

Math 141 Tutorial 1

LIMITS & CONTINUITY

1. Find each limit.

A.
$$\lim_{\theta \to 0} \frac{\sin(2\theta)}{\theta} =$$

A.
$$\lim_{\theta \to 0} \frac{\sin(2\theta)}{\theta} =$$
 B. $\lim_{y \to \infty} \frac{\sqrt{y^2 + 2}}{5y - 6} =$ C. $\lim_{t \to 1^+} \frac{|1 - t|}{1 - t} =$

C.
$$\lim_{t \to 1^+} \frac{|1-t|}{1-t} =$$

2. Find each of these limits.

$$f(x) = \frac{x-2}{|x|-2}$$

$$\lim_{x \to -\infty} f(x) =$$

$$\lim_{x\to\infty}f(x)=$$

$$\lim_{x \to -2^{-}} f(x) =$$

$$\lim_{x \to -2^+} f(x) =$$

$$\lim_{x\to 2} f(x) =$$

3.

Evaluate
$$\lim_{x\to 2} \frac{1-\frac{4}{x^2}}{1-\frac{2}{x}}$$
, if it exists.

Evaluate
$$\lim_{x\to 0} \frac{x+\frac{2}{x}}{x-\frac{3}{x}}$$
, if it exists.

4. Find the value of *k* that would make the limit exist. Find the limit.

$$A. \lim_{x \to \infty} \frac{2x^3 - 6}{x^k + 3}$$

B.
$$\lim_{x\to 2} \frac{x^2 + kx - 10}{x - 2}$$

5. In each case sketch a graph with the given characteristics.

A.
$$f(4)$$
 is undefined and $\lim_{x\to 4} f(x) = 2$

B.
$$f(3) = 2$$
 and $\lim_{x \to 3} f(x)$ does not exist.

C.
$$f(1) = 3$$
 and $\lim_{x \to 1} f(x) = -2$

6.

Sketch the graph of
$$f(x) = \begin{cases} 2x+1, & x < 1 \\ 1, & x = 1 \text{ and classify the discontinuities, if any.} \\ 2x-1, & x > 1 \end{cases}$$

7.

Define
$$f(x) = \frac{x^2 + x - 6}{x - 2}$$
 at $x = 2$ so that it becomes continuous at 2.

8

Let
$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x + 1}, & x \ge -1 \\ A, & x < -1 \end{cases}$$
. Find A given that f is continuous at -1 .

9.

Use the pinching theorem to find $\lim_{x\to 0} \sqrt{x} \cos \frac{1}{x^2}$.