Artificial Intelligence Advanced Topics in AI & ML Interpretability, Explainability, and AI Ethics

Aleksandr Petiushko

ML Research

 ${\color{red} \bullet} \ \, {\rm Interpretability} \\$

- Interpretability
- Explainability

- Interpretability
- Explainability
- 3 Bias and Fairness in AI

- Interpretability
- Explainability
- 3 Bias and Fairness in AI
- 4 AI Ethics

• Interpretability: understand the influence of any input sub-area/sub-feature on the model output;

- Interpretability: understand the influence of any input sub-area/sub-feature on the model output;
- Can be understood as a sophisticated tool towards the ML Debug system

- Interpretability: understand the influence of any input sub-area/sub-feature on the model output;
- Can be understood as a sophisticated tool towards the ML Debug system
- Can be done via input counterfactual analysis (changing/reverting some input features)

- Interpretability: understand the influence of any input sub-area/sub-feature on the model output;
- Can be understood as a sophisticated tool towards the ML Debug system
- Can be done via input counterfactual analysis (changing/reverting some input features)
- Read material: link

Grad-CAM for "Cat"

Grad-CAM for "Dog"

Explainability

• Explainability: high-level interpretability (using human-like language), a clear and intuitive explanation of the decisions made

Explainability

- Explainability: high-level interpretability (using human-like language), a clear and intuitive explanation of the decisions made
- Explainability now can be done via LLM chain-of-thought (CoT) technique

Explainability

- Explainability: high-level interpretability (using human-like language), a clear and intuitive explanation of the decisions made
- Explainability now can be done via LLM chain-of-thought (CoT) technique
- Read material: link

• Fairness is the subjective practice of using AI without favoritism or discrimination, and Bias is the preference or prejudice against a feature (so roughly speaking when talking about people they are almost synonyms)

- Fairness is the subjective practice of using AI without favoritism or discrimination, and Bias is the preference or prejudice against a feature (so roughly speaking when talking about people they are almost synonyms)
- ML model can provide biased predictions w.r.t. race, gender, age. etc

- Fairness is the subjective practice of using AI without favoritism or discrimination, and Bias is the preference or prejudice against a feature (so roughly speaking when talking about people they are almost synonyms)
- ML model can provide biased predictions w.r.t. race, gender, age. etc
- The main reason: skewed/sparse training data

- Fairness is the subjective practice of using AI without favoritism or discrimination, and Bias is the preference or prejudice against a feature (so roughly speaking when talking about people they are almost synonyms)
- ML model can provide biased predictions w.r.t. race, gender, age. etc
- The main reason: skewed/sparse training data
- Main technique to avoid: human-in-the-loop, alignment

- Fairness is the subjective practice of using AI without favoritism or discrimination, and Bias is the preference or prejudice against a feature (so roughly speaking when talking about people they are almost synonyms)
- ML model can provide biased predictions w.r.t. race, gender, age. etc
- The main reason: skewed/sparse training data
- Main technique to avoid: human-in-the-loop, alignment
- Read material: <u>link</u>

Michelle Obama

AI ethics and regulations¹

Inequity and fairness

ML can contribute to and amplify social inequity

For foundation models, it is useful to separate:

- intrinsic biases (properties in the foundation model)
- extrinsic harms (harms in specific applications)

 Source tracing to understand ethical/legal responsibility

 Mitigations: proactive interventions/reactive recourse

Misuse

Misuse: the use of foundation models as technically intended but for societal harm (e.g. disinformation)
Foundation models may make misuse easier by generating high-quality personalised content
Disinformation actors can target demographic groups
Foundation models may also help to detect misuse

Environment

Foundation models involve significant training/emissions

One perspective: amortised cost over re-use

Several factors would be beneficial to consider:

- compute-efficient models, hardware, energy grids
- environmental cost as a factor for evaluation
- greater documentation and measurement

Legality

How law bears on development/deployment is unclear

Legal/regulatory frameworks will be needed

- In the US setting, important issues include:
- liability for model predictions
- protections from model behaviour

Legal standards must advance for intermediate models

Economics

Foundation models may have economic impact due to:

- novel capabilities
- potential applications in wide array of industries Initial analyses have been conducted to understand implications for productivity, wage inequality, concentration of ownership

Ethics of scale

Widespread adoption of foundation models poses ethical, political and social concerns

Ethical issues related to scale:

- homogenisation
- concentration of power

How can norms and release strategies address these?

• Read all the mentioned links

- Read all the mentioned links
- Interpretability and Explainability are quite connected in ML

- Read all the mentioned links
- Interpretability and Explainability are quite connected in ML
- Interpretability deals mostly on a lower level, input/output dependencies

- Read all the mentioned links
- Interpretability and Explainability are quite connected in ML
- Interpretability deals mostly on a lower level, input/output dependencies
- Explainability steps in on a higher level to provide a human-like explanations

- Read all the mentioned links
- ② Interpretability and Explainability are quite connected in ML
- Interpretability deals mostly on a lower level, input/output dependencies
- Explainability steps in on a higher level to provide a human-like explanations
- Usually the most interpretable are simpler models; explainability can be applied to a model of any complexity

Thank you all!

