Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2018 ME2CO07 Thermal Engineering

Programme: Diploma Branch/Specialisation: ME

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1 i. The ratio of specific heat at constant pressure to that at constant volume is (a) Equal to one (b) Less than one (c) More than one (d) None of these. The ration of specific heat at constant pressure to specific heat at ii. 1 constant volume is known as: (b) Thermal Efficiency (a) Adiabetic Index (c) Characteristic gas constant (d) Universal gas constant Which of the following is a water tube boiler 1 iii. (a) Lancashire (b) Babcock and Wilcox (c) Locomotive (d) Cochran Device used to increase the temperature of saturated steam without raising its pressure is called (a) Blow off cock (b) Fusible plug (c) Superheater (d) Economiser The steam leaves the nozzle at 1 (a) High pressure and low velocity (b) High pressure and high velocity (c) Low pressure and low velocity (d) Low pressure and high velocity The ratio of workdone on the blades per kg of steam to the energy 1 supplied to the blades is called (a) Diagram or blading efficiency (b) Nozzle efficiency (d) Mechanical efficiency. (c) Gross or stage efficiency

P.T.O.

8

	vii.	The ratio of indicated thermal efficience is called	iency to the air standard efficiency	1			(e) Boiler Pressure: 1.2 MPa (f) Feed Water Temperature: 45 °C. Find the boiler Equivalent evaporation and the Efficiency.		
		(a) Mechanical efficiency	(b) Overall efficiency						
		(c) Volumetric efficiency	(d) Relative efficiency		Q.4	i.	Give the functions of Nozzle and condenser		
	viii.	The Morse test is used to find the in	ndicated power of a	1		ii.	Classify various types of condensers. Give the detailed construction		
		(a) Single cylinder petrol engine	(b) Single cylinder diesel engine				and working of a down-flow condenser, with diagram.		
		(c) Multi cylinder engine	(d) None of these		OR	iii.	Differentiate between impulse and reaction turbines. What do you		
	ix.	The process of heat transfer from	one particle of the body to another	1			mean by the term relative velocity?		
		is called conduction when the partie	cles of the body						
		(a) Move actually			Q.5	i.	Give the classification of Internal combustion engines.		
		(b) Do not move actually		i	ii.	Discuss the cooling requirement of an IC engine. Describe the			
		(c) Effect the intervening medium				different methods of cooling and give specific examples where each			
		(d) Do not effect the intervening me	edium				hod is employed.		
	х.	The overall heat transfer coefficien	t is used in	1	OR	iii.	A four stroke petrol engine with a compression ratio of 6.5 to 1 and		
		(a) Conduction	(b) Convection				total piston displacement of 5.2*10 ⁻³ m ³ develops 100 kW brake		
		(c) Radiation	(d) Conduction and convection				power and consumes 33 kg of petrol per hour of calorific value		
							44300 kJ/kg at 3000 rpm. Assume volumetric efficiency as 80%,		
Q.2 i.		Explain Boyle's Law, with suitable mathematical expression.		2			R=287J/kgK. One kg of petrol vapour occupies 0.26 m ³ at 1.013 bar		
	ii.	Show on PV diagram, that all the thermodynamic processes can be governed by the equation $PV^n = Constant$, with the various values of n .		8			and 15 ^o C. Find		
						(a) Brake mean effective pressure			
-			e value of n is always positive and for what value of n ,				(b) Brake Thermal Efficiency		
	adiabatic process becomes Quasi Static					(c) Air standard efficiency and			
OR	iii.	A gas having initial pressure, volume and temperature as 275 kN/m ² ,		8		(d) air-fuel ratio by mass.			
		-	s compressed at constant pressure						
		until its temperature is 15°C. Calculate the amount of heat transferred			Q.6	i.	Define the term Thermal Conductivity. Give its unit and Dimensions		
			cess. Take R= 290 J/kg K and			ii.	Explain:		
		$C_p=1.005$ kJ/kg K					(a) Fourier's law of conduction		
							(b) Newton's law of cooling		
Q.3	i.	Give the classification of steam boiler.		4 6 OR	iii.	Define the following:			
	ii.	Explain with the neat sketch, the construction and working of a La- Mont Boiler				(a) Absorbtivity (b) Reflectivity (c) Transmissivity			
						Also establish a relation between above terms.			
OR	iii.	_	ng the test on a boiler for a period of	6					
		one hour. (a) Steam Generated: 500					****		
		(c) CV: 31402 kJ/kg	(d) Quality of Steam: 0.92						

