

PRACA DYPLOMOWA MAGISTERSKA

Na kierunku Fizyka Techniczna w specjalności Nanostruktury

Rozpraszanie ramanowskie w próbkach objętościowych i cienkich warstwach $\mathrm{Ga}_2\mathrm{S}_3$

Vitali Kozak

Numer albumu 256481

promotor

dr inż., Cezariusz Jastrzębski

WARSZAWA 2018

Spis treści

1	Właściwości		
	1.1	Siarczek galu(II)	2
	1.2	Siarczek galu(III)	3
2	Rozpraszanie Ramanowskie		
	2.1	Czym jest spektroskopia ramanowska	4
	2.2	Wgląd matematyczny	4
	2.3	Rodzaje pasm obserwowanych w widmie Ramana	5
	2.4	Czynniki warunkujące zaistnienie zjawiska	6
		2.4.1 Idealny dipol	6
		2.4.2 Realny dipol	7
	2.5	Przykładowe widma ramanowskie	8
3	Rozpraszanie Ramanowskie w ciękich warstwach		
	3.1	Fonony w materiale	S
	3.2	Co można odczytać z widma Ramanowskiego	11
	3.3	Piki ramanowskie w cienkich warstwach	11
	3.4	Dane dla pików ramanowskich GaP Ga2S3	11
	3.5	przyrząd pomiarowy, rysunek, opis	11
4	Prz	Przygotowanie próbek do badań 1	
5	Wy	niki badań	13
6	Opracowanie wyników		14
7	Podsumowanie		
\mathbf{B}^{i}	bliog	grafia	16

1 Właściwości

Siarczek galu występuje w dwóch postaciach:

- \bullet Siarczek galu(II) GaS
- Siarczek galu(III) Ga_2S_3

1.1 Siarczek galu(II)

 ${f GaS}$ tworzy bezbarwne lub żółte kryształki układu heksagonalnego, grupa przestrzenna ${f P}$ ${f 6_3/mmc}$. Kryształ siarczku galu (${f GaS}$) należy do rodziny półprzewodników warstwowych III-VI. Krystalizuje się w sześciokątnej strukturze o parametrach sieci a=0,3578 i c=1,547 nm. Każda warstwa w strukturze krystalicznej składa się z dwóch atomów galu i dwóch atomów siarki ułożonych w stos wzdłuż osi c z powtarzającą się jednostką ${f S}-{f Ga}-{f Ga}-{f S}$.

Rysunek 1: Schematyczna reprezentacja struktury krystalicznej GaS [1]

W kryształach ${\bf GaS}$ dominują słabe siły van der Waalsa w oddziaływaniach międzywarstwowych. Silne kowalencyjne siły dominują w oddziaływaniach wewnątrzwarstwowych. ${\bf GaS}$ to półprzewodnik szerokopasmowy, który jest obiecującym materiałem. Skośna przerwa energetyczna wynosi 2.5eV, a prosta wynosi 2.95eV. Materiał umożliwia wytwarzanie niebieskich urządzeń emitujących światło [1].

1.2 Siarczek galu(III)

 Ga_2S_3 tworzy jasnożółte kryształki układu kubicznego, grupa przestrzenna F $\overline{4}3m$.

Rysunek 2: Kryształki siarczku galu(III). Po lewej stronie Ga_2S_3 wytworzony metodą Bridgmana. Po prawej Ga_2S_3 wytworzony metodą flux-melt.[3]

 ${\bf Ga_2S_3}$ jest materiałem półprzewodnikowym o stosunkowo szerokiej (2.8eV) i prostej przerwie energetycznej. Ze względu na budowę warstwową jest rozważany jako perspektywiczny materiał do zastosowań w nanoelektronice i fotonice oraz do generacji sygnałów THz. Dodatkową jego zaletą jest silna anizotropia optyczna i jest rozważany jako materiał nieliniowy do generacji drugiej harmonicznej (SHG) w zakresie średniej podczerwieni.

