МОДУЛЬ APXИBAЦИИ JPEG ФАЙЛОВ

Автор: Кулаков Владислав Сергеевич

Научный руководитель: Ананичев Дмитрий Сергеевич

■ Шаг 1. Преобразование цветового пространства

$$\begin{pmatrix} Y \\ Cb \\ Cr \end{pmatrix} = \begin{pmatrix} 0.299 & 0.587 & 0.114 \\ -0.1687 & -0.3313 & 0.5 \\ 0.5 & -0.4187 & -0.0813 \end{pmatrix} * \begin{pmatrix} R \\ G \\ B \end{pmatrix} + \begin{pmatrix} 0 \\ 128 \\ 128 \end{pmatrix}$$

- Шаг 1. Преобразование цветового пространства
- **Шаг 2.** MCU, разбивка на матрицы 8x8

- Шаг 1. Преобразование цветового пространства
- **Шаг 2.** MCU, разбивка на матрицы 8x8
- **Шаг 3.** Дискретное косинусное преобразование

$$\begin{bmatrix} -414 & -33 & -59 & 36 & 57 & -51 & -16 & -12 \\ 6 & -36 & 40 & 19 & 27 & 1 & -5 & 3 \\ -47 & 13 & 81 & -35 & -50 & 20 & 8 & -18 \\ -50 & 21 & 35 & -20 & 2 & 34 & 39 & 12 \\ 8 & -3 & 8 & -5 & -30 & -15 & 40 & 36 \\ -7 & 17 & -16 & 7 & -7 & 16 & 4 & 6 \\ 20 & -29 & -1 & -27 & -1 & 8 & -43 & -21 \\ 18 & 26 & -11 & -45 & 31 & 47 & -36 & 4 \end{bmatrix}$$

$$F(u,v) = \frac{c(u,v)}{4} * \sum_{x=0}^{7} \sum_{y=0}^{7} \left(f(x,y) \times \cos\left(\frac{2*x+1}{16}u\pi\right) \times \cos\left(\frac{2*y+1}{16}v\pi\right) \right)$$

$$c(u,v) = \begin{cases} \left(\frac{1}{2}\right), u = 0 \text{ и } v = 0 \\ 1, u \neq 0 \text{ или } v \neq 0 \end{cases}$$

- Шаг 1. Преобразование цветового пространства
- **Шаг 2.** MCU, разбивка на матрицы 8x8
- **Шаг 3.** Дискретное косинусное преобразование
- Шаг 4. Квантование

_[16	11	10	16	24	40	51	61 7
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
L72	92	95	98	112	100	103	99]

- Шаг 1. Преобразование цветового пространства
- **Шаг 2.** MCU, разбивка на матрицы 8x8
- **Шаг 3.** Дискретное косинусное преобразование
- Шаг 4. Квантование

$$\begin{bmatrix} -414 & -33 & -59 & 36 & 57 & -51 & -16 & -12 \\ 6 & -36 & 40 & 19 & 27 & 1 & -5 & 3 \\ -47 & 13 & 81 & -35 & -50 & 20 & 8 & -18 \\ -50 & 21 & 35 & -20 & 2 & 34 & 39 & 12 \\ 8 & -3 & 8 & -5 & -30 & -15 & 40 & 36 \\ -7 & 17 & -16 & 7 & -7 & 16 & 4 & 6 \\ 20 & -29 & -1 & -27 & -1 & 8 & -43 & -21 \\ 18 & 26 & -11 & -45 & 31 & 47 & -36 & 4 \end{bmatrix}$$

■ **Шаг 1.** ZigZag обход

 $[-25, -3, 1, -3, -3, -6, 2, 3, 1, -4, 0, 1, 5, 1, 2, -1, 1, -1, 2, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, \dots]$

- **Шаг 1.** ZigZag обход
- **Шаг 2.** Обрезка и свёртка нулей

$$[-25, -3, 1, -3, -3, -6, 2, 3, 1, -4, 0, 1, 5, 1, 2, -1, 1, -1, 2, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, ...]$$

$$[(0,-25),-3,1,-3,-3,-6,2,3,1,-4,(1,1),5,1,2,-1,1,-1,2,(5,-1),-1,END=(\mathbf{0},\mathbf{0})]$$

