CPU 设计文档

一、 数据通路设计

(1) pc (程序计数器)

模块端口说明如下:

表 1 pc 端口说明

序号	信号名	方向	描述
1	Clk	I	时钟信号
2	Reset	I	复位信号
3	En	I	使能信号
4	NPC[31:0]	I	下一个PC值
5	PC[31:0]	0	当前的PC值

模块功能定义如下:

表 2 pc 功能定义

序号	功能名称	功能描述
1	更新PC值	当时钟上升沿到来时,将NPC写入PC
2	输出	输出当前PC的值

(2) im(指令存储器)

模块端口说明如下:

表3 im端口说明

序号	端口名 方向		描述
1	Addr[11:2]	I	当前PC的[11:2]位
2	Instr[31:0]	0	指令存储器中以Addr为地址的指令

模块功能定义如下:

表 4 im 功能定义

序号	功能名称	功能描述
1	初始化	将code.txt中的内容读入指令存储器中
2	输出	输出指令存储器中Addr所对应地址的指令的值

(2) grf(通用寄存器组)

模块端口说明如下:

表 5 grf 端口说明

序号	信号名	方向	描述
1	RAddr1[4:0]	Ι	读寄存器地址1
2	RAddr2[4:0]	Ι	读寄存器地址2
3	WAddr[4:0]	Ι	写寄存器地址
4	4 WData[31:0]		写入寄存器的数据
5 RegWrite		Ι	寄存器写使能信号
6	Clk	Ι	时钟信号
7	RData1[31:0]	О	输出地址RAddr1的寄存器中的数据
8	RData2[31:0]	О	输出地址RAddr2的寄存器中的数据

模块功能定义如下:

表 6 grf 功能定义

序号	功能名称	功能描述
1	读寄存器	输出端口RData1和RData2分别输出以输入信号RAddr1和RAddr2 为地址的寄存器中的数据
2	写寄存器	当始终上升沿到来时,若写使能信号为1,则将输入信号 WData中的数据写入以输入信号WAddr为地址的寄存器中

(3) alu (算术逻辑单元)

序号	信号名	方向	描述
1	Data1[31:0]	I	参与ALU运算的第一个值
2	Data2[31:0]	I	参与ALU运算的第二个值
3	ALUOp[2:0]	I	ALU功能的选择信号 000 : ALU进行加法运算 001 : ALU进行减法运算 010 : ALU进行或运算 011 : ALU进行与运算
4	ALUResult[31:0]	0	ALU的计算结果

模块功能定义如下:

表 8 alu 功能定义

序号	功能名称 功能描述	
1	加法运算	ALUResult = Data1 + Data2
2	减法运算 AUResult = Data1 - Data2	
3	与运算	ALUResult = Datal & Data2
4	或运算	ALUResult = Data1 Data2

(3) dm (数据存储器)

模块端口说明如下:

表 9 dm 端口说明

序号	5号 信号名		描述
1	Addr[4:0]	I	数据存储器读写的地址
2	2 WData[31:0]		将要写进数据存储器的数据
3	3 MemWrite		数据存储器的写使能端
4	4 Clk		时钟信号
5	5 Reset		复位信号
6	RData[31:0]	0	输出从数据存储器中读取的值

模块功能定义如下:

表 10 dm 功能定义

序号	功能名称	功能描述		
1	读数据存储器	输出端口Data输出数据存储器在地址为MemAddr处的数据		
2	写数据存储器	当时钟上升沿到来时,若MemWrite为1,且Reset信号为0,则将输入信号MemData中的数据写入数据存储器在MemAddr所对应的地址中		
3	复位	当时钟上升沿到来时,若Reset信号为1,将数据存储器的内容置为0		

(4) EXT(数据扩展单元)

模块端口说明如下:

