

Die multivariate anisotrope Wavelet-Transformation auf dem Torus

Ronny Bergmann

Institut für Mathematik Universität zu Lübeck

23. Rhein-Ruhr-Workshop, Bestwig
1. & 2. Februar 2013

Einführung

Periodische Wavelets im Eindimensionalen

- translationsinvariante Räume mit Verschiebung $2\pi/N$
- Wavelets [PT95]
- schnelle Algorithmen und de la Vallée Poussin-Mittel [Se98]

Im Mehrdimensionalen werden daraus

- Verschiebungen auf $\mathbb{T}^d = [-\pi, \pi)^d$
- aus einem Skalierungsfaktor wird eine Skalierungsmatrix [MS03]
- ullet bei festem Faktor (z. B. $|\det \mathbf{J}|=2$) verschiedene Matrizen möglich [LP10]
- Richtungspräferenz
- Umgang mit "Curse of Dimension"

gleichverteilte Punkte auf dem Torus

Das Muster $\mathcal{P}(\mathbf{M})$ einer regulären Matrix $\mathbf{M} \in \mathbb{Z}^{d \times d}$

$$\mathcal{P}(\mathbf{M}) := \mathbf{M}^{-1} \mathbb{Z}^d \cap \left[-\frac{1}{2}, \frac{1}{2} \right)^d$$

gleichverteilte Punkte auf dem Torus

Das Muster $\mathcal{P}(\mathbf{M})$ einer regulären Matrix $\mathbf{M} \in \mathbb{Z}^{d \times d}$

$$\mathcal{P}(\mathbf{M}) := \mathbf{M}^{-1} \mathbb{Z}^d \cap \left[-\frac{1}{2}, \frac{1}{2} \right)^d$$

$$\mathbf{M} = \begin{pmatrix} 28 & -12 \\ 12 & 4 \end{pmatrix}$$
, 256 Punkte

gleichverteilte Punkte auf dem Torus

Das *Muster* $\mathcal{P}(\mathbf{M})$ einer regulären Matrix $\mathbf{M} \in \mathbb{Z}^{d \times d}$

$$\mathcal{P}(\mathbf{M}) := \mathbf{M}^{-1} \mathbb{Z}^d \cap \left[-\frac{1}{2}, \frac{1}{2} \right)^d$$

$$\mathbf{M} = \begin{pmatrix} 28 & -12 \\ 12 & 4 \end{pmatrix}$$
, 256 Punkte

•
$$|\mathcal{P}(\mathbf{M})| = |\det \mathbf{M}| =: m$$

•
$$(\mathcal{P}(\mathbf{M}), + \text{mod } 1)$$
 ist eine Gruppe

• Teilmuster
$$\mathcal{P}(\mathbf{N})$$

für $\mathbf{M} = \mathbf{J}\mathbf{N}, \quad \mathbf{J}, \mathbf{N} \in \mathbb{Z}^{d \times d}$

• etwa im dyadischen Fall $|\det \mathbf{J}| = 2$:

•
$$J_X := \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

gleichverteilte Punkte auf dem Torus

Das *Muster* $\mathcal{P}(\mathbf{M})$ einer regulären Matrix $\mathbf{M} \in \mathbb{Z}^{d \times d}$

$$\mathcal{P}(\mathbf{M}) := \mathbf{M}^{-1}\mathbb{Z}^d \cap \left[-\frac{1}{2}, \frac{1}{2}\right)^d$$

$$\mathbf{M} = \begin{pmatrix} 28 & -12 \\ 12 & 4 \end{pmatrix}$$
, 256 Punkte

•
$$|\mathcal{P}(\mathbf{M})| = |\det \mathbf{M}| =: m$$

•
$$(\mathcal{P}(\mathbf{M}), + \text{mod } 1)$$
 ist eine Gruppe

• Teilmuster
$$\mathcal{P}(\mathbf{N})$$

für $\mathbf{M} = \mathbf{J}\mathbf{N}, \quad \mathbf{J}, \mathbf{N} \in \mathbb{Z}^{d \times d}$

• etwa im dyadischen Fall $|\det \mathbf{J}| = 2$:

