Методы оптимизации

Семинар б. Линейное программирование. Симплекс-метод

Лобанов Александр Владимирович

Московский физико-технический институт Факультет инноваций и высоких технологий

lobanov.av@mipt.ru

6 октября 2022 г.

Задача линейного программирования (ЗЛП)

Постановка задачи

Пусть даны векторы $c \in \mathbb{R}^n, b \in \mathbb{R}^m$ и матрица $A \in \mathbb{R}^{m \times n}$

Задача линейного программирования (ЗЛП)

Постановка задачи

Пусть даны векторы $c \in \mathbb{R}^n, b \in \mathbb{R}^m$ и матрица $A \in \mathbb{R}^{m \times n}$

Каноническая форма

$$\min_{x \in \mathbb{R}^n} c^T x$$
 s.t. $Ax \leq b$
$$x_i \geq 0, i = 1, ..., n$$

Задача линейного программирования (ЗЛП)

Постановка задачи

Пусть даны векторы $c \in \mathbb{R}^n, b \in \mathbb{R}^m$ и матрица $A \in \mathbb{R}^{m \times n}$

Каноническая форма

$$\min_{x \in \mathbb{R}^n} c^T x$$

s.t. $Ax \leq b$

$$x_i \ge 0, i = 1, ..., n$$

Стандартная форма

$$\min_{x \in \mathbb{R}^n} c^T x$$

s.t.
$$Ax = b$$

$$x_i \ge 0, i = 1, ..., n$$

Стандартная ightarrow Каноничная

 K аноничная $o \mathsf{C}$ тандартная

Стандартная o Каноничная

$$Ax = b \leftrightarrow \begin{cases} Ax \le b \\ Ax \ge b \end{cases}$$

Каноничная ightarrow Стандартная

Стандартная o Каноничная

$$Ax = b \leftrightarrow \begin{cases} Ax \le b \\ Ax \ge b \end{cases}$$

Каноничная ightarrow Стандартная

$$Ax \le b \leftrightarrow \begin{cases} Ax + z = b \\ z \ge 0 \end{cases}$$

Стандартная o Каноничная

$$Ax = b \leftrightarrow \begin{cases} Ax \le b \\ Ax \ge b \end{cases}$$

Каноничная o Стандартная

$$Ax \le b \leftrightarrow \begin{cases} Ax + z = b \\ z \ge 0 \end{cases}$$

Приложения

- Производство оптимального количества товара при ресурсных ограничениях (задача о диете, о рационе)
- Задача регрессии в нормах l_1 и l_∞ может быть сведена к задаче линейного программирования

Сильная и слабая двойственность в ЗЛП

Сильная и слабая двойственность в ЗЛП

Слабая двойственность

Пусть x^* – допустимое решение ЗЛП в стандартной форме, λ^* – допустимое решение двойственной задачи. Тогда $c^Tx^* \geq c^T\lambda^*$.

Сильная двойственность, основная теорема ЛП

Двойственная задача имеет оптимальное решение тогда и только тогда, когда оптимальное решение имеет прямая задача. Пусть x^* – конечное оптимальное решение ЗЛП в стандартной форме, λ^* – конечное оптимальное решение двойственной задачи. Тогда $c^Tx^*=c^T\lambda^*$.

Сильная и слабая двойственность в ЗЛП

Слабая двойственность

Пусть x^* – допустимое решение ЗЛП в стандартной форме, λ^* – допустимое решение двойственной задачи. Тогда $c^Tx^* \geq c^T\lambda^*$.

Сильная двойственность, основная теорема ЛП

Двойственная задача имеет оптимальное решение тогда и только тогда, когда оптимальное решение имеет прямая задача. Пусть x^* – конечное оптимальное решение ЗЛП в стандартной форме, λ^* – конечное оптимальное решение двойственной задачи. Тогда $c^Tx^*=c^T\lambda^*$.

Полезное свойство

Переход к двойственной задачи в случае, когда число ограничений значительно меньше числа переменных в прямой задаче, может сильно уменьшить размерность задачи, которую требуется решить.

Симплекс метод

Симплекс метод

Определения

- Базисом B называется подмножество n (целых чисел) индексов между 1 и m, так что ${\bf rank}(A_B)=n.$
- ullet Базис B является допустимым, если $Ax_B \leq b$. $(x_B = A_B^{-1}b_B)$
- Базис B является оптимальным, если $\forall x \ c^T x_B \leq c^T x$.

Симплекс метод

Определения

- Базисом B называется подмножество n (целых чисел) индексов между 1 и m, так что ${\bf rank}(A_B)=n.$
- ullet Базис B является допустимым, если $Ax_B \leq b$. $(x_B = A_B^{-1}b_B)$
- Базис B является оптимальным, если $\forall x \ c^T x_B \le c^T x$.

Теорема

Разложим вектор целевой функции c по выбранному базису: $c=A_B^T\lambda_B$. Тогда если все компоненты λ_B неположительны и B – допустимый базис, то B является оптимальным базисом.

Алгоритм симплекс метода

Алгоритм

- lacktriangle Выбрать допустимый базис $B_k \Rightarrow A_{B_k} x_k = b_{B_k} \Rightarrow x_k = A_{B_k}^{-1} b_{B_k}.$
- $oldsymbol{2}$ Разловить c в выбранный базис: $c = A_{B_k}^T \cdot \lambda_{B_k}.$
- **3** Проверить оптимальность $\lambda_{Bk} \leq 0$.
 - **①** Если $\lambda_{Bk} \leq 0 \quad \Rightarrow \quad x_k$ решение.
 - $oldsymbol{Q}$ Если какая-то компонента $\lambda_p>0$, то заменяем базис (Шаг 4).
- Замена Базиса:

$$x_{k+1} = x_k + \mu_k d_k, \quad d_k = \begin{cases} A_{B_k \setminus \{B_p\}} \cdot d = 0 \\ a_p^T d = -1, \end{cases} \quad t = \arg\min_j \{ \mu_j | \mu_j > 0 \}$$

 $\Rightarrow B_{k+1} = B_k \setminus \{B_p\} \cup \{t\} \Rightarrow x_{k+1} = A_{B_{k+1}}^{-1} \cdot b_{B_{k+1}}$

перейдите к Шагу 2.

