Pushdown Automata PDAs

Pushdown Automaton -- PDA

Input String

Initial Stack Symbol

bottom special symbol Appears at time 0

The States

$$\begin{array}{ccc}
 & a, b \to c \\
 & q_1
\end{array}$$

stack

$$\begin{array}{ccc}
 & a, b \to \varepsilon \\
 & q_1
\end{array}$$

stack

stack

Non-Determinism

PDAs are non-deterministic

Allowed non-deterministic transitions

$$\begin{array}{ccc}
 & \varepsilon, b \to c \\
\hline
 & q_1
\end{array}$$

 ε – transition

Example PDA

$$\mathsf{PDA}\ M:$$

$$L(M) = \{a^n b^n : n \ge 0\}$$

$$L(M) = \{a^n b^n : n \ge 0\}$$

Basic Idea:

1. Push the a's 2. Match the b's on input on the stack with a's on stack 3. Match found $b, a \to \varepsilon$ <u>e,\$</u>-

Execution Example: Time 0

Input

Input

Input

Input

Input

Input

A string is accepted if there is a computation such that:

All the input is consumed AND

The last state is an accepting state

we do not care about the stack contents at the end of the accepting computation

reject

There is no accepting computation for aab

The string aab is rejected by the PDA

Another PDA example

PDA
$$M: L(M) = \{vv^R : v \in \{a,b\}^*\}$$

Basic Idea:

$$L(M) = \{vv^R : v \in \{a,b\}^*\}$$

- 1. Push v
 on stack
- 2. Guess middle of input
- 3. Match v^R on input with v on stack

Execution Example: Time 0

Input

$$a, \varepsilon \to a$$
 $a, a \to \varepsilon$

$$b, \varepsilon \to b$$

$$\varepsilon, \varepsilon \to \varepsilon$$

$$\varepsilon, \varepsilon \to \varepsilon$$

Input

Stack

$$a, a \rightarrow \varepsilon$$

$$b, b \rightarrow \varepsilon$$

 $\varepsilon, \$ \rightarrow \$$

Input

Input

Guess the middle of string

Stack

$$a, \varepsilon \to a$$

$$b, \varepsilon \to b$$

 $a, a \to \varepsilon$ $b, b \to \varepsilon$

Input

Input

Input

Rejection Example: Time 0

Input

Stack

$$a, \varepsilon \to a$$
 $a, a \to \varepsilon$

$$b, \varepsilon \to b$$

$$b, b \to \varepsilon$$

 $\varepsilon, \varepsilon \to \varepsilon$

Input

Input

Input

Guess the middle of string

Stack

$$a, \varepsilon \to a$$

$$b, \varepsilon \to b$$

 $a, a \to \varepsilon$ $b, b \to \varepsilon$

Input

Input

There is no possible transition.

Input is not consumed

$$a, \varepsilon \to a$$

$$a, a \rightarrow \varepsilon$$

$$b, \varepsilon \rightarrow b$$

$$b, b \rightarrow \varepsilon$$

$$\varepsilon,\$ \to \$$$
 q_2

Another computation on same string:

Input

$$a, a \rightarrow \varepsilon$$

$$b, b \to \varepsilon$$

$$\varepsilon,\$ \to \$$$
 q_2

Input

Input

Input

Input

No accept state is reached

$$a, \varepsilon \rightarrow a$$

There is no computation that accepts string *abbb*

 $abbb \notin L(M)$

$$a, \varepsilon \to a$$
 $a, a \to \varepsilon$

$$b, \varepsilon \to b$$
 $b, b \to \varepsilon$

$$q_0 \qquad \varepsilon, \varepsilon \to \varepsilon \qquad q_1 \qquad \varepsilon, \$ \to \$$$

Pushing & Popping Strings

Example:

Another PDA example

$$L(M) = \{w \in \{a,b\}^*: n_a(w) = n_b(w)\}$$

PDAM

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$
 $a, 0 \rightarrow 00$ $b, 1 \rightarrow 11$
 $a, 1 \rightarrow \varepsilon$ $b, 0 \rightarrow \varepsilon$
 $e, \$ \rightarrow \$$ q_2

Execution Example: Time 0

Input

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$
 $a, 0 \rightarrow 00$ $b, 1 \rightarrow 11$

$$a, 1 \rightarrow \varepsilon$$
 $b, 0 \rightarrow \varepsilon$

current state

$$\varepsilon, \$ \rightarrow \$$$

Input

Input

Formalities for PDAs

$$\underbrace{q_1} \xrightarrow{a, w_1 \to w_2} \underbrace{q_2}$$

Transition function:

$$\delta(q_1,a,w_1) = \{(q_2,w_2)\}$$

Transition function:

$$\delta(q_1,a,w_1) = \{(q_2,w_2), (q_3,w_3)\}$$

Formal Definition

Pushdown Automaton (PDA)

Instantaneous Description

Example:

Instantaneous Description

 $(q_1,bbb,aaa\$)$

Time 4:

Input

 $a, \mathcal{E} \rightarrow a$

 $b, \underline{a} \rightarrow \varepsilon$

Stack

 \boldsymbol{a}

 \boldsymbol{a}

 \boldsymbol{a}

 Example:

Instantaneous Description

 $(q_2,bb,aa\$)$

Time 5:

 $b, a \rightarrow \varepsilon$

Stack

 \boldsymbol{a}

 \boldsymbol{a}

 $a, \mathcal{E} \rightarrow a$

We write:

 $(q_1,bbb,aaa\$) \succ (q_2,bb,aa\$)$

Time 4

Time 5

A computation:

$$(q_0, aaabbb,\$) \succ (q_1, aaabbb,\$) \succ$$

 $(q_1, aabbb, a\$) \succ (q_1, abbb, aa\$) \succ (q_1, bbb, aaa\$) \succ$
 $(q_2, bb, aa\$) \succ (q_2, b, a\$) \succ (q_2, \varepsilon,\$) \succ (q_3, \varepsilon,\$)$

$$(q_0, aaabbb,\$) \succ (q_1, aaabbb,\$) \succ$$

 $(q_1, aabbb, a\$) \succ (q_1, abbb, aa\$) \succ (q_1, bbb, aaa\$) \succ$
 $(q_2, bb, aa\$) \succ (q_2, b, a\$) \succ (q_2, \varepsilon,\$) \succ (q_3, \varepsilon,\$)$

For convenience we write:

$$(q_0, aaabbb,\$) \stackrel{*}{\succ} (q_3, \varepsilon,\$)$$

Language of PDA

Language L(M) accepted by PDA M:

$$L(M) = \{w \colon \ (q_0, w, z) \ \succeq \ (q_f, \varepsilon, s)\}$$
 Initial state
$$\text{Accept state}$$

Example:

$$(q_0, aaabbb,\$) \succ (q_3, \varepsilon,\$)$$

 $aaabbb \in L(M)$

PDA M:

PDA M:

Therefore:
$$L(M) = \{a^n b^n : n \ge 0\}$$

PDA M:

PDAs Accept Context-Free Languages

Theorem:

Context-Free
Languages
(Grammars)

Languages
Accepted by
PDAs

Proof - Step 1:

```
Context-Free
Languages
(Grammars)

Languages
Accepted by
PDAs
```

Convert any context-free grammar G to a PDA M with: L(G) = L(M)

Proof - Step 2:

```
Context-Free
Languages
(Grammars)

Languages
Accepted by
PDAs
```

Convert any PDA M to a context-free grammar G with: L(G) = L(M)

Proof - step 1

Convert

Context-Free Grammars
to
PDAs

Take an arbitrary context-free grammar G

We will convert G to a PDA M such that:

$$L(G) = L(M)$$

Conversion Procedure:

For each For each production in G terminal in G $A \rightarrow w$ Add transitions $\varepsilon, A \rightarrow w$ $a, a \rightarrow \varepsilon$ $\underline{\varepsilon}, \varepsilon \to S$

Grammar

$$S \rightarrow aSTb$$

$$S \rightarrow b$$

$$T \rightarrow Ta$$

$$T \to \varepsilon$$

Example

PDA

$$\varepsilon, S \rightarrow aSTb$$

$$\varepsilon, S \rightarrow b$$

$$\varepsilon, T \to Ta$$
 $a, a \to \varepsilon$

$$\varepsilon, T \to \varepsilon$$
 $b, b \to \varepsilon$

PDA simulates leftmost derivations

Grammar Leftmost Derivation S $\Rightarrow \cdots$ $\Rightarrow \sigma_1 \cdots \sigma_k X_1 \cdots X_m$

$$\Rightarrow \sigma_1 \cdots \sigma_k \sigma_{k+1} \cdots \sigma_{n}$$

Scanned symbols

PDA Computation

$$(q_{0}, \sigma_{1} \cdots \sigma_{k} \sigma_{k+1} \cdots \sigma_{n}, \$)$$
 $\succ (q_{1}, \sigma_{1} \cdots \sigma_{k} \sigma_{k+1} \cdots \sigma_{n}, S\$)$
 $\succ \cdots$
 $\succ (q_{1}, \sigma_{k+1} \cdots \sigma_{n}, X_{1} \cdots X_{m}\$)$
 $\succ \cdots$
 $\succ (q_{2}, \varepsilon, \$)$

Stack contents

Grammar

Leftmost Derivation

Production applied

Grammar Leftmost Derivation

PDA Computation

$$\Rightarrow \cdots$$

$$\Rightarrow xAy$$

$$\Rightarrow x\sigma_i \cdots \sigma_j Bzy$$

$$\succ (q_1, \sigma_i \cdots \sigma_n, Ay\$)$$

$$\succ (q_1, \sigma_i \cdots \sigma_n, \sigma_i \cdots \sigma_j Bzy\$)$$

Production applied

$$A \rightarrow \sigma_i \cdots \sigma_j Bz$$

Transition applied

Grammar Leftmost Derivation

PDA Computation

$$\Rightarrow \cdots$$

$$\Rightarrow xAy$$

$$\Rightarrow$$
 $x\sigma_i \cdots \sigma_j Bzy$

$$\succ (q_1, \sigma_i \cdots \sigma_n, Ay\$)$$

$$\succ (q_1, \sigma_i \cdots \sigma_n, \sigma_i \cdots \sigma_j Bzy\$)$$

$$\succ (q_1, \sigma_{i+1} \cdots \sigma_n, \sigma_{i+1} \cdots \sigma_j Bzy\$)$$

Read σ_i from input and remove it from stack

Transition applied

Grammar

Leftmost Derivation

 $\Longrightarrow \cdots$

 $\Rightarrow xAy$

 \Rightarrow $x\sigma_i \cdots \sigma_j Bzy$

All symbols $\sigma_i \cdots \sigma_j$ have been removed from top of stack

PDA Computation

 $\succ \cdots$

 $\succ (q_1, \sigma_i \cdots \sigma_n, Ay\$)$

 $\succ (q_1, \sigma_i \cdots \sigma_n, \sigma_i \cdots \sigma_j Bzy\$)$

 $\succ (q_1, \sigma_{i+1} \cdots \sigma_n, \sigma_{i+1} \cdots \sigma_j Bzy\$)$

> · · ·

 $\succ (q_1, \sigma_{j+1} \cdots \sigma_n, Bzy\$)$

Last Transition applied

The process repeats with the next leftmost variable

$$\Rightarrow \cdots$$

$$\Rightarrow xAy \qquad \qquad \succ \cdots$$

$$\Rightarrow x\sigma_{i} \cdots \sigma_{j} Bzy \qquad \qquad \succ (q_{1}, \sigma_{j+1} \cdots \sigma_{n}, Bzy\$)$$

$$\Rightarrow x\sigma_{i} \cdots \sigma_{j} \sigma_{j+1} \cdots \sigma_{k} Cpzy \qquad \qquad \succ (q_{1}, \sigma_{j+1} \cdots \sigma_{n}, \sigma_{j+1} \cdots \sigma_{k} Cpzy\$)$$

$$\qquad \qquad \succ \cdots$$

$$\qquad \qquad \succ (q_{1}, \sigma_{k+1} \cdots \sigma_{n}, Cpzy\$)$$

Production applied

$$B \to \sigma_{j+1} \cdots \sigma_k Cp$$

And so on.....

