Mert Dogan Assignment 5 Z1910844 10/16/2023

1. For this question, use the Franchises data file. The file has data on several variables explained below. We would like to understand what predicts financial growth in 2011. Run the required analysis and articulate the variables that are important. Run the required analysis and articulate the findings.

In order to understand what predicts financial growth in 2011, we've run a multi-regression model, using oyrsact, distancetoHQ, officesincounty, and ownmgrexp. Looking at our Analysis of Variance table (Appendix A.1), we can conclude that the overall model is significant with the F value of 21.83 and the p-value (<.0001) for the F statistic being less than alpha(.05). The adjusted R-squared is 0.0995, indicating the model explains 9.95% of the variance in Y. Therefore, the model might not be very effective in predicting the variation with relatively low adj R-squared.

We need to examine the influence of each of the variables by checking the Parameter Estimates table (Appendix A.2). We can observe that the intercept is significant. In this case, we can logically interpret the intercept as, when other variables are held to zero the financial growth in 2011 is 0.30481. The coefficient for oyrsact(years in the network) is -0.00920, indicating financial growth decreases as the number of years in the network increases. This variable is significant with a t-value of -6.92 and p value (<0.0001). DistancetoHQ also indicates a decrease in financial growth as distance from headquarters increases. With a t-value of -2.48 and a p-value of 0.0133, this variable is also significant. The number of offices in the county is not significant with a low-t and a high p-value(0.5895). However, we can conclude that experience in leadership also has a negative impact on financial growth with a coefficient of -0.00331. This is also significant with a t-value of -2.72 and a p-value of 0.0066. Note that none of the variance inflation scores are high enough to consider any issues between variables.

In order to assess the normality and equal variance assumption of the regression model, we can check the distribution of residuals histogram and residuals by predicted graph (Appendix A.3). The errors follow a normal distribution and there is a slight megaphone effect, we can conclude that assumption of normality is met by the model and equal variance might need to be checked further.

Finally, by checking the Cook's D graph and Outlier and Leverage Diagnostics chart (Appendix A.4), we can observe that there are multiple outliers and leverage points. There are also three observations that may qualify under the influential observations label. We may have to go into the data and analyze why some of the outliers and influential variables behave the way they do. If these observations are of concern, then the regression analysis needs to be redone after dropping these observations.

2. Using the world happiness dataset on sas named "happy" and explore if the following factors (Region, Freedom, Ladder, Social Support, Healthy Life Expectancy and GDP per capita) impact happiness. What can you conclude about the relative importance of these factors in influencing happiness? Are the results surprising? Why/Why not?

In search of determining whether given factors impact happiness, we've run a multi-regression model, using the categorical value Region, and continuous values freedom, ladder, social support, Healthy Life Expectancy, and GDP per capita. Looking at our Analysis of Variance table (Appendix B.1), we can conclude that the overall model is significant with the F value of 16.06 and the p-value (<.0001) for the F statistic being less than alpha(.05). The adjusted R-squared is 0.5763, indicating the model explains 57.63% of the variance in Y and overall is a good one.

We need to examine the influence of each of the variables by checking the Parameter Estimates table (Appendix B.2). We can observe that the intercept is significant. In this particular case, it doesn't make logical sense to interpret the intercept. By looking at each of the variables and checking their p-values associated with their T-values, we can conclude that Ladder has a significant impact on happiness with a T-value of 2.48 and a p-value of 0.0145. Freedom also has a substantial positive impact on happiness with a T-value of 4.29 and a p-value of less than 0.0001. We need to interpret regions compared to the comparison group (region 9). We can observe that regions 2, 3, 4, and 6 have a significant impact on happiness (region 2 having a negative and others having a positive impact). Other regions don't yield significant impact with p-values greater than nominal alpha.

We can also observe that variance inflation scores for Ladder and Halthy_Life_Expectancy are fairly high at 5.23 and 6.64. These scores suggest that these variables are correlated with each other, therefore, it would be a better idea to re-run the model after dropping one of the two highly related independent variables. Note that GDP_Per_Capita might also be considered high with 3.94 depending on the threshold limit.

