INDEX TO VOLUME 66, 1988

AUTHORS AND PAPERS		Godfrey, J. C., Houlton, D. A., Marley, S. T., Marrocchelli, A. and Slater, M. J., Continuous phase axial mixing in pulsed	445
A	402	sieve plate liquid-liquid extraction columns	445
Abellon, R. D. (see Hoogendoorn, G. C.)	483	Guedes de Carvalho, J. R. F. (see Coelho, M. A. N.)	5, 178
Aldington, R. W. J. (see Oliver, D. R.)	555	H	
Alper, E., Effective interfacial area in the RTL extraction from	1.47	Hajek, J. (see Wichterle, K.)	102
rates of extraction with chemical reaction	147		566
Al-Robah, H. A., Kam, E. K. T. and Hughes R., Dynamic	275	Heggs, P. J. (see Stitt, E. H.) Hillis, M. (see McKay, G.)	107
determination of diffusion in porous particles	255	Hoogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and	107
Ashton, G. J. (see Obeng, E. D. A.)	233	Wesselingh, J. A., Desorption of volatile electrolytes in a tray	
В		column (sour water stripping)	483
Babus'Haq, R. F. (see Neale, A. J.)	458	Houlton, D. A. (see Godfrey, J. C.)	445
Baird, M. H. I., Rohatgi, A. and Wuhai He, A rising film	430	Howell, J. A. (see Feyo de Azevedo, S.)	128
	121	Howell, J. A. (see Yust, L. J.)	260
extractor	121	Hughes, R. (see Al-Roobah, H. A.)	275
Baldyga, J. and Bourne, J. R., Calculation of micromixing in	22	Hussain, A. A., Liang, T-B. and Slater, M. J., Characteristic	213
inhomogeneous stirred tank reactors Barton, G. W. and Perkins, J. D., Experiences with SPEEDUP	33	velocity of drops in a liquid-liquid extraction pulsed sieve	
in the mineral processing industries	408	plate column	541
Biegler, L. T. (see Vasantharajan, S.)	396	Part Column	0 41
	22	1	
Boger, D. V. (see MacKay, M. E.)	265	Jones, S. D. (see Thonchk, N. K.)	503
Bohm, U. (see Cavatorta, O. N.)		Johns, S. D. (See Tholielik, 14. R.)	303
Bourne, J. R. (see Baldyga, J.)	33	K	
Bourne, J. R. and Tovstiga, G., Micromixing and fast chemical	26	Kakhu, A. I. and Flower, J. R., Synthesising heat-integrated	
reactions in a turbulent reactor	26	distillation sequences using mixed integer programming	241
Bunn, A. R. and Lees, F. P., Expert design of plant handling		Kam, E. K. T. (see Al-Rqobah, H. A.)	275
hazardous materials: design expertise and computer aided	419	Kawase, Y. and Moo-Young, M., Volumetric mass transfer	213
design method with illustrative example	417	coefficients in aerated stirred tank reactors with Newtonian and non-Newtonian media	284
C V I D v I d v I v I v I v I v I v I v I v I v		Krishna, R., Simulation of an industrial fluidized bed reactor	204
Carpenter, K. J., Recent developments and new challenges in		using a bubble growth model	463
fluid processing	2	Kuotsung, Yu. (see Zhou Li)	114
Cavatorta, O. N. and Bohm, U., Heat and mass transfer in gas sparging systems: Empirical correlations and theoretical models	265	Revising, 14. (See Zilou Zi)	114
	203	L	
Chen, S. J., Li, C. T. and Shieh, W. K., Anaerobic fluidised bed	518	Lees, F. P. (see Bunn, A. R.)	419
treatment of a tannery waste water	318	Leggate, J. S. (see Francis, A. K.)	300
Coelho, M. A. N, and Guedes de Carvalho, J. R. F., Transverse		Liang, T-B. (see Hussain, A. A.)	541
dispersion in granular beds. Part II: Mass transfer from large			518
spheres immersed in fixed or fluidised beds of small inert	178	Li, C. T. (see Chen, S. J.) Linnhoff, B. (see Smith, R.)	195
particles	1/0	Elithion, B. (see Shirth, R.)	175
Coelho, M. A. N. and Guedes de Carvalho, J. R. F., Transverse		M	
		McAleavey, G. (see McKay, G.)	531
dispersion in granular beds. Part I: Mass transfer from the wall and the dispersion coefficient in packed beds	165	McKay, G., Murphy, W. R. and Hillis, M., Settling character-	221
wan and the dispersion coefficient in packed beds	103	istics of discs and cylinders	107
D		McKay, G. and McAleavey, G., Ozonation and carbon adsorp-	107
	, 159	tion in a three-phase fluidised bed	531
Davies, G. A. (See Rowley, M. E.)	313	MacKay, M. E., Yeow, Y. L. and Boger, D. V., Pressure drop	551
		in pipe contractions—experimental measurement or finite	
E		element simulation	22
Elson, T. P. (see Nienow, A. W.)	5		3, 510
Essens, P. M. J. (see Hoogendoorn, G. C.)	483	Malone, M. F. (see Glinos, K.)	229
assess, 1 mm or (see 1100genaconi, c. c.)	400	Marley, S. T. (see Godfrey, J. C.)	445
F		Marrocchelli, A. (see Godfrey, J. C.)	445
Feron, P. (see Solt, G. S.)	524	Mitschka, P. (see Wichterle, K.)	102
Feyo de Azevedo, S. and Howell, J. A., Second order model for		Moo-Young, M. (see Kawase, Y.)	284
low density polyethylene pipeline reactors	128	Mullin, J. W. (see Sohnel, O.)	537
Flower, J. R. (see Kakhu, A. I.)	241	Murphy, W. R. (see McKay, G.)	107
Francis, A. K., Leggate, J. S. and Stephenson, G., Develop-			
ments in the application of multiphase systems to oil		N	
production schemes	300	Naveed, S. (see Norman, P.)	470
Franklin, N. L., Counterflow cascades: Part II	47	Neale, A. J., Babus'Haq, R. F. and Probert, S. D., Steady-state	
Franklin, N. L., The theory of multicomponent countercurrent	•	heat transfers across an obstructed air-filled rectangular	
cascades	65	cavity	458
***************************************	00	Nicol, R. S. and Davidson, J. F., Effect of surfactants on the gas	.50
G		hold-up in circulating bubble columns	159
Glinos, K. and Malone, M. F., Optimality regions for complex		Nicol, R. S. and Davidson, J. F., Gas hold-up in circulating	107
column alternatives in distillation systems	229	bubble columns	152
			-

INDEX TO VOLUME 66, 1988

AUTHORS AND PAPERS		Godfrey, J. C., Houlton, D. A., Marley, S. T., Marrocchelli, A. and Slater, M. J., Continuous phase axial mixing in pulsed	445
A	402	sieve plate liquid-liquid extraction columns	445
Abellon, R. D. (see Hoogendoorn, G. C.)	483	Guedes de Carvalho, J. R. F. (see Coelho, M. A. N.)	5, 178
Aldington, R. W. J. (see Oliver, D. R.)	555	H	
Alper, E., Effective interfacial area in the RTL extraction from	1.47	Hajek, J. (see Wichterle, K.)	102
rates of extraction with chemical reaction	147		566
Al-Robah, H. A., Kam, E. K. T. and Hughes R., Dynamic	275	Heggs, P. J. (see Stitt, E. H.) Hillis, M. (see McKay, G.)	107
determination of diffusion in porous particles	255	Hoogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and	107
Ashton, G. J. (see Obeng, E. D. A.)	233	Wesselingh, J. A., Desorption of volatile electrolytes in a tray	
В		column (sour water stripping)	483
Babus'Haq, R. F. (see Neale, A. J.)	458	Houlton, D. A. (see Godfrey, J. C.)	445
Baird, M. H. I., Rohatgi, A. and Wuhai He, A rising film	430	Howell, J. A. (see Feyo de Azevedo, S.)	128
	121	Howell, J. A. (see Yust, L. J.)	260
extractor	121	Hughes, R. (see Al-Roobah, H. A.)	275
Baldyga, J. and Bourne, J. R., Calculation of micromixing in	22	Hussain, A. A., Liang, T-B. and Slater, M. J., Characteristic	213
inhomogeneous stirred tank reactors Barton, G. W. and Perkins, J. D., Experiences with SPEEDUP	33	velocity of drops in a liquid-liquid extraction pulsed sieve	
in the mineral processing industries	408	plate column	541
