (16. Auflage) 2017.

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote		
1	Gemischphasen-Thermodynamik		MP	4	benotet	100 %		
29. Prüf	29. Prüfungsform / Voraussetzung		Klausur (90 Minuten) > ca. 15 Teilnehmer, mündliche Prüfung (30					
für die V	für die Vergabe von LP		Minuten, Einzelprüfung) < ca. 15 Teilnehmer					
30. Vera	30. Verantwortliche(r) Prüfer(in)		Prof. DrIng. Jochen Strube /					
	DrIng. Steffe		n Zobel-Ro	oos				
31. Prüf	ungsvorleistungen	Keine						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Grenzflächenprozesse	Interfacial Processes

2. Verwendbar	2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen					
3. Modulveran	3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer					
Prof. Dr. Frank Er	ndres	Fakultät für Natur- und				
		Materialwissenschaften				
6. Sprache	7. LP	8. Dauer	9. Angebot			
Deutsch	4	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
[] unregelmäßig						
10. Lern-/Qualifikationsziele des Moduls						
Bedeutung von C	Grenzflächen in Che	mie und Verfahrenstechnik aufzeigen	und erfassen.			

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium	
1	Grenzflächenprozesse	Prof. Dr. Frank	W 8049	2V/1Ü	3	42 h / 79 h	
•	(Interfacial Processes)	Endres	W 6049	20/10)	42 h / 78 h	
				Summe:	3	42 h / 78 h	
Zu	Nr. 1:					•	
18a	. Empf. Voraussetzungen	rundkenntnisse d	er Physik ι	ınd Chemie			
	-	- Was ist Grenzflächenverfahrenstechnik - Eine Internetrecherche					
	-	Demination von Grenzhaerie, Maserigrenze, Obernaerie					
	-	The first of the f					
		- Ionische Flüssigkeiten					
19a	. Illiaite	- Thermodynamische Konzepte					
	-	- Oberflächenspannung					
	-	Namosti akturierte bzw. grenzhaertenbestimme iwaterianen					
	-	- Korrosion					
	-	- Suspensionen, Dispersionen, Kolloide, Emulsionen					
20-	. Medienformen	- Vorlesungsskript					
_20a	. Medienformen	- Übungsblock					

21a. Literatur	 Bonnell, Dawn A. (Hg.): Scanning Probe Microscopy and Spectroscopy. Theory, Techniques, and Applications, Wiley-VCH: New York, NY (2. Auflage) 2001. Dörfler, Hans-Dieter: Grenzflächen und kolloid-disperse Systeme. Physik und Chemie, Springer: Berlin u. a. 2002. Kaesche, Helmut: Die Korrosion der Metalle. Physikalisch-chemische Prinzipien und aktuelle Probleme, Springer: Berlin/Heidelberg (3. Auflage) 2012. Lauth, Günter Jakob/Kowalczyk, Jürgen: Einführung in die Physik und Chemie der Grenzflächen und Kolloide, Springer Spektrum: Berlin/Heidelberg 2016. Lorenz, Wolfgang J. (Hg.): Electrochemical Nanotechnology. In Situ Local Probe Techniques at Electrochemical Interfaces, Wiley-VCH: Weinheim u. a. 1998.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote		
1	Grenzflächenprozesse		MP	4	benotet	100 %		
29. Prüf	29. Prüfungsform / Voraussetzung		Klausur (120 Minuten) nach der letzten Übung > 15 Teilnehmern					
für die V	für die Vergabe von LP		oder mündliche Prüfung (30 Minuten, Einzelprüfung) < 15					
		Teilnehmern						
30. Vera	30. Verantwortliche(r) Prüfer(in)		Prof. Dr. Frank Endres					
31. Prüf	31. Prüfungsvorleistungen							

1a. Modultitel (deutsch) Grundlagen der Kälte- und Wärmepumpentechnik

1b. Modultitel (englisch)

Fundamentals in Refrigeration and Heat Pump Technology

2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Verfahrenstechnik/Chemieingenieurwesen, M.Sc. Energiesystemtechnik					
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer					
Drlng. M. Olbricht		Fakultät für Energie- und			
		Wirtschaftswissenschaften			
6. Sprache	7. LP	8. Dauer	9. Angebot		
Deutsch	3	[X] 1 Semester	[] jedes Semester		
		[] 2 Semester	[X] jedes Studienjahr		
			[] unregelmäßig		

10. Lern-/Qualifikationsziele des Moduls

Aufbauend auf dem bereits vorhandenen thermodynamischen Grundlagenwissen verfügen die Studierenden über die Kenntnisse der Prinzipien der Kälteerzeugung sowie des Heizens mit Umgebungswärme (Wärmepumpe). Die Studierenden sind in der Lage, die grundlegenden Modelle zur Auslegung kältetechnischer Prozesse und Komponenten anzuwenden.

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Grundlagen der Kälte- und Wärmepumpentechnik (Fundamentals in Refrigeration and Heat Pump Technology)	Drlng. M. Olbricht	\$ 8525	2V/Ü	2	28 h / 52 h
Summe: 2 28 h / 52 h						
Zu Nr. 1:						
Technische Thermodynamik I, Technische Thermodynamik II,				odynamik II,		

Technische Thermodynamik I, Technische Thermodynamik II, Wärmeübertragung I - Verdunstungskühlung - Vergleichsprozesse (Kaltgasprozess, Kaltdampfprozess, Exergiebetrachtungen) - Apparative Umsetzung (Kompressions-Kältemaschinen und Wärmepumpen, Absorptions-Kältemaschinen und Wärmepumpen, alternative Prozesse)

	 Maßnahmen zur Steigerung der Energieeffizienz kältetechnischer Anlagen und Prozesse zur Realisierung sehr tiefer Temperaturen Einführung in den Wärme- und Stofftransport mit Phasenwechsel (Verdampfung, Kondensation, Absorption) 	
20a. Medienformen	VorlesungsskriptÜbungsblockFoliensatz	
21a. Literatur	 Cube, Hans Ludwig von u. a. (Hg.): Lehrbuch der Kältetechnik. Band 1-2, C.F. Müller Verlag: Karlsruhe (2. völlig überarb. Auflage) 1997 (Standardwerk). Jungnickel, Heinz/Agsten, Rainer/Kraus, Wolf Eberhard: Grundlagen der Kältetechnik, Verlag Technik: Berlin (3. Auflage) 1990 (Standardwerk). Stephan, Karl: Wärmeübergang beim Kondensieren und beim Sieden, Springer-Verlag: Berlin u. a. 1988 (Standardwerk). 	
22a. Sonstiges	Blockveranstaltung	

Studie	Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrverans	taltungen	PArt	LP	Benotung	der Modulnote	
1	Grundlagen der Kälte- und Wärmepumpentechnik		MP	3	benotet	100 %	
Zu Nr. 1:							
29a. Prüfungsform / Voraussetzung		Mündlich (30 Minuten)					
für die V	ergabe von LP						
30a. Verantwortliche(r) Prüfer(in)		Drlng. M. Olbricht					
31a. Verbindliche		Keine					
Prüfung	svorleistungen						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Grundstoffindustrie und	Primary Industry and Energy
Energiewende	Transition

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Energiesystemtechnik, M.Sc. Verfahrenstechnik/Chemieingenieurwesen, M.Sc. Maschinenbau						
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer						
Prof. Beck		Fakultät für Energie- und				
		Wirtschaftswissenschaften				
6. Sprache	7. LP	8. Dauer	9. Angebot			
Deutsch	4	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			
10 /0 :6	ilationamiala das N	4 a alcela				

Den Studierenden sollen Herausforderungen und entsprechende Lösungsansätze vermittelt werden, die die Energiewende für den Bereich der industriellen Produktion mit sich bringt. Es wird dabei auf die energieintensive Grundstoffindustrie und hier insbesondere auf die Stahlindustrie eingegangen

Leh	rveranstaltungen					
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV- Nr.	15. LV- Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium
1	Grundstoffindustrie und Energiewende (Primary Industry and Energy Transition)	DrIng. Stefan Mecke (Salzgitter AG)	\$ 8873	V/Ü	3	42 h / 78 h
18.	18. Empf. Voraussetzungen Grundlagen der Chemie und technischen Thermodynamik					odynamik
19. Inhalte		 Der globale "Treibhauseffekt" (als eine Motivation für die Energiewende) Naturwissenschaftliche Grundlagen Einige Kernaussagen IPCC-Berichte u.ä. Kritische Stimmen Abgeleitete politische Zielstellungen EU-Emissionshandel (ETS) als politisches "Werkzeug" um u.a. in der Industrie CO2 – als wichtigstes Treibhausgas (THG) – einzusparen 				

20. Medienformen 21. Literatur	 Exemplarische Vertiefung sogenannter "Breakthrough- Technologien" am Beispiel der Primärstahlerzeugung Technische Beschreibung Energetische und THG-seitige Betrachtung wirtschaftliche Konsequenzen Einbindung industrieller Großverbraucher in mögliche "Stromnetze der Zukunft" Folienpräsentation Wird ggf. im Rahmen der Vorlesung bekannt gegeben
20. Medienformen	 Exemplarische Vertiefung sogenannter "Breakthrough- Technologien" am Beispiel der Primärstahlerzeugung Technische Beschreibung Energetische und THG-seitige Betrachtung wirtschaftliche Konsequenzen Einbindung industrieller Großverbraucher in mögliche "Stromnetze der Zukunft"
	 Exemplarische Vertiefung sogenannter "Breakthrough- Technologien" am Beispiel der Primärstahlerzeugung Technische Beschreibung Energetische und THG-seitige Betrachtung wirtschaftliche Konsequenzen Einbindung industrieller Großverbraucher in mögliche "Stromnetze
	 Raffinerien Mineralverarbeitende Industrie Eisen- und Stahlindustrie Energieflüsse bei der Stahlerzeugung Integriertes Hüttenwerk – Aufbau, Prozesse, Energieflüsse, Elektrostahlwerk – Aufbau, Prozesse, Energieflüsse, Mögliche Ansätze der Grundstoffindustrie zur Anpassung an die Erfordernisse der Energiewende
	 Wie beeinflussen CO2-Kosten die Wirtschaftlichkeit von Investitionen/Produktionsgütern? "Carbon-Leakage"-Thematik Energiewende Ziele bisheriger Stand Energieeffizienz als eine Säule der Energiewende Energieeffizienz-Programme in der Grundstoffindustrie Energieeffizienzmaßnahmen Querschnittstechnologien Energiemanagement nach der Norm ISO 50001 Energieintensive Grundstoffindustrie Einbindung in Wertschöpfungsketten Energieintensive Branchen als Teilnehmer im ETS Chemische Industrie

Studien-/Prüfungsleistung

23. Nr.			25. P Typ	26. LP	27. Benotung	28. Anteil an der Modulnote
Grundstoffindustrie und Energiewende			MP	4	benotet	100 %
29. Prüfungsform / Voraussetzung für die Vergabe von LP		mündliche Pr	üfung			
30. Verar	ntwortliche(r) Prüfer(in)	Prof. Beck				
31. Verbindliche Prüfungsvorleistungen						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Grundzüge der Biochemie	Fundamentals of Biochemistry

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Verfahrens	technik/Chemieinge	enieurwesen				
3. Modulveran	Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer					
Schmidt, Andrea	s, apl. Prof. Dr. rer.	Fakultät für Natur- und				
nat. habil.		Materialwissenschaften				
6. Sprache	7. LP	8. Dauer	9. Angebot			
deutsch	3	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

18a. Empf. Voraussetzungen

Die Studierenden werden in die Lage versetzt, die Hauptklassen wichtiger Biomoleküle, Biopolymere und organischer Biomaterialien (Aminosäuren, Proteine, Zucker, Membranen, Nucleobasen) in Bezug auf molekulare Bauprinzipien und mikro- sowie makroskopische Eigenschaften wie Bioaktivität, intermolekulare Wechselwirkungen, Biomechanik, Stabilität-Funktions-Zusammenhänge, Bioenergie, CO₂-Bilanzen, Biopolymerisationen etc.) auch im ingenieurwissenschaftlichen Zusammenhang zu verstehen. Sie erlernen die Kompetenz, grundlegende Metabolismen und Cyclen der Biochemie (Glycolyse, Citratcyclus, Fettsäure-Metabolismus, Aminosäureabbau, Harnstoffcyclus, etc.), sowie Grundlagen der molekularen Genetik (DNA, RNA, Proteinbiosynthese) aus den Blickwinkeln der organischen Materialchemie, der mechanistischen sowie der technischen Chemie im Hinblick auf Anwendungen in der Industrie (pharmaindustrielle Synthese, Bioreaktoren, Enzymkatalyse etc.) zu verstehen, zu beurteilen und in ingenieurwissenschaftlichen Fragestellungen anzuwenden.

Das Modul vermittelt überwiegend Fachkompetenz in geringerem Maße Methodenkompetenz.

Leh	Lehrveranstaltungen							
11		43		4.5		17. Arbeitsaufwand		
.Nr	12. Lehrveranstaltungstitel	13.	14.	15.	16.	Präsenz-/Eigenstudium		
٠	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws			
		Schmidt,						
1	Grundzüge der Biochemie (Fundamentals of Biochemistry)	Andreas, apl.	S 3129	V	2	28 h / 47 h		
•		Prof. Dr. rer.						
		nat. habil.						
				Summe:	2	28 h / 62 h		
Zu	Zu Nr. 1:							

Grundlegende Kenntnisse in Organischer Chemie

	- Biomoleküle und Biomaterialien						
	- Metabolismen (Glykolyse, Citratcyclus, Harnstoffcyclus,						
19a. Inhalte	Fettsäuremetabolismus)						
	- Membranen						
	- Molekulare Genetik						
	- PowerPoint						
20a. Medienformen	- Tafelanschrieb						
	- Foliensammlung						
	- Abrufbare Foliensammlung zur Vorlesung.						
21a. Literatur	- Nelson, David L. u. a.: Lehninger Biochemie. Mit 131 Tabellen, Springer: Berlin/Heidelberg (4. vollst. überarbeitete und erweit. Auflage) 2011.						
	- Voet, Donald J. u. a.: Lehrbuch der Biochemie, Wiley-VCH: Weinheim (2. aktual. und erweit. Auflage) 2010.						
22a. Sonstiges							

Studie	Studien-/Prüfungsleistung								
			25.	26.	27.	28. Anteil an			
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote			
1	Grundzüge der Biochemie		MP	3	benotet	100 %			
	29. Prüfungsform / Voraussetzung mündliche P für die Vergabe von LP				n)				
30. Vera	ntwortliche(r) Prüfer(in)	Schmidt, Andreas, apl. Prof. Dr. rer. nat. habil.							
31. Prüf	ungsvorleistungen	Keine							

1a. Modultitel (deutsch)

Industrielle Anwendung der verfahrenstechnischen Prozessanalyse und Prozessoptimierung

1b. Modultitel (englisch)

Industrial application of process engineering process analysis and process optimisation

2.	Verwen	dbarkeit	des	Moduls	in S	tudien	gängen
----	--------	----------	-----	--------	------	--------	--------

M.Sc. Verfahrenstechnik/Chemieingenieurwesen

Wi.sc. verramenstechnik/Chemienigenieurwesen						
3. Modulverantwortliche(r)		4. Zuständige Fakultät	5. Modulnummer			
DrIng. Frank Schulenburg		Fakultät für Mathematik/Informatik				
		und Maschinenbau				
6. Sprache 7. LP		8. Dauer	9. Angebot			
Deutsch	4	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

10. Lern-/Qualifikationsziele des Moduls

Einen Überblick über mögliche Bausteine der Prozessanalyse und Prozessoptimierung erhalten.

Selbständig im praktischen Umfeld an Verfahrenslinien erfolgreich Prozessanalysen und Prozessoptimierungen durchführen zu können.

Effektiv im betrieblichen Alltag Problemlösungen erarbeiten und umsetzen.

Erfolgreich Energiereduzierungen im Produktionsprozess durchführen

Lehrveranstaltungen							
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium	
1	Industrielle Anwendung der verfahrenstechnischen Prozessanalyse und Prozessoptimierung (Industrial application of process engineering process analysis and process optimisation)	Drlng. F. Schulenburg	W 8411	2V/1Ü	3	42 h / 78 h	
				Summe:	3	42 h / 78 h	
Zu Nr. 1:							
18a	. Empf. Voraussetzungen						

19a. Inhalte	Vermittlung der Grundlagen für die praktische Untersuchung von Prozessketten (Verfahrenslinien) mit Hilfe der Prozessanalyse und Prozessoptimierung. - Einleitung und Definitionen - Allgemeine Übersicht zur Prozessanalyse und Prozessoptimierung - Praktische Grundlagen der Bilanzierung - Energieeinsparung durch Prozessoptimierung - Das Werkzeug der Engpassanalyse - Systematisch Probleme lösen und richtiges Erfinden - Praktische Module für die Prozessanalyse und Prozessoptimierung - Grundlagen der Prozesslogistik - Beispiele zur praktischen Apparateauswahl und Apparateauslegung			
20a. Medienformen	- Powerpointfolien, Skript als Papiervorlage			
21a. Literatur	 J. K. Liker: "Der Toyota Weg", Finanzbuchverlag, 5. Auflage, 2008 B.Klein: "TRIZ/TIPS", Oldenbourg Verlag, 2. Auflage, 2007 R. Scholz, M. Beckmann, F. Schulenburg: "Abfallbehandlung in thermischen Verfahren: Verbrennung, Vergasung, Pyrolyse, Verfahrens- und Anlagenkonzept", Teubner Verlag, 1. Auflage, 2001 E. M. Goldratt, J. Cox, "Das Ziel", Campusverlag, 3. Auflage, 2002 			
22a. Sonstiges				

Studie	Studien-/Prüfungsleistung					
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	25. PArt	26. LP	27. Benotung	28. Anteil an der Modulnote
1	Industrielle Anwendung der verfahrenstechnischen Prozessa Prozessoptimierung	analyse und	МР	4	benotet	100 %
	ungsform / Voraussetzung /ergabe von LP	mündliche Prü	ifung (30	Minunt	en)	
30. Verantwortliche(r) Prüfer(in)		DrIng. Frank Schulenburg				
31. Prüfungsvorleistungen		Keine				

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Ionische Flüssigkeiten	Ionic Liquids

2. Verwendba	arkeit des Moduls	in Studiengängen	
M.Sc. Verfahrer	nstechnik/Chemieing	genieurwesen	
3. Modulvera	ntwortliche(r)	4. Zuständige Fakultät	5. Modulnummer
Prof. Dr. Frank	Endres	Fakultät für Natur- und Materialwissenschaften	
6. Sprache	7. LP	8. Dauer	9. Angebot
deutsch	3	[X] 1 Semester	[] jedes Semester
		[] 2 Semester	[X] jedes Studienjahr
			[] unregelmäßig
10. Lern-/Qu	alifikationsziele d	es Moduls	

Einblicke in die Synthese, Eigenschaften und Bedeutung Ionischer Flüssigkeiten erkunden und in grundlegende und technische Prozesse integrieren und beurteilen

Leh	Lehrveranstaltungen					
11. Nr.	12. Lehrveranstaltungstite	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium
1	Ionische Flüssigkeiten (Ionic Liquids)	Prof. Dr. Frank Endres	W 8043	2V/Ü	2	28 h / 62 h
				Summe:	2	28 h / 62 h
Zu	Nr. 1:					
18a	. Empf. Voraussetzungen	Grundkenntnisse in	Organisc	her Chemie ι	ınd in Pl	nysikalischer Chemie
19a	. Inhalte	 Definition lonischer Flüssigkeiten Syntheseprinzipien Aufreinigung, Qualitätsstandards Typen lonischer Flüssigkeiten Eigenschaften Anwendungen Toxizität Recycling 				
20a	. Medienformen	Vorlesungsskript				
21a	. Literatur	- Beliebiges Lehrbuch der Organischen Chemie, z. B. Schirmeister, Tanja/Schmuck, Carsten/Wich, Peter R.: Beyer/Walter Organische Chemie. Mit 2039 Abbildungen und 28 Tabellen und Poster "Taschenfalter", Hirzel Verlag: Stuttgart (25. völlig neu bearb. Auflage).				

