

Berkeley Economic Review

UC Berkeley's Premier Undergraduate Economics Journal

What we'll go over

- What is regression?
- Types of variables
- Log transformations
- Bias, error, things to look out for
- Causality
- Examples

What is Linear Regression?

 Linear Regression is a way to predict something, an outcome (think income, your grade in MATH 1B) given some inputs (Parental income, Your grade in MATH 1A)

Read as "The expected value of Y given X"

Examples:

- Expected income given your years of education
- Expected grade on ECON 1 midterm given hours of studying

E[Y|X] = a + bX

On the right hand side of the equation, a is the intercept, while b is the effect on Y associated with a one unit increase in X.

X

Assumptions

The most common regression is known as the OLS regression. These regressions have a set of assumptions which have to be met for accurate results.

Finite Sample OLS

Assumptions

Linearity

$$y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_K x_{iK} + \epsilon_i$$

 $(i = 1, 2, \dots, n)$

No Perfect Colinearity

The rank of the nXK training data X is K

Strict Exogeneity: Zero Conditional Mean

$$E(\epsilon_i|X) = 0 \ (i = 1, 2, ..., n)$$

Spherical Error Variance: Homoskedasticity

$$E(\epsilon_i^2|\mathbf{X}) = \sigma^2 \quad (i = 1, 2, \dots, n)$$

$$E(\epsilon_i \epsilon_i | \mathbf{X}) = 0 \ (i, j = 1, 2, \dots, n; i \neq j)$$

Normal Error Term

 $m{\epsilon}|m{X}\sim N(m{\mu}, \Sigma)$ or with other above assumptions $m{\epsilon}|m{X}\sim N(0, \sigma^2m{I}_n)$

Made by DVL

Source: Fumio Hayashi Econometrics

 e_i is the residual boldface refers to matrix or vector form β_k is the true kth parameter represents estimators

Implications

Unbiased

$$E(\hat{\boldsymbol{\beta}}_{OLS}) = \boldsymbol{\beta}$$

1. Efficient: OLS is the Best Linear Unbiased Estimator $\mathbf{x}^T Var(\hat{\boldsymbol{\beta}}_{OLS} | \mathbf{X})\mathbf{x} \leq \mathbf{x}^T Var(\hat{\boldsymbol{\beta}}_{Linear,Unbiased} | \mathbf{X})\mathbf{x}$ for any \mathbf{x}

2. With residuals e, $\hat{\sigma}_{OLS}^2 = \frac{e^T e}{n-K}$ is unbiased $E(\hat{\sigma}_{OLS}^2) = \sigma^2$

t and F tests are valid

1. test one parameter

$$\frac{H_0: \beta_k = b}{\sqrt{\frac{\hat{\beta}_{k,OLS} - b}{\hat{\sigma}_{OLS}(\mathbf{X}^T \mathbf{X})^{-1})_{kk}}}} \sim t(df = n - K)$$

2. test #r linear restrictions on parameters

$$\begin{array}{l} H_0: R \beta = r, \ rank(R) = \#r \\ \frac{(SSR_R - SSR_U)/\#r}{SSR_U/(n-K)} \sim F(\#r, n-K) \\ SSR = \sum_{i=1}^n e_i \end{array}$$

 SSR_U is from the full model

 SSR_R is from the restricted model under H_0

Types of Variables (2 we'll focus on)

Continuous: takes on a real number value

- Household spending on food,
- Number of parking spaces available at a given time,
- Number of people unemployed in a certain county

Dummy: Only takes the value of 0 or 1

- Immigrant status (0 for native, 1 for immigrant)
- Employed (0 for no, 1 for yes)
- HS Graduate (0 for no, 1 for yes)
- Male (0 for not male, 1 for male)

Panel Data The most common form of data we will use will be in panel form. Each individual unit will have observations overtime.

