

A COST MODEL OF ITEM MIGRATION
IN THE
AIR FORCE LOGISTICS COMMAND
CONSUMABLE ITEM INVENTORY

THESIS

Lee J. Lehmkuhl Captain, USAF

AFIT/GOR/OS/86D-7

DISTRIBUTION SPREAMENT A

Approved for public relaced Distribution Unlimited

REPORT DOCUMENTATION PAGE							Form Approved OMB No. 0704-018					
	CURITY CLASSIFIC	ATION		16 RESTRICTIVE MARKINGS								
	SIFIED			3. DISTRIBUTION/AVAILABILITY OF REPORT								
28. SECURITY	CLASSIFICATION A											
2b. DECLASSIF	ICATION / DOWNG	RADING SCHEDU	JLE	Approved distribu			lease;					
4. PERFORMIN	G ORGANIZATION	REPORT NUMBI	ER(S)	5. MONITORING	ORGANIZATION	N REPORT N	UMBER(S)					
AFIT/G	OR/OS/86D-	-7										
6a. NAME OF	PERFORMING OR	GANIZATION	6b. OFFICE SYMBGL (If applicable)	7a. NAME OF M	ONITORING OR	GANIZATION	٧					
School	of Engine	eering	AFIT/EN									
Air Fo	City, State, and Z rce Instit -Pattersor	tute of To		7b. ADDRESS (Cit	ty, State, and a	RIP Code)						
8a. NAME OF ORGANIZA	FUNDING/SPONSO	ORING	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	TINSTRUMENT	IDENTIFICA	TION NUMBER					
8c. ADDRESS (City, State, and ZII	P Code)		10. SOURCE OF I	UNDING NUM	BERS						
,	•	·		PROGRAM FLEMENT NO.	PROJECT NO.	TASK NO	WORK UNIT					
						1	Ì					
	ude Security Class	itication)										
See Bl	ock 19											
12. PERSONAL	AUTHOR(S)											
Lehmku	hl, Lee J.	, B.S., I	M.S., Capt, U	SAF								
13a. TYPE OF		13b, TIME C FROM	· · · · · · · · · · · · · · · · · · ·	14. DATE OF REPO		th, Day)	5. PAGE COUNT					
MS The	S1S NTARY NOTATION		то	1986 De	cember		181					
16. SUPPLEIVE	NIANI NOTATIO	•										
17.	COSATI COL	DES	18. SUBJECT TERMS	(Continue on reven	se if necessary	and identify	by block number)					
FIELD	GROUP	SUB-GROUP	Inventory C	ontrol, Su	pply Dep	ots, Ed	conomic Orde					
15	05		Quantity, M			•						
10 ABSTRACT	(Continue on rev	ere if person	and identify by block r									
IS, ABSINACI	(Continue on rev	erse ir necessary	and identity by block i	iumoer)								
TI	TLE: A Co	st Model	of Item Migr	ation in t	he Air F	0200						
	Loqi	stics Cor	mmand Consuma	ble Ttem Ti	ne All r	orce						
		classified		~10 100 1.	vencory							
The	esis Advis		jor Joseph R.		4							
		Dr.	. Palmer W. S	miln	EV. SA	- whave	WE STA WAS common					
					Au For	t. WOLAVER of Paneous as Institute of Pallerson Aft	nd Professional Develops Technology (#770)					
						•	, ,					
20 DISTRIBUT	ION / AVAILABILIT	Y OF ABSTRACT		21. ABSTRACT SE	CURITY CLASSI	FICATION						
	SIFIED/UNLIMITED	_	RPT. DTIC USERS									
	F RESPONSIBLE IN		والمتحدث والمراوي والمتحدد والمساور	22b. YELEPHONE	(Include Area C	ode) 22c C	FFICE SYMBOL					
Major	Joseph R.	Litko	التفاقة بيسمي والمواتيني والموا	(513) 255	5-3362	A	FIT/ENS					

A COST MODEL OF ITEM MIGRATION IN THE AIR FORCE LOGISTICS COMMAND CONSUMABLE ITEM INVENTORY

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Lee J. Lehmkuhl, B.S. Captain, USAF

December 1986

Accesi	on For)
DTIC	ounded	
By Distrib	ation [
A	sudab Liy	tanasa Garasa
Diet.	Avar or	•
A-1		

Approved for public release; distribution unlimited

Preface

Air Force Logistics Command manages a large inventory of consumable items, totaling nearly 600,000 items. The management policy for this inventory assumes that items remain in specific management categories indefinitely.

Numerous studies have shown that the opposite is true -- items tend to change categories, or migrate, over time.

This item migration diminishes the effect of management policies tailored to specific categories. Attention has now turned to the implications of item migration, in terms of excess cost or decreased inventory performance.

A cost model for item migration was developed to determine the cost of item migration. The model was derived from a simplified inventory simulation model. Data on which the model was based were drawn from a previous study of item migration at San Antonio Air Logistics Center. Multiple runs of the model under different inventory conditions show that the speed with which inventory managers recognize item migration greatly affects the number of backorders resulting from upward migration. Even with instant recognition of item migration, however, the dollar value of backorders caused by item migration within the model averages about 4.7 million dollars per quarter. The value of long supply resulting from downward migration is influenced by varying lead time and the amount of safety level. But neither

influence is strong enough to greatly affect the total value of long supply, which averaged about 75 million dollars.

This study would not have been possible without the help of several dedicated people. Mark Fryman, Patti Moore, and Fred Rexroad provided much-needed insight into the AFLC data base and item management policy. Special thanks go to my advisor, Maj Joseph R. Litko, for his suggestions, ideas, and support; and Lt Col Palmer W. Smith, USAF (Ret), for giving me a solid foundation in this area and staying with the project. Finally, I thank my wife Michael for her unfailing support and caring during my tour at AFIT.

Table of Contents

F	,sge
Preface	ii
List of Figures	vi
List of Tables	vii
Abstract	/111
I. Introduction	1
Background	1
Problem Statement	
Kasearch Question	3 3 4
Research Objective	
Scope	4
Overview	5
II. Literature Review	6
Introduction	6
Discussion of the Literature	6
	6
AFLC Consumables Inventory	
Inventory Dynamics	8
Item Migration Studies	12
	_
III. Background	15
AFLC Item Management	15
Research Data Base	26
Model Context	30
	J U
IV. Methodology	32
Model Development	32
Assumptions and Simplifications	35
	37
Modifications to the Disz Model	41
Model Description	
Main Program	43
Subroutine BUYDUE	43
Subroutine CYCLE	44
Subroutine GETDEM	45
Subroutine ADDNEW	45
Subroutine LEVEL	47
Functions	47
Model Verification	47

	Model	Ual	lida	tio	1				•			•	•				48
		Ster	ıdu	Stat	te	So	Iut	:101	n				•				49
		Inve	ento	ru I	Per	fo	rma	nei	8								51
		Alte	ered	Ťr	ans	it	ior	M	atr	·i×	,						52
	Exper																53
	rvher	Fact			4	••	• •	•	•	•	•	•	•	•	٠	•	54
		Fact	.075		•	•	• •	•	•	•	•	•	•	. •	٠	•	
		TLGS		nts	٠	•	• •	•	•	•	•	•	•	•	٠	•	55
U. Ana	lysis	of F	Resu	lts	•	•		•	•	•	•			•	•	• .	57
	Dolla	25-Ma	igh	ted	Ma	i x	mun	B	ack	or	de	rs	3				57
		Anal	lusi	s of	FÜ	ar	iar							•	•		50
		Comp	- 33	5 00	nf	m		P	Ber	י י	•		•	•	•		03
	Dolla			201	1.5	2	٠. د.		7		-	_	•	•	•	•	63
	DOTTE	Anal			- L-U		100	hh	-4	•	•	٠	•	٠	•	•	64 84
		Cowt															67
	The C	lost Dolj						:101	n	٠	•	•	•	•	•	٠	70
		Maxi															70
		Doll		1151			1 -	•	Ė.		•	•	•	•	•	•	71
		DOI:	rar	AG 1 (J6	O.) i i U	JL	hh	ΤÜ	ł	•	•	•	•	/1
VI. Cond	clusic	פחכ	and	Rec	Oww	en	dat	:10	ns	•	•	•	•	•	•	•	73
	Concl		200														73
	Recon	.091(•	•	•	•	•	•	•	•	•	•	•	•	77
	KACON	iiiii e i ic	10 C T	0015	•	•	• •	•	•	•	•	•	•	•	•	٠	//
Appandix (۸.	MIGS	2 T M	EUD.	TDA		e			٠	_						80
ubbaugix i	٦;	11105	2111	ruk.	TKH	11.4	300	1CC	= -	ەر.		•	•	•	٠	٠	80
A	_			. .		_											
Appendix 1	5 :	MIGS	21U	nnel	put	K	epc	ידכו	5	•	•	•	•	٠	•	•	95
	_					_											
Appendix (:	MIGS															
		No) It	om i	Mig	ra	tic	חנ	•	•	•	•	•	٠	•	٠	146
Appendix !	D:	MIGS	SIM	Out	put	R	epc	ort	S u	uit	h						
• •		A)	lter	ed	Tra	ns	iti	on	Ma	itr	ix						148
													•	·	-	•	
Appendix !	F.	SAS	Res	idu	n 1	P١	ot•	.	_	_					_		164
	- •							- •	•	•	•	•	•	•	•	•	
Bibliogra	יילמ																169
PYDTYOM: 9	hid .	• •	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	703
114 4																	4 74
Vita			• •		•	•			•	•	•	•	•	•	٠	•	171

CONTRACTOR OF THE PROPERTY OF

List of Figures

Fi	ure								Page
1	Migration Table	•	•	•	•		•	•	27
2	Migration Transition Matrix	•	•	•	٠	•	•	•	28
3	Assignment of Prices to New Items	•	•	•	,	•	•	•	40
4	Altered Transition Matrix					_			52

List of Tables

Table		Page
I.	Steady State Proportions	50
11.	Normalized Steady State vs. Actual SMGC Proportions	50
III.	Normalized Steady State vs. Actual SMGC Proportions	53
IV.	Treatments for Full Factorial Design	55
U.	First Run Dollar-Weighted Maximum Backorders	5 7
UI.	Full Model ANOVA Table for Backorders	59
VII.	Reduced Model ANDVA Table for Backorders	60
VIII.	Mean Responses for Backorders	61
ıx.	First Run Dollar Value of Long Supply	64
x.	Full Model ANDVA Table for Long Supply	65
xt.	Reduced Model ANOVA Table for Long Supply	66
XII.	Mean Responses for Long Supply	68

Abstract

This research effort investigates the phenomenon of item migration within the Air Force Logistics Command (AFLC) consumable item inventory. Item migration is the movement of items between the Supply Management Grouping Codes (SMGC) used by AFLC to categorize items. Since SMGCs are based on dollar value of annual demand, item migration entails substantial changes in demand rate. Migration to a higher level of demand gives rise to backorders, while downward migration may result in unneeded stock on hand, or "long supply."

A simplified model of the AFLC item management system provides the means for experimentation within the inventory system. By using a constant quarterly demand rate with discrete changes in the demand rate as migration occurs, the model is able to isolate the backorders and long supply resulting strictly from migration. The influences of the speed of recognition of migration, the variability of lead time, and the amount of safety level are determined by running the simulation under various conditions. An analysis of variance for the dollar value of both backorders and long supply provides insight into the negative effect of item migration on inventory performance.

Migration creates high levels of both backorders and long supply within the simulation. The amount of backorders

is influenced only by the reaction time of the inventory management system to rising demend. Varying read time and different safety levels have little effect on backorders stemming from upward migration. Long supply is affected by both varying lead time and safety levels, but not by management reaction time. However, the effects of lead time and safety level, while statistically significant, are quite small when compared with the overall amount of long supply.

A COST MODEL OF ITEM MIGRATION IN THE AIR FORCE LOGISTICS COMMAND CONSUMABLE ITEM INVENTORY

I. <u>Introduction</u>

Background

The Air Force Logistics Command (AFLC) is responsible for maintaining the Air Force inventory of consumable items, that is, items not repaired after they wear out. Item managers, with the aid of the DO-62 computerized inventory control system, track the stock level of each item and request purchase of replacement stock when needed. Stock is purchased in quantities which minimize the overall cost of maintaining the inventory, based on a model of the inventory system.

To avoid the time-consuming process of closely monitoring each of the nearly 600,000 items in the consumables inventory, AFLC divides the inventory into three management categories. The projected dollar value of yearly demand for an item determines the item's category. Items in the high value category receive close scrutiny from the item manager to avoid excessive backorders or costly unnecessary purchases. Items in the middle category receive a moderate

degree of item manager attention. For low value items, item managers depend a great deal on the DO-62 system to automatically calcula's stock levels and determine when to buy more stock. Under this system, an evaluation of management practices can reveal management-related problems within a specific category. AFLC then develops new policies targeted for that category.

Item management under this system becomes more difficult, however, when an item's dollar value of demand changes significantly. This causes the item to move, or migrate, to another category. Item migration makes the evaluation of management policies within a category less straightforward. A problem with an item (for example, too much stock or hand) may have started when the item was in a category other than the current one, under different management policies. In this case, a management change in the current category has no effect on the actual cause of the problem. Since purchase amounts are related to demand, item migration also leads to incorrect purchasing. A purchase initiated when an item is in one category may arrive after the item has migrated and be coo large or too small given the new level of demand.

Lt Col Palmer W. Smith and Mr. Robert Gumbert first identified item migration and its effect on stock levels and purchases at the Defense Electronics Supply Center (DESC).

Their study covered the entire DESC inventory from 1976 to

1980. A subsequent AFIT Masters thesis by Capt Mevin Smith attempted to incorporate item migration into the DESC inventory simulation model. More recently, an AFIT Masters thesis by Capt J. D. Kennedy has quantified item migration within the AFLC consumables inventory. A detailed discussion of literature pertaining to item migration is presented in Chapter II.

Problem Statement

Item migration complicates the task of managing the AFLC consumables inventory. It makes evaluation of management policies within management categories difficult. Backorders result when low-demand items migrate upward. and excess stock accrues in the low value category as high-demand items migrate downward. Item migration has not been successfully modeled, preventing any estimate of the cost of item migration or analysis of new policies addressing item migration.

Research Question

How can item migration be modeled within the context of existing inventory models and management practices? This question gives rise to several subsidiary questions. How do item management practices differ between management categories? How time-dependent is the probability of an item migrating? How best can item migration be effectively modeled? What is the dollar value of item migration in

terms of backorders and excess stock? What effect does information on changing demand have on the cost of item migration?

Research Objective

It is the purpose of this investigation to develop a simulation model of item migration within the AFLC consumables inventory and, based on the model, estimate the cost of item migration. This overall objective requires the fulfillment of the following subsidiary objectives:

- 1. Determine the amount of migration in the consumables inventory.
- 2. Create a simple model of the inventory, simulating the occurrence of item migration.
- 3. Validate modeled item migration.
- 4. Estimate the cost of item migration.

Scope

This research is limited to item migration only within the AFLC consumable item inventory at the San Antonio Air Logistics Center. Migration patterns are derived from item migration data presented in the Kennedy thesis (Kennedy). The simulation of the AFLC inventory is based on a simplistic model of the AFLC consumables inventory developed by Disz (9:24-25). This model is modified to include item

migration. The study does not use the large AFLC inventory simulation model, EOQSIM.

Overview

一人 人名英格兰人

Chapter II is a review of literature pertinent to item migration. The review covers professional journals, technical reports, and past theses.

Chapter III presents a detailed background for the research conducted. There is a thorough description of the DO-62 inventory control system, including the computations performed within the system. The data from the Kennedy thesis (Kennedy), which forms the basis for model development, is covered; and lastly, Chapter III covers the general context in which the model will be used.

Chapter IV describes the methodology for developing the simulation model and presents a description of the model.

Chapter IV also covers the validation of the model and concludes with a discussion of the design of the experiment to be performed with the model.

Chapter V presents the results of the research and analysis of those results.

Chapter VI contains the conclusions and implications drawn from the analysis in Chapter V, and concludes with recommendations for additional research.

II. <u>Literature Review</u>

Introduction

The literature review includes professional journals and periodicals; technical reports produced by the Air force, contractors, universities, and others; and past theses by students at the Air Force Institute of Technology. The review covers three main areas. First, it presents documents or studies pretaining to the AFIC consumables inventory. Second, it discusses studies of the underlying dynamic nature of an inventory system which gives rise to item migration. This includes random changes in demand and lead time (the time to receive an order of replenishment stock once the order is placed) and techniques for quantifying and dealing with these random changes. Third, the review covers attempts to specifically analyze item migration within inventory systems, the approaches taken, and results achieved.

Discussion of the Literature

AFLC Consumables Inventory. The management of the AFLC consumables inventory is governed by AFLC Regulation 57-6 (AFLCR 57-6). AFLCR 57-6 describes in detail the functioning of the DO-62 computer system which automates the management process and all management policies affecting the inventory. Of special interest is the criterion for an item to change management groups. An item must exhibit an annual

demand rate well in excess of current category specifications for three consecutive months to enter another category (1:12). The specific criteria for entering each SMGC are discussed in Chapter III, Section 1. A recent study of the consumables inventory found significant demand and lead time fluctuations. This information was compared to the way demand and lead time are modeled within AFLC's consumables inventory simulation, EDQSIM. EDQSIM is a large, complex discrete event simulation of the DO-62 sustem .. It couples the demand forecasting techniques of DD-62 with stochastically determined requisitions based on actual experienced demand and an empirical distribution of requisition size (7: Sec III, 6). EOQSIM is run on a stratified sample of the consumables inventory. Several key assumptions within EOQSIM concerning the stationarity of inventory parameters may be incorrect, including the methods for forecasting demand and lead time (8:49).

Another study of the consumables inventory, concerned with the impact of increasing the minimum order size, developed a simplified model of the inventory system (9:24-25). This model, created by Mr. Thomas E. Disz, aids in the analysis of management policy changes without resorting to the complex and possibly flawed EOQSIM model. The Disz approach avoids the complications of stochastic demand, lead time demand, and population sampling present in EOQSIM.

(9:25; 8:49-50). The Disz model employs a constant level of

demand over a ten year period. This drives a steady series of stock purchases to replenish the inventory. Because of its simplicity, the Disz model may be run using the entire AFLC inventory. This eliminates the need for a stratified sample of the inventory, a potential source of error. The model was run several times with different minimum buy policies. (A minimum buy is the smallest amount of stock that can be purchased at one time, given in months of demand.) The results provided an estimate of the cost of different minimum buy policies (9:25,38).

Inventory Dunamics. Inventory dynamics is a term covering the changing nature of items within an inventory. It includes the varying nature of demand, lead time, and methods to analyze and compensate for this variation.

Varying Demand. Much of the movement within an inventory is caused by varying levels of demand. Recent improvements in technology have contributed to the variation. The complex technology associated with new systems requires more complex, expensive replacement parts, while improvements in the quality and reliability of such parts have decreased the quantity demanded. Additionally, many of these expensive components are modular in nature. Modular components allow rapid replacement of failed parts, demanding a faster response from the inventory system for the replacement part (5:17-18). This situation results in a

significant number of high-cost, high-priority parts with sporadic demand (5:18).

Demand within the AFLC consumables inventory is highly erratic. Current policies are based on the assumption that actual demand is normally distributed with a mean value equal to the forecasted demand rate. But based on empirical data over several years, the actual distribution of demand appears highly skewed with a large number of sample demand levels in excess of the forecasted demand rate (6:9). A varying demand rate is a standard feature of real-world inventory systems, and much effort has been devoted to expressing the variation in theoretical statistical distributions. Such distributions allow the derivation of explicit management policies to minimize the cost of incorrectly predicting demand. The payoff for such research can be great. The Air Force consumables inventory accounts for 64 percent of all base-level supply transactions and seven billion dollars of yearly Air Force requirements (3:11). Recent changes in computing the variability of demand at base level are expected to increase the number of successfully filled requisitions throughout the Air Force by 14 percent (3:22). One theoretical treatment of demand variability used a combination of the Poisson distribution and the geometric distribution to express erratic demand. The Poisson was used to predict the arrival of customer requisitions, and the geometric to model the size of the

individual requisitions. The use of this distribution, known as the stuttering Poisson, led to an empirical formula for calculating the reorder point to minimize inventory cost (19:624). The reorder point is the level of stock on hand which, when reached, indicates that more stock should be purchased.)

Varuing Lead Time. Lead time variation is a major problem for inventory managers. When an order takes longer to arrive than expected, backorders result, and support to inventory customers suffers. Lead time greatly affects inventory costs. In fact, the total effect is greater than that of demand variations over a given time period (2:158). Approaches to handling lead time vary. Management policy may treat lead time as a constant or, as in the case of the Air Force, use the lead time resulting from the last order for the item in question. Additional approaches are using the longest lead time previously occurring (to be on the safe side) or developing a distribution of possible lead time values using historical data (2:159-160). This last approach was used by Bagchi, Hayya, and Ord in developing a distribution for demand occurring during lead time, or lead time demand. They modeled lead time demand as a compound distribution based on three varying elements: lead time, number of requisitions, and the size of individual roquisitions (2:161).

Safety Level. Safety level is a quantity of stock held in the inventory. It provides a hedge against backorders resulting from greater-than-expected lead time demand. AFLC calculates safety levels using a formula developed by Presutti and Trepp. The formula was derived using the Method of Lagrange, minimizing inventory costs subject to a constraint on total backorders. The derivation assumes normally distributed lead time demand with a mean provided by averaging historical demand. The formula provides the optimum amount of safety level for a given item based on item demand, demand variability, cost, and the cost of a backorder (13:243,249). AFLC may then adjust the value used for the cost of a backorder to remain within the budget for safety level expenditures (13:250).

Parameter Estimation. Besides using a safety level, other techniques exist for compensating for variations in demand and inaccurate management policies. Key parameters used in computing when and how much stock to buy are holding cost, ordering cost, and demand rate. These parameters are often estimated, and inaccurate estimates may be costly. Lowe has developed a method for estimating these parameters by minimizing the deviation between the actual average cost incurred and the theoretical average cost given parfect information about the distribution of demand. The method works for both stationary parameters (unknown but

fixed within a given range) and unstationary parameters (unknown and varying within a given range) (12:368-369).

Item Migration Studies. Several past studies have identified and quantified item migration in different inventory systems.

Identifuing Item Migration. The first research into item migration was that of Smith and Gumbert at the Defense Electronic Supply Center (DESC). They documented and quantified high levels of migration between the five DESC item management categories from March 1976 to March 1980. Their findings revealed there is an error in evaluating the effectiveness of management category policies based only on the observation of items currently in the category: items may move into a category, and the status of such items will have nothing to do with the policies for that category (18:4-5). A study by Kennedy has found significant levels of migration in the AFLC consumables inventory (11: Sec IV, 1). The analysis tracked on an itemby-item basis three consecutive years of inventory data from San Antonio Air Logistics Center. Kennedy provides accurate percentages of items migrating between the three AFLC management categories from quarter to quarter (11: Sec III. 3).

Modeling Item Migration. In a follow-on effort to Smith and Gumbert, Hobson and Kirchoff investigated the use of a Markov chain to describe the movement of items between

management categories at DESC. The transition probabilities proved to be time-dependent and unstable using the management categories defined by DESC (10:36,81). The use of different categories based on both demand value and time in current category reduced the instability, but the transition probabilities remained unstable (10:64-66). Further work at DESC attempted to model demand by fitting theoretical probability distributions to demand data on various groupings of items. The demand distributions could then model actual demand and item migration patterns for these groupings (16: Sec II, 5). However, "Simulation results were very dependent on the item characteristics used to define the groupings" (16: Sec U, 31). The item migration patterns from the model did not match observed item migration patterns (16: Sec UI, 3).

Proposed Policy Changes Addressing Item Migration. Although Markov chains failed to model DESC item migration, Mobson and Kirchoff used DESC migration patterns to develop a proposed policy for buying replenishment stock in medium and high value categories. A comparison of the time an item had been in a category and the percentage of time such an item would migrate to a lower category showed a linear relationship (10:69-71). The proposed policy used this relationship to decrease the size of replenishment order based on the time in category. For medium value items, this involved buying about 60 percent of a normal order for an

item in the category for only one quarter. This percentage increased linearly with time until a full order was recommended for items with more than 12 quarters in a category. High value order size varied from three months worth of demand for items in the category for unly une quarter, climbing to a 12 month maximum order size (specified by regulation) when the item exceeded 20 quarters in the category (10:71-72).

III. Background

AFLC Item Management

The Economic Order Quantitu Requirements Computation

Sustem (DD-62). DO-62 is a computerized data management

system designed to gather data, compute requirements, and

provide the information necessary for intelligent management

of the non-recoverable items in the AFLC inventory. The

system has two computation processes. One computes and

identifies procurement actions required for support of DOD

missions. This is done on an exception basis, when items

fall outside specific parameters within DO-62 (1:13). The

other process projects funding requirements for the

procurement of necessary stock. This research effort is

concerned with the former, the item management function of

DO-62.

The primary function of DO-62 for item management is the computation of stock levels and projected requirements. Requirements are forecasted based on past demands. "The system runs four times each month using the most current asset...and demand data..." (1:13). DO-62 items are managed "by exception". Computations and updates to stock levels and demands are performed automatically, and the item manager is notified only when the asset position for an item violates specified parameters (1:13). For example, when the

stock level for an item falls below a certain level, the system generates a notice to purchase more stock.

DO-62 is structured so that management intensity for an item depends on the dollar value of demand for that item. High demand value items are given the closest scrutiny to ensure effective, cost-efficient management. To this end, items are categorized by their annual dollar value of demand into Supply Management Groupings, denoted by a Supply Management Grouping Code (SMGC) (1:12). The item data used in this study are from June 1981 to March 1984. At that time AFLC used four SMGCs. In December 1984 AFLC reduced the number of SMGCs to three, but since all data are based on four SMGCs, the pre-December 1984 SMGCs are used (11: Sec II, 3). The four groupings are:

SMGC X. These are the low value items, with a yearly demand value of \$0 - \$500. Items in this SMGC receive a low level of management intensity. Item data are reviewed occasionally for accuracy. If an item in this SMGC has an annual demand rate of \$2500 or more for 3 consecutive months, the item is reassigned to another SMGC.

SMGC $\underline{\mathbf{T}}$. These are the medium value items, with a yearly demand value of \$500.01 - \$5,000. Items in this SMGC receive a moderate level of management intensity. Item data are reviewed regularly for accuracy, especially when the system indicates that more stock should be purchased. If an item in this SMGC has an annual demand rate of less than

400.01 or more than \$5,100 for three consecutive months, the item is reassigned to another SMGC.

SMGC P. These are the high value items, with a yearly demand value of \$5000.01 - \$50,000. Items in this SMGC receive a high level of management intensity. Item data are reviewed often for accuracy, and is closely reviewed when the system indicates that more stock should be purchased. If an item in this SMGC has an annual demand rate of less than 4900.01 or more than \$50,000 for three consecutive months, the item is reassigned to another SMGC.

SMGC M. These are the very high value items, with a yearly demand value of over \$50,000. Items in this category receive a very high degree of management intensity. Item data are reviewed constantly, and all data involved in the computation of a purchase request are scrutinized to ensure no unnecessary stock is purchased. Large requisitions for stock are also double-checked to make sure the user has a legitimate need for a large quantity of such high-value assets. If the annual demand for such an item falls below 49,000.01 for 3 consecutive months, the item is reassigned to a lower category (1:12.22).

High Intensity. High intensity management may be specified for an item in any SMGC when that item has great impact on supply availability (fill rate) or when the ALC responsible believes that intensified management will significantly improve support. Items so specified receive

the highest degree of management intensity. All input data are screened extremely carefully, and all management actions are subject to close scrutiny for accuracy, completeness, and timeliness (1:12-13,22-23).

Functions of DO-62. This section covers the main areas of item information calculated and/or maintained by DO-62. This information allows DO-62 to accurately track the status of items within the system, maintain a history of the demand for the item, and forecast future demand for the item. DO-62 maintains information on assets, past demand, and projected requirements; calculates various stock levels; and computes the economic order quantity for purchases of replenishment stock.

THE PARTY OF THE P

Assets. Assets are the stock available within the system to meet the demands of item users. Assets fall into several categories. Item manager controlled assets are stored in depot supply warehouses. The issue of these items is directed by the item manager. Depot supply assets are issued by the item manager to the depot to cover the required depot supply level. These assets are issued by the depot supply clerk. In-transit assets are stock being moved from one depot to another. Due-in assets are stock which has been purchased but has not yet been received, as well as stock arriving from reclamation or as support from other services (1:20,21). Unservicable assets are unservicable, repairable items which are expected to be repaired to

serviceable condition. The number of unservicable items is multiplied by a condemnation factor to determine how many are expected to be returned to service (1:21). Since DO-62 items are considered non-recoverable, the condemnation factor is usually 1.0, leaving zero unservicable assets for use in the total asset computation.

Assets used in computation are the total of the above asset categories. This total is used in all calculations in DO-62 requiring total available assets for an item (1:20).

Demand history. As stated above, DO-62 uses past demand data to project requirements for support. The system maintains a past history of the current quarter and last two years (eight quarters) demand data for each item. Demand data include demand history by quarter, stock returned unused, the demand level used in DO-62 computations, and requisition frequency.

Demand history by quarter is the sum of the quantities on all requisitions received during the quarter unless the requisition was cancelled by the item manager. These are demands by end users only, not shipments to depot supply or other storage sites. Demand history includes total sales, one-time demands, and transfers to base-level supply. Total sales is stock issued by both the item manager and depot supply (1:13-14). Besides Air Force maintenance functions, end users include overhaul and repair contractors and other services and DOD agencies. One-time only demands are

generated by activities such as initial activation of a system or a one-time exercise. These are recorded as non-recurring demands and are considered in projecting demand for low demand value items. Transfers to base-level supply are free issue, so reimbursement occurs when the sale is made at base supply (1:13).

Serviceable returns are stock that was returned to the depot in suitable condition for re-issue. Returns are identified to the original stock issue.

DO-62 computes a level of demand for use in DO-62 computations. Demands used in computation are calculated differently for different SMGCs. Within SMGC X and T, demands used in computation equal the total sales plus non-recurring demands plus transfer demands. Within SMGC P and M, demands used in computation equal the total sales plus transfer demands minus serviceable returns (1:78).

Requisition frequency is a quarterly count of the number of requisitions received. Non-recurring requisitions are not counted (1:14).

Requirements. Requirements are projected demands for items. DO-62 tracks several areas of requirements data -- monthly demand rate, program demand rate, quantitative requirements, depot level maintenance requirements, and several requirements factors.

Monthly demand rate is the expected rate of monthly demand determined from the demand history discussed earlier.

It is computed by taking the average of the quarterly demand over the last eight quarters. This is a moving average, always based on the current quarter and the eight quarters just preceding. There is an option to use only the four previous quarters when the item manager believes this will give a more accurate projection of demants (1:13-14,78).

Quantitative requirements are known additional requirements for the next three years, over and above the projected demand indicated by item history. Quantitative requirements are added to the program demand rate for the quarter in which they will occur to project the total support required in that quarter (1:16).

Depot level maintenance requirements, as the name implies, are parts requirements for depot level maintenance. They are computed separately. The schedule for such maintenance is known with certainty, and therefore, so is the parts requirement. This requirement is also added to the program demand rate for total demand projections (1:16).

Requirements factors are used in projecting requirements. They are either supplied by AFLC inventory management or computed within the DO-62 system. The primary requirements factors are the peacetime program ratio (PPR) and lead time. The PPR is a factor used to adjust the monthly demand rate to reflect upcoming changes in the rate of use for the supported system. The program demand rate is the monthly demand rate multiplied by the PPR (1:78). For

example, a known increase in flying hours for a particular aircraft will result in a PPR greater than one for some components of that aircraft, to reflect the increased consumption of parts. For items with no usage fluctuations from increases in system operation, the PPR equals one.

