Interpretable Machine Learning

2021/01/26 Ping-Han Hsieh

Disclaimer

 Black box machine learning model help us develop rulebased theories

 Rule-based theories help us refine black box machine learning model

Outline

- What is interpretable machine learning
 - Examples to solve high dimensional regression problem.
 - Principal Component Analysis
 - Factor Analysis
 - Do problems affect interpretability
- Properties of Interpretable Machine Learning
 - Transparency
 - Post-hoc Interpretability

What is Interpretable Machine Learning (1)

- What should be interpretable or explainable in modeling
 - Relation between input and output

$$\mathbf{y} = w_1 \mathbf{x_1} + w_2 \mathbf{x_2}$$

How the model is optimized

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

What is Interpretable Machine Learning (2)

- What should be interpretable or explainable in modeling
 - Relation between input and output

$$\mathbf{y} = w_1 \mathbf{x_1} + w_2 \mathbf{x_2} + \dots + w_{512} \mathbf{x_{512}} \quad (p \gg n)$$

How the model is optimized

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$
 (failed)

- Principal component analysis
- Factor analysis

What is Interpretable Machine Learning

Principal Component Analysis

- What should be interpretable or explainable in modeling
 - How the model is optimized (PCA)

$$\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^T$$
 $\mathbf{\Sigma} = \frac{1}{n}\mathbf{X}^T\mathbf{X}$
 $= \frac{1}{n}\mathbf{V}\mathbf{S}^T\mathbf{U}^T\mathbf{U}\mathbf{S}\mathbf{V}^T$
 $= \frac{1}{n}\mathbf{V}\mathbf{S}^2\mathbf{V}^T$
 $\mathbf{P} = \mathbf{X}\mathbf{V} = \mathbf{U}\mathbf{S}$

(take the first K PCs based on variance): \mathbf{P}^*

How the model is optimized (Regression)

$$\mathbf{w} = (\mathbf{P}^{*T}\mathbf{P}^*)^{-1}\mathbf{P}^{*T}\mathbf{y}$$

Relation between input and output

$$\mathbf{y} = w_1 \mathbf{p_1} + w_2 \mathbf{p_2}$$

What is Interpretable Machine Learning (3)

- What should be interpretable or explainable in modeling
 - Relation between input and output

$$\mathbf{y} = w_1 \mathbf{x_1} + w_2 \mathbf{x_2} + \dots + w_{512} \mathbf{x_{512}} \quad (p \gg n)$$

How the model is optimized

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$
 (failed)

- Principal component analysis
- Factor analysis

What is Interpretable Machine Learning

Factor Analysis (1)

- What should be interpretable or explainable in modeling
 - How the model is optimized (FA)

$$\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{T}$$

$$\mathbf{X} = \mathbf{F}\mathbf{w} + \epsilon \text{ (assumption)}$$

$$\Sigma = \frac{1}{n}\mathbf{X}^{T}\mathbf{X}$$

$$= \frac{1}{n}(\mathbf{F}\mathbf{w} + \epsilon)^{T}(\mathbf{F}\mathbf{w} + \epsilon)$$

$$= \frac{1}{n}(\mathbf{w}^{T}\mathbf{F}^{T} + \epsilon^{T})(\mathbf{F}\mathbf{w} + \epsilon)$$

$$= \frac{1}{n}\{\mathbf{w}^{T}\mathbf{F}^{T}\mathbf{F}\mathbf{w} + \mathbf{w}^{T}\mathbf{F}^{T}\epsilon + \epsilon^{T}\mathbf{F}\mathbf{w} + \epsilon^{T}\epsilon\}$$

