This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

18/5/5

DIALOG(R) File 351: Derwent WPI

(c) 2001 Derwent Info Ltd. All rts. reserv.

009832032

WPI Acc No: 1994-111888/199414 Related WPI Acc No: 1992-351464

XRAM Acc No: C94-051516 XRPX Acc No: N94-087601

Expression of human protein disulphide isomerase gene - used to prepare

polypeptide in high yield

Patent Assignee: TONEN CORP (TOFU)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
JP 6038771 A 19940215 JP 91114074 A 19910418 199414 B

Priority Applications (No Type Date): JP 90295017 A 19901031

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 6038771 A 30 Cl2N-015/61

Abstract (Basic): JP 6038771 A

A linked gene for the expression of human protein disulphide isomerase (hPDI) consists of a DNA coding human serum albumin prepro-sequence and hPDI gene.

A replicable expression vector which can express the above linked gene in a host, a transformant prepd. by transforming a host by the above expression vector, the prepn. of a recombinant hPDI in which the above linked gene is expressed in the above transformant, a recombinant hPDI prepd. by the above method, a transformant contg. the linked gene and an exotic gene coding a polypeptide controlling the production are also claimed.

The prepn. of a polypeptide uses the hPDI gene and the exotic gene coding the polypeptide aiming the production are co-expressed in the above transformant, and the polypeptide is recovered.

Dwg.0/8

Title Terms: EXPRESS; HUMAN; PROTEIN; DI; SULPHIDE; ISOMERASE; GENE;

PREPARATION; POLYPEPTIDE; HIGH; YIELD

Derwent Class: B04; D16; S03

International Patent Class (Main): C12N-015/61

International Patent Class (Additional): C07K-003/20; C12N-001/19;

C12N-009/90

File Segment: CPI; EPI

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平6-38771

(43)公開日 平成6年(1994)2月15日

(51) Int.Cl. ⁵ C 1 2 N 15/61 C 0 7 K 3/20 C 1 2 N 1/19 9/90	ZNA	庁内整理番号 8517-4H 7236-4B 9161-4B	FΙ	技術表示箇所
		8931-4B	C 1 2 N	15/00 ZNA A
			審査請求 未請求	₹ 請求項の数15(全 30 頁) 最終頁に続く
(21)出願番号	特顧平3-114074		(71)出顧人	390022998 東燃株式会社
(22)出願日	平成3年(1991)4月	18日	(72)発明者	東京都千代田区一ツ橋1丁目1番1号 早野 俊哉
(31)優先権主張番号 (32)優先日	特顧平2-295017 平 2 (1990)10月31日		(15/7271)	埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内
(33)優先権主張国	日本 (JP)		(72)発明者	加藤 世都子 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内
			(72)発明者	高橋 信弘 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内
			(74)代理人	弁理士 久保田 耕平 (外3名) 最終頁に続く

(54) 【発明の名称】 ヒトプロテインジスルフィドイソメラーゼ遺伝子の発現方法および該遺伝子との共発現によるポリペプチドの製造方法

(57)【要約】

【目的】プロテインジスルフィドイソメラーゼ (PD I) 遺伝子の発現、及び該遺伝子と有用ポリペプチドをコードする外来遺伝子との共発現を提供する。

【構成】この発明は、ヒト血清アルプミンプレプロ配列をコードするDNAとヒトPDI遺伝子とから成る新規の連結遺伝子を発現ベクターに組み込み、宿主細胞を形質転換させ、発現させることによるPDIの製造方法、並びに、共発現可能な該連結遺伝子と有用ポリペプチドをコードする外来遺伝子とを含む形質転換体を共発現させることによる該ポリペプチドの製造方法を特徴とする。

【効果】ヒトPDIの大量生産法が確立され、及び同一細胞内でのヒトPDI遺伝子との共発現により有用ポリペプチドの産生効率の向上が可能となった。

【特許額求の筑囲】

【節求項1】 ヒトプロテインジスルフィドイソメラー ゼ発現用の、ヒト血液アルプミンプレプロ配列をコード するDNAとヒトプロテインジスルフィドイソメラーゼ **遺伝子とから成る連結遺伝子。**

