

Stratosphere's XCPC Templates

南京大学

平流层 Stratosphere

October 16, 2024

Contents

U	Header	1
1	图论	2
	1.1 欧拉回路	2
	1.2 Tarjan-SCC	3
	1.3 点双	3
	1.4 边双	3
	1.5 2-SAT	4
	1.6 最大流	4
	1.7 最小费用最大流	6
	1.8 匹配	7
	1.8.1 二分图最大匹配-Hungary	7
	1.8.2 二分图最大匹配-HK	8
	1.8.3 二分图最大权匹配-KM	8
	1.8.4 一般图最大匹配-带花树	9
	1.8.5 一般图最大权匹配	10
	1.9 最短路相关	10
	1.9.1 差分约束	10
	1.9.2 最小环	10
	1.9.3 Steiner 树	10
	1.10 流和匹配的建模技巧	11
	1.10.1 二分图相关	11
	1.10.2 网络流相关	11
	1.11 三四元环计数	11
	1.12 支配树	12
	1.13 图论计数	13
	1.13.1 Prufer 序列	13
	1.13.2 无标号树计数	13
	1.13.3 有标号 DAG 计数	14
	1.13.4 有标号连通简单图计数	14
	1.13.5 生成树计数	14
	1.13.6 BEST 定理	14
ว	树论	15
		19
3	数论	16
4	数学	17
5	字符串	18
6	数据结构	19
1	计算几何	20
8	杂项	21

0 Header

1 图论

1.1 欧拉回路

```
1000 namespace Euler {
       bool directed;
1001
       vector<pii> G[maxn];
1002
       vector<int> ans;
1003
       int vis[maxm];
1004
       int dfs(int x) {
1005
          vector<int> t;
1007
          while (G[x].size()) {
             auto [to, id] = G[x].back();
1008
             G[x].pop_back();
1009
             if (!vis[abs(id)]) {
                vis[abs(id)] = 1, t.push_back(dfs(to)), ans.push_back(id);
1011
1012
          for (int i = 1; i < t.size(); i++) {</pre>
1014
          if (t[i] != x) ans.clear();
1016
          return t.size() ? t[0] : x;
1017
       }
1018
       int n, m;
1019
       pii e[maxm]:
       int deg[maxn], vv[maxn];
1021
       void clr() {
          for (int i = 1; i \le n; i++) G[i].clear(), deg[i] = vv[i] = 0;
          for (int i = 1; i <= m; i++) vis[i] = 0;
1024
          ans.clear();
          n = m = 0;
       }
       void addedge(int x, int y) {
1028
          chkmax(n, x), chkmax(n, y);
e[++m] = {x, y};
          if (directed) {
1031
             G[x].push_back({y, m});
              ++deg[x], --deg[y], vv[x] = vv[y] = 1;
          } else {
             G[x].push_back({y, m});
1035
             G[y].push_back({x, -m})
             ++deg[x], ++deg[y], vv[x] = vv[y] = 1;
1038
       using vi = vector<int>;
1040
       pair<vi, vi> work() {
          if (!m) return clr(), pair<vi, vi>{{1}, {}};
1042
          int S = 1;
1043
          for (int i = 1; i <= n; i++)
            if (vv[i]) S = i;
1045
          for (int i = 1; i <= n; i++)
1046
          if (deg[i] > 0 && deg[i] % 2 == 1) S = i;
1047
          dfs(S);
1048
          if ((int)ans.size() != m) return clr(), pair<vi, vi>();
          reverse(ans.begin(), ans.end());
          vi ver, edge = ans;
          if (directed) {
1052
             ver = {e[ans[0]].fir};
             for (auto t : ans) ver.push_back(e[t].sec);
          } else {
             ver = {ans[0] > 0 ? e[ans[0]].fir : e[-ans[0]].sec};
             for (auto t : ans) ver.push_back(t > \overline{0} ? e[t].sec : e[-t].fir);
1057
1058
          clr();
1059
          return {ver, edge};
1060
       // namespace Euler
1062
```

1.2 Tarjan-SCC

```
void tarjan(int u) {
       dfn[u] = low[u] = ++tim;
1001
       in[u] = 1;
       st[++top] = u;
1003
       for (int v : G[u]) {
1004
          if (!dfn[v])
             tarjan(v), ckmin(low[u], low[v]);
1006
          else if (in[v])
            ckmin(low[u], dfn[v]);
       }
       if (dfn[u] == low[u]) {
          ++totc;
1011
          int x;
          do { \dot{x} = st[top--], in[x] = 0, bel[x] = totc; } while (x != u);
1013
1014
1015
```

