Звуковые колебания

Верещагин Антон Сергеевич д-р. физ.-мат. наук, доцент

Кафедра аэрофизики и газовой динамики

3 апреля 2024 г.

Аннотация

Звуковые волны. Скорость звука (определение). Скорость звука в идеальном политропном газе. Линеаризация уравнений сохранения. Плоские и сферические звуковые волны. Запаздывающие потенциалы. Способы конструирования решений. Распространение возмущений с до- и сверхзвуковой скоростью. Монохроматические волны и спектральное разложение. Волновой вектор и волновое число. Энергия и плотность потока энергии звуковых колебаний. Задача об отражении и преломлении звуковой волны.

Основные уравнения динамики идеального газа

Уравнения сохранения для идеального газа

$$\begin{split} \frac{\partial \rho}{\partial t} + (\vec{v} \cdot \nabla)\rho + \rho \operatorname{div} \vec{v} &= 0, \\ \frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla)\vec{v} &= -\frac{1}{\rho}\nabla p, \\ \frac{\partial S}{\partial t} + (\vec{v} \cdot \nabla)S &= 0. \end{split}$$

Замыкающие соотношения

$$p = p(\rho, S)$$

Звуковые волны

Определение

Колебательное движение с малыми амплитудами в сжимаемом газе называют звуковыми волнами.

Звуковые волны

Определение

Колебательное движение с малыми амплитудами в сжимаемом газе называют звуковыми волнами.

Замечание

При рассмотрении звуковых колебаний будем считать течение изоэнтропическим (S=const), тогда из общей системы уравнений остаются только уравнение неразрывности и уравнение Эйлера, а в замыкающем соотношении пропадает зависимость от S как функции от координаты и времени.

Скорость звука

Уравнения сохранения для идеального газа

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \vec{v}) = 0, \quad \frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} = -\frac{1}{\rho} \left(\frac{\partial p}{\partial \rho} \right)_S \nabla \rho,$$
$$p = p(\rho).$$

Скорость звука

Уравнения сохранения для идеального газа

$$\begin{split} \frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \vec{v}) &= 0, \quad \frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} = -\frac{1}{\rho} \left(\frac{\partial p}{\partial \rho} \right)_S \nabla \rho, \\ p &= p(\rho). \end{split}$$

Определение

Величина c > 0, определяемая соотношением

$$c^2 = \left(\frac{\partial p}{\partial \rho}\right)_S,$$

называется скоростью звука.

Как видно из определения, $c=c(\rho,S)$. Для изоэнтропических течений зависимостью от S как от функции переменных пространства и времени можно пренебречь.

Скорость звука в идеальном политропном газе

Уравнение состояния идеального политропного газа:

$$p = A(S)\rho^{\gamma}$$
 или $p = \rho RT/\mu$,

где $\gamma = c_p/c_V$ – показатель политропы; A(S) – функция энтропии; p – давление; ρ – плотность; T – температура; R – газовая постоянная; μ – молярная масса газа.

$$c^2 = \left(\frac{\partial p}{\partial \rho}\right)_S = \gamma A(S)\rho^{\gamma - 1} = \frac{\gamma p}{\rho} = \gamma \frac{RT}{\mu}$$

Таким образом,

$$c = \sqrt{\gamma \frac{RT}{\mu}}.$$

Линеаризация уравнений движения

Замена переменных

Рассмотрим малые колебания газа в окрестности постоянного решения $\vec{v}=0, p=p_0, \rho=\rho_0$:

$$\begin{array}{rcl} \vec{v} & = & \vec{v}, \\ c & = & c_0 + c', \\ \rho & = & \rho_0 + \rho'. \end{array}$$

Линеаризация уравнений движения

Замена переменных

Рассмотрим малые колебания газа в окрестности постоянного решения $\vec{v}=0, p=p_0, \rho=\rho_0$:

$$\vec{v} = \vec{v},$$
 $c = c_0 + c',$
 $\rho = \rho_0 + \rho'.$

Уравнения движения

$$\begin{split} \frac{\partial(\rho_0+\rho')}{\partial t} + \text{div}(\rho_0+\rho')\vec{v} &= 0, \\ \frac{\partial \vec{v}}{\partial t} + (\vec{v}\cdot\nabla)\vec{v} &= -\frac{1}{\rho_0+\rho'}(c_0+c')^2\nabla(\rho_0+\rho'). \end{split}$$

