(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-56651 (P2002-56651A)

(43)公開日 平成14年2月22日(2002.2.22)

(51) Int.Cl.7	識別記号	FΙ	テーマコード(参考)
G11B 27/00		G11B 27/00	D 5C052
20/12		20/12	5 C 0 5 3
	103		103 5D044
H 0 4 N 5/85		H 0 4 N 5/85	B 5D110
5/91		5/91	N
·		•	請求項の数16 OL (全 37 頁)
(21)出願番号	特顧2001-109342(P2001-109342)	(71)出願人 0000021	85
		ソニー	株式会社
(22)出願日	平成13年4月6日(2001.4.6)	東京都品	品川区北品川6丁目7番35号
		(72)発明者 加藤 5	元樹
(31)優先権主張番号	特爾2000-185479 (P2000-185479)		品川区北品川6丁目7番35号 ソニ
(32)優先日	平成12年4月21日(2000.4.21)	一株式会	
(33)優先権主張国	日本(JP)	(72)発明者 浜田 (
	H ,		~- 品川区北品川6丁目7番35号 ソニ
		一株式会	
		(74)代理人 1000821	
		(4 (4)	·
		<u>升理工</u>	稲本 義雄
			最終頁に続く

(54) 【発明の名称】 記録装置および方法、再生装置および方法、記録媒体、プログラム、並びに記録媒体

(57)【要約】

【課題】 記録されているデータの選択を簡便に行える ようにする。

【解決手段】 ボリュームサムネイルは、記録媒体に記 録されている全てのデータを象徴するようなサムネイル 画像である。プレイリストは、データの再生区間の1つ の単位であり、その単位内には、複数のサムネイルが設 けられている。そのうち、プレイリストを代表するサム ネイルがメニューサムネイルとして登録される。このメ ニューサムネイルは、プレイリストを選択する際に、一 覧表示される。プレイリストや、そのプレイリストに対 応するクリップ内にも、複数のサムネイルが設けられて おり、それらのサムネイルは、マークサムネイルとし て、プレイリスト内の再生位置を指定する際に用いられ る。

30

【特許請求の範囲】

【請求項1】 入力された動画像データから、当該動画像データを代表するサムネイル画像を第1のサムネイルデータとして生成すると共に、前記動画像データから、特徴的な画像として抽出された画像のサムネイル画像か、または、ユーザが指定した画像のサムネイル画像を第2のサムネイルデータとして生成する生成手段と、前記生成手段により生成された前記第1のサムネイルデータと前記第2のサムネイルデータを、各々独立したグループとして記録媒体に記録する記録手段とを有することを特徴とする記録装置。

1

【請求項2】 前記生成手段は、前記第1のサムネイルデータと前記第2のサムネイルデータを、各々独立したファイルとして生成することを特徴とする請求項1に記載の記録装置。

【請求項3】 前記生成手段は、前記第1のサムネイルデータと前記第2のサムネイルデータを各々独立したデータブロックとするとともに1つのファイルとして生成することを特徴とする請求項1に記載の記録装置。

【請求項4】 前記生成手段は、前記第1のサムネイルデータに対応する番号で前記第1のサムネイルデータを管理する第1の管理データも生成すると共に、前記第2のサムネイルデータに対応する番号で前記第2のサムネイルデータを管理する第2の管理データも生成し、前記記録手段は、前記第1の管理データおよび前記第2の管理データを前記記録媒体に記録することを特徴とする請求項1に記載の記録装置。

【請求項5】 前記第1の管理データと前記第2の管理データは、管理する前記サムネイル画像の画像データのフォーマット形式を示すデータを含むことを特徴とする請求項4に記載の記録装置。

【請求項6】 前記記録手段は、前記第1のサムネイルデータまたは前記第2のサムネイルデータに含まれる前記サムネイル画像の画像データを、所定の大きさのブロック単位で記録することを特徴とする請求項4に記載の記録装置。

【請求項7】 前記記録手段は、前記第1のサムネイル 画像の参照先を示す情報をさらに別ファイルとして前記 記録媒体に記録することを特徴とする請求項1に記載の 記録装置。

【請求項8】 前記記録手段は、前記第2のサムネイルデータに含まれる前記サムネイル画像の参照先を示す情報をさらに記録することを特徴とする請求項1に記載の記録装置。

【請求項9】 入力された動画像データから、当該動画像データを代表するサムネイル画像を第1のサムネイルデータとして生成すると共に、前記動画像データから、特徴的な画像として抽出された画像のサムネイル画像か、または、ユーザが指定した画像のサムネイル画像を第2のサムネイルデータとして生成する生成ステップ

と、

前記生成ステップの処理で生成された前記第1のサムネイルデータと前記第2のサムネイルデータを、各々独立したグループとして記録媒体に記録するための制御を行う記録制御ステップとを含むことを特徴とする記録方法。

【請求項10】 入力された動画像データから、当該動画像データを代表するサムネイル画像を第1のサムネイルデータとして生成すると共に、前記動画像データから、特徴的な画像として抽出された画像のサムネイル画像か、または、ユーザが指定した画像のサムネイル画像を第2のサムネイルデータとして生成する生成ステップと、

前記生成ステップの処理で生成された前記第1のサムネイルデータと前記第2のサムネイルデータを、各々独立したグループとして記録媒体に記録するための制御を行う記録制御ステップとを含むことを特徴とするコンピュータが読み取り可能なプログラムが記録されている記録媒体。

20 【請求項11】 入力された動画像データから、当該動画像データを代表するサムネイル画像を第1のサムネイルデータとして生成すると共に、前記動画像データから、特徴的な画像として抽出された画像のサムネイル画像か、または、ユーザが指定した画像のサムネイル画像を第2のサムネイルデータとして生成する生成ステップと

前記生成ステップの処理で生成された前記第1のサムネイルデータと前記第2のサムネイルデータを、各々独立したグループとして記録媒体に記録するための制御を行う記録制御ステップとをコンピュータに実行させるプログラム。

【請求項12】 画像データの再生が指示された場合、前記画像データの内容を示すサムネイル画像の画像データを管理する管理データを読み出す第1の読み出し手段と、

前記読み出し手段により読み出された前記管理データに 基づき、前記画像データを読み出す第2の読み出し手段 と、

前記画像データから、特徴的な画像として抽出された画 40 像のサムネイル画像の画像データか、または、ユーザに より指定された画像のサムネイル画像の画像データと、 その画像データを管理する管理データを読み出す第3の 読み出し手段と、

前記第3の読み出し手段により読み出された前記管理データに基づき、前記画像データを読み出す第4の読み出し手段とを含むことを特徴とする再生装置。

【請求項13】 画像データの再生が指示された場合、 前記画像データの内容を示すサムネイル画像の画像デー タを管理する管理データの読み出しを制御する第1の読 50 み出し制御ステップと、

30

40

3

前記読み出し制御ステップの処理で読み出しが制御され た前記管理データに基づき、前記画像データの読み出し を制御する第2の読み出し制御ステップと、

前記画像データから、特徴的な画像として抽出された画像のサムネイル画像の画像データか、または、ユーザにより指定された画像のサムネイル画像の画像データと、その画像データを管理する管理データを読み出す第3の読み出しステップと、

前記第3の読み出し制御ステップの処理で読み出しが制御された前記管理データに基づき、前記画像データを読み出す第4の読み出しステップとを含むことを特徴とする再生方法。

【請求項14】 画像データの再生が指示された場合、前記画像データの内容を示すサムネイル画像の画像データを管理する管理データの読み出しを制御する第1の読み出し制御ステップと、

前記読み出し制御ステップの処理で読み出しが制御され た前記管理データに基づき、前記画像データの読み出し を制御する第2の読み出し制御ステップと、

前記画像データから、特徴的な画像として抽出された画像のサムネイル画像の画像データか、または、ユーザにより指定された画像のサムネイル画像の画像データと、その画像データを管理する管理データを読み出す第3の読み出しステップと、

前記第3の読み出し制御ステップの処理で読み出しが制御された前記管理データに基づき、前記画像データを読み出す第4の読み出しステップとを含むことを特徴とするコンピュータが読み取り可能なプログラムが記録されている記録媒体。

【請求項15】 画像データの再生が指示された場合、前記画像データの内容を示すサムネイル画像の画像データを管理する管理データの読み出しを制御する第1の読み出し制御ステップと、

前記読み出し制御ステップの処理で読み出しが制御され た前記管理データに基づき、前記画像データの読み出し を制御する第2の読み出し制御ステップと、

前記画像データから、特徴的な画像として抽出された画像のサムネイル画像の画像データか、または、ユーザにより指定された画像のサムネイル画像の画像データと、その画像データを管理する管理データを読み出す第3の読み出しステップと、

前記第3の読み出し制御ステップの処理で読み出しが制御された前記管理データに基づき、前記画像データを読み出す第4の読み出しステップとをコンピュータに実行させるプログラム。

【請求項16】 画像データ、前記画像データから、前記画像データの内容を示すサムネイル画像の画像データと、そのサムネイル画像のデータを管理する管理データから構成される第1のデータ、および、前記画像データから、特徴的な画像として抽出された画像のサムネイル

画像の画像データか、または、ユーザが指定した画像の サムネイル画像の画像データと、その画像データを管理 する管理データから構成される第2のデータが記録され ていることを特徴とする記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は記録装置および方法、再生装置および方法、記録媒体、プログラム、並びに記録媒体に関し、特に、データを代表するサムネイルをデータに付加する記録装置および方法、再生装置および方法、記録媒体、プログラム、並びに記録媒体に関する。

[0002]

【従来の技術】近年、記録再生装置から取り外し可能なディスク型の記録媒体として、各種の光ディスクが提案されつつある。このような記録可能な光ディスクは、数ギガバイトの大容量メディアとして提案されており、ビデオ信号等のAV(Audio Visual)信号を記録するメディアとしての期待が高い。この記録可能な光デイスクに記録するデジタルのAV信号のソース(供給源)としては、CSデジタル衛星放送やBSデジタル放送があり、また、将来はデジタル方式の地上波テレビジョン放送等も提案されている。

【0003】ここで、これらのソースから供給されるデジタルビデオ信号は、通常MPEG(Moving Picture Exper ts Group)2方式で画像圧縮されているのが一般的である。また、記録装置には、その装置固有の記録レートが定められている。従来の民生用映像蓄積メディアで、デジタル放送由来のデジタルビデオ信号を記録する場合、アナログ記録方式であれば、デジタルビデオ信号をデコード後、帯域制限をして記録する。あるいは、MPEG1 Video、MPEG2 Video、DV方式をはじめとするデジタル記録方式であれば、1度デコードされた後に、その装置固有の記録レート・符号化方式で再エンコードされて記録される。

