

Agenda

- Introduction to Blockchain technology
- Data Prep
- Methodology
- Results
- Summary and Future Work

Blockchain Technology

Blockchain technology is a decentralized distributed ledger system that records transactions across multiple computers in a way that is secure, transparent, and immutable

Who Uses Blockchain Technology?

- Cryptocurrency
- Smart Contracts
- Supply Chain Management
- Identity Management
- Healthcare
- Real Estate
- Digital Voting
- Gaming

What is Blockchain Hash and Hash Rate?

A hash is

- A unique number that cannot be replicated
- Created when a new block of data is added to the chain

Hash rate is

- The computational power to mine blockchain transactions
- Determined by how many guesses per second
- Determines the mining difficulty of a blockchain network

Hash Rate Influences

- + Mining Rewards cryptocurrency
- + Blockchain security
- Network Congestion
- Electricity Usage

Is there correlation / causation?

Why Model Hash Rate?

Possible Predictor of

- + Mining Rewards
- + Blockchain Security
- Network Congestion
- Energy Consumption

Is there correlation / causation?

Project Methodology

Import and Clean Data

Create and Plot Time Series

Decompose Time Series

Apply Models, Cross Validate, Compare

Evaluate / Model Residuals

Test Multivariate Models

Summarize Findings

Data Prep

- Converted Hash Rate JSON files into a csv
- Downloaded closing prices for NVDA, Bitcoin, AIQ
- Adjust for Mon-Friday vs. Mon-Sunday frequency
- Create training and test time series

Time Series: Hash Rate vs BTC

Decomposition of additive time series

Strength of Trend: 0.96

Strength of Seasonality: 0.02

Possibly heteroscedastic

Naive

ME	RMSE	MAE	MPE	MAPE MASE		ACF1
0.4614137	39.63294	28.49668	-0.6106446	9.884198	0.9709984	-0.4917825

Fitted(hash.naive), h=14

Holt

ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
1.285161	29.88099	21.56406	-0.4213672	7.776944	0.7347759	0.02651261

Fitted(hash.holt), h=14

Holt Winters

ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
1.21155	29.73498	21.38789	-0.4942107	7.733743	0.7287728	0.01529912

Fitted(hash.hw), h=14

ARIMA

ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
0.1016486	29.91551	21.54967	-1.35594	7.794675	0.7342853	0.00029106

Fitted(hash.arima), h=14

Linear Regression (trend^3 + Seasonal)

ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
6.363621e-16	32.58723	25.14914	-1.826275	10.40374	0.856934	0.2652366

Fitted(hash.lm), h=14

Neural Net

ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	
-0.0676387	11.27615	8.532282	-0.4880217	3.981926	0.2907297	0.01685735	
-	68.89656	-	-	-	-	-	

h=14

Vector Autoregressive Model with Bitcoin

```
hash = btc.l1 + hash.l1 + const

Estimate Std. Error t value Pr(>|t|)
btc.l1 0.002894 0.009104 0.318 0.75060 Not significant
hash.l1 0.960278 0.008707 110.291 < 2e-16 ***
const 10.764654 4.128222 2.608 0.00924 **
```

Significant but very small coefficient

Our choice — Holt Winters

Better accuracy, better residuals

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
Naive (Baseline)	0.4614137	39.63294	28.49668	-0.6106446	9.884198	0.9709984	-0.4917825
Holt	1.285161	29.88099	21.56406	-0.4213672	7.776944	0.7347759	0.02651261
HW	1.21155	29.73498	21.38789	-0.4942107	7.733743	0.7287728	0.01529912
ARIMA	0.1016486	29.91551	21.54967	-1.35594	7.794675	0.7342853	-0.000291076
Linear	6.363621e-16	32.58723	25.14914	-1.826275	10.40374	0.856934	0.2652366
NN	-0.0676387	11.27615	8.532282	-0.4880217	3.981926	0.2907297	0.01685735
NN CV	-	68.89656	·	-	-	-	-

Holt-Winters Model, Non-constant Variance

Garch order=c(1,1)

Summary and Future Work

- We were able to model hash-rate with good accuracy
- Neural Network model could be useful with larger dataset
- Attempt to predict impact of miner's activity's impact
 - Blockchain functions that are less speculative than cryptocurrency
 - Electricity usage, network congestion