Biegler, L. T. (see Vasantharajan, S.)	396	Part Column	0 41
	22	1	
Boger, D. V. (see MacKay, M. E.)	265	Jones, S. D. (see Thonchk, N. K.)	503
Bohm, U. (see Cavatorta, O. N.)		Johns, S. D. (See Tholielik, 14. R.)	303
Bourne, J. R. (see Baldyga, J.)	33	K	
Bourne, J. R. and Tovstiga, G., Micromixing and fast chemical	26	Kakhu, A. I. and Flower, J. R., Synthesising heat-integrated	
reactions in a turbulent reactor	26	distillation sequences using mixed integer programming	241
Bunn, A. R. and Lees, F. P., Expert design of plant handling		Kam, E. K. T. (see Al-Rqobah, H. A.)	275
hazardous materials: design expertise and computer aided	419	Kawase, Y. and Moo-Young, M., Volumetric mass transfer	213
design method with illustrative example	417	coefficients in aerated stirred tank reactors with Newtonian and non-Newtonian media	284
C V I D v I d v I v I v I v I v I v I v I v I v		Krishna, R., Simulation of an industrial fluidized bed reactor	204
Carpenter, K. J., Recent developments and new challenges in		using a bubble growth model	463
fluid processing	2	Kuotsung, Yu. (see Zhou Li)	114
Cavatorta, O. N. and Bohm, U., Heat and mass transfer in gas sparging systems: Empirical correlations and theoretical models	265	Revising, 14. (See Zilou Zi)	114
	203	L	
Chen, S. J., Li, C. T. and Shieh, W. K., Anaerobic fluidised bed	518	Lees, F. P. (see Bunn, A. R.)	419
treatment of a tannery waste water	318	Leggate, J. S. (see Francis, A. K.)	300
Coelho, M. A. N, and Guedes de Carvalho, J. R. F., Transverse		Liang, T-B. (see Hussain, A. A.)	541
dispersion in granular beds. Part II: Mass transfer from large			518
spheres immersed in fixed or fluidised beds of small inert	178	Li, C. T. (see Chen, S. J.) Linnhoff, B. (see Smith, R.)	195
particles	1/0	Elithion, B. (see Shirth, R.)	175
Coelho, M. A. N. and Guedes de Carvalho, J. R. F., Transverse		M	
		McAleavey, G. (see McKay, G.)	531
dispersion in granular beds. Part I: Mass transfer from the wall and the dispersion coefficient in packed beds	165	McKay, G., Murphy, W. R. and Hillis, M., Settling character-	221
wan and the dispersion coefficient in packed beds	103	istics of discs and cylinders	107
D		McKay, G. and McAleavey, G., Ozonation and carbon adsorp-	107
	, 159	tion in a three-phase fluidised bed	531
Davies, G. A. (See Rowley, M. E.)	313	MacKay, M. E., Yeow, Y. L. and Boger, D. V., Pressure drop	551
		in pipe contractions—experimental measurement or finite	
E		element simulation	22
Elson, T. P. (see Nienow, A. W.)	5		3, 510
Essens, P. M. J. (see Hoogendoorn, G. C.)	483	Malone, M. F. (see Glinos, K.)	229
assess, 1 mm or (see 1100genaconi, c. c.)	400	Marley, S. T. (see Godfrey, J. C.)	445
F		Marrocchelli, A. (see Godfrey, J. C.)	445
Feron, P. (see Solt, G. S.)	524	Mitschka, P. (see Wichterle, K.)	102
Feyo de Azevedo, S. and Howell, J. A., Second order model for		Moo-Young, M. (see Kawase, Y.)	284
low density polyethylene pipeline reactors	128	Mullin, J. W. (see Sohnel, O.)	537
Flower, J. R. (see Kakhu, A. I.)	241	Murphy, W. R. (see McKay, G.)	107
Francis, A. K., Leggate, J. S. and Stephenson, G., Develop-			
ments in the application of multiphase systems to oil		N	
production schemes	300	Naveed, S. (see Norman, P.)	470
Franklin, N. L., Counterflow cascades: Part II	47	Neale, A. J., Babus'Haq, R. F. and Probert, S. D., Steady-state	
Franklin, N. L., The theory of multicomponent countercurrent	•	heat transfers across an obstructed air-filled rectangular	
cascades	65	cavity	458
***************************************	00	Nicol, R. S. and Davidson, J. F., Effect of surfactants on the gas	.50
G		hold-up in circulating bubble columns	159
Glinos, K. and Malone, M. F., Optimality regions for complex		Nicol, R. S. and Davidson, J. F., Gas hold-up in circulating	107
column alternatives in distillation systems	229	bubble columns	152
			-

Nienow, A. W. and Elson, T. P., Aspects of mixing in rheo-		Y	
logically complex fluids	5	Yeow, Y. L. (see MacKay, M. E.)	22
Norman, P. and Naveed, S., Knowledge acquisition analysis		Yu Kuotsung (see Zhou Li)	114
and structuring for the construction of real-time supervisory		Yust, L. J. and Howell, J. A., Application of a self-tuning	
expert systems.	470	regulator to control dissolved oxygen in an activated sludge	
Nowosielski, A. W. (see Solt, G. S.)	524	plant	260
		Z	
Obeng, E. D. A. and Ashton, G. J., On pinch technology based	266	Zak, L. (see Wichterle, K.)	102
procedures for the design of batch processes Oliver, D. R. and Aldington, R. W. J., Heat transfer enhance-	255	Zhang Zisheng (see Zhou Li)	114
ment in round tubes using wire matrix turbulators: Newton-		Zhou Li, Zhang Zisheng and Yu Kuotsung, Study of structure	
ian and non-Newtonian liquids	555	parameters of cyclones	114
in and non-revious injusts	000		
P			
Perkins, J. D. (see Barton, G. W.)	408		
Probert, S. D. (see Neale, A. J.)	458	TITLES AND KEYWORDS FOR PAPERS	
		A	
R	***	A absorbency	271
	, 510	absorption	371
Rohatgi, A. (see Baird, M. H. I.)	121	activated sludge plant	47, 65 260
Rowley, M. E. and Davies G. A., Design of plate separators for	212	advisory expert system	470
the separation of oil-water dispersions	313	aeration	284
S		agitated vessels	102
Schoenmakers, A. W. (see Smith, J. M.)	16	agitation	39
Sharma, M. M., Chemical Engineering Science in India: Needs,	10	air lift fermenters	159
opportunities and challenges	84	alarm systems	419
Shieh, W. K. (see Chen, S. J.)	518	alkaline hydrolysis of n-butyl formate	147
Slater, M. J. (see Godfrey, J. C.)	445	anaerobic fluidised bed system	518
Slater, M. J. (see Hussain, A. A.)	541	Anaerobic fluidised bed treatment of a tannery waste water,	
Smith, J. M. and Schoenmakers, A. W., Blending of liquids of		Chen, S. J., Li, C. T. and Shieh, W. K.	518
differing viscosity	16	Application of a self-tuning regulator to control dissolved oxy-	
Smith, J. M. and Verbeek, D. G. F., Impeller cavity develop-		gen in an activated sludge plant, Yust, L. J. and Howell J. A.	260
ments in nearly boiling liquids	39	artificial lift	300
Smith, R. and Linnhoff, B., The design of separators in the		aspect ratio	107
context of overall processes	195	Aspects of mixing in rheologically complex fluids, Nienow,	
Sohnel, O. and Mullin, J. W., The role of time in metastable zone		A. W. and Elson, T. P.	5
width determinations	537	asphaltene Asphaltene deposition in miscible gas flooding of oil reservoirs,	339
Solt, G. S., Nowosielski, A. W. and Feron, P., Predicting the	624	Danesh, A., Krinis, D., Henderson, G. D. and Peden, J. M.	339
performance of ion exchange columns	524	axial dispersion	128
Stephenson, G. (see Francis, A. K.)	300	axial impeller	102
Stitt, E. H. and Heggs, P. J., Fifteenth Annual Research Meet-	566	axial mixing	445
ing: Modelling and Separation Processes Svrcek, W. Y. and Mehrotra A. K., One parameter correlation	300	and the same of th	***
for bitumen viscosity	323		
for ortuinen viscosity	343	B batch	255
T		bitumen	323
