7 Structural Equation Modeling 4: Mean and Covariance Structure Analysis

References:

• Rosseel (2017).

7.1. Introduction

- To extend traditional SEM models by decomposing the means of the measured variables into more basic model parameters.
- Both the means, variances, covariances carry statistical information and they are analyzed simultaneously.

7.2. The General Mean and Covariance Structural Model

• The measurement part:

$$v = \mu + \Lambda f + e \tag{1}$$

where μ is the intercept vector of the observed variables, ν .

• The structural part:

$$\begin{bmatrix} f_x \\ f_y \end{bmatrix} = \begin{bmatrix} \alpha_x \\ \alpha_y \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ \gamma & \beta \end{bmatrix} \begin{bmatrix} f_x \\ f_y \end{bmatrix} + \begin{bmatrix} f_x - E(f_x) \\ d \end{bmatrix}$$

$$f = \alpha + Bf + z$$
 (2)

where (i) α is the intercept vector of the latent variables, f, and (ii) $\alpha_x = E(f_x)$.

7.3. New Parameters Related to the Mean Structures

- In addition to the four model parameter matrices related to the covariance structure, which are, factor loading matrix (Λ), variance-covariance matrix of $e(\Theta)$, structural coefficient matrix among the factors (B), variance-covariance matrix of f_x and f_y , we have two new parameter vectors:
- (1) μ , which is a $p \times 1$ vector of intercepts of the observed variables, ν
- (2) α , which is a $k \times 1$ vector of intercepts of the latent variables, f

7.4. Connecting Means and Intercepts

• From Equation (2),

$$(I-B)f = \alpha + z$$

 $f = (I-B)^{-1}\alpha + (I-B)^{-1}z$ (3)

where
$$(I-B)^{\text{-}1} = \begin{bmatrix} I & 0 \\ (I-\beta)^{\text{-}1}\gamma & (I-\beta)^{\text{-}1} \end{bmatrix}$$
.

 \bullet The means of f are

$$E(f) = (I - B)^{-1}\alpha \tag{4}$$

such that

$$E(f_x) = \alpha_x \tag{4.1}$$

$$E(f_{y}) = (I - \beta)^{-1} (\gamma \alpha_{x} + \alpha_{y}) \tag{4.2}$$

• Substituting Equation (3) into Equation (1), we have

$$v=\mu+\Lambda[(I-B)^{\text{-}1}\alpha+(I-B)^{\text{-}1}z]+e$$
 and
$$E(v)=\mu+\Lambda(I-B)^{\text{-}1}\alpha \eqno(5)$$

7.5. Identification Issues due to Mean Structure

- The parameters cannot be identified without additional parameter constraints.
- On one hand, we have p more data points from the observed means. On the other hand, we have (p + k) more parameters which are the intercepts of both the observed and latent variables.
- If we fix the latent intercepts to 0 (i.e., $\alpha = 0$), the fit will be identical to the model without the mean structure.
- In practice, models with mean structures are meaningful only when some more constraints are specified.
- Typical situations where we would include the means are (1) multiple group SEM and (2) latent growth curve modeling

7.6. Example 1. Effect of SES on SWB: A Comparison between USA and China

- SES = socioeconomic status, which was measured by *parent* (parent educational background), *edu* (self education level), *occup* (occupation), and *income*
- SWB = subjective well being, which was measured by *general* (general life satisfaction) and *work* (work satisfaction)

• Group 1: USA (N = 200, filename = usa.dat)

```
parent
        1.00
edu
         .48
             1.00
         .22
               .34
                   1.00
occup
         .27
               .22
                    .39
                        1.00
income
                    .20
general
         .23
              .22
                          .12
                               1.00
         .27
work
               .30
                    .23
                          .16
                                .64
                                      1.00
SD
        1.36
             1.20
                   1.19
                        3.24
                               3.90
                                     2.72
        3.84 3.29 2.60 6.44 20.42 10.07
MEAN
```

• Group 2: China (N = 220, filename = china.dat)

```
1.00
parent
         .44 1.00
edu
         .22
               .20
                   1.00
occup
         .30
               .18
                     .38
                         1.00
income
general
          .27
               .27
                     .21
                          .08
                                1.00
work
          .27
               .12
                     .25
                          .20
                                 .66
                                       1.00
SD
        1.33
             1.28
                   1.08
                                3.76
                         2.65
                                      2.68
MEAN
        3.52 3.08 2.09 5.36
                              19.67
                                      9.56
```

