Συναρτήσεις Μονοτονία

Κωνσταντίνος Λόλας

Κάτι που αφήσαμε πιο πριν...

Δεν μπορούσαμε να υπολογίσουμε όλων των συναρτήσεων την μονοτονία π.χ.

- $e^x x$
- $2 x^3 2x + 1$
- 3 $\ln x x^2$

Spoiler

Γιατί υπολογίζαμε κλίση (εκτός διαφορικών εξισώσεων??) θετική κλίση? Αρνητική?

> Λόλας Συναρτήσεις 3/17

Spoiler

Γιατί υπολογίζαμε κλίση (εκτός διαφορικών εξισώσεων??) θετική κλίση? Αρνητική?

Μονοτονία

Μονοτονία

Έστω μία συνάρτηση f συνεχής στο Δ . Αν f'(x)>0 σε κάθε εσωτερικό σημείο x του Δ , τότε η f είναι γνησίως αύξουσα στο Δ

Όμοια για f'(x) < 0

Μονοτονία

Μονοτονία

Έστω μία συνάρτηση f συνεχής στο Δ . Αν f'(x)>0 σε κάθε εσωτερικό σημείο x του Δ , τότε η f είναι γνησίως αύξουσα στο Δ

Όμοια για f'(x) < 0

- Ξαναλύνουμε όλες τις ασκήσεις με μονοτονία, τώρα όμως ΟΛΕΣ
- Όσοι δεν τα μάθανε καλά, είναι ευκαιρία τώρα να επιστρέψουν
- ③ Όσοι τα είχατε καταλάβει ευκαιρία για επανάληψη
- ④ Θα ασχολούμαστε με πρόσημα!!!!

- Ξαναλύνουμε όλες τις ασκήσεις με μονοτονία, τώρα όμως ΟΛΕΣ
- Όσοι δεν τα μάθανε καλά, είναι ευκαιρία τώρα να επιστρέψουν
- Όσοι τα είχατε καταλάβει ευκαιρία για επανάληψη
- ④ Θα ασχολούμαστε με πρόσημα!!!!

- Ξαναλύνουμε όλες τις ασκήσεις με μονοτονία, τώρα όμως ΟΛΕΣ
- Όσοι δεν τα μάθανε καλά, είναι ευκαιρία τώρα να επιστρέψουν
- Όσοι τα είχατε καταλάβει ευκαιρία για επανάληψη
- ④ Θα ασχολούμαστε με πρόσημα!!!!

5/17

- Ξαναλύνουμε όλες τις ασκήσεις με μονοτονία, τώρα όμως ΟΛΕΣ
- Όσοι δεν τα μάθανε καλά, είναι ευκαιρία τώρα να επιστρέψουν
- 🗿 Όσοι τα είχατε καταλάβει ευκαιρία για επανάληψη
- ④ Θα ασχολούμαστε με πρόσημα!!!!

- **1** Aν f' > 0 τότε $f \uparrow$
- ② Aν $f \uparrow τότε f' > 0$
- 3 Aν $f \uparrow τότε f' \ge 0$
- ullet Αν f'
 eq 0 τότε f γνησίως μονότονη

- **1** Aν f' > 0 τότε $f \uparrow \Delta A\Theta O \Sigma!!!!!!!!!!!$
- ② Aν $f \uparrow τότε f' > 0$
- 3 Aν $f \uparrow τότε f' \ge 0$
- ullet Αν f'
 eq 0 τότε f γνησίως μονότονη

- ① Aν f' > 0 τότε $f \uparrow$
- ② Aν $f \uparrow \tau \acute{o} \tau \epsilon f' > 0$
- ③ Aν $f \uparrow τότε f' \ge 0$
- 4 Αν $f' \neq 0$ τότε f γνησίως μονότονη

- **1** Aν f' > 0 τότε $f \uparrow$
- ② Αν $f \uparrow τότε f' > 0$ <u>ΛΑΘΟΣ!!!!!!!!!</u>
- 3 Aν $f \uparrow τότε f' \ge 0$
- **4** Aν $f' \neq 0$ τότε f γνησίως μονότονη

- **1** Aν f' > 0 τότε $f \uparrow$
- ② Aν $f \uparrow \tau \acute{o} \tau \epsilon f' > 0$
- ③ Aν $f \uparrow \tau \acute{o} \tau \epsilon f' \geq 0$
- ④ Αν $f' \neq 0$ τότε f γνησίως μονότονς