•
$$J_X := \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

•
$$J_Y := \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

gleichverteilte Punkte auf dem Torus

Das *Muster* $\mathcal{P}(\mathbf{M})$ einer regulären Matrix $\mathbf{M} \in \mathbb{Z}^{d \times d}$

$$\mathcal{P}(\mathbf{M}) := \mathbf{M}^{-1}\mathbb{Z}^d \cap \left[-\frac{1}{2}, \frac{1}{2}\right)^d$$

$$\mathbf{M} = \begin{pmatrix} 28 & -12 \\ 12 & 4 \end{pmatrix}$$
, 256 Punkte

•
$$|\mathcal{P}(\mathbf{M})| = |\det \mathbf{M}| =: m$$

•
$$(\mathcal{P}(\mathbf{M}), + \text{mod } 1)$$
 ist eine Gruppe

• Teilmuster
$$\mathcal{P}(\mathbf{N})$$

für $\mathbf{M} = \mathbf{J}\mathbf{N}, \quad \mathbf{J}, \mathbf{N} \in \mathbb{Z}^{d \times d}$

• etwa im dyadischen Fall
$$|\det \mathbf{J}| = 2$$
:

•
$$J_X := \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

•
$$J_Y := \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

•
$$J_D := \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

Translationsinvarianz

Fourier-Koeffizienten für $f \in L(\mathbb{T}^d)$

$$c_{\mathbf{k}}(\mathbf{f}) := \langle \mathbf{f}, e^{\mathrm{i}\mathbf{k}^T \circ} \rangle = \frac{1}{(2\pi)^d} \int_{\mathbb{T}^d} \mathbf{f}(\mathbf{x}) e^{-\mathrm{i}\mathbf{k}^T \mathbf{x}} \, \mathrm{d}\mathbf{x}, \quad \mathbf{k} \in \mathbb{Z}^d$$

mit $\mathsf{T}_{\mathbf{y}} f := f(\circ - 2\pi \mathbf{y})$ heißt $V \subset L_2(\mathbb{T}^d)$ **M**-invariant, falls

$$\forall \mathbf{y} \in \mathcal{P}(\mathbf{M}) : \mathsf{T}_{\mathbf{y}} f \in V.$$

 \Rightarrow Raum der Translate $V_{\mathbf{M}}^{f}:=\operatorname{span}\{\mathsf{T}_{\mathbf{y}}f,\quad\mathbf{y}\in\mathcal{P}(\mathbf{M})\}$ ist **M**-invariant.

 $g \in V_{\mathbf{M}}^f$ lässt sich schreiben als

$$g = \sum_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} a_{\mathbf{y}} \mathsf{T}_{\mathbf{y}} f, \quad a_{\mathbf{y}} \in \mathbb{C}$$

Fourier-Transformation

Die Menge $\mathcal{G}(\mathbf{M}) := \mathbf{M}\mathcal{P}(\mathbf{M}) = \mathbf{M}[-\frac{1}{2}, \frac{1}{2})^d \cap \mathbb{Z}^d$ heißt *erzeugende Menge*.

Die Fourier-Matrix auf $\mathcal{P}(\mathbf{M})$:

$$\mathcal{F}(\mathbf{M}) := \frac{1}{\sqrt{m}} \left(\mathrm{e}^{-2\pi \mathrm{i} \boldsymbol{h}^T \boldsymbol{y}} \right)_{\boldsymbol{h} \in \mathcal{G}(\mathbf{M}^T), \boldsymbol{y} \in \mathcal{P}(\mathbf{M})} \in \mathbb{C}^{m \times m}$$

- $\mathbf{h} \in \mathcal{G}(\mathbf{M}^T)$ adressiert Zeilen
- $\mathbf{y} \in \mathcal{P}(\mathbf{M})$ die Spalten
- für $\mathcal{G}(\mathbf{M}^T)$, $\mathcal{P}(\mathbf{M})$ je eine feste Anordnung der Elemente
- mit $\mathbf{a}=(a_{\mathbf{y}})_{\mathbf{y}\in\mathcal{P}(\mathbf{M})}\in\mathbb{C}^m$ (sortiert wie die Spalten): DFT auf $\mathcal{P}(\mathbf{M})$

$$\hat{\mathbf{a}} = (\hat{a}_{\mathbf{h}})_{\mathbf{h} \in \mathcal{G}(\mathbf{M}^T)} = \sqrt{m} \mathcal{F}(\mathbf{M}) \mathbf{a} \in \mathbb{C}^m$$

