Lecture 2: Basic concepts of computer networks

- Introduction of the course
- History of the Internet
- Concept of Computer Networks
- Some fundamental concepts: switching, connection oriented, connection less.

- Layer architecture
- OSI & TCP/IP reference model
- Addressing
- Domain name and conversion/resolution of domain name

Layer architecture

- Big work is divided into small tasks
- Assign some tasks to individuals
- Ex: Compagny A & B needs to discuss about a contract
 - Director of A,B: Identify the main points of the contracts & ask secretary to write down the contract.
 - Secretary:
 - Format the contract, put contract to envelope, write down the address of company B
 - Ask post office (VNPT) to send to company B
 - Post office:
 - Forward the envelop through several hub of post then to B

Example

 Parties at the same level performs similar tasks and use the same information communication methods.

Advantage of layering systems

- For the complex system: principle of "devide and conquer"
- Allow to determine the responsibility of each layer and the relationship amongst them
- Allow to maintain and upgrade easily the system
 - Changes in some parts do not influence the other parts.
 - Ex: upgrade a media lecture from CD lecture to DVD lecture without the need to change speakers.

Example of layers

Architecture with layers

Sound system

Player Speaker Amplifier

Architecture without layers

Cassette

All functionalities are put on the same box When we want to upgrade: Upgrade the whole box 8

Reference models

OSI TCP/IP

OSI - Open System Interconnection: 7 layers

The main functionality of each layers

- Physical layer: Transfering bits "over medium"
- Datalink layer: Transfering data between direct connected elements in the networks.
- Network layer: Routing, forwarding data from the source to the distant destination
- Transport: Transmitting data between applications
- Session: synchronization, check-point, recovery of transmission process
- Presentation: data encoding, compression, data conversion...
- Application: Supporting communications between distant parts of an application.

application
presentation
session
transport
network
data link
physical

Models OSI and TCP/IP

In the TCP/IP model of the Internet, the functionalities of 3 first layers are combined in a single layer.

Application layer	Application нттр, гтр, ѕмтр	
Presentation layer		
Session layer		
Transport layer	 TCP	UDP
Network layer	IP	
Datalink layer	Network Interface	
Physical layer	Physical	

Layering model of the Internet

Example of data transmission from a source to a destination through intermediate nodes (router)

Data Encapsulation

Data encapsulation is similar to a packaging process for a gift.

- Sender side: Add header containing the information necessary for package processing at that layer, then send packet to the lower layer.
- Receiver side: Process data in the package according to information in the header, remove the header and send data to the upper layer.

The protocols TCP/IP and encapsulation process

- At sender
 - Each layer add control information to the header of packet and transfer to the lower layer.
- At receiver
 - Each layer process packet according to the information of the header, then remove the corresponding header and deliver the remaining data to the upper layer.

SAP: Service Access Point

Dữ liệu - payload

TCP header Dữ liệu - payload

IP header TCP header Dữ liệu - payload

WDM header IP header TCP header Dữ liệu - payload

Ethernet header IP header TCP header Dữ liệu - payload

TCP header Dữ liệu - payload

Dữ liệu - payload

Summary: Advantage of layering architecture

- Layering architecture allows to divide the functionalities of networks into small components
- Layers are independent:
 - An upper layer makes use of the functionality of its right bellow layer but does not care about further layer.
- Extensibility/Scalability
- Flexible
 - It is possible to upgrade the communication system by upgrading the technology of some layers: Ex:
 - ADSL→FTTH
 - IPv4→IPv6
- Without layering:
 - Any change in the system requires changing the whole systems.

Connection oriented communication Connectionless

- Connection oriented communication:
 - Data is transmitted over a connection already setup
 - 3 phase of communication
 - Setup connection
 - Data transmission
 - Tear down connection
 - Connection setup allows to make sur that receiver is ready for the communication → more reliable
 - More control mechanism can be performed before the data transmission to enhance it QoS
- Conectionless
 - No connection is setup, there is only data transmission phase
 - Not reliable
 - "Best effort" QoS, sending data as quick as possible.