Example:

Time 0

$$\varepsilon$$
, $S \rightarrow aSTb$

$$\varepsilon, S \rightarrow b$$

$$\varepsilon, T \to Ta$$

$$\varepsilon, T \to \varepsilon$$

$$\varepsilon, \varepsilon \to S$$

Stack

$$a, a \rightarrow \varepsilon$$

$$b, b \rightarrow \varepsilon$$

Derivation: S

Derivation: $S \Rightarrow aSTb$ Input a $\varepsilon, S \rightarrow aSTb$ Time 3 $\varepsilon, S \rightarrow b$ Stack $\varepsilon, T \to Ta$ $(a, a \rightarrow \varepsilon)$ $\varepsilon, T \to \varepsilon$ $b, b \rightarrow \varepsilon$ ε , \$ \rightarrow \$ $\varepsilon, \varepsilon \to S$

Derivation: $S \Rightarrow aSTb \Rightarrow abTb$

b T b b s

Time 4

$$\varepsilon, S \to aSTb$$

$$(\varepsilon, S \to b)$$

Stack

$$\varepsilon, T \to Ta$$

$$a, a \rightarrow \varepsilon$$

$$\varepsilon, T \to \varepsilon$$

$$b, b \rightarrow \varepsilon$$

$$\varepsilon, \$ \rightarrow \$$$

Derivation: $S \Rightarrow aSTb \Rightarrow abTb$

Stack

Time 5

$$\varepsilon, S \rightarrow aSTb$$

$$\varepsilon, S \to b$$

$$\varepsilon, T \to Ta$$

$$\varepsilon, T \to Ta$$
 $a, a \to \varepsilon$

$$\varepsilon, T \to \varepsilon$$

$$(b,b \to \varepsilon)$$

$$\varepsilon, \varepsilon \to S$$

Derivation: $S \Rightarrow aSTb \Rightarrow abTb \Rightarrow abTab$

Time 6

$$\varepsilon, S \to aSTb$$

$$\varepsilon, S \to b$$

Stack

$$\varepsilon, T \to Ta$$

$$a, a \rightarrow \varepsilon$$

$$\varepsilon, T \to \varepsilon$$

$$b, b \rightarrow \varepsilon$$

$$\varepsilon, \varepsilon \to S$$

Time 7

$$\varepsilon, S \to aSTb$$

$$\varepsilon, S \to b$$

$$\varepsilon, T \to Ta$$

$$a, a \rightarrow \varepsilon$$

$$[\varepsilon, T \to \varepsilon]$$

$$b, b \to \varepsilon$$

$$\varepsilon, \$ \rightarrow \$$$

Time 9

$$\varepsilon$$
, $S \rightarrow aSTb$

$$\varepsilon, S \to b$$

$$\varepsilon, T \to Ta$$

$$\rightarrow 1a$$

$$\varepsilon, T \to \varepsilon$$

Stack

$$b, b \rightarrow \varepsilon$$

 $a, a \rightarrow \varepsilon$

 $\varepsilon, \varepsilon \to S$

$$\varepsilon, \$ \rightarrow \$$$

Time 10

$$\varepsilon$$
, $S \rightarrow aSTb$

$$\varepsilon, S \rightarrow b$$

$$\varepsilon, T \to Ta$$

$$\varepsilon, T \to \varepsilon$$

$$S \rightarrow U$$

$$a, a \rightarrow \varepsilon$$

$$b, b \rightarrow \varepsilon$$

accept

Stack

$$\rightarrow (q_0) \quad \varepsilon, \varepsilon \rightarrow S$$

$$(q_1)$$
 $(\mathcal{E}, \mathfrak{F} -$

Grammar

PDA Computation

Leftmost Derivation

In general, it can be shown that:

Grammar Ggenerates
string W

 $S \stackrel{*}{\Longrightarrow} w$

PDA M
accepts w

$$(q_0, w,\$)$$
 $\stackrel{*}{\succ} (q_2, \varepsilon,\$)$

Therefore
$$L(G) = L(M)$$

Proof - step 2

Convert

PDAs
to
Context-Free Grammars

Take an arbitrary PDA M

We will convert M to a context-free grammar G such that:

$$L(M) = L(G)$$

First modify PDA M so that:

- 1. The PDA has a single accept state
- 2. Use new initial stack symbol #
- 3. On acceptance the stack contains only stack symbol # (this symbol is not used in any transition)
- 4. Each transition either pushes a symbol or pops a symbol but not both together

1. The PDA has a single accept state

2. Use new initial stack symbol # Top of stack

 M_1 still thinks that Z is the initial stack

3. On acceptance the stack contains only stack symbol # (this symbol is not used in any transition)

4. Each transition either pushes a symbol or pops a symbol but not both together

PDA
$$M_3$$
 q_i $\sigma, \varepsilon \to \varepsilon$ q_j

PDA
$$M_4$$
 q_i $\sigma, \varepsilon \rightarrow \delta$ $\varepsilon, \delta \rightarrow \varepsilon$ q_j

Where δ is a symbol of the stack alphabet

PDA M_4 is the final modified PDA

Note that the new initial stack symbol # is never used in any transition

Example:

Grammar Construction

Kind 1: for each state

Grammar

$$A_{qq} \to \varepsilon$$

Kind 2: for every three states

Grammar

$$A_{pq} \rightarrow A_{pr} A_{rq}$$

Kind 3: for every pair of such transitions

$$\begin{array}{c|c}
\hline
p & a, \varepsilon \to t \\
\hline
\end{array}$$

Grammar

$$A_{pq} \rightarrow aA_{rs}b$$

Initial state

Accept state

Grammar

Start variable

Example:

PDA

Grammar

Kind 1: from single states

$$A_{q_0q_0} o \mathcal{E}$$
 $A_{q_1q_1} o \mathcal{E}$
 $A_{q_2q_2} o \mathcal{E}$
 $A_{q_3q_3} o \mathcal{E}$
 $A_{q_4q_4} o \mathcal{E}$
 $A_{q_5q_5} o \mathcal{E}$

Kind 2: from triplets of states

$$\begin{array}{l} A_{q_{0}q_{0}} \rightarrow A_{q_{0}q_{0}} A_{q_{0}q_{0}} \mid A_{q_{0}q_{1}} A_{q_{1}q_{0}} \mid A_{q_{0}q_{2}} A_{q_{2}q_{0}} \mid A_{q_{0}q_{3}} A_{q_{3}q_{0}} \mid A_{q_{0}q_{4}} A_{q_{4}q_{0}} \mid A_{q_{0}q_{5}} A_{q_{5}q_{0}} \\ A_{q_{0}q_{1}} \rightarrow A_{q_{0}q_{0}} A_{q_{0}q_{1}} \mid A_{q_{0}q_{1}} A_{q_{1}q_{1}} \mid A_{q_{0}q_{2}} A_{q_{2}q_{1}} \mid A_{q_{0}q_{3}} A_{q_{3}q_{1}} \mid A_{q_{0}q_{4}} A_{q_{4}q_{1}} \mid A_{q_{0}q_{5}} A_{q_{5}q_{1}} \\ \vdots \\ A_{q_{0}q_{5}} \rightarrow A_{q_{0}q_{0}} A_{q_{0}q_{5}} \mid A_{q_{0}q_{1}} A_{q_{1}q_{5}} \mid A_{q_{0}q_{2}} A_{q_{2}q_{5}} \mid A_{q_{0}q_{3}} A_{q_{3}q_{5}} \mid A_{q_{0}q_{4}} A_{q_{4}q_{5}} \mid A_{q_{0}q_{5}} A_{q_{5}q_{5}} \\ \vdots \\ A_{q_{5}q_{5}} \rightarrow A_{q_{5}q_{0}} A_{q_{0}q_{5}} \mid A_{q_{5}q_{1}} A_{q_{1}q_{5}} \mid A_{q_{5}q_{2}} A_{q_{2}q_{5}} \mid A_{q_{5}q_{3}} A_{q_{3}q_{5}} \mid A_{q_{5}q_{4}} A_{q_{4}q_{5}} \mid A_{q_{5}q_{5}} A_{q_{5}q_{5}} \end{array}$$

Start variable $A_{q_0q_5}$

Kind 3: from pairs of transitions

$$A_{q_0q_5} o A_{q_1q_4} ext{ } A_{q_2q_4} o aA_{q_2q_4} ext{ } A_{q_2q_2} o A_{q_3q_2} ext{ } A_{q_2q_4} o A_{q_2q_4} o A_{q_3q_2} ext{ } A_{q_2q_4} o A_{q_2q_4} o A_{q_2q_4} o A_{q_3q_3} o A_{q_2q_4} o A_{q_2q_4} o A_{q_3q_3} o A_{q_2q_4} o A_{q_3q_4} o A_{q_3q$$

Suppose that a PDA $\,M$ is converted to a context-free grammar $\,G$

We need to prove that
$$L(G) = L(M)$$

or equivalently

$$L(G) \subseteq L(M)$$
 $L(G) \supseteq L(M)$

$$L(G) \subseteq L(M)$$

We need to show that if G has derivation:

$$A_{q_0q_f} \stackrel{*}{\Rightarrow} W$$
 (string of terminals)

Then there is an accepting computation in M:

$$(q_0, w, \#) \stackrel{*}{\succ} (q_f, \varepsilon, \#)$$

with input string W

We will actually show that if G has derivation:

$$A_{pq} \stackrel{*}{\Rightarrow} W$$

Then there is a computation in M:

$$(p, w, \varepsilon) \stackrel{*}{\succ} (q, \varepsilon, \varepsilon)$$

Therefore:

Since there is no transition with the # symbol

Lemma:

If
$$A_{pq} \stackrel{*}{\Rightarrow} W$$
 (string of terminals)

then there is a computation from state p to state q on string W which leaves the stack empty:

$$(p, w, \varepsilon) \stackrel{*}{\succ} (q, \varepsilon, \varepsilon)$$

Proof Intuition:

$$A_{pq} \Rightarrow \cdots \Rightarrow W$$

Type 2

Case 1:
$$A_{pq} \Rightarrow A_{pr}A_{rq} \Rightarrow \cdots \Rightarrow W$$

Type 3

Case 2: $A_{pq} \Rightarrow aA_{rs}b \Rightarrow \cdots \Rightarrow W$

Type 2

Case 1: $A_{pq} \Rightarrow A_{pr}A_{rq} \Rightarrow \cdots \Rightarrow W$

Type 3

Case 2:
$$A_{pq} \Rightarrow aA_{rs}b \Rightarrow \cdots \Rightarrow w$$

Formal Proof:

We formally prove this claim by induction on the number of steps in derivation:

$$A_{pq} \Longrightarrow \cdots \Longrightarrow W$$

number of steps

Induction Basis:
$$A_{pq} \Longrightarrow W$$
 (one derivation step)

A Kind 1 production must have been used:

$$A_{pp} \to \varepsilon$$

Therefore, p = q and $w = \varepsilon$

This computation of PDA trivially exists:

$$(p,\varepsilon,\varepsilon)\succ(p,\varepsilon,\varepsilon)$$

Induction Hypothesis:

$$A_{pq} \Rightarrow \cdots \Rightarrow W$$
 $k \text{ derivation steps}$

suppose it holds:

$$(p, w, \varepsilon)^* + (q, \varepsilon, \varepsilon)$$

Induction Step:

$$A_{pq} \Rightarrow \cdots \Rightarrow W$$
 $k+1$ derivation steps

We have to show:

$$(p, w, \varepsilon)^* + (q, \varepsilon, \varepsilon)$$

$$A_{pq} \Rightarrow \cdots \Rightarrow W$$
 $k+1$ derivation steps

Type 2

Case 1:
$$A_{pq} \Rightarrow A_{pr}A_{rq} \Rightarrow \cdots \Rightarrow W$$

Type 3

Case 2:
$$A_{pq} \Rightarrow aA_{rs}b \Rightarrow \cdots \Rightarrow W$$

Case 1:
$$A_{pq} \Rightarrow A_{pr}A_{rq} \Rightarrow \cdots \Rightarrow W$$
 $k+1$ steps

We can write
$$W = yZ$$

$$A_{pr} \Rightarrow \cdots \Rightarrow y$$

$$A_{rq} \Rightarrow \cdots \Rightarrow Z$$
At most k steps
$$A_{rq} \Rightarrow \cdots \Rightarrow Z$$

From induction hypothesis, in PDA:

$$(p, y, \varepsilon) \succ (r, \varepsilon, \varepsilon)$$

From induction hypothesis, in PDA:

$$(r,z,\varepsilon)^* \succ (q,\varepsilon,\varepsilon)$$

$$(p, y, \varepsilon) \stackrel{*}{\succ} (r, \varepsilon, \varepsilon) \qquad (r, z, \varepsilon) \stackrel{*}{\succ} (q, \varepsilon, \varepsilon)$$

$$(p, yz, \varepsilon)^* (r, z, \varepsilon)^* (q, \varepsilon, \varepsilon)$$

 $(p, w, \varepsilon) \succ (q, \varepsilon, \varepsilon)$

since
$$w = yz$$

Case 2:
$$A_{pq} \Rightarrow aA_{rs}b \Rightarrow \cdots \Rightarrow W$$

$$k+1 \text{ steps}$$

We can write
$$w = ayb$$

$$A_{rs} \Rightarrow \cdots \Rightarrow y$$
At most k steps

From induction hypothesis, the PDA has computation:

$$(r, y, \varepsilon)^* (s, \varepsilon, \varepsilon)$$

Grammar contains production

$$A_{pq} \rightarrow aA_{rs}b$$

And PDA Contains transitions

$$(p) \xrightarrow{a, \varepsilon \to t} (r)$$

$$(s) \xrightarrow{b,t \to \varepsilon} q$$

$$\begin{array}{c} p & a, \varepsilon \rightarrow t \\ \hline \end{array}$$

 $(p,ayb,\varepsilon) \succ (r,yb,t)$

We know

$$(r, y, \varepsilon) \stackrel{*}{\succ} (s, \varepsilon, \varepsilon) \qquad \qquad \stackrel{*}{} (r, yb, t) \stackrel{*}{\succ} (s, b, t)$$

$$(p,ayb,\varepsilon) \succ (r,yb,t)$$

$$(s,b,t) \succ (q,\varepsilon,\varepsilon)$$

Therefore:

$$(p,ayb,\varepsilon) \succ (r,yb,t) \stackrel{*}{\succ} (s,b,t) \succ (q,\varepsilon,\varepsilon)$$

$$(p,ayb,\varepsilon) \succ (r,yb,t) \stackrel{*}{\succ} (s,b,t) \succ (q,\varepsilon,\varepsilon)$$

since
$$w = ayb$$

$$(p, w, \varepsilon) + (q, \varepsilon, \varepsilon)$$

END OF PROOF

So far we have shown:

$$L(G) \subseteq L(M)$$

With a similar proof we can show

$$L(G) \supseteq L(M)$$

Therefore:
$$L(G) = L(M)$$

Properties of Context-Free languages

Union

Context-free languages are closed under: Union

$$L_1$$
 is context free
$$L_1 \cup L_2$$

$$L_2$$
 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Union

$$L = \{a^n b^n\} \cup \{ww^R\}$$

$$S \rightarrow S_1 \mid S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the union $L_1 \cup L_2$ has new start variable S and additional production $S \to S_1 \mid S_2$