Уравнения звуковых колебаний

Основные уравнения

Считая колебания малыми, отбрасываем все слагаемые, имеющие порядок малости два и выше, и получаем:

$$\frac{\partial \rho'}{\partial t} + \rho_0 \operatorname{div} \vec{v} = 0, \quad \frac{\partial \vec{v}}{\partial t} + \frac{c_0^2}{\rho_0} \nabla \rho' = 0.$$

Уравнения звуковых колебаний

Основные уравнения

Считая колебания малыми, отбрасываем все слагаемые, имеющие порядок малости два и выше, и получаем:

$$\frac{\partial \rho'}{\partial t} + \rho_0 \operatorname{div} \vec{v} = 0, \quad \frac{\partial \vec{v}}{\partial t} + \frac{c_0^2}{\rho_0} \nabla \rho' = 0.$$

Потенциальное течение и волновое уравнение Если $\vec{v} = \nabla \varphi$, тогда

$$\frac{\partial \rho'}{\partial t} + \rho_0 \Delta \varphi = 0, \quad \frac{\partial}{\partial t} \nabla \varphi + \frac{c_0^2}{\rho_0} \nabla \rho' = 0.$$

$$\downarrow \downarrow$$

$$\frac{1}{c_0^2} \frac{\partial^2 \varphi}{\partial t^2} = \Delta \varphi.$$

Решение волнового уравнения для плоских волн

Одномерное плоское течение Если $\varphi = \varphi(t,x)$, тогда решением полученного волнового уравнения будет:

$$\varphi(t,x) = f_1(x - c_0t) + f_2(x + c_0t) = f_1(\xi) + f_2(\eta),$$

где $f_1(\xi), f_2(\eta)$ – произвольные, дважды дифференцируемые функции своих аргументов

$$\xi = x - c_0 t, \quad \eta = x + c_0 t.$$

Прогрессивные волны

Решение $\varphi(t,x)$ представляет собой сумму перемещающихся поступательно вправо и влево волн неизменного вида со скоростью c_0

На рисунке $\varphi(t,x) = f_1(x-c_0t) + f_2(x+c_0t)$ для заданных функций $f_1(\xi)$ и $f_2(\eta)$

На рисунке $\varphi(t,x) = f_1(x-c_0t) + f_2(x+c_0t)$ для заданных функций $f_1(\xi)$ и $f_2(\eta)$

На рисунке $\varphi(t,x)=f_1(x-c_0t)+f_2(x+c_0t)$ для заданных функций $f_1(\xi)$ и $f_2(\eta)$

На рисунке $\varphi(t,x)=f_1(x-c_0t)+f_2(x+c_0t)$ для заданных функций $f_1(\xi)$ и $f_2(\eta)$

На рисунке $\varphi(t,x)=f_1(x-c_0t)+f_2(x+c_0t)$ для заданных функций $f_1(\xi)$ и $f_2(\eta)$

На рисунке $\varphi(t,x) = f_1(x - c_0 t) + f_2(x + c_0 t)$ для заданных функций $f_1(\xi)$ и $f_2(\eta)$

На рисунке $\varphi(t,x)=f_1(x-c_0t)+f_2(x+c_0t)$ для заданных функций $f_1(\xi)$ и $f_2(\eta)$

Решение волнового уравнения в сферической симметрии

Волновое уравнение в сферической симметрии Если $\varphi = \varphi(t,r)$, то волновое уравнение имеет вид:

$$\frac{1}{c_0^2}\frac{\partial^2\varphi}{\partial t^2} = \frac{1}{r^2}\left(\frac{\partial}{\partial r}\left(r^2\frac{\partial\varphi}{\partial r}\right)\right) \quad \iff \quad \frac{1}{c_0^2}\frac{\partial^2}{\partial t^2}(r\varphi) = \frac{\partial^2}{\partial r^2}\left(r\varphi\right).$$

Одномерное сферическое течение Решением полученного волнового уравнения будет:

$$\varphi(t,r) = \frac{f_1(r-c_0t) + f_2(r+c_0t)}{r} = \frac{Q_1(\xi)}{r} + \frac{Q_2(\eta)}{r},$$

где $Q_1(\xi)$, $Q_2(\eta)$ — произвольные, дважды дифференцируемые функции своих аргументов $\xi = r - c_0 t$, $\eta = r + c_0 t$.

