HW2

Justin Nguyen

September 15, 2024

1.
$$9 \cdot 10^6 = 9,000,000$$
 seven-digit phone numbers.

2. (a)
$$8! = 40320$$
 seatings

- (b) $5! \cdot 4 \cdot 3! = 2880$ consecutive male seatings.
- (c) $4! \cdot 2^4 = 384$ consecutive couples seatings.
- 3. $6m, 7s, 4e \rightarrow 2$ books
 - (a) $\binom{6}{2} + \binom{7}{2} + \binom{4}{2} = 42$ choices of the two books who share the same subject.
 - (b) $\binom{6}{1}\binom{7}{1} + \binom{6}{1}\binom{4}{1} + \binom{7}{1}\binom{4}{1} = 94$ choices of two books who don't share the same subject.
- 4. $8w, 6m \rightarrow 3w, 3m$
 - (a) $\binom{8}{3} [\binom{6}{3} \binom{4}{1}] = 896$ committees where m_1, m_2 don't work together.
 - (b) $\binom{6}{3} [\binom{8}{3} \binom{6}{1}] = 1000$ committees where w_1, w_2 don't work together.
 - (c) $\binom{8}{3}\binom{6}{3} P_3^7 = 910$ committees where w_1, m_1 don't work together.
- 5. Let $D_6 = \{1, 2, 3, 4, 5, 6\}, A = \text{rolling } 1 \dots 6 \text{ in any order, and } |S| = |D_6|^6$. If the point $r_1 = (1, 2, 3, 4, 5, 6) \in A \implies$ other points in A must be arrangements of $r_1 \implies |A| = |D_6|!$ $\therefore P(A) = \frac{6!}{6^6} \approx 0.015$

6.
$$|S| = \binom{10}{5}, |A| = \binom{6}{5} \implies P(A) = \frac{|A|}{|S|} \approx 0.02...$$

7.
$$4s_w, 2s_b, 6s_r, 3s_g \rightarrow 4s$$

 $|S| = \binom{15}{4}$

(a)
$$P(2s_1, 2s_2) = \frac{\binom{4}{2} [\binom{2}{2} + \binom{6}{2} + \binom{3}{2}] + \binom{2}{2} [\binom{6}{2} + \binom{3}{2}] + \binom{6}{2} \binom{3}{2}}{\binom{15}{4}} = \frac{177}{1365} \approx 0.13$$

(b)
$$P(1s_r) = 1 - P(\text{no reds}) = 1 - \frac{P_1^9}{P_1^{15}} \approx 0.91$$

- 8. 52 cards $\to 5$ cards; $|S| = {52 \choose 5}$
 - (a) $P(3A, 2K) = \frac{\binom{4}{3}\binom{4}{2}}{\binom{52}{5}} \approx 0.000009...$
 - (b) P(full house) = $\frac{\binom{13}{1}\binom{4}{3}\binom{12}{1}\binom{4}{2}}{\binom{52}{2}} \approx 0.001...$
- 9. $2w, 4h, 7a \rightarrow 1w, 2h, 3a$

If every claim is different, and the process order doesn't matter, then $|S| = {13 \choose 6}$ There is only one way to select $\{w_1, h_1, h_2, a_1, a_2, a_3\} \implies |A| = 1$

$$\therefore P(A) = \frac{1}{\binom{13}{6}} \approx 0.0006 \dots$$

- 10. (a) Fluke = $\binom{5}{1}\binom{4}{1}\binom{3}{1}\binom{2}{1}\binom{1}{1}=120$ arrangements
 - (b) Propose = $\binom{7}{2}\binom{5}{1}\binom{4}{2}\binom{2}{1}\binom{1}{1} = 1260$ arrangements
 - (c) Mississippi = $\binom{11}{1}\binom{10}{4}\binom{6}{4}\binom{2}{2} = 34650$ arrangements
- 11. $3u, 4r, 2z, 1c; |S| = \binom{10}{3,4,3} = 4200$ rankings

$$P(1 \text{ winner, } 2 \text{ losers}) = \frac{\binom{7}{2,4,1}}{4200} = 0.025$$

12. $9m = 2m_{\alpha} + 7m_x \rightarrow 3p_1, 3p_2, 3p_3; |S| = \binom{9}{3,3,3} = 1680$ outcomes

$$P(2m_{\alpha} \to 3p_1) = \frac{\binom{1}{3} \cdot 3}{1680} = 0.08\overline{3}$$

 $P(2m_{\alpha} \to 3p_1) = \frac{\binom{7}{1,3,3}}{1680} = 0.08\overline{3}$ $1P_3^7 \text{ is a simplification of the number of committees where } w_1, m_1 \text{ work together.}$

13. **Proof:** $\sum_{k=0}^{n} \binom{n}{k} = 2^n$ The Binomial Theorem states that $(x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k$. Then, let $x = y = 1 \implies (1+1)^n = (2)^n = \sum_{k=0}^{n} \binom{n}{k} 1^{n-k} 1^k = \sum_{k=0}^{n} \binom{n}{k} 1^n = \sum_{k=0}^{n} \binom{n}{k}$. $\therefore \sum_{k=0}^{n} \binom{n}{k} = 2^n$.

- 14. **Proof:** $\sum_{k=0}^{n>0} (-1)^k \binom{n}{k} = 0$ If $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k \implies (1-1)^n = 0 = \sum_{k=0}^n \binom{n}{k} 1^{n-k} (-1)^k = \sum_{k=0}^n \binom{n}{k} (-1)^k$ $\therefore \sum_{k=0}^{n>0} (-1)^k \binom{n}{k} = 0.$
- 15. **Proof:** $\sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1}$ Proven earlier, $2^n = \sum_{k=0}^{n} \binom{n}{k} \implies \frac{n}{2} \cdot 2^n = n2^{n-1} = \frac{n}{2} \sum_{k=0}^{n} \binom{n}{k}$