UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE CIENCIA DEPARTAMENTO DE FÍSICA

Síntesis de Grafeno por medios químicos y construcción de supercondensadores basados en grafeno

Carlos Javier Eugenio Herrera

Profesor Guía: DINESH PRATAP SINGH

Trabajo de Titulación presentado en conformidad a los requisitos para obtener el título profesional de Ingeniero Físico.

Santiago - Chile 2017

© Carlos Javier Eugenio Herrera, 2017

Algunos derechos reservados. Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-Compartir Igual 3.0. Sus condiciones de uso pueden ser revisadas en:

http://creativecommons.org/licenses/by-nc-sa/3.0/cl/.

Dedicado a...

Agradecimientos

Índice general

Int	troducción	1
Re	esumen	1
I	Marco teórico	2
1.	Nanomateriales	3
	1.1. Nanomateriales	3
	1.2. Síntesis	4
	1.3. Caracterización	4
	1.4. Aplicaciones	4
2.	Grafeno	5
	2.1. Óxido reducido de grafeno (RGO)	6
	2.2. Síntesis de RGO	7
	2.3. Síntesis	7
	2.4. Aplicaciones	7
3.	Supercondensadores	8
	3.1. El condensador ideal	9
	3.2. El condensador real	9
	3.3. ¿Qué hace a un supercondensador super?	12
	3.4. Mediciones en supercondensadores	12

ÍNDICE GENERAL			
II	Cuerpo de la tesis	14	
4.	Síntesis de óxido de grafeno	15	
	4.1. Procedimiento experimental	. 15	
	4.2. Resultados	. 15	
5.	Reducción del óxido de grafeno	16	
	5.1. Materiales	. 16	
	5.2. Procedimiento	. 16	
	5.3. Resultados	. 16	
6.	Construcción de supercondensadores	17	
	6.1. Armado del dispositivo	. 17	
	6.2. Celda de prueba de supercondensador	. 17	
	6.3. Resultados	17	
Ш	Conclusiones	19	
An	Anexo		
ĺno	Índice Analítico		

Índice de cuadros

Índice de figuras

3.1.	Carga y descarga de un condensador ideal a corriente constante.	10
3.2.	Carga y descarga de un condensador evidenciando el efecto de	
	una ESR	11
3.3.	Esquema de un supercondensador mostrando una doble capa	
	electrónica de Helmholtz en cada electrodo	13
6.1.	Armado de un supercondensador para realizar pruebas de con-	
	cepto.	18

Resumen

Introducción

Parte I

Marco teórico

Nanomateriales

"There's Plenty of Room at the Bottom."

Richard Feymann

1.1. Nanomateriales

Generalmente la denominación nano es atribuida a materiales en que algunas de sus dimensiones estén en la escala nanométrica, entre 1-100 nm (Greßler and Gazsó, 2013). Ésta definición es práctica pero poco precisa en el sentido que algunos materiales exhiben características propias de los nanomateriales fuera de este rango (> 100 nm). Por esta razón es preferible hablar de nanomateriales cuando se comienzan a mostrar éstas nuevas características. El momento en cual aparecen estos cambios, es propia de cada material, y está asociado a alguna longitud característica de éste. Algunos ejemplos, el camino libre medio de un electrón,

1.2. Síntesis

Dependiendo de la vía de aproximación a la nanoescala, se distinguen dos formas de síntesis, por un lado, si partimos de la forma macro de un material y de algún modo se reducen sus dimensiones hacia la nanoescala, se habla de un proceso *top-down*. Por ejemplo, la exfoliación del grafito (*bulk material*) para obtener grafeno (nanomaterial) (Novoselov et al., 2004). Por otro lado, sintetizar un nanomaterial a partir de átomos o moléculas es un proceso *bottom-up*, un ejemplo es la síntesis de nanopartículas de oro a partir de un precursor como el ácido tetracloroaúrico (Daniel and Astruc, 2004).

