ALGEBRAIC TOPOLOGY II LECTURE NOTES

HIDENORI SHINOHARA

Contents

1.	Geometric Description of Cocycles]
2.	Poincare Duality	4
2.1.	Orientations	4
2.2.	Poincare Duality(Version 1)	ļ
2.3.	Cap Products	ļ
2.4.	Poincare Duality(Version 2)	(
2.5	Differential Forms on \mathbb{R}^n	-

1. Geometric Description of Cocycles

Example 1.1. Let X be a Δ -complex and $\phi \in C^k(X; \mathbb{Z})$. What does it mean that $\delta \phi = 0$? As a toy model, we will consider a surface. One way to construct such a $\phi \in C^1(X; \mathbb{Z})$ is to take an oriented closed curve γ transverse to 1-simplices. Then we define $\phi(\sigma)$ to be the number of intersections between σ and γ with signs. See the following example:

FIGURE 1. Oriented closed curve in a surface

 γ gives us the following 1-cocycle ϕ which maps each e_i to an integer as following:

$$\begin{aligned} e_1 &\mapsto 1 \\ e_2 &\mapsto 1 - 1 + 1 = 1 \\ e_3 &\mapsto 1 \\ e_4 &\mapsto 0 \\ e_5 &\mapsto 0 \\ e_6 &\mapsto 0. \end{aligned}$$

Then $\delta \phi = 0$ because

$$(\delta\phi)(F_1) = \phi(\partial F_1) = \phi(e_1) - \phi(e_2) + \phi(e_4) = 0$$

$$(\delta\phi)(F_2) = \phi(\partial F_2) = \phi(e_3) - \phi(e_2) + \phi(e_5) = 0$$

$$(\delta\phi)(F_3) = \phi(\partial F_3) = \phi(e_1) - \phi(e_3) + \phi(e_6) = 0.$$

This is not a coincidence because $\phi(\partial \sigma)$ represents

(the number of times γ enters σ) - (the number of times γ exists σ)

which is always 0 for any 2-simplex σ and any traverse closed oriented curve γ . In this case, we call ϕ the **Poincare dual** to γ , or simply $\phi = PD(\gamma)$, and this concept can be generalized further.

Definition 1.2. Let X be a topological manifold of dimension n. Let γ be an (n-k)-cycle in X transverse to the k-skeleton of X. Define $\phi \in C^k(X; \mathbb{Z})$ such that

 $\phi(\sigma)$ = The number of intersections between σ and γ with signs.

Then we call ϕ the **Poincare dual** of γ and denote it by $\phi = PD(\gamma)$.

Example 1.3. We will look at a torus which is a slightly more complicated example. We obtain the following

Figure 2. Torus

cellular chain complex from Figure 2:

$$C_2 = \langle \sigma_1, \sigma_2 \rangle \longrightarrow C_1 = \langle \alpha_1, \alpha_2, \alpha_3 \rangle \longrightarrow C_0 = \langle v \rangle$$

$$\sigma_i \longmapsto \alpha_1 + \alpha_2 - \alpha_3$$

$$\alpha_i \longmapsto 0$$

Thus

$$H_i(T^2) = \begin{cases} \mathbb{Z} & (i = 0, 2) \\ \mathbb{Z}^2 & (i = 1). \end{cases}$$

Now, we will examine the cellular cochain complex.

$$\delta(v^*)(\alpha_i) = v^*(\partial \alpha_i)$$
$$= v^*(0)$$
$$= 0$$

for any $\alpha_i \in C_1$. Therefore, $\delta(v^*) = 0$.

$$\delta(\alpha_1^*)(\sigma_i) = \alpha_1^*(\partial(\sigma_i))$$

$$= \alpha_1^*(\alpha_1 + \alpha_2 - \alpha_3)$$

$$= 1$$

for any $\sigma_i \in C_2$. By performing similar calculation on α_2^* and α_3^* , we obtain

$$C^2 = \langle \sigma_1^*, \sigma_2^* \rangle \longleftarrow C^1 = \langle \alpha_1^*, \alpha_2^*, \alpha_3^* \rangle \longleftarrow C^0 = \langle v^* \rangle$$

$$\sigma_1^* + \sigma_2^* \longleftrightarrow \alpha_1^*, \alpha_2^*$$

$$-(\sigma_1^* + \sigma_2^*) \longleftrightarrow \alpha_3^*$$

$$0 \leftarrow v^*$$

Thus

$$H^{i}(T^{2}) = \begin{cases} \mathbb{Z} & (i = 0, 2) \\ \mathbb{Z}^{2} & (i = 1). \end{cases}$$

- $H^0(T^2) = \langle v^* \rangle / 0$, so $H^0(T^2)$ is generated by $[v^*]$. $H^2(T^2)$ is generated by $[\sigma_2^*]$ because $H^2(T^2) = \langle \sigma_1^*, \sigma_2^* \rangle / \langle \sigma_1^* + \sigma_2^* \rangle$.

