

CS 372 Lecture #16

Reliable data transfer

- motivations, concerns, and principles
- error detection

Note: Many of the lecture slides are based on presentations that accompany *Computer Networking: A Top Down Approach,* 6th edition, by Jim Kurose & Keith Ross, Addison-Wesley, 2013.

Two Generals Problem

- Cannot guarantee that message will be received
- Cannot guarantee that received message has no errors

- Is reliable messaging possible?
 - See "<u>Two Generals Problem</u>" on wikipedia
 - − See also RFC1149 ©

Positions of the armies. Armies A1 and A2 need to communicate but their messengers may be captured by army B.

Principles of reliable data transfer

- implemented in application, transport, network, link layers
- top-10 list of important networking topics!

 characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

Reliable data transfer: getting started

Reliable data transfer: getting started

- "reliable" is a relative term
- Small steps:
 - Error detection
 - Acknowledgement
 - Sequencing
 - Timing (flow/congestion control)
 - Retransmission
 - Fairness
- See textbook for development of reliable data transfer (using finite state diagrams)

Error detection in UDP [RFC 768]

- In addition to port numbers, UDP segment header includes
 - 16-bit *length* field
 - 16-bit checksum field

UDP segment format

UDP checksum

Goal: detect errors (e.g., flipped/lost bits) in transmitted segment

sender:

- start checksum = 0
- compute checksum:
 - ones-complement of sum of segment contents as 16-bit integers
 - see www.netfor2.com/checksum.html

Discussion question: Why use the 1's-complement, instead of just the sum?

receiver:

- compute checksum of received segment
- compare computed checksum to segment checksum field.
 - Equal no error detected
 - But may be errors anyway!!
 - Not equal error detected
 - Discard entire packet

Internet checksum: example

example: add two 16-bit integers

Note: when adding numbers, a carryout from the most significant bit needs to be added to the result

UDP: Summary

- "no frills," "bare bones" transport protocol
- "best effort" service
- basic error detection
- UDP segments may be
 - lost
 - delivered out-of-order
- connectionless:
 - no handshaking between
 UDP sender, receiver
 - each UDP segment handled independently of others

UDP use:

- streaming multimedia apps (loss tolerant, rate sensitive)
- DNS

why is there a UDP?

- no connection establishment (which can add delay)
- simple: no connection state at sender, receiver
- small header size
- no congestion control: UDP can blast away as fast as desired

Summary

Lecture #16

- Two generals problem
- Reliable data transfer
- Error detection
- Characteristics of UDP

Discussion topic: When UDP detects an error, the packet is discarded without warning to the sender. Discuss the advantages and disadvantages of implementing <u>error-correction</u> at the transport layer. (e.g., Hamming codes)