1. Definir espacio de medida completo. Dado (X, \mathcal{F}, μ) espacio de medida, ¿cómo extenderías la medida a una medida completa? Enuncia el teorema de completación. Demuestra que la extensión a una medida completa es única.

Un espacio de medida es completo si para todo conjunto de medida nula, cualquiera de sus subconjuntos pertenece a la σ -álgebra y tiene medida nula.

Para extender una medida a una medida completa, añadiría a la σ-álgebra todos los subconjuntos de un conjunto de medida nula de la siguiente manera:

$$\mathcal{F}' = \{ A \cup M : A \in \mathcal{F} \ y \ M \subset N \ con \ \mu(N) = 0 \}$$

Y la medida completada se define como: $\mu'(A \cup M) = \mu(A)$

Teorema de completación: dado un espacio de medida (X, \mathcal{F}, μ) , existe una única medida completa μ' que la extiende, es decir, $\mu'|_{\mathcal{F}} = \mu$.

Demostración:

Sean μ' , ν' dos extensiones de la misma medida:

$$\begin{cases} por\ def. & A \in \mathcal{F} & monotonicidad \\ \mu'(A \cup M) & \stackrel{\triangle}{=} & \mu'(A) & \stackrel{\triangle}{=} & \nu'(A \cup M) \\ subaditividad & (*) & A \in \mathcal{F} & por\ def. \\ \nu'(A \cup M) & \stackrel{\triangle}{=} & \nu'(A) \cup \nu'(M) & \stackrel{\triangle}{=} & \nu'(A) & \stackrel{\triangle}{=} & \mu'(A \cup M) \end{cases} \Rightarrow \mu' = \nu'$$

$$(*)\ M \subset N\ con\ \mu(N) = 0, N \in \mathcal{F} \Rightarrow \nu'(N) = 0 \Rightarrow \nu'(M) = 0$$

- 2. Un espacio de medida (X, \mathcal{F}, μ) es semifinito si para cualquier $F \in \mathcal{F}$, $\mu(\mathcal{F}) = \infty$ contiene un subconjunto $E \subset F$, $0 < \mu(E) < \infty$.
 - a. Demostrar que un espacio σ -finito es semifinito.

Sea (X,\mathcal{F},μ) espacio σ -finito. Entonces, $\exists \{A_n\}_{n=1}^\infty \in \mathcal{F} \text{ tal que } X = \biguplus_{n=1}^\infty A_n \ \forall \ \mu(A_n) < \infty$ para todo n. Sea $E \subset X, \mu(E) = \infty$. Dado que $X = \biguplus_{n=1}^\infty A_n, \ E = \biguplus_{n=1}^\infty (A_n \cap E)$ con $\mu(A_n \cap E) < \infty$ para todo n. Como $\mu(E) = \mu \Big(\biguplus_{n=1}^\infty (A_n \cap E) \Big) = \sum_{n=1}^\infty \mu(A_n \cap E) = \infty$, para algún n, $A_n \cap E \subset E, 0 < \mu(A_n \cap E) < \infty$.

b. Encontrar un ejemplo de un espacio semifinito que no sea σ -finito.

Sea (X,\mathcal{F},μ) espacio de medida con $X=\mathbb{R},\mathcal{F}$ la σ -álgebra generada por los conjuntos finitos y μ la medida de contar. Los únicos conjuntos de medida finita son los subconjuntos finitos. Si fuese σ -finito, existirían $\{A_n\}_{n=1}^\infty\in\mathcal{F},\,\mu(A_n)<\infty$ tal que $\mathbb{R}=\displaystyle \bigcup_{n=1}^\infty A_n$, pero \mathbb{R} no es numerable y la unión es como mucho numerable. Pero sí es un espacio semifinito, porque para todo $E\subset X, \mu(E)=\infty$ significa que tiene infinitos elementos. Sea $x\in E$, entonces $\{x\}\subset E, 0<\mu(\{x\})=1<\infty$.

3.
$$\lim_{n\to\infty}\int_0^1\cos(x^n)\,dx$$

Por el teorema de convergencia monótona:

$$\lim_{n \to \infty} \int_0^1 \cos(x^n) \, dx = \int_0^1 \lim_{n \to \infty} \cos(x^n) \, dx = \int_0^1 1 \, dx = 1$$

Si $x \in [0,1]$, entonces $\lim_{n \to \infty} \cos(x^n) = 1$ en casi todo punto.

- 4. Decidir si las siguientes afirmaciones son verdaderas o falsas.
 - a. Sea $\{A_n\}_{n=1}^\infty\in\mathcal{A}$. Sean μ y ν dos medidas que coinciden en el álgebra \mathcal{A} . Si $A=\bigcup_{n=1}^\infty A_n\in\mathcal{A}$, entonces $\mu(A)=\nu(A)$.

