Ekansh Sharma

Contact Email: ekansh@cs.toronto.edu

INFORMATION Website: https://ekanshs.github.io/

GitHub: https://github.com/ekanshs

EDUCATION University of Toronto, Toronto, ON, Canada

Doctor of Philosophy, Computer Science, expected 2025

Thesis: Exploiting linear connectivity modulo permutations in neural networks

for parsimonious machine learning

Adviser: Prof. Daniel M. Roy

University of Toronto, Toronto, ON, Canada

Master of Science, Computer Science, conferred 2018 Thesis: Sparse exchangeable bi-partite graphs

Adviser: Prof. Daniel M. Roy

University of Toronto, Toronto, ON, Canada

Bachelor of Applied Science with Honors, Electrical Engineering, conferred 2016 Minor in Robotics and Mechatronics

Professional Experience

Vector Institute, Toronto, ON, Canada

Graduate Research Student

Fall 2018 - Present

Adviser: Prof. Daniel M. Roy

Research Interests: Deep learning; Transfer learning; Model compression.

Amazon.com, Edinburgh, UK

Applied Scientist Intern

Sponsored Display (Ads team)

Winter 2021

- Developed counterfactual analysis tools to assess the impact of different ad selection policies aimed at reducing costs for running explicit A/B tests.
- Conducted A/B tests to compare the performance of Upper Confidence Bound (UCB) algorithms against existing baseline ad selection methods at Amazon, measuring click-conversion rate.

Altera Corp., Toronto, ON, Canada

Software Engineering Intern

Fall 2014, Winter 2015

Detailed Placement Team

- Modeled bidirectional long wire congestion on the chip to get better wire use estimate during placement.
- Parallelized code segments in Versatile Place and Route to improve compile time.

Microsoft Corp., Redmond, WA, USA

Software Development Engineering Intern

Summer 2014

Azure Redis Cache Team

- Developed Redis output-cache provider feature for ASP.NET developers.
- Developed a command line prompt to access Redis Cache on Azure Portal.

Preprints

Sharma E., Roy D.M., Dziugaite G. K.. "The non-local merging problem: Permutation symmetries and variance collapse." *arXiv* preprint arXiv:2410.12766.

Refereed Publications Sharma E., Kwok D., Denton T., Roy D.M., Rolnick D., Dziugaite G. K.. "Simultaneous linear connectivity of neural networks modulo permutation." *Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer Nature Switzerland*, 2024 (link).

Naulet Z., Roy D.M., **Sharma E.**, Victor Veitch. "Bootstrap estimators for the tail-index and for the count statistics of graphex processes", *Electronic Journal of Statistics*, *Electron. J. Statist.* 15(1), 282-325, 2021 (link).

REFEREED CONFERENCE ABSTRACTS AND PRESENTATIONS Jain, R., Adnan, M., **Sharma, E.**, Ioannou, Y. "Winning Tickets from Random Initialization: Aligning Masks for Sparse Training." Presented at the *UniReps: 2nd Edition of the Workshop on Unifying Representations in Neural Models*. co-located with NeurIPS 2024. Vancouver, Canada (link).

Sharma E., Kwok D., Denton T., Roy D.M., Rolnick D., Dziugaite G. K. "Simultaneous linear connectivity of neural networks modulo permutation." Presented at the *Conference on Parsimony and Learning*, Spotlight Track 2024. Hong Kong, China (link).

Singh D., **Sharma E.**, Roy D. M., Dziugaite G.K. "Flat minima can fail to transfer to downstream tasks." Presented at the *PAC-Bayes meets Interactive Learning Workshop* co-located with ICML 2023. Hawaii, USA (link).

Sharma E., Roy D. M.. "Approximations in Probabilistic Programs: a Compositional Nonasymptotic analysis of Nested MCMC" Presented at the *ProbProg 2020* Cambridge, Massachussetts, USA (poster, talk).

Sharma E., Roy D. M.. "Auxiliary variables in probabilistic programs." Presented at the *Probabilistic Programming Systems Workshop (PPS 2018)* co-located with POPL2018. Los Angeles, California, USA. (slides)

Erdman L, **Sharma E.**, Unternahrer E., Dass S.H., O'Donnell K., Mostafavi S., Edgar R., Kobor M., Gaudreau H., Meaney M. and Goldenberg A.. "Modeling trajectories of mental health: challenges and opportunities." Presented at the *In NeurIPS Workshop Machine Learning for Health 2016*, Barcelona, Spain (link).

TECHNICAL REPORTS **Sharma E.**, Roy D. M.. "Approximations in Probabilistic Programs." $arXiv\ preprint\ arXiv:1912.06791.$ (poster)

Veitch, V., **Sharma, E.**, Naulet, Z., Roy, D. M. (2017). "Exchangeable modelling of relational data: checking sparsity, train-test splitting, and sparse exchangeable Poisson matrix factorization." arXiv preprint arXiv:1712.02311. (slides)

Undergraduate Research Projects

Autonomous Wing Assembly Process

 $Multidisciplinary\ Capstone\ Project$

- Client: Bombardier Aerospace, North York, ON
- Adviser: Prof. Jonathan Kelly
- Designed and built a functioning prototype of an autonomous robot to join two wing halves for Global Express 7000/8000 series of business jets.

Efficient implementation of a graphical model for identifying disease mechanisms in complex human diseases

- Adviser: Prof. Anna Goldenberg
- Implemented a graphical model that combines multiple sources of genetic and genomic data to identify sets of genes that could explain the presence of a disease in a larger number of patients.
- Changed the structure of graphical model that resulted in 40% run-time savings.

Extending the user-space implementation of online file system consistency checker using Linux ${\rm KVM}$

- Adviser: Prof. Ashvin Goel
- Worked on RECON, an online filesystem consistency checker.
- Extended the user-space implementation of RECON to use Linux KVM.

Awards and Honors	Vector Research Grant Department of Computer Science 50th Anniversary Graduate Scholarship University of Toronto Excellence Award Dean's Honors List	2018-2024 2017 2013, 2015 2011-2016
Skills	Programming Languages: Python, C,C++,C#, Java Deep-learning frameworks: JAX, PyTorch, Tensorflow	

TEACHING	Machine Learning (CSC2515)	Fall 2019, Fall 2021, Fall 2022
Assistantship	Data Structures and Analysis (CSC263)	Fall 2018
	Enriched Theory of Computation (CSC240)	Winter 2018
	Theory of Computation (CSC236)	Winter 2019. Winter 2017. Fall 2016

Relevant	Statistical Learning Theory; Graphs, Matrices, and Optimization; Algorithms for Pri-
Coursework	vate Data Analysis; Monte Carlo Methods; Computability and Logic; Compilers and
	Interpreters; Computational Neuroscience; Machine Learning; Inference Algorithms;
	Random Processes; Neural Networks; Robot Modeling and Control.

Academic	Served as a reviewer for ICLR 2020, ICLR 2021, NeurIPS2021, ICLR 2022 NeurIPS
SERVICES	2022, ICLR 2023, ICML 2023, NeurIPS 2023, ICML2024, ICML 2025.