Agency Incentives and Disparate Revenue Collection: Evidence from Chicago Parking Tickets*

Elizabeth Luh[†] Benjamin Pyle[‡] James Reeves[§]
SEC Boston University University of Michigan

September 2023

Abstract

We examine enforcement patterns in administering parking tickets for failure to purchase vehicle registration, colloquially known as the sticker fine, across ticketing agencies in Chicago. Leveraging a sharp 2012 sticker fine increase in an event-study framework, we find that Chicago police increased their enforcement of sticker non-compliance across Black relative to non-Black neighborhoods, but find no disparate response in the ticketing behavior of other parking enforcement agents. This significant disparity in ticketing by police officers is not driven by changes in compliance or differences in neighborhood characteristics, but rather differential enforcement. We present suggestive evidence of differences in officer incentives and marginal parking enforcement costs as key mechanisms. An officer-specific decomposition provides evidence that disparate enforcement is not concentrated among a small handful of officers, but is instead a broader departmental phenomenon. We link this disparate enforcement to a widening of the financial instability gap across neighborhoods, including increased rates of ticket non-payment and bankruptcy filings.

^{*}We thank Anne Burton, Aimee Chinn, Keith Finlay, Shannon Graham, Chinhui Juhn, Elaine Liu, Vikram Maheshri, Mike Makowsky, Steve Mello, Mike Mueller-Smith, Kerri Raissan, Gergely Ujhelyi, and Anastasia Wilson for helpful comments and suggestions. A previous version of this paper was circulated as "Disparate Fine Collection: Evidence using Chicago Parking Tickets." The Securities and Exchange Commission disclaims responsibility for any private publication or statement of any SEC employee or Commissioner. This article expresses the author's views and does not necessarily reflect those of the Commission, the Commissioners, or other members of the staff.

[†]Securities and Exchange Commission, luhe@sec.gov

[‡]School of Law, Boston University, benpyle@bu.edu

[§]Department of Economics, University of Michigan, jmreeves@umich.edu

1 Introduction

In the United States, parking fines are one of the major revenue generators for heavily populated cities. For example, Chicago raised \$264 million from parking citations in 2016, equivalent to an annual \$97.20 per-capita tax; similarly, New York City raised \$565 million from parking fines alone in 2015 (Diskin, 2019; Digital Editors, 2021). The ability of the city to raise its revenue from these types of fines not only depends on the enforcement and collection policies it has in place, but also on residents' ability to pay these fines. As noted by past research and by policymakers, the reliance on local revenue from these fines and fees can have significant economic consequences on residents, especially those with lower ability to pay (Makowsky and Stratmann, 2009, 2011; U.S. Department of Justice Civil Rights Division, 2015).¹

However, local governments must rely on agents to enforce parking violations, including police officers, parking enforcement aides, or other third-party contractors. Thus, the equity and efficiency of parking enforcement across neighborhoods are entirely dependent on the agents whom the local government hires. Consequently, agents may disparately enforce violations across areas if they are maximizing a different objective function than the government - for example, minimizing search costs or focusing on alternative, non-parking enforcement responsibilities.² To the extent such wedges between government and agent exist and are correlated with racial and ethnic divisions within a metropolitan area, agents may respond to collection incentives in ways that generate disparate outcomes in the population while also negatively harming revenue.

In this paper, we examine whether an increase in motor vehicle registration, which we refer to as "stickers," and its fine for non-compliance affected parking enforcement patterns in Chicago. Specifically, this policy, implemented in 2012, increased the cost of vehicle registration from \$120–\$135, an 11% increase, and the fine for registration non-compliance from \$120–\$200, a 67% increase. Thus, it simultaneously made compliance more expensive and enforcement significantly more profitable relative to other parking fines. The aggressive enforcement coupled with the punitive parking system had severe consequences on Chicago residents, particularly in predominantly Black neighborhoods. While Black neighborhoods accounted for only 22% of tickets, they accounted for 40% of all debt with the average debt doubling from \$1,500 in 2007 to \$3,900 by 2017 (Sanchez and Ramos, 2018).

¹Propublica estimates that unpaid parking debt alone in Chicago totals over \$1.6 billion debt, with an average debt of \$3,900 per ticket (Samuelson, 2018).

²There is a long literature examining multi-task principal-agent models and empirically investigating agent responses in the face of differing incentives. For example, see Holmstrom and Milgrom (1991) and Aghion and Tirole (1997) for the canonical theory, and Jacob and Levitt (2003) and Knutsson and Tyrefors (2022) for empirical work in the context of teachers and ambulances, respectively.

Since both Chicago Police Department (CPD) and other agents, primarily but not exclusively parking enforcement agents (PEA or non-CPD), can enforce municipal parking laws, we separately examine the impact of the sticker tax increase on both types of agents, with the major distinction being that while PEAs are evaluated on their ticketing productivity, CPD officers are not.³ Furthermore, CPD officers have additional responsibilities to "work for the benefit of its citizens by protecting life and property from harm and maintain order" (Department of Human Resources, 2023). Thus, the budget reform provides a unique opportunity to evaluate how governments use different incentives across various agents to affect revenue-generating enforcement and the downstream impact this has across the resident population.

To test for disparate enforcement across the two types of agents, we use administrative parking ticket data from 2007 to 2018 in Chicago and a difference-in-differences (DiD) framework to estimate the relative change in sticker enforcement across various types of neighborhoods, focusing on Black versus non-Black due to the purported claims of disparate impacts from the general public.⁴ Given that the two types of agents issue parking tickets, we separately estimate the change in enforcement for CPD and non-CPDs agents. Across Black versus non-Black neighborhoods, our results show consistent evidence of a disparate response for CPD-issued tickets. Specifically, we find that CPD sticker enforcement increased by 2,100 more tickets in Black relative to non-Black neighborhoods; additionally, we also find that non-sticker ticket enforcement significantly increased by nearly 11,000, despite the non-sticker fines remaining largely the same. We interpret these patterns as evidence of a broader revenue collection effort. Our results also show evidence of differential substitution between ticket types between Black and non-Black neighborhoods with CPD sticker enforcement in Black neighborhoods increasing by 3.8 percentage points (p.p.) more than non-Black neighborhoods. While we also find a substantially lower average increase of 1.1 p.p. for parking tickets issued by PEA, these results are subject to the caveat of less visually stable pre-trends.

Given that both the cost of registration and the fine increased simultaneously, the disparate impact could reflect disparate enforcement or differential compliance across Black and non-Black neighborhoods.⁵ Using neighborhood sticker purchasing data at the neighborhood level from 2007–2018, we are able to rule out the latter. Through a decomposition exercise,

³Throughout, we refer to parking enforcement agents as PEA or non-CPD interchangeably.

⁴We also stratify across income and ability to pay and do not find similar patterns of disparate enforcement for CPD and non-CPD issued parking tickets.

⁵Variation in neighborhood characteristics (e.g., number of parking meters) and its residents (e.g., number of vehicle owners with valid registration) may also lead to differential non-compliance across geographies which could warrant differential enforcement, holding fixed policing patterns.

we find that 88% of the change in the volume of sticker tickets in Black neighborhoods is driven by the change in enforcement, rather than compliance. Furthermore, when compared to the change in non-Black neighborhoods, we find that virtually all of the change in sticker tickets is driven by changes in policing behavior. We conclude the increase in sticker enforcement is almost entirely driven by CPD's policing patterns, rather than changes in resident behavior.

CPD's increased enforcement in Black neighborhoods relative to non-Black neighborhoods also had downstream implications on the source of collected revenue and financial outcomes (e.g. bankruptcy) of those ticketed. At the ticket level, we find that revenue per ticket decreased by \$31 more in Black neighborhoods relative to non-Black neighborhoods, indicating increased instances of nonpayment and financial strain. Specifically, we estimate a 9.4 p.p. decrease in the likelihood of payment and 1.4 p.p. increase in the likelihood of declaring bankruptcy per ticket issued in Black neighborhoods, relative to non-Black neighborhoods. The increased sticker enforcement neighborhood level by CPD also shifted the tax burden from non-Black neighborhoods to Black neighborhoods. Collected revenue increases by over \$200,000 more in Black neighborhoods relative to non-Black neighborhoods, which represents an increase of \$4 more in per capita terms. In sharp contrast, non-CPD agents collect greater revenue from non-Black neighborhoods.

Given the starkly different responses in enforcement between non-CPD and CPD officers to the increase in the sticker fine, we conduct a series of exercises to better understand the mechanisms behind the differential responses. Using alternative non-race neighborhood characteristics, we show that CPD officers increased their sticker ticket enforcement in neighborhoods with high pre-reform sticker ticket concentrations, while non-CPD officers are relatively unresponsive along this margin. Moreover, we show that between 2011 and 2012, CPD enforcement increased nearly 50 percent on the first day the sticker fine was enforceable, almost three times the corresponding non-CPD change. Linking these results to institutional details on the responsibility set and evaluation criteria of agents across each department, we argue that non-CPD behavior was already at an optimum point and that their non-response to the policy is due to maximizing ticket volume rather than collected revenue or concentrating on ticket type. In contrast, CPD officers issue tickets as one of many distinct responsibilities, suggesting that increasing emphasis on sticker tickets from an incentive standpoint may be inefficient both in an equity and revenue collection sense.

Indeed, when examining the joint distributions of neighborhood-level tickets and sticker

⁶While we also find broadly similar estimates for tickets issued by PEAs, these results are partly a function of noisier pre-trends, and so we interpret them with caution.

⁷Average population in a Black neighborhood is approximately 51,000.

purchases, we find that non-CPD enforcement behavior is virtually uncorrelated with changes in sticker purchases across neighborhood types, while CPD responses exhibit sharply distinct patterns, both in slopes and levels. When correlating changes in enforcement with pre-reform neighborhood characteristics, we consistently find greater levels of CPD enforcement in Black neighborhoods, even across neighborhoods that share similar rates of ticket-to-purchase ratios or ticket payment rates. Taken together with anecdotal evidence on parking patterns across neighborhoods (e.g., street vs. garage parking), we conclude that the lower marginal search cost of ticketing in Black neighborhoods, combined with the increased incentive to write sticker tickets plays a key role in generating the disparate patterns we find.

Finally, we estimate officer-specific responses to the budgetary reform and show that between 60-86 percent of officers increase their sticker ticketing volume after the fine increase. Consistent with our aggregate results, the marginal sticker ticket is also almost twice as likely to be written in a Black neighborhood than in a non-Black neighborhood. Regressing officer characteristics against our estimated policy responses reveals few strong correlations, but the empirical patterns we observe can also not be fully explained by the neighborhood demographics of officer assignments. Instead, we conclude that the disparate enforcement across neighborhoods was part of a broader departmental phenomenon and revenue collection effort in response to the budget reform and existing deficit.

This paper builds empirical evidence on incentives and the behavior of public sector agents and their role in revenue generation for local governments.⁸ We build on prior work studying the responses of police officers to pay (Mas, 2006) and opportunities for overtime compensation (Chalfin and Goncalves, 2021). We show that police officers in our setting are responsive to governmental revenue goals in ways that are not present among contracted agents, likely due to differences in incentives across agencies, and that this response leads to disparate revenue collection and financial outcomes in the population.⁹

Our results also contribute to the growing body of literature studying disparate policing in the United States.¹⁰ Notably, our findings align with Goncalves and Mello (2021), who also find racial disparities in officer discretion when issuing speeding fines. Using a bunching estimation design, they find that officers are more likely to be lenient with white drivers, thus reducing their speeding fines. In our context, officer's ticketing choice is less likely to be confounded with concerns for public safety than in other contexts. For example, failing

⁸For theoretical work in this area, see Prendergast (2007, 2008) and for a review on incentives and decision making, see Kamenica (2012).

⁹See Harvey (2020), Goldstein, Sances, and You (2020), and Makowsky, Stratmann, and Tabarrok (2019) for previous work on enforcement incentives, revenue collection, disparities, and the trade-off in law enforcement responsibilities.

¹⁰See Owens and Ba (2021) for a comprehensive literature review on policing and disproportionate burden across demographic subgroups.

to stop a speeding driver in the case of highway ticketing choice could have more severe consequences than failing to ticket an improperly parked car. Furthermore, given our rich data, we can cleanly measure the monetary and revenue implications of disparate policing.

Recent work on financial sanctions in the justice system has found mixed evidence of the impact of these sanctions on individual outcomes. Recent work by Pager et al. (2022) and Finlay et al. (2023) shows that financial sanctions resulting from a criminal conviction have no long-term or short-term impact on labor market or recidivism outcomes. However, Goncalves and Mello (2023), Mello (2023), Kessler (2020), and Hansen (2015) have found negative impacts on financial outcomes but reduced recidivism from harsher fines.

2 Institutional Background and Setting

2.1 Black-White Gap in Financial Security in Chicago

Chicago is often recognized as one of the most segregated cities in the United States, which many attribute to the stark inequality in outcomes across race. These are reflected in statistics published by PropserityNow in 2016: the unemployment rate of workers of color is three times greater than the rate for white workers; white-owned businesses are valued more than 12x the value of Black-owned businesses; median household income for a Black family is \$30,303, less than half for a white family (\$70,960).

