

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

Department	COMPU	COMPUTER SCIENCE AND ENGINEERING (AI & ML)			
Course Title	FOUNI	DATIONS OF	MACHINE I	LEARNING	
Course Code	ACAC03				
Program	B.Tech	B.Tech			
Semester	IV	IV			
Course Type	Core	Core			
Regulation	UG-20				
		Theory		Prac	tical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
3 1 4					-
Course Coordinator	Dr. Shai	Dr. Shaik Jakeer Hussain, Associate Professor			

COURSE OBJECTIVES:

The students will try to learn:

I	The fundamental concepts, issues and challenges of Machine Learning associated to data for model selection .
II	The Supervised learning methods such as decision trees, Naïve Bayes classifier, k-nearest neighbor learning for building data models and basics of Unsupervised learning methods.
III	The knowledge on Machine Learning algorithms correlated with paradigms of Supervised and Un-Supervised learning
IV	The knowledge used for making predictions or decisions without human intervention on real-world problems

COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Outline the need for Machine Learning, various learning tasks, and	Understand
	statistical learning framework	
CO 2	Make use of different supervised learning algorithms to solve data	Apply
	classification problems.	
CO 3	Apply the Ensemble and Probabilistic learning techniques to	Apply
	combine the predictions from two or more models.	

CO 4	Acquire the knowledge about different unsupervised learning	Apply
	algorithms for clustering of the data.	
CO 5	Discuss the advanced supervised learning techniques to solve the	Apply
	classification problems.	
CO 6	Apply the algorithms to a real problem, optimize the models	Apply
	learned, and assess their performance efficiency.	

QUESTION BANK:

Q.No	QUESTION	Taxonomy	How does this subsume the level	CO's
		MODULI		
	INTRODUCTI	ON TO MA	CHINE LEARNING	
PA	RT A-PROBLEM SOLVIN	IG AND CR	ITICAL THINKING QUE	STIONS
1	Imagine you're working on a	Remember	_	CO 1
	machine learning project,			
	and the dataset contains a			
	significant amount of noisy			
	data. How would you			
	identify and handle noisy			
	data to ensure the			
	robustness and reliability of			
	the model? Discuss various			
	techniques for noise			
	detection, such as outlier			
	detection, and strategies for			
	data cleaning and			
	preprocessing.			
2	Consider a scenario where	Remember	_	CO 1
	you have access to limited			
	labelled data for training a			
	machine learning model, but			
	acquiring additional labelled			
	data is costly or			
	time-consuming. How would			
	you improve model			
	performance?			

3	Suppose you're building a machine learning model for a critical application, such as healthcare or finance, where model interpretability and explainability are essential. How would you ensure that the model's predictions are transparent and understandable to end-users or stakeholders?	Remember	CO 1
4	If you were to design an experiment to determine the best predictive model for a dataset with multiple features and a continuous target variable, how would you evaluate and contrast the predictive capabilities of distinct algorithms, such as linear regression, decision trees, and support vector machines, in order to ascertain their respective effectiveness in modeling a dataset with multiple features and a continuous target variable?	Remember	CO 1
5	Once you've trained a predictive model on historical data, what steps would you take to implement the model in a production environment and continuously track its performance as time progresses?	Remember	CO 1

6	Compare and contrast the advantages and disadvantages of scanning and emailing images versus utilizing an optical character reader (OCR) to send text files. Under what circumstances would one approach be more advantageous than the other?	Understand	CO 1
7	Let us say we are building an OCR and for each character, we store the bitmap of that character as a template that we match with the read character pixel by pixel. Explain when such a system would fail. Why are barcode readers still used?	Understand	CO 1
8	Assume we are given the task of building a system to distinguish junk email. What is in a junk email that lets us know that it is junk? How can the computer detect junk through a syntactic analysis? What would we like the computer to do if it detects a junk email—delete it automatically, move it to a different file, or just highlight it on the screen?	Remember	CO 1

9	If a face image is a 100 × 100 image, written in row-major, this is a 10,000-dimensional vector. If we shift the image one pixel to the right, this will be a very different vector in the 10,000-dimensional space. How can we build face recognizers robust to such distortions?	Remember		CO 1
10	In basket analysis, we want to find the dependence between two items X and Y. Given a database of customer transactions, how can we find these dependencies? How would we generalize this to more than two items?	Remember		CO 1
1	Explain Learning paradigms in detail	Understand	The learner will try to recall different machine learning paradigms used and then identify the relevant one	CO 1
2	What are the benefits of Machine Learning? List out the applications of Machine Learning?	Remember	_	CO 1
3	Explain in detail about Empirical Risk Minimization and Discuss how it can be handled using Finite Hypothesis classes	Understand	The learner will try to recall the concept of Empirical Risk Minimization and then illustrate the implementation using Finite Hypothesis Class	CO 1
4	Explain each Machine Learning stages that are commonly used with an example.	Understand	The learner will try to recall diffferent machine learning stages used and then identify the relevant one	CO 1