Sea $B_n = A_n \setminus \bigcup_{i=1}^{n-1} A_i$. $B_n \in \mathcal{A}$ por ser el álgebra cerrada por uniones finitas y diferencias. $\mu(\bigcup_{i=1}^n B_i) = \sum_{i=1}^n \mu(B_i) = \sum_{i=1}^n \nu(B_i) = \nu(\bigcup_{i=1}^n B_i)$, por ser los B_n disjuntos. Finalmente, tomando límites $\mu(A) = \mu(\bigcup_{i=1}^\infty B_i) = \sum_{i=1}^\infty \mu(B_i) = \sum_{i=1}^\infty \mu(B_i) = \nu(\bigcup_{i=1}^\infty B_i) = \nu(A)$

b. Dado (X,\mathcal{F},μ) , $A\in\mathcal{F}$ y f función medible y (¿estrictamente?) positiva. Si $\int_A \mathbf{f} < \infty$ entonces $\mu(A) < \infty$.

$$\int_{0}^{\infty} e^{-x} dx = [e^{-x}]_{x=0}^{\infty} = 1 < \infty, \text{ pero } m([0, \infty]) = \infty.$$

5. Demostrar la siguiente identidad:

$$\int_0^1 \frac{x^{p-1} \log x^{-1}}{1-x} dx = \sum_{n=0}^\infty \frac{1}{(p+n)^2}$$

$$\sum_{n=0}^{\infty} x^{p+n-1} = \frac{x^{p-1}}{1-x} \to \int_{0}^{1} \frac{x^{p-1} \log x^{-1}}{1-x} dx = \int_{0}^{1} \sum_{n=0}^{\infty} x^{p+n-1} \log x^{-1} dx \stackrel{(*)}{=}$$

$$= \sum_{n=0}^{\infty} \int_{0}^{1} x^{p+n-1} \log x^{-1} dx = \sum_{n=0}^{\infty} \left(\left[\frac{x^{p+n}}{p+n} \log x^{-1} \right]_{x=0}^{x=1} + \int_{0}^{1} \frac{x^{p+n-1}}{p+n} dx \right) \stackrel{(**)}{=}$$

$$= \sum_{n=0}^{\infty} \left(\left[\frac{x^{p+n}}{(p+n)^{2}} \right]_{x=0}^{x=1} \right) = \sum_{n=0}^{\infty} \frac{1}{(p+n)^{2}}$$

(*) Se puede sacar el sumatorio fuera de la integral por el teorema de la convergencia monótona: $\frac{x^{p-1}\log x^{-1}}{1-x} \ge 0$ y es medible por ser continua.

$$(**) \left[\frac{x^{p+n}}{p+n} \log x^{-1} \right]_0^1 = \frac{1^{p+n}}{p+n} \log 1 - \lim_{x \to 0} \frac{x^{p+n}}{p+n} \log x^{-1} = 0 - 0 = 0$$

6. Sea f una función Lebesgue integrable en el intervalo [0, b]. Se define g(x) como

$$g(x) = \int_{x}^{b} \frac{f(t)}{t} dt$$

Demostrar que g(x) es integrable en [0, b] y que se cumple la siguiente identidad:

$$\int_0^b g(x)dx = \int_0^b f(t)dt$$

f es integrable en [0, b] y 1/t es integrable en casi todo punto del intervalo [0,b] (es integrable en (0, b])

$$\int_0^b |g(x)| dx = \int_0^b \int_x^b \frac{|f(t)|}{t} dt dx$$

f(t) y 1/t son funciones medibles por lo que se puede usar el teorema de Fubini-Tonelli para intercambiar el orden de integración. Se integra en el intervalo sombreado:

Si $x \in [0, b]$, entonces $t \in [x, b]$.

Cambiando el orden de integración:

Si $t \in [0, b]$, entonces $x \in [0, t]$.

$$\int_{0}^{b} |g(x)| dx = \int_{0}^{b} \int_{x}^{b} \frac{|f(t)|}{t} dt dx \stackrel{Tonelli}{=} \int_{0}^{b} \int_{0}^{t} \frac{|f(t)|}{t} dx dt = \int_{0}^{b} \frac{|f(t)|}{t} \int_{0}^{t} 1 dx dt =$$

$$= \int_{0}^{b} \frac{|f(t)|}{t} t dt = \int_{0}^{b} |f(t)| dt < \infty, porque f es integrable en [0, b]$$

Como g es integrable, se puede aplicar el teorema de Fubini para intercambiar el orden de integración igual que antes:

$$\int_{0}^{b} g(x) dx = \int_{0}^{b} \int_{x}^{b} \frac{f(t)}{t} dt dx \stackrel{Fubini}{=} \int_{0}^{b} \int_{0}^{t} \frac{f(t)}{t} dx dt = \int_{0}^{b} \frac{f(t)}{t} \int_{0}^{t} 1 dx dt =$$

$$= \int_{0}^{b} \frac{f(t)}{t} t dt = \int_{0}^{b} f(t) dt$$