Tan, T. C., Teo, W. K. and Ti, H. C., Vapour liquid equilibria		blending	16
of ethanol-water system saturated with glucose at sub-		Blending of liquids of differing viscosity, Smith, J. M. and	
atmospheric pressures	75	Schoenmakers, A. W.	16
Teo, W. K. (see Tan, T. C.)	75	boiling	39
Thomas, W. J. and Ullah, U., Effect of intraparticle diffusion on			59, 265
the catalytic selectivity of ethanol dehydration	138	bubble growth	463
Thonchk, N. K., Jones, S. D., Reuben, B. G. and Mahi, P.,			
Extraction of thiocyanate ions from coal gasification effluents:		C	
Part I—Ion-pair extraction system	503	Calculation of micromixing in inhomogeneous stirred tank	
Thonchk, N. K., Reuben, B. G. and Mahi, P., Extraction of		reactors, Baldyga, J. and Bourne, J. R.	33
thiocyanate ions from coal gasification effluents: Part II—lon-	610	carbon adsorption	531
exchange extraction system	510	cascade processes	47
Ti, W. K. (see Tan, T. C.) Tovstiga, G. (see Bourne, J. R.)	75 26	cascades	65
Tovstiga, G. (see Bourne, J. R.)	20	catalysts	275
U		catalyst selectivity	138
Ullah, U. (see Thomas, W. J.)	138	cavitation	39
		cavities	39
V		Characteristic velocity of drops in a liquid-liquid extraction	
Vasantharajan, S. and Biegler, L. T., Simultaneous solutions of	201	pulsed sieve plate column, Hussain, A. A., Liang, T-B. and	
reactor models within flowsheet optimization	396	Slater, M. J.	541 387
Verbeek, D. G. F. (see Smith, J. M.)	39	chemical engineering	387
w		chemical engineering in India	84
27	493	chemical engineering science in India Chemical engineering science in India: needs, opportunities and	
Wesselingh, J. A. (see Hoogendoorn, G. C.)	483	challenges, Sharma, M. M.	84
Wichterle, K., Mitschka, P., Hajek, J. and Zak, L., Shear	102	channenges, Snarma, M. M.	483
stresses on the walls of vessels with axial impellers Wottge, K. R., Subsea oil production from Scapa Field achieves	102	chromatography	524
its first anniversary	291	CO ₂ corrosion	291
Wuhai He (see Baird, M. H. I.)	121	collocation	128

complex columns computer aided design of continuous phase axisl mixing in publes seve plate liquid-liquid continuous phase axisl mixing in publes seve plate liquid-liquid continuous phase axisl mixing in publes seve plate liquid-liquid continuous phase axisl mixing in publes seve plate liquid-liquid continuous phase axisl mixing in publes seve attractor of contractors of contrac	colour removal	531	Extraction of thiocyanate ions from coal gasification effluents:	
computer aided design Continuous phase said mixing in pulsed sieve plate liquid-liquid extraction columns. Godfrey. J. C., Houlton, D. A., Marky, S. T., Marrocchile, A. and Salter, M. J. Correlation Counterflow cacades: Part II, Franklin, N. L. Crystalliation Cyclones Decomption cacades: Part II, Franklin, N. L. Crystalliation Cyclones Dedebottleneck debydration Counterflow cacades: Part II, Franklin, N. L. Cyclones Decomption of collaboration of militophase control of the separation of oil-water dispersions. Rowley, M. E. and Davies. G. A. Design of separators for the separation of oil-water dispersions. Rowley, M. E. and Davies. G. A. Design of separators in the context of overall processes, The, Smith, R. and Lumbnoff. B. S. D., Reuben, B. G. and Mahi, P. S. D., Ratter and Mahi, P.				
Continuous phase axial mixing in pulsed sieve plate liquid-liquid extraction columns, Godfrey, J. C., Houlson, D. A., Marky, S. T., Marrocchelli, A. and Slater, M. J. Control				503
S. T., Marrocchelli, A. and Slater, M. J. correlation control correlation correlation 320 correlation 320 correlation 320 correlation 320 contentivo exactacle: Part II, Franklin, N. L. 47 cytolones 4114 cytolones 411		id		, 147
control correlation 200 Counterfolw cascades: Part II, Franklin, N. L. 201 Counterfolw cascades: Part II, Franklin, N. L. 201 Cyclones 101 Cyclones 101 Cyclones 201 Cyclones		у,		
Courterflow assades: Part II, Franklin, N. L. 47 crystallisation 57 Counterflow assades: Part II, Franklin, N. L. 47 crystallisation 57 D Counterflow assades: Part II, Franklin, N. L. 47 crystallisation 57 D Counterflow assades: Part III, Franklin, N. L. 47 crystallisation 57 D Counterflow assades: Part III, Franklin, N. L. 47 crystallisation 57 D Counterflow assades: Part III, Franklin, N. L. 47 crystallisation 57 D Counterflow assades: Part III, Franklin, N. L. 47 crystallisation 57 D Counterflow assades: Part III, Franklin, N. L. 47 Crystallisation 57 D Counterflow assades: Part III, Franklin, N. L. 47 Crystallisation 57 D Counterflow assades: Part III, Franklin, N. L. 47 Crystallisation 57 D Counterflow assades: Part III, Franklin, N. L. 47 D Counterflow assades: Part III, Franklin, N. L. 47 D Counterflow assades: Part III, Franklin, N. L. 47 D Counterflow assades: Part III, Franklin, N. L. 47 D Counterflow assades: Part III, Franklin, N. L. 47 D Counterflow assades: Part III, Franklin, N. L. 47 D Counterflow assades: Part III, Franklin, N. L. 47 D Counterflow assades: Part III, Franklin, N. L. 47 D Counterflow assades: Part III, Franklin, N. L. 47 D Counterflow assades: Part III, Franklin, N. L. 47 D Counterflow assades: Part III, Franklin, N. L. 47 D Counterflow assades: Part III, Franklin, N. L. 47 D Counterflow assades: Part III, Franklin, N. L. 47 D Counterflow assades: Part III, Franklin, N. L. 47 D Counterflow assades: Part III, Franklin, N. L. 47 D Counterflow assades: Part III, Part III, 10 D Counterflow assades: Part III, Part III, 10 D Counterflow assades: Part III, 10 D Counterflow assades: Part III, 10 D Counterflow assate Part III D Counterflow assate Part III, 10 D Counterflow assate Part III D Counterflow assate Part III D C				
Counterflow cascades: Part II, Franklin, N. L. 97 cyclones 114				
cystalisation cyclones 1144 Debetotitence 1144 Gebottitence 1144 Gebottitence 1144 Gebottitence 1144 Gebottitence 1144 Gebottitence 1144 Gespread of cyclones 1144 Gespread of cyclones				419
Doctores 114 finite dements imitualition 22 235 236 237 238 23				566
debottleneck debytration 255 debytration				
debyldration 138 design of cyclones 255 design of cyclones 313 design of cyclones 313 design of cyclones 314 design of cyclones 315 design of plate separators for the separation of oil-water dispersions, Rowky, M. E. and Davies, G. A. 315 design of sparators in the context of overall processes, The, Design of sparators in the context of overall processes, The, Gospophon 463 description of volatile electrolytes in a tray column (sour water stripping). Hongendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Wesselingh, J. A. 483 description of volatile electrolytes in a tray column (sour water stripping). Hongendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Wesselingh, J. A. 483 description of volatile electrolytes in a tray column (sour water stripping). Hongendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Wesselingh, J. A. 483 description of volatile electrolytes in a tray column (sour water stripping). Hongendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Wesselingh, J. A. 483 description of volatile electrolyte in the application of multiphase systems to oil production schemes, Francis, A. K., Leggate, J. S. and Stephenson, G. d. 463 description of volatile electrolyte in the application of multiphase systems to oil production schemes, Francis, A. K., Leggate, J. S. and Stephenson, G. 463 diffilation—description of volatile electrolyte in the application of the description of volatile electrolyte electrolyte 463 distillation—demandation 470 distilla	Cyclones			
