

AD-A208 125

THE THE

MISCELLANEOUS PAPER GL-89-7

SUBSURFACE CONDITIONS AT SITE 16 LONE STAR ARMY AMMUNITION PLANT, TEXAS

by

Richard J. Lutton, Jerald D. Broughton, Donald E. Yule Michael K. Sharp, Roy Wade

Geotechnical Laboratory

DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers PO Box 631, Vicksburg, Mississippi 39181-0631

April 1989 Final Report

Approved For Public Release; Distribution Unlimited

Prepared for DEPARTMENT OF THE ARMY
Toxic and Hazardous Materials Agency, Corps of Engineers
Aberdeen Proving Ground, Maryland 21010-5401

89 5 19 026

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188
1a. REPORT SECURITY CLASSIFICATION	***************************************	1b. RESTRICTIVE	MARKING\$		
Unclassified 2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION / AVAILABILITY OF REPORT			
26. DECLASSIFICATION/DOWNGRADING SCHEDU	LE	Approved unlimited		elease	; distribution
4. PERFORMING CRCANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION RE	PORT NU	MBER(S)
Misce'laneous Paper GL-89-7					
68. NAME OF PERFORMING ORGANIZATION USAEWES: 66. OFFICE SYMBOL (If applicable) 78. NAME OF MONITORING ORGANIZATION					
Geotechnical Laboratory	CEWES-GR				
6c. ADDRESS (City, state, and ZIP Code)		7b. ADDRESS (Ci	ty, State, and ZIP Co	ode)	
PO Box 631 Vickson.g, MS 39181-0631					
8a. NAME OF FUNDING /SPONSORING	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	T INSTRUMENT IDE	NTIFICATI	ON NUMBER
US Army Corps of Engineers	(ir applicable)				
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF	FUNDING NUMBERS		
Toxic and Hazardous Materials		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.
Aberdeen Proving Ground, MS	21010-05401		}		
11. TITLE (include Security Classification) Subsurface Conditions at Site 12. PERSONAL AUTHOR(5)	16 Lone Star A	my munition Pl	ant, Texas		
Lutton, R. J.; Broughton, J.					
	OVERED 88 TO Sep 88	April 1989	ORT (Year, Month, D	15.	93
16. SUPPLEMENTARY NOTATION Available from National Techn	ical Information	Service, 5	285 Port Roy	al Roa	d,
Springfield, VA 22161.	18. SUBJECT TERMS (ontinue on ravers	e if necessary and	identify i	by block number)
FIELD GROUP SUB-GROUP	Contamination	1	Subsurfa	ce exp	loration
	Geophysical (Ground Water	urveys	Texas Waste bu	rial	
19. ABSTRACT (Continue on reverse if necessary		imber)			
and to evaluate the possible presence of buried waste and contaminated ground water. Magnetic and conductivity surveys suggested only one unexplained weak anomaly within an area of possible waste burial in the past. Three new monitoring wells together with two placed in 1981 surround the suspect area on the down-gradient side. Analysis of water samples taken one month and two months after installation of these wells revealed no parameters exceeding Federal primary drinking water standards. The concentration of chromium in the ground water is substantially lower than previously reported. The sixe is considered to be free of serious contamination. 20 Distribution/Avanagemity of Asstract 121 Asstract Security Classification					
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS F	IPT. DTIC USERS	21 ABSTRACT SE Unclassif		TION	
220. NAME OF RESPONSIBLE INDIVIDUAL	200 2010 03577		(include Area Code)	22t. O	FFICE SYMBOL

PREFACE

Field and laboratory investigations were conducted by the US Army Engineer Waterways Experiment Station (WES) on the Lone Star Army Ammunition Plant (LSAAP), Texarkana, Texas, from March through August 1988. The Geotechnical Laboratory (GL) undertook this work for the US Army Engineer Toxic and Hazardous Materials Agency (THAMA) to assess subsurface conditions and possible need for remediation at Site 16. Field work consisted of geophysical surveys by the Earthquake Engineering and Geophysics Division (EEGD) in March, subsurface investigations and installation of monitoring wells by the Engineering Geology and Rock Mechanics Division (EGRMD) in June, and sampling of ground water by the Environmental Engineering Division (EED) of the Environmental Laboratory, WES in July and August. Chemical analyses were performed by Environmental Science and Engineering Inc. (ESE), Gainesville, Florida, working under contract to THAMA.

This report was prepared by Dr. R. J. Lutton, EGRMD, who also served as principal investigator. Part II on geophysics summarizes a file report prepared by Messrs. D. E. Yule and M. K. Sharp, EEGD included as an appendix. The description of water sampling in Part VI is based on trip reports by Mr. Roy Wade, EED, and the tabulated chemistry of ground water came from ESE through THAMA. Mr. J. D. Broughton, EGRMD, contributed to the study through familiarity with contamination at LSAAP and the needs and protocol of the THAMA. General supervision was provided by Drs. D. C. Banks, Chief, EGRMD, and W. F. Marcuson III, Chief, GL.

COL Dwayne G. Lee, EN, was Commander and Director of WES during preparation and publication of this report. Dr. Robert W. Whalin was Technical Director.

Acces	ion for				
NTIS CRA&I NO DIC TAB DIC TAB DIC TAB DIC TAB DICTION DISTRICATION					
By Distribution/					
A	vailability Codes				
Dist	Avail and for Special				
A-1					

CONTENTS

	Page
PREFACE	. 1
CONVERSION FACTORS, NON-SI TO SI (METRIC)	
UNITS OF MEASUREMENT	. 3
PART I: INTRODUCTION	. 4
Purpose	
Scope	
Background	
PART II: GEOPHYSICAL SURVEYS	
Field Methods	-
PART III: SUBSURFACE EXPLORATION AND MONITORING WELLS	
Equipment Preparation	
Augering and Sampling Soil	
Developing Wells	
Diesel Spill	
PART IV: GEOLOGICAL SETTING	. 11
Regional Structure	
Stratigraphy	
Site Geology	
PART V: GEOHYDROLOGY	
Regional Ground Water	
Site Ground Water	
PART VI: GROUND-WATER CHEMISTRY	
Sampling and Field Parameters	
Chemical Analysis	
PART VII: CONCLUSIONS	. 17
TABLES 1-7	
FIGURES 1-14	
APPENDIX A: GEOPHYSICAL SURVEYS AT LSAAP	A1
APPENDIX B: SOIL TEST RESULTS	ві
Announty A. Anathin Hamph Allphitalt npatting	C1

CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

Multiply	Ву	To Obtain
acres	4,046.873	square metres
degrees (angle)	0.01745329	radians
feet	0.3048	metres
inches	2.54	centimetres
miles (US statute)	1.609347	kilometres
pounds (mass)	0.4535924	kilograms
gallons	3.785412	cubic decimetres

SUBSURFACE CONDITIONS AT SITE 16 LONE STAR ARMY AMMUNITION PLANT, TEXAS

PART I: INTRODUCTION

Purpose

1. This study was conducted to assess the subsurface conditions at Site 16 at the Lone Star Army Ammunition Plant (LSAAP) and to determine quantitatively the presence or absence of trace contaminants in the ground water. The findings are intended to support the determination of whether any further investigation or remediation is required.

Scope

- 2. The investigation was conducted in 1988 on Site 16, henceforth called the chemical burial site (CBS). The CBS (Figure 1) was previously excluded from the comprehensive LSAAP-wide remedial investigation for the US Army Engineer Toxic and Hazardous Materials Agency (THAMA) underway at the time.* The criteria for evaluating the site in terms of the condition of its ground water are the Primary Drinking Water Standards promulgated by the Environmental Protection Agency (EPA).
- 3. To pinpoint the burial location, geophysical surveys were conducted in April 1988 for anomalies indicating buried waste or waste containers. These surveys revealed no definitive location and it seemed possible the report of disposal activities at this site* was incorrect. To aid in the final decision concerning this site, three monitoring wells were added in June to the two already in place to surround the CBS. Geological information was obtained by logging and sampling the soils. The geological setting was developed from the logs and results of a soil testing program. Water samples were obtained from the five monitoring wells approximately one month after installation was completed, and a second set of samples was taken one month

^{*} Dames and Moore, 1987, "Remedial Investigation/Feasibility Study. Technical Plan. Lone Star Army Ammunition Plant, Texarkana, Texas," Bethesda, Maryland.

later in August 1988. Finally, this report has been prepared to summarize field work and methods, geological and ground-water setting, geophysical surveys, results of chemical analyses conducted by others, and conclusions on the presence of waste and migration of contamination in the ground water.

Background

4. The technical plan for remedial investigation (paragraph 2), although not including CBS, briefly summarized the conditions and history there as follows. Approximately fifty 55-gal drums of sulfuric acid, chromic acid, and industrial organics are said to have been buried at this site between 1950 and 1970. Wells 24 and 25 were installed in 1981. Chromium was detected in well 25 at a concentration above EPA criteria shortly after well installation. No other exceedances have been reported at this site. Wells 24 and 25 have been monitored semiannually. The current LSAAP monitoring program also includes a surface water sampling station down-gradient at the boundary of LSAAP. Soils at this site are characterized as sands and clays. Ground water flows south-southeast.

PART II: GEOPHYSICAL SURVEYS

Field Methods

- 5. Two geophysical methods were employed a magnetic survey and a conductivity survey. A 20-ft × 20-ft measurement grid was established and additional measurements were made on a 10-ft × 10-ft grid around anomalous regions.
- 6. The magnetic survey measured total magnetic field strength using a proton precession magnetometer. A base station was established and was reoccupied after every profile line. For additional information, see Appendix A.
- 7. The conductivity survey used an electromagnetic induction (EM) terrain conductivity system. The particular instrument has a receiver and transmitter located at opposite ends of a 13-ft boom. The effective depth for this instrument is 19 ft. A thorough investigation was possible to a depth of 13 ft, but anomalies are increasingly difficult to distinguish below that depth.

Results

- 8. The results of analysis of geophysical data at CBS are presented in Figures 2 through 5 as both contour maps and block diagrams. Additional explanation is given in Appendix A.
- 9. The magnetic field (Figures 2 and 3) is dominated by anomalies from two metal warning signs and from monitoring wells 24 and 25. One unexplained positive 60-gamma anomaly is annotated in the figures. The 20-ft width of this anomaly might be interpreted as indicating a feature buried at 20 ft.
- 10. The conductivity survey (Figures 4 and 5) was not as affected by the metal posts and wells because of the orientation of the measurement field and the distances these features were from measurement points. Thin vertical conductive features located on either side of the instrument have only small effects at a few feet offset. Overall, the conductivity survey revealed a uniform site with no anomalies.

PART III: SUBSURFACE EXPLORATION AND MONITORING WELLS

Equipment Preparation

- 11. Subsurface work was accomplished with a truck-mounted rotary drill rig owned and operated by the Memphis District Corps of Engineers. For two months prior to working at LSAAP, the drill rig had been used in routine geotechnical investigations at the Slack Water Harbor project located near Helena, Arkansas. The last environmental investigation involving likely exposure to hazardous waste was almost two years previously in an investigation for the City of Memphis at the Walnut Grove landfill. Subsequently to the landfill investigation, the rig was steam cleaned.
- 12. Prior to entering the CBS, the drill crew took several precautions to avoid importing material from off-site areas. First, the rig and supporting pickup truck and 500-gal water tank were cleaned at the LSAAP motor pool. Steam cleaning equipment was tried first, but it was found that a higher volume and pressure achievable by bypassing the heater was more effective in removing the accumulated soil and grease. Accordingly, the rig was washed three hours with heavy duty hose and nozzle and another 1-1/2 hrs with cleaning wand at higher pressure. The pickup truck and water truck took about 2 hrs to clean using the same general procedure.
- 13. The interior of the water tank was flushed by filling and emptying twice with water from a source approved by THANA. This source is the surface reservoir located at 8.800 ft north northeast of CBS.
- 14. The rig was driven to the CBS and cleaned again to remove new foreign material picked up enroute and lodged on and around the tires. This cleaning with hose, nozzle, and brush took only about 20 min. The rig was then backed onto the site and over the desired location to begin drilling. The box auger bit and drill pipes had been cleaned as indicated above at the motor pool and they were cleaned lightly again before entering the site. The pickup truck carrying the water tank was kept at least 15 ft away from the hole collar to avoid the necessity for cleaning after each trip off site for water.

Augering and Sampling Soil

- is. The same drilling and sampling procedure was used for all three new wells (CBS-1, -2, and -3) except that drilling mud was needed in hole CBS-3 to stabilize and preserve the bottom of the hole for well installation. A 7-1/2-in box auger was used to advance the holes and recover disturbed samples continuously foot by foot. By deepening in 1-ft increments, close observations could be made to distinguish soil types and changes. Logging amounted to describing the soil in each 1-ft increment. Where contacts between soil types could be recognized, these depths were logged. Logs of CBS-1, -2, and -3 are shown in Figures 6 through 8 and their locations in Figure 1. Strata in wells 24 and 25 are summarized in Figure 9 prepared from LSAAP records.
- 16. A box auger hit shaves, spirals, and mixes the cutting so that details such as thin bedding are largely lost. Nevertheless, contrasting materials could be distinguished such as the thin lenses of loose sand evident in fat clay at depths of about 16 ft in CBS-2. Soils were described generally in accordance with the THAMA requirements.
- 17. The average spacing for retained samples was about 3 ft. These samples were taken from the bottom of the box auger bit where recovered soil tended to be cleaner and more representative of the new interval.
- 18. It was necessary to use drilling mud in CBS-3 to auger the final 6 ft and to keep the hole open while the well was installed. The last sample was recovered at 27 to 28 ft. The auger recovered only traces of cohesionless fine sand between 28 and 29 ft. The decision was then made to save the well at this important location by using drilling mud. No sampling was attempted from the interval 28 to 34 ft.
- 19. A thin drilling mud was prepared by mixing the bentonite powder identified in Table 1 with the water from the approved source (paragraph 13). The hole was completed from 29 to 34 ft using the mud and a fish-tail bit. Then clean water was circulated to the bottom to lift cuttings and much of the drilling mud to the hole collar and out onto the ground surface. Return water at the end of the circulation operation remained heavily clouded. The well screen and casing were then installed quickly.

Installing Wells

- 20. The installation and construction of the three new monitoring wells (Figure 10) followed guidance promulgated by THAMA. Upon reaching a depth approximately 10 ft below the top of saturation as revealed during augering, and otherwise compatible with the guidance, the PVC screen and casing were placed directly on the bottom and the well was constructed.
- 21. Materials and other construction details of each well are illustrated in Figure 10 and in Table 1. Sand was dropped around the screen through a tremie composed of a 1-1/4-in PVC pipe and a galvanized funnel. The sand pack was allowed to stabilize about 30 min. The well seal was constructed by dropping bentonite pellets, again through the tremie pipe to avoid formation of bridged cavities. The seal was wetted and left for approximately 60 min.
- 22. The hole was grouted from the stabilized seal to the surface. The grout mixture was 5 gal of water and 5 lb bentonite per 94-1b bag of portland cement. Two or three bags of cement (Table 1) were needed in each hole. Fresh grout was circulated through the pump on the drill rig until mixed well and then was injected at a depth near the top of the seal and allowed to rise and overflow at the surface. A steel guard with locking cap was set over the PVC casing collar and into the grout for protection. Additional grout was placed to finish the outside and in the space between the guard and well casing.
- 23. The detail of previously existing wells 24 and 25 are shown in Figure 11 prepared from LSAAP records. Table 2 presents well locations.

Developing Wells

24. The wells were developed by removing five volumes of water as expected by THAMA. Basic well volume occupies that portion of the casing and sand-filled annulus between the bottom of the hole and the water table. It was assumed that the porosity in the sand pack was 33 percent. Volumes actually removed from CBS-1, -2, and -3 were 125, 125, and 125 gal, exceeding the five volumes calculated as 93, 62, and 55 gal, respectively. CBS-3 filled no faster than 17 gal/hr and required 10 hrs to develop. Considerable black silt and fine sand was recovered during the first 5 hrs and the water

remained cloudy throughout development. Holes CBS-1 and -2 were developed in less than three hours each although water did not clear.

Diesel Spill

25. A small amount of diesel fuel was spilled on June 5 and 6. Spillage occurred after the drill rig left hole CBS-3 but was parked overnight on sloping ground nearby. Tilting the tank along with the rest of the rig allowed an estimated 5 gal of fuel to spill through an ungasketed cap. The spill was discovered upon returning to work and four empty cement sacks were filled with oil-soaked soil and removed from the site. Visual indications are that some of the spill remains in place or has moved downward. The position of the spill is 20 ft northeast of CBS-3. The water table is separated vertically from the spill by two clay layers, and it is doubtful that diesel fuel would reach the well intakes.

PART IV: GEOLOGICAL SETTING

Regional Structure

- 26. One of the earliest geological features of the Gulf Coastal Plain is the Sabine uplift a relatively flat-topped uplift centered in northwest-ern Louisiana.* Approximately 80 miles long and 65 miles wide, the uplift is flanked on the east by the North Louisiana syncline and on the west by the East Texas syncline (Figure 12). Structural development of this region began in the western part, probably during Jurassic times, and progressed eastward during Cretaceous and Early Tertiary times. The Sabine uplift region has been structurally stable since the Early Eocene.
- 27. The East Texas syncline follows the arc of the Ouachita fold belt and is apparently structurally related to the ancient geosyncline. Sediments have been deposited since Late Cretaceous times; however, marine sediments are absent in the Late Eocene and younger strata throughout the embayment, suggesting reflexive uplift in response to the progressive downwarping of the Gulf Coast geosyncline to the southeast. Numerous salt domes and other salt-controlled structural features are found cutting through the sediments in the embayment, but no large-scale faulting has been noted in the basin proper affecting Late Eocene strata.
- 28. It should be understood that the apparent absence of post-Eocene faults is a tentative characterization at best, based more on lack of clear exposures and subsurface data than on incontrovertable evidence. In fact, the Corps of Engineers exploration borings* at the Texarkana dam (Wright Patman dam) 7 miles southeast of LSAAP were first interpreted as crossing a set of faults trending eastward along the valley but subsequently were reinterpreted as inconclusive of any faults at all. Regardless, such regional interpretations are largely inconsequential to the characterization of CBS, except as discussed later in paragraph 32.

^{*} US Army Engineer Waterways Experiment Station, 1949, "Texarkana Dam, Foundation and Borrow Area Investigation and Embankment Design," Technical Memorandum 3-293, Vicksburg, Mississippi, and US Army Engineer Waterways Experiment Station, 1958, "Review of Soils Design, Construction, and Prototype Observations, Texarkana Dam, Texas," Technical Report 3-484, Vicksburg, Mississippi.

Stratigraphy

- 29. The LSAAP occupies gently rolling hilly country between the valleys of the Red River and Sulphur River. Geological strata surfacing in the vicinity of LSAAP are mostly either Early Tertiary or Quaternary in age. Early Tertiary formations were deposited in both marine and non-marine environments and are integrally related to the structural setting described above and illustrated in Figure 12. These beds slope south-southeast about 50 ft/mile into the East Texas syncline. The Midway sediments are mainly dark clay with limestone near the base, all characteristic of near-shore marine waters or tidal flats around river mouths. The overlying Wilcox sediments consist mainly of interbedded sand and clay. Included lignite beds and occasional pieces of petrified wood reflect the near-shore and flood plain environments. CBS is considered to be underlain by Wilcox strata at the surface with Midway clay starting at a depth of several tens of feet.
- 30. Quaternary strata formed much later in association with river systems generally near the present rivers. These young riverine strata are flat-lying and unaffected by the previous structural history of the region, but the complexities of riverine environments make correlations of beds largely conjectural and potentially misleading. Generally the Quaternary may be separated into high-lying Pleistocene terrace deposits and low-lying Nolocene valley deposits.
- 31. Remnants of terrace deposits are indicated in the vicinity of CBS by the presence of streaks of gravel at the ground surface as a residual or lag deposit. Elsewhere, terrace deposits can be thick and are said to be coarser in grain size than the Wilcox sediments.

