

Cronograma Básico do Curso

Encontro	Data	Módulo
1	23/08/2025	Módulo 1: Boas-vindas, fundamentos históricos e filosóficos da Computação e Modelagem
2	30/08/2025	Módulo 2: Zeros de funções e Raízes de Equações não Lineares
3	06/09/2025	Módulo 2: Zeros de funções e Raízes de Equações não Lineares
4	13/09/2025	Módulo 2: Zeros de funções e Raízes de Equações não Lineares
5	20/09/2025	Módulo 3: Sistemas lineares – Álgebra computacional e solução Numérica de Equações
6	04/10/2025	Módulo 3: Sistemas lineares – Álgebra computacional e solução Numérica de Equações
7	11/10/2025	Módulo 3: Sistemas lineares – Álgebra computacional e solução Numérica de Equações
8	18/10/2025	Módulo 4: Otimização – Fundamentos, Algoritmos e Aplicações
9	25/10/2025	Módulo 4: Otimização – Fundamentos, Algoritmos e Aplicações
10	01/11/2025	Módulo 4: Otimização – Fundamentos, Algoritmos e Aplicações
11	08/11/2025	Módulo 5: Ajustes de Curvas – Regressões, Interpolações e Aplicações
12	15/11/2025	Módulo 5: Ajustes de Curvas – Regressões, Interpolações e Aplicações
13	22/11/2025	Módulo 6: Integração numérica — Teoria, Métodos e Aplicações
14	29/11/2025	Módulo 7: Equações Diferenciais Ordinárias – Modelagem, Métodos e Aplicações
15	06/12/2025	Módulo 7: Equações Diferenciais Ordinárias – Modelagem, Métodos e Aplicações
16	13/12/2025	Módulo 8: Equações Diferenciais Parciais – Modelagem, Discretização e Simulação Computacional
17	20/12/2025	Módulo 8: Equações Diferenciais Parciais – Modelagem, Discretização e Simulação Computacional

Módulo 1 — Boas-vindas, Fundamentos Históricos e Filosóficos da Computação e Modelagem

Duração prevista: 1 encontro (23/08/2025)

T7 Data do encontro: 23/08/2025

Assunto principal: Introdução ao curso, fundamentos históricos e filosóficos dos métodos numéricos e da computação científica

📚 Tópicos abordados:

- Apresentação geral do curso e da proposta pedagógica
- Breve história dos métodos numéricos e sua importância no desenvolvimento da engenharia moderna
- Fundamentos da computação:
 - · Quebra da abstração do funcionamento de um computador
 - Circuitos digitais, álgebra booleana e lógica de transistores
 - Como um computador lida com números: ponto flutuante e representação binária
 - Comparação de linguagens: desempenho computacional e uso em métodos numéricos
 - Introdução à ideia de compiladores e interpretação de código
- Reflexão: por que precisamos de métodos numéricos?
- Exemplo motivador:
 - Esfera sedimentando em fluido viscoso com baixo Reynolds
 - Inclusão progressiva de termos nas forças hidrodinâmicas e complexificação do modelo
 - Discussão sobre limites da solução analítica e necessidade da simulação
 - Introdução à ideia de validação e modelagem com fidelidade progressiva

• Observação:

Esse encontro será usado também para inspirar a turma, fortalecer o senso de propósito do curso e criar uma ponte entre história, filosofia e a prática moderna de aspectos de computação científica.

Módulo 2 — Zeros de Funções e Raízes de Equações Não Lineares

Duração prevista: 3 encontros (30/08, 06/09, 13/09)

Datas dos encontros:

- 30/08/2025
- 06/09/2025
- 13/09/2025

Assunto principal: Métodos numéricos para determinação de raízes de funções algébricas e transcendentais

📚 Tópicos abordados:

1. Introdução teórica:

- Significado de encontrar zeros de função
- Importância na engenharia e nas ciências aplicadas
- Diferença entre funções algébricas e transcendentais
- Contextualização histórica e filosófica do problema da "raiz" de uma equação

2. Métodos clássicos e progressivamente mais robustos:

- Método da bissecção
- Método da falsa posição (regula falsi)
- Método da falsa posição modificado
- Método de Newton-Raphson
 - Dedução teórica e interpretação geométrica
 - Convergência quadrática
- Método da secante
- Método da secante modificada
- Discussão sobre raízes múltiplas
 - Newton-Raphson modificado para múltiplas raízes

