तत्वों का आवर्ती वर्गीकरण

*तत्वों का आवर्ती वर्गीकरण की आवश्यकता क्यों पड़ा ?

⇒प्रारंभ में बहुत कम तत्वों का खोज हुआ था ,जिससे जानकारी प्राप्त करने में कोई कठिनाई नहीं होती थी। लेकिन बाद में बहुत सारे तत्वों का खोज होने के बाद जानकारी प्राप्त करने में बहुत कठिनाइयाँ पैदा हुई। इस कारण तत्वों का आवर्ती वर्गीकरण किया गया।

*तत्वों के वर्गीकरण से लाभ :-

- ⇒तत्वों के वर्गीकरण से हमें निम्नलिखित लाभ प्राप्त हुए।
- i. इससे हमें तत्वों के गुणों का अध्ययन नियमित तरीके से किया जाता है।
- ii. सभी तत्वों के गुणों को अलग-अलग अध्ययन करने की आवश्यकता नहीं होती है। किसी समूह के एक तत्वों के गुण की जानकारी हो जाती है तो उस समूह के सभी तत्वों की जानकारी मिल जाती है।
- iii. किसी समूहों के तत्वों के गुणों में होने वाली परिवर्तन को समझना आसान हो जाता है। iv. इसके विभिन्न समूहों के तत्वों के पारम्परिक सबंध की जानकारी प्राप्त की जा सकती है।

1. धातु और अधातु में वर्गीकरण

⇒सर्वप्रथम लगभग 1800ई० में लभ्वाजे नामक वैज्ञानिक ने उनके समय के सभी तत्वों को धातु के गुणों तथा अधातु के गुणों के आधार पर वर्गीकरण किए। इन्होंने बतलाये की धातु चमकीली ,अघातवर्ध एवं तन्य तथा ऊष्मा और विधुत के सुचालक होते है और इसके ऑक्साइड भस्मीय होते है। और अधातु के गुण चमकीली नहीं होती है,अघातवर्ध एवं तन्य नहीं होती है तथा ऊष्मा एवं विधुत के कुचालक होते है और इसके ऑक्साइड अम्लीय होते है।

*दोष :-

- ⇒ इनके वर्गीकरण में बह्त सारे दोष पाए गये।
- i. ये वर्गीकरण इतना साधारण है की तत्वों के समुचित गुण अध्ययन नहीं करता है।
- ii. यह बहुत से धातु के बीच की भिन्नता की व्याख्या नहीं करता है।
- जैसे:-सोडियम और प्लैटनिम दोनों अधातु है,लेकिन सोडियम क्रियाशील धातु है लेकिन प्लैटनिम अक्रियाशील धातु है।

2. संयोजकता के आधार पर वर्गीकरण

⇒बाद में लभ्वाजे ने सभी तत्वों को संयोजकता के आधार पर वर्गीकरण किये। इन्होंने बतलायें की समान संयोजकता वाले तत्वों को एक साथ रख दिया जाता है जैसे:-एकलबंधन ,द्विबंधन ,त्रिबंधन इत्यादि तत्वों को अलग वर्गों में बाँट कर रखा गया।

*दोष :-

⇒लेकिन इस वर्गीकरण में भी दोष पाया गया।

i. बहुत सारे तत्वों की संयोजकता परिवर्तनशील होती है।

जैसे:-कॉपर का संयोजकता 1 और 2 होती है। उसी प्रकार लोहा की संयोजकता 2 और 3 होती है।

ii. एक ही संयोजकता वाले तत्वों के गुण एक-दूसरे से भिन्न होती है।

जैसे:-Na तथा Cl की संयोजकता एक होती है ,लेकिन इसकी गुण भिन्न-भिन्न होती है। Na एक क्रियाशील धातु है लेकिन Cl क्रियाशील अधातु है।

*डोबरेनर का त्रियक नियम(Dobereiner's triad)