Rysunek 3: Struktura krystaliczna Ga_2S_3 .[2]

2 Rozpraszanie Ramanowskie

2.1 Czym jest spektroskopia ramanowska

Spektroskopia Ramana jest istotną metodą badania widm rotacyjnych i oscylacyjnych cząsteczek. Światło rozpraszane ma inne częstości niż światło padające. Obserwujemy przesunięcie linii zarówno w stronę większych jak i mniejszych częstości, a tym samym większych i mniejszych energii. Kilka cech tej spektroskopii jest niezwykle ważnych. Jedną z nich jest możliwość użycia światła widzialnego do badania widma Ramana. Można lepiej operować takim światłem w warunkach doświadczenia niż światłem podczerwonym lub mikrofalami. Niektóre dwuatomowe cząsteczki jak H_2 czy O_2 nie posiadają momentu dipolowego i dlatego nie są aktywne w podczerwieni, a ich widma mogą być badane właśnie w widmie Ramana. Zatem np. pod tym względem spektroskopia ramanowska jest dopełnieniem spektroskopii w podczerwieni i odwrotnie. Poza tym spektroskopia ramanowska umożliwia badanie ruchu cząsteczek, które zmieniając swoje położenie, wykonują np. ruchy obrotowe, co z kolei powoduje zmianę ich ukierunkowania względem padającego promieniowania. Objawia się to zmianą polaryzacji w stosunku do światła padającego. Ponadto rozpraszanie Ramana, podobnie jak spektroskopia w podczerwieni, dostarcza informacji o budowie cząsteczki, wiązaniach międzyatomowych, które ją tworzą, a także o ich polaryzowalności. Pozwala to przewidzieć reaktywność chemiczną i przebieg reakcji chemicznych.

2.2 Wgląd matematyczny

Jeżeli światło o natężeniu

$$E = E_m \cos(2\pi f_p t) \tag{1}$$

- E natężenie padającego światła;
- E_m wartość maksymalna natężenia;
- f_p częstotliwość promieniowania padającego.

pada na cząsteczkę, to wystąpi oddziaływanie pomiędzy wektorem \overrightarrow{E} , a elektronowymi powłokami atomów tworzących cząsteczkę. Elektrony w cząsteczkach wykazują polaryzowalność α , czyli zdolność przemieszczania się pod wpływem pola elektrycznego. W wyniku takiego przemieszczenia jest indukowany w cząsteczce moment dipolowy.

$$p_i = \alpha E = E_m \cos(2\pi f_p t) \tag{2}$$

Ponieważ ten moment dipolowy oscyluje z częstotliwością f_p następuje emisja promieniowania o tej samej częstotliwości. Ta częstotliwość nosi nazwę $rozpraszania\ Rayleigha$.

Niech cząsteczka wykonuje drgania z częstotliwością f_{osc} , to wychylenie z położenia równowagi można opisać wzorem:

$$r - r_0 = r_m \cos(2\pi f_{osc} t) \tag{3}$$

- r_0 położenie równowagi;
- r_m maksymalne wychylenie;
- f_{osc} częstotliwość drgań cząsteczki.

Polaryzowalność cząsteczki zmienia się wraz z odległością r. Ta wielkość może być przedstawiona w postaci szeregu potęgowego:

$$\alpha(r) = \alpha(r_0) + \frac{d\alpha}{dr}(r - r_0) + \frac{d^2\alpha}{dr^2}(r - r_0)^2 + \dots + \frac{d^n\alpha}{dr^n}(r - r_0)^n$$
(4)

W dalszych przekształceniach nie będziemy uwzględniać wyrazów rzędów wyższych od jednego.

Uwzględniając wzory (1),(2),(3) możemy przedstawić moment dipolowy cząsteczki w następujący sposób:

$$p(t) = \alpha E = \left\{ \alpha(r_0) + \frac{d\alpha}{dr} r_m \cos(2\pi f_{osc} t) \right\} E_m \cos(2\pi f_p t)$$
 (5)

Możemy przekształcić powyższe równanie po zastosowaniu wzoru na iloczyn cosinusów:

$$p(t) = \alpha(r_0)E_m\cos(2\pi f_p t) + \frac{d\alpha}{dr}E_m r_m \left\{\cos(2\pi (f_p + f_{osc})t) + \cos(2\pi (f_p - f_{osc})t)\right\}$$
(6)

Ponieważ argumenty funkcji cos zawierają częstotliwość $f=f_p\pm f_{osc}$, w widmie światła rozproszonego ta częstotliwość będzie obserwowana. Wielkość przesunięcia jest cechą charakterystyczną danej cząsteczki. Lnie widma, które przesunięte w stronę mniejszych energii, są tzw. pasma stokesowskie, a w stronę wiekszych energii – antystokesowskie.

