Eigenvalue eigenvector

Instructor: Dr. Avijit Pal

Linear algebra- II (IC152)

Theorem

Let $A = [a_{ij}]$ be an $n \times n$ matrix with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, not necessarily distinct. Then $\det(A) = \prod_{i=1}^n \lambda_i$ and $tr(A) = \sum_{i=1}^n a_{ii} = \sum_{i=1}^n \lambda_i$.

Outline of the proof

• Since $\lambda_1, \lambda_2, \dots, \lambda_n$ are the *n* eigenvalues of *A*, by definition,

$$\det(A - \lambda I_n) = p(\lambda) = (-1)^n (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n).$$
 (1)

• Equation (1) is an identity in λ as polynomials. Therefore, by substituting $\lambda=0$ in (1), we get

$$\det(A) = (-1)^{n} (-1)^{n} \prod_{i=1}^{n} \lambda_{i} = \prod_{i=1}^{n} \lambda_{i}.$$

Outline of the proof

Also,

$$\det(A - \lambda I_n) = \begin{bmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{bmatrix}$$
$$= a_0 - \lambda a_1 + \cdots + (-1)^{n-1} \lambda^{n-1} a_{n-1} + (-1)^n \lambda^n$$
 (2)

for some $a_0, a_1, \ldots, a_{n-1} \in \mathbb{F}$.

• Note that a_{n-1} , the coefficient of $(-1)^{n-1}\lambda^{n-1}$, comes from the product

$$(a_{11}-\lambda)(a_{22}-\lambda)\cdots(a_{nn}-\lambda).$$

So,

$$a_{n-1} = \sum_{i=1}^{n} a_{ii} = \operatorname{tr}(A)$$

by definition of trace.

Outline of the proof

• From (1) and (2), we get

$$a_0 - \lambda a_1 + \dots + (-1)^{n-1} \lambda^{n-1} a_{n-1} + (-1)^n \lambda^n = (-1)^n (\lambda - \lambda_1) \dots (\lambda - \lambda_n).$$

• Therefore, comparing the coefficient of $(-1)^{n-1}\lambda^{n-1}$, we have

$$tr(A) = a_{n-1} = (-1)\{(-1)\sum_{i=1}^{n} \lambda_i\} = \sum_{i=1}^{n} \lambda_i.$$

- Let A be an $n \times n$ matrix. Then in the proof of the above theorem, we observed that the characteristic equation $\det(A \lambda I) = 0$ is a polynomial equation of degree n in λ .
- Also, for some numbers $a_0, a_1, \ldots, a_{n-1} \in \mathbb{F}$, it has the form

$$\lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0 = 0.$$

- Note that, in the expression $\det(A \lambda I) = 0$, λ is an element of \mathbb{F} . Thus, we can only substitute λ by elements of \mathbb{F} .
- It turns out that the expression

$$A^{n} + a_{n-1}A^{n-1} + \cdots + a_{1}A + a_{0}I = \mathbf{0}$$

holds true as a matrix identity.

• This is a celebrated theorem called the Cayley Hamilton Theorem.

Matrix polynomials

- Let us consider a 2×2 matrix $A = \begin{bmatrix} x^2 + x + 1 & x^3 + 2x \\ 3x^3 + x & 4x^2 + 3 \end{bmatrix}$ whose elements are real polynomials in x.
- A can be expressed as the polynomial in x

$$\begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix} x^3 + \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} x^2 + \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} x + \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix},$$

whose co-efficients are real matrices of order 2×2 .

- Such a polynomial is said to be matrix polynomial.
- The degree of the matrix polynomial is the degree of the constituent polynomial of highest degree appearing in the matrix *A*.
- In general, if A is an $n \times n$ matrix whose elements are real(complex) polynomials of x, then A can be expressed as a matrix polynomial whose co-efficients are real(complex) matrices of order $n \times n$.

Matrix polynomials

- Two matrix polynomials F(x) and G(x) whose co-efficients are matrices of the same order over the same field are said to be equal if they have the same degree and the co-efficients of likes powers of x be equal matrices.
- Let $F(x) = \sum_{k=0}^{n} A_k x^k$ and $G(x) = \sum_{k=0}^{m} B_k x^k$ be two matrix polynomials whose co-efficients are square matrices of the same order over the same field.

