Квадратично-оптимальні оцінки в класі незміщених. Умови регулярності, нерівність Крамера-Рао.

Теоретичні відомості та приклади

Функція вірогідності кратної вибірки

Для простоти розглянемо (S, Σ) – такий вибірковий простір, де $S \subset \mathbb{R}^n$ та $\Sigma = \mathcal{B}(S)$ – борелева σ -алгебра підмножин S. Відповідно вибірка $X(\omega) : \Omega \to S$ є випадковим вектором на S.

Розглянемо кратну вибірку $X = (X_1, \dots, X_n) \in S$ з розподілом спостережень $F(t; \theta) = \mathbf{P}_{\theta}(X_1 < t), \ \theta \in \Theta \subset \mathbb{R}^d$. Отже сумісний розподіл X має вигляд:

$$F(x_1, \dots, x_n; \theta) = \mathbf{P}_{\theta} (X_1 < x_1, \dots, X_n < x_n) = \prod_{j=1}^n \mathbf{P}_{\theta} (X_1 < x_j) = \prod_{j=1}^n F(x_j), x = (x_1, \dots, x_n)^T \in S$$

Припустимо, що існує така σ -скінченна міра μ на просторі значень вибірки X, відносно якої міра, породжена функцією розподілу $F(x_1, \ldots, x_n; \theta)$, має щільність $f(x_1, \ldots, x_n; \theta)$ (похідна Радона-Никодима якщо формально).

Наприклад,

1. Якщо розподіл X є дискретним, то μ – деяка точкова міра. Тоді

$$f(x_1,\ldots,x_n;\theta) = \mathbf{P}_{\theta} (X_1 = x_1,\ldots,X_n = x_n)$$

2. Якщо розподіл X є абсолютно неперервним, то μ – міра Лебега. Тоді

$$f(x_1, \dots, x_n; \theta) = \frac{\partial^n}{\partial x_1 \dots \partial x_n} F(x_1, \dots, x_n; \theta)$$

Функцією вірогідності вибірки X називають сумісну щільність її розподілу, тобто

$$L(x_1,\ldots,x_n;\theta)=f(x_1,\ldots,x_n;\theta).$$

Для спрощення $L(x;\theta) = L(x_1,\ldots,x_n;\theta), x = (x_1,\ldots,x_n)^T \in S.$

Емпіричною функцією вірогідності вибірки X називають значення функції вірогідності для заданої вибірки, тобто

$$L(X;\theta) = L(x;\theta) \Big|_{x=X} = L(X_1, \dots, X_n; \theta)$$

Якщо X – кратна вибірка, то спостереження X_j незалежні в сукупності та мають однаковий розподіл $F(x;\theta) = \mathbf{P}_{\theta}(X_1 < x)$. Відповідно функція вірогідності $L(X,\theta)$ є добутком щільності розподілу спостереження $f(x;\theta)$:

$$L(x_1, \dots, x_n, \theta) = \prod_{j=1}^n f(x_j; \theta)$$

Наведемо деякі приклади функції вірогідності в залежності від розподілу спостережень.

Приклад 1. Нехай $X_1 \sim N(\mu, \sigma^2)$ та припустимо що $\theta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times (0, \infty)$. Щільність розподілу спостереження має вигляд

$$f(x;\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), x \in \mathbb{R}$$

Отже, $L(x;\theta)$ має вигляд

$$L(x_1, \dots, x_n, \theta) = \prod_{j=1}^n f(x_j; \theta) = \prod_{j=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_j - \mu)^2}{2\sigma^2}\right) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{j=1}^n (x_j - \mu)^2\right)$$

Ситуація та сама, якщо припускати що невідомим є один із параметрів розподілу.

