DESENVOLVIMENTO DE UMA BIBLIOTECA COMPUTACIONAL PARA SISTEMAS DE RECOMENDAÇÃO DE LOJAS DE COMÉRCIO ONLINE

Escola Politécnica da Universidade de São Paulo

Antônio Viggiano agfviggiano@gmail.com fer

Fernando Fochi fernando.fochi@gmail.com

Prof. Dr. Fábio Gagliardi Cozman

Sumário

- Introdução
- Objetivos
- 3 Estado da Arte
- Requisitos
- Metodologia
- 6 Síntese de Soluções
- Avaliação de Desempenho
- Resultados

Introdução

Importância econômica

Figura 1: Vendas de varejo atribuídas a lojas online nos EUA (STATISTA, 2014)

Figura 2: Percentual de vendas de varejo atribuídas a lojas online nos EUA por categoria (SMITH, 2014)

Introdução Aplicação

Relações de amizade

Músicas

Livros 35 % (MARSHALL, 2006)

Notícias **38 %** (DAS et al., 2007)

Filmes **75 %** (AMATRIAIN, 2012)

Objetivos

- Biblioteca computacional para sistemas de recomendação
 - Abrangente e adaptável
 - Leitura de dados e cálculo de sugestões
- Análise de desempenho
 - Validação cruzada
 - Precisão e Abrangência

Sistemas de recomendação

"São ferramentas e técnicas de software destinadas a prover sugestões de itens para usuários" (RICCI; SHAPIRA, 2011)

Estado da Arte

Problema

- U Conjunto dos usuários u
- Conjunto dos itens i
- rui Histórico avaliações
 - ℓ Função de utilidade
 - $\ell: \mathcal{U} \times \mathcal{I} \to \mathcal{R}$ p.ex. $\{-1,0,+1\}$ ou [1,5]

Objetivo

Determinar o item $\tilde{\imath}_u$ que maximize a utilidade ℓ_{ui} do usuário u:

$$\forall u \in \mathcal{U}, \ \tilde{\imath}_u = \underset{i \in \mathcal{I}}{\operatorname{arg\,max}} \ \ell_{ui}$$

Problema

ℓ desconhecida

Estado da Arte Soluções

Estratégias de recomendação

- Colaborativas
- Conteúdo
- Híbridas

Utilização comercial

(CHIANG, 2012)

Netflix Filtragem colaborativa

Amazon Filtragem baseada em conteúdo

Pandora Experts + votos

positivos/negativos

YouTube Contagem de visitas mútuas

Estado da Arte

Soluções

Filtragem colaborativa (CF)

- Usuário-usuário
- Item-item

Filtragem de conteúdo (CB)

Métodos híbridos (H)

• CF + CB

Tabela 1: Avaliações r_{ui}

	<i>i</i> ₁	i_2	<i>i</i> 3	i_4
u_1	-	4	3	-
<i>u</i> ₂	-	4	3	5
u_3	2	5	-	1

Tabela 2: Atributos a_{if}

	f_1	f_2	f_3	f_4
<i>i</i> ₁	1	50	0.8	Р
i ₂	0	75	0.3	М
<i>i</i> ₃	1	30	0.4	G

Requisitos

Requisitos funcionais

- 20% Precisão
- 20% Abrangência

Requisitos não funcionais

- Escalabilidade
- Sistema genérico
 - Padronização dos dados de entrada/saída
- Código aberto

Requisitos

Diagrama de Casos de Uso

Três principais grupos

- Avaliar Performance
- Configurar Banco de Dados
- Recomendar

Figura 3: Diagrama de Casos de Uso

Requisitos

Diagrama de Casos de Uso - Avaliar Performance

Figura 4: Caso de Uso - Avaliar Performance

Requisitos

Diagrama de Casos de Uso - Configurar Banco de Dados

Figura 5: Caso de Uso - Avaliar Performance

Requisitos

Diagrama de Casos de Uso - Recomendar

Figura 6: Caso de Uso - Recomendar

Metodologia Estruturação do banco de dados

100k 100 000 avaliações de 943 usuários para 1682 filmes

IMDB 28 819 filmes

IMDB-100k 943 usuários, 1682 filmes e 25 atributos

Metodologia

Validação cruzada

Ambiente de testes

- Máquina r3.large
- 2 vCPU
- 15 GB de memória RAM
- Amazon I inux AMI release 2014.09 x86 64
- Custo total R\$ 5,70