5	Explain in detail about Empirical Risk Minimization and Discuss how it can be handled using Inductive Bias	Understand	The learner will try to recall the concept of Empirical Risk Minimization and then illustrate the implementation using Inductive Bias	CO 2
6	What are the examples of Machine Learning in detail?	Remember	_	CO 2
7	Explain Standard Learning Tasks	Understand	The learner will try to recall the concept of Learning and then illustrate the different learning stages	CO 1
8	Explain i.i.d assumption	Understand	The learner will try to recall the concept of i.i.d Algorithm and then illustrate the implementation	CO 1
9	What are Different Learning Scenarios	Remember	_	CO 1
10	Explain Different Learning stages	Understand	The learner will try to recall different learning stages and then identify which can be used in real life domain	CO 1
11	Explain the need for Machine Learning	Understand	The learner will try to recall the concept of machine learning and then Demonstrate their significance in solving real world problems	CO 1
12	Explain General Learning Scenarios in detail	Understand	The learner will try to recall the concept of learning and then identify best learning scenario	CO 1
13	Explain the different types of Learning in detail.	Understand	The learner will try to recall different learning scenarios and then Demonstrate their implementation	CO 1

	I			
14	Explain the Statistical Learning Frame work in detail	Understand	The learner will try to recall the concept of statistical Learning and then Demonstrate its frame work	CO 1
15	Explain in detail about PAC Learning	Understand	The learner will try to recall the concept of PAC Learning and then Demonstate its application	CO 1
16	What are Different Types of Machine Learning algorithms?	Remember		CO 1
17	Compare Inductive learning and Deductive learning?	Understand	The learner will try to recall the concept of Inductive and Deductive Learning and then Demonstate its differences	CO 1
18	Explain in detail Finite Hypothesis classes	Understand	The learner will try to recall the concept of Finite Hypothesis Classes and then Demonstate its implementation	CO 1
19	Explain with an example how overfitting occurs and Define Overfitting in Machine learning?	Understand	The learner will try to recall the concept of Overfitting and then Demonstrate its application in Machine Learning	CO 1
20	Why overfitting occurs?	Remember	_	CO 1
	PART-C SH	ORT ANSW	ER QUESTIONS	
1	What is meant by the term Machine Learning?	Remember		CO 1
2	What is Machine Learning and how it works in real life Domain?	Remember		CO 1
3	How Does Machine Learning Work?	Remember	_	CO 1
4	What are the types of Machine Learning?	Remember		CO 1
5	What are the methods of Machine Learning?	Remember	_	CO 1

6	What are the advantages and disadvantages of Machine Learning?	Remember	_	CO 1
7	What is learning task in Machine Learning?	Remember	_	CO 1
8	What are the applications of Machine Learning?	Remember	_	CO 1
9	What is Statistical Model in Machine Learning?	Remember	_	CO 1
10	What is PAC Learning explain with example?	Remember	_	CO 1
11	What are the five popular algorithms of Machine Learning?	Remember		CO 1
12	Who is the founder of Machine learning?	Remember	_	CO 1
13	What are the kinds of problem which can be solved using Machine Learning?	Remember		CO 1
14	What is the main use of Machine Learning?	Remember	_	CO 1
15	What is a Neural Network?	Remember	_	CO 1
16	What are the benefits of Machine Learning?	Remember	_	CO 1
17	What is Empirical Risk Minimization?	Remember	_	CO 1
18	What is the need for Inductive Bias? Explain Confidence parameter	Remember		CO 1
19	Explain the Risk minimization using Finite Hypothesis Class in short	Understand	The learner will try to recall then concept of Risk Minimization and then solve it using Finite Hypotheisi Class	CO 1
20	How do you Measure Success	Remember	_	CO 1
		MODULE	II	
SUPERVISED LEARNING ALGORITHMS				

PART-A PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS

1	Given a dataset containing various patient attributes and their corresponding medical conditions, how would you design a classification model to predict the likelihood of a certain disease based on these attributes? What factors would you consider important in making accurate predictions, and how would you evaluate the performance of your model?	Remember	CO 2
2	Suppose you are developing a spam filter for an email service provider. How would you build a classification model to distinguish between spam and legitimate emails? What features or characteristics of emails might be indicative of spam, and how would you evaluate the performance of your spam detection system?	Remember	CO 2
3	You work for an e-commerce company and want to segment customers into different groups based on their purchasing behaviour. How could you use a decision tree approach to identify distinct customer segments? What criteria would you use for splitting nodes in the tree, and how would you interpret the segments generated by the tree?	Remember	CO 2

