

Universidade de Brasília – UnB Faculdade UnB Gama – FGA Engenharia Eletrônica

Otimização de Algoritmo de Classificação de Sinais de EEG Aplicados a BCI com Implementação em FPGA

Autor: Heleno da Silva Morais

Orientador: PhD, Daniel Mauricio Muñoz Arboleda

Brasília, DF 2017

Heleno da Silva Morais

Otimização de Algoritmo de Classificação de Sinais de EEG Aplicados a BCI com Implementação em FPGA

Monografia submetida ao curso de graduação em Engenharia Eletrônica da Universidade de Brasília, como requisito parcial para obtenção do Título de Bacharel em Engenharia Eletrônica.

Universidade de Brasília – UnB Faculdade UnB Gama – FGA

Orientador: PhD, Daniel Mauricio Muñoz Arboleda Coorientador: Dr, Marcus Vinícius Chaffim Costa

> Brasília, DF 2017

Heleno da Silva Morais

Otimização de Algoritmo de Classificação de Sinais de EEG Aplicados a BCI com Implementação em FPGA/ Heleno da Silva Morais. – Brasília, DF, 2017-57 p. : il. (algumas color.) ; 30 cm.

Orientador: PhD, Daniel Mauricio Muñoz Arboleda

Trabalho de Conclusão de Curso – Universidade de Brasília – UnB Faculdade UnB Gama – FGA , 2017.

1. Palavra-chave
01. 2. Palavra-chave
02. I. PhD, Daniel Mauricio Muñoz Arboleda. II. Universidade de Brasília. III. Faculdade Un
B Gama. IV. Otimização de Algoritmo de Classificação de Sinais de EEG Aplicados a BCI com Implementação em FPGA

 $CDU\ 02{:}141{:}005.6$

Errata

Elemento opcional da ??, 4.2.1.2). Caso não deseje uma errata, deixar todo este arquivo em branco. Exemplo:

FERRIGNO, C. R. A. Tratamento de neoplasias ósseas apendiculares com reimplantação de enxerto ósseo autólogo autoclavado associado ao plasma rico em plaquetas: estudo crítico na cirurgia de preservação de membro em cães. 2011. 128 f. Tese (Livre-Docência) - Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, 2011.

Folha	Linha	Onde se lê	Leia-se
1	10	auto-conclavo	autoconclavo

Heleno da Silva Morais

Otimização de Algoritmo de Classificação de Sinais de EEG Aplicados a BCI com Implementação em FPGA

Monografia submetida ao curso de graduação em Engenharia Eletrônica da Universidade de Brasília, como requisito parcial para obtenção do Título de Bacharel em Engenharia Eletrônica.

Trabalho aprovado. Brasília, DF, 01 de junho de 2013 — Data da aprovação do trabalho:

PhD, Daniel Mauricio Muñoz Arboleda Orientador

Titulação e Nome do Professor Convidado 01 Convidado 1

Titulação e Nome do Professor Convidado 02

Convidado 2

Brasília, DF 2017

Agradecimentos

A inclusão desta seção de agradecimentos é opcional, portanto, sua inclusão fica a critério do(s) autor(es), que caso deseje(em) fazê-lo deverá(ão) utilizar este espaço, seguindo a formatação de espaço simples e fonte padrão do texto (sem negritos, aspas ou itálico.

Caso não deseje utilizar os agradecimentos, deixar toda este arquivo em branco.

A epígrafe é opcional. Caso não deseje uma, deixe todo este arquivo em branco. "Não vos amoldeis às estruturas deste mundo, mas transformai-vos pela renovação da mente, a fim de distinguir qual é a vontade de Deus: o que é bom, o que Lhe é agradável, o que é perfeito. (Bíblia Sagrada, Romanos 12, 2)

Resumo

Brain Computer Interface (BCI) são sistemas que realizam a comunicação entre o cérebro e um computador. A comunicação é realizada através de eletroencefalogramas (EEG), que capta sinais/comandos elétricos, a partir de atividades cerebrais. O maior desafio do BCI é uma classificação correta e principalmente eficiente de comandos. (Siuly)

Palavras-chaves: BCI. classificadores. FPGA.

Abstract

This is the english abstract.

 $\mathbf{Key\text{-}words}:$ latex. abntex. text editoration.

