Optimization Models EECS 127 / EECS 227AT

Laurent El Ghaoui

EECS department UC Berkeley

Fall 2018

LECTURE 12

Second-Order Cone Models

Each problem that I solved became a rule which served afterwards to solve other problems.

René Descartes

Outline

Introduction

- 2 Second-order cone programs
 - LP, QP, and QCQP as SOCPs
 - Sums and maxima of norms

- 3 Examples
 - Inventory control
 - Facility location
 - Square-root LASSO

Introduction

- Second-order cone programming (SOCP) is a generalization of linear and quadratic programming that allows for affine combinations of variables to be constrained inside a special convex set, called a second-order cone.
- The SOCP model includes as special cases LPs, as well as problems with convex quadratic objective and constraints.
- SOCP models are particularly useful in geometry problems, approximation problems, as well as in probabilistic (chance-constrained) approaches to linear optimization problems in which the data is affected by random uncertainty.

The second-order cone

• The second-order cone (SOC) in \mathbb{R}^3 is the set of vectors (x_1, x_2, t) such that $\sqrt{x_1^2 + x_2^2} \le t$. Horizontal sections of this set at level $\alpha \ge 0$ are disks of radius α .

• In arbitrary dimension: an (n+1)-dimensional SOC is the following set:

$$\mathcal{K}_n = \{(x, t), x \in \mathbb{R}^n, t \in \mathbb{R} : ||x||_2 \le t\}.$$
 (1)

The rotated second-order cone

• The rotated second-order cone in \mathbb{R}^{n+2} is the set

$$\mathcal{K}_n^r = \left\{ (x, y, z), x \in \mathbb{R}^n, y \in \mathbb{R}, z \in \mathbb{R} : x^\top x \le 2yz, \ y \ge 0, \ z \ge 0 \right\}.$$

• The rotated second-order cone in \mathbb{R}^{n+2} can be expressed as a linear transformation (actually, a rotation) of the (plain) second-order cone in \mathbb{R}^{n+2} , since

$$\|x\|_{2}^{2} \le 2yz, \ y \ge 0, \ z \ge 0 \iff \left\| \begin{bmatrix} x \\ \frac{1}{\sqrt{2}}(y-z) \end{bmatrix} \right\|_{2} \le \frac{1}{\sqrt{2}}(y+z).$$
 (2)

That is, $(x, y, z) \in \mathcal{K}_n^r$ if and only if $(w, t) \in \mathcal{K}_n$, where

$$w = (x, (y - z)/\sqrt{2}), t = (y + z)/\sqrt{2}.$$

• Constraints of the form $||x||_2^2 \le 2yz$, as appearing in (2), are usually referred to as *hyperbolic* constraints.

a18 6/1

Standard SOC constraint

- The standard format of a second-order cone constraint on a variable $x \in \mathbb{R}^n$ expresses the condition that $(y,t) \in \mathcal{K}_m$, with $y \in \mathbb{R}^m$, $t \in \mathbb{R}$, where y,t are some affine functions of x.
- These affine functions can be expressed as y = Ax + b, $t = c^{\top}x + d$, hence the condition $(y, t) \in \mathcal{K}_m$ becomes

$$||Ax + b||_2 \le c^\top x + d, \tag{3}$$

where $A \in \mathbb{R}^{m,n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, and $d \in \mathbb{R}$.

• For example, the quadratic constraint

$$x^{\top}Qx + c^{\top}x \le t, \quad Q \succeq 0$$

can be expressed in conic form as

$$\left\| \left[\begin{array}{c} \sqrt{2}Q^{1/2}x \\ t - c^{\top}x - 1/2 \end{array} \right] \right\|_{2} \le t - c^{\top}x + 1/2.$$

Fa18 7 / 19

Second-order cone programs

 A second-order cone program is a convex optimization problem having linear objective and SOC constraints. When the SOC constraints have the standard form (3), we have a SOCP in standard inequality form:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \qquad \mathbf{c}^{\top} \mathbf{x}$$
s.t.:
$$\|A_i \mathbf{x} + b_i\|_2 < \mathbf{c}_i^{\top} \mathbf{x} + d_i, \quad i = 1, \dots, m.$$

where $A_i \in \mathbb{R}^{m_i,n}$ are given matrices, $b_i \in \mathbb{R}^{m_i}$, $c_i \in \mathbb{R}^n$ are vectors, and d_i are given scalars.

