Actividad modulo 28 - Clasificacion

the dataset was taken from:

• https://www.kaggle.com/datasets/vjchoudhary7/hr-analytics-case-study

Data para clasificacion: general_data.csv

- Descripcion de las columnas del dataset:
- Age: Age of the employee
- Attrition: Whether the employee left in the previous year or not
- BusinessTravel: How frequently the employees travelled for business purposes in the last year
- Department: Department in company
- DistanceFromHome: Distance from home in kms
- Education: Education Level
- EducationField: Field of education
- EmployeeCount: Employee count
- EmployeeNumber: Employee number/id
- EnvironmentSatisfaction: Work Environment Satisfaction Level
- Gender: Gender of employee
- JobLevel: Job level at company on a scale of 1 to 5
- JobRole: Name of job role in company
- MaritalStatus: Marital status of the employee
- MonthlyIncome: Monthly income in rupees per month
- NumCompaniesWorked: Total number of companies the employee has worked for
- Over18: Whether the employee is above 18 years of age or not
- PercentSalaryHike: Percent salary hike for last year
- PerformanceRating: Performance rating for last year
- StandardHours: Standard hours of work for the employee
- StockOptionLevel: Stock option level of the employee
- TotalWorkingYears: Total number of years the employee has worked so far
- TrainingTimesLastYear: Number of times training was conducted for this employee last year
- YearsAtCompany: Total number of years spent at the company by the employee
- YearsSinceLastPromotion: Number of years since last promotion
- YearsWithCurrManager: Number of years under current manager
- La idead el modelo es predecir si un empleado se va a ir de la empresa o no (attrition)
- Metodo: Regresion Logistica

```
In []: # Configuraciones preliminares

import pandas as pd
import numpy as np
import os
import seaborn as sns
import matplotlib.pyplot as plt
```

```
os.chdir('E:\WORK IN PROGRESS\Data Analytics course\parte 2 python\week 28')
In []: # Se usa la funcion read_csv para Leer el archivo.csv
df= pd.read_csv('general_data.csv')
```

Exploratory Data Analysis

In []:	df.sar	mple(10)														
Out[]:		Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeID	Gender	NumC	ompaniesWorked	Over18	PercentSalaryHike	StandardHours	StockOptionLevel
	4059	49	No	Travel_Frequently	Sales	11	4	Life Sciences	1	4060	Male		3.0	Υ	11	8	1
	3269	52	No	Travel_Rarely	Research & Development	29	3	Life Sciences	1	3270	Male		8.0	Υ	11	8	1
	4402	37	Yes	Travel_Frequently	Sales	2	3	Marketing	1	4403	Male		6.0	Υ	11	8	1
	4198	34	No	Non-Travel	Research & Development	7	2	Technical Degree	1	4199	Female		0.0	Υ	13	8	1
	182	34	Yes	Travel_Frequently	Sales	17	1	Marketing	1	183	Male		9.0	Υ	22	8	1
	4259	25	Yes	Travel_Rarely	Sales	10	1	Marketing	1	4260	Male		1.0	Υ	13	8	0
	1831	33	No	Travel_Rarely	Research & Development	8	4	Life Sciences	1	1832	Male		1.0	Υ	13	8	1
	48	32	No	Travel_Rarely	Sales	2	3	Marketing	1	49	Male		1.0	Υ	21	8	1
	1815	45	No	Travel_Rarely	Research & Development	10	4	Life Sciences	1	1816	Male		1.0	Υ	12	8	2
	1928	41	No	Travel_Frequently	Sales	11	3	Other	1	1929	Male		2.0	Υ	15	8	1

10 rows × 24 columns

In []: df.info()
 # Todos los campos que no son numericos estan como tipo object
 # A todos estos campos se les deberia traducir a numericos para que la regresion lineal los tome directamente

