Лабораторная работа №1.1.1 Определение удельного сопротивления нихромовой проволки

Мыздриков Иван 5 сентября 2024 г.

1 Введение

Цель работы:

- измерить удельное сопротивление нихромовой проволки двумя способами
- вычислить систематические и случайные ошибки

В работе используются:

- линейка
- штангенциркуль
- микрометр
- отрезок проволки из нихрома
- амперметр
- вольтметр
- мост постоянного тока

2 Ход работы

Для расчета удельного сопротивления измерим сопротивление проволки с известной геометрией и высчитаем удельное сопротивление по формуле

$$\rho = \frac{R}{l} \frac{\pi d^2}{4} \tag{1}$$

где R - сопротивление проволки, l -длина проволки, d - диаметр проволки.

Измерения мы буедм проводить для 3х длин проволки - 50, 30, 20 см.

Для начала измерим толщину проволки, учитывая что из за неровностей она меняется по длине проволки, поэтому измерим его в нескольких точках и усредним. При измерении штангенциркулем везде получаем одно и то же значение

$$d_{\text{min}} = (0.35 \pm 0.05)_{\text{MM}}$$

При измерении микрометром получаем значения

$$d, \text{MM} \mid 0.36 \mid 0.36 \mid 0.35 \mid 0.35 \mid 0.36 \mid 0.34 \mid 0.35 \mid 0.36 \mid 0.35 \mid 0.36$$

Таблица 1: Измерения диаметра проволки микрометром

Усреднив значения из таблицы, посчитав дисперсию выборки и суммировав её с систематической ошибкой $\Delta d_{\text{сист}} = 0.005$ мм получаем

$$d_{\rm md} = (0.354 \pm 0.005)_{\rm MM}$$

Сразу же подсчитаем площадь поперечного сечения для обоих случаев

$$S_{\rm mp} = (0.098 \pm 0.003) {\rm mm}^2$$

l, cm	2	0	30		50	
Nº	U, mB	I, м A	U , ${ m MB}$	I, мА	U , ${ m MB}$	I, м A
1	505	273	640	211	655	130
2	360	178	450	150	585	117
3	310	152	350	115	515	108
4	240	116	290	96	425	84
5	180	89	235	77	385	77
6	145	70	195	64	335	67

Таблица 2: Измерении зависимости U(I) при различных l

Рис. 1: Схема установки

Измерения будем проводить по схеме ниже. Обозначим показания вольтметра как U, а амперметра как I. Легко получить формулу для $R_{\text{пр}}$

$$R_{\rm np} = \frac{U}{I} \left(1 + \frac{U/I}{R_v} \right)$$

Из чарактеристик вольтметра знаем что сопротивление вольтметра порядка $4.095k\Omega$, поэтому поправка $\frac{U/I}{R_v}$ 0.5%, что больше относительных погрешностей вольтметра и амперметра в 2.5 раза. Исходя из этого пренебрежем влиянием сопротивления вольтметра и воспользуемся приближенной формулой

$$R_{\rm np} pprox rac{U}{I}$$

Для нахождения сопротивления построим график U(I), и из наклона прямой найдем сопротивление. Из графика получаем следующие данные.

l, cm	20	30	50
R_{np}, Ω	1.787 ± 0.14	3.018 ± 0.041	4.425 ± 0.85

Таблица 3: Расчетные $R_{\rm np}$ от l

Сравним с данными измерении от моста Р4833.

l, cm	20	30	50
R_{np}, Ω	2.057 ± 0.01	3.046 ± 0.01	5.059 ± 0.01

Таблица 4: $R_{\rm np}$ от l по измерениям P4833

Рассмотрим на сколько процентов расчетные сопротивления меньше имерянных.

l, cm	20	30	50
$\varepsilon,\%$	13.1	0.075	12.53

Таблица 5: Различие между сопротивлениями

Эти различия очень большие и никак не объясняются погрешностями. Так как график идеально линейный только при l=30см и совпадает со значениями моста при этом же условии, стоит предположить, что в измерениях вольтметра и амперметра была дополнительная ошибка при l=20см и l=50см. Вероятно она вызвана человеческим фактором (неправильное округление при записи измерений), потому стоит использовать значения моста для измерения удельного сопротивления.

Погрешность моста в диопазоне измерении $\pm 0.01\Omega$. Воспользуемся формулами для подсчета удельного сопротивления и его погрешности.

$$\rho = \frac{RS}{l}$$

$$\Delta \rho = \rho \sqrt{\left(\frac{\Delta R}{R}\right)^2 + \left(\frac{\Delta S}{S}\right)^2 + \left(\frac{\Delta l}{l}\right)^2}$$

Для площади сечения S воспользуемся значением, полученным с помощью микрометра. Подставляя числа получаем

l, cm	20	30	50
$\rho, \Omega_{\mathrm{M}}$	10.08	9.95	9.91
$\Delta \rho, \Omega_{\rm M}$	0.31	0.3	0.3

Таблица 6: Различие между сопротивлениями при использовании моста

l, cm	20	30	50
$\rho, \Omega_{ m M}$	8.756	9.98	8.673
$\Delta \rho, \Omega_{\rm M}$	8.41	0.33	1.94

Таблица 7: Различие между сопротивлениями при первом способе (вольтметр и амперметр)

Как ответ запишем среднее

$$\rho = (9.98 + 0.31)\Omega\text{cm}, \varepsilon_{\rho} \approx 3\%$$

3 Заключение

Значение удельного сопротивления совпадает с табличными значениями для нихрома. Значении сопротивлении измерянных косвенным методои оказались в среднем на 5% ниже реальных, что скорее всего объясненяется либо некалиброванностью вольтметра, либо его аномальной малостью внутреннего сопротивления вольтметра (порядка 100Ω). В любом случае даже использовав заниженные сопротивления приходим к тому же выводу что проволка действительно нихромовая.

Рис. 2: График зависимости U(I)