Relatório Final - Mecânica dos Fluidos e Transferência de Calor Computacional

Lucas Borges Menezes

Abstract

Este relatório apresenta a implementação de uma metodologia numérica para resolver problemas de engenharia utilizando Python. Primeiramente, são discutidas as estratégias para a geração e análise de malhas computacionais. Em seguida, a formulação e solução da equação de função corrente-vorticidade para escoamentos bidimensionais em torno de aerofólios são apresentadas. O trabalho explora os aerofólios NACA0012 e NACA2412 sob diferentes ângulos de ataque, analisando linhas de corrente, campos de vorticidade, velocidades, pressão e forças aerodinâmicas.

Contents

1	Intr	odução	1
2	Ger	ção e Análise de Malhas	2
	2.1	Introdução à Geração de Malhas	2
	2.2	Metodologia	
		2.2.1 Automatização da Geração de Malhas no GMSH	
	2.3	Malhas Regulares	
		2.3.1 Geração de Malhas Regulares	
		2.3.2 Comparação de Malhas Regulares	
	2.4	Malhas para Aerofólios	
		2.4.1 Geração de Malhas para Aerofólios	
		2.4.2 Comparação de Malhas para Aerofólios	
3	Solı	ção de Escoamento	6
	3.1	Equação de Função Corrente-Vorticidade	6
	3.2	Condições de Contorno	
	3.3	Aplicação na Análise de Escoamento	
	3.4	Resultados	
4	Cor	elusão	11

1 Introdução

A solução de problemas de engenharia frequentemente requer o uso de simulações numéricas. Este trabalho aborda dois aspectos fundamentais:

- A geração e análise de malhas computacionais.
- A solução de problemas de escoamento utilizando a equação de função correntevorticidade.

2 Geração e Análise de Malhas

2.1 Introdução à Geração de Malhas

A discretização espacial é um passo crucial em métodos numéricos. Este trabalho utiliza três tipos de malhas:

- Malhas quadriláteras uniformes e não uniformes.
- Malhas triangulares uniformes e não uniformes.
- Malha triangular aleatória gerada utilizando triangulação de Delaunay.

2.2 Metodologia

Para a criação das malhas computacionais, foram empregadas duas abordagens principais:

- Geração de malhas regulares diretamente no Python para casos quadriláteros e triangulares, como apresentado na Seção 2.3.1.
- Geração de malhas no GMSH utilizando um código Python para criação automática dos arquivos .geo, permitindo configurar diferentes ângulos de ataque para o mesmo perfil aerodinâmico, conforme descrito abaixo.

2.2.1 Automatização da Geração de Malhas no GMSH

Para garantir flexibilidade e eficiência na criação de malhas para aerofólios, foi desenvolvido um script em Python que automatiza a geração dos arquivos de geometria (.geo) utilizados pelo GMSH. Este script permite:

- Configurar o perfil aerodinâmico (ex.: NACA0012 ou NACA2412).
- Ajustar o ângulo de ataque do aerofólio (ex.: 0°, 15° ou 30°).
- Definir a densidade de pontos para o refinamento da malha em regiões de maior interesse, como próximo à superfície do aerofólio.

A Figura 2 ilustra as malhas geradas para diferentes ângulos de ataque, enquanto a Tabela 2 apresenta os parâmetros comparativos entre essas malhas.

2.3 Malhas Regulares

2.3.1 Geração de Malhas Regulares

A Figura 1 apresenta as malhas quadriláteras, triangulares e a malha triangular aleatória gerada. A organização em subfiguras facilita a comparação visual entre os diferentes tipos.

- (a) Malha quadrilátera uniforme.
- (b) Malha quadrilátera não uniforme.

- (c) Malha triangular uniforme.
- (d) Malha triangular não uniforme.

(e) Malha triangular aleatória.

Figure 1: Comparação das diferentes malhas geradas.

2.3.2 Comparação de Malhas Regulares

A Tabela 1 apresenta os valores médios calculados para as malhas.