design of cyclones Senith, R. and Limhoff, B. Senith, R. and Limhoff, B. Secorption Distripping). Hoogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Wesselingh, J. A. Developments in the application of multiphase systems to diproduction schemes, Francis, A. K., Leggate, J. S. and Stephenson, G. C. abellon, R. D., Essens, P. M. J. and Wesselingh, J. A. Developments in the application of multiphase systems to diproduction schemes, Francis, A. K., Leggate, J. S. and Stephenson, G. diffusivities 275 discharge coefficients 485 disciplation—energy requirements 486 distillation—energy requirements 487 distillation—energy requirements 488 distillation—energy requirements 489 distillation—energy requirements 480 distillation—energy requirements 480 distillation—energy requirements 481 distillation—energy requirements 482 distillation—simulation 483 distillation—simulation 484 distillation—simulation 485 distillation—simulation of diffusion in porous particles, Al-Ropchah, H. A., Kam, E. K. T. and Hughes, R. 487 dynamic method 286 design of cyclones 487 documents 488 documents 489 documents 489 distillation—simulation of the catalytic selectivity of channol debydration. Thomas, W. J. and Ullah, U. 489 distillation—simulation 480 distillation—simulation of diffusion in porous particles, Al-Ropchah, H. A., Kam, E. K. T. and Hughes, R. 489 distillation—simulation 489 distillation—simulation 489 distillation—simulation 489 distillation—simulation 480	D		fixed beds	178
design of cyclones Design of plate separators for the separation of oil-water dispersions, Rowky, M. E. and Davies, G. A. Design of sparators in the context of overall processes, The, Smith, R. and Linnhoff, B. Design of separators in the context of overall processes, The, Smith, R. and Linnhoff, B. P. M. J. and Washelingh, J. Mogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Washelingh, J. Mogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Washelingh, J. Mogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Washelingh, J. Mogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Washelingh, J. Mogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Washelingh, J. Mogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Washelingh, J. Mogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Washelingh, J. Mogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Washelingh, J. Mogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Washelingh, J. Mogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Washelingh, J. Mogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Washelingh, J. Mogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Washelingh, J. Mogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Washelingh, J. Mogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Washelingh, J. Mogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Washelingh, J. M. S. and Stephenson, G. Washelingh, J. M. S. and Stephenson, J. F. S. and St	debottleneck		flow regime transition	
obesign of plate separators for the separation of oil-water dispersions, Rowkey, M. E. and Davies, G. A. Desorption of Volatile electrolytes in a tray column (sour water stropping). Hoogendoorn, G. C., Abellon, R. D., Easens, Decorption of Volatile electrolytes in a tray column (sour water stropping). Hoogendoorn, G. C., Abellon, R. D., Easens, Decorption of Volatile electrolytes in a tray column (sour water stropping). Hoogendoorn, G. C., Abellon, R. D., Easens, Decorption of Volatile electrolytes in a tray column (sour water stropping). Hoogendoorn, G. C., Abellon, R. D., Easens, Decorption of Volatile electrolytes in a tray column (sour water stropping). Hoogendoorn, G. C., Abellon, R. D., Easens, Decorption of Volatile electrolytes in the application of multiphase systems to oil production schemes, Francis, A. K., Leggate, J. S. and Stephenson, G. diffusivities 2026 dissolved oxygen distillation—exercise production—energy requirements distillation—exercise production—energy requirements and stephenson, G. distillation—exercise production—energy requirements distillation—exercise production—energy requirements and distillation—exercise production—initial condition—energy requirements and distillation—exercise pro				
Design of plate separators for the separation of oil-water dispersions, Rowley, M. E. and Davies, G. A. Design of separators in the context of overall processes, The, Smith, R. and Limnhoff, B. Desorption of volatile electrolytes in a tray column (sour water stripping). Hoogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Wessenigh, J. A. Developments in the application of multiphase systems to Stephenson, Ehemes, Francis, A. K., Leggate, J. S. and Stephenson, Ehemes, Francis, A. K., Leggate, J				
sions, Rowley, M. E. and Davies, G. A. Samples of the Comption of Volatile electrolytes in a tray column (sour water stripping). Hoogendoorn, G. C. Abellon, R. D., Essens, P. M. J. and Wesselingh, J. A. Developments in the application of multiphase systems to oil production schemes, Francis, A. K., Leggate, J. S. and Stephenson, G. C. Abellon, R. D., Essens, P. M. J. and Wesselingh, J. A. Developments in the application of multiphase systems to oil production schemes, Francis, A. K., Leggate, J. S. and Stephenson, G. C. Abellon, R. D., Essens, P. M. J. and Wesselingh, J. A. Developments in the application of multiphase systems to oil production schemes, Francis, A. K., Leggate, J. S. and Stephenson, G. C. Abellon, R. D., Essens, P. M. J. and Wesselingh, J. A. Developments in the application of multiphase systems to oil production schemes, Francis, A. K., Leggate, J. S. and Stephenson, G. C. Abellon, R. D., Essens, P. M. J. and Wesselingh, J. A. Developments in the application of multiphase systems to oil production schemes, Francis, A. K., Leggate, J. S. and Stephenson, G. C. abellon, R. D., Essens, P. M. J. and Wesselingh, J. A. Developments in the application of multiphase systems to oil production schemes, Francis, A. K., Leggate, J. S. and Salou-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Soloutine, J. S. Saloutine, J				