	 Endres, Frank/Abbott, Andrew/MacFarlane, Douglas (Hg.): Electrodeposition from Ionic Liquids, Wiley-VCH: Weinheim (2. völlig überarbeitete und erweit. Auflage) 2017. Wasserscheid, Peter (Hg.): Ionic Liquids in Synthesis. Volume 1-2, Wiley-VCH: Weinheim (2. Auflage) 2008.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung					
			25.	26.	27.	28. Anteil an
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote
1	Ionische Flüssigkeiten		MP	3	benotet	100 %
29. Prüf	ungsform / Voraussetzung	Klausur (120 Minuten) nach der letzten Übung > 15 Teilnehmern				
für die V	ergabe von LP	oder mündliche Prüfung (30 Minuten, Einzelprüfung) < 15				
		Teilnehmern				
30. Vera	80. Verantwortliche(r) Prüfer(in) Prof. Dr. Frank Endres					
31. Prüf	31. Prüfungsvorleistungen Keine					

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Kunststoffverarbeitung I	Plastics Processing I

2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Verfahrenstechnik/Chemieingenieurwesen					
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer					
Prof. DrIng. Dieter Meiners		Fakultät für Natur- und			
		Materialwissenschaften			
6. Sprache	7. LP	8. Dauer	9. Angebot		
deutsch	4	[X] 1 Semester	[] jedes Semester		
		[] 2 Semester	[X] jedes Studienjahr		
			[] unregelmäßig		

Die Studierenden können die theoretischen Grundlagen der Kunststoffverarbeitung von Thermoplasten wiedergeben und die Ablaufprozesse der jeweiligen Verarbeitungen erstellen. Weiterhin können sie den geeigneten Prozess ableiten, die im Prozess auftretenden Problematiken analysieren sowie Lösungsvorschläge entwickeln.

Lel	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Kunststoffverarbeitung I	Prof. DrIng.	W 7903	2V/1Ü	3	42 h / 78 h
•	(Plastics Processing I)	Dieter Meiners	W 7505	20/10	,	42 11 / 70 11
				Summe:	3	42 h / 78 h

18a. Empf. Voraussetzungen	Keine					
18a. Empf. Voraussetzungen 19a. Inhalte	Keine 1. Aufbereitung von Kunststoffen - Zuschlagsstoffe - Mischtechnologie - Granulierung - Anlagenkonzepte 2. Grundlagen zum Verarbeitungsverhalten - Fließverhalten von Polymeren (newtonsch, strukturviskos) - Thermodynamische Zustandsgrößen - Rheometrie 3. Extrusionstechnik					
	Einschnecken-/DoppelschneckenextruderFörderwirksame Einzugszone, Förderverhalten					

	- Folien-/Plattenextrusion, Düsenauslegung				
	- Blasformtechnologie, Mehrfachfolienextrusion				
	4. Spritzgießtechnik				
	 Maschinentechnik Plastifiziereinheit, Schließeinheit, Werkzeuge der Spritzgießtechnik 				
	 Spritzgießtechnik; Aufschmelzverhalten, Einspritzvorgang, Abkühlvorgang 				
	 Prozesskenngrößen; p-v-T-Diagramm, Schwindung und Verzug, Eigenspannungen 				
	5. Press-/Spritzpresstechnik				
	 Aushärtende Formmassen; Fliess- Härtungsverlauf, Verarbeitungsprozessgrößen, Eigenspannungen, Schwindung, Verzug 				
	 Verfahrensablauf; Erfassung charakteristischer Prozessparameter, Optimierungskonzepte 				
	- Spritzprägen; Fließfunktion als Funktion der Prozessgrößen				
	- Sondertechniken				
	- Abrufbare Skripte				
20a. Medienformen	- Tafel				
	- Präsentationen				
	 Ehrenstein, Gottfried W.: Mit Kunststoffen konstruieren, Carl Hanser Verlag: München/Wien 1995. 				
	- Johannaber, Friedrich/Ast, Willi: Kunststoff-Maschinenführer, Carl Hanser Verlag: München u. a. (4. Auflage) 2004.				
21a. Literatur	- Johannaber, Friedrich/Michaeli, Walter: Handbuch Spritzgießen, Carl Hanser Verlag: München (2. Auflage) 2004.				
Z I a. Literatur	 Michaeli, Walter/Aengenheyster, Gerald: Kunststoff-Bauteile werkstoffgerecht konstruieren, Carl Hanser Verlag: München u. a. 1995. 				
	 Michaeli, Walter/Hoppmann, Christian: Einführung in die Kunststoffverarbeitung, Carl Hanser Verlag: München (8. aktual. Auflage) 2017. 				
22a. Sonstiges					

Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote
1	Kunststoffverarbeitung I / Plast	ics Processing I	MP	4	benotet	100 %
29. Prüfungsform / Voraussetzung		Einstündige Klausur				
für die Vergabe von LP						
30. Verantwortliche(r) Prüfer(in)		Prof. DrIng. Dieter Meiners				
31. Prüfungsvorleistungen		Keine				

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Kunststoffverarbeitung II	Plastics Processing II

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen					
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer			
Prof. DrIng. Dieter Meiners		Fakultät für Natur- und				
		Materialwissenschaften				
6. Sprache	7. LP	8. Dauer	9. Angebot			
deutsch 4		[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

Die Studierenden können die theoretischen Grundlagen der Kunststoffverarbeitung von Duromeren und Faserverbunden strukturiert wiedergeben und die Ablaufprozesse der jeweiligen Verarbeitungen erstellen und bewerten. Weiterhin können sie den geeigneten Prozess ableiten sowie die in Prozess auftretenden Problematiken analysieren sowie Lösungsvorschläge entwickeln.

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
	Kunststoffverarbeitung II	Prof. DrIng.	S 7901	2V/1Ü	3	42 h / 78 h
•	(Plastics Processing II)	Dieter Meiners	37701	20/10	,	72 11 / 70 11
				Summe:	3	42 h / 78 h

18a. Empf. Voraussetzungen	Keine
	1. Faserverbundtechnologie
	 Prepregverarbeitung; Herstellungsprozess, Legekonzepte für Schichtstrukturen, Aushärtungsprozeduren, Qualitätssicherungskonzepte
	- Wickelverfahren; Ablegespuren für Verstärkungsfasern, Imprägnierverhalten, Aushärtungsprozess, Schwindung, Schrumpf
19a. Inhalte	- Presstechniken; Maschinenkonzept, Werkzeuge für die Presstechnik, Aufheiz-/Abkühlkonzepte
	- RTM- Prozesse; Fließgesetze, Imprägnierverhalten, Preformtechnologie, Werkzeugkonzepte, Integrationsstrategien, Verfahrensvariationen (Druck, Vakuum, Kombination)
	 Nachbearbeitung; Entgraten, Wasserstrahlschneiden, Bohren, Fräsen, Rautern etc.

	2. Schäumen
	 Schaumbildungsprozess; Prozessablauf, Treibverfahren, Zellbildungsprozess
	 Integralschaumtechnologie; Mischtechnologie, Aufschäum- und Verdichtungsvorgang, Hautbildungsprozess, Bestimmung der Porenstruktur
	3. Fügetechniken
	- Grenzflächenphänomene; Adhäsion, Kohäsion, Interdiffusion etc., Oberflächenspannungen
	- Klebetechniken; Lösungsmittelkleben, 2-Komponentenkleben etc.
	 Schweißverfahren; Heizspiegelschweißen, Reibschweißen, Induktions-, Widerstandsschweißen, Ultraschallschweißen etc.
	- Niettechnologie
	- Sonderverbindungstechniken, Kombinationstechnologien
	- Abrufbare Skripte
20a. Medienformen	- Tafel
	- Präsentationen
	- Flemming, Manfred/Ziegmann, Gerhard/Roth, Siegfried: Faserverbundbauweisen. Fasern und Matrices, Springer-Verlag: Berlin u. a. 1995 (Standardwerk).
	 Flemming, Manfred/Ziegmann, Gerhard/Roth, Siegfried: Faserverbundbauweisen. Fertigungsverfahren mit duroplastischer Matrix, Springer-Verlag: Berlin u. a. 1999 (Standardwerk).
21a. Literatur	 Flemming, Manfred/Ziegmann, Gerhard/Roth, Siegfried: Faserverbundbauweisen. Halbzeuge und Bauweisen, Springer-Verlag: Berlin/Heidelberg 1996 (Standardwerk).
	 Neitzel, Manfred/Breuer, Ulf: Die Verarbeitungstechnik der Faser- Kunststoff-Verbunde, Carl Hanser Verlag: München u. a. 1997 (Standardwerk).
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung					
			25.	26.	27.	28. Anteil an
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote
1	Kunststoffverarbeitung II / Plast II	МР	4	benotet	100 %	
29. Prüfungsform / Voraussetzung		Einstündige Kla	ausur			
für die Vergabe von LP						
30. Verantwortliche(r) Prüfer(in)		Prof. DrIng. Dieter Meiners				
31. Prüfungsvorleistungen		Keine				

1a. Modultitel (deutsch) Mechanische Trennverfahren I (Grundlagen der Entstaubung)

1b. Modultitel (englisch)Mechanical Separation Technologies I

2. Verwendba	2. Verwendbarkeit des Moduls in Studiengängen				
M.Sc. Verfahrens	technik/Chemieinge	enieurwesen			
3. Modulveran	3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer				
DrIng. Annett Wollmann		Fakultät für Mathematik/Informatik	8600		
		und Maschinenbau			
6. Sprache	7. LP	8. Dauer	9. Angebot		
deutsch	4	[X] 1 Semester	[] jedes Semester		
		[] 2 Semester	[X] jedes Studienjahr		
			[] unregelmäßig		

10. Lern-/Qualifikationsziele des Moduls

Prinzipien der Gasentstaubung und Luftreinhaltung können fachlich wiedergegeben und interpretiert werden. Es können die verschiedenen Entstaubungsmechanismen hinsichtlich des Einsatzbereiches eingeschätzt und eingeordnet werden. Die mathematische Auslegung von Gasentstaubern kann durchgeführt und Problemstellungen aufgabenspezifisch analysiert werden.

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Mechanische Trennverfahren I (Grundlagen der Entstaubung) (Mechanical Separation Technologies I (Fundamentals of Dedusting))	DrIng. A. Wollmann	W 8600	2V/1Ü	3	42 h / 78 h
			_	Summe:	3	42 h / 78 h

18a. Empf. Voraussetzungen	Mechanische Verfahrenstechnik I			
19a. Inhalte	 Einführung Geschichtliches zur Gasentstaubung Luftreinhaltung Prozessgasreinigung Produktgewinnung Komponenten der Luftverunreinigung Kohlenmonoxid, Kohlenwasserstoffe, Ruß Schwefeloxide 			

	- Stickoxide
	3. Allgemeine Grundlagen
	- Darstellung von Partikelgrößenverteilungen
	- Bewertung von Abscheidern
	- Aerosolmesstechnik
	- Grundlagen der Partikelbewegung
	4. Zyklone und andere Massenkraftabscheider
	- Schwerkraftabscheider
	- Grundlagen und Anwendungsbereiche von Gaszyklonen
	5. Nasswäscher
	- Tropfenherstellung
	- theoretische Reinigungswirkung eines Tropfens
	- Aufbau und Anwendungsbereiche von Nassentstaubern
	6. Speicherfilter
	- Abscheidung von Partikeln an Partikeln und Fasern
	- Aufbau und Anwendungsbereiche von Speicherfiltern
	7. Abreinigungsfilter
	- Druckverlust
	- Regenerierung
	8. Elektroabscheider
	- Auflademechanismen
	- Eigenschaften und Auslegung von Elektroabscheidern
	9. Produktgewinnung bei Nanopulver aus der Gasphase
	- Abscheidemechanismen
	- Probleme beim kontinuierlichen Betrieb
	- Präsentation
20a. Medienformen	- Gedrucktes Skript
	- Tafel
	- Löffler, Friedrich: Staubabscheiden, Thieme-Verlag: Stuttgart u. a.
21a. Literatur	1988.
	- Stieß, Matthias: Mechanische Verfahrenstechnik. Band 2, Springer- Verlag: Berlin u. a. 2008.
22a. Sonstiges	
	<u> </u>

Studie	Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an	
23. Nr.	23. Nr. 24. Zugeordnete Lehrveranstaltungen		PArt	LP	Benotung	der Modulnote	
1	Mechanische Trennverfahren I der Entstaubung)	MP	4	benotet	100 %		
29. Prüfungsform / Voraussetzung für die Vergabe von LP		Klausur, 120 m	nin				
30. Verantwortliche(r) Prüfer(in) DrIng. A. V		DrIng. A. Wol	lmann				

31. Prüfungsvorleistungen	Keine

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Mechanische Trennverfahren II	Solid-Liquid-Separation
(Fest-Flüssig-Trennung)	

2. Verwendbar	2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen					
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer						
Dr. C. Bothe		Fakultät für Mathematik/Informatik und Maschinenbau				
6. Sprache	7. LP	8. Dauer	9. Angebot			
deutsch	4	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

Die Studierenden sind in der Lage

19a. Inhalte

- die strömungsmechanischen Grundgesetze zur Beschreibung von Sedimentationsvorgängen und Filtrationen zu formulieren und anzuwenden.
- die literaturbekannten Modellvorstellungen zur Beschreibung des Verhaltens realer Stoffsysteme z.B. für Sedimentation bei technischen Konzentrationen, Entfeuchtungs- und Waschvorgänge zu skizzieren.
- die üblichen labortechnischen Methoden zur Charakterisierung von Stoffsystemen zu beschreiben und die Ergebnisse zu interpretieren.
- Die Ergebnisse der o.g. Laborversuche in Zusammenhang mit Betriebsapparaten zu bringen.

2.

3.

Wäsche

- die Funktionsweise der wichtigsten Apparate- bzw. Maschinentypen im Grundsatz zu beschreiben.

- (- die Funktionsweise der wichtigsten Apparate- bzw. Maschinentypen im Grundsatz zu beschreiben.					
_						
Leh	Lehrveranstaltungen					
11.	1. 12. Lehrveranstaltungstitel 13. 14. 15. 16. 17. Arbeitsaufwa					17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Mechanische Trennverfahren II (Fest-Flüssig-Trennung)	Dr. C. Bothe	S 8606	2V/Ü	3	42 h / 78 h
	(Solid-Liquid-Separation)					
	Summe: 3 42 h / 78 h					
Zu Nr. 1:						
18a	18a. Empf. Voraussetzungen Mechanische Verfahrenstechnik I					
	1. Einführung					

und Entfeuchtung

Filtermittel und Filterhilfsmittel

Grundlagen der Sedimentation, Kuchenbildung durch Filtration,

	4. Sedimentationsapparate und -zentrifugen		
	5. Filtrationsapparate und -zentrifugen		
	6. Querstromfiltration		
	7. Apparateverschaltungen		
	- Präsentation		
20a. Medienformen	- Gedrucktes Skript		
	- Tafel		
	 Luckert, Klaus (Hg.): Handbuch der mechanischen Fest-Flüssig- Trennung, Vulkan-Verlag: Essen 2004 (Standardwerk). 		
21a. Literatur	- Stieß, Matthias: Mechanische Verfahrenstechnik. Band 2, Springer- Verlag: Berlin u. a. 2008.		
22a. Sonstiges			

Studie	Studien-/Prüfungsleistung					
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	25. PArt	26. LP	27. Benotung	28. Anteil an der Modulnote
1	Mechanische Trennverfahren II Trennung)	(Fest-Flüssig-	МР	4	benotet	100 %
	29. Prüfungsform / Voraussetzung für die Vergabe von LP		fung, 30 i	min		
30. Verantwortliche(r) Prüfer(in)		Dr. C. Bothe				
31. Prüf	31. Prüfungsvorleistungen					

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Membrantechnik I	Membrane Technology

2. Verwendbar	2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Verfahrens	technik/Chemieinge	enieurwesen					
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer				
DrIng. H. Thiess		Fakultät für Mathematik/Informatik und Maschinenbau					
6. Sprache	7. LP	8. Dauer	9. Angebot				
deutsch	3	[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
[] unregelmäßig							
10. Lern-/Qual	lifikationsziele de	s Moduls					
Membranen- un	d dazugehörige Ve	rfahren unterscheiden und bewerte	und beurteilen sowie grundlegende en. Sie können die experimentellen eennen und selbstständig mit den				

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Membrantechnik I	DrIng. H.	W 8629	V	2	28 h / 62 h
	(Membrane Technology)	Thiess				
				Summe:	2	28 h / 62 h

theoretischen Grundlagen zum Stofftransport Berechnungen durchführen. Die Studierenden sind mithilfe der genannten Grundlagen in der Lage, Membrananlagen auszulegen und Optimierungen durchzuführen.

