≡ Item Navigation

Notes: The Indefinite Integral

Indefinite Integrals

The function $\int f(x)dx$ is called the **indefinite integral**.

The indefinite integral is an antiderivative: $\int f(x) dx = F(x)$ means F'(x) = f(x).

If F'(x)=f(x), the **general indefinite integral** is $\int f(x)dx=F(x)+C$, where C is a constant.

Remember the difference between definite and indefinite integrals: A definite integral $\int_a^b f(x)dx$ is a *number* (a constant), while an indefinite integral $\int f(x)dx$ is a *function* (or a family of functions).

Common Indefinite Integrals

Just as with definite integrals, if f and g are integrable and c is a constant, then $\int [f(x)\pm g(x)dx=\int f(x)dx\pm \int g(x)dx$, and $\int cf(x)dx=c\int f(x)dx$.

By working backwards from lists of derivatives that we know, we can obtain a list of common antiderivatives or indefinite integrals:

Function type	Indefinite integral
Constant	$\int c \ dx = cx + C$
Power Function ($n eq -1$)	$\int x^n \; dx = rac{x^{n+1}}{n+1} + C$
Power Function with $n=-1$	$\int rac{1}{x} dx = \ln x + C$
Exponential Function	$\int b^x \ dx = rac{b^x}{\ln b} + C$
	$\int e^x \ dx = e^x + C$
Function type Function	Indefinite integral $\cos x + C$