【 節求項2】 配列番号2に示される-24番目~+4 91番目のアミノ酸配列をコードする塩基配列から成 る、ヒトプロテインジスルフィドイソメラーゼ発現用 の、ヒト血剤アルプミンプレプロ配列をコードするDN Aとヒトプロテインジスルフィドイソメラーゼ遺伝子と 10 から成る連結遺伝子。

【請求項3】 前記塩基配列が配列番号2に示される1 番目~1545番目の配列から成ることを特徴とする節 求項2記載の連結遺伝子。

【蔚求項4】 蔚求項1~3のいずれか一項に記载の連 結遺伝子を宿主内で発現させ得る複製可能な発現ペクタ

【 請求項 5 】 請求項 4 配載の発現ペクターで宿主を形 質転換して得られる形質転換体。

【節求項6】 宿主が酵母である欝求項5配歳の形質伝 20 換体。

【 請求項7】 請求項1~3のいずれか一項に記載の連 結遺伝子を韵求項5又は6記歳の形質伝換体内で発現さ せることを特徴とする組換えヒトプロテインジスルフィ ドイソメラーゼの製造方法。

【蔚求項8】 蔚求項1~3のいずれか一項に記載の連 結遺伝子を宿主内で発現させ得る複製可能な発現ペクタ 一を模築し、

宿主を前配発現ペクターで形質転換して形質転換体を 得、

前記連結遺伝子を発現させ得る条件下で、前記形質転換 体を培養して組換えヒトプロテインジスルフィドイソメ ラーゼを分泌させ、

前記組換えヒトプロテインジスルフィドイソメラーゼを 回収する、ことを特徴とする前求項7記載の方法。

【請求項9】 分泌された前記組換えヒトプロテインジ スルフィドイソメラーゼを、疎水性カラムクロマトグラ フィーによって分離回収することを特徴とする請求項8 記载の方法。

方法によって得られる、配列番号3に示される1番目~ 491番目のアミノ酸配列から成る組換えヒトプロテイ ンジスルフィドイソメラーゼ。

【 請求項11】 共発現可能な請求項1~3のいずれか 一項に配載の連結遺伝子と生産を目的とするポリペプチ ドをコードする外来遺伝子とを含む形質伝換体。

【請求項12】 形質転換体が形質伝換酵母である請求 項11記載の形質転換体。

【 請求項13】 外来遺伝子がヒト血清アルプミンをコ ードする遺伝子である節求項11記载の形質転換体。

環の形質伝換体内で、ヒトプロテインジスルフィドイソ メラーゼ遺伝子と生産を目的とするポリペプチドをコー ドする外来遺伝子とを共発現させて該ポリペプチドを産

生させ、及び該ポリペプチドを回収することを特徴とす るポリペプチドの製造方法。

【請求項15】 ポリペプチドがヒト血清アルブミンで ある請求項14記载の方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ポリペプチド中のジス ルフィド結合の交換反応を触媒することによりポリペプ チドの高次樽造形成を促進する酵素プロテインジスルフ ィドイソメラーゼをコードする遺伝子の発現に関する。 さらに本発明は、該遺伝子と有用ポリペプチドをコード する外来遺伝子との共発現に関する。

[0002]

【従来の技術】in vitro での変性蛋白質の再构成(Ref olding) 実験の結果より、ポリペプチドのフォールディ ング速度を律速する反応として、ジスルフィルド結合の 異性化とプロリンペプチドの異性化反応があることが知 5h (Freedman, Cell 57, 1069-1072, 1989; Fisher & Schmid, Biochemistry 29, 2205-2212, 1990)、フォー ルディング反応におけるこれらの遅い反応を触媒する静 素として、後者には、ペプチジルプロリルシストランス イソメラーゼ(PPI)が、前者にはプロテインジスル フィドイソメラーゼ(PDI)とチオレドキシンなどが 見い出されている。In vitro の実験では、これらの酵 素が、変性蛋白質の再構成の速度を促進することが示さ 30 れ、遺伝子工学的に生産された不活性蛋白質のin vitr o での再構成への利用が考えられている (Schein, Bio /Technology 7, 1141-1148, 1989; 鵜高重三、日本農 芸化学会誌 64, 1035-1038, 1990)。

