

Automatic segmentation of fibula bone by using deep learning

Promotor: Prof. Bart Vanrumste

Co-supervisor: Dr. Yi Sun

Beiyang Li r0735133 Zechun Wang r0736595

Subject of master thesis

 Proposes an automatic fibula segmentation approach in CT scans

- 1. Motivation
- 2. Dataset & Data preprocessing
- 3. Methodology & Experiments
- 4. Conclusion

- 1. Motivation
- 2. Dataset & Data preprocessing
- 3. Methodology & Experiments
- 4. Conclusion

Concept of Fibula

 The fibula is a leg bone on the lateral side of the tibia.

 Segmentation of fibula is commonly used in the mandibular reconstruction.

The traditiontal fibula segmentation method

 Traditional medical segmentation adopts thresholding algorithm method with the assistant of manual annotations.

 The segmentation results of thresholding algorithm cannot be directly adopted in clinical applications, experts are still required to spend lots of time to further manually improve on the results' quality. Zhou et al. (2019)

Challenge

What is segmentation

- 1. Motivation
- 2. Dataset & Data preprocessing
 - a. Data Preparation
 - b. Data Preprocessing
- 3. Methodology & Experiments
- 4. Conclusion

Dataset

- Source: Sint-Rafael hospital
- Image Dimension: 512 x 512

Data distribution

- Dataset description
 - 19 CT scans
 - 409 to 1543 CT slices
 - 15830 images
 - 20.4 GB

	Train set	Validation set	Test set
Number of CT scans	16	1	2
Number of images	13636	790	1404

Limitation: Only one validation set

Dataset

Original CT slice

Experts' manual annotations

Examples in the data set

Serial number	Number of CT Distance betwe slices in one scan each slice (mm	
1	734	0.6
2	670	0.6
3	790	0.6
4	786	0.6
5	794	0.6
6	799	0.6
7	810	0.6
8	951	0.6
9	803	0.7
10	767	0.8
11	761	0.8
12	999	0.625
13	1543	0.4
14	901	0.7
15	759 0.7	
16	797 0.7	
17	774	0.8
18	409	1.5
19	983	0.6

- 1. Motivation
- 2. Dataset & Data preprocessing
 - a. Data Preparation
 - b. Data Preprocessing
- 3. Methodology & Experiments
- 4. Conclusion

Data preprocessing

The original data of the manual annotations

the ground truth after HSV processing

Data preprocessing

384 x 384

Convolution kernel

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 10 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

384 x 384

For boundary enhancement

- 1. Motivation
- 2. Dataset & Data preprocessing
- 3. Methodology & Experiments
 - a. Evaluation criterion
 - b. Single-planar segmentation model
 - c. Multi-planar segmentation model
 - d. Multi-planar segmentation model with data augmentation
- 4. Conclusion

Dice Score

$$\bullet D(X,Y) = \frac{2*|X\cap Y|}{|X|+|Y|}$$

 By using this method, a score between 0 and 1 can be computed.

Two method of Dice Score

Average Dice score

- Average of each dice score in one CT scan.
- Focus more on evaluating the whole output

Average Dice Score

Volumetric Dice score

- Overlap voxel area
- Pay more attention to the evaluation of fibula.

Volumetric Dice Score =
$$\frac{2*|X \cap Y|}{|X|+|Y|}$$

- 1. Motivation
- 2. Dataset & Data preprocessing
- 3. Methodology & Experiments
 - a. Evaluation criterion
 - b. Single-planar segmentation model
 - c. Multi-planar segmentation model
 - d. Multi-planar segmentation model with data augmentation
- 4. Conclusion

