MAT 5210 Homework 2

- 1. Let $L:=\mathbb{Q}(\sqrt[3]{2})$ and $K=\mathbb{Q}$. Show that $\mathrm{Aut}_K(L)=\{\mathrm{id}\}$. (Hence $L^{\mathrm{Aut}_K(L)}=L^{\mathrm{id}}=L\neq K$ and L:K is not Galois).
- 2. Let M:K be an algebraic extension (not necessarily Galois), and $G \leq \operatorname{Aut}_K(M)$. Show that $M:M^G$ is Galois. (Hint: Use the definition of Galois extension $M^{\operatorname{Aut}_{M^G}(M)} = M^G$).
- 3. Show that if f is a polynomial of degree n over K, then its splitting field has degree less than or equal to n! over K.
- 4. Find the degrees of the splitting fields of the following polynomials:
 - (a) $x^3 1$ over \mathbb{Q} ;
 - (b) $x^3 2$ over \mathbb{Q} .
- 5. Let $L = \mathbb{Q}(2^{1/3}, 3^{1/4})$. Compute the degree of L over \mathbb{Q} .
- 6. Which of the following fields are normal extensions of \mathbb{Q} ?
 - (a) $\mathbb{Q}(\sqrt{2},\sqrt{3})$;
 - (b) $\mathbb{Q}(2^{1/4});$
 - (c) $\mathbb{Q}(\alpha)$, where $\alpha^4 10\alpha^2 + 1 = 0$.
- 7. Find the Galois groups of the following polynomials and for each subgroup identify the corresponding subfield of the splitting field:
 - (a) $x^2 + 1$ over \mathbb{R} ;
 - (b) $x^3 1$ over \mathbb{O} .
- 8. Let G be a group (not necessarily finite), and let M be a field. A **character** of G is a group homomorphism $\chi: G \to M^*$.
 - (a) Let χ_1, \dots, χ_k be distinct characters of M, and let $a_1, \dots, a_k \in M$ such that

$$a_1\chi_1(g) + \dots + a_k\chi_k(g) = 0$$

for all $g \in G$. Show that $a_1 = a_2 = \cdots = a_k = 0$. (Hint: Use induction on k. When k = 2, consider $a_1\chi_1(g) + a_2\chi_2(g) = 0 \Rightarrow \chi_1(h)(a_1\chi_1(g) + a_2\chi_2(g)) = 0$ for all $h, g \in G$)

(b) Let L be a field and let n be a positive integer with $(n, \operatorname{char}(L)) = 1$ and $x^n - 1$ splits in L with primitive root of unity $\omega \in L$. Suppose that M: L is a Galois extension, and $\operatorname{Gal}(M/L) \cong \langle \sigma \rangle$ is a cyclic group of order n. Show that there exists some $\alpha \in M$ such that

$$\beta := \alpha + \omega \sigma(\alpha) + \omega^2 \sigma^2(\alpha) + \dots + \omega^{n-1} \sigma^{n-1}(\alpha) \in M$$

is non-zero. (Hint: Take $G = M^*$ in (a))