

ENTROPY

AT A GLANCE

A LEVEL CHEMISTRY

Free energy, enthalpy and entropy are related ... $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

ENTROPY (S)

A measure of the DISORDER of a system

 Θ

- The more disorder, the greater the entropy **(3)**
- Disorder increases if ΔS is positive ...

(m)

$$\Delta S^{\circ} = S^{\circ}_{final} - S^{\circ}_{initial}$$

Entropy increases when

4

- solids melt
- liquids boil
- ionic solids dissolve in water
- the number of gas molecules increases
- · the temperature of matter increases
- Units of ΔS are usually $\underline{J} K^{-1} \operatorname{mol}^{-1}$ not kJ (D)

For a reversible

reaction at equilibrium $\Delta G = 0$

FREE ENERGY (G)

e.g. some salts dissolve readily in water and the temperature of the solution drops Why should reactions with a positive ΔH value take place spontaneously ?

Enthalpy change ΔH does not give the full story. Free energy change, ΔG , Surely, this means that energy has to be put in for the reaction to take place. give a a better picture.

Free energy change $\, \Delta \mathrm{G}^{\circ}$

- A reaction is spontaneous if it can do work it must generate free energy
- If $\Delta G\,$ is negative a reaction is capable of proceeding of its own accord

Will a reaction work?

A reaction should be **spontaneous if** ΔG **is negative**, so ask ...

- Is the reaction exothermic (AH -ive) or endothermic (AH +ive)?
- Is there an increase in disorder?
- If YES then ΔS will be positive. It affects the value of $T\Delta S^{\circ}$
 - Is the temperature high or low?

∆G must be negative then

- If ∆H is -ive In General
- then ΔS is -ive

∆S is +ive

and and

AG must be positive

If ΔH is +ive