Rysunek 4: Schemat widma ramanowskiego.[4]

2.3 Rodzaje pasm obserwowanych w widmie Ramana

W widmie Ramana są obserwowane trzy rodzaje pasm:

- Pasmo Rayleigha;
- Pasmo stokesowskie;
- Pasmo antystokesowskie.

Pasmo Rayleigha - powstające na skutek oddziaływania fotonów padającego promieniowania o częstości v_0 , nie pasujących do poziomów energetycznych cząsteczki. Po oddziaływaniu fotonu z cząsteczką, ostatnia wraca na ten sam poziom energetyczny.

Pasmo stokesowskie - gdy cząsteczka po oddziaływaniu z promieniowaniem przenosi się na wyższy poziom oscylacyjny i rozproszony foton ma energię mniejszą o różnicę energii poziomów oscylacyjnych hv.

Pasma antystokesowskie - jeśli przed oddziaływaniem z promieniowaniem molekuła znajdowała się na wzbudzonym poziomie oscylacyjnym, to oddziaływanie przenosi ją na podstawowy poziom oscylacyjny. Energia rozproszonego fotonu jest większa o różnicę energii poziomów oscylacyjnych hv. Pasmo antystokesowskie pojawia się w widmie Ramana po przeciwnej stronie co pasmo stokesowskie w stosunku do pasma Rayleigha. Pasmo to ma zwykle niższą intensywność niż pasma stokesowskie.

Rysunek 5: Diagram energii przejść w poszczególnych rodzajach rozpraszania.

Widmo antystokesowskie jest mnie intensywne niż widmo stokesowskie. To jest spowodowane tym, że prawdopodobieństwo oddziaływania fotonu ze wzbudzonym atomem jest dużo mniejsze niż oddziaływanie z atomem w stanie podstawowym.

2.4 Czynniki warunkujące zaistnienie zjawiska

2.4.1 Idealny dipol

Przykładem takiego dipola może być układ składający się z spoczynkowego ładunku dodatniego +Q i ładunku ujemnego -Q, harmonicznie oscylującego wzdłuż kierunku \overrightarrow{P} z częstotliwościa ω .

$$p = p_0 \cos(\omega t) \tag{7}$$

Problem promieniowania dipola ma istotne znaczenie w teorii układów promieniujących, ponieważ każdy rzeczywisty układ promieniujący (na przykład antena) może być obliczony na podstawie promieniowania dipola. Ponadto wiele pytań dotyczących interakcji promieniowania z materią można wyjaśnić na podstawie klasycznej teorii, biorąc pod uwagę atomy jako układy ładunków, w których elektrony wykonują oscylacje harmoniczne w pobliżu ich pozycji równowagi.

Jeśli fala rozchodzi się w homogenicznym ośrodku izotropowym, to czas przejścia fali do punktów odległych od dipola o odległość r jest taki sam. Dlatego we wszystkich punktach kuli, której środek pokrywa się z dipolem, faza oscylacji jest taka sama, to znaczy w strefie falowej przód fali będzie sferyczny, a w konsekwencji fala emitowana przez dipol jest sferyczną falą.

W każdym punkcie wektory \overrightarrow{E} i \overrightarrow{H} oscylują zgodnie z prawem $\cos(\omega t - kr)$, amplitudy tych wektorów są proporcjonalne do $\frac{\sin \theta}{r}$ (dla próżni). Czyli one zależą od odległości od r odległości od środka dipola i kąta θ między kierunkiem momentu dipolowego i kierunkiem promieniowania.

Rysunek 6: Drgający dipol, który twarzą dwa ładunki -Q i +Q. $I(\theta)$ to jest natężenie promieniowania na odległości r pod kątem θ .

