PSD@CBM firmware description (draft, for internal use)

Finogeev Dmitry, INR RAS

December 24, 2020

Actual version of the document is avaliable at github: https://github.com/dfinogee/PSD-readout-manual/raw/main/PSD_readout_manual.pdf

Contents

1	ADC data processing	2
	1.1 Channel data collecting	2
	1.2 Data collecting from channels fifo	3
	1.3 GBT data sender	4
	ADC control 2.1 control registers	5 5

1 ADC data processing

1.1 Channel data collecting

Each channel collect data in FIFO (chdata_fifo) in hit packet format and emit ready signal after data stored in fifo. Ready signal is synchronous to signal threshold crossing and used for event ADC timestamp fig. 1. It is implemented in PSD channel calc.

Figure 1: Channel data collecting scheme

Mean hit rate per channel = SYSCKL / total channels + 2 sys cycle / packet length. SYSCKL = n * ADCclk = 240MHz; total channels = 32; packet length = 1. Max mean hit rate is 7 MHz. (0.78 MHz with 80MHz and 2 waveform packets; 2.2 for 10 channels)

Hit packet forming is implemented in ch_data_colletcor with three fifos. raw_waveform_fifo write raw ADC data by wf_strobe signal. header_ch_fifo store zero level (if future all data avaliable at the beginning of waveform calculation) by strobe start signal. calc_ready signal raised for one cycle when charge (fit in future) is ready. By calc_ready signal hit header with charge and data from header_ch_fifo is written to chdata_fifo, header_ch_fifo is readed, counter started to read raw_waveform_fifo. fig. 2 Represents forming hit packet.

todo: data with out raw data todo: ch ready signal after packet pushed todo: readout rate, missing packets

Figure 2: Channel data collecting signals

word	79 72	71 64	63 36	35 16	15 0
1	$_{ m channel}$	total data words in packet	0x0	signal charge	waveform zero level

Table 1: hit packet header.

word	79 64	63 48	47 32	31 16	15 0
1	0x0	waveform point n	waveform point $n+1$	waveform point $n+2$	waveform point n+3

Table 2: hit packet data word.

1.2 Data collecting from channels fifo

Each channel generate single strobe with fixed latency to threshold crossing indicating waveform measurement. 32 bit strobe word is trored to data_wf_calc_fifo with mc index and ADC timestamp. FSM read stored strobes and collect data from fired channels storing outputs to common_data_fifo, each event header word with timing and size info stored in common_header_fifo. Shematic represented on figure 3.

Figure 3: Data collecting scheme from all channels fifos

FSM is switched from wait to start state when data_wf_calc_fifo_isempty became '0' and fifo output is latched. Priority encoder show next fired channel from strobe and data collected from fired channel to common_data_fifo with hit_packet_iterator. input to priory encoder is shifted to bit after fired channel when iterator reach last number. Priority encoder could be equal or less than 32 bit. Simulation outputs presented on figure 4.

Figure 4: Data collecting signal from all channels fifos

todo: waveform bias todo: data without waveforms todo: reset wignal for data and sys clocks. todo: readout rate, missing packets todo: fifo size

1.3 GBT data sender

word type	79 72	71 64	63 48	47 40	39 32	31 16	15 0	
ms header	0xA0	0x0	ms index					
event header	0xB0	02	x0 n fired channels words in packet adc tin					
hit header		hit header (tab. 1)						
hit data	hit data (tab. 4)							
hit data	hit data (tab. 4)							
hit data				hit data (tab.	4)			
hit data	hit data (tab. 4)							
event header	0xB0	02	0x0 n fired channels words in packet adc					

Table 3: GBT data format.

2 ADC control

2.1 control registers

addr	31 30	29 28 27 24 23 20 19 16	15 14	1312 118 74 30		
0	0x0	threshold ch1	0x0	threshold ch0		
1	0x0	threshold ch3	0x0	threshold ch2		
2	0x0	threshold ch5	0x0	threshold ch4		
3	0x0	threshold ch7	0x0	threshold ch6		
4	0x0	threshold ch9	0x0	threshold ch8		
5	0x0	threshold ch11	0x0	threshold ch10		
6	0x0	threshold ch13	0x0	threshold ch12		
7	0x0	threshold ch15	0x0	threshold ch14		
8	0x0	threshold ch17	0x0	threshold ch16		
9	0x0	${ m threshold} { m ch} 19$	0x0	threshold ch18		
10	0x0	${ m threshold} { m ch} 21$	0x0	threshold ch20		
11	0x0	${ m threshold} { m ch} 23$	0x0	threshold ch22		
12	0x0	${ m threshold} { m ch}25$	0x0	threshold ch24		
13	0x0	threshold ch27	0x0	threshold ch26		
14	0x0	threshold ch29	0x0	threshold ch28		
15	0x0	threshold ch31	0x0	threshold ch30		

Table 4: ADC channels threshold control.

F	addr	31 28	27 24	23 20	19 16	15 12	11 8	7 4	3 0
	16	0x0				waveform length 03 [(reg+1)*4]	strobe offset 012	contro	ol bits
	17 negative channel mask ibit = ich								

Table 5: ADC readout control.

bit	$\operatorname{description}$			
0	send waveform			
1	ms gen standalone			
2	readout fsm reset			
3	errors reset			

Table 6: Control bits

addr	31 18	17 17	16 16	15 8	7 7	6 0
18	0x0	WR	ENA	DATA	0x0	ADDR

Table 7: HV control via I2 $^{\circ}$ C.