Приклад 2. Нехай $X_1 \sim \text{Pois}(\theta), \ \theta > 0$. Щільність (відносно точкової міри на \mathbb{Z}_+) розподілу X_1 має вигляд:

$$f(k;\theta) = \frac{\theta^k}{k!} \exp(-\theta), \ k \in \mathbb{Z}_+.$$

Отже, $L(x;\theta)$ має вигляд

$$L(x_1, \dots, x_n, \theta) = \prod_{j=1}^n f(x_j; \theta) = \prod_{j=1}^n \frac{\theta^{x_j}}{x_j!} \exp(-\theta) = \exp(-n\theta) \cdot \theta^{\sum_{j=1}^n x_j} \cdot \prod_{j=1}^n (x_j!)^{-1}$$

Приклад 3. Нехай $X_1 \sim \text{Exp}(\theta), \ \theta > 0$. Щільність розподілу X_1 має вигляд:

$$f(x;\theta) = \mathbf{1}_{(0,\infty)}(x)\theta \exp(-\theta x), x \in \mathbb{R}.$$

Отже, $L(x;\theta)$ має вигляд

$$L(x_1, \dots, x_n, \theta) = \prod_{j=1}^n f(x_j; \theta) = \prod_{j=1}^n \mathbf{1}_{(0,\infty)}(x_j)\theta \exp(-\theta x_j) = \theta^n \exp\left(-\theta \sum_{j=1}^n x_j\right) \mathbf{1}_{(0,\infty)} \left(\min_{1 \le k \le n} x_k\right)$$

Приклад 4. Нехай $X_1 \sim U[a,b], \ \theta = (a,b), \ a < b.$ Щільність розподілу X_1 має вигляд:

$$f(x;\theta) = \mathbf{1}_{(a,b)}(x) \frac{1}{b-a}, x \in \mathbb{R}.$$

Отже, $L(x;\theta)$ має вигляд

$$L(x_1, \dots, x_n, \theta) = \prod_{i=1}^n f(x_i; \theta) = \prod_{i=1}^n \mathbf{1}_{(a,b)}(x_i) \frac{1}{b-a} = \frac{1}{(b-a)^n} \cdot \mathbf{1}_{(a,b)} \left(\min_{1 \le k \le n} x_k \right) \cdot \mathbf{1}_{(a,b)} \left(\max_{1 \le k \le n} x_k \right)$$

Функція вірогідності стане незабаром у нагоді.

Вибір найкращої оцінки в класі незміщених

У рамках попередньої моделі даних припустимо, що потрібно побудувати незміщену оцінку T = T(X) для функції від невідомого параметра $\tau(\theta)$. Нагадаємо, що оцінка є незміщеною для $\tau(\theta)$, якщо для всіх $\theta \in \Theta$: $\mathbf{E}_{\theta}[T] = \tau(\theta)$.

Приклад (побудова незміщеної оцінки) Нехай $X=(X_1,X_2)$ – кратна вибірка з розподілом спостережень $X_1 \sim N(a,\sigma^2)$, де $\theta=(a,\sigma^2) \in \mathbb{R} \times (0,\theta)$ вважається невідомим. Побудуємо незміщену оцінку для $\tau(\theta)=\sigma^2$, користуючись операціями над гауссовими випадковими величинами. Отже, $X_1-X_2\sim N(0,2\sigma^2) \Rightarrow (X_1-X_2)/\sqrt{2} \sim N(0,\sigma^2)$. Далі, розглянемо $|X_1-X_2|/\sqrt{2}$. Тоді

$$\mathbf{E}_{\theta} \left[\frac{|X_1 - X_2|}{\sqrt{2}} \right] = \frac{2\sigma}{\sqrt{2\pi}} \int_{0}^{+\infty} x e^{-x^2/2} dx = |u = x^2/2| = \sqrt{2} \frac{\sigma}{\sqrt{\pi}} \int_{0}^{+\infty} e^{-u} dx = \sqrt{2} \frac{\sigma}{\sqrt{\pi}}$$

Розглянемо $\hat{\sigma}_n = |X_1 - X_2| \cdot (\sqrt{\pi}/2)$. Внаслідок попереднього, $\hat{\sigma}_n$ є незміщеною оцінкою σ . \square

Позначимо через Γ_{τ} множину всіх незміщених оцінок для $\tau(\theta)$. Оцінки цього класу хороші тим, що в середньому значення будуть коливатися навколо значення невідомого параметра. Інше питання – як сильно коливаються значення тих чи інших незміщених оцінок відносно $\tau(\theta)$?

