

Grafos

Prof. Esp. Rodrigo Hentz

Grafos - Introdução

- Nesta aula examinaremos uma nova estrutura de dados: o grafo.
- Definiremos alguns dos termos associados aos grafos e mostraremos como implementá-los em C.

Grafos - Definição

- Um grafo é a representação gráfica de um determinado problema e consiste em um conjunto de nós (ou vértices) e em um conjunto de arcos (ou arestas). Cada arco em um grafo é especificado por um par de nós.
- Em uma sequência de nós {A,B,C,D,E,F,G,H}, o conjunto de arcos é {(A,B), (A,D),(A,C), (C,D), (C,F), (E,G), (A,A)}.

Grafos - Dígrafo

• Se os *pares de nós* que formam os *arcos* forem pares ordenados, diz-se que o grafo é um *grafo orientado* (ou *dígrafo*). As setas entre os nós representam arcos. O conjunto de arcos do grafo abaixo é {<A,B>, <A,C>, <A,D>, <C,D>, <F,C>, <E,G>, <A,A>}.

Grafos - Grau, grau de entrada e grau de saída de um nó

O grau de um nó é o número de arcos incidentes nesse nó. O grau
de entrada de um nó n é o número de arcos que têm n como ponto
de destino, e o grau de saída de n é o número de arcos que têm n
como ponto de saída.

No grafo abaixo o nó A tem **grau** 3, **grau de entrada** 1 e **grau de**

saída 2.

Grafos – Adjacência, predecessor e sucessor

- Um nó n será adjacente a um nó m se existir um arco de m até n.
 Se n for adjacente a m, n será chamado de sucessor de m e m será um predecessor de n.
- Abaixo o nó A é adjacente de B, C e D. {(A,B), (A,D), (A,C)}
- O nó A é chamado de sucessor.
- Os nós B, C e D são predecessores.

Grafos – Caminho

- Um caminho é a sequência de arcos e nós percorridos com o objetivo de ligar dois nós não adjacentes.
- No grafo ao lado (A,B), (B,D) é o caminho que liga o nó A ao nó D.
- No grafo ao lado (A,C), (C,F), (F,G) é o caminho que liga o nó A ao nó G.

Grafos – Matriz de adjacência

Uma forma de se representar grafos é através de uma matriz de adjacência. Um grafo pode ser representado pela matriz de adjacência A, tal que, se existir aresta de i a j, então: A[i , j] = 1 e
 0 caso contrário. Levar em consideração o número de vértices (nós) para a matriz.

	1	2	3	4	5	6	
1	0	1	0	0	0	0	
2	0	0	1	1	0	0	
3	0	0	1	0	0	0	$\frac{1}{1}$
4	1	0	1	0	0	0	
5	0	0	0	0	0	1	
6	0	0	0	0	0	0	5

Grafos – Técnicas de pesquisa

- As mais comuns e as mais importantes técnicas de pesquisa em grafos são:
 - Pesquisa de profundidade primeiro (ou caminhamento em profundidade)
 - Pesquisa de extensão primeiro (ou caminhamento em amplitude)
 - Pesquisa de menor custo (ou menor caminho)

Grafos – Técnicas de pesquisa

 Utilizaremos como exemplo um grafo para determinarmos o melhor caminho para um voo utilizando a representação abaixo, utilizando como meta o destino Los Angeles.

Grafos – Técnicas de pesquisa – Profundidade primeiro

• A pesquisa de profundidade primeiro explora cada caminho possível até a conclusão antes que outro caminho seja tentado. Para exemplificar considere a árvore a seguir onde F é a meta. O percurso vai pela esquerda até que um nó terminal seja encontrado. Se for encontrado o percurso volta um nível, vai a direita, em seguida a esquerda e continua até que a meta ou um nó terminal seja encontrado.
Início

Caminho percorrido ABDBEBACF.

Grafos – Técnicas de pesquisa – Profundidade primeiro

 No exemplo da rota para Los Angeles o caminho percorrido por esta forma de pesquisa seria: New York para Chicago, depois para Denver e depois para Los Angeles.

Grafos – Técnicas de pesquisa – Extensão primeiro

- Neste método cada nó pertencente ao mesmo nível é verificado antes que a pesquisa prossiga para o próximo nível.
- No caso do grafo abaixo tendo como meta o nó C o percurso seria:
 ABC

Grafos – Técnicas de pesquisa – Extensão primeiro

 No exemplo da rota para Los Angeles o caminho percorrido por esta forma de pesquisa seria: New York para Chicago, depois para Toronto e finalmente para Los Angeles.

Grafos – Técnicas de pesquisa – Menor custo

 A pesquisa de menor custo toma o caminho de menor resistência para chegar a meta. No nosso exemplo dos voos implica o voo de conexão mais curto, de forma que a rota encontrada tem uma boa chance de cobrir a menor distância.

Grafos – Técnicas de pesquisa – Menor custo

 No exemplo da rota para Los Angeles o caminho percorrido por esta forma de pesquisa seria: New York para Toronto e depois para Los Angeles

Grafos – Técnicas de pesquisa – Múltiplas soluções

- Como foi demonstrado, as pesquisas podem em alguns casos ser mais eficientes do que outras, levando em consideração a ordem das informações inseridas. Neste caso é importante encontrar mais de uma solução para o problema.
- Existem diversas maneiras de gerar mais de uma solução, mas trataremos de duas delas. A primeira é a remoção de percurso e a segunda é a remoção de um nó.

Grafos – Técnicas de pesquisa – Múltiplas soluções

- O método de remoção de percurso remove todos os nós que formam uma solução atual do banco de dados e, então, tenta encontrar outra solução. Em resumo, a remoção de percurso corta galhos da árvore.
- Solução 1: New York -> Chicago -> Denver -> Los Angeles
 3.000
- Solução 2: New York -> Toronto -> Los Angeles
 2.600
- Solução 3: New York -> Denver -> Los Angeles
 2.900

Grafos – Técnicas de pesquisa – Múltiplas soluções

- O método de remoção de nó simplesmente remove o último nó do percurso da solução atual e tenta novamente fazer o percurso.
- Solução 1: New York -> Chicago -> Denver -> Los Angeles
 3.000
- Solução 2: New York -> Chicago -> Denver -> Houston ->Los
 Angeles 5.000
- Solução 3: New York -> Toronto -> Los Angeles
 2.600

