Solution Sec

Section 2.5 – Numerical Integration

Exercise

Find the Midpoint Rule approximations to: $\int_{0}^{1} \sin \pi x \, dx \quad using \quad n = 6 \quad subintervals$

Solution

$$\Delta x = \frac{1-0}{6} \ \underline{= \frac{1}{6}}$$

$$\Delta x = \frac{b-a}{n}$$

$$x_k = a + k\Delta x$$

$$x_0 = 0$$

$$x_1 = 0 + \frac{1}{6} = \frac{1}{6}$$

$$x_2 = 0 + 2\left(\frac{1}{6}\right) = \frac{1}{3}$$

$$x_3 = 0 + 3\left(\frac{1}{6}\right) = \frac{1}{2}$$

$$x_4 = 0 + 4\left(\frac{1}{6}\right) = \frac{2}{3}$$

$$x_5 = 0 + 5\left(\frac{1}{6}\right) = \frac{5}{6}$$

$$x_6 = 0 + 6\left(\frac{1}{6}\right) = 1$$

$$m_1 = \frac{1}{2} \left(0 + \frac{1}{6} \right) = \frac{1}{12}$$

$$m_2 = \frac{1}{2} \left(\frac{1}{6} + \frac{1}{3} \right) = \frac{1}{4}$$

$$m_3 = \frac{1}{2} \left(\frac{1}{3} + \frac{1}{2} \right) = \frac{5}{12}$$

$$m_4 = \frac{1}{2} \left(\frac{1}{2} + \frac{2}{3} \right) = \frac{7}{12}$$

$$m_5 = \frac{1}{2} \left(\frac{2}{3} + \frac{5}{6} \right) = \frac{3}{4}$$

$$m_6 = \frac{1}{2} \left(\frac{5}{6} + 1 \right) = \frac{11}{12}$$

$$M(n) = f(m_1)\Delta x + f(m_2)\Delta x + \cdots + f(m_n)\Delta x$$

$$M\left(6\right) = \left(\sin\left(\frac{\pi}{12}\right) + \sin\left(\frac{\pi}{4}\right) + \sin\left(\frac{5\pi}{12}\right) + \sin\left(\frac{7\pi}{12}\right) + \sin\left(\frac{9\pi}{12}\right) + \sin\left(\frac{11\pi}{12}\right)\right)\left(\frac{1}{6}\right)$$

≈ 0.6439505509

 $m_{k} = \frac{x_{k-1} + x_{k}}{2}$

Find the Midpoint Rule approximations to:

$$\int_0^{\pi} x^2 \sin x \, dx \quad n = 8 \quad subintervals$$

Solution

$$\Delta x = \frac{\pi - 0}{8} = \frac{\pi}{8}$$

$$\Delta x = \frac{b - a}{n}$$

$$x_0 = 0$$

$$x_1 = 0 + \frac{\pi}{8} = \frac{\pi}{8}$$

$$x_k = x_0 + k\Delta x$$

$$x_2 = 0 + 2\left(\frac{\pi}{8}\right) = \frac{\pi}{4}$$

$$x_3 = 0 + 3\left(\frac{\pi}{8}\right) = \frac{3\pi}{8}$$

$$x_4 = 0 + 4\left(\frac{\pi}{8}\right) = \frac{\pi}{2}$$

$$x_5 = 0 + 5\left(\frac{\pi}{8}\right) = \frac{5\pi}{8}$$

$$x_6 = 0 + 6\left(\frac{\pi}{8}\right) = \frac{3\pi}{4}$$

$$x_7 = 0 + 7\left(\frac{\pi}{8}\right) = \frac{7\pi}{8}$$

$$x_8 = 0 + 8\left(\frac{\pi}{8}\right) = \pi$$

$$m_1 = \frac{1}{2} \left(0 + \frac{\pi}{8} \right) = \frac{\pi}{16}$$
 $m_k = \frac{x_{k-1} + x_k}{2}$

$$m_2 = \frac{1}{2} \left(\frac{\pi}{8} + \frac{\pi}{4} \right) = \frac{3\pi}{16}$$

$$m_3 = \frac{1}{2} \left(\frac{\pi}{4} + \frac{3\pi}{8} \right) = \frac{5\pi}{16}$$

$$m_4 = \frac{1}{2} \left(\frac{3\pi}{8} + \frac{\pi}{2} \right) = \frac{7\pi}{16}$$

$$m_5 = \frac{1}{2} \left(\frac{\pi}{2} + \frac{5\pi}{8} \right) = \frac{9\pi}{16}$$

$$m_6 = \frac{1}{2} \left(\frac{5\pi}{8} + \frac{3\pi}{4} \right) = \frac{11\pi}{16}$$

$$m_7 = \frac{1}{2} \left(\frac{3\pi}{4} + \frac{7\pi}{8} \right) = \frac{13\pi}{16}$$

$$m_8 = \frac{1}{2} \left(\frac{7\pi}{8} + \pi \right) = \frac{15\pi}{16}$$

$$M(n) = f(m_1)\Delta x + f(m_2)\Delta x + \cdots + f(m_n)\Delta x$$

$$M(8) = \begin{cases} \left(\frac{\pi}{16}\right)^2 \sin\frac{\pi}{16} + \left(\frac{3\pi}{16}\right)^2 \sin\frac{3\pi}{16} + \left(\frac{5\pi}{16}\right)^2 \sin\frac{5\pi}{16} + \left(\frac{7\pi}{16}\right)^2 \sin\frac{7\pi}{16} + \left(\frac{9\pi}{16}\right)^2 \sin\frac{9\pi}{16} \\ + \left(\frac{11\pi}{16}\right)^2 \sin\frac{11\pi}{16} + \left(\frac{13\pi}{16}\right)^2 \sin\frac{13\pi}{16} + \left(\frac{15\pi}{16}\right)^2 \sin\frac{15\pi}{16} \end{cases}$$

$$= \begin{cases} \sin\frac{\pi}{16} + 9\sin\frac{3\pi}{16} + 25\sin\frac{5\pi}{16} + 49\sin\frac{7\pi}{16} + 81\sin\frac{9\pi}{16} + 121\sin\frac{11\pi}{16} \\ + 169\sin\frac{13\pi}{16} + 225\sin\frac{15\pi}{16} \end{cases}$$

$$\approx \begin{pmatrix} 0.19509 + 5.000132 + 20.7867403 + 67.3478925 + 79.4436077 \\ 100.607823 + 93.89136938 + 43.895322453 \end{pmatrix} \frac{\pi^3}{2,048}$$