3. Sistemas não lineares:

- Generalização do método de Newton-Raphson para sistemas de equações não lineares
- Linearização via série de Taylor
- Introdução ao **jacobiano** e sua interpretação

4. Métodos específicos para polinômios:

- Método de Müller
- Conceito e uso da deflação polinomial
 - · Aplicação prática após encontrar raízes conhecidas
- Algoritmo de Briot-Ruffini
 - Implementação manual e interpretação simbólica
- Método de **Bairstow** e fractais de Bairstow
 - Aplicação para encontrar raízes complexas
 - Discussão sobre convergência e limitações

5. Estudos de caso aplicados:

- Exemplo clássico: escoamento em canal com ressalto hidráulico
- Problema de circuito elétrico com elementos não lineares (diodo, por exemplo)
- Discussão sobre estabilidade de métodos em casos práticos

Solution Observações:

- Esse módulo oferece a base para muitos métodos futuros, pois encontrar raízes é um passo essencial na resolução de sistemas, otimização e simulações físicas.
- O objetivo é não só ensinar as fórmulas, mas despertar a sensibilidade dos alunos para a escolha do método mais apropriado dependendo da função e do contexto.

Módulo 3 — Sistemas Lineares: Álgebra Computacional e Solução Numérica de Equações

Duração prevista: 3 encontros (20/09, 27/09, 04/10)

Datas dos encontros:

- 20/09/2025
- 04/10/2025
- 11/10/2025

Assunto principal: Métodos diretos e iterativos para solução de sistemas lineares, com ênfase em algoritmos, custo computacional e matrizes especiais

STópicos abordados:

1. Fundamentos e terminologia:

- Revisão de sistemas de equações lineares
- Representação matricial: [A].{x} = {b}
- Tipos de matrizes:
 - Diagonais
 - Tridiagonais
 - Simétricas
 - Matrizes de banda
 - Triangulares superiores/inferiores
- Introdução com sistema de 2 equações e 2 incógnitas
 - Interpretação **gráfica** e ligação com espaço vetorial

2. Métodos diretos e determinantes:

- Determinantes e regra de Cramer (motivação teórica e custo computacional)
- Limitações práticas: complexidade de cálculo para grandes ordens

3. Eliminação de variáveis e algoritmos clássicos:

- Eliminação de Gauss (versão ingênua)
 - Apresentação formal do algoritmo
 - Contagem de operações: FLOPs e análise de complexidade computacional
- Problemas da eliminação gaussiana ingênua

• Estabilidade numérica e erro de arredondamento

• Pivotamento:

- Parcial
- Completo
- Impacto no condicionamento e estabilidade

4. Condicionamento e estabilidade:

- Conceito de número de condição
- Interpretação física e computacional
- Sensibilidade da solução a pequenas perturbações

5. Outras técnicas diretas:

- Método de Gauss-Jordan
- Decomposição LU:
 - Interpretação algébrica da eliminação gaussiana
 - Relação com cálculo de determinantes
 - Inversão matricial via L.U
 - Decomposição de Crout
- Matrizes especiais:
 - Sistemas tridiagonais e algoritmo de Thomas
 - Decomposição de Cholesky para matrizes simétricas e positivas definidas

6. Métodos iterativos:

- Motivação e comparação com métodos diretos
- Iteração de ponto fixo e ligação conceitual
- Gauss-Seidel
 - Condições de convergência (matriz diagonal dominante, etc.)
 - Análise empírica da convergência
 - Gauss-Seidel com relaxação

7. Estudos de caso aplicados:

- Modelo de reator químico contínuo (CSTR) com múltiplas correntes e reações simultâneas — cálculo de concentrações
- Problema da **distribuição de temperatura em pastilhas combustíveis de reatores nucleares** (introdução às diferenças finitas)
 - Discretização espacial

- Formulação do sistema linear
- Discussão da simetria e da tridiagonalidade da matriz resultante

❖ Observações:

- Esse módulo une teoria e prática, e marca a transição dos métodos pontuais (como zeros de funções) para **sistemas com múltiplas variáveis**, comuns em problemas reais.
- Servirá também como base para os próximos módulos que envolvem equações diferenciais, onde sistemas lineares surgem frequentemente após discretização.

