Engineering material homework 4

于若涛

2001190137

工程科学创培 201

表 1-符号说明

γ	奥氏体
$M_{\scriptscriptstyle S}$	马氏体转变开始温度
v_c	临界冷却速度
G_{I}	一次石墨
G_{II}	二次石墨
L'	铸铁液相
γ	初生奥氏体
α	铁素体
$M_{ ot \square}$	回火马氏体
$S_{ ot\!\! ot\!\! ot\!\!}$	回火索氏体
$G_{ eta}$	共晶石墨
G_{df}	共析石墨
R_m	抗拉强度
a_k	冲击韧度
A	材料塑性

4-2: 奥氏体等温转变图: 除*Co*外,几乎所有的合金元素固溶于γ中,均增加γ的稳定性,减慢过冷奥氏体分解速度,使得奥氏体等温转变图图线右移;

Mn, *Cr*, *W*, *Mo*等元素改变奥氏体等温转变图图线形状,珠光体转变与贝氏体转变明显分开; *Mn*, *Cr* 使贝氏体转变图右移作用大于使珠光体转变图右移的作用;

Mo,W使贝氏体转变图右移作用小于使珠光体转变图右移的作用;

 M_s : 除Co, Al外,大多数合金元素会使钢的 M_s 下降;

高速钢属于高碳高合金工具钢,其合金质量分数超过10%,合金元素溶于γ中,增加γ的稳定性,使得奥氏体等温转变图图线右移,所需v_c较低,空冷时便能得到马氏体组织。由于合金元素溶于γ中,减慢了过冷奥氏体的分解速度,室温下组织中含大量残留奥氏体。

4-4: (1) 高速钢中掺杂的合金元素提高了钢的硬度、热硬性、耐磨性,适合制作用于切削高硬度或 高韧性材料的特殊 刀具;

高速钢中含有大量共晶碳化物,如 Fe_3W_3C , Fe_3Mo_3C 等,轧制后破碎成大块、大颗粒,呈带状、网状或堆集状沿轧制方向分布,无法用热处理方法消除,故需采用大的锻压比(>10),反复镦粗、拔长(三镦三拔),使粗大碳化物进一步破碎,呈小颗粒均匀分布;

淬火至1200~1300℃,使碳化物大部分溶于 γ ; 回火550~570℃3次,每次一小时,使残留奥氏体尽量减少,提高构件硬度,消除内应力;

(2) 高铬钢中掺杂的合金元素,提高了钢的硬度、热硬性,钢具有高耐磨性,适合制作承受重载荷、形状复杂、要求变形小、耐磨性高、热硬性好的构件;

铸态组织中存在较多共晶碳化物,热轧后沿轧制方向呈条带分布,须反复锻造加以破碎,并使其均匀分布;

用一次硬化法:将模具加热至950~1000℃淬火,后在160~180℃回火,使模具具有较高耐磨性、韧性,变形较小;

4-8: (1) 大桥

主要性能: 良好的塑性、韧性、焊接性能, 耐大气腐蚀性;

材料选择: Q345合金钢;

热处理: 热轧空冷, 焊接后进行一次正火处理;

(2) 汽车齿轮

主要性能: 表面高硬度、高耐磨性, 高接触疲劳强度;

材料选择: 20CrMnTi合金钢;

热处理: 渗碳后直接进行淬火、低温回火;

(3) 镗床镗杆

主要性能: 高强度, 高塑性、韧性, 良好的综合力学性能;

材料选择: 38*CrMoAlA*合金钢; 热处理: 调质 (淬火+高温回火);

(4) 汽车板簧

主要性能: 高弹性极限, 高屈服强度, 高疲劳强度, 足够的韧性、脆性;

材料选择: 60Si2Mn合金钢; 热处理: 淬火+中温回火;

(5) 连杆螺栓

主要性能: 高强度, 高塑性、韧性, 良好的综合力学性能;

材料选择: 40*Cr*合金钢; 热处理: 淬火+高温回火;

(6) 拖拉机履带板

主要性能: 高强度, 良好的韧性、耐磨性;

材料选择: ZGMn13合金钢;

热处理: 渗碳后直接进行淬火、低温回火;

含量: $w_C = 0.90\% \sim 1.50\%$, $w_{Mn} = 13.00\%$;

热处理: 水韧处理; 室温组织: 单一γ;

应用:履带板、牙板、铁路道岔;

40Cr: 种类: 合金调质钢;

