

General information

Designation

ABS (injection molding, platable), Acrylonitrile Butadiene Styrene (Injection Molding, platable)

Tradenames

Abistir, Abscom, Absolac, Abstron, Accucomp, Alcom, Allen, Altech, Anjacom, Ashlene, Astalac, Badalac, Bulksam, Certene, Cevian, Cevian-V, Cheng, Claradex, Clariant, Colorrx, Cycolac, Delta, Diamond, Dynacom, Edgetek, Electrafil, Elix, Encom, Epitec, Estadiene, Evosource, Excelloy, Ghaed, Hival, Hylac, Isopak, Jackdaw, Jamplast, Kaneka, Kralastic, Kumho, Kumhosunny, LNP Stat-Loy, Lustran, Magnum, Malecca, Micholac, Neftekhim, Next, Next Signature, Nexus, Nilac, Novakral, Novalloy-E, Novodur, Omnitech, Permastat, Plaslube, Polimaxx, Polyabs, Poly-Elek, Polylac, Polylan, Polyman, Ponacom, Pryme, Radici, Ramshine, Retelan, Ronfalin, Rotec, Royalite, Santac, Sattler, Saxalac, Shinko-Lac, Sicoflex, Sindustris, Sinkral, Spartech, Starex, Stylac, Tairilac, Taitalac, Tarodur, Techno, Tenogel, Terez, Terluran, Toyolac, Trilac, Tynab, Tyne, Veroplas, Zgpc

Typical uses

Safety helmets, camper tops, automotive instrument panels and other interior components, pipe fittings, home-security devices and housings for small appliances, communications equipment, business machines, plumbing hardware, automobile grilles, wheel covers, mirror housings, refrigerator liners, luggage shells, tote trays, mower shrouds, boat hulls, large components for recreational vehicles, weather seals, glass beading, refrigerator breaker strips, conduit, pipe for drain-waste-vent (dwv) systems.

Composition overview

Compositional summary

Compositional summary								
Block terpolymer of acrylonitrile (15-35%), butadi	iene (5-30%), and S	Styre	ene (40-6	0%).				
Material family		Plastic (thermoplastic, amorphous)						
Base material		ABS (Acrylonitrile butadiene styrene)						
Polymer code		ABS						
Composition detail (polymers and nat	ural materials)							
Polymer		1	100			%		
Price								
Price		* 1	1.56	-	1.83	CHF/kg		
Price per unit volume		* 1	1.63e3	-	1.96e3	CHF/m^3		
Physical properties								
Density		1	1.04e3	-	1.07e3	kg/m^3		
Mechanical properties								
Young's modulus		2	2.21	-	2.62	GPa		
Specific stiffness		2	2.09	-	2.49	MN.m/kg		
Yield strength (elastic limit)		4	12	-	46	MPa		
Tensile strength		4	12	-	46	MPa		
Specific strength		3	39.7	-	43.7	kN.m/kg		
Elongation		* 1	15.3	-	20.9	% strain		
True plastic stress-strain		3	30.3			MPa		
Paramètres: Strain = 0.1% strain, Temperature = 23°C								

Compressive modulus	* 2.21	-	2.62	GPa
Compressive strength	* 52.8	-	58.2	MPa
Flexural modulus	2.34	-	2.68	GPa
Flexural strength (modulus of rupture)	72.4	-	79.3	MPa
Shear modulus	* 0.79	-	0.937	GPa
Bulk modulus	* 3.86	-	4.06	GPa
Poisson's ratio	* 0.391	-	0.407	
Shape factor	5.6			
Hardness - Vickers	* 13	-	15	HV
Hardness - Rockwell M	* 66	-	72	
Hardness - Rockwell R	103	-	109	
Elastic stored energy (springs)	356	-	453	kJ/m^3
Fatigue strength at 10^7 cycles	* 14	-	18.2	MPa

Impact & fracture properties

Fracture toughness	1.9	-	2.1	MPa.m^0.5
Toughness (G)	1.46	-	1.88	kJ/m^2
Impact strength, notched 23 °C	10.7	-	23.1	kJ/m^2
Impact strength, notched -30 °C	4.88	-	10.9	kJ/m^2
Impact strength, unnotched 23 °C	110	-	132	kJ/m^2
Impact strength, unnotched -30 °C	64.3	-	77.2	kJ/m^2

Thermal properties

Melting point	210	-	250	°C
Glass temperature	100	-	110	°C
Heat deflection temperature 0.45MPa	102	-	106	°C
Heat deflection temperature 1.8MPa	88	-	106	°C
Vicat softening point	91	-	111	°C
Maximum service temperature	63	-	77	°C
Minimum service temperature	-45	-	-35	°C
Thermal conductivity	* 0.254	-	0.264	W/m.°C
Specific heat capacity	* 1.68e3	-	1.75e3	J/kg.°C

