

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol (20 vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	MEC I
Popis sady vzdělávacích materiálů:	Mechanika I, 1. ročník
Sada číslo:	G-19
Pořadové číslo vzdělávacího materiálu:	19
Označení vzdělávacího materiálu: (pro záznam v třídní knize)	VY_32_INOVACE_G-19-18
Název vzdělávacího materiálu:	Pružnost a pevnost
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Iva Procházková

Př.: Jakou silou F musíme působit při zvedání tělesa o hmotnosti m= 100 kg. Vše je ocelové, mazané.

a) Přes kladku:

Průměr kladky $D_K = 200 \text{ mm}$

Průměr čepu $D_{\check{c}} = 50 \ mm$

$$f_{c} = 0.05$$

$$G = m \cdot g = 100 \cdot 10 = 1.000 \text{ N}$$

$$M_A: G \cdot \frac{D_K}{2} + M_{\check{c}} - F \cdot \frac{D_K}{2} = 0$$

$$M_{\check{c}} = F_V \cdot R \cdot f_{\check{c}}$$

$$M_{\check{c}} = (G + F) \cdot f_{\check{c}} \cdot \frac{D_{\check{c}}}{2}$$

Potom:

$$G \cdot \frac{D_K}{2} + G \cdot f_{\check{c}} \cdot \frac{D_{\check{c}}}{2} + F \cdot f_{\check{c}} \cdot \frac{D_{\check{c}}}{2} - F \cdot \frac{D_K}{2} = 0$$

$$G \cdot (\frac{D_K}{2} + f_{\check{c}} \cdot \frac{D_{\check{c}}}{2}) + F \cdot (f_{\check{c}} \cdot \frac{D_{\check{c}}}{2} - \frac{D_K}{2}) = 0$$

$$F = \frac{G \cdot \left(\frac{D_K}{2} + \frac{D_{\check{c}}}{2} \cdot f_{\check{c}}\right)}{\frac{D_K}{2} - \frac{D_{\check{c}}}{2} \cdot f_{\check{c}}} = \frac{1.000 \cdot (100 + 25 \cdot 0,05)}{100 - 25 \cdot 0,05} = 1.025,3 \text{ N}$$

b) Přes kulatinu (zablokovaná kladka):

$$f = 0.05$$

$$G = m \cdot g = 1.000 \text{ N}$$

F > G

$$F = G \cdot e^{\alpha f}$$

$$F = 1.000 \cdot e^{\pi \cdot 0.05}$$

F = 1.170 N

Při zvedání přes kladku potřebujeme menší sílu.

Hmotnost auta m = 800 kg, α = 10°, poloměr kol

R = 400 mm, tažné lano ve výšce 500 mm.

Síla F musí překonat:

- tíhovou složku G · sinα;
- odpor valení 4 kol;
- tření v čepech (zanedbáme).

 ξ = 3 mm (pneumatika asfalt).

$$G = m \cdot g = 800 \cdot 10 = 8.000 \text{ N}$$

1. kolo:

 M_A :

$$F' \cdot 500 - \frac{G}{4} \cdot \cos \alpha \cdot \xi = 0$$

$$F' = \frac{G \cdot \cos \alpha \cdot \xi}{4 \cdot 500} = \frac{8.000 \cdot \cos 10^{\circ} \cdot 3}{4 \cdot 500} = 11,8 \text{ N}$$

F =
$$4 \cdot F' + G \cdot \sin \alpha = 4 \cdot 11.8 + 8.000 \cdot \sin 10 =$$

= 1.436 N

Př.: Jakou sílu F potřebujeme k ubrzdění břemene?

R = 400 mm

a = 600 mm

b = 1.000 mm

f = 0.5

m = 100 kg

 $M = G \cdot R$

 $G = m \cdot g = 100 \cdot 10 = 1.000 \text{ N}$

$$\sum M_{\rm is}=0$$

 $M - F_t \cdot R = 0$

 $F_t = \frac{M}{R} = \frac{G \cdot R}{R} = G = 1.000 \text{ N}$

$$F_t = F_N \cdot f \implies F_n = \frac{F_t}{f}$$

$$\sum M_{iB} = 0$$

 $F(a+b) - F_N \cdot a = 0$

$$F = \frac{F_{N} \cdot a}{a+b} = \frac{F_{t}}{f} \cdot \frac{a}{a+b} = \frac{1000}{0.5} \cdot \frac{600}{1600} = 750 \text{ N}$$

Pružnost – pevnost

Základy pružnosti a pevnosti položil Euler.

Působením síly na součást se stane následující:

- V součásti vznikne napětí.
- Součást se deformuje.

Síly

Na těleso (součást) působí vnější síly a to:

- Působící z vnějšku na těleso síly, momenty, reakce, tlak větru ...
- Síly vázané na hmotnost tělesa gravitační síla (tíha), setrvačná síla, odstředivá síla ...

Účinkem vnějších sil vznikají **vnitřní síly**, kterými se součást brání deformaci. Jejich velikost se určí z podmínek rovnováhy **metodou řezu** – součást se myšleně rozřízne, v místě řezu se zavedou vnitřní síly (jejich velikost určíme z podmínek rovnováhy).

Z vnitřních sil pak můžeme vypočítat napětí:

Napětí

Napětí zavádíme jako intenzitu vnitřcích sil $\sigma = \frac{\Delta F_i}{\Delta S}$

Směr napětí je shodný se směrem síly F_i (je to vektor).

Jednotka: $\frac{N}{m^2} = Pa$, ve strojírenství se používá $\frac{N}{mm^2} = MPa$.

Máme dva druhy napětí

a) Normálná napětí – síla je kolmá k rovině řezu. Toto napětí se snaží částice materiálu odtrhnou nebo stlačit.

značíme σ [sigma]

b) Tečná napětí – síla leží v rovině řezu. Toto napětí se snaží částice materiálu po sobě posunout.

značíme au [tau]

Základní druhy namáhání

Máme 5 základních druhů namáhání.

Tah

Součást se protahuje.

$$\sigma_t = \frac{F}{S} = \frac{\text{zatěžující síla}}{\text{plocha průřezu}}$$

 $S = b \cdot h$

Napětí je po průřezu rozděleno rovnoměrně.

Tlak

Obdoba tahu.

Součást se zkracuje.

$$\sigma_{\text{d}} = \frac{F}{S} = \frac{\text{zatěžující síla}}{\text{plocha průřezu}}$$

 $S = b \cdot h$

Napětí je po průřezu rozděleno rovnoměrně.

Seznam použité literatury

- SALABA S. MATĚNA A.: MECHANIKA I STATIKA pro SPŠ strojnické. Praha: SNTL, 1977.
- MRŇÁK L. DRDLA A.: MECHANIKA Pružnost a pevnost pro střední průmyslové školy strojnické.
 Praha: SNTL, 1977.
- TUREK, I., SKALA, O., HALUŠKA J.: MECHANIKA Sbírka úloh. Praha: SNTL, 1982.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 5. doplněné vydání. Praha: Albra, 2011. ISBN 80-7361-033-7.