Beta regression and modeling the ROC as a function of continuous covariates

Sarah Stanley

Joint Statistical Meetings

August 3, 2017

Motivation and Objective

- The ROC curve is a well-accepted measure of accuracy for diagnostic tests.
- In many applications, a test's performance is affected by covariates.
- Ignoring covariate effects can lead to faulty conclusions.
- Our goal is to investigate the effects of covariates on a test's ability to distinguish between a normal and an affected population.
- We present two existing methods (parametric and semiparametric) and introduce a new approach.

- Background ROC Placement values MW and AUC
- Parametric Semiparametric Beta
- Binormal
 Future Work
- Reference

Outline

Background ROC Placement values

Parametric Semiparametri

Example Binormal

Future Worl

- Background
 - ROC and AUC
 - Placement Values
 - MW and AUC
- ROC regression methodology
 - Parametric Method
 - Semiparametric Method
 - Beta Method
- Examples
 - Binormal
 - CPAO
- Future Work

ROC and AUC

Background ROC Placement values MW and AUC

Methodology
Parametric
Semiparametric
Beta

Example
Binormal

Future Wor

References

• Suppose $Y_D = \text{response of a subject from the diseased group}$ $Y_{\bar{D}} = \text{response of a subject from the non-diseased group}.$

• In terms of the survival function, we have

$$ROC(t) = S_D\Big(S_{\bar{D}}^{-1}(t)\Big), \quad t \in (0,1)$$

• The AUC, a summary measure of the ROC, given by

$$P(Y_D > Y_{\bar{D}})$$

is the probability that a randomly selected subject is classified into the correct group.

Illustrating the AUC

Background ROC Placement values MW and AUC

Parametric Semiparametric Beta

Example Binormal

Future Wor

Referenc

Low separation

•
$$ROC(t) = S_D\left(S_{\bar{D}}^{-1}(t)\right)$$

- Survival curves are nearly identical
- ROC is close to the diagonal

•
$$AUC = P(Y_D > Y_{\bar{D}})$$

Close to 0.5

Illustrating the AUC

Parametric Semiparametric

Example Binormal

Future Wor

References

High separation

•
$$ROC(t) = S_D\left(S_{\bar{D}}^{-1}(t)\right)$$

- Survival curves are different
- ROC rises more steeply

•
$$AUC = P(Y_D > Y_{\bar{D}})$$

- Close to 1

Placement Values

• We define $PV_D = S_{\bar{D}}(Y_D)$.

• The ROC is equivalent to the cdf of PV_D .

$$P[PV_D \le t | \mathbf{X}] = P[S_{\bar{D}\mathbf{X}}(Y_D) \le t | \mathbf{X}]$$

= $P[Y_D \ge [S_{\bar{D}\mathbf{X}}^{-1}(t) | \mathbf{X}]$
= $ROC_{\mathbf{X}}(t)$.

• Note also that the ROC curve can be thought of as the conditional expectation of $B_{Dt} = I[PV_D \le t]$.

Methodology Parametric

Example

Future Wor

Relationship between the Mann Whitney Statistic and the AUC

 The Mann-Whitney (MW) U-statistic for two independent random samples, x and y is given by

$$U = \sum_{i=1}^{n} \sum_{j=1}^{m} I(x_i > y_j).$$

 The MW statistic can be used as a nonparametric unbiased estimate of the AUC [Bamber(1975)].

Background ROC Placement values MW and ALIC

Methodology
Parametric
Semiparametric

Example Binormal

Future Worl

Background ROC Placement values MW and AUC

${\sf Methodology}$

Parametric Semiparametri Reta

Example Binormal

Future Worl

References

Methodology

Direct ROC Regression Methodology

 Pepe (2002) proposed a generalized linear model (GLM) framework to directly model the ROC with covariates as follows

$$ROC_{\mathbf{X}}(t) = g^{-1}(h_0(t) + \mathbf{X}'\boldsymbol{\beta}), \quad t \in (0,1)$$

where g is a monotone link function, \mathbf{X} is a vector of covariates, β is a vector of the model parameters, and h_0 is an unknown monotonic increasing function.

• Note that the dependent variable is not directly observable, we thus estimate $ROC_{\mathbf{X}}(t)$ with either the cdf of the placement values or the conditional expectation of B_{Dt} .

Background ROC Placement values MW and AUC

Methodology Parametric Semiparametric

Binormal

Future Wor

Parametric ROC-GLM

• Alonzo and Pepe (2002) proposed a parametric form for $h_0(\cdot)$ such that

$$h_0(t) = \sum_{k=1}^K \alpha_k h_k(t),$$

where $\alpha = (\alpha_1, ..., \alpha_k)$ is a vector of unknown parameters and $h(\cdot) = (h_1(\cdot), ..., h_K(\cdot))$ are known functions.

