Искусственные нейронные сети

Копылов Д.Е., Михайлов А.А.

¹Институт динамики систем и теории управления им. В.М. Матросова Сибирского отделения Российской академии наук

 2 Институт системного программирования им. В.П. Иванникова Российской академии наук

³Институт математики и информационных технологий Иркутский государственный университет

13 августа 2024 г.

Лекция 2

формальная постановка задачи

Пусть есть два множества X - множества объектов, Y - множество ответов и предполагается, что существует функциональная зависимость

$$f: X \to Y.$$
 (1)

Зависимость не известна, известна только совокупность S пар вида (объект, ответ)

$$S = \{(x_i, y_{x_i} = f(x_i)) \in X \times Y | i = 1, ..., I\}$$
 (2)

Требуется найти приближенный вид этой функции f путем построения аппроксимирующей функции $f_S(x): X \to Y$, такую, что

$$\forall x \in X \quad f_S(x) \approx f(x). \tag{3}$$

Переход от объектов к векторам

Множества признаков

I - множество признаков (features), Каждому $i \in I$ сапоставляется некоторое множество D_i (множество значений признака i)

Признаки объектов

У объекта зафиксируем конечное число признаков n и пронумеруем их 1,2,...,n.

$$x^{i} \in D_{i}$$

 $x = (x^{1}, x^{2}, ..., x^{n})^{T} \in D_{1} \times D_{2} \times ... \times D_{n}$

Виды задач по возвращаемым ответам

Множество ответов

- 1. $Y = \{0,1\}$ бинарная классификация (фильтер Байеса)
- 2. $Y = \{c_1, c_2, ..., c_m\}$ классификация
- 3. $Y = \{"a"b...,"z"\}$ задача распознавания символов
- 4. $Y = \{1, 2, ..., N\}$ и $i \neq j, y_i \neq y_j$ задача ранжирования
- 5. $Y = \{1, 2, 3, ...N, ...\}$ кластеризация
- 6. $Y = R^m$ задача регрессии

Функция потерь

Функция потерь (loss function)

Функция потерь - функция, которая сопоставляет паре f_S, x , где $x \in X$ число $Loss(f_S, x)$ и характеризует величину ошибки аппроксимации f_S на объекте $x \in X$.

Виды функций потерь

1.
$$Loss(f_S, x) = \begin{cases} 0, & \text{if } f_S(x) = f(x); \\ 1, & \text{else} \end{cases}$$

2.
$$Loss(f_S, x) = |f_S(x) - f(x)| Loss(f_S, x) = (f_S(x) - f(x))^2$$

Функция потерь для выборки

Функция потерь для обучающей выборки

Если $S' = \{(x_i', y_i'), i = 1, 2, ... I'\}$ соответствует функции $f: X \to Y$, также как и S, то

$$Loss(f_S, S') = \frac{1}{l'} \sum_{i=1}^{l'} Loss(f_S, x_i')$$
 (4)

Для всего S это функция эмпирического риска

$$Q(f_S) = Loss(f_S, S)$$
 (5)

Гиперплоскости

Гиперплоскость в пространстве R^n называется множество точек $x \in R^n$ удовлетворяющих уравнению

$$\langle x,w\rangle=w_0. \tag{6}$$

Гиперплоскостью можно разделить множество X на X^+ и X^- , так что $\forall x \in X^+\langle x,w \rangle \geq w_0$ и $\forall x \in X^-\langle x,w \rangle \leq w_0$.

Подбор параметров w

Если функция $Y = \{-1,1\}$, то в качестве функции $f_S(x)$ можно выбрать следующую функцию

$$f_S(x) = sign(\langle x, w \rangle - w_0) \tag{7}$$

$$(w, w_0) = \arg\min_{w, w_0} Q(f_S)$$
 (8)