

Figure 8. Percent clay and average EC values for samples from Core 1 (squares) and Core 2 (inverted triangles). Because EC data from the upper and lower 3 cm of sample interval reflect the transition between intervals, only those samples >6 cm in thickness were included in the regression. Similarly, EC data from the upper and lower 3 cm of a sample interval were not used to compute the average EC value for that interval.

Figure 11. Direct-push EC log from the east bank of the Arkansas River near Kinsley, Kansas.

(Schulmeister et al. 2002)

(KGS Open-File Report 99-40)

3. Relationship between geophysical and hydrogeological parameters

→ hydraulic methods: Direct Push Slug Test (DPST)

Fakultät Hydrowissenschaften Fachrichtung Wasserwesen, Institut für Grundwasserwirtschaft

(www.kgs.ku.edu/Hydro/Publications/OFR00_40/index.html)

3. In situ measurements of subsurface conditions → hydraulic methods: Direct Push Slug Test (DPST)

3. In situ measurements of subsurface conditions→ hydraulic methods: Direct Push Slug Test (DPST)

1.00

0.80

0.60

-0.60

2

6

8

<u>Caution</u>: Well development!

Dependence on Development

Hydraulic Profiling

Test 2 - Pre-Develop - H_o=0.120 m

Test 7 - Post-Develop - H_o=0.120 m

20

18

0.40 0.20 0.00 -0.20 -0.40

10

Time (sec)

12

14

16

Note: different time scale!

3. In situ measurements of subsurface conditions

→ hydraulic methods: Direct Push Slug Test (DPST) Well development

Fakultät Hydrowissenschaften Fachrichtung Wasserwesen, Institut für Grundwasserwirtschaft

methods:

- over pumping
- purging ("surge block")
- (air) jetting

3. In situ measurements of subsurface conditions → Injection logging (DPIL): relative hydraulic conductivity

Fakultät Hydrowissenschaften Fachrichtung Wasserwesen, Institut für Grundwasserwirtschaft

3. In situ measurements of subsurface conditions → Injection logging (DPIL): relative hydraulic conductivity

3. In situ measurements of subsurface conditions → Injection logging: results

TECHNISCHE UNIVERSITÄT DRESDEN

Fakultät Hydrowissenschaften Fachrichtung Wasserwesen, Institut für Grundwasserwirtschaft

3. In situ measurements of subsurface conditions

→ Injection logging: results Pirna

Deriving hydraulic conductivity: calibration of DPIL-K-values with K-Slug Tests

(Dietze & Dietrich, 2011)

