

离子反应与离子共存

日期:	时间:	姓名:	
Date:	Time:	Name:	

\		1
1		
	Y	
	-	

初露锋芒

银离子的解毒传说

银与毒是一个古老的话题。在现代,仍有不少人对银试毒一知半解,不管什么毒都想用银饰品来检验,这是非常不科学的。在民间,银器能验毒的说法也是广为流传。

古人所指的毒,主要是指剧毒的砒霜,即三氧化二砷,古代的生产技术落后,致使砒霜里都伴有少量的硫和硫化物。其所含的硫与银接触,就可起化学反应,使银针的表面生成一层黑色的"硫化银",到了现代,生产砒霜的技术比古代要进步得多,提炼很纯净,不再参有硫和硫化物。银金属化学性质很稳定,在通常的条件下不会与砒霜起反应。可见,古人用银器验毒是受到历史与科学限制的缘故。

有的物品并不含毒,但却含许多硫,比如鸡蛋黄,银针插进去也会变黑。相反,有些是很毒的物品,但却不含硫,比如毒蕈、亚硝酸盐、农药、毒鼠药、氰化物等,银针与它们接触,也不会出现黑色反应。因此,银针不能鉴别毒物,更不能用来作为验毒的工具。银虽不能验毒,然而却能消毒。每升水中只要含有5000万分之一毫克的银离子,便可使水中大部分细菌致死。

银器能验毒的原理是,银在水中可形成带正电荷的离子,能吸附水中细菌,并逐步进入细菌体内,使它的催化剂——脢系统封闭、失活,使细菌失去代谢能力而死亡。所以,用白银作碗、筷使用于日常生活中仍是大有好处的。银只能验出部分含有硫元素的毒物,有机毒物验不出来。如果去野炊的话,淘米洗菜的时候把那些什么银首饰、筷子、戒指等洗干净后放到那里面搅拌一下可以杀死里面的很多的微生物。

学习目标

1. 理解离子反应方程式的意义,掌握书写离子方程式的方法;

Γ | ∠·

2. 学会判断离子共存;

o

3. 了解电解质在溶液中发生化学反应的实质。

重难点

1. 理解离子反应方程式的意义、掌握离子反应方程式的书写并判断离子共存;

2. 了解电解质在溶液中发生化学反应的实质;

根深蒂固

一、离子方程式

离子反应方程式是用实际参加反应的离子所表示的在溶液中进行的反应,它体现了某一类反应的实质。

1、离子反应方程式的书写方法:

- (1) "写、拆、删、查"四步法
- ① 先写出正确的化学反应方程式。
- ② 将方程式两边易溶于水易电离的强电解质改写成离子,单质、氧化物、沉淀、气体、弱电解质、 非电解质则保留化学式。微溶于水的强电解质,若以溶液的形式存在,则改写为离子,若以浊液的形式存 在,则应保留化学式。
- ③ 一般情况下, HSO_4 ⁻应该拆写为 H⁺和 SO_4 ²⁻,多元弱酸的酸式酸根离子,一律不能拆写。如: HCO_3 -、HS⁻等。
- ④ 删除两边没有参加反应的离子,化简各物质的系数成最简整数比,检查方程式两边各原子数是否 平衡,电荷总数是否平衡。

(2)离子反应实质法

- ① 分析反应物在水溶液中的存在形式。易溶于水、易电离的反应物写出其电离方程式;难溶于水、气体、难电离的物质写化学式。
 - ② 判断反应物存在形式的微粒哪些能相互作用生成沉淀、水、气体或者发生氧化还原反应。
 - ③ 综合上述两步写出离子方程式并配平。

书写步骤简记:

- 一写原方程 (第一步写出配平的化学方程式);
- 二改强可溶 (第二步把可溶于水的强电解质改写为离子形式):
- 三删无变者 (第三步删去方程两边没有变化的离子符号):
- 四查两相等 (第四步检查方程两边各元素的原子个数和电荷数是否相等)

【练一练】试试看,写出下列反应的离子方程式

①盐酸与氢氧化钠溶液恰好完全反应:	
②硝酸与氢氧化钾溶液恰好完全反应:	
③硫酸与氢氧化钡溶液恰好完全反应:	

由此可见,离子反应方程式能更好地表示离子反应的实质。它跟一般的化学方程式不同,离子方程式不仅表示特定物质间的某个反应,而且表示了同一类型的离子反应。

【注意】

(1) 可拆不可拆问题: 难溶物质、难电离物质、易挥发物质、单质、氧化物、非电解质均用分子式表示。

- ① 微溶物质作为反应物:若是澄清溶液改写为离子符号,若是悬浊液用分子式表示;微溶物质作为生成物,一般用分子式表示(标"1"号)。
- ② 固体与固体间的离子反应,一般不用离子方程式表示;浓 H₂SO₄与固体的反应,一般也不用离子方程式表示。
- ③ 氨水作为反应物写 NH₃·H₂O,作为生成物,若有加热条件或反应物浓度很大,可写 NH₃(并标"↑"号), 否则一般写为 NH₃·H₂O。
- (2) 不符合反应事实: 产物对不对,离子方程式要做到两配平,即原子个数配平和电荷数配平。