Summe: 2 28 h / 62 h Zu Nr. 1: 18a. Empf. Voraussetzungen Die Membrantechnologie ist nach wie vor eine aufstrebende Grundoperation, die jedoch nicht alle Zukunftshoffnungen der letzten Jahre erfüllt hat. Dafür gibt es eine Reihe von Gründen. Ziel der Vorlesung ist es, neben den Grundlagen und Anwendungen auch die Herstellung, Charakterisierung und Auslegung darzustellen, um den aktuellsten Stand des Wissens und der Forschung zu vermitteln. - Grundlagen - Stofftransport - Anwendungen 20a. Medienformen Skript

21a. Literatur	 Baker, Richard W.: Membrane Technology and Applications, Wiley: Chichester (3. Auflage) 2012. Cheryan, Munir: Ultrafiltration and Microfiltration Handbook, Technomic Publ.: Lancaster, Pa. u. a. 1998. Melin, Thomas/Rautenbach, Robert: Membranverfahren. Grundlagen der Modul- und Anlagenauslegung, Springer Verlag: Berlin u. a. (3. aktual. und erw. Auflage) 2007.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote		
1	1 Membrantechnik I		MP	3	benotet	100 %		
29. Prüf	29. Prüfungsform / Voraussetzung Klausu			Klausur (90 Minuten) > ca. 15 Teilnehmer, mündliche Prüfung (30				
für die V	ergabe von LP	Minuten, Einzelprüfung) < ca. 15 Teilnehmer						
30. Vera	ntwortliche(r) Prüfer(in)	DrIng. H. Thiess						
31. Prüfungsvorleistungen		Keine						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Multifunktionale	Sample module title A
Leichtbauwerkstoffe	

2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Verfahrens	technik/Chemieinge	enieurwesen; M.Sc. Maschinenbau			
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer		
Prof. P. Wierach		Fakultät für Natur- und			
		Materialwissenschaften			
6. Sprache	7. LP	8. Dauer	9. Angebot		
deutsch	8	[X] 1 Semester	[] jedes Semester		
		[] 2 Semester	[X] jedes Studienjahr		
[] unregelmäßig					
10. Lern-/Qualifikationsziele des Moduls					

Leh	.ehrveranstaltungen					
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Multifunktionale Leichtbauwerkstoffe 1 (Sample course title 1)	Missaala D	W 7991	3V/Ü	3	42 h / 78 h
2	Multifunktionale Leichtbauwerkstoffe 2 (Sample course title 2)	Wierach, P.	S 7992	3V/Ü	3	42 h / 78 h
				Summe:	4	84 h / 156 h
Zu	Nr. 1:					
18a	. Empf. Voraussetzungen					
19a	. Inhalte					
20a	. Medienformen					
21a	. Literatur					
22a	. Sonstiges					
Zu	Zu Nr. 2:					
18b	. Empf. Voraussetzungen					

19b. Inhalte	
20b. Medienformen	
21b. Literatur	
22b. Sonstiges	

Studie	Studien-/Prüfungsleistung					
			25.	26.	27.	28. Anteil an
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote
1	Multifunktionale Leichtbauwerkstoffe 1, Multifunktionale Leichtbauwerkstoffe 2		МР	8	benotet	100 %
29. Prüfungsform / Voraussetzung für die Vergabe von LP						
30. Verantwortliche(r) Prüfer(in) Wierach, P.						
31. Prüf	ungsvorleistungen	Keine				

1a. Modultitel (deutsch)1b. Modultitel (englisch)Numerische StrömungsmechanikComputational Fluid Dynamics

2. Verwendbarkeit des Moduls in Studiengängen M.Sc. Verfahrenstechnik/Chemieingenieurwesen 3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer Prof. G. Brenner Fakultät für Mathematik/Informatik und Maschinenbau 6. Sprache 7. LP 8. Dauer 9. Angebot deutsch 4 [X] 1 Semester [] jedes Semester [] 2 Semester [X] jedes Studienjahr [] unregelmäßig

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden

- können die fundamentalen Erhaltungsgleichungen der Strömungsmechanik interpretieren
- kennen und verstehen numerische Verfahren zur Lösung und Diskretisierung der Grundgleichungen der Strömungsmechanik
- kennen die mathematischen Grundlagen der Lösung der linearen Gleichungssysteme und können Methoden zur Beschleunigung der Lösung anwenden
- sind in der Lage, die Stabilität der numerischen Verfahren zu beurteilen und Fehlerquellen abzuschätzen.
- sind in der Lage, über den Einsatz verschiedener Modelle und Verfahren zu entscheiden

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Numerische Strömungsmechanik (Computational Fluid Dynamics)	Prof. G. Brenner	\$ 8035	2V/1Ü	3	42 h / 93 h
				Summe:	3	42 h / 93 h

Zu Nr. 1:

18a. Empf. Voraussetzungen	Ingenieurmathematik und Physik sowie Strömungsmechanik		
19a. Inhalte	 Erhaltungsgleichungen der Kontinuumsmechanik, Klassifizierung aus mathematischer Sicht, Rand- und Anfangsbedingungen Finite Differenzen Methode, Prinzip der FDM, Genauigkeitsfragen, Anwendung zur Lösung einer linearen skalaren Transportgleichung in ein- und zwei Dimensionen 		
	3. Lösung linearer Gleichungssysteme, Direkte Löser (TDMA, LU-		

	Zerlegung), iterative Löser (Unvollständige LU), konjugierte
	Gradienten-Verfahren
	4. Finite Volumen Methode, Prinzip der FVM, Diskretisierung von
	skalaren Konvektions-diffusions-Gleichungen, gebräuchliche
	Diskretisierungspraktiken
	5. Instationäre Strömungen, Explizite und implizite Verfahren,
	Einschritt/Mehrschritt Verfahren,
	6. Eigenschaften von iterativen Algorithmen, Stabilität, Konvergenz,
	Konsistenz (Satz von Lax), Konservativität, Beschränktheit
	7. Berechnungsverfahren für elliptische Probleme, Möglichkeiten der
	Druck-Geschwindigkeitskopplung, SIMPLE Verfahren und
	Varianten, versetzte und nicht versetzte Gitter
	8. Möglichkeiten der Simulation / Modellierung der Turbulenz
	Schließungsannahmen, Transportmodelle für Turbulenzgrößen,
	Wandmodellierung
	9. Gittergenerierung (Preprocessing), Einbindung in andere CA
	Techniken, Multigrid, Parallelverarbeitung und
	Hochleistungsrechnen, Visualisierung/Postprocessing von
	numerischen Daten
	- Tafel
20a. Medienformen	- Folien
	- Eigenes Skript.
	- Ferziger, Joel H./Peric, Milovan: Computational Methods for Fluid
21a. Literatur	Dynamics, Springer: Berlin/Heidelberg/New York (3. überarb.
_ i.u. Littiutui	Auflage) 2002 (Standardwerk).
	 Hirsch, Charles: Numerical Computation of Internal and External Flow, Wiley: Chichester u. a. 1988 (Standardwerk).
	Tiow, wiley. Chichester d. a. 1700 (Standardwerk).
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an	
23. Nr. 24. Zugeordnete Lehrveransta		nstaltungen	PArt	LP	Benotung	der Modulnote	
1	1 Numerische Strömungsmechanik		MP	4	benotet	100 %	
29. Prüf	29. Prüfungsform / Voraussetzung Prüfungsform			ilnehm	er*innen mündli	che Prüfung, sonst	
für die V	für die Vergabe von LP		Klausur				
30. Vera	ntwortliche(r) Prüfer(in)	Prof. G. Brenner					
31. Prüfungsvorleistungen		Keine					

1a. Modultitel (deutsch)1b. Modultitel (englisch)Numerische Strömungsmechanik Numerical Fluid Mechanics

2. Verwendbarkeit des Moduls in Studiengängen M.Sc. Verfahrenstechnik/Chemieingenieurwesen, M.Sc. Maschinenbau 3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer Fakultät für Mathematik/Informatik Prof. Gunther Brenner und Maschinenbau 6. Sprache 7. LP 8. Dauer 9. Angebot englisch 4 [X] 1 Semester [] jedes Semester [] 2 Semester [X] jedes Studienjahr [] unregelmäßig

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden

- können die fundamentalen Erhaltungsgleichungen der Strömungsmechanik interpretieren.
- kennen und verstehen numerische Verfahren zur Lösung und Diskretisierung der Grundgleichungen der Strömungsmechanik.
- kennen die mathematischen Grundlagen der Lösung der linearen Gleichungssysteme und können Methoden zur Beschleunigung der Lösung anwenden.
- sind in der Lage, die Stabilität der numerischen Verfahren zu beurteilen und Fehlerquellen abzuschätzen.
- sind in der Lage, über den Einsatz verschiedener Modelle und Verfahren zu entscheiden

Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Numerische Strömungsmechanik (Computational Fluid Dynamics)	Prof. Gunther Brenner	W 8035	2V/1Ü	3	42 h / 78 h
	Summe: 3 42 h / 78 h					
Zu	Zu Nr. 1:					
18a	18a. Empf. Voraussetzungen Ingenieurmathematik und Physik sowie Strömungsmechanik					

18a. Empf. VoraussetzungenIngenieurmathematik und Physik sowie Strömungsmechanik1. Erhaltungsgleichungen der Kontinuumsmechanik, Klassifizierung aus mathematischer Sicht, Rand- und Anfangsbedingungen

19a. Inhalte 2. Finite Differenzen Methode, Prinzip der FDM, Genauigkeitsfragen, Anwendung zur Lösung einer linearen skalaren Transportgleichung in ein- und zwei Dimensionen

	3. Lösung linearer Gleichungssysteme, Direkte Löser (TDMA, LU- Zerlegung), iterative Löser (Unvollständige LU), konjugierte Gradienten Verfahren
	4. Finite Volumen Methode, Prinzip der FVM, Diskretisierung von skalaren konvektions-diffusions Gleichungen, gebräuchliche Diskretisierungspraktiken
	5. Instationäre Strömungen, Explizite und implizite Verfahren, Einschritt/Mehrschritt Verfahren,
	6. Eigenschaften von iterativen Algorithmen, Stabilität, Konvergenz, Konsistenz (Satz von Lax), Konservativität, Beschränktheit
	7. Berechnungsverfahren für elliptische Probleme, Möglichkeiten der Druck-Geschwindigkeitskopplung, SIMPLE Verfahren und Varianten, versetzte und nicht versetzte Gitter
	8. Möglichkeiten der Simulation / Modellierung der Turbulenz Schließungsannahmen, Transportmodelle für Turbulenzgrößen, Wandmodellierung
	9. Gittergenerierung (Preprocessing), Einbindung in andere CA Techniken, Multigrid, Parallelverarbeitung und Hochleistungsrechnen, Visualisierung/Postprocessing von numerischen Daten
	- Tafel
20a. Medienformen	- Folien
	- Eigenes Skript.
21. 14	 Ferziger, Joel H./Peric, Milovan: Computational Methods for Fluid Dynamics, Springer: Berlin/Heidelberg/New York (3. korr. Auflage) 2002.
21a. Literatur	- Hirsch, Charles: Numerical Computation of Internal and External Flow. Vol. 1: Fundamentals of Computational Fluid Dynamics, Elsevier/Butterworth-Heinemann: Amsterdam u. a. (2. Auflage) 2007.
22a. Sonstiges	

Studien-/Prüfungsleistung								
			25.	26.	27.	28. Anteil an		
23. Nr.	r. 24. Zugeordnete Lehrveranstaltungen		PArt	LP	Benotung	der Modulnote		
1	Numerische Strömungsmechanik			4	benotet	1/7		
29. Prüf	29. Prüfungsform / Voraussetzung Prüfungsform			orm: bis 35 Teilnehmer*innen mündliche Prüfung, sonst				
für die V	ergabe von LP	Klausur						
30. Verantwortliche(r) Prüfer(in) Prof. Gunther			of. Gunther Brenner					
31. Prüfungsvorleistungen Keine								

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Partikelmesstechnik	Particle Measuring Technology

n Studiengängen	
enieurwesen	
4. Zuständige Fakultät	5. Modulnummer
Fakultät für Mathematik/Informatik	
und Maschinenbau	
8. Dauer	9. Angebot
[X] 1 Semester	[] jedes Semester
[] 2 Semester	[X] jedes Studienjahr
	[] unregelmäßig
	4. Zuständige Fakultät Fakultät für Mathematik/Informatik und Maschinenbau 8. Dauer [X] 1 Semester

Die Studierenden sind in der Lage

19a. Inhalte

- die Prinzipien der Partikelmesstechnik zu erkennen und zu verstehen
- die wichtigen Messgeräte und ihre Anwendungsbereiche zu benennen

1.3.

1.4.1.5.

2.

2.1.

PGV

Kräfte auf Partikel

Probennahme

Schüttgüter

Theorem von Cauchy

- die grundlegenden physikalischen Wirkweisen von Messverfahren zu bestimmen und zu beurteilen
- die Mess- und Einflussgrößen auf die verschiedenen Messverfahren zu interpretieren und zu erläutern
- anwendungsorientierte Aufgaben (in Hausübungen) mit dem in der Vorlesung erworbenen Wissen eigenständig zu lösen.

=							
Lehrveranstaltungen							
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium	
	Partikelmesstechnik						
1	(Particle Measuring	Prof. A. Weber	W 8610	2V/1Ü	3	42 h / 78 h	
	Technology)						
				Summe:	3	42 h / 78 h	
Zu Nr. 1:							
18a	18a. Empf. Voraussetzungen Strömungsmechanik, Experimentalphysik, Mechanische VT						
	1. Einleitung						
	1.1. Partikelmerkmale						
	1.2. Äquivalent-Durchmesser						

	2.2.	Suspensionen
	2.3.	Pasten
	2.4.	Strömende Gase
	2.5.	Strömende Suspensionen
	2.6.	Systematische Fehler
	3.	Dispergierung
	3.1.	Trockendispergierung
	3.2.	Nassdispergierung
	3.3.	Stabilität des Dispergierzustands
	3.4.	Experimentelle Überprüfung der Dispergierung
	3.5.	Wirkungsmechanismen der Dispergierhilfsmittel
	4.	Abbildende Verfahren
	4.1.	Lichtmikroskopie
	4.2.	Elektronenmikroskopie
	4.3.	Rastersondenverfahren
	4.4.	Bildverarbeitung
	5.	Zählverfahren (Einzelpartikelmessung)
	5.1.	Lichtstreuung
	5.2.	Coulter-Counter
	5.3.	Kondensationspartikelzähler
	5.4.	Elektrometer
	5.5.	Koinzidenz
	6.	Trennverfahren
	6.1.	Siebung
	6.2.	Sedimentation
	6.3.	Windsichter
	6.4.	Elektrophorese
	6.5.	Diffusionsbatterie
	7.	Spektroskopische Verfahren (Messung am
		Partikelkollektiv)
	7.1.	Laserbeugung
	7.2.	Photonenkorrelationsspektrokopie
	7.3.	Ultraschallextinktion
	7.4.	Inversionsproblem
	8.	Spezialthemen
	8.1.	Spezifische Oberfläche
	8.2.	Dichtebestimmung
	8.3.	Gasanalytik
	8.4.	Aussagekraft von Mittelwerten
	- Pra	äsentation
20a. Medienformen	- Ge	edrucktes Skript
	- Ta	fel

21a. Literatur	 Skript. Baron, Paul A./Willeke, Klaus/Kulkarni, Pramod (Hg.): Aerosol Measurement. Principles, Techniques, and Applications, Wiley & Sons: Hoboken, NJ 83. Auflage) 2011. Bernhardt, Claus: Granulometrie. Klassier- und Sedimentationsmethoden, Wiley-VCH: Weinheim 2001.
22a. Sonstiges	

Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote
1	Partikelmesstechnik		MP	4	benotet	100 %
29. Prüf	ungsform / Voraussetzung	Klausur (120 min)				
für die \	ergabe von LP					
30. Vera	ntwortliche(r) Prüfer(in)	Prof. A. Weber	•			
31. Prüfungsvorleistungen		Keine				

1a. Modultitel (deutsch)

Pflanzenbasierte,
ressourceneffiziente
Verfahrenstechnik zur
Gewinnung wertvoller Wirkstoffe
aus den Perspektiven von Biound Ingenieurwissenschaften

1b. Modultitel (englisch)

Ressource Efficient Process Design for the Generation of High-Value Products from Biomass from a Bio- and Engineering Standpoint

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Verfahrens	technik/Chemieinge	enieurwesen				
3. Modulveran	. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer					
Prof. DrIng. Jochen Strube Faku		Fakultät für Mathematik/Informatik				
		und Maschinenbau				
6. Sprache	7. LP	8. Dauer	9. Angebot			
deutsch	12	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

10. Lern-/Qualifikationsziele des Moduls

Die Studenten sollen befähigt werden Herstellungsprozesse von Herstellungsprozessen von Phytochemikalien (Pharmazeutika, Nutraceuticals, Lebensmittel-zusatzstoffen, Aromen/Flavors, Kosmetika und Agrochemikalien) unter deren regulatorischen Bedingungen zu entwerfen und entsprechend den Vorstellungen von Quality by Design Ansatz und statistischer Versuchsplanung auszulegen.

Dafür sollen Laborexperimente zur Bestimmung von Stoffdaten und Modellparametern aller Grundoperationen wie Feststoffextraktion als Mazeration und Perkolation sowie Wasserdampfdestillation inkl. Vorbehandlung des Pflanzenmaterials (Trocknen, Zerkleinern, Befeuchten, Lagern, Transport), nachfolgende Extraktreinigung mittels Membrantechnologie, Flüssig-Flüssig Extraktion, Chromatographie, Kristallisation und Fällung inkl. Lösungsmittelrecycling geplant umgesetzt und interpretiert werden. Zusätzlich ist ein phys.-chem. basiertes Gesamtprozessmodell und –simulation zu evaluieren, sowie die Wirtschaftlichkeit zu bewerten.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium	
1	Pflanzenbasierte, ressourceneffiziente Verfahrenstechnik zur Gewinnung wertvoller Wirkstoffe aus den Perspektiven von Bio- und Ingenieurwissenschaften (Ressource Efficient Process Design for the Generation of	Prof. DrIng. Jochen Strube	W 8636	V/Ü/S	12	160 h / 200 h	

High-Value Products from Biomass from a Bio- and Engineering Standpoint)					
		Sur	mme:	12	160 h / 200 h
Zu Nr. 1:					
18a. Empf. Voraussetzungen	Bioverfahrenstechn	ik I, Thermische	Verfahr	enstech	nik I
19a. Inhalte					
- Vorlesung - begleitendes Skript					
21a. Literatur	 Skript u. a. Bart, Hans-Jörg/Pilz, Stephan (Hg.): Industrial Scale Natural Products Extraction, Wiley-VCH: Weinheim 2011. Chemat, Farid/Strube, Jochen (Hg.): Green Extraction of Natural Products. Theory and Practice, Wiley-VCH: Weinheim 2015. 				
22a. Sonstiges					

Studie	Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Pflanzenbasierte, ressourceneffiziente Verfahrenstechnik zur Gewinnung wertvoller Wirkstoffe aus den Perspektiven von Bio- und Ingenieurwissenschaften		МР	12	benotet	100 %	
29. Prüf	ungsform / Voraussetzung	Seminarvortrag	9				
für die \	ergabe von LP						
30. Verantwortliche(r) Prüfer(in) Prof. Dr		Prof. DrIng. Jo	Prof. DrIng. Jochen Strube				
31. Prüfungsvorleistungen Keine		Keine					

1a. Modultitel (deutsch)
Planung und Bau von
Chemieanlagen

1b. Modultitel (englisch)Design and Construction of Chemical Plants

2. Verwendba	rkeit des Moduls i	n Studiengängen	
M.Sc. Verfahrens	technik/Chemieinge	enieurwesen	
3. Modulveran	twortliche(r)	5. Modulnummer	
DrIng. H. Fröhlich		Fakultät für Mathematik/Informatik	
		und Maschinenbau	
6. Sprache	7. LP	8. Dauer	9. Angebot
deutsch	4	[X] 1 Semester	[] jedes Semester
		[] 2 Semester	[X] jedes Studienjahr
			[] unregelmäßig

10. Lern-/Qualifikationsziele des Moduls

19a. Inhalte

Die Studierenden sind in der Lage, alle Stufen der Anlagenplanung von Chemieanlagen vom Vorprojekt bis zur Inbetriebnahme und deren essenziellen Aspekte zu erläutern.

Sie können die notwendigen Grundlagen und Methoden beschreiben sowie anwenden um eigenständig derartige Projekte zu bearbeiten. Weiterhin sind die Studierenden in der Lage die Kosten solcher Projekte abzuschätzen und mögliche Risiken in den einzelnen Planungsphasen zu erkennen und zu beurteilen.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium	
1	Planung und Bau von Chemieanlagen (Design and Construction of Chemical plants)	DrIng. H. Fröhlich	W 8634	2V/1Ü	3	42 h / 78 h	
				Summe:	3	42 h / 78 h	
Zu Nr. 1:							
18a	18a. Empf. Voraussetzungen Thermische Trennverfahren I und II, Prozesstechnik empfohlen					k empfohlen	
	EinleitungVorprojektBasic Engineering						

Detail Engineering

Project Management

Montage und Inbetriebnahme

Beschaffung

20a. Medienformen	- Vorlesung
Zoa. Mediemormen	- begleitendes Skript
	- Skript u. a.
	 Bernecker, Gerhard: Planung und Bau verfahrenstechnischer Anlagen. Projektmanagement und fachplanungsfunktionen, Springer Berlin: Berlin (3. Auflage) 2013.
21a. Literatur	 Helmus, Frank Peter: Anlagenplanung. Von der Anfrage bis zur Abnahme, Wiley-VCH: Weinheim 2003.
	 Peters, Max Stone/Timmehaus, Klaus Dieter/West, Ronald Emmett: Plant Design and Economics for Chemical Engineers, McGraw-Hill: Boston u. a. (5. International Auflage) 2004.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote		
1	Planung und Bau von Chemiea	MP	4	benotet	100 %			
29. Prüf	ungsform / Voraussetzung	Klausur (90 Minuten) > ca. 15 Teilnehmer, mündliche Prüfung (30						
für die V	ergabe von LP	Minuten, Einzelprüfung) < ca. 15 Teilnehmer						
30. Vera	ntwortliche(r) Prüfer(in)	DrIng. H. Fröhlich						
31. Prüfungsvorleistungen		Keine						

Basis

der

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Polymer Thermodynamik	Polymer Thermodynamik

2. Verwendbarl	2. Verwendbarkeit des Moduls in Studiengängen				
M.Sc. Verfahrenst	echnik/Chemieinge	nieurwesen			
3. Modulverant	wortliche(r)	4. Zuständige Fakultät	5. Modulnummer		
Prof. Dr. M. Fischlschweiger		Fakultät für Energie- und			
		Wirtschaftswissenschaften			
6. Sprache	7. LP	8. Dauer	9. Angebot		
Englisch	6	[X] 1 Semester	[] jedes Semester		
		[] 2 Semester	[X] jedes Studienjahr		
			[] unregelmäßig		

10. Lern-/Qualifikationsziele des Moduls

- Studierende können die Herstellungs-, Verarbeitungs- und Recyclingverfahren von Polymeren mit den Methoden der Thermodynamik analysieren.
- Studierende sind in der Lage, Energie- und Stoffumwandlungen in der Polymerverfahrenstechnik mit den Methoden der Thermodynamik zu berechnen und insbesondere Stoffkreisläufe zu bewerten.
- •Studierende können selbstständig, im Rahmen der Übung, die Methodik des Prozessdesigns für die Herstellung, die Verarbeitung und das Recycling von Polymeren auf Basis der Thermodynamik anwenden.

