第一章 线性回归

1.1 原理

线性回归为**有监督算法(需要标签)**。

假设 θ_1 是 x_1 的参数, θ_2 是 x_2 的参数

拟合的平面: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$

整合:

$$h_{ heta}(x) = \sum_{i=0}^n heta_i x_i = heta^T x$$

误差:

真实值和预测值之间 存在的差异 (ε)

对于每个样本:

$$y^{(i)} = \theta^T x^{(i)} + \varepsilon^{(i)} \tag{1}$$

误差 $arepsilon^{(i)}$ 是独立同分布,是服从均值为 0 方差为 $heta^2$ 的高斯分布 (机器学习的基础)

由于误差服从高斯分布:

$$p(\varepsilon^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} exp(-\frac{(\varepsilon^{(i)})^2}{2\sigma^2})$$
 (2)

将(1)式带入(2)式:

$$p(y^{(i)}|x^{(i)}; heta) = rac{1}{\sqrt{2\pi}\sigma}exp(-rac{(y^{(i)}- heta^Tx^{(i)})^2}{2\sigma^2})$$

求得 (x, θ) 与 y 越接近越好!

似然函数:

$$L(heta) = \prod_{i=1}^m p(y^{(i)}|x^{(i)}; heta) = \prod_{i=1}^m rac{1}{\sqrt{2\pi}\sigma} exp(-rac{(y^{(i)}- heta^Tx^{(i)})^2}{2\sigma^2})$$

对数似然:

$$log\prod_{i=1}^{m}rac{1}{\sqrt{2\pi}\sigma}exp(-rac{(y^{(i)}- heta^{T}x^{(i)})^{2}}{2\sigma^{2}})$$

展开化简:

$$egin{aligned} & \sum_{i=1}^{m} log rac{1}{\sqrt{2\pi}\sigma} exp(-rac{(y^{(i)} - heta^{T}x^{(i)})^{2}}{2\sigma^{2}}) \ & = m \cdot log rac{1}{\sqrt{2\pi}\sigma} - rac{1}{2\sigma^{2}} \sum_{i=1}^{m} (y^{(i)} - heta^{T}x^{(i)})^{2} \end{aligned}$$

目标: 是让似然函数越大越好

最小二乘法:

$$J(heta) = rac{1}{2} \sum_{i=1}^m (y^{(i)} - heta^T x^{(i)})^2$$

目标: 让 $J(\theta)$ 越小越好! (目标函数, 损失函数 Loss Function)

目标函数求解

目标函数:

$$J(heta) = rac{1}{2} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)})^2 = rac{1}{2} (X heta - y)^T (X heta - y)$$

求偏导:

$$egin{aligned} igtriangledown_{ heta} J(heta) &= igtriangledown_{ heta} (rac{1}{2}(X heta-y)^T(X heta-y) \ &= igtriangledown_{ heta} (rac{1}{2}(heta^TX^T-y^T)(X heta-y)) \ &= igtriangledown_{ heta} (rac{1}{2}(heta^TX^TX heta- heta^TX^Ty-y^TX heta+y^Ty)) \ &= rac{1}{2}(2X^TX heta-X^Ty-(y^TX)^T) = X^TX heta-X^Ty \end{aligned}$$

偏导等于0:

$$\theta = (X^T X)^{-1} X^T y$$

梯度下降

寻找目标函数的"终点" (什么样的参数能使目标函数达到极值点)

目标函数:

$$J(heta) = rac{1}{2m} \sum_{i=1}^m (y^i - h_ heta(x^i))^2$$

批量梯度下降:

$$rac{\partial J(heta)}{\partial heta_j} = -rac{1}{m} \sum_{i=1}^m (y^i - h_ heta(x^i)) x_j^i heta_j' = heta_j + rac{1}{m} \sum_{i=1}^m (y^i - h_ heta(x^i)) x_j^i$$

(容易得到最优解,但是由于每次考虑所有样本,速度很慢)

随机梯度下降(SGD):

$$heta_i' = heta_j + (y^i - h_ heta(x^i))x_j^i$$

(每次找一个样本, 迭代速度快, 但不一定每次都朝着收敛方向)

小批量梯度下降法 (mini batch):

$$heta_j := heta_j - lpha rac{1}{10} \sum_{k=j}^{i+9} (h_ heta(x^{(k)}) - y^{(k)}) x_j^{(k)}$$

(每次更新选择一小部分数据来算,实用!)