⇒जर्मन रसायन वैज्ञानिक डोबरेनर ने रासायनिक गुणों के आधार पर उनके समय के सभी तत्वों को तीन-तीन के समूहों में बांटे, जिसे डोबरेनर का त्रियक नियम कहा जाता है। इनके नियमा अनुसार सभी तत्वों को परमाणु द्रव्यमान के क्रम

में सजाने पर बीच वाले तत्व का परमाणु द्रव्यमान उनके शेष दो किनारे वाले तत्वों के परमाणु द्रव्यमान का औसत होता है।

जैसे:- Ca-40 Li-7 Cl-35.5

Sr-88.5 Na-23 Br-81.25

Ba-137 K-39 I-127

लेकिन इनका नियम कुछ ही तत्वों तक लागु हुआ और यह पूर्ण जानकारी नहीं देती थी। इसीलिए डोबरेनर का त्रियक नियम की समाप्ति हुई।

*न्यूलैंड्स का अष्टक नियम

⇒न्यूलैंड्स के समय में कुल 56 तत्वों का खोज हुआ था ,उनके समय के सभी तत्वों को परमाणु द्रव्यमान के क्रम में सजाए और एक नियम के प्रतिपादन किये जिसे न्यूलैंड्स का अष्टक नियम कहा जाता है।

न्यूलैंड्स के नियमानुसार सभी तत्वों को बढ़ते हुए परमाणु द्रव्यमान के क्रम में सजाने पर किसी भी तत्व से शुरू करने पर उसके आठवें तत्व के गुण के समान होता है।

जैसे:-संगीत का आठवाँ स्वर पहला स्वर के समान होता है।

***न्यूलैंड्स के दोष** :-

- ⇒न्यूलैंड्स के निम्नलिखित दोष है।
- i. न्यूलैंड्स का अष्टक नियम हल्के तत्वों(Ca) तक के लिए लागु होता है,भारी तत्वों के लिए नहीं। Ca के बाद और सभी तत्वों के गुण भिन्न-भिन्न होते है।
- ii. न्यूलैंड्स का दावा था की प्राकृतिक में 56 तत्व ही है तत्वों का और आविष्कार नहीं हो सकता,लेकिन इनका दावा गलत साबित हुआ और प्रकृतिक के बहुत सारे नये तत्वों का खोज हुआ।
- iii. न्यूलैंड्स ने कुछ असदृश्य गुण वाले तत्वों को एक ही स्वर के अंतर्गत रखा।
 iv. अक्रिय गैसों के खोज होने के बाद इसका नियम पूरी तरह गलत साबित हुआ।

*मंडलीव की आवर्त सारणी

⇒सन 1869 में मेंडलीव नामक वैज्ञानिक ने ,इनके समय के सभी तत्वों के परमाणु द्रव्यमान के क्रम में सजाए। इनके नियमानुसार सभी तत्वों के भौतिक एवं रासायनिक गुण उनके परमाणु द्रव्यमानों के आवर्तफलन होते है।

*मंडलीव के आवर्त सारणी के मुख्य विषेशताएँ

1. वर्ग:-आवर्त सारणी की उद्दय कतार को वर्ग कहते है।

मेंडलीव के आवर्त सारणी में आठ वर्ग थे,जिसे रोमन अंक (1,11 ,111,....,VIII) में सूचित किया गया था। और इन्होंने वर्गों को दो उपवर्गों में बांटा,उपवर्ग A और B उपवर्ग के एक ही वर्ग के अंतर्गत रखा गया है। अक्रिय गैस के खोज होने के बाद इसे एक अलग शून्य वर्गों में रखा। 2. आवर्त :-आवर्त सारणी की क्षैतिज कतार को आवर्त कहते है। मेंडलीव के आवर्त सारणी में कुल सात आवर्त है। इसकी तत्वों की संख्या इस प्रकार है। पहला आवर्त - 1 H - 2He - 2