Concatenation

Context-free languages are closed under: Concatenation

 L_1 is context free L_1L_2 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Concatenation

$$L = \{a^n b^n\} \{ww^R\}$$

$$S \rightarrow S_1 S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the concatenation L_1L_2 has new start variable S and additional production $S \to S_1S_2$

Star Operation

Context-free languages are closed under: Star-operation

L is context free $\stackrel{*}{\bigsqcup}$ is context-free

Example

Language

Grammar

$$L = \{a^n b^n\}$$

$$S \rightarrow aSb \mid \lambda$$

Star Operation

$$L = \{a^n b^n\}^*$$

$$S_1 \rightarrow SS_1 \mid \lambda$$

In general:

For context-free language L with context-free grammar G and start variable S

The grammar of the star operation L^* has new start variable S_1 and additional production $S_1 \to SS_1 \mid \lambda$

Negative Properties of Context-Free Languages

Intersection

Context-free languages are <u>not</u> closed under:

intersection

 L_1 is context free $L_1 \cap L_2$ L_2 is context free $\frac{\text{not necessarily}}{\text{context-free}}$

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Intersection

$$L_1 \cap L_2 = \{a^n b^n c^n\}$$
 NOT context-free

Complement

Context-free languages are **not** closed under: **complement**

is context free \longrightarrow L

not necessarily context-free

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Complement

$$\overline{L_1 \cup L_2} = L_1 \cap L_2 = \{a^n b^n c^n\}$$

NOT context-free

Intersection
of
Context-free languages
and
Regular Languages

$$L_1$$
 context free $L_1 \cap L_2$ L_2 regular context-free

Machine M_1

NPDA for L_1 context-free

Machine M_2

DFA for L_2 regular

Construct a new NPDA machine M that accepts $L_1 \cap L_2$

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

NPDA M_1

DFA M_2

NPDA M_1

DFA M_2

$$\begin{array}{c}
q_1, p_1 \\
\hline
 & \lambda, b \to c \\
\hline
 & q_2, p_1
\end{array}$$
transition

initial state

NPDA M_1

final state

final states

Example:

context-free

$$L_1 = \{w_1 w_2 : |w_1| = |w_2|, w_1 \in \{a,b\}^*, w_2 \in \{c,d\}^*\}$$

regular
$$L_2 = \{a, c\}^*$$

DFA M_2

context-free

Automaton for:
$$L_1 \cap L_2 = \{a^n c^n : n \ge 0\}$$

In General:

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

M accepts string w if and only if

 M_1 accepts string w and M_2 accepts string w

$$L(M) = L(M_1) \cap L(M_2)$$

Therefore:

M is NPDA

 $L(M_1) \cap L(M_2)$ is context-free

 $L_1 \cap L_2$ is context-free

Applications of Regular Closure

An Application of Regular Closure

Prove that:
$$L = \{a^n b^n : n \neq 100, n \geq 0\}$$

is context-free

We know:

$$\{a^nb^n:n\geq 0\}$$
 is context-free

We also know:

$$L_1 = \{a^{100}b^{100}\}$$
 is regular

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$
 is regular

$$\{a^nb^n\}$$

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$

context-free

regular

(regular closure) $\{a^nb^n\}\cap L_1$ context-free

$$^{\prime\prime}\,\}\,{igchap}\, L_{
m l}$$

$$\{a^n b^n\} \cap \overline{L_1} = \{a^n b^n : n \neq 100, n \geq 0\} = L$$

is context-free

Another Application of Regular Closure

Prove that:
$$L = \{w: n_a = n_b = n_c\}$$

is not context-free

If
$$L = \{w: n_a = n_b = n_c\}$$
 is context-free

(regular closure)

Then
$$L \cap \{a*b*c*\} = \{a^nb^nc^n\}$$
context-free regular context-free Impossible!!!

Therefore, L is not context free

Pumping Lemma for Context-free Languages

Take an infinite context-free language

Generates an infinite number of different strings

Example:
$$S \rightarrow ABE \mid bBd$$

$$A \rightarrow Aa \mid a$$

$$B \rightarrow bSD \mid cc$$

$$D \rightarrow Dd \mid d$$

$$E \rightarrow eE \mid e$$

In a derivation of a "long" enough string, variables are repeated

A possible derivation:

$$S \Rightarrow ABE \Rightarrow AaBE \Rightarrow aaBE$$

 $\Rightarrow aabSDE \Rightarrow aabbBdDE \Rightarrow$
 $\Rightarrow aaabbccdDE \Rightarrow aabbccddE$
 $\Rightarrow aabbccddeE \Rightarrow aabbccddee$

$B \Rightarrow bSD \Rightarrow bbBdD \Rightarrow bbBdd$

 $*B \Rightarrow bbBdd$

$S \Rightarrow ABE \Rightarrow AaBE \Rightarrow aaBE \Rightarrow aaBeE \Rightarrow aaBee$

$$B \Rightarrow cc$$

We can remove the middle part

$$S \Rightarrow aa(bb)^{0}cc(dd)^{0}ee$$

 $S \Rightarrow aaBee$

 $B \Rightarrow bbBdd$

 $B \Longrightarrow cc$

*

$$S \Rightarrow aaBee \Rightarrow aaccee = aa(bb)^0 cc(dd)^0 ee$$

$$aa(bb)^{0}cc(dd)^{0}ee \in L(G)$$

We can repeated middle part two times

 $S \Rightarrow aa(bb)^2 cc(dd)^2 ee$

 $S \Rightarrow aaBee$

$$B \Rightarrow bbBdd$$

$$B \Longrightarrow cc$$

*

<

 $S \Rightarrow aaBee \Rightarrow aabbBddee$

*

$$\Rightarrow aa(bb)^2B(dd)^2ee \Rightarrow aa(bb)^2cc(dd)^2ee$$

$$aa(bb)^2cc(dd)^2ee \in L(G)$$

We can repeat middle part three times

 $S \Rightarrow aa(bb)^3 cc(dd)^3 ee$

 $S \Rightarrow aaBee$

$$B \Rightarrow bbBdd$$

$$B \Longrightarrow cc$$

*

$$S \Rightarrow aa(bb)^3 cc(dd)^3 ee \in L(G)$$

Repeat middle part i times

 $S \Rightarrow aa(bb)^i cc(dd)^i ee$

$$S \Rightarrow aaBee$$

$$B \Rightarrow bbBdd$$
 $B \Rightarrow cc$

*

$$B \Longrightarrow cc$$

$$S \Rightarrow aa(bb)^i cc(dd)^i ee \in L(G)$$

$$\in L(G)$$

For any
$$i \ge 0$$

From Grammar

and given string

$$S \rightarrow ABE \mid bBd$$

$$aabbccddee \in L(G)$$

$$A \rightarrow Aa \mid a$$

$$B \rightarrow bSD \mid cc$$

$$D \rightarrow Dd \mid d$$

$$E \rightarrow eE \mid e$$

We inferred that a family of strings is in L(G)

$$S \Rightarrow aa(bb)^i cc(dd)^i ee \in L(G) \text{ for any } i \ge 0$$

Arbitrary Grammars

Consider now an arbitrary infinite context-free language ${\cal L}$

Let G be the grammar of $L-\{\mathcal{E}\}$

Take G so that it has no unit-productions and no \mathcal{E} -productions

(remove them)

Let r be the number of variables

Let t be the maximum right-hand size of any production

Example:
$$S \rightarrow ABE \mid bBd$$
 $r = 5$ (variables)
 $A \rightarrow Aa \mid a$
 $B \rightarrow bSD \mid cc$ $t = 3$
 $D \rightarrow Dd \mid d$
 $E \rightarrow eE \mid e$

Claim:

Take string $W \in L(G)$ with $|W| > t^r$. Then in the derivation tree of Wthere is a path from the root to a leaf where a variable of G is repeated

Proof:

Proof by contradiction

Derivation tree of w $|w| > t^r$ We will show: some variable is repeated

First we show that the tree of w has at least r+2 levels of nodes

Maximum number of nodes per level

The maximum right-hand side of any production

Maximum number of nodes per level

Maximum number of nodes per level

Maximum possible string length $= \max \text{ nodes at level } r = t^r$

Therefore, maximum length of string $w: |w| \leq t^r$

However we took, $|w| > t^r$

Contradiction!!!

Therefore, the tree must have at least r+2 levels

Thus, there is a path from the root to a leaf with at least r+2 nodes

 $V_1 = S$ (root) At least r+1 Variables Levels

Since there are at most r different variables, some variable is repeated

END OF CLAIM PROOF

Take H to be the deepest, so that only H is repeated in subtree

B corresponds to H

y = dd z = ee

$$S \stackrel{*}{\Rightarrow} aaBee$$

$$B \stackrel{*}{\Rightarrow} bbBdd$$

$$B \Longrightarrow cc$$

Yield:
$$uxz = uv^0xy^0z$$

$$S \stackrel{*}{\Rightarrow} uHz \stackrel{*}{\Rightarrow} uxz = uv^0xy^0z \in L(G)$$

Repeat Middle part two times

$$S \Rightarrow uHz$$

$$*$$
 $H \Rightarrow vHy$

$$H \Rightarrow x$$

*

$$* * * * * *
S \Rightarrow uHz \Rightarrow uvHyz \Rightarrow uvvHyyz
*
$$\Rightarrow uvvxyyz = uv^2xy^2z \in L(G)$$$$

Repeat Middle part 1 times

$$S \Rightarrow uHz$$

$$H \Longrightarrow vHy$$

$$H \Longrightarrow x$$

$$S \stackrel{*}{\Rightarrow} uHz \stackrel{*}{\Rightarrow} uvHyz \stackrel{*}{\Rightarrow} uvvHyyz \stackrel{*}{\Rightarrow}$$

$$\Rightarrow \dots$$

$$\stackrel{*}{\Rightarrow} uv^i Hy^i z \stackrel{*}{\Rightarrow} uv^i xy^i z \in L(G)$$

$$|w|>t^r$$

If we know that: $w = uvxyz \in L(G)$

then we also know: $uv^i xy^i z \in L(G)$

For all $i \geq 0$

$$Since \\ L(G) = L - \{\lambda\}$$

$$uv^i xy^i z \in L$$

Observation 1:

$$|vy| \ge 1$$

Since G has no unit and \mathcal{E} -productions

At least one of V or Y is not \mathcal{E}

Observation 2:

$$|vxy| \leq t^{r+1}$$

since in subtree only variable H is repeated

subtree of H

Explanation follows....

$$vxy = s_1 s_2 \cdots s_k$$

$$|s_j| \le t^r$$
 since no variable is repeated in T_j

$$|vxy| = \sum_{j=1}^{k} |s_j| \le k \cdot t^r \le t \cdot t^r = t^{r+1}$$

Maximum right-hand side of any production

Thus, if we choose critical length

$$p = t^{r+1} > t^r$$

then, we obtain the pumping lemma for context-free languages

The Pumping Lemma:

For any infinite context-free language L there exists an integer $\,p\,$ such that

for any string
$$w \in L$$
, $|w| \ge p$

we can write w = uvxyz

with lengths $|vxy| \le p$ and $|vy| \ge 1$

and it must be that:

 $uv^i x y^i z \in L$, for all $i \ge 0$

Applications of The Pumping Lemma

Non-context free languages

$$\{a^nb^nc^n:n\geq 0\}$$

$$\{a^nb^n: n \ge 0\}$$

Theorem: The language

$$L = \{a^n b^n c^n : n \ge 0\}$$

is **not** context free

Proof: Use the Pumping Lemma for context-free languages

$$L = \{a^n b^n c^n : n \ge 0\}$$

Assume for contradiction that L is context-free

Since L is context-free and infinite we can apply the pumping lemma

$$L = \{a^n b^n c^n : n \ge 0\}$$

Let p be the critical length of the pumping lemma

Pick any string $w \in L$ with length $|w| \ge p$

We pick:
$$w = a^p b^p c^p$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$

