PRÁCTICA 3

Sofía Fernández Moreno

 $\frac{\text{Curso } 2016/2017}{\text{ACAP}}$

1. Introducción

En esta práctica he optado por calcular los número pertenecientes al fractal del Conjunto de Julia, que es una derivada de Mandelbrot para generar una imagen de dicho fractal con la máxima precisión posible.

Para la resolución de este problema he optado a una división de la matriz por filas. El número de filas se divide entre el número de procesos que hay disponibles sin contar el proceso 0. El resultado final es que se reúne en el proceso raíz el mensaje completo y ordenado. El proceso raíz es el que escribe el fichero .raw de la salida y además nos devuelve el tiempo que hemos medido en el código.

El programa permite crear un conjunto julia sólo cuando el número de filas en la imagen es divisible por el número de procesos.

En mi caso la precisión de la imagen es de unos 256 píxeles por 256 píxeles. Para enviar y recibir los datos de los distintos procesos, en los casos paralelos, se utilizan las funciones MPI_Send y MPI_Recv.

El fractal obtenido para 256x256 con $f(z)=z^7+c$ es:

Con cr=0.626,ci=0.0 siendo cr y ci las partes real e imaginaria del complejo "c". He tomado tiempos tanto en ATCGRID como en los ordenadores del aula.

Además para ATCGRID he probado en modificar el tamaño de la ventana, por el cual he obtenido que para un tamaño mayor de 1024x1024 no es posible mandar el trabajo a la cola.

• Tiempos en ATCGRID

 $Tamaño\ Ventana = 256$

	Procesos	Tiempo Paralelo
	2	1,373794999
	2	1,326205
	2	1,499628998
Media	2	1,399876333
	3	0,652456999
	3	0,657034997
	3	0,652919002
Media	3	0,654136999
	4	0,515780002
	4	0,562961001
	4	0,509512998
Media	4	0,529418
	5	0,418977
	5	0,385208998
	5	0,395243
Media	5	0,399809666
	6	0,325269002
	6	0,320892002
	6	0,322609998
Media	6	0,322923668

Tamaño Ventana = 512

	Procesos	Tiempo Paralelo
	2	5,274237998
	2	5,548258003
	2	5,704402998
Media	2	5,508966333
	3	2,610910002
	3	2,616474997
	3	2,616546001
Media	3	2,614643667
	4	2,041471001
	4	2,067677002

	4	2,045489997
Media	4	2,051546
	5	1,530854002
	5	1,525304999
	5	1,536702
Media	5	1,530953667
	6	1,379585002
	6	1,263980001
	6	1,232138999
Media	6	1,291901334

Tamaño Ventana = 1024

	Procesos	Tiempo Paralelo
	2	21,325362
	2	21,393699
	2	21,430613
Media	2	21,38322467
	3	10,471362
	3	10,525936
	3	10,500895
Media	3	10,49939767
	4	8,430953
	4	8,569885999
	4	8,189012002
Media	4	8,396617
	5	6,121068999
	5	6,158128999
	5	6,136718001
Media	5	6,138638667
	6	4,925612003
	6	5,461289
	6	4,927218001
Media	6	5,104706335

Al ir aumentando el número de procesos irá decrementando el tiempo, es decir, obtendremos tiempos de ejecución menores.

• Ganancia en ATCGRID

Procesos	Ganancia256(Ts/Tp)
2	1,69168229
3	3,620259981
4	4,473111981
5	5,923183458
6	7,333454425

Procesos	Ganancia512(Ts/Tp)
2	1,846850035
3	3,891250955
4	4,959301262
5	6,645684247
6	7,875396054

Procesos	Ganancia1024(Ts/Tp)
2	1,861240667
3	3,790629577
4	4,739924107
5	6,483412609
6	7,796594892

La ganancia aumentará conforme vayamos avanzando en el número de procesos. Al contrario de los tiempos ejecutados.

• Tiempos en AULAS

Para el calculo de los tiempos en el aula, he realizado pruebas hasta 15 procesos para poder comprobar la variación de los tiempos en el gráfico.

	Procesos	Tiempo Paralelo
	2	0,183777094
	2	0,186400175
	2	0,184174061
Media	2	0,184783777
	3	0,097123146
	3	0,099076033
	3	0,099259853
Media	3	0,098486344
	4	0,066502094
	4	0,067996979
	4	0,067569017
Media	4	0,06735603
	5	0,055242062
	5	0,05282402
	5	0,056053877
Media	5	0,054706653
	6	0,042102098
	6	0,042577028
	6	0,043244123
Media	6	0,042641083
	7	0,035676003
	7	0,036339998
	7	0,036762953
Media	7	0,036259651
	8	0,031784058
	8	0,030645132
	8	0,032030106
Media	8	0,031486432
	9	0,030436993
	9	0,030333042
	9	0,030050039
Media	9	0,030273358

	10	0,027514935
	10	0,025568962
	10	0,027283907
Media	10	0,026789268
	11	0,025954008
	11	0,02464509
	11	0,033149958
Media	11	0,027916352
	12	0,021719933
	12	0,023653984
	12	0,023653984
Media	12	0,0230093
	13	0,031872988
	13	0,031337023
	13	0,028031826
Media	13	0,030413946
	14	0,031503916
	14	0,028460979
	14	0,033795834
Media	14	0,031253576
	15	0,03220892
	15	0,032191992
	15	0,033286095
Media	15	0,032562335
·	·	

Los tiempos en el aula son menores debido a la capacidad de cálculo de unos procesadores y otros. La relación de disminución de tiempo en el aula es similar.

• Ganancia en AULA

Procesos	Ganancia(Ts/Tp)
2	3,470809749
3	6,512063573
4	9,521780484
5	11,72342482
6	15,04064349
7	20,36907003
8	20,36907003
9	21,1852723
10	23,94053233
11	22,97396645
12	27,87348276
13	21,08734406
14	20,52083024
15	19,69604842

Al igual que en ATCGRID la ganancia será creciente.

• Comparativa de Ganancias

He comparado los valores de la Ganancia hasta 6 procesos. En este caso comparamos para $256\mathrm{x}256$

Como se puede observar la ganancia del aula será mayor que la de ATCGRID.