$$= \frac{1}{n}\{\mathbf{w}^{T}\mathbf{w} + 0 + 0 + \epsilon^{T}\epsilon\}$$

$$= \frac{1}{n}\mathbf{w}^{T}\mathbf{w} + \mathbf{\Psi}$$

$$\mathbf{U} = \mathbf{\Sigma} - \mathbf{\Psi} \text{ (positive symmetric)}$$

```
\mathbf{U} = \mathbf{C}\mathbf{D}\mathbf{C}^T (take a few eigenvectors)

\sim \mathbf{C}^*\mathbf{D}^*\mathbf{C}^{*T}

= \mathbf{C}^*\mathbf{D}^{*1/2}\mathbf{D}^{*1/2}\mathbf{C}^{*T}

= (\mathbf{C}^*\mathbf{D}^{*1/2})(\mathbf{C}^*\mathbf{D}^{*1/2})^T

\mathbf{w}^T\mathbf{w} \sim (\mathbf{C}^*\mathbf{D}^{*1/2})(\mathbf{C}^*\mathbf{D}^{*1/2}) (\mathbf{Q}\mathbf{w})^T(\mathbf{Q}\mathbf{w}) if \mathbf{Q}^T\mathbf{Q} = \mathbf{I}

solve \mathbf{F} with \mathbf{w}

but how could we get \epsilon (or \Psi) in the first place
```

What is Interpretable Machine Learning

Factor Analysis (2)

- What should be interpretable or explainable in modeling
 - How the model is optimized (FA)

$$\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{T}$$

$$\mathbf{X} = \mathbf{F}\mathbf{w} + \epsilon \text{ (assumption)}$$

$$\Sigma = \frac{1}{n}\mathbf{X}^{T}\mathbf{X}$$

$$= \frac{1}{n}(\mathbf{F}\mathbf{w} + \epsilon)^{T}(\mathbf{F}\mathbf{w} + \epsilon)$$

$$= \frac{1}{n}(\mathbf{w}^{T}\mathbf{F}^{T} + \epsilon^{T})(\mathbf{F}\mathbf{w} + \epsilon)$$

$$= \frac{1}{n}\{\mathbf{w}^{T}\mathbf{F}^{T}\mathbf{F}\mathbf{w} + \mathbf{w}^{T}\mathbf{F}^{T}\epsilon + \epsilon^{T}\mathbf{F}\mathbf{w} + \epsilon^{T}\epsilon\}$$

$$= \frac{1}{n}\{\mathbf{w}^{T}\mathbf{w} + 0 + 0 + \epsilon^{T}\epsilon\}$$

$$= \frac{1}{n}\mathbf{w}^{T}\mathbf{w} + \mathbf{\Psi}$$

$$\mathbf{U} = \mathbf{\Sigma} - \mathbf{\Psi} \text{ (positive symmetric)}$$

$$\begin{split} \mathbf{U} &= \mathbf{C}\mathbf{D}\mathbf{C}^T \quad \text{(take a few eigenvectors)} \\ &\sim \mathbf{C}^*\mathbf{D}^*\mathbf{C}^{*T} \\ &= \mathbf{C}^*\mathbf{D}^{*1/2}\mathbf{D}^{*1/2}\mathbf{C}^{*T} \\ &= (\mathbf{C}^*\mathbf{D}^{*1/2})(\mathbf{C}^*\mathbf{D}^{*1/2})^T \\ \mathbf{w}^T\mathbf{w} \sim (\mathbf{C}^*\mathbf{D}^{*1/2})(\mathbf{C}^*\mathbf{D}^{*1/2}) \qquad (\mathbf{Q}\mathbf{w})^T(\mathbf{Q}\mathbf{w}) \text{ if } \mathbf{Q}^T\mathbf{Q} = \mathbf{I} \\ \text{solve } \mathbf{F} \text{ with } \mathbf{w} \\ \text{but how could we get } \epsilon \text{ (or } \Psi \text{) in the first place} \\ \text{assume } F_i \sim N(0,1) \rightarrow X_i \sim N(0,\Psi+\mathbf{w}^T\mathbf{w}) \\ L &= \frac{-np}{2}\log 2\pi - \frac{\pi}{2}\log |\Psi+\mathbf{w}^T\mathbf{w}| - \frac{n}{2}\mathrm{tr}((\Psi+\mathbf{w}^T\mathbf{w})^{-1}\mathbf{\Sigma}) \\ \text{starts with a guess about the unique variances} \\ \text{iterates to convergence} \end{split}$$

What is Interpretable Machine Learning (4)

- What should be interpretable or explainable in modeling
 - Relation between input and output

$$\mathbf{y} = w_1 \mathbf{x_1} + w_2 \mathbf{x_2} + \dots + w_{512} \mathbf{x_{512}} \quad (p \gg n)$$

