Don't Let One Rotten Apple Spoil the Whole Barrel: Towards Automated Detection of Shadowed Domains

Daiping Liu, Zhou Li, Kun Du, Haining Wang, Baojun Liu, Hai-Xin Duan. CCS 2017.

Lyu Jiuyang, Oct 30th, 2021.

Task

domain shadowing: 破坏合法域名并在其下产生恶意子域。

Target: 检测合法域下的多个恶意子域的存在。

Figure 3: Workflow of Woodpecker.

Dataset: (manual, undisclosed)

Format: $D = s_i | s_i := < name_i, rrtype, rdata, t_f, t_l, count >$

Description: FQND; type fields and data fields returned by DNS servers; the time when an individual rdata is first and last seen; the number of DNS queries that receive the rdata in response.

```
Example: {"rrname": "eu.account.amazon.com", "rrtype": "A", "rdata": "52.94.2
16.25;", "count": 31188, "time_first": 1477960509, "time_last": 1494290720}
```

Components:

Dataset	Category
$D_{shadowed}$	Shadowed
$D_{unknown}$	Unlabeled siblings of $D_{shadowed}$
D_{pop}	Legitimate popular
D_{nonpop}	Legitimate unpopular
D_{vt}	Daily feeds from VirusTotal

Features

- Deviation from legitimate domains under the same apex.
- Correlation among shadowed domains under a different apex.

Category	Feature ID	Feature Name	Dimension	Novel
Subdomain Usage	F1	Days between 1st non-www and apex domain	D	√
	F2	Ratio of popular subdomains under the same apex domain	D	V
	F3	Ratio of popular subdomains co-hosted on the same IP	C	V
	F4	Web connectivity of a subdomains	D	V
	F5	Web connectivity of subdomains under the same apex domains	D	V
	F6	Web connectivity of subdomains co-hosted on the same IP	C	V
Subdomain Hosting	F7	Deviation of a subdomain's hosting IPs	D	√
	F8	Average IP deviation of subdomains co-hosted on the same IP	C	V
	F9	Correlation ratio in terms of co-hosting subdomain number	C	[14]
	F10	Correlation ratio in terms of co-hosting apex number	C	[14]
Subdomain Activity	F11	Distribution of first seen date	С	√
	F12	Distribution of resolution counts among subdomains on the same IP	C	V
	F13	Reciprocal median of resolution counts among subdomains on the same IP	C	V
	F14	Distribution of active days among subdomains on the same IP	C	V
	F15	Reciprocal median of active days among subdomains on the same IP	C	V
Subdomain	F16	Diversity of domain levels	С	√
Name	F17	Subdomain name length	C	[11, 33]

Table 3: Features used in our approach to detect shadowed domains. Feature dimensions D and C denote Deviation and Correlation, respectively. Although some features use the same data source as previous work, e.g., resolution counts as in [4, 51], we model them in different ways.

Days between first non-www and apex domain.

s is the first non-www subdomain under its apex.

$$F1 = rac{1}{log(Date(s) - Date(apex(s)) + 1)}$$

Ratio of popular subdomains

Shadowed domains names tend to avoid being overlapped with popular subdomain names.

$$F2 = rac{\left|\left\{POP\left(d_i
ight)
ight\}
ight|}{\left|\left\{d_i \mid 2LD\left(d_i
ight) == 2LD(s
ight)
ight\}
ight|} \ F3 = \min_{j=1\dots n} \left\{rac{\left|\left\{POP\left(\hat{d}_i
ight)
ight\}
ight|}{\left|\left\{d_i \mid IP\left(d_i
ight) == IP_j(s
ight)
ight\}
ight|}
ight\}$$

Web connectivity

通过公共数据集检查是否被索引。

$$F5 = rac{\sum WEB\left(d_i
ight)}{\left|\left\{d_i \mid 2LD\left(d_i
ight) == 2LD(s
ight)
ight\}
ight|} \ F6 = \min_{j=1\dots n} \left\{rac{\sum WEB\left(d_i
ight)}{\left\{d_i \mid IP\left(d_i
ight) == IP_j(s
ight)
ight\}
ight|}
ight\}$$

Deviation of hosting IP

$$F7: \operatorname{Dev}(A,S) = \max_{j=1..m} \left\{ \min_{i=1..n} \left\{ \psi\left(A_i,S_j
ight) \mid A\left(f_i
ight) < S\left(f_j
ight)
ight\}
ight\}$$
 $\psi\left(A_i,S_j
ight) = \sum_{C \in \left\{IP,ASN,CC
ight\}} w_k\left(C\left[A_i
ight]
eq C\left[S_j
ight]
ight)$

F8: average deviation of all subdomains hosted on the same IP.

Correlation ratio

Compute how many subdomains are co-hosted with s.

$$F9 = \min_{j=1..n} \left\{ rac{1}{\log(\left|\left\{d_i \mid IP_j\left(d_i
ight) == IP_j(s)
ight\}
ight| + 1)}
ight\}.$$

Count the distinct apex whose subdomains are hosted together with s.

$$F10 = \min_{j=1..n} \left\{ rac{1}{\log(\left|\left\{2LD\left(d_i
ight) \mid IP_j\left(d_i
ight) == IP_j(s
ight)
ight\} \left|+1
ight)}
ight\}$$

Distribution of first seen date

F11: the Jeffrey divergence of the first seen date (in the format of MMDD-YYYY) among all subdomains hosted together with s.

Resolution count

the Jeffrey divergence (F12) and the reciprocal of median (F13) of resolution count.

Active days

the Jeffrey divergence (F14) and the reciprocal of median (F15) of active days.

Diversity of domain name levels

the Jeffrey divergence (F16) for all of the subdomains hosted together.

Subdomain name length

$$F17 = rac{\sum_{i=1}^{m} Jeffrey\left(N_{i}
ight)}{m}$$

They assess the importance of our features through a standard metric in the RandomForest model, namely mean decrease impurity (MDI), which is defined as

$$ext{MDI}(X_m) = rac{1}{N_T} \sum_{T} \sum_{t \in T: (s_t) = X_m} p(t) \Delta f\left(s_t, t
ight)$$

Train

- classifiers, 10-fold cross-validation
- metrics: ROC, FPR, TPR
- RandomForest performs best. RandomForest and Neutral Network consistently outperform Logistic Regression and linear SVM.

个人感觉

• 论文重心放在了feature的构建上而非模型结构上,部分构建feature的角度、5.1阴 影域名的其他应用有参考意义。