

rm(list = ls())
library(MASS)
myData = Boston
attach(myData)

(a)

R Script: dim(myData)

Output:

[1] 506 14

Explanation:

Rows: 506 Boston Suburbs Columns: 14 Features

(b)

R Script: pairs(myData) Output:

- Crim correlates with Age, Dis, Rad, Tax and Ptratio
- Zn correlates with Indus, Nox, Age, Lstat
- Indus correlates with Age, Dis
- Nox correlates with Age, Dis
- Dis correlates with Lstat
- Lstat correlates with Medv

(c)

R Script:

x <- myData[1]
y <- myData[2: 7]
z <- myData[8: 14]</pre>

cor(x, y)

cor(x, z)

par(mfrow=c(1, 5))

plot(age, crim)

plot(dis, crim)

plot(rad, crim)

plot(tax, crim)

plot(ptratio, crim)

Output:

zn	indus	chas	nox	rm	age	
crim -0.2004692	0.4065834	-0.05589158	0.4209717	-0.2192467	0.3527343	

	dis	rad	tax	ptratio	black	lstat	medv
crim	-0.3796701	0.6255051	0.5827643	0.2899456	-0.3850639	0.4556215	-0.3883046

- Older homes, More crime
- Closer to work-area, More crime
- Higher accessibility to highways, More crime
- Higher tax rate, More crime
- Higher pupil-teacher ratio, More crime

(d)

R Script:

summary(crim) summary(tax)

summary(ptratio)

par(mfrow=c(1,3))

boxplot(crim, main="Crime Rates")

boxplot(tax, main="Tax Rates")

boxplot(ptratio, main="Pupil-teacher ratios")

Output:

Crim

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.00632	0.08204	0.25650	3.61400	3.67700	88.98000

Tax

Min. 1	lst Qu.	Median	Mean 3	3rd Qu.	Max.	
187.0	279.0	330.0	408.2	666.0	711.0	

Ptratio

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	
12.60	17.40	19.05	18.46	20.20	22.00	

- Crim: (0.00632 88.98), very wide range
- Tax: (187 711), Not so wide range
- Ptratio: (12.6 22), Small range

(e)

R Script:

margin.table(table(crim,chas),2)

Output:

chas

0	1
471	35

Explanation:

35 suburbs bound the Charles river

(f)

R Script:

median(ptratio)

Output:

(g)

R Script:

temp <- myData[order(medv),]

x <- sapply(myData, summary)

y < -temp[c(1, 2),]

z <- as.data.frame(rbind(y, x))

$$z1 <- z[, 1:7]$$

$$z2 <- z[, 8:14]$$

z1

z2

Output:

	crim	zn	indus	chas	nox	rm	age
399	38.35180	0.00	18.10	0.00000	0.6930	5.453	100.00
406	67.92080	0.00	18.10	0.00000	0.6930	5.683	100.00
Min.	0.00632	0.00	0.46	0.00000	0.3850	3.561	2.90
1st Qu.	0.08204	0.00	5.19	0.00000	0.4490	5.886	45.02
Median	0.25650	0.00	9.69	0.00000	0.5380	6.208	77.50
Mean	3.61400	11.36	11.14	0.06917	0.5547	6.285	68.57
3rd Qu.	3.67700	12.50	18.10	0.00000	0.6240	6.624	94.07
мах.	88.98000	100.00	27.74	1.00000	0.8710	8.780	100.00

	dis	rad	tax	ptratio	black	lstat	med∨	
399	1.4896	24.000	666.0	20.20	396.90	30.59	5.00	
406	1.4254	24.000	666.0	20.20	384.97	22.98	5.00	
Min.	1.1300	1.000	187.0	12.60	0.32	1.73	5.00	
1st Qu.	2.1000	4.000	279.0	17.40	375.40	6.95	17.02	
Median	3.2070	5.000	330.0	19.05	391.40	11.36	21.20	
Mean	3.7950	9.549	408.2	18.46	356.70	12.65	22.53	
3rd Qu.	5.1880	24.000	666.0	20.20	396.20	16.96	25.00	
Max.	12.1300	24.000	711.0	22.00	396.90	37.97	50.00	

- Suburbs 399 and 406 have the lowest median value of owner occupied homes
- Per capita crime rate is high
- Not the best place to live

(h)

R Script:

length(rm[rm > 7])length(rm[rm > 8])

summary(myData[which(rm > 8),])

Output:

[1] 64 [1] 13

crim	zn	indus	chas	nox	rm	age
Min. :0.02009	Min. : 0.00	Min. : 2.680	Min. :0.0000	Min. :0.4161	Min. :8.034	Min. : 8.40
1st Qu.:0.33147	1st Qu.: 0.00	1st Qu.: 3.970	1st Qu.:0.0000	1st Qu.:0.5040	1st Qu.:8.247	1st Qu.:70.40
Median :0.52014	Median : 0.00	Median : 6.200	Median :0.0000	Median :0.5070	Median :8.297	Median :78.30
Mean :0.71879	Mean :13.62	Mean : 7.078	Mean :0.1538	Mean :0.5392	Mean :8.349	Mean :71.54
3rd Qu.:0.57834	3rd Qu.:20.00	3rd Qu.: 6.200	3rd Qu.:0.0000	3rd Qu.:0.6050	3rd Qu.:8.398	3rd Qu.:86.50
Max. :3.47428	Max. :95.00	Max. :19.580	Max. :1.0000	Max. :0.7180	Max. :8.780	Max. :93.90

dis	rad	tax	ptratio	black	lstat	medv
Min. :1.801	Min. : 2.000	Min. :224.0	Min. :13.00	Min. :354.6	Min. :2.47	Min. :21.9
1st Qu.:2.288	1st Qu.: 5.000	1st Qu.:264.0	1st Qu.:14.70	1st Qu.:384.5	1st Qu.:3.32	1st Qu.:41.7
Median :2.894	Median : 7.000	Median :307.0	Median :17.40	Median :386.9	Median :4.14	Median :48.3
Mean :3.430	Mean : 7.462	Mean :325.1	Mean :16.36	Mean :385.2	Mean :4.31	Mean :44.2
3rd Qu.:3.652	3rd Qu.: 8.000	3rd Qu.:307.0	3rd Qu.:17.40	3rd Qu.:389.7	3rd Qu.:5.12	3rd Qu.:50.0
Max. :8.907	Max. :24.000	Max. :666.0	Max. :20.20	Max. :396.9	Max. :7.44	Max. :50.0

