We would like to quadratise

$$f = xb_1b_2b_3 + yb_2b_3b_4 + zb_3b_4b_1 + wb_4b_1b_2 + kb_1b_2b_3b_4.$$

Also assume $k \ge 0$ for now and write $\mathbf{b} = b_1 b_2 b_3 b_4$.

Lemma 0.1

If $x \le -k$ and $-\frac{k}{2} \le y \le z \le 0 \le w$, then $g = b_a(x(b_1 - b_2 - b_3) + y(-b_2 - b_3 + b_4) + z(1 - b_1 + b_3 - b_4) + w(1 - b_1 + b_2 - b_4) + k(1 - b_1 - b_4) + x(-b_1 + b_1b_2 + b_1b_3) + y(-b_4 + b_2b_4 + b_3b_4) + zb_1b_4 + wb_1b_4 + kb_1b_4$ is a quadratisation.

Proof. If $\mathbf{b} = 0000$, then $g = b_a(k + w + z)$. Since $w \ge 0$ and $k + z \ge 0$, the minimiser is $b_a^* = 0$, so min g = 0 = f.

If b = 0001, then $g = b_a y - y$. Since $y \le 0$, $b_a^* = 1$, so min g = 0 = f.

If b = 0010, then $g = b_a(k + w - x - y + 2z)$. Since $k + 2z \ge 0$ and $w \ge 0$ and $-x \ge 0$ and $-y \ge 0$, $b_a^* = 0$, so min g = 0 = f.

If b = 0011, then $g = b_a(z - x)$. Since $z \ge x$, $b_a^* = 0$, so min g = 0 = f.

If b = 0100, then $g = b_a(k + 2w - x - y + z)$. Since $k + 2z \ge 0$ and $w \ge 0$ and $-x \ge 0$ and $-y \ge 0$, $b_a^* = 0$, so min g = 0 = f.

If b = 0101, then $g = b_a(w - x)$. Since $w \ge x$, $b_a^* = 0$, so min g = 0 = f.

If $\mathbf{b} = 0110$, then $g = b_a(k + 2w - 2x - 2y + 2z)$. Since $k + 2z \ge 0$ and $w \ge 0$ and $-x \ge 0$ and $-y \ge 0$, $b_a^* = 0$, so min g = 0 = f.

If b = 0111, then $g = y + b_a(w - 2x - y + z)$. Since $w \ge 0$ and $z - y \ge 0$ and $-x \ge 0$, $b_a^* = 0$, so min g = y = f.

If b = 1000, then $g = b_a x - x$. Since $x \le 0$, $b_a^* = 1$, so min g = 0 = f.

If b = 1001, then $g = k + w - x - y + z + b_a(-k - w + x + y - z)$. Since $-k \le 0$ and $-w \le 0$ and $y \le z$ and $-x \le 0$, $b_a^* = 1$, so min g = 0 = f.

If b = 1010, then $g = b_a(z - y)$. Since $z \ge y$, $b_a^* = 0$, so min g = 0 = f.

If b = 1011, then $g = k + w + z + b_a(-k - w)$. Since $-k \le 0$ and $-w \le 0$, $b_a^* = 1$, so $\min g = z = f$.

If b = 1100, then $g = b_a(w - y)$. Since $w \ge y$, $b_a^* = 0$, so min g = 0 = f.

If b = 1101, then $g = k + w + z - b_a(k+z)$. Since $-(k+z) \le 0$, $b_a^* = 1$, so min g = w = f.

If b = 1110, then $g = x + b_a(w - x - 2y + z)$. Since $w + z \ge 0$ and $-x \ge 0$ and $-y \ge 0$, $b_a^* = 0$, so min g = x = f.

If $\mathbf{b} = 1111$, then $g = k + w + x + y + z - b_a(k + x + y)$. Since $-(k + x) \ge 0$ and $-y \ge 0$, $b_a^* = 0$, so $\min g = k + w + x + y + z = f$.

