Exercise 3: Corruption for Data-oriented Programming Paradigms

Group 36: Bruna Dujmovic

January, 2021

Corruption

Corruption

"Improper and usually unlawful conduct intended to secure a benefit for oneself or another." – Encyclopaedia Britannica

- still prominent in many countries around the world, especially as political corruption
- measurable? Corruption Perceptions Index (CPI)
 - published yearly by Transparency International
 - measures public sector corruption on a scale of 0 to 100
 - aggregate of other scores collected from a number of different sources
 - based on perceptions of the level of corruption in the public sector by business people and country experts
- predictable? using country characteristics

Data set

- 1328 entries and 30 columns (25 predictor variables)
- data for 2012-2019 considered
 - changes to CPI methodology in 2012
- country indicators and indices from multiple sources:
 - ► Human Development Reports (HDR) indicators
 - ★ e.g. Human Development Index, Inequality index, Education index
 - Index of Economic Freedom (IEF) measures
 - * e.g. Government Integrity, Property Rights, Tax Burden
 - Worldwide Governance Indicators (WGI)
 - ★ e.g. Government Effectiveness, Rule of Law, Regulatory Quality

Preprocessing

- countries without score data for each year in the 2012-2019 time-span were removed
 - avoids using imputation on the target variable
 - data for 166 remained
- small amount of missing values
 - ▶ **imputation** based on *k*-Nearest Neighbors
 - mean value from 5 nearest neighbors found in the training set
- predictor variables are all numeric no need for one-hot-encoding or similar transformation
- variables with different value ranges
 - min-max scaling applied when needed by the model

Visualizations – correlation matrix

Visualizations – correlation with target

Visualizations – scatter plots & correlation coefficients

Setup

- 70-30 train/test split
- GridSearchCV
 - 5-fold CV
 - model for each combination of fold and hyperparameters
 - best model taken for further analysis
- standard **performance metrics** for regression
 - ▶ R², Mean-Squared Error (MSE)
 - visualizing performance with scatter plots
- baseline model
 - one-variable linear model
 - ▶ government integrity very high positive correlation with target

Models

LogisticRegression

ElasticNet

```
▶ alpha = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
▶ 11_ratio = [0.0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0]
```

RandomForestRegressor

- max_depth = [5, 10, 15],
- min_samples_split = [2, 3, 4],
- ▶ $min_samples_leaf = [2, 3, 4]$

SVR

- kernel = ['linear', 'rbf'],
- ightharpoonup C = [0.001, 0.01, 0.1, 1, 10,**100**],

MLPRegressor

- ▶ hidden_layer_sizes = [(30,), (40,), (50,)],
- activation = ['identity', 'logistic', 'tanh', 'relu'],
- solver = ['sgd', 'adam']

Results – comparison

- best performance by SVR, followed by RandomForestRegressor
- all models surpassed the performance of the baseline model

Test set model performance		
	MSE	R ²
Baseline	26.1042	0.9319
LinearRegression	15.9717	0.9583
ElasticNet	16.4886	0.9570
RandomForestRegressor	9.8694	0.9742
SVR	7.6442	0.9800
MLPRegressor	14.7483	0.9615

Table: MSE and R² test set scores.

Results

Figure: Scatter plots of actual vs. predicted CP scores for training and test sets.

Feature importance – LogisticRegression

Feature importance – ElasticNet

Feature importance – RandomForestRegressor

