Problem szeregowania zadań – algorytm Johnsona

Zadanie 1

- Zaimplementuj wybrany algorytm
 - Johnsona dla problemu 2 maszyn 3pkt
 - Johnsona dla problemu 3 maszyn 4pkt
 - CDS dla problemu > 3 maszyn 5pkt
- Zadanie obliczeniowe macierz czasów dla 10 zadań
- Zamieść plik źródłowy (z komentarzami)

Zadanie 2

 Wykonaj obliczenia dla zadania – pokaż uszeregowanie zadań początkowe, końcowe, czasy zakończenia zadań

Zadanie 3

- Jaki typ problemu rozwiązujemy (klasyfikacja Grahama)?
- Jakie czasy uzyskamy przy alternatywnych sposobach uszeregowania (taki samo min)?
- Jakie warunki są konieczne w realizacji algorytmu / co jeśli nie będzie spełniony?
- Jaka jest złożoność obliczeniowa algorytmu?

Uwagi:

- Zadanie może też być realizowane w arkuszu kalkulacyjnym
- Jako sprawozdanie wstępne umieścić na UPEL efekt działań z zajęć.
- Sprawozdanie (końcowe) przed terminem kolejnych zajęć

Dana jest macierz $2 \times n$ czasów operacji \underline{t}_{ij}

- 1) Znajdź najmniejszy element macierzy \underline{t}_{ij} ($\min_i t_{ij}$)
- 2) Jeśli ten element znajduje się
 - w pierwszym wierszu (min $\underline{t}_{ij}=t_{1k}$), to optymalna kolejność obróbki musi się rozpocząć detalem o nr k,
 - w drugim wierszu (min $\underline{t_{ij}} = t_{2s}$) to optymalna kolejność kończy się detalem o numerze s.
- 3) Po ustaleniu kolejności w kroku 2, skreślamy w macierzy czasów odpowiadającą mu kolumnę i powtarzamy to postępowanie.

Wybrany kolejny detal ustawiamy na pierwszym wolnym miejscu (licząc od początku lub końca). Idź do \rightarrow (1)

Algorytm kontynuujemy, aż ustalimy kolejność wszystkich detali.

Dla m=2

 \underline{t}_{ij} – czas obróbki na i-tej maszynie j-tego detalu \underline{T}_{ij} – czas zakończenia obróbki na i-tej maszynie j-tego detalu

 $T_{1j} = \sum_{k=1}^{j} t_{1k}$ (pierwsza maszyna j-te zadanie) $T_{n1} = \sum_{i=1}^{n} t_{i1}$ (n-ta maszyna 1-sze zadanie) $T_{ij} = max(T_{i,j-1}, T_{i-1,j}) + \underline{t}_{ij}$

Algorytm Johnsona dla 3 maszyn

Algorytm Johnsona dla 2 maszyn można zastosować w problemach 3 maszyn

- poprzez rozwiązanie zagadnienia pomocniczego zawierającego 2 maszyny fikcyjne, o czasach trwania operacji $t_{1j}+t_{2j}$ oraz $t_{2j}+t_{3j}$,
- wtedy jeśli spełniony jest jeden z dwóch warunków:

$$\begin{aligned} & \min_{j} \ t_{1j} \geq \max_{j} \ t_{2j} \,, \quad j = 1, 2, ..., m \\ & \text{lub} \\ & \min_{j} \ t_{3j} \geq \max_{j} \ t_{2j} \,, \quad j = 1, 2, ..., m \end{aligned}$$

Z 3 maszyn tworzymy 2 za pomocą transformacji:

$$t'_{1j} = t_{1j} + t_{2j}$$

 $t'_{2j} = t_{2j} + t_{3j}$

Algorytm CDS

Algorytm CDS (<u>Campbella-Dudka-Smitha</u>) do wyznaczenia rozwiązania wykorzystuje algorytm Johnsona.

Metoda polega na utworzeniu pomocniczych problemów dwumaszynowych.

Zadanie pomocnicze o numerze r konstruuje się wg zależności:

$$\begin{split} M_{1j}^r &= \sum_{i=1}^r t_{ij} --> odpowiada \ t_{1j} \\ M_{2j}^r &= \sum_{i=n+1-r}^n t_{ij}, \quad --> odpowiada \ t_{2j}, \quad r=1,2,..,maszyna-1, \quad j-zadania \end{split}$$

Rozwiązując zagadnienia pomocnicze wyznaczamy rozwiązania przybliżone, a następnie wśród nich metodą przeglądu zupełnego, poszukujemy najlepszego rozwiązania.

Przykład realizacji algorytmu Johnsona m=2

	Z1	Z2	Z 3	Z 4	Z 5	Z6
M1	9	6	8	7	12	3
M2	7	3	5	10	4	7

Uszeregowanie:

-	Z6	Z4	Z1	Z 3	Z 5	Z2
M1	3	7	9	8	12	6
M2	7	10	7	5	4	3

Terminy zakończenia:

	Z 6	Z4	Z1	Z 3	Z 5	Z2
M1	3	10	19	27	39	45
M2	10	20	27	32	43	48