Funzioni

Andrea Canale

December 14, 2024

Contents

1	Fun	zioni	2	
2	Funzione ben definita			
3	Imn	nagine e controimmagine	2	
4	4 Funzioni note			
	4.1	Funzione identità	2	
	4.2	Costante	3	
	4.3	Successione	3	
5	Classificazione di funzioni			
	5.1	Funzioni suriettive	3	
	5.2	Funzioni iniettive	3	
	5.3	Funzioni biettiva	3	
6	Fun	zioni composte	3	

7	Fun	zioni invertibili	4
	6.2	Composizione di funzioni suriettive, iniettive e biettive	4
	6.1	Proprietà associativa	3

1 Funzioni

Una funzione con dominio A e codominio B è il sottoinsieme tra A e B ed è chiamato grafico della funzione:

$$\Gamma \subseteq AxB$$

Per definire una funzione usiamo la notazione: $f:A\to B$

2 Funzione ben definita

Per verificare che una funzione $f:A\to B$ sia ben definita dobbiamo controllare 2 cose:

- La funzione sia ben definita, ossia che ogni elemento di A ha una sola immagine in B
- La funzione sia funzionale, ossia ogni elemento di A ha una sola immagine

3 Immagine e controimmagine

Data la funzione $f: A \to B$, possiamo trovare l'immagine associata ad un valore del dominio.

L'immagine è quindi l'elemento associato nel codominio ad un elemento del dominio.

La controimmagine invece ci permette di eseguire l'operazione inversa: dato un elemento del codominio, la controimmagine di un elemento del codominio, è l'elemento nel dominio che restituisce quel valore.

L'immagine si può scrivere come f(a) = b

La controimmagine si può scrivere come: $f^{-1}(b) = a$

4 Funzioni note

4.1 Funzione identità

La funzione identità, è una funzione tale che $id_A:A\to A$ e quindi quella funzione dove l'immagine e la controimmagine sono uguali. La funzione non modifica il suo argomento.

4.2 Costante

La funzione costante restituisce sempre lo stesso valore che identifichiamo con b.

4.3 Successione

Una successione di elementi in \mathbb{N} tale che $s(0) = b_0, s(1) = b_1, s(2) = b_2...$

5 Classificazione di funzioni

5.1 Funzioni suriettive

Una funzione viene detta suriettiva se ogni elemento di B ha una controimmagine in A

5.2 Funzioni iniettive

Una funzione viene detta iniettiva se per ogni elemento dell'insieme A, non si hanno mai due immagini uguali.

$$\forall a_1, a_2 \in A \text{ Allora } a_1 \neq a_2$$

5.3 Funzioni biettiva

Una funzione viene detta biettiva se la funzione è sia suriettiva che iniettiva.

6 Funzioni composte

Possiamo anche definire una funzione che nasce dalla composizione di due o più funzioni. Ad esempio: Date $f:A\to B$ e $g:B\to C$

$$g \cdot f : A \to C$$

Possiamo comporle solo se il codominio di f coincide con il dominio di g. Inoltre questa composizione deve essere ben definita.

6.1 Proprietà associativa

La composizione supporta la proprietà associativa, tale che:

$$q \cdot f : A \to A = f \cdot q : B \to B$$

La composizione non supporta la proprietà commutativa

6.2 Composizione di funzioni suriettive, iniettive e biettive

- $\bullet\,$ Se f e g sono suriettive, $g\cdot f$ è suriettiva
- $\bullet\,$ Se f
 e g sono iniettive, allora $g\cdot f$ è iniettiva
- $\bullet\,$ Se f
 e g sono biettiva, allora $g\cdot f$ è biettiva

Se non conosciamo le funzioni di partenza:

- $\bullet \ \mbox{Se} \ g \cdot f$ è suriettiva, allora g
 è suriettiva
- $\bullet \ \mbox{Se} \ g \cdot f$ è iniettiva, allora f
 è iniettiva

7 Funzioni invertibili

Una funzione è invertibile, se e solo se, $f:A\to B$ è biettiva.

L'inverso della funzione f è definito come: $g \cdot f = id_A$ e $f \cdot g = id_B$

Quindi la funzione inversa, dato il codominio ci restituisce il dominio mentre dato il dominio ci restituisce il codominio.