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Polymer Thermodynamik /	Prof. Dr. M.	W 8509	2V/2Ü	4	56 h / 124 h
•	Polymer Thermodynamics	Fischlschweiger	W 6309	20/20	4	56 h / 124 h
	Summe: 4 56 h / 124 h					
Zu	Zu Nr. 1:					

Thermodynamik

Bewertung von polymeren Stoffkreisläufen

	- Folien/Powerpoint
20a. Medienformen	- Tafel
	- Übungsaufgaben
	 P.J. Flory: Principles of Polymer Chemistry, Cornell University Press, Ithaca and London,16th Ed. 1995
21a. Literatur	 J.M. Prausnitz, R.N. Lichtenthaler, E.G. Azevedo: Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice Hall PTR, Third Ed. 1999
	 S. Enders, B.A. Wolf: Polymer Thermodynamics Liquid Polymer- Containing Mixtures, Springer-Verlag Berlin Heidelberg, 2011
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung						
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	25. PArt	26. LP	27. Benotung	28. Anteil an der Modulnote	
1	Polymer Thermodynamik / Poly Thermodynamics	МР	6	benotet	100 %		
	ungsform / Voraussetzung /ergabe von LP	Klausur (120 N	/linuten) (bei wen	iger als 5 Teilnel	hmern mündlich)	
30. Verantwortliche(r) Prüfer(in)		Prof. Dr. M. Fischlschweiger					
31. Prüfungsvorleistungen		Keine					

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Polymerwerkstoffe I	Polymer Materials I

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen						
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer				
Dr. Leif Steuernagel		Fakultät für Natur- und					
		Materialwissenschaften					
6. Sprache	7. LP	8. Dauer	9. Angebot				
Deutsch	4	[X] 1 Semester	[] jedes Semester				
Englisch (bei		[] 2 Semester	[X] jedes Studienjahr				
Bedarf)			[] unregelmäßig				

Die Studierenden können den Aufbau und die Struktur von Polymerwerkstoffen erläutern und diese hinsichtlich ihrer Eigenschaften für die Werkstoffauswahl anwenden. Sie beherrschen die Grundlagen der wichtigsten Verarbeitungsverfahren der thermoplastischen Polymere und können die dort entstehenden Abkühlvorgänge und das Kristallisieren der Schmelze erläutern. Weiterhin können Sie die Berechnungsgrundlagen zur Bestimmung des Fließverhaltens anwenden. Die Studierenden können das mechanische Verhalten von Kunststoffen analysieren und geeignete Materialanwendungen abwägen.

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
,	Polymerwerkstoffe I	Dr. Leif	W 7905	2V/1Ü	3	42 h / 78 h
•	(Polymer Materials I)	Steuernagel	W 7903	20/10	3	42 h / 78 h
				Summe:	3	42 h / 78 h

Zu Nr. 1:

18a. Empf. Voraussetzungen	Keine			
	1. Einführung in die Problematik und Aufbau der Polymere			
	- Aufbau, Zustandsbereiche			
	- Bindungskräfte von Polymeren			
	- Einfluss von Zuschlagsstoffen			
	- Reaktion vom Monomer zum Polymer			
19a. Inhalte	2. Struktur der Polymerwerkstoffe			
	- Homogene Polymerwerkstoffe			
	- Heterogene Polymerwerkstoffe			
	- Heterogene Verbundwerkstoffe			
	3. Schmelzverhalten von Polymeren			
	- Fließverhalten von Polymeren			

	- Rechnerische Abschätzung nach Potenzgesetz						
	 Viskositäts-Temperatur-Verschiebungsprinzip 						
	- Orientierungen in der Schmelze						
	- Einfluss der Molekülgestalt						
	4. Abkühlvorgänge von Polymeren aus der Schmelze						
	- Abkühlvorgänge						
	- Thermodynamische Kenngrößen und Zustandsänderungen						
	 Erstarrungsvorgänge bei amorphen und teilkristallinen Polymeren, Nukleierung 						
	- Kristallisationskinetik						
	- Verzug-Eigenspannungen						
	5. Mechanisches Verhalten						
	 Kurzzeitbeanspruchung, Einfluss der Beanspruchungsgeschwindigkeit 						
	 Rechnerische Abschätzung nach verschiedenen Modellen (Maxwell-, Voigt-Kelvin-Modell) 						
	- Langzeitverhalten, Relaxations-, Retardationsvorgänge						
	- Ermüdungs-, dynamisches und Stoßverhalten						
	- Abrufbare Skripte						
	- Tafel						
20a. Medienformen	- Präsentationen						
	- Videos						
	 Hopmann, Christian/Michaeli, Walter: Einführung in die Kunststoffverarbeitung, Carl Hanser Verlag: München (8. aktualisierte Auflage) 2017. 						
21a. Literatur	- Menges, Georg: Menges Werkstoffkunde Kunststoffe, Carl Hanser Verlag: München (6. Auflage) 2011.						
	 Schwarz, Otto: Kunststoffkunde. Aufbau, Eigenschaften, Verarbeitung, Anwendung der Thermoplaste, Duroplaste und Elastomere, Vogel Buchverlag: Würzburg (10. überarb. Auflage) 2016. 						
22a. Sonstiges							

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote		
1	Polymerwerkstoffe I / Polymer Materials I		MP	4	benotet	100 %		
29. Prüf	ungsform / Voraussetzung	Einstündige Klausur						
für die V	ergabe von LP							
30. Verantwortliche(r) Prüfer(in)		Dr. Leif Steuernagel						
31. Prüfungsvorleistungen		Keine						

1a. Modultitel (deutsch) 1b. Modultitel (englisch) Praxis der Heterogenen Katalyse **Practice of Heterogeneous** Catalysis

2. Verwendbar	2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen					
3. Modulveran	3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer					
Drrer.nat. habil. Frank Klose		Fakultät für Mathematik/Informatik				
und Maschinenbau						
6. Sprache	7. LP	8. Dauer	9. Angebot			
deutsch	3	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

10. Lern-/Qualifikationsziele des Moduls

In dieser Vorlesung lernen die Studierenden die wichtigsten industriellen katalytischen Prozesse aus den Bereichen Petrochemie, Synthesegaschemie und Selektivoxidation kennen. Darüber hinaus wird eine Einführung in den Bereich der katalytischen Abluftreinigung vermittelt. Im letzten Teil der Vorlesung werden die Grundlagen der Katalysatorcharakterisierung und -testung vermittelt. Ziel der Lehrveranstaltung ist es zum einen, einen Überblick über die breite industrielle Anwendung der Heterogenen Katalyse zu geben, andererseits auch Anregungen zum Lösen praktischer Problemstellungen des "industriellen Alltags" solcher Prozesse (Wie kann ich was messen/untersuchen?) zu geben.

Leh	Lehrveranstaltungen							
11 .Nr	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium		
1	Praxis der Heterogenen Katalyse (Practice of Heterogeneous Catalysis)	Drrer.nat. habil. Frank Klose	S 8410	V	2	28 h / 62 h		
				Summe:	2	28 h / 62 h		
Zu	Zu Nr. 1:							
18a	18a. Empf. Voraussetzungen Kenntnisse der Vorlesung Chemische Reaktionstechnik I und II							
	Bedeutende industrielle katalytische Prozesse Frdölverarbeitung					esse		

Erdölverarbeitung 19a. Inhalte Synthesegaschemie Selektivoxidation

	 Umweltkatalyse Funktionen von Katalysatoren/Katalysatorcharakterisierung Teststände und Reaktorkonzepte
20a. Medienformen	PowerPoint-Foliensatz
	- Ertl, Gerhard (Hg.): Handbook of Heterogeneous Catalysis. Volume 1-8, Wiley-VCH: Weinheim (2. Auflage) 2008.
21a. Literatur	- van Santen, Rutger A.: Modern Heterogeneous Catalysis. An Introduction, Wiley-VCH: Weinheim 2017.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote		
1	Praxis der Heterogenen Katalys	e	MP	3	benotet	100 %		
29. Prüfungsform / Voraussetzung Die Prüfungen werden in Form von Teilmodulprüfungen			orüfungen erbracht.					
für die V	ergabe von LP	Die übliche Prüfungsform besteht in einer mündlichen Prüfung von						
ca. 30 Minut			Dauer, in	der die	wesentlichen In	halte der Vorlesung		
in Form von Verständni			nisfrage	n behandelt w	erden. Bei großer			
		Hörerzahl kann auf eine schriftliche Prüfung ausgewichen werden						
30. Vera	ntwortliche(r) Prüfer(in)	Drrer.nat. habil. Frank Klose						
31. Prüf	ungsvorleistungen	Keine						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Projektierung von Apparaten zur	Design of Instruments for Mass
Stoffübertragung	Transfer

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen						
3. Modulveran	3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer						
<i>3</i> ,		Fakultät für Mathematik/Informatik und Maschinenbau					
6. Sprache	7. LP	8. Dauer	9. Angebot				
deutsch	4	[X] 1 Semester	[X] jedes Semester				
		[] 2 Semester	[] jedes Studienjahr				
			[] unregelmäßig				

Die Studierenden sind in der Lage, alle Stufen der Apparateplanung zur Stoffübertragung vom Vorprojekt bis zur Inbetriebnahme und deren essenziellen Aspekte zu erläutern.

Sie erlernen aus den Grundlagen der Fluiddynamik, der Phasengleichgewichte, der Stoffübertragung sowie Wärmetechnik notwendige Größen abzuleiten und essenzielle Kenngrößen zu bewerten, um Apparate zur Stoffübertragung eigenständig im Detail auszulegen. Weiterhin sind die Studierenden in der Lage, die Leistungsfähigkeit der Apparate zu analysieren und auf deren Basis die Wirtschaftlichkeit des Apparates zu ermitteln.

Leh	Lehrveranstaltungen							
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium		
1	Projektierung von Apparaten zur Stoffübertragung (Design of Instruments for Mass Transfer)	Prof. DrIng. Jochen Strube	W 8626 /S 8631	3V	3	42 h / 78 h		
				Summe:	3	42 h / 78 h		
Zu Nr. 1:								

18a. Empf. Voraussetzungen	Thermische Trennverfahren I und II, Prozesstechnik empfohlen			
19a. Inhalte	- Destillation, Rektifikation			
	- FlFl. Extraktion			
	- Fest-Flüssig Extraktion inkl. SFE			
	- Membrantechnik UF/DF, MF, Pervaporation			
	- Chromatographie Elution und Gradient			
	- Kristallisation/Fällung			

20a. Medienformen	- Vorlesung
200. Medicino men	- begleitendes Skript.
	- Skript u. a.
21a. Literatur	 Baehr, Hans Dieter/Stephan, Karl: Wärme- und Stoffübertragung, Springer Vieweg: Berlin (9. aktual. Auflage) 2016.
	 Dialer, Kurt u. a.: Grundzüge der Verfahrenstechnik und Reaktionstechnik, Hanser: München u. a. 1988.
	- Gmehling, Jürgen/Brehm, Axel: Lehrbuch der technischen Chemie. Band 2: Grundoperationen, Thieme: Stuttgart u. a. 2003.
	 Goedecke, Ralf (Hg.): Fluidverfahrenstechnik. Grundlagen, Methodik, Technik, Praxis, Wiley-VCH: Weinheim 2011.
	- Sattler, Klaus/Adrian, Till: Thermische Trennverfahren. Aufgaben und Auslegungsbeispiele, Wiley-VCH: Weinheim (2. Auflage) 2016.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Projektierung von Apparaten zu Stoffübertragung	MP	4	benotet	100 %		
	29. Prüfungsform / Voraussetzung Klausur (90 Minuten) > ca. 15 Teilnehmer, mündliche Prüfur für die Vergabe von LP Minuten, Einzelprüfung) < ca. 15 Teilnehmer			dliche Prüfung (30			
	ntwortliche(r) Prüfer(in)						
31. Prüfungsvorleistungen Keine							

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Prozessintensivierung	Process Intensification

n Studiengängen				
enieurwesen				
4. Zuständige Fakultät 5. Modulnummer				
Fakultät für Mathematik/Informatik				
und Maschinenbau				
8. Dauer	9. Angebot			
[X] 1 Semester	[] jedes Semester			
[] 2 Semester	[X] jedes Studienjahr			
	[] unregelmäßig			
	Fakultät für Mathematik/Informatik und Maschinenbau 8. Dauer [X] 1 Semester			

Die Studierenden erlernen durch die Prozessintensivierung eine alternative Herangehensweise an die Entwicklung von innovativen Herstellungsprozessen kennen, bei der es nicht auf die Optimierung von bereits bestehenden Prozessen ankommt.

Die Studierende lernen den Unterschied von Prozessintegration und Prozessverstärkung kennen, der sich unter dem Oberbegriff Prozessintensivierung zusammenfasst.

Es werden die Grundlagen Mikro-Verfahrenstechnik, Hybriden Trennverfahren gelegt und bereits integrierte Verfahren besprochen. Des Weiteren werden Umsetzstrategie, Auslegungskonzepte sowie das Design von innovativen Bauteilen behandelt.

Die Studierenden sind in der Lage, Prozesse durch geeignete Strategien zu intensivieren.								
Leh	Lehrveranstaltungen							
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand		
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium		
1	Prozessintensivierung	Prof. DrIng.	W 8635		,	20 h / 62 h		
	(Process Intensification)	Jochen Strube	W 8633	V	2	28 h / 62 h		
	Summe: 2 28 h / 62 h							
Zu	Nr. 1:				•			
18a	. Empf. Voraussetzungen	hermische Trennv	erfahren, l	Prozesstechn	ik			
19a	Unternehmen werden in Zeiten von steigenden Rohstoffkosten, verstärkte Wettbewerbs, kürzeren Produktlebenszyklen und variierende Nachfrageverhaltens von Konsumenten vor neue Herausforderunge gestellt, die innovative Lösungen erfordern. Prozessintensivierung ist dabe eine zentrale Strategie zur Steigerung der Effizienz und Flexibilitä verfahrenstechnischer Prozesse und soll zu mehr Nachhaltigkeit un Ressourceneffizienz beitragen. Prozessintensivierung kann auf zwei Weise durchgeführt werden, nämlich durch eine Prozessintegration und/oder di Prozessverstärkung.							

	Die Studierenden erhalten Einblick in die Prozessintegration, bei der es um die Verknüpfung von zwei oder mehreren Grundoperationen zu einem hybriden Trennverfahren geht und letztendlich zu einer Reduzierung der Prozessschritte führt. Dabei werden reaktive und hybride Trennverfahren thematisiert. Des Weiteren wird die Prozessverstärkung behandelt, welche die Intensivierung von Stoff- und Wärmeaustausch durch apparative Verkleinerungen darstellt. Hierbei liegt der Schwerpunkt auf den Grundlagen und Auslegungskonzepten der Mikro-Verfahrenstechnik, dessen Umsetzungsstrategien sowie auf den Verwendungskonzepten und Rahmenbedingungen für Smart Solvents (z. B: Ionische Flüssigkeiten, Green Solvents, unter-/überkritische Flüssigkeiten).
20a. Medienformen	Vorlesungbegleitendes Skript
21a. Literatur	 Hessel, Volker/Kralisch, Dana/Kockmann, Norbert: Novel Process Windows. Innovative Gates to Intensified and Sustainable Chemical Processes, Wiley-VCH: Weinheim 2015. Stankiewicz, Andrzej/van Gerven, Tom/Stefanidis, Giorgios: The Fundamentals of Process Intensification, Wiley-VCH: Weinheim 2019.
22a. Sonstiges	

Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Prozessintensivierung		MP	3	benotet	100 %	
29. Prüfungsform / Voraussetzung Klausu			Klausur (90 min): > 15 Teilnehmer				
für die Vergabe von LP		mündliche Prüfung (30 min): < 15 Teilnehmer					
30. Vera	ntwortliche(r) Prüfer(in)	Prof. DrIng. Jochen Strube					
31. Prüfungsvorleistungen Kei		Keine					

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Prozesstechnik	Process Technology

2. Verwendbar	keit des Moduls i	n Studiengängen					
M.Sc. Verfahrens	technik/Chemieinge	enieurwesen					
3. Modulveran	twortliche(r)	wortliche(r) 4. Zuständige Fakultät 5. Modulnummer					
Prof. DrIng. Jochen Strube		Fakultät für Mathematik/Informatik					
		und Maschinenbau					
6. Sprache	7. LP	8. Dauer	9. Angebot				
Deutsch	4	[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

Die Studierenden sind in der Lage, die grundlegenden Abläufe in der Prozessentwicklung und Versuchsplanung zu beschreiben. Sie können die Methoden der Prozess- und Verfahrensentwicklung nennen, beschreiben und bewerten. Sie können den Stellenwert der Prozesssimulation in der Prozesstechnik einordnen und bewerten. Sie können selbstständig eine Prozesssynthese durchführen und analysieren.

Die Studierenden können die aufgezählten Grundlagen anwenden und gesamte Prozesse entwerfen und diese optimieren.