1.3. Caracterización

1.4. Aplicaciones

Grafeno

"What is important about graphene is the new physics it has delivered."

Andre Geim

El grafeno es un nanomaterial 2-dimensional, formados por átomos de carbono hibridizados sp2, en una estructura de panal de abeja, descrito como dos redes hexagonales superpuestas. El primero en tratar con este material fue probablemente Brodie (1859) que al exponer grafito a ácidos fuertes, creyó descubrir una nueva forma de carbono a la que llamó grafón, ahora se sabe que lo que observó fue óxido de grafeno, esto es, laminas de grafeno recubiertas por grupos epóxi e hidroxilo (Geim, 2012). Wallace (1947), dio con los primeros estudios teóricos sobre el grafeno al estudiar la estructura de bandas del grafito, pero como una simplificación de la estructura del grafito. Fue Boehm et al. (1986) quien le dio el nombre al crear la nomenclatura y terminología para compuestos de grafito intercalado. No fue hasta 2004 que Novoselov, Geim y otros, lograron aislar grafeno por medios mecánicos (Novoselov et al., 2004), por lo que les fue otorgado el Premio Nobel de Física en 2010.

El grafeno presenta propiedades extraordinarias, como ha sido demostrado en numerosos experimentos: movilidad electrónica de 200.000 cm²V⁻¹s⁻¹ (Bolotin et al., 2008), tensión de ruptura de 130 GPa, y módulo de Young de 1.0 TPa (Lee et al., 2008), conductividad térmica entre 600 a 5000 W mK⁻¹ (Balandin, 2011), opacidad de 2,3 % y reflectacia menor al 0,1 % (Nair et al., 2008), impermeable totalmente a gases estándar (Bunch et al., 2008), resistir densidades de corriente muy grandes de hasta 108A cm⁻² sin sufrir daños (Moser et al., 2007), y puede ser funcionalizado fácilmente (Loh et al., 2010). Es importante notar que estos resultados se han obtenido en muestras muy puras de grafeno exfoliado mecánicamente (Novoselov et al., 2004) y están lejos de ser replicables a gran escala, se hace necesario encontrar métodos de síntesis que entreguen material de buena calidad (que sus propiedades se acerquen a las citadas anteriormente), y sean escalables a niveles industriales (Novoselov et al., 2012).

2.1. Óxido reducido de grafeno (RGO)

Una de las formas de obtener grandes cantidades de grafeno es mediante la llamada ruta del "óxido de grafeno". El óxido de grafeno es grafeno decorado densamente por grupos epóxi, hidroxilo, y carboxilo (Dreyer et al., 2010). Los grupos ricos en oxígeno presentes en la red del grafeno se presentan como defectos en éste, cambiando sus propiedades drásticamente. El óxido de grafeno es sintetizado a partir de grafito natural, exponiéndolo a agentes oxidantes fuertes, esto introduce grupos funcionales ricos en oxígeno en los espacios entre los planos de grafeno del grafito, aumentado la distancia interplanar, y disminuyendo la fuerza entre láminas. Esto facilita la separación de las láminas de grafeno (ahora óxido de grafeno). La mayoría de los métodos de síntesis del óxido de grafeno están basados en alguno de estos tres métodos: método de Brodie (1859), método de (Staudenmaier, 1898), o método de Hummers and Offeman (1958).

2.2. Síntesis de RGO

Los grupos funcionales presentes en el óxido de grafeno pueden ser removidos para volver a la estructura del grafeno como tal. Existen muchas formas de reducir el óxido de grafeno, por medios químicos, térmicos, o electroquímicos. En los métodos de reducción química, el óxido de grafeno es expuestos a diferentes agentes reductores, cuyo mecanismo de reducción es sabido, o se espera que tenga el efecto esperado (Chua and Pumera, 2015). Por otro lado, la reducción térmica contempla la exposición del óxido de grafeno a altas temperaturas en un horno convencional, reducción por microondas en un horno microondas comercial (Zhu et al., 2010), reducción por láser (El-Kady and Kaner, 2013), plasma (Lee et al., 2012), o luz solar concentrada (?).