【0004】しかしながら、このような記録方法は、供給されたビットストリームを1度デコードし、その後で帯域制限や再エンコードを行って記録するため、画質の劣化を伴う。画像圧縮されたデジタル信号の記録をする場合、入力されたデジタル信号の伝送レートが記録再生装置の記録レートを超えない場合には、供給されたビットストリームをデコードや再エンコードすることなく、そのまま記録する方法が最も画質の劣化が少ない。ただし、画像圧縮されたデジタル信号の伝送レートが記録媒体としてのディスクの記録レートを超える場合には、記録再生装置でデコード後、伝送レートがディスクの記録レートの上限以下になるように、再エンコードをして記録する必要はある。

【0005】また、入力デジタル信号のビットレートが 時間により増減する可変レート方式によって伝送されて

いる場合には、回転ヘッドが固定回転数であるために記録レートが固定レートになるテープ記録方式に比べ、1度バッファにデータを蓄積し、バースト的に記録ができるディスク記録装置が記録媒体の容量をより無駄なく利用できる。

【0006】以上のように、デジタル放送が主流となる 将来においては、データストリーマのように放送信号を デジタル信号のまま、デコードや再エンコードすること なく記録し、記録媒体としてディスクを使用した記録再 生装置が求められると予測される。

[0007]

【発明が解決しようとする課題】上述したような装置により、複数のデータ(例えば、映像データや音声データなどから構成される番組のデータ)が記録されている記録媒体を再生する際、記録媒体に記録されるデータ量が増加するに従い、どの番組を再生するのか、番組中のどのシーンから再生するのかといった、再生させる前の処理が煩雑になるといった課題があった。

【0008】本発明はこのような状況に鑑みてなされたものであり、データを代表するサムネイルをデータに付 20 加することにより、再生させるデータを簡単に選択できるようにすることを目的とする。

[0009]

【課題を解決するための手段】本発明の記録装置は、入力された動画像データから、当該動画像データを代表するサムネイル画像を第1のサムネイルデータとして生成すると共に、動画像データから、特徴的な画像として抽出された画像のサムネイル画像か、または、ユーザが指定した画像のサムネイル画像を第2のサムネイルデータとして生成する生成手段と、生成手段により生成された 30第1のサムネイルデータと第2のサムネイルデータを、各々独立したグループとして記録媒体に記録する記録手段とを有することを特徴とする。

【0010】前記生成手段は、第1のサムネイルデータと第2のサムネイルデータを、各々独立したファイルとして生成するようにすることができる。

【0011】前記生成手段は、第1のサムネイルデータと第2のサムネイルデータを各々独立したデータブロックとするとともに1つのファイルとして生成するようにすることができる。

【0012】前記生成手段は、第1のサムネイルデータに対応する番号で第1のサムネイルデータを管理する第1の管理データも生成すると共に、第2のサムネイルデータに対応する番号で第2のサムネイルデータを管理する第2の管理データも生成し、前記記録手段は、第1の管理データおよび第2の管理データを記録媒体に記録するようにすることができる。

【0013】前記第1の管理データと第2の管理データは、管理するサムネイル画像の画像データのフォーマット形式を示すデータを含むようにすることができる。

【0014】前記記録手段は、第1のサムネイルデータまたは第2のサムネイルデータに含まれるサムネイル画像の画像データを、所定の大きさのブロック単位で記録するようにすることができる。

【0015】前記記録手段は、第1のサムネイル画像の 参照先を示す情報をさらに別ファイルとして記録媒体に 記録するようにすることができる。

【0016】前記記録手段は、第2のサムネイルデータ に含まれるサムネイル画像の参照先を示す情報をさらに 10 記録するようにすることができる。

【0017】本発明の記録方法は、入力された動画像データから、当該動画像データを代表するサムネイル画像を第1のサムネイルデータとして生成すると共に、動画像データから、特徴的な画像として抽出された画像のサムネイル画像か、または、ユーザが指定した画像のサムネイル画像を第2のサムネイルデータとして生成する生成ステップと、生成ステップの処理で生成された第1のサムネイルデータと第2のサムネイルデータを、各々独立したグループとして記録媒体に記録するための制御を行う記録制御ステップとを含むことを特徴とする。

【0018】本発明の第1の記録媒体のプログラムは、入力された動画像データから、当該動画像データを代表するサムネイル画像を第1のサムネイルデータとして生成すると共に、動画像データから、特徴的な画像として抽出された画像のサムネイル画像か、または、ユーザが指定した画像のサムネイル画像を第2のサムネイルデータとして生成する生成ステップと、生成ステップの処理で生成された第1のサムネイルデータと第2のサムネイルデータを、各々独立したグループとして記録媒体に記録するための制御を行う記録制御ステップとを含むことを特徴とする。

【0019】本発明の第1のプログラムは、入力された動画像データから、当該動画像データを代表するサムネイル画像を第1のサムネイルデータとして生成すると共に、動画像データから、特徴的な画像として抽出された画像のサムネイル画像か、または、ユーザが指定した画像のサムネイル画像を第2のサムネイルデータとして生成する生成ステップと、生成ステップの処理で生成された第1のサムネイルデータと第2のサムネイルデータを、各々独立したグループとして記録媒体に記録するための制御を行う記録制御ステップとをコンピュータに実

【0020】本発明の再生装置は、AVストリームの再生が指示された場合、AVストリームの内容を示すサムネイル画像の画像データを管理する管理データを読み出す第1の読み出し手段と、読み出し手段により読み出された管理データに基づき、画像データを読み出す第2の読み出し手段と、AVストリームから、特徴的な画面として抽出された画面のサムネイル画像の画像データか、または、ユーザにより指定された画面のサムネイル画像の画

40

行させる。

30

7

像データと、その画像データを管理する管理データを読み出す第3の読み出し手段と、第3の読み出し手段により読み出された管理データに基づき、画像データを読み出す第4の読み出し手段とを含むことを特徴とする。

【0021】本発明の再生方法は、AVストリームの再生が指示された場合、AVストリームの内容を示すサムネイル画像の画像データを管理する管理データの読み出しを制御する第1の読み出し制御ステップと、読み出し制御ステップの処理で読み出しが制御する第2の読み出し制御ステップと、AVストリームから、特徴的な画面として抽出された画面のサムネイル画像の画像データか、または、ユーザにより指定された画面のサムネイル画像の画像データと、その画像データを管理する管理データを読み出す第3の読み出しステップと、第3の読み出し制御ステップの処理で読み出しが制御された管理データに基づき、画像データを読み出す第4の読み出しステップとを含むことを特徴とする。

【0022】本発明の第2の記録媒体のプログラムは、AVストリームの再生が指示された場合、AVストリームの内容を示すサムネイル画像の画像データを管理する管理データの読み出しを制御する第1の読み出し制御ステップと、読み出し制御ステップの処理で読み出しを制御する第2の読み出し制御ステップと、AVストリームから、特徴的な画面として抽出された画面のサムネイル画像の画像データか、または、ユーザにより指定された画面のサムネイル画像の画像データと、その画像データを管理する管理データを読み出す第3の読み出しステップと、第3の読み出し制御ステップの処理で読み出しが制御された管理データに基づき、画像データを読み出す第4の読み出しステップとを含むことを特徴とする。

【0023】本発明の第2のプログラムは、AVストリームの再生が指示された場合、AVストリームの内容を示すサムネイル画像の画像データを管理する管理データの読み出しを制御する第1の読み出し制御ステップと、読み出し制御ステップの処理で読み出しを制御する第2の読み出し制御ステップと、AVストリームから、特徴的な画面として抽出された画面のサムネイル画像の画像データか、または、ユーザにより指定された画面のサムネイル画像の画像データと、その画像データを管理する管理データを読み出す第3の読み出しステップと、第3の読み出し制御ステップの処理で読み出しが制御された管理データに基づき、画像データを読み出す第4の読み出しステップとを含むことを特徴とする。

【0024】本発明の第3の記録媒体は、AVストリーム、AVストリームから、AVストリームの内容を示すサムネイル画像の画像データと、そのサムネイル画像のデータを管理する管理データから構成される第1のデータ、

および、AVストリームから、特徴的な画面として抽出された画面のサムネイル画像の画像データか、または、ユーザが指定した画面のサムネイル画像の画像データと、その画像データを管理する管理データから構成される第2のデータが記録されていることを特徴とする。

8

【0025】本発明の記録装置および方法、並びに第1のプログラムにおいては、入力された動画像データから、当該動画像データを代表するサムネイル画像が第1のサムネイルデータとして生成されると共に、動画像データから、特徴的な画像として抽出された画像のサムネイル画像が第2のサムネイルデータとして生成され、第1のサムネイルデータと第2のサムネイルデータが、各々独立したグループとして記録媒体に記録される。

【0026】本発明の再生装置および方法、並びに第2のプログラムにおいては、AVストリームの再生が指示された場合、AVストリームの内容を示すサムネイル画像の画像データを管理する管理データが読み出され、読み出された管理データに基づき、画像データが読み出され、AVストリームから、特徴的な画面として抽出された画面のサムネイル画像の画像データか、または、ユーザにより指定された画面のサムネイル画像の画像データと、その画像データを管理する管理データが読み出され、読み出された管理データに基づき、画像データが読み出される。

[0027]

【発明の実施の形態】以下に、本発明の実施の形態について、図面を参照して説明する。図1は、本発明を適用した記録再生装置1の内部構成例を示す図である。まず、外部から入力された信号を記録媒体に記録する動作を行う部分の構成について説明する。記録再生装置1は、アナログデータ、または、デジタルデータを入力し、記録することができる構成とされている。

【0028】端子11には、アナログのビデオ信号が、端子12には、アナログのオーディオ信号が、それぞれ入力される。端子11に入力されたビデオ信号は、解析部14とAVエンコーダ15に、それぞれ出力される。端子12に入力されたオーディオ信号は、AVエンコーダ15にのみ出力される。解析部14は、入力されたビデオ40信号からシーンチェンジなどの特徴点を抽出する。

【0029】AVエンコーダ15は、入力されたビデオ信号とオーディオ信号を、それぞれ符号化し、符号化ビデオストリーム(V)、符号化オーディオストリーム(A)、およびAV同期等のシステム情報(S)をマルチプレクサ16に出力する。

【0030】符号化ビデオストリームは、例えば、MPEG (Moving Picture Expert Group) 2方式により符号化されたビデオストリームであり、符号化オーディオストリームは、例えば、MPEG1方式により符号化されたオーディオストリームや、ドルビーAC3方式により符号化さ

れたオーディオストリーム等である。マルチプレクサ1 6は、入力されたビデオおよびオーディオのストリーム を、入力システム情報に基づいて多重化して、スイッチ 17を介して多重化ストリーム解析部18とソースパケ ッタイザ19に出力する。

【0031】多重化ストリームは、例えば、MPEG2トラ ンスポートストリームやMPEG2プログラムストリームで ある。ソースパケッタイザ19は、入力された多重化ス トリームを、そのストリームを記録させる記録媒体10 0のアプリケーションフォーマットに従って、ソースパ 10 ケットから構成されるAVストリームを符号化する。AVス トリームは、ECC (誤り訂正)符号化部20、変調部2 1で所定の処理が施され、書き込み部22に出力され る。書き込み部22は、制御部23から出力される制御 信号に基づいて、記録媒体100にAVストリームファイ ルを書き込む(記録する)。