2.2 Chicago Parking and the Sticker Tax Increase

The city of Chicago relies heavily on parking ticket revenue, with 7 percent of its 3.6 billion dollar operating budget coming from the fines it collects. Each year, the city issues over 3 million tickets for parking violations, vehicle compliance, and automated traffic camera violations (Sanchez and Kambhampati, 2018). One major, unique feature of Chicago parking is that the fine has no statute of limitations, which means that parking debt can follow the driver for his entire lifetime.¹¹

Chicago's parking fine is particularly punitive for a variety of reasons. If the fine is unpaid for a certain amount of time, the fine doubles. After three unpaid parking tickets, red light tickets, or speed camera tickets within a year or two unpaid parking tickets, red light camera tickets, or speed enforcement tickets that are one year past due, the car can be impounded or booted, and the vehicle owner receives a seizure notice. After ten or more non-moving violations (parking tickets) or five unpaid tickets from automated red-light or

¹¹This, and Chicago's reliance on parking fine revenue are both unique features to the city. In contrast, Los Angeles and New York City have statutes of limitation that are 5 and 8 years, respectively. Moreover, parking fine revenue accounts for only 5 percent of the annual budget in Los Angeles.

speed cameras, the city of Chicago will suspend the vehicle owner's driver's license. Drivers can choose to enter into a payment plan with the city, but the payment plan is not designed for ticket holders with high fees. To qualify for the standard payment plan, the driver must pay a \$1,000 down payment on total vehicle debt plus payment in full on any tow, boot, or storage fees. If the driver is unable to commit to a plan, the driver can then declare bankruptcy. Chicago also has anti-scofflaw rules that prevent those with unpaid tickets or debts to the city from accessing contracts, licenses, or grants. For example, municipal jobs, such as driving a taxi or teaching in a classroom, are inaccessible for those with unpaid parking tickets.

Column (1) of Table 1 shows the top ten parking tickets by total revenue collected from 2007 to 2011. The most issued ticket has a fine of \$60. Out of the top tickets, only three are related to parking quality or parking permissions (residential permit parking, expired meter, parking in prohibited areas). Four of the most popular tickets are related to having correct licensing or registration.

The most punitive of the parking fines is for failing to properly display the city sticker on the car windshield. The city sticker, which is colloquially known as the 'sticker tax,' is an annual registration fee that Chicago residents with vehicles must pay to own a vehicle in the city. While the registration is relatively cheap at only \$75 for sedans and \$120 for larger passenger vehicles, the fine for failing to buy the sticker or failing to display the sticker is almost double that of the next expensive ticket, at \$120 plus a \$40 late fee. In October 2011, Mayor Rahm Emmanuel announced the city would be raising the registration fee for the stickers from \$75 to \$85 for smaller passenger vehicles and \$120 to \$135 for larger passenger vehicles (Civic Federation, 2012). Further, the fine for not paying the tax would increase by two-thirds, from \$120 to \$200. Both the registration and fine increases were ostensibly motivated by a need to pay for fixing Chicago streets. The increases were announced in October 2011 to be enacted in January 2012.

This fee increase was announced in conjunction with other aggressive revenue-generating policies in an attempt to close a \$637 million dollar projected deficit in the 2012 budget (Emanuel, 2011). One of these policies was an aggressive debt collection plan that directly affected how the city collected and enforced payment of parking ticket fees. Specifically, this plan would allow the city to begin garnishing the wages and tax returns for high debtors. Once the maximum amount of fees had been levied, the city could garnish drivers' state tax returns and 15% of wages (Andriesen, 2012). The stated goal of this aggressive debt collection plan for parking and traffic infractions was to reduce employee indebtedness and

 $^{^{12}}$ Vehicles with a curb weight less than 4,500 pounds are defined as small passenger vehicles. Vehicles with curb weight between 4,501 to 16,000 pounds are defined as large passenger vehicles.

to hold rental car companies accountable for their parking fines (Ruthhart and Reporter, 2014). For city employees, the mayor announced additional punishments for scofflaws. For example, City Hall workers could face suspension or be fired for owing anywhere between \$250 to \$1000 and more (Ruthhart and Reporter, 2014).

Both the Chicago police and parking enforcement agents (PEA or other non-CPD agencies) can issue parking citations in neighborhoods. PEAs are allowed to enforce non-moving ordinances in Chicago and are both employed directly by the city as well as through a third-party firm. In order to increase efficiency and maximize revenue, PEAs believe they are oftentimes evaluated based on their ticketing productivity and are sometimes promoted based on their tickets per shift.¹³

On the other hand, Chicago police officers' main job is not parking enforcement, and their parking ticket productivity is not as important. In recent years, Chicago policymakers have been shifting toward banning traffic ticket quotas for police officers. In 2019, Illinois passed a law explicitly forbidding law enforcement agencies from evaluating personnel based on their ticket-issuing productivity. Prior to the passage of the law, CPD had been criticized for mandating a minimum number of traffic stops (Main, 2017). To the best of our knowledge, any reference to ticket quotas by CPD was in relation to traffic infractions and not parking tickets.

3 Data

ProPublica Illinois, in partnership with WBEZ Chicago, obtained parking ticket data from the city of Chicago from 2007 to 2018 and released this data publicly. The data include information on the date and time of the ticket, where the vehicle was parked, the badge number of the ticketing officer, de-identified license plates, make, registration zip code, citation reason, and, importantly, the payment status of the vehicle. This payment status includes information on the ticket outcome, such as whether the vehicle owner received a notice of seizure, whether the vehicle owner received a notice of driver's license suspension, and whether the vehicle owner declared bankruptcy as a result of the ticket. It also includes information on how much of the fine remains unpaid, the date of the last payment, and the initial fine amount.

A key object of analysis for this paper is the area the ticket was given. We consider two levels of aggregation zip codes in two levels of detail: zip code and Census tract. The raw ticketing data does not include zip code or tract of violation location. To recover this

¹³This is based on reading work testimonials from Indeed.com.

information, we use the Census Geocoder.¹⁴ This successfully codes a vast majority of the tickets in our sample. The remainder are coded using geocoder.us. Where zip codes are unavailable from these matches, we use their latitude and longitudes to map into the relevant zip based on Census GIS shapefiles. To determine if a zip code neighborhood is considered black or non-black, we match each zip code to the Census 5-digit Zip Code Tabulation Area (ZCTA5) using the American Community Survey (ACS) 5-Year estimates for 2007 - 2011. The ZCTA5 are approximate area representations of zip codes in the United States. ZCTA5's are not exact matches for zip codes since ZCTA5's are aggregated from Census blocks. Despite this, they are close matches for each other. Tract demographics can be measured directly. We show in Section 5.1 that our results are robust to our choice of geographic aggregation.

We obtained sticker registration data by zip code using a Freedom of Information Act filed with the City Clerk of the city of Chicago. While ideally, we would be able to measure compliance at the vehicle or individual level of observation, to protect the purchasers' privacy, this information only contained the zip code of the buyer's billing address. The data set contained information on the date and time of the purchase, the full purchase amount, and the type of vehicle the sticker was for. We map each sticker purchase to a ZCTA5 using the zip code. Because this analysis can only be conducted at the geographic level of zip, we present the ticketing results at the zip code level as well (and show the—very similar—tract levels results in the appendix).

We present summary statistics describing the ticketing data in Table 1.¹⁵ This table reports average annual characteristics of the top ten revenue-generating tickets from 2007-2011 and characteristics for the same set of tickets from 2012-2018. The type of ticket is listed in each row. We show annual ticket volume, annual ticket revenue, modal fine amount, the revenue share of the listed ticket along with the revenue share rank in Columns 5 and 11, and the ratio of revenue received and expected revenue, calculated as the base fine amount times ticket volume. The revenue share is less than one when collected revenue plus applicable late fees is less than the expected collected amount if all written tickets were paid on time, and is greater than one if collected revenue plus applicable late fees exceeds this expectation.

Our analysis focuses on comparisons between Black (defined as $\geq 75\%$ Black) neighborhoods compared to non-Black neighborhoods across several ticket-related outcomes including the type of ticket based on the violation code (sticker ticket or another type of ticket). We also include several point-in-time measures (these measures evolve over time but are current as of the latest data extract in 2019^{16}) the amount of revenue collected from the ticket, if a

¹⁴https://geocoding.geo.census.gov/geocoder/

¹⁵We provide the same information separately by neighborhood demographic group in Appendix Table 1.

¹⁶This will cause the longer-term outcomes, especially bankruptcy rates, to artificially appear to decline

ticket was dismissed (either internally or as a result of an appeal), fully paid, given a notice of non-payment (if the ticket was not yet paid and the city sent a notice to the address on file for that vehicle), or included as a debt in a consumer bankruptcy case.

We show descriptive statistics summarizing the most salient data features in Table 2 for the five years before the sticker policy change (2007-2011). Panel A of this table shows information at the ticket level. About 60% of tickets in Black neighborhoods are written by CPD, and white CPD officers write less than half of tickets in non-Black areas. About 15% of tickets written in Black areas are sticker tickets, while this rate is close to 6% in non-Black areas. Outcomes after receiving a sticker ticket are worse for people who receive tickets in Black areas as they are less likely to fully pay the ticket or have the ticket dismissed and more likely to be involved in bankruptcy or have a non-payment notice.

Panels B and C show these same outcomes at the neighborhood level. Black areas have slightly larger populations on average on average (about 51 thousand compared to about 47 thousand in non-Black areas) but also have fewer vehicles (about 17 thousand compared to 21 thousand). Black neighborhoods have fewer stickers purchased (16 thousand compared to 21 thousand) and slightly lower ratios of stickers purchased relative to the number of total vehicles (95% compared to 100%). The number of total tickets written by the CPD is lower in Black neighborhoods, although more of them are sticker tickets. Substantially more sticker tickets are written in Black neighborhoods (2000 more per year).

In order to understand underlying mechanisms and heterogeneous responses we need information on officers. Our ticketing data includes officer badge numbers. Because these identifiers can change over time, we construct an officer badge crosswalk using data from OpenOversight. We combine this with data from the Invisible Institute to generate an officer-level data set with information on the number and type of tickets written, unit and employment history, complaints against the officer per year, as well as officer demographic information (race/ethnicity, sex, and age).

4 Empirical Strategy

We summarize our difference-in-differences approach in two equations. First, in Equation (1), we present event study evidence comparing majority ($\geq 75\%$) Black ($Black_i$) areas to non-majority Black areas, focusing on the α_t coefficients tracing the evolution of an outcome of interest relative to 2011, the year prior to the sticker policy change. This allows us to

towards the end of the sample.

¹⁷Throughout, we note that our measure of neighborhood-level vehicles is survey-based and constructed from the aggregation of several categories of survey responses, one of which is topcoded. Therefore, a strict interpretation of the number of vehicles should be made with caution.

carefully evaluate parallel trends.

Another identifying assumption for a difference-in-differences analysis is no impact of the treatment on the control group. In our setting, changing the sticker policy likely also impacts outcomes in non-Black areas. What we recover from our analysis is not the overall impact of the policy on our outcomes, but rather the differential impact of the policy on Black areas relative to their non-Black counterparts. Formally, for neighborhood i and year t, we estimate:

$$Y_{it} = \alpha_0 + \sum_{\substack{t=2007\\t\neq2011}}^{2018} \alpha_t (Black_i \times Year_t) + \sigma_i + \lambda_t + \varepsilon_{it}$$
(1)

We also summarize our results in a single point estimate in Equation (2). Conditional on our identifying assumptions, β_1 of this equation summarizes the impact of the policy change in the follow-up period (2012-2018).

$$Y_{it} = \beta_0 + \beta_1(Black_i \times Post_t) + \sigma_i + \lambda_t + \epsilon_{it}$$
(2)

A two-way fixed effects strategy is appropriate in this setting as treatment occurs simultaneously for all treated units, allowing us to avoid concerns of negative weights in the presence of treatment heterogeneity (Goodman-Bacon, 2021). Additionally, we handle the potential complications of continuous treatment by defining a binary treatment indicator defined as $(\geq 75\%)$ Black zip codes (Callaway, Goodman-Bacon, and Sant'Anna, 2021). Sticker purchasing data is only available at the zip code level while ticketing data is available at both the zip and tract geographic levels. For consistency across exercises, we show the zip code results in the main text. In robustness checks below, we show that our results are similar when we instead define neighborhoods at the tract level. Moreover, while discretizing the treatment allows us to avoid the challenges of continuous treatment in DiD settings, the choice of treatment cutoff may be important for interpreting our results. We show in Section 5.1 that our results are robust to both higher and lower thresholds.

5 Results

We begin our analysis by first examining ticketing trends in the raw data. Panel A of Figure 1 plots the yearly number of CPD-issued sticker tickets issued in Black and non-Black neighborhoods, both in level and per-capita terms. In Panel B, we also plot the same series for non-CPD agencies. In Panel A, prior to the 2012 reform, both sticker ticket series were trending downwards, with lower ticket volumes year-over-year. After 2012 however,

their pre-policy levels, while ticket volumes in non-Black neighborhoods largely flattened. In contrast, the series in Panel B are relatively flat, displaying little noticeable changes pre- or post-reform. Together, these raw data series depict our first evidence that law enforcement agencies disproportionately enforced sticker non-compliance in Black, compared to non-Black neighborhoods. A simple difference-in-differences (DiD) calculation suggests that the reform led to just over 2,000 additional sticker tickets in Black neighborhoods compared to non-Black neighborhoods, an increase in 0.34 sticker tickets per resident over the 7-year post-reform period.

Numerous confounding factors may complicate a simple difference-in-differences approach. For example, neighborhoods may differ in their baseline financial strain, resulting in differential non-compliance or increased probabilities of non-payment. Neighborhoods may also experience differential policing patterns, which increase the likelihood that any non-compliance with the sticker policy is noted by law enforcement.

Figure 2 reports event-study coefficients on the interactions of neighborhood type and year indicators from Equation (1), estimated at the ticket level. We present corresponding difference-in-differences estimates in Table 3.¹⁸ We begin in Panel A by examining the probability that any ticket issued is a sticker ticket, estimating separately for tickets issued by the Chicago Police Department (CPD) and the Parking Enforcement Authority (PEA).¹⁹ Consistent with the aggregate patterns in the raw data from Figure 1, sticker tickets issued from CPD are more likely to be issued in Black neighborhoods post-reform, despite showing no measurable differential trends prior to the change. In sharp contrast, PEA agents show no discernible change in sticker ticketing behavior across neighborhood type.²⁰ One interpretation for this result is that non-CPD agencies were already optimizing their ticket-writing behavior and are thus less responsive to the revenue incentive the policy change induces, relative to CPD. We explore this potential mechanism in more detail in Section 5.2.