Design of separators in the context of overall processes, The, Smith, R. and Linnhoff, B. desorption Sorption of volatile electrolytes in a tray column (sour water stripping). Hoogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Wesselingh, J. A. of multiphase systems to oil production schemes, Francis, A. K., Legate, J. S. and Stephenson, G. diffusivities 275 discharge coefficients 485 dispersion 476, 51, 195, 229 441 Distillation: Whither, not whether, Fair, J. R. distillation—energy requirements 485 distillation—immulation 486 distillation—				
Smith, R. and Linnhoff, B. desorption Desorption of volatile electrolytes in a tray column (sour water stripping). Hoogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Wesselingh, J. A. Developments in the application of multiphase systems to oil production schemes, Francis, A. K., Leggate, J. S. and Stephenson, G.			tuture developments	307
desorption Ovalatile electrolytes in a tray column (sour water stripping). Hoogendoorn, G. C., Abellon, R. D., Essens, P. M. J. and Wesselingh, J. A. Overlopments in the application of multiphase systems to oil production schemes, Francis, A. K., Leggate, J. S. and Stephenson, G. diffusivities 275 discharge coefficients 485 dispersion 476, 55, 195, 222 41 discharge coefficients 485 dispersion 476, 55, 195, 222 41 dispersion 476, 55, 195, 222 41 dispersion 476, 55, 195, 222 41 distillation—energy requirements 485 distillatio			G	
Desorption of volatile electrolytes in a tray column (sour water stripping). Hoogendoorn, G. C., Abelon, R. D., Essens, P. M. J. and Wesselingh, J. A. Developments in the application of multiphase systems to oil production schemes, Francis, A. K., Leggate, J. S. and Stephenson, G. G. C., Abelon, R. S. and Stephenson, G. G. G. C., Abelon, R. S. and Stephenson, G. G. G. G. G. G. C., Abelon, R. S. and Stephenson, G.		483		357
P. M. J. and Wesselingh, J. A. Developments in the application of multiphase systems to oil production schemes, Francis, A. K., Leggate, J. S. and Stephenson, G. Giffusivities discharge coefficients discharge coefficients discharge coefficients discharge coefficients discharge coefficients discolved oxygen discolved oxygen distillation—overly distillation—energy requirements distillation—energy requirements distillation—overview distillation—overview distillation—signature of the distillation—trends distillation—trends distillation—trends distillation—trends distillation—trends distillation—trends distillation—trends drying 195, 371 dynamic 408 Dynamic determination of diffusion in porous particles, Al-Rqobah, H. A., Kam, E. K. T. and Hughes, R. dynamic method E Effect of intraparticle diffusion on the catalytic selectivity of ethanol dehydration, Thomas, W. J. and Ullah, U. effective interfacial area in the RTL extractor from rates of extraction with chemical reaction, Alper, E. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. 275 distillation—energy requirements distillation—correlay depluyers on the destrond of the distillation—and the distillati		er	Gas flows in raceways formed by high velocity jets in a	
Developments in the application of multiphase systems to oil production schemes, Francis, A. K., Leggate, J. S. and Stephenson, G. diffusivities 3 300 diffusivities 445 455 disspersion 47.65, 195, 229, 211 260 dissolved oxygen 47.65, 195, 229, 211 270 distillation—energy requirements 47.65, 195, 229, 229, 229, 229, 229, 229, 229, 2	stripping), Hoogendoorn, G. C., Abellon, R. D., Essen		two-dimensional packed bed, Apte, V. B., Wall, T. F. and	
Siephenson, G. diffusivities discharge coefficients discharge coefficients discharge coefficients discolved oxygen distribution—energy requirements distillation—energy requirements distillation—overview distillation—overview distillation—overview distillation—simulation distillation—simulation distillation—simulation distillation—simulation distillation—simulation distillation—trends drying 195, 371 dynamic Dynamic determination of diffusion in porous particles, Al-Rqobah, H. A., Kam, E. K. T. and Hughes, R. 275 dynamic method Dynamic determination of diffusion in porous particles, Al-Rqobah, H. A., Kam, E. K. T. and Hughes, R. 275 dynamic method Dynamic determination of diffusion on the catalytic selectivity of ethanol dehydration, Thomas, W. J. and Ullah, U. Effect of intraparticle diffusion on the catalytic selectivity of ethanol dehydration, Thomas, W. J. and Ullah, U. Effective interfacial area in the RTL extractor from rates of extraction with chemical reaction, Alper, E Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. 102 103 103 103 103 104 104 105 106 107 107 108 109 109 109 109 109 109 109				
Stephenson, G. diffusivities 326 diffusivities 327 disparage coefficients 445 dispersion 378 dispers				, 159
distharge coefficients 445 discharge coefficients 445 discharge coefficients 445 discharge coefficients 476, 65, 195, 229, 241 distillation whither, not whether, Fair, J. R. 363 distillation—energy requirements 363 distillation—energy requirements 363 distillation—everyiew 364 distillation of the analysmic 365 drying 365 dryi				152
discharge coefficients 445 dispersion 278 distillation—energy requirements 363 distillation—energy requirements 363 distillation—energy requirements 363 distillation—energy requirement 364 distillation—energy requirement 364 distillation—energy requirement 364 distillation—energy requirement 365 distillation—energy requiremen				
dissolved oxygen 47, 65, 195, 229, 241 distillation 47, 65, 195, 229, 241 distillation—energy requirements 363 distillation—energy requirements 363 distillation—energy requirements 363 distillation—everiew 363 distillation—every requirements 419				
distillation—whether, Fair, J. R. distillation—equipment distillation—equipment distillation—equipment distillation—equipment distillation—equipment distillation—equipment distillation—equipment distillation—equipment distillation—overview 363 distillation—simulation 363 distillation—simulation 363 distillation—simulation 363 distillation—ternal dynamics 363 di				
Distillation—equipment 363 distillation—equipment 363 distillation—equipment 363 distillation—equipment 363 distillation—equipment 363 distillation—equipment 363 distillation—suguences 229 distillation—suguences 363 distillation—trenal dynamics 363 distillation—trenal dynamics 363 distillation—trenal dynamics 363 distillation—trenal dynamic 363 dis		260		
distillation—equipment 363 distillation—every provided distillation—every 363 distillation—every 363 distillation—simulation 363 distillation—simulation 363 distillation—simulation 363 distillation—simulation 363 distillation—termal dynamic 363 drying 363 drying 363 drying 363 drying 464 distillation—termal dynamic 468 drying 464 dynamic 468 drying 464 dynamic 468 drying 464 dynamic 468 drying 464	distillation 47, 65, 195,	229, 241	grinding mill	470
distillation—equipment distillation—sequences 363 distillation—simulation sequences 229 distillation—simulation 363 distillation—trends 364 distillation—trends 364 distillation—trends 365 distillation—trends 466 distillati	Distillation: Whither, not whether, Fair, J. R.			