Lehrveranstaltungen							
11. Nr.	12. Lehrveranstaltungstite	I 13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium	
1	Prozesstechnik (Process Technology)	Prof. DrIng. Jochen Strube	W 8631	2V/1Ü	3	42 h / 78 h	
				Summe:	3	42 h / 78 h	
Zu Nr. 1:							
18a	a. Empf. Voraussetzungen Thermische Trennverfahren I						
19a	. Inhalte	 Verfahrensentwicklung, Vorprojektierung Methoden der Prozessentwicklung, Prozesssynthese Statistische Versuchsplanung Pinch-Technologie Mini-Plant Technologie, begl. Prozesssimulation Kosten- und Wirtschaftlichkeitsrechnung 					
20a	. Medienformen	- Vorlesung - begleitendes Skript					

21a. Literatur	 Mothes, Helmut: Process Design. Synthesis, Intensification, and Integration of Chemical Processes, H. Mothes: Langenfeld 2015. Smith, Robin: Chemical Process. Design and Integration, Wiley-VCH: Chichester (2. Auflage) 2016. Towler, Gavin/Sinnott, Ray: Chemical Engineering Design. Principles, Practice and Economics of Plant and Process Design, Elsevier: Amsterdam (2. Auflage) 2013.
22a. Sonstiges	

Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Prozesstechnik		MP	4	benotet	100 %	
29. Prüfungsform / Voraussetzung		Klausur (90 Minuten) > ca. 15 Teilnehmer,					
			mündliche Prüfung (30 Minuten, Einzelprüfung) < ca. 15 Teilnehmer				
30. Verantwortliche(r) Prüfer(in) Prof. DrIng.			Prof. DrIng. Jochen Strube				
31. Prüfungsvorleistungen Keine							

1a. Modultitel (deutsch)	1b. Modultitel (englisch)	
-	Reactive Flows in High	
	Temperature Processes	

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Verfahrenstechnik/Chemieingenieurwesen						
3. Modulverant	twortliche(r)	4. Zuständige Fakultät 5. Modulnummer				
DrIng. M. Mancini		Fakultät für Energie- und Wirtschaftswissenschaften				
6. Sprache	7. LP	8. Dauer	9. Angebot			
Englisch	4	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

Die Studierenden

- kennen und verstehen die Methoden physikalischer Modellbildung für reaktive und kontinuumsmechanische Systeme
- können unbekannte Problemstellungen analysieren und die vorgestellten Simulationsmethoden darauf anwenden
- können eine Problemstellung in begrenzter Zeit gemeinsam im Team und eigenständig bearbeiten
- können die gewonnenen numerischen Ergebnisse dieser Arbeit visualisieren, präsentieren und kritisch hinterfragen

	illiterinagen								
Leh	Lehrveranstaltungen								
11.	12. Lehrveranstaltungstite	l 13.	14.	15.	16.	17. Arbeitsaufwand			
Nr.	(englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium			
1	Reactive Flows in High	DrIng. M.	S 8507	21/10	2	42 h / 70 h			
•	Temperature Processes	Mancini	3 6307	2V/Ü	3	42 h / 78 h			
				Summe:	3	42 h / 78 h			
Zu	Nr. 1:				•				
		Grundlagenkenntn	isse aus ei	nem Bachelo	ringenie	eurstudium			
18a	. Empf. Voraussetzungen	(Strömungsmechanik, Thermodynamik, Wärmeübertragung)							
	Equations of reactive computational fluid dynamics								
	- Mass and momentum conservation								
10		- Energy and enthalpy conservation							
19a	. Inhalte	- Entropy conservation							

2. Turbulence and its effects

3. Reduction of complex mechanisms

	4. Interaction of chemistry and turbulence				
	- EBU and EDC models				
	- Flamelet and further probabilistic models				
	5. Solution of the radiative heat transfer equation				
	6. Conversion of solid fuels				
	- DPM models				
	- Heterogeneous reactions				
	7. Applications to industrial processes				
	- Skript				
20 - Markan Carran	- PowerPoint				
20a. Medienformen	- Tafel				
	- PC-Übungen				
	- Own lecture notes.				
21a. Literatur	 Fox, Rodney O: Computational methods for turbulence reactive flows, Cambridge University Press: Cambridge u. a. 2003 (Standardwerk). 				
	 Peters, Norbert: Turbulent Combustion, Cambridge University Press: Cambridge u. a. (4. korr. Auflage) 2006 (Standardwerk). 				
22a. Sonstiges					

Studien-/Prüfungsleistung								
			25.	26.	27.	28. Anteil an		
23. Nr.	23. Nr. 24. Zugeordnete Lehrveran		PArt	LP	Benotung	der Modulnote		
1	Reactive Flows in High Temperature Processes			4	Benotet	100%		
29. Prüf	29. Prüfungsform / Voraussetzung sonstige prakti			sche/theoretische Arbeit gemäß APO §14, 1d (Absatz				
für die V	ergabe von LP	6) inklusive Prä	sentation und Diskussion					
30. Vera	ncini							
31. Prüf	ungsvorleistungen	Keine						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Sicherheitstechnik in der	Safety Engineering in the
Chemischen Industrie	Chemical Industry

Sc. Verfahrenstechnik/Chemieingenieurwesen						

The students

- learn how risks for man and environment are caused by chemical substances and through the operation of chemical plants,
- analyze the reputation of the chemical industry and become familiar with the historic development of safety engineering, the legal provisions for the assessment of chemical substances and the operation of plants as well as the measures for further improvement of the safety level in the production of chemicals,
- understand based on their knowledge in chemistry and chemical reaction engineering how practical risks evolve and how technical and organizational measures for risk prevention can be developed through risk analysis of units and processes.

Leh	Lehrveranstaltungen						
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium	
1	Sicherheitstechnik in der Chemischen Industrie (Safety Engineering in the Chemical Industry)	Prof. Drlng. T. Turek	S 8412	2V/1Ü	3	42 h / 78 h	
	Summe: 3 42 h / 78 h						
Zu	Zu Nr. 1:						
18a	18a. Empf. Voraussetzungen Chemische Reaktionstechnik II						

18a. Empf. Voraussetzungen	Chemische Reaktionstechnik II				
	1. Importance of safety engineering for the chemical industry				
	2. Hazardous properties of substances and chemical reactions				
19a. Inhalte	3. Examples for accidents and "learning from accidents"				
	4. Process safety of chemical reactor				

	5. Elements of technical law				
	6. Safety-related rules and requirements				
	7. Technical and organizational measures for prevention of losses and accidents				
	Additional homework assignments are offered for all topics.				
20 - Madianfannan	- Tafel				
20a. Medienformen	- Folien				
	- Skript "Safety Engineering in the Chemical Industry".				
21a. Literatur	- Kletz, Trevor A.: Learning from Accidents, Golf Professional Publ.: Oxford u. a. (3. Auflage) 2001 (Standardwerk).				
	 Steinbach, Jörg: Safety Assessment for Chemical Processes, Wiley- VCH: Weinheim u. a. 1999 (Standardwerk). 				
22a. Sonstiges					

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote		
1	Safety Engineering in the Chem	nical Industry	MP	4	benotet	100%		
	29. Prüfungsform / Voraussetzung für die Vergabe von LP Die übliche Prüfungsform besteht in einer mündlichen Prüfung ca. 30 Minuten Dauer, in der die wesentlichen Inhalte der Vorle in Form von Verständnisfragen behandelt werden. Bei Hörerzahl >20 kann auf eine schriftliche Prüfung ausgewiesen.				halte der Vorlesung werden. Bei einer			
30. Verantwortliche(r) Prüfer(in) Prof. Drlng. T. Turek								
31. Prüf	1. Prüfungsvorleistungen Keine							

1a. Modultitel (deutsch) 1b. Modultitel (englisch) Stationary Simulation with Aspen Stationäre Simulation mit Aspen Plus Plus

2. Verwendbar	keit des Moduls i	n Studiengängen			
M.Sc. Verfahrens	technik/Chemieinge	enieurwesen			
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer		
Prof. DrIng. Joci	nen Strube	Fakultät für Mathematik/Informatik und Maschinenbau			
6. Sprache	7. LP	8. Dauer	9. Angebot		
Deutsch	4	[X] 1 Semester	[] jedes Semester		
		[] 2 Semester	[X] jedes Studienjahr		
			[] unregelmäßig		
10 Lorn /Oual	ifikationsziala da	as Moduls			

Die Studierenden erlenen die Grundlagen der Prozesssimulation. Sie können den Unterschied zwischen stationärer und dynamischer Simulation erläutern. Weiterhin können die Studierenden unterschiedliche Modellierungstiefen Prozessmodelle und benennen und anwenden. können Stoffdatenberechnungsmodelle aufzählen und den Einfluss dieser auf das Simulationsergebnis bewerten.

Die Studierenden können eigenständig Praxisbeispiele der Verfahrenstechnik in Simulationen umsetzen, Berechnungen und Optimierungen durchführen, Arbeitsbereiche und ideale Betriebspunkte identifizieren und die erhaltenen Resultate bewerten.

Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Stationäre Simulation mit Aspen Plus (Stationary Simulation with Aspen Plus)	Prof. DrIng. Jochen Strube	W 8676	3Ü	3	42 h / 78 h
	Summe: 3 42 h / 78 h					
Zu Nr. 1:						
18a	18a. Empf. Voraussetzungen Thermische Trennverfahren, Prozesstechnik					

	1. Einführung in die Prozesssimulation
	2. Grundlagen der Modellierung
	3. Aufbau und Arbeitsweise von Aspen Plus
19a. Inhalte	4. Unit Operation Modelle
	5. Grundlagen der Thermodynamik
	6. Stoffdatenmodelle
	7. Bestimmung von Stoffdaten mit Aspen Plus
22 14 11 6	- PC-Übung
20a. Medienformen	- begleitendes Skript
	 Aspen Plus 2004.1 – Getting Started: Building and Running a Process Model Aspen Technology, Inc. Cambridge 2005.
21a. Literatur	 Aspen Plus 2004.1 – Getting Started Modeling Processes with Solids Aspen Technology, Inc. Cambridge 2005.
	- Marquardt, W.: Modellbildung als Grundlage der Prozeßsimulation, in: Hans Schuler (Hg.): Prozeßsimulation, VCH: Weinheim 1995, S. 3-34.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote		
1	Stationäre Simulation mit Aspe	n Plus	MP	4	benotet	100%		
29. Prüf	ungsform / Voraussetzung	Klausur (90 Minuten) > ca. 15 Teilnehmer,						
für die \	ergabe von LP	mündliche Prüfung (30 Minuten, Einzelprüfung) < ca. 15						
	Teilnehmer							
30. Verantwortliche(r) Prüfer(in) Prof. DrIng. Jochen Strube								
31. Prüf	ungsvorleistungen	Keine						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Technische Chromatographie	Practial Chromatography

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
3. Modulveran	3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer						
Prof. DrIng. Jochen Strube		Fakultät für Mathematik/Informatik					
	-	und Maschinenbau					
6. Sprache	7. LP	8. Dauer	9. Angebot				
deutsch	3	[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

Die Studierenden können die Grundlagen der technischen Chromatographie nennen. Sie können die typischen Kennzahlen der Chromatographie anwenden und bewerten. Die Studierenden können den Ablauf der chromatographischen Prozessentwicklung beschreiben und Anlagendimensionen ermitteln. Neben herkömmlichen Chromatographieverfahren sind die Studierenden in der Lage neue Entwicklungen im Bereich der Chromatographie einzuordnen und die Vorteile modernen Prozessdesigns zu beurteilen.

Leh	Lehrveranstaltungen								
11.	12. Lehrveranstaltungstite	13.	14.	15.	16.	17. Arbeitsaufwand			
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium			
1	Technische Chromatographie	Prof. DrIng.	S 8634	V	2	28 h / 62 h			
•	(Practial Chromatography)	Jochen Strube	3 6034	\ \ \ \ \ \		20 11 / 62 11			
		•		Summe:	2	28 h / 62 h			
Zu	Nr. 1:								
18a	. Empf. Voraussetzungen	ınd Kristallisation s	erfahrenst owie Bioa	echnik, Prakti	kumsve	technik I, rsuch Chromatographie			
	-	 Stationäre Phasen, Mobile Phasen und Grundoperationen (CSP, NP/RP, SEC, IEX, HIC MM, Affinität) 							
		- Phasenscreening							
10-		- Methodenentwicklung und -optimierung							
17a. Illiaite		 Batch und Konti. SMB Prozesse, Elution und Gradienten Fahrweise Analytischen Trennungen, Präparative Trennungen, Scale-up Methoden 							
	-	- Prozessbegleitende Modellierung und Simulation							
	-	- Experimentelle Modellparameterbestimmung							
	-	- Säulenpacktechnologien							

	- Anlagen- und Apparatetechnik bis Produktionsmaßstab inkl. Detektorkonzepte					
	- Prozessintegration (Lösungsmittelrecycling, Kristallisation etc.)					
	- Vorlesung					
20. Madianfannan	- begleitendes Skript					
20a. Medienformen	- PC-Übungen					
	- Experimente					
	- Guiochon, Georges u. a.: Fundamentals of Preparative and Nonlinear Chromotography, Elsevier Academic Press: Amsterdam u. a. (2. Auflage) 2006.					
21a. Literatur - Schmidt-Traub, Henner u. a. (Hg.): Preparative Chromotograp Wiley-VCH: Weinheim (2. Auflage) 2012.						
	- Unger, Klaus K.: Handbuch der HPLC. Band I+II, GIT Verlag: Darmstadt 2004.					
22a. Sonstiges						

Studie	Studien-/Prüfungsleistung								
			25.	26.	27.	28. Anteil an			
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote			
1	Technische Chromatographie		MP	3	benotet	100%			
29. Prüf	ungsform / Voraussetzung	Klausur (90 Minuten) > ca. 15 Teilnehmer,							
für die V	ergabe von LP	mündliche Prüfung (30 Minuten, Einzelprüfung) < ca. 15							
Teilnehmer									
30. Vera	ntwortliche(r) Prüfer(in)	Prof. DrIng. Jochen Strube							
31. Prüf	ungsvorleistungen	Keine							

Thermische Behandlung von Rest- und Abfallstoffen

1b. Modultitel (englisch)Thermal Treatment of Residue and Waste Materials

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrensted	M.Sc. Verfahrenstechnik/Chemieingenieurwesen						
3. Modulverantw	3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer						
Prof. Dr. M. Fischlso	chweiger	Fakultät für Energie- und					
		Wirtschaftswissenschaften					
6. Sprache 7	'. LP	8. Dauer	9. Angebot				
Deutsch 4		[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden haben die Funktion von thermischen Abfallbehandlungsanlagen im Detail verstanden. Sie können die einzelnen Komponenten einer Anlage benennen und deren Funktion beschreiben. Die Studierenden sind in der Lage, das Zusammenwirken der Einzelkomponenten zu erkennen und zu erklären. Sie können das System energetisch bilanzieren. Sie können die Auswirkungen der Abfallbehandlungsanlagen auf die Umwelt beurteilen.

Die Studierenden wenden Methoden der Systembetrachtung an, um die Interaktionen zwischen einzelnen Komponenten zu erkennen und zu abstrahieren. Sie verknüpfen dafür disziplinares Einzelwissen und erarbeiten sich entsprechende Lösungsansätze. Mit Berechnungsmethoden werden Zusammenhänge quantifiziert und diskutiert.

Die Studierenden lernen in der Lehrveranstaltung komplexere Verfahren zu analysieren und zu interpretieren.

Leh	Lehrveranstaltungen								
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium			
1	Thermische Behandlung von Rest- und Abfallstoffen (Thermal Treatment of Residue and Waste Materials)	Prof. Dr. M. Fischlschweiger	S 8508	2V/1Ü	3	42 h / 78 h			
				Summe:	3	42 h / 78 h			
Zu	Zu Nr. 1:								

18a. Empf. Voraussetzungen	Keine
10- 1-1-1	1. Einleitung und Problemstellung
19a. Inhalte	2. Abfallcharakterisierung und -vorbehandlung

	,,
	3. Haupteinflussgrößen
	4. Verbrennung
	5. Vergasung
	6. Pyrolyse
	7. Mechanismen zur Schadstoffentstehung und -verminderung in Feuerungen
	8. Systematischer Aufbau von Prozessführungen
	9. Apparate
	10. Systematische Darstellung, Bilanzierung und Bewertung
	11. Derzeitiger Stand der Technik von thermischen
	Abfallbehandlungsverfahren
	12. Entwicklungstendenzen thermischer Abfallbehandlungsverfahren
	13. Konzepte aus mechanischen, biologischen und thermischen
	Verfahrensbausteinen
	14. Mathematische Modellierung thermischer Prozesse zur
	Abfallbehandlung – Beispiele
	- Folien/PowerPoint
20a. Medienformen	- Tafel
	- Übungsaufgaben
21. 14	 Scholz, Reinhard/Schulenburg, Frank/Beckmann, Michael: Abfallbehandlung in thermischen Verfahren. Verbrennung, Vergasung, Pyrolyse, Verfahrens- und Anlagenkonzepte, Vieweg + Teubner Verlag: Stuttgart u. a. 2001 (Standardwerk).
21a. Literatur	 Scholz, Reinhard u. a.: Zur systematischen Bewertung der Energieumwandlungen bei der thermischen Abfallbehandlung – Was ist Energieeffizienz?, in: K. J. Thomé-Kozmiensky (Hg.): Optimierung der Abfallverbrennung 1, TK – Verlag: Neuruppin 2004, S. 203-235.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote		
1	Thermische Behandlung von Ro Abfallstoffen (Thermal Treatment of Residue Materials)	МР	4	benotet	100%			
29. Prüf	ungsform / Voraussetzung	Klausur (60 Min.) (bei weniger als 5 Teilnehmern mündlich)						
für die Vergabe von LP								
30. Vera	ntwortliche(r) Prüfer(in)	Prof. Dr. M. Fischlschweiger						
31. Prüf	ungsvorleistungen	Keine						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Thermische Prozesse in	Thermal Processes in Power Plants
Kraftwerken	

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrensted	M.Sc. Verfahrenstechnik/Chemieingenieurwesen						
3. Modulverantw	vortliche(r)	4. Zuständige Fakultät	5. Modulnummer				
Mancini, M.		Fakultät für Energie- und					
		Wirtschaftswissenschaften					
6. Sprache 7	. LP	8. Dauer	9. Angebot				
Deutsch 4		[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

Studierende können:

- die mathematischen und physikalischen Grundlagen der Gasdynamik wiedergeben, erläutern und auf die einfachen Problemstellungen im Bereich der Kraftwerktechnik anwenden.
- die eigenständige Berechnung thermischer Strömungsmaschinen sowohl mit idealen als auch realen Gasen durchführen.
- die thermische Strömungsmaschine im energetischen Sinne bewerten und die Ergebnisse auch konkret beurteilen sowie verifizieren.
- den Stand der Technik bei thermischen Kraftwerksprozessen beschreiben und die Anwendung verschiedener Technologien begründen.

Studierende können:

- erlerntes Wissen eigenständig vertiefen und ergänzen.
- in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen.
- eigenständig ihr Verständnis komplexer Konzepte überprüfen.

