

Solving Proximity Constraints

Sophie Hofmanninger & Jan-Michael Holzinger

26.06.2019

1 Introduction

2 System Model

Motivation

For proving theorems, a frequently occurring problem is to find common instances of formulae.

Example 1

Let f be a function, a, b constants and x a variable. The two expressions

$$f(a,x)$$
 and $f(a,b)$

can be unified with $\{x \mapsto b\}$.

Motivation

For proving theorems, a frequently occurring problem is to find common instances of formulae.

Example 2

Let f,g be functions, a,b constants and x a variable. The two expressions

$$f(a,x)$$
 and $g(a,b)$

cannot be unified as $f \neq g$.

Motivation

In 1965 Robinson presented his unification algorithm and solved this problem, his algorithm was improved for better(=faster) performance since.

If we consider now the unification problem

$$f(a,x) \simeq^{?} g(a,b)$$

again, we might wonder, if we could not ignore $f \neq g$, if they are "close" to each other, i.e. if they are equal in a fuzzy logic sense. Being close is represented as a proximity relation, which are symmetric and reflexive, but not necessarily transitive. C. Pau and T. Kutsia solved this problem, presenting an algorithm, which we implemented.

Introduction

4 sets:

- P: unification problem to be solved
- C: neighborhood constraint
- \bullet σ : set of pre-unifier
- Φ: name-class mapping

Pre-Unification rules

```
(Tri) Trivial: . . .
(Dec) Decomposition: . . .
```


Rules for Neigborhood Constraints

(FFS)
$$\{f \approx^? g\} \uplus C; \Phi \Rightarrow C; \Phi; \text{ if } \mathcal{R}(f,g) \geq \lambda$$

(NFS)
$$\{N \approx^? g\} \uplus C; \Phi \Rightarrow C; update(\Phi, N \rightarrow pc(g, \mathcal{R}, \lambda))$$

(FSN)
$$\{g \approx^? N\} \uplus C; \Phi \Rightarrow \{N \approx^? g\} \cup C; \Phi$$

(NN1)

 $\{N \approx^? M\} \uplus C; \Phi \Rightarrow C; update(\Phi, N \rightarrow f, M \rightarrow pc(f, \mathcal{R}, \lambda)),$ where $N \in dom(\Phi), f \in \Phi(N)$

(NN2)
$$\{M \approx^? N\} \uplus C; \Phi \Rightarrow \{N \approx^? M\} \cup C; \Phi$$
, where $M \notin dom(\Phi)$, $N \in dom(\Phi)$

(Fail1)
$$\{f \approx^? g\} \uplus C; \Phi \Rightarrow \bot$$
, if $\mathcal{R}(f,g) < \lambda$

(Fail2) C; $\Phi \Rightarrow \perp$, if there exists $N \in dom(\Phi)$ such that $\Phi(N) = \emptyset$

Simple example

Pre - fail: p(x, a) = ?q(f(a), g(b))

Test 4 in Test.java

Pre - ok, CS - fail: - des ging bei mir, i hätt 5 Schritte und 2 Branches, die aber failen-

$$p(x, y, x) = q(f(a), g(b), y); R = \{(b, c), (c, d), (f, g), (p, q)\}$$

Test 3 in Test.java

Pre - ok, CS - ok: - des ging bei mir, i hätt 4 Schritte und 1 Branch-

$$p(x,z) = q(f(b), f(x)); R = \{(a,a'), (a',b), (b,c'), (c',c), (p,q)\}$$

Solution: ...

1 Introduction

2 System Model

System Model

Project consists of 4 packages:

- elements : deals with elements
- tool : offers important tools (e.g. read input)
- unificationProblem : treats the unification problem
- userInterfaces : allow user interfaces

Package elements

Package tool

Package unificationProblem

Algorithms

Package userInterfaces

1 Introduction

2 System Model

