ΜΕΜ-205 Περιγραφική Στατιστική

Τμήμα Μαθηματικών και Εφ. Μαθηματικών, Πανεπιστήμιο Κρήτης

Κώστας Σμαραγδάκης (kesmarag@gmail.com)

20-03-2023

Συντελεστής Προσδιορισμού (Coefficient of Determination)

Συντελεστής Προσδιορισμού (Coefficient of Determination)

$$R^{2} = \frac{SSR}{SST}$$

$$R^{2} = \frac{SST - SSE}{SST} = \frac{B * SS_{xy}}{SS_{yy}}, \quad 0 \le R^{2} \le 1$$

$$b = \frac{SS_{xy}}{SS_{xx}}$$

Αντικαθιστώντας τη τιμή του b έχουμε το R^2 στη μορφή:

$$SS_{xy} = \sum_{n=1}^{N} (x_n - \overline{x}) (y_n - \overline{y})$$

$$R^2 = \frac{SS_{xy}^2}{SS_{xx} * SS_{yy}}$$

$$SS_{xy} = \sum_{n=1}^{N} (x_n - \overline{x}) (y_n - \overline{y})^2$$

$$SS_{xy} = \sum_{n=1}^{N} (y_n - \overline{y})^2$$

$$SS_{xy} = \sum_{n=1}^{N} (y_n - \overline{y})^2$$

$$SS_{xy} = \sum_{n=1}^{N} (y_n - \overline{y})^2$$

Συντελεστής Προσδιορισμού (Coefficient of Determination)

Παράδειγμα

Βρείτε τον συντελεστή προσδιορισμού του συνόλου δεδομένων:

$$SS_{xx} = \sum x^{2} - \frac{1}{N} (\sum x)^{2}$$

$$= 30 - \frac{1}{4} 8^{2} =$$

$$= 30 - 16 = 14$$

$$SS_{yy} = 42 - \frac{1}{4} 12^{2} = 6$$

$$SS_{xy} = \sum xy - \frac{\sum x \sum y}{N} =$$

N=4

Δειγματική Κατανομή της Κλίσης b

$$y = A + Bx + E$$
 , $\mu_{y/x} = A + Bx$, A, B ασυωστα

Μέση τιμή, τυπική απόκλιση και κατανομή του b α, $b = \frac{SS_{xy}}{SS_{xx}}$, $\alpha = \overline{Y} - b\overline{X}$

$$h_{y|x} = \alpha + bx$$

$$U = A + Bx + E$$

$$L = \frac{55x}{2}$$

$$\begin{split} \mu_b = B, \quad \sigma_b = \frac{\sigma_\epsilon}{\sqrt{SS_{xx}}} \\ b \sim \mathcal{N}(\mu_b, \sigma_b^{\textbf{2}}) \end{split}$$

lacktriangle Όταν το σ είναι άγνωστο δεν μπορούμε να υπολογίσουμε το $\sigma_{
m b}$

Εκτιμήτρια της τυπικής απόκλιση του ${\bf b}$

$$s_b = \frac{s_e}{\sqrt{SS_{xx}}} \qquad \qquad \text{ance images for an obstitute.}$$

$$b = \frac{SS_{xy}}{SS_{yx}} \quad \text{Towaria fundfinity}$$

$$SS_{xy} = \sum_{M=1}^{N} (x_M - \overline{x})(y_M - \overline{y}) = \sum_{M=1}^{N} (x_M - \overline{x})y_M - y = \sum_{M=1}^{N} (x_M - \overline{x})$$
of
$$\sum_{M=1}^{N} (x_M - \overline{x}) = \sum_{M=1}^{N} x_M - N\overline{x} = 0$$

$$SS_{xy} = \sum_{M=1}^{N} (x_M - \overline{x})y_M$$

 $b = \frac{\sum_{n=1}^{N} (x_n - \overline{x}) y_n}{\sum_{n=1}^{N} (x_n - \overline{x})^2} = \sum_{n=1}^{N} \frac{(x_n - \overline{x})}{\sum_{n=1}^{N} (x_n - \overline{x})^2} y_n = \sum_{n=1}^{N} C_n y_n^{N}$ Tuxous

$$X = \alpha Y \Rightarrow Van(X) = \alpha^{2} Van(Y)$$

$$N(b) = \sum_{N=1}^{\infty} C_{N}^{2} Van(Y_{N}) = \sigma_{\varepsilon}^{2} \sum_{N=1}^{\infty} C_{N}^{2}$$

$$\sum_{N=1}^{\infty} C_{N}^{2} = \sum_{N=1}^{\infty} \frac{(x_{N} - x)^{2}}{(x_{N} - x)^{2}} = \frac{\sum_{N=1}^{\infty} (x_{N} - x)^{2}}{\sum_{N=1}^{\infty} (x_{N} - x)^{2}} = \frac{1}{SS_{xx}}$$

