

Data Communications and Networking Fourth Edition

Forouzan

Chapter 8 Switching

Partially Edited and Presented by Dr. Md. Abir Hossain

Switched Network

The mechanism for moving data between different computer networks and network segments is called switching.

The end-systems of a computer network are connected to switches, and switches to each other. All network switches perform the following tasks:

- Receive data at their input ports.
- Determine where the data needs to go.
- Move the data to the correct output port.
- Send the data out.

Types of switching elements

- Telephone switches
 - switch samples
- Datagram routers
 - switch datagrams
- ATM switches
 - switch ATM cells

Other switching element functions

- Participate in routing algorithms
 - to build routing tables
- Resolve contention for output trunks
 - scheduling
- Admission control
 - to guarantee resources to certain streams
- We'll discuss these later
- Here we focus on pure data movement

Taxonomy of Switched Network

comparison between circuit vs packet vs message

Classification

CT

Packet vs. circuit switches

 Data packets (in packet switched networks) have headers and samples (in circuit switched networks) don't have headers.

Connectionless vs. connection oriented

- connection oriented switches need a call setup
- setup is handled in control plane by switch controller
- connectionless switches deal with self-contained datagrams

	Connectionless	Connection-oriented
	(router)	(switching system)
Packet	Internet router	ATM switching system
switch		
Circuit		Telephone switching
switch		system

CIRCUIT-SWITCHED NETWORKS

- A circuit-switched network consists of a set of switches connected by physical links, in which each link is divided into n channels using FDM or TDM.
- A connection between two stations is a dedicated path made of one or more links. However, each connection uses only one dedicated channel on each link.
- In the traditional telephone network, switching at the physical layer uses the circuit-switching approach.

Fig. 1(8.3): A circuit-switched network

A circuit switch

- A switch that can handle N calls has N logical inputs and N logical outputs
 - N up to 200,000
- In practice, input trunks are multiplexed
 - example: DS3 trunk carries 672 simultaneous calls
- Multiplexed trunks carry frames = set of samples
- Goal: extract samples from frame, and depending on position in frame, switch to output
 - each incoming sample has to get to the right output line and the right slot in the output frame
 - demultiplex, switch, multiplex

Example of a circuit-switched network

Let us use a circuit-switched network to connect eight telephones in a small area. Communication is through 4-kHz voice channels.

We assume that each link uses FDM to connect a maximum of two voice channels. The bandwidth of each link is then 8 kHz.

Fig. 2 shows the situation. Telephone 1 is connected to telephone 7; 2 to 5; 3 to 8; and 4 to 6. Of course the situation may change when new connections are made. The switch controls the connections.

Fig. 2: Circuit-switched network (used in previous Example)

Fig. 2: Circuit-switched network connection setup

- ➤ The actual communication in a circuit-switched network requires three phases:
 - Connection setup,
 - Data transfer, and
 - Connection teardown.
- Connection setup means creating dedicated channels between the switches.
- After the establishment of the dedicated circuit (channels), the two parties can transfer data.
- When one of the parties needs to disconnect, a signal is sent to each switch to release the resources.

Fig. 3: Delay in a circuit-switched network

VVI

PACKET SWITCHED NETWORKS : DATAGRAM NETWORKS

In data communications, we need to send messages from one end system to another.

If the message is going to pass through a packetswitched network, it needs to be divided into packets of fixed or variable size.

The size of the packet is determined by the network and the governing protocol.

In a packet-switched network, there is no resource reservation; resources are allocated on demand.

Switching in the Internet is done by using the datagram approach to packet switching at the network layer.

Fig. 4: A datagram network with four switches (routers)

- Connectionless network
- Perform operation at network layer
- The efficiency of a datagram network is better than that of a circuit-switched network
- The Internet has chosen the datagram approach to switching at the network layer. It uses the universal addresses defined in the network layer to route packets

Routing table in a datagram network

A switch in a datagram network uses a routing table that is based on the destination address.

The destination address in the header of a packet in a datagram network remains the same during the entire journey of the packet.

Destination address	Output port
1232 4150 :	1 2 :
9130	3
	4

Fig. 5: Delay in a datagram network

The packet travels through two switches. There are three transmission times (3T), three propagation delays (slopes 3τ of the lines), and two waiting times (w1 + w2). We ignore the processing time in each switch. The total delay is

$$3T + 3T + w1 + w2$$

VIRTUAL-CIRCUIT NETWORKS

- A virtual-circuit network is a cross between a circuit-switched network and a datagram network. It has some characteristics of both.
- ➤ As in a circuit-switched network, there are setup and teardown phases in addition to the data transfer phase.
- Resources can be allocated during the setup phase, as in a circuit-switched network, or on demand, as in a datagram network.
- Switching at the data link layer in a switched WAN is normally implemented by using virtual-circuit techniques.

18

Fig. 6: Virtual-circuit identifier in a VCN

- Virtual circuit identifier(VCI) used for data transfer and act as global address.
- It is used by a frame between two switches.
- ➤ When a frame arrives at a switch, it has a VCI; when it leaves, it has a different VCI.

The overall operation takes three phases, Setup, data transfer, teardown

- > Setup Phase -In the setup phase, a switch creates an entry for a virtual circuit. Two steps are required: the setup request and the acknowledgment.
 - > Setup Request A setup request frame is sent from the source to the destination. See Figure 8.13 I book.
 - ➤ Acknowledgment A special frame, called the acknowledgment frame, completes the entries in the switching tables.

