| Set Name   |                                                                                                                                              | Hit Count | Set Name<br>result set |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------|
| DB=U       | SPT,PGPB,JPAB,EPAB,DWPI,TDBD; PLUR=YES; OP=ADJ                                                                                               |           |                        |
| <u>L8</u>  | L6 and 12                                                                                                                                    | 0         | <u>L8</u>              |
| <u>L7</u>  | L6 and l4                                                                                                                                    | 5         | <u>L7</u>              |
| <u>L6</u>  | graphic\$3 near2 (core or engine or block or module or unit or section or accelerator or circuit\$3) near7 (super sampl\$3 or supersampl\$3) | 20        | <u>L6</u>              |
| <u>L5</u>  | 12 and 14                                                                                                                                    | 0         | <u>L5</u>              |
| <u>L4</u>  | graphic\$3 near2 (core or engine or block or module or unit or section or accelerator or circuit\$3) near7 supersampi\$3                     | 5         | <u>L4</u>              |
| <u>L3</u>  | graphic\$3 adj2 (core or engine or block or module or unit or section or accelerator or circuit\$3) adj7 supersampl\$3                       | 0         | <u>L3</u>              |
| <u>L2</u>  | (cpu or central proces\$4 or \$processor) adj3 (non-graphic\$3 or nongraphic\$3)                                                             | 6         | <u>L2</u>              |
| $DB=U_{i}$ | SPT; PLUR=YES; OP=ADJ                                                                                                                        |           |                        |
| <u>L1</u>  | (cpu or central proces\$4 or \$processor) adj3 (non-graphic\$3 or nongraphic\$3)                                                             | 4         | <u>L1</u>              |

END OF SEARCH HISTORY



**Generate Collection** 

Print

## **Search Results -** Record(s) 1 through 20 of 20 returned.

1. Document ID: US 20030076331 A1

L6: Entry 1 of 20

File: PGPB

Apr 24, 2003

DOCUMENT-IDENTIFIER: US 20030076331 A1

TITLE: Relative coordinates for triangle rendering

Detail Description Paragraph (16):
[0054] As shown in FIG. 3A, graphics board GB may comprise a graphics processing unit (GPU) 90, a super-sampled sample buffer 162, and one or more sample-to-pixel calculation units 170-1 through 170-V. Graphics board GB may also comprise one or more digital-to-analog converters (DACs) 178A-B.

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims MMC Draw Desc Image

2. Document ID: US 20030063095 A1

L6: Entry 2 of 20

File: PGPB

Apr 3, 2003

DOCUMENT-IDENTIFIER: US 20030063095 A1

TITLE: Statistic logic for collecting a histogram of pixel exponent values

Summary of Invention Paragraph (5):

[0005] A graphics accelerator may receive a stream a graphics data, and perform rendering computations to determine a stream of video pixels which are presented to a display device. The graphics accelerator may perform super-sampling and super-sample filtering to determine the video pixels. However, when using filters with negative lobes such as the truncated sync filter, it is possible to obtain negative pixel values even though all the super-sample values are non-negative quantities. Negative pixel values may need to be clamped to zero. The clamping to zero compromises visual quality of the output video. Thus, there exist a need for a system and methodology for controlling or minimizing the occurrence of negative pixels.

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims MMC Drawn Desc Image

3. Document ID: US 20030011609 A1

L6: Entry 3 of 20

File: PGPB

Jan 16, 2003

DOCUMENT-IDENTIFIER: US 20030011609 A1

TITLE: Graphics system with real-time convolved pixel readback

Detail Description Paragraph (18):



[0067] FIG. 3 presents a block diagram for one embodiment of generic graphics board GB(K) for K=0, 1, 2, . . ., R-1. Graphics board GB(K) may comprise a graphics processing unit (GPU) 90, a super-sampled sample buffer 162, and one or more sample-to-pixel calculation units CU(0) through CU(V-1). Graphics board GB(K) may also comprise two digital-to-analog converters (DACs) 178A and 178B.

|                                         |                                             | nce Sequences Attachments               | Claims KMC Draw Des                     | o Image |
|-----------------------------------------|---------------------------------------------|-----------------------------------------|-----------------------------------------|---------|
|                                         |                                             |                                         |                                         |         |
|                                         |                                             |                                         |                                         |         |
| *************************************** | <br>*************************************** | *************************************** | *************************************** |         |

