CS1231(S) Tutorial 5: Mathematical Induction Solutions

National University of Singapore

2020/21 Semester 1

1. Prove by induction that for all $n \in \mathbb{Z}_{\geqslant 1}$,

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{1}{6} n(n+1)(2n+1).$$

Solution.

1. For each $n \in \mathbb{Z}_{\geqslant 1}$, let P(n) be the proposition

"
$$1^2 + 2^2 + \dots + n^2 = \frac{1}{6} n(n+1)(2n+1)$$
".

- 2. (Base step) P(1) is true because $1^2 = 1 = \frac{1}{6} \times 1 \times (1+1) \times (2 \times 1 + 1)$.
- 3. (Induction step)
 - 3.1. Let $k \in \mathbb{Z}_{\geqslant 1}$ such that P(k) is true, i.e., that

"
$$1^2 + 2^2 + \dots + k^2 = \frac{1}{6} k(k+1)(2k+1)$$
".

- 3.2. Then $1^2 + 2^2 + \cdots + k^2 + (k+1)^2$
- 3.3. $=\frac{1}{6}k(k+1)(2k+1) + (k+1)^2$ by the induction hypothesis;

3.4.
$$= \frac{1}{6}(k+1)(k(2k+1)+6(k+1))$$

3.5.
$$= \frac{1}{6}(k+1)(2k^2+7k+6)$$

3.6.
$$= \frac{1}{6}(k+1)(k+2)(2k+3)$$

3.7.
$$= \frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1).$$

- 3.8. Thus P(k+1) is true.
- 4. Hence $\forall n \in \mathbb{Z}_{\geqslant 1} \ P(n)$ is true by MI.
- 2. Let $x \in \mathbb{R}_{\geq -1}$. Prove by induction that $1 + nx \leq (1 + x)^n$ for all $n \in \mathbb{Z}_{\geq 1}$. Solution.
 - 1. For each $n \in \mathbb{Z}_{\geqslant 1}$, let P(n) be the proposition " $1 + nx \leqslant (1 + x)^n$ ".
 - 2. (Base step) P(1) is true because $1 + 1x = 1 + x = (1 + x)^{1}$.
 - 3. (Induction step)
 - 3.1. Let $k \in \mathbb{Z}_{\geq 1}$ such that P(k) is true, i.e., that $1 + kx \leq (1+x)^k$.
 - 3.2. Then $(1+x)^{k+1}$
 - 3.3. $= (1+x)^k (1+x)$
 - 3.4. $\geqslant (1+kx)(1+x)$ by the induction hypothesis, as $1+x \geqslant 0$;
 - $3.5. = 1 + (k+1)x + kx^2$
 - 3.6. $\geqslant 1 + (k+1)x$ as $k \geqslant 1$ and $x^2 \geqslant 0$.

- 3.7. Thus P(k+1) is true.
- 4. Hence $\forall n \in \mathbb{Z}_{\geq 1} \ P(n)$ is true by MI.
- 3. Prove by induction that 3 divides $n^3 + 11n$ for all $n \in \mathbb{Z}_{\geqslant 1}$.

Solution.

- 1. For each $n \in \mathbb{Z}_{\geq 1}$, let P(n) be the proposition "3 divides $n^3 + 11n$ ".
- 2. (Base step) P(1) is true because $1^3 + 11 \times 1 = 12 = 3 \times 4$.
- 3. (Induction step)
 - 3.1. Let $k \in \mathbb{Z}_{\geq 1}$ such that P(k) is true, i.e., that 3 divides $k^3 + 11k$.
 - 3.2. Use the definition of "divides" to find $\ell \in \mathbb{Z}$ such that $k^3 + 11k = 3\ell$.

- 3.3. Then $(k+1)^3 + 11(k+1)$
- $=(k^3+3k^2+3k+1)+(11k+11)$
- $= (k^3 + 11k) + 3(k^2 + k + 4)$ 3.5.
- $= 3\ell + 3(k^2 + k + 4)$ 3.6. by line 3.2;
- $=3(\ell + k^2 + k + 4)$ where $\ell + k^2 + k + 4 \in \mathbb{Z}$. 3.7.
- 3.8. Thus P(k+1) is true by the definition of "divides".
- 4. Hence $\forall n \in \mathbb{Z}_{\geqslant 1} \ P(n)$ is true by MI.
- 4. Let a be an odd integer. Prove by induction that 2^{n+2} divides $a^{2^n} 1$ for all $n \in \mathbb{Z}_{\geq 1}$. (Note that $a^{b^c} = a^{(b^{c})}$ by convention.)

