Text-Independent Speaker Recognition Using Gaussian Mixture Models

Eduardo Martins Barros de Albuquerque Tenório

Centro de Informática Universidade Federal de Pernambuco Trabalho de Graduação em Engenharia da Computação

embat@cin.ufpe.br

Recife, 25 de Junho de 2015

Conteúdo

- Introdução
- Sistemas de Reconhecimento de Locutor
- Extração de Características
- Modelos de Mistura Gaussianas
- Experimentos
- Conclusão

Conteúdo

- Introdução
- 2 Sistemas de Reconhecimento de Locutor
- Extração de Características
- Modelos de Mistura Gaussianas
- Experimentos
- Conclusão

Fala O que está sendo dito

- Fala O que está sendo dito
 - Conteúdo da mensagem

Fala O que está sendo dito

- Conteúdo da mensagem
- Estado emocional do locutor

Fala O que está sendo dito

- Conteúdo da mensagem
- Estado emocional do locutor
- Sotaque ou dificuldade de articulação

- Fala O que está sendo dito
 - Conteúdo da mensagem
 - Estado emocional do locutor
 - Sotaque ou dificuldade de articulação

Locutor Quem está falando

- Fala O que está sendo dito
 - Conteúdo da mensagem
 - Estado emocional do locutor
 - Sotaque ou dificuldade de articulação

Locutor Quem está falando

• Identificar uma pessoa num grupo

Fala O que está sendo dito

- Conteúdo da mensagem
- Estado emocional do locutor
- Sotaque ou dificuldade de articulação

Locutor Quem está falando

- Identificar uma pessoa num grupo
- Autenticar um usuário

Fala O que está sendo dito

- Conteúdo da mensagem
- Estado emocional do locutor
- Sotaque ou dificuldade de articulação

Locutor Quem está falando

- Identificar uma pessoa num grupo
- Autenticar um usuário

Este trabalho é focado em reconhecimento de locutor

Identificação Determina a identidade de um locutor dentro de um conjunto não unitário

Identificação Determina a identidade de um locutor dentro de um conjunto não unitário

• 1 para N

- Identificação Determina a identidade de um locutor dentro de um conjunto não unitário
 - 1 para N
 - Problema de conjunto fechado

- Identificação Determina a identidade de um locutor dentro de um conjunto não unitário
 - 1 para N
 - Problema de conjunto fechado
 - Verificação Determina se o locutor é quem diz ser

- Identificação Determina a identidade de um locutor dentro de um conjunto não unitário
 - 1 para N
 - Problema de conjunto fechado
 - Verificação Determina se o locutor é quem diz ser
 - 1 para 1

- Identificação Determina a identidade de um locutor dentro de um conjunto não unitário
 - 1 para N
 - Problema de conjunto fechado
 - Verificação Determina se o locutor é quem diz ser
 - 1 para 1
 - Problema de conjunto aberto

- Identificação Determina a identidade de um locutor dentro de um conjunto não unitário
 - 1 para N
 - Problema de conjunto fechado
 - Verificação Determina se o locutor é quem diz ser
 - 1 para 1
 - Problema de conjunto aberto

Dependente Teste \in Treinamento

Dependente Teste ∈ Treinamento

Diversos graus de dependência

Dependente Teste ∈ Treinamento

- Diversos graus de dependência
- Teste \notin Treinamento \implies Retreinamento

Dependente Teste ∈ Treinamento

- Diversos graus de dependência
- Teste ∉ Treinamento ⇒ Retreinamento

Independente Teste \neq Treinamento

Dependente Teste ∈ Treinamento

- Diversos graus de dependência
- Teste ∉ Treinamento ⇒ Retreinamento

Independente Teste \neq Treinamento

Características não textuais

Dependente Teste ∈ Treinamento

- Diversos graus de dependência
- Teste ∉ Treinamento ⇒ Retreinamento

Independente Teste ≠ Treinamento

- Características não textuais
- Presentes em diferentes sotaques e até gibberish

Dependente Teste ∈ Treinamento

- Diversos graus de dependência
- Teste ∉ Treinamento ⇒ Retreinamento

Independente Teste \neq Treinamento

- Características não textuais
- Presentes em diferentes sotaques e até gibberish

Este trabalho é focado em reconhecimento de locutor **independente de texto**

GMM Combinação de Gaussianas

GMM **Combinação** de Gaussianas
UBM GMM gerado por diversas **locuções de fundo**

