FUDAN SUMMER SCHOOL INTRODUCTION TO AI

Probabilistic Reasoning and Decision Making

Day 7 – variable elimination exercise, MLE learning

Inference in Bayes Nets: Variable Elimination

0.01

0.65

P(J=1|A)

0.1

0.93

Ε	P(A=1 B,E)
0	0.002
1	0.35
0	0.96
1	0.98
	0

Compute P(B|J = 1, M = 1)

$$= \frac{\sum_{e} \sum_{a} P(B, J = 1, M = 1, A = a, E = e)}{\sum_{b} P(B = b, J = 1, M = 1)}$$

- Create a factor for each CPT
- 2. Choose an elimination ordering for non-query variables (we'll use M, J, A, E)
- 3. Eliminate each variable in order by applying factor operations.
 - 1. Product
 - 2. Summing out
 - 3. Condition

If I simply use joint probability to calculate the result, what is the number of ops that we need to do? Assume each variable is binary and we have all the CPTs

- A. 2¹⁴ multiplications and 2⁸ additions
- B. 2^15 multiplications and 2^7 additions
- C. 2^11 multiplications and 2^9 additions
- D. 2^12 multiplications and 2^10 additions
- E. None of the above

Does elimination order matter?

- In general, yes (but not in the trivial graphs we've been considering)
- Time and space of VE is dominated by the largest factor created
- Heuristic: Eliminate the variable that will lead to the smallest next factor being created
 - In a polytree this leads to linear time inference (in size of largest CPT)

What is a polytree? A graph with no undirected loops

■ Which are polytrees?

A. None of these B. I only C. I and II D. I, II and III

Making a polytree by collapsing nodes

X	P(Y1=1 X)			
0	0.1			
1	0.5			

X	P(Y2=1 X)		
0	0.9		
1	0.7		

Y1	Y2	P(Z=1 Y1, Y2)	
0	0	0.2	
0	1	0.3	
1	0	0.6	
1	1	0.8	

Y1	Y2	Υ	Χ	P(Y X)	P(Z=1 Y)
0	0	0	0		
0	1	1	0		
1	0	2	0		
1	1	3	0		
0	0	0	1		
0	1	1	1		
1	0	2	1		
1	1	3	1		

What we've learned so far

■ Pause and spend 5 minutes writing down the main ideas we've learned so far, and how they connect.

What we've learned so far

- Basics of probability and how to use the product rule, Bayes rule and marginalization to do inference.
- How to represent relationships in the world with Bayes nets:
 - Graph to represent variables and their direct dependencies
 - CPTs to represent strength of dependencies
- Noisy-OR model for representing CPTs
- Reasoning about conditional independence between variables in a Bayes' net using d-separation
- General algorithms for inference in Bayes nets:
 - Enumeration (exponential in number of undefined variables)
 - Variable Elimination (linear in # of undefined variables and size of largest CPT for polytrees)
- How to turn a graph into a polytree (at the cost of the size of the CPT)

Up next: Learning in Bayes nets (focused on learning CPTs)

Learning Bayes Nets

- Aspects of the Bayes Net might not be know or easy to elicit from experts. This could include:
 - the structure of the DAG
 - the CPTs
- In this course we will assume a given DAG (structure) and focus on learning CPTs from data:
 - With complete data (all variables observed)
 - With incomplete data (some variables not observed) -- LATER

Learning from data via Maximum Likelihood (ML) Learning

- ML is the simplest form of learning in BNs
- Idea: Choose (learn) the model (CPTs) that maximizes the probability of the data

 $P_{model}(observed\ data)$

Simple Example: Estimating the proportion of candies in a bag Goal: Estimate

Goal: Estimate proportion of cherries/jalapenos by drawing samples

Simple Example: Estimating the proportion of candies in a bag

Goal: Estimate proportion of cherries/jalapenos by drawing samples

Simple Example: Estimating the proportion

Of candies in a bag Goal: Estimate p = P(X = cherry) by drawing samples

<u>Data</u>: T samples $\{x^{(1)}, x^{(2)}, \dots, x^{(T)}\}$ where each x^t is either cherry or jalapeño

The probability of selecting these samples given the parameter p = P(X = cherry) is:

$$P(\{x^{(1)}, x^{(2)}, ..., x^{(T)}\}|p)$$

The likelihood of p for this data

<u>Assumption</u>: The samples are independently drawn and identically distributed (i.i.d.) In other words, each sample is drawn using the same p and don't depend on each other:

$$P(\{x^{(1)}, x^{(2)}, \dots, x^{(T)}\}|p) = P(X = x^{(1)}|p)P(X = x^{(2)}|p)\dots P(X = x^{(T)}|p) = \prod_{t=1}^{T} P(X = x^{(t)}|p)$$

