Where does the error come from?

In order to find the appropriate model to improve the performance, we need to diagnose the source of the error.

Review

From bias or variance?

A more complex model does not always lead to better performance on *testing data*.

Estimator

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is $\mu \longrightarrow f_{mean} = \mu$
 - assume the variance of x is σ^2
- Estimator of mean μ f*mean = m
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

Mean of sample (Estimator)

$$\sum_{n} m = \frac{1}{N} \sum_{n} x^{n} \neq \mu$$

$$\underline{E[m]} = E\left[\frac{1}{N}\sum_{n} x^{n}\right] = \frac{1}{N}\sum_{n} E[x^{n}] = \underline{\mu}$$

We are aiming μ . (f* is unbiased.)

Use "E" to evaluate "bias" of estimator of mean.

of mean

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - ullet assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of mean μ
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^{n} \neq \mu \quad \text{"Bias" of } f_{\text{mean}}^{*} = 0$$
"Variance" of $f_{\text{mean}}^{*} \propto \frac{1}{N}$

Variance depends on the <u>number of samples</u>

(More concentrated) unbiased Smaller N :: Larger N μ

Use "Var" to evaluate "variance" of estimator of mean.

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of variance σ^2 ft variance s
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^{n}$$
 $s = \frac{1}{N} \sum_{n} (x^{n} - m)^{2}$

Biased estimator "Bias" of f*variance =

$$E[s] = \frac{N-1}{N}\sigma^2 \neq \sigma^2$$

Parallel Universes Different dataset.

• In all the universes, we are collecting (catching) 10 Pokémons as training data to find f^{\ast}

Parallel Universes

• In different universes, we <u>use the same model</u>, but obtain different f^* Linear regression

The complexity of the model $\nearrow \Rightarrow$ The variance \nearrow

Simpler model is less influenced by the sampled data

More general

Consider the extreme case f(x) = 5(Won't be affected at all) 11/22

Bias

$$E[f^*] = \bar{f}$$

• Bias: If we average all the f^* , is it close to \hat{f} ?

The complexity of the model *>* ⇒ The bias *>*

Bias v.s. Variance The error is big because of overfitting.

What to do with large bias?

- Diagnosis:
 - If your model cannot even fit the training examples, then you have large bias Underfitting
 - If you can fit the training data, but large error on testing data, then you probably have large

700

500

600

Overfitting

What to do with large variance?

∵ Overfit to training data

More data

Very effective, but not always practical

⇒ Create synthetic data

10 examples

Regularization

May increase bias

Model Selection

- There is usually a trade-off between bias and variance.
- Select a model that balances two kinds of error to minimize total error Don't want to have overfitting and underfitting.

Homework

public

private

Training Set

Testing Set

Testing Set

Model 2
$$\longrightarrow$$
 Err = 0.7

Model 3
$$\longrightarrow$$
 Err = 0.5 -

I beat baseline!

No, you don't

 \rightarrow Err > 0.5

What will happen?

http://www.chioka.in/howto-select-your-final-modelsin-a-kaggle-competitio/

(hyper-parameters)

We use CV to decide the model or training strategy.

Cross Validation (CV)

Divide the training data into N equal parts.

N-fold Cross Validation

Only use training data in CV.

After CV, use the whole training data to train the model, and then send this model for testing.

Testing Set

public

Testing Set

private

Reference

• Bishop: Chapter 3.2