E6893 Big Data Analytics

NICE DRAWING

- A tool that reproduces similar looking line drawings from sketches or photos

Project ID: 201812-22

Team Members: Xueyao Li (xl2719) Yiyi Zhang (yz3280)

Agenda

- Introduction & Motivation
- Dataset
- Algorithms & Tools
- Demo
- Contributions & References

Introduction & Motivation

- Inspired by Quick, Draw! and AutoDraw developed by Google
- Explore the application of the state-of-the-art technologies toward visual art
- ❖ Make the drawing experiences easier, faster, and more fun to the general public
- Assist the creative process of professional artists and designers and help them expand imagination

Dataset

The Quick, Draw! Dataset: 50 millions of drawings across 345 categories

Categories: 15 animal categories

ant	124,612	dog	152,159	owl	169,632
bear	120,890	duck	135,480	penguin	253,791
bee	134,762	flamingo	124,569	pig	186,770
bird	133,572	frog	159,047	snail	133,757
cat	123,202	octopus	150,152	tiger	121,067

Data Size: 1.85G

Classification: 100K samples (80K training & 20K

test) per category

❖ Data Format: Numpy Bitmaps (.npy) The drawings have been rendered into a 28x28

grayscale bitmap in numpy .npy format.

Algorithms & Tools

Algorithms:

- Classification:
 - Drawings: Logistic Regression, CNN
 - Photographs: TensorFlow Image Recognition and Object Detection API
- ❖ Visualization: Use t-SNE to visualize similarities between drawings.

Tools:

Google Cloud Platform, Google Cloud Dataproc, Spark TensorFlow, TensorFlow.js, Jupyter Notebook, Google Colab, Observable Notebook, GitHub Pages

Pipeline

Demo

 Turn a (poorly) sketched digital drawing into (more aesthetically) similar looking reproductions

Contributions & References

Contributions:

- Xueyao Li: Classification (Drawings), Big Data Frameworks, Website (Github Pages)
- * Yiyi Zhang: Classification (Photographs), t-SNE Visualization, Website (Observable Notebook), Demo

References:

- The Quick, Draw! Dataset https://github.com/googlecreativelab/quickdraw-dataset
- TensorFlow Image Recognition and Object Detection API https://github.com/tensorflow/tfjs-models
- Machine Learning for Visualization https://medium.com/@enjalot/machine-learning-for-visualization-927a9dff1cab
- Deploy model on the browser using TensorFlow.js https://github.com/zaidalyafeai/zaidalyafeai.github.io/tree/master/sketcher

Thank You!