

CS201 DISCRETE MATHEMATICS FOR COMPUTER SCIENCE

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room413, CoE South Tower

Email: wangqi@sustech.edu.cn

Euler's Formula

Theorem (Euler's Formula) Let G be a connected planar simple graph with e edges and v vertices. Let r be the number of regions in a planar representation of G. Then r = e - v + 2.

Euler's Formula

- **Theorem** (Euler's Formula) Let G be a connected planar simple graph with e edges and v vertices. Let r be the number of regions in a planar representation of G. Then r = e v + 2.
- Corollary 1 If G is a connected planar simple graph with e edges and v vertices, where $v \ge 3$, then $e \le 3v 6$.

Corollary 2 If *G* is a connected planar simple graph, then *G* has a vertex of degree not exceeding 5.

Corollary 3 In a connected planar simple graph has e edges and v vertices with $v \ge 3$ and no circuits of length three, then $e \le 2v - 4$.

Graph Coloring

A coloring of a simple graph is the assignment of a color to each vertex of the graph so that no two adjacent vertices are assigned the same color.

Graph Coloring

A coloring of a simple graph is the assignment of a color to each vertex of the graph so that no two adjacent vertices are assigned the same color.

The *chromatic number* of a graph is the least number of colors needed for a coloring of this graph, denoted by $\chi(G)$.

Graph Coloring

A coloring of a simple graph is the assignment of a color to each vertex of the graph so that no two adjacent vertices are assigned the same color.

The *chromatic number* of a graph is the least number of colors needed for a coloring of this graph, denoted by $\chi(G)$.

Red

Blue

Applications of Graph Coloring

Scheduling Final Exams

Vertices represent courses, and there is an edge between two vertices if there is a common student in the courses.

Applications of Graph Coloring

Channel Assignments

Television channels 2 through 13 are assigned to stations in North America so that no two stations within 150 miles can operate on the same channel. How can the assignment of channels be modeled by graph coloring?

Applications of Graph Coloring

Channel Assignments

Television channels 2 through 13 are assigned to stations in North America so that no two stations within 150 miles can operate on the same channel. How can the assignment of channels be modeled by graph coloring?

Graph Coloring ∈ NPC

■ Problem: I know that P is true, and I want to convince you of that. I try to present all the facts I know and the inferences from the facts that imply P is true.

■ Problem: I know that P is true, and I want to convince you of that. I try to present all the facts I know and the inferences from the facts that imply P is true.

Example: *P* : 26781 is **not** a prime since $26781 = 113 \times 237$.

Problem: I know that P is true, and I want to convince you of that. I try to present all the facts I know and the inferences from the facts that imply P is true.

Example: *P* : 26781 is **not** a prime since $26781 = 113 \times 237$.

Given this factorization, other than that you are convinced that P is true, you gained some knowledge (the factorization).

Problem: I know that P is true, and I want to convince you of that. I try to present all the facts I know and the inferences from the facts that imply P is true.

Example: *P* : 26781 is **not** a prime since $26781 = 113 \times 237$.

Given this factorization, other than that you are convinced that P is true, you gained some knowledge (the factorization).

In a Zero Knowledge Proof, Alice will prove to Bob that a statement P is true. Bob will be completely convinced that P is true, but will not learn anything as a result of this process. That is, Bob will gain zero knowledge.

Protocol design. A protocol is an algorithm for interactive parties to achieve a certain goal. However, in crypto, we often want to design protocols that should achieve security even when one of the parties is "cheating". Alice can prove in zero knowledge that she followed the instructions.

Protocol design. A protocol is an algorithm for interactive parties to achieve a certain goal. However, in crypto, we often want to design protocols that should achieve security even when one of the parties is "cheating". Alice can prove in zero knowledge that she followed the instructions.

Proofs that Yield Nothing But their Validity and a Methodology of Cryptographic Protocol Design

(Extended Abstract)

Oded Goldreich

Dept. of Computer Sc.

Technion

Haifa, Israel

Silvio Micali

Lab. for Computer Sc.

MIT

Cambridge, MA 02139

Avi Wigderson

Inst. of Math. and CS

Hebrew University

Jerusalem, Israel

Identification scheme. How should Alice prove to Bob that she is who she claimed to be? For example, how to design a control access system to the CSE dept.?

