

Introduction to the Tutorial Sessions

DEEP LEARNING - 1 Phillip Lippe

About Me - Phillip

- PhD student in the QUVA lab, working on:
 - Intersection between Causality and DL
 - Causal Representation Learning
- Alumni MSc AI at UvA
- Co-organizing the Deep Learning 1 since 2020
 - Teaching the implementation side of DL

Schedule

- Werkcollege sessions split into:
 - Tuesday 17.00-18.00 Tutorial session on one of the notebooks
 - Tuesday 18.00-19.00 TA hour in one large group; Q&A
 - Fridays TA hours in smaller groups; Q&A for assignments, lectures, etc.
- TA hours by respective TAs of your group
- Live tutorial sessions by Phillip

Assignments

- 3 Practicals on different topics aligned with the lectures
 - Published on ans-delft, code submission via Canvas
 - Repository for assignment code: https://github.com/uvadlc/uvadlc_practicals_2022
- Practical 1: MLPs and Backpropagation
- Practical 2: CNNs, Transformers and Graph NNs
- Practical 3: Generative Models
- Compute Resources:
 - Lisa cluster
 - Google Colab

Assignments and Tutorials

- But there is so much more to explore... ⇒ Tutorial notebooks
 - Teaching the concepts from the lectures from an implementation perspective
 - Get familiar with PyTorch and PyTorch Lightning
 - Test your understanding by playing around with the models
- The notebooks are ungraded, but relevant for assignments and exam

Tutorial Notebooks

- Jupyter notebooks where we implement and train our own models
- Ready to be run on Google Colab or locally by yourself
- Accessible via https://uvadlc-notebooks.readthedocs.io/en/latest/
- Integrated in PyTorch Lightnings' <u>documentation</u> and Google's <u>Dev library</u>

Tutorial 7: Graph Neural Networks

```
Filled notebook: Repo View On Github Open in Colab

Pre-trained models: Repo View On Github A GDrive Download

Recordings: YouTube Part 1 YouTube Part 2
```

In this tutorial, we will discuss the application of neural networks on graphs. Graph Neural Networks (GNNs) have recently gained increasing popularity in both applications and research, including domains such as social networks, knowledge graphs, recommender systems, and bioinformatics. While the theory and math behind GNNs might first seem complicated, the implementation of those models is quite simple and

Tutorial Notebooks

- Or How to interact/learn from the notebooks:
 - Reading
 - Running code yourself
 - Video recordings
 - Live tutorial sessions on Tuesdays

Tutorial 7: Graph Neural Networks

```
Filled notebook: Repo View On Github Open in Colab

Pre-trained models: Repo View On Github A GDrive Download

Recordings: YouTube Part 1 YouTube Part 2
```

In this tutorial, we will discuss the application of neural networks on graphs. Graph Neural Networks (GNNs) have recently gained increasing popularity in both applications and research, including domains such as social networks, knowledge graphs, recommender systems, and bioinformatics. While the theory and math behind GNNs might first seem complicated, the implementation of those models is quite simple and

Why PyTorch?

There is a great variety of other DL frameworks out there

TensorFlow

- Production-level code
- Used in companies
- Large community

JAX

- Function-oriented
- JIT-compiled, very fast
- Currently on the rise

In this course:

- Main framework: PyTorch
- All notebooks provided in both PyTorch and JAX
- If you already know PyTorch, give JAX a try!

Tutorial schedule

Week 1
Introduction to PyTorch

Week 2
Activation Functions

Week 3
Optimization &
Initialization

Week 4
Inception, ResNet &
DenseNet

Week 5
Transformers & Attention

Week 6Graph Neural Networks

Week 7
Self-Supervised (and Causal)
Representation Learning

Figure credit:

Tutorial-Lecture Alignment

Week	Lecture - Tuesday	Tutorial - Tuesday	Lecture - Friday
Week 1	Introduction to DL	Introduction to PyTorch	Modular Learning
Week 2	DL Optimizations 1	Activation Functions	DL Optimizations 2
Week 3	Convolutional NNs	Optimization & Initialization	Modern ConvNets
Week 4	Transformers	Inception, ResNet and DenseNet	Graph Neural Networks
Week 5	Generative Modelling	Transformers and Attention	Deep Variational Inference
Week 6	Neural Modelling of 3D	Graph Neural Networks	Deep Learning for Physics
Week 7	Self-Supervised Learning 1	Self-Supervised (and Causal) Representation Learning	Self-Supervised Learning 2

Plan for today

- First look at notebooks
- Tutorial 2: Introduction to PyTorch
- Afterwards: Introduction to Assignment 1

Friday: Working with the Lisa cluster