Learning Probabilistic Sentential Decision Diagrams by Sampling

KDMiLe 2020

Renato Geh¹ Denis Mauá¹ Alessandro Antonucci²

¹Institute of Mathematics and Statistics, University of São Paulo, Brazil {renatolg,ddm}@ime.usp.br

²Istituto Dalle Molle di Studi sull'Intelligenza Artificiale, Switzerland alessandro@idsia.ch

Background

Probabilistic Sentential Decision Diagrams (PSDDs)

Kisa et al. 2014

Leaves are either literals, constants or Bernoulli distributions.

Elements...

Partition...

Related Works

LearnPSDD

Given. A vtree and a circuit.

Idea. Learn a PSDD as an expansion of initial circuit.

How?

- 1. Recursively apply small changes;
- 2. Evaluate score;
- 3. Greedily accept changes.

$$\mathsf{Score}(\mathcal{S}, \mathcal{S}'|D) = \frac{\log p(\mathcal{S}'|D) - \log p(\mathcal{S}|D)}{|\mathcal{S}'| - |\mathcal{S}|}$$

What are these "small" changes?

Liang, Bekker, and G. V. d. Broeck 2017

SPLIT an element...

$\label{Clone} {\rm Clone} \ \ \text{a} \ \ \text{partition}...$

Strudel

Given. A Chow-Liu Tree (CLT).

Idea. Learn a PSDD and its vtree.

How?

- 1. Learn a CLT.
- 2. Extract a vtree from CLT.
- 3. Compile CLT into circuit.
- 4. "Grow" circuit with Split.

Dang, Vergari, and G. v. d. Broeck 2020

Dang, Vergari, and G. v. d. Broeck 2020

Learning by Sampling

Monte-Carlo Structure Learning

Previous attempts grew or compiled existing models.

Instead, we want to build a circuit solely from knowledge.

Our approach. Start off with a logic formula:

$$\phi(A,B,C,D,E) = (B \land C \land ((A \land D \land \neg E) \lor (\neg A \land E)))) \lor (\neg A \land ((\neg C \land D \land \neg E) \lor \neg B))$$

Recursively decompose ϕ top-down through subsequent partitions.

How to decompose formula into elements...

$$(B \wedge C \wedge ((A \wedge D \wedge \neg E) \vee (\neg A \wedge E))) \vee (\neg A \wedge ((\neg C \wedge D \wedge \neg E) \vee \neg B))$$

...while ensuring primes are exhaustive and mutually exclusive?

Given a prime ordering, such as $\mathbf{O} = (B, C, A)$, return a set of primes.

Given a prime ordering, such as $\mathbf{O}=(B,C,A)$, return a set of primes.

Given a prime ordering, such as $\mathbf{O}=(B,C,A)$, return a set of primes.

Given a prime ordering, such as $\mathbf{O} = (B,C,A)$, return a set of primes.

Given a prime ordering, such as O = (B, C, A), return a set of primes.

This gives an exponential number of elements!

$$\phi|_x = \phi|_{\neg x}.$$

$$\phi|_x = \phi|_{\neg x}.$$

$$\phi|_x = \phi|_{\neg x}.$$

$$\phi|_x = \phi|_{\neg x}.$$

$$\phi|_x = \phi|_{\neg x}.$$

We avoid computing an exponential number of primes!

In other words...

Given.

- ▶ A random prime ordering $O = \{X_1, ..., X_n\}$;
- ightharpoonup A formula ϕ .

Generate a set of primes $\{p_i\}_{i=1}^n$, and then subs $s_i=\phi|_{p_i}$.

But what if $\phi \equiv \top$ or $\forall X_i \in \mathbf{O}$, $X_i \notin \phi$?

Then we have even more freedom! Stochastically marginalize with some probability p.

We can marginalize any variable we want, since any operation on ϕ with X_i is idempotent.

Then we have even more freedom! Stochastically marginalize with some probability p.

We can marginalize any variable we want, since any operation on ϕ with X_i is idempotent.

$(B \wedge C \wedge ((A \wedge D \wedge \neg E) \vee (\neg A \wedge E))) \vee (\neg A \wedge ((\neg C \wedge D \wedge \neg E) \vee \neg B))$

$(B \wedge C \wedge ((A \wedge D \wedge \neg E) \vee (\neg A \wedge E))) \vee (\neg A \wedge ((\neg C \wedge D \wedge \neg E) \vee \neg B))$

Compression

Compress elements (p_1, s) and (p_2, s) by replacing them with $(p_1 \vee p_2, s)$.

Compression generates different distributions consistent with formula.