Було б добре мати таку оцінку, яка мала б найменший розкид відсносно параметра, що оцінюється. Для порівняння характеру розкиду будемо використовувати середньоквадратичну похибку

$$MSE(T; \tau(\theta)) = \mathbf{E}_{\theta} [(T - \tau(\theta))^2].$$

Очевидно, що для $T \in \Gamma_{\tau}$, $\mathrm{MSE}(T; \tau(\theta)) = \mathbf{D}_{\theta}[T]$.

Якщо існує така оцінка для $\tau(\theta)$, що має найменше середньоквадратичне відхилення, то таку оцінку називають оптимальною. Сформулюємо це формально:

Означення. Оцінка \tilde{T} називається оптимальною оцінкою параметра $\tau(\theta)$ в деякому класі оцінок Γ , якщо для всіх інших оцінок $T \in \Gamma$ для $\tau(\theta)$ виконується

$$MSE(\tilde{T}; \tau(\theta)) \leq MSE(T; \tau(\theta)), \forall \theta \in \Theta,$$

причому $MSE(\tilde{T}; \tau(\theta_*)) < MSE(T; \tau(\theta_*))$ для деякого $\theta_* \in \Theta$.

Чи можна підібрати таку оцінку в класі незміщених, яка має найменшу дисперсію? Взагалі кажучи, яка 'нижня' межа для дисперсій незміщених оцінок? Відповідь на це питання дає теорема Крамера-Рао, яка дає дві речі: нижню межу на дисперсію незміщених оцінок та критерій існування такої оцінки, дисперсія якої дорівнює цій межі.

Теорема Крамера-Рао має місце за виконання умов регулярності, накладених на функцію вірогідності вибірки. Тому варто розпочати саме з постановки цих умов.

Надалі під $\frac{\partial}{\partial \theta}$ розуміється похідна (у разі скалярного θ) або градієнт (у разі векторного θ) деякої функції по θ .

Введемо функцію впливу $U(X,\theta) = \frac{\partial}{\partial \theta} \ln L(X,\theta)$. Назву можна інтерпретувати так: якщо параметр θ не впливає на розподіл спостережень, тоді $U(X,\theta) = 0$.

Для кратної вибірки $U(X,\theta) = \sum_{j=1}^{n} u(X_j,\theta)$, де $u(X_j,\theta) = \frac{\partial}{\partial \theta} \ln f(X_j,\theta)$ – функція впливу за вибіркою з одного спостерження (а розподіл спостержень однаковий).

Приклад (обчислення функції впливу) Продовжимо на прикладі $X_j \sim \text{Exp}(\theta)$, інші випадки перевірте самостійно. Оскільки

$$L(x_1, \dots, x_n, \theta) = \prod_{j=1}^n f(x_j; \theta) = \prod_{j=1}^n \mathbf{1}_{(0,\infty)}(x_j)\theta \exp(-\theta x_j) = \theta^n \exp\left(-\theta \sum_{j=1}^n x_j\right) \mathbf{1}_{(0,\infty)} \left(\min_{1 \le k \le n} x_k\right)$$

Відомо, що $S = (0, \infty)^n$. Тобто $X_j > 0$, а тому $\mathbf{1}_{(0,\infty)} \left(\min_{1 \le k \le n} X_k \right) = 1$ майже напевно. Тому можемо нехтувати індикатором у функції вірогідності надалі.

Запишемо логарифм функції вірогідності на S:

$$\ln L(x,\theta) = n \ln \theta - \theta \sum_{j=1}^{n} x_j$$

Тоді похідна по θ має вигляд:

$$\frac{\partial}{\partial \theta} \ln L(x, \theta) = \frac{n}{\theta} - \sum_{j=1}^{n} x_j$$

В результаті $U(X,\theta) = \frac{n}{\theta} - \sum_{j=1}^{n} X_j$, отримавши підстановкою в аргумент спостережуваних значень у вибірці. \square

Перейдемо до визначення інформації за Фішером:

1. Якщо θ – скалярний параметр, то

$$I(\theta) = \mathbf{D}_{\theta} [U(X, \theta)]$$

2. Якщо θ – векторний параметр, то

$$I(\theta) = \operatorname{Cov}_{\theta} \left[U(X, \theta) \right],$$

тобто коваріаційна матриця векторної функції впливу $U(X\theta)$.

