# 1 Réaction avec l'eau

### Équation de l'autoprotolyse de l'eau :

$$2 H_2O (\ell) \rightleftharpoons H_3O^+ (aq) + HO^- (aq)$$

### Produit ionique de l'eau K<sub>e</sub> :

$$K_e = [H_3O^+(aq)]_f \cdot [HO^-(aq)]_f$$

### Constante d'acidité Ka:

Soit l'équation AH (aq) +  $H_2O(\ell) \Rightarrow A^-(aq) + H_3O^+(aq)$ 

$$\mathbf{K_{A}} = \frac{\left[\mathbf{A^{-}}\; (\mathbf{aq})\right]_{\mathbf{f}} \cdot \left[\mathbf{H_{3}O^{+}}\; (\mathbf{aq})\right]_{\mathbf{f}}}{\left[\mathbf{AH}\; (\mathbf{aq})\right]_{\mathbf{f}}}$$

### Réaction d'un acide ou d'une base avec l'eau :

- si équilibre chimique  $\,
  ightarrow\,$  acide faible ou base faible
- si la réaction est totale → acide fort ou base forte

### Force des acides et des bases :



# 2 Solutions d'acide ou de base

### Solution d'acide

forte

si 
$$pH = -\log c$$

$$\begin{bmatrix} AH (aq) \end{bmatrix}_f = 0$$

$$\begin{bmatrix} A^- (aq) \end{bmatrix}_f = \begin{bmatrix} H_3O^+ (aq) \end{bmatrix}_f = c$$

si  $pH \neq -\log c$ 

composition donnée par la résolution de l'équation  $c \cdot \tau^2 + K_A \cdot \tau - K_A = 0$ 

c est la concentration en quantité de matière d'acide apporté

### Solution de base

forte 
$$\phi$$
 faible si  $\phi$  faibl

### Solution tampon

Son pH varie peu par addition d'une petite quantité d'acide ou de base, et par dilution modérée.

# 3 Diagrammes d'un couple

### Diagramme de prédominance



### Application aux acides alpha-aminés



#### Diagramme de distribution



### Application aux indicateurs colorés





### QCM

### 1 Réaction avec l'eau

|                                                                         | A                                                                                                    | В                                                                                                            | C                                                                                                                                 |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Le produit ionique de l'eau                                             | correspond à la constante de l'équilibre : $H_3O^+(aq) + HO^-(aq)$ $\rightleftharpoons 2 H_2O(\ell)$ | a pour expression :                                                                                          | a pour valeur $K_e = 1.0 \times 10^{14}$                                                                                          |
| Ke :                                                                    |                                                                                                      | $K_e = [H_3O^+ (aq)]_f \cdot [HO^- (aq)]_f$                                                                  | si p $K_e = 14 \text{ à } 25 \text{ °C}$ .                                                                                        |
| 2 La constante d'acidité<br>d'un couple AH (aq) / A <sup>-</sup> (aq) : | correspond à la réaction<br>de l'acide AH avec<br>sa base conjuguée A¯.                              | correspond à la constante de l'équillibre : AH (aq) + $H_2O(\ell)$ $\rightleftharpoons A^-(aq) + H_3O^+(aq)$ | a pour expression : $K_{A} = \frac{\left[A^{-} (aq)\right]_{f} \cdot \left[H_{3}O^{+} (aq)\right]_{f}}{\left[AH (aq)\right]_{f}}$ |
| 3 Une espèce chimique :                                                 | acide ou base est forte                                                                              | $A^-$ (aq) est une base faible si :                                                                          | AH (aq) est un acide fort si :                                                                                                    |
|                                                                         | si sa transformation                                                                                 | $A^-$ (aq) + $H_2O$ ( $\ell$ )                                                                               | AH (aq) + $H_2O(\ell)$                                                                                                            |
|                                                                         | avec l'eau est totale.                                                                               | $\rightleftharpoons$ AH (aq) + HO <sup>-</sup> (aq)                                                          | $\rightleftharpoons A^-(aq) + H_3O^+(aq)$                                                                                         |

