

BK3211

Specifications

Beken Internal Data — Signed NDA Required for Distribution

Single Chip for Bluetooth

Beken Corporation
Suite 3A, No.1278 Keyuan Road, Zhangjiang High Tech Park, Pudong New District,
Shanghai 201203, China

PHONE: (86)21 5108 6811 FAX: (86)21 6087 1277

This document contains information that may be proprietary to, and/or secrets of, Beken Corporation. The contents of this document should not be disclosed outside the companies without specific written permission.

 $Disclaimer: Descriptions\ of\ specific\ implementation\ are\ for\ illustrative\ purpose\ only,\ actual\ hardware\ implementation\ may\ differ.$

Contents

1.	General Description	3
	1.1. Features	
	1.1.1. Radio Features	
	1.1.2. Baseband Features	
	1.1.3. Device Features	
	1.2. Applications	
	1.2. Applications	
2.	Pin Definition	4
3.	1	6
	3.1. Block Diagram	6
	511 Book Buguni	
4.	Electrical Characteristics	7
	4.1. Absolute Maximum Ratings	
	4.2. Recommended Operating Conditions	7
	4.3. Typical Power Consumption	
	4.4. RX AC Characteristics	7
	4.4.1. Basic Data Rate mode RX AC Characteristics	
	4.4.2. Enhanced Data Rate mode RX AC Characteristics	
	4.5. TX AC Characteristics	
	4.5.1. Basic Data Rate mode TX AC Characteristics	
	4.5.2. Enhanced Data Rate mode TX AC Characteristics	
5.	Application Schematic	11
6.	Package Information	12
0.	1 ackage information	12
7.	Solder Reflow Profile	13
	7.1. RoHS Compliant	
	7.2. ESD Sensitivity	
		1 J

1. General Description

The BK3211 chip is a highly integrated singlechip Bluetooth device. It integrates the highperformance transceiver and rich features baseband processor, which is compliant with Bluetooth 2.1 + EDR specification.

The BK3211 is available in 32-pin 4x4 mm QFN packages.

1.1. Features

1.1.1. Radio Features

- On-chip TX/RX switch
- Polar modulation transmitter architecture with very low power consumption and high TX performance
- Near-Zero IF receiver architecture with -91dBm sensitivity
- Support for class 1, class 2 and class 3 transmitting power requirement
- Fully integrated synthesizer without external loop filter component

1.1.2. Baseband Features

- Fully compliant with Bluetooth 2.1 + EDR specification
- Support Bluetooth Piconet and Scatternet
- Support up to 3Mbps high speed UART interface
- Support Sniff mode, hold mode and park mode
- Support A-law, μ-law and CVSD digitize audio CODEC in PCM interface
- Provide I2C interface

1.1.3. Device Features

- Enhanced support for WLAN/BT Coexistence
- Standby and sleep modes to minimize power consumption
- Support share handset system reference clock

1.2. Applications

- Mobile handset
- MP3, MP4 player and PMP
- Other portable devices

2. Pin Definition

Figure 1 BK3211 PIN Definition Diagram

Table 1 Pin Definition

Package Pin#	Name	Description
1	UART_RXD	UART RX data input
2	PCM_SDO	PCM data output
3	PCM_SDI	PCM data input
4	PCM_CLK	PCM data clock
5	PCM_SYNC	PCM data sync
6	VIO	IO power supply
7	VDD18	1.8V voltage output, connected with 1uF decoupling cap.
8	SW	Internal buck regulator output
9	VBAT	VBAT LDO input, connected with 1uF decoupling cap.
10	CLK_32K	32.768 kHz clock input