≈ 6.22414635

Exercise

Find the Midpoint Rule approximations to:

$$\int_{0}^{1} e^{-\sqrt{x}} dx \quad n = 6 \quad subintervals$$

Solution

$$\Delta x = \frac{1-0}{6} = \frac{1}{6}$$

$$\Delta x = \frac{b-a}{n}$$

$$x_0 = 0$$

$$x_1 = 0 + \frac{1}{6} = \frac{1}{6}$$

$$x_2 = 0 + 2\left(\frac{1}{6}\right) = \frac{1}{3}$$

$$x_3 = 0 + 3\left(\frac{1}{6}\right) = \frac{1}{2}$$

$$x_5 = 0 + 5\left(\frac{1}{6}\right) = \frac{5}{6}$$

 $x_4 = 0 + 4\left(\frac{1}{6}\right) = \frac{2}{3}$

$$x_6 = 0 + 6\left(\frac{1}{6}\right) = 1$$

$$m_1 = \frac{1}{2} \left(0 + \frac{1}{6} \right) = \frac{1}{12}$$

$$m_2 = \frac{1}{2} \left(\frac{1}{6} + \frac{1}{3} \right) = \frac{1}{4}$$

$$m_3 = \frac{1}{2} \left(\frac{1}{3} + \frac{1}{2} \right) = \frac{5}{12}$$

$$m_4 = \frac{1}{2} \left(\frac{1}{2} + \frac{2}{3} \right) = \frac{7}{12}$$

$$m_k = \frac{x_{k-1} + x_k}{2}$$

$$\begin{split} m_5 &= \frac{1}{2} \left(\frac{2}{3} + \frac{5}{6} \right) = \frac{3}{4} \\ m_6 &= \frac{1}{2} \left(\frac{5}{6} + 1 \right) = \frac{11}{12} \\ M\left(n \right) &= f\left(m_1 \right) \Delta x + f\left(m_2 \right) \Delta x + \cdots + f\left(m_n \right) \Delta x \\ M\left(6 \right) &= \left(e^{-\sqrt{1/12}} + e^{-\sqrt{1/4}} + e^{-\sqrt{5/12}} + e^{-\sqrt{7/12}} + e^{-\sqrt{3/4}} + e^{-\sqrt{11/12}} \right) \left(\frac{1}{6} \right) \\ &\approx \left(.74925557 + .6065306597 + .52440173 + .46591 + .42062 + .383879 \right) \left(\frac{1}{6} \right) \\ &\approx 0.67787732 \ \, \right] \end{split}$$

Find the Midpoint Rule approximations to: $\int_{0}^{1} e^{-x} dx \quad using \quad n = 8 \quad subintervals$

Solution

$$\Delta x = \frac{1-0}{8} = \frac{1}{8}$$

$$x_0 = 0$$

$$x_1 = 0 + \frac{1}{8} = \frac{1}{8}$$

$$x_2 = 0 + 2\left(\frac{1}{8}\right) = \frac{1}{4}$$

$$x_3 = 0 + 3\left(\frac{1}{8}\right) = \frac{3}{8}$$

$$x_4 = 0 + 4\left(\frac{1}{8}\right) = \frac{1}{2}$$

$$x_5 = 0 + 5\left(\frac{1}{8}\right) = \frac{5}{8}$$

$$x_6 = 0 + 6\left(\frac{1}{8}\right) = \frac{3}{4}$$

$$x_7 = 0 + 7\left(\frac{1}{8}\right) = \frac{7}{8}$$

$$x_8 = 0 + 8\left(\frac{1}{8}\right) = 1$$

$$m_1 = \frac{1}{2}\left(0 + \frac{1}{8}\right) = \frac{1}{16}$$

$$m_2 = \frac{1}{2}\left(\frac{1}{8} + \frac{1}{4}\right) = \frac{3}{16}$$

$$m_k = \frac{x_{k-1} + x_k}{2}$$

$$\begin{split} m_3 &= \frac{1}{2} \left(\frac{1}{4} + \frac{3}{8} \right) = \frac{5}{16} \\ m_4 &= \frac{1}{2} \left(\frac{3}{8} + \frac{1}{2} \right) = \frac{7}{16} \\ m_5 &= \frac{1}{2} \left(\frac{1}{2} + \frac{5}{8} \right) = \frac{9}{16} \\ m_6 &= \frac{1}{2} \left(\frac{5}{8} + \frac{3}{4} \right) = \frac{11}{16} \\ m_7 &= \frac{1}{2} \left(\frac{3}{4} + \frac{7}{8} \right) = \frac{13}{16} \\ m_8 &= \frac{1}{2} \left(\frac{7}{8} + 1 \right) = \frac{15}{16} \\ M\left(8 \right) &= \frac{1}{8} \left(e^{-1/16} + e^{-3/16} + e^{-5/16} + e^{-7/16} + e^{-9/16} + e^{-11/16} + e^{-13/16} + e^{-15/16} \right) \\ &\approx 0.6317092095 \end{split}$$

Estimate the minimum number of subintervals to approximate the integrals with an error of magnitude of

 $\Delta x = \frac{b-a}{a}$

$$10^{-4}$$
 by (a) the Trapezoid Rule and (b) Simpson's Rule.
$$\int_{1}^{3} (2x-1)dx$$

Solution

a) *i*) $\Delta x = \frac{3-1}{4}$

$$\frac{1}{2} = \frac{1}{2}$$

$$T = \frac{1}{2} \Delta x \left(m f \left(x_i \right) \right)$$

$$= \frac{1}{2} \frac{1}{2} (24) = \underline{6}$$

$$f(x) = 2x - 1 \implies f'(x) = 2$$

$$\Rightarrow f''(x) = 0 = M$$

$$\Rightarrow Error = 0$$

$$ii) \int_{1}^{3} (2x - 1) dx = \left[x^2 - x \right]_{1}^{3}$$

$$= \left(3^2 - 3 \right) - \left(1^2 - 1 \right)$$

$$= 6$$

	x_{i}	$f\left(x_{i}\right) = 2x_{i} - 1$	m	$mf(x_i)$
x_0	1	1	1	1
x_1	$1 + \frac{1}{2} = \frac{3}{2}$	2	2	4
x_2	2	3	2	6
<i>x</i> ₃	<u>5</u> 2	4	2	8
<i>x</i> ₄	3	5	1	5
				24

iii)
$$Error = \frac{|E_T|}{True \ Value} \times 100$$

$$= 0\%$$

b) i)
$$\Delta x = \frac{3-1}{4}$$
 $\Delta x = \frac{b-a}{n}$

$$= \frac{1}{2} \Big|$$

$$S = \frac{1}{3} \Delta x \Big(\sum m f(x_i) \Big)$$

$$= \frac{1}{3} \frac{1}{2} (36)$$

$$= \underline{6} \Big|$$

$$f(x) = 2x - 1$$

$$\Rightarrow f^{(4)}(x) = 0 = M$$

$$\Rightarrow \Big| E_s \Big| = 0$$

ii)
$$\int_{1}^{3} (2x-1) dx = 6$$

$$\left| E_{s} \right| = \int_{1}^{3} (2x-1) dx - S$$

$$= 6 - 6$$

$$= 0$$

iii)
$$Error = \frac{|E_T|}{True \ Value} \times 100$$

= 0% |

	x_{i}	$f\left(x_{i}\right) = 2x_{i} - 1$	m	$mf(x_i)$
<i>x</i> ₀	1	1	1	1
x_1	<u>3</u> 2	2	4	8
x_2	2	3	2	6
<i>x</i> ₃	<u>5</u> 2	4	4	16
<i>x</i> ₄	3	5	1	5
				36

