Course: Machine Learning with Python

Task 1.3: Optimization in Relation to Problem-Solving

Weather Station	Year	Theta0	Theta1	Iterations	Step Size
Budapest	1960	-5	-1	100	0.01
Budapest	1990	-5	-1	100	0.01
Budapest	2020	-5	-1	100	0.1
Madrid	1960	0	0	500	0.02
Madrid	1990	0	0	500	0.02
Madrid	2020	0	0	200	0.05
Stockholm	1960	0	0	150	0.1
Stockholm	1990	0	0	100	0.01
Stockholm	2020	0	0	150	0.1

Observation about the weather station temperatures:

- 1. Budapest experienced the most significant temperature rise. The minimum daily mean temperature remained unchanged between 1960 and 1990, but there was a sharp increase from 1990 to 2020.
- 2. Madrid showed the least temperature increase among the three weather stations, indicating a more stable climate trend compared to Budapest and Stockholm.
- 3. **Stockholm also saw a temperature increase**, but not as dramatically as Budapest.

Budapest 2020

Loss function for different thetas

Madrid 2020

Loss function for different thetas

Stockholm 2020

Loss function for different thetas

Budapest 1990

Loss function for different thetas

Madrid 1990

Loss function for different thetas

Stockholm 1990

Loss function for different thetas

Budapest 1960

Loss function for different thetas

Madrid 1960

Loss function for different thetas

Stockholm 1960

Loss function for different thetas