Single-planar segmentation model

Single-planar segmentation model: Res-Net block

Res-Net block

Traditional Res-Net consists of building blocks or bottlenecks

The structure of the building block for ResNet-18 and ResNet-34

The structure of the bottleneck block for ResNet-50 and higher Res-Net

Res-Net architecuture

• The Architectures for 34 layers and 50 layers Res-Net

Layer Name	34-layer	50-layer		
Conv1	7×7, 64	, stride 2		
	3×3 max p	3×3 max pool, stride 2		
Conv2-x	$\begin{bmatrix} 3 \times 3, & 64 \\ 3 \times 3, & 64 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, & 64 \\ 3 \times 3, & 64 \\ 1 \times 1 & 256 \end{bmatrix} \times 3$		
Conv3-x	$\begin{bmatrix} 3 \times 3, & 128 \\ 3 \times 3, & 128 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, & 128 \\ 3 \times 3, & 128 \\ 1 \times 1 & 512 \end{bmatrix} \times 4$		
Conv4-x	$\begin{bmatrix} 3 \times 3, & 256 \\ 3 \times 3, & 256 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, & 256 \\ 3 \times 3, & 256 \\ 1 \times 1 & 1024 \end{bmatrix} \times 6$		
Conv5-x	$\begin{bmatrix} 3 \times 3, & 512 \\ 3 \times 3, & 512 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, & 512 \\ 3 \times 3, & 512 \\ 1 \times 1 & 2048 \end{bmatrix} \times 3$		

Upsampling

10	4	22
2	18	7
9	14	25

3	X	3
	/\	

10	4	22	
2	18	7	
9	14	25	

10	10	4	4	22	22
10	10	4	4	22	22
2	2	18	18	7	7
2	2	18	18	7	7
9	9	14	14	25	25
9	9	14	14	25	25

6 x 6

Nearest Neighbor Interpolation

Skip connection

Skip connection

Experiment 1: 34-layer Res-Net in signle-planar model

	Average Dice Score	Volumetric Dice Score
Test set 1	0.863	0.920
Test set 2	0.859	0.917

Experiment 2: 50-layer Res-Net in single-planar model

	Average Dice Score	Volumetric Dice Score
Test set 1	0.952	0.946
Test set 2	0.884	0.906

Structure of a Long Bone

olanar model

metric Dice Score

0.946

0.906

Comparison of Experiment 1 and 2

	Test set 1 average Dice score	Test set 2 average Dice score	Test set 1 volume Dice Score	Test set 2 volume Dice Score
34-layer Res-Net	0.863	0.859	0.920	0.917
50-layer Res-Net	0.952	0.884	0.946	0.906

→ Adopt 50-layer Res-Net structure for single –planar segmentation model

Discussion for Experiment 2: 50-layer Res-Net in single-planar model

Test set 1 Test set 2

Discussion for Experiment 2

Test set 1 Test set 2

Two method to improve epiphysis segmentation

Information combination

Data augmentation

3D Network to 2.5D Network

3D network (3D Unet)

(Regardless of computing and VRAM)

- Combine the information between image slices
- Ensure the continuity
- Better than 2D network

Drawbacks for fibula segmentation

- limitation of the VRAM (800x384x384)
- Cannot take the entire 3D metric as input
- Crop to a series of 3D patches
- Network is difficult to learning the overall structure

Multi-planar combination (2.5D Network)

- 1. Motivation
- 2. Dataset & Data preprocessing
- 3. Methodology & Experiments
 - a. Evaluation criterion
 - b. Single-planar segmentation model
 - c. Multi-planar segmentation model
 - d. Multi-planar segmentation model with data augmentation
- 4. Conclusion

Multi-planar segmentation model

Maximum Probability Combination

Cropping the region of interest (CROI) method

- The input image for singleplanar segmentation model is 384x384
- Different resolution (384x734,384x670...)

 Predicted performance of epiphysis part is worse than the diaphysis part

Focus on data at epiphysis part

Cropping the region of interest (CROI)

Cropping the region of interest (CROI) method (For sagittal and coronal)

Cropping the region of interest (CROI) method (For sagittal and coronal)

Experiment 3: Multi-planar segmentation model

Combination result

	Test set 1 average Dice score	Test set 2 average Dice score	Test set 1 volume Dice Score	Test set 2 volume Dice Score
Axial plane	0.956	0.938	0.947	0.923
Sagittal plane	0.942	0.938	0.908	0.909
Coronal plane	0.946	0.945	0.918	0.896
Combination result	0.945	0.856	0.932	0.883

