- 1. Let n > 1 and let a be an integer coprime to n. Let a^{-1} denote the multiplicative inverse of a modulo n.
 - (a) Let $j \ge 1$. Show that $a^j \equiv 1 \mod n \iff (a^{-1})^j \equiv 1 \mod n$.
 - (b) Use part (a) to show that the order of a is the same as the order a^{-1} .
 - (a) If $a^j \equiv 1 \mod n$, then multiplying both sides by $(a^{-1})^j$, we get $1 \equiv (a^{-1})^j \mod n$. If $(a^{-1})^j \equiv 1 \mod n$, then multiply both sides by a^j to get $1 \equiv a^j \mod n$.
- (b) By part (a), we have $\{j \ge 1 : a^j \equiv 1 \mod n\} = \{j \ge 1 : (a^{-1})^j \equiv 1 \mod n\}$. Since the sets are the same, the least element of both sets is the same. Thus the order of $a \mod n$ is the same as the order of $a^{-1} \mod n$.
 - 2. (a) List all the positive integers less than or equal to 14 which are relatively prime to 14.
 - (b) Find the order mod 14 of each integer in your list from part (b). Show your work.
 - (c) Using your answer to part (c), list all the primitive roots of 14 (if any).
- (d) The number of primitive roots you found in part (c) should be $\phi(\phi(14))$. Confirm that this is true.
 - (a) 1, 3, 5, 9, 11, 13.
 - (b) The order of any element must divide $\phi(14) = 6$. So the possible orders are 1, 2, 3, or 6.

```
The order of 1 is 1, because 1^1 \equiv 1 \mod 14.
The order of 3 is 6, because 3^1 \equiv 3 \mod 14, 3^2 \equiv 9 \mod 14, 3^3 \equiv -1 \mod 14.
The order of 5 is 6, because 5^1 \equiv 5 \mod 14, 5^2 \equiv -3 \mod 14, 5^3 \equiv -1 \mod 14.
The order of 9 is 3, because 9^1 \equiv -5 \mod 14, 9^2 \equiv -3 \mod 14, 9^3 \equiv 1 \mod 14.
The order of 11 is 3, because 11^1 \equiv -3 \mod 14, 11^2 \equiv 9 \mod 14, 11^3 \equiv 1 \mod 14.
The order of 13 is 2, because 13^1 \equiv -1 \mod 14, 13^2 \equiv 1 \mod 14.
```

- (c) 3 and 5
- (d) $\phi(\phi(14)) = \phi(6) = 2$. Yes, we found two primitive roots in part (c).
- 3. Show that any odd prime divisor p of $n^4 + 1$ must be of the form p = 8k + 1.

Suppose that n^4+1 has an odd prime divisor p. Then $n^4+1\equiv 0 \bmod p$. This implies $n^4\equiv -1 \bmod p$, which implies $n^8\equiv 1 \bmod p$. So the order of n divides 8, which means that the order is 1,2,4 or 8. The order cannot be 1,2, or 4 because otherwise $n^4\equiv 1 \bmod p$ and this would contradict $n^4\equiv -1 \bmod p$ as $p\neq 2$. Thus the order of n is $n^4\equiv 1 \bmod p$ and integer mod $n^4\equiv 1 \bmod p$ must divide $n^4\equiv 1 \bmod p$ as $n^4\equiv 1 \bmod p$ as $n^4\equiv 1 \bmod p$. This means $n^4\equiv 1 \bmod p$ are divided of $n^4\equiv 1 \bmod p$. This means $n^4\equiv 1 \bmod p$ are divided of $n^4\equiv 1 \bmod p$.

4. Given that 3 is a primitive root mod 17, list all the primitive roots mod 17 using suitable powers of 3. There should be eight of them, including 3.

The order of 3 mod 17 is $\phi(17) = 16$. The order of 3^h is $\frac{16}{(16,h)}$. Thus the order of 3^h is 16 if and only if (16,h) = 1. List the positive integers less than or equal to 16 with order coprime to 16:

Thus the primitive roots mod 17 are:

- $3^1 \equiv 3 \bmod 17$
- $3^{3} \equiv 3 \mod 17$ $3^{3} \equiv 10 \mod 17$ $3^{5} \equiv 5 \mod 17$ $3^{7} \equiv 11 \mod 17$ $3^{9} \equiv 14 \mod 17$ $3^{11} \equiv 7 \mod 17$

- $3^{13} \equiv 12 \mod 17$ $3^{15} \equiv 6 \mod 17$