- **1** Aν f' > 0 τότε $f \uparrow$
- ② Aν $f \uparrow \tau \acute{o} \tau \epsilon f' > 0$
- ③ Αν $f \uparrow \tau \acute{o} \tau \epsilon f' \geq 0$ ΛΑΘΟΣ!!!!!!!!!!
- **4** Aν $f' \neq 0$ τότε f γνησίως μονότονη

- **1** Aν f' > 0 τότε $f \uparrow$
- ② Aν $f \uparrow \tau \acute{o} \tau \epsilon f' > 0$
- **3** Aν $f \uparrow \tau \acute{o} \tau \epsilon f' \geq 0$
- **4** Aν $f' \neq 0$ τότε f γνησίως μονότονη

- ① Aν f' > 0 τότε $f \uparrow$
- ② Aν $f \uparrow \tau \acute{o} \tau \epsilon f' > 0$
- ③ Aν $f \uparrow$ τότε $f' \ge 0$
- 4 Αν $f' \neq 0$ τότε f γνησίως μονότονη ΛΑΘΟΣ!!!!!!!!!!

Έστω $f:(0,+\infty)\to\mathbb{R}$ μία συνάρτηση, η οποία είναι παραγωγίσιμη και ισχύει xf'(x) - 2f(x) = 0 για κάθε x > 0

- Να δείξετε ότι η συνάρτηση $g(x) = \frac{f(x)}{x^2}$. x > 0 είναι σταθερή

Λόλας Συναρτήσεις 7/17

Έστω $f:(0,+\infty)\to\mathbb{R}$ μία συνάρτηση, η οποία είναι παραγωγίσιμη και ισχύει xf'(x) - 2f(x) = 0 για κάθε x > 0

- Να δείξετε ότι η συνάρτηση $g(x) = \frac{f(x)}{x^2}$. x > 0 είναι σταθερή
- **2** Αν επιπλέον f(1) = 2 να βρείτε τον τύπο υης f

Συναρτήσεις 7/17

Έστω $f:[0,\pi]\to\mathbb{R}$ μία συνάρτηση με f(0)=1, η οποία είναι συνεχής και ισχύει $f'(x)=x\sigma v\nu x$ για κάθε $x\in(0,\pi)$ Να δείξετε ότι $f(x)=x\eta\mu x+\sigma v\nu x$, $x\in[0,\pi]$

Λόλας Συναρτήσεις 8/17

Έστω $f:(0,+\infty)\to\mathbb{R}$ μία συνάρτηση με f(1)=0, η οποία είναι παραγωγίσιμη και ισχύει $f'(x)=\frac{1-xf(x)}{x^2}$ για κάθε x>0 Να δείξετε ότι $f(x)=\frac{\ln x}{x},\,x>0$

Λόλας Συναρτήσεις 9/17

Έστω $f:(0,\pi)\to\mathbb{R}$ μία συνάρτηση με $f(\frac{\pi}{2})=1$, η οποία είναι παραγωγίσιμη και ισχύει $f'(x)-\sigma\varphi x\cdot f(x)=0$ για κάθε $x\in(0,\pi)$ Να δείξετε ότι $f(x)=\eta\mu x, x\in(0,\pi)$

Λόλας Συναρτήσεις 10/17

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση με f(0)=1, η οποία είναι παραγωγίσιμη και ισχύει $f'(x)=f(x)-e^x\eta\mu x$ για κάθε $x\in\mathbb{R}$ Να δείξετε ότι $f(x)=e^x\sigma v\nu x$, $x\in\mathbb{R}$

Λόλας Συναρτήσεις 11/17

Έστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση με f(0) = 0, η οποία είναι παραγωγίσιμη και ισχύει $f'(x) = 2xe^{-f(x)}$ για κάθε $x \in \mathbb{R}$ Να δείξετε ότι $f(x) = \ln(x^2 + 1)$, $x \in \mathbb{R}$

Λόλας Συναρτήσεις 12/17

Έστω $f, q: \mathbb{R} \to \mathbb{R}$ δύο συναρτήσεις οι οποίες είναι δύο φορές παραγωγίσιμες και ισχύουν

$$f''(x) = g''(x)$$
 για κάθε $x \in \mathbb{R}$

•
$$f(0) = g(0) + 1$$

Nα δείξετε ότι
$$f(0) = g(0) + 1$$

Λόλας Συναρτήσεις 13/17

Έστω $f:(0,+\infty)\to\mathbb{R}$ μία συνάρτηση με f(0)=0, η οποία είναι συνεχής και ισχύει f(x) = x(f(x) - f'(x)) για κάθε x > 0