### 2 Solution d'acide ou de base

|                                                                                                                  | A                                                                    | В                                                                                     | L                                                                                       |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Dans une solution d'acide nitrique de concentration $c = 1,0 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$ :   | $[HNO_3 (\ell)]_f$<br>= 1,0 × 10 <sup>-3</sup> mol · L <sup>-1</sup> | $[NO_3^- (aq)]_f = [H_3O^+ (aq)]_f$<br>= 1,0 × 10 <sup>-3</sup> mol · L <sup>-1</sup> | pH = 3,0                                                                                |
| Pour une solution d'acide éthanoïque de concentration $c = 1,0 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$ : | $[CH_3CO_2H (aq)]_f$<br>= 1,0 × 10 <sup>-2</sup> mol·L <sup>-1</sup> | pH = 2,0                                                                              | on peut prévoir sa<br>composition en résolvant<br>une équation du 2 <sup>nd</sup> degré |
| Le pH d'une solution tampon varie peu par :                                                                      | addition d'une petite<br>quantité d'acide.                           | addition d'une petite<br>quantité de base.                                            | dilution modérée.                                                                       |

# 3 Diagramme d'un couple



# Produit ionique de l'eau : $K_e = 1.0 \times 10^{-14}$ à 25 °C.

# **Quelques boissons**

Recopier et compléter le tableau suivant en calculant les valeurs manquantes. Les valeurs sont données à la température de 25 °C, les concentrations en quantité de matière sont exprimées en  $\text{mol} \cdot \text{L}^{-1}$ .

| Boisson                                           | Jus de<br>pomme | Lait                   | Eau<br>minérale        | Soda<br>au cola |
|---------------------------------------------------|-----------------|------------------------|------------------------|-----------------|
| рН                                                | 3,2             |                        |                        | 2,5             |
| [H <sub>3</sub> O <sup>+</sup> (aq)] <sub>f</sub> |                 | 2,0 × 10 <sup>-7</sup> |                        |                 |
| [HO <sup>-</sup> (aq)] <sub>f</sub>               | 10              |                        | 3,1 × 10 <sup>-7</sup> |                 |

# 10 Constante d'acidité d'un couple acide-base

L'ammoniac NH<sub>3</sub> (aq) est une base faible utilisée dans la composition des engrais.

- **1.** Écrire l'équation chimique de l'équilibre dont K<sub>A</sub> est la constante.
- 2. Donner l'expression de la constante d'acidité  $K_A$  du couple  $NH_4$  (aq) /  $NH_3$  (aq).
- 3. Calculer la valeur de cette constante  $K_A$  à 25 °C sachant que  $pK_A = 9,2$  à cette température.

# 15 Solution d'acide nitrique

L'acide nitrique  ${\rm HNO_3}$  ( $\ell$ ) est un acide fort qui réagit avec l'eau selon l'équation :

$$\mathsf{HNO_3}\left(\ell\right) + \mathsf{H_2O}\left(\ell\right) \, \to \, \mathsf{NO_3^-}\left(\mathsf{aq}\right) + \mathsf{H_3O^+}\left(\mathsf{aq}\right)$$

On considère une solution aqueuse d'acide nitrique de concentration en quantité de matière apportée :  $c = 5.0 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$ .

- 1. Une solution aqueuse d'acide nitrique contient-elle des molécules d'acide nitrique HNO<sub>3</sub> ? Justifier la réponse.
- 2. Quelle est la valeur des concentrations effectives  $[NO_3^- (aq)]_f$  et  $[H_3O^+ (aq)]_f$ ?
- 3. Quel est la valeur du pH de cette solution ?

# 16 Un acide fort courant

On dissout  $8.3 \times 10^{-2}$  mol de chlorure d'hydrogène HCl gazeux dans de l'eau afin d'obtenir un volume V = 5.0 l de solution d'acide fort de concentration c.

- 1. Écrire l'équation de la réaction qui modélise la transformation du chlorure d'hydrogène avec l'eau.
- Comment appelle-t-on la solution obtenue ?
- 3. Calculer la concentration c.
- Calculer les concentrations effectives [HCl (g)]<sub>f</sub>, [H<sub>3</sub>O<sup>+</sup> (aq)]<sub>f</sub> et [Cl<sup>-</sup> (aq)]<sub>f</sub>.
- 5. Quelle est la valeur du pH de la solution obtenue?

# De la soude pour déboucher une canalisation

L'hydroxyde de sodium ou soude est une base forte.

Pour déboucher une canalisation, on utilise de la soude (Na<sup>+</sup> (aq), HO<sup>-</sup> (aq)) à la concentration en quantité de matière  $c = 3.0 \times 10^{-2}$  mol·L<sup>-1</sup>.

- 1. Justifier que cette solution soit notée (Na<sup>+</sup> (aq), HO<sup>-</sup> (aq)).
- Calculer les concentrations en quantité de matière effectives [HO<sup>-</sup> (aq)]<sub>f</sub> et [Na<sup>+</sup> (aq)]<sub>f</sub>.