- Relatively lower per capita crime rate
- Relatively lower Lstat

```
# Chapter 3: Question 15 #
rm(list = ls())
library(MASS)
myData = Boston
attach(myData)
   (a)
       R Script:
       par(mfrow=c(1, 4))
       chas <- factor(chas, labels = c("N","Y"))
       lm.zn = lm(crim~zn)
       summary(lm.zn)
       plot(lm.zn)
       lm.indus = lm(crim~indus)
       summary(lm.indus)
       plot(lm.indus)
       lm.chas = lm(crim~chas)
       summary(lm.chas)
       plot(lm.chas)
       lm.nox = lm(crim \sim nox)
       summary(lm.nox)
       plot(lm.nox)
       lm.rm = lm(crim \sim rm)
       summary(lm.rm)
       plot(lm.rm)
       lm.age = lm(crim~age)
       summary(lm.age)
       plot(lm.age)
       lm.dis = lm(crim~dis)
       summary(lm.dis)
       plot(lm.dis)
       lm.rad = lm(crim~rad)
       summary(lm.rad)
       plot(lm.rad)
```

lm.tax = lm(crim~tax)
summary(lm.tax)
plot(lm.tax)

lm.ptratio = lm(crim~ptratio)
summary(lm.ptratio)
plot(lm.ptratio)

lm.black = lm(crim~black)
summary(lm.black)
plot(lm.black)

lm.lstat = lm(crim~lstat)
summary(lm.lstat)
plot(lm.lstat)

lm.medv = lm(crim~medv)
summary(lm.medv)
plot(lm.medv)

Output:

Call:

lm(formula = crim ~ medv)

Residuals:

Min	1Q	Median	3Q	Мах
-9.071	-4.022	-2.343	1.298	80.957

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	11.79654	0.93419	12.63	<2e-16 *	**
medv	-0.36316	0.03839	-9.46	<2e-16 *	**

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.934 on 504 degrees of freedom
Multiple R-squared: 0.1508, Adjusted R-squared: 0.1491
F-statistic: 89.49 on 1 and 504 DF, p-value: < 2.2e-16

- A sample summary output and residual plot of linear regression using medv as the predictor variable is shown above
- All variable except chas are statistically significant

(b)

R Script:

lm.fit = lm(crim~., data = myData)
summary(lm.fit)

Output:

ca11:

lm(formula = crim ~ ., data = myData)

Residuals:

Min 1Q Media	n 3Q	Max	
-9.924 -2.120 -0.35	3 1.019	75.051	

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	17.033228	7.234903	2.354	0.018949	**
zn	0.044855	0.018734	2.394	0.017025	nte.
indus	-0.063855	0.083407	-0.766	0.444294	
chas	-0.749134	1.180147	-0.635	0.525867	
nox	-10.313535	5.275536	-1.955	0.051152	-
rm	0.430131	0.612830	0.702	0.483089	
age	0.001452	0.017925	0.081	0.935488	
dis	-0.987176	0.281817	-3.503	0.000502	ofer ofer ofer
rad	0.588209	0.088049	6.680	6.46e-11	ofer ofer ofer
tax	-0.003780	0.005156	-0.733	0.463793	
ptratio	-0.271081	0.186450	-1.454	0.146611	
black	-0.007538	0.003673	-2.052	0.040702	nte.
lstat	0.126211	0.075725	1.667	0.096208	-
medv	-0.198887	0.060516	-3.287	0.001087	**
		•			•

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual s	standard	error:	6.439	on 492	degrees d	of freedom
Multiple F	R-squared	1: 0.45	4,	Adjus	ted R-squa	ared: 0.4396
F-statisti	ic: 31.47	on 13	and 49	92 DF,	p-value:	< 2.2e-16

• We can reject the null hypothesis H0 : $\beta j = 0$ for zn, dis, rad, black and medv because |t| is greater than 2

(c)

R Script:

 $\begin{array}{lll} x &=& c(coefficients(lm.zn)[2], & coefficients(lm.indus)[2], & coefficients(lm.chas)[2], \\ coefficients(lm.nox)[2], & coefficients(lm.rm)[2], & coefficients(lm.age)[2], & coefficients(lm.dis)[2], \\ coefficients(lm.rad)[2], & coefficients(lm.tax)[2], & coefficients(lm.ptratio)[2], \\ coefficients(lm.black)[2], & coefficients(lm.lstat)[2], & coefficients(lm.medv)[2]) \\ y &=& coefficients(lm.fit)[2:14] \\ \end{array}$

plot(x, y)

Output:

Explanation:

 Coefficients for all the variables, except nox, is comparable in both univariate and linear regression model

(d)

R Script:

```
lm.zn = lm(crim~poly(zn,3))
summary(lm.zn)

lm.indus = lm(crim~poly(indus,3))
summary(lm.indus)

lm.nox = lm(crim~poly(nox,3))
summary(lm.nox)

lm.rm = lm(crim~poly(rm,3))
```

summary(lm.rm)

lm.age = lm(crim~poly(age,3))
summary(lm.age)

lm.dis = lm(crim~poly(dis,3))
summary(lm.dis)

lm.rad = lm(crim~poly(rad,3))
summary(lm.rad)

lm.tax = lm(crim~poly(tax,3))
summary(lm.tax)

lm.ptratio = lm(crim~poly(ptratio,3))
summary(lm.ptratio)

lm.black = lm(crim~poly(black,3))
summary(lm.black)

lm.lstat = lm(crim~poly(lstat,3))
summary(lm.lstat)

lm.medv = lm(crim~poly(medv,3))
summary(lm.medv)

Output:

call:

lm(formula = crim ~ poly(medv, 3))

Residuals:

11C5 Tada I	<u> </u>				
Min	1Q	Median	3Q	Мах	
-24.427	-1.976	-0.437	0.439	73.655	

Coefficients:

	Estimate S	Std. Error t value Pr(> t)	
(Intercept)	3.614	0.292 12.374 < 2e-16 ***	
poly(medv, 3)1	-75.058	6.569 -11.426 < 2e-16 ***	
poly(medv, 3)2	88.086	6.569 13.409 < 2e-16 ***	
poly(medv, 3)3	-48.033	6.569 -7.312 1.05e-12 ***	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.569 on 502 degrees of freedom
Multiple R-squared: 0.4202, Adjusted R-squared: 0.4167
F-statistic: 121.3 on 3 and 502 DF, p-value: < 2.2e-16

- A sample summary output for non-linear association using linear regression of medv as the predictor variable is shown above
- Except for black and chas, all the other variables have either quadratic or cubic relationship with the response variable i.e. per capita crime rate

```
# Chapter 6: Question 9
rm(list = ls())
library(ISLR)
myData = College
attach(myData)
   (a)
       R Script:
       set.seed(1)
       train = sample(1:nrow(myData), nrow(myData)/2)
       test = (-train)
       myData.train = myData[train, ]
       myData.test = myData[test, ]
   (b)
       R Script:
       lm.fit = lm(Apps \sim .., data = myData[train,])
       lm.pred = predict(lm.fit, myData[test,])
       val.errors = mean((myData$Apps[test] - lm.pred) ^ 2)
       val.errors
       Output:
       [1] 1108531
       Explanation:
       Obtained test error is 1108531
   (c)
       R Script:
       library(glmnet)
       train.mat = model.matrix(Apps~., data=myData[train,])
       test.mat = model.matrix(Apps~., data=myData[test,])
       grid = 10 \land seq(4, -2, length=100)
       cv.out.ridge = cv.glmnet(train.mat, myData$Apps[train], alpha = 0, lambda=grid, thresh=1e-12)
       bestIam.ridge = cv.out.ridge$lambda.min
       bestIam.ridge
       ridge.pred = predict(cv.out.ridge, s=bestIam.ridge, newx = test.mat)
       ridge.errors = mean((myData$Apps[test] - ridge.pred)^2)
       ridge.errors
       Output:
       [1] 1108514
```

Obtained test error is 1108514

(d)

R Script:

cv.out.lasso = cv.glmnet(train.mat, myData\$Apps[train], alpha = 1, lambda=grid, thresh=1e-12)

 $bestIam.lasso = cv.out.lasso\$lambda.min\\bestIam.lasso$

 $lasso.pred = predict(cv.out.lasso, s=bestIam.lasso, newx = test.mat) \\ lasso.errors = mean((myData\$Apps[test] - lasso.pred)^2) \\ lasso.errors$

lasso.mod = glmnet(model.matrix(Apps~., data=myData), myData[, "Apps"], alpha=1) predict(lasso.mod, s=bestIam.lasso, type="coefficients")

Output:

[1] 1028718

19 x 1 sparse Matrix of class "dgCMatrix"

		1
(Intercept)	-6.491800e+02	
(Intercept)	•	
PrivateYes	-3.910803e+02	
Accept	1.414561e+00	
Enroll	-6.880133e-02	
Top10perc	2.975286e+01	
Top25perc	-5.898729e-03	
F.Undergrad		
P.Undergrad	8.118367e-03	
Outstate	-4.802638e-02	
Room.Board	1.154551e-01	
Books		
Personal		
PhD	-4.573050e+00	
Terminal	-3.263399e+00	
S.F.Ratio	5.152699e-01	
perc.alumni	-1.066814e+00	
Expend	6.615233e-02	
Grad.Rate	4.204566e+00	

Explanation:

Obtaines test error is 1028718

(e)

R Script:

library(pls)

 $pcr.fit = pcr(Apps \sim., data = myData, subset = train, scale = TRUE, validation = "CV") \\ validationplot(pcr.fit, val.type="MSEP")$

summary(pcr.fit)

pcr.pred = predict(pcr.fit, myData[test,], ncomp = 16)
pcr.error = mean((myData\$Apps[test] - pcr.pred)^2)
pcr.error

Output:

[1] 1166897

Apps

Explanation:

Obtained test error is 1166897

(f)

R Script:

```
pls.fit = plsr(Apps\sim., data = myData, subset = train, scale = TRUE, validation = "CV") \\ validationplot(pls.fit, val.type="MSEP") \\ summary(pls.fit)
```

pls.pred = predict(pls.fit, myData[test,], ncomp = 10) pls.error = mean((myData\$Apps[test] - pls.pred)^2) pls.error

Output:

[1] 1134531

Obtained test error is 1134531

(g) **R Script:**

```
test.avg = mean(myData.test[, "Apps"])
```

 $lm.test.r2 = 1 - mean((myData.test[, "Apps"] - lm.pred)^2) / mean((myData.test[, "Apps"] - test.avg)^2)$

 $ridge.test.r2 = 1 - mean((myData.test[, "Apps"] - ridge.pred)^2) / mean((myData.test[, "Apps"] - test.avg)^2)$

 $lasso.test.r2 = 1 - mean((myData.test[, "Apps"] - lasso.pred)^2) / mean((myData.test[, "Apps"] - test.avg)^2)$

 $pcr.test.r2 = 1 - mean((myData.test[, "Apps"] - data.frame(pcr.pred))^2) / mean((myData.test[, "Apps"] - test.avg)^2)$

pls.test.r2 = 1 - mean((myData.test[, "Apps"] - data.frame(pls.pred))^2) /mean((myData.test[, "Apps"] - test.avg)^2)

barplot(c(lm.test.r2, ridge.test.r2, lasso.test.r2, pcr.test.r2, pls.test.r2), col="blue", names.arg=c("OLS", "Ridge", "Lasso", "PCR", "PLS"), main="Test R-squared")

Output:

- Test R^2 is close to 0.9 for all the models
- Lasso has slightly higher test R^2 than others
- PCR uses more number of components (16) to give the same result as PLS with less number of components (10). Therefore, for this dataset PLS is preferable over PCR


```
rm(list = ls())
    (a)
        R Script:
        set.seed(1)
        library(MASS)
        library(leaps)
        library(glmnet)
        library(pls)
        myData = Boston
        attach(myData)
        # Best subset selection
        predict.regsubsets = function(object, newdata, id, ...) {
         form = as.formula(object$call[[2]])
         mat = model.matrix(form, newdata)
         coefi = coef(object, id = id)
         nvars = names(coefi)
         mat[, nvars] %*% coefi
        k = 10
        p = ncol(myData)-1
        folds = sample(rep(1:k, length=nrow(myData)))
        cv.errors = matrix(NA, k, ncol(myData)-1)
        for (i in 1:k) {
         best.fit = regsubsets(crim~., data=Boston[folds!=i,], nvmax=p)
         for (j in 1:p) {
          pred = predict(best.fit, Boston[folds==i, ], id=j)
          cv.errors[i,j] = mean((Boston\$crim[folds==i] - pred)^2)
        }
        rmse.cv = sqrt(apply(cv.errors, 2, mean))
        plot(rmse.cv, pch=19, type="b")
        which.min(rmse.cv)
        rmse.cv[which.min(rmse.cv)]
        # Lasso
        x = model.matrix(crim \sim .-1, data = myData)
```

```
y = crim
cv.lasso = cv.glmnet(x, y, type.measure="mse")
plot(cv.lasso)
coef(cv.lasso)
sqrt(cv.lasso$cvm[cv.lasso$lambda == cv.lasso$lambda.1se])
# Ridge
x = model.matrix(crim \sim .-1, data = myData)
y = crim
cv.ridge = cv.glmnet(x, y, type.measure="mse", alpha=0)
plot(cv.ridge)
coef(cv.ridge)
sqrt(cv.ridge$cvm[cv.ridge$lambda == cv.ridge$lambda.1se])
# PCR
pcr.fit = pcr(crim~., data=myData, scale=TRUE, validation="CV")
validationplot(pcr.fit, val.type="MSEP")
summary(pcr.fit)
Output:
Subset Selection:
```


Lasso:

14 x 1 sparse Matrix of class "dgCMatrix"

	1
(Intercept)	0.7894616
zn	
indus	•
chas	
nox	
rm	
age	•
dis	
rad	0.2957317
tax	
ptratio	
black	
lstat	
medv	•

[1] 7.281141

Ridge:

14 x 1 sparse Matrix of class "dgCMatrix"

		1
(Intercept)	1.146730398	
zn	-0.002889389	
indus	0.033208330	
chas	-0.209288622	
nox	2.158437385	
rm	-0.158326514	
age	0.007072375	
dis	-0.109819199	
rad	0.056100087	
tax	0.002508948	
ptratio	0.082673533	
black	-0.003147919	
lstat	0.042243863	
medv	-0.027678989	

[1] 7.494297

PCR:

Explanation:

- Best Subset model and best PCR model has comparable cross validated RMSE
- Lasso and Ridge have comparatively higher cross validated RMSE

(b)

Explanation:

- As mentioned in the answer of part (a) the 9 component best subset model has the best cross-validated RMSE.
- PCR with 13 components model has comparable cross validated RMSE. Since 9 components model is simpler that 13 components model, I would recommend 9 component subset model for this dataset

(c)

Explanation:

Refer part (b)

rm(list = ls())

library(ISLR) myData = Weekly attach(Weekly)

(a)

R Script:

summary(myData)
cor(myData[,-9])
pairs(myData)

Output:

Y	ear	Lag1	Lag2	Lag3	Lag4	Lag5
Min.	:1990	Min. :-18.1950				
1st Qu	.:1995	1st Qu.: -1.1540	1st Qu.: -1.1540	1st Qu.: -1.1580	1st Qu.: -1.1580	1st Qu.: -1.1660
Median	:2000	Median : 0.2410	Median : 0.2410	Median : 0.2410	Median : 0.2380	Median : 0.2340
Mean	:2000	Mean : 0.1506	Mean : 0.1511	Mean : 0.1472	Mean : 0.1458	Mean : 0.1399
3rd Qu	.:2005	3rd Qu.: 1.4050	3rd Qu.: 1.4090	3rd Qu.: 1.4090	3rd Qu.: 1.4090	3rd Qu.: 1.4050
Max.	:2010	Max. : 12.0260				

Volume	Toda	y Di	rection
Min. :0.	08747 Min. :	-18.1950 Do	own:484
1st Qu.:0.	33202 1st Qu.:	-1.1540 Up	:605
Median :1.	00268 Median:	0.2410	
Mean :1.	57462 Mean :	0.1499	
3rd Qu.:2.	05373 3rd Qu.:	1.4050	
Max. :9.	32821 Max. :	12.0260	

	Year	Lag1	Lag2	Lag3	Lag4	Lag5	Volume	Today
Year	1.00000000	-0.032289274	-0.03339001	-0.03000649	-0.031127923	-0.030519101	0.84194162	-0.032459894
Lag1	-0.03228927	1.000000000	-0.07485305	0.05863568	-0.071273876	-0.008183096	-0.06495131	-0.075031842
Lag2	-0.03339001	-0.074853051	1.00000000	-0.07572091	0.058381535	-0.072499482	-0.08551314	0.059166717
Lag3	-0.03000649	0.058635682	-0.07572091	1.00000000	-0.075395865	0.060657175	-0.06928771	-0.071243639
Lag4	-0.03112792	-0.071273876	0.05838153	-0.07539587	1.000000000	-0.075675027	-0.06107462	-0.007825873
Lag5	-0.03051910	-0.008183096	-0.07249948	0.06065717	-0.075675027	1.000000000	-0.05851741	0.011012698
Volume	0.84194162	-0.064951313	-0.08551314	-0.06928771	-0.061074617	-0.058517414	1.00000000	-0.033077783
Today	-0.03245989	-0.075031842	0.05916672	-0.07124364	-0.007825873	0.011012698	-0.03307778	1.000000000

- Year and Volume are related
- No other pattern can be identified

(b)

R Script:

 $glm.fit = glm(Direction \sim Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, \ data = myData, \ family = binomial)$

summary(glm.fit)

Output:

Call:

glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, family = binomial, data = myData)

Deviance Residuals:

Min	1Q	Median	3Q	Max	
-1.6949	-1.2565	0.9913	1.0849	1.4579	

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	0.26686	0.08593	3.106	0.0019	ate ate
Lag1	-0.04127	0.02641	-1.563	0.1181	
Lag2	0.05844	0.02686	2.175	0.0296	**
Lag3	-0.01606	0.02666	-0.602	0.5469	
Lag4	-0.02779	0.02646	-1.050	0.2937	
Lag5	-0.01447	0.02638	-0.549	0.5833	
∨olume	-0.02274	0.03690	-0.616	0.5377	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