- **1** Aν g(x) = xf(x), x > 0 να δείξετε ότι $g(x) = c \cdot e^x$, x > 0

Λόλας Συναρτήσεις 14/17

Έστω $f:(0,+\infty)\to\mathbb{R}$ μία συνάρτηση με f(0)=0, η οποία είναι συνεχής και ισχύει f(x) = x(f(x) - f'(x)) για κάθε x > 0

- ① Αν g(x) = xf(x), x > 0 να δείξετε ότι $g(x) = c \cdot e^x$, x > 0
- **2** Αν επιπλέον f(1) = e να βρείτε τον τύπο της f

Συναρτήσεις 14/17

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση η οποία είναι δύο φορές παραγωγίσιμη και ισχύουν

$$2f(x) + 4xf'(x) + (x^2 + 9)f''(x) = 0$$
 για κάθε $x \in \mathbb{R}$

•
$$f(0) = 0 \text{ kal } f'(0) = \frac{1}{9}$$

Να δείξετε ότι
$$f(x) = \frac{x}{x^2+9}$$

Έστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση για την οποία ισχύει

$$|f(x)-f(y)| \leq (x-y)^2$$
 για κάθε $x,y \in \mathbb{R}$

Να δείξετε ότι η f είναι σταθερή

Λόλας

Αν για τις συναρτήσεις f, g ισχύουν f(0)=0, g(0)=1, f'(x)=g(x) και g'(x)=-f(x) για κάθε $x\in\mathbb{R}$ να αποδείξετε ότι:

- **1** $f^2(x) + g^2(x) = 1, x \in \mathbb{R}$
- $f(x) = \eta \mu x, x \in \mathbb{R} \text{ kal } g(x) = \sigma v \nu x, x \in \mathbb{R}$

Λόλας Συναρτήσεις 17/17

Αν για τις συναρτήσεις f, g ισχύουν f(0) = 0, g(0) = 1, f'(x) = g(x)και g'(x) = -f(x) για κάθε $x \in \mathbb{R}$ να αποδείξετε ότι:

- ① $f^2(x) + q^2(x) = 1, x \in \mathbb{R}$
- $f(x) = \eta \mu x, x \in \mathbb{R} \text{ kal } g(x) = \sigma v \nu x, x \in \mathbb{R}$

Συναρτήσεις 17/17

```
Θα δείξουμε ότι για κάθε x_1 < x_2 \in \Delta \implies f(x_1) < f(x_2).
Στο (x_1, x_2) είναι παραγωγίσιμη, άρα θα ισχύει το ΘΜΤ
Υπάρχει \xi \in \Delta ώστε f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.
```

```
Θα δείξουμε ότι για κάθε x_1 < x_2 \in \Delta \implies f(x_1) < f(x_2). Στο (x_1,x_2) είναι παραγωγίσιμη, άρα θα ισχύει το ΘΜΤ Υπάρχει \xi \in \Delta ώστε f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}. Αλλά f'(x) > 0 για κάθε x \in \Delta Αρα f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0 f(x_2) > f(x_1)
```

```
Θα δείξουμε ότι για κάθε x_1 < x_2 \in \Delta \implies f(x_1) < f(x_2). Στο (x_1,x_2) είναι παραγωγίσιμη, άρα θα ισχύει το ΘΜΤ Υπάρχει \xi \in \Delta ώστε f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}. Αλλά f'(x) > 0 για κάθε x \in \Delta Αρα f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0
```

```
Θα δείξουμε ότι για κάθε x_1 < x_2 \in \Delta \implies f(x_1) < f(x_2). Στο (x_1,x_2) είναι παραγωγίσιμη, άρα θα ισχύει το ΘΜΤ Υπάρχει \xi \in \Delta ώστε f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}. Αλλά f'(x) > 0 για κάθε x \in \Delta Αρα f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0 f(x_2) > f(x_3)
```

```
Θα δείξουμε ότι για κάθε x_1 < x_2 \in \Delta \implies f(x_1) < f(x_2). Στο (x_1,x_2) είναι παραγωγίσιμη, άρα θα ισχύει το ΘΜΤ Υπάρχει \xi \in \Delta ώστε f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}. Αλλά f'(x) > 0 για κάθε x \in \Delta Αρα f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0 f(x_2) > f(x_1)
```