# Keysight 6G Antenna Testing

Senior Design Project

05/XX/2023





#### **UCSC Team:**

Shawn Armstrong
James Kohls
Jonah Labi
Luka Kolev

Sahil Gupta Sebastian Kropp Shayan Bathaee

### **Keysight Team:**

Jeff Dralla (Director of business development)

Alan Copeland (Senior Software Engineer)

Ivan Diep (Software Solutions Engineer)

Brennen Direnzo (Product manager for automation)



- Specializes in test and measurement space
- Assists companies with conducting their own internal test and measurement operations



### The Customers

- Companies need their solutions
- <DRAFT>









### Problem

# Weak Testing Standards for 6G

#### Problems:

 Without a proper standard companies cannot address the bandwidth and performance demands of a 6G device

#### Our work:

- Created a user friendly solution that allow easy integration of 6G test plans
- Used OpenTAP software to communicate with cobots connected to a 6G antenna



# What is OpenTipo?

- Open source test and measurement framework
- Define testing operations for a piece of hardware
- Determines successful execution of testing operations
- Log the results and provide information regarding the tested hardware



### Relevant OpenTAP Terminology

- Test step
  - Building block of OpenTAP test plans, performs a specific action or measurement.
- Test plan
  - Sequence of test steps.
- Plugin
  - Software component that extends the functionality of OpenTAP by providing additional features.
- Package
  - Collection of related test steps, plugins, and other resources.
- Instrument
  - A hardware device that is used for measuring or controlling a physical system.

### **Project Goals**

#### **High Level Goals:**

- Support Keysight's efforts in designing a robust system used to test 6G antennas in a controlled environment.
- Extend OpenTAP capabilities to easily enable customers to use collaborobots within their test plans.

#### **Low Level Goals:**

- Integrating OpenTAP software with collaborative robot software.
- Augmenting the design to include resources that can be scaled to an arbitrary collaborative robot.



### **Project Constraints**

#### HARDWARE (IF APPLICABLE)

- Begin with a UR3e Bot.
- Expand functionality to all Cobots.

#### SOFTWARE (IF APPLICABLE)

- Create the plugin in Python.
- Integrate ROS2 into plugin.
- Run on Windows/Linux.

### Challenges

- Interfacing with any Cobot without its custom software.
  - Receiving data was the main challenge and we explored many avenues to solve this problem.
- Reverse engineering third party source code related to ROS2.
- Understanding the Python .NET flavor.
- Working with different machines.
  - This problem was solved by dockerizing the plugin development.



### Technologies Used

# OPENTAP





- VNC (Virtual Network Computing)
- Universal Robots Simulator, URcap (sim extension for third party communication)
- Rviz, Movelt (Cobot visualization)
- Modbus
  - Our Keysight Test Automation plugin is built with a python flavored .NET framework. Therefore we used the Universal Robot's Python based ROS2 Driver.

## Approach

 Robot Communication with the testing software

2. Platform independency of the testing software



### System Illustration



Full Screen Link



# Development Architectural Diagram





Verify Floating Licenses for GUI (Editor X)

**License Server** [Software System]

Handles the KS8400A and KS8106A

- VNC (Virtual Network Computing)
- Universal Robots Simulator, URcap (sim extension for third party communication)
- Rviz, Movelt (Cobot visualization)
- Our Keysight Test Automation plugin is built with a python flavored .NET framework. Therefore we used the Universal Robot's Python based ROS2 Driver.

miro

Test and Development Architecture Diagram (UCSC-Keysight)

The container diagram for UCSC CSSSPP Last modified: 2023-03-06

# CI/CD Pipeline

To ensure that plugin build remains successful for every merge, a CI pipeline has been created that installs all the necessary dependencies and checks that the plugin builds successfully.

#### Current pipeline:

- Currently contains build scripts.
- Runs on ubuntu environments.
- Uses .NET CLI to build the project and install plugin dependencies

### Results

- UR3e OpenTAP instrument.
- Test step to send commands to cobot via TCP.
- Automated the process of sending move commands.
- Dockerized the project.
- Exploring ROS2 (more than one cobot, scalability)

