Fall 2023 Econometrics I: Lecture 1

Review - Matrix Algebra, Probability & Statistics

Eric S. Lin

Department of Economics, National Tsing Hua University

September 10, 2024

Purposes

Important tools

- simple to multiple regression model using succinct expressions
- for complicated models
- ▶ Important concepts
 - probability (likelihood function, conditional prob)
 - statistics (testing procedure, size)
- ► Different from other disciplines
 - ▶ linear algebra
 - don't go too far
- ► Dirty your hand
 - listening is not enough
 - getting pieces of paper

Reference

- Econometric Analysis, 8th Edition, William H. Greene, Stern School of Business, New York University, 2021, Pearson
- ► PART VI. Appendices (online)
 - Appendix A: Matrix Algebra
 - Appendix B: Probability and Distribution Theory

Basics

- Vector, Matrix, Matrix addition, and Matrix subtraction
 - special case of a matrix: column vector, row vector
- Matrix multiplication
 If A is of order $m \times n$ [(rows) by (columns), size, dimension] and B is of order $n \times p$, then C = AB is of order $m \times p$. We say that matrices A and B are conformable.
 - ▶ use aii to denote a particular element of matrix A
- ► Matrix partition

$$A = (a_{ij}) = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

Matrix of Macro Data

			Column		
Row	1 Year	2 Consumption (billions of dollars)	3 GNP (billions of dollars)	4 GNP Deflator	5 Discount Rate (N.Y Fed., avg.)
1	1972	737.1	1185.9	1.0000	4.50
2	1973	812.0	1326.4	1.0575	6.44
3	1974	808.1	1434.2	1.1508	7.83
4	1975	976.4	1549.2	1.2579	6.25
5	1976	1084.3	1718.0	1.3234	5.50
6	1977	1204.4	1918.3	1.4005	5.46
7	1978	1346.5	2163.9	1.5042	7.46
8	1979	1507.2	2417.8	1.6342	10.28
9	1980	1667.2	2633.1	1.7864	11.77

Source: Data from the Economic Report of the President (Washington, D.C.: U.S. Government Printing Office, 1983).

Partition

Example

$$A = (a_{ij}) = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$

$$= \begin{bmatrix} A_{11(2\times3)} & A_{12(2\times1)} \\ A_{21(1\times3)} & A_{22(1\times1)} \end{bmatrix}$$

$$A_{11(2\times3)} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

$$A_{21(1\times3)} = \begin{bmatrix} a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Matrix Inverse and Transpose

Matrix inverse

$$A^{-1} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$$

A matrix which has an inverse is called to be nonsingular

- ► invertible matrix
- property: $(AB)^{-1} = B^{-1}A^{-1}$

Transpose Operator

- turns columns into rows (and vice versa)
- suppose x is a column vector
- $x' = x^T = [x_1, x_2, ..., x_n]$: row vector
- $x'x = \sum_{i=1}^n x_i^2$: a scalar
- $A' = (a_{ii})_{n \times m}$ [recall that $A = (a_{ii})_{m \times n}$]

Special Matrices

- Square matrix
 - ▶ an $m \times n$ matrix with m = n
- ► Identity matrix
 - a square matrix with ones on the main diagonal and zeros everywhere else
 - usually we use a generic notation I (or I_n) to denote an identity matrix
 - $\rightarrow AI = A$
 - $AA^{-1} = I$
- Symmetric matrix
 - a square matrix A is symmetric if $A = A' = A^T$
- Vectorize matrix
 - ▶ a matrix A can be reconfigure into a vector: $vec(A_{n\times k}) = nk \times 1$ column vector
 - ▶ $\operatorname{vec} \begin{bmatrix} 5 & 2 \\ 9 & 6 \end{bmatrix} = [5, 9, 2, 6]'$