GMM Combinação de Gaussianas

UBM GMM gerado por diversas locuções de fundo

AGMM GMM adaptado a partir de um UBM

GMM Combinação de Gaussianas

UBM GMM gerado por diversas locuções de fundo

AGMM GMM adaptado a partir de um UBM

FGMM GMM utilizando Fractional Covariance Matrix (FCM)

Implementar sistemas de reconhecimento de locutor e analizar:

• Taxas de **sucesso** para identificação

- Taxas de **sucesso** para identificação
 - Diferentes tamanhos de mistura (M)

- Taxas de **sucesso** para identificação
 - Diferentes tamanhos de mistura (M)
 - Diferentes tamanhos de características

- Taxas de **sucesso** para identificação
 - Diferentes tamanhos de mistura (M)
 - Diferentes tamanhos de características
- Comparar identificações utilizando GMM e FGMM

- Taxas de **sucesso** para identificação
 - Diferentes tamanhos de mistura (M)
 - Diferentes tamanhos de características
- Comparar identificações utilizando GMM e FGMM
- Taxas de falsa detecção e falsa rejeição para verificação

- Taxas de sucesso para identificação
 - Diferentes tamanhos de mistura (M)
 - Diferentes tamanhos de características
- Comparar identificações utilizando GMM e FGMM
- Taxas de falsa detecção e falsa rejeição para verificação
 - Diferentes tamanhos de mistura (M)

Objetivos

Implementar sistemas de reconhecimento de locutor e analizar:

- Taxas de sucesso para identificação
 - Diferentes tamanhos de mistura (M)
 - Diferentes tamanhos de características
- Comparar identificações utilizando GMM e FGMM
- Taxas de falsa detecção e falsa rejeição para verificação
 - Diferentes tamanhos de mistura (M)
 - Diferentes tamanhos de características

Objetivos

Implementar sistemas de reconhecimento de locutor e analizar:

- Taxas de sucesso para identificação
 - Diferentes tamanhos de mistura (M)
 - Diferentes tamanhos de características
- Comparar identificações utilizando GMM e FGMM
- Taxas de falsa detecção e falsa rejeição para verificação
 - Diferentes tamanhos de mistura (M)
 - Diferentes tamanhos de características
- Comparar verificações utilizando GMM e AGMM

Conteúdo

- Introdução
- Sistemas de Reconhecimento de Locutor
- 3 Extração de Características
- 4 Modelos de Mistura Gaussianas
- Experimentos
- Conclusão

Modelagem Para cada locutor $\mathcal{S}_j \in \boldsymbol{\mathcal{S}}$

Modelagem Para cada locutor $\mathcal{S}_j \in \boldsymbol{\mathcal{S}}$

ullet Extrair $old X_k$ dos sinais $old Y_k$ falados por $\mathcal S_j$

Modelagem Para cada locutor $\mathcal{S}_j \in \mathcal{S}$

- Extrair \mathbf{X}_k dos sinais \mathbf{Y}_k falados por \mathcal{S}_j
- ullet Treinar um λ_j para cada \mathcal{S}_j através dos \mathbf{X}_k

Modelagem Para cada locutor $\mathcal{S}_j \in \mathcal{S}$

- Extrair \mathbf{X}_k dos sinais \mathbf{Y}_k falados por \mathcal{S}_j
- ullet Treinar um λ_j para cada \mathcal{S}_j através dos \mathbf{X}_k

Teste Para um locutor desconhecido ${\cal S}$

Modelagem Para cada locutor $\mathcal{S}_j \in \mathcal{S}$

- Extrair \mathbf{X}_k dos sinais \mathbf{Y}_k falados por \mathcal{S}_j
- ullet Treinar um λ_j para cada \mathcal{S}_j através dos \mathbf{X}_k

Teste Para um locutor desconhecido ${\cal S}$

ullet Extrair **X** do sinal **Y** falado por ${\mathcal S}$

Modelagem Para cada locutor $\mathcal{S}_j \in \mathcal{S}$

- Extrair \mathbf{X}_k dos sinais \mathbf{Y}_k falados por \mathcal{S}_j
- ullet Treinar um λ_j para cada \mathcal{S}_j através dos \mathbf{X}_k

Teste Para um locutor desconhecido ${\cal S}$

- ullet Extrair old X do sinal old Y falado por ${\mathcal S}$
- $i = \arg_j \max p(\mathbf{X}|\lambda_j) \implies \mathcal{S} \leftarrow \mathcal{S}_i$

Modelagem Para cada locutor $S_j \in \mathcal{S}$

- Extrair X_k dos sinais Y_k falados por S_j
- Treinar um λ_j para cada \mathcal{S}_j através dos \mathbf{X}_k