【练一练】

- 1. 下列反应中,可用离子方程式 $CO_3^{2^-}+2H^+$ → CO_2 ↑+ H_2O 表示的是(
 - A. 可溶性碳酸盐和强酸反应
- B. 可溶性碳酸盐和酸反应
- C. 任何碳酸盐和酸反应
- D. 碳酸钙跟盐酸反应
- 2. 下列离子方程式中不正确的是 ()
 - A. 亚硫酸钡与盐酸反应: BaSO₃+ 2H⁺ → Ba²⁺+ SO₂↑+ H₂O
 - B. 铁与足量稀盐酸反应: 2Fe + 6H⁺ → 2Fe³⁺ + 3H₂↑
 - C. 澄清的石灰水跟盐酸反应: $H^+ + OH^- \rightarrow H_2O$
 - D. 氢氧化钠溶液跟硫酸反应: $H^+ + OH^- \rightarrow H_2O$

2、离子反应的应用

物质检验与含量测定:只要对其中特定的离子进行检验或测定即可,不必对物质的所有构成离子进行检验 和测定。

附: 常见离子的检验

离子	所用试剂或操作	现象	相关方程式	
NH ₄ ⁺	加浓碱液、加热	产生刺激性气味气体,且使湿润 红色石蕊试纸变蓝	$NH_4^++OH^- \xrightarrow{\Delta} NH_3\uparrow+H_2O$	
Ag^+	加 NaCl 溶液,后加稀 HNO ₃	产物白色↓,加稀 HNO₃ 后不溶	$Ag^++Cl^- \rightarrow AgCl \downarrow$	
Cl ⁻	加稀 HNO3 酸化的 AgNO3 溶液	产生白色沉淀	$Ag^++Cl^- \rightarrow AgCl\downarrow$	
Br ⁻	加稀 HNO3 酸化的 AgNO3 溶液	产生淡黄色沉淀	$Ag^++Br^- \rightarrow AgBr \downarrow$	
I ⁻	加稀 HNO3 酸化的 AgNO3 溶液	产生黄色沉淀	$Ag^+ + I^- \longrightarrow AgI \downarrow$	
SO ₄ ²⁻	加 HCl 酸化的 BaCl ₂	产生白色沉淀	Ba ²⁺ +SO ₄ ^{2−} →BaSO ₄ ↓	
SO ₃ ²⁻	加盐酸后,产生气体,通 入品红试液,加热	产生无色刺激性气味气体,且使品红试液褪色,加热后恢复原色	$2H^{+}+SO_3^{2-} \longrightarrow SO_2\uparrow +H_2O$	

3、与量有关的离子方程式的书写

(1) 多元弱酸盐与酸的反应

例: a.将碳酸钠溶液滴加到稀盐酸溶液中

b.将稀盐酸溶液滴加到碳酸钠溶液中

解析: a 中其实就是盐酸过量,以碳酸钠为"标准"

离子方程式为: CO₃²⁻+2H⁺→H₂O+CO₂↑

b中其实就是碳酸钠过量,以盐酸为"标准",离子方程式为:H++CO₃2-→HCO₃-

(2) 多元酸的酸式盐与碱反应

例 1: a.碳酸氢钠溶液中加入过量的氢氧化钡溶液

b.氢氧化钡溶液中加入过量的碳酸氢钠溶液

解析: a 中氢氧化钡过量,以碳酸氢钠为"标准"

离子方程式为: HCO₃ +Ba²⁺+OH →BaCO₃ +H₂O

b 中碳酸氢钠过量,以氢氧化钡为"标准"

离子方程式为: 2OH⁻+Ba²⁺+2HCO₃⁻→BaCO₃↓+CO₃²⁻+2H₂O

例 2: a.碳酸氢钙溶液中加入过量的氢氧化钠溶液

b.氢氧化钠溶液中加入过量的碳酸氢钙溶液

解析: a 中氢氧化钠过量,以碳酸氢钙为"标准"

离子方程式为: 2HCO₃⁻+Ca²⁺+2OH⁻→CaCO₃L+CO₃²⁻+2H₂O

b 中碳酸氢钙过量,以氢氧化钠为"标准"

离子方程式为: OH⁻+Ca²⁺+HCO₃⁻→CaCO₃↓+H₂O

例 3: a.硫酸氢钠溶液中加入过量的氢氧化钡溶液

b. 氢氧化钡溶液中加入过量的硫酸氢钠溶液

解析: a 中氢氧化钡过量,以硫酸氢钠为"标准"

离子方程式为: H⁺+SO₄²⁻+Ba²⁺+OH⁻→BaSO₄↓+H₂O

b 中硫酸氢钠过量,以氢氧化钡为"标准"

