

AP2132B

General Description

The AP2132B series are positive voltage regulator ICs fabricated by CMOS process. The ICs consist of a voltage reference, an error amplifier, a power transistor, a resistor network for setting output voltage, a current limit circuit for current protection, and a chip enable circuit.

The AP2132B series have features of large current, low dropout voltage, high output voltage accuracy, low input voltage. The AP2132B provides a power good (PG) signal to indicate if the voltage level of $V_{\rm OUT}$ reaches 92% of its rating value. And it operates with $V_{\rm IN}$ as low as 1.4V and $V_{\rm CTRL}$ voltage 5V with output voltage programmable as low as 0.8V.

The AP2132B are available in 1.2V, 1.5V, 1.8V, 2.5V fixed output voltage versions and adjustable output voltage version. The fixed versions integrate the adjust resistors. It is also available in an adjustable version, which can set the output voltage with external resistor. If the pin of adjustable output voltage is to ground, it will switch to fixed output voltage.

AP2132B series are available in PSOP-8 package.

Features

- Adjustable Output: 0.8V to 3.0V
- Low Dropout Voltage: 300mV@ I_{OUT}=2A, V_{OUT}=1.2V
- Over Current and Over Temperature Protection
- Enable Pin
- PSOP-8 Package with Thermal Pad
- Maximum Output Current: 2A
- High Output Voltage Accuracy: 2%
- V_{OUT} Power Good Signal
- Excellent Line/Load Regulation

Applications

Notebook

Figure 1. Package Type of AP2132B

AP2132B

Pin Configuration

Figure 2. Pin Configuration of AP2132B (Top View)

Pin Description

Pin Number	Pin Name	Function	
1	PG	Assert high once V _{OUT} reaches 92% of its rating voltage	
2	EN	Enable input	
3	VIN	Input voltage	
4	VCTRL	Input voltage for controlling circuit	
5	NC	Not connected	
6	VOUT	Regulated output voltage	
7	ADJ	Adjust output: when connected to ground, the output voltage is set by internal resistors; when external feedback resistors are connected, the output voltage will be $V_{\rm OUT}$ =0.8(R1+R2)/R2	
8	GND	Ground	

AP2132B

Functional Block Diagram

Figure 3. Functional Block Diagram of AP2132B

AP2132B

Ordering Information

Package	Temperature Range	Version Description	Part Number	Marking ID	Packing Type	
PSOP-8	-40 to 85 °C	Each fixed output version integrates ADJ version	AP2132BMP-1.2G1	2132B-1.2G1	Tube	
			AP2132BMP-1.2TRG1	2132B-1.2G1	Tape & Reel	
			AP2132BMP-1.5G1	2132B-1.5G1	Tube	
			AP2132BMP-1.5TRG1	2132B-1.5G1	Tape & Reel	
			AP2132BMP-1.8G1	2132B-1.8G1	Tube	
			AP2132BMP-1.8TRG1	2132B-1.8G1	Tape & Reel	
			AP2132BMP-2.5G1 2132B-2.5G1	Tube		
			AP2132BMP-2.5TRG1	2132B-2.5G1	Tape & Reel	

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and Green.

AP2132B

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit
Input Voltage Input Voltage for Controlling Circuit	$egin{array}{c} V_{IN} \ V_{CTRL} \end{array}$	6.0	V
Enable Input Voltage	$V_{\rm EN}$	-0.3 to 6.0	V
Output Current	I_{OUT}	2.5	A
Thermal Resistance (Note 2)	θ_{JA}	53	°C/W
Operating Junction Temperature	T_{J}	150	°C
Storage Temperature Range	T_{STG}	-65 to 150	°C
Lead Temperature (Soldering, 10sec)	T_{LEAD}	260	°C
ESD (Machine Model)		200	V
ESD (Human Body Model)		2000	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Note 2: θ_{JA} is measured with the component mounted on 2-Layer FR-4 PCB board with 1.0cm*1.0cm thermal sink pad in free air.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Input Voltage	V_{IN}	1.4	5.5	V
Input Voltage for Controlling Circuit	V _{CTRL}	4.5	5.5	V
Operating Ambient Temperature Range	T_{A}	-40	85	°C

AP2132B

Electrical Characteristics

 $V_{IN} = V_{OUT} + 0.5V, \ V_{CTRL} = V_{EN} = 5V, \ T_A = 25^{o}C, \ C_{IN} = C_{OUT} = 10 \mu F, \ C_{CTRL} = 1 \mu F, \ I_{OUT} = 10 mA, \ unless \ otherwise specified.$

