Periodic Function

If at equal intervals of absciss a x, the value of each ordinate f(n) repeats itself, itself, i.e. f(n) = f(x+d), for all x, then y = f(n) is called a periodic function having period x, e.g. Sin x, cos x are periodic fins. having a period 2 x.

Sin $n = \sin(n + 2\pi)$, $\cos n = \cos(n + 2\pi)$

tano, cot o are periodic fins having period π .

tano (0+ π) = tano , cot (0+ π) = cot o

Properties of integration

) $\int_{-\alpha}^{\alpha} f(n) dn = 2 \int_{0}^{\alpha} f(n) dn \quad \text{if} \quad f(n) \text{ is even}$ $= 0 \quad \text{if} \quad f(n) \text{ is odd.}$

even function: - f(-x) = f(x)

- a) $f(x) = x^2$ $f(-x) = (-x)^2 = x^2 = f(x)$
 - b) f(x) = con xf(-x) = cos(-x) = cos x.

odd function: -f(-x) = -f(x)

- a) $f(x) = x^3$ $f(-x) = (-x)^3 = -x^3 = -f(x)$
- b) f(n)= Sinn, f(-n) = Sin(-n) = -Sin n = -fla

2) By-Part Sfilal falm) dx = film) Sfalm) dn - S[dnfilm) Sfalm dn Limitation: - not work in every situation Chain Rule of Integration Jardin 2ada n2 (- condn) - 2n (- sin 2n) + 2 (con 2n) = - x2 Cos2x + xdin 2x + cos2x Note: Only used in the questions where Ist integrand is algebraic like $x^n \cos ax$, $x^n \sin ax$, $x^n e^{ax}$. * (en sin (batc) dr $=\frac{e^{a}}{a^{2}+b^{2}}\left[a\sin(b\pi+c)-b\cos(b\pi+c)\right]$ Sin 0 = Sin π = 0 Cos 0 = Cos 2 π π = $(-1)^{2m}$ = 1 Cos π π = $(-1)^{m}$ * Jean cos(bn+c)dn = en [acostontc] + b sin(bntc] d Sinn = Corn John n dn = - Cosa de Conn = - Jinn Josnan = Sinn $\frac{e^{i\theta} - e^{-i\theta}}{2i}, \quad \frac{fe^{i\theta} = (\cos \theta + i\sin \theta)}{2i}, \quad \frac{e^{-i\theta} = (\cos \theta - i\sin \theta)}{2i}$ $inh o = \frac{e^{\circ} - e^{-\circ}}{2}$, Soch $o = \frac{e^{\circ} + e^{-\circ}}{2}$

Fourier series arise from the practical task of representing a given periodic function f(n) of period 2x in terms of come and sine functions. These series are trigonometric series whose coefficients are determined by Euler formulae.

Euler's Formulae

The fourier series for the function f(n) in the interval $d < \pi < d + 2\pi$ is given by

 $f(x) = a_0 + \sum_{n=1}^{\infty} a_n (s n x + \sum_{n=1}^{\infty} b_n lin n x)$

where $a_0 = \int_{X} \int_{X}^{d+2x} f(n) dn$

 $an = \frac{1}{\pi} \int_{\alpha}^{\alpha+2\pi} f(n) \cos n\pi \, dn$

 $bn = \int_{X}^{X+2X} f(n) \sin nn \, dn$

These values of ao, an, bn are known as Euler's formulae.

Then
$$q_0 = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) dx = \frac{1}{1} \left(\frac{\pi^2}{3} - \frac{\pi^3}{3}\right) \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) dx = \frac{1}{1} \left(\frac{\pi^2}{3} - \frac{\pi^3}{3}\right) \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) dx = \frac{1}{1} \left(\frac{\pi^2}{3} - \frac{\pi^3}{3}\right) \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx$$

$$= \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx = \frac{1}{1} \int_{-\frac{\pi}{2}}^{\pi} (x - \pi^2) (\cos n\pi) dx =$$

Fourier-series expansion of
$$f(n)$$
 is
$$f(a) \sim -\frac{\pi^{2}}{3} + 2 \stackrel{\mathcal{Z}}{=} \frac{(-1)^{m+1}}{n^{2}} \left(2 \cos nx + n \sin n x \right)$$

$$Taking $\chi = 0$

$$0 = -\frac{\pi^{2}}{3} + 4 \stackrel{\mathcal{Z}}{=} \frac{(-1)^{m+1}}{n^{2}}$$

$$\frac{1}{1^{2}} - \frac{1}{2^{2}} + \frac{1}{3^{2}} - \frac{1}{4^{2}} + \cdots - \cdots = \frac{\pi^{2}}{12}$$$$

