2019-0703 IST 707 Data Analytics

Homework Assignment 1 (week 1)

Ryan Timbrook

NetID: RTIMBROO

Course: IST 718 Big Data Analytics

Term: Summer, 2019

Table of Contents

1	Introduction			3
	1.1	1.1 Objective		
	1.2	Instru	ıctions	
	1.3	Answei	er the following questions:	4
2	Ana	lysis a	and Models	6
	2.1	About the Data		
		2.1.1	Data Exploration & Cleaning	6
		2.1.2	Data Transformations	7
		2.1.3	Exploratory Data Visualizations	7
	2.2	Models	s	10
		2.2.1	Model 1 Details	10
			Model 2, 3, 4 Details	
		2.2.3	Performance	10
			z-score normalization effects on M2:	
				11

1 Introduction

1.1 Objective

- Combine datasets to produce meaningful analysis. Specifically, we will provide a decision maker with more than just data we provide insights, understanding, and wisdom.
- 1. Obtain data and understand data structures and data elements.
- 2. Scrub data using scripting methods
- 3. Explore data using essential qualitative analysis techniques, including descriptive statistics.
- 4. Model relationships between data using the appropriate analytical methodologies matched to the information and the needs of clients and users.
- 5. Interpret the data, model, analysis, and findings, and communicate the results in a meaningful way.

1.2 Instructions

- The research question is, how can we recommend the best salary (total compensation, minus bonus) for our next head football coach?
- · Start with the data Coaches.
- Review the data-- clean as appropriate
- Consider the base worksheet and the additional data.
 - Stadium size
 - Graduation rate:
 - Available from: NCAA Graduation Rates
 - Use the 2006 or latest cohort and include both GSR and FGR
 - Annual donations to program (if available)
- Develop an additional vector for each school using last year's record.
- Build a data frame for your analysis.
- Conduct an initial data analysis.
- Fit a regression model with the salary as the response and the relevant predictors (more than one is needed...)

1.3 Answer the following questions:

- What is the recommended salary for the Syracuse football coach?
 - Recommended Salary:
 - Current Syracuse Coach, TotalPay: \$2,401,206
 - o ACC:
 - o Recommend Pay: \$2,727,901
 - What would his salary be if we were still in the Big East?
 - Predicted Pay: \$2,451,775
 - What if we went to the Big Ten?
 - Predicted Pay: \$2,520,168
 - Currently Syracuse is in the Atlantic Coast Conference (ACC)
 - The Big East is no longer a conference and not part of this dataset.
 - A subset dataset could be considered based on the teams who belonged to that conference when Syracuse did.
- What schools did we drop from our data, and why?
 - Dropped Schools:
 - No schools were dropped from the coach's dataset.
- What effect does graduation rate have on the projected salary?
 - GSR on Projected Salary:
 - In the ACC Conference:
 - o Model 2: \$208
 - o Model 3: \$8,419
 - o In the Big Ten Conference:
 - o Model 2: \$4,196
 - o Model 3: \$-1,514
 - In the Big East Conference:
 - o Model 2: \$2,051
 - o Model 3: \$6,871
 - Overall of the coach's dataset:
 - Model 2: \$6,398
 - o Model 3: \$8,956
- How good is our model?
 - Overall Model 4 performed the best on each of the test scenarios. For all records:
 - M4: Proportion of Test Set Variance Accounted for: 0.485
 - M4: Most significant attribute: 'Score' with value: \$67,279.0

For the ACC Conference:

- M4: Proportion of Test Set Variance Accounted for: 0.858
- M4: Most significant attribute: 'WLRatio' with value: \$214,497.0

For the Big Ten Conference:

- M4: Proportion of Test Set Variance Accounted for: 0.052
- M4: Most significant attribute: 'WLRatio' with value: \$73,876.0

For the Big East Conference:

- M4: Proportion of Test Set Variance Accounted for: 0.985
- M4: Most significant attribute: 'Score' with value: \$214,301.0

*Inconsistencies in the model accuracy over the difference subdivisions is mostlikely due to unaccounted for outliers.