Lista de ilustrações

Figura 1 – Wavelets correlation coefficients	39
--	----

Lista de tabelas

Tabela 1 –	Propriedades	obtidades	após	processamento															40	
------------	--------------	-----------	------	---------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	--

Lista de abreviaturas e siglas

BCI Brain Computer Interface

EEG Eletroencefalograma

SVM Support Vector Machine

LDA Linear Discriminant Analysis

SoC System on Chip

FPGA Field Programmable Array

Lista de símbolos

 Γ Letra grega Gama

 Λ Lambda

 \in Pertence

Sumário

1	INTRODUÇÃO	21
1.1	Contextualização	27
1.2	Justificativa	29
1.3	Objetivos	29
1.3.1	Objetivos Gerais	29
1.3.2	Objetivos Específicos	29
2	REFERENCIAL TEÓRICO	31
2.1	O Cérebro	31
2.2	Eletroencefalografia	31
2.3	Brain Computer Interface	31
2.4	BCI Competition	31
2.5	Linear Discriminant Analisys	31
2.6	Sistemas em Chip (SoC)	31
2.7	Estado da Arte	31
3	CONSIDERAÇÕES SOBRE OS ELEMENTOS TEXTUAIS	33
3.1	Introdução	33
3.2	Desenvolvimento	33
3.3	Uso de editores de texto	34
ı	TEXTO E PÓS TEXTO	35
4	ELEMENTOS DO TEXTO	37
4.1	Corpo do Texto	37
4.2	Títulos de capítulos e seções	37
4.3	Notas de rodapé	37
4.4	Equações	38
4.5	Figuras e Gráficos	38
4.6	Tabela	40
4.7	Citação de Referências	41
5	ELEMENTOS DO PÓS-TEXTO	43
5.1	Referências Bibliográficas	43
5.2	Anexos	43

REFERÊNCIAS	45
APÊNDICES	47
APÊNDICE A – PRIMEIRO APÊNDICE	49
APÊNDICE B – SEGUNDO APÊNDICE	51
ANEXOS	53
ANEXO A – PRIMEIRO ANEXO	55
ANEXO B – SEGUNDO ANEXO	57

1 Introdução

1.1 Contextualização

Através de uma rede de mais de 100 bilhões de células nervosas interconectadas, o cérebro realiza o controle de nossas ações, percepções, emoções e etc (KANDEL, 2013). Estas células são chamadas de *neurônios*, e neles são armazenados sinais elétricos, que representam todas as informações de controle (SIULY; LI; ZHANG, 2017). Estes sinais podem ser medidos pela eletroencefalografia (EEG), que é um sistema de medição de sinais elétricos produzidos pelo cérebro durante atividades cerebrais (LOTTE; GUAN, 2011). Segundo (SIULY, 2012), a EEG é uma das mais importantes ferramentas para diagnosticar doenças cerebrais.

Além do diagnóstico de doenças cerebrais uma outra aplicação para os sinais adquiridos pela EEG são as *Brain Computer Interfaces* (BCIs) (LOTTE; GUAN, 2011). Uma BCI é um sistema que realiza a comunicação entre o cérebro e um computador (SIULY; LI; ZHANG, 2017), onde sua principal função é a tradução dos sinais elétricos, obtidos através da EEG, em comandos de controle para qualquer dispositivo eletrônico (SIULY; LI; ZHANG, 2017).

A BCI realiza a tradução destes comandos através de seis passos: 1) medição dos sinais provenientes de atividades cerebrais através da EEG, 2) pré-processamento destes sinais, 3) extração de características, 4) classificação, 5)tradução dos sinais em comandos e 6) realimentação (MASON; BIRCH, 2003). Um dos principais passos para a implementação de uma BCI é a **classificação**, pois é após este passo que é realizada a tradução dos sinais provenientes da EEG em comandos de controle (MASON; BIRCH, 2003).

A classificação de um sinal é caracterizada, em aprendizado de máquina e em reconhecimento de padrões, como um algoritmo que atribui parte de um dado sinal de entrada a um dado número de classes ou categorias (BRUNELLI, 2009). Um exemplo é a classificação de um e-mail como "spam"ou "não-spam". Os algoritmos que realizam a classificação dos sinais de entrada são chamados de classificadores (SIULY; LI; ZHANG, 2017). De acordo com (LOTTE, 2008, p. 41), "estes classificadores são capazes de aprender como identificar um vetor de características, graças aos processos de treinamentos". Estes conjuntos são formados por vetores de características previamente atribuídos às suas respectivas classes (LOTTE, 2008).

