TD Nº 1 : Rappels et modèles économétriques

Ce TD est essentiellement consacré aux révisions : optimisation de fonctions à plusieurs variables pour l'Exercice 1, algèbre linéaire et projections pour les Exercices 2, 3 et 4, vecteurs gaussiens pour les Exercices 5, 6 et 7. Enfin, l'Exercice 8 permet de discuter un modèle économique très simple.

EXERCICE 1. Soit f l'application $\mathbb{R}^p \to \mathbb{R}$ telle que

$$f(u) = u'Mu + v'u + t$$

où M est une matrice $p \times p$ symétrique, v un vecteur de taille p fixé et t un réel fixé.

- 1) Montrer que $\nabla f(u) = 2Mu + v$.
- 2) Montrer que $\mathbf{H}f(u) = M$.
- 3) En déduire que si M est définie positive, f admet un unique minimum atteint en un point à préciser.
- 4) Application : déterminer l'unique minimum de la fonction

$$g(u_1, u_2) = u_1^2 + u_1u_2 + u_2^2 + 3u_1 + 2u_2 - 5.$$

EXERCICE 2. Soit W une matrice de taille $n \times p$.

- 1) Montrer que Ker(W) = Ker(W'W).
- 2) Montrer que rg(W) = rg(W'W) où rg(W) est le rang de la matrice W.
- 3) En déduire des conditions pour que $(W'W)^{-1}$ existe. Discuter selon les valeurs relatives de p et n.

EXERCICE 3. Soit P une matrice de taille $n \times n$ vérifiant $P^2 = P$.

- 1) Montrer que P est diagonalisable et donner ses valeurs propres et vecteurs propres.
- 2) Vérifier que tr(P) = rg(P) où tr(P) est la trace de la matrice P.
- 3) Supposons de plus que P' = P. Montrer que P est alors diagonalisable en base orthonormée, et donner ses valeurs propres et vecteurs propres.

EXERCICE 4. Soit la matrice suivante, de taille $n \times n$:

$$P = \begin{pmatrix} \frac{1}{n} & \cdots & \frac{1}{n} \\ \vdots & \ddots & \vdots \\ \frac{1}{n} & \cdots & \frac{1}{n} \end{pmatrix}.$$

- 1) Vérifier que P est une matrice de projection orthogonale.
- 2) Déterminer l'espace image de P.

3) Application en statistique : on demande à n travailleurs leur salaire mensuel, on stocke les résultats dans le vecteur $x = (x_1, ..., x_n)'$ (x_1 est le salaire du premier, etc...). On note \overline{x} le salaire moyen de l'échantillon

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

et σ_x l'écart-type

$$\sigma_x = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2}.$$

Montrer que

$$\sigma_x = \frac{\|(I-P)x\|}{\sqrt{n}}.$$

EXERCICE 5. Soit X un vecteur aléatoire dans \mathbb{R}^n de loi $\mathcal{N}(0, I_n)$. Soit Q une matrice orthogonale (i.e. $Q' = Q^{-1}$). Déterminer la loi de QX.

EXERCICE 6. Soit X un vecteur aléatoire dans \mathbb{R}^2 de loi :

$$X = \left(\begin{array}{c} X_1 \\ X_2 \end{array}\right) \sim \mathcal{N}\left(\left(\begin{array}{c} 0 \\ 0 \end{array}\right), \left(\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right)\right)$$

avec $\rho \in [0, 1]$. Montrer que les deux variables aléatoires $X_1 + X_2$ et $X_1 - X_2$ sont indépendantes.

EXERCICE 7. Soit

$$X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 2 \end{pmatrix} \right) = \mathcal{N}(m, V).$$

- 1) Déterminer Ker(V).
- 2) En déduire que, presque sûrement, X appartient à un sous-espace de \mathbb{R}^3 à déterminer.

EXERCICE 8. On s'intéresse ici aux modèles de consommation individuelle inspiré de la théorie keynésienne : pour chaque ménage, la consommation C est une fonction croissante du revenu Y, C = F(Y).

- 1) Un économiste propose trois modèles, (M1) $C = \alpha Y$, (M2) $C = \beta Y^2$ et (M3) $C = \gamma \sqrt{Y}$ (α , β et γ étant des constantes positives non précisées). Discuter du sens de chacun de ces modèles. Que penser de (M2) lorsque $Y \to \infty$? Et des trois modèles lorsque $Y \to 0$? Quelle modification proposer dans ce cas?
- 2) Quelles autres variables pourraient entrer en jeu dans la détermination de la consommation?

$$C = F(Y, ...)?$$