

Introducing Functions

A function f from a set A to a set B, written $f:A\to B$, is a relation $f\subseteq A\times B$ such that every element of A is related to one element of B; in logical notation

- 1. $(a, b_1) \in f \land (a, b_2) \in f \Rightarrow b_1 = b_2;$
- 2. $\forall a \in A. \exists b \in B. (a, b) \in f.$

The set A is called the **domain** and B the **co-domain** of f.

If $a \in A$, then f(a) denotes the unique $b \in B$ st. $(a, b) \in f$.

Comments

If the domain A is the n-ary product $A_1 \times \ldots \times A_n$, then we often write $f(a_1, \ldots, a_n)$ instead of $f((a_1, \ldots, a_n))$.

The intended meaning should be clear from the context.

Recall the difference between the following two Haskell functions:

$$f :: (A,B,C) -> D$$

Our definition of function is not curried.

Image Set

Let $f:A\to B$. For any $X\subseteq A$, define the **image** of X under f to be

$$f[X] \stackrel{\mathrm{def}}{=} \{ f(a) : a \in X \}$$

The set f[A] is called the **image set** of f.

Let $A = \{1, 2, 3\}$ and $B = \{a, b, c\}$.

Let $f \subseteq A \times B$ be defined by $f = \{(1, a), (2, b), (3, a)\}.$

The image set of f is $\{a, b\}$.

The image of $\{1,3\}$ under f is $\{a\}$.

Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$. Let $f \subseteq A \times B$ be defined by $f = \{(1, a), (1, b), (2, b), (3, a)\}$.

This f is not a well-defined function.

The following are examples of functions with infinite domains and co-domains:

- 1. the function $f: \mathcal{N} \times \mathcal{N} \mapsto \mathcal{N}$ defined by f(x, y) = x + y;
- 2. the function $f: \mathcal{N} \mapsto \mathcal{N}$ defined by $f(x) = x^2$;
- 3. the function $f: \mathcal{R} \mapsto \mathcal{R}$ defined by f(x) = x + 3.

The binary relation R on the reals defined by x R y if and only if $x = y^2$ is not a function

Cardinality

Let $A \to B$ denote the set of all functions from A to B, where A and B are finite sets. If |A| = m and |B| = n, then $|A \to B| = n^m$.

Sketch proof

For each element of A, there are n independent ways of mapping it to B.

You do not need to remember this proof.

Partial Functions

A partial function f from a set A to a set B, written $f:A \rightarrow B$, is a relation $f \subseteq A \times B$ such that just some elements of A are related to unique elements of B:

$$(a,b_1) \in f \land (a,b_2) \in f \Rightarrow b_1 = b_2.$$

The partial function f is regarded as **undefined** on those elements which do not have an image under f.

We call this undefined value \perp (pronounced *bottom*).

A partial function from A to B is a function from A to $(B + \{\bot\})$.

Examples of Partial Functions

- 1. Haskell functions which return run-time errors on some (or all) arguments.
- 2. The relation $R = \{(1, a), (3, a)\} \subseteq \{1, 2, 3\} \times \{a, b\}$:

Not every element in A maps to an element in B.

3. The binary relation R on \mathcal{R} defined by x R y iff $\sqrt{x} = y$. It is not defined when x is negative.

Properties of Functions

Let $f: A \rightarrow B$ be a function.

1. f is **onto** if and only if every element of B is in the image of f:

$$\forall b \in B. \exists a \in A. f(a) = b.$$

2. f is **one-to-one** if and only if for each $b \in B$ there is at most one $a \in A$ with f(a) = b:

$$\forall a, a' \in A. f(a) = f(a') \text{ implies } a = a'.$$

3. f is a bijection iff f is both one-to-one and onto.

Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$. The function $f = \{(1, a), (2, b), (3, a)\}$ is onto, but **not** one-to-one:

We cannot define a one-to-one function from A to B. There are too many elements in A for them to map uniquely to B.

Let $A = \{a, b\}$ and $B = \{1, 2, 3\}$. The function $f = \{(a, 3), (b, 1)\}$ is one-to-one, but not onto:

It is not possible to define an onto function from A to B. There are not enough elements in A to map to all the elements of B.

Let $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$. The function $f = \{(a, 1), (b, 3), c, 2)\}$ is bijective:

The function f on natural numbers defined by f(x,y) = x + y is onto but not one-to-one.

To prove that f is onto, take an arbitrary $n \in \mathcal{N}$. Then f(n,0) = n + 0 = n.

To show that f is not one-to-one, we need to produce a counter-example: that is, find $(m_1, m_2), (n_1, n_2)$ such that $(m_1, m_2) \neq (n_1, n_2)$, but $f(m_1, m_2) = f(n_1, n_2)$.

For example, (1,0) and (0,1).