【0032】 デジタルインタフェースまたはデジタルテ

レビジョンチューナから入力されるデジタルテレビジョ ン放送等のトランスポートストリームは、端子13に入 力される。端子13に入力されたトランスポートストリ ームの記録方式には、2通りあり、それらは、トランス ペアレントに記録する方式と、記録ビットレートを下げ るなどの目的のために再エンコードをした後に記録する 方式である。記録方式の指示情報は、ユーザインターフ ェースとしての端子24から制御部23へ入力される。 【0033】入力トランスポートストリームをトランス ペアレントに記録する場合、端子13に入力されたトラ ンスポートストリームは、多重化ストリーム解析部18 と、ソースパケッタイザ19に出力される。これ以降の 記録媒体100へAVストリームが記録されるまでの処理 は、上述の入力オーディオ信号とビデオ信号を符号化し て記録する場合と同一の処理なので、その説明は省略す

【0034】入力トランスポートストリームを再エンコ ードした後に記録する場合、端子13に入力されたトラ ンスポートストリームは、デマルチプレクサ26に入力 される。デマルチプレクサ26は、入力されたトランス ポートストリームに対してデマルチプレクス処理を施 し、ビデオストリーム(V)、オーディオストリーム(A)、 およびシステム情報(S)を抽出する。

る。

【0035】デマルチプレクサ26により抽出されたス トリーム(情報)のうち、ビデオストリームはAVデコー ダ27に、オーディオストリームとシステム情報はマル チプレクサ16に、それぞれ出力される。AVデコーダ2 7は、入力されたビデオストリームを復号し、その再生 ビデオ信号をAVエンコーダ15に出力する。AVエンコー ダ15は、入力ビデオ信号を符号化し、符号化ビデオス トリーム(V)をマルチプレクサ16に出力する。

【0036】一方、デマルチプレクサ26から出力さ

10

ームとシステム情報、および、AVエンコーダ15から出 力されたビデオストリームは、入力システム情報に基づ いて、多重化されて、多重化ストリームとして多重化ス トリーム解析部18とソースパケットタイザ19にスイ ッチ17を介して出力される。これ以後の記録媒体10 0へAVストリームが記録されるまでの処理は、上述の入 力オーディオ信号と、ビデオ信号を符号化して記録する 場合と同一の処理なので、その説明は省略する。

【0037】本実施の形態の記録再生装置1は、AVスト リームのファイルを記録媒体100に記録すると共に、 そのファイルを説明するアプリケーションデータベース 情報も記録する。アプリケーションデータベース情報 は、制御部23により作成される。制御部23への入力 情報は、解析部14からの動画像の特徴情報、多重化ス トリーム解析部18からのAVストリームの特徴情報、お よび端子24から入力されるユーザからの指示情報であ

【0038】解析部14から供給される動画像の特徴情 報は、入力動画像信号の中の特徴的な画像に関係する情 報であり、例えば、プログラムの開始点、シーンチェン ジ点、コマーシャル(CM)の開始・終了点などの指定 情報(マーク)であり、また、その指定場所の画像のサ ムネイル画像の情報も含まれる。

【0039】多重化ストリーム解析部18からのAVスト リームの特徴情報は、記録されるAVストリームの符号化 情報に関係する情報であり、例えば、AVストリーム内の 1ピクチャのアドレス情報、AVストリームの符号化パラ メータ、AVストリームの中の符号化パラメータの変化点 情報、ビデオストリームの中の特徴的な画像に関係する 情報(マーク)などである。

【0040】端子24からのユーザの指示情報は、AVス トリームの中の、ユーザが指定した再生区間の指定情 報、その再生区間の内容を説明するキャラクター文字、 ユーザが好みのシーンにセットするブックマークやリジ ューム点の情報などである。

【0041】制御部23は、上記の入力情報に基づい て、AVストリームのデータベース(Clip)、AVストリーム の再生区間(PlayItem)をグループ化したもの(PlayLis t) のデータベース、記録媒体100の記録内容の管理 情報(info.dvr)、およびサムネイル画像の情報を作成す る。これらの情報から構成されるアプリケーションデー タベース情報は、AVストリームと同様にして、ECC符号 化部20、変調部21で処理されて、書き込み部22へ 入力される。書き込み部22は、制御部23から出力さ れる制御信号に基づいて、記録媒体100ヘデータベー スファイルを記録する。

【0042】上述したアプリケーションデータベース情 報についての詳細は後述する。

【0043】このようにして記録媒体100に記録され れ、マルチプレクサ16に入力されたオーディオストリ 50 たAVストリームファイル(画像データと音声データのフ

12

ァイル)と、アプリケーションデータベース情報が再生される場合、まず、制御部23は、読み出し部28に対して、記録媒体100からアプリケーションデータベース情報を読み出すように指示する。そして、読み出し部28は、記録媒体100からアプリケーションデータベース情報を読み出し、そのアプリケーションデータベース情報は、復調部29、ECC復号部30の処理を経て、制御部23へ入力される。

【0044】制御部23は、アプリケーションデータベース情報に基づいて、記録媒体100に記録されているPlayListの一覧を端子24のユーザインターフェースへ出力する。ユーザは、PlayListの一覧から再生したいPlayListを選択し、再生を指定されたPlayListに関する情報が制御部23へ入力される。制御部23は、そのPlayListの再生に必要なAVストリームファイルの読み出しを、読み出し部28に指示する。読み出し部28は、その指示に従い、記録媒体100から対応するAVストリームを読み出し復調部29に出力する。復調部29に入力されたAVストリームは、所定の処理が施されることにより復調され、さらにECC復号部30の処理を経て、ソースデパケッタイザ31出力される。

【0045】ソースデパケッタイザ31は、記録媒体100から読み出され、所定の処理が施されたアプリケーションフォーマットのAVストリームを、デマルチプレクサ26に出力できるストリームに変換する。デマルチプレクサ26は、制御部23により指定されたAVストリームの再生区間(PlayIten)を構成するビデオストリーム(V)、オーディオストリーム(A)、およびAV同期等のシステム情報(S)を、AVデコーダ27に出力する。AVデコーダ27は、ビデオストリームとオーディオストリームを30復号し、再生ビデオ信号と再生オーディオ信号を、それぞれ対応する端子32と端子33から出力する。

【0046】また、ユーザインタフェースとしての端子24から、ランダムアクセス再生や特殊再生を指示する情報が入力された場合、制御部23は、AVストリームのデータベース(Clip)の内容に基づいて、記憶媒体100からのAVストリームの読み出し位置を決定し、そのAVストリームの読み出しを、読み出し部28に指示する。例えば、ユーザにより選択されたPlayListを、所定の時刻から再生する場合、制御部23は、指定された時刻に最も近いタイムスタンプを持つIピクチャからのデータを読み出すように読み出し部28に指示する。

【0047】また、ユーザによって高速再生(Fast-forward playback)が指示された場合、制御部23は、AVストリームのデータベース(Clip)に基づいて、AVストリームの中のI-ピクチャデータを順次連続して読み出すように読み出し部28に指示する。

【0048】読み出し部28は、指定されたランダムアクセスポイントからAVストリームのデータを読み出し、読み出されたデータは、後段の各部の処理を経て再生さ

れる。

【0049】次に、ユーザが、記録媒体100に記録されているAVストリームの編集をする場合を説明する。ユーザが、記録媒体100に記録されているAVストリームの再生区間を指定して新しい再生経路を作成したい場合、例えば、番組Aという歌番組から歌手Aの部分を再生し、その後続けて、番組Bという歌番組の歌手Aの部分を再生したいといった再生経路を作成したい場合、ユーザインタフェースとしての端子24から再生区間の開始点(イン点)と終了点(アウト点)の情報が制御部23に入力される。制御部23は、AVストリームの再生区間(Playltem)をグループ化したもの(PlayList)のデータベースを作成する。

【0050】ユーザが、記録媒体100に記録されているAVストリームの一部を消去したい場合、ユーザインタフェースとしての端子24から消去区間のイン点とアウト点の情報が制御部23に入力される。制御部23は、必要なAVストリーム部分だけを参照するようにPlayListのデータベースを変更する。また、AVストリームの不必要なストリーム部分を消去するように、書き込み部22に指示する。

【0051】ユーザが、記録媒体100に記録されているAVストリームの再生区間を指定して新しい再生経路を作成したい場合であり、かつ、それぞれの再生区間をシームレスに接続したい場合について説明する。このような場合、制御部23は、AVストリームの再生区間(PlayItem)をグループ化したもの(PlayList)のデータベースを作成し、さらに、再生区間の接続点付近のビデオストリームの部分的な再エンコードと再多重化を行う。

【0052】まず、端子24から再生区間のイン点のピクチャの情報と、アウト点のピクチャの情報が制御部23へ入力される。制御部23は、読み出し部28にイン点側のピクチャとアウト点側のピクチャを再生するために必要なデータの読み出しを指示する。そして、読み出し部28は、記録媒体100からデータを読み出し、そのデータは、復調部29、ECC復号部30、ソースデパケッタイザ31を経て、デマルチプレクサ26に出力される。

【0053】制御部23は、デマルチプレクサ26に入力されたデータを解析して、ビデオストリームの再エンコード方法(picture_coding_typeの変更、再エンコードする符号化ビット量の割り当て)と、再多重化方式を決定し、その方式をAVエンコーダ15とマルチプレクサ16に供給する。

【0054】次に、デマルチプレクサ26は、入力されたストリームをビデオストリーム(V)、オーディオストリーム(A)、およびシステム情報(S)に分離する。ビデオストリームは、「AVデコーダ27に入力されるデータ」と「マルチプレクサ16に入力されるデータ」がある。前者のデータは、再エンコードするために必要なデータ

であり、これはAVデコーダ27で復号され、復号されたピクチャはAVエンコーダ15で再エンコードされて、ビデオストリームにされる。後者のデータは、再エンコードをしないで、オリジナルのストリームからコピーされるデータである。オーディオストリーム、システム情報については、直接、マルチプレクサ16に入力される。【0055】マルチプレクサ16は、制御部23から入力された情報に基づいて、入力ストリームを多重化し、多重化ストリームを出力する。多重化ストリームは、EC

多重化ストリームを出力する。多重化ストリームは、EC C符号化部20、変調部21で処理されて、書き込み部 22に入力される。書き込み部22は、制御部23から 供給される制御信号に基づいて、記録媒体100にAVストリームを記録する。

【0056】このような記録再生装置1において記録媒体100に記録されるデータ(記録媒体100から再生されるデータ)について説明する。MPEG Video、MPEG A udio等の符号化方式で符号化され、MPEG-2 Systemsに従って多重化されたビットストリームを、ファイルシステムが扱うファイルの形にしてディスク(以下、適宜、記録媒体100をディスク状の記録媒体とし、ディスクと称する)に記録したものをAV(Audio Video)ストリームファイル(またはClip AVストリーム)と称する。

