AIM to predict weather diabetes have or not

from google.colab import drive

drive.mount('/content/drive')

→ Mounted at /content/drive

import pandas as pd #read dataset import numpy as np #numeric python import matplotlib.pyplot as plt #plot the graph import seaborn as sns #plot the graph in graphical

#read dataset

df = pd.read_csv("/content/drive/MyDrive/data/diabetes.csv")

df.head() #to display the dataset first 5

→		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome	\blacksquare
	0	6	148	72	35	0	33.6	0.627	50	1	ılı
	1	1	85	66	29	0	26.6	0.351	31	0	
	2	8	183	64	0	0	23.3	0.672	32	1	
	3	1	89	66	23	94	28.1	0.167	21	0	
	4	0	137	40	35	168	43.1	2.288	33	1	

Next steps:

Generate code with df

View recommended plots

df.shape #how many rows and column

→ (768, 9)

df.info() #data set with data type and null value

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 768 entries, 0 to 767
 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

df.isnull() #check null value

→	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
() False	False	False	False	False	False	False	False	False
•	1 False	False	False	False	False	False	False	False	False
:	2 False	False	False	False	False	False	False	False	False
;	3 False	False	False	False	False	False	False	False	False
•	4 False	False	False	False	False	False	False	False	False
	.								
7	False	False	False	False	False	False	False	False	False
7	64 False	False	False	False	False	False	False	False	False
7	65 False	False	False	False	False	False	False	False	False
7	66 False	False	False	False	False	False	False	False	False
7	False	False	False	False	False	False	False	False	False

768 rows × 9 columns

```
df.isnull().sum() #check null value
```

$\overline{\mathbf{T}}$	Pregnancies	0
	Glucose	0
	BloodPressure	0
	SkinThickness	0
	Insulin	0
	BMI	0
	DiabetesPedigreeFunction	0
	Age	0
	Outcome	0
	dtype: int64	

#Train and Test split
from sklearn.model_selection import train_test_split

x=df.iloc[:,df.columns!='Outcome'] #pragnacy to age not outcome (row,columns)
y=df.iloc[:,df.columns=='Outcome'] #only outcome

print(x)

$\overline{\Rightarrow}$		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	\
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

	${ t Diabetes Pedigree Function}$	Age
0	0.627	50
1	0.351	31
2	0.672	32
3	0.167	21
4	2.288	33
	•••	
763	0.171	63

764	0.340	27
765	0.245	30
766	0.349	47
767	0.315	23

[768 rows x 8 columns]

print(y)

		Outcome
	0	1
	1	0
	2	1
	3	0
	4	1
	763	0
	764	0
	765	0
	766	1
	767	0

[768 rows x 1 columns]

 $x_train, x_test, y_train, y_test=train_test_split(x, y, test_size=0.2, random_state=0)$

x_train.head()

₹		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	
	603	7	150	78	29	126	35.2	0.692	54	ılı
	118	4	97	60	23	0	28.2	0.443	22	
	247	0	165	90	33	680	52.3	0.427	23	
	157	1	109	56	21	135	25.2	0.833	23	
	468	8	120	0	0	0	30.0	0.183	38	

Next steps: Generate code with x_train

```
x_test.shape
→ (154, 8)
Suggested code may be subject to a license | pt.linkedin.com/pulse/sele%C3%A7%C3%A3o-de-atributos-com-python---
#Algorithms
from sklearn.ensemble import RandomForestClassifier
Suggested code may be subject to a license | AP-State-Skill-Development-Corporation/Machine-Learning-Using-Pyth-
model=RandomForestClassifier()
Suggested code may be subject to a license | bhaveshlohana/HacktoberFest2020-Contributions
model.fit(x_train,y_train.values.ravel()) #to train algorithm
\overline{\pm}
    ▼ RandomForestClassifier
    RandomForestClassifier()
predict_output = model.predict(x_test) #to test algorithm
print(predict output)
[1001001100110001000100010000100001011
    0 0 0 0 0 0
                                                       + Code
                                                                + Text
y test.head()
```

→ ▼		Outcome	\blacksquare
	661	1	ıl.
	122	0	
	113	0	
	14	1	
	529	0	

Next steps: Generate code with y_test

View recommended plots

#compare the actual output and predict output
from sklearn.metrics import accuracy_score

acc = accuracy_score(y_test,predict_output)
print(acc)

0.8051948051948052

Start coding or generate with AI.