

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΙΚΗΣ, ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΚΑΙ ΥΛΙΚΩΝ

Ηρώων Πολυτεχνείου 5, Κτίριο Θεοχάρη Πολυτεχνειούπολη Ζωγράφου, 157 73 Ζωγράφου

Δρ Σταύρος Κ. Κουρκουλής, Καθηγητής Πειραματικής Μηχανικής

Τηλέφωνα: +210 772 1313, +210 772 1263 (γραφείο)

 $+210\,772\,4025, +210\,772\,4235, +210\,772\,1317, +210\,7721310$ (εργαστήρια)

Τηλεομοιότυπο (Fax): +210 7721302

Διεύθυνση ηλεκτρονικού ταχυδρομείου (e-mail): stakkour@central.ntua.gr

MHXANIKH I (ΣΤΑΤΙΚΗ)

10^η σειρά ασκήσεων: Προσδιορισμός γεωμετρικού κέντρου επιπέδων επιφανειών

Άσκηση 1

Να προσδιορισθούν τα γεωμετρικό κέντρα των γραμμοσκιασμένων επιφανειών του Σχ.1.

Σχήμα 1

Άσκηση 2

Να προσδιορισθεί το γεωμετρικό κέντρο της σκιασμένης επιφάνειας του Σχ.2. Δίνεται ότι AG=2AB= 10m και ότι BAG=90°. Η κυκλική οπή ακτίνας 0.7 m, εφάπτεται στο μέσον Δ της BG.

Ασκηση 3

Να ευρεθεί το γεωμετρικό κέντρο της επιφάνειας που περικλείεται μεταξύ των γραμμών y_1 , y_2 και y_3 του παραπλεύρως Σχ.3.

Άσκηση 4

Να προσδιορισθούν τα γεωμετρικά κέντρα των κάτωθι επιφανειών (Σχ. 4):

Άσκηση 5

Να προσδιορισθούν το γεωμετρικό κέντρο της γραμμοσκιασμένης επιφάνειας του Σχ.5.

y [m]

Άσκηση 7

Να προσδιορισθεί το γεωμετρικό κέντρο της γραμμοσκιασμένης επιφάνειας (ΟΑΒΓΟ) του Σχ.7.

Να προσδιορισθεί το γεωμετρικό κέντρο της επίπεδης επιφάνειας ΑΒΓ του Σχ.6.

Σχήμα 7

$$\frac{1}{2} \left(\frac{15x^{2} + 5x}{8} \right) dx = \frac{15x^{3}}{24} + \frac{5x^{2}}{2} \right)^{1} = \frac{-15}{24} + \frac{5}{2} - -9625 + 25 = 1,875 = 1.$$

$$\frac{1}{2} \left(\frac{15x^{2} + 5x}{8} \right) dx = \frac{1}{2} \left(\frac{15x^{3}}{24} \right) dx = \frac{1}{2} \left(\frac{15x^{2}}{2} \right)$$

Apa Cly = 2,74 m3

=3,33-1,42=1,91 m³

From
$$A_1 = \int_{0}^{1} (\frac{x}{4} + 2t2x - 2) dx = \int_{0}^{1} \frac{5x}{2} dx = \left[\frac{5x^{2}}{4} \right]_{0}^{1} = \frac{5}{4} = 1,25 m^{2}$$

When $A_2 = \int_{0}^{2} (\frac{x}{4} + 2 - x^{2} + 1) dx = \int_{0}^{2} (-x^{2} + \frac{x}{4} + 3) dx = \left[-\frac{x^{3}}{3} + \frac{x^{2}}{4} + 3x \right]_{0}^{2} = 9,33 - 232 \le 16$

Then $A_2 = \int_{0}^{2} (\frac{x}{4} + 2 - x^{2} + 1) dx = \int_{0}^{2} (-x^{2} + \frac{x}{4} + 3) dx = \left[-\frac{x^{3}}{3} + \frac{x^{2}}{4} + 3x \right]_{0}^{2} = 9,33 - 232 \le 16$

Then $A_3 = \int_{0}^{2} (\frac{x}{4} + 2 - x^{2} + 1) dx = \int_{0}^{2} (-x^{2} + \frac{x}{4} + 3) dx = \left[-\frac{x^{3}}{3} + \frac{x^{2}}{4} + 3x \right]_{0}^{2} = 9,33 - 232 \le 16$