【0057】このようなAVストリームファイルの一部または全部の範囲を指定して、必要な部分だけを並べて再生する再生順序指定の仕組みを説明する。図2のように、AVストリームファイルの一部または全部の範囲を指定して、必要な部分だけを再生する再生順序指定がPlaylistである。Playlistは、ユーザから見て、ひとまとまりの単位である。最も簡単な構成になるのは、記録開始をしてから記録終了までの単位で、編集をしなければ、これが1つのPlaylistになる。

【0058】Playlistは、どのAVストリームを再生するかという、AVストリームファイルの指定と、そのファイル中の再生開始点(イン点)と再生終了点(アウト点)の集まりで構成される。AVストリームファイル、再生開始点、再生終了点等を1組とし、これをPlayitemと称する。すなわち、PlaylistはPlayitemの集合である。

【0059】図2に示したように、Playitemは、あるAVストリームファイルの、イン点、アウト点で指定する範囲を参照する。Playitemを再生するということは、そのPlayitemが参照するAVストリームの一部分を再生するということになる。

【0060】AVストリームは、MPEG-TSの形などにマルチプレクスされているビットストリームであるが、このAVストリームが記録されるファイルとは別のファイルに、そのビットストリームに対して1対1に対応する情報(クリップ情報:Clip information)を保持する。これは、再生、編集をより容易にするために設けられている。このようなクリップ情報と、AVストリームの両方をひとまとまとり(オブジェクト)とみなし、これをClip

14

(クリップ)と呼ぶ。すなわち、ClipはAVストリームと、それに付随する情報から構成される1つのオブジェクトである。

【0061】以上のような、関係をUML図で表すと、図3のようになる。図3のUML図で表されるAVストリームファイル、Clip、Playitem、Playlistの構造により、AVストリームファイルを変更しない、任意の部分だけを再生する非破壊再生順序指定が可能になる。

【0062】次に、本発明を実現するための、各種の情報が記録または再生される記録媒体(メディア)上のファイル配置について説明する。メディア上には、図4に示すように、info.dvr、menu.thmb(mark.thmb)、####.rpls(#####.vpls)(#####は任意の番号)、%%%%.clpi(%%%%%は任意の番号)、および %%%%.m2ts(%%%% は、各m2tsファイルがcpliファイルと1対1に対応するような番号)の、5種類のファイルが記録される。

【0063】ディスク上にディレクトリ/DVRを用意し、このディレクトリの下が、1つのディスク記録再生システムで管理される範囲とする。/DVRは、ディスクのルートディレクトリにあっても良いし、所定のディレクトリの下に存在していても良い。/DVRディレクトリには、info.dvr、menu.thmb、mark.thmbというファイルが置かれる。また、/DVRの下には、/PLAYLIST、/CLIPINF、/M2TSというディレクトリが置かれる。ファイル#####.rpls、#####.vplsは、/PLAYLISTの下に置かれ、/CLIPINFには%%%%%.clpiが置かれ、/M2TSには、%%%%%.m2tsが置かれる。

【0064】ファイルinfo.dvrは、/DVRの下にだた1つある。info.dvrの構造は、図5に示したようなシンタクスで表される。ファイルの内部は、機能別の情報ごとにブロックを構成しており、volumeに関する情報はDVRVolume()に、Playlistの並びに関する情報はTableOfPlayLists()に、記録再生装置1のメーカ固有の情報はMakerPrivateData()に、それぞれ格納される。ファイルの先頭部分には、それらのブロックの先頭を表すアドレスが記述されている。例えば、TableOfPlayLists_Start_addressは、TableOfPlayLists()が開始する位置を、ファイル内での相対バイト数で表したものになっている。

【0065】DVRVolume()の構造は図6に示したようなシンタクスで表される。version_numberは、DVRVolume()のバージョン番号を表し、lengthは、length直後のフィールドからDVRVolume()の最後までの長さをバイトで表したものである。ResumeVolume()はresumeに関する情報を格納し、UIAppInfoVolume()はVolumeの属性情報を格納する領域である。

【0066】図7は、UIAppInfoVolume()のシンタクスを表したものである。character_setは、Volume_nameフィールドに符号化されているキャラクター文字の符号化方法を示す。その符号化方法としては、ASCII、Unicode等を選択できる。name_lengthは、Volume_nameフィール

50

30

ドの中に示されるボリューム(ディスク)名のバイト長を示す。Volume_nameは、ボリューム(ディスク)の名前を示す。このフィールドの中の左からname_length数のバイト数が、有効なキャラクター文字であり、それはボリューム(ディスク)の名前を示す。

【0067】Volume_nameフィールドの中で、それら有 効なキャラクター文字の後の値は、どんな値が入ってい ても良い。Volume_protect_flagは、そのボリュームの 中のコンテンツをユーザに制限することなしに見せてよ いかどうかを示すフラグである。このフラグが1にセッ トされている場合、ユーザが正しくPIN番号(図7中のP IN) を入力できた場合にだけ、ユーザは、そのボリュー ムのコンテンツを視聴する事ができる。このフラグが0 にセットされている場合、ユーザがPIN番号を入力しな くても、ユーザが、そのボリュームのコンテンツを視聴 する事ができる。最初に、ユーザが、ディスクをプレー ヤ(記録再生装置1)へ挿入した時において、もしこの フラグが0にセットされているか、または、このフラグ が1にセットされていてもユーザがPIN番号を正しく入 力できたならば、プレーヤーは、そのセットされたディ スクの中のPlayListの一覧を表示させる。

【0068】以上は、Volumeに対しての再生制限であるが、それぞれのPlayListの再生制限については、Volume _protect_flagとは無関係であり、それは後述する図9のUlAppInfoPlayList()の中で定義されるplayback_cont rol_flagによって示される。PINは、4個の0万至9までの数字であり、それぞれの数字は、ISO/IEC 646に従って符号化される。ref_thumbnail_indexは、Volumeを代表するサムネイルが存在する場合、そのサムネイルを特定するための番号を格納する領域である。ref_thumbnail_indexで指定されるthumbnail_indexを持つ、ファイルmenu.thmb中のサムネイルが、Volumeを代表するメニューサムネイル(本発明では、VolumeやPlaylistを代表するサムネイルを特にメニューサムネイルと称する)となる。

【0069】rp_info_valid_flagは、これが1である場合に次に続くrp_ref_to_PlayList_file_name, rp_ref_t o_PlayItem_idおよびrp_time_stampが有効な値を持つこと示す。rp_ref_to_PlayList_file_nameは、上記のVolumeを代表するメニューサムネイルが、所定のPlayList中の画像から抜き出された画像から作られていることを示し、そのPlayListファイルの名前を示す。

【0070】rp_ref_to_PlayItem_idは、rp_ref_to_PlayList_file_nameで示されるPlayListの中の1つのPlayItemを指すPlayItem_idを示し、上記のVolumeを代表するメニューサムネイルが、そのPlayItem中の画像から抜き出された画像から作られていることを示す。rp_time_stampは、rp_ref_to_PlayItem_idが指すPlayItem中の1つの画像のプレゼンテーションタイムスタンプを示し、その画像から上記のVolumeを代表するメニューサムネイル

が作られていることを示す。

【0071】図8は、TableOfPlayLists()のシンタクスを表したものである。ここでnumber_of_PlayListsはVolume中のPlaylistの数を表し、PlayList_file_nameは####.rpls、####.vpls等のファイル名を指定するものである。UIAppInfoPlayList()には、Playlistの各種属性がかかれており、シンタクスは図9のようになっている。図9に示したUIAppInfoPlayList()には、Playlistの再生には直接必要ではない、Playlistの名前、記録日時、記録時間、消去禁止の有無等の、各種属性情報が格納される。その中のref_thumbnail_indexにより、PlayListの代表画としてのサムネイルを指定することができる。すなわち、ref_thumbnail_indexで指定されるthumbnail_indexを持つ、ファイルmenu.thmb中のサムネイルが、このPlaylistを代表するメニューサムネイルとなる。

16

【0072】rp_info_valid_flagは、これが1である場合に、次に続くrp_ref_to_PlayItem_idおよびrp_time_s tampが有効な値を持つこと示す。rp_ref_to_PlayItem_idは、PlayListの中の1つのPlayItemを指すPlayItem_idを示し、PlayListを代表するメニューサムネイルが、そのPlayItem中の画像から抜き出された画像から作られていることを示す。rp_time_stampは、rp_ref_to_PlayItem_idが指すPlayItem中の1つの画像のプレゼンテーションタイムスタンプを示し、その画像からPlayListを代表するメニューサムネイルが作られていることを示す。

【0073】図4に示したファイル%%%%.clpiは、/CLI PINFの下に、各AVストリームファイル%%%%. m2tsに対応 して1つ作られる。%%%%clpiの構造は、図10に示す ようになっている。ファイルの内部は、機能別の情報ご とにブロックを構成しており、Clipに関する情報はClip Info()に、MPEG-2 systemsにおけるトランスポートスト リームの時刻基準を表すPCR(プログラムクロックリフ ァレンス)の不連続点に関する情報はSTC_Info()に、MP EG-2 systemsのprogram (プログラム) に関する情報はP rogramInfo()に、 AVストリーム中のランダムアクセス 開始可能点等の特徴的な点を表すCPI(Characteristic Point Information) に関する情報はCPI()に、Clipにつ けられた、頭出しのためのインデックス点やコマーシャ ルの開始・終了点などのマーク情報はClipMark()に、そ れぞれ格納される。ファイルの先頭部分には、それらの ブロックの先頭を表すアドレスが記述されている。

【0074】ここでは、サムネイルに関係するブロックだけを説明する。本実施の形態においては、クリップにサムネイルを付ける操作は、クリップのマークにサムネイルを付与することで実現する。クリップに付けられるマークの情報は、(lipMark()に格納されている。図11に、(lipMark()のシンタクスを示す。シンタクス中のmark_typeが、resume、 bookmark、 skip等のマークの種類を表し、mark_time_stampでマークがつけられた時

刻を表す。サムネイルに関係するフィールドは、ref_th umbnail_index である。ref_thumbnail_indexは、ここでサムネイルの番号を指定することで、サムネイルのデータが格納されているmark.thmbファイル中のサムネイルを特定する。ref_thumbnail_indexで指定されるサムネイルが、このマークに付与されたマークサムネイル(本発明では、マークに付与されたサムネイルを特にマークサムネイルと称する)となる。

【0075】マークは、主としてClipおよびPlaylistの中のハイライトや特徴的なシーンを指し示すためにある。また、マークより後の部分は再生を飛ばして、次のPlaylistの再生をするように指示するスキップ機能も、マークによって実現できる。図12は、マークがClip、Playlistに付けられている様子を図で示したものである。以下にマークの特徴をまとめる。