Matrix Inverse and Transpose

Matrix inverse

$$A^{-1} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$$

A matrix which has an inverse is called to be nonsingular

- ► invertible matrix
- property: $(AB)^{-1} = B^{-1}A^{-1}$

▶ Transpose Operator

- turns columns into rows (and vice versa)
- suppose x is a column vector
- $x' = x^T = [x_1, x_2, ..., x_n]$: row vector
- $x'x = \sum_{i=1}^n x_i^2$: a scalar
- $A' = (a_{ii})_{n \times m}$ [recall that $A = (a_{ii})_{m \times n}$]

Some Matrices Operations

- Consider a column vector x (and y) of dimension n and a column vector ι with each element being 1 (same dimension n)
- $ightharpoonup \sum_{i=1}^n ax_i = a\sum_{i=1}^n x_i = a\iota'x$ for a constant a
- ▶ If a = 1/n, $a \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i/n = \bar{x}$

Inverse of Partition Matrix

► Inverse of partition matrix

Let

$$A = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right].$$

If A_{11} and A_{22} are nonsingular, then

$$A^{-1} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} B_{11} & -B_{11}A_{12}A_{22}^{-1} \\ -A_{22}^{-1}A_{21}B_{11} & A_{22}^{-1} + A_{22}^{-1}A_{21}B_{11}A_{12}A_{22}^{-1} \end{bmatrix},$$

where $B_{11} = (A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1}$.

Special case (block diagonal):

$$\left[\begin{array}{cc} A_{11} & \mathbf{0} \\ \mathbf{0} & A_{22} \end{array}\right]^{-1} = \left[\begin{array}{cc} A_{11}^{-1} & \mathbf{0} \\ \mathbf{0} & A_{22}^{-1} \end{array}\right].$$

Determinant & Trace

Determinant

$$|A| = \begin{vmatrix} a & c \\ b & d \end{vmatrix} = ad - bc.$$

Properties:

- ▶ Trace

Trace is the summation of the diagonal elements of a square matrix.

$$\operatorname{tr}(A) = \sum_{i} a_{ii}.$$

▶ Important property of the trace: tr(ABC) = tr(CAB) = tr(BCA)

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q♥

Kronecker product

Kronecker product

If A is of order $m \times n$ and B is of order $p \times q$, then $C = A \otimes B$ is of order $mp \times nq$. We call matrix C as the Kronecker product of A and B.

$$C = A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \dots & a_{1n}B \\ a_{21}B & a_{22}B & \dots & a_{2n}B \\ \dots & \dots & \dots & \dots \\ a_{m1}B & a_{m2}B & \dots & a_{mn}B \end{bmatrix}.$$

Applications:

- SUR
- Panel data

Idempotent Matrix

► Idempotent matrix

Multiplying matrix A by itself simply reproduces matrix $A \rightsquigarrow AA = A$

Example

Let ι be the $n \times 1$ column vector [1, 1, ..., 1, 1]'. Define $P \equiv \iota (\iota' \iota)^{-1} \iota'$ and $M \equiv I_n - P$.

- Both P and M are symmetric and idempotent matrices.
- 2 Furthermore we have PM = 0.
- Premultiplying matrix P will produce the average matrix.
- Premultiplying matrix M will produce deviation (from mean) matrix.

P Matrix

Example

 $\iota'\iota=n$ so $(\iota'\iota)^{-1}=1/n$. The P matrix looks like this:

$$P = \begin{bmatrix} 1/n & \dots & 1/n \\ \dots & \dots & \dots \\ 1/n & \dots & 1/n \end{bmatrix}$$

Idempotent Matrix

Example

Projection matrix and residual making matrix in linear regression model

$$Y = X\beta + \varepsilon$$

$$PY = PX\beta + P\varepsilon = \hat{Y}$$

$$MY = MX\beta + M\varepsilon = e$$

$$P = X(X'X)^{-1}X'$$

$$M = I - P$$

Rank of a Matrix

Rank of a matrix

We define the maximum number of linearly independent columns (or rows) in the matrix as the rank of a matrix. Note that # of linearly independent columns must be equal to # linearly independent rows. Rank of a $m \times n$ matrix should satisfy $\operatorname{rank} \leq \min(m, n)$. If the rank of a matrix is m, the matrix is said to have full row rank. If the rank of a matrix is n, the matrix is said to have full column rank.

