

Energy-Efficient Future Wireless Networks: A Marriage between Massive MIMO and Small Cells

Emil Björnson*, Luca Sanguinetti^{†‡}, and Marios Kountouris[§]

* ISY, Linköping University, Sweden † Dipartimento di Ingegneria dell'Informazione, University of Pisa, Italy † LANEAS, CentraleSupélec, France § France Research Center, Huawei Technologies Co. Ltd.

Introduction: Energy Efficiency

• Benefit-Cost Analysis of Networks

Cost:

Energy consumption | Network | Sum rate | [bit/s]

- **Definition:** Energy Efficiency (EE):

 $EE \ [bit/Joule] = \frac{Area \ Spectral \ Efficiency \ [bit/symbol/km^2]}{Transmit \ Power + Circuit \ Power \ per \ Area \ [Joule/symbol/km^2]}$

– Future networks: 1000x more data \rightarrow Want 1000x higher EE

Need to Greatly Improve Energy Efficiency in Wireless Networks!

System Modeling and Preliminary Analysis

- Methodology:
 - 1. Formulate uplink EE maximization mathematically
 - 2. Optimize system parameters and analyze optimal solution

• Random Network Deployment

- Base stations (BSs) distributed as Poisson point process (PPP), density λ BS/km²
- M antennas per BS, K users per cell
- Pathloss: $\omega^{-1}(\text{distance [km]})^{-\alpha}$

• System Properties

- Channel coherence: ${\cal S}$ transmission symbols
- Channel estimation: Pilots of length βK
- Power control: ρ /(pathloss from serving BS)

BSs distribution as a PPP

In any area of size $A \text{ km}^2$: Po $(A\lambda)$ uniformly random BSs

Proposition 1: A lower bound on the average uplink spectral efficiency (SE) is

$$\underline{SE} = \left(1 - \frac{\beta K}{S}\right) \log_2(1 + \underline{SINR})$$
 [bit/symbol/user]

where maximum ratio (MR) combining gives

$$\frac{\text{SINR}}{\left(K + \frac{\sigma^2}{\rho}\right)\!\!\left(1 + \frac{2}{\beta(\alpha - 2)} + \frac{\sigma^2}{\rho}\right) + \frac{2K}{\alpha - 2}\!\left(1 + \frac{\sigma^2}{\rho}\right) + \frac{K}{\beta}\!\left(\frac{4}{(\alpha - 2)^2} + \frac{1}{\alpha - 1}\right) + M\frac{1}{\beta(\alpha - 1)}}$$

- Energy Consumption:
 - Depends on hardware parameters: η , C_0 , C_1 , D_0 , D_1 .

$$EC = \underbrace{\frac{S - \beta K + 1}{S} \frac{\rho \omega}{\eta} \frac{\Gamma(\frac{\alpha}{2} + 1)}{(\pi \lambda)^{\alpha/2}} K}_{\text{Power in amplifiers}} + \underbrace{\frac{C_0}{(\pi \lambda)^{\alpha/2}} K}_{\text{Static power}} + \underbrace{\frac{C_1 K + \mathcal{D}_0 M}{Power per chain}}_{\text{Power per chain}} + \underbrace{\frac{\mathcal{D}_1 M K}{D_1 M K}}_{\text{Signal processing}} \text{[Joule/symbol/cellows]}$$

${\it Problem \ Formulation:}$

Maximization of EE for given SINR constraint $\gamma \geq 0$:

Optimization variables: ρ : Transmit power scaling

 λ : BS density M: BS antennas

 β : Pilot reuse factor K: Users per BS

Optimal Pilot Reuse and BS Density

Theorem 1 (Optimal Pilot Reuse Factor): The SINR constraint is satisfied by

$$\beta^{\star} = \frac{\left(\frac{4K}{(\alpha-2)^2} + \frac{K+M}{\alpha-1} + \frac{2(K+\frac{\sigma^2}{\rho})}{\alpha-2}\right)\gamma}{M - \left(K + \frac{\sigma^2}{\rho} + \frac{2K}{\alpha-2}\right)\left(1 + \frac{\sigma^2}{\rho}\right)\gamma}$$

Theorem 2 (Optimal BS Density): EE increases with λ and maximized as $\lambda \to \infty$.

