CLAIMS

- 1. A system, especially adapted for high-power motors comprising at least one rotor (1a; 1b) and means (4a, 4b; 5a, 5b) comprising active elements (7, 8) capable of rotating the rotor(s) (1a; 1b) by their synchronized deformation, said rotating means of the rotor(s) comprising at least one petal (6) comprising a hot top (11), characterized in that the material of each hot top (11) is such as that it has a mass thermal capacity (Cp^{22c}) of greater than 0.35 [J/g/K], and / or the material of each rotor (1a; 1b) is such that it has a thermal capacity of greater than 2 [J/cm³/K].
- 2. The system according to Claim 1, characterized in that each hot top (11) has a mass thermal mass capacity greater than 0.5 [J/g/K].
 - 3. The system according to Claims 1 or 2, characterized in that the thermal capacity of each rotor (1a; 1b) is greater than 2.5 $[J/cm^3/K]$.

20

- 4. The system according to Claims 1 to 3, characterized in that the material of each hot top (11) and each rotor (1a; 1b), this material being uncoated, comprised of:
- 25 (Ti, Mo) (C, N) + 8 20% bonding Ni/Mo (TM 8, 10, 20 grades0; and / or
 - WC 6Ni; and / or
 - zirconium reinforced aluminum (ZTA, ZTPA); and
 or
- 30 AIN; and / or

- silicon carbide infiltrated with silicon SiSiC, with 8 20 % by weight of silicon.
- 5. The system according to one of Claims 1 to 4, characterized in that the material of each hot top (11) is comprised of:
 - MgO ZrO_2 , and / or
 - aluminum reinforced with zirconia (ZTA, ZTPA),
 and / or
- 10 hot sintered aluminum nitrate HIP-AIN, and / or
 - pressure sintered aluminum nitrate GPS-AIN, and / or
 - a Magneli phase (Ti_nO_{2n-1}, $4 \le n \le 10$ with n being an integer, or the 40 % Ti₄O₇ / 60 % Ti₅O₉ type mixtures).
- 6. The system according to one of Claims 1 to 3, characterized in that the material of each hot top (11) and each rotor (1a; 1b) is coated by thermal spraying using a material comprising:
- Magneli phases (Ti_nO_{2n-1} , $4 \le n \le 10$ with n being an integer, or the 40 % Ti_4O_7 / 60 % Ti_5O_9 type mixtures);
 - WC 17 % Co; and / or
 - (Ti, Mo) (C, N) or (Ti, W) (C, N) + bonding Ni/Mo; and / or
- 25 >75 Cr_3C_2 / < 15 NiCr; and / or
 - 4 6Al₂O₃ / 6 4 TiO₂.
 - 7. The system according to Claim 6, characterized in that the material of each hot top (11) comprises:
- 30 globular gray cast iron and / or lamellar gray cast iron and / or with an austempering and / or alloyed with Cr, Mo, Al, V, Ti; and or

- Steels (z6CND16-05-01); and / or
- X5CrNiCu15-5 steels; and / or
- AlSi + SiC/Al₂SO₃; and / or
- AlSi + dispersoids Al_4C_3 / Al_2O_3 / TiB_2 alloys;
- 5 and or
 - Al Fe V alloys; and \prime or
 - Series 6xxx aluminum in T6 and greater and 7xxx series; and / or
- silicon carbide infiltrated with silicon SiSiC;
 and / or
 - Titanium alloys, UNS R5xxxx, such as TiAl6V4.
- 8. The system according to Claim 6, characterized in that the hard layers deposited by thermal spraying must be machined to the final roughness of R_a (arithmetic roughness) of less than 0.04 μm , the thickness of the machined layers being greater than 50 μm .
- 9. The system according to Claim 6, characterized in that the values of roughness R_{pK} and R_{vK} of the DIN NUMERIC ENTRY WORD ISO 13565 2:1998 norm are less than 0.030 μ m and 0.070 μ m, respectively.

25

Applicant: SAGEM S.A.

Inventors: Jean-Thierry Audren, François Hodar,

Mathias Woydt

30

Title: Improvements to High-Power Motors