From pumping lemma:

we can write: w = uvxyz

with lengths
$$|vxy| \le p$$
 and $|vy| \ge 1$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$

$$w = uvxyz \qquad |vxy| \le p \qquad |vy| \ge 1$$

Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all $i \ge 0$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$

$$w = uvxyz \qquad |vxy| \le p \qquad |vy| \ge 1$$

We examine <u>all</u> the possible locations of string vxy in w

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$

$$w = uvxyz \qquad |vxy| \le p \qquad |vy| \ge 1$$

Case 1:
$$vxy$$
 is in a^p

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$

$$w = uvxyz$$

$$|vxy| \leq p$$

$$|vy| \ge 1$$

$$v = a^{k_1}$$
 $y = a^{k_2}$ $k_1 + k_2 \ge 1$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$

$$w = uvxyz \qquad |vxy| \le p \qquad |vy| \ge 1$$

$$v = a^{k_1}$$
 $y = a^{k_2}$ $k_1 + k_2 \ge 1$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$

$$w = uvxyz$$

$$|vxy| \leq p$$

$$|vy| \ge 1$$

From Pumping Lemma: $uv^2xy^2z \in L$

$$k_1 + k_2 \geq 1$$

$$uv^2xy^2z = a^{p+k_1+k_2}b^pc^p \notin L$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$

$$w = uvxyz$$
 $|vxy| \le p$ $|vy| \ge 1$

Case 2: vxy is in b^p

Similar to case 1

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$

$$w = uvxyz \qquad |vxy| \le p \qquad |vy| \ge 1$$

Case 3:
$$vxy$$
 is in c^p

Similar to case 1

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$

$$w = uvxyz \qquad |vxy| \le p \qquad |vy| \ge 1$$

Case 4: vxy overlaps a^p and b^p

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$

$$w = uvxyz \qquad |vxy| \le p \qquad |vy| \ge 1$$

Sub-case 1: v contains only a y contains only b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$

$$w = uvxyz$$

$$|vxy| \le p$$

$$|vy| \ge 1$$

$$\mathbf{v} = \mathbf{a}^{k_1}$$

$$y = b^{k_2}$$

$$k_1 + k_2 \geq 1$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$

$$w = uvxyz \qquad |vxy| \le p \qquad |vy| \ge 1$$

$$v = a^{k_1}$$
 $y = b^{k_2}$ $k_1 + k_2 \ge 1$

$$p+k_1$$
 $p+k_2$ p
 $a...aa...aa...a$ $b...bb...b$ $ccc...ccc$
 u v v x y z

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$

$$w = uvxyz$$

$$|vxy| \leq p$$

$$|vy| \ge 1$$

From Pumping Lemma: $uv^2xy^2z \in L$

$$k_1 + k_2 \ge 1$$

$$uv^2xy^2z = a^{p+k_1}b^{p+k_2}c^p \notin L$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$

$$w = uvxyz \qquad |vxy| \le p \qquad |vy| \ge 1$$

Sub-case 2: v contains a and b y contains only b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$

$$w = uvxyz$$

$$|vxy| \leq p$$

$$|vy| \ge 1$$

$$\mathbf{v} = a^{k_1} b^{k_2}$$

$$y = b^{k_3}$$

$$k_1, k_2 \geq 1$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$

 $|vxy| \le p$

$$v = a^{k_1}b^{k_2}$$
 $y = b^{k_3}$ $k_1, k_2 \ge 1$
 p
 k_1
 k_2
 k_1
 k_2
 k_3
 k_4
 k_2
 k_3
 k_4
 k_5
 k_5

w = uvxyz

 $|vy| \ge 1$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$

$$w = uvxyz$$

$$|vxy| \le p$$
 $|vy| \ge 1$

$$vy \ge 1$$

From Pumping Lemma: $uv^2xy^2z \in L$

$$k_1, k_2 \geq 1$$

$$uv^2xy^2z = a^pb^{k_2}a^{k_1}b^{p+k_3}c^p \notin L$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$

$$w = uvxyz \qquad |vxy| \le p \qquad |vy| \ge 1$$

Sub-case 3: v contains only a y contains a and b

Similar to sub-case 2

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$

$$w = uvxyz \qquad |vxy| \le p \qquad |vy| \ge 1$$

Case 5: vxy overlaps b^p and c^p Similar to case 4

aaa...aaa bbb...bbb ccc...ccc

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^p b^p c^p$$
$$w = uvxyz$$

$$|vxy| \le p$$

$$|vy| \ge 1$$

Case 6: vxy overlaps a^p , b^p and c^p

Impossible!

In all cases we obtained a contradiction

Therefore: the original assumption that

$$L = \{a^n b^n c^n : n \ge 0\}$$

is context-free must be wrong

Conclusion: L is not context-free

More Applications of The Pumping Lemma

The Pumping Lemma:

For infinite context-free language L there exists an integer $\,m\,$ such that

for any string
$$w \in L$$
, $|w| \ge m$

we can write w = uvxyz

with lengths
$$|vxy| \le m$$
 and $|vy| \ge 1$

and it must be:

$$uv^i xy^i z \in L$$
, for all $i \ge 0$

Non-context free languages

$$\{a^n b^n c^n : n \ge 0\}$$
 $\{vv : v \in \{a, b\}\}$

Context-free languages

$$\{a^n b^n : n \ge 0\}$$
 $\{ww^R : w \in \{a, b\}^*\}$

Theorem: The language

$$L = \{vv : v \in \{a,b\}^*\}$$

is **not** context free

Proof: Use the Pumping Lemma for context-free languages

$$L = \{vv : v \in \{a, b\}^*\}$$

Assume for contradiction that L is context-free

Since L is context-free and infinite we can apply the pumping lemma

$$L = \{vv : v \in \{a,b\}^*\}$$

Pumping Lemma gives a magic number m such that:

Pick any string of L with length at least m

we pick:
$$a^m b^m a^m b^m \in L$$

$$L = \{vv : v \in \{a,b\}^*\}$$

We can write: $a^m b^m a^m b^m = uvxyz$

with lengths
$$|vxy| \le m$$
 and $|vy| \ge 1$

Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all $i \ge 0$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

We examine <u>all</u> the possible locations of string vxy in $a^mb^ma^mb^m$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$v = a^{k_1} \qquad y = a^{k_2} \qquad k_1 + k_2 \ge 1$$

$$L = \{vv : v \in \{a, b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$v = a^{k_1} \qquad y = a^{k_2} \qquad k_1 + k_2 \ge 1$$

$$L = \{vv : v \in \{a, b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$a^{m+k_1+k_2}b^ma^mb^m = uv^2xy^2z \notin L$$

$$k_1 + k_2 \ge 1$$

$$L = \{vv : v \in \{a, b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$a^{m+k_1+k_2}b^ma^mb^m = uv^2xy^2z \notin L$$

However, from Pumping Lemma: $uv^2xy^2z \in L$

Contradiction!!!

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2:
$$v$$
 is in the first a^m y is in the first b^m

$$v = a^{k_1}$$
 $y = b^{k_2}$ $k_1 + k_2 \ge 1$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2:
$$v$$
 is in the first a^m y is in the first b^m

$$v = a^{k_1}$$
 $y = b^{k_2}$ $k_1 + k_2 \ge 1$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2: v is in the first a^m y is in the first b^m

$$a^{m+k_1}b^{m+k_2}a^mb^m = uv^2xy^2z \notin L$$

$$k_1 + k_2 \ge 1$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2: v is in the first a^m y is in the first b^m

$$a^{m+k_1}b^{m+k_2}a^mb^m = uv^2xy^2z \notin L$$

However, from Pumping Lemma: $uv^2xy^2z \in L$

Contradiction!!!

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3:
$$v$$
 overlaps the first $a^m b^m$ y is in the first b^m

$$v = a^{k_1} b^{k_2}$$
 $y = b^{k_3}$ $k_1, k_2 \ge 1$

$$L = \{vv : v \in \{a, b\}^*\}$$

$$a^{m}b^{m}a^{m}b^{m} = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3:
$$v$$
 overlaps the first $a^m b^m$ y is in the first b^m

$$v = a^{k_1} b^{k_2} \qquad y = b^{k_3} \qquad k_1, k_2 \ge 1$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3: v overlaps the first $a^m b^m$ y is in the first b^m

$$a^m b^{k_2} a^{k_1} b^{m+k_3} a^m b^m = u v^2 x y^2 z \notin L$$

$$k_1, k_2 \ge 1$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3: v overlaps the first $a^m b^m$ y is in the first b^m

$$a^m b^{k_2} a^{k_1} b^{k_3} a^m b^m = u v^2 x y^2 z \notin L$$

However, from Pumping Lemma: $uv^2xy^2z \in L$

Contradiction!!!

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 4:
$$v$$
 in the first a^m
 y Overlaps the first $a^m b^m$

Analysis is similar to case 3

Other cases:
$$vxy$$
 is within $a^mb^ma^mb^m$

$$a^m b^m a^m b^m$$

Analysis is similar to case 1:

$$a^mb^ma^mb^m$$

$$vxy$$
 overlaps $a^mb^ma^mb^m$

or

$$a^m b^m a^m b^m$$

Analysis is similar to cases 2,3,4:

$$a^m b^m a^m b^m$$

There are no other cases to consider

Since $|vxy| \le m$, it is impossible vxy to overlap: $a^m b^m a^m b^m$

nor

 $a^mb^ma^mb^m$

nor

 $a^m b^m a^m b^m$

In all cases we obtained a contradiction

Therefore: The original assumption that

$$L = \{vv : v \in \{a, b\}^*\}$$

is context-free must be wrong

Conclusion: L is not context-free

Non-context free languages

$$\{a^n b^n c^n : n \ge 0\}$$
 $\{ww : w \in \{a, b\}\}$
 $\{a^{n!} : n \ge 0\}$

Context-free languages

$$\{a^n b^n : n \ge 0\}$$
 $\{ww^R : w \in \{a, b\}^*\}$

Theorem: The language

$$L = \{a^{n!} : n \ge 0\}$$

is **not** context free

Proof: Use the Pumping Lemma for context-free languages

$$L = \{a^{n!} : n \ge 0\}$$

Assume for contradiction that L is context-free

Since L is context-free and infinite we can apply the pumping lemma

$$L = \{a^{n!} : n \ge 0\}$$

Pumping Lemma gives a magic number m such that:

Pick any string of L with length at least m

we pick:
$$a^{m!} \in L$$

$$L = \{a^{n!} : n \ge 0\}$$

We can write:
$$a^{m!} = uvxyz$$

with lengths
$$|vxy| \le m$$
 and $|vy| \ge 1$

Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all $i \ge 0$

$$L = \{a^{n!} : n \ge 0\}$$

$$a^{m!} = uvxyz$$
 $|vxy| \le m$ $|vy| \ge 1$

We examine <u>all</u> the possible locations of string vxy in $a^{m!}$

There is only one case to consider

$$L = \{a^{n!} : n \ge 0\}$$

$$a^{m!} = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$v = a^{k_1}$$
 $y = a^{k_2}$ $1 \le k_1 + k_2 \le m$

$$L = \{a^{n!} : n \ge 0\}$$

$$a^{m!} = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$v = a^{k_1}$$
 $y = a^{k_2}$ $1 \le k_1 + k_2 \le m$

$$L = \{a^{n!} : n \ge 0\}$$

$$a^{m!} = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$a \qquad k = k_1 + k_2$$

$$a \qquad a$$

$$u \qquad v^2 \qquad x \qquad y^2 \qquad z$$

$$v = a^{k_1} \qquad y = a^{k_2} \qquad 1 \le k \le m$$

$$L = \{a^{n!} : n \ge 0\}$$

$$a^{m!} = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$a^{m!+k} = uv^2 x y^2 z$$

$$1 \le k \le m$$

Since $1 \le k \le m$, for $m \ge 2$ we have:

$$m!+k \le m!+m$$

 $< m!+m!m$
 $= m!(1+m)$
 $= (m+1)!$
 $m! < m!+k < (m+1)!$

$$L = \{a^{n!} : n \ge 0\}$$

$$a^{m!} = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$m! < m! + k < (m+1)!$$

$$L = \{a^{n!} : n \ge 0\}$$

$$a^{m!} = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

However, from Pumping Lemma: $uv^2xy^2z \in L$

$$a^{m!+k} = uv^2 x y^2 z \notin L$$

Contradiction!!!

We obtained a contradiction

Therefore: The original assumption that

$$L = \{a^{n!} : n \ge 0\}$$

is context-free must be wrong

Conclusion: L is not context-free

Non-context free languages

$$\{a^n b^n c^n : n \ge 0\}$$
 $\{ww: w \in \{a, b\}\}$

$$\{a^{n^2}b^n: n \ge 0\}$$
 $\{a^{n!}: n \ge 0\}$

Context-free languages

$$\{a^n b^n : n \ge 0\}$$
 $\{ww^R : w \in \{a, b\}^*\}$

Theorem: The language

$$L = \{a^{n^2}b^n : n \ge 0\}$$

is **not** context free

Proof: Use the Pumping Lemma for context-free languages

$$L = \{a^{n^2}b^n : n \ge 0\}$$

Assume for contradiction that L is context-free

Since L is context-free and infinite we can apply the pumping lemma

$$L = \{a^{n^2}b^n : n \ge 0\}$$

Pumping Lemma gives a magic number m such that:

Pick any string of L with length at least m

we pick:
$$a^{m^2}b^m \in L$$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

We can write:
$$a^{m^2}b^m = uvxyz$$

with lengths
$$|vxy| \le m$$
 and $|vy| \ge 1$

Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all $i \ge 0$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

We examine all the possible locations

of string
$$vxy$$
 in $a^{m^2}b^m$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Most complicated case:
$$v$$
 is in a^m y is in b^m

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$v = a^{k_1} \qquad y = b^{k_2} \qquad 1 \le k_1 + k_2 \le m$$

$$a \qquad m$$

$$a \qquad a \qquad b \qquad b$$

$$u \qquad v \qquad x \qquad v \qquad z$$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Most complicated sub-case: $k_1 \neq 0$ and $k_2 \neq 0$

$$a = \begin{bmatrix} m^2 & m \\ a & ab & b \\ u & v & x & v & z \end{bmatrix}$$

 $y = b^{k_2}$

 $v = a^{k_1}$

 $1 \le k_1 + k_2 \le m$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Most complicated sub-case: $k_1 \neq 0$ and $k_2 \neq 0$

$$v = a^{k_1} y = b^{k_2} 1 \le k_1 + k_2 \le m$$

$$m^2 - k_1 m - k_2$$

$$a a b b$$

$$u v^0 x v^0 z$$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Most complicated sub-case: $k_1 \neq 0$ and $k_2 \neq 0$

$$v = a^{k_1} \qquad y = b^{k_2} \qquad 1 \le k_1 + k_2 \le m$$

$$a^{m^2 - k_1} b^{m - k_2} = u v^0 x y^0 z$$

$$k_1 \neq 0 \text{ and } k_2 \neq 0 \qquad 1 \leq k_1 + k_2 \leq m$$

$$1 \le k_1 + k_2 \le m$$

$$(m-k_2)^2 \le (m-1)^2$$

$$= m^2 - 2m + 1$$

$$< m^2 - k_1$$

$$m^2 - k_1 \neq (m - k_2)^2$$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$m^{2} - k_{1} \neq (m - k_{2})^{2}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$a^{m^{2} - k_{1}}b^{m - k_{2}} = uv^{0}xy^{0}z \neq L$$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

However, from Pumping Lemma: $uv^0xy^0z \in L$

$$a^{m^2 - k_1} b^{m - k_2} = u v^0 x y^0 z \notin L$$

Contradiction!!!