Tipo de Malha	Média da Área	Razão de Aspecto	Média de Vizinhos
Quad Uniforme	0.0028	1.00	7.41
Quad Não Uniforme	0.0028	3.61	7.41
Tria Uniforme	0.0014	1.41	5.61
Tria Não Uniforme	0.0014	3.86	5.61
Tria Aleatória	0.0011	2.59	5.62

Table 1: Análise estatística das malhas.

2.4 Malhas para Aerofólios

2.4.1 Geração de Malhas para Aerofólios

As Figuras 2 mostram as 6 malhas utilizadas para a análise de escoamento ao redor dos aerofólios NACA0012 e NACA2412, com ângulos de ataque de 0°, 15° e 30°. Essas malhas foram geradas no GMSH e apresentam variações no refinamento e na estrutura, buscando capturar adequadamente os efeitos do escoamento nas diferentes condições.

Figure 2: Malhas utilizadas para análise de escoamento ao redor dos aerofólios NACA0012 e NACA2412.

2.4.2 Comparação de Malhas para Aerofólios

A Tabela 2 apresenta os parâmetros calculados para cada malha, incluindo a média da área dos elementos, a razão de aspecto média e o número médio de vizinhos.

Aerofólio	Ângulo de Ataque	Média da	Razão de	Média de
		Área	Aspecto	Vizinhos
NACA0012	0°	0.0019	1.14	5.83
NACA0012	15°	0.0021	1.14	5.81
NACA0012	30°	0.0020	1.14	5.82
NACA2412	0°	0.0022	1.13	5.82
NACA2412	15°	0.0023	1.13	5.81
NACA2412	30°	0.0022	1.13	5.82

Table 2: Comparação dos parâmetros das malhas utilizadas para análise de escoamento.

3 Solução de Escoamento

Equação de Função Corrente-Vorticidade 3.1

A equação de função corrente-vorticidade é uma formulação matemática amplamente utilizada para modelar escoamentos bidimensionais incompressíveis. Esta abordagem elimina a necessidade de lidar diretamente com as pressões no domínio, concentrando-se nas variáveis ψ (função corrente) e ω (vorticidade). O uso dessas variáveis permite capturar a dinâmica do escoamento com eficiência computacional.

A formulação consiste em duas equações acopladas:

$$\nabla^2 \psi = -\omega,\tag{1}$$

$$\nabla^2 \psi = -\omega, \tag{1}$$

$$\frac{\partial \omega}{\partial t} + \mathbf{u} \cdot \nabla \omega = \nu \nabla^2 \omega, \tag{2}$$

onde:

- \bullet ψ é a função corrente, cuja derivada espacial define o campo de velocidades $\mathbf{u} = (u_x, u_y).$
- \bullet ω é a vorticidade, uma medida da rotação local no escoamento.
- ν é a viscosidade cinemática do fluido.
- $\mathbf{u} \cdot \nabla \omega$ representa o transporte convectivo da vorticidade pelo escoamento.

A primeira equação relaciona a função corrente à vorticidade por meio do operador laplaciano, enquanto a segunda equação descreve a evolução temporal da vorticidade, levando em conta os efeitos convectivos e difusivos. Essas equações devem ser resolvidas de forma acoplada para obter os campos de velocidade, pressão e vorticidade.

3.2 Condições de Contorno

Para garantir uma solução física e bem definida, foram aplicadas condições de contorno consistentes ao longo do domínio. A Figura 3 ilustra as condições implementadas:

- Na entrada do domínio (borda esquerda), a função corrente foi definida como $\psi = y$, enquanto o campo de velocidades foi configurado como $v_x = 1$ e $v_y = 0$, representando um fluxo uniforme horizontal.
- Na saída do domínio (borda direita), foi aplicado $\nabla \psi \cdot \mathbf{n} = 0$, assumindo que o fluxo não é perturbado.
- Nas bordas superior e inferior, as condições $\psi = y$ e $v_x = v_y = 0$ foram aplicadas, garantindo a continuidade do fluxo.
- Na superfície do aerofólio, representado como um círculo genérico, foi imposto $\psi=y_p$ (valor da função corrente correspondente à posição do aerofólio) e $v_x=1,\,v_y=0$, simulando o efeito do escoamento sobre a superfície sólida.

