```
library(dplyr)

rladies_global %>%
  filter(city == 'Austin')
```


R FOR DATA SCIENCE: Exploratory Data Analysis and Workflow

Hello!

Welcome to R-Ladies

1. Introduction

R language, RStudio, R4DS Workshop series

Three things you'll need to install

- Install R -- this is the open-source programming language we'll use (download via CRAN -- Comprehensive R Archive Network)
- 2. **Install RStudio** -- this is the most popular IDE for R and will make your life a lot easier (download from rstudio.com/download)
- 3. **Install the tidyverse** -- this is the group of packages we'll use within R to work with data. Install with one line of code in R: install.packages("tidyverse")

1b.IntroductionR for Data Science Workshop Series

R4DS Workshop Series

- Exploring Data with ggplot2 + dplyr [COMPLETE-see github]
- Exploratory Data Analysis and Workflow [today]
- Data Wrangling in the Tidyverse [November 29]
- Programming -- Functions, Vectors, and Iteration [December 13]
- Modeling with modelr, purrr, and broom [January 24]
- Communicating Results with rmarkdown and ggplot2 [February 21]

The data science process (tidied)

Program

What is the tidyverse?

- Collection of R packages based on tidy data principles
- Designed to work together
- An easier way to code!
- AKA "Hadleyverse" (most packages written by Hadley Wickham)

What is the tidyverse?

What is tidy data?

- Each variable is a column
- Each observation is a row
- Each type of observational unit is a table

id	artist	track	time
1	2 Pac	Baby Don't Cry	4:22
2	2Ge+her	The Hardest Part Of	3:15
3	3 Doors Down	Kryptonite	3:53
4	3 Doors Down	Loser	4:24
5	504 Boyz	Wobble Wobble	3:35
6	98^0	Give Me Just One Nig	3:24
7	A*Teens	Dancing Queen	3:44
8	Aaliyah	I Don't Wanna	4:15
9	Aaliyah	Try Again	4:03
10	Adams, Yolanda	Open My Heart	5:30
11	Adkins, Trace	More	3:05
12	Aguilera, Christina	Come On Over Baby	3:38
13	Aguilera, Christina	I Turn To You	4:00
14	Aguilera, Christina	What A Girl Wants	3:18
15	Alice Deejay	Better Off Alone	6:50

2. Workflow

Workflow: Basics

You can use R as a calculator:

Create new objects with:

object_name <- value

$$x < -3 * 4$$

<- has an RStudio keyboard shortcult!

Workflow: Basics Naming

The Rules:

- 1. Objects must start with a letter
- 2. Names can only contain letters, numbers, _, and .
- 3. Object names are case-sensitive!

```
this != THIS
```

Your Preference:

```
i_use_snake_case
otherPeopleUseCamelCase
Some.people.use.periods
And some.People AREweird
```


Workflow: Basics Calling Functions

Functions are called like this:

```
function_name(arg1 = val1, arg2 = val2,
...)
```

- Text (string) arguments go in quotes
- Use tab for auto-complete (less typing!)
- If you see "+" output, you're probably missing a parenthesis or a quote

Workflow: Scripts

Scripts are good for code that:

- You want to re-use
- Is long or complicated

Tips:

- Start script with packages to use (library(package_name))
- Script editor will highlight syntax with red squiggly line;
 hover to see what the issue is

Workflow: Projects

"Capture all important interactions in your code"

- Your environment is hard to replicate by memory (All packages used, the order they're loaded, your working directory, etc.)
- Important to save everything if you want to share code

Workflow: Projects Paths and Directories

Working directory is where R looks for files to load, and where it will write out any files you want to save.

- getwd() prints your current working directory
- setwd() allows you to set a working directory

Best practices for paths:

- Forward slashes in paths are great because a backslash is a special character for R
- Avoid absolute paths because it makes it hard to share

Workflow: Projects Project Architecture

Keep all files associated with a project together -- including input files, R scripts, analytical results and deliverables.

- Can do this using RStudio Projects
- ProjectTemplate() is my favorite package for creating folders and subfolders for organizing projects

3. Exploratory data analysis

What is exploratory data analysis (EDA)?

A state of mind--are your data what you expect them to be?

Generate Questions

Investigate quality!

Search for answers

Transform, visualize, and model

Refine

Adapt your questions to your results

What you need

library(tidyverse)

ggplot2

dplyr

What are we looking for?

- Creative process
 - a. No rules....
- ☐ In general:
 - a. Variation in variables
 - b. Covariation in variables (relationships)

country	year	cases	population
Afghanstan	100	45	18:57071
Afghanistan	2000	2666	20!95360
Brazil	1999	37737	172006362
Brazil	2000	80488	174!04898
China	1999	212258	1272915272
Chin	200	21 66	1280 28583

variables

variation!

Variation- Visualizing distributions

Categorical variables = one set of values In R, saved as character or factor

```
ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut))
```


Variation-Visualizing distributions

ggplot(data = diamonds) +
geom_histogram(mapping = aes(x = carat), binwidth = 0.5)

Continuous variable = any infinite set of ordered values

E.g. numbers, datetime

Variation-Typical values

What is common?

What is rare?

Any unusual patterns?

---> likely leads to questions to explore relationship between vars

```
ggplot(data = smaller, mapping = aes(x = carat)) +
geom_histogram(binwidth = 0.01)
```


Variation-Unusual values

Outliers = unusual observations
---> can be errors, can be important

Repeat analysis without them-what happens?

```
ggplot(diamonds) +
geom_histogram(mapping = aes(x = y), binwidth = 0.5)
```


Variation-Missing values

What do to with unusual values?

- 1. Drop entire row not recommended!
- 2. Replace with NA (special value type)

```
diamonds2<-diamonds%>%
  mutate(y= ifelse(y<3 | y>20, NA, y))
```

Note: ggplot statements will not plot NA values-you will receive a warning

Covariation- a categorical var and a continuous var

Enter the boxplot! Aka box and whisker

Display distribution of a continuous var broken down by

a categorical var

Covariation- Two categorical vars

Enter the heat map!

```
diamonds%>%
    count(color, cut)%>%
    ggplot(mapping = aes(x=color, y=cut))+
    geom_tile(mapping = aes(fill=n))
```


Covariation- Two continuous vars

Scatterplots!
Or boxplots with
varwidth= TRUE

```
ggplot(data = diamonds) +
geom_point(mapping = aes(x = carat, y = price))
```


Patterns and Models

library(modelr)

- Models = tool to extract patterns out of data
- View relationships once effects are adjusted for
 - Residuals = residual variation after adjusting for factors included in a model

```
mod<- lm(log(price) ~ log(carat), data=diamonds)</pre>
```

We will learn more later!

Wrap-up Announcements, upcoming events, etc.

R-Ladie Austin Upcoming Events

Book Club: Dear Data [November 8]

R for Data Science Workshop: Data Wrangling in the

Tidyverse [Nov 29]

All The Ladies in Tech Happy Hour! [December 5]

Looking for presenters: Workshop on package development