Mouvement dans un champ de force centrale conservatif

#chapitre26 #dynamique #mecanique

Champ de force central conservatif

Force centrale

Une force $\overset{
ightarrow}{f}$ appliquée à un point matériel M est centrale si sa droite d'action passe toujours par un point O fixe dans le référentielle d'étude \mathcal{R} .

Conservative

$$\overrightarrow{f}=f_r(r)\overrightarrow{e_r}=-rac{dE_p}{dr}\overrightarrow{e_r}$$
 avec $E_p=E_p(r)$

Rappel élastique

$$\overrightarrow{f} = -k(r-l_0)\overrightarrow{e_r} \ E_p = rac{1}{2}k(r-l_0) + C$$

Gravitation

$$\overrightarrow{f} = -Grac{Mm}{r^2}\overrightarrow{e_r}\,E_p = -Grac{Mm}{r} + C$$

Electrostatique

$$\overrightarrow{f} = rac{1}{4\piarepsilon_0rac{Qq}{r^2}}\overrightarrow{e_r}\,E_p = rac{1}{4\piarepsilon_0}rac{Qq}{r} + C$$

Conséquences

$$rac{d\overrightarrow{\mathcal{L}}(O)}{dt} = 0 \stackrel{
ightarrow}{\mathcal{L}}\!(O) = mr^2 \dot{ heta} \overrightarrow{e_z}$$

• $\dot{\theta} > 0$: trajectoire conique

1èr Loi de Kepler

Les planètes du système solaire orbitent autour du soleil selon des trajectoires elliptiques dont le soleil est un des foyers.

2ème Loi de Kepler

Loi des aires, l'aire balayée par le vecteur position d'un corps pendant une durée Δt est constante sur tout la trajectoire.

•
$$rac{d\mathcal{A}}{dt} = rac{C}{2}$$
 avec $C = r^2\dot{ heta}$

Etude énergétique

- ullet Energie mécanique conservé : $\overrightarrow{v}(r) = \sqrt{rac{2(E_m E_p(r))}{m}}$
- Energie potentielle effective : $E_{p,eff}=E_p(r)+rac{1}{2}mrac{C^2}{r^2}$
 - $E_m \geq E_{p,eff}$

Champ Newtonien

(Force gravitationnelle, de Coulomb)

$$\overrightarrow{f}(r)=rac{k}{r^2}\overrightarrow{e_r}\,E_p(r)=rac{k}{r}\,\dot{ heta}=cst$$
 mouvement uniforme

Mouvement circulaire

Système solaire par exemple

$$ullet \ v = \sqrt{-rac{k}{mr_0}} \ \omega = \sqrt{rac{GM}{r_0^3}}$$

3èm Loi de Kepler

$$rac{T^2}{r_0^3}=rac{4\pi^2}{GM}$$

• On remplace r_0 par a pour un ellipse

$$ullet \ E_c = -rac{1}{2}rac{k}{r_0}\ E_p = rac{k}{r_0} = -2E_c\ E_m = rac{k}{2r_0}$$

Mouvement elliptique

• Non uniforme E_c et E_p pas constantes

$$ullet \ r=rac{k\pm\sqrt{k^2+2mC^2E_m}}{2E_m}\ E_m=rac{k}{2a}$$

Satellite géostationnaire

Un satellite ne peut pas être géostationnaire si son orbite n'est pas comprise dans le plan de l'équateur.