MATH4302, Algebra II, 2022

Jiang-Hua Lu

The University of Hong Kong

Monday April 11, 2022

Today

- 1 §2.2.6 : Finite fields, II (leftover from last time)
- 2 §2.2.7: Separable polynomials and perfect fields
- 3 §2.2.8: Separable extensions and the Primitive Element Theorem
- 4 §3.1/1: Automorphism groups and roots of polynomials

We turn to Irreducible polynomials over \mathbb{F}_p , where p is a prime number.

Lemma. For any n > 1,

- **1** irreducible polynomials over \mathbb{F}_p of degree n exist;
- 2 every monic irreducible polynomial of degree n is a factor of

$$f_n(x) = x^{p^n} - x \in \mathcal{F}_p(x)$$

3 every monic irreducible polynomial of degree d|n is a factor of f_n .

Proof.

• We proved that
$$\mathbb{F}_{p^n} = \mathbb{F}_p(\alpha)$$
 for some $\alpha \in \mathbb{F}_{p^n}$.

- the minimal polynomial of α over \mathbb{F}_p is irreducible and has degree n.

If F is any-finite field, then $\forall x \in F$, $x^m = x$ Proof cont'd: with m elts, $x^{m-1} = 1$

- Let $q \in \mathbb{F}_p[x]$ be any irreducible monic with degree n.
- Then the field $L = \mathbb{F}_p[x] / (q)$ has p^n elements;
- The element $a = \bar{x} \in L$ satisfies $f_n(a) = 0$, so $g(f_n)$.
- Assume now that $q \in \mathbb{F}_p[x]$ is irreducible monic with degree d(n)
- Then $q|f_d$. Since $f_d|f_n$, we have $q|f_n$.

Q.E.D.

Consider the factorization

$$f_n = q_1^{(k)} q_2^{(k)} \cdots q_I^{(k)} \in \mathbb{F}_p[x]$$
 \subset $\mathbb{F}_p[x]$

into irreducible factors, where the q_j 's are pairwise distinct and monic.

First some observations:

- Consider the facto (q_j) and let $(d_j) = \deg(q_j)$, $\hat{j} = 1, 2, \cdots, \mathcal{Q}$
- q_j splits completely in \mathbb{F}_{p^n} with no repeated roots;
- Let $a \in \mathbb{F}_{p^n}$ be a root of q_i .

(Fp(a) = Fples/(8:) • Then $\mathbb{F}_p(a)$ is a subfield of \mathbb{F}_{p^n} with p^{d_j} elements;

• By results on subfields of \mathbb{F}_{p^n} , must have $d_i|n$

de{1,2,4}

We have thus proved the following Theorem on the polynomial

1 the irreducible factors of $f_n(x)$ in $\mathbb{F}_p[x]$ are precisely all the monic irreducible polynomials in $\mathbb{F}_p[x]$ with degrees d|n;

@ each such polynomial appears exactly once in the prime

factorization of
$$f_n(x)$$
.

factorization of
$$f_n(x)$$
.

Examples. In $\mathbb{F}_2[x]$, one has $p = 2$

Factorization of
$$f_n(x)$$
.

Examples. In $\mathbb{F}_2[x]$, one has
$$x^2 - x = x(x-1),$$

The first of down

$$x^{2} - x = x(x - 1),$$

 $x^{4} - x = x(x - 1)(x^{2} + x + 1),$
 $x^{8} - x = x(x - 1)(x^{3} + x + 1)(x^{3} + x^{2} + 1).$ $x = 2$

$$x^{8} - x = x(x-1)(x^{3} + x + 1)(x^{3} + x^{2} + 1), \qquad \bigvee_{2,4} = 3$$

$$x^{16} - x = x(x-1)(x^{2} + x + 1)(x^{4} + x + 1) \qquad \bigvee_{2,5} = 2$$

$$(x^{4} + x^{3} + 1)(x^{4} + x^{3} + x^{2} + x + 1). \qquad \bigvee_{2,5} = 2$$

The Frobenius homomorphism:

Lemma-Definition. For a field L of characteristic p > 0, the map

$$\sigma: L \longrightarrow L, \quad \sigma(a) = a^p,$$

is an injective ring homomorphism, called the Frobenious homomorphism of L.

Pf:
$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
: $(a+b)^p = a^p + b^p \ll$

$$\sigma(ab) = \sigma(a) \sigma(b)$$
: $(ab)^p = a^p b^p$

 $_{7}$ char(β)= β >0 Lemma. If L is a finite field, the Frobenius morphism is an isomorphism. Since o: L -> L is injective (0(L) = | L | O(L) = L 20 D(T) = T ce o is surjective. Thus o is an isomorphism, ie an

Thus every & CL is of the form of for some b & L.

Lemma If L is a finite field, the Frobenius morphism is an isomorphism.

$$\frac{F_{29}}{F_{29}}, \qquad 27 = \chi^{29} \quad \text{for some} \quad \chi \in F_{29}$$

Example. The Frobenious morphism of $L = (\mathbb{F}_p(x))$ is not surjective: $x \in \mathbb{F}_p(x)$ is not in the image σ . f(t): f,ge Fp(te)}

Answer:
$$N_0$$
 by $mp = 1 + np$ n

§2.2.7: Separable polynomials and perfect fields

§2.2.7: Separable polynomials and perfect fields

<u>Definition.</u> For a field K, a polynomial $f(x) \in K[x]$ is said to be separable over K if it has no repeated roots in its splitting field over K.

Example. $f(x) = x^3 - 2 \in \mathbb{Q}[x]$ is separable over \mathbb{Q} , but not when regarded as a polynomial over \mathbb{F}_3 :

$$f(x) = (x-2)^3 \in \mathbb{F}_3[x].$$

Example. $K = \mathbb{F}_2(t)$ and $f(x) = x^2 - t \in K[x]$. The splitting field of $L = K(\sqrt{t})$ of f over K has degree 2 over K, but

$$f(x) = x^2 - t = (x - \sqrt{t})^2 \in L[x],$$

so f is not separable. over $k = \sqrt{t}$