Teste Para um locutor desconhecido ${\cal S}$

- ullet Extrair old X do sinal old Y falado por ${\mathcal S}$
- $i = \arg_j \max p(\mathbf{X}|\lambda_j) \implies \mathcal{S} \leftarrow \mathcal{S}_i$

Modelagem Para todos os $\mathcal{S}_j \in \boldsymbol{\mathcal{S}}$

Modelagem Para todos os $\mathcal{S}_j \in \mathcal{S}$

ullet Extrair $old X_k$ dos sinais $old Y_k$ falados por cada $\mathcal S_j$

Modelagem Para todos os $\mathcal{S}_j \in \mathcal{S}$

- ullet Extrair $old X_k$ dos sinais $old Y_k$ falados por cada $\mathcal S_j$
- ullet Treinar um λ_{bkg} através dos $oldsymbol{X}_k$ de todos os \mathcal{S}_j

Modelagem Para todos os $\mathcal{S}_j \in \boldsymbol{\mathcal{S}}$

- ullet Extrair $old X_k$ dos sinais $old Y_k$ falados por cada $\mathcal S_j$
- ullet Treinar um λ_{bkg} através dos $old X_k$ de todos os $\mathcal S_j$
- ullet Modelar um λ_j para cada \mathcal{S}_j

Modelagem Para todos os $\mathcal{S}_j \in \boldsymbol{\mathcal{S}}$

- ullet Extrair $old X_k$ dos sinais $old Y_k$ falados por cada $\mathcal S_j$
- ullet Treinar um λ_{bkg} através dos $old X_k$ de todos os $\mathcal S_j$
- ullet Modelar um λ_j para cada \mathcal{S}_j

Modelagem Para todos os $\mathcal{S}_j \in \mathcal{S}$

- ullet Extrair $old X_k$ dos sinais $old Y_k$ falados por cada $\mathcal S_j$
- ullet Treinar um λ_{bkg} através dos $oldsymbol{X}_k$ de todos os \mathcal{S}_j
- ullet Modelar um λ_j para cada \mathcal{S}_j

Teste S diz ser $S_C \in S$

• Extrair **X** do sinal **Y** falado por S_C

Modelagem Para todos os $\mathcal{S}_j \in \mathcal{S}$

- ullet Extrair $old X_k$ dos sinais $old Y_k$ falados por cada $\mathcal S_j$
- Treinar um λ_{bkg} através dos \mathbf{X}_k de todos os \mathcal{S}_j
- ullet Modelar um λ_j para cada \mathcal{S}_j

- Extrair **X** do sinal **Y** falado por S_C
- $\Lambda(\mathbf{X}) = \log p(\mathbf{X}|\lambda_C) \log p(\mathbf{X}|\lambda_{bkg})$

Modelagem Para todos os $\mathcal{S}_j \in \mathcal{S}$

- ullet Extrair $old X_k$ dos sinais $old Y_k$ falados por cada $\mathcal S_j$
- Treinar um λ_{bkg} através dos \mathbf{X}_k de todos os \mathcal{S}_j
- ullet Modelar um λ_j para cada \mathcal{S}_j

- Extrair **X** do sinal **Y** falado por S_C
- $\Lambda(\mathbf{X}) \geq \theta \implies aceita$

Modelagem Para todos os $\mathcal{S}_j \in \mathcal{S}$

- ullet Extrair $old X_k$ dos sinais $old Y_k$ falados por cada $\mathcal S_j$
- Treinar um λ_{bkg} através dos \mathbf{X}_k de todos os \mathcal{S}_j
- ullet Modelar um λ_j para cada \mathcal{S}_j

- Extrair **X** do sinal **Y** falado por S_C
- $\Lambda(\mathbf{X}) = \log p(\mathbf{X}|\lambda_C) \log p(\mathbf{X}|\lambda_{bkg})$
- $\Lambda(\mathbf{X}) \geq \theta \implies aceita$

Conteúdo

- Introdução
- 2 Sistemas de Reconhecimento de Locutor
- 3 Extração de Características
- 4 Modelos de Mistura Gaussianas
- Experimentos
- Conclusão

• Natural e frequente na fala

- Natural e frequente na fala
- Facilmente mensurável

- Natural e frequente na fala
- Facilmente mensurável
- ↑ variação inter-locutor e ↓ variação intra-locutor

- Natural e frequente na fala
- Facilmente mensurável
- ↑ variação inter-locutor e ↓ variação intra-locutor
- Constante no tempo e não afetável pela saúde