distillation—overview distillation—simulation 363 distillation—simulation 363 distillation—simulation 363 distillation—simulation 363 distillation—termal dynamics 363 drying 363 drying 363 drying 363 drying 363 drying 364 drying 365 drying 36			H	
distillation—simulation distillation—thermal dynamics distillation—thermal dynamics distillation—terends dynamic Dynamic determination of diffusion in porous particles, Al-Rqobah, H. A., Kam, E. K. T. and Hughes, R. 275 Dynamic determination of diffusion in porous particles, Al-Rqobah, H. A., Kam, E. K. T. and Hughes, R. 275 dynamic method Effect of intraparticle diffusion on the catalytic selectivity of ethanol dehydration, Thomas, W. J. and Ullah, U. effective interfacial area Effective interfacial				
distillation—simulation distillation—trends di				
distillation—trends 363 drying 195, 371 dynamic 240 Dynamic determination of diffusion in porous particles, Al-Rqobah, H. A., Kam, E. K. T. and Hughes, R. 275 dynamic method 275 Effect of intraparticle diffusion on the catalytic selectivity of ethanol dehydration, Thomas, W. J. and Ullah, U. 218 Effect of intraparticle diffusion on the catalytic selectivity of ethanol dehydration, Thomas, W. J. and Ullah, U. 218 Effective interfacial area in the RTL extractor from rates of extraction with chemical reaction, Alper, E. 219 Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. 26 Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. 26 Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. 26 Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. 26 Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. 26 Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. 27 Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. 291 Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. 291 Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. 291 Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. 291 Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. 291 Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. 291 Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. 291 Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J				345
distillation—trends drying 195, 371 drying 195				
drying dynamic processing industries, Barton, G. W., and Perkins, J. D. Experimental investigation of predictive controller design by principal component analysis, An, Callaghan, P. J. and Lee P. L. Expert design of plant handling hazardous materials: design expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lees, F. P. extraction of thiocyanate ions from coal gasification effluents: Part III—In-or-exchange extraction system, Thonchk, N. K., Part III—In-or-exchange extraction system, Thonchk, N. K., Inc. Part III—In-or-exchange extraction system, Thonchk, N. K., Inc. Part III—In-or-exchange extraction system, Thonchk, N. K., Inc. Part III—In-or-exchange extraction of diffusion in porous particles, Aleaded transfer enhancement in round tubes using wire matrix turbulators: Newtonian and non-Newtonian liquids, Oliver, Defeat transfer enhancement in round tubes using wire matrix turbulators: Newtonian and non-Newtonian liquids, Oliver, Defeat transfer enhancement in round tubes using wire matrix turbulators: Newtonian and non-Newtonian liquids, Oliver, Defeat transfer enhancement in round tubes using wire matrix turbulators: Newtonian and non-Newtonian liquids, Oliver, Defeat transfer enhancement in round tubes using wire matrix turbulators: Newtonian and non-Newtonian liquids, Oliver, Defeat transfer enhancement in round tubes using wire matrix turbulators: Newtonian and non-Newtonian liquids, Oliver, Defeated transfer enhancement in round tubes using wire matrix turbulators: Newtonian and non-Newtonian liquids, Oliver, Defeated transfer enhancement in round tubes using wire matrix turbulators: Newtonian and non-Newtonian liquids, Oliver, Defeated transfer enhancement in round tubes using wire matrix turbulators: Newtonian and non-Newtonian liquids, Oliver, Defeated turbulation, Oliver, Defeated transfer enhancement in round tubes using wire matrix turbulators: Newtonian and non-Newtonian liquids, Oliver, Defeated turbulation, Oliver, Defeated transfer enhancement in round t				265
dynamic determination of diffusion in porous particles, Al-Rqobah, H. A., Kam, E. K. T. and Hughes, R. dynamic method E E Effect of intraparticle diffusion on the catalytic selectivity of ethanol dehydration, Thomas, W. J. and Ullah, U. Effective interfacial area Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. 147 Impeller cavity developments in nearly boiling liquids, Smith, J. M. and Verbeek, D. G. F. India induction period in-situ combustion In-situ combustion In-situ combustion In-situ combustion kinetic studies of medium heavy crude oil, Greaves, M., Field, R. W. and Adewusi, V. A. 228 229 129 120 121 120 121 121 121	drying	195, 371		
Al-Rqobah, H. A., Kam, E. K. T. and Hughes, R. dynamic method 275 dynamic method 275 dynamic method 275 Effect of intraparticle diffusion on the catalytic selectivity of ethanol dehydration, Thomas, W. J. and Ullah, U. Effective interfacial area Effective interfacial area Effective interfacial area Effective interfacial area Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Efflect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effluent Effective interfacial area Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effluent Effluent Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effluent Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effluent Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effluent Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effluent Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effluent Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effluent Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effluent Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and David	dynamic	408		
dynamic method 275 E E E E E E E E E E E E E E E E E E			Heat transfer enhancement in round tubes using wire matrix	
Effect of intraparticle diffusion on the catalytic selectivity of ethanol dehydration, Thomas, W. J. and Ullah, U. 188 effective interfacial area in the RTL extractor from rates of extraction with chemical reaction, Alper, E 147 Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. 159 effluent 503, 510 electrochemical method 102 electrolyte 483 energy dissipation 26, 33 equilibrium bubble size 443 ethanol ethanol-water-glucose system 75 evaporation 195 experiences with SPEEDUP in the mineral processing industries, Barton, G. W., and Perkins, J. D. 408 Experimental investigation of predictive controller design by principal component analysis, An, Callaghan, P. J. and Lee P. L. Expert design of plant handling hazardous materials: design expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lees, F. P. 419 expert systems 419 Extraction of thiocyanate ions from coal gasification effluents: Part III—Ion-exchange extraction system, Thonchk, N. K., 417 Extraction of freal-time supervisory expert systems, Norman, 428 Inhead of the catalytic selectivity of ethanol dehydration, Thomas, W. J. and Ullah, U. 188 hold-up model hydrater 291 hold-up model hydrater 291 hydrater				
Effect of intraparticle diffusion on the catalytic selectivity of ethanol dehydration, Thomas, W. J. and Ullah, U. 138 effective interfacial area in the RTL extractor from rates of extraction with chemical reaction, Alper, E 147 Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. 159 effluent 503, 510 electrochemical method 102 electrolyte 483 electrochemical method 26, 33 equilibrium bubble size 463 ethanol ethanol-water-glucose system 450 experiences with SPEEDUP in the mineral processing industries, Barton, G. W., and Perkins, J. D. 408 Experiences with SPEEDUP in the mineral processing industries, Barton, G. W., and Perkins, J. D. 408 Experiences with SPEEDUP in the mineral processing industries, Barton, G. W., and Perkins, J. D. 408 Experiences with SPEEDUP in the mineral processing industries, Barton, G. W., and Perkins, J. D. 408 Experiences with SPEEDUP in the mineral processing industries design of plant handling hazardous materials: design expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lee, F. P. 419 Extraction with reaction 5470 Extraction of thiocyanate ions from coal gasification effluents: Part III—Ion-exchange extraction system, Thonchk, N. K., 5470 Fig. 121 hydrater 291 Impeller cavity developments in nearly boiling liquids, Smith, J. 1670 M. and Verbeek, D. G. F. 189 Impeller cavity developments in nearly boiling liquids, Smith, J. 180 India 108 India 108 India 108 India 108 India 108 India 109 In	dynamic method	2/5		
Effect of intraparticle diffusion on the catalytic selectivity of ethanol dehydration, Thomas, W. J. and Ullah, U. 138 effective interfacial area in the RTL extractor from rates of extraction with chemical reaction, Alper, E 147 Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. 159 India 84 India 8				
