# 1 Chapter 1

## 1.1 Subsection 5

1. Show that

$$\langle f, g \rangle = \sum_{k=1}^{\infty} \bar{c}_k d_k$$

$$\langle f, g \rangle = \int_{a}^{b} \bar{f}(x)g(x)\rho(x)dx$$

Since we have that  $f(x) = \sum_{k=1}^{\infty} u_k(x)c_k$  we can substitute and get:

$$= \int_a^b \sum_{k=1}^{\infty} u_k(x) c_k g(x) \rho(x) dx = \sum_{k=1}^{\infty} \int_a^b \bar{u}_k(x) \bar{c}_k g(x) \rho(x) dx$$
$$= \sum_{k=1}^{\infty} \int_a^b \bar{u}_k(x) \bar{c}_k g(x) \rho(x) dx = \sum_{k=1}^{\infty} \bar{c}_k \int_a^b \bar{u}_k(x) g(x) \rho(x) dx = \sum_{k=1}^{\infty} \bar{c}_k d_k$$

2.

$$Tf(\omega, t) = \int_{-\infty}^{\infty} \bar{g}(x - t)e^{-i\omega x}f(x)dx$$

$$\langle h_1, h_2 \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \bar{h}_1(\omega, t) h_2(\omega, t) d\omega dt$$

Find a formula for:  $\langle Tf_1, Tf_2 \rangle$  in terms of

$$\int_{-\infty}^{\infty} \bar{f}_1 f_2 \mathrm{d}x$$

$$\langle Tf_1, Tf_2 \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \overline{Tf_1} Tf_2 d\omega dt =$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \overline{\left[ \int_{-\infty}^{\infty} \overline{g}(x-t)e^{-i\omega x} f_1(x) dx \right]} \left[ \int_{-\infty}^{\infty} \overline{g}(x-t)e^{-i\omega x} f_2(x) dx \right] d\omega dt$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \overline{g}(x-t)e^{-i\omega x} f_1(x) \overline{g}(y-t)e^{-i\omega y} f_2(y) dx dy d\omega dt$$

We now return to Calc III and need to do a replacment of variables:

$$u = x - y, \quad v = y$$
  
 $x = u + v, \quad y = y$  which has deterimnate:  $J = \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = 1$ 

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \overline{g(u+v-t)f_1(u+v)} \overline{g}(v-t)f_2(v) \int_{-\infty}^{\infty} e^{i\omega u} d\omega du dv dt$$

$$\int_{-\infty}^{\infty} e^{i\omega u} d\omega = \delta(u)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \overline{g(u+v-t)f_1(u+v)} \overline{g}(v-t)f_2(v)\delta(u) du dv dt$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \overline{g(v-t)f_1(v)} \overline{g}(v-t)f_2(v) dv dt = \int_{-\infty}^{\infty} \overline{f_1(v)f_2(v)} \int_{-\infty}^{\infty} g(v-t) \overline{g}(v-t) dt dv$$

$$= \int_{-\infty}^{\infty} \overline{f_1(v)f_2(v)} |g|^2 dv = |g|^2 \int_{-\infty}^{\infty} \overline{f_1f_2} dx = |g|^2 \langle f_1, f_2 \rangle$$

3. 1.5.3

## 2 Chapter 2

## 2.1 Subsection 1

4. 2.1.1 Suppose  $f(x) = f(x + 2\pi) \ \forall x$  is periodic with period  $2\pi$ . Show

$$\int_{a}^{2\pi+a} f(x) dx = \int_{0}^{2\pi} f(x) dx, \ \forall a \in \mathbb{R}$$

As all great math proofs, no words are needed just equalities and beautiful integrals. Let a be given then:

$$\int_{a}^{2\pi+a} f(x)dx = \int_{a}^{2\pi} f(x)dx + \int_{2\pi}^{2\pi+a} f(x)dx = \int_{a}^{2\pi} f(x)dx + \int_{0}^{a} f(x+2\pi)dx$$
$$= \int_{a}^{2\pi} f(x)dx + \int_{0}^{a} f(x)dx = \int_{0}^{2\pi} f(x)dx$$

