Exercícios: Dualidade a Análise de Sensibilidade

Questão 1 (Análise de Sensibilidade)

Primeiro sistema, modificação função objetivo O sistema mantem-se primalmente viáivel, porque a solução ótima básica é $x_B^* = B^{-1}b$. A condição de otimalidade é $y_N^* + \Delta y_N \ge 0$ (o sistema fica dualmente viável). Do dicionário final obtemos

$$(B^{-1}N)^t = \begin{pmatrix} -1 & 2\\ 1/3 & -1\\ 1/3 & 1 \end{pmatrix}.$$

Incrementando cada coeficiente na função objetivo temos

Δc_B^t		Δc_N^t			Δy_N^t	T = (B)	$^{-1}N)^t \Delta c_B - \Delta c_N)^t$	$(y_N + \Delta y_N)^t$			
1	0	0	0	0	-1	1/3	1/3	0	2/3	2/3	
0	1	0	0	0	2	-1	1	3	-2/3	4/3	
0	0	0	0	1	0	0	-1	1	1/3	-2/3	

e portanto a condição de otimalidade é satisfeita para o incremento do primeiro coeficiente, mas não do segundo ou terceiro.

Primeiro sistema, modificação lados direitos O sistema mantem-se dualmente viável, porque a solução ótima dual é $y_N^* = (B^{-1}N)^t c_B - c_N$. A condição de otimalidade é $x_B^* + \Delta x_B \ge 0$ (o sistema fica primalmente viável). Do dicionário final obtemos

$$B^{-1} = \begin{pmatrix} -1 & 1/3 \\ 2 & -1 \end{pmatrix}.$$

Incrementando os coeficientes dos lados direitos (um cada vez) temos

(Nultiplicamos os incrementos Δb por -1 para obter um incremento no sistema original.) Para os dois incrementos o sistema mantem-se ótimo.

Segundo sistema, modificação função objetivo

Aplicaremos o mesmo processo do primeiro sistema.

$$(B^{-1}N)^t = \begin{pmatrix} 2/3 & 1/3 & -2/3 & 1 & 1/3 \\ -1/3 & -2/3 & 1/3 & -1 & 4/3 \end{pmatrix}.$$

Incrementando cada coeficiente na função objetivo temos

Logo, o sistema mantem-se ótimo para o incremento do coeficiente de x_1 mas não de x_2 . Segundo sistema, modificação lados direitos

$$B^{-1} = 1/3 \begin{pmatrix} 0 & 0 & -1 & 0 & 2 \\ 0 & 0 & -2 & 0 & 1 \\ 0 & 3 & 1 & 0 & -2 \\ 0 & 0 & -3 & 3 & 3 \\ 3 & 0 & 4 & 0 & 1 \end{pmatrix}.$$

(Observe a multiplicação das linhas que correspondem com desigualdades de tipo " \geq " por -1 para variáveis originais.) Incrementando os coeficientes dos lados direitos (um cada vez) temos

		Δb^t			$\Delta x_B^t = (B^{-1}\Delta b)^t$					$(x_B^* + \Delta x_B)^t$					
1	0	0	0	0	0	0	0	0	1	7/3	2/3	2/3	2	20/3	
0	1	0	0	0	0	0	1	0	0	7/3	2/3	5/3	2	17/3	
0	0	-1	0	0	1/3	2/3	-1/3	1	-4/3	8/3	4/3	1/3	3	13/3 .	
0	0	0	-1	0	0	0	0	-1	0	7/3	2/3	2/3	1	17/3	
0	0	0	0	1	2/3	1/3	-2/3	1	1/3	3	1	0	3	6	

(Observe a multiplicação dos incrementos por -1 para desigualdades tipo " \geq ".) Logo o sistema mantem-se ótimo para todos incrementos.

Questão 2 (Análise de Sensibilidade)

Temos

$$y_N^* = 1/4 \begin{pmatrix} 1 \\ 13 \end{pmatrix}$$
 $B^{-1}N = 1/4 \begin{pmatrix} -1 & 3 \\ 1 & 1 \end{pmatrix}$.

Com $\Delta c = (\Delta c_B^t \Delta c_N^t)^t$ com $\Delta c_B = (23)^t$ e $\Delta c_N = (00)^t$ (observe a ordem das variáveis), obtemos

$$\Delta y_N^* = (B^{-1}N)^t \Delta c_B - \Delta c_N$$

$$= (B^{-1}N)^t \Delta c_B$$

$$= 1/4 \begin{pmatrix} -1 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = 1/4 \begin{pmatrix} 1 \\ 9 \end{pmatrix}.$$

A condição para manter o sistema viável é

$$y_N^* + t\Delta y_N^* \ge 0$$

$$\iff 1/4 \begin{pmatrix} 1 \\ 13 \end{pmatrix} + 1/4t \begin{pmatrix} 1 \\ 9 \end{pmatrix} \ge 0$$

$$\iff \begin{pmatrix} 1 \\ 13 \end{pmatrix} + t \begin{pmatrix} 1 \\ 9 \end{pmatrix} \ge 0$$

que é equivalente com

$$t \ge -1$$
$$t \ge -13/9$$

i.e. $t \in [-1, \infty]$.