(Dispersion parameter for binomial family taken to be 1)

Null	deviance:	1496.2	on 1088	degrees of freedom	
Residual	deviance:	1486.4	on 1082	degrees of freedom	
AIC: 1500.4					

Number of Fisher Scoring iterations: 4

• Lag2 has some statistical significance

(c)

R Script:

```
glm.probs = predict(glm.fit, type = "response")
glm.pred = rep("Down", length(glm.probs))
glm.pred[glm.probs > .5] = "Up"
table(glm.pred, myData$Direction)
```

Output:

glm.pred	Down	Up
Down	54	48
Up	430	557

Explanation:

- %age of correct predictions(Overall): 56.1%
- %age of correct predictions(Market Up): 92.1%
- %age of correct predictions(Market Down): 11.2%

(d)

R Script:

```
\begin{split} & train = (Year < 2009) \\ & test = myData[!train,] \\ & glm.fit = glm(Direction \sim Lag2, data = myData, family = binomial, subset = train) \\ & glm.probs = predict(glm.fit, test, type = "response") \\ & glm.pred = rep("Down", length(glm.probs)) \\ & glm.pred[glm.probs > .5] = "Up" \end{split}
```

Dir = Direction[!train] table(glm.pred, Dir) mean(glm.pred == Dir)

Output:

Dir				
glm.pred	Down	Up		
Down	9	5		
Up	34	56		

- [1] 0.625 (e) NA
- (f) NA
- (g)

R Script:

library(class)

```
train.X = as.matrix(Lag2[train])
test.X = as.matrix(Lag2[!train])
```

```
train.Direction = Direction[train]

set.seed(1)
knn.pred = knn(train.X, test.X, train.Direction, k=1)

table(knn.pred, Dir)
mean(knn.pred == Dir)

Output:

Dir
knn.pred Down Up
Down 21 30
Up 22 31

[1] 0.5
```

(h)

Explanation:

• Since the overall fraction of correct prediction is higher for logistic regression, it provides better results than KNN for K = 1

```
(i) R Script:
```

```
# Logistic regression - (Lag2:Lag1)
glm.fit = glm(Direction ~ Lag2:Lag1, data = Weekly, family = binomial, subset = train)
glm.probs = predict(glm.fit, test, type = "response")
glm.pred = rep("Down", length(glm.probs))
glm.pred[glm.probs > .5] = "Up"
Dir = Direction[!train]
table(glm.pred, Dir)
mean(glm.pred == Dir)
# KNN - (k = 10)
knn.pred = knn(train.X, test.X, train.Direction, k=10)
table(knn.pred, Dir)
mean(knn.pred == Dir)
# KNN - (k = 100)
knn.pred = knn(train.X, test.X, train.Direction, k=100)
table(knn.pred, Dir)
mean(knn.pred == Dir)
Output:
Logistic regression - (Lag2:Lag1):
```

Dir				
glm.pred	Down	Up		
Down	1	1		
Up	42	60		

[1] 0.5865385

KNN - (k = 10)

Dir				
knn.pred Down Up				
Down	17	18		
Up	26	43		

[1] 0.5769231

 $\overline{\text{KNN}}$ - (k = 100):

Dir				
knn.pred	Down	Up		
Down	9	12		
Up	34	49		

[1] 0.5576923

- All these models have comparable performance. Logistic regression is slightly better
- KNN model having k = 100 has k almost equal to number of data points. Therefore, it will give mean as the prediction. As expected it has the worst performance among all the models tried

```
# Chapter 8: Question 8 #
rm(list = ls())
library(tree)
library(randomForest)
library(ISLR)
myData = Carseats
attach(myData)
set.seed(1)
   (a)
       R Script:
       train = sample(dim(myData)[1], dim(myData)[1] / 2)
       myData.train = myData[train, ]
       myData.test = myData[-train, ]
   (b)
       R Script:
       tree.myData = tree(Sales~., data=myData.train)
       summary(tree.myData)
       plot(tree.myData)
       text(tree.myData, pretty=0)
       pred.myData = predict(tree.myData, myData.test)
       mean((myData.test$Sales - pred.myData)^2)
       Output:
```


Regression tree:

tree(formula = Sales ~ ., data = myData.train)

Variables actually used in tree construction:

[1]	"ShelveLoc"	"Price"	"Age"	"Advertising" "Income"	"CompPrice"
Num	ber of termina	al nodes:	18		
Res	idual mean dev	/iance: 2	.36 = 429.5 / 182		

Distribution of residuals:

Min.	1st Qu.	Median	Mean 3rd Qu.	Max.	
-4.2570	-1.0360	0.1024	0.0000 0.9301	3.9130	

[1] 4.148897

Explanation:

• Obtained test error rate is 4.148897

(c)

R Script:

```
cv.myData = cv.tree(tree.myData, FUN=prune.tree)
par(mfrow=c(1, 2))
plot(cv.myData$size, cv.myData$dev, type="b")
plot(cv.myData$k, cv.myData$dev, type="b")
```

```
pruned.myData = prune.tree(tree.myData, best=9)
par(mfrow=c(1, 1))
plot(pruned.myData)
text(pruned.myData, pretty=0)
pred.pruned = predict(pruned.myData, myData.test)
mean((myData.test$Sales - pred.pruned)^2)
```

Output:

[1] 4.993124

Explanation:

Pruning the tree increases the test error rate to 4.993124

(d)

R Script:

bag.myData = randomForest(Sales~., data=myData.train, mtry=10, ntree=500, importance=TRUE)

bag.pred = predict(bag.myData, myData.test)

mean((myData.test\$Sales - bag.pred)^2)

importance(bag.myData)

Output:

[1] 2.604369

	—	
	%IncMSE	IncNodePurity
CompPrice	14.4124562	133.731797
Income	6.5147532	74.346961
Advertising	15.7607104	117.822651
Population	0.6031237	60.227867
Price	57.8206926	514.802084
ShelveLoc	43.0486065	319.117972
Age	19.8789659	192.880596
Education	2.9319161	39.490093
Urban	-3.1300102	8.695529
US	7.6298722	15.723975

Explanation:

The test error rate improved to 2.604369

• According to importance() function, Price and ShelveLoc are the important parameters

