NHẬN DIỆN ÂM NHẠC CÓ BẢN QUYỀN SỬ DỤNG CHROMAPRINTS VÀ MÔ HÌNH PHÂN LOẠI RANDOM FOREST

Lý Phúc Thành - 240101076

BÁO CÁO ĐỒ ÁN CUỐI KỲ

Môn học: CS2205 - PHƯƠNG PHÁP NCKH

Lớp: CS2205.CH190

GV: PGS.TS. Lê Đình Duy

Trường ĐH Công Nghệ Thông Tin, ĐHQG-HCM

Tóm tắt

- Lớp: CS2205.CH190
- Link Github của nhóm:
 https://github.com/lyphucthanh1010/CH2205.CH190
- Link YouTube video: https://youtu.be/m5pdCMDsmPY
- Lý Phúc Thành 240101076

Giới thiệu

- Dự án phát triển hệ thống tự động nhận diện bản quyền âm nhạc.
- Sử dụng kỹ thuật Chromaprints để trích xuất đặc trưng âm thanh từ bài hát.
- Áp dụng thuật toán Random Forest để phân tích và dự đoán vi phạm bản quyền.
- Hệ thống tự động hóa giúp tiết kiệm chi phí và nâng cao độ chính xác.
- Input: Bài hát hoặc link bài hát từ Youtube
- Output: Độ tương đồng của bài hát đó so với những bài hát được đăng ký

Mục tiêu

- Phát triển hệ thống tự động nhận diện và phân loại bài hát có bản quyền với độ chính xác hơn 95%
- Tối ưu hóa quá trình trích xuất đặc trưng âm thanh từ Chromaprints cho 2000 bài hát
- Đánh giá và cải thiện hiệu quả của mô hình Random Forest trong phát hiện vi phạm bản quyền, đảm bảo các chỉ số Precision, Recall hơn 95%.

Nội dung và Phương pháp

Nội dung

Giai đoạn 1

- Quy tắc tiền xử lý dữ liệu âm nhạc
- Nghiên cứu về kỹ thuật Chromaprint

Giai đoạn 2

- Mô hình phân loại Random Forest
- Dự đoán âm nhạc qua Youtube và local file

Giai đoạn 3

Hướng tối ưu hóa sử dụng RabbitMQ

Nội dung và Phương pháp

Phương pháp

- Sử dụng essentia trong việc tiền xử lý dữ liệu âm nhac
- Sử dụng Chromaprint để tạo mã vân tay âm thanh cho bài hát.
- Sử dụng thư viện Scikit-learn để huấn luyện mô hình dựa trên các đặc trưng đã trích xuất từ âm thanh.
- Sử dụng công cụ như youtube-dl hoặc yt-dlp để tải video từ Youtube, sau đó sử dụng Chromaprint để phân tích âm thanh từ các nguồn này.
- Tối ưu hóa quá trình xử lý dữ liệu âm nhạc với RabbitMQ để quản lý hàng đợi và phân phối công việc.

Kết quả dự kiến

 Hệ thống nhận diện bản quyền âm nhạc dựa trên file local và video youtube chính xác và hiệu quả. (Độ chính xác mô hình ≥ 95% trên tập kiểm thử khoảng 500 file audio

Ý tưởng sử dụng RabbitMQ để tối ưu luồng hoạt động

Tài liệu tham khảo

- [1] A. Wang, "An Industrial-Strength Audio Search Algorithm," in Proc. 4th Int. Conf. Music Information Retrieval (ISMIR), 2003.
- [2] J. Haitsma and T. Kalker, "A Highly Robust Audio Fingerprinting System," in Proc. 3rd Int. Conf. Music Information Retrieval (ISMIR), 2002.
- [3] P. Cano, E. Batle, T. Kalker, and J. Haitsma, "A Review of Audio Fingerprinting," in Proc. Int. Conf. Music Information Retrieval (ISMIR), 2005.
- [4] G. Tzanetakis and P. Cook, "Musical Genre Classification of Audio Signals," IEEE Trans. Speech Audio Process., vol. 10, no. 5, pp. 293–302, Jul. 2002.
- [5] A. Bogdanov, B. W. Klapuri, and E. Gómez, "Essentia: An Audio Analysis Library for Music Information Retrieval," in Proc. 21st ACM Int. Conf. Multimedia, 2013, pp. 1127–1130.
- [6] M. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney, "Content-Based Music Information Retrieval: Current Directions and Future Challenges," Proc. IEEE, vol. 96, no. 4, pp. 668–696, Apr. 2008.
- [7] B. S. N. Reddy, B. S. Venkata, I. Manohar, S. Abhishek, and Ariel, "Aural Signatures: Audio Fingerprinting Techniques for Real-Time Audio Recognition," Proc. 2024
 3rd Int. Conf. on Sentiment Analysis and Deep Learning (ICSADL), Bhimdatta, Nepal, 25–27 Jul. 2024.
- [8] M. A. Casey, R. C. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney, "Content-based music information retrieval: current directions and future challenges," Proc. IEEE, vol. 96, no. 4, Apr. 2008.

UIT.CS2205.ResearchMethodology

Tài liệu tham khảo

- [9] A. P. Patil, L. J. Itagi, A. C. S., A. G., and M. Ravi, "Design and Implementation of an Audio Fingerprinting System for the Identification of Audio Recordings," in Proc.
 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC), 2021.
- [10] N. Borkar, S. Patre, R. S. Khalsa, R. Kawale, and P. Chakkurkar, "Music Plagiarism Detection using Audio Fingerprinting and Segment Matching," in Proc. 2021 Smart Technologies, Communication and Robotics (STCR), 2021.
- [11] T. Toshniwal, P. Tandon, and N. P., "Music Genre Recognition Using Short Time Fourier Transform and CNN," in Proc. 2022 International Conference on Computer Communication and Informatics (ICCCI), 2022.
- [12] A. Elbir, H. O. Ilhan, G. Serbes, and N. Aydin, "Short Time Fourier Transform based music genre classification," in Proc. 2018 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT), 2018.
- [13] S. Prakash and S. Kiran, "Obtain Better Accuracy Using Music Genre Classification System on GTZAN Dataset," in Proc. 2022 IEEE North Karnataka Subsection Flagship International Conference (NKCon), 2022.
- [14] B. Chapman-Krish, "Exploring Deep Learning Techniques using SciKit-Learn and TensorFlow for Music Genre Classification on the FMA Dataset," 2022.
- [15] B. Chen, "Music Audio Rhythm Recognition Based on Recurrent Neural Network," Mobile Information Systems, vol. 2022, Article ID 6249798, 2022.
- [16] M. Chikanbanjar, "Comparative analysis between audio fingerprinting algorithms," Int. J. Comput. Sci. Eng. Technol. May 2017.

UIT.CS2205.ResearchMethodology