【0003】PDIは、可溶性で、哺乳類の肝臓から比 較的容易に単確され、その触媒としての性質が詳細に調 べられている。PDIは、チオール/ジスルフィド結合 の交換反応を触媒し、蛋白質基質のジスルフィド結合の 形成・異性化・あるいは還元を行うことができる(Free dman, Cell 57, 1069-1072, 1989). PD I は vitr **育アルプミンなどの多重ドメインからなる蛋白質などの** 分子内でのジスルフィド結合の形成や交換反応を促進し たり、又は免疫グロブリンやプロコラーゲンなどのよう なサプユニット構造を持つ蛋白質の分子間でのジスルフ ィド結合の形成などの反応を促進することが知られてい る (Freedman, Nature 329, 196, 1987).

> 【0004】哺乳類由来のPDIは、通常分子量約5万 7千からなるポリペプチドのホモダイマーとして存在 し、きわめて酸性度の高いp I 値 (pI 4.2~4.3) を持 50 っている。

【0005】ラットの肝臓由来のPDIについて、その 遺伝子が単雄され、その遺伝子の塩基配列よりPDIの アミノ酸配列が推定され、PDIが2種類の相同性単位 からなる分子内重複构造を持つことが示されている。2 種の相同性単位のうち一種については、チオレドキシン のアミノ酸配列と相同性があることが見い出され、類似 の活性部位アミノ酸配列を持つと考えられている(Edma Nature317, 267-270, 1985)。チオレドキ n et al.. シンは、in vivoでインシュリンのジスルフィド結合を 進することができ、in vivoでの蛋白質のフォールディ ング過程でPDIと同様の例きをすることが示唆されて いる (Pigict & Schuster, Proc. Natl. Acad. Sci. USA 83, 7643-7647, 1986).

【0006】PDIの生体内での存在量は、組織の種類 や細胞の分化段階の違いによって異なるが、このこと と、分泌するある特定の蛋白質の存在との間に相関性が あること、そして、蛋白質の分泌の際に通過することが 知られている小胞体内部にPDIが豊富に局在化してい 成される分泌蛋白質のジスルフィド結合の形成に関与し ていると推定されている。このことは、無細胞蛋白質合 成系を用い、モデル系としてァーグリアジンの生合成を 行い、この時、PDIを洗い流した小胞体分画だけでは ァーグリアジンの翻訳に共役したジスルフィド結合の形 成はほとんど起らないが、PDIを加えると、ジスルフ ィド結合の形成能が回復するという結果によって支持さ れている (Bulleid & Freedman, Nature, 335 649-65

成への関与以外に、蛋白質の翻訳後の他の修飾反応にも 関わっている証拠が得られている。例えば、PDIは、 プロコラーゲンのプロリン残基を水酸化するプロリルー 4 -ハイドロキシラーゼの触媒ユニットであるβサプユ ニットや、合成蛋白質のN-グリコシル化の過程で、粧 鎖を付加されるペプチドのシグナル配列 Asn-X-Ser/Thr を認識するグリコシル化部位結合蛋白質(Piblajaniemi et al., EMBO J. 6, 643-649 1987; Geetha-Habib e t al., Cell 54, 1053-1060 1988) 、さらにまた、甲 状腺ホルモン結合蛋白質(triiodo-L-thyronine binding 40 protein) (Cheng et al. J. Biol. Chem. 262, 11221-11227, 1987)などとの同一性が示され、PDI分子の蛋 白質の修飾反応における多機能性が示唆されている。こ れらの事実に加え、PDI分子とは異なる分子種である が、アミノ酸配列上において相同性がある分子種も見い 出されている。それらの例としてはPDIの活性部位と 考えられているアミノ酸配列と相同性がある配列を持 ち、ジスルフィド結合の異性化を触媒することが見い出 されたフォリトロピン(Follitropin) やルトロピン (Lu

