Probabilistic Linear Classifier: Logistic Regression

Three Main Approaches to learning a Classifier

- Learn a classifier: a function f, $\hat{y} = f(\mathbf{x})$
- Learn a probabilistic discriminative model, i.e., the conditional distribution P(y | x)
- Learn a probabilistic generative model, i.e., the joint probability distribution: P(x,y)
- Examples:
 - Learn a classifier: Perceptron, LDA (projection with threshold view)
 - Learn a conditional distribution: Logistic regression
 - Learn the joint distribution: a probabilistic view of Linear Discriminant Analysis (LDA)

Notation Shift

- S={(xⁱ, yⁱ): i=1,..., N} --- superscript for example index. N is the total number of examples
- Subscript for element index within a vector, i.e.,
 xⁱ_j represents the jth element of the ith training example
- Class labels are 0 and 1 (not +1 and -1)

Logistic Regression

- Given training set D, logistic regression learns the conditional distribution P(y | x)
- We will assume only two classes y = 0 and y = 1 and a parametric form for P(y = 1 | x, w) were w is the parameter vector

$$p(y=1 | \mathbf{x}; \mathbf{w}) = p_1(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$$
$$p(y=0 | \mathbf{x}; \mathbf{w}) = 1 - p_1(\mathbf{x})$$

It is easy to show that this is equivalent to

$$\log \frac{p(y=1|\mathbf{x};\mathbf{w})}{p(y=0|\mathbf{x};\mathbf{w})} = \mathbf{w} \cdot \mathbf{x}$$

• i.e. the *log odds* of class 1 is a linear function of x.

Why the Logistic (Sigmoid) Function

$$g(\mathbf{x}, \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{w} \cdot \mathbf{x})}$$

A linear function has a range from $[-\infty,\infty]$, the logistic function transforms the range to [0,1] to be a probability.

Logistic Regression Yields Linear Classifier

 Recall that given P(y | x) we predict ŷ = 1 if the expected loss of predicting 0 is greater than predicting 1 (for now assume L(0,1) = L(1,0))

$$\begin{split} E_{y|x}[L(0,y)] > E_{y|x}[L(1,y)] &\Leftrightarrow \\ \sum_{y} P(y \mid \mathbf{x}) L(0,y) > \sum_{y} P(y \mid \mathbf{x}) L(1,y) &\Leftrightarrow \\ P(y = 0 \mid \mathbf{x}) L_{00} + P(y = 1 \mid \mathbf{x}) L_{01} > P(y = 0 \mid \mathbf{x}) L_{10} + P(y = 1 \mid \mathbf{x}) L_{11} &\Leftrightarrow \\ P(y = 1 \mid \mathbf{x}) > P(y = 0 \mid \mathbf{x}) &\Leftrightarrow \\ \frac{P(y = 1 \mid \mathbf{x})}{P(y = 0 \mid \mathbf{x})} > 1 &\Leftrightarrow \log \frac{P(y = 1 \mid \mathbf{x})}{P(y = 0 \mid \mathbf{x})} > 0 &\Leftrightarrow \\ \mathbf{w} \cdot \mathbf{x} > 0 \end{split}$$

- This assumed L(0,1)=L(1,0)
- A similar derivation can be done for arbitrary L(0,1) and L(1,0).

Maximum Likelihood Learning

- Recall that the likelihood function is the probability of the data **D** given the parameters – p(**D**|w)
- It is a function of the parameters
- Maximum likelihood learning finds the parameters that maximize this likelihood function
- A common trick is to work with log-likelihood, i.e., take the logarithm of the likelihood function – log p(D|w)

Computing the Likelihood

In our framework, we assume each training example (xⁱ, yⁱ) is drawn independently from the same (but unknown) distribution P(x,y) (the famous i.i.d assumption), hence we can write

$$\log P(D \mid \mathbf{w}) = \log \prod_{i} P(\mathbf{x}^{i}, y^{i} \mid \mathbf{w}) = \sum_{i} \log P(\mathbf{x}^{i}, y^{i} \mid \mathbf{w})$$