Identification scheme. How should Alice prove to Bob that she is who she claimed to be? For example, how to design a control access system to the CSE dept.?

A direct solution is to have a box on the door and give authorized people a secret PIN number. However, a drawback is that the box remains outside all the time and if someone could examine the box, they would perhaps be able to view its memory and extract the secrets keys of all people.

Identification scheme. How should Alice prove to Bob that she is who she claimed to be? For example, how to design a control access system to the CSE dept.?

A direct solution is to have a box on the door and give authorized people a secret PIN number. However, a drawback is that the box remains outside all the time and if someone could examine the box, they would perhaps be able to view its memory and extract the secrets keys of all people.

Ideas using ZKPs:

- Let the box contain an *instance* of a hard problem.
- Give the authorized people the solution to the instance.
- The authorized people will *prove* to the box that they know the solution in zero knowledge.

Alice knows how to 3-color a graph: no two adjacent vertices have the same color; this is an NPC problem.

- Alice knows how to 3-color a graph: no two adjacent vertices have the same color; this is an NPC problem.
 - can impress your friends
 - useful for identification

- How can Alice convince Bob that she can 3-color the graph without
 - letting him steal her work?
 - letting him impersonate her?

- How can Alice convince Bob that she can 3-color the graph without
 - letting him steal her work?
 - letting him impersonate her?
 - Bob is convinced that Alice can do this.
 - Bob has no idea how to do it himself.

- How can Alice convince Bob that she can 3-color the graph without
 - letting him steal her work?
 - letting him impersonate her?
 - Bob is convinced that Alice can do this.
 - Bob has no idea how to do it himself.

Alice may permute the vertex colors.

Alice then encrypts all vertex colors (one key per vertex), and sends the graph to Bob.

Bob picks an edge at random.

Bob picks an edge at random.

Alice reveals colors of those two keys.

- Repeat as much as needed:
 - Alice permutes graph coloring
 - Alice encrypts all vertices with distinct keys
 - Alice sends permuted encrypted colors to Bob
 - Bob picks an edge
 - Alice sends keys for two vertices
 - Bob checks whether these two colors are distinct

- Repeat as much as needed:
 - Alice permutes graph coloring
 - Alice encrypts all vertices with distinct keys
 - Alice sends permuted encrypted colors to Bob
 - Bob picks an edge
 - Alice sends keys for two vertices
 - Bob checks whether these two colors are distinct

If Alice is lying, with probability $\frac{1}{|E|}$ she will be caught. If she is telling the truth, she will never be caught.

- Repeat as much as needed:
 - Alice permutes graph coloring
 - Alice encrypts all vertices with distinct keys
 - Alice sends permuted encrypted colors to Bob
 - Bob picks an edge
 - Alice sends keys for two vertices
 - Bob checks whether these two colors are distinct

If Alice is lying, with probability $\frac{1}{|E|}$ she will be caught. If she is telling the truth, she will never be caught.

After k repetitions, the probability she fools Bob is $(1 - \frac{1}{|E|})^k$.

- What does Bob see?
 - randomly-generated keys
 - randomly-generated colors

- What does Bob see?
 - randomly-generated keys
 - randomly-generated colors

Because Bob could have generated those keys and colors by himself, he learns nothing from the graph coloring.

■ **Theorem** An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

■ **Theorem** An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Proof

■ **Theorem** An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Proof

Two properties of tree: connected, no circuit

parent, child, sibling

parent, child, sibling ancestor, descendant

parent, child, sibling ancestor, descendant leaf, internal vertex

parent, child, sibling ancestor, descendant leaf, internal vertex

subtree with a as its root: consists of a and its descendants and all edges incident to these descendants

m-Ary Trees

■ **Definition** A rooted tree is called an m-ary tree if every internal vertex has no more than m children. The tree is called a *full m*-ary tree if every internal vertex has exactly m children. In particular, an m-ary tree with m=2 is called a binary tree.

m-Ary Trees

■ **Definition** A rooted tree is called an m-ary tree if every internal vertex has no more than m children. The tree is called a *full m*-ary tree if every internal vertex has exactly m children. In particular, an m-ary tree with m=2 is called a binary tree.