We next examine the characteristics and outcomes associated with the marginal ticket. Panel B shows that the marginal sticker ticket is associated with lower collected revenue of \$32 in Black neighborhoods, relative to non-Black neighborhoods, consistent with the

¹⁸For completeness, we also show point estimates for non-sticker tickets, with corresponding event study graphs in Appendix Figures 1 and 2.

¹⁹For simplicity, we refer to the Parking Enforcement Authority as "Non-CPD" in all tables and figures. This group pools together both Department of Revenue agents as well as third-party contractors such as SERCO.

²⁰While the summary DiD estimate in Table 3 (Panel B, Column 1) technically shows a small increase in sticker ticketing in Black neighborhoods, we view this result as tentative given no discernible post-period change, suggesting this point estimate is more an artifact of unstable pre-trends than an actual behavioral change. Nonetheless, we present results for both CPD and non-CPD agencies throughout for completeness.

higher fine amount decreasing repayment probabilities and increasing financial strain. This pattern is also consistent with the observed 9.4 percentage point reduction in repayment probabilities (Panel C), a 7.0 percentage point increase in the probability of receiving a non-payment notice (Panel D), and a 1.4 percentage point increase in the probability of filing for bankruptcy (Panel E).²¹ Taken together, at the ticket level, these empirical patterns suggest that the marginal sticker ticket generates less revenue in expectation in Black neighborhoods compared to non-Black neighborhoods due to the increased financial strain it places on liquidity-constrained households. Despite this, we also show that there is no change in ticket "quality," as the marginal sticker ticket is no more (or less) likely to be dismissed across neighborhood types (Panel F).²²

In Figure 3, we estimate Equation (1) at the neighborhood, rather than the ticket level.²³ Relative to our previous analysis, which largely captures the intensive margin of switching between sticker and non-sticker tickets conditional on writing a ticket, this neighborhood-level approach additionally captures the extensive margin of ticket writing behavior. Consistent with our previous results, Panel A shows a substantial increase in the number of CPD-written sticker tickets in Black neighborhoods, compared to non-Black neighborhoods. Again, non-CPD agencies show little measurable differential response. Moreover, the prereform estimates for both groups are generally stable and close to zero in magnitude. In contrast to the ticket-level results, however, Panel B illustrates substantial differential revenue collection across neighborhood demographic profiles for CPD-issued sticker tickets. Interpreted together with the ticket-level results, we view these patterns as reflecting both lower marginal payment probabilities and greater ticketing frequency by neighborhood.

In aggregate, we also see increases in the number of tickets paid (Panel C), reflecting increases in collected revenue, but also increased non-payment notices (Panel D) and bankruptcy filings (Panel E). Interestingly, we also see greater volumes of ticket dismissals in Panel F, but we view these estimates as likely reflecting ex-post dismissal and debt relief programs (e.g., Sanchez and Ramos 2015), rather than changes in contesting rates.

When interpreting our results, it's possible some of the observed disparity is due to neighborhood differences in resident's ability to pay for the sticker itself, resulting in differential

²¹There are a small handful of tickets which have an outcome that does not fall into one of these classifications (e.g., hearing requested). We abstract from estimating these outcomes separately for simplicity as they define less than one percent of the sample.

²²For example, under a story where agencies write large amounts of sticker tickets in an attempt to meet performance expectations, we might see expect that some measure of these tickets will be thrown out ex-post if they are marginal quality. We do not see any consistent evidence of differential dismissals, although this interpretation is complicated by differential access to political capital and resources in contesting tickets by neighborhood.

²³We present DiD estimates in Panels A and B of Table 3.

non-compliance with the policy. Consequently, the subpopulation who are unable to initially afford the sticker will also be unresponsive to the purchasing incentive induced by the sticker fine increase or be priced out because of the increase in the sticker price itself. We emphasize that our formal difference-in-differences estimates will account for the initial level disparity across neighborhood types, resulting in estimates that capture only the differential change in sticker ticketing frequency across neighborhoods, before and after the reform. However, we take seriously the idea of differential compliance and its interaction with departmental incentives as a mechanism for our results and discuss this point in detail in Section 5.2.

5.1 Robustness Checks

Before assessing the mechanisms underlying our results, we first examine the stability of our estimates to a range of robustness checks. Appendix Tables 2 and 3 present robustness checks for our ticket- and area-level regressions, respectively; for completeness, we present results for both CPD and non-CPD agencies. Column 1 in each table reports the difference-in-differences estimate for each of our six main outcomes using only the raw data. Column 2 reproduces our estimate from the main text, adding zip code and year fixed effects in a standard DiD specification, although the results are little changed with these additions. In Column 3 of Appendix Table 2 we add controls for vehicle make, owner city, and an indicator for an out-of-state owner to account for differences across the population in the probability of receiving, contesting, and paying sticker tickets, although these controls do little to alter the point estimates from our primary specification.²⁴ Finally, in the last two columns of Appendix Tables 2 and 3, we use alternative cutoffs for defining zip codes as primarily Black. Changing the threshold to either 50 or 90 percent, rather than our baseline 75 percent does not meaningfully affect the conclusions we draw above.²⁵

We also decompose the main analysis for the subset of tickets that have owner characteristics in Appendix Table 5 to determine whether the disparate ticketing patterns documented above largely accrue to individuals whose home neighborhood matches the racial composition of the ticketing zip code or if the results we find largely reflect commuter traffic instead. The first row of each panel ("main") reproduces the sticker ticket results from Table 3. We then replace each outcome Y_{it} with $Y_{it} \times (Black_i)$ in the second row and $Y_{it} \times (1 - Black_i)$ in the third row, effectively decomposing the differential outcomes in Black neighborhoods to

²⁴We do not perform a similar adjustment in Appendix Table 3 as we collapse the data to the zip code by year level and aggregate overall vehicle types in doing so. Reassuringly, the owner controls do little to change the estimates in Appendix Table 2.

²⁵Appendix Figure 3 replaces our zip code fixed effects with tract fixed effects and redefines neighborhoods as majority-Black at the tract level using the same 75% threshold (see Appendix Table 4 for DiD estimates). We continue to find broadly similar results to our preferred specification.

drivers from Black and non-Black neighborhoods, respectively.²⁶ Across nearly all outcomes, regressions, and ticketing agencies, we find that the burden of the disparate ticketing patterns in Black neighborhoods tends to fall on owners who are also from Black neighborhoods.

5.2 Examining Potential Mechanisms

Our results thus far suggest that the marginal sticker ticket is more likely to be written in a Black neighborhood, both in a compositional and level sense, and that this pattern is driven almost entirely by CPD, rather than non-CPD behavior. Below we explore several potential mechanisms behind these results.

Departmental Incentives: An implication of the different responses across ticket-writing departments is that the underlying performance evaluation scheme induces differential responses to the policy. Put differently, since PEA agents are anecdotally evaluated based on their ticket volume, their ticket-writing behavior was already at an optimum — maximizing ticket volume while minimizing search costs. In contrast, CPD officers face no such volume-based incentives to our knowledge. Thus, post-policy change, the marginal benefit of writing an additional sticker ticket, from a revenue collection standpoint, has increased. As a result, officers may induce greater search efforts into finding or ticketing vehicles without appropriate city stickers. Under this interpretation, the disparate patterns we document above are directly viewed as disparate enforcement as part of a broader revenue collection effort, rather than differential compliance.²⁷

We partially test whether officers exert greater search effort into finding vehicles with expired stickers by plotting the number of sticker tickets issued by day for 2011 and 2012 in Appendix Figure 4. If officers exert greater search effort, then we would expect to see increases in ticketing frequency immediately after the grace period ends.²⁸ In Panel A, we see exactly this pattern for CPD, with a large spike in sticker tickets written on the day the grace

²⁶We note that since not all of our tickets contain owner address information, the sum of the two disaggregated point estimates need not add up to the main results. Nevertheless, we view this decomposition as useful in confirming the population facing disparate ticketing.

²⁷To the extent vehicles in Black neighborhoods are more likely to be parked on the street or visible to the average patrol (e.g., (Sanchez and Ramos, 2018)), then Black neighborhoods may see differential levels of sticker enforcement even in the pre-reform period since Black neighborhoods exhibit a lower marginal search cost for sticker-less vehicles. So long as parking patterns do not also differentially change before and after the budget reform, these results may be viewed as holding the marginal search costs fixed by neighborhood while changing the marginal benefit of ticket-writing.

²⁸The grace period is a window after the expiration date where an individual may purchase a city sticker without paying late fees and is not supposed to be subject to sticker ticket enforcement. We use 2011-2012 as the focal years in this exercise since prior to 2014, all city stickers expired at the end of June in any given calendar year. The city later shifted to time-varying expiration dates that move with license plate expiration dates. Moreover, both 2011 and 2012 have the same fifteen-day grace period, which enables us to more cleanly harmonize the data across years for ease of comparison.

period ends. Comparing the change between 2011 and 2012, sticker ticket volume increases by a dramatic 49.5 percent on the day immediately following the grace period. In contrast, non-CPD agencies (Panel B) exhibit only a 17.0 percent increase in sticker ticket volume. ²⁹ Interestingly, we also see small ticket volumes in the days preceding the end of the grace period, although an expired sticker should technically not be subject to enforcement in this window. We note in passing that the share of sticker tickets written in the expiration-grace period window is smaller for non-CPD agencies (<1 percent) than CPD agencies (between 4.9 - 5.6 percent), which we take as suggestive evidence of ex-ante ticket writing optimization by the former. Finally, for completeness, we also show the same histograms for non-sticker tickets and find little evidence of similar discontinuous behavior for this subset of tickets. Taken together, this empirical pattern suggests that the behavior of CPD officers is more responsive to the reform, perhaps as part of a broader revenue collection effort for the city, and that the behavioral change is in line with what would be expected given the sticker fine increase.³⁰

Next, we test how sticker ticket enforcement patterns correlate with alternative neighborhood characteristics. We replace our primary $Black_i \times Post_t$ interaction with different interactions based on pre-reform neighborhood characteristics in Appendix Table 6. If officers are behaving in a purely revenue-maximizing way, then sticker tickets should be written in the areas that have the highest repayment probabilities, such as high-income neighborhoods. In fact, we find the opposite patterns in Column 2. In Column 3 we show that CPD officers write more sticker tickets in areas that previously had high rates of sticker tickets (as a fraction of total tickets written in the neighborhood), suggesting that officers are aware of neighborhoods with low sticker compliance rates and alter their search effort accordingly. However, Column 4 shows that fewer sticker tickets are written in neighborhoods with high payment rates. When we test all interactions jointly, we still find that the vast majority of the disparity still operates through neighborhood demographics, rather than

 $^{^{29}}$ We note that the cyclical pattern in non-CPD ticket volume is a weekend/weekday effect. Therefore, we compare ticket volume on the first weekday after the grace period in 2011 (two days after it ends), against the initial expiration day in 2012 in the above calculation.

³⁰Suggestive evidence of a broader revenue collection effort is in Appendix Figure 2 where we show that CPD also increased their enforcement of non-sticker violations. However, many of the pre-reform estimates are distinctly different from zero, although the differential trend is generally flat. As a result, we interpret this non-sticker ticket evidence with caution, but conclude that part of the differential effect may be due to top-down revenue collection concerns.

³¹It's ambiguous whether officers would fully internalize potential ticket contesting or repayment probabilities when comparing the value of a ticket in high and low-income neighborhoods. Higher-income neighborhoods likely have more resources to fight parking tickets, but to the extent officers receive overtime pay for appearing in court (e.g., Chalfin and Goncalves 2021), the marginal ticket in a high-income neighborhood becomes attractive both with respect to repayment probabilities as well as potential private value to the officer.

these alternative channels, at least when defined across all neighborhoods.

We further test for differential officer behavior within Black neighborhoods by examining all three alternative treatment margins above, but defined within the set of high-Black neighborhoods, as opposed to the overall sample in Appendix Table 7. Somewhat strikingly, we find officer behavior that is consistent with increased revenue maximization (in response to the incentive), but imperfectly so. Specifically, sticker tickets are more likely to be written in high-income Black neighborhoods, compared to low-income Black neighborhoods, a subset which should have lower rates of non-compliance, all else equal. Similarly, Black neighborhoods with greater baseline sticker ticket rates experience higher sticker ticket volumes, further suggesting an element of officer knowledge about non-race neighborhood characteristics. However, the vast majority of these tickets are written in Black neighborhoods with lower baseline repayment rates, suggesting some degree of inefficiency with respect to revenue collection. In sharp contrast, officers in non-CPD agencies exhibit no such disparate patterns, and if anything, go in the opposite direction.³²

Differential Compliance: One interpretation of our existing estimates is that they simply reflect differences in the ability of drivers to pay for the city sticker. Thus, differential ex-ante compliance with the policy may present itself as disparate ex-post enforcement of the sticker tax if the marginal benefit of writing such a ticket has increased, such that law enforcement agencies are now writing tickets they would not otherwise have in the absence of the budget reform. Alternatively, the 2012 budget reform may have changed compliance rates itself, since it also increased the price of the sticker for both small (\$75 to \$85) and large (\$120 to \$135) vehicles. If there is a sufficiently large subpopulation on the margin of sticker purchasing, then such an increase may lead to disparate enforcement as the marginal search cost of finding a delinquent motorist has decreased. While we are unable to measure sticker purchases at the individual level due to data limitations, we conduct several tests to probe how much our estimates may reflect differential compliance versus differential enforcement of the policy.

