Algorithmic Strategies 2024/25 Week 10 – Graph Algorithms

Universidade de Coimbra

Outline

- 1. Articulation Points
- 2. Strongly Connected Components

Introduction

Given a connected graph G=(V,E), an articulation point is a vertex v in V that, if removed, it disconnects G, that is, there exists at least two vertices in $V\setminus\{v\}$ that are not connected by a path.

Vertices D and E are articulation points

Simple approach: For each vertex $v \in V$, remove it and run DFS in the resulting graph to check its connectedness. This approach takes $O(|V| \cdot (|V| + |E|))$.

Perform a DFS traversal in G

A vertex v is an articulation point if, in the DFS tree:

- 1. it is the root with two or more children
- 2. otherwise, it has a child w for which there is no backedge between w (or descendants) and a predecessor of v.

dfs[v] is the traversal index

$$- low[v] = \min \begin{cases} dfs[v] \\ dfs[x] & \text{for all } x = pred(v) \text{ with backedge} \\ low[w] & \text{for all } w = child(v) \end{cases}$$

A vertex (non-root) v is an articulation point if it has a child w such that $low[w] \ge dfs[v]$

```
Function AP(v)
low[v] = dfs[v] = t
t = t + 1
for each edge \{v, w\} \in E do
  if dfs[w] has no value then
     parent[w] = v
     AP(w)
     low[v] = min(low[v], low[w])
     if dfs[v] = 1 and dfs[w] \neq 2 then
        v is a (root) AP
     if dfs[v] \neq 1 and low[w] \geq dfs[v] then
        v is a (non-root) AP
   else if parent[v] \neq w then
     low[v] = min(low[v], dfs[w])
```


The algorithm is invariant with respect to the starting vertex.

An Algorithm for Bridges

This algorithm can also be used to find bridges, that is, an edge that, if removed, disconnects the graph. An edge (w, v) is a bridge if low[w] > dfs[v] in the DFS tree.

An Algorithm for Bridges

Is there always a bridge between two articulation points?

Counter-example: the edge between the two articulation points is not a bridge.

Strongly Connected Components

Given a directed graph G = (V, A), a subgraph G' is a strongly connected component if there exists a path between a vertex and every other vertex in G' and this subgraph has maximal size.

3 strongly connected components

Strongly Connected Components

A vertex v is the root of a connected component if low[v] = dfs[v]

The vertices in each strongly connected component under the root are stored in a stack. It is possible to solve it with Tarjan Algorithm in O(|V| + |A|).

Strongly Connected Components

```
Function Tarjan(v)
low[v] = dfs[v] = t
t = t + 1
push(S, v)
for each arc (v, w) \in A do
   if dfs[w] has no value then
      Tarjan(w)
      low[v] = min(low[v], low[w])
   else if w \in S then
      low[v] = min(low[v], dfs[w])
if low[v] = dfs[v] then
   C = \emptyset
   repeat
      w = pop(S)
      push(C, w)
   until w = v
   push(Scc, C)
```

Scc collects all stacks of strongly connected components. This algorithm must be called for every unvisited vertex in the graph.