4	Suppose you are an HR manager tasked with analysing employee attrition within your organization. Explain how CART (Classification and Regression Trees) could be applied to identify the factors contributing to employee turnover within an organization, elucidating the process of constructing a decision tree to discern the most influential predictors and their thresholds, thus facilitating a deeper understanding of the underlying drivers behind employee attrition.	Understand		CO 2
5	If you're working for a real estate agency and tasked with predicting house prices based on various features such as square footage, number of bedrooms, location, etc. How would you approach this regression problem? What regression techniques would you consider, and how would you evaluate the performance of your predictive model?	Remember		CO 2
6	You work for a financial institution and need to detect fraudulent transactions. How could logistic regression be used to classify transactions as either fraudulent or legitimate?	Remember	_	CO 2

7	Imagine you're a healthcare researcher developing a diagnostic model for a particular disease based on patient characteristics and medical tests. What features or diagnostic indicators would you consider in your logistic	Remember	 CO 2
	regression model, and how would you interpret the model's coefficients to understand their significance in disease diagnosis?		
8	Suppose you're working on a binary classification task where the classes are linearly separable. How would you choose and train a linear classification model such as Logistic Regression or Linear SVM?	Remember	CO 2
9	How can we leverage multiple linear regression to analyse the relationship between multiple independent variables (square footage, number of bedrooms, number of bathrooms, and location) and the dependent variable (selling price) in order to understand the impact of these house attributes on the selling price of houses within a specific real estate market?	Remember	CO 2

10	Choose how logistic regression can be effectively employed to predict the likelihood of a patient developing a specific medical condition based on their demographic information, lifestyle factors, and medical history, aiming to aid healthcare professionals in proactive disease management and personalized treatment strategies.	Apply		CO 2
	_	ONG ANSW	ER QUESTIONS	
1	Explain in detail about Logistic Regression?	Understand	The learner will try to recall the concept of logistic Regression Demonstrate its Implementation	CO 2
2	Explain in detail about BLUE assumptions	Understand	The learner will try to recall the concept of BLUE identify whether the assumptions are satisfied or not	CO 2
3	What is difference between Linear Regression and Logistic Regression in detail with examples?	Remember		CO 2
4	What are the types of Linear Regression and explain them with Examples?	Remember		CO 2
5	Explain Basic Decision Tree Algorithm?	Understand	The learner will try to recall the concept of Basic Decision Tree Algorithm and then Demonstrate the usage of Algorithm	CO 2
6	Explain how Hypothesis Search is carried out in Decision Tree Learning?	Understand	The learner will try to recall the concept of Hypothesis Search then Demonstrate the usage of Hypothesis space in Decision Tree Learning	CO 2

7	Explain ID3 Algorithm with an example	Understand	The learner will try to recall the concept of ID 3 Algorithm then Demonstrate the implementation	CO 2
8	Explain in detail about Information gain and Gini Index with Example	Understand	The learner will try to recall the concept of then Information gain and Gini IndexDemonstrate the implementation	CO 2
9	Define Residual and Explain how it can be handled in Linear Regression	Remember	_	CO 2
10	Why do we square the residuals instead of using modulus?	Remember	_	CO 2
11	What is the Importance of SSE in Linear Regression	Remember	_	CO 2
12	Explain the normal form equation of the Linear Regression.	Understand	The learner will try to recall the definition of Linear Regression and then demonstrate the usage of normal form equation	CO 2
13	Explain in detail about CART Algorithm	Understand	The learner will try to recall the concept of CART Algorithm and then demonstrate the implementation	CO 2
14	How do you learn a class from examples to perform Supervised Learning	Understand	The learner will try to recall the definitions and limitations of supervised and unsupervised learning and then identify compare them	CO 2
15	Explain the difference between Multi-class and Multi-Label Classification	Understand	The learner will try to recall the definitions and limitations of Multi-class and Multi-Label Classification and then identify and compare them	CO 2
16	How do Classification and Regression differ?	Remember	_	CO 2

17	What are the five popular algorithms we use in Machine Learning?	Remember		CO 2
18	Explain the importance of Pruning?	Understand	The learner will try to recall Pruning and then identify the methods to implement it	CO 2
19	What is a model selection in Machine Learning?	Remember	_	CO 2
20	Explain in detail about Multiple Linear Regression and also Discuss the parameters used to assess this Regression	Understand	The learner will try to recall Multiple Linear Regression and then identify the parameters to assess this Regression	CO 2
			ER QUESTIONS	
1	What is Supervised Learning with example?	Remember	_	CO 2
2	What are the types of Supervised Learning?	Remember	_	CO 2
3	What are the examples of Supervised Learning Algorithms?	Remember		CO 2
4	What is classification in Supervised Learning?	Remember	_	CO 2
5	What is Linear and Non-Linear Classifier?	Remember	_	CO 2
6	What is Multi-Class Classification problem?	Remember	_	CO 2
7	How do you do Multi-Label Classification?	Remember	_	CO 2
8	What is the difference between Multi-Class and Multi-Label Classification?	Remember		CO 2
9	Explain Decision Tree with example? and What is Supervised Learning	Understand	The learner will try to recall the definition of Supervised Learning and then demonstrate the usage of Decision Tree Algorithm	CO 2
10	What is Decision Tree?	Remember	_	CO 2
11	What are the common ways to handle missing data in a dataset?	Remember	_	CO 2