1.3 点双

```
int T; // assign = n
    void tarjan(int u, int fa) {
1001
       dfn[u] = low[u] = ++tim;
1002
       stk[++top] = u;
       for (int v : G[u]) {
1004
          if (v == fa) continue;
1005
1006
          if (!dfn[v])
          | dfs(v, u), ckmin(low[u], low[v]);
1007
          else
1008
          | ckmin(low[u], dfn[v]);
1009
       if (fa \&\& low[u] >= dfn[fa]) {
1011
          int y;
1013
          ++T;
          do {
1014
             y = stk[top--];
1015
             G2[T].push_back(y), G2[y].push_back(T);
1016
          } while (y != u);
1017
          G2[T].push_back(fa), G2[fa].push_back(T);
1018
       }
1019
1020
```

1.4 边双

```
void tarjan(int u, int f) {
1000
       dfn[u] = low[u] = ++tim;
       st[++top] = u;
1002
       for (int v : G[u]) {
          if (v == f) continue;
1004
          if (!dfn[v])
             tarjan(v, u), ckmin(low[u], low[v]);
1007
          else
          ckmin(low[u], dfn[v]);
1008
1009
       if (dfn[u] == low[u]) {
          ++totc;
          int x;
1012
          do { x = st[top--], in[x] = 0, bel[x] = totc; } while (<math>x != u);
1014
       }
   }
```

1.5 2-SAT

构造方案时可以通过变量在图中的拓扑序确定该变量的取值。如果变量 x 的拓扑序在 $\neg x$ 之后,那么取 x 值为真。因为 Tarjan 算法求强连通分量时使用了栈,所以 Tarjan 求得的 SCC 编号相当于反拓扑序。

```
for (int i = 1; i <= n; i++)
| if (bel[i << 1] == bel[i << 1 | 1]) return puts("IMPOSSIBLE"), 0;
| puts("POSSIBLE");
| for (int i = 1; i <= n; i++) printf("%d ", bel[i << 1] > bel[i << 1 | 1]);
```

1.6 最大流

Dinic 算法

```
namespace Dinic {
       int N, S, T;
1001
       struct edge {
1002
         int to, nxt, cap;
       e[maxm << 1];
1004
       int head[maxn], cur[maxn], tot = 1;
       int d[maxn];
       void addedge(int u, int v, int c) {
1007
          e[++tot] = (edge)\{v, head[u], c\}, head[u] = tot;
1008
          e[++tot] = (edge)\{u, head[v], \emptyset\}, head[v] = tot;
1009
       bool bfs(int S, int T) {
          queue<int> q;
1012
          for (int i = 1; i \le N; i++) d[i] = 0;
1013
          d[S] = 1;
1014
          q.push(S);
          while (!q.empty()) {
1016
             int u = q.front();
             q.pop();
1018
              for (int i = head[u]; i; i = e[i].nxt) {
                 int v = e[i].to;
1020
                 if (e[i].cap && !d[v]) {
                    d[v] = d[u] + 1, q.push(v);
                    if (v == T) return true;
1024
             }
          return false;
1027
1028
       int dfs(int u, int f) {
          if (u == T) return f;
1030
          int r = f;
          for (int& i = cur[u]; i && r; i = e[i].nxt) {
             int v = e[i].to;
              if (e[i].cap \&\& d[v] == d[u] + 1) {
                 int x = dfs(v, min(e[i].cap, r));
                 if (!x) d[v] = 0;
                 e[i].cap -= x, e[i ^ 1].cap += x;
1037
                 r -= x;
1038
              }
1040
          return f - r;
       11 work(int _N, int _S, int _T) {
          N = N, S = S, T = T;
1044
          11 \text{ ans} = 0;
1045
          while (bfs(S, T)) {
1046
          for (int i = 1; i <= N; i++) cur[i] = head[i];</pre>
1048
             ans += 111 * dfs(S, INF);
          return ans;
       // namespace Dinic
```

