



# ON THE ENERGY RELEASE AFTER METEOROIDS FRAGMENTATION

L.A.Egorova and V.V. Lokhin
Institute of Mechanics
Moscow State Univercity



### Mass distribution of destroyed body fragments

- **Fujiwara A.** et al. **1989** Experiments and scaling laws for catastrophic collisions //Asteroids II. 240-265.
- *Fujiwara A.* **1986** Results obtained by laboratory simulations of catastrophic impact //Memorie della Societa Astronomica Italiana. **57:** 47-64.
- **Brown W. K., Wohletz K. H. 1995** Derivation of the Weibull distribution based on physical principles and its connection to the Rosin–Rammler and lognormal distributions //Journal of Applied Physics. **78:** 2758-2763.
- *Pilyugin N.N.* 2008 Destruction of filled polymer targets by high-velocity impact
- // Combustion, Explosion, and Shock Waves. 44:239-247.
- Onose N., Fujiwara A. 2004 Mass-velocity distributions of fragments in oblique impact cratering on gypsum //Meteoritics & Planetary Science. 39: 321-331.
- Okamoto C., Arakawa M. 2009 Experimental study on the collisional disruption of porous gypsum spheres //Meteoritics & Planetary Science, 44:1947-1954



# Catastrophic fragmentation types (Fujiwara, 1986)



Fig. 2 (al) Longitudinal splitting and (a2) Cone type destruction of a spherical target in low-velocity impact (following Matsui (1982)). (b) Core type destruction in high-velocity impact. Notice the core in the center of the target. Arrows show the sense of the rotation of the fragments (See section 5)

Fujiwara A. (1986) //Memorie della Societa Astronomica Italiana. 57:.47-64.

# Mass distribution of fragmented particles under different catastrophic destruction type



a) Run 1 was cone-type destruction mode. b) The specific energy of Run 8, which shows catastrophic destruction mode, was one order of magnitude larger than that of Run 1.



**Okamoto C., Arakawa M.** Meteoritics & Planetary Science. 2009. **44**. 1947-1954



### **Distribution of fragments**

$$\frac{dN_m}{dm} = Cm^{\frac{k}{3}-2}, \quad k = 1.2$$

**Fujiwara A. et al. 1989** //Asteroids II: 240-265.

$$N_m = \frac{2}{3} \left( \frac{1}{\overline{m}^{0,6}} - 1 \right),$$



Okamoto C., Arakawa M. 2009



#### Models of energy release



Shuvalov V.V., Svettsov V.V., Trubetskaya I.A. (2013) An estimate for the size of the area of damage on the Earth's surface after impacts of 10–300-m asteroids Sol. Sys. Res.,47: 284-291.

Flow picture for a vertical fall on the Earth of an asteroid with a diameter of 40 m: the distribution of relative density  $\rho/\rho_0(z)$ .





Popova, O. P., Jenniskens, P., Emel'yanenko, V.V, Kartashova A.P. et al (2013). Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. *Science*, *342*(6162), 1069-1073.

Fig.3. Map of glass damage on the ground with models of overpressure



#### Meteoroid fragments movement after destruction







$$M_{\Sigma} \frac{V_0^2}{2} \Longrightarrow c_V T \rho^* \Omega$$



 $\Omega$  is gas volume,  $c_V$  – heat capacity of gas, T – temperature,  $~M_\Sigma$  - total mass of fragments,  $V_0$  – meteoroid velocity at the moment of fragmentation

$$N_m = \frac{2}{3} \left( \frac{1}{\overline{m}^{0.6}} - 1 \right), \qquad \overline{m} = \frac{m}{M}$$

(Fujiwara et al. 1989, Nemtchinov et al. 1999)



#### **Equations of the Physical Theory of Meteors**

$$\begin{cases} m\frac{dV}{dt} = -\frac{1}{2}C_D\rho V^2 S \\ Q\frac{dM}{dt} = -\frac{1}{2}C_H\rho V^3 S \end{cases}$$

V, m, S, Q, – velocity, mass, midsection area of particle and enthalpy of mass loss due to aerodynamic forces and heat transfer;

 $C_D$  and  $C_H$  – drag and heat transfer coefficients (constants),

ρ is atmosphere density

$$r = r_0 \exp\left[-\kappa \left(V_0^2 - V^2\right)\right], \qquad \kappa = \frac{C_H}{6C_D Q}$$

$$V = V_0 \exp\left(-A\left(1 + \kappa V_0^2\right)\frac{z}{r_0}\right). \qquad A$$

$$\kappa = \frac{C_H}{6C_D Q} \qquad \kappa = \frac{C_H}{6C_D Q} << 1 \qquad \frac{V^2}{V_0^2} << 1$$

$$A = -\frac{3}{8} C_D \frac{\rho}{\delta}.$$



### Transition of kinetic energy of particles into heat energy of a gas

$$\Delta E = M_0 \frac{V_0^2}{2} - M_0 V_0^2 \int_0^1 \left[ N(\overline{r_0}) \frac{d}{d\overline{r_0}} \left( \overline{m}(\overline{r_0}) \frac{\overline{V}^2(\overline{r_0}, z)}{2} \right) \right] d\overline{r_0}$$

 $\overline{r}_{\!\scriptscriptstyle 0}=r_{\!\scriptscriptstyle 0}$  / R the initial relative radius ,  $\ \overline{m}(\overline{r}_{\!\scriptscriptstyle 0})$  =m $_{\!\scriptscriptstyle 0}$ /M relative mass

#### Temperature of a Gas Cloud



$$T = \frac{-\frac{dE}{dz}dz}{C_{V}\rho\pi R_{*}^{2}dz}$$

$$T = \frac{3R^2V_0^2C_D}{C_VR_*^2} \left(1 + 3\kappa V_0^2\right) \left[1 - \left(\frac{3}{4}\frac{\rho C_D}{\delta}\right)^{1/5} \left(1 + 3\kappa V_0^2\right)^{1/5} \Gamma\left(\frac{4}{5}\right) \left(\frac{z}{R}\right)^{1/5}\right]$$

Here  $\Gamma$  is gamma function,  $C_V$  is a heat capacity



# Calculation of the Temperature of a Gas Cloud

$$M_0 = 1.3 \cdot 10^{10} c$$
,  $V_0 = 2 \cdot 10^6 c$  m/c,

$$M_0 = 1.3 \cdot 10^{10} c$$
,  $V_0 = 2 \cdot 10^6 c M/c$ ,  $\delta = 3.6 g/sm^3$ ,  $C_V = 7.2 \cdot 10^6 \frac{sm}{s^2 \cdot K}$ 

$$R_* = 10^4 sm$$
,  $R_1 = 9m$ ;  $R_2 = 6m$ ,  $C_D = 1$ 

$$T_{\max R} = \frac{3R^2 V_0^2 C_D}{C_V R_*^2}$$

$$T_{\text{max}}(R=9m) = 13540K,$$
  
 $T_{\text{max}}(R=6m) = 6019K$ 







# **Conclusions**

- Assuming a known distribution of meteoroid fragments by mass, a change in the temperature of the gas cloud after meteoroid destruction by the explosive mechanism is obtained.
- The high temperature of the gas in a cloud allows us to talk about the phenomenon of a "thermal explosion".
- Calculation of the gas cloud temperature is a first step in a problem of energy release estimation by fragmenting meteoroid in Earth atmosphere.



# Thank you for your attention!