Chapter 3

$$+ P(w_n | w_{n-2} w_{n-1}) = \frac{C(w_{n-2} w_{n-1} w_n)}{C(w_{n-2} w_{n-1})}$$

$$P(nat|Ido) = 1$$

3.2

P(<5> I want chinese food <15>)

* Add-1 smoothing

P((5) I want chinese food (15))

3.3

unsmoothed probability is much higher because in the smoothed version, partials of the original probability are distributed to the zero probs

3.4

$$P(Sam | am) = \frac{C(am Sam) + 1}{C(am) + V} = \frac{2 + 1}{3 + 11} = \frac{3}{14}$$

3	•	5
_	•	v

	< 5>	a	Ь
< 5>	0	0.5	0.5
a	0	0.5	0.5
b	0	0.5	0.5

awo word rentence

$$P(ba) = P(b). P(a|b) = 0.5^{3} = 0.75$$

$$P(aa) = P(a) \cdot P(a|a) = 0.5^2 = 0.25$$
 = $P(xy) = 1$

3 - word sentence

$$P(xyz) = \frac{1}{8}$$

$$x_1y_1z \in \{a,b\}$$

$$\Rightarrow$$
 $\geq P(xyz) = 1$ (Since there are 2^3 permutations) - $x_1y_1z \in \{a_1b\}$

3.6

$$P(w_3 | w_1 w_2) = \frac{C(w_1 w_2 w_3)^{+1}}{C(w_1 w_2)^{+1}}$$

3.7

$$\hat{P}(Sam | am) = \lambda_1 P(Sam) + \lambda_2 P(Sam | am)$$

= 0,5, $\frac{4}{25}$ + 0,5, $\frac{2}{3}$ = $\frac{31}{75}$

3.12

Perplaxity
$$(00000300) = (P(0)^5 - P(3), P(0)^7)^{-\frac{4}{8}}$$

= $(\frac{91}{100})^{\frac{5}{100}} = \frac{1}{100} (\frac{91}{100})^{\frac{7}{8}} = 1.93125$