$$E := 210000$$
 $G := 81000$

$$b := 100$$
 $h := 100$

$$A := b \cdot h \qquad ks := 1, 2$$

$$L := 5000$$
 $I := \frac{b \cdot h^3}{12}$ $nE1 := 10$ $nEdof := 6$

nNodes := nEl + 1 = 11

$$11 := \frac{L}{nE1} = 500$$

$$qx := 0$$

$$qy := -1$$

$$Ke \; (x1\;; y1\;; x2\;; y2\;; b\;; h\;; E\;; G) \coloneqq A \coloneqq b \cdot h \\ b0 \coloneqq x2 - x1 \\ b1 \vDash y2 - y1 \\ 7 \coloneqq \frac{b \cdot h^3}{12} \\ ks \coloneqq 1,2 \\ L \coloneqq \frac{b0 \cdot 2 + b1^2}{G \cdot A \cdot L^2} \times s \\ m0 \coloneqq \frac{b0}{L} \\ m1 \coloneqq \frac{b1}{L} \\ \begin{bmatrix} \frac{A \cdot E}{L} & 0 & 0 & \frac{(-A) \cdot E}{L} & 0 \\ 0 & \frac{12 \cdot E \cdot I}{(1+m) \cdot L^3} & \frac{6 \cdot E \cdot I}{(1+m) \cdot L} & 0 & \frac{(-12) \cdot E \cdot I}{(1+m) \cdot L^3} & \frac{6}{(1+m) \cdot L^2} \\ 0 & \frac{6 \cdot E \cdot I}{(1+m) \cdot L^2} & \frac{4 \cdot E \cdot I}{(1+m) \cdot L} \cdot \left(1 + \frac{m}{4}\right) & 0 & \frac{(-6) \cdot E \cdot I}{(1+m) \cdot L^2} & \frac{2 \cdot E \cdot I}{(1+m) \cdot L^3} \\ E1 \coloneqq \begin{bmatrix} \frac{(-A) \cdot E}{L} & 0 & 0 & \frac{A \cdot E}{L} & 0 & 0 \\ \frac{(-12) \cdot E \cdot I}{(1+m) \cdot L^2} & \frac{(-6) \cdot E \cdot I}{(1+m) \cdot L^2} & 0 & \frac{12 \cdot E \cdot I}{(1+m) \cdot L^3} & \frac{(-6) \cdot E$$

fle (x1; y1; x2; y2; qx; qy):=
$$b0 := x2 - x1$$

$$b1 := y2 - y1$$

$$L := \sqrt{b0^2 + b1^2}$$

$$\begin{cases} \frac{L \cdot qx}{2} \\ \frac{L \cdot qy}{2} \end{cases}$$

$$f := \begin{cases} \frac{qy \cdot L^2}{12} \\ \frac{L \cdot qx}{2} \\ \frac{L \cdot qx}{$$

for
$$i \in [1..nNodes]$$
Nodes $i := (i-1) \cdot 11$

$$Nodes = \begin{bmatrix} 0 & 0 \\ 500 & 0 \\ 1000 & 0 \\ 1500 & 0 \\ 2000 & 0 \\ 2500 & 0 \\ 3000 & 0 \\ 3500 & 0 \\ 4000 & 0 \\ 4500 & 0 \\ 5000 & 0 \end{bmatrix}$$

