Stochastic Signal Processing HW 3

Stefanos Baklavas 1115201700093

07 July 2022

Outline

1 Exercise 1
Periodogram
AR

2 Exercise 2
Adaptive

Adaptive filtering LMS Algorithm

3 Exercise 3

Noise cancellation with Wiener filter

- 1 Exercise 1
 Periodogram
 AR
- 2 Exercise 2
- 3 Exercise 3

Input signal

Figure: Input signal from 1.mat

Periodogram

- The power spectrum $S_x(w)$ is used to find the frequency distribution of a signal.
- We use the periodogram in order to estimate $S_x(w)$
- Periodogram is defined as:

$$P_{x,per}(w,N) = \sum_{k=-N+1}^{N-1} r_x(k,N) exp(-jwk)$$

- We use $E[r_x(k,N)] = w(k,N)r_x(k)$ to estimate the cross-correlation factor.
- And so we finally have:

$$E[P_{x,per}(w,N)] = \frac{1}{2\pi}W(w,N) * S_x(w)$$

• $E[P_{x,per}(w,N)]$ is an asymptotically unbiased estimator. Also in our case w[n] is the rectangular window.

Periodogram Results

Figure: f1 = 0.25, f2 = 0.32520, f3 = 0.34961

AR

- In this exercise we estimate $S_x(w)$ using Yule-Walker equations for AutoRegressive (AR) processes.
- The form of Yule-Walker equations for AR processes with p poles and q = 0 is:

$$x[n] + \sum_{k=1}^{p} a_p[k]x[n-k] = b[0]u[n] => S_x(w) = \sigma_u^2 \frac{|b[0]|^2}{|A_p(w)|^2}$$

- Where $a_p[k]$ contains the poles of the transfer function H(z), u[n] is the input noise and x[n] is the output.
- We use pyulear() function to estimate the Autoregressive power spectral density of the input signal using Yule-Walker method
- The difference between the two methods is that periodogram estimates $S_x(w)$ using a window and Yule-Walker equations estimate $S_x(w)$ via the transfer function H(z).

AR Results

Figure: f1 = 0.25, f2 = 0.32522, f3 = 0.34961

- 1 Exercise 1
- 2 Exercise 2
 Adaptive filtering
 LMS Algorithm
- 3 Exercise 3

Adaptive Filtering

Adaptive filtering for non WSS processes is a method where:

- Given an input signal x[n] = d[n] + u[n]
- And a filter w[n]
- We try to adjust w[n] coefficients such as the output d'[n] = w[n]*x[n] is the initial denoised signal d[n]

We use adaptive filtering instead of a stationary filter because in this exercise we have non WSS processes.

LMS Algorithm

The asset of the LMS Algorithm is its simplicity in the renewal of its coefficients.

• Updating kth coefficient

$$w_{n+1}[k] = w_n[k] + e[n] * x[k-n]$$

• Where e[n] = d[n] - y[n]. d[n] is the desired output and y[n] is the output we get for each iteration

LMS Algorithm

The Algorithm as implemented for 2.mat file:

Parameters:

p = filter order

 $\mu = \text{step}$

x = input vector from 2.mat

y = output vector from 2.mat

Initialization:

 $\mathbf{w}[0] = zeros(p)^T$

Computation:

$$x[n] = [x[n], x[n-1], ..., x[n-p+1]]^T$$

$$e[n] = y[n] - w[n] * x[n]$$

$$w[n+1] = w[n] + (\mu e^*x[n])^T$$

where $0 < \mu < \frac{2}{(p+1)r_x(0)}$

Exercise 2 Results 1/3

Figure:

Exercise 2 Results 2/3

Figure: m1 = 0.05

Exercise 2 Results 3/3

Figure: m2 = 0.0002 according to lmax

- 1 Exercise 1
- 2 Exercise 2
- 3 Exercise 3
 Noise cancellation with Wiener filter

voise editediation with vicine inte

Figure: Noise cancellation with Wiener filter

Wiener-Hopf equations

• The Wiener-Hopf equations for this case are:

$$R_{u2}w = r_{u1u2}$$

• And because $r_{u1u2} = r_{xu2}$ the final form of Wiener-Hopf equations is:

$$R_{u2}w = r_{xu2}$$

Resulsts 1/2

Figure: Input signals from 3.mat

Resulsts 2/2

Figure: Noise cancellation with Wiener filter

Thank you for your attention!