Building Lexical Cognitive Networks for Web Corpora with Application to Lexical Similarity Computation and Affective Text Analysis

Alexandros Potamianos

Dept. of ECE, Technical Univ. of Crete, Chania, Greece

Acknowledgements

- Elias Iosif: Semantic similarity computation, semantic networks
- Nikos Malandrakis: Affective models for text and multimedia
- Shri Narayanan (USC): Affective modeling of dialogue interaction

References

- [1] E. Iosif and A. Potamianos. 2010. "Unsupervised semantic similarity computation between terms using web documents". IEEE Transactions on Knowledge and Data Engineering.
- [2] N. Malandrakis, A. Potamianos, E. Iosif, S. Narayanan. 2011. "Kernel methods for affective lexicon creation". Proc. Interspeech.
- [3] . 2011. "EmotiWord: Affective Lexicon Creation with Application to Interaction and Multimedia Data". Proc. of MUSCLE workshop.
- [4] E. Iosif and A. Potamianos. 2012. "Semsim: Resources for normalized semantic similarity computation using lexical networks". In Proc. I REC.
- [5] N. Malandrakis, E. Iosif, A. Potamianos. 2012. "DeepPurple: Estimating Sentence Semantic Similarity using N-gram Regression Models and Web Snippets". In Proc SemEval (collocated with NAACL-HLT).
- [6] E. losif and A. Potamianos. 2012. "Similarity computation using semantic networks created from web-harvested data". Natural Language Engineering (submitted to).

Semantic Similarity Computation

- \blacksquare Compute semantic similarity between words S(i,j)
 - Organizing principle of human cognition
 - Building block of machine learning in NLP/semantic web
 - Underlies the relations between words

How Humans do it?

- How is lexical information organized cognitively?
- Do people think with words, i.e., are words the building blocks of human cognition?
- Do you believe in word senses?
- Affective organization of words?

How Humans do it?

- Priming: network-based activation
- Framing: effect of context
- Associative anchoring
- Valence reversal

■ Semantic similarity estimation methods:

- Resource-based, e.g., WordNet
 - Require expert knowledge
 - Not available for all languages
- Corpus-based
 - Distributional semantic models (DSMs)
 - Unstructured (unsupervised): no use of linguistic structure
 - Structured: use of linguistic structure
 - Pattern-based, e.g., Hearst patterns
- Mixed

Semantic Sim. Computation: Sense Similarity

Max. sense sim. assumption: similarity of two closest senses

- fruit
 - Sense1: "the ripened reproductive body of a seed plant"
 - Sense2: "an amount of a product"
 - Sense3: "the consequence of some effort or action"
- tree
 - Sense1: "a tall perennial woody plant ..."
 - Sense2: "a figure that branches from a single root"
- forest
 - Sense1: "trees and other plants in a densely wooded area"
 - Sense2: "land that is covered with trees and shrubs"

Semantic Sim. Computation: Attributional Similarity

Attributional similarity assumption

- Attributes (features) reflect semantics
 - Item-Relation-Attribute, e.g., canary-color-yellow
- Main representation schemes
 - Hierarchical/Categorical
 - Mainly taxonomic relations, e.g., IsA, PartOf
 - Distributed (networks)
 - Open set of relations, e.g., Cause-Effect, etc
- Similarity between words
 - Function of attribute similarity
 - Defined wrt representation

Intro Sem.Similarity Lexical Net Min. Error Sim. Evaluation Textual Affect Lexicon expansion Evaluation Conclus

Types of Similarity Metrics

- Co-occurrence-based
 - Assumption: co-occurrence implies relatedness
 - Co-occurrence counts: web hits, corpus-based
 - Examples: Dice coef., point-wise mutual information, ...
- Context-based
 - Assumption: context similarity implies relatedness (distributional hypothesis of meaning)
 - Contextual features extracted from corpus
 - Examples: Kullback-Leibler divergence, cosine similarity, ...
- Network-based (proposed)
 - Build lexical net using co-occurrence and/or context sim.
 - Notion of semantic neighborhoods
 - Assumptions: neighborhoods capture word semantics