Experiment 3: Multi-planar segmentation model

Combination result

	Test set 1 average Dice score	Test set 2 average Dice score	Test set 1 volume Dice Score	Test set 2 volume Dice Score
Axial plane	0.956	0.938	0.947	0.923
Sagittal plane	0.942	0.938	0.908	0.909
Coronal plane	0.946	0.945	0.918	0.896
Combination result	0.945	0.856	0.932	0.883 🔻

Experiment 3: Multi-planar segmentation model

Coronal plane subnetwork

Too few useful parts

Result is poor

Test set 2

Discussion for Experiment 3: Multi-planar segmentation model

Discussion for Experiment 3

Test set 1 Test set 2

Outline

- 1. Motivation
- 2. Dataset & Data preprocessing
- 3. Methodology & Experiments
 - a. Evaluation criterion
 - b. Single-planar segmentation model
 - c. Multi-planar segmentation model
 - d. Multi-planar segmentation model with data augmentation
- 4. Conclusion

Data Augmentation

Images

Ground Truth

• **Translation:** b. 50 to the right and 30 downwards c. 50 to the left and 30 upwards

• Scale: 1.3 times.

Data Augmentation

Images

Ground Truth

• **Rotate:** 15 degrees rotate, and 1.3 times enlarged

Gaussian noise: an average of zero and a standard deviation of 1

Data Augmentation

Axial:

- Select epiphysis part manually from train set
- 2160 to 10,800
- Sagittal:
 - Select slices included the fibula bone
 - 2830 to 14,150
- Add to original train set

Final segmentation model

- Data augmentation
- Multi-planar segmentation only with axial plane and sagittal plane.

Axial segmentation result on axial slices after data augmentation

	Test set 1 average Dice score	Test set 2 average Dice score	Test set 1 volume Dice Score	Test set 2 volume Dice Score
Axial plane	0.956	0.938	0.947	0.923
Axial plane After Data Augmentation	0.967	0.943	0.957	0.944
Sagittal plane	0.942	0.938	0.908	0.909
Sagittal plane After Data Augmentation	0.961	0.972	0.955	0.964
Data Augmentation Combination	0.967	0.944	0.957	0.946

Test set 2

Sagittal segmentation result on axial slices after data augmentation

Test set 1

	Test set 1 average Dice score	Test set 2 average Dice score	Test set 1 volume Dice Score	Test set 2 volume Dice Score
Axial plane	0.956	0.938	0.947	0.923
Axial plane After Data Augmentation	0.967	0.943	0.957	0.944
Sagittal plane	0.942	0.938	0.908	0.909
Sagittal plane After Data Augmentation	0.961	0.972	0.955	0.964
Data Augmentation Combination	0.967	0.944	0.957	0.946

Test set 2

Combination segmentation result on axial slices after data augmentation

Test set 1

	Test set 1 average Dice score	Test set 2 average Dice score	Test set 1 volume Dice Score	Test set 2 volume Dice Score
Axial plane	0.956	0.938	0.947	0.923
Axial plane After Data Augmentation	0.967	0.943	0.957	0.944
Sagittal plane	0.942	0.938	0.908	0.909
Sagittal plane After Data Augmentation	0.961	0.972	0.955	0.964
Data Augmentation Combination	0.967	0.944	0.957	0.946

Test set 2

Discussion for Experiment 4:

Multi-planar segmentation model with data augmentation

Test set 1

Test set 2

Discussion for Experiment 4:

Multi-planar segmentation model with data augmentation

Test set 1 Test set 2

Outline

- 1. Motivation
- 2. Dataset & Data preprocessing
- 3. Methodology & Experiments
- 4. Conclusion

Conclusion

- An automatic fibula segmentation neural network
- → proven to be accurate and efficient
- The multi-planar segmentation model
- → increased the segmentation accuracy of epiphysis
- → decreased the segmentation accuracy of diaphysis
- The data augmentation
- → increased segmentation accuracy for single-planar segmentation and multi-planar segmentation
- Applicable for clinical medical fibula segmentation
- → Dice score higher than 0.95

Thank You

For Your Attention

Results of Experiment 2

Sagittal plane subnetwork

Coronal plane subnetwork

- 1. Too few useful parts
- 2. Result is poor

Discussion for Experiment 3

Discussion for Experiment 4

