Analog VLSI Circuits (AVM 613) - Assignment Report

Rahul Kumar Sinha (SC22B109) Indian Institute of Space Science and Technology

October 2025

1 Question 1: PMOS Basic Current Mirror Design and Analysis

1.1 Problem Statement

A reference current source of 10 μ A is provided. The objective is to design a PMOS current mirror that sources an output current of 100 μ A from V_{DD} . The current mirror must operate as a current source while the output node voltage (V_{OUT}) varies from 0 to V_{DD} . The tasks include:

- Designing a suitable PMOS current mirror.
- Plotting output current versus V_{OUT} .
- Determining the maximum permissible V_{OUT} for current source operation.
- Estimating output impedance (R_{OUT}).
- Suggesting a modification (without using cascode) to increase R_{OUT} .
- Comparing current variation and impedance before and after modification.

1.2 Part 1: Basic PMOS Current Mirror (Circuit 1a)

1.2.1 Design and Schematic

The basic PMOS current mirror is designed to source current from V_{DD} using the relation:

$$\frac{I_{OUT}}{I_{REF}} = \frac{(W/L)_{PM1}}{(W/L)_{PM0}} = 10$$

The design parameters are summarized below:

Table 1: Device Dimensions for Circuit 1a

Parameter	PMo (Reference)	PM1 (Output)
W	1 <i>μ</i> m	10 μm
L	100 nm	100 nm
W/L	10	100
I _{REF}	10 μA	Target = $100 \mu A$

Figure 1: Schematic of the Basic PMOS Current Mirror (Circuit 1a).

1.2.2 Simulation Results and Analysis

The DC sweep of V_{OUT} (from 0 to V_{DD}) yields the output current and output impedance plots shown in Figure 2.

Figure 2: DC Response of Basic PMOS Current Mirror (Circuit 1a). Red: $|I_{PM1}|$ (μA), Blue: $|R_{OUT}|$ ($k\Omega$).

Key observations:

1. **Saturation Region:** The current mirror remains in saturation until approximately $V_{OUT} = 0.7 V$, beyond which *PM* 1 enters the linear region.

2. Output Impedance:

$$R_{OUT} = \frac{1}{\frac{dI_D}{dV_{DS}}} = \frac{1}{g_{ds}}$$

From the plot:

$$R_{OUT.1a} \approx 28.75 k\Omega$$

3. Current Variation:

$$\%\Delta I = \frac{I_{max} - I_{min}}{I_{nom}} \times 100 = \frac{100 - 78}{100} \times 100 \approx 22\%$$

Thus, the circuit exhibits a **22**% current deviation in the saturation region, with a maximum allowable V_{OUT} of approximately **0.7 V**.

1.3 Part 2: Modified Design for Increased Output Impedance (Circuit 1b)

1.3.1 Modification and Dimensions

To increase R_{OUT} without employing a cascode structure, the channel length L is increased to reduce channel-length modulation. Since $\lambda \propto 1/L$, doubling L approximately doubles R_{OUT} .

Table 2: Device Dimensions for Circuit 1b

Parameter	PMo (Reference)	PM1 (Output)
W	1 μm	10 μm
L	200 nm	200 nm
W/L	5	50
I_{REF}	10μ A	Target = $100 \mu A$

Figure 3: Schematic of the Modified PMOS Current Mirror (Circuit 1b).

1.3.2 Simulation Results and Discussion

The DC sweep results are shown in Figure 4.

Figure 4: DC Response of Modified PMOS Current Mirror (Circuit 1b). Red: $|I_{PM1}|$ (μA), Yellow: $|R_{OUT}|$ ($k\Omega$).

Results:

- $R_{OUT.1b} \approx 48.66 \, k\Omega$ at $V_{OUT} = 0.7 \, V$.
- Current varies from 100 μ A to 88.5 μ A, i.e. \approx 11.5% deviation.

Inference: Increasing channel length from 100 nm to 200 nm improved output impedance by approximately 40% and reduced current variation from 22% to 11.5%. Hence, the longer channel significantly enhances current source stability without additional biasing overhead.

2 Question 2: Low-Voltage Cascode Current Mirror

2.1 Problem Statement

Design a low-voltage cascode current mirror capable of sinking $100 \,\mu A$ using a $10 \,\mu A$ reference current. The circuit should maintain operation for output voltages as low as $300 \, mV$ with an additional $40 \, mV$ margin for each device's $V_{DS,sat}$. The design should include:

- Bias voltage derivation and verification.
- Current versus voltage characteristics.
- Output impedance estimation from both simulation and analytical calculation.

Figure 5.18 Modification of cascode mirror for low-voltage operation.

Figure 5: Low-Voltage Cascode Current Mirror Topology.

2.2 Bias Voltage and Operating Conditions

For proper biasing, the bias voltage V_b must satisfy:

$$V_{GS3} + V_{OV} \le V_b \le V_{GS1} + V_{th}$$

The simulated sweep (Figure 6) confirms $V_b = 1 V$ as the optimal operating point.

Figure 6: Vb choose.

2.3 Schematic and Results

Figure 7: Schematic of the Low-Voltage Cascode Current Mirror.

The DC sweep of V_{OUT} is shown in Figure 8.

Figure 8: DC Response of Low-Voltage Cascode Current Mirror. First : $|I_{OUT}|$ (μA) vs Vout , Second : $|R_{OUT}|$ ($k\Omega$).

Key Observations:

- I_{OUT} 96.233 μA in saturation.
- Minimum output voltage $(V_{OUT,min}) = 280 \text{m } V$, satisfying low-voltage constraint.
- $R_{OUT,sim}$ 29.5089 $k\Omega$ at $V_{OUT} = 280$ m V.

2.4 Analytical Verification of Output Impedance

From DC operating point data:

- $r_{o,NM2} = 4.2355 \, k\Omega$
- $r_{o,NM3} = 4.50711 k\Omega$
- $g_{m,NM2} = 911.24 \, uS$

The anal ytical output impedance at Vout=280mV is:

$$R_{OUT,calc} \approx r_{o,NM2} + r_{o,NM3} + g_{m,NM2}r_{o,NM2}r_{o,NM3}$$

$$\textit{R}_{\textit{OUT,calc}} \approx 26.1380581~k\Omega$$

which closely matches the simulated value of $29.5089 k\Omega$, confirming accurate modeling of small- signal parameters.

Figure 9: Analytical Verification of R_{OUT} .

2.5 Performance Summary

Table 3: Performance Comparison of Current Mirror Designs

Parameter	Basic PMOS	Modified PMOS	Cascode (NMOS)
I_{OUT} (μA)	100	100	96.2377A
L (nm)	100	200	180
R_{OUT} $(k\Omega)$	28.75	48.66	20k-575k
Current Variation (%)	22	11.5	≈ 5
Topology Type	Simple Mirror	Long-Channel Mirror	Low-V Cascode

3 Conclusions and Inference

- Increasing the channel length effectively enhances the output impedance by reducing channel-length modulation, thereby improving current source stability.
- The cascode current mirror significantly improves R_{OUT} (by $\sim 4 \times$ compared to the basic mirror) while maintaining operation at low voltages.
- The analytical impedance estimation closely agrees with simulation, validating the small-signal model accuracy.
- For analog VLSI applications requiring high precision and low voltage headroom, the low-voltage cascode mirror offers the best trade-off between area, complexity, and performance.

Final Remark: This study demonstrates how transistor geometry scaling (particularly *L*) and bias topology optimization directly impact the accuracy, impedance, and voltage headroom

of current mirrors — critical for robust analog circuit design.