Algoritmo del banchiere

Descrizione

L'algoritmo del banchiere serve a verificare se il sistema è in uno stato sicuro, che significa che se anche tutti i processi chiedessero il massimo delle risorse per la loro esecuzione nello stesso istante potrebbero venire soddisfatti.

L'algoritmo:

- evita le situazioni di stallo;
- è simile ad una banca virtuosa che non versa mai tutte le risorse disponibili al fine di poter sempre soddisfare i propri clienti;
- richiede che i processi dichiarino il massimo quantitativo di risorse di cui avranno bisogno per completare la loro esecuzione;
- ad ogni nuova richiesta viene verificato se l'assegnazione lascerebbe il sistema in uno stato sicuro:
 - se così fosse allora le risorse verrebbero assegnate;
 - se così non fosse allora il processo dovrebbe attendere.

Realizzazione

La realizzazione dell'algoritmo richiede:

- N: numero dei processi P nel sistema;
- M: numero delle risorse nel sistema;
- i: iteratore dei processi P;
- j: iteratore delle risorse R;
- Strutture dati:
 - Disponibili: matrice 1xM Disponibili[j] = k significa che ci sono ancora k istanze di R_j;
 - Massime: matrice NxM Massime[i][j] = k significa che Pi può richiedere al massimo k istanze di Ri;
 - Assegnate: matrice NxM Assegnate[i][j] = k significa che Pi attualmente ha assegnato per sé k istanze di R;

- Necessità: matrice NxM Necessità[i][j] = k significa che Pi per completare ha ancora bisogno di k istanze di Rj (Necessità[i][j] = Massime[i][j] Assegnate[i][j]);
- Processo di verifica:
 - a. Lavoro[j] = Disponibili[j], \forall j t.c. $0 \le j < M$ Fine[i] = false, \forall i t.c. $0 \le i < N$;
 - b. Si cerchi i t.c. trovato = (Fine[i] == false && Necessità[i][j] \leq Lavoro[j]); \forall j t.c. $0 \leq$ j < M
 - c. Se nel passo b. trovato == true:
 - Lavoro[j] = Lavoro[j] + Assegnate[i][j];
 Fine[i] = true;
 - Vai a b.;
 - d. Se nel passo b. trovato == false:
 - Se \forall i t.c. $0 \le i < N$ Fine[i] == true:
 - Stato sicuro;
 - Se \exists i t.c. $0 \le i < N$ Fine[i] == false:
 - Stato non sicuro.