



# Post-Quantum Key Exchange for IEEE 802.1AE

Antrittsvortrag zur Masterarbeit

#### Robin Lösch

loesch@cip.ifi.lmu.de

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer: Tobias Guggemos

Betreuer: Sophia Grundner-Culemann







# **Practical Quantum Computer**

When to panic?





## **Practical Quantum Computer**

### When to panic?

- #Qubits to break a n-bit key
  - RSA: 2n + 2[1]
  - DLP:  $9n + 2 \ln(n)$  [2]







## **Practical Quantum Computer**

## When to panic?

- #Qubits to break a n-bit key
  - RSA: 2n + 2[1]
  - DLP:  $9n + 2 \ln(n)$  [2]
- Coherency time
  - Keeping the state is tricky
  - Hard to predict
  - Strongly depends on technology







# **Practical Quantum Computer**

• Even if we assume a Moore-like exp growth we still got plenty of time





# **Practical Quantum Computer**

- Even if we assume a Moore-like exp growth we still got plenty of time
- We should use this time!





## **Practical Quantum Computer**

- Even if we assume a Moore-like exp growth we still got plenty of time
- We should use this time!
  - 1. Design quantum safe crypto schemes





## **Practical Quantum Computer**

- Even if we assume a Moore-like exp growth we still got plenty of time
- We should use this time!
  - 1. Design quantum safe crypto schemes
  - 2. Implement quantum safe crypto schemes