

Sygnay i obrazy cyfrowe Laboratorium 2 - Skalowanie i rotacja

Informatyczne Systemy Automatyki

Wykonujący: Igor Potyrała - 272518

Prowadzący - Przemysław Śliwiński

Data laboratoriów: 8 listopada oraz 25 pażdziernika 2023

1 Zadania

1.1 Algorytmy interpolacji

Celem zadania pierwszego było sprawdzenie działania 3 algorytmów interpolacji do skalowania oraz obracania względem puntku. Algorytmy te to:

- Najbliższy sąsiad,
- Liniowa,
- Sześcienna

1.2 Skalowanie i rotacja

1.2.1 Wyniki

Obraz 1. 5-krotne powiększenie o 10%, a następnie pomniejszenie do oryginalnej wielkości - najbliższy sąsiad.

Obraz 2. 3-krotne pomniejszenie o 10%, a następnie powiększenie do oryginalnej wielkości - najbliższy sąsiad.

Obraz 3. 5-krotne powiększenie o 10%, a następnie pomniejszenie do oryginalnej wielkości -liniowa.

Obraz 4. 3-krotne pomniejszenie o 10%, a następnie powiększenie do oryginalnej wielkości - liniowa.

Obraz 5. 5-krotne powiększenie o 10%, a następnie pomniejszenie do oryginalnej wielkości - sześcienna.

Obraz 6. 3-krotne pomniejszenie o 10%, a następnie powiększenie do oryginalnej wielkości - sześcienna.

	Najbliższy sąsiad	Liniowa	Sześcienna
Powiększenie	$0,\!38s$	4,86s	$55{,}35s$
Pomniejszenie	$0,\!27s$	2,77s	40,51s
Średni błąd kwadratowy	55,41	33,10	23,37

Tabela 1. Przedstawiające charakterystyki czasowe oraz błędy typów interpolacji.

1.2.2 Wnioski

2 Wnioski

Zakłócenia ukazujące się w obrazie 3 wynikają z niespełnienia warunków twierdzenia o próbkowaniu. Obiekt porusza się zbyt szybko, by macierz sensora zarejestrowała wszystkie piksele. Przykładowe sposoby na zniwelowanie tego efektu:

- Unikanie ruchu podczas filmowania / trzymanie kamery nieruchomo zminimalizuje zniekształcenia,
- Zwiększenie prędkości odczytu sensora, by była większa od prędkości obracania się łopatek.

* Uniwersalną funkcją może być ta "którą użyliśmy w poprzednich zadaniach, $f(x) = \sin(nx + \frac{m\pi}{RPM})$, wystarczy zmieniać tylko parametr n w zależności od tego ile śmigieł chcemy. Przy większej ilości łopatek warto będzie, także zwiększyć wielkość generowanego obrazu.