In order to assess the normality and equal variance assumption of the regression model, we can check the distribution of residuals histogram, QQ plot, and residuals by predicted graph (Appendix B.3). The errors follow almost a normal distribution and there is not a significant megaphone effect, we can conclude that both assumptions of normality and equal variance are met by the model.

However, by checking the Cook's D graph and Outlier and Leverage Diagnostics chart (Appendix B.4), we can observe that there are multiple outliers and leverage points. There is also one observation that may qualify under the influential observations label. We may have to go into the data and analyze why some of the outliers and influential variables behave the way they do. If these observations are of concern, then the regression analysis needs to be redone after dropping these observations, and after dropping one of the highly correlated variables.

3. Using the HBAT_200 dataset posted on blackboard, explore whether the following variables (X3 Firm Size, X6 Product Quality, X8 Tech Support, X9 Complaint Resolution, X17 Price Flexibility, and X18 Delivery Speed) impact X23(Purchase Level).

In order to understand whether the listed variables impact Purchase Level, we've run a multi-regression model, using the categorical value X3 Firm Size, and continuous values X6 Product Quality, X8 Tech Support, X9 Complaint Resolution, X17 Price Flexibility, and X18 Delivery Speed. Looking at our Analysis of Variance table (Appendix C.1), we can conclude that the overall model is significant with the F value of 104.40 and the p-value (<.0001) for the F statistic being less than alpha(.05). The adjusted R-squared is 0.7571, indicating the model explains 75.71% of the variance in Y. Therefore, the model can effectively predict the variation with relatively high adj R-squared.

We need to examine the influence of each of the variables by checking the Parameter Estimates table (Appendix C.2). We can observe that the intercept is not significant. In this case, it doesn't make logical sense to interpret the intercept. The coefficient for X6(product quality) is 3.27481, indicating product quality has a positive impact on purchase level. This variable is significant with a t-value of 11.44 and p value (<0.0001). X18(Delivery Speed) also shows a positive impact on purchase level. With a t-value of -8.24 and a p-value of <0.0001, this variable is also significant. By comparing Firm_Size_0 to the comparison group (Firm_size_1). We can conclude that firm size has an impact on purchase level. Other variables do not have an impact on purchase level with low t-values and associated p-values greater than nominal alpha. We can also observe that variance inflation scores for X9(Complaint Resolution) and X18(Delivery Speed) can be considered high at 5.23 and 6.64.

In order to assess the normality and equal variance assumption of the regression model, we can check the distribution of residuals histogram and residuals by predicted graph (Appendix C.3). The errors follow a normal distribution and there is not a significant megaphone effect, we can conclude that both assumptions of normality and equal variance are met by the model.

By checking the Cook's D graph and Outlier and Leverage Diagnostics chart (Appendix C.4), we can observe there are 6 outliers and 3 leverage points. There is also one observation that may qualify under the influential observations label. We may have to go into the data and analyze why some of the outliers and influential variables behave the way they do. If these observations are of concern, then the regression analysis needs to be redone after dropping these observations and one of the highly correlated variables.

APPENDIX A

A.1

	Aı	nalysis of V	ari	ance				
Source	DF	Sum of Squares		Mean Square		/alue	Pr > F	
Model	4	6.77816	1	.69454	2	21.83	<.0001	
Error	750	58.21569	0	.07762				
Corrected Total	754	64.99385						
Root MSE	Root MSE		1	R-Squa		0.104	43	
Dependent	Dependent Mean		075 Adj R -		Sq 0.09		95	
Coeff Var	Coeff Var		7					

A.2

Parameter Estimates											
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate	Variance Inflation			
Intercept	Intercept	1	0.30481	0.03810	8.00	<.0001	0	0			
oyrsact	oyrsact	1	-0.00920	0.00133	-6.92	<.0001	-0.26408	1.22061			
distancetoHQ	distancetoHQ	1	-0.00003647	0.00001469	-2.48	0.0133	-0.08672	1.02202			
officesincounty	officesincounty	1	-0.00045199	0.00083727	-0.54	0.5895	-0.01869	1.00367			
ownmgrexp	ownmgrexp	1	-0.00331	0.00122	-2.72	0.0066	-0.10312	1.20208			