Lemma 0.2

If $x \le -k$ and $-k/2 \le y \le z \le w \le 0$, then $b_a(x(-b_1+b_2+b_3)+y(+b_2+b_3-b_4)+z(-1+b_1-b_3+b_4)+w(-1+b_1-b_2+b_4)+k(-1+b_1+b_4))+x(-b_2-b_3+b_1b_2+b_1b_3)+y(-b_2-b_3+b_2b_4+b_3b_4)+z(+1-b_1+b_3-b_4+b_1b_4)+w(+1-b_1+b_2-b_4+b_1b_4)+k(+1-b_1-b_4+b_1b_4)$ is a quadratisation.

Proof. If $\mathbf{b} = 0000$, then $g = k + w + z - b_a(k + w + z)$. Since $-\frac{k}{2} - w \le 0$ and $-\frac{k}{2} - z \le 0$, $b_a^* = 1$, so min g = 0 = f.

If b = 0001, then $g = -b_a y$. Since $-y \ge 0$, $b_a^* = 0$, so min g = 0 = f.

If b = 0010, then $g = k + w - x - y + 2z + b_a(-k - w + x + y - 2z)$. Since $-k - w \le 0$ and $y \le z$ and $x \le z$, $b_a^* = 1$, so min g = 0 = f.

1

- If b = 0011, then $g = z x + b_a(x z)$. Since $x \le z$, $b_a^* = 1$, so min g = 0 = f.
- If b = 0100, then $g = k + 2w x y + z + b_a(-k 2w + x + y z)$. Since $-k 2w \le 0$ and $x \le 0$ and $y \le z$, $b_a^* = 1$, so min g = 0 = f.
 - If b = 0101, then $g = w x + b_a(x w)$. Since $x \le w$, $b_a^* = 1$, so min g = 0 = f.
- If $\mathbf{b} = 0110$, then $g = k + 2w 2x 2y + 2z + b_a(-k 2w + 2x + 2y 2z)$. Since $-k 2w \le 0$ and $x \le 0$ and $y \le z$, $b_a^* = 1$, so min g = 0 = f.
- If b = 0111, then $g = w 2x + z + b_a(-w + 2x + y z)$. Since $x \le z$ and $y \le w$ and $x \le 0$, $b_a^* = 1$, so min g = y = f.
 - If b = 1000, then $g = -b_a x$. Since $-x \ge 0$, $b_a^* = 0$, so min g = 0 = f.
- If b = 1001, then $g = b_a(k + w x y + z)$. Since $\frac{k}{2} + w \ge 0$ and $\frac{k}{2} + z \ge 0$ and $x \ge 0$ and $y \ge 0$, $b_a^* = 0$, so min g = 0 = f.
 - If b = 1010, then $g = z y + b_a(y z)$. Since $y \le z$, $b_a^* = 1$, so min g = 0 = f.
 - If b = 1011, then $g = z + b_a(k + w)$. Since $k + w \ge 0$, $b_a^* = 0$, so min g = z = f.
 - If b = 1100, then $g = w y + b_a(y w)$. Since $y \le w$, $b_a^* = 1$, so min g = 0 = f.
 - If b = 1101, then $g = w + b_a(k + z)$. Since $k + z \ge 0$, $b_a^* = 0$, so min g = w = f.
- If b = 1110, then $g = w 2y + z + b_a(-w + x + 2y z)$. Since $x \le w$ and $y \le z$ and $y \le 0$, $b_a^* = 1$, so min g = x = f.
- If b = 1111, then $g = w + z + b_a(k + x + y)$. Since $k + x \le 0$ and $y \le 0$, $b_a^* = 1$, so $\min g = x = f$.