离子方程式为: Ba²⁺+2OH⁻+2H⁺+SO₄^{2⁻→BaSO₄↓+2H₂O}

总结: "少定多变",把量少的反应物的系数定为"1",以量少的反应物离子数来确定量多的反应物离子前面的系数。

(3)酸性氧化物与碱的反应

例: a. 氢氧化钠溶液中通入少量的二氧化硫气体

b. 氢氧化钠溶液中通入过量的二氧化硫气体

解析: a 中氢氧化钠过量,以二氧化硫为"标准"

 $SO_2 + 2OH^- \rightarrow SO_3^{2-} + H_2O$

b 中二氧化硫过量,以氢氧化钠为"标准"

 $OH^- + SO_2 \rightarrow HSO_3^-$

二、离子共存(实质是离子之间不能发生反应)

- 1. 复分解反应类型(生成沉淀、气体、水)
- (1) 离子间能直接结合生成难溶性物质时,离子不能大量共存。

如: SO₄²⁻与 Ba²⁺、Ag⁺; Ag⁺与 Cl⁻、Br⁻、I⁻、CO₃²⁻、SO₃²⁻、S²⁻; S²⁻与 Cu²⁺、Pb²⁺等不能大量共存。BaCO₃、BaSO₄、CaSO₄(微溶),Cu(OH)₂,Fe(OH)₃等。

- (2) 离子间能结合生成难电离物质时,离子不能大量共存。 如: OH⁻、ClO⁻、CH₃COO⁻与 H⁺; HCO₃⁻、HS⁻、HSO₃⁻、H⁺与 OH⁻等不能大量共存。
- (3) 离子间能结合生成挥发性物质时,离子不能大量共存。 如: CO₃²⁻、HCO₃⁻、SO₃²⁻、HSO₃⁻、S²⁻、HS⁻与 H⁺; NH₄⁺与 OH⁻等不能大量共存。

2. 氧化还原反应类型:

离子之间能发生氧化还原反应时,离子不能大量共存。

如:有氧化性的离子(如: MnO_4 、ClO、 Fe^{3+} 、 NO_3 等)与有还原性的离子(如: S^2 、 SO_3^2 、Br、I、 Fe^{2+} 等)。

3. 还应注意题目的隐含条件:

- (1) 溶液的酸碱性:在酸性溶液中除题给离子外,还应有大量 H^+ ;在碱性溶液中除题给离子外,还应有大量 OH^- 。
- (2) 无色溶液: 应排除 Cu²⁺ (蓝色)、Fe²⁺(浅绿色)、Fe³⁺(棕黄色)、MnO₄ (紫色)。

同时注意以下几种情况:

- ①在有 H⁺存在时,MnO₄⁻、ClO⁻、NO₃⁻的氧化性会增强。而 ClO⁻无论在酸性还是碱性条件都能体现强氧化性。
- ②Fe²⁺与 Fe³⁺可以共存,因为它们之间不存在中间价态。Fe³⁺不能氧化 Cl⁻。
- ③ Fe^{2+} 、 NO_3 ⁻在中性溶液中可以共存。但有 H^+ 时因为 NO_3 ⁻具有强氧化性不能共存。 NO_3 ⁻(即使有 H^+ 时)不能氧化 Cl^- 。
- ④强酸(HCl、HBr、HI、H₂SO₄、HNO₃、HClO₄等)的酸根离子和 H⁺可以共存;但弱酸(HF、H₂CO₃、HClO、H₂S 等)的酸根离子和 H⁺不能共存。
- ⑤OH⁻与强碱(KOH、NaOH、Ba(OH)₂等)的阳离子能共存,但与弱碱的阳离子(如: Cu²⁺、Fe³⁺、Mg²⁺、Al³⁺、Ag⁺、NH₄⁺等)不能共存。
- ⑥弱酸的酸式根离子与 H+、OH⁻都不能共存,如 HCO₃⁻、HS⁻、HSO₃⁻等。
- ⑦常温下,某溶液中由**水电离出**的 $c(H^+)$ 为 10^{-12} mol/L,则该溶液可能是 pH=2 或者 pH=12 的溶液。即该溶液可能为酸性可能为碱性。
- ⑧ SO_3^{2-} 和 S^{2-} 在碱性条件下也可以共存,但在酸性条件下则由于发生 $2S^{2-}+SO_3^{2-}+6H^+→3S_1+3H_2O$ 反应不能共存。
- ⑨注意电解质溶液中至少有一种阳离子和一种阴离子,才能保证溶液为电中性。

知识点 1: 离子反应

题型 1:	离子反	应方程	式的中	写相关
	四儿从	124 J.J TE.	JV UU 1.	

