confidence intervals for paired data

Dr. Mine Çetinkaya-Rundel Duke University

high school and beyond

	ID	read	write	diff
	70	57	52	5
2	86	44	33	
3	141	63	44	19
4	172	47	52	-5
200	137	63	65	-2

$$\bar{x}_{diff} = -0.545$$

 $ar{x}_{diff} = -0.545$ dependent $s_{diff} = 8.887$ $n_{diff} = 200$

$$s_{diff} = 8.887$$

$$n_{diff} = 200$$

$$H_0: \mu_{diff} = 0$$

$$H_A: \mu_{diff} \neq 0$$

$$p-value=0.384$$

Fail to reject H_0

estimating the difference between paired means

point estimate ± margin of error

$$\bar{x}_{diff} \pm z^{\star} SE_{\bar{x}_{diff}}$$

$$\bar{x}_{diff} \pm z^{\star} \frac{s_{diff}}{\sqrt{n_{diff}}}$$

Would you expect a 95% confidence interval for the average difference between the reading and writing scores to include 0?

yes!

Calculate the 95% confidence interval for the average difference between the reading and writing scores.

$$ar{x}_{diff} = -0.545$$
 $s_{diff} = 8.887$
 $r_{diff} = 200$
 $SE = 0.628$
 $rac{x \pm z*}{SE} = -0.545 \pm 1.96 \times 0.628$
 $rac{z \pm z*}{SE} = -0.545 \pm 1.23$
 $rac{z \pm z*}{SE} = -0.545 \pm 1.23$

interpreting a CI for the difference between paired means

95% confidence interval for $(\mu_{read} - \mu_{write}) = (-1.78, 0.69)$

We are 95% confident that the difference between the average reading and writing scores is between -1.78 and 0.69 points.

We are 95% confident that high school students score 1.78 points lower to 0.69 points higher, on average, on their reading compared writing.