Then $A_3 = \int_{0}^{2} (\frac{x}{4} + 2 - x^{2} + 1) dx = \int_{0}^{2} (\frac{x}{4} + 2 - x^{2} + 1) dx = \int_{0}^{2} (-x^{2} + \frac{x}{4} + 3) dx = \left[-\frac{x^{3}}{3} + \frac{x^{2}}{4} + 3x \right]_{0}^{2} = 9,33 - 232 \le 16$

Then $A_3 = \int_{0}^{2} (\frac{x}{4} + 2 - x^{2} + 1) dx = \int_{0}^{2}$

$$\Delta = 4 + 16 = 20 \int_{12}^{x_{12}} = \frac{-2 \pm 255}{2} = 1,236 = 7 \times = 1,53 = 342 = 1,24$$

$$A_{1} = \int_{1,53}^{4} (2 - \sqrt{x}) dx = \left[2x - 2x^{\frac{3}{2}} \right]_{1,53}^{4} = \left[2x - 2x\sqrt{x} \right]_{1,53}^{4} = 8 - 2 \cdot 4 \cdot 2 - \left(2 \cdot 1,53 - 2 \cdot 135 \sqrt{53} \right)_{1,53}^{4}$$

$$= 8 - \frac{16}{3} - \left(\frac{306}{306} - \frac{379}{3} \right) = \frac{267}{3} - \frac{306}{106} + \frac{1726}{200} = \frac{0000}{100} + \frac{100}{100}$$

Apa A= 1,45 m2

$$= 4 - 1,53 \cdot 2 - \left(\frac{1,24^{4} - 1,53}{4} - \frac{1,53}{2} \cdot 1,24^{2}\right) = 0,94 \cdot \left(0,59 - 1,18\right) =$$

Qy =
$$\int x dt = \int (x(2-\sqrt{x})) dx = \int (2x-x\sqrt{x}) dx = \int (2x-x^{\frac{3}{2}}) dx = \left[x^{2}-2x^{\frac{3}{2}}\right]^{\frac{3}{2}} = \int_{1,53}^{4} (2-\sqrt{x}) dx = \int_{1,53}^{4} (2x-x\sqrt{x}) dx = \int_{1,53}^{4} (2x-x\sqrt{x}$$

$$= \left[x^{2} - \frac{2}{5}x^{2} \right]^{\frac{4}{5}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} \right] = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{53}} = \frac{16 - \frac{2 \cdot 16 \cdot 2}{5} - \left(\frac{1}{53} \right)^{2} \sqrt{\frac{1}{5$$

$$=3,2-(2,34.-1,15)$$
 $=3,2-(1,19...)=2,01$ m³

NAT 1 000

10.381.1±24 - 8883 H.

0382-084 2 0315 m

Homan Για y2=0 &w x=e: 0=aetb /c.)a=-& = {e-b=-b} = {e^2-be=-b} Για y2=e εχω x=1: e=a+b / α=e-b / α=e-b Mea | y2 = e x + e2 | y - e2 = e x 6 x = 6. $(e^{x} + \frac{1}{e^{x}} - 1)dx = [e^{x} + \frac{x^{2}}{2e} - x] - e + \frac{1}{2e} - 1 - 1 = \frac{2e^{2} + 1 - 4e}{2e}$ (ex+e2+1x-1) dx= ex+ e2x + x2-x e-1

$$= \frac{e^{3}}{2(1-e)} + \frac{e^{3}}{e^{-1}} + \frac{e}{2} - e - \left(\frac{e}{2(1-e)} + \frac{e^{2}}{e^{-1}} + \frac{1}{2e} - 1\right) =$$

$$\frac{-e^{2}}{2(e-1)} + \frac{2e^{3}}{2(e-1)} + \frac{e(e-1)}{2(e-1)} + \frac{e}{2(e-1)} - \frac{2e^{2}}{2(e-1)} - \frac{1}{2(e-1)} + \frac{2(e-1)}{2(e-1)} = \frac{2(e-1)}{2(e-$$

$$\frac{e^{3}-e(e^{-1})+e^{-2e^{2}+2(e^{-1})}-1}{2(e^{-1})}=\frac{1}{2e}=\frac{e^{3}-e^{2}+e+e^{-2e^{2}+2e-2}-1}{2(e^{-1})}=\frac{1}{2e}$$

$$-\frac{e^{3}-3e^{2}+4e-2}{2(e-1)} - \frac{1}{2e} = \frac{e^{4}-3e^{3}+4e^{2}-2e-e+1}{2e(e-1)} = \frac{e^{4}-3e^{3}+4e^{2}-3e+1}{2e(e-1)} = \frac{16,74}{9,341} = \frac{16,74}{9,34$$