Definition A binary tree is an *ordered rooted tree* where the children of each internal vertex are ordered. In a binary tree, the first child is called the *left child*, and the second child is called the *right child*.

m-Ary Trees

■ **Definition** A rooted tree is called an m-ary tree if every internal vertex has no more than m children. The tree is called a *full m*-ary tree if every internal vertex has exactly m children. In particular, an m-ary tree with m=2 is called a binary tree.

Definition A binary tree is an *ordered rooted tree* where the children of each internal vertex are ordered. In a binary tree, the first child is called the *left child*, and the second child is called the *right child*.

left subtree, right subtree

■ **Theorem** A full *m*-ary tree with *i* internal vertices has n = mi + 1 vertices.

■ **Theorem** A full *m*-ary tree with *i* internal vertices has n = mi + 1 vertices.

Theorem A full *m*-ary tree with

- (i) *n* vertices
- (ii) *i* internal vertices
- (iii) ℓ leaves

■ **Theorem** A full *m*-ary tree with *i* internal vertices has n = mi + 1 vertices.

Theorem A full *m*-ary tree with

- (i) *n* vertices
- (ii) *i* internal vertices
- (iii) ℓ leaves
- (i) n vertices, i = (n-1)/m, $\ell = [(m-1)n+1)]/m$ (ii) i internal vertices, n = mi + 1, $\ell = (m-1)i + 1$ (iii) ℓ leaves, $n = (m\ell - 1)/(m-1)$, $i = (\ell - 1)/(m-1)$

■ **Theorem** A full *m*-ary tree with *i* internal vertices has n = mi + 1 vertices.

Theorem A full *m*-ary tree with

- (i) *n* vertices
- (ii) *i* internal vertices
- (iii) ℓ leaves
- (i) n vertices, i = (n-1)/m, $\ell = [(m-1)n+1)]/m$ (ii) i internal vertices, n = mi + 1, $\ell = (m-1)i + 1$ (iii) ℓ leaves, $n = (m\ell - 1)/(m-1)$, $i = (\ell - 1)/(m-1)$

using
$$n = mi + 1$$
 and $n = i + \ell$

Level and Height

■ The *level* of a vertex *v* in a rooted tree is the length of the unique path from the root to this vertex.

Level and Height

■ The *level* of a vertex *v* in a rooted tree is the length of the unique path from the root to this vertex.

The *height* of a rooted tree is the maximum of the levels of the vertices.

Level and Height

The level of a vertex v in a rooted tree is the length of the unique path from the root to this vertex.

The *height* of a rooted tree is the maximum of the levels of the vertices.

Definition A rooted m-ary tree of height h is balanced if all leaves are at levels h or h-1. (differ no greater than 1)

Theorem There are at most m^h leaves in an m-ary tree of height h.

Theorem There are at most m^h leaves in an m-ary tree of height h.

Proof (by induction)

Theorem There are at most m^h leaves in an m-ary tree of height h.

Proof (by induction)

Corollary If an m-ary tree of height h has ℓ leaves, then $h \ge \lceil \log_m \ell \rceil$. If the m-ary tree is full and balanced, then $h = \lceil \log_m \ell \rceil$.

Theorem There are at most m^h leaves in an m-ary tree of height h.

Proof (by induction)

Corollary If an m-ary tree of height h has ℓ leaves, then $h \ge \lceil \log_m \ell \rceil$. If the m-ary tree is full and balanced, then $h = \lceil \log_m \ell \rceil$.

Proof

Binary Trees

• Definition A binary tree is an ordered rooted tree where each internal tree has two children, the first is called the left child and the second is the right child. The tree rooted at the left child of a vertex is called the left subtree of this vertex, and the tree rooted at the right child of a vertex is called the right subtree of this vertex.

Binary Trees

• Definition A binary tree is an ordered rooted tree where each internal tree has two children, the first is called the left child and the second is the right child. The tree rooted at the left child of a vertex is called the left subtree of this vertex, and the tree rooted at the right child of a vertex is called the right subtree of this vertex.

Tree Traversal

■ The procedures for systematically visiting every vertex of an ordered tree are called *traversals*.

Tree Traversal

The procedures for systematically visiting every vertex of an ordered tree are called *traversals*.

The three most commonly used traversals are *preorder* traversal, inorder traversal, postorder traversal.

