

第四讲

矩阵模运算与古典密码

—— Hill₂ 加密解密

主要内容

- ■信息加密与古典密码
- ■矩阵运算与Hill₂加密解密
- Hill₂密码破译
- MATLAB 实现

信息加密

■为什么要加密

- 保密通讯无论在军事、政治、经济还是日常生活中都起着 非常重要的作用。
- 为了将信息传递给己方的接受者,同时又要防止他人(特别是敌人)知道信息的内容,必须将要传递的信息(明文)加密,变成密文后发送出去,这样,即使敌方得到密文也看不懂,而己方的接受者收到密文后却可以按照预先定好的方法加以解密。

■密码分类

- 古典密码: 以字符为基本加密单元
- 现代密码:以信息块为基本加密单元

加密信息传递过程

矩阵运算与Hill₂密码

Hill2 密码的加密过程

- Hill₂密码中所用的数学手段是 矩阵运算
 - 加密过程:
 - ① 将 26 个字母 与 0 到 25 之间的整数建立一一对应关系, 称为字母的 表值, 然后根据明文字母的表值, 将明文信息用数字表示

设通讯双方所给出的 26 个字母的表值如下:

A	В	C	D	E	F	G	Н	I	J	K	L	M
1	2	3	4	5	6	7	8	9	10	11	12	13
N	0	P	Q	R	S	T	U	V	W	X	Y	Z
14	15	16	17	18	19	20	21	22	23	24	25	0

注: 这里假定明文中只使用 26 个大写字母

Hill2 密码的加密过程

- ② 选择一个 二阶可逆整数方阵 A, 称为Hill2密码的 加密矩阵, 它是加密体制的"密钥", 是加密的关键, 仅通讯双方掌握
- ③ 将明文字母分组。 $Hill_2$ 使用的是二阶矩阵,所以将明文字母每 2 个一组(可以推广至 $Hill_n$ 密码)。 查出每个字母的表值,这样,每组字母构成一个二维列向量 α

若最后仅剩一个字母,则补充一个没有实际意义的哑字母(哑元),这样使得每组都有2个字母

④ $\phi \beta = A\alpha$,由 β 的两个分量反查字母表值表,得到相应的两个字母,即为密文字母

Hill2 加密举例

例: 设明文为"HDSDSXX"(华东师大数学系),试给

出这段明文的 Hill₂ 密文。其中加密矩阵为

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

解: 将明文字母分组:

HD SD SX XX

最后的一个字母 X 为哑字母,无实际意义。

查表得每组字母的表值,得到4个二维列向量:

A	В	C	D	E	F	G	Н	Ι	J	K	L	M
1	2	3	4	5	6	7	8	9	10	11	12	13

(8)	(19)	(19)	(24)
4)	4)	24)	24

N	O	P	Q	R	S	T	U	V	W	X	Y	Z
14	15	16	17	18	19	20	21	22	23	24	25	0

Hill2 加密举例

将上述 4 个二维向量左乘密钥矩阵 A 得:

$$\binom{16}{12}$$
, $\binom{27}{12}$, $\binom{67}{72}$, $\binom{72}{72}$

作模 26 运算,将所有的数都化为 0 到 25 之间的整数:

Hill2 加密举例

反查字母表值得每个向量对应的字母组为:

PLALOTTT

A	В	C	D	E	F	G	Н	Ι	J	K	L	M
1	2	3	4	5	6	7	8	9	10	11	12	13

N	O	P	Q	R	S	T	U	V	W	X	Y	Z
14	15	16	17	18	19	20	21	22	23	24	25	0

Hill2 加密过程

问题: 怎样解密?

Hill₂密码解密

Hill2 解密过程

■解密:加密的逆过程,将加密过程逆转回去即可

例:怎么得到密文 "PLALOTTT"的原文

先查出密文字母 "PL AL OT TT"所对应的向量:

$$\begin{pmatrix} 16 \\ 12 \end{pmatrix}, \begin{pmatrix} 1 \\ 12 \end{pmatrix}, \begin{pmatrix} 15 \\ 20 \end{pmatrix}, \begin{pmatrix} 20 \\ 20 \end{pmatrix}$$

上面的向量是由
$$\binom{16}{12}$$
, $\binom{27}{12}$, $\binom{67}{72}$, $\binom{72}{72}$ 经过模 26 运算

得来的,现在的问题是怎样逆转回去?

