

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

ЛАБОРАТОРНАЯ РАБОТА №6 ПРЕДМЕТ «ЛИНЕЙНЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ» ТЕМА «АНАЛИЗ ТОЧНОСТИ СИСТЕМ УПРАВЛЕНИЯ» Вариант 4

Преподаватель: Золотаревич В. П.

Студент: Румянцев А. А. Поток: ЛСАУ R22 бак 4.1.1

Факультет: СУиР Группа: R3341

Содержание

1 Цель работы		ть работы	2	
2	Задание 1			
	2.1	Условие	2	
	2.2	Выполнение	2	
3	r 1			
	3.1	Условие	2	
	3.2	Выполнение	3	
4	Задание 3			
	4.1	Условие	3	
	4.2	Выполнение	3	
5	Задание 4			
	5.1	Условие	3	
	5 2	Выполнонио	1	

1 Цель работы

Исследование точностных свойств систем управления.

2 Задание 1

2.1 Условие

Исследование системы с астатизмом нулевого порядка.

ullet Структура системы представлена на рис. 1, где H(s)=k. Передаточная функции объекта управления

$$W(s) = \frac{1.5}{s^2 + 2s + 1},$$

характеристики задающего воздействия g(t):1,t

Рис. 1: Схема эксперимента

- Исследование стационарного режима работы: g(t) = A. Получить переходные процессы для трех различных значений коэффициента k и определить предельное значение установившейся ошибки ε . Значения коэффициента k (здесь и во всех последующих пунктах): 1, 5, 10.
- Исследование режима движения с постоянной скоростью: g(t) = Vt. Получить переходные процессы для различных значений коэффициента k. Интервал наблюдения 30 секунд.

2.2 Выполнение

3 Задание 2

3.1 Условие

Исследование системы с астатизмом первого порядка.

• Структура системы представлена на рис. 1, где H(s) = k/s. Передаточная функция объекта управления

$$W(s) = \frac{s+1.5}{s^2+2s+1},$$

характеристики квадратично нарастающего задающего воздействия

$$g(t) = \frac{at^2}{2} = 0.4t^2$$

Характеристики постоянного и линейно нарастающего задающих воздействий взять из задания 1.

- Исследование стационарного режима работы: g(t) = A. Получить переходные процессы для различных значений коэффициента k и определить предельное значение установившейся ошибки ε .
- Исследование режима движения с постоянной скоростью: g(t) = Vt. Получить переходные процессы для различных значений коэффициента k и определить предельное значение установившейся ошибки ε . Интервал наблюдения 30 секунд.
- Исследование режима движения с постоянным ускорением: $g(t) = at^2/2$. Получить переходные процессы для различных значений коэффициента k. Интервал наблюдения 30 секунд.

3.2 Выполнение

4 Задание 3

4.1 Условие

Исследование влияния внешних возмущений.

• Собрать схему моделирования возмущенной системы. Дано:

$$W(s) = \frac{1.5}{s^2 + 2s + 1}, \quad f_1(t) = 2, \quad f_2(t) = 1$$

Структура системы представлена на рис. 2.

Рис. 2: Схема эксперимента

- Полагая $f_2(t) \equiv 0$ и g(t) = 1(t), получить переходной процесс и определить предельное значение установившейся ошибки ε .
- Полагая $f_1(t) \equiv 0$ и g(t) = 1(t), получить переходной процесс и определить предельное значение установившейся ошибки ε .

4.2 Выполнение

5 Задание 4

5.1 Условие

Исследование установившейся ошибки при произвольном входном воздействии. Структура системы представлена на рис. 1, где <math>H(s) = 1. Дано:

$$W(s) = \frac{1.5}{s^2 + 2s + 1}, \quad g(t) = 0.4t + 0.2t^2$$

- Получить переходной процесс в замкнутой системе и определить (по графику) установившуюся ошибку слежения $e_y(t)$.
- Получить приближенное аналитическое выражение для $e_y(t)$, сохранив в ряде Тейлора

 $e_y(t) = c_0 g(t) + c_1 \frac{d}{dt} g(t) + \frac{c^2}{2!} \frac{d^2}{dt^2} g(t) + \frac{c^3}{3!} \frac{d^3}{dt^3} g(t) \dots,$

где c_i – коэффициенты ошибок, три первых члена. Построить график $e_y(t)$ в соответствии с полученным аналитическим выражением (использовать для этого блок нелинейных функций Fnc).

5.2 Выполнение