SOCPs are representative of a quite large class of convex optimization problems.
 Indeed, LPs, convex QPs, and convex QCQPs can all be represented as SOCPs.

Linear programs as SOCPs

The linear program (LP) in standard inequality form

$$\min_{x} c^{\top}x$$
s.t.: $a_{i}^{\top}x \leq b_{i}, i = 1, ..., m,$

can be readily cast in SOCP form as

$$\min_{\mathbf{x}} \qquad \mathbf{c}^{\top} \mathbf{x}$$
s.t.:
$$\|C_i \mathbf{x} + d_i\|_2 \le b_i - \mathbf{a}_i^{\top} \mathbf{x}, \quad i = 1, \dots, m,$$

where $C_i = 0$, $d_i = 0$, i = 1, ..., m.

Quadratic programs as SOCPs

The quadratic program (QP)

$$\min_{x} \quad x^{\top} Q x + c^{\top} x$$
s.t.:
$$a_{i}^{\top} x \leq b_{i}, \qquad i = 1, \dots, m,$$

where $Q = Q^{\top} \succeq 0$, can be cast as an SOCP as

$$\min_{x,y} c^{\top}x + y$$
s.t.:
$$\left\| \begin{bmatrix} 2Q^{1/2}x \\ y - 1 \end{bmatrix} \right\|_{2} \le y + 1,$$

$$a_{i}^{\top}x \le b_{i}, \qquad i = 1, \dots, m.$$

Fa18 10 / 19

Quadratic-constrained quadratic programs as SOCPs

The convex quadratic-constrained quadratic program (QCQP)

min

$$\min_{x} \quad x^{\top} Q_0 x + a_0^{\top} x$$
 s.t.: $x^{\top} Q_i x + a_i^{\top} x \leq b_i, \quad i = 1, \dots, m,$ with $Q_i = Q_i^{\top} \succeq 0, \ i = 0, 1, \dots, m$, can be cast as an SOCP as
$$\min_{x,t} \quad a_0^{\top} x + t$$

s.t.:
$$\left\| \begin{bmatrix} 2Q_0^{1/2}x \\ t-1 \end{bmatrix} \right\|_2 \le t+1,$$

$$\left\| \begin{bmatrix} 2Q_i^{1/2}x \\ b_i-a_i^\top x-1 \end{bmatrix} \right\|_2 \le b_i-a_i^\top x+1, \quad i=1,\ldots,m.$$

Fa18 11 / 19

Sums and maxima of norms

The problem

$$\min_{x} \sum_{i=1}^{p} \|A_i x - b_i\|_2,$$

where $A_i \in \mathbb{R}^{m,n}$, $b_i \in \mathbb{R}^m$ are given data, can be readily cast as an SOCP by introducing auxiliary scalar variables y_1, \ldots, y_p and rewriting the problem as

$$\min_{x,y} \sum_{i=1}^{p} y_{i}$$
s.t.: $||A_{i}x - b_{i}||_{2} \le y_{i} \quad i = 1, ..., p.$

Similarly, the problem

$$\min_{x} \quad \max_{i=1,\ldots,p} \|A_i x - b_i\|_2$$

can be cast in SOCP format as

$$\min_{\substack{x,y\\ \text{s.t.:}}} y$$
s.t.:
$$||A_ix - b_i||_2 \le y \quad i = 1, \dots, p.$$

Fa18 12 / 19

Inventory control

Classic inventory control model of Harris (1913):

$$\min_{x>0} hx + \frac{cd}{x},$$

where

- x is the order quantity (to be determined);
- h is the annual cost of holding one unit in stock;
- c is the charge for a delivery, and d is the annual demand.

