Architecture des ordinateurs - TD 09

1 Machine à états

Soit l'automate suivant. Les états du graphe sont les états (représentés sur deux bits $S = s_1 s_2$), les arcs sont les transitions commandées par deux signaux binaires A et B.

On souhaite réaliser cet automate en logique synchrone. À chaque front d'horloge, l'automate peut changer d'état en fonction des valeurs de A et de B.

Il existe une manière systématique de réaliser des machines à état en logique synchrone :

1. Pour l'automate ci-dessus, donner la fonction S+=f(S,A,B) (table de vérité ou expression booléenne).

2. Simplifier la fonction f.

3. Proposer un circuit pour la partie combinatoire du schéma.

4. Proposer un circuit pour la partie séquentielle du schéma (en utilisant des bascules D).

2 Compteur de Parité

Nous souhaitons calculer la parité de la somme des bits d'un mot binaire de taille arbitraire reçu sur un port série. À chaque front de l'horloge on peut lire sur l'entrée D le bit suivant. Le signal I est à zéro tout le temps sauf pour le top d'horloge précédent le début d'un mot. Une bascule D sera utilisée pour calculer la parité du bit en cours.

1. On souhaite réaliser le circuit ci-dessus en utilisant une seul bascule D. Quelle est l'équation de $Q^+ = f(Q, D, I)$ sachant que Q^+ est la parité de tous les bits reçus depuis le dernier top de I.

Solution:

$$Q^+ = (D \oplus Q).I$$

2. Donner le schéma du circuit.

Solution: Avec une bascule D il suffit de prendre l'équation ci-dessus. Avec une bascule T il suffit d'implémenter le reset du signal I en utilisant par exemple un multiplexeur sur l'entrée T qui choisit entre D et \overline{Q} en fonction de I.

3 Distributeur de café

Nous souhaitons réaliser le contrôleur d'un distributeur de café. Ce dernier accepte uniquement des pièces de 5 et 10 centimes. Le prix d'un café est de 15 centimes.

Il faut faire l'appoint :

- Si la somme des pièces introduites dépasse 15 centimes, toutes les pièces sont rendues.
- Si la somme des pièces introduites fait 15 centimes exactement, la boisson est distribuée.

Remarques:

- La période d'horloge est négligeable devant le temps d'introduction d'une pièce. On fait l'hypothèse qu'au moins un cycle d'horloge s'écoule entre l'introduction de deux pièces.
- Un signal entrant I sur deux bits signale l'introduction de pièces : $00 \rightarrow$ aucune pièce introduite, $01 \rightarrow$ pièce de 5 centimes, $10 \rightarrow$ pièce de 10 centimes.
- Le signal sortant D commande la distribution d'un café.
- Le signal sortant R commande le rendu des pièces.
- 1. Représentez l'automate modélisant le comportement du distributeur.
- 2. Combien de bits faut-il pour coder l'état de la machine? Numérotez les états dans l'ordre naturel croissant $(0,1,\ldots)$.

Solution: Il y a 5 états, il faut donc 3 bits.

3. Dressez la table de vérité reliant l'état précédent Q, l'entrée I, l'état suivant Q^+ et D et R.

Soluti	on:		
10	210	210	
	Q		
	000		
	001	001	1
	010	010	
	011		
	100		
	++ 000		
	000		
	010		
	010		
	100		
	++		
10	000	010	
	001	011	1
	010	100	1
	011		
	100		
	++		
	XXX		
XX	>100	XXX	

4. Pouvez vous trouver directement une expression minimale pour Q_2^+ en fonction de Q et I.

Solution: Il y a un seul minterm pour lequel Q_2^+ est vrai (10010). En le combinant avec les don't care on peut le simplifier :

$$Q_2^+ = m(10010) + d(XX1X1, XXX11X, 11XXX) = I_1.Q_1.\overline{Q_0}$$

5. En utilisant la méthode de Quine McCluskey trouvez des expressions minimales pour Q_1^+ et Q_0^+ en fonction de Q et I.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Size 8 primes Minterm 3-cub
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TIETTECTIII 5 CUD
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m(6,7,14,15,22,23,30,31)11- m(24,25,26,27,28,29,30,31) 11
3	ime Implicants Table 1 8 10 17
4 m15 01111 m(15,31) -1111 m(8 m(8 m(8 m(9	,7,14,15,22,23,30,31)
5 m31 11111 m(2	4,23,20,27,20,29,30,31)

Size 1 primes		Size 2 primes		Size 4 primes		Size 8 primes						
Number of 1s	Minterm	0-cube	Minterm	1-cube	Minterm	2-cube	Minterm			- 13	3-c	ube
1	m2 m16	00010 10000	m(2,6) m(2,10) m(16,17) m(16,24)		m(2,6,10,14) m(16,17,24,25)	010* 1-00-*						
	m5 m6 m9 m10 m17 m24	00101 00110 01001 01010 10001 11000		-0101 0011- 0-110 -0110 01-01 -1001 01-10 -1010 10-01 1-001 1100- 110-0	m(5,7,13,15) m(5,7,21,23) m(5,13,21,29) m(6,7,14,15) m(6,7,22,23) m(6,14,22,30) m(9,13,25,29) m(10,14,26,30) m(17,21,25,29) m(24,25,26,27) m(24,25,28,29) m(24,25,28,30)	101* 110 11-0-	m(5,7,13,15,21,23,29 m(6,7,14,15,22,23,30 m(24,25,26,27,28,29,	, 3	1)	-	1 1 11-	1-*
-	m7 m13 m14 m21 m22 m25 m26 m28	00111 01101 01110 10101 10110 11001 11010 11100		011-1 -1101 0111- -1110 101-1 1-101 1011-	m(7,15,23,31) m(13,15,29,31) m(14,15,30,31) m(21,23,29,31) m(22,23,30,31) m(25,27,29,31) m(26,27,30,31) m(28,29,30,31)	-111- 1-1-1 1-11- 111 11-1- 111	e Implicants T	ā	b ¹	le		
			m(25,27)				c impercures i	_	_	10	16	17
			m(25,29)			m/2 5	,10,14)	X	-	X	10	11
			m(26,27) m(26,30)				,13,15,21,23,29,31)	^	H	^	-	
			m(28,29)					H	Н	\vdash	_	
			m(28,30)				5,7,14,15,22,23,30,31)		Ш		_	
4	m15	01111	m(15,31)	-1111		m(9,13,25,29)		Ц	X			
	m23	10111	m(23,31)			m(10,14,26,30)				X		
	m27	11011	m(27,31)			m(16,17,24,25)			П		Х	Х
	m29 m30	11101 11110	m(29,31) m(30,31)			m(17 3	21,25,29)		П			Х

$$Q_1^+ = \overline{Q_0}.Q_1.\overline{I_1} + Q_0.\overline{Q_1}.I_0 + \overline{Q_1}.\overline{Q_2}.I_1$$

6. Exprimez D et R en fonction de Q^+ .

Solution: R est vrai uniquement lorsque Q_2^+ est vrai : $R=Q_2^+$ D est vrai uniquement lorsque Q_1^+ et Q_0^+ sont vrais : $D=Q_0^+.Q_1^+$

7. Réalisez un circuit pour le contrôleur.

Solution: Même technique que pour l'exercice 1. Vous disposez de toutes les équations pour réaliser la partie combinatoire du circuit. Il suffit de rajouter autant de bascules D que d'états et les utiliser pour faire une boucle entre Q^+ et Q.