

Universidad Nacional de Ingeniería

Facultad de Ciencias

Escuela Profesional de Matemática

Ciclo 2011-I

[Cod: CM141 Curso: Cálculo Vectorial I]

[Tema: Vectores, proyección, rectas en el plano]

[Prof: K. Venegas, R. Acuña, L. La Rosa]

Segunda Práctica Calificada = < (11, 1) A < (11, 12)

1. Determine si las siguientes afirmaciones son verdaderas o falsas. Justifique su respuesta:

(a) (1 pto.) Si $\{\overrightarrow{u}, \overrightarrow{v}\}$ es una base de \mathbb{R}^2 , entonces $\{\overrightarrow{u} + \alpha \overrightarrow{v}, \overrightarrow{v}\}$ con $\alpha \in \mathbb{R}^{|V|}$ tambien lo es.

(b) (2 pts.) Sean \overrightarrow{u} , $\overrightarrow{v} \in \mathbb{R}^2 \setminus \{\overrightarrow{o}\}$, $\overrightarrow{u} \perp \overrightarrow{v}$ y $t \in \mathbb{R} \setminus \{0\}$. Proy \overrightarrow{v} $(\overrightarrow{u} + \overrightarrow{v}) \neq \overrightarrow{o}$

donde $\overrightarrow{w} = \text{Proy}_{\overrightarrow{u}}(t\overrightarrow{u})$

(c) (2 pts.) Sean \overrightarrow{u} , $\overrightarrow{v} \in \mathbb{R}^2$ no nulos. Pruebe que:

$$\overrightarrow{u} \perp \overrightarrow{v}^\perp \Longleftrightarrow \overrightarrow{u} \parallel \overrightarrow{v}$$

- 2. (4 pts.) Determine si la siguiente función: $\langle (x_1, x_2), (y_1, y_2) \rangle = x_1y_1 + 2x_2y_2$ define un producto interno en \mathbb{R}^2 .
- 3. (4 pts.) Un rayo de luz va dirigido por la recta L: 2x 3y 12 = 0, al llegar al eje de las ordenadas se refleja en él. Determine el punto de contacto del rayo con el eje de las ordenadas y la ecuación de la recta que lleva al rayo reflejado.
 - A. (3 pts.) Sean A, B y C los vértices de un triángulo con $M \in \overline{AC}$, tal que AAM = 3.MC. Si $\overrightarrow{BM} = r\overrightarrow{BA} + t\overrightarrow{BC}$, halle el valor de r y t.
- 5. (4 pts.)Determine las ecuaciones paramétricas de la recta que pasa por (2,3) y que forma con los ejes coordenados un triángulo de perímetro 18 u.

Uni, 25 de abril del 2011