In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
data = pd.read_csv("T1.csv")
```

In [3]:

```
#head funtion and tail funtion
data.head()
```

Out[3]:

	Date/Time	LV ActivePower (kW)	Wind Speed (m/s)	Theoretical_Power_Curve (KWh)	Wind Direction (°)
0	01 01 2018 00:00	380.047791	5.311336	416.328908	259.994904
1	01 01 2018 00:10	453.769196	5.672167	519.917511	268.641113
2	01 01 2018 00:20	306.376587	5.216037	390.900016	272.564789
3	01 01 2018 00:30	419.645905	5.659674	516.127569	271.258087
4	01 01 2018 00:40	380.650696	5.577941	491.702972	265.674286

In [4]:

In [5]:

```
data.tail() #last 5 rows of the dataset
```

Out[5]:

	Date	Active_Power	Wind_Speed	Theoretical_Power	Wind_Direction
50525	31 12 2018 23:10	2963.980957	11.404030	3397.190793	80.502724
50526	31 12 2018 23:20	1684.353027	7.332648	1173.055771	84.062599
50527	31 12 2018 23:30	2201.106934	8.435358	1788.284755	84.742500
50528	31 12 2018 23:40	2515.694092	9.421366	2418.382503	84.297913
50529	31 12 2018 23:50	2820.466064	9.979332	2779.184096	82.274620

In [6]:

```
#shape of the dataset
data.shape
```

Out[6]:

(50530, 5)

In [7]:

#missing values

data.isna().sum()

Out[7]:

Date 0
Active_Power 0
Wind_Speed 0
Theoretical_Power 0
Wind_Direction 0
dtype: int64

In [8]:

#statisticak overview of the data
data.describe().T

Out[8]:

	count	mean	std	min	25%	50%	
Active_Power	50530.0	1307.684332	1312.459242	-2.471405	50.677890	825.838074	2482
Wind_Speed	50530.0	7.557952	4.227166	0.000000	4.201395	7.104594	10
Theoretical_Power	50530.0	1492.175463	1368.018238	0.000000	161.328167	1063.776283	2964
Wind_Direction	50530.0	123.687559	93.443736	0.000000	49.315437	73.712978	201
4							•

In [9]:

```
#scatterplot
plt.scatter(data['Theoretical_Power'],data['Wind_Speed'])
```

Out[9]:

<matplotlib.collections.PathCollection at 0x234f6acdbe0>

In [10]:

```
#split the data
x=data[["Theoretical_Power", "Wind_Speed"]]
y=data["Active_Power"]
```

In [11]:

```
x=data[["Theoretical_Power", "Wind_Speed"]].values
y=data["Active_Power"].values
```

```
In [12]:
Х
Out[12]:
array([[ 416.32890782,
                          5.31133604],
       [ 519.91751106,
                          5.67216682],
                          5.2160368],
       [ 390.90001581,
       . . . ,
       [1788.28475526,
                          8.43535805],
       [2418.38250336,
                          9.42136574],
                          9.97933197]])
       [2779.18409628,
In [13]:
У
Out[13]:
array([ 380.04779053, 453.76919556, 306.37658691, ..., 2201.10693359,
       2515.6940918 , 2820.46606445])
In [14]:
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
In [15]:
x_train
Out[15]:
array([[2891.51097817,
                         10.16676998],
       [2568.32234351,
                         9.66874123],
       [2983.25264354,
                         10.33469963],
       [ 713.91750453,
                         6.25629377],
                          6.51428223],
       [ 811.58889249,
       [2408.63252668,
                          9.406497 ]])
In [16]:
y_train
Out[16]:
array([2361.43408203,
                         0.
                                    , 2501.23803711, ..., 579.2769165 ,
        622.01647949, 1812.83996582])
```

```
In [17]:
x_test
Out[17]:
array([[1716.05743093, 8.3164053],
      [3020.68377438, 10.40781021],
      [3600.
                      21.28778076],
      ...,
      [2445.84181098,
                       9.46321869],
      [3600.
                       19.32984924],
       [ 882.72823249,
                       6.69093895]])
In [18]:
y_test
Out[18]:
array([1501.35498047, 2447.27709961, 3461.19189453, ..., 0.
      3600.68994141, 882.56542969])
```