We can picture $H^1(T^2)$ by using Poincare duals. Let $\phi_1 = PD(\gamma_1), \phi_2 = PD(\gamma_2)$. Then $\phi_1(\alpha_1) = 0, \phi_1(\alpha_2) = 0$

Figure 3. Torus Poincare Duals

$$1, \phi_1(\alpha_3) = 1, \text{ and } \phi_2(\alpha_1) = -1, \phi_2(\alpha_2) = 0, \phi_2(\alpha_3) = -1. \text{ Moreover},$$

$$(\delta\phi_1)(\sigma_i) = \phi_1(\partial\sigma_i) = \phi_1(\alpha_1 + \alpha_2 - \alpha_3) = \phi_1(\alpha_1) + \phi_1(\alpha_2) - \phi_1(\alpha_3) = 0.$$

$$(\delta\phi_2)(\sigma_i) = \phi_2(\partial\sigma_i) = \phi_2(\alpha_1 + \alpha_2 - \alpha_3) = \phi_1(\alpha_1) + \phi_1(\alpha_2) - \phi_1(\alpha_3) = 0.$$

Therefore, the classes represented by ϕ_1, ϕ_2 are in $H^1(T^2; \mathbb{Z})$. Moreover, they clearly generate $H^1(T^2; \mathbb{Z})$, so every element in $H^1(T^2; \mathbb{Z})$ can be considered as a function with a fixed closed curve that counts the number of times the curve intersects a given 1-simplex.

Now, we will examine the cup product structure. By definition, we know that $[\phi_1] \smile [\phi_2] \in H^2(T^2; \mathbb{Z})$. Therefore, we will check what σ_1, σ_2 get sent to.

$$(\phi_{1} \smile \phi_{2})(\sigma_{1}) = \phi_{1}(\sigma_{1}|_{[0,1]})\phi_{2}(\sigma_{1}|_{[1,2]})$$

$$= \phi_{1}(\alpha_{2})\phi_{2}(\alpha_{1})$$

$$= -1 \cdot 1 = -1.$$

$$(\phi_{1} \smile \phi_{2})(\sigma_{2}) = \phi_{1}(\sigma_{2}|_{[0,1]})\phi_{2}(\sigma_{2}|_{[1,2]})$$

$$= \phi_{1}(\alpha_{1})\phi_{2}(\alpha_{2})$$

$$= 0$$

Recall that $[\sigma_1^* + \sigma_2^*] = 0$ because $\sigma_1^* + \sigma_2^*$ is in the kernel. Therefore, $[\phi_1 \smile \phi_2] = [-\sigma_1^*] = [\sigma_2^*]$. Similarly, we obtain $(\phi_2 \smile \phi_1)(\sigma_1) = 0$ and $(\phi_2 \smile \phi_1)(\sigma_2) = -1$. Thus $[\phi_2 \smile \phi_1] = -[\sigma_2^*]$.

I don't understand the alternative approach using the universal coefficient theorem.

Finally, we obtain the following multiplication table for $H^*(T^2; \mathbb{Z}) \cong \mathbb{Z} \langle 1, [\phi_1], [\phi_2], [\sigma_2^*] \rangle$:

$\overline{}$	1	$[\phi_1]$	$[\phi_2]$	$[\sigma_2^*]$
1	1	$[\phi_1]$	$[\phi_2]$	$[\sigma_2^*]$
$[\phi_1]$	$[\phi_1]$	0	$[\sigma_2^*]$	0
$[\phi_2]$	$[\phi_2]$	$-[\sigma_2^*]$	0	0
$[\sigma_2^*]$	$[\sigma_2^*]$	0	0	0

2. Poincare Duality

Since $H^*(T^n) \equiv \wedge_{\mathbb{Z}} M$ where $M = \langle v_1, \cdots, v_n \rangle$, we have

k	0	1	2	 n-1	n
$\operatorname{rank} H^k(T^n; \mathbb{Z})$	$\binom{n}{0}$	$\binom{n}{1}$	$\binom{n}{2}$	 $\binom{n}{n-1}$	$\binom{n}{n}$

