Chapter 2

CS420/520 Axel Krings

Page 1

Sequence 2

Need For Protocol Architecture

- E.g. File transfer
 - Source must activate communications path or inform network of destination
 - —Source must check destination is prepared to receive
 - File transfer application on source must check destination file management system will accept and store file for his user
 - —May need file format translation
- Task broken into subtasks
- Implemented separately in layers in stack
- Functions needed in both systems
- · Peer layers communicate

CS420/520 Axel Krings

Page 2

Key Elements of a Protocol

- Syntax
 - -Data formats
 - -Signal levels
- Semantics
 - —Control information
 - —Error handling
- Timing
 - —Speed matching
 - —Sequencing

CS420/520 Axel Krings

Page 5

Sequence 2

Standardized Protocol Architectures

- Required for devices to communicate
- Vendors have more marketable products
- Customers can insist on standards based equipment
- Two standards:
 - -OSI Reference model
 - Never lived up to early promises
 - —TCP/IP protocol suite
 - Most widely used
- Also: IBM Systems Network Architecture (SNA)

CS420/520 Axel Krings

Page 6

The main Architecture now

TCP/IP Protocol Architecture

- developed by US Defense Advanced Research Project Agency (DARPA)
- for ARPANET packet switched network
- used by the global Internet
- protocol suite comprises a large collection of standardized protocols

CS420/520 Axel Krings

Page 7

Sequence 2

TCP/IP Layers

- this is not an official model but a working one
 - —Application layer
 - -Host-to-host, or transport layer
 - —Internet layer
 - -Network access layer connect nodes
 - -Physical layer

CS420/520 Axel Krings

Page 8

Physical Layer

- concerned with physical interface between computer and network
- concerned with issues like:
 - -characteristics of transmission medium
 - -signal levels
 - -data rates
 - —other related matters

CS420/520 Axel Krings Page 10 Sequence 2

Network Access Layer

- exchange of data between an end system and attached network
- concerned with issues like :
 - -destination address provision
 - —invoking specific services like priority
 - access to & routing data across a network link between two attached systems
- allows layers above to ignore link specifics

CS420/520 Axel Krings

Page 11

Sequence 2

Internet Layer

- routing functions across multiple networks
- for systems attached to different networks
- using IP protocol
- implemented in end systems and routers
- routers connect two networks and relays data between them

CS420/520 Axel Krings

Page 12

Transport Layer

- common layer shared by all applications
- provides reliable delivery of data
- in same order as sent
- commonly uses TCP

CS420/520 Axel Krings

Page 13

Sequence 2

Application Layer

- provide support for user applications, e.g., ftp, email
- need a separate module for each type of application

CS420/520 Axel Krings

Page 14

FTP has 2 ports: 20 and 21

Addressing Requirements

- two levels of addressing required
- each host on a subnet needs a unique global network address
 - —its IP address IPv6 128
- each application on a (multi-tasking) host needs a unique address within the host
 - -known as a port

CS420/520 Axel Krings Page 16 Sequence 2

Protocol Data Units (PDU)

- At each layer
 - protocols are used to communicate
 - control information is added to user data
- Transport layer may fragment user data
 - -Each fragment has a transport header added
 - Destination SAP (service access point)
 - Sequence number
 - · Error detection code
 - —This gives a transport protocol data unit

CS420/520 Axel Krings Page 17

TCP

Assignment: Read and understand here

- Usual transport layer is Transmission Control Protocol
 - Reliable connection
 - RFC 793 from 1981
- Connection
 - Temporary logical association between entities in different systems
- TCP PDU
 - Called TCP segment
 - Includes source and destination port (c.f. SAP)
 - Identify respective users (applications)
 - Connection refers to pair of ports
- TCP tracks segments between entities on each connection

CS420/520 Axel Krings

Page 20

User Datagram Protocol (UDP)

- an alternative to TCP
- no guaranteed delivery (...it is a datagram)
- no preservation of sequence
- no protection against duplication
- minimum overhead
- adds port addressing to IP

CS420/520 Axel Krings

Page 22

TCP/IP Applications

- have a number of standard TCP/IP applications such as
 - —Simple Mail Transfer Protocol (SMTP)
 - —File Transfer Protocol (FTP)
 - -Telnet

CS420/520 Axel Krings

Page 26

OSI

- Open Systems Interconnection
- developed by the International Organization for Standardization (ISO)
- has seven layers
- is a theoretical system delivered too late!
- TCP/IP is the de facto standard

CS420/520 Axel Krings

Page 28

OSI Layers (1)

- Physical
 - —Physical interface between devices
 - Mechanical
 - Electrical
 - Functional
 - Procedural
- Data Link
 - Means of activating, maintaining and deactivating a reliable link
 - —Error detection and control
 - —Higher layers may assume error free transmission

CS420/520 Axel Krings

Page 31

Sequence 2

OSI Layers (2)

- Network
 - Transport of information
 - Higher layers do not need to know about underlying technology
 - Not needed on direct links
- Transport
 - Exchange of data between end systems
 - Error free
 - In sequence
 - No losses
 - No duplicates
 - Quality of service

CS420/520 Axel Krings

Page 32

OSI Layers (3)

- Session
 - —Control of dialogues between applications
 - —Dialogue discipline
 - —Grouping
 - —Recovery
- Presentation
 - —Data formats and coding
 - -Data compression
 - -Encryption
- Application
 - -Means for applications to access OSI environment

Sequence 2

CS420/520 Axel Krings Page 33

Service Primitives and Parameters

- define services between adjacent layers using:
- primitives to specify function performed
- parameters to pass data and control info

CS420/520 Axel Krings

Page 37

Sequence 2

Primitive Types

	-
REQUEST	A primitive issued by a service user to invoke some service and to pass the parameters needed to specify fully the requested service
INDICATION	A primitive issued by a service provider either to 1. indicate that a procedure has been invoked by the peer service user on the connection and to provide the associated parameters, or 2. notify the service user of a provider-initiated action
RESPONSE	A primitive issued by a service user to acknowledge or complete some procedure previously invoked by an indication to that user
CONFIRM	A primitive issued by a service provider to acknowledge or complete some procedure previously invoked by a request by the service user

CS420/520 Axel Krings

Page 38

Traditional vs Multimedia Applications

- traditionally Internet dominated by info retrieval applications
 - —typically using text and image transfer
 - -eg. email, file transfer, web
- see increasing growth in multimedia applications
 - —involving massive amounts of data
 - -such as streaming audio and video

CS420/520 Axel Krings

Page 39

Sequence 2

Elastic and Inelastic Traffic

- elastic traffic
 - —can adjust to delay & throughput changes over a wide range
 - —eg. traditional "data" style TCP/IP traffic
 - —some applications more sensitive though
- inelastic traffic
 - —does not adapt to such changes
 - —eg. "real-time" voice & video traffic
 - —need minimum requirements on net arch

CS420/520 Axel Krings

Page 40