BK3211 Datasheet

v 1.2

11	I2C_SCL	I2C Clock signal
12	I2C_SDA	I2C Data signal
13	CLK_EN	Request source clock active
14	XI	Crystal input or oscillator input.
15	XO	Crystal output.
16	LDO_EN	System power on/off control
17	NC	Not connect
18	NC	Not connect
19	RFP	RF input and output
20	GPIO5	General purpose input/output
21	GPIO2	General purpose input/output or Bluetooth Priority signal
22	NC	Not connect
23	NC	Not connect
24	NC	Not connect
25	NC	Not connect
26	BT_WAKE	To wakeup BT. Input from host.
27	NC	Not connect
28	NC	Not connect
29	VDDD12	Power supply for digital
30	GPIO4	General purpose input/output or WLAN Active signal
31	HOST_WAKE	To wakeup host. Output to host.
32	UART_TXD	UART TX data output

3. Functional Description

3.1. Block Diagram

Figure 2 BK3211 Block Diagram

As shown in the **Figure 2**, the BK3211 integrates the Bluetooth transceiver, Bluetooth baseband controller and MCU etc. The Bluetooth transceiver integrates the low-IF single conversion RX and Polar loop modulation TX. The Bluetooth baseband controller carries out the baseband protocols and other low-level link routines such as modulation/demodulation, packets processing, bit stream processing, frequency hopping and so on.

4. Electrical Characteristics

4.1. Absolute Maximum Ratings

Table 2 Absolute Maximum Ratings

Parameter	Description	MIN	TYP	MAX	Unit
VBAT	Battery Regulator Supply Voltage			4.8	V
P_{RX}	RX Input Power	-	10	-	dBm
T _{STR} Storage Temperature Range		-40	-	150	$^{\circ}\!\mathbb{C}$
Vcc	Input Voltage	-0.3	-	3.6	V

4.2. Recommended Operating Conditions

Table 3 Recommended Operating Conditions

Parameter	Description	MIN	TYP	MAX	Unit
VBAT	Battery Regulator Supply Voltage	3.3	4	4.2	V
T_{OPR}	Operation Temperature Range	-20	-	60	$^{\circ}\!\mathbb{C}$
V_{IL}	CMOS Low Level Input Voltage	0	-	0.3*VIO	V
V_{IH}	CMOS High Level Input Voltage	0.7*VIO	-	VIO	V
V_{TH}	CMOS Threshold Voltage		0.5*VIO		V

Notes:

1. VIO=1.8~3.3V

4.3. Typical Power Consumption

Table 4 Typical Power Consumption

State	Description	MIN	TYP	MAX	Unit
Shut Down			8		uA
Sleep			600		uA
Only HCI Active			5		mA
DH1/DM1			42		mA
DH3/DM3			46		mA
DH5/DM5			47		mA

4.4. RX AC Characteristics

4.4.1. Basic Data Rate mode RX AC Characteristics

Table 5 Basic Data Rate mode RX AC Characteristics

(VBAT = 3.6 V, $T_{OPR} = 27 \, \text{C}$, unless otherwise specified)

Parameter	Condition	MIN	TYP	MAX	Unit
Input Frequency	2402~2480	2402	-	2480	MHz
RXSENS	BER=0.001	-	-89	-	dBm

BK3211 Datasheet

Bluetooth

Maximum Received Signal	BER=0.001	0	-	-	dBm
C/ICO		-	10	-	dB
C/IIST	F = F0 + 1MHz	-	0	-	dB
	F = F0 - 1MHz	-	0	-	dB
C/I2ND	F = F0 + 2MHz	-	-15	-	dB
	F = F0 - 2MHz		-24	-	dB
C/I3RD	F = F0 + 3MHz	-	-30	-	dB
CISKD	F = F0 - 3MHz	-	-40	-	dB
C/I Image Channel	F = Fimage	-	-15	1	dB
	30MHz-2000MHz	-10	-	-	dBm
Out-of-Band Blocking	2000MHz-2400MHz	-27	-	-	dBm
Performance	2500MHz-3000MHz	-27	-	-	dBm
	3000MHz-12.5GHz	-10	-	-	dBm
Intermodulation		-	-37	_	dBm