Leh	Lehrveranstaltungen							
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium		
1	Thermische Prozesse in Kraftwerken (Thermal Processes in Power Plants)	Mancini, M.	W 8504	2V/1Ü	3	42 h / 78 h		
				Summe:	3	42 h / 78 h		
Zu	Zu Nr. 1:							

18a. Empf. Voraussetzungen	Technische Thermodynamik I

	1. Einleitung
	3
	2. Einführung in die Gasdynamik
	3. Thermische Maschinen
19a. Inhalte	4. Kreisläufe mit idealem Gas
	5. Kreisläufe mit realem Gas (Dampf)
	6. Kessel und Kondensatoren
	7. Kombinierte Gas-, Dampfturbinenkraftwerke
20a. Medienformen	
	- Skript.
	 Dolezal, Richard: Kombinierte Gas- und Dampfkraftwerke, Springer Verlag: Berlin u. a. 2001.
21. 14	 Käppeli, Ernst: Aufgabensammlung zur Fluidmechanik. Teil 2: Hydrostatik, Hydrodynamik, Gasdynamik, Strömungsmaschinen, Deutsch Verlag: Frankfurt am Main u. a. 1996 (Standardwerk).
21a. Literatur	 Kehlhofer, Rolf: Gasturbinenkraftwerke, Kombikraftwerke, Heizkraftwerke und Industriekraftwerke, Technischer Verlag Resch/Verlag TÜV Rheinland: München u. a. 1992 (Standardwerk).
	 Strauß, Karl: Kraftwerkstechnik. Zur Nutzung fossiler, regenerativer und nuklearer Energiequellen, Springer Vieweg: Berlin/Heidelberg (7. Auflage) 2016.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	23. Nr. 24. Zugeordnete Lehrveran		PArt	LP	Benotung	der Modulnote		
1	Thermische Prozesse in Kraftwerken		MP	4	benotet	100%		
29. Prüf	ungsform / Voraussetzung	mündliche. Prüfung (Dauer max. 60 min)						
für die V	für die Vergabe von LP							
30. Verantwortliche(r) Prüfer(in) Mand		Mancini, M.						
31. Prüfungsvorleistungen		Keine						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Thermodynamik III	Thermodynamics III

2. Verwendbarkeit des Moduls in Studiengängen					
enieurwesen					
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer					
Fakultät für Energie- und					
Wirtschaftswissenschaften					
8. Dauer	9. Angebot				
[X] 1 Semester	[] jedes Semester				
[] 2 Semester	[X] jedes Studienjahr				
	[] unregelmäßig				
	4. Zuständige Fakultät Fakultät für Energie- und Wirtschaftswissenschaften 8. Dauer [X] 1 Semester				

- Studierende sind vertraut mit den grundlegenden Prinzipien zur Beschreibung von komplexen Mischphasen und von Gleichgewichten mit chemischen Reaktionen.
- Studierende sind in der Lage, geeignete Stoffmodelle auszuwählen und die Zustandsgrößen realer Mehrstoffsysteme zu berechnen.
- Studierende sind in der Lage, Modellierungen von Phasengleichgewichten auf Basis der Zustandsgleichungen der molekularen Thermodynamik durchzuführen.
- Studierende sind vertraut mit Grenzflächengleichgewichten und mit der thermodynamischen Beschreibung von Transportprozessen.
- Studierende beherrschen im Rahmen der Übungen, die Anwendung der Modellierung von Phasengleichgewichten zur Analyse und Bewertung von technischen Prozessen.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium	
1	Thermodynamik III (Thermodynamics III)	Prof. Dr. M. Fischlschweiger	S 8511	2V/2Ü	4	56 h / 124 h	
			Summe:	4	56 h / 124 h		

Zu Nr. 1:

18a. Empf. Voraussetzungen	Thermodynamik I/II				
19a. Inhalte	 Thermodynamische Modellierung und Berechnung von Phasengleichgewichten von komplexen Mischungen binäre und ternäre Flüssig-Flüssig-Gleichgewichte binäre und ternäre Dampf-Flüssig-Gleichgewichte binäre und ternäre Dampf-Flüssig-Flüssig-Gleichgewichte Extraktion Gaslöslichkeit Grenzflächengleichgewichte Thermodynamische Diffusionsmodelle 				

	- Folien/PowerPoint
20a. Medienformen	- Tafel
	- Übungsaufgaben
21a. Literatur	- Gmehling, Jürgen u. a.: Chemical Thermodynamics for Process Simulation, Wiley-VCH: Weinheim 2012.
	 Prausnitz, John Michael/Lichtenthaler, Ruediger N./Azevedo, Edmundo Gomes de: Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice- Hall: Upper Saddle River, NJ (3. Auflage) 1999.
	- Sandler, Stanley I.: Chemical, Biochemical and Engineering Thermodynamics, J. Wiley & Sons: Hoboken, NJ (5. Auflage) 2016.
	- Stephan, Peter u. a.: Thermodynamik. Grundlagen und technische Anwendungen. Band 2: Mehrstoffsysteme und chemische Reaktionen, Springer: Berlin (16. Auflage) 2017.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	1 Thermodynamik III/Termodyna		MP	6	benotet	100%	
29. Prüf	29. Prüfungsform / Voraussetzung		Klausur (120 Minuten) (bei weniger als 5 Teilnehmern mündlich)				
für die V	für die Vergabe von LP						
30. Verantwortliche(r) Prüfer(in)		Prof. Dr. M. Fischlschweiger					
31. Prüfungsvorleistungen		Keine					

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Thermo- und Partikeldynamik	Thermodynamics and Particle
disperser Systeme	Dynamics of Disperse Systems

2. Verwendbarkeit des Moduls in Studiengängen								
M.Sc. Verfahrenstechnik/Chemieingenieurwesen								
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer					
Prof. A. Weber, Prof. M. Türk		Fakultät für Mathematik/Informatik						
		und Maschinenbau						
6. Sprache	7. LP	8. Dauer	9. Angebot					
Deutsch	4	[X] 1 Semester	[] jedes Semester					
		[] 2 Semester	[X] jedes Studienjahr					
			[] unregelmäßig					

Die Studierenden sind in der Lage

- die wirkenden Mechanismen bei der Entstehung und dem Wachstum von Partikeln zu benennen und zu verstehen,
- das Verhalten von Partikeln und Partikelsystemen zu beschreiben und zu verstehen,
- die Zusammenhänge zwischen Prozessparametern und erzielten Produkteigenschaften zu erläutern,
- die Messmethoden, mit denen die Produkteigenschaften charakterisiert werden,
- anwendungsorientierte Aufgaben mit dem in der Vorlesung erworbenen Wissen eigenständig zu lösen

Lehrveranstaltungen						
11. Nr.	12. Lehrveranstaltungstite (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium
1	Thermo- und Partikeldynamik disperser Systeme (Thermodynamics and Particle Dynamics of Disperse Systems)		W 8611	2V/1Ü	3	42 h / 78 h
				Summe:	3	42 h / 78 h
Zu	Nr. 1:					
18a	. Empf. Voraussetzungen	Grundlagen der Mechanischen Verfahrenstechnik, Chemische Thermodynamik				
- Thermodynamik der Grenzflächen - Spontane Phasenübergänge - Metastabile Phasen						

Homogene und heterogene Keimbildung

	- Wachstum disperser Phasen
	- Erzeugung von Nanopartikeln in der Gasphase
	- Agglomerationsdynamik und Strukturbildung
	- Stabilisierung von Nanopartikeln
	- PowerPoint-Präsentation
20a. Medienformen	- gedrucktes und elektronisches Skript
	- Tafel
	- Skript.
21 - 14	- Debenedetti, Pablo G.: Metastable Liquids. Concepts and Principles, Princeton Univ. Press: Princeton, NJ 1996 (Standardwerk).
21a. Literatur	- Friedlander, Sheldon K.: Smoke, Dust and Haze. Fundamentals of Aerosol Dynamics, Oxford Univ. Press: New York u. a. (2. Auflage) 2000.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	23. Nr. 24. Zugeordnete Lehrveranstaltungen		PArt	LP	Benotung	der Modulnote		
1	Thermo- und Partikeldynamik disperser Systeme		MP	4	benotet	100%		
29. Prüf	29. Prüfungsform / Voraussetzung		mündliche Prüfung (30 min) bis 19 Teilnehmer,					
für die Vergabe von LP		für 20 und mehr Teilnehmer Klausur (60 min)						
30. Verantwortliche(r) Prüfer(in)		Prof. A. Weber, Prof. M. Türk						
31. Prüfungsvorleistungen		Keine						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Turbulente Strömungen (+)	Turbulent Flows

2. Verwendbarkeit des Moduls in Studiengängen								
M.Sc. Verfahrenstechnik/Chemieingenieurwesen								
3. Modulverant	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer					
Prof. DrIng. hab	il. Gunther	Fakultät für Mathematik/Informatik						
Brenner		und Maschinenbau						
6. Sprache	7. LP	8. Dauer	9. Angebot					
deutsch	4	[X] 1 Semester	[] jedes Semester					
		[] 2 Semester	[X] jedes Studienjahr					
			[] unregelmäßig					

Die Studierenden...

- kennen und erläutern die Eigenschaften und Erscheinungsformen turbulenter Strömungen und können die Wirkung der Turbulenz in technischen Apparaten bewerten
- können aus den Schließungsannahmen die Ansätze zur Modellierung von Turbulenz herleiten und bewerten
- können Modelle zur Berücksichtigung spezieller Strömungsregime (Wandgrenzschichten, Scherströmungen) beschreiben und erklären
- können die Ansätze zur Turbulenzmodellierung und -berechnung erläutern
- können eine einfache Stabilitätsbetrachtung durchführen
- können auf Basis der Grundgleichungen die statistische Beschreibung für Turbulenz herleiten
- können statistische Auswertungen turbulenter Felder mit python durchführen und bewerten

Leh	Lehrveranstaltungen						
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium	
1	Turbulente Strömungen (+) (Turbulent Flows)	Prof. DrIng. habil. Gunther Brenner	S 8010	3V/Ü	3	42 h / 78 h	
Summe: 3 42 h /							
Zu Nr. 1:							

18a. Empf. Voraussetzungen

Vorausgesetzt werden die Kenntnisse der Vorlesungen Mechanik, Ingenieurmathematik und Strömungsmechanik 1

	1. Allgemeine Grundlagen
	2. Homogene Turbulenz
	3. Dynamik turbulenter Felder
	4. Turbulente Scherströmungen
19a. Inhalte	5. Erscheinungsformen turbulenter Scherströmungen
	6. Modellierung industrieller Strömungsprobleme
	7. Möglichkeiten der direkten Simulation
	8. Im Übungsteil: Statistische Auswertung turbulenter Felder mit
	Python
	- Skript
20a. Medienformen	- Tafel
	- Folien
	- Bradshaw, Peter (Hg.): An Introduction to Turbulence and Its Measurement, Pergamon: Oxford u. a. 1975 (Standardwerk).
21a. Literatur	 Rotta, Julius C.: Turbulente Strömungen. Eine Einführung in die Theorie und ihre Anwendung, UnivVerl. Göttingen: Göttingen (Nachdruck) 2010.
	- Tenneke, Hendriks/Lumley, John L.: A First Course in Turbulence, MIT Press: Cambridge/Mass. u. a. (17. Auflage) 1999 (Standardwerk).
22a. Sonstiges	

Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an	
23. Nr.	23. Nr. 24. Zugeordnete Lehrveranstaltunge		PArt	LP	Benotung	der Modulnote	
1	Turbulente Strömungen (+)		MP	4	benotet	100%	
29. Prüf	ungsform / Voraussetzung	Prüfungsform: bis 20 Teilnehmer*innen mündliche Prüfung, sonst					
für die V	ergabe von LP	Klausur					
30. Vera	ntwortliche(r) Prüfer(in)	Prof. DrIng. habil. Gunther Brenner					
31. Prüf	ungsvorleistungen	Keine					

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Anerkennung Auswärtige Qualifikationen – Vt/Ciw	Recognition of Foreign Qualifications – Vt/Ciw

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Maschinenbau, M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer				
Prof. A. Weber		Fakultät für Mathematik/Informatik und Maschinenbau					
6. Sprache	7. LP	8. Dauer	9. Angebot				
Deutsch	6 bzw. 4	[x] 1 Semester	[] jedes Semester				
		[] 2 Semester	[x] jedes Studienjahr				
			[] unregelmäßig				

Die Studierenden verfügen über fortgeschrittene Kenntnisse auf dem Gebiet der jeweiligen Lehrveranstaltung unter Einsatz eines kritischen Verständnisses von Theorien und Grundsätzen. Sie besitzen fortgeschrittene Fertigkeiten, die die Beherrschung des jeweiligen Themengebiets sowie Innovationsfähigkeit erkennen lassen, und zur Lösung komplexer und nicht vorhersehbarer Probleme in dem spezialisierten Lernbereich nötig sind. Sie sind in der Lage, komplexe fachlicher oder beruflicher Tätigkeiten oder Projekte auf dem jeweiligen Themengebiet zu leiten und für hiermit verbundene Fragegestellungen Entscheidungsverantwortung in nicht vorhersehbaren Arbeits- oder Lernkontexten zu übernehmen.

Leh	rveranstaltungen					
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium
1	Im Inland bzw. Ausland an einer staatlichen oder staatlich anerkannten Hochschule mit Status H+ oder H+/- gemäß der Datenbank anabin belegte ingenieurwissenschaftliche Lehrveranstaltung in einem Studiengang, der zu einem Abschluss auf dem Niveau 7 EQR oder darüber führt. (Engineering course taken in Germany or abroad at a state or state-recognised higher education institution with H+	NN			4 (3)	56 h / 124 h (42 h/78 h)

or H+/- status according to th	e				
anabin database in a degree					
programme leading to a					
qualification at level 7 EQF or					
above.)					
			£	4	56 h / 124 h
	Summe:				(42 h/78 h)
Zu Nr. 1:					
18a. Empf. Voraussetzungen	Von der jeweiligen	Veranstalt	ung abhängi	g	
19a. Inhalte	Von der jeweiligen Veranstaltung abhängige ingenieurwissenschaftliche Inhalte aus den Themenkomplexen Verfahrenstechnik/Chemie ingenieurwesen.				
20a. Medienformen	Von der jeweiligen Veranstaltung abhängig				
21a. Literatur	Von der jeweiligen Veranstaltung abhängig				
22a. Sonstiges					

Studie	Studien-/Prüfungsleistung							
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	25. PArt	26. LP	27. Benotung	28. Anteil an der Modulnote		
1	Im Inland bzw. Ausland an einer staatlichen oder staatlich anerkannten Hochschule mit Status H+ oder H+/- gemäß der Datenbank anabin belegte ingenieurwissenschaftliche Lehrveranstaltung in einem Studiengang, der zu einem Abschluss auf dem Niveau 7 EQR oder darüber führt.		МР	6 (4)	benotet	100 %		
29. Prüfungsform / Voraussetzung Klausur, münd für die Vergabe von LP			liche Prüf	ung, od	er vergleichbar			
30. Verantwortliche(r) Prüfer(in) Prof. A. Weber								
31. Prüf	31. Prüfungsvorleistungen keine							

Wahlpflichtkatalog "Fachübergreifende Inhalte"

Wahlpflichtlehrveranstaltung II

Wahlpflichtkatalog "Fächerübergreifende Inhalte" Die Liste der angebotenen Module kann jährlich für das nachfolgende Studienjahr durch Beschluss des Fakultätsrats aktualisiert werden. Die aktualisierten Listen werden hochschulöffentlich durch das Studienzentrum bekannt gegeben: https://www.tu-clausthal.de/studieninteressierte/studiengaenge/masterstudiengaenge/maschinenbau Modul Fachübergreifende Inhalte 6 6 0 • Im Modul Fächerübergreifende Inhalte sind zwei Lehrveranstaltungen/Prüfungen im Umfang insgesamt genau 6 LP aus dem Wahlpflichtkatalog "Fächerübergreifende Inhalte" auszuwählen und erfolgreich zu absolvieren. Weitere Lehrveranstaltungen/Prüfungen aus diesem Wahlpflichtkatalog können nur als Zusatzprüfungen erbracht werden. Mit dem ersten Pr üfungsversuch in einer Lehrveranstaltung/Pr üfung ist die Auswahl verbindlich. siehe siehe siehe siehe siehe Wahlpflichtlehrveranstaltung I Katalo Katalo LN ben. Katalog Katalog Katalog g siehe siehe

Katalo

siehe

Katalog

Katalo

siehe

Katalog

ben.

LN

siehe

Katalog

1a. Modultitel (deutsch)

Arbeitsmedizin/Arbeitshygiene und Umweltmedizin für Ingenieure

1b. Modultitel (englisch)

Occupational/Occupational Hygiene and Environmental Medicine for Engineers

2. Verwendbarkeit des Moduls in Studiengängen

M.Sc. Maschinenbau

M.Sc. Verfahrenstechnik/Chemieingenieurwesen

3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer							
Prof. Dr.med. Dipl. Ing.(FH) Bernd		Fakultät für Mathematik/Informatik								
Schubert M.Sc. MBA		und Maschinenbau								
6. Sprache 7. LP		8. Dauer	9. Angebot							
deutsch	3	[X] 1 Semester	[] jedes Semester							
		[] 2 Semester	[X] jedes Studienjahr							
			[] unregelmäßig							

10. Lern-/Qualifikationsziele des Moduls

In dieser Vorlesung lernen die Studierenden ausgewählte Gesundheitsschutzaspekte zur Wahrnehmung der Unternehmerpflichten aus Sicht des Ingenieurs kennen. Sie verstehen die möglichen arbeitsplatz- und umweltbezogenen Gesundheitsrisiken. Sie lernen die grundlegenden gesetzlichen Grundlagen kennen und lernen, analoge Betrachtungen für mögliche spätere Fragestellung zu transferieren. Die Studierenden lernen mögliche gesundheitliche Gefährdungen durch chemische, physikalische, biologische und psychische Belastungen kennen. Darüber hinaus können Sie mögliche Arbeitsschutzmaßnahmen zur Minimierung der gesundheitlichen Gefährdungen einordnen. Die Studierenden leiten daraus Konsequenzen für Minimierungsmöglichkeiten der gesundheitlichen arbeitsplatzbezogenen Gefährdungsfaktoren zum möglichst nachhaltigen Schutz der Gesundheit ab.

Leh	Lehrveranstaltungen						
11 .Nr	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium	
1	Arbeitsmedizin/Arbeitshygiene und Umweltmedizin für Ingenieure (Occupational/Occupational Hygiene and Environmental Medicine for Engineers)	Prof. Dr.med. Dipl. Ing.(FH) Bernd Schubert M.Sc. MBA	S 9007	V	2	28 h / 62 h	
		2	28 h / 62 h				

Zu Nr. 1:						
18a. Empf. Voraussetzungen	Keine					
19a. Inhalte	 Gesetzliche Grundlagen der Arbeits-/Sozial/-Umweltmedizin Grundlagen der gesetzlichen Unfallversicherung Grundlagen der Arbeitshygiene und Umweltmedizin gesundheitliche arbeitsplatz- und/oder umweltbezogene Gefährdungen physikalische Einwirkungen chemische Einwirkungen biologische Einwirkungen psychische Belastungen Berufskrankheiten Persönliche Schutzausrüstung Hautschutz Ergonomie 					
20a. Medienformen	 Tafel Folien Foliensammlung/Handout Basic Principles in Occupational Hygiene, www.ohlearning.com, 201 					
21a. Literatur	- Baur, Xaver: Arbeitsmedizin. Mit 61 Tabellen, Springer-Verlag: Berlin/Heidelberg 2013.					
22a. Sonstiges						

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	24. Zugeordnete Lehrveranstaltungen		PArt	LP	Benotung	der Modulnote		
1	Arbeitsmedizin/Arbeitshygiene Umweltmedizin für Ingenieure	LN	3	benotet	50 %			
29. Prüf	29. Prüfungsform / Voraussetzung schriftliche			Std.				
für die V	ergabe von LP							
30. Verantwortliche(r) Prüfer(in) Prof. Dr.med			. Dipl. Ing.(FH) Bernd Schubert M.Sc. MBA					
31. Prüf	ungsvorleistungen	Keine						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Chinesisch I	Chinese for Beginners

2. Verwendbar	2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Maschinen	M.Sc. Maschinenbau							
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
3. Modulveran	twortliche(r)	5. Modulnummer						
Gabriele Cholewa	a	Fakultät für Mathematik/Informatik						
		und Maschinenbau						
6. Sprache	7. LP	8. Dauer	9. Angebot					
Deutsch	4	[X] 1 Semester	[] jedes Semester					
Chinesisch		[] 2 Semester	[X] jedes Studienjahr					
			[] unregelmäßig					
/-	- 10 Maria - 11 Maria							

Das Modul richtet sich an Anfänger(innen) mit keinen oder nur geringen Vorkenntnissen der chinesischen Sprache.

Nach erfolgreichem Bestehen des Moduls sollten die Teilnehmenden in der Lage sein, einfache Gespräche aus den erlernten Bereichen (siehe Inhalte) zu führen, wenn die Gesprächspartner langsam und deutlich sprechen. Sie verfügen über einen aktiven Wortschatz von ca. 350 Wörtern und können ca. 140 Schriftzeichen gut lesen und verstehen.

Mithilfe der App Pleco können die Teilnehmenden alle chinesischen Schriftzeichen identifizieren und übersetzen.

Mithilfe der Umschrift Hanyu Pinyin können die Teilnehmenden einen Text aus den erlernten Bereichen überwiegend fehlerfrei digital erstellen.

Die Teilnehmenden sollten nach bestandener Prüfung in der Lage sein, die staatliche Sprachprüfung HSK 1 (entspricht

A1) zu bestehen.