ISAP 算法

```
1000 namespace ISAP {
       int N, S, T;
1001
       struct edge {
1002
          int to, nxt, cap;
       e[maxm << 1];
1004
       int head[maxn], cur[maxn], gap[maxn], dis[maxn], tot = 1;
1005
       void addedge(int u, int v, int w) {
    e[++tot] = {v, head[u], w}, head[u] = tot;
1006
1007
           e[++tot] = \{u, head[v], 0\}, head[v] = tot;
1008
1009
       int ISAP(int u, int lim) {
           if (u == T) return lim;
1011
           int res = 0;
           for (int& i = cur[u]; i; i = e[i].nxt) {
1013
              int v = e[i].to;
1014
              if (e[i].cap \&\& dis[u] == dis[v] + 1) {
1015
                  11 det = ISAP(v, min(lim, e[i].cap));
1016
                  e[i].cap -= det, e[i ^ 1].cap += det;
1017
                  lim -= det, res += det;
1018
                  if (!lim) return res;
1019
           cur[u] = head[u];
           if (!--gap[dis[u]]) dis[S] = N + 1;
           gap[++dis[u]]++;
1024
1025
           return res;
       11 work(int _N, int _S, int _T) {
1027
           S = \_S, T = \_T, N = \_N;
1028
           11 \text{ res} = 0;
           while (dis[S] <= N) res += 111 * ISAP(S, INF);</pre>
           return res;
1032
       // namespace ISAP
```

HLPP 算法

```
namespace HLPP { // by ProjectEMmm
        int N, S, T;
1001
        struct edge {
          int to, nxt, cap;
1003
        } e[maxm << 1];
1004
       int head[maxn], tot = 1;
1005
        int d[maxn], num[maxn];
1007
        stack<int> lib[maxn];
1008
        11 ex[maxn];
1009
        int level = 0;
        void addedge(int u, int v, int c) {
1011
           e[++tot] = {v, head[u], c}, head[u] = tot;
e[++tot] = {u, head[v], 0}, head[v] = tot;
1012
1013
1014
        int Push(int u) {
           bool init = (u == S);
1016
           for (int i = head[u]; i; i = e[i].nxt) {
1017
               const int &v = e[i].to, &c = e[i].cap;
1018
               if (!c || init == false && d[u] != d[v] + 1) continue;
1019
              ll k = init ? c : min((ll)c, ex[u]);
if (v != S && v != T && !ex[v] && d[v] < INF)</pre>
                  _lib[d[v]].push(v), level = max(level, d[v]);
               ex[u] -= k, ex[v] += k, e[i].cap -= k, e[i \land 1].cap += k;
1023
               if (!ex[u]) return 0;
1024
1025
           return 1;
        void Relabel(int x) {
        | d[x] = INF;
1029
```

```
for (int i = head[x]; i; i = e[i].nxt)
              if (e[i].cap) d[x] = min(d[x], d[e[i].to]);
           if (++d[x] < N) {
1032
              lib[d[x]].push(x);
              level = max(level, d[x]);
              ++num[d[x]];
1035
          }
1037
       bool BFS() {
1038
           for (int i = 1; i <= N; ++i) {
              d[i] = INF;
1040
              num[i] = 0;
1042
          queue<int> q;
q.push(T), d[T] = 0;
1044
           while (!q.empty()) {
              int u = q.front();
1046
              q.pop();
              num[d[u]]++;
1048
              for (int i = head[u]; i; i = e[i].nxt) {
                 const int& v = e[i].to;
                 if (e[i \land 1].cap \& d[v] > d[u] + 1) d[v] = d[u] + 1, q.push(v);
1053
           return d[S] != INF;
1054
       }
       int Select() {
1056
          while (lib[level].size() == 0 && level > -1) level--;
           return level == -1 ? 0 : lib[level].top();
1058
       11 work(int _N, int _S, int _T) {
1060
          N = N, S = S, T = T;
1061
           if (!BFS()) return 0;
          d[S] = N;
          Push(S);
1064
           int x;
1065
          while (x = Select()) {
1066
              lib[level].pop();
1067
1068
              if (!Push(x)) continue;
              if (!--num[d[x]])
                 for (int i = 1; i <= N; ++i)
| if (i != S && i != T && d[i] > d[x] && d[i] < N + 1)
                        d[i] = N + 1;
1072
              Relabel(x);
1074
           return ex[T];
1075
       // namespace HLPP
```

