ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΚΕΦΑΛΑΙΟ 20

2.5-2.6-2.7
Όνομα:
Βαθμός:
Θέμα Α (/30M)
Α1. Αν η f είναι συνεχής στο Δ και για κάθε x στο εσωτερικό του Δ ισχύει ότι: $f'(x) = 0$, τότε να δειχθεί ότι η f
είναι σταθερή συνάρτηση στο Δ
(20 Μονάδες)
${ m A2.~N}$ α χαρακτηρίσετε με ${ m \Sigma}$ (${ m \Sigma}$ ωστό) ή ${ m \Lambda}$ (${ m \Lambda}$ άθος) τις παρακάτω προτάσεις
i. Αν η $f:\mathbb{R} \to \mathbb{R}$ είναι παραγωγίσιμη και η C_f τέμνει τον άξονα $x'x$ σε 2001 τουλάχιστον σημεία, τότε η C_f'
τέμνει τον άξονα <i>x ' x</i> τουλάχιστον 2000
ii. Αν $f'(x)=f(x)$, για κάθε $x\in \Delta$, όπου Δ είναι διάστημα, τότε υπάρχει σταθερά c , ώστε $f(x)=c\cdot e^x$, με
$x \in \Delta$
iii. Αν $f'(x)>0$, για κάθε $x\in\mathbb{R}$, τότε η $f(x)$ είναι 1-1
iv. Αν η εξίσωση $f'(x)$ =0 έχει 2000 ρίζες στο διάστημα Δ = (α, β) και η f' διατηρεί πρόσημο στο Δ , τότε η f
έχει 2000 τοπικά ακρότατα
ν. Η εξίσωση: $e^x = 1 - x$ έχει μοναδική ρίζα την $x = 0$
(10 Μονάδες)
Θέμα Β (/20Μ)
Να δειχθεί ότι η εξίσωση $x^4+2x^3+3x^2-\lambda x+\mu=0$, έχει το πολύ 2 ρίζες στο $\mathbb R$, για κάθε λ , μ ∈ $\mathbb R$
(20 Μονάδες)
Θέμα Γ (/20M)

Nα λυθεί η εξίσωση: $e^x = 1 + \ln(x+1)$

(20 Μονάδες)

Θέμα Δ (/30M)

Av
$$f(x)=e^{x^2}+e^{8-x^2}-2$$
, $x \in \mathbb{R}$

Δ1. Να μελετηθεί η συνάρτηση f για μονοτονία και τοπικά ακρότατα (20 Μονάδες)

Δ2. Να βρεθεί το σύνολο τιμών της f (10 Μονάδες)