`

Deep Learning and Inverse Problems Summer 2024

Lecturer: Reinhard Heckel

Problem Set 10

Issued: Tuesday July 2, 2024, 1:00 pm. Due: Tuesday July 9, 2024, 1:00 pm.

Problem 1 (Robustness of regularized least squares). Suppose our goal is to recover a vector \mathbf{x} from a noisy measurement $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$, m < n, is a generic measurement matrix and \mathbf{e} is additive noise. In this problem, we numerically study the behavior of the ℓ_2 -regularized least-squares estimator

$$\hat{\mathbf{x}}_{2,\lambda}(\mathbf{y}) = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 + \frac{\lambda}{2} \|\mathbf{x}\|_2^2,$$

and the ℓ_1 -regularized least-squares estimator

$$\hat{\mathbf{x}}_{1,\lambda}(\mathbf{y}) = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{x}\|_1,$$

under random (average-case) perturbations.

- (a) Give a closed form expression of $\hat{\mathbf{x}}_{2,\lambda}$ in terms of the singular values and vectors of the matrix \mathbf{A} .
- (b) Now we want to numerically investigate the reconstruction error of the estimator $\hat{\mathbf{x}}_{2,\lambda}$ under random perturbations. Towards this end, choose $\mathbf{A} \in \mathbb{R}^{500 \times 2000}$ as a Gaussian random matrix with $\mathcal{N}(0, 1/500)$ iid entries, and choose \mathbf{x} as an 50-sparse vector with non-zeros drawn from the distribution $\mathcal{N}(0, 1/50)$. Plot the reconstruction mean-squared error $\|\hat{\mathbf{x}}_{2,\lambda}(\mathbf{A}\mathbf{x} + \mathbf{e}) \mathbf{x}\|_2^2$ for a random noise vector \mathbf{e} with iid $\mathcal{N}(0, 0.5/500)$ entries as a function of the regularization parameter λ .
- (c) Repeat the steps from part (b) for the ℓ_1 -regularized least-squares estimator $\hat{\mathbf{x}}_{1,\lambda}$. Note that there is no closed-form expression of the estimator $\hat{\mathbf{x}}_{1,\lambda}$ (why?), so you have to resort to optimization to approximate it. To this end, you can for example use the ISTA method as discussed in Problem 2 of Homework 2.

Problem 1 (Robustness of regularized least squares). Suppose our goal is to recover a vector \mathbf{x} from a noisy measurement $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$, is a generic measurement matrix and \mathbf{e} is additive noise. In this problem, we numerically study the behavior of the ℓ_2 -regularized least-squares estimator

$$\hat{\mathbf{x}}_{2,\lambda}(\mathbf{y}) = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 + \frac{\lambda}{2} \|\mathbf{x}\|_2^2,$$

and the ℓ_1 -regularized least-squares estimator

$$\hat{\mathbf{x}}_{1,\lambda}(\mathbf{y}) = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{x}\|_1,$$

under random (average-case) perturbations.

(a) Give a closed form expression of $\hat{\mathbf{x}}_{2,\lambda}$ in terms of the singular values and vectors of the matrix \mathbf{A} .

$$\nabla_{\mathbf{x}} L(X) = A^{T}(A_{\mathbf{x}} - A_{\mathbf{y}})^{T}A = (X)_{\mathbf{x}} X$$

$$(X^{T}A + IA_{\mathbf{x}}) = X(A_{\mathbf{x}} + A_{\mathbf{x}})^{T}A$$

$$(X^{T}A + IA_{\mathbf{x}}) = X$$

Assume A=UZVT

assume
$$I = uu^T$$
: $x = (U(Z^2 + \lambda I)^{-1}) \vee ZU^T y$

(c) Repeat the steps from part (b) for the ℓ_1 -regularized least-squares estimator $\hat{\mathbf{x}}_{1,\lambda}$. Note that there is no closed-form expression of the estimator $\hat{\mathbf{x}}_{1,\lambda}$ (why?), so you have to resort to optimization to approximate it. To this end, you can for example use the ISTA method as discussed in Problem 2 of Homework 2.

$$\Rightarrow g(x) = \lambda ||x||_1 = \lambda \sum_{i=1}^{n} |x_i|$$

$$\frac{d|X_i|}{dX_i} = \begin{cases} 1 & x_i > 0 \\ -1 & x_i < 0 \\ 0 & x_i = 0 \end{cases}$$