A.3

A.4

B.1

Analysis of Variance									
Source	DF	Mean Square	F Value	Pr > F					
Model	14	1.79820	0.12844	16.06	<.0001				
Error	141	1.12793	0.00800						
Corrected Total	155	2.92613							
	Root M	ISE	0.089	44					
	Depen	dent Mean	0.700	66					
			0.61	45					
1	R-Squa	are	0.61	45					
_	R-Squa Adj R-S		0.57						
				63					
	Adj R-		0.57	63 15					

B.2

	Depe	ndent	Model: MOE Variable: Hap		ness							
Parameter Estimates												
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate	Variance Inflation				
Intercept	Intercept	В	0.27659	0.09228	3.00	0.0032	0	0				
Ladder	Ladder	1	0.03692	0.01491	2.48	0.0145	0.29606	5.22921				
Social_Support	Social_Support	1	0.17534	0.09322	1.88	0.0621	0.15502	2.48477				
GDP_Per_Capita	GDP_Per_Capita	1	-9.47958E-7	0.00000101	-0.93	0.3519	-0.09693	3.93994				
Healthy_Life_Expecta	Healthy_Life_Expecta	1	-0.00270	0.00165	-1.64	0.1039	-0.22060	6.64366				
Freedom	Freedom	1	0.31529	0.07344	4.29	<.0001	0.32125	2.04839				
Region 0	Region 0	В	0.06596	0.05080	1.30	0.1963	0.16438	5.86253				
Region 1	Region 1	В	-0.04628	0.04392	-1.05	0.2937	-0.10530	3.65180				
Region 2	Region 2	В	-0.08672	0.03934	-2.20	0.0291	-0.16872	2.14346				
Region 3	Region 3	В	0.10151	0.04172	2.43	0.0162	0.17281	1.84547				
Region 4	Region 4	В	0.12163	0.04377	2.78	0.0062	0.17079	1.38175				
Region 5	Region 5	В	0.08899	0.05328	1.67	0.0971	0.12495	2.04699				
Region 6	Region 6	В	0.08837	0.04039	2.19	0.0303	0.22458	3.85447				
Region 7	Region 7	В	0.11948	0.06521	1.83	0.0690	0.13789	2.07193				
Region 8	Region 8	В	-0.00286	0.03854	-0.07	0.9410	-0.00697	3.23798				
Region 9	Region 9	0	0									

B.3

B.4

APPENDIX C

C.1

		Analysis of V	ariance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	6	12230	2038.30449	104.40	<.0001
Error	193	3768.17307	19.52421		
Corrected Total	199	15998			
	Rog	ot MSE	4.41862		
		pendent Mean	58.20000		
	R-S	quare	0.7645		
	Adj	R-Sq	0.7571		
	AIC	:	803.20564		
	AIC	С	803.95957		

C.2

	Dependent Variable:	X23_		Level X23 -	Purchase	Level		
Variable	Label	Par DF	Parameter Estim Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate	Variance Inflation
Intercept	Intercept	В	4.93659	3.16787	1.56	0.1208	0	(
X6Product_Quality	X6Product_Quality	1	3.27481	0.28619	11.44	<.0001	0.50513	1.59679
X8Technical_Suppo	X8Technical_Suppo	1	-0.20246	0.19276	-1.05	0.2949	-0.03738	1.03756
X9Complaint_Resol	X9Complaint_Resol	1	0.25044	0.54441	0.46	0.6460	0.03380	4.4225
X17Price_Flexibil	X17Price_Flexibil	1	-0.44252	0.40148	-1.10	0.2717	-0.05886	2.33682
X18Delivery_Speed	X18Delivery_Speed	1	7.85068	0.95242	8.24	<.0001	0.65614	5.19192
X3Firm_Size 0	X3Firm_Size 0	В	-1.74186	0.67128	-2.59	0.0102	-0.09736	1.15352
X3Firm_Size 1	X3Firm_Size 1	0	0					

C.3

C.4