(e)

R Script:

rf.myData = randomForest(Sales~., data=myData.train, mtry=5, ntree=500, importance=TRUE)
rf.pred = predict(rf.myData, myData.test)
mean((myData.test\$Sales - rf.pred)^2)
importance(rf.myData)

Output:

[1] 2.802383

	%IncMSE	IncNodePurity
CompPrice	12.0259791	124.81403
Income	5.5542673	106.15418
Advertising	12.0466048	136.15204
Population	0.3136897	81.68162
Price	45.9639857	457.15711
ShelveLoc	36.2789679	271.76488
Age	20.8537727	196.72182
Education	2.9005332	54.16980
Urban	-0.6888196	11.86848
US	6.9739759	23.64075

- Obtained test error rate is 2.802383
- According to importance() function, Price and ShelveLoc are the important parameters

```
# Chapter 8: Question 11 #
rm(list = ls())
library(gbm)
library(ISLR)
myData = Caravan
attach(myData)
set.seed(1)
   (a)
      R Script:
      train = 1:1000
      myData$Purchase = ifelse(myData$Purchase == "Yes", 1, 0)
      myData.train = myData[train, ]
      myData.test = myData[-train, ]
   (b)
      R Script:
      boost.myData = gbm(Purchase~., data=myData.train, n.trees=1000, shrinkage=0.01,
      distribution="bernoulli")
      summary(boost.myData)
      Output:
```

T		wa7 ====
PPERSAUT	Var PPERSAUT	rel.inf 14.63504779
MKOOPKLA	MKOOPKLA	9.47091649
MOPLHOOG	MOPLHOOG	7.31457416
MBERMIDD	MBERMIDD	6.08651965
PBRAND	PBRAND	4.66766122
MGODGE	MGODGE	4.49463264
ABRAND	ABRAND	4.32427755
MINK3045	MINK3045	4.17590619
MOSTYPE	MOSTYPE	2.86402583
PWAPART MAUT1	PWAPART MAUT1	2.78191075 2.61929152
MBERARBG	MBERARBG	2.10480508
MSKA	MSKA	2.10185152
MAUT2	MAUT2	2.02172510
MSKC	MSKC	1.98684345
MINKGEM	MINKGEM	1.92122708
MGODPR	MGODPR	1.91777542
MBERHOOG	MBERHOOG	1.80710618
MGODOV	MGODOV	1.78693913
PBYSTAND MSKB1	PBYSTAND MSKB1	1.57279593 1.43551401
MFWEKIND	MFWEKIND	1.37264255
MRELGE	MRELGE	1.20805179
MOPLMIDD	MOPLMIDD	0.93791970
MINK7512	MINK7512	0.92590720
MINK4575	MINK4575	0.91745993
MGODRK	MGODRK	0.90765539
MFGEKIND	MFGEKIND	0.85745374
MZPART	MZPART	0.82531066
MRELOV	MRELOV	0.80731252
MINKM30	MINKM30	0.74126812
МНКООР	MHKOOP	0.73690793
MZFONDS MAUTO	MZFONDS MAUTO	0.71638323 0.71388052
MHHUUR	MHHUUR	0.59287247
APERSAUT	APERSAUT	0.58056986
MOSHOOFD	MOSHOOFD	0.58029563
MSKB2	MSKB2	0.53885275
PLEVEN	PLEVEN	0.53052444
MINK123M	MINK123M	0.50660603
MBERARBO	MBERARBO	0.48596479
MGEMOMV	MGEMOMV	0.47614792
PMOTSCO	PMOTSCO	0.46163590
MSKD	MSKD	0.39735297
MBERBOER MGEMLEEF	MBERBOER MGEMLEEF	0.36417546 0.26166240
MFALLEEN	MFALLEEN	0.21448118
MBERZELF	MBERZELF	0.15906143
MOPLLAAG	MOPLLAAG	0.05263665
MAANTHUI	MAANTHUI	0.03766014
MRELSA	MRELSA	0.0000000
PWABEDR	PWABEDR	0.0000000
PWALAND	PWALAND	0.0000000
PBESAUT	PBESAUT PVRAAUT	0.0000000
PVRAAUT PAANHANG	PAANHANG	0.0000000
PTRACTOR	PTRACTOR	0.0000000
PWERKT	PWERKT	0.0000000
PBROM	PBROM	0.0000000
PPERSONG	PPERSONG	0.0000000
PGEZONG	PGEZONG	0.0000000
PWAOREG	PWAOREG	0.0000000
PZEILPL	PZEILPL PPLEZIER	0.0000000
PPLEZIER PFIETS	PPLEZIER	0.0000000
PINBOED	PINBOED	0.00000000
AWAPART	AWAPART	0.0000000
AWABEDR	AWABEDR	0.0000000
AWALAND	AWALAND	0.0000000
ABESAUT	ABESAUT	0.0000000
AMOTSCO	AMOTSCO	0.0000000
AVRAAUT	AVRAAUT	0.0000000
AAANHANG	AAANHANG	0.0000000
ATRACTOR	AWERKT	0.0000000
ARROM	AWERKT ABROM	0.0000000
ABROM ALEVEN	ALEVEN	0.0000000
APERSONG	APERSONG	0.00000000
AGEZONG	AGEZONG	0.0000000
AWAOREG	AWAOREG	0.0000000
AZEILPL	AZEILPL	0.0000000
APLEZIER	APLEZIER	0.0000000
AFIETS	AFIETS	0.0000000
AINBOED	AINBOED	0.0000000
ABYSTAND	ABYSTAND	0.0000000

• PPERSAUT, MKOOPKLA, MOPLHOOG and MBERMIDD are most important predictors

(c)

R Script:

```
boost.prob = predict(boost.myData, myData.test, n.trees=1000, type="response") boost.pred = ifelse(boost.prob > 0.2, 1, 0) table(myData.test$Purchase, boost.pred)
```

```
\label{lem:myData} $$\lim.myData = glm(Purchase~., data=myData.train, family=binomial)$$ lm.prob = predict(lm.myData, myData.test, type="response")$$ lm.pred = ifelse(lm.prob > 0.2, 1, 0)$$ table(myData.test$Purchase, lm.pred)
```

Output:

boost.pred					
	0	1			
0	4410	123			
1	256	33			

lm.pred				
		0	1	
	0	4183	350	
	1	231	58	

- Boosting: 21.15% Prediction Accuracy
- Logistic Regression: 14.21% Prediction Accuracy
- Therefore, Boosting is better than logistic regression

Problem 1: Beauty Pays!