学习率 (步长) learning rate:对结果产生巨大的影响,一般小一些

1.2 代码实现

1.2.1 模块编写

归一化模块

normalize.py

计算特征(输入)的均值feature_mean,标准差feature_deviation。

归一化操作:

$$features_normalized = \frac{x - \mu}{\sigma}$$

返回归一化后的特征,均值,标准差

训练前要做的准备

prepare for traning.py

- 计算样本总数
- 预处理 (调用normalize模块)
- 返回处理后的数据,均值,标准差

定义线性回归类

linear regression.py

1.2.2 单变量线性回归实现

源码

使用的数据为world happiness report2017.csv

目的: 训练出GDP与幸福指数之间的线性回归方程

导入数据:

```
data = pd.read_csv('data/world_happiness_report2017.csv')
train_data = data.sample(frac=0.8)
test_data = data.drop(train_data.index)
input_param_name = 'Economy..GDP.per.Capita.'
output_param_name = 'Happiness.Score'
x_train = train_data[[input_param_name]].values
y_train = train_data[[output_param_name]].values
x_test = test_data[[input_param_name]].values
y_test = test_data[[output_param_name]].values
```

导入后显示:

训练模型:

```
num_iterations = 500
lr = 0.01
linear_regression = LinearRegression(x_train, y_train)
(theta, loss_history) = linear_regression.train(lr, num_iterations)
```

梯度下降:

测试及回归结果:

```
preditions_num = 100

x_predictions = np.linspace(x_train.min(), x_train.max(),
preditions_num).reshape(preditions_num, 1)

y_predictions = linear_regression.predict(x_predictions)
```


1.2.3 多特征建立线性回归模型

源码

使用的数据为world happiness report2017.csv

目的: 训练出GDP, Freedom与幸福指数的线性回归模型

核心代码:

```
linear_regression = LinearRegression(x_train, y_train, polynomial_degree,
sinusoid_degree)
```

Training SetTest Set

2 (theta, loss_history) = linear_regression.train(lr, num_iterations)

1.2.4 非线性回归模型

<u>源码</u>

使用的数据为china_gdp.csv

导入数据:

使用 sigmoid 函数进行拟合:

$$Y=rac{1}{1+e^{eta_1(X-eta_2)}}$$

第二章 模型评估方法

notebook

2.1 交叉验证

交叉验证(循环估计),是一种统计学上将数据样本切分成较小子集的实用方法。将数据集切分为训练集和测试集(test data),其中在训练集内再切分为训练集(train date)和验证集(validation data)。交叉验证的目的,是用未训练过的新数据测试模型的性能,以便减少诸如过拟合和选择偏差等问题。

2.1.1 LOOCV

LOOCV(Leave-one-out-cross-validation)方法是只用一个数据作为验证集,其他数据都作为训练集,并将此步骤重复N次(N为数据集的数据数量)。

假设现在有n个数据组成的数据集,那么LOOCV方法就是每次取出一个数据作为验证集的唯一元素,而其他n-1个数据都作为训练集用于训练模型和调参。结果就是我们最终训练了n个模型,每次都能得到一个MSE。

$$CV_{(n)} = rac{1}{n} \sum_{i=1}^{n} MSE_i$$

2.1.2 K-fold Cross Validation

K折交叉验证,每次的验证集不再只包含一个数据,具体数目将根据k的选取决定。比如K=5:

- 将所有的训练集分成5份
- 不重复地每次取其中一份做为验证集,用其他四份做训练集训练模型,之后计算该模型在验证集上的 MSE_i
- 将5次的 MSE_i 取平均

不难理解,LOOCV是一种特殊的K-fold Cross Validation(K=N)。

2.1.3 Bias-Variance Trade-Off for K-Fold Cross-Validation

对于K的选取。K越大,每次投入的训练集的数据就越多,模型的偏移越小;但是K越大,又意味着每次选取的训练集之间的相关性越大,而这种相关性会导致结果有更大的方差。一般来说,根据经验,选择K=5或者10。