Setup Request Phase

- A setup request frame is sent from source A to destination B.
- Source A sends a setup frame to switch 1.
- Switch 1 receives the setup request frame and it knows that a frame is going from A to B via port 3.

Fig. : Setup Request in a virtual-circuit network

- The incoming port number, VCI, and outgoing port number is known but outgoing VCI is unknown and it will fill up in the acknowledgement step.
- The switch 1,2, and 3 receives the setup request frame and finally destination B received the setup frame. If B ready to receive the frame it assigns a VCI to the incoming frames that comes from A, and it is 77.
- This VCI lets the destination know that the frames comes from A.

Acknowledgement Phase

- A special frame called the acknowledgement frame completes the entries in the switching tables.
- The destination B sends an acknowledgement to switch 3.
- The acknowledgement carries the global source and destination address to complete the table entry.

Fig.: Setup Acknowledgement phase in a virtual-circuit network

- The frame also carries VCI 77, chosen by the destination as the incoming VCI for frames from A.
- The switch 3,2, and 1 receives the acknowledgement frame and finally source A received the acknowledgement frame.
- The source A then uses this outgoing VCI to transmit data frames to the destination B.

Data Transfer Phase

- To Transfer a frame from S-> D, all switches need to have a table of virtual circuit.
- In table of figure, a frame arriving at port 1 with VCI 14 will forwarded to port 3 with VCI 22 and
- A frame arriving at port 1 with VCI 77 will forwarded to port 2 with VCI 41.
- Moreover, the next slide figure represents the frame transmission from source A to destination B where VCI changes during the trip.

Fig. : Switch and tables in a virtualcircuit network

Data Transfer Phase(Con...

Fig. : Source-to-destination data transfer in a VCN

In virtual-circuit switching, all packets belonging to the same source and destination travel the same path; but the packets may arrive at the destination with different delays if resource allocation is on demand.

Teardown Phase

- In this phase, source A after sending all frames to B, sends a special frame called a *teardown request*.
- Destination B responds with a teardown confirmation frame.
- All switches delete the corresponding entry from their tables.

Fig. 9: Delay in a virtual-circuit network

The packet is traveling through two switches (routers). There are three transmission times (3T), three propagation times (3τ) , data transfer depicted by the sloping lines, a setup delay (which includes transmission and propagation in two directions), and a teardown delay (which includes transmission and propagation in one direction). We ignore the processing time in each switch. The total delay time is

Repeaters, Bridges, Routers, & Gateways

- Repeaters: at physical level
- Bridges: at datalink level (based on MAC addresses) (L2)
 - discover attached stations by listening
- Routers: at network level (L3)
 - participate in routing protocols
- Application level gateways: at application level (L7)
 - treat entire network as a single hop
- Gain functionality at the expense of forwarding speed
 - for best performance, push functionality as low as possible

STRUCTURE OF A SWITCH

- We use switches in circuit-switched and packetswitched networks. In this section, we discuss the structures of the switches used in each type of network.
- In space-division switching, the paths in the circuit are separated from one another spatially.
- This technology was originally designed for use in analog networks but is used currently in both analog and digital networks

Fig. 10: Crossbar switch(with three inputs and four outputs)

Crossbar switch

- Simplest possible space-division switch
- Connects n inputs to m outputs in a grid, using electronic microswitches at each crosspoint.
- Every input port has a connection with each output port.
- Crosspoints can be turned on or off
- To connect n inputs to m outputs using a crossbar switch requires n × m crosspoints.
- For multiplexed inputs, need a switching schedule (randomized scheduling algorithm)
- In practice, fewer than 25 percent of the crosspoints are in use at any given time. The rest are idle.

Multistage crossbar

- In a crossbar during each switching time only one crosspoint per row or column is active
- Can save crosspoints if a crosspoint can attach to more than one input line
- This is done in a multistage crossbar
- Need to rearrange connections every switching time

Multistage switch

- Usually consider three stage as multistage switch.
- From NxN crossbar switch, if we allow multiple paths inside the switch, that can decrease the number of crosspoint.
- Divide the N input lines into n groups.
- For each group, use one crossbar of size nxk, where k is the number of crossbar in the middle stage.
- The first stage has N/n crossbar of nxk crosspoint.
- The middle stage is k crossbar of (N/n)x(N/n) crosspoints and
- Similarly from the first stage, the third stage has N/n crossbar of kxn crosspoint.

Multistage switch

So the total crosspoints can be calculated as:

$$\frac{N}{n}(nxk) + k\left(\frac{N}{n}x\frac{N}{n}\right) + \frac{N}{n}(kxn)$$

In a three-stage switch, the total number of crosspoints is $2kN + k(N/n)^2$, which is much smaller than the number of crosspoints in a single-stage switch (N^2).

Time-space-Time switch

- The advantage of time-division switching is that it needs no crosspoints but added delay due to processing each connection.
- Space-division switching is instantaneous but the number of crosspoints required to make the spacedivision switching acceptable in terms of blocking.
- To combine both, physically(number of crosspoint) and temporally(amount of delay), multistage switch can be designed as time-space-time (TST) switch.

Figure Time-space-time (TST) switch

Time-space-time (TST) switching

- A simple Time-space-time switching that consists of two time stages and one space stages.
- It has 12 inputs and 12 outputs.
- The time-division switch divides the inputs into three group of four input each and directs them to three time slot interchanges.
- This results the one-third of the average delay to handle all 12 inputs.

