Wydział	Imię i nazwisko	Rok	Grupa
WIMilP	Mateusz Witkowski	II	4
Temat:			Prowadzący
Kwadratury Gaussa 2D			dr hab. inż. Hojny Marcin, prof. AGH
Data	Data oddania	Data	OCENA
ćwiczenia	23.04.2020	zaliczenia	
16.04.2020			

1. Cel ćwiczenia

Celem ćwiczenia było zapoznanie się oraz implementacja kwadratury Gaussa 2D na podstawie załączonej instrukcji oraz przykładowego programu.

2. Wprowadzenie teoretyczne

Kwadratura Gaussa 2D jest popularną kwadraturą złożoną do obliczania pola powierzchni figury określonej w dwóch kierunkach. Metody złożone charakteryzują się zdecydowanie lepszą dokładnością w porównaniu do podstawowych metod przybliżonego obliczania całek. Polegają na podzieleniu przedziału [a, b] na pewną liczbę podprzedziałów, zastosowaniu metody w podprzedziałach a następnie zsumowaniu wyników.

Kwadratura Gaussa 2D polega na przekształceniu układu współrzędnych w taki sposób, by element kwadratowy został odwzorowany przez kwadrat o wymiarach 2x2. Transformacja układu współrzędnych określona jest równaniem:

- $\{x_n\} = \{x_1, x_2, x_3, x_4\}^T$
- $\{y_n\} = \{y_1, y_2, y_3, y_4\}^T$
- $\{N\} = \frac{1}{4}\{(1-\xi)(1-\eta), (1+\xi)(1-\eta), (1+\xi)(1+\eta), (1-\xi)(1+\eta)\}^T$

W kwadraturze Gaussa 2D określony jest przedział [a, b], punkty całkowania oraz ich wagi:

- [a, b] = [-1, 1]
- $w_0 = w_1 = 1$
- $\xi_0 = \eta_0 = 0,5773502692$
- $\xi_1 = \eta_1 = -0.5773502692$

Ważnym elementem jest wyliczenie pochodnych cząstkowych ξ , η :

Gdzie: [J] – jest to macierz Jacobiego, z której wyznacznik $[J_0]$ jest Jakobianem transformacji układu współrzędnych, obliczanym za pomocą wzoru:

$$\det |J| = \frac{\partial x}{\partial \xi} \frac{\partial y}{\partial \eta} - \frac{\partial y}{\partial \xi} \frac{\partial x}{\partial \eta}$$

Pochodne to suma pochodnych cząstkowych czterech wierzchołków przemnożona przez wartość współrzędnej x lub y, dana wzorem:

$$\frac{\partial x}{\partial \xi} = \sum_{i=1}^{4} \frac{\partial N_i}{\partial \xi} x_i \qquad \frac{\partial y}{\partial \xi} = \sum_{i=1}^{4} \frac{\partial N_i}{\partial \xi} y_i$$

$$\frac{\partial x}{\partial \eta} = \sum_{i=1}^{4} \frac{\partial N_i}{\partial \eta} x_i \qquad \frac{\partial y}{\partial \eta} = \sum_{i=1}^{4} \frac{\partial N_i}{\partial \eta} y_i$$

Dla każdego z wierzchołków od 1 do 4 obliczamy N:

•
$$N_1(\xi, \eta) = 0.25(1 - \xi)(1 - \eta)$$

•
$$N_2(\xi, \eta) = 0.25(1 + \xi)(1 - \eta)$$

•
$$N_3(\xi, \eta) = 0.25(1 + \xi)(1 + \eta)$$

•
$$N_4(\xi, \eta) = 0.25(1 - \xi)(1 + \eta)$$

Uwzględniając wszystkie powyższe kroki, całkowanie funkcji w układzie ξ , η , za pomocą metody Gaussa można zapisać wzorem:

$$\int \int f(x,y)dxdy = \int_{-1}^{1} \int_{-1}^{1} f(\xi,\eta)J_0 d\eta d\xi = \sum_{i=0}^{n} \sum_{j=0}^{n} w_i w_j f(\xi_i, \eta_j)J_0$$

Gdzie:

- $w_0 = w_1 = 1$
- $\xi_0 = \eta_0 = 0.5773502692$
- $\xi_1 = \eta_1 = -0.5773502692$

3. Kod programu

Zdefiniowano globalnie tablice statyczne przechowujące punkty całkowania oraz ich wagi, dodatkowo utworzono wektor oraz zmienna przechowującą nazwę pliku, potrzebne do pobrania danych dotyczących wierzchołków w późniejszej części programu.

```
vector < double > dane;
string nazwaPliku = "punkty.txt";
double waga[2] = { 1.0,1.0 };
double punkt[2] = { -0.5773502692, 0.5773502692 };
```

Rysunek 1. Deklaracja w przestrzeni globalnej

Zdefiniowano funkcje pobierającą dane z podanego pliku txt oraz uzupełniającą przekazany wektor.

Rysunek 2. Funkcja pobierająca dane z pliku

W funkcji main następuje sprawdzenie poprawności pliku oraz rozdzielenie pobrany danych o punktach na odpowiednie tablice – X i Y.