• Thus, a parametric ROC-GLM model is

$$ROC_{\mathbf{X}}(t) = g^{-1}\bigg(\sum_{k=1}^{K} \alpha_k h_k(t) + \mathbf{X}'\boldsymbol{\beta}\bigg), \quad t \in (0,1).$$

Background ROC Placement values MW and AUC

Methodology
Parametric
Seminarametr

Example Binormal

Future Work

Algorithm

- **1** Specify a set $T = \{t_{\ell} : \ell = 1, ..., n_{T}\} \in (0, 1)$ of FPRs;
- **2** Estimate the covariate specific survival function $S_{\bar{D}X}$ for the reference population at each $t \in T$ using quantile regression.

Background ROC Placement values MW and AUC

Parametric

Semiparametr Beta

Example Binormal

Future Wor

Algorithm

1 Specify a set $T = \{t_{\ell} : \ell = 1, ..., n_{T}\} \in (0, 1)$ of FPRs;

- **2** Estimate the covariate specific survival function $S_{\bar{D}X}$ for the reference population at each $t \in T$ using quantile regression;
- **3** For each diseased observation y_{Dj} , calculate the placement values $PV_j = \hat{S}_{\bar{D}\mathcal{X}_{Di}}(y_{Dj})$;
- **4** Calculate the binary placement value indicator $\hat{B}_{jt} = I[PV_j \leq t], t \in T, j = 1, ..., n_D;$
- **9** Fit the model $E[\hat{B}_{jt}] = g^{-1} \left(\sum_{k=1}^{K} \alpha_k h_k(t) + \mathbf{X}' \boldsymbol{\beta} \right)$.

Background ROC Placement values MW and AUC

Parametric Semiparametri Beta

Binormal Future Work

Semiparametric ROC-GLM

- Developed by Cai(2004)
- Based on the idea that the ROC-GLM model

$$ROC_{\mathbf{X}}(t) = g^{-1}(h_0(t) + \mathbf{X}'\boldsymbol{\beta}), \text{ for } t \in (0,1)$$

is equivalent to

$$h_0(PV_D) = -\mathbf{X}'\boldsymbol{\beta} + \epsilon,$$

where ϵ has known distribution g and $h_0(\cdot)$ is an unspecified increasing function.

• Essentially, pairwise comparisons of the diseased placement values are used to estimate β , and the estimates for β are then used as an offset in the estimation of $h_0(\cdot)$.

Background ROC Placement values MW and AUC

Methodology
Parametric
Semiparametric

Binormal
Future Worl

Algorithm

Background ROC Placement values

Methodology Parametric Semiparametric

Example
Binormal
Future Work

Reference

- **1** Specify a set $T = \{t_{\ell} : \ell = 1, ..., n_T\} \in (0, 1)$ of FPRs;
- **2** Estimate the covariate specific survival function $S_{\bar{D}X}$ via quantile regression;
- **3** Calculate the placement values $PV_j = \hat{S}_{\bar{D}\mathcal{X}_{Di}}(y_{Dj})$;
- Calculate the binary placement value indicator $\hat{B}_{it} = I[PV_i \le t], t \in T, j = 1, ..., n_D;$
- **5** For each pair of observations in Y_D , calculate

$$\widehat{PV}_{j\ell} = I[PV_j \le PV_\ell], \text{ and } x_{j\ell} = x_{Dj} - x_{D\ell}$$

with $j, \ell = 1, ..., n_D, j \neq \ell$;

 $oldsymbol{\circ}$ Fit the following GLM without an intercept to estimate $oldsymbol{eta}$

$$g(\widehat{PV}) = -\mathbf{X}'\boldsymbol{\beta}.$$

② Estimate $h_0(\cdot)$ using $\hat{\beta}$ and \hat{B}_{jt} as follows

$$g(E[\hat{B}_{jt}]) = intercept + offset(\mathbf{X}'\hat{\boldsymbol{\beta}}).$$

Consequences of parametric and semiparametric procedures

- Correlation is introduced when making pairwise comparisons.
- The resulting standard errors are thus incorrect.
- Recall, however, that the cdf of the placement values from the diseased population is equivalent to the ROC.
- A method that models the placement values directly avoids the above correlation problems.
- We implement a direct model of the placement values through beta regression.

Background ROC Placement values MW and AUC

Methodology
Parametric
Semiparametric
Beta

Binormal Future Worl

Beta Regression Model

We now introduce a beta regression model (Ferrari, 2004). Recall that the mean and variance of $Y \sim \text{Beta}(a, b)$ are

$$E(Y) = \frac{a}{a+b} \text{ and } Var(Y) = \frac{ab}{(a+b)^2(a+b+1)}.$$

We will define the beta regression model in terms of $\mu = E(Y)$ and a precision parameter $\phi = a + b$ so that the reparameterized beta distribution mean and variance are

$$E(Y) = \mu$$
 and $Var(Y) = \frac{\mu(1-\mu)}{1+\phi}$.

Background ROC Placement values MW and AUC

Methodology Parametric Semiparametric Beta

Binormal

Beta Regression Model

- Let $y_1, ..., y_n$ be independent random variables from a beta density with mean μ_t , t = 1,...,n and precision ϕ .
- Then the beta regression model can be written as

$$g(\mu_t) = \sum_{i=1}^k x_{ti} \beta_i = \eta_t,$$

where β is a vector of regression parameters, $x_{t1},...,x_{tk}$ are observations on k covariates, and g is a monotonic link function.