Queries to Web Search Engines

- Number of hits
- Document URLs (download)
- Document snippets

Corpus Creation using Web Queries

- Two types of web queries
 - AND, e.g., "money + bank"
 "... leading bank in India offering online money transfer ..."
 - IND, e.g., "bank"
 - "... downstream parallel to the **banks** of the river ..."
- AND queries
 - Pros: Similarity computation highly correlated (0.88) with human ratings [losif & Potamianos, '10]
 - Cons: Quadratic guery complexity wrt lexicon L
- IND queries
 - Pros: Linear query complexity wrt lexicon L
 - Cons: Sense ambiguity: moderate correlation (0.55)

Enter semantic networks

- Why do IND gueries fail to achieve good performance?
 - 1 Word senses are often semantically diverse
 - co-occurrence acts as a semantic filter
 - 2 Word senses have poor coverage in IND queries
 - rare word senses of words not well-represented
- Solution: use semantic networks
 - 1 Create a corpus for all words in lexicon (not just semantic similarity pair)
 - 2 Use semantic neighborhoods for semantic cohesion
 - improved robustness
 - 3 Inverse frequency word-sense discovery
 - discover rare senses via co-occurrence with infrequent words

Corpus and Network Creation

Goals

- Linear web query complexity for corpus creation
- New similarity metrics with high performance
- Proposed method
 - IND queries to aggregate data for large L ($\approx 9K$)
 - Create network and semantic neighborhoods
 - Neighborhood-based similarity metrics
- Advantages
 - Network: parsimonious representation of corpus statistics
 - Smooth distributions
 - Rare words: well-represented
 - Enable discovery of less frequent senses

Corpus: Frequency vs. Rank

Lexical Network - Semantic Neighborhoods

Lexical Network

- Undirected graph G = (N, E)
 - Vertices N: words in lexicon L
 - Edges *E*: word similarities

Semantic Neighborhoods

- For word *i* create subgraph G_i
- Select neighbors of i
 - Compute $S(i, j), \forall j \in L, i \neq j$
 - Sort j according to S(i,j)
 - Select | N_i | top-ranked j

Semantic Neighborhoods: Examples

Word	Neighbors			
automobile	auto, truck, vehicle,			
	car, engine, bus,			
car	truck, vehicle , travel,			
	service, price, industry,			
slave	slavery, beggar, nationalism,			
	society, democracy, aristocracy,			
journey	trip, holiday, culture,			
	travel, discovery, quest,			

- Synonymy
- Taxonomic: IsA, Meronymy
- Associative
- Broader semantics/pragmatics

Neighborhood-based Similarity Metrics: M_n

M_n metric: maximum similarity of neighborhoods

- Motivated by maximum sense similarity assumption
 - Neighbors are semantic features denoting senses
 - Similarity of two closest senses
- Select max. similarity: M_n ("forest", "fruit") = 0.30

Neighborhood-based Similarity Metrics: R_n

 R_n metric: correlation of neighborhood similarities

- Motivated by attributional similarity assumption
 - Neighborhoods encode word attributes (or features)
 - Similar words have co-varying sim. wrt their neighbors
- Compute correlation r of neighborhood similarities
 - $r_1((0.16...0.09), (0.10...0.01)), r_2((0.002...0), (0.63...0.13))$
- Select max. correlation: $R_n("forest","fruit") = -0.04$

Neighborhood-based Similarity Metrics: metric $E_n^{\theta=2}$

 $E_n^{\theta=2}$ metric: sum of squared neighborhood similarities

- Motivation: middle road between M_n and R_n
 - Accumulation of word-to-neighbor similarities
 - Non-linear weighting of similarities via $\theta = 2$
- $E_n^{\theta=2} (\text{"forest"}, \text{"fruit"}) = \sqrt{(0.10^2 + \dots + 0.01^2) + (0.002^2 + \dots + 0^2)} = 0.22$

