Neural Discrete Representation Learning (VQ-VAE)

VAE

Why do we quantize?

 Discrete representations are potentially a more natural fit for many of the modalities (Audio, Visions and Texts)

Data compression

Tokenization

VQ-VAE

How do we quantize?

- Map the encoder output z_e into an entry e_i of the $K \times d$ codebook (similar to K-means)
 - Calculate the distance between z_e and e_i
 - Choose the nearest entry as the input for decoder

Codebook

Straight Through Estimator

Loss Function

The resulting algorithm to be quite robust to β , as the results did not vary for values of β ranging from 0.1 to 2.0.

Representation Collapse

• For an entry e_i of the codebook,

$$\frac{\partial L}{\partial e_i} = \begin{cases} \text{not } 0, & \text{if } e_i \text{ is chosen} \\ 0, & \text{if } e_i \text{ is not chosen} \end{cases}$$

• With e_i and z_e closer and closer, only a small subset of the codebook entries will be updated.

ADDRESSING REPRESENTATION COLLAPSE IN VECTOR QUANTIZED MODELS WITH ONE LINEAR LAYER (simVQ)

Representation Collapse

- Representation Collapse:
 - the contradiction between codebook expansion and low codebook utilization in VQ models where increasing the codebook size fails to improve the performance.
 - the disjoint optimization process that updates only a subset of codebook vectors

SimVQ

- Reparameterized codebook C with $W\pi$, with $W=(w_1,w_2,...,w_d)$ and $\pi=(\pi_1,\pi_2,...,\pi_K)$
 - the optimization of the reparameterized codebook can be divided into three scenarios:
 - 1. Updating π with W frozen: The vanilla VQ is a special case of this scenario with W=I.
 - 2. Updating W with π frozen: The entire codebook $W\pi$ adjusts to the latent distribution of z_e . The basis matrix W rotates and stretches the codebook space.
 - 3. Updating both W and π : The selected subset of codes moves towards z_e while the space spanned by W undergoes simultaneous rotation and stretching.

Scenario 1: Updating π with W frozen

• For one of the entries $e_i = W\pi_i$,

$$\frac{\partial L}{\partial \pi_i} = \frac{\partial L}{\partial e_i} \frac{\partial e_i}{\partial \pi_i} = \frac{\partial L}{\partial e_i} W^T$$

Scenario 1: Updating π with W frozen

Scenario 2: Updating W with π frozen

• For one of the entries $e_i = W\pi_i$,

$$\frac{\partial L}{\partial W} = \sum_{j} \frac{\partial L}{\partial e_{j}} \frac{\partial e_{j}}{\partial W} = \sum_{j} \frac{\partial L}{\partial e_{j}} \pi_{j}^{T}$$

$$e_i^{(t+1)} = W^{(t+1)} \pi_i = \left(W^{(t)} - \eta \frac{\partial L}{\partial W^{(t)}} \right) \pi_i = e_i^{(t)} - \eta \frac{\partial L}{\partial W^{(t)}} \pi_i$$

Scenario 2: Updating W with π frozen

SimVQ

Update CW w/ Latent Basis W All Codes Active on CW

Data Representation VQ Codebook CW $f_{\theta}(x)$ Frozen

Scenario 2: Updating W with π frozen

Scenario 3: Updating both W and π

Loss Curve

Experiments

Table 1: Reconstruction performance on ImageNet-1k with a resolution of 128×128 . All models are trained using images downsampled into 16×16 tokens. † Results are reproduced using the codebook size of [8, 8, 8, 5, 5, 5] to approximately match 65, 536. + Following VQGAN-LC, we extract CLIP features with the codebook frozen.

Method	Latent dim	Codebook size	Util↑	rFID↓	LPIPS↓	PSNR↑	SSIM↑
VQGAN (Esser et al., 2021)	128	65,536	1.4%	3.74	0.17	22.20	70.6
VQGAN-EMA (Razavi et al., 2019)	128	65,536	4.5%	3.23	0.15	22.89	72.3
VQGAN-FC (Yu et al., 2022a)	128	65,536	1.4%	5.33	0.18	21.45	68.8
VQGAN-FC (Yu et al., 2022a)	8	65,536	100.0%	2.63	0.13	23.79	77.5
FSQ [†] (Mentzer et al., 2024)	16	64,000	100.0%	2.80	0.13	23.63	75.8
LFQ (Yu et al., 2024)	6	65,536	100.0%	2.88	0.13	23.60	77.2
VQGAN-LC-CLIP ⁺ (Zhu et al., 2024a)	768	65,536	100.0%	2.40	0.13	23.98	77.3
SimVQ (ours)	128	65,536	100.0%	2.24	0.12	24.15	78.4
SimVQ (ours)	128	262,144	100.0%	1.99	0.11	24.68	80.3

Ablation Study on the codebook sizes

Table 2: Ablation study on the effect of various codebook sizes on ImageNet at a resolution of 128×128 . † We directly copy the reported results of VQGAN-LC from the original paper on ImageNet 256×256 resolution.

Method	Codebook Size	Util↑	rFID↓	LPIPS↓	PSNR↑	SSIM↑
VQGAN-LC-CLIP†	50,000	99.9%	2.75	0.13	23.8	58.4
VQGAN-LC-CLIP [†]	100,000	99.9%	2.62	0.12	23.8	58.9
VQGAN-LC-CLIP†	200,000	99.8%	<u>2.66</u>	0.12	23.9	59.2
SimVQ	1,024	100.0%	3.67	0.16	22.34	70.8
SimVQ	8,192	100.0%	2.98	0.14	23.23	74.7
SimVQ	65,536	100.0%	2.24	0.12	24.15	78.4
SimVQ	262,144	100.0%	1.99	0.11	24.68	80.3

Ablation Study on the codebook optimization

Table 3: Ablation study of codebook optimization.

Initialization	Trainable	Util↑	rFID↓	LPIPS↓	PSNR↑	SSIM↑
Gaussian	Yes	100.0%	2.31	0.12	24.04	77.2
Uniform	No	100.0%	2.31	0.12	24.15	78.4
Gaussian	No	100.0%	2.24	0.12	24.15	78.4