

CENTRO UNIVERSITÁRIO FACENS

Usina de Projetos Experimentais (UPX 2) Projeto – Relatório final

IDENTIFICAÇÃO

No	NOME	E-mail	Telefone
235618	Fabiano Rodrigues Leite	fabianor135@gmail.com	15 997497371
235320	Vitor Hugo Weber Barbosa	vitorweber490@gmail.com	11 93210-7265
235941	Igor Ferreira Arantes	igor.f.arantes12@gmail.com	15 98105-3039
235965	Jonathan Bras Diniz de Queiroz	jonathan.diniz@outlook.com	15 99805-8530
235441	Rodrigo Mateus de Moraes	rodrigomamoraes@gmail.com	15 99123-0094
190428	Raffael de Lima Batista	raffael.batista@hotmail.com	15 99838-3858

TÍTULO:
EcoMonitor CTRL Tech: Revolucionando o Uso de Energia para um Futuro Sustentáve
LÍDER DO GRUPO:
Fabiano Rodrigues Leite
ORIENTADOR(A):
Adson Nogueira Alves
Data da Entrega: 22/09/2023
Visto do(a) Orientador(a)

Usina de Projetos Experimentais

Fabiano Rodrigues Leite
Vitor Hugo Weber Barbosa
Igor Ferreira Arantes
Jonathan Bras Diniz de Queiroz
Rodrigo Mateus de Moraes
Raffael de Lima Batista

TÍTULO DO TRABALHO: EcoMonitor CTRL Tech

Sorocaba/SP 2020

Fabiano Rodrigues Leite
Vitor Hugo Weber Barbosa
Igor Ferreira Arantes
Jonathan Bras Diniz de Queiroz
Rodrigo Mateus de Moraes
Raffael de Lima Batista

TÍTULO DO TRABALHO: EcoMonitor CTRL Tech

Primeira parte do projeto experimental apresentado ao Centro Universitário Facens, como exigência parcial para a disciplina de Usina de Projetos Experimentais (UPX).

Orientador: Prof. Adson Nogueira Alves

Sorocaba/SP 2023 SUMÁRIO

1 OBJETIVO GERAL	3
2 OBJETIVOS ESPECÍFICOS	3
3 JUSTIFICATIVA	3
4 REVISÃO DE LITERATURA E ESTADO DA A	RTE4
5 MATERIAIS E MÉTODOS	8
5.1 Proposta final	8
5.1.1 Orçamento	10
5.1.2 Retorno esperado	10
6 VALIDAÇÃO	Erro! Indicador não definido.
6.1 Procedimento	Erro! Indicador não definido.
6.2 Resultados	Erro! Indicador não definido.
7 CONCLUSÃO	Erro! Indicador não definido.
ANEXO I - MAPA DE EMPATIA	Erro! Indicador não definido.
REFERÊNCIAS	Erro! Indicador não definido.

1 OBJETIVO GERAL

O projeto "_EcoMonitor CTRL Tech " tem como objetivo desenvolver um sistema abrangente de monitoramento e controle de energia residencial. Seu foco principal é promover a eficiência energética e práticas sustentáveis, alcançando isso através da medição precisa do consumo de energia, conscientização do consumidor, otimização do uso de energia, sustentabilidade ambiental e integração com Java para criação de um banco de dados centralizado e recursos personalizados de controle. Especificamente, o projeto visa monitorar equipamentos com grande consumo de energia e o tempo de utilização desses dispositivos, capacitando os usuários a tomarem decisões informadas sobre o uso de energia, contribuir para a redução no consumo de energia elétrica e simplificar o gerenciamento de energia em suas residências.

2 OBJETIVOS ESPECÍFICOS

Em resumo, o " **EcoMonitor CTRL Tech** " busca capacitar os usuários a entenderem, controlar e otimizar seu consumo de energia de forma sustentável, promovendo a conscientização ambiental e contribuindo para um futuro mais verde e eficiente energeticamente.

