Deep Learning Tutorial

Aug. 2016

Machine Learning

• The science of getting computers to act without being explicitly programmed.

```
PROGRAM BiggerOfThree:
Read A;
Read B;
Read C;
IF (A>B)
THEN IF (A>C)

THEN Print A;
ELSE Print C;
END IF;
ELSE IF (B>C)

THEN Print B;
ELSE Print C;
END IF;
END IF;
END IF;
```


Neural Networks

Inspired from human brain!!! (really ;))

History

Applications

Image recognition

• Web search

Text

Deep Learning

- A set of algorithms based on neural networks
 - Convolutional neural networks
 - Deep belief networks and auto-encoders
 - Recurrent neural networks

Al Paradigms

Supervised	Unsupervised
Require lots of examples with labels Most of current Al	Less examples, no/less labels Future Al

Perceptron

- Activation function
 - Sigmoid, ReLU, etc.

Deep Belief Networks

Convolutional Neural Networks (CNN)

input neurons

Convolutional Neural Networks (CNN)

input neurons

Convolutional Neural Networks

$$\sigma\left(b+\sum_{l=0}^4\sum_{m=0}^4w_{l,m}a_{j+l,k+m}
ight)$$

Training

Backpropagation

Forward: $f_W(x)$

"espresso" + loss

 $abla f_W(x)$ Backward: learning

Loss Functions

- Depending on application
 - Mean squared error (MSE)
 - Binary cross entropy
 - Multi-class class entropy

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

$$Entropy(X) = -p_{Yes} \log_2 p_{Yes} - p_{No} \log_2 p_{No}$$

Optimization Method

- Stochastic Gradient Descent (SGD)
- Adam
- AdaDelta
- Nestrov

Deep Learning Pipeline

Deep Learning Frameworks

- Theano: Montreal
- Torch: NYC
- Tensorflow: Google
- Caffe: Berkeley
- Keras (Tensorflow, Theano)
- etc

Model Design

- Do not start from scratch
 - Use pre-designed models
- Start from small models
 - Filters, hidden layers, etc.
- Reduce complexity
 - Down-sample input/output
- Clean data
 - Remove outliers
- Cross validation
 - Train validation data split
 - Monitor training progress

Keras

- Deep learning framework
 - Tensorflow
 - Theano

Example

• Digit recognition, MNIST

Digital Recognition

Model