for
$$i \in [1..nE1]$$

for $j \in [1..6]$
edof $:=(i-1)\cdot 3+j$

$$edof = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 8 & 9 & 10 & 11 & 12 \\ 10 & 11 & 12 & 13 & 14 & 15 \\ 13 & 14 & 15 & 16 & 17 & 18 \\ 16 & 17 & 18 & 19 & 20 & 21 \\ 19 & 20 & 21 & 22 & 23 & 24 \\ 22 & 23 & 24 & 25 & 26 & 27 \\ 25 & 26 & 27 & 28 & 29 & 30 \\ 28 & 29 & 30 & 31 & 32 & 33 \end{bmatrix}$$

```
nDof := edof \\ nE1 \ 6 = 33
assemk \ (KK; \ K; \ edofe \ ) := \begin{vmatrix} for & i \in [1 ... nEdof] \\ for & j \in [1 ... nEdof] \\ KK & edofe & edofe \ j \end{vmatrix} := KK \\ edofe & edofe \ j \end{vmatrix} + K \\ assemf \ (fl; \ fle; \ edofe \ ) := \begin{vmatrix} for & i \in [1 ... nEdof] \\ fl & edofe \ i \end{vmatrix} + fle \\ i & fl \end{vmatrix}
```

```
genK := K := matrix (nDof; nDof)
for i \in [1..nE1]
KKe := Ke (Nodes i ; Nodes i ; Nodes i + 11; Nodes i + 12; b; h; E; G)
edofe := edof [i..i][1..6]
K := assemk (K; KKe; edofe)
```

	4,2.10	0	0	-4,2·10 ⁶	0	0	0	0
genK =	0	1,4941.10 5	3,7352·10 ⁷	0	-1,4941·10 ⁵	3,7352·10 ⁷	0	0
	0	3,7352·10 ⁷	1,2838·10	0	-3,7352·10 ⁷	5,8379·10 ⁹	0	0
	-4,2·10 ⁶	0	0	8,4.106	0	0	-4,2·10 ⁶	0
	0	$-1,4941\cdot 10^5$	-3 ,7352·10 7	0	2,9881·10 ⁵	0	0	-1 , 4941·10
	0	3,7352·10 ⁷			0			
	0	0	0	-4,2·10 ⁶	0	0	8,4.106	0
	0	0	0	0	-1,4941·10 ⁵	-3,7352·10 ⁷	0	2,9881.10
	0	0	0	0	3,7352·10 ⁷	5,8379·10 ⁹	0	0
	0	0	0	0	0	0	-4,2·10 ⁶	0
	0	0	0	0	0	0	0	-1 , 4941·10
	0	0	0	0	0	0	0	3,7352·10 ⁷
							:	

```
kmax := \begin{vmatrix} km := 0 \\ \text{for } i \in [1..nDof] \\ \text{if } km < genK \\ \text{ii} \\ km := genK \\ \text{ii} \\ \text{else} \\ km := km \\ km \end{vmatrix}
c := kmax \cdot 1000000 = 2,5676 \cdot 10^{16}
bc := \text{matrix} (nDof; 2)
for i \in [1..nDof]
bc := i
```

Boundary condition: bc = 1 bc = 1 bc nDof - 1 2 = 1

 $\mathit{Kbc} := \mathit{genK}$

for
$$i \in [1..nDof]$$

if $bc = 1$
 $i2$
 $Kbc := Kbc + c$

else

continue

 Kbc

	1				0			
					-1,4941·10 ⁵			
	0	3,7352·10 ⁷	1,2838·10	0	-3,7352·10 ⁷	5,8379·10 ⁹	0	0
	-4,2·10 ⁶	0	0	8,4.106	0	0	-4,2·10 ⁶	0
					2,9881·10 ⁵			
Kbc =	0	3,7352·10 ⁷	5,8379·10 ⁹	0	0	2,5676·10 10	0	-3,7352·1
					0			
	0				-1,4941·10 ⁵			
	0				3,7352·10 ⁷			
	0	0	0	0	0	0	-4,2·10 ⁶	0
	0	0	0	0	0	0	0	-1,4941·1
	0	0	0	0	0	0	0	3 , 7352·10
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

