Correction du TP

III Analyser

(1) Pont diviseur:

$$\underline{S} = \frac{1/\mathrm{j}C\omega}{R + 1/\mathrm{j}C\omega} \underline{E}$$

$$\Leftrightarrow \underline{S} = \frac{1}{1 + \mathrm{j}RC\omega} \underline{E}$$

$$\Leftrightarrow \underline{H} = \frac{1}{1 + \mathrm{j}RC\omega}$$

$$\Leftrightarrow \underline{H} = \frac{1}{1 + \mathrm{j}\frac{\omega}{\omega_c}}$$

$$\Leftrightarrow \underline{H} = \frac{1}{1 + \mathrm{j}\frac{\omega}{\omega_c}}$$

$$\Leftrightarrow \underline{H} = \frac{1}{1 + \mathrm{j}x}$$

$$x = \frac{\omega}{\omega_c}$$

$$\underline{H}(x) \sim \frac{1}{x \to 0} \frac{1}{1 + 0} = 1 \quad \text{et} \quad \underline{H}(x) \sim \frac{1}{x \to \infty} \frac{1}{\mathrm{j}x}$$

(21)

2)
$$\diamond$$
 Pour le gain :

$$G_{\mathrm{dB}}(x) \xrightarrow[x \to 0]{} 20 \log(1) = 0$$
 et $G_{\mathrm{dB}}(x) \underset{x \to \infty}{\sim} 20 \log \left| \frac{1}{\mathrm{j}x} \right| = -20 \log x$

Ainsi, à hautes fréquences, le gain diminue de $20 \, dB$ par décade : si ω est multiplié par 10, le gain en décibel baisse de $20 \, dB$ (i.e. l'amplitude est divisée par 10).

♦ Pour la phase :

$$\varphi(x) \xrightarrow[x \to 0]{} \arg(1) = 0$$
 et $\varphi(x) \sim x \to \infty \arg\left(\frac{1}{jx}\right) = -\frac{\pi}{2}$

(3) On a trouvé

$$\omega_c = \frac{1}{RC} \Leftrightarrow \boxed{f_c = \frac{1}{2\pi RC}}$$
 avec
$$\begin{cases} R = 1.0 \text{ k}\Omega \\ C = 0.10 \text{ \muF} \end{cases}$$
 A.N. : $f_c = 1.59 \times 10^{+3} \text{ Hz}$

(4)

FIGURE TP13.1 – Schéma complété.

- (5) On choisit le mode AC (courant alternatif).
- (6) À la fréquence coupure, on obtient

$$S_m(f_c) = |\underline{H}(f_c)|E_m = \frac{E_m}{\sqrt{2}}$$

L'application numérique donne bien $S_m(f_c) \approx 2$ carreaux.

IV Réaliser

IV/B Mesures pour le tracé du diagramme de Bode

1

TABLEAU TP13.1 – Mesures pour diagramme de Bode.

		-		
f (Hz)	$G_{\mathrm{dB}} \; (\mathrm{dB})$	$ \Delta t $ (s)	$\left \Delta\varphi_{s/e}\right \text{ (rad)}$	$\Delta \varphi_{s/e}$ (rad)
100	-0,02	$-9,99 \times 10^{-5}$	0,06	-0.06
300	-0,15	$-9,88 \times 10^{-5}$	0,19	-0.19
600	-0,58	$-9,56 \times 10^{-5}$	0,36	-0.36
1000	-1,45	$-8,93 \times 10^{-5}$	$0,\!56$	-0.56
1200	-1,95	$-8,57 \times 10^{-5}$	$0,\!65$	-0.65
1600	-3,03	-7.84×10^{-5}	0,79	-0.79
2000	-4,11	$-7,15 \times 10^{-5}$	0,90	-0.90
3000	-6,58	$-5,75 \times 10^{-5}$	1,08	-1,08
5000	$-10,\!36$	$-4,02 \times 10^{-5}$	1,26	-1,26
7000	-13,08	$-3,06 \times 10^{-5}$	1,35	-1,35
10000	-16,07	$-2,25 \times 10^{-5}$	1,41	-1,41
20000	-22,01	$-1,19 \times 10^{-5}$	1,49	-1,49
30000	$-25,\!52$	$-8,05 \times 10^{-6}$	1,52	-1,52
40000	-28,01	$-6,09 \times 10^{-6}$	1,53	-1,53
50000	-29,95	$-4,90 \times 10^{-6}$	1,54	-1,54

V Valider et conclure

- 2 Voir fin du sujet.
- 3 Idem.
- 4 En déduire :

a – On trouve $f_{c, {\rm exp}} = (1.57 \pm 0.02)\,{\rm kHz},$ d'où l'écart normalisé

$$\boxed{E_n = \frac{|f_{c, \text{exp}} - f_{c, \text{theo}}|}{u_{f_{c, \text{exp}}}}} \Rightarrow \underline{E_n = 1} < 2 \quad \text{donc compatibles.}$$

b – Calcul similaire.

c – C'est un passe-bas.