# Comparer la force des acides

On mesure le pH de quatre solutions d'acides différents mais de même concentration en quantité de matière  $c = 1.0 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$ .

| Acide fluorhydrique HF                             | pH = 2,7 |
|----------------------------------------------------|----------|
| Acide hypochloreux HClO                            | pH = 5,0 |
| Acide sulfamique H <sub>2</sub> NSO <sub>3</sub> H | pH = 2,0 |
| Acide chloreux HClO <sub>2</sub>                   | pH = 2,2 |

- **1.** Un acide fort se trouve-il parmi ces quatre espèces chimiques ? Si oui, lequel ? Justifier la réponse.
- Classer ces acides selon l'ordre croissant de leur force. Justifier ce classement.
- **3.** Les valeurs des pK<sub>A</sub> des couples auxquels appartiennent l'acide fluorhydrique, l'acide hypochloreux et l'acide chloreux sont respectivement 3,2 ; 7,5 et 1,9.

Comment varie la force d'un acide en fonction du pK<sub>A</sub> du couple auquel il appartient ?

# 19 L'ammoniac

Pour obtenir une solution d'ammoniac utilisée comme produit nettoyant et détachant, on dissout dans un volume V = 250 mL d'eau une quantité de matière d'ammoniac  $n = 2.5 \times 10^{-3}$  mol. Le pH de la solution obtenue vaut 10,6.

- 1. Calculer la concentration c en ammoniac apporté.
- Calculer la concentration en quantité de matière d'ions hydroxyde [HO<sup>-</sup> (aq)]<sub>f</sub> dans la solution.
- 3. Montrer que le taux d'avancement final  $\tau$  peut s'écrire  $\tau = \frac{[HO^-]_f}{c}$ , puis calculer sa valeur.
- 4. En déduire si l'ammoniac est une base forte ou faible.

# 25 Composition d'une solution d'acide glycolique



L'acide glycolique est un acide faible de formule brute C<sub>2</sub>H<sub>4</sub>O<sub>3</sub>. Il est très présent dans les produits cosmétiques car il améliore la texture et l'apparence de la peau.

On considère un volume V d'une solution d'acide glycolique de concentration en quantité de matière  $c = 1,0 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$  à la température de 25 °C.

**Données**:  $C_2H_4O_3$  (aq) /  $C_2H_3O_3^-$  (aq);  $pK_A = 3.8 \stackrel{a}{o} 25 °C$ .

- **1. Exprimer** les concentrations effectives d'acide glycolique  $[C_2H_4O_3 (aq)]$  et de sa base conjuguée  $[C_2H_3O_3^- (aq)]$  en fonction du taux d'avancement final  $\tau$  de la transformation entre l'acide glycolique et l'eau.
- 2. Établir l'équation à laquelle obéit le taux d'avancement final  $\tau$  de la transformation.
- 3. Résoudre cette équation pour déterminer le taux d'avancement final τ.
- **4.** Calculer les concentrations effectives d'acide glycolique  $[C_2H_4O_3 (aq)]$  et de sa base conjuguée  $[C_2H_3O_3^- (aq)]$ .

# 27 L'eau de Javel



L'eau de Javel est une solution aqueuse fréquemment utilisée comme désinfectant ou comme décolorant. L'espèce active contenue dans l'eau de Javel est l'ion hypochlorite ClO<sup>-</sup> (aq), c'est une base faible. Le diagramme de distribution du couple HClO (aq) / ClO<sup>-</sup> (aq) est donné ci-contre.

- 1. Déterminer la valeur du pK<sub>A</sub> du couple HClO (aq) / ClO<sup>-</sup> (aq).
- 2. a. Déterminer le pourcentage de chaque espèce conjuguée dans une solution d'eau de Javel de pH = 8,5 et de concentration en quantité de matière  $c = 6,0 \times 10^{-5}$  mol·L<sup>-1</sup>. b. En déduire la concentration en quantité de matière de chaque espèce conjuguée dans cette solution.

# 133 La composition d'un détartrant

Un détartrant est une solution d'acide éthanoïque de concentration en quantité de matière  $c = 8.0 \times 10^{-2}$  mol·L<sup>-1</sup>.

**Données**:  $CH_3CO_2H(aq) / CH_3CO_2^-(aq)$ ;  $pK_A = 4,8$ .

### **DÉMARCHE EXPERTE**

Déterminer les concentrations en quantité de matière effectives de l'acide éthanoïque et de sa base conjuguée et la valeur de son pH.

