Automaty Komórkowe

Wykład 13

https://github.com/houp/ca-class

Witold Bołt, 12.06.2024

Poprzednio omówiliśmy

- Wykład 1: Sprawy organizacyjne, motywację do zajmowania się CA, podstawowe pojęcia / definicje / intuicje.
- Wykład 2: Definicja (formalna) i podstawowe w fakty o ECA. Reprezentacja Wolframa.
- Wykład 3: Symetrie w zbiorze ECA, relacje do ogólnej teorii układów dynamicznych, własności CA/ECA.
- Wykład 4: Alternatywne reprezentacje reguły lokalnej, problem klasyfikacji gęstości (DCP).
- Wykład 5 (zdalny): Algorytmy ewolucyjne poszukiwanie automatów komórkowych o określonych własnościach
- Wykład 6: Stochastyczne automaty komórkowe, pLUT, α -ACAs, Diploid CAs, stochastic mixture, dekompozycja
- Wykład 7: Afiniczne Ciągle Automaty Komórkowe wielomiany, cLUT, relaxed DCP + bonus praca w IT
- Wykład 8: Identyfikacja Deterministycznych Automatów Komórkowych
- Wykład 9: Identyfikacja Stochastycznych Automatów Komórkowych
- Wykład 10 (zdalny): 2D Automaty Komórkowe / Life i Life-like / totalistic & outer-totalistic CAs
- Wykład 11: Modele pożaru lasu, rozprzestrzeniania się epidemii (SIR), GH i podobne modele
- Wykład 12: Automaty Komórkowe zachowujące gęstość; Zastosowania w modelowaniu ruchu ulicznego

Co będzie dalej

- (12.06) Wykład 13: Nie-jednorodne (non-uniform) Automaty Komórkowe;
 Neural CAs (Neuronowe Automaty Komórkowe);
- (19.06) Wykład 14: spotkanie w siedzibie Jit Team w Gdyni

ul. Łużycka 8C, Budynek Tensor Y, Gdynia Redłowo

start o **13:00** temat *niespodzianka*;)

Zanim zaczniemy...

Czy model NaSch to jest CA?

- Aby był to CA, to musimy określić conajmniej:
 - Zbiór stanów
 - Sąsiedztwo
 - Regułę lokalną

Opisana w artykule, tylko trzeba patrzeć na nią "z perspektywy" komórek drogi a nie aut.

Stan 0' – puste miejsce $\begin{array}{c} \text{Stan 0' - puste miejsce} \\ \text{Stany } 0, \dots, \nu_{\text{max}} \text{ - samoch\'od z okre\'slona} \\ \text{pr\'edko\'scia} \end{array}$

Komórka w stanie 0' zostanie zajęta przez samochód jadący z prawej, który jest w odległości równej swojej aktualnej prędkości zatem sąsiedztwo musi widzie $v_{\rm max}$ sąsiadów z jednej ze stron. Co więcej musi widzieć $v_{\rm max}$ komórek po drugiej ze stron aby ustalić nową prędkość.

Komórka w stanie $0,\ldots,v_{\max}$ musi widzieć v_{\max} sąsiada po jednej ze stron (w kierunku ruchu) aby wiedzieć czy może się jakkolwiek ruszyć i jaką prędkość może ustalić jeśli jednak się nie ruszy.

Czyli sąsiedztwo ma promień $v_{
m max}$.

Niejednorodne Automaty Komórkowe

Non-uniform Cellular Automata

- Co to znaczy, że reguły CAs są "uniform"?
 - Zakładamy pewną regularność wszechświata prawa fizyki wszędzie działają jednakowo - zmieniają się jedynie stany komórek, ale reguła jest ta sama dla wszystkich
 - Zakładamy również pewność stałość prawa fizyki nie zmieniają się w czasie
- Czy nasz świat taki jest?
- Niestety odpowiedź brzmi: <u>niewiadomo</u>

Non-uniform Cellular Automata

- Na szczęście nie musimy studiować fizyki kwantowej, filozofii ani żadnych innych niebezpiecznych dziedzin... nie musimy odpowiadać na trudne pytania
- Jest bowiem łatwiejsze pytanie: czy w konkretnym modelu może <u>przydać się</u> to, że: a) reguły nie są jednakowe dla całej przestrzeni; b) reguły mogą zmieniać się w czasie?
 - Na takie postawione pytanie odpowiedź brzmi jednoznacznie: TAK!
 - No ale dlaczego? Bo tak jest łatwiej budować modele.