When we examine the rest of the cases we also obtain a contradiction

In all cases we obtained a contradiction

Therefore: The original assumption that

$$L = \{a^{n^2}b^n : n \ge 0\}$$

is context-free must be wrong

Conclusion: L is not context-free

DPDA

Deterministic PDA

Deterministic PDA: DPDA

Allowed transitions:

$$\underbrace{q_1} \xrightarrow{a,b \to w} \underbrace{q_2}$$

$$\underbrace{q_1}^{\lambda, b \to w} q_2$$

(deterministic choices)

Allowed transitions:

(deterministic choices)

Not allowed:

(non deterministic choices)

DPDA example

$$L(M) = \{a^n b^n : n \ge 0\}$$

Definition:

A language $\,L\,$ is deterministic context-free if there exists some DPDA that accepts it

Example:

The language $L(M) = \{a^n b^n : n \ge 0\}$

is deterministic context-free

Example of Non-DPDA (PDA)

$$L(M) = \{vv^R : v \in \{a,b\}^*\}$$

Not allowed in DPDAs

PDAS

Have More Power than

DPDAs

It holds that:

Deterministic
Context-Free
Languages
(DPDA)

Context-Free
Languages
PDAs

Since every DPDA is also a PDA

We will actually show:

We will show that there exists a context-free language L which is not accepted by any DPDA

The language is:

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\} \qquad n \ge 0$$

We will show:

- L is context-free
- L is not deterministic context-free

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

Language L is context-free

Context-free grammar for L:

$$S \rightarrow S_1 \mid S_2$$

$$\{a^nb^n\} \cup \{a^nb^{2n}\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$\{a^nb^n\}$$

$$S_2 \rightarrow aS_2bb \mid \lambda \qquad \{a^nb^{2n}\}$$

Theorem:

The language
$$L = \{a^nb^n\} \cup \{a^nb^{2n}\}$$

is not deterministic context-free

(there is no DPDA that accepts L)

Proof: Assume for contradiction that

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

is deterministic context free

Therefore:

there is a DPDA $\,M\,$ that accepts $\,L\,$

DPDA M with $L(M) = \{a^nb^n\} \cup \{a^nb^{2n}\}$

accepts $a^n b^n$

accepts a^nb^{2n}

DPDA
$$M$$
 with $L(M) = \{a^nb^n\} \cup \{a^nb^{2n}\}$

Such a path exists due to determinism

Fact 1: The language $\{a^nb^nc^n\}$ is not context-free

Fact 2: The language $L \cup \{a^nb^nc^n\}$ is not context-free

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

(we can prove this using pumping lemma for context-free languages)

We will construct a PDA that accepts:

$$L \cup \{a^nb^nc^n\}$$

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

which is a contradiction!

DPDA M

$L(M) = \{a^n b^n\} \cup \{a^n b^{2n}\}$

$$L(M') = \{a^n c^n\} \cup \{a^n c^{2n}\}$$

A PDA that accepts $L \cup \{a^nb^nc^n\}$

Connect the final states of M with the final states of M'

Since $L \cup \{a^nb^nc^n\}$ is accepted by a PDA

it is context-free

Contradiction!

(since $L \cup \{a^n b^n c^n\}$ is not context-free)

Therefore:

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

Is not deterministic context free

There is no DPDA that accepts it

End of Proof

Turing Machines

The Language Hierarchy

Languages accepted by Turing Machines

 $a^nb^nc^n$

WW

Context-Free Languages

 a^nb^n

 ww^R

Regular Languages

*a**

a*b*

A Turing Machine

Tape

Read-Write head

Control Unit

The Tape

No boundaries -- infinite length

Read-Write head

The head moves Left or Right

Read-Write head

The head at each transition (time step):

- 1. Reads a symbol
- 2. Writes a symbol
- 3. Moves Left or Right

Example:

- 1. Reads a
- 2. Writes k
- 3. Moves Left

- 1. Reads b
- 2. Writes f
- 3. Moves Right

The Input String

Head starts at the leftmost position of the input string

States & Transitions

Example:

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
 & q_2
\end{array}$$

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
 & q_2
\end{array}$$

Example:

$$\begin{array}{cccc}
 & a \rightarrow b, L \\
\hline
 & q_2
\end{array}$$

Example:

Determinism

Turing Machines are deterministic

Allowed

Not Allowed

No ϵ -transitions allowed

Partial Transition Function

Example:

Allowed:

No transition for input symbol c

Halting

The machine *halts* in a state if there is no transition to follow

Halting Example 1:

No transition from q_1 HALT!!!

Halting Example 2:

No possible transition from q_1 and symbol c HALT!!!

Accepting States

- · Accepting states have no outgoing transitions
- The machine halts and accepts

Acceptance

Accept Input string

If machine halts in an accept state

Reject Input string

If machine halts
in a non-accept state
or
If machine enters
an infinite loop

Observation:

In order to accept an input string, it is not necessary to scan all the symbols of the input string

Turing Machine Example

Input alphabet
$$\Sigma = \{a, b\}$$

Accepts the language: a^*

Rejection Example

No possible Transition Halt & Reject

A simpler machine for same language but for input alphabet $\Sigma = \{a\}$

Accepts the language: a*

Halt & Accept

Not necessary to scan input

Infinite Loop Example

A Turing machine for language $a^*+b(a+b)^*$

Time 3

Time 4

Time 5

Because of the infinite loop:

·The accepting state cannot be reached

The machine never halts

·The input string is rejected

Another Turing Machine Example

 $\{a^nb^n\}$ Turing machine for the language $n \ge 1$

Basic Idea:

Match a's with b's:

Repeat:

replace leftmost a with x
find leftmost b and replace it with y
Until there are no more a's or b's

If there is a remaining a or b reject

Time 4

Halt & Accept

Observation:

If we modify the machine for the language $\{a^nb^n\}$

we can easily construct a machine for the language $\{a^nb^nc^n\}$

Formal Definitions for Turing Machines

Transition Function

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
\hline
 & q_2
\end{array}$$

$$\delta(q_1, a) = (q_2, b, R)$$

Transition Function

$$\delta(q_1,c) = (q_2,d,L)$$

Turing Machine:

Configuration

Instantaneous description: $ca q_1 ba$

A Move:

$$q_2 xayb \succ x q_0 ayb$$

(yields in one move)

 $q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$

$$q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$$

Equivalent notation:
$$q_2 xayb \succ xxy q_1 b$$

Input string

The Accepted Language

For any Turing Machine M

If a language L is accepted by a Turing machine M then we say that L is:

Turing Recognizable

Other names used:

- ·Turing Acceptable
- ·Recursively Enumerable

Turing's Thesis

Turing's thesis (1930):

Any computation carried out by mechanical means can be performed by a Turing Machine

Algorithm:

An algorithm for a problem is a Turing Machine which solves the problem

The algorithm describes the steps of the mechanical means

This is easily translated to computation steps of a Turing machine

When we say: There exists an algorithm

We mean: There exists a Turing Machine that executes the algorithm

Variations of the Turing Machine

The Standard Model

Infinite Tape

Read-Write Head (Left or Right)

Control Unit

Deterministic

Variations of the Standard Model

Turing machines with:

- Stay-Option
- · Semi-Infinite Tape
- Multitape
- Multidimensional
- Nondeterministic

Different Turing Machine Classes

Same Power of two machine classes: both classes accept the same set of languages

We will prove:

each new class has the same power with Standard Turing Machine

(accept Turing-Recognizable Languages)

Same Power of two classes means:

for any machine $\,M_1\,$ of first class there is a machine $\,M_2\,$ of second class

such that:
$$L(M_1) = L(M_2)$$

and vice-versa

Simulation: A technique to prove same power.

Simulate the machine of one class with a machine of the other class

First Class
Original Machine

 M_1

Second Class
Simulation Machine

simulates M_1

Configurations in the Original Machine M_1 have corresponding configurations in the Simulation Machine M_2

 M_1 Original Machine: $d_0 \succ d_1 \succ \cdots \succ d_n$ Simulation Machine: $d_0' \succ d_1' \succ \cdots \succ d_n'$

Accepting Configuration

Original Machine:
$$d_f$$

Simulation Machine: d_f'

the Simulation Machine and the Original Machine accept the same strings

$$L(M_1) = L(M_2)$$

Turing Machines with Stay-Option

The head can stay in the same position

Left, Right, Stay

L,R,S: possible head moves

Example:

Time 1

Time 2

Theorem: Stay-Option machines
have the same power with
Standard Turing machines

Proof: 1. Stay-Option Machines simulate Standard Turing machines

2. Standard Turing machines simulate Stay-Option machines

1. Stay-Option Machines simulate Standard Turing machines

Trivial: any standard Turing machine is also a Stay-Option machine

2. Standard Turing machines simulate Stay-Option machines

We need to simulate the stay head option with two head moves, one left and one right

Stay-Option Machine

Simulation in Standard Machine

For every possible tape symbol χ

For other transitions nothing changes

Stay-Option Machine

Simulation in Standard Machine

$$\underbrace{q_1} \xrightarrow{a \to b, L} \underbrace{q_2}$$

Similar for Right moves

example of simulation

Simulation in Standard Machine:

END OF PROOF

A useful trick: Multiple Track Tape

helps for more complicated simulations

It is a standard Turing machine, but each tape alphabet symbol describes a pair of actual useful symbols

track 1 track 2

track 1 track 2

$$\underbrace{q_1} \xrightarrow{(b,a) \to (c,d),L} \underbrace{q_2}$$

Semi-Infinite Tape

The head extends infinitely only to the right

- Initial position is the leftmost cell
- When the head moves left from the border, it returns back to leftmost position

Theorem: Semi-Infinite machines
have the same power with
Standard Turing machines

Proof: 1. Standard Turing machines simulate Semi-Infinite machines

2. Semi-Infinite Machines simulate Standard Turing machines

1. Standard Turing machines simulate Semi-Infinite machines:

Standard Turing Machine

Semi-Infinite machine modifications

a. insert special symbol # at left of input string

b. Add a self-loop
to every state
(except states with no
outgoing transitions)

2. Semi-Infinite tape machines simulate Standard Turing machines:

Squeeze infinity of both directions to one direction

Semi-Infinite tape machine with two tracks

Right part
$$\# \ d \ e \ \Diamond \ \Diamond \$$
 Left part $\# \ c \ b \ a \ \Diamond \ \Diamond$

Standard machine

Semi-Infinite tape machine

Standard machine

$$\underbrace{q_1} \quad \xrightarrow{a \to g, R} \quad \underbrace{q_2}$$

Semi-Infinite tape machine

Right part
$$q_1$$
 $(a,x) \rightarrow (g,x), R$ q_2

Left part

$$\underbrace{q_1^L} \xrightarrow{(x,a) \to (x,g),L} \underbrace{q_2^L}$$

For all tape symbols X

Time 1

Semi-Infinite tape machine

Time 2

Semi-Infinite tape machine

At the border:

Semi-Infinite tape machine

Right part
$$q_1^R$$
 $(\#,\#) \rightarrow (\#,\#), R$ q_1^L

Left part

$$\overbrace{q_1^L} \xrightarrow{(\#,\#) \to (\#,\#), R} \overbrace{q_1^R}$$

Semi-Infinite tape machine

END OF PROOF

Multi-tape Turing Machines

Input string appears on Tape 1

$$\underbrace{q_1}^{(b,f) \to (g,d), L, R} q_2$$

Theorem: Multi-tape machines
have the same power with
Standard Turing machines

Proof: 1. Multi-tape machines simulate Standard Turing machines

2. Standard Turing machines simulate Multi-tape machines

1. Multi-tape machines simulate Standard Turing Machines:

Trivial: Use one tape

2. Standard Turing machines simulate Multi-tape machines:

Standard machine:

- Uses a multi-track tape to simulate the multiple tapes
- A tape of the Multi-tape machine corresponds to a pair of tracks

Multi-tape Machine

Standard machine with four track tape

a	b	C		Tape 1
0	1	0		head position
e	f	g	h	Tape 2
0	0	1	0	head position
†		I		

Reference point

Tape 1
head position
Tape 2
head position

Repeat for each Multi-tape state transition:

- 1. Return to reference point
- 2. Find current symbol in Track 1 and update
- 3. Return to reference point
- 4. Find current symbol in Tape 2 and update

Same power doesn't imply same speed:

$$L = \{a^n b^n\}$$

Standard Turing machine: $O(n^2)$ time

Go back and forth $O(n^2)$ times to match the a's with the b's

- 2-tape machine: O(n) time
 - 1. Copy b^n to tape 2 (O(n) steps)
 - 2. Compare a^n on tape 1 and b^n on tape 2 (O(n) steps)

