ZAD. 1.

(a) Konstruując przykład kolorowania K_8 , pokaż, że $R(3,4) \geq 9$.

(b) Pokaż, że jeśli R(s-1,t) i R(s,t-1) są parzyste, to wtedy tak naprawdę mamy $R(s,t) \leq R(s-1,t) + R(s,t-1) - 1$.

 $\text{Let } x = R(s-1,t) \text{ and } y = R(s,t-1). \text{ We want to consider graph } K_{x+y-1}. \text{ Let } v \in K_{x+y-1} \text{ be any vertex then we have } x+y-2 \text{ and } y = R(s,t-1). \text{ We want to consider graph } K_{x+y-1}. \text{ Let } v \in K_{x+y-1} \text{ be any vertex then we have } x+y-2 \text{ and } y = R(s,t-1). \text{ We want to consider graph } K_{x+y-1}. \text{ Let } v \in K_{x+y-1} \text{ be any vertex then we have } x+y-2 \text{ and } y = R(s,t-1). \text{ We want to consider graph } K_{x+y-1}. \text{ Let } v \in K_{x+y-1} \text{ be any vertex then we have } x+y-2 \text{ and } y = R(s,t-1). \text{ We want to consider graph } K_{x+y-1}. \text{ Let } v \in K_{x+y-1} \text{ be any vertex then we have } x+y-2 \text{ and } y = R(s,t-1). \text{ We want to consider graph } K_{x+y-1}. \text{ Let } v \in K_{x+y-1} \text{ be any vertex then we have } x+y-2 \text{ and } y = R(s,t-1). \text$ edges going from it. For my convenience, all blue edges will be removed and only red edges will remain. If we have x edges going from it, then we good as the neighborhood of v will form a K_x. If we deleted y edges, then we also good because then we have y neighbors that are blue so they can form a K_y which will have a blue K_{t-1} . Now what if we could only find vertices with (x - 1) red edges (and (y - 1) blue ones)? Well then we have a graph with (x + y - 1), an odd number of vertices.

ZAD. 4.

Mając dane dwa grafy G i H, piszemy R(G, H) dla najmniejszej liczby $n \ge 2$ takiej, że dowolne czerwono-niebieskie kolorowanie K_n ma albo czerwony podgraf izomorficzny do G albo niebieski izomorficzny do H.

(a) Dlaczego R(G, H) istnieje?

Every finite graph is a subset of some K_n so we know that in the worst possible scenario we can just get the higher bound by checking what is the smallest clique for which G is a subgraph and the same for H.

(b) Pokaż, że $R(K_{1,t}, K_{r+1}) = rt + 1$ dla wszystkich $r, t \ge 1$. [Wskazówka: Użyj twierdzenia Turána.]