

Ayudantía Repaso I1

26 de septiembre de 2025 Manuel Villablanca, Elías Ayaach, Caetano Borges

1. Lógica proposicional

Recuerde que una cláusula es una disyunción de literales, y un literal es una variable o su negación. Demuestre que para todo par de cláusulas C_1 y C_2 , y todo literal ℓ se cumple:

$$\{C_1 \lor \ell, \ C_2 \lor \neg \ell\} \models C_1 \lor C_2.$$

2. Modelamiento

Dada una matriz C de 3×3 que contiene números entre 0 y 3, decimos que C es completable si es que existe una manera de reemplazar los números 0 por números entre 1 y 3 de tal forma que la suma de cada fila y de cada columna es la misma. Por ejemplo, la siguiente matriz es completable:

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

puesto que podemos reemplazar los valores 0 por los siguientes valores:

$$\begin{bmatrix} 2 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$

de manera tal que la suma de cada fila y de cada columna es 5. En cambio, la siguiente matriz no es completable:

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 3 & 0 & 0 \end{bmatrix}$$

Dada una matriz C de 3×3 , construya una fórmula φ en lógica proposicional tal que C es completable si y sólo si φ es satisfacible. En particular, φ tiene que ser construida de tal forma que cada valuación σ que satisface a φ represente una forma de completar C.

3. Lógica de Predicados

Para esta pregunta considere el vocabulario $\mathcal{L} = \{F, P, A, N, E, H\}$, donde F, P, A, N son símbolos unarios, E es binario, y H es ternario. Además, considere la siguiente interpretación \mathcal{I} :

```
\mathcal{I}(\mathrm{dom}) = \mathrm{Los} \; \mathrm{Pokemon}. \mathcal{I}(F(x)) = x \; \mathrm{es} \; \mathrm{de} \; \mathrm{naturaleza} \; \mathrm{fuego}. \mathcal{I}(A(x)) = x \; \mathrm{es} \; \mathrm{de} \; \mathrm{naturaleza} \; \mathrm{agua}. \mathcal{I}(P(x)) = x \; \mathrm{es} \; \mathrm{de} \; \mathrm{naturaleza} \; \mathrm{planta}. \mathcal{I}(N(x)) = x \; \mathrm{es} \; \mathrm{de} \; \mathrm{naturaleza} \; \mathrm{normal}. \mathcal{I}(E(x,y)) = \mathrm{los} \; \mathrm{ataques} \; \mathrm{de} \; x \; \mathrm{son} \; \mathrm{efectivos} \; \mathrm{contra} \; y. \mathcal{I}(H(x,y,z)) = z \; \mathrm{fue} \; \mathrm{procreado} \; \mathrm{entre} \; x \; \mathrm{e} \; y.
```

Defina las siguientes afirmaciones en lógica de predicados:

- 1. Todos los Pokemon son de alguna naturaleza.
- 2. Algunos Pokemon poseen 2 naturalezas.
- 3. Los ataques de naturaleza agua son efectivos contra pokemon de naturaleza fuego, los de naturaleza fuego son efectivos contra pokemon de naturaleza planta y los ataques de naturaleza planta son efectivos contra pokemon de naturaleza agua.
- 4. Si dos Pokemon son de la misma naturaleza, entonces sus hijos son de aquella naturaleza.
- 5. Los Pokemon que son hermanos comparten las mismas naturalezas.

4. Conjuntos

- 1. Sean A y B conjuntos. Demuestre las siguientes afirmaciones:
 - (a) $A \subseteq B$ si y sólo si $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
 - (b) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

- (c) $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.
- 2. Una tupla con dos elementos a y b se define como $(a,b)=\{\{a\},\{a,b\}\}$. El producto cartesiano entre dos conjuntos A y B se denota $A\times B$ y es el conjunto de todas las tuplas (a,b) que cumplen $a\in A$ y $b\in B$. Demuestre que $A\times B$ está bien definido usando los axiomas de la teoría de conjuntos.