例 1: 下列反应中,可用 $H^++OH^-\rightarrow H_2O$ 表示的是 (

A.	酸和碱反应	В.	强酸和强碱反应
C.	一元强酸和一元强碱反应	D.	强酸和强碱反应生成水和可溶性盐

变式	1: 下列各组物质能发生反应的,写出反应的离子方程式。
(1)	硫酸铜溶液和氢氧化钾溶液
(2)	硝酸钠溶液和氯化钾溶液
(3)	氨水和盐酸溶液
(4)	醋酸钠溶液和盐酸
(5)	氯化铵溶液和氢氧化钠溶液共热
(6)	醋酸溶液和氢氧化钾溶液
变式	2:根据下列各离子方程式,写出相应的化学方程式。
(1)	

 $(1) NH₄⁺+OH \longrightarrow NH₃\uparrow+H₂O_{\underline{}}$

 $(2) H^+ + OH^- \rightarrow H_2O$

 $(3) CO₃²⁻+2H⁺ \rightarrow CO₂\uparrow + H₂O$

 $(4) I^- + Ag^+ \rightarrow AgI \downarrow$

(5) $Ca^{2} + CO_3^{2} \rightarrow CaCO_3 \downarrow$

题型 2: 常见的离子方程式的书写问题

例1: 判断下列离子反应方程式正确与否

- ①氢氧化铁与盐酸反应: H⁺+OH⁻→H₂O
- ②石灰石与盐酸反应: CO₃²+2H⁺→CO₂↑+H₂O
- ③纯碱与醋酸反应: CO₃²⁻+2H⁺→CO₂↑+H₂O
- ④铁和稀硫酸反应: 2Fe+6H+→2Fe³⁺+3H₂↑
- ⑤氯气和溴化钠溶液反应: Cl₂+Br⁻→Cl⁻+Br₂
- ⑥硫酸与氢氧化钡溶液的反应: Ba²⁺+SO₄²⁻→BaSO₄↓
- ⑦硫酸与氢氧化钡溶液的反应: $H^++SO_4^2^-+OH^-+Ba^2+\rightarrow BaSO_4\downarrow+H_2O$
- ⑧氯化钠和硝酸银溶液反应: Na⁺ +Cl⁻+Ag⁺ +NO₃⁻→AgCl↓+Na⁺ +NO₃⁻
- ⑨氯化钠固体和浓硫酸强热制氯化氢: H++Cl→HCl↑

成长为梦想中的白己 变式1: 下列反应的离子方程式中,正确的是() A. 碳酸钙与盐酸: CO₃²⁻+2H⁺→CO₂↑+H₂O B. 醋酸与氢氧化钠溶液: $H^++OH^-\rightarrow H_2O$ C. 铁与稀硫酸: Fe+H⁺→Fe²⁺+H₂↑ D. 亚硫酸钠与稀硫酸: SO₃^{2−}+2H⁺→SO₂↑+H₂O 题型 3: 与量有关的离子方程式的书写 例 1: 写出下列反应的离子方程式: 1. ①将少量 NaOH 溶液滴入过量的 Ca(HCO₃)₂ 溶液中; ②将 Ca(HCO₃)₂溶液与 NaOH 溶液以溶质的物质的量之比 1:1 混合; ③将 Ca(OH)2 溶液与 NaHCO3 溶液以溶质的物质的量比 1:1 混合; ④少量 NaHCO3 溶液滴加到过量的 Ca(OH)2 溶液中。 以上离子方程式均可用下式来表示: 2. ①过量的 NaOH 溶液与 Ca(HCO₃)₂ 溶液反应; ②NaOH 溶液与 Ca(HCO₃)₂ 溶液以溶质的物质的量之比 2:1 反应; ③Ca(OH)2溶液与 NaHCO3溶液以溶质的物质的量比 1:2 反应; ④Ca(OH)₂溶液与过量的 NaHCO₃溶液反应。 其离子方程式均可用下式表示: 3. ①氢氧化钡和硫酸溶液反应(物质的量任意比); ②氢氧化钡和硫酸氢钠以溶质的物质的量之比 1:2 反应; ③氢氧化钡溶液与过量的硫酸氢钠溶液反应。 均可用下式表示其离子反应: 4. ①硫酸氢钠溶液和氢氧化钡溶液以溶质的物质的量比 1:1 反应; ②NaHSO4溶液和过量的Ba(OH)2溶液反应。 均用下式表示其离子反应: 5. ① CO_2 与 NaOH 溶液以反应物物质的量之比 1:2 反应; ②CO2 通入过量的 NaOH 溶液中。 均用下式来表示其离子反应: ③过量 CO2 通入 NaOH 溶液中:

④CO₂与 NaOH 溶液以反应物物质的量之比 1:1 反应。

均用下式来表示其离子反应:

变式1: 写出下列反应的离子方程式

(2) 往氯化钙的浓溶液中加入氢氧化钠溶液,生成白色沉淀

变式 2: 写出下列反应的离子方程式

(1) 向 NaHSO4溶液中,逐滴加入 Ba(OH)2溶液至中性,请写出发生反应的离子方程式:

(2) 在以上中性溶液中,继续滴加 Ba(OH)2溶液,请写出发生反应的离子方程式:

0

【方法提炼】根据化学反应或化学方程式来书写离子方程式,可能有以下几种情况

- 1. 给出一个化学反应的反应物和生成物,要求书写离子方程式。有时只给出部分生成物,要求根据所学的知识去推测其他生成物,并书写离子方程式。
 - 2. 给出一个化学反应的反应物和实验现象,要求书写离子方程式。
 - 3. 在无机物的推断题中, 作为一个小问题, 要求写出某一反应的离子方程式。
 - 4. 根据反应中某些物质或离子量的关系来书写离子方程式。

【注意】(1)只有易溶的强电解质才能拆成离子形式。

- (2)单质、氧化物、非电解质、弱电解质(包括 H2O)以及难溶的强电解质都保留其化学式。
- (3)弱酸的酸式根离子不能分开写(如 HCO_3^-), 而强酸的酸式根离子要拆开写(如 $NaHSO_4$ 写成离子形式: $Na^++H^++SO_4^{2^-}$)。
- (4)对于微溶物,作为反应物若是溶液状态拆成离子形式,若是浑浊状态写化学式;作为生成物写化学式。
- (5)书写时要注意检查等式两边的离子所带电荷总数是否相等,若是氧化还原反应还要检查氧化剂得电子总数与还原剂失电子总数是否相等,此外还要检查原子是否守恒。

知识点 2: 离子共存

例1: 7	下列各组离子, 因发	生氧化还原反应而	不能大量共存的是	
A.	Na ⁺ 、K ⁺ 、HCO ₃ ⁻ 、	H^+	B. Fe ²⁺ , Na ⁺ , C	H ₃ COO ⁻ 、H ⁺
C.	NH_4^+ , H^+ , I^- , NC) ₃ ⁻	D. H ⁺ 、Fe ²⁺ 、Na	+、OH ⁻
变式 1:	在 pH 为 1 的溶液口	中,含有 Mg ²⁺ 、Fe	²⁺ 、Al ³⁺ 三种阳离号	子,该溶液中可能存在的阴离子
是 ()			
Α.	Cl B. 1	NO_3^-	C. CO ₃ ²⁻	D. S ²⁻
变式 2:	在下列溶液中,各	组离子一定能够大	量共存的是()
Α.	使酚酞试液变红的	溶液:Na+、Cl-、	$SO_4^{2^-}$, Fe^{3+}	
В.	使紫色石蕊试液变	红的溶液:I¯、Mg	S^{2+} , NO_3^- , Cl^-	
C.	$c(H^+) = 10^{-12} \text{mol/L}$	的溶液: K+、Ba ²⁺ 、	Cl Br	
D.	碳酸氢钠溶液: K+	、SO4 ²⁻ 、Cl ⁻ 、H ⁺		
例 2: □	下列各组离子,在水	溶液中能大量共存	的是()	
	K^+ , Ca^{2+} , HCO_3^-		B. K ⁺ , Na ⁺ , HC	O_3 , OH
	Fe ³⁺ 、Na ⁺ 、I ⁻ 、SO		D. Al ³⁺ , OH ⁻ , A	
变式1:	在 pH=13 的溶液中	,能大量共存的离	万组是 ()
Α.	Al ³⁺ 、NH ₄ +、SO ₄ ²⁻	. C1 ⁻	B. Na ⁺ , K ⁺ , SO	₄ ²⁻ 、HCO ₃ ⁻
C.	K^+ , Fe^{2+} , Cl^- , Mt	nO_4^-	D. Ba ²⁺ , Na ⁺ , C	1 NO ₃
变式 2:	某强酸溶液中,含	大量的 Fe ²⁺ 、Ba ^{2+、}	、K+,则此溶液中	不可能存在的离子
是 ()			
A.	$\mathrm{MnO_4}^-$	B. Fe ³⁺	C. Cl	D. Cu ²⁺
【方法抗	是炼】离子在溶液中;	能否大量共存问题	,实质是离子间能	发生化学反应就不能大量共存。
(1) 妇	· 今生战难浓或微浓。	场质 的室子不能士-	最	

- (2) 结合生成气体物质的离子不能大量共存
- (3) 结合生成难电离物质的离子不能大量共存
- (4) 发生氧化还原反应的离子不能大量共存
- (5) 弱酸酸式根离子不能与 H+、OH-共存
- *(6)发生双水解反应的离子不能大量共存
- * (7) 能发生络合反应的离子不能大量共存

知识点 3: 离子反应和共存综合问题

例 1: A、B、C、D、E 均为可溶于水的同体,组成它们的离子可能有: Na⁺、Ca²⁺、Ba²⁺、ClO⁻、HSO₄⁻、CO₃² -、Cl⁻。分别取它们的溶液进行实验,主要操作及现象如下:

- ①向 A 的溶液中通入二氧化碳, 再加入品红溶液, 红色褪去。
- ②将 B 和 C 的溶液混合,生成白色沉淀,该沉淀可溶于 E 溶液。
- ③将 B 和 D 的溶液混合,生成白色沉淀,继续加入过量的 E 溶液,有气泡产生的同时还有白色沉淀存在。
- ④A 和 E 溶液的焰色反应都呈黄色。
- (1)写出下列物质的化学式: A_____、C___、D____。
- (2)写出 A~E 溶液中,与铝发生置换反应的离子方程式为

(3)向 B 的溶液中,缓慢滴入少量稀的 E 溶液,其主要的离子方程式为

变式 1: 将 2.5 g 碳酸钠、碳酸氢钠和氢氧化钠的固体混合物完全溶解于水,制成稀溶液,然后向该溶液中逐滴加入 1 mol/L 的盐酸,所加入盐酸的体积与产生 CO_2 的体积(标准状况)关系如图所示:

- (1)写出 OA 段所发生反应的离子方程式
- (2) 当加入 35 mL 盐酸时,产生 CO₂ 的体积为 mL (标准状况)。
- (3)计算原混合物中 NaOH 的质量及碳酸钠的质量分数。

变式 2: 某河道两旁有甲、乙两工厂,它们排放的工业废水中共含有 K^+ 、 Ag^+ 、 Fe^{3+} 、 Cl^- 、 OH^- 、 NO_3 ⁻六种离子。

- (1) 甲厂的废水明显呈碱性,故甲厂废水中含有的三种离子是。
- (2) 乙厂的废水中含有另外三种离子。如果加一定量_____(选填:"活性炭"、"硫酸亚铁"、"铁粉"),可以回收其中的金属_____(填写元素符号)。
- (3)另一种设想是将甲厂和乙厂的废水按适当的比例混合,可以使废水中的_____(填写离子符号)转化为沉淀,经过滤后的废水主要含 ,可用来浇灌农田。

瓜熟蒂落

1.	1. 下列反应不能写出离子方程式的是 ()	
	A. $Cl_2+2NaBr\rightarrow 2NaCl+Br_2$ B. $Zn+2HC$	$Cl \rightarrow ZnCl_2 + H_2 \uparrow$
	C. $2KClO_3 \xrightarrow{\Delta} 2KCl + 3O_2 \uparrow$ D. Na_2O+H	I ₂ O→2NaOH
2.	2. "纯净水"、"蒸馏水"、"太空水"等商品水作为日常饮用水,	因缺少某些电解质不利于少年儿童身体健康,
	你认为在制造上述商品饮用水时至少还需要添加微量的化学	芝物质是 ()
	A. 钙和镁的碳酸氢盐 B. 含碘酸盐的色	食 盐
	C. 漂白粉等消毒剂 D. 小苏打	
3.	3. KHSO ₄ 溶于水或加热熔化后都存在的离子是 ()	
	A. H^+ B. HSO_4^- C. SO_4	D. K ⁺
4.	4. 在某溶液中有 K ⁺ 、H ⁺ 、SO ₄ ²⁻ 、NO ₃ ⁻ ,则溶液中溶质的种结	类最多为 ()
	A. 2种 B. 3种 C. 4种	D. 5 种
5.	5. 下列离子反应方程式正确的是 ()	
	A. 亚硫酸钠跟盐酸反应: SO ₃ ²⁻ +2H ⁺ →H ₂ O+SO ₂ ↑	
	B. 氯气跟水反应: Cl ₂ +H ₂ O→2H ⁺ +Cl ⁻ +ClO ⁻	
	C. 钠跟水反应: Na+2H ₂ O→Na ⁺ +2OH ⁻ +H ₂ ↑	
	D. 硫酸铜溶液跟氢氧化钡溶液反应: $Ba^{2+}+SO_4{}^2-\to BaSO_4$	4↓
6.	6. 下列离子反应方程式正确的是 ()	
	A. 向 FeCl ₂ 溶液中通入氯气: Fe ²⁺ +Cl ₂ →Fe ³⁺ +2Cl ⁻	
	B. Na ₂ O 跟盐酸反应: O ^{2−} +2H ⁺ →H ₂ O	
	C. 氯化铝与氢氧化钠溶液反应: $Al^{3+}+3OH^-$ → $Al(OH)_{3}$ ↓	
	D. 氨水跟醋酸溶液反应: H++OH-→H ₂ O	
7.	7. 下列离子反应方程式正确的是 ()	
	A. NaHCO₃溶液与 NaOH 溶液反应: HCO₃¯+OH¯→CO₃²	+H ₂ O
	B. MnO ₂ 与浓盐酸共热: MnO ₂ +2H ⁺ +2Cl ⁻ →Mn ²⁺ +Cl ₂ ↑+H	₂ O
	C. 氢硫酸与氢氧化钠溶液反应: H^++OH^- → H_2O	
	D. 氯化氨固体与氢氧化钙固体加热制氨气: NH4++OH	→NH ₃ ↑+H ₂ O

