Assignment: Section 2.3 Homework

1. Determine if the matrix below is invertible. Use as few calculations as possible. Justify your answer.

Choose the correct answer below.

- **A.** The matrix is invertible because its determinant is not zero.
- B. The matrix is not invertible because the matrix has 2 pivot positions.
- C. The matrix is invertible because its columns are multiples of each other. The columns of the matrix form a linearly dependent set.
- D. The matrix is not invertible because its determinant is zero.
- 2. Determine if the matrix below is invertible. Use as few calculations as possible. Justify your answer.

Choose the correct answer below.

- A. The matrix is not invertible because the matrix has 2 pivot positions.
- B. The matrix is invertible because its determinant is not zero.
- **C.** The matrix is not invertible because its determinant is zero.
- D. The matrix is invertible because its columns are multiples of each other. The columns of the matrix form a linearly dependent set.
- 3. Determine if the matrix below is invertible. Use as few calculations as possible. Justify your answer.

Choose the correct answer below.

- \bigcirc **A.** The matrix is invertible. If the given matrix is A, there is a 3×3 matrix C such that CI = A.
- **B.** The matrix is invertible. The given matrix has three pivot positions.
- C. The matrix is not invertible. The given matrix has two pivot positions.
- \bigcirc **D.** The matrix is not invertible. If the given matrix is A, the equation Ax = b has no solution for some **b** in \mathbb{R}^3 .

7.	Determine if the matrix below is invertible. Use as few calculations as possible. Justify your answer.		
	Γ;	3 5 7 5]	
		0 1 4 6	
		0 0 2 9	
		0 0 0 1	
	Choose the correct answer below.		
	ℰ A.	The matrix is invertible. The given matrix has 4 pivot positions.	
	○ В.	The matrix is not invertible. In the given matrix the columns do not form a linearly independent set.	
	O C.	The matrix is invertible. The given matrix is not row equivalent to the $n \times n$ identity matrix.	
	O D.	The matrix is not invertible. If the given matrix is A, the equation $A\mathbf{x} = \mathbf{b}$ has no solution for at least one \mathbf{b} in \mathbb{R}^4 .	
8.		In upper triangular matrix is one whose entries below the main diagonal are zeros, as is shown in the matrix to ht. When is a square upper triangular matrix invertible? Justify your answer.	3 4 7 4 0 1 4 6 0 0 2 8 0 0 0 1
	Choose the correct answer below.		
	O A.	A square upper triangular matrix is invertible when the matrix is equal to its own transpose. For	
		such a matrix A, A = A^T means that the equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .	
	○ В.	A square upper triangular matrix is invertible when all entries above the main diagonal are zeros as well. This means that the matrix is row equivalent to the $n \times n$ identity matrix.	
	○ C.	A square upper triangular matrix is invertible when all entries on the main diagonal are ones. If any entry on the main diagonal is not one, then the equation $A\mathbf{x} = \mathbf{b}$, where A is an $n \times n$ square	
	-1.0	upper triangular matrix, has no solution for at least one b in \mathbb{R}^n .	
	⊗ D.	A square upper triangular matrix is invertible when all entries on its main diagonal are nonzero. If all of the entries on its main diagonal are nonzero, then the $n \times n$ matrix has n pivot positions.	
9.	Explain why the columns of A^2 span \mathbb{R}^n whenever the columns of an $n \times n$ matrix A are linearly independent.		
	Choos	e the correct answer below. Note that the invertible matrix theorem is abbreviated IMT.	
	O A.	If the columns of A are linearly independent, then it directly follows that the columns of A^2 span \mathbb{R}^n .	
	○ B.	If the columns of A are linearly independent and A is square, then A is invertible, by the IMT.	
		Thus, A^2 , which is the product of invertible matrices, is not invertible. So, the columns of A^2 span \mathbb{R}^n .	
	O C.	If the columns of A are linearly independent and A is square, then A is not invertible. Thus, A^2 ,	
		which is the product of non invertible matrices, is also not invertible. So, the columns of A^2 span \mathbb{R}^n .	
	ℰ D.	If the columns of A are linearly independent and A is square, then A is invertible, by the IMT.	
		Thus, A^2 , which is the product of invertible matrices, is also invertible. So, by the IMT, the columns of A^2 span \mathbb{R}^n .	

Choose the correct answer below. Note that the invertible matrix theorem is abbreviated IMT.

- A. Since AB is invertible then by the IMT AB^T is an invertible matrix. Therefore, matrix B is invertible by part (I) of the IMT.
- **B.** Let W be the inverse of AB. Then WAB = I and (WA)B = I. Therefore, matrix B is invertible by part (j) of the IMT.
- C. Since AB is invertible, then it directly follows that $A = B^{-1}$ and $B = A^{-1}$ by the IMT. Therefore, matrix B is invertible.
- **D.** Let W be the inverse of AB. Then WAB = B. Therefore, since B is the product of two invertible matrices, W and AB, matrix B is invertible.
- 11. The given T is a linear transformation from \mathbb{R}^2 into \mathbb{R}^2 . Show that T is invertible and find a formula for T^{-1} .

$$T(x_1,x_2) = (5x_1 - 9x_2, -5x_1 + 7x_2)$$

To show that T is invertible, calculate the determinant of the standard matrix for T. The determinant of the standard matrix is -10 .

(Simplify your answer.)

$$\mathsf{T}^{-1}\left(\mathsf{x}_{1}, \mathsf{x}_{2}\right) = \left(-\frac{7}{10}\mathsf{x}_{1} - \frac{9}{10}\mathsf{x}_{2}, -\frac{1}{2}\mathsf{x}_{1} - \frac{1}{2}\mathsf{x}_{2}\right)$$

(Type an ordered pair. Type an expression using x_1 and x_2 as the variables.)