Année Universitaire : 2024/2025	Université des Sciences et de la Technologie Houari Boumediene	TP N°4
Master 2 : SII	Faculté d'Informatique	Recherche de l'Information : Appariement
Module: Recherche d'Information	Département d'Intelligence Artificielle et Sciences des Données	Partie 1

Support:

1. Appariement:

- 2.1. Modèle vectoriel (Vector space model)
 - 2.1.1. Modèle basé sur le Produit Scalaire (Scalar Product)

Entrée (requête):

Un ensemble de termes normalisés

Sortie:

Une liste de documents ordonnés selon leurs degrés de pertinences. Le degré de pertinence *RSV* d'un document *d* par rapport à une requête *Q* est calculé à l'aide de **Scalar Product** comme suit :

$$RSV(Q,d) = \sum_{i=1}^{n} v_i * w_i$$

$$Q = \langle v_1, v_2, v_3, ..., v_n \rangle$$

 $d = \langle w_1, w_2, w_3, ..., w_n \rangle$

n: la taille du vocabulaire

 v_i : poids du terme t_i dans la requête Q (par défaut $v_i = 1$ si la requête Q contient le terme t_i , 0 sinon)

 w_i : poids du terme t_i dans le document d

2.1.2. Modèle basé sur la Similarité Cosinus (Cosine Measure)

Entrée (requête):

Un ensemble de termes normalisés

Sortie:

Une liste de documents ordonnés selon leurs degrés de pertinences. Le degré de pertinence RSV d'un document d par rapport à une requête Q est calculé à l'aide de **Cosine Measure** comme suit :

$$RSV(Q, d) = \frac{\sum_{i=1}^{n} v_i * w_i}{\sqrt{\sum_{i=1}^{n} v_i^2} * \sqrt{\sum_{i=1}^{n} w_i^2}}$$

2.1.3. Modèle basé sur l'Indice de Jaccard (Jaccard Measure)

Entrée (requête):

Un ensemble de termes normalisés

Sortie:

Une liste de documents ordonnés selon leurs degrés de pertinences. Le degré de pertinence *RSV* d'un document *d* par rapport à une requête *Q* est calculé à l'aide de **Jaccard Measure** comme suit :

$$RSV(Q, d) = \frac{\sum_{i=1}^{n} v_i * w_i}{\sum_{i=1}^{n} v_i^2 + \sum_{i=1}^{n} w_i^2 - \sum_{i=1}^{n} v_i * w_i}$$

Exercice:

- I. Implémenter les trois méthodes de recherche du modèle vectoriel:
 - . Produit Scalaire
 - . Similarité Cosinus
 - . Indice de Jaccard
- II. Visualiser les résultats retournés par chaque méthode de recherche.