Minimum Error Sem. Similarity: Problem Definition

- Goal: reduce the similarity estimation error
 - Follow max. sense similarity assumption
 - Modify standard metrics
 - Case study: co-occurrence-based metrics
- Consider metric $S_W(w_i, w_j) = \frac{\hat{\rho}(w_i, w_j)}{\hat{\rho}(w_i)\hat{\rho}(w_j)}$
 - $\hat{p}(w_i)$ and $\hat{p}(w_i)$: occur. prob. for words w_i and w_i
 - $\hat{p}(w_i, w_j)$: co-occur. prob. of w_i and w_j
- Problem: error in $S_W(w_i, w_i)$ due to:
 - Estimation of $\hat{p}(w_i, w_i)$
 - \blacksquare w_i and w_i co-occur with close senses?
 - scope (doc, sentence, syntactic rel., ...) of co-occurrence?
 - $\hat{p}(w_i), \hat{p}(w_i)$ estimated across all senses of w_i, w_i

Minimum Error Sem. Similarity: Assumptions

- Set of words $L = \{w_1, w_2, ... w_N\}$
- Set of senses for word w_i : $M_i = \{s_{i1}, s_{i2}, ..., s_{iN_i}\}$
- Set of senses of all words: $M = M_1 \cup M_2 \cup ...M_N$
- Assumption 1
 - All senses lexicalized as single words included in L

$$\forall s_{ij} \in M, \exists w_k \in L : s_{ij} \equiv w_k$$

- Assumption 2
 - \blacksquare Sim. of w_i , w_j : pairwise max. sim. between their senses

$$S_W(w_i, w_j) \equiv S_S(s_{ik}, s_{jl}), \ \ (k, l) = \operatorname*{argmax}_{(p \in M_i, r \in M_j)} S_S(s_{ip}, s_{jr})$$

- Assumption 3
 - \blacksquare [3a] w_i , w_i always co-occur with their two closest senses

$$\forall \{w_i * w_j\} : (w_i \equiv s_{ik}, w_j \equiv s_{jl}) \text{ iff } (k, l) = \underset{(p \in M_l, r \in M_j)}{\operatorname{argmax}} S_S(s_{ip}, s_{jr})$$

■ [3b] As [3a] with extra, small prob. $\epsilon_1 = f(p(w_i)p(w_i))$

$$p(w_i, w_i) \equiv p(s_{ik}, s_{il}) + \epsilon_1$$

- Assumption 4
 - [4a] Uniform sense distr.: $\forall k : p(s_{ik}) = \frac{p(w_i)}{N_i}$
 - [4b] Power-law sense distr.: $\forall k : p(s_{ik}) = f(p(w_i)^{\alpha})$

Evaluation: Word Level Semantic Similarity

- Task: similarity judgment
 - Noun pairs
- Datasets
 - MC [Miller and Charles, 1998]
 - RG [Rubenstein and Goodenough, 1965]
 - WS353 [Finkelstein et al., 2002]
- Evaluation metric: correlation wrt to human ratings
 - Pearson's correlation coefficient

Performance of net-based similarity metrics

Dataset	Neighbor	Similarity	Metrics		
	selection	computation	$M_{n=100}$	$R_{n=100}$	$E_{n=100}^{\theta=2}$
MC	co-occur.	co-occur.	0.90	0.72	0.90
MC	co-occur.	context	0.91	0.28	0.46
MC	context	co-occur.	0.52	0.78	0.56
MC	context	context	0.51	0.77	0.29
RG	co-occur.	co-occur.	0.87	0.67	0.86
RG	co-occur.	context	0.86	0.32	0.53
RG	context	co-occur.	0.58	0.72	0.61
RG	context	context	0.57	0.69	0.33
WS353	co-occur.	co-occur.	0.64	0.50	0.64
WS353	co-occur.	context	0.64	0.14	0.20
WS353	context	co-occur.	0.47	0.56	0.48
WS353	context	context	0.46	0.57	0.11

Performance of maximum sim. of neigh. M_n

- Neighbor selection: co-occurrence-based metric
- Similarity computation: context-based metric

Performance of correlation of neigh. sim. R_n

- Neighbor selection: context-based metric
- Similarity computation: co-occurrence-based metric

Performance of sum of squared neigh. sim. $E_n^{\theta=2}$

- Neighbor selection: co-occurrence-based metric
- Similarity computation: co-occurrence-based metric

