Kosterlitz-Thouless phase transition

Simulation of the KT transition on basis of the xy model.

Ludwig Hendl, Isacco Gobbi

'Long range order in 2D systems with continuous symmetry?'

12 June 2020

Outline

- Introduction
- 2 Code implementation
- Results & Discussion
 - Observables
- 4 Performance
- Conclusion

Is there long range order in 2D systems with continuous symmetry?

Is there long range order in 2D systems with continuous symmetry?

► Long time thought: **NO** stable thermodynamic ordered phase at low T - Mermin Wagner

- ► Long time thought: **NO** stable thermodynamic ordered phase at low T Mermin Wagner
- Experiments implied ordered phase at low T quantized vortices in superfluid Helium

- ► Long time thought: **NO** stable thermodynamic ordered phase at low T Mermin Wagner
- Experiments implied ordered phase at low T quantized vortices in superfluid Helium
- Vortex driven superfluid-normalfluid transition
- ► Topological phase transition defect driven

- ► Long time thought: **NO** stable thermodynamic ordered phase at low T Mermin Wagner
- Experiments implied ordered phase at low T quantized vortices in superfluid Helium
- Vortex driven superfluid-normalfluid transition
- Topological phase transition defect driven
- ► Berezinskii-Kosterlitz-Thouhless proposed topological phase transition 1971/1973 Nobel prize 2016

KT transitions

 \blacktriangleright Mermin-Wagner theorem - phase transitions impossible in dimension ≤ 2 for continuous degrees of freedom

KT transitions

- \blacktriangleright Mermin-Wagner theorem phase transitions impossible in dimension ≤ 2 for continuous degrees of freedom
- ► He
- Type II superconductors

KT transitions

- lacktriangle Mermin-Wagner theorem phase transitions impossible in dimension ≤ 2 for continuous degrees of freedom
- ► He
- ► Type II superconductors

Fig. 2. Schematic view of pairs vortices anti-vortices.

2D Lattice Spin model

Ising model

► Spin up, Spin down

XY-model

continuous degree of freedom

$$-\pi$$
 to τ

2D Lattice Spin model

Ising model

► Spin up, Spin down

 $\blacktriangleright H = -J \sum_{\langle i,j \rangle} s_i s_j$

XY-model

continuous degree of freedom

 $-\pi$ to π

$$H = -J \sum_{\langle i,j \rangle} \cos(\phi_i - \phi_j)$$

2D Lattice Spin model

Ising model

► Spin up, Spin down

 $\blacktriangleright H = -J \sum_{\langle i,j \rangle} s_i s_j$

XY-model

continuous degree of freedom

 $-\pi$ to π

$$H = -J \sum_{\langle i,j \rangle} \cos(\phi_i - \phi_j)$$

Wolff's Cluster algorithm

Wolff Cluster algorithm

 Introduced by Wolff in 1989 to overcome the critical slow down of close to transition temperature

Wolff Cluster algorithm

- ► Introduced by Wolff in 1989 to overcome the critical slow down of close to transition temperature
- Neighbor dependent cluster growth

Wolff Cluster algorithm

- Introduced by Wolff in 1989 to overcome the critical slow down of close to transition temperature
- Neighbor dependent cluster growth
- And to cluster if $\operatorname{rnd} < 1 \exp^{-2J/k_bT}$

From continuous to discrete

- Draw random vector u
- ► Project spin s onto u
- ightharpoonup Wolff algorithm onto ϵ_i

$$\begin{aligned} \mathbf{s}_{i}^{\parallel} &= \left(\mathbf{s}_{i} \cdot \mathbf{u}\right) \mathbf{u} \\ \mathbf{s}_{i}^{\perp} &= \mathbf{s}_{i} - \mathbf{s}_{i}^{\parallel} \\ \mathbf{s}_{i} &= \mathbf{s}_{i}^{\perp} + \epsilon_{i} \left|\mathbf{s}_{i}^{\parallel}\right| \mathbf{u}, \quad \epsilon_{i} = \pm 1 \end{aligned}$$

From continuous to discrete

- ► Draw random vector u
- ► Project spin s onto u
- lacktriangle Wolff algorithm onto ϵ_i

From continuous to discrete

- ► Draw random vector u
- ► Project spin s onto u
- ightharpoonup Wolff algorithm onto ϵ_i

$$\mathbf{s}_{i}^{\parallel} = (\mathbf{s}_{i} \cdot \mathbf{u}) \mathbf{u}$$

$$\mathbf{s}_{i}^{\perp} = \mathbf{s}_{i} - \mathbf{s}_{i}^{\parallel}$$

$$\mathbf{s}_{i} = \mathbf{s}_{i}^{\perp} + \epsilon_{i} \left| \mathbf{s}_{i}^{\parallel} \right| \mathbf{u}, \quad \epsilon_{i} = \pm 1$$

$$\mathcal{H}\left[\epsilon_{i}\right] = \sum_{\langle ij\rangle} J_{ij} \epsilon_{i} \epsilon_{j}$$

$$J_{ij} = J \left|\mathbf{s}_{i}^{\parallel} \right| \mathbf{s}_{j}^{\parallel}$$

