Spring 2011

信號與系統 Signals and Systems

Chapter SS-5
The Discrete-Time Fourier Transform

Feng-Li Lian NTU-EE Feb11 – Jun11

Figures and images used in these lecture notes are adopted from "Signals & Systems" by Alan V. Oppenheim and Alan S. Willsky, 1997

- Representation of Aperiodic Signals:
 the <u>Discrete</u>-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of <u>Discrete</u>-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Duality
- Systems Characterized by Linear Constant-Coefficient <u>Difference</u> Equations

DT Fourier Transform of an Aperiodic Signal:

an aperiodic signal

$$\tilde{x}[n] = \sum_{k=< N>} a_k e^{jk(2\pi/N)n}$$
 $= \sum_{k=< N>} a_k e^{jk(w_0)n}$

$$a_k = \frac{1}{N} \sum_{n=< N>} \tilde{x}[n] e^{-jk(2\pi/N)n} = \frac{1}{N} \sum_{n=< N>} \tilde{x}[n] e^{-jk(w_0)n}$$

$$\Rightarrow a_{k} = \frac{1}{N} \sum_{n=-N_{1}}^{N_{2}} x[n] e^{-jk(w_{0})n} = \frac{1}{N} \sum_{n=-\infty}^{+\infty} x[n] e^{-jk(w_{0})n}$$

- DT Fourier Transform of an Aperiodic Signal:
 - Define $X(e^{jw})$:

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

• Then,

$$a_k = \frac{1}{N} X(e^{jkw_0})$$

$$w = kw_0$$

• Hence,

DT Fourier Transform of an Aperiodic Signal:

• As $N \to \infty$, $\tilde{x}[n] \to x[n]$

$$w_0 N = 2\pi$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$

- inverse Fourier transform eqn
- synthesis eqn

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

- $X(e^{jw})$: Fourier transform of x[n] spectrum
- analysis eqn

$$a_k = \frac{1}{N} X(e^{jw}) \Big|_{w = kw_0}$$

$$w_0 = \frac{2\pi}{N}$$

Periodicity of DT Fourier Transform:

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

$$X(e^{j(w+2\pi)}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j(w+2\pi)n}$$

$$=\sum_{n=-\infty}^{+\infty}x[n]e^{-j(w)n}e^{-j(2\pi)n}$$

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

$$=\sum_{n=-\infty}^{+\infty}x[n]e^{-j(w)n}$$

$$= X(e^{jw})$$

High-Frequency & Low-Frequency Signals:

low-frequency signal

(d)

high-frequency signal

Feng-Li Lian © 2011 NTUEE-SS5-DTFT-8

Example 5.1:

$$x[n] = a^n u[n], \quad |a| < 1$$

$$\Rightarrow X(e^{jw}) = \sum_{n=-\infty}^{+\infty} a^n u[n] e^{-jwn} = \sum_{n=0}^{\infty} (ae^{-jw})^n = \frac{1}{1 - ae^{-jw}}$$

$$|X\left(e^{j\omega}\right)| = \frac{1}{\sqrt{(1 - \alpha\cos\omega)^2 + (\alpha\sin\omega)^2}} = \frac{1}{\sqrt{1 - 2\alpha\cos(\omega) + \alpha^2}}$$

$$\angle X(e^{jw}) = \angle \text{ nominator } - \angle \text{ denominator } = 0 - \tan^{-1} \frac{\alpha \sin \omega}{1 - \alpha \cos \omega}$$

$$\frac{1}{\sqrt{1 - 2\alpha \cos(\omega) + \alpha^2}}$$

$$\frac{1}{1 - \alpha} \quad \omega = 0$$

$$\frac{1}{1 + \alpha} \quad \omega = \pi$$

Feng-Li Lian © 2011 NTUEE-SS5-DTFT-8

Example 5.1:

$$x[n] = a^n u[n], \quad |a| < 1$$

$$\Rightarrow X(e^{jw}) = \sum_{n=-\infty}^{+\infty} a^n u[n] e^{-jwn} = \sum_{n=0}^{\infty} (ae^{-jw})^n = \frac{1}{1 - ae^{-jw}}$$

Feng-Li Lian © 2011 NTUEE-SS5-DTFT-9

Example 5.2: $x[n] = a^{|n|}, \quad 0 < a < 1$

$$-1 < a < 0$$

$$\Rightarrow X(e^{jw}) = \sum_{n=-\infty}^{+\infty} a^{|n|} e^{-jwn}$$

$$= \sum_{n=0}^{+\infty} a^n e^{-jwn} + \sum_{n=-\infty}^{-1} a^{-n} e^{-jwn}$$

$$= \sum_{n=0}^{+\infty} (ae^{-jw})^n + \sum_{m=1}^{\infty} (ae^{jw})^m$$

$$=\frac{1}{1-ae^{-jw}}+\frac{ae^{jw}}{1-ae^{jw}}$$

$$= \frac{1 - a^2}{1 - 2a\cos w + a^2} = \frac{\frac{1 - a^2}{(1 - a)^2}}{\frac{1 - a^2}{(1 + a)^2}}$$