Lemma 0.3

$$\begin{split} &\text{If } -k \leq x \leq -\frac{k}{2} \leq y \leq 0 \leq z \leq w \text{ and } k + x + y \geq 0, \text{ then } b_a(x(-1+b_1+b_2+b_3) + y(-1+b_2+b_3+b_4) + z(-1+b_1+b_3+b_4) + w(-1+b_1+b_2+b_4) + k(-3+2b_1+2b_2+2b_3+2b_4)) + x(+1-b_1-b_2-b_3+b_1b_2+b_1b_3+b_2b_3) + y(+1-b_2-b_3-b_4+b_2b_3+b_2b_4+b_3b_4) + z(+1-b_1-b_3-b_4+b_1b_3+b_1b_4+b_3b_4) + w(+1-b_1-b_2-b_4+b_1b_2+b_1b_4+b_2b_4) + k(+3-2b_1-2b_2-2b_3-2b_4+b_1b_2+b_1b_3+b_1b_4+b_2b_3+b_2b_4+b_3b_4) \text{ is a quadratisation.} \end{split}$$

Proof. If $\mathbf{b} = 0000$, then $g = 3k + w + x + y + z - b_a(3k + w + x + y + z)$. Since $-x - k \le 0$ and $-y - k \le 0$ and $-k \le 0$ and $-z \le 0$ and $-w \le 0$, $b_a^* = 1$, so min g = 0 = f.

If b = 0001, then $g = k + x - b_a(k + x)$. Since $-k - x \le 0$, $b_a^* = 1$, so min g = 0 = f.

If $\mathbf{b} = 0010$, then $g = k + w - b_a(k + w)$. Since $-k \le 0$ and $-w \le 0$, $b_a^* = 1$, so $\min g = 0 = f$.

If b = 0011, then $g = b_a(k+y+z)$. Since $k+y \ge 0$ and $z \ge 0$, $b_a^* = 0$, so min g = 0 = f.

If b = 0100, then $g = k + z - b_a(k + z)$. Since $-k \le 0$ and $-z \le 0$, $b_a^* = 1$, so $\min q = 0 = f$.

If b = 0101, then $g = b_a(k + w + y)$. Since $k + y \ge 0$ and $w \ge 0$, $b_a^* = 0$, so $\min g = 0 = f$.

If b = 0110, then $g = b_a(k + x + y)$. Since $k + x + y \ge 0$, $b_a^* = 0$, so min g = 0 = f.

If b = 0111, then $g = y + b_a(3k + w + x + 2y + z)$. Since $k + x \ge 0$ and $k + 2y \ge 0$ and $k \ge 0$ and $k \ge 0$, so $\min g = y = f$.

- If b = 1000, then $g = k + y b_a(k + y)$. Since $-k y \le 0$, $b_a^* = 1$, so min g = 0 = f.
- If $\mathbf{b} = 1001$, then $g = b_a(k+w+z)$. Since k and w and $z \ge 0$, $b_a^* = 0$, so min g = 0 = f.
- If b = 1010, then $g = b_a(k+x+z)$. Since $k+x \ge 0$ and $z \ge 0$, $b_a^* = 0$, so min g = 0 = f.
- If b = 1011, then $g = z + b_a(3k + w + x + y + 2z)$. Since $k + x \ge 0$ and $k + y \ge 0$ and $k \ge 0$ and $k \ge 0$, $b_a^* = 0$, so min g = z = f.
- If b = 1100, then $g = b_a(k + w + x)$. Since $k + x \ge 0$ and $w \ge 0$, $b_a^* = 0$, so $\min g = 0 = f$.

If b = 1101, then $g = w + b_a(3k + 2w + x + y + z)$. Since $k + x \ge 0$ and $k + y \ge 0$ and $k \ge 0$ and $k \ge 0$, $b_a^* = 0$, so min g = w = f.

If b = 1110, then $g = x + b_a(3k + w + 2x + y + z)$. Since $2k + 2x \ge 0$ and $k + y \ge 0$ and $w \ge z \ge 0$, $b_a^* = 0$, so min g = x = f.

If b = 1111, then $g = k + w + x + y + z + b_a(5k + 2w + 2x + 2y + 2z)$. Since $2k + 2x \ge 0$ and $2k + 2y \ge 0$ and $k \ge 0$ and $w \ge z \ge 0$, $b_a^* = 0$, so $\min g = k + w + x + y + z = f$.

