다층퍼셉트론 신경회로망 Multilayer Perceptron Neural Network

모델 Power

선형 회귀분석 vs 비선형 회귀분석

• 선형 회귀분석

$$\hat{y} = \Theta + \sum_{i=1}^{p} w_i x_i$$

- "선형": 모델 파라메터인 beta 또는 w 들간의 관계
- x 대신 x^2, x^3, e^x, log x, sin x 가 대체 되어도 모두 선형 회귀분석

선형회귀분석 vs 비선형회귀분석

- 비선형 회귀분석
 - 모델 파라미터 간의 관계가 비 선형
 - 다양한 모델 존재
 - 그 가운데 가장 인기 좋은 신경회로망
 - 신경 회로망 가운데 가장 많이 사용되는 multi-layer perceptron 다층 퍼셉트론

선형 회귀분석 vs 비선형 회귀분석

- 비선형 회귀분석
 - 다양한 모델 존재
 - 그 가운데 가장 인기 좋은 신경회로망
 - 신경 회로망 가운데 가장 많이 사용되는 multi-layer perceptron 다층 퍼셉트론
- 선형과 비선형의 비교
 - 선형은 직선 fit (x^2 이나 e^x 없는 경우)
 - 비선형은 곡선 fit

함수 fit

- 주어진 함수 f 로부터 데이터 D 생성
- 생성된 D 를 바탕으로 y = f'(X) 구축
- 모델 f' 와 f 비교 (f' 이 f 와 비슷한가?)
- 주어진 함수 f
 - y = 2/x
 - $y = log_2 x$
 - y = exp(-0.2 * x)
 - $y = \sin(x)$

선형으로도 fit 가능하지만...

- 선형 회귀분석으로도 2/x, log x, e(-0.2x), sin x 항을 넣으면 위 함수들을 정확히 fit 할 수 있음
- 그러나 현실적으로 데이터 세트 D 만 주어졌을 때에, 어떤 "비선형 항"을 넣어야 하는지 판단 불가
- 따라서 신경망과 같은 general nonlinear model 이 사용성 측면에서 뛰어남

모델 구조

Neural networks

• 신경회로망

• 인간: ~1천억 개 뉴론 들이 10조 개의 시냅스를 통해 연결됨

단층 퍼셉트론 single-layer perceptron

다층 퍼셉트론 multi-layer perceptron

망 구조

- 노드, 뉴런 (회귀식 변수)
- 노드 층
 - 입력층 input layer
 - 은닉층 hidden layer
 - 출력층 output layer
- 에지, 시냅스 (회귀식 계수)

3층 퍼셉트론 구조

* 영국식 층 계산 법

3층 퍼셉트론 구조

- input layer: input nodes = input or independent variables x
- output layer: output node = output or dependent variable y
- hidden layer: hidden nodes = ? h

각 노드에서 하는 계산

 (bio) Action potential, nonlinearity, threshold, synapse, other neuron's

$$output_{j} = g(\Theta_{j} + \sum_{i=1}^{p} w_{ij} x_{i})$$

1층 퍼셉트론 구조는?

- P 개의 입력 노드와 1개의 출력노드를 가진...
- P=3
- 시냅스 수는?

선형 회귀 모델 Linear Regression!!

출력 노드가 하나이고 중간층이 없는 망은, 여기서 g는 항등함수, 선형 회귀분석 모델과 같은 형태를 취한다.

$$\hat{y} = \Theta + \sum_{i=1}^{p} w_i x_i$$

2층 퍼셉트론 구조는?

- P 개의 입력 노드, H 개의 은닉 노드, 1 개의 출력 노드
- P=3, H=4
- 시냅스 수는?

비선형 2층 퍼셉트론 모델

- Nonlinear regression 인 경우,
 - 히든 노드의 g 함수는 sigmoid 이고,
 - 출력 노드의 g 함수는 identity (or linear) 를 사용
- 수식으로 표현하면

$$y = \Theta_0 + \sum_{j=1}^{H} w_j \{g(\Theta_j + \sum_{i=1}^{p} w_{ij} x_i)\}$$

• Logistic Regression 몇 개?

Example – Using fat & salt content to predict consumer acceptance of cheese

Figure 11.2: Neural network for the tiny example. Circles represent nodes, $w_{i,j}$ on arrows are weights, and θ_i are node bias values.

Example - Data

Obs.	Fat Score	Salt Score	Acceptance
1	0.2	0.9	1
2	0.1	0.1	0
3	0.2	0.4	0
4	0.2	0.5	0
5	0.4	0.5	1
6	0.3	0.8	1

모델 작동

입력층

입력층에서, 입력 = 출력

• E.g., record #1에서:

지방 입력 = 출력 = 0.2

염분 입력 = 출력 = 0.9

입력층의 출력 = 은닉층으로 입력

은닉층

이 예에서, 은닉층은 3개의 노드를 가짐

각 노드는 전체 입력 노드의 출력을 입력함

각 은닉층의 출력은 입력 가중치 합의 함수

$$output_{j} = g(\Theta_{j} + \sum_{i=1}^{p} w_{ij} x_{i})$$

Function g?

- g(x) = 1/(1+exp(-x))
- 시그모이드, 로지스틱
- 뉴론의 활성화 함수 또는 학습 함수

Function g?

- $g(x) = 1/(1 + \exp(-k^*x))$
- k 값이 아주 크면, 시그모이드, 로지스틱 함수는 어떤 모양이 되는가?

노드 3의 출력: 문제가 예측이면 g가 identity 함수이고, 분류이면 g가 로지스틱

$$output_{j} = g(\Theta_{j} + \sum_{i=1}^{p} w_{ij} x_{i})$$

$$output_3 = \frac{1}{1 + e^{-[-0.3 + (0.05)(0.2) + (0.01)(0.9)]}} = 0.43$$

신경망의 초기 통과

Figure 11.3: Computing node outputs (in boldface type) using the first observation in the tiny example and a logistic function.

출력층

마지막 중간층의 출력이 출력층의 입력이 됨

위와 같은 함수 사용, i.e. 가중평균의 g 함수

$$output_6 = \frac{1}{1 + e^{-[-0.015 + (0.01)(0.43) + (0.05)(0.507) + (0.015)(0.511)]}} = 0.506$$

출력 노드

Figure 11.3: Computing node outputs (in boldface type) using the first observation in the tiny example and a logistic function.

비선형분리가능성

- OR 문제
 - "선형 Decision Boundary"
 - 1층 perceptron 으로 분리 가능

- OR 문제
 - "선형 Decision Boundary"
 - 1층 perceptron 으로 분리 가능
 - How? Give w's

- XOR 문제
 - 1층 perceptron 으로 분리 불가능
 - 1969 "Perceptron" by Minsky
 - 여러 개의 1층 perceptron 으로는 분리 가능!

- XOR 문제
 - How? Stacking!

Stacked "2-layer perceptron"