Wynika stąd, że natężenie promieniowania dipolowego wynosi:

$$I \sim \frac{\sin^2 \theta}{r^2} \tag{8}$$

Dla $\theta = \frac{\pi}{2}$ intensywność promieniowania jest maksymalna, a dla $\theta = 0$ i $\theta = \pi$ jest minimalna i wynosi 0. Czyli dipol nie promieniuje wzdłuż kierunku momentu dipolowego.

2.4.2 Realny dipol

Warunkiem zaistnienia zjawiska Ramana są zmiany polaryzowalności cząsteczki w trakcie danego drgania. Polaryzowalność jest wielkością, którą można wyrazić za pomocą tensora, który jest układem 9 współczynników:

$$\alpha = \begin{vmatrix} \alpha_{xx} & \alpha_{xy} & \alpha_{xz} \\ \alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\ \alpha_{zx} & \alpha_{zy} & \alpha_{zz} \end{vmatrix}$$

$$(9)$$

Gdy mówimy np. o indukowanym momencie dipolowym, to pierwszy wskaźnik dwuelementowego indeksu oznacza kierunek momentu dipolowego, a drugi kierunek przyłożonego pola elektrycznego (wektora natężenia pola).

2.5 Przykładowe widma ramanowskie

Widmo ramanowskie dla materiałów GaS i Ga_2S_3 :

Rysunek 7: Widma rozpraszania ramanowskiego dla materiałów GaS i $Ga_2S_3[3]$

Na powyższym rysunku pokazane tylko pasma stokesowskie, ponieważ tylko tą częścią będę się zajmował w swojej pracy.

Energia fotonu wynosi:

$$E = h\nu = h\frac{c}{\lambda} = hc\frac{1}{\lambda} \tag{10}$$

- h stała Plancka;
- c prędkość światła;
- λ długość fali.

Czyli odwrotność długości jest proporcjonalna do energii:

$$\lambda^{-1} \sim E \tag{11}$$

Zeru na powyższym widmie odpowiada energia światła pobudzającego (lasera) z przesunięciem wynoszącym zero. Czyli przesunięcie w widmie stokesowskim można zapisać w następując sposób:

$$\frac{1}{\lambda} = \left| \frac{1}{\lambda_{Laser}} - \frac{1}{\lambda_{stok}} \right| \tag{12}$$

- λ_{Laser} długość fali promieniowania laserowego;
- λ_{stok} długość fali promieniowania stokesowskiego

3 Rozpraszanie Ramanowskie w ciękich warstwach

3.1 Fonony w materiale

Fonon - kwazicząstka, kwant energii drgań sieci krystalicznej. Są dwa rodzaje fononów:

- Fonony akustyczne. Powstają w wyniku drgań jednego rodzaju atomów.
- Fonony optyczne. Powstają w wyniku drgań różnego rodzaju atomów.

Podział fononów jest uzależniony od kształtu relacji dyspersji w pobliżu k=0. Fonony akustyczne wykazują zależność:

$$\lim_{k \to 0} \omega(k) = 0 \tag{13}$$

natomiast fonony optyczne:

$$\lim_{k \to 0} \omega(k) = const \tag{14}$$

Rysunek 8: Krzywe dyspersyjne dla liniowego łańcucha dwuatomowego. [5]

Dla kryształu zawierającego N(>2) różnych atomów w komórce prymitywnej relacja dyspersji zawiera trzy gałęzie akustyczne oraz αN -3 gałęzie optyczne, gdzie α to jest wymiar. Więc dla liniowego łańcucha dwuatomowego N=2 mamy jedną gałąź optyczną i jedną akustyczną. A dla trójwymiarowej komórki prostej składającej się z dwóch różnych cząsteczek będą 3 krzywe optyczne i 3 akustyczne.

Przy rozpraszaniu fotonów na fononach powinny być spełnione dwa prawa zachowania: Prawo zachowania energii:

$$\hbar\omega_{\mathbf{i}} = \hbar\omega_{\mathbf{s}} \pm \hbar\Omega_{\mathbf{fonon}} \tag{15}$$

- ω_i częstotliwość fotonu padającego;
- ω_s częstotliwość fotonu rozproszonego;
- Ω_{fonon} częstotliwość fononu;
- \hbar stała Plancka.

