05. GBM (Gradient Boosting Machine)	- GBM FIDITI IFZFDIET
• 부스팅 알고2음	(트리 기반 자카네의 파라이터 생각)
मिरामाधा अर्ची चित्रा (veak learner)डे	loss
순자적으로 학합 - 예측하면서 잘못 예속한	경사하강법에서 사용할 병하구
जार्गिया गरेरा मेलई इस <u>१२२</u> गर्गिस	default = 'deviance'
나가면서 학습하는 방법	learning_rate
CL) Ada Boost (Adaptive boosting)	:GBM이 चंधि येखाई क्रांगिक येश्वीट विधेष्ट
124に10= サヘモ	Weak learnerat fataez late train
- AdaBoast (데이다 부스트)	나गर्ना युक्तर मि
우류 데이더에 가중치를 부여하면서	: 041 x12], default = 0.1
부스팅을 수행하는 대표적인 알고객	、 次个→ 刻化 開放 弘川 X → 中国 성능 J
- GBM (Gradient Boast Machine)	n — estimators 마 상호 보완적으로 조합하여 사용
Ada Booster Ant	· learning-rate ② & n - estimators ③
가승치 업데이트를 검사하상법 이용 (Gravien+	→ 한꺼점까지 떠돌 성능 홍아진 우이
Descent)	→ २च्छा भर्म र नांक् छ है से स्वता कि । भाग x
第二十二十二	n- estimators
y : 변경의 실제값	Weak learner of 147
ス.,ススh: 피처 F(ス): 피처미 기반한 여득함수	イン god fantal okay → fathet f
	default = 100
ユネリ h(な)= y-Fax)	Subsample
경사하상법: y-F(2) 최살하는 방향으로 반복적으로 가수지 밀데이트	Weak leamer 11 stan Hait
: 일반적으로 갤덤 포레스트에 비해 여름 성능수	데이터 생활길 개수 : default = 1 (전체 하음 데이터 기반)
but 수등성 시간 수 등 등이 때 따라이다 튜닝 의	: 과자늄 thui) 1년다 작게 전쟁
700 700 10 10 0100 10 70 77	۷ ت ۱ ت ت ت ت ت ت ت ت ت ت ت ت ت ت ت ت ت

06 XGBoost (exra Gradient Boost)	- 과직탑 문제가 심각하다면
· XGBoost	: eta
GBM 7184	eta दोई एंडे विने)
: GBM의 느킨수행시간, 과적합 규제 부재등의	num-nound (or n-estimators)는 先の今71
문제 해결	: max_depth V
– স্বস্তু	min - Child - Welght T
: 뛰어난 예측 성능	gamma T
GBM CHUI WHE FOUNT	Subsample, colsample-Lytree 323
ग्रेम् न्या	
Tree pruning (49 712171)	- NOITIZI ZHIH XGBOOSH
자체 내상된 교차 검증	eta → learning rate
स्टिक् रामा मय	Sub-Sample → Subsample
- IPORT ZHIH XCT Doost SHOIL ITZPORT	lambda → reg-lambda
- 일반 파가이터 : 대통트 파가이터 감을 바꾸는 경우 거의 X	alpha → reg_alpha
— 부스터 파라이터 : 트21 최지화, 부스팅, 규제 등라 관련	
— 학습 대신크 파괴미터 : 학습 수행 시 객체 함수, 평가를 위한 지표를 일정	

주요 일반 파라미터	
booster	gbtree(tree based model) /gblinear(linear model) 선택, default = gbtree
silent	default = 0 출력 메세지를 나타내고 싶지 않을 경우 : 1
nthread	CPU의 실행 스레드 개수 default = CPU의 전체 스레드 다 사용

주요 부스터 파라미터	
<pre>eta [defualt = 0.3, alias: learning_rate]</pre>	GBM의 learning_rate와 동일한 파라미터 0~1 값 지정, 부스팅 스템을 반복적으로 수행할 때 업데이트되는 학습 값 defalut = 0.1 보통 0.01~0.2 값 선호
num_boost_rounds	GBM의 n_estimators와 같은 파라미터
<pre>min_child_weight [default = 1]</pre>	트리에서 추가적으로 가지를 나눌지를 결정하기 위해 필요한 데이터들의 weight의 총합 클수록 분할 자제, 과적합 조절하기 위해 사용
<pre>gamma [default = 0, alias : min_split_loss]</pre>	트리의 리프 노드를 추가적으로 나눌지를 결정할 최소 손실 감소값 해당값보다 큰 손실(loss)이 감소된 경우데 리프 노드 분리 클수록 과적합 감소 효과
<pre>max_depth [default = 6]</pre>	트리 기반 알고리즘의 max_depth와 동일 0으로 지정 -> 깊이에 제한 X 보통 3~10의 값 적용
sub_sample [default = 1]	GBM의 subsample과 동일 트리가 커져서 과적합되는 것을 제어하기 위해 데이터를 샘플링하는 비율을 지정 보통 0.5~1 값 적용
colsample_bytree [default = 1]	GBM의 max_features와 유사 트리 생성에 필요한 피처(칼럼)를 임의로 샘플링하는 데 사용 매우 많은 피처가 있는 경우 과적합 조정하는 데 적용
lambda [default = 1, alias : reg_lambda]	L2 Regularization 적용 값, 피처 개수가 많을 경우 적용을 검토, 클수록 과적합 감소 효과 O
alpha [default = 0, alias : reg_alpha]	L1 Regularization 적용 값, 피처 개수가 많을 경우 적용을 검토, 클수록 과적합 감소 효과 O
scale_pos_weight [default = 1]	특정 값으로 치우친 비대칭한 클래스로 구성된 데이터 세트의 균형을 유지하기 위한 파라미터

