1 Data Model

As an example, let's define two structures, one to describe/list "Activities" (like a term project, course project, etc.) and a second one to describe/list the enrolled students (assuming that each enrolled student has one, or more, advisors and a set of reviewers.

Note: As in any "procedural language", one is advised to pay special attention and carefully design the data model, since this will shape the functions which will set and use said data.

1.1 Activity Set

For the activities one could set an "starray" as follow:

```
\starray_new:n {activity}
\starray_def_from_keyval:nn {activity} {
   name = Activity's name ,
   acronym = ACRO,
   coord . struct = {
       name = Coordinator's name,
       title = Coordinator's~ title ,
     } ,
   calendar . struct = {
       date = {-day-} ,
        week = {-week-}
       event = {-event-} ,
     } .
                     %%% 'unique ID' for checklists
   chkID =
                     %%% This shall be a prop list of
   chkmarked = .
                                                       marked itens
   chkunmarked = ,
                    %%% This shall be a prop list of unmarked itens
   chkref = ,
                     %%% This shall be a prop list of ref
 }
```

Whereas, the "coord" sub-structured is for the activity's coordinator, whilst "calendar" shall (for instance) contains a list of calendar events, and, finally, the many "chk*" will be used for a "check list".

Note: The "chkID" (and checklists). In many cases it's handy to have an unique identifier for a given structure. That can be obtained with \starray_get_unique_ID:nN, and to avoid having to call this function time and time again, one can just store that ID as a field for later use. (as it will be done in this example).

Note: Could the Coordinator's name and title be a direct property (dismissing the "coord" sub-structure)? of course, that's a matter of taste/choice, on how to model it.

1.2 Student Set

Similarly, a student's structure might contain, besides student's name, work title, some flags, an advisor (and co-advisor, if needed), reviewer's list (with a provision for reviewer's grade, if needed).

Of course, one doesn't need to define a starray structure using \starray_def_from_keyval:nn, but, as in this, if the set of properties is known, it always makes for a cleaner definition.

Note: The fields/properties defaults can be anything, including usual \LaTeX 2_{ε} commands, like a \rule which is handy, for instance, when generating forms, e.g., if the fields are all set, a form can be created with the proper values, otherwise, it will be created with "rules" in place (no need to test if the properties were set).

```
\starray_new:n {student}
\starray_def_from_keyval:nn {student} {
     self = , \% this shall be self hash (if any)
     first = ,
     last = ,
     name = \text{\ensuremath{$\setminus$}} \{.1pt\} \ ,
     Nproc = \rule{\l_stdemo_ID_rule_dim}{.1pt} ,
     ID = \rule{\l_stdemo_ID_rule_dim}{.1pt} ,
     email = \rule{\l__stdemo_email_rule_dim}{.1pt}
     worktitle = \rule{\l__stdemo_worktitle_rule_dim}{.1pt} ,
     remarks =
     board-local = {local} ,
     board-date = {dia} ,
board-time = {hora} ,
     gradeavrg = 0,
     grade = ,
     flag-null = \c_false_bool , %% IF no grade was given flag-graded = \c_false_bool , %%% IF gradeavrg AND finalgrade already calculated (or defined)
     flag-approved = \c_false_bool ,
     flag-coadvisor = \c_false_bool ,
     advisor . struct = {
           first = ,
            last =
           name = \rule{\l__stdemo_name_rule_dim}{.1pt},
            institution = \rule{\l_stdemo_name_rule_dim}{.1pt},
            title = \rule{\l__stdemo_title_rule_dim}{.1pt} ,
            \label{eq:constraint} $$ email = \left( \sum_{s,t} (1_s) - \left( \sum_{s,t} (1_s) - \sum_{s,t} (1_s) \right) \right) $$ is $t \in \mathbb{N}. $$
     coadvisor . struct = {
           first = ,
           name = \left\{ \left\{ \sum_{stdemo\_name\_rule\_dim} \right\} \left\{ .1pt \right\},
            institution = \rule{\l_stdemo_name_rule_dim}{.1pt},
           title = \rule{\l__stdemo_title_rule_dim}{.1pt} ,
           \label{eq:constraint} $$ = \left\{ \sum_{s=0}^{s} (1_s) \right\} . $$ in $s \in \mathbb{N} . $$ in $s \in 
     reviewer . struct = {
           first = ,
            last =
           name = \rule{\l__stdemo_name_rule_dim}{.1pt},
            institution = \rule{\l_stdemo_name_rule_dim}{.1pt},
            title = \rule{\l_stdemo_title_rule_dim}{.1pt} ,
            email = \rule{\l_stdemo_email_rule_dim}{.1pt} ,
            pointA = ,
           pointB = ,
            pointC = ,
           pointD = ,
            grade = 0 ,
           flag-set = \c_false_bool ,
  }
```