Приклад (обчислення інформації за Фішером) Продовжуємо розглядати приклад з $X_i \sim \text{Exp}(\theta)$. Маємо

$$I(\theta) = \mathbf{D}_{\theta} \left[U(X, \theta) \right] = \mathbf{D}_{\theta} \left[n/\theta - \sum_{j=1}^{n} X_{j} \right] = \mathbf{D}_{\theta} \left[\sum_{j=1}^{n} X_{j} \right] = \sum_{j=1}^{n} \mathbf{D}_{\theta} \left[X_{j} \right] = \sum_{j=1}^{n} \theta^{-2} = n\theta^{-2},$$

де скористалися незалежністю та однаковою розподіленістю спостержень, далі обчислили дисперсію експоненційного розподілу. \square

Умови регулярності:

- 1. Множина тих значень, коли $L(x, \theta) > 0$ не залежить від θ .
- 2. $L(x, \theta)$ є двічі неперервно диференційовною за θ .
- 3. Функція впливу $U(X,\theta)$ є квадратично інтегровною, тобто $\mathbf{E}_{\theta}\left[(U(X,\theta))^2\right] < \infty$.
- 4. Порядок інтегрування та взяття похідної по θ допустимий в інтегралах виду

$$\int_{S} g(x,\theta)L(x,\theta)\mu(dx),$$

де $g(x,\theta)=1$ або $g(x,\theta)=\frac{\partial}{\partial \theta}\ln L(x,\theta)$ (вибір таких $g(x,\theta)$ спричинено використання для доведення теореми Крамера-Рао та деяких властивостей функції впливу).

Умови потрібно перевіряти. Це як переходити дорогу без світлофора: не перевірив що коїться, то може збити автобус.

Для дослідження четвертої умови інколи стає у нагоді теорема про зміну порядку інтегрування та диференціювання за параметром в інтегралі Лебега, яку нагадємо прямо тут.

Нехай $(X, \mathcal{F}, \lambda)$ — вимірний простір з мірою, T — відкрита підмножина $\mathbb R$ та розглянемо функцію $f(x,t): X \times T \to \overline{\mathbb R}$. Покладемо $I(t) = \int_X f(x,t) \lambda(dx)$.

Теорема. Нехай справджуються умови:

- 1. $f(\cdot,t)\in L(X,\lambda)$ для кожного $t\in T$ (тобто f(x,t) інтегровна по x),
- 2. $\frac{\partial f}{\partial t}$ визначена на $X \times T$ (існування похідної),
- 3. $\left|\frac{\partial f(x,t)}{\partial t}\right| \leq g(x)$ для деякого $g \in L(X,\lambda)$ (похідна мажорується інтегровною функцією).

Тоді

$$\frac{dI(t)}{dt} = \int_{X} \frac{\partial f(x,t)}{\partial t} \lambda(dx).$$

Приклад (перевірка умов регулярності) Продовжуємо розглядати приклад з експоненційним розподілом, де припускаємо що $\theta \in [a, b], 0 < a < b$. Перевіряємо умови поетапно:

- 1. $L(x,\theta) = \theta^n \exp\left(-\theta \sum_{j=1}^n x_j\right)$ для $x = (x_1, \dots, x_n) \in S$. За умовою $\theta \ge a > 0$ та $\exp(\cdot) > 0$ з властивостей експоненційної функції. Отже, $L(x,\theta) > 0$, незалежно від вибору θ .
- 2. $\mathbf{E}_{\theta}\left[U(X,\theta)^{2}\right]<\infty$ наслідок з обчислень $I(\theta)=\mathbf{D}_{\theta}\left[U(X,\theta)\right]<\infty$.
- 3. Для спрощення $n \ge 2$. Тоді

$$\frac{\partial}{\partial \theta} L(x,\theta) = \left(n\theta^{-1} - \sum_{j=1}^{n} x_j \right) \cdot L(x,\theta) \in C[a,b] \text{ по } \theta$$

$$\frac{\partial^2}{\partial \theta^2} L(x,\theta) = \left(-n\theta^{-2} \right) \cdot L(x,\theta) + \left(n\theta^{-1} - \sum_{j=1}^{n} x_j \right) \cdot \frac{\partial}{\partial \theta} L(x,\theta) \in C[a,b] \text{ по } \theta$$

Умова на похідні за параметром θ виконується.