L6: Entry 4 of 20

File: PGPB

Nov 21, 2002

DOCUMENT-IDENTIFIER: US 20020171653 A1

TITLE: Spltting grouped writes to different memory blocks

## CLAIMS:

\*\*\*\*\*\*\*\*\*\*\*\*\*\*

3. The graphics system of claim 1, wherein the tile of graphics data comprises a number of elements, wherein the number of elements is greater than one, wherein each element is an independent unit of graphics data, wherein each independent unit of graphics data is a supersample, and wherein each supersample is a submultiple of a pixel.

| Full   Title   Citation   Front   Review   Classification | Date   Reference   Sequences   Attachments   Claims | RAMC   Draw Desc   Image |
|-----------------------------------------------------------|-----------------------------------------------------|--------------------------|
|                                                           |                                                     |                          |
|                                                           |                                                     |                          |
| 5. Document ID: US 20020                                  | 158856 A1                                           |                          |
| L6: Entry 5 of 20                                         | File: PGPB                                          | Oct 31, 2002             |

DOCUMENT-IDENTIFIER: US 20020158856 A1

TITLE: Multi-stage sample position filtering

Detail Description Paragraph (16): [0058] As shown in FIG. 3A, graphics board GB may comprise a graphics processing unit (GPU) 90, a super-sampled sample buffer 162, and one or more sample-to-pixel calculation units 170-1 through 170-V. Graphics board GB may also comprise one or more

digital-to-analog converters (DACs) 178A-B.

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims MMC Draw Desc Image

| 6. Document ID: US 20020122044 A |            |             |
|----------------------------------|------------|-------------|
| L6: Entry 6 of 20                | File: PGPB | Sep 5, 2002 |

DOCUMENT-IDENTIFIER: US 20020122044 A1 TITLE: Multi-spectral color correction

Detail Description Paragraph (18): [0076] FIG. 3 presents a block diagram for one embodiment of generic graphics board



GB(K) for K=0, 1, 2, . . . , R-1. Graphics board GB(K) may comprise a graphics processing unit (GPU) 90, a super-sampled sample buffer 162, and one or more sample-to-pixel calculation units CU(0) through CU(V-1). Graphics board GB(K) may also comprise two digital-to-analog converters (DACs) 178A and 178B. In an alternative embodiment, graphics board GB(K) may include resources for operating on more than two simultaneous video channels, and thus, more than two digital-to-analog converters. In a second alternative embodiment, graphics board GB(K) may be configured to operate on a single video channel, and thus, may include only one digital-to-analog converter.

Full Title Citation Front Review Classification Date Reference Sequences Attachments RMC Draw Desc Image

7. Document ID: US 20020070944 A1

L6: Entry 7 of 20 File: PGPB Jun 13, 2002

DOCUMENT-IDENTIFIER: US 20020070944 A1

TITLE: Graphics system having a super-sampled sample buffer with hot spot correction

Detail Description Paragraph (27):

[0164] FIG. 9 presents a block diagram for one embodiment of graphics board 116 according to the present invention. The following description of graphics board 116 generically describes any of graphics boards 113, 114 and 115. Graphics board 116 may comprise a graphics processing unit (GPU) 90, one or more super-sampled sample buffers 162, and one or more sample-to-pixel calculation units 170-1 through 170-V. Graphics board 116 may also comprise two digital-to-analog converters (DACs) 178A and 178B. In other embodiments, graphics board 116 may comprise more than two digital-to-analog converters.

Full Title Citation Front Review Classification Date Reference Sequences Attachments MMC Draw Desc Image

8. Document ID: US 20020050979 A1

L6: Entry 8 of 20 File: PGPB May 2, 2002

DOCUMENT-IDENTIFIER: US 20020050979 A1

TITLE: Interpolating sample values from known triangle vertex values

Detail Description Paragraph (16):

[0066] As shown in FIG. 3A, graphics board GB may comprise a graphics processing unit (GPU) 90, a super-sampled sample buffer 162, and one or more sample-to-pixel calculation units 170-1 through 170-V. Graphics board GB may also comprise one or more digital-to-analog converters (DACs) 178A-B.

