Protocoles de routage

0. Résumé des épisodes précédents

- cours de 1ère sur l'architecture d'un réseau
- cours de 1ère sur les différents protocoles de communication dans un réseau.

 $\textbf{Notions essentielles}: Lorsqu'une \ machine \ A, \ d'adresse \ IP_A \ veut \ discuter \ avec \ une \ machine \ B, \ d'adresse \ IP_B :$

- La machine A calcule (grâce au masque de sous-réseau) si B est dans le même sous-réseau qu'elle, ou pas.
- Si oui, elle peut donc connaître l'adresse MAC de la carte réseau de la machine B (soit elle la possède déjà dans sa table ARP, soit elle la demande en envoyant un message de broadcast à tout le sous-réseau : «qui possède cette adresse IP_B ?»).

Elle envoie donc dans le sous-réseau une trame ayant pour entête l'adresse MAC de B : le switch lit cette trame, sait sur quel port est branché la machine B et lui envoie spécifiquement donc le message.

- Si B n'est pas dans le même sous-réseau que A, A mettra en entête de sa trame l'adresse MAC de la carte réseau du routeur, qui joue le rôle de passerelle. Le routeur va ouvrir la trame et va observer l'IP_B, à qui il doit remettre ce message. C'est maintenant que vont intervenir les protocoles de routage :
 - est-ce que B est dans le même sous-réseau que le routeur ?
 - est-ce que B est dans un autre sous-réseau connu du routeur ?
 - est-ce que B est totalement inconnu du routeur ?

Ces questions trouveront des réponses grâce à table de routage du routeur.

1. Tables de routage

Les tables de routage sont des informations stockées dans le routeur permettant d'aiguiller intelligemment les données qui lui sont transmises.

Dans le réseau ci-dessus, si l'ordinateur d'adresse 192.168.0.5 veut interroger le serveur 10.7.3.8 :

- l'adresse 10.7.3.8 n'étant pas dans le sous-réseau F (d'adresse 192.168.0.0 / 24), la requête est confiée au routeur via son adresse passerelle dans le réseau F (ici 192.168.0.254).
- le routeur observe si l'IP recherchée appartient à un autre des sous-réseaux auquel il est connecté. Ici, l'IP recherchée 10.7.3.8 n'appartient ni au sous-réseau A ou E.
- le routeur va donc regarder dans sa table de routage l'adresse passerelle d'un autre routeur vers qui elle doit rediriger les données. Si le sous-réseau C fait partie de sa table de routage, le routeur R1 saura alors que le meilleur chemin est (par exemple) de confier les données au routeur R3.
- si le sous-réseau C ne fait pas partie de la table de routage, le routeur R1 va alors le rediriger vers une route «par défaut» (que l'on peut assimiler au panneau «toutes directions» sur les panneaux de signalisation).

Par exemple, la table de routage du routeur R1 pourrait être :

Destination	Passerelle
192.168.0.0 /24	192.168.0.254
172.17.1.0 /24	172.17.1.254
10.0.5.0 /24	10.0.5.152
10.5.2.0 /24	172.17.1.254
10.7.3.0 /24	10.0.5.135

Comment sont construites les tables de routage ?

- Soit à la main par l'administrateur réseau, quand le réseau est petit : on parle alors de table **statique**.
- Soit de manière dynamique : les réseaux s'envoient eux-mêmes des informations permettant de mettre à jour leurs tables de routages respectives. Des algorithmes de détermination de meilleur chemin sont alors utilisés : nous allons en découvrir deux, le protocole RIP et le protocole OSPF.

2. Le protocole RIP

voir le TP débranché : le jeu dont vous êtes le routeur

Le Routing Information Protocol est basé sur l'échange (toutes les 30 secondes) des tables de routage de chaque routeur. Au début, chaque routeur ne connaît que les réseaux auquel il est directement connecté, associé à la distance 1.

Ensuite, chaque routeur reçoit périodiquement la table des réseaux auquel il est connecté :

- s'il découvre une route vers un nouveau réseau inconnu, il l'ajoute à sa table en augmentant de 1 la distance annoncée par le routeur qui lui a transmis sa table.
- s'il découvre une route vers un réseau connu mais plus courte (en rajoutant 1) que celle qu'il possède dans sa table, il actualise sa table.
- s'il découvre une route vers un réseau connu mais plus longue que celle qu'il possède dans sa table, il ignore cette route.

- s'il reçoit une route vers un réseau connu en provenance d'un routeur déjà existant dans sa table, s'il met à jour sa table car la topologie du réseau a été modifiée.
- si le réseau n'évolue pas (panne ou ajout de nouveau matériel), les tables de routage convergent vers une valeur stable. Elles n'évoluent plus.
- si un routeur ne reçoit pas pendant 3 minutes d'information de la part d'un routeur qui lui avait auparavant communiqué sa table de routage, ce routeur est considéré comme en panne, et toutes les routes passant par lui sont affectées de la distance infinie : 16.

Remarques et incovénients: - Le protocole RIP n'admet qu'une distance maximale égale à 15 (ceci explique que 16 soit considéré comme la distance infinie), ce qui le limite aux réseaux de petite taille.

