

DEEP LEARNING WORKSHOP

Dublin City University 27-28 April 2017

#InsightDL2017

Day 2 Lecture 8

Recurrent Neural Networks

Xavier Giro-i-Nieto xavier.giro@upc.edu

Associate Professor
Universitat Politecnica de Catalunya
Technical University of Catalonia

Acknowledgments

Santiago Pascual

Outline

- 1. The importance of context
- 2. Where is the memory?
- 3. Vanilla RNN
- 4. Problems
- 5. Gating methodology
 - a. LSTM
 - b. GRU

The importance of context

- Recall the 5th digit of your phone number
- Sing your favourite song beginning at third sentence
- Recall 10th character of the alphabet

Probably you went straight from the beginning of the stream in each case...

because in sequences order matters!

Idea: retain the information preserving the importance of order

Recall from Day 1 Lecture 4...

Every **y/hi** is computed from the sequence of forward activations out of input **x**.

Feed

FORWARD

$$y = f(W_3 \cdot h_2 + b_3)$$

$$h_2 = f(W_2 \cdot h_1 + b_2)$$

$$h_1 = f(W_1 \cdot x + b_1)$$

If we have a sequence of samples...

predict sample x[t+1] knowing previous values {x[t], x[t-1], x[t-2], ..., x[t-τ]}

Feed Forward approach:

- static window of size L
- slide the window time-step wise

Feed Forward approach:

- static window of size L
- slide the window time-step wise

Feed Forward approach:

- static window of size L
- slide the window time-step wise

Problems for the feed forward + static window approach:

- What's the matter increasing L? → Fast growth of num of parameters!
- Decisions are independent between time-steps!
 - The network doesn't care about what happened at previous time-step, only present window matters → doesn't look good
- Cumbersome padding when there are not enough samples to fill L size
 - Can't work with variable sequence lengths

Solution: Build specific connections capturing the temporal evolution → **Shared weights** in time Give volatile memory to the network Feed-Forward **Fully-Connected** $h_t = f(W \cdot x_t + U \cdot h_{t-1} + b)$

Hence we have two data flows: Forward in layers + time propagation

BEWARE: We have <u>extra depth</u> now! Every time-step is an extra level of depth (as a deeper stack of layers in a feed-forward fashion!)

Hence we have two data flows: Forward in layers + time propagation

$$\mathbf{h}_t = g(\mathbf{W} \cdot \mathbf{x}_t) + \mathbf{U} \cdot \mathbf{h}_{t-1} + \mathbf{b}_h)$$

Hence we have two data flows: Forward in layers + time propagation

Last time-step includes the context of our decisions recursively

Hence we have two data flows: Forward in layers + time propagation

Last time-step includes the context of our decisions recursively

Back Propagation Through Time (BPTT): The training method has to take into account the time operations \rightarrow a cost function \boldsymbol{E} is defined to train our RNN, and in this case the total error at the output of the network is the sum of the errors at each time-step:

$$E(\mathbf{y}, \hat{\mathbf{y}}) = \sum_{t=1}^{T} E_t(\mathbf{y}_t, \hat{\mathbf{y}}_t)$$

T: max amount of time-steps to do back-prop. In Keras this is specified when defining the "input shape" to the RNN layer, by means of: (batch size, sequence length (T), input dim)

Input shape
3D tensor with shape (nb_samples, timesteps, input_dim).

$$\frac{\partial E}{\partial \mathbf{W}} = \sum_{t=0}^{T-1} \frac{\partial E_t}{\partial \mathbf{W}}$$

Example back-prop in time with 3 time-steps

Main problems:

 Long-term memory (remembering quite far time-steps) vanishes quickly because of the recursive operation with U

$$\mathbf{h}_t = g(\mathbf{W} \cdot \mathbf{x}_t + \mathbf{U} \cdot g(\cdots g(\mathbf{W} \cdot \mathbf{x}_{t-T} + \mathbf{U} \cdot \mathbf{h}_{t-T} + \mathbf{b}_h) \cdots) + \mathbf{b}_h)$$

 During training gradients explode/vanish easily because of depth-in-time → Exploding/Vanishing gradients!

Example back-prop in time with 3 time-steps

Hochreiter, Sepp, and Jürgen Schmidhuber. <u>"Long short-term memory."</u> Neural computation 9, no. 8 (1997): 1735-1780.

