Порождение признаков с помощью локально-аппроксимирующих моделей

Абдурахмон Садиев

Московский физико-технический институт

Курс: Численные методы обучения по прецедентам (практика, В.В. Стрижов)/Группа 674, весна 2019

Цель работы

Задача

Построить систему локально-аппроксимирующих моделей, которая порождает пространство признаков.

Проблематика задачи

Использование значений сигнала в качестве признакового описания приводит к появлению моделей высокой сложности и низкого качества.

Предлагаемое решение

Требуется построить набор локально-аппроксимирующих моделей и выбрать наиболее адекватные.

Порождение признаков

Рис.: Сегментация. Порождение признаков.

$$\hat{f}=g\circ\varphi$$

Постановка задачи

Данные

Пусть задана выборка:

$$\mathfrak{D} = \{(\mathbf{s}_i, y_i) | i = 1, ..., m; \ \mathbf{s}_i = [\mathbf{s}_i(1), ..., \mathbf{s}_i(T)] \in \mathbf{S} \subset \mathbb{R}^{n \times m}\},$$

где $\mathbf{s}_i(t) \in \mathbb{R}^n$, $y_i \in Y$ - пространство ответов, $|Y| = K \in \mathbb{N}$, m - количество элементов в выборке.

Модель

Модель будет приближать отображение $f:\mathbf{S} o Y$ и будем искать ее в виде суперпозиции:

$$\hat{f}(\mathbf{s}) = g(\varphi(\mathbf{s}), \mathbf{w}) \tag{1}$$

где $\varphi: \mathbf{S} \to \Phi.$ $\Phi \subset \mathbb{R}^{
ho}$ - пространство признаков, \mathbf{w} - вектор параметров модели.

Постановка задачи оптимизации

Локально-аппроксимирующие модели

Модели $\varphi_j \in \mathcal{F}$, где $j \in \{1,\dots,r\}$, а r - количество моделей в наборе \mathcal{F} . Оптимальный набор моделей находится решением оптимизационной задачи

$$\mathcal{P}_{opt} = \underset{\mathcal{P} \subset \mathcal{F}}{\arg \min} \underset{\mathbf{w} \in \mathbb{R}^p}{\min} \mathcal{L}\left[g(\mathcal{P}, \mathbf{w})\right]$$
 (2)

Существующие решения

- Anastasia Motrenko and Vadim Strijov. Extracting fundamental periods to segment biomedicalsignals.IEEE J. Biomedical and Health Informatics, 20(6):1466–1476, 2016
- М. Е. Карасиков В. В. Стрижов. Классификация временных рядов в пространстве параметровпорождающих моделей. Информ. и ее примен., 10(4):121–131, 2016.
- М. П. Кузнецов Н. П. Ивкин. Алгоритм классификации временных рядов акселеромет-ра по комбинированному признаковому описанию.Машинное обучение и анализ данных.,1(11):1471—1483, 2015.

Решение

Нулевой этап

Сегментируем временной ряд s_i . Выбираем, как это сделать.

Первый этап

Для каждого сегмента временной ряда \mathbf{s}_i строим признаковое описание. Для этого есть множество разных алгоритмов.

Второй этап

После получения признакового описания сегментов временного ряда решаем задачу многоклассовой классификации.

Вычислительный эксперимент

Вычислительный эксперимент

Вычислительный эксперимент

Результаты

	all	Jogging	Upstairs	Standing	Walking	Downstairs	Sitting
Ir_all_feat_sampled_	0.946450	0.993762	0.965094	0.995514	0.970561	0.970071	0.997897
lr_fft_sampled_	0.764071	0.970702	0.880704	0.987734	0.830308	0.866055	0.992640
rf_all_feat_sampled_	0.969090	0.991869	0.976870	0.998528	0.987594	0.985211	0.998108
rf_fft_sampled_	0.848812	0.977641	0.911264	0.995865	0.894372	0.922128	0.996355
svm_all_feat_sampled_	0.964183	0.994883	0.978972	0.995654	0.984229	0.979253	0.995374
svm_fft_sampled_	0.851616	0.978902	0.909161	0.996355	0.903834	0.918343	0.996636

	all	Jogging	Upstairs	Standing	Walking	Downstairs	Sitting
Ir_expert_sampled	0.834653	0.981566	0.900610	0.989697	0.895984	0.912385	0.989066
lr_ssa_sampled_20	0.795612	0.986963	0.879933	0.990678	0.846569	0.897175	0.989907
rf_expert_sampled	0.945469	0.990187	0.966426	0.998528	0.966286	0.971473	0.998037
rf_ssa_sampled_20	0.931871	0.986753	0.961940	0.995234	0.957805	0.967057	0.994953
svm_expert_sampled	0.923460	0.989837	0.953739	0.991379	0.961730	0.959136	0.991098
svm_ssa_sampled_20	0.865003	0.991379	0.912666	0.992640	0.906077	0.935025	0.992220

Рис.: Результат работы

Заключение

Резюме

- Создали стандарт локально-аппроксимирующих моделей.
- Мы научились классифицировать виды деятельности человека по созданному набору признаков.
- Если сегментировать более разумно, то можно получить более высокие результаты.
- Классификации на наборе признаков, созданных разными моделями, имеет высокое качество.