Example:

$$A = \left[\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 1 \\ 2 & 2 & 4 & 5 \end{array} \right]$$

- ▶ It is obvious that rank(A) \leq 3 or ρ (A) \leq 3
- It turns out that rank(A) = 2 or $\rho(A) = 2$

Rank in Linear Regression Model

In a linear regression model we have the following data matrix:

$$X_{n \times k} = \begin{bmatrix} 1 \text{ (var1)} & var2 & var3 & ... & vark \\ ... & ... & ... & ... & ... \\ 1 \text{ (var1)} & var2 & var3 & ... & vark \end{bmatrix}$$

- ▶ There are total *n* observations in row
- ▶ There are total k explanatory variables in column
- ▶ Since $n \gg k$, rank $\leq \min(n, k)$
- ▶ Identification requires full column rank, i.e, $\rho(X) = k$

Eigenvalue & Eigenvector

Eigenvalue and eigenvector Consider a square matrix A, if there are a vector c and a scalar λ such that

$$Ac = \lambda c$$
.

uninteresting value for c? can write the equation as

$$(A - \lambda I)c = 0$$

characteristic equation

$$|A - \lambda I| = 0$$
 (why? if not $c = 0$)

- ▶ a root of above polynomial equation, λ_i is an eigenvalue of A
- \blacktriangleright the corresponding c_i is called an eigenvector of A
- ► Example:

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & -4 \\ 4 & -7 \end{bmatrix}$$

Why Do We Care about Eigenvalues?

- ▶ An $n \times n$ matrix A is positive definite if all eigenvalues of A, $\lambda_1, \lambda_2, ..., \lambda_n$ are positive
 - A matrix is negative-definite, negative-semidefinite, or positive-semidefinite if and only if all of its eigenvalues are negative, non-positive, or non-negative, respectively
- ► The eigenvectors corresponding to different eigenvalues are linearly independent. So if an n × n matrix A has n nonzero eigenvalues, it is of full rank
- ► The trace of a matrix is the sum of the eigenvectors
- ► The determinant of a matrix is the product of the eigenvectors
- ► The eigenvectors and eigenvalues of the covariance matrix of a data set are also used in principal component analysis (similar to factor analysis)

Diagonalization

Diagonalization

Collecting all *n* solutions produces the following.

$$A \begin{bmatrix} c_1 & c_2 & \dots & c_n \end{bmatrix} = \begin{bmatrix} \lambda_1 c_1 & \lambda_2 c_2 & \dots & \lambda_n c_n \end{bmatrix}$$

$$= \begin{bmatrix} c_1 & c_2 & \dots & c_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix},$$

which could be written as

$$AC = C\Lambda$$
.

If C is nonsingular, we will have $C^{-1}AC = \Lambda$ and say that the matrix of eigenvectors serves to diagonalize the A matrix.

For a symmetric matrix A, it turns out that eigenvectors are orthogonal and we can make them normalized. (orthonormal)

Properties of Eigenvalues

Properties of Eigenvalues

- Eigenvalues of a symmetric matrix are all real.
- ▶ Eigenvalues of a nonsymmetric matrix may be real or complex.
- ▶ The rank of A is equal to the number of nonzero eigenvalues.

$$|A| = |C^{-1} \Lambda C| = \prod_{i=1}^{n} \lambda_i$$

non-zero eigenroot and non-singular matrix

- $\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i$
- Every eigenroot of an idempotent matrix is either 0 or 1.
 - note that $A^h c = \lambda^h c$
 - for instance, $Ac = \lambda c = A^2c = A\lambda c = \lambda^2c$

