Advanced Stochastic Collocation Methods for Polynomial Chaos in RAVEN

Paul W. Talbot

University of New Mexico

Dissertation Defense, November 3, 2016

Funded by a Laboratory Directed Research effort at Idaho National Laboratory

Goals in Nuclear R&D

Research and Development Motives in Nuclear Industry

- New commercial reactor designs
 - Generation IV
 - Small Modular Reactors
- Restarting retired reactors
- Extending existing reactor life
- Change operation parameters
 - Changes in Regulations
 - Increase fuel usage

└ Motivation

Introduction

Simulations in Nuclear

Research and Development Methods in Nuclear Industry

- Physical experiments
 - Expensive to construct
 - Difficult to analyze
 - Often requires licensing
- Numerical Simulations
 - ► Relatively inexpensive
 - Rarely requires licensing
 - Often produce valuable insights

Numerical Simulations

Challenges for Numerical Simulations in Nuclear

- Many coupled physics
 - Fuels Performance
 - Safety Analysis
 - Thermal Hydraulics
 - Neutronics
 - Core Design
 - Molecular Dynamics
- Widely-varying Time Scales
- ► Tightly-coupled feedback

Safety Margins

Traditional simulation approach to Safety Margins

- Build excess conservatism into models
- Assume final calculations are sufficiently conservative

More advanced approach: Best Estimate Plus Uncertainty (BEPU)

- ▶ Analyze models as accurately as possible
- Propagate uncertainty to determine safety margins
- Example: RISMC

Uncertainty Quantification

Uncertainty Quantification as explained by RAVEN

Nomenclature

Consider a generic simulation

- Let u(Y) be a response of interest
- Examples:
 - peak clad temperature for fuel performance
 - k-eigenvalue for neutronics
 - power peaking factors for core design
- $Y = (y_1, y_2, \dots, y_N)$ are input parameters
 - Material properties
 - Boundary conditions
 - Initial conditions
 - Model tuning parameters
- General usage: provided inputs Y, obtain response u(Y)

Nomenclature

More Definitions

- \triangleright u(Y) is stochastic response
- Y is stochastic vector, $Y = (y_1, \dots, y_N)$
- Probability space (Ω, σ, ρ)
- Each uncertain input y_n:
 - Probability space $(\Omega_n, \sigma_n, \rho_n)$
 - Probability Distribution is $\rho_n(Y)$
 - Realizations $y_n(\omega)$
- Full input realization $Y(\omega)$
- ▶ Response realization $u(Y(\omega))$

Traditional Uncertainty Quantification Methods

Monte Carlo

- Random sampling based on probability
- Strong, slow, dimension-agnostic

Grid

- Nodes equally spaced by probability
- Curse of dimensionality

Latin Hypercube

- ► Hybrid of MC and Grid
- Works for many models

Dissertation Objective

Objectives of this work

- Explore advanced UQ sampling strategies
 - Stochastic Collocation for generalized Polynomial Chaos (SCgPC)
 - ► High-Dimensional Model Reduction (HDMR)
 - Adaptive SCgPC
 - Adaptive HDMR
- Advance adaptive methods
- ▶ Implement all methods in RAVEN

Outline

Discussion Points

- 1 Introduction
- 2 SCgPC
- 3 HDMR
- 4 Neutronics Example
- 5 Multiphysics Example
- 6 Conclusions

Outline

- 1 Introduction
- 2 SCgPC
 - Theory
 - Results
- 3 HDMR
- 4 Neutronics Example
- 5 Multiphysics Example
- 6 Conclusions

Theory

Stochastic Collocation for generalized Polynomial Chaos (SCgPC)

- 1. Generalized Polynomial Chaos Expansion
- 2. Stochastic Collocation
- 3. Smolyak Sparse Grids

