# Non-invasive Brain Stimulation for Neurorehabilitation after Spinal Cord Injury: what we know and where we're going

Jennifer Iddings, PhD
Postdoctoral Fellow
Crawford Research Institute
Hulse SCI Research Laboratory



#### **Outline**

#### Introduction

- Maladaptive cortical plasticity after SCI
- Reversing maladaptive cortical plasticity
- Using NIBS as a neuromodulation tool
  - Type of stimulation
  - Stimulation montage

#### Neilsen SCIRTS Fellowship Project

- Design
- Results to date
- Variability
- Challenges measuring corticospinal excitability

#### Moving forward

### Maladaptive Cortical Plasticity Post-SCI



### Reduced Corticospinal Excitability Post-SCI







### Reversing Maladaptive Cortical Plasticity

- Chronic, cervical SCI
- Upper extremity massed practice + somatosensory stimulation
- 3 weeks: 2 hrs/day, 5x/week

#### **Pre-Intervention**



**Biceps** 



#### **Post-Intervention**





Hoffman & Field-Fote: Phys Ther, 2007 (top), Top Spinal Cord Rehabil, 2013 (bottom)



### **Efficacy of Combined Interventions**

#### **Editatid Guipifatidity**se

Semiendan de la company de la

- Chronic, cervical SCI
- 4 groups:
  - massed practice + somatosensory stimulation (MP+SS)
  - Massed practice (MP)
  - Somatosensory stimulation (SS)
  - No intervention (control)
- 3 weeks: 2 hrs/day, 5x/week



Beekhuizen & Field-Fote, Arch Phys Med Rehabil, 2008



# Cortical Stimulation Improves Motor Function

- Chronic, cervical SCI
- Randomized crossover
- rTMS or sham-rTMS + upper extremity repetitive task practice
- 3 days: ~11 min/day



Gomes-Osman & Field-Fote, J Neurol Phys Ther, 2015



### Cortical vs. Peripheral Stimulation for Improving Motor Function

- Chronic, cervical SCI
- Randomized crossover
- Clinically accessible stimulation + upper extremity massed practice
  - PNSS of median nerve
  - Vibration over distal tendon of flexor carpi radialis
  - tDCS of corticomotor area controlling weaker hand
- Single 30-min session



Gomes-Osman & Field-Fote, Clin Rehabil, 2014

# Transcranial Direct Current Stimulation (tDCS) for Enhancing Cortical Excitability

- Monophasic, continuous stimulation
- Anode placed over target region
- Somatic depolarization of layer V cortical neurons
  - Ca<sup>2+</sup> and Na<sup>+</sup> channel dependent
- Enhanced glutamateric & reduced gabaergic neurotransmission



Rahman et al., J Physiol, 2013



## Moving Beyond tDCS: Other Clinically-Accessible Forms of NIBS

| NIBS type | Waveform               | Parameters                                                                                                                               |  |  |
|-----------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| tDCS      | monophasic, continuous | <ul><li>✓ stimulus intensity</li><li>✓ polarity (anodal/cathodal)</li></ul>                                                              |  |  |
| tACS      | biphasic, sinusoidal   | <ul><li>✓ stimulus intensity</li><li>✓ frequency</li></ul>                                                                               |  |  |
| tRNS      | biphasic, random       | <ul><li>✓ stimulus intensity range</li><li>✓ frequency range</li></ul>                                                                   |  |  |
| tPCS      | monophasic, square     | <ul> <li>✓ stimulus intensity</li> <li>✓ polarity (anodal/cathodal)</li> <li>✓ pulse duration</li> <li>✓ inter-pulse interval</li> </ul> |  |  |

Waveforms adapted from: Jaberzadeh & Zoghi, Basic Clin Neurosci, 2013; Jaberzadeh et al., PLOS One, 2015



### tPCS Effects on Corticospinal Excitability

Inter-pulse interval (IPI):

- short 50 ms
- long 650 ms



Pulse duration (PD):

- 500 ms
- 250 ms
- •100 ms



Jaberzadeh et al., Clin Neurophysiol, 2014



Jaberzadeh et al., PLOS One, 2015



### NIBS: Importance of Electrode Montage



Adapted from www.clinicalgate.com/epilepsy-8



Tazoe et al., PLOS One, 2014

### NIBS: Importance of Electrode Montage



Adapted from www.clinicalgate.com/epilepsy-8

# Optimizing NIBS for SCI Neurorehabilitation: Neilsen SCIRTS Postdoctoral Fellowship

#### Stimulation type:

**Specific Aim 1.** Quantify the effects of two different forms of non-invasive brain stimulation (tDCS, tPCS) and a sham-control on **strength** and motor control in persons with tetraplegia.

**Specific Aim 2.** Quantify the effects of two different forms of non-invasive brain stimulation (tDCS, tPCS) and a sham-control on *corticospinal excitability* in persons with tetraplegia.

#### Montage:

**Specific Aim 3.** Determine the effects of two non-invasive brain stimulation electrode montages, **uni-and bihemispheric**, on strength, motor control and corticospinal excitability in persons with tetraplegia.