Performance of web-based similarity metrics

For MC dataset

Feature	Description	Correlation
context	AND queries	0.88
context	IND queries	0.55
context	IND queries: network	0.90

Comparable to structured DSMs, WordNet-based approaches

Performance of min. error sem. sim. (current results)

■ Modify pointwise mutual info. $I(w_i, w_j) = \log \frac{\hat{p}(w_i, w_j)}{\hat{p}(w_i)\hat{p}(w_i)}$ as

$$I_{\alpha}(w_i, w_j) = \frac{1}{2} \left[\log \frac{\hat{p}(w_i, w_j)}{\hat{p}^{\alpha}(w_i)\hat{p}(w_j)} + \log \frac{\hat{p}(w_i, w_j)}{\hat{p}(w_i)\hat{p}^{\alpha}(w_j)} \right]$$

- Assumptions: 1, 2, 3a, and 4b
- Co-occurrence considered at sentence-level
- \blacksquare α estimated to max. sense coverage of sem. neigh.
- Task: similarity judgment, correlation wrt to human ratings

Dataset	1	I_{α}
MC	0.78	0.89
RG	0.77	0.84
WS353	0.60	0.68

- BLEU-based semantic similarity metric:
 - Baseline BLEU: using single BLEU hit rate as rating
 - Semantic Similarity (SS) BLEU: modified unigram BLEU that includes semantic similarity of non-matched words

Correlation performance of 1-gram BLEU scores						
with semantic similarity metrics (nouns-only)						
par vid euro Mean Ovrl						
BLEU	0.54	0.60	0.39	0.51	0.58	
SS-BLEU WordNet	0.56	0.64	0.41	0.54	0.58	
SS-BLEU I(i, j)	0.56	0.63	0.39	0.53	0.59	
SS-BLEU $I_a(i,j)$	0.57	0.64	0.40	0.54	0.58	

Contributions

Proposed a language agnostic, unsupervised and scalable algorithm for semantic similarity computation

- No linguistic knowledge required, works from text corpus or from using a web query engine
- Shown to perform at least as well as resource-based semantic similarity computation algorithms, e.g., WordNet-based methods

EmotiWord: Affective Lexicon Creation with Application to Interaction and Multimedia Data

Motivation

- Affective text labeling at the core of many multimedia applications, e.g.,
 - Sentiment analysis
 - Spoken dialogue systems
 - Emotion tracking of multimedia content
- Affective lexicon is the main resource used to bootstrap affective text labeling
 - Lexica are currently of limited scope and quality

Goals and Contributions

Our goal: assigning contiunous high-quality polarity ratings to any lexical unit

- We present a method of expanding an affective lexicon, using web-based semantic similarity
- Assumption: semantic similarity implies affective similarity.
- The expanded lexica are accurate and broad in scope, e.g., they can contain proper nouns, multi-word terms

Our lexicon expansion method

Expansion of [Turney and Littman, '02].

Assumption: the valence of a word can be expressed as a linear combination of its semantic similarities to a set of seed words and their valence ratings:

$$\hat{v}(w_j) = a_0 + \sum_{i=1}^{N} a_i \ v(w_i) \ d(w_i, w_j), \tag{1}$$

- \mathbf{w}_i : the wanted word
- $\mathbf{w}_1...\mathbf{w}_N$: seed words
- $\mathbf{v}(\mathbf{w}_i)$: valence rating of word \mathbf{w}_i
- \blacksquare a_i : weight assigned to seed w_i
- $d(w_i, w_j)$: measure of semantic similarity between words w_i and w_i

Given

- an initial lexicon of K words
- a set of N < K seed words</p>

we can use (1) to create a system of K linear equations with N+1 unknown variables:

$$\begin{bmatrix} 1 & d(w_1, w_1)v(w_1) & \cdots & d(w_1, w_N)v(w_N) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & d(w_K, w_1)v(w_1) & \cdots & d(w_K, w_N)v(w_N) \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_N \end{bmatrix} = \begin{bmatrix} 1 \\ v(w_1) \\ \vdots \\ v(w_K) \end{bmatrix}$$
(2)

Solving with Least Mean Squares estimation provides the weights a_i .