表 11 ext 端口说明

序号	信号名	方向	描述
1	In[15:0]	I	扩展单元的输入信号
2	ExtOp[1:0]	I	扩展方式的选择信号 00 : 进行符号扩展 01 : 进行零扩展 10 : 进行低位零扩展
3	Out[31:0]	0	扩展单元的输出信号

模块功能定义如下:

表 12 ext 功能定义

序号	功能名称	功能描述
1	符号扩展	输出信号的低16位与输入信号相同, 高16位为输入信号的符号位
2	零扩展	输出信号的低16位与输入信号相同,高16位为0
3	低位零扩展	输出信号的高16位与输入信号相同,低16为为0

(5) NPC

模块端口定义如下:

表 13 NPC 端口说明

序号	端口名称	方向	说明
1	PCplus4[31:0]	Ι	当前的PC值加4
2	I_Addr[25:0]	Ι	当前32位指令的低26位
3	R_Addr[31:0]	Ι	保存在寄存器中的地址
4	NPCSe1[1:0]	I	选择下一个pc的值
5	Equal	Ι	beq的分支条件是否成立
6	NPC	0	下一个PC的值(若发生分支或跳转)
7	PCplus8	0	当前的PC值加8

模块功能定义如下:

表 14 NPC 功能定义

序号	功能名称	功能描述
1	输出	根据选择信号输出下一个PC的值(若发生分支或跳转)

二、 控制器设计

(1) 控制器

ctrl_D 端口说明如下:

序号	信号名 方向		信号名方向描述		描述
1	Instr[31:0]	Ι	F/D级流水线寄存器中的Instr值		
2	EXTOp[1:0]	0 扩展单元的功能选择信号			
3	NPCSe1[1:0] 0		NPC的功能选择信号		
4	isBranch	0	是否发生跳转或分支		

ctrl_E端口说明如下:

序号	信号名方向描述			
1	Instr[31:0]	I	D/E级流水线寄存器的Instr值	
2	ALUOp[2:0]	0	ALU功能选择信号	
3	ALUSrc[1:0]	0	ALU的运算数据选择信号	

ctrl_M 端口说明如下:

序号	信号名	方向	描述
1	Instr[31:0]	I	E/M级流水线寄存器的Instr值
2	MemWrite	0	数据存储器的写使能信号

ctrl_W端口说明如下:

序号	信号名	方向 描述			
1	Instr[31:0]	Ι	M/W级流水线寄存器中的Instr值		
2	RegWrite	0	寄存器的写使能信号		
3	RegDst[1:0] 0 寄存器写		寄存器写入地址选择信号		
4	RegSrc[1:0]	0	寄存器写入数据选择信号		

控制信号真值表如下:

	addu	subu	jr	ori	lw	sw	beq	lui	jal
Op	000000	000000	000000	001101	100011	1010111	000100	001111	000011
Funct	100001	100011	001000						
nPC_Op[1]	0	0	1	0	0	0	0	0	1
nPC_Op[0]	0	0	1	0	0	0	1	0	0
RegWrite	1	1	0	1	1	0	0	1	1
RegDst[1]	0	0	X	0	0	X	X	0	1
RegDst[0]	1	1	X	0	0	X	X	0	0
RegSrc[1]	0	0	X	0	0	X	X	0	1
RegSrc[0]	0	0	X	0	1	X	X	0	0
ExtOp[1]	X	X	X	0	0	0	X	1	X
ExtOp[0]	X	X	X	1	0	0	X	0	X
ALUOp[1]	0	0	X	1	0	0	0	1	X
ALUOp[0]	0	1	X	0	0	0	0	0	X
ALUSrc	0	0	X	1	1	1	0	1	X
MemWrite	0	0	0	р	0	1	0	0	0

控制信号意义如下:

序号	控制信号	意义
1	NPCSe1[1:0]	控制分支的信号,分支指令需要将该信号置为1
2	RegWrite	寄存器写使能信号,但需要些寄存器时将此信号置为1
3	RegDst[1:0]	选择寄存器的写入地址, 当此信号为00时,选择指令的rt字段([20:16])为寄存器的写入地址; 当此信号为01时,选择指令的rd字段([15:11])为寄存器的写入地址; 当此信号为10时,选择0x1f为寄存器的写入地址
4	RegSrc[1:0]	选择寄存器的写入数据, 当此信号为00时,选择ALU的计算结果作为寄存器堆的写入值; 当此信号为01时,选择从数据存储器中取出的信号作为寄存器堆的写入值; 当此信号为10时,选择PC+4作为寄存器堆的写入值
5	ExtOp[1:0]	Ext功能选择信号,根据指令需要进行的扩展类型来设置为相应的值
6	ALUOp[2:0]	ALU功能选择信号,根据指令需要执行的运算种类来设置相应的值
7	ALUSrc	当此信号为0时,选择指令的rt字段([20:16])为地址的寄存器中的数据作为ALU的第二个运算数; 当此信号为1时,选择经扩展后的立即数作为ALU的第二个运算数。
8	MemWrite	数据存储器写使能信号,当需要写数据存储器时将此信号置为1

(2) 阻塞控制器

阻塞控制器端口说明如下:

序号	信号名	方向	描述
1	FD_Instr[31:0]	Ι	F/D级流水线寄存器中的Instr值
2	DE_Instr[31:0]	Ι	D/E级流水线寄存器中的Instr值
3	EM_Instr[31:0]	Ι	E/M级流水线寄存器中的Instr值
4	StallPC	0	是否阻塞PC
5	Stal1FD	0	是否阻塞F/D流水线寄存器
6	FlushDE	0	是否清空D/E流水线寄存器中的值

阻塞发生条件如下:

IF/I	IF/ID当前指令			ID/EX(Tnew)				EX/MEM(Tnew)				MEM/	
指令 类型	源寄 存器	Tuse	cal_r 1/rd	cal_i 1/rt	load 2/rt	jal 0/31	cal_r 0/rd	cal_i 0/rt	load 1/rt	jal 0/31	cal_r 0/rd	cal_i 0/rt	
be q	rs/rt	0	暂停	暂停	暂停				暂停				
jr	rs	0	暂停	暂停	暂停				暂停				
cal_r	rs/rt	1			暂停								
cal_i	rs	1			暂停								
load	rs	1			暂停								
atomo	rs	1			暂停							·	
store	rt	2											

(3) 转发控制器

转发控制器端口定义如下:

序号	信号名	方向	描述				
1	FD_Instr[31:0]	I	F/D级流水线寄存器中的Instr值				
2	DE_Instr[31:0]	Ι	D/E级流水线寄存器中的Instr值				
3	EM_Instr[31:0]	I	E/M级流水线寄存器中的Instr值				
4	MW_Instr[31:0]	I	M/W级流水线寄存器中的Instr值				
5	BypassDrs	0	转发信号1,控制D阶段相等比较的输入				
6	BypassDrt	0	转发信号2,控制D阶段相等比较的输入				
7	BypassErs	0	转发信号3,控制ALU的输入				
8	BypassErt	0	转发信号4,控制ALU的输入				
9	BypassMrt	0	转发信号5,控制DM的写入值				

转发条件如下:

流水级	源寄存器	涉及指令	转发MUX	控制信号	输入0
IF/ID	rs	beq, jr	MUXB_D_rs	BypassDrs	D_GPR_RData1
	rt	beq	MUXB_D_rt	BypassDrt	D_GPR_RData2
ID/EX	rs	cal_r, cal_i, ld, st	MUXB_E_rs	BypassErs	DE_RData1
	rt	cal_r, st	MUXB_E_rt	BypassErt	DE_RData2
EX/MEM	rt	store	MUXB_M_rt	BypassMrt	EM_M_Wdata
ID/EX		EX/MEM(Tnew)			
jal	cal_r	cal_i	jal		
0/31	0/rd	0/rt	0/31		
DE_PCplus8	EM_ALUOut	EM_ALUOut	EM_PCplus8		
DE_PCplus8	EM_ALUOut	EM_ALUOut	EM_PCplus8		
	EM_ALUOut	EM_ALUOut	EM_PCplus8		
	EM_ALUOut	EM_ALUOut	EM_PCplus8		
	MEM/W	B(Tnew)			
cal_r	cal_i	load	jal		
0/rd	0/rt	0/rt	0/31		
MW_ALUOut	MW_ALUOut	MW_DM_Rdata	MW_PCplus8		
MW_ALUOut	MW_ALUOut	MW_DM_Rdata	MW_PCplus8		
MW_ALUOut	MW_ALUOut	MW_DM_Rdata	MW_PCplus8		
MW_ALUOut	MW_ALUOut	MW_DM_Rdata	MW_PCplus8		
MW_ALUOut	MW_ALUOut	MW_DM_Rdata	MW_PCplus8		

三、测试程序

#cal_r - cal_r
lui \$s0, 0x5432

```
ori $s0, $s0, 0x9843
lui $s1, 0x5843
ori $s1, $s1, 0x6543
addu $s2, $s1, $s0
subu $s3, $s1, $s0
addu $s4, $s3, $s0
addu $s5, $s0, $s4
subu $s6, $s5, $s0
subu $s7, $s0, $s6
addu $t0, $s6, $s7
addu $t1, $t0, $s7
subu $t2, $t1, $t1
addu $t3, $t2, $t2
addu $0, $t2, $t3
subu $t4, $t3, $0
addu $t5, $0, $t4
subu $0, $t5, $0
addu $t6, $0, $0
#cal r - cal i
lui $s0, 0x4325
ori $s0, $s0, 0x5432
lui $s1, 0x8954
ori $s1, $s1, 0x3459
addu $s2, $s1, $s0
subu $s3, $s1, $s0
ori $s4, $s3, 0x8932
subu $s5, $s0, $s4
addu $s6, $s0, $s4
ori $s7, $s5, 0x8954
ori $t0, $s6, 0x5894
addu $t1, $s7, $t0
lui $t2, 0x8594
subu $t3, $t2, $s0
```

lui \$t4, 0x8594
addu \$t5, \$t4, \$s0
lui \$t4, 0x3498
lui \$t5, 0x8265
addu \$t6, \$t4, \$t5
lui \$0, 0x8943
addu \$t7, \$s0, \$0
ori \$0, \$0, 0x8594
ori \$t8, \$0, \$t7
addu \$t9, \$t8, \$0

#cal_r - load
lui \$s0, 0x8694
ori \$s1, \$s0, 0x8754
lui \$s2, 0x8954
ori \$s3, \$s3, 0x5437
lui \$s4, 0x2349
ori \$s5, \$0, 0x8954
lui \$s6, 0x8954
ori \$s7, \$0, 0x7843
sw \$s0, 0(\$0)

sw \$s1, 4(\$0) sw \$s2, 8(\$0)

sw \$s3, 12(\$0)

sw \$s4, 16(\$0)

sw \$s5, 20(\$0) sw \$s6, 24(\$0)

sw \$s7, 28(\$0)

lw \$t0, 0(\$0)

addu \$t1, \$t0, \$s0

addu \$t2, \$t0, \$t1

lw \$t2, 4(\$0)

subu \$t3, \$t2, \$t1

subu \$t4, \$t3, \$t2

lw \$t3, 8(\$0)

lw \$t4, 8(\$0)

addu \$t5, \$t3, \$t4

addu \$t6, \$t3, \$t4

subu \$t7, \$t6, \$t6

lw \$t8, 12(\$t7)

ori \$t9, \$0, 0x0010

addu \$t0, \$t9, \$0

lw \$t0, 0(\$t0)

