Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Introduction to ML strategy

Why ML Strategy?

Motivating example

90%

Ideas:

- Collect more data
- Collect more diverse training set
- Train algorithm longer with gradient descent
- Try Adam instead of gradient descent
- Try bigger network
- Try smaller network

- Try dropout
- Add L_2 regularization
- Network architecture
 - Activation functions
 - # hidden units
 - •

Andrew Ng

Introduction to ML strategy

Orthogonalization

TV tuning example

Orthogonlization

Chain of assumptions in ML

Setting up your goal

Single number evaluation metric

Using a single number evaluation metric

Another example

	2	V	V	V	
Algorithm	US	China	India	Other	
A	3%	7%	5%	9%	
В	5%	6%	5%	10%	
\mathbf{C}	2%	3%	4%	5%	
D	5%	8%	7%	2%	
E	4%	5%	2%	4%	
F	7%	11%	8%	12%	

Setting up your goal

Satisficing and optimizing metrics

Another cat classification example

optimizing		/	Soutisfi
Classifier	Accuracy	Running tir	
A	90%	$80 \mathrm{ms}$	
В	92%	$95 \mathrm{ms}$	<
C	95%	$1,500 \mathrm{ms}$	
moximize	accuracy		
Suggeon to	running Times	100 MS.	
N metrico:	1 optimizing	5	
	N-1 Sortisfici	· - \chi	

Wakewords Trigger words Alexa, Ok Googh. Hey Siri, nihoobaiden 你好百度 accuray. # False positive

Setting up your goal

Train/dev/test distributions

Cat classification dev/test sets

Lovelopmit sot, hold out cross voludarin corp

Regions:

- US
- UK
- Other Europe
- South America
- India
- China
- Other Asia
- Australia

dev set + Metric

True story (details changed)

Optimizing on dev set on loan approvals for medium income zip codes

A x -> y (repay loa?)

Tested on low income zip codes

Guideline

Some distribution

Choose a dev set and test set to reflect data you expect to get in the future and consider important to do well on.

Setting up your goal

Size of dev and test sets

Old way of splitting data

Size of dev set

A B

Set your dev set to be big enough to detect differences in algorithm/models you're trying out.

Size of test set

→ Set your test set to be big enough to give high confidence in the overall performance of your system.

Setting up your goal

When to change dev/test sets and metrics

Cat dataset examples

Motore + Der: Prefer A. Youlusons: Prefer B.

→ Metric: classification error

Algorithm A: 3% error

bornodrobyic

/ Algorithm B: 5% error

Orthogonalization for cat pictures: anti-porn

→ 1. So far we've only discussed how to define a metric to evaluate classifiers. - Place togt to

→ 2. Worry separately about how to do well on this metric.

Another example

Algorithm A: 3% error

✓ Algorithm B: 5% error ←

→ User images

If doing well on your metric + dev/test set does not correspond to doing well on your application, change your metric and/or dev/test set.

Comparing to human-level performance

Why human-level performance?

Comparing to human-level performance

Why compare to human-level performance

Humans are quite good at a lot of tasks. So long as ML is worse than humans, you can:

- \rightarrow Get labeled data from humans. (x, y)
- Gain insight from manual error analysis: Why did a person get this right?
- → Better analysis of bias/variance.

Comparing to human-level performance

Avoidable bias

Bias and Variance

Bias and Variance

Cat classification

Training set error:

Dev set error:

high vortone high bies high bies low bies high vorione low vorione

Cat classification example

Comparing to human-level performance

Understanding human-level performance

Human-level error as a proxy for Bayes error

Medical image classification example:

Suppose:

(c) Experienced doctor 0.7 % error

 \rightarrow (d) Team of experienced doctors .. 0.5 % error \leftarrow

What is "human-level" error?

Baye enor 5 0.50/3

Error analysis example

Training error

Dev error

Summary of bias/variance with human-level performance

Human-level error

Training error

Dev error

Comparing to human-level performance

Surpassing humanlevel performance

Surpassing human-level performance

Team of humans

○ · S ∘/₀

One human

0-1

Training error

70.6%

Dev error

5.80/5

What is avoidable bios?

Problems where ML significantly surpasses human-level performance

- -> Online advertising
- -> Product recommendations
- -> Logistics (predicting transit time)
- → Loan approvals

```
Structul dorta
Not Notenh perception
Lots of dorta
```

```
- Speech recognition
- Some inoge recognition
- Medul
- ECG, Skin censor,...
```


Comparing to human-level performance

Improving your model performance

The two fundamental assumptions of supervised learning

1. You can fit the training set pretty well.

n Aroidable bios

2. The training set performance generalizes pretty well to the dev/test set.

Reducing (avoidable) bias and variance

Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Error Analysis

Carrying out error analysis

Look at dev examples to evaluate ideas

> 10% occuraç

Should you try to make your cat classifier do better on dogs?

