Signals and Systems

Homework 11 — Due : May 24 2024

Problem 1 (30 pts). Consider a causal and stable LTI system S whose input x[n] and output y[n] are related through the second-order difference equation

$$y[n] - \frac{1}{6}y[n-1] - \frac{1}{6}y[n-2] = x[n].$$

Determine the frequency response and the impulse response for the system.

Problem 2 (30 pts). Determine the Laplace transform, its poles and zeros, and the associated ROC, for the following functions of time:

(a)
$$x(t) = e^{-3t}u(t) + e^{-4t}u(t)$$

(b)
$$x(t) = e^{3t} \sin(4t)u(-t)$$

Problem 3 (40 pts). Consider the expression

$$\frac{(s-2)(s-3)}{(s+2)(s-\sqrt{5})(s^2-s+1)}.$$

- (a) Find all zeros and poles.
- (b) How many signals have a Laplace transform that may be expressed as this expression in its region of convergence?

Problem 1 (30 pts). Consider a causal and stable LTI system S whose input x[n] and output y[n] are related through the second-order difference equation

$$y[n] - \frac{1}{6}y[n-1] - \frac{1}{6}y[n-2] = x[n].$$

Determine the frequency response and the impulse response for the system.

Problem 2 (30 pts). Determine the Laplace transform, its poles and zeros, and the associated ROC, for the following functions of time:

(a)
$$x(t) = e^{-3t}u(t) + e^{-4t}u(t)$$

$$d \left\{ e^{-3t} u(t) \right\} = \int_{0}^{\infty} e^{-3t} \cdot e^{-st} dt = \frac{1}{5+3} \qquad d \left\{ e^{-st} u(t) \right\} = \int_{0}^{\infty} e^{-st} \cdot e^{-st} dt = \frac{1}{5+4}$$

zero:
$$S = \frac{-7}{2}$$
, pole: $S = -3$, $S = -4$, ROC: $R_e\{s\} > -3$

(b)
$$x(t) = e^{3t} \sin(4t)u(-t)$$

$$\lambda \left\{ \chi(t) \right\} = \lambda \left\{ \frac{1}{2j} \left(e^{3-4i} \right)^{t} - e^{(3-4j)t} \right\} u(-t) \right\} = \frac{1}{2j} \int_{0}^{\infty} \left(e^{-(3-4i)t} - e^{(3-4i)t} \right) e^{st} dt$$

$$= \frac{1}{2j} \left(\frac{1}{(s+3+4j)} - \frac{1}{-s+3-4j} \right) = \frac{-4}{(s-3-4j)(s-3+4j)}$$

 $\frac{(s-2)(s-3)}{(s+2)(s-\sqrt{5})(s^2-s+1)}.$ (a) Find all zeros and poles. $g^2 - g + | = 0$, $g = \frac{|\pm \overline{3}j|}{2}$ zero: S = 2, S = 3. Pole: S = -2, $S = \sqrt{\frac{1+\sqrt{3}j}{2}}$, $S = \frac{1-\sqrt{3}j}{2}$ (b) How many signals have a Laplace transform that may be expressed as this expression in its region of convergence? 4 4 : R_{e} : R_{e} [s] <-2, -2 < R_{e} [s] < $\frac{1}{2}$, $\frac{1}{2}$ < R_{e} [s] < $\sqrt{5}$, R_{e} [s] > $\sqrt{5}$

Problem 3 (40 pts). Consider the expression