Questions:

- 1. How well does the proposed model fit the data in each group?
- 2. Is the measurement model the same for both groups?
- 3. Are the two groups different in their mean SES values?
- 4. Are the two groups different in their mean SWB values?
- 5. Is the effect of SES on SWB the same for both groups?

filename: china.R (R script)

```
# Example 1. Effect of SES on SWB: A comparison between USA and China
# set work directory
setwd("c:/users/wchan/google drive/stat6108/data")
# load the lavaan package
library(lavaan)
library(semPlot)
# data preparation
# group 1: USA
usa.corr <- "
1.00
 .48 1.00
 .22
      .34 1.00
 .27
      .22 .39 1.00
 .23
       .22
            .20
                  .12 1.00
 .27
            .23
                  .16
                       .64 1.00"
       .30
usa.sd <- c(1.36, 1.20, 1.19, 3.24, 3.90, 2.72)
usa.mean \leftarrow c(3.84, 3.29, 2.60, 6.44, 20.42, 10.07)
# group 2: China
china.corr <- "
1.00
 .44 1.00
 .22
      .20 1.00
 .30
      .18 .38 1.00
 .27
       .27
            .21
                 .08 1.00
                       .66 1.00"
 .27
       .12
            .25
                  .20
china.sd <- c(1.33, 1.28, 1.08, 2.65, 3.76, 2.68)
china.mean <-c(3.52, 3.08, 2.09, 5.36, 19.67, 9.56)
```

```
# assgin variable labels
varname <- c("parent", "edu", "occup", "income", "general", "work")</pre>
usa.cov <- getCov(usa.corr, sds=usa.sd, names=varname)</pre>
china.cov <- getCov(china.corr, sds=china.sd, names=varname)</pre>
names(usa.mean) <- names(china.mean) <- varname</pre>
# specify Model 1 (configural invariance)
model1 <- "
# measurement model
SES =~ 1*parent + edu + occup + income
SWB =~ 1*general + work
# error variance
parent ~~ parent
edu ~~ edu
occup ~~ occup
income ~~ income
general ~~ general
work ~~ work
# structural paths
SWB ~ SES
# factor and disturbance variance
SES ~~ SES
SWB ~~ SWB
# intercepts
parent + edu + occup + income + general + work ~ 1
# Fit Model 1 to data
fit1 <-lavaan(model1, sample.cov=list(USA=usa.cov, China=china.cov), sample.mean=list(USA=usa.mean,
China=china.mean), sample.nobs=c(200, 220))
```

```
# specify Model 2 (strong measurement invariance)
model2 <- "
# measurement model
SES =~ parent + edu + occup + income
SWB =~ general + work
# structural paths
SWB ~ c(ga1,ga2)*SES
# means/intercepts of latent variables
SES \sim c(al_x1,al_x2)*1
SWB ~ c(al_y1,al_y2)*1
# constraint the intercepts of the factors in China
al x2 == 0
al y2 == 0
# Define new parameters
# difference of gamma_11 between USA and China
gamma_d := ga2-ga1
# mean of SWB in USA
mean SWB USA := ga1*al x1+al y1
# Fit Model 2 to data
fit2 <-lavaan(model2, sample.cov=list(USA=usa.cov, China=china.cov), sample.mean=list(USA=usa.mean,
China=china.mean), sample.nobs=c(200, 220), auto.var=TRUE, auto.fix.first=TRUE, meanstructure=TRUE,
int.ov.free=TRUE, group.equal=c("loadings","intercepts"))
```

```
# specify Model 3 (using LR test to compare the effect of SES on SWB)
model3 <- "
# measurement model
SES =~ parent + edu + occup + income
SWB =~ general + work
# structural paths
SWB \sim c(qa,qa)*SES
# means/intercepts of latent variables
SES \sim c(al x1,al x2)*1
SWB \sim c(al y1,al y2)*1
# constraint the intercepts of the factors in China
al x2 == 0
al y2 == 0
# mean of SWB in USA
mean SWB USA := ga*al x1+al y1
# Fit Model 3 to data
fit3 <-lavaan(model3, sample.cov=list(USA=usa.cov, China=china.cov), sample.mean=list(USA=usa.mean,
China=china.mean), sample.nobs=c(200, 220), auto.var=TRUE, auto.fix.first=TRUE, meanstructure=TRUE,
int.ov.free=TRUE, group.equal=c("loadings","intercepts"))
# save the output
sink("china.out", split=TRUE)
writeLines("\n Example 1. Effect of SES on SWB: A comparison between USA and China\n")
writeLines("\n Output for Model 1 (Configural Invariance)\n")
inspect(fit1)
summary(fit1, fit.measures=TRUE, standardized=TRUE)
writeLines("\n Output for Model 2 (Strong Factorial Invariance)\n")
inspect(fit2)
summary(fit2, fit.measures=TRUE, standardized=TRUE)
writeLines("\n Output for Model 3 (using LR test to compare the effect of SES on SWB)\n")
summary(fit3, fit.measures=TRUE, standardized=TRUE)
writeLines("\n Model Comparisons\n")
lavTestLRT(fit1, fit2, fit3)
sink()
```

```
# output path diagrams
semPaths(fit1,"path","est",layout="tree2")
semPaths(fit2,"path","est",style="lisrel",layout="spring")
```