【0076】Clipに付加されるマークは、AVストリームの内容に起因する特徴的なシーン、例えば、シーンチェンジ点などを指定する。Playlistを再生する時には、そのPlaylistが参照しているClip中のマークを利用してランダムアクセス等ができる。図12では、Clipに対してcommercial(CM)とsceneという、2種類のマークが付けられているが、commercialのマークは左のPlaylistから、sceneマークは二つのPlaylistから利用されている。Playlistに付加されるマークは、主としてユーザによって設定される。例えば、ブックマークやリジューム点などである。図12では、bookmarkとresumeマークが相当する。

【0077】ClipまたはPlaylistにマークを設定することは、マークの時刻を示すタイムスタンプをマークリストに追加することにより行われる。また、マークを削除することは、マークリストの中からそのマークのタイムスタンプを除去する事である。それゆえ、マークの設定や削除は、AVストリームを何も変化させない。

【0078】次に、図4に示したファイル#####.rpls、#####.vplsについて説明するに、ファイル#####.rpls、#####.vplsについて説明するに、ファイル#####.rpls、#####.vplsの構造とちらか1つ作られる。#####.rpls、#####.vplsの構造は、図13に示すようになっている。ファイルの内部は、機能別の情報ごとにブロックを構成しており、Playlistに関する情報はPlayList()に、Playlistに付けられるマークの情報はPlayListMark()に、このPlaylistファイルを記録した記録再生装置のメーカ固有の情報はMakerPrivateData()に、それぞれ格納される。ファイルの先頭部分には、ブロックの先頭を表すアドレス(PlayListMark_Start_address等)が記述されている。これにより、ブロックの前あるいは後ろにpadding_byteを挿入することが出来る。ただし、PlayList()の開始位置は固定で、ファイルの先頭から、例えば、256バイト目と設定されている。

【0079】ブロックPlayList()の内容は、図14のよ 50

18

うになっている。最初にversion_numberがあり、以下に続く情報のバージョン番号を表す。lengthは、lengthの直後のフィールドから、PlayList()の終わりまでのバイト長を表す。PlayList_typeは、このPlaylistの種類を表し、CPI_typeは、このPlaylistが持つCPIの種類を表す。number_of_Playltemsは、このPlaylistを構成するPlayitemの数を表す。number_of_SubPlayltemsは、このPlaylistに付けられているアフレコオーディオ用のPlayitem(SubPlayitem)の数を表す。Playltem()は、Playitemの情報を、SubPlayItem()は、SubPlayitemの情報を格納する。

【0080】プロックPlayItem()の内容は、図15のようになっている。Clip_Information_file_nameは、このPlayItemが参照しているClip情報ファイル(拡張子がclpiであるファイル)のファイル名が文字列で格納されている。STC_sequence_idは、program中に存在する、PCRが連続な時間範囲の区間をあらわす。この区間内では、一貫した連続時間軸が定義できるようになっているので、PlayItemの開始・終了点を一意に定めることが出来る。つまり、各PlayItemの開始点と終了点は、同一のSTC_sequenceに存在していなければならない。

【0081】IN_timeは、このPlayItemの開始点の、STC_sequence 上でのpts(Presentation Time Stamp)を表し、OUT_time はPlayItemの終了点の、STC_sequence 上でのptsを表す。connection_conditionは、このPlayItemが次のPlayItemとの間でどのような接続がされているかを表す情報であり、PlayItemの間を継ぎ目なく再生できるかどうかの条件を表す。

【0082】BridgeSequnceInfo()は、Playitemの継ぎ目の部分で、本来再生すべきビットストリームとは異なるビットストリームに飛び、それを代わりに再生することで、Playitemの間をシームレスに再生する機能を実現する際に作成されるビットストリーム(ブリッジシーケンス)に関する情報を格納する。program_numberは、このPlayitemが参照しているprogram(MPEG Systemsで定義されている、ビデオ・オーディオ等のエレメンタリストリームのまとまりをいう。いわゆるテレビジョン放送のチャンネルに相当するものである)のprogram_numberを表す。

【0083】以上が、Playlist、Playitemを構成するデータ構造の概要である。このようなデータ構造により、AVストリーム中の再生したい部分をIN、OUT点の組で指定したPlayitemの並びでPlaylistを構築し、ユーザが認識するひとまとまりの再生単位を管理することが可能になる。

【0084】本発明の実施の形態では、プレイリスト上の任意の時刻にサムネイルを付ける操作は、プレイリストのマークにサムネイルを付与することで実現している。Playlistに付けられるマークの情報は、PlayListMark()のシ

30

ンタクスを示す図である。シンタクス中のmark_type が、resume、 bookmark、 skip等のマークの種類を表し、mark_time_stampでマークがつけられた時刻を表す。ref_thumbnail_indexは、ここでサムネイルの番号を指定することで、サムネイルのデータが格納されているmark.thmbファイル中のサムネイルを特定する。ref_thumbnail_indexで指定されるサムネイルが、このマークに対応するマークサムネイルとなる。

【0085】次に、サムネイルの詳細について説明する。サムネイルとは、Volume、Playlist、Clipに付随する静止画のことを指す。サムネイルには2種類ある。一つは、内容を表す代表画としてのサムネイルである。これは主としてユーザがカーソルを操作して見たいものを選択するためのメニュー画面で使われる。もう一つは、マークが指しているシーンを表す画像である。

【0086】Volumeと各Playlistは代表画を持つことができるようにする必要がある。Volumeの代表画とは、ディスクをプレーヤに入れた時に、ディスクの内容を表す静止画を最初に表示する場合などに用いることを想定している。Playlistの代表画とは、Playlistを選択するメニュー画面において、Playlistの内容を表すための静止画として用いられることを想定している。

【0087】Playlistの代表画の最も簡単な実現方法は、Playlistの最初の画像をサムネイルにすることであるが、必ずしも再生時刻0の先頭の画像が内容を表す上で最適な画像とは限らない。そこで、Playlistのサムネイルとして、任意の画像を決めることが出来るようにしておく。以上2種類のサムネイルをメニューサムネイルと称する。メニューサムネイルは、頻繁に表示されるため、ディスクから高速に読み出されることが可能である必要がある。この要求を満たすには、全てのメニューサムネイルを1つのファイルに格納することが効率的である。必ずしもボリューム内の動画から抜き出したピクチャだけではなく、図17に示すように、パーソナルコンピュータやデジタルスチルカメラから取り込んだ画像でもよい。

【0088】一方、ClipとPlaylistは複数個のマークを打てる必要があり、マーク位置の内容を知るためにマーク点の画像を容易に見ることが出来るようにする必要がある。このようなマーク点を表すピクチャをマークサムネイルと称する。よって、サムネイルの元となるものは、図18や図19に示したように、外部から取り込んだ画像よりも、マーク点の画像を抜き出したものが主となる。メニューサムネイルと異なり、マークサムネイルはPlaylistの詳細を表す時に使われるサブメニュー等で使われるため、短いアクセス時間で読み出されなくても良い。

【0089】そのため、サムネイルが必要になる度に、 プレイヤーがファイルを開き、ファイルの一部を読み出 すことで多少時間がかかっても、問題にはならない。ま た、ボリューム内に存在するファイル数を減らすために、すべてのマークサムネイルは一つのファイルに格納するのがよい。Playlistはメニューサムネイルーつと複数のマークサムネイルを有することができるが、Clipは直接ユーザが選択する必要性がない(通常、Playlist経由で指定する)ため、メニューサムネイルを持つことはしない。図20は、以上の関係を示した図である。

20

【0090】サムネイルは頻繁に追加、削除されるので、追加操作と部分削除の操作は容易に、かつ、高速に実行されなければならない。この理由のため、Thumbnail()はブロック構造を有する。画像のデータはいくつかの部分に分割され、各部分は1つのtn_block()に格納される。1つの画像データは、連続したtn_block()に格納される。tn_block()の列には、使用されていないtn_block()が存在してもよい。1つのサムネイル画像のバイト長は可変である。

【0091】図21は、サムネイルのデータを格納するファイルのシンタクスである。このファイルには、Thumbnail()がただ一つ存在する。図22は、thubnail()のシンタクスを表す。version_numberは、このthumbnail()のバージョンナンバーを示す4個のキャラクター文字を表す。lengthは、このlengthフィールドの直後からthumbnail()の最後までのthumbnail()のバイト数を示す32ビットの符号なし整数である。tn_blocks_start_addressは、thumbnail()中の最初のtn_block()の、thumbnail()の先頭からの開始バイトアドレスを示す32ビットの符号なし整数である。

【0092】number_of_thumbnailsは、このthumbnail()に格納されているサムネイル画像の数を示す16ビットの符号なし整数である。tn_block_sizeは、1 tn_block()の大きさをキロバイト単位で表す16ビットの符号なし整数である。例えば、tn_block_sizeが1であるのは、1つのtn_block()のサイズが1024バイトであることを表す。number_of_tn_blocksは、この thumbnail()中のtn_block()の数を表す16ビットの符号なし整数である。

【0093】thumbnail_indexは、このthumbnail_indexフィールドから始まるforループ1回分のサムネイル情報で表されるサムネイルのインデクス番号を表す16ビットの符号なし整数である。 thumbnail_index として、0xFFFF という値を使用してはならない。thumbnail_index はref_thumbnail_indexによって参照される。tumbnail_picture_format は、サムネイル画像のピクチャフォーマットを表す8ビットの符号なし整数で、図23に示したような値をとる。図23中のDCF (Design rule for Camera File System) とPNG (Portable Network Graphics) は"menu.thmb"内でのみ許される。すなわちマークサムネイルは、値"0x00" (MPEG-2 Video I-picture)ととらなければならない。

50 【0094】picture_data_size は、符号化されたサム

ネイル画像のバイト長を表す32ビットの符号なし整数である。start_tn_block_numberは、サムネイル画像のデータが始まるtn_block()のtn_block_numberを表す16ビットの符号なし整数である。サムネイル画像データの先頭は、tb_blockの先頭と一致していなければならない。start_tn_block_numberは、0から始まり、tn_blockのfor-ループ中の変数kの値に関係している。x_picture_lengthは、サムネイル画像の水平方向のピクセル数を表す16ビットの符号なし整数である。

21

【0095】y_picture_lengthは、サムネイル画像の垂直方向のピクセル数を表す16ビットの符号なし整数である。 $tn_block()$ は、ピクチャデータを格納する領域である。thumbnail()中のすべての $tn_block()$ は、 tn_block_size で定められる同一の大きさを有していなければならない。図24は、画像データがどのように tn_block_size である。図24に示したように、各画像データは tn_block_size の先頭から始まり、 tn_block_size の先頭から始まり、 tn_block_size の先頭から始まり、 tn_block_size の先頭から始まり、 tn_block_size の場合は、連続する次の tn_block_size の特別を使用することにより格納される。

