## 华中科技大学 2020~2021 学年第一学期



## " 矩阵论 "考试试卷

考试方式: 闭卷 考试日期: 2020年11月30日 考试时长: 150分钟

专业班级: \_\_\_\_\_\_ 学号: \_\_\_\_\_ 姓名: \_\_\_\_\_

| 题号 | _ | = | 11 | 四 | 五 | 六 | 七 | 八 |  | 总分 |
|----|---|---|----|---|---|---|---|---|--|----|
| 分数 |   |   |    |   |   |   |   |   |  |    |

| 分 数 |  |
|-----|--|
| 评卷人 |  |

- 一、 填空题(15分)(每小题3分,共5小题)
- 1. 设方阵 $A \in C^{4\times 4}$  的最小多项式为 $m_A(\lambda) = (\lambda 1)^k (\lambda 2)$ 。则 当 k =\_\_\_\_\_ 时, A 可相似对角化。
- 2. **R**<sup>3</sup> 中的线性变换 T(x)=x-(1-k)(x,u)u ,其中是 k 常数,  $u=\frac{1}{\sqrt{3}}(1,1,1)^T$  ,则线性变换 T 的 3 个特征值为
- 3. 矩阵 $A = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$ 的奇异值为\_\_\_\_\_。
- 4. 设矩阵 $A = \begin{bmatrix} -1 & 0 & 2 \\ 3+i & 5 & 1+i \\ 2 & i & 2 \end{bmatrix}$ ,则  $||A||_1 =$ \_\_\_\_\_。
- 5.  $A = \frac{1}{3} \begin{bmatrix} 7 & -2 \\ 2 & 2 \end{bmatrix}$ ,  $B = \begin{bmatrix} 1 & 11 & 15 \\ 0 & 2 & 17 \\ 0 & 0 & 3 \end{bmatrix}$ ,  $\mathbb{M}$   $\operatorname{tr}(A \otimes B) = \underline{\qquad}$

分数 评卷人

二、 (15 分) 设 T(A)=PA,  $\forall A \in \mathbb{R}^{2\times 2}$ , 这 里  $P = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ 。求线性变换 T 在  $\mathbb{R}^{2\times 2}$  的自然

基  $E_{11}$ ,  $E_{12}$ ,  $E_{21}$ ,  $E_{22}$ 下的矩阵 B 及 N(T) 。

| 分 数 | F 0                                                         | 4              | 43                                       |
|-----|-------------------------------------------------------------|----------------|------------------------------------------|
| 评卷人 | $(15 分) 设矩阵 A = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$ | -1<br>_1       | $\begin{bmatrix} -1 \\ -2 \end{bmatrix}$ |
|     |                                                             | - <sub>1</sub> | $\frac{-2}{2}$                           |

(1)写出其 Jordan 标准型  $J_A$  以及相应的相似变换矩阵P使得  $P^{-1}AP = J_A \, .$ 

(2)求解微分方程组 
$$x'(t) = A x(t), x(0) = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
。

| 分 数 |  |
|-----|--|
| 评卷人 |  |

四、 (15 分) 计算矩阵  $A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$ 

的奇异值(SVD)分解  $A=U\sum V^H$ (请给出矩阵U,

 $\Sigma$ , V 的具体形式)。

| 分 数 |    |       |                   |     | г1                                     | 17                                     |               |
|-----|----|-------|-------------------|-----|----------------------------------------|----------------------------------------|---------------|
| 评卷人 | 五、 | (15分) | 设矩阵               | A = | $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ | $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ | 向量 <b>b</b> = |
|     |    | , ,   | 2 47 <b>—</b> 1 1 |     | $L_0$                                  | 1                                      | , , ,         |

 $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ 。计算不相容方程组 Ax = b 的最佳最小二乘解。

分数 评卷人

六、  $(7 \, \beta)$  矩阵  $A \in \mathbb{C}^{n \times n}$ , I 是单位矩阵, 证明: 对任意的常数 $\alpha > 0$ , 下面的不等式成立

$$\|(\alpha I+A^HA)^{-1}A^H\|_2\leq \frac{1}{\sqrt{2\alpha}}$$

| 分 数 | 七、 $(8  \text{分})$ 设 $A \in R^{m \times n}$ , $rank(A) = 1$ , 证明                                       |
|-----|--------------------------------------------------------------------------------------------------------|
| 评卷人 | $A^{+} = \frac{1}{a}A^{T},  \text{\'eth}  a = \sum_{i=1}^{m} \sum_{j=1}^{n} \left  a_{ij} \right ^{2}$ |

| 分 数 |  |
|-----|--|
| 评卷人 |  |

八、 (10 分) 设矩阵  $A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ ,  $B = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ ,  $C = \begin{bmatrix} 1 & 3 \\ 1 & 0 \end{bmatrix}$ , 求解下面的矩阵方程,

其中 X 为未知矩阵

$$AXB - X = C$$
.