含量: $w_C = 0.37\% \sim 0.44\%$, $w_{Mn} = 0.50\% \sim 0.80\%$, $w_{Cr} = 0.80\% \sim 1.10\%$;

热处理: 低温淬火+低温回火或高温淬火+高温回火;

室温组织: S_m;

应用: 重要调质件, 如轴类、连杆、螺栓、进气阀;

35CrMo: 种类: 合金调质钢;

含量: $W_C = 0.32\% \sim 0.40\%$, $W_{Mn} = 0.40\% \sim 0.70\%$;

热处理:淬火+高温回火;

室温组织: S_同;

应用:火车发动机曲轴、连杆;

20CrMnTi: 种类: 合金渗碳钢;

含量: $w_C = 0.17\% \sim 0.23\%$, $w_{Mn} = 0.80\% \sim 1.10\%$, $w_{Ti} = 0.04\% \sim 0.10\%$, $w_{Cr} = 1.00\% \sim 1.30\%$;

热处理: 渗碳后直接进行淬火, 后低温回火;

室温组织:表层组织为细针状回火高碳马氏体+粒状碳化物+少量残留 γ ,心部组织为 α +低碳马氏体;

应用: 汽车、拖拉机上变速箱齿轮;

40Cr13: 种类: 特殊性能钢-马氏体型不锈钢;

含量: $w_C = 0.10\% \sim 1.00\%$, $w_{Cr} = 12.0\% \sim 18.0\%$;

热处理: 淬火+低温回火;

室温组织: M_同;

应用: 不锈钢刀具;

GCr15: 种类: 合金结构钢-轴承钢;

含量: $w_C = 0.95\% \sim 1.05\%$, $w_{Cr} = 1.40\% \sim 1.65\%$;

热处理: 球化退火、淬火、低温回火;

室温组织: 球状珠光体;

应用: 中小型滚动轴承、冷冲模、量具、丝杠;

60Si2Mn: 种类: 合金结构钢-合金弹簧钢;

含量: $w_C = 0.56\% \sim 0.69\%$, $w_{Mn} = 0.60\% \sim 0.90\%$, $w_{Si} = 1.50\% \sim 2.00\%$;

热处理:淬火+中温回火; 室温组织:回火托氏体;

应用: 截面小于 25mm 的各种螺旋弹簧、版弹簧;

Cr12MoV: 种类: 合金工具钢-高碳高合金工具钢;

含量: $w_C = 1.45\% \sim 1.70\%$, $w_{Mo} = 0.40\% \sim 0.60\%$, $w_V = 0.15\% \sim 0.30\%$;

热处理: 淬火+高温回火;

室温组织:细针状 $M_{\it pl}$ + 粒状碳化物 + 少量残留 γ ;

应用: 冷切剪刀、圆锯、切边模、滚边模、标准工具与量规;

06Cr19Ni10Ti: 种类: 特殊性能钢-奥氏体型不锈钢;

含量: $w_C = 0.08\%$, $w_{Ni} = 9.0\% \sim 12.0\%$, $w_{Cr} = 1.70\% \sim 1.90\%$;

热处理:淬火+去应力退火;

室温组织: 单一γ组织;

应用: 化学工业耐蚀材料;

3Cr2W8V: 种类: 合金工具钢-高碳高合金工具钢;

含量: $w_C = 0.30\% \sim 0.40\%$, $w_V = 0.20\% \sim 0.50\%$, $w_W = 7.50\% \sim 9.00\%$, $w_{Cr} = 2.20\% \sim 2.70\%$;

热处理:淬火+高温回火;

室温组织:细针状 M_{p} + 粒状碳化物 + 少量残留 γ ;

应用: 高应力压模、螺钉、热剪切刀、压铸模;

9SiCr: 种类: 合金工具钢-高碳低合金工具钢;

含量: $w_C = 0.85\% \sim 0.95\%$, $w_{Mn} = 0.30\% \sim 0.60\%$, $w_{Si} = 1.20\% \sim 1.60\%$, $w_{Cr} = 0.95\% \sim 1.25\%$;

热处理: 球化退火、淬火、高温回火;

室温组织:细针状 M_{pl} + 粒状碳化物 + 少量残留 γ ;

应用: 板牙、丝锥、钻头、铰刀、冷冲模;

5CrNiMo: 种类: 合金工具钢-中碳合金工具钢;

含量: $w_C = 0.50\% \sim 0.60\%$, $w_{Mn} = 0.50\% \sim 0.80\%$, $w_{Ni} = 1.40\% \sim 1.80\%$, $w_{Cr} = 0.50\% \sim 0.80\%$;

