Solution to the Exam

November 2020

Exercise 1

1. The c.d.f of a single Pareto distribution is given by :

$$P(X \leqslant x) = \begin{cases} 0 & \text{if } x \leqslant a \\ 1 - \left(\frac{a}{x}\right)^{\theta} & \text{if } x > a \end{cases}$$

Therefore, the p.d.f is given by its derivative:

$$p_{\theta}(x) = \frac{d P(X \leqslant x)}{dx} = \begin{cases} 0 & \text{if } x \leqslant a \\ \frac{\theta a^{\theta}}{\sigma^{\theta+1}} & \text{if } x > a \end{cases}$$

2. The density of the vector $X = (X_1, ..., X_n)$ of n i.i.d. observations is given by the product of each density :

$$p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i) = \theta^{n} \frac{a^{n\theta}}{x_i^{(\theta+1)}} 1_{\{x > a\}}$$

3. The maximum likelihood estimator $\widehat{\theta}_{ML}(x)$ of θ is :

$$\widehat{\theta}_{ML}(x) = \arg\max_{\theta \in \Theta} \log p_{\theta}(x)$$

Now,

$$\forall x > a, \ \log p_{\theta}(x) = n \log \theta + n\theta \log a - (\theta + 1) \sum_{i=1}^{n} \log x_i$$

$$\forall x > a, \ \frac{\partial \log p_{\theta}}{\partial \theta}(x) = \frac{n}{\theta} + n \log a - \sum_{i=1}^{n} \log x_i$$

As such, the ML estimator verifies:

$$\frac{n}{\widehat{\theta}_{ML}(x)} - \sum_{i=1}^{n} \log\left(\frac{x_i}{a}\right) = 0$$

Thus:

$$\widehat{\theta}_{ML}(x) = \frac{n}{\sum_{i=1}^{n} \log\left(\frac{x_i}{a}\right)}$$

4. According to the strong law of large numbers, with $X = (X_1, ..., X_n)$ being i.i.d. samples:

$$\widehat{\theta}_{ML}(X) = \frac{n}{\sum_{i=1}^{n} \log\left(\frac{X_i}{a}\right)} \xrightarrow[n \to \infty]{\text{a.s.}} \frac{1}{\mathbb{E}\left[\log\left(\frac{X_i}{a}\right)\right]}$$

And:

$$\mathbb{E}\left[\log\left(\frac{X_i}{a}\right)\right] = \int_a^\infty \log\frac{x}{a} \ p_\theta(x) dx = \int_0^\infty y \theta e^{-\theta y} dy = \frac{1}{\theta}$$

(Expected value of a random variable following the exponential distribution of parameter θ).

$$\widehat{\theta}_{ML}(X) \xrightarrow[n \to \infty]{\text{a.s.}} \theta$$

Exercise 2

1.

$$X - \theta \sim \mathcal{E}(1)$$

$$\mathbb{E}[X - \theta] = 1 = \mathbb{E}[X] - \theta$$

Using the method of moments:

$$\mathbb{E}[X] = 1 + \theta \approx \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\widehat{\theta}(x) = \frac{1}{n} \sum_{i=1}^{n} x_i - 1$$

2. Let us calculate the quadratic risk of this estimator.

$$\mathbb{E}[\theta(X)] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i] - 1 = \mathbb{E}[X_1] - 1 = \theta$$

Thus the estimator is unbiased.

$$R(\theta, \ \widehat{\theta}) = \operatorname{Var}(\widehat{\theta}(X)) = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(X_i) = \frac{\operatorname{Var}(X_1)}{n} = \frac{\operatorname{Var}(X_1 - \theta)}{n} = \frac{1}{n}$$
$$R(\theta, \ \widehat{\theta}) = \frac{1}{n}$$

3. Let us define

$$\forall x \in \mathbb{R}^n, \tilde{\theta}(x) = \min_{1 \le i \le n} x_i$$

$$Y = \tilde{\theta}(X)$$

$$\forall y \ge 0, \ P(Y > y) = \prod_{i=1}^{n} P(X_i - \theta > y - \theta) = \prod_{i=1}^{n} \int_{y-\theta}^{\infty} e^{-t} dt = \prod_{i=1}^{n} e^{-y+\theta} = e^{-n(y-\theta)}$$

$$P(Y > y + \theta) = P(Y - \theta > y) = e^{-ny}$$

Thus

$$Y - \theta \sim \mathcal{E}(n)$$

4.

$$\mathbb{E}\left[\tilde{\theta}(X) - \theta\right] = \frac{1}{n}$$

as it follows an exponential distribution of parameter n. Thus, the estimator is biased.

5.

$$Var(Y) = Var(Y - \theta) = \frac{1}{n^2}$$

$$R(\theta, \tilde{\theta}) = b(\theta, \tilde{\theta})^{2} + \operatorname{Var}(\tilde{\theta}(X)) = \frac{2}{n^{2}}$$

6. $\tilde{\theta}$ is better than $\hat{\theta}$ in terms fo quadratic risk for all $n \geq 2$.