Non-uniform Cellular Automata

- Niech $S = \{s_1, ..., s_K\}$ będzie zbiorem **stanów**.
- Niech $\phi = \{f_1, ..., f_M\}$ będzie skończonym **zbiorem funkcji** takich, że dla każdego $1 \le i \le M$ zachodzi $f_i \colon \mathcal{S}^{2\,r+1} \to \mathcal{S}$. Innymi słowy zbiór ϕ będziemy nazywać zbiorem **reguł lokalnych**.
- Niech N>0 oznacza liczbę komórek. Funkcję $F\colon \mathcal{S}^N\to \mathcal{S}^N$ nazywamy regułą globalną **niejednorodnego automatu komórkowego** (global rule of a non-uniform CA) wtedy i tylko wtedy gdy:
 - $\forall_{j \in \{0,...,N-1\}} \exists_{i \in \{1,...,M\}} F_j(x_0,...,x_{N-1}) = f_i(x_{j-r},...,x_{j+r}),$ gdzie operacje na indeksach wykonywane są modulo N.
- Innymi słowy dla każdej z N>0 komórek, niezależnie i na stałe, przypisujemy pewną określoną regułę lokalną ze zbioru dowolnych reguł.

Non-uniform Elementary Cellular Automata

- Naturalnie najprostszy do przeanalizowania przypadek to niejednorodny odpowiednik Elementarnych Automatów Komórkowych.
- Liczba wszystkich automatów niejednorodnych jest bardzo duża, nawet jeśli ograniczmy się do dwóch stanów i promienia sąsiedztwa r=1. **Dlaczego**
 - Dlatego, że istnieje bardzo wiele możliwych przypisań ze zbioru ϕ do poszczególnych N komórek i **potencjalnie** każde przypisanie generuje inne zachowania.

Do czego można to użyć?

- Inne warunki lokalne, które nie są wyrażone przez stany modelu, np.:
 - rejony lasu, które są bardziej łatwo-palne
 - fragmenty drogi z ograniczeniem prędkości niższym niż $v_{
 m max}$
 - obszary w populacji mniej podatne na infekcji
- Użycie non-uniform CAs może być bardzo łatwe bo przypisanie konkretnej reguły do konkretnego fragmentu przestrzeni można zwizualizować graficznie kolorując poszczególne komórki na inne kolory

Information Sciences

Volume 626, May 2023, Pages 851-866

Non-uniform number-conserving elementary cellular automata

Barbara Wolnik ^{a c}, <u>Maciej Dziemiańczuk</u> ^b 🙎 🖂 , <u>Bernard De Baets ^c</u>

Show more 🗸

+ Add to Mendeley 📽 Share 🗦 Cite

https://doi.org/10.1016/j.ins.2023.01.033 >

Get rights and content 🗷

Abstract

In this paper, we investigate non-uniform elementary <u>cellular automata</u> (*i.e.*, one-dimensional <u>cellular automata</u> whose cells can use different Wolfram rules to update their states) in the context of number conservation. As a result, we obtain an exhaustive characterization of such number-conserving cellular automata on all finite grids both with periodic and <u>null</u> boundary conditions. The characterization obtained allows, *inter alia*, to enumerate all number-conserving non-uniform elementary cellular automata, in particular those that are reversible. Surprisingly, the numbers obtained are closely related to the <u>Fibonacci sequence</u>.

Information Sciences

INFORMATION SCIENCES

Volume 649, November 2023, 119680

Non-uniform number-conserving elementary cellular automata on the infinite grid: A tale of the unexpected

Barbara Wolnik ^{a c}, Maciej Dziemiańczuk ^b △ ☒, Bernard De Baets ^c

Show more ✓

+ Add to Mendeley ≪ Share 55 Cite

https://doi.org/10.1016/j.ins.2023.119680 ¬ Get rights and content ¬

Under a Creative Commons license ¬ • open access

Abstract

In this paper, we study non-uniform elementary <u>cellular automata</u> on the infinite grid in the context of number conservation. These <u>automata</u> operate in a one-dimensional setting, where individual cells can employ distinct Wolfram rules for updating their states. The result is an exhaustive characterization of such number-conserving cellular automata. Until now, such a characterization was known only for finite grids, for which research hypotheses could be derived on the basis of computer experiments. It turns out that when considering number conservation for non-uniform cellular automata, the infinite grid cannot be treated as a <u>limiting case</u> of finite grids, *i.e.*, there are number-conserving non-uniform cellular automata on the infinite grid that have no analogous counterpart on finite grids.

https://www.sciencedirect.com/science/article/abs/pii/S0020025523000336

https://www.sciencedirect.com/science/article/pii/S0020025523012653

ECA 30, ECA 90, ECA 110

Czy to ciągle jest CA?