O algoritmo que realiza a classificação é caracterizado por uma função matemática que mapeia um sinal de entrada em sua respectiva classe (LOTTE, 2008). Os classifica-

dores preferidos pelos pesquisadores são os classificadores supervisionados, pois estes tipos de classificadores necessitam de um conjunto de dados de treinamento. Os dados de treinamento são um conjunto de dados previamente classificados (SIULY; LI; ZHANG, 2017). Portanto os classificadores supervisionados são implementados a partir de dois processos: treinamento e testes (SIULY; LI; ZHANG, 2017). As Support Vector Machines (SVM), os Linear Discriminant Analysis (LDA), os filtros Kalman, as árvores de decisões são alguns exemplos de classificadores do tipo supervisionados (SIULY; LI; ZHANG, 2017).

O LDA como dito anteriormente é um dos classificadores supervisionados e tem como suas principais vantagens a simplicidade e atratividade computacional, por se tratar de um classificador linear (THEODORIDIS; KOUTROUMBAS et al., 1999). O objetivo do LDA é usar uma transformação linear para encontrar um conjunto otmizado de vetores discriminantes e remapear o conjunto de características original, em um outro conjunto de dimensão inferior (SHASHOA et al., 2016).

Apesar do LDA ser um algorítmo interessante no que se trata de consumo computacional, em geral, os algoritmos de classificação são complexos computacionalmente com tempo de execução elevado, isso os tornam restritivos a poucas aplicações, para executar um códido que descreve esses algoritmos é necessário uma máquina de proporções não versátil e não portátil, assim não podendo equipar projetos que têm restrições de dimensão e peso.

Um System on Chip (SoC) é caracterizado pela implementação de todo um sistema computacional, tais como memórias, processadores, entradas e saídas, lógicas digitais, entre outros, em um único chip de silício (CROCKETT et al., 2014). Diferente dos computadores tradicionais, que possuem seu sistema implementado a partir de módulos isolados e combinados em uma placa de circuito impresso, ou placa-mãe, os SoCs possuem como principais características um baixo custo de implementação, além de baixo consumo de potência, menor tamanho físico, maior confiabilidade e maior velocidade do sistema geral, quando comparado com um computador tradicional (CROCKETT et al., 2014). Um exemplo de um SoC é a plataforma Zynq que combina em um único chip processadores Advanced Risc Machine (ARM) e Field Programmable Gate Array (FPGA), esse útimo utilizado para configurar todos os módulos de um computador tradicional (CROCKETT et al., 2014).

Tendo em vista a grande vantagem dos SoCs sobre os computadores tradicionais, onde são implementados e executados os algoritmos de classificação, este trabalho apresenta um estudo da viabilidade da implementação em hardware e em software embarcado, do algoritmo de treinamento do classificador LDA, realizando a comparação de consumo computacional, processamento computacional (tempo de execução), entre as implementações em hardware e software, onde a implementação em hardware consiste no mapeamento

1.2. Justificativa 29

do algoritmo na plataforma FPGA, afim de paralelizar seus processos e a implementação em software consiste em executar o algoritmo em um sistema embarcado utilizando os cores ARM, ambos da plataforma Zynq, além da comparação com sua implementação inicial em *Matlab*.

1.2 Justificativa

As aplicações das BCIs apresentam um crescente desenvolvimento, graças ao aumento do interesse em pesquisas voltadas para o tema (BCI COMPETITION). Por ser considerado o principal processo das BCIs, a classificação requer um cuidado especial (MASON; BIRCH, 2003). Como o LDA é um classificador supervisionado, a acurácia da classificação depende inteiramente de um bom treinamento (LOTTE; GUAN, 2011). Isso requer do algoritmo de treinamento um maior esforço computacional. Como os SoCs apresentam características de baixo consumo de potência, tamanho físico pequeno e possuir todos módulos de um sistema computacional em um único chip, a implementação de algoritmos de classificação em sistema deste porte podem ou não tornar as BCIs mais acessíveis, tendo em vista que um algoritmo de treinamento embarcado em um SoC reduzirá a necessidade de um sistema computacional tradicional, além de um melhor processamento computacional, pois sua implementação em FPGA na plataforma Zynq torna-se possível paralelizar seus processos de execução (CROCKETT et al., 2014).