- Шаг 1. Зигзаг обход
- **Шаг 2.** Обрезка и свёртка нулей
- Шаг 3. Категории

Значение	Категория	Код
0	0	_
-1, 1	1	0, 1
-3, -2, 2, 3	2	00, 01, 10, 11
-7, -6, -5, -4, 4, 5, 6, 7	3	000, 001, 010, 011, 100, 101, 110, 111
:	:	:
-3276716384, 16384 32767	15	

- **Шаг 1.** ZigZag обход
- **Шаг 2.** Обрезка и свёртка нулей
- Шаг 3. Категории
- **Шаг 4.** Кодирование Хаффмана

(Нули, Категория)	Частота использования	Код Хаффмана	
(0, 1)	2527816	00	
(0, 2)	1865317	01	
(0, 3)	1033833	100	
(1, 1)	648828	101	
(0, 4)	363132	1100	
(1, 2)	253353	11011	
(2, 1)	256078	11100	
(0, 0)	161914	11010	
•	•	:	

- **Шаг 1.** ZigZag обход
- **Шаг 2.** Обрезка и свёртка нулей
- Шаг 3. Категории
- **Шаг 4.** Кодирование Хаффмана

(Нули, Категория)	Частота использования	Код Хаффмана	
(0, 1)	2527816	00	
(0, 2)	1865317	01	
(0, 3)	1033833	100	
(1, 1)	648828	101	
(0, 4)	363132	1100	
(1, 2)	253353	11011	
(2, 1)	256078	11100	
(0, 0)	161914	11010	
•	•	:	

■ **Шаг 1.** Декодируем матрицы.

7.jpg

- Шаг 1. Декодируем матрицы.
- **Шаг 2.** Собираем статистику частот

```
Y - DC
{0: 17049, 1: 32848, 2: 58746, 3: 86073, 4: 101565, 5: 101208, 6: 83807, 7: 59047, 8: 22584, 9: 1704, 10: 202, 11: 47}
{0: 319094, 1: 7907755, 2: 3351441, 3: 1246854, 4: 719877, 5: 453947, 6: 227426, 7: 64284, 8: 8007, 9: 215, 17: 3069482, 18:
766981, 19: 113900, 20: 29962, 21: 10553, 22: 3288, 23: 627, 24: 53, 25: 1, 33: 1374065, 34: 229008, 35: 15556, 36: 1879, 37: 338,
38: 69, 39: 7, 40: 1, 49: 665077, 50: 80769, 51: 2784, 52: 190, 53: 31, 54: 6, 65: 339275, 66: 32441, 67: 585, 68: 24, 69: 3, 81:
178093, 82: 13664, 83: 119, 84: 3, 97: 95212, 98: 5925, 99: 36, 113: 52237, 114: 2725, 115: 11, 129: 29587, 130: 1268, 131: 1, 145:
16780, 146: 594, 147: 1, 161: 9725, 162: 314, 177: 5593, 178: 137, 193: 3386, 194: 77, 209: 2028, 210: 40, 225: 1245, 226: 26, 240:
1384, 241: 759, 242: 11}
Cb · DC
{0: 53044, 1: 28843, 2: 41789, 3: 55439, 4: 46442, 5: 35193, 6: 16777, 7: 4398, 8: 491, 9: 24}
Cb · AC
{0: 265283, 1: 1005665, 2: 369690, 3: 170325, 4: 73041, 5: 19159, 6: 2760, 7: 186, 17: 440680, 18: 68017, 19: 16156, 20: 2865, 21:
359, 22: 31, 23: 1, 33: 244801, 34: 15806, 35: 1738, 36: 151, 37: 12, 49: 170450, 50: 6560, 51: 351, 52: 21, 65: 119802, 66: 2747,
67: 52, 68: 1, 81: 96177, 82: 1583, 83: 8, 97: 73748, 98: 918, 99: 6, 113: 55957, 114: 402, 115: 1, 129: 48053, 130: 265, 145:
39474, 146: 250, 147: 1, 161: 35178, 162: 190, 163: 1, 177: 26899, 178: 111, 193: 24635, 194: 87, 209: 21295, 210: 89, 225: 15097,
226: 58, 240: 56458, 241: 10646, 242: 12}
Cr · DC
{0: 63328, 1: 27345, 2: 40475, 3: 53018, 4: 43303, 5: 31353, 6: 17093, 7: 6052, 8: 471, 9: 2}
{0: 267738, 1: 881349, 2: 302113, 3: 128970, 4: 53266, 5: 14290, 6: 1698, 17: 396842, 18: 56861, 19: 12717, 20: 2161, 21: 281, 22:
6, 33: 225609, 34: 12980, 35: 1307, 36: 81, 49: 160805, 50: 5775, 51: 277, 52: 10, 65: 114899, 66: 2370, 67: 42, 81: 94263, 82:
1423, 83: 26, 97: 73105, 98: 881, 99: 5, 113: 56571, 114: 377, 115: 1, 129: 49167, 130: 266, 145: 40509, 146: 271, 147: 1, 161:
36609, 162: 192, 163: 1, 177: 28179, 178: 100, 193: 25336, 194: 76, 209: 22280, 210: 110, 225: 15622, 226: 64, 240: 58982, 241:
11353, 242: 23}
```

