ASEN 5044, Fall 2024 Statistical Estimation for Dynamical Systems

Lecture 33:

The Unscented Kalman Filter (UKF) [aka the Sigma Point Filter (SPF)]

Prof. Nisar Ahmed (Nisar.Ahmed@Colorado.edu)

Thursday 12/05/2024

Announcements

- Final project assignment tasks + Progress report 1 due Fri 12/06
- Final Project Progress Report 2 posted due Fri 12/13
- Final Project Report Due Tues 12/17, 11:59 pm
- Quiz 8 out due Tues 12/10
- Today is the final lecture for semester!
 - No live class/lectures/recordings next week
 - Thurs 12/12 lecture time = office hours (+ other regular office hours next week)
- FCQs now out online

Some Guidance on Final Project

Hints for Part 1 (focus of Progress Report 1)

- Please title and label axes of your plots properly! (esp. perturbation vs. total states)
- <u>DO NOT</u> JUST HAND IN CODE AND PLOTS WITHOUT EXPLANATION! → <u>ZERO CREDIT</u> (<u>explain</u> what you did, apart from your code -- code is NOT part of page count)
- Use physically reasonable (not too large) perturbation values
 - (i.e. s/c in StatOD should not be skimming bushes; UAV-UGV should not spin off into oblivion...)
- → PAY ATTENTION TO THE NUMBERS AND INTERPRET YOUR RESULTS! (look at posted solution sketches carefully + debug your code in stages)

Hint for Part 2:

- Note on using Q matrices provided for ground truth data generation: interpret Q matrix values given in data logs as CT PSDs for process noise *injected at discrete time steps*
 - \circ i.e. sample noise \tilde{w}(t=t_k)=w_k ^N(0,Q), and treat w_k as if it were a zero-order hold (ZOH) external input to your CT dynamics for R-K integration (going from t=t_k to t=t_{k+1} = t_k + Δ t)
 - NL CT dyn fxn given to ode45/R-K routine SHOULD <u>NOT</u> HAVE RANDOM NUMBER
 → GENERATOR INSIDE IT!!! (o'wise screws up adaptive multi-step integration → nonsense...)

<u>Generally:</u> if using any code assistants and/or collaborating with others: please note/cite what + whom you collaborated with!!

Overview

Last Time:

- Quick overview of Final Project assignment
- DT Extended Kalman filter (EKF)
- Closer look at linearization and covariance approximations for LKF & EKF
- General considerations for Initializing + Tuning the LKF & EKF

Today:

- Limitations of the EKF and Taylor series-based linearization
- Alternative to linearization: sigma point (unscented) transformation
- Sigma point KF (SPF), aka the Unscented KF (UKF)

Example: Static Scalar Estimator with Nonlinear Data

• Suppose $x \sim \mathcal{N}(\hat{x}^- = \mu_x, P^- = \sigma_x^2)$, for $x_{k+1} = x_k = x$ (static scalar state) $y = h(x) = x^2$ (scalar noiseless nonlinear measurement) \rightarrow find $\mu_y = E[y]$ and $\sigma_y^2 = \text{cov}(y)$?

Exact calculation:

 \rightarrow let $x = \mu_x + \delta x$, or $\delta x = x - \mu_x$, then $y = (\mu_x + \delta x)^2 = \mu_x^2 + 2\mu_x \delta x + \delta x^2$, so $\mu_y = E[y] = \mu_x^2 + 2\mu_x E[\delta x] + E[\delta x^2]$ $= \mu_x^2 + 2\mu_x E[x - \mu_x] + E[(x - \mu_x)^2]$ $\rightarrow \mu_y = \mu_x^2 + \sigma_x^2 \text{ (exact answer)}$ likewise: $\sigma_y^2 = E[(y - \mu_y)^2] = ...$ $\rightarrow \sigma_y^2 = 2\sigma_x^4 + 4\mu_x^2 \sigma_x^2 \text{ (exact answer)}$

Linearization results (EKF):

kurtosis term...)