The New York Times, <u>"When A.I. Matures, It May Call Jürgen Schmidhuber 'Dad'"</u> (November 2016)

Jürgen
Schmidhuber @
NIPS 2016
Barcelona

Jürgen Schmidhuber @ NIPS 2016 Barcelona

Jürgen Schmidhuber @ NIPS 2016 Barcelona

Gating method

Solutions:

- Change the way in which past information is kept → create the notion of cell state, a
 memory unit that keeps long-term information in a safer way by protecting it from
 recursive operations
- Make every RNN unit able to forget whatever may not be useful anymore by clearing that info from the cell state (optimized clearing mechanism)
- 3. Make every RNN unit able to decide whether **the current time-step information matters or not**, to accept or discard (optimized reading mechanism)
- Make every RNN unit able to output the decisions whenever it is ready to do so (optimized output mechanism)

Three **gates** are governed by *sigmoid* units (btw [0,1]) define the control of in & out information..

Make every RNN unit able to **forget whatever may not be useful anymore** by clearing that info from the cell state (optimized clearing mechanism)

Forget Gate:

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$
Concatenate

<u>Figure</u>: Cristopher Olah, <u>"Understanding LSTM Networks"</u> (2015) / <u>Slide</u>: Alberto Montes

Make every RNN unit able to decide whether the current time-step information matters or not, to accept or discard (optimized reading mechanism)

Input Gate Layer

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

New contribution to cell state

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$
Classic neuron

<u>Figure</u>: Cristopher Olah, <u>"Understanding LSTM Networks"</u> (2015) / <u>Slide</u>: Alberto Montes

Make every RNN unit able to decide whether the current time-step information matters or not, to accept or discard (optimized reading mechanism)

Update Cell State (memory):

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

29

Make every RNN unit able to **output the decisions whenever it is ready to do so** (optimized output mechanism)

Output Gate Layer

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$

Output to next layer

$$h_t = o_t * \tanh(C_t)$$

Long Short Term Memory (LSTM) cell

An LSTM cell is defined by two groups of neurons plus the cell state (memory unit):

- 1. Gates
- 2. Activation units
- 3. Cell state

$$\mathbf{i}_t = \sigma(\mathbf{W}_i \mathbf{x}_t + \mathbf{U}_i \mathbf{h}_{t-1} + \mathbf{b}_i)$$

$$\hat{\mathbf{C}}_t = \tanh(\mathbf{W}_c \mathbf{x}_t + \mathbf{U}_c \mathbf{h}_{t-1} + \mathbf{b}_c)$$

$$\mathbf{f}_t = \sigma(\mathbf{W}_f \mathbf{x}_t + \mathbf{U}_f \mathbf{h}_{t-1} + \mathbf{b}_f)$$

$$\mathbf{C}_t = \mathbf{i}_t \odot \hat{\mathbf{C}}_t + \mathbf{f}_t \odot \mathbf{C}_{t-1}$$

$$\mathbf{o}_t = \sigma(\mathbf{W}_o \mathbf{x}_t + \mathbf{U}_o \mathbf{h}_{t-1} + \mathbf{b}_o)$$

$$h_t = o_t \odot \tanh(C_t)$$

Computation Flow

Long Short Term Memory (LSTM) cell

An LSTM cell is defined by two groups of neurons plus the cell state (memory unit):

Gated Recurrent Unit (GRU)

Similar performance as LSTM with less computation.

$$u_{i} = \sigma\left(W^{(u)}x_{i} + U^{(u)}h_{i-1} + b^{(u)}\right) \qquad (1)$$

$$r_{i} = \sigma\left(W^{(r)}x_{i} + U^{(r)}h_{i-1} + b^{(r)}\right) \qquad (2)$$

$$h \rightarrow \widetilde{h} \qquad \text{IN} \qquad \tilde{h}_{i} = \tanh\left(Wx_{i} + r_{i} \circ Uh_{i-1} + b^{(h)}\right) \qquad (3)$$

$$OUT \qquad h_{i} = u_{i} \circ \tilde{h}_{i} + (1 - u_{i}) \circ h_{i-1} \qquad (4)$$

$$N_{params}^i = 3 \times (N_{inputs}^i \times N_{units}^i + N_{units}^i \times N_{units}^i + N_{units}^i)$$

Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." AMNLP 2014.

Slide credit: Xavi Giro

34

Gated Recurrent Unit (GRU)

Similar performance as LSTM with less computation.

Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." AMNLP 2014.

Slide credit: Xavi Giro

35

Gated Recurrent Unit (GRU)

Thanks! Q&A?

Follow me at

/ProfessorXavi

@DocXavi

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Department of Signal Theory and Communications

Image Processing Group

https://imatge.upc.edu/web/people/xavier-giro