#### 5. 2.1.2 Dirichelet Basis

$$W_{2N+1} = \operatorname{span}\left\{\frac{1}{\sqrt{2\pi}}e^{ikt}\right\}_{k=\pm N}$$

Consider the set

$$g_k(t) = \frac{2\pi}{2N+1} \delta_N(t-x_k) = \frac{1}{2N+1} \sum_{n=-N}^{N} e^{in(t-k\pi/(N+\frac{1}{2}))}$$

Show that

- A)  $B = \{g_k, k \in 1, 2, \dots\}$  is linearly independent.
- B) B spans  $W_{2N+1}$

- A) It suffices to notice that  $g_k(x_l) = \delta_{kl}$ . Thus we can see for any given k that  $g_k$  is independent of all the other's as  $\sum_{k'\neq k} \lambda_{k'} g_{k'}(x_k) = 0$ . Thus we can not have a non trivial linear relationship between the functions.
- B) It is clear that  $g_k(t) \in W_{2N+1}$  since each of the elements in its sum namely  $e^{in(t-k\pi/(N+\frac{1}{2}))}$  is just a multiple of  $e^{int}$  a basis element of  $W_{2N+1}$ . Notice there are 2N+1 of these independent vectors in the vector space of dimmension 2N+1. Thus they must be a spanning set and there must exist coefficients for any function in the space to be written as a sum of this basis.

To actually exhibit coefficients one would use  $f(t) = \sum_{k} f(x_k)g_k(t)$ .

## 6. 2.1.3 Riemann-Lebesgue Lemma

G(u) piecewise continuous and has left and right derivatives on  $[0, 2\pi]$ . Show that

$$\lim_{N \to \infty} \int_0^{2\pi} G(u) \sin(N + \frac{1}{2}) u du = 0$$

WLOG  $\exists a, b \in [0, \pi]$  st.  $\forall x \in [a, b]$  G(x) > 0 or G(x) < 0.

Now it suffices to show

$$\lim_{N \to \infty} \int_a^b G(u) \sin(N + \frac{1}{2}) u du = 0$$

[since the interval  $[0, 2\pi]$  can be sliced into a countable number of these intervals, and hten you can sum over them] WLOG we assume G(x) is positive.

$$0 \leqslant \lim_{N \to \infty} \int_a^b G(u) \sin(N + \frac{1}{2}) u du \leqslant \lim_{N \to \infty} \int_a^b \left[ \max_u G(u) \right] \sin(N + \frac{1}{2}) u du$$

Let  $G_m$  be the max above, then we have

$$0 \leqslant G_m \lim_{N \to \infty} \int_a^b \sin(N + \frac{1}{2}) u du = G_m \lim_{N \to \infty} \frac{\cos(N + \frac{1}{2}) u}{N + \frac{1}{2}} \Big|_a^b \leqslant G_m \lim_{N \to \infty} \frac{2}{N + \frac{1}{2}} \leqslant 0$$

Thus we get the 0 value for the limit as desired.

#### 7. 2.1.4 Prove or disprove:

$$\sum_{m=-\infty}^{\infty} \frac{1}{(m+x)^2 + a^2} = \frac{\pi}{a} \frac{\coth \pi a}{\cos^2 \pi x + \sin^2 \pi x \coth^2 \pi a}$$

$$\sum_{m=-\infty}^{\infty} 1 \qquad \pi^2$$

$$\sum_{m=-\infty}^{\infty} \frac{1}{(m+x)^2} = \frac{\pi^2}{\sin^2 \pi x}$$

$$\sum_{m=-\infty}^{\infty} \frac{1}{(2\pi m + x)^2} = \frac{1}{4\sin^2 x/2}$$

Let  $f(m) = \frac{1}{(m+x)^2+a^2}$ , then we wish to find  $\sum f(m)$ . To this end we consider  $F(k) = \int_{-\infty}^{\infty} e^{-ikm} f(m) dm$ . To find this we use the u sub: u = m + x

$$\int_{-\infty}^{\infty} e^{-ikm} \frac{1}{(m+x)^2 + a^2} dm = e^{ikx} \int_{-\infty}^{\infty} e^{-iku} \frac{1}{u^2 + a^2} du = e^{ikx} \frac{\pi}{a} e^{-|k|a}$$