Módulo 4 — Otimização: Fundamentos, Algoritmos e Aplicações

Duração prevista: 3 encontros (18/10, 25/10, 01/11)

Datas dos encontros:

- 18/10/2025
- 25/10/2025
- 01/11/2025

🧠 Assunto principal: Otimização unidimensional e multidimensional com e sem restrições, incluindo métodos clássicos, gradientes e programação linear

📚 Tópicos abordados:

1. Fundamentos da Otimização

- O que é otimização? Por que otimizar?
- Como formular um problema de otimização
- Terminologia:
 - Variáveis de decisão
 - Função objetivo
 - Restrições (iguais e desiguais)
- Classificação dos problemas:
 - Com restrições vs. sem restrições
 - · Unidimensionais vs. multidimensionais
 - Lineares vs. não-lineares
 - Determinísticos vs. estocásticos

2. Otimização Unidimensional Sem Restrições

- Funções unimodais
- Método da razão áurea
- Interpolação quadrática
- Método de Newton unidimensional
 - · Derivada primeira e segunda
 - Convergência e limitações

3. Otimização Multidimensional Sem Restrições

Métodos diretos:

- Discussão breve: busca exaustiva, simplex de Nelder-Mead, métodos aleatórios
- Busca aleatória: motivação, limitações e paralelos com metaheurísticas

Métodos baseados em gradientes:

- Conceituação e base matemática:
 - Definição de **gradiente**: significado físico e geométrico
 - Hessiana: interpretação, papel na curvatura local da função
 - Direções de descida e superfície de nível

Métodos numéricos:

- Método do Aclive Máximo (Steepest Descent)
 - Algoritmo
 - Problema do zigue-zague
 - Estratégias de passo (linha de busca)

• Gradientes Conjugados

- Algoritmo de **Fletcher-Reeves**
- Ortogonalidade das direções de busca
- Convergência para funções quadráticas

• Método de Newton Multidimensional

- Uso da Hessiana para ajuste de curvatura
- Complexidade e limitações

Método de Levenberg-Marquardt

- Interpolação entre métodos de Gauss-Newton e gradiente
- Uso comum em problemas de mínimos quadrados

4. Otimização Multidimensional com Restrições

■ Programação Linear (PL):

Formulação:

- Definição de problemas de PL
- Formato padrão: Maximizar c.T.x, sujeito a $A.x \le b$

Métodos de solução:

- Solução **gráfica** para 2 variáveis
 - Interpretação geométrica
 - Região viável e ponto ótimo

• Método Simplex

- Ideia intuitiva: caminhar nos vértices da região viável
- Algoritmo do Simplex
- Tabelas e interpretação prática

5. Estudos de Caso Aplicados

1. Engenharia Ambiental:

- Minimização de custo em uma rede de tratamento de água
- Formulação via programação linear

2. Engenharia Elétrica:

- Problema da máxima transferência de potência
- Ajuste de impedâncias via métodos de otimização

Observações:

- Este módulo serve como ponte entre fundamentos algébricos e aplicação prática em engenharia e ciência computacional.
- Os conceitos aqui desenvolvidos dialogam com a modelagem de problemas complexos e com algoritmos usados em machine learning, controle ótimo e simulações numéricas com malhas adaptativas.

Módulo 5 — Ajuste de Curvas: Regressões, Interpolações e Aplicações

Duração prevista: 2 encontros (08/11 e 15/11)

Datas dos encontros:

- 08/11/2025
- 15/11/2025

Assunto principal: Métodos de ajuste de curvas por regressão e interpolação, com aplicações em modelos reais

S Tópicos abordados:

1. Introdução ao Ajuste de Curvas

- Diferença conceitual entre:
 - Regressão: aproximação com erro, modelos empíricos
 - Interpolação: passa exatamente pelos dados conhecidos
- Papel do ajuste de curvas na engenharia e ciência aplicada
- Revisão conceitual: por que ajustar curvas? Previsões, simulações, otimizações

2. Regressão via Mínimos Quadrados

- Regressão Linear Simples
 - Formulação analítica
 - Interpretação geométrica e estatística
 - Erro quadrático médio

Regressão Polinomial

- Construção de sistemas normais de equações
- Relação com **sistemas lineares** (módulo 3)
- Problemas de sobreajuste (overfitting)
- Regressões baseadas em linearização de relações não-lineares
 - Transformações logarítmicas e exponenciais
 - Modelos típicos:
 - **Exponencial**: y=AeBx

- Lei de potência: y=AxB
- Crescimento saturado: y=1+Be-CxA
- Exemplos práticos e cuidados com transformação de variáveis

3. Interpolação Polinomial

- Conceito de interpolação exata
- Polinômios de Newton (Diferenças Divididas)
 - Forma geral
 - Construção iterativa
 - Estabilidade e eficiência
 - Comparações com polinômios de Lagrange
- Exemplos práticos de uso

