Examplar-Based Image Completion

0456024 Pei-Shan Tsai

NCTU NCLAB

Computer Vision 2016 Spring

1 Introduction to Image Completion

Examplar-based Image Completion — Criminisi's Algorithm

1 Introduction to Image Completion

Examplar-based Image Completion — Criminisi's Algorithm

What is Image Completion

Given an input image I, as well as a target region T and a source region S (where S is always a subset of I-T), the goal of image completion is to fill T in a visually plausible way.

Types of Image Completion

Texture Synthesis

Image Inpainting

Object Removal

An Ideal Algorithm for Image Completion

An ideal algorithm for image completion should be able to

- complete complex natural images
- handle large target region
- done in a fully automatic manner

Approaches for Image Completion

- Statistical-based
 - estimating statistics
 - for images with stochastic content (i.e., texture synthesis)
- PDE-based
 - simulating diffusion process by partial differential equations
 - for image with small target region (i.e., image inpainting)
- Examplar-based

1 Introduction to Image Completion

Examplar-based Image Completion — Criminisi's Algorithm

Examplar-based Approach

- Copying source patches to target patches
 - what is the order of target patches to be filled
 - which source patch is the best choice for the specific target patch

Criminisi's Algorithm

A. Criminisi, P. Perez, K. Toyama Region filling and object removal by exemplar-based inpainting In 2004 IEEE Transactions on Image Processing 9 1200-1212

Criminisi's Algorithm

- Extract the manually selected initial front δΩ⁰.
- · Repeat until done:
 - 1a. Identify the fill front $\delta\Omega^t$. If $\Omega^t = \emptyset$, exit.
 - **1b.** Compute priorities $P(\mathbf{p}) \quad \forall \mathbf{p} \in \delta\Omega^t$.
 - Find the patch Ψ_{p̂} with the maximum priority,
 i.e., p̂ = arg max_{P∈δΩt} P(p).
 - **2b.** Find the exemplar $\Psi_{\hat{\mathbf{q}}} \in \Phi$ that minimizes $d(\Psi_{\hat{\mathbf{p}}}, \Psi_{\hat{\mathbf{q}}})$.
 - **2c.** Copy image data from $\Psi_{\hat{\mathbf{q}}}$ to $\Psi_{\hat{\mathbf{p}}} \ \forall \mathbf{p} \in \Psi_{\hat{\mathbf{p}}} \cap \Omega$.
 - 3. Update $C(\mathbf{p}) \ \forall \mathbf{p} \in \Psi_{\hat{\mathbf{p}}} \cap \Omega$

Criminisi's Algorithm

1b. Computing priorities of target patches

- the priority computation is biased toward those patches which are
 - on the continuation of strong edges
 - surrounded by high-confidence pixels
- P(p) = C(p)D(p)
 - confidence term $C(p) = \frac{\sum_{q \in \Psi_p \cap (l-\Omega)} C(q)}{|\Psi_p|}$
 - data term $D(p) = rac{|
 abla I_p^\perp \cdot n_p|}{lpha}$ (lpha is a normalization factor)

Results

Results

Introduction to Image Completion

Examplar-based Image Completion — Criminisi's Algorithm