Lista 0: revisão de topologia euclidiana

18 de fevereiro de 2025

Notação (norma euclidiana): dado $v = (v_1, \dots, v_n) \in \mathbb{R}^n$,

$$||v|| = \sqrt{v_1^2 + \dots + v_n^2}.$$

- 1. Revise as seguintes definições, bem como caracterizações equivalentes, para um subconjunto X de \mathbb{R}^n com a topologia euclidiana: aberto, fechado, limitado, conexo e compacto. Revise também as noções de interior, fecho e bordo de um subconjunto. Qual é a diferença entre ponto aderente e ponto de acumulação?
- 2. Calcule o interior e o bordo de cada um dos seguintes conjuntos de \mathbb{R}^n :

$$\{x \in \mathbb{R}^n : ||x|| \le 1\}, \qquad \{x \in \mathbb{R}^n : ||x|| = 1\}, \qquad \mathbb{Q}^n.$$

- 3. O que dizem os teoremas de Heine-Borel e de Bolzano-Weierstrass?
- 4. Seja $(p_k)_{k\geq 1}$ uma sequência em \mathbb{R}^n e denote por $p_k=(p_{k,1},\ldots,p_{k,n})$ as coordenadas de p_k . Seja $q=(q_1,\ldots,q_n)\in\mathbb{R}^n$. Mostre que $(p_k)_{k\geq 1}$ converge para q em \mathbb{R}^n se, e somente se, cada $(p_{k,i})_{k\geq 1}$ converge para q_i em \mathbb{R} .
- 5. Uma sequência $(p_k)_{k\geq 1}$ em \mathbb{R}^n é dita sequência de Cauchy se, para todo $\varepsilon > 0$ existe k_0 tal que, se $k,l\geq k_0$, então $\|p_k-p_l\|<\varepsilon$. Mostre que \mathbb{R}^n é completo, isto é, que toda sequência de Cauchy converge.
- 6. Dado um subconjunto $X \subset \mathbb{R}^n$, lembremos que uma aplicação $F: X \to \mathbb{R}^m$ é contínua em um ponto $p \in X$ se, para toda vizinhança aberta $V \subset \mathbb{R}^m$ de F(p) existe uma vizinhança aberta $U \subset \mathbb{R}^n$ de p tal que $F(U \cap X) \subset V$. Mostre que esta definição é equivalente à "definição por ε e δ ": $F: X \to \mathbb{R}^m$ é contínua em $p \in X$ se, para todo $\epsilon > 0$, existe $\delta > 0$ tal que, se $x \in X$ satisfaz $||x p|| < \delta$, então $||F(x) F(p)|| < \varepsilon$.
- 7. Com a notação do exercício anterior, mostre que $F: X \to \mathbb{R}^n$ é contínua em (todo ponto de) X se, e somente se, para todo aberto $V \subset \mathbb{R}^m$ existe um aberto $U \subset \mathbb{R}^n$ tal que $F^{-1}(V) = U \cap X$ ("imagem inversa de aberto é aberto").
- 8. Ainda com a notação anterior, sejam $F_1, \ldots, F_m : X \to \mathbb{R}$ as componentes de F, isto é, $F(x) = (F_1(x), \ldots, F_m(x))$. Mostre que $F : X \to \mathbb{R}^m$ é contínua em $p \in X$ se, e somente se, todas as $F_i : X \to \mathbb{R}$ são contínuas em p.
- 9. Lembremos que um subconjunto $E \subset \mathbb{R}^m$ é discreto se todo ponto $p \in E$ admite uma vizinhança aberta $U \subset \mathbb{R}^m$ tal que $E \cap U = \{p\}$. Seja $X \subset \mathbb{R}^n$ um subconjunto conexo e $f: X \to E$ uma aplicação contínua. Mostre que f é constante.
- 10. Mostre que todo subconjunto discreto de \mathbb{R}^n é enumerável. Um subconjunto discreto de \mathbb{R}^n é necessariamente fechado?
- 11. Mostre que um aberto não-vazio $U \subset \mathbb{R}^n$ é conexo se, e somente se, quaisquer dois pontos $p, q \in U$ podem ser conectados por um caminho poligonal, isto é, uma coleção de segmentos em U da forma

$$[p, p_1], [p_1, p_2], \dots, [p_{n-1}, q].$$

12. Considere subconjuntos $X \subset \mathbb{R}^n$ e $Y \subset \mathbb{R}^m$. Um homeomorfismo entre X e Y é uma aplicação contínua $F: X \to Y$ que admite uma inversa contínua, isto é, existe uma aplicação contínua $G: Y \to X$ tal que

$$F \circ G = \mathrm{id}_Y \quad e \quad G \circ F = \mathrm{id}_X$$
.

Exiba um homeomorfismo explícito entre

$$X = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$$
 e $Y = \mathbb{R}^2$.

Existe um homeomorfismo entre

$$X = S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$
 e $Y = \mathbb{R}$?

13. Um bloco aberto em \mathbb{R}^n é um subconjunto da forma

$$U = (a_1, b_1) \times \cdots \times (a_n, b_n),$$

onde cada $(a_i, b_i) \subset \mathbb{R}$ é um intervalo aberto limitado. Mostre que os blocos abertos formam uma base para a topologia euclidiana em \mathbb{R}^n , isto é, todo aberto em \mathbb{R}^n é uma união de blocos abertos.

- 14. Seja $X \subset \mathbb{R}^n$ e $D \subset X$ um subconjunto. Dizemos que D é denso em X se para todo $x \in X$ e toda vizinhança aberta $U \subset \mathbb{R}^n$ de x, a interseção $D \cap U$ é não-vazia. Mostre que, se $F, G : X \to \mathbb{R}^m$ são aplicações contínuas tais que F(x) = G(x) para todo x em um subconjunto denso de X, então F = G.
- 15. Seja $f: \mathbb{R}^n \to \mathbb{R}$ uma função polinomial:

$$f(x) = \sum_{i_1=0}^{d_1} \cdots \sum_{i_n=0}^{d_n} a_{i_1,\dots,i_n} x_1^{i_1} \cdots x_n^{i_n},$$

Mostre que, se f não é identicamente nula, então $\{x \in \mathbb{R}^n : f(x) \neq 0\}$ é denso em \mathbb{R}^n .

16. Identificando o espaço de matrizes $M_{n\times n}(\mathbb{R})$ com o espaço euclidiano \mathbb{R}^{n^2} , mostre que o subconjunto das matrizes ortogonais:

$$O(n) = \{ A \in M_{n \times n}(\mathbb{R}) : AA^t = A^t A = I \}$$

é compacto.