O escopo deste projeto consiste em:

- Medição precisa de energia: Monitorar com precisão o consumo de energia de dispositivos em tempo real e implementar um banco de dados centralizado para armazenar os dados de consumo de energia coletados ao longo do tempo;
- Conscientização do consumidor: Informar os usuários sobre como seus aparelhos afetam o consumo de energia e as contas de eletricidade;
- Otimização do uso de energia: Identificar oportunidades para economizar energia, como desligar dispositivos ociosos ou agendar operações durante tarifas mais baixas;
- Sustentabilidade ambiental: Promover práticas sustentáveis para reduzir consumo excessivo de energia elétrica;
- Facilidade de uso: Oferecer uma interface amigável e através do Java e banco de dados criar funcionalidades de monitoramento, permitindo que os usuários programem ações com base nos dados de consumo de energia

3 JUSTIFICATIVA

A justificativa deve responder a seis perguntas:

- Quais os principais problemas que o projeto pretende ajudar a resolver?
 R:O projeto aborda o desperdício de energia devido ao uso inadequado de dispositivos de alto consumo e a falta de conscientização sobre o consumo de energia.
- 2. Quais potencialidades e oportunidades existem para a execução do projeto?
 R:O uso da plataforma Arduino integrado com Java e Banco de dados eficientemente bem laborados oferece flexibilidade e acessibilidade. A crescente conscientização ambiental e o aumento dos custos de energia criam oportunidades para soluções de eficiência energética.
- Por que o projeto é importante para o alcance do objetivo?
 R:O projeto é fundamental para promover a eficiência energética e práticas sustentáveis, capacitando os usuários a economizarem energia, dinheiro e reduzir sua pegada de carbono.
- Qual a importância do projeto no contexto apresentado?
 R:No contexto atual de prioridades ambientais globais, o projeto contribui para objetivos mais amplos de sustentabilidade ambiental.
- 5. Por que ele foi proposto? De onde nasceu a ideia?
 R: A ideia surgiu da necessidade crescente de conscientização sobre o uso de energia e eficiência energética, em resposta ao aumento das contas de energia e preocupações com as mudanças climáticas.
- 6. Qual inovação ou diferencial o projeto traz?
 R:O projeto se destaca pela combinação de monitoramento preciso de energia, e integração com aplicativo criado Java para visualizar, monitorar e gerenciar o consumo indevido de energia elétrica, permitindo que os usuários identifiquem equipamentos de alto consumo e tomem medidas específicas para economizar energia, com foco na acessibilidade e flexibilidade proporcionada pelo Arduino.

1 Artigo:

O projeto "EcoMonitor CTRL Tech" representa uma resposta direta à crescente preocupação com as alterações climáticas, as quais se intensificaram nas últimas décadas. Uma das principais razões para esse agravamento é o desperdício de energia em nossa vida cotidiana, especialmente devido ao consumo excessivo de eletricidade em eletrodomésticos e dispositivos eletrônicos. Esse comportamento, apesar de não apresentar impactos ambientais imediatos, contribui de forma indireta para o aumento das emissões de CO2 nas centrais elétricas, amplificando a crise climática.

A importância de abordar essa questão não pode ser subestimada, visto que ela afeta tanto o meio ambiente quanto a sociedade em geral. Uma das estratégias essenciais para combater esse problema é o monitoramento em tempo real do consumo de energia, um elemento central do projeto "EcoMonitor CTRL Tech". Além disso, a conscientização dos consumidores desempenha um papel fundamental, capacitando-os a tomar decisões informadas sobre o uso de energia em suas residências.

O projeto também busca otimizar o uso de energia e promover a sustentabilidade ambiental, com a integração de tecnologias Java para criar um banco de dados centralizado e recursos personalizados de controle. Essa abordagem permitirá não apenas monitorar equipamentos com alto consumo de energia, mas também rastrear o tempo de utilização desses dispositivos, oferecendo aos usuários insights valiosos para reduzir o consumo de energia elétrica e simplificar o gerenciamento de energia em suas casas.

