Sequential	circuits	lective	notes

Cont time: Combinational circuits

- implement Soulean in of present uputs

- e.g. odder, decoder, multiplexer

loday: Sequential circuits

- implement boolean in of present and part inputs

- typically use feedback to achieve this ie one or more outputs "feed back

as an input.

Truth tables of sequential circuits can represent feedback either explicitly (in a separate column) or implicitly (up Q(t)

) iv	prets	.1	outputs			
	X	Q(+)	G	((+1)	_	$_{\uparrow}$ \times	Q(++1)
(D)	000	0 1		0		0	Q (+)

We'll study several important sequential circuits:

(i) SR flip-flop (unclocked and clocked versions)

TK flip-flop

D flip-flop

read-write nemony

blivary counter

Divary counter

(1) (a) undoded flip-flop

termhology: to set a bit nears to arrigh it the value 1 to reset a bit nears to arrigh it the value 0

non-standard representation of S-R flip-flop:

exercise: when R=1, Q=0 S=1, P=0 P=1, Q=0 Q=1, P=0

Thus have strange touth table:

	V					
inp	ts /	ov	rtputs			
5	R	ρ	Q	_		
0	0) (0	ζ_	ether is	possible
		>0	(5		•
0	}	1	0			
l	O	0	(
((O			

If we agree that will never have S and R = 1 at the same time, we see from the touth table that P = Q, so we can write the circuit as:

(this is the standard representation)

Exercise: fill in the sequence of outputs (this is not a touth table).

	(100	in luse		.			
	five t	S	R		Q	व	
-	0	(0		(0	
	1	U	O		(O	
	2	(0		(O	
	3	0	0		(٥	ansher
	4	0	(0	1	(
	5	0	0		9	(
	6	(O		(O	
	7	0	0		1	0	
		•					

Note that $S \equiv \text{"Set"}$ i.e. sets Q to 1 $Q \equiv \text{"rejet"}$ i.e. resets Q to Q.

A clock gives out a repeating on-oft signal, e.g. o MM

Attaching a clock to a circuit can make it change state exactly once per cycle e-g. - when clock is 1 } level - triggered - when clock is 0

- when clock is O

- Wen dock charges (-) o } edge-triggered - When clock charges (-) o }

We don't study details of how this is achieved.

Symbol for clocked SR flip-tlop:

Exercise: fill in the truth table on the handout (puzzle 1).
Boleler truth table: S R Q(th)

S	R	Q(tr)
0	O	Q(+)
0	1	0
l	0	1
((undefined

(2) Jic flip-flop

Symbol:

J
C
K
Q

touth table: save as SR, but output is toggled when J+K are 1:

	K	Q (++1)_
6	Ō	Ø (+)
0	1	0
l	9	1
l	l	Q(t)

Important lesson from toggling behavior:

At each clock fick, all flip flops compute output based on current input — but this output does not feed back and affect the input until the next clock tick

Exercise: Undertand this uring alove circuit diagram for TI(flip-flop.

circuit:

Symbol: DQ

Seems polithers, since $Q\equiv D$. Wouldn't a nire achieve the same thing?

Answer: No - it's all about timing. Q stays at a stable level between clock pulses. Meanwhite, we can adjust D.

This leads to circuit for a 1-bit memory:

(5) Nead-Wirts nemon

See text look fig 3.32

Activity: do hardout puzzles 2 and 3

(6) Binary counter

See textSook fig 3.31
Activity: do handout purzle 4.

If time, cheek out the online demo on resource page