Rysunek 3. Sprawdzenie poprawności, podział danych

Utworzono plik txt i wypełniono go danymi.

```
punkty.txt + × Źródło.cpp*

1 0, 0,
2 5, 0,
3 5, 5,
4 0, 4
```

Rysunek 4. Plik z wierzchołkami czworokąta

Definicja funkcji liczącej powierzchnię przyjmuje dwa argumenty – tablice wierzchołków, wewnątrz zadeklarowano niezbędne wielowymiarowe tablice potrzebne do dalszych obliczeń, przechowujące pochodne względem ξ i η oraz wyznacznik z macierzy Jacobiego.

Rysunek 5. Deklaracja tablic

```
for (size_t j = 0; j < 2; j++)
{
    for (size_t i = 0; i < 2; i++)
    {
        Poch_KSI[j][0] = -0.25 * (1.0 - punkt[j]);
        Poch_KSI[j][1] = 0.25 * (1.0 - punkt[j]);
        Poch_KSI[j][2] = 0.25 * (1.0 + punkt[j]);
        Poch_KSI[j][3] = -0.25 * (1.0 + punkt[j]);

        Poch_NI[i][0] = -0.25 * (1.0 - punkt[i]);
        Poch_NI[i][1] = -0.25 * (1.0 + punkt[i]);
        Poch_NI[i][2] = 0.25 * (1.0 + punkt[i]);
        Poch_NI[i][3] = 0.25 * (1.0 - punkt[i]);
    }
}</pre>
```

Rysunek 6. Wyliczenie pochodnych

Wyliczamy wartości iloczynów sum pochodnych cząstkowych i wartości opowiadających współrzędnych x bądź y. Następnie wyznaczamy wartość macierzy Jacobiego.

```
for (size_t j = 0; j < 2; j++)
{
    for (size_t i = 0; i < 2; i++)
    {
        double dx_dKSI = Poch_KSI[j][0] * X[0] + Poch_KSI[j][1] * X[1] + Poch_KSI[j][2] * X[2] + Poch_KSI[j][3] * X[3];
        double dy_dKSI = Poch_KSI[j][0] * Y[0] + Poch_KSI[j][1] * Y[1] + Poch_KSI[j][2] * Y[2] + Poch_KSI[j][3] * Y[3];

        double dx_dNI = Poch_NI[i][0] * X[0] + Poch_NI[i][1] * X[1] + Poch_NI[i][2] * X[2] + Poch_NI[i][3] * X[3];
        double dy_dNI = Poch_NI[i][0] * Y[0] + Poch_NI[i][1] * Y[1] + Poch_NI[i][2] * Y[2] + Poch_NI[i][3] * Y[3];

        Fun_DETJ[i][j] = dx_dKSI * dy_dNI - dx_dNI * dy_dKSI;
}
</pre>
```

Rysunek 7. Wyliczenie wartości macierzy Jacobiego

Finalnie wyliczono wartość powierzchni zadanego czworokąta, poprzez przemnożenie wartości bezwzględnej z obliczonego wyznacznika Jacobiego i odpowiednich wag. Zwrócono wynik i wypisano go w main'nie na konsolę.

```
double Powierzchnia = 0.0;
for (size_t j = 0; j < 2; j++)
{
    for (size_t i = 0; i < 2; i++)
    {
        Powierzchnia = Powierzchnia + fabs(Fun_DETJ[i][j]) * waga[i] * waga[j];
    }
}
return Powierzchnia;
}</pre>
```

