## **04 级电磁学期中考试** (05 年 10 月 29 日)

|                                                     | 院系                                             |                | 学号                           | 姓名                                                                                             | 成绩                      |                       |
|-----------------------------------------------------|------------------------------------------------|----------------|------------------------------|------------------------------------------------------------------------------------------------|-------------------------|-----------------------|
| 一、填空题: (3                                           | 6分)                                            |                |                              |                                                                                                |                         |                       |
| 1. (4分)电磁场                                          | 的麦克斯韦力                                         | 方程组积分          | 光式:                          | ,                                                                                              |                         | ,                     |
|                                                     |                                                |                |                              |                                                                                                |                         | o                     |
|                                                     | f间,通过 <b>R</b> ɪl<br>态电流                       | 的电流为_          | ;                            | ŋ零,在 <i>t</i> =0 时,C₁和C₂」<br>; <b>R</b> ₂的电流为<br>。                                             |                         | $R_1$ $R_2$ $C_1$ $C$ |
| 当 <i>pm</i> 与 z 轴平 <sup>2</sup><br>轴负方向; 当 <i>p</i> | 行时,所受力<br><b>p</b> <sub>m</sub> 与 <b>y</b> 轴平行 | 7矩为最大<br>5时,所受 | ,且最大值》<br>力矩大小为 <sup>约</sup> | m <sup>2</sup> ,把它放入待测磁场<br>为 <i>M</i> =5×10 <sup>-9</sup> N•m,方向<br>零,则空间 <i>A</i> 点处的磁<br>句为 | 可沿 <b>x</b><br>感        | $C_2$ $R_3$ $E$ $D$   |
| 从孔 S <sub>1</sub> 入射,                               | 从孔 S <sub>2</sub> 飞出,                          | 须在两金           | 属板间加上                        | 为了使速率为 <b>V</b> 的电子<br>均匀磁场,该磁<br>强度的大小应等于                                                     | $e \over \vec{v}$ $S_1$ | $\vec{E}$ $\vec{F}$   |
| 5. (4分) 真空<br>静电能                                   |                                                |                |                              | 球面,如果它们的半径<br>净电能。                                                                             | 和所带的电量材                 | 目等,则球体的               |
| 电荷从球心移到                                             | 到球壳内其它                                         | 位置,重新          | 听测量球壳内                       | 一点电荷,并测量球壳<br>]外场强分布,则球壳内<br>(填"改变"或"不变")                                                      | 场强分布                    |                       |
|                                                     | 相互垂直放置                                         | 置。电流 <i>I</i>  | 沿 ab 连线方                     | 环在 <i>a、b</i> 两点接触( <i>a</i><br>7向由 <i>a</i> 端流入, <i>b</i> 端流<br>_。                            |                         | a                     |
| 线圈1的电流原                                             | 听产生的通过                                         | 线圈 2 的码        | 滋通用 $oldsymbol{\phi}_{21}$ 表 | 示放置,通有相同的电<br>示,线圈 2 的电流所产<br>关系为                                                              | 生的                      |                       |
|                                                     |                                                |                |                              | 为 <b>R</b> 的圆形导体片,在<br>,则两板间的位移电流                                                              |                         | S 2S                  |
|                                                     |                                                |                |                              | 匀的磁场 <b>B</b> 中,如图所<br>(填"正"或"负")。                                                             |                         | $\overline{B}^{V_a}$  |

## 二、计算题 (64 分)

- 1. (14分) 在图示的电路里,已知 $\epsilon_1$ =12 伏, $\epsilon_2$ =9 伏, $\epsilon_3$ =8 伏, $r_1$ =  $r_2$  =  $r_3$ =1 欧姆, $R_1$ =  $R_2$  =  $R_3$  =  $R_4$ =1 欧姆, $R_5$ =3 欧姆,求
- (1) *a、b* 两点的电势差;
- (2) c、d 两点的电势差;
- (3) 如果 c、d 两点短路,这时通过  $R_5$ 的电流是多少?



- 2.  $(20 \, \beta)$  半径为 R 的导体球带有电荷 Q,球外有一均匀电介质的同心球壳,介质球壳的内外半径分别为 a 和 b,相对介电常数为 $\varepsilon_r$ 。求:
  - (1) 电场强度 $\bar{E}$ 的空间分布;
  - (2) 介质球壳内的电场能量。
  - (3) 介质内 r 处的电极化强度  $\bar{P}$  和介质内表面 (a 处) 的极化电荷面密度  $\sigma$ ;
  - (4) 离球心O为r处的电势U;
  - (5) 如果在电介质外罩一半径为 **b** 的导体薄球壳,该球壳与导体球构成一电容器,求:该电容器电容的大小?



- 3. (15分) 一同轴电缆由中心金属圆柱和外层金属圆筒组成,二者半径分别为  $R_1$  和  $R_2$ , 筒和圆柱之间充满均匀磁介质,该磁介质和金属的相对磁导率分别为 $\mu_{r1}$  和 $\mu_{r2}$ ,电流 I 由中心圆柱(均匀分布)流出,再沿圆筒流回,求:
  - (1). 同轴电缆磁感应强度 $\bar{B}$ 的空间分布;
  - (2). 磁介质中  $\mathbf{r}$  处的磁化强度  $\mathbf{M}$ ;
  - (3). 同轴电缆单位长度的自感系数。



4. (15分) 一根无限长载流直导线,通以交变电流  $i=I_0\cos\omega t$ ,在与其相距为l处有一矩形线圈,线圈的边长分别为a和b,a边与长直导线平行,且线圈以速度 $\bar{V}$ 沿垂直于长直导线的方向向右运动(如图所示)。求该线圈中的感应电动势。

