

Types of Network Cabling

Types of Network Cabling

- Coaxial
- Twisted Pair
- Fiber Optic

Ethernet Standards

Ethernet Explained

- Ethernet is a network protocol that controls how data is transmitted over a LAN.
- It's referred to as the Institute of Electrical and Electronics Engineers (IEEE) 802.3 Standard.
- It supports networks built with coaxial, twisted-pair, and fiber-optic cabling.
- The original Ethernet standard supported 10Mbps speeds, but the latest supports much faster gigabit speeds.
- Ethernet uses CSMA/CD & CSMA/CA access methodology.

Ethernet N<Signaling>-X Naming

- Ethernet uses an "xx Base T" naming convention: 10Base-T
 - o **N**: Signaling Rate, i.e., Speed of the cable.
 - <Signaling>: Signaling Type: Baseband (Base) communication.
 - X: Type of cable (twisted pair or fiber).

Twisted Pair Standards

Cat	Network Type	Ethernet Standard	Speed	Max. Distance
Cat 3	Ethernet	10Base-T	10Mbps	100 meters
Cat 5	Fast Ethernet	100Base-TX	100Mbps	100 meters
Cat 5e	Gigabit Ethernet	1000Base-T	1Gbps	100 meters
Cat 6	Gigabit Ethernet 10 Gigabit Ethernet	1000Base-T 10GBase-T	1Gbps 10Gbps	100 meters 55 meters
Cat 6a	10 Gigabit Ethernet	10GBase-T	10Gbps	100 meters
Cat 7	10 Gigabit Ethernet	10GBase-T	10Gbps	100 meters

Cat: Copper Cabling Standard.

Coaxial Cabling

Coaxial Cable

- Antiquated technology used in the 1980s. Coaxial cables are rarely used today, except for cable modem connections.
- Categorized as Radio Grade (RG)
 - o **RG-6**: Used for modern cable TV and broadband cable modems.
 - o **RG-8**: Used in early 10Base5 "Thick-net" Ethernet networks.
 - o **RG-58**: Used in early 10Base2 "Thin-net" Ethernet networks.
 - o **RG-59**: Used for closed-circuit TV (CCTV) networks
- Metallic shield helps protect against electromagnetic interference (EMI)

Coaxial Cable Connectors

F-Connector

- Screw-on connection
- RG-6 Cable TV and Broadband Cable Applications.

BNC Connector

- Tension spring twist-on connection
- RG-8 "Thick-net" and RG-58 "Thinnet" network applications.

Twisted Pair Copper Network Cabling

Twisted Pair Copper Cabling

- 4 Twisted Pairs of Wires with RJ-45 Connector
- Balanced pair operation
 - o + & Signals
 - Equal & Opposite Signal
- Why are they twisted?
 - o To Help Reduce Interference
 - Crosstalk
 - Noise (Electromagnetic Interference)
- Security concerns
 - Signal Emanations
- 100 Meters Maximum Distance
 - Signal Attenuation

Shielded vs. Unshielded & EMI

Unshielded Twisted Pair (UTP)

 More susceptible to electromagnetic interference (EMI).

Shielded Twisted Pair (STP)

 Less susceptible to EMI & Crosstalk (if each pair shielded).

Electromagnetic Interference

 The disruption of an electronic device's operation when it's in the vicinity of an electromagnetic field caused by another electronic device (manufacturing equipment, microwave ovens, etc.).

Roles of Twists

- Increased twists per inch:
 - Reduces Crosstalk
 - Increases Signals
 - Supports Faster Speeds

Twisted Pair Standards

Cat	Network Type	Ethernet Standard	Speed	Max. Distance	Frequency
Cat 3	Ethernet	10Base-T	10Mbps	100 meters	16 MHz
Cat 5	Fast Ethernet	100Base-TX	100Mbps	100 meters	100 MHz
Cat 5e	Gigabit Ethernet	1000Base-T	1Gbps	100 meters	100 MHz
Cat 6	Gigabit Ethernet 10 Gigabit Ethernet	1000Base-T 10GBase-T	1Gbps 10Gbps	100 meters 55 meters	250 MHz
Cat 6a	10 Gigabit Ethernet	10GBase-T	10Gbps	100 meters	500 MHz
Cat 7	10 Gigabit Ethernet	10GBase-T	10Gbps	100 meters	600 MHz

Cat: Copper Cabling Standard.

Other Copper Cable Connectors

RJ-11

 4-pin connection used for telephone connections.

DB-25

 25-pin connection previously commonly used for serial printer connections.

