02. Estudio de los esfuerzos en un punto

secciones 2.7 a 2.10

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia sede Manizales
Departamento de Ingeniería Civil
Mecánica Tensorial

2023a

Advertencia

Estas diapositivas son solo una herramienta didáctica para guiar la clase, por si solas no deben tomarse como material de estudio y el estudiante debe dirigirse a la literatura recomendada (Álvarez, 2022).

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Ejemplo
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

1 2.7. Esfuerzos normales y tangenciales sobre un plano

- 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Circulo de Moni en dos dimensiones
 - 2.9.2. Grática e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Ejemplo
- 4 2.10. La analogía del bombillo y la caja
- Referencias

Esfuerzos normales y tangenciales sobre un plano

Entendamos el vector del esfuerzo normal σ_n como la proyección del vector de esfuerzos q sobre el vector normal al plano \hat{n} :

$$oldsymbol{\sigma}_n = ext{Proy } oldsymbol{q}/oldsymbol{\hat{n}} = rac{\langle oldsymbol{q}, oldsymbol{\hat{n}}
angle}{\langle oldsymbol{\hat{n}}, oldsymbol{\hat{n}}
angle} oldsymbol{\hat{n}}$$

en 3D

Esfuerzos normales y tangenciales sobre un plano

• El valor del esfuerzo normal:

$$\sigma_n = \sigma_x \alpha^2 + \sigma_y \beta^2 + \sigma_z \gamma^2 + 2\tau_{xz} \alpha \gamma + 2\tau_{yz} \beta \gamma + 2\tau_{xy} \alpha \beta$$

• El valor del esfuerzo tangencial o cortante:

$$\tau_n^2 = (\sigma_x \alpha + \tau_{xy} \beta + \tau_{xz} \gamma)^2 + (\tau_{xy} \alpha + \sigma_y \beta + \tau_{yz} \gamma)^2 + (\tau_{xz} \alpha + \tau_{yz} \beta + \sigma_z \gamma)^2 - \sigma_n^2$$

Código

• 02_07.ipynb

Esfuerzos normales y tangenciales sobre un plano en 2D

$$\sigma_x' \to \sigma_n \qquad \tau_{x'y'} \to \tau_n$$

El valor del esfuerzo normal:

$$\sigma_n(\theta) = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$
$$= \sigma_x \cos^2 \theta + \sigma_y \sin^2 \theta + 2\tau_{xy}$$

• El valor del esfuerzo tangencial o cortante:

$$\tau_n(\theta) = \tau_{xy} \cos 2\theta - \frac{\sigma_x - \sigma_y}{2} \sin 2\theta$$

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Circulo de Molii eli dos difficisiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Ejemplo
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Ejemplo
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Tensiones y direcciones principales en dos dimensiones

Esfuerzos principales en 2D

$$(\sigma_1)_{xy} = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$(\sigma_2)_{xy} = \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Tensiones y direcciones principales

Debemos dar solución a los siguientes sistemas de ecuaciones:

$$(\sigma_{x} - (\sigma_{1})_{xy}) \alpha_{1} + \tau_{xy} \beta_{1} = 0 \qquad (\sigma_{x} - (\sigma_{2})_{xy}) \alpha_{2} + \tau_{xy} \beta_{2} = 0$$

$$\tau_{xy} \alpha_{1} + (\sigma_{y} - (\sigma_{1})_{xy}) \beta_{1} = 0 \quad \text{y} \quad \tau_{xy} \alpha_{2} + (\sigma_{y} - (\sigma_{2})_{xy}) \beta_{2} = 0$$

$$\alpha_{1}^{2} + \beta_{1}^{2} = 1 \qquad \alpha_{2}^{2} + \beta_{2}^{2} \qquad = 1$$

Tensiones y direcciones principales 2D

Tensiones y direcciones principales

¿Cuándo tenemos un discriminante nulo?