Estimate the minimum number of subintervals to approximate the integrals with an error of magnitude of

$$10^{-4}$$
 by (a) the Trapezoid Rule and (b) Simpson's Rule.
$$\int_{-1}^{1} (x^2 + 1) dx$$

Solution

a) i)
$$\underline{\Delta x} = \frac{b-a}{n} = \frac{1+1}{4} = \frac{1}{2}$$

$$T = \frac{1}{2} \Delta x \left(m f\left(x_i\right) \right) = \frac{1}{2} \frac{1}{2} (11) = \frac{11}{4}$$

$$f(x) = x^2 + 1 \implies f'(x) = 2x \implies f''(x) = 2 = M$$

$$|E_T| = \frac{1-(-1)}{12} \left(\frac{1}{2}\right)^2 (2) = 0.0833...$$
ii)
$$\int_{-1}^{1} \left(x^2 + 1\right) dx = \left[\frac{1}{3}x^3 + x\right]_{-1}^{1} = \left(\frac{1}{3} + 1\right) - \left(-\frac{1}{3} - 1\right) = \frac{8}{3}$$

 $E_T = \int_{-1}^{1} (x^2 + 1) dx - T = \frac{8}{3} - \frac{11}{4} = -\frac{1}{12}$

	x_{i}	$f(x_i)$	m	$mf(x_i)$
x_0	-1	2	1	2
<i>x</i> ₁	$-\frac{1}{2}$	<u>5</u> 4	2	<u>5</u> 2
x_2	0	1	2	2
x_3	$\frac{1}{2}$	<u>5</u> 4	2	<u>5</u> 2
x_4	1	2	1	2
				11

<i>iii</i>) $Error = \frac{ E_T }{True\ Value} \times$	$100 = \frac{\frac{1}{12}}{\frac{8}{3}} \approx 3\%$
---	--

b) **i**) $\Delta x = \frac{b-a}{n} = \frac{-1-(-1)}{4} = \frac{1}{2}$

$$S = \frac{1}{3}\Delta x \left(\sum m f\left(x_i\right)\right) = \frac{1}{3}\frac{1}{2}(16) = \frac{8}{3}$$

$$f\left(x\right) = x^2 + 1 \implies f^{(4)}\left(x\right) = 0 = M$$

$$\Rightarrow \left|E_s\right| = 0$$

$$ii) \int_{-1}^{1} \left(x^2 + 1\right) dx = \frac{8}{3}$$

$$E_S = \int_{-1}^{1} \left(x^2 + 1\right) dx - S = \frac{8}{3} - \frac{8}{3} = 0$$

$$iii) Error = \frac{\left|E_T\right|}{True\ Value} \times 100 = 0\%$$

	x_{i}	$f(x_i)$	m	$m f(x_i)$
x_0	-1	2	1	2
<i>x</i> ₁	$-\frac{1}{2}$	<u>5</u> 4	4	5
x_2	0	1	2	2
x_3	$\frac{1}{2}$	<u>5</u> 4	4	5
x_4	1	2	1	2
				16

Estimate the minimum number of subintervals to approximate the integrals with an error of magnitude of

 10^{-4} by (a) the Trapezoid Rule and (b) Simpson's Rule. $\int_{2}^{4} \frac{1}{(s-1)^{2}} ds$

Solution

a)
$$\Delta x = \frac{4-2}{4}$$
 $\Delta x = \frac{b-a}{n}$

$$= \frac{1}{2} \Big|$$

$$x_0 = 2$$

$$x_1 = 2 + \frac{1}{2} = \frac{5}{2}$$

$$x_2 = 2 + 2\left(\frac{1}{2}\right) = 3$$

$$x_3 = 2 + 3\left(\frac{1}{2}\right) = \frac{7}{2}$$

$$x_4 = 4$$

$$T = \frac{1}{2}\Delta x \left(mf\left(x_i\right)\right)$$

$$= \frac{1}{4}\left(\frac{1}{1} + \frac{8}{9} + \frac{1}{2} + \frac{8}{25} + \frac{1}{9}\right)$$

$$= \frac{1269}{1800}$$

$$\approx 0.705 \Big|$$

$$f(s) = (s-1)^{-2} \implies f'(s) = -2(s-1)^{-3}$$

$$\Rightarrow f''(s) = 6(s-1)^{-4} = \frac{6}{(s-1)^4} \Rightarrow M = 6$$

$$\int_{2}^{4} \frac{1}{(s-1)^2} ds = \int_{2}^{4} (s-1)^{-2} d(s-1)$$

$$= -\left[(s-1)^{-1}\right]_{2}^{4}$$

$$= -(3^{-1} - 1^{-1})$$

$$= \frac{2}{3} \Big|$$

The percentage error:
$$\approx \frac{|0.705 - .6667|}{.6667}$$

 ≈ 0.0575 5.75%

$$b) \quad \Delta x = \frac{4-2}{4} \qquad \Delta x = \frac{b-a}{n}$$

$$= \frac{1}{2} \Big|$$

$$x_0 = 2$$

$$x_1 = 2 + \frac{1}{2} = \frac{5}{2}$$

$$x_2 = 2 + 2\left(\frac{1}{2}\right) = 3$$

$$x_3 = 2 + 3\left(\frac{1}{2}\right) = \frac{7}{2}$$

$$x_4 = 4$$

$$S = \frac{1}{3} \Delta x \left(m f\left(x_i\right)\right)$$

$$= \frac{1}{3} \frac{1}{2} \left(\frac{1}{(2-1)^2} + 4\frac{1}{\left(\frac{5}{2}-1\right)^2} + 2\frac{1}{(3-1)^2} + 4\frac{1}{\left(\frac{7}{2}-1\right)^2} + \frac{1}{(4-1)^2}\right)$$

$$= \frac{1}{6} \left(\frac{1}{1} + \frac{16}{9} + \frac{1}{2} + \frac{16}{25} + \frac{1}{9}\right)$$

$$= \frac{1813}{450}$$

$$\int_{2}^{4} \frac{1}{(s-1)^{2}} ds = \frac{2}{3}$$

The percentage error: =
$$\frac{|0.67148 - .6667|}{.6667}$$

 $\approx 0.0072 | 0.72\%|$

Find the *Trapezoid & Simpson's* Rule approximations and error: $\int_{0}^{1} \sin \pi x \, dx \quad n = 6 \quad subintervals$ **Solution**

