1 Cel ćwiczenia

Celem cwiczenia jest pomiar oporu elektrycznego pojedynczych rezystorów oraz układu rezystorów połaczonych szeregowo i równolegle z wykorzystaniem mostka pradu stałego (mostek Wheatstone'a).

2 Badanie rezystancji pojedynczych rezystorów o nieznanej wartości

2.1 pomierzone dane

Rezystor	$R_n [\Omega]$	$l_1 [\mathrm{mm}]$	$l_2 [\mathrm{mm}]$
1	152	480	520
2	620	506	494
3	430	504	496
4	2040	501	499
5	3030	502	498
6	13800	500	500

 R_n - opór wzorcowy mostka

 l_1 - położenie ślizgacza na skali milimetrowej listwy

2.2 obliczenie rezystancji

korzystamy ze wzoru¹

$$R_x = R_n \frac{l_1}{l_2}$$

 R_x - opór badanego rezystora

 R_n - opór wzorcowy mostka

 l_1 - położenie ślizgacza na skali milimetrowej listwy

Rezystor	$R_x [\Omega]$
1	140
2	635
3	437
4	2048
5	3054
6	13800

https://pg.edu.pl/files/ftims/2021-03/cwiczenieE3.pdf (E3.8)

3 Badanie rezystancji układów rezystorów połączonych szeregowo

3.1 pomierzone dane

Rezystor	$R_n [\Omega]$	$l_1 [\mathrm{mm}]$	$l_2 [\mathrm{mm}]$
4 i 5	5000	508	492
4 i 2	2720	500	500
5 i 2	3780	500	500

 R_n - opór wzorcowy mostka

 l_1 - położenie ślizgacza na skali milimetrowej listwy

3.2 obliczenie rezystancji

do obliczenia rezystancji korzystamy z tego samego wzoru co w pkt. 2.2 otrzymujemy:

Rezystor	$R_x [\Omega]$	Z teorii
4 i 5	5163	5103
4 i 2	2720	2683
5 i 2	3780	3689

4 Badanie rezystancji układów rezystorów połączonych równolegle

4.1 pomierzone dane

Rezystor	$R_n [\Omega]$	$l_1 [\mathrm{mm}]$	$l_2 [\mathrm{mm}]$
4 i 5	1260	499	501
4 i 2	495	500	500
5 i 2	540	500	500

 R_n - opór wzorcowy mostka

 l_1 - położenie ślizgacza na skali milimetrowej listwy

4.2 obliczenie rezystancji

do obliczenia rezystancji korzystamy z tego samego wzoru co w pkt. 2.2otrzymujemy:

Rezystor	$R_x [\Omega]$	Z teorii
4 i 5	1255	1226
4 i 2	495	485
5 i 2	540	526

5 Badanie drutów konstantanowych o różnej średnicy

5.1 pomierzone dane

d [mm]	$R_n [\Omega]$	$l_1 [\mathrm{mm}]$	l_2 [mm]
0,35	5	503	497
$0,\!50$	2	544	456
0,70	1	547	453
1,00	1	365	635

d - średnica drutu

 \mathcal{R}_n - opór wzorcowy mostka

 l_1 - położenie ślizgacza na skali milimetrowej listwy

5.2 obliczenie rezystancji

do obliczenia rezystancji korzystamy z tego samego wzoru co w pkt. $2.2\,$ otrzymujemy:

$$\begin{array}{c|cc} d \ [mm] & R_x \ [\Omega] \\ \hline 0.35 & 5.06 \\ 0.50 & 2.39 \\ 0.70 & 1.21 \\ 1.00 & 0.57 \\ \hline \end{array}$$

- 5.3 Zależność R $=\!\!f(\frac{1}{d^2})$
- 5.4 obliczenie oporu właściwego konstantatu
- 6 Wnioski