Portanto, esse projeto exemplifica uma iniciativa importante para enfrentar as alterações climáticas, ao mesmo tempo em que oferece uma solução prática para a gestão eficiente de energia em edifícios residenciais, comerciais e educacionais. Ao analisar sistemas inteligentes de gestão de energia em duas categorias, controle direto e indireto, o artigo fornece uma visão abrangente dos pontos fortes, pontos fracos e técnicas de otimização, abrindo caminho para futuras melhorias que podem beneficiar ainda mais o ambiente e a sociedade.

2 Artigo: Consuma menos energia e ajude a preservar o meio ambiente Economizar energia elétrica exige mudança de hábito. São pequenas ações cotidianas que devemos fazer todos os dias, mas que causam um grande efeito: contribuir para a sustentabilidade do planeta. Bem como, gera economia financeira. Confira abaixo algumas atitudes para poupar energia:

- Apague a luz quando ninguém estiver no ambiente.
- Use a máquina de lavar em sua capacidade máxima.
- Acumule roupas e passe todas de uma só vez.
- Só abra a porta da geladeira quando houver necessidade e diminua a temperatura no inverno.
- Dê preferência para a luz natural e opte por cores claras para as paredes e pisos.
- Substitua as lâmpadas tradicionais por tecnologia LED.
- Desligue carregadores da tomada quando os equipamentos estiverem carregados. Aparelhos em stand-by também consomem energia.
- Fique no chuveiro apenas o tempo necessário para se lavar.

3 Artigo:

A TI verde diz respeito à reunião de estratégias focadas em minimizar os efeitos da tecnologia no meio ambiente.

Essas estratégias, ao serem adotadas por uma empresa, podem evitar desperdícios de recursos com equipamentos, softwares e energia elétrica.

E embora o principal benefício da TI verde seja preservar o meio ambiente, ela reflete diretamente em outras vantagens para a empresa, como reduzindo custos no departamento e tornando o ambiente tecnológico mais seguro. Na prática, isso é feito das seguintes formas:

- Aderindo a uma intranet intuitiva, diminuindo gastos com impressões e diminuindo o desmatamento;
- Migrando serviços para nuvem e evitando a compra de equipamentos e novos recursos;

- Comprando máquinas que consomem menos energia e as usando com consciência;
- Fazendo a manutenção constante de novas máquinas para aumentar seu ciclo de vida;
- Desligando equipamentos quando n\u00e3o estiverem sendo usados;
- Automatizando equipamentos, como o arcondicionado;
- Reaproveitado os papéis que são usados.

4 Artigo: O artigo apresenta um sistema de gerenciamento de consumo de energia desenvolvido com Java e banco de dados. O sistema permite que os usuários registrem o consumo de energia de seus equipamentos e dispositivos. Os dados registrados são armazenados em um banco de dados, que pode ser acessado pelos usuários para visualizar e analisar o consumo de energia.

Diferenças entre o artigo 4 e o projeto deste artigo:

- O artigo apresenta um sistema mais simples, que se concentra apenas no registro e análise do consumo de energia.
- A ideia do projeto é mais abrangente, incluindo também a conscientização do consumidor e a otimização do uso de energia.
- O projeto além da linguagem de programação Java e do banco de dados,
 utiliza também um Arduino para obter esses dados.

Semelhanças entre o artigo 4 e o projeto deste artigo.

- Ambos os sistemas utilizam Java e um banco de dados para armazenar os dados de consumo de energia.
- Ambos os sistemas visam ajudar os usuários a identificarem e reduzir o desperdício de energia.
- Ambos os sistemas podem ser utilizados por empresas e consumidores

