

Kaj določa način "plavanja"?

- Upor, ki ga čuti "plavalec":
 - zaradi vztrajnosti tekočine, ki jo odriva pred seboj

$$\propto \rho R^2 v^2$$

$$\propto \eta R v$$

Katera sila je pomembnejša?

Kaj določa način "plavanja"?

Odloča razmerje obeh sil (Reynoldsovo število *Re*):

$$\frac{\text{upor zaradi vztrajnosti tekočine}}{\text{upor zaradi viskoznosti tekočine}} \propto \frac{\rho R^2 v^2}{\eta R v} = \frac{\rho R v}{\eta} = Re$$

i tekočine	$\rho R^2 v^2$	$\frac{\rho R v}{=} = Re$
ti tekočine	$\frac{1}{\eta R v}$	

Re	prevladuje	upor	tok
> 1000	vztrajnost	$\propto V^2$	vrtinčenje, turbulenten
< 1	viskoznost	∞ V	brez vrtincev,

 ρ - gostota tekočine η - koef. viskoznosti

- Molekule in bakterije ne poznajo vztrajnosti!
 - → Način plavanja mora biti drugačen

Kaj določa način "plavanja"?

Re > 1000

Re < 1

voda

Kaj poganja gibanje molekul?

Brownovo gibanje / difuzija

https://youtu.be/R5t-oA796to

- Difuzija je posledica trkov med molekulami s termično kinetično energijo ($\sim k_B T$)
- Poganja jo entropija v smeri večjega števila možnih stanj

https://voutu.be/6VdMp46ZIL8

Difuzija

Brownovo gibanje:

- Enako verjeten premik v vse smeri
- Povprečna razdalja, do koder pridejo delci
 (*D* koeficient difuzije, *t* čas)

Difuzija je na dolge razdalje zelo počasna!

Difuzija

 Hitrost difuzije (difuzijski koeficient D) je odvisna od

$$D \propto \frac{k_B T}{\eta R}$$

 Izmerimo lahko le efektivno velikost delcev (skupaj s hidratacijskim plaščem): "hidrodinamski radij"

$$R \propto V^{1/3} \propto M^{1/3}$$

$$D \propto M^{-1/3}$$

Difuzija majhnih molekul

 Viskoznost je makroskopski parameter, zato ni primeren za opis gibanja molekul, primerljivih z velikostjo molekul topila (m₁ < 100 Da)!

 Tako majhni delci iščejo prazen prostor, ki se naključno pojavi med molekulami topila ("wait-and-hop")

Kako lahko *izmerimo* hitrost difuzije molekul oz. delcev v raztopini ali celici?

Korelacijske spektroskopije

Sipanje svetlobe: PCS = Photon Correlation Spectroscopy oz.

DLS = Dynamic Light Scattering

Fluorescenca: FCS = Fluorescence Correlation Spectroscopy

Difuzijski koeficient $D \propto -\frac{1}{2}$

Fluorescence Recovery After Photobleaching - FRAP

"Obnavljanje fluorescence po fotoslepljenju"

Kako lahko različno gibljivost delcev (molekul) izkoristimo v laboratoriju?

Centrifuga

Ločevanje delcev po gostoti:

- V disperziji nenabitih delcev tekmujeta urejevalna sila (težnost) in termično gibanje
 → stabilnost disperzije določa teža delcev
- Usedanje lahkih delcev v centrifugi pospešimo s "povečanjem njihove teže", sorazmerno s kvadratom frekvence vrtenja (ω²)
- Hitrost posedanja $\propto \frac{\text{centrif.}}{\text{upor}} \propto \frac{\omega^2 m}{\eta R}$

(*m*' - masa delca, zmanjšana za vzgon)

Elektroforeza

- Nabite delce lahko ločujemo tudi z električnim poljem - E
- Hitrost potovanja odvisna od gibljivosti delcev μ

$$\mu \propto \frac{\text{naboj}}{\text{upor}} \propto \frac{Ze_0}{\eta R}$$

 Izvedbe: gelska, kapilarna, 2D ef., izoelektrično fokusiranje ...

Ze₀ - naboj delcev

Meritev ζ-potenciala

- ζ-potencial ∞ efektivni naboj delca
- izmerimo elektroforetsko mobilnost μ , iz nje nato izračunamo ζ

$$\mu = \frac{v}{E} \quad \longrightarrow \quad \zeta \propto \mu$$

https://en.wikipedia.org/wiki/Zeta_potential

 Merjenje hitrosti z "laserskim radarjem"