Lead time is the number of days between the time DO-62 outputs a notice to buy stock and the time when ten percent of the normal deliveries of that order arrive. Lead time has two components, administrative lead time and production lead time. Administrative lead time is the amount of time that elapses from the output of the buy notice to the letting of a contract for the procurement of the required stock. It consists of both the time it takes for the Directorate of Materiel Management (MM) to prepars a purchase request, and for the Directorate of Contracting and Manufacturing (PM) to process the purchase request and award the contract or purchase order. The MM time is a maximum of 30 days for SMGC X items, 21 days for T and P items, 16 days for M items, and 14 days for high intensiity management items (1:14). The PM time is projected from the previous procurement action for that item. If the previous procurement is not representative of a normal buy, the item manager may substitute a more realistic PM time (1:15).

Production lead time is the amount of time it takes the contractor to produce the required stock, beginning with the letting of the contract. The time of stock arrival is the

time when ten percent of the total normal deliveries of the purchase have arrived. Normal deliveries do not include special "rush orders" arriving ahead of the bulk of the purchase. Production lead time is projected by using the time required during the previous purchase for the item. If that purchase was not representative of a normal purchase of that item, the item manager may substitute a more realistic production lead time (1:15).

Computed Levels. Computed levels are the internal control parameters on DO-62 assets. When asset position violates a level, a notice of the occurrence is printed for the item manager. The two most important levels are the reorder level and the safety level. The amount of stock due out, lead time demand, and the amount of funded war reserve material all influence the level computations.

The reorder level (ROL) is that level of stock on hand which, when reached, indicates that more stock should be ordered. It is equal to lead time demand plus due-outs plus safety level plus depot supply level plus funded war reserve material. Each of these components is discussed below (1:19).

Lead time demand is the projected demand for the item during lead time. It is the sum of the following two demand projections: (1) the program demand rate computed from historical data multiplied by the lead time and (2) the quantitative requirements projected during lead time (1:79).

Due-outs are stock already committed to issue. Due-outs are added to the ROL since they cannot be used to meet demands during lead time (1:16). Depot supply level is the amount of supply required at depot level for each of the five ALCs. Funded war reserve material is all funded requirements for war reserve material on hand, on order, or to be bought (1:19).

Safety level is a variable quantity required to help support peak periods of demand and minimize shortages. The safety level factor K is the number of standard deviations worth of lead time demand (denoted as 0) to allow as a safety level on a particular item. The computation of K and 0 are explained in the following paragraphs.

First compute the mean absolute deviation of demand (MAD). MAD is the average over the item history of the difference between each quarter's actual net recurring demands and the quarter average projected by historical data. The formula for the absolute deviation (AD) for each quarter is:

AD = |Demands - (3 * monthly demand rate)|

The formula for MAD is:

MAD = <u>sum of ADs for all quarters in computation</u>
number of quarters in computation

MAD is converted to the standard deviation of, lead time demand (0) by the equation:

8 - PPR + .5945*MAD + (.82375 + .42625*leadtime) + .85

where .82375 and .42625 express MAD over lead time and recognize that a particular month's demands are influenced by previous months' demands, and .5345 converts the quarterly MAD to a monthly MAD (1:80).

With these computations complete, the formula for K is:

$$K = -.707*ln \left[\frac{\sqrt{2 \, Qac}}{.5 \, \lambda \, 20(1-exp(-\sqrt{2 \, Q/0}))} \right]$$

mpere

a - holding cost factor

c - unit cost

0 = economic order quantity (discussed later)

 λ - implied shortage factor

Z = 1/ square root of average requisition size

8 - standard deviation of .ead time demand.

The value of K must be greater than or equal to zero; so, if this equation returns a negative value, K is set equal to zero. The safety level equals K+0. The average requisition size is obtained by dividing the actual demand for the item over the item history by the number of requisitions (1:80). The economic order quantity is discussed in the next paragraph.

Purchase of stock. DO-62 initiates a notice for the item manager to prepare a purchase request when the assets on hand fall below the reorder level. DO-62 also computes the Economic Order Quantity (EDQ) (1:19,22). This

computation is based on the standard Wilson's Lot Size equation to minimize total cost. The equation is:

mpere

EOQ - dollar value of stock to be purchased

A - dollar value of annual demand using actual unit

cost

C = cost to order

H - cost to hold

This value is constrained to avoid very large or small quantities. For the time period with which this study is concerned, the EOO can be no less than 6 months of demand and no more than 3 years (1:80-81). This computation may be overridden when a larger buy is absolutely necessary, such as when the sole source of a part ends production and lifetime requirements of that part must be purchased. Quantity discounts and limited shelf life may also require deviations from standard EOO computations (1:25).

Research Data Base

This research effort uses two main sources of data.

Item migration data comes from the Kennedy thesis (Kennedy).

Data on SA ALC inventory items was transferred from the DO-62 master tape for the March 1984 quarter.

Item Migration Data. The Kennedy thesis provides the data upon which the item migration model will be based. The most useful data resulting from Kennedy's work are the

tables of numbers of items migrating or remaining in each SMGC. Figure 1 is an example of a migration table for one quarter. The tables from the San Antonio ALC consumables inventory provide the only consecutive twelve quarters of data (May 1981 to March 1984), and are therefore used in this study.

FROM/TO	X	T	P	m	DUT
X	131096	1133	123	7	6652
T	772	20708	392	2	683
P	35	362	7611	87	296
М	6	1	43	1294	60
IN	2686	35	. 38	8	٥

Fig. 1. Migration Table (11: Appendix C, 6)

Study of the migration tabiles revealed some significant anomalies in the data. In both the fifth and eleventh quarters, large numbers of itses left the inventory. The fifth quarter exodus was the result of a policy change, causing items to be transfered to other non-Air Force inventories. No specific reason was found for the eleventh quarter item transfers, but given the amount of items leaving it would appear that another policy change may have occurred. Because these two quarters were not representative of normal inventory operation, they were dropped from the research data base.

The remaining migration tables provided the foundation for the transition matrix for the migration model. The migration counts were converted to percentages by dividing

each row entry by the sum of the entries in the row. Each migration percentage was averaged over all quarters. This resulted in the transition matrix shown in Figure 2.

FROM/TO	X	T	P	н	TUO
X	.944888	.012982	.001377	.000157	.040656
I	.042693	. 899 571	OFFSEO.	.000250	.025046
P	.007964	.043185	. 9 07705	.017894	.023252
M	.004731	.001040	.041668	.926699	.025862
IN	.903474	.063613	. 026530	.006383	0.0

Fig. 2. Migration Transition Matrix

Kennedy also provided data on the relationship of migration to the amount of time an item has been in a SMGC. All items in each SMGC at the start of the twelve quarters of data were tracked until they left the SMGC. This showed the draw-down of items within the SMGC over time. Items at DESC had been found to be less likely to migrate the longer they remained in a category (18:10); Kennedy sought to find out if the same was true at AFLC. If it was, one would see a decreasing percentage of items leaving the initial group in the SMGC from quarter to quarter. Analysis of the drawdown of the initial stock of items in each SMGC does not support this premise. The fraction of items leaving each quarter shows no detectable pattern over the twelve quarter period for any of the SMGCs. For this reason no attempt was made to incorporate any time-related migration data in the model.

Inventory Data. Item data was gleaned from the DO-62 master tape. The tape was read onto the AFIT VAX 11/780 CSC

computer system as an ASCII text file. A FORTRAN program extracted the following fields:

- 1. Price: the actual unit price.
- 2. Total assets: the sum of assets used in computation, as discussed in Section III-1.
- 3. Peacetime program ratio.
- 4. Program monthly demand rate.
- 5. Lead time.
- 6. Mean absolute deviation.
- 7. Average requisition size.

The AFLC data presented the same problem encountered by Disz: some numerical fields carried the sign as an overstrike on the last character in the field (9:36). A modification of Disz's FORTRAN subroutine to translate the overstrikes, incorporated in the program to extract the data, alleviated this problem (9:74-75).

The data described above formed records for each of the nearly 140,000 items in the SA ALC inventory. This master file was then sorted into separate files for each SMGC. Additionally, SMGC X was divided into two files: one for items with zero demand and one for items with non-zero demand. This sorting provides for later statistical analysis of item data within each SMGC and for zero demand items.

Model Context

Any model of item migration within the AFLC consumables inventory should start with a model of the inventory itself, including the management procedures and policies used by AFLC. In this way item migration may be modeled within the context of AFLC inventory management, and the influence of that management on item migration may be explored. Without a solid model of the AFLC inventory as a foundation, a migration model can provide no meaningful insights into AFLC item migration.

Item migration is nothing more than a change in the dollar value of demand for an item that is large enough to propel that item into a different SMGC. The limits of the SMGC are a threshold over which demand changes must rise to cause the item to migrate. A model of item migration should show the effect of demand changes above this threshold. The effects of migration are most visible in terms of backorders and excess stock on hand, so the model should provide these performance indicators.

Information on demand changes also may contribute to the effects of migration. The model should allow for evaluating the effect of the speed with which the inventory management system recognizes the new level of demand for a migrating item. The DO-62 system currently has a one quarter lag between demand change and item migration. The

effect of instantly recognizing the demand change and moving the item to the new SMGC may be considerable.

There are other factors which may contribute to or mitigate the effects of migration. Lead time often increases as the dollar value of demand increase, since larger orders take longer to process and fill. Lead time changes also contribute to backorders. The model should provide for a comparison of migration effects with lead time held constant and with changing lead time. Another factor influencing backorders is the implied shortage factor. The implied shortage factor is determined from the amount of funds available for safety level stock. The less safety level funding available, the smaller the implied shortage factor, and the lower the safety level. Lower safety levels allow a greater potential for backorders. The model should allow for different values of the implied shortage factor to determine the effect of safety level on migration-induced backorders.

IV. Methodologu

Model Development

This research effort centers around the use of the Disz inventory simulation model described in Chapter II. To effectively model item migration, the Disz model requires extensive modification. Many assumptions and simplications concerning the DO-62 system are also necessary to keep model complexity within manageable limits. First, key assumptions and simplifications are incorporated in the model. Then, specific modifications to the Disz model allow the it to model migration within the context of the AFLC consumables inventory.

Assumptions and Simplifications. The DO-62 system, discussed in Section II, is a very complex inventory managerant system. Without significant simplifications, a model of DO-62 would be so large and cumbersome that validation and analysis of results would be difficult if not impossible. Assumptions about the nature of items within the inventory are also necessary. Within the simulation model, items need to be created to enter the inventory. The parameters associated with these items should conform as much as possible to those of real items, and this requires assumptions for a "typical" item entering the inventory. The following paragraphs discuss the assumptions and simplifications underlying the item migration model.

The greatest simplification of the model is the use of a constant, or "straight line", demand for items in the inventory. The Disz model also used this simplification. Items will migrate between quarters, so the demand during any one quarter will be at a constant rate, with the possibility of an instant change to a different constant rate for the next quarter if migration occurs. If the item does not migrate, demand continues at the same constant rate. The substitution of constant demand for random demand allows the model to eliminate backorders caused by small demand fluctuations. The backorders generated will be the result of item migration only. Additionally, constant demand greatly reduces the complexity and required computational effort of the model.

Quarterly migration is modeled based on the assumption of a stationary Markov process. The cumulative transition matrix discussed in Chapter III provides the probability of migration for items in each SMGC. This is similar to the approach attempted by Hobson and Kirchoff; however, the same stationarity criteria is not applied. The model centers on approximating AFLC migration patterns to a reasonable level to allow valid experimentation within the model.

Another important assumption is that all items in an SMGC have an equal chance of migrating. This disregards the possibility of items near the boundary of the SMGC having a greater likelihood than other items of migrating the short

distance to the adjacent category. Support for this assumption comes from the significant amount of large demand changes within the DO-62 system. According to an AFLC study, during a twelve quarter period, 38.8 percent of the items in the SA ALC consumables inventory experienced a demand fluctuation of from 50 percent to over 4900 percent. Item migration appears to involve considerable changes in demand (4:12). Additional support for this assumption comes from Dr. Palmer W. Smith. Quoting his work at DESC, Dr. Smith points out that over a nine quarter period at DESC, less than 0.10 percent of the items in the 1 million item DESC inventory moved back and forth between adjacent categories every quarter, and only 0.20 percent moved back and forth between adjacent categories every two quarters. The lack of back and forth movement also shows that item migration is not a transient change in demand. Items in general do not jump back and forth across a category boundary (17).

To further simplify the model, certain item parameters are held constant. These parameters are mean absolute deviation of demand (MAD), average requisition size (ARS), and peacetime program ratio (PPR). Once an item is read in, the values of these parameters remain the same as long as the item remains in the simulation. As items are created to enter the inventory, the simulation assigns point estimates of these parameters based on the average values of the

parameters for the SMGC the created item is entering. Any missing parameters are assigned values in the same manner.

Item prices are also held constant. This assumption is supported by a recent AFLC study showing that item migration is primarily the result of changes in demand, as opposed to changes in price (4:9,11). Prices for new items entering the inventory are based on the empirical distribution of prices in the SMGC the item is entering.

Lead time is an important parameter within the simulation. Lead time often changes as demand changes, since items at different levels of demand fall under different procurement rules. Procurement rules affect the amount of administrative lead time, and therefore affect total lead time. Item migration involves a significant change in demand, so item migration and changes in lead time may often coincide. The simulation provides two options for dealing with lead time. The first is to hold an item's lead time constant throughout the simulation. The second option changes the lead time when an item migrates. The new lead time value is a point estimate based on the average lead time for the SMGC the item is entering. Under either option, created items receive the average lead time for their initial SMGC.

As previously stated, the level of demand for an item changes only when an item migrates. To assign a new dollar value of demand to a migrated item, a distribution of dollar

demand values for the new SMGC is needed. A histogram of dollar demand for each SMGC shows a strong resemblance to the exponential distribution. Unfortunately, goodness-of-fit tests on random samples from each SMGC failed for both the exponential and log-normal distributions. Because of the strong resemblance to the exponential, however, dollar demand values were assumed to be exponentially distributed. The lower limit of the SMGC provides the location parameter for the exponential distribution, and the mean is set equal to the average dollar demand value for the SMGC minus the lower limit of the SMGC. Values generated in excess of the upper limit of the SMGC are discarded, and another value is generated.

To summarize the basic assumptions and simplifications of the model, most item parameters are held constant, and new items receive parameter values created deterministically. The demand rate during any quarter is constant. Demand only changes when an items migrates, and then the change is a discrete jump to a different constant demand rate. Only two parameter values are generated stochastically. The SMGC of an item for the next quarter in the simulation comes from a random draw to sample the cumulative transition matrix. This determines item migration. If the item migrates, the second stochastically generated value is the dollar value of demand within the new SMGC.

Modifications to the Disz Model. The Disz model required several significant modifications to effectively model the dynamic inventory scenario associated with item migration. The original Disz model maintains constant, unchanging demand for the length of the simulation. This means no backorders and no item migration can occur. No differentiation is made between stock purchase and arrival; stock arrives instantly at the end of each procurement cycle. There is no movement of items in and out of the inventory. To alleviate these shortcomings, several new model components were created.

The first modification is a means to generate quarterly item migration. At the start of each quarter, the model compares a standard uniform random number to the row of the transition matrix corresponding to the current SMGC of the item. The range of values within which the random number falls determines the SMGC for the next quarter. If the item migr as, the new level of demand comes from the exponential distribution of demand for the new SMGC, obtained from the inverse transform of the exponential cumulative density function acting upon a standard uniform random number.

The importance of lead time, occurring between stock order and rival, requires the model to track the days within each quarter. When the reorder level is breached, the model places the order by scheduling the order to arrive at the end n he lead time. Lead time is converted from

days to quarters and days, and is added to the current quarter and day to determine the time of arrival. Each day during the simulation the current quarter and day are checked to see if an order is to arrive that day. The average number of days in a quarter is 91.25. To allow the computer program of the model to loop on integer values, the model uses 91 days per quarter. Real days are converted to these slightly longer days by multiplying by 91/91.25.

The length of lead time for some items exceeds the length of time the economic order quantity of stock for those items will last. To deal with this possibility, the reorder level is compared to the assets on hand plus the assets on order. Lead time becomes a "pipeline" of stock on order scheduled to arrive when on hand assets reach the safety level. Each order has its own arrival date, and each day of the simulation all inbound orders are checked to see if an order arrives that day. The model provides for several orders to be inbound at any given time.

Another change to the model involves generating inbound orders of stock when an item enters the simulation. At the beginning of a simulation run, many items in the inventory will have assets below the reorder level and orders due to arrive in the future. The model is modified to determine the dates of order arrival by calculating the times from the start of the simulation through one lead time when, under the current demand rate, the asset level falls to the safety

level. These times are the scheduled arrivals of an economic order quantity of stock. The inbound orders raise the level of assets on hand plus assets on order above the reorder level, and the normal order-placing mechanism of the model takes over. If the asset position is at or below the safety level at the start of the simulation, a full order plus any safety level replenishment is added before the simulation begins.

To simulate items entering the inventory, the model must create new items. New items are generated after the simulation has run on the items present in the inventory at the start of the simulation. The number of items generated during each quarter is set equal to the number of items that left the inventory during that quarter to maintain a constant number of items in the inventory. The fifth row of the transition matrix determines the proportion of new items going into each SMGC, and the demand is calculated using the exponential distribution discussed above.

The unit price of the new item comes from the empirical price distribution for the specific SMGC. For the items entering a given SMGC in a given quarter, the first ten percent receive the average of the lowest ten percent of the prices of items in the SMGC. The next ten percent entering receive the average price of the next lowest ten percent of prices in the SMGC, and so on (see Figure 3).

			Actual It	B M1	s in a Giver	ו ר	SMGC		
1	1st 10%	1	2nd 10%	1	3rd 10%	1	4th 10%	1	,
1	of items	1	of items	1	of items	1	of items	1	
1	Average	ł	Average	1	Average	ŧ	Average	ł	
1	price	1	brice	1	price	1	brice	1	
0									Price
	Price for							1	
	1st 10% of new items		2nd 10% of new items		3rd 10% of new items	1	4th 10% of new items	1	

Fig. 3 Assignment of Prices to New Items

This technique allows prices for new items to conform to the empirical distribution of prices for the SMGC without the added complexity of assigning prices based on a random draw from that empirical distribution. Each new item in a given SMGC will have one of ten possible price values. The variation achieved between these these ten values is sufficient to simulate the actual price variation between SMGCs.

The final major modification to the Disz model involves collecting the statistics necessary to analyze item migration within the model: migration patterns, backorders, and items in long supply. The model tabulates migration during each quarter and produces migration tables in the format used by Kennedy (11). Backorder statistics are in several forms. Each day, the asset level is checked. If the level is negative, the absolute value of the asset level is added to the quarterly count of backorder days. This

figure is also multiplied by the item price to track the quarterly dollar-weighted backorder days. Backorders are also counted when replenishment stock arrives, since this is the point when maximum backorders exist. The model tracks the total maximum backorders and dollar-weighted maximum backorders occurring in each quarter. Finally, at the end of each quarter in the simulation, items with assets in excess of the Approved Force Aquisition Objective (AFAO) count as items in "long supply." The AFAO is defined for SMGC X as the reorder level plus one economic order quantity plus stock for one year of demand. The AFAO for SMGCs T, P, and M is the reorder level plus the greater of either the economic order quantity or stock for two years of demand (1:81). The number of items in long supply and the dollar value of the excess stock are collected for each quarter.

Model Description

The inventory simulation model developed through this research effort is called MIGSIM. MIGSIM is programmed in FORTRAN 77 and currently runs on the VAX 11/780 Classroom Support Computer (CSC) system at the Air Force Institute of Technology. As is typical of many computer simulations, MIGSIM consists of a main program driving several subroutines which carry out most of the important aspects of the inventory simulation. MIGSIM is compact enough to run using the entire consumables inventory of the San Antonio ALC, about 140,000 items; however, because of the need for

multiple runs and heavy utilization of computer resources, MIGSIM currently runs on a ten percent sample of the San Antonio ALC inventory. Ten percent of the items from each SMGC, selected at random, comprise the sample. SMGC X, because of the large number of zero demand items, was split into two groups: zero demand and non-zero demand items. Ten percent of each of those two groups was included in the sample. During the simulation, items have an opportunity to migrate to a different SMGC each quarter.

MIGSIM may be configured to run in three item migration modes. The first is with no item migration, similar to the original Disz model. The second is with instant recognition of item migration. When demand changes and an item migrates, all levels are recomputed immediately with the new item parameters. The third mode includes a one quarter lag in the recognitions by the inventory management system of a migration and accompanying demand change. For one quarter, the item is managed according to the old level of demand while stock on hand is actually reduced at the new demand level in the new SMGC. This third mode is equivalent to the manner in which AFLC currently treats item migration; an item must exhibit the new demand level for three months (one quarter) before the item is moved to the new SMGC.

The MIGSIM source code listing, thoroughly commented, is contained in Appendix A. For information on the FORTRAN formulation of specific aspects of the simulation model,

refer to Appendix A. The following paragraphs present a general discussion of the functions performed by the main program, called MAIN, and each subroutine.

MAIN. MAIN is the central component of MIGSIM. MAIN reads in item data from an external file for each item in the inventory at the start of the simulation. The cumulative transition matrix and table of prices for items entering the inventory are read into arrays. MAIN contains the initial values for the random number generator seeds associated with the two stochastic events in the simulation: migration and the resulting new demand level. Finally, MAIN initializes all statistics collection variables to zero before the simulation starts and writes to a file all output statistics at the end of the simulation.

Subroutine BUYDUE. BUYDUE is the first subroutine to process an inventory item when the item starts the simulation. BUYDUE calls subroutine LEVEL, discussed below, to obtain the reorder level, safety level, and the EOQ; and compares the current asset level to the reorder level. If assets are below the reorder level, BUYDUE establishes a time period equal to lead time, beginning at the item's entry into the simulation. BUYDUE then schedules the necessary EOQ orders of replenishment stock to arrive at the precise times during that time period when, under the current demand rate, the asset level will reach the safety level. For items with long lead times and small EOQs, more

than one inbound order may be needed. The amount of stock and time of arrival for each order is stored in an array to be added to stock on hand at the correct time in the simulation. This process accounts for the arrival of orders placed before the simulation begins. The inbound orders raise the asset position above the reorder level before the start of simulated demand.

Subroutine CYCLE. CYCLE is the heart of the actual inventory management simulated in MIGSIM. CYCLE subjects inventory items to up to twelve quarters of demand and provides a quarterly opportunity for item migration. CYCLE carries out the main functions of the DO-62 system -- it calculates levels, orders replenishment stock, and schedules stock arrival. Additionally, CYCLE collects quarterly statistics on backorders, dollars spent on stock, items in long supply, and the actual demand experienced by the inventory.

To model item migration, CYCLE uses the standard uniform random number generator present in FORTRAN on the CSC. Each quarter, a random number is compared to the row of the cumulative transition matrix corresponding to the item's current SMGC. CYCLE determines the smallest column value greater than or equal to the random number, and that column corresponds to the item's SMGC for the next quarter. If the next quarter's SMGC is different from that of the previous quarter (the item has migrated), then CYCLE calls

the subroutine GETDEM, discussed below, to get the new demand level. CYCLE then recalculates levels, either immediately or after a one quarter lag, depending on the migration mode.

Subroutine GETDEM. GETDEM generates the new dollar value of demand for items migrating to SMGCs. As described in Section IV.1, the distribution of demand is modeled as exponential. GETDEM uses the resident standard uniform random number generator to drive the inverse transform of the exponential cumulative density function for the new demand value. This process is modified somewhat for items entering SMGC X. Because of the extremely large number of zero demand items in SMGC X, a simple Monte Carlo draw first determines whether the item will have a zero or non-zero demand. If the demand is to be non-zero, CYCLE generates another random number and uses the exponential distribution to determine the exact demand.

Subroutine ADDNEW. Item migration includes items leaving the inventory and new items entering the inventory. ADDNEW creates the new items entering the inventory and assigns parameters to those items. The total number of items to enter the inventory each quarter is set equal to the number that have left the inventory during that quarter. ADDNEW is called after the simulation has run for all items in the original inventory, and ADDNEW proceeds by quarter from the first quarter to the twelfth. So when ADDNEW

prepares to generate new items for a given quarter, the number of items (both original and previously created by ADDNEW) that have left the inventory during that quarter is known precisely. In this manner the number of items in the inventory remains constant, eliminating any confounding effects caused by fluctuations in inventory size. This is also consistent with the assumption of a stationary Markov process.

The proportion of new items entering each SMGC is provided by the transition probabilities for the "IN" category of the Markov process. ADDNEW generates the required number of new items for each SMGC sequentially, first the SMGC X items, then the SMGC T items, and so on. Subroutine GETDEM is called to determine the dollar value of demand based on the SMGC. The technique for assigning parametric values to a new item is also based on the SMGC and was covered in Section IV.1. For items with non-zero demand, ADDNEW calls BUYDUE to set the initial asset level and schedule inbound orders. Items with no demand receive assets on hand equal to fifteen and no inbound orders. (Fifteen is the average asset level for zero demand items in the actual inventory.)

Once the new item has the necessary assets and inbound orders, ADDNEW calls CYCLE, and the simulation begins at the quarter specified by ADDNEW. To insure that the item experiences one quarter of demand in the SMGC specified by

ADDNEW, the possibility of item migration is eliminated for the first quarter a new item is in the inventory.

Subroutine LEVEL. LEVEL provides a single subroutine to execute the computation of the inventory levels maintained by the DO-62 system. LEVEL calls the appropriate functions, discussed below, to determine the safety level and EOO. The reorder level is set equal to the lead time demand plus safety level.

Functions. Two subroutines perform function calculations. Subroutine SAFLEV calculates the safety level according to the Presutti-Trepp safety level formula used in DO-62. Subroutine EOO calculates the economic order quantity using the Wilson Lot Size equation specified in DO-62 (1:80-81).

Model Verification

The migration patterns generated by MIGSIM are driven by the cumulative transition matrix discussed earlier in this chapter. The actual migration patterns observed during MIGSIM runs must be verified as conforming to that transition matrix. This is really a check of the mechanics of the model to see if the migration-producing component of MIGSIM is performing as designed.

Verification of migration patterns is accomplished using the Chi-square goodness-of-fit test on the migration tables produced by MIGSIM. Each line of a table is tested individually. The line entry for each SMGC is considered a

The total of all cells in a row is multiplied by the transition probability for migrating to each SMGC from the row SMGC. The results of these computations are the expected number of items in each cell. The difference between the actual and expected value for each cell is squared, divided by the expected value for the cell, and the results for each cell in the row are summed to obtain the Chi-square statistic. The Chi-square test with an alpha value of 0.05 was performed on all twelve migration tables produced in the first run under the first treatment. test showed good overall compliance with the transition matrix. Although a few scattered rows did fail, general performance was excellent. The few failures may be due to the inherent variability introduced by the random number generator. In fact, the alpha value of .05 means a failure rate of about five percent can be expected.

Model Validation

Before any meaningful experimentation can be done with any simulation model, the experimenter must be sure that the output of the model is consistent with the real activity being modeled. For this research effort, MIGSIM must conform reasonably well to the actual workings of the DO-62 system for the results to have any value. Validation of MIGSIM concerns three aspects of the model output. First, the Markov steady state condition of the model calculated from the original estimates of the transition probabilities

is compared to the actual inventory composition. Second, inventory performance within the model is compared to actual inventory performance in terms of commit dollars and total demand value. Third, the model is run with an altered transition matrix. The transition probabilities are adjusted to achieve a steady state solution consistent with actual inventory composition. The commit dollars and demand value of this modified simulation are then compared to actual inventory performance.

Steady State Solution. Since MIGSIM is based on the assumption of a stationary Markov process, the model can be solved for the steady state condition. The steady state condition is the proportion of items in each category after a long period of time. MIGSIM, after several quarters of simulation, can be expected to approach this steady state condition in terms of the number of items in each SMGC. The steady state conditions are expressed as a five element row vector and may be determined by solving the following equation:

OM=O

where

Q = the steady state row vector

M = the transition matrix from Figure 2

Solving for Ω provides the steady state proportions of items in each category shown in Table I (page 50).

Table I Steady State Proportions

SMGC	Proportion of	Items
X	0.704765	
T	0.149608	
P	0.0848103	
М	0.0257786	
OUT	0.0350385	

The existence of "OUT" as a category with a population of items requires special consideration. The assumption of a Markov process implies a fixed population moving between different categories. The transition matrix shows that OUT is a transient state, i.e. no items remain in OUT more than one quarter. In reality, items usually leave the inventory for good, and new items enter. The OUT category is merely a convention to allow for this turnover of items within the Markov framework and has no physical counterpart or interpretation. The actual steady state proportions that would be observed may be calculated by discarding the OUT proportion and normalizing the remaining proportions by dividing by their sum. The results of the normalization and the actual proportion of items in each SMGC in March 1984 is presented in Table II.

Table II

Normalized Steady State vs. Actual SMGC Proportions

<u>SMGC</u>	Normalized Steady State	Actual SMGC Proportions
X	0.7303553	0.78035
T	0.1550403	0.146651
P	0.0878898	0.0594398
M	0.0267146	0.0135567

From Table II it is clear that the model, over the long run, will have a higher percentage of items in the high value categories than was present in the baseline data from March 1984. The difference is not so great that the model would "run away" by drastically altering the make-up of the inventory. However, the larger number of items in SMGC P and M means the simulated total dollar value of demand may grow from its initial value until steady state is reached.

Inventory Parformance. For MIGSIM to effectively show the effect of item migration on inventory performance, MIGSIM must have valid annual demand value and quarterly commit dollars as a baseline before item migration is implemented. Without a valid performance baseline, phenomena observed during experimentation cannot be accurately attributed to experimental factors.

The baseline annual demand value and quarterly commit dollars for MIGSIM are obtained by disabling the migration-producing mechanism within MIGSIM. This results in a constant demand rate for each item throughout the simulation. No items migrate out of the inventory, so no new items enter the inventory. MIGSIM is effectively reduced to the Disz model from which it was developed. Run on a ten percent sample of the inventory, MIGSIM with no item migration maintains an annual demand value of a constant 66.5 million dollars, and average quarterly commit dollars of about 16 million dollars. Quarterly commit

dollars would be expected to be about one quarter of the annual demand value to support that level of demand. The average quarterly commit dollars shown here conform quite well to this expectation.

Altered transition matrix. Since the transition matrix developed for MIGSIM results in an increased number of items in the upper value SMGCs, an altered transition matrix with a steady state solution similar to the actual inventory composition may be substituted to validate the demand value generating technique within MIGSIM. The annual demand value exhibited by MIGSIM running with such a transition matrix should remain close to the demand value without migration.

Such a matrix is shown in Figure 4.

FROM/TO	X	T	P	M	OUT
X	.950000	.012000	0.0	0.0	,038000
T	.042000	.900000	.028000	0.0	.030000
P	.009500	.045500	.908500	.012500	.024000
M	.004731	.001040	.041668	.926699	.025862
IN	.903474	.063613	.026530	.006383	0.0

Fig. 4 Altered Transition Matrix

This matrix was created through iterative manipulation of the original transition matrix to arrive at a steady state solution very close to the original inventory composition.

Table III presents the normalized steady state solution compared to the actual inventory.

Table III

Normalized Steady State vs. Actual SMGC Proportions

	Normalized Steady State,	
<u>SMGC</u>	Altered Transition Matrix	Actual SMGC Proportions
<u> </u>	0.7823361	0.78035
T	0.1441736	0.146651
P	0.0601171	0.0594398
M	0.0133731	0.0135567

MIGSIM was run five times using the altered transition matrix. The full model output is contained in Appendix D. The average annual demand value over the five runs had a mean of 64.8 million dollars and a standard deviation of 2.5 million dollars, quite close to the 66.5 million dollars per year baseline. This reinforces the validity of MIGSIM. The assumed Markov process, when operating with a steady state approaching the actual inventory composition, will maintain a valid level of annual demand in the presence of item migration.