rt et al., Science 247, 61-64, 1990)、ホスファ チジルイノシトール4,5-ビスホスフェイトを1,2-ジアシ ルグリセロールとイノシトール1,4,5-トリホスフェート に加水分解する酵素でありその分子内にPDIと相同性 を持つ領域が存在するホスホリパーゼCなども知られ

(Bennettet al., Nature 334, 268-270, 1988). PDIやPDI様分子の細胞内外でのきわめて広箆な生 命現象への関りが考えられている。

【0008】以上のように広境な働きが示唆されている 還元したり、RNase のジスルフィド結合の交換反応を促 10 が、PDIの主な効果は分子内及び分子間のジスルフィ ド結合の異性化を触媒し、天然の高次樽遺を持った蛋白 質(及び集合体)を生じさせることと考えられている。 しかししばしば、ほとんど化学量論的な量のPDIが最 適な反応速度を実現するために必要とされる。従って、 ジスルフィドイソメラーゼ活性が低い場合には、蛋白質 分子内及び分子間でのジスルフィド異性化速度が低く、 従って適切なジスルフィド結合を有する蛋白質の形成の 効率が低いことが予想される。種々の真核生物由来の蛋 白質(特に分泌蛋白質類)が、大腸菌内で不溶化分子祭 ることなどから、細胞内においてもPDIが、新しく合 20 合体を形成する原因の1つがこのジスルフィドイソメラ ーゼ活性の低さにあると考えることも可能である。 大脳 菌では、ジスルフィド還元酔素としてチオレドキシシン を含むが、チオレドキシンはジスルフィド還元酵素とし てはPDIよりも強力であるが、イソメラーゼとしての 効率はよくない。一方、分子内ジスルフィド結合は、分 泌蛋白質に高頻度にみられることから、分泌能の高い細 胞あるいは組織においてジスルフィド異性化を介したジ スルフィド結合活性が高いことが予想されるが、実際に ラットの種々の組織の相対的なPDI mRNA含量の比 【0007】PDIについては、ジスルフィド結合の形 30 蛟(肝臓>膵臓、腎臓>肺>精巣、脾臓>心臓>脳の 願) からこのことが強く示唆されている (Edman ら、 N ature 314, 267-270, 1985) .

> 【0009】また、還元された状態の環境が蛋白質合成 の場として与えられた場合には、適切なフォールディン グのために必要とされるジスルフィド結合の形成は阻害 されるであろう。このような環境は、例えば、コンパー トメントがないような原核生物の細胞内で生じる。この ような点を考えると、原核生物細胞と真核生物細胞で は、ジスルフィド結合形成に関わる因子とそれを可能に させる環境とが異なるのかもしれない。組換えDNA技 術を用いて、有用な蛋白質(その多くは分泌性の蛋白質 である)を産生させようとするとき、その蛋白質に適し た条件でジスルフィド結合の形成をおこなわせる必要が ある。そのためには、宿主細胞内の環境(適切なコンパ ートメント)が実現しなければならないであろうし、そ の環境(コンパートメント)に親和性の高いジスルフィ ド形成 (ジスルフィド異性化) 酵素が多量に存在しなけ ればならないであろう。

【0010】これら二つの点は組換えDNA技術を用い tropin) などの性腺刺激ホルモンや(Boniface & Reiche 50 て、ジスルフィド結合を有する蛋白質を効率よく産生さ

せる際に最も注意しなければならない点と考えられる。 【0011】しかしながら、いままでin vivoの系でプ ロテインジスルフィドイソメラーゼを適切なコンパート メントで多量にそして、目的とする有用蛋白質と共存さ せつつそれに仰かせる系は存在していない。