- 1. The function f on natural numbers defined by $f(x) = x^2$ is one-to-one. The similar function f on integers is not.
- 2. The function f on integers defined by f(x) = x + 1 is onto. The similar function on natural numbers is not.
- 3. The function f on the real numbers given by f(x) = 4x + 3 is a bijective function.

The proof is given in the notes.

The Pigeonhole Principle

Pigeonhole Principle

Let $f: A \to B$ be a function, where A and B are finite. If |A| > |B|, then f cannot be a one-to-one function.

Example

Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$. A function $f : A \rightarrow B$ cannot be one-to-one, since A is too big.

It is not possible to prove this property directly.

The pigeonhole principle states that we assume that the property is true.

Proposition

Let A and B be finite sets, let $f:A\to B$ and let $X\subseteq A$. Then $|f[X]|\leq |X|.$

Proof Suppose for contradiction that |f[X]| > |X|. Define a function $p: f[X] \to X$ by

 $p(b) = \text{some } a \in X \text{ such that } f(a) = b.$

There is such an a by definition of f[X]. We are placing the members of f[X] in the pigeonholes X. By the pigeonhole principle, there is some $a \in X$ and $b, b' \in f[X]$ with p(b) = p(b') = a. But then f(a) = b and f(a) = b'. Contradiction.

19

Proposition

Let A and B be **finite** sets, and let $f: A \rightarrow B$.

- 1. If f is one-to-one, then $|A| \leq |B|$.
- 2. If f is onto, then $|A| \ge |B|$.
- 3. If f is a bijection, then |A| = |B|.

Proof

Part (a) is the contrapositive of the pigeonhole principle.

For (b), notice that if f is onto then f[A] = B. Hence, |f[A]| = |B|. Also $|A| \ge |f[A]|$ by previous proposition. Therefore $|A| \ge |B|$ as required.

Part (c) follows from parts (a) and (b).

Composition

Let A, B and C be arbitrary sets, and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.

The **composition** of f with g, written $g \circ f : A \to C$, is a function defined by

$$g \circ f(a) \stackrel{\mathrm{def}}{=} g(f(a))$$

for every element $a \in A$. In Haskell notation, we would write

$$(g.f)$$
 a = g $(f a)$

It is easy to check that $g \circ f$ is indeed a function.

The co-domain of f must be the same as the domain of g.

Let $A = \{1, 2, 3\}, B = \{a, b, c\}, f = \{(1, a), (2, b), (3, a)\}$ and $g = \{(a, 3), (b, 1)\}.$

Then $g \circ f = \{(1,3), (2,1), (3,3)\}.$

Associativity

Let $f:A\to B, g:B\to C$ and $h:C\to D$ be arbitrary functions. Then $h\circ (g\circ f)=(h\circ g)\circ f.$

Proof Let $a \in A$ be arbitrary. Then

$$(h \circ (g \circ f))(a) = h((g \circ f)(a))$$

$$= h(g(f(a)))$$

$$= (h \circ g)(f(a))$$

$$= ((h \circ g) \circ f)(a)$$

Proposition

Let $f:A\to B$ and $g:B\to C$ be arbitrary bijections. Then $g\circ f$ is a bijection.

Proof It is enough to show that

- 1. if f, g are onto then so is $g \circ f$;
- 2. if f, g are one-to-one then so is $g \circ f$.

Assume f and g are onto. Let $c \in C$. Since g is onto, we can find $b \in B$ such that g(b) = c. Since f is onto, we can find $a \in A$ such that f(a) = b. Hence $g \circ f(a) = g(f(a)) = g(b) = c$.

Assume f and g are one-to-one. Let $a_1, a_2 \in A$ such that $g \circ f(a_1) = g \circ f(a_2)$. Then $g(f(a_1)) = g(f(a_2))$. Since g is one-to-one, $f(a_1) = f(a_2)$. Since f is also one-to-one, $a_1 = a_2$.

Identity

Let A be a set. Define the **identity** function on A, denoted $id_A : A \to A$, by $id_A(a) = a$ for all $a \in A$.

In Haskell, we would declare the function

$$id x = x$$

Inverse

Let $f:A\to B$ be an arbitrary function. The function $g:B\to A$ is an **inverse** of f if and only if

for all
$$a \in A$$
, $g(f(a)) = a$
for all $b \in B$, $f(g(b)) = b$

Another way of stating the same property is that $g \circ f = id_A$ and $f \circ g = id_B$.

1. The inverse relation of the function $f: \{1, 2\} \rightarrow \{1, 2\}$ defined by f(1) = f(2) = 1 is not a function.

When an inverse function exists, it corresponds to the inverse relation.

2. Let $A = \{a, b, c\}$, $B = \{1, 2, 3\}$, $f = \{(a, 1), (b, 3), (c, 2)\}$ and $g = \{(1, a), (2, c), (3, b)\}$. Then g is an inverse of f.

