Множественное выравнивание кодирующих последовательностей с учётом сдвигов рамки считывания

Студент: Батусов П. В.

Руководитель: Страшнов П. В.

Поиск гомологий в биологических последовательностях

Задача выравнивания

ДНК предка: ...AAACTGATGCAACGTGA...

ДНК потомка: ...AATCTTTGATACCTGA...

Выравнивание – общепринятый способ отражения "родства" двух последовательностей нуклеотидов или аминокислотных остатков

Seq1: ...AAAC--TGATGCAACGTGA...

Seq2: ...AATCTTTGAT---ACCTGA...

Выравнивание

Классические методы поиска гомологий

Алгоритм Смита-Ватермана

- Строит локальное выравнивание двух последовательностей
- $O(len(S_1) \cdot len(S_2))$

Алгоритм Нидлмана-Вунша

- Строит глобальное выравнивание двух последовательностей
- $O(len(S_1) \cdot len(S_2))$

Алгоритм Нидлмана-Вунша

- S(a,b) похожесть символов а и b
- Линейный штраф за разрыв d

Базис:

- $F_{0,i} = d \cdot j$
- $F_{i,0} = d \cdot i$

Итерационная формула:

$$F_{i,j} = max \begin{cases} F_{i-1,j-1} + S_{A_i,B_j} \\ F_{i-1,j} + d \\ F_{i,j-1} + d \end{cases}$$

A
$$\Gamma$$
T $\mathbf{\Pi}$ A10 -1 -4 -3 Γ -1 7 -3 -5 \mathbf{T} -4 -3 8 0 $\mathbf{\Pi}$ -3 -5 0 9

Алгоритм Смита-Ватермана

$$F_{i,j} = max \begin{cases} F_{i-1,j-1} + S_{A_i,B_j} \\ F_{i-1,j} + D_{A_i} \\ F_{i,j-1} + I_{B_j} \\ 0 \end{cases}$$

Множественное выравнивание Выравнивание в кубе

Сложность алгоритма для n-мерного случая:

$$O((2^n - 1) \prod_{i=1}^n len(A_i))$$

Выравнивание выравниваний Алгоритм Clustal

$$f(f(f(...f(f(A_1,A_2),A_3)...),A_{n-1}),A_n)$$

Открытые рамки считывания

Трёхступенчатый подход

Идея алгоритма

- Трансляция исходной последовательности нуклеотидов по всем возможным рамкам считывания
- Выравнивание последовательности аминокислот «классическими» алгоритмами
- Трансляция полученного белка обратно в последовательность нуклеотидов

Проблемы

- Алгоритм не учитывает возможные изменения рамки считывания
- Невозможность расширения до задачи множественного выравнивания

Двухуровневое выравнивание

Идея алгоритма

- штраф за выравнивание является сочетанием двух штрафов: на аминокислотном и нуклеотидном уровнях
- инсерции допустимы только на аминокислотном уровне (запрет на сдвиг рамки считывания)

Проблемы

Высокая вычислительная сложность

MACSE

Алгоритм основан на идее двухуровневого выравнивания, но имеет меньшую вычислительную сложность и позволяет строить множественные выравнивания, с учетом открытых рамок считывания.

МАСЅЕ производит выравнивание выравниваний, выбирая порядок через дерево-подсказку, как и алгоритм Clustal.