How the model is optimized

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$
 (failed)

- Principal component analysis
- Factor analysis
- What if the features are related in a non-Eucleadian way

Do problems affect interpretability

How Could We Interpret the Result (1)

(from Zeta Learning)

(from in-house analysis by T. Belova)

Do problems affect interpretability

How Could We Interpret the Result (2)

UMAP on MNIST

(from Zeta Learning)

McInnes et al. (2018)

Do problems affect interpretability

Partial Differential Equation

Neural Operator

$$(\mathcal{L}_a u)(x) = f(x), \qquad x \in D$$

 $u(x) = 0, \qquad x \in \partial D$

Li *et al.* (2020)

Fourier Neural Operator

$$\partial_t w(x,t) + u(x,t) \cdot \nabla w(x,t) = \nu \Delta w(x,t) + f(x), \ x \in (0,1)^2, t \in (0,T]$$
$$\nabla \cdot u(x,t) = 0, \qquad x \in (0,1)^2, t \in [0,T]$$
$$w(x,0) = w_0(x), \qquad x \in (0,1)^2$$

Li *et al.* (2020)

Properties of Interpretable Machine Learning

- Transparency (Model)
 - Simulatability
 - Decomposability
 - Algorithmic transparency
- Post-hoc Interpretability (Problem)
 - Local Explanation
 - Explain by example

Transparency

- Simulatability
 - Whether the computation can be readily reproduced by human.
 - Depends not only on the model, but also on the dimensionality of data.
- Decomposability
 - Intuitive explanation for every part of the model.
 - We need to include feature engineering and anonymous features.
- Algorithmic transparency
 - Relation between input and output.
 - How the model is optimized.
 - Human lack of this as well.

Gradient Based (1)

 What does the coefficient in linear regression mean to the model

$$f(x) = y = 2x$$

 How much the model output will change when the input is change.

$$rac{ riangle y}{ riangle x} = 2
ightarrow
abla_x f(x) = 2$$

Gradient Based (2)

How about non-linear function

$$f(x) = y = 2x^2$$

• How much the model output will change when the input is change.

Gradient Based (3)

How about non-linear function

$$f(x) = y = 2x^2$$

 How much the model output will change when the input is change.

$$\nabla_x f(x) = 4x$$

Generalize to higher dimension

$$abla_{\mathbf{x}} f(\mathbf{x}) = f'(\mathbf{x})$$

Gradient Based (4)

Gradient (Simonyan et al. 2014)

$$\nabla_{\mathbf{x}} f(\mathbf{x})$$

- Implementation Invariance
- Sensitivity
 - (1)

if input and baseline differ only in one feature but have different predictions

the contribution for that feature is non-zero

(2)

$$x_j'=0 \Rightarrow \phi_i=0$$

original

gradient

Completeness

$$\sum \psi = f(\mathbf{x}) - f(\mathbf{x}^{(b)})$$

Gradient Based (5)

• Gradient (Simonyan et al. 2014)

$$\nabla_{\mathbf{x}} f(\mathbf{x})$$

Smooth gradient (Smilkov et al. 2017)

$$\frac{1}{N} \sum_{i=1}^{n} \nabla_{\mathbf{x}+\epsilon} f(\mathbf{x}+\epsilon)$$

• Integrated gradient (Sundararajan et al. 2017)

$$(\mathbf{x} - \mathbf{x}^{(b)}) imes \int_0^1 \nabla_{\mathbf{x}} f(\mathbf{x}^{(b)} + \alpha(\mathbf{x} - \mathbf{x}^{(b)})) d\alpha$$

- ReLU activation function:
 - Guided Backpropagation (Springenberg et al., 2014)

original gradient

smooth gradient

integrated gradient

- Convolutional Neural Network:
 - Deconvolutional Network (Zeiler & Fergus, 2014)
 - Grad-CAM (Selvaraju et al., 2016)
 - Grad-CAM++ (Chattopadhyay et al., 2018)

Surrogate Model - SHAP (1)