2.3. Síntesis

2.4. Aplicaciones

Supercondensadores

"The force is strong with this one."

Darth Vader

El almacenar energía eléctrica es uno de los mayores problemas a la hora de diseñar sistemas electrónicos tanto móviles como estacionarios, los requerimientos varían de acuerdo a las necesidades de cada uno, en general es un trade-off entre densidad de energía (cuánta energía se puede almacenar) y densidad de potencia (que tan rápido puede ser entregada la energía almacenada). Las celdas de combustible (Fuel Cells), entregan la mayor densidad de energía, pero son complicadas, mientras que las baterías poseen mayor densidad de potencia, pierden capacidad con los ciclos de carga y descarga. Los supercondensadores van un paso más allá, aumentado la densidad de potencia y aportando mayor vida útil, entregando una nueva posibilidad a la hora de diseñar sistemas eléctricos, ya como fuente de energía por sí mismo, o en sistemas híbridos combinados con otras tecnologías(Thounthong et al., 2009).

3.1. El condensador ideal

Generalmente un condensador se modela como un par de placas paralelas separadas por un dieléctrico, es definido por su capacitancia, la que refleja la capacidad de almacenar energía. Del modelo de placas paralelas se desprende la definición de capacitancia C como la razón entre la magnitud de carga en cada placa Q y el voltaje entre los terminales V:

$$C = \frac{Q}{V} \tag{3.1}$$

Para fines prácticos, el condensador ideal como componente electrónico es modelado por la ecuación que relaciona la corriente con el voltaje, considerando que i = dq/dt:

$$i(t) = C \frac{dv(t)}{dt} \tag{3.2}$$

Para corrientes constantes, el voltaje varía linealmente como en la carga y descarga de la figura 3.1.

3.2. El condensador real

Un condensador ideal almacenaría energía al cargase y la entregaría al descargarse sin ninguna disipación, es decir, su eficiencia sería del 100%, podría soportar cualquier voltaje aplicado o cargarse y descargarse por una corriente cuan grande se desee. En realidad, los condensadores sí disipan energía, poseen voltajes de operación y corrientes máximas de carga y descarga. Todo esto depende de como fue construido y qué materiales se utilizaron, pensando en su propósito.

3.2.1. Breakdown voltage

Los condensadores convencionales construidos con materiales dieléctricos están sujetos a un voltaje máximo de operación determinado por la tensión

Figura 3.1: Carga y descarga de un condensador ideal a corriente constante.

de ruptura (*Breakdown voltage*), voltaje al cual se pierden las propiedades dieléctricas del material ocasionando cortocircuito al interior del dispositivo, determinado por la fuerza dieléctrica del material y el espesor de este. En los condensadores electrolíticos la tensión de ruptura es determinada por otros mecanismos(Yahalom and Zahavi, 1971). En lo que respecta a los supercondensadores, el voltaje máximo de carga depende fundamentalmente de electrolíto usado, principalmente por las reacciones que ocurren a ciertos potenciales, este tema será abordado con más detalle en la sección correspondiente.

3.2.2. Circuito equivalente

El comportamiento de los condensadores reales son modeladas por un circuito equivalente, donde se introducen componentes que representan las imperfecciones del funcionamiento del condensador real.

3.2.3. Resistencia en serie equivalente (ESR)

Las imperfecciones en la construcción de los electrodos, y la naturaleza de los materiales utilizados (e.g. resistencia no cero), disipan energía durante la carga y descarga como si se tratase de una resistencia en serie al condensador, esto se ve reflejado como una caída de voltaje en los terminales del dispositivo (figura 3.2), y disminuye la eficiencia de éste.