Preorder Traversal

■ **Definition** Let T be an ordered rooted tree with root r. If T consists only of r, then r is the *preorder traversal* of T. Otherwise, suppose that T_1, T_2, \ldots, T_n are the subtrees of r from left to right in T. The *preorder traversal* begins by visiting r, and continues by traversing T_1 in preorder, then T_2 in preorder, and so on, until T_n is traversed in preorder.

Preorder Traversal

■ **Definition** Let T be an ordered rooted tree with root r. If T consists only of r, then r is the *preorder traversal* of T. Otherwise, suppose that T_1, T_2, \ldots, T_n are the subtrees of r from left to right in T. The *preorder traversal* begins by visiting r, and continues by traversing T_1 in preorder, then T_2 in preorder, and so on, until T_n is traversed in preorder.

Preorder Traversal

Example

Preorder Traversal

```
procedure preorder (T: ordered rooted tree)
r := root of T
list r
for each child c of r from left to right
    T(c) := subtree with c as root
    preorder(T(c))
```


■ **Definition** Let T be an ordered rooted tree with root r. If T consists only of r, then r is the *inorder traversal* of T. Otherwise, suppose that T_1, T_2, \ldots, T_n are the subtrees of r from left to right in T. The *inorder traversal* begins by traversing T_1 in inorder, then visiting r, and continues by traversing T_2 in inorder, and so on, until T_n is traversed in inorder.

■ **Definition** Let T be an ordered rooted tree with root r. If T consists only of r, then r is the *inorder traversal* of T. Otherwise, suppose that T_1, T_2, \ldots, T_n are the subtrees of r from left to right in T. The *inorder traversal* begins by traversing T_1 in inorder, then visiting r, and continues by traversing T_2 in inorder, and so on, until T_n is traversed in inorder.

Example


```
procedure inorder (T: ordered rooted tree)
r := \text{root of } T
if r is a leaf then list r
else
   l := first child of r from left to right
  T(l) := subtree with l as its root
  inorder(T(l))
  list(r)
  for each child c of r from left to right
      T(c) := subtree with c as root
      inorder(T(c))
```


■ **Definition** Let T be an ordered rooted tree with root r. If T consists only of r, then r is the postorder traversal of T. Otherwise, suppose that T_1, T_2, \ldots, T_n are the subtrees of r from left to right in T. The postorder traversal begins by traversing T_1 in postorder, then T_2 in postorder, and so on, after T_n is traversed in postorder, r is visited.

■ **Definition** Let T be an ordered rooted tree with root r. If T consists only of r, then r is the *postorder traversal* of T. Otherwise, suppose that T_1, T_2, \ldots, T_n are the subtrees of r from left to right in T. The *postorder traversal* begins by traversing T_1 in postorder, then T_2 in postorder, and so on, after T_n is traversed in postorder, r is visited.

Example


```
procedure postordered (T: ordered rooted tree)
r := root of T
for each child c of r from left to right
    T(c) := subtree with c as root
    postorder(T(c))
list r
```


Preorder, Inorder, Postorder Traversal

Expression Trees

 Complex expressions can be represented using ordered rooted trees

Expression Trees

 Complex expressions can be represented using ordered rooted trees

Example

consider the expression $((x + y) \uparrow 2) + ((x - 4)/3)$

Expression Trees

 Complex expressions can be represented using ordered rooted trees

Example

consider the expression $((x + y) \uparrow 2) + ((x - 4)/3)$

An inorder traversal of the tree representing an expression produces the original expression when parentheses are included except for unary operation.

An inorder traversal of the tree representing an expression produces the original expression when parentheses are included except for unary operation.

An inorder traversal of the tree representing an expression produces the original expression when parentheses are included except for unary operation.

An inorder traversal of the tree representing an expression produces the original expression when parentheses are included except for unary operation.

An inorder traversal of the tree representing an expression produces the original expression when parentheses are included except for unary operation.

■ The preorder traversal of expression trees leads to the *prefix* form of the expression (*Polish notation*).

■ The preorder traversal of expression trees leads to the *prefix* form of the expression (*Polish notation*).

Operators precede their operands in the prefix notation. Parentheses are not needed as the representation is unambiguous.

■ The preorder traversal of expression trees leads to the *prefix* form of the expression (*Polish notation*).