Schnelle Algorithmen I

Zurück zum Tensorprodukt

- Smith-Normalform: Zerlegung in ganzzahlige Matrizen $\mathbf{M} = \mathbf{QER}$ mit $|\det \mathbf{Q}| = |\det \mathbf{R}| = 1$ und $\mathbf{E} = \mathrm{diag}(\epsilon_1, \dots, \epsilon_d), \epsilon_{j-1} | \epsilon_j, j = 2, \dots, d$
- \Rightarrow Basiswechsel zu Tensorprodukt-Muster $\mathcal{P}(\mathbf{E})$

$$\mathcal{F}(\mathbf{M}) = \mathbf{P_h} \mathcal{F}_{\epsilon_1} \otimes \cdots \otimes \mathcal{F}_{\epsilon_d} \mathbf{P_y}, \quad \mathcal{F}_{\epsilon} = \left(e^{-2\pi i h \epsilon^{-1} g} \right)_{g,h=0}^{\epsilon-1}$$

- ⇒ Row-Column-Algorithmus
- \Rightarrow Fourier-Transformation in O($m \log m$)

Wavelet-Transformation

Gegeben seien

- Faktorisierung $\mathbf{M} = \mathbf{J}\mathbf{N}$, $|\det \mathbf{J}| = 2$
- ullet Skalierungsfunktionen $\xi, \varphi \in L_2(\mathbb{T}^d), \varphi \in V_{\mathbf{M}}^{\xi}$ mit
- $\mathsf{T}_{\mathbf{y}}\xi, \quad \mathbf{y} \in \mathcal{P}(\mathbf{M})$ linear unabhängig $\Rightarrow \dim V_{\mathbf{M}}^{\xi} = m$
- ullet $\mathsf{T}_{\mathbf{x}}arphi, \quad \mathbf{x} \in \mathcal{P}(\mathbf{N})$ linear unabhängig $\Rightarrow \dim V_{\mathbf{N}}^{arphi} = rac{m}{2}$
- \Rightarrow Es existiert ein *Wavelet* ψ , so dass $V_{f M}^{\xi}=V_{f N}^{arphi}\oplus V_{f N}^{\psi}$
- \Rightarrow Zerlegung der Funktion $f_{\mathbf{M}} \in V_{\mathbf{M}}^{\xi}$ in $f_{\mathbf{M}} = f_{\mathbf{N}} + g_{\mathbf{N}}, \quad f_{\mathbf{N}} \in V_{\mathbf{N}}^{\varphi}, \ g_{\mathbf{N}} \in V_{\mathbf{N}}^{\psi}$
 - f_N ist eine "gröbere Darstellung"
 - g_N heißt Wavelet-Anteil von $f_M \Rightarrow$ Detail
 - richtungsselektiv, abhängig von J

Schnelle Algorithmen II

Beschreibung im Frequenzbereich

• Parseval:
$$\int\limits_{\mathbb{T}^d} f(\mathbf{x}) \overline{g(\mathbf{x})} \, \mathrm{d}\mathbf{x} = \sum_{\mathbf{k} \in \mathbb{Z}^d} c_{\mathbf{k}}(f) \overline{c_{\mathbf{k}}(g)}$$

- $\mathsf{T}_{\mathbf{y}}f,\ \mathbf{y} \in \mathcal{P}(\mathbf{M})$ linear unabhängig $\Leftrightarrow \forall \mathbf{h} \in \mathcal{G}(\mathbf{M}^T): \sum_{\mathbf{z} \in \mathbb{Z}^d} |c_{\mathbf{h} + \mathbf{M}^T \mathbf{z}}(f)|^2 > 0$
- Zerlegung in Fourier- und $V_{\mathbf{M}}^{\xi}$ -Koeffizienten: Mit

$$f_{\mathbf{M}} = \sum_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} a_{f_{\mathbf{M}}, \mathbf{y}} \mathsf{T}_{\mathbf{y}} \xi, \qquad \varphi = \sum_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} a_{\varphi, \mathbf{y}} \mathsf{T}_{\mathbf{y}} \xi, \qquad f_{\mathbf{N}} = \sum_{\mathbf{x} \in \mathcal{P}(\mathbf{N})} a_{f_{\mathbf{N}}, \mathbf{x}} \mathsf{T}_{\mathbf{x}} \varphi$$