Generalized Polynomial Chaos

Expand model as sum of orthonormal polynomials

gPC Expansion

$$u(Y) \approx G[u](Y) = \sum_{k \in \Lambda(L)} u_k \Phi_k(Y)$$

- Λ: Chosen set of polynomial indices
- \triangleright k: Multi-index of polynomial orders e.g. (2,1,3)
- $\triangleright u_k$: Scalar expansions moments
- \triangleright Φ_k : Multidimensional orthonormal polynomials

gPC: Polynomial Families

$$\Phi_k(Y) = \prod_{n=1}^N \phi_{k_n}^{(n)}(y_n)$$

Choice of polynomial family depends on distribution of y_n

Distribution	Polynomial Set	
Uniform	Legendre	
Normal	Hermite	
Gamma	Laguerre	
Beta	Jacobi	
Arbitrary	Legendre	

gPC: Useful Properties

gPC Expansion

$$u(Y) \approx G[u](Y) = \sum_{k \in \Lambda(L)} u_k \Phi_k(Y)$$

- Surrogate Model: Polynomials are fast to evaluate
- ► First two moments are very simple

$$\mathbb{E}[G[u](Y)] = u_{(0,\dots,0)}, \qquad \mathbb{E}[G[u](Y)^2] = \sum_{k \in \Lambda(L)} u_k^2$$

gPC: Polynomial Set Λ

gPC Expansion

$$u(Y) \approx G[u](Y) = \sum_{k \in \Lambda(L)} u_k \Phi_k(Y)$$

Choice of polynomial set: $\Lambda(L)$

- ► Tensor Product
- ► Total Degree
- Hyperbolic Cross

Truncated by limiting order L

gPC: Polynomial Set Λ

Tensor Product Index Set

$$\Lambda_{\mathsf{TP}}(L) = \left\{ k = (k_1, \cdots, k_N) : \max_{1 \le n \le N} k_n \le L \right\}$$

Example:
$$N = 2, L = 3$$

$$\Lambda_{TP}(3) = \begin{bmatrix} (3,0) & (3,1) & (3,2) & (3,3) \\ (2,0) & (2,1) & (2,2) & (2,3) \\ (1,0) & (1,1) & (1,2) & (1,3) \\ (0,0) & (0,1) & (0,2) & (0,3) \end{bmatrix}$$

gPC: Polynomial Set Λ

Total Degree Index Set

$$\Lambda_{\mathsf{TD}}(L) = \left\{ k = (k_1, \cdots, k_N) : \sum_{n=1}^{N} k_n \leq L \right\}$$

Example:
$$N = 2, L = 3$$

$$\Lambda_{TD}(3) = \begin{bmatrix} (3,0) \\ (2,0) & (2,1) \\ (1,0) & (1,1) & (1,2) \\ (0,0) & (0,1) & (0,2) & (0,3) \end{bmatrix}$$

gPC: Polynomial Set Λ

Hyperbolic Cross Index Set

$$\Lambda_{\mathsf{HC}}(L) = \left\{ k = (k_1, \dots, k_N) : \prod_{n=1}^{N} (k_n + 1) \le L + 1 \right\}$$

Example:
$$N = 2, L = 3$$

$$\Lambda_{HC}(3) = \begin{bmatrix} (3,0) \\ (2,0) \\ (1,0) & (1,1) \\ (0,0) & (0,1) & (0,2) & (0,3) \end{bmatrix}$$

└ Theory

SCgPC Adaptive SCgPC

Add polynomials adaptively

Adaptive SCgPC

Choose polynomials to add adaptively

Estimated Polynomial Impact

$$\tilde{\eta}_k = \frac{1}{N} \sum_{n=1}^N \eta_{k-e_n}$$

Average of predecessor polynomials

Theory

SCgPC Adaptive SCgPC

Adaptive SCgPC

Predictive Algorithm

- Use variance of previous polynomials to predict
- Converge on est. remaining variance
- Saves significant evaluations
- Assumption: monotonic variance decrease

gPC: Expansion Moments u_k

gPC Expansion

$$u(Y) \approx G[u](Y) = \sum_{k \in \Lambda(L)} u_k \Phi_k(Y)$$

Expansion moments u_k given through orthonormality of expansion polynomials

gPC: Expansion Moments u_k

Defining probability-weighted integration and orthonormality,

$$\int_{\Omega} (\cdot) dY \equiv \int_{a_1}^{b_1} \rho_1(y_1) \cdots \int_{a_N}^{b_N} \rho_N(y_N)(\cdot) dy_1 \cdots dy_N$$
$$\int_{\Omega} \Phi_j(Y) \Phi_k(Y) dY = \delta_{jk}$$

