resumen

Lautaro Bachmann

Contents

Grafos	2
grafo	2
Notaciones	2
Subgrafos	2
Vecinos de un vértice	3
Grado de un vértice	3
y	3
Cíclicos y completos	3
Componentes conexas	4
Grafos conexos	4
Determinación de las componentes conexas	5
DFS y BFS	5
$\mathrm{BFS}(\mathrm{x})$:	5
DFS(x):	6
Complejidad	6
Coloreos propios	6
Calculando (G)	6
Algoritmo de fuerza bruta	6
Algoritmo Greedy	6

Grafos

grafo

es un par ordenado G = (V, E) donde

 ${\bf V}$ es un conjunto cualquiera.

En esta materia siempre supondremos V finito.

E es un subconjunto del conjunto de subconjuntos de 2 elementos de V.

es decir E V :=

Notaciones

elementos de V

elementos de E

cantidad de elementos de V,

cantidad de elementos de E,

Un elemento E

Subgrafos

Dado un grafo G = (V, E), un **subgrafo** de G es un **grafo** H = (W, F) tal que W V Y F E.

Observemos que pedimos que H sea en si mismo un grafo. No cualquier par $(W,\,F)$ con $W\,\,V\,\,y\,\,F\,\,E$ será un subgrafo

Vecinos de un vértice

Dado x V, los vértices que forman un lado con x se llaman los **vécinos** de x.

El conjunto de vécinos se llama el

"vecindario"

```
y se denota por \Gamma(x).
```

```
Es decir \Gamma(x) = V : xy
```

Grado de un vértice

La cardinalidad de $\Gamma(x)$ se llama el **grado** de x, y la denotaremos por d(x) (o dG(x)

WARNING:

en algunos libros se denota usando la letra griega delta: (x)

у

El menor de todos los grados

de un grafo lo denotaremos por y al

mayor de todos los grados

```
por .
```

```
= : x = : x
```

Un grafo que tenga = (es decir, todos los grados iguales) se llamará un

grafo regular.

o -regular si queremos especificar el grado común a todos los vértices.

Cíclicos y completos

grafo cíclico

```
en n vértices, (n > 3) denotado por Cn, es el grafo:
```

```
..., y lados x2x3, ...,
```

grafo completo

en n vértices, denotado por Kn, es el grafo:

Cn y Kn tienen ambos n vértices, pero Cn tiene n lados mientras que Kn tiene

```
= lados. 2
```

Cn se llaman cíclicos porque su representación gráfica es un ciclo de n puntos.

 $d\mathrm{Cn}(\mathbf{x})=2$ para todo vértice de Cn, mientras que d $\mathrm{Kn}(\mathbf{x})=\mathrm{n}\ 1$ para todo vértice de Kn.

Por lo tanto ambos son grafos regulares.

```
es 2-regular y Kn es (n 1)-regular).
```

Componentes conexas

camino

entre 2 vértices x, y es una sucesión de vértices x1, ..., xr tales que:

x1 = x

xr = y. $xixi+1 \to 2$, ..., r

"x y sii existe un camino entre x e y"

es una relación de equivalencia.

Por

lo tanto el grafo G se parte en clases de equivalencia de esa relación de equivalencia.

Esas partes se llaman las componentes conexas de G.

componentes conexas

Grafos conexos

Un grafo se dice conexo si tiene una sola componente conexa.

Cn y Kn son conexos.

arbol

es un grafo conexo sin ciclos.

Determinación de las componentes conexas

El algoritmo básico de DFS o BFS lo que hace es, dado un vértice x, encontrar todos los vértices de la componente conexa de x.

algoritmo

```
(abajo en vez de BFS puede usarse DFS)
```

Tomar W = i = 1.

Tomar un vértice cualquiera x de V.

Correr BFS(x).

L'Lamarle Ci a la componente conexa que encuentra BFS(x).

Hacer W = (vértices de Ci).

Si W = V, return C1, C2, ..., Ci.

Si no, hacer i = i + 1, tomar un vértice x W y repetir [3].

DFS y BFS

breve repaso

a partir de un vértice raiz, los algoritmos van buscando nuevos vértices, buscando vecinos de vértices que ya han sido agregados. DFS agrega de a un vécino por vez y usa una pila.

BFS agrega todos los vecinos juntos y usa una cola.

BFS(x):

Crear una cola con x como único elemento.

Tomar C = WHILE (la cola no sea vacia)

Tomar p=el primer elemento de la cola. Borrar p de la cola. IF existen vértices de $\Gamma(p)$ que no esten en C:

Agregar todos los elementos de $\Gamma(p)$ que no estén en C a la cola y a C.

ENDWHILE

return C.

		1	`
I)	-۱	. 1 🗸	١.
\boldsymbol{L}		'\^	.,.

Crear una pila con x como único elemento.

 ${\it Tomar}~{\it C}={\it WHILE}~({\it la~pila~no~sea~vacia})$

Tomar p=el primer elemento de la pila. IF existe algún vértice de $\Gamma(p)$ que no esté en C:

Tomar un q $\Gamma(p)$ C. Hacer C = C Agregar q a la pila.

ELSE:

Borrar p de la pila.

ENDWHILE

return C.

Complejidad

la complejidad tanto de DFS como de BFS es O(m).

Coloreos propios

Calculando (G)

Algoritmo de fuerza bruta

Algoritmo Greedy

Idea de Greedy

Greedy

Complejidad de Greedy