filename: china.out (output file)

Example 1. Effect of SES on SWB: A comparison between USA and China

Output for Model 1 (Configural Invariance)

\$USA

\$USA\$lambda

	SES	SMR
parent	0	0
edu	1	0
occup	2	0
income	3	0
general	0	0
work	0	4

\$USA\$theta

parent edu occup income generl work parent 5 edu 0 6 cocup 0 7

income 0 0 0 8
general 0 0 0 0 9
work 0 0 0 0 0 10

\$USA\$psi

SES SWB

SES 12

SWB 0 13

\$USA\$beta

SES SWB

SES 0 0

SWB 11 0

\$USA\$nu

parent 14
edu 15
occup 16
income 17
general 18
work 19

\$USA\$alpha

intrcp

SES C

\$China

\$China\$lambda

SES SWB parent 0 0 edu 20 0 occup 21 income 22 0 general 0 0 work 0 23

\$China\$theta

parent edu occup income generl work parent 24 edu 0 25 0 26 occup income 0 27 general 0 0 0 0 28 0 0 29 0 0 work

\$China\$psi

SES SWB

SES 31

SWB 0 32

\$China\$beta

SES SWB

SES 0 0

SWB 30 0

\$China\$nu

parent 33
edu 34
occup 35
income 36
general 37
work 38

\$China\$alpha

intrcp

SES 0

SWB 0

lavaan 0.6-3 ended normally after 110 iterations

Optimization method	NLMINB	
Number of free parameters	38	
Number of observations per group		
USA	200	
China	220	
Estimator	ML	
Model Fit Test Statistic	57.468	

Degrees of freedom P-value (Chi-square)		16 0.000
r-varue (CIII-square)		0.000
Chi-square for each group:		
USA		19.900
China		37.568
Model test baseline model:		
Minimum Function Test Statistic	5	34.875 30
Degrees of freedom P-value		0.000
User model versus baseline model:		
Comparative Fit Index (CFI)		0.918
Tucker-Lewis Index (TLI)		0.846
Loglikelihood and Information Criteria:		
Loglikelihood user model (H0)	-50	27.831
Loglikelihood unrestricted model (H1)	-49	99.097
Number of free parameters		38
Akaike (AIC)		31.661
Bayesian (BIC) Sample-size adjusted Bayesian (BIC)		85.191 64.605
Sample-Size adjusted Bayesian (BIC)	101	04.605
Root Mean Square Error of Approximation:		
RMSEA		0.111
90 Percent Confidence Interval	0.081	
P-value RMSEA <= 0.05		0.001

Standardized Root Mean Square Residual:

SRMR 0.049

Parameter Estimates:

Information	Expected
Information saturated (h1) model	Structured
Standard Errors	Standard

Group 1 [USA]:

Latent Variables:

	Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
SES =~						
parent	1.000				0.852	0.628
edu	0.974	0.167	5.837	0.000	0.830	0.694
occup	0.694	0.136	5.084	0.000	0.591	0.498
income	1.625	0.358	4.545	0.000	1.385	0.429
SWB =~						
general	1.000				2.773	0.713
work	0.879	0.173	5.082	0.000	2.436	0.898
Regressions:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
SWB ~				• •		
SES	1.557	0.417	3.738	0.000	0.479	0.479
Intercepts:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.parent	3.840	0.096	40.031	0.000	3.840	2.831
.edu	3.290	0.085	38.870	0.000	3.290	2.749
.occup	2.600	0.084	30.976	0.000	2.600	2.190
.income	6.440	0.229	28.180	0.000	6.440	1.993
.general	20.420	0.275	74.233	0.000	20.420	5.249