$$Van(b) = \frac{\sigma_{\varepsilon}^{2}}{N} Van(Y_{N}) = \sigma_{\varepsilon}^{2} Van(Y_{N}) = \sigma_{\varepsilon}^{2} Van(Y_{N}) = \sigma_{\varepsilon}^{2}$$

$$Van(A) = \sum_{N=1}^{\infty} (x_{N} - x)^{2} = \frac{1}{SS_{xx}}$$

$$Van(A) = \sum_{N=1}^{\infty} (x_{N} - x)^{2} = \frac{1}{SS_{xx}}$$

$$Van(A) = \sum_{N=1}^{\infty} (x_{N} - x)^{2} = \frac{1}{SS_{xx}}$$

$$\Lambda^{am}(P) = \frac{\partial Z^{xx}}{\partial z^{5}} \quad \text{if} \quad Q^{P}_{S} = \frac{ZZ^{xx}}{\partial z^$$

 X_1, X_2 avegaemates Tote $Vow(X_1 + X_2) = Vov(X_1) + Vov(X_2)$

Το (1-a)*100% διάστημα εμπιστοσύνης για το B είναι:

$$\mathcal{B} \boldsymbol{\epsilon} \quad [b - ts_b, b + ts_b]$$

όπου το t λαμβάνεται από την $t_{\rm df}, \ df = N-2$ έτσι ώστε

$$P(T < t) = 1 - a/2$$

ightharpoonup Περιθώριο σφάλματος: $E=ts_b$

Παράδειγμα

Για επτά νοικοκυριά μιας πόλης έχουμε τα ακόλουθα ζεύγη ετήσιου εισοδήματος και εξόδων σίτισης

- 1. Βρείτε την προσεγγιστική ευθεία γραμμικής παλινδρόμησης $(\hat{y} = a + bx)$ χρησιμοποιώντας τη μέθοδο ελαχίστων τετραγώνων.
- 2. Υπολογίστε το 95% διάστημα εμπιστοσύνης για την παραμετρο B του πληθυσμού (y = A + Bx).

(1)
$$b = \frac{SS_{xy}}{SS_{xx}}$$
, $\alpha = \frac{9}{4} - bx$

$$dt = N - 2 = 5$$
(2) $B \in [b - ts]$, $b + ts$

cum. prob	t.50	t.75	t.so	t.as	f.00	t.95	t .975	t.se	t.995	t.999	t.9995
one-tail		0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3		0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4		0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
- 5		0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6		0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7		0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8		0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9		0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10		0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11		0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12		0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13		0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14		0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15		0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16 17		0.690	0.865 0.863	1.071	1.337	1.746	2.120 2.110	2.583 2.567	2.921	3.686 3.646	4.015 3.965
18		0.688	0.862	1.069	1,330	1.734	2.110	2.552	2.878	3.610	3.922
19		0.688	0.862	1.067	1,328	1.734	2.093	2.532	2.861	3.579	3.883
20		0.687	0.860	1.066	1.325	1.725	2.093	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1,323	1.725	2.080	2.528	2.831	3.527	3.850
22		0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23		0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3,768
24		0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3,745
25		0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3,725
26		0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27		0.684	0.855	1.057	1,314	1.703	2.052	2.473	2.771	3.421	3.690
28		0.683	0.855	1.056	1,313	1.701	2.048	2.467	2.763	3,408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1,310	1.697	2.042	2.457	2.750	3,385	3.646
40		0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60		0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80		0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100		0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
	Confidence Level										

Γενικευμένα Γραμμικά Μοντέλα

$$y = e^{x} \implies l_{m}y = x \text{ lue} \implies l_{n}y = x$$

$$y = A + Bx_{m} + \epsilon_{m} \qquad l_{m}y_{m} = A + Bx_{m} + \epsilon_{m}$$

- ▶ Όταν τα x και y δεν συνδέονται με γραμμικό τρόπο.
- Αλλά υπάρχει μετασχηματισμός $g: y \to y'$ τέτοιος ώστε χκαι y' να μπορούν να περιγραφούν με ένα γραμμικό μοντέλο.

Παραδείγματα

$$ightharpoonup y = e^x$$

$$\mathbf{v} = \mathbf{x}^2$$

$$ightharpoonup y = \frac{1}{x}$$

$$ightharpoonup y = log(x)$$

$$e \times p(h,\hat{y}) = e^{x+bx}$$

$$\hat{y} = e^{a+bx}$$

Γενικευμένα Γραμμικά Μοντέλα

Παράδειγμα

SSE Ve Biver EdixieTo.

