The group G is isomorphic to the group labelled by [18, 5] in the Small Groups library. Ordinary character table of $G \cong C6 \times C3$:

	1a	3a	3b	3c	3d	3e	3f	3g	3h	2a	6a	6b	6c	6d	6e	6f	6g	6h
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1
χ_3	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$
χ_4	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	-1	-E(3)	$-E(3)^2$	-1	-E(3)	$-E(3)^2$	-1	-E(3)	$-E(3)^2$
χ_5	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)
χ_6	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	-1	$-E(3)^2$	-E(3)	-1	$-E(3)^2$	-E(3)	-1	$-E(3)^2$	-E(3)
χ_7	1	1	1	E(3)	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	1	1	1	E(3)	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^2$
χ_8	1	1	1	E(3)	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	-1	-1	-1	-E(3)	-E(3)	-E(3)	$-E(3)^2$	$-E(3)^2$	$-E(3)^2$
χ_9	1	E(3)	$E(3)^{2}$	E(3)	$E(3)^{2}$	1	$E(3)^{2}$	1	E(3)	1	E(3)	$E(3)^{2}$	E(3)	$E(3)^{2}$	1	$E(3)^{2}$	1	E(3)
χ_{10}	1	E(3)	$E(3)^{2}$	E(3)	$E(3)^{2}$	1	$E(3)^{2}$	1	E(3)	-1	-E(3)	$-E(3)^2$	-E(3)	$-E(3)^2$	-1	$-E(3)^2$	-1	-E(3)
χ_{11}	1	$E(3)^{2}$	E(3)	E(3)	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	1	1	$E(3)^{2}$	E(3)	E(3)	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	1
χ_{12}	1	$E(3)^{2}$	E(3)	E(3)	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	1	-1	$-E(3)^2$	-E(3)	-E(3)	-1	$-E(3)^2$	$-E(3)^2$	-E(3)	-1
χ_{13}	1	1	1	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	E(3)	1	1	1	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	E(3)
χ_{14}	1	1	1	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	E(3)	-1	-1	-1	$-E(3)^2$	$-E(3)^2$	$-E(3)^2$	-E(3)	-E(3)	-E(3)
χ_{15}	1	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	E(3)	$E(3)^{2}$	1	1	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	E(3)	$E(3)^{2}$	1
χ_{16}	1	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	E(3)	$E(3)^{2}$	1	-1	-E(3)	$-E(3)^2$	$-E(3)^2$	-1	-E(3)	-E(3)	$-E(3)^2$	-1
χ_{17}	1	$E(3)^{2}$	E(3)	$E(3)^{2}$	E(3)	1	E(3)	1	$E(3)^{2}$	1	$E(3)^{2}$	E(3)	$E(3)^{2}$	E(3)	1	E(3)	1	$E(3)^{2}$
χ_{18}	1	$E(3)^{2}$	E(3)	$E(3)^{2}$	E(3)	1	E(3)	1	$E(3)^{2}$	-1	$-E(3)^2$	-E(3)	$-E(3)^2$	-E(3)	-1	-E(3)	-1	$-E(3)^2$

Trivial source character table of $G \cong C6 \times C3$ at p = 3:

Normalisers N_i	N_1		N_2		N_3		N_4		N_5		N_6	
p-subgroups of G up to conjugacy in G	P_1		P_2		P_3		P_4		P_5		P_6	
Representatives $n_j \in N_i$	1a	2a										
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18}$	9	9	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	-9	0	0	0	0	0	0	0	0	0	0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$	3	3	3	3	0	0	0	0	0	0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \end{vmatrix} $	3	-3	3	-3	0	0	0	0	0	0	0	0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$	3	3	0	0	3	3	0	0	0	0	0	0
	3	-3	0	0	3	-3	0	0	0	0	0	0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$	3	3	0	0	0	0	3	3	0	0	0	0
	3	-3	0	0	0	0	3	-3	0	0	0	0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18}}$	3	3	0	0	0	0	0	0	3	3	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	-3	0	0	0	0	0	0	3	-3	0	0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$	1	1	1	1	1	1	1	1	1	1	1	1
	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1

```
P_1 = Group([()]) \cong 1
```

- $N_1 = Group([(1,2),(3,4,5),(6,7,8)]) \cong C6 \times C3$
- $N_2 = Group([(1,2),(3,4,5),(6,7,8)]) \cong C6 \times C3$
- $N_3 = Group([(1,2),(3,4,5),(6,7,8)]) \cong C6 \times C3$
- $N_4 = Group([(1,2),(3,4,5),(6,7,8)]) \cong C6 \times C3$
- $N_5 = Group([(1,2),(3,4,5),(6,7,8)]) \cong C6 \times C3$
- $N_6 = Group([(1,2),(3,4,5),(6,7,8)]) \cong C6 \times C3$

 $P_2 = Group([(6,7,8)]) \cong C3$

 $P_3 = Group([(3, 4, 5)]) \cong C3$

 $P_4 = Group([(3,4,5)(6,7,8)]) \cong C3$

 $P_5 = Group([(3,5,4)(6,7,8)]) \cong C3$

 $P_6 = Group([(6,7,8),(3,4,5)]) \cong C3 \times C3$