12	Define Precision and Recall?	Remember	_	CO 2
13	What do you understand by Decision Tree in Machine Learning?	Remember	_	CO 2
14	What are the functions of Supervised Learning?	Remember	_	CO 2
15	What are the functions of Unsupervised Learning?	Remember	_	CO 2
16	What do you understand by Algorithm Independent Machine Learning?	Remember		CO 2
17	Illustrate the classifier in Machine Learning	Understand	The learner will try to recall the concept of different Classifiers and then Demonstrate their usage in Learning algorithm	CO 2
18	What according to you, is more important between Model accuracy and Model performance?	Remember		CO 2
19	What do you understand by the Confusion Matrix?	Remember	_	CO 2
20	Explain True Positive, True Negative, False Positive, and False Negative in Confusion Matrix with an example.	Understand	The learner will try to recall the concept of True positives and false positives and then Demonstrate the ways to identify them	CO 2
		MODULE	III	
_			BILISTIC LEARNING	
1	Given a dataset with a mixture of categorical and numerical features, which ensemble learning algorithm would you choose and why?	Remember	ITICAL THINKING QUES	CO 3
2	Compare and contrast bagging and boosting techniques in ensemble learning. When would you prefer one over the other?	Understand	The learner will try to recall the concept of bagging and boosting and demonstrate their usages based on the situation.	CO 3

3	Identify a real-world	Apply	The learner will try to	CO 3
	problem where ensemble	1 PPI	recall the concept of	
	learning could be beneficial.		ensemble learning and then	
	Discuss how you would		demonstrate it's real	
	approach solving this		world applications.	
	problem using ensemble		world applications.	
	methods, including data			
	preprocessing, model			
	selection, and evaluation.			
4	Random Forest is known for	Understand	The learner will try to	CO 3
1	its scalability and efficiency,	Chacibiana	recall the concept of	
	but it can still be		random forest and then	
	computationally expensive		demonstrate it's strategies	
	for very large datasets.		for improving the scalability	
	Explain strategies for		and efficiency on large	
	improving the scalability		datasets.	
	and efficiency of Random		accessos.	
	Forest on large datasets.			
5	A marketing company is	Apply	The learner will try to	CO 3
	developing a predictive	11991	build a classification model	
	model to identify potential		and then solve the problem	
	customers who are likely to		using AdaBoost technique.	
	respond positively to a new		4	
	product campaign. The			
	dataset includes various			
	features such as			
	demographic information,			
	past purchasing behaviour,			
	and engagement with			
	previous marketing			
	campaigns. The goal is to			
	build a classification model			
	that accurately predicts			
	whether a customer will			
	respond positively (positive			
	class) or not (negative class)			
	to the new campaign. Plan			
	How would you utilize			
	AdaBoost to address the			
	marketing company's			
	problem of predicting			
	customer responses to the			
	new product campaign?			

6	Compare and contrast	Understand	The learner will try to	CO 3
	Bayesian Learning with		recall different learning	
	other machine learning		algorithms and show the	
	paradigms, such as neural		differences between them.	
	networks, decision trees, or		differences between them.	
	support vector machines, in			
	terms of interpretability,			
	robustness, and			
	generalization performance.			
7		Understand	TDb = 1 = :11	CO 3
1	Discuss how Bayesian Belief Networks can be utilized to	Understand	The learner will try to	003
	address the healthcare		recall the concept of	
	1		Bayesian Belief Networks	
	organization's problem of		and then solve the given	
	diagnosing the medical		problem	
	condition based on patients'			
	symptoms and medical			
	history. Outline the steps			
	involved in constructing a			
	Bayesian Belief Network,			
	including defining nodes,			
	specifying conditional			
	probability distributions,			
	and performing inference.			0.0
8	An e-commerce platform	Apply	The learner will try to	CO 3
	wants to develop a model to		build a classification model	
	classify customer inquiries		and then apply the Naïve	
	into different categories,		Bayes Classifier to address	
	such as product inquiries,		the problem.	
	billing issues, and shipping			
	inquiries. The dataset			
	consists of customer			
	messages and their			
	corresponding categories.			
	The goal is to build a			
	classification model that			
	automatically assigns the			
	correct category to			
	incoming customer			
	inquiries. Utilize the Naïve			
	Bayes Classifier to address			
	the e-commerce platform's			
	problem of categorizing			
	customer inquiries into			
	different categories.			