ist

$$\hat{a}_{f_{\boldsymbol{\mathsf{N}},\boldsymbol{\mathsf{k}}}} = \frac{1}{\sqrt{|\det \boldsymbol{\mathsf{J}}|}} \sum_{\boldsymbol{\mathsf{g}} \in \mathcal{G}(\boldsymbol{\mathsf{J}}^T)} \overline{\hat{a}_{\varphi,\boldsymbol{\mathsf{k}}+\boldsymbol{\mathsf{N}}^T\boldsymbol{\mathsf{g}}}} \hat{a}_{f_{\boldsymbol{\mathsf{M}},\boldsymbol{\mathsf{k}}+\boldsymbol{\mathsf{N}}^T\boldsymbol{\mathsf{g}}}}, \quad \boldsymbol{\mathsf{k}} \in \mathcal{G}(\boldsymbol{\mathsf{N}}^T)$$

analog mit $\psi \in \mathit{V}_{\mathbf{M}}^{\xi}$ für $g_{\mathbf{N}} \in \mathit{V}_{\mathbf{N}}^{\psi}$

 \Rightarrow Wavelet-Transformation in O(m)

- $\bullet \ \mathcal{K}(\mathbf{M}^T) = \mathbf{M}^T[-\frac{1}{2}, \frac{1}{2}]^d \cap \mathbb{Z}^d$
- Dirichlet-Skalierungsfunktion $c_{\mathbf{k}}(\varphi_{\mathbf{M}}) = \frac{1}{\sqrt{m}} \mathbf{1}_{\mathcal{K}(\mathbf{M}^T)}(\mathbf{k})$
- ⇒ Gibbs-Phänomen
 - Ränder gesondert betrachten für Orthonormalität

Für
$$\mathbf{M}=\left(egin{smallmatrix} 28 & -12 \\ 12 & 4 \end{smallmatrix} \right)$$
 und $\mathbf{J}=\mathbf{J}_X\Rightarrow \mathbf{N}=\left(egin{smallmatrix} 14 & -6 \\ 12 & 4 \end{smallmatrix} \right)$

 $c_{\mathbf{k}}(\varphi_{\mathbf{M}})$

schematisch

- $\mathcal{K}(\mathbf{M}^T) = \mathbf{M}^T[-\frac{1}{2}, \frac{1}{2}]^d \cap \mathbb{Z}^d$
- Dirichlet-Skalierungsfunktion $c_{\mathbf{k}}(\varphi_{\mathbf{M}}) = \frac{1}{\sqrt{m}} \mathbf{1}_{\mathcal{K}(\mathbf{M}^T)}(\mathbf{k})$
- ⇒ Gibbs-Phänomen
 - Ränder gesondert betrachten für Orthonormalität

Für
$$\mathbf{M}=\left(egin{smallmatrix} 28 & -12 \\ 12 & 4 \end{smallmatrix} \right)$$
 und $\mathbf{J}=\mathbf{J}_X\Rightarrow \mathbf{N}=\left(egin{smallmatrix} 14 & -6 \\ 12 & 4 \end{smallmatrix} \right)$

$$c_{\mathbf{k}}(\varphi_{\mathbf{N}}), |c_{\mathbf{k}}(\psi_{\mathbf{N}})|$$

schematisch

- $\mathcal{K}(\mathbf{M}^T) = \mathbf{M}^T[-\frac{1}{2}, \frac{1}{2}]^d \cap \mathbb{Z}^d$
- de la Vallée Poussin-Mittel $c_{\mathbf{k}}(\tilde{\varphi}_{\mathbf{M}})$
- ⇒ Lokalisierung
 - Glattheit auch am Rand

Für
$$\mathbf{M}=\left(egin{smallmatrix} 28 & -12 \\ 12 & 4 \end{smallmatrix} \right)$$
 und $\mathbf{J}=\mathbf{J}_X\Rightarrow \mathbf{N}=\left(egin{smallmatrix} 14 & -6 \\ 12 & 4 \end{smallmatrix} \right)$

 $c_{\mathbf{k}}(\tilde{\varphi}_{\mathbf{N}}), |c_{\mathbf{k}}(\tilde{\psi}_{\mathbf{N}})|$

schematisch

- $\mathcal{K}(\mathbf{M}^T) = \mathbf{M}^T[-\frac{1}{2}, \frac{1}{2}]^d \cap \mathbb{Z}^d$
- Dirichlet-Skalierungsfunktion $c_{\mathbf{k}}(\varphi_{\mathbf{M}}) = \frac{1}{\sqrt{m}} \mathbf{1}_{\mathcal{K}(\mathbf{M}^T)}(\mathbf{k})$
- ⇒ Gibbs-Phänomen
 - Ränder gesondert betrachten für Orthonormalität

