

Machine Learning

Andrew Ng
Edited Bart Vanrumste

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Training set of housing prices (Portland, OR)

Size in feet ² (x)		Price (\$) in 1000's (y)
(1)	2104	460
(2)	1416	232
13	1534	315
14	852	178
;	•••	•••

Notation:

```
m = Number of training examples
x's = "input" variable / features
y's = "output" variable / "target" variable
```


How do we represent h?

Linear regression with one variable. Univariate linear regression.

Cost function

Training Set

_	Size in feet ² (x)	Price (\$) in 1000's (y)
	2104	460
	1416	232
	1534	315
	852	178
	•••	•••

How to choose the parameters

Idea: Choose w and b so that f is close to y for our training examples (x, y)

Cost function intuition

Model:
$$f_{w,b}(x) = wx + b$$

Cost Function:
$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

Objective:
$$\min_{w,b} \text{minimize } J(w,b)$$

(function of x (when w and b fixed))

J(w,b)

(function of the parameters w, b)

vv

J(w,b) $f_{w,b}(x)$ (function of the parameters w, b) (function of x (when w and b fixed)) 0.5 700 0.4 600 0.3 500 0.2 Price \$ (in 1000s) 0.1 400 W 0 300 -0.1 -0.2 200 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 0 500 1000 1500 2000 Size (feet²) b

J(w,b) $f_{w,b}(x)$ (function of the parameters w, b) (function of x (when w and b fixed)) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 300 200 200 200 500 0.2 0.1 W 0 -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 0 500 1000 1500 2000 Size (feet²) b

J(w,b) $f_{w,b}(x)$ (function of the parameters w, b) (function of x (when w and b fixed)) 700 0.5 0.4 600 0.3 500 0.2 0.1 W 0 -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 0 500 1000 1500 2000 Size (feet²) b

J(w,b) $f_{w,b}(x)$ (function of the parameters w, b) (function of x (when w and b fixed)) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 000 \$ 000 000 \$ 000 500 0.2 0.1 W 0 -0.1 200 -0.2 -0.3 100 Training data -0.4 -Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 0 500 1000 1500 2000 Size (feet²) b

Gradient descent

Have some function

Want
$$\underset{w,b}{\text{minimize}} J(w,b)$$

Outline:

- Start with some w,b
- Keep changing w, b to reduce J(w, b)
 until we hopefully end up at a minimum

Gradient descent algorithm

Correct: Simultaneous update

Incorrect:

Gradient descent intuition

Gradient descent algorithm

Repeat until convergence

$$temp_{w} = w - \alpha \frac{\partial}{\partial w} J(w, b)$$

$$temp_{b} = b - \alpha \frac{\partial}{\partial b} J(w, b)$$

$$b = temp_{b}$$

$$w = temp_{w}$$

$$w = w - \alpha \frac{\partial}{\partial w} J(w)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

w at local optima

Current value of w

$$w = w - \alpha \frac{\partial}{\partial w} J(w)$$

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

time

As we approach a local
$$J(\theta_1)$$
 minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over

Gradient descent for linear regression

Repeat until convergence

$$temp_{w} = w - \alpha \frac{\partial}{\partial w} J(w, b)$$
$$temp_{b} = b - \alpha \frac{\partial}{\partial b} J(w, b)$$

$$temp_b = b - \alpha \frac{\partial}{\partial b} J(w, b)$$

$$b = temp_b$$

$$w = temp_w$$

Linear Regression Model

$$f_{w,b}(x) = wx + b$$

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial w}J(w,b)$$

$$\frac{\partial}{\partial b}J(w,b)$$

Gradient descent algorithm

Repeat until convergence

$$temp_w = w - \alpha \frac{\partial}{\partial w} J(w, b)$$

$$temp_b = b - \alpha \frac{\partial}{\partial b} J(w, b) =$$

$$b = temp_b$$

 $w = temp_w$

J(w,b) $f_{w,b}(x)$ (function of the parameters w, b) (function of x (when w and b fixed)) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 500 0.2 0.1 W 0 -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 500 1000 1500 2000 0 Size (feet²) b

J(w,b) $f_{w,b}(x)$ (function of the parameters w, b) (function of x (when w and b fixed)) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 200 + 500 0.2 0.1 W 0 -0.1 200 -0.2 -0.3 100 Training data -0.4 -Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 0 500 1000 1500 2000 Size (feet²) b

J(w,b) $f_{w,b}(x)$ (function of the parameters w, b) (function of x (when w and b fixed)) 700 0.5 0.4 600 0.3 500 0.2 0.1 W 0 -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 0 500 1000 1500 2000 Size (feet²) b

J(w,b) $f_{w,b}(x)$ (function of the parameters w, b) (function of x (when w and b fixed)) 700 0.5 0.4 600 0.3 500 0.2 0.1 W 0 -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 0 500 1000 1500 2000 Size (feet²) b

J(w,b) $f_{w,b}(x)$ (function of the parameters w, b) (function of x (when w and b fixed)) 700 0.5 0.4 600 0.3 500 0.2 0.1 W 0 -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 0 500 1000 1500 2000 Size (feet²) b

J(w,b) $f_{w,b}(x)$ (function of the parameters w, b) (function of x (when w and b fixed)) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 300 200 200 200 500 0.2 0.1 W 0 -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 0 500 1000 1500 2000 Size (feet²) b

J(w,b) $f_{w,b}(x)$ (function of the parameters w, b) (function of x (when w and b fixed)) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 000 \$ 200 000 \$ 200 500 0.2 0.1 W 0 -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 0 500 1000 1500 2000 Size (feet²) b

J(w,b) $f_{w,b}(x)$ (function of the parameters w, b) (function of x (when w and b fixed)) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 000 \$ 000 000 \$ 000 500 0.2 0.1 W 0 -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 0 500 1000 1500 2000 Size (feet²) b

J(w,b) $f_{w,b}(x)$ (function of the parameters w, b) (function of x (when w and b fixed)) 700 0.5 0.4 600 0.3 500 0.2 0.1 W 0 -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 0 500 1000 1500 2000 Size (feet²) b

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.