1.3 Objetivos

Esta seção apresenta os objetivos gerais e específicos propostos a serem desenvolvidos neste presente trabalho.

1.3.1 Objetivos Gerais

• Implementar parte do algoritmo de treinamento de um classificador LDA utilizando um SoC na plataforma Zynq afim de otimizar tanto o algoritmo, em relação a tempo de execução, quanto o seu consumo de recursos.

1.3.2 Objetivos Específicos

- Explorar o algoritmo de treinamento do classificador LDA desenvolvido por (LOTTE; GUAN, 2011);
- Mapear parte deste algoritmo em arquiteturas paralelas utilizando a linguagem VHDL;

- Implementar em sistema embarcado o algoritmo de treinamento utilizando os cores ARM da Zynq;
- Realizar teste e validação das implementações utilizando as bases de dados do BCI Competition III, em especifico o conjunto de dados BCI III dataset IVa.

2 Referencial Teórico

- 2.1 O Cérebro
- 2.2 Eletroencefalografia
- 2.3 Brain Computer Interface
- 2.4 BCI Competition
- 2.5 Linear Discriminant Analisys
- 2.6 Sistemas em Chip (SoC)
- 2.7 Estado da Arte

3 Considerações sobre os Elementos Textuais

3.1 Introdução

A regra mais rígida com respeito a Introdução é que a mesma, que é necessariamente parte integrante do texto, não deverá fazer agradecimentos a pessoas ou instituições nem comentários pessoais do autor atinentes à escolha ou à relevância do tema.

A Introdução obedece a critérios do Método Científico e a exigências didáticas. Na Introdução o leitor deve ser colocado dentro do espírito do trabalho.

Cabe mencionar que a Introdução de um trabalho pode, pelo menos em parte, ser escrita com grande vantagem uma vez concluído o trabalho (ou o Desenvolvimento e as Conclusões terem sido redigidos). Não só a pesquisa costuma modificar-se durante a execução, mas também, ao fim do trabalho, o autor tem melhor perspectiva ou visão de conjunto.

Por seu caráter didático, a Introdução deve, ao seu primeiro parágrafo, sugerir o mais claramente possível o que pretende o autor. Em seguida deve procurar situar o problema a ser examinado em relação ao desenvolvimento científico e técnico do momento. Assim sendo, sempre que pertinente, os seguintes pontos devem ser abordados:

- Contextualização ou apresentação do tema em linhas gerais de forma clara e objetiva;
- Apresentação da justificativa e/ou relevância do tema escolhido;
- Apresentação da questão ou problema de pesquisa;
- Declaração dos objetivos, gerais e específicos do trabalho;
- Apresentação resumida da metodologia, e
- Indicação de como o trabalho estará organizado.

3.2 Desenvolvimento

O Desenvolvimento (Miolo ou Corpo do Trabalho) é subdividido em seções de acordo com o planejamento do autor. As seções primárias são aquelas que resultam da primeira divisão do texto do documento, geralmente correspondendo a divisão em capítulos. Seções secundárias, terciárias, etc., são aquelas que resultam da divisão do texto de uma seção primária, secundária, terciária, etc., respectivamente.

As seções primárias são numeradas consecutivamente, seguindo a série natural de números inteiros, a partir de 1, pela ordem de sua sucessão no documento.

O Desenvolvimento é a seção mais importante do trabalho, por isso exigi-se organização, objetividade e clareza. É conveniente dividi-lo em pelo menos três partes:

- Referencial teórico, que corresponde a uma análise dos trabalhos relevantes, encontrados na pesquisa bibliográfica sobre o assunto.
- Metodologia, que é a descrição de todos os passos metodológicos utilizados no trabalho. Sugere-se que se enfatize especialmente em (1) População ou Sujeitos da pesquisa, (2) Materiais e equipamentos utilizados e (3) Procedimentos de coleta de dados.
- Resultados, Discussão dos resultados e Conclusões, que é onde se apresenta os dados encontrados a análise feita pelo autor à luz do Referencial teórico e as Conclusões.

3.3 Uso de editores de texto

O uso de programas de edição eletrônica de textos é de livre escolha do autor.

Parte I

Texto e Pós Texto

4 Elementos do Texto

4.1 Corpo do Texto

O estilo de redação deve atentar a boa prática da linguagem técnica. Para a terminologia metrological usar o Vocabulário Internacional de Termos Fundamentais e Gerais de Metrologia (??).