Limitations of the EKF and Taylor Series Linearization

- Truncation of higher order terms in Taylor expansions
 - o can incur significant biases that may not easily covered up by process noise tuning
 - in such cases, would need state augmentation (i.e. biases added to state vector) or higher order filtering (e.g. second-order EKF with more Jacobians) or iterated estimates (e.g. IEKF with multiple linearization passes)
 - → incur more computational expense!! And yet, still no guarantees!!!
- Mean and covariance approximations based on Taylor series approximation of dynamics only valid if state estimate close to true state mean

moving vehicle

- o no guarantees
- → can under-/over-approximate estimation error covars!!!
- Need to compute Jacobians
 - Cannot deal with non-smooth dynamics or measurements
 - e.g. lidar data features for tracking moving cars (sudden jumps in min/max bearing angles off car sides):
 - I. Miller, M. Campbell, and D. Huttenlocher. "Efficient unbiased tracking of multiple dynamic obstacles under large viewpoint changes." IEEE Transactions on Robotics 27.1 (2011): 29-46.

Alternative Approximation: Unscented Transform

- <u>Key idea:</u> easier to directly approximate mean and covariance from one pdf to another, than to analytically approximate the nonlinear state transition function first...
- Easy way to approximate transformed pdf mean/covariance: simulation-based sampling
- Use special "sigma points" from initial state pdf $p(x_k|y_{1:k})$ for state x_k at time k
 - \circ By definition: weighted sigma pts sample mean/covar = true mean/covar of $p(x_k|y_{1:k})$
- Propagate sigma pts thru, e.g., non-linear dynamics function f(.) to simulate x_{k+1} values
- Use weighted sample mean/covar of x_{k+1} pts to approx mean/covar of $p(x_{k+1}|y_{1:k})$

• No Jacobians: samples retain additional higher order f(.) terms vs. Taylor linearization,

The Unscented (Sigma Point) Transform

- How to actually "sample" sigma points?
- Deterministic selection of x_k from pdf with $E[x_k] = \mu_x$ and $cov(x_k) = P_{xx}$
 - \circ Minimal set of points in x_k that "sketch out" first two moments of pdf

use
$$P_{xx} = S^T S$$
, where $S = \text{chol}(P_{xx})$

 $\rightarrow 2n + 1$ sigma points:

$$\chi^0 = \mu_x$$
 (at the mean)

$$\chi^{i} = \begin{cases} \mu_{x} + (\sqrt{n+\lambda}) \cdot S^{j,T}, & \text{for } i = 1, ..., n, \text{ and } j = 1, ..., n \\ \mu_{x} - (\sqrt{n+\lambda}) \cdot S^{j,T}, & \text{for } i = n+1, ..., 2n, \text{ and } j = 1, ..., n \end{cases}$$

 S^j : jth row of S where:

n: number of states (dim of x_k)

 λ : scaling parameter = $\alpha^2 \cdot (n + \kappa) - n$ (typical values: $\kappa = 0, \alpha \in [10^{-4}, 1]$)

How to Use Sigma Points (generally)?

- Suppose we want to find $\mu_z = E[z]$ and $P_{zz} = \text{cov}(z)$ for some nonlinear vector function z = g(x), given $x \sim p(x)$ s.t. $E[x] = \mu_x$, $\text{cov}(x) = P_{xx}$.
- \rightarrow Simply propagate sigma pts $\{\underline{\chi}^i\}_{i=0:2n}$ through g(x), and get 'resultant sample' points $\{\xi^i\}_{i=0:2n}$:

$$\xi^{0} = g(\underline{\chi}^{0}),$$

$$\xi^{i} = g(\underline{\chi}^{i}), i = 1, \dots, 2n$$

 \rightarrow Recombine resultant points to estimate μ_z and P_{zz} :

$$\mu_z = \sum_{i=0}^{2n} w_m^i \cdot \xi^i,$$

$$P_{zz} = \sum_{i=0}^{2n} w_c^i \cdot (\xi^i - \mu_z)(\xi^i - \mu_z)^T$$

Typically:

*set $\kappa = 0$, $\beta = 2$, and play with α (large α : sigma pts more spread out) (small α : approaches EKF)

*but no matter what: will always get right answers if g(x) linear!

Example: Scalar Estimator with Nonlinear Data (Revisited)

• Suppose $x \sim \mathcal{N}(\hat{x}^- = \mu_x, P^- = \sigma_x^2)$, for $x_{k+1} = x_k = x$ (static scalar state)

 $y = h(x) = x^2$ (scalar noiseless nonlinear measurement)

 \rightarrow find $\mu_y = E[y]$ and $\sigma_y^2 = \text{cov}(y)$?