Rysunek 8. Obliczenie powierzchni

Cały kod programu:

```
∃#include <iostream>
 #include <vector>
 #include <fstream>
 #include <sstream>
 #include <string>
 using namespace std;
 vector < double > dane;
 string nazwaPliku = "punkty.txt";
 double waga[2] = { 1.0,1.0 };
 double punkt[2] = { -0.5773502692, 0.5773502692 };
 //Funkcja pobierjica dane z pliku tekstowego i zapisujice je do wektora.
⊡int pobranie z pliku(vector ∢double>* data, string fileName) {
      string linia;
      fstream plik;
      plik.open(fileName, ios::in);
      if (plik.good() == true)
                                              //sprawdzenie poprawnosci pliku
          while (!plik.eof())
               getline(plik, linia, ',');
                                                //zapisuje s³owa odzielane przecinkami
               double d = atof(linia.c_str()); //konwersja stringa na double
               data->push_back(d);
                                //zamkniêcie pliku
          plik.close();
      if (data->size() % 2 == 1) { //zabezpiecznie w razie le wype³nionego pliku tekstowego
          cout << "bledne dane w pliku" << endl;</pre>
          return -1;
      return data->size();
                               //funkcja zwraca wielkosc wektora potrzebna do stworzenia tablic X, Y
double Gauss2D(double * X, double * Y) {
    double Poch_KSI[2][4]; //Pochodne wzgledem ksi
    double Poch_NI[2][4]; //pochodne wzgledem ni
double Fun_DETJ[2][2]; //Wyznacznik macierzy Jacobiego
    for (size_t j = 0; j < 2; j++)
        for (size_t i = 0; i < 2; i++)
           Poch_KSI[j][0] = -0.25 * (1.0 - punkt[j]);
           Poch_KSI[j][1] = 0.25 * (1.0 - punkt[j]);
           Poch_KSI[j][2] = 0.25 * (1.0 + punkt[j]);
           Poch_KSI[j][3] = -0.25 * (1.0 + punkt[j]);
           Poch_NI[i][0] = -0.25 * (1.0 - punkt[i]);
           Poch_NI[i][1] = -0.25 * (1.0 + punkt[i]);
           Poch_NI[i][2] = 0.25 * (1.0 + punkt[i]);
           Poch_NI[i][3] = 0.25 * (1.0 - punkt[i]);
    for (size_t j = 0; j < 2; j++)
        for (size_t i = 0; i < 2; i++)
           double\ dx_dKSI = Poch_KSI[j][0]\ *\ X[0]\ +\ Poch_KSI[j][1]\ *\ X[1]\ +\ Poch_KSI[j][2]\ *\ X[2]\ +\ Poch_KSI[j][3]\ *\ X[3];
           double \ dx\_dNI = Poch\_NI[i][0] \ * \ X[0] \ + \ Poch\_NI[i][1] \ * \ X[1] \ + \ Poch\_NI[i][2] \ * \ X[2] \ + \ Poch\_NI[i][3] \ * \ X[3];
           double dy_dNI = Poch_NI[i][0] * Y[0] + Poch_NI[i][1] * Y[1] + Poch_NI[i][2] * Y[2] + Poch_NI[i][3] * Y[3];
           Fun_DETJ[i][j] = dx_dKSI * dy_dNI - dx_dNI * dy_dKSI;
```

```
double Powierzchnia = 0.0;
    for (size_t j = 0; j < 2; j++)
           Powierzchnia = Powierzchnia + fabs(Fun_DETJ[i][j]) * waga[i] * waga[j];
    return Powierzchnia;
int main()
    int wielkosc_wektora = pobranie_z_pliku(&dane, nazwaPliku);
    if (wielkosc_wektora == -1) //program zostanie przerwany jesli plik tekstowy byl bledny
    int liczba_punktow = wielkosc_wektora / 2; //wielkosc wektora podzielona przez 2 powinna nam daĉ ilo punktów zapisanych w pliku
    for (size_t i = 0; i < dane.size(); i++) //wypełnienie tablic</pre>
        if (i % 2 == 0) {
           X[j] = dane[i];
        if (i % 2 == 1) {
           Y[j] = dane[i];
           j++;
    cout << "Powierzchnia wynosi = " << Gauss2D(X,Y) << endl;</pre>
    system("Pause");
    return 0;
```

4. Testy

W celu zweryfikowania wyników z programu porównano je z tymi, zwróconymi przez program załączony w instrukcji do ćwiczenia.

1. Przykład

Tabela 1. Dane z przykładu .

Х	0	5	5	0
У	0	0	5	4

Załączony program (Fortran):

Rysunek 9. Wynik działania programu

```
D:\STUDIA\IV_Semestr\Metody\zajecia7\Kwadratury_Gaussa\Debug\Kwadratury_Gaussa.exe

Powierzchnia wynosi = 22.5

Press any key to continue . . .
```

Rysunek 10. Wynik działania programu

2. Przykład

Tabela 2. Dane z przykładu .

Х	0	-2	0	2
У	0	3	6	-3

Załączony program (Fortran):

```
D:\STUDIA\IV_Semestr\Metody\zajecia7\KwadraturyGaussa2D\Gauss2D.exe

POWIERZCHNIA WYNOSI= 12.000000000000

Dowolny znak i ENTER - wyjscie z programu
```

Rysunek 11. Wynik działania programu

Implementacja C++

```
D:\STUDIA\IV_Semestr\Metody\zajecia7\Kwadratury_Gaussa\Debug\Kwadratury_Gaussa.exe

Powierzchnia wynosi = 12

Press any key to continue . . .
```

Rysunek 12. Wynik działania programu

3. Przykład

Tabela 3. Dane z przykładu .

Х	0.5	-0.5	0	1
У	0	1	4	-3

Załączony program (Fortran):

Rysunek 13. Wynik działania programu

```
D:\STUDIA\IV_Semestr\Metody\zajecia7\Kwadratury_Gaussa\Debug\Kwadratury_Gaussa.exe

Powierzchnia wynosi = 2.29904

Press any key to continue . . .
```

Rysunek 14. Wynik działania programu

5. Wnioski

Kwadratura Gaussa jest niezwykle dokładna ze względu na specjalnie dobrane węzły i wagi, dzięki czemu metoda tak osiąga najwyższy możliwy stopień dokładności. Opiera się ona o aproksymację funkcji całkowanej wielomianem interpolacyjnym. Wykonane powyżej testy dowodzą, że wyniki programu są poprawne oraz bardzo precyzyjne.