SNL cvičení - Logika

Výroková logika

- 1. Převeďte pomocí algebraických úprav následující formuli do DNF: $(X \lor Y) \land (X \to \neg (Y \land Z))$
- 2. Převeďte pomocí algebraických úprav následující formuli do CNF:

```
(X \leftrightarrow Y) \lor (X \to Z)
```

- 3. Formalizujte ve výrokové logice a dokažte, že platí následující:
 - a. Pokud je víkend, státní svátek, nebo pandemie, fakulta je zavřená.
 - b. Pokud je fakulta zavřená, studenti i učitelé mají radost.
 - c. Studenti nemají radost.
 - d. Tudíž není víkend.
- 4. Nechť Φ je množina všech formulí výrokové logiky. Určete, zda jsou relace \Rightarrow (logický důsledek) a \Leftrightarrow (logická ekvivalence) relacemi uspořádání nebo ekvivalence na Φ .

Predikátová logika

- 5. Uvažujte jazyk predikátové logiky 1. řádu s
 - \circ funkčními symboly $\{f_{/2},g_{/1},h_{/0}\}$ a
 - \circ predikátovým symbolem $\{p_{/1}\}$ (uvažujte i $=_{/2}$ jako "vestavěný" predikátový symbol) a
 - o množinu proměnných $\{x, y, z, \ldots\}$

Určete

- o zda následující zápisy jsou formulemi daného jazyka (dle striktní syntaxe) a
- o které ze zápisů jsou termy.
- a. f(x, y)b. f(x) =
- b. f(x) = f(h)
- c. f(x,y) = f(y,z)d. g(x,y) = g(y,z)
- e. p(f(x,g(g(g(g(g(h)))))))
- f. $g(x) \wedge p(x = f(x,y))$
- g. $\forall x(p(g(x)))$
- h. $\exists f(x)$
- i. $\exists x \in \mathbb{N} \ (p(x))$
- j. $\forall x (p(f(x,y)) \land ((g(x)=f(x,h) \rightarrow \neg (x=h))))$
- 6. Najděte volné proměnné $\{x,y,\ldots\}$ v následujících formulích:
 - a. $p(x) \wedge \neg r(y, a)$
 - b. $\exists x ig(\ p(x)
 ightarrow \exists y (\lnot q(f(x), y, f(y))) \ ig)$
 - c. $\exists x(p(x)) \rightarrow \exists y(\neg q(f(x), y, f(z)))$
 - d. $\exists x(p(y))
 ightarrow \exists y(\lnot q(f(x),y,f(y)))$
 - e. $orall xig(\ p(x)
 ightarrow\exists y(
 eg q(f(x),y,f(y)))\ ig)$

- 7. Uvažujte jazyk predikátové logiky 1. řádu s jediným predikátovým symbolem $\in_{/2}$ teorie množin a dvěma konstantními funkčními symboly $b_{/0}$ a $c_{/0}$. Formalizujte pomocí uzavřených formulí následující výroky:
 - a. b je podmnožinou c
 - b. b a c jsou disjunktní množiny
 - c. sjednocení b a c pokrývá univerzum
- 8. Uvažujte jazyk predikátové logiky 1. řádu s jediným predikátovým symbolem $E_{/2}$ teorie grafů (E(x,y) vyjadřuje, že existuje hrana z x do y). Formalizujte následující výroky:
 - a. existuje cesta délky 4 z x do y
 - b. x a y tvoří spolu s dalším uzlem cyklus délky 3
 - c. x, y a z tvoří kliku velikosti 3
- 9. Uvažujte jazyk predikátové logiky 1. řádu teorie grup, konkrétně jazyk s jediným funkčním symbolem $\{\cdot_{/2}\}$ a jediným ("vestavěným") predikátovým symbolem $=_{/2}$. Formalizujte následující výroky:
 - a. Existuje maximálně jeden neutrální prvek.
 - b. Pokud existuje levý neutrální prvek a pravý neutrální prvek, pak se rovnají.
 - c. Operace · není asociativní.
 - d. Ke každému prvku existuje právě jeden inverzní prvek.
 - e. Pokud je · asociativní, pak se levé a pravé inverzní prvky rovnají.
 - f. Nechť $f_{/1}$ a $g_{/1}$ jsou unární predikátové symboly označující, že jejich argument patří do množiny M_f , resp. M_q . Formalizujte tvrzení:
 - i. (M_f,\cdot) je podgrupoid (M_g,\cdot) .
 - ii. (M_f,\cdot) je Abelova grupa.
- 10. Uvažujte jazyk predikátové logiky L s funkčními symboly $\{a_{/0},b_{/0},c_{/0},d_{/0}\}$ a predikátovými symboly $\{E_{/1},M_{/2},S_{/2}\}$. Dále uvažujte realizaci I jazyka L s doménou $D_I=\{1,3,5,15\}$, kde
 - \circ predikátový symbol E je interpretován jako "je sudé" (tj. $\alpha_I(E) = \emptyset$)
 - o symbol M jako "je násobkem" (tj.

$$lpha_I(M) = \{(1,1),(3,1),(3,3),(5,1),(5,5),(15,1),(15,5),(15,15)\}$$
) a

 $\circ \ S$ jako "je ostře menší než" (tj. $lpha_I(S) = \{(1,3), (1,5), (1,15), (3,5), (3,15), (5,15)\}$).

Dále platí $lpha_I(a)=1, lpha_I(b)=3, lpha_I(c)=5$ a $lpha_I(d)=15.$

Určete, zda následující výroky platí v *I*:

- a. $\exists y (E(y))$
- b. $\forall x(\neg E(x))$
- c. $\forall x(M(x,a))$
- d. $\forall x(M(x,b))$
- e. $\exists x (M(x,d))$
- f. $\exists x(S(x,a))$
- g. orall x(E(x) o M(x,a))
- h. $\forall x \exists y (S(x,y))$
- i. $\forall x \exists y (M(x,y))$
- j. $\forall x(M(x,b) \rightarrow S(x,c))$
- k. orall x orall y(S(x,y)
 ightarrow
 eg S(y,x))
- I. orall x(M(x,c) ee S(x,c))

- 11. Najděte modely následujících formulí (nad jazykem daným implicitně dle výskytu symbolů ve formulích) a pro každou formuli najděte i realizaci, která není model (pokud taková existuje).
 - a. $orall x orall y ig(\, p(x,x) \wedge (p(x,y) \leftrightarrow p(y,x)) \, ig)$
 - b. $\exists x(p(x,f(y)))$
 - c. konjunkce následujících formulí:
 - i. $orall x orall y orall z ig(\left(p(x,y) \wedge p(y,z)
 ight) o p(x,z) ig)$
 - ii. $orall x orall y ig((p(x,y) \wedge p(y,x)) o x = y)$
 - iii. $orall x \exists y \dot{(}(p(x,y) \land \lnot(x=y))$
 - d. $orall x orall y(S(x) = S(y) o x = y) \quad \wedge \quad \exists x (orall y(\lnot(S(y) = x)))$