addu \$t1, \$t0, \$t9 ori \$t2, \$0, 0x0002 addu \$t3, \$t2, \$t9 addu \$t4, \$t1, \$t0 lw \$t4, 0(\$t3) subu \$t5, \$t3, \$t4 addu \$t6, \$t3, \$t2 addu \$t7, \$t6, \$t2 lw \$t8, 0(\$t6) lw \$t8, 0(\$t7) addu \$t9, \$t8, \$t7 subu \$t9, \$t8, \$t8 #cal r - jal ori \$s0, \$0, 0x8593 ori \$ra, \$0, 0x5439 jal next1 addu \$s2, \$s0, \$ra next1: addu \$s3, \$ra, \$s0 addu \$ra, \$s3, \$s0 jal next2 next2: subu \$s4, \$ra, \$s0 subu \$s5, \$s4, \$ra addu \$ra, \$ra, \$s0 jal next3 addu \$s6, \$s5, \$ra subu \$s6, \$s5, \$ra nop next3: subu \$s7, \$s6, \$ra addu \$ra, \$ra, \$ra jal next4 nop addu \$t0, \$ra, \$s0 next4: addu \$t1, \$ra, \$ra subu \$t2, \$ra, \$ra #cal i - cal i lui \$s0, 0x5493 ori \$s1, \$s0, 0x8954

```
ori $s2, $s1, 0x6543
```

ori \$s3, \$s1, 0x2345

lui \$s4, 0x8954

ori \$s5, \$s4, 0x3555

ori \$s6, \$s4, 0x8592

ori \$s6, \$s6, 0x3478

ori \$s7, \$s6, 0x8594

lui \$0, 0x5439

ori \$t0, \$0, 0x8954

ori \$0, \$t0, 0x5432

lui \$t1, 0x5342

ori \$t2, \$0, 0x2345

#cal i - load

lui \$s0, 0x8954

ori \$s1, \$s0, 0x7854

lui \$s2, 0x2345

ori \$s3, \$0, 0x8954

ori \$s4, \$2, 0x8432

sw \$s0, 0(\$0)

sw \$s1, 4(\$0)

sw \$s2, 8(\$0)

sw \$s3, 12(\$0)

sw \$s4, 16(\$0)

lw \$t0, 0(\$0)

ori \$t1, \$t0, 0x8954

ori \$t1, \$t0, 0x2345

lw \$t1, 4(\$0)

lw \$t1, 8(\$0)

ori \$t2, \$t1, 0x4352

ori \$t3, \$t1, 0x5435

lw \$0, 4(\$0)

ori \$t4, \$0, 0x8594

ori \$t4, \$0, 0x000c

lw \$t5, 0(\$t4)

ori \$t5, \$t5, 0x5432

ori \$t6, \$t5, 0x3543

ori \$t6, \$0, 0x0010

nop

lw \$t7, 0(\$t6)

ori \$t8, \$t7, 0x8943

lui \$t9, 0x0000

lw \$t9, 0(\$t9)

```
ori $t0, $t9, 0x8943
ori $t1, $t9, 0x7548
```

#cal_i - jal

lui \$s0, 0x8954

ori \$s0, \$s0, 0x5432

ori \$ra, \$s0, 0x8943

jal next1

ori \$s1, \$ra, 0x8594

next1:

ori \$s2, \$ra, 0x2345

ori \$ra, \$ra, 0x8943

jal next2

next2:

ori \$s3, \$ra, 0x5483

ori \$s4, \$ra, 0x3456

lui \$ra, 0x5843

jal next3

ori \$ra, \$ra, 0x5438

ori \$s6, \$ra, 0x8954

nop

next3:

ori \$s6, \$ra, 0x8965

ori \$ra, \$ra, 0x3453

jal next4

next4:

ori \$ra, \$ra, 0x1453

ori \$s7, \$ra, 0x5436

#load - load

ori \$s0, \$0, 0x0000

ori \$s1, \$0, 0x0004

ori \$s2, \$0, 0x0008

ori \$s3, \$0, 0x000c

sw \$s0, 0(\$0)