1.7 最小费用最大流

```
1000 namespace MCMF {
       using pr = pair<ll, int>;
int N, S, T;
1001
1002
       struct edge {
1003
         int to, nxt, cap, w;
1004
       } e[maxm << 1];
1005
       int head[maxn], tot = 1;
       void_addedge(int x, int y, int cap, int w) {
          e[++tot] = \{y, head[x], cap, w\}, head[x] = tot;
1008
          e[++tot] = \{x, head[y], 0, -w\}, head[y] = tot;
1009
       11 d[maxn], dis[maxn];
1011
       int vis[maxn], fr[maxn];
1012
       bool spfa() {
          queue<int> Q;
          fill(d + 1, d + N + 1, 1e18); // CHECK
```

```
for (d[S] = 0, Q.push(S); !Q.empty();) {
1016
              int x = Q.front();
1017
              Q.pop();
1018
              vis[x] = 0;
1019
              for (int i = head[x]; i; i = e[i].nxt)
                 if (e[i].cap \&\& d[e[i].to] > d[x] + e[i].w) {
1021
                    d[e[i].to] = d[x] + e[i].w;
                    fr[e[i].to] = i;
                    if (!vis[e[i].to]) vis[e[i].to] = 1, Q.push(e[i].to);
1024
1025
          return d[T] < 1e17; // 如果只是最小费用流, 当d < 0继续增广
1028
       bool dijkstra() { // 正常题目不需要 dijk
          priority_queue<pr, vector<pr>>, greater<pr>>> Q;
           for (int i = 1; i <= N; ++i)
             dis[i] = d[i], d[i] = 1e18, vis[i] = fr[i] = 0; // CHECK
1032
          Q.emplace(d[S] = 0, S);
          while (!Q.empty()) {
1034
             int x = Q.top().second;
              Q.pop();
              if (vis[x]) continue;
              vis[x] = 1;
1038
              for (int i = head[x]; i; i = e[i].nxt) {
                 const ll v = e[i].w + dis[x] - dis[e[i].to];
1040
                 if (e[i].cap && d[e[i].to] > d[x] + v) {
                    fr[e[i].to] = i
1042
                    Q.emplace(\bar{d}[e[i].to] = d[x] + v, e[i].to);
1044
             }
1046
          for (int i = 1; i <= N; ++i) d[i] += dis[i]; // CHECK
1047
          return d[T] < 1e17;</pre>
1048
1049
       std::pair<ll, ll> work(int _N, int _S, int _T) {
          N = N, S = S, T = T;
1051
          spfa(); // 如果初始有负权且要 dijk
          11 f = 0, c = 0;
1053
          for (; dijkstra();) { // 正常可以用 spfa
             ll fl = 1e18;
              for (int i = fr[T]; i; i = fr[e[i ^ 1].to])
                fl = min((ll)e[i].cap, fl);
             for (int i = fr[T]; i; i = fr[e[i ^ 1].to])
| e[i].cap -= fl, e[i ^ 1].cap += fl;
f += fl, c += fl * d[T];
1058
1060
1061
          return make_pair(f, c);
       // namespace MCMF
1064
```

1.8 匹配

1.8.1 二分图最大匹配-Hungary

```
// 匈牙利, 左到右单向边, 0 (M | match | )
   int vis[maxn], match[maxn];
   bool dfs(int u) {
1002
       for (int v : G[u]) {
          if (vis[v]) continue;
1004
          vis[v] = 1;
          if (!match[v] || dfs(match[v])) return match[v] = u, 1;
1007
       return 0;
1008
1009
1010 int work() {
       for (int i = 1; i <= nl; i++)
       | if (dfs(i)) fill(vis + 1, vis + nr + 1, 0);
```

```
|// 匈牙利,左到右单向边,bitset, 0 (n^2|match|/w)
|bitset<N>_G[N], unvis;
1014
    int match[N];
1016
   bool dfs(int u) {
       for (auto s = G[u];;) {
1018
          s &= unvis;
1019
           int v = s._Find_first();
          if (v == N) return 0;
          unvis.reset(v);
          if (!match[v] || dfs(match[v])) return match[v] = u, 1;
1024
       return 0;
    int work() {
1027
       unvis.set();
1028
       for (int i = 1; i <= nl; i++)
1029
          if (dfs(i)) unvis.set();
1031
```

1.8.2 二分图最大匹配-HK

```
|// HK, 左到右单向边, O(M \sqrt{|match|})
1000
   int matchl[maxn], matchr[maxn], a[maxn], p[maxn];
1001
    int HK()
       while (true) {
          for (int i = 1; i \le nl; i++) a[i] = p[i] = 0;
1004
          queue<int> Q;
1005
          while (!Q.empty()) Q.pop();
          for (int i = 1; i <= nl; i++)
             if (!matchl[i]) a[i] = p[i] = i, Q.push(i);
1008
          int succ = 0;
1009
          while (!Q.empty()) {
             int u = Q.front();
1011
             Q.pop();
             if (matchl[a[u]]) continue;
             for (int v : G[u]) {
                 if (!matchr[v]) {
                    for (succ = 1; v; u = p[u])
1016
                      matchr[v] = u, swap(matchl[u], v);
1017
1018
1019
                 if (!p[matchr[v]])
                   Q.push(matchr[v]), p[matchr[v]] = u, a[matchr[v]] = a[u];
102
1023
          if (!succ) break;
1024
```