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4410 entries, 0 to 4409
Data columns (total 24 columns):
```

Data	columns (total 24 column	s):						
#	Column	Non-Null Count	Dtype					
0	Age	4410 non-null	int64					
1	Attrition	4410 non-null	object					
2	BusinessTravel	4410 non-null	object					
3	Department	4410 non-null	object					
4	DistanceFromHome	4410 non-null	int64					
5	Education	4410 non-null	int64					
6	EducationField	4410 non-null	object					
7	EmployeeCount	4410 non-null	int64					
8	EmployeeID	4410 non-null	int64					
9	Gender	4410 non-null	object					
10	JobLevel	4410 non-null	int64					
11	JobRole	4410 non-null	object					
12	MaritalStatus	4410 non-null	object					
13	MonthlyIncome	4410 non-null	int64					
14	NumCompaniesWorked	4391 non-null	float64					
15	Over18	4410 non-null	object					
16	PercentSalaryHike	4410 non-null	int64					
17	StandardHours	4410 non-null	int64					
18	StockOptionLevel	4410 non-null	int64					
19	TotalWorkingYears	4401 non-null	float64					
20	TrainingTimesLastYear	4410 non-null	int64					
21	YearsAtCompany	4410 non-null	int64					
22	YearsSinceLastPromotion	4410 non-null	int64					
23	YearsWithCurrManager	4410 non-null	int64					
dtype	<pre>dtypes: float64(2), int64(14), object(8)</pre>							
memor	ry usage: 827.0+ KB							

In []: # Obtener los principales estadisticos para cada uno
 df.describe().T

Out[]:

	count	mean	std	min	25%	50%	75%	max
Age	4410.0	36.923810	9.133301	18.0	30.00	36.0	43.00	60.0
DistanceFromHome	4410.0	9.192517	8.105026	1.0	2.00	7.0	14.00	29.0
Education	4410.0	2.912925	1.023933	1.0	2.00	3.0	4.00	5.0
EmployeeCount	4410.0	1.000000	0.000000	1.0	1.00	1.0	1.00	1.0
EmployeeID	4410.0	2205.500000	1273.201673	1.0	1103.25	2205.5	3307.75	4410.0
JobLevel	4410.0	2.063946	1.106689	1.0	1.00	2.0	3.00	5.0
MonthlyIncome	4410.0	65029.312925	47068.888559	10090.0	29110.00	49190.0	83800.00	199990.0
NumCompaniesWorked	4391.0	2.694830	2.498887	0.0	1.00	2.0	4.00	9.0
PercentSalaryHike	4410.0	15.209524	3.659108	11.0	12.00	14.0	18.00	25.0
StandardHours	4410.0	8.000000	0.000000	8.0	8.00	8.0	8.00	8.0
StockOptionLevel	4410.0	0.793878	0.851883	0.0	0.00	1.0	1.00	3.0
TotalWorkingYears	4401.0	11.279936	7.782222	0.0	6.00	10.0	15.00	40.0
TrainingTimesLastYear	4410.0	2.799320	1.288978	0.0	2.00	3.0	3.00	6.0
YearsAtCompany	4410.0	7.008163	6.125135	0.0	3.00	5.0	9.00	40.0
YearsSinceLastPromotion	4410.0	2.187755	3.221699	0.0	0.00	1.0	3.00	15.0
YearsWithCurrManager	4410.0	4.123129	3.567327	0.0	2.00	3.0	7.00	17.0

In []: # Se ve el total de valores unicos por cada columna
 df.nunique()

43 Age Out[]: Attrition 2 BusinessTravel 3 Department 3 DistanceFromHome 29 Education 5 EducationField EmployeeCount 1 EmployeeID 4410 Gender 2 JobLevel JobRole MaritalStatus 3 MonthlyIncome 1349 NumCompaniesWorked 10 Over18 1 PercentSalaryHike 15 StandardHours StockOptionLevel TotalWorkingYears 40 ${\tt Training Times Last Year}$ 7 YearsAtCompany 37 16 YearsSinceLastPromotion YearsWithCurrManager 18 dtype: int64

Insights

• Inicialmente, se ven algunas oportunidades de cambios de datos como Business Travel, Education Field, Department, etc.

- Se van a generar numeros para cada una de ellas con la funcion catcodes, pero se podrian tambien generar variables tipo Dummy
- Las columnas EmployedID tiene un valor diferente por cada registro (es su ID), por lo que no aportaria informacion al modelo. Debe eliminarse
- La columna EmployeeCount, Over18 y StandardHours tienen solamente un valor, tienen que eliminarse.

Validacion de Datos

```
In [ ]: df.shape
        (4410, 24)
In [ ]: # Validar cuantas celdas en total son nulas
        print('Existen ',df.isnull().sum().sum(), ' valores no existentes')
        Existen 28 valores no existentes
In [ ]: # Numero de datos vacios por columna
        print('Columnas que tienen valores nulos' '\n')
        print(df.isnull().sum())
        Columnas que tienen valores nulos
                                    0
        Age
                                    0
        Attrition
        BusinessTravel
                                    0
        Department
                                    0
        DistanceFromHome
        Education
        EducationField
        EmployeeCount
        EmployeeID
        Gender
        JobLevel
        JobRole
                                    0
        MaritalStatus
        MonthlyIncome
                                   19
        NumCompaniesWorked
                                    0
        0ver18
        PercentSalaryHike
                                    0
        StandardHours
                                    0
        StockOptionLevel
        TotalWorkingYears
        TrainingTimesLastYear
                                    0
        YearsAtCompany
                                    0
        YearsSinceLastPromotion
                                    0
        YearsWithCurrManager
                                    0
        dtype: int64
In [ ]: # Muestra las columnas que no tienen cero, es decir las que tienen los valores nulos
        missing_values_count =df.isnull().sum()
        df.columns[missing_values_count.to_numpy().nonzero()]
        Index(['NumCompaniesWorked', 'TotalWorkingYears'], dtype='object')
Out[]:
        df[['NumCompaniesWorked', 'TotalWorkingYears']].sample(10)
```

Out[]:		NumCompaniesWorked	TotalWorkingYears
	1110	1.0	16.0
	3826	7.0	10.0
	4073	4.0	20.0
	2738	1.0	9.0
	3683	4.0	8.0
	3931	1.0	2.0
	2560	2.0	22.0
	1989	1.0	1.0
	657	1.0	2.0
	2455	4.0	9.0

Insights

- Las columnas 'NumCompaniesWorked', 'TotalWorkingYears' son las que tienen valores nulos
- Como tecnica de inputacion, se decide imputar el promedio a cada una de ellas.

Imputacion de datos

```
In []: # Reemplazar con el promedio general
    # Calcula el promedio del Income de todo el dataset

NumCompaniesWorked_mean=int(df['NumCompaniesWorked'].mean())
TotalWorkingYears_mean=int(df['TotalWorkingYears'].mean())

# Imputa el promedio a todos los registros definidos como NaN
    df['NumCompaniesWorked']=df['NumCompaniesWorked'].fillna(NumCompaniesWorked_mean)
    df['TotalWorkingYears']=df['TotalWorkingYears'].fillna(TotalWorkingYears_mean)

In []: # Nueva Revision
# Numero de datos vacios por columna
print('Columnas que tienen valores nulos' '\n')
print(df.isnull().sum())
```

Columnas que tienen valores nulos

Attrition 0 BusinessTravel Department DistanceFromHome Education EducationField EmployeeCount EmployeeID Gender JobLevel JobRole MaritalStatus MonthlyIncome NumCompaniesWorked Over18 PercentSalaryHike StandardHours StockOptionLevel TotalWorkingYears 0 TrainingTimesLastYear YearsAtCompany YearsSinceLastPromotion 0 YearsWithCurrManager dtype: int64

Analisis de Correlacion