Grandezas dimensionais devem ser apresentadas em unidades consistentes com o Sistema Internacional de Unidades (SI). Outras unidades podem ser usadas como unidades secundárias entre parenteses se necessário. Exceções são relacionadas a unidades não-SI usadas como identificadores comerciais como pro exemplo "disquete de 3½ polegadas".

Na apresentação de números ao longo do texto usar virgula para separar a parte decimal de um número. Resultados experimentais devem ser apresentados com sua respectiva incerteza de medição.

4.2 Títulos de capítulos e seções

Recomendações de formatação de seções (texto informativo: o LATEX já formata as seções automaticamente, se utilizado o comando \section{Nome da Seção}):

1 SEÇÃO PRIMÁRIA - MAIÚSCULAS; NEGRITO; TAMANHO 12;

- 1.1 SEÇÃO SECUNDÁRIA MAIÚSCULAS; NORMAL; TAMANHO 12;
- 1.1.1 Seção terciária Minúsculas, com exceção da primeira letra; negrito; tamanho 12;
- 1.1.1.1 Seção quaternária Minúsculas, com exceção da primeira letra; normal tamanho 12;
- 1.1.1.1 Seção quinária Minúsculas, com exceção da primeira letra; itálico; tamanho 12.

4.3 Notas de rodapé

Notas eventualmente necessárias devem ser numeradas de forma seqüencial ao longo do texto no formato 1, 2, 3... sendo posicionadas no rodapé de cada página na qual a nota é utilizada.¹

¹ Como, por exemplo, esta nota. O LATEX tomará conta da numeração automaticamente.

4.4 Equações

Equações matemáticas devem ser numeradas seqüencialmente e alinhadas a esquerda com recuo de 0,6 cm. Usar numerais arábicos entre parênteses, alinhado a direita, no formato Times New Roman de 9 pts. para numerara as equações como mostrado na Eq. 4.1 (novamente, o LATEX formata as equações automaticamente).

Referências a equações no corpo do texto devem ser feitas como "Eq. 4.1" quando no meio de uma frase ou como "Equação 4.1" quando no inicio de uma sentença. Um espaçamento de 11 pontos deve ser deixado acima, abaixo e entre equações subseqüentes. Para uma apresentação compacta das equações deve-se usar os símbolos e expressões matemáticos mais adequados e parênteses para evitar ambigüidades em denominadores. Os símbolos usados nas equações citados no texto devem apresentar exatamente a mesma formatação usada nas equações.

$$\frac{d\mathbf{C}}{dw} = \frac{du}{dw} \cdot \mathbf{F}_u + \frac{dv}{dw} \cdot \mathbf{F}_v \tag{4.1}$$

O significado de todos os símbolos mostrados nas equações deve ser apresentado na lista de símbolos no inicio do trabalho, embora, em certas circunstancias o autor possa para maior clareza descrever o significado de certos símbolos no corpo do texto, logo após a equação.

Se uma equação aparecer no meio do parágrafo, como esta

$$x^n + y^n = z^n, (4.2)$$

onde $x, y, z, n \in \mathbb{N}$, o texto subsequente faz parte do parágrafo e não deve ser identado.

4.5 Figuras e Gráficos

As figuras devem ser centradas entre margens e identificadas por uma legenda alinhada a esquerda com recuo especial de deslocamento de 1,8 cm, com mostrado na Fig. (1). O tamanho das fontes empregadas nos rótulos e anotações usadas nas figuras deve ser compatível com o usado no corpo do texto. Rótulos e anotações devem estar em português, com todas as grandezas mostradas em unidades do SI (Sistema Internacional de unidades) (mais uma vez, o LATEX cuidará dos aspectos de formatação e fonte das figuras).

Todas as figuras, gráficos e fotografias devem ser numeradas e referidas no corpo do texto adotando uma numeração seqüencial de identificação. As figuras e gráficos devem ser claras e com qualidade adequada para eventual reprodução posterior tanto em cores quanto em preto-e-branco.

As abscissas e ordenadas de todos os gráficos devem ser rotuladas com seus respectivos títulos em português seguida da unidade no SI que caracteriza a grandes entre colchetes.

