Problem 1.

Proof. To prove \mathcal{F} is precompact, we need to show

- \mathcal{F} is bounded with respect $\|\|_{\infty}$, which is true since $\|f\|_{\infty} \leqslant M$ for any $f \in \mathcal{F}$.
- \mathcal{F} is equicontinuous. For any $f \in \mathcal{F}$, by fundamental theorem of calculus, we have

$$f(x) - f(a) = \int_{a}^{x} f'(t)dt.$$

For any $\varepsilon > 0$, there exists a $\delta = \frac{\varepsilon}{N}$, such that for $|x - y| < \delta$,

$$|f(x) - f(y)| = |\int_y^x f'(t) dt| \le ||f'||_{\infty} |x - y| < N \cdot \frac{\varepsilon}{N} = \varepsilon.$$

• \mathcal{F} is not closed. For example, consider $f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}$ on [-1, 1]. It is differentiable and bounded by M = 2, its derivative is bounded by N = 1. However f_n uniformly converges to f = |x|, which is not differentiable everywhere on [-1, 1].

Problem 2. Cauchy inequality or Hölder's inequality

Proof. Let's consider a polynomial $P(\lambda) = \int_a^b (f(x) + \lambda)^2 dx$. If f(x) is constant on [a, b], the inequality holds naturally. Otherwise $P(\lambda) > 0$.

Note that $P(\lambda) = \int_a^b (\lambda^2 + 2\lambda f(x) + f(x)^2) dx = \lambda^2 (\int_a^b dx) + \lambda (2 \int_a^b f(x) dx) + (\int_a^b f(x)^2 dx)$ is a 2nd-order polynomial with no roots! Therefore

$$(2\int_a^b f(x)dx)^2 \leqslant 4(\int_a^b dx)(\int_a^b f(x)^2 dx).$$

Problem 3.

Proof. To prove \mathcal{F}_M is precompact, we need to show

• \mathcal{F}_M is bounded. By the fundamental theorem of calculus, $f(x) - f(a) = \int_a^x f'(t) dt$. Thus

$$|f(x)| \le |f(a)| + |\int_a^x f'(t)dt| \le |f(a)| + |x - a|^{1/2} (\int_a^x f'(t)^2 dt)^{1/2} \le |b - a|^{1/2} M.$$

• \mathcal{F}_M is equicontinuous. For any $f \in \mathcal{F}_M$, for any $\varepsilon > 0$, there exists a $\delta = \frac{\varepsilon^2}{M}$ such that for $|x - y| < \delta$,

$$|f(x) - f(y)| = |\int_{y}^{x} f'(t)dt| \le |x - y|^{1/2} (\int_{y}^{x} f'(t)^{2} dt)^{1/2} \le \delta^{1/2} M^{1/2} \le \varepsilon$$

Problem 4. Union of topologies and intersection of topologies.

Proof. $\mathcal{T}_1 \cap \mathcal{T}_2$ is a topology.

- $X \in \mathcal{T}_1$ and $X \in \mathcal{T}_2$ imply that $X \in \mathcal{T}_1 \cap \mathcal{T}_2$; $\emptyset \in \mathcal{T}_1$ and $\emptyset \in \mathcal{T}_2$ imply that $\emptyset \in \mathcal{T}_1 \cap \mathcal{T}_2$.
- Let $\{G_{\alpha}\}_{\alpha}$ be a collection of subsets such that $G_{\alpha} \in \mathcal{T}_1 \cap \mathcal{T}_2$ for any α , thus $G_{\alpha} \in \mathcal{T}_1$ which implies $\bigcup_{\alpha} G_{\alpha} \in \mathcal{T}_1$ and $G_{\alpha} \in \mathcal{T}_2$ which implies $\bigcup_{\alpha} G_{\alpha} \in \mathcal{T}_2$. Therefore, $\bigcup_{\alpha} G_{\alpha} \in \mathcal{T}_1 \cap \mathcal{T}_2$.
- Let $\{G_i\}_{i=1}^n$ be a collection of subsets for some n such that $G_i \in \mathcal{T}_1 \cap \mathcal{T}_2$ for any $1 \leq i \leq n$. Thus $G_i \in \mathcal{T}_1$ which implies $\bigcap_{i=1}^n G_i \in \mathcal{T}_1$ and $G_i \in \mathcal{T}_2$ which implies $\bigcap_{i=1}^n G_i \in \mathcal{T}_2$. Therefore, $\bigcap_{i=1}^n G_i \in \mathcal{T}_1 \cap \mathcal{T}_2$.