학습 태스크 파라미터	
objective	최솟값을 가져야 할 손실 함수 정의 이진분류/다중분류인지에 따라 딸라짐
binary:logistic	이진 분류일 때 적용
multi:softmax	다중분류일 때 적용 레이블 클래스의 개수인 num_class 파라미터 지정해야함
multi:softprob	multi:softmax와 유사하나 개별 레이블 클래스의 해당되는 예측 확률을 반환
eval_metric	검증에 사용되는 함수 정의 기본값 : 회귀) mse 분류) error

eval_metric의 값 유형	
rmse	Root Mean Square Error
mae	Mean Absolute Error
logloss	Negative log-likelihood
error	Binary classification error rate(0.5 threshold)
merror	Multiclass classification error rate
mlogloss	Multiclass logloss
auc	Area under the curve

02 1 1 1 0 004		
07 Light GBM	_	- 하대 파가이터 튜닝 방안
° LightGBM		Num_leaves 의 개学 3성으로
: XGBoost 의 장점 제응,	단정 보완	min - child - samples (min - data - in -leaf),
स्ट जागल पहिना युक्री	경우 과적합기	max_depth time Try
10, 000 전 이동는		→ 모델 복잡도 줄이기
: ध्रेम सिष्ठल मानुश ह्य ह	날 방법과 다르게	num_leaves
이프 중심 분할 방덕 사용(lea.	f wise)	: 개별 =2171 개2 4 % 조대 2교의 개수
71 11.	7 1 44	:个一对其它个 & 트리 丑이 7,其改至个,山村
E9 E2	Lleaf wise)	min_data_in_leaf
	트21의 권청 X	· 큰 값으로 설정 → E211+ 깊어지는 것 방지
	최대 손실값 호	max_depth
Alviole 1 A.S	CMAX delfa (oss) パスに Z프 とこき	: 명시적으로 깊이의 크기 저한
7 Sasi Hel MILLE	지옥적으로 분할하면서	8,472 11 211 1112
⇒ १५वहाना द्यार्डि	트2171- 깊이지간 UITHS 125101 규칙	
Bu+ 시간个(通复实车71升后H)	ह्य श्रुष्ट	
	⇒明年 2元年生	
	型位计	

LightGBM 하이퍼 파라미터

num_iterations [default = 100]	반복 수행하려는 트리의 개수 클수록 예측 성능 높아질 수 있지만 너무 크면 과적합 가능
<pre>learing_rate [default = 0.1]</pre>	0~1 사이의 값을 지정하면 부스팅 스텝을 반복적으로 수행할 때 업데이트 되는 학습률 값 n_estimators 크게, learning_rate 작게 -> 예측 성능 향상 가능
<pre>max_depth [default = -1]</pre>	트리 기반 알고리즘의 max_depth와 동일 leaf wise 기반이므로 깊이가 상대적으로 더 깊음
<pre>min_data_in_leaf [default = 200]</pre>	결정트리의 min_samples_leaf와 동일 최종 클래스 결정인 리프 노드가 되기 위해 최소한으로 필요한 레코드 수 과적합 제어
num_leaves [default = 31]	하나의 트리가 가질 수 있는 최대 리프 개수
<pre>boosting [default = gbdt]</pre>	부스팅의 트리를 생성하는 알고리즘을 기술 gbdt : 일반적인 그래디언트 부스팅 결정 트리 rf : 랜덤 포레스트
baggin_fraction [default = 1.0]	데이터를 샘플링 하는 비율(트리가 커져 과적합되는 것을 제어)
feature_fraction [default = 1.0]	개별 트리를 학습할 때마다 무작위로 선택하는 피처의 비율 과적합 제어
lambda_12 [default = 0.0]	L2 regulation 제어 위한 값 피처 개수가 많을 경우 적용 검토, 값이 클수록 과적합 감소효과
lambda_l1 [default = 0.0]	L1 regulation 제어 위한 값 과적합 제어
objective	최솟값이 가져야 할 손실함수 정의 회귀, 다중 클래스 분류, 이진 분류인지에 따라 정해짐

11	기타
0	NEHT (Stacking)
	: 111년 प्रं १८०८ सर प्रं स
	वार्व्यः इर्
	74년 श्रेट्राक्षेट्र विक्रं जाविह गणिट्य
	THI Aliga Foll
	(버타 1년 : 기병 모델의 여름된 데이터
	서트를 다시 기반길 하나
	학업하면 어떡하는 방식)
-	스타잉 모델은 두가지 쫆의 모델 필호
	① 개별적인 개반 모델
	② 이 개별 기반 오델의 데쪽데이터를
	चिक्व जार्गार शहनाम चिक्वांट
	최공 HIEF 모델
	70 - 11-1
•	01 214ta (N=47)
	(V 714te) 15th 71
	과정학을 기비한하기 위하시 최용 어디타
	9델을 위한 데이터 세트를 만들때
	प्रिम ये गाएट अब्हिस चिटा-
	데이터 세트를 이용