Full | Title | Citation | Front | Review | Classification | Date | Reference | Sequences | Affachments | MADC | Draw Desc | Image |

9. Document ID: US 20020033828 A1

L6: Entry 9 of 20 | File: PGPB | Mar 21, 2002

DOCUMENT-IDENTIFIER: US 20020033828 A1

TITLE: Flexible video architecture for generating video streams



Detail Description Paragraph (17):

[0081] FIG. 3 presents a block diagram for one embodiment of generic graphics board GB(K) for K=0, 1, 2, . . . , R-1. Graphics board GB(K) may comprise a graphics processing unit (GPU) 90, a super-sampled sample buffer 162, and one or more sample-to-pixel calculation units CU(0) through CU(V-1). Graphics board GB(K) may also comprise two digital-to-analog converters (DACs) 178A and 178B.

|   | Full  | Title | Citation | Front | Review | Classification | Date | Reference | Sequences | Attachments | KWMC Dra | m Deso | Image  |     |     |
|---|-------|-------|----------|-------|--------|----------------|------|-----------|-----------|-------------|----------|--------|--------|-----|-----|
|   |       |       |          |       |        |                |      |           |           |             |          |        |        |     |     |
|   |       |       |          |       |        | US 2002        |      |           |           |             | <br>     |        |        |     |     |
| Ι | .6: E | ntry  | 10 0     | £ 20  |        |                |      |           | File:     | PGPB        |          | 1      | Seb 7. | 2.0 | 002 |

DOCUMENT-IDENTIFIER: US 20020015052 A1

TITLE: Graphics system configured to perform distortion correction

Detail Description Paragraph (28):

[0164] FIG. 9 presents a block diagram for one embodiment of graphics board 116 according to the present invention. The following description of graphics board 116 generically describes any of graphics boards 113, 114 and 115. Graphics board 116 may comprise a graphics processing unit (GPU) 90, one or more super-sampled sample buffers 162, and one or more sample-to-pixel calculation units 170-1 through 170-V. Graphics board 116 may also comprise two digital-to-analog converters (DACs) 178A and 178B. In other embodiments, graphics board 116 may comprise more than two digital-to-analog

| Full   Title   Citation   Front   Review   Classification | Date Reference Sequences | s Attachments | KWC Draw Desc Ima | ge |                                         |
|-----------------------------------------------------------|--------------------------|---------------|-------------------|----|-----------------------------------------|
|                                                           |                          |               |                   |    |                                         |
|                                                           |                          |               |                   |    | *************************************** |
| 11. Document ID: US 2002                                  | 20012004 A1              |               |                   |    |                                         |
|                                                           |                          |               |                   |    |                                         |

DOCUMENT-IDENTIFIER: US 20020012004 A1

TITLE: Blending the edges of multiple overlapping screen images

Detail Description Paragraph (27):

[0167] FIG. 9 presents a block diagram for one embodiment of graphics board 116 according to the present invention. The following description of graphics board 116 generically describes any of graphics boards 113, 114 and 115. Graphics board 116 may comprise a graphics processing unit (GPU) 90, one or more super-sampled sample buffers 162, and one or more sample-to-pixel calculation units 170-1 through 170-V. Graphics board 116 may also comprise two digital-to-analog converters (DACs) 178A and 178B. In other embodiments, graphics board 116 may comprise more than two digital-to-analog converters.

|           | Full                                    | Title                                   | Citation | Front                                   | Review | Classification                          | Date Referen | ce Sequences                            | Attachments                             | EWI                                     | C Draw Desc                             | Image                                   |      |
|-----------|-----------------------------------------|-----------------------------------------|----------|-----------------------------------------|--------|-----------------------------------------|--------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|------|
|           |                                         |                                         |          |                                         |        |                                         |              |                                         |                                         |                                         |                                         |                                         |      |
| ********* | *************************************** | *************************************** |          | *************************************** |        | *************************************** |              | *************************************** | *************************************** | *************************************** | *************************************** | *************************************** |      |
|           |                                         | 12.                                     | Docu     | ımen                                    | t ID:  | US 2002                                 | 0008697      | <b>A</b> 1                              |                                         |                                         |                                         |                                         |      |
| I         | .6: E                                   | ntry                                    | 12 of    | 20                                      |        |                                         |              | File:                                   | PGPB                                    |                                         | ن                                       | Jan 24,                                 | 2002 |



TITLE: Matching the edges of multiple overlapping screen images

Detail Description Paragraph (27):

[0163] FIG. 9 presents a block diagram for one embodiment of graphics board 116 according to the present invention. The following description of graphics board 116 generically describes any of graphics boards 113, 114 and 115. Graphics board 116 may comprise a graphics processing unit (GPU) 90, one or more super-sampled sample buffers 162, and one or more sample-to-pixel calculation units 170-1 through 170-V. Graphics board 116 may also comprise two digital-to-analog converters (DACs) 178 A and 178 B. In other embodiments, graphics board 116 may comprise more than two digital-to-analog converters.

