RGPVONLINE.COM

Total No. of Questions:5]

[Total No. of Printed Pages: 4

Roll No

MCA - 102

MCA. I Semester

Examination, June 2016

Mathematical Foundation of Computer Science

Time: Three Hours

Maximum Marks: 70

- Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each question are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max, 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.

Unit - I

RGPVONLINE.COM

- 1. a) If $A = \{x : 1 < x < 4, x \in I\}$ and $B = \{x : 2 < x < 7, x \in I\}$ then write $A \cap B$ and $A \cup B$.
 - b) Explain the principle of inclusion and exclusion.
 - c) Show that the relation $R = \{(a, b) : a, b \in I \text{ and } a-b \text{ is divisible by 3} \}$ is an equivalence relation.
 - d) Prove using the mathematical induction that $5^{2n}-1$ is divisible by 24, where n is any positive integer.

OR

If $f: X \rightarrow Y$ is one-one and onto, then prove that $f^{-1}: Y \rightarrow X$ is also one-one and onto.

RGPVONLINE.COM

[2]

Unit - II

- 2. a) Prove that $(p \land q) \rightarrow (p \lor q)$ is a tautology.
 - b) Prove that the statements $(p \lor q)$ and $(\sim p \land \sim q)$ are contradictory to each other.
 - c) Show that the relation \subseteq is a partial order relation on the set of all integers.
 - d) Prove that every chain is a distributive lattice.

OR

Express the function

f(x, y, z) = x.y + x.z + x.y

into disjunctive normal form.

Unit - III

- 3. a) Define:
 - i) Groupoid

RGPVONLINE.COM

- ii) Semi group
- iii) Monoid
- iv) Finite and infinite group
- b) Define:
 - i) Sub-group
 - ii) Sub-ring
- c) Show that the inverse of every element of a group is unique.
- d) Show that the set of numbers of the form $a+b\sqrt{2}$ with a and b as rational numbers is a field.

[3]

Show that the set of four fourth roots of unity namely (1, -1, i, -i) forms an abelian group with respect to multiplication.

Unit - IV

- 4. a) Define with example:
 - i) Complete graph
 - ii) Bipartite graph
 - b) Define:
 - i) Tree
 - ii) A spanning tree
 - iii) Regular graph
 - iv) Isolated vertex
 - c) Show that every connected graph has at least one spanning tree.
 - d) Find the minimum spanning tree for the weighted graph:

OR

Show that in any graph, the number of vertices of odd degree is always even.

Unit - V

- 5. a) Define sum and multiplication of two discrete numeric functions.
 - b) Define generating function and write the generating function A(z) of the numeric function $a_r = 3^r$.
 - c) Determine the discrete numeric function to the generating function

$$A(z) = \frac{2}{1 - 4z^2}$$

d) Solve the recurrence relation

$$a_r - 4a_{r-1} + 4a_{r-2} = (r+1)^2, r \ge 2$$

Solve the recurrence relation:

$$a_r - 6a_{r-1} + 8a_{r-2} = 0$$
, given $a_0 = 3$, $a_1 = 2$.

RGPVONLINE.COM