First, we examine neighborhood-level sticker purchasing behavior directly using administrative data on sticker purchases, owner locations, and sticker types from 2008-2018. In Panel A of Appendix Figure 5 we plot event-study estimates of the interaction of year and neighborhood type indicators, using sticker purchases as the outcome. If there were differential non-compliance with the sticker policy, such that the fine increase induced a large fraction of the non-complying population to suddenly purchase tickets, then we should see

³²The contrast between CPD and non-CPD agents is also consistent with differences in outcomes as a consequence of varying incentives across public and private employees in other contexts (e.g., Knutsson and Tyrefors 2022).

greater purchase rates in Black neighborhoods relative to non-Black neighborhoods. Alternatively, the sticker price increase may also lead to a differential reduction in purchasing as marginal individuals are priced out of compliance. If anything, Black neighborhoods have minute increases (20 stickers), relative to non-Black neighborhoods, even as both groups increased their purchases as we show below, although we note that the pre-trend estimates are somewhat noisy. When we disaggregate sticker purchases into types focusing on passenger vehicles, we find no statistically distinguishable differential response.³³ Together, this empirical finding is instead consistent with changes in officer behavior, rather than substantial changes in civilian behavior due to price-out non-compliance or incentivized purchasing.

Quantifying the Relative Contributions of Differential Compliance and Enforcement: The increase in disparate sticker ticketing is due to two potential factors - differential sticker purchasing behavior and differential enforcement of the sticker ticket. In Table 4, we decompose this aggregate effect into its two component channels based on our empirical results, in addition to the relative contributions of Black and non-Black neighborhoods. We focus on the neighborhood-level results for parsimony as they capture both the extensive and intensive ticket-writing margins.

We define the enforcement component of the observed change in sticker tickets as the difference between the change in tickets and change in purchases.³⁴ The corresponding enforcement share is this residual over the change in sticker tickets. Under the same parallel trends assumption underlying our main empirical specification, the enforcement effect measures the share of the total sticker ticket volume that is due to changing policing patterns after accounting for the net change in purchase behavior. For example, the enforcement effect would be zero if total sticker tickets and sticker purchases were equal and opposite in sign.³⁵ Finally, given that there are possible general equilibrium effects associated with the policy that change the behavior of individuals in both Black and non-Black neighborhoods, we present both the net enforcement effect for Black neighborhoods only as well as the implied enforcement effect across neighborhoods.

Using our neighborhood-level estimates, we find that virtually all of the differential ticketing effect can be explained by differential ticket issuing behavior.³⁶ We obtain slightly smaller

³³Due to the vehicle classification systems, it is possible some individuals have vehicles that are classified as large trucks even though they may not be colloquially considered as such. However, the overwhelming majority of stickers are for passenger vehicles.

³⁴Technically, the change in purchases is further subdivided into two additional components: a change in purchases due to the incentive effect of the fine increase and a change due to pricing marginal individuals out because of the sticker price increase. Given our aggregate data, we are only able to observe the net effect of these two channels.

³⁵We construct the appropriate neighborhood-level empirical analogs using simple one-way difference regressions.

³⁶Using the 95 percent confidence interval and worst-case scenarios for both the ticketing and purchase

shares when adjusting for number of vehicles in Panel B, though we note our neighborhood-level measure of total vehicles is measured with error.³⁷ We further confirm that officer behavior plays a non-trivial role in Appendix Table 8, where we show that just under half of the sticker ticket differential can be explained by the first sticker ticket a vehicle receives in a calendar year, indicating the residual is due to repeated enforcement of the same vehicles. Even when using this more modest ticket response, however, we still find that the enforcement effect explains 98.9 percent of the differential effect and 64.8 percent in Black neighborhoods.

Is Differential Enforcement Efficient?: Together, our results consistently point to Black neighborhoods receiving substantially greater levels of sticker ticket enforcement, in magnitudes that cannot be rationalized by large changes in sticker purchasing behavior. And moreover, this disparate effect is entirely driven by CPD rather than non-CPD ticketing agencies. One rationale for these empirical patterns is that CPD officers are differentially targeting areas with lower sticker purchase rates, while non-CPD officers have already equalized their marginal costs of enforcement across neighborhoods. To better understand how neighborhood responses and baseline characteristics influence enforcement behavior, we construct joint distributions of estimated changes in neighborhood-level outcomes as well as neighborhood characteristics.³⁸

In Panels A and B of Figure 4, we plot the joint distributions of neighborhood-level changes in sticker tickets and sticker purchases, separately by neighborhood type and ticket issuing agency. There is a weakly positive correlation between changes in sticker purchases and CPD-issued sticker tickets in non-Black neighborhoods, which is sharply contrasted with a negative relationship in Black neighborhoods (Panel A). Strikingly, non-CPD-issued sticker tickets display parallel, but virtually flat relationships across neighborhood types (Panel B). One interpretation for these contrasting patterns is that CPD issuers are responding to the ticket increase incentive, increasing search behavior in neighborhoods with low marginal search costs, while non-CPD agents have already equated the marginal enforcement costs across areas.³⁹ Perhaps more noteworthy is the consistent level difference in sticker ticket

responses, we can rule out enforcement shares that are smaller than 37.8 percent overall and 53.2 percent in Black neighborhoods

³⁷Even abstracting from the DiD estimates, the enforcement share is still between 76 and 88 percent in Black neighborhoods, confirming that the implications of this decomposition do not hinge on the relative changes in non-Black neighborhoods.

³⁸Formally, we consider all one-way differences for $i \in \mathcal{I}$ and $R_i \in \{B, n\}$ of $E[Y_{it}|R_i = r, Post_t = 1] - E[Y_{it}|R_i = r, Post_t = 0]$, which represent each component piece of our difference-in-differences estimates. Averaging across all of these estimates by neighborhood type R_i recovers our main DiD estimates.

³⁹A possible interpretation of the negative slope is that CPD agents are more successfully capturing every marginal change in sticker purchases - perfect enforcement would suggest a slope of -1. We estimate a slope coefficient of -0.67. However, this slope difference does not explain the level difference between neighborhoods

volume by neighborhood type in Panel A across nearly all changes in sticker purchases.

We further explore whether differences in neighborhood characteristics can explain such a gap. In Panel C, we test whether differential pre-reform sticker purchase rates can rationalize such a gap but continue to find a persistent level difference, with virtually all neighborhood purchase rates clustered closely around one.⁴⁰ Alternatively, such a disparity may be justified by revenue collection motivations if the repayment probabilities are higher in Black versus non-Black neighborhoods. In contrast, however, we show that sticker ticket volumes are higher in Black neighborhoods, despite having lower pre-reform sticker ticket payment probabilities (Panel D). Finally, we show that changes in ticket volumes remain higher in Black neighborhoods across almost all values of sticker tickets and paid sticker tickets per sticker purchase (Panels E and F), indicating sharply distinct enforcement responses across areas with similar baseline enforcement propensities.⁴¹

Taken together, we conclude that observable differences in neighborhood characteristics, compliance, and expected payment probabilities are insufficient to fully explain the sticker ticketing gap across Black and non-Black neighborhoods. Instead, our results are consistent with a differential response to the fine increase by ticketing agency, combined with differential marginal search costs across neighborhoods, perhaps due to differences in the visibility of parked vehicles (e.g., Sanchez and Ramos 2018). Differences in parking patterns as a mechanism are also consistent with the body of evidence we've assembled thus far, indicating that the interaction of incentives and search costs together play a role in determining disparate enforcement patterns. Given the overlap in the support of non-race neighborhood characteristics, there are potentially significant revenue gains from equalizing enforcement across Black and non-Black neighborhoods. A partial back-of-the-envelope calculation leveraging the joint distributions of neighborhood characteristics and neighborhood responses suggests that the city could have raised an additional \$1.6 million in annual revenue by applying average equal enforcement in low-compliance non-Black neighborhoods. ⁴²

with similar purchase responses.

⁴⁰Some of the x-axis dispersion is likely due to measurement error in the number of vehicles since we rely on aggregated survey-based measures when constructing this statistic.

⁴¹One additional possibility is that the CPD-issued sticker tickets are incidental because an officer happened to be in the area and there is an increased emphasis on issuing these tickets. We test this channel in Appendix Figure 6, plotting neighborhood-level changes in sticker ticket volumes against average annual crimes reported to CPD. Consistent with this mechanism, we find greater sticker ticket responses in higher-crime neighborhoods. In contrast, we find non-CPD behavior that is either uncorrelated or related in the opposite direction. Together with our investigation of other mechanisms, we view this incidental channel as complementary at differentially lowering marginal costs of enforcement for CPD officers.

⁴²To perform this calculation, we first identify non-Black neighborhoods with lower purchase per vehicle rates than the minimum rate of Black neighborhoods. Intuitively, these are the neighborhoods where non-compliance is highest, and the marginal cost of enforcement is consequently lowest (abstracting from parking patterns). We then assign the mean Black neighborhood enforcement volume to these neighborhoods and

6 Estimating Officer-Specific Responses

Our aggregate event study results above reveal a significantly disproportionate issuing of sticker tickets across neighborhoods. An open question is whether this disparate behavior is department-wide or if it is concentrated among a handful of officers who are high-volume ticket-writers. We estimate a modified version of our difference-in-differences specification above to decompose the response to the policy reform across the officer distribution. Formally, we estimate:

$$Y_{ijlt} = \underbrace{\sum_{j \in J} \delta_j(Z_j \times Post_{lt})}_{\text{Officer specific responses}} + \underbrace{Z_j}_{\text{Officer fixed effect}} + \mathbf{X}'_{it}\pi + \nu_{ijlt}$$
(3)

for neighborhood i, officer j, ticket l, and year t.⁴³ Throughout this analysis, we control for year, unit, neighborhood, and officer fixed effects.⁴⁴ We examine racial differences in officer ticketing patterns by interacting Y_{ijt} with indicators for neighborhood racial composition, rather than placing the interaction term on the right-hand side.

The coefficients of interest are the interactions δ_j , which, conditional on the officer fixed effects, nonparametrically capture the within-officer response to the change in incentives induced by the fine increase. When estimated at the sticker level, δ_j can be interpreted as the officer-specific outcome of the marginal ticket written in response to the policy. Finally, we note here that unweighted, our estimates of officer-specific responses may not exactly match either the ticket- or area-level event studies above as we have both altered the sample by trimming only pre or only-post-period officers as well as the estimating equation. Nevertheless, we view this exercise as useful for characterizing the behavioral response across

assume the payment probability is equal to the pre-period payment rate. We note that the mean payment rate for these focal non-Black neighborhoods is 59.5 percent, relative to 46.9 percent in Black neighborhoods.

⁴³An alternative approach is to estimate event studies where the econometrician interacts the event-study indicators with officer fixed effects. Unfortunately, the non-random movement of officers across unit assignments and our limited information on precise geographic patrol responsibilities resulted in unstable estimates when employing this approach.

⁴⁴Specifically, we include the full set of indicators for each of these covariates, which account for time-invariant differences in responsibilities and ticket writing potential across both unit assignments and geography. We depart slightly from our aggregate analysis and replace our zip code fixed effects with tract fixed effects to more closely approximate officer beat assignments within unit. Similarly, we also define Black and non-Black neighborhoods at the tract, rather than zip code level, which we show above yields similarly sized aggregate estimates. Together, these modifications allow us to identify racial differences in policy response within all officers, rather than only among the subset of officers whose assignment happens to be near zip code boundaries.

⁴⁵To ensure our estimates are not driven by noise, we restrict the sample to officers who write at least 100 tickets in our sample period. We also include only officers who write tickets both before and after the 2012 reform, although both of these restrictions drop only a handful of officers. Unfortunately, we're unable to conduct a similar exercise for non-CPD units due to higher rates of turnover in those departments.

the officer distribution.

6.1 Decomposing Outcomes of Marginal Sticker Tickets

Figure 5 reports the distributions of officer-specific policy responses. In Panel A, we plot bins of the officer-specific probability of writing a sticker ticket separately for Black and non-Black neighborhoods against the overall officer-specific sticker ticket response. He are plot P(sticker | ticket, race) against P(sticker | ticket). This exercise effectively decomposes the marginal sticker ticket response outcomes within each officer. Comparing the slopes of the race-specific against the overall response yields similar conclusions to our aggregate event studies above - officers responding to the policy reform are substantially more likely to write sticker tickets in Black neighborhoods than non-Black neighborhoods (0.632 vs 0.368). The magnitude of the overall sticker ticket response on the x-axis also provides evidence of a "first-stage" response to the policy, as about 60 percent of officers are more likely to write a sticker ticket in the post-reform period. 47

Panel B examines the officer-specific revenue responses accruing from payment sticker tickets. The correlations between the race-specific and overall responses suggest that just over 60 percent of each dollar of revenue originates from Black neighborhoods. Together with our decomposition results, these correlations suggest that the unequal enforcement of the sticker ticket also led to an unequal tax burden across neighborhoods.

In Panels C and D, we decompose the outcomes of the marginal sticker ticket separately for Black (Panel C) and non-Black (Panel D) neighborhoods. Specifically, we plot the correlations between $P(ticket\ outcome\ |\ sticker, race)$ against $P(sticker\ |\ race)$. There are striking differences in sticker ticket outcomes across race. Under 35 percent of sticker tickets written in Black neighborhoods end in payment, compared to non-Black sticker tickets, which are more than 15 percentage points more likely to end in payment. Sticker tickets in Black neighborhoods are significantly more likely to end in financial strain, consistent with our aggregate results above. Fully 46.2 percent of sticker tickets either receive a notice of non-payment (40.7 percent) or end in the driver filing for bankruptcy (5.5 percent). While sticker tickets in non-Black neighborhoods also only end in payment about half the time, adverse financial outcomes occur far less frequently at under one-quarter of the time (respectively, 23 percent notice, 1.2 percent bankruptcy). Taken together, our results align with our aggregate analysis that the marginal sticker ticket is more likely to occur in Black neighborhoods, disproportionately generates revenue from this population, and leads to substantially

⁴⁶For completeness, we also report Empirical Bayes-adjusted estimates in Appendix Figure 7.