Tensiones y direcciones principales

Código

• 02_08_01_ejemplo_01.ipynb

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Ejemplo
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Tensiones y direcciones principales 3D

Expandiendo el determinante $\det\left(\underline{\underline{\boldsymbol{\sigma}}} - \sigma_n \boldsymbol{I}\right) = 0$

$$(\sigma_x - \sigma_n) \left[(\sigma_y - \sigma_n)(\sigma_z - \sigma_n) - \tau_{yz}^2 \right]$$

$$- \tau_{xy} \left[\tau_{xy}(\sigma_z - \sigma_n) - \tau_{yz}\tau_{xz} \right]$$

$$+ \tau_{xz} \left[\tau_{xy}\tau_{yz} - (\sigma_y - \sigma_n)\tau_{xz} \right] = 0;$$

Tensiones y direcciones principales

Agrupando y reduciendo términos:

Ecuación característica de $\underline{\sigma}$ tridimensional

$$-\sigma_n^3 + I_1 \sigma_n^2 - I_2 \sigma_n + I_3 = 0$$

donde.

$$\Theta := I_1 := \operatorname{tr}(\underline{\underline{\sigma}})$$

$$I_2 := \frac{1}{2} \left(\left(\operatorname{tr}(\underline{\underline{\sigma}}) \right)^2 - \operatorname{tr}(\underline{\underline{\sigma}})^2 \right)$$

$$I_3 := \det(\underline{\sigma}).$$

Código

• 02_08_02.ipynb

Tensiones y direcciones principales 3D

Tensiones y direcciones principales

3D

Código

• 02_08_02_ejemplos.ipynb

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Circulo de Monr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Ejemplo
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Método de Newton-Raphson

para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica

Estudio autónomo

Sería interesante:

- ¿Cómo lo programo en Python o Matlab?
- ¿Ya está implementado en Python o Matlab? ¿Cómo funciona?

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Metodo de Newton-Raphson para encontrar las raices del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Ejemplo
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Ortogonalidad de las direcciones principales

Estudio autónomo

• Verifique la ortogonalidad de los vectores propios del ejercicio anterior

Código

• 02_08_04_ejemplo.ipynb

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Ejemplo
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Círculo de Mohr

Estudio autónomo

Prestar atención a:

- Significado físico y matemático.
- Construcción e interpretación de los ángulos.
- Aplicación de la función atan2

Código

- 02_09_04_ejemplo.ipynb
- circulo mohr 2d.py

Círculo de Mohr

La circunferencia de Mohr fue propuesta por el ingenierio civil aleman Otto Mohr (1835 - 1918) en 1882 con el objeto de representar gráficamente el estado de esfuerzos en un punto.

Aplicaciones

Círculo de Mohr

Criterio de falla de Mohr-Coulomb

Este criterio es altamente utilizado en el análisis de cimentaciones.

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Ejemplo
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Círculo de Mohr en dos dimensiones

Círculo de Mohr en dos dimensiones

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Circulo de Mont en dos difficilisiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Ejemplo
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Gráfica e interpretación del círuclo de Mohr

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Ejemplo
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Circulo de Moni en dos difficisiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Ejemplo
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Círculo de Mohr en dos dimensiones

Ejemplo

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Circuio de iviolii en dos difficisiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Ejemplo
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Círculo de Mohr en tres dimensiones

Círculo de Mohr en tres dimensiones

Ejemplo 1

Círculo de Mohr en tres dimensiones

Ejemplo 2

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Ejemplo
- 4 2.10. La analogía del bombillo y la caja
- Referencias

La analogía del bombillo y la caja

Estudio autónomo

Prestar atención a:

• La analogía del bombillo y la caja :)

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Circulo de Monr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Ejemplo
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Referencias

Álvarez, D. A. (2022). *Teoría de la elasticidad*, volume 1. Universidad Nacional de Colombia.

Links

- Lista de resproducción: 02 Esfuerzos o Tensiones
- Repositorio del curso: github/medio_continuo