Experimental Design

The primary reason for developing most models is to allow experimentation within the modeled system that cannot be carried out on the real system. The way in which that experimentation is planned is crucial — the results from a poorly planned experiment may be marginally useful at best. The experiment involving MIGSIM will consist of varying key aspects of the simulation. These areas to be varied were discussed in the last section of Chapter III. They are: (1) the speed with which the DO-62 system recognizes and adjusts

to item migration and changing demand, (2) fixed lead time or different lead time for each SMGC, and (3) different values for the implied shortage factor. These are the factors in the experiment.

Factors. The first factor, the recognition time for item migration, has two levels. One is instant recognition of item migration. All inventory levels are recomputed as soon as demand changes, and the item is managed according to its new category. The second level involves a one quarter lag before DO-62 recognizes that the item has migrated. For that quarter, the item is managed according to its old demand rate, while stock is removed at the new demand rate.

The second factor, lead time variation, also has two levels. The first employs fixed lead time, assigned according to SMGC when the item enters the simulation and never changing throughout the simulation. The second level allows lead time to change when the item migrates. In this case, migrating items will receive a lead time equal to the average lead time of the SMGC they are entering.

The third factor is the implied shortage factor. The implied shortage factor determines the amount of safety level present in the inventory. Safety level is an important method for reducing backorders, and could be of use in limiting the backorders resulting from item migration. By using the implied shortage factor as an experimental factor, this analysis investigates the ability

of safety level to help control the cost of item migration. The implied shortage factor has two levels. The first is the value of the implied shortage factor used in March 1984. The second is a higher value, implying greater availability of safety level funding.

Treatments. Because of the relatively small number of factors and levels, the experiment uses a full factorial design where all possible combinations of factor levels are subject to simulation. This design results in eight different combinations, or treatments. The different treatments are presented in Table IV.

Table IV

Treatments for Full Factorial Design

	Migration		Shortage
Treatment	Recognition	Lead Time	<u>Factor</u>
1	Instant	Fixed	580
2	Instant	Fixed	680
3	Instant	Varied	580
4	Instant	Varied	680
5	Lag	Fixed	580
6	Lag	Fixed	680
7	Lag	Varied	580
8	Lag	Varied	680

Five simulation runs with different random number seed values will provide repetitions of each of these treatments. Because of the number of runs required and the heavy utilization of computer resources, the model will run on a sample of ten percent of the actual San Antonio ALC inventory. The output statistics for dollar-weighted maximum backorders and the dollar value of excess stock for

items in long supply will be the subject of an analysis of variance (ANOVA) to determine the effect of each of the factors on the cost of item migration.

U. Analusis of Results

The MIGSIM computer model was run according to the experimental design discussed in Chapter IV. The output for all runs is contained in Appendix B. Migration tables from the five runs are identical under each treatment, and so are included for only the first treatment. The General Linear Model procedure of the Statistical Analysis System (SAS) provides an analysis of variance (ANDVA) for the output statistics for dollar-weighted maximum backorders per quarter and the dollar value of long supply (15:439). The results for backorders and long supply are presented separately, and provide the foundation for a discussion of the cost of item migration.

Dollar-Weighted Maximum Backorders

Table V presents the average dollar-weighted backorders for the first simulation run under each treatment. Refer to Appendix B for values for runs two through five.

Table V
First Run Dollar-Weighted Maximum Backorders

Migration		Shortage	Dollar-Weighted
Recognition	Lead Time	<u>Factor</u>	Maximum Backorders
Instant	Fixed	580	4,004,060
Instant	Fixed	680	3,995,780
Instant	Varied	580	4,593,480
Instant	Varied	680	4,585,730
Lag	Fixed	580	10,963,200
Lag	Fixed	680	10,945,900
Lag	Varied	580	10,753,100
Lag	Varied	680	10,740,800

Analysis of Variance (ANOVA). The initial ANOVA is of the full factorial design with all possible factor interactions. The design is blocked by run number to compensate for variation caused by the common random number streams. The full model ANOVA table with partial sums of squares, Table VI (page 59), shows that interaction effects are negligible. Of the main effects only the demand information lag and run number account for significant variation in the model.

The significance of the information lag and run number is explored by reducing the model to only the main effects of the information lag and run number. Table VII (page 60) presents the ANOVA table for the reduced model. From Table UII it is clear that the information lag and variation between runs account for all significant variability within the model. The P-values for the partial F tests show that both factors are very important. The R-squared value of 0.97 further shows the model to be very effective in explaining variation of responses. Appendix E contains a plot of predicted values versus residuals which gives no indication of changing variance, so model aptness is confirmed. A plot of ranked residuals, also in Appendix E, supports the underlying assumption of normality. strength and validity of this model allow meaningful analysis of mean responses for factor levels.

Table VI

Full Model ANOVA Table for Backorders (15:439)

DEPENDENT VARIABLE: AVERAGE DOLLAR-WEIGHTED BACKORDERS

SOURCE	DF	SUM OF SQUARES	MEAN SQUARE
MODEL	11	700197417236245	63654310657840
ERROR	28	19432427930265	694015283224
CORRECTED TOTAL	39	719629845166510	

F VALUE PR > F 91.72 0.0001

R-SQUARE	C.V.	RQOT MSE	AUE	BMD MEAN
0.972997	9.6470	833076	8635611.5	50000000
SOURCE	DF	TYPE I SS	F VALUE	PR > F
INFO LDTM INFO*LDTM LAM LAM*INFO LAM*LDTM LAM*INFO*LDTM RUN	1 1 1 1 1 1 1	609622561558890 74730838090 2294285461690 3726058090 385765210 21403690 26406250 88201679744335	878.40 0.11 3.31 0.01 0.00 0.00 0.00 31.77	0.0001 0.7452 0.0797 0.9421 0.9814 0.9956 0.9951
SOURCE	DF	TYPE III SS	F VALUE	PR > F
INFO LDTM INFO*LDTM LAM LAM*INFO LAM*LDTM LAM*INFO*LDTM RUN	1 1 1 1 1 1 1	3892741657711 289546531 13159317360 3726058090 385765210 21403690 26406250 88201679744335	5.61 0.00 0.02 0.01 0.00 0.00 0.00	0.0250 0.9838 0.8915 0.9421 0.9814 0.9956 0.9951

Table UII

Reduced	d Model ANOVA	Table for Backord	iers (15:439)
DEPENDENT	UARIABLE: AUE	RAGE DOLLAR-WEIGHT	TED BACKORDERS
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE
MODEL	5	697824241303225	139564848260645
ERROR	34	21805603863285	641341290097
CORRECTED	TOTAL 39	719629845166510	
F VALUE 217.61	PR > F		
			A117M7 M7A11
R-SQUARE	C.U.	ROOT MSE	AUBMD MEAN
0.969699	9.2737	800838	8635611.50000000
SOURCE	DF	TYPE I SS	F VALUE PR > F
INFO RUN	1 4	609622561558890 88201679744335	950.54 0.0001 34.38 0.0001
SOURCE	DF	TYPE III SS	F VALUE PR > F
INFO RUN	1 4	609622561558890 88201679744335	950.54 0.0001 34.38 0.0001

Comparison of Mean Responses. The MEANS statement within the SAS General Linear Model procedure provides the Tukey test for mean response differences and Tukey confidence intervals for the difference between mean responses for the two levels of information lag: no lag and one quarter of lag (15:439). The results appear in Table VIII (page 61).

Table VIII

Mean Responses for Backurders (15:439)

TUKEY'S STUDENTIZED RANSE (HSD) TEST FOR VARIABLE: AVERAGE DOLLAR-WEIGHTED BACKORDERS

ALPHA-.OS DF-34 MSE-6.4E+11 CRITICAL VALUE OF STUDENTIZED RANGE-2.874 MINIMUM SIGNIFICANT DIFFERENCE-514669

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

INFC	N	MEAN	GROUPING	TUKEY
lag	20	12539528	A	
nolag	20	4731695	B	

COMPARISONS SIGNIFICANT AT THE .OS LEVEL ARE INDICATED BY '***'

INFO COMPARISON		SIMULTANEOUS LOWER CONFIDENCE LIMIT	DIFFERENCE BETWEEN MEANS	SIMULTANEOUS UPPER CONFIDENCE LIMIT	
lag	- nolag	7293164	7807833	8322502	***

There is clearly a very large difference in the dollarweighted backorders generated when item migration is
instantly recognized compared to a one quarter lag in
migration information. A one quarter lag would seem to at
least double the amount of backorders. A difference of this
magnitude may suggest that a one quarter information lag is
not a very realistic factor level. For instance, if the
change in demand came from known quantitative requirements,
the projected demand rate would be updated before the demand
actually occurred. Although the item would not migrate for
one quarter, the system would use the updated demand rate to

immediately computs the correct order size and reorder level. For the many high demand items falling under the six month minimum buy policy there is a fifty percent chance of placing an order in any quarter, so with a one quarter lag there is a fifty percent chance of placing an incorrect order when migration occurs. Also, a one quarter delay in recognizing a much higher demand level for such an item will in itself cause many backorders, regardless of whether an incorrect order is placed. But although a one quarter information lag may not be entirely realistic, it does illustrate the importance of accurate, timely demand information to inventory support.

The importance of the information lag to dollar-weighted backorders to the exclusion of other factors may be explained by considering size of the demand change associated with migration. Safety level, determined by the implied shortage factor, provides only a margin of extra stock to cover demand variations about a mean level of demand during lead time. Item migration to even the next higher SMGC, creating backorders, often involves at least a ten-fold increase in demand. A change of this magnitude overwhelms any reasonable safety level immediately, rendering safety level an ineffective method for counteracting migration-induced backorders.

The effect of lead time variation is also negligible, and for much the same reason. MIGSIM provides for an

increase in lead time of from 50 to 80 days when an item migrates to the next higher SMGC. This adjacent migration is the most common. A change of that size, when compared to the length of lead time itself, is not overly large. Although it will create some shortfall in stock on hand, this shortfall, like safety level, will be dwarfed by the stock shortage resulting from the large demand increase. Additionally, only orders placed after the item migrates will be affected by the change in lead time. Orders already in the pipeline have their own previously scheduled arrival times which will not change.

The lack of effect of varying lead time runs contrary to findings at the Defense Electronic Supply Center. Research there indicated a significant contribution of increasing lead time to the backorders caused by upward migration (18:9-10). Although the evidence presented here does not support the same conclusion at AFLC, the reasoning presented by Smith and Gumbert for the lead time effect is nonetheless compelling (18:9). The reason for the inconsistancy between the two studies may be because of the overpowering effect of the information lag discussed above.

Dollar Value of Long Supply

Tab's IX (page 64) presents the average dollar value of long supply for the first simulation run under each treatment. Refer to Appendix B for values for runs two through five.

Table IX

First Run Dollar Value of Long Supply

Migration		Shortage	Dollar Value of
Recognition	Lead Time	Factor	Long Supplu
Instant	Fixed	580	66,491,500
Instant	Fixed	680	67,184,600
Instant	Varied	580	68,977,100
Instant	Varied	680	69,718,200
Lag	Fixed	580	65,754,000
Lag	Fixed	680	66,400,900
Lag	Varied	580	67,343,400
Lag	Varied	680	68,018,600

Analysis of Variance (ANOVA). The ANOVA for the dollar value of long supply is basically the same as for dollar-weighted maximum backorders. The full factorial model, blocked by run number, showed insignificant interaction effects. The only significant main effects present were those of varying versus constant lead time, the implied shortage factor, and run number. The SAS ANOVA table for the full model, with partial sums of squares, is found in Table X (page 65).

The reduced ANOVA model for the dollar value of long supply contains only the effects of lead time, the implied shortage factor, and run number. The ANOVA table and partial sums of squares for the reduced model make up Table XI (page 66). From the reduced model it becomes clear that both lead time variability and safety level (as determined by the implied shortage factor), after blocking out variation between runs, account for almost all variability

Table X Full Model ANOVA Table for Long Supply (15:439)

LUII LOG	BI WUUNA	Table for Long Su	pply (15:4	139)
DEPENDENT WARI	ABLE: AU	ERAGE VALUE OF LON	G SUPPLY	
SOURCE	DF	SUM OF SQUARES	MEA	AN SQUARE
MODEL	11	1752631149396251	1593301	04490750
ERROR	28	10378416629498	3706	57736768
CORRECTED TOTAL	L 39	1763009566027749		
F VALUE	PR > F			
429.86	0.0001			
R-SQUARE	c.v.	ROOT MSE	AUL	SD MEAN
0.994113	0.8118	608817	74995992.	5000000
SOURCE	DF	TYPE I SS	F VALUE	PR > F
INFO LDTM INFO=LDTM LAM LAM+INFO LAM+LDTM LAM+INFO=LDTM RUN	1 1 1 1 1 1	108878790250 47342144306250 539702592250 12862136500250 4010006250 3863190250 91506250 1691750322506501	0.29 127.72 1.46 34.75 0.01 0.01 0.00 1141.05	0.2377 0.0001 0.9179 0.9194
SOURCE	DF	TYPE III SS	F VALUE	PR > F
INFO LDTM INFO*LDTM LAM LAM*INFO LAM*LDTM LAM*INFO*LDTM RUN	1 1 1 1 1 1	7962340736 232714525637 2360643465 12882136500250 4010006250 3863190250 91506250	0.02 0.63 0.01 34.75 0.01 0.01 0.00	0.8845 0.4348 0.9370 0.0001 0.9179 0.9194 0.9876 0.0001

Table XI

Reduced Model ANOVA Table for Long Supply (15:439)

DEPENDENT UARIABLE: AVERAGE VALUE OF LONG SUPPLY

SOURCE	DF	SUM OF SQUARES	MEAN SQUARE
MODEL	6	1751974603313001	291995767218833
ERROR	33	11034962714748	334392809538
CORRECTED TOTAL	39	1763009566027749	

F VALUE PR > F

0.0001

873.21

R-SQUARE	C.V.	ROOT MSE	AUL	SD MEAN
0.993741	0.7711	578267	74995992.	5000000
SOURCE	DF	TYPE I SS	F VALUE	PR > F
LDTM LAM RUN	1 1 4	47342144306250 12882136500250 1691750322506501	141.58 38.52 1264.79	0.0001 0.0001 0.0001
SOURCE	DF	TYPE III SS	F VALUE	PR > F
LDTM	1	47342144306250	141.58	0.0001
LAM	1	12882136500250	38.52	0.0001
RUN	4	1691750322506501	1264.79	0.0001

in the dollar value of long supply. The partial F tests show each to be a strong model component, and the R-square value of 0.99 attests to the effectiveness of the reduced model. A plot of predicted versus residual values supports unchanging variance for model aptness, and a plot of ranked

residuals confirms that the assumption of normality is valid. Further analysis of mean responses is warranted.

Comparison of Mean Responses. Again, SAS provides the Tukey test for significant differences between mean responses for each level of a given factor. The Tukey confidence interval for the difference between mean responses is also included.

The difference in the dollar value of long supply for constant and varying lead time is shown in Table XII. Both the mean difference and the 95 percent confidence interval show a considerable increase in long supply when lead time varies. The higher safety level associated with a higher implied shortage factor also brings about a higher mean response in the dollar value of long supply, as shown in Table XII (page 68). While the effect of safety level is roughly half that of varying lead time, it is nevertheless significant.

The reason for the considerable effect of lead time changes on long supply involves the direct relationship between lead time and the Approved Force Acquisition Objective (AFAO). A major portion of the AFAO is the reorder level, which in turn is primarily a function of lead time. It is reasonable to expect lead time to fall when demand fails. Less demand means smaller orders, and smaller orders take less processing time and are not subject to as many restrictions to assure competitive purchases.

Table XII

Mean Responses for Long Supply (15:439)

TUKEY'S STUDENTIZED RANGE (HSD) TEST FOR VARIABLE: AVERAGE VALUE OF LONG SUPPLY

> ALPHA=.05 DF=33 MSE=3.3E+1 CRITICAL VALUE OF STUDENTIZED RANGE=2.877 MINIMUM SIGNIFICANT DIFFERENCE-372045

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

TUKEY	GROUPING	MEAN	N	LDTM
	A	76083905	20	vary
	8	73908080	20	fixed
TUKEY	GROUPING	MEAN	N	LAM
	A	75563490	20	880
	B	74428495	20	580

COMPARISONS SIGNIFICANT AT THE .OS LEVEL ARE INDICATED BY '***'

LDTM COMPARISON	SIMULTANEOUS LOWER CONFIDENCE LIMIT	DIFFERENCE BETWEEN MEANS	SIMULTANEOUS UPPER CONFIDENCE LIMIT	
vary - fixed	1803780	2175825	2547870	***
LAM COMPARISON	SIMULTANEOUS LOWER CONFIDENCE LIMIT	DIFFERENCE BETWEEN MEANS	SIMULTANEOUS UPPER CONFIDENCE LIMIT	
680 - 580	762950	1134995	1507040	***

Production of smaller orders takes less time as well. If lead time falls with demand, not only is the AFAO decreased as a result of declining demand, but it is also decreased by shorter and less stock is needed to meet the AFAO. More stock falls above the AFAO and is counted as long supply.

Higher levels of safety stock contribute to an increased dollar value of long supply by increasing the amount of stock on hand when an item migrates downward. Low demand value items are likely to have little or no safety level for any reasonable implied shortage factor value. An item migrating downward takes along its safety level to the lower demand level, where the safety level requirement is reduced or eliminated. The former safety stock is no longer part of the reorder level and so is not needed to meet the AFAO. It only adds to the excess stock over and above the AFAO.

The lack of effect of a demand information lag on the dollar value of long supply can be explained by the size of the drop in demand that occurs when an item migrates downward. Item demand drops considerably, and stock on hand is reduced at a much smaller daily rate, whether or not the inventory management system recognizes that migration has occurred. So in the presence of an information lag, while the reorder level is set too high for one quarter, it is unlikely that the new lower demand rate of the downward migrating item will cause that reorder level to be breached. Only in those instances where the item is already close to

the reorder point when demand drops will an incorract order be generated because of the information lag.

The Cost of Item Migration

Dollar-Weighted Maximum Backorders. Analysis of the results of MIGSIM provides a best and worst case scenario for the dollar-weighted backorders generated by item migration. The best case is when the demand change resulting from item migration is recognized instantly, allowing an average of about 4.7 million dollars worth of backorders per quarter. This measure of backorders does not take into consideration the importance of specific backorders. Certainly backorders of a high-priority part which may ground a weapon system are much more costly to the Air Force than backorders of office supplies. MIGSIM does not measure the priority of a backorder.

The steady state solution for the MIGSIM transition matrix may also influence the cost of migration. The gradual growth in demand value predicted by the steady state solution and observed within MIGSIM means more items may be migrating to higher SMGCs than in the actual inventory system. Increased upward migration would tend to inflate the value of backorders observed.

The dollar-weighted backorders present under the one quarter demand information lag, as mentioned earlier, may not relate to a realistic inventory scenario. Large increases in demand may come from quantitative requirements.

which would be known in advance by the system and added to the predicted demand before demand actually changes. But the dramatic increase in backorders resulting from the delay does illustrate the crucial role accurate information on item demand plays in determining the effectiveness of an inventory system. The cost of item migration in terms of dollar-weighted backorders is clearly substantial, even with the most timely information on item demand.

Dollar Value of Long Supply. To effectively gauge the value of long supply caused by item migration, the excess stock present during migration must be compared to the excess stock already in the inventory. The level of existing long supply can be observed from the MIGSIM run with no item migration contained in Appendix C. The average value of that baseline excess stock is about 29 million dollars. Item migration creates 74 to 76 million dollars of long supply depending on the amount of safety level and the variability of lead time. It appears that item migration may be responsible for increasing the value of long supply over 45 million dollars during the twelve quarters of the simulation. If this number is extrapolated from the ten percent inventory sample to the entire inventory, the figure could be roughly 450 million dollars. That is a large amount of muney tied up in unnecessary stock -- money that could be used to meet priority requirements elsewhere. The

cost of item migration must include this opportunity cost of funds committed to unneeded stock.

VI. Conclusions and Recommendations

Conclusions

Item migration has been shown to exist in inventory systems within the Department of Defense. But though the occurrence of item migration was documented, the full implications of item migration for inventory managers were not explored in depth. No cost was assigned to item migration either in terms of dollars or a decreased ability of the inventory to meet the needs of customers.

This research effort begins to quantify the effects of item migration on the AFLC consumable item inventory. A simplified model of the inventory management system provides a vehicle to measure both the value of backorders generated by items migrating upward and the value of stock in long supply created by items migrating downward. The influence of certain key factors within the inventory management system are analyzed. These factors are the speed with which the system recognizes and reacts to the demand change resulting from item migration, the variability of lead time, and the amount of safety level in the inventory.

It appears that the ability of the inventory system to react quickly to large demand changes is very important in limiting the number of backorders from upward migration.

The chance of failing to place a necessary order of replenishment stock or placing too small an order before the system adjusts to the new demand rate greatly exacerbates

the problem of backorders. The research investigated only the ability to react once migration occurred, however, not the effect of correctly anticipating item migration before it occurs. On the other hand, reaction time during item migration is not important for downward-migrating items. The sudden drop in demand occuring when an item moves to a lower SMGC makes the breach of the reorder level unlikely, even if the reorder level is calculated from a higher, incorrect demand rate. So incorrect orders of stock seldom result.

Lead time variability seems to have little effect on migration-induced backorders. The large demand change associated with migrating to a higher SMGC may overshadow the extra stock required in the "pipeline" for increased lead time, at least when lead time increases only incrementally as within this model. As mentioned in Chapter IV, this lack of effect runs counter to the findings of Smith and Gumbert at DESC (18:9). The disagreement may be reconciled by realizing that the large information lag effect may render an otherwise valid lead time effect invisible. However, lead time changes have a definite effect on the amount of long supply resulting from downward migration. As lead time decreases, so does the Approved Force Acquisition Objective. Stock that before was filling the lead time "pipeline" is no longer required for that purpose, and adds to the amount of long supply.

The last factor, the implied shortage factor, determines how much safety level is present. Safety level is shown to be ineffective in limiting backorders from item migration. The large demand change associated with upward migration overwhelms the relatively small margin of safety stock. Safety level does influence the value of long supply, for much the same reason as varying lead time. Safety level counts toward the Approved Force Acquisition Objective. At lower demand levels less safety stock is required, and the former safety stock winds up adding to the amount of long supply. The higher the safety level, the more the potential for long supply.

This research effort attempts to put a "price tag" on item migration. The figures arrived at, however, must be couched with the realization that approximations within the model may affect the magnitude of the cost. The model shows a mean dollar value of maximum backorders of 4.7 million per quarter under the best conditions, i.e. with instant recognition of item migration. This figure may be inflated by the general rise in total demand value for the entire inventory as the model approaches the Markov steady state. But even in light of that fact, it may be safely said that item migration causes large amounts of backorders, and the failure of inventory management to react quickly to changing demand will greatly increase the level of backorders. This is illustrated by the jump to a mean of 12.5 million dollars

in backorders per quarter when one quarter is allowed to elapse before the inventory management system recognizes the new demand level.

The value of long supply is less volatile in responding to different levels of the factors influencing it. The mean responses range from about 74 to 76 million dollars worth of stock. While this difference is statistically significant, when compared to the overall amount of long supply it carries less weight. Although reducing safety level would produce a lower value of long supply, the increased backorders resulting from the routine demand fluctuations within SMGCs could greatly outweigh the benefit. The amount of money tied up in this level of long supply is lamentable, but the factors investigated here do not provide a solid basis for attacking the problem. While the effects of varying lead time and safety level pass the significance test, they do not have the magnitude necessary to spawn new management policy.

The cost of item migration shown in the model may be extrapolated to the entire San Antonio ALC inventory. The model was run on a ten percent sample, so multiplying the results by ten indicates the effect on the whole consumables inventory. Item migration may account for at least 47 million dollars in backorders each quarter in just this one ALC, and if similar conditions exist in the other four ALCs, the backorder cost to AFLC becomes greater still. The

calculated value of migration-induced long supply at San Antonio ALC is about 450 million dollars over a three year period. Again, if this is similar to the other ALCs, AFLC is experiencing great opportunity cost as a result of item migration. As new weapon systems enter service and the defense budget becomes tighter, the money tied up in long supply will be urgently needed to meet priority requirements. The cost of the long supply shown here may become intolerable.

Recommendations

The research presented here has provided some insight into the movement of items between SMGCs and the impact of that phenomena on the inventory system. The most meaningful finding is that item migration costs money, and good, responsive inventory management can limit that cost. AFLC would be well served by investing resources in ways to quickly recognize the large increases in demand that indicate item migration. The sooner the item is managed according to the new demand level, the fewer the resulting backorders. Accessible, accurate data on projected requirements will greatly aid in this area. The Requirements Data Base initiative, now becoming operational in AFLC, is just the mechanism to provide such data.

The impact of item migration on inventory management policies must also be considered. This research shows that much of the long supply present is the result of downward

migration. Any action taken to evaluate or prevent long supply must be directed at downward-migrating items. Minimum buy policies may also be confounded by item migration. Any increase in the minimum buy will increase the average size of the inventory, and the resulting extra stock will further increase the amount of long supply from downward migration.

While answering some questions, this research has also uncovered new questions. Analysis of the characteristics of items in each SMGC shows great disparity within SMGC X. The overwhelming majority of X items have no demand. The parameters of the zero demand items are far different from their positive demand counterparts in SMGC X, yet all are managed as low value items. For instance, the prices for zero demand items in general are much higher than for other X items. Since zero demand items make up such a large part of the inventory, the nature of these items should be more thoroughly explored. It may be interesting to know where these items originated, how long they have had no demand, and the probability of experiencing demand in the future.

Finally, the manner in which items migrate should be investigated further. The model used for this research gave all items in an SMGC an equal chance of migrating. This was necessary since the only data available provided only a count of items moving between SMGCs. It may well be that items tend more to migrate between the upper range of one

SMGC and the lower range of the next highest SMGC. Given the breadth of the upper SMGCs such a jump could still involve a large demand change, but not the average ten-fold increase for upward migration currently experienced in the simulation. Better understanding of the specific origins and destinations of migrating items will allow more accurate modeling of migration in the future.

Appendix A: MIGSIM FORTRAN Source Code

```
Program MIGSIM
C
      Variables:
C
             - SMGC (X-1, T-2, P-3, M-4, OUT-5)
C
      cat
             - economic order quantity
C
      q
             - safety level
C
      51
             - reorder level
C
      rol
      leadti = lead time (days)
C
C
      ip
             = inventory position (on hand plus due in)
             - program monthly demand rate
C
      pmdr
      demand - dollar value of annual demand
C
           = implied shortage factor
C
      lam
C
      astot = total on hand assets
      price - actual unit price
C
C
      mad
             - mean absolute deviation of demand
C
      ars
             - average requisition size
C
             - peacetime program ratio
      ppr
             - is there a one quarter information lag? (T/F)
C
      lag
C
      varldt = does lead time vary by SMGC? (T/F)
C
      migsd = seed value for migration generator
      demsd - seed value for demand generator
C
             - average of quarterly values for
      2V**
C
C
               output statistic
C
C
      Arrays:
C
      mgcnt = migration tables
      bkord = backorder days
C
      bkmax = maximum backorders
bkdol = dollar-weighted backorder days
C
bkmxdl = dollar-weighted maximum backorder days
C
C
      longsp = number of items in long supply
C
      longdl = dollar value of long supply
      demval = total annual demand value
C
      comdol = quarterly commit dollars
C
      qtrdue = quarter dus of inbound order
C
      daydue - day due of inbound order
C
      order - size of inbound order
mprob = cumulative transition matrix
C
      madval - average mad value for each SMGC
C
      arsval = average ars value for each SMGC
C
C
      prval - empirical price distribution for each SMGC
program migsim
      integer i,j,k,cat,qtr,mgcnt(12,5,5),astot,
     &bkord(12),bkmax(12),ldtval(4),qtrdue(6),
     &daydue(6), order(6), q, rol, leadti, run, ip,
     &longsp(12)
      integer migsd, damsd
```

```
real price, pmdr, demand, mprob(1:5,0:5), mad, ars,
     &ppr, madval(4), arsval(4), comdol(12), bkdol(12),
     &bkmxd1(12),prva1(0:4,0:10),lam,longd1(12),demva1(12),
     &avbd, avbdd, avbm, avbmd, avls, avlsd, avcd, avdem
      character*5 info,ldtm
      character#2 lab1(5)
      logical new, lag, varldt
      data (madval(i), i=1,4)/4.04,9.51,16.94,94.45/,
            (arsval(i), i=1,4)/1.58,1.77,2.12,3.54/,
            (ldtval(i), i=1,4)/336,373,440,545/,
            (labl(i),i=1,5)/' X',' T',' P',' M'
      open(unit=8,file='for008.dat',status='old')
      open(unit=9, file='for009.dat', status='old')
      open(unit=10,file='for010.dat',status='old')
open(unit=12,file='for012.dat',status='new')
open(unit=14,file='for014.dat',status='new')
      open(unit=15, file='for015.dat', status='new')
C
      unit 8 - file of factor levels, seeds, and run number
      unit 9 - file of cumulative transition matrix
C
C
      unit 10 = file of SMGC price distributions
      unit 12 - output of migration reports
C
      unit 14 - output of migration tables formatted
C
C
                 for statistical analysis
C
      unit 15 - output of inventory performance formatted
C
                 for statistical analysis
C
      do 20 i=1.5
          read(9,109)(mprob(i,j),j=0,5)
 20
      continue
 109
      format(6(f8.0,1x))
      do 25 i=0,4
          read(10,110)(prval(i,j),j=0,5)
          read(10,210)(prval(1,j),j=6,10)
 25
      continue
      format(6(fB.0,1x))
 110
 210
      format(5(f8.0,1x))
 1
      continue
      read(8,108,end=1000) lag, varldt, lam, migsd,
                              demsd, run
      read in simulation parameters for this run
 108 format(11,1x,11,1x,f4.0,1x,2(i4,1x),i2)
      if (lag) then
          info-'
          info-'nolag'
      endif
```

```
if (varldt) then
          ldtm=' varu'
       else
          ldtm='fixed'
       endif
       do 5 i=1,12
          bkord(i)=0
          bkdol(i)=0
          bkmax(i)=0
          bkmxdl(i)=0
          longsp(i)=0
          longdl(i)=0
          demval(i)=0
          comdol(i)=0
          do 10 j=1,5
              do 15 k=1,5
                  mgcnt(i,j,k)=0
 15
              continue
 10
          continue
 5
       continue
       new-.false.
       write(12,113)
       if (lag) then
          write(12,114)
       else
          write(12,115)
       endif
       if (varldt) then
          write(12,116)
       else
          write(12,117)
       endif
      write(12,120) lam
      write(12,118) run
      write(12,119) migsd,demsd
      write header for run output
 113 format(' '/' '/' ', 'Model output'/)
114 format(' ', 'One quarter information lag')
115 format(' ', 'No information lag')
116 format(' ', 'Variable lead time')
format('', 'Constant lead time')
118 format('', 'Run number '
      format(' ', 'Run number ',i2)
format(' ', 'migsd= ',i4/' ', 'demsd= ',i4/)
 119
      format(' ', 'Implied shortage factor= ',f4.0)
 120
      open(unit=11,file='forO11.dat',status='old')
      unit 11 = file of inventory items
C
2
      continue
      read(11,111,end=900) price,astot,ppr,pmdr,l;
                                mad, ars
```

```
if (price.eq.0.0) goto 2
      demand=price=pmdr=12.0
c
      categorize into SMGCs
      if (demand.ge.O.and.demand.le.500.0) then
         cat=1
      endif
      if (demand.gt.500.0.and.demand.le.5000.0) then
         cat-2
      endif
      if (demand.gt.5000.0.and.demand.le.50000.0) then
      endif
      if (demand.gt,50000.0) then
         cate4
      endif
      if (ppr.eq.0) ppr=1.0
      leadti=ldtval(cat)
      leadti=nint((leadti/365.0) #364.0)
      if (mad.eq.O) mad-madval(cat)
      if (ars.eq.0) ars=arsval(cat)
      qtr=1
      if (demand.ne.0) then
         call buydue(price, astot, ppr, pmdr, leadti, mad, ars,
                      qtrdue, daydue, order, q, rol, lam, new,
     8
                      comdol.ip,qtr,cat)
      else
         ip-astot
         q=0
         rol=0
         do 35 i=1.6
            order(i)=0
            qtrdue(1)=0
            daudue(i)=0
 35
         continue
      call cycle(qtr,cat,mgcnt,mprob,price,astot,ppr.
                  pmdr, leadti, mad, ars, demand, migsd, demsd,
     8
                  madval, arsval, bkord, bkdol, bkmax, bkmxdl,
     8
                  comdol, utrdue, daydue, order, q, rol, new, lag,
     8
                  varldt,lam,longsp,longdl,demval,ip,ldtval)
      goto 2
900
      continue
      call addnew(mgcnt, mprob, ldtval, prval, madval, arsval,
     8
                   migsd, demsd, bkord, bkdol, bkmax, bkmxdl,
     8
                   comdol, longsp, longdl, demval,
                   lag, varldt, lam)
      do 920 i=1,12
         write(12.121) i
         do 910 j=1,5
            write(12,112) labl(j),(mgcnt(i,j,k),k=1,5)
            write(14,141) info,ldtm,lam,run,i,j,
                          (mgcnt(i,j,k),k=1,5)
```

```
910
        continue
        write(12,500)
920
     continue
     compute average of quarterly stats
     avbd=0
     0-bbdvs
     avbm=0
     avbmd-0
     avls=0
     avisd=0
     avcd=0
     avdem=0
     do 930 i=1,12
        avbd=avbd+bkord(i)/12.
        avbdd=avbdd+bkdol(i)/12.
        avbm=avbm+bkmax(i)/12.
        avbmd-avbmd+bkmxdl(i)/12.
        avls=avls+longsp(i)/12.
        avisd=avisd+longdl(i)/12.
        avcd-avcd+comdol(i)/12.
        audem=audem+demval(i)/12.
930
     continue
     write(12,212)
     do 960 i=1,12
        write(12,312) i,bkord(i),bkdol(i),
                       bkmax(i),bkmxdl(i)
960
     continue
     write(12,313)
     write(12,314) avbd,avbdd,avbm,avbmd
     write(12,500)
     write(12,412)
     do 970 i=1,12
        write(12,413) i,longsp(i),longdl(i),comdol(i),
                       demval(i)
97C
     continue
     write(12,313)
     write(12,414) avls,avlsd,avcd,avdem
     write(15, 151) info, ldtm, lam, run, avbd, avbdd, avbm, avbmd,
                    avis, avisd, avcd, avdem
     close(11)
     goto 1
     get next item
     format(f11.0,1x,18,1x,f5.0,1x,f10.0,1x,
111
            15,1x,f11.0,1x,f7.0)
                ,a2,3x,5(iB,2x))
112
     format('
                'Quarter ',12/
    format('
121
                'FROM/IO
                             X',9x,'I',9x,'P',9x,
            C'IUO', x8,'M'
    format(' ',2(a5,1x),f4.0,1x,3(i2,1x),5(i6,1x))
141
151 Format(' ',2(aS,1x),f4.0,1x,12,1x,4(a12.6,1x)/
               ',4(e12.6,1x))
```

