PROBLEMES PLANS

Exercice 1 : Equilibre d'une échelle

On considère une échelle double en contact en C et D avec le sol 0. Les 2 branches 1 et 2 sont articulées en O par une liaison pivot et reliées par un câble 3 en A et B. On note T la tension du câble et P le poids de l'opérateur 4 dont le centre de gravité G est supposé à la verticale de B.

Hypothèses:

- OA = AC = OB = BD = L
- le frottement est négligé
- le problème est supposé plan dans le repère galiléen $\left(C, \overrightarrow{x}, \overrightarrow{y}\right)$
- l'ensemble matériel E = (1,2,3,4) est à l'équilibre.
- **Q1-1** Déterminer, par application du principe fondamental de la statique à l'ensemble matériel E, les actions mécaniques $\overrightarrow{F_{(C,0\to1)}}$ et $\overrightarrow{F_{(D,0\to2)}}$.
- Q1-2 On isole le câble 3. Déterminer la direction et le sens des actions mécaniques $\overline{F_{(A,1\to3)}}$ et $\overline{F_{(B,2\to3)}}$
- Q1-3 On isole la branche 1. En déduire, par application du PFS, les actions mécaniques $\overline{F_{(A,3\to1)}}$ et $\overline{F_{(O,2\to1)}}$. En déduire T en fonction de P, L et α .

2

Q1-4 Tracer l'évolution de la tension du câble T en fonction de α .

Exercice 2: Balance

On souhaite déterminer la masse M d'un objet déposé sur le plateau **2** d'une balance. On cherche pour cela la distance *I* du contrepoids de masse *m* sur le balancier **3** qui permettra de rétablir l'équilibre de la balance.

Hypothèses:

- Le problème est supposé plan.
- Les liaisons pivots en A, B, C, D sont supposées parfaites (le frottement est négligé)
- On suppose la balance à l'équilibre dans le repère galiléen (A, \vec{x}, \vec{y}) .
- Q2-1 On isole la barre 1 en liaison pivot en C avec le bâti 0 et en D avec le plateau 2. Déterminer la direction et le sens des actions mécaniques $\overline{F_{(C,0 \to 1)}}$ et $\overline{F_{(D,2 \to 1)}}$.
- **Q2-2** On isole le plateau **2**. Déterminer les actions mécaniques $\overline{F_{(B,3 o 2)}}$ et $\overline{F_{(D,1 o 2)}}$.
- Q2-3 On isole le balancier 3. Déterminer l'action mécanique $\overline{F_{(A,0 \to 3)}}$ et la distance I de la masse m permettant de rétablir l'équilibre.

Exercice 3: Cric automobile.

Le cric est destiné à lever une masse maximale M de 1000kg. Le système vis-écrou est irréversible et l'étude sera menée pour une position d'équilibre obtenue lorsque la manivelle n'est pas manipulée. Le système à étudier est constitué de trois barres repérées 1 (barre AB), 2 (barre ACD) et 3 (barre CBE) de masses négligeables.

Le cric supporte en E la masse M et repose en D sur le sol 0.

Hypothèses:

- Longueurs : AC = CB = L, BE = 2L, CD = 3L.
- Toutes les liaisons sont assimilées à des linéaires annulaires parfaites (Le frottement est négligé).
- Le problème est supposé plan dans le repère galiléen (C, \vec{x}, \vec{y}) .

- **Q3-1** Isoler l'ensemble du cric et déterminer l'action mécanique $\overrightarrow{F_{(D,0 o 2)}}$.
- **Q3-2** On isole la barre 1. En déduire la direction et le sens des actions mécaniques $\overrightarrow{F_{(C,2\to3)}}$ et $\overrightarrow{F_{(B,3\to1)}}$.
- Q3-3 On isole la barre 3. Déterminer par application du PFS les actions mécaniques $\overline{F_{(B,1\to3)}}$ et $\overline{F_{(C,2\to3)}}$ en fonction de m, g et θ .
- **Q3-4** On donne M=1000kg, g=9,81m/s². Tracer l'évolution de l'intensité T de l'action mécanique dans la barre 1 en fonction de θ .
- Q3-5 L'étude de l'équilibre de la barre 2 est-elle nécessaire ?

Exercice 4: Grue d'atelier

On s'intéresse à un équipement d'atelier utilisé pour lever et transporter une masse M. On en trouve fréquemment chez les garagistes pour déposer les moteurs de véhicules automobiles.

Hypothèses:

- Le poids des éléments de la grue est négligé devant l'intensité des efforts extérieurs.
- Les liaisons en O, A, B et E sont des linéaires annulaires supposées parfaites.

On isole la grue, ensemble matériel constitué des solides 1, 2, 3 et M.

Q4-1 : Déterminer les actions mécaniques $\overrightarrow{F_C}$ en C et $\overrightarrow{F_D}$ en D exercées par le sol sur la grue en fonction de a, b, c et P.

On isole le vérin hydraulique 3 en considérant ses orifices d'alimentation obturés.

Q4-2 : Déterminer la direction et le sens des actions mécaniques $\overrightarrow{F_{E,1\to3}}$ et $\overrightarrow{F_{A,2\to3}}$

On isole l'ensemble matériel constitué des solides 2 et M.

Q4-3: Indiquer la direction et le sens des actions mécaniques $\overrightarrow{F_{A,3\to2}}$ et $\overrightarrow{F_{O,1\to2}}$.

Q4-4 : Ecrire le torseur des actions mécaniques en O. En déduire, par application du principe fondamental de la statique, les actions mécaniques $\overrightarrow{F_{A,3\to2}}$ et $\overrightarrow{F_{O,1\to2}}$.

Application numérique : P=5000N, a=0,3m, b=0,8m, c=0,2m et α = 30°.

Q4-5 : Calculer l'intensité F_A de l'action mécanique développée par le vérin hydraulique 4.