10	A retail chain wants to analyse customer transaction data to discover frequent purchasing patterns and associations among products. The dataset contains records of customer transactions, including the items purchased in each transaction. The goal is to identify frequent item sets and association rules that can help the retail chain understand customer purchasing behaviour and optimize product placement and promotions. Explain how you would approach the retail chain's problem of mining frequent patterns and association rules from customer transaction data. Consider a real-world scenario where the Naive	Understand	The learner will try to identify frequent item sets and association rules and then understand customer purchasing behaviour.	CO 3
	Bayes Classifier might be applicable. How would you preprocess the data and tune hyperparameters to			
	optimize its performance?	NG ANSW	ER QUESTIONS	
1	Explain the importance of	Understand	The learner will try to	CO 3
1	MAT Hypothesis in the context of Baye's Theorem	Understand	recall the significance of MAT Hypothesis and then identify the Hypothesis in the context of Baye's Theorem	
2	Explain in detail Bayesian Beleif Networks	Understand	The learner will try to recall the concept of Bayesian Beleif Network and then Demonstrate its implementation	CO 3
3	What are the Applications of Minimization and Maximization Problems?	Remember		CO 3

4	What is Bias-Variance Trade off? How a learning Algorithm is Biased for a Learning Algorithm?	Remember		CO 3
5	Explain Model combination Schemes in detail	Understand	The learner will try to recall the concept of Model Combination and then demonstrate the usage	CO 3
6	Explain in detail about Maximum Likelihood and Least squared Error Hypothesis	Understand	The learner will try to recall the concept of Maximum Likelihood and Least squared Error Hypothesis and then Demonstrate the Implementation	CO 3
7	What is Baye's rule? Define formal Description of Bayesian Interference?	Remember		CO 3
8	How do you define parameters of a statistical model using Maximum Likelihood Estimation?	Remember		CO 3
9	What is Bagging and Boosting? Discuss different implementation Algorithms	Remember		CO 3
10	Explain in detail about Naive's Classifier	Understand	The learner will try to recall the concept of Naive's Classifier and then Demonstrate the Implementation	CO 3
11	Explain Voting and Stacking in Detail	Understand	The learner will try to recall the concept of Voting and then demonstrate the usage	CO 3
12	What is Error Correction? How do you perform error correcting output codes	Remember		CO 3
13	Explain the log likelihood for a Multi-Nominal sample	Understand	The learner will try to recall the method to use log likelihood for a multi nominal sample and then demonstrate the usage	CO 3

14	Explain in detail about Gibb's Algorithm	Understand	The learner will try to recall the concept of Gibb's Algorithm and then demonstrate its implementation	CO 3
15	Summarize the similarities and differences between bagging and boosting in Machine Learning?	Understand	The learner will try to recall the definition of Bagging and Boosting and then demonstrate their differences and similarities	CO 3
16	Explain Bayesian Learning?	Understand	The learner will try to recall the definition of Bayesian Learning and then demonstrate their application in Real life	CO 3
17	Explain in detail about Random Forest Trees	Understand	The learner will try to recall the concept Random Forest Tree and then demonstrate their implementation	CO 3
18	Explain in detail about Minimum Description Length Principle	Understand	The learner will try to recall the concept of Minimum Description Length Principle and then demonstrate implementation	CO 3
19	Explain in detail about Baye's Optimal Classifier	Understand	The learner will try to recall the concept of Baye's Optimal Classifier and then demonstrate its application in Machine Learning	CO 3
20	Explain how Maximum Likelihood Hypothesis helps in predicting Probabilities	Understand	The learner will try to recall concept of Maximum Likelihood Hypothesis and its set of problems then demonstrate the usage	CO 3
	PART-C SH		YER QUESTIONS	
1	What is Bayesian Expected Loss?	Remember		CO 3
2	What is Structural Risk Minimization?	Remember	_	CO 3
3	What is Interpolation and Extrapolation?	Remember		CO 3