Figure 3: Condições de contorno para o problema de escoamento ao redor de um aerofólio. O círculo representa o aerofólio genérico.

3.3 Aplicação na Análise de Escoamento

A metodologia foi aplicada para resolver o escoamento ao redor dos aerofólios NACA0012 e NACA2412 sob diferentes ângulos de ataque $(0^{\circ}, 15^{\circ} \text{ e } 30^{\circ})$. A análise envolveu os seguintes aspectos:

- Determinação das linhas de corrente para visualizar o padrão do escoamento.
- Cálculo do campo de vorticidade para identificar regiões de rotação fluida.
- ullet Extração das velocidades nas direções x e y para avaliar o comportamento dinâmico.

• Estimativa da distribuição de pressão na superfície do aerofólio.

A seção a seguir detalha os resultados obtidos, incluindo visualizações dos campos de escoamento e tabelas comparativas dos parâmetros aerodinâmicos.

3.4 Resultados

Os resultados apresentados neste trabalho foram obtidos considerando a densidade do fluido $\rho = 1$ e um número de Reynolds Re = 5.

A convergência foi atingida para todas as simulações quando os erros relativos das variáveis ψ (função corrente) e ω (vorticidade) se tornaram menores do que 10^{-5} . Esse critério garantiu que as soluções numéricas estivessem dentro de uma tolerância aceitável para análises de escoamento em regime laminar.

A Figura 4 mostra as linhas de corrente para os aerofólios NACA0012 e NACA2412 sob ângulos de ataque de 0°, 15° e 30°. Essas visualizações permitem identificar como o padrão de escoamento varia conforme a geometria e o ângulo de ataque.

Figure 4: Linhas de corrente para os aerofólios NACA0012 e NACA2412 em diferentes ângulos de ataque.

Para o caso do NACA0012 a 30°, são apresentadas a distribuição de vorticidade e a pressão na superfície do aerofólio. Esses resultados ilustram a dinâmica do escoamento em condições específicas.

Figure 5: Distribuição de vorticidade ao redor do aerofólio NACA0012 - 30°.

Figure 6: Distribuição de pressão ao longo da superfície do aerofólio NACA0012 - 30° .

A Tabela 3 resume os coeficientes de sustentação (C_L) e arrasto (C_D) calculados para os diferentes casos de aerofólios e ângulos de ataque avaliados.

Aerofólio	Ângulo de Ataque	L	D
NACA0012	0°	0.001	-0.001
NACA0012	15°	0.192	0.074
NACA0012	30°	0.445	0.326
NACA2412	0°	0.002	-0.004
NACA2412	15°	-0.007	-0.013
NACA2412	30°	-0.006	-0.022

Table 3: Sustentação por unidade de comprimento (L) e arrasto por unidade de comprimento (D) para os aerofólios analisados.

4 Conclusão

Este trabalho implementou e analisou diferentes malhas computacionais e utilizou a equação de função corrente-vorticidade para resolver um problema de escoamento ao redor de um aerofólio. A análise revelou a influência da qualidade da malha nos resultados numéricos, destacando a importância da discretização adequada. Além disso, foi possível comparar os efeitos de diferentes ângulos de ataque nos coeficientes aerodinâmicos de sustentação e arrasto.

Referências Adicionais

Os códigos utilizados para a implementação deste trabalho, incluindo os scripts para geração de malhas e resolução das equações de escoamento, estão disponíveis no seguinte repositório do GitHub:

https://github.com/lucasborgesm/Trabalho_Final_MecFlu_Transcal_Comp