Supplemental File for Non-Iterative Coordination of Interconnected Power Grids via Dimension Decomposition-Based Flexibility Aggregation

Siyuan Wang, Member, IEEE, Cheng Feng, Member, IEEE, Fengqi You, Senior Member, IEEE

R1

т	PARAMETERS	or IEEE	110	Tramatar
	PARAMETERS	OFTERE	ווא	TEST CASE

TABLE I
CONFIGURATION OF THE IEEE 118 SYSTEM

Item	Number		
Bus	118		
Branch	186		
Thermal power generator	32		
PV stations	23		
Wind farms	18		
Tie-lines	2 (AC@Bus17, DC@Bus31)		

II. PARAMETERS OF 5-REGION INTERCONNECTED POWER GRID

TABLE II
CONFIGURATION OF GENERATION UNITS IN FIVE REGIONAL POWER GRIDS

Index	Case name	Thermal power generators	PV stations	Wind farms
R1	case39	10	10	6
R2	case118	32	12	11
R3	case89pegase	24	10	8
R4	case39	10	6	10
R5	case89pegase	24	8	10

TABLE III TIE-LINES OF 5-REGION INTERCONNECTED POWER GRIDS

From RPG	From bus	To RPG	To bus	Type

R1	34	R3	2107	AC
	38		2267	AC
R2	82	R3	5097	DC
K2	108	KS	6233	DC
	16		30	AC
R2	80	R4	32	AC
	100		33	AC
	3659		6798	AC
R3	4586	R5	7960	AC
KS	6798	KS	8605	DC
	7279		9239	DC
	35		2107	AC

30

33

35

37

31

25

28

75

913

R2

DC

DC

DC

DC

AC

III. SOLUTION METHOD OF THE MIN-MAX PROBLEM

R5

3659

4586

6233

AC

AC

AC

34

36

38

R4

To solve the Stackelberg game min-max problem in (23), the internal variables x^{int} are eliminated via duality and (23) is

transformed into a minimization problem:

$$\min_{\boldsymbol{x}^{\mathrm{bd}}, \boldsymbol{\lambda}, \boldsymbol{\pi}} \boldsymbol{\pi}^{\top} \boldsymbol{f} - \boldsymbol{\lambda}^{\top} \boldsymbol{d} + \boldsymbol{\lambda}^{\top} \boldsymbol{x}^{\mathrm{bd}}$$
s.t. $\boldsymbol{H}_{t}^{\mathrm{bd}} \boldsymbol{x}^{\mathrm{bd}} \in \mathcal{E}_{t}^{\mathrm{bd}} \left(\boldsymbol{E}_{t(k)}^{\mathrm{bd}}, \boldsymbol{e}_{t}^{\mathrm{bd}} \right), \forall t \in \mathcal{T}$

$$\boldsymbol{A}_{i}^{\mathrm{tie}} \boldsymbol{S}_{i}^{\mathrm{tie}} \boldsymbol{x}^{\mathrm{bd}} \leq \boldsymbol{b}_{i(k)}^{\mathrm{tie}}, \forall i \in \mathcal{I}^{\mathrm{tie}}$$

$$\boldsymbol{\lambda}^{\top} \boldsymbol{C} + \boldsymbol{\pi}^{\top} \boldsymbol{F} = \boldsymbol{0}$$

$$\boldsymbol{\pi} \geq \boldsymbol{0}$$
(A.1)

where λ and π are the dual variables associated with the equality (23d) and inequality constraints (23e), respectively.

The problem in (A.1) is a bilinear programming problem with a bilinear term $\lambda^{\top} x^{\rm bd}$ in the objective function, which poses challenges for direct solution with commonly used solvers. According to the propriety of dual variables, violation of the equality constraints (23d) will lead to the objective function an infinity value $-\infty$. Therefore, the optimal value of each element in vector λ is the 3 possible values of 0, $+\infty$ and $-\infty$. To facilitate computation, we discretize each element in the unbounded vector variable λ to three specific values, -M, 0, and M, where M is a sufficient large positive constant. By introducing two discrete variables, z_1 and z_2 , λ can be expressed as follows:

$$\lambda = (z_1 - z_2) \cdot M$$

$$z_1 + z_2 \le I_1, z_1, z_2 \in \{0, 1\}^l$$
(A.2)

where $l := \operatorname{len}(\lambda)$. Subsequently, the bilinear term $\lambda^{\top} x^{\operatorname{bd}}$ can be reformulated as products between binary and continuous variables, which can then be transformed into a mixed-integer linear programming problem or directly solved using off-the-shelf solvers, such as Gurobi.