1.8.3 二分图最大权匹配-KM

```
// KM 二分图最大权匹配 复杂度O(n^3)
   namespace KM {
1001
       int nl, nr;
1002
       11 e[maxn][maxn], lw[maxn], rw[maxn], mnw[maxn];
       int lpr[maxn], rpr[maxn], vis[maxn], fa[maxn];
       void addedge(int x, int y, ll w) {
1005
1006
         ckmax(e[x][y], w), ckmax(lw[x], w);
1007
       void work(int x) {
1008
          int xx = x;
1009
          for (int i = 1; i <= nr; i++) vis[i] = 0, mnw[i] = 1e18;
          while (true) {
          for (int i = 1; i <= nr; i++)
1012
```

```
if (!vis[i] && mnw[i] >= lw[x] + rw[i] - e[x][i])
                     ckmin(mnw[i], lw[x] + rw[i] - e[x][i]), fa[i] = x;
1014
              11 \text{ mn} = 1e18;
1015
              int y = -1;
               for (int i = 1; i <= nr; i++)
1017
                 if (!vis[i] && mn >= mnw[i]) ckmin(mn, mnw[i]), y = i;
1018
              lw[xx] -= mn;
1019
              for (int i = 1; i <= nr; i++)
1020
                  if (vis[i])
                     rw[i] += mn, lw[rpr[i]] -= mn;
1022
                  else
                     mnw[i] -= mn;
1024
              if (rpr[y])
1025
                 x = rpr[y], vis[y] = 1;
              else {
1027
                 while (y) rpr[y] = fa[y], swap(y, lpr[fa[y]]);
1028
                  return;
1029
1032
       void init(int _nl, int _nr) {
           nl = _nl, nr = _nr;
1034
           if (nl > nr) nr = nl;
           for (int i = 1; i <= nl; i++) lw[i] = -1e18;
for (int i = 1; i <= nl; i++)
1036
             for (int j = 1; j \leftarrow nr; j++) e[i][j] = 0; // or -1e18
1038
1039
       11 work() {
           for (int i = 1; i <= nl; i++) work(i);</pre>
1041
           11 \text{ tot} = 0;
           for (int i = 1; i <= nl; i++) tot += e[i][lpr[i]];</pre>
1043
           return tot;
1044
       // namespace KM
1046
```

1.8.4 一般图最大匹配-带花树

```
namespace blossom {
1000
       vector<int> G[maxn];
1001
       int f[maxn];
1002
       int n, match[maxn];
1003
1004
       int getfa(int x) {
          return f[x] == x ? x : f[x] = getfa(f[x]);
1005
       void addedge(int x, int y) {
1007
          G[x].push_back(y), G[y].push_back(x);
1008
1009
       int pre[maxn], mk[maxn];
       int vis[maxn], T;
1011
       queue<int> q;
1012
       int LCA(int x, int y) {
1013
1014
          for (;; x = pre[match[x]], swap(x, y))
              if (vis[x = getfa(x)] == T)
1016
                return x;
1017
             else
1018
             | vis[x] = x ? T : 0;
1019
       void flower(int x, int y, int z) {
          while (getfa(x) != z) {
1023
             pre[x] = y
             y = match[x];
1024
             f[x] = f[y] = z;
1025
             x = pre[y];
1026
              if (mk[y] == 2) q.push(y), mk[y] = 1;
       }
1029
```

```
void aug(int s) {
1030
           for (int i = 1; i \le n; i++) pre[i] = mk[i] = vis[i] = 0, f[i] = i;
           q = \{\};
1032
          mk[s] = 1;
           q.push(s);
1034
           while (q.size()) {
1035
             int x = q.front();
1037
              q.pop();
              for (int v : G[x]) {
1038
                 int y = v, z;
if (mk[y] == 2) continue;
1039
1040
                 if (mk[y] == 1)
                    z = LCA(x, y), flower(x, y, z), flower(y, x, z);
1042
                 else if (!match[y]) {
                     for (pre[y] = x; y;)
1044
                     x = pre[y], match[y] = x, swap(y, match[x]);
                    return;
1046
                 } else
                    pre[y] = x, mk[y] = 2, q.push(match[y]), mk[match[y]] = 1;
1048
1049
          }
1051
       int work() {
1053
           for (int i = 1; i <= n; i++) if (!match[i]) aug(i);</pre>
           int res = 0;
1054
           for (int i = 1; i \le n; i++) res += match[i] > i;
           return res;
1056
       // namespace blossom
```

