MAJOR PROJECT: IMAGE PROCESSING INTERFACE

SEM: 8TH

BRANCH:ECE

BATCH:2017-2021

GROUP MEMBERS: SAJAL CHANDRA (04314802817)

OJAS (35914802817)

ROHIT KUMAR (04214802817)

MENTOR: DR. R.K CHOUDHARY

INTRODUCTION

• AIM: We aim to create a interface that allows one to select an image processing function (for eg: cartoonify image, color detection etc.), and then demonstration of the function automatically displays.

DIFFERENT LIBRARIES USED

- 1.NUMPY: It is used for working with arrays. It also helps for scientific computing in python.
- 2.PANDAS: It is an open source python package that is most widely used for data analysis and ML tasks. It is built on top of another package named Numpy.
- 3.CV2: OpenCV-Python is a library of python bindings designed to solve computer vision related tasks. It provides us with functions like cv2.imread() which loads an image directly from the specified file.
- 4.PILLOW: It is a Python Imaging Library (PIL), which adds support for opening, manipulating and saving images.
- 5.PySimpleGUI: It is a Python Package that enables Python programmers of all levels to create GUIs. We specify our GUI window using a "layout" which contains widgets or elements.

OPENCY VS MATLAB

OPENCV	MATLAB
Faster in execution	Convenient in developing and data represntation
Harder to learn	Comparatively easy to learn
Useful for rapid prototyping	Its program are not portable
It is open source	It is not open source

COLOR DETECTION

- Colors are made up of 3 primary colors; red, green, and blue. In computers, we define each color value within a range of 0 to 255. So in how many ways we can define a color? The answer is 256*256*256 = 16,581,375.
- We will be using a dataset that contains RGB values with their corresponding names.

STEPS

- 1.TAKING IMAGE FROM USER
- 2.READ CSV FILE

- 3. SET A MOUSE CALLBACK EVENT ON A WINDOW
- 4.CREATE DRAW FUNCTION
- 5.CALCULATE DISTANCE TO GET COLOR NAME
- 6.DISPLAY IMAGE ON WINDOW

REAL TIME HUMAN DETECTION

- 1.lmport the libraries
- 2. Model building for detecting humans
 - (i)We have used HOGDescriptor with SVM
- (ii) cv2.HOGDescriptor_getDefaultPeopleDetector() calls the pre-trained model for Human detection of OpenCV and then we will feed our support vector machine with it.
- 3. Detect() Method

Video: A video combines a sequence of images to form a moving picture. We call these images as Frame. So in general we will detect the person in the frame. And show it one after another that it looks like a video.

That is exactly what our Detect() method will do. It will take a frame to detect a person in it.

Make a box around a person, show the frame and return the frame with person bounded by a green box.

•detectMultiScale()

It returns 2-tuple.

List containing Coordinates of bounding Box of person.

Coordinates are in form X, Y, W, H.

Where x,y are starting coordinates of box and w, h are width and height of box respectively.

Confidence Value that it is a person.

4. Human Detector() method: There are two ways of getting Video.

(i)Web Camera

(ii)Path of file stored

- 5. DetectByCamera() method :cv2.VideoCapture(0) passing 0 in this function means we want to record from a webcam. video.read() read frame by frame. It returns a check which is True if this was able to read a frame otherwise False.
- 6. DetectByPathVideo() method
- 7. DetectByPathimage() method: This method is used if a person needs to be detected from an image.
- 8. Argparse() method

The function argparse() simply parses and returns as a dictionary the arguments passed through your terminal to our script. There will be Three arguments within the Parser:

- ☐ Image: The path to the image file inside your system
- ☐ Video: The path to the Video file inside your system
- Camera: A variable that if set to 'true' will call the cameraDetect() method.

HUMAN DETECTION IN VIDEO

Imported from YouTube

Imported from the System

HUMAN DETECTION IN IMAGES

4/5 correct classifications
1 human missed

6/6 correct classification

3/3 correct classifications

10/10 correct classifications
1 mis-classification

APPLICATIONS

- 1.This color detection functionality can recognize and detect colors which are adequate for applications such as medical diagnosis, color printing, computer color monitor calibration etc.
- 2.This Basic application can be further incorporated in applications which require human detection in a visual surveillance .It can help in areas like person identification, human gait characterization, congestion analysis etc.

RESULTS

ADDITIONAL FILTERS (UPDATE)

AGE AND GENDER CLASSIFICATION

- Prototxt and CaffeModel
- Age divided in buckets=>(0-2), (4-6), (8-12),

(15-22), (25-34), (35-43), (44-59), (60+)

10/12 Age groups and Genders Classified Correctly

Both Age and Gender identified correctly

Gender identified correctly

Algorithm deceived by an actor's looks

Both Age and Gender identified correctly

Bollywood Tv Hindi Hit the 🔔 icon for notification

Bollywood Tv Hindi Hit the 🔔 icon for notification

