Introduction to Periodic Motion

$$\omega = \frac{2\pi}{T}$$

Assume no "extra forces"

$$F_f = 0$$

$$F_A = 0$$

$$\sum \vec{F} = \vec{F}_S = m\vec{a}$$

$$\boxed{-k\Delta\vec{x} = m\vec{a}}$$

$$\boxed{\vec{a} = -\frac{k}{m}\Delta\vec{x}}$$

Cannot use kinematic eqns, $\vec{a} \neq \text{constant}$

$$\vec{a} = \frac{d^2 \vec{x}}{dt^2}$$

$$-k\Delta \vec{x} = m\frac{d^2\vec{x}}{dt^2}$$

Gives back original fxn with (-) after 2 derivatives:

$$x(t) = A\sin\left(\omega t\right)$$

$$x(t) = A\cos\left(\omega t\right)$$

$$\frac{dx}{dt} = A\omega\cos\left(\omega t\right)$$

$$\frac{d^2x}{dt^2} = A\omega - \sin(\omega t)\,\omega$$

$$\frac{d^2x}{dt^2} = -A\omega^2 \sin\left(\omega t\right)$$

$$-k\Delta x = m\frac{d^2x}{dt^2}$$

$$-k \left[A \sin \left(\omega t \right) \right] = m \left[-A \omega^2 \sin \left(w t \right) \right]$$

$$k = m\omega^2$$

$$\omega = \sqrt{\frac{k}{m}} = \frac{2\pi}{T}$$

Spring system, max Δx , t = 0, v = 0

$$x(t) = A\sin(\omega t)$$

$$x(0) = x_{\text{max}} = A\sin\left(\omega \cdot 0\right)$$

 $x_{\text{max}} = 0$, doesn't make sense for sin!

$$x(t) = A\cos\left(\omega t\right)$$

$$x(0) = x_{\text{max}} = A\cos\left(\omega \cdot 0\right)$$

 $x_{\text{max}} = A$, does make sense for cos!

Spring system, equilibrium, $v \neq 0$, t = 0, x = 0

$$x(t) = A\sin\left(\omega t\right)$$

$$x(0) = A\sin(0)$$

$$0 = 0$$

Spring system, some amplitude but not full, $\frac{A}{2}$

 $x(t) = A \sin(\omega t + \phi)$, ϕ is a phase shift

$$x(0) = \frac{A}{2} = A\sin(\omega \cdot 0 + \phi)$$

$$\frac{1}{2} = \sin\left(\phi\right)$$

$$\phi = \frac{\pi}{6}$$
 rad