在模运算下解方程组: $A\alpha = \beta$

模m可逆

$$Z_m = \{0,1,2,...,m-1\}$$

定义 1: 设 A 为定义在集合 Z_m 上的 n 阶方阵,若存在一个定义在 Z_m 上的方阵 B,使得

$$AB = BA = E \pmod{m}$$

则称 A 模 m 可逆, B 为 A 的 模 m 逆矩阵,记为 $B = A^{-1} \pmod{m}$

定义 2: 设 $a \in \mathbb{Z}_m$,若存在 $b \in \mathbb{Z}_m$ 使得 $ab=1 \pmod{m}$,则 称 $b \ni a$ 的 模 m 倒数 或乘法逆,记作 $b = a^{-1} \pmod{m}$ 。

注: a, b 都是 \mathbb{Z}_m 中的数

模m可逆

 \blacksquare 问题: 是否 \mathbb{Z}_m 中所有的数都存在模 \mathbb{Z}_m 的

a 存在唯一的模 m 倒数 a 与 m 无公共素数因子

命题: 定义在集合 Z_m 上的 n 阶方阵 A 模 m 可逆的充要条

件是: m 和 det(A) 无公共素数因子, 即 m 与 det(A) 互素。

Hill₂密码的加密矩阵必须满足上述条件。

m=26 m 的素数因子只有 2 和 13

 \bullet 定义在 \mathbb{Z}_{26} 上的方阵 A 模 26 可逆的充要条件是:

det(A) 不能被 2 和 13 整除

模 26 可逆

● Z₂₆ 中具有模 26 倒数的整数及其模 26 倒数表

\overline{a}	1	3	5	7	9	11	15	17	19	21	23	25
a^{-1}	1	9	21	15	3	19	7	23	11	5	17	25

● 思考: 如何用 Matlab 编程来找出所有模 m 倒数的整数及其模 m 倒数? (穷举法)

Hill2 解密过程

$$\begin{pmatrix} 16 \\ 12 \end{pmatrix}, \begin{pmatrix} 1 \\ 12 \end{pmatrix}, \begin{pmatrix} 15 \\ 20 \end{pmatrix}, \begin{pmatrix} 20 \\ 20 \end{pmatrix} \longrightarrow \begin{pmatrix} 8 \\ 4 \end{pmatrix}, \begin{pmatrix} 19 \\ 4 \end{pmatrix}, \begin{pmatrix} 19 \\ 24 \end{pmatrix}, \begin{pmatrix} 24 \\ 24 \end{pmatrix}$$

在模运算下解方程组:
$$A\alpha = \beta$$

$$\alpha = A^{-1} \pmod{26} * \beta \pmod{26}$$

问题: 如何计算 $A^{-1} \pmod{26}$?

模m逆矩阵的计算

• 设 B=kA*为 A 的 模 26 逆,其中 k 为待定系数

$$BA = k \cdot |A| \cdot E$$

$$BA = E \pmod{26}$$
 $k \cdot |A| = 1 \pmod{26}$ $k = |A|^{-1} \pmod{26}$

本计算方法可推广到求矩阵 A 的 模 m 逆矩阵

Hill2 解密过程

• 设加密矩阵
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$
 $|A| = 3, A^* = \begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix}$

$$A^{-1}(\text{mod 26}) = \begin{pmatrix} 3^{-1}(\text{mod 26}) \cdot \begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix} \end{pmatrix} \pmod{26}$$

$$B = A^{-1} \pmod{26}$$

$$=9\begin{bmatrix}3 & -2\\0 & 1\end{bmatrix} \pmod{26} = \begin{bmatrix}1 & 8\\0 & 9\end{bmatrix}$$

$$\begin{pmatrix} 16 \\ 12 \end{pmatrix}, \begin{pmatrix} 1 \\ 12 \end{pmatrix}, \begin{pmatrix} 15 \\ 20 \end{pmatrix}, \begin{pmatrix} 20 \\ 20 \end{pmatrix}$$
 $\begin{pmatrix} 8 \\ 4 \end{pmatrix}, \begin{pmatrix} 19 \\ 4 \end{pmatrix}, \begin{pmatrix} 19 \\ 24 \end{pmatrix}, \begin{pmatrix} 24 \\ 24 \end{pmatrix}$

● 用 B 左乘密文对应的向量得:

$$B \begin{pmatrix} 16 \\ 12 \end{pmatrix} = \begin{pmatrix} 112 \\ 108 \end{pmatrix}, \quad B \begin{pmatrix} 1 \\ 12 \end{pmatrix} = \begin{pmatrix} 97 \\ 108 \end{pmatrix}, \\ B \begin{pmatrix} 15 \\ 20 \end{pmatrix} = \begin{pmatrix} 175 \\ 180 \end{pmatrix}, \quad B \begin{pmatrix} 20 \\ 20 \end{pmatrix} = \begin{pmatrix} 180 \\ 180 \end{pmatrix}$$

