Digital Integrated Circuit Lecture 14 Delay

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

GIST Lecture

Review of Previous Lecture

- Analytic solution of Homework#4
 - -The transfer function (to V_2) is given by 1

$$H(s) = \frac{1}{\tau_1 \tau_2} \frac{1}{\left(s + \frac{1}{\tau_1}\right) \left(s + \frac{1}{\tau_2}\right)}$$

where
$$au_1 = \frac{3+\sqrt{5}}{2}RC$$
 and $au_2 = \frac{3-\sqrt{5}}{2}RC$.

– The step response, $V_2(s)$, is written as 1

$$V_2(s) = \frac{1}{\tau_1 \tau_2} \frac{1}{\left(s + \frac{1}{\tau_1}\right) \left(s + \frac{1}{\tau_2}\right) s}$$

- Analytic solution of Homework#4
 - It can be re-written as as

$$V_2(s) = -\frac{\tau_1}{\tau_1 - \tau_2} \frac{1}{s + \frac{1}{\tau_1}} + \frac{\tau_2}{\tau_1 - \tau_2} \frac{1}{s + \frac{1}{\tau_2}} + \frac{1}{s}$$

- By the inverse transform,

$$V_2(t) = -\frac{\tau_1}{\tau_1 - \tau_2} e^{-\frac{t}{\tau_1}} + \frac{\tau_2}{\tau_1 - \tau_2} e^{-\frac{t}{\tau_2}} + u(t)$$

– In our problem, $V_{in}(t) = 1 - u(t)$. Therefore,

$$V_2(t) = \frac{\tau_1}{\tau_1 - \tau_2} e^{-\frac{t}{\tau_1}} - \frac{\tau_2}{\tau_1 - \tau_2} e^{-\frac{t}{\tau_2}}$$

Parasitic delay of a 2-input NAND gate

-Why p = 2?

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1	_			
NAND	(2	3	4	n
NOR		2	3	4	n
Tristate / mux	2	4	6	8	2n
XOR, XNOR		4	6	8	

- Effort delay, f, explained again
 - Consider a logic gate, whose width is k times wider than the unit one.
 - –Simply speaking, τ due to the effort is written as

$$\tau = \frac{R}{k} C_{out}$$

– By introducing the electrical effort, $h = \frac{c_{out}}{c_{in}}$,

$$\tau = \frac{R}{k} C_{in} h$$

-The input capacitance, C_{in} , is related with the logical effort:

$$C_{in} = 3C g k$$

- -Then, $\tau = 3RC g h$.
- -Therefore, f = g h.

4.5 Logical Effort of Paths

4.5. Logical effort of paths (1)

- Multistage logic networks
 - Logical effort is independent of size.
 - Electrical effort depends on sizes.

Fig. 4.29

- What is the total propagation delay?

$$D = \frac{x}{10} + 1 + \frac{5y}{3x} + 2 + \frac{4z}{3y} + 2 + \frac{20}{z} + 1$$

4.5. Logical effort of paths (2)

- Minumum propagation delay?
 - Parasitic delay is given as 6.

$$D = 6 + \frac{x}{10} + \frac{5y}{3x} + \frac{4z}{3y} + \frac{20}{z}$$

- Minimize the effort delay.
- Recall the inequality of arithmetic and geometric means

$$f_1 + f_2 + \dots + f_N \ge N \sqrt[N]{f_1 f_2 \dots f_N}$$

The equality holds if and only if $f_1 = f_2 = \cdots = f_N$.

4.5. Logical effort of paths (3)

- Product of effort delays is a constant.
 - In our example,

$$D = 6 + \frac{x}{10} + \frac{5y}{3x} + \frac{4z}{3y} + \frac{20}{z} \ge 6 + 4\sqrt[4]{\frac{40}{9}}$$

- -The equality holds when $\frac{x}{10} = \frac{5}{3} \frac{y}{x} = \frac{4}{3} \frac{z}{y} = \frac{20}{z} = \sqrt[4]{\frac{40}{9}} \approx 1.45$.
- Minimum possible delay of an N-state path

$$D = N \sqrt[N]{F} + P$$

- -F: Path effort
- -P: Path parasitic delay

4.5. Logical effort of paths (4)

• Exampe 4.14

Determine the number of stages.

$$-N = 1: D = 1 + 64$$

$$-N = 2$$
: $D = 2 + 2\sqrt{64}$

$$-N = 3: D = 3 + 3\sqrt[3]{64}$$

Thank you!