MTH302: INTEGERS, POLYNOMIALS AND MATRICES LECTURE 1

VARADHARAJ R. SRINIVASAN

1. Introduction

The course MTH302, *Integers, Polynomials and Matrices* is a fancy (rather comical!) name for a first course on *R*ings and Module run elsewhere. The course content is extremely important to understanding all of the mathematics you may encounter henceforth. We shall closely follow the book by C. Musili, *Rings and Modules* throughout this semester. The lecture notes will be updated frequently.

2. BASIC DEFINITIONS AND EXAMPLES

Semigroup: Let R be nonempty set. A *binary operation* + on R is a map from $R \times R$ to R; $(r,s) \mapsto r + s$. We call (R,+), a semigroup if (r+s) + t = r + (s+t) for all $r,s,t \in R$. If S is a nonempty subset of a semigroup R then S is called a *subsemigroup* if + restricts to a binary operation on S.

Group: A semigroup (R, +) is called a *group* if

- G1. there is an element $0_R \in R$, or simply $0 \in R$, (called the *additive identity* element) such that r + 0 = r = 0 + r for all $r \in R$ and
- G2. there is an element $s \in R$ for each element $r \in R$ such that r + s = 0 = s + r.

Abelian Group: A group (R, +) is be called an *abelian group* if r + s = s + r for all $r, s \in R$.

Subgroup: A nonempty subset S of group R is called a *subgroup* of (R, +) if + restricts to a binary operation on S, $0 \in S$ and for every $r \in S$, the inverses $-r \in S$.

Rings: Let R be a nonempty set with two binary operations + and \cdot such that

- R1. (R, +) is an abelian group
- R2. (R, .) is a semigroup

and for all $r, s, t \in R$,

R3.
$$(r+s) \cdot t = r \cdot t + s \cdot t$$
 and

R4.
$$r \cdot (s+t) = r \cdot s + r \cdot t$$
.

Then $(R, +, \cdot)$ is a called a ring. Furthermore, if $r \cdot s = s \cdot r$ for all $r, s \in R$ then $(R, +, \cdot)$ is called a commutative ring. If $(R, +, \cdot)$ is a ring and there is an element $e \in R$ such that $a \cdot e = e \cdot a = a$ for all $a \in R$ then e is called an (the) *identity* (or *unity*) of the ring R corresponding to \cdot operation (should

not be confused with 0, which is <u>the</u> identity with respect to +). We write "Let $(R, +, \cdot)$ be a ring with identity", to mean that R has an identity e corresponding to the \cdot operation.

If $(R, +, \cdot)$ is a ring with identity e. Then e is an unique such element: If $t \in R$ is also an identity then $e = e \cdot t = t \cdot e = t$. We use the notation 1 or 1_R to denote the identity element of $(R, +, \cdot)$.

Examples.

- 1. $(\mathbb{Z}, +, .)$, the set of integers with usual addition and multiplication (1 is the identity).
- 2. $(\mathbb{Q}, +, .)$, the set of rational numbers with usual addition and multiplication (1 is the identity).
- 3. $(\mathbb{R}, +, .)$, the set of real numbers with usual addition and multiplication (1 is the identity).
- 4. $(\mathbb{C}, +, .)$, the set of complex numbers with usual addition and multiplication (1 is the identity).
- 5. Let $F = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$. The set of all $n \times n$ matrices over F, denoted by $M_n(F)$, is a ring with identity under the matrix addition and multiplication: Let

$$(r_{ij}) := egin{pmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ r_{21} & r_{22} & \cdots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ r_{n1} & r_{n2} & \cdots & r_{nn} \end{pmatrix}, \text{ where } r_{11}, r_{12}, \cdots, r_{nn} \in F.$$

Matrix addition: $(r_{ij}) + (s_{ij}) = (r_{ij} + s_{ij})$. When n = 2, we have

$$\begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix} + \begin{pmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{pmatrix} = \begin{pmatrix} r_{11} + s_{11} & r_{12} + s_{12} \\ r_{21} + s_{21} & r_{22} + s_{22} \end{pmatrix}$$

The identity with respect to + is the zero matrix; the matrix whose entries are 0.

Matrix multiplication: $(r_{ij}) \cdot (s_{ij}) = (\sum_{l=1}^{n} r_{il} s_{lj})$. When n=2, we have

$$\begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix} \cdot \begin{pmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{pmatrix} = \begin{pmatrix} r_{11}s_{11} + r_{12}s_{21} & r_{11}s_{12} + r_{12}s_{22} \\ r_{21}s_{11} + r_{22}s_{21} & r_{21}s_{12} + r_{22}s_{22} \end{pmatrix}.$$

Identity (or unity):

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

6. Let $(R, +, \cdot)$ be a ring. Then $M_n(R)$ is a ring with the matrix addition and multiplication. If e is the identity of R then $M_n(R)$ has the identity

$$\begin{pmatrix} e & 0 & \cdots & 0 \\ 0 & e & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e \end{pmatrix}.$$

For an integer $n \in \mathbb{Z}$ and $r \in R$, an element of a ring R, define $na = a + a + \cdots + a$, a added n times, if n is positive. If n = 0 then define na = 0 and if n is negative, define $na = -a + (-a) + \cdots + (-a)$, that is (-a) added n times.

