Computer Graphics

Prof. Feng Liu Fall 2016

http://www.cs.pdx.edu/~fliu/courses/cs447/

10/24/2016

Last time

☐ Graphics Pipeline

Today

- Clipping
- □ In-class Middle-Term
 - Wednesday, Nov. 2
 - Close-book exam
 - Notes on 1 page of A4 or Letter size paper
 - To-know list available online

Clipping

- Parts of the geometry to be rendered may lie outside the view volume
- Clipping removes parts of the geometry that are outside the view
- ☐ Best done in canonical space *before perspective divide*
 - Before dividing out the homogeneous coordinate

Clipping Terminology

- Clip region: the region we wish to restrict the output to
- Geometry: the thing we are clipping
 - Only those parts of the geometry that lie inside the clip region will be output
- Clipping edge/plane: an infinite line or plane and we want to output only the geometry on one side of it
 - Frequently, one edge or face of the clip region

Clipping

- In hardware, clipping is done in canonical space before perspective divide
 - Before dividing out the homogeneous coordinate
- Clipping is useful in many other applications
 - Building BSP trees for visibility and spatial data structures
 - Hidden surface removal algorithms
 - Removing hidden lines in line drawings
 - Finding intersection/union/difference of polygonal regions
 - 2D drawing programs: cropping, arbitrary clipping
- We will make explicit assumptions about the geometry and the clip region
 - Assumption depend on the algorithm

Types of Geometry

- Points are clipped via inside/outside tests
 - Many algorithms for this task, depending on the clip region
- □ Two main algorithms for clipping polygons exist
 - Sutherland-Hodgman
 - Weiler that we will not talk about in our class.

Clipping Points to View Volume

- A point is inside the view volume if it is on the "inside" of all the clipping planes
 - The normals to the clip planes are considered to point inward, toward the visible region
- □ Now we see why clipping is done in canonical view space
 - For instance, to check against the left plane:
 - X coordinate in 3D must be > -1
 - In homogeneous screen space, same as: $x_{screen} > -w_{screen}$
- ☐ In general, a point, *p*, is "inside" a plane if:
 - You represent the plane as $n_x x + n_y y + n_z z + d = 0$, with (n_x, n_y, n_z) pointing inward
 - And $n_x p_x + n_y p_y + n_z p_z + d > 0$

Clipping Point to Line

Sutherland-Hodgman Clip

- Clip polygons to convex clip regions
- Clip the polygon against each edge of the clip region in turn
 - Clip polygon each time to line containing edge
 - Only works for convex clip regions (Why? Example that breaks?)

Sutherland-Hodgman Clip (2)

- To clip a polygon to a line/plane:
 - Consider the polygon as a list of vertices
 - One side of the line/plane is considered inside the clip region, the other side is outside
 - We are going to rewrite the polygon one vertex at a time - the rewritten polygon will be the polygon clipped to the line/plane
 - Check start vertex: if "inside", emit it, otherwise ignore it
 - Continue processing vertices as follows...

Sutherland-Hodgman (3)

Sutherland-Hodgman (4)

- □ Look at the next vertex in the list, p, and the edge from the last vertex, s, to p. If the...
 - polygon edge crosses the clip line/plane going from out to in: emit crossing point, i, next vertex, p
 - polygon edge crosses clip line/plane going from in to out: emit crossing, i
 - polygon edge goes from out to out: emit nothing
 - polygon edge goes from in to in: emit next vertex, p

Inside-Outside Testing

- Lines/planes store a vector pointing toward the inside of the clip region - the inward pointing normal
 - Could re-define for outward pointing
- Dot products give inside/outside information
- Note that x (a vector) is any point on the clip line/plane

$$\mathbf{n} \bullet (\mathbf{s} - \mathbf{x}) < 0$$

$$\mathbf{n} \bullet (\mathbf{i} - \mathbf{x}) = 0$$

$$\mathbf{n} \bullet (\mathbf{f} - \mathbf{x}) > 0$$

Finding Intersection Pts

Use the parametric form for the edge between two points, x₁ and x₂:

$$\mathbf{x}(t) = \mathbf{x}_1 + (\mathbf{x}_2 - \mathbf{x}_1)t \qquad 0 \le t \le 1$$