Γραμμική Συσχέτιση (Linear Correlation)

$$R^2 = \frac{SS_{xy}^2}{SS_{xx}SS_{yy}} \quad \text{(Συντελεστής Προσδιορισμού)}$$

$$r = \frac{SS_{xy}}{\sqrt{SS_{xx}SS_{yy}}} \quad \text{(Συντελεστής Γραμμικής Συσχέτισης)}$$

Σχέση μεταξύ συντελεστών γραμμικής συσχέτισης και προσδιορισμού

$$r = sign(SS_{xy})\sqrt{R^2}$$
 Sign(SS_{xy}) =
$$\begin{cases} 1, SS_{xy} > 0 \\ -1, SS_{xy} < 0 \end{cases}$$

Διαστήματα εμπιστοσύνης για τις τιμές της εξαρτημένης μεταβλητής

1. Για δοσμένο \mathbf{x}^* ποιο είναι το διάστημα εμπιστοσύνης (1-α)*100% για τη μέση τιμή $\mu_{\mathbf{y}|\mathbf{x}^*}$;

2. Για δοσμένο x^* ποιο είναι το διάστημα εμπιστοσύνης (1-α)*100% για την τιμή μιας συγκεκριμένης παρατήρησης y^* ;

Διαστήματα εμπιστοσύνης για τις τιμές της εξαρτημένης μεταβλητής

Διαστημά Εμπιστοσύνης για την εκτίμηση της $\mu_{ m v|x^*}$

Εκτιμήτρια της τυπικής απόκλιση του $\hat{\mu}_{\mathbf{v}|\mathbf{x}^*}$

$$s_{\hat{\mu}_{y|x^*}} = \sqrt{\frac{1}{N} + \frac{(x^* - \bar{X})^2}{SS_{xx}}}$$

e = y - ŷ = y - a - b;

B: 08 = 156

Διάστημα εμπιστοσύνης

Το (1-a)*100% διάστημα εμπιστοσύνης για την $\mu_{y|x^*}$ είναι:

$$\hat{[\hat{\mu}_{y|x^*}} - ts_{\hat{\mu}_{y|x^*}}, \hat{\mu}_{y|x^*} + ts_{\hat{\mu}_{y|x^*}}]$$

όπου το tλαμβάνεται από την $t_{\rm df}, \; {\rm d} f = N-2$ έτσι ώστε

$$P(T < t) = 1 - a/2$$

ightharpoonup Περιθώριο σφάλματος: $\mathbf{E} = \mathrm{ts}_{\hat{\mu}_{\mathbf{v}}|_{\mathbf{v}^*}}$

Διάστημα Εμπιστοσύνης για την εκτίμηση συγκεκριμένης τιμής της ν

Εκτιμήτρια της τυπικής απόκλιση του
$$\hat{\mathbf{y}}^*$$

Εκτιμήτρια της τυπικής απόκλιση του
$$\hat{y}^*$$

$$\hat{y}_k = \alpha + b \times_k + e \times_k$$

$$S_{\hat{y}^*} = S_e \sqrt{1 + \frac{1}{N} + \frac{(x^* - \bar{X})^2}{SS_{xx}}}$$

$$y_k = \alpha + b \times_k + e \times_k$$

$$S_{\hat{y}^*} = S_e \sqrt{1 + \frac{1}{N} + \frac{(x^* - \bar{X})^2}{SS_{xx}}}$$

$$y_k = \alpha + b \times_k + e \times_k$$

$$y_k = \alpha + b \times_k + e \times_k$$

$$S_{\hat{y}^*} = S_e \sqrt{1 + \frac{1}{N} + \frac{(x^* - \bar{X})^2}{SS_{xx}}}$$

Διάστημα εμπιστοσύνης

Το (1-a)*100% διάστημα εμπιστοσύνης για την y^* είναι:

$$\mathbf{y}^* \in [\hat{y}^* - ts_{\hat{y}^*}, \hat{y}^* + ts_{\hat{y}^*}]$$

όπου το t λαμβάνεται από την $t_{\rm df}, \ df = N-2$ έτσι ώστε

$$P(T < t) = 1 - a/2$$

$$\frac{2}{3} = \frac{2}{3} + \frac{$$

$$S_{\hat{y}_{x}}^{2} = S_{e}^{2} \left(\frac{1}{N} + \frac{(x_{x} - \bar{x})^{2}}{SS_{xx}} \right) + S_{e}^{2} = S_{e}^{2} \left[1 + \frac{1}{N} + \frac{(x_{x} - \bar{x})^{2}}{SS_{xx}} \right]$$

$$y^{*} \qquad y^{*} = A + Bx^{*} + Ex^{*}$$

$$\downarrow_{\gamma|x^{*}} \qquad \downarrow_{\gamma|x^{*}} \qquad \downarrow_{\gamma$$

```
Tapasenta
```

$$\frac{\{(1,1),(1,2),(2,3),(2,4)\}}{\{(1,1),(1,2),(2,3),(2,4)\}} \quad N=4$$

$$S_{\hat{V}^{+}} = S_{e} \sqrt{1 + \frac{1}{4} + \frac{(x^{+} - x^{+})^{2}}{5S_{xx}}}$$

$$df = N-2=9 \qquad \pm$$

y* [g* - + sg., g*++sg.]

 $X^* = 1.5$