Site Geology

32. Subsurface investigations have revealed the CBS to be complex well beyond what might have been expected (Figure 13). Strata can be correlated with confidence across the northern half of the site but not into the southern portion, yet the site measures only 200 ft across. Superimposition of an even more conspicuous discontinuity in the level of the water table, discussed later in paragraph 37, has supported the stratigraphic discontinuity as realistic.

- 33. Figure 13 shows the generalized subsurface materials along a section connecting the five borings at the perimeter of the site. Wells CBS-1 and -2 and 25 are located north of the discontinuity, whereas 24 and CBS-3 are to the south. Except for the gravelly soil at the surface, the strata are dominated by beds of clay and of silty fine sand. This bimodal characterization of soils at CBS is supported by the results of laboratory testing presented in Appendix B. The clay layers are relatively clean and highly plastic whereas other layers are dominated by fine sand or silt. Notice the lignite in well 24 and the corresponding silty black clay in CBS-3. For logging details, refer to Figures 6 through 9.
- 34. Possibilities considered to explain the apparent stratigraphic discontinuity passing through CBS were as follows:
 - a. A normal fault, probably with north side down.
 - <u>b</u>. A steep Pleistoce e channel boundary between terrace fill on the nor h and eroded Wilcox beds on the south.
- c. A Wilcox depositional feature such as a thick clay lens.

 None of these explanations seems fully acceptable or appropriate.
- 35. The intercepts of three surfaces with borings were analyzed to establish any inclination for comparison to regional strike and dip. This analysis was only attempted with logs from wells CBS-1 and -2 and 25 located north of the discontinuity. The beds were the upper clay, the second clay, and the clean sand at about 24 ft depth. The results are as follows:

Bed	Strike (deg)	Dip (SE)	
First clay (base)	N 71° E	5.2 percent (3°)	
Second clay (top)	№ 68° E	5.3 percent (3 ⁰)	
Clean sand (top)	N 27° E	2.1 percent (1°)	

These inclinations are greater than, but still nuite compatible with, the south-southeasterly inclinations recognized elsewhere in the vicinity of LSAAP (paragraph 29). Inclined beds tend to support the interpretation of strata at CBS as Early Tertiary rather than Quaternary (paragraph 30) and make the second interpretation in paragraph 34 somewhat less plausible.

PART V: GEOHYDROLOGY

Regional Ground Water

36. Interest in this study is focused on the uppermost, unconfined aquifer to reveal evidence of contaminants released from any burial site. Although a broad generalization can be made about a northward flow to the Red River on the north side of LSAAP and a southward flow to the Sulphur River on the south side (around CBS), the pattern is actually much more reflective of local topography than of any regional trend. This local control is evident at sites approximately 2,000 and 7,600 ft due north of CBS. Gradients on the water table there are southeastward and generally in accordance with the surface water drainage trends into East Fork Elliott Creek. A similar relationship but with flow to the west is evident 4 miles northwest of CBS at the western sanitary landfill east of Caney Creek according to the LSAAP remedial investigation plan (paragraph 2).

Site Ground Water

- 37. Figure 14 illustrates the configuration of the water table at CBS. As with the basic stratigraphy (paragraph 32), there is an east-west discontinuity separating a gently sloped portion over more than half the site from a southern portion at a conspicuously steeper slope.
- 38. In descending southeastward, the ground water loses more than 13 ft of head in a horizontal distance of only about 35 ft. No explanation of this surprising phenomenon is attempted except to emphasize that the high gradient is apparently real and related in some way to the geological setting as discussed in paragraph 32. Finally, note that monitoring well CBS-3 is in a key position for sampling ground water passing through the center of CBS. Sampling and testing of ground water is addressed in Part VI.

PART VI: GROUND-WATER CHEMISTRY

Sampling and Field Parameters

- 39. All five monitoring wells at CBS were sampled twice one month and two months after installation of the three new wells. Water levels measured with M-scope before purging are listed in Tables 3 and 4. Prior to purging, the equipment was washed, first with acetone, then with 10-percent nitric acid, and finally three times with double distilled deionized water (DDI).
- 40. On July 11 and August 8, the five wells were purged with a well wizard pump or a bailer. Volumes removed are listed in Tables 3 and 4. Wells 24, 25, and CBS-3 were purged to dryness and yielded far less than the intended five volumes (paragraph 24) calculated to be 58, 121, and 55 gal, respectively.
- 41. On July 12 and August 9, about 12 hrs after purging, the five wells were sampled. Sampling equipment was first washed as in paragraph 39 above. Equipment included a teflon bailer, a teflon-coated cable used to lower the bailer into the well, and the M-scope to measure water levels. Sample containers sent to LSAAP by Environmental Science and Engineering Inc. (ESE), the chemical testing laboratory, included:
 - a. Ice chests.
 - b. 1-litre plastic cubic containers for metals.
 - c. 1-litre plastic cubic containers for sulfides.
 - d. 1-litre amber jars for extractables.
 - e. 60-millilitre amber jars for volatile organics.
 - f. Nitric acid for preserving metals.
- g. Eye droppers for transferring acid to metal sample.

The volatiles were preserved by ESE at the laboratory.

42. Equipment rinse water blanks were collected by cleaning the teflon bailer, filtering the DDI from the bailer through a filter for the metal samples, filling 1-litre amber jars with DDI from the bailer for extractables and sulfides, and filling four 60-millilitre amber jars with DDI from the bailer for volatile organics. The samples for metals were filtered through a 0.45-micrometre filter. The pH, conductivity, temperature, and presampling water levels measured for each well are listed in Tables 5 and 6.

- 43. All wells recharged completely except number 24. This well did not recharge enough to allow all sample volumes to be collected, however, all samples except one 1-litre amber jar were collected from this well. The water from well 24 was very cloudy. Tables 5 and 6 show the information mentioned above as well as ESE labeling.
- 44. After the samples were collected, filtered, and preserved, they were packed in ice for shipping. A chain-of-custody sheet for all the samples was sealed in a plastic bag and placed in one of the ice chests. Each ice chest was sealed with two signed chain-of-custody seals. The samples were shipped from Texarkana on the same day as they were taken via overnight delivery to ESE. The samples arrived at the testing laboratory in good condition.

Chemical Analyses

- 45. Chemical analyses were conducted on the collected samples (paragraph 44) by ESE following THAMA protocol. Complete results of the 1988 analyses for all five wells and the rinse water blank are listed in Appendix C as Tables C1 through C6. Day and Zimmermann Inc., the contracted operator of LSAAP, has supplied the records of previous chemical analyses. Table C7 presents results for well 25 in 1982 and Tables C8 and C9 summarize subsequent semiannual monitoring (paragraph 4) of wells 24 and 25 from 1984 to 1988.

 Table 7 summarizes results above the limits of detection. Parameters found in amounts above the limits of detection in sampling from July 1988 were bis (2-ethylhexyl) phthalate, benzo (k) fluoranthene, and the metals lead, chromium, copper, and zinc. Note that no analytes were identified in the samples from August 1988.
- 46. The analytical results reveal a scarcity of volatile organics and metal analytes in the ground water at CBS, at least in the sense of contamination. Chromium caused the most concern in the past because the analyses in 1982 indicated an exceedance of the Primary Drinking Water Standards (50 uGL). Testing for this definitive study reveals that a much lower level prevails today (18.18 7). In fact, results subsequent to 1985 are less than the limitin, standard, and if there is a real trend for chromium abundance, it is a decreasing one.

PART VII: CONCLUSIONS

47. No surface or subsurface physical evidence was found to support the old report of burial of chemical waste at Site 16. Low concentrations of organics and metals detected in the water samples from five monitoring wells represent no threat to either the population or the environment. Further investigation and remedial action appear to be unnecessary.

Table 1
Well Construction Materials

Material	Purpose	Product and Source
Bentonite powder	Drilling mud	International SDG 330 International Minerals and Chemicals Corp. Mundelein, IL
Bentonite pellets	Seal	High Yield Western Bentonite Polymer Drilling Systems El Dorado, AR
Screened sand	Sand pack	CSSI Silica Sand, Texas Rescreened (No. 20-No. 40 screen) Colorado Silica Sand, Inc. Colorado Springs, CO
Cemenr	Grout	Foreman Cement, Type 2 Portland Arkansas Cement Corp. Little Rock, AR
Slotted pipe	Screen	Tri Loc Monitor Pipe, 4 ft × 10 in. PVC threaded, 0.010 ft slotted Brainard-Kilman Stone Mountain, GA
Plain pipe	Riser	Tri Loc Monitor Pipe, 4 ft × 10 in. PVC threaded, Brainard-Kilman Stone Mountain, GA
Plastic tape	Seal joints	Threadmaster Teflon, 3/4 ft Merco Company Hackensack, NJ
Cap, plug	Well ends	Threaded PVC M.M.R. Enterprises, Inc. Seagoville, TX

Table 2
Coordinates and Elevations in Monitoring Wells in Feet

				Top-of-			
		rdinates	Ground	Casing		Table E1	
	North	East	Elevation	Elevation	5 June	11 July	8 August
CBS-1	649,416	2,993,555	332.1	335.4	317.6	316.9	316.4
CBS-2	649,325	2,993,567	329.2	331.2	316.7	316.6	316.0
CBS-3	649,328	2,993,673	326.7	329.1	302.9	302.1	301.2
24*	649,306	2,993,635		330.6	303.5	301.2	301.2
25	649,387	2,993,680		328.6	316.7	311.2	310.7

^{*} Previous coordinates and elevation for top of casing in well 24 were used as bases for other measurements.

Table 3
Well Purging Data for 11 July

Well Number	Casing Diam. in.	Water Level ft-in.	Volume Purged gal	Water Observation
CBS-1	4	18-6	75	Cloudy
CBS-2	4	14-7	50	Cloudy
CBS-3*	4	27-0	12.5	Cloudy
24*	2	29-5	2	Very cloudy
25*	2	17-5	7.5	Cloudy

^{*} Well was purged dry.

Table 4
Well Puising Data for 8 August

Well Number	Casing Diam. in.	Water Level ft-in.	Volume Purged gal	Water Observation
CBS-1	4	19-0	75	Cloudy
CBS-2	4	15-2	50	Cloudy
CBS-3*	4	27-11	12	Cloudy
24*	2	29-5	2.5	Very cloudy
25*	2	17-11	8	Cloudy

^{*} Well was purged dry.

Table 5
Well Sampling Data for 12 July

Well Number	ESE Number	Parameters_	рН	Conductivity micromhos	Temperature OC	Water Level* ft-in.
CBS-1	CLSS13*1-N CLSS13*1-S CLSS13*1-MS CLSS13*1-	Metals Sulfides Extractables Vol. organic	5.2	50	27	19-5
CBS-2	CLSS13*2-N CLSS13*2-S CLSS13*2-MS CLSS13*2-	Metals Sulfides Extractables Vol. organic	5.4	25	25	14-9
CBS-3	CLSS13*6-N CLSS13*6-S CLSS13*6-MS CLSS13*6-	Metals Sulfides Extractables Vol. organic	6.7	25	27	27-0
24	CLSS13*5-N CLSS13*5-S CLSS13*5-MS CLSS13*5-	Metals Sulfides Extractables Vol. organic	6.3	90	26	35-7
25	CLSS13*4-N CLSS13*4-S CLSS13*4-MS CLSS13*4-	Metals Sulfides Extractables Vol. organic	5.7	30	27	17-0

^{*} Depth from top of casing.

Table 6
Well Sampling Data for 9 August

Well Number	ESE Number	Parameters	рН	Conductivity micromhos	Temperature C	Water Level* ft-in.
CBS-1	CLSS13*7-N CLSS13*7-S CLSS13*7-MS CLSS13*7-	Metals Sulfides Extractables Vol. organic	5.6	33	27	19-3
CBS-2	CLSS13*8-N CLSS13*8-S CLSS13*8-MS CLSS13*8-	Metals Sulfides Extractables Vol. organic	5.3	23	25	15-2
CBS-3	CLSS13*9-N CLSS13*9-S CLSS13*9-MS CLSS13*9-	Metals Sulfides Extractables Vol. organic	5.8	57	27	28-0
24	CLSS13*10-N CLSS13*10-S CLSS13*10-MS CLSS13*10-	Metals Sulfides Extractables Vol. organic	6.3	84	26	37-9
25	CLSS13*11-N CLSS13*11-S CLSS13*11-MS CLSS13*11-	Metals Sulfides Extractables Vol. organic	5.9	66	27	17-9

^{*} Depth from top of casing.

Table 7

Analytes Indicated* in Water Samples
of July and August 1988

Sample Date	Well No.	Analyte	Concentration (uGL)
July	Blank**	Bis (2-ethylhexyl) phthalate	5.27
July	CBS-1	Lead	26.3
July	CBS-3	Bis (2-ethylhexyl) phthalate	25.5
July	24	Lead	30.1
-		Chromium	14.9
		Chromium	14.9
		Chromium	14.9
		Copper	18.8
		Copper	18.8
		Copper	18.8
		Zinc	32.5
		Zinc	32.5
		Zinc	32.5
		Benzo (k) fluoranthene	0.98
		Bis (2-ethylhexyl) phthalate	5.09
July	25	Copper	14.7
		Copper	14.7
		Copper	14.7
		Bis (2-ethylhexyl) phthalate	6.18
August	•	No analytes above LT	1040

^{*} Excluding analytes not detected (ND) or indicated as less than (LT) the detection range.

^{**} Equipment rinse water.

Figure 1. CBS (circled) and its location within LSAAP

Figure 2. Magnetic intensity at CBS (contoured)

Figure 3. Magnetic intensity at CBS (block diagram)

Figure 4. Conductivity at CBS (contoured)

Figure 5. Conductivity at CBS (block diagram)

		יום	/-S:OH		INSTALL			SHEET /	٦				
	ING LO					NE ST			4				
CHEMICAL BURIAL SITE						10. SIZE AND TYPE OF BIT TA BOX AUGER							
2 LOCATION (Condinates or Station)						MSL 12. MANUFACTURER'S DESIGNATION OF DRILL							
N 649, 4-16 E 2,993,555													
MEMPHIS DIST., CE 4. HOLE PO (As shown on drawing filtra and file number CBS-/						Failing 1500							
			4 111.4	CBS-1		BURNEL SAMPLES TAKEN 10 0							
S. HAME OF		LOUIS	DY	CHE	16. TOTAL HUMBER COME BOXES O 15. ELEVATION GROUND WATER 3/6,7'(2/6/88)								
& DIRECTION	OF HOL	ŧ			IS DATE	E HOLE	STA	ATED COMPLETED	1				
DE VERTIC	AL	HCLINED		DEG. PROM YERY	<u> </u>	16. DATE HOLE 2 JUNE 88 Z JUNE 88							
7. THICKNES	S OF OVE	ROURDER			17. ELEVATION TOP OF HOLE \$32,/								
S. DEPTH DR				~		ATURE OF	INSPECT	OR /	٦				
9 TOTAL DE				32.5'	R.J. LUTTON (CEWESGR) ALS SCORE BOX ON REMARKS RECOV. SAMPLE (Dylling (line, under lass, death of								
ELEVATION	CEPTH	LEGIND		CLASSIFICATION OF MATERI (Description)	~~~	HECOV.	NO.	(Drilling time, under lass, depth of weethering, etc., if algriffence)					
352./	11		SAI	ND, gravelly, 10	YR 4/4				E				
{	_ =	ļ		06/805a/15 si	,•	1			F				
1	2 3					1			E				
1 1	E		CL	AY, stiff, 5 Y	ê/I				E				
ļ i	4								F				
	=					2			F				
	6-		SA	VD, silty		3							
	\exists		51	54/5051		1			E				
	8 -			clean sand 7-8	<u> </u>	ŀ			F				
1	=]	j		F				
}							•		E				
	10 =					4			E				
				· · · · · · · · · · · · · · · · · · ·		1			=				
	12 -		3/	LT, sandy, clay	ey	į	Ì		=				
			-	50/50 si/20 cl,		1			E				
W.T	14-		CL.	AY, hard, 546	//	5		·	E-				
317.6	- =		64	110 1111 1		1 -		• <u>.</u>	E				
3/6/88	16-			ND, silfy, claye		1			F				
4-10100	-		"	54/50 51, 10	K 5/4	4		•	E				
	/6 -					į -	<u> </u>		E				
	=		1	_		1	1		E				
1	. =			•		1	Ì		F				
1	70-	,	١.	26 (1) at 21.2"		۱ ۾	111111	SILTY SAND (SM) *	E				
· ·	7	<u>`</u> .	1 '			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	THE STATE OF THE S	Siery samp (any	E				
	22 -		0	harcoal spots 20	-82	ŀ	l		ļ.,				
1		·	L	•] _	L		E				
1	24			LT. Sandy, claye	٧,	8		,	E				
1.	=		3:	5 sa/55 si/10 cl		1		·	-				
1	26-		ļ — —	mostly sand 25-		1			F _				
1	=		54	No, silty, 57	16/1				-				
1	28-	1	5	014/1051/106	1			" ·	=				
	- =	1		•	•	1	1		=				
İ	20 -	1	<u>L</u> ,	Red, cemented 2	19.61	9	777777	4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	F				
	30-		1	401	/R 6/2	10	TI TI	CLAYEY SAND (SC) *	E				
	=	1	4	slayey	7-]	E				
299.6	¥	*****	_						=				
	-	יוקוד	Bo	ttom of hole a	2.5'	1			E				
1	=	}				}	1	1	E				
1] =	1							E				
1		1				1	1		<u> </u>				
	=	3	1			1			=				
1	=	1						*Grain gradation					
1	=	1	ĺ				1	in Appendix B	F				
						<u></u>	<u></u>		E				