⁴⁷A version of this exercise, which captures both the extensive and intensive margin, reveals that almost 86 percent of officers are responsive in a "first-stage" sense, providing additional support of behavioral changes to the policy reform across the officer distribution.

worse financial outcomes compared to non-Black neighborhoods, and that these effects are widespread across the officer distribution.⁴⁸

6.2 Correlating Policy Responses with Officer-Level Observables

Finally, we explore whether the magnitude of the disparate sticker response is correlated with officer-level observables. While the majority of officer responses indicate that they are responsive to the sticker ticket fine increase in a first-stage sense, understanding whether officer characteristics are predictive of the magnitude of observed responses is important for characterizing how different types of officers react to incentive changes, as well as designing department-level policies which may mitigate such adverse incentive responses.

A simple explanation for our officer-level decomposition is that the responses simply reflect the demographics of the unit that they are assigned to. That is, officers assigned to units with greater Black population shares should also exhibit larger Black ticketing responses. Conversely, officers assigned to units with smaller Black population shares should exhibit larger non-Black ticketing responses. We test whether this mechanism drives our results in Appendix Figure 8, regressing race-specific δ_j responses against their modal unit assignment's Black share of the population.⁴⁹ Consistent with neighborhood demographics playing a key role in determining the responses in Black neighborhoods, we find a strong, positive correlation between estimates of $\delta_j(Sticker, Black)$ and neighborhood demographics. In sharp contrast, however, we find zero correlation between estimates of $\delta_j(Sticker, Non - Black)$ and neighborhood demographics, rather than a negative correlation, which a pure neighborhood characteristics story would predict.

Given this stark contrast, we next examine whether officer observables predict their policy responses in Table 5, controlling for modal unit fixed effects throughout.⁵⁰ In each successive column, we test a series of covariates before pooling them all together in Column 4. Somewhat strikingly, Black officers consistently have smaller $\delta_j(Sticker, Black)$ responses, along with more experienced officers. In contrast, officer characteristics are generally uncorrelated with $\delta_j(Sticker, Non - Black)$, with the exception of ticket volume. Together, these estimates suggest some degree of differential leniency or search effort based on the interaction of officer race and neighborhood demographics. Moreover, the fact that the magnitude of

⁴⁸The disparate marginal revenue result in Panel B despite the lower payment rate in Panel C is likely driven by increases by racial differences in accrual and payment of late fees and extra penalties. Regressing the revenue received against the paid ticket probabilities reveals that the marginal paid Black sticker ticket generates \$265 of revenue compared to \$235 from non-Black sticker tickets.

⁴⁹We restrict the sample to police officers who are in patrol units so that we can correctly estimate the Black population share in the assignment, as well as examine responses of police officers who are most likely affected by the policy.

⁵⁰We show the correlations using the complete set of officers in Appendix Table 9.

the δ_j responses in Black neighborhoods are declining with experience is also indicative of early career officers perhaps being more responsive to revenue collection efforts in ways that disparately impact the population.

More generally, the combination of a strong policy response across the officer distribution and weak correlations with observable characteristics suggests that the empirical patterns we find in this paper result from a broader goal of revenue generation on a department-wide level. Given the disparate impacts in the population that clearly hinge on ticketing agency, revenue collection as one responsibility of law enforcement agencies may benefit from specialization.

7 Conclusion

In this paper, we examine the role of policing on the distribution of tax burden on residents by exploiting the fine increase for vehicle registration non-compliance in Chicago. Using this sharp change in the fine in 2012, we showed that enforcement of this fine was indeed disproportionately distributed in the population, with Black neighborhoods experiencing far greater changes in their ticket volumes than non-Black neighborhoods.

Interestingly, we only find significant evidence of disparate enforcement when examining the ticketing behavior of police officers in the Chicago Police Department and not from tickets issued by parking enforcement agents. We hypothesize that the different responsibilities across the two types of agents may play a key role in determining their response to the policy. Specifically, the narrowness of parking agents' objective function (i.e., to solely maximize ticketing productivity) compared to the large responsibility set of police officers (i.e., public safety) could play a key role in determining the disparate response across neighborhoods. Moreover, we show that CPD's disparate response patterns cannot be fully explained by differences in baseline non-race neighborhood characteristics, nor justified on collection efficiency grounds. Instead, we provide suggestive evidence that the combination of a multi-dimensional objective function with differential marginal enforcement costs by neighborhood drives these disparate responses.

Together, our results provide evidence that revenue generation in local governments may benefit from specialization across collection agencies as a mechanism to mitigate disparate impacts in the local population. While parking tickets, particularly sticker tickets, currently function as a form of regressive tax, cities can implement a more equitable and efficient ticketing regime to improve the current equilibrium by altering the incentives of the ticketing agents or by shifting parking enforcement responsibility to only parking enforcement agents. Either of these could simultaneously achieve more equitable outcomes while also raising

additional revenue.

Finally, our results document preliminary evidence of a direct relationship between disparate policing and downstream financial consequences. Notably, the increased enforcement of sticker tickets increased the likelihood of filing for bankruptcy by 1.4 percentage points more in Black neighborhoods relative to non-Black neighborhoods. Thus, policies addressing disparate policing behavior may also reduce racial disparities in socioeconomic outcomes.

References

- **Aghion, Philippe and Jean Tirole.** 1997. "Formal and Real Authority in Organizations." Journal of Political Economy, 105(1): 1–29.
- Andriesen, Chris. 2012. "Due process denied: Illinois' new scheme to take your tax refund." *Illinois Policy*.
- Callaway, Brantly, Andrew Goodman-Bacon, and Pedro HC Sant'Anna. 2021. "Difference-in-differences with a continuous treatment." arXiv preprint arXiv:2107.02637.
- Chalfin, Aaron and Felipe Goncalves. 2021. "The Professional Motivations of Police Officers." *Unpublished Working Paper*.
- Civic Federation. 2012. "2012 Consumer Tax Changes for Chicago Residents."
- **Department of Human Resources.** 2023. "Code: 9161 Chicago Police Officer." In City of Chicago: Public Safety.
- **Digital Editors.** 2021. "New York City Made \$565 Million From Parking Violations in 1 Record-Breaking Year." *MotorBiscuit*.
- **Diskin, Eben.** 2019. "How much US cities make in parking ticket revenue will blow your mind." *Matador Network*.
- **Emanuel, Rahm.** 2011. "Mayor Rahm Emanuel outlines 2012 budget proposal to secure Chicago's future." *Mayor's Press Office*.
- Finlay, Keith, Matthew Gross, Carl Lieberman, Elizabeth Luh, and Michael Mueller-Smith. 2023. "The Impact of Criminal Financial Sanctions: A Multi-State Analysis of Survey and Administrative Data." NBER Working Paper No. 31581.
- Goldstein, Rebecca, Michael W. Sances, and Hye Young You. 2020. "Exploitative Revenues, Law Enforcement, and the Quality of Government Service." *Urban Affairs Review*, 56(1): 5–31.
- Goncalves, Felipe and Steven Mello. 2021. "A Few Bad Apples? Racial Bias in Policing." American Economic Review, 111(5): 1406–1441.
- Goncalves, Felipe and Steven Mello. 2023. "Police Discretion and Public Safety." NBER Working Paper No. 31678.

- Goodman-Bacon, Andrew. 2021. "Difference-in-differences with variation in treatment timing." *Journal of Econometrics*, 225(2): 254–277.
- **Hansen, Benjamin.** 2015. "Punishment and Deterrence: Evidence from Drunk Driving." *American Economic Review*, 105(4): 1581–1617.
- **Harvey, Anna.** 2020. "Fiscal Incentives in Law Enforcement." American Law and Economics Review, 22(1): 173–210.
- Holmstrom, Bengt and Paul Milgrom. 1991. "Multitask Principal-Agent Analyses: Incentive Contracts, Asset Ownership, and Job Design." *Journal of Law, Economics & Organization*, 7(Special Issue): 24–52.
- **Jacob, Brian A. and Steven D. Levitt.** 2003. "Rotten Apples: An Investigation of the Prevalence and Predictors of Teacher Cheating." *Quarterly Journal of Economics*, 118: 843–877.
- **Kamenica, Emir.** 2012. "Behavioral Economics and Psychology of Incentives." *Annual Review of Economics*, 4: 427–452.
- Kessler, Ryan E. 2020. "Do Fines Cause Financial Distress? Evidence From Chicago."
- Knutsson, Daniel and Bjórn Tyrefors. 2022. "The Quality and Efficiency of Public and Private Firms: Evidence from Ambulance Services." *Quarterly Journal of Economics*, 137(4): 2213–2262.
- Main, Frank. 2017. "ACLU blasts CPD commander for setting minimum number of stops." Chicago Sun Times.
- Makowsky, Michael D. and Thomas Stratmann. 2009. "Political Economy at Any Speed: What Determines Traffic Citations?" *American Economic Review*, 99(1): 509–527.
- Makowsky, Michael D. and Thomas Stratmann. 2011. "More Tickets, Fewer Accidents: How Cash-Strapped Towns Make for Safer Roads." *Journal of Law and Economics*, 54(4): 863–88.
- Makowsky, Michael D., Thomas Stratmann, and Alex Tabarrok. 2019. "To Serve and Collect: The Fiscal and Racial Determinants of Law Enforcement." *Journal of Legal Studies*, 48(1): 189–216.
- Mas, Alexandre. 2006. "Pay, Reference Points, and Police Performance." Quarterly Journal of Economics, 121: 783–821.

- Mello, Steven. 2023. "Fines and Financial Wellbeing." Unpublished Working Paper.
- Owens, Emily and Bocar Ba. 2021. "The Economics of Policing and Public Safety." Journal of Economic Perspectives, 35: 3–28.
- Pager, Devah, Rebecca Goldstein, Helen Ho, and Bruce Western. 2022. "Criminalizing Poverty: The Consequences of Court Fees in a Randomized Experiment." *American Sociological Review*.
- **Prendergast, Canice.** 2007. "The Motivation and Bias of Bureaucrats." *American Economic Review*, 97: 180–196.
- **Prendergast, Canice.** 2008. "Intrinsic Motivation and Incentives." *American Economic Review: Papers & Proceedings*, 98: 201–205.
- Ruthhart, Bill and Tribune Reporter. 2014. "Debts to Chicago by its workers balloon." Chicago Tribune.
- **Samuelson, Tracey.** 2018. "Parking tickets are bankrupting Chicago residents." *Market-place*.
- Sanchez, Melissa and Elliot Ramos. 2015. "Chicago Throws Out 23,000 Duplicate Tickets Issued Since 1992 to Motorists Who Didn't Have Vehicle Stickers." *ProPublica*.
- Sanchez, Melissa and Elliot Ramos. 2018. "Chicago Hiked the Cost of Vehicle City Sticker Violations to Boost Revenue. But It's Driven More Low-Income, Black Motorists Into Debt." *ProPublica*.
- Sanchez, Melissa and Sandhya Kambhampati. 2018. "How Chicago Ticket Debt Sends Black Motorists Into Bankruptcy." *ProPublica*.
- U.S. Department of Justice Civil Rights Division. 2015. "Investigation of the Ferguson Police Department." U.S. Department of Justice.

Figure 1: Time Series of Sticker Ticket Volume by Issuing Agency

Panel A: Chicago Police Department

Panel B: Non-Chicago Police Department

Notes: This figure reports time series of sticker tickets issued and sticker tickets issued per capita by neighborhood and ticketing agency. Black neighborhoods are defined as zip codes with greater than seventy-five percent Black population share. Panel A reports results for CPD and Panel B reports results for non-CPD agencies. Solid lines report levels (left axis), dashed lines report per-capita population rates (right axis). Blue lines represent Black neighborhoods and gray lines represent non-Black neighborhoods. The vertical line in 2011 denotes the last year prior to the reform. Population is measured using the 2007-2011 American Community Survey.

Figure 2: Event Study Estimates of Sticker Tickets and Outcomes at the Ticket-Level by Issuing Agency

Notes: This figure reports event study estimates of sticker ticketing behavior and sticker ticket outcomes at the ticket level, estimated separately for the Chicago Police Department (CPD) and non-CPD agencies. Each point represents the interaction of $Black_i$ and the corresponding year fixed effect, relative to the level in 2011. The blue points report estimates for CPD and the gray points represent estimates for non-CPD. Shaded regions represent 95 percent confidence intervals with standard errors clustered at the neighborhood level.

Figure 3: Event Study Estimates of Sticker Tickets and Outcomes at the Neighborhood-Level by Issuing Agency

Notes: This figure reports event study estimates of sticker ticketing behavior and sticker ticket outcomes at the neighborhood level, estimated separately for the Chicago Police Department (CPD) and non-CPD agencies. Each point represents the interaction of $Black_i$ and the corresponding year fixed effect, relative to the level in 2011. The blue points report estimates for CPD and the gray points represent estimates for non-CPD. Shaded regions represent 95 percent confidence intervals with standard errors clustered at the neighborhood level.

Figure 4: Joint Distributions of Neighborhood-Level Estimates and Neighborhood Characteristics

Notes: This figure reports joint distributions of neighborhood-level one-way difference estimates across different outcomes, along with neighborhood-level estimates with pre-reform characteristics. Panels A and B plot the change in sticker tickets and sticker purchases for Black and non-Black neighborhoods, by CPD and non-CPD ticketing agency, respectively. Panels C through F plot the change in sticker tickets issued by CPD against pre-reform neighborhood characteristics, calculated using data from 2008-2011. Each point represents a neighborhood, defined at the zip code level. Navy dots represent Black neighborhoods and gray circles represent non-Black neighborhoods. Dashed lines represent linear lines of best fit, estimated separately by neighborhood type.

Figure 5: Estimating and Decomposing Officer-Specific Responses to Sticker Fine Increase

Notes: This figure plots estimates of δ_j for different outcomes against each other. In Panels A and B we plot estimates of neighborhood race-specific δ_j responses against the overall race-agnostic δ_j response on the x-axis. In Panels C and D, we plot the race-specific sticker ticket outcomes against the race-specific sticker ticket responses, separately by race. There are 100 bins per outcome in the top two panels and 40 bins per outcome in the lower two panels. For exposition, we drop the first and last bin for each outcome. Reported coefficients estimated on the underlying officer-level estimates. Robust standard errors are reported in parentheses. *** = significant at 1 percent level, ** = significant at 5 percent level, * = significant at 10 percent level.