- Natural e frequente na fala
- Facilmente mensurável
- ↑ variação inter-locutor e ↓ variação intra-locutor
- Constante no tempo e não afetável pela saúde
- Robusto a ruído razoável e a transmissão

- Natural e frequente na fala
- Facilmente mensurável
- ↑ variação inter-locutor e ↓ variação intra-locutor
- Constante no tempo e não afetável pela saúde
- Robusto a ruído razoável e a transmissão
- Difícil de ser produzido artificialmente

- Natural e frequente na fala
- Facilmente mensurável
- ↑ variação inter-locutor e ↓ variação intra-locutor
- Constante no tempo e n\u00e3o afet\u00e1vel pela sa\u00fade
- Robusto a ruído razoável e a transmissão
- Difícil de ser produzido artificialmente
- Não ser facilmente modificável pelo locutor

Simula a função da cóclea

Simula a função da cóclea

Escala Mel Logaritmica

Simula a função da cóclea

Escala Mel Logaritmica

•
$$f_{mel} = 2595 \log_{10}(1 + \frac{f}{700})$$

Simula a função da cóclea

Escala Mel Logaritmica

• $f_{mel} = 2595 \log_{10}(1 + \frac{f}{700})$

Pré-ênfase Realça as altas frequências (opcional)

Pré-ênfase **Realça** as altas frequências (opcional) Janelamento Divide o sinal em janelas **superpostas**

Pré-ênfase Realça as altas frequências (opcional)

Janelamento Divide o sinal em janelas superpostas $|FFT|^2$ Calcula o espectro de potência

```
Pré-ênfase Realça as altas frequências (opcional)

Janelamento Divide o sinal em janelas superpostas
|FFT|^2 \text{ Calcula o espectro de potência}
Filtros Espectro em Hz \implies espectro em mels
```

```
Pré-ênfase Realça as altas frequências (opcional)
Janelamento Divide o sinal em janelas superpostas
     |FFT|2 Calcula o espectro de potência
      Filtros Espectro em Hz \implies espectro em mels
         dB Calcula a sonoridade
```

```
Pré-ênfase Realça as altas frequências (opcional)

Janelamento Divide o sinal em janelas superpostas

|FFT|² Calcula o espectro de potência

Filtros Espectro em Hz ⇒ espectro em mels

dB Calcula a sonoridade

DCT Coeficientes espectrais ⇒ coeficientes cepstrais
```

```
Pré-ênfase Realça as altas frequências (opcional)

Janelamento Divide o sinal em janelas superpostas

|FFT|² Calcula o espectro de potência

Filtros Espectro em Hz ⇒ espectro em mels

dB Calcula a sonoridade

DCT Coeficientes espectrais ⇒ coeficientes cepstrais

CMS Normaliza os MFCCs para reduzir perturbações
```

- Pré-ênfase Realça as altas frequências (opcional)
- Janelamento Divide o sinal em janelas superpostas
 - |FFT|2 Calcula o espectro de potência
 - Filtros Espectro em Hz \implies espectro em **mels**
 - dB Calcula a sonoridade
 - DCT Coeficientes espectrais ⇒ coeficientes **cepstrais**
 - CMS Normaliza os MFCCs para reduzir perturbações
 - △s Novos coeficientes a partir de **aspectos temporais** dos antigos (opcional)

- Pré-ênfase Realça as altas frequências (opcional)
- Janelamento Divide o sinal em janelas superpostas
 - |FFT|2 Calcula o espectro de potência
 - Filtros Espectro em Hz \implies espectro em **mels**
 - dB Calcula a sonoridade
 - DCT Coeficientes espectrais \implies coeficientes **cepstrais**
 - CMS **Normaliza** os MFCCs para reduzir perturbações
 - As Novos coeficientes a partir de aspectos temporais dos antigos (opcional)

Conteúdo

- Introdução
- 2 Sistemas de Reconhecimento de Locutor
- 3 Extração de Características
- Modelos de Mistura Gaussianas
- Experimentos
- Conclusão

Modelos de Misturas Gaussianas

Conteúdo

- Introdução
- 2 Sistemas de Reconhecimento de Locutor
- 3 Extração de Características
- Modelos de Mistura Gaussianas
- 6 Experimentos
- 6 Conclusão

Experimentos

Conteúdo

- Introdução
- 2 Sistemas de Reconhecimento de Locutor
- 3 Extração de Características
- 4 Modelos de Mistura Gaussianas
- Experimentos
- Conclusão

Conclusão

Obrigado