Algorithmic Game Theory: HW 2

1. Let G be a cost-minimization game which has the function Φ such that

$$C_i(s'_i, s_{-i}) < C_i(s)$$

 $\Phi(s'_i, s_{-i}) < \Phi(s)$

As the game is finite, we can use Φ and best-response dynamics such that the cost decreases with every beneficial deviation made by a particular agent until no more beneficial deviation exists for every agent and call this strategy s^* . Then this s^* is a pure Nash since for any agent i and any deviation s'_i , we cannot have

$$C_i(s_i', s_{-i}) < C_i(s^*)$$

since it implies $\Phi(s'_i, s_{-i}) < \Phi(s^*)$ and contradicts $\Phi(s^*) < \Phi(s)$ for all pure strategies $s \neq s^*$. Thus this game has at least one PNE.

2. (a) Consider the utility maximizing game below starting with the the initial outcome (A_1, B_1) , from which best-response dynamics cycles forever, avoiding the pure Nash of (A_3, B_2) .

P1
$$A_{1} \quad A_{2} \quad A_{3}$$

$$B_{1} \quad \boxed{1,4} \quad 2,3 \quad 0,0$$

$$P2 \quad B_{2} \quad 0,0 \quad 0,0 \quad 5,5$$

$$B_{3} \quad 4,1 \quad 3,2 \quad 0,0$$

(b) Consider the cost minimization game below, where for player P1, weights are decreased whenever A_1 or A_2 is played. Thus the weights are concentrated on A_3 in the long run and hence the time-averaged history of joint play would point to playing A_3 with close to 1 probability. Similar argument goes for P2 and thus average history of joint play will point to A_3 , B_3 being the PNE.

P1
$$A_{1} \quad A_{2} \quad A_{3}$$

$$B_{1} \quad \boxed{1,1} \quad \boxed{1,1} \quad \boxed{0,0}$$

$$P2 \quad B_{2} \quad \boxed{1,1} \quad \boxed{1,1} \quad \boxed{0,0}$$

$$B_{3} \quad \boxed{0,0} \quad \boxed{0,0} \quad \boxed{0,0}$$

3. For a fixed t' such that i is the smallest integer such that $t' \leq 2^i$. Then $\epsilon = \sqrt{\frac{\ln n}{t'}} \geq \sqrt{\frac{\ln n}{2^i}}$ and the regret is at most $2\sqrt{2^i \ln n}$ up till time t, i.e.

$$\sum_{t=1}^{t'} \nu^t \le OPT + 2\sqrt{2^i \ln n}$$

Let $kt' \geq T$ for some integer k, then

$$\sum_{t=1}^{T} \nu^{t} \le \sum_{t=1}^{kt'} \nu^{t} \le OPT + k \cdot 2\sqrt{2^{i} \ln n} = OPT + (2\sqrt{k^{2} \cdot 2^{i} \ln n}) \le OPT + 2\sqrt{k}\sqrt{T \ln n}$$

and hence the expected regret is still $O(\sqrt{\ln n/T})$ with respect to every fixed action.

4. Let $f_{\epsilon}(x) = (1 - \epsilon)^x$ and $g_{\epsilon}(x) = 1 + \epsilon x$, then

$$f_{\epsilon}(0) = 1 = g_{\epsilon}(0)$$

$$f_{\epsilon}(1) = 1 - \epsilon = g_{\epsilon}(1)$$

$$f'_{\epsilon}(x) = (1 - \epsilon)^{x} \ln(1 - \epsilon)$$

$$g'_{\epsilon}(x) = \epsilon$$

$$f'_{\epsilon}(0) = \ln(1 - \epsilon) < 0 = g'_{\epsilon}(0)$$

also f_{ϵ} is a convex function as $f''_{\epsilon}(x) = (1 - \epsilon)^x \left[\ln(1 - \epsilon)\right]^2 > 0$ for $\epsilon \in (0, 1/2]$. This this proves $f_{\epsilon}(x) \leq g_{\epsilon}(x)$ since the initial gradient of f_{ϵ} is smaller then g_{ϵ}

5.

6. (a) Let \hat{x}, \hat{y} be a mixed Nash equilibrium then,

$$\hat{x}^T A \hat{y} \ge x^T A \hat{y}$$
 for all mixed distributions x (1)

$$\hat{x}^T A \hat{y} \le \hat{x}^T A y$$
 for all mixed distributions y (2)

if and only if,

$$\hat{x} \in \operatorname*{arg\,max}_{x} \left(x^{T} A \hat{y} \right) \subseteq \operatorname*{arg\,max}_{x} \left(\operatorname*{min}_{y} x^{T} A y \right)$$
$$\hat{y} \in \operatorname*{arg\,min}_{y} \left(\hat{x}^{T} A y \right) \subseteq \operatorname*{arg\,min}_{x} \left(\operatorname*{max}_{x} x^{T} A y \right)$$

(b) Let x_1, y_1 and x_2, y_2 be the given mixed Nash equilibria of a two-player zero-sum game. Thus by the above result, for i = 1, 2

$$x_i \in \arg\max_{x} \left(\min_{y} x^T A y\right)$$

 $y_{3-i} \in \arg\min_{x} \left(\max_{x} x^T A y\right)$

thus

$$x_i^T A y_{3-i} \ge x^T A y_{3-i}$$
 for all mixed distributions x
 $x_i^T A y_{3-i} \le x_i^T A y$ for all mixed distributions y

which by definition tells us that (x_i, y_{3-i}) is a mixed Nash equilibrium for i = 1, 2.

7. (a) Let (A, B) be a given general bimatrix game with player one and player two having n and m different strategies to choose from their strategy set denoted by \mathbf{x} and \mathbf{y} respectively, thus A and B are $n \times m$ and $m \times n$ matrices respectively. The expected payoffs of player one is then $\mathbf{x}^T A \mathbf{y}$ and the expected payoffs of player two is $\mathbf{y}^T B \mathbf{x}$.

(b)