$$= \frac{3e^2 - e^2 \ln e - \left(\frac{3(e-1)^2}{4e^2} \ln \left(\frac{e-1}{2}\right)^2 \ln \left(\frac{e-1}{2}\right)}{2e^2} = 1,85 - 0,29 - 0,2 \cdot 0,46 = 1,66 - 0.09 = 1,47 m^3$$

$$Qy_{1} = \int x \, dN_{1} = \int x \, (e^{x} + x - 1) \, dx = \int (xe^{x} + x^{2} - x) \, dx = -\frac{1}{3e^{x}} = -\frac{1}{2} + \frac{1}{3e^{x}} + \frac{1}{2} = 62$$

$$Qx_{1} = \int y \, dA_{2} = \int y \, (e^{x} + x - 1) \, dx = \int (e^{x} - e^{x}) \, dx = -\frac{1}{3e^{x}} + \frac{1}{3e^{x}} + \frac{1}{2} = 62$$

$$Qx_{1} = \int y \, dA_{2} = \int y \, (e^{x} + e^{x}) \, dx = \int (e^{x} - e^{x}) \, dx = -\frac{1}{3e^{x}} + \frac{1}{3e^{x}} + \frac{1}{2} = 62$$

$$= \int y^{2}(1 - e) \, dA_{2} = \int (e^{x} - e^{x}) \, dx = \int ($$

Apa (1,28,1,33)

ucu $y_c = \frac{Qx_1 + Qx_2}{A} - \frac{2,12 + 1,47}{2,69} + \frac{3,59}{2,69} = 1,33$

(nx) - y - nx - arcsm dA- (= - = arcsin(a) a x = = arcsin a JA=(L- 2L arcan (4) by A= [asin(x)d= a [sin (nx) dx=a [- Lcos(x)] -- al (cos(x)] -- al (1) - lal Ox= [gdA- [y (L-24 arcsm(y) dy e v= y di= dy => U=0, u2=) Apo Ox= [a²u [L-24 arcsinu] du = [a²uL-24 aquarcsinu] du = - [aludu - 2La2 | u arcsinu du = [aluz] | - 2La2 | u arcsinu du = - al _ 2La | uarcsinudu

Exw
$$J = \int_0^1 u \operatorname{arcsinudu} = \frac{1}{2} \int_0^1 u \operatorname{arcsinudu}$$

$$-\frac{1}{4} - \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos 2\omega}{2} d\omega = \frac{\pi}{4} - \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{1}{2} - \frac{\cos 2\omega}{2} d\omega = \frac{\pi}{4} - \frac{1}{2} \left[\frac{\omega}{2} - \frac{\sin 2\omega}{4} \right]_{0}^{\frac{\pi}{2}} = \frac{1}{4} \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos 2\omega}{2} d\omega = \frac{\pi}{4} - \frac{1}{2} \left[\frac{\omega}{2} - \frac{\sin 2\omega}{4} \right]_{0}^{\frac{\pi}{2}}$$

$$-\frac{\Omega}{4} - \frac{1}{2} \left(\frac{\Omega}{4} \right) = \frac{\Omega}{8}$$

$$= \frac{\alpha L^2}{n^2} \int_0^1 ds \, m \, ds = \frac{\alpha L^2}{n^2} = \left[-u \cos u \right]_0^2 - \left[-\cos u \, du \right]_0^2 = \frac{\alpha L^2}{n^2}$$

$$=\frac{\alpha L^2}{\Omega^2}\left(-\Omega\cdot(-1)+\left[\sin u\right]_0^{\Omega}\right)=\frac{\alpha L^2}{\Omega^2}\cdot\Omega=\frac{\alpha L^2}{\Omega}$$

Arunen 6

$$A = \int_{0}^{2} (e^{x} - \sqrt{x}) dx + \int_{2}^{5} (-1, 72x + 10, 82 - \sqrt{x}) dx =$$

$$-\left[\frac{e^{x}-2x\sqrt{x}}{3}\right]_{0}^{2}+\left[\frac{-1.72x^{2}+10.82x-2x\sqrt{x}}{3}\right]_{2}^{5}-\frac{4.5+8.83=13.33m^{2}}{3}$$

$$A_{2}=2m^{2}$$
, $A_{3}=3.5=6$, $71m^{2}$, $A_{5}=3.(e^{2}-\sqrt{5})=1$, $5(e^{2}-\sqrt{5})=7$, $73m^{2}$

