Introducción a la Lógica y la Computación — Lógica proposicional Práctico 4: Más sobre derivación

1. Complete las siguientes derivaciones agregando las ramas que faltan (indicadas por puntos suspensivos:), las reglas utilizadas en cada paso, y los corchetes en las hipótesis canceladas. En ambas derivaciones se deben cancelar todas las hipótesis.

$$\frac{\varphi \wedge \neg \psi}{\varphi \quad \neg \varphi} : \frac{\neg \varphi}{\neg \varphi \vee \varphi} \neg (\neg \varphi \vee \varphi)$$

$$\frac{\varphi \vee \psi}{\bot} \quad \bot$$

$$\frac{\bot}{\neg (\varphi \vee \psi)}$$

$$\frac{\bot}{(\neg \varphi \wedge \neg \psi) \rightarrow (\neg (\varphi \vee \psi))}$$

$$\frac{\bot}{\varphi \vee \neg \varphi}$$

- 2. Encuentre derivaciones para:
 - a) $\{\neg \varphi \lor \psi\} \vdash \varphi \to \psi$. (Usando eliminación de \lor).
 - b) $\{\neg\varphi\vee\neg\psi\}\vdash\neg(\varphi\wedge\psi).$
 - c) $\{\varphi \to \psi\} \vdash \neg \varphi \lor \psi$. (Sugerencia: la última regla aplicada es RAA, no intente con $\vee I$. Está desarrollado en el apunte).
 - d) $\{\neg(\varphi \land \psi)\} \vdash \neg \varphi \lor \neg \psi$. (Misma idea de la derivación anterior).
- 3. En el Ejercicio 1 se muestra una derivación (incompleta) de $\varphi \vee \neg \varphi$ ("Principio del Tercero Excluido"). Una estrategia posible para demostrar una proposición γ , es utilizar una eliminación del V para subdividir la prueba en dos sub-derivaciones (también de γ), cada una de las cuales tiene una hipótesis más para utilizar (el lado izquierdo debe contener la prueba completa de Tercero Excluido):

$$\frac{\vdots}{\varphi \vee \neg \varphi} \quad \frac{\varphi_{1_{1}}}{\gamma} \quad \frac{[\neg \varphi]_{2}}{\vdots} \\ \frac{\vdots}{\gamma} \quad \frac{\vdots}{\gamma} \\ \vee E_{1,2}$$

Obtenga derivaciones para los Ejercicios 2c y 2d usando esta estrategia.

- 4. Encuentre derivaciones para:
 - $a) \vdash (\varphi \rightarrow \psi) \lor (\psi \rightarrow \varphi).$
 - $b) \vdash (\varphi \to \psi) \land (\neg \varphi \to \psi) \to \psi.$
- 5. Sean $\Delta, \Gamma \subseteq PROP$ y $\varphi \in PROP$. Demostrar las siguientes afirmaciones.
 - a) Si $\Delta \setminus \{\varphi\} \subseteq \Gamma$ entonces $\Delta \subseteq \Gamma \cup \{\varphi\}$.
 - b) Comprobar que si no se une $\{\varphi\}$ en el ítem anterior, la afirmación no es cierta.
 - c) Si $\Delta \subseteq \Gamma$ y $\Delta \vdash \varphi$, entonces $\Gamma \vdash \varphi$.
- 6. Demostrar, transformando derivaciones cuando sea necesario:
 - a) $\vdash \varphi$ implies $\vdash \psi \rightarrow \varphi$.
 - b) Si $\varphi \vdash \psi$ y $\neg \varphi \vdash \psi$ entonces $\vdash \psi$.
 - c) $\Gamma \cup \{\varphi\} \vdash \psi \text{ implica } \Gamma \setminus \{\varphi\} \vdash (\varphi \to \varphi) \land (\varphi \to \psi).$ d) $\Gamma \cup \{\varphi\} \vdash \psi \text{ implica } \Gamma \vdash \varphi \to (\psi \lor \neg \varphi).$
- 7. Demuestre los casos inductivos $(\vee I)$ y $(\vee E)$ de la prueba del Teorema de Corrección.