## **Ch-6 Triangles**

1. In the fig., P and Q are points on the sides AB and AC respectively of  $\Delta ABC$  such that AP = 3.5 cm, PB = 7 cm, AQ = 3 cm and QC = 6 cm. If PQ = 4.5 cm, find BC.



- 2. In the fig., PQ || BC and AP : PB = 1 : 2. Find  $\frac{Ar(\Delta APQ)}{Ar(\Delta ABC)}$
- 3. The perimeter of two similar triangles ABC and LMN are 60 cm and 48 cm respectively. If LM = 8 cm, then what is the length of AB?
- 4. In  $\triangle ABC$  shown in figure, DE || BC. If BC = 8 cm, DE = 6 cm and area of  $\triangle ADE = 45 \text{ cm}^2$ , what is the area of  $\triangle ABC$ ?



- 5. If the areas of two similar triangles are in ratio 25 : 64, write the ratio of their corresponding sides.
- 6. If one diagonal of a trapezium divides the other diagonal in the ratio 1 : 3. Prove that one of the parallel sides is three times the other.
- 7. In the given figure,  $\triangle ABC$  and  $\triangle DEF$  are similar, BC = 3 cm, EF = 4 cm and area of  $\triangle ABC = 54$  cm<sup>2</sup>. Determine the area of  $\triangle DEF$ .



8. In the given figure, ABC is a triangle in which AB = AC, D and E are points on the sides AB and AC respectively, such that AD = AE. Show that the points B, C, E and D, are concyclic.



- 9. ABC is a triangle. PQ is a line segment intersecting AB in P and AC in Q such that PQ || BC and divides  $\triangle$ ABC into two parts equal in area. Find  $\frac{BP}{AB}$ .
- 10. ABC is a triangle in which AB = AC and D is any point in BC. Prove that :  $(AB)^2 (AD)^2 = BD \times CD$ .
- 11. AD is the median of  $\triangle ABC$ , O is any point on AD. BO and CO produced meet AC and AB in E and F respectively. AD is produced to X such that OD = DX. Prove that AO : AX = AF : AB.
- 12. In a triangle ABC, P divides the sides AB such that AP : PB = 1 : 2, Q is a point on AC such that PQ || BC. Find the ratio of the areas of  $\triangle$ APQ and trapezium BPQC.
- 13. In  $\Delta$ LMN,  $\angle$ L = 50° and  $\angle$ N= 60°. If  $\Delta$ LMN is similar to  $\Delta$ PQR, then find  $\angle$ Q.
- 14. If areas of two similar triangles are in the ratio 25: 64, write the ratio of their corresponding sides.
- 15. D, E and F are mid points of sides BC, AC and AB respectively of triangle ABC. Find  $\frac{ar(\Delta DEF)}{ar(\Delta ABC)}$
- 16. If one diagonal of a trapezium divides the other diagonal in the ratio 1 : 2. Prove that one of the parallel sides is double the other.
- 17. ABC is a right triangle, right angled at A, and D is the mid-point of AB. Prove that  $BC^2 = CD^2 + 3BD^2$ .
- 18. If the diagonals of a quadrilateral divide each other proportionally, prove that it is a trapezium.
- 19. Triangle ABC is right angled at B and D is the mid-point of BC. Prove that  $AC^2 = 4AD^2 \times 3AB^2$ .
- 20. E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that  $\triangle$ ABC is similar to  $\triangle$ CFB.

- 21. Two sides and the perimeter of one triangle are respectively three times the corresponding sides and the perimeter of the other triangle. Are the two triangles similar?
- 22.  $\triangle ABC \sim \triangle PQR$  with  $\frac{BC}{QR} = \frac{1}{3}$ , then find  $\frac{ar(\triangle PQR)}{ar(\triangle ABC)}$ .
- 23. Is the triangle with sides 14cm, 12cm and 17cm a right triangle? Why?
- 24. The lengths of diagonals of a rhombus are 24 cm and 32 cm. Find the length of its sides.
- 25. PQR is an isosceles triangle with QP=QR. If  $PR^2 = 2QR^2$ , prove that  $\Delta PQR$  is right-angled.
- 26. In a triangle ABC, line DE is drawn parallel to side BC such that  $\frac{AD}{DB} = \frac{AE}{EC}$ . Show that BAC is an isosceles triangle.
- 27. A 20 m long vertical pole casts a shadow 10 m long on the ground. At the same time a tower casts a shadow 50 m long on the ground. Find the height of the tower.
- 28. State and prove basic proportionality theorem.
- 29. L and M are two points on the sides DE and DF of the  $\Delta$ DEF such that DL = 4, LE =  $\frac{4}{3}$ , DM = 6 and DF = 8. Is LM parallel to EF? Why?
- 30. In  $\triangle PQR$  and  $\triangle MST$ ,  $\angle P = 55^{\circ}$ ,  $\angle Q = 25^{\circ}$ ,  $\angle M = 100^{\circ}$  and  $\angle S = 25^{\circ}$ . Is  $\triangle QPR$  similar to  $\triangle TSM$ ? Why?