=
$$\left[y^2 - \frac{y^2}{2} \ln y + \frac{y^2}{4}\right]^{e^2} = \left[\frac{5y^2}{4} - \frac{y^2 \ln y}{2}\right]^{-12}, 4 \text{ m}^3$$

$$0_{x4} = \int y dA = \int (S - y^2)y dy = \int (S - y^3)dy = \left[\frac{5}{2}y^2 - \frac{y^4}{4}\right]_0^{S} = 6,25 \text{ m}^3$$

$$Q_{y} = \int x dA = \int_{0}^{2} \left[x (e^{x} - 1) \right] dx = \int_{0}^{2} (x e^{x} - x) dx = \int_{0}^{2} x e^{x} dx - \int_{0}^{2} x dx = \int_{0}^{2} x e^{x} dx - \int_{0}^{2} x dx = \int_{0}^{2} x e^{x} dx - \int_{0}^{2} x dx = \int_{0}^{2} x e^{x} dx - \int_{0}^{2} x dx = \int_{0}^{2} x e^{x} dx - \int_{0}^{2} x dx = \int_{0}^{2} x e^{x} dx - \int_{0}^{2} x dx = \int_{0}^{2} x e^{x} dx - \int_{0}^{2} x dx = \int_{0}^{2} x e^{x} dx - \int_{0}^{2} x dx = \int_{0}^{2} x e^{x} dx - \int_{0}^{2} x e^{x} dx - \int_{0}^{2} x e^{x} dx = \int_{0}^{2} x e^{x} dx + \int_{0}^{2} x e^{x} dx = \int_{0}^{2} x e^{x} dx + \int_{0}^{2} x e^{x} dx = \int_{0}^{2} x e^{x} dx + \int_{0}^{2} x e^{x} dx = \int_{0}^{2} x e^{x} dx + \int_{0}^{2} x e^{x} dx = \int_{0}^{2} x e^{x} dx + \int_{0}^{2} x e^{x} dx = \int_{0}^{2} x e^{x} dx + \int_{0}^{2} x e^{x} dx = \int_{0}^{2} x e^{x} dx + \int_{0}^{2} x e^{x} dx = \int_{0}^{2} x e^{x} dx + \int_{0}^{2} x e^{x} dx = \int_{0}^{2} x e^{x} dx = \int_{0}^{2} x e^{x} dx + \int_{0}^{2} x e^{x} dx = \int_{0}^{2} x e^{x} dx + \int_{0}^{2} x e^{x} dx = \int_{0}^{2} x e^{x} dx = \int_{0}^{2}$$

$$-\left[xe^{x}\right]^{2} - \int_{0}^{2} e^{x} dx - \left[\frac{2}{2}\right]^{2} = \left[xe^{x} - e^{x} - \frac{x^{2}}{2}\right]^{2} - 6,39 \text{ m}^{3}$$

$$Q_{4} = \int x dA = \int x \sqrt{x} dx = \int x^{\frac{3}{2}} dx = \left[\frac{2x^{\frac{5}{2}}}{5}\right]^{5} = \left[\frac{2x^{2}\sqrt{x}}{5}\right]^{\frac{5}{2}} = \frac{2.5.8\sqrt{5}}{8} = 10\sqrt{5} = 22,36 \text{ m}^{\frac{3}{2}}$$

ays = As xs= 7,78.3=23,19

Hea ay: ay, + ay + ay - ay + ay = 32,71

Apa x = Qy = 32,71 = 2,45 m

 $Var y_c = \frac{Qx}{A} = \frac{45,2}{13,33} = 3,39 \text{ m}$

Aea ((228, 3,391)

= Epw 07: 70 Julingo 20 (4) Beroneson nouv our Sixozofo 200 hou oz andoraond- 2 R. Sinzi - 4 1. sin (31, 75°) = 4. 4. 53 - 2,12 - 0,64

Ma sin(w) = Xc4 (3) xc4 = Sin(3), 7150) od = 0,34 m

um cos (w) = 1 cos (w). d = 0,54 m

Apa yq= -1 +0,54 = -0,48 m

Apa Qx4 = A494 = 0,55(-0,46) =-0,25 m³ uan Qy4 = 14 X4 = 0,55 · 0,34 = 0,19 m³

1 Apa xc= Qy = Qy, +Qy+Qy>- Qy4 = 0,25+0,67+0,67-0,19 = 1,4 = 1,09m
(128)

va y= 0x, +0x2+0x3-0x4 = 0,1+0,17-0,33+0,25 = 0,19 =0,15 m