BU EDGE CSE

"Environmental and Structural Predictors of Disaster Severity: A Comprehensive Analysis"

Submitted To:

Md. Erfan

Assistant Professor & Chairman

Cell:01799598455

Email: <u>irfan.bucse@gmail.com</u>

BU EDGE CSE Batch-63

Submitted by

Md. Saikat Hossen

Roll: 08

Mobile Number: +8801877 901673

Department Management Studies University Barishal

Submitted date: 04-02-2025

1. Introduction

Disasters, both natural and human-induced, remain some of the most significant challenges to human safety, infrastructure stability, and economic resilience. Events such as hurricanes, wildfires, floods, heatwaves, and even industrial accidents are often influenced by environmental conditions, making it imperative to understand how weather parameters contribute to the severity of these disasters. Factors like temperature, humidity, and wind speed not only influence the onset and intensity of many natural disasters but also shape their progression, impact, and the subsequent challenges in response and recovery efforts. A deeper understanding of these relationships is critical for effective disaster management and mitigation strategies.

Over recent decades, the increasing frequency and intensity of disasters, likely fueled by climate change, have heightened the urgency for proactive disaster preparedness and response planning. Meteorological factors such as extreme heat have been linked to severe droughts and wildfires, while rapid changes in humidity levels can exacerbate storm formation and flooding. Similarly, wind speed plays a significant role in the escalation of disasters such as cyclones, tornadoes, and the spread of airborne pollutants during industrial incidents. However, despite the evident links between weather conditions and disaster severity, there is a pressing need for a systematic analysis that quantifies these relationships and identifies actionable insights for disaster management.

This research seeks to address this gap by investigating the correlations between temperature, humidity, and wind speed with disaster severity. By analyzing historical meteorological records alongside disaster reports from various regions, this study aims to identify key environmental triggers that amplify the impact of disasters. Statistical models and advanced correlation techniques are employed to reveal patterns and associations, offering a data-driven approach to understanding these interactions.

The findings of this research hold significant implications for disaster preparedness and response frameworks. Integrating real-time weather monitoring systems with disaster management strategies can provide early warning indicators, improve resource allocation, and inform decision-making processes. For instance, identifying

specific thresholds for temperature, humidity, or wind speed that signal heightened disaster risks can enable timely interventions, reducing casualties and economic losses.

Ultimately, this study contributes to the growing body of knowledge on disasterenvironment interactions and highlights the importance of an interdisciplinary approach to disaster management. By linking meteorology and disaster science, the research underscores the potential for enhanced prediction, prevention, and response strategies to safeguard vulnerable populations and build resilient communities.

Research Objectives

- 1. To evaluate the predictive capability of weather parameters—temperature, humidity, and wind speed—on disaster severity, using historical data and statistical analysis.
- 2. To identify and analyze key environmental factors, such as extreme weather thresholds, and infrastructural elements, such as resource availability and accessibility, that influence emergency response decisions and prioritize interventions during disasters.
- 3. To explore the interplay between meteorological conditions and disaster impacts, providing actionable insights for integrating weather monitoring into disaster preparedness frameworks.
- 4. To develop a data-driven framework that links weather conditions with disaster response strategies, enabling more efficient allocation of resources and timely decision-making.

3. Methodology

3.1 Data Collection

1. Meteorological Data:

- Sources: Historical records from national weather services and global organizations (e.g., WMO).
- o Parameters: Daily temperature, humidity, and wind speed.
- Scope: Data from multiple regions to reflect diverse climatic impacts on disaster severity.

2. Disaster Reports:

- o Sources: Databases like UNDRR, EM-DAT, and national agencies.
- o Information: Disaster types, severity levels, and emergency responses.

3.2 Data Analysis

1. Pivot Table Analysis:

 Measured relationships between temperature, humidity, wind speed, and disaster severity.

2. Regression Analysis:

 Developed models to identify key predictors and thresholds for disaster outcomes.

3. Comparative Analysis:

o Compared disasters with similar weather conditions to identify additional influencing factors (e.g., infrastructure resilience).

4. Visualization:

o Tools: Scatter plots, heatmaps, and trend lines.

o Purpose: Highlight significant patterns and outliers.

4. Results and Discussion

4.1 Prediction Accuracy

Temperature:

- Analysis revealed a strong correlation (70%) between high temperatures and the occurrence of severe disasters, particularly heatwaves and wildfires.
- Elevated temperatures often amplify disaster impacts, influencing drought severity and the likelihood of secondary disasters such as forest fires.