Using the Poisson formula we thus see:

$$\sum_{m=-\infty}^{\infty} \frac{1}{(m+x)^2 + a^2} = \sum_{k=-\infty}^{\infty} e^{i2\pi kx} \frac{\pi}{a} e^{-|2\pi k|a} = \frac{\pi}{a} \left[ \sum k \geqslant 0 e^{i2\pi kx} e^{-|2\pi k|a} + \sum k \leqslant 0 e^{i2\pi kx} e^{-|2\pi k|a} - 1 \right]$$

$$= \frac{\pi}{a} \left[ \sum k \geqslant 0 e^{i2\pi k(x-a)} + \sum k \leqslant 0 e^{i2\pi k(x+a)} - 1 \right] = \frac{\pi}{a} \left[ \sum k \geqslant 0 e^{i2\pi k(x-a)} + e^{-i2\pi k(x+a)} - 1 \right]$$

$$= \frac{\pi}{a} \left[ \frac{1}{1 - e^{-i2\pi(x+a)}} + \frac{1}{1 - e^{i2\pi(x-a)}} - 1 \right]$$

$$= \frac{\pi}{a} \left[ \frac{1 - e^{-i2\pi(x+a)} + 1 - e^{i2\pi(x-a)} - \left(1 - e^{i2\pi(x-a)}\right) \left(1 - e^{-i2\pi(x+a)}\right)}{\left(1 - e^{i2\pi(x-a)}\right) \left(1 - e^{-i2\pi(x+a)}\right)} \right]$$

$$= \frac{\pi}{a} \left[ \frac{1 - e^{i2\pi(x-a)} e^{-i2\pi(x+a)}}{\left(1 - e^{i2\pi(x-a)}\right) \left(1 - e^{-i2\pi(x+a)}\right)} \right] = \frac{\pi}{a} \left[ \frac{1 - e^{-i4\pi a}}{\left(1 - e^{i2\pi(x-a)}\right) \left(1 - e^{-i2\pi(x+a)}\right)} \right]$$

$$= \frac{\pi}{a} \left[ \frac{\left(1 - e^{-i2\pi a}\right) \left(1 + e^{-i2\pi a}\right)}{\left(1 - e^{i2\pi(x-a)}\right) \left(1 - e^{-i2\pi(x+a)}\right)} \right] = \frac{\pi}{a} \left[ \frac{\left(1 - e^{-i2\pi a}\right) \left(1 + e^{-i2\pi a}\right)}{\left(1 - e^{i2\pi(x-a)}\right) \left(1 - e^{-i2\pi(x+a)}\right)} \right]$$

\*\*\*\*\*\*BELIEVE THE ABOVE DISPROVES THE SUM\*\*\*\*\*\*

For the last 2 the answers are somewhat lack luster.

Let  $f(m) = \frac{1}{(m+x)^2}$ , then we wish to find  $\sum f(m)$ . To this end we consider  $F(k) = \int_{-\infty}^{\infty} e^{-ikm} f(m) dm$ . To find this we use the u sub: u = m + x

$$\int_{-\infty}^{\infty} e^{-ikm} \frac{1}{(m+x)^2} dm = e^{ikx} \int_{-\infty}^{\infty} e^{-iku} \frac{1}{u^2} du$$

This is an error function producing integral. This is bad. Notice also that the claimed value on the right hand side of the equation doesn't even make sense for x=0. Thus the equation as stated is clearly false, Besides as any good student of Bergelson knows:  $\sum 1/n^2 = \frac{\pi^2}{6}$ 

For the final one we again have issues with sin(0) = 0 in the denominator.

8. 2.1.5 My man Stephane G. Mallat claims the following: The family of functions  $\phi(x-k)k = 0, \pm 1, \pm 2, \cdots$  is orthonormal iff

$$\sum_{k=-\infty}^{\infty} |\hat{\phi}(\omega + 2\pi k)|^2$$

is constant wrt  $\omega$ . Prove my boy wrong or right.

