Teoría de Gráficas 2020-2

Ejercicios para al Evaluación Parcial 01

FECHA DE ENTREGA VIERNES 28- FEBRERO-2020 De 9:00 a 10:00 HORAS - Salón P-118

Instrucciones: Resolver

- 1. Sea G una gráfica de orden n y de tamaño m.
 - a) Demostrar que $m \leq \binom{n}{2}$ y determinar cuando se da la igualdad.
 - b) Demostrar que $m \leq \frac{n^2}{4}$
- 2. Demostrar que la relación de isomorfismos (\cong) entre gráficas es de equivalencia, es decir: Sean G,H y I gráficas
 - $\bullet \ \ \mathsf{Demostrar} \ \mathsf{que} \ G \cong G$
 - lacksquare Demostrar que si $G\cong H$ entonces $H\cong G$
 - Demostrar que si $G \cong H$ y $H \cong I$ entonces $G \cong I$.
- 3. Demostrar que una gráfica completa de orden n es única.
- 4. Sean G y H gráficas tal que $H\cong G$. Si φ es el isomorfismo entre G y H entonces para cualquier $x\in G$ se tiene que $d_G(x)=d_H(\varphi(x))$
- 5. Sea G[X,Y] una gráfica bipartita de orden n y de tamaño m, donde |X|=r, |Y|=s. Demostrar que $m \le rs$.
- 6. Sea G una gráfica. Demostrar que C es un ciclo de G cuya gráfica que induce es bipartita \Leftrightarrow su longitud es par.
- 7. Demostrar que si G es un gráfica no conexa entonces \overline{G} es conexa. ¿Qué sucede con el regreso?.
- 8. Sea G una gráfica conexa. Demostrar que para toda H gráfica tal que $G\cong H$ entonces H es conexa.
- 9. Demostrar la siguiente proposición o dar un contraejemplo en caso de que sea falsa. Sea G una gráfica k-regular. Si K es impar entonces G tiene un número impar de vértices.
- 10. Sea G[X,Y] una gráfica bipartita. Demostrar que:

 - Si G es k-regular con k > 1 entonces |X| = |Y|.

Tarea 01 Febrero 2020