R4: Visualising Data Relations

Data visualisation with {ggplot2} in {tidyverse}

Andreas Reschreiter

2023-12-12

Table of contents

1	Libraries	2
2	Data	2
3	Date manipultation	2
4	Make {ggplot2} plots	2
5	A {ggplot2} plot	3
6	Labels	3
7	Legends	4
8	Annotations	5
9	Several layers (geoms) in one graph	5
10	Groupings	6
11	Facets	6
12	Two conditioning variables	7
13	Some more tweaks:	8
14	Scales	8
15	Themes	9
16	Saving plots	11
17	Include saved plots	11

1 Libraries

```
suppressPackageStartupMessages({
  library(tidyverse) # includes ggplot2
})
```

2 Data

We will visualize the datasets::mtcars data.

\$ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2,~

3 Date manipultation

Fix vs/am labels first:

4 Make {ggplot2} plots

- 1. To create a plot, create a ggplot() object (and link it to a data set)
- 2. Define the (default) mapping of variables to "aestethics".
- 3. Choose a "geom". This can define specific aesthetics
- 4. Add context (title, legends, axis)

5 A {ggplot2} plot

```
g <- ggplot(cars) +
    aes(x = mpg, y = disp) + ## apply to all geoms
    geom_point(aes(col = cyl, size = qsec))
g</pre>
```


6 Labels

7 Legends

```
## use discrete values instead of color bar
g <- g + guides(col = "legend") +

## modify guide names
scale_color_continuous(name = "cylinder") +
scale_size_continuous(name = "qsec time")
g</pre>
```


8 Annotations

9 Several layers (geoms) in one graph

The graphs are "layered", so that several geoms can be combined:

```
g + geom_smooth(col = "dark magenta")
```


10 Groupings

If categorical variables are mapped in an aestethic, they automatically define visual groups:

11 Facets

Another kind of layer are "facets", used to create plots conditioned by factors:

```
g +
  geom_smooth(col = "dark magenta") +
  facet_wrap(~ am)
```


12 Two conditioning variables

```
g +
  geom_smooth(col = "dark magenta") +
  facet_grid(vs ~ am)
```


13 Some more tweaks:

Displacement vs. Fuel Consumption of Cars

14 Scales

```
g + scale_y_log10() + geom_smooth(method = "lm")
```

Displacement vs. Fuel Consumption of Cars N = 32 cylinder 4 5 6 7 8 qsec time 15.0 17.5 20.0 Miles per Gallon

g + scale_color_distiller(type = "qual") ## formally, cylinder is quantitative!

15 Themes

```
g + theme_classic()
g + theme_bw()
g + theme_minimal()
g + theme_void()
g + theme(legend.position = "left")
```


16 Saving plots

```
ggsave("test.png")
ggsave("test.pdf")
ggsave("test.jpeg", g) ## save plot from a ggplot object
```

17 Include saved plots

Figure 1 includes the saved plot via a code chunk.

```
knitr::include_graphics("test.png")
# use ouside of junks `![](test.png)` to include graphs
```


Figure 1: A saved plot included via Code chunk

Can include saved plot via Markdown code:

![Plot included from outside of code chunk](test.png)

Figure 2: Plot included from outside of code chunk