### DÉMARCHE AVANCÉE

- **1. a.** Exprimer les concentrations effectives de l'acide éthanoïque, de sa base conjuguée et des ions oxoniums en fonction de la concentration en quantité de matière c et du taux d'avancement final  $\tau$  de la transformation entre l'acide et l'eau.
- **b.** Montrer que le taux d'avancement final  $\tau$  obéit à l'équation suivante :

$$c \cdot \tau^2 + K_A \cdot \tau - K_A = 0$$

- 2. a. Calculer les concentrations en quantité de matière effectives de l'acide éthanoïque, de sa base conjuguée et des ions oxoniums.
- **b.** Calculer la valeur du pH de cette solution et la comparer à la valeur mesurée pH = 3,0.

# Acide et base conjuguée

Un litre de solution aqueuse contient 0,20 mol d'acide éthanoïque et 0,20 mol d'éthanoate de sodium. Le pH de cette solution est égal à 4,8.

#### Données :

- Masses molaires atomiques :  $M_{Na} = 23.0 \text{ g} \cdot \text{mol}^{-1}$ ,  $M_{O} = 16.0 \text{ g} \cdot \text{mol}^{-1}$ ,  $M_{H} = 1.0 \text{ g} \cdot \text{mol}^{-1}$ .
- 1. Déterminer la valeur du pK<sub>A</sub> du couple CH<sub>3</sub>CO<sub>2</sub>H (aq) / CH<sub>3</sub>CO<sub>7</sub> (aq).
- 2. Cette solution constitue une solution tampon. Citer ses propriétés.
- 3. Pour illustrer l'une de ces propriétés, on dissout dans cette solution 0,40 g de soude. Son pH prend alors la valeur 4,9. Que vaudrait le pH si l'on dissolvait la même masse de soude dans un litre d'eau pure de pH = 7,0? Commenter.

# 15 Le vert de bromocrésol

Le vert de bromocrésol est un indicateur coloré. C'est un couple acide-base de  $pK_A = 4,9$  dont la forme acide notée HInd est jaune tandis que la forme basique notée Ind est bleue.

- 1. Écrire l'équation de la réaction entre l'espèce HInd (aq) et l'eau et exprimer la constante d'acidité du couple HInd (aq) / Ind- (aq).
- Établir la relation entre le pH et le pK<sub>A</sub>.
- 3. On considère que le vert de bromocrésol prend sa teinte acide lorsque  $\frac{[Ind^-]}{[HInd]}$  < 0,1 et qu'il prend sa teinte basique  $\frac{[Ind^-]}{[Ind^-]}$

lorsque 
$$\frac{\lfloor Ind^- \rfloor}{\lfloor HInd \rfloor}$$
 > 10. Déterminer sa zone de virage.

- 4. Tracer le diagramme de prédominance du vert de bromocrésol.
- 5. Peut-il être utilisé pour repérer l'équivalence d'un titrage acide-base dont le pH à l'équivalence est égal à 6,3 ? Justifier la réponse.

# **3** Diagramme de distribution



Le programme en langage Python suivant permet de tracer le diagramme de distribution d'un couple acide-base de pK<sub>A</sub> donné.

```
1. import matplotlib.pyplot as plt
2. import scipy.optimize as spo
3. import numpy as np
4. pKA = float(input(«pKA = »))
5. def alpha(pH):
6. return 100*(10**(-pH))/((10**(-pH))+10**(-pKA))
7. def beta(pH):
8. return 100*(10**(-pKA))/((10**(-pH))+10**(-pKA))
9. pH=np.linspace(0,14,100)
10. plt.plot(pH,alpha(pH),«r»,label=«% de AH»)
11. plt.plot(pH,beta(pH),«g»,label=«% de A-»)
12. plt.xlabel(«pH»)
13. plt.ylabel(«%»)
14. plt.show()
```

- Quel est l'objectif de la ligne 4?
- Quelle est la grandeur tracée en abscisse ? Justifier la réponse.
- a. À quelle grandeur chimique correspond alpha(pH)?
   Justifier la réponse.
- **b.** Préciser la couleur de la courbe correspondante. Justifier la réponse.
- c. Démontrer que l'expression de cette grandeur est bien donnée par la relation de la ligne 6.

# Un traitement à base d'acide fumarique



L'acide fumarique est un compose synthétisé normalement par la peau lorsque celle-ci est exposée au Soleil. Lorsque ce processus est déficient, l'être humain développe une maladie de la peau : le psoriasis.