2.1.4 Cross-Validation on Classification Problems

对于分类问题,可以用下式衡量:

$$CV_{(n)} = rac{1}{n} \sum_{i=1}^n Err_i$$

其中 Err_i 表示第 i 个模型在第 i 组验证集上的分类错误的个数。

2.2 Confusion Matrix 混淆矩阵

二分类问题	相关(Relevant),正类	无关(NonRelevant),负类
被检索到(Retrieved)	true positive(TP 正类判定为 正)	false positive(FP 负类判定为 正类)

二分类问题	相关(Relevant),正类	无关(NonRelevant),负类
未被检索到 (Not	false negative(FN 正类判定为	true negative(TN 负类判定为
Retrieved)	负类)	负类)

2.2.1 准确率

$$accuracy = rac{TP + TN}{TP + TN + FP + FN} = rac{TP + TN}{all\ data}$$

在数据集不平衡时,准确率将不能很好的表示模型的性能。可能会存在准确率很高,而少数类样本全分错的情况,此时应该选择其他模型评价指标。

2.2.2 Precision & Recall

$$precision = rac{TP}{TP + FP}$$

表示在预测为 positive 的样本中真实类别为 true 的样本所占比例。

$$recall = rac{TP}{TP + FN}$$

表示在真实类别为 true 的样本中模型预测为 positive 的样本所占比例。

2.2.3 F_1 score

$$F_1 = rac{2}{rac{1}{precision} + rac{1}{recall}} = rac{2 \cdot precision \cdot recall}{precision + recall}$$

 F_1 值就是 precision 和 recall 的调和平均值。如果召回率和查准率都很高,分类器将获得高 F_1 分数。

2.2.4 ROC curves

receiver operating characteristic (ROC) 曲线是二元分类中的常用评估方法

ROC曲线的纵坐标 TPR 在数值上等于 positive class 的 recall;横坐标 FPR 在数值上等于(1- negative class 的 recall):

$$TPR = rac{TP}{TP + FN} = recall_{positive}$$
 $FPR = rac{FP}{FP + TN} = rac{FP + TN - TN}{FP + TN}$ $= 1 - rac{TN}{FP + TN} = 1 - recall_{negative}$

第三章 逻辑回归

• 目的: 经典的二分类算法

- 机器学习算法选择: 先逻辑回归再用复杂的, 能用简单还是用简单的
- 逻辑回归的决策边界: 可以是非线性的

3.1 Sigmoid 函数

$$g(z)=rac{1}{1+e^{-z}}$$

- 自变量取值为任意实数,值域[0,1]
- 将任意的输入映射到了[0,1]区间。在线性回归中可以得到一个预测值,再将该值映射到 sigmoid 函数中,这样就完成了由值到概率的转换,也就是分类任务。
- 预测函数:

$$h_{ heta}(x) = g(heta^T x) = rac{1}{1 + e^{- heta^T x}}$$

其中

$$heta_0 + heta_1 x_1 +, \cdots, + heta_n x_n = \sum_{i=1}^n heta_i x_i = heta^T x_i$$

• 分类任务:

$$P(y = 1|x; \theta) = h_{\theta}(x)$$

$$P(y = 0|x; \theta) = 1 - h_{\theta}(x)$$

⇒ 整合:

$$P(y|x;\theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{1-y} \tag{*}$$

• 上式中对于二分类任务(0,1),整合后y取0只保留了后一项,取1只保留了前一项。

3.2 原理

• (*)式的似然函数:

$$L(heta) = \prod_{i=1}^m P(y_i|x_i; heta) = \prod_{i=1}^m (h_{ heta}(x_i))^{y_i} (1-h_{ heta}(x_i))^{1-y_i}$$

• 对数似然:

$$l(heta) = logL(heta) = \sum_{i=1}^m (y_i logh_{ heta}(x_i) + (1-y_i) log(1-h_{ heta}(x_i)))$$

