QUÍMICA NIVEL MEDIO PRUEBA 1

Lunes 18 de noviembre de 2002 (tarde)

45 minutos

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.

882-167 12 páginas

_
ಹ
<u>:</u>
.=
7
. =
Ò,
•
Ξ.
5
2
ಹ
$\overline{}$
_
=
ಹ
r

2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)	
	9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At (210)	
	8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)	
	7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98	
	6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19	
	5 B 10,81	13 A1 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37	
·			30 Zn 65,37	48 Cd 112,40	80 Hg 200,59	
			29 Cu 63,55	47 Ag 107,87	79 Au 196,97	
			28 Ni 58,71	46 Pd 106,42	78 Pt 195,09	
			27 Co 58,93	45 Rh 102,91	77 Ir 192,22	109 Mt
			26 Fe 55,85	44 Ru 101,07	76 Os 190,21	108 Hs
			25 Mn 54,94	43 Tc 98,91	75 Re 186,21	107 Bh (262)
Número atómico	Masa atómica		24 Cr 52,00	42 Mo 95,94	74 W 183,85	106 Sg (263)
Número	Masa a		23 V 50,94	41 Nb 92,91	73 Ta 180,95	105 Db (262)
			22 Ti 47,90	40 Zr 91,22	72 Hf 178,49	104 Rf (261)
			21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)
	4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)
1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)

71 Lu 174,97	103 Lr (260)
70	102
Yb	No
173,04	(259)
69	101
Tm	Md
168,93	(258)
68 Er 167,26	100 Fm (257)
67 Ho 164,93	99 Es
66	98
Dy	Cf
162,50	(251)
65	97
Tb	Bk
158,92	(247)
64	96
Gd	Cm
157,25	(247)
63	95
Eu	Am
151,96	(243)
62 Sm 150,35	94 Pu (242)
61	93
Pm	Np
146,92	(237)
60	92
Nd	U
144,24	238,03
59	91
Pr	Pa
140,91	231,04
58	90
Ce	Th
140,12	232,04
:	**

- 1. ¿Cuántas moléculas hay en una gota de agua cuya masa es $9,00 \times 10^{-2}$ g?
 - A. $3,01\times10^{21}$
 - B. $3,01\times10^{22}$
 - C. $9,75 \times 10^{23}$
 - D. $1,20 \times 10^{26}$
- 2. ¿Qué cantidad de $H_2(g)$ se obtiene cuando 12 g de magnesio reaccionan completamente con HCl(aq) diluido?

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

- A. $\frac{1}{4}$ mol
- B. $\frac{1}{2}$ mol
- C. 1 mol
- D. 2 mol
- 3. ¿Cuántos moles de $FeS_2(s)$ se requieren para obtener 64 g de $SO_2(g)$ de acuerdo con la siguiente ecuación?

$$4\text{FeS}_2(s) + 11\text{O}_2(g) \rightarrow 2\text{Fe}_2\text{O}_3(s) + 8\text{SO}_2(g)$$

- A. 0,40
- B. 0,50
- C. 1,0
- D. 2,0
- **4.** Un óxido del metal M contiene 40% en masa de oxígeno. La masa atómica relativa del metal es 24. ¿Cuál es la fórmula empírica del óxido?
 - $A. M_2O_3$
 - B. M_2O
 - C. MO₂
 - D. MO

- 5. 25,0 cm³ de una solución de HNO₃(aq) de concentración 2,00 mol dm⁻³ reaccionan completamente con 20,0 cm³ de Ba(OH)₂(aq). ¿Cuál es la concentración de la solución de hidróxido de bario?
 - A. $0,800 \text{ mol dm}^{-3}$
 - B. 1,25 mol dm⁻³
 - C. $2,00 \text{ mol dm}^{-3}$
 - D. 2,50 mol dm⁻³
- **6.** Los isótopos son elementos que tienen
 - A. igual número atómico y el mismo número de neutrones.
 - B. igual número másico pero diferente número de neutrones.
 - C. igual número atómico pero diferente número de neutrones.
 - D. número atómico y número másico diferentes pero el mismo número de neutrones.
- 7. ¿Qué par de especies tiene el mismo número de neutrones?
 - A. 55 Mn y 56 Fe
 - B. 35 Cl y 37 Cl
 - C. 23 Na y 39 K
 - D. ${}^{32}S y {}^{35}C1$

- **8.** Al descender a lo largo de un grupo en la tabla periódica,
 - I. todos los átomos tienen el mismo número de electrones de valencia.
 - II. la energía de ionización aumenta.
 - III. la electronegatividad disminuye.