4	What is Parametric Formulation?	Remember	_	CO 3
5	Define Binary and Multi-Class Classification?	Remember	_	CO 3
6	What is a Linear Predictor Function?	Remember	_	CO 3
7	Find the log likelihood for a Multi-nomial sample	Remember	_	CO 3
8	Define Voting	Remember	_	CO 3
9	Define Stacked Generalization	Remember	_	CO 3
10	How do you generate Diverse Learners?	Remember	_	CO 3
11	Define Weak learner and Strong Learner	Remember	_	CO 3
12	What is 'Naive' in a Naive Bayes?	Remember	_	CO 3
13	Define Unstable Algorithm	Remember	_	CO 3
14	What is Cross-Validation?	Remember	_	CO 3
15	What is Bias in Machine Learning?	Remember	_	CO 3
16	What are Loss Function and Cost Functions? Explain the key Difference Between them?	Remember		CO 3
17	What is Code Matrix?	Remember	_	CO 3
18	Define Ensembles and Linear opinion tools	Remember	_	CO 3
19	What are Parametric and Non-Parametric Models?	Remember	_	CO 3
20	Define Multi-expert and Multi-stage combinations	Remember	_	CO 3
		MODULE	IV	
	UNSU	PERVISED	LEARNING	

PART A- PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS

1	An educational institution wishes to improve its teaching methods by understanding the diverse learning patterns among its students. The institution has data on students' grades, participation in extracurricular activities, and feedback on teaching methods. Plan an approach using hierarchical clustering to discern patterns in student achievement, and discuss how these insights might inform the customization of instructional strategies.	Apply	CO 4
2	An online streaming platform wants to enhance its recommendation engine by clustering users based on their viewing habits and preferences. Outline a strategy for using hierarchical clustering to achieve this goal.	Understand	 CO 4
3	K-means clustering iteratively updates cluster centroids to minimize the within-cluster sum of squares (WCSS). What conditions might lead to the algorithm converging to a local minimum rather than the global minimum, and how can this issue be mitigated?	Remember	CO 4
4	K-means clustering works well with numerical data. How would you modify the k-means algorithm or preprocess data to cluster datasets with categorical features?	Remember	CO 4

5	A social media company wishes to understand user behaviour by clustering users based on their interactions (e.g., likes, shares, comments) across different types of content (e.g., posts, photos, videos). Illustrate how K-mode clustering can be applied to categorize users into distinct profiles, and discuss potential insights that could be gained from these clusters.	Understand	CO 4
6	An AI startup is developing an application that requires compressing large sets of images without significantly losing visual information. Explain how PCA can be employed to reduce the size of the image data while retaining essential features necessary for image recognition or classification tasks.	Understand	CO 4
7	Neuroscientists are studying brain activity patterns using fMRI data to understand cognitive processes. The high dimensionality of fMRI data makes it challenging to analyse. Explain how PCA can be applied to reduce the dimensionality of brain imaging data, facilitating the identification of brain regions involved in different cognitive functions.	Understand	CO 4

8	LLE (Locally Linear Embedding) has been applied in various fields, from face recognition to bioinformatics. Choose an application of LLE and discuss how its properties benefit that particular	Remember	CO 4
	application. Are there any limitations of LLE that might affect its effectiveness in this application?		
9	Both AGNES and DIANA construct a dendrogram representing the hierarchical cluster structure. How would you determine the optimal number of clusters using the dendrogram? Discuss any methods or criteria that could be applied.	Remember	CO 4
10	Discuss how AGNES and DIANA handle noise and outliers in the data. Which of the two methods is more sensitive to outliers, and why? How can this sensitivity impact the interpretation of the resulting hierarchical structure?	Remember	CO 4

	PART-B LO	ONG ANSW	ER QUESTIONS	
1	What is the relationship between PCA and K-Means Clustering?	Remember		CO4
2	How to find the best subset of selection of features?	Remember	_	CO 4
3	What are the similarities and Differences between Avererage link clustering and K- Means	Remember		CO 4
4	How is Dimension Reduction performed on High Dimension Data?	Remember	_	CO 4
5	Explain the K-Means Algorithm for the given data set?	Understand	The learner will try to recall K means Algorithm Demonstrate the usage of algorithm	CO 4
6	Explain Principal Component Analysis for the given sample?	Understand	The learner will try to recall the concept of Principle component Analysis and Demonstrate its application	CO 4
7	Explain AGNES Algorithm in detail.	Understand	The learner will try to recall the concept AGNES Algorithm and Demonstrate its application	CO 4
8	Explain DIANA Algorithm in detail.	Understand	The learner will try to recall the concept of DIANA Algorithm and demonstrate its application	CO 4
9	Explain Partitional Clustering Algorithm in detail	Understand	The learner will try to recall the concept of Partitional Clustering and Demonstrate its usage	CO 4
10	Define Dendograms. can we prune Dendograms.	Understand	The learner will try to recall the concept of Dendogram and identify whether it can be pruned or not	CO 4