Proposition 2.1. Let $(R, +, \cdot)$ be any ring. Then

- (1) $0 \cdot a = a \cdot 0$ for all $a \in R$
- (2) $-(a \cdot b) = (-a) \cdot b = a \cdot (-b)$ for all $a, b \in R$.
- (3) $n(a \cdot b) = (na) \cdot b = a \cdot (nb)$ for all $a, b \in R$ and $n \in \mathbb{Z}$.
- (4) (mn)a = m(na) = n(ma) for all $m, n \in \mathbb{Z}$ and $a \in R$.

Proof. Let $a,b \in R$. Observe that $0 \cdot a = (0+0) \cdot a = 0 \cdot a + 0 \cdot a$. Thus $0 \cdot a = 0$. Likewise, one shows that $a \cdot 0 = 0$. Since 0 = (a+(-a)), we have $0 = 0 \cdot b = (a+(-a)) \cdot b$. This shows that $a \cdot b + (-a) \cdot b = 0$, whence $-(a \cdot b) = (-a) \cdot b$. A similar agrument proves that $-(a \cdot b) = a \cdot (-b)$. Using distributive laws R3 and R4 and an induction on n, one can show that $n(a \cdot b) = (na) \cdot b = a \cdot (nb)$ and that (mn)a = m(na) = n(ma) for all $m, n \in \mathbb{Z}$ and $a \in R$.

Units of a ring: Let $(R, +, \cdot)$ be a ring with 1_R . An element $a \in R$ is called a *unit* if $a \cdot b = b \cdot a = 1_R$ for some $b \in R$. The set of all units of a ring R is denoted by $\mathcal{U}(R)$

Subring: Let $(R, +, \cdot)$ be a ring. A subset S of R is a *subring* of R if (S, +) is a subgroup of (R, +) and (S, \cdot) is a subsemigroup of (S, \cdot) .

Center of a ring: Let $(R, +, \cdot)$ be a ring. The set $\mathcal{Z}(R) := \{x \in R \mid x \cdot r = r \cdot x \text{ for all } r \in R\}$ is called the center of the ring R. It can be easily seen that $\mathcal{Z}(R)$ is a subring of R.

Zero divisors: Let $(R, +, \cdot)$ be a ring. An element $a \in R$ is called a *left zero-divisor* if there is an element $0 \neq b \in R$ such that $a \cdot b = 0$. Similarly, one defines *right zero-divisors*.

In any ring with two elements, 0 is a zero-divisor, called the trivial zero-divisor.

Integral domain: A ring $(R, +, \cdot)$ is called an integral domain if there are no nontrivial zero divisors. In this course, an integral domain is neither required to be a commutative ring nor must have unity.

Examples:

- (1) $(\mathbb{Z}, +, \cdot)$ is a subring of $(\mathbb{Q}, +, \cdot)$, which in turn is a subring of $(\mathbb{R}, +, \cdot)$.
- (2) $\mathcal{U}(R)$ of $R = M_2(\mathbb{Q})$ is the set $GL_2(\mathbb{Q})$ of all invertible matrices of $M_2(\mathbb{Q})$.
- (3) $M_n(F)$, where $F = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ is not an integral domain:

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Thus $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ is a left zero-divisor.

(4) Consider the ring $R := M_2(\mathbb{Q})$ with the matrix addition and multiplication. Then

$$\mathcal{Z}(R) = \left\{ \begin{pmatrix} a & 0 & \cdots & 0 \\ 0 & a & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \mid a \in \mathbb{Q} \right\}.$$

The matrix of the above form are called *scalar* matrices.

Division Ring: A ring $(R, +, \cdot)$ with identity is said to be a *division ring* if $\mathcal{U}(R) = R \setminus \{0\}$. That is, $R \setminus \{0\}$ is a group under the \cdot operation.

Field: A commutative division ring is called a field.

Examples:

- (1) \mathbb{Q} , \mathbb{R} and \mathbb{C} under usual addition and multiplication forms a field.
- (2) The set

$$\mathcal{Q} := \left\{ \begin{pmatrix} u & v \\ -\bar{v} & \bar{u} \end{pmatrix} \mid u, v \in \mathbb{C} \right\},\,$$

where \bar{u} is the complex conjugate of u, is a division ring under matrix multiplication. But Q is not a field (why?).