```
In [ ]: # Grafica de Correlacion
    plt.figure(figsize=(22,8))
    corr_df=corr=df.corr(method='pearson')
    df_lt=corr_df.where(np.tril(np.ones(corr_df.shape)).astype(bool))
    hmap=sns.heatmap(df_lt, cmap='YlGnBu',annot=True)
```

C:\Users\oscah\AppData\Local\Temp\ipykernel_3048\2329627510.py:3: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to Fals e. Select only valid columns or specify the value of numeric_only to silence this warning.

corr_df=corr=df.corr(method='pearson')

Insights

• Se tiene una correlacion alta entre: YearsatCompany vs YearsWithCurrManager (0.77) y TotalWorkingYears y Age (0.68). Son altas correlaciones, pero no se necesita eliminar ninguna columna por posible multicolinearidad

Grafica por Distribucion

```
In [ ]: # Para escoger las columnas numericas
numerics=['int16','int32','int64','float64']
df.select_dtypes(include=numerics).sample(5)
```

```
Age DistanceFromHome Education EmployeeCount EmployeeID JobLevel MonthlyIncome NumCompaniesWorked PercentSalaryHike StandardHours StockOptionLevel TotalWorkingYears TrainingTimesLastYear YearsAtCo
Out[ ]:
         1171 39
                                                                                                                7.0
                                                                   1172
                                                                                        134020
                                                                                                                                               8
                                                                                                                                                                             18.0
          256
               33
                                 15
                                                                   257
                                                                                         24060
                                                                                                                1.0
                                                                                                                                11
                                                                                                                                               8
                                                                                                                                                               0
                                                                                                                                                                             10.0
         1772
                34
                                 20
                                            3
                                                                   1773
                                                                              3
                                                                                         57440
                                                                                                                3.0
                                                                                                                                19
                                                                                                                                               8
                                                                                                                                                                              7.0
                                            3
                                                                                                                                               8
         2819
               39
                                  7
                                                                   2820
                                                                                        196580
                                                                                                                4.0
                                                                                                                                13
                                                                                                                                                                             17.0
                                  10
                                                                   3777
                                                                                                                                13
                                                                                                                                               8
                                                                                                                                                                              9.0
         3776 40
                                                                                         65240
                                                                                                                0.0
                                                                                                                                                                                                   2
In [ ]: # Se selecciona las columnas de tipo numerico
         cols_num=df.columns[[np.issubdtype(dt,np.number) for dt in df.dtypes]]
In [ ]: cols_num
         # 16 columnas
        Index(['Age', 'DistanceFromHome', 'Education', 'EmployeeCount', 'EmployeeID',
                'JobLevel', 'MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike',
                'StandardHours', 'StockOptionLevel', 'TotalWorkingYears',
                'TrainingTimesLastYear', 'YearsAtCompany', 'YearsSinceLastPromotion',
                'YearsWithCurrManager'],
               dtype='object')
In [ ]: cols_num3=[col for col in df.columns if (df[col].dtypes!='object')]
         cols_num3
Out[]: ['Age',
          'DistanceFromHome',
          'Education',
          'EmployeeCount',
          'EmployeeID',
          'JobLevel',
          'MonthlyIncome',
          'NumCompaniesWorked',
          'PercentSalaryHike',
          'StandardHours',
          'StockOptionLevel',
          'TotalWorkingYears',
          'TrainingTimesLastYear',
          'YearsAtCompany',
          'YearsSinceLastPromotion',
          'YearsWithCurrManager']
In [ ]: cols_num2=[col for col in df.columns if any([df[col].dtypes=='int16',df[col].dtypes=='int32',df[col].dtypes=='int64',df[col].dtypes=='float64'])]
         cols_num2
```