- Okazuje się, że non-uniform CAs to jedynie pozornie uogólnienie koncepcji CAs.
- W istocie rzeczy, dodanie dodatkowych reguł lokalnych możemy równoważnie przedstawić jako dodanie dodatkowych stanów do zbioru stanów i rozważenie lekko zmodyfikowanej reguły lokalnej, która nie będzie już non-uniform - będzie spełniać definicję zwykłego CA.
- Jak to zrobić? Bardzo prosto!

Non-uniform CAs jednak są uniform?

- Niech $\mathcal{S} = \{s_1, ..., s_K\}$ będzie zbiorem **stanów,** oraz niech $\phi = \{f_1, ..., f_M\}$ będzie skończonym **zbiorem reguł lokalnych**, tak jak w definicji non-uniform CAs.
- Rozważmy zbiór stanów $\mathbf{X} = \mathcal{S} \times \{1, ..., M\}$. Zauważmy, że jeśli $\mathbf{x} \in \mathbf{X}$ to wówczas $\mathbf{x} = (s, i)$, gdzie $s \in \mathcal{S}$ oraz $i \in \{1, ..., M\}$.
- Rozważmy regułę lokalną $f \colon \mathbf{X}^{2r+1} \to \mathbf{X}$ zadaną wzorem:

$$f(x_{-r}, \dots, x_0, \dots, x_r) = f\left(\binom{s_{-r}}{i_{-r}}, \dots, \binom{s_0}{i_0}, \dots, \binom{s_r}{i_r}\right) = \binom{f_{i_0}(s_{-r}, \dots, s_r)}{i_0}.$$

Non-uniform CAs jednak są uniform?

• Rozważmy regułę lokalną $f \colon \mathbf{X}^{2r+1} \to \mathbf{X}$ zadaną wzorem:

$$f(x_{-r}, \dots, x_0, \dots, x_r) = f\left(\binom{s_{-r}}{i_{-r}}, \dots, \binom{s_0}{i_0}, \dots, \binom{s_r}{i_r}\right) = \binom{f_{i_0}(s_{-r}, \dots, s_r)}{i_0}.$$

- Zauważmy, że f jest jednoznacznie zdefiniowana przez zbiór ϕ i "radzi" sobie z dowolnym przypisaniem elementów z ϕ do poszczególnych komórek.
- Innymi słowy jeśli potraktujemy f jako **regułę lokalną automatu komórkowego** zdefiniowanego na \mathbf{X}^N , to tak powstały regularny (uniform) automat komórkowy będzie zachowywać się dokładnie tak samo jak automat nieregularny oczywiście w kontekście **pierwszej współrzędnej stanów**.

Non-uniform CAs jednak są uniform?

• Rozważmy regułę lokalną $f: \mathbf{X}^{2r+1} \to \mathbf{X}$ zadaną wzorem:

$$f(x_{-r}, \dots, x_0, \dots, x_r) = f\left(\binom{s_{-r}}{i_{-r}}, \dots, \binom{s_0}{i_0}, \dots, \binom{s_r}{i_r}\right) = \binom{f_{i_0}(s_{-r}, \dots, s_r)}{i_0}.$$

- Zwróćmy uwagę, że póki co w tej definicji druga współrzędna w wyniki reguły lokalnej pozostaje niezmieniona - stała. Ta druga współrzędna mówi o numerze reguły, który jest używany w danej komórce.
- A co się stanie jeśli również na drugiej współrzędnej wprowadzilibyśmy zmienność / dynamikę?
- Wtedy możemy modelować zmianę praw fizyki w czasie! Co więcej korzystając z powyższego możemy uzależnić zmianę tych praw zarówno od tego jakie prawa obowiązują w sąsiedztwie jak i od tego jakie stany ma sąsiedztwo!

Zmienne prawa fizyki?

• Rozważmy regułę lokalną $f \colon \mathbf{X}^{2r+1} \to \mathbf{X}$ zadaną wzorem:

$$f(x_{-r},\ldots,x_0,\ldots,x_r)=f\left(\binom{s_{-r}}{i_{-r}},\ldots,\binom{s_0}{i_0}\ldots,\binom{s_r}{i_r}\right)=\binom{f_{i_0}(s_{-r},\ldots,s_r)}{g(x_{-r},\ldots,x_r)},$$
 gdzie $g\colon \mathbf{X}^{2\,r+1}\to\{1,\ldots,M\}$ to reguła "zmiany reguł".

