No.QEC-1707009

天線客服報告書

客戶名稱: 樺緯物聯

撰寫者: C.Y CHEN

核准者:Jess Lee

日期:2017/07/07

Advanced Ceramic X Corp.

16 Tzu Chiang Road, Hsinchu Industrial District Hsinchu Hsien 303, Taiwan

TEL:886-3-5987008 FAX:886-3-5987001

E-mail: acx@acxc.com.tw
http://www.acxc.com.tw

1.目的:

使用 AT3216-T2R4PAA 來調試並量測場型。

Case1:DK-9196 Case2:DK-9197

Confidential

2.結論與建議

2.1 天線增益如下表所示:

Gain Table

Unit in dBi @2440MHz	XY-1	plane	XZ-j	plane	YZ-j	plane	Efficiency
Ollit III dB1 @ 2440MHZ	Peak	Avg.	Peak	Avg.	Peak	Avg.	Efficiency
Case1	-2.8	-4.2	-1.0	-3.4	-1.6	-3.7	46.0%
Case2	-2.5	-4.2	-1.2	-3.5	-1.5	-4.0	44.0%

2.2 結論

AT3216-T2R4PAA 經場型量測後其天線增益如上表所示,建議客戶可先依附件 2 匹配值進行實測。

3.建議 Matching 值: 詳見附件 2

4. 場形及各項量測方法、結果: 詳見附件 3

附件

1. PCB 和外殼結構圖:

Case1

Case2

2. 天線匹配電路示意圖:

Case2
InH
Oohm
3.9pF

匹配電路使用之元件:

Case1	1.5pF	1.8nH	0.5pF
Caser	201R07S1R5BV4S	HI1005-1B1N8SMT	201R07S0R5BV4S
Case2	1nH	0ohm	3.9pF
Case2	HI1005-1B1N0CMT	RK1005000J20T	201R07S3R9BV4S

3. 場型及各項量測方法、結果

A.儀器設定

▲返回損耗(Return Loss) / 駐波比(VSWR):

◆量測儀器: vector network analyzer - AG

◆校正方法: open/short/load -Cal. Kit 85052D

▲3D Radiation Pattern:

♦NSI 800F-10 Far Field antenna measurement system

B. Case1 之 Return Loss 量測值

C. Case2 之 Return Loss 量測值

D.輻射場型圖

◆量測座標圖

◆各平面定義

XY-plane	Theta=90°
XZ-plane	Phi=0°
YZ-plane	Phi=90°

◆3D 輻射場型圖

Case2

Casel 之輻射場型圖

♦XY-plane

Unit : dBi

Confidential

	Peak gain	Avg. gain
XY-plane	-2.8	-4.2

♦XZ-plane

Far-field Power Distribution(H+V) on X-Z Plane Plot Feak Gam(H+V)=-1.0 dBi; Plot AvgGam(H+V)=-3.4dBi @2.44000 GHz

	Peak gain	Avg. gain
XZ-plane	-1.0	-3.4

♦YZ-plane

Far-field Power Distribution(H+V) on Y-Z Plane Plot Peak Gain(H+V)=-1.6 dBi, Plot AvgGain(H+V)=-3.7dBi @2.44000 GHz

	Peak gain	Avg. gain
YZ-plane	-1.6	-3.7

Case2 之輻射場型圖

♦XY-plane

Confidential

Unit	:	dBi

	Peak gain	Avg. gain
XY-plane	-2.5	-4.2

♦XZ-plane

Far-field Power Distribution(H+V) on X-Z Plane Plot Peak: Gam(H+V)=-1.2 dBi, Plot AvgGam(H+V)=-3.5dBi @2.44000 GHz

	Peak gain	Avg. gain
XZ-plane	-1.2	-3.5

♦YZ-plane

Far-field Power Distribution(H+V) on Y-Z Plane Plot Peak Gain(H+V)=-1.5 dBi. Plot AveGain(H+V)=-4.04Bi. dis 2.44000 CH-

	Peak gain	Avg. gain
YZ-plane	-1.5	-4.0