Theorem 2.1.4

Let u, v,
$$w \in \Sigma^*$$
, then $(uv)w = u(vw)$.

Proof: The proof is by induction on the length of the string w. The string w was chosen for compatibility with the recursive definition of strings, which builds on the right-hand side of an existing string.

Basis: length(w) = 0. Then w = λ , and (uv)w = uv by the definition of concatenation. On the other hand, u(vw) = u(v) = uv.

Inductive hypothesis: Assume that (uv)w = u(vw) for all strings w of length n or less.

Inductive step: We need to prove that (uv)w = u(vw) for all strings w of length n + 1. Let w be such a string. Then w = xa for some string x of length n and $a \in \Sigma$ and

Definition of reversal

Let u be a string in Σ^* . The reversal of u, denoting u^R , is defined as follows, i) Basis: If length (u) = 0, then u = λ and $\lambda^R = \lambda$

ii) Recursive step: if length (u) = n > 0, thn u = wa for some string w with length n-1 and some $a \in \Sigma$, and $u^R = aw^R$

Let
$$u, v \in \Sigma^*$$
, Then $(uv)^R = v^R u^R$.

Proof: the proof is by induction on the length of the string w.

Basis: If length (v) = 0, then $v = \lambda$, and $(uv)^R = u^R$. Similarly, $v^R u^R = \lambda^R u^R = u^R$.

Inductive Hypothesis: Assume $(uv)^R = v^R u^R$ for all strings v f length n or less. Inductive Step: We must prove that, for any string v of length $(uv)^R = v^R u^R$. Let v be a string of length n+1. Then v = wa, where w is a string of length n and $a \in \Sigma$. The inductive step is established by

```
(uv)^R = (u(wa))^R
= ((uw)a)^R(associativity of concatenation)
= a(uw)^R(definition of reversal)
= a(w^R u^R) (inductive hypothesis)
= (aw^R)u^R(associativity of concatenation)
= (wa)^Ru^R(definition of reversal)
= v^R u^R
```