POLYCOPORTO POLICIA DE LO POLICIA DE

```
212 format(' ','qtr bkord-days',4x,'bkord-day$',3x,
              'bkord-max', 4x, 'bkord-max$')
      format(' ',i3,1x,2(i10,2x,e12.6,2x))
 312
      format(' '
                 , 'Average values')
 313
                 ,3x,2(e11.6,2x,e12.6,1x))
      format(' '
 314
      format(' ','qtr long items',6x,'long $',7x,
 412
              'commit$',7x,'demval$')
                ',i3,1x,i8,2x,2(e12.6,2x),e12.6)
 413
      format(' '
 414
                 (4x,f8.1,2x,2(e12.6,2x),e12.6)
      format(' '/)
 500
 1000 continue
      close(8)
      close(9)
      close(10)
      close(12)
      close(14)
      close(15)
      stop
      end
      Subroutine CYCLE
C
C
      Variables not already defined:
              - random number for determining migration
C
      pmig
C
              - approved force acquisition objective
      daydem - daily demand
C
C
      rip, rastot = ip, astot converted to reals
      subroutine cycle(qtr,cat,mgcnt,mprob,price,astot,
                        ppr.pmdr.leadti.mad.ars.demand.
     &
                        migsd, demsd, madval, arsval, bkord,
                        bkdol, bkmax, bkmxdl, comdol, qtrdue,
     8
                        daydue, order, q, rol, new, lag, varldt,
                        lam, longsp, longdl, demval, ip, ldtval)
      integer i,j,k,cat,day,qtr,mgcnt(12,5,5),astot,leadti,
     &newcat, bkord(12), bkmax(12), qtrdue(6), daydue(6),
     &order(5),q,rol,sl,longsp(12),ip,ldtval(4)
      integer migsd, demsd
      real pmig, mprob(1:5,0:5), price, ppr, pmdr, mad, ars,
     &demand, madval(4), arsval(4), bkdol(12), bkmxdl(12),
     &comdol(12), rastot, olddem, lam, longdl(12), demval(12),
     &rip,daydem,afao
      logical new, lag, varldt, found
      rastot=float(astot)
      rip=float(ip)
 10
      continue
```

```
generate item migration
C
      if (gtr.le.12.and.cat.ne.5) then
         if (.not.new) then
            pmig=ran(migsd)
            do 15 k=1.5
               if (pmig.ge.mprob(cat,k-1).and.pmig.lt.
                    mprob(cat,k)) then
     &
                  newcat=k
               endif
 15
            continue
            mgcnt(qtr,cat,newcat)=mgcnt(qtr,cat,newcat)+1
         elsa
            newcat=cat
            mgcnt(qtr,5,newcat)=mgcnt(qtr,5,newcat)+1
            new=.false.
         endif
         if (newcat.ne.5) then
            olddem=demand
            if (cat.ne.newcat) then
               if (varldt) leadti=
                            nint((ldtval(newcat)/365.)*364.)
               get new demand level
call getdem(newcat, demsd, demand)
               pmdr=(demand/price)/12.0
               if (olddem.eq.O.or..not.lag) then
                   if (ars.eq.0) ars=arsval(newcat)
                   if (mad.eq.O) mad=madval(newcat)
                  compute levels for instant reaction
C
                  to item migration
C
                  call level(newcat, demand, q, sl, rol, price,
     8
                              pmdr, ppr, mad, leadti, ars, lam)
               endif
            endif
            daudem=(pmdr+12.0)/364.0
            do 20 day=1,91
               do 25 i=1,6
                   if (qtrdue(i).eq.qtr.and.daydue(i).eq.day)
     &
                      then
                      when order arrives count max backorders
                      if (rastot.lt.0) then
                         bkmax(qtr)=
                              bkmax(gtr)+nint(abs(rastot))
     8
                         bkmxd1(qtr)=
                              bkmxdl(qtr)+abs(rastot*price)
                      endif
                      rastot=rastot+order(i)
                      order(i)=0
                      qtrdue(i)=0
                      daudue(i)=0
                  endif
 25
               continue
```

```
rastot=rastot-daydem
               rip-rip-daudem
C
               count backorder days
               if (rastot.1t.0) then
                  bkord(qtr)=bkord(qtr) + nint(abs(rastot))
                  bkdol(qtr)=bkdol(qtr)+ abs(price=rastot)
               endif
               if (rip.le.rol) then
C
               place and schedule order
                  1-1
                  found-.false.
 35
                  continue
                  if(i.le.6.and..not.found) then
                      if (order(i).eq.0) then
                         order(i)=q+(rol-nint(rip))
                         qtrdue(i)=qtr+int(leadti/91.)+
                               int(dau/91.0+leadti/91.0 -
                               int(leadti/91.))
                         daydus(i)=1+mod(leadti+day,91)
                         comdol(qtr)=
                               comdol(qtr)+(order(i)*price)
                         rip=rip+order(i)
                         found=.true.
                     endif
                     i=i+1
                     goto 35
                  endif
               endif
20
            continue
            if (cat.ne.newcat.and.lag) then
C
            compute levels after one quarter lag
               call level(newcat, demand, q, sl, rol, price,
                           pmdr, ppr, mad, leadti, ars, lam)
            endif
         endif
         cat-newcat
         demval(qtr)=demval(qtr)+demand
         count items and value of long supply
C
         if (cat.eq.1) then
            afao=rol+q+(pmdr#12.0)
         else
            afao=rol+amax1(float(q),(pmdr*24.0))
         endif
         if (rip.gt.afao) then
            longsp(qtr)=longsp(qtr)+1
            longdl(qtr)=longdl(qtr)+price=(rip-afao)
         endif
```

```
goto 10
      endif
      astot=nint(rastot)
      ip=nint(rip)
      return
      and
      Subroutine ADDNEW
Variables not already defined
C
            - number of items leaving in a quarter
C
      totlin- number of items entering in a quarter
C
      fracdn- fraction of items to enter a SMGC that have
C
              already entered
      numin - number of items to enter a SMGC
C
      subroutine addnew(mgcnt,mprob,ldtval,prval,madval,
                         arsval, migsd, demsd, bkord, bkdol,
     &
                         bkmax, bkmxdl, comdol, longsp, longdl,
                         demval, lag, varldt, lam)
      real mprob(1:5,0:5), prval(0:4,0:10), madval(4),
     &arsval(4), bkdol(12), bkmxdl(12), comdol(12), longdl(12),
     &demval(12),lam
      integer ldtval(4), mgcnt(12,5,5), bkord(12), bkmax(12),
     &longsp(12)
      integer migsd, demsd
      real fracdn, price, demand, pmdr, ppr, j, mad, ars
      integer qtr,cat,i,k,totlin,astot,leadti,sl,rol,q,
     &gtrdue(6), daydue(6), order(6), qstart, out, ip, ii,
     &numin, catst
      logical found, new, lag, varldt
      do 50 gtr=1,12
         out=0
         count items that left SMGC
C
         do 45 k=1,4
            out=out+mgcnt(qtr,k,5)
 45
         continue
         totlin-out
          if (totlin.gt.0) then
            do 40 cat=1,4
                calculate number to enter each SMGC
C
                numin=nint(float(totlin)*(mprob(5,cat)-
     &
                      mprob(5,cat-1)))
                if (numin.eq.O) numin=1
                do 30 i=1, numin
                   track how many have entered already
C
                   fracdn=float(i)/float(numin)
                   1-0.1
                   found-.false.
 50
                   continue
```

gtr=gtr+1

```
if (j.le.1.0001.and.not(found)) then
                       assign price based on what fraction has
C
C
                      already entered
                       if (fracin.ge.(j-0.1).and.fracdn.lt.j)
     8
                          then
                          found-.true.
                          get demand level
C
                          call getdem(cat, demad, demand)
                          ppr=1.0
                          leadti-
                             nint((ldtval(cat)/365.0)*364.0)
     8
                          assign item parameters
C
                          if (demand.eq.0) then
                             price=prval(0, nint(j#10.))
                             omdr=0.0
                             mad=0.0
                             ars=0.0
                             q-0
                             51-C
                             rol-0
                             astot=15
                             ip=astot
                             comdol(qtr)=
     8
                                comdol(qtr)+astot*price
                             do 25 ii=1,6
                                order(ii)=0
                                daudue(ii)=0
                                gtrdue(ii)=0
 25
                             continue
                          else
                             price=prval(cat,nint(j#10.))
                             pmdr=(demand/price)/12.0
                             mad=madval(cat)
                             e~s=arsval(cat)
                             new-.true.
                             call buydus(price, astot, ppr,
     &
                                   pmdr, leadti, mad, ars, qtrdue,
     8
                                   daydue, order, q, rol, lam, new,
                                   comdol, ip, qtr, cat)
                          endif
                          qstart=qtr
                          catst=cat
                          new".true.
                          call cycle(qstart,catst,mgcnt,mprob,
                               price, astot, ppr, pmdr, leadti,
     8
                               mad, ars, demand, migsd, demsd,
     &
                               madval, arsval, bkord, bkdol,
     æ
                               bkmax, bkmxdl, comdol, qtrdue,
     8
                               daydue, order, q, rol, new, lag,
     &
                               varldt, lam, longsp, longdl,
                               demval, ip, ldtval)
                      endif
```

```
j=j+0.1
                      goto 20
                   endif
                continue
 30
 40
            continue
         endif
50
      continue
      return
      end
      Subroutine BUYDUE
C
      Variables not already defined:
C
C
      duein - number of days before order is due in
C
                from start of item in simulation
C
      DCD
             - procurement cucle period
      numord - number of orders to be scheduled
C
C
      subroutine buydus(price, astot, ppr, pmdr, leadt), mad, ars,
                         qtrdue, daydue, order, q, rol, lam, new,
                         comdol, ip, qtr, cat)
      real price, ppr, pmdr, mad, ars, lam, comdol(12), demand
      integer astot,leadti,qtrdue(6),daydue(6),order(6),
     &sl,q,rol,duein(6),ip,qtr,cat,pcp,i,numord
      logical new
      demand=price=pmdr+12.0
      call level(cat, demand, q, sl, rol, price, pmdr, ppr,
                  mad, leadti, ars, lam)
      pcp=nint(q/(pmdr*12.0/364.0))
      if (new) then
         astot=q+sl
         comdol(qtr)=comdol(qtr)+price*astot
         if (astot.le.sl) astot=q+sl
      endif
      ip-astot
      do 10 i=1,6
         dumin(i)=0
         order(1)=0
         qtrdue(i)=0
         daudue(i)=0
10
      continue
      see if an order is needed within lead time
      dumin(1)=nint((astot-sl)/(pmdr*12.0/364.0))
      if (duein(1).lt.leadti) then
      see how many orders needed
C
         numord=int((leadti-duein(1))/pcp)
         if (numord.gt.0) then
            if(new) comdol(qtr)=comdol(qtr)+numord*q*price
```

```
do 20 i=1, numord
               calculate number of days until each
order is due
               duain(i+1)=duain(1) + i*pcp
 20
            continue
         endif
         do 30 i=1,(numord+1)
            convert days to due date
            order(i)=q
            ip=ip+q
            qtrdue(i)=qtr+int(duein(i)/91.)
            daudua(i)=1+mod(duein(i),91)
 30
      endif
      return
      end
      subroutine getdem(cat, demsd, demand)
      integer cat, demsd*4
      real demand, rnum1, rnum2
      if (cat.eq.1) then
      determine zero or non-zero demand
         rnum1=ran(demsd)
         if (rnum1.1e.0.26) then
      determine demand level for non-zero demand
            continue
            rnum2=ran(demsd)
            demand=50.-96.4#log(rnum2)
            if (demand.gt.500.) goto 5
         else
            demand=0.0
         endif
      endif
      if (cat.eq.2) then
 10
         continue
         rnum1=ran(demsd)
         demand=-1366.74*log(rnum1) +500.01
         if (demand.gt.5000.) goto 10
      endif
      if (cat.eq.3) then
 15
         continue
         rnum1=ran(demsd)
         demand=-10259.81*log(rnum1) +5000.01
         if (demand.gt.50000.) goto 15
      endif
      if (cat.eq.4) then
         rnum1=ran(demsd)
         demand=-170375.09*log(rnum1) +50000.01
      endif
      return
      end
```

```
subrouting level(cat, demand, q, sl, rol, price, pmdr, ppr,
                  mad, leadti, ars, lam)
integer cat,q.sl,rol,leadti,size
real demand, price, pmdr, ppr, mad, ars, lam
determine order size for correct order cost
if (cat.eq.4) then
   size=2
alse
   size=1
endif
if (demand.eq.0) then
   q=0
   91-0
   rol=0
else
   call eog(q, size, price, pmdr)
   call saflev(sl,ppr,mad,leadti,q,ars,pmdr,price,lam)
   rol=sl+nint(0.499+float(leadti)*pmdr*12.0/364.0)
   if (rol.eq.0) rol=1
endif
return
and
subroutine saflev(sl,ppr,mad,leadti,q,ars,
                   pmdr, price, lam)
real ppr, mad, ars, pmdr, price, hc, lam, theta, k, rlead,
     slr,slmax1,slmax2
integer leadti, q, size, sl
rlead=float(leadti)
hc=.17
theta=(ppr**.85)*.5945*mad*(.82375+(.42625*rlead))
if (theta.le.O.) theta=0.0001
if(lam.eq.0.or.ars.eq.0.or.theta.eq.0.or.q.eq.0) then
   print *,q,price,pmdr,ars,theta
   stop
endif
k=(-.707)*alog((2.*sqrt(2.)*hc*q*price)/
  ((lam/ars)#theta#
  (1-exp((-sgrt(2.)*q)/theta))))
slr=k*theta
slmax1=rlead*(pmdr*12.0)/36%.
slmax2=3.*theta
if (slr.gt.slmax1) slr=slmax1
if (slr.gt.slmax2) slr=slmax2
if (slr.lt.0.) slr=0.
sl=nint(slr)
return
```

end

subroutine soq(q,size,price,pmdr)
real price,pmdr,hc,oc(2),soqyr
integer size,i,q
data (oc(i),i=1,2)/345.54,608.30/,hc/.17/
soqyr=sqrt((2.*oc(size))/(hc*price*pmdr*12.))
if (soqyr.le.0.5) soqyr=0.5
if (soqyr.gt.3.0) soqyr=3.0
q=nint(soqyr*pmdr*12.0)
if (q.eq.0) q=1
return
end

The state of the s

Appendix B: MISSIM Output Reports

95

Model output

No information lag Constant lead time Implied shortage factor= 58C. Run number 1 migsd= 9905 demsd= 7415

Quarter FROM/TO X T P M IN	1 X 10245 85 8 0 447	1 137 1825 32 0 31	P 14 63 742 11	m 2 1 11 168 3	0UT 402 55 29 9
Quarter FROM/IO X I P M IN	2 X 10194 91 10 2 454	T 143 1833 40 0	P 10 54 758 8 13	M O O 22 171 3	0UT 438 47 13 4
Quarter FROM/TO X T P M	3 X 10168 92 4 0 439	T 144 1836 33 0 31	P 25 66 773 13	M 9 0 14 180 3	0UT 410 54 19 3 0
Quarter FROM/IO X I P M IN	4 X 10136 76 11 0 438	T 128 1839 34 0 31	P 15 84 818 9	M 3 0 15 185 3	OUT 421 45 12 7 0
Quarter FROM/IO X I P M IN	5 X 10066 71 6 2 464	T 141 1849 49 0 33	P 15 62 842 15 14	M 3 0 15 187 3	0UT 436 50 27 2 0

Quarter FROM/IO X I P M IN	5 X 10009 79 11 0 469	T 153 1870 41 0 33	P 14 67 854 5	M 0 1 15 199 3	OUT 433 55 27 4 0
Quarter FROM/IO X I P M IN	7 X 9580 87 9 0 469	T 139 1883 42 0 33	P 16 63 865 8	M 0 13 208 3	CUT 429 64 25 2 0
Quarter FROM/IO X I P M IN	8 9966 82 8 1	T 148 1866 38 O 32	P 20 85 885 3 13	M 2 1 8 220 3	0UT 409 63 27 4
Quarter FROM/IO X I P M IN	9 X 9937 88 5 5 464	T 128 1866 35 2 33	P 17 69 939 7 14	M 2 0 7 213 3	OUT 427 61 20 6
Quarter FROM/IO X I P M IN	10 X 9974 85 3 2 406	T 132 1849 32 1 29	P 14 77 969 16 12	n 0 29 202 3	OUT 379 53 13 4

```
Quarter 11
                                  P
                                                        DUT
FROM/YO
            X
                       T
                                              M
                                                        429
          9896
                      129
                                   15
                                               1
 X
 T
                                                         70
            78
                     1643
                                  52
                                               0
                                                         18
 P
             5
                       39
                                1011
                                              15
M
             5
                        1
                                    9
                                             212
                                                         11
           477
                                               3
IN
                       ¥E
                                   14
                                                          0
Quarter 12
FROM/TO
            X
                       T
                                  P
                                              M
                                                        OUT
                                    9
                                                        440
          9839
                      169
                                               1
 X
 T
                                                         52
            93
                                  58
                                               0
                     1843
                                                         29
 P
             7
                       51
                                 997
                                              17
             2
                                                          5
 M
                        1
                                   10
                                             213
                                               3
                                                          0
IN
           474
                       33
                                   14
    bkord-days
                    bkord-day$
                                  bkord-mex
                                                 bkord-max$
qtr
  1
       2942031
                  0.239700E+08
                                           37
                                               0.5398S9E+04
  2
                  0.103940E+09
                                         135
                                               0.547416E+05
      10283039
  3
      25318113
                  0.262752E+09
                                       16269
                                               0.874761£+06
  4
                  0.468016E+09
                                      170464
                                               0.180702E+07
      45725105
  5
      59392070
                  0.657345E+09
                                      278224
                                               0.432923E+07
  6
      72566952
                  0.800335E+09
                                      610511
                                               0.652220E+07
  7
      71387379
                  0.755219E+09
                                      424163
                                               0.488447E+07
  8
                  0.787362E+09
      76820080
                                      567692
                                               0.668967E+07
  9
                                               0.673289E+07
      82777372
                  0.643522E+09
                                      663296
 10
                                               0.404424E+07
      56064078
                  0.589930E+09
                                      635084
                                      464729
 11
      70996914
                  0.679970E+09
                                               0.737136E+07
 12
                  0.691572E+09
                                      672514
                                               0.473270E+07
      74435691
Average values
                                  .375260E+06 0.400406E+07
   .540591E+08
                  0.538669E+09
                                                     demval$
qtr long items
                      long $
                                     commits
                                               0.695378E+08
  1
         6742
               0.341338E+08
                               0.332451E+08
  2
         6810
                               0.209364E+08
                                               0.694906E+08
               0.412534E+08
  3
         6890
               0.467096E+08
                               0.345610E+08
                                               0.716015E+08
  4
               0.504361E+08
         6949
                               0.236577E+08
                                               0.742740E+08
  5
         7014
               0.611112E+08
                               0.382096E+08
                                               0.756709E+08
                               0.240158E+08
  6
         7083
               0.674600E+08
                                               0.779703E+08
  7
                               0.371172E+08
         7207
               0.710524E+08
                                               0.808892E+08
  8
         7250
               0.724052E+08
                               0.235827E+08
                                               0.832453E+08
  9
         7358
               0.723584E+08
                               0.353077E+08
                                               0.835426E+08
 10
         7387
               0.881232E+08
                               0.305129E+08
                                               0.840625E+08
 11
         7480
               0.927807E+08
                               0.341703E+08
                                               0.860210E +08
 12
         7584
                               0.311343E+08
               0.1000/4E+09
                                               0.851144E+08
Average values
               0.664915E+08
                               0.305375E+08
                                               0.784517E+08
      7146.2
```

No information lag Constant lead time Implied shortage factor= 580. Run number 2 migsd= 6057 demsd= 2873

Quarter FROM/ID X I P M IN	1 X 10209 91 5 0 463	T 129 1826 38 0 33	P 18 58 746 5 14	M 2 0 19 180 3	OUT 442 54 14 3 0
Quarter FROM/TO X I P M	2 X 10203 82 6 0 438	T 123 1828 39 0	P 17 71 772 6 13	M 1 0 12 194 3	0UT 424 45 12 4 0
Quarter FROM/TO X T P M	3 X 10144 89 5 1	T 147 1816 37 0 31	P 17 69 804 8	M 1 2 19 194 3	OUT 420 45 14 7 0
Quarter FROM/TO X T P M IN	4 X 10132 79 7 1 434	T 133 1825 41 0 31	P 8 80 824 7 13	M 1 0 15 205 3	OUT 404 47 24 6 0
Quarter FROM/TO X T P M	5 X 10074 72 10 1	T 145 1834 38 0	P 14 72 847 12 13	M 2 20 202 3	DUT 418 52 16 9

Quarter FROM/IO X I P M IN	6 X 10043 83 7 1	T 129 1835 51 0 31	P 22 71 854 8 13	M 1 25 213 3	OUT 409 58 21 6 0
Quarter FROM/TO X T P M	7 X 9986 88 7 0 461	T 137 1847 37 0 32	P 14 68 889 6 14	M 0 0 17 231 3	0UT 443 43 18 6
Quarter FROM/IO X I P M IN	8 X 9954 88 12 2 464	T 132 1845 44 0 33	P 19 68 902 6 14	M 1 0 19 231 3	0UT 436 52 14 12 0
Quarter FROM/TO X T P M	9 X S943 83 2 3 482	T 113 1847 44 1 34	P 15 67 926 8 14	M 2 0 16 233 3	OUT 447 57 21 9 0
Quarter FROM/TO X T P M	10 X 9908 103 8 1	T 143 1829 38 0 33	P 13 59 940 9	M 2 0 17 240 3	OUT 447 48 27 4 0

```
Quarter 11
FROM/TO
           X
                       7
                                  P
                                                       OUT
         9937
                      127
                                  10
 X
                                                       419
 T
            90
                     1829
                                  58
                                                        55
                                              1
 P
                                 956
                                                        26
                       36
                                             13
M
             Ö
                        0
                                  11
                                            246
                                                         5
IN
           456
                       32
                                  13
                                              3
                                                         0
Quarter 12
FROM/TO
                       T
                                  P
                                                       DUT
            X
 X
         9932
                      115
                                  15
                                                       421
 T
                     1820
                                  75
                                                        50
            78
 P
             7
                                 97C
                                                        16
                       44
                                             21
                                                         9
M
             0
                        0
                                  10
                                            245
IN
           448
                       32
                                  13
                                              3
                                                         0
gtr bkord-days
                   bkord-dau$
                                  bkord-max
                                                bkord-max$
                 0.293810E+08
  1
       2493089
                                          73
                                              0.199815E+05
  2
                 0.145336E+09
                                         823
                                              0.29016BE+05
      11722361
  3
      26489305
                 0.340766E+09
                                      61675
                                              0.843654E+06
      49730611
                 0.593263E+09
                                     205417
                                              0.260116E+07
                                              0.519244E+07
                                     355939
  5
      75639811
                 0.734999E+09
  6
     123538710
                 0.784006E+09
                                     966418
                                              0.726650E+07
  7
     173240063
                 0.874554E+09
                                     446665
                                              0.638217E+07
  8
     225291608
                 0.926298E+09
                                     762510
                                              0.579085E+07
  9
                 0.104794E+10
     218640010
                                    4669590
                                              0.100400E+08
 10
      69582957
                 0.876482E+09
                                     592492
                                              0.968130E+07
                 0.745760E+09
 11
      78556698
                                     525158
                                              0.67215BE+07
 12
      95760217
                 0.776470E+09
                                     690134
                                              0.661612E+07
Average values
   .958905E+08
                 0.656271E+09 .773091E+06
                                              0.509873E+07
qtr long items
                      long $
                                    commit$
                                                    demval$
        6771
               0.349090E+08
                               0.386279E+08
                                              0.717272E+08
  1
  2
        6826
               0.406775E+08
                                              0.730873E+08
                               0.195038E+08
  3
        6880
               0.578157E+08
                               0.347410E+08
                                              0.697890E+08
  ų.
        6959
               0.625205E+0B
                               0.206958E+08
                                              0.694410E+08
  5
        7041
               0.713703E+08
                               0.345428E+08
                                              0.687841E+08
  6
        7137
               0.760535E+0B
                               0.316050E+08
                                              0.736257E+08
  7
        7222
               0.819278E+08
                               0.320156E+08
                                              0.742770E+08
  8
        7304
               0.822831E+08
                               0.291913E+08
                                              0.777732E+08
  9
        7405
               0.903643E+08
                               0.306489E+08
                                              0.754772E+08
 10
        7457
               0.938165E+08
                               0.269148E+08
                                              0.769444E+08
 11
                               0.288854E+08
        7512
               0.907711E+08
                                              0.783776E+08
 12
        7607
               0.961311E+08
                               0.335613E+08
                                              0.818653E+08
Average values
      7176.8
               0.732200E+08
                              0.300778E+08
                                              0.742641E+08
```

No information lag Constant lead time Implied shortage factor= 580. Run number 3 migsd= 9745 demsd= 3447

Quarter FROM/TO X T P M	1 X 10225 89 4 0 447	T 14'1 1829 26 1 31	P 10 63 767 6 13	M 0 0 5 175 3	0UT 421 48 20 6 0
Quarter FROM/TO X T P M	2 X 10193 85 6 0 444	T 126 1836 39 0	P 72 792 11 13	M 1 0 8 170 3	OUT 438 38 14 2 0
Quarter FROM/TO X T P M	3 X 10125 82 7 0 477	T 144 1817 42 0 34	P 13 77 806 9 14	M 1 16 169 3	OUT 445 55 24 4 0
Quarter FROM/TO X T P M	4 X 10119 100 9 1 459	T 134 1816 43 1 32	P 13 63 831 9 14	M 3 0 10 176 3	TU0 25.2 82 82 6 5 0
Quarter FROM/TO X T P M	5 X 10114 91 7 0 449	T 137 1827 34 0 32	P 12 59 850 7 13	M 0 1 22 177 3	OUT 425 48 17 8 0

Guarte FROM/II X I P M IN	T 133 1839 51 0 33	P 18 62 846 11 14	M 2 0 11 187 3	0UT 452 37 24 5 0
Quarte FROM/II X I P M IN	T 131 1847 35 0 34	P 12 72 885 14 14	M 1 0 9 179 3	OUT 456 49 14 10 0
Quarte: FROM/II X T P M IN	T 120 1854 45 0 34	P 18 53 918 16 14	M 2 2 13 170 3	0UT 456 56 11 6
Quarte: FROM/II X I P M IN	T 129 1849 48 0 33	P 18 70 913 10 14	M 1 1 25 174 3	TUD 440 46 65 4
Quarte FROM/T X T P M	T 125 1861 36 0 32	P 13 65 943 10 14	M 1 0 13 183 3	0UT 432 48 23 6 0

```
Quarter 11
FROM/TO
            X
                       T
                                  P
                                             M
                                                       DUT
                                              0
                                                       409
          9992
                      120
                                  14
 X
 T
                                                        57
            95
                     1841
                                  60
                                              1
                                             16
                                                        33
 P
                       44
                                 944
             8
 M
                                  13
                                            181
                                                         6
             0
                        0
                                  13
                                              3
                                                         ۵
IN
           456
                       32
Quarter 12
                       T
                                  P
                                                       DUT
FROM/TO
            X
                                             M
          9996
                                              2
                                                       406
 X
                      129
                                  18
 T
                                                        44
                     1864
                                  49
                                              0
            80
 P
                                             18
                                                        22
             8
                       52
                                 944
                                                         8
M
             2
                        0
                                   3
                                            188
IN
           4.34
                       31
                                  13
                                              3
                                                         0
                                                bkord-max$
                                  bkord-max
gtr bkord-daus
                   bkord-day$
                                         469
                                              0.115848E+05
                 0.563038E+07
  1
       1229196
  2
       7456288
                 0.443237E+08
                                        3579
                                              0.353912E+05
  3
                 0.154706E+09
                                        BSEŁ
                                              0.144542E+06
      20156166
                                              0.812805E+06
  4
                 0.328075E+09
                                     130328
      36746571
  5
      37010653
                 0.483206E+09
                                     E00088
                                              0.306645E+07
                                     306823
                                              0.405251E+07
                 0.609528E+09
  6
      42157084
  7
                                      325972
                                              0.650099E+07
      59998431
                 0.573270E+09
  8
     106032958
                 0.567465E+09
                                     359125
                                              0.306354E+07
  9
                                     505193
                                              0.600475E+07
     153028330
                 0.609191E+09
                                    1911569
                                              0.439611E+07
 10
     158878485
                 0.582847E+09
                 0.715449E+09
                                      515303
                                              0.482656E+07
 11
      97391893
                                              0.690212E+07
 12
     115106667
                 0.792509E+09
                                     846703
Average values
                 0.455517E+09 .432700E+06
                                              0.331811E+07
    .695994E+08
                                                    demval$
qtr long items
                      long $
                                    commits
                               0.285803E+08
                                              0.675435E+08
  1
        6739
               0.347607E+08
  5
                               0.177593E+08
                                              0.615278E+08
         6836
               0.468328E+08
  3
                               0.295472E+08
                                              0.585104E+08
        6919
               0.632701E+08
  4
                                              0.580336E+08
         7042
               0.726194E+08
                               0.174388E+08
  5
         7104
               0.746104E+08
                               0.291842E+08
                                              0.616822E+08
  6
         7196
               0.793823E+08
                               0.203364E+08
                                              0.610628E+08
  7
         7320
                               0.252489E+08
                                              0.596535E+08
               0.875049E+08
  8
         7435
                                              0.575687E+08
               0.969753E+08
                               0.221074E+08
  9
                                              0.612901E+0B
         7479
               0.101090E+09
                               0.325975E+08
               0.106519E+09
 10
         7563
                               0.231780E+08
                                              0.625208E+08
 11
                               0.282401E+08
                                              0.632557E+08
         7649
               0.111151E+09
                                              0.642338E+08
 12
         7700
               0.115227E+09
                               0.218407E+08
Average values
                               0.246716E+08
                                              0.614069E+08
      7248.5 0.824954E+08
```