Figure 6. Geological log of CBS-1

						Hole No.									
DRILL	ING LC	xG	OIVISI	04			INSTALL!		AR A	AP	•		SHEETS		
CHEMICAL BURIAL SITE						LONE STAR AAP OF I SHEETS O. SIZE AND TYPE OF SIT 74" BOX AUGER TI. DATUM FOR ELEVATION SHOWN (75H = MBL)							1		
L LOCATION (Constitutes or Station)						MSL									
3. DRILLING AGENCY							Failing 1500								
MEMPHIS DISI, CE							13. TOTAL HO, OF SECRET DISTURSED UNDISTURSED								
and title mumbed							14. TOTAL NUMBER CORE BOXES O								
		LOU	115	DYC	HE		15. ELEVATION GROUND WATER 317.6' (3/6/89)								
6. DIRECTION			HED		DE4. F	ROM VERT.	16. DATE	HOLE	'' <u>3</u>	JUNE			UNE 88		
THICKNESS OF OVERSUADEN							17. ELEVATION TOP OF HOLE 329,2'								
S. DEPTH DRILLED INTO ROCK							18. TOTAL CORE RECOVERY FOR BORING - S 19. SIGNATURE OF INSPECTOR R. J. LUTTON (CEWESGR)								
S. TOTAL DE	PTH OF	HOLE			4.0'		- Te cont leaving Brusers							ł	
ELEVATION 4	DZPTH	LEG			SIFICATION (RECOVE ERY	BOX OF SAMPLE NO.	(Drill)	ing Impa.	ider for la., If all	o, depth of pullicant	L	
329.2	:	‡			grave			- 1						E	
	2 -	3		35 pb	55.59	/10 si		•						E	
		-		CLAY	, stif	6 5	V ///							E	
. '	4 -	3	[]	~ ~ ^ /) 311F.	, j. 9	′ "/′	2				•		Ē	
	7	‡	- 1	ca//	iche vein	× 3-4	,	3	ZIIII	CAA	AY (C	H)		E	
İ	4	3								P	. 28,	22	99	E	
[=====================================	 -	_	SAN	o, silty				1				4	E	
ł	8 -	Ξ		605	a/40 s	v'		5	2000	5/L	ty s	AND ((sM)*	E	
		‡	_							ŀ				E	
	10 -	3	L	MOF	e chy	9-10'		. 6	TITE TO	CL	AYEYS	SAND	(sc)*	E	
	" :	=		50 50/50 51									•	E	
W.T	12 -	7		_	,					1				E	
<u></u>	"=		_		· • • •]				_	E	
316.7	14	7		Mon	e clay	13-15'		7	77777	CL	AY (:H) w	v. sand	Έ	
5/4/88	ለ" ∃	<u> </u>			. <u> </u>	5 G	Y 6/1						,	F	
-	16 -	=======================================	- 1	CLA	Y, Acas	٠ ر <u>۲</u> ٠		đ	11111	CL	AY (c#)		E	
1	/	₹_		74"	lenses	Howing	sand	ł		PL	. 27,	LL	101	E	
	18 -	3	- 1	SAN	D, Silt	4,54	6/1	1		1				E	
1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	‡		50 5	4/503	i	•	9	7000	\$ C4	AYEY	SAN	10 (sc)*	E	
1	20 -	3						l		1			•	E	
!	-	-							1	1				E	
}	22 -	Ξ_						10	7777	\$ 50	NDY	CLA	y (cl)*	E	
1	** -	╡			Sandy			1		1				E	
305.2	94_	=	[lens	es flow	ng san	d 23-2	k "	1					E	
303.2	127	77	77	ـــ غمار را				l						E	
1	16-	Ξ		DOTT	om of l	101¢ 24	7.0		1					E	
1	-	=								1				E	
1	_	Ξ							1					E	
1	-	=						1	1	1				F	
1	1 _	E	- 1							ĺ				E	
ļ	-	Ξ	- 1					1	1	1				F	
1	_	3	- [İ		1		٠		E	
1	"	Ξ.						l						=	
i	1 _	3	1					Ì	1	l				E	
1	-	=						1		1				E	
1	1	4						1	1	1				E	
1		Ξ						1	1	1				E	
1	1 .	Ξ	- 1					Ì					lation	E	
1		=	1					1	1		in Ap	perk	div B	E	
L		=	l					1		1				E	

Figure 7. Geological log of CBS-2

		200	14747		TINSTALL	ATIAN		HOLD HO	SHEET /	7				
	ING LO	G O	ISION .				AR A		OF / SHEETS	1				
. PROJECT			2110	IAL SITE	10. SIZE AND TYPE OF BIY 7/4" BOX AUGER									
						MS L								
NG49	328	E 2	, 59.	3, 473				NATION OF BRILL		1				
	M			IST: , CE	12. TOT	L HO. OF	1500	DISTURBED	UNDISTURSED	ł				
AND MO.	(Åe ahou ub es)		d title	CB5-3						1				
. NAME OF		LOUIS	ימ	CHE		14. TOTAL NUMBER CORE BOXES O								
. DIRECTIO			V)	· • · · · · · · · · · · · · · · · · · ·	+		ISTA	RTED	(4/6/88)	┨				
WVERTIC				DEG. FROM YERT	16. DATI			JUNE 80	4 JUNE 88	1				
, THICKNES	S OF OVE	ROURDER		~		17. ELEVATION TOP OF HOLE 326.7'								
e. DEPTH DR	ILLEO II	TO ROCK		INSPECT	Č.		1							
. TOTAL DE	PTH OF	HOLE		34.01		19. SIGNATURE OF INSPECTOR R. J. LUTTON (CEWESGR)								
ELEVATION 4	DEPTH LEGEND CLASSIFICATION OF MATERIA (Description)				ALS	MECONE COME	BOX OR SAMPLE HO.	(Drilling theo, to	ARKS ster loss, depth of h, if elgaliteans	L				
326.7			GR	AVEL, sandy		1	111111	SANDY C	LAYRY	E				
	_ =		50	pb/50 sa		1		ORAV	EL (GC)*	F				
	2 -]	CL	AY, mod. dry		2	\vdash	! 		E				
		}				3				E				
	4-		C	aliche + Cracks at top						F				
	=	(l		41 10p		4				F				
	6-	 	611	T saudu alan	ev		L		طن ر	上				
	=]	1	LT, sandy, clay 05a/40si/40c	<i>"</i> —	5		SANDY C	LAY (CL)*	E				
	8 -]		ND, silty, mott		1				E				
	-	1 1		0 50/4051/1001						=				
	. =	1 1	-			6	<i>mm</i>	SANDY	LAY (CL)*	F				
	10 <u> </u>]						•		E				
	=]								E				
	/2 -	1				1				F				
	:	 				i				=				
	/4-]	3/	LT, mottled q	ray.	1								
	=]	٠	and brange, id	O \$1	İ			- - ط اری	E				
	16					7	WIII I	CLAY ((CL) *	E				
	" =		CL	AY, v. stiff, 5	/R 5/2	1			•	F				
[18 -	3		= F	•	1	i			E				
į į	" -	1	_ =	lay sandy sitt Ti	: <u>5</u> -797					E				
Ī	-	1 1	Γ,	lay Sandy 5,17 Te 10 10/70 i/10 cl		1				F				
l	20	1	5	tiff		8	711111	CLAY (CH)	F				
1	1 =	3		2" leases flowing ;	and -	"		PL 20,		E				
W.T	22 -	 		AY, soft, black				· · ·	-	E				
	:	}	_			9				E				
302.9	24	1	C	LAY 57K	4/1		1			È.				
302.7		3								E				
74/60	26-	}				1				E				
l		‡	54	and, silty 10.	YR 4/1				بذه ز	E				
l	: بد	1		•		10	mm	SANDY C	LAY (CL)*	-				
	115	E		an BCMA A see					• •	100				
1		}	ا ا	see REMARKS				1000		E				
	50 -	4					1	Hole in		-				
l	:	1					1	29' was		F				
l	82 -	3				Į		used my		<u></u>				
1	:	E				1	1		inal depth.	E				
292.7	94-	1,,,		A .			1	No 109 2	7-34'	E				
'''''	:	ויווי	Do	ittom of hole 3	1.0'			}		E				
	:	7				1	1			F				
l	-	E				I		l		E				
ł	:	4	1			1	1	* Grain 9	radation	E				
1	-	4				1			endix B	-				
1	:	3			•	i	1			E				
<u> </u>	ــــــــــــــــــــــــــــــــــــــ	1	<u> </u>				ــــــــــــــــــــــــــــــــــــــ	<u> </u>		ᆫ				

Figure 8. Geological log of CBS-3

Figure 9. Summary logs of 24 and 25

Figure 10. Well construction details of CBS-1, -2, and -3

WELL ?	
	i
1.24	
WE	

C 2'-5" C 2'-5" C 2'-5" C 4'-6" C 4'-6" C 4'-6" C 7'-6" C 8'-6" C 7'-6" C 8'-6" C 7'-6" C 8'-6" C 9'-6" C 9'-6" C 9'-6"	
C Z-1" C Z-1" C Z-1" E 10'-8" F 50'-8" F 20'-9" K 20'-0" K 20'-0" K 20'-0" C 20'-0"	

Wates:

- O Federtive cosing includes lockable that Square hinged top wilock.
- Cocrete seal includes a 6"dry secrete plug resting against granular fill material.
- (3) All well pipe and screen tensists of Scindule 40 PMC.
 - DFsemstion sampling depth 40.000.
- Soved depth. prorts well installation
- Duster level on 10:28-81
- Dutell pipe and screen installed through hollowayer, then auger removed.
 - @ Granular Filt-Clean Loarse Sand between sier openings 3.36 mm and 1.41 mm. @Gward pods to be installed
 - at a later date.
- O Commercially slatted screen has approx 29 in per 10-ft section, slot size 0.010 m.

Figure 12. Geological structure in region

Figure 13. Geology at CBS

Figure 14. Water table at CBS

APPENDIX A: GEOPHYSICAL SUPVEYS AT LSAAP

Introduction

1. The purpose of these geophysical investigations was to locate anomalous areas which might be indicative of buried hazardous waste. Three locations were surveyed and results are presented herein. Location 2 is equivalent to Site 16, the Chemical Burial Site. Locations 1 and 3 are included only to preserve the continuity of the original survey assignment.

Survey Methods

- 2. A 20 \times 20-ft grid was established for surveying all three locations. Additional measurements were made on a 10 \times 10-ft grid pattern around anomalous regions. Measurements were also taken in the perimeter areas so that a regional field could be established to compare with the local measurements. The two geophysical methods employed were magnetic and conductivity surveys.
- 3. The magnetic survey was conducted by measuring total magnetic field strength using a proton precession magnetometer which had a measurement accuracy of 1 gamma. For reference, the average magnetic field strength of the earth is 50,000 gammas. A base station was established for each site and was reoccupied after every profile line. In this manner, the data could be drift corrected and any disruptive fluctuations in the magnetic field detected. The readings were stored in instrument memory, automatically drift corrected, and downloaded into a microcomputer at the end of the day for data analysis and display of results.
- 4. The conductivity survey was performed using an electromagnetic induction (EM) terrain conductivity system. This particular instrument has a receiver and transmitter located at opposite ends of a 4-m (13-ft) boom. The EM meter reading is a weighted average of the earth's conductivity as a function of depth. The weighting or sensitivity with depth is shown in Figure Al for this particular instrument. Based on this sensitivity curve, which was obtained from the manufacturer's literature, the effective depth of investigation for this instrument is 6 m (19 ft). A thorough investigation to a depth of 13 ft is possible and below that the effect of conductive anomalies becomes more difficult to distinguish as their depth increases.

Data from EM surveys are obtained in units of mmho/m. Readings can be read to an accuracy of 0.5 mmho/m.

Data Presentation

5. Data collected during this study are presented in two formats. Each set of data is presented as a map of contours of the measured values and then a three dimensional view of the surface generated from these contours. Because the view of a 3-D surface will differ depending on the viewing orientation more than one view is sometimes necessary to show all the features of interest. A reference point is annotated on each plot in the set to enable easy comparison between them. Since the relative values, not the absolute values, of the measurements are of interest for this study, some adjustments were made to the data so that they would be easier to process and display. The magnetic data were adjusted by establishing a datum which represents a background or average reading for the location and subtracting this value from all readings from that location. This datum is shown on the contour maps. Because the conductivity measurements are expressed in a smaller numerical range and the data at each location showed little variation, it was not necessary for any adjustments to be made.

Anomaly Detection

- 6. Anomaly detection is limited by instrument accuracy and local "noise" or variation in the measurements caused by factors not associated with the anomalies of interest. For an anomaly to be significant, it must be two to three times greater than these factors. Also, since the anomaly amplitude is the key to detection, the size and depth of the feature causing the anomaly is also a very important factor in determining detectability and resolution. Lastly, the intensity of the anomaly is also a function of the degree of contrast in material properties between the anomaly and the surrounding material. For these surveys, the magnetic susceptibility and conductivity are the material properties being measured.
- 7. Based upon the methods employed, accuracy of the equipment, noise conditions at the locations, and the assumptions listed below, the probability of successful anomaly detection is high. The criteria for identifying and classifying anomalies is also presented.

Site Assumptions:

Depth of burial <15 ft

Estimated quantity - fifty 55-gal drums

Highly conductive containers and/or waste

Anomaly Detection Threshold:

Magnetic +/- 10 gammas

Conductivity +/- 10 mmho/m

Anomaly Ranking and Classification:

AAA - Magnetic High + Conductivity High
buried metallic objects, drums; conductive contaminant
waste plume

AA - Magnetic Neutral + Conductivity High Conductive contaminant waste plume

- A Magnetic High + Conductivity Neutral

 Buried metallic objects, barrels; no contaminant waste plume
- 8. Anomaly depth determination requires that size, geometry, and material property contrast be known or assumed. These factors are related in that for a fixed anomaly amplitude and shape, there is no unique solution without fixing these parameters. For the purposes of this survey, a rule of thumb that the feature causing the anomaly will be at a depth no greater than the magnetic anomaly width should be adequate. A nomograph is shown in Figure A2 for estimating anomaly depth. For anomalies detected by the conductivity survey, depth determination is given in terms of limiting depth of investigation of the instrument.

Location | Results

9. Location 1 is situated about 700-ft due west of Site 16 as indicated in Figure A3. The magnetic survey showed very little variation as indicated by the 3-D projection of the magnetic data and the featureless contour plot, Figures A4 and A5, respectively. The conductivity survey results are shown in Figures A6 and A7. These plots again show a very smooth, clean appearance with no significant trends or anomalies. From these data, it can be concluded

no conductive or magnetic anomalies exist down to the depth of interest of 15 ft.

Location 2 (Site 16) Results

10. Site 16 is Location 2 investigated by geophysical surveys (Figure A3). The magnetic survey results are shown in Figures 2 and 3 as contour map and 3-D projection. This location was dominated by known anomalies consisting of the metallic warning signs and the two monitoring wells. There was an unexplained positive anomaly detected which corresponds to one that was found in a prior survey. This magnetic anomaly is annotated in the figures. Additional data was collected around the wells which accounts for the nonrectangular grid. The conductivity survey was not as affected by these features because of the orientation of the measurement field and the distance these features were from measurement points. The effect of thin vertical conductive features located on either side of the instrument will be small a few feet offset from it. The conductivity data show a very uniform nonanomalous site. These data are presented in Figures 4 and 5. The unexplained magnetic anomaly, rated "A" using the criteria in paragraph 7, has a magnitude of 60 gammas and a width of 20 ft, which could be interpreted as having a maximum depth of 20 ft. Magnetic anomalies often appear in matched positive and negative pairs representing dipoles like that of a bar magnet. However, if a very long magnet was vertically placed in the ground and surveyed, a monopole anomaly would be detected, which is the case with the monitoring wells.

Location 3 Results*

11. Location 3 is situated as shown in Figure A8 at a past home site, evidenced by a cistern and remnant foundation pier or chimney. The cistern was filled with metal refuse. To reduce "noise" at the location, surface metallic objects were removed before the survey was begun. Location 3 was dominated by the magnetic anomaly caused by the cistern. The magnetic survey

^{*} Location 3 is in a wooded area along an unnamed dirt road about 1,500 ft south of Old Boston Road and 2,500 ft west of the eastern boundary of LSAAP.

results are shown in Figures A9 through All. Another anomaly is located to the southwest of the cistern. This anomaly has a width of 17 ft, a magnitude of 100 gammas, and shows the classic dipole nature. Also, there is another possible anomaly to the southeast of the cistern which is evidenced by the elongated contours around the cistern anomaly. The results from the conductivity survey are shown in Figures Al2 and Al3. The data show that conductivity increases in a southeast direction. Further readings outside the grid supported this general trend. Therefore, this increase is a broad area trend probably due to soil type change. The area around the cistern showed a flat, relatively low conductivity plateau. The anomalies at this location are ranked "A" (paragraph 7).

Figure A1. Sensitivity with depth of EM31 terrain conductivity meter.

For dipole moment $M = 5 \times 10^{5}$ cgs/ton k = 8 cgs

Figure A2. Nomograph for establishing magnetic enomaly depths.

Figure A3. Survey limits for location 1 and 2 (site 16).

Figure A5. Location 1 magnetic survey contour of results.

Figure A7. Location 1 conductivity survey contour of results.

Figure A8. Location 3 survey limits

A15

Figure A11 Location 3 magnetic survey contour of results

Figure A13. Location 3 conductivity survey contour of results.

APPENDIX B

SOIL TEST RESULTS

Soils Testing Facility
U.S. Army Engineer Waterways Experiment Station

. .

APPENDIX C

GROUND-WATER CHEMICAL RESULTS

Table C1. Analytical Results of Well CBS-1 Samples of 1988

SAMPLE DATE	LAB	NAME	METH NUMB	SAMPLE DEPTH(FT)	MEAS * Bool	CONCENTRATION	UNITS Meas	INT *
07/12/88	ES	HG	SBO1	19.4	LT	.2430	UGL	
•		PB	SD09			26.3000	UGL	
		AG	SSO1		LT	13.5000	UGL	
		ABHC	UM 18		ND	4.0000	UGL	R
		ACHLOR			ND	5,1000	UGL	R
		AENSLF			(2D	9.2000	UGL	R
		ALDRN			ND	4.7000	UGL	R
		ANAPNE			LT	1.7000	UGL	
		ANAPYL			LT LT	.5000	UGL UGL	
		ANTRC BAANTR			LT	. 5000 1. 6000	UGL	
		BAPYR			ĹŤ	4.7000	UGL	
		8BFANT			ĹŤ	5.4000	UGL	
		BBHC			ND	4.0000	UGL	R
		BBZP			LT	3.4000	UGL	••
		BENSLF			ND	9,2000	UGL.	R
		BENZID			ND	10,0000	UGL	R
		BENZOA			LT	13.0000	UGL	
		BGHIPY			ŁT.	6.1000	UGL	
		BKFANT			LT	.8700	UGL	
		BZALC			LT	.7200	UGL	
		B2CEXM			LT	1.5000	UGL	
		B2CIPE			LT	5.3000	UGL	
		B2CLEE			LT	1.9000	UGL	
		B2EHP			LT	4,8000	UGL	
		CHRY			ŁΥ	2.4000	UGL	
		CL6BZ			LŢ	1.6000	UGL	
		CLECP			LT	8.6000	UGL	
		CLEET			LT LT	1,5000 6,5000	UGL	
		DBAHA DBHC			NO	4,0000	JGL	R
		DBZFUR			ĹŤ	1.7000	UGL	•
		DEP			ĹŤ	2,0000	UGL	
		DLDRN			NO	4.7000	UGL	R
		DMP			LT .	1.5000	UGL.	
		DNBP			LT	3,7000	UGL	
		DNOP			LT	15.0000	NGĽ	
		ENDRN			NO	7.6000	ugL	R
		ENDRNA			NO	8.0000	UGL	R
		ENDRNK			NO	8.0000	UGL	R
		ESFS04			NO	9.2000	ugr.	R
		FANT			LT	3.3000	UGL.	
		FLRENE			LT	3.7000	ugt ugt	R
		GCHLOR HCBD			ND LT	5.1000 3.4000	ngr ngr	H
		HPCL			ND	2.6000	UGL	R
		HPCLE			NO	5.0000	UGL	Ŕ
		ICDPYR			ĹŤ	8.6000	UGL	•••
		ISOPHR			ĹŤ	4 8000	UGL	
		LIN			ÑÔ	4,0000	UGL	R
		MEXCLR			NO	5.1000	UGL	R
		NAP			LT	.5000	UGL	
		NB			ŁT	. 5000	UGL	
		NNOMEA			NO	2.0000	UGL	R
		NNONPA			LT	4.4000	UGL	
		NNDPA			LT	3.0000	UGL	_
		PCB 101			NO	21.0000	UGL	R
		PCB 122			ND	21.0000	UGL	R
		PCB 123 PCB 124			ND ND	21.0000 30.0000	UGL	R R
		11/12 17A				411 4 4 4 4 4 4 4	RATER	

^{*} Abbreviations explained at end of table.