4. Interpolação por Splines

- Necessidade de interpolação suave entre pontos
- Splines lineares: definição e construção
- Splines cúbicas e quadráticas
 - Condições de continuidade
 - Equações para garantir suavidade e derivadas contínuas
 - Relação com sistemas lineares (geração de matriz tridiagonal)

5. Estudos de Caso Aplicados

- 1. Engenharia Química / Bioengenharia:
 - Ajuste de curvas de crescimento populacional
 - Modelos logísticos e potencial para modelar crescimento de micro-organismos

2. Engenharia Civil / Ambiental:

- Estratificação térmica em lagos
- Ajuste de curvas a perfis de temperatura por profundidade
- Interpolação de dados experimentais em campo

❖ Observações:

- Este módulo reforça a **conexão entre dados experimentais e modelos computacionais**, servindo como ponte natural para a entrada em equações diferenciais nos módulos seguintes.
- O uso de sistemas lineares e conceitos aprendidos anteriormente se evidencia aqui, favorecendo a integração vertical dos conhecimentos.

📐 Módulo 6 — Integração Numérica: Teoria, Métodos e Aplicações

Duração prevista: 1 encontro (22/11/2025)

To Data do encontro:

• 22/11/2025

Assunto principal: Métodos numéricos de integração definidos e suas aplicações práticas em engenharia

📚 Tópicos abordados:

1. Motivação e Fundamentos

- Por que integrar numericamente?
- Integração como área sob curvas e relação com solução de EDOs
- Papel central da integração numérica em contextos experimentais e computacionais

2. Fórmulas Fechadas de Newton-Cotes

• Construção geral via interpolação polinomial

· Regra do Trapézio

- Formulação
- Interpretação geométrica
- Erro associado à aproximação

Regra de Simpson 1/3 e 3/8

- Derivação e aplicação
- Comparações entre as regras
- Condições de aplicação (número de subintervalos)

3. Integrais Múltiplas

- Integração em 2D e 3D com aplicação em engenharia
- Conceito de temperatura média sobre uma superfície

📌 Estudo de Caso 1:

- Transferência de Calor em placas planas
 - Determinação da temperatura média sobre região bidimensional

4. Estudos de Caso Aplicados

- Engenharia Naval / Esportiva
 - · Cálculo da força efetiva no mastro de um veleiro de corrida
 - Integração sobre distribuição de carga ao longo do mastro
- Engenharia Elétrica
 - Corrente efetiva em circuitos
 - Integração de i2(t) para cálculo de corrente RMS
- Engenharia Aeronáutica / Mecânica
 - Força de arrasto em corpos aerodinâmicos
 - Integração de dados de pressão obtidos em túnel de vento
 - Uso do Teorema do Transporte de Reynolds
 - Conexão entre conceitos físicos e integração numérica

Observações:

- Este módulo, apesar de breve, é fundamental para conectar a parte de manipulação de dados experimentais com conceitos futuros em equações diferenciais e análise computacional de escoamentos.
- Ilustra fortemente a transição do **discreto** (dados) para o **contínuo modelado** (funções integradas numericamente).

Módulo 7 — Equações Diferenciais Ordinárias: Modelagem, Métodos e Aplicações

Duração prevista: 2 encontros (29/11 e 06/12/2025)

Datas dos encontros:

- 29/11/2025
- 06/12/2025

Assunto principal: Resolução numérica de equações diferenciais ordinárias (EDOs) via métodos de passo único

1. Introdução às EDOs

- Diferença entre:
 - Problema de Valor Inicial (PVI)
 - Problema de Valor de Contorno (PVC)
- Classificação das EDOs:
 - Ordem
 - Linearidade
 - Autonomia
 - Rigidez (comentário introdutório)
- Aplicabilidade de métodos numéricos

2. Abordagem de PVC como PVI: Método do Tiro

- Formulação do método do tiro
- Relação com métodos vistos no **Módulo 2**:
 - Newton-Raphson para funções escalares
 - Analogias gráficas e busca de zeros

3. Métodos de Passo Único

Runge-Kutta e seus fundamentos

- Evolução dos métodos:
 - Método de Euler
 - Derivação
 - Interpretação geométrica
 - Erro de truncamento local via série de Taylor
 - **Método de Heun** (Preditor-Corretor)
 - Equivalência com Runge-Kutta de 2ª ordem
 - Visualização em fases predição/correção
 - Métodos de Runge-Kutta (RK2, RK3, RK4)
 - Construção geral
 - Famílias de coeficientes
 - Vantagens e limitações
 - Comparação entre ordens