Feng-Li Lian © 2011 NTUEE-SS5-DTFT-10

Example 5.3:

$$x[n] = \begin{cases} 1, & |n| \le N_1 \\ 0, & |n| > N_1 \end{cases}$$

$$\Rightarrow X(e^{jw}) = \sum_{n=-N_1}^{N_1} e^{-jwn}$$

$$= e^{-jw(-N_1)} + \dots + e^{-jw(N_1)} = e^{-jw(-N_1)} \left(\frac{1 - (e^{-jw})^{2N_1 + 1}}{1 - (e^{-jw})} \right)$$

$$= e^{jw(N_1)} \left(\frac{(e^{-jw})^{N_1+1/2} \left((e^{jw})^{N_1+1/2} - (e^{-jw})^{N_1+1/2} \right)}{(e^{-jw/2}) \left((e^{jw/2}) - (e^{-jw/2}) \right)} \right)$$

$$=\frac{\sin\left(w(N_1+\frac{1}{2})\right)}{\sin(w/2)}$$

• Example 5.3:

$$\Rightarrow X(e^{jw}) = \sum_{n=-N_1}^{N_1} e^{-jwn}$$

$$=\frac{\sin\left(w(N_1+\frac{1}{2})\right)}{\sin(w/2)}$$

Convergence of DT Fourier Transform:

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$
$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-jwn}$$

$$X(e^{jw}) \stackrel{\text{syn}}{\to} x[n] \stackrel{\text{analysis}}{\to} \hat{X}(e^{jw})$$

$$\hat{X}(e^{jw}) \stackrel{?}{\to} X(e^{jw})$$

The analysis equation will converge:

$$\hat{X}(e^{jw}) = \frac{X(e^{jw})^{-} + X(e^{jw})^{+}}{2} \qquad \sum_{n=-\infty}^{+\infty} |x[n]| < \infty$$

$$\int_{2\pi} |X(e^{jw}) - \hat{X}(e^{jw})|^2 dw = 0 \qquad \sum_{n = -\infty}^{+\infty} |x[n]|^2 < \infty$$

Example 5.4:

$$x[n] = \delta[n]$$
, i.e., unit impulse

$$\Rightarrow X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn} = 1$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$
$$= \frac{1}{2\pi} \int_{2\pi} e^{jwn} dw$$

Approximation

$$\widehat{x}[n] = \frac{1}{2\pi} \int_{-W}^{+W} X(e^{jw}) e^{jwn} dw = \frac{\sin Wn}{\pi n}$$

Approximation of an Aperiodic Signal:

- Representation of Aperiodic Signals: the Discrete-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of Discrete-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Duality
- Systems Characterized by Linear Constant-Coefficient Difference Equations

Fourier Transform from Fourier Series:

$$x(t) = e^{jw_0 t} \stackrel{\mathcal{CTFT}}{\longleftrightarrow} X(jw) = 2\pi\delta(w - w_0)$$

$$x[n] = e^{jw_0 n} \stackrel{\mathcal{D}T\mathcal{F}T}{\longleftrightarrow}$$

$$X(e^{jw}) = \dots + 2\pi\delta(w - w_0 + 2\pi) + 2\pi\delta(w - w_0) + 2\pi\delta(w - w_0 - 2\pi) + \dots$$

$$= \sum_{l=-\infty}^{+\infty} 2\pi\delta(w - w_0 - 2\pi l)$$

$$w_0 = \frac{2\pi}{N}$$

$$\frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw = \frac{1}{2\pi} \int_{2\pi} \sum_{l=-\infty}^{+\infty} 2\pi \delta(w - w_0 - 2\pi l) e^{jwn} dw$$

$$= e^{j(w_0 + 2\pi r)n} = e^{jw_0 n}$$

Fourier Transform from Fourier Series:

$$w_0 = \frac{2\pi}{N}$$

• more generally,

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(\frac{2\pi}{N})n} = \sum_{k=\langle N \rangle} a_k e^{jk(w_0)n}$$

$$X(e^{jw}) = \sum_{k=-\infty}^{+\infty} 2\pi \ a_k \ \delta\left(w - k\frac{2\pi}{N}\right) = \sum_{k=-\infty}^{+\infty} 2\pi \ a_k \ \delta\left(w - kw_0\right)$$

• If k = 0, 1, ..., N - 1

$$x[n] = a_0 + a_1 e^{j \cdot 1} \frac{(2\pi)^n}{N} + a_2 e^{j \cdot 2} \frac{(2\pi)^n}{N} + \dots + a_{N-1} e^{j \cdot (N-1)} \frac{(2\pi)^n}{N}$$

$$= x_0 + x_1 + x_2 + \dots + x_{N-1}$$

a linear combination of signals with $w_0=0,\frac{2\pi}{N},\frac{2\cdot 2\pi}{N},\cdots,\frac{(N-1)\cdot 2\pi}{N}$

Fourier Transform for Periodic Signals

Feng-Li Lian © 2011 NTUEE-SS5-DTFT-18

Fourier Transform from Fourier Series:

 $2\pi a_0 = 2\pi a_{-N}$

$$2\pi a_1 = 2\pi a_{-N+1}$$

$$(-N+1) \frac{2\pi}{n}$$

$$X(e^{jw}) =$$

 $2\pi a_0$

2πa₁

<u>2π</u> N

Example 5.5:

$$x[n] = \cos(w_0 n) = \frac{e^{jw_0 n} + e^{-jw_0 n}}{2}$$
 with $w_0 = \frac{2\pi}{5}$

$$X(e^{jw}) = \sum_{l=-\infty}^{+\infty} \pi \,\delta\left(w - \frac{2\pi}{5} - 2\pi l\right) + \sum_{l=-\infty}^{+\infty} \pi \,\delta\left(w + \frac{2\pi}{5} - 2\pi l\right)$$
$$= \pi \,\delta\left(w - \frac{2\pi}{5}\right) + \pi \,\delta\left(w + \frac{2\pi}{5}\right), \quad -\pi \le w < \pi$$

Fourier Transform for Periodic Signals

Feng-Li Lian © 2011 NTUEE-SS5-DTFT-20

Example 5.6:

$$x[n] = \sum_{k=-\infty}^{+\infty} \delta[n - kN]$$

$$x[n] = \sum_{k=< N>} a_k e^{jk(2\pi/N)n}$$

$$X(e^{jw}) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta\left(w - \frac{2\pi k}{N}\right)$$

$$a_{k} = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jk(2\pi/N)n}$$

choose $0 \le n \le N-1$

$$\Rightarrow a_k = \frac{1}{N} \sum_{n=} x[n] e^{-jk(2\pi/N)n} = \frac{1}{N}$$

$$\Rightarrow X(e^{jw}) = \frac{2\pi}{N} \sum_{k=-\infty}^{+\infty} \delta(w - k \frac{2\pi}{N})$$

- Representation of Aperiodic Signals: the Discrete-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of Discrete-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Duality
- Systems Characterized by Linear Constant-Coefficient Difference Equations

Section	Property				
5.3.2	Linearity				
5.3.3	Time Shifting				
5.3.3	Frequency Shifting				
5.3.4	Conjugation				
5.3.6	Time Reversal				
5.3.7	Time Expansion				
5.4	Convolution				
5.5	Multiplication				
5.3.5	Differencing in Time				
5.3.5	Accumulation				
5.3.8	Differentiation in Frequency				
5.3.4	Conjugate Symmetry for Real Signals				
5.3.4	Symmetry for Real and Even Signals				
5.3.4	Symmetry for Real and Odd Signals				
5.3.4	Even-Odd Decomposition for Real Signals				
5.3.9	Parseval's Relation for Aperiodic Signals				

Property		DTFS	CTFT	DTFT	LT	zT
Linearity			4.3.1	5.3.2	9.5.1	10.5.1
Time Shifting			4.3.2	5.3.3	9.5.2	10.5.2
Frequency Shifting (in s, z)			4.3.6	5.3.3	9.5.3	10.5.3
Conjugation			4.3.3	5.3.4	9.5.5	10.5.6
Time Reversal			4.3.5	5.3.6		10.5.4
Time & Frequency Scaling			4.3.5	5.3.7	9.5.4	10.5.5
(Periodic) Convolution			4.4	5.4	9.5.6	10.5.7
Multiplication		3.7.2	4.5	5.5		
Differentiation/First Difference		3.7.2	4.3.4, 4.3.6	5.3.5, 5.3.8	9.5.7, 9.5.8	10.5.7, 10.5.8
Integration/Running Sum (Accumulation)			4.3.4	5.3.5	9.5.9	10.5.7
Conjugate Symmetry for Real Signals			4.3.3	5.3.4		
Symmetry for Real and Even Signals			4.3.3	5.3.4		
Symmetry for Real and Odd Signals			4.3.3	5.3.4		
Even-Odd Decomposition for Real Signals			4.3.3	5.3.4		
Parseval's Relation for (A)Periodic Signals		3.7.3	4.3.7	5.3.9		
Initial- and Final-Value Theorems					9.5.10	10.5.9

Fourier Transform Pair:

Synthesis equation:

$$\begin{array}{c|cccc}
x[n] \\
1 & & \\
\hline
-N_1 & 0 & N_1 & & \\
\end{array}$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$

Analysis equation:

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

Notations:

$$X(e^{jw}) = \mathcal{F}\{x[n]\}$$
 $x[n] = \mathcal{F}^{-1}\{X(e^{jw})\}$
 $x[n] \stackrel{\mathcal{DTFT}}{\longleftrightarrow} X(e^{jw})$

$$|a| < 1$$

$$\frac{1}{1 - ae^{jw}} = \mathcal{F}\{a^n u[n]\}$$

$$a^n u[n] = \mathcal{F}^{-1}\{\frac{1}{1 - ae^{jw}}\}$$

$$a^n u[n] \stackrel{\mathcal{DTFT}}{\longleftrightarrow} \frac{1}{1 - ae^{jw}}$$

Periodicity of DT Fourier Transform:

$$X(e^{j(w+2\pi)}) = X(e^{jw})$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

Linearity:
$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{jw})$$

$$y[n] \stackrel{\mathcal{F}}{\longleftrightarrow} Y(e^{jw})$$

$$\Rightarrow a \ x[n] + b \ y[n] \stackrel{\mathcal{F}}{\longleftrightarrow} a \ X(e^{jw}) + b \ Y(e^{jw})$$

