# Déformations du demi-anneau $(\mathbb{N}, +, \times)$

### Valentin MARIE

LMR Reims

28 juin 2023

## Intuition

 $(\mathbb{N},+,\times)$  est "l'arithmétique des quantités de  $1\in\mathbb{N}$ ".

## généralisation

"l'arithmétique des quantités de b ", pour b un élément arbitraire fixé d'un monoïde  $(M,\cdot)$  ?

## informellement

"calculer dans l'exposant de b" :

par exemple,  $b^{a+c} = b^{x+y} \Rightarrow a+c \equiv x+y$ .

# **Formalisation**

## M. (2019, non publié)

Soient  $(M,+,\cdot)$  un  $\mathbb{N}$ -module,  $m\in M$ , et R la relation sur  $\mathbb{N}$  définie par  $kRj\Leftrightarrow k\cdot m=j\cdot m$ . Alors  $(\mathbb{N},+,\times)\to (\mathbb{N}/R,+,\times)$  demi-anneau.

Si m n'est pas simplifiable à droite :  $\left(\bar{k}\right)_{k\in\mathbb{N}}$  de période t dès le rang h.

 $kRj \Leftrightarrow (k=j < h) \text{ ou } (k \geq h \text{ et } j \geq h \text{ et } k \equiv j[t]).$ 

 $\rightarrow$  demi-anneaux  $\mathbb{N}_{h,t}$ . Ne dépendent que de h et t!  $|\mathbb{N}_{h,t}| = h + t$ .

# Exemples:



# Exemples de N-module

### notation additive

 $(M,+,\cdot)$  avec (M,+) un monoı̈de commutatif et la multiplication

$$: \mathbb{N} \times M \to M, \ (n,b) \mapsto n \cdot b = \sum_{k=1}^{n} b.$$

### notation multiplicative

 $(M,\cdot,\wedge)$  avec  $(M,\cdot)$  un monoïde commutatif et l'exponentiation

$$\wedge : \mathbb{N} \times M \to M, \ (n,b) \mapsto b^n = \prod_{k=1}^n b.$$

## exemples pour un rang h non nul

 $(M=\mathbb{Z}/n\mathbb{Z},\cdot,\wedge),$  et  $m\in M$  non inversible multiplicativement, i.e. m non premier avec n. Pour n=6 :

- m=2: h=1, t=2. (intègre; 2 est non régulier pour + et  $\times$ .)
- $m \in \{3,4\}$ : h = 1, t = 1;  $(+, \times) = (\max, \min) = (\text{ou}, \text{et})$ .

Si t = 1:  $\exists$  élément absorbant pour +.

# Références

### demi-anneaux

```
https://fr.wikipedia.org/wiki/Demi-anneau
https://en.wikipedia.org/wiki/Semiring
```

### module sur un demi-anneau

```
https://en.wikipedia.org/wiki/Module_(mathematics) #Generalizations
```