Math 4317 (Prof. Swiech, S'18): HW #4

Peter Williams 3/29/2018

Section 20

A. Prove that if f is defined for $x \ge 0$ by $f(x) = \sqrt{x}$, then f is continuous at every point of its domain.

For $f(x) = \sqrt{x}$, $\mathcal{D}(f) = \{x \in \mathbb{R} : x \ge 0\}$, let $a \in \mathcal{D}(f)$.

When a = 0, $|f(x) - f(a)| = |\sqrt{x} - 0| = \sqrt{x} < \varepsilon$. If we let $\delta(\varepsilon) = \varepsilon^2$, when $x < \varepsilon^2$, $|f(x)| < \varepsilon$.

When $a \neq 0$, $|f(x) - f(a)| = |\sqrt{x} - \sqrt{a}| = \frac{|\sqrt{x} - \sqrt{a}|}{|\sqrt{x} + \sqrt{a}|} |\sqrt{x} + \sqrt{a}| = \frac{|x - a|}{|\sqrt{x} + \sqrt{a}|} < \frac{|x - a|}{\sqrt{a}} < \varepsilon \implies \text{when } |x - a| < \varepsilon \sqrt{a},$ then, $|f(x) - f(a)| < \varepsilon$, thus we can choose $\delta(\varepsilon) = \varepsilon \sqrt{a} \implies f$ is continuous at every point in its domain.

B. Show that a "polynomial function"; that is, a function f with the form $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$, $x \in \mathbb{R}$ is continuous at every point of \mathbb{R} .

Relying on the properties of algebraic combinations of continuous of functions, we construct f as a combination of continuous functions to show its continuity. Considering the last term of the polynomial function, denoted here, $f_0(x) = a_0$, $f_0(x)$ is a continuous, constant function, since, for any $a \in \mathbb{R}$ we have $|f_0(x) - f_0(a)| = |a_0 - a_0| < \varepsilon = \delta(\varepsilon)$, $\varepsilon > 0$. We consider the second to last term of f, a_1x , as a constant, a_1 multiplied by the identity function, denoted, $f_1(x) = x$. Since $f_1(x) = x$, for any real number $a \in \mathbb{R}$, we have $|f_1(x) - f_1(a)| = |x - a| < \varepsilon = \delta(\varepsilon)$, $\varepsilon > 0 \implies a_1 f_1(x) = a_1 x$ is continuous.

Relying on the continuity of $f_1(x) = x$ multiplied by any constant, we can construct higher order terms of f through repeated multiplication of $f_1(x)$, e.g. $a_2 \cdot f_1(x) \cdot f_1(x) = a_2 x^2$ and $a_n \prod_{j=1}^n f_1(x) = a_n \cdot f_1(x) \cdot f_1(x) \cdot \dots \cdot f_1(x) = a_n x^n$, and so on, where each term constructed $a_n x^n$ is continuous on \mathbb{R} since it is constructed via algebraic combinations of continuous functions $\implies f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, is continuous at every point $x \in \mathbb{R}$.

E. Let f be the function on $\mathbb{R} \to \mathbb{R}$ defined by f(x) = x, x irrational, f(x) = 1 - x, x rational. Show that f is continuous at $x = \frac{1}{2}$ and discontinuous elsewhere.

Considering the point $a=\frac{1}{2}$, we have $f(a)=\frac{1}{2}$, and $|f(x)-f(a)|=|1-x-\frac{1}{2}|=|\frac{1}{2}-x|=|x-a|<\varepsilon=\delta(\varepsilon)$. So if $|f(x)-f(a)|<\varepsilon=\delta(\varepsilon)>0 \Longrightarrow |x-a|<\delta(\varepsilon)$, and then we have f continuous at the point $a=\frac{1}{2}$. For the case $a\neq\frac{1}{2}$, a irrational, take a sequence $X=(x_n)$ of rational numbers converging to a. Since the sequence $(f(x_n))$ converges to 1-a, and we have f(a)=a, f is not continuous at irrational points by the Discontinuity Criterion. For the case $a\neq\frac{1}{2}$, a rational, take a sequence $Y=(Y_n)$ of irrational numbers converging to a, the sequence $(f(y_n))$ converges to a, but f(a)=1-a, which equation is only satisfied when $a=\frac{1}{2}$, thus f is not continuous for rational numbers at any point other than $\frac{1}{2}$.

F.Let f be continuous on $\mathbb{R} \to \mathbb{R}$. Show that if f(x) = 0 for rational x, then f(x) = 0 for all $x \in \mathbb{R}$.

