Kathmandu University

First In-Semester Exam-2025

Department of Artificial Intelligence, Panchkhal

Level: B.Tech Artificial Intelligence Course: AIMA 104

Year: I Semester: II

Time: 60 minutes F.M.: 20

1. For a matrix A of order $m \times n$. Show that Null(A) is a subspace of \mathbb{R}^n . [2]

OR

For a matrix A of order $m \times n$. Show that the eigenspace E_{λ} of its eigenvalue λ is a subspace of \mathbb{R}^n . [2]

- 2. Show that the transformation T(x) = x + 3 is not linear. [2]
- 3. Describe the transformation of the following matrix geometrically: $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. [2]

Kathmandu University

First In-Semester Exam-2025

Department of Artificial Intelligence, Panchkhal

Level: B.Tech Artificial Intelligence Course: AIMA 104

Year: I Semester: II

Time: 60 minutes F.M.: 20

1. For a matrix A of order $m \times n$. Show that Null(A) is a subspace of \mathbb{R}^n . [2]

OR

For a matrix A of order $m \times n$. Show that the eigenspace E_{λ} of its eigenvalue λ is a subspace of \mathbb{R}^n . [2]

- 2. Show that the transformation T(x) = x + 3 is not linear. [2]
- 3. Describe the transformation of the following matrix geometrically: $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. [2]

4. Prove: The transformation $T: V \to W$ is linear, then T(0) = 0. [2]

5. Verify Rank Nullity Theorem:
$$\begin{bmatrix} 1 & 2 & 3 \\ 6 & 5 & 4 \\ 7 & 8 & 9 \end{bmatrix}$$
. [4]

6. Show that the transformation that rotates each point in \mathbb{R}^2 , about the origin, through an angle ϕ counterclockwise, is a linear transformation by find the standard matrix of the transformation. [4]

7. Solve:
$$x_2 + 4x_3 = -5$$
, $x_1 + 3x_2 + 5x_3 = -2$, $3x_1 + 7x_2 + 7x_3 = 6$. [4]

- 4. Prove: The transformation $T: V \to W$ is linear, then T(0) = 0. [2]
- 5. Verify Rank Nullity Theorem: $\begin{bmatrix} 1 & 2 & 3 \\ 6 & 5 & 4 \\ 7 & 8 & 9 \end{bmatrix}$. [4]
- 6. Show that the transformation that rotates each point in \mathbb{R}^2 , about the origin, through an angle ϕ counterclockwise, is a linear transformation by find the standard matrix of the transformation. [4]
- 7. Solve: $x_2 + 4x_3 = -5$, $x_1 + 3x_2 + 5x_3 = -2$, $3x_1 + 7x_2 + 7x_3 = 6$. [4]