Multidimensional Turing Machines

MOVES: L,R,U,D

U: up D: down

HEAD

Position: +2, -1

Theorem: Multidimensional machines have the same power with Standard Turing machines

Proof: 1. Multidimensional machines simulate Standard Turing machines

2. Standard Turing machines simulate Multi-Dimensional machines

1. Multidimensional machines simulate Standard Turing machines

Trivial: Use one dimension

2. Standard Turing machines simulate Multidimensional machines

Standard machine:

- Use a two track tape
- Store symbols in track 1
- Store coordinates in track 2

2-dimensional machine

Standard machine:

Repeat for each transition followed in the 2-dimensional machine:

- 1. Update current symbol
- 2. Compute coordinates of next position
- 3. Find next position on tape

END OF PROOF

Nondeterministic Turing Machines

Allows Non Deterministic Choices

Time 0

Time 1

Choice 1

Choice 2

Input string w is accepted if there is a computation:

There is a computation:

Theorem: Nondeterministic machines have the same power with Standard Turing machines

Proof: 1. Nondeterministic machines simulate Standard Turing machines

2. Standard Turing machines simulate Nondeterministic machines

1. Nondeterministic Machines simulate Standard (deterministic) Turing Machines

Trivial: every deterministic machine is also nondeterministic

2. Standard (deterministic) Turing machines simulate Nondeterministic machines:

Deterministic machine:

Uses a 2-dimensional tape

 (equivalent to standard Turing machine with one tape)

 Stores all possible computations of the non-deterministic machine on the 2-dimensional tape

All possible computation paths

The Deterministic Turing machine simulates all possible computation paths:

·simultaneously

·step-by-step

·with breadth-first search

depth-first may result getting stuck at exploring an infinite path before discovering the accepting path

NonDeterministic machine

Deterministic machine

#	#	#	#	#	#	
#	\boldsymbol{a}	b	$\boldsymbol{\mathcal{C}}$	#		
#	q_1			#		
#	#	#	#	#		

current configuration

NonDeterministic machine

Deterministic machine

-	#	#	#	#	#	#	
Computation 1		#	C	b	b		#
		#				q_2	#
Computation 2		#	С	b	С		#
		#		93			#

Deterministic Turing machine

Repeat

For each configuration in current step of non-deterministic machine, if there are two or more choices:

- 1. Replicate configuration
- 2. Change the state in the replicas

Until either the input string is accepted or rejected in all configurations

If the non-deterministic machine accepts the input string:

The deterministic machine accepts and halts too

The simulation takes in the worst case exponential time compared to the shortest length of an accepting path

If the non-deterministic machine does not accept the input string:

1. The simulation halts if all paths reach a halting state

OR

2. The simulation never terminates if there is a never-ending path (infinite loop)

In either case the deterministic machine rejects too (1. by halting or 2. by simulating the infinite loop)

END OF PROOF

A Universal Turing Machine

A limitation of Turing Machines:

Turing Machines are "hardwired"

they execute only one program

Real Computers are re-programmable

Solution: Universal Turing Machine

Attributes:

· Reprogrammable machine

· Simulates any other Turing Machine

Universal Turing Machine simulates any Turing Machine M

Input of Universal Turing Machine:

Description of transitions of M

Input string of M

We describe Turing machine M as a string of symbols:

We encode M as a string of symbols

Alphabet Encoding

State Encoding

Head Move Encoding

Transition Encoding

Transition:
$$\delta(q_1,a)=(q_2,b,L)$$

Encoding: 10101101101
separator

Turing Machine Encoding

Transitions:

$$\delta(q_1, a) = (q_2, b, L) \qquad \delta(q_2, b) = (q_3, c, R)$$

Encoding:

10101101101 00 1101101110111011

Tape 1 contents of Universal Turing Machine:

binary encoding of the simulated machine M

Tape 1

1 0 1 0 11 0 11 0 10011 0 1 10 111 0 111 0 1100...

A Turing Machine is described with a binary string of 0's and 1's

Therefore:

The set of Turing machines forms a language:

each string of this language is the binary encoding of a Turing Machine

Language of Turing Machines

```
(Turing Machine 1)
L = \{ 1010110101, 
                            (Turing Machine 2)
     101011101011,
     11101011110101111,
     ..... }
```

Countable Sets

Infinite sets are either:

Countable

or

Uncountable

Countable set:

```
There is a one to one correspondence (injection) of elements of the set to Positive integers (1,2,3,...)
```

Every element of the set is mapped to a positive number such that no two elements are mapped to same number

Example: The set of even integers is countable

Even integers: (positive)

Correspondence:

Positive integers:

0, 2, 4, 6, ...

1, 2, 3, 4, ...

2n corresponds to n+1

Example: The set of rational numbers is countable

Rational numbers:
$$\frac{1}{2}$$
, $\frac{3}{4}$, $\frac{7}{8}$, ...

Naïve Approach

Nominator 1

Rational numbers:

Correspondence:

1, 2, 3, ...

Positive integers:

Doesn't work:

we will never count numbers with nominator 2:

$$\frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \dots$$

Better Approach

$$\frac{1}{1}$$
 $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ \cdots

$$\frac{2}{1}$$
 $\frac{2}{2}$ $\frac{2}{3}$...

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

$$\frac{1}{1} \longrightarrow \frac{1}{2} \qquad \frac{1}{3} \qquad \frac{1}{4} \qquad \cdots$$

$$\frac{2}{1} \qquad \frac{2}{2} \qquad \frac{2}{3} \qquad \cdots$$

$$\frac{3}{2} \qquad \frac{3}{2} \qquad \cdots$$

 $\frac{4}{1}$...

1	1	1	1	
$\overline{1}$	$\overline{2}$	3	4	• • •
2	2	2		
<u>1</u>	$\overline{2}$	$\overline{3}$	•	

3	3	
<u></u>	$\overline{2}$	• • •

$$\frac{4}{1}$$
 ...

$$\frac{3}{1}$$
 $\frac{3}{2}$...

3	3	
$\overline{1}$	$\overline{2}$	• • •

$$\frac{4}{1}$$
 ...

Rational Numbers:

$$\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{2}{2}, \dots$$

Correspondence:

Positive Integers:

We proved:

the set of rational numbers is countable
by describing an enumeration procedure
(enumerator)
for the correspondence to natural numbers

Definition

Let S be a set of strings (Language)

An enumerator for S is a Turing Machine that generates (prints on tape) all the strings of S one by one

and each string is generated in finite time

strings
$$s_1, s_2, s_3, \ldots \in S$$

Enumerator
$$S$$

Enumerator Machine for
$$S$$
 output S_1, S_2, S_3, \dots (on tape)

Finite time: t_1, t_2, t_3, \dots

Enumerator Machine

Configuration

Time 0

Time t_1

Observation:

If for a set S there is an enumerator, then the set is countable

The enumerator describes the correspondence of S to natural numbers

Example: The set of strings $S = \{a,b,c\}^+$ is countable

Approach:

We will describe an enumerator for 5

Naive enumerator:

Produce the strings in lexicographic order:

```
s_1 = a
s_2 = aa
aaa
aaaa
```

Doesn't work:

strings starting with b will never be produced

Better procedure: Proper Order (Canonical Order)

1. Produce all strings of length 1

2. Produce all strings of length 2

3. Produce all strings of length 3

4. Produce all strings of length 4

Produce strings in Proper Order:

Theorem: The set of all Turing Machines is countable

Proof: Any Turing Machine can be encoded with a binary string of 0's and 1's

Find an enumeration procedure for the set of Turing Machine strings

Enumerator:

Repeat

1. Generate the next binary string of 0's and 1's in proper order

Check if the string describes a
 Turing Machine
 if YES: print string on output tape
 if NO: ignore string

Binary strings

Turing Machines

```
ignore
        ignore
        ignore
10101101100
                             10101101101
10101101101
101101010010101101 \xrightarrow{S_2} 10110101001010101
```

End of Proof

Simpler Proof:

Each Turing machine binary string is mapped to the number representing its value

Uncountable Sets

We will prove that there is a language L which is not accepted by any Turing machine

Technique:

Turing machines are countable

Languages are uncountable

(there are more languages than Turing Machines)

Theorem:

If S is an infinite countable set, then the powerset 2^S of S is uncountable.

The powerset 2^S contains all possible subsets of S

Example:
$$S = \{a, b\}$$
 $2^S = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

Proof:

Since S is countable, we can list its elements in some order

$$S = \{s_1, s_2, s_3, \ldots\}$$

Elements of S

Elements of the powerset 2^S have the form:

$$\emptyset$$
 $\{s_1, s_3\}$
 $\{s_5, s_7, s_9, s_{10}\}$
 \vdots

They are subsets of S

We encode each subset of \mathcal{S} with a binary string of 0's and 1's

	Binary encoding				
Subset of S	s_1	s_2	<i>s</i> ₃	s_4	• • •
{ <i>s</i> ₁ }	1	0	0	0	• • •
$\{s_2, s_3\}$	0	1	1	0	• • •
$\{s_1, s_3, s_4\}$	1	0	1	1	• • •

Every infinite binary string corresponds to a subset of S:

Example: 1001110
$$\cdots$$
 Corresponds to: $\{s_1, s_4, s_5, s_6, \ldots\} \in 2^S$

Let's assume (for contradiction) that the powerset 2^S is countable

Then: we can list the elements of the powerset in some order

$$2^{S} = \{t_1, t_2, t_3, \ldots\}$$

$$\uparrow //$$
Subsets of S

Powerset element

Binary encoding example

element	binding champic					
t_1	1	0	0	0	0	• • •
t_2	1	1	0	0	0	• • •
t_3	1	1	0	1	0	• • •
t_4	1	1	0	0	1	• • •

t — the binary string whose bits are the complement of the diagonal

$$t_1$$
 1 0 0 0 0 ...
 t_2 1 1 0 0 0 ...
 t_3 1 1 0 1 0 ...
 t_4 1 1 0 0 1 ...

Binary string: $t = 0011\cdots$ (birary complement of diagonal)

The binary string

$$t = 0011...$$

corresponds to a subset of S:

$$t = \{s_3, s_4, \ldots\} \in 2^{S}$$

t = the binary string whose bits are the complement of the diagonal

$$t_1$$
 1 0 0 0 0 ... t_2 1 1 0 0 0 ... t_3 1 1 0 1 0 ... t_4 1 1 0 0 1 ... $t = 0011 \cdot \cdot \cdot \cdot$ Question: $t = t_1$? NO: differ in 1st bit

509

t —the binary string whose bits are the complement of the diagonal

Question: $t = t_2$? NO: differ in 2nd bit

510

t —the binary string whose bits are the complement of the diagonal

Question: $t = t_3$? NO: differ in 3rd bit

511

Thus: $t \neq t_i$ for every i since they differ in the ith bit

However,
$$t \in 2^S \Rightarrow t = t_i$$
 for some i

Therefore the powerset 2^S is uncountable

End of proof

An Application: Languages

Consider Alphabet :
$$A = \{a, b\}$$

The set of all strings:

$$S = \{a,b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, ...\}$$

infinite and countable

because we can enumerate the strings in proper order

Consider Alphabet : $A = \{a, b\}$

The set of all strings:

$$S = \{a,b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, ...\}$$

infinite and countable

Any language is a subset of S:

$$L = \{aa, ab, aab\}$$

Consider Alphabet : $A = \{a, b\}$

The set of all Strings:

$$S = A^* = \{a,b\}^* = \{\varepsilon,a,b,aa,ab,ba,bb,aaa,aab,...\}$$
infinite and countable

The powerset of S contains all languages:

$$2^{S} = \{\emptyset, \{\varepsilon\}, \{a\}, \{a,b\}, \{aa,b\}, \dots, \{aa,ab,aab\}, \dots\}$$

uncountable

Consider Alphabet: $A = \{a, b\}$

Turing machines:
$$M_1$$
 M_2 M_3 \cdots accepts Languages accepted By Turing Machines: L_1 L_2 L_3 \cdots countable

Denote:
$$X = \{L_1, L_2, L_3, \ldots\}$$
 Note: $X \subseteq 2^S$ countable

Note:
$$X \subseteq 2^S$$
 $(s = \{a,b\}^*)$

Languages accepted by Turing machines: X countable

All possible languages: 2^S uncountable

Therefore:
$$X \neq 2^S$$

(since
$$X \subseteq 2^S$$
, we get $X \subseteq 2^S$)

Conclusion:

There is a language L not accepted by any Turing Machine:

$$X \subset 2^S \quad \exists L \in 2^S \text{ and } L \notin X$$

Non Turing-Acceptable Languages

Note that:
$$X = \{L_1, L_2, L_3, ...\}$$

is a multi-set (elements may repeat) since a language may be accepted by more than one Turing machine

However, if we remove the repeated elements, the resulting set is again countable since every element still corresponds to a positive integer

Decidable Languages

Recall that:

A language L is Turing-Acceptable if there is a Turing machine M that accepts L

Also known as: Turing-Recognizable or Recursively-enumerable languages

Turing-Acceptable

For any input string w:

$$w \in L \longrightarrow M$$
 halts in an accept state

 $w \notin L \longrightarrow M$ halts in a non-accept state or loops forever

Definition:

A language L is decidable if there is a Turing machine (decider) M which accepts L and halts on every input string

Also known as recursive languages

Turing-Decidable

For any input string W:

$$w \in L \longrightarrow M$$
 halts in an accept state

$$w \notin L \longrightarrow M$$
 halts in a non-accept state

Observation:

Every decidable language is Turing-Acceptable

Sometimes, it is convenient to have Turing machines with single accept and reject states

These are the only halting states

That result to possible halting configurations

We can convert any Turing machine to have single accept and reject states

Old machine

Multiple accept states

New machine

One accept state

Do the following for each possible halting state:

Old machine

Multiple reject states

New machine

For all tape symbols \mathcal{X} not used for read in the other transitions of q_i

One reject state

For a decidable language L:

For each input string, the computation halts in the accept or reject state

For a Turing-Acceptable language L:

It is possible that for some input string the machine enters an infinite loop A computational problem is decidable if the corresponding language is decidable

We also say that the problem is solvable

Problem: Is number x prime?

