Model answers to Week 05 review worksheet — exercises for §5

- E5.1 (tensor product of modules; the dual module carried over from the week 04 worksheet) Our goal is to show that the class of modules over a Hopf algebra H is closed under tensor products and duals.
- (a) Given an algebra A and A-modules V and W, define an $A \otimes A$ -module structure on $V \otimes W$.
- (b) Let H be a bialgebra. Use the coproduct $\Delta \colon H \to H \otimes H$ and (a) to make $V \otimes W$ an H-module whenever V and W are.
- (c) If V is an A-module, show that $\lhd: V^* \otimes A \to V^*$ where, for $\phi \in V^*$, $\phi \lhd a$ is the linear functional on V defined by $\langle \phi \lhd a, v \rangle = \langle \phi, a \rhd v \rangle$, is a *right action* of A on V^* . (Write down the definition of a right action.)
- (d) If \lhd is a right action of a Hopf algebra H, show that \rhd defined by the rule " $h \rhd = \lhd Sh$ " where $S \colon H \to H$ is the antipode, is a (left) action. Conclude from (c) that if V is an H-module then so is V^* .

Answer to E5.1. (a) The algebra $A \otimes A$ acts on the space $V \otimes W$ via

$$a,b\in A,\ v\in V,\ w\in W \longmapsto (a\otimes b)\rhd (v\otimes w)=(a\rhd v)\otimes (b\rhd w).$$

(As usual, we write an action of a pure tensor on a pure tensor, implying that it is extended bilinearly.) It is easy to check that this is an action, using the definition of multiplication and unit on $A \otimes A$.

(b) To act by $h \in H$ on $V \otimes W$, we first map h to $H \otimes H$ using Δ , then act by Δh on $V \otimes W$. This results in the following H-action on $V \otimes W$:

$$h\rhd (v\otimes w)=(h_{(1)}\rhd v)\otimes (h_{(2)}\rhd w).$$

One checks that this is an action using the fact that $\Delta \colon H \to H \otimes H$ is a homomorphism of algebras.

(c) A right action of an algebra A on a space V is a linear map $\lhd: V \otimes A \to V$, $v \otimes a \mapsto v \lhd a$, which obeys

$$v \lhd (ab) = (v \lhd a) \lhd b, \qquad v \lhd 1_A = v, \qquad \forall v \in V, \ a,b \in A.$$

The definition of $\lhd: V^* \otimes A \to V^*$ can be rewritten as follows. If $a \in A$, write $a \rhd$ for the linear map $v \mapsto a \rhd v$ from V to V. The axioms of left action say $(ab) \rhd = (a \rhd) \circ (b \rhd)$ and $1_A \rhd = \mathrm{id}_V$.

Likewise, write $\triangleleft a$ for the linear map $\phi \mapsto \phi \triangleleft a$ from V^* to V^* . Then the definition of \triangleleft means

$$\triangleleft a = (a \rhd)^*,$$

that is, $\triangleleft a$ is the adjoint (contragredient) of the map $a \triangleright$, see Definition 1.16.

We now use E1.4 which says that $(ML)^* = L^*M^*$ for linear maps L and M. Therefore,

$$\lhd(ab)=((ab)\rhd)^*=((a\rhd)\circ(b\rhd))^*=(b\rhd)^*\circ(a\rhd)^*.$$

But this is exactly the statement $\phi \lhd (ab) = (\phi \lhd a) \lhd b$ that we needed to verify: the effect of ab acting on ϕ is the same as of a acting on ϕ first, followed by b.

Finally, $\triangleleft 1_A = \mathrm{id}_{V^*}$ follows from $(\mathrm{id}_V)^* = \mathrm{id}_{V^*}$.

- (d) That $h \triangleright$ defined as $\triangleleft Sh$ is a left action follows easily from the fact that $S \colon H \to H$ is an antihomomorphism.
- **E5.2** (primitive elements in $\mathbb{C}\langle X \rangle$) The free algebra $\mathbb{C}\langle X \rangle$ is a Hopf algebra where all $x \in X$ are primitive.
 - (a) Let $x \in X$, $n \ge 2$. Show that x^n is not primitive in $\mathbb{C}\langle X \rangle$. $(x^n$ is the monomial $xx \dots x$ of length n.)
 - (b) Suppose |X| > 1. Show that $\mathbb{C}\langle X \rangle$ has primitive elements of every positive degree. Here we refer to a linear combination of monomials of length d as a (homogeneous) element of degree d.

