Contents:

- 1 无关文法
- 2 语法分析树
- 3 歧义
- 4 文法的化简和范式

1 上下文无关文法

考虑前面学过的, $\{0^n1^n \mid n \in \mathbb{N}\}$ 不是正则表达式的语言.

Example 1.1 (回文). if $w \in \Sigma^*, w = w^R$, then w 为回文

Example 1.2 (回文语言). if $L = \{w \in \Sigma^* \mid w = w^R\}$ then L 是回文语言.

运用前面的知识,可以使用 Pump lemma 证明 L 不是正则的. 可是那么我们该如何表示该语言呢?

可以使用递归方法定义:

- **1.** 首先 ϵ , 0, 1 都是回文.
- **2.** if w 是回文, 那么 0w0, 1w1 都是回文.

数理逻辑之中, 命题的递归定义也是类似的, 这种生成语句的规则就是上下文无关文法.

$$\begin{aligned}
1.A &\to \epsilon \\
2.A &\to 0 \\
3.A &\to 1 \\
4.A &\to 0A0 \\
5.A &\to 1A1
\end{aligned} (1)$$

定义 1.3 (文法). 文法 G 是一个 4p 结构, G = (V, T, P, S). 其中 V for variable, T for terminator, P for Production, S for start.

- 1 V 是变量的集合.
- 2 T 称为 terminators.
- 3 P 是生产规则, 形式为 $A \to \alpha \mid \beta$, 其中 α 是 ϵ 或者是 $\alpha \in T$, 或者是 $\alpha \in E$, 或者是 $\alpha \in (V \cup T)^*$, β 也是如此.
- $4 S \in V$, 表示的是开始的变量, 所有句型, 语句都是从 S 开始派生的.

Example 1.4 (0,1 组成的回文). G = (V, T, P, S) , 其中 $V = \{A\}$, $T = \{0,1\}$, $P = A \rightarrow \epsilon \mid 0 \mid 1 \mid 0A0 \mid 1A1$, S = A

Example 1.5 $(0^n 1^n)$. $L = \{0^n 1^n \mid n \in \mathbb{N}\}$ 和上面一个完全类似, 这里就懒得说了

1.1 归约和派生

定义 1.6 (文法派生的句型). $\alpha \in (V \cup T)^*$, α 可能是派生出的语句. 因为 考虑到 $A \to t$, $t \in T$, 或者是 $A \to At$. 也就是说, 这个语句里面只会有 variable or terminator.

定义 1.7 (归约).

定义 1.8 (派生). $\alpha, \beta, \gamma \in (V \cup T)^*$, if $A \to \gamma$, then $\alpha A \beta \Rightarrow_G \alpha \gamma \beta$.

定义 1.9 (多步派生).

$$\alpha_1 \underset{G}{\stackrel{i}{\Rightarrow}} \alpha_{1+i} \tag{2}$$

对于一般的多步派生,记为 🕇

定义 1.10 (最左派生, 最右派生). 对于一个句型 α , 我们考虑只对最左 (右) 的变量进行派生, 这就是最左 (右) 派生. 记为 \Rightarrow (\Rightarrow)

定理 1.11 (派生的等价性). 对于任意一个派生, 都存在一个最左 (右) 派生与其对应

1.2 文法的语言

定义 1.12 (语言).

$$L(G) = \{ w \mid w \in T^*, S \underset{G}{\overset{*}{\Rightarrow}} w \}$$
 (3)

Remark 1.13 (为什么称为是上下文无关文法). 我们参考 $\alpha A\beta \underset{G}{\Rightarrow} \alpha \gamma \beta$, 这个派生是否成立, 是跟 α,β 无关的, 于是称为上下文无关文法.

定义 1.14 (等价性). G_1, G_2 满足 $L(G_1) = L(G_2)$,则 G_1 等价于 G_2

定义 1.15 (句型, 左句型, 右句型). G 生成的句型定义如下:

$$\{w \mid w \in (V \cup T)^*, S \underset{G}{\overset{*}{\Rightarrow}} w\} \tag{4}$$

也定义了左句型, 右句型.

Example 1.16. $L = \{a^n b^n \mid n \ge 1\}$

Example 1.17. $G = \{\}$

Example 1.18. $L = \{w \mid 0,1 \text{ 数量相等}\}, \ G = (V,T,P,S), \ 其中 \ V = \{S\}, T = \{0,1\}, \ P$ 是下面这个:

$$S \rightarrow 0S_11S_2 \mid 1S_10S_2 \mid \epsilon$$

Example 1.19 (算术表达式).

2 语法分析树