PREDICTING A SONG'S POPULARITY

DAME JANKULOSKI - KRISTIN SKRITEK - NISHANTA KHANAL VICTOR FONSECA - ZONAIR NADEEM

Famous: Now as simple as a click, listen, and share

What if there was a way...

to give individuals, groups, and record labels a head start on what could be

Agenda

- Problem Statement
- Dataset
- Models
- Results
- Discussion

Problem Statement

Can the success of a song, based on making the cut for Billboard's Top 100 Charts, be predicted?

DATASET CREATION AND DESCRIPTION

Used Python library *Spotipy* to collect data on a selection of songs:

- Songs that placed on Billboard Top 100 (2010-2020)
- Songs that did not place on Billboard Top 100 (2010-2020)

Includes: Music features, Spotify engineered song features and musical genres

billboard

Used *BeautifulSoup* to scrape
Billboard Top 100 charts in Wikipedia

Years: 2010-2020

Includes Ranking, song name, artist name

Final Table					
Rows	360,372				
Features	46				
Label	Billboard vs Not Billboard				

Dataset Preparation

- Exclude tracks that did not correspond to songs
 - podcasts
 - readings
 - sound effects
 - environmental / background
 - drama
 - ASMR
- Exclude classical music
- Exclude songs with no features (missing values)
- Release date parts day, month, year, week
- Flag Artist has ever been on billboard
- Flags 20 top musical genres

Data Exploration

Models Tested

Model	GridSearchCV optimization	Hyper Parameters	ROC AUC	Accuracy	Precision	Recall	Confusion Matrix	
Logistic Regression	Accuracy	C - Inverse of reg, Class_weight, Penalty (I1, I2, elasticnet)	0.92	0.9997	1	0.05	86,104 234	13
SVM	Recall	Kernel, Duality, Loss function, Penalty (I1, I2), C, Class_weight	0.92	0.7303	0.01	0.94	66,013 15	23,925
Random Forest	Accuracy	n_estimators, max_depth, max_features, bootstrap, max_samples_leaf, max_samples_split	0.90	0.7286	0.01	0.96	62,284	23,280

Model Comparisons

- Logistic Regression and Random Forest ROC curves grow faster (higher TPR with lower FPR)
- Linear SVM yields the highest AUC: best performance at distinguishing billboard songs from non billboard
- The three models perform well, way above the diagonal

Precision vs Recall

Discussion

Points of attention

- How to measure and rank songs popularity
 - Binary vs Continuous variable
 - Billboard vs Spotify
- Balancing the dataset
 - Proportion of songs that go to billboard rare event
- Trade-off between precision and recall

Questions?

Appendix

Balanced Dataset Training

Feature Importance Analysis

Learning Curve for LR