Figura 3.2: Carga y descarga de un condensador evidenciando el efecto de una ESR.

3.2.4. Corriente de fuga (leakage current)

Entre los electrodos del condensador fluye una corriente no deseada cuando existe una diferencia de potencial entre los electrodos, esta corriente

3.3. ¿Qué hace a un supercondensador super?

La densidad de energía de un supercondensador comparada a la de un condensador convencional es varios órdenes de magnitud superior, como comparación, generalmente se utilizan microfaradios (10⁻⁶ Faradios) para medir la capacidad de un condensador convencional, mientras que en un supercondensador es común ver capacidades de cientos de Faradios. Esta característica le otorga el grado de super a los supercondensadores.

3.3.1. Doble capa electrostática de Helmholtz

La gran densidad de energía de un supercondensador tiene que surgir de algún mecanismo de almacenamiento de cargas, a diferencia de las baterías, este mecanismo es puramente físico, pues no hay reacciones químicas en los electrodos, las cargas son separadas en lo que Helmholtz llamó *Doble capa electrónica*.(Frackowiak and Béquin, 2001)

3.3.2. Pseudocapacitancia

3.4. Mediciones en supercondensadores

- 3.4.1. Voltametría cíclica
- 3.4.2. Espectroscopía de impedacia electroquímica
- 3.4.3. Carga y descarga cíclica

Figura 3.3: Esquema de un supercondensador mostrando una doble capa electrónica de Helmholtz en cada electrodo.

Parte II Cuerpo de la tesis

Síntesis de óxido de grafeno

"asd"

asd

El método de síntesis utilizado está basado en el propuesto por Hummers (Hummers and Offeman, 1958), y es descrito en (Abdolhosseinzadeh et al., 2015).

4.1. Procedimiento experimental

En una síntesis normal 3g de grafito en polvo (Sigma-Aldrich ¿99%) o en hojuelas (Superior Graphite ¿80%),

4.2. Resultados

Reducción del óxido de grafeno

5.1. Materiales

Como precursor se usa el óxido de grafeno sintetizado con anterioridad,

5.2. Procedimiento

El proceso de reducción se lleva a cabo a diferentes temperaturas

5.3. Resultados

Construcción de supercondensadores

6.1. Armado del dispositivo

Un supercondensadores es armado simplemente haciendo un sandwich electrodo-separador-electrodo, siendo los electrodos con material el componente más crítico. Los electrodos son placas metálicas que cumplen el rol de colectores de corriente, recubiertos con el materiales que se desea utilizar, en este caso, RGO. 1

6.2. Celda de prueba de supercondensador

6.3. Resultados

Los supercondensadores son sometidos a pruebas electroquímicas estudiar su desempeño, estás pruebas incluyen: voltametría cíclica (CV), ciclos de carga y descarga a corriente constante, espectroscopía de impedancia electroquímica (EIS).

Figura 6.1: Armado de un supercondensador para realizar pruebas.

Lámina metálica de 1 cm de ancho sobre un trozo de vidio.

2 Cinta auto adhesiva para limitar el área a 1 cm².

Parte III

Conclusiones

Anexo

Bibliografía

- Abdolhosseinzadeh, S., Asgharzadeh, H., and Seop Kim, H. (2015). Fast and fully-scalable synthesis of reduced graphene oxide. *Scientific Reports*, 5:10160.
- Balandin, A. A. (2011). Thermal properties of graphene and nanostructured carbon materials. *Nature Materials*, 10(8):569–581.
- Boehm, H. P., Setton, R., and Stumpp, E. (1986). Nomenclature and terminology of graphite intercalation compounds. *Carbon*, 24(2):241–245.
- Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., and Stormer, H. L. (2008). Ultrahigh electron mobility in suspended graphene. *Solid State Communications*, 146(9-10):351–355.
- Brodie, B. C. (1859). On the Atomic Weight of Graphite. *Philosophical Transactions of the Royal Society of London*, 149(9):249–259.
- Bunch, J. S., van der Zande, A. M., Verbridge, S. S., Parpia, J. M., Craighead,H. G., and McEuen, P. L. (2008). Impermeable Atomic Membranes fromGraphene Sheets. *Nano Letters*, 8(8):2458–2462.
- Chua, C. K. and Pumera, M. (2015). Monothiolation and Reduction of Graphene Oxide via One-Pot Synthesis: Hybrid Catalyst for Oxygen Reduction. ACS Nano, 9(4):4193–4199.