Lemma 0.4

If $-k \le x \le -\frac{k}{2} \le y \le 0 \le z \le w$ and $k + x + y \le 0$, then $b_a(x(+b_1 - b_2 - b_3) + y(-b_2 - b_3 + b_4) + z(1 - b_1 + b_3 - b_4) + w(1 - b_1 + b_2 - b_4) + k(1 - b_1 - b_4)) + x(-b_1 + b_1 b_2 + b_1 b_3) + y(-b_4 + b_2 b_4 + b_3 b_4) + z(+b_1 b_4) + w(+b_1 b_4) + k(+b_1 b_4)$ is a quadratisation.

Proof. If $\mathbf{b} = 0000$, then $g = b_a(k + w + z)$. Since k and w and $z \ge 0$, $b_a^* = 0$, so $\min g = 0 = f$.

If b = 0001, then $g = b_a y - y$. Since $y \le 0$, $b_a^* = 1$, so min g = 0 = f.

If $\mathbf{b} = 0010$, then $g = b_a(k + w - x - y + 2z)$. Since -x, -y, z, w, and k are all non-negative, $b_a^* = 0$, so min g = 0 = f.

If **b** = 0011, then $g = b_a(z - x)$. Since $z \ge x$, $b_a^* = 0$, so min g = 0 = f.

If $\mathbf{b} = 0100$, then $g = b_a(k + 2w - x - y + z)$. For the same reason as with $\mathbf{b} = 0010$ we have min g = 0 = f.

If b = 0101, then $g = b_a(w - x)$. Since $w \ge x$, $b_a^* = 0$, so min g = 0 = f.

If $\mathbf{b} = 0110$, then $g = b_a(k + 2w - 2x - 2y + 2z)$. For the same reason as with $\mathbf{b} = 0010$ we have min g = 0 = f.

If $\mathbf{b} = 0111$, then $g = y + b_a(w - 2x - y + z)$. For the same reason as with $\mathbf{b} = 0010$ we have min g = y = f.

If b = 1000, then $g = b_a x - x$. Since $x \le 0$, $b_a^* = 1$, so min g = 0 = f.

If $\mathbf{b} = 1001$, then $g = k + w - x - y + z - b_a(k + w - x - y + z)$. Since -k, -w, x, y and -z are all non-positive, $b_a^* = 1$, so min g = 0 = f.

If b = 1010, then $g = b_a(z - y)$. Since $z \ge y$, $b_a^* = 0$, so min g = 0 = f.

If b = 1011, then $g = k + w + z - b_a(k + w)$. Since -k and $-w \le 0$, $b_a^* = 1$, so $\min g = z = f$.

If **b** = 1100, then $g = b_a(w - y)$. Since $w \ge y$, $b_a^* = 0$, so min g = 0 = f.

If b = 1101, then $g = k + w + z - b_a(k + z)$. Since -k and $-z \le 0$, $b_a^* = 1$, so $\min g = w = f$.

If $\mathbf{b} = 1110$, then $g = x + b_a(w - x - 2y + z)$. For the same reason as with $\mathbf{b} = 0010$ we have min g = y = f.

If $\mathbf{b} = 1111$, then $g = k + w + x + y + z - b_a(k + x + y)$. Since $-(k + x + y) \ge 0$, $b_a^* = 0$, so $\min g = k + w + x + y + z = f$.

Lemma 0.5

If $-k \le x \le -\frac{k}{2} \le y \le z \le 0 \le w$ and $k + x + y \le 0$, then $b_a(x(+b_1 - b_2 - b_3) + y(-b_2 - b_3 + b_4) + z(1 - b_1 + b_3 - b_4) + w(1 - b_1 + b_2 - b_4) + k(1 - b_1 - b_4)) + x(-b_1 + b_1b_2 + b_1b_3) + y(-b_4 + b_2b_4 + b_3b_4) + z(+b_1b_4) + w(+b_1b_4) + k(+b_1b_4)$ is a quadratisation.