ethanol dehydration, Thomas, W. J. and Ullah, U. effective interfacial area in the RTL extractor from rates of extraction with chemical reaction, Alper, E. effectio surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. efflect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. effluent 503, 510 electrochemical method 102 electrolyte 483 electrolyte 483 electrolyte 483 electrolyte 483 electrolyte 483 electrolyte 483 eletral bubble size 463 ethanol water-glucose system 75 ethanol-water-glucose system 75 Experimental investigation of predictive controller design by principal component analysis, An, Callaghan, P. J. and Lee P. L. Expert design of plant handling hazardous materials: design expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lees, F. P. expert systems 419 Extraction with reaction 503 Extraction of thiocyanate ions from coal gasification effluents: Part II —Ion-exchange extraction system, Thonchk, N. K., 138 147 Impeller cavity developments in nearly boiling liquids, Smith, J. M. and Verbeek, D. G. F 39 Impeller cavity developments in nearly boiling liquids, Smith, J. M. and Verbeek, D. G. F 39 India induction period influence of gas distributor in-situ combustion kinetic studies of medium heavy crude oil, Graeves, M., Field, R. W. and Adewusi, V. A. 328 integration internal pipeline costing internal pipelin	E			
effective interfacial area Effective interfacial area in the RTL extractor from rates of extraction with chemical reaction, Alper, E Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Efflect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Efflect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Efflect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Efflect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Efflect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Efflect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Efflect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Efflect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Efflect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. E. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. End Idlia induction period induction period influence of gas distributor India induction period influence of gas distributor India induction period influence of gas distributor India induction period inf			nyurater	671
Effective interfacial area in the RTL extractor from rates of extraction with chemical reaction, Alper, E Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. 503, 510 influence of gas distributor influence of gas				
extraction with chemical reaction, Alper, E Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. effluent 503, 510 electrochemical method electrolyte 483 electrolyte 583, 510 electrolyte 683, 510 electrolyte			I Impeller cavity developments in nearly boiling liquide Smith I	
Effect of surfactants on the gas hold-up in circulating bubble columns, Nicol, R. S. and Davidson, J. F. effluent 503, 510 effluent 503, 510 electrochemical method 102 electrolyte 483 energy dissipation 26, 33 energy dissipat				39
columns, Nicol, R. S. and Davidson, J. F. effluent 503, 510 electrochemical method electrolyte energy dissipation equilibrium bubble size ethanol ethanol-water-glucose system evaporation Experiences with SPEEDUP in the mineral processing industries, Barton, G. W., and Perkins, J. D. Experimental investigation of predictive controller design by principal component analysis, An, Callaghan, P. J. and Lee P. L. Expert design of plant handling hazardous materials: design expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lees, F. P. extraction with reaction Part II—lon-exchange extraction system, Thonchk, N. K., induction period influence of gas distributor in-situ combustion kinetic studies of medium heavy crude oil, Greaves, M., Field, R. W. and Adewusi, V. A. 328 integration internal pipeline costing intraparticle diffusion internal pipeline costing interna				
effluent 503, 510 electrochemical method 102 in-situ combustion (another total combustion) 328 electrochemical method 102 in-situ combustion (another total combustion) 328 electrochemical method 102 in-situ combustion (another total combustion) 328 electrochemical method 26, 33 equilibrium bubble size ethanol 26, 33 ethanol-water-glucose system 275 ethanol-water-glucose system 275 experiences with SPEEDUP in the mineral processing industries, Barton, G. W., and Perkins, J. D. Experimental investigation of predictive controller design by principal component analysis, An, Callaghan, P. J. and Lee P. L. Experit design of plant handling hazardous materials: design expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lees, F. P. 419 kinetics 2328 extraction with reaction 470 knowledge acquisition analysis and structuring for the construction of real-time supervisory expert systems, Norman,			induction period ,	537
electrolyte energy dissipation 26, 33 energy dissipation 26, 33 equilibrium bubble size ethanol 138 evaporation 75 evaporation 87 Experiences with SPEEDUP in the mineral processing industries, Barton, G. W., and Perkins, J. D. Experimental investigation of predictive controller design by principal component analysis, An, Callaghan, P. J. and Lee P. L. Expert design of plant handling hazardous materials: design expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lees, F. P. expert systems 419 Extraction with reaction 483 In-situ combustion kinetic studies of medium heavy crude oil, Greaves, M., Field, R. W. and Adewusi, V. A. 328 integration integration internal pipeline costing intraparticle diffusion 593 ion exchange extraction 593 ion-pair extraction 593 ion-pair extraction 593 jet 357 K Expert design of plant handling hazardous materials: design expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lees, F. P. expert systems 419 Extraction of thiocyanate ions from coal gasification effluents: Part II—lon-exchange extraction system, Thonchk, N. K.,	The second state of the se		influence of gas distributor	463
energy dissipation 26, 33 Greaves, M., Field, R. W. and Adewusi, V. A. 328 integration 195, 241 integration 291 interparticle diffusion 138 evaporation 75 ion exchange extraction of predictive controller design by principal component analysis. An, Callaghan, P. J. and Lee P. L. Experimental investigation of predictive controller design by principal component analysis. An, Callaghan, P. J. and Lee P. L. Experimental investigation of predictive controller design by principal component analysis. An Callaghan, P. J. and Lee P. L. Experimental investigation of plant handling hazardous materials: design expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lees, F. P. 419 K expert systems 419 kinetics 328 extraction of thiocyanate ions from coal gasification effluents: Part III—Ion-exchange extraction system, Thonchk, N. K., 463 Thombelly integration int	electrochemical method	102		328
equilibrium bubble size ethanol ethanol bubble size ethanol ethanol water-glucose system ethanol-water-glucose system exaporation 75 interparticle diffusion 138 evaporation 138 experiences with SPEEDUP in the mineral processing industries, Barton, G. W., and Perkins, J. D. Experimental investigation of predictive controller design by principal component analysis, An, Callaghan, P. J. and Lee P. L. Expert design of plant handling hazardous materials: design expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lees, F. P. 419 Kexpert systems 419 kinetics 328 extraction with reaction 470 knowledge acquisition analysis and structuring for the construction of real-time supervisory expert systems, Norman,				***
ethanol ethanol-water-glucose system evaporation 138 internal pipeline costing intraparticle diffusion 138 evaporation 138 con exchange extraction 524 Experiences with SPEEDUP in the mineral processing industries, Barton, G. W., and Perkins, J. D. Experimental investigation of predictive controller design by principal component analysis, An, Callaghan, P. J. and Lee P. L. Expert design of plant handling hazardous materials: design expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lees, F. P. expert systems extraction with reaction 409 Extraction with reaction 419 Extraction of thiocyanate ions from coal gasification effluents: Part II—lon-exchange extraction system, Thonchk, N. K., struction of real-time supervisory expert systems, Norman, 470 Expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lees, F. P. 419 Extraction of thiocyanate ions from coal gasification effluents: 470 Extraction of thiocyanate ions from coal gasification effluents: 470 Extraction of real-time supervisory expert systems, Norman, 470 Extraction of real-time supervisory expert systems, Norman, 470 Extraction of real-time supervisory expert systems, Norman, 470 Extraction 470 Extraction of real-time supervisory expert systems, Norman, 470 Extraction 470 Extrac	energy dissipation	26, 33		
ethanol-water-glucose system evaporation Experiences with SPEEDUP in the mineral processing industries, Barton, G. W., and Perkins, J. D. Experimental investigation of predictive controller design by principal component analysis, An, Callaghan, P. J. and Lee P. L. Expert design of plant handling hazardous materials: design expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lees, F. P. Expert systems extraction with reaction 408 345 J intraparticle diffusion ion exchange ion exchange extraction ion-pair extraction 345 J jet 357 419 K expert systems extraction with reaction 419 K supert systems extraction of thiocyanate ions from coal gasification effluents: Part II—Ion-exchange extraction system, Thonchk, N. K., Final particle diffusion ion exchange io				
evaporation Experiences with SPEEDUP in the mineral processing industries, Barton, G. W., and Perkins, J. D. Experimental investigation of predictive controller design by principal component analysis, An, Callaghan, P. J. and Lee P. L. Expert design of plant handling hazardous materials: design expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lees, F. P. expert systems extraction with reaction Extraction of thiocyanate ions from coal gasification effluents: Part II—Ion-exchange extraction system, Thonchk, N. K., 195 ion exchange ion-pair extraction 345 jet 347 Knowledge acquisition analysis and structuring for the construction of real-time supervisory expert systems, Norman,				