1.8.5 一般图最大权匹配

待补充

1.9 最短路相关

1.9.1 差分约束

 x_i 向 x_j 连一条权值为 c 的有向边表示 $x_j - x_i \le c$ 。 用 BF 判断是否存在负环, 存在即无解。

1.9.2 最小环

记原图中 u,v 之间边的边权为 val(u,v)。

我们注意到 Floyd 算法有一个性质:在最外层循环到点 k 时(尚未开始第 k 次循环),最短路数组 dis 中, $dis_{u,v}$ 表示的是从 u 到 v 且仅经过编号在 [1,k) 区间中的点的最短路。

由最小环的定义可知其至少有三个顶点,设其中编号最大的顶点为w,环上与w相邻两侧的两个点为u,v,则在最外层循环枚举到k=w时,该环的长度即为 $dis_{u,v}+val(v,w)+val(w,u)$ 。

故在循环时对于每个 k 枚举满足 i < k, j < k 的 (i, j), 更新答案即可。

1.9.3 Steiner 树

状态设计: dp(i,S) 以 i 为根, 树中关键点集合为 S 的最小值。

1. 树根度数不为 1 ,考虑拆分成两个子集 T, S - T:

$$dp(i,S) \leftarrow dp(i,S-T) + dp(i,T)$$

2. 树根度数为 1:

$$dp(i, S) \leftarrow dp(j, S) + w(i, j)$$

相当于超级源到每个顶点距离为 dp(i,S), 求到每个顶点的最短路, dij 即可。

1.10 流和匹配的建模技巧

1.10.1 二分图相关

- 二分图最小点覆盖: 等于最大匹配 | match | 。从每一个非匹配点出发,沿着非匹配边正向进行遍历,沿着匹配边反向进行遍历到的点进行标记。选取左部点中没有被标记过的点,右部点中被标记过的点,则这些点可以形成该二分图的最小点覆盖。
- 二分图最大独立集: 等于 *n* |*match*|,考虑最小点覆盖给所有边都至少有一边有点,取反后必然为最大独立集。
- 二分图最小边覆盖: 等于 n |match|, 考虑最坏情况每个顶点都要一条边, 一个匹配能减小 1 的贡献。
- 最大团: 等于补图的最大独立集。
- 最小路径覆盖: 对于每条有向边 (u,v), 拆成 $u \to v + n$, u 为进入 u, v + n 为从 v 离开, 则答案为 n |match|。
- Hall Theorem: 对于左部顶点集 X, $\forall S \subseteq X, |N(S)| \ge |S| \iff$ 存在完美匹配。

1.10.2 网络流相关

- 二分图最大权独立集: 考虑连边 (S, x, w_x) , 原图边 (x, y, ∞) , (y, T, w_y) , 变为最小割。
- 最大权闭合子图: 正权 w_u 连 (S, u, w_u) ,负权 w_v 连 $(v, T, -w_v)$,原图边连 ∞。此时最小割之后源点 S 能到达的点即为最大权闭合子图,答案即为正权和 -mincut。
- 无源汇上下界可行流: 建源汇 S,T, l(u,v), r(u,v) 分别为流量上下界。记 $d(i) = \sum l(u,i) \sum l(i,v)$ 。
 - 原边 (u,v) 连 (u,v,r(u,v)-l(u,v))。
 - 对于每个点 u, 若 $d_u > 0$, 连 (S, u, d_u) 。
 - 若 $d_u < 0$,连 $(u, T, -d_u)$ 。

若 S 的出边全部流满则存在解。

- 有源汇上下界可行流: 原图源汇连边 $(T \to S, (0, \infty))$, 则转化为无源汇。
- 有源汇上下界最大流: 从 T 到 S 连一条下界为 0,上界为 $+\infty$ 的边,转化为无源汇网络。按照 ** 无源汇上下界 可行流 ** 的做法求一次无源汇上下界超级源 SS 到超级汇 TT 的最大流。删去所有附加边,在上一步的**残量网络** 基础上,求一次 S 到 T 的最大流。两者之和即为答案。
- 有源汇上下界最小流: 从 T 到 S 连一条下界为 0,上界为 $+\infty$ 的边,转化为无源汇网络。按照 ** 无源汇上下界可行流 ** 的做法求一次无源汇上下界超级源 SS 到超级汇 TT 的最大流。删去所有附加边,在上一步的**残量网络**基础上,求一次 T 到 S 的最大流。两者之差即为答案。
- 最小费用可行流: 同有源汇上下界可行流, 在超级源汇跑最小费用最大流, 答案为费用 + 下界流量的费用。
- 平面图最小割 = 对偶图最短路