No information lag Constant lead time Implied shortage factor= 580. Run number 4 migsd= 1075 demsd= 1175

Quarter FROM/TO X T P M	1 X 10221 88 4 2 459	T 126 1826 39 0 32	P 12 62 748 7 13	M 4 0 15 177 3	OUT 437 53 16 2 0
Quarter FROM/IO X I P M IN	2 X 10198 86 4 0 469	T 124 1818 25 0 33	P 13 70 774 8 14	M 4 0 9 105 3	OUT 435 49 30 6
Quarter FROM/IO X I P M IN	3 X 10150 92 7 3 474	T 130 1804 51 0 33	P 18 54 785 8 14	M 2 1 22 185 3	OUT 457 49 14 5 0
Quarter FROM/TO X T P M	4 10113 82 2 0 493	T 130 1814 41 2 34	P 18 68 801 8 14	M 0 0 16 195 3	0UT 465 54 19 8 0
Quarter FROM/TO X T P M	5 X 10093 99 8 8 2 466	T 145 1796 41 0 33	P 18 73 824 12 14	M 1 0 13 193 3	OUT 433 53 23 7 0

Quarter FROM/TO X T P M	6 X 10047 94 8 0 487	T 134 1801 37 0	P 25 67 862 10 14	M 1 1 14 194 3	OUT 461 52 20 6 0
Quarter FROM/TO X T P M	7 X 10075 87 5 2 433	T 144 1806 40 0 29	P 13 68 881 4	M 0 25 204 3	0UT 404 45 27 3 0
Quarter FROM/IO X I P M IN	8 X 10001 80 8 1 478	T 144 1828 37 O 34	P 15 59 885 12 14	m 3 0 19 211 3	0UT 439 52 30 8 0
Quarter FROM/TO X T P M	9 X 9975 77 8 2 456	T 143 1851 43 0 32	P 13 74 888 12 13	M 2 0 23 216 3	0UT 435 41 23 6 0
Quarter FROM/TO X T P M	10 X 9951 84 8 2 463	T 137 1869 51 0 33	P 8 59 902 10 14	M 2 0 12 223 3	0UT 420 57 27 9 0

```
Quarter 11
            X
                       T
                                  F,
FROM/TO
                                             M
                                                       DUT
 X
          9911
                      145
                                  17
                                              0
                                                       435
 T
            83
                                  77
                                              0
                     1889
                                                        41
 P
             2
                       44
                                 398
                                             19
                                                        30
                                                         7
 M
             0
                        0
                                  14
                                            219
                       33
                                              3
                                                         0
IN
           463
                                  14
Quarter 12
                                  P
            X
                       T
                                                       DUT
FROM/ID
                                             M
          9890
                      1:3
                                  16
                                              3
                                                       417
 X
 T
            74
                     1910
                                  66
                                              0
                                                        61
 P
                       E#
                                 931
                                             16
                                                        18
            12
                                   9
                                            225
                                                         7
 M
             0
                        0
                                              3
                                                         0
IN
           454
                       35
                                  13
   bkord-daus
                   bkord-day$
                                  bkord-max
                                                bkord-max$
atr
       3468927
                 0.498455E+08
                                         652
                                              0.199509E+05
  1
      14275248
                 0.198239£+09
                                         714
                                              0.233083E+06
  3
                                      52895
      33269461
                 0.445949E+09
                                              0.156054E+07
      51777698
                 0.768053E+09
                                     211590
                                              0.353465E+07
                 0.911740E+09
  5
                                     460370
                                              0.86891iE+07
      56661892
  6
                 0.802386E+09
                                     325430
                                              0.667259E+07
      52987706
  7
      78627404
                 0.855336E+09
                                     384758
                                              0.758262E+07
  8
     110832682
                 0.773079E+09
                                     899005
                                              0.631812E+07
  9
     121246409
                 0.832270E+09
                                     968237
                                              0.777539E+07
 10
     121622402
                 0.924397E+09
                                     489067
                                              0.526781E+07
 11
      93386241
                 0.105642E+10
                                    1288146
                                              0.974768E+07
 12
      96694298
                 0.888598E+09
                                     746775
                                              0.857306E+07
Average values
   .696200E+08
                 0.708859E+09 .485637E+06
                                              0.549789E+07
atr long items
                      long $
                                    commits
                                                    demvals
        6772
                                              0.786718E+08
  1
               90+309E84C.0
                               0.4041052+08
  2
        6842
               0.3980702+08
                               0.197060E+08
                                              0.751768E+08
  3
        6964
               0.443995E+08
                               0.399799E+08
                                              0.774171E+08
  4
        7062
                                              0.770944E+08
               0.320089E+08
                               0.215359E+08
  5
        7105
               0.583719E+08
                               0.353331E+08
                                              0.742661E+08
  6
        7205
               0.653418E+08
                               0.2153U6E+08
                                              0.7429505+08
  7
        7252
               0.687237E+09
                               0.384764E+08
                                              0.770744E+08
  8
        7368
               0.749975E+06
                               0.286572E+08
                                              0.80EH15E+08
  9
        7408
               0.8260278+08
                                              0.791643E+08
                               0.366687E+08
 10
        7487
               0.797388E+08
                               0.243673E+08
                                              0.802358E+08
        7558
               0.906126E+08
                               0.363526E+08
                                              0.792118E+08
 11
         7638
               0.103068E+09
                               0.274867E+08
                                              0.765405E+08
Average values
      7221.4
               0.662090E+08
                              0.308755E+08
                                              0.769991E+08
```

No information lag Constant lead time Implied shortage factor= 580. Run number 5 migsd= 7099 demsd= 7395

Quarter FROM/TC X T P M IN	1 X 10145 80 5 1 517	T 145 1821 32 1 36	P 9 78 749 6 14	M 3 0 16 176 4	TUD 498 50 20 4 0
Quarter FROM/TO X T P M IN	2 X 10144 85 11 0 484	T 126 1839 40 1 34	P 17 66 763 4 14	M 1 0 19 186 3	OUT 460 45 23 8 0
Quarter FROM/TO X T P M	3 X 10128 66 8 1 439	T 150 1848 36 1 31	P 23 79 790 12 13	m 0 13 194 3	OUT 421 47 17 1 0
Quarter FROM/TO X T P M IN	¥ X 10037 78 7 0 482	T 140 1860 54 0 34	P 16 71 819 5 14	M 2 0 16 198 3	OUT 447 57 21 9 0
Quarter FROM/TO X T P M	5 X 9978 89 10 2 488	T 143 1874 39 0 34	P 19 76 840 7 14	M 1 12 12 205 3	0UT 463 48 24 5 0

Quarter FROM/TO X T P M IN	6 X 9977 96 12 0 449	T 155 1885 38 1 32	P 2 65 869 11 13	M 1 16 207 3	OUT 431 43 21 21 3
Quarter FROM/IO X I P M IN	7 X 9946 93 6 1 477	T 118 1912 40 1 34	P 18 60 872 6	M 2 1 18 212 3	0UT 450 45 25 2
Quarter FROM/IO X I P M IN	8 X 9902 87 11 3 498	I 141 1893 44 0 34	P 16 60 881 9	M 2 1 14 219 4	100 205 205 2005 2005
Quarter FROM/IO X I P M IN	9 X 9905 94 9 1 481	T 136 1902 33 0 34	P 12 65 898 4	M 1 1 15 225 3	0UT 447 50 25 10
Quarter FROM/TO X I P M	10 X 9899 82 9 0 492	T 119 1900 40 0 34	P 8 63 918 10 14	M 1 1 8 230 3	OUT 463 59 18 5 0

```
Quarter 11
FROM/TO
                                  P
                                                       OUT
            X
                       T
                                             M
          9915
                      131
                                  16
                                               2
                                                        418
 X
 T
            86
                                  59
                                               0
                     1637
                                                         51
 P
                       35
                                 934
            10
                                              14
                                                         23
M
                                            229
             1
                        0
                                   8
                                                          5
IN
           449
                       35
                                  13
                                               3
                                                          0
Quarter 12
                                  P
FROM/TO
            X
                       T
                                             M
                                                       DUT
                      115
X
          9860
                                  26
                                               1
                                                        459
 T
            97
                     1860
                                  76
                                               1
                                                         58
                                             18
 P
                                 929
            13
                       52
                                                         18
M
                        0
                                   9
                                            233
                                                          6
             0
IN
           489
                       34
                                               3
                                                          ۵
                                  14
   bkord-daus
                    bkord-day5
                                  bkord-max
                                                 bkord-max$
       9775917
  1
                 0.37090BE+08
                                               0.211401E+04
  2
                                       22137
      55368053
                 0.175786E+09
                                               0.433833£+05
  3
                                       57694
     129969107
                  0.41373BE+09
                                               0.105225E+07
  4
     198738672
                 0.708706E+09
                                      908741
                                               0.364694E+07
  5
     175822027
                                     2350454
                                               0.782779E+07
                  0.872055E+09
  6
      92868854
                 0.788427E+09
                                      634979
                                               0.657737E+07
  7
     104403928
                  0.724382E+09
                                      945837
                                               0.811856E+07
  8
     124379222
                 0.645802£+09
                                      571175
                                               0.466636E+07
  9
     135668691
                 0.727833E+09
                                     2151764
                                               0.714751E+07
 10
     114827452
                 0.707457E+09
                                               0.624074E+07
                                      411493
 11
     143684070
                  0.722732E+09
                                     1048381
                                               0.6700B0E+07
 12
     184845953
                 Q.661374E+09
                                     1437988
                                               0.547387E+07
Average values
   .122529E+09
                 0.598782E+09 .878387E+06
                                               0.479147E+07
qtr
   long items
                      long $
                                     commits
                                                    demval$
  1
        6781
               0.460076E+08
                               0.355795E+08
                                               0.647982E+08
  2
        6845
               0.525109E+08
                               0.224785E+08
                                               0.674631E+08
  3
                               0.338086E+08
        6866
               0.586748E+08
                                               0.688074E+08
  4
        7001
                               0.235361E+08
               0.658047E+08
                                               0.713635E+09
  5
                               0.298715E+08
                                               0.682691E+08
        7076
               0.697184E+08
  6
        7135
               0.798532E+08
                               0.258822E+08
                                               0.687910E+08
  7
        7258
               0.844958E+08
                               0.329328E+08
                                               0.722490E+08
  8
         7356
               0.904294E+CB
                               0.252421E+08
                                               0.717971E+08
  9
        7441
               0.920493E+08
                               0.327342E+08
                                               0.751302E+08
 10
                               0.256531E+08
        7547
               0.962199E+08
                                               0.752493E+08
 11
         7570
               0.971852E+08
                               0.340680E+08
                                               0.795007E+08
               0.956744E+08
                               0.304946E+08
                                               0.822326E+08
 12
         7663
Average values
      7211.6
               0.774520E+08
                               0.293568E+08
                                              0.721376E+08
```

No information lag Constant lead time Implied whortage factor= 680. Run number 1 migsd= 9905 demad= 7415

```
atr bkord-daus
                  bkord-day$
                                bkord-max
                                              bkord-maxS
       2941506
                                       Э¥
                                            0.472320E+04
                0.231570E+0B
  2
      10281801
                                       126
                                            0.539364E+05
                0.1026962+09
                                    16238
  3
      25315488
                                            0.853786E+06
                0.2608642+09
  4
      45722340
                                   170454
                                            0.180564E+07
                0.466057E+09
  5
      59389036
                0.655512E+09
                                   278213
                                            0.431682E+07
  6
      72564438
                0.799450E+09
                                   610450
                                            0.650093E+07
  7
      71386926
                                   424158
                                            0.488357E+07
                0.755035E+09
  8
      76812962
                0.786331E+09
                                   567684
                                            0.669147E+07
  9
      82754353
                0.642054E+09
                                   663282
                                            0.672663E+07
                0.588355E+09
 10
      56034515
                                   634780
                                            0.402728E+07
                0.679052E+09
 11
      70965650
                                   464454
                                            0.7357R7E+07
12
      74418493
                                   672409
                0.690386E+09
                                            0.472669E+07
Average values
   .540490E+08 0.537413E+09 .375190E+06
                                            0.399578E+07
```

qtr	long item	s long \$	commits	demvalS
1	6742	0.341256E+08	0.341950E+08	0.695378E+08
2	6811	0.413148E+08	0.202476E+08	0.694906E+08
3	6891	0.469273E+08	0.355776E+08	0.716015E+08
4	6949	0.506795E+08	80+3544655.0	0.7427405+08
5	7014	0.613702E+08	0.393918E+08	0.756709E+08
6	7083	0.677894E+08	0.2324B1E+0B	0.779703E+0B
7	7207	0.713839E+08	0.380548E+08	80+3568608.0
8	7250	0.727632E+08	0.227694E+08	0.832453E+08
9	7358	0.728339E+08	0.362773E+08	0.835426E+08
10	7388	0.896497E+08	0.297129E+08	0.840625E+08
11	7481	0.944072E+08	0.351136E+08	0.860210E+08
12	7585	0.102971E+09	0.312833E+08	0.851144E+08
Aver	rage value	5		
	7146.6	0.671846E+08	0.307346E+08	0.784517E+08

No information lag Constant lead time Implied shortage factor: 680. Run number 2 migsd= 6057 demsd= 2873

```
gtr bkord-days
                  bkord-dau$
                                bkord-max
                                              bkord-max$
                                       70
                                            0.193057E+05
       380Ce#5
                0.293803E+08
  1
                                      623
  2
                                           0.290057E+05
      11720918
                C.144529E+09
                                    61822
  3
      26485553
                0.338570E+09
                                            0.926B32E+06
      49727023
                0.591257E+09
                                   204972
                                            0.235212E+07
  5
      75634927
                0.732885E+09
                                   356434
                                            0.546909E+07
  6
     123527926
                                   965611
                                            0.681513E+07
                0.781906E+09
  7
     173231673
                0.874154E+09
                                   446820
                                            0.637772E+07
  8
                                   762416
                                            0.578991E+07
     225281806
                0.926060E+09
  9
     218630239
                0.104770E+10
                                  4669540
                                            0.100396E+08
 10
      69572283
                0.676252E+09
                                   592425
                                           0.967862E+07
      78548407
                0.745621E+09
                                   525041
                                            0.671939E+07
 11
 12
      95744583
                0.775516E+09
                                   690076
                                           0.660595E+07
Average values
   .958832E+08
                0.655327E+09 .773004E+06
                                           0.506856E+07
```

qtr	long item	s long \$	commit\$	demval\$
1	6771	80+34EEPEE.0	0.397905E+08	0.717272E+08
2	6828	U.419490E+08	0.197558E+08	0.730873E+08
3	6882	0.595241E+08	0.350019E+08	0.697890E+08
4	6962	0.642627E+08	80+3054602.0	0.694410E+0B
5	7043	0.738375E+08	0.347075E+08	0.687841E+08
6	7139	0.789235E+08	0.319068E+08	0.736257E+08
7	7224	0.848069E+08	0.320234E+08	0.742770E+08
8	7307	0.839716E+08	0.294109E+08	0.777732E+08
9	7 4 07	0.920728E+08	0.307193E+09	0.755772E+0B
10	7458	0.955441E+0B	80+34Ee835.0	0.769444E+08
11	7513	0.925280E+08	0.2895C7E+08	0.783776E+08
12	7607	0.978745£+08	0.337059E+08	0.818653E+08
Aver	age value	S		
	7178.4	0.750190E+08	0.303262E+08	0.742641E+08

No information lag Constant lead time Implied shortage factor= 680. Run number 3 migsd= 9745 demsd= 3447

```
gtr bkord-daus
                   bkord-dau$
                                 bkord-max
                                               bkord-max$
       1229193
                 0.562970E+07
                                             0.109090E+05
                                       466
                                             0.345898E+05
  2
       7456279
                 80+3E55F+08
                                      3570
  3
      20156106
                 0.154647E+09
                                      4325
                                             0.143837E+06
  4
      36745708
                 0.327804E+09
                                    130328
                                             0.812788E+06
  5
      37007493
                 0.481637E+09
                                    282997
                                             0.306126E+07
  6
      42154307
                 0.607632E+09
                                    306786
                                             0.402972E+07
  7
      59996261
                 0.570985E+09
                                    325967
                                             0.649759E+07
  8
     106030040
                 0.565670E+09
                                    359106
                                             0.304078E+07
  9
     153022998
                 0.607094E+09
                                    505127
                                             0.597736E+07
 10
     158870742
                 0.582108E+09
                                   1911563
                                             0.439300E+07
 11
      97382582
                 0.715105E+09
                                    515255
                                             0.481940E+07
 12
     115095353
                 0.792184E+09
                                    846617
                                             0.690041E+07
Average values
                 0.454568E+09 .432676E+06
   .695956E+08
                                             0.331014E+07
qtr long items
                     long $
                                   commit$
                                                  demval$
                              0.2951725+08
  1
        6739
              0.347642E+08
                                             0.675435E+0B
  2
        6837
               0.472185E+08
                              0.169562E+08
                                             0.615278E+08
  3
        6920
              0.640152E+08
                              0.297975E+08
                                             0.585104E+08
  4
        7044
               0.733531E+08
                              0.174958E+08
                                             0.580336E+08
  5
        7106
               0.753495E+08
                              0.293110E+08
                                             0.616822E+08
  6
        7198
               0.801420E+08
                              0.203942E+08
                                             0.610628E+08
  7
        7320
               0.883128E+08
                              0.253474E+08
                                             0.596535E+08
```

8 7435 0.980819E+08 0.221945E+08 0.575687E+08 9 7480 0.102279E+09 0.612901E+08 0.327951E+08 10 7564 0.107775E+09 0.233439E+08 0.625208E+08 11 7650 0.112412E+09 0.284264E+08 0.632557E+0B 12 7701 0.116628E+09 0.219348E+08 0.64233BE+08 Average values 7249.5 0.833609E+08 0.247528E+08 0.614069E+08

No information lag Constant lead time Implied shortage factor= 680. Run number 4 migsd= 1075 demsd= 1175

```
qtr bkord-days
                  bkord-day$
                                bkord-max
                                             bkord-max$
  1
       3468526
                0.491814E+08
                                      649
                                           0.192751E+05
      14274169
                0.196455E+09
                                           0.202392E+06
                                      687
  3
      33268002
                0.443537E+09
                                    52906
                                           0.158350E+07
                0.766245E+09
      51776608
                                   211544
                                           0.345847E+07
  S
                0.909696E+09
      56660479
                                   460394
                                           0.873237E+07
  6
      52986777
                0.801697E+09
                                   325429
                                           0.667085E+07
  7
      78626037
                0.854568E+09
                                           0.758119E+07
                                   384723
  8
     110829435
                0.771593E+09
                                   898963
                                           0.631728E+07
  9
     121231999
                0.824277E+09
                                   968193
                                           0.777255E+07
 10
     121592520
                0.907901E+09
                                   488936
                                           0.524809E+07
 11
      93954129
                0.103724E+10
                                  1287875
                                           0.954339E+07
 12
      96669732
                0.885297E+09
                                   746599
                                           0.854180E+07
Average values
                0.703974E+09 .485575E+06
   .696115E÷08
                                           0.547260E+07
```

qtr	long item	s long \$	commit\$	demval\$
1	6771	0.348375E+08	0.414742E+08	0.726718E+08
2	6842	0.399787E+08	0.18926CE+08	0.751768E+08
3	6963	30+3E08444.0	0.411948E+08	0.774171E+08
4	7061	0.534708E+08	0.216755E+08	0.770944E+08
5	7106	0.598706E+08	0.354916E+08	0.742661E+08
6.	7207	0.668138E+08	0.215984E+08	0.742950E+08
7	7253	0.702201E+08	0.385359E+08	0.770744E+08
8	7369	0.765670E+09	0.289126E+08	0.808415E+08
9	7409	0.842994E+08	0.368358E+08	0.791643E+08
10	7488	0.814231E+08	0.245760E+08	0.802358E+08
11	<i>7</i> 559	0.923138E+08	0.365140E+08	0.792118E+08
12	7633	0.104816E+09	0.275007E+08	0.765405E+08
Aver	age value	5		
	7221.8	0.674246E+08	O.311113E+08	0.769991E+08

No information lag Constant lead time Implied shortage factor= 680. Run number 5 migsd= 7099 demed= 7395

```
gtr bkord-daus
                   bkord-day$
                                 bkord-max
                                               bkord-max$
       9775694
                 0.367283E+08
                                          4
                                             0.143822E+04
                                     22128
                                             0.425782E+05
  2
      55367771
                 0.175336E+09
  3
                 0.412888E+09
                                     57678
                                             0.102801E+07
     129968608
                                    908805
                                             0.377641E+07
  4
     198737953
                 0.707570E+09
  5
                                   2350279
                                             0.751974E+07
     175819199
                 0.870072E+09
                                    635176
                                             0.697873E+07
  6
      92863351
                 0.787103E+09
                                             0.810875E+07
  7
                                    945795
     104391072
                 0.721593E+09
  8
     124365263
                 0.643301E+09
                                    571073
                                             0.4665215+07
  9
                 0.724690E+09
                                   2151504
                                             0.710890E+07
     135644804
                 0.704913E+09
                                             0.61973BE+07
                                    411376
 10
     114803887
                 Q.720249E+09
                                   1047869
                                             0.673425E+07
 11
     143636680
                                             0.540151E+07
 12
     184799077
                 0.659142E+09
                                   1437881
Average values
                 0.596965E+09 .878297E+06
                                             0.479691E+07
   .122514E+09
```

```
demval$
qtr long items
                     long $
                                   commit$
                              0.366944E+08
                                             0.647982E+08
        5780
              Q.464074E+0B
  1
                                             0.6746315+08
              0.529548E+08
  2
        6845
                              0.219140E+08
              0.595050E+08
  3
        6966
                              0.347689E+08
                                             0.688074E+08
                                             0.713635E+08
  4
        7001
              0.666647E+08
                              0.228020E+08
 5
        7076
              0.709376E+08
                              0.307321E+08
                                             0.682691E+08
  6
        7135
              0.810865E+08
                              0.251974E+08
                                             0.687910E+08
  7
        7258
                              0.338824E+08
                                             0.722490E+08
              0.857876E+08
  8
        7356
              0.917574E+08
                              0.246486E+08
                                             0.717971E+08
  9
        7440
              0.941850E+08
                              0.336074£+08
                                             0.751302E+08
 10
        7546
              0.975585E+08
                              0.248581E+08
                                             0.752493E+08
                              0.350479E+08
                                             0.755007E+08
 11
        7570
              0.984991E+08
              0.971422E+08
                              0.299091E+08
                                             0.822326E+08
 12
        7662
Average values
      7211.3
              0.785405E+08
                             0.295052E+08
                                            0.721376E+08
```

No information lag Variable lead time Implied shortage factor= 580. Run number 1 migsd= 3905 damad= 7415

```
qtr bkord-days
                                bkord-max
                  bkord-dau$
                                              bkord-max$
  1
       2942031
                0.239700E+08
                                        37
                                            0.539899E+04
  2
      10283039
                0.103940E+09
                                       135
                                            0.547415E+05
  Э
      25310113
                0.262752E+09
                                     16269
                                            0.874761E+06
      49977394
                0.494641E+09
                                    24246
                                            0.882055E+06
  4
  5
                                            0.304403E+07
      78372400
                0.816086E+09
                                    268945
 6
      99083964
                0.115849E+10
                                    373424
                                            0.545921E+07
  7
     119150158
                0.126644E+10
                                    738993
                                            0.703028E+07
 8
     118359093
                0.130289E+10
                                    775766
                                            0.653267E+07
  9
     121434913
                0.133768E+10
                                    577076
                                            0.728852E+07
 10
     145295152
                0.136568E+10
                                    692613
                                            0.926055E+07
 11
     147241451
                0.108064E+10
                                    969164
                                            0.616925E+07
 12
     111959371
                0.124032E+10
                                   507054
                                            0.852032E+07
Average values
   .857856E+08
                0.871127E+09 .411977E+06 0.459348E+07
```

atr	long item	s long \$	commits	demval\$
1	6743	80+344CS4E.0	0.350687E+08	0.655378E+08
2	6812	0.415778E+08	0.228816E+08	0.694906E+08
3	6891	0.472189E+08	0.368807E+08	0.716015E+08
4	6951	0.511395E+08	0.259376E+08	0.742740E+08
5	7014	0.626293E+08	0.418076E+08	0.756709E+08
6	7085	0.694239E+08	0.260334E+08	0.779703E+08
フ	7209	0.732558E+08	0.395035E+08	80+3568808.0
8	7252	0.749899E+U8	0.251683E+08	0.832453E+08
9	7357	C.761031E+08	0.371411E+08	0.835426E+08
10	7386	0.928366E+08	0.344248E+08	0.840625E+08
11	フਖ日フ	0.982688E+08	0.364157E+08	0.860210E+08
12	7588	0.106077E+09	0.342710E+08	0.8511445+08
Aver	age value	S		
	7147.9	0.689771E+08	0.329612E+08	0.784517E+08

No information lag Variable lead time Implied shortage factor= 580. Run number 2 migsd= 6057 demsd= 2873

```
gtr bkord-daus
                              bkord-max
                 bkord-dau$
                                           bkord-max$
 1
      2493089
               0.293810E+08
                                     73
                                         0.199815E+05
 2
      11722361
               0.145336E+09
                                    823
                                         0.290168E+05
 3
     26489305
               0.340766E+09
                                  61E75
                                         0.843654E+06
 4
               0.618204E+09
                                  27591
                                         0.17102BE+07
     54890459
 5
               0.890625E+09
     94534494
                                 383610
                                         0.256767E+07
 6
               0.122441E+10
    148733669
                                1038308
                                         0.917608E+07
 7
               0.129195E+10
                                 371318
    208495697
                                         0.652683E+07
                                         0.738989E+07
 8
    268150095
               0.132402E+10
                                 765227
 9
                                2474055
                                         0.7967992+07
    323393149
               0.145691E+10
 10
    382028137
               0.175910E+10
                                3338074
                                         0.104456E+08
                                1055046
 11
    182211840
               0.165592E+10
                                         0.130268E+08
 12
               0.128514E+10
    158198161
                                1096886
                                         0.601916E+07
Average values
   0.547692E+07
```

qtr	long item	s long \$	commit\$	demval\$		
1	6770	0.349480E+08	0.412019E+08	0.717272E+08		
5	6826	0.407875E+08	0.211198E+08	0.730873E+08		
3	6881	0.586535E+08	0.373121E+08	0.697890E+08		
4	6962	0.635401E+08	0.224998E+08	0.694410E+08		
5	7044	0.731239E+0R	0.376363E+08	0.587841E+08		
6	7137	0.781631E+0 8	0.357689E+08	0.736257E+08		
7	7224	0.840894E+08	0.340102E+08	0.742770E+08		
8	7307	0.850477E+08	0.324405E+08	0.777732E+0B		
9	7405	0.936444E+08	0.330709E+08	0.751772E+08		
10	7461	0.974263E+0B	0.290392E+08	0.769444E+08		
11	7520	0.946733E+08	0.310573E+08	0.783776E+08		
12	7613	0.100875E+09	0.368243E+08	0.818653E+08		
Aver	Average values					
	7179.2	0.754144E+0B	0.326651E+08	0.742641E+08		

No information lag Variable lead time Implied shortage factor= 580. Run number 3 migsd= 9745 demsd= 3447

```
bkord-day$
gtr bkord-daus
                                bkord-max
                                             bkord-max$
       1229196
               0.56303BE+07
                                      469
  1
                                           0.115848E+05
 2
       7456288
                                     3579
                0.443237E+08
                                           0.353912E+05
  3
      20156166
                0.154706E+09
                                     4328
                                           0.144542E+06
  4
      38651104
                0.336631E+09
                                     4356
                                           0.351976E+06
  5
      51223163
                0.560551E+09
                                           0.312932E+07
                                   410149
 6
      56044313
                0.787810E+09
                                   169227
                                           0.347413E+07
  7
      88316153
                0.979958E+09
                                   357047
                                           0.460466E+07
 8
     135705110
                0.109107E+10
                                   465280
                                           0.747032E+07
 9
     177751377
                0.866871E+09
                                   425885
                                           0.406044E+07
10
     245943047
                0.102090E+10
                                   627836
                                           0.552845E+07
 11
     307980151
                0.107364E+10
                                   B10753
                                           0.630771E+07
12
    349150030
                0.121941E+10
                                  2916388
                                           0.600511E+07
Average values
   .123301E+09
                0.678459E+09 .516275E+06
                                           0.342697E+07
```

qtr	long item	s long \$	commit\$	demval\$
1	6738	0.348057E+08	0.293238E+08	0.675435E+08
2	6834	0.469832E+08	0.189507E+08	0.615278E+08
3	6920	0.635299E+08	0.320824E+08	0.585104E+08
4	7040	0.729981E+08	0.189065E+08	0.580336E+08
5	7102	0.751288E+08	0.313902E+08	0.516822E+08
6	7197	0.806533E+08	0.223688E+08	0.610628E+08
7	7321	0.894988E+08	0.267492E+08	0.596535E+08
8	7435	0.100491E+09	0.244669E+08	0.575687E+08
9	7479	0.105577E+09	0.367255E+08	0.612901E+08
10	7564	0.112194E+09	0.253008E+08	0.625208E+08
11	7652	0.117014E+09	0.311650E+08	0.632557E+08
12	7703	0.122064E+09	0.244376E+08	0.642338E+08
Average values				
	7248.8	0.850781E+08	0.268239E+08	0.614069E+08