R Script:

beauty_data = read.csv("C:/Users/Neerav Basant/Desktop/Summer/Predictive Modeling/Part 1/BeautyData.csv") attach(beauty_data)

lm.fit = lm(CourseEvals~., data = beauty_data)

summary(lm.fit)

1.

Explanation:

- We need to estimate the effect of "beauty" into course ratings. But as the question suggests, in order to measure the effect of "beauty", we also "need to adjust for many other determinants". We can do that by building a linear model using course rating as response variable and all the other relevant variables as predictor variable.
- In the given dataset (i.e. BeautyData.csv), CourseEvals is dependent/response variable; and BeautyScore, Female, Lower, NonEnglish and TenureTrack are independent/predictor variables.

```
CourseEvals = \beta_0 + \beta_1BeautyScore + \beta_2Female + \beta_3Lower + \beta_4NonEnglish + \beta_5TenureTrack + \epsilon, \epsilon \sim N(0, \sigma^2)
```

Residuals:

Min	1Q	Median	3Q	Max
-1.31385	-0.30202	0.01011	0.29815	1.04929

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	4.06542	0.05145	79.020	< 2e-16	***
BeautyScore	0.30415	0.02543	11.959	< 2e-16	***
female	-0.33199	0.04075	-8.146	3.62e-15	***
lower	-0.34255	0.04282	-7.999	1.04e-14	***
nonenglish	-0.25808	0.08478	-3.044	0.00247	**
tenuretrack	-0.09945	0.04888	-2.035	0.04245	*

```
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
Residual standard error: 0.4273 on 457 degrees of freedom

Multiple R-squared: 0.3471, Adjusted R-squared: 0.3399

F-statistic: 48.58 on 5 and 457 DF, p-value: < 2.2e-16
```

• We will analyze the results by considering one variable at a time. BeautyScore has a positive coefficient which suggests that keeping all the other parameters constant, higher the beauty score of the instructor the higher his/her rating.

- On the contrary, holding everything else constant female instructors receive lower ratings
 than male instructor. We all know that gender has no influence on the teaching capability
 of instructor. This clearly suggests that UT students has a potential bias towards male
 instructors.
- Similarly, lower classes have a negative coefficient. Students are mostly less interested in lower division classes (because it is mandatory) which could be the reason for giving less grades to instructors of the respective classes.
- Negative coefficient for Non English instructors is pretty intuitive. A non-native speaker might face difficulty in communicating in English which could be possible reason for lower evaluation of instructors.
- Coefficient of Tenure track is small (and negative). Therefore, it has minimal impact on course rating of the instructors.

2.

- Dr. Hamermesh is basically posing a very simple question here: "Are beautiful instructors actually better teachers or is it just a perception?" Result of linear regression cannot answer this question.
- In my opinion, beauty like gender does not have any impact on capability to teach. This is clearly a case of bias on the part of students. But unfortunately, we cannot prove this with this model/experiment.
- We can conduct various controlled experiments to prove this point. One such experiment could be conducting audio lectures so that instructor's beauty would not have any impact on the perception of students.

Problem 2: Housing Price Structure

R Script:

```
Housing_Data = read.csv("C:/Users/Neerav Basant/Desktop/Summer/Predictive Modeling/Part
1/MidCity.csv")
attach(Housing_Data)
n = dim(Housing\_Data)[1]
dn1 = rep(0,n)
dn1[Nbhd==1]=1
dn2 = rep(0,n)
dn2[Nbhd==2]=1
dn3 = rep(0,n)
dn3[Nbhd==3]=1
BR = rep(0,n)
BR[Brick=="Yes"]=1
Price = Price/1000
SqFt = SqFt/1000
MidCityModel = Im(Price \sim BR + dn2 + dn3 + SqFt + Offers + SqFt + Bedrooms + Bathrooms)
summary(MidCityModel)
confint(MidCityModel)
model2 = Im(Price \sim BR + dn2 + dn3 + SqFt + Offers + SqFt + Bedrooms + BR:dn3)
summary(model2)
confint(model2)
confint(model2, level = 0.99)
```

Explanation:

1.

- As per discussion in the class, we need to create dummy variable N_1 , N_2 and N_3 to indicate if a house is from neighborhood 1, 2 or 3. We can also create a dummy variable, say Brick to indicate if a house is made of Brick.
- We can build linear regression model, considering Price as response variable and other relevant variables from the dataset and dummy variable as predictor variable.

```
Price = \beta_0 + \beta_1 BR + \beta_2 dn^2 + \beta_3 dn^3 + \beta_4 Offers + \beta_5 SqFt + \beta_6 Bedrooms + \beta_7 Bathrooms + \epsilon, \epsilon \sim N(0, \sigma^2)
```

Note: Only 2 neighborhoods (dn2 and dn3) are passed as the predictor variable. For dn2 = dn3 = 0, we can predict the values for dn1.

• Following is the summary and Confidence interval output based on the linear regression model output:

Residuals:

Min	1Q	Median	3Q	Мах	
-27337.3	-6549.5	-41.7	5803.4	27359.3	

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	2159.498	8877.810	0.243	0.80823	
BR	17297.350	1981.616	8.729	1.78e-14	***
dn2	-1560.579	2396.765	-0.651	0.51621	
dn3	20681.037	3148.954	6.568	1.38e-09	***
SqFt	52.994	5.734	9.242	1.10e-15	***
Offers	-8267.488	1084.777	-7.621	6.47e-12	***
Bedrooms	4246.794	1597.911	2.658	0.00894	**
Bathrooms	7883.278	2117.035	3.724	0.00030	***

Signif. codes:

Residual standard error: 10020 on 120 degrees of freedom
Multiple R-squared: 0.8686, Adjusted R-squared: 0.861
F-statistic: 113.3 on 7 and 120 DF, p-value: < 2.2e-16

Confidence Interval:

	2.5 %	97.5 %
(Intercept)	-15417.94711	19736.94349
BR	13373.88702	21220.81203
dn2	-6306.00785	3184.84961
dn3	14446.32799	26915.74671
SqFt	41.64034	64.34714
Offers	-10415.27089	-6119.70575
Bedrooms	1083.04162	7410.54616
Bathrooms	3691.69572	12074.86126

- $\beta_1 = 17297.350$
- To find the premium associated with brick houses everything else being equal, we need to test the null hypothesis of β_1 =0. From the 95% confidence interval table, it is quite obvious that 0 cannot be a part of confidence interval of β_1 (13373.89 21220.81). Therefore, null hypothesis of β_1 = 0 is rejected.
- So, brick is significant factor in determining the price of a house. Moreover, the parameter estimate is positive. Therefore, we conclude that people pay a premium for brick house.

