UE 6
INITIATION À LA CONNAISSANCE DU
MÉDICAMENT

Les canaux ioniques

Pr JM Senard

Les cibles des médicaments:

Les cibles spécifiques

Les canaux ioniques:

- · Définition et méthodes d'études
- Les « receptor-operated channels » (ROC)
- Les « voltage-operated channels » (VOC)
 - Définition
 - Mode de fonctionnement
 - -Les grandes familles de VOCs
 - Canaux sodiques
 - Canaux calciques
 - ...
- · Pompes et transporteurs ioniques

Les canaux ioniques: définition

Un canal ionique est une protéine membranaire qui permet le passage à grande vitesse d'un ou plusieurs ions (à ne pas confondre avec les aquaporines: protéines membranaires qui forment des « pores » perméables aux molécules d'eau dans les membranes biologiques). « Récepteurs **Pompes** *Ioniques* Canaux » *Ioniques* Voltage-dépendants **RCPG Transporteurs Pompes Transporteurs** ATP X ADP Enzyme **RCPG** Modification de la Modification de Modification de la teneur **Concentration** La transcription de gènes en Ionique Messagers intracellulaires intracellulaire Pompes Récepteurs à **REL NOYAUX** Activité enzymatique

Les canaux ioniques: méthodes d'étude

Les techniques électrophysiologiques: le patch-clamp

(Sackmann & Neher, prix Nobel 1991)

Les canaux ioniques: méthodes d'étude

La biologie moléculaire: les canaux sont des hétéro-oligomères

Canal calcique de type L

Les canaux ioniques: rôles physiologiques

- · Les canaux ioniques: des rôles et des cibles multiples
 - Au niveau de la membrane cytoplasmique
 - Contrôle de la différence de potentiel et de l'excitabilité cellulaire:
 - neurones,
 - cardiomyocytes,
 - muscle lisse vasculaire ou autre...
 - Au niveau des organites cellulaires
 - Mitochondries:
 - « pore » calcique et apoptose
 - Réticulum endoplasmique: stocks calciques
 - Cardiomyocytes
 - Cellules musculaires des vaisseaux
 - Au niveau nucléaire
 - Perméabilité de la membrane (facteurs de transcription)
 - Mitose ...

Les canaux ioniques

- · Définition et méthodes d'études
- Les « receptor-operated channels » (ROC)
- Les « voltage-operated channels » (VOC)
 - Définition
 - Mode de fonctionnement
 - -Les grandes familles de VOCs
 - Canaux sodiques
 - Canaux calciques
 - ...
- · Pompes et transporteurs ioniques

Les canaux « Receptor-operated » (ROC)

Les canaux « Receptor-operated » (ROC)

Hyperpolarisation-activated cyclic nucleotid channels (HCN)

Les canaux « Receptor-operated » (ROC)

Hyperpolarisation-activated cyclic nucleotid channels (HCN)

- Canal If (f=funny):
 - Ivabradine: bradycardisant « pur »

Les canaux ioniques

- · Définition et méthodes d'études
- Les « receptor-operated channels » (ROC)
- Les « voltage-operated channels » (VOC)
 - Définition
 - Mode de fonctionnement
 - -Les grandes familles de VOCs
 - Canaux sodiques
 - Canaux calciques
 - ...
- · Pompes et transporteurs ioniques

Définition

Structure transmembranaire formée de sous-unités protéiques dont la modification conformationnelle peut entraîner transitoirement sa perméabilité à un ion donné, dans le sens du gradient de concentration et sans consommation d'énergie.

Définition

Structure transmembranaire formée de sous-unités protéiques dont la modification

conformationnelle

peut entraîner transitoirement sa perméabilité à un ion donné, dans le sens du gradient de concentration et sans consommation d'énergie.

Structure transmembranaire formée de sous-unités protéiques dont la modification conformationnelle peut entraîner transitoirement sa perméabilité

à un ion donné, dans le sens du gradient de concentration et sans consommation d'énergie.