Quadratic Forms

Quadratic forms

Consider a $n \times n$ symmetric matrix A and a $n \times 1$ vector \mathbf{x} , the scalar

$$q = \mathbf{x}' A \mathbf{x} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

is called the quadratic form. If $q \ge 0$ (q > 0) for any $x \ne 0$, then A is said to be positive semi-definite (positive definite). If $q \le 0$ (q < 0) for any $x \ne 0$, then A is said to be negative semi-definite (negative definite). The idea above is quite similar to the scalar case. If matrix difference A - B is p.d. (p.s.d.), we say that A > B ($A \ge B$).

- Matrix differentiation
 - ▶ (Case I) scalar f and $n \times 1$ vector \mathbf{x}

$$\frac{\partial f}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \dots \\ \frac{\partial f}{\partial x_n} \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ \dots \\ f_n \end{bmatrix}$$

$$\frac{\partial^2 f}{\partial \mathbf{x} \partial \mathbf{x}'} = \begin{bmatrix} f_{11} & f_{12} & \dots & f_{1n} \\ f_{21} & f_{22} & \dots & f_{2n} \\ \dots & \dots & \dots & \dots \\ f_{n1} & f_{n2} & \dots & f_{nn} \end{bmatrix}, \text{ where } f_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

• If $f = a'\mathbf{x} = \mathbf{x}'a$, $\partial(a'\mathbf{x})/\partial\mathbf{x} = \partial(\mathbf{x}'a)/\partial\mathbf{x} = a$.

Example

If eta and \emph{a} are both $\emph{k} \times 1$ vectors then, $\frac{\partial \emph{\beta}' \emph{a}}{\partial \emph{\beta}} = \emph{a}$

Proof.

$$\frac{\partial \beta' a}{\partial \beta} = \frac{\partial}{\partial \beta} (\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_k a_k)$$

$$= \begin{bmatrix}
\frac{\partial}{\partial \beta_1} (\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_k a_k) \\
\frac{\partial}{\partial \beta_2} (\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_k a_k) \\
\dots \\
\frac{\partial}{\partial \beta_k} (\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_k a_k)
\end{bmatrix}$$

$$= a$$

- Matrix differentiation
 - ► (Case II) $m \times 1$ vector f and $n \times 1$ vector \mathbf{x} Gradient is

$$\frac{\partial f}{\partial \mathbf{x}} = \begin{bmatrix} f_{11} & f_{12} & \dots & f_{1m} \\ f_{21} & f_{22} & \dots & f_{2m} \\ \dots & \dots & \dots & \dots \\ f_{n1} & f_{n2} & \dots & f_{nm} \end{bmatrix}_{n \times m}, \text{ where } f_{ij} = \frac{\partial f_j}{\partial x_i}$$

- ▶ If f = Ax, $\partial (Ax)/\partial x \equiv \partial (x'A')/\partial x = A'$.
- ► (Case III) scalar f and n × k matrix A Gradient is

$$\frac{\partial f}{\partial A} = \begin{bmatrix} f_{11} & f_{12} & \dots & f_{1k} \\ f_{21} & f_{22} & \dots & f_{2k} \\ \dots & \dots & \dots & \dots \\ f_{n1} & f_{n2} & \dots & f_{nk} \end{bmatrix}, \text{ where } f_{ij} = \frac{\partial f}{\partial a_{ij}}$$

Example

If β be a $k \times 1$ vector and A be a $n \times k$ matrix then $\frac{\partial A\beta}{\partial \beta'} = A$.