Answer to E5.2. (a) It is useful to recall

The Binomial Theorem. Suppose that a, b are elements of an associative algebra A. If ab = ba then, for all $n \in \mathbb{N}$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Here $\binom{n}{k}$ is the non-negative integer defined by $\binom{n}{k} = \frac{n!}{(n-k)! \, k!}$ and equal to the number of k-element subsets of an n-element set. (If A is an algebra over a field $\mathbb k$, an integer N is interpreted as $1_{\mathbb k} + 1_{\mathbb k} + \dots + 1_{\mathbb k}$ with N terms.)

The Binomial Theorem is proved by a standard induction argument. We note that it is really an "if and only if" statement: if the equation holds for all n then ab must be equal to ba. In fact, already the equation for n = 2 implies ab = ba as $(a + b)^2$ is always equal to $a^2 + ab + ba + b^2$ rather than $a^2 + 2ab + b^2$.

If x is a primitive element of some bialgebra H then $\Delta x = x \otimes 1 + 1 \otimes x$. Putting $a = x \otimes 1$, $b = 1 \otimes x$, we note that ab = ba in $H \otimes H$: both equal $x \otimes x$. Hence we are in the situation of the Binomial Theorem, and

$$\Delta(x^n)=(\Delta x)^n=\sum_{k=0}^n\binom{n}{k}(x\otimes 1)^{n-k}(1\otimes x)^k=\sum_{k=0}^n\binom{n}{k}(x^{n-k}\otimes 1)(1\otimes x^k)=\sum_{k=0}^n\binom{n}{k}x^{n-k}\otimes x^k.$$

If $H=\mathbb{C}\langle X\rangle$ and $x\in X$, the coefficient $\binom{n}{1}$ of $x^{n-1}\otimes x$ is not zero. Since the monomials $x^r\otimes x^s$ are linearly independent in $\mathbb{C}\langle X\rangle^{\otimes 2}$ as they form part of the standard basis of $\mathbb{C}\langle X\rangle^{\otimes 2}$, we conclude that $\Delta(x^n)\neq x^n\otimes 1+1\otimes x^n$ and so x^n is not primitive.

Remark. If $\mathbb C$ is replaced by a field $\mathbb k$ of positive characteristic, the above argument fails as binomial coefficients may become zero in $\mathbb k$. For example, any prime p divides $\binom{p}{k}$ for $1 \leq k \leq p-1$, so if $p = \operatorname{char} \mathbb k$ then $\Delta(x^p) = x^p \otimes 1 + 1 \otimes x^p$ as all intermediate coefficients vanish, so x^p is primitive.

(b) Suppose x, y are two distinct elements of X. Define $p_1 = y$. Then p_1 is primitive of degree 1 in $\mathbb{C}\langle X \rangle$.

For each $n \in \mathbb{N}$, define $p_{n+1} = xp_n - p_nx$. Then $p_{n+1} \in P(\mathbb{C}\langle X \rangle)$ by part (a). So if we show that $p_{n+1} \neq 0$, then we found a primitive of degree n+1.

To show that $p_n \neq 0$ for all n, we show that the coefficient of the monomial $x^{n-1}y$ in p_n is 1. Recall that noncommutative monomials in x, y are linearly independent in $\mathbb{C}\langle X \rangle$, by definition of $\mathbb{C}\langle X \rangle$.

We do this by induction in n. The base case is n = 1, $p_1 = y = x^0 y$ for which the claim is true.

For the inductive step $n \to n+1$, assume that $x^{n-1}y$ occurs in p_n with coefficient 1. Note that a monomial in p_{n+1} can only arise from either pre-multiplication or post-multiplication by x of a monomial in p_n . The only way the monomial x^ny , which does not end in x, arises in $p_{n+1}=xp_n-p_nx$ is as $x\cdot x^{n-1}y$. It follows that x^ny occurs in p_{n+1} with coefficient 1, as claimed.

E5.3 (The universal mapping property of $U(\mathfrak{g})$) Review the definition of Lie bracket, $[\cdot, \cdot]$, Lie algebra, \mathfrak{g} , and the universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g} .

Let X be a basis of g and let $f: \mathfrak{g} \to A$ be a Lie map from g to some associative algebra A, so f is linear and

$$f([x,y]) = f(x)f(y) - f(y)f(x) \quad \forall x, y \in \mathfrak{g}.$$

That is, f takes the Lie bracket on \mathfrak{g} to the commutator bracket on A.

Let $F: \mathbb{C}\langle X \rangle \to A$ be the unique algebra homomorphism such that $F|_X = f$, given by the universal mapping property of the free algebra, Proposition 2.12. Prove: F factors through $U(\mathfrak{g})$, i.e., is the composite map

$$F \colon \mathbb{C}\langle X \rangle \twoheadrightarrow \mathbb{C}\langle X \rangle / I(\mathfrak{g}) = U(\mathfrak{g}) \stackrel{\overline{F}}{\to} A$$

for some (unique) algebra homomorphism \overline{F} .