Time & Frequency Shifting:

$$\Rightarrow x[n-n_0] \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-jwn_0}X(e^{jw})$$

$$\Rightarrow e^{jw_0n}x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j(w-w_0)})$$

2π

• Example 5.7:

$$H_{hp}(e^{jw}) = H_{lp}(e^{j(w-\pi)})$$

$$\Rightarrow h_{hp}[n] = e^{j\pi n} h_{lp}[n]$$

$$e^{j\pi n} = \cos(\pi n) + j\sin(\pi n)$$

 $(\pi - \omega_c)$

 $H_{lp}(e^{j(w-\pi)})$

(b)

 -2π

$$= (-1)^n h_{lp}[n]$$

Conjugation & Conjugate Symmetry:

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{jw}) \qquad x^*[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X^*(e^{-jw})$$

•
$$x[n] = x^*[n] \Rightarrow X(e^{-jw}) = X^*(e^{jw})$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$

x[n] is real $\Rightarrow X(e^{jw})$ is conjugate symmetric

• $x[n] = x^*[n] \& x[-n] = x[n]$

$$\Rightarrow X(e^{-jw}) = X^*(e^{jw}) & X(e^{-jw}) = X(e^{jw})$$
$$\Rightarrow X(e^{jw}) = X^*(e^{jw})$$

x[n] is real & even $\Rightarrow X(e^{jw})$ are real & even

ullet x[n] is real & odd $\Rightarrow X(e^{jw})$ are purely imaginary & odd

Conjugation & Conjugate Symmetry:

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{jw})$$

$$\mathcal{E}v\{x[n]\} \stackrel{\mathcal{F}}{\longleftrightarrow} \mathcal{R}e\{X(e^{jw})\}$$

$$\mathcal{O}d\{x[n]\} \stackrel{\mathcal{F}}{\longleftrightarrow} j \mathcal{I}m\{X(e^{jw})\}$$

Differencing & Accumulation:

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{jw})$$

$$x[n] - x[n-1] \stackrel{\mathcal{F}}{\longleftrightarrow} \left(1 - e^{-jw}\right) X(e^{jw})$$

$$X(e^{jw}) \quad e^{-jw}X(e^{jw})$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

$$\sum_{m=-\infty}^{n} x[m] \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{1-e^{-jw}} X(e^{jw}) + \pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(w-2\pi k)$$

dc or average value

$$y[n] = \sum_{m = -\infty} x[m]$$
 $\Rightarrow y[n] - y[n-1] = x[n]$

$$y[n-1] = \sum_{m=-\infty}^{n-1} x[m] \qquad \Rightarrow (1 - e^{-jw})Y(e^{jw}) = X(e^{jw})$$

Differentiation in Frequency:

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{jw})$$

$$\frac{1}{i}nx[n] \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{d}{dw}X(e^{jw})$$

$$nx[n] \stackrel{\mathcal{F}}{\longleftrightarrow} j\frac{d}{dw}X(e^{jw})$$

$$\frac{d}{dw}X(e^{jw}) = \frac{d}{dw}\sum_{n=-\infty}^{+\infty}x[n]e^{-jwn}$$

$$= \sum_{n=-\infty}^{+\infty} (-jn)x[n]e^{-jwn}$$

$$= (-j) \sum_{n=-\infty}^{+\infty} \left[\frac{nx[n]}{n} \right] e^{-jwn}$$

Time Reversal:

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{jw})$$

$$x[-n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{-jw})$$

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

$$X(e^{j(-w)}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j(-w)n}$$

Time Expansion:

$$x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n \text{ is a multiple of } k \\ 0, & \text{if } n \text{ is not a multiple of } k \end{cases}$$

Time Expansion:

$$\Rightarrow X_{(k)}(e^{jw}) = \sum_{n=-\infty}^{+\infty} x_{(k)}[n]e^{-jwn}$$

$$=\sum_{r=-\infty}^{+\infty}x_{(k)}[rk]e^{-jwrk}$$

$$=\sum_{r=-\infty}^{+\infty}x[r]e^{-j(kw)r}$$

$$=X(e^{j\mathbf{k}w})$$

$$x_{(k)}[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{jkw})$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

$$x_{(k)}[rk] = x[r]$$

■ <u>Time Expansion:</u>

• Example 5.9:

$$x[n] = y_{(2)}[n] + 2y_{(2)}[n-1]$$

$$Y(e^{jw}) = e^{-j2w} \frac{\sin(5w/2)}{\sin(w/2)}$$

$$y_{(2)}[n] = \begin{cases} y[n/2], & \text{if } n \text{ is even} \\ 0, & \text{if } n \text{ is odd} \end{cases}$$

$$y_{(2)}[n] \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-j4w} \frac{\sin(5w)}{\sin(w)}$$

$$2y_{(2)}[n-1] \stackrel{\mathcal{F}}{\longleftrightarrow} 2e^{-jw}e^{-j4w}\frac{\sin(5w)}{\sin(w)}$$

$$X(e^{jw}) = (1 + 2e^{-jw}) \cdot e^{-j4w} \cdot \frac{\sin(5w)}{\sin(w)}$$

Parseval's relation:

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{jw})$$

$$\sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(e^{jw})|^2 dw$$

Example 5.10:

• x[n] is periodic, real, even, and/or of finite energy?