4. Для дослідження останньої умови використаємо теорему про заміну порядку інтегрування та диференціювання.

Розглянемо $g(x,\theta)=1$, тобто підінтегральною функцією виступає $L(x,\theta)$. Тоді

- (a) $L(x,\theta) > 0$ та $\int_S L(x,\theta) dx = 1$ як інтеграл від сумісної щільності розподілу вектора X. Тому перша умова виконується,
- (б) $\frac{\partial}{\partial \theta}L(x,\theta)$ знаходили під час дослідження другої умови регулярності. Похідна по θ існує на $S \times [a,b].$
- (в) Знайдемо мажоранту g(x): для всіх $\theta \in [a,b]$

$$\left| \frac{\partial}{\partial \theta} L(x, \theta) \right| = \left| n\theta^{n-1} - \theta^n \sum_{j=1}^n x_j \right| \cdot \exp\left(-\theta \sum_{j=1}^n x_j \right) \le$$

$$\le \left(n\theta^{n-1} + \theta^n \sum_{j=1}^n x_j \right) \cdot \exp\left(-\theta \sum_{j=1}^n x_j \right) \le$$

$$\le \left(nb^{n-1} + b^n \sum_{j=1}^n x_j \right) \cdot \exp\left(-a \sum_{j=1}^n x_j \right) =$$

$$= \left(nb^{n-1} + b^n \sum_{j=1}^n x_j \right) a^{-n} \cdot L(x, a) =: g(x)$$

Отримана мажоранта, g(x), є інтегровною за побудовою $L(x,\theta)$:

$$\int_{S} g(x)dx = nb^{n-1}a^{-n} \underbrace{\int_{S} L(x,a)dx + (b/a)^{n} \int_{S} \sum_{j=1}^{n} x_{j}L(x,\theta)dx}_{\leq \infty},$$

де
$$\int\limits_{S}\sum_{j=1}^{n}x_{j}L(x,a)dx=\mathbf{E}_{a}\left[\sum_{j=1}^{n}X_{j}\right]=\sum_{j=1}^{n}\mathbf{E}_{a}\left[X_{j}\right]=n/a<\infty.$$

Отже, умови теореми про порядок інтегрування та диференціювання мають місце для $L(x,\theta)$. Аналогічно дослідимо $\left(\frac{\partial}{\partial \theta}L(x,\theta)\right)L(x,\theta)$, тобто випадок $g(x,\theta)=\frac{\partial}{\partial \theta}L(x,\theta)$.

(a)
$$\int_S U(x,\theta)L(x,\theta)dx = \mathbf{E}_{\theta} \left[U(x,\theta)\right] = \mathbf{E}_{\theta} \left[n/\theta - \sum_{j=1}^n X_j\right] = n/\theta - n/\theta = 0,$$

(6)
$$\left(\left(\frac{\partial}{\partial \theta}L(x,\theta)\right)L(x,\theta)\right)'_{\theta} = \left(\frac{\partial^2}{\partial \theta^2}L(x,\theta)\right)L(x,\theta) + \left(\frac{\partial}{\partial \theta}L(x,\theta)\right)^2 - \text{ichye ha } S \times [a,b].$$

(в) Можна проробити схожі кроки, що і раніше, для підбору мажоранти g(x) (перевірте самостійно!).

Таким чином довели четверту умову регулярності.

Отже, ми довели виконання умов регулярності для заданої статистичної моделі. 🗆

Припустимо, що умови регулярності на функцію вірогідності виконуються. Тоді можна казати про теорему Крамера-Рао. Будемо розглядати незміщені оцінки для функції від невідомого параметра $\tau(\theta)$.

Теорема (Крамера-Рао, випадок скалярного параметра) Нехай $\theta \in \Theta \subset \mathbb{R}$ – невідомий параметр.

1. **Нерівність Крамера-Рао.** Якщо T = T(X) – довільна незміщена оцінка $\tau(\theta)$, існує $\tau_{\theta} = \frac{d}{dt}\tau(\theta)$ і виконані умови регулярності, то

$$\mathbf{D}_{\theta}[T] = \mathbf{E}_{\theta}\left[(T - \tau(\theta))^{2} \right] \ge \frac{(\tau_{\theta}(\theta))^{2}}{I(\theta)}$$

для всіх $\theta \in \Theta$.

