Design and Modeling of Fluid Power Systems ME 597/ABE 591 Lecture 8

Dr. Monika Ivantysynova MAHA Professor Flud Power Systems

MAHA Fluid Power Research Center Purdue University

Contents

- Hydraulic Resistances
- Hydraulic Bridges, half bridge elements
- Flow gain, pressure gain
- Pressure flow metering characteristics
- Flow forces
- Directional control valves
- Pressure control valves
- Flow control valves

Hydraulic Resistances

Resistance dependent on:

Pressure difference ∆p

Variable resistance (turbulent)

Hydraulic bridge

Four variable hydraulic resistances

Definition of hydraulic half bridge elements

Matrix of hydraulic bridges

Resistance increase Orifice diameter decrease throttle valve closing

Resistance decrease
Orifice diameter increase
throttle valve opening

Characteristic values

Flow gain:

Defined under no load conditions

$$\mathbf{C}_{Q} = \frac{\partial \mathbf{Q}_{A}}{\partial \mathbf{y}} \bigg|_{\mathbf{p}_{A} = \frac{\mathbf{p}_{0}}{2} ; y = 0} = \mathbf{tg} \alpha$$

Flow gain in case of electric input

$$V_{Qi} = \frac{\partial Q}{\partial i} A$$

Velocity gain:

$$\mathbf{C}_{\vee} = \frac{\partial \dot{\mathbf{x}}}{\partial \mathbf{y}} \Big|_{\mathbf{p}_{A} = \frac{\mathbf{p}_{0}}{2} : \mathbf{y} = \mathbf{0}} = \frac{\mathbf{C}_{Q}}{\mathbf{A}}$$

Characteristic values

of half bridge elements

Pressure gain (sensitivity):

Defined at blocked port

$$C_{p} = \frac{\partial p_{A}}{\partial y} \bigg|_{\dot{x} = 0 ; y = 0}$$

Pressure gain (sensitivity) in case of electrical input:

$$V_{pi} = \frac{\partial p}{\partial i}$$

Force gain:

$$\mathbf{C}_{\mathsf{F}} = \frac{\partial \mathsf{F}}{\partial \mathsf{y}} \bigg|_{\dot{\mathsf{x}} = 0 \ : \ \mathsf{y} = 0} = \mathsf{c}_{\mathsf{p}} \cdot \mathsf{A}$$

Spool Lap Configurations

Q(y) > 0 für y=0

Zero lapped

Q(y) = 0 für y=0

$$Q(y) = 0 \text{ für } |y| \le y_0$$

Design and Modeling of Fluid Power Systems, ME 597/ABE 591

Pressure-Flow-Metering Characteristics

Half bridge element A

$$\mathbf{Q}_{1} = \mathbf{B} \cdot (\mathbf{y}_{0} + \mathbf{y}) \sqrt{\mathbf{p}_{0} - \mathbf{p}_{A}}$$

$$\mathbf{Q}_{2} = \mathbf{B} \cdot (\mathbf{y}_{0} - \mathbf{y}) \sqrt{\mathbf{p}_{A}}$$
 with $\mathbf{B} = \alpha_{D} \cdot \pi \cdot \mathbf{d} \cdot \sqrt{\frac{2}{\varrho}}$

$$\mathbf{Q}_{A} = \mathbf{Q}_{1} - \mathbf{Q}_{2} = \mathbf{A} \cdot \mathbf{x}$$

with
$$B = \alpha_D \cdot \pi \cdot d \cdot \sqrt{\frac{2}{\varrho}}$$

$$F = p_{\Delta} \cdot A$$

$$\hat{\mathbf{x}} = \underline{\mathbf{B}} [(\mathbf{y}_0 + \mathbf{y})\sqrt{\mathbf{p}_0 - \mathbf{p}_A} - (\mathbf{y}_0 - \mathbf{y})\sqrt{\mathbf{p}_A}]$$

Flow gain

$$\mathbf{C}_{Q} = \left. \frac{\partial \mathbf{Q}_{A}}{\partial \mathbf{y}} \right|_{\mathbf{p}_{A} = \left. \frac{\mathbf{p}_{o}}{2} \right| \ \mathbf{y} = 0} = \mathbf{V} \mathbf{Z} \mathbf{B} \mathbf{V} \mathbf{p}_{0}$$

Velocity gain

$$\mathbf{C}_{V} = \frac{\partial \dot{\mathbf{x}}}{\partial \mathbf{y}} \quad \bigg|_{\mathbf{p}_{A} = \frac{\mathbf{p}_{0}}{2}; \ \mathbf{y} = 0} = \mathbf{Q} \cdot \frac{\mathbf{B}}{\mathbf{A}} \sqrt{\mathbf{p}_{0}}$$

Pressure gain

$$\mathbf{C}_{p} = \frac{\partial \mathbf{p}_{A}}{\partial \mathbf{y}} \bigg|_{\dot{\mathbf{x}} = 0, \dots, \mathbf{y} = 0} = \frac{\mathbf{p}_{0}}{\mathbf{y}_{0}}$$

Force gain

$$\mathbf{C}_{\mathsf{F}} = \frac{\partial \mathsf{F}}{\partial \mathsf{y}} \bigg|_{\dot{\mathsf{X}} = 0 : \; \mathsf{y} = 0} = \frac{\mathsf{p}_{\mathsf{o}} \cdot \mathsf{A}}{\mathsf{y}_{\mathsf{o}}}$$

Design and Modeling of Fluid Power Systems, ME 597/ABE 591

Pressure-Flow-Metering Characteristics

PURDUE

Hydraulic bridge A+A

(y₀ -y) (y₀ +y)

Flow gain / velocity gain

Mean value of half bridges

$$C_{Q} = \sqrt{2} B \sqrt{p_{Q}}$$

Pressure gain:

Sum of half bridges

$$C_p = 2 \frac{p}{y}$$

Zero Lap Configuration

 P_{max}

-0,5

-Q8

© Dr. Monika Ivantysyn ova

- 1,4

0,3

-0,5

0,1

14

 $^{^{\hat{}}}P_{U\,\text{se}}$

PLoss

 $\overline{\mathbf{p}}_{0}$

Design and Modeling of Fluid Power Systems, ME 597/ABE 591

Pressure-flow metering characteristics

Flow Forces

Spool valve

Design and Modeling of Fluid Power Systems, ME 597/ABE 591

Pressure control

Pressure Relief Valve

Direct operated pressure relief valve (poppet type)

Basic characteristics of pressure relief valves

Orifice flow

$$Q = \alpha_D \cdot A \cdot \sqrt{2 / \rho} \cdot \sqrt{\Delta p}$$

Pilot operated pressure relief valve

Pressure relief valves with:

electrical release

- (1)
- two pressure settings
- 2

© Dr. Monika Ivantysynova

Design and Modeling of Fluid Power Systems, ME 597/ABE 591

Pressure reducing valve

Pressure p₁ is controlled

Pressure difference is controlled

$$\triangle p = p_0 - p_1 = F_F / A$$

Flow control valve

Pressure compensated flow control

Pressure compensator in series with control orifice

Inlet control type

Outlet control type

Flow control valve

Pressure compensated flow bypass control valve

Relief valve parallel to control orifice

Cannot be used in parallel arrangement!