Operators precede their operands in the prefix notation. Parentheses are not needed as the representation is unambiguous.

Prefix expressions are evaluated by working from right to left. When we encounter an operator, we perform the operation with the two operands to the right.

Example

$$+ \ - \ * \ 2 \ 3 \ 5 \ / \ \uparrow \ 2 \ 3 \ 4$$

Example

The postorder traversal of expression trees leads to the postfix form of the expression (reverse Polish notation).

The postorder traversal of expression trees leads to the postfix form of the expression (reverse Polish notation).

Operators follow their operands in the postfix notation. Parentheses are not needed as the representation is unambiguous.

■ The postorder traversal of expression trees leads to the *postfix form* of the expression (*reverse Polish notation*).

Operators follow their operands in the postfix notation. Parentheses are not needed as the representation is unambiguous.

Postfix expressions are evaluated by working from left to right. When we encounter an operator, we perform the operation with the two operands to the left.

Example

$$7\ 2\ 3\ *\ -\ 4\ \uparrow\ 9\ 3\ /\ +$$

Example

Definition Let G be a simple graph. A *spanning tree* of G is a subgraph of G that is a tree containing every vertex of G.

Definition Let G be a simple graph. A *spanning tree* of G is a subgraph of G that is a tree containing every vertex of G.

Definition Let G be a simple graph. A *spanning tree* of G is a subgraph of G that is a tree containing every vertex of G.

remove edges to avoid circuits

■ **Theorem** A simple graph is connected if and only if it has a spanning tree.

■ **Theorem** A simple graph is connected if and only if it has a spanning tree.

Proof

Theorem A simple graph is connected if and only if it has a spanning tree.

Proof

"only if" part

Theorem A simple graph is connected if and only if it has a spanning tree.

Proof

"only if" part

The spanning tree can be obtained by removing edges from simple circuits.

Spanning Trees

■ **Theorem** A simple graph is connected if and only if it has a spanning tree.

Proof

```
"only if" part
```

The spanning tree can be obtained by removing edges from simple circuits.

```
"if" part
```


Spanning Trees

Theorem A simple graph is connected if and only if it has a spanning tree.

Proof

```
"only if" part
```

The spanning tree can be obtained by removing edges from simple circuits.

```
"if" part easy
```


We can find spanning trees by removing edges from simple circuits.

We can find spanning trees by removing edges from simple circuits.

But, this is inefficient, since simple circuits should be identified first.

We can find spanning trees by removing edges from simple circuits.

But, this is inefficient, since simple circuits should be identified first.

We can find spanning trees by removing edges from simple circuits.

But, this is inefficient, since simple circuits should be identified first.

Instead, we build up spanning trees by successively adding edges.

♦ First arbitrarily choose a vertex of the graph as the root.

We can find spanning trees by removing edges from simple circuits.

But, this is inefficient, since simple circuits should be identified first.

- ⋄ First arbitrarily choose a vertex of the graph as the root.
- Form a path by successively adding vertices and edges.
 Continue adding to this path as long as possible.

We can find spanning trees by removing edges from simple circuits.

But, this is inefficient, since simple circuits should be identified first.

- ⋄ First arbitrarily choose a vertex of the graph as the root.
- Form a path by successively adding vertices and edges.
 Continue adding to this path as long as possible.
- ♦ If the path goes through all vertices of the graph, the tree is a spanning tree.

We can find spanning trees by removing edges from simple circuits.

But, this is inefficient, since simple circuits should be identified first.

- ⋄ First arbitrarily choose a vertex of the graph as the root.
- Form a path by successively adding vertices and edges.
 Continue adding to this path as long as possible.
- If the path goes through all vertices of the graph, the tree is a spanning tree.
- Otherwise, move back to some vertex to repeat this procedure (backtracking)

Example

Depth-First Search Algorithm

```
procedure DFS(G: connected graph with vertices <math>v_1, v_2, ..., v_n) T := tree consisting only of the vertex <math>v_1 visit(v_1)

procedure visit(v: vertex of G)

for each vertex w adjacent to v and not yet in T add vertex w and edge \{v, w\} to T visit(w)
```


Depth-First Search Algorithm

```
procedure DFS(G: connected graph with vertices v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>n</sub>)
T := tree consisting only of the vertex v<sub>1</sub>
visit(v<sub>1</sub>)

procedure visit(v: vertex of G)
for each vertex w adjacent to v and not yet in T
  add vertex w and edge {v,w} to T
  visit(w)
```

time complexity: O(e)

This is the second algorithm that we build up spanning trees by successively adding edges.