Expansion Moments

$$u_k = \int\limits_{\Omega} u(Y) \Phi_k(Y) dY$$

 $\mathbb{I}\!M$

gPC: Expansion Moments u_k

How to integrate

Expansion Moments

$$u_k = \int\limits_{\Omega} u(Y) \Phi_k(Y) dY$$

- Analytic Integration
- Monte Carlo sampling
- Stochastic Collocation

L Theory

SCgPC

Stochastic Collocation

Numerical Integration by Quadrature

$$\int_{a}^{b} f(y)\rho(y) \ dy = \sum_{\ell=1}^{\infty} w_{\ell}f(y_{\ell})$$

$$\approx \sum_{\ell=1}^{p} w_{\ell}f(y_{\ell})$$

$$\equiv q^{(p)}[f(y)]$$

Stochastic Collocation

Gauss quadrature

- Exact for polynomials order 2p-1
- Several quadratures for several weights
- Correspond to expansion polynomials

Distribution	Polynomial Set	Quadrature
Uniform	Legendre	Legendre
Normal	Hermite	Hermite
Gamma	Laguerre	Laguerre
Beta	lacobi	lacobi

Stochastic Collocation

Expansion Moments

$$u_k = \int_{\Omega} u(Y) \Phi_k(Y) dY$$

Integration Order and Quadrature Order Order of $u(Y)\Phi_k(Y)$

- ▶ Order of $\Phi_k(Y)$ is k
- ▶ Order of u(Y) is unknown; assume $\mathcal{O}(G[u](Y))$
- ▶ Total order is $2k \rightarrow p_n = k_n + \frac{1}{2}$

Number of points should be $k_n + 1$ for each dimension n

Stochastic Collocation

Multidimensional Numerical Integrals

Basic choice: tensor combination

$$\int_{a_1}^{b_1} \int_{a_2}^{b_2} f(Y) \rho(Y) \ dy_2 \ dy_1 \approx Q^{(\vec{p})}[f(Y)]$$

$$Q^{(\vec{p})} = q^{(p_1)} \otimes q^{(p_2)}$$
$$= \bigotimes_{1}^{N} q^{(p_n)}$$

Smolyak Sparse Grid

Tensor quadrature can be wasteful

$$\Lambda_{HC}(3) = \begin{bmatrix} (3,0) \\ (2,0) \\ (1,0) & (1,1) \\ (0,0) & (0,1) & (0,2) & (0,3) \end{bmatrix}$$

Need fewer knots and weights

- ▶ 4th order in y₁
- ▶ 4th order in y₂
- \triangleright 2nd \times 2nd in (y_1, y_2)

Requires 12 instead of 16 points

Smolyak Sparse Grid

Smolyak Sparse Grid Quadrature

$$S_{\Lambda,N}^{(\vec{p})}[(\cdot)] = \sum_{k \in \Lambda(L)} c(k) \bigotimes_{n=1}^{N} q_n^{(p_n)}[(\cdot)]$$
$$c(k) = \sum_{\substack{j=\{0,1\}^N, \\ k+j \in \Lambda(L)}} (-1)^{|j|_1},$$

Smc Expansion Moments

$$u_k = \int_{\Omega} u(Y) \Phi_k(Y) dY$$

Calculate using Smolyak sparse grid

$$u_k \approx S_{\Lambda,N}^{(\vec{p})}[u(Y)\Phi_k(Y)]$$

gPC Expansion

$$u(Y) \approx G[u](Y) = \sum_{k \in \Lambda(L)} u_k \Phi_k(Y)$$

Outline

- 1 Introduction
- 2 SCgPC
 - Theory
 - Results
- 3 HDMR
- 4 Neutronics Example
- 5 Multiphysics Example
- 6 Conclusions

SCgPC Results

Introduction

Performed analysis on several analytic models

Considered impact of

- Changing regularity
- Changing dimensionality
- Different polynomial representations

