

Curso de Desarrollo en Lenguaje Python para Inteligencia Artificial (Málaga)

M.374.001.001

22 de abril 2021 09:30-13:30

Módulo 5 Nerea Luis Mingueza

Antes de empezar...

Todas las sesiones se grabarán en vídeo

Apaga tu micrófono mientras esté presentando y actívalo para compartir las reflexiones de los ejercicios

Escribe preguntas, inquietudes y comentarios en el chat para que pueda responderte durante la sesión

Agenda:

9:30h -9:50h

9:50h - 11:30h Keras en Kaggle

11:30 - 12:00 Resolvemos Keras en Kaggle

11:30h - 13:30h Keras con MNIST (Feed Forward y Convolucional)

13:30h Cierre

Keras

En Kaggle

- https://www.kaggle.com/ryanholbrook/a-single-neuron
- 2. https://www.kaggle.com/ryanholbrook/deep-neural-networks
- 3. https://www.kaggle.com/ryanholbrook/stochastic-gradient-descent
- 4. https://www.kaggle.com/ryanholbrook/overfitting-and-underfitting
- 5. https://www.kaggle.com/ryanholbrook/dropout-and-batch-normalization
- 6. https://www.kaggle.com/ryanholbrook/binary-classification

Lectura adicional

https://developers.google.com/machine-learning/crash-course/regularization-for-sparsity/l1-regularization

Equivalencias ES/ENG

Función de pérdida = loss function

Tasa de aprendizaje = learning rate

Epochs = épocas o iteraciones

Arreglos = arrays

Lote = batch

Minilote = minibatch

Tamaño del lote = batch size

Peso = weight

Descenso del gradiente = Gradient descent

Aprender mas

- https://nerea-luis.gitbook.io/computer-vision-101
- https://github.com/matterport/Mask_RCNN
- https://keras.io/api/models/sequential/
- https://keras.io/examples/

Stack de Python que será tu mejor aliado...

- \sim \sim \sim

NumPy

X_train, X_test, y_train, y_test = train_test_split()

y_train

	Ejemplo	Cielo	Temperatura	Humedad	Viento	Jugar
X_train	1	Soleado	30	65 %	Débil	Sí
	2	Nublado	25	60 %	Débil	Sí
	3	Lluvia	15	95 %	Fuerte	No

Ejemplo	Cielo	Temperatura	Humedad	Viento	Jugar
1	Soleado	10	65 %	Suave	
2	Lluvia	30	90 %	Débil	
3	Lluvia	17	75 %	Fuerte	
					V proj

0

La matriz de confusión

Recall or Sensitivity or TPR (True

Positive Rate): Number of items correctly identified as positive out of total true positives- TP/(TP+FN)

Precision: Number of items correctly identified as positive out of total items identified as positive- TP/(TP+FP)

0

0

F1 Score: It is a harmonic mean of precision and recall given by: F1 = 2*Precision*Recall/(Precision + Recall)

Accuracy: Percentage of total items classified correctly (TP+TN)/(N+P)

¿Alguna pregunta?

iMuchas gracias!