No information lag Variable lead time Implied shortage factor 580. Run number 4 migsd- 1075 demsd- 1175

```
qtr bkord-days
                bkord-days
                             bkord-max
                                         bkord-max$
      3468927
               0.498455E+08
                                   652
                                       0.199509E+05
 2
     14275248
              0.198239E+09
                                   714
                                       0.233083E+06
 3
     33269461
               0.445949E+09
                                 52895
                                       0.156054E+07
 4
     56836791
               0.816065E+09
                                 36238
                                       0.185891E+07
 5
             0.122366E+10
     82698489
                                346618
                                       0.411079E+07
 6
     99527222
               0.162052E+10
                                520146
                                       0.123045E+08
 7
    107759056
               0.134466E+10
                                453022
                                       0.67009BE+07
 8
    149117137
               0.144107E+10
                                465806
                                       0.947089E+07
 9
                               1477547
    174540141
               0.135856E+10
                                       0.849610E+07
10
    173497735
               0.145401E+10
                                865252
                                       0.839071E+07
                                387833
11
    181654939
              0.150216E+10
                                       0.698581E+07
12
    246921792
              0.170877E+10
                               1484134
                                      0.998945E+07
Average values
```

qtr	long item	s long \$	commits	demval\$
1	6772	0.349050E+0B	0.437073E+08	0.726718E+08
اسم	6843	0.399392E+08	0.214693E+08	0.751768E+08
3	696 5	0.446669E+08	0.433039E+08	0.774171E+0B
4	7066	0.524228E+08	0.236600E+08	0.770944E+08
5	7108	0.593165E+08	0.377715E+08	0.742661E+0B
3	7208	0.672776E+08	0.234205E+08	0.742950E+08
7	7255	0.710330E+08	0.412099E+08	0.770744E+08
a	7370	0.782235E+08	0.322639E+08	0.808415E+08
9	7407	0.868410E+08	0.394231E+08	0.791643E+0B
10	7491	0.842964E+08	0.261010E+0B	0.802358E+08
11	7565	0.962633E+08	0.391216E+08	0.792118E+08
12	7637	0.109788E+09	0.303520E+08	0.76540SE+08
Ave	age values			
	7223.9	0.697478E+08	0.334837E+08	0.769991E+08

No information lag Variable lead time Implied shortage factor= 580. Run number 5 migsd= 7099 demsd= 7395

```
qtr bkord-days
                bkord-dau$
                             bkord-max
                                         bkord-max$
      9775917
 1
               0.370908E+08
                                       0.211401E+04
 2
              0.175786E+09
     55368053
                                 22137
                                       0.433833E+05
 3
    129969107
               0.413738E+09
                                 57694
                                       0.105225E+07
 4
    216269350
               0.737800E+09
                                137254
                                       0.242308E+07
 5
    290423628
               0.109076E+10
                               1144410
                                       0.441419E+07
 6
    327713978
               0.144585E+10
                                       0.853470E+07
                                943196
 7
    157043749
               0.127895E+10
                               1074210
                                       0.960966E+07
 8
    181719522
               0.114952E+10
                               835607
                                       0.611585E+07
 9
    178184658
              0.113427E+10
                               1503007
                                       0.846957E+07
 10
    218267214
               0.118504E+10
                               1277533
                                       0.654581E+07
 11
    221455987
               0.131084E+10
                               1052968
                                       0.680878E+07
12
    271024813
              0.136360E+10
                                       0.995625E+07
                               1975039
Average values
```

qtr	long item	s long \$	commits	demval\$
1	6781	0.460429E+08	0.381262E+08	0.647982E+08
5	6845	0.525990E+08	0.250587E+08	0.674631E+0B
3	6865	0.593570E+08	0.362334E+08	0.688074E+08
4	6998	0.666977E+08	0.255191E+08	0.713635E+08
5	7077	0.708662E+08	0.318412E+08	0.682691E+08
6	7133	0.814816E+08	0.283710E+08	0.687910E+08
7	7258	0.869343E+08	0.359268E+08	0.722490E+08
8	7359	0.933697E+08	0.273245E+08	0.717971E+08
9	ブサササ	0.961403E+08	0.351469E+08	0.751302E+08
10	7550	0.999043E+08	0.274112E+08	0.752493E+08
11	7572	0.101064E+09	0.360746E+08	0.795007E+08
12	7666	0.100477E+09	0.336382E+08	0.822326E+08
Average values				
	7212.3	0.795778E+08	0.317227E+08	0.721376E+08

No information lag Variable lead time Implied shortage factor= 680. Run number 1 migsd= 9905 demsd= 7415

```
qtr bkord-days
                bkord-days
                             bkord-max
                                         bkord-max$
      2941506
               0.231570E+08
                                    34
                                       0.472320E+04
 2
     10281801
               0.102696E+09
                                   126
                                       0.539364E+05
 3
     25315488
               0.260864E+09
                                 16238
                                       0.853786E+06
 4
               0.4926B3E+09
     49974685
                                 24236
                                       0.880672E+06
 5
     78369503
               0.814095E+09
                                268941
                                       0.304226E+07
 6
     99080394
               0.115650E+10
                                373386
                                       0.543752E+07
               0.126533E+10
 7
    119147079
                                738960
                                       0.701919E+07
 8
    118361920
                                775758
               0.130217E+10
                                       0.653445E+07
 9
    121411278
               0.133617E+10
                                577009
                                       0.728168E+07
    145265234
               0.136381E+10
10
                                692377
                                       0.924371E+07
11
    147202138
               0.107839E+10
                                969055
                                       0.616392E+07
12
    111916575
               0.123781E+10
                                510341
                                       0.851288E+07
Average values
```

qtr	long item	s long S	commits	demval\$
1	6743	0.341962E+08	0.360536E+08	0.695378E+08
2	6813	0.416456E+08	C.222200E+U9	0.694906E+08
3	6892	0.474482E+06	0.379372E+08	0.716015E+08
4	6951	0.513921E+08	0.252331E+0B	0.742740E+0B
5	7014	0.629117E+08	0.430719E+08	C.756709E+08
6	7085	0.697870E+08	0.252884E+08	0.779703E+08
7	7209	0.736200E+08	0.404979E+08	0.808892E+08
8	7251	0.753943E+08	0.243646E+08	0.832453E+08
9	7357	0.766593E+08	0.381370E+08	0.835426E+08
10	7387	0.944581E+08	0.336666E+08	0.840625E+08
11	7488	0.100010E+09	0.373956E+08	0.860210E+08
12	7589	0.109096E+09	0.344986E+08	0.851144E+08
Aver	age value:	5		
	7148.3	0.697182E+08	0.331971E+08	0.784517E+08

No information lag Variable lead time Implied shortage factor= 580. Run number 2 migsd= 6057 demsd= 2873

```
gtr bkord-days
                   bkord-dau$
                                 bkord-max
                                               bkord-max$
  1
       2493086
                 80+3E08EES.0
                                        70
                                             0.193057E+05
  2
      11720918
                 0.144529E+09
                                       658
                                             0.290057E+05
  3
      26485553
                0.338670E+09
                                     61822
                                             30+35E835E.0
  4
      54886871
                0.616199E+09
                                     27146
                                             0.146124E+07
  5
      94530814
                 0.888568E+09
                                    384105
                                             0.284432E+07
 6
     148728136
                0.122219E+10
                                   1037524
                                             0.873757E+07
  7
     208483210
                 0.129027E+10
                                             0.651387E+07
                                    371295
 A
     268138359
                0.132346E+10
                                    765169
                                            0.738491E+07
  9
     323380446
                 0.145656E+10
                                   2474004
                                             0.796780E+07
 10
     382007049
                0.175868E+10
                                   3337948
                                            0.104413E+08
 11
     182194182
                0.165570E+10
                                   1054981
                                             0.130265E+0B
                0.128405E+10
 12
     158175588
                                   1096609
                                            0.601605E+07
Average values
               0.100069E+10 .884291E+06
   .155102E+09
                                            0.54473BE+07
```

```
qtr long items
                     long $
                                   commit$
                                                  demvalS
              0.349724E+08
  1
        6770
                             80+365F+08
                                             0.717272E+06
  5
        6859
               0.420602E+08
                              0.214523E+08
                                             0.730873E+08
  3
        6883
              0.603766E+08
                             0.376387E+08
                                            0.697890E+08
  4
        6965
               0.653007E+08
                             0.228008E+08
                                             0.694410E+08
  5
        7046
              0.756196E+08
                             0.378538E+08
                                            0.687841E+08
  6
        7139
              0.810773E+08
                             0.361563E+08
                                             0.736257E+08
  7
        7226
              0.870127E+08
                             0.340477E+08
                                            0.742770E+08
  8
        E0E7
              0.867974E+08
                             0.326824E+08
                                             0.777732E+08
 9
        7408
              0.954371E+08
                             0.331660E+CB
                                            0.754772E+08
 10
        7462
                                            0.769444E+08
               0.992431E+08
                             0.291364E+08
 11
        7521
              0.965260E+08
                             0.311436E+08
                                            0.783776£+08
        7613
 12
              0.102728E+0S
                             0.370268E+08
                                            0.818653E+C8
Average values
      7180.8 0.772626E+08
                             0.329616E+08
                                           0.742641E+08
```

No information lag Variable lead time Implied shortage factor= 580. Run number 3 migsd= 9745 demsd= 3447

```
gtr bkord-daus
                               bkord-max
                  bkord-days
                                             bkord-maxs
       1229193
               0.562970E+07
                                      466
                                           0.109090E+05
                                     3570
  2
       7456279
                80+3855E46
                                           0.345898£+05
  3
      20156106
               0.154647E+09
                                     4325
                                           0.143837E+06
  4
      38650913
                0.336362E+09
                                     4358
                                           0.351960E+06
  5
      51221707
                0.558986E+09
                                   410143
                                           0.312413E+07
                0.785878E+09
  6
      56040156
                                   169213
                                           0.345036E+07
  7
      86311055 0.977482E+09
                                   357042
                                           0.460126E+07
  8
     135700254
                0.108927E+10
                                   465234
                                           0.744752E+07
  9
     177748032
                0.864408E+09
                                   425870
                                           0.405794E+07
 10
     245930780
                0.101815E+10
                                  627767
                                           0.550190E+07
 11
     307964913
               0.107274E+10
                                   810694
                                           0.6302B2E+07
 12
     349135405 0.121863E+10
                                  2916329
                                           0.599984E+07
Average values
   .123295E+09
                0.677209E+09 .516251E+06
                                           0.341892E+07
```

drr	Toud Traws	s Toug 2	COMWIFE	GGWAST2	
1	6739	80+3SE084E.0	0.302733E+08	0.675435E+08	
2	6835	0.473689E+0B	0.181560E+0B	0.615278E+08	
3	6921	0.642779E+08	0.323951E+C8	0.585104E+08	
4	7042	0.737368E+08	0.189812E+08	0.580336E+08	
5	7104	0.758728E+08	0.315449E+08	0.616822£+08	
6	7199	0.814211E+08	0.224702E+08	0.610628E+08	
7	7321	0.903144E+08	0.268570E+08	0.596535E+08	
8	7435	0.101635E+09	0.246097E+08	0.575687E+08	
9	7480	0.1068368+09	0.369793E+08	0.612901E+08	
10	7565	0.113542E+09	0.255214E+0B	0.625208E+08	
11	7653	0.118372E+09	0.313669E+08	0.632557E+08	
12	7704	0.123589E+09	0.245652E+08	0.642338E+08	
Average values					
	7249.8	0.8598125+08	0.2697675+08	0.614069F+08	

No information lag Variable lead time Implied shortage factor= 680. Run number 4 migsd= 1075 demsd= 1175

```
gtr bkord-days
                 bkord-dauS
                             bkord-max
                                         bkord-max$
      3468526
                                        0.192751E+05
 1
               0.491814E+08
                                   649
     14274169
               0.196455E+09
 2
                                   687
                                        0.202392E+06
  3
     33268002
               0.443537E+09
                                 52906
                                        0.158350E+07
                                        0.178273E+07
     56835701
               0.814258E+09
 4
                                 36192
 5
     82696851
                                346657
                                        0.417881E+07
               0.122122E+10
 6
     99525358
               0.161783E+10
                                520131
                                        0.122797E+08
 7
    107757781
               0.134351E+10
                                453017
                                        0.669639E+07
 8
    149114722
               0.143994E+10
                                465804
                                        0.947086E+07
 9
    174526832
               0.135067E+10
                               1477536
                                        0.849218E+07
 10
    173468046
               0.143810E+10
                                865138
                                        0.836651E+07
 11
    181616525
               0.148167E+10
                                387626
                                        0.680135E+07
12
    246896312 0.170236E+10
                               1483872
                                        0.994641E+07
Average values
```

qtr	long item	s long \$	commits	demval\$
1	6771	0.349065E+08	0.449751E+08	0.726718E+08
2	6843	0.401160E+0B	0.207015E+0B	0.751768E+08
3	6964	0.447514E+0B	0.446118E+08	0.774171E+0B
4	7065	0.538909E+08	0.238326E+08	0.770944E+08
5	7107	0.608411E+08	0.379886E+08	0.742661E+08
6	7208	0.688078E+08	0.23522E+0B	0.742950E+08
7	7255	0.725836E+08	0.413104E+08	0.770744E+08
8	7371	0.798527E+08	0.325736E+08	0.808415E+08
9	7408	0.886389E+08	0.396593E+08	0.791643E+08
10	7492	0.860844E+08	0.263592E+08	0.802358E+08
11	7566	0.980754E+08	0.393070E+08	0.792118E+08
12	7638	0.111661E+09	0.305355E+08	0.765405E+08
Aver	rage value	5 ,		
	7224.0	0.700175E+08	0.337731E+0B	0.769991E+08

12

7665

7212.1

Average values

0.102014E+09

0.807042E+08

No information lag Variable lead time Implied shortage factor= 680. Run number S migsd= 7099 demsd= 7395

```
bkord-max
                                              bkord-maxs
gtr bkord-days
                   bkord-dau$
                                            0.143B22E+04
       9775694
                 0.367283E+08
                                         4
                                     22128
                                            0.425782E+05
      55367771
                 0.175335E+09
                                     57678
                                            0.102801E+07
                 0.412888E+09
     129968608
                                            0.25525E+07
                                    137318
                 0.73669BE+09
  4
     216268703
                                            0.411107E+07
                                   1144238
  5
    290420810
                 0.108B71E+10
                                    943393
                 0.144409E+10
                                            0.893114E+07
     327710730
  7
     157035965
                 0.127681E+10
                                   1074204
                                            0.960B91E+07
                                    835579
                                            0.610597E+07
                 0.114610E+10
  8
     181704468
                                            0.844213E+07
                                   1502862
  9
                C.113084E+10
     178164218
                 0.118036E+10
                                   1277428
                                            0.650391E+07
     218240171
 10
                                            0.6830B2E+07
                                   1052783
     221421178
                 0.130685E+10
 11
                                   1974802
                                            0.988687E+07
 12
     270995499
                0.136080E+10
Average values
                                            0.533712E+07
                 0.941351E+09 .835201E+06
   .1880P9E+09
                                                  demvals
                                   commit$
gtr long items
                     long $
                             0.392750E+08
                                            0.647982E+08
        6780
               0.464505E+08
  1
  2
               0.530435E+08
                              0.245620E+08
                                            0.674631E+08
        6845
                                            0.688074E+08
  3
        6865
               0.602173E+08
                              0.372151E+08
                              0.248002E+08
                                             0.713635E+08
  4
        6998
               0.675898E+08
                                            0.682691E+08
  5
        7077
               0.721182E+08
                              0.327090E+08
  6
                              0.277422E+08
                                             0.687910E+08
        7133
               0.827446E+08
                                            0.722490E+08
                              0.369179E+0B
  7
        7258
               0.882664E+08
                                             0.717971E+0B
  8
               0.947514E+08
                              0.267574E+08
        7360
                                             0.751302E+08
  9
        7444
               0.97529BE+08
                              0.360407E+08
        7549
               0.101297E+09
                              0.266316E+0B
                                             0.752493E+0B
 10
                              0.370977E+08
                                             0.795007E+08
               0.102428E+09
 11
        7571
```

0.331240E+08

0.319061E+08

0.822326E+08

0.721376E+08

One quarter information lag Constant lead time Implied shortage factor= 580. Run number 1 migsd= 9905 demsd= 7415

qtr	bkord-days	bkord-day\$	bkord-max	bkord-max\$
` 1	2942031	0.239700E+08	37	0.539899E+04
2	10283039	0.1039'±0E+09	135	0.547416E+05
3	25318113	0.262752E+09	16269	0.874761E+06
4	46215291	CO+3EOP88P.0	183096	0.180906E+07
5	66436158	0.726657E+09	411948	0.678078E+07
6	92955537	0.103762E+10	2396798	0.128943E+08
7	121294268	0.126042E+10	953862	0.173472E+08
8	141720352	0.126927E+10	1152005	0.170565E+08
9	159240489	0.120581E+10	1752001	0.198207E+08
10	159159202	0.125014E+10	3310046	0.160594E+08
11	161097569	0.131758E+10	1476424	0.218959E+08
12	168665806	0.133560E*10	2099821	0.169584E+08
Ave	rage values			
	.962773E+08	0.855180E+09	.114604E+07	0.109631E+08

qtr	long item	s long \$	commit\$	demval\$
1	6744	0.343830E+08	0.277703E+08	0.695378E+08
2	6814	0.414708E+08	0.160320E+08	0.694906E+08
3	6894	0.475047E+08	0.362065E+08	0.716015E+08
4	6953	0.513229E+08	0.221858E+08	0.742740E+08
5	7015	0.608297E+08	0.356356E+08	0.756709E+08
6	7082	0.661059E+08	0.244545E+08	0.779703E+08
7	7205	0.700844E+08	0.370309E+08	0.808892E+08
8	7248	0.713581E+08	0.255339E+08	0.832453E+08
9	734S	0.704637E+08	0.358209E+08	0.835426E+08
10	7378	0.866739E+08	0.235046E+08	0.840625E+08
11	7475	0.907281E+08	0.385558E+08	0.860210E+08
12	7578	0.981222E+CB	0.256765E+08	0.851144E+08
Average values				
	7144.6	C.657540E+08	0.290339E+08	0.784517E+08

One quarter information lag Constant lead time Implied shortage factor= 580. Run number 2 migsd= 6057 demsd= 2873

```
qtr bkord-days
                  bkord-day$
                                bkord-max
                                              bkord-max$
                                       73
                                            0.199815E+05
       2493089
                0.293810E+0B
  1
  2
      11722361
                0.145336E+09
                                      B23
                                            0.290168E+05
  3
      26489305
                0.340766E+09
                                    61675
                                            0.643654E+06
  4
                                   250763
                                            0.279996E+07
      53032177
                0.595417E+09
  5
      90228637
                0.820745E+09
                                  1061179
                                            0.842824E+07
  6
     147936060
                0.112525E+10
                                  1786068
                                            0.196853E+08
  7
                                  1448547
                                            0.199790E+08
     214601037
                0.145280E+10
  8
     268181597
                0.158029E+10
                                   949831
                                            0.145867E+08
                0.174635E+10
  9
     324150458
                                 14650493
                                            0.288530E+08
 10
     389101457
                0.187926E+10
                                            0.3270\7E+08
                                  2419111
 11
     335905918
                0.188212E+10
                                  3914334
                                            0.291929E+08
 12 253875260
                0.170352E+10
                                  2459205
                                            0.210987E+08
Average values
   .176477E+09
                0.110844E+10 .241684E+07
                                            0.148518E+08
```

qtr	long item	s long \$	commit\$	demval\$	
1	6772	0.352102E+08	80+354640E.0	0.717272E+08	
2	6827	0.410021E+08	0.173993E+08	0.730873E+08	
3	6880	0.587932E+08	0.301373E+08	0.697890E+08	
4	6958	0.835534E+08	0.210392E+08	0.694410E+08	
5	7039	0.727473E+08	0.306522E+0B	0.687841E+08	
5	7135	0.775228E+08	0.307328E+08	0.736257E+08	
フ	7220	0.835436E+08	0.349892E+08	0.742770E+08	
В	7302	0.841368E+08	0.259366E+0B	0.777732E+08	
9	7402	0.931261E+08	0.360687E+08	0.754772E+08	
10	7458	0.966746E+08	0.270753E+08	0.769444E+08	
11	7510	0.933952E+0B	0.326415E+08	0.783776E+08	
12	7606	0.989276E+08	0.261899E+08	0.818653E+08	
HVBI	Average values				
	7175.8	0.748861E+08	0.286130E+08	0.742641E+08	

One quarter information lag Constant lead time Implied shortage factor= 580. Run number 3 migsd= 9745 demsd= 3447

```
qtr bkord-days
                  bkord-day$
                                bkord-max
                                              bkord-max$
  1
       1229196
                0.563038E+07
                                       469
                                            0.115848E+05
  2
       7456288
                0.443237E+08
                                     3579
                                            0.353912E+05
  3
      20156166
                0.154706E+09
                                     4328
                                            0.144542E+06
  4
      37665669
                0.329721E+09
                                   570139
                                            0.170165E+07
  5
      51987581
                0.545809E+09
                                   460475
                                            0.375864E+07
  6
      57557259
                0.763818E+09
                                   598424
                                            0.103213E+08
  7
      88765909
                0.947198E+09
                                   633816
                                            0.169874E+08
  8
     134796708
                0.114533E+10
                                  1195215
                                            0.116319E+08
  9
                0.121316E+10
     182442152
                                  1603023
                                            0.187932E+08
 10
     239713354
                0.110216E+10
                                  9653656
                                            0.167220E+08
11
     297557111
                0.117906E+10
                                  2201751
                                            0.168560E+08
 12
     343933858
                0.131561E+10
                                  1698239
                                            0.168514E+08
Average values
   .121938E+09
                0.728876E+09 .155193E+07
                                            0.948459E+07
```

qtr	long item	s long \$	commit\$	demval\$
1	6740	0.350517E+08	0.257024E+08	0.675435E+08
2	6834	0.471886E+08	0.165720E+08	0.615278E+08
3	6919	0.642516E+08	0.236302E+08	0.585104E+08
4	7045	0.735757E+08	0.176585E+08	0.580336E+08
5	7105	0.757113E+08	0.276405E+08	0.616822E+08
6	7195	0.801029E+08	0.211765E+08	0.610628E+08
7	7318	0.887754E+08	0.249895E+08	0.596535E+08
8	7432	0.976315E+0B	0.216408E+08	0.575687E+08
9	7472	0.101316E+09	0.281134E+08	0.612901E+08
10	7556	0.106502E+09	0.243440E+08	0.625208E+08
11	7643	0.111397E+09	0.292585E+08	0.632557E+08
12	7697	0.115424E+09	0.213147E+08	0.642338E+08
Average values				
	7246.3	0.830773E+08	0.235034E+08	0.614069E+08

One quarter information lag Constant lead time Implied shortage factor= 580. Run number 4 migsd= 1075 demsd= 1175

```
qtr bkord-days
                   bkord-dau$
                                 bkord-max
                                               bkord-max$
  1
       3468927
                 0.498455E+08
                                        652
                                             0.199509E+05
  2
      14275248
                 0.138239E+09
                                        714
                                             0.233083E+06
  3
      33269461
                 0.445949E+09
                                      52895
                                             0.156054E+07
  4
      54905350
                 0.770390E+09
                                    678605
                                             0.374979E+07
  5
      77168594
                 0.104341E+10
                                     951505
                                             0.173288E+08
  6
      92753127
                 0.132842E+10
                                    957623
                                             0.187711E+08
  7
     118091935
                 0.162170E+10
                                     894362
                                             0.209070E+08
 8
     146595984
                 0.162567E+10
                                   1509459
                                             0.245741E+08
  9
     155287640
                 0.167391E+10
                                             0.225735E+08
                                   1987206
 10
     179644817
                 0.159998E+10
                                   2084530
                                             0.176064E+08
 11
     204757323
                 0.177544E+10
                                   4480711
                                             0.262410E+08
 12
     207169339
                                             0.281149E+08
                 0.161732E+10
                                   1669692
Average values
   .107281E+09
                 0.114586E+10 .127233E+07
                                             0.151400E+08
```

```
qtr long items
                     long $
                                   commit$
                                                   demval$
                                             0.726718E+08
  1
        6772
               0.350411E+08
                              0.297824E+08
        6841
  2
               0.400672E+08
                              0.173557E+08
                                             0.751768E+08
  3
        6962
               0.447825E+08
                              0.366248E+08
                                             0.774171E+08
  4
        7061
               0.523625E+08
                              0.209844E+08
                                             0.770944E+08
  5
        7100
               0.581864E+08
                              0.346724E+08
                                             0.742661E+08
  6
        7203
               0.653577E+0B
                              0.256740E+08
                                             0.742950E+08
  7
        7251
               0.680109E+08
                              0.364270E+08
                                             0.770744E+08
  8
        7366
               0.745585E+08
                              0.259241E+08
                                             0.808415E+08
 9
        7407
               0.825981E+08
                              0.375058E+08
                                             0.791643E+08
 10
        7485
               0.801343E+08
                              0.273855E+08
                                             0.802358E+08
 11
                                             0.792118E+08
        7552
               0.918083E+08
                              0.360398E+08
 12
        7626
               0.102589E+09
                              0.267409E+08
                                             0.765405E+08
Average values
      7218.8
              0.662914E+08
                              0.295931E+08
                                             0.769991E+08
```

One quarter information lag Constant lead time Implied shortage factor= 580. Run number 5 migsd= 7099 demsd= 7395

```
qtr bkord-days
                 bkord-dau$
                              bkord-max
                                           bkord-max$
                                         0.211401E+04
      9775917
               0.37090BE+08
 2
     55368053
               0.175786E+09
                                  22137
                                         0.433833E+05
 3
    129969107
               0.413738E+09
                                  57694
                                         0.105225E+07
    199813219
 4
               0.710543E+09
                                1026414
                                         0.371055E+07
 5
    247131930
               0.100401E+10
                               11814046
                                        0.171092E+08
 6
    324989191
               0.130873E+10
                                2378931
                                         0.204859E+08
 7
    188993308
               0.149164E+10
                                1724248
                                         0.208741E+08
 8
    228233699
               0.155065E+10
                                1819218
                                         0.180163E+08
               0.142914E+10
 9
    215320863
                                3492435
                                         0.217158E+08
10
    218894257
               0.139861E+10
                                4022159
                                         0.212577E+08
                                2757822
 11
    240068396
               0.130242E+10
                                         0.20833E+08
12
    267352219
               0.132537E+10
                                2677705
                                         0.196326E+08
Average values
   .193826E+09
```

qtr	long item	s long \$	commit\$	demvals
1	6783	0.460405E+08	0.262915E+08	0.647982E+08
2	6847	0.525628E+08	0.172748E+08	0.674631E+08
Э	6868	0.580520E+08	0.307612E+08	0.688074E+08
4	7000	0.652440E+08	0.266011E+08	0.713635E+08
5	7075	0.692771E+08	0.326182E+08	0.682691E+08
6	7134	0.790504E+08	0.255480E+08	0.687910E+08
フ	7257	80+3080548.0	0.323151E+08	0.722490E+08
8	7358	0.910161E+08	0.238614E+08	0.717971E+08
9	7446	0.935150E+08	0.314990E+08	0.751302E+08
10	7551	0.971284E+08	0.311160E+08	0.752493E+08
11	7573	0.581904E+08	0.307257E+08	0.795007E+08
12	7668	0.972445E+08	0.315296E+08	0.822326E+08
Aver	age value	3		
	7213.3	0.776274E+08	0.283451E+08	0.721376E+08

One quarter information lag Constant lead time Implied shortage factor= 680. Run number 1 migsd= 9905 demsd= 7415

```
qtr bkord-days
                  bkord-dau$
                                bkord-max
                                              bkord-max$
       2941506
                0.231570E+08
                                        34
                                            0,472320E+04
  2
                0.102696E+09
                                       126
                                            0.539364E+05
      10281801
  3
      25315488
                0.260864E+09
                                     16238
                                            0.853786E+06
      46212526
                0.466444E+09
                                   183086
                                            0.180767E+07
  5
      66433243
                0.724666E+09
                                   411925
                                            0.674815E+07
  6
      92952560
                0.103563E+10
                                  2396751
                                            0.128609E+08
                                   953791
  7
                0.125850E+10
     121291450
                                            0.173158E+08
  8
     141713166
                0.126832E+10
                                  1151987
                                            0.17048BE+08
  9
     159216985
                0.120433E+10
                                  1751941
                                            0.19B107E+0B
10
     159129851
                0.124828E+10
                                  3309773
                                            0.160471E+08
11
     161063107
                0.131547E+10
                                   1476081
                                            0.218557E+08
12
     168632228
                0.133389E+10
                                  8856605
                                            0.169434E+08
Average values
   .962653E+08
                0.853519E+09 .114592E+07
                                            0.109459E+08
```

qtr	long item	s long \$	commit\$	demval\$		
1	6743	0.343749E+08	0.286347E+08	0.695378E+08		
5	6814	0.415422E+08	0.152435E+08	0.694906E+08		
3	6894	0.477325E+08	0.372541E+08	0.716015E+08		
4	6953	0.515697E+08	0.214169E+08	0.742740E+0B		
5	7015	0.610651E+08	0.366207E+08	C.756709E+08		
6	7082	0.663680E+08	0.238589E+08	0.779703E+0B		
フ	7205	0.703485E+08	0.380119E+08	0.808892E+08		
8	7248	0.716423E+08	0.247159E+08	0.832453E+08		
9	7349	0.708246E+08	0.367554E+08	0.835426E+08		
10	7379	0.880965E+08	0.226396E+08	0.840625E+08		
11	7476	0.922811E+08	0.396051E+08	0.860210E+08		
12	757 9	0.100965E+09	0.257333E+08	0.851144E+08		
Average values						
	7144.8	0.664009E+08	0.292075E+08	0.784517E+08		

One quarter information lag Constant lead time Implied shortage factor= 680. Run number 2 migsd= 6057 demsd= 2873

```
gtr bkord-daus
                                 bkord-max
                                               bkord-max$
                   bkord-dau$
                 0.293803E+08
                                         70
                                             0.193057E+05
       2493066
  1
                                        823
                                             0.290057E+05
      11720918
                 0.144529E+09
  3
      26485553
                 0.338670E+09
                                     61822
                                             0.926832E+06
  4
      53028589
                 0.593411E+09
                                    250318
                                             0.255092E+07
  5
      90224866
                 0.818533E+09
                                   1061894
                                             0.912589E+07
  6
     147933525
                 0.112800E+10
                                   1785747
                                             0.191506E+08
  7
     214616232
                 0.149378E+10
                                   1447678
                                             0.195118E+08
  8
                                             0.145783E+08
     268203650
                 0.163194E+10
                                    949815
  9
     324171679
                 0.180122E+10
                                  14650211
                                             0.288499E+08
 10
     389107314
                 0.191795E+10
                                   2419250
                                             0.332912E+08
 11
     335889529
                 0.188191E+10
                                             0.291896E+08
                                   3914194
 12
     253853691
                 0.170238E+10
                                   2458896
                                             0.210932E+08
Average values
   .176477E+09
                 0.112347E+10 .241673E+07
                                             0.148597E+08
```

```
qtr long items
                     long $
                                   commit$
                                                  demval$
  1
        6771
               0.352294E+08
                              0.313847E+08
                                             0.717272E+08
  2
        6827
               0.422738E+08
                              0.169552E+08
                                             0.730873E+08
  3
        6880
              0.505009E+08
                              0.311117E+08
                                             C.697890E+08
  4
        6959
               9.652973E+08
                              0.203026E+08
                                             0.694410E+08
  5
        7039
               0.752167E+08
                              0.320866E+08
                                             0.687841E+08
  6
        7135
               0.803959E+08
                              0.303848E+08
                                             0.736257E+08
  7
        7220
               0.864260E+08
                              0.354826E+08
                                             0.742770E+08
  8
        7303
               0.858294E+08
                              0.260523E+08
                                             0.777732E+08
  9
        7402
               0.948217E+08
                              0.363653E+08
                                             0.754772E+08
 10
        7458
               0.983915E+08
                              0.269984E+08
                                             0.769444E+08
        7510
 11
               0.951125E+08
                              0.328524E+0B
                                             0.783776E+08
 12
        7606
               0.100631E+09
                              0.260591E+08
                                             0.818653E+08
Average values
                             0.288363E+08
                                             0.742641E+08
      7175.8 0.766771E+08
```