$(B \wedge C \wedge ((A \wedge D \wedge \neg E) \vee (\neg A \wedge E))) \vee (\neg A \wedge ((\neg C \wedge D \wedge \neg E) \vee \neg B))$

$(B \wedge C \wedge ((A \wedge D \wedge \neg E) \vee (\neg A \wedge E))) \vee (\neg A \wedge ((\neg C \wedge D \wedge \neg E) \vee \neg B))$

If there are n compressable elements...

We can generate $\sum_{k=1}^{n} {n \choose k}$ different circuits.

If there are n compressable elements...

Uniformly sample a circuit from Pascal Triangle's k-th row.

If there are n compressable elements...

But how to efficiently compute potentially complex disjunctions?

Binary Decision Diagrams (BDDs)

Operation	Description	Complexity
REDUCE	canonical form of ϕ	$\mathcal{O}(n \cdot \log n)$
Apply	$\phi_1 \oplus \phi_2$	$\mathcal{O}(n_1 \cdot n_2)$
Restrict	$\phi _x$	$\mathcal{O}(n \cdot \log n)$
Forget	$\phi _x \vee \phi _{\neg x}$	$\mathcal{O}(n^2)$

$$\phi(A,B,C) = (A \vee \neg B) \wedge (\neg B \vee C)$$

Results

Likelihood

Data	#vars	Worst	Best	Average	LSPN-Opt	LSPN-CV	CLT	CNet
1	10	-449.89	-413.51	-415.60	-422.37	-444.62	-456.49	-585.23
2	15	-745.20	-693.51	-695.82	<u>-695.09</u>	-739.49	-803.41	-1070.29
3	20	-1024.01	-969.51	-971.80	-959.03	-1003.93	-1075.31	-1855.05
4	25	-1268.82	-1208.22	-1210.27	-1185.28	-1254.47	-1290.94	-2033.58
5	30	-1548.92	-1440.27	-1442.58	-1441.90	-1543.35	-1535.54	-2048.16
6	100	-5169.14	-4995.53	-4997.83	-4958.06	-5232.04	-5712.73	-10326.73
7	100	-5329.17	-5153.51	-5155.82	-4900.65	-5206.54	-5710.64	-9948.88
8	14	-472.15	-423.32	-425.62	-490.21	-506.62	-486.06	-601.31
		'			'			
Data Logic formula								

Data	Logic formula
1	$\phi_1 = (X_1 \land X_3) \lor (X_4 \land \neg X_2) \lor (X_5 \land \neg X_{10})$
2	$\phi_2 = (X_1 \land X_3) \lor (X_4 \land \neg X_2) \lor (X_5 \land \neg X_{10}) \lor (X_{12} \land \neg X_{13} \land X_{15} \land \neg X_{14})$
3	$\phi_3 = (X_1 \land X_3) \lor (X_4 \land \neg X_2) \lor (X_5 \land \neg X_{10}) \lor (X_{12} \land \neg X_{13} \land X_{15} \land \neg X_{14})$
4	$\phi_4 = (X_1 \land X_3) \lor (X_4 \land \neg X_2) \lor (X_5 \land \neg X_{10}) \lor (X_{12} \land \neg X_{13} \land X_{15} \land \neg X_{14})$
5	$\phi_5 = (X_2 \vee X_{30}) \wedge (\neg X_{15} \vee \neg X_{10}) \wedge (\neg X_{25} \vee X_5 \vee X_{15} \vee \neg X_1) \wedge (X_1 \vee X_{15} \vee \neg X_{30})$
6	$\phi_6 = (X_{10} \lor X_{30}) \land (\neg X_1 \lor X_5) \land (\neg X_{10} \lor X_{14} \lor X_{23}) \land (X_2 \lor \neg X_{27} \lor X_{35}) \land (X_{98} \lor \neg X_{78} \lor \neg X_{27} \lor X_8)$
7	$\phi_7 = T$
8	$\phi_8 = d_0 \lor d_1 \lor d_2 \lor d_3 \lor d_4 \lor d_5 \lor d_6 \lor d_7 \lor d_8 \lor d_9$

Thank You!

Questions?

References

References L

- Dang, Meihua, Antonio Vergari, and Guy van den Broeck (2020). "Strudel: Learning Structured-Decomposable Probabilistic Circuits". In: Proceedings of the Tenth International Conference on Probabilistic Graphical Models.
- Kisa, Doga et al. (2014). "Probabilistic Sentential Decision Diagrams". In: Knowledge Representation and Reasoning Conference. URL: https://www.aaai.org/ocs/index.php/ KR/KR14/paper/view/8005.
- Liang, Yitao, Jessa Bekker, and Guy Van den Broeck (2017). "Learning the Structure of Probabilistic Sentential Decision Diagrams". In: Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence, UAI 2017, Sydney, Australia, August 11-15, 2017. Ed. by Gal Elidan, Kristian Kersting, and Alexander T. Ihler, AUAI Press, URL:

http://auai.org/uai2017/proceedings/papers/291.pdf.