INP-ENSEEIHT 1^{ère} année SN

TP2 - Droites de régression

Lancez le script données qui génère et affiche une droite ainsi que des points P_i autour de cette dernière, simulant du bruit sur les données. À partir de ces données, on va chercher à estimer les paramètres de la droite de quatre manières différentes qui sont :

- par le maximum de vraisemblance à partir de l'équation paramétrique,
- par les moindres carrés à partir de l'équation paramétrique,
- par le maximum de vraisemblance à partir de l'équation cartésienne normalisée,
- par les moindres carrés à partir de l'équation cartésienne normalisée.

Exercice 1 : estimation de D_{YX} par le maximum de vraisemblance

Si n points $P_i = (x_i, y_i)$ du plan se situent au voisinage d'une droite D d'équation paramétrique y = ax + b, il est légitime de modéliser les résidus $r_{(a,b)}(P_i) = y_i - a x_i - b$ par une loi normale centrée d'écart-type σ :

$$f_{(\sigma,a,b)}(P_i) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{r_{(a,b)}(P_i)^2}{2\sigma^2}\right\}$$
 (1)

La droite de régression de Y en X d'un tel nuage de points, notée D_{YX} , est la droite d'équation paramétrique $y = a^*x + b^*$, où a^* et b^* sont les valeurs des paramètres a et b qui maximisent la log-vraisemblance :

$$(\sigma^*, a^*, b^*) = \underset{(\sigma, a, b) \in \mathbb{R}^+ \times \mathbb{R}^2}{\arg \max} \left\{ \ln \prod_{i=1}^n f_{(\sigma, a, b)}(P_i) \right\} = \underset{(\sigma, a, b) \in \mathbb{R}^+ \times \mathbb{R}^2}{\arg \min} \sum_{i=1}^n \left\{ \ln \sigma + \frac{r_{(a, b)}(P_i)^2}{2\sigma^2} \right\}$$
(2)

Si l'on suppose l'écart-type du bruit σ fixé, alors le problème se simplifie :

$$(a^*, b^*) = \underset{(a,b) \in \mathbb{R}^2}{\operatorname{arg \, min}} \sum_{i=1}^n r_{(a,b)}(P_i)^2 = \underset{(a,b) \in \mathbb{R}^2}{\operatorname{arg \, min}} \sum_{i=1}^n (y_i - a \, x_i - b)^2$$
(3)

La résolution de (3) par tirages aléatoires n'est pas aussi simple qu'il y paraît car : d'une part les inconnues a et b ne sont pas bornées, et d'autre part a ne suit pas une loi uniforme. Néanmoins, il est facile de montrer que D_{YX} contient le centre de gravité G des points P_i . On peut donc calculer les coordonnées (x_G, y_G) de G, puis centrer les données. L'équation de D_{YX} devenant $y' = a^*x'$ après changement d'origine, et le problème se simplifie encore :

$$a^* = \arg\min_{a \in \mathbb{R}} \sum_{i=1}^n (y_i' - a \, x_i')^2 = \tan \left\{ \arg\min_{\psi \in]-\frac{\pi}{2}, \frac{\pi}{2}[} \sum_{i=1}^n (y_i' - \tan \psi \, x_i')^2 \right\}$$
(4)

Dans (4), la deuxième égalité vient du fait que le paramètre a d'une droite est égal à la tangente de son angle polaire ψ . La résolution de (4) peut être effectuée par tirages aléatoires de ψ selon une loi uniforme sur l'intervalle] $-\frac{\pi}{2}, \frac{\pi}{2}$ [.

Dans un premier temps, complétez la fonction centrage_des_données qui retourne les coordonnées x_G et y_G du centre de gravité ainsi que les vecteurs centrés des données $(x_i' = x_i - x_G \text{ et } y_i' = y_i - y_G)$. Complétez ensuite la fonction estimation_Dyx_MV, appelée par le script exercice_1, permettant de résoudre le problème (4) correspondant au maximum de vraisemblance pour l'équation paramétrique.

