Study Material for Week 2

Geometric Transformations in \mathbb{R}^3 Lecture 4:

- Geometry of Linear Operators on ℝ³
 Rotation about standard axes

1.	Rotation about X -axis	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$	z y
2.	Rotation about Y -axis	$\begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$	z y
3.	Rotation about Z -axis	$\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$	x y

> Reflection

4.	Reflection about XY -plane	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	
5.	Reflection about XZ -plane	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
6.	Reflection about YZ -plane	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	

> Projection

7.	Projection on XY -plane	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	x_1 x_2
8.	Projection on YZ -plane	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	S = (x, 0, z) $P = (x, y, z)$
9.	Projection on XZ -plane	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	S = (x, 0, z) $P = (x, y, z)$ $Q = (x, y, 0)$

Examples

1. Find the standard matrix for $T:\mathbb{R}^3 \to \mathbb{R}^3$, that first reflects about xy-plane, then rotates the resulting vector in counterclockwise direction through an angle θ , about z-axis and then finally resultant vector is projected on xz-plane.

The standard matrix for reflection about xy - plane is $A_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.

The standard matrix for rotation about z - axis is $A_2 = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

The standard matrix for reflection about xy - plane is $A_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.

The standard matrix for rotation about z - axis is $A_2 = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Therefore the required transformation is

$$A_3 A_2 A_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

2. The eight vertices of a rectangular box having sides of lengths 1, 2, and 3 are as follows.

$$V_1 = (0, 0, 0),$$
 $V_2 = (1, 0, 0),$ $V_3 = (1, 2, 0),$ $V_4 = (0, 2, 0),$ $V_5 = (0, 0, 3),$ $V_6 = (1, 0, 3),$ $V_7 = (1, 2, 3),$ $V_8 = (0, 2, 3)$

Find the coordinates of the box when it is rotated counter clockwise about the -axis through each angle. $60^{\circ}, 90^{\circ}, 120^{\circ}$.

The matrix that yields a rotation of 60° is

$$A = \begin{bmatrix} \cos 60^{\circ} & -\sin 60^{\circ} & 0\\ \sin 60^{\circ} & \cos 60^{\circ} & 0\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/2 & -\sqrt{3}/2 & 0\\ \sqrt{3}/2 & 1/2 & 0\\ 0 & 0 & 1 \end{bmatrix}.$$

Multiplying this matrix by the eight vertices produces the rotated vertices listed below

$\begin{array}{lll} \textit{Original Vertex} & \textit{Rotated Vertex} \\ V_1 = (0,0,0) & (0,0,0) \\ V_2 = (1,0,0) & (0.5,0.87,0) \\ V_3 = (1,2,0) & (-1.23,1.87,0) \\ V_4 = (0,2,0) & (-1.73,1,0) \\ V_5 = (0,0,3) & (0,0,3) \\ V_6 = (1,0,3) & (0.5,0.87,3) \\ V_7 = (1,2,3) & (-1.23,1.87,3) \\ V_8 = (0,2,3) & (-1.73,1,3) \end{array}$

The matrix that yields a rotation of is 90°

$$A = \begin{bmatrix} \cos 90^{\circ} & -\sin 90^{\circ} & 0\\ \sin 90^{\circ} & \cos 90^{\circ} & 0\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix},$$

The matrix that yields a rotation of is 120°

$$A = \begin{bmatrix} \cos 120^{\circ} & -\sin 120^{\circ} & 0 \\ \sin 120^{\circ} & \cos 120^{\circ} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1/2 & -\sqrt{3}/2 & 0 \\ \sqrt{3}/2 & -1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

Problem Session

Q. 1 Attempt the following

Find the matrix that will produce the indicated rotation and then find the image of the vector $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$. 30° about Y - axis followed by 45° about

Z – axis.

- 2) Determine the matrix that will produce the indicated pair of rotations 60° about X axis followed by 30° about Z -axis
- 3) Find the matrix that will produce the indicated rotation and find the image of the vector (1, -1, 1), 45° about z axis, 60° about the x axis.
- 4) Find the matrix that will produce the indicated rotation and find the image of the vector (1, -1, 1).

i) 45° about z-axis. ii) 60° about the x-axis.

Find the standard matrix for $T: \mathbb{R}^3 \to \mathbb{R}^3$, that first reflects about xy-plane, then rotates the resulting vector in counterclockwise direction through an angle $\pi/6$, about z-axis and then finally resultant vector is projected on xz-plane.

Q, 2 Find the matrix that will produce the indicated rotation.

- 1) 30° about the z-axis
- 2) 60° about the x-axis
- 3) 120° about the x-axis
- 4) projection onto XZ plane followed by reflection onto XY plane, followed by 30° about Z-axis