Contents

1	No	Integer Solutions for $x^3 = y^2 + k$	1
	1.1	x is Odd	1
		(x,y) are Coprime	
	1.3	$y + \sqrt{-k}$ and $y - \sqrt{-k}$ are in the Same Ideal	1
	1.4	Both Ideals are Principal	1
	1.5	Result	2

1 No Integer Solutions for $x^3 = y^2 + k$

Suppose $k = 1, 2 \pmod{4}$, that k is squarefree, and k is not of the form $3t^2 \pm 1$ for some $t \in \mathbb{Z}$. Also assume $3 \nmid \operatorname{cl}(\mathbb{Q}(\sqrt{-k}))$.

Then $x^3 = y^2 + k$ has no integer solution.

1.1 x is Odd

We start by brute-forcing all possible values mod 4 for x, y.

```
sage: for x in range(4):
           for y in range(4):
. . . . :
                if (x^3 - (y^2 + 1)) \% 4 == 0:
. . . . :
                     print(x, y)
. . . . :
. . . . :
1 0
1 2
sage: for x in range(4):
           for y in range(4):
                if (x^3 - (y^2 + 2)) \% 4 == 0:
. . . . :
                     print(x, y)
. . . . :
. . . . :
3 1
3 3
```

So in both cases x is odd.

1.2 (x,y) are Coprime

Let p|(x,y) then $p|x^3 - y^2$ so p|k.

We also see $p^3|x^3 \Rightarrow p^2|x^3$ but $p^2 \nmid k$ since k is squarefree, so $p^2 \nmid y^2 + k$.

Hence (x, y) are coprime.

1.3 $y + \sqrt{-k}$ and $y - \sqrt{-k}$ are in the Same Ideal

$$x^3 = (y+\sqrt{-k})(y-\sqrt{-k})$$

Suppose there is a prime ideal $\mathfrak p$ such that $(y\pm\sqrt{-k})\in\mathfrak p$ which means they are both coprime. This means $x^3\in\mathfrak p\Rightarrow x\in\mathfrak p$, also by summing the ideals we see also $2y\in\mathfrak p$. Since x is odd, 2 is not in $\mathfrak p$ otherwise it would be the whole ring. But $\mathfrak p$ is prime $\Rightarrow y\in\mathfrak p$. But both x,y are coprime so this cannot be true.

1.4 Both Ideals are Principal

Next we see both ideals are principal.

$$\langle y+\sqrt{-k}\rangle=\mathfrak{a}^3, \qquad \langle y-\sqrt{-k}\rangle=\mathfrak{b}^3$$

We see $[\mathfrak{a}^3] = [1]$ in the class group since it is principal. Therefore $[\mathfrak{a}]^3 = [1]$ means that $3|\operatorname{ord}([\mathfrak{a}])$, but by lagrange's theorem $\operatorname{ord}([\mathfrak{a}])|\operatorname{cl}(\mathbb{Q}(\sqrt{-k}))$ which means also $3|\operatorname{cl}(\mathbb{Q}(\sqrt{-k}))$. But we stated this is not true in the beginning so we conclude \mathfrak{a} and likewise \mathfrak{b} are both principal.

1.5 Result

Lastly we see our result.

 $y + \sqrt{-k} = u\alpha^3$ for some unit u. Note $k \equiv 1, 2 \pmod{4}$ means $-k \equiv 3, 2 \pmod{4}$. For all -k, the units are $\{\pm 1\}$ except -k = -1 which includes $\{\pm i\}$. But k = 1 is of the form $3t^2 + 1$ so we ignore that value.

In all cases, these units have integer cube roots so $y + \sqrt{-k} = \alpha^3$ for some $\alpha = a + b\sqrt{-k}$. Then

$$y + \sqrt{-k} = (a + b\sqrt{-5})^3$$

sage: var("a b k")
(a, b, k)
sage: ((a + b*sqrt(-k))^3).expand()
b^3*(-k)^(3/2) - 3*a*b^2*k + 3*a^2*b*sqrt(-k) + a^3

By comparing coefficients, we see

$$\begin{split} \sqrt{-k} &= b^3 \sqrt{-k}^3 + 3a^2 b \sqrt{-k} \\ &= (b^3 \sqrt{-k}^2 + 3a^2 b) \sqrt{-k} \\ &= (-kb^3 + 3a^2 b) \sqrt{-k} \\ &\Rightarrow 1 = b(3a^2 - kb^2) \end{split}$$

So $b = \pm 1$ and so $3a^2 - kb^2 = 3a^2 - k = \pm 1$, which means

$$k = 3a^2 \mp 1$$

which has no solutions as stated at the beginning.