Every real point, $x \in \mathbb{R}$ is the limit of a sequence of rational numbers. If f is continuous \Longrightarrow for a sequence of rational numbers $X = (x_n) \to x$, we have $(f(x_n)) = 0$, for all $n \in \mathbb{N}$. Since f is continuous at each rational point $x \in \mathbb{R}$, we can find $|f(x_n) - f(x)| < \varepsilon$, $\varepsilon > 0$, and $|x_n - a| < \delta(\varepsilon) \Longrightarrow (f(x_n)) \to f(x) = 0, \forall x \in \mathbb{R}$.

I. Using the results of the preceding exercise, show that the function g, defined on $\mathbb{R} \to \mathbb{R}$ by $g(x) = x\sin(\frac{1}{x})$, $x \neq 0$, g(x) = 0, x = 0 is continuous at every point. Sketch a graph of this function.

For the case a=0, we have $|g(x)-g(a)|=|x\sin\frac{1}{x}-0|=|x||\sin\frac{1}{x}|\leq |x|\cdot 1<\varepsilon,\ \varepsilon>0,$ since $-1\leq\sin\frac{1}{x}\leq 1.$ So when $|g(x)-g(0)|<\varepsilon=\delta(\varepsilon),$ we then have $|x|=|x-0|<\delta(\varepsilon)\implies g$ continuous at 0.

For the case $a \neq 0$, we have $|g(x) - g(a)| = |x \sin \frac{1}{x} - a \sin \frac{1}{a}| = |x \sin \frac{1}{x} - a \sin \frac{1}{a} - a \sin \frac{1}{a} - a \sin \frac{1}{x} + a \sin \frac{1}{x}| = |(x - a)(\sin \frac{1}{x}) + a(\sin \frac{1}{x} - \sin \frac{1}{a})| \leq |x - a| |\sin \frac{1}{x}| + |a| |\sin \frac{1}{x} - \sin \frac{1}{a}|,$ by Triangle Inequality. Since both $|\sin \frac{1}{x}| \leq 1$ and $|\sin \frac{1}{x} - \sin \frac{1}{a}| \leq 1$, we have $|x - a| |\sin \frac{1}{x}| + |a| |\sin \frac{1}{x} - \sin \frac{1}{a}| \leq |x - a| \cdot 1 + |a| \cdot 1 = |x - a| + |a| < \varepsilon$.

It then follows that if $\delta(\varepsilon) = \varepsilon - |a|$, i.e. $\varepsilon > \delta(\varepsilon) + |a|$, when $|g(x) - g(a)| < \varepsilon$, then $|x - a| < \delta(\varepsilon) \implies$ g continuous at every point in \mathbb{R} .

Sketch of function below:

N. Let $g: \mathbb{R} \to \mathbb{R}$ satisfy the relation g(x+y) = g(x)g(y), $x,y \in \mathbb{R}$. Show that if g is continuous at x = 0, then g is continuous at every point. Also if g(a) = 0 for some $a \in \mathbb{R}$, then g(x) = 0 for all $x \in \mathbb{R}$.

If g is continuous at $x=0 \implies g(x+y)=g(y)=g(0)\cdot g(y)$. This implies also that $g(0)g(y)=g(y) \implies g(0)g(y)-g(y)=0=g(y)(g(0)-1)=0 \implies g(0)=1$, or that g(0)=0. If $g(0)=0 \implies -g(y)=0=g(y)$. In this case then $g(y)=0, \ \forall y\in\mathbb{R} \implies g(x)=0, \ \forall x\in\mathbb{R}$.

On the other hand if g(0) = 1, $\Longrightarrow g(0) \cdot g(y) = g(y)$ continuous for every point $y \in \mathbb{R}$.

Section 21

I. Let g be a linear function from $\mathbb{R}^p \to \mathbb{R}^q$. Show that g is one-one and only if g(x) = 0 implies that x = 0.

J. If h is a one-one linear function from $\mathbb{R}^p \to \mathbb{R}^p$, show that the inverse function h^{-1} is a linear function from $\mathbb{R}^p \to \mathbb{R}^p$.

K. Show that the sum and the composition of two linear functions are linear functions.

L. If f is a linear map on $\mathbb{R}^p \to \mathbb{R}^q$, define $||f||_{pq} = \sup\{||f(x)|| : x \in \mathbb{R}^p, ||x|| \le 1\}$. Show that the mapping $f \to ||f||_{pq}$ defines a norm on the vector space $\mathcal{L}(\mathbb{R}^p, \mathbb{R}^q)$ of all linear functions on $\mathbb{R}^p \to \mathbb{R}^q$. Show that $||f(x)|| \le ||f||_{pq}||x||$ for all $x \in \mathbb{R}^p$.

Section 22

В.

C.

F.

Н.

K.

Ο.