Unscented transform results (using sigma pts for n=1):

$$\chi^0 = \mu_x,$$

$$\chi^i = \mu_x \pm (\sqrt{1+\lambda}) \cdot \sigma_x,$$

$$\to \xi^0 = h(\chi^0) = \mu_x^2, \qquad \xi^i = h(\chi^i) = (\mu_x \pm \sqrt{1 + \lambda} \cdot \sigma_x)^2$$

$$\to \mu_y = \sum_{i=0}^{2n} w_m^i \cdot \xi^i = \frac{\lambda}{1+\lambda} \mu_x^2 + \frac{1}{2+2\lambda} (\xi^1) + \frac{1}{2+2\lambda} (\xi^2) = \mu_x^2 + \sigma_x^2$$

$$\sigma_y^2 = \sum_{i=0}^{N} w_c^i \cdot (\xi^i - \mu_y)^2 = \frac{\lambda}{1+\lambda} (\xi^0 - \mu_y)^2 + \frac{1}{2+2\lambda} (\xi^1 - \mu_y)^2 + \frac{1}{2+2\lambda} (\xi^2 - \mu_y)^2$$
$$= [\alpha^2 \cdot \kappa + \beta] \cdot \sigma_x^4 + 4\mu_x^2 \sigma_x^2 = 2\sigma_x^4 + 4\mu_x^2 \sigma_x^2 \text{ (for typical values)}$$

Sigma point / unscented transformation recovers the desired exact values! (mean is unbiased, variance properly accounts for higher order moment terms)

The Unscented Kalman Filter (aka Sigma Point Filter)

• The nonlinear filtering problem consists of <u>2 nonlinear transformations</u>, whose statistics will each be approximated by sigma pts for KF-like prediction and measurement updates:

$$\underline{x_{k+1}} = f(x_k, u_k) + \underline{w_k}, \ w_k \sim \mathcal{N}(0, Q_k) \qquad \underline{y_{k+1}} = \underline{h(x_{k+1})} + v_{k+1}, \ v_{k+1} \sim \mathcal{N}(0, R_{k+1})$$

1. Dynamics Prediction Step from time step k → k+1:

(a) Given \hat{x}_k^+, P_k^+ from time step k, set $S_k = \text{chol}(P_k^+)$, and generate 2n + 1 sigma pts:

$$\chi_{k}^{0} = \hat{x}_{k}^{+}$$

$$\chi_{k}^{i} = \begin{cases} \hat{x}_{k}^{+} + (\sqrt{n+\lambda}) \cdot S_{k}^{j,T}, & \text{for } i = 1, ..., n, \text{ and } j = 1, ..., n \\ \hat{x}_{k}^{+} - (\sqrt{n+\lambda}) \cdot S_{k}^{j,T}, & \text{for } i = n+1, ..., 2n, \text{ and } j = 1, ..., n \end{cases}$$

$$n: \text{ number of states (dim of } x_{k})$$

$$\lambda = \alpha^{2} \cdot (n+\kappa) - n$$

- (b) Propagate each χ_k^i through nonlinear dynamics $f(\cdot)$ to get resultant pts $\bar{\chi}_{k+1}^0$ and $\bar{\chi}_{k+1}^i$ (i.e. using full R-K integrator on each χ_k^i for i=0,1...,2n)
- (c) Recombine resultant pts to get predicted mean and covariance: (using w_m^i and w_c^i as defined on prev slides)

$$\hat{x}_{k+1}^{-} \approx \sum_{i=0}^{2n} w_m^i \cdot \bar{\chi}_{k+1}^i, \qquad P_{k+1}^{-} \approx \sum_{i=0}^{2n} w_c^i \cdot (\bar{\chi}_{k+1}^i - \hat{x}_{k+1}^-)(\bar{\chi}_{k+1}^i - \hat{x}_{k+1}^-)^T + Q_k$$

The Unscented Kalman Filter (aka Sigma Point Filter)

• The nonlinear filtering problem consists of <u>2 nonlinear transformations</u>, whose statistics will each be approximated by sigma pts for KF-like prediction and measurement updates:

$$x_{k+1} = f(x_k, u_k) + w_k, \ w_k \sim \mathcal{N}(0, Q_k)$$
 $y_{k+1} = h(x_{k+1}) + v_{k+1}, \ v_{k+1} \sim \mathcal{N}(0, R_{k+1})$

