Haberman's Survival Exploratory Data Analysis

Data: Haberman's survival dataset is a collection of cases from a study which was conducted at University of Chicago's billing hospital on the survival of the patients who had undergone breast surgery. This case study was conducted between 1958 and 1970.

Features:

- 1. Age of patient Numerical
- 2. Year of Operation Numerical
- 3. No. of positive auxiliary nodes detected numerical
- 4. Survival Status 1(patient survived 5 years or longer) and 2(patient died within 5 years)

Objective: Perform exploratory data analysis on Haberman's survival dataset to identify the features which are useful in determining survival status of a patient.

```
In [1]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

import warnings
warnings.filterwarnings("ignore")
sns.set(color_codes=True)
```

In [2]:

```
#reading dataframe
df = pd.read_csv('./Data/haberman.csv')
```

In [3]:

```
#finding number of rows and columns
print(df.shape)
(305, 4)
```

Number of columns = 4 Number of rows = 305 The dataset is having very less number of rows.

```
In [4]:
```

```
print(df.columns)

Index(['30', '64', '1', '1.1'], dtype='object')
```

This dataset is not having column names, so we need to add column names.

```
In [5]:
```

```
#setting dataframe column names
df.columns = ['age', 'operation_year', 'auxil_node', 'survival_status']
```

```
In [6]:
```

```
print(df.head())
```

age operation_year auxil_node survival_status

```
0
   30
                     62
                                  3
                                                    1
   30
                     65
                                  0
2
   31
                     59
                                  2
                                                    1
3
    31
                     65
                                  4
                                                    1
    33
                     58
                                 10
                                                     1
In [7]:
print(df.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 305 entries, 0 to 304
Data columns (total 4 columns):
                   305 non-null int64
operation_year
                   305 non-null int64
auxil node
                    305 non-null int64
                   305 non-null int64
survival_status
dtypes: int64(4)
memory usage: 9.6 KB
None
Observations:
 1. There are no missing values in this dataset.
 2. survival_status column is integer, it has to be converted to categorical datatype.
In [8]:
print(df['survival status'].unique())
[1 2]
In [9]:
print(df['survival_status'].value_counts())
1
     224
Name: survival status, dtype: int64
Observation: This dataset is imbalanced.
In [10]:
#mapping numeric values to categorical
df['survival_status'] = df['survival_status'].map({1:"YES",2:"NO"})
df['survival status'] = df['survival status'].astype('category')
In [11]:
print(df.describe())
              age operation year auxil node
count 305.000000
                        305.000000 305.000000
        52.531148
                        62.849180
                                     4.036066
mean
std
        10.744024
                         3.254078
                                      7.199370
```

Observation: Positive auxiliary lymph node value varies between 0 to 52, but 75% people are having less than or equal to 4 nodes.

Univariate Analysis:

30.000000

44.000000

52.000000

61,000000

83.000000

min 25%

50%

75%

max

58.000000

60.000000

63.000000

66.000000

69.000000

0.000000

0.000000

1.000000

4.000000

52.000000

Histograms and PDF:

In [12]:

```
#plotting PDF and histograms for age data
fg = sns.FacetGrid(df, hue='survival_status', size=5)
fg.map(sns.distplot, 'age').add_legend()
plt.title('Histogram and PDF for age - Haberman Dataset')
plt.show()
plt.close()
```


Observation: PDF plot for age data is highly mixed up.

In [13]:

```
#plotting PDF and histograms for operation_year data
fg = sns.FacetGrid(df, hue='survival_status', size=5)
fg.map(sns.distplot, 'operation_year').add_legend()
plt.title('Histogram and PDF for opearation year - Haberman Dataset')
plt.show()
plt.close()
```


Observation: PDF for operation year data shows that more patients died within 5 years who were opearted between years 1963 to 1966.

ın [14]:

```
#plotting PDF and histograms for auxil_node data
fg = sns.FacetGrid(df, hue='survival_status', size=5)
fg.map(sns.distplot, 'auxil_node').add_legend()
plt.title('Histogram and PDF for number of positive auxilary node - Haberman Dataset')
plt.show()
plt.close()
```

Histogram and PDF for number of positive auxilary node - Haberman Dataset

Observation: Plot for positive auxilary lymph nodes is highly right skewed with peak value near 0 which shows that patients who are having less lymph nodes have high chances of survival.

CDF:

In [15]:

In [16]:

Observation: In the dataset 30% of the patients were oprated before year 1960.

In [17]:

Observation: 75% of the patients were having less than 5 positive auxiliary lymph nodes.

Boxplots:

In [18]:

```
#plotting boxplot for each column in dataset
fig, axes = plt.subplots(1, 3)
for index, feature in enumerate(list(df.columns)[:-1]):
    fg = sns.boxplot( x='survival_status', y = feature, data = df, ax = axes[index])
plt.show()
```


Observations:

- 1. Positive auxiliary node column has most of the values which are less than 5.
- 2. Patients which are having age less than 45 have higher chances of survival.
- 3. Patients treated before 1960 have very less chances of survival.

Violin Plot:

In [19]:

```
fig, axes = plt.subplots(1, 3)
for index, feature in enumerate(list(df.columns)[:-1]):
    fg = sns.violinplot( x='survival_status', y = feature, data = df, ax = axes[index])
plt.show()
```


Observation: Positive auxiliary node column has most of the values which are less than 5.

Bi-variate Analysis:

Pairplotting:

In [20]:

```
#pairplotting dataframe to identify features which are useful in seperating survival status
fg = sns.pairplot(df, hue = 'survival_status', size = 3)
plt.subplots_adjust(top=0.9)
fg.fig.suptitle('pairplotting Haberman dataset features')
plt.show()
plt.close()
```

pairplotting Haberman dataset features

Observation: Operation year and number of positive auxilary nodes can help us to separate survival status.

Contour Plot:

In [21]:

```
#contour plot
fg = sns.jointplot(x="operation_year", y="auxil_node", data=df, kind="kde")
plt.title('contour plot')
```


Observation: Contour plot is highly densed for number of positive auxiliary node values 0 to 4 and opearation year 58 to 68.

Conclusions:

- 1. The dataset is highly imbalanced.
- 2. Univariate analysis graphs shows that positive auxiliary lymph nodes is an important feature to predict survival status(75% of patients who survived have less than 5 positive lymph nodes).
- 3. Patients who were treated before 1960 have very less chance of survival while Patients which were having age less than 45 have high chances of survival.