1. The maximum deflection at the end of a cantilevered beam, such as one used for a balcony, when a load is placed at the end of the beam is given by this formula:

$$d_{max} = \frac{W/^3}{3 E I} = \frac{4 W/^3}{E h h^3}$$

 \mathbf{d}_{max} is the maximum deflection (ft).

W is the load weight (lb). I

is the beam's length (ft).

E is the modulus of elasticity (lb/ft²).

b is the beam's base (ft). **h** is the

beam's height (ft).

I is the second moment of inertia (ft⁴).

Using the formula, write a function named **maxDeflect()** that accepts a beam's length, base, height, and the load placed on the beam as double-precision arguments, and then calculates and returns the beam's maximum deflection. Include the maxDeflect() function in a working program, and use your program to complete the following chart:

Material	Elasticity (lb/ft ²)	Length (ft)	Height (ft)	Base (ft)	Weight (lb)	Maximum Deflection (in)
Aluminum	1.49e9	3	0.3	0.2	1000	
Pine wood	.187e9	3	0.3	0.2	1000	
Steel	3.9e9	3	0.3	0.2	1000	