Solution.

- 1. Use the definition of "odd' to find $\ell \in \mathbb{Z}$ such that $a = 2\ell + 1$.
- 2. For each $n \in \mathbb{Z}_{\geq 1}$, let P(n) be the proposition " 2^{n+2} divides $a^{2^n} 1$ ".
- 3. (Base step)
 - 3.1. Note $a^{2^1} 1 = a^2 1$
 - = (a-1)(a+1)3.2.
 - $=(2\ell+1-1)(2\ell+1+1)$ by line 1; 3.3.
 - 3.4. $=4\ell(\ell+1).$
 - 3.5. Case 1: ℓ is odd.
 - 3.5.1. Use the definition of "odd" to find $m \in \mathbb{Z}$ such that $\ell = 2m + 1$.
 - 3.5.2. Then $a^{2^1} 1 = 4\ell(\ell+1)$ by lines 3.1–3.4;
 - =4(2m+1)((2m+1)+1) by the choice of m on line 3.5.1; 3.5.3.
 - =8(2m+1)(m+1)where $(2m+1)(m+1) \in \mathbb{Z}$. 3.5.4.
 - 3.5.5. So 2^{1+2} divides $a^{2^1} 1$ as $8 = 2^{1+2}$.
 - 3.6. Case 2: ℓ is even.
 - 3.6.1. Use the definition of "even" to find $m \in \mathbb{Z}$ such that $\ell = 2m$.
 - 3.6.2. Then $a^{2^1} 1 = 4\ell(\ell + 1)$ by lines 3.1–3.4;
 - =4(2m)(2m+1) by the choice of m on line 3.6.1; 3.6.3.
 - =8m(2m+1)3.6.4.where $m(2m+1) \in \mathbb{Z}$.
 - 3.6.5. So 2^{1+2} divides $a^{2^1} 1$ as $8 = 2^{1+2}$.
 - 3.7. Since ℓ is either odd or even, we conclude that 2^{1+2} divides $a^{2^1}-1$ in all cases.
 - 3.8. So P(1) is true.
- 4. (Induction step)
 - 4.1. Let $k \in \mathbb{Z}_{\geqslant 1}$ such that P(k) is true, i.e., that 2^{k+2} divides $a^{2^k} 1$.
 - 4.2. Use the definition of "divides" to find $m \in \mathbb{Z}$ such that $a^{2^k} 1 = 2^{k+2}m$. 4.3. Then $a^{2^{k+1}} 1 = a^{2^k \times 2} 1$

 - $=(a^{2^k})^2-1$ 4.4.
 - $= (a^{2^k} 1)(a^{2^k} + 1)$ 4.5.
 - $=(2^{k+2}m)((2^{k+2}m+1)+1)$ by the choice of m; 4.6.
 - $= 2^{k+3}m(2^{k+1}m+1)$ where $m(2^{k+1}m+1) \in \mathbb{Z}$. 4.7.

- 4.8. Thus P(k+1) is true by the definition of "divides".
- 5. Hence $\forall n \in \mathbb{Z}_{\geq 1} \ P(n)$ is true by MI.
- 5. Prove by induction that

$$\forall n \in \mathbb{Z}_{\geqslant 8} \ \exists x, y \in \mathbb{Z}_{\geqslant 0} \ (n = 3x + 5y).$$

(As a consequence, any integer-valued transaction over 8 dollars can be carried out using only 3-dollar and 5-dollar coins.)

Solution.