Questão 3 (Análise de sensibilidade)

a) Temos $\Delta c_B = (0\ 1\ 0\ 0\ 0)^t$, $\Delta c_N = 0$ e $y_N = 1/5(3\ 3\ 8\ 10\ 5)^t$. Logo, variação da solução dual é

$$\Delta y_N = (B^{-1}N)^t \Delta c_B - \Delta c_N$$

$$= (B^{-1}N)^t \Delta c_B$$

$$= 1/15 \begin{pmatrix} -2\\3\\13\\15\\5 \end{pmatrix},$$

e nos temos a condição

$$\hat{y}_{N} = y_{N} + t\Delta y_{N} \ge 0$$

$$\iff \begin{pmatrix} 9 \\ 9 \\ 24 \\ 30 \\ 15 \end{pmatrix} + t \begin{pmatrix} -2 \\ 3 \\ 13 \\ 15 \\ 5 \end{pmatrix} \ge 0$$

$$\iff t \le 9/2$$

$$t \ge \max\{-3, -24/13, -2, -3\} = -24/13.$$

Obtemos

$$z(t) = z + t\Delta z = 22 + 7/3 t$$

onde

$$\Delta z = \Delta c_B^t(B^{-1}b) = 7/3.$$

b) Temos $\Delta b = (0\ 1\ 0\ 0\ 0)^t$. A variação da solução primal é

$$\Delta x_B = B^{-1} \Delta b = 1/15 \begin{pmatrix} 3\\13\\-13\\-26\\-1 \end{pmatrix}$$

(i.e. a coluna correspondendo com w_2) e nos temos a condição

$$\hat{x}_{B} = x_{B} + t\Delta x_{B} \ge 0$$

$$\iff \begin{pmatrix} 9 \cdot 15 \\ 35 \\ 0 \\ 46 \cdot 5 \\ 11 \cdot 5 \end{pmatrix} + t \begin{pmatrix} 3 \\ 13 \\ -13 \\ -26 \\ -1 \end{pmatrix} \ge 0$$

$$\iff t \ge \max\{-45, -35/13\} = -35/13,$$

$$t \le \min\{0, \dots\} = 0.$$

(Nota que não é necessário calcular todos limites no segundo caso, porque já temos um limite de 0.) Para função objetivo obtemos

$$z(t) = z + t\Delta z = 22 + 8/5 t$$

onde

$$\Delta z = c_B^t \Delta x_B = (3 \ 1 \ 0 \ 0 \ -2) \ 1/15 \begin{pmatrix} 3 \\ 13 \\ -13 \\ -26 \\ -1 \end{pmatrix} = 8/5.$$

c) A restrição pode ser re-escrita de forma

$$2x_2 + 4x_4 \le 10$$

$$\Rightarrow 2x_2 + 4x_4 + w_6 = 10$$

$$\Rightarrow 2x_2 + 4(7/3 + 2/15w_1 - 1/5x_2 - 13/15w_2 - x_5 - 1/3w_5) = 10$$

$$\Rightarrow w_6 = 2/3 - 8/15w_1 - 6/5x_2 + 52/15w_2 + 4x_5 + 4/3w_5$$

Podemos ver que a solução se mantém factível, então nenhuma re-otimização é necessário. (Caso contrário podemos aplicar o método Simplex dual para re-otimizar.)

Questão 4 (Método Simplex)

Observe que o sistema dado não é em forma padrão. O sistema dual é

minimiza
$$-4y_1 - 10y_2$$

sujeito a $3y_1 + 6y_2 \le 5$,
 $y_1 + 3y_2 \le 2$,
 $2y_1 + 5y_2 \le 4$,
 $y_1, y_2 \ge 0$.

O dicionário inicial é dualmente, mas não primalmente viável. Vamos aplicar o método Simplex dual com a regra do maior coeficiente

O primeiro pivô x_5 - x_2 resulta em

e o segundo pivô x_4 - x_1 resulta em

Portanto, a solução do sistema primal é (2/3, 2, 0, 0, 0) com valor ótimo -22/3 e a solução do sistema dual é (1, 1/3) (coeficientes negativas das variáveis de folga no função objetivo).

Alternativa 1 Como o sistema inicial não é viável, podemos adivinhar a solução $x_3 = 2$ e re-escrever com base x_3, x_5 (pivotando x_3-x_4) para obter

e depois o dois pivots x_1 - x_5 e x_2 - x_3 obter a solução ótima.

Alternativa 2 Podemos aplicar o método de duas fases, começando com o sistema auxiliar

que com os pivots x_0 – x_5 e x_1 - x_0 leva a solução ótima 0 (sistema viável) e nova base x_4 , x_1 . Continuando com a função objetivo original

o pivot x_2 - x_4 leva ao sistema ótimo.

Questão 5 (Dualidade)

a) Com variáveis duais y_1, \ldots, y_4 para as quatro restrições obtemos o dual

b) Para formar o dual temos que relaxar o sistema, introduzindo restrições adicionais $x_i \leq 1$ e restrições triviais $x_i \geq 0$ para todo $i \in I$. Seja z a variável dual da primeira restriçõe, e y_i para $i \in I$ as variáveis duais das restrições $x_i \leq 1$. Com isso o dual é

$$\label{eq:continuous} \begin{array}{ll} \mathbf{minimiza} & cz + \sum_{i \in I} y_i \\ \mathbf{sujeito} \ \mathbf{a} & w_i z + y_i \geq p_i, \\ & y_i \geq 0, z \lessgtr 0. \end{array} \qquad \forall i \in I,$$

c) Seja y_i para $v \in V$ as variáveis duais das restrições de conservação de fluxo, e z_a para $a \in A$ as variáveis duais das limitantes superiores.