На рисунке
$$\varphi(t,r)=rac{1}{r}\left(f_1(r-c_0t)+f_2(r+c_0t)
ight)$$
 для заданных функций $f_1(\xi)$ и $f_2(\eta)$

На рисунке
$$\varphi(t,r)=rac{1}{r}\left(f_1(r-c_0t)+f_2(r+c_0t)
ight)$$
 для заданных функций $f_1(\xi)$ и $f_2(\eta)$

На рисунке
$$\varphi(t,r)=rac{1}{r}\left(f_1(r-c_0t)+f_2(r+c_0t)
ight)$$
 для заданных функций $f_1(\xi)$ и $f_2(\eta)$

На рисунке
$$\varphi(t,r)=rac{1}{r}\left(f_1(r-c_0t)+f_2(r+c_0t)
ight)$$
 для заданных функций $f_1(\xi)$ и $f_2(\eta)$

На рисунке
$$\varphi(t,r)=rac{1}{r}\left(f_1(r-c_0t)+f_2(r+c_0t)
ight)$$
 для заданных функций $f_1(\xi)$ и $f_2(\eta)$

На рисунке
$$\varphi(t,r)=rac{1}{r}\left(f_1(r-c_0t)+f_2(r+c_0t)
ight)$$
 для заданных функций $f_1(\xi)$ и $f_2(\eta)$

На рисунке
$$\varphi(t,r)=rac{1}{r}\left(f_1(r-c_0t)+f_2(r+c_0t)
ight)$$
 для заданных функций $f_1(\xi)$ и $f_2(\eta)$

На рисунке
$$\varphi(t,r)=rac{1}{r}\left(f_1(r-c_0t)+f_2(r+c_0t)
ight)$$
 для заданных функций $f_1(\xi)$ и $f_2(\eta)$

На рисунке
$$\varphi(t,r)=rac{1}{r}\left(f_1(r-c_0t)+f_2(r+c_0t)
ight)$$
 для заданных функций $f_1(\xi)$ и $f_2(\eta)$

На рисунке
$$\varphi(t,r)=rac{1}{r}\left(f_1(r-c_0t)+f_2(r+c_0t)
ight)$$
 для заданных функций $f_1(\xi)$ и $f_2(\eta)$

Запаздывающие потенциалы

Определение

Возмущения из точки r=0 доходят до некоторой точки $r\neq 0$ только через определенное время, поэтому полученное решение волнового уравнения называется запаздывающим потенциалом.

Запаздывающие потенциалы

Определение

Возмущения из точки r=0 доходят до некоторой точки $r\neq 0$ только через определенное время, поэтому полученное решение волнового уравнения называется запаздывающим потенциалом.

Потенциал источника звука Функция вида

$$\varphi^*(t,x,y,z) = -\frac{Q\left(c_0(t-t_0) - \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}\right)}{4\pi\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}}$$

является решением волнового уравнения для источника звука, начинающего действовать в момент времени $t=t_0$ в точке с координатами (x_0,y_0,z_0) .

Способы конструирования решений волнового уравнения

Принцип суперпозиций

В силу линейности волнового уравнения суммарным потенциалом при движении твердого тела по траектории

$$x_0 = x_0(t_0), \quad y_0 = y_0(t_0), \quad z_0 = z_0(t_0)$$

можно рассматривать потенциал, являющийся суммой источников звука, возбуждаемых телом в момент времени t_0 в соответствующих точках траектории с заданной интенсивностью Q_{t_0} , при этом

$$\varphi = \int_0^t \varphi^* dt_0.$$

Распространение возмущений от источника, движущегося с дозвуковой скоростью

При движении тела прямолинейно с дозвуковой скоростью

$$U < c_0$$

возмущения, возникающие на траектории его движения, движутся быстрее, чем само тело, поэтому в его окрестности среда до и после него возмущена. Возмущения, посланные источником звука ранее, всегда обгоняют более поздние.

Распространение возмущений от источника, движущегося с дозвуковой скоростью

Эффект Допплера При движении тела прямолинейно с дозвуковой скоростью

$$U < c_0$$

частота звука перед телом (положение II) имеет большую частоту, чем за ним (положение I). Это обстоятельство объясняет так называемый эффект Допплера.

Распространение возмущений от источника, движущегося со сверхзвуковой скоростью

При движении тела прямолинейно со сверхзвуковой скоростью

$$U > c_0$$

возмущения от источника будут распространяться медленнее, чем тело. Поэтому среда перед телом всегда будет невозмущенная. Наблюдатель, стоящий перед источником, движущимся со сверхзвуковой скоростью, не слышит звуковых колебаний, создаваемых этим источником.