Loads:

f := genFl

$$EI := E \cdot I = 1,75 \cdot 10^{12}$$
 $GAK := G \cdot A \cdot ks = 9,72 \cdot 10^{8}$

$$\alpha := \frac{EI}{GAK} = 1800,4115$$

$$C := \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 6 \cdot \alpha & 0 & 0 & 1 & 0 \\ L & 0 & 0 & 1 & 0 & 0 \\ 0 & L^{3} & L^{2} & 0 & L & 1 \\ 0 & 3 \cdot \left(L^{2} + 2 \cdot \alpha\right) 2 \cdot L & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 10802, 4691 & 0 & 0 & 1 & 0 \\ 5000 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1,25 \cdot 10^{11} & 2,5 \cdot 10^{7} & 0 & 5000 & 1 \\ 0 & 7,5011 \cdot 10^{7} & 10000 & 0 & 1 & 0 \end{bmatrix}$$

$$invC := invert(C) = \begin{bmatrix} -0,0002 & 0 & 0 & 0,0002 & 0 \\ 0 & 1,5986 \cdot 10^{-11} & 3,9965 \cdot 10^{-8} & 0 & -1,5986 \cdot 10^{-11} \\ 0 & -1,199 \cdot 10^{-7} & -0,0004 & 0 & 1,199 \cdot 10^{-7} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & -1,7269 \cdot 10^{-7} & 0,9996 & 0 & 1,7269 \cdot 10^{-7} \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

for
$$i \in [1..nEl]$$

for $j \in [1..6]$
ed $ij = u$
 $edof$
 ij

$$ed = \begin{bmatrix} 0 & -9,7368 \cdot 10^{-14} & -0,003 & 0 & -1,4615 & -0,0028 \\ 0 & -1,4615 & -0,0028 & 0 & -2,7649 & -0,0024 \\ 0 & -2,7649 & -0,0024 & 0 & -3,7851 & -0,0017 \\ 0 & -3,7851 & -0,0017 & 0 & -4,433 & -0,0009 \\ 0 & -4,433 & -0,0009 & 0 & -4,6549 & -5,5436 \cdot 10^{-17} \\ 0 & -4,6549 & -5,5436 \cdot 10^{-17} & 0 & -4,433 & 0,0009 \\ 0 & -4,433 & 0,0009 & 0 & -3,7851 & 0,0017 \\ 0 & -3,7851 & 0,0017 & 0 & -2,7649 & 0,0024 \\ 0 & -2,7649 & 0,0024 & 0 & -1,4615 & 0,0028 \\ 0 & -1,4615 & 0,0028 & 0 & -9,7368 \cdot 10^{-14} & 0,003 \end{bmatrix}$$