```
04/04/23, 18:28
      Out[ ]: ['Age',
```

```
'DistanceFromHome',
         'Education',
         'EmployeeCount',
         'EmployeeID',
         'JobLevel',
         'MonthlyIncome',
         'NumCompaniesWorked',
         'PercentSalaryHike',
         'StandardHours',
         'StockOptionLevel',
         'TotalWorkingYears',
         'TrainingTimesLastYear',
         'YearsAtCompany',
         'YearsSinceLastPromotion',
         'YearsWithCurrManager']
In [ ]: # Grafica exploratoria de todas las columnas (16)
        fig, axes = plt.subplots(nrows=4,ncols=4, figsize=(18,16))
        for i, column in enumerate(cols_num):
         sns.histplot(df[column],ax=axes[i//4,i%4],kde=False)
```


Insights

- Las columnas YearsAtCompany, TotalWorkingYears, MonthlyIncome paracen estar sesgadas
- El rango de las variables MonthlyIncome se podria estandarizar (esta en cientos de miles)
- Las columnas StandardJHours, Employed no aportan ningun valor al modelo
- EmployeeCount siendo siempre uno seguramente es utilizada para hacer cuentas de empleados y no usar el EmployeeID u otros valores

Analisis Bivariado

In []: # Se pueden hacer analisis por variables mas bien logicas.
df.groupby(['YearsAtCompany']).mean().T

C:\Users\oscah\AppData\Local\Temp\ipykernel_3048\4214313819.py:2: FutureWarning: The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.

df.groupby(['YearsAtCompany']).mean().T

]:	YearsAtCompany	0	1	2	3	4	5	6	7	8	9	27	29	30	31	32	
	Age	31.227273	35.058480	34.708661	35.125000	36.572727	36.862245	35.447368	35.988889	36.987500	39.048780	50.0	55.5	50.0	52.333333	50.666667	
	DistanceFromHome	7.204545	8.040936	9.960630	10.015625	10.790909	8.663265	8.407895	9.911111	8.737500	8.329268	6.0	12.0	3.0	20.666667	4.333333	
	Education	3.227273	2.853801	2.952756	2.992188	2.900000	2.821429	2.842105	2.811111	2.850000	2.939024	4.0	3.0	3.0	2.333333	3.000000	
	EmployeeCount	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.0	1.0	1.0	1.000000	1.000000	
	EmployeeID	2157.613636	2198.777778	2215.937008	2192.351562	2254.445455	2200.653061	2178.013158	2199.677778	2075.462500	2275.353659	2191.5	1877.5	2351.0	1786.666667	1983.666667	24
	JobLevel	1.818182	2.140351	2.039370	2.132812	2.381818	2.040816	1.960526	2.100000	1.925000	2.268293	3.5	1.5	2.0	1.333333	2.000000	
	MonthlyIncome	62946.136364	64813.040936	60889.370079	70544.843750	62060.545455	60875.357143	66514.605263	65454.666667	64735.875000	64392.073171	65815.0	63980.0	42940.0	42086.666667	22406.666667	463
	NumCompaniesWorked	2.916667	2.951267	3.519685	3.023438	3.112121	2.770408	2.368421	2.859259	2.687500	1.621951	2.5	4.5	2.0	3.000000	1.000000	
	PercentSalaryHike	16.159091	14.877193	15.503937	15.125000	15.700000	15.056122	15.565789	15.333333	15.450000	15.365854	13.0	16.0	20.0	18.333333	13.000000	
	StandardHours	8.000000	8.000000	8.000000	8.000000	8.000000	8.000000	8.000000	8.000000	8.000000	8.000000	8.0	8.0	8.0	8.000000	8.000000	
	StockOptionLevel	0.909091	0.789474	0.834646	0.781250	0.736364	0.795918	0.776316	0.677778	0.937500	0.695122	1.5	0.5	0.0	1.000000	1.666667	
	TotalWorkingYears	5.840909	7.458090	7.448819	8.125000	8.863636	10.035714	8.653509	12.500000	11.004167	12.280488	28.5	32.0	32.0	34.000000	32.333333	
	TrainingTimesLastYear	3.090909	2.742690	2.771654	2.898438	2.672727	2.744898	3.065789	2.844444	2.862500	2.426829	2.5	3.5	2.0	3.333333	2.000000	
,	YearsSinceLastPromotion	0.000000	0.076023	1.677165	0.703125	0.754545	0.760204	0.736842	2.744444	3.225000	3.036585	14.0	11.0	12.0	9.000000	9.666667	
	YearsWithCurrManager	0.000000	0.076023	1.740157	1.867188	2.272727	2.826531	3.026316	5.977778	5.800000	6.060976	7.5	10.0	13.0	8.000000	8.333333	

15 rows × 37 columns

Out[]:

In []: df.groupby(['JobLevel']).mean().T

C:\Users\oscah\AppData\Local\Temp\ipykernel_3048\1067281539.py:1: FutureWarning: The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.

df.groupby(['JobLevel']).mean().T

JobLevel	1	2	3	4	5
Age	36.775322	37.367041	36.266055	36.377358	37.579710
DistanceFromHome	9.381215	9.415730	8.784404	8.273585	8.681159
Education	2.841621	2.945693	2.940367	3.047170	2.927536
EmployeeCount	1.000000	1.000000	1.000000	1.000000	1.000000
EmployeeID	2189.810313	2237.709738	2196.220183	2142.886792	2205.202899
MonthlyIncome	62677.421731	65506.479401	63545.321101	77940.754717	64698.405797
NumCompaniesWorked	2.669122	2.742821	2.772171	2.443396	2.603865
PercentSalaryHike	14.963168	15.475655	15.412844	14.783019	15.101449
StandardHours	8.000000	8.000000	8.000000	8.000000	8.000000
StockOptionLevel	0.823204	0.758427	0.793578	0.716981	0.956522
TotalWorkingYears	11.348066	11.647940	10.723242	10.990566	10.086957
TrainingTimesLastYear	2.882136	2.769663	2.651376	2.801887	2.840580
YearsAtCompany	7.338858	7.106742	6.426606	7.169811	5.231884
YearsSinceLastPromotion	2.418048	2.155431	1.876147	2.245283	1.521739
YearsWithCurrManager	4.384899	3.998127	3.926606	4.481132	3.101449
			, ,		,

In []: # Se ve una evolucion en el llamado seleccionando solamente algunas columnas
df.groupby(['StockOptionLevel']).mean()[['Age','DistanceFromHome','MonthlyIncome','TotalWorkingYears']]

C:\Users\oscah\AppData\Local\Temp\ipykernel_3048\1661219940.py:2: FutureWarning: The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.

df.groupby(['StockOptionLevel']).mean()[['Age','DistanceFromHome','MonthlyIncome','TotalWorkingYears']]

Out[]: Age DistanceFromHome MonthlyIncome TotalWorkingYears

StockOptionLevel

Out[]:

0 3	36.939778	9.169572	63077.606973	11.159007
1 3	37.278523	9.156040	66549.630872	11.378076
2 3	36.354430	9.025316	66898.924051	11.810127
3 3	35.376471	9.929412	65382.470588	10.494118

In []: df.groupby(['StockOptionLevel']).median()[['Age','DistanceFromHome','MonthlyIncome','TotalWorkingYears']]

C:\Users\oscah\AppData\Local\Temp\ipykernel_3048\102472662.py:1: FutureWarning: The default value of numeric_only in DataFrameGroupBy.median is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.

df.groupby(['StockOptionLevel']).median()[['Age','DistanceFromHome','MonthlyIncome','TotalWorkingYears']]

Out[]: Age DistanceFromHome MonthlyIncome TotalWorkingYears

StockOptionLevel

0	36.0	7.0	47410.0	10.0
1	36.0	7.0	50790.0	10.0
2	36.0	7.0	49985.0	10.0
3	35.0	8.0	46800.0	9.0

In []: # Se ve una evolucion en el llamado seleccionando solamente algunas columnas
 df.groupby(['DistanceFromHome']).mean()[['Age','YearsAtCompany','MonthlyIncome','StockOptionLevel','TotalWorkingYears']]

C:\Users\oscah\AppData\Local\Temp\ipykernel_3048\1905940162.py:2: FutureWarning: The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.

df.groupby(['DistanceFromHome']).mean()[['Age','YearsAtCompany','MonthlyIncome','StockOptionLevel','TotalWorkingYears']]

Out[]: Age YearsAtCompany MonthlyIncome StockOptionLevel TotalWorkingYears

DistanceFromHome					
1	36.975962	6.711538	74225.961538	0.836538	11.035256
2	37.118483	6.995261	61561.184834	0.800948	11.507109
3	36.869048	7.511905	57366.666667	0.809524	11.321429
4	38.296875	6.546875	67159.531250	0.562500	11.718750
5	37.307692	6.876923	65834.615385	0.692308	11.384615
6	37.186441	8.525424	56150.847458	0.881356	12.542373
7	35.250000	6.035714	61265.000000	0.785714	10.095238
8	36.137500	5.875000	66123.125000	0.675000	10.412500
9	36.823529	5.517647	70304.588235	0.764706	10.305882
10	36.255814	7.581395	63457.325581	0.895349	11.430233
11	37.310345	9.517241	83246.206897	0.724138	14.000000
12	39.400000	8.100000	59304.500000	0.850000	12.716667
13	33.684211	5.000000	60771.052632	0.789474	7.526316
14	39.619048	8.571429	61430.476190	0.619048	12.809524
15	32.846154	6.153846	63017.307692	0.807692	8.384615
16	36.281250	7.593750	61730.000000	0.906250	11.156250
17	35.350000	7.850000	74924.500000	1.400000	11.900000
18	37.038462	8.038462	58953.846154	0.884615	11.307692
19	39.818182	9.954545	45935.454545	0.636364	14.863636
20	36.080000	5.640000	61073.200000	0.640000	10.120000
21	39.944444	9.111111	75176.666667	0.611111	12.666667
22	35.368421	6.105263	62568.947368	0.684211	11.000000
23	38.962963	6.037037	74227.777778	0.777778	11.654321
24	39.785714	7.500000	51416.071429	1.000000	13.535714
25	37.640000	6.800000	81372.000000	0.880000	13.040000
26	38.640000	8.440000	70941.600000	0.760000	13.080000
27	41.583333	9.333333	47311.666667	0.583333	12.333333
28	34.478261	7.086957	73822.173913	1.043478	8.362319
29	34.333333	6.703704	48128.888889	0.703704	9.370370

Feature Engineering