Example, N = 10 seeds

Order	Wi	$V(W_i)$	a _i	$v(w_i) \times a_i$
1	mutilate	-0.8	0.75	-0.60
2	intimate	0.65	3.74	2.43
3	poison	-0.76	5.15	-3.91
4	bankrupt	-0.75	5.94	-4.46
5	passion	0.76	4.77	3.63
6	misery	-0.77	8.05	-6.20
7	joyful	0.81	6.4	5.18
8	optimism	0.49	7.14	3.50
9	loneliness	-0.85	3.08	-2.62
10	orgasm	0.83	2.16	1.79
-	w ₀ (offset)	1	0.28	0.28

Sentence Tagging

Simple combinations of word ratings:

■ linear (average)

$$v_1(s) = \frac{1}{N} \sum_{i=1}^{N} v(w_i)$$

weighted average

$$v_2(s) = \frac{1}{\sum\limits_{i=1}^{N} |v(w_i)|} \sum\limits_{i=1}^{N} v(w_i)^2 \cdot \text{sign}(v(w_i))$$

max

$$v_3(s) = \max_i (|v(w_i)|) \cdot \operatorname{sign}(v(w_z)), \quad z = \arg\max_i (|v(w_i)|)$$

Evaluation

- ANEW Word Polarity Detection Task
 - Affective norms for English words (ANEW) corpus
 - 1.034 English words, continuous valence ratings
- General Inquirer Word Polarity Detection
 - General Inquirer words corpus
 - 3.607 English words, binary valence ratings
- SemEval 2007 Sentence Polarity Detection
 - SemEval 2007 News Headlines corpus
 - 1.000 English sentences, continuous valence ratings
 - ANEW used for training

Word Polarity Detection (ANEW)

2-class word classification accuracy (positive vs negative)

Sentence Polarity Detection (SemEval 2007)

2-class sentence classification accuracy (positive vs negative)

ChIMP Sentence Frustration/Politeness Detection

- ChIMP Children Utterances corpus
- 15.585 English sentences, Politeness/Frustration/Neutral ratings
- SoA results, binary accuracy P vs 0 / F vs O:
 - 81% / 62.7% [Yildirim et al, '05]
- 10-fold cross-validation
- ANEW used for training/seeds to create word ratings
- ChiMP words added to ANEW with weight w, to adapt to the task
- Similarity metric: Google semantic relatedness
- Only content words taken into account

Politeness: Sentence	Fusion scheme			
Classification Accuracy	avg	w.avg	max	
Baseline: P vs O	0.70	0.69	0.54	
Adapt $w = 1$: P vs O	0.74	0.70	0.67	
Adapt $w = 2$: P vs O	0.77	0.74	0.71	
Adapt $w = \infty$: P vs O	0.84	0.82	0.75	
Frustration: Sentence	Fusion scheme			
Classification Accuracy	avg w.avg max			
Baseline: F vs O	0.53	0.62	0.66	
Adapt $w = 1$: F vs O	0.51	0.58	0.57	
Adapt $w = 2$: F vs O	0.49	0.53	0.53	
Adapt $w = \infty$: F vs O	0.52	0.52	0.52	

Summary of Results

- The word-level ratings are very accurate and robust across different corpora
- Sentence-level ratings comparable to state-of-the-art, despite the simplistic sentence level fusion model and disregard of syntax/negations
- Adaptation provided good performance on the politeness detection task (linear fusion)
- The baseline model performed best on the frustration detection task (max fusion)

Conclusions

Proposed a high-performing, robust, general-purpose and scalable algorithm for affective lexicon creation

- Investigated linear and non-linear sentence level fusion schemes, showing good but task-dependent performance
- Investigated domain adaptation with good but task-dependent performance (politeness vs frustration detection task)

Future Work

- (Non-)compositional Semantics and Affect:
 - Investigate word fusion models
 - Additional information, modifiers, functionals: syntax, negations, modifiers
 - Temporal integration of sentence ratings
 - Multilinguality
- Cognitive models of semantics and affect

