Practice Problems for 2nd Midterm for Calculus-Based Physics-1: Mechanics (PHYS150-01)

Dr. Jordan Hanson - Whittier College Dept. of Physics and Astronomy

October 16th, 2017

1 Vectors and Newton's Laws

For each of the exercises below, $\vec{a} = 3\hat{i} + 4\hat{j}$, and $\vec{b} = 6\hat{i} + 8\hat{j}$.

- 1. Calculate the magnitude of \vec{a} : $|\vec{a}| = \sqrt{3^2 + 4^2} = 5$.
- 2. Calculate the magnitude of \vec{b} : $|\vec{b}| = \sqrt{4^2 + 8^2} = 10$.
- 3. Calculate the dot product $\vec{a} \cdot \vec{b}$: 3 * 6 + 4 * 8 = 50 (Notice the dot product gives a number).
- 4. Using $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$, get the angle θ between the vectors: $\vec{a} \cdot \vec{b}/(|\vec{a}| |\vec{b}|) = \cos \theta = 50/(5*10) = 1$. So $\cos \theta = 1$, therefore $\theta = 0$.

2 Restoring Forces and Young's Modulus

1. The Young's Modulus of a material, Y, is given in the following form:

$$\frac{x}{L} = \frac{p}{Y} \tag{1}$$

The *pressure* p is the applied force divided by the area being pressed or pulled p = F/A. The displacement x is the amount of length change, and L is the original length of the object. If a 100 N force is applied to an object with cross-sectional area 1.0 cm², with original length 5 cm, and the length changes by 1 mm, what is the Young's Modulus?

Solve it algebraically before plugging in numbers:

Y = (F/A)(L/x).

But we need the area in m^2 : 1 cm² = 10^{-4} m². So we have

 $Y = (100/10^{-4})(5cm/1mm) = 10^{2}10^{6}50 = 5 \times 10^{9}$ Pascals

3 Frictional Forces

1. We did a lab to measure $\mu_{\rm k}$, the coefficient of static friction. Show that the free-body diagram yields the following equation $\mu_{\rm k}=\frac{m_{\rm p}}{m_{\rm B}}<1$:

The pulley transmits the gravitational force (which points down) into tension which pulls the block sideways. The tension is therefore $m_{\rm P}g$, where $m_{\rm P}$ is the mass on the pulley. The frictional force is $\mu_{\rm B}N$, where N is the normal force. The normal force is $m_{\rm B}g$, where $m_{\rm B}$ is the mass of the block. If these forces are in balance, we have $\mu_{\rm B}m_{\rm B}g=m_{\rm P}g$ so $\mu=\frac{m_{\rm P}}{m_{\rm B}}$. The mass on the pulley was always smaller because the block mass included the wood and weights added to it.