Minimax Estimation

Outline

- 1) Minimax risk, estimator
 - 2) Least favorable priors

Minimex risk

Last idea for choosing an estimator: worst-case risk

The minimum achievable sup-risk is called the minimex risk of the estimation problem

$$\Gamma^* = \inf_{\delta} \sup_{\Theta} \mathcal{R}(\Theta; \delta)$$

An estimator 5* is called <u>minimax</u> if it achieves the minimax risk, ie.

Game theory interpretation:

- 1) Analyst chooses estimator 5
- 2) Nature chooses parameter O to max. risk

NB: Nature chooses O adversarially, not X

Compare to Bayes, where Nature chooses prior from a known distribution

>> Nature plays a specific mixed strategy
We will look for Nature's Norsh-equil. strategy

Minimax closely related to Bayes
Key observation: average-case risk ≤ worst-case risk
For proper prior 1, the Bayes risk is
$\Gamma_{\Lambda} = \inf_{\delta} \int R(\theta; \delta) d\Lambda(\theta)$
$\leq \inf_{\delta} \sup_{\theta} \mathbb{Z}(\theta,\delta) = r^*$
If S_{Λ} 3-yes then $C_{\Lambda} = \int R(0; J_{\Lambda}) d\Lambda(0; J_{\Lambda})$
Bayes risk of any Bayes estimator lower bounds 14
Least favorable prior A* gives best lower bound: Ta* = sup TA
Sup-risk of any estimator upper bounds 14
$\sup_{\Theta} R(\Theta; \delta) \geq r^* \geq f_{\Lambda}^* \geq f_{\Lambda}$ $(any \delta)$

Least Favorable Priors

Can exhibit minimax est. / LF prior by finding

of and 1 that collapse these ineq. to =

Theorem If in = sup R(0; 5) with Bayes estimator on their. (a) of is minimax (b) If on is unique Bayes (up to a.s.) for A, it is unique minimax (C) A is least fav. Roof a) Any other d: Sup R(0; 5) 2) R(0; 5) 1 A(0) > \ R(0; 5/) d 1(0) (*)= sup R(0;5) by assumption) rs is minimer risk, os is minimex, b) Replace ">" with ">" in 2nd ineq. (*) c) Any other prior ? : $r_{\chi} = i \int R(\theta; \tau) d\chi(\theta)$ $\leq \int R(\theta; \, \delta_{\Lambda}) \, d\tilde{\Lambda}(\theta)$ $\leq \sup_{\theta} R(\theta; \delta_{\Lambda}) = \int_{\Lambda}$

The above theorem gives a checkable condition: does any risk = sup risk? mistake on final: saying ra is const. doesn't prove anything True ;f: 1) $R(\theta; \delta_n)$ is constant 2) $\Lambda(\{\theta: R(\theta; \delta_{\Lambda}) = \max_{\xi} R(\xi; \delta_{\Lambda})\}) = 1$ R(8;5,) **γ**(θ)

Example (Binomial)

X ~ Binom (n, 0), estimate
$$\Theta$$
, sq. err.

Try Beta (γ , β), hope to get one with const.

rick

 $S_{\alpha,\beta}(X) = \frac{x+X}{\alpha+\beta+n}$
 $R(\theta; S_{\alpha,\beta}(X)) = \mathbb{E}_{\theta} \left[\left(\frac{\alpha+X}{\alpha+\beta+n} - \theta \right)^2 \right]$
 $= V_{\alpha r_{\theta}} \left(\frac{X}{\alpha+\beta+n} \right) + \left(\frac{\alpha+\theta n}{\alpha+\beta+n} - \theta \right)^2$
 $= (\alpha+\beta+n)^{-2} \cdot \left[n\theta(1-\theta) + (\alpha-(\alpha+\beta)\theta)^2 \right]$
 $\propto_{\theta} \left[(x+\beta)^2 - n \right] \theta^2 + \left[n - 2x(x+\beta) \right] \theta + x^2$
 $Set = 0$
 $Set = 0$

Question: why so much prior w. on 0 = 1/2?

Least Favorable Sequence

Sometimes there is no least favorable prior, e.g. if par. space isn't compact.

X ~ N(0,1): LF prior should spread mers everywhere, but that is not a proper prior.

Def: A sequence Λ_1 , Λ_2 , ... is LF

if $\Lambda_n \longrightarrow \sup_{\Lambda} \Lambda$

Thm: Suppose $\Delta_1, \Delta_2, \ldots$ is a prior sequence and J satisfies $\sup_{\theta} R(\theta; J) = \lim_{\eta \to \eta} \Gamma_{\Lambda \eta}$

Then a) 5 is minimax

b) A,, Az, ... is LF

Proof a) Other est. $\tilde{\delta}$. Then $\forall n$, $\sup_{\theta} R(\theta; \tilde{\delta}) \geq \int R(\theta; \tilde{\delta}) dA_n(\theta)$ $\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} A_n(n)$

=) sup R(0; 8) = sup rs,
= lim rs,

 $= \operatorname{syp}_{R(0;S)}$

Basic Picture;

> (>

generic s

Bounding minimax risk

Our theorem gives an idea of how to bound rx for a problem:

Lower bound: If A is any prior then $r^* \geq \int R(\theta; \delta_{\Lambda}) d\Lambda(0) \qquad (= if \Lambda LF)$

Minimum estimators are very hard to find but minimum bounds are often used in stat theory to characterize hardness (esp. lower)

Ex: Propose practical estimator of find 1s
for which is close to sup R(0; 5)
(or same rate, or cugs asymptotically)

=> Conclude of can't be improved "much" (*)

[Ex: Quantify hardness of a problem by 16

minimax rate in some asy. régime.

Cavest: A problem might be easy throughout most of par. space but very head in some bizarre corner you never encounter in practice!