8.	能用离子方程式: $S^{2-}+2H^+ \rightarrow H_2S\uparrow$ 表	示的是 ()
	A. Na ₂ S 与 HBr 反应	B. FeS 与稀 H ₂ SO ₄ 反应
	C. KHS与 HClO 反应	D. NaHS 与稀 H ₂ SO ₄ 反应
9.	在下列化学方程式中不能用离子方和	是式 Ba ²⁺ +SO4 ^{2−} →BaSO4↓来表示的是 (
	A. $Ba(NO_3)_2 + H_2SO_4 \rightarrow BaSO_4 \downarrow + 2$	HNO ₃
	B. BaCl ₂ +Na ₂ SO ₄ →BaSO ₄ ↓+2Na	C1
	C. $BaCO_3 + H_2SO_4 \rightarrow BaSO_4 \downarrow + H_2O_4 \rightarrow BaSO_4 \rightarrow BaS$	+CO ₂ ↑
	D. $Ba(OH)_2 + H_2SO_4 \rightarrow BaSO_4 \downarrow + 2H_2SO_4 \rightarrow BaSO_4 \rightarrow BaSO_4 \downarrow + 2H_2SO_4 \rightarrow BaSO_4 \rightarrow BaSO$	₂ O
10.	下列离子方程式书写错误的是()
	A. $CaCO_3+2H^+ \rightarrow Ca^{2+}+H_2O+CO_2\uparrow$	B. $2\text{Fe}+6\text{H}^+\rightarrow 2\text{Fe}^{3+}+3\text{H}_2\uparrow$
	C. $Cl_2+2Br^- \rightarrow 2Cl^- + Br_2$	D. $NH_3 \cdot H_2O + H^+ \rightarrow NH_4^+ + H_2O$
11.	下列离子方程式正确的是()
	A. 澄清的石灰水与盐酸反应: Ca	$(OH)_2 + H^+ \rightarrow Ca^{2+} + 2H_2O$
	B. 钠与水的反应: Na +2H ₂ O→N	$h^++2OH^-+H_2\uparrow$
	C. 铜片插入硝酸银溶液中: Cu+z	$g^+ \rightarrow Cu^{2+} + Ag$
	D. 大理石溶于醋酸的反应: CaCo	$O_3+2CH_3COOH \rightarrow Ca^{2+}+2CH_3COO^-+CO_2\uparrow +H_2O$
12.	能正确表示下列反应的离子方程式	是 ()
	A. 甲酸钠溶液和盐酸反应: HCO	O [−] +H ⁺ →HCOOH
	B. 碳酸氢钠与盐酸反应: CO32-+	$2H^+ \rightarrow H_2O + CO_2 \uparrow$
	C. 醋酸钡溶液和硫酸反应: Ba ²⁺ +	SO ₄ ^{2−} →BaSO ₄ ↓
	D. 氢氧化钙溶液和碳酸氢镁反应	$Ca^{2+}+OH^{-}+HCO_{3}^{-} \longrightarrow CaCO_{3}\downarrow +H_{2}O$
13.	在 xR ²⁺ +yH ⁺ +O ₂ →mR ³⁺ +nH ₂ O 的离	子反应中,系数 m 的值 ()
	A. 2x B. 4	C. y/2 D. 2
14.	下列各组离子,在强碱性溶液中可	以大量共存的是()
	A. K^+ , Na^+ , HSO_3^- , Cl^-	B. Na^+ , Ba^{2^+} , Cl^- , NO_3^-
	C. NH_4^+ , K^+ , Cl^- , NO_3^-	D. K^+ , Na^+ , Al^{3+} , S^{2-}