Canaux sodiques (Na⁺)

- -Antiarythmiques cardiaques
- -Anticonvulsivants
- -Anesthésiques locaux

Canaux calciques (Ca²⁺)

- -Antihypertenseurs
- -Antiangoreux

Canaux potassiques (K⁺)

- Antiarythmiques

Mode de fonctionnement: « la probabilité »

Période réfractaire

Mode de fonctionnement: des médicaments des VOC

- 1/ en stabilisant une conformation du canal
 - « ouvreurs »: se lient sur la forme ouverte et augmentent donc le temps de perméabilité sans modifier la probabilité d'ouverture

- Mode de fonctionnement: des médicaments des VOC
- 1/ en stabilisant une conformation du canal
 - « inhibiteurs »: se lient sur la forme fermée sans modifier la probabilité de fermeture...

- Mode de fonctionnement: des médicaments des VOC
- 2/ Par encombrement stérique:
 - «obstruction du pore»:

- Mode de fonctionnement: des médicaments des VOC
- 3/ Par compétition avec l'ion transporté:
 - Soit en raison d'une meilleure affinité pour le canal
 - Soit en raison d'une concentration supérieure

- Mode de fonctionnement: des médicaments des VOC
- 4/ Par modification de l'environnement membranaire:
 - Modification de la fluidité (compartimentation cellulaire)
 - Modifiant la conformation du canal

Les grandes familles de VOC: les canaux sodiques

VOC	canal	tissu	canalopathie	médicaments
Na+	SCN5A SCN1A SCN9A	Cœur SNC nerf	Sd de Brugada Epilepsie Insensibilité douleur	Flécaïnide (-) Lacosamide (-) Anesthésiques locaux (-)
Ca++	CNACA1A CNACA1S	Cerveau Cœur/vx	Migraine hémiplégique familiale	Dihydropyridines(-) Vérapamil (-)
	RYR2		Dysplasie ventriculaire droite arythmogène	Ryanodine (+)
K+	KCNQ1	Cœur	Romano-Ward	Amiodarone (-)
CI-	CFTR	poumon, foie	mucoviscidose	Ivacaftor (+)
Na+, Ca++	TRPA1	Nerfs	Douleur	Paracétamol(-)

RYR2

Les grandes familles de VOC: les canaux sodiques Canaux sodiques (1a/1-4b)

Tetrodotoxine (TTX)

Anesthésiques locaux Antiarythmiques de classe I Anticonvulsivants

Les grandes familles de VOC: les canaux sodiques

Les grandes familles de VOC: les canaux calciques

VOC	canal	tissu	canalopathie	médicaments
Na+	SCN5A SCN1A SCN9A	Cœur SNC nerf	Sd de Brugada Epilepsie Insensibilité douleur	Flécaïnide (-) Lacosamide (-) Anesthésiques locaux (-)
Ca++	CNACA1A CNACA1S RYR2	Cerveau Cœur/vx	Migraine hémiplégique familiale Dysplasie ventriculaire droite arythmogène	- Dihydropyridines(-) Vérapamil (-) « Ryanodine (+) »
K+	KCNQ1	Cœur	Romano-Ward	Amiodarone (-)
CI-	CFTR	poumon, foie	mucoviscidose	Ivacaftor (+)
Na+, Ca++	TRPA1	Nerfs	Douleur	Paracétamol(-)

RYR2

Canaux calciques

Structure & diversité des canaux calciques :

