

Model Optimization and Tuning Phase Template

Date	26 November 2024
Team ID	SWTID1727420425
Project Title	Analysis of Amazon Cell Phone Reviews Using NLP Technique
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters
ANN Model	<pre> # Hyperparameter tuning for ANN tuner_ann = kt.RandomSearch(build ann model, objective='val_accuracy', max_trials=5, executions_per_trial=1, directory='ann_tuning', project_name='ann_model' } // user/local/lib/python3.10/dist-packages/keras/src/layers/core/embedding.py:90: UserWarning: Argument 'input_length' is deprecated. Just remove it. // user/local/lib/python3.10/dist-packages/keras/src/layers/core/embedding.py:90: UserWarning: Argument 'input_length' is deprecated. Just remove it. // warnings.warn(// user/local/lib/python3.10/dist-packages/keras/src/layers/core/embedding.py:90: UserWarning: Argument 'input_length' is deprecated. Just remove it. // warnings.warn(// # Splitting training data into train and validation sets for ANN tuning X_train_split, X_val, y_train_split, y_val = train_test_split(X_train_pad, y_train, test_size=0.2, random_state=42) // # Run the tuner tuner_ann.search(X_train_split, y_train_split, epochs=5, validation_data=(X_val, y_val), class_weight=class_weights_dict) // Trial 5 Complete [00h 02m 49s] val_accuracy: 1.0 // Best val_accuracy So Far: 1.0 // Total elapsed time: 00h 14m 01s // Argument 'input_length' is deprecated. Just remove it. // warnings.warn</pre>
CNN Model	# Tuning and training CNN model tuner_cnn = kt.Randomsearch(build_cnn_model, objective='val_accuracy', max_trials=5, executions_per_trial=1, directory='cnn_tuning', project_name='cnn_model') ### / Musr/local/lib/python3.10/dist-packages/keras/src/layers/core/embedding.py:90: UserWarning: Argument `input_length' is deprecated. Just remove it. warnings.warn(


```
tuner cnn.search(X_train_split, y_train_split, epochs=5, validation_data=(X_val, y_val), class_weight=class_weights_dict) cnn_best_model = tuner_cnn.get_best_models(num_models=1)[0]
                                                           cnn\_best\_model.fit(\textbf{X\_train\_pad}, \textbf{y\_train}, epochs=5, validation\_data=(\textbf{X\_val}, \textbf{y\_val}), class\_weight=class\_weights\_dict)
                                                   → Trial 5 Complete [00h 05m 41s]
                                                           val accuracy: 1.0
                                                          Best val_accuracy So Far: 1.0
Total elapsed time: 00h 19m 08s
Epoch 1/5
/usr/local/lib/python3.10/dist-packages/keras/src/saving/saving_lib.py:713: UserWarning: Skipping variable loading for optimizer saveable.load_own_variables(weights_store.get(inner_path))
677/677 — 72s 104ms/step - accuracy: 1.0000 - loss: 3.2439e-06 - val_accuracy: 1.0000 - val_loss: 1.5969e-09
Epoch 2/5
                                                          71s 106ms/step - accuracy: 1.0000 - loss: 2.5446e-08 - val_accuracy: 1.0000 - val_loss: 4.8470e-10
                                                           Epoch 3/5
                                                           677/677 — Epoch 4/5
                                                                                               —— 70s 103ms/step - accuracy: 1.0000 - loss: 9.0678e-09 - val_accuracy: 1.0000 - val_loss: 2.3031e-10
                                                                                                    — 82s 102ms/step - accuracy: 1.0000 - loss: 1.8188e-08 - val_accuracy: 1.0000 - val_loss: 6.8441e-11
                                                           Epoch 5/5
677/677
                                                            677/677 — 82s 103ms/step - accuracy: 1.0000 - loss: 2.7175e-09 - val_accuracy: 1.0000 - val_loss: 5.5722e-11 
keras.src.callbacks.history.History at 0x7ed86b96f7c0>
                                                           # Hyperparameter tuning with Keras Tur
tuner = kt.RandomSearch(
build_lstm_model,
objective='val_accuracy',
max_trials=5,
executions_per_trial=1,
directory='lstm_tunine'
                                                                 directory='lstm_tuning',
project_name='lstm_model
                                                      妾 /usr/local/lib/python3.10/dist-packages/keras/src/layers/core/embedding.py:90: UserWarning: Argument `input_length` is deprecated. Just remove it.
                                                           # Split training data into train and validation sets

X_train_split, X_val, y_train_split, y_val = train_test_split(X_train_pad, y_train, test_size=0.2, random_state=42)
LSTM Model
                                                   Trial 5 Complete [00h 20m 26s] val_accuracy: 1.0
                                                         Best val_accuracy So Far: 1.0
Total elapsed time: 00h 43m 24s
                                                   0
                                                         # Get the best model
best_hps = tuner.get_best_hyperparameters(num_trials=1)[0]
lstm_best_model = tuner.get_best_models(num_models=1)[0]
                                                   //usr/local/lib/python3.10/dist-packages/keras/src/saving/saving_lib.py:713: UserWarning: Skipping variable loading for optimizer 'adam', because it has 2 v saveable.load_own_variables(weights_store.get(inner_path))
                                                     [] # Tuning and training BiLSTM mo
tuner bilstm = kt.RandomSearch(
                                                                er_olistm = kt.Kandomsearch(
build_bilstm_model,
objective='val_accuracy',
max_trials=5,
executions_per_trial=1,
directory='bilstm_tuning',
project_name='bilstm_model'
BiLSTM Model
                                                    🔁 /usr/local/lib/python3.10/dist-packages/keras/src/layers/core/embedding.py:90: UserWarning: Argument 'input_length' is deprecated. Just remove it.
```