Table C1. (Continued)

Ŷ.

SAMPLE DATE	LAB	NAME	METH NUMB	SAMPLE DEPTH(FT)	MEAS 800L	CONCENTRATION	UNITS MEAS	INT
07/12/88	ES	PCB125		19.4	ND	36.0000	UGL	R
4.,,		PCB126		,,,,	ND	36.0000	UGL	Ř
		PCP			LT	18.0000	UGL	
•		PHANTR			LT	.5000	UGL	
		PHENOL			LT	9.2000	UGL	
		PPDDD			ND	4.0000	UGL	R
		PPDDE			ND	4.7000	UGL	R
		PPDDT			ND	9.2000	UGL	R
		PYR			LT	2.8000	UGL	• • •
		TXPHEN			ND	36.0000	UGL	R
		12DCLB			LT	1.7000	UGL	• • • • • • • • • • • • • • • • • • • •
		12DPH			ND	2.0000	UGL	R
		124TCB			LT	1.8000	UGL.	••
		13DCLB			ĹŤ	1.7000	UGL	
		14DCLB			ĹŤ	1.7000	UGL	
		2CLP			ĹŤ	.9900	UGL	
		2CNAP			ĹŤ	.5000	UGL	
		2MNAP			ĹŤ	1.7000	UGL	
		2MP			ĹŤ	3.9000	UGL	
		2NANIL			ĹŤ	4.3000	UGL	
·		2NP			ĹŤ	3,7000	ÜĞL	
		24DCLP			ĹŤ	2.9000	UGL	
		24DMPN			ĹŤ	5.8000	UGL	
		24DNP			ĹŤ	21.0000	UGL	
		24DNT			ĹŤ	4.5000	UGL	
		245TCP			LT	5.2000	UGL	
		246TCP			ĹŤ	4.2000	UGL	
		26DNT			ĹŤ	,7900	UGL	
		SNANIL			LT	4.9000	UGL	
		33DCBD			ĹŤ	12.0000	UGL.	
		4BRPPE			LT	4.2000	UGL	
		4CANIL			LT	7.3000	UGL	
					LT	5.1000	UGL	
		4CLPPE 4CL3C			LT	4.0000	UGL	
		40030 4MP			LT	.5200	UGL	
					ĹŤ	5,2000	UGL	
*		4NANIL 4NP			LT	12.0000	UGL	
		46DN2C	00		LT	17.0000	UGL UGL	
		BE	99		LT	3.4000		
•		NI			LT	34.4000	UGL	
	*	88			LT	39.2000	UGL	
÷		SE			LT	74.6000	UGL	
		TL			LT	81.4000	UGL	

Table C1. (Continued)

DATE	LAB	NAME	METH	SAMPLE DEPTH(FT)	MEAS BOOL	CONCENTRATION	UNITS MEAS	INT
08/09/88	ES	AS	ABA	19.4	LT	3.0700	UGL	
		HG	SBO1	10.7	ĹŤ	.5000	UGL	G
		ABHC	UM18		ND	4.0000	UGL	Ř
		ACHLOR			NO	5.1000	UGL	R
		AENSLF			ND	9.2000	UGL.	R
		ALDRN			ND	4.7000	UGĽ.	R
		ANAPNE			LT	1.7000	UGL	
		ANAPYL			LT	.5000	UGL	
		ANTRO			LT	.5000	UGL	
		BAANTR			LT	1.6000	UGL	
		BAPYR			LT	4.7000	UGŁ	
		BBFANT			LT	5.4000	UGĻ	
		BBHC			NO	4.0000	ugL	R
		BBZP			LY	3.4000	UGL	
		BENSLF			NO	9.2000	UGL	R
		BENZID			NO	10.0000	UGL	R
		BENZOA			LT	13.0000	UGL	
		BGHIPY			LT	6.1000	ugL	
		BKFANT			LT	.8700	UGL	
		BZALC			ĻT	.7200	UGL.	
		B2CEXM			ĻT	1.5000	ugl	
		BACIPE			ĹŦ	5.3000	UGL	
		B2CLEE			LT	1.9000	nar	
		B2EHP			LT	4.8000	UGL	
		CHRY			LT	2.4000	UGL	
		CL6BZ			LT	1.6000	nar	
		CL6CP			LT	8.6000	ugt.	
		CLEET			LT	1.5000	UGL	
		DBAHA			LT	6.5000	UGL	_
		OBHC			ND	4.0000	UGL	R
		DBZFUR			LT	1.7000	nar	
		DEP			LT	2.0000	UGL	_
		DLDRN'			ND	4.7000	UGL	R
		DMP '			ĹŢ	1.5000	UGŁ	
		DNBP			LT	4.7000	UGL	
		DNOP			LT	15.0000	UGL	_
		ENDRN			NO	7,6000	UGL	R
		ENDRNA		•	NO	#.0000	UGL	R
		ENDRNK			. NO	8.0000	UGL	R
		ESFS04 Fant			ND (.T	9.2000	UQL.	R
						3.3000	UGL	
		FLRENE GCHLOR			LT ND	3.7000 8.1000	ugl ugl	R
		HCRD			LT			×
		HPCL			ND	3.4600 2.0000	nar nar	ъ.
		HPCLE			ND	5.0000	UGL	R
•		ICDPYR			LT	8.6000		×
		ISOPHR	,				UGL	
		LIN			LT	4.8000	UGL	
•		MEXCLR			ND	4.0000	UGL	N
		NAP			ND LT	5.1000 .5000	ugl Ugl	R
		NB			LT			
		NNOMEA			NO	.5000 2.0000	UGL UGL	R
		NNDNPA		•	LT	4.4000	UGL	**
		NNOPA			LT	3.0000	UGL	
		PC8 101			NO	21.0000	UGL	ø
		PCB 122			NO NO		UGL	R
		PCB 123			NO	21.0000 21.0000	UGL	R R
		PCB 124			NO	30.0000		
		PCB 125			NO	36.0000	ner ner	R R
		TUDIES				30.000	UUL	•

Table C1. (Concluded)

SAMPLE Date	LAB	NAME	METH NUMB	SAMPLE DEPTH(FT)	MEAS BOOL	CONCENTRATION	UNITS MEAS	INT
08/09/88	ES	PCB 126		19.4	ND	00 0000		
00/03/00	63	PCP		18.4	LT	36.0000 18.0000	UGL UGL	R
		PHANTR			LT	.5000	UGL	
		PHENOL			LT	9.2000	UGL.	
		PPDDD			ND	4.0000	UGL	R
		PPDDE			ND	4.7000	UGL.	Ř
		PPDDT			ND	9.2000	UGL	Ŕ
		PYR			LT	. 2.8000	ngr	
		TXPHEN			ND	36.0000	UGL	R
		12DCLB			LT	1.7000	UGL	••
		12DPH			ND	2.0000	UGL	R
		124TCB			LT	1.8000	UGL	••
		13DCLB			LT	1.7000	UGL	
		14DCLB			LT	1.7000	UGL	
		2CLP			LT	.9900	UGL	
		2CNAP			LT	.5000	UGL	
		2MNAP			LT	1,7000	UGL	
		2MP			LT	3.9000	UGL	
		2NANIL			LT	4.3000	UGL	
		2NP			ĻŤ	3.7000	UGL	
		240CLP			LT	2.9000	UGL	
		24DMPN			LT	5.8000	UGL	
		200NP			ĻT	21.0000	uaL	
		240NT			i,T	4.5000	UGL	
		245TCP			LT	5.2000	UGL	
		246TCP			LŢ	4.2000	UGL	
		26DNT			LT	. 7900	UGL	
		JIMANE.			LT	4.9000	UGL	
		330080	. "		LT	12.0000	UGL	
		4BRPPE			LT	4.2000	UGL	
		4CANIL			LT	7.3000	UGL	
		4CLPPE			LŢ	5.1000	UGL	
		4CL3C			LT	4.0000	ner	
		4 % P			LT	. 5200	figr	
		4NANI L			LT	5.2000	ugL	
		4NP			LŢ	12.0000	UGL	
		46DN2C			LT	17.0000	ugL	
		504	X8		LT	10000.0000	UGL	
•		BE	99		LT.	2.3000	UGL	
		114			LY	16.0000	UGL	
		SB			LT	59.0000	UGL.	
		SE			LT.	133.0000	UGL	
		TL .			LT	174.0000	UCL	

Abbreviations:

ND, not detected; LT, less than indicated concentration; BOOL, Boolean field; and R, concentration based on internal standard

Table C2. Analytical Results of Well CBS-2 Samples of 1988

SAMPLE Date	LAB	NAME	METH	SAMPLE DEPTH(FT)	MEAS BOOL	CONCENTRATION	UNITS MEAS	INT
07/12/88	ES	HG	5801	14.8	LT	, 2430	UGL	
0.7.2700	••	PB	SDO9		LT	22.2000	UGL	
		AG	5501		LT	13.5000	UGL	
		ABHC	UM18		ND	4.0000	UGL	R
		ACHLOR			ND	5.1000	UGL.	R
		AENSLF			NO	9.2000	UGL	R
		ALDRN			NO	4.7000	UGL	R
		ANAPNE			LT	1.7000	UGL .	
		ANAPYL			LT	. 5000	UGL	
		ANTRO			LT	.5000	UGL	
		BAANTR			ĻT	1.6000	UGL	
		BAPYR			LŢ	4.7000	UGL	
		BBFANT			LT	5.4000	UGL	
		BBHC			ND	4.0000	UGL	R
		88ZP			LT	3,4000	UGL	R
		BENSLF			ND	9.2000	UGL UGL	R
		BENZID			ND	10.0000		*
		BENZOA			LT	13.0000	UGL UGL	
		BCHTBA			LT	6.1000	UGL	
		BKFANT			LT	.8700	UGL	
		BZALC			LT	.7200		
		B2CEXM			LT	1.5000	UGL UGL	
		B2CIPE			LT	5,3000 1,9000	UGL	
		B2CLEE			LT	4,8000	UGL	
		82EHP			LT	2.4009	UGL	
		CHRY			LŤ	1.6000	UGL.	
		CLEBZ			LT LT	8,6000	UGL	
	-	CLSCP				1.5000	ner	
		CLSET			LT LT	6.5000	UGL	
		AHAGG			NO	4.0000	UGL	R
		08HC			LT	1,7000	UGL.	••
		OBZFUR			LT	2,0000	UGL	
		DEP			ND	4.7000	UGL	R
		DLORN			LT	1.5000	UGL	
•		DMP			เรี	3.7000	UGL	
		ONEP			រំ។	15.0000	UGL	
		UNOP			NE	7,6000	UGL	R
		ENDAN			NO	8,0000	USL	R
		ANSCHA			ND	8.0000	UGL	R
		ENDRINK			NO	9.2000	UGL	R
•		ESFS04 Fant			LT	3.3000	UGL	
		FLRENE			ĹŤ	3.7000	UGL	
		GCHLOR		•	NG	5.1000	UGL	R
	-	HCBD			LT	3,4000	UGL	
		MPCL	-		ND	2.0000	UGL	R
		HPCLE			NO	5.0000	UGL.	R
		ICDPYR			LT	8.60°0	UGL	
	-	ISOPHA			LT	4.8000	UGL	
		LIN			ND	4.0000	UGL	Ŕ
		MEXCLR			ND	5.1000	UGL	R
		NAP		,	ĿŤ	. 5000	UGL	
		NB			ũŤ	.5000	ual	
	•	NNONEA			ND	2.0000	UGL	R
		NNONPA			LT	4.4000	uat	
		NNOPA			ĹŤ	3.0000	UGL	
		PCB 101			ND	21.0000	UGL	R
		PCB 122			NO	21.0000	ngr	Ŕ
						21.0000	UGL	R

Table C2. (Continued)

SAMPLE DATE	L 18	NAME	METH NUMB	SAMPLE DEPTH(FT)	MEAS BOOL	CONCENTRATION	UNITS MEAS	INT STD
07/12/88	ES	PCB124		14.8	ND	30.0000	UGL	R
· ·		PCB125			ND	36.0000	UGL.	Ŕ
		PCB126			ND	36.0000	UGL	R
		PCP			LT	18.0000	UGL	
		PHANTR			LT	. 5000	UGL	
		PHENOL			LT	9.2000	UGL	
		PPDDD			ND	4.0000	UGL	R
		PPDDE			ND	4.7000	UGL	R
		PPDDT			ND	9.2000	UGL	R
		PYR			LT	2.8000	UGL	
		TXPHEN			ND	36.0000	UGL	R
		12DCLB			LT	1.7000	UGL	
		12DPH			ND	2.0000	ugl.	R
		124TCB		•	LT	1.8000	UGL	
		13DCLB			LT	1.7000	UGL	
		14DCLB			LT	1.7000	UGL	
		2CLP			LT	. 9900	UGL	
		2CNAP			LT	. 5000	UGL	
		2MNAP			LT	1.7000	UGL	
		2MP			LT	3.9000	UGL	
		2NANIL	•		LT	4.3000	UGL	
		2NP			LŢ	3.7000	UGL	
		24DCLP			LŢ	2.9000	UGL	
		24DMPN			LT	5.8000	UGL	
		24DNP			LT	21.0000	UGL	
		24DNT			LT	4.5000	UGL	
		245TCP			LT	5.2000	UGL	
		246TCP			LT	4.2000	UGL	
		26DNT			LT	.7900	UGL	
		3NANIL			LT	4 . 9000	UGL	
		33DCBD			LŢ	12.0000	UGL	
		4BRPPE			LT	4.2000	UGI.	
		4CANIL			LT	7.3000	UGL	
		4CLPPE			LT	5.1000	UGL	
		4CL3C			LT	4.0000	UGL	
		4MP			LT	. 5200	UGL	
		4NANIL			LT	5.2000	UGL	
		4NP			LT	12.0000	UGL	
		46DN2C	20		LT	17.0000	UGL	
		BE	99		LT	3.4000	UGL	
		NI			LT	34.4000	UGL	
		SB			LT	39.2000	UGL	
		SE			LT	74.6000	UGL	
		TL			LT	81.4000	UGL	

Table C2. (Continued)

SAMPLE DATE	LAB	NAME	METH NUMB	SAMPLE DEPTH(FT)	MEAS BOOL	CONCENTRATION	UNITS MEAS	INT
08/09/88	ES	AS	ABA	14.9	LT	3,0700	UGL	
		HG	\$ B 01		LT	.5000	UGL	G
		ABHC	UM18		ND	4.0000	UGL	R
		ACHLOR			ND	5.1000	UGL.	R
		AENSLF			ND	9.2000	UGL	R
		ALDRN			ND	4.7000	UGL.	R
		ANAPNE			LT	1.7000	UGL.	
		ANAPYL			LT	.5000	UGL	
		ANTRC			LT	. 5000	UGL	
		BAANTR			LT	1.6000	UGL	
		BAPYR			LT	4.7000	UGL	
		BBFANT			LT	ช.4000	UGL	
		B3HC			NO	4.0000	UGL	R
		BBZP			LT	3.4000	UGL	
		BENSLF			ND .	9.2000	UGL	R
		BENZID			ND	10.0000	UGL	R
		BENZOA			LT	13.0000	UGL	
		BGHIPY			LT	6.1000	UGL	
		BKFANT			LT	. 8700	UGL	
		BZALC			LT	.7200	UGL	
		B2CEXM			LT	1.5000	NGL	
		B2CIPE			LT	5.3000	UGL	
		B2CLEE			LT	1.9000	UGL	
		B2EHP			LT	4.8000	NGL	
		CHRY			LT	2,4000	UGL .	
		CLEBI			LT	1.6000	ugŁ	
		CLBCP			LT	8.6000	UGL	
		CLBET			LT	1.5000	UGL	
		DBAHA			LY	6.5000	UGL	
		DBHC			ND	4.0000	UGL	R
		DBZFUR			LT	1.7000	uar	
		DEP			LT	2.0000	UGL	
		DLDRN.			ND	4.7000	UGL	R
		DMP 1.			LT	1.5000	ngr	
		DNBP			L.T	3,7000	UGL	
		ONOP			LT	15.0000	UGL	_
		ENDRN			NO	7.6000	UGL	R
		ENDRNA			NO	9.0000	uar	R
		ENDRNK			NO	8.0000	UGL	R
		ESFS04			ND	9.2000	UGL	R
		FANT			LT	3.3000	UGL.	
		FLRENE			L1	3.7000	UGL	_
		GCHLOR			NO	6.1000	UGL	R
		HCBD			LT NO	3.4000	UGL	
		HPCL				2.0000	ngr nur	段
		HPCLE LCDPYR			ND LT	5.0000 a.6000	UGL	R
		ISOPHR			ĹŤ	4.8000	UGL	
		LIN			NO	4.0000	UGL.	R
		MEXCLR			NO	5.1000	UGL	Ř
		NAP			LT	. 5000	UGL	
		NB			LT	, 5000 , 5000	UGL	
		NNDMEA			NO.	2.0000	UGL	R
		NNONPA			LT	4.4000	UGL	*
		NNDPA			LT	3.0000	UGL	
		PCR 101			ND	21.0000	UGL	D
		PCB 122			NO		UGL	R
		PCB122			NO	21.0000		
		PCB 124			NO	21.0000 30.0000	UGL	R R

Table C2. (Concluded)

SAMPLE DATE	LAB	NAME	METH .	SAMPLE DEPTH(FT)	MEAS BOOL	CONCENTRATION	UNITS MEAS	STD
08/09/88	ES	PCB126		14.8	ND	36.0000	UGL	R
		PCP		- "	LT	18.0000	UGL	
		PHANTR			LT	. 5000	UGL	
		PHENOL			LT	9.2000	UGL	
		PPDDD			ND	4.0000	UGL	R
		PPDDE			ND	4.7000	UGL.	R
		PPDDT			ND	9.2000	UGL	R
		PYR			LT	2.8000	UGL	
		TXPHEN			ND	36.0000	UGL	R
		12DCLB			LT	1.7000	UGL	••
		12DPH			ND	2.0000	UGL.	R
		124TCB			LT	1.8000	UGL	**
		13DCLB			ĽΫ́	1.7000	UGL	
		14DCLB			LT	1.7000	UGL	
		2CLP			LT	.9900	UGL	•
		2CNAP			ĹŤ	.5000	UGL	
		2MNAP			LT	1.7000	UGL	
					LT			
		2MP			LT	3.9000	UGL.	
		2NANIL				4.3000	UGL.	
		2NP			LT	3.7000	UGL	
		24DCLP			LT	2.9000	UGL	
		24DMPN			LT	5.8000	UGL	
		24DNP			LT	21.0000	UGL	
		24DNT			LT	4.5000	UGL	
		245TCP			LT	5.2000	UGL	
		246TCP			LT	4,2000	UGL	
		26DNT			LT	.7900	UGL	
		JIMANE			LT	4.9000	UGL	
		33DCBD			LŢ	12.0000	UGL	
		4BRPPE			LT	4.2000	UGL	
		4CANIL			LT	7.3000	UGL	
		4CLPPE			LT	5.1000	UGL	
		4CL3C			LT	4.0000	UGL	
		4MP			LT	. 6200	ugL	
		4NANIL			LT	5.2000	uaL	
		4NP			LT	12,0000	UGL	
		46DN2C			LT	17.0000	UGL	
		504	X8		LT	10000.0000	UGL	
		8E	99		LT	2.3000	UGL	
		NI	•		LŤ	16.0000	UGL	
		SB			LT	59.0000	UGL	
		SE			LT	133,0000	UGL	
		TL			LT	174.0000	UGL	

