PANGENOMIC K-MER DISTRIBUTION ESTIMATION

AT LOW MEMORY COST

Timothé Rouzé, Antoine Limasset & Rayan Снікні March 14, 2024

Context

Project Logan, compression of unitigs

Context

- Project Logan, compression of unitigs
- Compress a Human pangenome

Context

- Project Logan, compression of unitigs
- Compress a Human pangenome
- Computing k-mer distribution accross pangenome

Context

- Project Logan, compression of unitigs
- Compress a Human pangenome
- Computing k-mer distribution accross pangenome
- Need to count k-mers once per file accross every files

STATE OF THE ART

Existing tools

- · Kmer counters, kmer index, ...
 - Needs tweaking to output the *histogram*

STATE OF THE ART

Existing tools

- · Kmer counters, kmer index, ...
 - Needs tweaking to output the Ahistogram
- · Gene based tools
 - Not insightful for our research

STATE OF THE ART

Existing tools

- · Kmer counters, kmer index, ...
 - Needs tweaking to output the Ahistogram
- · Gene based tools
 - Not insightful for our research
- K-mer based tools
 - · Pangrowth [1]
 - · That's all....

Specificities

· Based on yak [2]

Specificities

- · Based on yak [2]
- Compared with gene based methods, gives a similar output

Specificities

- · Based on yak [2]
- Compared with gene based methods, gives a similar output
- uses the histogram to estimate pangenome "openness"

Specificities

- · Based on yak [2]
- Compared with gene based methods, gives a similar output
- uses the histogram to estimate pangenome "openness"
- Does not scale easily

A WORD ON SCALABILITY

Memory is critical

 A 96GB RAM machine is >4x price 16GB on AWS

KLEB

K-mer Layers Estimation using Bloom filters

Structure

· Directly inspired by Pangrowth

KLEB

K-mer Layers Estimation using Bloom filters

Structure

- · Directly inspired by Pangrowth
- Bloom filters

K-mer Layers Estimation using Bloom filters

Structure

- · Directly inspired by Pangrowth
- Bloom filters
 - Arbitrary low memory cost
 - Some false positive values
 - · One per file
 - Temporary

K-mer Layers Estimation using Bloom filters

Structure

- Directly inspired by Pangrowth
- · Bloom filters
 - · Arbitrary low memory cost
 - · Some false positive values
 - · One per file
 - Temporary
- · Accumulated Bloom Filter
 - · Novel data structure
 - · Between Counting bloom filters [3] and Agregating bloom filters [4]

ACCUMULATED BLOOM FILTER

HISTOGRAM COMPARISON

MEMORY CONSUMPTION

ELAPSED TIME ON INCREASING NUMBER OF GENOMES

CPU TIME (WIP)

TAKE HOME MESSAGES

- K-mer distribution
 - Gain better understanding on species
 - Guidance for genomic data compression
- Perspectives
 - Better qualitative analysis
 - Improve computational time
 - · LSH methods

KLEB

- Arbitrarily lighter in memory
- \cdot handling of big collections of genomes
- still a work in progress
- · independant of k value

REFERENCES I

Haoyu Cheng, Gregory T Concepcion, Xiaowen Feng, Haowen Zhang, and Heng Li. **Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm.** *Nature methods*, 18(2):170–175, 2021.

Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. **Summary cache:** a scalable wide-area web cache sharing protocol. *IEEE/ACM transactions on networking*, 8(3):281–293, 2000.

Camille Marchet and Antoine Limasset.

Scalable sequence database search using partitioned aggregated bloom comb trees.

Bioinformatics, 39(Supplement_1):i252–i259, 2023.