Joint distribution P(a,b) can be factored as P(a | b)P(b)

$$\arg \max_{\mathbf{w}} \log P(D \mid \mathbf{w}) = \arg \max_{\mathbf{w}} \sum_{i} \log P(\mathbf{x}^{i}, y^{i} \mid \mathbf{w})$$
$$= \arg \max_{\mathbf{w}} \sum_{i} \log P(y^{i} \mid \mathbf{x}^{i}, \mathbf{w}) P(\mathbf{x}^{i} \mid \mathbf{w})$$

Further, P(x | w) = P(x) because it does not depend on w, so:

$$\underset{\mathbf{w}}{\operatorname{arg\,max}} \log P(D \mid \mathbf{w}) = \underset{\mathbf{w}}{\operatorname{arg\,max}} \sum_{i} \log P(y^{i} \mid \mathbf{x}^{i}, \mathbf{w})$$

Computing the Likelihood

$$\underset{\mathbf{w}}{\operatorname{arg\,max}} \log P(D \mid \mathbf{w}) = \underset{\mathbf{w}}{\operatorname{arg\,max}} \sum_{i} \log P(y^{i} \mid \mathbf{x}^{i}, \mathbf{w})$$

Recall

$$p(y=1|\mathbf{x},\mathbf{w}) = g(\mathbf{x},\mathbf{w}) = \frac{1}{1+e^{-\mathbf{w}\cdot\mathbf{x}}} = \hat{y}$$

$$p(y=0|\mathbf{x},\mathbf{w}) = 1-g(\mathbf{x},\mathbf{w}) = 1-\hat{y}$$
So:
$$P(y^i|\mathbf{x}^i,\mathbf{w}) = \begin{cases} \hat{y} & \text{if } y^i = 1\\ 1-\hat{y} & \text{otherwsie} \end{cases}$$

This can be compactly written as

$$p(y^i | \mathbf{x}^i, \mathbf{w}) = \hat{y}^{y^i} (1 - \hat{y})^{(1-y^i)}$$

We will take our learning objective function to be:

$$L(\mathbf{w}) = \log P(D \mid \mathbf{w}) = \sum_{i} \log P(y^{i} \mid \mathbf{x}^{i}, \mathbf{w})$$
$$= \sum_{i} \left[y^{i} \log \hat{y}^{i} + (1 - y^{i}) \log(1 - \hat{y}^{i}) \right]$$

Fitting Logistic Regression by Gradient Ascent

$$L(\mathbf{w}) = \sum_{i} \log P(y^{i} | \mathbf{x}^{i}, \mathbf{w}) = \sum_{i} [y^{i} \log \hat{y}^{i} + (1 - y^{i}) \log(1 - \hat{y}^{i})]$$

$$\frac{\partial L(\mathbf{w})}{\partial w_{j}} = \frac{\partial \log P(y^{i} | \mathbf{x}^{i}, \mathbf{w})}{\partial w_{j}} = \frac{\partial}{\partial w_{j}} [y^{i} \log \hat{y}^{i} + (1 - y^{i}) \log(1 - \hat{y}^{i})]$$

$$= \frac{y^{i}}{\hat{y}^{i}} (\frac{\partial \hat{y}^{i}}{\partial w_{j}}) + \frac{1 - y^{i}}{1 - \hat{y}^{i}} (-\frac{\partial \hat{y}^{i}}{\partial w_{j}}) = \left[\frac{y^{i}}{\hat{y}^{i}} - \frac{1 - y^{i}}{1 - \hat{y}^{i}}\right] \frac{\partial \hat{y}^{i}}{\partial w_{j}}$$

$$= \left[\frac{y^{i} - y^{i} \hat{y}^{i} - \hat{y}^{i} + y^{i} \hat{y}^{i}}{\hat{y}^{i} (1 - \hat{y}^{i})}\right] \frac{\partial \hat{y}^{i}}{\partial w_{j}} = \left[\frac{y^{i} - \hat{y}^{i}}{\hat{y}^{i} (1 - \hat{y}^{i})}\right] \frac{\partial \hat{y}^{i}}{\partial w_{j}}$$