.work	10.070	0.192	52.488	0.000	10.070	3.711
SES	0.000				0.000	0.000
.SWB	0.000				0.000	0.000
Variances:						
	Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
.parent	1.114	0.159	7.025	0.000	1.114	0.605
.edu	0.743	0.127	5.860	0.000	0.743	0.519
.occup	1.059	0.124	8.556	0.000	1.059	0.752
.income	8.527	0.944	9.028	0.000	8.527	0.816
.general	7.447	1.598	4.660	0.000	7.447	0.492
.work	1.425	1.101	1.294	0.196	1.425	0.194
SES	0.726	0.185	3.928	0.000	1.000	1.000
.SWB	5.925	1.430	4.142	0.000	0.771	0.771
Group 2 [China]:						
Latent Variables:						
	Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
SES =~						
parent	1.000				0.909	0.685
edu	0.785	0.148	5.306	0.000	0.714	0.559
occup	0.517	0.112	4.607	0.000	0.470	0.436
income	1.319	0.279	4.733	0.000	1.199	0.454
SWB =~						
general	1.000				3.117	0.831
work	0.681	0.122	5.602	0.000	2.124	0.794
5						
Regressions:						
Regressions:	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
Regressions:	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all

Intercepts:

.SWB

incercepts:						
	Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
.parent	3.520	0.089	39.345	0.000	3.520	2.653
.edu	3.080	0.086	35.772	0.000	3.080	2.412
.occup	2.090	0.073	28.769	0.000	2.090	1.940
.income	5.360	0.178	30.069	0.000	5.360	2.027
.general	19.670	0.253	77.771	0.000	19.670	5.243
.work	9.560	0.180	53.030	0.000	9.560	3.575
SES	0.000				0.000	0.000
.SWB	0.000				0.000	0.000
Variances:						
	Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
.parent	0.935	0.162	5.762	0.000	0.935	0.531
.edu	1.121	0.141	7.975	0.000	1.121	0.688
.occup	0.940	0.102	9.243	0.000	0.940	0.810
.income	5.552	0.610	9.109	0.000	5.552	0.794
.general	4.359	1.688	2.582	0.010	4.359	0.310
.work	2.638	0.800	3.296	0.001	2.638	0.369
SES	0.826	0.197	4.204	0.000	1.000	1.000

7.501 1.747 4.294 0.000

0.772 0.772

Output for Model 2 (Strong Factorial Invariance)

Note: model contains equality constraints:

```
1hs op rhs
1 27 == 0
2 28 == 0
3 1 == 22
4 2 == 23
5 3 == 24
6 4 == 25
7 16 == 37
8 17 == 38
9 18 == 39
10 19 == 40
11 20 == 41
12 21 == 42
```

\$USA

\$USA\$lambda

	SES	SWB
parent	0	0
edu	1	0
occup	2	0
income	3	0
general	0	0
work	٥	4

\$USA\$theta

	parent	edu	occup	income	generl	work
parent	8					
edu	0	9				
occup	0	0	10			
income	0	0	0	11		
general	0	0	0	0	12	
work	0	0	0	0	0	13

\$USA\$psi SES SWB SES 14 SWB 0 15 \$USA\$beta SES SWB 0 SES 0 SWB 5 0 \$USA\$nu intrcp parent 16 edu 17 18 occup income 19

\$USA\$alpha

general work

intrcp

20

21

SES 6

SWB 7

\$China

\$China\$lambda

	SES	SWE
parent	0	0
edu	22	0
occup	23	0
income	24	0
general	0	0
work	0	25

```
$China$theta
       parent edu occup income generl work
parent 29
edu
               30
               0
occup
                  31
income
                   0
                        32
general 0
                         0
               0
                   0
                               33
                   0
                         0
                                      34
work
                                0
$China$psi
    SES SWB
SES 35
SWB 0 36
$China$beta
    SES SWB
    0
         0
SES
SWB 26
        0
$China$nu
       intrcp
            37
parent
            38
edu
            39
occup
income
            40
general
            41
work
            42
$China$alpha
    intrcp
```

lavaan 0.6-3 ended normally after 98 iterations

Optimization method

27

28

SES

SWB

NLMINB

Number of free parameters	42
Number of equality constraints	12
Number of observations per group	
USA	200
China	220
Estimator	ML
Model Fit Test Statistic	70.912
Degrees of freedom	24
P-value (Chi-square)	0.000
Chi-square for each group:	
Chi-square for each group:	
USA	26.546
China	44.365
	