- This is the second algorithm that we build up spanning trees by successively adding edges.
 - ⋄ First arbitrarily choose a vertex of the graph as the root.
 - ♦ Form a path by adding all edges incident to this vertex and the other endpoint of each of these edges
 - ⋄ For each vertex added at the previous level, add edge incident to this vertex, as long as it does not produce a simple circuit.
 - Continue in this manner until all vertices have been added.

Example


```
procedure BFS(G: connected graph with vertices v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>n</sub>)
T := tree consisting only of the vertex v<sub>1</sub>
L := empty list visit(v<sub>1</sub>)
put v<sub>1</sub> in the list L of unprocessed vertices
while L is not empty
remove the first vertex, v, from L
for each neighbor w of v
    if w is not in L and not in T then
    add w to the end of the list L
    add w and edge {v,w} to T
```



```
procedure BFS(G: connected graph with vertices v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>n</sub>)
T := tree consisting only of the vertex v<sub>1</sub>
L := empty list visit(v<sub>1</sub>)
put v<sub>1</sub> in the list L of unprocessed vertices
while L is not empty
remove the first vertex, v, from L
for each neighbor w of v
    if w is not in L and not in T then
    add w to the end of the list L
    add w and edge {v,w} to T
```

time complexity: O(e)

find paths, circuits, connected components, cut vertices, ...

find paths, circuits, connected components, cut vertices, ...

find shortest paths, determine whether bipartite, ...

• find paths, circuits, connected components, cut vertices, ...

find shortest paths, determine whether bipartite, ...

graph coloring, sums of subsets, ...

find a subset of $\{31, 27, 15, 11, 7, 5\}$ with the sum 39

Minimum Spanning Trees

■ **Definition** A *minimum spanning tree* in a connected weighted graph is a spanning tree that has the smallest possible sum of weights of its edges.

Minimum Spanning Trees

Definition A minimum spanning tree in a connected weighted graph is a spanning tree that has the smallest possible sum of weights of its edges.

two greedy algorithms: Prim's Algorithm, Kruscal's Algorithm

Prim's Algorithm

ALGORITHM 1 Prim's Algorithm.

```
procedure Prim(G: weighted connected undirected graph with n vertices)
T := a minimum-weight edge
for i := 1 to n - 2
e := an edge of minimum weight incident to a vertex in T and not forming a simple circuit in T if added to T
T := T with e added
return T {T is a minimum spanning tree of G}
```


Prim's Algorithm

ALGORITHM 1 Prim's Algorithm.

```
procedure Prim(G: weighted connected undirected graph with n vertices)
T := a minimum-weight edge
for i := 1 to n - 2
e := an edge of minimum weight incident to a vertex in T and not forming a simple circuit in T if added to T
T := T with e added
return T {T is a minimum spanning tree of G}
```

time complexity: e log v

Prim's Algorithm

Example

ALGORITHM 2 Kruskal's Algorithm.

```
procedure Kruskal(G: weighted connected undirected graph with n vertices)
T := empty graph
for i := 1 to n - 1
e := any edge in G with smallest weight that does not form a simple circuit when added to T
T := T with e added
return T {T is a minimum spanning tree of G}
```


ALGORITHM 2 Kruskal's Algorithm.

```
procedure Kruskal(G: weighted connected undirected graph with n vertices)
T := empty graph
for i := 1 to n - 1
e := any edge in G with smallest weight that does not form a simple circuit when added to T
T := T with e added
return T {T is a minimum spanning tree of G}
```

time complexity: e log e

ALGORITHM 2 Kruskal's Algorithm.

```
procedure Kruskal(G: weighted connected undirected graph with n vertices)
T := empty graph
for i := 1 to n - 1
e := any edge in G with smallest weight that does not form a simple circuit when added to T
T := T with e added
return T {T is a minimum spanning tree of G}
```

```
time complexity: e \log e see CLRS / Algorithm Design, J. Kleinberg, E. Tardos
```


Example

Next Lecture

course review ...