BIBLIOGRAFÍA 22

Daniel, M. C. M. and Astruc, D. (2004). Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size Related Properties and Applications toward Biology, Catalysis and Nanotechnology,. *Chemical Reviews*, 104(1):293–346.

- Dreyer, D., Park, S., Bielawski, C., and Ruoff, R. (2010). The chemistry of graphene oxide. *Chemical Society Reviews*, 39:228–240.
- El-Kady, M. F. and Kaner, R. B. (2013). Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. *Nature communications*, 4:1475.
- Frackowiak, E. and Béguin, F. (2001). Carbon materials for the electrochemical storage of energy in capacitors. *Carbon*, 39(6):937–950.
- Geim, A. K. (2012). Graphene prehistory. *Physica Scripta*, T146:014003.
- Greßler, S. and Gazsó, A. (2013). Definition of the term "nanomaterial". *ITA Nanotrust Dossiers*.
- Hummers, W. S. and Offeman, R. E. (1958). Preparation of Graphitic Oxide. *Journal of the American Chemical Society*, 80(6):1339–1339.
- Lee, C., Wei, X., Kysar, J. W., Hone, J., and = (2008). Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. *Science*, 321(18 July 2008):385–388.
- Lee, S. W., Mattevi, C., Chhowalla, M., and Sankaran, R. M. (2012). Plasma-assisted reduction of graphene oxide at low temperature and atmospheric pressure for flexible conductor applications. *Journal of Physical Chemistry Letters*, 3(6):772–777.
- Loh, K. P., Bao, Q., Ang, P. K., and Yang, J. (2010). The chemistry of graphene. *Journal of Materials Chemistry*, 20(12):2277.
- Mohandoss, M., Gupta, S. S., Nelleri, A., Pradeep, T., and Maliyekkal, S. M. (2017). Solar mediated reduction of graphene oxide. *RSC Adv.*, 7(2):957–963.

BIBLIOGRAFÍA 23

Moser, J., Barreiro, A., and Bachtold, A. (2007). Current-induced cleaning of graphene. *Applied Physics Letters*, 91(163513).

- Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber,T., Peres, N. M. R., and Geim, A. K. (2008). Fine Structure Constant DefinesVisual Transparency of Graphene. *Science*, 320(5881):1308–1308.
- Novoselov, K. S., Fal'ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., and Kim, K. (2012). A roadmap for graphene. *Nature*, 490(7419):192–200.
- Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. *Science*, 306(5696):666–669.
- Staudenmaier, L. (1898). Verfahren zur Darstellung der Graphitsäure. *Berichte der deutschen chemischen Gesellschaft*, 31(2):1481–1487.
- Thounthong, P., Ra??I, S., and Davat, B. (2009). Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications. *Journal of Power Sources*, 193(1):376–385.
- Wallace, P. R. (1947). The band theory of graphite. *Physical Review*, 71(9):622–634.
- Yahalom, J. and Zahavi, J. (1971). Experimental evaluation of some electrolytic breakdown hypotheses. *Electrochimica Acta*, 16(5):603–607.
- Zhu, Y., Murali, S., Stoller, M. D., Velamakanni, A., Piner, R. D., and Ruoff, R. S. (2010). Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. *Carbon*, 48(7):2118–2122.