- 1. For each $n \in \mathbb{Z}_{\geqslant 8}$, let P(n) be the proposition " $\exists x, y \in \mathbb{Z}_{\geqslant 0}$ (n = 3x + 5y)".
- 2. (Base step) P(8) is true because $8 = 3 \times 1 + 5 \times 1$.
- 3. (Induction step)
 - 3.1. Let $k \in \mathbb{Z}_{\geqslant 8}$ such that P(k) is true.
 - 3.2. Find $x, y \in \mathbb{Z}_{\geqslant 0}$ such that k = 3x + 5y.
 - 3.3. Case 1: y > 0.
 - 3.3.1. Then k+1=(3x+5y)+1by the choice of x, y;
 - =3(x+2)+5(y-1) where $x+2 \in \mathbb{Z}_{\geq 0}$.
 - 3.3.3. As y > 0, we know $y 1 \in \mathbb{Z}_{\geq 0}$.
 - 3.3.4. So P(k+1) is true.
 - 3.4. Case 2: y = 0.
 - 3.4.1. Then $k = 3x + 3 \times 0 = 3x$
 - 3.4.2.as $k \geqslant 8$;
 - $x = \frac{\kappa}{3} \ge \frac{8}{3}$ $x \ge \lceil \frac{8}{3} \rceil = 3$ as $x \in \mathbb{Z}$.
 - 3.4.4. Thus $k+1 = 3x+1 = 3(x-3)+5\times 2$, where $x-3\in \mathbb{Z}_{\geq 0}$.
 - 3.4.5. So P(k+1) is true.
- 3.5. Thus P(k+1) is true in all cases.
- 4. Hence $\forall n \in \mathbb{Z}_{\geqslant 1} \ P(n)$ is true by MI.

Alternative solution.

- 1. For each $n \in \mathbb{Z}_{\geq 0}$, let P(n) be the proposition " $\exists x, y \in \mathbb{Z}_{\geq 0} \ (n+8=3x+5y)$ ".
- 2. (Base step)
 - 2.1. P(0) is true because $0 + 8 = 8 = 3 \times 1 + 5 \times 1$.
 - 2.2. P(1) is true because $1 + 8 = 9 = 3 \times 3 + 5 \times 0$.
 - 2.3. P(2) is true because $2 + 8 = 10 = 3 \times 0 + 5 \times 2$.
- 3. (Induction step)
 - 3.1. Let $k \in \mathbb{Z}_{\geq 0}$ such that $P(0), P(1), \ldots, P(k+2)$ is true.
 - 3.2. Apply P(k) to find $x, y \in \mathbb{Z}_{\geqslant 0}$ such that k + 8 = 3x + 5y.
 - 3.3. Then (k+3)+8=(k+8)+3
 - 3.4. =(3x+5y)+3 by the choice of x,y;
 - =3(x+1)+5y where $x+1,y\in\mathbb{Z}_{\geq 0}$. 3.5.
 - 3.6. Thus P(k+3) is true.
- 4. Hence $\forall n \in \mathbb{Z}_{\geq 0} \ P(n)$ is true by Strong MI.
- 6. Prove by induction that every positive integer can be written as a sum of distinct non-negative integer powers of 2, i.e.,

$$\forall n \in \mathbb{Z}_{\geq 1} \ \exists \ell \in \mathbb{Z}_{\geq 1} \ \exists i_1, i_2, \dots, i_{\ell} \in \mathbb{Z}_{\geq 0} \ (i_1 < i_2 < \dots < i_{\ell} \land n = 2^{i_1} + 2^{i_2} + \dots + 2^{i_{\ell}}).$$

(Hint: think in terms of binary representations.)

Solution. Since the question asks for the proof that a property holds for all positive integers, the following form of Strong Mathematical Induction is more convenient than Principle 7.2.1 in the notes. One readily sees that a similar variant works over $\mathbb{Z}_{\geq m_0}$ for any $m_0 \in \mathbb{Z}$. (All such variants can be used in your work in this module.)

Strong Mathematical Induction (Strong MI) over $\mathbb{Z}_{\geq 1}$. To prove that $\forall n \in \mathbb{Z}_{\geq 1}$ P(n)is true, where each P(n) is a proposition, it suffices to:

(base step) show that $P(1), P(2), \ldots, P(m+1)$ are true;

(induction step) show that
$$\forall k \in \mathbb{Z}_{\geqslant 1} (P(1) \land P(2) \land \cdots \land P(k+m) \Rightarrow P(k+m+1))$$
 is true

for some $m \in \mathbb{Z}_{\geq 0}$.

1. For each $n \in \mathbb{Z}_{\geq 1}$, let P(n) be the proposition

"
$$\exists \ell \in \mathbb{Z}_{\geq 1} \ \exists i_1, i_2, \dots, i_\ell \in \mathbb{Z}_{\geq 0} \ (i_1 < i_2 < \dots < i_\ell \land n = 2^{i_1} + 2^{i_2} + \dots + 2^{i_\ell})$$
".