Corresponding language:

$$PRIMES = \{1, 2, 3, 5, 7, ...\}$$

We will show it is decidable

Decider for PRIMES:

On input number X:

Divide x with all possible numbers between 2 and \sqrt{x}

If any of them divides X

Then reject

Else accept

the decider Turing machine can be designed based on the algorithm

Problem: Does DFA M accept the empty language $L(M) = \emptyset$?

```
(Decidable)
Corresponding Language:
 EMPTY_{DFA} =
    \{\langle M \rangle : M \text{ is a DFA that accepts empty language } \emptyset \}
 Description of DFA M as a string
 (For example, we can represent M as a
 binary string, as we did for Turing machines)
```

Decider for EMPTY_{DFA}:

On input $\langle M \rangle$:

Determine whether there is a path from the initial state to any accepting state

 $\frac{\mathsf{DFA}\;\mathsf{M}}{\mathsf{L}(\mathsf{M})=\varnothing}$

Decision: Reject $\langle M \rangle$

Accept $\langle M \rangle$

Problem: Does DFA M accept a finite language?

```
Corresponding Language: (Decidable)
```

FINITE_{DFA} =

 $\{\langle M \rangle : M \text{ is a DFA that accepts a finite language}\}$

Decider for $FINITE_{DFA}$: On input $\langle M \rangle$:

Check if there is a walk with a cycle from the initial state to an accepting state

Problem: Does DFA M accept string W?

```
Corresponding Language: (Decidable)
```

```
A_{DFA} = \{\langle M, w \rangle : M \text{ is a DFA that accepts string } w\}
```

```
Decider for ADFA:
```

On input string $\langle M, w \rangle$:

Run DFA M on input string w

```
If M accepts w

Then accept \langle M, w \rangle (and halt)

Else reject \langle M, w \rangle (and halt)
```

Problem: Do DFAs M_1 and M_2 accept the same language?

```
Corresponding Language: (Decidable)
EQUAL_{DFA} = \{\langle M_1, M_2 \rangle : M_1 \text{ and } M_2 \text{ are DFAs that accept} 
the same languages}
```

Decider for EQUALDEA:

On input
$$\langle M_1, M_2 \rangle$$
:

Let L_1 be the language of DFA M_1 Let L_2 be the language of DFA M_2

Construct DFA M such that:

$$L(M) = (L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$$

(combination of DFAs)

$$(L_{1} \cap \overline{L_{2}}) \cup (\overline{L_{1}} \cap L_{2}) = \emptyset$$

$$\downarrow L_{1} \cap \overline{L_{2}} = \emptyset \quad \text{and} \quad \overline{L_{1}} \cap L_{2} = \emptyset$$

$$(L_{1} \quad L_{2}) \overline{L_{2}} \quad (L_{2} \quad L_{1}) \overline{L_{1}}$$

$$L_{1} \subseteq L_{2} \quad \downarrow L_{2} \subseteq L_{1}$$

$$\downarrow L_{1} = L_{2}$$

$$(L_{1} \cap \overline{L_{2}}) \cup (\overline{L_{1}} \cap L_{2}) \neq \emptyset$$

$$\downarrow \qquad \qquad \downarrow$$

$$L_{1} \cap \overline{L_{2}} \neq \emptyset \quad \text{or} \quad \overline{L_{1}} \cap L_{2} \neq \emptyset$$

$$\downarrow \qquad \qquad \downarrow$$

$$L_{1} \not\subset L_{2} \qquad \qquad \downarrow$$

$$L_{1} \not\subset L_{2} \qquad \qquad \downarrow$$

$$L_{1} \not\subset L_{2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$L_{1} \not\subset L_{2}$$

Therefore, we only need to determine whether

$$L(M) = (L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$$

which is a solvable problem for DFAs: $EMPTY_{DFA}$

Theorem:

If a language L is decidable, then its complement \overline{L} is decidable too

Proof:

Build a Turing machine M' that accepts \overline{L} and halts on every input string (M') is decider for \overline{L}

Transform accept state to reject and vice-versa

M q'_{reject} q_{accept} q_{accept}' q_{reject}

Turing Machine M'

On each input string w do:

- 1. Let M be the decider for L
- 2. Run M with input string wIf M accepts then reject

 If M rejects then accept

Accepts \overline{L} and halts on every input string

Undecidable Languages

Undecidable Languages

An undecidable language has no decider:

Any Turing machine that accepts L

does not halt on some input string

We will show that:

There is a language which is Turing-Acceptable and undecidable

We will prove that there is a language L:

- · L is Turing-acceptable
- \overline{L} is not Turing-acceptable (not accepted by any Turing Machine)

Therefore, L is undecidable

Non Turing-Acceptable L

Consider alphabet $\{a\}$

```
Strings of \{a\}^+:
a, aa, aaa, aaaa, \dots
a^1 a^2 a^3 a^4 \dots
```

Consider Turing Machines that accept languages over alphabet $\{a\}$

They are countable:

$$M_1, M_2, M_3, M_4, \dots$$

(There is an enumerator that generates them)

Each machine accepts some language over $\{a\}$

$$M_1, M_2, M_3, M_4, \dots$$

$$L(M_1), L(M_2), L(M_3), L(M_4), \dots$$

Note that it is possible to have

$$L(M_i) = L(M_j)$$
 for $i \neq j$

Since, a language could be accepted by more than one Turing machine

Example language accepted by $\,M_{i}\,$

$$L(M_i) = \{aa, aaaa, aaaaaaa\}$$

$$L(M_i) = \{a^2, a^4, a^6\}$$

Binary representation

	a^1	a^2	a^3	a^4	a^5	a^6	a^7	• • •
$L(M_i)$	0	1	0	1	0	1	0	• • •

Example of binary representations

	a^1	a^2	a^3	a^4	• • •
$L(M_1)$	0	1	0	1	• • •
$L(M_2)$	1	0	0	1	• • •
$L(M_3)$	0	1	1	1	• • •
$L(M_4)$	0	0	0	1	• • •

Consider the language

$$L = \{a^i : a^i \in L(M_i)\}$$

L consists of the 1's in the diagonal

Consider the language \overline{L}

$$\overline{L} = \{a^i : a^i \notin L(M_i)\}$$

$$L = \{a^i : a^i \in L(M_i)\}$$

 \overline{L} consists of the 0's in the diagonal

Theorem:

Language \overline{L} is not Turing-Acceptable

Proof:

Assume for contradiction that

 \overline{L} is Turing-Acceptable

Let M_k be the Turing machine that accepts $\overline{L}: L(M_k) = \overline{L}$

Similarly:
$$M_k \neq M_i$$

$$\neq M_i$$
 for any i

Because either:

$$a^i \in L(M_k)$$

or

$$a^i \notin L(M_k)$$

$$a^i \notin L(M_i)$$

$$a^i \in L(M_i)$$

the machine M_k cannot exist

L is not Turing-Acceptable

Non Turing-Acceptable

We will prove that the language

$$L = \{a^i : a^i \in L(M_i)\}$$

There is a Turing machine that accepts L

Each machine that accepts L doesn't halt on some input string

Theorem: The language

$$L = \{a^i : a^i \in L(M_i)\}$$

Is Turing-Acceptable

Proof: We will give a Turing Machine that accepts $\,L\,$

Turing Machine that accepts L

For any input string w

- Suppose $w = a^i$
- \cdot Find Turing machine M_i (using the enumerator for Turing Machines)
- Simulate M_i on input string a^i
- If M_i accepts, then accept w

End of Proof

Therefore:

Turing-Acceptable

$$L = \{a^i : a^i \in L(M_i)\}$$

Not Turing-acceptable

$$\overline{L} = \{a^i : a^i \notin L(M_i)\}$$

Non Turing-Acceptable T Turing-Acceptable [Decidable

Theorem:
$$L = \{a^i : a^i \in L(M_i)\}$$
 is undecidable

Proof: If L is decidable the complement of a decidable decidable Then L is decidable However, L is not Turing-Acceptable!

Contradiction!!!!

Not Turing-Acceptable T Turing-Acceptable Decidable

Decidable Problems of Regular Languages

Membership Question

Question:

Given regular language L and string w how can we check if $w \in L$?

Answer: Take the DFA that accepts L and check if w is accepted

DFA

$$w \in L$$

DFA

$$w \notin L$$

Question: Given regular language L how can we check if L is empty: $(L = \emptyset)$?

Answer: Take the DFA that accepts L

Check if there is any path from the initial state to an accepting state

DFA

$$L \neq \emptyset$$

DFA

$$L = \emptyset$$

Question: Given regular language L how can we check if L is finite?

Answer: Take the DFA that accepts L

Check if there is a walk with cycle from the initial state to a final state

DFA

L is infinite

L is finite

Question: Given regular languages L_1 and L_2 how can we check if $L_1 = L_2$?

Answer: Find if $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$

$$(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \varnothing$$

$$L_1 \cap \overline{L_2} = \varnothing \quad \text{and} \quad \overline{L_1} \cap L_2 = \varnothing$$

$$L_1 \cap L_2 = Z$$

$$L_1 \cap L_2 \cap L_2 = Z$$

$$L_1 \cap L_2 \cap L_1 \cap L_2 = Z$$

$$L_1 \cap L_2 \cap L_2 \cap L_1 \cap L_2 \cap L_2 \cap L_1 \cap L_1 \cap L_2 \cap L_2 \cap L_1 \cap L_2 \cap L_1 \cap L_2 \cap L_2 \cap L_1 \cap L_2 \cap L_1 \cap L_2 \cap L_2$$

Decidable Problems of Context-Free Languages

Membership Question:

for context-free grammar G find if string $w \in L(G)$

Membership Algorithms: Parsers

- · Exhaustive search parser
- · CYK parsing algorithm

Empty Language Question:

for context-free grammar
$$G$$
 find if $L(G) = \emptyset$

Algorithm:

1. Remove useless variables

2. Check if start variable S is useless

Infinite Language Question:

for context-free grammar $\,G\,$ find if $\,L(G)\,$ is infinite

Algorithm:

- 1. Remove useless variables
- 2. Remove unit and λ productions
- 3. Create dependency graph for variables
- 4. If there is a loop in the dependency graph then the language is infinite

Example: $S \rightarrow AB$

$$A \rightarrow aCb \mid a$$

$$B \rightarrow bB \mid bb$$

$$C \rightarrow cBS$$

Dependency graph

Infinite language

$$S \rightarrow AB$$
 $A \rightarrow aCb \mid a$
 $B \rightarrow bB \mid bb$
 $C \rightarrow cBS$

$$S \Rightarrow AB \Rightarrow aCbB \Rightarrow acBSbB \Rightarrow acbbSbbb$$

$$S \stackrel{*}{\Rightarrow} acbbSbbb \stackrel{*}{\Rightarrow} (acbb)^2 S(bbb)^2$$

$$\stackrel{*}{\Rightarrow} (acbb)^i S(bbb)^i$$

Undecidable Problems

Recall that:

A language L is decidable, if there is a Turing machine M (decider) that accepts L and halts on every input string

Undecidable Language L

There is no decider for L:

there is no Turing Machine which accepts L and halts on every input string

(the machine may halt and decide for some input strings)

For an undecidable language, the corresponding problem is undecidable (unsolvable):

there is no Turing Machine (Algorithm) that gives an answer (yes or no) for every input instance

(answer may be given for some input instances)

We have shown before that there are undecidable languages:

L is Turing-Acceptable and undecidable

We will prove that two particular problems are unsolvable:

Membership problem

Halting problem

Membership Problem

Input: • Turing Machine M

·String w

Question: Does M accept w?

 $w \in L(M)$?

Corresponding language:

 $A_{TM} = \{\langle M, w \rangle : M \text{ is a Turing machine that accepts string } w \}$

Theorem: Am is undecidable

(The membership problem is unsolvable)

Proof:

Basic idea:

We will assume that A_M is decidable; We will then prove that every Turing-acceptable language is also decidable

A contradiction!

Suppose that A_{M} is decidable

Let L be a Turing recognizable language

Let M_{L} be the Turing Machine that accepts L

We will prove that L is also decidable:

we will build a decider for L

String description of M_L

This is hardwired and copied on the tape next to input string s, and then the pair $\langle M_L, s \rangle$ is input to H Decider for L Decider for A_M machine Haccept S (and halt) M_L accepts s? + reject s (and halt) Input

Therefore, L is decidable

Since L is chosen arbitrarily, every Turing-Acceptable language is decidable

But there is a Turing-Acceptable language which is undecidable

Contradiction!!!!

END OF PROOF

We have shown:

We can actually show:

Am is Turing-Acceptable

Turing machine that accepts A_M :

Halting Problem

Input: • Turing Machine M

•String w

Question: Does M halt while

processing input string w?