INP-ENSEEIHT 1^{ère} année SN

Exercice 2 : estimation de D_{YX} par les moindres carrés

Le critère à minimiser dans (2) peut se réécrire sous la forme $\mathcal{F}(\sigma, a, b) = n \ln \sigma + \frac{1}{2\sigma^2} \sum_{i=1}^n r_{(a,b)}(P_i)^2$. Le problème (2) peut donc également être considéré comme un problème d'optimisation différentiable. En notant $\mathcal{G}(a,b) = \sum_{i=1}^n r_{(a,b)}(P_i)^2$, on obtient :

$$\nabla \mathcal{F}(\sigma, a, b) = 0 \quad \iff \begin{cases} \nabla_{\sigma} \mathcal{F}(\sigma, a, b) = 0 \\ \nabla_{a, b} \mathcal{F}(\sigma, a, b) = 0 \end{cases} \quad \iff \begin{cases} \sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} r_{(a, b)}(P_{i})^{2} \\ \nabla \mathcal{G}(a, b) = 0 \end{cases}$$
 (5)

La première de ces équations était prévisible, puisque c'est la définition même de la variance. Quant à la deuxième équation, elle correspond à l'optimalité du critère à minimiser dans (3). Or, ce critère s'écrit aussi :

$$\mathcal{G}(a,b) = \|AX - B\|^2, \text{ où } A = \begin{bmatrix} x_1 & \cdots & x_n \\ 1 & \cdots & 1 \end{bmatrix}^\top, X = \begin{bmatrix} a \\ b \end{bmatrix} \text{ et } B = \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}^\top$$
 (6)

Minimiser $\mathcal{G}(a,b)$ revient donc à chercher une solution approchée du système linéaire AX=B, au sens des moindres carrés (voir cours d'Analyse de Données au second semestre). Le problème se résout en écrivant les équations normales $A^{\top}AX=A^{\top}B$, dont la solution s'écrit $X^*=(A^{\top}A)^{-1}A^{\top}B=A^{+}B$, où $A^{+}=(A^{\top}A)^{-1}A^{\top}$ est la matrice pseudo-inverse de A.

Complétez la fonction estimation_Dyx_MC, appelée par le script exercice_2, permettant de comparer cette méthode d'estimation de D_{YX} avec celle de l'exercice 1. En lançant plusieurs fois le script, observez ce qui se passe lorsque la droite réelle est quasi-verticale.

Exercice 3 : estimation de D_{\perp} par le maximum de vraisemblance

Une droite D du plan peut également être définie par son équation cartésienne normalisée $x\cos\theta+y\sin\theta=\rho$, où (ρ,θ) sont les coordonnées polaires de la projection orthogonale sur D de l'origine O du repère. Si l'on note (x_Q,y_Q) les coordonnées cartésiennes de ce point, appelé Q, alors la distance à l'origine de Q vaut $\rho=\sqrt{x_Q^2+y_Q^2}\in\mathbb{R}^+$ et l'angle polaire $\theta=\arctan\left(\frac{y_Q}{x_Q}\right)\in\left]-\frac{\pi}{2},\frac{\pi}{2}\right]$.

Dans le cas où la droite D passe par l'origine O, l'angle polaire θ de Q=O n'est pas défini. L'équation cartésienne normalisée de D s'écrit alors $x\cos\theta+y\sin\theta=0$, où θ est l'angle polaire d'un des vecteurs orthogonaux à D, défini à π près.

Il semble légitime de modéliser les résidus $r_{(\theta,\rho)}(P_i) = x_i \cos \theta + y_i \sin \theta - \rho$ par une loi normale centrée :

$$f_{(\sigma,\theta,\rho)}(P_i) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{r_{(\theta,\rho)}(P_i)^2}{2\sigma^2}\right\}$$
 (7)