This symmetry phenomenon is true in general and very useful. Another example: The cellular complex for \mathbb{CP}^n is $\mathbb{Z} \to 0 \to \mathbb{Z} \to 0 \to \cdots \to 0 \to \mathbb{Z} \to 0$. Thus

k	0	1	2	 2n-1	2n
$\operatorname{rank} H^k(\mathbb{CP}^n;\mathbb{Z})$	1	0	1	 0	1

2.1. Orientations.

Definition 2.1. Let M be a triangulable closed n-manifold. Let $\sigma_1, \dots, \sigma_k$ be n-simplices such that $M = \sigma_1 \cup \dots \cup \sigma_k$. Then $\sigma_i \in C_n(M)$ for each i. Suppose that the ordering of the vertices in σ_i and the signs \pm can be chosen such that

$$\sum \pm \partial \sigma_i = 0 \in C_{n-1}(M).$$

Then M is said to be *orientable*.

Example 2.2. A tetrahedron and torus are examples of orientable manifolds.

FIGURE 4. Orientation of a tetrahedron

Definition 2.3. Let M be an n-dimensional orientable manifold. Choose $\sigma_i \in C_n(M)$ and signs $\operatorname{sgn}_i \in \{-1,1\}$ such that $M = \sigma_1 \cup \cdots \cup \sigma_k$ and $\sum \operatorname{sgn}_i \partial \sigma_i = 0$. The class represented by $\sum \operatorname{sgn}_i \sigma_i \in \ker(\partial)$ in $H_n(M)$ is called a fundamental class [M].

Theorem 2.4. If M connected, then [M] is a generator of $H_n(M)$.

Proof. By Poincare Duality(which will be discussed later (2.7)), $H_n(M) \cong H^0(M) = \mathbb{Z}$. Let $\sum c_i \sigma_i$ represent a generator of $H_n(M)$ where $c_i \in \mathbb{Z}$. Then $\sum \operatorname{sgn}_i \sigma_i = \lambda \sum c_i \sigma_i = \sum (\lambda c_i) \sigma_i$ for some $\lambda \in \mathbb{Z}$. Since each $\lambda c_i = \operatorname{sgn}_i \in \{-1, 1\}$, λ must be 1 or -1. Therefore, the class represented by $\sum \operatorname{sgn}_i \sigma_i$ is a generator of $H_n(M)$.

Corollary 2.5. There are two fundamental classes for any connected orientable manifold.

Proof. By (2.4), a fundamental class [M] is a generator of $H_n(M) = \mathbb{Z}$. Since \mathbb{Z} has exactly two generators 1, -1, M has exactly two fundamental classes.

Definition 2.6. Let M be a connected, orientable manifold. Then a choice of a fundamental class is called an orientation of M.

2.2. Poincare Duality(Version 1).

Theorem 2.7. If M is an orientable closed n-manifold, then

$$H^k(M;G) \cong H_{n-k}(M;G)$$

for any integer $0 \le k \le n$ and an abelian group G.

Remark. If M is not orientable, Poincare Duality holds when $G = \mathbb{Z}/2$. In other words,

$$H^k(M; \mathbb{Z}/2) \cong H_{n-k}(M; \mathbb{Z}/2).$$

For instance,

$H_*(\mathbb{RP}^2;\mathbb{Z})$	0	$\mathbb{Z}/2$	\mathbb{Z}
$H^*(\mathbb{RP}^2;\mathbb{Z})$	$\mathbb{Z}/2$	0	\mathbb{Z}

so Poincare Duality does not hold in this case. However, with $\mathbb{Z}/2$,

so Poincare Duality holds in this case.

Definition 2.8. The kth Betti number of a manifold M is defined to be $b_k = \operatorname{rank}(H^k(M; \mathbb{Z}))$.

Theorem 2.9. $b_k = b_{n-k}$ for all k if M is a closed orientable n-manifold.

Proof. By the Universal Coefficient Theorem, $\operatorname{rank}(H^k(M)) = \operatorname{rank}(H_k(M))$. By Poincare Duality, $\operatorname{rank}(H^k(M)) = \operatorname{rank}(H_{n-k}(M))$. Therefore, $b_k = \operatorname{rank}(H^k(M)) = \operatorname{rank}(H_{n-k}(M)) = \operatorname{rank}(H^{n-k}(M)) = b_{n-k}$.