DB-9

 9-pin connection used for serial connections on networking devices

Wiring Standards: 568A & 568B and Cable Types

TIA/EIA 568A & 568B Wiring Standards

- Industry-standard that specifies the pin arrangement for RJ-45 connectors.
- Two Standards:
 - 568A & 568B
- 568B is newer and the recommended standard.
- Either can be used.
- Why are standards important?
 - Lower Costs
 - Increase Interoperability
 - Easier Maintenance

TIA/EIA 568A

TIA/EIA 568B

TIA/EIA 568B

Straight-Through & Crossover Cables

Straight-Through Cable

- Connecting "Unlike" Devices
 - Computer to Switch
 - Switch to Router

TIA/EIA 568B

Crossover Cable

- Connecting "Like" Devices
 - o Router to Router
 - Computer to Computer

TIA/EIA 568A

TIA/EIA 568B

Which Twisted Pairs Are Used?

Ethernet & Fast Ethernet

Cat 3 and Cat 5

Only Green and Orange Pairs Used:

- Pins 1, 2, 3, and 6
 - O One Pair to Transmit Data (TX)
 - O One Pair to Receive Data (RX)

Gigabit & 10 Gigabit Ethernet

Cat 5e & Faster

All Four Pairs Used:

 Supports bi-directional data transmission on each pair of wires.

InstructorAlton.com

Plenum-Rated Cabling

The Plenum

- The plenum is the open space above the ceiling or below a raised floor.
- A "plenum space" is the part of a building that enables air circulation by providing pathways for heated/air-conditioned and return airflows at a higher pressure than normal.
- All network cabling placed in the plenum should be "plenum-rated."

Non-Plenum-Rated & Fire Hazard

- Non-plenum cable or polyvinyl chloride (PVC) cable is often much less expensive than plenum-rated cable.
- When PVC burns or smolders, it releases toxic fumes into the air (Hydrochloric Acid and Dioxin).
- The plenum air return would unknowingly circulate toxic air throughout an office.
- Sprinkler systems typically can't access the plenum area.
- Building codes often require Plenum Rated cable installed through any plenum space.

Plenum-Rated Cables

- Plenum-rated cables have a special insulation that has low smoke, low flame and non-toxic characteristics.
- Coated with nonflammable materials that minimize toxic fumes:
 - o Teflon
 - Fluorinated ethylene polymer (FEP)
 - Low-Smoke PVC

Fiber Optic Network Cabling

Fiber Optic Cabling

- Glass or plastic fiber that carries light (photons)
 - High Bandwidth: Photons travel faster than electrons.
 - Long Distances: Less attenuation.
 - Immune to Electromagnetic Interference (EMI)
 - Doesn't Emanate Signals
- Two Types
 - Multi-mode Fiber (MMF)
 - Shorter Distances (LAN / Building-to-Building)
 - Up to 2 Kilometers
 - Single-mode Fiber (SMF)
 - More expensive than multi-mode
 - Longer Distances (WAN / Across Town)
 - Up to 200 Kilometers

MMF versus SMF

Multi-Mode Fiber (MMF)

- Many photons of light travel through the cable at once, and bounce off the walls, which reduces the distance and speed.
- Larger Core: 50 to 62.5 microns

Single-Mode Fiber (SMF)

- A single direct photon of light travels through the cable, which allows greater distances and speed.
- **Smaller Core**: 8 to 10 microns

Fiber Optic Cable Connectors

Lucent Connector (LC)

- Small form-factor design that has a flange on the top, similar to an RJ-45 connector.
- Commonly used in MMF & SMF gigabit and 10-gigabit Ethernet networks.

Straight Tip (ST)

- BNC style connector with a half-twist bayonet locking mechanism.
- Was used in MMF networks but not commonly used anymore.

Subscriber Connector (SC)

- Square connector that uses a push-pull connector similar to A/V equipment.
- Commonly used in MMF & SMF gigabit Ethernet networks.

Mech. Transfer Register Jack (MTRJ)

- Similar to the RJ-45 connector, and houses two fiber optics cables.
- Designed for MMF networks.

Why use Fiber?

- Fiber cable is more expensive than twisted pair, as is the equipment
- But you can perform much longer network cable runs with fiber.
 - o 100m versus up to 200 Kilometers
- So you have decreased network equipment costs
 - o Switches, routers, etc.
- Plus fiber is:
 - Immune to EMI and signal emanations
 - Has lower signal attenuation
 - Making it more reliable and secure
- Costs are steadily decreasing as more people adopt fiber

Networking Cable Selection Criteria

Cable Selection Criteria

Cost Constraints

What is your budget?

Transmission Speed Requirements

- How fast does your network need to be?
- 10Mbps, 100Mbps, 1Gbps, 10Gbps?

Distance Requirements

- Electrical signals degrade relatively quickly (100 meters)
- Fiber can transmit over long distances

Noise & Interference Immunity (Crosstalk, EMI, Security)

• Interference is all around us: power cables, microwaves, mobile phones, motors, etc.