Санкт-Петербургский государственный университет Saint-Petersburg State University

Кафедра теоретической и прикладной механики

ОТЧЕТ

По лабораторной работе 7

«Поперечные колебания круглой пластины»

По дисциплине «Лабораторный практикум по теоретической механике»

Выполнили:

Баталов С. А.

Антонова М. Н.

Клюшин М. А.

Хайретдинова Д. Д.

Санкт-Петербург 2021

1. Описание установки

В этой лабораторной работе анализируются поперечные колебания круглой упругой пластины. Целью работы является экспериментальное определение собственных частот поперечых колебаний упругой пластины, наблюдение соответствующих собственных форм колебаний и сравнение экспериментально определенных собственных частот с их расчетными значениями. В процессе исследовая формы колебаний определяются с помощью фигур Хладни.

Рис. 1. Схема лабораторной установки.

Зкспериментальная установка, показанная на рис. 1, представляет собой круглую упругую пластину 1, жестко закрепленную по краям центрального отверстия и свободную на внешнем крае. К пластине присоединена тяга электромагнита 2, питаемого переменным током звуковой частоты от генератора. Электромагнит предназначен для создания периодической возмущающей силы, прикладываемой к пластине, частота возмущающей силы равна частоте переменного тока.

2. Параметры установки

В следующей таблице представлены заранее известные параметры установки: плотность материала пластины – ρ , коэффициент Пуассона – σ , модуль упругости – E, толщина пластины – h, внешний радиус пластины – R, диаметр внутреннего отверстия – d.

Таблица 1: Известные параметры.

Номер	Величина	Значение	Размерность
1	ρ	2850	$\kappa\Gamma/M^3$
2	σ	0,5	_
3	E	0.5 $7 \cdot 10^{10}$	Па
4	h	0,003	M
5	R	0,240	M
6	d	0,008	M

3. Результаты экспериментов

Далее представлены главные формы и соответствующие им частоты собственных колебаний пластины, которые были получены в ходе эксперимента.