【0096】画像データは、可変長であるが、1 tn_blo 20 ck()は、固定長である。このように、可変長であるデータを固定長のデータに変換して扱うようにすることにより、新たな画像データの追加や、画像データの削除といった処理に対してブロック単位で対処できるため、アドレスの管理など、簡便に行うことが可能となる。

【0097】ここで、サムネイル記録についてのディレクトリ・ファイル構造、シンタックスの別案を示す。まず、図4で表されるディレクトリ・ファイル構造の別案として、図25の構造が考えられる。図4では、マークサムネイルを記録するためのファイルが/DVRの下に1つ、mark.thmbだけであるのに対し、図25では、プレイリスト、クリップごとに1対1に対応してファイルxxxxx.thmb(xxxxxxは対応するプレイリストまたはクリップをあらわす、拡張子を除いたファイル名)が作られている。

【0098】例えば、####.rplsで表されるプレイリストが有するマークサムネイルの画像は、同じディレクトリ内の####.thmbに格納されることになる。同様に、%% %%%.clpiで表されるクリップが有するマークサムネイルの画像は、同じディレクトリ内の%%%%.thmbに格納されることになる。プレイリスト・クリップのマークサムネイルは、ファイルの拡張子を除いた名前の部分が同一の.thmbファイルに記録されるという制約があるだけで、xxxxx.thmb内のシンタックスは、図26のように、menu.thmbやmark.thmb(図21)と同一である。

【0099】また、プレイリストのメニューサムネイルについて、図8、図9では、サムネイルを特定するref_thumbnail_indexを、ファイルInfo.dvrのTableOfPlayList()の中のUIAppInfoPlayList()に置いているが、UIAppInfoPlayList()をInfo.dvrではなく、各プレイリスト

ファイル中に入れる方法もある。このような場合、UIAp pInfoPlayList()を、TableOfPlayLists()から、プレイリストファイル中のplaylist()へ移すことになり、図8に示したシンタクスは図27に示すシンタクスのようになり、図14に示したシンタクスは図28に示すシンタクスのようになる。図28中のUIAppInfoPlayList()は、図29に示すシンタクスのようになり、ここにref_thumbnail_indexが入る。

【0100】以上のようなファイル、シンタックスでもサムネイルの記録が可能である。

【0101】次に、図30に示したフローチャートを参照して、マークサムネイルの作成について説明する。ステップS1において、ユーザは、再生したいPlayList(プレイリスト)を選択する。ステップS2において、選択されたPlayListに基づいて、AVストリームの再生が開始される。ステップS3において、ユーザは、再生されているAVストリームを視聴し、マークしたいシーンを探索する。ユーザは、マークしたいシーンが探索できた場合、記録再生装置1に付属するリモートコントローラ(不図示)のマークボタンを操作する。この操作は、再生中に操作されても、一時停止された状態で操作されても良い。

【0102】ステップS3において、ユーザによりマークボタンが操作されると、ステップS4において、ユーザの指示に対応する処理としてマーク位置が決定される。マーク位置が決定されると、ステップS5において、サムネイル画像にする画像の選択が行われる。マーク位置が指示された時点で、制御部23(図1)は、サムネイルを作成するかどうかをユーザに尋ね、作成する場合には、サムネイルとする画像の候補をコマ送り等によりユーザに提供し、ユーザがサムネイル画像を選択するようにしても良い。

【0103】ユーザ、または、制御部23により、サムネイル画像にする画像が選択されると、制御部23は、ステップS6において、AVデコーダ15から画像を取り込み制御部23のRAM(Random Access Memory)(不図示)に転送する。ステップS7において、画像を圧縮するか否かが判断され、画像を圧縮すると判断された場合、制御部23は、ステップS8に進み、画像圧縮を行い、再びデータをRAMに戻す。ステップS7において、画像を圧縮しないと判断された場合、ステップS8の処理はスキップされ、ステップS9に進む。

【0104】ステップS9において、制御部23は、サムネイルの符号化方式、サムネイルを識別するthumbnai l_id、サイズ(バイト数)、X、Y方向のピクセル数から構成されるサムネイルのヘッダ情報を作成し、画像データをtn_block()の単位に分割する。ステップS10において、ECC符号化ブロック20にヘッダ情報とtn_block()の形に分割した画像データが転送され、書き込み部22を経て、mark.thmbファイルとして記録媒体100

50

に書き込まれる。

【0105】次に、メニューサムネイルを作成について、図31に示したフローチャートを参照して説明する。メニューサムネイルはボリュームまたは各プレイリストに対して付けられるので、制御部23は、ステップS21において、ユーザに対して、メニューサムネイルをつける対象を選択させる。ステップS22において、制御部23は、サムネイルを外部から取り込むか、プレイリスト中のあるシーンから取り込むかをユーザに選択させる。

【0106】ステップS22において、サムネイルを外部から取り込むと判断された場合、ステップS23に進み、ユーザが指定した入力端子あるいはファイルから画像データが取り込まれる。取り込みが終了されると、ステップS26に進む。

【0107】一方、ステップS22において、サムネイルを外部から取り込むのではないと判断された場合、ステップS24に進み、制御部23は、まず、ユーザに対して、どのプレイリストからサムネイル画像を取得するのかを選択させ、その後、選択されたプレイリストの再生を開始する。そして、ステップS25において、ユーザにサムネイルにしたいシーンを選択させる。

【0108】ステップS23、或いは、ステップS25において、サムネイル画像が選択されると、ステップS26に進む。ステップS26以降の処理は、図30に示したフローチャートのステップS5以降の処理と同様であるので、その説明は省略する。

【0109】このように、サムネイル画像をプレイリストに付与することにより、それらのサムネイル画像を管理しやすくなり、記録されているAVストリームを再生する際にも、再生させるAVストリームの選択などの処理を簡便に行わせることが可能となる。

【0110】図32は、ディスク上につくられるディレクトリおよびファイルの別の例を示す図である。"menu. tidx"と"menu. tdat"は、メニューサムネール、すなわちVolumeを代表する1つのピクチャおよびPlayList毎に、それを代表する1つのピクチャの情報をストアする。すべてのメニューサムネールのヘッダ情報は、1つのmenu. tidxに集めて管理される。すべてのメニューサムネールのピクチャデータは、1つのmenu. tdatに集められて管理される。

【0111】 "mark. tidx"と"mark. tdat"は、マークサムネール、すなわちマーク点で指されるピクチャについての情報をストアする。Volume中のすべてのClipおよびPlayListに付加されている、全てのマークサムネールのヘッダ情報は、1つのmark. tidxに集めて管理される。全てのマークサムネールのピクチャデータは、1つのmark. tdatに集めて管理される。

【0112】すなわち、このファイル構造では、サムネールのヘッダ情報とサムネールのピクチャデータが、別

々のファイルに分けて管理される。この理由は、ファイルシステムが行うファイルの管理方法に関係する。すなわち、サムネールのヘッダ情報のファイルは、比較的重要な情報であるため、ファイルシステムがディスク上にデータを2重書きして管理する。

24

【0113】これは、例えば、片方のデータがディスクの傷などによって失われてしまったような場合に対応できるようにするためめであり、データのバックアップの意味合いをもつ。ピクチャデータのファイルは、2重書きはしないが、その理由は、ピクチャデータは比較的データ量が大きくなり、これを2重書きするとディスク上の必要容量が大きくなるためである。

【0114】menu. tdatおよびmark. tdatにストアされるピクチャデータの符号化方法、サンプリング構造、およびスキャン構造は、ピクチャ毎に符号化方法を変更することが可能であるが、全てのピクチャデータで同じであるほうが、記録再生装置1の構成を簡単化できる。例えば、JFIF(JPEG File Interchange Format)、コンポーネント信号、プログレッシブスキャンフォーマットが使用される。

【0115】これら4個のファイルのシンタクスとセマンティクスを説明する。"menu.tidx"と"mark.tidx"は、同じシンタクス構造を持つ。図33は、"menu.tidx"と"mark.tidx"のシンタクス構造を示す。version_numberは、このサムネールヘッダ情報ファイルのバージョンナンバーを示す4個の数字である。

【0116】lengthは、このlengthフィールドの直後のバイトからmenu. tidx/mark. tidxの最後のバイトまでのバイト数である。number_of_thumbnailsは、menu. tidxの場合にはmenu. tdatにストアされているサムネールピクチャの数であり、mark. tidxの場合、mark. tdatにストアされているサムネールピクチャの数である。

【0117】tn_block_sizeは、menu.tidxの場合、menu.tdatの中の1つのtn_blockのサイズを示し、mark.tidxの場合、mark.tidxの場合、mark.tidxの場合、mark.tdatの中の1つのtn_blockのサイズを示す。このサイズは、1024バイトを単位とする大きさである。例えば、tn_block_size=1は、1つのtn_blockのサイズが1024バイトであることを示す。1つのサムネールピクチャは、1つのtn_blockの中にストアされなければ40 ならない。

【0118】number_of_tn_blocksは、menu.tidxの場合、menu.tdatの中にあるtn_blockの数を示し、mark.tidxの場合にはmark.tdatの中にあるtn_blockの数を示す。thumbnail_indexは、このthumbnail_indexフィールドに続くサムネール情報のインデクス番号を表す。thumbnail_indexして、0xFFFFという値を使用してはならない。

【0119】menu.tidxの場合、thumbnail_indexはUIAppInfoVolume()、UIAppInfoPlayList()の中のref_thumbnail_indexによって参照される。mark.tidxの場合、thum

bnail_indexはPlayListMark()およびClipMark()の中のref_thumbnail_indexによって参照される。

25

【0120】ref_to_tn_block_idは、menu.tidxの場合、menu.tdat中の1つのtn_blockを示し、そのtn_blockは、thumbnail_indexで指されるピクチャデータをストアしている。ref_to_tn_block_idの値は、menu.tdatのシンタクス中のtn_block_idの値を参照する。

【0121】mark.tidxの場合、mark.tdat中の1つのtn_blockを示し、そのtn_blockは、thumbnail_indexで指されるピクチャデータをストアしている。ref_to_tn_bl 10 ock_idの値は、menu.tdatのシンタクス中のtn_block_idの値を参照する。

【0122】picture_byte_sizeは、thumbnail_indexで指される1つの符号化サムネールピクチャのデータ長をバイト単位で示す。picture_byte_sizeは、 $1024*tn_block_size$ の値以下でなければならない。すなわち、記録再生装置1は、1つの符号化サムネールピクチャのデータ長を $1024*tn_block_size$ の値以下になるように、符号化しなければならない。

【0123】horizontal_picture_sizeは、thumbnail_i ndexで指される符号化サムネールピクチャの水平方向の 画素数を示す。vertical_picture_sizeは、thumbnail_i ndexで指される符号化サムネールピクチャの垂直方向の 画素数を示す。display_aspect_ratioは、thumbnail_in dexで指される符号化サムネールピクチャのディスプレイ・アスペクト・レシオを示す。値の意味を図34に示す。

【0124】color_spaceは、Y,Cb,Crのコンポーネント信号をR,G,Bのコンポーネント信号へ変換する時のフォーマットを示す。値の意味を図35に示す。

