A preview of ndtv package for animating dynamic networks

Skye Bender-deMoll, Martina Morris

March 13, 2012

Statnet workshop

Introduction

Wouldn't it be great if you could actually see the networks you are simulating?

The ndtv package makes movies from networkDynamic objects. This example runs a very basic stergm simulation.

Preparation

First load in the necessary libraries.

- > require(networkDynamic)
- > require(ergm)
- > require(sna)
- > require(animation)
- > require(ndtv)

- # dynamic network extensions
- # network statistical modeling
- # network descriptive stats
- # animations of R plots
- # dynamic network animations

Start with a static network

Load in a very familiar network

- > data("florentine") # an example network
- > plot(flobusiness,displaylabels=T)

Estimate a model

Define basic stergm model with formation and dissolution parameters.

```
> theta.diss <- log(9)
> stergm.fit.1 <- stergm(flobusiness, # fit stergm
+ formation= ~edges+gwesp(0,fixed=T),
+ dissolution = ~offset(edges),
+ targets="formation",
+ offset.coef.diss = theta.diss,
+ estimate = "EGMME" )</pre>
```

(time passes, lots simulation status output)

Simulate from the model

Simulates 100 discrete time steps from the model and saves them as a dynamicNetwork object.

Render the movie

We give some parameters to say what time range to render, and ask it to build the animation.

(this takes some times, produces output)

Action!

Replay the movie in an R plot window

```
> ani.replay()
```

Here is a url to the movie: http://csde.washington.edu/~skyebend/sna_health/stergm.sim.1.mp4

Save the movie

Use the animation library to save out the movie in .mp4 format (using ffmpeg).

```
> saveVideo(ani.replay(),video.name="stergm.sim.1.mp4",
+ other.opts="-b 5000k",clean=TRUE)
```

The Details

There is a bit more going on under the hood.

- compute.animation extracts sequence of networks, applies layouts, stores coordinates in network
- render.animation plots using plot.network on stored coords, computes tween frames
- animation library provides plot caching, and outputs as video in multiple formats.

The Fine Print

We chose an easy network to demo

- Real-world networks harder than simulation output
- This is an easy network because it is discrete, small, sparse, no node dynamics
- Saving the videos to disk requires installing some additional non-R software.
- ▶ It currently doesn't scale very well, limited to 1000 vertices

Features

- Can plugin in multiple layout types
- Can use some common exteral programs to do layouts, like GraphViz and MDSJ
- ► Can aggregate network slices from continuous event data
- ▶ Data and functions easily customized in R

Concurrency and Reachability movie

This five minute movie is a dynamic representation of an infection spreading through a transmission network over time.

- ► Small network extracted from a large simulation
- Edge timing tweaked to illustrate infection paths
- Uses multiple layout types

```
http://csde.washington.edu/statnet/movies/
or
http://www.youtube.com/watch?v=r3LYA5kirjA
```

Layouts: Speedy vs. Stable

Algorithm layout times for sparse networks of increasing size

The Teaser

Coming soon to a repository near you!

- Dynamic attributes of nodes and edges
- Edit and adjust positions after calculating

References

Bender-deMoll, S., Morris, M. and Moody, J. (2008)

Prototype Packages for Managing and Animating Longitudinal Network Data: dynamicnetwork and rSoNIA

Journal of Statistical Software 24:7.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks.

Journal of Statistical Software, 24(3). http://www.jstatsoft.org/v24/i03/.

Butts CT (2008).

network: A Package for Managing Relational Data in R. Journal of Statistical Software, 24(2). http://www.jstatsoft.org/v24/i02/.

Skye Bender-deMoll and McFarland, Daniel A. (2006)

The Art and Science of Dynamic Network Visualization.

Journal of Social Structure. Volume 7, Number 2

http://www.cmu.edu/joss/content/articles/volume7/deMollMcFarland/