2.3. Cap Products. There is a nice way to explicitly write down the isomorphism when G is a commutative ring.

Definition 2.10. Let a space X and a commutative ring R be given. For any $k \ge l$, define the cap product

$$\frown: C_k(X;R) \otimes C^l(X;R) \longrightarrow C_{k-l}(X;R)$$

$$\sigma \otimes \phi \longmapsto \phi(\sigma|_{[v_0,\dots,v_l]})\sigma|_{[v_l,\dots,v_k]}$$

Theorem 2.11. $\partial(\sigma \frown \phi) = (-1)^l((\partial \sigma) \frown \phi - \sigma \frown (\partial \phi)).$

Proof. Let $k \geq l, \sigma \in C_{k+1}(X; R), \phi \in C^l(X; R)$ be given.

$$\begin{split} (\partial\sigma) &\frown \phi = (\sum_{j} (-1)^{j} \sigma|_{[v_{0}, \dots, \hat{v}_{j}, \dots, v_{k}]}) \frown \phi \\ &= \sum_{j} (-1)^{j} (\sigma|_{[v_{0}, \dots, \hat{v}_{j}, \dots, v_{k}]} \frown \phi) \\ &= \sum_{j=1}^{l} (-1)^{j} \phi(\sigma|_{[v_{0}, \dots, \hat{v}_{j}, \dots, v_{l+1}]}) \sigma|_{[v_{l+1}, \dots, v_{k}]} + \sum_{j=l+1}^{k} (-1)^{j} \phi(\sigma|_{[v_{0}, \dots, v_{l}]}) \sigma|_{[v_{l}, \dots, \hat{v}_{j}, \dots, v_{k}]} \\ &= \sum_{j=1}^{l} (-1)^{j} \phi(\sigma|_{[v_{0}, \dots, \hat{v}_{j}, \dots, v_{l+1}]}) \sigma|_{[v_{l+1}, \dots, v_{k}]} + (-1)^{l+1} \phi(\sigma|_{[v_{0}, \dots, v_{l}, \hat{v}_{l+1}]}) \sigma|_{[v_{l+1}, \dots, v_{k}]} \\ &+ (-1)^{l} \phi(\sigma|_{[v_{0}, \dots, v_{l}]}) \sigma|_{[\hat{v}_{l}, v_{l+1}, \dots, v_{k}]} + \sum_{j=l+1}^{k} (-1)^{j} \phi(\sigma|_{[v_{0}, \dots, v_{l}]}) \sigma|_{[v_{l}, \dots, \hat{v}_{j}, \dots, v_{k}]} \\ &= \sum_{j=1}^{l+1} (-1)^{j} \phi(\sigma|_{[v_{0}, \dots, \hat{v}_{j}, \dots, v_{l+1}]}) \sigma|_{[v_{l+1}, \dots, v_{k}]} + \sum_{j=l}^{k} (-1)^{j} \phi(\sigma|_{[v_{0}, \dots, v_{l}]}) \sigma|_{[v_{l}, \dots, \hat{v}_{j}, \dots, v_{k}]}. \end{split}$$

We will compute each summand.

$$\begin{split} \sum_{j=1}^{l+1} (-1)^j \phi(\sigma|_{[v_0, \cdots, \hat{v}_j, \cdots, v_{l+1}]}) \sigma|_{[v_{l+1}, \cdots, v_k]} &= \phi(\sum_{j=1}^{l+1} (-1)^j \sigma|_{[v_0, \cdots, \hat{v}_j, \cdots, v_{l+1}]}) \sigma|_{[v_{l+1}, \cdots, v_k]} \\ &= \phi(\partial \sigma|_{[v_0, \cdots, v_{l+1}]}) \sigma|_{[v_{l+1}, \cdots, v_k]} \\ &= \sigma \frown \delta \phi. \end{split}$$

On the other hand,

$$\sum_{j=l}^{k} (-1)^{j} \phi(\sigma|_{[v_{0}, \dots, v_{l}]}) \sigma|_{[v_{l}, \dots, \hat{v}_{j}, \dots, v_{k}]} = (-1)^{l} \sum_{j=0}^{k-l} (-1)^{j} \phi(\sigma|_{[v_{0}, \dots, v_{l+j}]}) \sigma|_{[v_{l}, \dots, \hat{v}_{l+j}, \dots, v_{k}]}$$

$$= (-1)^{l} \partial(\phi(\sigma|_{[v_{0}, \dots, v_{l+j}]}) \sigma|_{[v_{l}, \dots, v_{k}]})$$

$$= (-1)^{l} \partial(\sigma \frown \phi).$$

Therefore, we obtain the desired result $\partial(\sigma \frown \phi) = (-1)^l((\partial \sigma) \frown \phi - \sigma \frown (\delta \phi)).$