Consider TP, TD, HC, and Adaptive SCgPC

Models

Analytic models used

- ► Tensor Monomials
- Sudret Polynomial
- Attenuation

- Gauss Peak
- Ishigami
- Sobol G-Function

Attenuation

Attenuation

$$u(Y) = \prod_{n=1}^{N} \exp(-y_n/N)$$

- ► Tensor of decreasing-importance polynomials
- ► Combination terms over single-variable

Attenuation, Taylor Expansion

$$e^{-ay} = 1 - ay + \frac{(ay)^2}{2} - \frac{(ay)^3}{6} + \frac{(ay)^4}{24} - \frac{(ay)^5}{120} + \mathcal{O}(y^6)$$

		Polynomial Order (y_1)				
		0	1	2	3	4
	0	1	а	$a^{2}/2$	$a^{3}/6$	$a^4/24$
Polynomial	1	а	a^2	$a^{3}/2$	$a^{4}/6$	$a^{5}/24$
Order	2	$a^{2}/2$	$a^{3}/2$	$a^{4}/4$	$a^{5}/12$	a ⁶ /48
(y_2)	3	$a^{3}/6$	$a^4/6$	$a^5/12$	$a^{6}/36$	$a^{7}/144$
	4	$a^4/24$	$a^{5}/24$	$a^{6}/48$	$a^{7}/144$	$a^{8}/576$

Results

SCgPC Results

Results

SCgPC Results

Gauss Peak

Gauss Peak

$$u(Y) = \prod_{n=1}^{N} \exp(-3^{2}(y_{n} - 0.5)^{2})$$

- ► Tensor of polynomials
- Slow, inconsistent decay

Gauss Peak, Taylor Expansion

$$e^{-a^2y^2} = 1 - a^2y^2 + \frac{a^4}{2}y^4 - \frac{a^6}{6}y^6 + \frac{a^8}{24}y^8 + \mathcal{O}(y^{10})$$

		Pol	ynor	nial Or	der	(y_1)
		0	1	2	3	4
	0	1	0	a^2	0	$a^4/2$
Polynomial	1	0	0	0	0	0
Order	2	a^2	0	a^4	0	$a^{6}/2$
(y_2)	3	0	0	0	0	0
· •	4	$a^4/2$	0	$a^{6}/2$	0	$a^{8}/4$

Results

SCgPC Results

Gauss Peak, N=3

Results

SCgPC Results

Gauss Peak, N = 5

Outline

- 1 Introduction
- 2 SCgPC
- 3 HDMR
 - Theory
 - Results
- 4 Neutronics Example
- 5 Multiphysics Example
- 6 Conclusions

Introduction

HDMR Expansion

$$u(Y) = H[u](Y) = h_0 + \sum_{n=1}^{N} h_n + \sum_{n_1=1}^{N} \sum_{n_2=1}^{n_1-1} h_{n_1,n_2} + \cdots$$

$$\hat{Y}_n \equiv (y_1, \cdots, y_{n-1}, y_{n+1}, \cdots, y_N)$$

$$h_0 \equiv \int_{\Omega} u(Y) dY, \qquad h_n \equiv \int_{\hat{\Omega}_n} u(Y) d\hat{Y}_n - h_0$$

HDMR Properties

HDMR Expansion

$$u(Y) = H[u](Y) = h_0 + \sum_{n=1}^{N} h_n + \sum_{n_1=1}^{N} \sum_{n_2=1}^{n_1-1} h_{n_1,n_2} + \cdots$$

Properties of HDMR expansion

- Component terms are orthogonal
- Contribution of each input to response
- Truncates to interaction levels
- Sobol sensitivity coefficients
- Requires high-level integration even for h_0

cut-HDMR

Cut-HDMR Expansion

$$u(Y) = T[u](Y) = t_r + \sum_{n=1}^{N} t_n + \sum_{n_1=1}^{N} \sum_{n_2=1}^{n_1-1} t_{n_1,n_2} + \cdots$$

$$\bar{Y}\equiv(\bar{y}_1,\cdots,\bar{y}_N)$$

$$\hat{\bar{Y}}_n \equiv (\bar{y}_1, \cdots, \bar{y}_{n-1}, \bar{y}_{n+1}, \cdots, \bar{y}_N)$$

$$t_0 \equiv u(\bar{Y}), \qquad t_n \equiv u(y_n, \hat{Y}_n) - t_r$$

Cut-HDMR Properties

Cut-HDMR Expansion

$$u(Y) = T[u](Y) = t_r + \sum_{n=1}^{N} t_n + \sum_{n_1=1}^{N} \sum_{n_2=1}^{n_1-1} t_{n_1,n_2} + \cdots$$