Exercise 3

1. Let $x \in \mathbb{N}^n$.

$$\pi(\theta|x) \propto \pi(\theta)p_{\theta}(x) \propto 1_{(0,1)}(\theta)\theta^{n}(1-\theta)^{S-n} \quad S = \sum_{i=1}^{n} x_{i}$$

Thus

$$\pi(\cdot|x) \sim \text{Beta}(n+1, S-n+1)$$

2.

$$\mathbb{E}[\theta|X=x] = \frac{n+1}{2+S} = \widehat{\theta}$$

3. With the law of large numbers:

$$\widehat{\theta} \xrightarrow[n \to \infty]{\text{a.s.}} \frac{1}{\mathbb{E}[X]} = \theta$$

Exercice 4

1.

$$H_0: \theta = \theta_0$$
$$H_1: \theta = \theta_1$$

The Neyman-Pearson test of level α is :

$$\forall x \in \mathbb{R}^n, \ \delta(x) = 1_{\left\{\frac{p_{\theta_1}(x)}{p_{\theta_0}(x)} > c\right\}}$$

Now:

$$p_{\theta}(x) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^{2}}(x_{i}-\theta)^{2}}$$
$$\frac{p_{\theta_{1}}(x)}{p_{\theta_{0}}(x)} = e^{-\frac{1}{2\sigma^{2}}\sum_{i} \left[(x_{i}-\theta_{1})^{2}-(x_{i}-\theta_{0})^{2}\right]} \propto e^{\frac{1}{2\sigma^{2}}\left[2(\theta_{1}-\theta_{0})\sum_{i} x_{i}\right]}.$$

This is an increasing function of $\bar{x} = \frac{1}{n} \sum_{i} x_i$ so the test is of the form :

$$\delta(x) = 1_{\bar{x} > c}.$$

It remains to find the constant c. For this, we use the fact that $\bar{X} \sim \mathcal{N}(\theta, \frac{\sigma^2}{n})$, that is $\bar{X} = \frac{\sigma}{\sqrt{n}}Z + \theta$ with $Z \sim \mathcal{N}(0, 1)$. We get:

$$P_{\theta_0}(\delta(X) = 1) = P_{\theta_0}(\bar{X} > c) = P(Z > \frac{\sqrt{n}}{\sigma}(c - \theta_0)).$$

For a test at level α ,

$$P_{\theta_0}(\delta(X) = 1) = \alpha$$

so that:

$$\frac{\sqrt{n}}{\sigma}(c-\theta_0) = Q(1-\alpha).$$

We obtain:

$$c = \theta_0 + \frac{\sigma}{\sqrt{n}}Q(1 - \alpha).$$

2. Using again the fact that $\bar{X} = \frac{\sigma}{\sqrt{n}}Z + \theta$:

$$P_{\theta}(\bar{X} > c) = P(Z > \frac{\sqrt{n}}{\sigma}(c - \theta)),$$

so that

$$\sup_{\theta < 0} P_{\theta}(\bar{X} > c) = P(Z > \frac{\sqrt{n}}{\sigma}c).$$

For $\alpha = 5\%$, we get $\frac{\sqrt{n}}{\sigma}c = Q(1 - \alpha)$, that is $c = \frac{\sigma}{\sqrt{n}}Q(1 - \alpha) \approx 0.164$.

3. When $\theta = \theta_1 \approx 0.176$, the type II error rate is

$$P_{\theta_1}(\delta(X) = 0) = P_{\theta_1}(\bar{X} < c) = P(Z < \frac{\sqrt{n}}{\sigma}(c - \theta_1)).$$

With $c \approx 0.164$ and $\theta \approx 0.176$, we get $P(Z < -0.001) \approx 0.5$.

4. The test becomes $\delta(x) = 1_{\bar{x} < c}$, with

$$\sup_{\theta \ge 0} P_{\theta}(\bar{X} < c) = \alpha.$$

We get:

$$P(Z < \frac{\sqrt{n}}{\sigma}c) = \alpha,$$

that is $\frac{\sqrt{n}}{\sigma}c = Q(\alpha)$ and $c = \frac{\sigma}{\sqrt{n}}Q(\alpha) \approx -0.164$.

Exercise 5

1. Since $\bar{X} = \frac{\sigma}{\sqrt{n}}Z + \theta$, we need to find t such that :

$$P(-t \le Z \le t) = 1 - \alpha.$$

By symmetry of the distribution of Z, this means $t = Q(1 - \frac{\alpha}{2})$. Then,

$$P(\theta \in [\bar{X} - c, \bar{X} + c]) = 1 - \alpha,$$

with $c=t\frac{\sigma}{\sqrt{n}}\approx 0.258.$ 2. Upper confidence bound :

$$P(Z \ge -t) = 1 - \alpha,$$

for $t = Q(\alpha)$ and

$$P(\theta \le \bar{X} + c) = 1 - \alpha,$$

with $c = t \frac{\sigma}{\sqrt{n}} \approx 0.233$.

Acknowledgement

Many thanks to Huu Tan Mai for writing the first version of this document!

Appendix

Quantiles of the standard normal distribution

The following table gives some approximate values of quantiles of the standard normal distribution.

x	0.0	0.25	0.52	0.84	1.28	1.64	2.33	2.58
$\mathbb{P}(X \le x)$	0.5	0.6	0.7	0.8	0.9	0.95	0.99	0.995