Theorem 2.12. $\frown: C_k(X;R) \otimes C^l(X;R) \to C_{k-l}(X;R)$ induces a map $H_k(X;R) \otimes H^l(X;R) \to H_{k-l}(X;R)$.

Proof. Let $[\sigma] \in H_k(X; R)$ and $[\phi] \in H^l(X; R)$ be given where $\sigma \in C_k(X; R)$ and $\phi \in C^l(X; R)$. Then $\partial(\sigma) = \delta(\phi) = 0$. By (2.11), $\partial(\sigma \frown \phi) = (-1)^l(0-0) = 0$. Therefore, $\sigma \frown \phi$ represents a class in $H_{k-l}(X; R)$.

2.4. Poincare Duality(Version 2).

Theorem 2.13. If M is an orientable closed n-manifold, let $[M] \in H_n(M)$ be a fundamental class for M, and let R be a commutative ring. View $[M] \in H_n(M; R)$. Then the map

$$H^{l}(M;R) \longrightarrow H_{n-l}(M;R)$$

$$\phi \longmapsto [M] \frown \phi$$

is an R-module isomorphism.

If M is not orientable, then $[M] \in H_n(M; \mathbb{Z}/2)$ still exists, and we have

$$H^{l}(M; \mathbb{Z}/2) \longrightarrow H_{n-l}(M; \mathbb{Z}/2)$$

$$\phi \longmapsto [M] \frown \phi$$

2.5. Differential Forms on \mathbb{R}^n .

Definition 2.14. Let dx_1, \dots, dx_n be formal indeterminates. Let V be the vector space over \mathbb{R} generated by dx_1, \dots, dx_n . Let Ω^* be the \mathbb{R} -algebra generated by dx_1, \dots, dx_n module relations $dx_i \wedge dx_i = 0$ and $dx_i \wedge dx_j = -dx_j \wedge dx_i$.

Lemma 2.15. The dimension of Ω^* over \mathbb{R} is 2^n .

Proof. Ω^* is generated by the set of elements of the form $dx_{i_1} \wedge \cdots \wedge dx_{i_k}$ where $0 \leq k \leq n$ and $i_1 < \cdots < i_k$. This is because of the two relations of Ω^* . We denote it by dx_I where $I = \{i_1, \dots, i_k\}$. Then there are exactly 2^n I's, so the dimension is 2^n .

Definition 2.16. Let $U \subset \mathbb{R}^n$ be open. Then $\Omega^*(U) = C^{\infty}(U) \otimes \Omega^*$.

Lemma 2.17. $\Omega^*(U)$ is a graded, sign-commutative \mathbb{R} -algebra.

Proof. $\Omega^*(U)$ is a vector space over $\mathbb R$ because addition can be defined in a trivial way and for any $c \in \mathbb R$ and $f \otimes dx_I \in \Omega^*(U), c(f \otimes dx_I) = (cf) \otimes dx_I.$ Moreover, $(f_I dx_I) \wedge (f_J dx_J) = (f_I f_J)(dx_I \wedge dx_J)$ is a well-defined multiplication. It is easy to see that the multiplication, addition and scalar multiplication commute. Thus $\Omega^*(U)$ is a \mathbb{R} -algebra. Moreover, $\Omega^*(U) = \bigoplus_{k=1}^n \Omega^k(U)$ where $\Omega^k(U) = \{\sum_{|I|=k} f_I dx_I\}$. Finally, for any $\omega_1 \in \Omega^{k_1}(U), \omega_2 \in \Omega^{k_2}(U), \omega_1 \wedge \omega_2 = (-1)^{k_1 k_2} \omega_2 \wedge \omega_1.$

Definition 2.18. The exterior derivative $d: \Omega^k(U) \to \Omega^{k+1}(U)$ is defined as following:

- For any $f \in \Omega^0(U)$, $df = \sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_i$. For any $\omega \in \sum f_I dx_I$, $d\omega = \sum df_I \wedge dx_I$.