• Funkcja g nie jest regułą automatu komórkowego. Jest natomiast regułą opisującą zmianę reguł.

0 20 40 60 80

g = shift right

g = shift left

Zmienne prawa fizyki?

• Rozważmy regułę lokalną $f: \mathbf{X}^{2r+1} \to \mathbf{X}$ zadaną wzorem:

$$f(x_{-r},...,x_0,...,x_r) = f\left(\binom{s_{-r}}{i_{-r}},...,\binom{s_0}{i_0}...,\binom{s_r}{i_r}\right) = \binom{f_{i_0}(s_{-r},...,s_r)}{g(x_{-r},...,x_r)},$$
gdzie $g: \mathbf{X}^{2\,r+1} \to \{1,...,M\}$ to reguła "zmiany reguł".

- ullet Funkcja g nie jest regułą automatu komórkowego. Jest natomiast regułą opisującą zmianę reguł.
- Zwróć uwagę, że w powyższym wariancie wybór g nie zależy od niczego czyli automat jest **niejednorodny** co do zmian stanów ze zbioru S na pierwszej współrzędnej, ale reguły zmieniają się w sposób **jednorodny**. **Oczywiście**, **można to zmienić**. Ale... jednej rzeczy nie przeskoczymy.
- We wzorze na f nie możemy odwoływać się do czasu t czyli wszelka zmienność jaką zmodelujemy w CA i tak będzie zawsze jednorodna (homogeniczna) ze względu na czas. Stan w chwili t zależy od stanu w chwili t-1 w dokładnie taki sam sposób jak stan w chwili t+1 zależy od stanu w chwili t. Tej **jednorodności** nie da się "złamać" pozostając w domenie CA.

Co to wszystko oznacza?

- To co tu pokazaliśmy, to że jeśli nadamy szczególną interpretację większemu zbiorowi stanów, możemy w ten sposób modelować szersze klasy uogólnień automatów komórkowych zdefiniowanych na niższej liczbie stanów.
- Zastosowaliśmy to do tzw. niejednorodnych automatów komórkowych, ale analogiczny "trick" można użyć do konstrukcji automatów komórkowych z pamięcią (Cellular Automata with memory).
 - Dlaczego zwykłe CA nie mają pamięci? Bo komórki pamiętają jedynie swój obecny stan, ale nie pamietają w jakim stanie były przed chwilą.
 - Dodają dodatkowe "**wymiary**" do zbioru stanów można modelować pamięć komórki np. rozważając zbiór stanów $\mathbf{X} = \mathcal{S} \times \mathcal{S} \times \mathcal{S}$ możemy przedstawić CA, w którym komórka zna swój **obecny** stan, a także stan **jeden** i **dwa** kroki czasowe **wcześniej** .. i na tej podstawie może podejmować decyzję o zmianie na przyszłość

Neural Cellular Automata

Neural CAs

- Zaproponowane w 2020 r. przez Alexandera Mordvintseva i współpracowników (większość autorów pracuje w firmie Google).
- Główny artykuł: https://distill.pub/2020/growing-ca/
- Autor tego artykułu i pomysłu nagrał też bardzo dokładny tutorial pokazując jak dokładnie zaimplementować ten model: https://www.youtube.com/watch?v=kA7_LGjen7o
- Autor przedstawia swój pomysł jako model biologicznego zjawiska morfogenezy
 - Morfogeneza, kształtotworzenie procesy rozwojowe, w wyniku których jest determinowany kształt zarodka w kolejnych stadiach rozwojowych i ostatecznie kształt dorosłego organizmu.
 - Analiza zjawisk morfogenezy odpowiada m.in. na pytanie dlaczego zarodek, który
 początkowo bardzo szybko rośnie (komórki ulegają ciągłemu podziałowi) w pewnym
 momencie przestaje rosnąć i osiąga swój "docelowy" kształt. Jak się nad tym głębiej
 zastanowić to nie jest to oczywiste, że tak musi być...

A single update step of the model.

https://distill.pub/2020/growing-ca/

https://www.youtube.com/watch?v=9Kec 7WFyp0

https://evocraft.life/

https://aman-bhargava.com/ai/neuro/neuromorphic/2024/03/25/nca-do-active-inference.html

https://greydanus.github.io/2022/05/24/studying-growth/

https://github.com/shyamsn97/controllable-ncas

Dziękuję bardzo

Witold.Bolt@ug.edu.pl