Proof. If b = 0000, then $g = b_a(k + w + z)$. Since $k + z \ge 0$ and $w \ge 0$, $b_a^* = 0$, so $\min g = 0 = f$.

If b = 0001, then $g = b_a y - y$. Since $y \le 0$, $b_a^* = 1$, so min g = 0 = f.

If b = 0010, then $g = b_a(k + w - x - y + 2z)$. Since $w \ge 0$ and $k + 2z \ge 0$ and $-x \ge 0$ and $-y \ge 0$, $b_a^* = 0$, so min g = 0 = f.

If **b** = 0011, then $g = b_a(z - x)$. Since $z \ge x$, $b_a^* = 0$, so min g = 0 = f.

If b = 0100, then $g = b_a(k + 2w - x - y + z)$. Since $k + z \ge 0$ and $w \ge 0$ and $-x \ge 0$ and $-y \ge 0$, $b_a^* = 0$, so min g = 0 = f.

If b = 0101, then $g = b_a(w - x)$. Since $w \ge x$, $b_a^* = 0$, so min g = 0 = f.

If $\mathbf{b} = 0110$, then $g = b_a(k + 2w - 2x - 2y + 2z)$. For the same reason as with $\mathbf{b} = 0010$, min g = 0 = f.

If b = 0111, then $g = y + b_a(w - 2x - y + z)$. Since $w \ge 0$ and $z - y \ge 0$ and $-x \ge 0$, $b_a^* = 0$, so min g = y = f.

If b = 1000, then $g = b_a x - x$. Since $x \le 0$, $b_a^* = 1$, so min g = 0 = f.

If $\mathbf{b} = 1001$, then $g = k + w - x - y + z - b_a(k + w - x - y + z)$. Since $-k - z \le 0$ and $-w \le 0$ and $-x \le 0$ and $-y \le 0$, $b_a^* = 1$, so min g = 0 = f.

If b = 1010, then $g = b_a(z - y)$. Since $z \ge y$, $b_a^* = 0$, so min g = 0 = f.

If b = 1011, then $g = k + w + z - b_a(k + w)$. Since $-k \le 0$ and $-w \le 0$, $b_a^* = 1$, so $\min g = z = f$.

If b = 1100, then $g = b_a(w - y)$. Since $w \ge y$, $b_a^* = 0$, so min g = 0 = f.

If b = 1101, then $g = k + w + z - b_a(k + z)$. Since $-k - z \le 0$, $b_a^* = 1$, so min g = w = f.

If b = 1110, then $g = x + b_a(w - x - 2y + z)$. Since $w \ge 0$ and $z - y \ge 0$ and $-y \ge 0$ and $-x \ge 0$, $b_a^* = 0$, so min g = x = f.

If $\mathbf{b} = 1111$, then $g = k + w + x + y + z - b_a(k + x + y)$. Since $-(k + x + y) \ge 0$, $b_a^* = 0$, so min g = k + w + x + y + z = f.

Lemma 0.6

If $-k \le x \le -\frac{k}{2} \le y \le z \le 0 \le w$ and $k+x+y \ge 0$, then $b_a(x(-1+b_1+b_2+b_3)+y(-1+b_2+b_3+b_4)+z(-1+b_1+b_3+b_4)+w(-1+b_1+b_2+b_4)+k(-3+2b_1+2b_2+2b_3+2b_4))+x(+1-b_1-b_2-b_3+b_1b_2+b_1b_3+b_2b_3)+y(+1-b_2-b_3-b_4+b_2b_3+b_2b_4+b_3b_4)+z(+1-b_1-b_3-b_4+b_1b_3+b_1b_4+b_3b_4)+w(+1-b_1-b_2-b_4+b_1b_2+b_1b_4+b_2b_4)+k(+3-2b_1-2b_2-2b_3-2b_4+b_1b_2+b_1b_3+b_1b_4+b_2b_3+b_2b_4+b_3b_4)$ is a quadratisation.