- No integrals required
- Only requires reference value
- Terms are no longer orthogonal
- Variance is not sum of variance of parts
- Converges exactly at no truncation

Cut-HDMR and SCgPC

Cut-HDMR Expansion

$$u(Y) = T[u](Y) = t_r + \sum_{n=1}^{N} t_n + \sum_{n_1=1}^{N} \sum_{n_2=1}^{n_1-1} t_{n_1,n_2} + \cdots$$

Consider subset terms

- ► Low-dimension input spaces
- ► Potentially regular response
- ▶ Ideal for SCgPC representation

Cut-HDMR and SCgPC

Cut-HDMR Expansion

$$u(Y) = T[u](Y) = t_r + \sum_{n=1}^{N} t_n + \sum_{n_1=1}^{N} \sum_{n_2=1}^{n_1-1} t_{n_1,n_2} + \cdots$$

$$t_n = G[u](y_n, \hat{Y}_n) - t_r$$

$$= \sum_{k' \in \Lambda'(L')} t_{n;k'} \Phi_{k'}(y_n) - t_r$$

- $ightharpoonup t_{n:k'}$ calculated with Smolyak collocation
- Orthonormality re-introduced
- Can algorithmically recover ANOVA HDMR

Cut-HDMR and SCgPC versus SCgPC

Is cut-HDMR with SCgPC better than SCgPC alone?

- Using same polynomial orders and families
- Using same index set type Λ
- Untruncated cut-HDMR is same as SCgPC
- Truncated can approximate with less evaluations
- Most effective when solves very expensive

Adaptive HDMR

Construct cut-HDMR with SCgPC adaptively:

- Choose:
 - Add a new subset
 - Add polynomial to existing subset
- Subset impact: Sobol sensitivity
- ▶ Polynomial impact: local × subset

└ Theory

HDMR

Cut-HDMR and SCgPC versus SCgPC

Estimated Subset Impact

$$S_{eta} = rac{\mathsf{var}[h_{eta}]}{\mathsf{var}[T(Y)]}$$

Estimated Polynomial Impact

$$ilde{\xi}_k = ilde{\eta}_k \cdot extstyle S_{eta}$$

$$\tilde{\eta}_k = \frac{1}{N} \sum_{n=1}^N \eta_{k-e_n}$$

$$\eta_k = c_k^2$$

Outline

- 1 Introduction
- 2 SCgPC
- 3 HDMR
 - Theory
 - Results
- 4 Neutronics Example
- 5 Multiphysics Example
- 6 Conclusions

Introduction

Contrast HDMR with SCgPC

- Same analytic models
- ► First-, second-, third-order HDMR
- Adaptive HDMR with adaptive SCgPC

Attenuation

Attenuation

$$u(Y) = \prod_{n=1}^{N} \exp(-y_n/N)$$

- ► Tensor of decreasing-importance polynomials
- ► Combination terms over single-variable

Attenuation, Taylor Expansion

$$e^{-ay} = 1 - ay + \frac{(ay)^2}{2} - \frac{(ay)^3}{6} + \frac{(ay)^4}{24} - \frac{(ay)^5}{120} + \mathcal{O}(y^6)$$

		Polynomial Order (y_1)				
		0	1	2	3	4
	0	1	а	$a^{2}/2$	$a^{3}/6$	$a^4/24$
Polynomial	1	а	a^2	$a^{3}/2$	$a^{4}/6$	$a^{5}/24$
Order	2	$a^{2}/2$	$a^{3}/2$	$a^{4}/4$	$a^5/12$	a ⁶ /48
(y_2)	3	$a^{3}/6$	$a^4/6$	$a^5/12$	$a^{6}/36$	$a^{7}/144$
	4	$a^4/24$	$a^{5}/24$	$a^{6}/48$	$a^{7}/144$	$a^{8}/576$