4. Métodos de Passo Adaptativo

- Fundamentos da adaptação de passo
- Runge-Kutta de passo adaptativo:
 - Método de Runge-Kutta de Fehlberg
 - Versão Cash-Karp
- Estratégias de controle do erro
- Problematização:
 - Exemplo de uma bolha oscilando em fluido magnético
 - Comportamento não linear com regiões de gradiente alto
 - Necessidade de controle do passo

5. Estudos de Caso

- Engenharia Química:
 - Resposta transiente de reatores de mistura
 - EDOs com taxas de reação dependentes do tempo

• Modelagem Ecológica:

- Modelo Predador-Presa (Lotka-Volterra)
 - Dinâmica de populações
 - Discussão qualitativa das soluções
- Física e sistemas dinâmicos:
 - Equações de Lorenz
 - Sensibilidade a condições iniciais
 - Introdução ao caos determinístico
 - Representação tridimensional da trajetória
 - Exploração visual e física do comportamento

• 6. Conclusão e Conexões Futuras

- Transição para EDPs
- Reflexão sobre o papel das EDOs como ponte entre modelos físicos e simulações numéricas

<u>Módulo 8 — Equações Diferenciais Parciais: Modelagem, Discretização e</u> Simulação

Duração prevista: 3 encontros (13/12 e 20/12/2025)

Datas dos encontros:

- 13/12/2025
- 20/12/2025

Assunto principal: Introdução conceitual e numérica às Equações Diferenciais Parciais (EDPs) com aplicações práticas em volumes finitos

1. Introdução às EDPs

- Exemplos ilustrativos de EDPs:
 - Ordem da equação
 - Linearidade
- Classificação por natureza:
 - **Elípticas** (ex: equação de Laplace)
 - Parabólicas (ex: equação do calor)
 - Hiperbólicas (ex: equação da onda)
- Aplicações físicas:
 - Transferência de calor
 - Microhidrodinâmica
 - Equações de Navier-Stokes (introdução)
 - Distribuição térmica em tecidos tumorais (magneto-hipertermia)
 - Vibrações mecânicas em cordas e estruturas

2. Método das Diferenças Finitas

- Derivação da equação de diferenças de Laplace
- Implementação numérica:
 - Método de Liebmann (iterativo)

- Análise de convergência e custo computacional
- Tratamento de:
 - Condições de contorno (Dirichlet, Neumann, mistas)
 - Fronteiras irregulares
- Exemplos práticos aplicados à condução de calor bidimensional

3. Introdução ao Método dos Volumes Finitos

- Motivação e comparação com diferenças finitas
- Construção de volumes de controle:
 - Interpretação física via conservação
 - Aplicação à equação de Laplace
- Equações gerais de balanço:
 - Forma integral
 - Identificação dos termos:
 - Termo de difusão (Laplaciano)
 - Termo de advecção (divergente)
- Aplicação de teoremas integrais:
 - Teorema da divergência
 - Teorema de Gauss

4. Discretização no contexto dos Volumes Finitos

- Discretização do termo difusivo (Laplaciano):
 - · Aproximações centradas
 - Correção não ortogonal
- Discretização do termo advectivo:
 - Interpolação linear
 - Esquema upwind
 - Controle de difusão numérica
 - Esquemas limitadores (comentário introdutório)
- Discussão sobre:
 - Solução segregada

- Construção do sistema linear resultante
- · Tratamento implícito vs. explícito

5. Introdução ao OpenFOAM

- Motivação e natureza do software (open-source, C++, filosofia modular)
- Arquivos de configuração:
 - controlDict, fvSchemes, fvSolution, transportProperties
 - Ligação entre as configurações e os conceitos teóricos vistos no curso
- Demonstrações práticas:
 - Casos simples de simulação
 - Navegação no ambiente de simulação
 - Interpretação dos resultados
- Encerramento do curso com um estudo de caso completo (ex: difusão de calor ou escoamento laminar simples)

• 6. Conclusão Geral do Curso

- Revisão integrativa dos principais conceitos vistos
- Reflexão sobre os pilares do método científico aplicado à simulação computacional
- Convite à continuidade do aprendizado:
 - OpenFOAM
 - Fortran, C++, Python
 - PINNs
 - Códigos próprios
- Considerações finais e agradecimentos