- What is the single biggest impact on salary size?
 - Biggest Impact on Salary:
 - In the ACC Conference grouping, 'WLRatio' with a net increase of \$214,497.

Feature Sets:

- Model 2: BonusPaid + StadSize + GSR + SeatRank + GSRank + W + L + WLRatio + OffenceScore + DefenseScore + Score + PointsPerGame
- Model 3: WLRatio + StadSize + SeatRank + GSR + GSRank + Score + PointsPerGame
- Model 4: Score + WLRatio + StadSize

Best feature Set Performance: Model 4

- Score + WLRatio + StadSize
 - * Best Feature:
 - *Score

2 Analysis and Models

2.1 About the Data

Coaches Dataset:

Coaches Dataframe Shape: (118, 23)

Coaches Dataframe, Number of records: 118

Coaches Dataframe Size: 2714

NCAA Graduation Rate Datasets:

Available from: NCAA Research Data

NCAA GSR Dataframe Shape: (5403, 12)

NCAA GSR Dataframe, Number of records: 5403

NCAA GSR Dataframe Size: 64836

NCAA Stadium Capacity Dataset:

Available from GithHub: gboeing/data-visualization

NCAA Stadium Capacity Dataframe Shape: (253, 13)

NCAA Stadium Capacity, Number of records: 253

NCAA Stadium Capacity: 3289

2.1.1 Data Exploration & Cleaning

The coach's dataset needed heavy cleaning and transformation. No records were removed from the dataset during the cleaning processes.

The first step was identifying where the missing values where.

- Total Count of NaN in Coaches Dataset: 187
- Rows that contain NaN values in Coaches Dataset: 59

The second step was understanding the attributes that had the missing values. It was found that for a good majority of those items, they were of the same record.

- Pay Type Attributes:
 - SchoolPay: [11, 15, 91, 94, 95]
 - TotalPay: [11, 15, 91, 94, 95]
- Scoring Attributes:
 - W: [14, 18, 23, 48, 49, 56, 57, 61, 82, 90, 91]
 - L: [14, 18, 23, 48, 49, 56, 57, 61, 82, 90, 91]
 - WLRatio: [14, 18, 23, 48, 49, 56, 57, 61, 82, 90, 91]
 - OffenceScore: [14, 18, 23, 48, 49, 56, 57, 61, 82, 90, 91]
 - DefenseScore: [14, 18, 23, 48, 49, 56, 57, 61, 82, 90, 91]
 - Score: [14, 18, 23, 48, 49, 56, 57, 61, 82, 90, 91]
 - PointsPerGame: [14, 18, 23, 48, 49, 56, 57, 61, 82, 90, 91]

^{*}These three datasets were linked by School/Team name, and conference

For the scoring type attributes, missing values were replaced by their conference's median value for that attribute.

For the Bonus & BonusPaid attributes, those that were missing were given a value of 0. The PayPlusBonus2016 values were replaced with the TotalPay value of that record.

Investigation of the three primary Conferences:

ACC, Big Ten and Big East, showed that these conferences do not have a normally distributed salary range. This is show below in the TotalPay figures.

Note: Big East is no longer a football conference. Teams from when Syracuse was a member of that conference have been aggregated together to create a mock conference scenario.**

2.1.2 Data Transformations

New data frames were created with linking attributes for data lookup, and the creation of a mock Big East data set formed in-order to answer the salary question about if Syracuse was back in the Big East. Since the Big East Football conference doesn't exist any longer, a mocked dataset was created based on those teams who belonged to it during the 2012 session with Syracuse.

