53.2 Basic Properties of Positive Definite Kernels

Proposition 53.1 suggests a second approach to kernel functions which does not assume that a feature space and a feature map are provided. We will see in Section 53.3 that the two approaches are equivalent. The second approach is useful in practice because it is often difficult to define a feature space and a feature map in a simple manner.

Definition 53.2. Let X be a nonempty set. A function $\kappa: X \times X \to \mathbb{C}$ is a positive definite kernel if for every finite subset $S = \{x_1, \dots, x_p\}$ of X, if K_S is the $p \times p$ matrix

$$K_S = (\kappa(x_j, x_i))_{1 \le i, j \le p}$$

called a *Gram matrix*, then we have

$$u^*K_S u = \sum_{i,j=1}^p \kappa(x_i, x_j) u_i \overline{u_j} \ge 0,$$
 for all $u \in \mathbb{C}^p$.

Observe that Definition 53.2 does not require that $u^*K_S u > 0$ if $u \neq 0$, so the terminology positive definite is a bit abusive, and it would be more appropriate to use the terminology positive semidefinite. However, it seems customary to use the term positive definite kernel, or even positive kernel.

Proposition 53.2. Let $\kappa: X \times X \to \mathbb{C}$ be a positive definite kernel. Then $\kappa(x, x) \geq 0$ for all $x \in X$, and for any finite subset $S = \{x_1, \ldots, x_p\}$ of X, the $p \times p$ matrix K_S given by

$$K_S = (\kappa(x_j, x_i))_{1 \le i, j \le p}$$

is Hermitian, that is, $K_S^* = K_S$.

Proof. The first property is obvious by choosing $S = \{x\}$. To prove that K_S is Hermitian, observe that we have

$$(u+v)^*K_S(u+v) = u^*K_Su + u^*K_Sv + v^*K_Su + v^*K_Sv,$$

and since $(u+v)^*K_S(u+v)$, u^*K_Su , $v^*K_Sv \ge 0$, we deduce that

$$2A = u^* K_S v + v^* K_S u \tag{1}$$

must be real. By replacing u by iu, we see that

$$2B = -iu^* K_S v + iv^* K_S u \tag{2}$$

must also be real. By multiplying Equation (2) by i and adding it to Equation (1) we get

$$u^*K_S v = A + iB. (3)$$