- **Шаг 1.** Декодируем матрицы.
- **Шаг 2.** Собираем статистику частот
- Шаг 3. Генерируем коды Хаффмана

```
Expanded Form of Codes:
 Codes of length 02 bits:
                                       (Total Len = 3)
   00 = 01
                                       (Total Len = 4)
   01 = 02
 Codes of length 03 bits:
                                       (Total Len = 6)
   100 = 03
                                       (Total Len = 4)
   101 = 11
 Codes of length 04 bits:
                                       (Total Len = 8)
   1100 = 04
 Codes of length 05 bits:
                                       (Total Len = 5)
   11010 = 00 (EOB)
                                       (Total Len = 7)
   11011 = 12
                                       (Total Len = 6)
   11100 = 21
 Codes of length 06 bits:
   111010 = 05
                                        (Total Len = 11)
                                       (Total Len = 9)
   111011 = 13
                                       (Total Len = 7)
   1111100 = 31
 Codes of length 07 bits:
   1111010 = 06
                                        (Total Len = 13)
                                       (Total Len = 9)
   1111011 = 22
   11111100 = 41
                                        (Total Len = 8)
 Codes of length 08 bits:
   111111010 = 51
                                        (Total Len = 9)
   111111011 = 61
                                       (Total Len = 9)
 Codes of length 09 bits:
                                        (Total Len = 16)
   1111111000 = 07
   1111111001 = 14
                                        (Total Len = 13)
   1111111010 = 23
                                        (Total Len = 12)
   1111111011 = 32
                                        (Total Len = 11)
```

- **Шаг 1.** Декодируем матрицы.
- **Шаг 2.** Собираем статистику частот
- **Шаг 3.** Генерируем коды Хаффмана
- **Шаг 4.** Кодируем матрицы

Сравнение алгоритма

Тест (описание)	Размер файлов (Б-байт)	Алгоритм compress.py	WinRAR rar (32 Б) обычный	WinRAR rar (1024 Б) максимальный	WinRAR zip
0 (один файл)	5 321 980	5 315 973 (0.9989)	5 322 131	5 322 131	5 316 599
1 (много разных файлов)	362 227 195	352 042 512 (0.9719)	357 456 809	357 452 689	358 807 393
2 (много больших фото)	3 339 347 585	3 316 346 218 (0.9931)	3 334 708038	3 334 705 146	3 329 845467
3 (серия из 4 фото)	13 395 043	13 072 305 (0.9759)	13 218 699	13 218 638	13 218 668

Серийная съёмка

Исходный размер (Б)	Сжатие алгоритмом	Сжатие WinRAR .rar	Сжатие .zip	Сжатие .7z	Сжатие алгоритмом + .7z
13 395 043	13 072 305	13 218 638	13 218 668	13 116 576	12 900 644
	(0.976)	(0.987)	(0.987)	(0.979)	(0.963)

Исходники

■ Исходный код реализованного алгоритма выложен на GitHub.

https://github.com/KVSrep/diplom