2.1.3 Exploratory Data Visualizations

Figure: ACC School Pay distribution

Figure: Big Ten School Pay distribution

Figure: Big East School Pay distribution

Figure: TotalPay distribution over all Conferences

Figure: Distribution of Pay Types

Figure: Figure: Z-Scaled pair plot of ['WLRatio', 'GSRank', 'StadSize'] on TotalPay

Figure: Z-Scaled pair plot of ['SeatRank', 'GSR', 'Score'] on TotalPay

Figure: Correlation Heatmap, Z-score scaled attributes

Figure: Correlation Heatmap, Non-Z-score

2.2 Models

2.2.1 Model 1 Details

Single Regression - First Run

Ordinary Least Squares Regression Feature:

- Dependent Variable (Response Variable: TotalPay
- Independent Variable (Explanatory Variable): WLRatio

M1: Using z-score normalization had a positive effect on model performance:

- Test Set Variance Accounted for raised from 0.06 to: 0.278
- R-squared reduced from 0.242 to: 0.093
- F-statistic changed from 26.17 to: 8.170
- WLRatio coef, P-Value changed from 0.000 to: 0.005

Parameters: 'TotalPay ~ WLRatio'

2.2.2 *Model 2, 3, 4 Details*

Multiple Regression

Feature Set:

- M2: BonusPaid + StadSize + GSR + SeatRank + GSRank + W + L + WLRatio + OffenceScore + DefenseScore + Score + PointsPerGame
- M3: WLRatio + StadSize + SeatRank + GSR + GSRank + Score + PointsPerGame
- M4: WLRatio + StadSize + GSRank

Best feature Set:

- Score + WLRatio + StadSize
 - Best Feature:
 - Score

Training-Test sampling taken at 1000x with replacement each to ensure there was ample data for the training/test splits.

2.2.3 Performance

2.2.4 *z*-score normalization effects on M2:

- Test Set Variance Accounted from: 0.445 to: 0.748
- R-squared changed from: 0.836 to: 0.713
- Adj. R-squared changed from: 0.809 to: 0.664
- F-statistic changed from: 30.23 to: 14.32
 - Coef P-values changed from:
 - WLRatio from: 0.514 to: 0.123
 - BonusPaid from: 0.010 to: 0.007
 - o StadSize from: 0.000 to: 0.040
 - o GSR from: 0.490 to: 0.756
 - SeatRank from: 0.078 to: 0.470

GSRank from: 0.320 to: 0.979

W from: 0.615 to: 0.572L from: 0.394 to: 0.456

OffenceScore: 0.378 to: 0.110DefenseScore: 0.675 to: 0.349

o Score: 0.354 to: 0.117

o PointsPerGame: 0.015 to: 0.022

2.2.5 *z*-score normalization effects on M3:

- Test Set Variance Accounted from: 0.395 to: 0.815
- R-squared changed from: 0.764 to: 0.644
- Adj. R-squared changed from: 0.743 to: 0.611
- F-statistic changed from: 35.23 to: 19.15
 - Coef P-values changed from:

WLRatio from: 0.753 to: 0.028
StadSize from: 0.000 to: 0.021
GSR from: 0.510 to: 0.589
SeatRank from: 0.186 to: 0.460

GSRank from: 0.138 to: 0.488Score: 0.020 to: 0.001

o PointsPerGame: 0.755 to: 0.726

- Overall Model 4 performed the best on each of the test scenarios. For all records:
 - M4: Proportion of Test Set Variance Accounted for: 0.485
 - M4: Most significant attribute: 'Score' with value: \$67,279.0

For the ACC Conference:

- M4: Proportion of Test Set Variance Accounted for: 0.858
- M4: Most significant attribute: 'WLRatio' with value: \$214,497.0

For the Big Ten Conference:

- M4: Proportion of Test Set Variance Accounted for: 0.052
- M4: Most significant attribute: 'WLRatio' with value: \$73,876.0

For the Big East Conference:

- M4: Proportion of Test Set Variance Accounted for: 0.985
- M4: Most significant attribute: 'Score' with value: \$214,301.0

TotalPay Predictions:

Syracuse Coach, TotalPay: \$2,401,206

All:

Predicted Pay: \$2,090,379

ACC:

Predicted Pay: \$2,727,901

Big Ten:

Predicted Pay: \$2,520,168

Big East:

Predicted Pay: \$2,451,775