- 2. (Base step) P(1) is true because $1 = 2^0$.
- 3. (Induction step)
 - 3.1. Let $k \in \mathbb{Z}_{\geq 1}$ such that $P(1), P(2), \ldots, P(k)$ is true.
 - 3.2. Find $m \in \mathbb{Z}$ such that k+1=2m or k+1=2m+1. This is possible because k+1 is either odd or even.
 - 3.3. Note $2m \le k+1$ as k+1=2m or k+1=2m+1;
 - 3.4. $\leq k + k$ as $k \geq 1$;
 - 3.5. =2k.
 - 3.6. So $m \le k$.
 - 3.7. Also $2m+1 \geqslant k+1$ as k + 1 = 2m or k + 1 = 2m + 1:
 - $2m \geqslant k \geqslant 1$ 3.8.
 - $m \geqslant \frac{1}{2}$ 3.9.

- 3.11. By lines 3.6 and 3.10, we know that P(m) is true by the induction hypothesis.
- 3.12. Apply P(m) to find $\ell \in \mathbb{Z}_{\geq 1}$ and $i_1, i_2, \dots, i_\ell \in \mathbb{Z}_{\geq 0}$ such that

$$i_1 < i_2 < \dots < i_\ell$$
 and $m = 2^{i_1} + 2^{i_2} + \dots + 2^{i_\ell}$.

- 3.13. Case 1: k + 1 = 2m.
 - 3.13.1. Then k+1=2m
 - $=2(2^{i_1}+2^{i_2}+\cdots+2^{i_\ell})$ by the choice of i_1, i_2, \ldots, i_ℓ ;
 - $=2^{i_1+1}+2^{i_2+1}+\cdots+2^{i_\ell+1}.$
 - 3.13.4. Also $i_1 + 1 < i_2 + 1 < \dots < i_{\ell} + 1$ as $i_1 < i_2 < \dots < i_{\ell}$.
 - 3.13.5. So P(k+1) is true.
- 3.14. Case 2: k + 1 = 2m + 1.
 - 3.14.1. Then k+1=2m+1
 - $= 2(2^{i_1} + 2^{i_2} + \dots + 2^{i_\ell}) + 1$ by the choice of i_1, i_2, \ldots, i_ℓ ; 3.14.2.

- $=2^{0}+2^{i_1+1}+2^{i_2+1}+\cdots+2^{i_{\ell}+1}.$ 3.14.3.
- 3.14.4. Also $0 < i_1 + 1 < i_2 + 1 < \dots < i_{\ell} + 1$ as $0 \le i_1 < i_2 < \dots < i_{\ell}$.
- 3.14.5. So P(k+1) is true.
- 3.15. Thus P(k+1) is true in any case.
- 4. Hence $\forall n \in \mathbb{Z}_{\geqslant 1} \ P(n)$ is true by Strong MI.
- 7. Show that $F_{n+4} = 3F_{n+2} F_n$ for all $n \in \mathbb{Z}_{\geq 0}$.

Solution.

1.
$$F_{n+4} = F_{n+3} + F_{n+2}$$
 by the definition of F_{n+4} ;

2.
$$= (F_{n+2} + F_{n+1}) + F_{n+2}$$
 by the definition of F_{n+3} ;

- $=2F_{n+2}+F_{n+1}$ 3.
- 4.
- $\begin{array}{l} = 3F_{n+2} F_{n+2} + F_{n+1} \\ = 3F_{n+2} (F_{n+1} + F_n) + F_{n+1} \quad \text{by the definition of } F_{n+2}; \end{array}$ 5.

- 8. Show by induction that $F_{n+1}^2 F_{n+1}F_n F_n^2 = (-1)^n$ for every $n \in \mathbb{Z}_{\geq 0}$. Solution.
 - 1. For each $n \in \mathbb{Z}_{\geq 0}$, let P(n) be the proposition

"
$$F_{n+1}^2 - F_{n+1}F_n - F_n^2 = (-1)^n$$
".

- 2. (Base step)
 - 2.1. Since $F_0 = 0$ and $F_1 = 1$,

$$F_{0+1}^2 - F_{0+1}F_0 - F_0^2 = 1^2 - 1 \times 0 - 0^2 = 1 = (-1)^0$$
.

