Министерство науки и высшего образования Российской Федерации Федеральное государственно автономное образовательное учреждение высшего образования «Омский государственный технический университет»

Факультет информационных технологий и компьютерных систем Кафедра «Прикладная математика и фундаметральная информатика»

Индивидуальная работа

по дисциплине «Математическая логика и теория алгоритмов»

Студента	Курпенова Куата Иораимовича						
T.	фамилия, имя, отчество полностью						
Kypc	2, группа ФИТ-212						
Направление	02.03.02 Прикладная математика						
	и фундаментальная информатика						
	код, наименование						
Руководитель	доц., канд. физмат. наук						
	должность, ученая степень, звание						
	Белим С. Ю.						
Выполнил	V4.01.23 фамилия, инициалы						
	дата, подпись студента						

Задание 1

Используя метод резолюций с унификацией предикатных выражений для заданного множества гипотез $\{F_1,F_2,\ldots,F_n\}$ и утверждения B, доказать справедливость $F_1,F_2,\ldots,F_n\vdash B$.

Решение

$$F_{1} = \forall x (K(x) \& \forall y (R(y) \to U(x,y)))$$

$$F_{1} = \forall x \forall y (K(x) \& (\neg R(y) \lor U(x,y)))$$

$$F_{1} = \forall x \forall y ((K(x) \& \neg R(y)) \lor (K(x) \& U(x,y)))$$

$$F_{2} = \forall x (K(x) \& \forall y (B(y) \to \neg U(x,y)))$$

$$F_{2} = \forall x \forall y (K(x) \& (\neg B(y) \lor \neg U(x,y)))$$

$$F_{2} = \forall x \forall y ((K(x) \& \neg B(y)) \lor (K(x) \& \neg U(x,y)))$$

$$F_{2} = \forall x \forall y ((K(x) \& \neg B(y)) \lor (K(x) \& \neg U(x,y)))$$

$$B = \forall y (R(y) \to \neg B(y)) = \forall y (\neg R(y) \lor \neg B(y))$$

$$\neg B = \neg (\forall y (\neg R(y) \lor \neg B(y))) = \exists y (R(y) \& B(y)) = R(c) \& B(c)$$

$$K : \{(K(x) \& \neg R(y)) \lor (K(x) \& U(x,y)), (K(x) \& \neg B(y)) \lor (K(x) \& \neg U(x,y)), (K$$

$$res((K(x)\&\neg R(y)) \lor (K(x)\&U(x,y)), R(c)) = K(x)\&R(c)\&U(x,y)$$

$$res(K(x)\&R(c)\&U(x,y), (K(x)\&\neg B(y)) \lor (K(x)\&\neg U(x,y))) = K(x)\&R(c)\&\neg B(y)$$

$$res(K(x)\&R(c)\&\neg B(y), B(c)) = False$$

Ответ

Справедливость доказана.

Задание 2

Дана машина Тьюринга с внешним алфавитом $A=\{a_0,1\}$, алфавитом внутренних состояний $Q=\{q_0,q_1,q_2,q_3,q_4,q_5,q_6,q_7,R,L,S\}$ и со следующей программой:

	q_1	q_2	q_3	q_4	q_5	q_6	q_7
a_0	$q_4 a_0 R$	$q_6 a_0 R$	$q_6 a_0 R$	$q_0 1R$	$q_4 a_0 R$	$q_0 a_0 S$	$q_6 a_0 R$
1	$q_2 1L$	q_31L	$q_1 1L$	$q_5 a_0 S$	$q_5 a_0 S$	$q_7 a_0 S$	$q_7 a_0 R$

Стартовое состояние:

1	1	1	1	1
				q_1

Решение

- $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ & & & q_1 \end{bmatrix}$

- - $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ q_6 & & & & \end{bmatrix}$
 - $\begin{bmatrix} a_0 & 1 & 1 & 1 & 1 \\ q_7 & & & & \end{bmatrix}$
 - $\begin{bmatrix} a_0 & 1 & 1 & 1 & 1 \\ & q_6 & & & \end{bmatrix}$
 - a_0 1 1 1 q_7
 - - $\begin{bmatrix} a_0 & 1 & 1 \\ q_7 & & \end{bmatrix}$

Ответ

Данная программа удаляет число с ленты.

Задание 3

Дана машина Тьюринга с внешним алфавитом $A = \{a_0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. На ленте запись неотрицательного целого числа в десятичной системе. Стартовая конфигурация - головка под первой цифрой числа. Требуется получить на ленте запись числа, которое на 1 больше заданного числа (состояний головки не более трёх).

Решение

	a_0	0	1	2	3	4	5	6	7	8	9
q_1	q_2a_0L	q_10R	$q_1 1R$	$q_1 2R$	$q_1 3R$	q_14R	q_15R	q_16R	q_17R	q_18R	q_19R
q_2	$q_0 1S$	$q_0 1S$	$q_0 2S$	$q_0 3S$	$q_0 4S$	$q_0 5S$	q_06S	q_07S	$q_0 8S$	q_09S	q_20L

Ответ

Прогамма для машины Тьюринга приведена выше.