 \square For planes of the form x=a:

$$\mathbf{x}_i = (a, y_1 + \frac{(y_2 - y_1)}{(x_2 - x_1)}(a - x_1), z_1 + \frac{(z_2 - z_1)}{(x_2 - x_1)}(a - x_1))$$

- □ Similar forms for y=a, z=a
- Solution for general plane can also be found

Inside/Outside in Screen Space

- In canonical view space, clip planes are $x_s = \pm 1$, $y_s = \pm 1$, $z_s = \pm 1$
- Inside/Outside reduces to comparisons before perspective divide

$$-w_s \le x_s \le w_s$$

$$-w_s \le y_s \le w_s$$

$$-w_s \le z_s \le w_s$$

Clipping Lines

- Lines can also be clipped by Sutherland-Hodgman
 - Slower than necessary, unless you already have hardware
- Better algorithms exist
 - Cohen-Sutherland
 - Liang-Barsky
 - Nicholl-Lee-Nicholl (we won't cover this one only good for 2D)

Cohen-Sutherland (1)

- Works basically the same as Sutherland-Hodgman
 - Was developed earlier
- Clip line against each edge of clip region in turn
 - If both endpoints outside, discard line and stop
 - If both endpoints in, continue to next edge (or finish)
 - If one in, one out, chop line at crossing pt and continue
- Works in both 2D and 3D for convex clipping regions

Cohen-Sutherland (2)

Cohen-Sutherland - Details

- Only need to clip line against edges where one endpoint is out
- □ Use *outcode* to record endpoint in/out wrt each edge. One bit per edge, 1 if out, 0 if in.
- Trivial reject:
 - outcode(x1) & outcode(x2)!=0
- Trivial accept:
 - outcode(x1) | outcode(x2)==0
- Which edges to clip against?
 - outcode(x1) ^ outcode(x2)

Liang-Barsky Clipping

- Parametric clipping view line in parametric form and reason about the parameter values
 - Parametric form: $\mathbf{x} = \mathbf{x}_1 + (\mathbf{x}_2 \mathbf{x}_1)t$
 - $t \in [0,1]$ are points between \mathbf{x}_1 and \mathbf{x}_2
- Liang-Barsky is more efficient than Cohen-Sutherland
 - Computing intersection vertices is most expensive part of clipping
 - Cohen-Sutherland may compute intersection vertices that are later clipped off, and hence don't contribute to the final answer
- Works for convex clip regions in 2D or 3D

Parametric Clipping

- Recall, points inside a convex region are inside all clip planes
- Parametric clipping finds the values of t, the parameter, that correspond to points inside the clip region
- ☐ Consider a rectangular clip region

Left,
$$x=x_{min}$$

$$Right, x=x_{max}$$

$$Bottom, y=y_{min}$$

Parametric Intersection

Entering and Leaving

- □ Recall, a point is inside a view volume if it is on the inside of every clip edge/plane
- Consider the left clip edge and the infinite line. Two cases:
 - $t < t_{left}$ is inside, $t > t_{left}$ is outside \rightarrow leaving
 - $t < t_{left}$ is outside, $t > t_{left}$ is inside \rightarrow entering
- ☐ To be inside a clip plane we either:
 - Started inside, and have not left yet
 - Started outside, and have entered

Entering/Leaving Example

To be inside the clip region, you must have entered every clip edge before you have left any clip edge

When are we Inside?