sw \$s1, 4(\$0)

sw \$s2, 8(\$0)

sw \$s3, 12(\$0)

lw \$t0, 0(\$0)

lw \$t1, 0(\$t0)

lw \$t2, 4(\$t0)

lw \$t2, 0(\$t2)

lw \$t3, 4(\$t2)

```
lw $t4, 8($t2)
```

lw \$0, 0(\$t4)

lw \$t5, 8(\$0)

lw \$t6, 0(\$t5)

lw \$t6, 0(\$t6)

lw \$t6, 4(\$t6)

lw \$t6, 8(\$0)

#load - jal

ori \$s0, \$0, 0x0004

ori \$s1, \$0, 0x0008

la \$s2, next1

sw \$s0, 4(\$0)

sw \$s1, 0(\$s2)

ori \$ra, \$0, 0x0004

jal next1

nop

next1:

lw \$t0, 0(\$ra)

la \$s3, next2

sw \$s1, 0(\$s3)

ori \$ra, \$0, 0x0004

jal next2

lw \$t1, 0(\$ra)

next2:

lw \$t2, 0(\$ra)

la \$s4, next3

sw \$s1, 0(\$s4)

ori \$ra, \$0, 0x0008

jal next3

next3:

lw \$t3, -4(\$ra)

lw \$t4, -4(\$ra)

#store - cal_r

lui \$s0, 0x8953

ori \$s1, \$s0, 0x2354

ori \$s2, \$0, 0x0004

lui \$s3, 0x8955

addu \$s3, \$s0, \$s1

sw \$s3, 0(\$0)

sw \$s3, 4(\$0)

lui \$s4, 0x2364

subu \$s4, \$s3, \$s1

sw \$s4, 0(\$0)

sw \$s4, 4(\$0)

ori \$s5, \$0, 0x0008

addu \$s5, \$s2, \$0

sw \$s4, 0(\$s5)

sw \$s4, 4(\$s5)

lui \$s6, 0x0004

subu \$s6, \$s4, \$s4

sw \$s3, 0(\$s6)

sw \$s3, 4(\$s6)

#store - cal i

lui \$s0, 0x8954

ori \$s1, \$s0, 0x5438

lui \$s1, 0x7853

sw \$s1, 0(\$0)

sw \$s1, 4(\$0)

ori \$s1, \$0, 0x5345

ori \$s1, \$0, 0x3465

sw \$s1, 0(\$0)

sw \$s1, 4(\$0)

ori \$s2, \$0, 0x0008

ori \$s2, \$0, 0x0004

sw \$s2, 0(\$s2)

sw \$s2, 4(\$s2)

ori \$s3, \$0, 0x0004

lui \$s3, 0x0000

sw \$s0, 0(\$s3)

sw \$s0, 4(\$s3)

#store - load

ori \$s0, \$0, 0x0004

ori \$s1, \$0, 0x0008

ori \$s2, \$0, 0x000c

ori \$s3, \$0, 0x0010

sw \$s0, 0(\$0)

sw \$s1, 4(\$0)

sw \$s2, 8(\$0)

sw \$s3, 12(\$0)

ori \$t0, \$0, 0x8954

nop

lw \$t0, 0(\$0)

```
sw $t0, 16($0)
```

sw \$t0, 20(\$0)

ori \$t1, \$0, 0x2444

lw \$t1, 0(\$0)

sw \$t0, 0(\$t1)

sw \$t0, 4(\$t1)

lw \$t2, 4(\$0)

lw \$t3, 8(\$0)

sw \$t2, 0(\$t3)

sw \$t3, 4(\$t3)

lw \$t4, 12(\$0)

sw \$t4, 4(\$t4)