Table 1: Annual Volume and Revenue from Top Ten Revenue Generating Tickets in Chicago

			2007-2011	2011					2012-2018	2018		
	Tickets	Revenue	Avg.	Rev.	Rev.	Rev./	Tickets	Revenue	Avg.	Rev.	Rev.	Rev./
	(8000)	(80008)	Fine	Share	Rank	E[Rev.]	(8000)	(80008)	Fine	Share	Rank	${ m E[Rev.]}$
	(1)	(3)	(3)	(4)	(2)	(9)	(2)	(8)	(6)	(10)	(11)	(12)
Expired Meter	404	19,533	20	0.14	П	0.97	274	14,431	20	0.10	4	1.05
No City Sticker	178	18,614	120	0.14	2	0.87	200	27,904	200	0.20	П	0.70
Expired Plates	368	17,151	50	0.13	3	0.93	351	17,972	09	0.13	2	0.85
Street Cleaning	282	14,820	50	0.11	4	1.05	263	15,159	09	0.11	3	0.96
Residential Permit Parking	222	12,858	09	0.09	2	0.96	185	13,047	22	0.00	5	0.94
Parking Prohibited Anytime	145	8,046	09	90.0	9	0.93	129	8,932	22	90.0	9	0.93
Rush Hour Parking	122	7,123	09	0.05	2	0.97	64	5,388	100	0.04	∞	0.84
Rear And Front Plate Required	154	6,782	20	0.05	∞	0.88	117	4,379	09	0.03	10	0.63
Park In Transit Stand	51	4,906	100	0.04	6	0.95	35	3,215	100	0.02	11	0.91
Within 15' Of Fire Hydrant	46	4,549	100	0.03	10	0.99	41	4,949	150	0.04	6	0.80

Notes: This table reports average annual characteristics of the top ten revenue generating tickets from 2007-2011 and characteristics for the ticket, along with the revenue share rank in Columns 5 and 11. Columns 6 and 12 report the ratio of revenue received and expected revenue, calculated as the base fine amount times ticket volume. The revenue share is less than one when collected revenue plus applicable late fees is less than the expected collected amount if all written tickets were paid on time, and is greater than one if collected revenue plus applicable same set of tickets from 2012-2018. The type of ticket is listed in each row. Columns 1 and 7 report annual ticket volume, Columns 2 and 8 report annual ticket revenue, Columns 3 and 9 report the modal fine amount, Columns 4 and 10 report the revenue share of the listed late fees exceeds this expectation.

Table 2: Descriptive Statistics by Neighborhood: 2007-2011

All	Black	Non-Black
Neighborhoods	Neighborhoods	Neighborhoods
(1)	(2)	(3)
0.503	0.602	0.487
0.076	0.149	0.064
0.527	0.471	0.548
0.228	0.308	0.197
0.021	0.039	0.014
0.224	0.182	0.240
0.572	0.655	0.541
21,020	$19,\!519$	21,346
3,176	4,842	2,814
1,674	2,280	1,542
723	1,492	556
66	188	40
713	882	676
1,816	3,173	1,521
20,301	16,409	21,147
0.305	0.934	0.168
47,966	50,965	47,314
$20,\!425$	17,320	21,100
	Neighborhoods (1) 0.503 0.076 0.527 0.228 0.021 0.224 0.572 21,020 3,176 1,674 723 66 713 1,816 20,301 0.305 47,966	Neighborhoods Neighborhoods (1) (2) 0.503 0.602 0.076 0.149 0.527 0.471 0.228 0.308 0.021 0.039 0.224 0.182 0.572 0.655 21,020 19,519 3,176 4,842 1,674 2,280 723 1,492 66 188 713 882 1,816 3,173 20,301 16,409 0.305 0.934 47,966 50,965

Notes: This table reports descriptive statistics by neighborhood type over the period 2007-2011. Panel A reports mean outcomes at the ticket-level and Panels B and C report mean annual outcomes at the neighborhood level. Column 1 reports overall means, Column 2 reports means in Black neighborhoods, defined as zip codes with a greater than seventy-five percent Black population share, and Column 3 reports means in non-Black neighborhoods. Sticker purchase data covers the period 2008-2011. Outcomes in Panel C are calculated using the 2007-2011 American Community Survey. We approximate total vehicles by aggregating bins based on survey responses and top code the highest bin as representing four vehicles.

Table 3: Difference-in-Differences Estimates of Disparate Ticketing and Ticket Outcomes

	Tickets	Revenue	Paid	Notice	Bankruptcy	Dismissed
$Ticket\hbox{-}Level\ Estimates$	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: CPD						
Sticker:	0.038^{***}	-30.886***	-0.094***	0.070^{***}	0.014^{***}	0.010
	(0.007)	(3.734)	(0.012)	(0.011)	(0.003)	(0.008)
Non-Sticker:	-0.038***	-13.150***	-0.079***	0.059^{***}	0.010^{***}	0.010^*
	(0.007)	(1.098)	(0.008)	(0.005)	(0.001)	(0.005)
Panel B: Non-CPD						
Sticker:	0.011***	-35.487***	-0.137***	0.086***	0.018***	0.033***
	(0.004)	(3.308)	(0.011)	(0.007)	(0.002)	(0.007)
Non-Sticker:	-0.011***	-5.531***	-0.049***	0.037***	0.005***	0.007
	(0.004)	(0.835)	(0.008)	(0.005)	(0.001)	(0.004)
$Neighborhood\text{-}Level\ Esti$	mates					
Panel C: CPD						
Sticker:	2,118***	200,991***	198*	1,237***	198***	485***
	(426)	(44,071)	(102)	(215)	(33)	(95)
Non-Sticker:	10,901***	460,251***	5,922***	2,198***	281***	2,498***
	(1,442)	(71,477)	(897)	(309)	(45)	(336)
Panel D: Non-CPD		,	, ,	, ,		, ,
Sticker:	-322**	-91,266***	-414***	76	26***	-10
	(123)	(19,768)	(73)	(62)	(8)	(25)
Non-Sticker:	-3,367**	-337,221***	-2,356*	-188	-16	-806***
	(1,516)	(82,442)	(1,185)	(179)	(19)	(230)

Notes: This table reports difference-in-differences estimates of the change in ticketing behavior across neighborhoods by ticket type and ticketing agency, estimated at the ticket level in Panels A and B and estimated at the zip code level in Panels C and D. Each coefficient is from a separate regression and represents the interaction of $Black \times Post$. Panels A and C report results for tickets written by the Chicago Police Department. Panels B and D reports results for tickets written by the Parking Enforcement Authority (Non-CPD). Rows labeled as Sticker report results for sticker tickets and rows labeled as Non-Sticker report results for all other tickets. Column 1 reports the probability a ticket is a sticker or non-sticker ticket or the number of each ticket type in the area-level estimates. Column 2 reports the associated collected revenue, Columns 3-6 report the outcomes of the tickets as bankruptcy, dismissed, paid, or having received a notice of non-payment. All regressions include zip code and year fixed effects. Standard errors clustered at the zip code level are reported in parentheses. *** = significant at 1 percent level, ** = significant at 5 percent level, * = significant at 10 percent level.

Table 4: Decomposing Relative Contributions of Differential Compliance and Enforcement in Sticker Ticketing Gap

	Black	Non-Black	
	Neighborhoods	Neighborhoods	Gap
Panel A: Levels	(1)	(2)	(3)
Δ Tickets	1,886	-232	2,118
Δ Purchases	219	199	20
Δ Tickets - Δ Purchases	1,668	-431	2,098
Enforcement Share	0.884	_	0.991
Panel B: Per Vehicle			
Δ Tickets	0.116	-0.022	0.137
Δ Purchases	0.027	0.072	-0.044
Δ Tickets - Δ Purchases	0.088	-0.093	0.093
Enforcement Share	0.763	_	0.678

Notes: This table calculates the enforcement share component of the observed change in sticker tickets. The enforcement share is the change in observed sticker ticket volume, accounting for the observed differential change in sticker purchases. Panel A reports this exercise in levels and Panel B reports this exercise in per-vehicle terms. Column 1 reports single-difference estimates in Black neighborhoods, Column 2 reports single-difference estimates in Non-Black neighborhoods, and Column 3 reports the difference-in-differences. In Panel B, Column 3, we instead add Δ Tickets and Δ Purchases to account for the relative reduction in sticker purchases.

Table 5: Correlating Officer Policy Responses with Observable Characteristics

		$\delta_j \text{ Res}$	ponse	
Panel A: $\delta_j(Sticker, Black)$	$\overline{(1)}$	(2)	(3)	(4)
Male	-0.001			-0.001
	(0.003)			(0.003)
Age	-0.000**			-0.000
	(0.000)			(0.000)
Hispanic		-0.001		-0.002
		(0.003)		(0.003)
Asian or Native American		-0.004		-0.005
		(0.006)		(0.006)
Black		-0.010***		-0.009**
		(0.004)		(0.004)
Years Experience			-0.001***	-0.001*
			(0.000)	(0.000)
Complaints per Year			-0.000	-0.001
			(0.002)	(0.002)
Tickets Issued per Year (00s)			0.001	0.001
			(0.001)	(0.001)
Panel B: $\delta_i(Sticker, Non-Black)$				
Male	0.000			0.000
1,16,10	(0.002)			(0.002)
Age	-0.000			-0.000
1160	(0.000)			(0.000)
Hispanic	(0.000)	0.002		0.002
F		(0.002)		(0.002)
Asian or Native American		0.011*		0.011*
		(0.006)		(0.006)
Black		-0.000		0.000
		(0.002)		(0.002)
Years Experience		,	0.000	0.000
•			(0.000)	(0.000)
Complaints per Year			0.000	0.000
1			(0.002)	(0.002)
Tickets Issued per Year (00s)			0.002***	0.002***
1 /			(0.001)	(0.001)
Observations	5,066	5,066	5,066	5,066
Unit Fixed Effects	Yes	Yes	Yes	Yes

Notes: This table reports regressions of officer-specific δ_j responses against officer-level observables. The sample includes only police officers in patrol units. The dependent variable in Panel A is the officer-specific δ_j for sticker tickets in Black neighborhoods and the dependent variable in Panel B is the corresponding δ_j for sticker tickets in Non-Black neighborhoods. Experience, complaints and tickets issued per year are all measured prior to the policy change. Robust standard errors are reported in parentheses. *** = significant at 1 percent level, ** = significant at 5 percent level, * = significant at 10 percent level.

Appendix: Additional Results

Appendix Figure 1: Event Study Estimates of Non-Sticker Tickets and Outcomes at the Ticket-Level by Issuing Agency

Notes: This figure reports event study estimates of non-sticker ticketing behavior and non-sticker ticket outcomes at the ticket level, estimated separately for the Chicago Police Department (CPD) and non-CPD agencies. Each point represents the interaction of $Black_i$ and the corresponding year fixed effect, relative to the level in 2011. The blue points report estimates for CPD and the gray points represent estimates for non-CPD. Shaded regions represent 95 percent confidence intervals with standard errors clustered at the neighborhood level.

Appendix Figure 2: Event Study Estimates of Non-Sticker Tickets and Outcomes at the Neighborhood-Level by Issuing Agency

Notes: This figure reports event study estimates of non-sticker ticketing behavior and non-sticker ticket outcomes at the neighborhood level, estimated separately for the Chicago Police Department (CPD) and non-CPD agencies. Each point represents the interaction of $Black_i$ and the corresponding year fixed effect, relative to the level in 2011. The blue points report estimates for CPD and the gray points represent estimates for non-CPD. Shaded regions represent 95 percent confidence intervals with standard errors clustered at the neighborhood level.

Appendix Figure 3: Event Study Estimates of Sticker Tickets and Outcomes at the Census Tract-Level by Issuing Agency

Notes: This figure reports event study estimates of sticker ticketing behavior and sticker ticket outcomes at the neighborhood (Census tract) level, estimated separately for the Chicago Police Department (CPD) and non-CPD agencies. Each point represents the interaction of $Black_i$ and the corresponding year fixed effect, relative to the level in 2011. The blue points report estimates for CPD and the gray points represent estimates for non-CPD. Shaded regions represent 95 percent confidence intervals with standard errors clustered at the neighborhood level.

Appendix Figure 4: Distribution of Tickets Around the End of Sticker Renewal Grace Period: 2011-2012

Notes: This figure reports the number of tickets issued per day in 2011 and 2012 by CPD and non-CPD ticketing agencies. Light blue histograms represent 2011 and dark blue histograms represent 2012. The x-axis is normalized to the end of the year-specific sticker renewal grace period and includes 15 days before and 90 days after the grace period. Panels A and C ticketing distributions for CPD and Panels B and D report ticketing distributions for non-CPD agencies. The upper panels report the distribution of sticker tickets and the lower panels report the distribution of non-sticker tickets.

Appendix Figure 5: Event Study Estimates of Sticker Purchasing Behavior

Panel A: Stickers Purchased - All

Panel B: Sticker Purchase Revenue - All

Panel C: Stickers Purchased - Passenger

Panel D: Sticker Purchase Revenue - Passenger

Notes: This figure reports event study estimates of sticker purchases and sticker purchase revenue at the neighborhood level. Each point represents the interaction of $Black_i$ and the corresponding year fixed effect, relative to the level in 2011. All includes passenger, large vehicles, and motorcycles, the latter of which we exclude from the decomposition in the lower panels. Corresponding difference-in-differences estimates are reported in each panel. Shaded regions represent 95 percent confidence intervals with standard errors clustered at the neighborhood level. *** = significant at 1 percent level, ** = significant at 5 percent level, * = significant at 10 percent level.