Simulation

Lets look at an example animation for a lattice L=20

- Magnetization, Susceptibility
- Energy, Specific heat
- Spin wave stiffness
- ▶ 20 by 20 spin lattice

Magnetization 20 by 20

- ▶ Magnetization: $\langle |m_{\hat{x},\hat{y}}| \rangle = \frac{1}{N} \langle |\sum_i s_{i\hat{x},\hat{y}}| \rangle$
- $M = \sqrt{m_{\hat{x}} + m_{\hat{y}}}$

L. Hendl, I. Gobbi

Magnetization 20 by 20

- ▶ Magnetization: $\langle |m_{\hat{x},\hat{y}}| \rangle = \frac{1}{N} \langle |\sum_i s_{i\hat{x},\hat{y}}| \rangle$
- $M = \sqrt{m_{\hat{x}} + m_{\hat{y}}}$

L. Hendl, I. Gobbi

Magnetization $20\ \mathrm{by}\ 20$

- ▶ Magnetization: $\langle |m_{\hat{x},\hat{y}}| \rangle = \frac{1}{N} \langle |\sum_i s_{i\hat{x},\hat{y}}| \rangle$
- $M = \sqrt{m_{\hat{x}} + m_{\hat{y}}}$

Finite lattice

Energy

► Energy: $\langle E \rangle = -J \sum_{\langle i,j \rangle} \langle cos(\phi_i - \phi_j) \rangle$

Energy

- Energy: $\langle E \rangle = -J \sum_{\langle i,j \rangle} \langle cos(\phi_i \phi_j) \rangle$
- ▶ Specific heat: $C_v = \frac{k_b \beta^2}{N} \left(\langle E^2 \rangle \langle E \rangle^2 \right)$

L. Hendl, I. Gobbi

Energy

- ► Energy: $\langle E \rangle = -J \sum_{\langle i,j \rangle} \langle cos(\phi_i \phi_j) \rangle$
- ▶ Specific heat: $C_v = \frac{k_b \beta^2}{N} \left(\langle E^2 \rangle \langle E \rangle^2 \right)$

Helicity modulus

- Γ: Spin wave stiffness (or helicity modulus)
- At KT transition : $\Gamma = 2k_{\rm B}T_{\rm KT}/\pi$
- Universal value

$$\Gamma = \frac{J}{2L^2} \left\{ \left\langle \sum_{\langle ij \rangle} \cos(\theta_i - \theta_j) \right\rangle - \frac{J}{k_{\rm B}T} \left\langle \left[\sum_i \sin(\theta_i - \theta_{i+\hat{e}_x}) \right]^2 \right\rangle - \frac{J}{k_{\rm B}T} \left\langle \left[\sum_i \sin(\theta_i - \theta_{i+\hat{e}_y}) \right]^2 \right\rangle \right\}$$

Helicity modulus

0.8 L=12 + L=20 □ 0.6 $L=30 \times$ L=40 △ 0.4 0.2 0.7 0.8 0.9 1.2 0.6 $k_{\rm B}T/J$

Extrapolation $T_{KT} = 0.9$

 $T_{KT} = 0.89294(8)$ from literature

⁰Image from [5]

⁰Data from [5]

⁰Image from [4]

lacktriangle Recursive algorithm o No parallelization :(

- ightharpoonup Recursive algorithm ightarrow No parallelization :(
- ► Possible upgrade: tail recursion

- ightharpoonup Recursive algorithm ightarrow No parallelization :(
- Possible upgrade: tail recursion
- ► Not in python though :(

- ightharpoonup Recursive algorithm ightarrow No parallelization :(
- Possible upgrade: tail recursion
- ► Not in python though :(
- Some observables are expensive to track

▶ We implemented the XY-model using Wolff algorithm

- ▶ We implemented the XY-model using Wolff algorithm
- Magnetization, Energy and Spin wave stiffness

- ▶ We implemented the XY-model using Wolff algorithm
- Magnetization, Energy and Spin wave stiffness
- Observation of vortices

- ▶ We implemented the XY-model using Wolff algorithm
- Magnetization, Energy and Spin wave stiffness
- Observation of vortices
- Correlation function did not work

Bibliography

- B.V. Costa and A.B. Lima. "Dynamical behavior of vortices in thin film magnetic systems". In: Journal of Magnetism and Magnetic Materials 324.13 (2012), pp. 1999 -2005. ISSN: 0304-8853. DOI: https://doi.org/10.1016/j.jmmm.2011.09.038. URL: http://www.sciencedirect.com/science/article/pii/S030488531200114X.
- Yue Fan. "A Study of XY Model by Spin-dynamic simulation". In: Sci. Report MIT (2010).
- Yanina Fasano and Mariela Menghini. "Magnetic-decoration imaging of structural transitions induced in vortex matter". In:

 Superconductor Science and Technology 21.2 (2008), p. 023001. DOI: 10.1088/0953-2048/21/02/023001. URL: https://doi.org/10.1088%2F0953-2048%2F21%2F02%2F023001.
- Martin Hasenbusch. "The two dimensional XY model at the transition temperature: A high precision Monte Carlo study". In:

Backup Fit

Correlation function