Lehrveranstaltungen						
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium
1	Chinesisch I (nicht für Chinesen) (Chinese for Beginners)	Gabriele Cholewa	W 9200	V	4	56 h / 64 h
	Summe: 4 56 h / 64 h					
Zu Nr. 1:						
18a	18a. Empf. Voraussetzungen Keine					

19a. Inhalte	 Vermittlung der Umschrift Hanyu Pinyin und deren Aussprache Unterschiedliche Aussprache der vier Töne im Chinesischen Sich kennenlernen und vorstellen Anwendung der APP Pleco zum Erkennen und Lesen von Schriftzeichen sowie zur Verwendung als Lexikon Nationalität, Wohnort, Mobilfunknummer, Mailadresse und Beruf von sich und seinen engsten Familienmitgliedern angeben können Zahlen von 1 bis 100 Millionen verstehen und nennen Datum und Uhrzeit Verabredungen zum Essen oder zum ins Kino gehen 				
20a. Medienformen	 Tafel Folien Foliensammlung/Handout Anwendung der APP Pleco Audio CDs 				
21a. Literatur	- Anqi, Ding/Xin, Chen: China entdecken. Lehrbuch 1, Verlag China Books: Zürich 2015.				
22a. Sonstiges	nicht für Chinesen				

Studie	Studien-/Prüfungsleistung								
			25.	26.	27.	28. Anteil an			
23. Nr.	3. Nr. 24. Zugeordnete Lehrveranstaltung		PArt	LP	Benotung	der Modulnote			
1	Chinesisch I (nicht für Chineser	1)	LN	4	benotet	2/3			
	27. I I didnigsioi iii / Voi aussetzung			Prüfung (90 Minuten) = 90 % ests + 1 Langzeithausaufgabe = 10%					
30. Vera	ntwortliche(r) Prüfer(in)	Gabriele Cholewa							
31. Prüf	ungsvorleistungen	Keine							

1a. Modultitel (deutsch)1b. Modultitel (englisch)Energieflüsse, Stoffkreisläufe und
Globale EntwicklungEnergy Flows, Material Cycles and
Global Development

2. Verwendbar	2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Maschinen	M.Sc. Maschinenbau					
M.Sc. Verfahrens	technik/Chemieinge	enieurwesen				
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer			
Prof. DrIng. Tho	mas Turek	Fakultät für Mathematik/Informatik				
		und Maschinenbau				
6. Sprache	7. LP	8. Dauer	9. Angebot			
Englisch	3	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

10. Lern-/Qualifikationsziele des Moduls

The students learn how global energy flows and material cycles can be understood from an engineering perspective. The students

- understand how and to which extent natural global energy flows and material cycles are altered by anthropogenic activities,
- understand the concept of sustainability,
- analyze the stationary and transient behavior of different systems in nature and technology and are able to transfer the feedback concept to other situations,
- understand the energy balance of the earth and the fundamental importance of the greenhouse effect,
- become familiar with the relevance of selected global material cycles for the bio-geosphere and the resulting limitations for industrial energy and material flows,
- are able to deduce the necessary consequences for a future sustainable development of technology and society.

Leh	Lehrveranstaltungen					
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium
1	Energieflüsse, Stoffkreisläufe und globale Entwicklung (Energy Flows, Material Cycles and Global Development)	Prof. DrIng. Thomas Turek	\$ 8413	V	2	28 h / 62 h
		•		Summe:	2	28 h / 62 h
Zu	Zu Nr. 1:					

18a. Empf. Voraussetzungen	Keine

	1.	Introduction and fundamentals (balancing and behavior of systems, thermodynamics and the different forms of energy)					
	2.	The bio-geosphere (historical development and present situation)					
19a. Inhalte	3.	The Energy balance of the earth (radiation, greenhouse effect, photosynthesis, climate models)					
	4.	Global material cycles (e.g., carbon, oxygen, water, nitrogen)					
	5.	Anthropogenic material and energy flows and their limits					
		Scenarios for the global development					
		Tafel					
20a. Medienformen	-	Folien					
	-	Foliensammlung/Handout					
21a. Literatur		Jischa, Michael F.: Herausforderung Zukunft. Technischer Fortschritt und Globalisierung, Springer Spektrum: Berlin (2. Auflage) 2014.					
		Schaub, Georg/Turek, Thomas: Energy Flows, Material Cycles and Global Development, Springer: Berlin u. a. (2. Auflage) 2016.					
22a. Sonstiges							

Studie	Studien-/Prüfungsleistung						
			25.		27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Energy Flows, Material Cycles and Global Development		LN	3	benotet	50 %	
	29. Prüfungsform / Voraussetzung für die Vergabe von LP						
30. Verantwortliche(r) Prüfer(in)		Prof. Drlng. Thomas Turek					
31. Prüf	31. Prüfungsvorleistungen						

1a. Modultitel (deutsch)1b. Modultitel (englisch)Interkulturelle KommunikationIntercultural Communication

2. Verwendba	arkeit des Moduls	in Studiengängen	
M.Sc. Maschine	enbau		
M.Sc. Verfahrer	nstechnik/Chemieing	genieurwesen	
3. Modulverantwortliche(r)		4. Zuständige Fakultät	5. Modulnummer
Dr. Jörg Schröd	er	Studium Generale	
6. Sprache	7. LP	8. Dauer	9. Angebot
deutsch	3	[X] 1 Semester	[X] jedes Semester
		[] 2 Semester	[] jedes Studienjahr
			[] unregelmäßig
_			•

10. Lern-/Qualifikationsziele des Moduls

Das Lernziel des Workshops ist der Aufbau einer interkulturellen Sensibilität. Somit ist er geeignet für alle, die später mit Angehörigen anderer Kulturen zusammenarbeiten werden oder sich in einer fremden Kultur zurechtfinden müssen. Es werden Wege und Verhaltensmuster aufgezeigt, die die Teilnehmenden in die Lage versetzten, in interkulturellen Begegnungssituationen kulturadäquat und interkulturell sensibel zu agieren.

	ersetzten, in interkulturellen Begegnungssituationen kulturadäquat und interkulturell sensibel zu agieren.					
Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstite	el 13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
	Interkulturelle Kommunikatior	Dr. Jörg	S/W	.,	2	24 h / 66 h
1	(Intercultural Communication)	Schröder	9220	V	2	
Summe: 2			24 h / 66 h			
Zu	Nr. 1:					
18a	. Empf. Voraussetzungen	Keine				
	Dreitägiger Workshop Interkulturelle Kommunikation für deutsche un internationale Studierende (mit guten bis sehr guten Sprachkenntnisse an der TU Clausthal					
19a	. Inhalte	in englischer Spi interkulturelle Unte Kommunikationsfä und Grundlager Auseinandersetzur	rache) we erschiede s ihigkeit. No n der ng mi	rden Sie in ensibilisiert u eben theoreti Kommunika t Theme	internated ind train schem I tion schem I	deutscher Sprache, Tag 3 ationalen Gruppen für nieren Ihre interkulturelle Input zu Kulturmodellen steht die praktische wie Wahrnehmung, Missverständnissen und

Mitarbeit der Teilnehmenden.

Arbeit in internationalen Teams im Vordergrund. Basierend auf Gruppenarbeit und Simulationen lebt dieser Workshop von der aktiven

	- Präsentationen
	- Handout
	- Videos
20a. Medienformen	- Simulationen
	- Gruppen- und Partneraktivitäten
	- Stationenlernen
21a. Literatur	 Deutsches Studentenwerk Berlin (Hg.): Eine Frage der Perspektive. Critical Incidents aus Studentenwerken und Hochschulverwaltung, o. A.: Berlin 2016. Heringer, Hans Jürgen: Interkulturelle Kompetenz. Ein Arbeitsbuch mit interaktiver CD und Lösungsvorschlägen, A. Francke Verlag: Tübingen/Basel 2012. Hiller, Gundula Gwenn/Vogler-Lipp, Stefanie: Schlüsselqualifikation interkulturelle Kompetenz an Hochschulen. Grundlagen, Konzepte, Methoden, Verlag für Sozialwissenschaften: Wiesbaden 2010. Hofsteede, Geert: Lokales Denken, globales Handeln. Interkulturelle Zusammenarbeit und globales Management, Deutscher Taschenbuch Verlag: München (2. Auflage) 2001. Kumbier, Dagmar/Schulz von Thun, Friedemann: Interkulturelle Kommunikation. Methoden, Modelle, Beispiele, Rowohlt: Reinbek 2006. Lüsebrink, Hans-Jürgen: Interkulturelle Kommunikation. Interaktion, Fremdwahrnehmung, Kulturtransfer, Verlag J.B. Metzler: Stuttgart/Weimar (2. Auflage) 2008. Straub, Jürgen/Weidemann, Arne/Weidemann, Doris: Handbuch Interkulturelle Kommunikation und Kompetenz. Grundbegriffe – Theorien – Handlungsfelder, J.B. Metzler: Stuttgart 2007.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung						
23. Nr.	24. Zugeordnete Lehrvera	actaltum aan	25. PArt	26. LP	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lenrverai	istaitungen	PArt	LP	Benotung	der Modulilote	
1	Interkulturelle Kommunikation		LN	3	benotet	50 %	
29. Prüf	29. Prüfungsform / Voraussetzung						
für die V	für die Vergabe von LP						
30. Verantwortliche(r) Prüfer(in)		Dr. Jörg Schrö	der				
31. Prüfungsvorleistungen		Keine					

1a. Modultitel (deutsch)1b. Modultitel (englisch)Nachhaltigkeit und GlobalerSustainability and Global ChangeWandel

2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Maschinen	M.Sc. Maschinenbau				
M.Sc. Verfahrenst	technik/Chemieinge	enieurwesen			
3. Modulverant	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer		
Prof. C. Berg		Fakultät für Energie- und			
		Wirtschaftswissenschaften			
6. Sprache	7. LP	8. Dauer	9. Angebot		
deutsch	3	[X] 1 Semester	[] jedes Semester		
		[] 2 Semester	[X] jedes Studienjahr		
			[] unregelmäßig		
10. Lern-/Qualifikationsziele des Moduls					

Grundlagen für das Verständnis von Ursachen, Dimensionen und der Beschreibung des Globalen Wandels kennen sowie in Lösungsansätzen anwenden, Konzept Nachhaltigkeit, wichtige Treiber, Bedeutung der Wirtschaft kennen

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Nachhaltigkeit und Globaler Wandel (Sustainability and Global Change)	Prof. C. Berg	\$ 8066	V	2	28 h / 62 h
Summe: 2 28			28 h / 62 h			
Zu	Zu Nr. 1:					
18a	18a. Empf. Voraussetzungen Keine					

	Begriffe und Konzepte: Nachhaltigkeit, Globaler Wandel, Ökosystemleistungen, Planetare Grenzen					
	Befunde: Stoffeinträge (N, P, POPs etc.), Klimawandel, Ressourcen (Wasser, Rohstoffe, Boden/Fläche, Biolog. Vielfalt), Energie, Bevölkerung)					
19a. Inhalte	Gründe: Warum sind wir nicht nachhaltiger? Darstellung wichtiger Barrieren der Nachhaltigkeit aus verschiedenen Disziplinen (Externalitäten, Value-Action Gap, moralische Defizite, Systemträgheiten, strukturelles Silodenken etc.)					
	Akteure und Lösungsansätze: Politik (Ordnungspolitik, Fiskalpolitik, Wettbewerbspolitik), Wirtschaft (Gründe für Corporate Sustainability), Zivilgesellschaft (Beispiele zivilgesellschaftlicher Initiativen)					
	- Folien					
20a. Medienformen	- Foliensammlung/Handout					
	- Videos					
	 Berg, Christian: Ist Nachhaltigkeit utopisch? Wie wir Barrieren überwinden und zukunftsfähig handeln, oekom: München 2020. 					
	 Diverse Studien des Wissenschaftlichen Beirats der Bundesregierung Globale Umweltveränderungen (WBGU), vor allem die Jahresgutachten 1996, 2004, 2011 Berlin 1996, 2004, 2011. 					
21a. Literatur	 Jischa, Michael F.: Herausforderung Zukunft. Technischer Fortschritt und Globalisierung, Springer Spektrum: Berlin (2. Auflage) 2014. 					
	 Steffen, Will u. a.: Planetary Boundaries: Guiding Human Development on a Changing Planet, Science 347 (13.02.2015), S. 736. 					
	 Wijkman, Anders/Rockström, Johan: Bankrupting Nature. Denying Our Planetary Boundaries, Routledge: London/New York 2012. 					
22a. Sonstiges						

Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Nachhaltigkeit und Globaler W	andel	LN	3	benotet	50 %	
29. Prüf	ungsform / Voraussetzung	Klausur					
für die V	ergabe von LP						
30. Verantwortliche(r) Prüfer(in)		Prof. C. Berg					
31. Prüfungsvorleistungen		Keine					

1a. Modultitel (deutsch)1b. Modultitel (englisch)Life Cycle AssessmentLife Cycle Assessment(Ökobilanz)

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Maschinen	M.Sc. Maschinenbau						
M.Sc. Verfahrens	technik/Chemieinge	enieurwesen					
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer				
Dr. C. Minke		Fakultät für Mathematik/Informatik					
		und Maschinenbau					
6. Sprache	7. LP	8. Dauer	9. Angebot				
deutsch	3	[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden kennen die Grundbegriffe des Life Cycle Assessment/der Ökobilanzierung. Sie kennen die Schritte einer Ökobilanz nach DIN ISO 14040/44 sowie Anwendungsbeispiele aus dem Bereich der Ingenieurwissenschaften. Die Studierenden können die Software Umberto® und die Datenbank Ecoinvent verwenden und sind in der Lage, eine stoffstrombasierte Ökobilanz durchzuführen. Sie kennen Bewertungskriterien zur Einordnung von Ökobilanzdaten und können Ökobilanzstudien kritisch bewerten.

Leh	Lehrveranstaltungen					
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium
1	Life Cycle Assessment (Ökobilanz) (Life Cycle Assessment)	Dr. C. Minke	W 8420	V	2	28 h / 62 h
		•	•	Summe:	2	28 h / 62 h
Zu	Zu Nr. 1:					
18a	18a. Empf. Voraussetzungen Keine					

22a. Sonstiges					
	 Klöpffer, Walter /Grahl, Birgit: Ökobilanz (LCA). Ein Leitfaden für Ausbildung und Beruf, Wiley-VCH: Weinheim 2009. 				
21a. Literatur	 Klöpffer, Walter /Grahl, Birgit: Life Cycle Assessment (LCA). A Guide to Best Practice, Wiley-VCH: Weinheim 2014. 				
	 Kaltschmitt, Martin/Schebek, Liselotte (Hg.): Umweltbewertung für Ingenieure. Methoden und Verfahren, Springer Vieweg: Berlin u. a. 2015. 				
	- Computerarbeit				
Zoa. Mediemormen	- Fallstudien				
20a. Medienformen	- Foliensammlung/Handout				
	- Folien				
	- Tafel				
	 Ökobilanz als Teil der Nachhaltigkeitsanalyse Softwareschulung Umberto® mit Ecoinvent-Datenbank 				
	realer Fallstudien				
	- Kritische Bewertung der Methodik, Datenbasis und Ergebnisse anhand				
19a. Inhalte	- Wirkungsbilanz und Umwelt-Indikatoren				
	- Erstellen einer Sachbilanz mit verschiedenen Allokationsmethoden				
	- Schritte einer Ökobilanz nach DIN ISO 14040/44				
	- Grundlagen der Ökobilanzierung (Methodik und Praxis)				
	- Produktlebenszyklus, Nachhaltigkeit und Optimierungspotenziale				

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	23. Nr. 24. Zugeordnete Lehrveran		PArt	LP	Benotung	der Modulnote		
1	Life Cycle Assessment (Ökobilanz)		LN	3	benotet	50 %		
29. Prüf	ungsform / Voraussetzung	Klausur						
für die \	für die Vergabe von LP							
30. Verantwortliche(r) Prüfer(in)		Dr. C. Minke						
31. Prüfungsvorleistungen		Keine						

1a. Modultitel (deutsch)1b. Modultitel (englisch)Recht der erneuerbaren EnergienLegal Framework for Renewable
Energy Sources

2. Verwendba	keit des Moduls i	n Studiengängen				
M.Sc. Maschinenbau						
M.Sc. Verfahrenstechnik/Chemieingenieurwesen						
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer			
Prof. H. Weyer		Fakultät für Energie- und				
		Wirtschaftswissenschaften				
6. Sprache	7. LP	8. Dauer	9. Angebot			
deutsch	3	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden kennen den Rechtsrahmen für die Nutzung erneuerbarer Energiequellen im Stromsektor, Wärme- und Kältesektor sowie Verkehrssektor. Sie können wesentliche Instrumente zur Förderung erneuerbarer Energien darstellen.

Mit diesem Wissen sind die Studierenden in der Lage, einfache rechtliche Fragestellungen zur Nutzung erneuerbarer Energien zu klären, ihr Verständnis zu formulieren und im Austausch mit anderen weiterzuentwickeln. Sie verstehen die den Regelungen zugrundesliegenden Ziele, Wertungen und Interessenkonflikte. Sie können die unterschiedlichen Ansätze zur Förderung erneuerbarer Energien in die Gesamtziele Deutschlands und der EU im Energiebereich einordnen und Wechselwirkungen zwischen den Sektoren erkennen.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium	
	Recht der erneuerbaren						
1	Energien	Prof. H. Weyer	S 6512	V	2	28 h / 62 h	
•	(Legal Framework for			\ \ \ \ \ \			
	Renewable Energy Sources)						
				Summe:	2	28 h / 62 h	
Zu	Zu Nr. 1:						
18a	18a. Empf. Voraussetzungen Vorlesung "Energierecht" (kann auch parallel besucht werden)			ucht werden)			
	E	Energie- und klimapolitische Ziele Deutschlands und der EU					
19a	. Inhalte	Stromerzeugung aus Erneuerbaren Energien					
		- Netzanschluss					

	- Abnahme, Übertragung und Verteilung
	- Netzanschluss- und Netzausbaukosten
	- Finanzielle Förderung
	- EEG-Umlage
	- Stromspeicherung
	Wärme- und Kälteerzeugung aus erneuerbaren Energien
	Kraftstofferzeugung aus erneuerbaren Energien
	Einspeisung von Biomethan und Speichergas in das Erdgasnetz
	Sektorkopplung (Elektrifizierung der Sektoren Wärme/Kälte und Verkehr)
	- Tafel
20a. Medienformen	- Folien
	- Foliensammlung/Handout
	Zur Vorlesung mitzubringen ist ein Gesetzestext. Empfohlen wird die Textausgabe
21a. Literatur	- Ehricke, Ulrich: Energierecht, Nomos: Baden-Baden (neueste Auflage) oder
	- Energierecht, dtv: (neueste Auflage).
22a. Sonstiges	

Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an	
23. Nr.	24. Zugeordnete Lehrverar	nstaltungen	PArt	LP	Benotung	der Modulnote	
1	Recht der erneuerbaren Energie	en	LN	3	benotet	50 %	
29. Prüfungsform / Voraussetzung für die Vergabe von LP		Klausur (60 Minuten), wenn ≥ 5 Teilnehmer mündliche Prüfung (Dauer nach Prüfungsordnung), wenn < 5 Teilnehmer					
30. Verantwortliche(r) Prüfer(in)		Prof. H. Weyer					
31. Prüf	31. Prüfungsvorleistungen		Keine				

1a. Modultitel (deutsch)

Einführung in den gewerblichen Rechtsschutz, insbesondere Patentrecht

1b. Modultitel (englisch)

Introduction into the Intellectual Property Law, Especially Patent Law

2. Verwendbarkeit des Moduls in Studiengängen

M.Sc. Maschinenbau

M.Sc. Verfahrenstechnik/Chemieingenieurwesen

W.Sc. Verfallenstechnik/Cheffilenryesen					
3. Modulverantwortliche(r)		4. Zuständige Fakultät	5. Modulnummer		
Cornelia Rebbereh		Fakultät für Energie- und			
		Wirtschaftswissenschaften			
6. Sprache	7. LP	8. Dauer	9. Angebot		
deutsch	3	[X] 1 Semester	[] jedes Semester		
		[] 2 Semester	[X] jedes Studienjahr		
			[] unregelmäßig		

10. Lern-/Qualifikationsziele des Moduls

Möglichkeiten und Risiken betreffend gewerbliche Schutzrechte (Patente, Gebrauchsmuster, Marken, Geschmacksmuster/Designschutzrechte) kennen und diese zugunsten des eigenen Unternehmens und eigener Entwicklungen und zum Nachteil anderer Unternehmen anwenden und nutzen können

Leh	Lehrveranstaltungen					
11 .Nr	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium
1	Einführung in den gewerblichen Rechtsschutz, insbesondere Patentrecht (Introduction into the Intellectual Property Law, Especially Patent Law)	Cornelia Rebbereh	S 9330	V	2	28 h / 62 h
				Summe:	2	28 h / 62 h
Zu	Zu Nr. 1:					

18a. Empf. Voraussetzungen	Keine
19a. Inhalte	Anhand anschaulicher Beispiele und Muster aus dem täglichen Leben werden die Grundkenntnisse der gewerblichen Schutzrechte und von Recherchemöglichkeiten abwechslungsreich vermittelt. Die Vorlesung ist dabei auf eine aktive Beteiligung der Teilnehmer ausgerichtet.