#store - jal

lui \$s0, 0x9823

ori \$s0, \$s0, 0x4532

ori \$ra, 0x5325

jal next1

sw \$s0, 0(\$ra)

next1:

sw \$s0, 4(\$ra)

jal next2

next2:

sw \$s0, 0(\$ra)

sw \$s0, 8(\$ra)

jal next3

sw \$ra, 0(\$0)

sw \$ra, 4(\$0)

nop

next3:

sw \$ra, 8(\$0)

jal next4

sw \$ra, 0(\$ra)

next4:

sw \$ra, 4(\$ra)

#beq - cal_r

lui \$s0, 0x4583

ori \$s1, \$s0, 0x6542

addu \$s2, \$s0, \$s1

beq \$s2, \$0, next1

nop

addu \$s3, \$s2, \$s1

```
next1:
subu $s4, $s3, $s1
beq $s4, $s1, next2
nop
addu $s4, $s3, $s2
next2:
subu $s4, $s3, $s3
beq $s4, $0, next3
nop
lui $t0, 0x3543
next3:
subu $s3, $s1, $s1
nop
beq $s3, $0, next4
nop
lui $t1, 0x4835
next4:
addu $s3, $s0, $s1
addu $s4, $s0, $s1
beq $s3, $s4, next5
nop
lui $t2, 0x9543
next5:
#beq - cal_i
lui $s0, 0x5342
ori $s1, $s0, 0x5432
ori $s2, $s0, 0x5432
beq $s1, $s2, next1
nop
lui $s0, 0x4533
next1:
lui $s2, 0x5432
lui $s3, 0x5432
beq $s2, $s3, next2
nop
lui $s2, 0x5432
next2:
lui $s4, 0x9543
nop
beq $s4, $0, next3
nop
lui $s0, 0x5432
```

next3:

```
#beq - load
lui $s0, 0x8753
ori $s1, $s0, 0x8543
sw $s0, 0($0)
sw $s1, 4($0)
lw $s2, 0($0)
beq $s2, $0, next1
nop
lui $t0, 0x8594
next1:
lw $s3, 0($0)
nop
beq $s3, $0, next2
nop
lui $t2, 0x8954
next2:
lw $s4, 0($0)
lw $s5, 0($0)
beq $s4, $s5, next3
nop
lui $t3, 0x8453
next3:
lui $s7, ox8753
lw $s6, 0($0)
lw $s7, 4($0)
beq $s6, $s7, next4
nop
lui $t4, 0x8754
next4:
#beq - jal
lui $s0, 0x8754
addu $ra, $0, $0
jal next1
nop
next1:
beq $ra, $0, next2
nop
lui $t0, 0x4532
```

next2:

```
#jr - cal r
la $s0, next1
la $s1, next2
addu $t0, $s0, $0
jr $t0
nop
next1:
addu $t1, $s1, $0
nop
jr $t1
nop
next2:
#jr - cal i
addu $s0, $0, $0
lui $s0, 0x3010
jr $s0
nop
addu $s1, $s0, $0
ori $s1, $0, 0x3020
jr $s1
lui $t0, 0x5432
nop
#jr - load
ori $s0, $0, 0x3020
ori $s1, $0, 0x3030
sw $s0, 0($0)
sw $s1, 4($0)
addu $s2, $0, $0
lw $s2, 0($0)
jr $s2
nop
addu $s3, $0, $0
lw $s3, 4($0)
nop
jr $s3
nop
#jr - jal
la $s3, next2
lui $s0, 0x8754
addu $ra, $0, $0
```

```
jal next1
nop
next1:
jr $s3
nop
lui $t0, 0x4532
next2:
```