Country[1]			USA									
	Country	Year	Share	LogShare	GDP	TRADE	INDIFF	MARKET_CAP	REER	FEMT	State	lag1
1	USA	1979	3.1759153	4.1759245	3.1759153	.77261806	1.59	9.48	.00445952		1	
2	USA	1980	24461139	4.0775374	24461139	.78292836	1.02	11.94	.00064887		1	4.175925
3	USA	1981	2.5948932	4.0673159	2.5948932	.79809797	.18	12.99	.00537308		1	4.077538
4	USA	1982	-1.9105607	4.0943446	-1.9105607	.76272027	-1.09	13.89	.00870641		1	4.067316
5	USA	1983	4.6327104	4.0741419	4.6327104	.80325587	-1.46	17.9	.00357724		1	4.094345
6	USA	1984	7.2585845	4.0430513	7.2585845	.94100115	33	23.64	.00565254		1	4.074142
7	USA	1985	4.2392679	4.0324692	4.2392679	.98991969	42	29.65	00613548		1	4.04305
8	USA	1986	3.511871	4.0217739	3.511871	1.0710836	13	39.62	00843238		1	4.032469
9	USA	1987	3.4618128	4.0412953	3.4618128	1.1558425	.75	52.11	01123901		1	4.02177
10	USA	1988	4.2036331	3.9963642	4.2036331	1.2597821	.81	46.42	00267794		1	4.04129
11	USA	1989	3.6802641	3.9589066	3.6802641	1.3549662	.53	38.21	.00357157		1	3.996364
12	USA	1990	1.9192262	3.9019727	1.9192262	1.4358428	.6	36.88	00536581		1	3.95890
13	USA	1991	.00698681	3.9199912	.00698681	1.4791796	21	33.87	00103514		1	3.90197
14	USA	1992	3.5825867	4.0127729	3.5825867	1.582294	2	35.78	.00340714		1	3.91999
15	USA	1993	2.7458979	4.0000339	2.7458979	1.6779405	.07	43.46	.00071032		1	4.012773
16	USA	1994	4.0379162	4.0448041	4.0379162	1.8536463	.36	48.6	00082982		1	4.00003
17	USA	1995	2.7187	4.0768282	2.7187	2.0215726	.47	57.77	.00139911	265.79932	1	4.04480
18	USA	1996	3.79616	4.1268601	3.79616	2.1924917	.62	75.19	.00150017		1	4.076828
19	USA	1997	4.486791	4.1758968	4.486791	2.4717969	.29	94.5	.00774395		1	4.1268
20	USA	1998	4.449766	4.2381666	4.449766	2.6531153	.24	118.83	00072948	383.35755	1	4.17589
21	USA	1999	4.6853276	4.2662421	4.6853276	2.8338913	.72	161.11	00061011		1	4.23816
22	USA	2000	4.0921108	4.2728698	4.0921108	3.1489921	1.1	236.88	.0059525		1	4.266242
23	IISA	2001	97614185	4.276397	97614185	3.02022	. 74	241.17	00304624	272.5819	1	4.27287

Statistical Significance

When doing a regression analysis, it is important to look out for different levels of statistical significance. One way this is done is through hypothesis testing and "P-values"

Put simply, a P-Value for a regression is the chance that the association between the explanatory variable and the outcome variable was actually just by chance.

P-values are typically calculated using a t-test. In research, statistical significance at the 5% level (|t| >= 1.96 aka p < 0.05) is the gold standard.

========	========	========		======				
Dep. Variab	le:		У	R-squa	red:	1.000		
Model:		(OLS	Adj. R	-squared:	1.0		
Method:		Least Squar	res	F-stat	istic:	4.020e+06		
Date:	Su	n, 07 Jul 20	F-statistic):	2.83e-23				
Time:		04:03	:37	Log-Li	kelihood:	-146.53		
No. Observa	tions:		100	AIC:			299.0	
Df Residual	s:		97	BIC:			306.8	
Of Model:			2					
Covariance i	Type:	nonrobi	ust					
	coef	std err		t	P> t	[0.025	0.975]	
const	1.3423	0.313	4	. 292	0.000	0.722	1.963	
x1	-0.0402	0.145	-0	.278	0.781	-0.327	0.247	
x2	10.0103	0.014	715	.745	0.000	9.982	10.038	
======= Omnibus:		2 (===== 342	Durbin	======== -Watson:	======	2.274	
Prob(Omnibu		0.360		Jarque-Bera (JB):		1.875		
Skew:		0.234		Prob(JB):		0.392		
Kurtosis:		519	Cond.	•		144.		

Regression results will also produce confidence intervals. A 95% confidence interval means that there is a 95% chance the true coefficient lies within the interval.

The confidence intervals can be used to identify the range of values that the regression coefficients of interest can most likely take.

			OLS R	egress	ion R	esults			
Dep. Variable:				у	R-sq	========= uared:	1.00		
Model:			OLS Least Squares			R-squared:	1.000 4.020e+06		
						atistic:			
Date:	Sun, 07 Jul 2019 04:03:37			Prob	(F-statistic):	2.83e-239 -146.51 299.6			
Time:				Log-	Likelihood:				
No. Observat		100							
Df Residuals:			97				306.		
Df Model:				2					
Covariance Type:		nonrobus							
========	coe	===== f s	td err	=====	t	P> t	[0.025	0.975]	
const	1.342	2	0.313	1	.292	0.000	0.722	1.963	
x1	-0.040		0.145			0.781	-0.327		
x2	10.010		0.014			0.000	9.982	10.038	
 Omnibus:			 2	.042	Durb	========= in-Watson:	======	2.274	
Prob(Omnibus):				.360		ue-Bera (JB):		1.875	
Skew:				.234	200	(JB):		0.392	
Kurtosis:				.519		. No.		144.	