```
# Genera una copia del df original
In [ ]:
         df2=df.copy()
In [ ]: # Se obtiene una muestras del nuevo dataframe
         df2.sample(5)
                              BusinessTravel Department DistanceFromHome Education EducationField EmployeeCount EmployeeID Gender ... NumCompaniesWorked Over18 PercentSalaryHike StandardHours StockOptionLevel
Out[]:
               Age Attrition
                                              Research &
         3782
                                                                       10
                                                                                       Life Sciences
                                                                                                                        3783
                                                                                                                                                          0.0
                                                                                                                                                                                   11
                                                                                                                                                                                                   8
                                                                                                                                                                                                                   0
               35
                                Travel_Rarely
                                                                                                                                Male
                         No
                                            Development
                                                                       15
                                                                                                                        1307
                                                                                                                                                                                   14
                                                                                                                                                                                                   8
         1306
                32
                                Travel_Rarely
                                                   Sales
                                                                                  3
                                                                                         Marketing
                                                                                                                                Male
                                                                                                                                                          1.0
                                                                                                                                                                                                                   0
                         No
                                              Research &
                                                                       26
                                                                                                                                                                                   12
                                                                                                                                                                                                   8
         2832
                40
                         No Travel_Frequently
                                                                                  4
                                                                                           Medical
                                                                                                                        2833
                                                                                                                                Male
                                                                                                                                                          1.0
                                                                                                                                                                                                                   1
                                            Development
                                              Research &
                                                                                          Technical
                                                                                                                                                                                   22
                                                                        2
                                                                                  5
                                                                                                                                                                                                   8
         1852
               24
                                                                                                                        1853
                                                                                                                                Male ...
                                                                                                                                                          0.0
                         No
                                  Non-Travel
                                                                                                                                                                                                                   1
                                            Development
                                                                                           Degree
                                              Research &
         1943
                20
                        Yes
                                Travel_Rarely
                                                                        2
                                                                                                                        1944 Female ...
                                                                                                                                                          1.0
                                                                                                                                                                   Υ
                                                                                                                                                                                   17
                                                                                                                                                                                                   8
                                                                                  2
                                                                                       Life Sciences
                                            Development
        5 rows × 24 columns
In [ ]: # Eliminar columnas no necesarias
         drop_columns=['EmployeeID','StandardHours','Over18','EmployeeCount']
         for col in drop_columns:
             df2.drop(col,axis=1,inplace=True)
In [ ]: categ_columns=['BusinessTravel','Department','EducationField','Gender','Attrition']
         for col in categ_columns:
             df2[col]=df2[col].astype('category')
         # Cambia la columna NumCompaniesWorked a entero
         df2['NumCompaniesWorked']=df2['NumCompaniesWorked'].fillna(0).astype(np.int64)
In [ ]: # Nuevo muestreo del dataframe reducido
         df2.sample(3)
Out[]:
               Age Attrition
                              BusinessTravel Department DistanceFromHome Education EducationField Gender JobLevel
                                                                                                                         JobRole MaritalStatus MonthlyIncome NumCompaniesWorked PercentSalaryHike StockOptionLevel To
                                                                                                                           Sales
         3355
               33
                         No
                                Travel_Rarely
                                                   Sales
                                                                        2
                                                                                  3
                                                                                         Marketing
                                                                                                   Female
                                                                                                                                       Single
                                                                                                                                                       59140
                                                                                                                                                                                3
                                                                                                                                                                                                16
                                                                                                                                                                                                                  1
                                                                                                                        Executive
                                              Research &
                                                                                                                           Sales
                                                                                                                                                       29740
                                                                                                                                                                                                23
                                                                                                                                                                                                                 0
         1414
                34
                                                                                  2
                                                                                                                                                                                1
                         No Travel_Frequently
                                                                                           Medical
                                                                                                     Male
                                                                                                                                      Divorced
                                            Development
                                                                                                                    Representative
                                                                                                                           Sales
                                                                                                                                                       12230
                                                                                                                                                                                                13
         2575 33
                                Travel_Rarely
                                                   Sales
                                                                                  3
                                                                                       Life Sciences Female
                                                                                                                                       Single
                         No
                                                                                                                        Executive
In [ ]: # balanceo de clases
         to_see=['BusinessTravel','Department','EducationField']
         for column in to_see:
             helper = df2.groupby(column)[column].count().rename('total').reset_index()
```

