2.1 Skill Check

Geom_Raster, Geom_Tile, Geom_Contour

Our dataset for geom_raster() and geom_contour()

Faithfuld, a dataset on the waiting time between eruptions and the duration of the eruption of the Old Faithful Geyser.

Continuous, numerical data types

	eruptions ‡	waiting ‡	density ‡
	1.600000	43.00000	3.216159e-03
2	1.647297	43.00000	3.835375e-03
3	1.694595	43.00000	4.435548e-03
4	1.741892	43.00000	4.977614e-03
5	1.789189	43.00000	5.424238e-03
6	1.836486	43.00000	5.744544e-03
7	1.883784	43.00000	5.918012e-03
8	1.931081	43.00000	5.936762e-03
9	1.978378	43.00000	5.805861e-03
10	2.025676	43.00000	5.541706e-03
11	2.072973	43.00000	5.168979e-03
12	2.120270	43.00000	4.716903e-03
13	2.167568	43.00000	4.215592e-03
14	2.214865	43.00000	3.693071e-03
15	2.262162	43.00000	3.173317e-03
16	2.309459	43.00000	2.675315e-03
17	2.356757	43.00000	2.212951e-03
18	2.404054	43.00000	1.795434e-03
10	2 454254	42.00000	4 407055- 02

Geom_Raster()

- A way to visualize data in a heat map style that factors in statistics like density in order to construct the plot and determine the "fill"
 - The "Fill" is a way to visualize the data by density
- In our context, the general time between eruptions can be seen
- Similar to Geom_Tile, but all rectangles are the same size

Our working example:

```
ggplot(faithfuld, aes(waiting, eruptions)) +
    #X and Y values + Data
geom_raster(aes(fill = density), interpolate = TRUE) +
scale_fill_viridis_c() +
    #Specific Raster Customization - fill = what to sort by, Interpolate = smoothing
labs (x = "time", y = "number of eruptions", title = "distribution of volcano data")
```

Geom_Raster() cont.

• Syntax: ggplot("DataName", aes("X, Y")) + geom_raster(aes(fill = "ScalarStatistic"), interpolate = TRUE/FALSE) + scale_fill_"ColorSelection"() + labs (x = "X title", y = "Y title", title = "Overall Title")

- "ScalarStatistic" can include scaling statistics like magnitude, density, etc.
 - The colors are determined by the fill
- Interpolate smooths the graph and reduces the "blockiness"
- Scale_fill_ is a way to color and customize the graph by color
- Labs labels the graph (similar to other ggplot types)

Geom_Raster Example

The interpolation = TRUE can be seen in the smoothness of the graph and the color change can be seen indicating the o.o2 shift in density

0.01

Notice the 'blockiness' of the visuals when interpolate = FALSE

distribution of volcano data

Geom_Contour

- Geom_Contour is similar to Geom_Raster, but it allows for the addition of levels
 - The levels can block out the data into different bins for better organization
 - It can be used more for more discrete variables
- Geom_Contour is useful for creating a 2D visualization of a 3D data set
- Can be filled or unfilled
 - o For our dataset, filled provides better information that is easier to understand
- Syntax: ggplot("DataName", aes("X", "Y", z = "ScalarStatistic"),) + geom_contour_filled(Bins = n)
 - Changing the number of bins changes the amount of levels that are present on the visualization

```
<code>ggplot(faithfuld, aes(x=waiting, y= eruptions, z=density)) + geom_contour_filled(show.legend = TRUE) + labs( x = "time between eruptions", y= "number of eruptions", title = "Faithfuld Eruption Density")</code>
```

Geom_Contour Example

This graph is okay, but it doesn't provide the level of detail a filled version would

Geom_Contour_Filled Example

This is the geom_contour_filled graph generated **without** specifying the number of bins

What happens when we change the levels?

Too few bins does not show enough data to be useful

Too many bins blurs data and defeats the purpose of geom_countour

Geom_tile()

- Can be viewed as a primitive/manual version of the geom_raster and geom_contour plot styles.
- Assigning a (x,y) coordinate as a "z" colored rectangle
- Takes numeric/integer inputs from a data frame
 - All lengths of the vectors must be the same for 'z' to assign its color to each respective (x,y) coordinate
 - length(vector.x) = 10
 - length(vector.y) = 10
 - length(vector.z) should be 10!

Our working example:

```
ibrary(ggplot2)

x <- rep(c(2, 5, 7, 9, 12), 2)
y <- rep(c(1, 2), each = 5)
z <- factor(rep(1:5, each = 2))
    df <- data.frame(x, y, z)

ggplot(df,aes(x,y)) + geom_tile(aes(fill = z), colour = "grey50")</pre>
```

Geom_tile()

Syntax:

```
ggplot("data.name", aes("variable",
    "variable2")) + geom_tile(aes(fill =
    "variable3"), colour = "color.name")
```

- aes = aesthetic mapping for ggplot...
 your arguments/variables turn mapped
 as a visual
- fill = the variable that controls the color of your rectangles from (x,y)
- colour = what color you want the rectangle outline to be

My simple data for geom_tile()...

```
library(ggplot2)

x <- rep(c(2, 5, 7, 9, 12), 2)
y <- rep(c(1, 2), each = 5)
z <- factor(rep(1:5, each = 2))
    df <- data.frame(x, y, z)

ggplot(df,aes(x,y)) + geom_tile(aes(fill = z), colour = "grey50")</pre>
```

x, y, and z vectors expanded.. This will come in handy later!

```
> X

[1] 2 5 7 9 12 2 5 7 9 12

> y

[1] 1 1 1 1 1 2 2 2 2 2

> z

[1] 1 1 2 2 3 3 4 4 5 5

Levels: 1 2 3 4 5

> |
```

My simple data frame visualized!


```
> X

[1] 2 5 7 9 12 2 5 7 9 12

> y

[1] 1 1 1 1 1 2 2 2 2 2

> z

[1] 1 1 2 2 3 3 4 4 5 5

Levels: 1 2 3 4 5

> |
```

- Read as (x,y, z(color))
- Each coordinate gets a rectangle with a corresponding 'z' color
- For example, (2, 1, 1(red)) is the bottom left rectangle

Visualizing data frame "faithfuld" with geom_tile()

- x = waiting
- y = eruptions
- color (z) based off of our density
- Thousands of individual blocks can work together into a complex heat map!

Summary

- These three plotting styles are most useful for creating heat-map esque visuals
- Geom_raster, geom_contour, geom_tile are very similar to each other in their own ways and can be combined in some cases to make more clear graphs
- Unique and appropriate applications for each style

References

https://ggplot2.tidyverse.org/reference/geom_tile.html

https://ggplot2.tidyverse.org/reference/geom_contour.html

https://plotly.com/ggplot2/geom_raster/

https://datacarpentry.org/r-raster-vector-geospatial/02-raster-plot/

https://rdrr.io/cran/ggplot2/man/geom_tile.html

https://gaplot2.tidyverse.org/reference/geom_contour.html

https://www.rdocumentation.org/packages/ggplot2/versions/0.9.0/topics/stat_contour