Hackathon Project Phases Template

Project Title:

StudBud: Al Study Planer

Team Name:

Al Visionaries

Team Members:

- K. Meghana
- B. Praneetha
- G. Ravali
- S. Sirisha

Phase-1: Brainstorming & Ideation

Objective:

Studbud aims to develop an AI-powered personalized study planner using **BERT** to generate optimized study schedules based on students' **goals, strengths, weaknesses, and preferences**. The system will intelligently adapt and refine study plans to maximize learning efficiency. Our goal is to enhance student productivity and help them achieve their academic targets effectively.

Key Points:

1. Problem Statement:

- Students struggle to create personalized and efficient study plans that align with their goals, strengths, and weaknesses.
- Studbud leverages Al and BERT to generate optimized study schedules, enhancing learning efficiency and academic performance.

2. Proposed Solution:

- Develop **Studbud**, an Al-powered study planner using **BERT** to create personalized study schedules based on students' goals, strengths, and weaknesses.
- Implement an adaptive system that dynamically adjusts study plans based on student progress, ensuring optimal learning efficiency.

3. Target Users:

- **Students** of all levels (school, college, competitive exam aspirants) who need personalized and efficient study plans.
- **Educators & Mentors** looking for AI-driven tools to help guide students with customized study strategies.

4. Expected Outcome:

Students will receive **personalized**, **Al-driven study plans** that improve time management, enhance learning efficiency, and boost academic performance.

Phase-2: Requirement Analysis

Objective:

Define the technical and functional requirements for the **Studbud: Al Personalized Study Planner** to ensure efficient study plan generation and adaptation.

Key Points:

1. Technical Requirements:

- Programming Language: Python
- Backend: BERT-based NLP Model & Al-driven Recommendation System
- Frontend: Streamlit Web Framework, GUI
- DatabaseFirebase/Cloud Storage for user data & study plans

2. Functional Requirements:

- Generate personalized study plans based on user input (goals, strengths, weaknesses).
- Adapt study schedules dynamically based on progress and feedback.
- o Provide Al-driven study recommendations and time management insights.
- Integrate a notification system (WhatsApp/Telegram) for study reminders.

3. Constraints & Challenges:

- Ensuring accurate NLP-based goal classification for effective plan generation.
- Handling scalability & performance while processing multiple study plans.
- Creating a user-friendly and engaging UI for an intuitive experience.

Phase-3: Project Design

Objective:

Develop the architecture and user flow of the application.

Key Points:

1. System Architecture:

- User inputs **study-related queries** (e.g., subjects, goals, weaknesses) via the UI.
- Query is processed using BERT-based Al model for personalized study plan generation.
- Al model analyzes user input and creates an optimized study schedule.
- The frontend displays the customized study plan with recommendations.

2. User Flow:

- Step 1: User enters study preferences (e.g., "Prepare for exams in 30 days").
- Step 2: Backend Al processes the input and generates a structured study plan.
- Step 3: The system displays the plan, allowing users to track progress and adjust schedules.

3. UI/UX Considerations:

- Simple, intuitive interface for easy study plan management.
- Customizable study preferences (subjects, time allocation, difficulty levels).
- Dark & light mode for comfortable study sessions at any time.

Phase-4: Project Planning (Agile Methodologies)

Objective:

Break down development tasks for efficient completion.

Sprint	Task	Priority	Duration	Deadline	Assigned To	Dependencies	Expected Outcome
Sprint 1	Environment Setup & Model Integration	e High	6 hours (Day 1)	End of Day 1	Member 1	Python, BERT Model, API setup	Al model integrated & working
Sprint 1	Basic UI & Input System	Medium	2 hours (Day 1)	End of Day 1	Member 2	API response structure finalized	Basic UI with user input fields
Sprint 2	Study Plan Generation Logic	High	3 hours (Day 2)	Mid-Day 2	Member 1 & 2	Al model response, Ul ready	Study plan generation with insights
Sprint 2	Error Handling & Performance Optimization	e High	1.5 hours (Day 2)	Mid-Day 2	Member 3 & 4	API logs, user inputs	Improved system stability & speed
Sprint 3	Testing & UI Enhancements	O Medium	1.5 hours (Day 2)	Mid-Day 2	Member 2 & 3	Model output, UI layout completed	Responsive UI, better user experience
Sprint 3	Final Presentation & Deployment	Low	1 hour (Day 2)	End of Day 2	Entire Team	Fully functional prototype	Demo- ready project

Sprint Planning with Priorities

Sprint 1 - Setup & Integration (Day 1)

- High Priority Set up the environment & install dependencies.
- High Priority Integrate BERT Model for personalized study plans.
- Medium Priority Build a basic UI with input fields.

Sprint 2 - Core Features & Debugging (Day 2)

- High Priority Implement study plan generation and optimization logic.
- High Priority Debug AI responses & handle errors in user queries.

Sprint 3 - Testing, Enhancements & Submission (Day 2)

- Medium Priority Test AI predictions, refine UI, & fix UI bugs.

Phase-5: Project Development

Objective:

Implement core features of the Studbud: Al Personalized Study Planner.

Key Points:

1. Technology Stack Used:

Frontend: Streamlit

Backend: BERT-based Al Model & Recommendation System

• **Programming Language:** Python

2. **Development Process:**

• Implement user authentication and study preferences input system.

Develop Al-powered study plan generation and adaptation logic.

Optimize **study recommendations** based on user progress and feedback.

3. Challenges & Fixes:

• **Challenge:** Delayed response in generating study plans.

Fix: Implement caching & precomputed suggestions for faster results.

Challenge: Handling large-scale user requests efficiently.

Fix: Optimize backend processing & API calls for scalability.

Phase-6: Functional & Performance Testing

Objective:

Ensure that the AutoSage App works as expected.

Test Case ID	Category	Test Scenario	Expected Outcome	Status	Tester
TC- 001	Functional Testing	Query "Best budget cars under ₹10 lakh"	Relevant budget cars should be displayed.	✓ Passed	Tester 1
TC- 002	Functional Testing	Query "Motorcycle maintenance tips for winter"	Seasonal tips should be provided.	Passed	Tester 2
TC- 003	Performance Testing	API response time under 500ms	API should return results quickly.	▲ Needs Optimization	Tester 3
TC- 004	Bug Fixes & Improvements	Fixed incorrect API responses.	Data accuracy should be improved.	Fixed	Developer
TC- 005	Final Validation Ensure UI is responsive across devices.		UI should work on mobile & desktop.	➤ Failed – UI broken on mobile	Tester 2
TC- 006	Deployment Testing	Host the app using Streamlit Sharing	App should be accessible online.		DevOps

Final Submission

- 1. Project Report Based on the templates
- 2. Demo Video (3-5 Minutes)
- 3. GitHub/Code Repository Link https://github.com/23wh1a12c1/Al-Visionaries
- 4. Presentation