Распространение возмущений от источника, движущегося со сверхзвуковой скоростью

Конус Маха

При движения тела прямолинейно со сверхзвуковой скоростью $U>c_0$ огибающая возмущений будет образовывать конус с углом при вершине $\angle HMM_1$, обозначенным α , таким, что

$$\sin \alpha = \frac{M_1 H}{M_1 M} = \frac{c_0 \Delta t}{U \Delta t} = \frac{c_0}{U} = \frac{1}{M},$$

где Δt – время, за которое тело прошло расстояние M_1M ; $M=U/c_0$ – число Maxa.

Угол α называется углом Маха, а поверхность конуса – конусом Маха.

Монохроматические волны

Определение

Монохроматической волной называют функции, в которых все величины являются простыми периодическими (гармоническими) функциями времени вида

$$\varphi_0 = \operatorname{Re}\{\varphi_0(x,y,z)e^{-i\omega t}\},\,$$

где ω — частота волны.

Уравнение монохроматической волны

$$\Delta\varphi_0 + \frac{\omega^2}{c^2}\varphi_0 = 0$$

Уравнение получается с помощью подстановки выражения для монохроматической волны в волновое уравнение.

Бегущая плоская монохроматическая волна

Определение Потенциал вида

$$\varphi = \operatorname{Re}\left\{Ae^{-i\omega\left(t-\frac{x}{c}\right)}\right\}$$

является бегущей плоской монохроматической волной, где A – комплексная амплитуда.

Вещественное представление

$$\varphi = a\cos\left(\frac{\omega}{c}x - \omega t + \alpha\right),\,$$

где a – вещественная амплитуда волны; аргумент под знаком \cos – фаза.

Волновой вектор и волновое число

Определение Вектор

$$\vec{k} = \frac{\omega}{c}\vec{n} = \frac{2\pi}{\lambda}\vec{n}$$

называют волновым вектором, а его абсолютную величину – волновым числом, где \vec{n} — единичный вектор в направлении распространения волны.

Спектральное разложение

Вообще, любую волну можно представить в виде совокупности плоских монохроматических волн с различными волновыми векторами и частотами вида

$$\varphi = \operatorname{Re}\left\{Ae^{i(\vec{k}\cdot\vec{r}-\omega t)}\right\},\,$$

где \vec{r} – радиус вектор. Такое разложение является разложением в ряд, или интегралом Фурье.

Закон сохранения энергии идеального газа

$$\frac{\partial}{\partial t}\rho\left(\varepsilon + \frac{v^2}{2}\right) + \operatorname{div}\rho\vec{v}\left(\varepsilon + \frac{v^2}{2} + \frac{p}{\rho}\right) = 0$$

Энергия единицы объема

Разложение полной энергии единицы объема покоящейся сплошной среды относительно состояния ρ_0 , ε_0 при ее малых возмущениях

$$\rho = \rho_0 + \rho', \quad \varepsilon = \varepsilon_0 + \varepsilon'$$

до второго порядка малости имеет вид

$$E = \rho \varepsilon + \frac{\rho v^2}{2} \approx \rho_0 \varepsilon_0 + \rho' \left. \frac{\partial (\rho \varepsilon)}{\partial \rho} \right|_{\rho = \rho_0} + \left. \frac{\rho'^2}{2} \frac{\partial^2 (\rho \varepsilon)}{\partial \rho^2} \right|_{\rho = \rho_0} + \frac{\rho_0 v^2}{2}.$$

Термодинамические соотношения Так как

$$darepsilon = \mathit{TdS} - \mathit{pdV} = \mathit{TdS} + rac{p}{
ho^2} d
ho$$
 или $dw = \mathit{TdS} + rac{dp}{
ho},$

где $w = \varepsilon + p/\rho$ – энтальпия, то

$$\left(\frac{\partial(\rho\varepsilon)}{\partial\rho}\right)_{S} = \varepsilon + \frac{p}{\rho} = w,$$

Термодинамические соотношения Так как

$$darepsilon = TdS - pdV = TdS + rac{p}{
ho^2}d
ho$$
 или $dw = TdS + rac{dp}{
ho},$