Table C3. Analytical Results of Well CBS-3 Samples of 1988

SAMPLE DATE	LAB	NAME	METH NUMB	SAMPLE DEPTH(FT)	MEAS BOOL	CONCENTRATION	UNITS MEAS	INT STD
07/12/88	ES.	HG	SRO1	27.0	LT	. 2430	UGL	
• • • • • • • • • • • • • • • • • • • •		PB	SD09	W	LT	22.2000	UGL	
		AG	\$501		ĹŤ	13.5000	UGL	
		ABHC	UM 18		ND	4.0000	UGL	R
		ACHLOR			ND	5.1000	UGL	R
		AENSLF			ND	9.2000	UGL	R
		ALDRN			ND	4.7000	UGL	R
		ANAPNE			ĹŤ	1.7000	UGL	••
		ANAPYL			ĹŤ	.5000	UGL	
		ANTRO			ĽΤ	.5000	UGL	
		BAANTR			ĹŤ	1.6000	UGL	
		BAPYR			ĹŤ	4.7000	UGL	
		BBFANT			ĹŤ	5.4000	UGL	
		BBHC			NO	4.0000	UGL	R
		BBZP			LT	3.4000	UGL	
					ND	9.2000	UGL.	R
		BENSLF						R
		BENZID			ND	10.0000	UGL	ĸ
		BENZOA			<u>LT</u>	13.0000	UGL	
		BGHIPY			LT	6.1000	UGL	
		BKFANT			LT	.8700	UGL	
		BZALC			LT	.7200	UGL.	
		B2CEXM			LT	1.5000	UGL	
		B2CIPE			LT	5.3000	UGL	
		B2CLEE			LT	1.9000	UGL	
		B2EHP				25.5000	UGL	
		CHRY			LT	2.4000	UGL	
		CL6BZ			LT	1.6000	UGL	
		CLSCP			LT	8.6000	UGL	
		CLGET			LT	1.5000	UGL	
		DBAHA			LŤ	6.5000	UGL	
		DBHC			NO	4.0000	UGL	R
		DBZFUR			LT	1.7000	UGL	••
		DEP			ĹŤ	2.0000	UGL	
		DLDRN			ND	4.7000	ÜĞL	R
		DMP			LT	1.5000	UGL	•
		DNRP			LT	3 7000	UGL	
					LT	16.0000	UGL	
		DNOP		•				
		ENDRN			ND	7,6000	UGL	R
		ENDRNA			ND	9,0000	UGL	Ř
		ENDRNK			ND	8.0000	UGL	R
		ESFS04			ND	9. 1000	UGL	R
		FANT			LT	3,7000	UGL	
		FLRENE			LT	3 / 300	UGL	_
		GCHLOR			ND	5.1100	UGL	R
		HCBD			LT	3.400	UGL	_
		HPCL			NO	2.0000	ugL	R
		HPCLE			NO	5.030	UGL	R
		ICOPYR			LT	8,6700	UGL	
		I SOPHR			LT	4,8000	UGL	_
		LIN			ND	4.0000	UGL	R
		MEXCLR			ND	5.1000	UGL.	R
		NAP			LT	. 5000	UGL	
		NB			LT	. 5000	NGL	
		NNDME A			ND	2.0000	UGL	R
		NNDNPA			LT	4.4000	UGL	
		NNDPA			LT	3.0000	UGL	
		PCB 10 1			NO	21.0000	UGL	R
		PCB 122			NO	21.0000	UGL	R
		PCB 123			ND	21.0000	UGL	R

Table C3. (Continued)

SAMPLE DATE	LAB	NAME	METH NUMB	SAMPLE DEPTH(FT)	MEAS BOOL	CONCENTRATION	UNITS MEAS	IN
07/12/88	ES.	PCB 125		27.0	ND	36.0000	UGL	R
0., 12,00		PCB 126		2	ND	36.∵000	UGL	Ŕ
		PCP			LT	18,0000	UGL	••
		PHANTR			ĹŤ	.5000	UGL	
		PHENOL			ĹŤ	9.2000	UGL	
		PPUDD			ND	4.0000	UGL	R
		PPDDE			ND	4.7000	UGL	R
		PPODT			ND	9.2000	UGL	R
		PYR			LT	2.8000	UGL	•••
		TXPHEN			ND	36.0000	UGL	R
		12DCLB			LT	1.7000	UGL	•
		12DPH			ND	2.0000	UGL	R
		124TCB			LT	1.8000	UGL	•••
		13DCLB			LT	1.7000	UGL	
		14DCLB			LT	1.7000	UGL	
		2CLP			LT	. 9900	UGL	
		2CNAP			LT	. 5000	UGL	
		2MNAP			LT	1,7000	UGL	
		2MP			LT	3.9000	UGL	
		2NANIL			ŁT	4.3000	UGL	
		2NP			LT	3.7000	UGL	
		24DCLP			LT	2.9000	UGL	
		24DMPN			LT	5.8000	UGL	
		24DNP			LT	21.0000	UGL	
		24DNT			LT	4.5000	UGL	
		245TCP			LT	5.2000	UGL	
		246TCP			LT	4.2000	UGL	
		260N*			LT	.7900	UGL	
		J.NANE			LT	4.9000	UGL	
		33DCBD			LT	12,0000	UGL	
		4PRPPE			LT	4,2000	UGL	
		ALANIL			LŤ	7,3000	UGL	
		4CLPPE			LT	5,1000	UGL	
		4CL3C			LT	4.0000	UGL	
		4MP			i.T	. 5200	UGL	
		4NANIL			LT	ช. 2000	UGL	
		4NP			LT	12,0000	UGL	
		46DN2C			LT	17.0000	UGL	
		98	99		LT	3.4000	UGL	
		NI	- -		ĹŤ	34,4000	UGL	
		SB			ĹŤ	39,2000	UGL	
		SE			ίŤ	74.6000	UGL	
		TL			LŤ	81,4000	UGL	

Table C3. (Continued)

SAMPLE DATE	LAB	NAME	METH NUMB	SAMPLE DEPTH(FT)	F ZAS BCOL	CONCENTRATION	UNITS MEAS	INT STD
08/09/88	ES	AS	ASA	27.0	LT	3.0700	UGL	
		HG	SB01		l.T	. 5000	UGL	G
		ABHC	UM 18		ND	4.0000	UGL	R
		ACHLOR			NO	5.1000	UGL	R
		AENSLF			ND	9.2000	UGL	R
		ALDRN			ND	4.7000	UGL,	R
		ANAPNE			LT	1.7000	UGL	
		ANAPYL			LT	. 5000	UGL	
		ANTRO			LT	. 5000	UGL	
		BAANTR			LT	1.6000	UGL	
		BAPYR			LŢ	4.7000	UGL	
		BBFANT			ĻŢ	5.4000	UGL	
		BBHC			NO	4.0000	UGL	R
		BBZP			LT	3.4000	UGL	
		BENSLF			NO	9.2000	UGL	R
		BENZID			ND	10.0000	UGL	R
		BENZOA			LT	13.0000	UGL	
		BGHIPY			LT	6.1000	UGL	
		BKFANT			LT	. 8700	UGL	
		BZALC			LT	.7200	UGL	
		B2CEXM			LT	1.5000	UGL	
		B2CIPE			LT	5.3000	UGL	
		B2CLEE			LT	1.9000	UGL	
	B2EHP			LT	4.8000	UGL		
		CHRY			LT	2.4000	UGL	
		CLBBZ			LT	1.6000	UGL	
		CL6CP			LT	8.6000	UGL	
		CLEET			LT	1.5000	UGL	
		DBAHA			LT	6.5000	UGL	_
		DBHC			NO	4.0000	nar	R
		OBZFUR			LT	1.7000	ngr	
		DEP			LT	2.0000	UGL	_
		DLDRN			ND	4.7000	ugL	R
		DMP			LT	1.5000	UGL	
		DNBP			LT	3.7000	UGL	
		DNOP			LT	15.0000	UGL	-
		ENDRN			ND	7.6000	UGL	R
		ENDRNA			ND	8.0000	UGL	R
		ENDRNK			NO	■.0000	UGL	R
		ESFS04			ND	9.2000	UGL	R
		FANT			LT LT	3.3000	UGL	
		flrene QCHLOR			NO	3.7000 5.1000	UGL UGL	Q
		HCBD			LŤ	3.4000		×
		HPCL			ND	2.0000	UGL UGL	R
		HPCLE			ND	5.0000	UGL	R
		ICDPYR			ίŤ	8.6000	UGL	×
		ISOPHR			LT	4.5000	UGL	
		LIN			ND	4.0000	UGL	R
		MEXCLR			NO	5.1000	UGL	Ŕ
		NAP			LT	. 5000	UGL	~
		MAF			LI	. 0000	005	

Table C3. (Concluded)

SAMPLE DATE	LAB	NAME	METH NUMB	SAMPLE DEPTH(FT)	MEAS BOOL	CONCENTRATION	UNITS MEAS	INT STD
08/09/88	ES	NNDMEA		27.0	ND	2.0000	UGL	R
		NNDNPA		21.0	LT	4.4000	UGL	
		NNDPA			LŤ	3,0000	UGL	
		PCB 101			ND	21.0000	UGL	R
		PCB 122			ND	21.0000	UGL	R
		PCB 123			ND	21.0000	UGL	R
		PCB 124			ND	30.0000	UGL	R
		PCB 125			ND	36.0000	UGL	R
		PCB 126			NO	36.0000	UGL	R
		PCP			LT	18,0000	UGL	
		PHANTR			LT	.5000	UGL	
		PHENOL			LT	9.2000	UGL	
		PPDDD			ND	4.0000	UGL	R
		PPDDE			ND	4.7000	UGL.	R
		PPDDT			ND	9.2000	UGL	R
		PYR			LT	2.8000	UGL	
		TXPHEN			ND	36.0000	UGL	R
		12DCLB			LT	1.7000	UGL	
		12DPH			ND	2.0000	UGL	R
		124TCB			LT	1.8000	UGL	
		13DCLB			ĹŤ	1.7000	UGL	
		14DCLB			ÜΤ	1.7000	UGL	
		2CLP			ĹŤ	.9900	UGL	
		2CNAP			ĹŤ	. 5000	UGL	
		2MNAP			LT	1,7000	UGL	
		2MP			LT	3,9000	UGL	
		2NANIL			ĹŤ	4.3000	UGL	
		2NP			LT	3.7000	UGL	
		24DCLP			LT	2,9000	UGL.	
		24DMPN			LT	5.8000	UGL	
		24DNP			LT	21,0000	UGL	
		24DNT			LT	4.5000	UGL	
		245TCP			LT	5.2000	UGL	
		246TCP			LT	4,2000	JGL	
		26DNT			LT	. 7900	UGL	
		JINANIL			LT	4.9000	UGL	
		33DCBD			LT	12.0000	UGL	
		4BRPPE			LT	4,2000	UGL	
		4CANIL			LT	7.3000	UGL	
		4CLPPE			LT	5,1000	UGL	
		4CL3C			LT	4.0000	ngr	
		4MP			LT	. 5200	UGL	
		4NANIL			LT	5.2000	UGL	
		4NP			LT	12,0000	UGL.	
		460N2C			LT	17,0000	UGL	
		504	XB		LT	10000.0000	UGL	
		BE	99		LT	2.3000	UGL	
		NI			ĹŤ	16.0000	UGL	
		SB			LT	59.0000	UGL	
		SE			ĹŤ	133.0000	UGL	
		TL			LT	174.0000	UGL	
		• •			 •			

Table C4. Analytical Results of Well 24 Samples of 1988

SAMPLE DATE	LAB	NAME	METH NUMB	SAMPLE DEPTH(FT)	MEAS BOOL	CONCENTRATION	UNITS MEAS	INT
07/12/88	ES	AS	ABA	35.6	LT	3.0700	UGL	
		AS	*****		ĹŤ	3.0700	UGL	
•		AS			ĹŤ	3.0700	UGL	
		HG	SBO1		LT	.2430	UGL	
		PB	SD09			30.1000	UGL	
		AG	5501		LT	13.5000	UGL	
		CD			LT	5.1600	UGL	
		CD			LT	5.1600	UGL	
		CD			LT	5.1600	UGL	
		CR				14.9000	UGL	
		CR				14.9000	UGL	
		CR				14.9000	UGL	
		CU				18.9000	ยดเ	
		CU '				18.8000	UGL	
		CU				18.8000	UGL	
		ZN				32.5000	UGL	
		ZN				32.5000	UGL	
		ZN				32.5000	UGL	
		ABHC	UM18		ND	4.0000	UGL	R
		ACHLOR			ND	5.1000	UGL	R
		AENSLF			ND ·	9.2000	UG L	R
		ALDRN			ND	4.7000	UGL	R
		ANAPNE			LT	1.7000	UGL	
		ANAPYL			LT	, 5000	UGL	
		ANTRC			LT	. 5000	UGL	
		BAANTR			LT	1.6000	UGL	
		BAPYR			LT	4.7000	UGL	
		BBFANT			LT	5.4000	ugL	_
		ввис			ND	4.0000	UGL	₽
		BBZP			LY	3.4000	UGL	_
		BENSLF			ND	9.2000	uar	R
*		BENZID			NO	10.0000	UGL.	R
		BENZOA			LT	13.0000	ugL	
		BOHIPY			LT	6.1000	UGI.	
		BKFANT				. 9800	UGL	
		BZALC			LT	.7200	UGL	
		Bacene			LY LT	1.5000	UGL	
		B2CIPE B2CLEE			LT	5.3000	nar nar	
		82EHP			6.1	1.9000 5.0900	UGL	
		CHRY			LT	2.4000	UGL	
		CLEBZ			LT	1.6000	UGL	
		CLECP			ĹŤ	8.6000	UGL	
		CLEET			ίŤ	1.5000	UGL	
		DBAHA			ίŤ	6.5000	UGL	
		DBHC			ND	4.0000	UGL	R
		DBZFUR			ĹŤ	1.7000	ŭĜĽ	••
		DEP			LT	2.0000	UGL	
		DLDRN			NO	4.7000	UGL	R
		DMP			LT	1.5000	uar	
		DNBP			LT	3.7000	UGL	
		DNOP			ĹŤ	15.0000	UGL	
		ENDRN			ND	7.6000	UGL	R
		ENDRNA			ND	8.0000	UGL	R
		ENDRNK			ND	8.0000	UGL	R
		ESFSD4			ND	9.2000	ngr	R
		FANT			LT	3.3000	ugL	
		FLRENE			LT	3.7000	UGL	
		GCHLOR			NO	5.1000	UGL	R
		HCBD			LT	3.4000	UGL	

Table C4. (Continued)

SAMPLE DATE	LAB	NAME	METH BMUN	SAMPLE DEPTH(FT)	MEAS Bool	CONCENTRATION	UNITS MEAS	INT
07/12/88	ES	HPCL	****	35.6	ND	2.0000	UGL	R
•		HPCLE		••••	ND	5.0000	UGL	R
		ICDPYR			LT	8.6000	UGL	
		ISOPHR			LT	4.8000	UGL	
		LIN			ND	4.0000	UGL	R
		MEXCLR			ND	5.1000	UGL	R
		NAP			LT	. 5000	NGL	
		NB			LT	. 5000	UGL	
		NNDMEA			ND	2.0000	UGL	R
		NNDNPA			LT	4.4000	UGL	
		NNDPA			LT	3,0000	UGL	
		PCB 101			ND	21.0000	UGL	R
		PCB 122			ND	21.0000	UGL	R
		PCB 123			ND	21.0000	UGL.	R
		PCB 124			ND	30.0000	UGL	R
		PCB 125			ND	36.0000	UGL	R
		PCB 126			ND	36.0000	UGL	R
		PCP			LĪ	18.0000	UCL	•
		PHANTR			ĹŤ	.5000	UGL	
		PHENOL			ίŤ	9.2000	UGL	
		PPDDD			ND	4.0000	UGL	R
		PPDDE			ND	4.7000	UGL.	R
				•		9.2000	UGL	Ŕ
		PPDDT			NO LT	2.8000	UGL	
		PYR						
		TXPHEN			ND	36.0000	UGL	R
		12DCLB			LT	1.7000	UGL	R
		12DPH			ND	2.0000	UGL	×
		124TCB			LT	1.8000	UGL	
		13DCLB			LT	1.7000	UGI.	
		14DCLB			LT	1.7000	UGL	
		2CLP			LŢ	. 9900	UGI.	
		2CNAP			LT	.5000	UGL	
		SMNAP			LT	1.7000	ugL	
		2MP			LŢ	3.9000	ugL	
		2NANIL			LT	4,3000	UGL	
		2NP			LT	3.7000	UGL	
		24DCLP			LŢ	2.9000	UGL	
		24DMPN			LT	5.8000	UGL	
		24DNP			LŢ	21.0000	UGL	
		24DNT			LT	4.5000	ugL	
		245TCP			t.T	5.2000	nar	
		246TCP			LT	4.2000	UGL	
		SEDNI			LŢ	. 7900	UGL	
		JINANI L			LŤ	4.9000	nar	
		330CBD			LT	12.0000	UGL	
		4BRPPE			LT	4.2000	UGL	
		4CANIL			LT	7.3000	UGL	
		4CLPPE			LT	5.1000	ugi.	
		4CL3C			LT	4.0000	UGL	
		4MP			LT	. 5200	UGL	
		4NANTL			LT	5.2000	uaL	
		4NP			LT	12.0000	UGL	
		46DN2C			LT	17.0000	UGL	
		BE	99		LT	3.4000	UGL	
		NI			ĹŤ	34.4000	UGL	
		SB			L.T	39.2000	UGL	
		SE			ĹŤ	74.6000	UGL	

Table C4. (Continued)