15.	在强酸性溶液中,下列各组离子可能大	二量共存的是 ()	
	A. Cu^{2+} , NH_4^+ , SO_4^{2-} , $C1^-$	B. Na ⁺ 、K ⁺ 、CO	$3^{2^{-}}$, Cl^{-}	
	C. K^+ , Fe^{2+} , MnO_4^- , Cl^-	D. Na ⁺ 、K ⁺ 、F ⁻ 、	Cl	
16.	在强酸和强碱性溶液中,下列离子组均	可能大量共存的离子组是	: ()	
	A. Na^+ , K^+ , $SO_4^{2^-}$, Cl^-	B. Cl^- , CO_3^{2-} ,	Na ⁺ 、NH ₄ ⁺	
	C. NO_3^- , $SO_4^{2^-}$, K^+ , Fe^{2^+}	D. HCO_3^- , Cl^- ,	K^+ 、 Na^+	
17.	某无色水溶液中可能大量存在的离子组]是 ()		
	A. K ⁺ 、HCO ₃ ⁻ 、CO ₃ ²⁻ 、Br ⁻	B. Ba^{2+} , HSO_3^- ,	OH^- 、 K^+	
	C. Fe^{3+} , Cu^{2+} , NO_3^- , SO_3^{2-}	D. H ⁺ 、Na ⁺ 、NO	3 ⁻ 、I ⁻	
18.	某人欲配制下列不同阴阳离子的四种溶	序液,其中能配成的是	()	
	A. Na ⁺ 、OH ⁻ 、K ⁺ 、HS ⁻	B. Ca^{2+} , K^+ , NC) ₃ -, Cl -	
	C. Fe ³⁺ 、Cl ⁻ 、H ⁺ 、I ⁻	D. Ca ²⁺ , Na ⁺ , O	CO_3^{2-} 、 CI^-	
19.	某饱和溶液中含有三种阳离子: Ag+、可以是下列中的 ()	Ba ²⁺ 、Al ³⁺ ,同时测知此落	系液中 pH=3,则该溶液中)	所含有的阴离子
	A. CO ₃ ²⁻ B. SO ₄ ²⁻	C. NO ₃	D. S ²⁻	
20.	某地的酸雨中,除含 H ⁺ 和 OH ⁻ 外,这	还有 Na+、NH ₄ +、Cl¯、SC) ₄ 2-,其浓度为 c(Na+)=7×	10 ⁻⁶ mol/L, c(C
_)=3	$3.5 \times 10^{-5} \text{mol/L}, c(NH_4^+) = 2.3 \times 10^{-5} \text{mol/L},$	c(SO ₄ ²⁻)=2.5×10 ⁻⁶ mol/L.	则这种酸雨的 pH 是()
	A. 3 B. 4	C. 5	D. 6	
21.	现有(NH4)2SO4、Na2SO4、NH4Cl和KNO	3四种无色溶液,只用一种	试剂予以鉴别,此试剂是_	,
有关	长的离子方程式是			
				_0
22.	CaCl ₂ 溶液中通入 CO ₂ 不产生白色沉	淀,如果通入氨气后再		
—— 反应				
// //		~		

23. 为除去 CO_2 气体中的 SO_2 杂质,将混	合气体通入 NaHCO3 溶液,	而不用 NaOH 溶液或 N	[a₂CO₃溶液。用离
子方程式解释其原因		o	
24. NaOH 溶液与 Ca(HCO ₃) ₂ 溶液反	反 应 且 两 者 物 质 的 量 え	之比≥2 时,反应的	离子方程式为。
25. 某溶液中可能有 Cl¯、Br¯、I¯、CO ₃ ²	一中的一种或几种存在:		
(1) 当溶液中有大量 H+存在F	时,则溶液中不可能	:有	存在,原因是
(用离	子方程式表示); 当溶液中存	ヺ(阳	离子) 存在时,上
述所有阴离子在溶液中都不可能存在。			
(2) 当向溶液中通入足量氯气时,	离子在溶液中不	可能存在。	
26. 有一澄清溶液,其中只可能含有下列 、Cl ⁻ 、I ⁻ 中的某几种,进行如下实验: (1) 用 pH 试纸检验,试纸呈深红色。 (2) 取部分溶液加入少量氯水后分成两份	~ 1		
向另一份中加入 AgNO ₃ 溶液,发现有		派例、即且加限件为72	5,「囚主风水口,
(3) 另取部分溶液,逐滴加入 NaOH 溶液	亥至过量,在滴加过程中未	发现有沉淀生成。	
(4) 取(3) 所得碱性溶液,加入 Na ₂ CO	3溶液,有白色沉淀生成,〕	取上层清液进行焰色反应	应,火焰呈黄色。
(5) 取(3) 所得的碱性溶液,加热,有	气体产生,该气体能使湿润]的红色石蕊试纸变蓝色	0
据以上判断,该溶液中肯定含有	离子,	离子不能肯定是否	存在。

27. 由几种离子化合物组成的混合物,含有以下离子中的若干种: K^+ 、 NH_4^+ 、 $Mg^2_+^+$ 、 Cu^{2+} 、 Ba^{2+} 、 $C1^-$ 、 SO_4^2 $^-$ 、 CO_3^2 。将该混合物溶于水后得无色澄清溶液,现分别取 3 份 100mL 该溶液进行如下实验:

实验序号	实验内容	实验结果	
a	加 AgNO3 溶液	有白色沉淀生成	
ь	加足量 NaOH 溶液并加热	收集到气体 1.12L (已折算成标准状况下的体积)	
С	加足量 BaCl ₂ 溶液时,对所得沉淀进行洗涤、干燥、称量;再向沉淀中加足量稀盐酸,然后干燥、称量	第一次称量读数为 6.27g, 第二次称量读数为 2.33g。	

壮.	回答	下列	딦	题.
		1 . 77 1	11111	(F)

(1)	该混合物中一定不存在的离子是	

(2) 试写出实验 b 发生反应的离子方程式____。

(3)溶液中一定存在的阴离子及其物质的量浓度(可不填满):

阴离子符号	物质的量浓度(mol·L-1)

(4) 判断混合物中是否存在 K+并说明理由? _____。