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Output Voltage	V_{OUT}	$V_{IN} = V_{OUT} + 0.5V,$ $I_{OUT} = 10$ mA		$V_{OUT} \times 98\%$		$V_{\rm OUT} \times 102\%$	V
Input Voltage	V_{IN}			1.4		5.5	V
Current Limit	I_{LIMIT}	V _{IN} -V _{OUT} =1V		3			A
Load Regulation	V_{RLOAD}	$V_{IN}=V_{OUT}+0.5V$, $10\text{mA} \leq I_{O}$	_{UT} ≤2A		10		mV
Line Regulation	V_{RLINE}	V_{OUT} +0.5 V ≤ V_{IN} ≤5 V , I_{OUT} =10 m A		2		mV	
		I _{OUT} =500mA			80	120	mV
Dropout Voltage	$ m V_{DROP}$	I _{OUT} =1A			150	200	mV
		I _{OUT} =2A			300	450	mV
Supply Current	I _{SUPPLY}	V _{IN} =V _{OUT} +0.5V, I _{OUT} =0mA	A		300		μΑ
V _{CTRL} Current	I_{CTRLH}	$V_{IN}=V_{OUT}+0.5V$, $V_{CTRL}=V_{I}$	_{EN} =5V		250	500	μΑ
V CTRL Current	I _{CTRLL}	$V_{IN}=V_{OUT}+0.5V$, $V_{CTRL}=5V$	V , $V_{EN}=0V$		0.1	1.0	μΑ
Power Supply Rejection Ratio	PSRR	Ripple 0.5Vp-p, $V_{IN}=V_{OUT}+1V$	f=100Hz f=1kHz		60		dB dB
Output Voltage Temperature Coefficient	$\frac{\triangle V_{OUT}}{V_{OUT} \times \triangle T}$	I _{OUT} =10mA, -40 °C≤T _A ≤85°C			±100		ppm/ °C
Short Circuit Current	I_{SHORT}				0.3	0.5	A
Reference Voltage	V_{REF}	Adjust Short to V _{OUT}		0.784	0.8	0.816	V
Enable "High" Voltage		Enable Input Voltage "High"		1.2			V
Enable "Low" Voltage		Enable Input Voltage "Low"				0.4	V
Thermal Shutdown	OTSD				165		°C
Thermal Shutdown Hysteresis					20		°C
V _{OUT} Power Good Voltage	V_{THPG}				92		%
V _{PG} Hysteresis					7		%
Adjust Pin Threshold					200		mV
Thermal Resistance (Junction to Case)	$ heta_{ m JC}$	PSOP-8			29		°C/W

AP2132B

Typical Performance Characteristics

Figure 4. Supply Current vs. Output Current

Figure 5. Supply Current vs. Case Temperature

Figure 6. Enable High/Low Voltage vs. Case Temperature

Figure 7. Supply Current vs. Input Voltage

AP2132B

Typical Performance Characteristics (Continued)

Figure 8. Output Voltage vs. Case Temperature

Figure 9. Output Voltage vs. Output Current

Figure 10. Output Voltage vs. Input Voltage

Figure 11. Dropout Voltage vs. Output Current

AP2132B

Typical Performance Characteristics (Continued)

Figure 12. Dropout Voltage vs. Case Temperature

Figure 13. Short Current vs. Case Temperature

Figure 15. V_{IN} Start up Waveform ($V_{CTRL} = V_{EN} = 5V$, $V_{IN} = 0$ to 2.2V, No Load)

AP2132B

Typical Performance Characteristics (Continued)

Figure 16. V_{EN} Start up Waveform (V_{CTRL} =5V, V_{EN} =0 to 5V, V_{IN} =2.2V, No Load)

Figure 17. V_{CTRL} Start up and Shut down Waveform (V_{CTRL} =0 to 5V, V_{EN} =5V, V_{IN} =2.2V, No Load)

Figure 18. Load Transient (V_CTRL=V_EN=5V, V_IN=2.2V, I_OUT=0 to 2A)

 $\label{eq:continuous} Figure 19. Line Transient $$(V_{CTRL}=V_{EN}=5V,\ C_{IN}=C_{CTRL}=1\mu F,\ C_{OUT}=10\mu F,\ V_{IN}=2.2V\ to\ 3.2V,\ I_{OUT}=10mA)$$$

AP2132B

Typical Application

Figure 20. Typical Application of AP2132B for Adjustable Version

Figure 21. Typical Application of AP2132B for Fixed Version

AP2132B

Mechanical Dimensions

PSOP-8 Unit: mm(inch)

Note: Eject hole, oriented hole and mold mark is optional.

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788