Answer to E5.3. Briefly, by properties of the quotient space and quotient algebra, the claim is equivalent to saying that $I(\mathfrak{g}) \subseteq \ker F$. To check this, we recall that the kernel of any algebra homomorphism is a two-sided ideal. So if $xy - yx - [x, y] \in \ker F$ for all $x, y \in X$ (the chosen basis of \mathfrak{g}), then the ideal $I(\mathfrak{g})$, which is generated by the elements xy - yx - [x, y] of $\mathbb{C}\langle X \rangle$, lies in $\ker F$.

We are thus left to verify that F(xy - yx - [x, y]) = 0 for all $x, y \in X$. Since F is an algebra homomorphism, we have F(xy - yx - [x, y]) = F(x)F(y) - F(y)F(x) - F([x, y]). Recall $F|_X = f$, and F and f are both linear, so F agrees with f on span $X = \mathfrak{g}$. Hence

$$F(x)F(y) - F(y)F(x) - F([x,y]) = f(x)f(y) - f(y)f(x) - f([x,y]) = 0$$

by the assumption that f is a Lie map, finishing the proof.

E5.4 (A Milnor-Moore theorem) Let H be a Hopf algebra over \mathbb{C} . View the subspace P(H) of H as a Lie algebra with the commutator bracket $[x, y]_{\text{comm}} = xy - yx$, then the embedding $P(H) \hookrightarrow H$ is a Lie map which by the Universal Mapping Property, E5.3, extends to an algebra homomorphism

$$U(P(H)) \to H$$
.

Prove that this homomorphism is **injective.** (Hint: use the Heyneman-Radford theorem for the polynomial coalgebra.) Conclude that if $P(H) \neq 0$ then H must be infinite-dimensional.

Answer to E5.4. Denote $\mathfrak{g} = P(H)$ and choose some ordered basis X of \mathfrak{g} . In the lecture, we proved the PBW theorem which says that the through map

$$\mathbb{C}[X] \hookrightarrow \mathbb{C}\langle X \rangle \twoheadrightarrow U(\mathfrak{g})$$

is an isomorphism of coalgebras. We now observe that the map

$$U(\mathfrak{g}) \stackrel{\phi}{\to} H,$$

which we want to show to be injective, is a Hopf algebra morphism, and in particular a coalgebra morphism. Indeed, "coalgebra morphism" means that the equations

$$\Delta \circ \phi = (\phi \otimes \phi) \circ \Delta, \quad \epsilon \circ \phi = \epsilon$$

are satisfied. In our case, both sides of each equations are algebra homomorphisms. Since they agree on primitive generators of $U(\mathfrak{g})$ (elements of \mathfrak{g}), they agree everywhere on $U(\mathfrak{g})$.

The isomorphism $\mathbb{C}[X] \cong U(\mathfrak{g})$ of coalgebras identifies the space $\mathbb{C}X$ with \mathfrak{g} . In the lecture we proved the Heyneman-Radford theorem for the polynomial coalgebra, which says that a coalgebra morphism is injective on $\mathbb{C}[X]$ if it is injective on $\mathbb{C}X$. The morphism $U(\mathfrak{g}) \to H$ is injective on \mathfrak{g} by definition, hence is injective on $U(\mathfrak{g})$ by Heyneman-Radford.

It remains to note that $\mathbb{C}[X]$ is infinite-dimensional when X is not empty: indeed, if $x \in X$, the standard monomials $1, x, x^2, ...$ are linearly independent. Hence $\dim U(P(H)) = \infty$ if $P(H) \neq \{0\}$. (This result only holds in characteristic zero.)

E5.5 (expand in standard monomials, calculate the antipode in $U(\mathfrak{sl}_2)$) Recall the presentation

$$U(\mathfrak{sl}_2) = \langle X, H, Y \mid HX - XH = 2X, HY - YH = -2Y, XY - YX = H \rangle$$
.

The Hopf algebra structure of $U(\mathfrak{sl}_2)$ is fully determined by saying that the generators X, H, Y are primitive.

We order the generators so that $X \prec H \prec Y$, so that the standard monomials are $X^m H^n Y^p$ with $m, n, p \geq 0$.

- (a) Express YHX as a linear combination of standard monomials.
- (b) Think of a way to justify the claim that an arbitrary monomial in X, H, Y can be expressed, in $U(\mathfrak{sl}_2)$, as a linear combination of standard monomials.
- (c) What is the antipode of XY?