Full Title Citation Front Review Classification Date Reference Sequences Attachments EVMC Draw Deso Image 13. Document ID: US 20020005854 A1 L6: Entry 13 of 20 File: PGPB Jan 17, 2002

DOCUMENT-IDENTIFIER: US 20020005854 A1

TITLE: Recovering added precision from L-bit samples by dithering the samples prior to an averaging computation

Detail Description Paragraph (22):
[0078] FIG. 3 presents a block diagram for one embodiment of graphics board GB(I). Graphics board GB(I) may comprise a graphics processing unit (GPU) 90, one or more super-sampled sample buffers 162, and one or more sample-to-pixel calculation units 170-1 through 170-V. Graphics board GB(I) may also comprise two digital-to-analog converters (DACs) 178A and 178B. In other embodiments, graphics board GB(I) may comprise more or less than two digital-to-analog converters.

Full Title Citation Front Review Classification Date Reference Sequences Attachments MMC Draw Desc Image 14. Document ID: US 20020000988 A1 L6: Entry 14 of 20 File: PGPB Jan 3, 2002

DOCUMENT-IDENTIFIER: US 20020000988 A1 TITLE: Rendering lines with sample weighting

Detail Description Paragraph (16):

[0077] As shown in FIG. 3A, graphics board GB may comprise a graphics processing unit (GPU) 90, a super-sampled sample buffer 162, and one or more sample-to-pixel calculation units 170-1 through 170-V. Graphics board GB may also comprise one or more digital-to-analog converters (DACs) 178A-B.

Full Title Citation Front Review Classification Date Reference Sequences Attachments KAMC Draw Desc Image



|     | 15  | Document | $\mathbf{m}$ | TIC                        | 2001 | 10055010 | Λ1 |
|-----|-----|----------|--------------|----------------------------|------|----------|----|
| 3 1 | 10. | Document | ш.           | $ \mathbf{v}$ $\mathbf{s}$ | 200  | しいひろひょう  | AI |

L6: Entry 15 of 20

File: PGPB

Dec 27, 2001

DOCUMENT-IDENTIFIER: US 20010055019 A1

TITLE: Multiple processor visibility search system and method

Detail Description Paragraph (6):

[0058] Graphics primitives (e.g. triangles) corresponding to the visible objects may be transmitted to graphics accelerator 112 for rendering and display on display device 84. Since graphics accelerator 112 operates on primitives corresponding to the visible objects, a higher percentage of rendered pixels (or supersamples) survive the z-comparison than if the graphics accelerator 112 were supplied with primitives corresponding to the fall object set. In other words, the rendering hardware in graphics accelerator 112 may operate with increased efficiency.

Full Title Cdation Front Review Classification Date Reference Sequences Attachments KMC Draw Desc Image

16. Document ID: US 6496187 B1

L6: Entry 16 of 20 File: USPT Dec 17, 2002

DOCUMENT-IDENTIFIER: US 6496187 B1

TITLE: Graphics system configured to perform parallel sample to pixel calculation

Detailed Description Text (26):

FIG. 3B presents a block diagram for one embodiment of graphics system 112 according to the present invention. Graphics system 112 may comprise a graphics processing unit (GPU) 90, one or more super-sampled sample buffers 162, and one or more sample-to-pixel calculation units 170-1 through 170-V. Graphics system 112 may also comprise one or more digital-to-analog converters (DACs) 178-1 through 178-L. Graphics processing unit 90 may comprise any combination of processor technologies. For example, graphics processing unit 90 may comprise specialized graphics processors or calculation units, multimedia processors, DSPs, or general purpose processors.

|   | Full                                    | Title         | Citation      | Front  | Review                                  | Classification | Date  | Reference  | Sequences                               | Attachments                             | KWIC | Draw Desc   Image |          |
|---|-----------------------------------------|---------------|---------------|--------|-----------------------------------------|----------------|-------|------------|-----------------------------------------|-----------------------------------------|------|-------------------|----------|
|   |                                         |               |               |        |                                         |                |       |            |                                         |                                         |      |                   |          |
|   | *************************************** | ************* | ************* | ······ | *************************************** |                | ····· |            | *************************************** | *************************************** |      |                   | erennen. |
| • |                                         | 17.           | Doc           | umen   | t ID:                                   | US 6437        | 796   | <b>B</b> 1 |                                         |                                         |      |                   |          |
| L | 6: E                                    | ntry          | 17 o          | £ 20   |                                         |                |       |            | File:                                   | USPT                                    |      | Aug 20, 2002      |          |