Proof.

$$\begin{split} \frac{\partial A\beta}{\partial \beta'} &= \frac{\partial}{\partial \beta'} \begin{bmatrix} a_{11}\beta_1 + a_{12}\beta_2 + \ldots + a_{1k}\beta_k \\ a_{21}\beta_1 + a_{22}\beta_2 + \ldots + a_{2k}\beta_k \\ \ldots \\ a_{n1}\beta_1 + a_{n2}\beta_2 + \ldots + a_{nk}\beta_k \end{bmatrix} \\ &= \begin{bmatrix} \begin{bmatrix} \frac{\partial}{\partial \beta_1} & \ldots & \frac{\partial}{\partial \beta_k} \\ [\frac{\partial}{\partial \beta_1} & \ldots & \frac{\partial}{\partial \beta_k} \end{bmatrix} a_{11}\beta_1 + a_{12}\beta_2 + \ldots + a_{1k}\beta_k \\ [\frac{\partial}{\partial \beta_1} & \ldots & \frac{\partial}{\partial \beta_k} \end{bmatrix} a_{21}\beta_1 + a_{22}\beta_2 + \ldots + a_{2k}\beta_k \\ \ldots \\ [\frac{\partial}{\partial \beta_1} & \ldots & \frac{\partial}{\partial \beta_k} \end{bmatrix} a_{n1}\beta_1 + a_{n2}\beta_2 + \ldots + a_{nk}\beta_k \end{bmatrix} = A \end{split}$$

Matrix differentiation

Properties:

$$\qquad \qquad \qquad \qquad \qquad \qquad \frac{\partial A \mathbf{x}}{\partial \mathbf{x}} = A'$$

$$\begin{array}{l} \stackrel{\partial \mathbf{x}' A \mathbf{x}}{\partial \mathbf{x}} = (A + A') \mathbf{x} \\ \stackrel{\partial \mathbf{x}' A \mathbf{x}}{\partial \mathbf{x}} = 2A \mathbf{x} \text{ if } A \text{ is symmetric.} \end{array}$$

Example

Let β be a 2×1 vector and A be a 2×2 symmetric matrix then $\frac{\partial \beta' A\beta}{\partial \beta}=2A\beta$

Proof.

$$\frac{\partial \beta' A \beta}{\partial \beta} = \frac{\partial}{\partial \beta} (\beta_1^2 a_{11} + 2a_{12}\beta_1 \beta_2 + \beta_2^2 a_{22})
= \begin{bmatrix} \frac{\partial}{\partial \beta_1} (\beta_1^2 a_{11} + 2a_{12}\beta_1 \beta_2 + \beta_2^2 a_{22}) \\ \frac{\partial}{\partial \beta_2} (\beta_1^2 a_{11} + 2a_{12}\beta_1 \beta_2 + \beta_2^2 a_{22}) \end{bmatrix}
= \begin{bmatrix} 2\beta_1 a_{11} + 2a_{12}\beta_2 \\ 2\beta_1 a_{12} + 2a_{22}\beta_2 \end{bmatrix} = 2A\beta$$

Some Concepts

- Population vs. sample
- ► Random variable

R.V. is a variable which we assign a set of possible values and associated probabilities.

- Example: Pr(Head) = Pr(X = 1) = 1/2.
- Probability density function: f(x) $f(x) \ge 0$ for all x, $\int_{-\infty}^{\infty} f(x) dx = 1$ and $\int_{a}^{b} f(x) dx = \Pr[a < x < b]$.
- ► Cumulative density function: F(x) $F(x) = \Pr[X \le x] \ge 0$ for all x $\int_{-\infty}^{x} f(x) dx = F(x)$
- Expectation and variance $E[X] = \int xf(x)dx = \mu$ $var[X] = E[X^2] [E[X]]^2 = E[X^2] \mu^2$

Random Variable I

Random Variable II

Some Concepts

Chebyshev inequality

$$\Pr[|X - E[X]| > t] \le \frac{\operatorname{var}[X]}{t}$$
, for any $t > 0$

- other inequalities in asymptotics later on
- Cauchy-Schwartz inequality

$$\mathsf{E}[XY]^2 \le \mathsf{E}[X^2]\mathsf{E}[Y^2]$$

- Let X and Y be zero mean variables
- correlation coefficient?
- analogy principle; sample counterpart?

$$\sum_{i=1}^{n} [X_i Y_i]^2 \le \sum_{i=1}^{n} [X_i^2] \sum_{i=1}^{n} [Y_i^2]$$

Delta Method

▶ Delta method Given $E[X] = \mu$. What are the expectation and variance of g(X)? By linear Taylor expansion, we have

$$g(X) \simeq g(\mu) + g'(\mu)(X - \mu)$$
.