Proposition

Let $f:A\to B$ be a bijection, and define $f^{-1}:B\to A$ by

$$f^{-1}(b) = a$$
 whenever $f(a) = b$

The relation f^{-1} is a well-defined function.

It is the inverse of f (as shown in next proposition).

Proof

Let $b \in B$. Since f is onto, there is an a such that f(a) = b.

Since f is one-to-one, this a is unique. Thus f^{-1} is a function.

It satisfies the conditions for being an inverse of f.

Proposition

Let $f: A \to B$. If f has an inverse g, then f must be a bijection and the inverse is unique.

Proof To show that f is onto, let $b \in B$. Since f(g(b)) = b, it follows that b must be in the image of f.

To show that f is one-to-one, let $a_1, a_2 \in A$. Suppose $f(a_1) = f(a_2)$. Then $g(f(a_1)) = g(f(a_2))$. Since $g \circ f = id_A$, it follows that $a_1 = a_2$.

To show that the inverse is unique, suppose that g, g' are both inverses of f. Let $b \in B$. Then f(g(b)) = f(g'(b)) since g, g' are inverses. Hence g(b) = g'(b) since f is one-to-one.

Consider the function $f: \mathcal{N} \to \mathcal{N}$ defined by

$$f(x) = x + 1,$$
 $x \text{ odd}$
= $x - 1,$ $x \text{ even}$

It is easy to check that $(f \circ f)(x) = x$, considering the cases when x is odd and even separately. Therefore f is its own inverse, and we can deduce that it is a bijection.

Cardinality of Sets

Definition

For any sets A, B, define $A \sim B$ if and only if there is bijection from A to B.

Proposition Relation \sim is reflexive, symmetric and transitive.

Proof Relation \sim is reflexive, as $id_A : A \rightarrow A$ is a bijection.

To show that it is symmetric, $A \sim B$ implies that there is a bijection $f: A \to B$. By previous proposition, it follows that f has an inverse f^{-1} which is also a bijection. Hence $B \sim A$.

The fact that the relation \sim is transitive follows from previous proposition.

Let A, B, C be arbitrary sets, and consider the products $(A \times B) \times C$ and $A \times (B \times C)$.

There is a natural bijection $f: (A \times B) \times C \to A \times (B \times C)$:

$$f: ((a,b),c) \mapsto (a,(b,c))$$

Also define the function $g: A \times (B \times C) \rightarrow (A \times B) \times C$:

$$g:(a,(b,c))\mapsto((a,b),c)$$

Function g is the inverse of f.

Consider the set Even of even natural numbers.

There is a bijection between Even and \mathcal{N} given by f(n) = 2n.

Not all functions from Even to \mathcal{N} are bijections.

The function $g: \mathsf{Even} \to \mathcal{N}$ given by g(n) = n is one-to-one but not onto.

To show that Even $\sim \mathcal{N}$, it is enough to show the **existence** of such a bijection.

Recall that the cardinality of a **finite** set is the number of elements in that set. Let |A| = n. There is a bijection

$$c_A:\{1,2,\ldots,n\}\to A.$$

Let A and B be two finite sets. If A and B have the same number of elements, we can define a bijection $f: A \to B$ by

$$f(a) = (c_B \circ c_A^{-1})(a).$$

Two finite sets have the same number of elements if and only if there is a bijection between then.

Cardinality

Given two **arbitrary** sets A and B, then A has the same **cardinality** as B, written |A| = |B|, if and only if $A \sim B$.

Notice that this definition is for all sets.

Exploring Infinite Sets

The set of natural numbers is one of the simplest infinite sets. We can build it up by stages:

()

0, 1

0, 1, 2

. . .

Infinite sets which can be built up in finite portions by stages are particularly nice for computing.

Countable

A set A is **countable** if and only if A is finite or $A \sim \mathcal{N}$.

The elements of a countable set A can be listed as a finite or infinite sequence of distinct terms: $A = \{a_1, a_2, a_3, \ldots\}$.

The integers \mathcal{Z} are countable, since they can be listed as:

$$0, -1, 1, -2, 2, -3, 3, \dots$$

This 'counting' bijection $g: \mathcal{Z} \to \mathcal{N}$ is defined formally by

$$g(x) = 2x, \quad x \ge 0$$
$$= -1 - 2x, \quad x < 0$$

The set of integers \mathcal{Z} is like two copies of the natural numbers.

The set \mathcal{N}^2 is countable:

Comment

The rational numbers are also countable.

Uncountable Sets

Cantor showed that there are **uncountable** sets.

An important example is the set of reals \mathcal{R} .

Another example is the power set $\mathcal{P}(\mathcal{N})$.

We cannot manipulate reals in the way we can natural numbers.

Instead, we use approximations: for example, the floating point decimals of type Float in Haskell.

For more information, see Truss, section 2.4.