DOCUMENT-IDENTIFIER: US 6437796 B1

TITLE: Multiple processor visibility search system and method

<u>Detailed Description Text</u> (6):

Graphics primitives (e.g. triangles) corresponding to the visible objects may be transmitted to graphics accelerator 112 for rendering and display on display device 84. Since graphics accelerator 112 operates on primitives corresponding to the visible objects, a higher percentage of rendered pixels (or <a href="supersamples">supersamples</a>) survive the <a href="supersamples">z-comparison than if the graphics accelerator</a> 112 were supplied with primitives corresponding to the full object set. In other words, the rendering hardware in graphics accelerator 112 may operate with increased efficiency.



| Full Title | 2 Citation | Front Revie | w Classification                        | Date Reference | Sequences | Attachments                             | FAMC Draw Desc Image |
|------------|------------|-------------|-----------------------------------------|----------------|-----------|-----------------------------------------|----------------------|
| ,          |            |             |                                         |                |           |                                         |                      |
|            |            |             | *************************************** |                |           | *************************************** |                      |
| >********  | _          | _           |                                         |                |           |                                         |                      |

18. Document ID: US 6204859 B1

L6: Entry 18 of 20

File: USPT

Mar 20, 2001

DOCUMENT-IDENTIFIER: US 6204859 B1

TITLE: Method and apparatus for compositing colors of images with memory constraints

for storing pixel data

Detailed Description Text (113):

When the new fragment is visible at one of the covered subpixel samples, then the graphics accelerator 108 invalidates the link between each covered sample and a stored fragment, if the new fragment obscures the stored fragment for that covered subpixel sample. For the indexed sparse supersampling technique, the graphics accelerator 108 maintains control bits for keeping track of the validity of each index and invalidates each index linking a covered subpixel sample to an obscured fragment. The control bits may direct the graphics accelerator 108 to use the default background color if no fragments cover a subpixel sample. For the improved A-buffer technique, the bits in the coverage mask associated with each covered subpixel sample are unchanged when the new fragment is transparent and are set to "0" when the new fragment is opaque.

| Full   Title   Citation   Front   Review   Classitica | ion   Date   Reference   Sequences   Affachments   10 | MC   Draw Desc   Image |
|-------------------------------------------------------|-------------------------------------------------------|------------------------|
|                                                       |                                                       |                        |
| ☐ 19. Document ID: US 61                              | 28000 A                                               |                        |
| L6: Entry 19 of 20                                    | File: USPT                                            | Oct 3, 2000            |

DOCUMENT-IDENTIFIER: US 6128000 A

TITLE: Full-scene antialiasing using improved supersampling techniques

Detailed Description Text (116):

When the new fragment is visible at one of the covered subpixel samples, then the graphics accelerator 108 invalidates the link between each covered sample and a stored fragment, if the new fragment obscures the stored fragment for that covered subpixel sample. For the indexed sparse supersampling technique, the graphics accelerator 108 maintains control bits for keeping track of the validity of each index and invalidates each index linking a covered subpixel sample to an obscured fragment. The control bits may direct the graphics accelerator 108 to use the default background color if no fragments cover a subpixel sample. For the improved A-buffer technique, the bits in the coverage mask associated with each covered subpixel sample are unchanged when the new fragment is transparent

| Full | Title Citation F | ront   Review | Classification | Date Reference | Sequences | Attachments | KWIC | Dramu Deso Im | age | l    |
|------|------------------|---------------|----------------|----------------|-----------|-------------|------|---------------|-----|------|
|      | 20. Docu         | ment ID:      |                | 227661 A2      |           |             |      |               |     |      |
| L6:  | Entry 20         | of 20         |                | File           | : DWPI    |             |      | Apr           | 4,  | 2002 |

DERWENT-ACC-NO: 2002-372173

DERWENT-WEEK: 200252

COPYRIGHT 2003 DERWENT INFORMATION LTD



TITLE: Implementation apparatus of full-scene anti-aliasing super-sampling to provide three-dimensional computer-generated graphics using graphics accelerator with coupled cache

| Title Citation Front | Review Classification Date Reference Sequences Attachments | KMC   Draw Desc   Clip Img |
|----------------------|------------------------------------------------------------|----------------------------|
| ·····                |                                                            |                            |
|                      | Generate Collection Print                                  |                            |
|                      | ***************************************                    |                            |
|                      |                                                            | Documents                  |
|                      |                                                            | Documents                  |

Display Format: - Change Format

Previous Page Next Page