One quarter information lag Constant lead time Implied shortage factor= 680. Run number 3 migsd= 9745 demsd= 3447

```
qtr bkord-days
                  bkord-day$
                                bkord-max
                                              bkord-max$
       1229193
                0.562970E+07
                                            0.109090E+05
  1
                                       466
  2
                                      3570
       7456279
                0.443229E+08
                                            0.345898E+05
  3
      20156106
                0.154647E+09
                                      4325
                                            0.143837E+06
                0.329452E+09
  4
      37665478
                                   570139
                                            0.170163E+07
  5
      51986605
                0.544246E+09
                                    460469
                                            0.375345E+07
  6
      57555981
                0.761876E+09
                                   598411
                                            0.102986E+08
  7
      88764021
                0.944675E+09
                                   633810
                                            0.169833E+08
  8
     134795151
                0.114351E+10
                                  1195199
                                            0.116063E+08
  9
     182437757
                0.121075E+10
                                   1602952
                                            0.187660E+08
 10
     239701444
                0.110108E+10
                                  9653502
                                            0.166652E+08
 11
     297542943
                0.117775E+10
                                  2201696
                                            0.168159E+08
 12
     343920056
                0.131493E+10
                                  1698113
                                            0.168478E+08
Average values
   .121934E+09 0.727740E+09 .155189E+07 0.946896E+07
```

qtr	long item	s long \$	commit\$	demval\$		
1	6739	0.350501E+08	0.265735E+08	0.675435E+08		
2	6834	0.475693E+0B	0.157843E+08	0.615278E+08		
3	6919	0.649916E+08	0.236475E+08	0.585104E+08		
4	7045	0.743046E+08	0.178385E+08	0.580336E+08		
5	7105	0.764458E+08	0.277649E+08	0.616822E+08		
6	7195	0.808412E+08	0.211764E+0B	0.610628E+08		
7	7317	~.895619E+08	0.250318E+08	0.596535E+08		
8	7431	986723E+08	0.217814E+08	0.575687E+08		
9	7472	0.102437E+09	0.281785E+08	0.612901E+08		
10	7556	0.107672E+09	0.245100E+0B	0.62520BE+0B		
11	7643	0.112574E+09	0.293677E+08	0.632557E+08		
12	7697	0.116701E+09	0.214293E+08	0.642338E+08		
Average values						
	7246.1	0.839017E+08	0.235903E+08	0.614069E+08		

One quarter information lag Constant lead time Implied shortage factor= 680. Run number 4 migsd= 1075 demsd= 1175

```
atr bkord-daus
                  bkord-dau$
                                bkord-max
                                             bkord-max$
                                           0.192751E+05
       3468526
                0.431B14E+08
                                      649
  1
  2
                                           0.202392E+06
      14274169 0.196455E+09
                                      687
  3
      33268002
                0.443537E+09
                                    52906
                                           0.158350E+07
                                   678553
                                           0.367361E+07
      54904260
                0.768582E+09
  5
      77167139
                0.104109E+10
                                   951476
                                           0.172846E+08
  6
      92751840
                0.132658E+10
                                   957632
                                           0.187851E+08
  7
                                   894329
                                           0.209058E+08
     118080833
                0.162086E+10
  8
     146595154
                                           0.245737E+08
                0.162549E+10
                                  1509418
  9
     155281455
                0.167125E+10
                                  1987152
                                           0.225650E+08
10
     179623872
                0.158935E+10
                                  2084507
                                           0.176060E+08
 11
     204731391
                0.176104E+10
                                  4480523
                                           0.261553E+08
                                           0.279529E+08
 12 207141797
                                  1669458
                0.160314E+10
Average values
   .107274E+09 0.114138E+10 .127227E+07 0.151089E+08
```

qtr	long item	s long \$	commits	demval\$
1	6771	0.350427E+08	0.306775E+08	0.726718E+08
2	6841	0.401862E+08	0.164886E+08	0.751768E+08
3	6961	0.448737E+08	0.376343E+08	0.774171E+08
4	7060	0.537613E+08	0.211746E+08	0.770944E+08
5	7100	0.596056E+08	0.347921E+08	0.742661E+08
6	7204	0.668122E+08	0.258637E+0B	0.742950E+08
7	7252	0.694897E+08	0.365066E+08	0.770744E+08
8	7367	0.761103E+08	0.260745E+08	0.808415E+08
9	7408	0.842772E+08	0.375599E+08	0.791643E+08
10	7486	0.818164E+08	0.276312E+08	0.802358E+08
11	7553	0.935024E+08	0.362073E+08	0.792118E+08
12	7627	0.104299E+09	0.269134E+08	0.765405E+08
Aver	age value:	5		
	7219.2	0.674814E+08	0.297936E+08	0.769991E+08

One quarter information lag Constant lead time Implied shortage factor= 680. Run number S migsd= 7099 demsd= 7395

```
qtr bkord-days
                   bkord-day$
                                 bkord-max
                                               bkord-max$
       9775694
                 0.367283E+08
                                             0.143822E+04
  1
                                          4
      55367771
                 0.175336E+09
                                     22128
                                             0.425782E+05
  3
                                             0.102801E+07
     129968608
                 0.4128882+09
                                     57678
  4
     199812544
                 0.709407E+09
                                   1026478
                                             0.384001E+07
  5
                 0.100196E+10
     247129246
                                  11813868
                                             0.167962E+08
  6
     324986217
                 0.130696E+10
                                   2379122
                                             0.208724E+08
  7
     188986321
                 0.148926E+10
                                   1724229
                                             0.208525E+08
  8
     228222136
                 0.154762E+10
                                   1818911
                                             0.174905E+08
  9
     215265647
                 0.137426E+10
                                   3492539
                                             0.222942E+08
 10
     218838919
                 0.134775E+10
                                   4021381
                                             0.203931E+08
 11
     240042988
                 0.130054E+10
                                   2757703
                                             0.209069E+08
 12
     267324449
                 0.132232E+10
                                   2677200
                                             0.195428E+08
Average values
   .193810E+09
                 0.100209E+10 .264927E+07
                                             0.136717E+08
```

```
long 5
gtr long items
                                   commit$
                                                  demval$
        6782
              0.464785E+08
                             0.273338E+08
  1
                                            0.647982E+08
  2
        6847
              0.530449E+08
                             0.165022E+08
                                            0.674631E+08
  3
                                            0.688074E+08
        6868
              0.588152E+08
                             0.317529E+08
  4
        7000
              0.660368E+08
                             0.267238E+08
                                            0.713635E+08
 5
        7075
              0.704290E+08
                             0.325444E+08
                                            0.682691E+08
  6
        7134
                             0.250536E+08
              0.802120E+08
                                            0.687910E+08
 7
        7257
              0.854282E+08
                             0.329677E+08
                                            0.722490E+08
  8
        7359
              0.9228202+08
                             0.235296E+08
                                            0.717971E+08
 9
        7447
              0.947875E+08
                             0.321368E+08
                                            0.751302E+08
 10
        7552
              0.984025E+08
                             0.306192E+08
                                            0.752493E+08
 11
        7573
              0.994385E+08
                             0.314351E+08
                                            0.795007E+08
 12
        7668
              0.986466E+08
                             0.310404E+0B
                                            0.822326E+08
Average values
      7213.5
              0.786668E+08
                             0.284790E+08
                                            0.721376E+08
```

One quarter information lag Variable lead time Implied shortage factor= 580. Run number 1 migsd= 9905 demsd= 7415

```
gtr bkord-days
                   bkord-dau$
                                bkord-max
                                              bkord-max$
       2942031
                 0.239700E+08
                                        37
                                            0.539899E+04
  2
      10283039
                0.103940E+09
                                       135
                                            0.547416E+05
  3
      25318113
                 0.262752E+09
                                     16269
                                            0.874761E+06
                                            0.882055E+06
      49977394
                 0.494641E+09
                                     24246
                 0.835370E+09
  5
      80999585
                                    245923
                                            0.275984E+07
  6
     107461972
                 0.121101E+10
                                    574872
                                            0.501046E+07
  7
                                   3009999
     138534177
                 0.150086E+10
                                            0.141091E+08
  8
     178902929
                 0.190501E+10
                                   1077061
                                            0.227673E+08
  9
     197036729
                 0.191791E+10
                                  2019357
                                            0.196628E+08
 10
     224711529
                 0.181425E+10
                                    869182
                                            0.186502E+08
 11
     263236310
                0.185362E+10
                                  3564005
                                            0.252390E+08
     201055629
                                            0.188214E+08
 12
                                  4529509
                0.215383E+10
Average values
                                .119758E+07 0.107531E+08
   .130105E+09 0.117226E+10
```

gtr	long item	s long \$	commit\$	demval\$		
` 1	6744	0.344588E+08	0.282950E+08	0.695378E+0B		
2	6814	0.417557E+08	0.167344E+0B	0.694906E+08		
3	6893	0.479777E+08	0.386866E+08	0.716015E+08		
4	6956	0.520306E+08	0.241759E+08	0.742740E+08		
5	7016	U.619999E+08	0.376416E+08	0.756709E+08		
6	7084	0.671492E+08	0.233758E+08	0.779703E+0B		
7	7203	0.712808E+08	0.411483E+08	0.808892E+08		
8	7244	0.725832E+08	0.259379E+08	0.832453E+08		
9	7347	0.725090E+08	0.376460E+0B	0.835426E+08		
10	7376	0.897991E+08	0.248810E+08	0.840625E+08		
11	フਖフਖ	0.943616E+08	0.393437E+08	0.860210E+08		
12	7575	0.102215E+0S	0.268031E+08	0.851144E+08		
AVBI	Average values					
	7143.8	0.673434E+08	0.303891E+08	0.784517E+08		

One quarter information lag Variable lead time Implied shortage factor= 580. Run number 2 migsd= 6057 demsd= 2873

```
qtr bkord-days
                  bkord-dau$
                                bkord-max
                                              bkord-maxS
       2493089
                0.293810E+08
                                       73
                                            0.199815E+05
  1
      11722361
                0.145336E+09
                                      628
                                            0.290168E+05
  3
      26489305
                0.340766E+09
                                    61675
                                            0.843654E+06
  4
      54890459
                0.618204E+09
                                    27591
                                            0.171028E+07
  5
      98719857
                0.901477E+09
                                   438729
                                            0.258893E+07
 6
     167540195
                0.129129E+10
                                  1589547
                                            0.760679E+07
  7
     236716913
                0.166140E+10
                                  1665610
                                            80+3846E+08
 8
     303762347
                0.184341E+10
                                  1135848
                                            0.175943E+08
  9
     375536387
                0.219335E+10
                                  3186040
                                            0.216235E+08
 10
     439026773
                0.250475E+10
                                  2264692
                                           0.195333E+08
 11
     519456038
                0.262391E+10
                                 13598307
                                            0.320274E+08
 12
     249264429
                0.281088E+10
                                  4396887
                                           0.428193E+08
Average values
   .215468E+09 0.141368E+10 .236382E+07
                                           0.141409E+08
```

qtr	long item	s long \$	commits	demval\$	
1	6771	0.352492E+08	0.311400E+0B	0.717272E+08	
2	6827	0.411100E+0B	0.184588E+08	0.730873E+08	
3	6880	0.596206E+08	0.316680E+08	0.697890E+08	
4	6960	0.645604E+08	0.224205E+08	0.694410E+08	
5	7043	0.744887E+08	0.313835E+08	0.587841E+08	
6	7136	0.796199E+08	0.314624E+08	0.736257E+08	
7	7221	0.856941E+08	0.403719E+08	0.742770E+08	
8	7302	0.869372E+08	0.300523E+08	0.777732E+08	
9	7400	0.962140E+08	0.357240E+08	0.754772E+08	
10	7455	0.100099E+09	0.279072E+08	0.769444E+08	
11	7513	0.969957E+08	0.317936E+08	0.783776E+08	
12	7608	0.103544E+09	0.314651E+08	0.818653E+08	
Average values					
	7176.3	0.770111E+08	0.303206E+08	0.742641E+08	

Che quarter information lag Variable lead time Implied shortage factor= 580. Run number 3 migsd= 9745 demsd= 3447

```
bkord-max
gtr bkord-days
                   bkord-dayS
                                               bkord-maxs
  1
       1229196
                 0.563038E+07
                                       469
                                             0.115848E+05
                 0.443237E+08
                                      3579
                                             0.353912E+05
       7456200
  3
      20156166
                 0.154706E+09
                                      4328
                                             0.144542E+06
                 0.336631E+09
                                      4356
                                             0.351976E+06
      38651104
  5
      56559025
                 0.575241E+09
                                    819093
                                             0.330167E+07
  6
      74392895
                 0.859265E+09
                                    B19643
                                             0.610936E+07
  7
                                    628347
      99590088
                 0.111546E+10
                                             0.1012162+08
  8
     154536498
                 0.132692E+10
                                    553660
                                             0.119291E+08
  9
                 0.155714E+10
                                   1431563
     214918768
                                             0.22320SE+08
 10
     284054912
                 0.164176E+10
                                   1313336
                                             0.135120E+08
11
                                             0.182275E+08
     348697757
                 0.172607E+10
                                   1482675
                                             0.202243E+08
 12
     410184559
                 0.186035E+10
                                   5817486
Average values
   .142536E+09
                 0.933625E+09 .107321E+07
                                             0.885746E+07
```

```
qtr long items
                     long $
                                   commit$
                                                  demvalS
              0.350967E+08
                             0.258003E+08
  1
        6740
                                            0.675435E+08
  5
        6832
              0.473382E+08
                             0.172911E+08
                                            0.615278E+08
  3
              0.645119F+08
        6918
                             0.244643E+08
                                            0.585104E+08
  4
              0.739563£+08
                             0.179547E+08
        7042
                                            0.580336E+08
  5
        7104
              0.762256E+08
                             0.287625E+08
                                            0.616822E+08
  6
        7196
              0.812106E+08
                             0.236910E+08
                                            0.610628E+08
  7
        7318
              0.906077E+08
                             0.260040E+08
                                            0.596535E+08
  8
        7430
              0.100914E+09
                             0.227773E+08
                                            0.575687E+08
  9
        7471
              0.105087E+09
                             0.256878E+08
                                            0.612901E+08
                             0.271735E+08
 10
        7555
              0.110947E+09
                                            0.625208E+08
        7643
 11
              0.115921E+09
                             0.294017E+08
                                            0.632557E+08
 12
        7696
              0.121014E+09
                             0.284448E+0B
                                            80+38EE548.0
Average values
      7245.4
              0.852359£+08
                             0.247877E+08
                                            0.614069E+08
```

ESSESSES

One quarter information lag Variable lead time Implied shortage factor= 580. Run number 4 migsd= 1075 demsd= 1175

```
qtr bkord-days
                  bkord-day$
                                bkord-max
                                              bkord-maxs
       3468927
                0.498455E+08
                                      652
                                           0.199509E+05
  2
      14275248
                0.198239E+09
                                      714
                                           90+3E80EES.0
  3
      33269461
                0.445949E+09
                                    52895
                                           0.156054E+07
  4
      56836791
                0.816065E+09
                                    36238
                                           0.185891E+07
      97618731
                0.124050E+10
                                   934065
                                           0.405664E+07
  6
     122445686
                0.170861E+10
                                   761908
                                           0.118962E+08
  7
     151623226
                0.191464E+10
                                  1652674
                                           0.301245E+08
  8
     196176861
                0.217129E+10
                                   877680
                                           0.188007E+08
 9
     226773810
                0.229466E+10
                                  1849247
                                           0.323989E+08
10
     B05EF1055
                0.240305E+10
                                  1804301
                                           0.257712E+0B
11
     249657728
                0.249396E+10
                                           0.253356E+08
                                  350576
12
     324641475
               0.269114E+10
                                  1559675
                                           0.176543E+08
Average values
   .140578E+09
               0.153566E+10 .989423E+06
                                           0.141425E+08
```

qtr	long item	s long \$	commits	demval\$
1	6773	0.351179E+08	0.308054E+08	0.726718E+08
ē	6843	0.401997E+08	0.184308E+08	0.751768E+08
3	6963	0.450124E+08	0.181300E+08	
			0.30//106+00	0.774171E+08
4	7062	0.52694BE+08	0.225269E+08	0.770944E+08
5	7100	0.588023E+08	0.358033E+08	0.742661E+08
6	7202	0.670182E+08	0.268333E+08	0.742950E+08
7	7249	0.698618E+08	0.383143E+08	0.770744E+08
8	7366	0.772661E+08	0.296424E+08	0.808415E+08
9	7401	0.856242E+08	0.396160E+08	0.791643E+08
10	7484	0.834979E+08	0.307383E+08	0.802358E+08
11	7558	0.963591E+08	0.365594E+08	0.792118E+08
12	7628	0.107795E+09	· · · · - · · - ·	0.765405E+08
Average values				
	7219.1	0.6827082+08	0 3153455+08	0 7599915408
6 7 8 9 10 11 12	7202 7249 7366 7401 7484 7558 7628	0.670182E+08 0.698618E+08 0.772661E+08 0.856242E+08 0.834979E+08 0.963591E+08 0.107795E+09	0.268333E+08 0.383143E+08 0.296424E+08 0.396160E+08	0.742950E+00 0.770744E+00 0.808415E+00 0.791643E+00

9

10

11

12

7446

7551

7574

7668

7213.1

Average values

0.965119E+08

0.100147E+09

0.101470E+09

0.101496E+09

0.794094E+08

One quarter information lag Variable lead time Implied shortage factor= 580. Run number 5 migsd= 7099 demsd= 7395

```
qtr bkord-days
                   bkord-day$
                                 bkord-max
                                               bkord-max$
       9775917
  1
                 0.37090BE+08
                                             0.211401E+04
                                         7
  2
      55368053
                 0.175786E+09
                                     22137
                                            0.433833E+05
  3
     129969107
                 0.413738E+09
                                     57694
                                            U.105225E+07
                 0.737800E+09
     216269350
                                    137254
                                            0.24230BE+07
     295233538
  5
                 0.110690E+10
                                   1585139
                                            0.374998E+07
  6
     353590205
                 0.153664E+10
                                   2094665
                                            0.872056E+07
  7
     216873864
                 0.174183E+10
                                   2479423
                                             0.257933E+08
  8
     272233848
                 0.200954E+10
                                   2184133
                                            0.263354E+08
                                   3243001
  9
     307956575
                 0.215904E+10
                                            0.220052E+08
 10
     314397706
                 0.208445E+10
                                   2392517
                                             0.260202E+08
 11
     332023650
                 0.204185E+10
                                   4325631
                                            0.198226E+08
 12
     405182947
                 0.223014E+10
                                   3764192
                                            0.255708E+08
Average values
   .242740E+09
                 0.135623E+10 .185715E+07
                                            0.134616E+08
qtr long items
                     long $
                                   commit$
                                                  demval$
  1
        6784
              0.460798E+08
                             0.268584E+08
                                            0.647982E+08
  5
        6848
              0.526533E+08
                              0.182541E+08
                                            0.674631E+08
  3
        6868
              0.584696E+08
                             0.327610E+08
                                            0.688074E+08
  4
        6998
              0.658106E+08
                             0.280799E+08
                                            0.713635E+08
  5
        7076
                                            0.682691E+08
              0.700979E+08
                             0.345732E+08
  6
        7131
              0.802370E+08
                             0.241953E+08
                                            C.687910E+08
  7
        7256
              0.862283E+08
                             0.361052E+08
                                            0.722490E+08
  B
        7357
              0.937105E+08
                             0.271517E+08
                                            0.717971E+0B
```

140

0.338535E+08

0.324282E+08

0.308549E+08

0.363584E+08

0.301228E+08

0.751302E+08

0.752493E+08

0.795007E+08

0.822326E+08

0.721376E+08

One quarter information lag Variable lead time Implied shortage factor= 680. Run number 1 migsd= 9905 demsd= 7415

```
bkord-max
                                            bkord-max$
qtr bkord-days
                 bkord-day$
                                      34 0.472320E+04
 1
       2541506
              0.231570E+08
 2
               0.102696E+09
                                     126
                                         0.539364E+05
     10281801
                                   16238
                                         0.853786E+06
 3
     25315488 0.260864E+09
 4
     49974685
               0.492683E+09
                                   24236
                                          0.880672E+06
                                  245919
                                          0.275807E+07
 5
     80996688
               0.823378E+09
                                          0.498931E+07
    107459051
                0.120902E+10
                                  574835
 6
 7
     138531047
                0.149878E+10
                                 3009967
                                          0.140651E+08
    178893295
 8
                0.190253E+10
                                 1076991
                                          0.227413E+08
 9
                                 2019329
                                          0.196453E+08
    197013760
                0.191653E+10
                                  868905
                                          0.188402E+08
 10
    224683312
                0.181240E+10
                                         0.252376E+08
    263197874
                C.185168E+10
                                 2004274
 11
 12
    281813328 0.215107E+10
                                 4532352
                                         0.188191E+08
Average values
   .130092E+09 0.117040E+10 .119782E+07 0.107408E+08
```

atr	long item	s long \$	commit\$	demval\$		
1	6743	0.344507E+08	0.291611E+0B	0.695378E+08		
2	6814	0.418335E+08	0.159512E+08	0.694906E+08		
3	6893	0.482171E+08	0.397879E+08	0.716015E+08		
4	6956	0.522850E+08	0.234225E+08	0.742740E+08		
5	7016	0.622508£+08	0.386655E+08	0.756709E+08		
6	7084	0.674213E+08	0.227750E+08	0.779703E+08		
フ	7203	0.715534E+08	0.421827E+08	0.808892E+08		
8	7243	0.728841E+08	0.251430E+08	0.832453E+08		
9	7347	0.729121E+08	0.385992E+08	0.835426E+08		
10	7377	0.912807E+08	0.240321E+08	0.840625E+08		
11	74 <i>7</i> 5	0.959920E+08	0.404104E+08	0.860210E+08		
12	7576	0.105143E+09	0.269201E+08	0.851144E+08		
Aver	Average values					
	7143.9	0.680186E+08	0.305876E+08	0.784517E+08		

One quarter information lag Variable lead time Implied shortage factor= 680. Run number 2 migsd= 6057 demsd= 2873

```
gtr bkord-daus
                   bkord-dau$
                                 bkord-max
                                               bkord-max$
  1
       2493086
                 0.293803E+08
                                         70
                                             0.193057E+05
  2
                 0.144529E+09
                                        823
                                             0.290057E+05
      11720918
  3
                                             0.926832E+06
      26485553
                 0.338670E+09
                                     61822
      54886871
                 0.616199E+09
                                     27146
                                             0.146124E+07
  5
      98716177
                 0.899420E+09
                                    439224
                                             0.286557E+07
  6
     167536453
                 0.128910E+10
                                   1588763
                                             0.716827E+07
  7
     236713134
                 0.165906E+10
                                   1665568
                                             0.232138E+08
  8
     303784213
                 0.189486E+10
                                   1135873
                                             0.176405E+08
  9
     375563016
                 0.225397E+10
                                   3186032
                                             0.216134E+08
 10
                 0.257003E+10
     439051288
                                   2264588
                                             0.195301E+08
 11
     519475302
                 0.268924E+10
                                  13598297
                                             0.320252E+08
 12
     349272170
                 0.287554E+10
                                   4396667
                                             0.428170E+08
Average values
   .215475E+09
                 0.143833E+10 .236374E+07
                                             0.141092E+08
```

```
qtr long items
                     long 5 -
                                   commit$
                                                  demval$
  1
        6770
               0.352684E+08
                              0.320307E+08
                                             0.717272E+08
  2
        6827
               0.423828E+08
                              0.179337E+08
                                             0.730873E+08
  3
        6880
               0.613428E+08
                              0.328463E+08
                                             0.697890E+08
  4
        6961
               0.663205E+08
                              0.216038E+08
                                             0.694410E+08
        7043
  5
               0.769845E+08
                              0.318600E+08
                                             C.687841E+08
        7136
  6
               0.825349E+08
                              0.315538E+08
                                             G.736257E+08
  7
        7221
               0.886186E+08
                              0.412460E+08
                                             0.742770E+08
  8
        7302
               O.886886E+08
                              0.304481E+08
                                             0.777732E+08
  9
        7401
               0.979876E+08
                              0.358653E+08
                                             0.754772E+08
 10
        7456
               0.101899E+09
                                             0.769444E+08
                              0.280392E+08
 11
        7513
                                             0,783776E+08
               0.987968E+08
                              0.318172E+08
 12
        7608
               0.105345E+09
                              0.315250E+08
                                             0.818653E+08
Average values
      7176.5
               0.788475E+08
                              0.305641E+08
                                             0.742641E+08
```

One quarter information lag Variable lead time Implied shortage factor= 680. Run number 3 migsd= 9745 demsd= 3447

```
qtr bkord-days
                                bkord-max
                  bkord-day$
                                             bkord-max$
       1229193
               0.562970E+07
                                      466
                                           0.109090E+05
  1
       7456279
                0.443229E+08
                                     3570
                                           0.345898E+05
  3
      20156106
                0.154647E+09
                                     4325
                                           0.143837E+06
  4
      38650913
                0.336362E+09
                                     4356
                                           0.351960E+06
  5
      56558049
                0.573678E+09
                                   819087
                                           0.329648E+07
  6
      74391635
                0.857322E+09
                                   819630
                                           0.608662E+07
  7
      99588189
                0.111282E+10
                                   628343
                                           0.101192E+08
  8
     154534825
                0.132492E+10
                                   553642
                                           0.119016E+08
  9
     214916568
                0.155468E+10
                                  1431553
                                           0.223181E+08
 10
    284047637
                0.163908E+10
                                  1313332
                                           0.135104E+08
     348687255
 11
                0.172587E+10
                                  1482612
                                           0.182092E+08
12 410166122
                0.185977E+10
                                  5817293
                                           0.202034E+08
Average values
   .142532E+09
                0.932425E+09 .107318E+07
                                           0.884885E+07
```

qtr	long item	s long \$	commit\$	demval\$	
1	6739	0.350S51E+0B	0.266714E+08	0.675435E+08	
2	6832	0.477189E+08	0.165138E+08	0.615278E+08	
3	6918	0.652548E+08	0.244861E+08	0.585104E+08	
4	7042	0.746898E+08	0.181838E+08	0.580336E+08	
5	7104	0.769650E+08	0.288904E+08	0.616822E+08	
6	7196	0.819530E+08	0.237105E+08	0.610628E+08	
7	7317	0.913981E+08	0.260590E+08	0.596535E+08	
8	7429	0.101977E+09	0.229528E+08	0.575687E+08	
9	7 4 71	0.106249E+09	0.257269E+08	0.612901E+08	
10	7555	0.112168E+09	0.274063E+08	0.625208E+08	
11	7643	0.117152E+09	0.295386E+08	0.632557E+08	
12	7696	0.122371E+09	0.286022E+08	0.642338E+08	
Average values					
	7245.2	0.860827E+08	0.248952E+08	0.614069E+08	

One quarter information lag Variable lead time Implied shortage factor= 680. Run number 4 migsd= 1075 demsd= 1175

qtr	bkord-days	bkord-day\$	bkord-max	bkord-max\$
1	3458526	0.491814E+08	649	0.192751E+05
2	14274169	0.196455E+09	687	0.202392E+06
3	33268002	0.443537E+09	60855	0.158350E+07
4	56835701	0.814258E+09	36192	0.178273E+07
5	87617272	0.123809E+10	934104	0.412466E+07
6	122444066	0.170620E+10	701907	0.118944E+08
7	151621635	0.191242E+10	1652616	80+365006.0
8	196176092	0.217096E+10	877674	0.187903E-08
9	226767443	0.229222E+10	1849153	0.3238426+08
10	220122511	0.239260E+10	1804297	0.257651E+08
11	549659298	0.247874E+10	E2854E5	0.252846E+08
12	324575516	0.267513E+10	1558776	0.175272E+08
Ave	rage values			
	.140567E+09	0.153082E+10	.989321F+06	0.141159E+08

qtr	long items	s long \$	commit\$	demval\$		
1	6772	0.351195E+08	0.317279E+08	0.726718E+08		
2	6843	0.403238E+08	0.176053E+06	0.751768E+08		
3	6562	0.451072E+08	0.398148E+08	0.774171E+08		
4	7061	C.540997E+08	0.22755BE+08	0.770954E+08		
5	7099	0.602429E+08	0.359829E+08	0.742661E+08		
5	7202	0.685258E+08	0.270682E+08	0.742950E+0B		
7	7249	0.713896E+08	0.384106E+08	0.770744E+08		
8	7367	0.786726E+0B	0.298529E+08	0.808415E+08		
9	7402	0.873984E+08	0.397102E+08	0.791643E+08		
10	7485	0.852741E+08	0.310675E+0B	0.802358E+08		
11	7559	0.981593E+08	0.367379E+08	0.792118E+08		
12	7629	0.109617E+09	0.309524E+08	0.765405E+08		
Aver	Average values					
	7219.2	0.695108E+08	0.318072E+08	0.769991E+08		

One quarter information lag Variable lead time Implied shortage factor= 680. Run number 5 migsd= 7099 demsd= 7395

```
qtr bkord-days
                  bkord-day$
                                bkord-max
                                             bkord-max$
       9775694
  1
                0.367283E+08
                                           0.143822E+04
                                    22128
      55367771
                0.175335E+09
                                           0.425782E+05
  3
     129958608
                0.412888E+09
                                    57678
                                           0.102801E+07
     216268703
                0.736698E+09
                                   137318
                                           0.25525E+07
  5
     295230966
                0.110485E+10
                                  1584967
                                           0.344686E+07
  6
     353587431
                0.153488E+10
                                  2094865
                                           0.912193E+07
  7
     216870263
                0.173948E+10
                                  2479405
                                           0.257679E+08
 8
    272228937
                0.200680E+10
                                  2184120
                                           0.263345E+08
  9
     307940984
                0.215493E+10
                                  3242594
                                           0.213216E+08
 10
     314347812
                0.203033E+10
                                  2392894
                                           0.267417E+08
 11
     331960340
                0.197103E+10
                                  4324961
                                           0.188741E+08
 12
    409133693
                0.222682E+10
                                  3763390
                                           0.255406E+08
Average values
   .242723E+09
                0.134423E+10 .185703E+07 0.133978E+08
```

qtr	long item	s long \$	commit\$	demval\$
1	6783	0.465257E+08	0.279129E+08	0.647982E+08
2	6848	0.531360E+08	0.174810E+08	0.674631E+08
3	6868	0.592416E+08	0.338042E+08	0.688074E+08
4	6998	0.666141E+08	0.283497E+08	0.713635E+0B
5	7076	0.712613E+08	0.343898E+08	0.682691E+08
6	7131	0.814057E+08	0.237123E+08	0.687910E+08
フ	7256	0.874662E+08	0.370491E+08	0.722490E+08
8	7357	0.950068E+08	0.266126E+08	0.717971E+0B
9	7445	0.978172E+08	0.346036E+08	0.751302E+08
10	7551	0.101456E+09	0.317504E+08	0.752493E+08
11	7574	0.10274BE+09	0.317626E+08	0.795007E+08
12	7668	0.102949E+09	0.357309E+08	0.822326E+08
Aver	age value:	5		
	7212.9	0.804690E+08	80+3EE850E.0	0.721376E+08

Appendix C: MIGSIM Output with No Item Migration

Model output, no migration

No information lag Constant lead time Implied shortage factor= 580. Run number 1 migsd= 9905 demsd= 7415

