Применение сверточных нейронных сетей к задаче классификации трехмерных моделей

ОБУЧАЮЩИЙСЯ:

ВАКУЛИН А.А.

РУКОВОДИТЕЛИ:

КРЫЛОВЕЦКИЙ А.А. ЧЕРНИКОВ И.С.

ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ КОМПЬЮТЕРНЫХ НАУК КАФЕДРА ЦИФРОВЫХ ТЕХНОЛОГИЙ

Цель работы

Разработка системы классификации трёхмерных объектов

Система классификации

- Формирование базы данных
- Подготовка данных
- Построение глобальных дескрипторов поверхности
- Обучение сверточной нейронной сети

Формирование базы данных

Princeton Shape Benchmark

- 540 объектов
- 3 класса

Рис.1: Классы объектов, выбранные для распознавания

Подготовка данных

Контроль разрешения объектов

Рис. 2: Базовые операции алгоритма контроля разрешения трехмерных объектов. Ребро свернуто в точку(верхний рисунок). Ребро разделено на два(нижний рисунок)

Построение дескрипторов

Спиновые изображения

Рис. 3: Относительные координаты спинового изображения α и β

Рис. 4: Примеры спиновых изображений

Сверточная нейронная сеть

Общее представление

- Сверточный слой (convolutional)
- Слой объединения (pooling)
- Слой полносвязной нейронной сети

Рис. 5: Общая схема сверточной нейронной сети

Сверточная нейронная сеть

Сверточный слой (convolutional)

Рис. 6: Пример работы сверточного слоя

Сверточная нейронная сеть

Слой объединения (pooling)

Рис. 7: Пример работы слоя объединения

Реализация системы №1

Рис. 8: Архитектура сверточной нейронной сети, использованная для реализации системы №1

График изменения значений функции ошибки для реализации системы №1

Реализация системы №2

Рис. 8: Архитектура сверточной нейронной сети, использованная для реализации системы №2

График изменения значений функции ошибки для реализации системы №2

Диаграмма результатов тестирования системы

Список литературы

- 1. Johnson A.E. Spin-Images: A Representation for 3-D Surface Matching, Ph. D. Thesis, Carnegie Mellon University, 1997, 288 p.
- 2. Автоматическое совмещение поверхностей в системах компьютерного зрения / А.А. Крыловецкий, И.С. Черников, С.Д. Кургалин // Математическое моделирование .— 2013 .— Т. 25, № 3. С. 33-46.
- Michael Neilsen. Neural Networks and Deep Learning / Michael Neilsen [Электронный ресурс].- 2017. URL: http://neuralnetworksanddeeplearning.com (дата обращения 23.04.2017).