1.11 三四元环计数

```
static int id[maxn], rnk[maxn];
    for (int i = 1; i <= n; i++) id[i] = i;
sort(id + 1, id + n + 1, [](int x, int y) {
    return pii{deg[x], x} < pii{deg[y], y};</pre>
1001
1002
1003
1004 });
    1005
1006
1007
    | if (rnk[v] > rnk[i]) G2[i].push_back(v);
int ans3 = 0; // 3-cycle
for (int i = 1; i <= n; i++) {
1009
         static int vis[maxn];
         for (int v : G2[i]) vis[v] = 1;
         for (int v1 : G2[i])
            for (int v2 : G2[v1])
| if (vis[v2]) ++ans3; // (i,v1,v2)
1014
         for (int v : G2[i]) vis[v] = 0;
1016
    \bar{l}l ans4 = 0; // 4-cycle
1018
1019 for (int i = 1; i <= n; i++) {
        static int vis[maxn];
        for (int v1 : G[i])
1021
```

```
1022 | | for (int v2 : G2[v1])

1023 | | if (rnk[v2] > rnk[i]) ans4 += vis[v2], vis[v2]++;

1024 | for (int v1 : G[i])

1025 | for (int v2 : G2[v1]) vis[v2] = 0;

1026 }
```

1.12 支配树

```
1000 namespace Dom_DAG {
       int idom[maxn];
1001
       vector<int> G[maxn], ANS[maxn]; // ANS: final tree
1002
       int deg[maxn];
       int fa[maxn][25], dep[maxn];
1004
       int lca(int x, int y) {
          if (dep[x] < dep[y]) swap(x, y);
1006
          for (int i = 20; i >= 0; i--)
             if (fa[x][i] \&\& dep[fa[x][i]] >= dep[y]) x = fa[x][i];
1008
          if (x == y) return x;
1009
          for (int i = 20; i >= 0; i--)
          | if (fa[x][i] != fa[y][i]) x = fa[x][i], y = fa[y][i];
1011
          return fa[x][0];
1012
1013
       }
       void work() {
1014
          queue<int> q;
1015
          q.push(1);
1016
          while (!q.empty()) {
1017
             int x = q.front();
1018
              q.pop();
              ANS[idom[x]].push_back(x);
1020
              fa[x][0] = idom[x];
              dep[x] = dep[idom[x]] + 1;
              for (int i = 1; i \le 20; i++) fa[x][i] = fa[fa[x][i - 1]][i - 1];
1023
              for (int v : G[x]) {
1024
                 --deg[v];
                 if (!deg[v]) q.push(v);
                 if (!idom[v])
1027
                    idom[v] = x;
1028
                 else
                    idom[v] = lca(idom[v], x);
1030
              }
          }
       // namespace Dom_DAG
1034
   namespace Dom {
       vector<int> G[maxn], rG[maxn];
       int dfn[maxn], id[maxn], anc[maxn], cnt;
       void dfs(int x) {
1038
          id[dfn[x] = ++cnt] = x;
for (int v : G[x])
1040
              if (!dfn[v])
                 Dom_DAG::G[x].push_back(v);
                 Dom_DAG::deg[v]++;
1043
                 anc[v] = x;
1044
                 dfs(v);
1045
1047
       int fa[maxn], mn[maxn];
1048
       int find(int x)
          if (x == fa[x]) return x;
          int tmp = fa[x];
          fa[x] = find(fa[x]);
1052
          ckmin(mn[x], mn[tmp]);
          return fa[x];
1054
1055
       int semi[maxn];
       void work() {
       \mid dfs(1);
```

```
for (int i = 1; i <= n; i++) fa[i] = i, mn[i] = 1e9, semi[i] = i;</pre>
           for (int w = n; w >= 2; w--) {
1060
              int x = id[w];
1061
              int cur = 1e9;
1062
              if (w > cnt) continue;
1063
              for (int v : rG[x]) {
1064
                  if (!dfn[v]) continue;
1065
                  if (dfn[v] < dfn[x])</pre>
1066
                     ckmin(cur, dfn[v]);
1067
                  else
1068
                     find(v), ckmin(cur, mn[v]);
1069
              semi[x] = id[cur];
1071
              mn[x] = cur;
fa[x] = anc[x];
              Dom_DAG::G[semi[x]].push_back(x);
1074
              Dom_DAG::deg[x]++;
1075
1077
        void addedge(int x, int y) {
1078
           G[x].push_back(y), rG[y].push_back(x);
1079
1080
       // namespace Dom
1081
```

1.13 图论计数

1.13.1 Prufer 序列

有标号无根树和其 prufer 编码——对应, 一颗 n 个点的树, 其 prufer 编码长度为 n-2, 且度数为 d_i 的点在 prufer 编码中出现 di-1 次.