5 Artigo: O Projeto desenvolvido pelo grupo EcoMonitor CTRL Tech, concentra-se no desenvolvimento de um sistema abrangente de monitoramento de energia residencial, priorizando eficiência energética, sustentabilidade e conscientização do consumidor, por meio da utilização de Arduino e a criação de um banco de dados centralizado. Por

outro lado, o artigo "Sistema de Medição e Monitoramento em tempo real de Eficiência Energética para Equipamento de TIC" referido enfoca a medição de energia em equipamentos de Tecnologia da Informação e Comunicação (TIC), destacando a importância do monitoramento devido aos custos operacionais e emissões de carbono. Ambos os artigos enfatizam a relevância da conscientização ambiental, mas abordam contextos diferentes, abrangendo a necessidade de tecnologias avançadas, como sensores de corrente e tensão e comunicação sem fio, para alcançar a eficiência energética e sustentabilidade no estado da arte das pesquisas nessa área.

5 MATERIAIS E MÉTODOS

5.1 Proposta final

A coleta de dados físicos será realizada por meio de sensores de potência que medem a potência ativa (em kilowatts, kW) em tempo real.

Os sensores estarão conectados a um sistema de aquisição de dados que registrará as leituras de potência.

A energia ativa consumida (em kilowatt-hora, kWh) pode ser calculada usando a seguinte equação:

Energia= Potência × Tempo

Para garantir o progresso organizado e o gerenciamento eficiente do projeto, adotamos a metodologia ágil e utilizamos a ferramenta Trello para planejamento e acompanhamento, aqui segue nosso cronograma:

Referente aos dados coletados serão transmitidos para a parte de software do projeto para posterior análise e apresentação. Apresentaremos nosso produto de topologia física será montado em utilizando uma placa ESP32 simulando virtualmente pelo IDE ARDUINO e JAVA (NetBeans), para a coleta, armazenamento a ideia é utilizara IDE WorkBench e a parte do aplicativo a arte interativa para o usuário será montado pelo VISUAL STUDIO, segue abaixo imagem de protótipo e interface gráfica.

https://github.com/WeberBar/EcoMonitor

5.1.1 Orçamento

Para nosso orçamento será apenas adquirido 2 sensores de tensão:

5.1.2 Retorno esperado

O projeto de monitoramento de consumo de energia residencial pode ser resumido como a medida do benefício ou impacto que o projeto proporciona aos usuários e ao ambiente. Isso pode incluir economia de energia, conforto do usuário, redução de emissões de carbono, melhor gerenciamento de recursos, aceitação no mercado, insights analíticos e retorno financeiro, dependendo dos objetivos do projeto. A avaliação do retorno é fundamental para medir o sucesso e o valor do sistema de monitoramento de energia .

6 VALIDAÇÃO

- 6.1 Procedimento
- 6.2 Resultados

7 CONCLUSÃO ANEXO I - MAPA DE EMPATIA

REFERÊNCIAS

COELHO, FELIPE CARDOSO; MOREIRA, João Padilha. SISTEMA DE GERENCIAMENTO DE CONSUMO DE ENERGIA. **SEMINÁRIO DE TECNOLOGIA GESTÃO E EDUCAÇÃO**, v. 2, n. 2, 2020.

CUNHA, Elisa Hellen et al. Sistema de Medição e Monitoramento em tempo real de Eficiência Energética para Equipamento de TIC. 2022.

Qluz Palhoça. "Economizar energia ajuda a preservar o meio ambiente?". https://www.qluzpalhoca.com.br/economizar-energia-ajuda-a-preservar-o-meio-ambiente/#:~:text=O%20consumo%20de%20energia%20el%C3%A9trica,sua%20casa%20%C3%A9%20muito%20importante! (Acesso em 21/09/2023).

STAVROS, Mischos; ELEANNA, Dalagdi; DIMITRIS, Vrakas. Intelligent Energy Management Systems: A Review. [S. I.], 16 maio 2022. Disponível em: https://arxiv.org/pdf/2206.03264.pdf. Acesso em: 22 set. 2023.

TI Verde: importância e práticas para sustentabilidade no TI, https://www.officetotal.com.br/blog/ti-verde/#:~:text=O%20que%20%C3%A9%20a%20TI,equipamentos%2C%20software s%20e%20energia%20el%C3%A9trica.