Solution

Trapezoid Rule Method

n	x_n	$f(x_n)$	$m \cdot f(x_n)$
0	0.0000000000	0.0000000000	0.0000000000
1	0.1666666667	0.5000000000	1.0000000000
2	0.333333333	0.8660254000	1.7320508000
3	0.5000000000	1.0000000000	2.0000000000
4	0.6666666667	0.8660254000	1.7320508000
5	0.833333333	0.5000000000	1.0000000000
6	1.0000000000	0.0000000000	0.0000000000

Trapezoid Rule approximation ≈ 0.62200847

Simpson's Rule Method

n	x_n	$f(x_n)$	$m \cdot f(x_n)$
0	0.0000000000	0.0000000000	0.0000000000
1	0.1666666667	0.5000000000	2.0000000000
2	0.333333333	0.8660254000	1.7320508000
3	0.5000000000	1.0000000000	2.0000000000
4	0.6666666667	0.8660254000	1.7320508000
5	0.833333333	0.5000000000	1.0000000000
6	1.0000000000	0.0000000000	0.0000000000

Exact	Trapezoid	Simpson
Value: 0.63661977	0.62200847	0.63689453
Error:	2.2951 %	0.0432 %

Find the *Trapezoid & Simpson's* Rule approximations to and error to $\int_{0}^{1} e^{-x} dx \quad n = 8 \text{ subintervals}$

Solution

Trapezoid Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	1.0000000000	1.0000000000
1	0.1250000000	0.8824969000	1.7649938000
2	0.2500000000	0.7788007800	1.5576015600
3	0.3750000000	0.6872892800	1.3745785600
4	0.5000000000	0.6065306600	1.2130613200
5	0.6250000000	0.5352614300	1.0705228600
6	0.7500000000	0.4723665500	0.9447331000
7	0.8750000000	0.4168620200	0.8337240400
8	1.0000000000	0.3678794400	0.3678794400

Trapezoid Rule approximation ≈ 0.63294342

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_n\right)$
0	0.0000000000	1.0000000000	1.0000000000
1	0.1250000000	0.8824969000	3.5299876000
2	0.2500000000	0.7788007800	1.5576015600
3	0.3750000000	0.6872892800	2.7491571200
4	0.5000000000	0.6065306600	1.2130613200
5	0.6250000000	0.5352614300	2.1410457200
6	0.7500000000	0.4723665500	0.9447331000
7	0.8750000000	0.4168620200	1.6674480800
8	1.0000000000	0.3678794400	0.3678794400

Simpson's Rule approximation ≈ 0.63212141

Exact	Trapezoid	Simpson
Value: 0.63212056	0.63294342	0.63212141
Error:	0.1302 %	0.0001 %

Find the *Trapezoid & Simpson's* Rule approximations and error to:

$$\int_{1}^{5} \left(3x^2 - 2x\right) dx \quad n = 8 \quad subintervals$$

Solution

Trapezoid Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	1.0000000000	1.0000000000
1	1.5000000000	3.7500000000	7.5000000000
2	2.0000000000	8.0000000000	16.0000000000
3	2.5000000000	13.7500000000	27.5000000000
4	3.0000000000	21.0000000000	42.0000000000
5	3.5000000000	29.7500000000	59.5000000000
6	4.0000000000	40.0000000000	80.0000000000
7	4.5000000000	51.7500000000	103.500000000
8	5.0000000000	65.0000000000	65.0000000000

Trapezoid Rule approximation ≈ 100.50000000

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	1.0000000000	1.0000000000
1	1.5000000000	3.7500000000	15.0000000000
2	2.00000000000	8.0000000000	16.0000000000
3	2.50000000000	13.7500000000	55.0000000000
4	3.00000000000	21.0000000000	42.0000000000
5	3.50000000000	29.7500000000	119.000000000
6	4.0000000000	40.0000000000	80.0000000000
7	4.50000000000	51.7500000000	207.000000000
8	5.0000000000	65.0000000000	65.0000000000

Exact	Trapezoid	Simpson
Value: 100.000000	100.500000	100.00000000
Error:	0.5000%	0.0000 %

Find the *Trapezoid & Simpson's* Rule approximations and error:

 $\int_{0}^{\pi/4} 3\sin 2x \ dx \quad n = 8 \text{ subintervals}$

Solution

Trapezoid Rule Method

x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0.0000000000	0.0000000000	0.0000000000
0.0981747704	0.5852709700	1.1705419400
0.1963495408	1.1480503000	2.2961006000
0.2945243113	1.6667107000	3.3334214000
0.3926990817	2.1213203400	4.2426406800
0.4908738521	2.4944088400	4.9888176800
0.5890486225	2.7716386000	5.5432772000
0.6872233930	2.9423558400	5.8847116800
0.7853981634	3.0000000000	3.0000000000
	n 0.0000000000 0.0981747704 0.1963495408 0.2945243113 0.3926990817 0.4908738521 0.5890486225 0.6872233930	0.00000000000.00000000000.09817477040.58527097000.19634954081.14805030000.29452431131.66671070000.39269908172.12132034000.49087385212.49440884000.58904862252.77163860000.68722339302.9423558400

Trapezoid Rule approximation ≈ 1.49517776

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	0.0000000000	0.0000000000
1	0.0981747704	0.5852709700	2.3410838800
2	0.1963495408	1.1480503000	2.2961006000
3	0.2945243113	1.6667107000	6.6668428000
4	0.3926990817	2.1213203400	4.2426406800
5	0.4908738521	2.4944088400	9.9776353600
6	0.5890486225	2.7716386000	5.5432772000
7	0.6872233930	2.9423558400	11.7694233600
8	0.7853981634	3.0000000000	3.0000000000

Simpson's Rule approximation ≈ 1.50001244

Exact	Trapezoid	Simpson
Value: 1.500000	1.49517776	1.50001244
Error:	0.3215 %	0.0008 %

Find the *Trapezoid & Simpson's* Rule approximations and error: $\int_0^8 e^{-2x} dx \quad n = 8 \text{ subintervals}$

Solution

Trapezoid Rule Method

n	$\frac{x}{n}$	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	1.0000000000	1.0000000000
1	1.0000000000	0.1353352800	0.2706705600
2	2.00000000000	0.0183156400	0.0366312800
3	3.00000000000	0.0024787500	0.0049575000
4	4.00000000000	0.0003354600	0.0006709200
5	5.0000000000	0.0000454000	0.0000908000
6	6.00000000000	0.0000061400	0.0000122800
7	7.0000000000	0.0000008300	0.0000016600
8	8.0000000000	0.0000001100	0.0000001100

