

An Aircraft Example

A320

- First fly-by-wire passenger aircraft
- 150 seats, short to medium haul

A319 & A321

- Derivatives of A320
- Same handling as A320

Design rationale

- Reduce pilot training & maintenance costs
- Increase flexibility for airline

- Long haul and ultra long haul
- 2x seats, 3x range
- Similar handling than A320 family

Design rationale

 With minimum cross training, A320 pilots can be certified to fly A330 and A340 airplanes

Consequence

Any change in these five airplanes must maintain this similarity

Overview

- What is rationale?
- Why is it critical in software engineering?
- Centralized traffic control example
- Rationale in project management
 - Consensus building
 - Consistency with goals
 - Rapid knowledge construction
- Summary

What is rationale?

Rationale is the reasoning that lead to the system.

Rationale includes:

- the *issues* that were addressed,
- the alternatives that were considered,
- the decisions that were made to resolve the issues,
- the criteria that were used to guide decisions, and
- the debate developers went through to reach a decision.

Why is Rationale Management important for SE?

Many software systems are like aircraft:

They result from a large number of decisions taken over an extended period of time.

- Evolving assumptions
- Legacy decisions
- Conflicting criteria
- -> high maintenance cost
- -> loss & rediscovery of information

Uses of Rationale Management in SE

- Improve design support
 - Avoid duplicate evaluation of poor alternatives
 - Make consistent and explicit trade-offs
- Improve documentation support
 - Makes it easier for non developers (e.g., managers, lawyers, technical writers) to review the design
- Improve maintenance support
 - Provide maintainers with design context
- Improve learning
 - New staff can learn the design by replaying the decisions that produced it

Representing Rationale: Issue Models

Argumentation is the most promising approach so far:

- More information than document: captures trade-offs and discarded alternatives that design documents do not.
- Less messy than communication records: communication records contain everything.

Issue models represent arguments in a semi-structure form:

- Nodes represent argument steps
- Links represent their relationships

ATM Example

Question: Alternative Authentication Mechanisms?

References: Service: Authenticate

Decision: Smart Card + PIN

	Criteria 1: ATM Unit Cost	Criteria 2: Privacy
Option 1: Account number	+	1
Option 2: Finger print reader	_	+
Option 3: Smart Card + PIN	+	+

Centralized Traffic Control

- CTC systems enable dispatchers to monitor and control trains remotely
- CTC allows the planning of routes and replanning in case of problems

Centralized Traffic Control (2)

CTC systems are ideal examples of rationale capture:

- Long lived systems (some systems include relays installed last century)
 - Extended maintenance life cycle
- Although not life critical, downtime is expensive
 - Low tolerance for bugs
 - Transition to mature technology

Issues

- Issues are concrete problem which usually do not have a unique, correct solution.
- Issues are phrased as questions.

Proposals

- Proposals are possible alternatives to issues.
- One proposal can be shared across multiple issues.

Consequent Issue

• Consequent issues are issues raised by the introduction of a proposal.

- A criteria represent a goodness measure.
- Criteria are often design goals or nonfunctional requirements.

Arguments

- Arguments represent the debate developers went through to arrive to resolve the issue.
- Arguments can support or oppose any other part of the rationale.
- Arguments constitute the most part of rationale.

Arguments (2)

Point&click interfaces are more complex to implement than text-based interfaces. Hence, they are also more difficult to test. The point&click interface risks introducing fatal errors in the system that would offset any usability benefit the interface would provide.

Resolutions

- Resolutions represent decisions.
- A resolution summarizes the chosen alternative and the argument supporting it.
- A resolved issue is said to be closed.
- A resolved issue can be re-opened if necessary, in which case the resolution is demoted.

Resolutions (2)

Questions, Options, Criteria

 Designed for capturing rationale after the fact (e.g., quality assessment).

Overview: Rationale

- What is rationale?
- Why is it critical in software engineering?
- Centralized traffic control example
- Rationale in project management
 - Consensus building (WinWin)
 - Consistency with goals (NFR Framework)
 - Rapid knowledge construction (Compendium)
- Summary

Consensus Building

Problem

- Any realistic project suffers the tension of conflicting goals
 - Stakeholders come from different background
 - Stakeholders have different criteria

Example

- Requirements engineering
 - Client: business process (cost and schedule)
 - User: functionality
 - Developer: architecture
 - Manager: development process (cost and schedule)

Consensus Building: WinWin

- Incremental, risk-driven spiral process
 - Identification of stakeholders
 - Identification of win conditions
 - Conflict resolution
- Asynchronous groupware tool
 - Stakeholders post win conditions
 - Facilitator detects conflict
 - Stakeholders discuss alternatives
 - Stakeholders make agreements

Consistency with Goals

Problem

- Once multiple criteria have been acknowledged
 - Find solutions that satisfy all of them
 - Document the trade-offs that were made

Example

Authentication should be secure, flexible for the user, and low cost.

Consistency with Goals: NFR Framework

- NFR goal refinement
 - NFRs are represented as goals in a graph
 - Leaf nodes of the graph are operational requirements
 - Relationships represent "help" "hurt" relationships
 - One graph can represent many alternatives
- NFR evaluation
 - Make and break values are propagated through the graph automatically
 - Developer can evaluate different alternatives and compare them

Consistency with Goals: Model

Consistency with Goals: Process

Rapid Knowledge Construction

Problem

- When a company is large enough, it doesn't know what it does.
 - Knowledge rarely crosses organizational boundaries
 - Knowledge rarely crosses physical boundaries

Example

Identify resources at risk for Y2K and prioritize responses.

Rapid Knowledge Construction: Compendium

- Meeting facilitation
 - Stakeholders from different business units
 - External facilitator
- Real-time construction of knowledge maps
 - The focus of the meeting is a concept map under construction
 - Map includes the issue model nodes and custom nodes (e.g., process, resource, etc.)
- Knowledge structuring for long term use
 - Concept map exported as document outline, process model, memos, etc.

Rapid knowledge construction: Process example De Dit Yes Scholor Deb Ste S 5 5 5 Mary Build Assignatio Envolves (Activity) Profit Analgoda's formatory Arthity Collaboratively built A Principles Field position in comme map from a meeting Addition Companies Hotelston division Requirements specification document NUMBER OF THE PARTY OF PERMIT Frequency Resusances 18 Code Day of Department Assertable Employees the filtrage on property to the pro-ter and the property of the pro-ter and the property of the property of the pro-ter and the property of the property of the pro-ter and the property of the pro-ter and the pro-Decision Rep. 14 Build Integrable Interloy (Interly) ... Intelly compressed ? Datemin' Subject to be writing Mortis motor AND STREET, SQUARE, Control/2 to beg sealed t Dimed best 1 SQ 40E M be sale he begin Avea gos the A pprove to Plends and CE enges As sign most s Die Meter or most one The III Area by reb to Data flow diagram Annalysis of the to men have

Rapid knowledge Construction: Experiences

Context

 Several industrial case studies, including Y2K contingency planning at Bell Atlantic

Results

- Increased meeting efficiency (templates are reused)
- Knowledge reused for other tasks

Summary

- Rationale can be used in project management
 - To build consensus (WinWin)
 - To ensure quality (NFR Framework)
 - To elicit knowledge (Compendium)
- Other applications include
 - Risk management
 - Change management
 - Process improvement
- Open issues
 - Tool support
 - User acceptance

Exercises

• 12-3: Model the rationale in exercise 12-3 (page 522) with issues, proposals, arguments, criteria, and resolutions, as defined in Section 12.3