¿Qué enunciados de los escritos arriba son correctos?

- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III
- 9. ¿Cuál de las siguientes reacciones de desplazamiento es posible?
 - A. $Br_2(aq) + 2Cl^-(aq) \rightarrow 2Br^-(aq) + Cl_2(aq)$
 - B. $I_2(aq) + 2Cl^-(aq) \rightarrow 2I^-(aq) + Cl_2(aq)$
 - C. $Cl_2(aq) + 2I^-(aq) \rightarrow 2Cl^-(aq) + I_2(aq)$
 - D. $I_2(aq) + 2Br^-(aq) \rightarrow 2I^-(aq) + Br_2(aq)$
- **10.** La configuración electrónica de un elemento E de número másico 40, es 2.8.8.2. ¿Qué enunciado **no** es correcto con respecto a este elemento?
 - A. Pertenece al grupo 2 de la tabla periódica.
 - B. Tiene 20 neutrones.
 - C. Pertenece al período 4 de la tabla periódica.
 - D. La fórmula de su óxido es EO_2 .

11.	¿Que	é fuerzas intermoleculares existen en el hielo seco, $CO_2(s)$?
	A.	Enlaces covalentes
	B.	Atracciones dipolo-dipolo
	C.	Fuerzas de van der Waals
	D.	Enlaces de hidrógeno
12.	լCuá	ál de los siguientes compuestos presenta el menor ángulo de enlace?
	A.	NH_3
	B.	CO_2
	C.	$\mathrm{H_2O}$
	D.	$\mathrm{CH_4}$
13.	¿Сиа́	ál de los compuestos H ₂ O, H ₂ S, H ₂ Se y H ₂ Te tiene el mayor punto de ebullición?
	A.	H_2O
	B.	H_2S
	C.	H_2Se
	D.	H_2Te
14.	¿Que	é molécula es no polar?
	A.	CIF
	B.	PF ₃
	C.	CF_4
	D.	CFCl ₃

- 15. ¿Bajo qué condiciones una masa dada de oxígeno ocuparía el mayor volumen?
 - A. Elevada temperatura y elevada presión
 - B. Elevada temperatura y baja presión
 - C. Baja temperatura y baja presión
 - D. Baja temperatura y elevada presión
- **16.** Considere la siguiente reacción:

$$N_2(g) + 3H_2(g) \to 2NH_3(g)$$
 $\Delta H^{\oplus} = ?$

Las entalpías de enlace (expresadas en kJ mol⁻¹) involucradas en la reacción son:

$$N \equiv N$$
 x
 $H-H$ y
 $N-H$ z

¿Qué cálculo dará como resultado el valor de ΔH^{\ominus} ?

- A. x+3y-6z
- B. 6z x + 3y
- C. x-3y+6z
- D. x+3y-2z
- **17.** Considere las siguientes reacciones:

$$CH_3COOH + OH^- \rightarrow CH_3COO^- + H_2O$$
 $\Delta H^{\ominus} = q_1 \text{ kJ}$
 $H^+ + OH^- \rightarrow H_2O$ $\Delta H^{\ominus} = q_2 \text{ kJ}$

¿Cuál es la variación de entalpía para la siguiente reacción?

$$CH_3COOH \rightarrow CH_3COO^- + H^+$$

- A. $q_2 q_1$
- B. $q_1 q_2$
- C. $-q_1 q_2$
- D. $2q_2 q_1$

- **18.** Cuando se añaden 3600 J de calor a 180 g de C₂H₅OH(l), su temperatura aumenta desde 18,5 °C a 28,5 °C. ¿Cuál es la capacidad calorífica específica del C₂H₅OH(l)?
 - A. $0,500 \text{ J g}^{-1} \, ^{\circ}\text{C}^{-1}$
 - B $2,00 \text{ J g}^{-1} \, {}^{\circ}\text{C}^{-1}$
 - C. $20,0 \text{ J g}^{-1} \, {}^{\circ}\text{C}^{-1}$
 - D. $200 \text{ J g}^{-1} \, ^{\circ}\text{C}^{-1}$
- **19.** En general, la velocidad de una reacción se puede incrementar por medio de todos los siguientes factores, **excepto**
 - A. por aumento de la temperatura.
 - B. por aumento de la energía de activación.
 - C. por aumento de la concentración de los reactivos.
 - D. por aumento de la superficie de los reactivos.
- **20.** ¿Bajo qué condiciones es más rápida la reacción de magnesio con HCl(aq)?
 - A. 10 cm³ de solución de HCl(aq) de concentración 1,0 mol dm⁻³ a 25 °C
 - B. 10 cm³ de solución de HCl(aq) de concentración 2,0 mol dm⁻³ a 25 °C
 - C. 10 cm³ de solución de HCl(aq) de concentración 2,0 mol dm⁻³ a 35 °C
 - D. 10 cm^3 de solución de HCl(aq) de concentración 1,0 mol dm $^{-3}$ a 35 °C

21. Se aumenta el volumen del recipiente de reacción que contiene la siguiente mezcla en equilibrio

$$SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$$

¿Cuál de los siguientes cambios se producirá cuando se alcance nuevamente el equilibrio?

