0.1 Introduksjon til Python

print("Hello world!")

0.2 Newtons metode

Gitt en funskjon f(x) og likningen

$$f = 0$$

hvor f(a) = 0. Ved Newtons metode gjør vi denne antakelsen for å en tilnærming a:

La x_1 være skjæringspunktet mellom x-aksen og tangenten til f i x_0 . Vi antar da at $|x_1 - a| < |x_0 - a|$. Sagt med ord antar vi at x_1 gir en bedre tilnærming for a enn det x_0 gjør.

Siden x_1 er skjæringspunktet mellom x-aksen og tangenten til f i x_0 , har vi at 1

$$f'(x_0)(x_1 - x_0) + f(x_0) = 0$$
$$f'(x_0)x_1 = f'(x_0)x_0 - f(x_0)$$
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

La x_2 være skjæringspunktet mellom x-aksen og tangenten til f i x_1 . Ved å gjenta prosedyren vi brukte for å finne x_1 , kan vi finne x_2 , som vi antar er en enda bedre tilnærming for a enn x_1 . Prosedyren kan

¹Se oppgave??

Regel 0.1 Newtons metode

Gitt en funskjon f(x) og likningen

$$f = 0$$

hvor f(a) = 0. Gitt x-verdiene x_n og x_{n+1} for $n \in \mathbb{N}$. Ved å bruke formelen

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

antas det at x_{n+1} gir en bedre tilnærming for a enn x_n .

Språkboksen

Newtons metode kalles også Newton-Rhapsos metode.

0.3 Trapesmetoden

Gitt en funksjone f(x). Integralet $\int_a^b f \, dx$ kan vi tilnærme ved å

- 1. Dele intervallet [a, b] inn i mindre intervall. Disse kaller vi delintervall.
- 2. Finne en tilnærmet verdi for integralet av f på hvert delintervall.
- 3. Summere verdiene fra punkt 2.

I figur 1a har vi 3 like store delintervaller. Hvis vi setter $a = x_0$ og $h = \frac{b-a}{3}$, betyr dette at

$$x_1 = x_0 + h$$
 $x_2 = x_0 + 2h$ $x_3 = x_3 + 3h = b$

En tilnæret verdi for $\int_a^{x_1} f dx$ får vi ved å finne arealet til trapeset med hjørner (husk at $x_0 = a$)

$$(x_0,0)$$
 $(x_1,f(x_1))$ $(x_0,f(a))$

Dette arealet er gitt ved uttrykket

$$\frac{1}{2}(x_1 - x_0) \left[f(x_0) + f(x_1) \right]$$

Ved å tilnærme integralet for hvert delintervall på denne måten, kan vi skrive

$$\int_{a}^{b} f \, dx \approx \frac{1}{2} \sum_{i=0}^{2} (x_{i+1} - x_i) \left[f(x_i) + f(x_{i+1}) \right]$$

(a) Tilnærming med 3 delintervaller.

(b) Tilnærming med 20 delintervaller

Figur 1

Regel 0.2 Trapesmetoden

Gitt en integrerbar funksjon f. En tilnærmet verdi for $\int_a^b f dx$ er da gitt som

$$\int_{a}^{b} f \, dx \approx \frac{1}{2} \sum_{i=0}^{n} (x_{i+1} - x_i) \left[f(x_i) + f(x_{i+1}) \right]$$

hvor $a = x_0, b = x_n \text{ og } x_{n+1} > x_n.$

Merk

Slik regel 0.2 er formulert, vil [a,b] være delt inn i n+1 delintervaller. Det er ikke et krav at delintervallene skal være like store, men det gjør implementeringen av metoden lettere. Uttrykket for h fra side 4 vil i så fall bli

$$h = \frac{b-a}{n+1}$$

Da er $x_{n+1} = x_n + h$.