

Enriching continuous Lagrange finite element approximation spaces using neural networks

Michel Duprez¹, Emmanuel Franck², **Frédérique Lecourtier**¹ and Vanessa Lleras³

¹Project-Team MIMESIS, Inria, Strasbourg, France ²Project-Team MACARON, Inria, Strasbourg, France ³IMAG, University of Montpellier, Montpellier, France

July 15, 2025

Scientific context

Context: Create real-time digital twins of an organ (e.g. liver).

Objective : Develop an hybrid finite element / neural network method.

accurate quick + parameterized

Problem considered

Stationary incompressible Navier-Stokes equations (with buoyancy and gravity) :

We consider $\Omega = [-1, 1]^2$ a squared domain and $\mathbf{e}_y = (0, 1)$.

Find the velocity $\mathbf{u} = (u, v)$, the pressure p and the temperature T such that

$$\begin{cases} \nabla \cdot \mathbf{u} = 0 & \text{in } \Omega \\ (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p - \mu \Delta \mathbf{u} - g(\beta \mathbf{T} + 1)\mathbf{e}_{\mathbf{y}} = 0 & \text{in } \Omega \end{cases}$$
 (incompressibility)
$$\mathbf{u} \cdot \nabla \mathbf{T} - k_{\mathbf{f}} \Delta \mathbf{T} = 0 & \text{in } \Omega$$
 (energy)

with g=9.81 the gravity, $\beta=0.1$ the expansion coefficient, μ the viscosity and $k_{\rm f}$ the thermal conductivity. [Coulaud et al., 2024]

Boundary Conditions:

- $\mathbf{u} = 0$ on $\partial \Omega$
- T=1 on the left wall (x=-1) and T=-1 on the right wall (x=1) $\frac{\partial T}{\partial n}=0$ on the top and bottom walls ($y=\pm 1$)

Problem considered

Objective: Simulate the flow for a range of $\mu = (\mu, k_f) \in \mathcal{M} = [0.01, 0.1]^2$.

Stationary incompressible Navier-Stokes equations (with buoyancy and gravity):

We consider
$$\mathbf{x} = (\mathbf{x}, \mathbf{y}) \in \Omega$$
 and $\mathbf{e}_{\mathbf{y}} = (0, 1)$.

Find U = (u, v, p, T) such that

$$\begin{cases} \textit{R}_{\textit{inc}}(\textit{U}; \mathbf{x}, \boldsymbol{\mu}) = 0 \text{ in } \Omega & \text{(incompressibility)} \\ \textit{R}_{\textit{mom}}(\textit{U}; \mathbf{x}, \boldsymbol{\mu}) = 0 \text{ in } \Omega & \text{(momentum)} \\ \textit{R}_{\textit{ener}}(\textit{U}; \mathbf{x}, \boldsymbol{\mu}) = 0 \text{ in } \Omega & \text{(energy)} \end{cases}$$

with g=9.81 the gravity, $\beta=0.1$ the expansion coefficient, μ the viscosity and $k_{\rm f}$ the thermal conductivity. [Coulaud et al., 2024]

Boundary Conditions:

- $\mathbf{u} = 0$ on $\partial \Omega$
- T=1 on the left wall (x=-1) and T=-1 on the right wall (x=1) $\frac{\partial T}{\partial n}=0$ on the top and bottom walls ($y=\pm 1$)

Physics-informed neural network (PINN)

Neural Network considered

We consider a parametric NN with 4 inputs and 4 outputs, defined by

$$U_{\theta}(\mathbf{x}, \boldsymbol{\mu}) = (u_{\theta}, v_{\theta}, p_{\theta}, T_{\theta})(\mathbf{x}, \boldsymbol{\mu}).$$

The Dirichlet boundary conditions are imposed on the outputs of the MLP by a **post-processing** step. [Sukumar and Srivastava, 2022]

We consider two levelsets functions φ and ψ , and the linear function g defined by

$$\varphi(x,y) = (x-1)(x+1)(y-1)(y+1),$$

$$\psi(x,y) = (x-1)(x+1) \quad \text{and} \quad g(x,y) = 1 - (x+1).$$

PINN training

Approximate the solution of (\mathcal{P}) **by a PINN :** Find the optimal weights θ^{\star} , such that

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \left(J_{inc}(\theta) + J_{mom}(\theta) + J_{ener}(\theta) + J_{ad}(\theta) \right), \tag{\mathcal{P}_{θ}}$$

where the different cost functions¹ are defined by

adiabatic condition

$$J_{ad}(heta) = \int_{\mathcal{M}} \int_{\partial \Omega|_{y=\pm 1}} \left| rac{\partial au_{ heta}(\mathbf{x}, oldsymbol{\mu})}{\partial n}
ight|^2 d\mathbf{x} doldsymbol{\mu},$$

3 residual losses

$$J_{ullet}(heta) = \int_{\mathcal{M}} \int_{\Omega} \left| R_{ullet}(U_{ heta}(\mathbf{x}, oldsymbol{\mu}); \mathbf{x}, oldsymbol{\mu})
ight|^2 d\mathbf{x} doldsymbol{\mu},$$

with U_{θ} the parametric NN and • the PDE considered (i.e. *inc*, *mom* or *ener*).

ľ	Network - MLP		
layers	40, 60, 60, 60, 40		
σ	sine		

Training (ADAM / LBFGs)					
	Ir	7e-3	N_{col}	40000	
	n _{epochs}	10000	N _{bc}	30000	

¹Discretized by a random process using Monte-Carlo method.

PINN solution

TODO : renommer figure u_{θ} . . . (solutions et erreurs)

Finite element method (FEM)

Newton method

Finite Element Methods¹

¹[Ern and Guermond, 2004]

Newton method - Additive approach

Numerical results

Numerical results

Conclusion

References

- Guillaume Coulaud, Maxime Le, and Régis Duvigneau. Investigations on Physics-Informed Neural Networks for Aerodynamics, 2024.
- A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements. 2004.
- N. Sukumar and A. Srivastava. Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. 2022.