4.4.2. Enhanced Data Rate mode RX AC Characteristics

Table 6 Enhanced Data Rate mode RX AC Characteristics

 $(VBAT = 3.6 \text{ V}, T_{OPR} = 27 \text{ C}, \text{ unless otherwise specified})$

Parameter	Condition	MIN	TYP	MAX	Unit
π/4 DQPSK					
RXSENS	BER=0.0001	-	-91	-	dBm
BER Floor	BER=0.00001	-	-85	-	dBm
Maximum Received Signal	BER=0.001	0	-	-	dBm
C/ICO		-	11	-	dB
C/I1ST	F = F0 + 1MHz	-	-11	-	dB
CHSI	F = F0 - 1MHz	-	-11	-	dB
C/I2ND	F = F0 + 2MHz	-	-15	-	dB
C/12ND	F = F0 - 2MHz	-	-27	-	dB
C/IODD	F = F0 + 3MHz	-	-32	-	dB
C/I3RD	F = F0 - 3MHz	-	-40	-	dB
C/I Image Channel	$F = F_{image}$	-	0	-	dB
8DPSK					
RXSENS	BER=0.0001	-	-83	-	dBm
BER Floor	BER=0.00001	-	-78	-	dBm
Maximum Received Signal	BER=0.001	0	-	-	dBm
C/ICO		-	20	-	dB
C/I1ST	F = F0 + 1MHz	-	-5	-	dB
CHSI	F = F0 - 1MHz	-	-5	-	dB
C/I2ND	F = F0 + 2MHz	-	-10	-	dB
C/12ND	F = F0 - 2MHz	-	-22	-	dB
C/I2DD	F = F0 + 3MHz	-	-30	-	dB
C/I3RD	F = F0 - 3MHz	-	-30	-	dB
C/I Image Channel	$F = F_{image}$	-	4	-	dB

4.5. TX AC Characteristics

4.5.1. Basic Data Rate mode TX AC Characteristics

Table 7 Basic Data Rate mode TX AC Characteristics

(VBAT = 3.6 V, $T_{OPR} = 27 \, \text{C}$, unless otherwise specified)

Parameter	Condition	MIN	TYP	MAX	Unit
Maximum RF Transmit Power		-	8	9	dBm
RF Power Control Range		-	15	-	dB
20dB Band Width		-	0.9	-	MHz
ACP1ST	F = F0 + 1MHz	-	-	-	dBm
ACPIST	F = F0 - 1MHz	-		-	dBm
A CDAND	F = F0 + 2MHz	-	-30	-	dBm
ACP2ND	F = F0 - 2MHz	-	-30	-	dBm
A CID 2DD	$F = F0 + \ge 3MHz$	-	-40	-	dBm
ACP≥3RD	$F = F0 - \ge 3MHz$	-	-40	-	dBm
	30MHz to 1GHz, Operating Mode	-	-36	-	dBm
Out-of-Band Spurious	1GHz to 12.75GHz, Operating Mode	-	-30	-	dBm
Emission	1.8GHz to 1.9GHz, 5.15GHz to 5.3GHz	-	-47	-	dBm
Δflavg Maximum Modulation		1	160	1	KHz
Δf2max Minimum Modulation		ı	120	ı	KHz
∆f2avg/∆f1avg		-	0.9	-	-
Initial Carrier Frequency Tolerance		-	5	-	KHz
Drift Rate		-	7	-	KHz/50us
Drift (1 slot packet)		-	8	-	KHz
Drift (3 slot packet)		-	8	-	KHz
Drift (5 slot packet)		-	10	-	KHz

4.5.2. Enhanced Data Rate mode TX AC Characteristics

Table 8 Enhanced Data Rate mode TX AC Characteristics

(VBAT = 3.6 V, $T_{OPR} = 27 \, \text{C}$, unless otherwise specified)

