- Cada questão contribui 0.2 pontos para Prova 2. Prazo de entrega fixo: 21 de maio.
- As questões são individualizadas e se referem aos números do cartão n_1, n_2, \ldots, n_8 (com dígitos 1 na esquerda para completar 8 dígitos, caso necessário). Exemplo: para cartão 93350 temos $n_1 = 1, n_2 = 1, n_3 = 1, n_4 = 9, n_5 = 3, n_6 = 3, n_7 = 5, n_8 = 0.$

Exercícios Prova 2

Questão 1 (Formulação Matemática)

Formula o problema da mochila com n itens de valor v_i e peso p_i , $i \in [n]$ e peso máximo P junto com as três restrições adicionas $\mathbf{n_5}$, $\mathbf{n_6}$, $\mathbf{n_7}$. (Caso para $S = \{\mathbf{n_5}, \mathbf{n_6}, \mathbf{n_7}\}$ temos |S| < 3 resolve $S \cup [i]$ usando o menor i tal que $|S \cup [i]| = 3$.)

- 0) Caso algum item com índice impar é selecionado, nenhum item com índice par pode ser selecionado.
- 1) Temos que selecionar pelo menos um item primo (i.e cujo índice é um número primo).
- 2) Podemos levar qualquer quantidade de itens primos, mas pagamos uma penalidade p constante para cada par diferente na mochila (i.e. caso tem k itens primos selecionados a penalidade é $p\binom{k}{2}$).
- 3) Temos uma partição $\mathcal{P} = \{P_1, \dots, P_k\}$ dos itens (i.e. para todo i, j temos $P_i \cap P_j = \emptyset$ e $\bigcup_{i \in [k]} P_i = [n]$). De cada parte $P_i, i \in [k]$ podemos selecionar no máximo um item.
- 4) Nenhum item selecionado pode ter mais que a metade do valor de todos itens selecionados.
- 5) Dos itens no conjunto $C \subseteq [n]$ podemos selecionar no máximo um item, mas caso um item em C é selecionado, temos que selecionar o item $c \notin C$ também.
- 6) Dado dois conjuntos $A, B \subseteq [n]$, podemos levar qualquer número de itens em A, mas neste caso nenhum em $B \setminus A$, e *vice versa*.
- 7) Dado dois conjuntos $A, B \subseteq [n]$, podemos levar ou todos em A ou todos em B.
- 8) Cada item ainda tem um volume v_i e o volume máximo é V.
- 9) Caso algum item com índice par é selecionado, nenhum item com índice ímpar pode ser selecionado.

Questão 2 (Formulação Matemática)

Formula o problema cujas possíveis soluções são árvores geradores de um grafo nãodirecionado G = (V, A) junto com a função objetivo $\mathbf{n_4} \mod 3$ e as restrições adicionais $\mathbf{n_5} \mod 4$ e $\mathbf{n_9} \mod 4$ (caso $\mathbf{n_5} = \mathbf{n_9}$ usar $\mathbf{n_5} \mod 4$ e $\mathbf{n_5} + 1 \mod 4$). Funções objetivo:

- 0) Com pesos p_a , $a \in A$, maximizando peso total.
- 1) Maximizando o número de folhas.
- 2) Minimizando a soma dos graus.

Restrições adicionais:

- 0) A árvore tem que ter pelo menos k folhas.
- 1) A árvore tem que ter pelo menos k vértices de grau mínimo d.
- 2) A árvore pode ter no máximo k vértices internos (i.e. vértices que não são folhas).
- 3) A árvore é binária (i.e. cada vértice possui grau no máximo 3).

Questão 3 (Análise de Sensibilidade)

Resolve

maximiza
$$x_1 - \mathbf{n_5}x_2 + \mathbf{n_6}x_3$$

sujeito a $2x_1 + x_2 - x_3 \le 4$,
 $4x_1 - 3x_2 \le 2$,
 $-3x_1 + 2x_2 + x_3 \le 3$,
 $x_1, x_2, x_3 > 0$.

usando o método Simplex. Determine os intervalos em que o dicionário final mantemse ótimo para cada coeficiente da função objetivo e para cada lado direito. Para cada intervalo expressa a novo valor da função objetivo em função do parâmetro t da variação.

Questão 4 (Análise de Sensibilidade)

A solução do sistema

maximiza
$$6x_1 + 8x_2 + 5x_3 + 9x_4$$

sujeito a $2x_1 + x_2 + x_3 + 3x_4 \le 5$,
 $x_1 + 3x_2 + x_3 + 2x_4 \le 3$,
 $x_1, x_2, x_3, x_4 \ge 0$.

partindo do dicinário inicial com variáveis de folga x_5 e x_6

$$z = 0 +6x_1 +8x_2 +5x_3 +9x_4$$

$$x_5 = 5 -2x_1 -1x_2 -1x_3 -3x_4$$

$$x_6 = 3 -1x_1 -3x_2 -1x_3 -2x_4$$

é

$$z = 17 -1x_5 -2x_4 -5x_2 -4x_6$$

$$x_1 = 2 -1x_5 -1x_4 +2x_2 +1x_6$$

$$x_3 = 1 +1x_5 -1x_4 -5x_2 -2x_6$$

Reponde a questão $\mathbf{n_6} \mod 6$:

- 0) Em qual intervalo o coeficiente 6 da variável x_1 pode variar, de modo que a solução básica ainda seja ótima?
- 1) Em qual intervalo o coeficiente 8 da variável x_2 pode variar, de modo que a solução básica ainda seja ótima?
- 2) Em qual intervalo o coeficiente 5 da variável x_3 pode variar, de modo que a solução básica ainda seja ótima?
- 3) Em qual intervalo o coeficiente 9 da variável x₄ pode variar, de modo que a solução básica ainda seja ótima?
- 4) Em qual intervalo o lado direito 5 da primeira restrição pode variar, de modo que a solução básica ainda seja ótima?
- 5) Em qual intervalo o lado direito 3 da primeira restrição pode variar, de modo que a solução básica ainda seja ótima?

Adicionalmente informa a variação da função objetivo no intervalo identificado.

Questão 5 (Método Simplex dual)

Para cada dicionário abaixo, identifique se ele é dualmente viável, dualmente ótimo, e caso aplicável, o que seria a próximo pivô usando a regra de Dantzig. O pivô não precisa ser executado. Justifique a resposta brevemente.

$$z = -2 -x_1 -\mathbf{n_5}x_2 -6x_3$$

$$x_4 = \mathbf{n_6} -4x_1 +9x_2 -7x_3$$

$$x_5 = 7 +3x_1 +5x_2 -7x_3$$

$$x_6 = 2 +4x_1 -7x_2$$