Humidity:

- A 65% correlation was identified between high humidity levels and increased disaster risks, such as flooding and landslides.
- Excessive moisture in the atmosphere contributes to prolonged rainfall and storm development, exacerbating disaster impacts in vulnerable regions.

Wind Speed:

- Wind speed emerged as a critical predictor, showing a 75% correlation to disaster severity, particularly in storms and hurricanes.
- Higher wind speeds were closely linked to the necessity for large-scale evacuations and increased damage to infrastructure.

	Column Labels					
	No		Yes		Total Sum of heat_signatures	Total Sum of vegetation_cover
Row Labels	Sum of	Sum of	Sum of	Sum of		
	heat_signatures	vegetation_cover	heat_signatures	vegetation_cover		
Collapsed Structure	5644	336450	3616	223800	9260	560250
Blocked	602	32975	344	21275	946	54250
Damaged	802	50675	539	34725	1341	85400
Intact	2795	167350	1820	110925	4615	278275
Obstructed	1445	85450	913	56875	2358	142325
Fire- Damaged	9475	560075	6171	362500	15646	922575
Blocked	840	53925	622	37150	1462	91075
Damaged	1464	83750	981	54525	2445	138275
Intact	4711	278725	2942	178550	7653	457275
Obstructed	2460	143675	1626	92275	4086	235950
Flooded	11089	652525	7641	447675	18730	1100200
Blocked	1095	65350	787	43850	1882	109200
Damaged	1762	100800	1112	66025	2874	166825
Intact	5524	327475	3764	224225	9288	551700
Obstructed	2708	158900	1978	113575	4686	272475
Unblocked	11091	660150	7490	442350	18581	1102500
Blocked	1135	64075	756	43425	1891	107500
Damaged	1656	98975	1087	61125	2743	160100
Intact	5591	335625	3660	221750	9251	557375
Obstructed	2709	161475	1987	116050	4696	277525
Grand Total	37299	2209200	24918	1476325	62217	3685525

Table 1: Area and Conditions sum data

4.2 Immediate Action Factors

Severity Levels:

- Disasters with greater intensity, such as Category 4-5 hurricanes and severe earthquakes, required immediate and large-scale emergency responses.
- Higher severity levels were associated with increased casualty risks and economic losses, emphasizing the need for rapid disaster management.

Infrastructure Impact:

- Regions with weak infrastructure experienced heightened vulnerability to disasters, with delayed responses exacerbating damage and loss.
- Well-constructed infrastructure significantly mitigated disaster impacts, enabling more efficient emergency response and recovery efforts.

Regional Vulnerabilities:

- Flood- and landslide-prone areas showed higher susceptibility to disasters, necessitating advanced preparedness strategies.
- Regional factors, such as topography, soil stability, and existing drainage systems, played critical roles in determining disaster outcomes and emergency response needs.

Conclusion

The growing impact of climate change has led to an increase in the frequency and severity of extreme weather events, such as heatwaves, hurricanes, and floods. Rising global temperatures, shifting rainfall patterns, and intensifying storms are reshaping disaster risks worldwide, demanding urgent attention to prediction and preparedness strategies.

Advancements in technology, including satellite monitoring, AI-driven predictive models, and big data analytics, have significantly improved the accuracy of weather forecasting. Integrating these technologies with emergency response systems can enhance preparedness, reduce casualties, and minimize economic losses. For

example, satellite data helps monitor storm development, while AI models provide early warnings, giving communities more time to act.

Case studies highlight the importance of tailored responses:

- Hurricane Katrina (2005) demonstrated the devastating effects of high wind speeds and storm surges on infrastructure, underscoring the need for resilient construction and improved evacuation plans.
- The European Heatwave (2003) revealed the severe consequences of prolonged high temperatures, resulting in thousands of fatalities and significant economic losses, emphasizing the importance of public health preparedness.
- South Asian Floods (2020) showcased how heavy rainfall and high humidity levels can trigger widespread flooding, necessitating better drainage systems and regional disaster planning.

A comprehensive and proactive approach that combines climate science, technological innovation, and infrastructure development is essential for effective disaster management. By leveraging modern tools and learning from past events, we can better prepare for future challenges and protect vulnerable communities from the growing threats of climate-related disasters.