Therefore, one could approximate E[g(X)] and var[g(X)] by the following:

$$\mathsf{E}\left[g\left(X\right)\right]\simeq g\left(\mu\right)$$
 $\mathsf{var}\left[g\left(X\right)\right]\simeq\left[g'\left(\mu\right)\right]^{2}\mathsf{var}\left[X\right]$

Uncorrelatedness and Independence

- Uncorrelatedness and Independence
 - (Stochastic) Independence implies uncorrelatedness but not vice versa.
 - \triangleright cov(X, Y) = E(XY) E(X)E(Y) = ...

Law of Iterative Expectation & Decomposition of Variance

- ► Law of Iterative Expectation (LIE or Double Expecations) E[Y] =E_X[E[Y|X]]
 - Proof:
 - $\iint yf(x,y)dxdy = \iint yf(y|x)f(x)dxdy = \iint E[y|x]f(x)dx$
 - if $E[Y|X] = 0 \Rightarrow E[Y] = 0$, E[XY] = 0, and Cov[X, Y] = 0
- ► Decomposition of Variance $var[y] = var_x[E[y|x]] + E_x[var[y|x]]$

Normal & Chi-square Distributions

Normal distribution If $X \sim \mathcal{N}(\mu, \sigma^2)$, the normal density is

$$f(x|\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right].$$

- ▶ Special case: standard normal $X \sim \mathcal{N}(0,1)$.
- ▶ Multivariate normal $X \sim \mathcal{N}(\mu, \Sigma)$.

$$f(x) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\right],$$

where Σ is the variance-covariance matrix.

4 D > 4 B > 4 E > 4 E > E 9 Q C

Chi-square Distribution

- ► Chi-square distribution If $Z \sim \mathcal{N}(0,1)$, then $X = Z^2 \sim \mathcal{X}^2(1)$.
- ▶ Sum of \mathcal{X}^2 distributions: If $x_1, ..., x_n$ are n independent \mathcal{X}^2 (1), then $\sum_{i=1}^n X_i \sim \mathcal{X}^2$ (n).
- ▶ Furthermore, we have $E[\mathcal{X}^2(n)] = n$ and $var[\mathcal{X}^2(n)] = 2n$.
- ▶ If $W \sim \mathcal{N}(\mathbf{0}, \Sigma)$, what is the distribution of $W'\Sigma^{-1}W$?
- ▶ If W_i 's are uncorrelated and have the distribution $\mathcal{N}\left(0, \sigma_i^2\right)$, what is the distribution of $W'\Sigma^{-1}W$?
 - Wald-type statistic when we talk about trinity of test

F & t Distributions

F distribution

If x_1 and x_2 are two independent Chi-squared random variables with degrees of freedom n_1 and n_2 , respectively, then the ratio

$$F(n_1, n_2) = \frac{x_1/n_1}{x_2/n_2}$$

is the F distribution with n_1 and n_2 degrees of freedom.

- ▶ convergence of $n_1 F$ as $n_2 \to \infty$?
- ▶ t distribution

If $Z \sim \mathcal{N}(0,1)$, and $X = \mathcal{X}^2(n)$ is independent of Z, then t distribution with n degrees of freedom is defined below.

$$t(n) = \frac{Z}{\sqrt{X/n}}.$$

► Other distributions: Gamma, Beta, Logistic, Bernoulli, Binomial, Poisson,..., etc.

