Probability and Statistics Notes

January 15, 2024

1 Sum of random variables

Often we want to find the distribution of sums of two independent r.v U = X + Y. There are a few approaches

1.1 PDF change of variables

This approach is based on the probability "volume" being equal after variable change (e.g. $f(x)dx = g(u)du \rightarrow g(u) = f(x(u)) \left| \frac{dx}{du} \right|$)We can choose another V = X, then

$$g(u, v) = f(x(u, v), y(u, v)) \left| \frac{\partial(x, y)}{\partial(u, v)} \right|$$

. So the pdf of U is $g(u) = \int g(u, v) dv$. Note that the choice of V is important as sometimes it will make $\int g(u, v) dv$ go unbounded (e.g. when X and Y are i.i.d exponential r.v, the choice of V = X will make the integral infinite).

1.2 Find CDF

When it is hard to choose V, we can try finding the CDF of U directly.

$$P(U = X + Y < u) = \int \int_{(x,y) \in Q} f(x,y) dx dy$$

where $Q = \{(x,y)|x+y < u\}$. Note that x+y=u is a line with negative slope that intercept x and y axis at u. Then we can describe the region of Q and translate it into the integration bound.

1.3 Compute MGF

If X and Y are two r.v and for all t, $M_X(t) = M_Y(t)$ then $F_X(x) = F_Y(x)$ for all values of x (X, Y have the same distribution). We can use this property to calculate the MGF of X + Y and compared it with known MGF of other distributions.

2 Hypothesis testing

2.1 Concepts

- 1. To study a population, we formulate hypothesis about the parameters H_0 and H_1 .
- 2. We create test (in this case $LRT(x) = \lambda(x)$) to test the hypothesis by inputting the data into the test.
- 3. We can compute power function of the test $P_{\theta}(X \in R) = P_{\theta}(\lambda(x) < c)$ for some c (measures type I error). Note that the c controls the rejection region R here.

4. We define the level/size of the test α to be

$$\sup_{\theta \in \Theta_0} P_{\theta}(X \in R) = \sup_{\theta \in \Theta_0} P_{\theta}(\lambda(x) < c) = \alpha \quad (\text{ or } \le \alpha)$$

we usually choose $\alpha=0.05$ to suppress type I error to 5%

- 5. As we can see, c is related to α , we can find c by solving the above inequality.
- 6. Once we have c, the rejection region is determined, we can input data into $\lambda(x)$ and test it against c. If $\lambda(x) < c$, we reject H_0 .
- 7. Test is chosen to minimize both type I and type II errors $(P_{\theta}(X \in R))$ and $P_{\theta}(X \in R^{c})$