Comparison of UUnifast and DRS Tasksets on Dynamic Task Scheduling Algorithms

(Author: Souvik Sarkar and Mario Günzel)

Abstract – This article provides a comparison between evaluations between tasksets generated by UUniFast and DRS respectively, on various Dynamic Task Scheduling Algorithms.

UUnifast: So, for UUniFast suspension time ['sslength'] is drawn uniformly from the interval between the minimum suspension length value and maximum suspension length value. We have the following three setups:

- 1. Short Suspension [0.0(Ti Ci), 0.2(Ti Ci)]
- 2. Moderate Suspension [0.2(Ti Ci), 0.4(Ti Ci)]
- 3. Long Suspension [0.4(Ti Ci), 0.6(Ti Ci)]

Depending on the considered suspension models, the suspension time of each task is drawn accordingly

DRS: Unlike UUniFast, Dirichlet- Rescaling Algorithm are used for asymmetric constraints and works with separate upper bounds and lower bounds for each task.

- 1. Setup 1 (minsus+ex=0.1*number of tasks per set, maxsus+ex=1.0)
- 2. Setup 2 (minsus+ex=0.3*number of tasks per set, maxsus+ex=1.0)
- 3. Setup 3 (minsus+ex=0.5*number of tasks per set, maxsus+ex=1.0)

<u>Suspension Oblivious:</u> Here we will see how a Dynamic Scheduling Algorithm (Suspension Oblivious) performs on different setups for UUniFast and DRS

UUniFast 1st **Setup**: Short Suspension [0.0(Ti - Ci), 0.2(Ti - Ci)]

UUniFast 2st **Setup:** Moderate Suspension [0.2(Ti - Ci), 0.4(Ti - Ci)]

→ SUSPOBL

UUniFast 3rd Setup: Long Suspension [0.4(Ti - Ci), 0.6(Ti - Ci)]

DRS 1ST Setup:

Execution Time

DRS 2nd Setup:

Suspension Jitter:

UUniFast 1st **Setup**: Short Suspension [0.0(Ti - Ci), 0.2(Ti - Ci)]

UUniFast 2st **Setup:** Moderate Suspension [0.2(Ti - Ci), 0.4(Ti - Ci)]