Final Model Selection Justification (2 Marks):

Final Model	Reasoning
ANN Model	The ANN Model is more Accuracy for another three Model.


```
### Define the ANN model

def build_ann model(hp):
    model = Sequential()
    model.add(Embedding(input_dim=20000, output_dim=hp.Int('embedding_dim', 64, 256, step=64), input_length=max_sequence_length))
    model.add(Embedding(input_dim=20000, output_dim=hp.Int('embedding_dim', 64, 256, step=64), input_length=max_sequence_length))
    model.add(Cense(units=hp.Int('dense_units1', 32, 256, step=32), activation='relu'))
    model.add(Dense(units=hp.Int('dense_units2', 32, 128, step=32), activation='relu'))
    model.add(Dense(units=hp.Int('dens
                                              loss='binary_crossentr
metrics=['accuracy'])
    # Hyperparameter tuning for ANN
tuner_ann = kt.RandomSearch(
             build_ann_model,
objective='val_accuracy',
max_trials=5,
              executions_per_trial=1,
              directory='ann_tuning',
project_name='ann_model
  Trial 5 Complete [00h 02m 49s]
          Best val_accuracy So Far: 1.0
Total elapsed time: 00h 14m 01s
             # Evaluate the ANN model
                test_loss, test_accuracy = ann_best_model.evaluate(X_test_pad, y_test)
                print(f"ANN Model Test Accuracy: {test_accuracy:.4f}")
                                                                                                                — 0s 2ms/step - accuracy: 1.0000 - loss: 3.7855e-24
               ANN Model Test Accuracy: 1.0000
                y_pred_probs_ann = ann_best_model.predict(X_test_pad)
               y_pred_ann = (y_pred_probs_ann > 0.5).astype(int)
                print("\nANN Classification Report:")
                print(classification_report(y_test, y_pred_ann))
<del>____</del> 170/170 —
                                                                                                                 - 1s 3ms/step
                ANN Classification Report:
                                                                 precision recall f1-score support
                                                                                   1.00
                                                                                                                    1.00
                                                                                                                                                            1.00
                                                                                                                                                                                                5416
                                                                                                                                                            1.00
                                                                                                                                                                                                5416
                             accuracy
                                                                                   1.00
                                                                                                                      1.00
                                                                                                                                                            1.00
                                                                                                                                                                                                5416
                          macro avg
                weighted avg
                                                                                   1.00
                                                                                                                        1.00
                                                                                                                                                            1.00
                                                                                                                                                                                                5416
```