# EE 476 VLSI I

# Introduction, Design Metrics

# What will you learn?

•Understanding, designing, and optimizing digital circuits. How?

•with respect to different quality metrics:



### IC Evolution

- SSI Small Scale Integration (early 1970s)
  - contained 1 10 logic gates
- MSI Medium Scale Integration
  - logic functions, counters
- LSI Large Scale Integration
  - first microprocessors on the chip
- VLSI Very Large Scale Integration
  - now offers 64-bit microprocessors,
     complete with cache memory (L1 and often L2),
     floating-point arithmetic unit(s), etc.

### IC Evolution

- Bipolar technology
  - TTL (transistor-transistor logic), 1962;
  - ECL (emitter-coupled logic), 1974;
- MOS (Metal-oxide-silicon)
  - although invented before bipolar transistor (1925, 1935),
     was initially difficult to manufacture
  - nMOS (n-channel MOS) technology developed in late 1970s required fewer masking steps, was denser, and consumed less power than equivalent bipolar ICs => an MOS IC was cheaper than a bipolar IC and led to investment and growth of the MOS IC market.
  - aluminum gates for replaced by polysilicon by early 1980
  - CMOS (Complementary MOS): n-channel and p-channel MOS transistors => lower power consumption, simplified fabrication process

### Pentium 4

- 0.18-micron process technology (2, 1.9, 1.8, 1.7, 1.6, 1.5, and 1.4 GHz)
  - Introduction date: August 27, 2001
     (2, 1.9 GHz); ...; November 20, 2000
     (1.5, 1.4 GHz)
  - Level Two cache: 256 KB Advanced Transfer Cache (Integrated)
  - System Bus Speed: 400 MHz
  - SSE2 SIMD Extensions
  - Transistors: 42 Million
  - Typical Use: Desktops and entrylevel workstations
- 0.13-micron process technology (2.53, 2.2, 2 GHz)
  - Introduction date: January 7, 2002
  - Level Two cache: 512 KB Advanced
  - Transistors: 55 Million



### Transistors in Intel microprocessors [Intel]



### Die Size Growth



Courtesy, Intel

### **GSM Digital Baseband Evolution**





### Semi-Conductor Scaling



# Process generations. Future predictions from [SIA2007]



### Frequency



Lead Microprocessors frequency doubles every 2 years

# Clock frequencies of Intel microprocessors



# **Power Dissipation**



Lead Microprocessors power continues to increase

## Power density



Power density too high to keep junctions at low temp

Courtesy, Intel

# **Technology Directions: SIA Roadmap**

| Year                        | 1999  | 2002 | 2005 | 2008 | 2011  | 2014  |
|-----------------------------|-------|------|------|------|-------|-------|
| Feature size (nm)           | 180   | 130  | 100  | 70   | 50    | 35    |
| Logic trans/cm <sup>2</sup> | 6.2M  | 18M  | 39M  | 84M  | 180M  | 390M  |
| Cost/trans (mc)             | 1.735 | .580 | .255 | .110 | .049  | .022  |
| #pads/chip                  | 1867  | 2553 | 3492 | 4776 | 6532  | 8935  |
| Clock (MHz)                 | 1250  | 2100 | 3500 | 6000 | 10000 | 16900 |
| Chip size (mm²)             | 340   | 430  | 520  | 620  | 750   | 900   |
| Wiring levels               | 6-7   | 7    | 7-8  | 8-9  | 9     | 10    |
| Power supply (V)            | 1.8   | 1.5  | 1.2  | 0.9  | 0.6   | 0.5   |
| High-perf pow (W)           | 90    | 130  | 160  | 170  | 175   | 183   |

# Why Scaling?

- Technology shrinks by 0.7/generation
- With every generation can integrate 2x more functions per chip; chip cost does not increase significantly
- Cost of a function decreases by 2x
- But ...
  - How to design chips with more and more functions?
  - Design engineering population does not double every two years...
- Hence, a need for more efficient design methods
  - Exploit different levels of abstraction

# **Design Abstraction Levels**





**System Specification** 

Architectural Design

Logic Design

Circuit Design

Physical Design

Physical Verification and Signoff

**Fabrication** 

Packaging and Testing

**CHIP** 

General overview of the design hierarchy

Chip planning

**Placement** 

Signal Routing

V

Verification





The LAYOUT of an IC defines the geometry of the masks used in fabrication.

