Tworzenie plików konfiguracyjnych

Skrócony opis formatu JSON

Pliki konfiguracyjne mają format JSON. Specyfikacja. W skrócie, w formacie json występują dwa elementy: obiekty ({}) i listy ([]). Obiekt to zbiór kluczy i odpowiadającym im wartości rozdzielonych dwukropkiem:, np:

```
{
  "enabled": true,
  "name": "Quadrupole",
  "age": 18
}
```

Klucze muszą zawierać się w cudzysłowach i być wartościami tekstowymi. Wartość może być liczbą, tekstem, wartością true/false, bądź innym obiektem lub listą. Wartości tekstowe muszą zawierać się w cudzysłowie. Lista to uporządkowany zbiór wartości, np:

```
[
    "First",
    "Second",
3,
    True,
    {
        "name": "jan"
    }
]
```

Podobnie jak w przypadku obiektu, każda wartość w liście może być liczbą, tekstem, itp.

Po każdym elemencie poza ostatnim w liście lub obiekcie musi znaleźć się przecinek!.

Konstrukcja pliku konfiguracyjnego

Każdy plik konfiguracyjny zawiera jeden obiekt JSON. W obiekcie musi znaleźć się lista kontrolerów controllers i opcjonalnie obiekt defaults:

Kontroler

Kontroler to inaczej pojedyncze urządzenie pomiarowe np: multimetr, system EuroMeasure, próżniomierz. Każdy kontroler musi zawierać pole typu type definiujące rodzaj urządzenia, np. HP34401A oraz listę parametrów jakie chcemy obsługiwać: params. Parametry i dostępne kontrolery opisane są dalej. Poza nimi może zawierać opcjonalne elementy konfigurujące urządzenie i połączenie z nim. Wszystkie dostępne kontrolery opisane są w rozdziale dostępne kontrolery

Parametr

Parametr to pojedyncza wartość ustawiana bądź zczytywana z instrumentu (np. napięcie w woltomierzu, częstotliwość w generatorze). Każdy parametr musi posiadać pola typu type i nazwy name. Typ definiuje rodzaj danego parametru. Każdy z kontrolerów wspiera określone rodzaje parametrów (np. dla HP34401A może to być VDC, IDC itp.). Typ musi być dokładnie taki sam jak definiuje kontroler. Nazwa parametru to nazwa widziana przez użytkownika programu, **musi być unikalna**. Dodatkowo, każdy parametr może posiadać pola:

- unit jednostka wyświetlana w programie (nadpisanie domyślnej)
- default domyślna wartość ustawialnego parametru ustawiana przy uruchomieniu programu
- eval_get wzór na podstawie którego przekształcana jest wartość odczytana z instrumentu. Więcej w wzory.
- eval_set wzór na podstawie którego przekształcana jest wartość ustawiana na instrumencie.
 Więcej w wzory.
- priority wartość numeryczna definiująca kolejność odczytywania/ustawiania parametrów w obrębie jednego cyklu pomiarowego. Im więsza wartość tym później

Niektóre typy parametrów mogą przyjmować również dodatkowe argumenty, więcej informacji opisane w dostępnych kontrolerach

Wzory

Równania opisujące wartości ustawiane/odczytywane są w formacie języka Python. Dostępne są proste operacje matematyczne: +, -, *, /, ** - potęgowanie, % - dzielenie modulo. W równaniach można

odwoływać się do włączonych parametrów wirtualnych a, b, c i d. W przypadku eval_get surowa wartość odczytana z instrumentu znajduje się w zmiennej x. Na przykład, aby ustawić dany parametr na a + b*10:

```
"eval_set": "a+b*10"
```

Aby skalować odczytane napięcie razy 0.001:

```
"eval_get": "x * 0.001"
```

Aby użyć bardziej złożonych operacji matematycznych należy zaimportować moduł math. Np:

```
"eval_get": "__import__('math').sin(x)"
```

W tym przykładzie obliczony zostanie sinus wartości zmierzonej.

Aby parametry wirtualne były dostępne należy dodać np. "uses_b": true, w głównym obiektcie w pliku konfiguracyjnym.

Dostępne kontrolery

EuroMeasure

Kontroler typu EuroMeasure obsługuje system EuroMeasure. Do obsługi dowolnej liczby kart systemu potrzebny jest w pliku konfiguracyjnym tylko jeden kontroler.

Opcje wymagane

port - Nazwa portu szeregowego do którego podłączone jest urządzenie, np. "COM11". W systemie windows można ją znaleźć w Menedźerze urządzeń (win+x n). Częstym powodem niedziałania systemu jest samoistna zmiana nazwy portu, co dzieje się przy ponownym uruchomieniu. Jeśli program nie uruchamia się poprawnie należy sprawdzić tą wartość.

Dostępne typy parametrów według kart

- generator RF
 - generator_amplitude Amplituda sygnału w danym kanale
 - generator_frequency Częstotliwość sygnału w danym kanale
 - pid_p Parametr P kontrolera PID
 - pid_i Parametr I kontrolera PID
 - pid_d Parametr D kontrolera PID
 - pid_state Stan kontrolera PID (włączony 1, wyłączony 0)
 - pid_setpoint Nastawa kontrolera PID
- HVPSU (4-kanałowy zasilacz precyzyjny)
 - hvpsu_voltage Nastawa napięcia wyjściowe danego kanału

- SourcePSU/6kV-PSU (1-kanałowe zasilacze wysokiego napięcia)
 - source_psu_set_voltage Nastawa napięcia wyjściowego
 - source psu set current Nastawa ograniczenia prądowego
 - source_psu_measured_voltage Zmierzone napięcie wyjściowe
 - source_psu_measured_current Zmierzony prąd wyjściowy
- Voltmeter (4-kanałowy woltomierz)
 - voltmeter_voltage Zmierzone napięcie dla danego kanału

Pola parametrów

Parametry udczytywane z kart posiadających więcej niż jeden kanał muszą mieć ustawione pole channel na wartość odpowiadającą numerowi używanego kanału

Jeśli w systemie zainstalowana jest więcej niż jedna karta danego typu, rozróżniane są one adresem. Adres jest własnością danej karty, ustawianą na płytce drukowanej. Aby użyć parametru z kart których zainstalowane jest więcej niż 1, należy ustawić pole address na odpowiednią wartość.

Przykład

W systemie zainstalowane są dwie karty Source_PSU, i jedna karta woltomierza.

Na karcie Source_PSU z adresem 8 zadawane jest napięcie wyjściowe (wyświetlana nazwa: V_1) i monitorowana jest jego faktyczna wartość (V_1_monitor).

Na karcie Source_PSU z adresem 9 napięcie wyjściowe ustawiane jest jako a+10*b (V_2) i minitorowany jest prąd (V_2 _current).

Na karcie woltomierza odczytywany jest kanał 1 i 2.

Pierwszy kanał woltomierza nazwano (Voltage_1)

Kanał drugi woltomierza wykorzystano do monitorowania prądu przy użyciu rezystora 1k, napięcie jest automatycznie przeliczane na prąd i wyświetlane z poprawną jednostką (I=U/1000). Ten kanał nazwano (Resistor_current)

```
"address": 9,
            "eval_set": "a+10*b",
            "name": "focus_V"
        },
        {
            "type": "source_psu_measured_current",
            "address": 9,
            "name": "V_2_current"
        },
        {
            "type": "voltmeter_voltage",
            "channel": 1,
            "name": "Voltage_1"
        },
        {
            "type": "voltmeter_voltage",
            "channel": 2,
            "eval_get": "x/1000",
            "unit": "A",
            "name": "Resistor_current"
        }
   ]
}
```