CSCE 420: Artificial Intelligence Homework 2 Due date: 17 September 2023 Name: Huy Lai

Problem 1. Use minmax search to assign utility values for each internal node (i.e., non-leaf node) and indicate which path is the optimal solution for the MAX node at the root of the tree. Assume you explore the successors from left to right.

Solution:

The optimal path is highlighted in Red.

Figure 1: MinMax Search

Problem 2. Using the following figure 2, use $\alpha - \beta$ pruning to (1) assign utility values for each internal node (i.e., non-leaf node) and indicate which path is the optimal solution for the MAX node at the root of the tree. (2) For each node, indicate the final α and β values. (3) For each cut that happens, draw a line to cross out that subtree.

Solution:

The optimal path is highlighted in Red. Cuts are made with red lines.

Figure 2: $\alpha - \beta$ pruning

Problem 3. In Minmax search, we used a depth-first exploration through the use of recursion. We know that Minmax gives an optimal solution, however, we also know that depth-first search is suboptimal. Explain why Minmax gives an optimal solution even when it is using a depth-first exploration.

Solution:

MinMax explores the entire game tree, considering all possible moves and counter-moves up to a certain depth or until the game ends.

This means that it does not miss any potential moves, ensuring a complete search of the state space.

Problem 4. Using a truth table, show that the resolution inference rule is valid. Note: valid means "true under all interpretations".

$$\frac{P \vee Q, \neg Q \vee R}{P \vee R}$$

Solution:

The Truth Table is as follows.

P	Q	R	$(P \lor Q)$	$(\neg Q \lor R)$	$(P \vee Q) \wedge (\neg Q \vee R)$	$(P \vee R)$	$(P \lor Q) \land (\neg Q \lor R) \to (P \lor R)$
T	T	T	T	T	T	T	T
T	T	F	T	F	F	T	T
T	F	T	T	T	T	T	T
T	F	F	T	T	T	T	T
F	Т	T	T	T	T	T	T
F	Т	F	T	F	F	F	T
F	F	T	F	T	F	T	T
F	F	F	F	T	F	F	T

Table 1: Truth Table

Problem 5. In all of the problems in this section, show each step of the derivation and indicate which law (or other rules) you used: For example, *distributive law, by definition, etc.*

Subproblem 1. Convert $(Q \land \neg P) \lor (Q \land R) \lor S$ into conjunctive normal form.

Solution:

Converting to CNF is as follows

$$(Q \land \neg P) \lor (Q \land R) \lor S = (Q \land (\neg P \lor R)) \lor S$$
 Distributive Law
$$= (Q \lor S) \land (\neg P \lor R \lor S)$$
 Distributive Law

Subproblem 2. Convert $\neg(\neg P \lor Q) \lor R$ into conjunctive normal form.

$$\neg(\neg P \lor Q) \lor R = (\neg \neg P \land \neg Q) \lor R$$
 De Morgan Law
$$= (P \land \neg Q) \lor R$$
 Double Neggation
$$= (P \lor R) \land (\neg Q \lor R)$$
 Distributive Law

Subproblem 3. Convert $\neg((\neg P \to Q) \land (R \lor S))$ into the disjunctive normal form.

Problem 6. Using resolution, show that $Q \vee W$ is a logical consequence of the following premises:

- 1. $R \rightarrow W$
- 2. $R \vee (\neg P \wedge S)$
- 3. $S \to (P \lor Q)$
- 4. $S \vee R$

Transform the above problem into a set of clauses (premises and the conclusion), suitable for resolution-based theorem proving.

Solution:

The clauses are as follows:

- C1. $\neg R \lor W$
- C2. $R \vee \neg P$
- C3. $R \vee S$
- C4. $\neg S \lor (P \lor Q)$
- C5. $S \vee R$
- C6. $\neg Q$
- **C**7. ¬*W*

Problem 7. Use resolution to derive False. Show every step. DO NOT USE any other inference rule.

Solution:

- C8. Resolve C4 and C6 on $Q: \neg S \lor P$
- C9. Resolve C5 and C8 on $S: R \vee P$ C10. Resolve C2 and C9 on P: R
- C11. Resolve C1 and C10 on R: W
- C12. Resolve C11 and C7 on W: False

Problem 8. Convert to prenex normal form

- 1. $\neg \forall x((\exists y Q(x,y)) \rightarrow P(x))$
- 2. $\forall x \neg (\exists y Q(x, y) \land \neg R(x))$
- 3. $\neg \exists x (\neg (\forall y Q(x, y)) \lor \neg P(x))$

Solution:

For expression 1.

$$\neg \forall x ((\exists y Q(x, y)) \to P(x)) = \neg \forall x (\neg (\exists y Q(x, y)) \lor P(x))$$

$$= \neg \forall x (\forall y \neg Q(x, y) \lor P(x))$$

$$= \exists x \neg (\forall y \neg Q(x, y) \lor P(x))$$

$$= \exists x \exists y \neg (\neg Q(x, y) \lor P(x))$$

$$= \exists x \exists y Q(x, y) \land \neg P(x)$$

For expression 2.

$$\forall x \neg (\exists y Q(x, y) \land \neg R(x)) = \forall x \forall y \neg (Q(x, y) \land \neg R(x))$$
$$= \forall x \forall y \neg Q(x, y) \lor R(x)$$