Model test baseline model:	
Minimum Function Test Statistic	534.875
Degrees of freedom	30
P-value	0.000
User model versus baseline model:	
Comparative Fit Index (CFI)	0.907
Tucker-Lewis Index (TLI)	0.884
rucker neweb index (Int)	0.001
Loglikelihood and Information Criteria:	
Loglikelihood user model (H0)	-5034.552
Loglikelihood unrestricted model (H1)	-4999.097
Logithorimood unleadificted model (III)	- 1000.001
Number of free parameters	30
Akaike (AIC)	10129.105
Bayesian (BIC)	10250.312
	=========

Sample-size adjusted Bayesian (BIC) 10155.113

Root Mean Square Error of Approximation:

RMSEA 0.096
90 Percent Confidence Interval 0.071 0.123
P-value RMSEA <= 0.05 0.002

Standardized Root Mean Square Residual:

SRMR 0.057

Parameter Estimates:

Information Expected
Information saturated (h1) model Structured
Standard Errors Standard

Group 1 [USA]:

Latent Variables:

		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
SES =~							
parent		1.000				0.861	0.631
edu	(.p2.)	0.861	0.108	7.950	0.000	0.742	0.631
occup	(.p3.)	0.743	0.098	7.602	0.000	0.640	0.532
income	(.p4.)	1.783	0.245	7.263	0.000	1.536	0.471
SWB =~							
general		1.000				2.954	0.754
work	(.p6.)	0.779	0.097	8.000	0.000	2.300	0.851

Regressions:

		Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
SWB ~							
SES	(gal)	1 686	0 375	4 498	0 000	0 492	0 492

Intercepts:									
		Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all		
SES	(al_x1)	0.428	0.104	4.107	0.000	0.497	0.497		
.SWB	(al_y1)	-0.033	0.336	-0.097	0.923	-0.011	-0.011		
.parent	(.18.)	3.469	0.080	43.553	0.000	3.469	2.540		
.edu	(.19.)	2.990	0.074	40.363	0.000	2.990	2.543		
.occup	(.20.)	2.173	0.065	33.310	0.000	2.173	1.805		
.income	(.21.)	5.475	0.161	34.036	0.000	5.475	1.678		
.generl	(.22.)	19.696	0.239	82.424	0.000	19.696	5.029		
.work	(.23.)	9.547	0.177	54.018	0.000	9.547	3.534		
Variances:									
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all		
.parent		1.123	0.153	7.353	0.000	1.123	0.602		
.edu		0.832	0.114	7.321	0.000	0.832	0.602		
.occup		1.040	0.123	8.468	0.000	1.040	0.717		
.income		8.291	0.929	8.924	0.000	8.291	0.779		
.general	-	6.617	1.322	5.006	0.000	6.617	0.431		
.work		2.007	0.723	2.778	0.005	2.007	0.275		
SES		0.742	0.155	4.794	0.000	1.000	1.000		
.SWB		6.615	1.310	5.048	0.000	0.758	0.758		
Group 2 [Ch	ina]:								
T. L	-1-1								
Latent Vari	ables:	Eatimata	Chd Emm	1	D(> -)	Std.lv	C+4 -11		
SES =~		Estimate	Std.Err	z-value	P(> z)	sta.iv	Std.all		
parent		1.000				0.771	0.591		
edu	(.p2.)	0.861	0.108	7.950	0.000	0.664	0.518		
occup	(.p3.)	0.743	0.098	7.602	0.000	0.573	0.523		
income	(.p4.)	1.783	0.245	7.263	0.000	1.374	0.516		
SWB =~									
general		1.000				2.912	0.779		
-									

0.097

8.000

0.000

2.268

0.845

Regressions:

work

(.p6.)

