Departamento de Sistemas e Computação – FURB Curso de Ciência da Computação Disciplina de Processamento de imagens

Operadores morfológicos

Prof. Aurélio Hoppe

aureliof@furb.br

http://www.inf.furb.br/~aurelio/

Bibliografia

Processamento digital de imagens, 3° ed.

Rafael C. Gonzalez e Richard E. Woods

Introdução

A mamografia é um dos métodos mais confiáveis e efetivos na visualização das microcalcificações que podem identificar se um tumor é maligno ou não-maligno. Porém, as mamografias possuem muitos ruídos que prejudicam a visualização das microcalcificações

Mamografia apresentando agrupamento de microcalcificações

 Permite a extração de informações relativas à geometria e à topologia de uma imagem baseando-se na teoria dos conjuntos

Morfologia binária

Procura-se uma configuração de pontos pretos e brancos

- Morfologia níveis de cinza
 - Baseia-se no valor Mínimo/Máximo de sua vizinhança

Elementos estruturantes

(Structuring Element - SE)

Dilatação (Dilation)

Elemento Estruturante - SE

1	1	1
1	1	1
1	1	1

Imagem Original

Dilatação

- Baseia-se no valor máximo de sua vizinhança
- Clareia a imagem
- Alarga e engorda os picos (padrões claros)
- Reduz e as vezes elimina vales (padrões escuros)

Exemplo dilatação

Elemento Estruturante - SE

1	1	1
1	1	1
1	1	1

Imagem Original

Dilatação

Erosão (Erosion)

Elemento Estruturante - SE

1	1	1
1	1	1
1	1	1

Imagem Original

Erosão

- Baseia-se no valor mínimo de sua vizinhança
- Escurece a imagem
- Alarga e engorda os vales (padrões escuros)
- Reduz e as vezes elimina picos (padrões claros)

Exemplo erosão

Elemento Estruturante - SE

1	1	1
1	1	1
1	1	1

Imagem Original

Erosão

Abertura (Opening)

Elemento Estruturante - SE

1	1	1
1	1	1
1	1	1

Exemplo abertura (erosão + dilatação)

Elemento Estruturante - SE

1	1	1
1	1	1
1	1	1

Imagem Original

Abertura

Fechamento (Closing)

Elemento Estruturante - SE

1	1	1
1	1	1
1	1	1

Imagem Original

Dilatação + Erosão

Exemplo fechamento (dilatação + erosão)

Elemento Estruturante - SE

1	1	1
1	1	1
1	1	1

Imagem Original

Fechamento

- Transformada TOP-HAT por Abertura
 - Uma das maneiras de detectar picos em imagens é a combinação entre a imagem original e a imagem correspondente aberta

ABERTURA = erosão + dilatação top_hat_ABERTURA = imagem original – ABERTURA

> Efeitos:

- Permite a eliminação de picos
- Permite a remoção de ruídos
- Elimina a falta de homogeneidade

Exemplo top-hat por abertura

Realce do Contraste

PASSOS:

- Defina o elemento estruturante a ser utilizado
- Aplique a transformada top-hat por abertura na imagem original
- 3. Aplique a transformada top-hat por fechamento na imagem original
- 4. Some a imagem original e o resultante da transformada top-hat por abertura (item 2)
- 5. Subtraia da soma (item 4) o resultante da transformada top-hat por fechamento (item 3)

Realce do Contraste

Resultados

Obtido

- a) Mamografia Original
- b) Realce usando elemento estruturante planar 'disk'
- c) Realce usando elemento estruturante não planar 'ball'

Resultados

Mamografia Original

Obtido

- a) Fragmento da mamografia original
- b) Realce usando elemento estruturante planar 'disk'
- c) Realce usando elemento estruturante não planar 'ball'

Detectando Microcalcificações

PASSOS:

- 1. Defina como elemento estruturante o tipo 'ball' (não planar)
- 2. Dilate a imagem origem
- 3. Aplique a transformada top-hat por abertura na imagem original
- 4. Aplique a transformada top-hat por fechamento na imagem original
- Some a imagem original e o resultante da transformada top-hat por abertura (item
 3)
- 6. Subtraia da soma (item 5) o resultante da transformada top-hat por fechamento (item 4)
- 7. Subtraia da imagem dilatada (item 2) o resultante do item 6
- 8. Utilize um limiar para extrair as possíveis microcalcificações

Resultados

Obtido

- a) Mamografia Original
- b) Imagem após a utilização do elemento estruturante não planar 'ball'
- c) Removendo o fundo
- d) Aplicando um limiar em (c) para extrair possíveis microcalcificações

Resultados

(c)

(d)

- a) Mamografia Original
- b) Imagem após a utilização do elemento estruturante não planar 'ball'
- c) Removendo o fundo
- d) Aplicando um limiar em (c) para extrair possíveis microcalcificações