【0125】"menu. tdat"と"mark. tdat"は、同じシンタクス構造を持つ。図36は、"menu. tdat"と"mark. tdat"のシンタクス構造を示す図である。tn_blockは、1つの符号化サムネールピクチャがストアされる領域である。1つのサムネイルピクチャのバイト長は、1つのtn_blockの大きさ以下である。1つのピクチャデータの第1バイト目は、tn_blockの第1バイト目と一致していなければならない。

【0126】menu.tdatの場合、1つのtn_blockのサイズは、menu.tdatの中のtn_block_sizeで示される。mark.tdatの場合、1つのtn_blockのサイズはmark.tdatの中のtn_block_sizeで示される。各tn_blockは、それがシンタクス中のfor-loopの中で現れるときのtn_block_idの値で区別される。menu.tidx中のtn_block_idは、menu.tidx中のref_to_tn_block_idによって参照される。mark.tidx中のtn_block_idは、mark.tidx中のref_to_tn_block_idによって参照される。lock_idによって参照される。

【0127】サムネイルは頻繁に追加、削除されるので、追加操作と部分削除の操作は、容易に高速に実行できなければならない。この理由のため、menu.tdatとmar

k. tdatは、ブロック構造を有する。1つのピクチャデータは、1つのtn_blockに格納される。

【0128】menu. tdatおよびmark. tdatのtn_block列の中に、使用されていないtn_blockが存在してもよい。例えば、所定のサムネイルの削除をする場合、サムネールのヘッダ情報ファイルの中にエントリーされているthumbnail_indexを消去し、サムネールのピクチャデータファイルを何も変更しなかったとき、tn_block列の中に、使用されていないtn_blockができる。

【0129】図37は、サムネールピクチャデータが、 どのようにtn_blockに格納されるかを模式的に表した図 である。図37に示すように、1つのサムネイルピクチャのバイト長は、1つのtn_blockの大きさ以下である。 tn_block列の中に、使用されていないtn_blockが存在し てもよい。

【0130】上述した実施の形態においては、例えば、menu. tbatとmark. tbatのファイルが2個に分けられて記録されるとして説明したが、それぞれのファイルをブロックと考え、menu. tbatのデータの第1のブロックと、mark. tbatのデータの第2のブロックを、1つのファイルにまとめて記録するようにしても良い。1つのファイルにまとめて記録するとは、例えば、Clip Information fileの中で、SequenceInfo、CPI、ClipMarkを別のブロックとして記録するような形態にしても良い。

【0131】上述した一連の処理は、ハードウェアにより実行させることもできるが、ソフトウェアにより実行させることもできる。一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば図38に示すような構成の汎用のパーソナルコンピュータなどに、記録媒体からインストールされる。

【 0 1 3 2 】図38に示すパーソナルコンピュータにおいて、CPU(Central Processing Unit)201は、ROM(Read Only Memory)202に記憶されているプログラム、または記憶部208からRAM(Random Access Memory)203にロードされたプログラムに従って各種の処理を実行する。RAM203にはまた、CPU201が各種の処理を実行する上において必要なデータなども適宜記憶される。

【0133】CPU201、ROM202、およびRAM203 は、バス204を介して相互に接続されている。このバ ス204にはまた、入出力インタフェース205も接続 されている。

【0134】入出力インタフェース205には、キーボード、マウスなどよりなる入力部206、CRT、LCDなどよりなるディスプレイ、並びにスピーカなどよりなる出力部207、ハードディスクなどより構成される記憶部208、モデム、ターミナルアダプタなどより構成され

50

る通信部209が接続されている。通信部209は、ネットワークを介しての通信処理を行う。

【0135】入出力インタフェース205にはまた、必要に応じてドライブ210が接続され、磁気ディスク221、光ディスク222、光磁気ディスク223、或いは半導体メモリ224などが適宜装着され、それらから読み出されたコンピュータプログラムが、必要に応じて記憶部208にインストールされる。

【0136】この記録媒体は、図38に示すように、コンピュータとは別に、ユーザにプログラムを提供するために配布される、プログラムが記録されている磁気ディスク221(フロッピディスクを含む)、光ディスク22(CD-ROM(Compact Disk-Read Only Memory)、DVD(Digital Versatile Disk)を含む)、光磁気ディスク223(MD(Mini-Disk)を含む)、若しくは半導体メモリ224などよりなるパッケージメディアにより構成されるだけでなく、コンピュータに予め組み込まれた状態でユーザに提供される、プログラムが記憶されているROM202や記憶部208が含まれるハードディスクなどで構成される。

【0137】なお、本明細書において、媒体により提供されるプログラムを記述するステップは、記載された順序に従って、時系列的に行われる処理は勿論、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。

【0138】また、本明細書において、システムとは、 複数の装置により構成される装置全体を表すものであ る。

[0139]

【発明の効果】以上の如く、本発明の記録装置および方法、並びに第1のプログラムにおいては、入力された動画像データから、当該動画像データを代表するサムネイル画像を第1のサムネイルデータとして生成すると共に、動画像データから、特徴的な画像として抽出された画像のサムネイル画像を第2のサムネイルデータとして生成し、第1のサムネイルデータと第2のサムネイルデータを、各々独立したグループとして記録媒体に記録するようにしたので、その記録されている画像データを用いることにより、ユーザが記録されているデータの選択を簡便に行える。

【0140】また、本発明の再生装置および方法、並びに第2のプログラムによれば、AVストリームの再生が指示された場合、AVストリームの内容を示すサムネイル画像の画像データを管理する管理データを読み出し、読み出し手段により読み出された管理データに基づき、画像データを読み出し、AVストリームから、特徴的な画面として抽出された画面のサムネイル画像の画像データか、または、ユーザにより指定された画面のサムネイル画像の画像データと、その画像データを管理する管理データ

を読み出し、読み出された管理データに基づき、画像データを読み出すようにしたので、その読み出された管理データにより、ユーザが記録されているデータの選択を 簡便に行える。

28

【図面の簡単な説明】

【図1】本発明を適用した記録再生装置の一実施の形態 の構成を示す図である。

- 【図2】ClipとPlaylistの関係を表す図である。
- 【図3】AVストリームを管理する構造のUML図である。
- 10 【図4】DVRシステムのディレクトリ構成を表す図である。
 - 【図5】info.dvrを説明する図である。
 - 【図6】DVRVolume()を説明する図である。
 - 【図7】UIAppInfoVolume()を説明する図である。
 - 【図8】TableOfPlayLists()を説明する図である。
 - 【図9】UIAppInfoPlayList()を説明する図である。
 - 【図10】zzzzz.clpiを説明する図である。
 - 【図11】(lipMark()を説明する図である。
 - 【図12】マークを説明する図である。
- 20 【図13】xxxxx.rpls、 yyyyy.vplsを説明する図である。
 - 【図14】Playlist()を説明する図である。
 - 【図15】PlayItem()を説明する図である。
 - 【図16】PlayListMark()を説明する図である。
 - 【図17】メニューサムネイルを説明する図である。
 - 【図18】 プレイリストに付けられるマークを説明する図である。
 - 【図19】 クリップに付けられるマークを説明する図である。
- 30 【図20】サムネイルを格納するファイルを説明する図である。
 - 【図21】menu_thmb/mark.thmbを説明する図である。
 - 【図22】Thumbnail()を説明する図である。
 - 【図23】Thumbnail_picture_formatを説明する図である。
 - 【図24】サムネイルの画像データをtn_block()に格納 する方法を説明する図である。
 - 【図25】他のディレクトリ・ファイル構造を示す図である。
- 40 【図26】図25に示したファイル構造に対応するmenu _thmb/mark.thmbを説明する図である。
 - 【図27】図25に示したファイル構造に対応するTableOfPlayLists()を説明する図である。
 - 【図28】図25に示したファイル構造に対応するPlay list()を説明する図である。
 - 【図29】図25に示したファイル構造に対応するUIAp pInfoPlayList()を説明する図である。
 - 【図30】マークサムネイルの作成手順を表したフロー チャートである。
- 50 【図31】メニューサムネイルの作成手順を表したフロ

ーチャートである。

【図32】DVRシステムの他のディレクトリ構成を表す図である。

29

【図33】 サムネールのヘッダ情報ファイルのシンタクスを示す図である。

【図34】display_aspect_raitoを説明する図である。

【図35】color_spaceを説明する図である。

【図36】サムネールのピクチャデータファイルのシンタクスを示す図である。

【図37】tn_blockへのデータの格納について説明する *10* 図である。

【図38】媒体を説明する図である。

【符号の説明】

1 記録再生装置, 11乃至13 端子, 14 解 15 AVエンコーダ, 16 マルチプレク 析部, サ, 17 スイッチ, 18 多重化ストリーム解析 19 ソースパケッタイザ. 20 **ECC**符号化 2 1 変調部, 22 書き込み部, 23 制 24 ユーザインタフェース,25 スイッ 26 デマルチプレクサ, 27 AVデコーダ, チ, 28 読み出し部, 29 復調部, 30 ECC復 31 ソースパケッタイザ, 32,33 端 号部, 子

【図1】

【図3】

【図6】

Syntax	No. of bits	Mnemonica
DVRVolume() {		
version_number	8*4	bslbf
length	32	uimabf
ResumeVolume()		
UiAppinfoValume()		
· _		

DVR Volume のシンタクス

【図2】

【図5】

Syntax	No. of bits	Mnemonics
info.dvr {		
TableOfPlayLists Start_address	32	uimsbf
MakerPrivateData Start address	32	uimsbf
reserved	192	bslbf
DVRVolume()		
for(i=0; i <n1; i++){<="" td=""><td></td><td></td></n1;>		
padding_word	16	bslbf
}		
TableOfPlayLists()		
for(i=0; i <n2; i++){<="" td=""><td></td><td></td></n2;>		
padding_word	16	bslbf
}		
MakerPrivateData()		
}		

info.drv のシンタクス

【図4】

【図7】

Syntax	No. of bits	Mnemonics
UIAppInfoVolume () {		
character_set	8	bslbf
name_length	8	uimsbf
Volume_name	8*256	bslbf
reserved	15	bslbf
Volume_protect_flag	1	bslbf
PIN	8*4	bslbf
ref_thumbnail_index	16	uimsbf
reserved	7	belbf
rp_info_valid_flag	1	uimsbf
rp_ref_to_PlayList_file_name	8*10	bslbf
rp_ref_to_PlayItem_id	16	uimsbf
rp_time_stamp	32	uimsbf
}		

【図8】

Mnemonics uimsbf uimsbf pslbf bslbf ♂ 8*10 No. bits 8*4 16 ■ TableOfPlayLists - シンタクス (4.2.3.2 の別案) for (i=0; I<number of PlayLists; i++) {
PlayList Ille name UlAppInfoPlayList 2() number of PlayLists version number TableOfPlay∐sts() { length Syntax

