Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Pracownia dyplomowa magisterska

(semestr letni 23/24L)

Zastosowanie modeli statyki typu Takagi-Sugeno z następnikami hiperbolicznymi w algorytmach regulacji predykcyjnej

Autor: Wojciech Rogalski **Promotor:**

dr hab. inż. Piotr Marusak

Spis treści

1.	Wstęp	2
2.	Identyfikacja	
	2.1. Model Hammersteina	3
	2.2. Model Wienera	
3.	Porównanie	7
4.	DMC	10
5.	Podsumowanie	14
\mathbf{Sp}	is rysunków	15

1. Wstęp

W niniejszej pracy skupiono się na narzędziach potrzebnych do realizacji porównania modeli Hammerstaina i Wienera w modelach statyki typu Takagi-Sugeno z następnikami hiperbolicznymi w algorytmach regulacji predykcyjnej. Przedstawiono rozmyty model obiektu zbiorników w kaskadzie oraz algorytm DMC w wersji analitycznej z rzutowaniem na ograniczenia, numerycznej z uwzględnieniem tych ograniczeń oraz algorytmy z pomiarem zakłócenia.

Zdecydowano się zaprezentować tylko rozmyte modele w wariancie rekurencyjnym, tzn. modele nie korzystają z pomiarów obiektu, a jedynie bazują na wyjściach modelu.

2.1. Model Hammersteina

Rys. 2.1: Rozmyte sterowanie \mathcal{F}_1 - model Hammersteina, następniki nieliniowe.

Rys. 2.2: Rozmyte zakłócenie ${\cal F}_D$ - model Hammersteina, następniki nieliniowe.

Rys. 2.3: Rozmyte sterowanie ${\cal F}_1$ - model Hammersteina, następniki liniowe.

Rys. 2.4: Rozmyte zakłócenie ${\cal F}_D$ - model Hammersteina, następniki liniowe.

2.2. Model Wienera

Rys. 2.5: Rozmyte sterowanie ${\cal F}_1$ - model Wienera, następniki nieliniowe.

Rys. 2.6: Rozmyte zakłócenie ${\cal F}_D$ - model Wienera, następniki nieliniowe.

Rys. 2.7: Rozmyte sterowanie ${\cal F}_1$ - model Wienera, następniki liniowe.

Rys. 2.8: Rozmyte zakłócenie ${\cal F}_D$ - model Wienera, następniki liniowe.

3. Porównanie

Rys. 3.1: Model Hammersteina - następniki nieliniowe..

Rys. $3.2 \colon \text{Model Hammersteina}$ - następniki liniowe.

3. Porównanie 8

Rys. 3.3: Model Wienera - następniki nieliniowe.

Rys. 3.4: Model Wienera - następniki liniowe.

3. Porównanie 9

Rys. 3.5: Model liniowy.

Zastosowania modeli zarówno Hammersteina, jak i Wienera przynosi duże korzyści w stosunku do samego modelu liniowego. Natomiast zastosowanie nieliniowych funkcji w następnikach reguł modelu Takagi-Sugeno pozwala zredukować liczbę zbiorów rozmytych nieznacznie tracąc na dokładności.

Rys. 4.1: Algorytm analityczny DMC bez pomiaru zakłóceń.

Rys. 4.2: Algorytm analityczny DMC z pomiarem zakłóceń.

Rys. 4.3: Algorytm numeryczny DMC bez pomiaru zakłóceń.

Rys. 4.4: Algorytm numeryczny DMC z pomiarem zakłóceń.

Na podstawie przedstawionych przebiegów można wysnuć następujące wnioski:

- algorytm numeryczny potrafi uwzględnić ograniczenia sygnału sterującego, dzięki temu nie zaobserwowano bardzo dużych przyrostów sterowania
- pomiar zakłóceń zarówno w wersji analitycznej, jak i numerycznej przynosi bardzo duże korzyści w jakości sterownia

5. Podsumowanie

Na obecnym etapie prac udało się zgromadzić część narzędzi potrzebnych do osiągnięcia zamierzonego celu pracy. Udało się między innymi:

- rozmyć model obiektu zbiorników w kaskadzie
- opracować modele Hammersteina i Wienera dla rozmytego modelu zbiorników zarówno z następnikami liniowymi, jak i nieliniowymi
- zaimplementować algorytm DMC w wersji analitycznej, numerycznej z ograniczeniami oraz z uwzględnieniem zakłóceń

Najbliższy plan pracy zakłada:

- opracowanie algorytmu DMC z sukcesywną linearyzacją oraz nieliniową predykcją
- zebranie odpowiedzi skokowych z rzeczywistego obiektu i przeprowadzenie testów

Spis rysunków

2.1	Rozmyte sterowanie F_1 - model Hammersteina, następniki nieliniowe.
2.2	Rozmyte zakłócenie F_D - model Hammersteina, następniki nieliniowe
2.3	Rozmyte sterowanie F_1 - model Hammersteina, następniki liniowe
2.4	Rozmyte zakłócenie F_D - model Hammersteina, następniki liniowe
2.5	Rozmyte sterowanie F_1 - model Wienera, następniki nieliniowe
2.6	Rozmyte zakłócenie F_D - model Wienera, następniki nieliniowe.
2.7	Rozmyte sterowanie F_1 - model Wienera, następniki liniowe.
2.8	Rozmyte zakłócenie F_D - model Wienera, następniki liniowe
3.1	Model Hammersteina - następniki nieliniowe
3.2	Model Hammersteina - następniki liniowe
3.3	Model Wienera - następniki nieliniowe.
3.4	Model Wienera - następniki liniowe
3.5	Model liniowy.
4.1	Algorytm analityczny DMC bez pomiaru zakłóceń
4.2	Algorytm analityczny DMC z pomiarem zakłóceń
4.3	Algorytm numeryczny DMC bez pomiaru zakłóceń
4.4	Algorytm numeryczny DMC z pomiarem zakłóceń