Trapezoid Rule approximation ≈ 0.65651755

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	1.0000000000	1.0000000000
1	1.0000000000	0.1353352800	0.5413411200
2	2.00000000000	0.0183156400	0.0366312800
3	3.00000000000	0.0024787500	0.0099150000
4	4.00000000000	0.0003354600	0.0006709200
5	5.00000000000	0.0000454000	0.0001816000
6	6.00000000000	0.0000061400	0.0000122800
7	7.00000000000	0.0000008300	0.0000033200
8	8.0000000000	0.0000001100	0.0000001100

Value: 0.49999994 0.65651755	5 0.52958521
Error: 31.3035 %	5.9171 %

Find the *Trapezoid & Simpson's* Rule approximations and error: $\int_{-1}^{1} \sqrt{x^2 + 1} \ dx \quad n = 8 \text{ subintervals}$

Solution

Trapezoid Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	-1.0000000000	1.4142135600	1.4142135600
1	-0.7500000000	1.2500000000	2.5000000000
2	-0.5000000000	1.1180339900	2.2360679800
3	-0.2500000000	1.0307764100	2.0615528200
4	0.0000000000	1.0000000000	2.0000000000
5	0.2500000000	1.0307764100	2.0615528200
6	0.5000000000	1.1180339900	2.2360679800
7	0.7500000000	1.2500000000	2.5000000000
8	1.0000000000	1.4142135600	1.4142135600

Trapezoid Rule approximation ≈ 2.30295859

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	-1.0000000000	1.4142135600	1.4142135600
1	-0.7500000000	1.2500000000	5.0000000000
2	-0.5000000000	1.1180339900	2.2360679800
3	-0.2500000000	1.0307764100	4.1231056400
4	0.0000000000	1.0000000000	2.0000000000
5	0.2500000000	1.0307764100	4.1231056400
6	0.5000000000	1.1180339900	2.2360679800
7	0.7500000000	1.2500000000	5.0000000000
8	1.0000000000	1.4142135600	1.4142135600

	Exact	Trapezoid	Simpson
Value:	2.29558715	2.30295859	2.29556453
Error:		0.3211 %	0.0010 %

Find the *Trapezoid & Simpson's* Rule approximations and error: $\int_0^{\pi/2} \sin(x^2) dx \quad n = 4 \text{ subintervals}$

Solution

Trapezoid Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_n\right)$
0	0.0000000000	0.0000000000	0.0000000000
1	0.1250000000	0.0156243642	0.0312487284
2	0.2500000000	0.0624593178	0.1249186357
3	0.3750000000	0.1401619723	0.2803239447
4	0.5000000000	0.2474039593	0.2474039593

Trapezoid Rule approximation ≈ 0.0427434543

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	0.0000000000	0.0000000000
1	0.1250000000	0.0156243642	0.0624974569
2	0.2500000000	0.0624593178	0.1249186357
3	0.3750000000	0.1401619723	0.5606478894
4	0.5000000000	0.2474039593	0.2474039593

Exact	Trapezoid	Simpson
Value: 0.0414810243	0.0427434543	0.0414778309
Error:	3.04339%	0.00770 %

Find the *Trapezoid & Simpson's* Rule approximations and error:
$$\int_{\pi/2}^{\pi} \frac{\sin x}{x} dx \quad n = 6 \text{ subintervals}$$

Solution

Trapezoid Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	1.5708000000	0.6366182800	0.6366182800
1	1.8323333333	0.5271932200	1.0543864400
2	2.0938666667	0.4137271600	0.8274543200
3	2.3554000000	0.3004450800	0.6008901600
4	2.6169333333	0.1914141900	0.3828283800
5	2.8784666667	0.0903606800	0.1807213600
6	3.1400000000	0.0005072100	0.0005072100

Trapezoid Rule approximation ≈ 0.48166674

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	1.5708000000	0.6366182800	0.6366182800
1	1.8323333333	0.5271932200	2.1087728800
2	2.0938666667	0.4137271600	0.8274543200
3	2.3554000000	0.3004450800	1.2017803200
4	2.6169333333	0.1914141900	0.3828283800
5	2.8784666667	0.0903606800	0.3614427200
6	3.1400000000	0.0005072100	0.0005072100

	Exact	Trapezoid	Simpson
Value:	0.48117214	0.48166674	0.48116938
Error:		0.1028 %	0.0006 %

Find the *Trapezoid* & *Simpson's* Rule approximations and error: $\int_0^{\pi/4} x \tan x \, dx \quad n = 6 \text{ subintervals}$

Solution

Trapezoid Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f(x_n)$
0	0.0000000000	0.0000000000	0.0000000000
1	0.1308996939	0.0172332716	0.0344665433
2	0.2617993878	0.0701489345	0.1402978691
3	0.3926990817	0.1626612856	0.3253225711
4	0.5235987756	0.3022998940	0.6045997881
5	0.6544984695	0.5022143392	1.0044286785
6	0.7853981634	0.7853981634	0.7853981634

Trapezoid Rule approximation ≈ 0.1894454730

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	0.0000000000	0.0000000000
1	0.1308996939	0.0172332716	0.0689330865
2	0.2617993878	0.0701489345	0.1402978691
3	0.3926990817	0.1626612856	0.6506451423
4	0.5235987756	0.3022998940	0.6045997881
5	0.6544984695	0.5022143392	2.0088573569
6	0.7853981634	0.7853981634	0.7853981634

Exact	Trapezoid	Simpson
Value: 0.1857845357	0.1894454730	0.1858222125
Error:	1.97053%	0.02028 %

Find the *Trapezoid & Simpson's* Rule approximations and error: $\int_{0}^{1} e^{-x^{2}} dx \quad n = 10 \text{ subintervals}$

Solution

Trapezoid Rule Method

n	$\frac{x}{n}$	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	1.0000000000	1.0000000000
1	0.1000000000	0.9900498337	1.9800996675
2	0.2000000000	0.9607894392	1.9215788783
3	0.3000000000	0.9139311853	1.8278623705
4	0.4000000000	0.8521437890	1.7042875779
5	0.5000000000	0.7788007831	1.5576015661
6	0.6000000000	0.6976763261	1.3953526521
7	0.7000000000	0.6126263942	1.2252527884
8	0.8000000000	0.5272924240	1.0545848481
9	0.9000000000	0.4448580662	0.8897161324
10	1.0000000000	0.3678794412	0.3678794412

Trapezoid Rule approximation ≈ 0.7462107961

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f(x_n)$
0	0.0000000000	1.0000000000	1.0000000000
1	0.1000000000	0.9900498337	3.9601993350
2	0.2000000000	0.9607894392	1.9215788783
3	0.3000000000	0.9139311853	3.6557247411
4	0.4000000000	0.8521437890	1.7042875779
5	0.5000000000	0.7788007831	3.1152031323
6	0.6000000000	0.6976763261	1.3953526521
7	0.7000000000	0.6126263942	2.4505055767
8	0.8000000000	0.5272924240	1.0545848481
9	0.9000000000	0.4448580662	1.7794322649
10	1.000000000	0.3678794412	0.3678794412