SAMPLE Date	LAB	NAME	METH NUMB	SAMPLE DEPTH(FT)	MEAS BOOL	CONCENTRATION	UNITS MEAS	STD
08/09/88	ES	AS	ASA	35.6	LT	3.0700	UGL	
		ABHC	UM18		ND	4.0000	UGL	R
		ACHLOR			ND	5.1000	UGL	R
		AENSLF			ND	9.2000	UGL	R
		ALDRN			ND	4.7000	UGL	R
		ANAPNE			LŤ	1.7000	UGL.	
		ANAPYL			LT	.5000	UGL	
		ANTRO			LT	. 5000	UGL	
		BAANTR Bapyr			LT LT	1.6000	UGL	
		BBFANT			LT	4.7000 5.4000	UGL UGL	
		BBHC			NO	4.0000	UGL	R
		BBZP			LT	3.4000	UGL	~
		BENSLF			ND	9.2000	UGL	R
		BENZID			ND	10.0000	UGL	Ř
		BENZOA			LT	13.0000	UGL	
		BGHIPY			ĹŤ	6.1000	UGL	
		BKFANT			LT	.8700	UGL	
		BZALC			ĹŤ	.7200	UGL	
		B2CEXM			LT	1.5000	UGL	
		B2CIPE			LT	5.3000	UGL	
		B2CLEE			LT	1.9000	UGL	
		B2EHP			LT	4.8000	UGL	
		CHRY			LT	2,4000	UGL	
		CL6BZ			LT	1.6000	UGL	
		CLBCP			LT	8.6000	UGL	
		CLBET			LT	1.5000	UGL	
		DBAHA			LT	6,5000	UGL	_
		DBHC			ND	4.0000	UGL	R
		OBZFUR			LT	1.7000	UGL	
		DEP			LT	2.0000	UGL	~
		DLDRN			ND LT	4.7000	UGL	R
		DMP DNBP			LT	1.5000 3.7000	UGL UGL	
		ONOP			LT	15.0000	ngr ngr	
		ENDRN			NO	7.6000	UGL	R
		ENDRNA			NO	8.0000	UGL	Ř
		ENDRNK			ND	8,0000	nar	Ř
		ESF SO4			NO	9,2000	UGL	Ř
		FANT			LT	3.3000	UGL	
•	•	FLRENE			LT	3.7000	UGL	
		GCHLOR			NO	5.1000	NGL	Ŕ
		HCBD			LT	3.4000	unt	
		HPCL.			NO	2.0000	UGL	R
		HPCLE			NO	6.0000	uar	R
		ICDPYR			LT	8.6000	UGL	
		ISOPHR			LT	4.8000	nar	
		LIN			ND	4.0000	UGL	R
		MEXCLR			NO	5.1000	ngr	R
		NAP			LT	. 5000	UGL	
		NB			LT AND	.5000	UGL	0
		NNOME A NNONPA			NO LT	2.0000 4.4000	UGL UGL	R
		NNOPA		•	LT	3.0000	UGL	
		PCB 101			ND	21.0000	UGL	R
	-	PCB 122			NO	21.0000	UGL	Ř
		PCB 123			ND	21.0000	UGL.	Ř
		PCB 124			ND	30.0000	UGL	Ř
		PCB 125			ND	36.0000	UGL	Ř
		PCB 126			NO	36.0000	UGL	R

Table C4. (Concluded)

SAMPLE DATE	LAB	NAME	METH NUMB	SAMPLE DEPTH(FT)	MEAS BOOL	CONCENTRATION	UNITS MEAS	INT STD
08/09/88	ES	PCP	••••	35.6	LT	18.0000	UGL	
	•	PHANTR			LT	. 5000	UGL	
		PHENOL			LT	9.2000	UGL,	
		PPDDD			, ND	4.0000	UGL	R
		PPDDE			ND	4.7000	UGL	R
		PPDDT			ND	9.2000	nar	R
		PYR			LT	2.8000	UGL	
		TXPHEN			NO	36.0000	UGL	R
		12DCLB			LT	1.7000	UGL	
		120PH			ND	2.0000	UGL	R
		124TCB			LT	1.8000	UGL	
		13DCLB			LT	1.7000	UGL	
		14DCLB			LT	1.7000	UGL	
		2CLP			LT	. 9900	UGL	
		2CNAP			LT	. 5000	UGL	
		2MNAP			LT	1.7000	UGL	
		2MP			LT	3.9000	UCL	
		2NANI L			LT	4.3000	UGL	
		2NP			ĹŤ	3.7000	UGL	
		24DCLP			LT	2.9000	USL	
		24DMPN			ĹŦ	5.8000	UGL	
		24DNP			ĹŤ	21.0000	UGL	
		24DNT			ĹŤ	4.5000	UGL	
		245TCP			ίŤ	5.2000	UGL	
		246TCP			ĽŤ	4.2000	UGL	
		280NT			ĹŤ	.7900	UGL	
		JNANEL			ĹŤ	4.9000	UGL	
		33DCBD			ũτ	12.0000	OG L	
		4BRPPE			ĹŤ	4,2000	UGL	
		4CANTL			ĹŤ	7.3000	UGL	
		4CLPPE			ĹŤ	5.1000	VGL	
		4GL3G			ĹŤ	4.0000	UGL	
		AMP			ĹŤ	. 5200	UGL	
		ANANIL			ĹŤ	5.2000	UGL	
		4NP			ĹŤ	12.0000	UGL	
		460N2C			LT			
			X8			17.0000	ner.	
		S04	99		LT	10000.0000	UGL	
		BE	22		LT	2.3000	UGL	
		NI			LY	16.0000	ner	
		5 8			LT	59.0000	UGL	
		SE			LŤ	133.0000	UGL	
		TL			LT	174.0000	UGL.	

Table C5. Analytical Results of Well 25 Samples of 1988

SAMPLE DATE	LAB	NAME	METH NUMB	SAMPLE DEPTH(FT)	MEAS BOOL	CONCENTRATION	UNITS MEAS	INT STD
07/12/88	ES	AS	ABA	17.0	LT	3.0700	UGL	
VI. 12/00		AS	40.4	*****	ĹŤ	3.0700	UGL	
		AS			LŤ	3.0700	UGL	
		HG	SBO1		LT	. 2430	UGL	
		PB	SD09		ĹŤ	22.2000	UGL	
		AG	5501		LT	13.5000	UGL	
		CD			LT	5.1600	UGL	
		CD			LT	5.1500	UGL	
		CD			LT	5.1600	UGL	
		CR			LT	5.9600	UGL	
		CR			LT	5.9600	UGL	
		CR			LT	5.9600	UGL	
		CU				14.7000	UGL.	
		CU				14.7000	UGL	
		CU				14.7000	UGL	
		ZN			LT	20.1000	UGL	
		2M			LT	20.1000	UGL	
		ZN			LT	20 - 1000	UGL	_
		ABHC	UM18		ND	4.0000	UGL	R
		ACHLOR			ND	5.1000	UGL	R
		AENSLF			NO	9.2000	UGL	R
		ALDRN			ND	4.7000	UGL	R
		ANAPNE			LT	1.7000	UGL	
		ANAPYL		•	LT	. 5000	UGL	
		ANTRO			LT	. 5000	UGL	
		BAANTR			LT	1.6000	UGL	
		BAPYR			LŢ	4.7000	UGL	
		BBFANT			LT	5.4000	UGL	
		BBHC			ND	4.0000	UGL	R
		882P			LT	3.4000	UGL	R
		BENSLF			NO	9.2000	uar nar	Ř
		BENZIO			NO LT	10.0000 13.0000	UGL	*
		BENZOA			ĹŢ	6.1000	ngi agr	
•		BGHIPY BKFANT			LŤ	.8700	UGL	
		BZALC			ίŤ	.7200	UGL	
		BZCEXN			ίŤ	1.5000	UGL	
•		BACIPE		•	ίŤ	5.3000	UGL.	
		BACLEE			ΪŤ	1.9000	UGL	
		B2EHP				6.1800	UGL	
		CHRY			£ T	2.4000	UGL	
		CLEBZ			ũŤ	1.6000	UGL	
		CLECP		•	LT	8.6000	UGL	
		CLEET		· · · · · · · · · · · · · · · · · · ·	ĹŤ	1.5000	UGL.	
		DBAHA			LT	6.5000	UGL	
		DBHC			- ND	4.0000	UGL	Ŕ
		DBZFUR			LŤ	1.7000	ugl	
		DEP			LT	2.0000	UGL	
		DLDRN			NO	4.7000	UGL	R
		DMP			LT	1.5000	UGL	
		DNBP			LT	3.7000	uar	
		DNOP			LŢ	15.0000	UGL	144
		ENDRN			NÖ	7.6000	UGL	R
		ENORNA			NO	8.0000	UGL	R
	•	ENDRAK			NO	8.0000	UGL.	R
		ESFS04			ND	9.2000	UGL	R
		FANT			LŤ	3.3000	UGL	
		FLRENE			LT	3.7000	UGL	
		GCHLOR			NO	5.1000	UGL	R
	***	HCBD			LT	3,4000	UGL	

Table C5. (Continued)

SAMPLE DATE	LAB	NAME	NETH NUMD	SAMPLE DEPTH(FT)	MEAS BOOL	COMCENTRATION	UNITS MEAS	INT
07/12/88	ES	HPCL	•••	17.0	ND	2.0000	UGL	B
		HPCLE			ND	5.0000	UGL	Ř
		ICDPYR			LT	8.6000	UGL	••
		ISOPHR			LT	4.8000	UGL.	
		LIN			ND	4.0000	UGL	R
		MEXCLR			NO	5.1000	UGL	R
		NAP			LT	.5000	UGL	
		NB			LT	.5000	UGL	
		NNDMEA			ND	2.0000	UGL	R
		NNONPA			LT	4.4000	UGL	
		NNOPA		> -	LT	3.0000	UGL	
		PCB 101			ND	21.0000	UGL	R
		PCB122			ND	21.0000	UGL.	R
		PCB123			NO	21,0000	UGL	R
		PCB124			ΚĐ	30.0000	ual.	R
-		PC5125			NO	36.0000	UGL	R
		PCB 126		-	ND	36.0000	UGL.	R
		PCP			LT	18.0000	UGL	
		PHANTR			LT	. 5000	UGL	
		PHENOL			LT	9.2000	nar	
		PPODD			NO	4.0000	UGL	R
		PPDDE			NO	4.7000	UGL	聲
		PPDDT			NO	9.2000	UGL	R
		PYR			LT	2.8000	UGL	
		TXPHEN			NO	36.00 00	ugt.	2
		120018			LT	1,7000	UGL	,
		120PH			NO	2.0600	uar.	4
		124TCB			, LT	1,8000	UGL	2.5
		130018			LT	1.7000	ner	
		14DCLB			LY	1.7000	ugi	-
		2CLP			LT	, 94 00	ugi	
		2CNAP			LT	.50%	HGI.	
		2MNAP			LT	1.7000	ug),	
	-	2MP			LT	3,9000	usi	
•		2NAN1L			LT	4.3000	UĞL	
		2NP			LT	2,7000	uar,	
		24DCLP			LT	3,0000	Har	
		24DMPN			LT	5,8000	ugi.	
,		240NP	•		LT	31.0000	n:T	
		240NY			LŤ	4.5000	UĐŁ	
		245TCP			LT	\$.2000	UGL	
		246109			Li	4.2000	UGL	
		28081			£Ť	.7900	UGL	
		SHANIL			LT	4.9000	UGL	
		330000			LT	12.0000	ugL	
		489PPE		•	1.7	4.2000	uar	
		4CANIL			LY	7.3000	UGL	
		4CLPPE			LT .	5.1000	UGL.	
		4CL3C 4MP			LŤ	4.0000	UGL	
					į,¥	. 5200	UGL	
		ANANTL			1.7	5.2000	ugl	
		4NP		•	LŤ	12.0000	UGL	
		46DN2C	en i	• •	LT	17.0000	UGL	
		BE Ni	ĠĠ		LŢ	3.4000	UGL	
					LT	34.4000	UGL	
		SB SE			LŤ	39.2000	UGL	
		TL			LT '	74.6000 81.4000	ner ner	
		1 L			5. 3	典 1、春(主道)	1 12 6 A	

Table C5. (Continued)

SAMPLE DATE	LAB	NAME	METH NUMB	SAMPLE Depth(ft)	MEAS BOOL	CONCENTRATION	UNITS MEAS	INT STD
08/09/88	ES	AS	ABA	17.0	LT	3.0700	UGL	
		ABHC	UM 18		ND	4.0000	UGL	R
		ACHLOR			ND	5.1000	UGL	R
		AENSLF			ND	9.2000	UGL	- R
		ALDRN			ND	4.7000	UGL	Ŕ
		ANAPNE			LT	1.7000	UGL	••
		ANAPYL			LT	.5000	UGL	
		ANTRO			LT	.5000	UGL	
		BAANTR			LT	1.6000	UGL	
		BAPYR			LT	4.7000	UGL	
		BBFANT			LT	5.4000	UGL	
		83HC			ND	4.0000	UGL	R
		88ZP			LT	3.4000	UGL	
		BENSLF			NO	9.2000	NGL	R
		BENZID			ND	10.0000	UGL	R
		SENZOA			LT	13.0000	UGL	
		SGHIPY			LT	6. 1000	កថា	
		BKFANT			LT	.8700	ugr	
		BZALC B2CEXM			LT	.7200	UGL	
		BECIPE			LT	1.5000	UGL	
		BSCLEE			LT LT	5.3000	UGL	
		BZEHP			LT	1.9000	UGL	
		CHRY			ĹŤ	4.8000	UGL	
		CF6BS			. LT	2.4000 1.6000	UGL	
		CL6CP			LT	8.6000	UGL UGL	
		CLEET			L.T	1.5000	UGL.	
		DBAHA			ĹŤ	6.5000	UGL	
		DBHC		·	ÑÒ	4.0000	UGL	Q
		OBZFUR			LT	1.7000	UGL	*
		DEP			ĩΫ	2.0000	UGL	
		DLDAN			ND	4.7000	UGL	R
		DMP			LT	1.5000	UGL.	-
		ONEP			ĒΤ	3.7000	ugl	
		DNOP			LT.	15.0000	UGL	
		ENDRN			NO	7.6000	UGL	R
		ENORNA		ŕ	NO	8.0000	UGL	R
		ENDRNK			NO	6.0000	UGL	R
•		ESFS04			NO	9.2000	UGL	R
•		FANT			LT	3.3000	UGL	
		FLRENE			LT	3.7000	ugr.	
		CCHLOR			NU	5.1000	ugl	R
		HCBD			LT	3.4006	UGL	
		HPCLE HPCLE			ND	2.0000	UGL .	Ř
		ICDPAR			NO	5.0000	UGL	R
		ISOPHR			LT LT	8.6000	UGL	
	•	LIN			NO	4.8000 4.0000	. UGL . UGL	
•		MEXCLR			NO	5.1000	UGL	R R
		NAP			ίτ	.5000	UGL	*
		NB			ĹŤ	.5000	UGL	
		NNOMEA			NO	2.0000	UGL	Ŕ
		NNONPA			LT	4.4000	UGL	-
		NNOPA			ĹŤ	3.0000	UGL	
		PC8101			NO	21.0000	UGL	R
		PCB 122			NO	21.0000	UGL	Ř
		PCB 123			ND	21.0000	UGL	R
		PCB 124			ND	30.0000	UGL	Ř
		PCB 125			NO	38.0000	UGL	Ř
		PCB 126						R

Table C5 (Concluded)

O8/09/88 ES	SAMPLE DATE	LAB	NAME	METH NUMB	SAMPLE DEPTH(FT)	MEAS BOOL	CONCENTRATION	UNITS MEAS	INT
PHANTR LT	08/09/88	FS.	PCP		17.0		18.0000	UGL	
PHENOL	00, 05, 00						. 5000	UGL	
PPDDD							9.2000	UGL.	
PPDDE			•			ND	4.0000	UGL	R
PPDT						ND		UGL	R
TXPHEN 12DCLB 12DCLB 12DPH ND 12ATCB LT 1.7000 UGL 12ATCB LT 1.8000 UGL 13DCLB LT 1.7000 UGL 13DCLB LT 1.7000 UGL 14DCLB LT 1.7000 UGL 1.7000 UGL 1.7000 UGL 1.7000 UGL 1.7000 UGL 1.7000 UGL 2CLP LT .5000 UGL 2CNAP LT .5000 UGL 2MNAP LT .5000 UGL 2MNAP LT .5000 UGL 2MNAP LT .5000 UGL 2MP LT .5000 UGL 2NANIL LT .5000 UGL 2NANIL LT .5000 UGL 2ADCLP LT .5000 UGL 2ADMP LT .5000 UGL 2ADMP LT .5000 UGL 2ADMP LT .5000 UGL 2ADMP LT .5000 UGL 2ADMP LT .5000 UGL 2ADMP LT .5000 UGL 2ADMP LT .5000 UGL 2ADMP LT .5000 UGL 2ADMP LT .5000 UGL 2ADMP LT .5000 UGL ACOU UGL ACO						ND			R
TXPHEN						LT			
12DCLB						ND		UGL	R
12DPH						LT	1.7000		
124TCB						ND	2.0000		R
13DCLB						LT	1.8000	UGL	
14DCLB				-		LT	1.7000	UGL	
COLP						LŤ	1.7000	UGL ·	
2CNAP						LT	. 9900	UGL	
2MNAP		•				LT	.5000	UGL	
2MP 2NANIL 2NP LT 3.9000 UGL 2NP LT 4.3000 UGL 2NP LT 3.7000 UGL 24DCLP LT 2.9000 UGL 24DMPN LT 5.8000 UGL 24DNP LT 5.8000 UGL 24DNT LT 4.5000 UGL 245TCP LT 5.2000 UGL 245TCP LT 4.2000 UGL 245TCP LT 4.2000 UGL 26DNT LT 7.900 UGL 330CBD LT 3NANIL LT 4.9000 UGL 4BRPPE LT 4.2000 UGL 4CANIL LT 7.3000 UGL 4CANIL LT 7.3000 UGL 4CL3C LT 4CL3C LT 4CL3C LT 4NANIL LT 5.2000 UGL 4NP LT 5.2000 UGL LT 5.2000 UGL LT 5.2000 UGL LT 7.3000 UGL LT 1.70000 UGL LT 5.1000 UGL LT 1.70000 UGL						LT	1.7600	UGL	
2NANIL 2NP LT 3.7000 UGL 24DCLP LT 2.9000 UGL 24DMPN LT 5.8000 UGL 24DNP LT 21.0000 UGL 24DNT LT 4.5000 UGL 245TCP LT 4.2000 UGL 246TCP LT 4.2000 UGL 26DNT LT 7900 UGL 3NANIL LT 4.9000 UGL 3NANIL LT 4.9000 UGL 4BRPPE LT 4.2000 UGL 4CANIL LT 7.3000 UGL 4CLPPE LT 4.2000 UGL 4CLPPE LT 5.1000 UGL 4CLPPE LT 5.1000 UGL 4NP LT 5.2000 UGL 5.2000 UGL 5.2000 UGL 5.2000 UGL 5.2000 UGL 5.2000 UGL 5.2000 UGL 5.2000 UGL 5.2000 UGL 5.2000 UGL 5.2000 UGL 5.2000 UGL 5.2000 UGL							3.9000	UGL	
SP							4.3000	UGL	
24DCLP							3.7000	UGL	
24DMPN 24DNP 24DNP LT 21.0000 UGL 24DNT LT 4.5000 UGL 245TCP LT 5.2000 UGL 246TCP LT 4.2000 UGL 26DNT LT 7900 UGL 3NANIL LT 4.9000 UGL 33DCBD LT 12.0000 UGL 4RPPE LT 4.2000 UGL 4CLPPE LT 5.1000 UGL 4CLPPE LT 5.1000 UGL 4CL3C LT 5.1000 UGL 4CL3C LT 5.2000 UGL 4MP LT 5.2000 UGL 4MP LT 5.2000 UGL 4MP LT 5.2000 UGL 5200 UGL							2.9000	UGL	
24DNP LT 21.0000 UGL 24DNT LT 4.5000 UGL 245TCP LT 5.2000 UGL 246TCP LT 4.2000 UGL 26DNT LT .7900 UGL 3NANIL LT 4.9000 UGL 33DCBD LT 12.0000 UGL 4BRPPE LT 4.2000 UGL 4CANIL LT 7.3000 UGL 4CLPPE LT 5.1000 UGL 4CLPPE LT 5.1000 UGL 4MP LT 5.2000 UGL 4MP LT 5.2000 UGL 4NANIL LT 5.2000 UGL 500 UGL								UGL	
24DNT LT 4 5000 UGL 245TCP LT 5.2000 UGL 246TCP LT 4.2000 UGL 26DNT LT .7900 UGL 3NANIL LT 4.9000 UGL 33DCBD LT 12.0000 UGL 4BRPPE LT 4.2000 UGL 4CANIL LT 7.3000 UGL 4CLPPE LT 5.1000 UGL 4CLPPE LT 5.1000 UGL 4CLPPE LT 5.1000 UGL 4NANIL LT 5.2000 UGL 4NANIL LT 12.0000 UGL 5004 X8 LT 17.0000 UGL 8E 99 LT 2.3000 UGL NI 16.0000 UGL SB LT 59.0000 UGL SB LT 59.0000 UGL							21,0000	UGL	
245TCP LT 5.2000 UGL 246TCP LT 4.2000 UGL 26DNT LT .7900 UGL 3NANIL LT 4.9000 UGL 33DCBD LT 12.0000 UGL 4BRPPE LT 4.2000 UGL 4CANIL LT 7.3000 UGL 4CLPPE LT 5.1000 UGL 4CLPPE LT 5.1000 UGL 4CLPPE LT 5.2000 UGL 4MP LT 5.2000 UGL 4NANIL LT 5.2000 UGL 4NANIL LT 12.0000 UGL 504 X8 LT 10000.0000 UGL 8E 99 LT 2.3000 UGL NI 16.0000 UGL SB LT 59.0000 UGL							4.5000	UGL	
246TCP LT 4.2000 UGL 26DNT LT .7900 UGL 3NANIL LT 4.9000 UGL 33DCBD LT 12.0000 UGL 4BRPPE LT 4.2000 UGL 4CANIL LT 7.3000 UGL 4CLPPE LT 5.1000 UGL 4CLPPE LT 5.1000 UGL 4MP LT 5.200 UGL 4MP LT 5.200 UGL 4NANIL LT 5.200 UGL 4NP LT 12.0000 UGL 4NP LT 12.0000 UGL 504 X8 LT 10000.0000 UGL 8E 99 LT 2.3000 UGL NI 16.0000 UGL SB LT 59.0000 UGL							5.2000	UGL	
26DNT								UGL	
3NANIL LT 4.9000 UGL 33DCBD LT 12.0000 UGL 4BRPPE LT 4.2000 UGL 4CANIL LT 7.3000 UGL 4CLPPE LT 5.1000 UGL 4CL3C LT 4.000 UGL 4MP LT .5200 UGL 4NANIL LT 5.200 UGL 4NANIL LT 5.200 UGL 4NP LT 12.0000 UGL 504 X8 LT 10000.0000 UGL 8E 99 LT 2.3000 UGL NI 16.0000 UGL SB LT 59.0000 UGL SB LT 59.0000 UGL							.7900	UGL	
33DCBD LT 12.0000 UGL 4BRPPE LT 4.2000 UGL 4CANIL LT 7.3000 UGL 4CLPPE LT 5.1000 UGL 4CL3C LT 4.0000 UGL 4MP LT 5200 UGL 4NANIL LT 5.2000 UGL 4NP LT 12.0000 UGL 4NP LT 12.0000 UGL 5.000 UGL 4NP LT 12.0000 UGL 5.000 UGL 5.000 UGL 5.000 UGL 5.000 UGL 5.0000 UGL 5.000 UGL 5.000 UGL 5.000 UGL 5.0000 UGL							4.9000	UGL.	
### A ### A ### A ### A ### A ### A ### A ### A ####									
### ### ### ### #### #################									
4CLPPE LT 5.1000 UGL 4CL3C LT 4.0700 UGL 4MP LT .5200 UGL 4NANIL LT 5.2000 UGL 4NP LT 12.0000 UGL 4NP LT 17.0000 UGL 504 X8 LT 10000.0000 UGL BE 99 LT 2.3000 UGL NI LT 16.0000 UGL SB LT 59.0000 UGL		•							
4CL3C LT 4.000 UGL 4MP LT .5200 UGL 4NANIL LT 5.2000 UGL 4NP LT 12.0000 UGL 4NP LT 17.0000 UGL 504 X8 LT 10000.0000 UGL BE 99 LT 2.3000 UGL NI LT 16.0000 UGL SB LT 59.0000 UGL									
4MP LT .5200 UGL 4NANIL LT 5.2000 UGL 4NP LT 12.0000 UGL 46DN20 LT 17.0000 UGL 504 X8 LT 10000.0000 UGL BE 99 LT 2.3000 UGL NI LT 16.0000 UGL SB LT 59.0000 UGL									
### ANANIL									
ANP LT 12.0000 UGL 46DN20 LT 17.0000 UGL 504 XB LT 10000.0000 UGL BE 99 LT 2.3000 UGL NI LT 16.0000 UGL SB LT 59.0000 UGL									
## 17.0000 UGL S04 XB LT 17.0000 UGL BE 99 LT 2.3000 UGL NI 16.0000 UGL SB LT 59.0000 UGL SB LT 59.0000 UGL SB LT 59.0000 UGL									
\$04 X8 LT 10000.0000 UGL BE 99 LT 2.3000 UGL NI LT 16.0000 UGL SB LT 59.0000 UGL									
BE 99 LT 2.3000 UGL NI LT 16.0000 UGL SB LT 59.0000 UGL				va					
NI LT 16.0000 UGL SB LT 59.0000 UGL									
SB LT 59.0000 UGL				99					
,									
TL 174.0000 UGL			SE						

