Regularización de Modelos

Los modelos lineales suelen ser más fáciles de interpretar y tiene mayor capacidad de generalización al ser menos flexibles. Es bien sabido que a más variables el modelo es más flexible y por ende su varianza es mayor. Por ello vamos a analizar métodos de regularización de los modelos de ajuste que logren que la cantidad de variables predictoras sea menor, y así obtener una reducción de la varianza del modelo y su consiguiente capacidad de generalización

• Regularización: Regresión Contraída

El primer método de regularización o encogimiento (*shrinkage*) es el de Regresión Contraída, o *Ridge Regression* en inglés. La regresión contraída mantiene todas las variables predictores pero disminuye su influencia en la predicción.

En RL queremos minimizar esta función por Camín $RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$

En RL Contraída le adicionamos :

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

Matriz de Diagramas de dispersión (covarianzas)

Balance ~ age, cards, education, income, limit, rating, vender, student, status, ethnicity

Balance ~ age, cards, education, income, limit, rating, vender, student, status, ethnicity

Regresión LASSO

La desventaja de la regresión contraída es que contiene TODOS los predictores. La penalización puede llegar a contraer todos los coeficientes $\boldsymbol{\theta}_j$ a un valor cercano a cero, pero nunca hacerlos llegar exactamente a cero-. En LASSO se reemplaza la penalización $|\boldsymbol{\theta}_i|^2$ por $|\boldsymbol{\theta}_i|$

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

Esta nueva penalización si consigue llevar algunos coeficientes a vero, consiguiendo así un modelo con menor varianza y más fácil de interpretar.