思考题

1,

指令类型	前序指令	前前序指令	冲突寄存器	解决方法	测试序列			
cal_r	cal_r / cal_i		rs / rt	转发	subu \$s3, \$s1, \$s0 addu \$s4, \$s3, \$s0			
		cal_r / cal_i	rs / rt	转发	subu \$s7, \$s0, \$s6 addu \$t0, \$s6, \$s7 addu \$t1, \$t0, \$s7			
	load		rs / rt	阻塞	lw \$t0, 0(\$0) addu \$t1, \$t0, \$s0			
		load	rs / rt	转发	lw \$t0, 0(\$0) addu \$t1, \$t0, \$s0 addu \$t2, \$t0, \$t1			
	jal		31	转发	jal next1 addu \$s2, \$s0, \$ra next1:			
		jal	31	转发	jal next3 addu \$s6, \$s5, \$ra subu \$s6, \$s5, \$ra			
cal_i	cal_r / cal_i		rs	转发	ori \$s1, \$s0, 0x8954 ori \$s2, \$s1, 0x6543			
		cal_r / cal_i	rs	转发	ori \$s6, \$s4, 0x8592 ori \$s6, \$s6, 0x3478 ori \$s7, \$s6, 0x8594			
	load		rs	阻塞	lw \$t1, 8(\$0) ori \$t2, \$t1, 0x4352			
		load	rs	转发	lw \$t1, 8(\$0) ori \$t2, \$t1, 0x4352 ori \$t3, \$t1, 0x5435			
	jal		31	转发	jal next1 ori \$s1, \$ra, 0x8594 next1:			
		jal	31	转发	jal next3 ori \$ra, \$ra, 0x5438 ori \$s6, \$ra, 0x8954			

load	cal_r / cal_i		rs	转发	addu \$t2, \$t0, \$t1 lw \$t2, 4(\$0)
		cal_r / cal_i	rs	转发	subu \$t3, \$t2, \$t1 subu \$t4, \$t3, \$t2 lw \$t3, 8(\$0)
	load		rs	阻塞	Iw \$t0, 0(\$0) Iw \$t1, 0(\$t0)
		load	rs	转发	Iw \$t2, 4(\$t0) Iw \$t2, 0(\$t2) Iw \$t3, 4(\$t2)
	jal		31	转发	jal next2 lw \$t1, 0(\$ra)
		jal	31	转发	jal next2 lw \$t1, 0(\$ra) next2: lw \$t2, 0(\$ra)
store	cal_r / cal_i		rs / rt	转发	addu \$s3, \$s0, \$s1 sw \$s3, 0(\$0)
		cal_r / cal_i	rs / rt	转发	addu \$s3, \$s0, \$s1 sw \$s3, 0(\$0) sw \$s3, 4(\$0)
	load		rs	阻塞	lw \$t1, 0(\$0) sw \$t0, 0(\$t1)
	load		rt	转发	Iw \$t0, 0(\$0) sw \$t0, 16(\$0)
		load	rs / rt	转发	lw \$t0, 0(\$0) sw \$t0, 16(\$0) sw \$t0, 20(\$0)
	jal		31	转发	jal next1 sw \$s0, 0(\$ra)
		jal	31	转发	jal next2 next2: sw \$s0, 0(\$ra) sw \$s0, 8(\$ra)

beq	cal_r / cal_i		rs / rt	阻塞	addu \$s2, \$s0, \$s1 beq \$s2, \$0, next1
		cal_r / cal_i	rs / rt	转发	subu \$s3, \$s1, \$s1 nop beq \$s3, \$0, next4
	load		rs / rt	阻塞	lw \$s2, 0(\$0) beq \$s2, \$0, next1
		load	rs / rt	阻塞	lw \$s3, 0(\$0) nop beq \$s3, \$0, next2
	jal		31	转发	
		jal	31	转发	jal next1 nop next1: beq \$ra, \$0, next2
jr	cal_r / cal_i		rs	阻塞	addu \$t0, \$s0, \$0 jr \$t0
		cal_r / cal_i	rs	转发	addu \$t1, \$s1, \$0 nop jr \$t1
	load		rs	阻塞	lw \$s2, 0(\$0) jr \$s2
		load	rs	阻塞	lw \$s3, 4(\$0) nop jr \$s3
	jal		31	转发	
		jal	31	转发	jal next1 nop next1: jr \$s3