Experiences with SPEEDUP in the mineral processing industries, Barton, G. W., and Perkins, J. D. Experimental investigation of predictive controller design by principal component analysis, An, Callaghan, P. J. and Lee P. L. Expert design of plant handling hazardous materials: design expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lees, F. P. expert systems extraction with reaction Extraction of thiocyanate ions from coal gasification effluents: Experimental investigation of predictive controller design by principal component analysis, An, Callaghan, P. J. and Lee P. L. Expert design of plant handling hazardous materials: design expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lees, F. P. 419 Kinetics 429 Kinetics 438 Kinetics 438 Kinetics 438 Knowledge acquisition Knowledge acquisition analysis and structuring for the construction of real-time supervisory expert systems, Norman,				
tries, Barton, G. W., and Perkins, J. D. Experimental investigation of predictive controller design by principal component analysis, An, Callaghan, P. J. and Lee P. L. Expert design of plant handling hazardous materials: design expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lees, F. P. expert systems extraction with reaction Part II—Ion-exchange extraction system, Thonchk, N. K., expert systems extraction of thiocyanate ions from coal gasification effluents: Part II—Ion-exchange extraction system, Thonchk, N. K., systems 408 ion-pair extraction 345 jet 357 419 Kinetics 328 knowledge acquisition Knowledge acquisition analysis and structuring for the construction of real-time supervisory expert systems, Norman,				503
Experimental investigation of predictive controller design by principal component analysis, An, Callaghan, P. J. and Lee P. L. Expert design of plant handling hazardous materials: design expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lees, F. P. expert systems extraction with reaction Extraction of thiocyanate ions from coal gasification effluents: Part II—Ion-exchange extraction system, Thonchk, N. K.,			ion-pair extraction	510
Lee P. L. Expert design of plant handling hazardous materials: design expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lees, F. P. expert systems extraction with reaction Extraction of thicoyanate ions from coal gasification effluents: Part II—Ion-exchange extraction system, Thonchk, N. K., 1345 jet 1357 Kinetics 147 Knowledge acquisition analysis and structuring for the construction of real-time supervisory expert systems, Norman, 147 Knowledge acquisition analysis and structuring for the construction of real-time supervisory expert systems, Norman,		y		
Expert design of plant handling hazardous materials: design expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lees, F. P. expert systems extraction with reaction extraction of thiocyanate ions from coal gasification effluents: Part II—Ion-exchange extraction system, Thonchk, N. K., Jet 357				
expertise and computer aided design methods with illustrative examples, Bunn, A. R. and Lees, F. P. expert systems extraction with reaction Extraction of thiocyanate ions from coal gasification effluents: Part II—Ion-exchange extraction system, Thonchk, N. K., Part II—Ion-exchange extraction system, Thonchk, N. K., Part II—Ion-exchange extraction system, Thonchk, N. K., Extraction of thiocyanate ions from coal gasification effluents: Extraction of th				
examples, Bunn, A. R. and Lees, F. P. expert systems extraction with reaction Extraction of thiocyanate ions from coal gasification effluents: Part II—Ion-exchange extraction system, Thonchk, N. K., Part II—Ion-exchange extraction system, Thonchk, N. K., ### A 19 ### A			jet	357
expert systems extraction with reaction Extraction of thiocyanate ions from coal gasification effluents: Part II—Ion-exchange extraction system, Thonchk, N. K., Part II—Ion-exchange extraction system, Thonchk, N. K.,			V	
extraction with reaction Extraction of thiocyanate ions from coal gasification effluents: Part II—Ion-exchange extraction system, Thonchk, N. K., **Thomass: A system of the construction of real-time supervisory expert systems, Norman, 147 **Extraction with reaction of thiocyanate ions from coal gasification effluents: **Extraction of thiocy				329
Extraction of thiocyanate ions from coal gasification effluents: Part II—Ion-exchange extraction system, Thonchk, N. K., Knowledge acquisition analysis and structuring for the construction of real-time supervisory expert systems, Norman,				
Part II—Ion-exchange extraction system, Thonchk, N. K., struction of real-time supervisory expert systems, Norman,				-110
	Reuben, B. G. and Mahi, P.	510	P. W. and Naveed, S.	470

	R	
	raceway	357
		, 165
		396
16		195
		463
265 294 541		
		2
		458
		107
		5
reactor,	Rising film extractor, A, Baird, M. H. I., Rohatgi, A. and Wuhai	121
		121
		627
		537
	RTE (formerly Graesser) extractor	14/
	\$	
		419
		412
		128
458		260
		17, 65
396		114
5		114
284		107
445		307
537		107
		102
300	sieve tray(s)	483
, W. Y.	simulation	524
323	Simulation of an industrial fluidized bed reactor using a bubble	
of batch	growth model, Krishna, R.	463
255	Simultaneous solutions of reactor models within flowsheet	
n distil-	optimization, Vasantharajan, S. and Biegler, L. T.	396
229	singular value decomposition	345
195, 241	slip velocity	541
114	solid/gas separation	114
371	solid-liquid systems	313
396	Some comments on the flooding-loading transition for gas-	
sed bed,	liquid vessels stirred with Rushton turbines, Nocentini, M.,	
531	Magelli, F. and Pasquali, G.	378
	sorption	371
		371
		483
		107
		408
		458
		458
		5
		284
		483
275		
		114
		300
		291
		201
		291
Yeow,	subsea pipeline	291
	subsea production subsea satellite development	291
22		291
357		637
357 387	supersaturation	537
357 387 387	supersaturation supporting baffles	458
357 387 387 255	supersaturation supporting baffles surfactants	458 159
357 387 387 255 396	supersaturation supporting baffles surfactants synthesis	458
357 387 387 255 396 408	supersaturation supporting baffles surfactants synthesis Synthesis heat-integrated distillation sequences using mixed	458 159 241
357 387 387 255 396 408 470	supersaturation supporting baffles surfactants synthesis	458 159
357 387 387 255 396 408 470 229	supporting baffles surfactants synthesis Synthesis heat-integrated distillation sequences using mixed integer programming, Kakhu, A. I. and Flower, J. R.	458 159 241
357 387 387 255 396 408 470	supersaturation supporting baffles surfactants synthesis Synthesis heat-integrated distillation sequences using mixed	458 159 241
	26 408 339 5, 39, 378 16 128 300 458 524 396 5 284 445 537 300 4, W. Y. 323 of batch 255 n distil-114 371 396 sed bed, 531 357 165 463 531 357 165 463 531 357 165 463 531 357 165 463 531 357 165 463 531 357 165 463 531 357 165 463 531 358 255 266 313 3128 371 275 275 284 376 377 396 396 317 318 318 319 328 329 329 329 329 329 329 329 329	445, 541 445, 541 746, 541 747 748 749 749 740 740 740 740 740 740

task analysis	470	REGULAR FEATURES	
temperature	323		
Theory of multicomponent countercurrent cascades, The,		Annual Research Meeting Report	566
Franklin, N. L.	65	Contents of the Canadian Journal of Chemical Engineering	
thiocyanate ions 5	03, 510	112, 137, 283, 370, 480	0, 502
three-phase fluidisation	531	Doctorates in Chemical Engineering 1986-87	190
transfer from wall	165	List of Referees	571
Transverse dispersion in granular beds. Part 1: mass transfer from the wall and the dispersion coefficient in packed beds, Coelho, M. A. N. and Guedes de Carvalho, J. R. F.			
Transverse dispersion in granular beds. Part II: mass transfer		BOOKS REVIEWED	
from large spheres immersed in fixed or fluidised beds of small inert particles, Coelho, M. A. N. and Guedes de Carvalho,		Combustion theory—2nd edition. F. A. Williams (Addison Wesley) Reviewed by J. Barrie Moss.	327
J. R. F.	178	Engineering rheology. R. I. Tanner (Oxford University Press)	
tray column	483	Reviewed by W. C. MacSporran.	25
turbulators	555	Flow measurement for engineers and scientists. N. P. Cheremisinoff and P. N. Cheremisinoff (Marcel Dekker)	
V		Reviewed by E. H. Higham.	407
vapour liquid equilibria vapour liquid equilibria of ethanol-water system saturated with	75	Fluid mechanics and transfer processes, J. M. Kay and R. M. Nedderman (Cambridge University Press) Reviewed by B. Khaligh.	200
glucose at subatmospheric pressures	75		254
velocity distribution	33	Principles of combustion. K. K. Kuo (Wiley) Reviewed by J. Barnard.	299
viscosity	323		299
volatile electrolytes	483	Progress in filtration and separation. R. J. Wakeman (Elsevier) Reviewed by E. Rothwell.	40
Volumetric mass transfer coefficients in aerated stirred tank			46
reactors with Newtonian and non-Newtonian media,		The chemical engineering guide to heat transfer: Part 1: Plant principles, Part 2: Equipment. (McGraw-Hill) Reviewed by	
Kawase, Y., and Moo-Young, M.	284	R. Dodd.	177
			1//
w		Transport processes in fluidized bed reactors. L. K. Doraiswamy and B. D. Kulkani (eds) (Wiley (Eastern)) Reviewed by M. J.	
wall friction	102	Rhodes.	254
wastewater aeration	260	Kiloues.	356
water flooding	339		
water swellable polymers	371		
wettability	339	CORRESPONDENCE	
The state of the s		From M. Dziubinski; Reply K. M. Patel and M. Greaves	382
2		From Z. Kemblowski; Note from Honorary Editor	384
z-transformations	47, 65	From I. C. Kemp; Reply G. J. Ashton	569
w-samanawa aanmana 1837	.,, 00	ton	507