 $\mathcal{T}_1 \cup \mathcal{T}_2$ is not necessary a topology. For example, $X = \{1, 2, 3\}$, let $\mathcal{T}_1 = \{\emptyset, \{1\}, X\}$ and $\mathcal{T}_2 = \{\emptyset, \{2\}, X\}$ are two topologies on X. However $\mathcal{T}_1 \cup \mathcal{T}_2 = \{\emptyset, \{1\}, \{2\}, X\}$ is no more a topology because $\{1, 2\} \notin \mathcal{T}_1 \cup \mathcal{T}_2$.

Problem 5. Equivalent definition of base.

Proof.

- " \Rightarrow " Assume $\mathcal B$ is a base for some topology $\mathcal T$. Since $X\in\mathcal T$, by definition of base,there is a collection such that $X=\bigcup_{\alpha}B_{\alpha}$. For any $B_1,B_2\in\mathcal B$ and $x\in B_1\cap B_2$, since $\mathcal B\subset\mathcal T$, $B_1,B_2\in\mathcal T$. Thus $B_1\cap B_2\in\mathcal T$. By the definition of base, there exists a collection of set $B_{\alpha}\in\mathcal B$ such that $B_1\cap B_2=\bigcup_{\alpha}B_{\alpha}$. $x\in B_1\cap B_2$ implies $x\in\bigcup_{\alpha}B_{\alpha}$. Thus there exist a α_0 such that $x\in B_{\alpha_0}\subset B_1\cap B_2$, where $B_{\alpha_0}\in\mathcal B$.
- " \Leftarrow " Assume \mathcal{B} is a collection satisfying those properties. We prove \mathcal{B} is a base for some topology \mathcal{T} , or equivalently we prove \mathcal{B} can induce a topology.

Let $\mathcal{T} = \{ \bigcup B : B \in \mathcal{B} \}$. We prove \mathcal{T} is a topology.

- $-\emptyset, X \in \mathcal{T}.$
- Let $\{G_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ be a collection of subsets such that $G_{\alpha}\in\mathcal{T}$ for each $\alpha\in\mathcal{A}$. Then $G_{\alpha}=\bigcup_{\beta(\alpha)}B_{\beta}$. Thus $\bigcup_{\alpha\in\mathcal{A}}G_{\alpha}=\bigcup_{\beta}B_{\beta}\in\mathcal{T}$.
- Let $\{G_i\}_{i=1}^n$ be a collection of subsets such that $G_i \in T$ for $1 \leqslant i \leqslant n$. Then $G_i = \bigcup_{\beta(i)} B_\beta$. By mathematical induction, we just need to prove $G_1 \cap G_2 \in \mathcal{T}$. Assume $G_1 \cap G_2 \neq \emptyset$, for each $x \in G_1 \cap G_2$, there exist a B_1 and B_2 such that $x \in B_1 \subset G_1$ and $x \in B_2 \subset G_2$. For $x \in B_1 \cap B_2$, there exists a $W_x \in \mathcal{B}$ such that $x \in W_x \subset B_1 \cap B_2$. Therefore $G_1 \cap G_2 = \bigcup_x W_x \in \mathcal{T}$.

Proof. Let \mathcal{T} be the metric topology associated with the metric space X. Say one of its base $\mathcal{B} = \{B_1, B_2, \cdots, B_n\}$. Though union, intersection and complement, the induced topology has finite number of elements. However X is Hausdorff, if X has infinite points, every set $X \setminus \{x\}$ is open, which leads the topology has infinite number of elements, contradiction!