Some Univariate Distributions

Example

Consider a random sample X_i drawing from the uniform distribution $\mathcal{U}[0,1]$. Compute $\mathsf{E}[X_i]$ and $\mathsf{var}[X_i]$.

Example

Consider a random sample Y_i drawing from the exponential distribution $\mathcal{E}xp[1]$. Compute $E[Y_i]$ and $var[Y_i]$. [Note: The density of Y_i is given by $f(y_i) = \exp(-y_i)$.]

Bivariate Distributions

▶ Bivariate distributions
Joint density of x and y: f(x,y). The joint probability is defined as

$$\Pr\left[a < x \le b, c < y \le d\right] = \int_a^b \int_c^d f\left(x, y\right) dy dx.$$

Marginal density of x is

$$f_{x}(x) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d}y.$$

• If x and y are independent, then $f(x, y) = f_x(x) f_y(y)$.

4回 > 4回 > 4 回

Transformation of Random Variables

▶ Transformation of random variables
If x is a continuous variable with density $f_x(x)$, and y = g(x) is a continuous *monotonic* function of x, then the density of y could be obtained by

$$f_{y}(y) = f_{x}\left[g^{-1}(y)\right] \left|\frac{d}{dy}g^{-1}(y)\right|.$$

In many application, the function g may be monotone over certain intervals. If this is the case, we have to handle it interval by interval. For instance, $Y = X^2$.

Transformation of Random Variables

Example

Let $x \sim \mathcal{N}\left(\mu, \sigma^2\right)$, we are interested in the density of $y = (x - \mu)/\sigma$. Clearly, $g^{-1}\left(y\right) = x = \sigma y + \mu$. Jacobian term is $\left| \mathrm{d}g^{-1}\left(y\right)/\mathrm{d}y \right| = \left| \sigma \right|$. Hence,

$$f_{y}(y) = f_{x}[\sigma y + \mu] |\sigma| = \left[\frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(\sigma y)^{2}}{2\sigma^{2}}\right]\right] |\sigma|$$

Sampling Distribution

Sampling distribution

A sample of n observations, $x_1, ..., x_n$, is a random sample if n observations are drawn *independently* from the same (*identical*) density, f(x). Note that the abbreviation: *i.i.d.* (*independently identically distributed*)

Example

 $x_1, ..., x_n$, i.i.d. from $f(x) = \theta \exp[-\theta x]$ with $0 < x < \infty$. Please find out the sampling distribution of the sample minimum, $x_{(1)}$.

Estimator

► Estimator
In practice, we use a function of data to estimate the population parameters. The function of data is called estimator.

Example

One may use sample mean \bar{x} (or $x_{(1)}$) to estimate population parameter μ . Which's better?

Finite Sample Properties of Estimator

- ► Finite sample properties of estimator
 - **1** Unbiased estimator: $E[\hat{\theta}] = \theta$.
 - ② Efficient unbiased estimator: For unbiased estimator $\hat{\theta}_1$ and $\hat{\theta}_2$, if $var[\hat{\theta}_1] < var[\hat{\theta}_2]$, we say that unbiased estimator $\hat{\theta}_1$ is more efficient than another unbiased estimator $\hat{\theta}_2$. For vector case, we need $var[\hat{\theta}_1] var[\hat{\theta}_2]$ to be n.s.d.
 - Mean squared error (MSE):

$$\begin{aligned} \mathsf{MSE}[\hat{\theta}] &= \mathsf{E}[(\hat{\theta} - \theta)^2] \\ &= \mathsf{var}[\hat{\theta}] + [\mathsf{E}[\hat{\theta}] - \theta]^2 (\mathsf{why?}) \\ &= \mathsf{var}[\hat{\theta}] + \mathsf{Bias}[\hat{\theta}]^2. \end{aligned}$$