где $w = \varepsilon + p/\rho$ – энтальпия, то

$$\left(\frac{\partial(\rho\varepsilon)}{\partial\rho}\right)_{S} = \varepsilon + \frac{p}{\rho} = w,$$

$$\left(\frac{\partial^2(\rho\varepsilon)}{\partial\rho^2}\right)_{\mathcal{S}} = \left(\frac{\partial w}{\partial\rho}\right)_{\mathcal{S}} = \left(\frac{\partial w}{\partial p}\right)_{\mathcal{S}} \left(\frac{\partial p}{\partial\rho}\right)_{\mathcal{S}} = \frac{c^2}{\rho}.$$

Полная энергия единицы объема сплошной среды

$$E \approx \rho_0 \varepsilon_0 + w_0 \rho' + \frac{c_0^2}{2\rho_0} {\rho'}^2 + \rho_0 \frac{v^2}{2},$$

Полная энергия единицы объема сплошной среды

$$E \approx \rho_0 \varepsilon_0 + w_0 \rho' + \frac{c_0^2}{2\rho_0} {\rho'}^2 + \rho_0 \frac{v^2}{2},$$

где

1) $\rho_0 \varepsilon_0$ – энергия единицы объема неподвижной среды;

Полная энергия единицы объема сплошной среды

$$E \approx \rho_0 \varepsilon_0 + w_0 \rho' + \frac{c_0^2}{2\rho_0} {\rho'}^2 + \rho_0 \frac{v^2}{2},$$

где

- 1) $\rho_0 \varepsilon_0$ энергия единицы объема неподвижной среды;
- 2) $w_0 \rho'$ изменение энергии, связанное с изменением количества вещества (массы).

Полная энергия единицы объема сплошной среды

$$E \approx \rho_0 \varepsilon_0 + w_0 \rho' + \frac{c_0^2}{2\rho_0} {\rho'}^2 + \rho_0 \frac{v^2}{2},$$

где

- 1) $\rho_0 \varepsilon_0$ энергия единицы объема неподвижной среды;
- 2) $w_0 \rho'$ изменение энергии, связанное с изменением количества вещества (массы).

Плотность звуковой энергии

$$E_s = \frac{\rho_0 v^2}{2} + \frac{c_0^2 \rho'^2}{2\rho_0}$$

Полная энергия единицы объема сплошной среды

$$E \approx \rho_0 \varepsilon_0 + w_0 \rho' + \frac{c_0^2}{2\rho_0} {\rho'}^2 + \rho_0 \frac{v^2}{2},$$

где

- 1) $\rho_0 \varepsilon_0$ энергия единицы объема неподвижной среды;
- 2) $w_0 \rho'$ изменение энергии, связанное с изменением количества вещества (массы).

Плотность звуковой энергии

$$E_s = \frac{\rho_0 v^2}{2} + \frac{c_0^2 \rho'^2}{2\rho_0}$$

В случае плоских волн $\rho' = \rho_0 v/c_0$:

$$E_s = \rho_0 v^2$$
.

Плотность потока энергии

Линеаризация плотности потока покоящегося идеального газа около состояния

$$w = w_0 + w', \quad p = p_0 + p'$$

имеет вид

$$\vec{j} = \rho \vec{v} \left(\varepsilon + \frac{v^2}{2} + \frac{p}{\rho} \right) = \rho \vec{v} \left(\frac{v^2}{2} + w \right) \approx w_0 \rho \vec{v} + \rho w' \vec{v}.$$

C точностью до первого порядка малости
$$w'=\left(\frac{\partial w}{\partial p}\right)_S p'=\frac{p'}{\rho},$$
 отсюда:
$$\vec{j}\approx w_0\rho\vec{v}+p'\vec{v},$$

C точностью до первого порядка малости $w'=\left(\frac{\partial w}{\partial p}\right)_S p'=\frac{p'}{\rho},$ отсюда:

$$\vec{j} \approx w_0 \rho \vec{v} + p' \vec{v},$$

где слагаемое $w_0 \rho \vec{v}$ отвечает за плотность потока энергии, связанного с движением массы.

C точностью до первого порядка малости $w'=\left(\frac{\partial w}{\partial p}\right)_S p'=\frac{p'}{\rho},$ отсюда:

$$\vec{j} \approx w_0 \rho \vec{v} + p' \vec{v},$$

где слагаемое $w_0 \rho \vec{v}$ отвечает за плотность потока энергии, связанного с движением массы.

Плотность потока энергии звуковых колебаний

$$\vec{j}_s = p'\vec{v}$$

C точностью до первого порядка малости $w'=\left(\frac{\partial w}{\partial p}\right)_{S}p'=\frac{p'}{\rho},$ отсюда:

$$\vec{j} \approx w_0 \rho \vec{v} + p' \vec{v},$$

где слагаемое $w_0 \rho \vec{v}$ отвечает за плотность потока энергии, связанного с движением массы.