模 26 运算后得:

$$\begin{pmatrix} 8 \\ 4 \end{pmatrix}$$
, $\begin{pmatrix} 19 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 19 \\ 24 \end{pmatrix}$, $\begin{pmatrix} 24 \\ 24 \end{pmatrix}$

● 查表后得明文分别为: HD SD SX XX

Hill2 加密过程总结

- ① 通讯双方确定加密矩阵(密钥)和字母的表值对应表
- ② 将明文字母分组,通过查表列出每组字母对应的向量α 若明文只含奇数个字母,则补充一个哑元
- ③ 令 $\beta = A \alpha \mod(m)$,由 β 的分量反查字母表值表, 得到相应的密文字母

Hill2 解密过程总结

- ① 将密文字母分组,通过查表列出每组字母对应的向量 β
- ② 求出加密矩阵 A 的 模 m 逆矩阵 B
- ③ 令 $\alpha = B*\beta \mod(m)$,由 α 的分量反查字母表值表,得到相应的明文字母

甲方收到乙方(己方)的一个密文信息,内容为:

WKVACPEAOCIXGWIZUROQWAB ALOHDKCEAFCLWWCVLEMIMCC

按照甲方与乙方的约定,他们之间采用 $Hill_2$ 密码,密钥为 $A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$,字母表值见下表,问这段密文的原文是什么?

A	В	C	D	E	F	G	H	I	J	K	L	M
1	2	3	4	5	6	7	8	9	10	11	12	13
N	O	P	Q	R	S	T	U	V	W	X	Y	Z
14	15	16	17	18	19	20	21	22	23	24	25	0

- ① 将密文字母分组,通过查表列出每组字母对应的向量
- ② 求出加密矩阵 A 的 模 26 逆矩阵

$$B = \begin{bmatrix} 1 & 8 \\ 0 & 9 \end{bmatrix}$$

③ 用 B 左乘每组密文字母组成的向量,然后再反查字母表值表,得到相应的明文字母

序号	分组 密文	密文表值	明文 表值	分组 明文
1	W	23	7	G
	K	11	21	U
2	V A	22 1	4 9	D I
3	C	3	1	A
	P	16	14	N
4	E	5	13	M
	A	1	9	I
5	O	15	13	M
	C	3	1	A
6	I	9	19	S
	X	24	8	H

序号	分组	密文	明文	分组
	密文	表值	表值	明文
7	G	7	9	I
	W	23	25	Y
8	I Z	9	9	I Z
9	U R	21 18	9	I F
10	O	15	21	U
	Q	17	23	W
11	W	23	5	E
	A	1	9	I
12	B	2	10	J
	A	1	9	I

序号	分组	密文	明文	分组
	密文	表值	表值	明文
13	L	12	2	B
	O	15	5	E
14	H	8	14	N
	D	4	10	J
15	K	11	9	I
	C	3	1	A
16	E	5	13	M
	A	1	9	I
17	F C	6 3	4 1	D A
18	L	12	14	N
	W	23	25	Y

	分组 密文	密文表值	明文 表值	分组 明文
19	W	23	21	U
	C	3	1	A
20	V	22	14	N
	L	12	4	D
21	E	5	5	E
	M	13	13	M
22	I	9	9	I
	M	13	13	M
23	C C	3 3	1 1	A A

密文

WKVACPEAOCIXGWIZUROQWAB ALOHDKCEAFCLWWCVLEMIMCC

原文

GU DIAN MI MA SHI YI ZI FU WEI JI BEN JIA MI DAN YUAN DE MI MA A

即: "古典密码是以字符为基本加密单元的密码"

Hill₂密码破译

我方截获一段密文

MOFAXJEABAUCRSXJLUYHQATCZHWBCSCP

经分析该密文是用 $Hill_2$ 密码 加密,且密文(U,C) 和(R,S)分别对应明文(T,A)和(C,O),问能否破译这段密文?

- 破译这段密文的关键是找到"密钥"和字母对应的表值
- 猜测密文是由26个字母组成,即 m=26, 经破译部门通过大量的统计分析和语言分析确定表值

A	В	C	D	E	F	G	Н	I	J	K	L	M
1	2	3	4	5	6	7	8	9	10	11	12	13
												
N	O	P	Q	R	S	\mathbf{T}	U	\mathbf{V}	\mathbf{W}	X	Y	Z

● 密文(U,C)和(R,S)分别对应明文(T,A)和(C,O)

|C| P = AC

● 得到加密矩阵的 模26逆矩阵 后,根据前面的解密方法即可得密文的原文

HE WILL VI SI TA CO LL EG ET HI SA FT ER NO ON