MLE

Maximum likelihood estimation [MLE] $x_1, ..., x_n$, is an i.i.d. random sample drawn from $f(x_i, \theta)$. The likelihood function (joint density) is

$$f(x_1, x_2, ...x_n, \theta) = \prod_{i=1}^n f(x_i, \theta) = \mathcal{L}(\theta | x_1, x_2, ...x_n).$$

Example

The likelihood function of exponential distribution is

$$\mathcal{L}(\theta|x_1,x_2,...x_n) = \prod_{i=1}^n \theta e^{-\theta x_i} = \theta^n e^{-\theta \sum_{i=1}^n x_i}.$$

CRLB

▶ Cramér-Rao Lower Bound [CRLB] Under some regularity conditions, the variance of an unbiased estimator of parameter θ will be at least as large as the inverse of information matrix $(\mathcal{I}(\theta))$.

$$\left[\mathcal{I}\left(\theta\right)\right]^{-1} = \left[-\mathsf{E}\left[\frac{\partial^{2}\ln\mathcal{L}\left(\theta\right)}{\partial\theta^{2}}\right]\right]^{-1} = \left[\mathsf{E}\left[\left(\frac{\partial\ln\mathcal{L}\left(\theta\right)}{\partial\theta}\right)^{2}\right]\right]^{-1}.$$

- Consider random sampling a normal distribution and derive the variance bound.
- ► Take two unbiased estimator $\hat{\mu} = \bar{x}$ and $\hat{\sigma}^2 = \sum_{i=1}^n (x_i \bar{x})^2 / n 1$. (why?)
- ▶ Do they achieve CRLB?
- Log-Likelihood function:

$$\ln \mathcal{L}(\mu, \sigma^2) = -\frac{n}{2} \ln (2\pi) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

- Example of MLE and CRLB
 - ► FOCs:

$$\frac{\partial \ln \mathcal{L}(\theta)}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu),$$

$$\frac{\partial \ln \mathcal{L}(\theta)}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2$$

$$\frac{\partial^2 \ln \mathcal{L}(\theta)}{\partial \mu^2} = -\frac{n}{\sigma^2},$$

$$\frac{\partial^2 \ln \mathcal{L}(\theta)}{\partial (\sigma^2)^2} = \frac{n}{2\sigma^4} - \frac{1}{\sigma^6} \sum_{i=1}^n (x_i - \mu)^2$$

$$\frac{\partial^2 \ln \mathcal{L}(\theta)}{\partial \mu \partial \sigma^2} = -\frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu)$$

- Example of MLE and CRLB Continued
 - ► Information matrix is

$$\mathcal{I}\left(\theta\right) = \left[egin{array}{cc} rac{n}{\sigma^2} & 0 \ 0 & rac{n}{2\sigma^4} \end{array}
ight].$$

Now we know $\mathcal{I}(\theta)^{-1}$ is the variance bound of unbiased estimators of μ and σ^2 .

$$\mathcal{I}(\theta)^{-1} = \left[\begin{array}{cc} \frac{\sigma^2}{n} & 0\\ 0 & \frac{2\sigma^4}{n} \end{array} \right].$$

• Variance matrix of $\hat{\mu}$ and $\hat{\sigma}^2$ is

$$\operatorname{var}[\hat{\theta}] = \begin{bmatrix} \frac{\sigma^2}{n} & 0\\ 0 & \frac{2\sigma^4}{n-1} \end{bmatrix}.$$

◆ロト 4回ト 4 三ト 4 三 り へ ○

- ► Example of MLE and CRLB Continued
 - ► Therefore,

$$\operatorname{\mathsf{var}}[\hat{\theta}] - \mathcal{I}(\theta)^{-1} = \left[\begin{array}{cc} 0 & 0 \\ 0 & \frac{2\sigma^4}{(n-1)n} \end{array} \right].$$

Conclusion is that $\hat{\mu}$ attains CRLB but not $\hat{\sigma}^2$.