On souhaite vérifier l'indication portée sur l'étiquette d'un traitement du psoriasis sous forme de gélules, à l'aide d'un titrage acide-base.

On prépare une solution de volume V = 100,0 mL contenant une gélule dissoute.

On dose un volume  $V_A$  = 10,0 mL de cette solution par de la soude de concentration en quantité de matière :  $c_B = 1.0 \times 10^{-1} \text{ mol} \cdot \text{L}^{-1}$ .

La courbe d'évolution du pH en fonction du volume de soude versé est donnée ci-dessous.



L'équation de la réaction, support du titrage, est :  $AH_2(aq) + 2HO^-(aq) \rightarrow A^{2-}(aq) + 2H_2O(\ell)$ 

 Parmi les trois indicateurs colorés suivants, lequel est le plus approprié pour effectuer le titrage de l'acide fumarique? Justifier la réponse.

| Indicateur coloré   | Teinte acide | Zone de<br>virage | Teinte<br>basique |
|---------------------|--------------|-------------------|-------------------|
| Hélianthine         | Rouge        | 3,1 - 4,4         | Jaune             |
| Rouge de crésol     | Jaune        | 7,2 - 8,8         | Rouge             |
| Jaune d'alizarine R | Jaune        | 10,1 – 12,1       | Violet            |

**2. a.** Déterminer, en explicitant la démarche adoptée, la valeur expérimentale  $m_{\rm exp}$  de la masse d'acide fumarique contenu dans une gélule ainsi que son incertitude-type  $u_{m_{\rm exp}}$ .

L'incertitude-type relative  $\frac{u_{m_{\rm exp}}}{m_{\rm exp}}$  dans les conditions de

l'expérience, est donnée par la relation :

$$\frac{u_{m_{exp}}}{m_{exp}} = \sqrt{\left(\frac{u_{V_E}}{V_E}\right)^2 + \left(\frac{u_{V_A}}{V_A}\right)^2 + \left(\frac{u_{C_B}}{c_B}\right)^2}$$

On donne les incertitudes-type suivantes :

$$u_{V_A}=$$
 0,1 mL ;  $u_{V_E}=$  0,1 mL ;  $u_{c_B}=$  0,3  $\times$  10  $^{-2}$  mol  $\cdot$  L  $^{-1}.$ 

**b.** Comparer la valeur déterminée expérimentalement à la valeur donnée par le fabricant  $m_{\rm fab}$  = 500 mg en calculant le

quotient 
$$\frac{\left| m_{\rm exp} - m_{\rm fab} \right|}{u_{m_{\rm exp}}}$$
. Conclure.

### 20 Les couleurs des hortensias

Construire un diagramme ; rédiger une explication.

D'après Baccalauréat

Les couleurs rouge, mauve, violette et bleue des hortensias sont dues à la présence d'anthocyanes dans les pétales. La couleur violette est due à une molécule que l'on notera AH dans la suite.



La molécule AH appartient à deux couples acide-base :  $AH_2^+/AH$  de  $pK_{A1}=4,3$  et  $AH/A^-$  de  $pK_{A2}=7,0$ . La présence des espèces  $AH_2^+$ , AH et  $A^-$  en solution donne, respectivement, une coloration rouge, violette et bleue aux pétales.

- 1. Écrire les équations des réactions des acides AH<sub>2</sub><sup>+</sup>(aq) et AH (aq) avec l'eau.
- Construire le diagramme de prédominance des espèces AH<sub>2</sub> (aq), AH (aq) et A<sup>-</sup> (aq).
- 3. Associer les constantes d'acidité ci-dessous aux équations de la question 1 :

$$\frac{[A^-]_{\acute{e}q} \times [H_3O^+]_{\acute{e}q}}{[AH]_{\acute{e}q}} \ \ \text{et} \ \ \frac{[AH]_{\acute{e}q} \times [H_3O^+]_{\acute{e}q}}{[AH_2^+]_{\acute{e}q}}$$

- 4. Identifier l'acide le plus fort dans l'eau.
- Calculer la constante d'acidité K<sub>A2</sub> du couple AH / A<sup>-</sup>.
- Une solution S contenant l'espèce AH a un pH égal à 10,0.
- a. Exprimer puis calculer la valeur du rapport  $\frac{[A^-]_{\acute{e}q}}{[AH]_{\acute{e}q}}$ .
- b. En déduire la couleur de la solution S.
- 7. Le pH dans les cellules des pétales varie en sens inverse du pH du sol. Expliquer pourquoi et comment il est possible de faire passer de rose à bleu les fleurs d'un hortensia.