ELETRÓNICA DIGITAL E CIRCUITOS 2017

Exame de época normal, 18 de janeiro de 2018

Este exame contém 8 grupos de problemas, cada um com 2 problemas. Em cada grupo, <u>deverá resolver apenas 1</u> <u>problema</u>. Os dois tipos de problemas (A, B) em cada grupo têm as seguintes cotações: **A = 2.0 valores** (total = 16.0 valores); **B = 2.5 valores** (total = 20.0 valores). Na página 3, é fornecida informação adicional.

GRUPO 1

1A. [2.0 valores]

- a) Converta o número decimal 353 para o sistema octal.
- b) Calcule o complemento de dois do número binário 10111101.
- c) Codifique em BCD o decimal 345.

1B. [2.5 valores]

- a) Converta o número decimal 218.179 para o sistema binário.
- **b)** Calcule a subtração 10110111 11010011 usando aritmética de complemento de dois e apresentando o resultado em notação de sinal.
- c) Codifique em BCD o decimal 327.902.

GRUPO 2

2A. [2.0 valores]

- a) Simplifique a expressão lógica $Y = \overline{AB}(\overline{A} + B)$ recorrendo às regras da lógica Booleana; indique todos passos de resolução.
- **b)** Desenhe um circuito lógico que execute diretamente a função $F=A\bar{B}C+\bar{A}D+\bar{C}\bar{D}+\bar{B}CD+A\bar{B}\bar{D}$ com portas lógicas AND, OR e NOT.
- c) Determine a função Booleana do circuito lógico da figura ao lado, na forma de soma de produtos.

2B. [2.5 valores]

- a) Simplifique a expressão lógica $Y = \overline{A}\overline{B}\overline{C} + A\overline{B}C + A\overline{(B+C)}$ recorrendo às regras da lógica Booleana; indique todos passos de resolução.
- **b)** Desenhe um circuito lógico que execute diretamente a função $F = \bar{A}B\bar{C} + \bar{C}D + AB\bar{C} + \bar{B}CD$ recorrendo, apenas, a portas lógicas NAND.
- c) Determine a função Booleana do circuito lógico da figura ao lado, na forma de soma de produtos.

GRUPO 3

3A. [2.0 valores]

Um circuito lógico tem uma entrada de 3 bits (A, B, C) e a sua saída vale 1 quando um dos bits de entrada é igual ou superior à soma dos outros dois bits.

- a) Escreva a tabela de verdade do circuito.
- b) Obtenha a expressão lógica simplificada usando um mapa de Karnaugh.
- c) Desenhe o circuito lógico simplificado.

3B. [2.5 valores]

Uma função lógica F assume o valor 1 quando a sua entrada de 4 bits corresponde a um dos decimais {3, 6, 9, 12, 15}; F vale 0 para entradas correspondentes aos decimais {0, 2, 8, 10}. As entradas correspondentes aos decimais {1, 4, 5, 7, 11, 13, 14} nunca ocorrem.

- a) Escreva a tabela de verdade da função F.
- b) Obtenha a expressão lógica simplificada de F usando um mapa de Karnaugh.
- c) Desenhe o circuito lógico simplificado.

GRUPO 4

4A. [2.0 valores]

Considere a seguinte tabela de verdade:

Α	В	U	Υ	
0	0	0	1	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	0	
1	1	1	1	

- a) Implemente a função Y(A, B, C) usando um multiplexador 8:1.
- **b)** Implemente a função Y(A, B, C) usando um multiplexador 4:1 e um inversor.

4B. [2.5 valores]

Considere a seguinte expressão lógica: $Y = ABCD + \bar{A}\bar{B}C\bar{D} + \bar{A}B\bar{C}D + A\bar{B}\bar{C}D$.

- a) Implemente a expressão dada usando um multiplexador 8:1 e um inversor.
- b) Implemente a expressão dada usando um descodificador e uma porta OR.

GRUPO 5

5A. [2.0 valores]

O código Soma-8 faz corresponder a cada decimal $n=0,1,\cdots,7$ a soma dos valores $0,\cdots,n$ e converte o resultado da soma para código binário de 5 bits.

- a) Obtenha a tabela de verdade do código Soma-8.
- **b)** Desenhe um circuito codificador Soma-8.

5B. [2.5 valores]

Desenhe um circuito lógico que tem como saída o mínimo de dois números inteiros de 4 bits, a partir de um comparador de 4 bits como o representado abaixo e portas AND e OR.

GRUPO 6

6A. [2.0 valores]

Address	0	1	2	3	4	5	6	7
Word	0111	1000	1110	1101	1101	1010	1111	0101

- a) Desenhe um circuito ROM construído com díodos que seja capaz de armazenar a informação da tabela acima, em que os endereços são selecionados com um descodificador 1-de-8.
- b) Especifique as funções Booleanas geradas pela ROM.

6B. [2.5 valores]

- a) Desenhe um circuito somador para realizar a operação aritmética 17 + 37.
- b) Desenhe um circuito somador para realizar a operação aritmética 41 18.

GRUPO 7

7A. [2.0 valores]

Considere o seguinte circuito sequencial composto por três flip-flops D.

- a) Deduza a tabela de estados do circuito.
- **b)** Trace as formas de onda dos sinais Q_0 , Q_1 e Q_2 .

7B. [2.5 valores]

Converta um flip-flop D num flip-flop T.

GRUPO 8

8A. [2.0 valores]

Desenhe um circuito contador síncrono mod-4 com flip-flops T capaz de gerar a sequência binária "0110".

8B. [2.5 valores]

Desenhe um circuito contador assíncrono mod-3 decrescente, usando flip-flops JK. Trace as formas de onda de saída.

Informação	adicio	nal				
	S	R	Q _{n+1}	J	K	Q _{n+1}
	0	0	Qn	0	0	Q _n
	0	1	0	0	1	0
Tabelas de verdade de vários flip-flops:	1	0	1	1	0	1
	1	1	?	1	1	Qn'
	D Q _{n+1}		Т	(Q _{n+1}	
	0		0	0		Q _n
	1 1		1		Q _n '	