DM10 - Basket-ball

Exercice 1 - Lancer au basket-ball

On s'intéresse à la trajectoire d'un ballon de basket-ball lors d'un lancer. Une fois lancé, le ballon assimilé à son centre de masse M est en chute libre : son accélération s'écrit $\overrightarrow{a} = -g\overrightarrow{e_z}$, où $\overrightarrow{e_z}$ est un vecteur unitaire orienté verticalement vers le haut. Le ballon est lancé à l'instant t=0 à la position (x=0,y=0,z=h) avec une vitesse initiale $\overrightarrow{v_0}$ formant un angle $\alpha \in [0,\frac{\pi}{2}]$ avec l'horizontale. On suppose le vecteur $\overrightarrow{v_0}$ contenu dans le plan $(O,\overrightarrow{e_x},\overrightarrow{e_z})$.

Équation de la trajectoire

- 1. Exprimer le vecteur $\overrightarrow{v_0}$ en fonction de $v_0 = ||\overrightarrow{v_0}||$, α , $\overrightarrow{e_x}$ et $\overrightarrow{e_z}$.
- 2. Établir les expressions des vecteurs vitesse $\overrightarrow{v}(t)$ et position $\overrightarrow{OM}(t)$ pour t > 0. Justifier que le mouvement est plan et contenu dans le plan $(O, \overrightarrow{e_x}, \overrightarrow{e_z})$.
- 3. Exprimer les équations horaires du mouvement.
- 4. Déterminer l'équation z(x) de la trajectoire.

Analyse de la trajectoire

5. Montrer que l'abscisse x_C pour laquelle z=0 s'exprime

$$x_C = \frac{v_0^2}{g} \left(\frac{\sin(2\alpha)}{2} + \sqrt{\left(\frac{\sin(2\alpha)}{2}\right)^2 + \frac{2gh}{v_0^2} \cos^2 \alpha} \right).$$

- **6.** Déterminer l'altitude maximale atteinte z_S .
- 7. On fixe v_0 et h. Intuitivement, quelle valeur de α permet d'atteindre la plus haute altitude z_S ? Retrouver ce résultat en exploitant l'expression précédemment obtenue.
- 8. Dans le cas où h=0, déterminer la valeur de α pour laquelle x_C est maximale.
- 9. On conserve la même valeur de α que dans la question précédente. Pour un lancer au basket-ball (vitesse initiale de l'ordre de $10\,\mathrm{m\cdot s^{-1}},\ g=9.8\,\mathrm{m\cdot s^{-2}})$, la taille du joueur influe-t-elle beaucoup sur x_C ?

Exercice 2 - Conjonction de planètes

Deux planètes assimilées à deux points matériels M_A et M_B décrivent des orbites circulaires de même centre O dans un même plan, en tournant dans le même sens. Leurs mouvements sont circulaires uniformes, de périodes respectives T_A et T_B .

- 1. Déterminer la durée séparant deux conjonctions de M_A et M_B , définies par l'alignement des points O, M_A et M_B , dans cet ordre.
- 2. Calculer cette durée pour Vénus et la Terre, de périodes respectives $T_V=225\,\mathrm{jours}$ et $T_T=365\,\mathrm{jours}$.