दूसरा आवर्त - 3Li - 10N2 - 8

तीसरा आवर्त - 11Na - 18Ar - 8

चौथा आवर्त - 19K - 36Kr - 18

पंचमा आवर्त - 37Rb - 54Xe - 18

छठा आवर्त - 55Cs - 86Rn - 32

सातवां आवर्त - 87Fr - 118Og - 32

*मंडलीव की सारणी की उपयोगिता

- ⇒मेंडलीव की सारणी का निम्नलिखित उपयोग है।
- i. आसानी तरीके से उनके गुणों का अध्ययन करना :-मेंडलीव के आवर्त सारणी होने से सभी तत्वों के गुणों का अध्ययन करना असान हो गया। उनके एक तत्व की जानकारी से सभी तत्वों का गुण का अनुमान लगाना असान हो गया।
- ii. नए तत्वों का अनुमान :-मेंडलीव के आवर्त सारणी में नए तत्वों के लिए खाली स्थान छोड़ा गया। जब नए तत्व का खोज हुआ तो उसके खाली स्थान में रखा गया।
- iii. परमाणु द्रव्यमान में सुधार :-मेंडलीव के समय में कुछ तत्वों के परमाणु द्रव्यमान गलत निकाले गये ,और उसे सुधार कर उसके गुणों आधार पर उचित स्थानों में रखा गया। जैसे:- बेरिलियम का स्थान कार्बन और नाइट्रोजन के बीच होना चाहिए था। लेकिन बेरेलियम को कार्बन से पहले रखा गया।
- iv. तत्वों की संयोजकता :-आवर्त सारणी के किसी वर्गों के सभी तत्वों की संयोजकता समान होती है।
- v. अक्रिय तत्वों का स्थान :-अक्रिय तत्वों के खोज होने के बाद इसे एक अलग शून्य(0) वर्ग में रखा गया।

*आधुनिक आवर्त सारणी

⇒मोसले नामक वैज्ञानिक ने 1913 में इनके समय के सभी तत्वों को परमाणु संख्या के क्रम में सजाये। इनके नियमानुसार सभी तत्वों के भौतिक एवं रासायनिक गुण उसकी संख्या के आवर्त फलन होते हैं।

*आधृनिक आवर्त सारणी के विषेशताएँ :-

- i. आधुनिक आवर्त सारणी में तत्वों को उनकी बढ़ती हुई परमाणु संख्या के क्रम में सजाया गया।
- ii. आधुनिक आवर्त सारणी में कुल 7 आवर्त तथा 18 वर्ग है।
- iii. आधुनिक आवर्त सारणी में F ब्लॉक के सभी तत्वों को आवर्त सारणी के निचे दो क्षैतिज कतारों में व्यवस्थित किया गया है। जो वर्ग तीन का सदस्य है।
- iv. आवर्त सारणी में समस्थानिक का एक अलग स्थान दिया गया है।
- v. आधुनिक आवर्त सारणी में धातु और अधातु तत्वों को एक-दूसरे से पूर्णतः अलग-अलग कर दिया गया है। धातु को आवर्त सारणी के बायीं और तथा अधातु को आवर्त सारणी के दायीं और रखा गया है। और उपधातु को सीढ़ी नुमा आकार की एक लकीरों में रखा गया है। vi. अक्रिय गैस को एक अलग वर्ग 18 में रखा गया है।
- vii. आधुनिक आवर्त सारणी को चार ब्लॉक में बांटा गया है।

s-block

p-block

d-block

f-block

*s-block:-वर्ग पहला तथा दूसरा के सभी तत्व s-block के तत्व कहलाते है।

>वर्ग पहला के सभी तत्वों को क्षारीय धातु के नाम से जानते है। अपवाद में H₂ को छोड़कर।

> वर्ग-2 के सभी तत्वों को क्षारीय मृदा के नाम से जानते है।

*p-block: वर्ग-13 से वर्ग-18 तक के सभी तत्वों को p-block कहा जाता है।

Page 5

≻वर्ग-18 के सभी तत्वों को अक्रिय गैस के नाम से जाने जाते है।

≻वर्ग-17 के सभी तत्वों को हैलोजन के नाम से जाने जाते है।

≻वर्ग-16 के सभी तत्वों को चाल्कोजन के नाम से जानते है।

*d-block:-वर्ग 3 से वर्ग 12 तक के तत्व d-block के तत्व कहलाते हैं।

21	22	23	24	25	26	27	28	29	30
Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
39	40	41	42	43	44	45	46	47	48
Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd
	72	73	74	75	76	77	78	79	80
	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg
	104	105	106	107	108	109	110	111	112
	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn

*f-block:-आवर्त सारणी के निचे दो क्षैतिज कतारों लैंथेनाइड्स और एक्टिनाइड्स के सभी तत्व f-block के तत्व कहलाते हैं।

Lanthanides	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
Actinides	Ac Ac	90 Th	91 Pa	92	93 Np	94 Pu	95 Am	96 Cm	97 8k	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

*आवर्त सारणी की विषेशताएँ

- ⇒आवर्त सारणी के निम्नलिखित विषेशताएँ है।
- i. इलेक्ट्रॉनिक विन्यास :-किसी भी वर्ग के सभी तत्वों को बाहयतम कक्षा का इलेक्ट्रॉन,इलेक्ट्रॉनिक विन्यास के समान्य होता है।

जैसे:- Li-2,1

- ii. संयोजकता :-किसी भी वर्ग की सभी तत्वों की संयोजकता समान्य होती है। जैसे:- Li-2.1 संयोजकता = 1
- *परमाणु त्रिज्या:-किसी परमाणु के बाहयतम कक्षा से नाभिक के बीच के दुरी को परमाणु विज्या कहा जाता है। वर्ग में ऊपर से निचे की ओर जाने पर परमाणु विज्या के मान में वृद्धि होती है।
- ➤आवर्त सारणी में दायाँ से बायेँ ओर जाने पर धातुई गुण मे वृद्धि होती है।
- > उपर से निचे की ओर जाने पर धात्विक गुण में वृद्धि होती है।
- *विधुत ऋणात्मक :-वैसा तत्व जो इलेक्ट्रॉन को ग्रहण करता है उसे विधुत ऋणात्मक कहते है।

									ດ
1 ~ 1	Lan	7	6	ر.	4	ω	2	↓Per 1	Group →1
Actinides	.anthanides	F 87	S 25	37 Rb	×19	Na II	⊏ω	IL G	Ţ
ides	ides	Ra	56 Ba	Sr Sr	20 Ca	Mg 12	4 Be		2
89 Ac	57 La			¥39	21 Sc			=	ω
7h	58 Ce	104 Rf	72 Hf	40 Zr	71 TI	Moo	32	a F	4
) 91 Pa	59 Pr	7.00		0 41 Nb	12	AC	YIA	Mr.B.	5
- <u> </u>		Db 1			< 2		1V	<u>&</u>	
-2	NG 0	106 J	48	Mo Mo	47			2	6
Np 93	Pm	107 Bh	75 Re	43	25 Mn			호	7
94 Pu	62 Sm	108 Hs	76 0s	44 Ru	26 Fe			of	œ
95 Am	E 63	109 Mt	77 Ir	Rh Rh	27 Co			the	9
96 Cm	64 Gd	110 Ds	78 Pt	Pd Pd	28 ≅			The Periodic Table of the Ele	10
BR 97	76) 111 Rg	79 Au	47 Ag	29 Cu				H
C 98	066 Dy	1 11	90 Hg	48 Cd	30 Zn			nents	12
m 9	4	ラル	90	_ ~	188780	~1			
99 I	0	H13	==	л 6	31 Ga	Δ.	B.01	18	13
Fm LOO	Er 68	114 F	82 Pb	50 Sn	Ge Ge	14 Si	00		14
101	Tm	115 Mc	Bi 83	51 Sb	33 As	P 15	ZV		15
102 No	1 0	116 Lv	84 Po	52 Te	34 Se	S 16	0 &		16
F 103	71 Eu	117 Ts	₽85	-53	막용	17 CI	πю		17
		09	R 86	Xe Xe	주8	18 Ar	Ne Ne	He He	18