```
helper['percent']=(helper['total']/helper['total'].sum())*100
            print('\n' + column)
            print(helper)
        BusinessTravel
              BusinessTravel total
                                     percent
        0
                  Non-Travel
                               450 10.204082
                               831 18.843537
        1 Travel Frequently
               Travel Rarely 3129 70.952381
        Department
                      Department total
                                          percent
        0
                 Human Resources
                                   189
                                         4.285714
                                  2883 65.374150
        1 Research & Development
                           Sales 1338 30.340136
        EducationField
             EducationField total
                                    percent
          Human Resources
                               81 1.836735
             Life Sciences 1818 41.224490
        2
                 Marketing
                             477 10.816327
        3
                   Medical
                            1392 31.564626
                     0ther
                             246 5.578231
        5 Technical Degree
                             396
                                  8.979592
In [ ]: df2.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 4410 entries, 0 to 4409
        Data columns (total 20 columns):
            Column
                                    Non-Null Count Dtype
                                    -----
            -----
         0
            Age
                                    4410 non-null int64
            Attrition
                                    4410 non-null
                                                    object
         1
         2
             BusinessTravel
                                    4410 non-null
                                                    category
             Department
                                    4410 non-null
         3
                                                    category
            DistanceFromHome
                                    4410 non-null
                                                   int64
            Education
                                    4410 non-null
                                                    int64
                                    4410 non-null
         6
            EducationField
                                                    category
                                    4410 non-null
         7
            Gender
                                                    category
                                    4410 non-null
         8
            JobLevel
                                                    int64
         9
            JobRole
                                    4410 non-null
                                                    object
         10 MaritalStatus
                                    4410 non-null
                                                    object
         11 MonthlyIncome
                                    4410 non-null
                                                   int64
         12 NumCompaniesWorked
                                    4410 non-null
                                                   int64
         13 PercentSalaryHike
                                    4410 non-null
                                                   int64
         14 StockOptionLevel
                                    4410 non-null
                                                    int64
         15 TotalWorkingYears
                                    4410 non-null
                                                    float64
                                    4410 non-null
         16 TrainingTimesLastYear
                                                   int64
         17 YearsAtCompany
                                     4410 non-null
                                                   int64
         18 YearsSinceLastPromotion 4410 non-null
                                                   int64
         19 YearsWithCurrManager
                                    4410 non-null int64
        dtypes: category(4), float64(1), int64(12), object(3)
        memory usage: 569.2+ KB
In [ ]: # Cambia de tipo de columna a Attrition (1/0) y otras
        # new skill
        #categ_columns=['BusinessTravel','Department','EducationField','Gender','MaritalStatus','JobRole']
        df2.BusinessTravel=df2.BusinessTravel.astype('category').cat.codes
        df2.Department=df2.Department.astype('category').cat.codes
        df2.EducationField=df2.EducationField.astype('category').cat.codes
        df2.Gender=df2.Gender.astype('category').cat.codes
        df2.MaritalStatus=df2.MaritalStatus.astype('category').cat.codes
```

df2.JobRole=df2.JobRole.astype('category').cat.codes