Zu den gewerblichen Schutzrechten gehören neben den Patenten vor allem auch Gebrauchsmuster, Geschmacksmuster/Designschutzrechte sowie Marken (früher Warenzeichen). Auch der Schutz von Computerprogrammen und das Firmierungsrecht und das Vergabe- und Benutzungsrecht für Domains werden angesprochen. Als anzustrebende Grundkenntnisse werden dabei weniger juristische Denkweisen als das Verständnis für die Möglichkeiten und Risiken angesehen, welche sich aus Schutzrechten ergeben. Was nützen zigtausend Euro an Investitionen in eine Neuentwicklung, wenn die Konkurrenz ohne Investitionskosten in kürzester Zeit und mit womöglich einem enormen Werbeetat den Absatzmarkt mit Imitaten überflutet? NICHTS! Möglichkeiten zu erkennen bedeutet also, gezielt Schutzmöglichkeiten für eigene Erfindungen, Produkte und Bezeichnungen selbiger auszuwählen. Natürlich gibt es grundlegende Regeln, die vor der Veröffentlichung einer Erfindung und der Anmeldung beim Patent- und Markenamt zwingend zu beachten sind. Auch das Kopieren von Wettbewerberideen ist oftmals nicht nur interessant, sondern sogar zulässig. Risiken bedeutet die Gefahr, die von der Missachtung der Rechte Dritter ausgeht, bewusst zu erkennen. Die Verletzung eines Patents oder die Benutzung einer möglicherweise phantasievollen Bezeichnung für ein Produkt oder eine Dienstleistung und u.U. deren Verwendung als Domain bringen im Fall der Verletzung eine Marke oder Firmierung eines Dritten schnell enorme Kosten für das Vernichten der eigenen Produkte und eigenen Werbeunterlagen, Imageverluste und Kosten der gegnerischen Anwälte und der Gerichte. Fünfund sechsstelliae Schadensersatzforderungen kommen selbst bei "Kleinigkeiten" schnell zusammen. Diesbezügliche Unkenntnis und auch der Missbrauch von Schutzrechten zum gezielten Schaden Dritter sind heute leider gängige Praxis. Tafel **Folien** 20a. Medienformen Foliensammlung/Handout für Recherche ggf. Internet elektronische Unterlagen zur Vorlesung. 21a. Literatur elektronisch verfügbare Gesetzestexte. 22a. Sonstiges

Studie	Studien-/Prüfungsleistung						
		25.	26.	27.	28. Anteil an		
23. Nr.	3. Nr. 24. Zugeordnete Lehrveranstaltun		PArt	LP	Benotung	der Modulnote	
1	Einführung in den gewerblichen Rechtsschutz, insbesondere Patentrecht			3	benotet	50 %	
29. Prüfungsform / Voraussetzung für die Vergabe von LP		einstündige sch	nriftliche F	rüfung			
30. Verantwortliche(r) Prüfer(in)		Cornelia Rebbe	ereh				

31. Prüfungsvorleistungen	Keine
---------------------------	-------

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
3D-Druck in der	3D Printing in Process
Verfahrenstechnik	Engineering

2. Verwendbar	2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Maschinen	M.Sc. Maschinenbau						
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen						
3. Modulveran	twortliche(r)	5. Modulnummer					
Prof. DrIng. Gregor Wehinger		Fakultät für Mathematik/Informatik					
		und Maschinenbau					
6. Sprache	7. LP	8. Dauer	9. Angebot				
Deutsch	3	[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

Die Studierenden sind in der Lage,

19a. Inhalte

- aktuelle Techniken, Prozesse und Anwendungen des 3D-Drucks zu benennen und zu beurteilen,
- einen FDM-3D-Drucker fachgerecht auszuführen,
- eine wissenschaftliche Fragestellung aus der Verfahrenstechnik selbstständig zu entwickeln,
- eigenständige Experimentpläne zu gestalten,
- im Team Forschungsfortschritte zu erzielen, wobei sie diese ebenso wie auftretende Probleme verständlich kommunizieren,
- erzielte Ergebnisse zu beurteilen und kritisch zu bewerten.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium	
1	3D-Druck in der Verfahrenstechnik (3D Printing in Process Engineering)	Prof. DrIng. Gregor Wehinger	S 8414	V	2	28 h / 62 h	
				Summe:	2	28 h / 62 h	
Zu	Zu Nr. 1:						
18a	18a. Empf. Voraussetzungen Keine						

2. Materialien für 3D-Druck

Inkjet-Drucker, Pulverbasiertes Drucken, ...)

Techniken und Prozesse des 3D-Drucks (Extrusion, Stereolithographie,

	3. Modellierungswerkzeuge (CAD, Korrelationen, CFD)				
	4. Aktuelle Anwendungen aus der (Chemischen) Verfahrenstechnik				
	5. Projektaufgabe (3D-drucken, Versuche durchführen, auswerten, interpretieren)				
20. Madianfannan	- Tafel				
20a. Medienformen	- Folien				
	Micallef, Joe: Beginning Design from 3D Printing, Apress L. P.: New York 2015.				
21a. Literatur	Pham, Duc Truong/Dimov, Stefan S.: Rapid Manufacturing. The Technologies and Applications of Rapid Prototyping and Rapid Tooling, Springer: London u. a. 2001.				
	Parra-Cabrera, Cesar u. a.: 3D Printing in Chemical Engineering and Catalytic Technology. Structured Catalysts, Mixers and Reactors, in: Chemical Society Reviews 47, 1 (2018), S. 209-230.				
22a. Sonstiges					

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr. 24. Zugeordnete Lehrveran		nstaltungen	PArt	LP	Benotung	der Modulnote		
1	3D-Druck in der Verfahrenstech	nnik	LN	3	benotet	50 %		
29. Prüf	ungsform / Voraussetzung	Praktische und theoretische Arbeit (APO§14, d) Absatz 6)						
für die V	ergabe von LP							
30. Vera	ntwortliche(r) Prüfer(in)	Prof. DrIng. Gregor Wehinger						
31. Prüf	ungsvorleistungen	Keine						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Technisches Englisch	Technical English

2. Verwendbar	2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer					
Jessica Schulze-Bo	entrop	Sprachenzentrum						
6. Sprache	7. LP	8. Dauer	9. Angebot					
Englisch	4	[X] 1 Semester	[X] jedes Semester					
		[] 2 Semester	[] jedes Studienjahr					
			[] unregelmäßig					
'-								

Upon completion of this course students:

20a. Medienformen

- can communicate fluently, both orally and in written form, in academic and professional technical-oriented situations;
- can comprehend complex details in technical reading and listening texts;
- can express themselves more clearly with a wide range of Technical English vocabulary;
- can understand and properly use specific technical-oriented grammar structures.

Leh	.ehrveranstaltungen						
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium	
1	Technisches Englisch (Technical English)	Jessica Schulze- Bentrop Dr. Hakan Gür	W/S 9000	V	4	56 h / 64 h	
				Summe:	4	56 h / 64 h	
Zu	Nr. 1:						
18a	18a. Empf. Voraussetzungen Member of TU Clausthal, B2 English level						
19a	This course aims at the development of the communication skills and specialized language required for scientific, technical and engineering settings. The language practiced in this course goes beyond the B2 level of the CEFR to enable the participants to express themselves appropriately in						

a scientific and technical context.

Students work with various forms of print and digital media.

	 Ibbotson, Mark: Cambridge English for Engineering, Cambridge University Press: Cambridge u. a. (8. Auflage) 2013.
21a. Literatur	 Weiterhin wird mit authentischen und dem neuesten Stand entsprechenden Texten aus den jeweiligen Fachgebieten gearbeitet, die ständig aktualisiert und in der ersten Sitzung benannt werden.
22a. Sonstiges	70% Anwesenheitspflicht

Studie	Studien-/Prüfungsleistung								
			25.	26.	27.	28. Anteil an			
23. Nr. 24. Zugeordnete Lehrveran		nstaltungen	PArt	LP	Benotung	der Modulnote			
1	Technisches Englisch		LN	4	benotet	2/3 %			
29. Prüf	ungsform / Voraussetzung	Written Exam (90 Min) c	r Repoi	t (about 3 page:	s)			
für die V	ergabe von LP								
30. Vera	ntwortliche(r) Prüfer(in)	Jessica Schulze	-Bentrop,	Dr. Hal	kan Gür				
31. Prüf	ungsvorleistungen								

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
-	Technical Presentations in English

2. Verwendbarkeit des Moduls in Studiengängen				
M.Sc. Maschinenbau				
M.Sc. Verfahrenstechnik/Chemieingenieurwesen				
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer				
Klaudia Böhlefeld		Sprachenzentrum		
6. Sprache 7. LP		8. Dauer	9. Angebot	
Englisch 3		[X] 1 Semester	[X] jedes Semester	
		[] 2 Semester	[] jedes Studienjahr	
			[] unregelmäßig	

Upon completion of this course students:

- can comprehend complex ideas and details in technical-oriented reading and listening tasks;
- can communicate ideas and opinions in a professional and technical way;
- can use appropriate grammar and sentence structures for technical-oriented texts;
- can explain a technical idea, process, or procedure clearly in front of an audience;

-	- have developed knowledge concerning working in international, professional, and scientific contexts.					
_						
Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Technical Presentations in English (ehemals Applied English for Science and Technology)	Andrew Rose	W/S 9092	V	2	28 h / 62 h
	Summe: 2 28 h / 62 h				28 h / 62 h	
Zu Nr. 1:						
18a	18a. Empf. Voraussetzungen Keine					
	The aim of this course is to develop the verbal and presentational skinecessary to deliver technical and/or scientific presentations in English. T			•		

course consists of a formal instruction phase in which students are taught the skills needed to deliver presentations (usually in PTT), followed by a 19a. Inhalte workshop phase in which students draft their own presentations. The course culminates in the delivery and assessment of student presentations. The language practiced in this course goes beyond the B2 level of the CEFR to enable participants to express themselves fluently in a scientific and technical context.

20a. Medienformen	TafelFolienFoliensammlung/Handout	
21a. Literatur	Es wird mit authentischen und dem neuesten Stand entsprechenden Texten aus den jeweiligen Fachgebieten gearbeitet, die ständig aktualisiert und in der ersten Sitzung benannt werden.	
22a. Sonstiges		

Studie	Studien-/Prüfungsleistung					
			25.	26.	27.	28. Anteil an
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote
1	Technical Presentations in English		LN	2	benotet	1/3 %
29. Prüfungsform / Voraussetzung		Präsentation				
für die V	ergabe von LP					
30. Vera	ntwortliche(r) Prüfer(in)	Andrew Rose				
31. Prüfungsvorleistungen		Keine				

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
-	Technical Writing

2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Maschinenbau					
M.Sc. Verfahrenstechnik/Chemieingenieurwesen					
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer					
Sprachenzentrum					
8. Dauer	9. Angebot				
[X] 1 Semester	[X] jedes Semester				
[] 2 Semester	[] jedes Studienjahr				
	[] unregelmäßig				
	mieingenieurwesen (r) 4. Zuständige Fakultät Sprachenzentrum 8. Dauer [X] 1 Semester				

Upon completion of this course students:

- can communicate fluently, both orally and in written form, in academic and professional technicaloriented situations;
- can comprehend complex details in technical reading and listening texts;
- can express themselves more clearly with a wide range of Technical English vocabulary;
- can understand and properly use specific technical-oriented grammar structures;
- can produce a variety of technical, professional and academic documents.

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium
1	Technical Writing	Jessica Schulze- Bentrop	W 9009	V	2	28 h / 62 h
	Summe: 2 28 h / 62 h				28 h / 62 h	
Zu Nr. 1:						
18a	18a. Empf. Voraussetzungen Member of TU Clausthal, B2 English level					
	This course aims at the development of the writing skills and specialize			ng skills and specialized		

18a. Empf. Voraussetzungen	Member of TU Clausthal, B2 English level
19a. Inhalte	This course aims at the development of the writing skills and specialized language required for scientific, technical and engineering settings. The language practiced in this course goes beyond the B2 level of the CEFR to enable the participants to express themselves appropriately and effectively in a scientific and technical context.
20a. Medienformen	Students work with various forms of print and digital media.

21a. Literatur	 Es wird mit authentischen und dem neuesten Stand entsprechenden Texten aus den jeweiligen Fachgebieten gearbeitet, die ständig aktualisiert und in der ersten Sitzung benannt werden.
22a. Sonstiges	

Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an
23. Nr.	24. Zugeordnete Lehrveran	staltungen	PArt	LP	Benotung	der Modulnote
1	Technical Writing		LN	2	benotet	1/3 %
	ungsform / Voraussetzung /ergabe von LP	Report (abou	t 3 pa	ages),	or Written	Exam (120 min)
30. Ver <i>a</i>	ntwortliche(r) Prüfer(in)	Jessica Schulze-	Bentrop			
31. Prüf	ungsvorleistungen					

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Wirtschaftsenglisch I	Business English I

2. Verwendbarkeit des Moduls in Studiengängen								
M.Sc. Maschinenbau								
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen							
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer					
Klaudia Böhlefeld		Sprachenzentrum						
6. Sprache	7. LP	8. Dauer	9. Angebot					
Deutsch	3	[X] 1 Semester	[X] jedes Semester					
englisch		[] 2 Semester	[] jedes Studienjahr					
			[] unregelmäßig					

Upon completion of this course students:

- can express specialized vocabulary comprehensively in various forms of communication relating to company structures, management and marketing;
- can use improved oral communications skills to interact effectively in small talk, meetings and presentations;
- can understand the basic principles of business grammar;
- can comprehend complex details in listening tasks in specialized areas;
- have developed knowledge concerning working in international, professional, and business-oriented contexts.

Leh	Lehrveranstaltungen						
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium	
1	Wirtschaftsenglisch I (Business English I)	Klaudia Böhlefeld Dr. Hakan Gür	W/S 9096	V	2	28 h / 62 h	
				Summe:	2	28 h / 62 h	
Zu Nr. 1:							

18a. Empf. Voraussetzungen	Keine
19a. Inhalte	This course aims at the development of commercial and business communication skills. The language practiced in this course goes beyond the B2 level of the CEFR and familiarizes learners with the finer points of business correspondence, conversation, and business-related procedures.

20a. Medienformen	 Tafel Folien Foliensammlung/Handout E-Learning Modul
21a. Literatur	Es wird mit authentischen und dem neuesten Stand entsprechenden Texten aus den jeweiligen Fachgebieten gearbeitet, die ständig aktualisiert und in der ersten Sitzung benannt werden.
22a. Sonstiges	

Studie	Studien-/Prüfungsleistung							
			25.	26.	27.	28. Anteil an		
23. Nr.	23. Nr. 24. Zugeordnete Lehrveranstalt		PArt	LP	Benotung	der Modulnote		
1	Wirtschaftsenglisch I		LN	2	benotet	1/3 %		
29. Prüf	29. Prüfungsform / Voraussetzung		Klausur (90 Minuten)					
für die V	für die Vergabe von LP							
30. Verantwortliche(r) Prüfer(in)		Klaudia Böhlefeld, Dr. Hakan Gür						
31. Prüfungsvorleistungen		Keine						

1a. Modultitel (deutsch)

Anerkennung Auswärtige Qualifikationen – Fächerübergreifende Inhalte

1b. Modultitel (englisch)

Recognition of Foreign Qualifications – Interdisciplinary Content

2. Verwendbarkeit des Moduls in Studiengängen

M.Sc. Maschinenbau, M.Sc. Verafahrenstechnik/Chemieingenieurwesen

, 3									
3. Modulveran	twortliche(r)	4. Zuständige Fakultät	5. Modulnummer						
Prof. A. Lohrengel		Fakultät für Mathematik/Informatik und Maschinenbau							
6. Sprache 7. LP		8. Dauer	9. Angebot						
Deutsch	3	[x] 1 Semester	[] jedes Semester						
		[] 2 Semester	[x] jedes Studienjahr						
			[] unregelmäßig						

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden verfügen über fortgeschrittene Kenntnisse auf dem Gebiet der jeweiligen Lehrveranstaltung unter Einsatz eines kritischen Verständnisses von Theorien und Grundsätzen. Sie besitzen fortgeschrittene Fertigkeiten, die die Beherrschung des jeweiligen Themengebiets sowie Innovationsfähigkeit erkennen lassen, und zur Lösung komplexer und nicht vorhersehbarer Probleme in dem spezialisierten Lernbereich nötig sind. Sie sind in der Lage, komplexe fachlicher oder beruflicher Tätigkeiten oder Projekte auf dem jeweiligen Themengebiet zu leiten und für hiermit verbundene Fragegestellungen Entscheidungsverantwortung in nicht vorhersehbaren Arbeits- oder Lernkontexten zu übernehmen.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel	13.	14.	15.	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	Dozent(in)	LV-Nr.	LV-Art	sws	Präsenz-/Eigenstudium	
1	Im Inland bzw. Ausland an einer staatlichen oder staatlich anerkannten Hochschule mit Status H+ oder H+/- gemäß der Datenbank anabin belegte ingenieurwissenschaftliche Lehrveranstaltung in einem Studiengang, der zu einem Abschluss auf dem Niveau 7 EQR oder darüber führt. (Engineering course taken in	NN			2	28 h / 62 h	

	state-recognised higher education institution with H+ or H+/- status according to the anabin database in a degree programme leading to a qualification at level 7 EQF or above.)						
	Summe: 2 28 h / 62 h						
Zu	Zu Nr. 1:						
18a	. Empf. Voraussetzungen	on der jeweiligen '	Veranstalt	ung abhängi	g		
19a		Von der jeweiligen Veranstaltung abhängige Inhalte aus den Themenkomplexen fächerübergreifende Inhalte incl. Sprachen.					den
20a	. Medienformen	Von der jeweiligen Veranstaltung abhängig					
21a	. Literatur	Von der jeweiligen Veranstaltung abhängig					
22a	. Sonstiges						

Studien-/Prüfungsleistung						
			25.	26.	27.	28. Anteil an
23. Nr.	24. Zugeordnete Lehrvera	nstaltungen	PArt	LP	Benotung	der Modulnote
1	Im Inland bzw. Ausland an einer staatlichen oder staatlich anerkannten Hochschule mit Status H+ oder H+/- gemäß der Datenbank anabin belegte ingenieurwissenschaftliche Lehrveranstaltung in einem Studiengang, der zu einem Abschluss auf dem Niveau 7 EQR		LN	3	benotet	50 %
oder darüber führt. 29. Prüfungsform / Voraussetzung für die Vergabe von LP		Klausur, münd	liche Prüf	ung, od	<u> </u> der vergleichbar	1
30. Verantwortliche(r) Prüfer(in)		Prof. A. Weber				
31. Prüfungsvorleistungen		keine				