Avaliação

- \bullet T = 75% base de treinamento
- H = 75% dados "escondidos"

Tabela 3: Avaliações r_{ui}

	<i>i</i> ₁	i_2	i ₃	i_4
<i>u</i> ₁	-	4	3	5
<i>u</i> ₂	2	5	-	1
<i>u</i> ₃	3	-	-	2
U_4	(5)	(2)	(3)	4

Síntese de Soluções

Ponderação de Atributos (FW)

$$s_{ij} = \sum_{f} w_f \left(1 - d_{fij} \right)$$

Perfil de Usuários (UP)

$$S_{uv} = \frac{\sum\limits_{f \in \mathcal{F}_{uv}} w_{uf} \ w_{vf}}{\sqrt{\sum\limits_{f \in \mathcal{F}_{uv}} w_{uf}^2} \sqrt{\sum\limits_{f \in \mathcal{F}_{uv}} w_{vf}^2}}$$

Perfil Usuário-Item (UI)

$$\omega_{ui} = \sum_{f} \mathbf{w}_{uf} \; \mathbf{a}_{if}$$

Avaliação de Desempenho

- Distância entre recomendações
 - $EMA = |\hat{\mathbf{i}} \hat{\mathbf{i}}|$
- Desempenho mediante a mudança nas variáveis
 - Quantidade de atributos utilizados
- Tempo de execução
 - Em função do algoritmo
 - Em função do tamanho do banco de dados

Tabela 4: Avaliação de sistemas de predição

Medida	Fórmula	Significado
Precisão	VP VP+FP	% Predições corretas de
		casos positivos
Acurácia	VP+VN VP+VN+FP+FN	% Predições corretas

Resultados

Primeiros testes

Pesos unitários

$$s_{ij} = \sum_{f} (1 - d_{fij})$$

13 s Tempo de inicialização para $|\mathcal{R}| = 100$ mil

8 min Cálculo de s_{ij} para $|\mathcal{I}| = 1000$

100% CPU 2.80GHz × 4

420 MB Memória

60 dias Para $|\mathcal{I}|$ = 100 mil

Figura 7: Tempo de processamento em função do número de itens em $\mathcal{O}(n^2)$

Resultados Aquisição de dados

Figura 8: Banco de dados de um e-commerce de passagens de ônibus

Bibliografia I

- ►AMATRIAIN, X. *Netflix Recommendations: Beyond the 5 stars*. 2012. Disponível em: http://techblog.netflix.com/2012/04/ netflix-recommendations-beyond-5-stars.html>.
- ►CHIANG, M. *Networked Life: 20 Questions and Answers*. Cambridge University Press, 2012. (BusinessPro collection). ISBN 9781107024946. Disponível em: http://books.google.com.br/books?id=N5DJJXoLPDQC.
- ▶DAS, A. S. et al. Google news personalization: scalable online collaborative filtering. In: ACM. *Proceedings of the 16th international conference on World Wide Web*. [S.I.], 2007. p. 271–280.

Bibliografia II

- ►MARSHALL, M. Aggregate Knowledge raises \$5M from Kleiner, on a roll. 2006. Disponível em: http://venturebeat.com/2006/12/10/aggregate-knowledge-raises-5m-from-kleiner-on-a-roll/>.
- ▶RICCI, L. R. F.; SHAPIRA, B. Introduction to recommender systems handbook. In: *Recommender Systems Handbook*. [S.I.]: Springer, 2011. p. 1–35.
- SMITH, C. *E-COMMERCE AND THE FUTURE OF RETAIL: 2014 [SLIDE DECK]*. 2014. Disponível em: http://www.businessinsider.com/ the-future-of-retail-2014-slide-deck-sai-2014-3?nr_email_referer=1&utm_source=Triggermail&utm_medium=email&utm_content=emailshare>.

Bibliografia III

►STATISTA. Annual B2C e-commerce sales in the United States 2002-2013. 2014. Disponível em: http://www.statista.com/statistics/271449/ annual-b2c-e-commerce-sales-in-the-united-states/>.