```
df2.Attrition=df2.Attrition.astype('category').cat.codes
In [ ]: df2.sample(5)
              Age Attrition BusinessTravel Department DistanceFromHome Education Education Field Gender JobRole MaritalStatus MonthlyIncome NumCompaniesWorked PercentSalaryHike StockOptionLevel TotalWork
Out[]:
        1059
                       No
                                                                                                                            2
                                                                                                                                      21070
                                                                                                                                                                             13
                                                                                                                                                                                             0
               27
                                                                                                                           2
                                                                                                                                      43730
                                                                                                                                                                             14
        1242
               33
                       No
                                     2
                                                                 2
                                                                           3
                                                                                        3
                                                                                               0
                                                                                                        2
                                                                                                                7
                                                                                                                            1
                                                                                                                                      21570
                                                                                                                                                                             25
                                                                                                                                                                                             0
        3832
               35
                       No
                                     2
        4149
               27
                                                                                                                2
                                                                                                                                      164220
                                                                                                                                                                             20
                       No
               30
                                     2
                                                                 6
                                                                           4
                                                                                        3
                                                                                               0
                                                                                                                            1
                                                                                                                                      30410
                                                                                                                                                                             11
         690
                       No
In [ ]: df2.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 4410 entries, 0 to 4409
        Data columns (total 20 columns):
                                      Non-Null Count Dtype
             Column
                                      -----
             -----
         0
             Age
                                      4410 non-null
                                                     int64
             Attrition
                                      4410 non-null
                                                     int8
         1
                                      4410 non-null
             BusinessTravel
                                                     int8
             Department
                                      4410 non-null
                                                     int8
         3
             DistanceFromHome
                                      4410 non-null
                                                     int64
                                      4410 non-null
                                                     int64
         5
             Education
         6
             EducationField
                                      4410 non-null
                                                     int8
                                      4410 non-null
         7
             Gender
                                                     int8
                                      4410 non-null
         8
             JobLevel
                                                     int64
         9
             JobRole
                                      4410 non-null
                                                     int8
         10 MaritalStatus
                                      4410 non-null
                                                     int8
         11 MonthlyIncome
                                      4410 non-null
                                                      int64
         12 NumCompaniesWorked
                                      4410 non-null
                                                      int64
         13 PercentSalaryHike
                                      4410 non-null
                                                     int64
         14 StockOptionLevel
                                      4410 non-null
                                                     int64
         15 TotalWorkingYears
                                      4410 non-null
                                                     float64
         16 TrainingTimesLastYear
                                      4410 non-null
                                                     int64
         17 YearsAtCompany
                                      4410 non-null
                                                     int64
         18 YearsSinceLastPromotion
                                     4410 non-null
                                                     int64
         19 YearsWithCurrManager
                                      4410 non-null
                                                     int64
        dtypes: float64(1), int64(12), int8(7)
        memory usage: 478.2 KB
In [ ]: # Si es que las dimensiones de los campos son demasiado grandes
        # es ideal estandarizarlas.
        # Como por ejemplo Income, que tiene un orden de magnitud mas grande que el resto
        from sklearn.preprocessing import StandardScaler
        scaler=StandardScaler()
        df2['MonthlyIncome_scale']= StandardScaler().fit_transform(df2[['MonthlyIncome']])
In [ ]: # Opcional - Elimnar la variable original
        df2.drop('MonthlyIncome',axis=1,inplace=True)
```

Feature Engineering

Valores con alta correlacion

- Eliminar datos de Identificacions
- Clases desbalanceadas
- Asignacion de variables alfanumericas con numericas
- Imputacion de datos (Imputer) valores nulos
- Cambiar columnas yes/no a 1/0 (pd.factorize)
- Generar campos tipo categoria
- Esntdarizar variables

```
In [ ]: df2.nunique()
                                    43
Out[ ]:
                                     2
        Attrition
        BusinessTravel
                                     3
        Department
                                     3
        DistanceFromHome
                                    29
        Education
                                     5
        EducationField
        Gender
                                     2
        JobLevel
                                     5
        JobRole
                                     9
        MaritalStatus
                                     3
        NumCompaniesWorked
                                    10
        PercentSalaryHike
                                    15
        StockOptionLevel
                                     4
        TotalWorkingYears
                                    40
        TrainingTimesLastYear
                                    7
        YearsAtCompany
                                    37
        YearsSinceLastPromotion
                                    16
        YearsWithCurrManager
                                    18
        MonthlyIncome_scale
                                  1349
         dtype: int64
In [ ]: df2.shape
Out[]: (4410, 20)
In [ ]: missing_values_count=df2.isnull().sum()
         missing_values_count
```

```
Out[]:
         Attrition
         BusinessTravel
        Department
        DistanceFromHome
        Education
        EducationField
        Gender
        JobLevel
        JobRole
        MaritalStatus
        NumCompaniesWorked
        PercentSalaryHike
        StockOptionLevel
        TotalWorkingYears
                                   0
        TrainingTimesLastYear
        YearsAtCompany
        YearsSinceLastPromotion
        YearsWithCurrManager
                                   0
        MonthlyIncome_scale
         dtype: int64
In [ ]: col = df2.columns.to_list()
         col
Out[]: ['Age', 'Attrition',
         'BusinessTravel',
         'Department',
         'DistanceFromHome',
         'Education',
         'EducationField',
         'Gender',
         'JobLevel',
         'JobRole',
         'MaritalStatus',
         'NumCompaniesWorked',
         'PercentSalaryHike',
         'StockOptionLevel',
         'TotalWorkingYears',
         'TrainingTimesLastYear',
         'YearsAtCompany',
         'YearsSinceLastPromotion',
         'YearsWithCurrManager',
         'MonthlyIncome_scale']
In [ ]: fig, axes = plt.subplots(nrows=5,ncols=5, figsize=(18,16))
         for i, column in enumerate(col):
         sns.histplot(df2[column],ax=axes[i//5,i%5],kde=False)
```


Data Split

```
In [ ]: from sklearn.model_selection import train_test_split
         X=df2.drop('Attrition',axis=1)
        y=df2['Attrition']
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state = 1)
In [ ]: X.head()
           Age BusinessTravel Department DistanceFromHome Education Education Field Gender JobLevel JobRole MaritalStatus NumCompaniesWorked PercentSalaryHike StockOptionLevel TotalWorkingYears TrainingTimesLastYear
Out[ ]:
         0 51
                                                       6
                                                                                                                                                      11
                                                                                                                                                                       0
                                      2
                                                                                      0
                                                                                                      0
                                                                                                                                       1
                                                                                                                                                                                       1.0
        1 31
                                                       10
                                                                                                                                                      23
                                                                                                                                                                                       6.0
         2 32
                                                      17
                                                                                                                                                       15
                                                                                                                                                                       3
                                                                                                                                                                                       5.0
                                                                                                                                                       11
                                                                                                                                                                                      13.0
                                                       10
                                                                                                                   2
                                                                                                                                                       12
                                                                                                                                                                       2
                                                                                                                                                                                       9.0
         4 32
In [ ]: y.head()
Out[]:
        Name: Attrition, dtype: int8
```

Regresion Logistica

```
In [ ]: # Ref https://towardsdatascience.com/getting-more-value-from-the-pandas-value-counts-aa17230907a6
        print(df2['Attrition'].value_counts())
        print(df2['Attrition'].value_counts(normalize=True))
             3699
              711
        Name: Attrition, dtype: int64
             0.838776
             0.161224
        Name: Attrition, dtype: float64
In [ ]: # Este es un problema que tiene una clase desbalanceada
        # Ref https://www.analyticsvidhya.com/blog/2020/10/improve-class-imbalance-class-weights/
        # Ref https://machinelearningmastery.com/cost-sensitive-logistic-regression/
```

