

MOCD213-M

DESCRIPTION

The MOCD213-M device consists of two gallium arsenide infrared emitting diodes optically coupled to two monolithic silicon phototransistor detectors, in a surface mountable, small outline plastic package. It is ideally suited for high density applications and eliminates the need for through-the-board mounting.

FEATURES

- U.L. Recognized (File #E90700, Volume 2)
- VDE Recognized (File #136616) (add option "V" for VDE approval, i.e, MOCD213V-M)
- Dual Channel Coupler
- Convenient Plastic SOIC-8 Surface Mountable Package Style
- Minimum Current Transfer Ratio 100% with Input Current of 10 mA
- Minimum BV_{CEO} of 70 Volts Guaranteed
- Standard SOIC-8 Footprint, with 0.050" Lead Spacing
- Compatible with Dual Wave, Vapor Phase and IR Reflow Soldering
- High Input-Output Isolation of 2500 V_{AC(rms)} Guaranteed

APPLICATIONS

- · Feedback control circuits
- Interfacing and coupling systems of different potentials and impedances
- General purpose switching circuits
- · Monitor and detection circuits

Rating	Symbol	Value	Unit	
EMITTER				
Forward Current - Continuous	I _F	60	mA A	
Forward Current - Peak (PW = 100 µs, 120 pps)	I _F (pk)	1.0		
Reverse Voltage	V _R	6.0	V	
LED Power Dissipation @ T _A = 25°C	В	90	mW	
Derate above 25°C	P _D	0.8	mW/°C	
DETECTOR				
Collector-Emitter Voltage	V _{CEO}	70	V	
Emitter-Collector Voltage	V _{ECO}	7.0	V	
Collector Current-Continuous	I _C	150	mA	
Detector Power Dissipation @ T _A = 25°C	В	150	mW	
Derate above 25°C	P _D	1.76	mW/°C	
TOTAL DEVICE				
Input-Output Isolation Voltage ^(1,2,3)	V _{ISO}	2500	Vac(rms)	
(f = 60 Hz, 1 min. Duration)	V ISO	2500	vac(IIIIs)	
Total Device Power Dissipation @ $T_A = 25$ °C	P _D	250	mW	
Derate above 25°C	'D	2.94	mW/°C	
Ambient Operating Temperature Range	T _A	-40 to +100	°C	
Storage Temperature Range	T _{stg}	-40 to +125	°C	

MOCD213-M

Parameter	Test Conditions	Symbol	Min	Тур**	Max	Unit
EMITTER						
Input Forward Voltage	$I_F = 30 \text{ mA}$	V_{F}	_	1.25	1.55	V
Reverse Leakage Current	$V_{R} = 6.0 \text{ V}$	I _R	_	0.001	100	μΑ
Capacitance		С	_	18	_	pF
DETECTOR						
Collector-Emitter Dark Current	$V_{CE} = 10 \text{ V}, T_{A} = 25^{\circ}\text{C}$	I _{CEO1}	_	1.0	50	nA
Collector-Emitter Dark Current	V _{CE} = 10 V, T _A = 100°C	I _{CEO2}	_	1.0	_	μΑ
Collector-Emitter Breakdown Voltage	I _C = 100 μA	BV _{CEO}	70	120	_	V
Emitter-Collector Breakdown Voltage	I _E = 100 μA	BV _{ECO}	7.0	7.8	_	V
Collector-Emitter Capacitance	f = 1.0 MHz, V _{CE} = 0 V	C _{CE}	_	7.0	_	pF
COUPLED						
Output Collector Current ⁽⁴⁾	$I_F = 10 \text{ mA}, V_{CE} = 5 \text{ V}$	CTR	100	_	_	%
Collector-Emitter Saturation Voltage	$I_C = 2.0 \text{ mA}, I_F = 10 \text{ mA}$	V _{CE (sat)}	_	0.15	0.4	V
Turn-On Time	$I_C = 2.0 \text{ mA}, V_{CC} = 10 \text{ V},$ $R_L = 100 \Omega \text{ (fig 6.)}$	t _{on}	_	3.0	_	μs
Turn-Off Time	$I_C = 2.0 \text{ mA}, V_{CC} = 10 \text{ V},$ $R_L = 100 \Omega \text{ (fig 6.)}$	t _{off}	_	2.8	_	μs
Rise Time	I_C = 2.0 mA, V_{CC} = 10 V, R_L = 100 Ω (fig 6.)	t _r	_	1.6	_	μs
Fall Time	I_C = 2.0 mA, V_{CC} = 10 V, R_L = 100 Ω (fig 6.)	t _f	_	2.2	_	μs
Isolation Surge Voltage ^(1,2,3)	f = 60 Hz, t = 1 min.	V _{ISO}	2500	_	_	Vac(rms
Isolation Resistance ⁽²⁾	V _{I-O} = 500 V	R _{ISO}	10 ¹¹	_	_	Ω
Isolation Capacitance ⁽²⁾	V _{I-O} = 0 V, f = 1 MHz	C _{ISO}	_	0.2	_	pF

^{**} Typical values at $T_A = 25$ °C

NOTE:

- 1. Input-Output Isolation Voltage, V_{ISO} , is an internal device dielectric breakdown rating.
- 2. For this test, Pins 1, 2, 3 and 4 are common and Pins 5, 6, 7 and 8 are common.
- 3. V_{ISO} rating of 2500 $V_{AC(rms)}$ for t=1 min. is equivalent to a rating of 3,000 $V_{AC(rms)}$ for t=1 sec.
- 4. Current Transfer Ratio (CTR) = $I_C/I_F \times 100\%$.

Figure 6. Switching Time Test Circuit and Waveforms

MOCD213-M

ORDERING INFORMATION

Option	Order Entry Identifier	Description
V	V	VDE 0884
R1	R1	Tape and reel (500 units per reel)
R1V	R1V	VDE 0884, Tape and reel (500 units per reel)
R2	R2	Tape and reel (2500 units per reel)
R2V	R2V	VDE 0884, Tape and reel (2500 units per reel)

MARKING INFORMATION

Definitions			
1	Fairchild logo		
2	Device number		
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)		
4	One digit year code, e.g., '3'		
5	Two digit work week ranging from '01' to '53'		
6	Assembly package code		

MOCD213-M

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.