- 2.2. So P(0) is true.
- 3. (Induction step)
 - 3.1. Let $k \in \mathbb{Z}_{\geq 0}$ such that P(k) is true, i.e., that

$$F_{k+1}^2 - F_{k+1}F_k - F_k^2 = (-1)^k.$$

- $F_{(k+1)+1}^2 F_{(k+1)+1}F_{k+1} F_{k+1}^2$ 3.2. Then
- 3.3.
- $= F_{k+2}^2 F_{k+2}F_{k+1} F_{k+1}^2$ = $(F_{k+1} + F_k)^2 (F_{k+1} + F_k)F_{k+1} F_{k+1}^2$ 3.4.

by the definition of F_{k+2} ;

- $= F_{k+1}^2 + 2F_{k+1}F_k + F_k^2 F_{k+1}^2 F_kF_{k+1} F_{k+1}^2$ $= -(F_{k+1}^2 F_{k+1}F_k F_k)$ $= -(-1)^k$ by the induction 3.5.
- 3.6.
- 3.7. by the induction hypothesis;
- $=(-1)^{k+1}$ 3.8.
- 3.9. Thus P(k+1) is true.
- 4. Hence $\forall n \in \mathbb{Z}_{\geqslant 0} \ P(n)$ is true by MI.
- 9. Let a_0, a_1, a_2, \ldots be the sequence satisfying

$$a_0 = 0$$
, $a_1 = 2$, $a_2 = 7$, and $a_{n+3} = a_{n+2} + a_{n+1} + a_n$

for all $n \in \mathbb{Z}_{\geq 0}$. Prove by induction that $a_n < 3^n$ for all $n \in \mathbb{Z}_{\geq 0}$. Solution.

- 1. For each $n \in \mathbb{Z}_{\geqslant 0}$, let P(n) be the proposition " $a_n < 3^n$ ".
- 2. (Base step)
 - 2.1. P(0) is true because $a_0 = 0 < 1 = 3^0$.
 - 2.2. P(1) is true because $a_1 = 2 < 3 = 3^1$.
 - 2.3. P(2) is true because $a_2 = 7 < 9 = 3^2$.
- 3. (Induction step)
 - 3.1. Let $k \in \mathbb{Z}_{\geq 0}$ such that $P(0), P(1), \ldots, P(k+2)$ are true.
 - 3.2. P(k), P(k+1), P(k+2) are true means

$$a_k < 3^k$$
 and $a_{k+1} < 3^{k+1}$ and $a_{k+2} < 3^{k+2}$.

- 3.3. Then $a_{k+3} = a_{k+2} + a_{k+1} + a_k$ by the definition of a_{k+3} ;
- $< 3^{k+2} + 3^{k+1} + 3^k$ 3.4. by the induction hypothesis;
- $< 3^{k+2} + 3^{k+2} + 3^{k+2}$ 3.5.
- $= 3 \times 3^{k+2} = 3^{k+3}.$ 3.6.
- 3.7. Thus P(k+3) is true.
- 4. Hence $\forall n \in \mathbb{Z}_{\geq 0} \ P(n)$ is true by Strong MI.
- 10. Define a set S recursively as follows.

- (a) $2 \in S$. (base clause)
- (b) If $x \in S$, then $3x \in S$ and $x^2 \in S$. (recursion clause)
- (c) Membership for S can always be demonstrated by (finitely many) successive applications of clauses above. (minimality clause)

Which of the numbers 0, 6, 15, 16, 36 are in S? Which are not? Solution.

Structural induction over S. To prove that $\forall n \in S \ P(n)$ is true, where each P(n) is a proposition, it suffices to:

(base step) show that P(2) is true; and (induction step) show that $\forall x \in S \ (P(x) \Rightarrow P(3x) \land P(x^2))$ is true.

- We know $0 \notin S$ because all $x \in S$ satisfy $x \ge 2$, as one can show by structural induction over S.
- $2 \in S$ by the base clause.
 - \therefore 6 \in S by the recursion clause with x=2 and the previous line.
 - \therefore 36 \in S by the recursion clause with x = 6 and the previous line.
- $2 \in S$ by the base clause.
 - \therefore 4 \in S by the recursion clause with x=2 and the previous line.
 - \therefore 16 \in S by the recursion clause with x = 4 and the previous line.
- We know $15 \not\in S$ because no $x \in S$ is odd, as one can show by structural induction over S.