Table C6. Analytical Results of Blank Samples of 1988

SAMPLE LAB DATE	NAME	METH NUMB	SAMPLE DEPTH(FT)	MEAS BOOL	CONCENTRATION	UNITS MEAS	INT
07/12/88 ES	AS	ABA	.0	ŁT	3.0700	UGL	
	AS		.0	LT	3.0700	UGL	
	AS		.0	LT	3.0700	UGL	
	HG	SBO1	.0	LŤ	. 2430	UGL	
	PB	SD09	.0	LT	22.2000	UGL	
	AG	SSO1	. 0	LT	13.5000	UGL	
	CD		.0	LT	5.1600	UGL	
	CD		.0	LT	5.1600	UGL	
	CD		.0	LT	5.1600	UGL	
	CR		.0	LT	5.9600	UGL	
	CR		.0	LT	5.9600	UGL	
	ÇR		.0	LT	5.9600	UGL.	
	cu		.0	LT	7.9300	UGL	
	CU		٠.0	LŢ	7.9300	UGL	
	CU		.0	LT	7.9300	UGL	
	ZN		٥,	LT	20.1000	UGL	
	ZN		.0	LT	20.1000	UGL	
	ZN		.0	LT	20.1000	UGL '	_
	ABHC	UM 18	.0	ND	4.0000	UGL	R
	ACHLOR		.0	ND	5.1000	UGL	R
	AENSLF		.0	ND	9.2000	UGL	R
	ALDRN		.0	ND	4.7000	UGL	R
	ANAPNE	•	.0	LT	1.7000	UGL	
	ANAPYL		.0	LT	.5000	UGL	
	ANTRO		.0	LT	.5000	UGL	
	BAANTR		0	LT	1.6000	UGL	
	BAPYR		.0	LT	4.7000	UGL	
	BBFANT		.0	LT	5.4000	UGL	_
	BBHC BBZP		.0	ND LT	4.0000	UGL	R
			.0	ND	3.4000	UGL	В
	BENSLF BENZID		.0 .0	ND	9.2000 10.0000	UGL	R R
	BENZOA		.0	LT	13.0000	UGL.	ĸ
	BGHIPY		.0	LT	6.1000	UGL	
	BKFANT		.0	LT	. 8700	UGL	
	BZALC		.ŏ	ĹŤ	.7200	UGL	
	B2CEXM		.0	ĹŤ	1.5000	UGL	
	B2CIPE		.0	ĹŤ	5.3000	UGL	
	B2CLEE		.0	LT	1.9000	UGL	
	B2EHP		.0		5.2700	UGL	
	CHRY		.0	LT	2.4000	UGL	
	CL6BZ		.0	LT	1.6000	UGL	
	CL6CP		.0	LT	8.6000	UGL	
	CL6ET		.0	LT	1.5000	UGL	
	DBAHA		.0	LT	6.5000	UGL.	
	DBHC		.0	ND	4,0000	UGL	R
	DBZFUR		.0	LT	1.7000	UGL	
	DEP		.0	LT	2.0000	UGL	
	DLDRN		.0	ND	4.7000	UGL	R
	DMP		٠٠ ،	LT	1.5000	UGL	
	DNBP		.0	LT	3.7000	UGL	
	DNOP		.0	LT	15,0000	UGL	
	ENDRN		.0	ND	7,6000	UGL	R
	ENDRNA		.0	ND	8.0000	UGL	R
	ENDRNK		۰.	ND	8.0000	UGL	R
	ESFS04		.0	ND	9.2000	UGL	R
	FANT		.0	LT	3.3000	UGL	
	FLRENE		.0	LT	3.7000	UGL	
	GCHLOR		.0	ND	5.1000	ngr	R

Table C6. (Continued)

* · · · · · · · · · · · · · · · · · · ·							•		
O7/12/88 ES			NAME		DEPTH(FT)	BOOL	CONCENTRATION	MEAS	INT STD
HPCL	07/12/88		HCRD				3 4000		
HPCLE ICOPYR ICOPYR ISOPHR ISOPHR ISOPHR O LT SEPRE SEPRE SEP	01, 12,00								D
ICOPYR									
ISOPHR									-
LIN									
MEXCLR									R
NAP									
NB									
NNDMEA			NB						
NNDPA			NNDMEA						R
PCB 101			NNDNPA		.0	LT	4.4000	UGL	
PCB 101			NNDPA		.0	LT	3.0000	UGL	
PCB 123		,	PCB 101		.0	ND		UGL	R
PCB 124 PCB 124 PCB 125 PCB 125 PCB 126 PCB 126 PCB 126 PCB 126 PCB 127 PCB 126 PCB 127 PCB 127 PCB 127 PCB 128 PCB 12			PCB 122		.o	ND	21.0000	UGL	R
PCB125			PCB123		.0	ND	21.0000	ÜGL	R
PCB125			PCB 124		.0	ND	30.0000	UGL	R
PCB 126			PCB125		.0	ND	36.0000	UGL	
PHANTR			PCB 126		.0	ND	36.0000	UGL	R
PHENDL			PCP		.0		18.0000	UGL	
PPDDD			PHANTR		.0		.5000	UGL	
PPDDE			PHENOL		.0		9.2000	UGL	
PPDDT			PPDDD		.0			UGL	
PYR TXPHEN O D D D D D D D D D D D D D D D D D D								UGL	
TXPHEN									R
12DCLB							2.8000		
12DPH									R
124TCB									
13DCLB									R
14DCLB									
2CLP									
2CNAP									
2MNAP .O LT 1.7000 UGL 2MP .O LT 3.9000 UGL 2NANIL .O LT 4.3000 UGL 2NP .O LT 3.7000 UGL 24DCLP .O LT 2.9000 UGL 24DMP .O LT 5.8000 UGL 24DNT .O LT 4.5000 UGL 245TCP .O LT 5.2000 UGL 246TCP .O LT 4.2000 UGL 246TCP .O LT 4.9000 UGL 246TCP .O LT 7.900 UGL 246TCP .O LT 4.9000 UGL 246TCP .O LT 4.9000 UGL 33DCBD .O LT 12.0000 UGL 4BRPPE .O LT 7.3000 UGL 4CLPPE .O LT 7.3000 UGL 4MP .O LT 5.2000 UGL 4NNI .									
2MP .0 LT 3.9000 UGL 2NANIL .0 LT 4.3000 UGL 2NP .0 LT 3.7000 UGL 24DCLP .0 LT 2.9000 UGL 24DMPN .0 LT 5.8000 UGL 24DNP .0 LT 21.0000 UGL 24DNT .0 LT 4.5000 UGL 245TCP .0 LT 5.2000 UGL 246TCP .0 LT 4.2000 UGL 25DNT .0 LT 7.900 UGL 3NANIL .0 LT 4.9000 UGL 4BRPPE .0 LT 4.2000 UGL 4CANIL .0 LT 7.3000 UGL 4CLPPE .0 LT 5.1000 UGL 4CLPPE .0 LT 5.2000 UGL 4NP .0 LT 5.2000 UGL 4NP .0 LT 5.2000 UGL 4NP .0 LT 12.0000 UGL 4NP .0 LT 17.0000 UGL 4F 99 .0 LT 34.00									
2NANIL .0									
2NP									
24DCLP									
24DMPN									
24DNP O LT 21.0000 UGL 24DNT O LT 4.5000 UGL 245TCP O LT 5.2000 UGL 246TCP O LT 4.2000 UGL 26DNT O LT .7900 UGL 3NANIL O LT 4.9000 UGL 33DCBD O LT 12.0000 UGL 4BRPPE O LT 7.3000 UGL 4CANIL O LT 5.1000 UGL 4CL3C O LT 5.1000 UGL 4MP O LT 5.2000 UGL 4NANIL O LT 5.2000 UGL 4NP O LT 12.0000 UGL 46DN2C O LT 17.0000 UGL BF 99 O LT 34.4000 UGL NI O LT 39.2000 UGL									
24DNT									
245TCP									
246TCP									
26DNT									
3NANIL .0									
39DCBD									
### 4.2000 UGL ####################################									
## CANIL					.0				
## 4CLPPE									
4CL3C .O LT 4.0000 UGL 4MP .O LT .5200 UGL 4NANIL .O LT 5.2000 UGL 4NP .O LT 12.0000 UGL 46DN2C .O LT 17.0000 UGL BF 99 .O LT 3.4000 UGL NI .O LT 34.4000 UGL SB .O LT 39.2000 UGL								_	
##P .O LT .5200 UGL #NANIL .O LT 5.2000 UGL #NP .O LT 12.0000 UGL #6DN2C .O LT 17.0000 UGL ### 99 .O LT 3.4000 UGL NI .O LT 34.4000 UGL SB .O LT 39.2000 UGL		,							
4NANIL .O LT 5.2000 UGL 4NP .O LT 12.0000 UGL 46DN2C .O LT 17.0000 UGL BF 99 .O LT 3.4000 UGL NI .O LT 34.4000 UGL SB .O LT 39.2000 UGL									
4NP .O LT 12.0000 UGL 46DN2C .O LT 17.0000 UGL BE 99 .O LT 3.4000 UGL NI .O LT 34.4000 UGL SB .O LT 39.2000 UGL									
46DN2C .O LT 17.0000 UGL BF 99 .O LT 3.4000 UGL NI .O LT 34.4000 UGL SB .O LT 39.2000 UGL									
BF 99 .O LT 3.4000 UGL NI .O LT 34.4000 UGL SB .O LT 39.2000 UGL									
NI .O LY 34,4000 UGL SB .O LY 39,2000 UGL			85	99		LT	3.4000	UGL	
SB .O LT 39.2000 UGL									
							39.2000	UGL	
						LT	74.6000	UGL	
TL .O LT 81.4000 UGL			TL		.0	LT	81.4000	UGL	

Table C6. (Continued)

SAMPLE DATE	LAB	NAME	METH NUMB	SAMPLE DEPTH(FT)	MEAS BOOL	CONCENTRATION	UNITS MEAS	INT
08/09/88	ES	AS	ABA	.0	LT	3.0700	UGL	
00,00,00		ABHC	UM18	.0	ND	4.0000	UGL	R
		ACHLOR		.0	ND	5.1000	UGL	R
		AENSLF		.0	ND	9.2000	UGL	R
		ALDRN		.0	ND	4.7000	UGL	R
		ANAPNE		.0	LT	1.7000	UGL,	
		ANAPYL		.0	LT	. 5000	UGL	
		ANTRO		.0	LT	. 5000	UGL	
		BAANTR		.0	LT	1.6000	UGL	
		BAPYR		.0	LT LT	4.7000 5.4000	UGL UGL	
		BBFANT		.0	ND	4.0000	UGL	R
		BBHC		0	LT	3.4000	UGL	
		BBZP BENSLF		.0	ND	9.2000	UGL	R
		BENZID		.0	ND	10.0000	UGL	Ř
		BENZOA		.ŏ	LT	13.0000	UGL	• • •
		BGHIPY		.0	ĹŤ	6.1000	UGL	
		BKFANT		ö	ĹŤ	.8700	UGL	
		BZALC		.0	LŤ	.7200	UGL	
		B2CEXM		.0	LT	1.5000	UGL	
		B2CIPE		.0	ĹŤ	5.3000	UGL	
		B2CLEE		.0	LT	1.9000	UGL	
		B2EHP		.0	LT	4.8000	UGL	
		CHRY		.0	LT	2.4000	UGL.	
•		CL6BZ		.0	ĹŤ	1.6000	UGL	
		CL6CP		.0	LT	8.6000	UGL	
		CL6ET		.0	LT	1.5000	UGL	
		DBAHA		.0	LT	6.5000	UGL	_
		DBHC		.0	ND	4.0000	UGL	R
		DBZFUR		.0	LT	1.7000	UGL	
		DEP		.0	LT	2.0000	UGL	R
		DLDRN		.0	ND	4.7000 1.5000	UGL UGL	ĸ
		DMP		.0	LT LT	3.7000	UGL	
		DN&P DNOP		.0	LT	15.0000	UGL	
		ENDRN		.0	ND	7.6000	UGL	R
		ENDRNA		.0	ND	8.0000	UGL	Ŕ
		ENDRNK		.o	ND	8.0000	UGL	R
		ESFS04		.0	ND	9.2000	UGL	R
		FANT		.0	LT	3.3000	UGL	
		FLRENE		.0	LT	3.7000	UGL	
		GCHLOR		.0	ND	5.1000	UGL	R
		HCBD		.0	LT	3.4000	UGL	
		HPCL.		.0	ND	2.0000	UGL	R
		HPCLE		.0	ND	5.0000	UGL	R
		ICDPYR		٠.0	LŢ	8.6000	UGL	
		ISOPHR		.0	LT	4.8000	UGL,	_
		LIN		.0	ND	4.0000	UGL	R
		MEXCLR		.0	ND	5.1000	UGL	R
		NAP		.0	LT	.5000	UGL	
		NB NAIDME A		.0	LT	.5000 2.0000	UGL	R
		NNDMEA		.0	ND LT	4.4000	UGL	ĸ
		NNDNPA NNDPA		.0	LT	3.0000	UGL	
		PCB 101		.0 .0	ND	21.0000	UGL	R
		PCB 122		.0	ND	21.0000	UGL	Ŕ
		PCB 123		.0	ND	21.0000	UGL	R
		PCB 124		.0	ND	30.0000	UGL	R

Table C6. (Concluded)

SAMPLE DATE	LAB	NAME	METH	SAMPLE DEPTH(FT)	MEAS BOOL	CONCENTRATION	UNITS MEAS	INT
08/09/88	ES	PCB 125		.0	ND	36.0000	UGL	R
		PCB 126		.0	ND	36.0000	UGL	R
		PCP		.0	LT	18.0000	UGL	
		PHANTR		.0	LT	. 5000	UGL	
		PHENOL		.0	LT	9.2000	UGL	
		PPDDD		.0	ND	4.0000	UGL`	R
		PPDDE		.0	ND	4.7000	UGL	R
		PPDDT.		.0	ND	9.2000	UGL	R
		PYR		.0	LT	2.8000	UGL.	
		TXPHEN		.0	ND	36.0000	UGL.	R
		12DCLB		.0	LT	1.7000	UGL	
		12DPH		.0	ND	2.0000	UGL	R
		124TCB		.0	LT	1.8000	UGL	
		13DCLB		.0	LT	1.7000	UGL	
		14DCLB		.0	LT	1.7000	UGL	
		2CLP		.0	LT	.9900	UGL	
		2CNAP		.0	Ļ T	. 5000	UGL	
		2MNAP		.0	LT	1.7000	UGL	
		2MP		.0	LT	3.9000	UGL	
		2NANIL		.0	LT	4.3000	UGL	
		2NP		.0	LT	3,7000	UGL	
		24DCLP		.0	LT	2.9000	UGL	
		24DMPN		.0	LT	5.8000	UGL	
		24DNP		.0	LT	21.0000	UGL	
		24DNT		.0	LT	4.5000	UGL.	
		245TCP		.0	LT	5.2000	UGL.	
		246TCP		.0	LT	4.2000	UGL	
		26DNT		.0	LT	.7900	UGL	
		3NAN1L		.0	LT	4.9000	UGL	
		33DCBD		٠.٥	LT	12.0000	UGL	
		4BRPPE		٠,0	LT	4.2000	UGL	
		4CANIL		.0	LT	7.3000	UGL.	
		4CLPPE		.0	LT	5.1000	UGL	
		4CL3C		.0	LT	4.0000	UGL	
		4MP		.0	LT	. 5200	UGL	
		4NANIL		.0	LT	5.2000	UGL	
		4NP		٠.0	LT	12.0000	UGL	
		46DN2C		.0	LT	17.0000	UGL	
		504	X8	.0	LT	10000.0000	UGL	
		BE	99	.0	ĹŤ	2.3000	UGL	
		NI		,o	ĹŤ	16.0000	UGL	
		SB		.ŏ	ĹŤ	59.0000	UGL	
		SE		.ŏ	ĹŤ	133.0000	UGL	
		TL		.0	ĹŤ	174.0000	UGL	

Table C7. Analytical Results for Well 25 Samples of September 1982.