### Major Design Challenges

- Microscopic issues
  - ultra-high speeds
  - power dissipation and supply rail drop
  - growing importance of interconnect
  - noise, crosstalk
  - reliability, manufacturability
  - clock distribution



#### Macroscopic issues

- time-to-market
- design complexity (millions of gates)
- high levels of abstractions
- design for test
- reuse and IP, portability
- systems on a chip (SoC)
- tool interoperability

| Year | Tech. | Complexity | Frequency | 3 Yr. Design<br>Staff Size | Staff Costs |  |
|------|-------|------------|-----------|----------------------------|-------------|--|
| 1997 | 0.35  | 13 M Tr.   | 400 MHz   | 210                        | \$90 M      |  |
| 1998 | 0.25  | 20 M Tr.   | 500 MHz   | 270                        | \$120 M     |  |
| 1999 | 0.18  | 32 M Tr.   | 600 MHz   | 360                        | \$160 M     |  |
| 2002 | 0.13  | 130 M Tr.  | 800 MHz   | 800                        | \$360 M     |  |

# **Productivity Trends**



Complexity outpaces design productivity

# **Fundamental Design Metrics**

- Functionality
- Cost
  - NRE (fixed) costs design effort
  - RE (variable) costs cost of parts, assembly, test
- Reliability, robustness
- Performance
- Time-to-market

## **Cost of Integrated Circuits**

- NRE (non-recurring engineering) costs
  - Fixed cost to produce the design
    - design effort
    - design verification effort
    - mask generation
  - Influenced by the design complexity and designer productivity
  - More pronounced for small volume products
- Recurring costs proportional to product volume
  - silicon processing
    - also proportional to chip area
  - assembly (packaging)
  - test

Cost per IC = Variable cost per IC + 
$$\frac{\text{Fixed cost}}{\text{Volume}}$$

### **Cost per Transistor**



### Silicon Wafer



From http://www.amd.com

Going up to 12" (30cm)

### Recurring Costs

$$Variable cost = \frac{Die cost + Testing cost + Packaging cost}{Final test yield}$$

$$Cost of die = \frac{Cost of wafer}{Dies per wafer \times Die yield}$$



# Dies per Wafer

Dies per wafer = 
$$\frac{\pi \times (\text{Wafer diameter/2})^2}{\text{Die area}} - \frac{\pi \times \text{Wafer diameter}}{\sqrt{2 \times \text{Die area}}}$$



### Yield



Die yield = Wafer yield × 
$$\left(1 + \frac{\text{Defects per unit area} \times \text{Die area}}{\alpha}\right)^{-\alpha}$$

 $\alpha$  is approximately 3

$$die cost = f(die area)^4$$

 $\alpha$  is a parameter  $\rightarrow$  complexity of the manufacturing process,  $\sim$  the number of masks

### **Example: Die Yield**

Assume a wafer size of 12 inch, a die size of  $2.5 \text{cm}^2$ , 1 defects/cm<sup>2</sup>, and  $\alpha = 3$ . Determine the die yield of this CMOS process run.

dies per wafer = 
$$\frac{\pi \times (\text{wafer diameter}/2)^2}{\text{die area}} - \frac{\pi \times \text{wafer diameter}}{\sqrt{2 \times \text{die area}}}$$
  
= 296 - 44 = 252

die yield = 
$$\left(1 + \frac{\text{defects per unit area} \times \text{die area}}{\alpha}\right)^{-\alpha} = 16\%$$