Consider:

find the impact of steroids on rat longevity

They assign treatment and control randomly, 100 each

Rats with steroids on average lived 6 months less than rats without steroids, with a p-value less than 0.05

They arrive at the conclusion that steroids cause rats' lifespans to decrease on average by 6 months

How would we model this?

Consider:

How would we model this?

Economist wants to find the impact of education on income

They get survey data, 100 people with bachelor's degree, 100 people without bachelor's degree (HS Diploma)

On average, those with a bachelor's degree earn 30,000 more per year than those without

They arrive at the conclusion that having a bachelor's degree **causes** someone to make 30,000 more

Consider:

Economist wants to find the impact of education on income

How would we model this?

They get survey data, 100 people with bachelor's degree, 100 people without bachelor's degree

On average, those with a bachelor's degree earn 30,000 more per year than those without

They arrive at the conclusion that having a bachelor's degree **causes** someone to make 30,000 more

Why?

Omitted Variable Bias

Along with checking that the assumptions are reasonably met, coefficient estimates can still be inaccurate if there are variables that are not taken into account.

Variables which are related to the independent variables are an explanation for the dependent variable may be included within the error term below. This is where controls (or dummies) come into play.

Causality

Even if we use control variables and dummies to absorb bias from the error, it is many times difficult to say something is causal.

This is where causal models come into play. They help to better narrow down the causal effect of a independent variable.

Many times this is done by mathematically removing the error that is related to the independent variable in some way.

Most Common Examples:

- Fixed Effects Model (FE)
- Difference-in-Differences Model (DID)
- Method of Instrumental Variables (IV)
- Regression Discontinuity Design (RDD)

Fixed Effects Model

The Fixed Effects Model can be thought of as comparing the effect of an independent variable within specific groups.

This helps to eliminate the effects of the differences between these groups.

The most common ways to estimate the Fixed Effects Model is through demeaning or creating dummy variables for each group.

Common Examples of groups:

- State or Country
- Time (month, year)

Dummy Variable Method

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \gamma_2 D2_i + \gamma_3 D3_i + \dots + \gamma_n Dn_i + u_{it}.$$

Demeaning Method

$$\begin{aligned} \overline{Y}_{it} &= \beta_1 + \beta_2 X_{2it} + \dots + \alpha_i + \delta_t + u_{it} \\ \overline{\overline{Y}}_i &= \beta_1 + \beta_2 \overline{X}_{2i} + \dots + \alpha_i + \overline{\delta}_t + \overline{u}_i \\ \left(Y_{it} - \overline{Y}_i \right) &= \beta_2 \left(X_{2it} - \overline{X}_{2i} \right) + \dots + \left(\delta_t - \overline{\delta}_t \right) + \left(u_{it} - \overline{u}_i \right) \end{aligned}$$

Log Transformation

What if we have non-linear relationships?

Log transformations help us interpret non-linear relationships as linear

Works well for relationships that are multiplicative or exponential

Eg;

$$Y=aX^{eta}$$
 Multiplicative (1) or $Y=ae^{eta X}$ Exponential (2)

After log-transformation:

(1)
$$ln(Y) = ln(a) + \beta ln(X)$$

$$ln(Y) = ln(a) + \beta X$$

Log Transformation: Interpretation

We have a few options for applying natural logs

Log-Log:
$$ln(Y) = \beta_0 + \beta_1 ln(X) + \epsilon$$

Lin-Log:
$$Y = \beta_0 + \beta_1 ln(X) + \epsilon$$

Log-Lin:
$$ln(Y) = \beta_0 + \beta_1 X + \epsilon$$

Log-Log:
$$ln(Y) = \beta_0 + \beta_1 ln(X) + \epsilon$$

The coefficient Beta_1 represents the elasticity of Y to X.

A 1% increase in X results in a Beta_1 percent change in Y

Lin-Log:
$$Y = \beta_0 + \beta_1 ln(X) + \epsilon$$

The coefficient Beta_1 represents the absolute change in Y from a percent change in X

A 1% increase in X results in Beta_1 increase in Y Useful for when you expect non-constant returns to scale

Log-Lin:
$$ln(Y) = \beta_0 + \beta_1 X + \epsilon$$

The coefficient Beta_1 represents a percent change in Y from an absolute change in X

A 1 unit increase results in Beta_1 percent change in Y