which is an elementary matrix of the form $E_{1,\alpha}$. Conversely, it is clear that every elementary matrix of the form $E_{i,\alpha}$ with $\alpha \neq 0, 1$ is a dilatation.

Now, assume that f is a transvection of hyperplane H and direction $u \in H$. Pick some $v \notin H$, and pick some basis (u, e_3, \ldots, e_n) of H, so that (v, u, e_3, \ldots, e_n) is a basis of E. Since $f(v) - v \in Ku$, the matrix of f is of the form

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ \alpha & 1 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix},$$

which is an elementary matrix of the form $E_{2,1;\alpha}$. Conversely, it is clear that every elementary matrix of the form $E_{i,j;\alpha}$ ($\alpha \neq 0$) is a transvection.

The following proposition is an interesting exercise that requires good mastery of the elementary row operations $E_{i,j;\beta}$; see Problems 8.10 and 8.11.

Proposition 8.24. Given any invertible $n \times n$ matrix A, there is a matrix S such that

$$SA = \begin{pmatrix} I_{n-1} & 0 \\ 0 & \alpha \end{pmatrix} = E_{n,\alpha},$$

with $\alpha = \det(A)$, and where S is a product of elementary matrices of the form $E_{i,j;\beta}$; that is, S is a composition of transvections.

Surprisingly, every transvection is the composition of two dilatations!

Proposition 8.25. If the field K is not of characteristic 2, then every transvection f of hyperplane H can be written as $f = d_2 \circ d_1$, where d_1, d_2 are dilatations of hyperplane H, where the direction of d_1 can be chosen arbitrarily.

Proof. Pick some dilatation d_1 of hyperplane H and scale factor $\alpha \neq 0, 1$. Then, $d_2 = f \circ d_1^{-1}$ leaves every vector in H fixed, and $\det(d_2) = \alpha^{-1} \neq 1$. By Proposition 8.23, the linear map d_2 is a dilatation of hyperplane H, and we have $f = d_2 \circ d_1$, as claimed.

Observe that in Proposition 8.25, we can pick $\alpha = -1$; that is, every transvection of hyperplane H is the compositions of two symmetries about the hyperplane H, one of which can be picked arbitrarily.

Remark: Proposition 8.25 holds as long as $K \neq \{0, 1\}$.

The following important result is now obtained.

Theorem 8.26. Let E be any finite-dimensional vector space over a field K of characteristic not equal to 2. Then the group $\mathbf{SL}(E)$ is generated by the transvections, and the group $\mathbf{GL}(E)$ is generated by the dilatations.