For expression 3.

$$\neg \exists x (\neg (\forall y Q(x, y)) \lor \neg P(x)) = \neg \exists x (\exists y \neg Q(x, y) \lor \neg P(x))$$
$$= \forall x \neg (\exists y \neg Q(x, y) \lor \neg P(x))$$
$$= \forall x \forall y Q(x, y) \land P(x)$$

Problem 9. Skolemize the expressions

- 1. $\exists x P(x)$
- 2. $\forall x \exists y P(x, y)$
- 3. $\exists x \exists y \forall z P(x,y) \land Q(y,z)$
- 4. $\forall x \exists y \exists z P(x, y, z) \land Q(y, z)$
- 5. $\forall x \forall y \exists z P(x,y) \land Q(x,y,z)$

Solution:

Skolemization is as follows

- 1. $P(\alpha)$
- 2. $\forall x P(x, f(x))$
- 3. $\forall z P(\alpha, \beta) \land Q(\beta, z)$
- 4. $\forall x P(x, f(x), g(x)) \land Q(f(x), g(x))$
- 5. $\forall x \forall y P(x,y) \land Q(x,y,f(x,y))$

Problem 10. Convert the following into a standard form (prenex, CNF, skolemization)

$$\forall x [\neg (\exists z (P(z) \land Q(x,z))) \rightarrow \exists y R(x,y)]$$

Solution:

Prenex

$$\begin{split} \forall x [\neg (\exists z (P(z) \land Q(x,z))) \rightarrow \exists y R(x,y)] &= \forall x [\exists z (P(z) \land Q(x,z)) \lor \exists y R(x,y)] \\ &= \forall x [(\exists z P(z) \land \exists z Q(x,z)) \lor \exists y R(x,y)] \\ &= \forall x \exists z \exists u [(P(z) \land Q(x,u)) \lor \exists y R(x,y)] \\ &= \forall x \exists z \exists u \exists y [(P(z) \land Q(x,u)) \lor R(x,y)] \end{split}$$

CNF

$$\forall x \exists z \exists u \exists y [(P(z) \lor R(x,y)) \land (Q(x,u) \lor R(x,y))]$$

Skolemization

$$\forall x [(P(f(x)) \lor R(x, g(x))) \land (Q(x, h(x)) \lor R(x, g(x)))]$$

Problem 11. Apply the following substitutions to the expressions

- 1. Apply $\{x/f(A)\}$ to $P(x,y) \vee Q(x)$.
- 2. Apply $\{x/A, y/f(z)\}$ to $P(x, y) \vee Q(x)$.
- 3. Apply $\{y/x\}$ to $P(x,y) \vee Q(x)$.

Solution:

The substitutions are as follows:

- 1. $P(f(A), y) \wedge Q(f(A))$
- 2. $P(A, f(z)) \wedge Q(A)$
- 3. $P(x,x) \wedge Q(x)$

Problem 12. For each of the following, (1) find the unifier, and (2) show the unified expression. For example, given P(A) and P(x), the unifier would be $\{x/A\}$, and the unified expression P(A). If the pair of expressions is not unifiable, indicate so.

- 1. P(x, f(x), y) and P(A, f(g(w)), z)
- 2. P(x, A) and P(y, y)
- 3. P(x, f(g(x)), g(A), w) and P(A, f(y), y, y)
- 4. P(x, f(x)) and P(A, f(B))

Solution:

The unifier and unified expression are as follows:

- 1. P(x, f(x), y) and P(A, f(g(w)), z)
 - (1) $\{A/x\}$: P(x, f(x), y)P(x, f(g(w)), z)
 - (2) $\{x/g(w)\}:$ P(x, f(g(w)), y)P(x, f(g(w)), z)
 - (3) $\{y/z\}$: P(x, f(g(w)), z)P(x, f(g(w)), z)

Unifiers: $\{A/x, x/g(w), y/z\}$

Unified Expression: P(x, f(g(w)), z)

```
2. P(x, A) and P(y, y)
    (1) \{A/x\}:
        P(x,x)
        P(y,y)
    (2) \{x/y\}:
        P(y,y)
        P(y,y)
   Unifiers: \{A/x, x/y\}
   Unified Expression: P(y, y)
3. P(x, f(g(x)), g(A), w) and P(A, f(y), y, y)
    (a) \{A/x\}:
        P(x, f(g(x)), g(x), w)
        P(x, f(y), y, y)
    (b) \{w/y\}:
        P(x, f(g(x)), g(x), y)
        P(x, f(y), y, y)
    (c) \{y/g(x)\}:
        P(x, f(g(x)), g(x), g(x))
        P(x, f(g(x)), g(x), g(x))
   Unifiers: \{A/x, w/y, y/g(x)\}
   Unified Expression: P(x, f(g(x)), g(x), g(x))
4. P(x, f(x)) and P(A, f(B))
    (1) \{A/B\}:
        P(x, f(x))
        P(B, f(B))
    (2) \{B/x\}:
        P(x, f(x))
        P(x, f(x))
   Unifiers: \{A/B, B/x\}
```

Unified Expression: P(x, f(x))