- → even magnitude, odd phase
- $\rightarrow X(e^{jw})$ is NOT real
- $\rightarrow X(e^{jw})$ is finite

 $\Rightarrow x[n]$ is NOT periodic

 $\Rightarrow x[n]$ is real

 $\Rightarrow x[n]$ is NOT even

 $\Rightarrow x[n]$ is finite

- Representation of Aperiodic Signals: the Discrete-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of Discrete-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Duality
- Systems Characterized by Linear Constant-Coefficient Difference Equations

Convolution Property:

$$y[n] = x[n] * h[n] \stackrel{\mathcal{F}}{\longleftrightarrow} Y(e^{jw}) = X(e^{jw})H(e^{jw})$$

$$=\sum_{k=-\infty}^{+\infty}x[k]h[n-k]$$

Multiplication Property:

$$\begin{array}{c}
s[n] \\
\hline
\end{array}$$

$$\begin{array}{c}
r[n] \\
\end{array}$$

$$r[n] = s[n]p[n] \stackrel{\mathcal{F}}{\longleftrightarrow} R(e^{jw}) = \frac{1}{2\pi} \int_{2\pi} S(e^{j\theta}) P(e^{j(w-\theta)}) d\theta$$

Example 5.11:

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

$$\Rightarrow H(e^{jw}) = \sum_{n=-\infty}^{+\infty} \delta[n - n_0] e^{-jwn} = e^{-jwn_0}$$

$$\Rightarrow Y(e^{jw}) = H(e^{jw})X(e^{jw})$$

$$= e^{-jwn_0} X(e^{jw}) \qquad \Rightarrow y[n] = x[n - n_0]$$

Example 5.12:

$$h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{jw}) e^{jwn} dw$$

$$=\frac{1}{2\pi}\int_{-w_c}^{w_c}e^{jwn}dw$$

$$=\frac{\sin w_c n}{\pi n}$$

- not causal
- oscillatory

Example 5.13:

$$\Rightarrow Y(e^{jw}) = H(e^{jw})X(e^{jw})$$
$$= \frac{1}{1 - ae^{-jw}} \frac{1}{1 - be^{-jw}}$$

Example 5.13:

if
$$a \neq b$$

$$Y(e^{jw}) = \left[\left(\frac{a}{a-b} \right) \frac{1}{1 - ae^{-jw}} + \left(\frac{-b}{a-b} \right) \frac{1}{1 - be^{-jw}} \right]$$

$$\Rightarrow y[n] = \left(\frac{a}{a-b} \right) a^n u[n] - \left(\frac{b}{a-b} \right) b^n u[n]$$
if $a = b$
$$Y(jw) = \left(\frac{1}{1 - ae^{-jw}} \right)^2 = \frac{j}{a} e^{jw} \frac{d}{dw} \left(\frac{1}{1 - ae^{-jw}} \right)$$
since $a^n u[n] \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{1 - ae^{-jw}}$
and $n a^n u[n] \stackrel{\mathcal{F}}{\longleftrightarrow} j \frac{d}{dw} \left[\frac{1}{1 - ae^{-jw}} \right]$

$$\Rightarrow y[n] = (n+1)a^n u[n+1]$$

 $W_4(e^{jw}) = H_{lp}(e^{jw}) X(e^{jw})$

Example 5.14:

$$\Rightarrow W_{1}(e^{jw}) = X(e^{j(w-\pi)})$$

$$W_{2}(e^{jw}) = H_{lp}(e^{jw}) X(e^{j(w-\pi)})$$

$$w_3[n] = e^{j\pi n}w_2[n] = (-1)^n w_2[n]$$

$$\Rightarrow W_3(e^{jw}) = W_2(e^{j(w-\pi)}) = H_{lp}(e^{j(w-\pi)}) X(e^{j(w-2\pi)})$$
$$= H_{lp}(e^{j(w-\pi)}) X(e^{jw})$$

Example 5.14:

$$Y(e^{jw}) = W_3(e^{jw}) + W_4(e^{jw})$$

$$= H_{lp}(e^{j(w-\pi)}) X(e^{jw}) + H_{lp}(e^{jw}) X(e^{jw})$$

$$= \left[H_{lp}(e^{j(w-\pi)}) + H_{lp}(e^{jw}) \right] X(e^{jw})$$

$$H(e^{jw}) = H_{lp}(e^{j(w-\pi)}) + H_{lp}(e^{jw})$$

 -2π $-\pi$ $-\omega_{c}$ ω_{c} π

highpass + lowpass

→ bandstop

Convolution Property:

$$y[n] = x[n] * h[n] \stackrel{\mathcal{F}}{\longleftrightarrow} Y(e^{jw}) = X(e^{jw})H(e^{jw})$$

$$=\sum_{k=-\infty}^{+\infty} x[k]h[n-k]$$

Multiplication Property:

$$r[n] = s[n]p[n] \stackrel{\mathcal{F}}{\longleftrightarrow} R(e^{jw}) = \frac{1}{2\pi} \int_{2\pi} S(e^{j\theta}) P(e^{j(w-\theta)}) d\theta$$

$$r[n] = s[n]p[n]$$

$$\Rightarrow R(e^{jw}) = \sum_{n=-\infty}^{+\infty} r[n]e^{-jwn}$$

$$=\sum_{n=-\infty}^{+\infty} s[n]p[n]e^{-jwn}$$

$$= \sum_{n=-\infty}^{+\infty} s[n] \left\{ \frac{1}{2\pi} \int_{2\pi} P(e^{j\theta}) e^{j\theta n} d\theta \right\} e^{-jwn}$$

$$= \frac{1}{2\pi} \int_{2\pi} P(e^{j\theta}) \left[\sum_{n=-\infty}^{+\infty} s[n] e^{-j(w-\theta)n} \right] d\theta$$

$$= \frac{1}{2\pi} \int_{2\pi} P(e^{j\theta}) S(e^{j(w-\theta)}) d\theta = \frac{1}{2\pi} \int_{2\pi} P(e^{j(w-\theta)}) S(e^{j\theta}) d\theta$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

Example 5.15:

$$x[n] = x_1[n]x_2[n]$$

$$x_1[n] = \frac{\sin(\frac{\pi}{2}n)}{\pi n}$$

$$x_2[n] = \frac{\sin(\frac{3\pi}{4}n)}{\pi n}$$

$$X(e^{jw}) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X_1(e^{j\theta}) X_2(e^{j(w-\theta)}) d\theta$$

$$\hat{X}_1(e^{jw}) = \begin{cases} X_1(e^{jw}), & \text{for } -\pi < w \leq \pi \\ 0, & \text{otherwise} \end{cases}$$

$$X(e^{jw}) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} \hat{X}_{1}(e^{j\theta}) X_{2}(e^{j(w-\theta)}) d\theta$$

Example 5.15:

$$X(e^{jw}) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} \hat{X}_{1}(e^{j\theta}) X_{2}(e^{j(w-\theta)}) d\theta$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \widehat{X}_{1}(e^{j\theta}) X_{2}(e^{j(w-\theta)}) d\theta$$

Example 5.15:

If $X_1(w)$ and $X_2(w)$ are periodic, then their periodic convolution can be calculated using:

$$\hat{X}_{1}(w) = \begin{cases} X_{1}(w) & |w| \leq \pi, \\ 0 & o.w. \end{cases}$$

$$\hat{X}_{2}(w) = \begin{cases} X_{2}(w) & |w| \leq \pi, \\ 0 & o.w. \end{cases}$$

$$\hat{Y}(w) = \hat{X}_1(w) * \hat{X}_2(w)$$

$$\hat{Y}(w) = \sum_{k=-\infty}^{\infty} \hat{Y}(w - 2k\pi)$$

Section	Property	Aperiodic Signal		Fourier Transform
		x[n]		$X(e^{j\omega})$ periodic with $Y(e^{j\omega})$ period 2π
5.3.2	Linearity	y[n] ax[n] + by[n]		$aX(e^{j\omega}) + bY(e^{j\omega})$
5.3.3	Time Shifting	$x[n-n_0]$		
5.3.3	Frequency Shifting	$e^{j\omega_0 n}x[n]$		$X(e^{j(\omega-\omega_0)})$
5.3.4	Conjugation	$x^*[n]$		$X^*(e^{-j\omega})$
5.3.6	Time Reversal	x[-n]		$X^*(e^{-j\omega})$ $X(e^{-j\omega})$
5.3.7	Time Expansion	$x_{(k)}[n] = \begin{cases} x[n/k], \\ 0, \end{cases}$	if $n = \text{multiple of } k$ if $n \neq \text{multiple of } k$	$X(e^{j(\omega-\omega_0)})$ $X(e^{j(\omega-\omega_0)})$ $X^*(e^{-j\omega})$ $X(e^{-j\omega})$ $X(e^{jk\omega})$
5.4	Convolution	x[n] * y[n]	•	$X(e^{j\omega})Y(e^{j\omega})$
5.5	Multiplication	x[n]y[n]		$\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$
5.3.5	Differencing in Time	x[n] - x[n-1]		$(1-e^{-j\omega})X(e^{j\omega})$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$		$\frac{1}{1 - e^{-j\omega}} X(e^{j\omega})$
5.3.8	Differentiation in Frequency	nx[n]		$+\pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(e^{j\omega})}{d\omega}$
				$\begin{cases} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ \Re \{X(e^{j\omega})\} = \Re \{X(e^{-j\omega})\} \end{cases}$
5.3.4	Conjugate Symmetry for Real Signals	x[n] real		$ \Re{e\{X(e^{j\omega})\}} = \Re{e\{X(e^{-j\omega})\}} $ $ \Im{m\{X(e^{j\omega})\}} = -\Im{m\{X(e^{-j\omega})\}} $ $ X(e^{j\omega}) = X(e^{-j\omega}) $ $ \Im{X(e^{j\omega})} = -\Im{X(e^{-j\omega})} $
5.3.4	Symmetry for Real, Even Signals	x[n] real an even		$X(e^{j\omega})$ real and even
5.3.4	Symmetry for Real, Odd Signals	x[n] real and odd		$X(e^{j\omega})$ purely imaginary and odd
5.3.4	Even-odd Decomposition	$x_e[n] = \mathcal{E}v\{x[n]\}$	[x[n] real]	$\Re\{X(e^{j\omega})\}$
	of Real Signals	$x_o[n] = \mathfrak{O}d\{x[n]\}$	[x[n] real]	$j\mathcal{G}m\{X(e^{j\omega})\}$
5.3.9	Parseval's Re	lation for Aperiodic	Signals	
	$\sum_{+\infty}^{+\infty} x[u] $	$ X ^2 = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^2$	$^{2}d\omega$	
	n=-∞	$2\pi \int_{2\pi}$		

TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=(N)} a_k e^{jk(2n/N)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	a_k
$e^{j\omega_0 n}$	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, & k = m, m \pm N, m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
$\cos \omega_0 n$	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
$\sin \omega_0 n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \{ \delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l) \}$	(a) $\omega_0 = \frac{2\pi r}{N}$ $a_k = \begin{cases} \frac{1}{2j}, & k = r, r \pm N, r \pm 2N, \dots \\ -\frac{1}{2j}, & k = -r, -r \pm N, -r \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N\sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N, \dots$ $a_k = \frac{2N_1 + 1}{N}, \ k = 0, \pm N, \pm 2N, \dots$
$\sum_{i=1}^{+\infty} \Re u_i = iM1$	$\frac{2\pi}{2\pi} \stackrel{+\infty}{\sim} s(\omega - \frac{2\pi k}{2\pi k})$	$a_k = \frac{1}{2}$ for all k

x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ 2011
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N \sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N, \dots$ $a_k = \frac{2N_1 + 1}{N}, \ k = 0, \pm N, \pm 2N, \dots$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N}$ for all k
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\omega}}$	
$x[n] \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$	
$\delta[n]$	1	
u[n]	$\frac{1}{1-e^{-j\omega}}+\sum_{k=-\infty}^{+\infty}\pi\delta(\omega-2\pi k)$	ie <u>l</u> el montrie prómerat ad vi
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{(n+r-1)!}{n!(r-1)!}a^n u[n], a < 1$	$\frac{1}{(1-ae^{-j\omega})^r}$	us <u>-</u> en in spinkinnik pospilati dik vedesin kilosis se Sensispi

- Representation of Aperiodic Signals: the Discrete-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of Discrete-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Duality
- Systems Characterized by Linear Constant-Coefficient Difference Equations

DT Fourier Series Pair of Periodic Signals:

 $\bullet \quad x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} \quad a_k: \quad \mathsf{DT} \; \mathsf{Fouries} \; \mathsf{series} \; \mathsf{pair}$

$$x[n] = \sum_{k=} a_k e^{jkw_0 n} = \sum_{k=} a_k e^{jk(2\pi/N)n}$$

$$a_k = \frac{1}{N} \sum_{n=} x[n] e^{-jkw_0 n} = \frac{1}{N} \sum_{n=} x[n] e^{-jk(2\pi/N)n}$$

IF
$$f[k] = \frac{1}{N} \sum_{n=\langle N \rangle} g[n] e^{-jk(2\pi/N)n}$$
 $g[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} f[k]$

$$f[n] = \sum_{k=\langle N \rangle} \frac{1}{N} g[-k] e^{jk(2\pi/N)n} \qquad f[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} \frac{1}{N} g[-k]$$

LET
$$k=n, n=-k$$
 $a_k:=:\frac{1}{N}x[-n]$

Duality in DT Fourier Series:

$$x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$x[n-n_0] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k e^{-jk(2\pi/N)n_0}$$

$$e^{+jm(2\pi/N)n} x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_{k-m}$$

$$\sum_{r=\langle N\rangle} x[r] \ y[n-r] \ \stackrel{\mathcal{FS}}{\longleftrightarrow} \ Na_k \ b_k$$

$$x[n] y[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} \sum_{l=\langle N \rangle} a_l b_{k-l}$$

Duality between DT-FT & CT-FS:

$$x[n] \stackrel{\mathcal{D}\mathcal{T}\mathcal{F}\mathcal{T}}{\longleftrightarrow} X(e^{jw})$$

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-jkw_0 t} dt$$

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}$$

$$f[n] \stackrel{\mathcal{DFT}}{\to} g(w)$$

$$g(t) \stackrel{\mathcal{CFS}}{\to} f[-k]$$

Duality between DT-FS & DT-FS:

Assume that f[n] is periodic with fundamental period N and its Fourier series coefficient are $a_k = g[k]$