### Project Design

| Design       | Randomized, crossover study                                            |  |  |  |  |  |  |
|--------------|------------------------------------------------------------------------|--|--|--|--|--|--|
|              | Unihemispheric tDCS Functional Task Practice                           |  |  |  |  |  |  |
|              | Bihemispheric tDCS                                                     |  |  |  |  |  |  |
| Intervention | Unihemispheric tPCS                                                    |  |  |  |  |  |  |
|              | Bihemispheric tPCS                                                     |  |  |  |  |  |  |
|              | Sham stimulation                                                       |  |  |  |  |  |  |
| Assessments  | Upper extremity motor control, strength and corticospinal excitability |  |  |  |  |  |  |

### Study Recruitment

- Participants with cervical SCI, >3 months post-injury
- Bilateral impairments in hand function
- Minimal (trace) intrinsic hand function

| Participant No. | Gender | Age (Years) | Time Since Injury   | AIS | Neurological Injury Level | More Impaired UE |
|-----------------|--------|-------------|---------------------|-----|---------------------------|------------------|
| 1               | М      | 59          | 4 Years, 4 Months   | D   | C4                        | L                |
| 2               | M      | 50          | 30 Years, 1 Months  | D   | C5                        | R                |
| 3               | M      | 71          | 11 Years, 0 Months  | С   | C4                        | L                |
| 4               | F      | 21          | 1 Years, 1 Months   | D   | C4                        | L                |
| 5               | М      | 57          | 8 Years, 6 Months   | D   | C5                        | L                |
| 6               | M      | 50          | 23 Years, 2 Months  | D   | C5                        | L                |
| 7               | M      | 44          | 19 Years, 10 Months | D   | C5                        | L                |
| 8               | F      | 39          | 0 Years, 4 Months   | В   | C7                        | L                |
| 9               | F      | 53          | 1 Years, 1 Months   | С   | C7                        | R                |
| 10              | М      | 46          | 2 Years, 2 Months   | D   | C4                        | L                |

#### **Stimulation Parameters**

- Electrode size: 35cm<sup>2</sup>
- Stimulation intensity: 2 mA
- Stimulation duration: 20 min
- Unihemispheric stimulation
  - anode placed over the motor cortex area controlling more impaired UE (C3 or C4)
  - cathode placed over contralateral supraorbital area
- Bihemispheric stimulation
  - two anodes placed over C3 and C4
  - two cathodes placed bilaterally over the supraorbital areas



Murray et al., Arch Phys Med Rehabil, 2015

#### **Stimulation Tolerance**

- Stimulation was well-tolerated by all participants
- Most commonly reported sensations: itching, tingling and burning
- Phosphenes (flashing/bright spots) are a known potential side effect of tPCS due to activation of the retina/visual cortex or associated pathways

|                             | u-tDCS | b-tDCS | u-tPCS | b-tPCS | sham |
|-----------------------------|--------|--------|--------|--------|------|
| Itching                     | 8      | 4      | 5      | 5      | 7    |
| Tingling                    | 2      | 2      | 4      | 3      | 2    |
| Warmth/Heat                 | 0      | 1      | 2      | 2      | 2    |
| Headache                    | 0      | 0      | 0      | 0      | 0    |
| Burning                     | 3      | 2      | 1      | 3      | 1    |
| Pain                        | 0      | 0      | 0      | 0      | 0    |
| Flashing/Bright spots       | 0      | 0      | 3      | 5      | 1    |
| Metallic/Iron Taste         | 0      | 0      | 0      | 2      | 0    |
| Fatigue/Decreased Alertness | 0      | 0      | 0      | 0      | 0    |
| Distracted Attention        | 2      | 0      | 2      | 1      | 1    |

### Changes in Motor Control and Strength



# Changes in Motor Control: Interindividual Variability



# Changes in Strength: Interindividual Variability



### Changes in Cortical Excitability



# Changes in Cortical Excitability: Interindividual Variability







■ Stronger UE

# NIBS Responsiveness: Interindividual Variability (non-injured participants)



Strube et al., Physiol Rep, 2016



# NIBS Responsiveness: Interindividual Variability (non-injured participants)



Foerster et al., Front Neurosci, 2018



# NIBS Responsiveness: A Dichotomy or More Complex Phenomenon? (non-injured participants)





Horvath et al., Exp Brain Res, 2016



# Using TMS Responsiveness to Address Interindividual Variability (non-injured participants)



#### Labruna et al., Brain Stimul, 2016

#### Visuo motor task performance



Foerster et al., Eur J Neurosci, 2018

# Measuring Cortical Excitability in Persons with SCI: MEP Variability & Amplitude



Active Thenar MEPs, 100% MSO





# Measuring Cortical Excitability in Persons with SCI: MEP Variability







# Measuring Cortical Excitability in Persons with SCI: MEP Variability



Potter-Baker et al., Spinal Cord, 2016



### Measuring Cortical Excitability in Persons with SCI: Choosing a Coil

Figure of Eight Coil





Hallett, Neuron, 2007



Groppa et al., Clin Neurophysiol, 2012



R



Active Thenar MEPs, 100% MSO



#### **Future Directions**

- Identifying NIBS responders among participants with SCI
  - TMS sensitivity
- NIBS dosage studies in participants with SCI
  - Stimulation intensity
  - Number of sessions
- TMS methodology study
  - Determine which coil & placement is best for eliciting MEPs for participants with SCI

### Acknowledgments

#### Director of SCI Research: Edelle Field-Fote, PT, PhD

Allison McIntyre MOT, OTR/L, CCRP

Anastasia Zarkou, PT, PhD

Barry McKay, BS

Brandon Poe, MPA

Cathy Furbish, PT

Cazmon Suri, MS

Elizabeth Sasso-Lance, PT, DPT, NCS

Evan Sandler, PT, DPT

Jasmine Hope, BS

Marissa Mirecki, MOT, OTR/L

Nick Evans, MHS, ACSM, CEP

Ryan Koter, DPT

Sarah Callahan MOT, OTR/L

Stephen Estes, PhD

