Fondamenti di Informatica Parte 1

Liceo G.B. Brocchi - Bassano del Grappa (VI) Liceo Scientifico - opzione scienze applicate Giovanni Mazzocchin

Unità di misura

- **bit** (*binary digit* valori possibili: 0, 1): 1 bit equivale alla scelta tra 2 eventi equiprobabili
- 1 byte (binary octet): 8 bit
- 1 **KiB** (*kibibyte*): 2¹⁰ *byte*
- 1 **MiB** (*mebibyte*): 2²⁰ *byte*
- 1 **GiB** (*gibibyte*): 2³⁰ *byte*
- 1 **TiB** (tebibyte): 2⁴⁰ byte

Unità di misura

- 1 **kB** (*kilobyte*): 10³ *byte*
- 1 **MB** (megabyte): 10⁶ byte
- 1 **GB** (gigabyte): 10⁹ byte
- 1 **TB** (terabyte): 10¹² byte

Sistemi posizionali

- Tutti i giorni utilizziamo il **sistema decimale**, che è un <u>sistema posizionale</u>
- <u>La base di un sistema posizionale corrisponde al numero di cifre che esso utilizza per codificare i numeri</u>:
 - cifre del sistema decimale: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
- In un numero scritto in un sistema posizionale, ciascuna cifra ha un proprio **peso**, esprimibile come potenza della base

Sistemi posizionali

base	10			
digits	5	4	5	2
weights	10 ³	10 ²	10 ¹	10 º
exps	3	2	1	0
addends	5000	400	50	2
				number

- I sistemi elettronici-digitali moderni utilizzano il **sistema binario**
- Nel sistema binario, la base è 2
- Cifre del sistema binario: {0, 1}
- <u>Il funzionamento del sistema binario è del tutto analogo a quello del sistema decimale, essendo anch'esso posizionale</u>

base	2			
digits	1	1	0	0
weights	23	2 ²	21	2 º
exps	3	2	1	0
addends	8	4	0	0
				number

- Effettuare la conversione binario-decimale dei seguenti numeri:
 - 10101000_{bin}
 - 11111_{bin}
 - 1110001_{bin}
 - 100000_{bin}
- I numeri binari delle forme seguenti sono particolarmente facili da convertire velocemente:
 - 1 seguito da $n = 2^n$
 - $n : 2^n 1$

- Per **convertire un numero decimale in binario**, proviamo prima di tutto ad esprimerlo come <u>somma di potenze di 2</u>
- Esempi:

•
$$47 = 32 + 8 + 4 + 2 + 1 = 2^5 + 2^3 + 2^2 + 2^1 + 2^0$$

•
$$89 = 64 + 16 + 8 + 1 = 2^6 + 2^4 + 2^3 + 2^0$$

• Per 89 prepariamo la tabella seguente:

digits	1	0	1	1	0	0	1
exps	6	5	4	3	2	1	0

• Quindi $89_{dec} = 1011001_{bin}$

• È possibile effettuare la conversione da decimale a binario anche tramite il seguente algoritmo, espresso in pseudocodice:

```
conv_dec_bin(n):
    as long as n is not 0:
        compute and keep the remainder between n and 2
        halve n
    read the remainders in reverse order
```

n	div	rem
89	2	1
44	2	0
22	2	0
11	2	1
5	2	1
2	2	0
1	2	1
0		

- Quindi, confermiamo che $89_{dec} = 1011001_{bin}$
- Provare le funzioni DECIMALE.BINARIO e BINARIO.DECIMALE in Excel, la funzione bin e le costanti 0b in Python

Il sistema binario – addizione in colonna

```
      carries
      1
      1
      1
      1

      1
      0
      1
      1
      0
      +

      1
      1
      1
      1
      1
      1
      1
      =

      result
      1
      0
      0
      1
      0
      1
      0
      1
```

```
0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0, riporto 1
```

Il sistema binario – sottrazione in colonna (1)

borrows							
	1	0	1	0	0	0	-
			1	1	0	1	=
result							

Il sistema binario – sottrazione in colonna (2)

borrows				1			
	1	0	0	0	0	0	-
			1	1	0	1	=
result							

Il sistema binario – sottrazione in colonna (3)

borrows					1		
	1	0	0	1	0	0	-
			1	1	0	1	=
result							

Il sistema binario – sottrazione in colonna (4)

borrows						1	
	1	0	0	1	1	0	-
			1	1	0	1	=
result							

Il sistema binario – sottrazione in colonna (5)

borrows						1	
	1	0	0	1	1	0	-
			1	1	0	1	=
result				0	1	1	

Il sistema binario – sottrazione in colonna (6)

borrows		1				1	
	0	0	0	1	1	0	-
			1	1	0	1	=
result				0	1	1	

Il sistema binario – sottrazione in colonna (7)

borrows			1			1	
	0	1	0	1	1	0	-
			1	1	0	1	=
result				0	1	1	

Il sistema binario – sottrazione in colonna (8)

borrows			1			1	
	0	1	0	1	1	0	-
			1	1	0	1	=
result		1	1	0	1	1	

- Il sistema esadecimale permette di scrivere stringhe binarie in modo molto più compatto
- Nel sistema esadecimale, la base è 16
- Cifre del sistema esadecimale:
 - {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}
- Per effettuare la conversione esadecimale-binario (e viceversa) è comodo utilizzare la tabella riportata nella slide seguente

hex	bin	dec
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
Α	1010	10
В	1011	11
C	1100	12
D	1101	13
E	1110	14
F	1111	15

- Conversione esadecimale-binario: tradurre ciascuna cifra in binario
- Conversione binario-esadecimale: suddividere il numero in gruppetti di 4 bit (*nibble*) e convertire ciascun gruppetto in cifra esadecimale
- Esempi:
 - $CAFE_{hex} = 1100_1010_1111_1110_{bin}$
 - $110_{1010_{bin}} = 6A_{hex}$
- Provare le funzioni HEX.BINARIO, BINARIO.HEX in Excel, la funzione hex e le costanti 0x in Python

- Conversione esadecimale-decimale: è identica (a meno della base) alla conversione binario-decimale
- Conversione decimale-esadecimale: è identica (a meno della base) alla conversione decimale-binario

Il sistema esadecimale – addizione in colonna

result	1	В	В	4	
		Α	В	5	=
	1	0	F	F	+
carries		1	1		

Il sistema ottale

- Nel sistema ottale, la base è 8
- Cifre del sistema ottale:
 - \bullet {0,1,2,3,4,5,6,7}
- Per effettuare le conversioni ottale-binario (e viceversa) è necessaria una tabella di corrispondenza, riportata nella slide seguente

Il sistema ottale

oct	bin	dec
0	000	0
1	001	1
2	010	2
3	011	3
4	100	4
5	101	5
6	110	6
7	111	7

- Conversione ottale-binario: tradurre ciascuna cifra in binario
- Conversione binario-ottale: suddividere il numero in gruppetti di 3 bit e convertire ciascun gruppetto in cifra ottale
- Esempi:
 - $724_{\text{oct}} = 111010100_{\text{bin}}$
 - $110_101_001_{bin} = 651_{oct}$
- Provare le funzioni OCT.BINARIO, BINARIO.OCT in Excel, la funzione oct e le costanti 0o in Python
- Per le conversioni ottale-decimale e decimale-ottale si rimanda agli altri 2 sistemi posizionali studiati