Multi-item extension

$$\min_{x} \sum_{i=1}^{n} h_{i} x_{i} + \frac{c_{i} d_{i}}{x_{i}} : b^{T} x \leq b_{0}, I \leq x \leq u,$$

where

- $x \in \mathbb{R}^n$ is the order quantity vector;
- $h, c, d \in \mathbb{R}^n$ correspond to holding, delivery costs, and demand;
- $b_0, b \in \mathbb{R}^n$ correspond to space constraints;
- $l, u \in \mathbb{R}^n_{++}$ correspond to bounds on vector x.

SOCP model

We introduce slack variables to model the fractional part:

$$\min_{x,y} \sum_{i=1}^{n} h_{i}x_{i} + c_{i}d_{i}y_{i} : b^{T}x \leq b_{0}, I \leq x \leq u, y_{i}x_{i} \geq 1, 1 \leq i \leq n.$$

As seen in page 6, the hyperbolic constraints on $y, x \in \mathbb{R}^n_{++}$ can be equivalently expressed as a n second-order cone constraint in 3D:

$$\left\| \left(\begin{array}{c} 2 \\ yi - x_i \end{array} \right) \right\|_2 \le y_i + x_i, \quad i = 1, \dots, n.$$
 (5)

Hence, the above problem is an SOCP.

Fa18 15 / 19

Facility location problems

- Consider the problem of locating a warehouse to serve a number of service locations. The design variable is the location of the warehouse, $x \in \mathbb{R}^2$, while the service locations are given by the vector $y_i \in \mathbb{R}^2$, $i = 1, \ldots, m$.
- One possible location criterion is to determine x so as to minimize the maximum distance from the warehouse to any location. This amounts to consider a minimization problem of the form

$$\min_{x} \max_{i=1,\ldots,m} \|x-y_i\|_2,$$

which is readily cast in SOCP form as follows:

$$\min_{\substack{x,t\\ \text{s.t.:}}} t$$
s.t.: $||x - y_i||_2 \le t$, $i = 1, \dots, m$.

Fa18 16 / 19

Facility location problems

 An alternative location criterion, which is a good proxy for the average transportation cost, is the average distance from the warehouse to the facilities:

$$\min_{x} \frac{1}{m} \sum_{i=1}^{m} ||x - y_{i}||_{2},$$

which can be cast as the SOCP

$$\min_{x,t} \quad \frac{1}{m} \sum_{i=1}^{m} t_i$$

$$\text{s.t.:}\quad \|x-y_i\|_2 \leq t_i, \quad i=1,\ldots,m.$$

Fa18 17 / 19

Square-root LASSO

$$p^* := \min_{w} \|X^T w - y\|_2 + \lambda \|w\|_1$$

where

- $X \in \mathbb{R}^{m \times n} = [a_1, \dots, a_n]$ is the data matrix, with $a_i \in \mathbb{R}^m$ the vector that corresponds to feature i;
- $y \in \mathbb{R}^m$ is a response vector;
- $\lambda > 0$ is a sparsity-inducing parameter;
- $w \in \mathbb{R}^n$ is the vector of regression coefficients.

Above is an SOCP (why?)

Fa18 18 / 19

Examplar selection

We are given a data matrix $X = [x_1, \ldots, x_m] \in \mathbb{R}^{m \times n}$, with $x_i \in \mathbb{R}^m$ the data points. We seek to find a subset of data points $\{x_j\}_{j \in \mathcal{J}}$, with $\mathcal{J} \subseteq \{1, \ldots, m\}$ having a low number of elements, such that

$$\forall i \in \{1,\ldots,n\} : x_i \approx \sum_{j \in \mathcal{J}} x_j w_{ij}$$

In other words, all the data points can be accurately represented as a linear combination of a few data points. This means that a lot of the *columns* of the matrix W are entirely zero.

The problem can be modeled as an SOCP:

$$\min_{W = [w_1, ..., w_m]} \|X - XW^T\|_F + \lambda \sum_{j=1}^m \|w_j\|_2$$

The above problem encourages the columns in W to be entirely zero. The indices j of the non-zero columns form the set \mathcal{J} .

Fa18 19 / 19