Error analysis:

- 5 Get ~100 mislabeled dev set examples.
- · Count up how many are dogs.

Evaluate multiple ideas in parallel

Ideas for cat detection:

- Fix pictures of dogs being recognized as cats <-
- Fix great cats (lions, panthers, etc..) being misrecognized <

• Improve performance on blurry images —

Image	Dog	Great Cats	Plury	Instagram	Comments
1	/			✓	Pitbull
2			/	V	
3		\checkmark	V		Rainy day at 200
:	:	· · · /	;	K	
% of total	8 %	(430/2)	6/º/0	12%	
		~	←	_	

Error Analysis

Cleaning up Incorrectly labeled data

Incorrectly labeled examples

DL algorithms are quite robust to random errors in the training set.

Systematic errors

Andrew Ng

Error analysis

•	Image	Dog	Great Cat	Blurry	Incorrectly labeled	Comments				
\uparrow	•••									
	98				\checkmark	Labeler missed cat in background	\leftarrow			
	99		✓							
\bigcup	100				\bigcirc	Drawing of a cat; Not a real cat.	\leftarrow			
	% of total	8%	43%	$\underline{61\%}$	6%	V				
Overall dev set error 2%										
Errors due incorrect labels 0.6°/. 6.6°/.										
Errors due to other causes 9.4% 1.4%										
				1		2.10/0	1.9./6			

Goal of dev set is to help you select between two classifiers A & B.

Correcting incorrect dev/test set examples

- Apply same process to your dev and test sets to make sure they continue to come from the same distribution
- Consider examining examples your algorithm got right as well as ones it got wrong. (2)
- Train and dev/test data may now come from slightly different distributions.

Error Analysis

Build your first system quickly, then iterate

Speech recognition example

- → Noisy background
 - Café noise
 - → Car noise
- Accent Guideline:

Young Build your first Stutter system quickly, then iterate

- → Set up dev/test set and metric
 - Build initial system quickly
 - Use Bias/Variance analysis & Error analysis to prioritize next steps.

Mismatched training and dev/test data

Training and testing on different distributions

Cat app example

Data from webpages

Data from mobile app

(mr. 792'000

Andrew Ng

Speech recognition example

Training

Purchased data ×y

Smart speaker control

Voice keyboard

... 500,000 utbrances

Dev/test

Speech activated rearview mirror

deeplearning.ai

Mismatched training and dev/test data

Bias and Variance with mismatched data distributions

Cat classifier example

Assume humans get $\approx 0\%$ error.

Training error

Dev error

10%

Training-dev set: Same distribution as training set, but not used for training

Bias/variance on mismatched training and dev/test sets

More general formulation

Reasures milror

Mismatched training and dev/test data

Addressing data mismatch

Addressing data mismatch

 Carry out manual error analysis to try to understand difference between training and dev/test sets

→ • Make training data more similar; or collect more data similar to dev/test sets

Artificial data synthesis

Car noise

"The quick brown fox jumps over the lazy dog."

Synthesized in-car audio

Artificial data synthesis

Car recognition:

Learning from multiple tasks

Transfer learning

When transfer learning makes sense

Transh from A -> B

• Task A and B have the same input x.

• You have a lot more data for $\underbrace{Task A}_{\uparrow}$ than $\underbrace{Task B}_{\checkmark}$.

• Low level features from A could be helpful for learning B.

Learning from multiple tasks

Multi-task learning

Simplified autonomous driving example

Neural network architecture

Andrew Ng

When multi-task learning makes sense

• Training on a set of tasks that could benefit from having shared lower-level features.

• Usually: Amount of data you have for each task is quite

similar. A 1,000
A, 1,000
A, 1,000
A, 1,000
A, 1,000
A, 1,000

• Can train a big enough neural network to do well on all the tasks.

End-to-end deep learning

What is end-to-end deep learning

What is end-to-end learning?

Speech recognition example

Face recognition

[Image courtesy of Baidu]

Andrew Ng

More examples

Machine translation

Estimating child's age:

End-to-end deep learning

Whether to use end-to-end learning

Pros and cons of end-to-end deep learning

Pros:

Cons:

- Let the data speak
- Less hand-designing of components needed

- May need large amount of data
- Excludes potentially useful hand-designed components

Applying end-to-end deep learning

Key question: Do you have sufficient data to learn a function of the complexity needed to map x to y?

