Universidade Federal de Minas Gerais

Departamento de Matemática - ICEX

Análise II - 2021

Lista 1 - Aplicações diferenciáveis

- 1. Mostre que derivada da aplicação $f: \mathbb{R}^2 \to \mathbb{R}^2$, dada por $f(x,y) = (e^x + e^y, e^x e^y)$. Mostre que $f'(x,y): \mathbb{R}^2 \to \mathbb{R}^2$ é uma transformação linear invertível para todos os pontos $z = (x,y) \in \mathbb{R}^2$. Diga se f, considerada como uma função complexa, é holomorfa.
- 2. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = \sqrt{|xy|}$. Prove que f não é diferenciável em (0,0).
- 3. Seja $f:\mathbb{R}^n\to\mathbb{R}$ uma função tal que $|f(x)|\leq |x|^2$, para todo $x\in\mathbb{R}^n$. Prove que f é diferenciável em 0.
- 4. Seja $f: U \to \mathbb{R}$, definida no aberto $U \subset \mathbb{R}^m$, suponha que f atinge seu valor máximo (ou mínimo) num ponto $a \in U$ então qualquer derivada parcial de f (caso exista) em a é nula.
- 5. Seja $U \subset \mathbb{R}^m$ aberto e conexo. Se $f: U \to \mathbb{R}$ tem, em todos os pontos de U, derivadas parciais nulas então f é constante.
- 6. Seja $f: U \to \mathbb{R}$ continua no aberto límitado $U \subset \mathbb{R}^m$, admitindo que f tem todas suas derivadas parciais em todos os pontos de U. Se, para todo $a \in \partial U$ tem-se $\lim_{x \to a} f(x) = 0$, então existe $c \in U$ tal que $\frac{\partial f}{\partial x_i}(c) = 0$ para todo $i = 1, \ldots, m$. (Teorema de Rolle).
- 7. Seja $A \subset \mathbb{R}^2$ um retângulo aberto, de lados paralelos aos eixos. Se $f: A \to \mathbb{R}$ admite derivadas parciais em todos os pontos de A então, dados (a,b) e (a+h,b+k) em A, existe $\theta \in (0,1)$ tal que

$$f(a+h,b+k) - f(a,b) = \frac{\partial f}{\partial x}(a+\theta h,b+k) \cdot h + \frac{\partial f}{\partial y}(a,b+\theta k) \cdot k.$$

- 8. Seja $f: \mathbb{R}^m \to \mathbb{R}$ uma função continua, admitindo a existência de todas suas derivadas direcionais em qualquer ponto de \mathbb{R}^m . Se $\frac{\partial f}{\partial u}(u) > 0$ para todo $u \in S^{m-1}$, então existe um ponto $a \in \mathbb{R}^m$ tal que $\frac{\partial f}{\partial v}(a) = 0$ para todo $v \in \mathbb{R}^m$.
- 9. Seja $f: \mathbb{R}^m \to \mathbb{R}$ tal que f(tx) = |t| f(x) para $x \in \mathbb{R}^m$ e $t \in \mathbb{R}$ arbitrário. Se f é diferenciável na origem, então f(x) = 0 para todo x.
- 10. Seja $f: \mathbb{R}^m \to \mathbb{R}$ diferenciável, tal que f(x/2) = f(x)/2 para todo $x \in \mathbb{R}^m$. Prove que f é uma transformação linear
- 11. Considere \mathbb{R}^m com a normal euclídiana. Se $f: \mathbb{R}^m \{0\} \to \mathbb{R}$ é definida por $f(x) = |x|^a$, com $a \in \mathbb{R}$, então $df(x).v = a|x|^{a-2} < x, v >$ para todo $v \in \mathbb{R}^m$.
- 12. Seja $U \subset \mathbb{R}^m$ aberto. Se a função diferenciável $f: U \to \mathbb{R}$ cumpre a condição de Lipschitz $|f(x) f(y)| \le c|x-y|$ então $|df(x).v| \le c|v|$ para todo $x \in U$ e $v \in \mathbb{R}^m$.
- 13. Dada $f: S^m \to \mathbb{R}^n$, defina a extensão radial de f como a aplicação $F: \mathbb{R}^{m+1} \to \mathbb{R}^n$ tal que F(0) = 0 e

$$F(x) = |x| \cdot f(\frac{x}{|x|})$$
 se $x \neq 0$.

Mostre que F é diferenciável em $0 \in \mathbb{R}^{m+1}$ se e somente se, f é a restrição de uma aplicação linear.

14. Seja $U \subset \mathbb{R}^m$ aberto e $f, g: U \to \mathbb{R}^n$ diferenciáveis no ponto $a \in U$, com f(a) = g(a). Então f'(a) = g'(a) se e somente se

$$\lim_{v \to 0} \frac{f(a+v) - g(a+v)}{|v|} = 0.$$

- 15. Defina $f: \mathbb{R}^2 \to \mathbb{R}$ por $f(x,y) = xy\frac{x^2-y^2}{x^2+y^2}$ para $(x,y) \neq 0$ e f(0,0) = 0. Prove que $D_2f(x,0) = x$ para todo x e $D_1f(0,y) = -y$ para todo y. Prove que $D_{1,2}f(0,0) \neq D_{2,1}f(0,0)$.
- 16. Dado $U \subset \mathbb{R}^m$ aberto, seja $f: U \to \mathbb{R}^n$ diferenciável no ponto $a \in U$. Prove que se $\lim v_k = v \in \mathbb{R}^m$ e $\lim t_k = 0 \in \mathbb{R}$ então

$$\lim_{k \to \infty} \frac{f(a + t_k v_k) - f(a)}{t_k} = f'(a) \cdot v.$$

17. Sejam $U \subset \mathbb{R}^m$ aberto, $[a,b] \subset U$ um segmento de reta, $f: U \to \mathbb{R}^n$ contínua em [a,b] e diferenciável em (a,b). Prove que, para cada $y \in \mathbb{R}^n$ existe $c_y \in (a,b)$ tal que

$$\langle f(b) - f(a), y \rangle = \langle f'(c_u) \cdot (b - a), y \rangle.$$

Professor Arturo Fernández - Livro E. Lima e M. Spivak.