Les grandes familles de VOC: les canaux calciques

Canaux calciques et système cardiovasculaire

Les grandes familles de VOC: les canaux calciques

Canaux calciques et système cardiovasculaire

Les grandes familles de VOC: les canaux calciques

Canaux calciques et système cardiovasculaire

vérapamil Anti-hypertenseur cardiomodérateur

Les grandes familles de VOC: les canaux potassiques

VOC	canal	tissu	canalopathie	médicaments
Na+	SCN5A SCN1A SCN9A	Cœur SNC nerf	Sd de Brugada Epilepsie Insensibilité douleur	Flécaïnide (-) Lacosamide (-) Anesthésiques locaux (-)
Ca++	CNACA1A CNACA1S RYR2	Cerveau Cœur/vx	Migraine hémiplégique familiale Dysplasie ventriculaire	Dihydropyridines(-) Vérapamil (-)
	2		droite arythmogène	Ryanodine (+)
K+	KCNQ1	Cœur	Romano-Ward	Amiodarone (-)
CI-	CFTR	poumon, foie	mucoviscidose	Ivacaftor (+)
Na+, Ca++	TRPA1	Nerfs	Douleur	Paracétamol(-)

RYR2

Les grandes familles de VOC: les canaux potassiques

Antibiotiques: macrolides Antihistaminiques H1...

Les grandes familles de VOC: les canaux chlore

VOC	canal	tissu	canalopathie	médicaments
Na+	SCN5A SCN1A SCN9A	Cœur SNC nerf	Sd de Brugada Epilepsie Insensibilité douleur	Flécaïnide (-) Lacosamide (-) Anesthésiques locaux (-)
Ca++	CNACA1A CNACA1S	Cerveau Cœur/vx	Migraine hémiplégique familiale	- Dihydropyridines(-) Vérapamil (-)
	RYR2		Dysplasie ventriculaire droite arythmogène	Ryanodine (+)
K+	KCNQ1	Cœur	Romano-Ward	Amiodarone (-)
CI-	CFTR	poumon, foie	mucoviscidose	Ivacaftor (+)
Na+, Ca++	TRPA1	Nerfs	Douleur	Paracétamol(-)

RYR2

Les grandes familles de VOC: les canaux chlore

Les grandes familles de VOC: les canaux TRPA1

VOC	canal	tissu	canalopathie	médicaments
Na+	SCN5A SCN1A SCN9A	Cœur SNC nerf	Sd de Brugada Epilepsie Insensibilité douleur	Flécaïnide (-) Lacosamide (-) Anesthésiques locaux (-)
Са++	CNACA1A CNACA1S	Cerveau Cœur/vx	Migraine hémiplégique familiale	- Dihydropyridines(-) Vérapamil (-)
	RYR2		Dysplasie ventriculaire droite arythmogène	Ryanodine (+)
K+	KCNQ1	Cœur	Romano-Ward	Amiodarone (-)
CI-	CFTR	poumon, foie	mucoviscidose	Ivacaftor (+)
Na+, Ca++	TRPA1	Nerfs	Douleur	Paracétamol(-)

RYR2

Les grandes familles de VOC: les canaux TRP*

Le paracétamol: un médicament des canaux ioniques?

Souris TRPA1-/-

disparition des effets antalgiques du paracétamol...

Les canaux ioniques

- · Définition et méthodes d'études
- Les « receptor-operated channels » (ROC)
- Les « voltage-operated channels » (VOC)
 - Définition
 - Mode de fonctionnement
 - -Les grandes familles de VOCs
 - Canaux sodiques
 - Canaux calciques
 - ...
- · Pompes et transporteurs ioniques

Les cibles des médicaments modificateurs des courants ioniques:

Les pompes ioniques

Inhibiteurs de la pompe à protons: « les prazoles »

- Dérivés des anesthésiques locaux
- -Une DCI comportant un même suffixe: oméprazole, pantoprazole...
- indication: traitement de l'ulcère gastro-duodénal
- Utilisation courante (2° médicaments les plus remboursés en France)

Les cibles des médicaments modificateurs des courants ioniques:

Les transporteurs

Inhibiteurs de la recapture des amines Biogènes:

- Antidépresseurs (SERT): fluoxétine
- Drogues (DAT): cocaine
- Coupes-faims: (NET): amphétamines