Laboratorium 10

MAT4 - Stosowany rachunek prawdopodobieństwa

Wersja: 2023-12-10

1 Wartości oczekiwane funkcji od wektora losowego rozłożonego jednostajnie na kole jednostkowym

Obliczyć (teoretyczną) wartość oczekiwaną $\mathbb{E}(|XY|)$, jeśli (X,Y) jest wektorem losowym rozłożonym jednostajnie na kole jednostkowym w \mathbb{R}^2 . Potwierdzić empirycznie swoje obliczenia teoretyczne.

2 Metoda eliminacji dla generowania zmiennych losowych o rozkładzie z zadaną gęstością

Załóżmy, że f jest gęstością, która jest dodatnia na pewnym przedziale ograniczonym (a, b), zeruje się poza tym przedziałem i na tym przedziale jest ograniczona przez pewną stałą dodatnią d. Rozważmy algorytm:

- wygenerować dwie niezależne zmienne losowe U_1 i U_2 o rozkładach jednostajnych $\mathcal{U}(a,b)$ i $\mathcal{U}(0,d)$,
- jeśli $U_2 \leq f(U_1)$, to przyjąć $X = U_1$; w przeciwnym razie odrzucić wygenerowaną parę (U_1, U_2) i wrócić do poprzedniego punktu.

Okazuje się, że tak stworzona zmienna losowa X ma rozkład o gęstości f.

- 1. Sprawdzić powyższy algorytm generując próby z rozkładów ciągłych o gęstościach
- $f(x) = (2/\pi)\sqrt{1-x^2}$ dla $x \in [-1,1], f(x) = 0$ dla $x \notin [-1,1],$
- $f(x) = 1 |x| \text{ dla } x \in [-1, 1], f(x) = 0 \text{ dla } x \notin [-1, 1].$

3 Inny wariant metody eliminacji

Następujący algorytm generuje liczby losowe o rozkładzie z gęstością f, określoną na niekoniecznie ograniczonym zbiorze w przestrzeni d-wymiarowej \mathbb{R}^d (może więc być przydatny w szczególności do generowania liczb losowych z ciągłych rozkładów dwuwymiarowych):

• dobrać taką gęstość g, aby można było łatwo generować próby losowe z rozkładu o tej gęstości i żeby istniała stała c>0 taka, że

$$f(x) \le cg(x)$$

dla wszystkich $x \in \mathbb{R}^d$,

• wygenerować punkt losowy X o rozkładzie z gęstością g oraz liczbę losową U z rozkładu jednostajnego $\mathcal{U}(0,1)$,

• jeżeli

$$cUg(X) \le f(X),$$

to zaakceptować X; w przeciwnym razie odrzucić wygenerowaną parę (X,U) i wrócić do poprzedniego punktu.

Okazuje się, że tak stworzona zmienna losowa X ma rozkład o gęstości f.

1. Sprawdzić działanie powyższego algorytmu dla rozkładu łącznego o gęstości

$$f(x,y) = \begin{cases} 4xy, & (x,y) \in [0,1]^2, \\ 0, & (x,y) \notin [0,1]^2. \end{cases}$$

W szczególności, wyznaczyć teoretycznie i empirycznie

- $\mathbb{P}((X,Y) \in [0,1/2]^2)$,
- $\mathbb{E}(XY)$,

następnie wyznaczone wielkości porównać.

4 Metoda rozkładów warunkowych

Czasem do generowania liczb losowych z rozkładów dwuwymiarowych ciągłych wykorzystuje się fakt, że gęstość łączną f wektora losowego (X,Y) można zapisać jako iloczyn gęstości warunkowej f_X i brzegowej $f_{Y|X}$:

$$f(x,y) = f_X(x)f_{Y|X}(y|x).$$

Zastosować tę metodę do wygenerowania próby z rozkładu jednostajnego na kole jednostkowym w \mathbb{R}^2 , obliczając uprzednio gęstość brzegową f_X i gęstość warunkową $f_{Y|X}$ (obliczenia te dołączyć do raportu).