Exact	Trapezoid	Simpson
Value: 0.74682413	28 0.7462107961	0.7468249483
Error:	0.08213%	0.00011 %

Find the *Trapezoid* & *Simpson's* Rule approximations and error: $\int_0^2 \frac{1}{\sqrt{1+x^2}} dx \quad n = 10 \quad subintervals$

Solution

Trapezoid Rule Method

n	$\frac{x}{n}$	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	1.0000000000	1.0000000000
1	0.2000000000	0.9805806800	1.9611613600
2	0.4000000000	0.9284766900	1.8569533800
3	0.6000000000	0.8574929300	1.7149858600
4	0.8000000000	0.7808688100	1.5617376200
5	1.0000000000	0.7071067800	1.4142135600
6	1.2000000000	0.6401844000	1.2803688000
7	1.4000000000	0.5812381900	1.1624763800
8	1.6000000000	0.5299989400	1.0599978800
9	1.8000000000	0.4856429300	0.9712858600
10	2.0000000000	0.4472136000	0.4472136000

Trapezoid Rule approximation ≈ 1.44303943

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_n\right)$
0	0.0000000000	1.0000000000	1.0000000000
1	0.2000000000	0.9805806800	3.9223227200
2	0.4000000000	0.9284766900	1.8569533800
3	0.6000000000	0.8574929300	3.4299717200
4	0.8000000000	0.7808688100	1.5617376200
5	1.0000000000	0.7071067800	2.8284271200
6	1.2000000000	0.6401844000	1.2803688000
7	1.4000000000	0.5812381900	2.3249527600
8	1.6000000000	0.5299989400	1.0599978800
9	1.8000000000	0.4856429300	1.9425717200
10	2.0000000000	0.4472136000	0.4472136000

	Exact	Trapezoid	Simpson
Value:	1.44363548	1.44303943	1.44363449
Error:		0.0413 %	0.0001 %

Find the *Trapezoid & Simpson's* Rule approximations and error:
$$\int_0^{1/2} \sin(e^{x/2}) dx \quad n = 8 \text{ subintervals}$$

Solution

Trapezoid Rule Method

x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0.0000000000	0.8414709848	0.8414709848
0.0625000000	0.8581952249	1.7163904498
0.1250000000	0.8745438796	1.7490877592
0.1875000000	0.8904281963	1.7808563927
0.2500000000	0.9057510229	1.8115020459
0.3125000000	0.9204063003	1.8408126006
0.3750000000	0.9342785616	1.8685571232
0.4375000000	0.9472424468	1.8944848937
0.5000000000	0.9591622435	0.9591622435
	0.0000000000 0.0625000000 0.1250000000 0.1875000000 0.2500000000 0.3125000000 0.3750000000 0.4375000000	nn0.000000000000.84147098480.06250000000.85819522490.12500000000.87454387960.18750000000.89042819630.25000000000.90575102290.31250000000.92040630030.37500000000.93427856160.43750000000.9472424468

Trapezoid Rule approximation ≈ 0.4519476404

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	0.8414709848	0.8414709848
1	0.0625000000	0.8581952249	3.4327808996
2	0.1250000000	0.8745438796	1.7490877592
3	0.1875000000	0.8904281963	3.5617127853
4	0.2500000000	0.9057510229	1.8115020459
5	0.3125000000	0.9204063003	3.6816252012
6	0.3750000000	0.9342785616	1.8685571232
7	0.4375000000	0.9472424468	3.7889697874
8	0.5000000000	0.9591622435	0.9591622435

Exact	Trapezoid	Simpson
Value: 0.4519764600	0.4519476404	0.4519764340
Error:	0.00638%	0.00001%

Find the *Trapezoid & Simpson's* Rule approximations and error: $\int_{2}^{3} \frac{1}{\ln x} dx \quad n = 10 \quad subintervals$

Solution

Trapezoid Rule Method

n	$\frac{x}{n}$	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	2.0000000000	1.4426950400	1.4426950400
1	2.1000000000	1.3478227100	2.6956454200
2	2.2000000000	1.2682994000	2.5365988000
3	2.3000000000	1.2006111700	2.4012223400
4	2.4000000000	1.1422452400	2.2844904800
5	2.5000000000	1.0913566700	2.1827133400
6	2.6000000000	1.0465599400	2.0931198800
7	2.7000000000	1.0067940700	2.0135881400
8	2.8000000000	0.9712326500	1.9424653000
9	2.9000000000	0.9392222400	1.8784444800
10	3.0000000000	0.9102392300	0.9102392300

Trapezoid Rule approximation ≈ 1.11906112

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_n\right)$
0	2.0000000000	1.4426950400	1.4426950400
1	2.1000000000	1.3478227100	5.3912908400
2	2.2000000000	1.2682994000	2.5365988000
3	2.3000000000	1.2006111700	4.8024446800
4	2.4000000000	1.1422452400	2.2844904800
5	2.5000000000	1.0913566700	4.3654266800
6	2.6000000000	1.0465599400	2.0931198800
7	2.7000000000	1.0067940700	4.0271762800
8	2.8000000000	0.9712326500	1.9424653000
9	2.9000000000	0.9392222400	3.7568889600
10	3.0000000000	0.9102392300	0.9102392300

Simpson's Rule approximation ≈ 1.11842787

	Exact	Trapezoid	Simpson
Value:	1.11842481	1.11906112	1.11842787
Error:		0.0569 %	0.0003 %

Find the *Trapezoid & Simpson's* Rule approximations and error: $\int_{1}^{2} e^{1/x} dx \quad n = 4 \text{ subintervals}$

Solution

Trapezoid Rule Method

n	$\frac{x}{n}$	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	1.0000000000	2.7182818300	2.7182818300
1	1.2500000000	2.2255409300	4.4510818600
2	1.5000000000	1.9477340400	3.8954680800
3	1.7500000000	1.7707949500	3.5415899000
4	2.0000000000	1.6487212700	1.6487212700

Trapezoid Rule approximation ≈ 2.03189287

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_n\right)$
0	1.0000000000	2.7182818300	2.7182818300
1	1.2500000000	2.2255409300	8.9021637200
2	1.5000000000	1.9477340400	3.8954680800
3	1.7500000000	1.7707949500	7.0831798000
4	2.00000000000	1.6487212700	1.6487212700

	Exact	Trapezoid	Simpson
Value:	2.02005862	2.03189287	2.02065122
Error:		0.5858 %	0.0293 %

Find the *Trapezoid & Simpson's* Rule approximations and error: $\int_0^1 \ln(1+e^x) dx \quad n=8 \text{ subintervals}$

Solution

Trapezoid Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	0.6931471800	0.6931471800
1	0.1250000000	0.7575990400	1.5151980800
2	0.2500000000	0.8259394200	1.6518788400
3	0.3750000000	0.8981232600	1.7962465200
4	0.5000000000	0.9740769800	1.9481539600
5	0.6250000000	1.0537006800	2.1074013600
6	0.7500000000	1.1368710100	2.2737420200
7	0.8750000000	1.2234445800	2.4468891600
8	1.0000000000	1.3132616900	1.3132616900