Parameter	Condition	MIN	TYP	MAX	Unit
Maximum RF Transmit Power		-	4	6	dBm
Relative Transmit Power		-	-4	-	dB
$\pi/4$ DQPSK Max Carrier Frequency Stability w_0		-	2	-	kHz
π/4 DQPSK Max Carrier Frequency Stability w _i		-	3	-	kHz
$\pi/4$ DQPSK Max Carrier Frequency Stability $ w_i+w_0 $		-	1.5	-	kHz

BK3211 Datasheet

Bluetooth

8DPSK Max Carrier Frequency Stability w ₀		-	2	-	kHz
8DPSK Max Carrier Frequency Stability w _i		-	3	-	kHz
8DPSK Max Carrier Frequency Stability w _i + w ₀		-	1.5	-	kHz
π/4 DQPSK Modulation Accuracy	RMS DEVM	-	7	-	%
	99% DEVM	-	-	20	%
	Peak DEVM	-	15	-	%
8DPSK Modulation Accuracy	RMS DEVM	-	9	-	%
	99% DEVM	-	-	20	%
	Peak DEVM	-	17	-	%
ACP1ST	F = F0 + 1MHz	-	-14	-	dBm
	F = F0 - 1MHz	-	-13	-	dBm
ACP2ND	F = F0 + 2MHz	-	-20	-	dBm
	F = F0 - 2MHz	-	-20		dBm
ACP>3RD	$F = F0 + \ge 3MHz$	-	-40	-	dBm
ACr≥3ND	$F = F0 - \ge 3MHz$	-	-40	-	dBm
EDR Differential Phase Coding		-	100	-	%

5. Application Schematic

The compatible design for BK3211 and BK3511, which inside the square brackets are BK3511 Pin names or component values $\frac{1}{2}$

Figure 3 BK3211 Application Diagram

The detail schematic design please refers to the hardware design reference.

6. Package Information

QFNWB4×4-32L-A (PO. 40TO. 75/O. 85) PACKAGE OUTLINE DIMENSIONS

Figure 4 QFN 4x4 32 Pin Package diagram

Table 9 QFN 4x4 32 Pin Package dimensions

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
Α	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035
A1	0.000	0.050	0.000	0.002
A3	0.203REF.		0.008REF.	
D	3.924	4.076	0.154	0.160
E	3.924	4.076	0.154	0.160
D1	2.700	2.900	0.106	0.114
E1	2.700	2.900	0.106	0.114
k	0.200MIN.		0.008MIN.	
b	0.150	0.250	0.006	0.010
е	0.400TYP.		0.016	STYP.
L	0.224	0.376	0.009	0.015

7. Solder Reflow Profile

Figure 5 Classification Reflow Profile

Table 10 Solder Reflow Profile

Profile Feature		Specification
Average Ramp-Up Ra	te (tsmax to tp)	3 ℃/second max.
	Temperature Min (Tsmin)	150 ℃
Pre_heat	Temperature Max (Tsmax)	200 ℃
	Time (ts)	60-180 seconds
Time Maintained	Temperature (TL)	217 ℃
above	Time (tL)	60-150 seconds
Peak/Classification Te	emperature (Tp)	260 ℃
Time within 5 °C of A	ctual PeakTemperature (tp)	20-40 seconds
Ramp-Down Rate 6		6 ℃/second max.
Time 25 °C to Peak Te	emperature 8	8 minutes max.

7.1. RoHS Compliant

The product does not contain lead, mercury, cadmium, hexavalent chromium, PBB&PBDE content in accordance with directive 2002/95/EC(RoHS).

7.2. ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electricity. Proper ESD techniques should be used when handling these devices.

Revision History

Rev.	Date	Author(s)	Remark
1.0	5/7/2012	YMHUANG	Initial release
1.1	05/24/2012	LFBAO	Updated application schematic; updated electrical characteristics, Specially change the serial resistance from 0 to 1K at 32.768K clock path
1.2	06/19/2012	YMHUANG	Updated application schematic to improve the GSM suppression