2. Measurement Update Step at time k+1 given observation y(k+1):

(a) Given $\hat{x}_{k+1}^-, P_{k+1}^-$ from Prediction Step, set $\bar{S}_{k+1} = \operatorname{chol}(P_{k+1}^-)$, & generate 2n+1 (new) sigma pts:

$$\chi_{k+1}^{0} = \hat{x}_{k+1}^{-}$$

$$\chi_{k+1}^{i} = \begin{cases} \hat{x}_{k+1}^{-} + (\sqrt{n+\lambda}) \cdot \bar{S}_{k+1}^{j,T}, & \text{for } i = 1, ..., n, \text{ and } j = 1, ..., n \\ \hat{x}_{k+1}^{-} - (\sqrt{n+\lambda}) \cdot \bar{S}_{k+1}^{j,T}, & \text{for } i = n+1, ..., 2n, \text{ and } j = 1, ..., n \end{cases}$$

$$n: \text{number of states (dim of } x_k)$$

$$\lambda = \alpha^2 \cdot (n+\kappa) - n$$

- (b) Propagate each χ_{k+1}^i through nonlinear measurement fxn $h(\cdot)$ to get resultant pts γ_{k+1}^0 and γ_{k+1}^i (i.e. such that $\gamma_{k+1}^i = h(\chi_{k+1}^i)$ for i = 0, 1, ..., 2n)
- (c) Get predicted measurement mean and measurement covariance: $(w_m^i \text{ and } w_c^i \text{ defined on slide } 12)$

$$\hat{y}_{k+1}^{-} \approx \sum_{i=0}^{2n} w_m^i \cdot \gamma_{k+1}^i, \qquad P_{yy,k+1} \approx \sum_{i=0}^{2n} w_c^i \cdot (\gamma_{k+1}^i - \hat{y}_{k+1}^-)(\gamma_{k+1}^i - \hat{y}_{k+1}^-)^T + R_{k+1}$$

The Unscented Kalman Filter (aka Sigma Point Filter)

2. Measurement Update Step at time k+1 given observation y(k+1):

(d) Get state-measurement cross-covariance matrix $(n \times p)$: $(w_m^i \& w_c^i \text{ defined on slide } 12; \chi_{k+1}^i \text{ generated at this step})$

$$P_{xy,k+1} \approx \sum_{i=0}^{2n} w_c^i \cdot (\chi_{k+1}^i - \hat{x}_{k+1}^-) (\gamma_{k+1}^i - \hat{y}_{k+1}^-)^T$$

(e) Estimate Kalman gain matrix $(n \times p)$:

$$K_{k+1} \approx P_{xy,k+1} \cdot [P_{yy,k+1}]^{-1}$$

(f) Perform Kalman state and covariance update with observation y_{k+1} :

$$\hat{x}_{k+1}^{+} = \hat{x}_{k+1}^{-} + K_{k+1}(y_{k+1} - \hat{y}_{k+1}^{-})$$

$$P_{k+1}^{+} = P_{k+1}^{-} - K_{k+1}P_{yy,k+1}K_{k+1}^{T}$$

$$= P_{k+1}^{-} - P_{xy,k+1}[P_{yy,k+1}]^{-1}P_{xy,k+1}^{T}$$

Where do these come from?

→ See Advanced
Topic Lecture #28!

Generalizations and Caveats for the UKF (SPF)

- Preceding filtering algorithm is for additive process and measurement noise only
- Can generalize to non-additive (e.g. multiplicative) noises by augmenting sigma points with process and measurement noise sigma pts see Simon p. 450-451 & refs therein

$$x_{k+1} = f(x_k, u_k, w_k), \quad y_{k+1} = h(x_{k+1}, v_{k+1})$$

- Computational issues with the UKF
 - o can implement square root version of UKF to guarantee posdef covariances
 - o dealing with matrix inverse can also implement information filter version
 - o more computation to propagate/sample sigma pts can sometimes cheat a little...
 - \circ tuning spread of sigma pts via λ/α in addition to $Q_{UKF}-$ use truth model testing...
- UKF only captures first two moments of transformed pdfs for recursive filtering breaks
 - down when higher order pdf moments needed!
 - o e.g. highly asymmetric / multi-modal pdfs