• Using the logit link, we have $\mu_t = \frac{1}{1+e^{-x_t'\beta}}$. We can thus obtain the original parameters a and b from the beta distribution by calculating

$$\hat{a}=rac{\hat{\phi}}{1+e^{-ec{\chi}_t'\hat{eta}}}$$
 and $\hat{b}=\hat{\phi}igg(1-rac{1}{1+e^{-ec{\chi}_t'\hat{eta}}}igg).$

Background ROC Placement values MW and AUC

Methodolog
Parametric
Semiparametri
Beta

Binormal

Future Wor

Beta Algorithm

- **1** Specify a set $T = \{t_{\ell} : \ell = 1, ..., n_{T}\} \in (0, 1)$ of FPRs;
- 2 Estimate the covariate specific survival function $S_{\bar{D}X}$ via quantile regression;
- **3** Calculate the placement values $PV_j = \hat{S}_{\bar{D}\mathcal{X}_{D_i}}(y_{D_j});$
- **4** Perform a beta regression on the placement values to obtain estimates of β and ϕ ;
- **3** Transform to obtain $a = \mu \phi$ and $b = (1 \mu)\phi$;
- Calculate the cdf of the placement values using the Beta(a,b) distribution found above to obtain the ROC and the AUC.

- Background ROC Placement values MW and AUC
- Methodology Parametric Semiparametric Beta

Binormal

Future Wor

Background ROC Placement values MW and AUC

Parametric Semiparametric

Example Binormal

Future Worl

Example

Binormal ROC

Let

$$Y_D \sim N(\mu_D, \sigma_D^2), Y_{\bar{D}} \sim N(\mu_{\bar{D}}, \sigma_{\bar{D}}^2).$$

Then

$$ROC(t) = \mathbf{\Phi}(a + b\mathbf{\Phi}^{-1}(t)),$$

and

$$AUC = \Phi\left(\frac{a}{\sqrt{1+b^2}}\right),$$

where

$$a = \frac{\mu_D - \mu_{\bar{D}}}{\sigma_D}, b = \frac{\sigma_{\bar{D}}}{\sigma_D}.$$

ROC Placement values MW and AUC

Beta Example

Binormal

Future Wor

21 / 25

Binormal Example

Data simulated from

$$Y_D=2+4X+\epsilon_D$$
 and $Y_{ar D}=1.5+3X+\epsilon_{ar D},$ where $X\sim \textit{U}(0,1)$ and $\epsilon_D,\epsilon_{ar D}\sim \textit{N}(0,1.5^2).$

- That is, $Y_D \sim N(2+4X,1.5^2)$ and $Y_{\bar{D}} \sim N(1.5+3X,1.5^2)$.
- Thus, the true AUC at covariate value $X = x_0$ is

$$AUC(x_0) = \Phi\left(\frac{\mu_D - \mu_{\bar{D}}}{(\sigma_D^2 + \sigma_{\bar{D}}^2)^{1/2}}\right) = \Phi\left(\frac{0.5 + x_0}{\sqrt{4.5}}\right).$$

Background ROC Placement values MW and AUC

Parametric Semiparametric Beta

Example Binormal

Future Wor

Binormal Results

Background
ROC
Placement
values
MW and AUC

Parametric Semiparametri Beta

Example Binormal

Future Wor

	Median	Mean	St. Dev.
Parametric	0.001437	0.000975	0.001480
Beta	0.001183	0.001817	0.001877
Semi-parametric	0.001893	0.002450	0.002136

Table: Summary of MSEs for binormal

Conclusion

 Beta regression on the placement values yields comparable AUC estimates to those obtained via parametric and semiparametric approaches without inducing correlation.

Future Work

- Use of Historical Controls
- Meta-Analysis
- Bayesian Methods

Background ROC Placement values MW and AUC

Parametric Semiparametri Beta

Binormal
Future Work

i uture vvoi

References

- Background ROC Placement values
- Methodology Parametric Semiparametric Beta
- Binormal

Future Work

- Alonzo, T. and M. Pepe (2002), "Distribution-free ROC analysis using binary regression techniques," *Biostatistics*, 3, 421-432.
- Bamber, D. (1975), "The area above the ordinal dominance graph and the area below the receiver operating characteristic graph," Journal of Mathematical Psychology, 12, 387-415.
- Cai, T. (2004), "Semi-parametric ROC regression analysis with placement values," *Biostatistics*, 5, 45-60.
- Ferrari, S. and Cribari-Neto, F. (2004), "Beta Regression for Modelling Rates and Proportions," *Journal of Applied Statistics*, 31, 799-815.
- Pepe, M. and T. Cai (2002), "The analysis of placement values for evaluating discriminatory measures," UW Biostatistics Working Paper Series. Working Paper 189.
- Rodriguez-Alvarez, M.X. et. al. (2011) "Comparative Study of ROC regression techniques," Computational Statistics and Data Analysis, 55, 888-902.