Für
$$\mathbf{M}=\left(\begin{smallmatrix} 28 & -12 \\ 12 & 4 \end{smallmatrix} \right)$$
 und $\mathbf{J}=\mathbf{J}_X\Rightarrow \mathbf{N}=\left(\begin{smallmatrix} 14 & -6 \\ 12 & 4 \end{smallmatrix} \right)$

$$c_{\mathbf{k}}(\varphi_{\mathbf{N}})$$

$$c_{\mathbf{k}}(\psi_{\mathbf{N}}) \times e^{2\pi i \mathbf{k}^{\mathsf{T}} \mathbf{N}^{-1} \mathbf{g}}, \ \mathbf{g} \in \mathcal{P}(\mathsf{J}) \setminus \{\mathbf{0}\}$$

- $\mathcal{K}(\mathbf{M}^T) = \mathbf{M}^T[-\frac{1}{2}, \frac{1}{2}]^d \cap \mathbb{Z}^d$
- ullet de la Vallée Poussin-Mittel $\, c_{\mathbf{k}}(ilde{arphi}_{\mathbf{M}}) \,$
- ⇒ Lokalisierung
 - Glattheit auch am Rand

Für
$$\mathbf{M}=\left(egin{smallmatrix} 28 & -12 \\ 12 & 4 \end{smallmatrix} \right)$$
 und $\mathbf{J}=\mathbf{J}_X\Rightarrow \mathbf{N}=\left(egin{smallmatrix} 14 & -6 \\ 12 & 4 \end{smallmatrix} \right)$

$$c_{\mathbf{k}}(\tilde{\varphi}_{\mathbf{N}})$$

$$c_{\mathbf{k}}(\tilde{\psi}_{\mathbf{N}}) \times e^{2\pi i \mathbf{k}^{\mathsf{T}} \mathbf{N}^{-1} \mathbf{g}}, \ \mathbf{g} \in \mathcal{P}(\mathbf{J}) \setminus \{\mathbf{0}\}$$

- $\bullet \ \mathcal{K}(\mathbf{M}^T) = \mathbf{M}^T[-\frac{1}{2}, \frac{1}{2}]^d \cap \mathbb{Z}^d$
- ullet Dirichlet-Skalierungsfunktion $\varphi_{\mathbf{M}}$
- ⇒ Gibbs-Phänomen
 - im Zeitbereich: Richtungspräferenz

Für
$$\mathbf{M}=\left(\begin{smallmatrix} 28 & -12 \\ 12 & 4 \end{smallmatrix} \right)$$
 und $\mathbf{J}=\mathbf{J}_X\Rightarrow \mathbf{N}=\left(\begin{smallmatrix} 14 & -6 \\ 12 & 4 \end{smallmatrix} \right)$

- $\bullet \ \mathcal{K}(\mathbf{M}^T) = \mathbf{M}^T[-\frac{1}{2}, \frac{1}{2}]^d \cap \mathbb{Z}^d$
- ullet Dirichlet-Skalierungsfunktion $arphi_{\mathbf{M}}$
- ⇒ Gibbs-Phänomen
 - im Zeitbereich: Richtungspräferenz

Für
$$\mathbf{M}=\left(\begin{smallmatrix} 28 & -12 \\ 12 & 4 \end{smallmatrix} \right)$$
 und $\mathbf{J}=\mathbf{J}_X\Rightarrow \mathbf{N}=\left(\begin{smallmatrix} 14 & -6 \\ 12 & 4 \end{smallmatrix} \right)$

- $\bullet \ \mathcal{K}(\mathbf{M}^T) = \mathbf{M}^T[-\frac{1}{2}, \frac{1}{2}]^d \cap \mathbb{Z}^d$
- ullet Dirichlet-Skalierungsfunktion $\varphi_{\mathbf{M}}$
- ⇒ Gibbs-Phänomen
 - im Zeitbereich: Richtungspräferenz