# **Examples of Cost Metrics (1994)**

| Chip           | Metal<br>layers | Line<br>width | Wafer cost | Defects<br>/cm² | Area<br>(mm²) | Dies/<br>wafer | Yield | Die<br>cost |
|----------------|-----------------|---------------|------------|-----------------|---------------|----------------|-------|-------------|
| 386DX          | 2               | 0.90          | \$900      | 1.0             | 43            | 360            | 71%   | \$4         |
| 486DX2         | 3               | 0.80          | \$1200     | 1.0             | 81            | 181            | 54%   | \$12        |
| PowerPC<br>601 | 4               | 0.80          | \$1700     | 1.3             | 121           | 115            | 28%   | \$53        |
| HP PA<br>7100  | 3               | 0.80          | \$1300     | 1.0             | 196           | 66             | 27%   | \$73        |
| DEC<br>Alpha   | 3               | 0.70          | \$1500     | 1.2             | 234           | 53             | 19%   | \$149       |
| Super<br>SPARC | 3               | 0.70          | \$1700     | 1.6             | 256           | 48             | 13%   | \$272       |
| Pentium        | 3               | 0.80          | \$1500     | 1.5             | 296           | 40             | 9%    | \$417       |

### **Functionality and Robustness**

- Prime requirement –
   IC performs the function it is designed for
- Normal behavior <u>deviates</u> due to
  - variations in the manufacturing process (dimensions and device parameters vary between runs and even on a single wafer or die)
  - presence of disturbing on- or off-chip noise sources
- Noise: Unwanted variation of voltages or currents at the logic nodes

# Reliability Noise in Digital Integrated Circuits



- from two wires placed side by side
  - inductive coupling
    - •
  - capacitive coupling

    - cross talk

- from noise on the power and ground supply rails
  - can influence signal levels in the gate

# **Example of Capacitive Coupling**

 Signal wire glitches as large as 80% of the supply voltage will be common due to crosstalk between neighboring wires as feature sizes continue to scale <u>Crosstalk vs. Technology</u>





### **Static Gate Behavior**

- Steady-state parameters of a gate static behavior tell how robust a circuit is with respect to both variations in the manufacturing process and to noise disturbances.
- Digital circuits perform operations on Boolean variables x ∈{0,1}
- A logical variable is associated with a nominal voltage level for each logic state

$$1 \Leftrightarrow V_{OH}$$
 and  $0 \Leftrightarrow V_{OL}$ 

$$V(x) - V(y)$$
 $V_{OL} = ! (V_{OL})$ 
 $V_{OL} = ! (V_{OH})$ 

 Difference between V<sub>OH</sub> and V<sub>OL</sub> is the logic or signal swing V<sub>sw</sub>

# DC Operation Voltage Transfer Characteristic



### Mapping between analog and digital signals

 The regions of acceptable high and low voltages are delimited by VIH and VIL that represent the points on the VTC curve where the gain = -1 (dVout/dVin)



### **Definition of Noise Margins**

For robust circuits, want the "0" and "1" intervals to be as large as possible



Large noise margins are desirable, but not sufficient ...

## The Regenerative Property

A gate with regenerative property ensure that a disturbed signal converges back to a nominal voltage level



## Conditions for Regeneration



To be regenerative, the VTC must have a transient region with a gain greater than 1 (in absolute value) bordered by two valid zones where the gain is smaller than 1. Such a gate has two stable operating points.

## **Noise Immunity**

- Noise margin expresses the ability of a circuit to overpower a noise source
  - noise sources: supply noise, cross talk, interference, offset
- Absolute noise margin values are deceptive
  - a floating node is more easily disturbed than a node driven by a low impedance (in terms of voltage)
- Noise immunity expresses the ability of the system to process and transmit information correctly in the presence of noise
- For good noise immunity, the signal swing (i.e., the difference between V<sub>OH</sub> and V<sub>OL</sub>) and the noise margin have to be large enough to overpower the impact of fixed sources of noise

## Directivity

- A gate must be unidirectional: changes in an output level should not appear at any unchanging input of the same circuit
  - In real circuits full directivity is an illusion (e.g., due to capacitive coupling between inputs and outputs)
- Key metrics: output impedance of the driver and input impedance of the receiver
  - ideally, the output impedance of the driver should be zero
  - input impedance of the receiver should be infinity

#### Fan-In and Fan-Out

- Fan-out number of load gates connected to the output of the driving gate
  - gates with large fan-out are slower



- Fan-in the number of inputs to the gate
  - gates with large fan-in are bigger and slower

#### The Ideal Inverter

- The ideal gate should have
  - infinite gain in the transition region
  - a gate threshold located in the middle of the logic swing
  - high and low noise margins equal to half the swing
  - input and output impedances of infinity and zero, resp.