热处理: 淬火+高温回火;

室温组织: 回火托氏体+索氏体;

应用: 热压模、大型锻模;

W18Cr4V: 种类: 合金工具钢-高碳高合金工具钢-高速钢;

含量: $w_C = 0.73\% \sim 0.83\%$, $w_W = 17.2\% \sim 18.7\%$, $w_V = 1.00\% \sim 1.20\%$, $w_{Cr} = 3.80\% \sim 4.50\%$;

热处理: 淬火+3次高温回火;

室温组织:细针状 M_{p} + 粒状碳化物 + 少量残留 γ ;

应用:形状复杂的小型刀具;

CrWMn: 种类: 合金工具钢-高碳低合金工具钢;

含量: $w_C = 0.90\% \sim 1.05\%$, $w_{Mn} = 0.80\% \sim 1.10\%$, $w_W = 1.20\% \sim 1.60\%$, $w_{Cr} = 0.90\% \sim 1.20\%$;

热处理: 球化退火、淬火、高温回火;

室温组织:细针状 M_{p} + 粒状碳化物 + 少量残留 γ ;

应用: 板牙、量规、冲模;

10Cr17Mo: 种类: 特殊性能钢-铁素体型不锈钢;

含量: $w_C = 0.12\%$, $w_{Mo} = 0.75\% \sim 1.25\%$, $w_{Cr} = 16.00\% \sim 18.00\%$;

热处理: 退火;

室温组织: 单相α组织;

应用: 硝酸工厂设备, 如吸收塔、热交换器等;

38CrMoAlA: 种类: 合金结构钢-合金调质钢;

含量: $w_C = 0.35\% \sim 0.42\%$, $w_{Mn} = 0.30\% \sim 0.60\%$, $w_{Si} = 0.20\% \sim 0.45\%$, $w_{Cr} = 1.35\% \sim 1.65\%$, $w_{Mo} = 0.15\% \sim 0.25\%$, $w_{Al} = 0.70\% \sim 1.10\%$;

热处理: 淬火+高温回火;

室温组织: S_同;

应用: 渗氮零件, 如机床主轴、高压阀门、缸套;

5-1: 石墨化: 铸铁中石墨的形成过程;

石墨化阶段: (1) 液态石墨化: 过共晶熔液中直接结晶出G₁和1154°C共晶转变形成的共晶石墨;

$$L \to \gamma + G_{\#} \tag{1}$$

- (2) 中间石墨化: 1154~738°C冷却过程中, γ中析出G_{II};
- (3) 低温石墨化: 738℃共析转变形成*G_标*;

$$\gamma \to \alpha + G_{\#_{\Gamma}}$$
 (2)

石墨化降低了铸铁组织的抗拉强度、塑性、韧性;提高了其铸造性、可切削加工性、减震性,降低了生产成本;

- 5-4: (1) 铸铁组织中,部分碳以石墨的方式存在,其碳原子分层排列,同层原子间结合力较强,层间原子间结合力较弱。石墨组织分布于整个铸铁组织中,使铸铁的结构变得更加松散,宏观表现为A、 R_m 、 a_k 的降低;
- (2) 石墨化提高了铸铁组织的铸造性、可切削加工性、减震性,且铸铁生产所需成本较低,生产工艺较简单;
- (3) 球墨铸铁中石墨呈球状,对基体的割裂作用小,应力集中小,提高了基体强度;且球墨铸铁有铸铁的良铸造性、耐磨性、可切削加工性、低成本等优点,在具备中碳钢优良性能的同时,弥补了中碳钢的不足。

5-7:

- (1) 机床床身: 承受压力与振动, 故选用灰铸铁HT200;
- (2) 汽车、拖拉机曲轴:要求高抗拉强度、弯曲疲劳强度、高塑性韧性,故选用球墨铸铁QT600-3;
- (3) 加热炉炉体: 热循环载荷下工作, 要求高导热性, 故选用蠕墨铸铁RuT400;
- (4) 硝酸盛贮器: 要求耐蚀性, 故选用合金铸铁中耐蚀合金铸铁;
- (5) 汽车、拖拉机转向壳: 形状复杂、承受冲击载荷, 故选用可锻铸铁KTH350-10;
- (6) 球磨机衬板: 要求高耐磨性与一定强度、适当韧性, 故选用合金铸铁中耐磨合金铸铁;