: Day and Zimmermann, Inc.

PROJECT

CLIENT

: USATHAMA Contamination Survey, Lone:Star Army Ammunition Plant

JOB NO. 870

******		•
SAMPLE	: #25 Groundwater	SAMPLE DATE: 22 September 1982
SAMPLE TECHNIQUE	; Bailer	
SAMPLE LOCATION	: E. of Old Chemical Burial Site	
ANALYTICAL CATEGORY	ANALYTE	CONCENTRATION ppb, unless otherwise indicated
1	1,3 Dinitrobensene (1,3 DNB) 2,4,6-Trinitrotoluene (2,4,6 TMT) 1,3,5-Trinitrobensene (1,3,5 TMB) 2,4-Dinitrotoluene (2,4 DNT) Cyclotrimethylenetrinitramine (RDX) 2,4,6-Trinitrophenylmethylnitramine (Tetryl) 2,6-Dinitrotoluene (2,6 DNT)	<pre></pre>
	Nitrates (ppm) Nitrites (ppm) Phosphates (ppm) Sulfates (ppm) Chloride (ppm) Pluoride (ppm) Chromate (ppm) Thiocyanate (ppm)	.5 < .25 < .175 2.74 3.68 < .50 < .5
3	Hercury Lead Chromium Cadmium Copper (ppm) Zinc (ppm) Antimony Arsenic Beryllium (ppm) Mickel (ppm)	<pre> 1.3 34.3 168.0 1.64 .03 .32 < 50 < 6 .01 .03 </pre>
•	Selenium Silver (ppm) Thallium (ppm) GC/MS Volatiles	< 20 .01 < .05
	Pentachlorophenol Cyclohexanol Cyclohexanone Dibutylphthalate Diethylphthalate Hitrobensene Bensene Propanoic Acid Chloroform 1,2-Bensene Dicarbow lic Acid (Dicatyl Ester) 1,2,-Bensene Dicarbow lic Acid (Dibutyl Ester)	N/D N/D N/D N/D N/D N/D N/D N/D N/D
	Heptanoic Acid Phosphoric Acid 1,2-Dichlorophenoi Dichlorowethane 1,2,3-Trichloro Propane 1,3-Dichloro, 2-Propane Pentanoic Acid Benzoic Acid	N/D N/D N/D N/D N/D N/D N/D N/D
	1,2-Dicarboxylic Acid 3,3,4,4-Tetramethyl Hexane 2,2-Oxy-Bis Ethanol 4-Ethyl, 2-Octane 2-Nondacanone Ethyl Bensene 2-Mathyl,3-Hexane 3,4,5-Trimethyl-2-Hexane Brosso Ethane	N/D N/D N/D N/D N/D N/D N/D

NALYTICAL CATEGORY		RATION less otherwise loated
4 (Cont.)	GC/HS Acid Fraction	
4 (0001)	Pentachlorophenol	N/D
	Cyclohexanol	N/D
	Cyclohexanone	N/B
,	Dibutylphthalate	
	Diethylphthalate Nitrobensene	N/D N/D
•	Benzene Propanoio Acid	. N/D
*	Chloreform	N/D
	1,2-Bensene Dicarboxylic Acid (Dicatyl Ester)	K/D
	1,2-Bensene Dicarboxylic Acid (Dibutyl Ester) Heptanoic Acid	N/D N/D
	Phosphoric Acid	Ñ/D
	1,2-Dichlorophenol	N/D
· •	Dichloromethane	N/D
	1,2,3-Trichloro Propane	N∕D
	1,3-Dichloro, 2-Propane Pentanoic Acid	N/D N/D
	Benzoic Acid	N/D
	1,2-Dicarboxylic Acid	N/D
	3,3,4,4-Tetramethyl Hexane	X/D
	2,2-Oxy-Bi# Ethanol	N/D N/D
	4-Ethyl, 2-Octane 2-Nondacanone	N/D
	Ethyl Bensene	N/D
	2-Methyl, 3-Hexane	Ř∕D
	3,4,5-Trimethyl-1-Hexane	N/D
•	Bromo · Ethane	KVD
	00/MS Base/Neutral	
	Pentachlorophenol Cyclohexanol	N/D
	Cyclohexanone	N/D
	Dibutylphthalate	N/D N/D
	Diethylphthalate	N/D
	Kitrobensene	N/D
	Benzene Propanoio Acid Chloroform	N/D
	1,2-Bensene Dicarboxylic Acid (Dicctyl Ester)	N/D
	1,2-Benzene Dicarboxylic Acid (Dibutyl Ester)	N/D N/D
•	Heptanoic Acid	N/D
-	Phosphoria Acid	N/D
	1,2-Dichlorophenol Dichloromethane	N∕D
	1,2,3-Trichloro Propane	N/D
	1,3-Dichloro, 2-Propane	N/D N/D
	Pentanoic Acid	N/D
	Bensole Acid	N/D
	1,2-Dicarboxylic Acid 3,3,4,4-Tetramethyl Hexane	N/D
	2,2-0xy-Bis Ethanol	N/D N/D
	4-Ethyl, 2-Octane	N/D
	2-Nondecanone	nyd
	Ethyl Benzene	N/D
	2-Methyl,3-Hexane 3,4,5-Trimethyl-1-Hexane	N/D
	Brono: Ethane	N/D N/D
6	p.p'.DDT p.p'.DDE Dieldrin	N/D
	p _i p' _i pus Dialdrin	N/D
	Alpha BHC	N/D N/D
	Beta BHC	- N/D
•	Heptachlor	N/D
	Lindane	N/D
	Toxphene PCB 1016	N/D
	FCB 1010	N∕D K∕D

```
WELL #: 24
                                     DATE: 84/10/18
           Cr: 0.14
Pb: 0.16
                                                               Ba:
                                                          N02/N03:
           Hg: .0007
                                                       PURGEABLES:
       Hex Cr: (.01 (Dissolv)
                                                               pH: 6.4
          TNT:
                                                               pH: 6.4
                                                               pH: 6.0
          RDX:
      2,4 DNT:
                                                          CONDUCT:
      2,6 DNT:
                                                          CONDUCT:
       TETRYL:
                                                          CONDUCT:
          HMX:
                19 C
                                                          CONDUCT:
         TEMP:
  TD OF WELL :
                                                               Cd:
                42.3
           Na:
                                                               Se:
WELL #: 24
                                     DATE: 85/05/22
           Cr: .003 (Dissolv) .064 (Total)
           Pb: .004 (Dissolv) .056 (Total)
                                                          N02/N03:
           Hg: .0002 (Dissolv) .0009 (Total)
                                                      PURGEABLES:
       Hex Cr:
                 <. Ø1
                                                               pH: 6.0
          TNT:
          RDX:
                                                                pH: 6.0
      2, 4 DNT:
                                                                pH: 6.0
      2,6 DNT:
                                                          CONDUCT:
                                                          CONDUCT:
       TETRYL:
                                                          CONDUCT:
          HMX:
                                                          CONDUCT:
         TEMP:
                18 C
  TD OF WELL :
                                                                Cd:
                42.3
                                                                Seı
           Na:
                                     DATE: 85/11/25
WELL #: 24
           Cri
                                                                Ba: .01
                                                          NO2/NO3:
           Pb:
                                                       PURGEABLES:
           Hgt
       Hex Cr:
                                                                pH: 6.4
                                                                pH: 6.4
          TNT:
          RDX:
                                                                pH:
                                                                    6.4
      2, 4 DNT:
                                                                pH:
                                                                     6.4
      2, & DNT:
                                                           CONDUCT:
       TETRYL:
                                                           CONDUCT:
                                                           CONDUCT:
          HMX:
                17 C
          TEMP:
                                                           CONDUCT:
  TD OF WELL :
                42.3
                                                                Cd:
           Na: 10.8
                                                                Se:
 WELL #: 24
                                      DATE: 86/04/03
                (0.001
            Cr:
                                                                Bar
                                                           N02/N03:
            Pb:
                 0.004
                                                        PURGEABLES:
            Hg :
                 .0215
        Hex Cri
                 4.01
                                                                pHs
                                                                     6.1
           TNT:
                 ₹. 25
                                                                pH:
           RDX:
                 (.05
                                                                pH t
                                                                     6.1
       2, 4 DNT:
                                                                pH:
       2,6 DNT:
                                                           CONDUCT:
                                                           CONDUCT:
        TETRYL:
           HMX:
                                                           CONDUCT:
          TEMP: 16 C
                                                           CONDUCT :
   TD OF WELL :
                 42.3
                                                                Cd:
            Nat
```

Table C8. (Concluded)

```
WELL #: 24
                                   DATE: 86/09/25
          Cr: (3.010
                                                            Ba:
                                                       NO2/NO3: .02/.15
          Pb: 0.013
               (.0005 mg/1
                                                    PURGEABLES: .02
          Hg:
                                                          pH: 6.1
       Hex Cr:
               (0.01
         TNT:
               (.05
                                                            pH: 6.0
         RDX: (.05
                                                            pH: 6.1
      2.4 DNT:
               (0.005
                                                            pH: 6.2
               (0.005
      2,6 DNT:
                                                       CONDUCT:
      TETRYL:
               (0.1
                                                       CONDUCT:
                                                       CONDUCT:
         HMX:
               (0.1
               18 C
                                                      CONDUCT:
         TEMP:
  TD OF WELL :
               42.3
                                                            Cd:
                                                            Se:
          Na:
WELL #: 24
                                   DATE: 87/04/07
          Cr: 0.003
                                                            Ba:
                                                       N02/N03:
          Pb: 0.004
          Hg: (.0005
Cr: (0.01
                                                    PURGEABLES:
       Hex Cr:
                                                            pH: 6.9
          TNT: (.05
                                                            pH: 7.0
                                                            pH: 7.0
          RDX: (.05
      2,4 DNT: (.05
                                                            pH: 7.0
      2,6 DNT: (.05
                                                       CONDUCT:
                                                                 4500
       TETRYLI
               4.05
                                                       CONDUCT:
                                                                 4400
         HMX:
               (. 1
                                                       CONDUCT: 4400
         TEMP: 20 C
                                                       CONDUCT: 4450
  TD OF WELL : 42.2
                                                            Cd:
                                                            Set
          Na s
                                   DATE: 87/10/21
WELL #: 24
          Cr: 0.004
                                                            Baı
          Pb: 0.006
                                                       N02/N03:
          Hg: (.0005
                                                    PURGEABLES:
               (0.01
                                                                4.8
       Hex Cr:
                                                            pH:
         TNT:
                                                            pH:
         RDX:
                                                            pHı
      2,4 DNT:
                                                            pH:
     2,6 DNT:
                                                       CONDUCT:
                                                       CONDUCT:
       TETRYL:
                                                       CONDUCT:
         HMX:
         TEMP: 18.2 C
                                                       CONDUCT:
                                                            Cd:
 TD OF WELL : 42.4
                                                            Se:
          Na s
                                   DATE: 88/05/19
WELL #: 24
          Cr: (.05
                                                            Baı
                                                       NO2/NO3: .27
          Pb: (.001
                                                    PURGEABLES:
          Hg: (.0005
      Hex Cr: (.05
                                                            pH: 6.3
          TNT: (.1
RDX: (.3
                                                            pH; 6.2
         TNT:
                                                            pH: 6.3
      2,4 DNT: (.1
                                                            pH: 6.2
                                                       CONDUCT: 17.000
      2,6 DNT: (.1
       TETRYLE
                                                       CONDUCT:
                                                                 17.000
               4.3
                                                       CONDUCT: 20.000
         HMX s
               (.3
                                                       CONDUCT: 17.000
         TEMP: 17.4 C
  TO OF WELL : 48.8
                                                            Cdx
                                                            Se :
          Na t
```

```
WELL #: 25
                                     DATE: 84/10/18
           Cr: 0.042
Pb: 0.019
                                                         N02/N03:
           Hg: .0002
                                                       PURGEABLES:
                                                               pH: 6.4
pH: 6.4
pH: 6.2
               (.01 (Dissolv)
       Hex Cr:
          TNT:
          RDX:
                                                               pH: 6.2
      2,4 DNT:
                                                          CONDUCT:
      2.6 DNT:
                                                          CONDUCT:
       TETRYL:
                                                          CONDUCT:
          HMX:
         TEMP:
                20 C
                                                          CONDUCT:
  TD OF WELL : 40.4
                                                              Cd:
                                                               Se:
                                     DATE: 85/05/22
WELL #: 25
           Cr: (.001 (Dissolv) .066 (Total)
           Pb: .002 (Dissolv)
                                 .116 (Total)
                                                          NO2/NO3:
       Hg: .0002 (Dissolv) .0006 (Total)
Hex Cr: (.01
                                                     PURGEABLES:
                                                               pH: 6.1
                                                               pH: 6.1
          TNT:
          RDX:
                                                               pH: 6.1
      2,4 DNT:
                                                               pH: 6.1
      2,6 DNT:
                                                          CONDUCT:
                                                          CONDUCT:
       TETRYL:
          HMX:
                                                          CONDUCT:
         TEMP: 18 C
                                                          CONDUCY:
  TD OF WELL: 40.4
                                                               Cd :
           Na:
                                                               Se:
                                     DATE: 85/11/22
WELL #: 25
                                                               Ba: .:95
            Cr:
                                                          N02/N03:
            Pb:
                                                                    .63 (TOTAL N)
                                                       PURGEABLES:
            Hg :
       Hex Cr:
                                                               pH: 6.0
          TNT:
                                                               pH: 6.0
                                                                pH: 6.0
           RDX:
      2,4 DNT:
                                                                : Hq
                                                                    €. ₹
                                                          CONDUCT:
                                                                    6500
      E. & DNT:
       TETRYL:
                                                          CONDUCT:
                                                          CONDUCT:
          HMX :
  TEMP: 18 C
                                                          CONDUCT:
                                                                    . 0011
                                                               Cd:
            Na: 30.7
                                                                Set
WELL #: 25
                                     DATE: 86/04/04
            Cr: (0.001
            Pb: 0.003
                                                          ND2/ND3:
            Hg: .0005
                                                       PURGEABLES:
       Hex Cr: (.10
                                                                pH: 5.9
                                                                pH:
           TNT:
                (.05
                                                                    5.9
           RDX: (.05
                                                                pH:
                                                                     6.0
      2,4 DNT:
                                                                pH:
                                                                     6.0
       2,6 DNT:
                                                          CONDUCT:
       TETRYL:
                                                          CONDUCT:
                                                          CONDUCT:
           HMX t
          TEMP: 18 C
                                                          CONDUCT:
  TD OF WELL : 40.4
                                                               Cd:
                                                                5e t
```

```
WELL #: 25
                                    DATE: 86/09/25
           Cr: (0.010
                                                             Ba:
           Pb:
                (0.010
                                                        NO2/NO3: (.01/.02
           Hp:
                 <.0005 mg/l
                                                     PURGEABLES:
       Hex Cr:
                (0.01
                                                              pH:
                                                                   6.1
          TNT:
                (.05
                                                              pH: 6.0
          RDX: (.05
                                                              pH: 6.1
      2,4 DNT:
                (0.005
                                                              pH: 6.1
      2.6 DNT:
                (0.005
                                                         CONDUCT:
       TETRYL:
                (0.1
                                                        CONDUCT:
          HMX:
                (0.1
                                                         CONDUCT:
         TEMP: 21 C
                                                        CONDUCT:
  TD OF WELL : 40.4
                                                             Cd:
           Na:
                                                             Se:
                                    DATE: 87/04/08
WELL #: 25
           Cr: (0.001
                                                              Ba:
           Pb:
                0.005
                                                         NO2/NO3:
           Hg: (.0005
                                                     PURGEABLES:
       Hex Cr: (0.01
                                                              pH: 5.9
          TNT:
                                                              pH: 5.8
          RDX:
                                                              pH: 6.0
      2.4 DNT:
                                                              pH: 6.0
      2,6 DNT:
                                                         CONDUCT:
                                                                   5250
       TETRYL:
                                                        CONDUCT: 5250
          HMX:
                                                         CONDUCT: 5250
  TEMP: 20 C
                                                        CONDUCT: 5250
                                                              Cd:
           Na:
                                                              Se:
                                    DATE: 87/10/21
WELL #: 25
                                                             Bet
          Cr: 0.000
                                                        N02/N03:
           Pb: 0.006
                                                     PURGEABLES:
           Hg: 0.0005
       hex Cr: (0.01
                                                             pH: 5.5
                                                             1 Hq
          TNT:
                                                             pH:
          RDX:
      2, 4 DNT:
                                                             pH:
                                                        CONDUCT: 61
      2,6 DNT:
                                                        CONDUCT:
       TETRYLE
                                                        CONDUCT:
         HMX:
                                                        CONDUCT :
         TEMP: 18.7 C
  TO OF WELL :
                                                             Cd:
                40.3
                                                             Set
                                    DATE: 88/05/19
WELL #: 25
           Cris
                (.05
                                                             Bat
                                                        150N\S0N
               (. 001
           Pb:
                                                     PURGEABLES:
           Hg: (.0005
                                                             pH: 6.0
pH: 5.9
       Hex Cr: (.01
          TNT
               (, 1
                                                             pH: 5.9
          RDX:
               (.3
                                                             pH: 5.9
      2,4 DNT:
                4.1
                                                                  18.000
                                                        CONDUCT
      2,6 DNT:
               <. 1
                                                        CONDUCT
                                                                  18.000
       TETRYLE
                (.3
                                                        CONDUCT: 20.000
          HMX:
                (.3
                                                        CONDUCT: 20.000
         TEMP:
                16.2 C
                                                             Cdt
  TD OF WELL :
                40.4
                                                             Set
           Nas
```