Proof. If $\mathbf{b} = 0000$, then $g = 3k + w + x + y + z - b_a(3k + w + x + y + z)$. Since $-k - x \le 0$ and $-\frac{k}{2} - y \le 0$ and $-\frac{k}{2} - z \le 0$ and $-k \le 0$ and $-w \le 0$, $b_a^* = 1$, so min g = 0 = f.

If b = 0001, then $g = k + x - b_a(k + x)$. Since $-k - x \le 0$, $b_a^* = 1$, so min g = 0 = f.

If $\mathbf{b} = 0010$, then $g = k + w - b_a(k + w)$. Since $-k \le 0$ and $-w \le 0$, $b_a^* = 1$, so $\min g = 0 = f$.

If $\mathbf{b} = 0011$, then $g = b_a(k + y + z)$. Since $\frac{k}{2} + y \ge 0$ and $\frac{k}{2} + z \ge 0$, $b_a^* = 0$, so $\min q = 0 = f$.

If b = 0100, then $g = k + z - b_a(k + z)$. Since $-k - z \le 0$, $b_a^* = 1$, so min g = 0 = f.

If b = 0101, then $g = b_a(k + w + y)$. Since $k + y \ge 0$ and $w \ge 0$, $b_a^* = 0$, so $\min g = 0 = f$.

If b = 0110, then $g = b_a(k + x + y)$. Since $k + x + y \ge 0$, $b_a^* = 0$, so min g = 0 = f.

If b = 0111, then $g = y + b_a(3k + w + x + 2y + z)$. Since $k + x \ge 0$ and $k + 2y \ge 0$ and $k + z \ge 0$ and $k \ge 0$, $b_a^* = 0$, so min g = y = f.

If b = 1000, then $g = k + y - b_a(k + y)$. Since $-k - y \le 0$, $b_a^* = 1$, so min g = 0 = f.

If $\mathbf{b} = 1001$, then $g = b_a(k+w+z)$. Since $k+z \ge 0$ and $w \ge 0$, $b_a^* = 0$, so min g = 0 = f. If $\mathbf{b} = 1010$, then $g = b_a(k+x+z)$. Since $k+x+z \ge k+x+y \ge 0$, $b_a^* = 0$, so min g = 0 = f.

If b = 1011, then $g = z + b_a(3k + w + x + y + 2z)$. Since $k + x \ge 0$ and $k + y \ge 0$ and $k + 2z \ge 0$ and $k \ge 0$, $b_a^* = 0$, so min g = z = f.

If b = 1100, then $g = b_a(k + w + x)$. Since $k + x \ge 0$ and $w \ge 0$, $b_a^* = 0$, so $\min g = 0 = f$.

If b = 1101, then $g = w + b_a(3k + 2w + x + y + z)$. Since $k + x \ge 0$ and $k + y \ge 0$ and $k + z \ge 0$ and $k \ge 0$, $b_a^* = 0$, so min g = w = f.

If b = 1110, then $g = x + b_a(3k + w + 2x + y + z)$. Since $2k + 2x \ge 0$ and $\frac{k}{2} + y \ge 0$ and $\frac{k}{2} + z \ge 0$ and $w \ge 0$, $b_a^* = 0$, so min g = x = f.

If $\mathbf{b} = 1111$, then $g = k + w + x + y + z + b_a (5k + 2w + 2x + 2y + 2z)$. Since $2k + 2x \ge 0$ and $k + 2y \ge 0$ and $k + 2z \ge 0$ and $k \ge 0$ and $k \ge 0$, $b_a^* = 0$, so min g = k + w + x + y + z = f.