Then $a_k = g[k]$ is periodic with fundamental period N and its Fourier series coefficient are $b_k = f[-k]/N$

$$f[n] \xrightarrow{\mathcal{FS}} g[k]$$

$$g[n] \xrightarrow{\mathcal{FS}} \frac{1}{N} f[-k]$$

TABLE 5.3 SUMMARY OF FOURIER SERIES AND TRANSFORM EXPRESSIONS

	Continuous time		1 1	Discrete time		
	Time domain	Frequency domain		Time domain	ad at	Frequency domain
Fourier	$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$a_k = \frac{1}{T_0} \int_{T_0} x(t)e^{-jk\omega_0 t}$		$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$		$a_k = \frac{1}{N} \sum_{k=\langle N \rangle} x[n] e^{-jk(2\pi/N)}.$
Series	continuous time	discrete frequency aperiodic in frequency	(alalia)-	discrete time periodic in time	īty	discrete frequency periodic in frequency
Fourier Transform	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$	$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$		$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n}$		$X(e^{j\omega)} = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$
	continuous time duality	continuous frequency aperiodic in frequency		discrete time aperiodic in time		continuous frequency periodic in frequency

- Representation of Aperiodic Signals: the Discrete-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of Discrete-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Duality
- Systems Characterized by Linear Constant-Coefficient Difference Equations

A useful class of DT LTI systems:

$$a_0y[n] + a_1y[n-1] + \dots + a_{N-1}y[n-N+1] + a_Ny[n-N]$$

$$= b_0x[n] + b_1x[n-1] + \dots + b_{M-1}x[n-M+1] + b_Mx[n-M]$$

$$\sum_{k=0}^{N} a_ky[n-k] = \sum_{k=0}^{M} b_kx[n-k]$$

$$x[n] \longrightarrow LTI System \longrightarrow y[n]$$

$$Y(e^{jw}) = X(e^{jw})H(e^{jw}) \qquad H(e^{jw}) = \frac{Y(e^{jw})}{X(e^{jw})}$$

Systems Characterized by Linear Constant-Coefficient Difference, For Using States

$$x[n-n_0] \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-jwn_0}X(e^{jw})$$

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

$$\sum_{k=0}^{N} a_k \qquad y[n-k] \qquad = \qquad \sum_{k=0}^{M} b_k \qquad x[n-k]$$

$$\sum_{k=0}^{N} a_{k} e^{-jkw} Y(e^{jw}) = \sum_{k=0}^{M} b_{k} e^{-jkw} X(e^{jw})$$

$$\Rightarrow H(e^{jw}) = rac{Y(e^{jw})}{X(e^{jw})} = rac{\sum_{k=0}^{M} b_k e^{-jkw}}{\sum_{k=0}^{N} a_k e^{-jkw}}$$

$$= \frac{b_0 + b_1 e^{-jw} + \dots + b_M e^{-jMw}}{a_0 + a_1 e^{-jw} + \dots + a_N e^{-jNw}}$$

Systems Characterized by Linear Constant-Coefficient Difference, Equalifor Sold

Examples 5.18 & 5.19:

$$x[n] \longrightarrow \begin{array}{c} \text{LTI} \\ \text{System} \end{array} \longrightarrow y[n]$$

$$y[n] - ay[n-1] = x[n] \Rightarrow H(e^{jw}) = \frac{1}{1 - ae^{-jw}}$$

$$Y(\cdot)$$
 $e^{-jw}Y(\cdot)$ $\Rightarrow h[n] = a^n u[n]$

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n]$$

$$\Rightarrow H(e^{jw}) = \frac{2}{1 - \frac{3}{4}e^{-jw} + \frac{1}{8}e^{-j2w}} = \frac{2}{(1 - \frac{1}{2}e^{-jw})(1 - \frac{1}{4}e^{-jw})}$$

$$= \frac{4}{(1 - \frac{1}{2}e^{-jw})} - \frac{2}{(1 - \frac{1}{4}e^{-jw})}$$

$$\Rightarrow h[n] = 4\left(\frac{1}{2}\right)^n u[n] - 2\left(\frac{1}{4}\right)^n u[n]$$

Systems Characterized by Linear Constant-Coefficient Difference, Figure 1983

• Example 5.20:

$$h[n] \stackrel{\mathcal{F}}{\longleftrightarrow} H(e^{jw}) = rac{2}{(1-rac{1}{2}e^{-jw})(1-rac{1}{4}e^{-jw})}$$

$$x[n] = \left(\frac{1}{4}\right)^n u[n] \longrightarrow \text{LTI System} \longrightarrow y[n] = ???$$

$$= x[n] * h[n]$$

$$\Rightarrow Y(e^{jw}) = X(e^{jw})H(e^{jw})$$

$$= \left[\frac{1}{1 - \frac{1}{4}e^{-jw}}\right] \left[\frac{2}{(1 - \frac{1}{2}e^{-jw})(1 - \frac{1}{4}e^{-jw})}\right]$$

$$= \frac{2}{(1 - \frac{1}{2}e^{-jw})(1 - \frac{1}{4}e^{-jw})^{2}}$$

$$= \frac{8}{(1 - \frac{1}{2}e^{-jw})} - \frac{4}{(1 - \frac{1}{4}e^{-jw})} - \frac{2}{(1 - \frac{1}{4}e^{-jw})^{2}}$$

$$\Rightarrow y[n] = \left\{8\left(\frac{1}{2}\right)^n - 4\left(\frac{1}{4}\right)^n - 2(n+1)\left(\frac{1}{4}\right)^n\right\}u[n]$$