- ☐ We want parameter values that are inside *all* the clip planes
- Any clip plane that we started inside we must not have left yet
 - First parameter value to leave is the end of the visible segment
- Any clip plane that we started outside we must have already entered
 - Last parameter value to enter is the start of the visible segment
- ☐ If we leave some clip plane before we enter another, we cannot see any part of the line
- All this leads to an algorithm Liang-Barsky

Liang-Barsky Sub-Tasks

- 1. Find parametric intersection points
 - Parameter values where line crosses each clip edge/plane
- 2. Find entering/leaving flags
 - For every clip edge/plane, are either entering or leaving
- 3. Find last parameter to enter, and first one to leave
 - Check that enter before leave
- 4. Convert these into endpoints of clipped segment

1. Parametric Intersection

- Segment goes from (x_1, y_1) to (x_2, y_2) : $\Delta x = x_2 x_1$ $\Delta y = y_2 - y_1$
- \square Rectangular clip region with x_{min} , x_{max} , y_{min} , y_{max}
- ☐ Infinite line intersects rectangular clip region edges when:

$$p_{left} = -\Delta x \qquad q_{left} = x_1 - x_{\min}$$

$$t_k = \frac{q_k}{p_k} \qquad \text{where} \qquad p_{right} = \Delta x \qquad q_{right} = x_{\max} - x_1$$

$$p_{bottom} = -\Delta y \qquad q_{bottom} = y_1 - y_{\min}$$

$$p_{top} = \Delta y \qquad q_{top} = y_{\max} - y_1$$

2. Entering or Leaving?

- When $p_k < 0$, as *t* increases line goes from outside to inside entering
- ☐ When $p_k > 0$, line goes from inside to outside leaving
- \square When $p_k=0$, line is parallel to an edge
 - Special case: one endpoint outside, no part of segment visible, otherwise, ignore this clip edge and continue

$$\begin{aligned} p_{left} &= -\Delta x \\ p_{right} &= \Delta x \\ p_{bottom} &= -\Delta y \\ p_{top} &= \Delta y \end{aligned}$$

Find Visible Segment ts

- \square Last parameter is enter is t_{smal} = max(0, entering ts)
- \square First parameter is leave is t_{large} =min(1, leaving ts)
- \Box If $t_{small} > t_{large}$, there is no visible segment
- \Box If $t_{small} < t_{large}$, there is a line segment
 - Compute endpoints by substituting t values into parametric equation for the line segment
- Improvement (and actual Liang-Barsky):
 - compute t's for each edge in turn (some rejects occur earlier like this)

General Liang-Barsky

- □ Liang-Barsky works for any convex clip region
 - E.g. Perspective view volume in world or view coordinates
- □ Require a way to perform steps 1 and 2
 - 1. Compute intersection *t* for all clip lines/planes
 - 2. Label them as entering or exiting

Near

Far

In View Space

First Step

- Compute inside/outside for endpoints of the line segment
 - Determine which side of each clip plane the segment endpoints lie
 - Use the cross product
 - What do we know if $(\mathbf{x}_1 \mathbf{e}) \times (\mathbf{x}_{left} \mathbf{e}) > 0$?
 - Other cross products give other information
- What can we say if both segment endpoints are outside one clip plane?
 - Stop here if we can, otherwise...

Finding Parametric Intersection

- \square Left clip edge: $\mathbf{x} = \mathbf{e} + (\mathbf{x}_{left} \mathbf{e}) t$
- \Box Line: $\mathbf{x} = \mathbf{x}_1 + (\mathbf{x}_2 \mathbf{x}_1) s$
- \square Solve simultaneous equations in t and s:

$$\mathbf{e}_{x} + (\mathbf{x}_{left,x} - \mathbf{e}_{x})t = \mathbf{x}_{1,x} + (\mathbf{x}_{2,x} - \mathbf{x}_{1,x})s$$

$$\mathbf{e}_{y} + (\mathbf{x}_{left,y} - \mathbf{e}_{y})t = \mathbf{x}_{1,y} + (\mathbf{x}_{2,y} - \mathbf{x}_{1,y})s$$

- Use endpoint inside/outside information to label as entering or leaving
- Now we have general Liang-Barsky case

General Clipping

- Liang-Barsky can be generalized to clip line segments to arbitrary polygonal clip regions
 - Consider clip edges as non-infinite segments
 - Look at all intersecting ts between 0 and 1
- Clipping general polygons against general clip regions is quite hard: Weiler-Atherton algorithm

Next Time

- □ Rasterization