Lemma 0.7

If $-k \le x \le -\frac{k}{2} \le y \le z \le w \le 0$ and $k + x + y \ge 0$, then $b_a(x(1 - b_1 - b_2 - b_3) + y(1 - b_2 - b_3 - b_4) + z(1 - b_1 - b_3 - b_4) + w(1 - b_1 - b_2 - b_4) + k(3 - 2b_1 - 2b_2 - 2b_3 - 2b_4)) + x(+b_1b_2 + b_1b_3 + b_2b_3) + y(+b_2b_3 + b_2b_4 + b_3b_4) + z(+b_1b_3 + b_1b_4 + b_3b_4) + w(+b_1b_2 + b_1b_4 + b_2b_4) + k(+b_1b_2 + b_1b_3 + b_1b_4 + b_2b_3 + b_2b_4 + b_3b_4)$ is a quadratisation.

Proof. If $\mathbf{b} = 0000$, then $g = b_a(3k + w + x + y + z)$. Since $k + x \ge 0$ and $2k + w + y + z \ge 0$, $b_a^* = 0$, so min g = 0 = f.

If b = 0001, then $g = b_a(k + x)$. Since $k + x \ge 0$, $b_a^* = 0$, so min g = 0 = f.

If b = 0010, then $g = b_a(k + w)$. Since $k + w \ge 0$, $b_a^* = 0$, so min g = 0 = f.

If $\mathbf{b} = 0011$, then $g = k + y + z - b_a(k + y + z)$. Since $-\frac{k}{2} - y \le 0$ and $-\frac{k}{2} - z \le 0$, $b_a^* = 1$, so min g = 0 = f.

If b = 0100, then $g = b_a(k+z)$. Since $k + z \ge 0$, $b_a^* = 0$, so min g = 0 = f.

If $\mathbf{b} = 0101$, then $g = k + w + y - b_a(k + w + y)$. Since $-\frac{k}{2} - w \le 0$ and $-\frac{k}{2} - y \le 0$, $b_a^* = 1$, so min g = 0 = f.

If $\mathbf{b} = 0110$, then $g = k + x + y - b_a(k + x + y)$. Since $-(k + x + y) \le 0$, $b_a^* = 1$, so $\min g = 0 = f$.

If b = 0111, then $g = 3k + w + x + 3y + z - b_a(3k + w + x + 2y + z)$. Since $-k - x \le 0$ and $-k - 2y \le 0$ and $-k - w - z \le 0$, $b_a^* = 1$, so min g = y = f.

If b = 1000, then $g = b_a(k + y)$. Since $k + y \ge 0$, $b_a^* = 0$, so min g = 0 = f.

If $\mathbf{b} = 1001$, then $g = k + w + z - b_a(k + w + z)$. Since $-k - w - z \le 0$, $b_a^* = 1$, so $\min g = 0 = f$.

If $\mathbf{b} = 1010$, then $g = k + x + z - b_a(k + x + z)$. Since $-(k + x + z) \le -(k + x + y) \le 0$, $b_a^* = 1$, so min g = 0 = f.

If b = 1011, then $g = 3k + w + x + y + 3z - b_a(3k + w + x + y + 2z)$. Since $-k - x \le 0$ and $-k - w - y \le 0$ and $-k - 2z \le 0$, $b_a^* = 1$, so min g = z = f.

If $\mathbf{b} = 1100$, then $g = k + w + x - b_a(k + w + x)$. Since $-(k + w + x) \le -(k + x + y) \le 0$, $b_a^* = 1$, so min g = 0 = f.

If b = 1101, then $g = 3k + 3w + x + y + z - b_a(3k + 2w + x + y + z)$. Since $-k - 2w \le 0$ and $-k - x \le 0$ and $-k - y - z \le 0$, $b_a^* = 1$, so min g = w = f.

If b = 1110, then $g = 3k + w + 3x + y + z - b_a(3k + w + 2x + y + z)$. Sincde $-(k + x + y) \le 0$ and $-k - x \le 0$ and $-k - w - z \le 0$, $b_a^* = 1$, so min g = x = f.