11	Explain K-Mode Clustering Algorithm in detail	Understand	The learner will try to recall the concept of K-Mode Clustering and Demonstrate it on the given sample	CO 4
12	Explain about Self Organizing Maps (SOM)	Understand	The learner will try to recall the concept of SOM and demonstrate its application in Marketing Research	CO 4
13	What do you mean by mixture Densities? Explain the need of it in Clustering.	Understand	The learner will try to recall the concept of mixture density and Demonstrate its application in clustering	CO 4
14	Describe about Expectation-Maximization Algorithm in detail	Understand	The learner will try to recall the concept of Expectation-Maximization and Demonstrate it in detail	CO 4
15	Explain in detail about Supervised Learning and Clustering	Understand	The learner will try to recall the concept of Supervised Learning and clustering and Demonstrate its differences	CO 4
16	How do you choose the number of clusters to perform Clustering?	Remember		CO 4
17	What do you mean by Dimensionality Reduction? Explain about Isomap?	Remember		CO 4
18	Explain about Locally Linear Embedding Process in detail	Understand	The learner will try to recall the concept of locally Linear Embedding and demonstrate its application	CO 4
19	Explain in detail about Factor Analysis	Understand	The learner will try to recall the concept of Factor Analysis and Demonstrate its application	CO 4

20	Explain the importance of Subset selection in Dimensionality Reduction	Understand	The learner will try to recall the significance subset selection and demonstrate its application	CO 4
	PART-C SH	IORT ANSW	ER QUESTIONS	
1	Define Dimensionality Reduction?	Remember	_	CO 4
2	How is Dimension Reduction performed on high Dimension Data?	Remember	_	CO 4
3	What are reference Vectors in K-Means Clustering	Remember	_	CO 4
4	Define Reconstruction Error	Remember	_	CO 4
5	What do you mean by Mixtures of Latent Variable Models	Remember	_	CO 4
6	Define Principal Component Analysis?	Remember	_	CO 4
7	How is PCA useful in orthogonal transformation?	Remember	_	CO 4
8	How to Compute PCA using Covariance Method?	Remember	_	CO 4
9	How to compute Co-Variance Matrix?	Remember	_	CO 4
10	Define Factor Analysis?	Remember		CO 4
11	Define Density Estimation	Remember	_	CO 4
12	Define Semi-Parametric Density Estimation	Remember	_	CO 4
13	Define Mixture Density	Remember	_	CO 4
14	Define Color Quantization	Remember	_	CO 4
15	Define Vector Quantization	Remember	_	CO 4
16	Define Compression	Remember	_	CO 4
17	Define Code Book Vectors	Remember	_	CO 4
18	Define Reconstruction Error	Remember	_	CO 4
19	What do you mean by Mixture of Mixtures	Remember	_	CO 4
20	Define Mixture Model	Remember	_	CO 4

MODULE V ADVANCED SUPERVISED LEARNING PART A-PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS) CO 5 1 Perceptron's are commonly Remember used for binary classification tasks. How would you extend a perceptron to handle multiclass classification? Discuss the challenges involved and potential approaches to address them. CO_5 2 Compare and contrast the Understand The learner will try to capabilities and limitations Recall the concept of of perceptrons with other Perceptron and then machine learning models, Compare with other such as support vector machine learning models. machines (SVMs) or decision trees. 3 Given a dataset containing Apply The learner will try to CO 5 information about houses, **Build** a MLP model and then **Solve** the given including features such as square footage, number of problem. bedrooms, and number of bathrooms. Develop an Multi Layer Perceptron model to predict both the price and the time it will take to sell each house. Suppose you have a dataset CO_{5} 4 The learner will try to Apply containing historical stock **Build** a MLP model and prices of a company. Build then **Solve** the given an Multi Layer Perceptron problem. model to predict the future stock prices based on past trends and relevant market indicators. 5 SVM is known for its ability Remember CO_{5} to provide interpretable decision boundaries. How can you interpret the decision boundary generated by an SVM model?

6	Compare SVM with other classification models such as logistic regression, decision trees, and neural networks. In what scenarios would SVM outperform these models, and vice versa?	Understand	The learner will try to Recall the concept of SVM and then Compare with other machine learning models.	CO 5
7	KNN relies on distance metrics to measure similarity between data points. How does the choice of distance metric (e.g., Euclidean distance, Manhattan distance, etc.) affect the performance of KNN? Provide examples where different distance metrics may be more suitable.	Remember		CO 5
8	You've trained a KNN classifier. How do you evaluate its performance?	Remember	_	CO 5
9	KNN traditionally works with numerical features. How would you handle categorical features in KNN?	Remember	_	CO 5
10	ANNs are prone to overfitting, especially when dealing with complex models and limited training data. How can you prevent overfitting in ANNs?	Remember		CO 5