Für
$$\mathbf{M}=\left(egin{smallmatrix} 28 & -12 \\ 12 & 4 \end{smallmatrix} \right)$$
 und $\mathbf{J}=\mathbf{J}_X\Rightarrow \mathbf{N}=\left(egin{smallmatrix} 14 & -6 \\ 12 & 4 \end{smallmatrix} \right)$

 φ_{N}

- $\bullet \ \mathcal{K}(\mathbf{M}^T) = \mathbf{M}^T[-\frac{1}{2}, \frac{1}{2}]^d \cap \mathbb{Z}^d$
- ullet de la Vallée Poussin-Mittel $\, ilde{arphi}_{
 m M} \,$
- ⇒ Lokalisierung
 - im Zeitbereich: Richtungspräferenz

Für
$$\mathbf{M}=\left(egin{smallmatrix} 28 & -12 \\ 12 & 4 \end{smallmatrix} \right)$$
 und $\mathbf{J}=\mathbf{J}_X\Rightarrow \mathbf{N}=\left(egin{smallmatrix} 14 & -6 \\ 12 & 4 \end{smallmatrix} \right)$

 $\tilde{\varphi}_{\mathbf{N}}$

$$B_{\Xi}(\mathbf{x})$$

- Samplingpunkte: $2\pi \mathbf{y}, \ \mathbf{y} \in \mathcal{P}(\mathbf{M}), \mathbf{M} = \begin{pmatrix} 512 & 0 \\ 0 & 512 \end{pmatrix}$
- Dirichlet-Wavelets
- 3 Zerlegunsmöglichkeiten:

$B_{\Xi}(\mathbf{R}_{\frac{\pi}{6}}\mathbf{x})$

$B_{\Xi}(\mathbf{R}_{\frac{\pi}{4}}\mathbf{x})$

$$B_{\Xi}(\mathbf{R}_{\frac{\pi}{3}}\mathbf{x}), \mathbf{M}_{2} = \begin{pmatrix} 256 & -444 \\ 444 & 256 \end{pmatrix}$$

200

-200

 \mathbf{J}_{χ}

 \mathbf{J}_D

 \mathbf{J}_{Y}

$$B_{\Xi}(\mathbf{R}_{\frac{\pi}{3}}\mathbf{x}), \mathbf{M}_{2} = \begin{pmatrix} 256 & -444 \\ 444 & 256 \end{pmatrix}$$

Beispiel: Zerlegung und Lokalität

- Box Spline B_{Θ} , $\Theta = \frac{\pi}{8} \begin{pmatrix} 8 & 0 & 1 & 0 & -1 \\ 0 & 8 & 0 & 1 & 1 \end{pmatrix}$
- um $\frac{\pi}{3}$ gedreht
- Samplingpunkte: $2\pi \mathbf{y}$, $\mathbf{y} \in \mathcal{P}(\mathbf{M}_2)$, $\mathbf{M}_2 = \begin{pmatrix} 256 & -444 \\ 444 & 256 \end{pmatrix}$
- gleiche Zerlegung wie im letzten Beispiel

Beispiel: Zerlegung und Lokalität

Beispiel: Zerlegung und Lokalität

Zusammenfassung

- Muster $\mathcal{P}(\mathbf{M})$ verallgemeinern äquidistante Punkte
- auf $\mathcal{P}(\mathbf{M})$: FFT & schnelle Wavelet-Transformation
- Vergleich der Dirichlet- und de la Vallée Poussin-Mittel-Wavelets
- Richtungspräferenz bei der Kantendetektion
- Mit den de la Vallée Poussin-Wavelets
 - gute Lokalisationseigenschaften
 - Scherungsmatrizen möglich, etwa $\mathbf{J} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$

Literatur

- [Be13] rb, The fast Fourier Transform and fast Wavelet Transform for Patterns on the Torus, erscheint im ACHA (2013).
- [LP10] D. Langemann, J. Prestin, *Multivariate periodic wavelet analysis*, ACHA 28 (2010), p. 46–66.
- [MS03] I. E. Maximenko, M. A. Skopina, *Multivariate periodic wavelets*, St. Petersbg. Math. J. 15 (2003), p. 165–190.
- [PT95] G. Plonka, M. Tasche, On the computation of periodic spline wavelets, ACHA 2 (1995), p. 1–14.
- [Se95] K. Selig, periodische Wavelet-Packets und eine gradoptimale Schauderbasis, Dissertation, Universität Rostock, 1998.

Vielen Dank für die Aufmerksamkeit.