目标: 似然函数越大越好, 应为梯度上升求最大值。

引入
$$J(heta) = -rac{1}{m}l(heta)$$
 转换为梯度下降任务

求导过程:

$$\begin{split} \frac{\delta}{\delta_{\theta_{j}}}J(\theta) &= -\frac{1}{m}\sum_{i=1}^{m}(y_{i}\frac{1}{h_{\theta}(x_{i})}\frac{\delta}{\delta_{\theta_{j}}}h_{\theta}(x_{i}) - (1 - y_{i})\frac{1}{1 - h_{\theta}(x_{i})}\frac{\delta}{\delta_{\theta_{j}}}h_{\theta}(x_{i})) \\ &= -\frac{1}{m}\sum_{i=1}^{m}(y_{i}\frac{1}{g(\theta^{T}x_{i})} - (1 - y_{i})\frac{1}{1 - g(\theta^{T}x_{i})})\frac{\delta}{\delta_{\theta_{j}}}g(\theta^{T}x_{i}) \\ &= -\frac{1}{m}\sum_{i=1}^{m}(y_{i}\frac{1}{g(\theta^{T}x_{i})} - (1 - y_{i})\frac{1}{1 - g(\theta^{T}x_{i})})g(\theta^{T}x_{i})(1 - g(\theta^{T}x_{i}))\frac{\delta}{\delta_{\theta_{j}}}\theta^{T}x_{i} \\ &= -\frac{1}{m}\sum_{i=1}^{m}(y_{i}(1 - g(\theta^{T}x_{i})) - (1 - y_{i})g(\theta^{T}x_{i}))x_{i}^{j} \\ &= -\frac{1}{m}(y_{i} - g(\theta^{T}x_{i}))x_{i}^{j} \end{split}$$

• 参数更新:

$$heta_j := heta_j - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i^j$$

• 多分类的 softmax:

$$h_{ heta}(x^{(i)}) = egin{bmatrix} p(y^{(i)} = 1 | x^{(i)}; heta) \ p(y^{(i)} = 2 | x^{(i)}; heta) \ dots \ p(y^{(i)} = k | x^{(i)}; heta) \end{bmatrix} = rac{1}{\sum_{j=1}^k e^{ heta_j^T x^{(i)}}} egin{bmatrix} e^{ heta_1^T x^{(i)}} \ e^{ heta_2^T x^{(i)}} \ dots \ e^{ heta_k^T x^{(i)}} \end{bmatrix}$$

第四章 聚类算法

聚类概念:

。 无监督问题

聚类:相似的东西分到一组难点:如何评估,如何调参

4.1 K-MEANS

• K-MEANS 算法基本概念:

。 要得到簇的个数, 需要指定K值

。 质心: 均值, 即向量各维度取平均即可

○ 距离的度量:常用**欧氏距离**和**余弦相似度**(先标准化)

。 优化目标:

$$min\sum_{i=1}^K \sum_{x \in C_i} dist(c_i, x)^2$$

• 优势:

简单,快速,适合常规数据集

• 劣势:

- o K值难确定
- 。 复杂度与样本呈线性关系
- 。 很难发现任意形状的簇

4.2 DBSCAN

- 基本概念: (Density-Based Spatial Clustering of Applications with Noise)
 - 核心对象:若某个点的密度达到算法设定的阈值则其为核心点。(即 r 邻域内点的数量不小于 minPts)
 - \circ ε -邻域的距离阈值: 设定的半径 r
 - 直接密度可达: 若某点 p 在点 q 的 r 邻域内, 且 q 是核心点则 p-q 直接密度可达
 - 。 密度可达:若有一个点的序列 q_0,q_1,\cdots,q_k ,对任意 q_i-q_{i-1} 是直接密度可达的,则称从 q_0 到 q_k 密度可达,这实际上是直接密度可达的"传播"
- 工作流程:

参数D: 输入数据集参数ϵ: 指定半径MinPts: 密度阈值

标记所有对象为 unvisited

Do

随机选择一个 unvisited 对象 p

标记 p 为 visited

if p 的 ϵ -领域至少有 MinPts 个对象

创建一个新簇 C,并把 p 添加到 C 令 N 为 p 的 ϵ -领域中的对象集合 For N 中每个点 p^{γ}

If p, 是 unvisited

标记 p, 为 visited

If p, 的 ϵ -领域至少有 MinPts 个对象,把这些对象添加到 N If p 还不是任何簇的成员,把p 添加到C

End for

输出C

Else 标记 p 为噪声

Until 没有标记为 unvisited 的对象

• 参数选择:

- \circ 半径 ϵ ,可以根据 K 距离来设定:找突变点
- 。 K 距离:给定数据集 $P=\{p(i); i=0,1,\cdots,n\}$,计算点 P(i) 到集合 D 的子集 S 中所有点之间的距离,距离按照从小到大的顺序排序,d(k) 就被称为 k-距离。
- o MinPts: k-距离中 k 的值, 一般取得小一些, 多次尝试

• 优势:

- 。 不需要指定簇个数
- 。 可以发现任意形状的簇
- 擅长找到离群点 (检测任务)
- 。 两个参数就够了

• 劣势:

- 。 高维度数据需要做降维处理
- 参数难以选择 (对结果影响非常大)
- 。 需要数据削减,提高效率

第五章 决策树

- 从根节点开始,一步步走到叶子节点(决策)
- 有监督学习
- 所有的数据最终都会落到叶子节点, 既可以做分类也可以做回归。
- 树的组成:

。 根节点:第一个选择点

非叶子节点与分支:中间过程叶子节点:最终的决策结果

• 决策树的训练与测试

。 训练阶段: 从给定的训练集构造出一个树 (从根节点开始选择特征, 如何进行**特征切分**

。 测试阶段: 根据构造出来的树模型从上到下去走一遍

- 如何选择节点(特征切分):通过一种衡量标准,来计算通过不同特征进行分支选择后的分类情况,找到最好的那个,作为节点。
- 衡量标准: 熵
 - 。 表示随机变量不确定性的度量

- \bullet $H(x) = -\sum p(i) \cdot logp(i), i = 1, 2, \dots, n$
- 。 不确定性越大,得到的熵值越大
- 。 信息增益:表示特征X使得类Y的不确定性减少的程度。 (分类后的专一性,希望分类后的结果是同类在一起)
- \circ GINI系数: $Gini(p) = \sum_{k=1}^{K} p_k (1 p_k) = 1 \sum_{k=1}^{K} p_k^2$
- 决策树剪枝策略
 - 。 决策树过拟合风险很大, 理论上可以完全分得开数据
 - 预剪枝: 边建立决策树边进行剪枝(更实用),限制深度,叶子节点个数,叶子节点样本数,信息增益量等
 - 。 后剪枝:当建立完决策树后来进行剪枝,通过一定的衡量标准 $C_{\alpha}(T)=C(T)+\alpha\cdot |T_{leaf}|$ (叶子节点越多,损失越大)

第六章 集成算法

- Ensemble Leaning
 - 目的: 让学习效果更好
 - 。 Bagging: 训练多个分类器取平均 $f(x) = rac{1}{M} \sum_{m=1}^M f_m(x)$
 - 。 Boosting: 从弱学习器开始加强,通过加权来进行训练 $F_m(x)=F_{m-1}(x)+argmin_h\sum_{i=1}^nL(y_i,F_{m-1}(x_i))+h(x_i)$ (加入一颗树,要比原来强)
 - Stacking: 聚合多个分类或回归模型 (可以分阶段来做)
- Bagging 模型
 - 全称: booststrap aggregation(并行训练一堆分类器)
 - 最典型代表:随机森林模型
 - 随机: **数据采样随机,特征选择随机**
 - 。 森林: 很多个决策树并行放在一起
 - 。 之所以进行随机, 是要保证泛化能力, 如果树都一样, 就没有意义了
 - 。 随机森林优势
 - 能够处理很高维度 (feature 很多) 的数据,并且不用做特征选择
 - 在训练完成后,能够给出哪些 feature 比较重要 (特征重要性)
 - 容易做成并行化方法,速度快
 - 可以进行可视化展示,可解释性强,便于分析
 - 理论上越多的树效果会越好,但实际上基本超过一定数量就差不多上下浮动了
- Boosting 提升算法模型
 - 。 典型代表: AdaBoost, Xgboost
 - 。 Adaboost 会根据前一次的分类效果调整数据权重
 - 解释:如果某一个数据在这次分错了,那在下一次就会给他更大的权重
 - 。 最终结果:每个分类器根据自身的准确性来确定各自的权重,再合体
- Stacking 堆叠模型
 - 堆叠:暴力,一堆分类器
 - 。 可以堆叠各种分类器 (KNN, SVM, RF等)
 - · 分阶段: 第一阶段得出各自结果, 第二阶段再用前一阶段结果训练
 - 。 为了刷好的结果不择手段