Appendix Figure 6: Joint Distributions of Neighborhood-Level Estimates and Crime Levels

10000

15000 ted to CPD

Linear Fit (Non-Black)

Panel A: Δ Tickets and Crime - CPD

Panel B: Δ Tickets and Crime - Non-CPD

Notes: This figure reports joint distributions of neighborhood-level one-way difference estimates across different outcomes, along with neighborhood-level estimates with pre-reform characteristics. Panels A and B plot the change in sticker tickets for Black and non-Black neighborhoods for CPD and non-CPD agencies, respectively, against neighborhood crime levels. Neighborhood crime is measured as the annual average from 2008-2011. We use levels rather than rates for exposition to account for a handful of commercial neighborhoods with low population, although results using rates are similar. Each point represents a neighborhood, defined at the zip code level. Navy dots represent Black neighborhoods and gray circles represent non-Black neighborhoods. Dashed lines represent linear lines of best fit, estimated separately by neighborhood type.

Appendix Figure 7: Estimating and Decomposing Officer-Specific Responses to Sticker Fine Increase - Empirical Bayes-Adjusted

Notes: This figure plots Empirical Bayes-adjusted estimates of δ_j for different outcomes against each other. In Panels A and B we plot estimates of neighborhood race-specific δ_j responses against the overall race-agnostic δ_j response on the x-axis. In Panels C and D, we plot the race-specific sticker ticket outcomes against the race-specific sticker ticket responses, separately by race. There are 100 bins per outcome in the top two panels and 40 bins per outcome in the lower two panels. For exposition, we drop the first and last bin for each outcome. Reported coefficients estimated on the underlying officer-level estimates. Robust standard errors are reported in parentheses. *** = significant at 1 percent level, ** = significant at 5 percent level, * = significant at 10 percent level.

Appendix Figure 8: Officer-Specific Policy Responses and Assignment Demographics

Notes: This figure reports the correlation between officer-specific δ_j sticker ticket responses by neighborhood demographic group and the demographic composition of the modal unit assignment. Each point represents a separate unit assignment and plots the within-bin mean against share Black. Blue dots denote $\delta_j(Sticker, Black)$ responses (left axis) and gray circles represent $\delta_j(Sticker, Non - Black)$ responses (right axis). Dashed lines denote linear fits. Reported coefficients and standard errors are estimated on the underlying data. Robust standard errors are reported in parentheses. *** = significant at 1 percent level, ** = significant at 5 percent level, * = significant at 10 percent level.

Appendix Table 1: Annual Volume and Revenue from Top Ten Revenue Generating Tickets in Chicago by Neighborhood Demographic Composition

			2007-2011	2011					2012-2018	2018		
	Tickets	Revenue	Avg.	Rev.	Rev.	Rev./	Tickets	Revenue	Avg.	Rev.	Rev.	Rev./
	(8000)	(8000)	Fine	Share	Rank	E[Rev.]	(8000)	(s000)	Fine	Share	Rank	E[Rev.]
Panel A: Black Neighborhoods	(1)	(2)	(3)	(4)	(2)	(9)	(2)	(8)	(6)	(10)	(11)	(12)
No City Sticker	48	5,034	120	0.24	-	0.87	29	7,600	200	0.33	_	0.57
Expired Plates	79	3,631	20	0.18	2	0.91	84	3,676	09	0.16	2	0.73
Street Cleaning	34	1,816	50	0.00	က	1.07	34	1,851	09	0.09	က	0.92
Rear And Front Plate Required	32	1,345	50	90.0	4	0.85	27	854	09	0.04	∞	0.53
Park In Transit Stand	13	1,239	100	90.0	5	0.98	11	946	100	0.04	9	0.90
Residential Permit Parking	18	1,076	09	0.05	9	0.98	16	1,026	75	0.05	5	0.86
Parking Prohibited Anytime	15	913	09	0.04	7	0.99	18	1,231	75	0.05	4	0.91
Within 15' Of Fire Hydrant	∞	800	100	0.04	∞	0.98	∞	913	150	0.04	7	0.73
Rush Hour Parking	14	962	09	0.04	6	0.97	7	544	100	0.02	11	0.76
Expired Meter	11	266	20	0.03	10	1.02	7	363	20	0.02	14	0.99
Panel B: Non-Black Neighborhoods												
Expired Meter	393	18,966	20	0.16	\vdash	0.97	266	14,068	20	0.12	က	1.06
No City Sticker	129	13,580	120	0.12	2	0.88	133	20,303	200	0.17	П	0.77
Expired Plates	288	13,520	20	0.12	က	0.94	267	14,296	09	0.12	2	0.89
Street Cleaning	248	13,004	20	0.11	4	1.05	229	13,308	09	0.11	4	0.97
Residential Permit Parking	204	11,782	09	0.10	ည	0.96	169	12,021	75	0.10	ಬ	0.95
Parking Prohibited Anytime	129	7,133	09	0.06	9	0.92	111	7,701	75	0.07	9	0.93
Rush Hour Parking	108	6,327	09	0.05	7	86.0	22	4,843	100	0.04	∞	0.85
Rear And Front Plate Required	122	5,437	20	0.05	∞	0.89	06	3,526	09	0.03	10	0.65
Within 15' Of Fire Hydrant	38	3,749	100	0.03	6	0.99	33	4,036	150	0.03	6	0.81
Park In Transit Stand	39	3,667	100	0.03	10	0.94	25	2,269	100	0.02	11	0.92

Notes: This table reports average annual characteristics of the top ten revenue generating tickets from 2007-2011 and characteristics for the The type of ticket is listed in each row. Columns 1 and 7 report annual ticket volume, Columns 2 and 8 report annual ticket revenue, Columns 3 and 9 report the modal fine amount, Columns 4 and 10 report the revenue share of the listed ticket, along with the revenue share rank in Columns 5 and 11. Columns 6 and 12 report the ratio of revenue received and expected revenue, calculated as the base fine amount times ticket volume. The revenue share is less than one when collected revenue plus applicable late fees is less than the expected collected amount same set of tickets from 2012-2018, separately by neighborhood demographic composition. Panel A reports statistics for Black neighborhoods, define as neighborhoods whose population is at least seventy-five percent Black, and Panel B reports statistics for Non-Black neighborhoods. if all written tickets were paid on time, and is greater than one if collected revenue plus applicable late fees exceeds this expectation.

Appendix Table 2: Robustness Checks of Ticket-Level Regressions

			Sticker					Non-sticker		
Panel A: CPD	(1)	(2)	(3)	(4)	(2)	(9)	(7)	(8)	(6)	(10)
Tickets	0.020**	0.039***	0.040***	0.044***	0.037***	-0.020**	-0.039***	-0.040***	-0.044***	-0.037***
	(0.000)	(0.007)	(0.007)	(0.000)	(0.007)	(0.009)	(0.007)	(0.007)	(0.000)	(0.007)
Revenue	-26.145***	-26.880***	-26.832***	-33.557***	-28.089***	-13.234***	-12.542***	-12.199***	-13.191^{***}	-12.596***
	(4.079)	(3.581)	(3.745)	(4.152)	(4.046)	(1.128)	(1.086)	(1.078)	(1.041)	(1.181)
Paid	-0.061***	-0.095***	-0.094***	-0.110***	-0.084***	-0.065**	-0.078***	-0.074***	-0.081***	-0.073***
	(0.014)	(0.012)	(0.011)	(0.011)	(0.013)	(0.010)	(0.007)	(0.007)	(0.007)	(0.008)
Notice	0.032**	0.071***	0.075***	0.078***	0.066***	0.042***	0.059***	0.060***	0.059***	0.057***
	(0.013)	(0.011)	(0.010)	(0.013)	(0.012)	(0.008)	(0.005)	(0.005)	(0.005)	(0.000)
Bankruptcy	0.008	0.014***	0.014***	0.016***	0.012^{***}	0.008***	0.010***	0.010^{***}	0.010^{***}	0.009***
	(0.003)	(0.002)	(0.002)	(0.003)	(0.003)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Dismissed	0.021***	0.010	0.005	0.017*	0.006	0.014**	*600.0	0.004	0.012^{**}	0.007
	(0.007)	(0.007)	(0.004)	(0.000)	(0.008)	(0.006)	(0.005)	(0.004)	(0.005)	(0.005)
Panel B: Non-CPD										
Tickets	0.010*	0.012^{***}	0.014^{***}	0.008**	0.014***	-0.010*	-0.012^{***}	-0.014***	-0.008**	-0.014***
	(0.005)	(0.004)	(0.004)	(0.004)	(0.003)	(0.005)	(0.004)	(0.004)	(0.004)	(0.003)
Revenue	-35.654***	-31.763***	-29.038***	-33.660***	-35.385***	-6.181***	-5.251***	-4.555***	-4.530***	-5.976***
	(3.842)	(3.250)	(2.836)	(3.401)	(3.492)	(0.929)	(0.834)	(0.695)	(0.769)	(0.795)
Paid	-0.137***	-0.138***	-0.128***	-0.135***	-0.137***	-0.036***	-0.049***	-0.044***	-0.033***	-0.055***
	(0.012)	(0.011)	(0.010)	(0.011)	(0.011)	(0.012)	(0.008)	(0.007)	(0.008)	(0.000)
Notice	0.084***	0.085***	0.091***	0.083***	0.086***	0.030***	0.037***	0.039***	0.029***	0.041***
	(0.010)	(0.007)	(0.008)	(0.008)	(0.007)	(0.008)	(0.005)	(0.000)	(0.005)	(0.004)
Bankruptcy	0.017***	0.018***	0.018***	0.016***	0.018***	0.004***	0.005***	0.005***	0.003***	0.005***
	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Dismissed	0.036***	0.035***	0.018***	0.036***	0.032^{***}	0.003	0.007	-0.000	0.001	0.009*
	(0.008)	(0.007)	(0.004)	(0.008)	(0.008)	(0.004)	(0.004)	(0.003)	(0.004)	(0.005)
Zip Fixed Effects	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Year Fixed Effects	$N_{ m o}$	Yes	Yes	Yes	Yes	$N_{\rm o}$	Yes	Yes	Yes	Yes
Owner Controls	$N_{ m o}$	$N_{ m o}$	Yes	$N_{\rm o}$	$N_{ m o}$	$N_{\rm o}$	$N_{ m o}$	Yes	$N_{ m o}$	$N_{ m o}$
Black Majority Cutoff	0.75	0.75	0.75	0.5	6.0	0.75	0.75	0.75	0.5	0.0

written tickets and Panel B reports results for non-CPD-written tickets. The outcome is listed in each row. Columns 1-5 report estimates for sticker tickets and Columns 6-10 report estimates for non-sticker tickets. Each cell corresponds to a different point estimate. Column 1 estimates the simple DiD without any additional fixed effects, Column 2 reproduces our main text estimate, Column 3 includes controls for owner city, car make, and an indicator for out of state license place, Column 4 redefines majority Black to be neighborhoods with above Standard errors clustered at the zip code level are reported in parentheses. *** = significant at 1 percent level, ** = significant at 5 percent 50 percent Black population share, and Column 5 changes the same threshold to 90 percent. Columns 6-10 repeat the analogous exercises. Notes: This table reports robustness checks of our ticket-level difference-in-differences (DiD) estimates. Panel A reports results for CPDlevel, * = significant at 10 percent level.

Appendix Table 3: Robustness Checks of Neighborhood-Level Regressions

		Sticker	ker			Non-sticker	ticker	
Panel A: CPD	(1)	(2)	(3)	(4)	(2)	(9)	(7)	(8)
Tickets	2,118***	2,118***	1,836***	$2,020^{***}$	10,901***	10,901***	10,944***	10,375***
	(423)	(426)	(350)	(469)	(1,432)	(1,442)	(1,466)	(1,476)
Revenue	200,991***	200,991***	$185,132^{***}$	$194,000^{***}$	$460,251^{***}$	460,251***	$464,983^{***}$	$436,990^{***}$
	(43,774)	(44,071)	(35,772)	(48,519)	(70,994)	(71,477)	(73,097)	(73,078)
Paid	198*	198*	205**	181	5,922***	5,922***	6,302***	5,677***
	(102)	(102)	(63)	(110)	(891)	(897)	(964)	(006)
Notice	1,237***	1,237***	1,021***	1,191***	2,198***	2,198***	1,885***	2,095***
	(213)	(215)	(181)	(238)	(307)	(308)	(271)	(340)
Bankruptcy	198***	198***	163^{***}	188**	281***	281***	228***	260***
	(32)	(33)	(28)	(36)	(45)	(45)	(38)	(49)
Dismissed	485***	485***	447***	458***	2,498***	2,498***	2,527***	2,342***
	(95)	(95)	(77)	(104)	(333)	(336)	(344)	(335)
Panel B: Non-CPD								
Tickets	-322**	-322**	-344***	-365***	-3,367**	-3,367**	-3,709**	$-3,744^{**}$
	(122)	(123)	(102)	(125)	(1,506)	(1,516)	(1,587)	(1,488)
Revenue	-91,266***	-91,266***	-92,285***	-97,395***	-337,221***	-337,221***	-357,721***	-361,087***
	(19,635)	(19,768)	(19,270)	(19,458)	(81,885)	(82,442)	(84,458)	(79,532)
Paid	-414***	-414**	-405***	-430***	$-2,356^{*}$	$-2,356^{*}$	$-2,545^{**}$	-2,590**
	(72)	(73)	(64)	(75)	(1,177)	(1,185)	(1,253)	(1,172)
Notice	92	92	26	59	-188	-188	-214	-253
	(62)	(62)	(44)	(29)	(178)	(179)	(160)	(181)
Bankruptcy	26***	26***	20^{***}	24^{**}	-16	-16	-22	-24
	(8)	(8)	(9)	(6)	(18)	(19)	(15)	(19)
Dismissed	-10	-10	-16	-18	***908-	***908-	-927***	-877***
	(25)	(25)	(22)	(26)	(228)	(230)	(237)	(222)
Zip Fixed Effects	No	Yes	Yes	Yes	No	Yes	Yes	Yes
Year Fixed Effects	$N_{\rm o}$	Yes	Yes	Yes	$N_{\rm o}$	Yes	Yes	Yes
Owner Controls	$N_{\rm o}$	m No	m No	$N_{ m o}$	$N_{\rm o}$	$N_{ m o}$	$N_{ m o}$	$N_{ m o}$
Black Majority Cutoff	0.75	0.75	0.5	6.0	0.75	0.75	0.5	6.0

written tickets and Panel B reports results for non-CPD-written tickets. The outcome is listed in each row. Columns 1-4 report estimates for sticker tickets and Columns 5-8 report estimates for non-sticker tickets. Each cell corresponds to a different point estimate. Column 1 estimates the simple DiD without any additional fixed effects, Column 2 reproduces our main text estimate, Column 3 redefines majority Black to be neighborhoods with above 50 percent Black population share, and Column 4 changes the same threshold to 90 percent. Columns 5-8 repeat the analogous exercises. Standard errors clustered at the zip code level are reported in parentheses. *** = significant at 1 percent Notes: This table reports robustness checks of our neighborhood difference-in-differences (DiD) estimates. Panel A reports results for CPDlevel, ** = significant at 5 percent level, * = significant at 10 percent level.