Плотность потока энергии звуковых колебаний

$$\vec{j}_s = p'\vec{v}$$

Плоская волна Учитывая соотношение для плоской волны $p'=c_0\rho_0\nu$, получим:

$$\vec{j}_s = c_0 \rho_0 v^2 \vec{n} = c_0 E_s \vec{n},$$

где \vec{n} – вектор направления движения волны; E_s – энергия плоской звуковой волны.

Уравнение сохранения энергии для звуковых колебаний

где

$$\frac{\partial E_s}{\partial t} + \operatorname{div} \vec{j_s} = 0,$$

$$E_s = \frac{\rho_0 v^2}{2} + \frac{c_0^2 \rho'^2}{2\rho_0},$$

$$\vec{j_s} = p' \vec{v}.$$

Постановка задачи Описать отраженную и преломленную волны, получившиеся в результате взаимодействия падающей монохроматической волны с границей раздела двух сред.

Основные предположения Волна падает в плоскости Оху, а граница раздела находится в плоскости Охz.

Основные предположения Все три волны будут иметь одинаковые частоты ω и одинаковые компоненты k_y , k_z , т.к. уравнение, описывающее волну одно и то же, а граничные условия при x=0 не зависят от y, z, ω .

Волновые векторы Из рисунка видно, что

$$\vec{k}_1 = \frac{\omega}{c_1}(-\cos\theta_1; -\sin\theta_1; 0), \quad \vec{k}_1' = \frac{\omega}{c_1}(\cos\theta_1'; -\sin\theta_1'; 0),$$
$$\vec{k}_2 = \frac{\omega}{c_2}(-\cos\theta_2; -\sin\theta_2; 0).$$

Граничные условия Из того, что k_y одно и то же во всех трех волнах, следует, что

$$heta_1= heta_1'$$
 и $\dfrac{\sin heta_1}{\sin heta_2}=\dfrac{c_1}{c_2}.$

Потенциалы волн

$$\varphi_1 = A_1 \exp\left\{i\omega\left(-\frac{x}{c_1}\cos\theta_1 - \frac{y}{c_1}\cos\theta_1 - t\right)\right\},$$

$$\varphi_1' = A_1' \exp\left\{i\omega\left(\frac{x}{c_1}\cos\theta_1 - \frac{y}{c_1}\cos\theta_1 - t\right)\right\},$$

$$\varphi_2 = A_2 \exp\left\{i\omega\left(-\frac{x}{c_2}\cos\theta_2 - \frac{y}{c_2}\cos\theta_2 - t\right)\right\}.$$

Граничные условия

Из условий сохранения на контактном разрыве следует равенство давления ($p=-\rho(\partial\varphi/\partial t)$) и непрерывность нормальной составляющей скорости ($v_x=\partial\varphi/\partial x$):

$$\rho_1(A_1 + A_1') = \rho_2 A_2, \quad \frac{\cos \theta_1}{c_1} (A_1 - A_1') = \frac{\cos \theta_2}{c_2} A_2.$$

Коэффициент отражения коэффициент отражения определяет отношение средних (по времени) плотностей потока энергии в отраженной и падающей волнах:

$$R = \frac{c_1 \rho_1 \overline{v_1'^2}}{c_1 \rho_1 \overline{v_1^2}} = \frac{|A_1'|^2}{|A_1|^2} = \left(\frac{\rho_2 \operatorname{tg} \theta_2 - \rho_1 \operatorname{tg} \theta_1}{\rho_2 \operatorname{tg} \theta_2 + \rho_1 \operatorname{tg} \theta_1}\right)^2.$$

Коэффициент отражения

$$R = \left[\frac{\rho_2 c_2 \cos \theta_1 - \rho_1 \sqrt{c_1^2 - c_2^2 \sin^2 \theta_1}}{\rho_2 c_2 \cos \theta_1 + \rho_1 \sqrt{c_1^2 - c_2^2 \sin^2 \theta_1}} \right]^2$$

Литература

- 1. *Ландау Л. Д., Лифшиц Е. М.* Теоретическая физика: Учебное пособие. В 10 т. Т. VI. Гидродинамика. 3-е изд., перераб. М.: Наука. Гл. ред. физ-мат. лит., 1986.
- 2. Седов Л. И. Механика сплошной среды. Том 2. М.:Наука, 1970.