Quarter FROM/IO X I P M IN	1 thr X 10800 0 0	ough 12 T O 2029 O O	P 0 0 822 0 0	M O O 0 188 O	0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 Average V	i-days 37 9 39 10 11 10 12 10 3 7 2 3 7 1 9	0.571520E+04 0.202026E+04 0.788550E+04 0.370353E+04 0.104495E+05 0.508932E+04 0.729216E+04 0.213670E+04 0.213877E+04 0.248897E+04 0.162409E+04 0.172983E+04	3 1 4 1 1	7 0.5715 9 0.1946 9 0.7963 0 0.3547 1 0.1055 0 0.4991 0 0.7296 2 0.2136 0 0.2486 1 0.1624 3 0.1725	d-max\$ 520E+04 529E+04 648E+04 614E+05 67E+04 670E+04 847E+04 897E+04
1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5329 5281 5234 5199 5169 5142 5113 5080 5049 5027	0.289579E+08 0.286041E+08 0.282801E+08 0.279866E+08 0.277107E+08 0.274546E+08 0.272180E+08 0.270024E+08 0.268043E+08 0.266154E+08 0.264359E+08 0.262622E+08	commit 0.225930E+0 0.847471E+0 0.897619E+0 0.897619E+0 0.222510E+0 0.977319E+0 0.225183E+0 0.996617E+0 0.229681E+0 0.972604E+0 0.227223E+0	9 0.6646 7 0.6646 7 0.6646 8 0.6646 8 0.6646 9 0.6646 9 0.6646 9 0.6646	18mva1\$ 503E+08 503E+08 503E+08 503E+08 503E+08 503E+08 503E+08 503E+08
618	57.8	0.274443E+0B (0.159794E+0	8 0.6646	804EE08

Appendix D: MIGSIM Output with Altered Transition Matrix

No information lag Constant lead time Implied shortage factor= 580. Run number 1 migsd= 9905 demsd= 7415

Quarter FROM/TO X T P M	1 X 10305 89 9 0 423	T 127 1822 32 0 29	P 0 50 750 12 12	M O O 6 169 3	OUT 368 68 25 7 0
Quarter FROM/IO X I P M	2 X 10294 88 14 1 434	T 132 1816 37 0 31	P 0 45 745 5 13	M O O 11 168 3	0UT 400 61 17 4
Quarter FROM/IO X I P M IN	3 X 10302 85 4 0 421	T 146 1802 42 0 29	P 0 66 734 7 12	M 0 0 9 174 3	OUT 383 63 19 1
Quarter FROM/IO X I P M	4 X 10296 68 9 0 429	T 119 1830 37 0 29	P 0 65 746 6 13	M O O 13 171 3	OUT 397 56 14 9 0
Quarter FROM/TO X T P M	5 X 10270 71 5 2	T 129 1821 42 0 31	P 0 51 750 9 13	M O O 10 174 3	TUO E0# E5 E5 S

Quarter FROM/TO X T P M	T 127 1806 36 0 33	P 0 57 755 6 14	M O O 9 176 3	0UT 424 76 20 3 0
Quarter FROM/TO X T P M IN	T 126 1804 40 0 32	P 0 53 754 8 13	M 0 0 6 180 3	0 0 0 0 0 0 0 0
Quarter FROM/IO X I P M IN	T 139 1793 38 0	P 0 70 759 6 13	M O O B 177 3	0 20 20 20 20 20
Quarter FROM/IO X I P M IN	T 115 1785 '	P 0 67 783 4	M 0 0 5 176 3	0UT 410 55 12 5 0
Quarter FROM/IO X I P M IN	T 113 1766 30 0 28	P 0 77 805 9	M O 19 169 3	0UT 380 46 11 3

```
Quarter 11
FROM/TO
            X
                                                       DUT
                       I
                                             M
         10248
 X
                      121
                                              0
                                                       432
 T
            85
                     1734
                                              0
                                                        69
                                  49
 P
             7
                       38
                                                        16
                                 831
                                             11
                                                         7
M
             2
                        0
                                            170
                                  12
IN
           473
                       33
                                              3
                                                         ۵
                                  14
Quarter 12
                                                       OUT
                       T
            X
                                  P
                                             M
FROM/TO
         10246
                      137
                                                       432
 X
                                   0
                                              0
 T
                                                        63
            78
                     1732
                                  53
                                              0
 P
             6
                       38
                                 830
                                             12
                                                        50
M
             1
                        1
                                   8
                                            170
                                                         4
                                                         ۵
IN
           469
                       33
                                              3
                                  14
qtr bkord-days
                    bkord-dau$
                                  bkord-max
                                                 bkord-max$
  1
        945692
                 0.126324£+08
                                         234
                                              0.842305E+05
  2
                 0.717347E+08
       3525220
                                           9
                                              0.200911E+04
  3
       8741310
                                        5052
                                              0.111563E+07
                 0.189826E+09
  4
      14935841
                 0.3364602+09
                                      57495
                                              0.806654E+06
  5
       17012340
                 0.531470E+09
                                     115572
                                              0.280040E+07
      22054834
                 0.641250E+09
                                     103812
                                              0.740692E+07
  7
      26806805
                 C.554045E+09
                                     151280
                                              0.340123E+07
  8
      32162440
                 0.530814E+09
                                     220937
                                              0.647506E+07
  9
      31871028
                 0.389965E+09
                                     292959
                                              0.331612E+07
 10
      39808261
                                              0.334182E+07
                 0.410497E+09
                                     208449
 11
      53754037
                 0.487365E+09
                                     330458
                                              0.428580E+07
 12
      67563484
                 0.416048E+09
                                     345582
                                              0.317873E+07
Average values
   .265984E+08
                 0.381009E+09 .152653E+06
                                              0.301788E+07
    long items
                                                    demvalS
                      long $
                                    commits
  1
        6738
               0.377583E+08
                               0.286993E+08
                                              0.664219E+08
  2
        6831
               0.431877E+08
                               0.192768E+08
                                              0.664595E+08
  3
        6896
               0.490968E+08
                               0.302506E+08
                                              0.660427E+08
  4
        6980
               0.520139E+0B
                               0.213701E+08
                                              0.688633E+08
  5
        7086
                                              0.652501E+C8
               0.630492E+08
                               0.279820E+08
  6
        7204
               0.683329E+08
                               0.184646E+08
                                              0.655421E+08
  7
        7297
                               0.263014E+08
               0.716661E+08
                                              0.615917E+08
        7364
  8
               0.758244E+08
                               0.188127E+08
                                              0.62201BE+08
  9
        7499
               0.803678E+08
                               0.261165E+08
                                              0.627382E+08
 10
        7537
               0.832501E+08
                               0.247648E+08
                                              0.655964E+08
 11
        7675
                                              0.656819E+08
               0.886545E+08
                               0.274637E+08
 12
        7755
               0.945743E+c8
                               0.207429E+08
                                              0.633496E+08
Avarage values
      7238.5 0.873146E+08
                                              0.649783E+08
                              0.241880E+08
```

No information lag Constant lead time Implied shortage factor= 580. Run number 2 migsd= 6057 demsd= 2873

Quarter FROM/TO X T P M IN	1 X 10270 91 7 0 437	T 132 1822 33 0 31	P 0 51 754 6 13	M O O 12 177 3	OUT 398 65 16 5 0
Quarter FROM/IO X I P M IN	2 X 10299 91 8 0 427	T 105 1807 35 0 29	P 0 65 763 6 13	M O 7 180 3	OUT 401 55 11 6
Quarter FROM/TO X T P M	3 X 10322 80 5 1 409	T 127 1775 39 0 29	P 0. 68 774 8 12	M 0 0 9 177 3	OUT 376 53 20 4 0
Quarter FROM/TO X T P M	4 X 1030B 73 7 1 441	T 111 1775 39 0 31	P 0 55 787 6 13	M 0 0 9 179 3	OUT 398 67 20 3 0
Quarter FROM/TO X T P M	5 X 10303 61 11 1	T 127 1778 39 0 31	P 0 59 782 8 13	M O O 11 174 3	OUT 400 58 18 8 0

Quarter FROM/IC X I P M IN	T 138 1761 46 1	P 0 67 777 6 12	M 0 0 12 175 3	0UT 370 70 20 5 0
Quarter FROM/IC X I P M IN	T 126 1793 30 0	P 0 58 789 4 13	0 0 12 182 8	0UT 410 49 21 4
Quarter FROM/IC X I P M IN	T 137 1779 34 0 32	P 0 50 778 6 14	M 0 0 17 183 3	0UI 412 70 20 7 0
Quarter FROM/IC X I F M	T 113 1781 46 1 34	P 0 50 770 6 14	M 0 0 10 185 3	OuT 434 72 19 8 0
Quarter FROM/IO X I P M	T 144 1780 35 0 33	P 0 46 766 9 14	m 0 0 9 185 3	TUO 86 <i>¥</i> 85 85 85 6

BOOTH PROCESS STANDING BOOKS OF BOOKS STANDING BOOKS STANDING STAN

```
Quarter 11
FROMITO
            X
                                   P
                                              M
                                                        DUT
         10292
 X
                      104
                                    0
                                               0
                                                        415
 T
            86
                     1790
                                   51
                                               0
                                                         65
 P
             7
                       33
                                  769
                                               7
                                                         19
M
             1
                        0
                                    6
                                             182
                                                          8
                       32
IN
           458
                                   13
                                               3
                                                          0
Quarter 12
FROM/TO
            X
                                  P
                       T
                                              11
                                                        DUT
         10307
 X
                      132
                                    0
                                               0
                                                        405
 T
            90
                     1747
                                   64
                                               0
                                                         58
 P
             5
                       31
                                 776
                                              16
                                                         11
 M
             0
                        0
                                    В
                                             178
                                                          6
IN
                       31
                                   13
                                               3
                                                          0
           434
    bkord-days
                    bkord-dau$
                                   bkord-max
                                                 bkord-max$
  .1
        843740
                  0.111294E+08
                                          45
                                               0.655646E+04
  2
                 0.789890E+08
       4703975
                                         272
                                               0.132281E+06
  3
       12456269
                  0.200326E+09
                                       20891
                                               0.7395252+06
  4
                 0.373961E+09
      22178654
                                       66983
                                               0.120933E+07
  5
      25748123
                  0.440309E+09
                                               0.44147BE+07
                                      206173
  6
      30376992
                 0.380397E+09
                                      211365
                                               0.369124E+07
  7
      27989639
                  0.402363E+09
                                      279266
                                               0.263537E+07
  8
      38866585
                 0.553414E+09
                                      194813
                                               0.338837E+07
  9
                  0.692731E+09
      55037065
                                      289974
                                               0.493757E+07
 10
      68570351
                 0.688143E+09
                                      601178
                                               0.620585E+07
 11
      50226906
                 0.431206E+09
                                      786048
                                               0.341725E+07
 12
      28426053
                 0.384903E+09
                                      536442
                                               U.528580E+07
Average values
   .304520E+08
                 0.386489E+09 .266121E+06
                                               0.300532E+07
    long items
                      long $
                                     commits
drL
                                                     demval$
  1
        6754
               0.348265E+09
                               0.228580E+08
                                               0.689445E+08
  5
        6863
               0.3454652+08
                                               0.690835E+08
                               0.165047E+08
  3
        6924
               0.402942E+08
                               0.321020E+08
                                               0.699080E+08
  4
        7039
               0.460890E+08
                                               0.702621E+08
                               D.178733E+08
  5
        7123
               0.585058E+08
                               G.297278E+08
                                               0.665740E+08
  6
         7210
               0.629959E+08
                               0.225299E+08
                                               0.679511E+08
  7
        7311
               0.661986E+08
                               0.317438E+08
                                               0.702960£+98
  8
         7405
               0.707538E+08
                               0.229567E+08
                                               0.715523E+08
  9
        7544
               O.817237E+08
                               0.277354E+08
                                               0.680565E+08
 10
         7623
               0.860339E+08
                               0.204825E+08
                                               0.6E9559E+08
 11
        7707
               O.861647E+08
                               0.238427E+08
                                               0.654998E+08
 12
         7772
               0.959286E+08
                               0.237031E+08
                                               0.627131E+08
Average values
      7272.7
               0.636717E+06
                               C.251725E+08
                                               0.681414E+08
```

No information lag Constant lead time Implied shortage factor= 580. Run number 3 migsd= 9745 demsd= 3447

Quarter FROM/TO X T P M	1 X 10278 87 6 0 429	T 128 1836 30 0 29	P 0 49 761 7 13	M 0 0 5 175 3	0'17 394 57 20 5 0
Quarter FROM/IO X I P M	2 X 10275 84 8 0 428	T 116 1831 37 0 29	P 0 59 768 13	M 0 0 3 169 3	0UT 409 49 14 2 0
Quarter FROM/TO X T P M	3 X 10253 77 10 0 463	T 121 1808 35 0 33	P 0 67 776 8 14	M 0 0 7 161 3	OUT 421 61 25 6
Quarter FROM/TO X T P M	4 X 10276 95 11 2 449	T 120 1787 37 0 32	P 0 50 786 8 13	M O O 9 150 3	GUT 407 65 82 3 0
Quarter FROM/IO X I P M	5 X 10330 96 8 0 424	T 113 1775 33 0 29	P 0 52 780 10 12	M O O 1B 152 3	DUT 390 53 18 8 0

Quarter FROM/IC X I P M IN	T 151 1774 48 0	P 0 51 771 11 13	M O O B 154 3	0UT 428 41 20 7 0
Quarter FROM/IC X I P M IN	T 132 1791 35 0 34	P 0 59 776 10 14	M 0 0 6 151 3	TUD 66 65 4 7
Quarter FROM/TO X T P M IN	T 114 1791 37 0 32	P 0 53 784 12 13	M 0 0 13 141 3	OUT 409 65 16 7 0
Quarter FROM/IC X T P M IN	T 125 1776 46 0 32	P 0 55 777 6 13	M O O 15 192 3	0UT 416 63 18 7 0
Quarter FROM/TO X T P M	T 103 1772 34 0 33	P 0 49 777 7 14	M O 9 148 3	0UT 420 65 23 4 0

```
Quarter 11
FROM/TO
            X
                       T
                                  P
                                             ٢.
                                                        DIJT
                                   ۵
         10370
                      112
                                               0
                                                        402
 X
 T
                                  50
                     1752
                                               0
                                                         50
            80
 P
                                 756
                                                         28
             7
                       46
                                              10
                                                          5
M
             0
                        0
                                   8
                                             147
                                  13
                                               3
IN
           447
                       31
                                                          0
Quarter 12
                       T
                                  P
FROM/TO
            X
                                             M
                                                        UUT
 X
         10381
                      135
                                   0
                                               0
                                                        388
 T
            87
                     1767
                                  45
                                               0
                                                         42
 P
                       33
                                 756
                                                         17
                                              11
            10
                                             152
                                                          2
M
             1
                        0
                                   5
                                  12
IN
           406
                       29
                                               3
                                                          0
                    bkord-day$
                                  bkord-max
                                                 bkord-max$
   bkord-days
qtr
                 0.6624452+07
  1
        898792
                                         E03
                                               0.6454852+04
  2
       6230199
                 0.378360E*08
                                          22
                                               U.657475E+05
  3
      16364366
                 0.964846E+08
                                        6204
                                               9.342389E+06
  4
      31330576
                 0.192325E+09
                                      195975
                                               0.466941E+06
  5
      37219855
                                      247432
                 0.266452E+09
                                               0.268739£+07
  6
      41803292
                 0.290681E+09
                                      151295
                                               0.184145E+07
  7
      27979324.
                 0.352052E+09
                                      444055
                                               0.227154E+07
  8
      30626186
                 0.423584E+09
                                      310950
                                               0.342901E+07
  9
                 0.435614E+09
                                      264029
      26269524
                                               0.457315E+07
 10
      24104621
                 0.382612E+09
                                      147213
                                               0.323384E+07
 11
      28009975
                 0.397806E+09
                                      119094
                                               U.224600E+07
 12
      36225170
                 0.517438E+09
                                      209119
                                               0.455577E+07
Average values
   .255885E+08
                 0.283292E+09 .174633E+05
                                               0.214331E+07
qtr
    long items
                      long $
                                     commit$
                                                    demval$
  1
         6756
               0.347470E+08
                               0.286349E+08
                                               0.670402E+08
  2
               0.423822E+08
                               0.15286SE+08
                                               0.658356E+08
         6845
  3
        6932
               0.470807E+08
                               0.278770E+06
                                               0.662889E+08
  4
         7056
               0.571007E+08
                               0.169866E+08
                                               80+340868.0
  5
         7163
                               0.287129E+08
               0.624695E+08
                                               0.654820E+08
  6
                               0.1749E7E+08
         7276
               0.566713E+08
                                               0.608313E+08
  7
         7378
               0.698492E+08
                               0.244580E+08
                                               0.590433E+08
  8
         7474
               0.749691E+0B
                               0.176936E+06
                                               0.576992E+08
  9
         7565
               0.800503E+08
                               0.279406E+08
                                               0.572132E+08
 10
         7681
               0.835526E+08
                               0.174762E+08
                                               0.579819E+08
 11
         7767
               0.870072E+08
                               Q.248762E+08
                                               0.576838E+08
 12
         7832
               0.9445902+08
                               0.207894E+08
                                               0.589281E+08
Average values
      7310.2
               0.666949E+08
                               0.223516E+08
                                               0.613365E+08
```

No information lag Constant lead time Implied shortage factor= 580. Run number 4 migsd= 1075 demsd= 1175

Quarter FROM/TO X T P M	1 X 10262 82 5 3 448	T 120 1830 44 0 32	P C 57 749 13	m 0 0 9 169 3	0UT 418 60 15 3
Quarter FROM/IO X I P M IN	2 X 10280 90 4 0 451	T 116 1822 29 0 32	P 0 58 762 9	M O O 6 165 3	OUT 404 56 32 7 0
Quarter FROM/TO X T P M	3 X 10280 88 6 2 2	T 133 1806 52 0 38	P 0 48 755 9	M 0 0 13 157 3	OUT 432 56 16 6 0
Quarter FROM/TO X T P M	4 X 10271 81 4 0 479	T 113 1802 45 2 34	P 0 68 751 5 14	M C O 6 161 3	OUT 433 72 20 5 0
Quarter FROM/ID P M IN	5 X 10291 97 8 2 459	T 131 1770 36 0 32	P 0 58 765 6 13	M O O 10 157 3	OUT 413 71 19 5 0

Quarter FROM/TO X I F M IN	T 137 1773 36 0	P 0 47 764 7 14	M O 13 160 3	TU0 86# 59 23 3 0
Quarter FROM/IC X I P M IN	T 136 1788 35 0 29	P 60 754 8 12	M O 20 164 3	0UT 382 55 15 4
Quarter FROM/TO X I P M IN	T 123 1791 37 0 34	P 0 57 756 8 14	M O O 12 170 3	OUT 440 60 21 8 0
Quarter FROM/IC X I P M IN	T 121 1793 47 0 31	P 0 60 741 9 13	M O O 16 172 3	OUT 414 51 24 4 0
Quarter FROM/IC X I P M IN	T 108 1780 43 0 32	P 0 59 744 9	M O O 5 174 3	OUT 418 59 24 8 0

```
Quarter 11
FROM/IO
            X
                                  P
                       T
                                                       DUT
                                             M
 X
         10298
                                   Ω
                      144
                                              Ω
                                                        422
 T
            76
                     1784
                                                         47
                                  56
                                              0
 P
             5
                       50
                                 734
                                                         26
                                              11
 M
                        0
                                   8
                                                          3
             1
                                            170
IN
           449
                       32
                                  13
                                               3
                                                          0
Quarter 12
FROM/TO
            X
                                  P
                       T
                                                       DUT
                                             M
         10297
 X
                      117
                                   0
                                               0
                                                        415
 T
            79
                     1912
                                  53
                                              0
                                                         66
 P
             5
                       41
                                 748
                                               5
                                                         12
 M
             0
                        1
                                   6
                                            173
                                                          4
IN
           449
                       35
                                  13
                                               3
                                                          0
qtr bkord-days
                    bkord-dau$
                                  bkord-max
                                                 bkord-max$
  1
         777050
                 0.116193E+08
                                          60
                                              0.754452E+05
  2
       3609818
                 0.656018E+08
                                         487
                                              0.116920E+06
  3
       9055960
                                        1349
                                              0.494654E+06
                 0.163718E+09
  4
                 0.291212E+09
      14692218
                                       95199
                                              0.850753E+06
  5
      16784719
                 0.373527E+09
                                       77391
                                              0.409097E+07
  6
      22465903
                 C.361270E+09
                                      132143
                                              0.288210E+07
  7
      29306709
                 0.387891E+09
                                      196283
                                              0.297726E+07
  8
                                              0.339814E+07
      36508933
                 0.410831E+09
                                     220136
                 0.549096E+09
  9
      36920797
                                      380692
                                              0.286347E+07
 10
      32490895
                 0.649048E+09
                                      326865
                                              0.519071E+07
 11
      34251636
                 0.697912E+09
                                      296468
                                              0.644996E+07
 12
      37285456
                 0.561804E+09
                                      366267
                                              0.609291E+07
Average values
   .228458E+08
                 0.376961E+09 .174445E+06
                                              0.295694E+07
qtr long items
                      long $
                                    commit$
                                                    demval$
  1
        6770
               0.372332E+08
                               0.318705E+08
                                              0.672899E+08
  2
        6862
               0.502979E+08
                               0.184890E+08
                                              0.656175E+08
  3
        6970
               0.579269E+08
                               0.267221E+08
                                              0.619095E+08
  4
         7065
               0.684234E+08
                               0.17376BE+0B
                                              0.601227E+08
  5
         7153
               0.716954E+08
                               0.246031E+08
                                              0.601500E+08
  6
         7246
               0.744168E+08
                               0.211700E+08
                                              0.617959E+08
  7
        7287
               0.753089E+08
                               0.301146E+08
                                              0.642402E+08
  8
         7442
               0.795350E+0B
                               0.221597E+08
                                              0.669092E+08
  9
        7524
               0.835542E+08
                                              0.687424E+08
                               0.316032E+08
 10
               0.912476E+0B
         7630
                               0.185278E+08
                                              0.637422E+08
 11
         7702
               0.957859E+08
                               0.250479E+08
                                              0.616292E+08
 12
         7770
               0.101796E+09
                               0.173667E+08
                                              0.593986E+08
Average values
      7285.1
               0.739351E+08
                              0.237543E+08
                                              0.634623E+08
```

No information lag Constant lead time Implied shortage factor= 580. Run number 5 migsd= 7099 demsd= 7395

Quarter FROM/TO X T P M		T 139 1815 35 1 34	P 0 74 756 7 14	M O O 5 174 3	OUT 458 58 18 5 0
Quarter FROM/TO X T P M		T 125 1811 38 1 34	P 0 62 764 6 14	M O O 12 167 3	0UT 432 65 25 8 0
Quarter FROM/TO '(T P M IN		T 134 1817 43 0 31	P 0 61 770 5 13	M O O B 175 3	0UT 403 68 18 1
Quarter FROM/IO X I P M IN		T 142 1818 42 0 33	P 0 61 774 7 14	M O O E 169 3	OUT 420 69 19 9
Quarter FKOM/TO X T P M	5 X 10184 91 11 2 477	T 135 1833 28 0 34	P 0 60 787 7 14	M O O B 164 3	OUT 450 51 22 5 0

Quarter FROM/IO X I P M IN	6 X 10231 100 14 1 438	T 129 1834 30 1 31	P 0 43 793 6 13	M O O 8 163 3	OUT 405 53 23 4 0
Quarter FROM/TO X T P M	7 X 10226 95 7 2 4 51	T 133 1827 33 1 32	P 0 57 781 4 13	M 0 0 12 161 3	OUT 425 46 22 6 0
Quarter FROM/IO X I P M IN	8 X 10208 88 10 0 473	T 138 1810 39 0 33	P 0 61 780 8 14	M 0 0 8 164 3	OUT 435 67 18 4 0
Quarter FROM/TO X T P M	9 X 10235 96 7 0 459	T 127 1811 31 0 32	P 0 51 794 4 13	M O O 9 164 3	OUT 417 62 22 7 0
Quarter FROM/TO X T P M	10 X 10252 70 4 1	T 101 1808 38 0 34	P 0 52 801 4 14	M 0 0 5 166 3	0UT 444 71 13 5 0

```
Quarter 11
FROM/TO
            X
                       T
                                             M
                                                      DUT
        10272
                      125
                                                       412
                                              0
 X
 T
            82
                     1780
                                  50
                                             . 0
                                                        69
 P
                                                        22
             8
                       34
                                 801
                                              6
M
             1
                        0
                                  7
                                            163
                                                         4
           450
                       32
                                  13
                                              3
                                                         0
IN
Quarter 12
FROM/TO
            X
                       T
                                             M
                                                       OUT
        10250
                      133
                                   0
                                                       438
 X
                                              0
 T
            92
                     1770
                                  55
                                              0
                                                        54
 P
                       45
                                 783
                                             15
                                                        15
            13
                                                         7
                                   8
                                            157
M
             0
                        0
                                              3
                                                         0
IN
           464
                       33
                                  14
gtr bkord-days
                   bkord-dau$
                                  bkord-max
                                                bkord-max$
  1
       1489594
                 0.199849E+08
                                         37
                                              0.545608E+04
  2
       9723043
                 0.105411E+05
                                        359
                                              0.103793E+06
  3
      23876663
                 0.269367E+09
                                              0.921749E+06
                                      48909
  4
      35559184
                 0.411866E+09
                                     235774
                                              0.200822E+07
  5
      35870655
                 0.555594E+09
                                     287824
                                              0.357920E+07
  5
      2094609
                 0.599420E+09
                                     208744
                                              0.485505E+07
  7
      28304119
                 0.485640E+09
                                     354933
                                              0.688712E+07
  8
      22227702
                 0.336574E+09
                                     150069
                                              0.272196E+07
  9
      24696686
                 0.354556E+09
                                     183663
                                              0.299757E+07
                                              0.291554E+07
 10
      28261902
                 CO+304848E.0
                                     142946
 11
      30571644
                 0.414526E+09
                                     466498
                                              0.368814E+07
 12
      22706904
                 0.355353E+09
                                              0.353407E+07
                                     138311
Average values
                 0.357761E+09 .184839E+06
                                              0.285149E+07
   .246152E+08
qtr long items
                      long $
                                    commit$
                                                   demval$
  1
        6781
               0.345923E+08
                              0.324289E+08
                                              0.689508E+08
  2
        6879
               0.39248BE+08
                              0.187215E+08
                                              0.710893E+08
  3
        6954
               0.475747E+08
                              0.331402E+08
                                              0.689218E+08
  4
        7077
               0.525091E+08
                              0.157839E+08
                                              0.692056E+08
  5
        7209
               0.570918E+08
                              0.285360E+08
                                              0.654399E+08
  ô
        7284
               0.612844E+08
                              0.165965E+08
                                              0.645746E+08
  7
        7418
               0.651551E+08
                              0.298128E+08
                                              0.656762E+08
  8
        7528
               0.698415E+08
                              0.183935E+08
                                              0.631996E+08
  9
        7592
               0.720133E+08
                              0.286491E+08
                                              0.647411E+08
                                              0.648791E+08
 10
        7683
               0.746994E+08
                               0.187357E+08
 11
        7756
               0.834592E+08
                              0.244510E+08
                                              0.606463E+08
                              0.239329E+08
 12
        7859
               0.867711E+08
                                              0.638898E+08
Average values
               0.620201E+08
      7335.0
                              0.240985E+08
                                             0.659345E+08
```

Appendix E: SAS Residual Plots

Predicted vs. Residual Values for Backorders (14:992)

Ranked Residual Plot for Backorders (15:648)

Predicted vs. Residual Values for Long Supply (14:992)

RESIDLSD
Ranked Residual Plot for Long Supply (15:648)

Bibliography

- 1. Air Force Logistics Command. Requirements Procedures for Economic Order Quantity (EOQ) Items. AFLUR 57-6. Wright-Patterson AFB OH: Keadquarters Air Force Logistics Command, 22 August 1984.
- 2. Bagchi, Uttarayan et al. "Concepts, Theory, and Technique: Modeling Demand During Lead-Time."

 <u>Decision Sciences</u>, <u>15</u>: 157-176 (Spring 1984).
- Blazer, Maj Douglas J. "Variability of Demand: Why
 the Part is Never on the Shelf." <u>Air Force Journal</u>
 of <u>Logistics</u>, 9: 11-13+ (Spring 1985).
- 4. Casey, Donald L. <u>Item Migration</u>. Working Paper No. XRS84-215-4. Directorate of Management Science, DCS/PLans and Programs, Headquarters Air Force Logistics Command, Wright-Patterson AFB OH, August 1986.
- 5. Cohen, Morris A. et al. "Optimal Stockage Policies for Low Usage Items in Multi-Echelon Inventory Systems."

 Naval Research Logistics Quarterly, 33: 17-38

 (February 1986).
- 6. Demmy, W. Steven. "A Study to Develop Improved EOQ Inventory Management Policies: Final Report." Contract F33G00-80-C-0530. Decision Systems, Beavercreek OH, March 1982 (AD-A124547).
- 7. Demmy, W Steven. "The Inventory System Simulator (INSSIM), Volume 1: Model Description." Contract F49620-77-C-0063. Decision Systems, Beavercreek OH, August 1977.
- B. Demmy, W. Steven and Gloria J. Picciano. "Inventory Management Research: Some Recent Findings and New Directions for the 1980s." Report, HQ Air Force Logistics Command, Wright-Patterson AFB OH, undated.
- 9. Disz, Thomas E. An <u>Evaluation</u> of the <u>Effect</u> of <u>Establishing a Minimum Economic Order Quantity (EOQ)</u> on the <u>Air Force EOQ Item Management System</u>. MS Thesis AFIT/GLM/LSM/845-14. School of Systems and Logistics, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, 1984

- 10. Hobson, Jeffrey J. and Ronald A. Kircheff. An Application of Markov Chains to the Problem of Migration in Inventory Systems. MS Thesis AFIT/GOR/05/84D-6. School of Engineering, Air force Institute of Technology (AU), Wright-Patterson AFB OH, 1984.
- 11. Kennedy, John D. <u>The Impact of Item Migration in the Air Force Logistics Command Consumables Inventory</u>.

 MS Thesis AFIT/GOR/OS/85D-11. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB DH, 1984.
- 12. Lowe, Timothy J. and Leroy B. Schwarz. "Parameter Estimation for the EOQ Lot-Size Model: Minimax and Expected Value Choices." Naval Research Logistics Quarterly, 30: 367-376 (June 1983).
- 13. Prasutti, Victor J., Jr. and Richard C. Trapp. "More Ado About Economic Order Quantities (EOQ)." Naval Research Logistics Quarterly, 17: 243-251 (June 1970).
- 14. SAS înstitute Inc. <u>SAS User's Guide: Basics, Version 5</u>
 <u>Edition</u>. Cary NC: SAS Institute Inc. 1985.
- 15. SAS Institute Inc. <u>SAS User's Guide</u>: <u>Statistics</u>, <u>Version 5 Edition</u>. Cary NC: SAS Institute Inc. 1985.
- 16. Smith, Kevin P. <u>Estimation of Inventory Item Demand Distributions</u>: <u>Modeling Item Migration at the Defense Electronics Supply Jenter</u>. MS Thesis AFIT/GOR/OS/85D-11. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, 1984.
- 17. Smith, Palmer W., Operations Research Analyst. Personal interview. BDM Corp, Kettering OH, 12 November 1986.
- 18. Smith, Lt Col Palmer W. and Robert Gumbert. "Item Migration and the Dynamics of Inventory Management." <u>Defense Management Journal</u>, 22: 3-11 (First Quarter 1986).
- 19. Ward, J. B. "Determining Reorder Points When Demand is Lumpy." <u>Management Science</u>, <u>24</u>: 623-632 (February 1978).

Les J. Lehmkuhl was born on 15 November 1958 in Sumner, Iowa. He graduated from high school as valedictorian in Davenport, Iowa, in 1977. He graduated from the University of Iowa in May 1981, receiving a Bachelor of Science Regree in Mathematics. As an Air Force ROTC Distinguished Graduate, he received a commission in the USAF and reported for active duty in October 1981 at the Air Force Electronic Warfare Center (AFEWC), San Antonio, Texas. While at the AFEWC, he served as a scientific analyst in simulation validation and electronic combat effectiveness; and as Commander, Squadron Section. He entered the School of Engineering, Air Force Institute of Technology, in May 1985.

Permanent address: R.R. 1, Box 401
LeClaire IA 52753