Corresponding language:

 $HALT_{TM} = \{\langle M, w \rangle : M \text{ is a Turing machine that halts on input string } w \}$

Theorem: $HALT_{TM}$ is undecidable

(The halting problem is unsolvable)

Proof:

Basic idea:

Suppose that $HALT_{TM}$ is decidable; we will prove that every Turing-acceptable language is also decidable

A contradiction!

Suppose that $HALT_{TM}$ is decidable

Input string $\langle M, w \rangle$ →YES M halts on input HALTTM $M_{
m on\ input}^{
m doesn't\ halt} w$ Let M_L be a Turing-Acceptable language Let M_L be the Turing Machine that accepts L

We will prove that $\,L\,$ is also decidable:

we will build a decider for L

Decider for L

Therefore, L is decidable

Since L is chosen arbitrarily, every Turing-Acceptable language is decidable

But there is a Turing-Acceptable language which is undecidable

Contradiction!!!!

END OF PROOF

An alternative proof

Theorem: $HALT_{TM}$ is undecidable (The halting problem is unsolvable)

Proof:

Basic idea:

Assume for contradiction that the halting problem is decidable;

we will obtain a contradiction using a diagonilization technique

Suppose that $HALT_{TM}$ is decidable

Looking inside H

Construct machine H':

If M halts on input W Then Loop Forever Else Halt

Construct machine F:

If M halts on input $\langle M \rangle$ Then loop forever

Else halt

Run F with input itself

If F halts on input $\langle F \rangle$

Then F loops forever on input $\langle F \rangle$ Else F halts on input $\langle F \rangle$

CONTRADICTION!!!

We have shown:

Undecidable HALT_{TM}

We can actually show:

HALT_{TM} is Turing-Acceptable

Turing machine that accepts $HALT_{TM}$:

We showed:

Reductions

Computable function f:

There is a deterministic Turing machine M which for any input string w computes f(w) and writes it on the tape

Problem X is reduced to problem Y

If we can solve problem Y then we can solve problem X

Definition:

Language A is reduced to language B

There is a computable function f (reduction) such that:

$$w \in A \Leftrightarrow f(w) \in B$$

Theorem 1:

If: Language A is reduced to B and language B is decidable

Then: A is decidable

Proof:

Basic idea:

Build the decider for A using the decider for B

Decider for A

From reduction:
$$W \in A \iff f(w) \in B$$

END OF PROOF

Example:

 $EQUAL_{DFA} = \{\langle M_1, M_2 \rangle : M_1 \text{ and } M_2 \text{ are DFAs} \}$ that accept the same languages

is reduced to:

 $EMPTY_{DFA} = \{\langle M \rangle : M \text{ is a DFA that accepts}$ the empty language \emptyset }

We only need to construct:

$$\langle M_1, M_2 \rangle \longrightarrow \begin{array}{c} \text{Reduction} \\ \text{Turing Machine} \\ \text{for reduction } f \end{array} \longrightarrow \begin{array}{c} f(\langle M_1, M_2 \rangle) \\ = \langle M \rangle \text{ DFA} \end{array}$$

$$\langle M_1, M_2 \rangle \in EQUAL_{DFA} \Leftrightarrow \langle M \rangle \in EMPTY_{DFA}$$

Let L_1 be the language of DFA M_1 Let L_2 be the language of DFA M_2

$$\langle \mathcal{M}_1, \mathcal{M}_2 \rangle \longrightarrow \begin{array}{c} \text{Reduction} \\ \text{Turing Machine} \\ \text{for reduction } f \end{array} \longrightarrow \begin{array}{c} f\left(\langle \mathcal{M}_1, \mathcal{M}_2 \rangle\right) \\ = \langle \mathcal{M} \rangle \text{ DFA} \end{array}$$

construct DFA M by combining M_1 and M_2 so that:

$$L(M) = (L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$$

$$L(M) = (L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$$

$$L_1 = L_2$$

$$L_1 = L_2 \Leftrightarrow L(M) = \emptyset$$

$$\langle M_1, M_2 \rangle \in EQUAL_{DFA} \Leftrightarrow \langle M \rangle \in EMPTY_{DFA}$$

$$\iff$$

$$\langle M \rangle \in EMPTY_{DFA}$$

Decider for EQUALDEA

Theorem 2:

If: Language A is reduced to B and language A is undecidable
Then: B is undecidable

Proof: Suppose B is decidable
Using the decider for B
build the decider for A
Contradiction!

If B is decidable then we can build:

Decider for A

$$w \in A \Leftrightarrow f(w) \in B$$

CONTRADICTION!

END OF PROOF

Observation:

To prove that language B is undecidable we only need to reduce a known undecidable language A to B

State-entry problem

- Input: Turing Machine M
 - \cdot State q
 - •String W

Question: Does M enter state q while processing input string w?

Corresponding language:

 $STATE_{TM} = \{\langle M, w, q \rangle : M \text{ is a Turing machine that enters state } q \text{ on input string } w \}$ (while processing)

Theorem: STATE_{TM} is undecidable

(state-entry problem is unsolvable)

Proof: Reduce $HALT_{TM}$ (halting problem)

to $STATE_{TM}$ (state-entry problem)

Halting Problem Decider

Decider for HALTTM

Given the reduction, if $STATE_{TM}$ is decidable, then $HALT_{TM}$ is decidable

A contradiction! since $HALT_{TM}$ is undecidable

We only need to build the reduction:

So that:

$$\langle M, w \rangle \in HALT_{TM} \quad \Leftrightarrow \quad \langle \hat{M}, w, q \rangle \in STATE_{TM}$$

For the reduction, construct \hat{M} from M:

A transition for every unused tape symbol x of q_i

M halts \widehat{M} halts on state q

$$M$$
 halts on input W

 \hat{M} halts on state q on input W

Equivalently:

$$\langle M, w \rangle \in HALT_{TM} \quad \longleftrightarrow \quad \langle \hat{M}, w, q \rangle \in STATE_{TM}$$

END OF PROOF

Blank-tape halting problem

Input: Turing Machine M

Question: Does M halt when started with a blank tape?

Corresponding language:

 $BLANK_{TM} = \{\langle M \rangle : M \text{ is aTuring machine that halts when started on blank tape} \}$

Theorem: BLANK_{TM} is undecidable

(blank-tape halting problem is unsolvable)

```
Proof: Reduce

HALT_{TM} (halting problem)

to

BLANK_{TM} (blank-tape problem)
```

Halting Problem Decider

Decider for HALT_{TM}

Given the reduction, If $BLANK_{TM}$ is decidable, then $HALT_{TM}$ is decidable

A contradiction! since $HALT_{TM}$ is undecidable

We only need to build the reduction:

So that:

$$\langle M, w \rangle \in HALT_{TM}$$
 $\langle \hat{M} \rangle \in BLANK_{TM}$

If M halts then \hat{M} halts too

M halts on input W

 \hat{M} halts when started on blank tape

M halts on input W

 \hat{M} halts when started on blank tape

Equivalently:

$$\langle M, w \rangle \in HALT_{TM}$$
 $\langle \hat{M} \rangle \in BLANK_{TM}$

END OF PROOF

Theorem 3:

If: Language A is reduced to B and language A is undecidable

Then: B is undecidable

Proof: Suppose B is decidable Then \overline{B} is decidable Using the decider for \overline{B} build the decider for A

Contradiction!

Suppose B is decidable

Suppose B is decidable Then \overline{B} is decidable

If \overline{B} is decidable then we can build:

Decider for A

$$w \in A \Leftrightarrow f(w) \in B$$

CONTRADICTION!

Alternatively:

Decider for A

$$w \in A \Leftrightarrow f(w) \notin B$$

CONTRADICTION!

END OF PROOF

Observation:

To prove that language B is undecidable we only need to reduce a known undecidable language A to B (Theorem 2) or \overline{B} (Theorem 3)

Undecidable Problems for Turing Recognizable languages

Let L be a Turing-acceptable language

- · L is empty?
- L is regular?
- · L has size 2?

All these are undecidable problems

Let L be a Turing-acceptable language

- $\cdot L$ is empty?
- L is regular?
- · L has size 2?

Empty language problem

Input: Turing Machine M

Question: Is
$$L(M)$$
 empty? $L(M) = \emptyset$?

Corresponding language:

 $EMPTY_{TM} = \{\langle M \rangle : M \text{ is aTuring machine that accepts the empty language } \emptyset \}$

Theorem: EMPTY_{TM} is undecidable

(empty-language problem is unsolvable)

```
Proof: Reduce
A_{M} \quad \text{(membership problem)}
to
\overline{EMPTY_{TM}} \quad \text{(empty language problem)}
```

membership problem decider

Decider for Am

Given the reduction, if $\overline{EMPTY_{TM}}$ is decidable, then A_{TM} is decidable

A contradiction! since A_M is undecidable

We only need to build the reduction:

So that:

$$\langle M, w \rangle \in A_{TM}$$
 $\langle \hat{M} \rangle \in \overline{EMPTY_{TM}}$

Construct $\langle \hat{M} \rangle$ from $\langle M, w \rangle$: Tape of \hat{M} input string Turing Machine M s = Louisiana? Accept S yes ·Write W on tape, and Maccepts w? \cdot Simulate M on input W

The only possible accepted string S

Turing Machine M

Maccepts
$$W \longrightarrow L(\hat{M}) = \{Louisiana\} \neq \emptyset$$

$$M \stackrel{\text{does not}}{\text{accept}} W \stackrel{\text{}}{\longrightarrow} L(\hat{M}) = \emptyset$$

Turing Machine \hat{M}

Therefore:

$$M$$
 accepts W $\downarrow L(M) \neq \emptyset$

$$L(\hat{M}) \neq \emptyset$$

Equivalently:

$$\langle M, w \rangle \in A_{TM}$$

$$\langle M, w \rangle \in A_{TM} \quad \longleftrightarrow \quad \langle \hat{M} \rangle \in \overline{EMPTY_{TM}}$$

END OF PROOF

Let L be a Turing-acceptable language

- · L is empty?
- L is regular?
- · L has size 2?

Regular language problem

Input: Turing Machine M

Question: Is L(M) a regular language?

Corresponding language:

 $REGULAR_{TM} = \{\langle M \rangle : M \text{ is a Turing machine that accepts a regular language} \}$

Theorem: REGULAR_{TM} is undecidable

(regular language problem is unsolvable)

```
Proof: Reduce
A_{M} \qquad \text{(membership problem)}
to
\overline{REGULAR_{TM}} \qquad \text{(regular language problem)}
```

membership problem decider

Decider for Am

Given the reduction, If $\overline{REGULAR_{TM}}$ is decidable, then A_{TM} is decidable

A contradiction! since A_M is undecidable

We only need to build the reduction:

So that:

$$\langle M, w \rangle \in A_{TM} \quad \longleftrightarrow \quad \langle \hat{M} \rangle \in \overline{REGULAR_{TM}}$$

Construct
$$\langle \hat{M} \rangle$$
 from $\langle M, w \rangle$:

Tape of M

5

input string

Turing Machine M

Maccepts
$$W$$
 \longrightarrow $L(\hat{M}) = \{a^n b^n : n \ge 0\}$

$$M \stackrel{\text{does not}}{=} W \stackrel{\text{does not}}{=} L(\hat{M}) = \emptyset \text{ regular}$$

Turing Machine \widehat{M}

Therefore:

$$M$$
 accepts $W \leftarrow L(\hat{M})$ is not regular

Equivalently:

$$\langle M, w \rangle \in A_{TM}$$

$$\langle M, w \rangle \in A_{TM}$$
 $\langle \hat{M} \rangle \in \overline{REGULAR_{TM}}$

END OF PROOF

Let L be a Turing-acceptable language

- · L is empty?
- L is regular?
- · L has size 2?

Size2 language problem

Input: Turing Machine M

Question: Does
$$L(M)$$
 have size 2 (two strings)? $|L(M)| = 2$?

Corresponding language:

 $SIZE 2_{TM} = \{\langle M \rangle : M \text{ is a Turing machine that accepts exactly two strings} \}$

Theorem: SIZE 2_{TM} is undecidable

(size2 language problem is unsolvable)

Proof: Reduce

A_M (membership problem)

to

 $SIZE 2_{TM}$ (size 2 language problem)

membership problem decider

Decider for Am

Given the reduction, If $SIZE 2_{TM}$ is decidable, then A_{TM} is decidable

A contradiction! since A_M is undecidable

We only need to build the reduction:

$$\langle M, w \rangle \longrightarrow \text{Reduction} \longrightarrow \langle \hat{M} \rangle$$

So that:

$$\langle M, w \rangle \in A_{TM} \quad \longleftrightarrow \quad \langle \hat{M} \rangle \in SIZE 2_{TM}$$

Construct $\langle \hat{M} \rangle$ from $\langle M, w \rangle$: Tape of \hat{M} input string Turing Machine M

$$\begin{array}{c} 2 \text{ strings} \\ \text{Maccepts } w & \longrightarrow L(\hat{M}) = \{\text{Baton,Rouge}\} \end{array}$$

$$M = \frac{\text{does not}}{\text{accept}} w$$

$$M \stackrel{\text{does not}}{\text{accept}} W \stackrel{\text{}}{\longrightarrow} L(\hat{M}) = \emptyset \quad 0 \text{ strings}$$

Turing Machine M

Therefore:

$$M$$
 accepts $W \leftarrow L(\hat{M})$ has size 2

Equivalently:

$$\langle M, w \rangle \in A_{TM} \quad \Leftrightarrow \quad \langle \hat{M} \rangle \in SIZE2_{TM}$$

END OF PROOF