IIT Jodhpur

Biological Vision and Applications Module 09-01: Graph Neural Networks

Hiranmay Ghosh

Structured representation

Explicit knowledge

Inductive Generalization

Context

Structured representation

Spatial (and temporal) Organization

Holistic representation

No Inductive Generalization

Machine learning

Holistic representation

- Does not use the explicit structured representation
- Flexibility: Knowledge is emergent
 - ► No dependence on hand-coded knowledge
 - Features and feature weights are machine learned

Does a CNN "see" the structure?

Can we combine the benefits of the two approaches?

Position paper from DeepMind, Google Brain, MIT, University of Edinburgh (2018)

- Key to advancement of AI (cognition): Inductive generalization
- Structure with flexibility (emergent knowledge)
- "Intersection of deep learning and structured approaches"
 - Reason (following DL approach) on structured data (expressed as graph)
- Indeed, this realization is not new!

Battaglia, et al. Relational inductive biases, deep learning, and graph networks (2018)

Fine-grained object recognition

Car model (ICPR'14), Bird species (CVPR'15), ...

Attention for discriminative parts

Recursive Neural Network (1998)

Example: Logo recognition

- Identify the external and internal contours by image processing techniques
 - Edge detection, perceptual grouping
- Create a tree structure

Recursive Neural Network

Feature representation

- Shape descriptor for each contour:
 - Perimeter, area
 - ► Histogram of curvatures

Recursive Neural Network

Processing model

- Functions f() and g() can be realized as deep neural networks
- Identical property descriptions u_x

Recursive Neural Network

Training

- Trained over a large logo database
 - Each logo generates a different tree
- Goal is to learn parameters for f() and g()
 - ► Same f() and g() for every node / tree
- Better accuracy than MLP based approach
 - Exploits structure information
 - Parameters (features / weights) are machine learned
- Computations at "Lower" nodes affect that at "higher" nodes, not vice-versa
- Only graph-level (global) inference is drawn
- Frasconi, et al. A General Framework for Adaptive Processing of Data Structures
- Frasesconi, et al. Logo Recognition by Recursive Neural Networks

Graph Neural Network

- Find super-pixels in the image
- Create a graph
 - Nodes: Super-pixels
 - Edges: Adjacent nodes
- Inferencing
 - Graph focussed: Castle
 - ► Node focussed: Tower, Door, Window, ..., Background

2D Convolution vs. Graph Convolution

2D Convolution

Graph Convolution

Convolutional Graph Neural Network

Processing model

- Nodes have identical property (feature) descriptors
 - e.g. color, texture, shape
- Edges have identical property descriptors
 - e.g. distance between the center of gravities of the nodes

Graph Neural Network

Processing model (contd.)

Graph Neural Network

Recurrent Processing

- Take the output after several recursions
 - ▶ Is the system guaranteed to go into a steady state after a finite number of iterations?

Scarselli, et al. The graph neural network model (2009)

Recursive & Convolutional Graph Neural Network

Rec-GNN & Conv-GNN

Temporal Dependencies

Dynamic Bayesian Network

- Network parameters: $P(X^0)$, $P(Y^t \mid X^t)$, $P(X^t \mid X^{t-1})$
- Prob distribution at t = T:
 - $P(X^T) = P(X^0) \cdot \prod_{t=1:T} P(Y^t \mid X^t) \cdot \prod_{t=1:T} P(X^t \mid X^{t-1})$

Spatio-Temporal Graph Neural Network

Structured RNN (S-RNN)

• CVPR-16 Paper, Presentation Video

Applications

- Rec-GNN / Conv-GNN (still images)
 - ► Fine-grained classification (e.g. bird species)
 - ► 3D point cloud processing (LiDAR)
- Spatio-Temporal GNN (video / motion picture)
 - Human action recognition
 - Human/Robot Object Interaction
 - **Human Motion Modeling**

Limitations and Future Research

- Model depth
 - Performance (accuracy) drops with depth
- Scalability
 - Graph size needs to be limited
 - Number of nodes / number of edges
- Heterogeneity of graphs
 - Presently graphs are assumed to be homogeneous.
- Dynamicity
 - Graph structure changing over time

Your feedback for the course please

End of Module 09-01