FOLLOW SET

Lecture 11
15CSE311 Compiler Design
Kavitha K R
Department of Computer Science

FOLLOW Sets

```
<u>Definition</u>: Given a grammar G = (V, T, P, S), for any nonterminal A \in V:

FOLLOW(A) = { \mathbf{a} \in T \mid S \Rightarrow^* \alpha A \mathbf{a} \beta for some \alpha, \beta}.

i.e., FOLLOW(A) contains those terminals that can appear after A in something derivable from the start symbol S.

if S \Rightarrow^* \alpha A then $ is also in FOLLOW(A). ($ \equiv EOF, "end of input.")
```

Example:

$$E \rightarrow E + E \mid id$$
FOLLOW(E) = { +, \$ }.

Computing FOLLOW Sets

Given a grammar G = (V, T, P, S):

- add \$ to FOLLOW(S);
- 2. repeat {

for each production $A \to \alpha B\beta$ in P, add every non- ϵ symbol in FIRST(β) to FOLLOW(B).

for each production $A \to \alpha B\beta$ in P, where $\epsilon \in FIRST(\beta)$, add everything in FOLLOW(A) to FOLLOW(B).

for each production $A \to \alpha B$ in P, add everything in FOLLOW(A) to FOLLOW(B).

} until no change to any FOLLOW set.

Example (FOLLOW Sets)

```
X \rightarrow YZ \mid a

Y \rightarrow b \mid \epsilon

Z \rightarrow c \mid \epsilon
```

X is start symbol: add \$ to FOLLOW(X);

 $X \rightarrow YZ$, so add everything in FOLLOW(X) to FOLLOW(Z).

ightharpoonup add \$ to FOLLOW(Z).

 $X \rightarrow YZ$, so add every non- ε symbol in FIRST(Z) to FOLLOW(Y).

ightharpoonup add **c** to FOLLOW(Y).

 $X \rightarrow YZ$ and $\varepsilon \in FIRST(Z)$, so add everything in FOLLOW(X) to FOLLOW(Y).

► add \$ to FOLLOW(Y).