

- □ Partição de equivalência
- □ Testes de valores-limite
- □ Grafo causa-efeito

Testes baseados na especificação

- · Também chamados de testes caixa preta
- Objetívos dos testes: demonstrar cobertura da específicação
- Modelos de teste obtidos das específicações:
 - requisitos
 - arquitetura

Partições de equivalência: princípio

Partições de equivalência

- ☐ O domínío de entrada (ou saída) do programa/função é dívidido em um número finito de partições (ou classes) de equivalência
 - □ supõe-se que dados pertencentes a uma partíção revelam as mesmas falhas
 - partições válidas e inválidas são consideradas
- ☐ Geração de testes: selecionar um ou mais dados de cada partição
- Critério de cobertura: cada partição deve ser considerada ao menos 1 vez

Partição de equivalência: passos

- Decompor o programa em funções
- ☐ Identificar as variáveis que determinam o comportamento de cada função
- Particionar os valores de cada variável em classes de equivalência (válidas e inválidas)
- □ Específicar os casos de teste:
 - elíminar as classes impossíveis ou os casos desinteressantes
 - selecionar casos de testes cobrindo as classes válidas das diferentes variáveis
 - para cada classe inválida escolha um caso de teste que cubra 1 e somente 1 de cada vez

Determinação das classes de equivalência

Definição da variável	Classes de equivalência
de entrada	
Intervalo	 Uma classe válida para valores pertencentes ao intervalo Uma classe inválida para valores menores que o limite inferior Uma classe inválida para valores maiores que o limite superior
Lista de valores válidos	 Uma classe válida para os valores incluídos na lista Uma classe inválida para todos os outros valores

Determinação das classes de equivalência

Definição da variável de	Classes de equivalência
entrada Número de valores válidos	 Uma classe válida para número de valores igual ao número previsto Uma classe inválida para número de valores = 0 Uma classe inválida para número de valores maior ou menor que o valor previsto
Restrições (expressão lógica; sintaxe; valor específico; compatibilidade com outras variáveis)	 Uma classe válida para os valores que satisfazem às restrições Uma classe inválida para os outros valores

- ☐ Função:
 - ☐ Considere uma função que aceita como entradas de 4 a 6 valores inteiros de 2 digitos maiores do que 10.
- Identificação das variáveis de entrada e das condições que estas devem satisfazer:
 - □ nro_entradas € [4,6]
 - □ valor ∈ [10,99]

• Determinação das classes de equivalência:

varíável	Classes Válídas	Classes Inválidas
nro_entradas	C1. 4 ≤ nro_entradas ≤ 6	C3. nro_entradas < 4
		C4. nro_entradas > 6
valor	C2. 10 ≤ valor ≤ 99	C5. valor < 10
		c6. valor > 99

- · Casos de teste:
 - selecionar casos de testes cobrindo as classes válidas das diferentes variáveis

nro_entradas	C1	C2	СЗ	C4	C5	C6	nro_entradas	valores
46	X						5	11, 12, 45, 78
< 4								11, 12, 10, 7
> 6								
valor								
10 99		X						
< 10								
> 99								

- · Casos de teste:
 - para cada classe inválida escolha um caso de teste que cubra 1 e somente 1 de cada vez

nro_entradas	C1	C2	СЗ	C4	C5	C6	ν	uro_entradas	s valores
46	X		V				1.	5	11, 12, 45, 7 8, 95
< 4 > 6			X				2.	3	11, 12, 45
								35 B B	
valor		V							
10 99		X							
< 10									
>99									

- · casos de teste:
 - para cada classe inválida escolha um caso de teste que cubra 1 e somente 1 de cada vez

nro_entradas	C1	C2	СЗ	C4	C5	C6
46	X					
< 4			X			
> 6			/	X		
				^		
valor						
10 99		X				
< 10					X	
>99						X

V	iro_entrada	is valores
1.	5	11, 12, 45, 78, 95
2.	2	11, 12
3.	8	11, 12, 45, 78, 95, 67, 77, 54
4.	5	5, 11, 12, 45, 6
5.	5	110, 45, 7 8, 340, 95

- Considere o teste do procedimento: Valida_Nova_Senha que recebe como entrada uma senha e Valida-a conforme as seguintes regras:
 - uma senha deve ter de 6 a 10 caracteres
 - o primeiro caracter dever ser alfabético, numérico ou um "?"
 - os outros caracteres podem ser quaisquer, desde que não sejam caracteres de controle
 - a senha não pode existir em um dicionário

Exemplo 2 - Classes de Equivalência

variáveis	∨álídas	Inválidas			
tamanho	C1. tamanho∈ [6, 10]	C7. tamanho < 6			
		C8. tamanho > 10			
1° caracter	c2. car1 alfabético	$c9$. $car1$ ∈ {caract. controle}			
(car1)	C3. Carl numérico	C10. Car1 ∉{letras, dígítos, ?}			
	C4. Car1 é "?"				
outros caract	C5. Outro ∉ {caract.	C11. Outro ∈ {caract. de controle}			
(Outro)	de controle }				
status	C6. Senha∉dícíonárío	C12. Senha∈dícíonárío			

casos de teste

123456789

casos de teste

classes de equivalência

2
3
4
5
6
チ
8
9
10
11
12

1

1.

2.

3.

4.

5.

6.

8.

9.

Análise de valoreslimite

- Critério de seleção que identifica valores nos limites das classes de equivalência
- ☐ Exemplos:
 - □ valor mínímo (máximo) igual ao mínímo (máximo) válido
 - uma unidade abaixo do minimo
 - uma unidade acima do máximo
 - arquivo vazio
 - arquivo maior ou igual à capacidade máxima de armazenamento
 - □ cálculo que pode levar a "overflow" ("underflow")
 - erro no prímeiro (último) registro

- Casos de teste:
 - para cada classe inválida escolha um caso de teste que cubra 1 e somente 1 de cada vez

nro_entradas	C1	C2	СЗ	C4	C5	C6
46	X					
< 4			X			
> 6				X		
valor						
10 99		X				
< 10					X	
> 99						X

8	nro_entradas	valores
1.	4	10, 11, 98, 99
2.	6	10, 11, 50, 55, 98, 99
8		
3.	3	10, 11, 98
4.	チ	10, 11, 50, 55, 98, 99,
		45
5.	4	9, 10, 11, 99
6.	4	10, 11, 100, 101

Limitação

- ☐ Testes baseados em partíções de equivalência ou análise de valores-limite:
 - onsideram cada valor de entrada isoladamente
- e se existirem combinações de valores que constituam situações interessantes a serem testadas?

- □ Necessáría quando se deseja testar combinações de entradas
- Utiliza tabelas de decisão e árvores de decisão
 - grafo causa-efeito como modelo auxiliar

Definições

Causas:

- condições de entrada (valor lógico) Efeitos
 - ações realizadas em resposta às diferentes condições de entrada

ex .:

causa: preço $\geq 50 \ \land \ 0 \leq \text{qtd} \leq 99$ efeito: fornecer 5% de desconto

Árvore de decisão

Tabela de decisão

c1 V ... F ...

Condíções de entrada (causas)

Ações (efeitos)

Construção da tabela de decisão

preço ≥ 50	V	F	×
0≤ qtd ≤ 99	V	V	F
dar desconto	X		
cobrar preço			
normal		X	1
emitir msg			
de erro			X