0.779

		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all		
SWB ~									
SES	(ga2)	1.820	0.409	4.445	0.000	0.482	0.482		
-									
Intercepts	5 :		a. 1 =	-	-4. I IS	a	a. 1 11		
	(7 0)	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all		
SES	(al_x2)	0.000				0.000	0.000		
.SWB	(al_y2)	0.000				0.000	0.000		
.parent		3.469	0.080	43.553	0.000	3.469	2.660		
.edu	(.19.)	2.990	0.074	40.363	0.000	2.990	2.331		
.occup	(.20.)	2.173	0.065	33.310	0.000	2.173	1.984		
.income	(.21.)	5.475	0.161	34.036	0.000	5.475	2.057		
.gener]	L (.22.)	19.696	0.239	82.424	0.000	19.696	5.273		
.work	(.23.)	9.547	0.177	54.018	0.000	9.547	3.559		
Variances:									
		Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all		
.parent	=	1.106	0.139	7.933	0.000	1.106	0.651		
.edu		1.204	0.137	8.802	0.000	1.204	0.732		
.occup		0.871	0.100	8.714	0.000	0.871	0.726		
.income	•	5.197	0.594	8.748	0.000	5.197	0.733		
.genera	al	5.477	1.213	4.515	0.000	5.477	0.392		
.work		2.053	0.692	2.965	0.003	2.053	0.285		
SES		0.594	0.126	4.705	0.000	1.000	1.000		
.SWB		6.510	1.251	5.203	0.000	0.768	0.768		
Defined Pa	arameters								
		Estimate	Std.Err	z-value	P(> z)		Std.all		
gamma_	_ d	0.133	0.487	0.274	0.784	-0.010	-0.010		
mean_s	SWB_USA	0.689	0.325	2.117	0.034	0.233	0.233		
Constraint	-a•								
CONSCIALIN					Slack				
al0	0				0.000				
al_x2									
al_y2	- 0				0.000				

Output for Model 3 (using LR test to compare the effect of SES on SWB)

lavaan 0.6-3 ended normally after 93 iterations

Optimization method Number of free parameters Number of equality constraints	NLMINB 42 13
Number of observations per group USA China	200 220
Estimator Model Fit Test Statistic Degrees of freedom P-value (Chi-square)	ML 70.986 25 0.000
Chi-square for each group:	
USA China	26.587 44.399
Model test baseline model:	
Minimum Function Test Statistic Degrees of freedom P-value	534.875 30 0.000
User model versus baseline model:	
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.909 0.891
Loglikelihood and Information Criteria:	
Loglikelihood user model (H0)	-5034.590

Loglikelihood unrestricted model (H1)	-4999.097
Number of free parameters	29
Akaike (AIC)	10127.179
Bayesian (BIC)	10244.347
Sample-size adjusted Bayesian (BTC)	10152.321

Root Mean Square Error of Approximation:

RMSEA		0.094
90 Percent Confidence Interval	0.068	0.120
P-value RMSEA <= 0.05		0.003

Standardized Root Mean Square Residual:

SRMR 0.057

Parameter Estimates:

Information Expected
Information saturated (h1) model Structured
Standard Errors Standard

Group 1 [USA]:

Latent Variables:

		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
SES =~							
parent	=	1.000				0.858	0.629
edu	(.p2.)	0.862	0.108	7.955	0.000	0.739	0.629
occup	(.p3.)	0.742	0.098	7.597	0.000	0.637	0.529
income	e (.p4.)	1.781	0.245	7.265	0.000	1.529	0.469
SWB =~							
genera	al	1.000				2.966	0.755
work	(.p6.)	0.780	0.098	7.981	0.000	2.314	0.854

Regressions:								
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
SWB ~								
SES	(ga)	1.744	0.307	5.686	0.000	0.505	0.505	
Intercepts				_				
	_	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
SES	(al_x1)	0.428	0.104	4.106	0.000	0.498	0.498	
.SWB	(al_y1)	-0.058	0.323	-0.180	0.857	-0.020	-0.020	
.parent	(.18.)	3.469	0.080	43.473	0.000	3.469	2.543	
.edu	(.19.)	2.990	0.074	40.292	0.000	2.990	2.545	
.occup	(.20.)	2.173	0.065	33.270	0.000	2.173	1.807	
.income	(.21.)	5.475	0.161	34.000	0.000	5.475	1.679	
.generl	(.22.)	19.697	0.238	82.713	0.000	19.697	5.014	
.work	(.23.)	9.547	0.176	54.188	0.000	9.547	3.521	
Variances:								
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
<pre>.parent</pre>		1.125	0.152	7.394	0.000	1.125	0.604	
.edu		0.834	0.113	7.360	0.000	0.834	0.604	
.occup		1.041	0.123	8.494	0.000	1.041	0.720	
.income		8.302	0.929	8.941	0.000	8.302	0.780	
.general	L	6.637	1.323	5.018	0.000	6.637	0.430	
.work		1.995	0.725	2.752	0.006	1.995	0.271	
SES		0.737	0.152	4.839	0.000	1.000	1.000	
.SWB		6.555	1.295	5.061	0.000	0.745	0.745	
a 0 fal								
Group 2 [Cl	nina]:							
Latent Vari	iables:							
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
SES =~					` 1 17			
parent		1.000				0.775	0.594	
edu	(.p2.)	0.862	0.108	7.955	0.000	0.668	0.520	
	(• /	J.002		. •			0.520	

