Versuch 4: Transistor

Team 2-13: Jascha Fricker, Benedict Brouwer

8. September 2022

Inhaltsverzeichnis

1	Intr	roduction	2	
2	The 2.1	eorie small signal model	2	
3		cution	2	
	3.1	workingpoint	6	
	3.2	Amplification of the emittercircuit	4	
		Frequency response		
		characteristic curve		
4 Evaluation and results				
	4.1	preliminary considerations	4	
	4.2	characteristic curve (Assignment 7)	2	

Introduction 1

In this experiment we examined the properties of a bipolar transistor in combination with an emitter circuit. Therby we measured the characteristic curve of the transistor and tested different konfigurations of the emittercircuit.

2 Theorie

small signal model

For small deviations around the workingpoint one can use the small signal modell leading to the following equation.

$$\begin{pmatrix} dI_{\rm B} \\ dI_{\rm C} \end{pmatrix} = \begin{pmatrix} \frac{1}{r_{\rm BE}} & S_{\rm r} \\ S & \frac{1}{r_{\rm CE}} \end{pmatrix} \begin{pmatrix} dU_{\rm BE} \\ dU_{\rm CE} \end{pmatrix}$$
(1)

whereby $r_{\rm BE}$, $r_{\rm CE}$ and the steepness S can be calculated with

$$\frac{1}{r_{\rm BE}} = \frac{\partial I_{\rm B}}{\partial U_{\rm BE}}|_{U_{\rm CE}} \tag{2}$$

$$\frac{1}{r_{\rm CE}} = \frac{\partial I_{\rm C}}{\partial U_{\rm CE}} |_{U_{\rm BE}} \tag{3}$$

$$\frac{1}{r_{\rm CE}} = \frac{\partial I_{\rm C}}{\partial U_{\rm CE}}|_{U_{\rm BE}}$$

$$S = \frac{\partial I_{\rm C}}{\partial U_{\rm BE}}\Big|_{U_{\rm CE}} = \frac{qI_{\rm C}}{k_{\rm B}T}$$
(4)

In addition to that $I_{\rm B}$ can be calculated the following proportionality

$$I_{\rm B} \propto \exp\left(\frac{qU_{\rm BE}}{k_{\rm B}T}\right)$$
 (5)

3 execution

3.1 workingpoint

A bipolar transistor has a specific basevoltage range (the so called workingpoint) in wich it behaves approxmately linear. This workingpoint is tuned by setting the resistance at the potentiometer R_{12} 1[see circuit diagram] to a point whereby the output amplitude u_a is maximal and the signal is not distorted. To tune the workingpoint, the loadresistor R_L was removed and a sinusoidal frequency of 5.5 kHz was applied. $U_{\rm BE}$, $U_{\rm CE}$, $I_{\rm C}$ where measured with varying $R_{\rm C}$ for further evaluation.

3.2 Amplification of the emittercircuit

To further examine the emittercircuit 1[see circuit diagram] the amplidude quotionet u_a/u_e was measured for varying $R_{\rm C}$ in different circuit configurations:

Abbildung 1: emittercircuit:

 $R_1=47$ kΩ, $R_{22}=100$ Ω, $R_E=10$ kΩ, $C_e=47$ μF, $C_a=470$ μF, $U_{CC}=9$ V R_{12} : potentiometer for the workingpoint, R_C : potentiometer 0 - 10 kΩ, u_e : inputvoltage, u_a : outputvoltage

1. with capacitor CE but without resistor R_L 2. without capacitor CE and without resistor R_L 3. with capacitor CE and resistor R_L

3.3 Frequency response

In this experiment the input frequency was varied from 6 Hz - 250 kHz to measure the phaseshift and the amplidude quotionet u_a/u_e . Therby circuit 1 with an collectorresistor of $R_{\rm C}$ was used. In addition to that the oszilloscope was changed to x-y mode to observe lissajous curves.

3.4 characteristic curve

Abbildung 2: characteristic curve $R_1 = 1 \text{ k}\Omega$, $R_2 = 220 \Omega$

To measure the characteristic curve of the transistor the circuit was change as shown in the circuit diagram 2. First the entry curve $I_{\rm B}=f(U_{\rm BE})|_{U_{\rm CE}}$ was taken by changing $U_{\rm BE}$ from 0 to 670 mV and measuring $I_{\rm B}$, $U_{\rm BE}$ and $U_{\rm CE}$ with multimeters according to the scematic 2. Therby $U_{\rm CE}$ was dialed in to match the results from experiment 1 4.2 with $R_{\rm C}=5~{\rm k}\Omega$. Afterwards the output characteristic curve $I_{\rm C}=f(U_{\rm CE})|_{U_{\rm BE}}$ was recorded with a varying $U_{\rm CE}$ from 1 - 10 V by measuring $I_{\rm C}$, $U_{\rm BE}$ and $U_{\rm CE}$. This curve was measured in both directions to observe the effect of heat on the transistor.

4 Evaluation and results

4.1 preliminary considerations

4.2 characteristic curve (Assignment 7)

As shown in table 4.2 some basevalues where recorded wich were needed in following experiments. They seem to be in a reasonable range.

$R_{\rm C}$ in ${\rm k}\Omega$	$U_{ m BE}$ in V	$U_{\rm CE}$ in V	$I_{ m C}$ in mA	$S \text{ in } 1/\Omega$
1	0,57	7,86	0,58	0.025
5	0,57	5,53	0,58	0.025
10	0,57	3,22	0,58	0.025

Tabelle 1: Basevalues

The characteristic input curve is plottet in figure 3. With the slope from the tangent one can calculate the baseresistance $r_{\rm BE}=3.92~{\rm k}\Omega$ with equation 2. The operating temperature $T=272.2~{\rm K}$ can be obtained by using the fitparameters from the exponetial fit and equation 5. Althoug the operating temperature has the correct magnitude it schould be at least 30 K higher. With this operating temperature and equation 4 the steepness S can be calculated as shown in figure 4.2.

The characteristic output curve is plottet in figure 4.

Abbildung 3: Characteristic curve from the input

Abbildung 4: Characteristic curve from the output