Simple Example: Estimating the proportion

of candies in a bag Goal: Estimate p = P(X = cherry) by drawing samples

<u>Data</u>: T i.i.d. samples $\{x^{(1)}, x^{(2)}, \dots, x^{(T)}\}$ where each x^t is either cherry or jalapeño

$$likelihood(p) = P(\{x^{(1)}, x^{(2)}, ..., x^{(T)}\}) = \prod_{t=1}^{T} P(X = x^{(t)})$$

For a given p, how many possible values can $P(X = x^{(t)})$ take?

- A. 1
- B. 2
- C. 4
- D. There is no way to know

Simple Example: Estimating the proportion of candies in a bag Goal: Estimate p = P(X = cherry) by drawing samples

 $\underline{\text{Data}}$: T i.i.d. samples $\{x^{(1)}, x^{(2)}, \dots, x^{(T)}\}$ where each x^t is either cherry or jalapeño

$$likelihood(p) = P(\{x^{(1)}, x^{(2)}, ..., x^{(T)}\}) = \prod_{t=1}^{T} P(X = x^{(t)})$$

How many terms in $\prod_{t=1}^{T} P(X = x^{(t)})$ will equal p?

- A. The number of cherry candies in the sample
- B. The number of jalapeno candies in the sample
- C. The total number of candies in the sample
- D. You cannot tell from the data given

Simple Example: Estimating the proportion

of candies in a bag Goal: Estimate p = P(X = cherry) by drawing samples

 $\underline{\text{Data}}$: T i.i.d. samples $\left\{x^{(1)}, x^{(2)}, \dots, x^{(T)}\right\}$ where each x^t is either cherry or jalapeño

$$likelihood(p) = P(\{x^{(1)}, x^{(2)}, ..., x^{(T)}\}) = \prod_{t=1}^{T} P(X = x^{(t)}) = p^{N_c} (1-p)^{N_j}$$

We want to choose p that maximizes this function

Log-Likelihood: An easier function

Goal: Estimate p = P(X = cherry) by drawing samples

<u>Data</u>: T i.i.d. samples $\{x^{(1)}, x^{(2)}, \dots, x^{(T)}\}$ where each x^t is either cherry or jalapeño

log-likelihood:
$$\mathcal{L}(p) = \log P(\{x^{(1)}, x^{(2)}, \dots, x^{(T)}\}) = \log \prod_{t=1}^{T} P(X = x^{(t)}) = \log P(\{x^{(1)}, x^{(2)}, \dots, x^{(T)}\})$$

For this problem $\mathcal{L}(p) =$

Maximize the log-likelihood by taking the derivative

Goal: Estimate p = P(X = cherry) by drawing samples

<u>Data</u>: T i.i.d. samples $\{x^{(1)}, x^{(2)}, \dots, x^{(T)}\}$ where each x^t is either cherry or jalapeño log-likelihood: $\mathcal{L}(p) = N_c \log p + N_i \log(1-p)$

Estimating Parameters of a Bayes Net

Goal: Estimate p = P(X = cherry) by drawing samples

$$P(X = cherry) = p = \frac{N_c}{N_c + N_j}$$

 $P(X = jalapeno) = 1 - p$

But what about a more complex Bayes Net?

Estimating Parameters of a Bayes Net

<u>Given</u>: A fixed DAG with n discrete nodes $\{X_1, X_2, ..., X_n\}$

Goal: Estimate the values in the CPTs to maximize probability of observed data

Estimating Parameters of a Bayes Net

Parameters to estimate (CPTs of the network): $P(X_i = x | Pa(X_i) = \pi)$

Data set:
$$\{(x_1^{(t)}, x_2^{(t)}, ..., x_n^{(t)})\}_{t=1}^T$$

$$\mathcal{L} = \log P(data) = \log \prod_{t=1}^{T} P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)})$$

Under what assumption(s) is the above log-likelihood equation true?

- A. Data is i.i.d.
- B. $P(X_i|X_1, X_2, ..., X_{i-1}) = P(X_i|Parents(X_i))$
- C. T > 1 (you have more than one data point)
- D. More than one of the above
- E. None of the above (it is generally true)