Physical layer

Main functions of the physical layer

- Coding /decoding signals
- Modulation/Demodulation
- Adaptation of the signal to the physical medium properties

2-1 ANALOG AND DIGITAL

Data can be analog or digital

- ☐ Analog data refers to information that is continuous
- ☐ Analog data take on continuous values
- ☐ Analog signals can have an infinite number of values in a range
- □ Digital data refers to information that has discrete states
- ☐ Digital data take on discrete values
- ☐ Digital signals can have only a limited number of values

In data communications, we commonly use periodic analog signals and nonperiodic digital signals.

PERIODIC ANALOG SIGNALS

Periodic analog signals can be classified as simple or composite.

- \square A simple periodic analog signal, a sine wave, cannot be decomposed into simpler signals.
- \square A composite periodic analog signal is composed of multiple sine waves.

Frequency

Frequency is the rate of change with respect to time.

- ☐ Change in a short span of time means high frequency.
- ☐ Change over a long span of time means low frequency.
- ☐ If a signal does not change at all, its frequency is zero
- ☐ If a signal changes instantaneously, its frequency is infinite.

Phase

Phase describes the position of the waveform relative to time 0

Three sine waves with the same amplitude and frequency,

but different phases

Wavelength and period

Wavelength = Propagation speed x Period = Propagation speed / Frequency

Time-domain and frequency-domain plots of a sine wave

A complete sine wave in the time domain can be represented by one single spike in the frequency domain.

a. A sine wave in the time domain (peak value: 5 V, frequency: 6 Hz)

b. The same sine wave in the frequency domain (peak value: 5 V, frequency: 6 Hz)

Frequency Domain

- the same three signals
- \Box The frequency domain is more compact and useful when we are dealing with more than one sine wave.
- A single-frequency sine wave is not useful in data communication
 We need to send a composite signal, a signal made of many simple sine waves.

Fourier analysis

According to Fourier analysis, any composite signal is a combination of simple sine waves with different frequencies, amplitudes, and phases.

- ☐ If the composite signal is periodic, the decomposition gives a series of signals with discrete frequencies;
- ☐ If the composite signal is nonperiodic, the decomposition gives a combination of sine waves with continuous frequencies.

Time and frequency domains of a nonperiodic signal

☐ A nonperiodic composite signal

- \circ It can be a signal created by a microphone or a telephone set when a word or two is pronounced.
- In this case, the composite signal cannot be periodic
 because that implies that we are repeating the same word or words with exactly the same tone.

Bandwidth

The bandwidth of a composite signal is the difference between the highest and the lowest frequencies contained in that signal.

a. Bandwidth of a periodic signal

DIGITAL SIGNALS

- ☐ In addition to being represented by an analog signal, information can also be represented by a digital signal.
- ☐ For example, a 1 can be encoded as a positive voltage and a 0 as zero voltage.
- ☐ A digital signal can have more than two levels.
- \square In this case, we can send more than 1 bit for each level.

Two digital signals: one with two signal levels and the other with four signal levels

a. A digital signal with two levels

b. A digital signal with four levels

CSC- 329 Computer Network

Physical Layer 2-23

Baseband transmission

A digital signal is a composite analog signal with an infinite bandwidth.

Baseband transmission using a dedicated medium

Baseband transmission of a digital signal that preserves the shape of the digital signal is possible only if we have a low-pass channel with an infinite or very wide bandwidth.

Bandwidth of a bandpass channel

If the available channel is a bandpass channel, we cannot send the digital signal directly to the channel; we need to convert the digital signal to an analog signal before transmission.

2-2 TRANSMISSION MEDIA

Twisted pair (1)

- Simply two wires twisted together thickness=1mm
 The twisting cuts down on electrical interference.
- Heavily used in the phone system
 Typical office has four pairs for phones.
- Until some Kilometers/ Some Mbps
- For Analog and Digital

Transmission Media (2)

- Twisted pair (2)
 - Bandwidth depends on thickness and distance
 Need repeater for long distances
 - Category 3 and 5 with 5 having more twists and better insulation.
 - O Popular by UTP (Unshielded Twisted Pair)

Category 5 UTP cable with four twisted pairs

Transmission Media (3)

- Baseband Coaxial cable
 - Used for digital transmissions (called baseband.)
 - Good noise immunity.
 - O Data rates as high as 2 Gbps for 1 Km distance.
 - Now being replaced by fiber.
- Broadband Coaxial cable
 - Used for analog transmissions (called broadband.)
 - Can run 300 MHz for long distances.
 - Analog signaling has better S/N than digital signaling.
 - Interfaces must convert digital signals to analog and vice versa.
 - Designed for long distances can use amplifiers.

CSC- 329 Computer Network

Physical Layer

Transmission Media (4)

- Fiber Optic (1)
 - Transmission of light through fiber
 - Bandwidth more than 50,000 Gbps!
 But now restricted to 1Gbps!

Reason: Electrical and optical signal conversion

- Including 3 components:
 - 1. Light source: Pulse of light=1, absence of light=0
 - 2. Transition medium: an ultra-thin fiber of glass
 - 3. detector: generate an electrical pulse when light falls on it
- Similar to coax (without braid)

Transmission Media (5)

- Fiber Optic (2)
 - Thickness of core: 8~10 microns or 50 microns
 - Two typically light sources:
 - LED (Light Emitting Diode)
 response time=1ns → data rate = 1Gbps
 - 2. Semiconductor laser

Item	LED	Semiconductor laser	
Data rate	Low	High	
Fiber type	Multimode	Multimode or single mode	
Distance	Short	Long	
Lifetime	Long life	Short life	
Temperature sensitivity	Minor	Substantial	
Cost	Low cost	Expensive	

Transmission Media (6)

- Fiber Optic (3)
 - Properties include total internal reflection and attenuation of particular frequencies.
 - Fiber Optic Networks can be used for LANs and long-haul.
 - o A fiber-optic LAN

Transmission Media (7)

Comparison of fiber optic and copper wire

	Fiber	Copper
Bandwidth	Higher	Lower
Distance between repeaters	30 KM	5 Km
Interference	Low	High
Physical	Smaller/Lighter	-
Flow	Uni-directional	Bi-directional

Transmission Media (8) Connector

- □ Repeater
 - Signal Regeneration
 - Clean up
 - Amplify
 - Distance Extension

- Repeater functionality, plus...
 - Concentration Point
 - Signal Distribution Device
 - · Management Functions

Wireless Transmission

The electromagnetic spectrum and its uses for communication

Radio Transmission

n the VLF, LF, and MF bands, radio waves follow the curvature of the earth

Radio Transmission(2)

In the HF band, they bounce off the ionosphere.

Light Transmission

Convection currents can interfere with laser communication systems. A bidirectional system with two lasers is pictured here.

Communication Satellites

Communication satellites, some properties, including: altitude above earth, round-trip delay time, number of satellites for global coverage.

2-4 TRANSMISSION IMPAIRMENT

- ☐ Signals travel through transmission media, which are not perfect.
- ☐ The imperfection causes signal impairment.
- ☐ This means that the signal at the beginning of the medium is not the same as the signal at the end of the medium.
- ☐ What is sent is not what is received.
- ☐ Three causes of impairment are attenuation,

CSC- 329 Computer Network

Physical Layer 2-54