strength and bit error rate. A suitable traffic channel is assigned that cell as the target, and the mobile station is commanded to retune to the traffic channel in the target cell. At the same time, the call is switched by the MSC to the base station currently serving the mobile station to the base station in the target cell. The mobile station switches to the newly assigned channel during one of the idle periods so there is no interruption in transmission. Thus, from the user's perspective, the handover is seamless.

Change the paragraph beginning on page 10, line 21 to read as follows:

According to the present invention, the mobile station 16 is programmed to vary the frequency at which channel quality measurements are made based on the position of the mobile station 16, or some function of that position. For example, the mobile station 16 may be programmed to determine its position relative to the currently serving base station 12 and vary the frequency of the channel quality measurements as a function of the distance from the serving base station 12. In this case, the frequency of channel quality measurements would increase as the distance from the serving base station increased. In another embodiment, the mobile station 16 may determine its position relative to the serving base station 12 and a target base station 12 in a neighboring cell and vary the frequency of measurement as a function of the distance from both base stations 12. In this case, the frequency of reporting may be dependent on the ratio of the distances between the serving base station and the target base station 12. Another embodiment would be to monitor the position of the base station 12 and vary the frequency of channel quality measurements based on the mobility of the mobile station 16. For purposes of this application, the term mobility is defined to be any function of position and time, such as the rate of change in position of the mobile station 16 over time. Another example of mobility would be the amount of time the mobile station 16 stays in one position. In this case, the frequency of channel quality measurements \mathcal{H} would increase with increasing mobility.

Change the paragraph beginning on page 12, line 9 to read as follows:

To implement the present invention, the mobile station 16 must estimate its position periodically. The need to estimate position may potentially conflict with the objective of saving battery life while in idle mode. However, there may be other applications that dictate the need for position estimates, such as for acquiring a position used in emergency calling. Furthermore, the frequency of making position estimates may be one or more magnitudes less than channel selection measurements. If no mobility is detected and hence, very infrequent neighbor list measurements and position estimates are made, there is a net gain in battery life. During active mode, the object is to minimize required frame stealing and not the frequency of measurement per se. Hence, during active mode, the battery drain due to performing position estimates is a secondary issue.

Change the paragraph beginning on page 14, line 13 to read as follows:

Assuming a call is not received or the mobile station 16 is not required to set up a new call (block 116), the mobile station 16 downloads neighbor lists from the serving base station, and perhaps, lists from other base stations providing signals of sufficient strength and quality (block 120). During this process, the mobile station 16 periodically determines its position or mobility (block 122). Based on this determination, the mobile station 16 monitors the channels from the neighbor list with a frequency depending position or mobility (block 124). As discussed further below, the mobile station 16 may receive access to information bearing on the position of the serving and surrounding base stations as well as coordinates defining areas served by select channels within a