Appendix Table 4: Difference-in-Differences Estimates of Disparate Ticketing and Ticket Outcomes at Census Tract-Level

	Tickets	Revenue	Paid	Notice	Bankruptcy	Dismissed
Ticket-Level Estimates	$\overline{}$ (1)	(2)	(3)	(4)	(5)	(6)
Panel A: CPD						
Sticker:	0.045^{***}	-36.638***	-0.113***	0.084***	0.018***	0.011^{***}
	(0.003)	(1.385)	(0.005)	(0.004)	(0.001)	(0.004)
Non-Sticker:	-0.045***	-14.119***	-0.086***	0.062***	0.010***	0.013***
	(0.003)	(0.531)	(0.003)	(0.002)	(0.001)	(0.003)
Panel B: Non-CPD	,	, ,	,	,	, ,	, ,
Sticker:	0.013***	-38.343***	-0.152***	0.095***	0.018***	0.039***
	(0.002)	(1.436)	(0.005)	(0.004)	(0.001)	(0.004)
Non-Sticker:	-0.013***	-6.286***	-0.052***	0.039***	0.005***	0.008***
	(0.002)	(0.331)	(0.003)	(0.002)	(0.001)	(0.002)
Neighborhood-Level Esti	mates					
Panel C: CPD						
Sticker:	135***	12,371***	20***	72***	11***	32***
	(9)	(898)	(3)	(5)	(1)	(2)
Non-Sticker:	881***	37,368***	525***	140***	16***	199***
	(106)	(5,459)	(70)	(9)	(1)	(30)
Panel D: Non-CPD	,	(, , ,	()	()	· /	()
Sticker:	-27***	-8,847***	-28***	2	1***	-2*
	(4)	(627)	(2)	(1)	(0)	(1)
Non-Sticker:	-225***	-26,197***	-139**	-18**	-2**	-65***
	(80)	(5,401)	(56)	(9)	(1)	(16)

Notes: This table reports difference-in-differences estimates of the change in ticketing behavior across neighborhoods by ticket type and ticketing agency, estimated at the ticket level in Panels A and B and estimated at the tract level in Panels C and D. Each coefficient is from a separate regression and represents the interaction of $Black \times Post$. Panels A and C report results for tickets written by the Chicago Police Department. Panels B and D reports results for tickets written by the Parking Enforcement Authority (Non-CPD). Rows labeled as Sticker report results for sticker tickets and rows labeled as Non-Sticker report results for all other tickets. Column 1 reports the probability a ticket is a sticker or non-sticker ticket or the number of each ticket type in the area-level estimates. Column 2 reports the associated collected revenue, Columns 3-6 report the outcomes of the tickets as paid, received a non-payment notice, bankrupt, or dismissed. All regressions include tract and year fixed effects. Standard errors clustered at the tract level are reported in parentheses. *** = significant at 1 percent level, ** = significant at 5 percent level, * = significant at 10 percent level.

Appendix Table 5: Decomposing Differential Outcomes by Owner Zip Code Demographics

	Tickets	Revenue	Paid	Notice	Bankruptcy	Dismissed
$Ticket ext{-}Level\ Estimates$	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: CPD						
Main:	0.038***	-30.886***	-0.094***	0.070***	0.014^{***}	0.010
	(0.007)	(3.734)	(0.012)	(0.011)	(0.003)	(0.008)
Black Zip Owner:	-0.021***	-0.193	-0.131***	0.083***	0.017^{***}	0.010***
	(0.006)	(1.385)	(0.007)	(0.009)	(0.002)	(0.002)
Non-Black Zip Owner:	0.006	-28.517***	0.025***	-0.011	-0.002	-0.006*
	(0.007)	(3.127)	(0.009)	(0.007)	(0.002)	(0.003)
Panel B: Non-CPD						
Main:	0.011^{***}	-35.487***	-0.137***	0.086***	0.018***	0.033***
	(0.004)	(3.308)	(0.011)	(0.007)	(0.002)	(0.007)
Black Zip Owner:	0.001	16.750***	-0.108***	0.090***	0.016^{***}	0.003
	(0.005)	(2.178)	(0.005)	(0.007)	(0.002)	(0.002)
Non-Black Zip Owner:	-0.004	-46.116***	-0.028***	0.009*	0.004***	0.011***
	(0.007)	(2.491)	(0.008)	(0.004)	(0.001)	(0.002)
$Neighborhood\text{-}Level\ Estimates$						
Panel C: CPD						
Main:	2,118***	200,991***	198*	1,237***	198***	485***
	(426)	(44,071)	(102)	(215)	(33)	(95)
Black Zip Owner:	1,193***	141,522***	-70	916***	154***	192***
	(256)	(28,708)	(58)	(148)	(22)	(37)
Non-Black Zip Owner:	696***	51,678***	232***	298***	41***	124***
	(162)	(17,891)	(53)	(81)	(13)	(31)
Panel D: Non-CPD						
Main:	-322**	-91,266***	-414***	76	26***	-10
	(123)	(19,768)	(73)	(62)	(8)	(25)
Black Zip Owner:	-70	15,913	-198***	108**	21***	-2
	(71)	(9,658)	(46)	(45)	(6)	(9)
Non-Black Zip Owner:	-250***	-101,006***	-200***	-31	4	-24**
	(54)	(13,310)	(35)	(20)	(3)	(10)

Notes: This table decomposes our main difference-in-differences estimates into outcomes experienced by owners in majority (>75 percent) Black neighborhoods and those in non-Black majority neighborhoods. We interact each outcome in the column title with indicators for $Black_i$ and $(1 - Black_i)$. The "Main" row reproduces our main text estimate and the corresponding "Black" and "Non-Black" rows decompose the Main outcome following the previous description. Due to missing owner information for some tickets, the decomposition will not exactly add to the full sample estimate. Panels A and C report results for CPD-written tickets and Panels B and D report results for non-CPD-written tickets. The upper panels report ticket-level estimates and the lower panels report neighborhood-level estimates. Standard errors clustered at the zip code level are reported in parentheses. *** = significant at 1 percent level, ** = significant at 5 percent level, * = significant at 10 percent level.

Appendix Table 6: Testing Departmental Responses to Alternative Treatment Margins

		S	ticker Tick	ets	
Panel A: CPD	(1)	(2)	(3)	(4)	(5)
$Black \times Post$	2,118***				1,657***
	(426)				(409)
$High\ Income \times Post$		-532**			135
		(244)			(186)
High Sticker Ticket Rate \times Post		, ,	1,538***		648**
			(402)		(290)
High Sticker Ticket Payment Rate \times Post			, ,	-704***	-226
· ·				(254)	(203)
Panel B: Non-CPD					
$Black \times Post$	-322**				-196
	(123)				(138)
High Income \times Post	, ,	35			$\stackrel{\cdot}{35}^{'}$
		(126)			(119)
High Sticker Ticket Rate \times Post		, ,	-328***		-267**
-			(96)		(105)
High Sticker Ticket Payment Rate \times Post			. /	-82	-211**
, v				(111)	(104)

Notes: This table presents difference-in-differences estimates using alternative treatment definitions. Panel A reports results for CPD-written tickets, and Panel B reports results for non-CPD-written tickets. The corresponding interaction is listed in each row. The outcome in all columns is the number of sticker tickets. Non Black alternative treatment definitions are defined as above or below the sample median. All regressions include zip code and year fixed effects. Standard errors clustered at the zip code level are reported in parentheses. *** = significant at 1 percent level, ** = significant at 5 percent level, * = significant at 10 percent level.

Appendix Table 7: Decomposing Differential Outcomes by Non-Race Neighborhood Characteristics Within Black Neighborhoods

			Sticker	Ticket	Sticke	r Ticket
	Inc	ome	R_i	ate	Payme	ent Rate
	High	Low	High	Low	High	Low
Panel A: CPD	(1)	(2)	$\overline{\qquad \qquad }(3)$	(4)	$\overline{(5)}$	(6)
Sticker	2,745***	1,491***	2,223***	1,176***	903***	2,173***
	(471)	(553)	(422)	(307)	(250)	(410)
<i>p</i> -value	0.0)79	0.0	000	0.	.000
Panel B: Non-CPD						
Sticker	-368**	-275*	-428***	-263**	-96	-432***
	(165)	(161)	(152)	(125)	(108)	(139)
p-value	0.6	670	0.2	220	0.	.029

Notes: This table reports difference-in-differences results which decompose the differential response in Black neighborhoods along other non-race characteristics, estimated at the neighborhood-level. Each non-race characteristic is defined in the pre-reform period and splits the subsample of Black neighborhoods into above- and below-median groups based on the statistic listed in the column title. Sticker ticket rate is the fraction of neighborhood tickets which are sticker tickets. Sticker ticket payment rate is the fraction of neighborhood sticker tickets which are paid. Panel A reports results for CPD-written tickets and Panel B reports results for non-CPD-written tickets. Listed p-values test for differences between coefficient estimates in Black neighborhoods. All regressions include zip code and year fixed effects. Standard errors clustered at the zip code level are reported in parentheses. *** = significant at 1 percent level, ** = significant at 5 percent level, * = significant at 10 percent level.

Appendix Table 8: Difference-in-Differences Estimates of Neighborhood-Level Disparate Ticketing and Ticket Outcomes Using First Sticker Ticket per Year

	Tickets	Revenue	Paid	Notice	Bankruptcy	Dismissed
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: CPD						
All:	2,157***	238,427***	266**	1,279***	219***	391***
	(418)	(48,032)	(107)	(219)	(36)	(74)
First-Time:	1,036***	152,914***	191***	505***	81***	258***
	(207)	(30,735)	(70)	(88)	(12)	(46)
Panel B: Non-CPD	, ,		, ,	, ,	, ,	, ,
All:	-371***	-88,640***	-414***	49	27***	-33*
	(97)	(18,994)	(68)	(44)	(7)	(17)
First-Time:	-344***	-72,475***	-309***	-9	$\overset{\circ}{7}^{**}$	-33***
	(66)	(14,504)	(46)	(19)	(3)	(12)

Notes: This table reports difference-in-differences estimates for first-time sticker tickets at the neighborhood-level, separately by ticketing agency. The sample contains tickets issued from 2007-2017, where we have license plate data. We define the first-time sticker ticket as the first sticker ticket issued to that license plate in a given calendar year. The "All" row includes all sticker tickets in the sample 2007-2017 sample period. Panel A reports results for CPD-written sticker tickets and Panel B reports results for non-CPD-written sticker tickets. The outcome is listed in the column title. All regressions include zip code and year fixed effects. Standard errors clustered at the zip code level are reported in parentheses. *** = significant at 1 percent level, ** = significant at 5 percent level, * = significant at 10 percent level.

Appendix Table 9: Correlating Officer Policy Responses with Observable Characteristics - All Officers

		$\delta_i \text{ Res}$	sponse	
Panel A: $\delta_i(Sticker, Black)$	(1)	(2)	(3)	(4)
Male	-0.000			-0.001
	(0.003)			(0.003)
Age	-0.000***			-0.000
	(0.000)			(0.000)
Hispanic	,	-0.001		-0.001
•		(0.003)		(0.003)
Asian or Native American		-0.005		-0.006
		(0.006)		(0.006)
Black		-0.009**		-0.008
		(0.003)		(0.004)
Years Experience		,	-0.001**	-0.000
•			(0.000)	(0.000)
Complaints per Year			-0.000	-0.001
			(0.002)	(0.002)
Tickets Issued per Year (00s)			0.001	0.000
1 ,			(0.001)	(0.001)
Panel B: $\delta_i(Sticker, Non-Black)$				
Male	0.001			0.000
Waic	(0.001)			(0.002)
Age	-0.002)			-0.002
11gc	(0.000)			(0.000)
Hispanic	(0.000)	0.000		0.001
Hispanic		(0.002)		(0.001)
Asian or Native American		0.002) 0.005		0.002
Asian of Native American		(0.006)		(0.006)
Black		-0.001		-0.000
Diack		(0.001)		(0.002)
Years Experience		(0.002)	0.000	0.002
rears Experience			(0.000)	(0.000)
Complaints per Year			0.000)	0.000
Complaints per Tear			(0.001)	(0.001)
Tickets Issued per Year (00s)			0.001) 0.001 *	0.001
Tickets issued per Tear (00s)			(0.001)	(0.001)
Observations	6,256	6,256	6,256	6,256
Unit Fixed Effects	Yes	Yes	Yes	Yes

Notes: This table reports regressions of officer-specific δ_j responses against officer-level observables. The sample includes all police officers. The dependent variable in Panel A is the officer-specific δ_j for sticker tickets in Black neighborhoods and the dependent variable in Panel B is the corresponding δ_j for sticker tickets in Non-Black neighborhoods. Experience, complaints and tickets issued per year are all measured prior to the policy change. Robust standard errors are reported in parentheses. *** = significant at 1 percent level, ** = significant at 5 percent level, * = significant at 10 percent level.