occup income SWB =~	(.p3.) (.p4.)	0.742 1.781	0.098 0.245	7.597 7.265	0.000 0.000	0.575 1.381	0.525 0.518
general work	(.p6.)	1.000 0.780	0.098	7.981	0.000	2.895 2.259	0.777 0.845
Regressions	: :						
		Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
SWB ~							
SES	(ga)	1.744	0.307	5.686	0.000	0.467	0.467
Intercepts:	:						
		Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
SES	(al_x2)	0.000	NA			0.000	0.000
.SWB	(al_y2)	0.000				0.000	0.000
.parent	(.18.)	3.469	0.080	43.473	0.000	3.469	2.658
.edu	(.19.)	2.990	0.074	40.292	0.000	2.990	2.330
.occup	(.20.)	2.173	0.065	33.270	0.000	2.173	1.982
.income	(.21.)	5.475	0.161	34.000	0.000	5.475	2.056
.generl	(.22.)	19.697	0.238	82.713	0.000	19.697	5.287
.work	(.23.)	9.547	0.176	54.188	0.000	9.547	3.571
Variances:							
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.parent		1.103	0.139	7.921	0.000	1.103	0.647
.edu		1.201	0.137	8.792	0.000	1.201	0.729
.occup		0.871	0.100	8.709	0.000	0.871	0.725
.income		5.187	0.594	8.734	0.000	5.187	0.731
.general	L	5.495	1.214	4.528	0.000	5.495	0.396
.work		2.042	0.695	2.940	0.003	2.042	0.286
SES		0.601	0.125	4.793	0.000	1.000	1.000
.SWB		6.556	1.234	5.315	0.000	0.782	0.782
Defined Par	ameters	:					
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
mean_SW	VB_USA	0.688	0.325	2.115	0.034	0.232	0.232

Constraints:

Model Comparisons

Chi Square Difference Test

```
Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
fit1 16 10132 10285 57.468
fit2 24 10129 10250 70.912 13.4435 8 0.09747 .
fit3 25 10127 10244 70.986 0.0746 1 0.78471
---
Signif. codes: 0 \***' 0.001 \**' 0.05 \.' 0.1 \' 1
```

• Model Goodness-of-fit:

Mod	$\det \chi_1^2$	χ^2_2	χ^2 (df)	p	NNFI	CFI	RMSEA	SRMR	$\Delta \chi^2$	Δdf	p	
1	19.900	37.568	57.468 (16)	.000	0.846	0.918	0.111	0.049				
2	26.546	44.365	70.912 (24)	.000	0.884	0.907	0.096	0.057	13.444	8	.097	
3	26.587	44.399	70.986 (25)	.000	0.891	0.909	0.094	0.057	0.074	1	.785	

• Parameter estimates:

		<u> </u>	Model 2		Model	
Effects	Parameters	USA	China	USA		China
mean of SES	$\widehat{lpha}_{\scriptscriptstyle \mathcal{X}}$	0.428*	0	0.428*		0
intercept of SWB	\widehat{lpha}_{y}	-0.033	0	-0.058		0
mean of SWB	$(I-\widehat{\beta})^{-1}(\widehat{\gamma}\widehat{\alpha}_x+\widehat{\alpha}_y)$	0.689*	0	0.688*		0
effect of SES on S	WB $\widehat{\gamma}$	1.686*	1.820*	1.744*	=	1.744*

7.7. Output Path Diagrams

```
> library(semPlot)
> semPaths(fit1,"path","est",layout="tree2")
1
```


> semPaths(fit2,"path","est",style="lisrel",layout="spring")

