1 Método dual afin escala P: min $c^{t}x$ s.a. Ax = b x > 0D: max by $y_1 z_2 = C$ $x - a \cdot A + z = C$ z > 0Primal asim escala: da passos na var-primal. $Ax^{k}=b$, $x^{k}>0$ \Rightarrow estima $y', y' \Rightarrow d' \Rightarrow x' = x + d_{x}d''$ Dual afin escala: da passos mas var du ais. $A^{t}y^{k}+2^{k}=C$, $3^{k}>0$ estima $x^{k} \rightarrow dy$, d_{3}^{k} , d_{3}^{k} , d_{3}^{k} .

Dado (y°, z°) dual viavel e intérior là (i.é., Ay+3°=c, 3°>0), bus camos uma boa estimativa para N. Sembre-se que as condições de olimalidade são Ax=b, x>0Ay+3=C,3>0 $XZe=0 \quad (\Leftrightarrow ZXe=0 \Leftrightarrow Z\chi=0)$ Duscamos minimizar 1/22/1 mantendo viabili-dade primal:

3 min 1/2 11 Zx 1/2 s.a. Ax = b. Kasolvendo: plas condições KKT, devemos ter Zx - Atw = 0, Ax = b. Como 3>0, temos $x=Z^{-2}A^{t}w$ e $Ax=b \Rightarrow AZA^{t}w=b \Rightarrow |w=(AZA^{t})b|$ Considere à direção d_z = -Z²x. Inveremos uma direção d_y que aumente à F.O. dual

ty e que forneça (y+ x dy, z+ x dz) [4. dual viant para algun x>0: (i) $A^{t}(y+dy) + z+dz = c \Rightarrow A^{t}y + A^{t}dy + z+dz = c$ $\Rightarrow A^{\dagger}d_{y} + d_{z} = 0 \Rightarrow d_{z} = -A^{\dagger}d_{y}.$ Wishin $d_z = -Z x = -A d_y \Rightarrow Z (Z A w) =$ Ady = Ady = Aw. Como vosto $A = m \le m$, so pode ser $dy = w \implies dy = (AZ^{-2}A^{+})^{-1}b$

En resumo, $d_y = (AZ^{-2}A^t)$ b, $d_z = -A^t d_y$. (ii) y à variant livre. Portanto, de deve garanter apenas que 3 > 0. Como antes, $2x = 2 \min \left\{ -\frac{3i}{d_{3i}}, \frac{3i}{d_{3i}} < 0 \right\},$ onde $G \in (0,1)$. (iii) bt(y+dy) = bty + bt(AZA)b > bty.

Método dual afin escala Dado (y°,3°) dual viavel interior.
para K=0,..., maxit $d_{y}^{k} = (A Z^{-2} A^{t})^{-1} b$, $d_{z}^{k} = -A^{t} d_{y}^{k}$ xx = 3 min 3 - 3i/x; d3i < 0 9 $y^{-1} = y^{k} + d_{k} d_{y}^{k}$ até "convergir" (melhor: 3 = C-Ayk) $\chi = -Z^{-2}d_{x}^{x}$ (retorna solução de P)

Vonto inicial Precisamos de (y°, z°) com $Ay^{\circ}+z^{\circ}=c$ e $z^{\circ}>0$. (FASE 1) 1) $y^{\circ}=\frac{\|c\|}{\|A^{\dagger}\|}$ 2) le $\tilde{z}^{\circ} = c - A\tilde{y}^{\circ} > 0$, entro $(y^{\circ}, z^{\circ}) = (\tilde{y}^{\circ}, \tilde{z}^{\circ})$. 3) se 3° >0 entro tome M = 10° 15 y° 1 onde 6°=-2 min 3°>0.

(8 4) Resolva min $-(b^{\dagger}y - M6)$ y,3,6

s.a. $A^{\dagger}y - Ge + 3 = C$, $z \ge 0$,

ondo e = (1,...,1), pelo método dual afim Mote que (j°, c-Aty°+v°e, o°) é viame e interior. Atotenha (y*, z*, 6*). · 0 *>0 => D mão tem golução => Pilimitade ou intrâml. Se 6 x < 0 éntão podemos paran e retornar y x e 3 = c - Aty x > 0.

Critério de parada Ideia: parar quando a F.O. dual não melhora de uma iteração para a seguinte em relação à sua magnitude. 1 by - bty / (p.m. E=10) max 31, 16ty 15