$$m := m \text{ (Nodes; b; h; E; G; ed)} = \begin{bmatrix} 0 \\ -9,7368 \cdot 10^{-14} \\ -0,003 \\ 0 \\ -1,4615 \\ -0,0028 \end{bmatrix} \begin{bmatrix} 0 \\ -1,4615 \\ -0,0028 \\ 0 \\ -2,7649 \\ -0,0024 \end{bmatrix} \begin{bmatrix} 0 \\ -2,7649 \\ -0,0024 \\ 0 \\ -3,7851 \\ -0,0017 \end{bmatrix} \begin{bmatrix} 0 \\ -4,433 \\ -0,0009 \\ -4,433 \\ -0,0009 \end{bmatrix} \dots$$

```
|M1 := matrix(nEl; 1)
  M2 := matrix (nEl; 1)
  V1 := matrix (nEl; 1)
  V2 := matrix (nEl; 1)
                            L := \sqrt{\left(\frac{\text{Nodes}}{\text{i} + 11} - \text{Nodes}}{\text{i} + 1}\right)^2 + \left(\frac{\text{Nodes}}{\text{i} + 12} - \text{Nodes}}{\text{i} + 2}\right)^2}
                       fle := fle (Nodes ; Nodes ; Nodes i+11; Nodes i+12; qx; qy)
                      M1_{\underline{i}} := \left( -\left( \left( \frac{1}{1+co} \right) \cdot \left( \frac{6 \cdot E \cdot I}{L^2} \right) \cdot v1 + \left( \frac{E}{1+co} \cdot 4 \cdot \frac{I}{L} \cdot \left( 1 + \frac{co}{4} \right) \right) \cdot t1 + \left( -\frac{E}{1+co} \right) \cdot 6 \cdot \frac{I}{L^2} \cdot v2 + \left( \left( \frac{E}{1+co} \right) \cdot 2 \cdot \frac{I}{L} \cdot \left( 1 - \frac{E}{1+co} \right) \cdot \frac{1}{L^2} \cdot v2 \right) \cdot \frac{I}{L^2} \cdot v2 + \left( \frac{E}{1+co} \cdot 4 \cdot \frac{I}{L^2} \cdot v2 + \frac{I}{L^2} \cdot v2 \right) \cdot \frac{I}{L^2} \cdot v2 + \frac{I}
     M2_{i} := \left(\frac{1}{1+co}\right) \cdot \left(\frac{6 \cdot E \cdot I}{L^{2}}\right) \cdot v1 + \left(\frac{E}{1+co} \cdot 2 \cdot \frac{I}{L} \cdot \left(1 - \frac{co}{2}\right)\right) \cdot t1 + \left(\frac{-E}{1+co}\right) \cdot 6 \cdot \frac{I}{L^{2}} \cdot v2 + \left(\left(\frac{E}{1+co}\right) \cdot 4 \cdot \frac{I}{L} \cdot \left(1 + \frac{co}{4}\right)\right)
V1_{i} := \left(\frac{1}{1+co}\right) \cdot \left(\frac{12 \cdot E \cdot I}{L^{3}}\right) \cdot v1 + \left(\frac{E}{1+co} \cdot 6 \cdot \frac{I}{L^{2}}\right) \cdot t1 + \left(-\frac{E}{1+co}\right) \cdot 12 \cdot \frac{I}{L^{3}} \cdot v2 + \left(\left(\frac{E}{1+co}\right) \cdot 6 \cdot \frac{I}{L^{2}}\right) \cdot t2 - f1e
V1_{i} := \left(\frac{1}{1+co}\right) \cdot \left(\frac{12 \cdot E \cdot I}{L^{3}}\right) \cdot v1 + \left(\frac{E}{1+co} \cdot 6 \cdot \frac{I}{L^{2}}\right) \cdot t1 + \left(-\frac{E}{1+co}\right) \cdot 12 \cdot \frac{I}{L^{3}} \cdot v2 + \left(\left(\frac{E}{1+co}\right) \cdot 6 \cdot \frac{I}{L^{2}}\right) \cdot t2 - f1e
                        |V2|_{\mathtt{i}} := -\left[\left(\frac{-1}{1+co}\right) \cdot \left(\frac{12 \cdot E \cdot I}{1+co}\right) \cdot v1 + \left(\frac{-E}{1+co} \cdot 6 \cdot \frac{I}{L^2}\right) \cdot t1 + \left(\frac{E}{1+co}\right) \cdot 12 \cdot \frac{I}{L^3} \cdot v2 + \left[\left(\frac{-E}{1+co}\right) \cdot 6 \cdot \frac{I}{L^2}\right] \cdot t2 - f1e^{-5} \right]
```

M1 =	$\begin{bmatrix} 3,7575 \cdot 10^{-7} \\ 1,125 \cdot 10^{6} \\ 2 \cdot 10^{6} \\ 2,625 \cdot 10^{6} \\ 3 \cdot 10^{6} \\ 3,125 \cdot 10^{6} \\ 3 \cdot 10^{6} \\ 2,625 \cdot 10^{6} \\ 2,625 \cdot 10^{6} \\ 1,125 \cdot 10^{6} \end{bmatrix}$	M2 =	1,125·10 ⁶ 2·10 ⁶ 2,625·10 ⁶ 3·10 ⁶ 3,125·10 ⁶ 3·10 ⁶ 2,625·10 ⁶ 2,625·10 ⁶ 2,125·10 ⁶ 1,125·10 ⁶ 2,7927·10 ⁻⁷	V1 =	2500 2000 1500 1000 500 1,2711·10 -500 -1000 -1500 -2000	V2 =	2000 1500 1000 500 -8,1346·10 -500 -1000 -1500 -2000 -2500	
------	--	------	---	------	---	------	---	--