DTMC

Chance

1. PCTL formulas are ϕ with the following syntax:

$$\begin{array}{ll} \phi & ::= & \mathbf{true} \mid p \mid \phi_1 \wedge \phi_2 \mid \neg \phi \mid \mathbf{P}_{\sim p}[\psi] \\ \psi & ::= & \mathbf{X}\phi \mid \phi_1 \ \mathbf{U}^{\leq k} \ \phi_2 \mid \phi_1 \ \mathbf{U} \ \phi_2 \end{array}$$

where p is an atomic proposition, and \sim is one of $\leq, <, \geq, >, =$.

- (a) Give the formal semantic of PCTL, interpreted over DTMC.
- (b) Let's introduce some derived operators with the 'usual' meaning: \lor , \rightarrow , and **F** (or \diamondsuit). Propose a definition for them.
- (c) Developer Peter Parker claims that $\neg \mathbf{P}_{>c}\phi$ is equivalent to saying $\mathbf{P}_{\leq c}\phi$. Is Peter right?
- (d) The 'usual' way to define \mathbf{G} is: $\mathbf{G}\phi = \neg \mathbf{F} \neg \phi$. So, for example $\mathbf{P}_{\geq 0.8}[\mathbf{G}a]$ can be expressed as $\mathbf{P}_{\geq 0.8}[\neg \mathbf{F} \neg a]$. Unfortunately, the syntax of PCTL does not have negation over the temporal formula (we only have negation over proposition and probabilistic formulas). So, the formula " $\mathbf{P}_{\geq 0.8}[\neg \mathbf{F} \neg a]$ " is not allowed in PCTL. How do you then propose to define $\mathbf{P}_{\geq p}[\mathbf{G}\phi]$?
- 2. Explain why in PCTL (e.g. interpreted over DTMC) $\mathbf{P}_{\geq 1}[\mathbf{F}\phi]$ is not the same as CTL $\mathbf{AF}\phi$ (the former is weaker than the latter). Give an example that shows the difference. Note: $\mathbf{F}\phi$ is defined as $true\ \mathbf{U}\ \phi$.
- 3. Consider the following DTMC M modelling some system:

Consider the following PCTL properties to check:

- $P_{>0.82}[p \ U \ q]$
- $P_{<0.82}[p \ U \ q]$
- $\mathbf{P}_{=?}[p \ \mathbf{U} \ q]$

What do these formula say? Then describe the procedure to check them (or at least one of them) on M.

4. Consider again the DTMC M in No. 3. On which states of M the following properties hold?

1

- $\mathbf{P}_{\leq 0}$ [$p \mathbf{U} \neg (p \lor q)$].
- $\mathbf{P}_{\geq 1}$ [$p \mathbf{U} \neg (p \lor q)$].
- $\mathbf{P}_{\geq 0.18} [p \ \mathbf{U} \ \neg (p \lor q)].$
- $\mathbf{P}_{<0.18} [p \ \mathbf{U} \ \neg (p \lor q)].$
- 5. Consider again the DTMC M in No. 3. Which states satisfy $\mathbf{P}_{\leq 0.5}$ [p \mathbf{U} $\mathbf{P}_{\geq 1}[q$ \mathbf{U} p]]? (Well, obviously state 5, but which other states, if any, satisfy the property?)