- Chaque routeur n'a jamais connaissance de la topologie du réseau tout entier : il ne le connaît que par ce que les autres routeurs lui ont raconté. On dit que ce protocole de routage est du routing by rumor.
- La métrique utilisée (le nombre de sauts) ne tient pas compte de la qualité de la liaison, contrairement au protocole OSPF.

3. Le protocole OSPF

OSPF: Open Shortest Path First

Un inconvénient majeur du protocole précédent est la non-prise en compte de la bande passante reliant les routeurs.

En voiture, le chemin le plus rapide n'est pas forcément le plus court.

En gris, le chemin RIP. En bleu, l'OSPF.

Dans le protocole OSPF, les tables de routage vont prendre en considération la vitesse de communication entre les routeurs.

Dans une première phase d'initialisation, chaque routeur va acquérir (par succession de messages envoyés et reçus) la connaissance totale du réseau (différence fondamentale avec RIP) et de la qualité technique de la liaison entre chaque routeur.

3.1 Les différents types de liaison et leur coût

On peut, approximativement, classer les types de liaison suivant ce tableau de débits ${\it th\'eoriques}$:

Technologie	BP descendante	BP montante
Modem	56 kbit/s	48 kbit/s
Bluetooth	3 Mbit/s	3 Mbit/s
Ethernet	10 Mbit/s	10 Mbit/s
Wi-Fi	10 Mbit/s ~ 10 Gbits/s	10 Mbit/s ~ 10 Gbits/s
ADSL	13 Mbit/s	1 Mbit/s
4G	100 Mbit/s	50 Mbit/s
Satellite	50 Mbit/s	1 Mbit/s
Fast Ethernet	100 Mbit/s	100 Mbit/s

Technologie	BP descendante	BP montante
FFTH (fibre)	10 Gbit/s	10 Gbit/s
5G	20 Gbit/s	10 Gbit/s

L'idée du protocole OSPF est de pondérer chaque trajet entre routeurs (comptant simplement pour «1» dans le protocole RIP) par une valeur de coût inversement proportionnelle au débit de transfert.

Par exemple, si le débit d est exprimé en bits/s, on peut calculer le coût de chaque liaison par la formule :

$$coût = \frac{10^8}{d}$$

Cette formule de calcul peut être différente suivant les exercices, et sera systématiquement redonnée. Néanmoins la valeur d sera toujours au dénominateur, pour assurer la proportionnalité inverse du débit.

Avec cette convention, un route entre deux routeurs reliés en Fast Ethernet (100 Mbits/s) aura a un poids de 1, une liaison satellite de 20 Mbits/s aura un poids de 5, etc.

3.2 Exemple

Reprenons le réseau suivant :

et simplifions-le en ne gardant que les liens entre routeurs, en indiquant leur débit :

Notre réseau est devenu un graphe. Nous allons pondérer ses arêtes avec la fonction coût introduite précédemment. L'unité étant le Mbit/s, l'arête entre R1 et R3 aura un poids de 100/20=5.

Le graphe pondéré est donc :

Le chemin le plus rapide pour aller de l'ordinateur au serveur est donc R1-R2-R4, et non plus R1-R3 comme l'aurait indiqué le protocole RIP.

3.3 Trouver le plus court chemin dans un graphe pondéré

L'exemple précédent était très simple et de solution intuitive. Dans le cas d'un graphe pondéré complexe, existe-t-il un algorithme de détermination du plus court chemin d'un point à un autre ?

La réponse est oui, depuis la découverte en 1959 par Edsger Dijkstra de l'algorithme qui porte son nom, l'algorithme de Dijkstra.

Pour le comprendre, vous pouvez regarder la vidéo d'un célèbre YouTuber :

Cet algorithme, ici exécuté de manière manuelle, est bien sûr programmable. Et c'est donc grâce à lui que chaque routeur calcule la route la plus rapide pour acheminer les données qu'il recoit.

Exemple d'application de l'algorithme de Dijkstra :

Donner le plus court chemin pour aller de E à F.

3.4 Exercice

(extrait du sujet 0)

On considère le réseau suivant :

On rappelle que le coût d'une liaison est donné par la formule suivante :

$$\operatorname{coût} = \frac{10^8}{d}$$

Question 1

- 1. Vérifier que le coût de la liaison entre les routeurs A et B est 0,01.
- 2. La liaison entre le routeur B et D a un coût de 5. Quel est le débit de cette liaison ?

Question 2

Le routeur A doit transmettre un message au routeur G, en empruntant le chemin dont la somme des coûts sera la plus petite possible. Déterminer le chemin parcouru. On indiquera le raisonnement utilisé.

Correction du tableau de l'algorithme de Dijkstra

Bibliographie

- Numérique et Sciences Informatiques, Terminale, T. BALABONSKI, S. CONCHON, J.-C. FILLIATRE, K. NGUYEN, éditions ELLIPSES.
 Prépabac NSI, Terminale, G. CONNAN, V. PETROV, G. ROZSAVOLGYI, L. SIGNAC, éditions HATIER.
 Site d'Olivier Lécluse https://www.lecluse.fr/nsi/NSI_T/archi/routage/