Trapezoid Rule approximation ≈ 0.98411993

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	0.6931471800	0.6931471800
1	0.1250000000	0.7575990400	3.0303961600
2	0.2500000000	0.8259394200	1.6518788400
3	0.3750000000	0.8981232600	3.5924930400
4	0.5000000000	0.9740769800	1.9481539600
5	0.6250000000	1.0537006800	4.2148027200
6	0.7500000000	1.1368710100	2.2737420200
7	0.8750000000	1.2234445800	4.8937783200
8	1.0000000000	1.3132616900	1.3132616900

	Exact	Trapezoid	Simpson
Value:	0.98381904	0.98411993	0.98381891
Error:		0.0306 %	0.0000 %

Find the *Trapezoid & Simpson's* Rule approximations and error: $\int_0^1 x^5 e^x dx \quad n = 10 \text{ subintervals}$

Solution

Trapezoid Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	0.0000000000	0.0000000000
1	0.1000000000	0.0000110500	0.0000221000
2	0.2000000000	0.0003908500	0.0007817000
3	0.3000000000	0.0032801600	0.0065603200
4	0.4000000000	0.0152762800	0.0305525600
5	0.5000000000	0.0515225400	0.1030450800
6	0.6000000000	0.1416879600	0.2833759200
7	0.7000000000	0.3384514200	0.6769028400
8	0.8000000000	0.7292652500	1.4585305000
9	0.9000000000	1.4523710400	2.9047420800
10	1.0000000000	2.7182818300	2.7182818300

Trapezoid Rule approximation ≈ 0.40913975

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	0.0000000000	0.0000000000
1	0.1000000000	0.0000110500	0.0000442000
2	0.2000000000	0.0003908500	0.0007817000
3	0.3000000000	0.0032801600	0.0131206400
4	0.4000000000	0.0152762800	0.0305525600
5	0.5000000000	0.0515225400	0.2060901600
6	0.6000000000	0.1416879600	0.2833759200
7	0.7000000000	0.3384514200	1.3538056800
8	0.8000000000	0.7292652500	1.4585305000
9	0.9000000000	1.4523710400	5.8094841600
10	1.0000000000	2.7182818300	2.7182818300

	Exact	Trapezoid	Simpson
Value:	0.39559955	0.40913975	0.39580225
Error:		3.4227 %	0.0512 %

Find the *Trapezoid & Simpson's* Rule approximations and error: $\int_0^4 \sqrt{x} \sin x \, dx \quad n = 8 \text{ subintervals}$

Solution

Trapezoid Rule Method

x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0.0000000000	0.0000000000	0.0000000000
0.5000000000	0.3390050500	0.6780101000
1.0000000000	0.8414709800	1.6829419600
1.5000000000	1.2216768700	2.4433537400
2.0000000000	1.2859407500	2.5718815000
2.50000000000	0.9462675500	1.8925351000
3.0000000000	0.2444270200	0.4888540400
3.50000000000	-0.6562553300	-1.3125106600
4.0000000000	-1.5136049900	-1.5136049900
	n 0.0000000000 0.5000000000 1.0000000000 2.0000000000 2.5000000000 3.0000000000 3.50000000000	0.00000000000 0.0000000000 0.5000000000 0.3390050500 1.0000000000 0.8414709800 1.5000000000 1.2216768700 2.0000000000 1.2859407500 2.5000000000 0.9462675500 3.000000000 0.2444270200 3.5000000000 -0.6562553300

Trapezoid Rule approximation ≈ 1.73286520

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	0.0000000000	0.0000000000
1	0.5000000000	0.3390050500	1.3560202000
2	1.0000000000	0.8414709800	1.6829419600
3	1.5000000000	1.2216768700	4.8867074800
4	2.0000000000	1.2859407500	2.5718815000
5	2.5000000000	0.9462675500	3.7850702000
6	3.0000000000	0.2444270200	0.4888540400
7	3.5000000000	-0.6562553300	-2.6250213200
8	4.0000000000	-1.5136049900	-1.5136049900

	Exact	Trapezoid	Simpson
Value:	1.76874870	1.73286520	1.77214151
Error:		2.0288 %	0.1918 %

Find the *Trapezoid & Simpson's* Rule approximations and error: $\int_0^3 \frac{1}{1+x^5} dx \quad n = 6 \text{ subintervals}$

$$\int_0^3 \frac{1}{1+x^5} dx \quad n = 6 \quad subintervals$$

Solution

Trapezoid Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	1.0000000000	1.0000000000
1	0.5000000000	0.9696969700	1.9393939400
2	1.0000000000	0.5000000000	1.0000000000
3	1.5000000000	0.1163636400	0.2327272800
4	2.00000000000	0.0303030300	0.0606060600
5	2.50000000000	0.0101362100	0.0202724200
6	3.0000000000	0.0040983600	0.0040983600

Trapezoid Rule approximation ≈ 1.06427452

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_n\right)$
0	0.0000000000	1.0000000000	1.0000000000
1	0.50000000000	0.9696969700	3.8787878800
2	1.0000000000	0.5000000000	1.0000000000
3	1.5000000000	0.1163636400	0.4654545600
4	2.00000000000	0.0303030300	0.0606060600
5	2.50000000000	0.0101362100	0.0405448400
6	3.0000000000	0.0040983600	0.0040983600

Exact	Trapezoid	Simpson
Value: 1.06587854	1.06427452	1.07491528
Error:	0.150488%	.84782%

Find the *Trapezoid & Simpson's* Rule approximations and error: $\int_{1}^{4} \frac{e^{x}}{x} dx \quad n = 10 \quad subintervals$

Solution

Trapezoid Rule Method

n	$\frac{x}{n}$	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	1.0000000000	2.7182818300	2.7182818300
1	1.3000000000	2.8225359000	5.6450718000
2	1.6000000000	3.0956452700	6.1912905400
3	1.9000000000	3.5188918100	7.0377836200
4	2.2000000000	4.1022788600	8.2045577200
5	2.5000000000	4.8729975800	9.7459951600
6	2.8000000000	5.8730881300	11.7461762600
7	3.1000000000	7.1606294500	14.3212589000
8	3.4000000000	8.8129706000	17.6259412000
9	3.7000000000	10.9317038800	21.8634077600
10	4.0000000000	13.6495375100	13.6495375100

