

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN IIC2223 - Teoría de Autómatas y Lenguajes Formales Segundo semestre de 2024

Profesor: Cristian Riveros AYUDANTE: AMARANTA SALAS

Ayudantia 11 Repaso I2

Problema 1

Para una gramática libre de contexto $\mathcal{G} = (V, \Sigma, P, S)$ decimos que \mathcal{G} tiene un loop si existe una variable $X \in V$ tal que $X \stackrel{*}{\Longrightarrow} \alpha X \beta$ para algún $\alpha, \beta \in (V \cup \Sigma)^*$. Demuestre que si $\mathcal G$ no tiene un loop, entonces $\mathcal L(\mathcal G)$ es un lenguaje regular.

Problema 2

Demuestre que el siguiente lenguaje NO es regular:

$$L = \{a^n \# a^m \mid n \neq m\}$$

Problema 3

Considere el siguiente problema:

Problema: #suffix-DFA

Un DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ y $w = a_1 \dots a_n \in \Sigma^*$. Input:

Output: $| \{ i \in \{1, \ldots, n\} | a_i \ldots a_n \in L(\mathcal{A}) \} |$.

Esto es, el problema #suffix-DFA consiste en, dado un autómata finito determinista \mathcal{A} y dado una palabra w, contar todos los sufijos de w que son aceptados por \mathcal{A} .

Escriba una algoritmo que resuelva #suffix-DFA en tiempo $O(|\mathcal{A}| \cdot |w|)$ donde $|\mathcal{A}|$ es el número de estados y transiciones de A. Demuestre la correctitud de su algoritmo.

Página 1 de 1 IIC2223 - Ayudantia 11