Prawo zachowania pędu:

$$\hbar \mathbf{k_i} = \hbar \mathbf{k_s} \pm \hbar \mathbf{K_{fonon}} \tag{16}$$

- k_i wektor falowy fotonu padającego;

- \hbar stała Plancka.

Pęd fononu jest znacznie większy od pędu fotonu, a energia fotonu jest znacznie większa od energii fononu. To znaczy że uczęstniczą w oddziaływaniu tylko te fonony co mają mały pęd.

RYSUNEK

Z powyższego rysunku widzimy, że w oddziaływaniach przyjmują udział tylko optyczne fonony co znajdują się w środku strefy Brillouina. Akustyczne fonony nie biorą udziału dlatego, że dla $k \to 0$ energia też daży do zera.

ZAPYTAĆ. O obsadzeniu i dlaczego nie liczy się antystoks

Prawdopodobieństwo obsadzenia stanu energetycznego fononem jest proporcjonalne do:

$$\sim \exp^{-\frac{E}{kT}} \tag{17}$$

- $\bullet~E$ energia stanu energicznego;
- k stała Boltzmanna;
- $\bullet~T$ temperatura w Kelwinach.

to znaczy że stosunek intensywności promieniowania rozproszonego w widmie antystokesowskim do intensywności promieniowania pobudzającego jest:

$$\frac{I_{ants}}{I} \sim \exp^{-\frac{E}{kT}} \tag{18}$$

- \bullet I_{ants} intensywność promieniowania w widmie antystokesowskim;
- \bullet I intensywność promieniowania pobudzającego

3.2 Co można odczytać z widma Ramanowskiego

Ważną rolę w widmie Ramanowskim odgrywa szerokość połówkowa pików. Na podstawie informacji o szerokości połówkowej Γ można mówić o czasie życia fononów w próbce:

$$\Gamma \sim \frac{1}{\tau}$$
 (19)

gdzie τ - czas życia fononu.

RYSUNEK SZEROKOSCI POLOWKOWEJ

ZAPYTAĆ! O FWHM

Szerokość połówkowa zależy od:

- 1 Rozmiar próbki. Czy materiał jest cienkowarstwowym, czy bulk.
- 2 Defekty. Fonony rozpraszają się na defektach, co zmniejsza czas ich życia.
- 3 Rozpraszanie fononów wskutek efektów anharmonicznych

Na podstawie szerokości piku można uzyskać informację o przewodnictwie cieplnym próbki.

ZAPYTAĆ, jak uzyskać TEMPERATURE

W zależności od ilości i kształtu pików można zbadać jaki to jest materiał, czy badany materiał jest czystym materiałem bez domieszek.

3.3 Piki ramanowskie w cienkich warstwach

W materiałach cienkowarstwowych jeden z wymiarów jest rzędu kilku nanometrów. To powoduje że zaczynają odgrywać ważną rolę efekty kwantowe. Z zasady nieoznaczoności Heisenberga:

$$\Delta p_{fon} \Delta d \ge \frac{\hbar}{2} \tag{20}$$

- Δp_{fon} niepewność pomiaru pędu fononu;
- \bullet Δd niepewność pomiaru położenia fononu

ZAPYTAĆ!jak przejść z tej regóły do kształtu piku Pik jest rozmazany w kierunku wyższych energii.

RYSUNEK PIKU ROZMAZANEGO

- 3.4 Dane dla pików ramanowskich GaP Ga2S3
- 3.5 przyrząd pomiarowy, rysunek, opis

4	Przygotowanie próbek do badań

5 Wyniki badań

6 Opracowanie wyników

7 Podsumowanie

Literatura

- 1. GaS-wazne.
- 2. $\mathbf{Ga_2S_3}$ Zeitschrift für Kristallographie New Crystal Structures, 216, 327-328 (2001)
- 3. Ga2S3 optical properties and perspectives for THz applications
- 4. Spectroskopia Ramana drgania i widmo
- 5. Wikipedia fonony w materiałach