A referência explícita no texto à uma figura deve ser feita como "Fig. 1" quando no meio de uma frase ou como "Figura 1" quando no início da mesma. Referencias implícitas a uma dada figura devem ser feitas entre parênteses como (Fig. 1). Para referências a mais de uma figura as mesmas regras devem ser aplicadas usando-se o plural adequadamente. Exemplos:

- "Após os ensaios experimentais, foram obtidos os resultados mostrados na Fig. 1, que ..."
- "A Figura 1 apresenta os resultados obtidos, onde pode-se observar que ..."
- "As Figuras 1 a 3 apresentam os resultados obtidos, ..."
- "Verificou-se uma forte dependência entre as variáveis citadas (Fig. 1), comprovando "

Cada figura deve ser posicionada o mais próxima possível da primeira citação feita à mesma no texto, imediatamente após o parágrafo no qual é feita tal citação, se possível, na mesma página. Em LATEX o comando \label deve suceder o comando \caption para que as referências às figuras fiquem com a numeração correta.

Figura 1 – Wavelets correlation coefficients

4.6 Tabela

As tabelas devem estar centradas entre margens e identificadas por uma legenda alinhada a esquerda, com recuo especial de deslocamento de 1,8 cm, posicionada acima da tabela com mostrado na Tab. 1, a título de exemplo. O tamanho das fontes empregadas nos rótulos e anotações usadas nas tabelas deve ser compatível com o usado no corpo do texto. Rótulos e anotações devem estar em português. Um espaçamento de 11 pts deve ser deixado entre a legenda e a tabela, bem como após a tabela. A numeração, a fonte e a formatação são automáticas quando se usa o LATEX.

As grandezas dimensionais mostradas em cada tabela devem apresentar unidades consistentes com o SI. As unidades de cada variável devem ser mostradas apenas na primeira linha e/ou coluna da tabela, entre colchetes

A referência explícita no texto à uma dada tabela deve ser feita como "Tab. 1" quando no meio de uma frase ou como "Tabela 1" quando no início da mesma. Referências implícitas a uma dada tabela devem ser feitas entre parênteses como (Tab. 1). Para referências a mais de uma tabela as mesmas regras devem ser aplicadas usando-se o plural adequadamente. Exemplos:

- "Após os ensaios experimentais, foram obtidos os resultados mostrados na Tab. 1, que ..."
- "A Tabela 1 apresenta os resultados obtidos, onde pode-se observar que ..."
- "As Tabelas 1 a 3 apresentam os resultados obtidos, ..."
- "Verificou-se uma forte dependência entre as variáveis citadas (Tab. 1), comprovando ..."

Cada tabela deve ser posicionada o mais próxima possível da primeira citação feita à mesma no texto, imediatamente após o parágrafo no qual é feita a citação, se possível, na mesma página.

Tabela 1 – Propriedades obtidades após processamento

Processing type	Property 1 (%)	Property 2 $[\mu m]$
Process 1	40.0	22.7
Process 2	48.4	13.9
Process 3	39.0	22.5
Process 4	45.3	28.5

4.7 Citação de Referências

Referencias a outros trabalhos tais como artigos, teses, relatórios, etc. devem ser feitas no corpo do texto devem estar de acordo com a norma corrente ABNT NBR 6023:2002 (ABNT, 2000), esta ultima baseada nas normas ISO 690:1987:

- "??), mostraram que..."
- "Resultados disponíveis em (??), (??) e (??), mostram que..."

Para referências a trabalhos com até dois autores, deve-se citar o nome de ambos os autores, por exemplo: "??), mostraram que..."

5 Elementos do Pós-Texto

Este capitulo apresenta instruções gerais sobre a elaboração e formatação dos elementos do pós-texto a serem apresentados em relatórios de Projeto de Graduação. São abordados aspectos relacionados a redação de referências bibliográficas, bibliografia, anexos e contra-capa.

5.1 Referências Bibliográficas

O primeiro elemento do pós-texto, inserido numa nova página, logo após o último capítulo do trabalho, consiste da lista das referencias bibliográficas citadas ao longo do texto.

Cada referência na lista deve ser justificada entre margens e redigida no formato Times New Roman com 11pts. Não é necessário introduzir uma linha em branco entre referências sucessivas.

A primeira linha de cada referencia deve ser alinhada a esquerda, com as demais linhas da referencia deslocadas de 0,5 cm a partir da margem esquerda.