La droite de régression en distance orthogonale du nuage de points, notée D_{\perp} , est la droite ayant pour équation $x\cos\theta^* + y\sin\theta^* = \rho^*$, où θ^* et ρ^* sont les valeurs des paramètres θ et ρ qui maximisent la log-vraisemblance :

$$(\sigma^*, \theta^*, \rho^*) = \underset{(\sigma, \theta, \rho) \in \mathbb{R}^+ \times \left] - \frac{\pi}{2}, \frac{\pi}{2} \right] \times \mathbb{R}^+}{\operatorname{arg max}} \left\{ \ln \prod_{i=1}^n f_{(\sigma, \theta, \rho)}(P_i) \right\} = \underset{(\sigma, \theta, \rho) \in \mathbb{R}^+ \times \left] - \frac{\pi}{2}, \frac{\pi}{2} \right] \times \mathbb{R}^+}{\operatorname{arg min}} \sum_{i=1}^n \left\{ \ln \sigma + \frac{r_{(\theta, \rho)}(P_i)^2}{2\sigma^2} \right\}$$
(8)

En supposant σ fixé, et sachant que la droite de régression D_{\perp} contient elle aussi le centre de gravité G, la résolution du problème (7) est en tout point analogue à celle du problème (2). Par analogie avec (4) :

$$\theta^* = \underset{\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]}{\arg \min} \sum_{i=1}^n (x_i' \cos \theta + y_i' \sin \theta)^2$$
(9)

Complétez la fonction estimation_Dorth_MV, appelée par le script exercice_3, permettant de résoudre le problème (8) correspondant au maximum de vraisemblance pour l'équation cartésienne normalisée.

INP-ENSEEIHT 1^{ère} année SN

Exercice 4 : estimation de D_{\perp} par les moindres carrés

Le critère $\mathcal{I}(\theta) = \sum_{i=1}^{n} (x_i' \cos \theta + y_i' \sin \theta)^2$ à minimiser dans (8) s'appelle l'*inertie*. Il s'écrit également :

$$\mathcal{I}(\theta) = \|CY\|^2 \quad \text{, où } C = \begin{bmatrix} x_1' & \cdots & x_n' \\ y_1' & \cdots & y_n' \end{bmatrix}^\top \text{ et } Y = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
 (10)

Or, la solution approchée du système linéaire CY = O, au sens des moindres carrés ordinaires, vaut $C^+O = O$. Pour éviter cette solution, on impose la contrainte ||Y|| = 1. Ce nouveau problème se résout en introduisant le lagrangien $\mathcal{L}(Y,\lambda) = ||CY||^2 + \lambda (1-||Y||^2)$, où λ constitue un multiplicateur de Lagrange. La condition d'optimalité de \mathcal{L} s'écrit :

$$\nabla \mathcal{L}(Y,\lambda) = 0 \iff \begin{cases} \nabla_Y \mathcal{L}(Y,\lambda) = 0 \\ \nabla_\lambda \mathcal{L}(Y,\lambda) = 0 \end{cases} \iff \begin{cases} C^\top CY = \lambda Y \\ \|Y\| = 1 \end{cases}$$
 (11)

Sachant que $C^{\top}C$ est symétrique réelle, cette matrice admet une base orthonormée de vecteurs propres. De plus, comme $C^{\top}C$ est semi-définie positive, ses valeurs propres sont positives ou nulles. Le minimiseur de $\mathcal{I}(\theta)$ dont la norme est égale à 1, noté Y^* , est donc le vecteur propre associé à la plus petite valeur propre de $C^{\top}C$. Il s'agit du vecteur perpendiculaire à celui correspondant à l'axe qui est le long des points (par analogie au vecteur normal définissant un plan dans l'espace). En effet, pour un vecteur propre Y_p de norme 1, associé à la valeur propre λ_p , on a :

$$||CY_p||^2 = Y_p^\top C^\top C Y_p = \lambda_p Y_p^\top Y_p = \lambda_p.$$
(12)

Écrivez la fonction estimation_Dorth_MC, appelée par le script exercice_4, permettant de comparer cette méthode d'estimation de D_{\perp} à celle de l'exercice 3. La fonction eig permet de calculer les valeurs propres et vecteurs propres de la matrice $C^{\top}C$. La valeur de l'angle θ s'obtient quant à elle avec la fonction atan. Observez l'évolution des résultats en fonction de n et de n_{tests} , et aussi dans le cas où la droite réelle est quasi-verticale.