If $\mathbf{b} = 1111$, then $g = 6k + 3w + 3x + 3y + 3z - b_a(5k + 2w + 2x + 2y + 2z)$. Since $-2k - 2x \le 0$ and $-k - 2y \le 0$ and $-k - 2z \le 0$ and $-k - 2w \le 0$, $b_a^* = 1$, so $\min g = k + w + x + y + z = f$.

Lemma 0.8

If $-k \le x \le -\frac{k}{2} \le y \le z \le w \le 0$ and $k + x + y \le 0$, then $b_a(x(-b_1 + b_2 + b_3) + y(+b_2 + b_3 - b_4) + z(-1 + b_1 - b_3 + b_4) + w(-1 + b_1 - b_2 + b_4) + k(-1 + b_1 + b_4)) + x(-b_2 - b_3 + b_1b_2 + b_1b_3) + y(-b_2 - b_3 + b_2b_4 + b_3b_4) + z(+1 - b_1 + b_3 - b_4 + b_1b_4) + w(+1 - b_1 + b_2 - b_4 + b_1b_4) + k(+1 - b_1 - b_4 + b_1b_4)$ is a quadratisation.

Proof. If $\mathbf{b} = 0000$, then $g = k + w + z - b_a(k + w + z)$. Since $-k - w - z \le 0$, $b_a^* = 1$, so $\min g = 0 = f$.

If b = 0001, then $g = -b_a y$. Since $-y \ge 0$, $b_a^* = 0$, so min g = 0 = f.

If b = 0010, then $g = k + w - x - y + 2z + b_a(-k - w + x + y - 2z)$. Since $-k - 2z \le 0$ and $x \le w$ and $y \le 0$, $b_a^* = 1$, so min g = 0 = f.

If b = 0011, then $g = z - x + b_a(x - z)$. Since $x \le z$, $b_a^* = 1$, so min g = 0 = f.

If $\mathbf{b} = 0100$, then $g = k + 2w - x - y + z + b_a(-k - 2w + x + y - z)$. Since $-k - 2w \le 0$ and $y \le z$ and $x \le 0$, $b_a^* = 1$, so min g = 0 = f.

If b = 0101, then $g = w - x + b_a(x - w)$. Since $x \le w$, $b_a^* = 1$, so min g = 0 = f.

If $\mathbf{b} = 0110$, then $g = k + 2w - 2x - 2y + 2z + b_a(-k - 2w + 2x + 2y - 2z)$. Since $-k \le 0$ and $x \le z$ and $y \le w$, $b_a^* = 1$, so min g = 0 = f.

If b = 0111, then $g = w - 2x + z + b_a(-w + 2x + y - z)$. Since $x \le w$ and $y \le z$ and $x \le 0$, $b_a^* = 1$, so min g = y = f.

If b = 1000, then $g = -b_a x$. Since $-x \ge 0$, $b_a^* = 0$, so min g = 0 = f.

If $\mathbf{b} = 1001$, then $g = b_a(k + w - x - y + z)$. Since $k \ge 0$ and $w \ge x$ and $z \ge y$, $b_a^* = 0$, so min g = 0 = f.

If b = 1010, then $g = z - y + b_a(y - z)$. Since $y \le z$, $b_a^* = 1$, so min g = 0 = f.

If b = 1011, then $g = z + b_a(k + w)$. Since $k + w \ge 0$, $b_a^* = 0$, so min g = z = f.

If b = 1100, then $g = w - y + b_a(y - w)$. Since $y \le w$, $b_a^* = 1$, so min g = 0 = f.

If b = 1101, then $g = w + b_a(k + z)$. Since $k + z \ge 0$, $b_a^* = 0$, so min g = w = f.

If b = 1110, then $g = w - 2y + z + b_a(-w + x + 2y - z)$. Since $x \le w$ and $y \le z$ and $y \le 0$, $b_a^* = 1$, so min g = x = f.

If $\mathbf{b} = 1111$, then $g = w + z + b_a(k + x + y)$. Since $k + x + y \le 0$, $b_a^* = 1$, so $\min g = k + w + x + y + z = f$.