CS 186 Discussion 11

Relational Modeling FDs, BCNF

Logistics

- Just a few reminders...
 - Check glookup
 - HKN Survey this Thursday
 - Final Review Session next Thursday

Relational Modeling

Entity-Relationship model

- Weak Entities
- Relationships

Constraints

- Key Constraints
 - at *most* one
- Participation Constraints
 - at *least* one
- "Key constraint with total participation"
 - exactly one
- One-to-many? Many-to-one? One-to-one?

Constraints

- Key Constraints
 - at most one <- specifies many-to-one/one-to-many/one-to-one
- Participation Constraints
 - at *least* one
- "Key constraint with total participation"
 - exactly one

Weak Entities

Functional Dependencies

- X → Y
 - X determines Y
 - For every pair of tuples in R, if X is the same, Y must be the same.
- K → [all attributes of R]
 - K is a superkey! Why?
 - What about primary keys?

Rules of Inference

- Armstrong's Axioms
 - Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$
 - XZ → YZ does NOT imply X → Y
 - Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- Union: If $X \to Y$ and $X \to Z$, then $X \to YZ$
- Decomposition: If $X \to YZ$, then $X \to Y$ and $X \to Z$
 - XZ → Y does NOT imply X → Y and Z → Y

Closure

- Given a set of FDs F, finding the closure F+ is extremely difficult; all implicit FDs are in F+!
- Instead, lets compute <u>Attribute Closures</u>:
 - Given an attribute X,
 - "X+ = All attributes A such that X → A is in F+"
 - X+ = All attributes that X determines (given F)

```
Flights(Flight no, Date, fRom, To, Plane_id),
ForeignKey(Plane_id)

Planes(Plane id, tYpe)

Seat(Seat no, Plane id, Legroom), ForeignKey(Plane_id)
```

What are the functional dependencies?

```
Flights(Flight no, Date, fRom, To, Plane_id),
ForeignKey(Plane_id)

Planes(Plane id, tYpe)

Seat(Seat no, Plane id, Legroom), ForeignKey(Plane id)
```

What are the functional dependencies?

- FD → RTP
- $P \rightarrow Y$
- SP → L

```
F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow E, AC \rightarrow B\}
```

What are the attribute closures?

A:

AB:

B:

D:

 $F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow E, AC \rightarrow B\}$

What are the attribute closures?

A: ADE

AB: ABCDE

B: B

D: DE

Normal Form

- Avoids redundancies and anomalies
- Guidance on whether decomposition is needed

Boyce-Codd Normal Form

- R is in BCNF if for every FD X → A that holds over R, one of the following statements is true:
 - $A \in X$; that is, it is a trivial FD
 - X is a superkey
- No redundancy: contains only information that cannot be inferred with FDs

Normalization

- Decompose into multiple relations
 - Some problems:
 - <u>Lossiness</u>: Can we reconstruct the original relation?
 - <u>Dependency Preserving</u>: Have we lost any dependencies?
 - Some queries more expensive (need joins)

Decomposition into BCNF

- If X → Y violates BCNF...
 - Decompose R into R Y and XY
- Repeat until in BCNF (guaranteed to terminate)

- Lossless, but not necessarily dependency preserving
- Final result depends on order of decomposition

Decompose R = ABCDEFG into BCNF, given:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Decompose R = ABCDEFG into BCNF, given:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Decomposes into R - CD = ABEFG, and ABCD

Decompose R = ABCDEFG into BCNF, given:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Decomposes into R - CD = ABEFG, and ABCD

Decompose R = ABCDEFG into BCNF, given:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Decomposes into R - CD = ABEFG, and ABCD

Decompose R = ABCDEFG into BCNF, given:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Decomposes into R - CD = ABEFG, and ABCD

ABEFG decomposes into BEFG, and AG

Decompose R = ABCDEFG into BCNF, given:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Decomposes into R - CD = ABEFG, and ABCD

ABEFG decomposes into BEFG, and AG

Decompose R = ABCDEFG into BCNF, given:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Decomposes into R - CD = ABEFG, and ABCD

ABEFG decomposes into BEFG, and AG

BEFG decomposes into BEG, and FG

Decompose R = ABCDEFG into BCNF, given:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Decomposes into R - CD = ABEFG, and ABCD

ABEFG decomposes into BEFG, and AG

BEFG decomposes into BEG, and FG

Decompose R = ABCDEFG into BCNF, given:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Decomposes into R - CD = ABEFG, and ABCD

ABEFG decomposes into BEFG, and AG

BEFG decomposes into BEG, and FG

Final Relations: ABCD, AG, BEG, FG

Decompose R = ABCDEFG into BCNF, given:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Final Relations: ABCD, AG, BEG, FG

Are dependencies preserved?

• Check: If $(F_X \cup F_Y)^+ = F^+$, dependency preserving

Lossless Join Decomposition

• Lossless join decomposition with respect to F if, for every instance r of R: $\pi_X(r) \bowtie \pi_Y(r) = r$

- Necessary and sufficient test:
 - R decomposed to X and Y is lossless <u>iff</u>:
 - $X \cap Y \rightarrow X \quad OR \quad X \cap Y \rightarrow Y$
 - Common attributes contain key for either X or Y