由树得到序列: 总共需要 n-2 步, 第 i 步在当前的树中寻找具有最小标号的叶子节点, 将与其相连的点的标号设为 Prufer 序列的第 i 个元素 p_i , 并将此叶子节点从树中删除, 直到最后得到一个长度为 n-2 的 Prufer 序列和一个只有两个节点的树.

由序列得到树: 先将所有点的度赋初值为 1, 然后加上它的编号在 Prufer 序列中出现的次数, 得到每个点的度; 执行 n-2 步, 第 i 步选取具有最小标号的度为 1 的点 u 与 $v=p_i$ 相连, 得到树中的一条边, 并将 u 和 v 的度减一. 最后再把剩下的两个度为 1 的点连边, 加入到树中.

推论:

- n 个点完全图,要求每个点度数依次为 d_1,d_2,\cdots,d_n ,这样生成树的棵树为: $\frac{(n-2)!}{\prod (d_i-1)!}$
- 左边有 n_1 个点, 右边有 n_2 个点的完全二分图的生成树棵树为 $n_1^{n_2-1} \times n_2^{n_1-1}$
- m 个连通块, 每个连通块有 c_i 个点, 把他们全部连通的生成树方案数: $(\sum c_i)^{m-2} \prod c_i$

1.13.2 无标号树计数

(1) 有根树计数:

$$f_n = \frac{\sum_{i=1}^{n-1} f_{n-i} \sum_{d|i} f_d \cdot d}{n-1}$$

记 $g_i = \sum_{d|i} f_d \cdot d$ 即可做到 $\Theta(n^2)$ 。

(2) 无根树计数:

当 n 是奇数时

如果根不是重心,必然存在恰好一个子树,它的大小超过 $\left\lfloor \frac{n}{2} \right\rfloor$ (设它的大小为 k) 减去这种情况即可。 因此答案为

$$f_n - \sum_{k=\lfloor \frac{n}{2} \rfloor + 1}^{n-1} f_k \cdot f_{n-k}$$

当 n 是偶数时

有可能存在两个重心,且其中一个是根(即存在一棵子树大小恰为 $\frac{n}{2}$),额外减去 $\begin{pmatrix} f_{\frac{n}{2}} \\ 2 \end{pmatrix}$ 即可

1.13.3 有标号 DAG 计数

$$F_{i} = \sum_{j=1}^{i} {i \choose j} (-1)^{j+1} 2^{j(i-j)} F_{i-j}$$

想法是按照拓扑序分层,每次剥开所有入度为零的点。

1.13.4 有标号连通简单图计数

记 $g(n) = 2^{\binom{n}{2}}$ 为有标号简单图数量, c(n) 为有标号简单连通图数量, 那么枚举 1 所在连通块大小, 有

$$g(n) = \sum_{i=1}^{n} \binom{n-1}{i-1} c(i)g(n-i)$$

易递推求 c(n)。多项式做法考虑 exp 组合意义即可。

1.13.5 生成树计数

Kirchhoff Matrix T = Deg - A, Deg 是度数对角阵, A 是邻接矩阵.

无向图度数矩阵是每个点度数; 有向图度数矩阵是每个点入度.

邻接矩阵 A[u][v] 表示 $u \to v$ 边个数, 重边按照边数计算, 自环不计入度数.

无向图生成树计数: c = |K| 的任意 $1 \uparrow n - 1$ 阶主子式 |

有向图外向树计数: c= | 去掉根所在的那阶得到的主子式 |

若求边权和则邻接矩阵可以设为 (1+wx), 相当于一次项的系数。

1.13.6 BEST 定理

设 G 是有向欧拉图, k 为任意顶点, 那么 G 的不同欧拉回路总数 $\operatorname{ec}(G)$ 是

$$\mathrm{ec}(G) = t^{\mathrm{root}}(G,k) \prod_{v \in V} (\deg(v) - 1)!.$$

2 树论

3 数论

4 数学

5 字符串

6 数据结构

7 计算几何

8 杂项