Homework

Bayesian Learning

1. Redo the case study in pp. 63, Chap. 3 Uncertainty management in rule-based systems as follows.

Probability	Hypothesis		
	i = 1	i = 2	i=3
$p(H_i)$	0.40	0.35	0.25
$p(E_1 H_i)$	0.3	0.8	0.5
$p(E_2 H_i)$	0.9	0.0	0.7
$p(E_3 H_i)$	0.6	0.7	0.9

Using the <u>iterative approach</u> to compute the posteriori probabilities as shown in class, asssuming that the evidences appear in the order of E3, E1, and E2. You should illustrate the computation process for $P(h_i|\mathbf{d})$ and $P(X|\mathbf{d})$, the prediction about the next evidence X from the observed value \mathbf{d} , such as P(E1|E3) and P(E2|E3|E1).

2. You are about to developing a decision support system using Bayesian Learning for recommending activities according to weather conditions. Assume that the uncertainties is as follows:

Prior probabilities:	Likelihood	
P(swim) = 0.3	P(hot swim) = 0.8	
P(golf) = 0.25	P(sunny swim) = 0.7	
P(hiking) = 0.45	$P(dry \mid swim) = 0.2$	
	P(hot golf) = 0.4	
	P(sunny golf) = 0.9	
	$P(dry \mid golf) = 0.3$	
	P(hot hiking) = 0.4	
	P(unny hiking) = 0.8	
	P(dry hiking) = 0.7	

Modify the program cherry-lime.ipynb

(https://colab.research.google.com/drive/1FNJ9RQsctrPZgjNIigbW7RkLnl CaQMbx?usp=sharing) to answer the following questions.

- (1) After observing the evidences: <u>hot, sunny, dry</u> in order, what activity will be suggested? What will be the next evidence showing up at this time?
- (2) Same as (1) but the evidence order is <u>sunny</u>, <u>sunny</u>, <u>sunny</u>, <u>sunny</u>, <u>sunny</u>.
- (3) Same as (1) but the evidence order is hot, hot, hot, hot, hot
- (4) Same as (1) but the evidence order is dry, dry, dry, dry, dry
- (5) Redo (2) thru (4). Plot the corresponding graphs for $P(h_i|\mathbf{d})$ and $P(X|\mathbf{d})$ and discuss some insights you found from this experiment.

Ps. You should provide the <u>colab URL</u> of the program you modified.

3. Regarding to Problem 2:

- (1) Redo Problem 2, assuming the three prior hypotheses follow a uniform distribution, i.e., P(swim) == P(swim) == 0.33.
- (2) Conduct a comparative analysis of the results using the two different prior probabilities mentioned above by highlighting the insights you identified.