Recall that
$$\hat{y}^i = \hat{y}(\mathbf{x}^i, \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{w} \cdot \mathbf{x}^i)}$$
 for $g(t) = \frac{1}{1 + \exp(-t)}$ we have

for
$$g(t) = \frac{1}{1 + \exp(-t)}$$
 we have

$$g'(t) = \frac{\exp(-t)}{(1 + \exp(-t))^2} = g(t)(1 - g(t))$$

Recall that
$$y^{i} = y(\mathbf{x}^{i}, \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{w} \cdot \mathbf{x}^{i})}$$

$$50 \quad \frac{\partial \hat{y}^{i}}{\partial w_{j}} = \hat{y}^{i} (1 - \hat{y}^{i}) \frac{\partial (\mathbf{w} \cdot \mathbf{x}^{i})}{\partial w_{j}} = \hat{y}^{i} (1 - \hat{y}^{i}) x_{j}^{i}$$

$$\frac{\partial L(\mathbf{w})}{\partial x_{j}} = \frac{\hat{y}^{i} (1 - \hat{y}^{i}) x_{j}^{i}}{\partial x_{j}}$$

$$\frac{\partial L(\mathbf{w})}{\partial w_i} = \sum_{i=1}^{N} (y^i - \hat{y}^i) x_j^i \qquad \nabla L(\mathbf{w}) = \sum_{i=1}^{N} (y^i - \hat{y}^i) \mathbf{x}^i$$

Batch Gradient Ascent for LR

Given: training examples
$$(\mathbf{x}^i, y^i)$$
, $i = 1,..., N$
Let $\mathbf{w} \leftarrow (0,0,0,...,0)$
Repeat until convergence
 $\mathbf{d} \leftarrow (0,0,0,...,0)$
For $i = 1$ to N do

$$\hat{y}^i \leftarrow \frac{1}{1+e^{-\mathbf{w} \cdot \mathbf{x}^i}}$$

$$error = y^i - \hat{y}^i$$

$$\mathbf{d} = \mathbf{d} + error \cdot \mathbf{x}^i$$

$$\mathbf{w} \leftarrow \mathbf{w} + \eta \mathbf{d}$$

Online gradient ascent algorithm can be easily constructed

Connection Between Logistic Regression & Perceptron Algorithm

If we replace the logistic function with a step function:

$$h_{\mathbf{w}}(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{w} \cdot \mathbf{x} > 0 \\ 0 & \text{otherwise} \end{cases}$$

Both algorithms uses the same updating rule:

$$\mathbf{w} = \mathbf{w} + \eta(y^i - h_{\mathbf{w}}(\mathbf{x}^i))\mathbf{x}^i$$

Multi-Class Cases

 Choose class K to be the "reference class" and represent each of the other classes as a logistic function of the odds of class k versus class K:

$$\log \frac{P(y=1|\mathbf{x})}{P(y=K|\mathbf{x})} = \mathbf{w}_1 \cdot \mathbf{x}$$

$$\log \frac{P(y=2|\mathbf{x})}{P(y=K|\mathbf{x})} = \mathbf{w}_2 \cdot \mathbf{x}$$

$$\vdots$$

$$\log \frac{P(y=K|\mathbf{x})}{P(y=K|\mathbf{x})} = \mathbf{w}_{K-1} \cdot \mathbf{x}$$

 Gradient ascent can be applied to simultaneously train all weight vectors w_k

Multi-Class Cases

 Conditional probability for class k ≠ K can be computed as

$$P(y = k \mid \mathbf{x}) = \frac{\exp(\mathbf{w}_k \cdot \mathbf{x})}{1 + \sum_{l=1}^{K-1} \exp(\mathbf{w}_l \cdot \mathbf{x})}$$

For class K, the conditional probability is

$$P(y = K \mid \mathbf{x}) = \frac{1}{1 + \sum_{l=1}^{K-1} \exp(\mathbf{w}_l \cdot \mathbf{x})}$$

Summary of Logistic Regression

- Learns conditional probability distribution
 P(y | x)
- Local Search
 - begins with initial weight vector. Modifies it iteratively to maximize the log likelihood of the data
- Online or Batch
 - both online and batch variants of the algorithm exist