- A. La cantidad de SO₂Cl₂(g) aumentará.
- B. La cantidad de SO₂Cl₂(g) disminuirá.
- C. La cantidad de Cl₂(g) permanecerá invariable.
- D. La cantidad de Cl₂(g) disminuirá.
- 22. ¿En qué reacción la posición de equilibrio permanece inalterada por acción de un cambio de presión?
 - A. $2O_3(g) \rightleftharpoons 3O_2(g)$
 - B. $2NO_2(g) \rightleftharpoons N_2O_4(g)$
 - C. $2NO(g) + Cl_2(g) \rightleftharpoons 2NOCl(g)$
 - D. $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$
- 23. Cuando las siguientes soluciones de concentración 0,10 mol dm⁻³ se disponen de forma **creciente** respecto de su pH (el menor primero), ¿cuál es el orden correcto?

$$NH_3(aq)$$
, $NaOH(aq)$, $HCl(aq)$, $CH_3COOH(aq)$

- A. NaOH, NH₃, CH₃COOH, HCl
- B. HCl, CH₃COOH, NH₃, NaOH
- C. HCl, CH₃COOH, NaOH, NH₃
- D. NaOH, NH₃, HCl, CH₃COOH

24. Considere un ácido débil HA disuelto en agua:

$$HA(aq) + H_2O(1) \rightleftharpoons H_3O^+(aq) + A^-(aq)$$

¿Qué enunciados son correctos?

- I. A^{-} (aq) es una base mucho más fuerte que $H_2O(1)$.
- II. HA sólo se disocia en pequeña proporción en solución acuosa.
- III. La concentración de H₃O⁺(aq) es mucho mayor que la concentración de HA(aq).
- A. I, II y III
- B. Sólo II y III
- C. Sólo I y II
- D. Sólo I y III

25. En la reacción

$$3Br_2 + 6CO_3^{2-} + 3H_2O \rightarrow 5Br^- + BrO_3^- + 6HCO_3^-$$

- A. El Br₂ sólo se oxida.
- B. El Br₂ sólo se reduce.
- C. El Br₂ no se oxida ni se reduce.
- D. El Br_2 se oxida y se reduce.

26. Considere los siguientes enunciados que se refieren a la electrólisis del bromuro de plomo(II) fundido.

- I. La oxidación se produce en el ánodo donde los iones plomo ganan electrones.
- II La reducción se produce en el cátodo donde los iones plomo ganan electrones.
- III La oxidación se produce en el ánodo donde los iones bromuro pierden electrones.
- IV. La reducción se produce en el cátodo donde los iones bromuro pierden electrones.

¿Qué enunciados son correctos?

- A. Sólo I y II
- B. Sólo I y IV
- C. Sólo II y III
- D. Sólo II y IV

- 27. Un compuesto cuya fórmula empírica es C_2H_4O , tiene una masa molecular relativa de 88. ¿Cuál es la fórmula del compuesto?
 - A. CH₃CH₂COCH₃
 - B. CH₃COOH
 - C. HCOOCH₃
 - D. CH₃CH₂CH₂COOH
- 28. Considere la siguiente reacción:

$$CH_3COOH + NH_3 \rightarrow CH_3COONH_4 \rightarrow CH_3CONH_2$$

¿Cuál sería el producto final si se utilizara aminoetano (etilamina) en lugar de NH3?

- A. CH₃CONHCH₂CH₃
- B. CH₃CONHCH₃
- C. CH₃CONH₂
- D. CH₃CONH₂CH₂CH₃
- **29.** Afirmación (A): La solubilidad de los alcanoles en agua disminuye al aumentar la M_r . Explicación (E): La proporción relativa de la parte hidrocarbono en el alcanol aumenta con el aumento de M_r .
 - A. Ambos, A y E son verdaderos.
 - B. Ambos, A y E son falsos.
 - C. A es verdadera, pero E es falsa.
 - D. A es falsa, pero E es verdadera.

30. ¿Cuál de los siguientes compuestos es ópticamente activo?