## **Delay Definitions**



### **Delay Definitions**



## **Modeling Propagation Delay**

Model circuit as first-order RC network



$$v_{out}(t) = (1 - e^{-t/\tau})V$$

where  $\tau = RC$ 

Time to reach 50% point is  $t = ln(2) \tau = 0.69 \tau$ 

Time to reach 90% point is  $t = ln(10)\tau = 2.3 \tau$ 

Matches the delay of an inverter gate

## Power and Energy Dissipation

- Power consumption: how much energy is consumed per operation and how much heat the circuit dissipates
  - supply line sizing (determined by peak power)

$$P_{peak} = V_{dd}i_{peak}$$

battery lifetime (determined by average power dissipation)

$$p(t) = v(t)i(t) = V_{dd}i(t)$$

$$P_{avg} = 1/T \int p(t) dt = V_{dd}/T \int i_{dd}(t) dt$$

- packaging and cooling requirements
- Two important components: static and dynamic

E (joules) = 
$$C_L V_{dd}^2 P_{0\rightarrow 1} + t_{sc} V_{dd} I_{peak} P_{0\rightarrow 1} + V_{dd} I_{leakage}$$

$$\downarrow f_{0\rightarrow 1} = P_{0\rightarrow 1} * f_{clock} \downarrow$$
P (watts) =  $C_L V_{dd}^2 f_{0\rightarrow 1} + t_{sc} V_{dd} I_{peak} f_{0\rightarrow 1} + V_{dd} I_{leakage}$ 

## Power and Energy Dissipation Cont )

- Propagation delay and the power consumption of a gate are related
- Propagation delay is (mostly) determined by the speed at which a given amount of energy can be stored on the gate capacitors
  - the faster the energy transfer (higher power dissipation) the faster the gate
- For a given technology and gate topology, the product of the power consumption and the propagation delay is a constant
  - Power-delay product (PDP) -
  - energy consumed by the gate per switching event
- An ideal gate is one that is fast and consumes little energy, so the ultimate quality metric is
  - Energy-delay product (EDP) = power-delay <sup>2</sup>

# Integrated Circuit Technologies

Why does CMOS dominate?

### other technologies

- passive circuits
- III-V devices
- Silicon BJT

#### CMOS dominates because:

- Silicon is cheaper → preferred over other materials
- physics of CMOS is easier to understand
- CMOS is easier to implement/fabricate
- CMOS provides lower power-delay product
- CMOS is lowest power
- can get more CMOS transistors/functions in same chip area
- BUT! CMOS is not the fastest technology!
- BJT and III-V devices are faster

## CMOS Technology Trends

#### Variations over time

- # transistors / chip: increasing with time
- power / transistor: decreasing with time (constant power density)
- device channel length: decreasing with time
- power supply voltage: decreasing with time

low power/voltage is critical for future ICs

## "Electronics" Building block(s)

MOSFET Device-- 1950+ to 2020

- New elements in nano technologies are emerging include:
  - Memristor: memory resistor- see Dec IEEE
     Spectrum
  - Nano-tubes
  - Molecular devices
  - Quantum dots
  - Etc.

## Summary

- Digital integrated circuits have come a long way and still have quite some potential left for the coming decades
- Some interesting challenges ahead
  - Getting a clear perspective on the challenges and potential solutions is the purpose of this course
- Understanding the design metrics that govern digital design is crucial
  - Cost, reliability, speed, power and energy dissipation