Results

HDMR Results

Gauss Peak

Gauss Peak

$$u(Y) = \prod_{n=1}^{N} \exp(-3^{2}(y_{n} - 0.5)^{2})$$

- ► Tensor of polynomials
- Slow, inconsistent decay

Gauss Peak, Taylor Expansion

$$e^{-a^2y^2} = 1 - a^2y^2 + \frac{a^4}{2}y^4 - \frac{a^6}{6}y^6 + \frac{a^8}{24}y^8 + \mathcal{O}(y^{10})$$

		Pol	ynor	nial Or	der	(y_1)
		0	1	2	3	4
	0	1	0	a^2	0	$a^4/2$
Polynomial	1	0	0	0	0	0
Order	2	a^2	0	a^4	0	$a^{6}/2$
(y_2)	3	0	0	0	0	0
	4	$a^4/2$	0	$a^{6}/2$	0	$a^{8}/4$

Gauss Peak, N = 3

Gauss Peak, N = 5

Outline

- 1 Introduction
- 2 SCgPC
- 3 HDMR
- 4 Neutronics Example
 - Problem
 - Uncertainty
 - Results
- 5 Multiphysics Example
- 6 Conclusions

Introduction

More complicated than an analytic case

$$\begin{split} -D_{g}(\mathbf{r})\nabla^{2}\phi_{g}(\mathbf{r}) + \Sigma_{a,g}(\mathbf{r}) &= \sum_{g'=1}^{G} \Sigma_{g' \to g} \phi_{g'}(\mathbf{r}) \\ &+ \frac{\chi_{p,g}}{k} \sum_{g'=1}^{G} \nu \Sigma_{f,g'}(\mathbf{r}) \phi_{g'}(\mathbf{r}) \end{split}$$

Quantities of interest

- $\phi_g(\mathbf{r})$: Group neutron flux
- ▶ k eigenvalue: Neutron multiplication factor

Geometry

Quarter-symmetric 4-assembly reactor core

Energy Groups

7 energy groups, 7 materials, 32 mesh elements per pin

Group	Upper Energy Bound
7	0.02 eV
6	0.1 eV
5	0.625 eV
4	3 eV
3	500 keV
2	1 MeV
1	20 MeV

Solved using RATTLESNAKE's linear CFEM

Flux Profiles

- 1 Introduction
- 2 SCgPC
- 3 HDMR
- 4 Neutronics Example
 - Problem
 - Uncertainty
 - Results
- 5 Multiphysics Example
- 6 Conclusions

Uncertainty

Specific Responses

- k-eigenvalue
- Group 1 flux at reactor center
- Group 5 flux at reactor center

168 correlated uncertain inputs

- Material macroscopic cross sections
- Assigned 10% correlation
 - ► Same material and reaction, different energies
 - Same material and energy, different reaction
- ▶ Relative variance of 5% for all inputs

Uncertainty Correlations

Need to de-correlate input space

RAVEN has two-step reduction

- Karhunen-Loeve expansion (PCA)
- Sensitivity reduction
- Combined yields importance rank

Uncertainty Correlations

	k-eigenvalue		Center Flux, $g=1$		Center Flux, $g = 5$	
Rank	Dimension	Importance	Dimension	Importance	Dimension	Importance
1	24	0.09606	24	0.07231	24	0.07032
2	9	0.08555	9	0.06472	9	0.06648
3	0	0.06861	0	0.04856	100	0.06474
4	17	0.04737	116	0.03472	13	0.03396
5	23	0.03415	17	0.03470	0	0.03092
6	158	0.03047	10	0.02726	17	0.02716
7	164	0.02852	8	0.02468	10	0.02651
8	50	0.02695	164	0.02174	118	0.02600
9	6	0.02315	20	0.02157	117	0.02420

Retained latent dimensions 24, 9, 0, 17, 10, 116, 100, 13

Uncertainty Correlations

- ► Truncated after gradients
- Some importance lost
- Mean preserved well
- ► Std dev partially preserved

Uncertainty Correlations

k-Eigenvalue

Uncertainty Correlations

Center Flux, g = 1

Uncertainty Correlations

Center Flux, g = 5

- 1 Introduction
- 2 SCgPC
- 3 HDMR
- 4 Neutronics Example
 - Problem
 - Uncertainty
 - Results
- 5 Multiphysics Example
- 6 Conclusions