Marking Scheme ME2CO07 Thermal Engineering

Q.1	i.	The ratio of specific heat at constant pressure to that at constant volume is (c) More than one					
	ii.	The ration of specific heat at constant pressure to specific heat at constant volume is known as: (a) Adiabetic Index					
	iii.	Which of the following is a water tube boiler					
	iv.	(b) Babcock and Wilcox Device used to increase the temperature of saturated steam without raising its pressure is called (c) Superheater					
	v.	The steam leaves the nozzle at		1			
	vi.	(d) Low pressure and high velocity The ratio of workdone on the blades per kg of steam to the energy supplied to the blades is called					
	vii.	(a) Diagram or blading efficiency The ratio of indicated thermal efficiency to the air standard efficiency is called					
	viii.	(d) Relative efficiencyThe Morse test is used to find the indicated power of a(c) Multi cylinder engine					
	ix.	The process of heat transfer from one particle of the body to another is called conduction when the particles of the body					
	х.	(b) Do not move actuallyThe overall heat transfer coefficient is used in(d) Conduction and convection					
Q.2	i.	Boyle's Law statement Mathematical expression.	1 mark 1 mark	2			
	ii.	PV diagram Derivation of various values of n Justification Value of n for Quasi-static process	3 marks 3 marks 1 mark 1 mark	8			

OR	iii.	Given data	2 marks	8
		Calculation	4 marks	
		Q = 28.311 KJ	1 mark	
		W = -16.925 KJ	1 mark	
Q.3	i.	Any four classification of steam boiler.	(1 mark * 4)	4
	ii.	Diagram	3 marks	6
		Construction	1 mark	
		Working of a La-Mont Boiler	2 marks	
OR	iii.	Data from steam table	2 marks	6
		Equivalent evaporation equation	1 mark	
		Equivalent evaporation 7.71 Kg/Kg of fuel	1 mark	
		Efficiency equation	1 mark	
		Efficiency 55.44 %	1 mark	
Q.4	i.	Functions of Nozzle	1 mark	2
۷.۱	1.	Condenser	1 mark	_
	ii.	Classification of condensers	2 marks	8
	11.	Construction	1 marks	U
		Working of a down-flow condenser	3 marks	
		Diagram	2 marks	
OR	iii.	Any six difference between impulse and reaction turbing		8
011		1 mark for each (1 mark * 6)	6 marks	Ü
		Relative velocity with formula	2 marks	
		· · · · · · · · · · · · · · · · · · ·		
Q.5	i.	Any three classifications of Internal combustion engine	es.	2
	ii.	Requirement of cooling	2 marks	8
		Any two methods with diagram & Application	6 marks	
		3 marks each (3 marks * 2)		
OR	iii.	Given data and Calculation	2 marks	8
		Brake mean effective pressure with formula	1.5 marks	
		Brake Thermal Efficiency with formula	1.5 marks	
		Air standard efficiency with formula	1.5 marks	
		Air-fuel ratio by mass with formula	1.5 marks	
		•		

Q.6	i.	Definition Thermal Conductivity	1 mark	2
		Its unit and Dimensions	1 mark	
	ii.	(a) Fourier's law with mathematical expression	4 marks	8
		(b) Newton's law with mathematical expression	4 marks	
OR	iii.	Define the following:		8
		(a) Absorbtivity	2 marks	
		(b) Reflectivity	2 marks	
		(c) Transmissivity	2 marks	
		Relation between above terms.	2 marks	