Q2. Expand fla) = ndin x, 0 < x < 2x as a jourier

Ans. Let
$$f(n) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n (a_n n_n + b_n sin n_n))$$

where
$$q_0 = \frac{1}{\pi} \int_0^2 \pi \sin \pi \, d\pi = \frac{1}{\pi} \left[x(-(\cos x) - 1.(-dinx)^2 + 1.(-dinx)^2 + 1.(-dinx)^2 \right]$$

$$= \frac{1}{\pi} \left[-x(\cos x + \sin x)^2 \right]_0^2 = \frac{1}{\pi} \left[-2\pi \right] = \left[-2 \right]$$

$$a_n + ib_n = \frac{1}{\pi} \int_0^{2\pi} n \sin n e^{in\pi} d\pi = \frac{1}{\pi} \int_0^{2\pi} n \left(\frac{e^{in} - e^{-ix}}{2i} \right) e^{in} dx$$

$$=\frac{1}{\pi}\int_{0}^{2\pi} \frac{1}{2\pi i}\int_{0}^{2\pi} \frac{e^{i(m+i)\pi}}{-e^{i(m-i)\pi}} dx$$

$$=\frac{1}{2\pi i}\left[\chi\left(\frac{ie^{i(n+1)}\chi}{n+1}\right)-\left(\frac{-e^{i(n+1)}\chi}{(n+1)^{2}}\right)-\right.$$

$$= \frac{1}{2\pi i} \left[\frac{x + i e^{i(n+i)x}}{x + i} - \left(\frac{-e^{i(n+i)x}}{(n+i)^{2}} \right) - \left(\frac{-e^{i(n+i)x}}{(n-i)^{2}} \right) - \left(\frac{-e^{i(n-i)x}}{(n-i)^{2}} \right) \right]^{2\pi}$$

$$= \frac{1}{2\pi i} \left[\frac{-2\pi i}{n+1} + \frac{1}{(n+1)^2} + \frac{2\pi i}{n-1} - \frac{1}{(n+1)^2} + \frac{1}{n-1} + \frac{1}{(n+1)^2} + \frac{1}{n-1} + \frac{1}{(n+1)^2} + \frac{1}{$$

$$= \left(\frac{1}{n-1} - \frac{1}{n+1}\right) = \frac{2}{n^2-1}, n \neq 1$$
equating real and imaginary parts.
$$an = \frac{2}{n^2-1}, bn = 0; n \neq 1$$

$$= \frac{2}{n^2-1}, bn = 0; n \neq 1$$

From (f)

aptible $a_1 + ib_1 = \frac{1}{2\pi i} \int_0^{2\pi} x \left(e^{2i\pi} - 1\right) dx$ $= \frac{1}{2\pi i} \left[x \left(-\frac{ie^{2i\pi}}{2}\right) + \left(\frac{e^{2i\pi}}{4}\right) - \frac{x^2}{2} \right]_0^2$ $= \frac{1}{2\pi i} \left[-\frac{2\pi i}{2} + \frac{1}{4} - \frac{2}{4} - \frac{2}{4} \right]_0^2$ $= -\frac{1}{2} + \pi i$

equate real f imaginary. $a_1 = -\frac{1}{2}, b_1 = \pi$

: Fourier Series expansion of f(n) is $f(n) \sim -1 - \frac{1}{2} \cos n + n \sin n + 2 = \frac{1}{n-2} \cos n$

Que3 obtain the Fourier Series for 7 $f(x) = e^{-x}; o < x < 2x$ An let f(a) ~ 90 + E (an cosnx + bn Sinnx) where $q_0 = \frac{1}{\pi} \int_0^{\pi} e^{-\pi} d\pi = \frac{1}{\pi} \left(\frac{e^{-\pi}}{-1} \right)_0^{2\pi}$ = -[- e-27 + 1] = -(1- e-27) = = [e-x(e^-e^-)] Some = 2e - Sunh x antibn = I sare-x einx dx $=\frac{1}{\pi}\frac{e^{-x}e^{inx}|^{2\pi}}{(-1+in)}|_{0}$ $= -\frac{1}{\pi} \frac{1+in}{1+m^2} \left(e^{-2\pi} - 1 \right) = \left(\frac{1+in}{1+in} \right) \left(1 - e^{-2\pi} \right)$ n (Itn2) = (1+in) e-7(e7-e-7) n(1+n2) = 2 (1+in) e- 2 Sinh 2 x (1+ m2) equate real and imaginary. $a_n = \frac{2e^{-7} \operatorname{Sim} R \pi}{\pi (1+n^2)}$ $1 \quad b_n = \frac{2ne^{-7} \operatorname{Sim} R \pi}{\pi (1+n^2)}$. Fourier series expansion is

 $f(n) \sim \frac{1}{\pi} e^{-x} \sinh x \int_{n=1}^{\infty} \frac{1}{n^2+1} (\cos nx + n \sin nx)$