GEL19962: Analyse des signaux

Nom: Matricule:

1997 Mini-test 1

mercredi le 17 septembre 1997; durée: 14h40 à 15h20 aucune documentation permise; aucune calculatrice permise

Problème 1 (1 point sur 5)

a) (½ point, aucun crédit partiel)

Quelles sont les coefficients complexes de Fourier pour la fonction suivante?

$$1+4\sin 2\pi t-2\cos 4\pi t$$

1.
$$F(0) = 2$$
 $F(1) = -2j$ $F(-1) = 2j$ $F(2) = -j$ $F(-2) = -j$

2.
$$F(0) = 1$$
 $F(1) = -2j$ $F(-1) = -2j$ $F(2) = -1$ $F(-2) = -1$

3.
$$F(0) = 1$$
 $F(1) = -2$ $F(-1) = 2j$ $F(2) = -1$ $F(-2) = -1$

4.
$$F(0) = 1$$
 $F(1) = -2j$ $F(-1) = 2j$ $F(2) = -1$ $F(-2) = -1$

b) (½ point, aucun crédit partiel)

Quelle est la puissance présente dans la première harmonique?

GEL19962: Analyse des signaux

Nom: Matricule:

Problème 2 (1 point sur 5)

Pour chacun des quatre énoncés suivants encadrez la bonne réponse (vrai ou faux). La fonction $f_p(t)$ admet un développement en série de Fourier F(n) = A(n) + jB(n).

$$f_{p}(t) = \begin{cases} t^{2} - 1 & -1 < t < 1 \\ 0 & 1 < t < 2 \\ 0 & -2 < t < -1 \end{cases}, \quad f_{p}(t+4) = f_{p}(t)$$

Aucun crédit partiel.

1.	$F^*(n) = F(-n)$	VRAI	FAUX
	() ()		

2.
$$A(n)$$
 est impair VRAI FAUX

3.
$$F(n)$$
 est imaginaire pure VRAI FAUX

4.
$$B(n) = 0 \quad \forall n$$
 VRAI FAUX

GEL19962: Analyse des signaux

Nom: Matricule:

Problème 3 (3 points sur 5)

a) 1 point

Quelle est l'expression analytique de *la partie impaire* de cette fonction périodique? Quelle est la période fondamentale et la fréquence fondamentale de *la partie impaire* de cette fonction périodique?

b) 2 points

Quelles sont les coefficients complexes de Fourier pour *la partie impaire* de cette fonction périodique?

GEL19962:	Analyse	des	signaux
-----------	---------	-----	---------

Nom:	Matricule:
-	