HIM # 3

(1) D) A
$$\{x \ln 3\} = 2x \ln 3 - 1$$

Linear Systems

(2) Systems

(3) System A - A $\{x \ln 3\} = 2x \ln 3 - 1$

A $\{x \ln 3\} = 2x \ln 3$

A $\{x \ln 3\} = 2x \ln 3$

(3) System A - A $\{x \ln 3\} = 2x \ln 3 - 1$

A $\{x \ln 3\} = 2(\ln x \ln 3) - 1$

= $\{x \ln 3 - 1\} \neq \{(x \ln 3 - 1)\} = 2x \ln 3 + 3x \ln 3 = 2 \cdot 2x \ln 3 = 2 \cdot 2x \ln 3 = 2 \cdot 2x \ln 3 = 2x \ln 3$

Fails homogeneity - not linear

System B: B $\{x \ln 3\} = 0.5(x \ln 3) = 2x \ln 3$

B $\{x \ln 3\} = 0.5(x \ln 3) = 2x \ln 3$

B $\{x \ln 3\} + x \ln 3\} = 2x \ln 3$

B $\{x \ln 3\} + x \ln 3\} = 2x \ln 3$

System B: passes both = 0. Invar

System B: passe

(a)
$$f(t) = a \delta(t-t_0)$$
(b) $\delta(n) = [1000000]^T$
 $y(n) = s[x in] = 0.5x [n-2]$
(c) $F(f) = \int_{R^0}^{R^0} a \delta(t-t_0)e^{j2\pi t} dt$
(d) $F(f) = \int_{R^0}^{R^0} a \delta(t-t_0)e^{j2\pi t} dt$
(e) $F(f) = \int_{R^0}^{R^0} a \delta(t-t_0)e^{j2\pi t} dt$
(f) $F(f) = \int_{R^0}^{R^0} a \delta(t-t_0)e^{j2\pi t} dt$
(g) $F(f) = \int_{R^0}^{R^0} a \delta(t-t_0)e^{j2\pi t} dt$
(h) $F(f) = \int_{R$