Answer to E5.5. (a) To rewrite YHX as a linear combination of standard monomials, first use YH = HY + 2Y so that YHX = HYX + 2YX = (H+2)YX.

Substitute YX = XY - H to obtain $(H + 2)(XY - H) = HXY + 2XY - H^2 - 2H$. The only non-standard monomial here is HXY, which needs to be written as (XH + 2X)Y = XHY + 2XY. The final answer is therefore $XHY + 4XY - H^2 - 2H$.

(b) We refer to the ordered set of generators of a Lie algebra \mathfrak{g} as an alphabet (thus, for \mathfrak{sl}_2 the alphabet will be X, H, Y) and to an element of the alphabet as a symbol.

First, we prove a **Lemma:** if x is a symbol and M is a monomial of degree d in the given alphabet, then xM - Mx is a linear combination of monomials of degree d in $U(\mathfrak{g})$.

To prove this, observe that if $M = a_1 a_2 \dots a_d$ where a_1, \dots, a_d are symbols, then in $U(\mathfrak{g})$ we have

$$\begin{split} xM - Mx &= (xa_1 - a_1x)a_2 \dots a_d + a_1(xa_2 - a_2x)a_3 \dots a_d + \dots + a_1 \dots a_{d-1}(xa_d - a_dx) \\ &= [x, a_1]a_2 \dots a_d + a_1[x, a_2]a_3 \dots a_d + \dots + a_1 \dots a_{d-1}[x, a_d] \end{split}$$

(intermediate terms in the first line collapse). As $[x, a_i]$ is a linear combination of symbols, the row 2 is a linear combination of monomials of degree d (despite xM and Mx being monomials of degree d+1). Lemma is proved.

We can now use **induction** in d to prove that any monomial of degree d is expressible in $U(\mathfrak{g})$ as a linear combination of standard monomials of degree $\leq d$.

This is true in the base cases d = 0 and d = 1, as any monomial of degree ≤ 1 is standard.

Suppose the claim holds for d, and consider a monomial of degree d + 1. It can be written as xM where x is a symbol and M is a monomial of degree d. By the induction hypothesis, M is equal, in $U(\mathfrak{g})$, to a linear combination of standard monomials; replacing M by such a linear combination, we see that without the loss of generality we may assume that M is standard.

Then there is a place in M where the symbol x can be inserted to obtain a standard monomial. That is, M = NP where N, P are standard monomials such that NxP is standard. (Simply take N to be the submonomial of M formed by all symbols < x. We do not exclude the case where either N or P is of length zero.) We have

$$xM = xNP = (xN - Nx)P + NxP.$$

By Lemma, (xN - Nx)P is a linear combination of monomials of degree d, and so is expressible as a linear combination of standard monomials by the induction hypothesis. Moreover, NxP is a standard monomial by construction. We have expressed xM as a linear combination of standard monomials.

By induction, the claim is true for all d.

(c) Since the antipode is antimultiplicative, Proposition 4.11, we have S(XY) = S(Y)S(X). Since S(x) = -x for all primitive x, E4.3, and X, Y are primitive by definition of $U(\mathfrak{sl}_2)$, we have S(XY) = (-Y)(-X) = YX.

It is better to express the answer as a linear combination of standard monomials. Since XY - YX = H, we have YX = XY - H.

Part B. Extra exercises

E5.6 (tensor product exercise) The following fact is used in the proof of the PBW theorem: if X, Y are vector spaces and $f: X \to Y$ is an injective linear map, then $f \otimes f: X \otimes X \to Y \otimes Y$ is injective. Prove it.

Answer to E5.6. Denote Y'=f(X), so that Y' is a subspace of X. Then $f\colon X\to Y'$ is a bijective linear map, so there exists a linear map $g\colon Y'\to X$ such that $gf=\operatorname{id}_X$ and $fg=\operatorname{id}_{Y'}$. Consider the linear map $g\otimes g\colon Y'\otimes Y'\to X\otimes X$. We have

$$(g\otimes g)(f\otimes f)=gf\otimes gf=\mathrm{id}_X\otimes\mathrm{id}_X=\mathrm{id}_{X\otimes X}.$$

In the same way, $(f \otimes f)(g \otimes g) = \operatorname{id}_{Y' \otimes Y'}$. This shows that $f \otimes f \colon X \otimes X \to Y' \otimes Y'$ is invertible. Since $Y' \otimes Y'$ is a subspace of $Y \otimes Y$, $f \otimes f \colon X \otimes X \to Y \otimes Y$ is injective, as claimed.