	PART-B LO	ONG ANSW	ER QUESTIONS	
1	Define Neural Network and Explain how it resembles human brain	Remember		CO 5
2	Explain the concept of Bayesian View of Learning in Neural Networks	Understand	The learner will try to recall the concept of Bayesian View of Learning and then Demonstrate its usage in neural networks	CO 5
3	How Neural Network supports parallel processing	Remember	_	CO 5
4	What do you mean by Perceptron and explain its role in Neural Network	Remember		CO 5
5	How do you train a Perceptron to implement Stocastic Gradie nt Decent	Understand	The learner will try to recall remember the concept of Stocastic Gradient Decent and thensummarize the training on a perceptron	CO 5
6	Explain about Multi-layer Perceptron in detail	Understand	The learner will try to recall remember the concept of Multi-layer Perceptron and thensummarize the training on a perceptron	CO 5
7	Explain in detail about Back Propagation Algorithm	Understand	The learner will try to recall remember the concept of Back Propagation Algorithm and thenDemonstrate its implementation	CO 5
8	Explain in detail about Training Procedures	Understand	The learner will try to recall remember Training Procedures and thenDemonstrate its implementation	CO 5
9	Explain in detail about K Nearest Neighbor	Understand	The learner will try to recall the concept of K-Nearest Neighbor and thenDemonstrate its implementation	CO 5

10	Explain the Importance of Structural Adaptation in tuning the network size	Understand	The learner will try to recall the concept of Structural Adaptation and thenDemonstrate its significance	CO 5
11	Explain the use of Bayesian Approach in training Neural Networks	Understand	The learner will try to recall the concept of Bayesian Approach and thenDemonstrate its implementation	CO 5
12	Explain the importance of Sammon Mapping in reducing Dimensions in a Neural Network	Understand	The learner will try to recall the concept of Sammon Mapping and thenDemonstrate its implementation on reduced dimension	CO 5
13	Explain in detail about Time Delay Neural Networks	Understand	The learner will try to recall the concept of Time Delay Neural Networks and thenDemonstrate its implementation	CO 5
14	Explain the importance of recurrent Methods	Understand	The learner will try to recall the concept of Recurrent Methods and thenDemonstrate its implementation	CO 5
15	Describe about Kernel Machines and Explain its importance in detail	Understand	The learner will try to recall the concept of Kernel Machine and then demonstrate its significance	CO 5
16	What do you mean by Hyper Plane and Explain about Optimal Seperating Hyperplane	Understand	The learner will try to recall the concept of Hyperplane and then demonstrate the definition of Optimal Seperating Hyperplane	CO 5
17	Describe in detail about Soft Margin Hyperplane	Understand	The learner will try to recall the concept of soft margin Hyperplane and then demonstrate it in detail	CO 5

18	Describe the importance of Kernel Trick in mapping non-linear model to Linear Model	Understand	The learner will try to recall the concept of kernel trick and then demonstrate the way of mapping non-linear and Linear Model	CO 5
19	Explain various general purpose Kernel Functions	Understand	The learner will try to recall the concept of Kernel Function and then demonstrate the implementation	CO 5
20	Describe in detail about constructing a new kernel by combining various kernels	Understand	The learner will try to recall the concept of constructing a new kernel and demonstrate the ways of combining various kernels	CO 5
	PART-C SH	ORT ANSW	ER QUESTIONS	
1	Define Neuron	Remember	_	CO 5
2	Define Synapses	Remember	_	CO 5
3	Define Single Instruction Multiple Data(SIMD) Machines	Remember	_	CO 5
4	Define Multiple Instruction Multiple Data(MIMD) Machines	Remember		CO 5
5	Define Neural Instruction Multiple Data(NIMD) Machines	Remember	_	CO 5
6	Define Synaptic Weight	Remember	_	CO 5
7	Define Threshold Function	Remember	_	CO 5
8	Define Stocastic Gradient Decent	Remember	_	CO 5
9	What do you mean by Universal Approximation?	Remember	_	CO 5
10	Explain about Piece-wise Constant Approximation	Understand	The learner will try to recall the concept of approximation and demonstrate the ways of implementing Piece-wise Constant Approximation	CO 5

11	Explain how Back Propagation Supports Batch Learning in brief	Understand	The learner will try to recall the concept of Back Propagation and then demonstrate the ways of implementing it with Batch Learning	CO 5
12	Define Epoch	Remember	—	CO 5
13	How do you improve convergence?	Remember	_	CO 5
14	What do you mean by Adaptive Learning Rate	Remember	_	CO 5
15	Define Momentum	Remember	_	CO 5
16	What do you mean by Over-Training?	Remember	_	CO 5
17	How do you perform Structural Adaptation	Remember	_	CO 5
18	Define Weight Decay	Remember	_	CO 5
19	Define Radial Basis Function	Remember	_	CO 5
20	What do you mean by Hinge laws?	Remember	_	CO 5
21	Define Sigmoidal Functions	Remember	_	CO 5
22	How do you perform Out-Lier Detection?	Remember	_	CO 5

Course Coordinator: Dr. Shaik Jakeer Hussain HOD CSE(AI & ML)