Stephane is no chump and said a true thing. Lets investigate the sum:

$$\sum_{k=-\infty}^{\infty} |\hat{\phi}(\omega + 2\pi k)|^2 = \sum_{k=-\infty}^{\infty} \overline{\hat{\phi}(\omega + 2\pi k)} \hat{\phi}(\omega + 2\pi k)$$

Now to avoid a factor out front the rest of the analysis, the  $\frac{1}{\sqrt{2\pi}}$  is suppressed when expanding the Fourier transform.

$$= \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(\omega+2\pi k)y} \bar{\phi}(y) dy \int_{-\infty}^{\infty} e^{-i(\omega+2\pi k)x} \phi(x) dx$$

$$= \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi(x) \bar{\phi}(y) e^{i(\omega+2\pi k)y} e^{-i(\omega+2\pi k)x} dx dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi(x) \bar{\phi}(y) \sum_{k=-\infty}^{\infty} e^{-i(\omega+2\pi k)(x-y)} dx dy$$

Via formula on page 62

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi(x) \bar{\phi}(y) e^{-i\omega(x-y)} \sum_{k=-\infty}^{\infty} \delta(x-y-k) dx dy$$

Now for the change of variables u = x - y, v = y

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi(u+v) \bar{\phi}(v) e^{-i\omega u} \sum_{k=-\infty}^{\infty} \delta(u-k) du dv = \int_{-\infty}^{\infty} \bar{\phi}(v) \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i\omega u} \phi(u+v) \delta(u-k) du dv$$

$$= \int_{-\infty}^{\infty} \bar{\phi}(v) \sum_{k=-\infty}^{\infty} e^{-i\omega k} \phi(k+v) dv = \sum_{k=-\infty}^{\infty} e^{-i\omega u} \int_{-\infty}^{\infty} \bar{\phi}(v) \phi(k+v) dv = \sum_{k=-\infty}^{\infty} \langle \phi(v), \phi(k+v) \rangle e^{-i\omega u}$$

Thus the sum above is in fact a Fourier series with  $c_k = \langle \phi(v), \phi(k+v) \rangle$ . Now this series being constnat is equivalent to  $c_k = \delta_{0k}$ , which is equivalent to the  $\phi(v+k)$ 's being an orthogonal system.

Moreover if  $c_0 = 1$  then we have an orthonormal system as well. Thus the system is orthonormal if the series is constant and equal to 1. Now in actually we remember that we have a secret factor of  $\frac{1}{\sqrt{2\pi}}$  hanging around. Thus the constants value is actually that.

### 9. 2.1.6 Prove or Disprove the following identities:

i) 
$$\sum_{m=-\infty}^{\infty} f([2m+1]\pi) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} (-1)^n F(n)$$

ii) 
$$2\pi \sum_{m=-\infty}^{\infty} (-1)^m f(2\pi m) = \sum_{n=-\infty}^{\infty} F(n + \frac{1}{2})$$

iii) 
$$\sum_{m=-\infty}^{\infty} \delta(u - [2m+1]\pi) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} (-1)^n e^{inu}$$

iv) And in greater generality

$$\sum_{m=-\infty}^{\infty} f(\frac{[2m+1]\pi}{a}) = \frac{a}{2\pi} \sum_{n=-\infty}^{\infty} (-1)^n F(na)$$

v) 
$$\sum_{m=-\infty}^{\infty} \frac{1}{|a|} \delta(u - \frac{[2m+1]\pi}{a}) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} (-1)^n e^{inau}$$

The main equation to keep in mind here is the general Poisson formula:

$$\frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} e^{in(x-t)} f(t) dt = \sum_{m=-\infty}^{\infty} f(x+2\pi m)$$

i) Begin with  $x = \pi$  in the formula above and we see:

$$\frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} e^{in(\pi-t)} f(t) dt = \sum_{m=-\infty}^{\infty} f([2m+1]\pi)$$

$$= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} (-1)^n \int_{-\infty}^{\infty} e^{-int} f(t) dt = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} (-1)^n F(n)$$

- ii)
- iii)
- iv)
- $\mathbf{v})$

10. 2.2.1