2. **Критерій Крамера-Рао.** Рівність у нерівності Крамера-Рао виконується тоді і тільки тоді, коли оцінка T є лінійною функцією від функції впливу даних:

$$T(X) = \tau(\theta) + c(\theta)U(X, \theta)$$
 м.н. для всіх $\theta \in \Theta$, (1)

де $c(\theta) \in \mathbb{R}$ – деяка стала, що не залежить від даних. Ця стала дорівнює $c(\theta) = \tau_{\theta}(\theta)/I(\theta)$.

Варто зауважити, що оцінка **не** має містити невідомий параметр, бо інакше це не оцінка. Тому треба дивитися на те, чи дійсна права частина рівності (1) не містить θ .

Оцінка, що задовольняє критерій Крамера-Рао, називається ефективною оцінкою $\tau(\theta)$. Інакше кажучи, це незміщена оцінка $\tau(\theta)$, дисперсія якої дорівнює нижній межі в нерівності Крамера-Рао.

Ефективні оцінки є оптимальними в класі незміщених. Але це не працює в зворотій бік: ефективних оцінок може не бути (наприклад не виконуються умови регулярності, або критерій не дає знайти оцінку).

Наведемо приклад ефективної оцінки в рамках прикладу з експоненційним розподілом спостережень.

Приклад (застосування критерія Крамера-Рао) Попередньо доводили, що умови регулярності виконуються. Тому має сенс оперувати теоремою Крамера-Рао.

Перевіримо, чи існує ефективна оцінка для $\tau(\theta) = 1/\theta$. Скористаємося рівністю (1):

$$T(X) = \tau(\theta) + c(\theta)U(X, \theta) = \frac{1}{\theta} + c(\theta) \left(\frac{n}{\theta} - \sum_{j=1}^{n} X_j\right)$$

У цьому випадку $\tau_{\theta}(\theta) = -1/\theta^2$ та $I(\theta) = n/\theta^2$, тому $c(\theta) = -1/n$. Тоді

$$T(X) = \tau(\theta) + c(\theta)U(X, \theta) = \frac{1}{\theta} - \frac{1}{n} \left(\frac{n}{\theta} - \sum_{j=1}^{n} X_j \right) = \frac{1}{n} \sum_{j=1}^{n} X_j,$$

тобто вибіркове середнє є ефективною оцінкю математичного сподівання $1/\theta$.

Очевидно, що T(X) – незміщена для $\tau(\theta)$. Перевіримо, чи дійсно $\mathbf{D}_{\theta}[T(X)] = (\tau_{\theta}(\theta))^2/I(\theta)$:

- З одного боку, $(\tau_{\theta}(\theta))^2 = 1/\theta^4$ та $I(\theta) = n/\theta^2$, тому $(\tau_{\theta}(\theta))^2/I(\theta) = 1/(n\theta^2)$.
- З іншого боку, $\mathbf{D}_{\theta}[T(X)] = \mathbf{D}_{\theta}[X_1]/n = 1/(n\theta^2).$

Отже теорема Крамера-Рао нам не збрехала.

Тепер перевіримо, чи існує ефективна оцінка для $\tau(\theta) = \theta$. Скористаємося рівністю (1):

$$T(X) = \tau(\theta) + c(\theta)U(X, \theta) = \theta + c(\theta)\left(\frac{n}{\theta} - \sum_{j=1}^{n} X_j\right) = \left(\theta + c(\theta) \cdot \frac{n}{\theta}\right) - c(\theta)\sum_{j=1}^{n} X_j$$

Тут $\tau_{\theta}(\theta) = 1$, тому $c(\theta) = \theta^2/n$. Отже

$$T(X) = \left(\theta + \frac{\theta^2}{n} \cdot \frac{n}{\theta}\right) - \frac{\theta^2}{n} \sum_{j=1}^n X_j = 2\theta - \frac{\theta^2}{n} \sum_{j=1}^n X_j$$

Залежність від θ наявна, отримана величина не ϵ оцінкою. Отже, ефективної оцінки для θ не існує.