Results: k-eigenvalue

Results: Center Flux, g = 1

Results: Center Flux, g = 5

- 1 Introduction
- 2 SCgPC
- 3 HDMR
- 4 Neutronics Example
- 5 Multiphysics Example
 - Problem
 - Uncertainty
 - Results
- 6 Conclusions

Problem

Multiphysics Example

Introduction

Coupled multiphysics problem

- Neutronics
 - neutron transport and interaction
 - Provides flux/power shapes to fuels performance
- Fuels Performance
 - ▶ temperature, depletion, fuel oxidation,
 - fission product swelling, densification, fuel fracture,
 - ▶ interstitial heat transfer, mechanical contact,
 - cladding creep, thermal expansion, plasticity
 - Provides temperature fields to neutronics

Problem

Multiphysics Example

Geometry

- 1 Introduction
- 2 SCgPC
- 3 HDMR
- 4 Neutronics Example
- Multiphysics Example
 - Problem
 - Uncertainty
 - Results
- 6 Conclusions

└─ Uncertainty

Multiphysics Example

Geometry and Uncertainty

Dimensions

- ▶ Domain is 6.3 mm square
- Reflective boundaries
- ▶ Fuel pin radius is 4.09575 mm with clad

Response is k-eigenvalue

Uncertain inputs

- ▶ 671 correlated interaction cross sections
- ► Fuel thermal expansion coefficient
- Clad thermal conductivity
- ► Fuel thermal conductivity

Uncertainty

Multiphysics Example

Uncertainty Correlation

Multiphysics Example

Uncertainty Correlation

- 1 Introduction
- 2 SCgPC
- 3 HDMR
- 4 Neutronics Example
- 5 Multiphysics Example
 - Problem
 - Uncertainty
 - Results
- 6 Conclusions

Results

Multiphysics Example

Results

Results

Multiphysics Example

Results

Results

Multiphysics Example

Run Times

Method	Degree	Runs
Total Degree	1	47
Total Degree	2	1105
Total Degree*	3	17389
HDMR (1)	1	47
HDMR (1)	2	47
HDMR (1)	3	93
HDMR (1)	4	93
HDMR (1)	5	139
HDMR (2)	1	47
HDMR (2)	2	1105
HDMR $(2)^{\dagger}$	3	3221
HDMR $(2)^{\dagger}$	4	7361
HDMR (2)*	5	13571

- 1 Introduction
- 2 SCgPC
- 3 HDMR
- 4 Neutronics Example
- 5 Multiphysics Example
- 6 Conclusions
 - Synopsis
 - Future Work

Synopsis

Conclusions

Synopsis

Stochastic Collocation for generalized Polynomial Chaos

- Good for small dimensionality
- Good for regular responses

High-Dimensional Model Reduction

- No more convergent than SCgPC
- Generates solutions more cheaply

Adaptive methods

- Good for anisotropic response
- Good for small dimensionality
- Seldom ideal but often good

Conclusions

Limitations

Collocation-based methods

- ▶ Rely on stable simulation models
- Poor for large dimensionality
- Very poor for discontinuous responses

Adaptive collocation methods

- Can be misled.
- Stall on inconsistent impacts

- 1 Introduction
- 2 SCgPC
- 3 HDMR
- 4 Neutronics Example
- 5 Multiphysics Example
- 6 Conclusions
 - Synopsis
 - Future Work

Conclusions

Future Work

Quadrature Order

- "Floor" Quadrature
- Adaptive Quadrature

Adaptive: Impact Inertia

- Currently consider only neighbors
- Consider full history

Acknowledgments

Thanks!

UNM Faculty and Peers

- Drs. Prinja, Motamed, Olivera
- ▶ Mike Rising, Aaron Olson, Matt Gonzalez, Japan Patel

INL Staff, Post-Docs, and Interns

- Drs. Rabiti, Alfonsi, Cogliatti, Mandelli, Kinoshita
- CongJian Wang, Dan Maljovec

Funded through a Laboratory-Directed Research and Development opportunity at Idaho National Laboratory