Sum and Product of two matrix polynomials

• The sum of F(x) + G(x) is defined as

$$F(x) + G(x) = \begin{cases} \sum_{k=0}^{m} (A_k + B_k) x^k + A_{m+1} x^{m+1} + \dots + A_n x^n & \text{if } m < n \\ \sum_{k=0}^{n} (A_k + B_k) x^k + B_{n+1} x^{n+1} + \dots + B_m x^m & \text{if } n < m \\ \sum_{k=0}^{m} (A_k + B_k) x^k & \text{if } n = m. \end{cases}$$

• The product of F(x)G(x) is defined as

$$F(x)G(x) = \sum_{k=0}^{m+n} C_k x^k,$$

where $C_k = \sum_{i=0}^k A_i B_{k-i}, k = 1, \dots, m+n$.

• Observe that $F(x)G(x) \neq G(x)F(x)$, because matrix multiplication is not commutative.

- Let $F(x) = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} x + \begin{pmatrix} 0 & 1 \\ 1 & 3 \end{pmatrix}$. We will show that F(x)adj $F(x) = \det F(x)I_2$.
- F(x)adj $F(x) = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} x^2 + \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -(2x^2 + 1)I_2$
- This shows that F(x)adj $F(x) = \det F(x)I_2$.

Here we will discuss few examples related to the Cayley-Hamilton Theorem.

- For a 1×1 matrix $A = (a_{11})$, the characteristic polynomial is given by $p(\lambda) = \lambda a$, and so $p(A) = (a) a_{11} = 0$ is trivial.
- 2 For a generic 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
 - The characteristic polynomial is given by

$$p(\lambda) = \lambda^2 - (a+d)\lambda + (ad - bc),$$

2 So, the Cayley-Hamilton theorem states that

$$p(A) = A^{2} - (a+d)A + (ad-bc)I_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 (3)

3 Does the matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ satisfies the equation (3)?

Theorem (Cayley Hamilton Theorem)

Let A be a square matrix of order n and

$$c_0x^n+c_1x^{n-1}+\cdots+c_n$$

be the characteristic polynomial of A. Then A satisfies its characteristic equation. That is,

$$c_0A^n + c_1A^{n-1} + \cdots + c_nI_n = \mathbf{0}$$

holds true as a matrix identity.

Outline of proof

• Let A be an $n \times n$ matrix. Then

$$\det(A - xI_n) = c_0 x^n + c_1 x^{n-1} + \dots + c_n.$$

- $A xI_n$ is a matrix polynomial in x of degree 1 and $\operatorname{adj}(A xI_n)$ is a matrix polynomial in x of degree (n-1), since each element of $\operatorname{adj}(A xI_n)$, that is, a cofactor of an element of the matrix $A xI_n$, is a polynomial in x of degree at most (n-1).
- Let $\operatorname{adj}(A xI_n) = B_0 x^{n-1} + B_1 x^{n-2} + \cdots + B_{n-1}$, where each B_i is an $n \times n$ matrix.
- $(A xI_n)$ adj $(A xI_n) = [\det(A xI_n)]I_n$ gives

$$A(B_0x^{n-1} + B_1x^{n-2} + \dots + B_{n-1}) - (B_0x^n + B_1x^{n-1} + \dots + B_{n-1}x)$$

= $c_0I_nx^n + c_1I_nx^{n-1} + \dots + c_nI_n$.

• Equating coefficents of like powers of x, we have

Outline of the proof cont.

- $-B_0 = c_0 I_n, AB_0 B_1 = c_1 I_n, \cdots, AB_{n-2} B_{n-1} = c_{n-1} I_n, AB_{n-1} = c_n I_n.$
- Pre-multiplying the relation by A^n, \dots, A, I_n respectively and adding, we have

$$c_0A^n + c_1A^{n-1} + \cdots + c_nI_n = \mathbf{0}$$

This completes the proof.

We will use the Cayley Hamilton theorem to find the inverse of a matrix A, where $A=\begin{pmatrix}2&1\\3&5\end{pmatrix}$.

- **1** The characteristic equation of *A* is $det(A \lambda I) = \lambda^2 7\lambda + 7 = 0$.
- ② By Cayley-Hamilton theorem we get $A^2 7A + 7I_2 = O$.
- 3 Solving further we get $-\frac{1}{7}A(A-7I_2)=I_2$.
- ① This gives $A^{-1} = -\frac{1}{7}(A 7I_2) = \frac{1}{7} \begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix}$.

We will use the Cayley Hamilton theorem to find A^{50} , where $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

- The characteristic equation of *A* is $det(A \lambda I) = \lambda^2 2\lambda + 1 = 0$.
- ② By Cayley-Hamilton theorem, $A^2 2A + I_2 = O$ or , $A^2 A = A I_2$.
- **3** Therefore $A^3 A^2 = A^2 A = A I_2, ..., A^{50} A^{49} = A I_2$.
- **1** Adding, we have $A^{50} = 50A 49I_2 = \begin{pmatrix} 1 & 50 \\ 0 & 1 \end{pmatrix}$.