Saturation Property:

- Higher density $\lambda \to \text{Less}$ transmit power $\to \text{Eventually negligible impact on EE}$
- Simulations show saturation for $\lambda \ge 10^2$
- 100-200 meters inter-BS distance: Saturation appears in practice!

Impact of Number of BS Antennas and Users

Theorem 3 (Optimal Number of Users per Cell): For fixed $\bar{c} = M/K > 0$, the EE is maximized by

$$K^{\star} = \frac{\sqrt{\left(G\mathcal{C}_{0}\right)^{2} + \mathcal{C}_{0}\mathcal{D}_{1}\bar{c} + \mathcal{C}_{0}G\left(\mathcal{C}_{1} + \mathcal{D}_{0}\bar{c}\right)} - G\mathcal{C}_{0}}{\mathcal{D}_{1}\bar{c} + G\left(\mathcal{C}_{1} + \mathcal{D}_{0}\bar{c}\right)} \quad \text{with} \quad G = \frac{\frac{4\gamma}{(\alpha - 2)^{2}} + \frac{\gamma(1 + \bar{c})}{\alpha - 1} + \frac{2\gamma}{\alpha - 2}}{S\left(\bar{c} - \left(1 + \frac{2}{\alpha - 2}\right)\gamma\right)}.$$

Theorem 4 (Optimal Number of BS Antennas): For fixed K, the EE is maximized by

$$M^* = K \frac{a_1 K + a_2 + \sqrt{a_1 a_2 K + a_1^2 K^2 + (1 - a_0 K)(a_1 K + a_0 a_2 K) \frac{c_0 + c_1 K}{D_0 K + D_1 K^2} + a_0 a_1 a_2 K^2 + a_0 a_2^2 K}}{1 - a_0 K}$$
with $a_0 = \frac{\gamma}{S(\alpha - 1)}$, $a_1 = \frac{1}{S} \left(\frac{4\gamma}{(\alpha - 2)^2} + \frac{\gamma}{\alpha - 1} + \frac{2\gamma}{\alpha - 2} \right)$, $a_2 = \left(1 + \frac{2}{\alpha - 2} \right) \gamma$.

Alternating Optimization:

- \bullet Iterate between Theorem 3 and Theorem 4: Converge to real-valued optimum (M,K)
- EE maximization is quasi-concave problem: Integer-valued solution is in the vicinity

Insights from Analytical Expressions:

- M increases with K and vice versa. M and K increase with C_0 .
- M and K decrease with C_1 , D_0 , and D_1

Simulation:

• SINR constraint $\gamma = 3$, for given values on η , C_0 , C_1 , D_0 , D_1

• Notice: $M \gg K$, a Massive MIMO (multiple input multiple output) configuration!

Impact of User Density

EE optimum might have too many users!

• Simulation Setup:

- Fixed user density μ users/km²
- EE maximization with $K\lambda = \mu$
- Range: $\mu = 10^2$ (rural) to $\mu = 10^5$ (mall)

- Low User Density
 - Add more cells with $K \approx 1$
 - Most important: reduce pathloss

• Medium or High User Density

- Small cells with Massive MIMO
- Saturation for $\mu \ge 10^2$
- Covers most practical scenarios:
 Optimal EE independent of load!

Summary: Designing Networks for Energy Efficiency

- Optimize: BS density, transmit power, pilot reuse factor, and antennas/users per cell
- Analytical contributions: EE maximizing network deployment was found!
- Optimal solution: Small cells with Massive MIMO capability
- Intuition: Small cells → Negligible transmit power
 Massive MIMO → Less interference, share energy costs over users

Further Results:

• E. Björnson, L. Sanguinetti, M. Kountouris, "Deploying Dense Networks for Maximal Energy Efficiency: Small Cells Meet Massive MIMO," Submitted to IEEE JSAC, April 2015. (http://arxiv.org/abs/1505.01181)