Todas as referências aparecendo na lista da seção "Referências Bibliográficas" devem estar citadas no texto. Da mesma forma o autor deve verificar que não há no corpo do texto citação a referências que por esquecimento não forma incluídas nesta seção.

As referências devem ser listadas em ordem alfabética, de acordo com o último nome do primeiro autor. Alguns exemplos de listagem de referencias são apresentados no Anexo I.

Artigos que ainda não tenham sido publicados, mesmo que tenham sido submetidos para publicação, não deverão ser citados. Artigos ainda não publicados mas que já tenham sido aceitos para publicação devem ser citados como "in press".

A norma (??), que regulamenta toda a formatação a ser usada na elaboração de referências a diferente tipos de fontes de consulta, deve ser rigidamente observada. Sugere-se a consulta do trabalho realizado por (??), disponível na internet.

5.2 Anexos

As informações citadas ao longo do texto como "Anexos" devem ser apresentadas numa seção isolada ao término do trabalho, após a seção de referências bibliográficas. Os anexos devem ser numerados seqüencialmente em algarismos romanos maiúsculos (I,

II, III, ...). A primeira página dos anexos deve apresentar um índice conforme modelo apresentado no Anexo I, descrevendo cada anexo e a página inicial do mesmo.

A referência explícita no texto à um dado anexo deve ser feita como "Anexo 1". Referências implícitas a um dado anexo devem ser feitas entre parênteses como (Anexo I). Para referências a mais de um anexo as mesmas regras devem ser aplicadas usando-se o plural adequadamente. Exemplos:

- "Os resultados detalhados dos ensaios experimentais são apresentados no Anexo IV, onde ..."
- "O Anexo I apresenta os resultados obtidos, onde pode-se observar que ..."
- "Os Anexos I a IV apresentam os resultados obtidos ..."
- "Verificou-se uma forte dependência entre as variáveis citadas (Anexo V), comprovando ..."

Referências

- BRUNELLI, R. Template matching techniques in computer vision: theory and practice. [S.l.]: John Wiley & Sons, 2009. Citado na página 27.
- CROCKETT, L. H. et al. *The Zynq Book: Embedded Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000 All Programmable Soc.* [S.l.]: Strathclyde Academic Media, 2014. Citado 2 vezes nas páginas 28 e 29.
- KANDEL, e. a. E. R. *Principles of Neural Science*. 5. ed. The address: Mc Graw Hill, 2013. v. 2. An optional note. ISBN 978007181001-2. Citado na página 27.
- LOTTE, F. Study of electroencephalographic signal processing and classification techniques towards the use of brain-computer interfaces in virtual reality applications. Tese (Doutorado) INSA de Rennes, 2008. Citado na página 27.
- LOTTE, F.; GUAN, C. Regularizing common spatial patterns to improve bei designs: Unified theory and new algorithms. *IEEE Transactions on Biomedical Engineering*, v. 58, n. 2, p. 355–362, Feb 2011. ISSN 0018-9294. Citado 2 vezes nas páginas 27 e 29.
- MASON, S. G.; BIRCH, G. E. A general framework for brain-computer interface design. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, v. 11, n. 1, p. 70–85, March 2003. ISSN 1534-4320. Citado 2 vezes nas páginas 27 e 29.
- SHASHOA, N. A. et al. Classification depend on linear discriminant analysis using desired outputs. In: IEEE. Sciences and Techniques of Automatic Control and Computer Engineering (STA), 2016 17th International Conference on. [S.l.], 2016. p. 328–332. Citado na página 28.
- SIULY, S. Analysis and Classification of EEG Signals. Dissertação (Mestrado) University of Southern Queensland, https://www.springer.com/gp/book/9783319476520, 7 2012. Citado na página 27.
- SIULY, S.; LI, Y.; ZHANG, Y. *EEG Signal Analysis and Classification: Techniques and Applications.* [S.l.]: Springer, 2017. Citado 2 vezes nas páginas 27 e 28.
- THEODORIDIS, S.; KOUTROUMBAS, K. et al. *Pattern recognition*. [S.l.]: Academic press London, 1999. Citado na página 28.

APÊNDICE A – Primeiro Apêndice

Texto do primeiro apêndice.

APÊNDICE B - Segundo Apêndice

Texto do segundo apêndice.

ANEXO A - Primeiro Anexo

Texto do primeiro anexo.

ANEXO B - Segundo Anexo

Texto do segundo anexo.