Trapezoid Rule approximation ≈ 17.81239534

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f(x_n)$
0	1.0000000000	2.7182818300	2.7182818300
1	1.3000000000	2.8225359000	11.2901436000
2	1.6000000000	3.0956452700	6.1912905400
3	1.9000000000	3.5188918100	14.0755672400
4	2.2000000000	4.1022788600	8.2045577200
5	2.50000000000	4.8729975800	19.4919903200
6	2.8000000000	5.8730881300	11.7461762600
7	3.1000000000	7.1606294500	28.6425178000
8	3.4000000000	8.8129706000	17.6259412000
9	3.7000000000	10.9317038800	43.7268155200
10	4.0000000000	13.6495375100	13.6495375100

	Exact	Trapezoid	Simpson
Value:	17.73575665	17.81239534	17.73628195
Error:		0.4321 %	0.0030 %

Find the *Trapezoid & Simpson's* Rule approximations and error: $\int_{1}^{2} \frac{dx}{x} \quad n = 10 \quad subintervals$

Solution

Trapezoid Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	1.0000000000	1.0000000000	1.0000000000
1	1.1000000000	0.9090909100	1.8181818200
2	1.2000000000	0.8333333300	1.6666666600
3	1.3000000000	0.7692307700	1.5384615400
4	1.4000000000	0.7142857100	1.4285714200
5	1.5000000000	0.6666666700	1.3333333400
6	1.6000000000	0.6250000000	1.2500000000
7	1.7000000000	0.5882352900	1.1764705800
8	1.8000000000	0.555555600	1.1111111200
9	1.9000000000	0.5263157900	1.0526315800
10	2.0000000000	0.5000000000	0.5000000000

Trapezoid Rule approximation ≈ 0.69377140

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	1.0000000000	1.0000000000	1.0000000000
1	1.1000000000	0.9090909100	3.6363636400
2	1.2000000000	0.8333333300	1.6666666600
3	1.3000000000	0.7692307700	3.0769230800
4	1.4000000000	0.7142857100	1.4285714200
5	1.5000000000	0.6666666700	2.6666666800
6	1.6000000000	0.6250000000	1.2500000000
7	1.7000000000	0.5882352900	2.3529411600
8	1.8000000000	0.5555555600	1.1111111200
9	1.9000000000	0.5263157900	2.1052631600
10	2.0000000000	0.5000000000	0.5000000000

Exact	Trapezoid	Simpson
Value: 0.69314718	0.69377140	0.69315023
Error:	0.0901%	0.0004%

A piece of wood paneling must be cut in the shape shown below. The coordinates of several point on its curved surface are also shown (with units of inches).

- a) Estimate the surface area of the paneling using the Trapezoid Rule
- b) Estimate the surface area of the paneling using a left Riemann sum.
- c) Could two identical pieces be cut from a 9-in by 9-in piece of wood?

Solution

a) The trapezoid Rule gives

$$\frac{(0+.25)\cdot 1}{2} + \frac{(2.5+3.2)\cdot 1}{2} + \frac{(3.2+4)\cdot 1}{2} + \frac{(4+6)\cdot 1}{2} + \frac{(6+7)\cdot 2}{2} + \frac{(7+5.3)\cdot 1.5}{2} + \frac{(3+0)\cdot 0.5}{2}$$
= 35.675

b) The left *Riemann* sum gives

$$0.1 + 2.5.1 + 3.2.1 + 4.1 + 6.2 + 7.1.5 + 5.3.0.5 = 34.85$$

c) Although the surface area of the piece appears to be less than half of $81 = 9^2$ (area of 9×9 piece of wood), the shape prohibits the creation of two identical pieces.

Exercise

The region bounded by the curves $y = \frac{1}{1 + e^{-x}}$, x = 0 and x = 10 is rotated about x - axis. Use Simpson's

Rule with n = 10 to estimate the volume of the resulting solid.

Solution

Using *Disk* method:

$$V = \pi \int_0^{10} \frac{1}{\left(1 + e^{-x}\right)^2} \ dx$$

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f(x_n)$
0	0.0000000000	0.2500000000	0.2500000000
1	1.0000000000	0.5344466454	2.1377865816
2	2.0000000000	0.7758034926	1.5516069851
3	3.0000000000	0.9073974671	3.6295898684
4	4.0000000000	0.9643510838	1.9287021676
5	5.0000000000	0.9866590924	3.9466363696
6	6.00000000000	0.9950608676	1.9901217351
7	7.0000000000	0.9981787276	3.9927149105
8	8.0000000000	0.9993294122	1.9986588244
9	9.0000000000	0.9997532261	3.9990129043
10	10.000000000	0.9999092063	0.9999092063

Simpson Rule approximation ≈ 8.8082465177

$$V = \pi \int_{0}^{10} \frac{1}{\left(1 + e^{-x}\right)^{2}} dx$$

$$\approx \pi \left(8.8082465177\right)$$

$$\approx 27.6719226 \quad unit^{3}$$

Exercise

A pendulum with length L that makes a maximum angle θ_0 with the vertical. Using Newton's Second Law it can be shown that the period T (the time for one complete swing) is given by

$$T = 4\sqrt{\frac{L}{g}} \int_0^{\pi/2} \frac{dx}{\sqrt{1 - k^2 \sin^2 x}}$$

Where $k = \sin\left(\frac{1}{2}\theta_0\right)$ and g is the acceleration due to gravity. If L = 1 m and $\theta_0 = 42^\circ$, use Simpson's Rule with n = 10 to find the period.

Solution

$$T = 4 \sqrt{\frac{L}{g}} \int_{0}^{\pi/2} \frac{dx}{\sqrt{1 - k^2 \sin^2 x}}$$
$$= 4 \sqrt{\frac{1}{9.8}} \int_{0}^{\pi/2} \frac{dx}{\sqrt{1 - \sin^2 \left(\frac{1}{2} 42^\circ\right) \sin^2 x}}$$

$$= \frac{4}{\sqrt{9.8}} \int_0^{\pi/2} \frac{dx}{\sqrt{1 - \sin^2(21^\circ)\sin^2 x}}$$

Simpson's Rule Method
$$\int_0^{\pi/2} \frac{dx}{\sqrt{1-\sin^2(21^\circ)\sin^2 x}}$$

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	1.0000000000	1.0000000000
1	0.1570796327	1.0031527554	4.0126110216
2	0.3141592654	1.0124160101	2.0248320201
3	0.4712388980	1.0271895774	4.1087583096
4	0.6283185307	1.0464308046	2.0928616093
5	0.7853981634	1.0686201540	4.2744806162
6	0.9424777961	1.0917709315	2.1835418629
7	1.0995574288	1.1135333115	4.4541332459
8	1.2566370614	1.1314314233	2.2628628466
9	1.4137166941	1.1432291699	4.5729166795
10	1.5707963268	1.1473515974	1.1473515974

Simpson Rule approximation ≈ 1.6825506215

$$T = \frac{4}{\sqrt{9.8}} \int_0^{\pi/2} \frac{dx}{\sqrt{1 - \sin^2(21^\circ)\sin^2 x}}$$
$$\approx \frac{4}{\sqrt{9.8}} (1.6825506215)$$

≈ 2.149884