```
In [ ]: # Se muestra el ejemplo con class_weight y sin class_weight
        # class_weight = 'balanced' - it basically means replicating the smaller class until you have as many samples as in the larger one, but in an implicit way.
        # class weight=''
        #model= LogisticRegression(solver='lbfgs', class_weight=weights)
In [ ]: from sklearn import metrics
        from sklearn.linear model import LogisticRegression
        # Adapta el modelo a los X_train y y_train (entrenamiento)
        model= LogisticRegression(solver='liblinear', class_weight='balanced')
        # model = LogisticRegression(solver='liblinear')
        model.fit(X train,y train)
        # Hace la prediccion en X_test y la guarda en y_predict
        y_predict = model.predict(X_test)
In [ ]: # La prediccion no es mas que un conjunto de 0s y 1s que se aplican al mismo dataset
        y_predict[0:200]
Out[ ]: array([0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0,
               0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,
               0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0,
               0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0,
               0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1,
               1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1,
               1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0,
               0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1,
               0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0,
               0, 1], dtype=int8)
In [ ]: #Build a dataframe with the original and predicted values
        z=X_test.copy()
        z['Attrition real'] = y_test
        z['Attrition prediccion']= y_predict
        z[['Attrition real','Attrition prediccion']].head(20)
```

Out[]:		Attrition real	Attrition prediccion
	2016	0	0
	4118	0	1
	219	0	0
	4402	1	0
	787	0	0
	200	0	0
	2539	0	0
	3744	0	1
	1891	0	1
	3963	1	1
	3417	0	0
	1586	0	0
	1195	0	1
	685	0	1
	1875	1	1
	3485	0	1
	102	0	0
	4230	0	1
	1155	0	1
	2851	0	1

```
In [ ]: # Genera los coeficientes de la ecuacion
    coef_df = pd.DataFrame(model.coef_)
    coef_df.columns = X.columns
    #Incluye el intercept
    coef_df['intercept']=model.intercept_
    coef_df.T
```

```
Out[]:
                                       0
                           Age -0.026641
                  BusinessTravel 0.018738
                    Department -0.284587
             DistanceFromHome 0.001539
                      Education -0.040475
                  EducationField -0.079886
                        Gender 0.124692
                       JobLevel -0.073899
                       JobRole 0.052851
                   MaritalStatus 0.624702
          NumCompaniesWorked 0.134869
               PercentSalaryHike 0.020814
               StockOptionLevel -0.001189
              TotalWorkingYears -0.059339
           TrainingTimesLastYear -0.159061
                YearsAtCompany 0.039746
         YearsSinceLastPromotion 0.108327
           YearsWithCurrManager -0.164097
            MonthlyIncome_scale -0.067773
                       intercept 1.071151
```



```
In [ ]: # Calculo manual de Falsos Positivos, Falsos Negativos, Verdaderos Positivos y Verdaderos Negativos.
        # Primero que nada se debe tener que tipo de Clase de prediccion se va a manejar: positiva o negativa
        # En el caso del modelo de este notebook, la clase es positiva: Request Accepted = 1, acepto la oferta
        # Un TP es un valor que fue observado y predicho como positivo
        # Un TN es un valor que fue observado y predicho como negativo
        # Un FP es un valor que fue observado como negarivo pero predicho como positivo
        # Un FN es un valor que fue observado como positivo pero predicho como negativo
        TP= df_cm.iloc[0][0]
        FP= df_cm.iloc[0][1]
        FN= df_cm.iloc[1][0]
        TN= df_cm.iloc[1][1]
        print('TP =',TP,'FP =',FP,'FN =',FN,'TN =',TN)
        TP = 136 FP = 87 FN = 402 TN = 698
In [ ]: # Medidas del Modelo
        from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, roc_auc_score, classification_report, confusion_matrix
        y_pred = model.predict(X_test)
        model_score = accuracy_score(y_test,y_pred)
        recall_score = recall_score(y_test,y_pred)
        precision_score = precision_score(y_test,y_pred)
        f1_score=f1_score(y_test,y_pred)
        print('Medidas del Modelo')
        print('____')
        print('Accuracy = {0:0.2f}'.format(model_score))
        print('Precision = {0:0.2f}'.format(precision_score))
        print('Recall = {0:0.2f}'.format(recall_score))
        print('F1 Score = {0:0.2f}'.format(f1_score))
        print('Roc Auc Score = {0:0.2f}'.format(roc_auc_score(y_test,y_predict)))
```

```
Medidas del Modelo
        Accuracy = 0.63
        Precision = 0.25
        Recall = 0.61
        F1 Score = 0.36
        Roc Auc Score = 0.62
In [ ]: # Un nuevo intento
        model = LogisticRegression(solver='liblinear')
        model.fit(X_train, y_train)
        # Hace la prediccion en X_test y la guarda en y_predict
        y_predict= model.predict(X_test)
In [ ]: # Medidas del Modelo
        from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, roc_auc_score, classification_report, confusion_matrix
        y_pred = model.predict(X_test)
        model_score = accuracy_score(y_test,y_pred)
        recall_score = recall_score(y_test,y_pred)
        precision_score = precision_score(y_test,y_pred)
        f1_score=f1_score(y_test,y_pred)
        print('Medidas del Modelo')
        print('____')
        print('Accuracy = {0:0.2f}'.format(model_score))
        print('Precision = {0:0.2f}'.format(precision score))
        print('Recall = {0:0.2f}'.format(recall_score))
        print('F1 Score = {0:0.2f}'.format(f1_score))
        print('Roc Auc Score = {0:0.2f}'.format(roc_auc_score(y_test,y_predict)))
        Medidas del Modelo
```

Accuracy = 0.84 Precision = 0.82 Recall = 0.06 F1 Score = 0.12 Roc Auc Score = 0.53