Unicast, Multicast, Broadcast protocols

- Unicast protocol: control data to send to one destination node
- Multicast protocol: control data to send to multiple destination nodes
- Broadcast protocol: control data to send to all nodes

Identification in the Internet

MAC Address
IP Address
Port number

- Identification allows identify a person or an object
 - Name
 - Nguyen Thuc Hai
 - Address
 - 1 Dai Co Viet, Hai Ba Trung, Ha Noi
 - Telephone number
 - 8680896
 - Email
 - hai--xxx@it.hut.edu.vn

Identification

- Identification usually has hierarchical structure
 - Allow to manage efficiently a large addressing space
 - Scalability
- Example of hierarchy
 - Address

1 Dai Co Viet street, Hai Ba Trung district, Ha Noi

Telephone number

+84-(4) 868-08-96

Hanoi

Identification in the Internet and the relationship between layers

application

TCP/UDP

IP

data link

physical

Port Number, e.g. Port 80

IP address, e.g. 203.12.15.165

Physical address / MAC address e.g. 00:11:24:79:8e:82

- Physical address/ MAC address
 - Using in Datalink layer
 - Fixed on NIC (Network Interface Card)
 - Used for identifying machine in broadcast network segment.

HEX 00:11:24:79:8e:82

00000000 00010001 00100100 01111001 10001110 10000010

OUI

Assigned by manufacture

OUI (Organizationally Unique Identifier): Each Manufacture have an some OUI unique

IP address

- Used in IP-Internet Protocol (network layer)
- Value depends on the networks. Each network interface card should be assigned an IP address.
- Used for identifying a machine in an IP network, example:
 - 133.113.215.10 (ipv4)
 - 2001:200:0:8803::53 (ipv6)

- Port number
 - On each machine, there may be several applications running.
 - Applications of the same machine are distinguished by port number.
 - An application instance in the internet is identified by the IP address of the host and port number on which it runs
 - Similar to the address of a room in a building
 - Building address: B1 Building, 1 Dai Co Viet, Ha Noi => similar to IP address
 - Room number 325 => Similar to port number
- E.g. HTTP runs on port 80, FTP runs on ports 20, 21 ...

Mapping to address

Domain name
Domain name resolution
nslookup
arp

- Domain Name
 (FQDN: Fully Qualified Domain Name)
 - Domain name is the name of a computer or a network using alphabet and numbers
 - www.keio.ac.jp
 - www.hedspi.hut.edu.vn
 - .hut.edu.vn

Domain name and IP address

- For sending data to a host/machine, the host must be identified
 - By an IP address
 - By a domain name (easy to be memorized by human)
- name
 - Variable length
 - easy to be memorized by human
 - Nothing to do with the location of the host
- IP address
 - Fixed length (32 bits or 128 bits)
 - Computer process address more easily
 - Used for routing purpose

203.162.7.194

www.hedspi.hut.edu.vn

www.hust.edu.vn

202.47.142.40

Conversion/resolution of address

Domain name server

- Computer prefers numbers
- Human prefers names

Need address conversion

Webserver of www.hust.edu.vn 202.47.142.40

If user knows the IP address of the webserver, he can access 44 via IP address from Browser

- Concept
 - Mechanism finding address IP from a domain name and vice versa.
 - There is no mathematical formula for this conversion.
- Domain name server (DNS)
 - Store the mapping of IP address and Domain name of the same host in a database
 - Answer requests of resolution of IP or domain name from users.
 - Widely used in the Internet

Example

Nslookup tool on Windows, Linux

- nslookup www.hedspi.hut.edu.vn
- Conversion "name⇔ IP address"

C:\Documents and Settings\hongson>nslookup www.hedspi.hut.edu.vn

Server:

Address: 192.168.1.1

Non-authoritative answer:

Name: www.hedspi.hut.edu.vn

Address: 202.47.142.140

C:\Documents and Settings\hongson>

ARP Conversion of Mac address and IP address

- Address Resolution Protocol
- MAC and IP are both used for identifying a NIC.
- ARP allows to find MAC address from IP address

Example: ARP table (on Windows)

C:\Documents and Settings\hongson>arp -a

IP address

Interface: 192.168.1.34 --- 0x2
Internet Address Physical Address Type
192.168.1.1 00-02-cf-75-a1-68 dynamic
192.168.1.33 08-00-1F-B2-A1-A3 dynamic

C:\Documents and Settings\hongson>

MAC address

MAC address

Summary

- Layer architecture
 - Why layering
 - Model TCP/IP vs. Model OSI
 - Encapsulation, PDU. SAP
- Addressing on Internet
 - Adress IP, MAC, domain name, port
 - Address conversion

Quizz