- Use a simple linear additive model to explain the complex model.
- The simplified model needs to follow
 - 1. Local Accuracy

$$f(\mathbf{x^{(i)}}) = g_i(\mathbf{x'^{(i)}}) = \phi_0 + \sum_{j=1}^n \phi_j x'_j$$

2. Missingness

$$x_j' = 0 \Rightarrow \phi_i = 0$$

3. Consistency

Exact solution

$$\phi_{i} = \sum_{S \subseteq F} \frac{|S|!(|F| - |S| - 1)!}{|F|!} [f_{S \cup \{j\}}(\mathbf{x}_{S \cup \{j\}}) - f_{S}(\mathbf{x}_{S})]$$

$$= \sum_{S \subseteq F} \frac{1}{|F|} \frac{1}{\binom{|F| - 1}{|S|}} [f_{S \cup \{j\}}(\mathbf{x}_{S \cup \{j\}}) - f_{S}(\mathbf{x}_{S})]$$
Shapley (1951)

Surrogate Model - SHAP (2)

The exact solution is computationally intensive, the sampling approximation is usually used.

Exact Solution

$$\sum_{S\subseteq F}rac{1}{|F|}rac{1}{inom{|F|-1}{|S|}}[f_{S\cup\{j\}}(\mathbf{x}_{S\cup\{j\}})-f_{S}(\mathbf{x}_{S})]$$

1. Compute the output

$$f(A) = 0.85$$

 $f(B) = 1.00$
 $f(C) = 0.25$
 $f(A, B) = 1.25$
 $f(A, C) = 0.50$
 $f(B, C) = 0.75$
 $f(A, B, C) = 0.95$

2. Compute the contribution

$$\phi_A = \frac{1}{3} \cdot \frac{1}{1} \cdot (0.85 - 0.00) +$$

$$\frac{1}{3} \cdot \frac{1}{2} \cdot (1.25 - 1.00) +$$

$$\frac{1}{3} \cdot \frac{1}{2} \cdot (0.50 - 0.25) +$$

$$\frac{1}{3} \cdot \frac{1}{1} \cdot (0.95 - 0.75)$$

Approximate Solution

$$\phi_i = rac{1}{|F|!} \sum_{S \in \pi(F)} [f_{p_j(S) \cup \{j\}}(\mathbf{x}_{p_j(S) \cup \{j\}}) - f_{p_j(S)}(\mathbf{x}_{p_j(S)})]$$

1. Random permutations

$$\pi(F) = \{ABC, ACB, BAC, BCA, CAB, CBA\}$$

2. Take elements precede the target

$$\{\varnothing,\varnothing,B,BC,C,CB\}$$

Sampling from the permutation

$$\phi_i = rac{1}{K} \sum_{k=1}^K V_k$$

štrumbelj et al. (2014)

3. Compute contribution

$$\begin{split} \phi_A = & \frac{1}{6} \cdot (0.85 - 0.00) + \\ & \frac{1}{6} \cdot (0.85 - 0.00) + \\ & \frac{1}{6} \cdot (1.25 - 1.00) + \\ & \frac{1}{6} \cdot (0.50 - 0.25) + \\ & \frac{1}{6} \cdot (0.95 - 0.75) + \\ & \frac{1}{6} \cdot (0.95 - 0.75) \end{split}$$

Counterfactual Explanation

 How much the input needs to be changed in order to get the desired output?

$$rgmin_{\mathbf{x}'}d(\mathbf{x},\mathbf{x}')$$
 $s.t.$ $f(\mathbf{x}')=\mathbf{y}'$

$$rgmin_{\mathbf{x}'}\lambda(f(\mathbf{x}')-\mathbf{y}')+d(\mathbf{x},\mathbf{x}')$$
Wachter et al., (2018)

$$\operatorname{argmin}_{\mathbf{x} \in A} cost(\mathbf{x}, \mathbf{x}')$$
 $s.t.$ $f(\mathbf{x}') = \mathbf{y}'$ Ustun $et al.$ (2019)

Verma et al. 2020

Discussion

- Interpretation and causality.
- Interpretation and sensitivity analysis.
- What kind of properties you think are important to your research.
- Tradeoff between accuracy and interpretability.
- Can we trust post-hoc explanation.
- Hyperparameter and interpretation.

Thanks