Weak alkalis

Strong alkalis

Flammability

Oxygen index

Organic solvents

Oxidation at 500C

UV radiation (sunlight)

ABS (injection molding, platable)

GRANTA EDUPACK							
Thermal expansion coefficient	84.6	-	95.4	µstrain/°C			
Thermal shock resistance	182	-	227	°C			
Thermal distortion resistance	* 0.00271	-	0.00307	MW/m			
Electrical properties							
Electrical resistivity	3.3e21	-	3e22	µohm.cm			
Electrical conductivity	5.75e-21	-	5.22e-20	%IACS			
Dielectric constant (relative permittivity)	2.8	-	3.2				
Dissipation factor (dielectric loss tangent)	0.003	-	0.006				
Dielectric strength (dielectric breakdown)	16.5	-	21.7	MV/m			
Comparative tracking index	400	-	600	V			
Magnetic properties							
Magnetic type	Non-magr	netic					
Optical, aesthetic and acoustic properties	1						
Transparency	Opaque						
Acoustic velocity	1.45e3	-	1.58e3	m/s			
Mechanical loss coefficient (tan delta)	* 0.0153	-	0.0181				
Critical materials risk							
Contains >5wt% critical elements?	No						
Absorption & permeability							
Water absorption @ 24 hrs	* 0.2	-	0.45	%			
Water vapor transmission	2.04	-	3.2	g.mm/m².day			
Permeability (O2)	47.3	-	78.5	cm ³ .mm/m ² .day.atr			
Processing properties							
Polymer injection molding	Excellent	Excellent					
Polymer extrusion	Acceptabl						
Polymer thermoforming	Excellent						
Linear mold shrinkage	0.5	-	0.8	%			
Melt temperature	137	-	260	°C			
Mold temperature	50	-	70	°C			
Molding pressure range	55	-	172	MPa			
Durability							
Water (fresh)	Excellent						
Water (salt)	Excellent						
Weak acids	Excellent						
Strong acids	Limited us	е					

Acceptable

Unacceptable

Unacceptable

Highly flammable

20

%

Excellent

Poor

18

GRANTA EDUPACE

Primary production energy, CO2 and water				
Embodied energy, primary production (virgin grade)	91.5	-	101	MJ/kg
Sources				
92.2 MJ/kg (PlasticsEurope, 2017); 100 MJ/kg (Ecoinvent v3.7.1)	* 00.0		00.2	NA I/Ico
Embodied energy, primary production (typical grade)	* 88.9	-	98.3	MJ/kg
CO2 footprint, primary production (virgin grade) Sources	3.51	-	3.87	kg/kg
3.32 kg/kg (Kemna et al. 2005); 3.1 kg/kg (PlasticsEurope, 2017); 4.65 kg	/kg (Ecoinvent v3.7.1)			
CO2 footprint, primary production (typical grade)	* 3.41	-	3.77	kg/kg
Water usage	* 167	-	185	l/kg
Processing energy, CO2 footprint & water				
Polymer extrusion energy	* 5.81	-	6.42	MJ/kg
Polymer extrusion CO2	* 0.436	-	0.481	kg/kg
Polymer extrusion water	* 4.82	-	7.23	l/kg
Polymer molding energy	* 18.3	-	20.2	MJ/kg
Polymer molding CO2	* 1.37	-	1.52	kg/kg
Polymer molding water	* 12.4	-	18.6	l/kg
Coarse machining energy (per unit wt removed)	* 0.974	-	1.08	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.0731	-	0.0808	kg/kg
Fine machining energy (per unit wt removed)	* 5.47	-	6.04	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.41	-	0.453	kg/kg
Grinding energy (per unit wt removed)	* 10.5	-	11.6	MJ/kg
Grinding CO2 (per unit wt removed)	* 0.784	-	0.867	kg/kg
Recycling and end of life				
Recycle	✓			
Embodied energy, recycling	* 30.7	-	34	MJ/kg
CO2 footprint, recycling	* 1.17	-	1.29	kg/kg
Recycle fraction in current supply	3.8	-	4.2	%
Downcycle	√			
Combust for energy recovery	√			
Heat of combustion (net)	* 37.6	-	39.5	MJ/kg
Combustion CO2	* 3.06	-	3.22	kg/kg
Landfill	√			
Biodegrade	×			

Notes

Warning

HDT 1.8 covers unannealed to annealed samples. HDT 0.45 is for annealed

Liens

ProcessUniverse	
Producers	
Reference	
Shape	