2.

Explanation:

- $\beta_3 = 20681.037$
- To find the premium associated with houses in neighborhood 3 everything else being equal, we need to test the null hypothesis of β_3 =0. From the 95% confidence interval table, it is quite obvious that 0 cannot be a part of confidence interval of β_3 (14446.33 26915.75). Therefore, null hypothesis of β_3 = 0 is rejected.
- Since the parameter estimate is positive and entire confidence interval is greater than 0, we can conclude that people pay a premium to live in neighborhood 3.

3.

Explanation:

• We need to check the interaction of Brick and neighborhood 3 to figure out the premium associated with brick houses in neighborhood 3. In order to do that, we need to add an interaction term (BR * dn3) to our model:

Price = $\beta_0 + \beta_1 BR + \beta_2 dn^2 + \beta_3 dn^3 + \beta_4 Offers + \beta_5 SqFt + \beta_6 Bedrooms + \beta_7 Bathrooms + \beta_8 BR.dn^3 + \epsilon, \epsilon \sim N(0, \sigma^2)$

• Following is the summary and Confidence interval output (95% and 99%) based on the linear regression model output:

Residuals:

Min	1Q	Median	3Q	Max	
-26939.1	-5428.7	-213.9	4519.3	26211.4	

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	3009.993	8706.264	0.346	0.73016	
BR	13826.465	2405.556	5.748	7.11e-08	***
dn2	-673.028	2376.477	-0.283	0.77751	
dn3	17241.413	3391.347	5.084	1.39e-06	***
SqFt	54.065	5.636	9.593	< 2e-16	***
Offers	-8401.088	1064.370	-7.893	1.62e-12	***
Bedrooms	4718.163	1577.613	2.991	0.00338	**
Bathrooms	6463.365	2154.264	3.000	0.00329	**
BR:dn3	10181.577	4165.274	2.444	0.01598	*

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9817 on 119 degrees of freedom

Multiple R-squared: 0.8749, Adjusted R-squared: 0.8665

F-statistic: 104 on 8 and 119 DF, p-value: < 2.2e-16

Confidence Interval (95%):

	, ,	
	2.5 %	97.5 %
(Intercept)	-14229.27947	20249.26635
BR	9063.22323	18589.70668
dn2	-5378.69058	4032.63406
dn3	10526.20666	23956.61921
SqFt	42.90493	65.22463
Offers	-10508.64698	-6293.52887
Bedrooms	1594.33302	7841.99385
Bathrooms	2197.70794	10729.02197
BR:dn3	1933.91810	18429.23657

Confidence Interval (99%):

	0.5 %	99.5 %
(Intercept)	-19781.05615	25801.04303
BR	7529.25747	20123.67244
dn2	-6894.11333	5548.05681
dn3	8363.62557	26119.20030
SqFt	39.31099	68.81858
Offers	-11187.37034	-5614.80551
Bedrooms	588.32720	8847.99967
Bathrooms	823.98555	12102.74436
BR:dn3	-722.17781	21085.33248

- The 95% confidence interval table does not include 0 for β_8 (1933.92 18429.24). This implies that there is a premium for brick houses in neighborhood three at 95% confidence level.
- However, if we look at 99% confidence interval table, it includes 0 for β₈ (-722.18 21085.33). Therefore, in a stricter environment, it can be concluded that there is no premium for brick houses in neighborhood three.

- We need to determine that is it reasonable to combine N1 and N2 for the purposes of
 prediction. If either of them is not significant then it can be concluded that it is reasonable
 to combine them.
- B₂ is the coefficient for N2. If it is insignificant, then our null hypothesis $\beta_2 = 0$ should be true.
- From the 95% confidence interval table (from 1st part of the question), it is evident that 0 is a possible value for β_2 (-6306.01 3184.85). Thus, we can conclude that it is reasonable to make β_2 as 0.
- Hence, N1 and N2 can be combined for the purpose of prediction.

Problem 3: What causes what??

1.

Explanation:

- In an ideal world, we would like to have less crime in our cities. But if there is less crime, there is no need for more police. So, if there is more police in a city, it might mean that crime rates in that city are high. So, we expect to see positive correlation between "crime" and "police".
- Datasets having "crime" and "police" details cannot differentiate between more crime leading to more police or more police leading to more crime. Therefore, we cannot understand how more cops affect crime by having this dataset from different cities. We need to perform more natural experiment to understand this problem.

2.

Explanation:

- Researchers from UPENN collected better and more natural data to solve this problem.
- They collected crime data for DC and also identified the days in which there was a higher alert due to information about potential terrorist attacks. Important thing to note here is crime had nothing to do with number of police on a particular day.
- From table 2, we can see that the coefficient for dummy variable of high alert is negative. This suggests that the crime rate was lower on such days.

3.

Explanation:

- We need to control the ridership to validate the fact that the people were out in spite of the news about terrorist activities. Holding the ridership constant, it was made sure that unavailability of opportunities to commit crime was not the reason for less crime on high alert days.
- Some might argue that criminals were afraid of terrorists and decided not to go out on high alert days.
- I believe this is a very strong assumption. As far as I am concerned, the results from the table strongly suggests that actual reason for reduced crime was more number of police and not anything else.

4.

- In table 4, researchers are calculating interaction of high alert days and various districts.
- District 1 (DC) has a lot of potential terrorist targets. As a result, number of police deployed in district 1 should be comparatively high compared to other districts.
- A more negative coefficient value for District 1 compared to other districts is in line with the above mentioned fact. Crime in District 1 reduces more on high alert days compared to other districts.