Regression costs for decision trees

John Alan McDonald

2017-12-22

The purpose of this document is work thru an alternative to L_2 cost that is a bit more efficient to compute, and gives the same results when choosing split predicates in decision tree growing.

I Greedy decision trees

A general binary decision tree consists of

- internal *split* nodes, each containing a predicate that determines whether a record goes to the left or right child of that node.
- terminal *leaf* nodes, each containing a leaf model function whose value is the tree's prediction for any record that ends up in that node.

Greedy split optimization — choose the best out of all feasible splits, and repeat on the resulting child nodes until there are no feasible splits — is the most common way of growing decision trees. It depends on several things:

- 1. A cost function c used to define 'best'.
- 2. An enumeration of splits to consider. Pure greedy splitting considers all 'feasible' splits on all attributes.
 - (a) For categorical attributes, that, in general, means considering every partition of the categories into 2 subsets. However, for some important cost functions (eg Gini, L_2), it can be shown that the optimal split can be found by sorting the categories by the corresponding score function (eg the response mean for L_2 cost), and then considering only splits by score.
 - (b) For numerical attributes, the most general split would come from treating the distinct values like the categories of a categorical variable. However, no one does that, mostly because there are usually too many distinct values. Instead, only splits by \leq vs > one of the distinct values are considered.
- 3. A feasibility test that determines whether a given split on a given attribute is allowed. The most common case here is to require both children of the split contain some minimum number of training records.

2 Cost functions for L_2 numerical regression

Let $\mathcal{T} = \{(y, \mathbf{x})\}$ be the training data in the node to be split. It is a set of pairs of predictor record \mathbf{x} and ground truth response y, where $y \in \mathbb{R}$ for numerical regression. We are considering splits on some particular predictor field x_k , which might be numerical or categorical.

The cost function for L_2 regression is the sum of squared deviations from the mean:

$$L_2\left(\mathcal{T}\right) = \sum_{y \in \mathcal{T}} (y - \bar{y}_{\mathcal{T}})^2$$
, where $\bar{y}_{\mathcal{T}} = \frac{1}{\#\mathcal{T}} \sum_{y \in \mathcal{T}} y$.

Note that computing this *accurately*, in an online fashion, for moderate $\#\mathcal{T}$, the number of records in \mathcal{T} , allowing for the updating/downdating needed for fast split optimization, requires some care.

However, a little bit of algebra will let us use a simpler alternative to get the same splits.

Draft of 2017-12-22

Any split partitions the training y-values $\mathcal{T} = \{y\}$ into left and right subsets: $\mathcal{T} = \mathcal{L} \uplus \mathcal{R}$. The split cost is:

$$c(\mathcal{L}, \mathcal{R}) = L_{2}(\mathcal{L}) + L_{2}(\mathcal{R})$$

$$= \sum_{y \in \mathcal{L}} (y - \bar{y}_{\mathcal{L}})^{2} + \sum_{y \in \mathcal{R}} (y - \bar{y}_{\mathcal{R}})^{2}$$

$$= \sum_{y \in \mathcal{L}} \left[y^{2} - 2\bar{y}_{\mathcal{L}}y + \bar{y}_{\mathcal{L}}^{2} \right] + \sum_{y \in \mathcal{R}} \left[y^{2} - 2\bar{y}_{\mathcal{R}}y + \bar{y}_{\mathcal{R}}^{2} \right]$$

$$= \sum_{\mathcal{L} \mapsto \mathcal{R}} y^{2} - \frac{\left(\sum_{\mathcal{L}} y\right)^{2}}{\#\mathcal{L}} - \frac{\left(\sum_{\mathcal{R}} y\right)^{2}}{\#\mathcal{R}}$$

Since $\sum_{\mathcal{L} \uplus \mathcal{R}} y^2$ doesn't depend on the split, minimizing $c(\mathcal{L}, \mathcal{R})$ is equivalent to minimizing $-\left[\frac{\left(\sum_{\mathcal{L}} y\right)^2}{\#\mathcal{L}} + \frac{\left(\sum_{\mathcal{R}} y\right)^2}{\#\mathcal{R}}\right]$, so we can use $\frac{-\left(\sum_{\mathcal{T}} y\right)^2}{\#\mathcal{T}}$ as our cost function in split optimization.

3 Cost functions for L_2 vector-valued regression

Let $\mathcal{T} = \{(\mathbf{y}, \mathbf{x})\}$ be the training data in the node to be split. Here the ground truth response \mathbf{y} is a vector, $\mathbf{y} \in \mathbb{R}^m$, rather than a single number.

The cost function for L_2 vector-valued regression is the sum of squared L_2 distances from the mean vector:

$$L_{2}(\mathcal{T}) = \sum_{y \in \mathcal{T}} \|\mathbf{y} - \bar{\mathbf{y}}_{\mathcal{T}}\|_{2}^{2}$$
$$= \sum_{y \in \mathcal{T}} \sum_{i=0}^{m-1} (y_{i} - \bar{y}_{i\mathcal{T}})^{2}$$

Following the same reasoning as in section ??, we get for a simpler cost:

$$c\left(\mathcal{L}, \mathcal{R}\right) = -\left[\frac{\sum_{i=0}^{m-1} \left(\sum_{\mathcal{L}} y_i\right)^2}{\#\mathcal{L}} + \frac{\sum_{i=0}^{m-1} \left(\sum_{\mathcal{R}} y_i\right)^2}{\#\mathcal{R}}\right]$$

2 Draft of 2017-12-22