TableOfPlayLists のシンタクス

【図9】

Syntax	No. of bits	Mnemonics
UIAppInfoPlayList20 {		
character_set	8	bslbf
name_length	8	uimsbf
PlayList_name	8*256	belbf
reserved	8	bslbf
record_time_and_date	4*14	bslbf
reserved	8	bslbf
duration	4*6	bslbf
valid_period	4*8	bslbf
maker_id	16	bslbf
maker_code	16	bslbf
reserved	11	bslbf
playback_control_flag	1	bslbf
write_protect_flag	1	bslbf
is_played_flag	1	bslbf
archive	. 2	bslbf
ref_thumbnail_index	16	uimsbf
reserved	7	belbf
rp_info_valid_flag	1	uimsbf
rp_ref_to_PlayItem_id	16	uimsbf
rp_time_stamp	32	uimsbf
reserved_for_future_use	240	bslbf
}		

【図11】

Syntax	No. of bits	Mnemonics
ClipMark() {		
version_number	8*4	bslbf
length	32	uimsbf
number_of_Clip_marks	16	uimsbf
for(i=0; i < number_of_Clip_marks; i++) {		
reserved	8	bslbf
mark_type	8	bslbf
mark_time_stamp	32	uimsbf
STC_sequence_id	8	uimsbf
reserved	24	bslbf
character_set	8	bslbf
name_length	8	uimsbf
mark_name	8*256	bslbf
ref_thumbnail_index	16	uimsbf
}		

ClipMark のシンタクス

【図10】

Syntax	No. of bits	Mnemonics
zzzzz.cipi {		
STC_info_Start_address	32	uimsbf
Programinfo_Start_address	32	uimsbf
CPI_Start_address	32	uimsbf
ClipMark_Start_address	32	uimsbf
MakerPrivateData_Start_address	32	uimsbf
reserved	96	bslbf
ClipInfo()		
for(i=0; i <n1; i++){<="" td=""><td></td><td></td></n1;>		
padding_word	16	bslbf
STC_Info()		
for(l=0; l <n2; l++){<="" td=""><td></td><td></td></n2;>		
padding_word	16	bslbf
}		
Programinfo()		
for(i=0; i <n3; i++){<="" td=""><td></td><td></td></n3;>		
padding_word	16	bsibf
}		
CPI()		
for(i=0; i <n4; i++){<="" td=""><td></td><td></td></n4;>		
padding_word	16	bslbf
}		
ClipMark()		
for(i=0; i <n5; i++){<="" td=""><td></td><td></td></n5;>		
padding_word	16	bslbf
}		
MakerPrivateData()		
}		

2222Z.cipi のシンタクス

【図12】

Playlist 上のマークと Clip 上のマーク

[図13]

Syntax	No. of	of Mnemonics
	bits	
slqv.γγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγ		
Play⊔stMark Start_address	32	uimsbf
MakerPrivateData_Start_address	32	uimsbf
reserved	192	bslbf
Play⊔st()		
for(i=0; i <n1; i++){<="" th=""><td></td><td></td></n1;>		
padding_word	16	Jalsa
{		
PlayListMark()		
far(i=0; i <n2; i++){<="" th=""><td></td><td></td></n2;>		
padding_word	16	Jaisa
{		
MakerPrivateData()		

xxxxx.rpls と yyyyy.vpls のシンタクス

[図14]

Syntax		No. of bits	Mnemonics
PlayList() {			
version_number		8* 4	bslbf
length		32	uimsbf
PlayList_type		8	uimsbf
CPI_type		1	bslbf
reserved		7	bslbf
UIAppInfoPlayList()			
number_of_PlayItems	// main path	16	uimsbf
if (<virtual playlist="">) {</virtual>			
number_of_SubPlayItems	// sub path	16	uimsbf
}else{			
reserved		16	bslbf
}			
for (PlayItem_id=0;			
PlayItem_id <number_of_playi< td=""><td>tems;</td><td></td><td></td></number_of_playi<>	tems;		
PlayItem_id++) {			
Playitem()	// main path		
·			
if (<virtual playlist="">) {</virtual>	<u> </u>		
if (CPI_type==0 && PlayList_ty			
for {i = 0; i < number_of_S			
SubPlayItem()	// sub path		
}	_ "	ļ	
}			
}			

PlayList のシンタクス

【図15】

Syntax	No. of bits	Mnemonics
PlayItem() {		
Clip_Information_file_name	8*10	bslbf
reserved	24	bslbf
STC sequence_ld	8	uimsbf
IN_time	32	uimsbf
OUT_time	32	uimsbf
reserved	14	bslbf
connection_condition	2	bslbf
if (<virtual playlist="">) {</virtual>		
if (connection_condition=='10') {		
BridgeSequenceInfo()		
}	~	
}		
}		

PlayItem のシンタクス

【図23】

Thumbnail_picture_format	Meaning
0x00	MPEG-2 Video I-picture
0x01	DCF (restricted JPEG)
0x02	PNG
OxO3-Oxff	reserved

thumbnail__picture__format

【図27】

Syntax	No. of bits	Mnemonics
TableOfPlayLists() {		
version_number	8*4	bslbf
length	32	uimsbf
number_of_PlayLists	16	uimsbf
for (i=0; i <number i++)="" of="" playlists;="" td="" {<=""><td></td><td></td></number>		
PlayList_file_name	8*10	bslbf
}		
}		

TableOfPlayLists のシンタクス

[図16]

Syntax	No. of	of Mnemonics
	bits	
PlayListMark() {		
version_number	8*4	bslbf
length	32	uimsbf
number of PlayList marks	16	ulmsbf
for(i=0; i < number_of_PlayList_marks; i++) {		
reserved	80	psibf
mark_type	80	bslbf
mark time stamp	32	uimsbf
PlayItem id	8	uimsbf
reserved	24	uimsbf
character_set	8	jaisa
name length	8	uimsbf
mark_пате	8*256	bslbf
ref_thumbnail_index	16	uimsbf
-		
,		

PlayListMark のシンタクス

[図21]

Syntax	No. of	of Mnemonics
	bits	
menu.thmb / mark.thmb {		
reserved	256	bslbf
Thumbnail()		
for(i=0; i <n1; i++)<="" td=""><td></td><td></td></n1;>		
padding_word	16	jqisq

menu.thmb と mark.thmb のシンタクス

[図22]

Thumbnail() {		
version number	8*4	char
length	32	uimsbf
if (length != 0) {		
tn blocks start address	32	pslbf
number of thumbnails	16	dsmin
tn block size	16	uimsbf
number of th blocks	16	uimsbf
reserved	16	Jajsq
for(i = 0; i < number of thumbnails; i++) {		
thumbnail index	16	uimsbf
thumbnail picture format	σ0	bslbf
reserved	8	fallsd
picture data size	32	uimsbf
start tn block number	16	uimsbf
x picture length	16	uimsbf
y picture length	16	uimsbf
reserved	16	uimsbf
stuffing_bytes	8*2*L1	bsibf
for(k = 0; k < number of tn blocks; k++) {		
tn_block	paxij	

Thumbnail のシンタクス

【図34】
display_aspect_ratio

display_aspect_ratio	Meaning	
0, 1	reserved for future use	
2	4:3 display aspect ratio	
3	16:9 display aspect ratio	
4-15	reserved for future use	

【図25】

【図35】

color__space

display_aspect_ratio	Meaning
0	BT 709
1	ITU-R Rec.601
2-15	reserved for future use

【図26】

Syntax		of Mnemonics
	bits	
menu.thmb / xxxxx.thmb {		
reserved	256	pslbf
Thumbnail()		
for(i=0; i <n1; i++)<="" td=""><td></td><td></td></n1;>		
padding_word	16	bslbf

menu.thmb と xxxxx.thmb のシンタクス

【図28】

Syntax	No. of	Mnemonics
	bits	
PlayList() {		
version number	8*4	pslbf
length	32	uimsbf
PlayList type	80	uimsbf
CPI type	1	bslbf
reserved	7	psibf
UIAppInfoPlayList()		
number of PlayItems // main path	16	uimsbf
number of SubPlayItems // sub path	16	uimsbf
)eslet		
reserved	16	pslbf
for (PlayItem_id=0; PlayItem_id <number_of_playitems;< td=""><td></td><td></td></number_of_playitems;<>		
Playtem // main nath		
if (<virtual playlist="">) {</virtual>		
if (CPI type==0 && Play⊥ist type==0) {	•	
for (i = 0; i < number of SubPlayItems; i++)		
SubPlayItem() // sub path		

PlayList のシンタクス

【図29】

Syntax	No. of bits	Mnemonics
UIAppInfoPlayList() {		
character_set	8	bslbf
name_length	8	uimsbf
PlayList_name	8*256	bslbf
reserved	8	bslbf
record_time_and_date	4*14	bslbf
reserved	8	bslbf
duration	4*6	bslbf
valid_period	4*8	bslbf
maker_id	16	uimsbf
maker_code	16	uimsbf
reserved	11	bslbf
playback_control_flag	1	bslbf
write_protect_flag	1	bslbf
is_played_flag	1	bslbf
archive	2	bslbf
ref_thumbnail_index	16	uimsbf
reserved_for_future_use	240	bslbf

UlAppInfoPlayList のシンタクス

【図33】

Syntax	No. of bits	Mnemonic
menu.tidx / mark.tidx {		
version_number	8*4	char
reserved_for_future_use	256	bslbf
length	32	uimsbf
if (length != 0) {		
number_of_thumbnails	16	uimsbf
tn_block_size	16	uimsbf
number_of_tn_blocks	16	uimsbf
for(i=0; i <number_of_thumbnails; i++)="" td="" {<=""><td></td><td></td></number_of_thumbnails;>		
thumbnail_index	16	uimsbf
ref_to_tn_block_id	16	uimsbf
picture_byte_size	32	uimsbf
horizontal_picture_size	16	uimsbf
vertical_picture_size	16	uimsbf
display_aspect_ratio	4	uimsbſ
color_space	4	uimsbf
reserved_for_word_align	8	bslbf
}		
}		-

サムネールのヘッダ情報ファイルのシンタクス

【図31】

【図36】

Syntax	No. of bits	Mnemonic
menu.tdat/mark.tdat {		
for(tn_block_id=0; tn_block_id <number_of_tn_blocks; tn_block_id++) {</number_of_tn_blocks; 		
tn_block	tn_block_s ize*1024* 8	

サムネールのピクチャデータファイルのシンタクス

【図32】

【図37】

【図38】

フロントページの続き

F ターム(参考) 5C052 AA02 AC08 CC11 DD10

5C053 FA14 FA20 FA23 GB06 GB09

GB38 HA30 KA01 KA08 KA24

KA26 LA06 LA07

5D044 AB05 AB07 BC04 CC06 DE22

DE38 DE53 EF05 FG18

5D110 AA17 AA19 AA27 AA29 DA01

DA06 DA11 DA20 DB03 DC05

DC15 FA08 FA09