Convolutional neural networks for classification of transmission electron microscopy imagery

Sergii Gryshkevych

Uppsala University

December 14, 2016

Introduction

Introduction

The Accuracy Paradox

Models with a given accuracy may have greater predictive power than models with higher accuracy.

Confusion matrix

	Predicted True	Predicted False
Actual True	True Positive	False Negative
Actual False	False Positive	True Negative

True positive rate (TPR)

AKA sensitivity or recall: $TPR = \frac{TP}{TP + FN}$

True positive rate (TPR)

AKA sensitivity or recall: $TPR = \frac{TP}{TP+FN}$

True negative rate (TNR)

AKA specificity: $TNR = \frac{TN}{TN + FP}$

True positive rate (TPR)

AKA sensitivity or recall: $TPR = \frac{TP}{TP + FN}$

True negative rate (TNR)

AKA specificity: $TNR = \frac{TN}{TN \perp FP}$

Positive predicted value (PPV)

AKA precision: $PPV = \frac{TP}{TP + FP}$

True positive rate (TPR)

AKA sensitivity or recall: $TPR = \frac{TP}{TP+FN}$

True negative rate (TNR)

AKA specificity: $TNR = \frac{TN}{TN + FP}$

Positive predicted value (PPV)

AKA precision: $PPV = \frac{TP}{TP + FP}$

Negative predicted value (NPV)

 $NPV = \frac{TN}{TN + FN}$

True positive rate (TPR)

AKA sensitivity or recall: $TPR = \frac{TP}{TP + FN}$

True negative rate (TNR)

AKA specificity: $TNR = \frac{TN}{TN \perp FP}$

Positive predicted value (PPV)

AKA precision: $PPV = \frac{TP}{TP + FP}$

Negative predicted value (NPV)

$$NPV = \frac{TN}{TN + FN}$$

F_1 score

It is a harmonic mean of TPR and TNR

• Rotation in the range [-180, 180] degrees with spline interpolation

- ullet Rotation in the range [-180, 180] degrees with spline interpolation
- ullet Shear transformation in the range [0,0.2]

- Rotation in the range [-180, 180] degrees with spline interpolation
- Shear transformation in the range [0, 0.2]
- Vertical shift in the range [-10, 10] percent of total height

- Rotation in the range [-180, 180] degrees with spline interpolation
- Shear transformation in the range [0, 0.2]
- Vertical shift in the range [-10, 10] percent of total height
- Horizontal shift in the range [-10, 10] percent of total width

- Rotation in the range [-180, 180] degrees with spline interpolation
- Shear transformation in the range [0, 0.2]
- Vertical shift in the range [-10, 10] percent of total height
- Horizontal shift in the range [-10, 10] percent of total width
- Zoom in the range [0.8, 1.0] which means zoom by a maximum 20%

- Rotation in the range [-180, 180] degrees with spline interpolation
- Shear transformation in the range [0, 0.2]
- Vertical shift in the range [-10, 10] percent of total height
- Horizontal shift in the range [-10, 10] percent of total width
- Zoom in the range [0.8, 1.0] which means zoom by a maximum 20%
- Horizontal flip

- Rotation in the range [-180, 180] degrees with spline interpolation
- Shear transformation in the range [0, 0.2]
- Vertical shift in the range [-10, 10] percent of total height
- Horizontal shift in the range [-10, 10] percent of total width
- Zoom in the range [0.8, 1.0] which means zoom by a maximum 20%
- Horizontal flip
- Vertical flip

Data augmentation example

Effect of the data augmentation

Network architectures

Popularity of deep learning software as of October 2016

CNN vs SVM: Lamellarity

CNN vs SVM: Encapsulation