[0012]

【発明が解決しようとする問題点】 in vitro での変性 蛋白質の再构成への利用又は、細胞内での分泌蛋白質の 産生率向上への利用等が考えられているにもかかわら た。各種細胞での他種由来のPDIの発現はいまだなさ れておらず、遺伝子工学的に産生する手段、他の有用ポ リペプチドの遺伝子と共役させることによってその産生 効率を挙げる手段等は確立されていなかった。

【0013】本発明は、ヒトPDI発現用のヒト血消ア ルブミンプレプロ配列をコードするDNAとヒトPDI 遺伝子とから成る連結遺伝子、該連結遺伝子を宿主内で 発現させ得る発現ベクター、酸ベクターで宿主が形質転 換された形質伝換体、該形質伝換体内で該運結遺伝子を 発現させることによる組換えヒトPDIの製造方法及び 20 いると考えられる。 組換えPDIを提供することを目的とする。

【0014】さらにまた、本発明は、共発現可能な該連 結迫伝子と生産を目的とするポリペプチドをコードする 外来迫伝子とを含む形質伝換体、及び該形質伝換体内で ヒトPDI及び該外来遺伝子を共発現させることによる 該ポリペプチドの製造方法を提供することを目的とす

[0015]

【問題点を解決するための手段】本発明者らは、上記目 ミンプレプロ配列をコードするDNAとヒトプロテイン ジスルフィドイソメラーゼ遺伝子とを連結した遺伝子を 作製し、これを組み込んだ発現用ペクターを見出したこ とにより本発明を完成させた。

【0016】以下に本発明の詳細を説明する。

【0017】ヒトプロテインジスルフィドイソメラーゼ (protein disulphide isomerase;「PDI」と略称す る) cDNAをコードするクローンは、ヒト肝臓入gt11 cDNAライプラリー及びヒト胎盤入gtll cDNAライ る。

【0018】ヒト肝臓及びヒト胎盤 \ gt11 c D N A ライ プラリーを大脚菌にファージ感染させ、増殖させ、ファ ージDNAをフィルターに固定する。一方、ヒトプロリ ン 4-水酸化酵素 (PDIと同一タンパク質) cDNA [Pihlajaniemi, T. 5 (1987) EMBO J. 6, 643] Ø 243 番目から 282番目の塩基配列の相補領に対応する40 mer の合成オリゴマーDNAをプローブとするハイブリダイ ゼーションにより陽性クローンをスクリーニングし、そ インサートDNAをPDI cDNAスクリーニング用プロープ とする。このプロープを用いて、フィルターに固定され た上記ファージDNAをスクリーニングして、陽性クロ ーンを分離する。

6

【0019】このようにして得られた複数の陽性クロー ンをEcoRI 消化してEcoRI インサートDNA断片を得 て、各クローンのインサートについて制限蔚素地図を作 成し、Piblajaniemiらによる制限酵素地図と比較した結 果、肝臓由来のクローン(pHPDI16) と胎盤由来のクロー ず、該酵素の入手は臓器からの直接的粕裂に限られてい 10 ン(pEPDIp4) とでヒトPDI cDNAの全長をカバーし ていることが推測された。

> 【0020】両クローンのDNA塩基配列を決定した結 果、これらのクローンが配列番号1に示される全長2454 塩基対から成るヒトPDI cDNAをコードしていることが判 明した。また、その塩基配列から推定されたアミノ酸配 列は配列番号1に示すとおりであった。配列中、成熟タ ンパク質は Asp¹ から Leu⁴⁵¹ の 491個のアミノ酸から 构成されていると考えられ、 Asp1 に先行する17個のア ミノ酸から成るペプチドはシグナルペプチドを表わして

> 【0021】本発明は、PDIを発現・産生させるため の、ヒト血清アルプミン遺伝子プレプロ配列をコードす るDNAと前記ヒトPDI遺伝子とから成る連結遺伝子 を提供する。

【0022】該連結遺伝子は、例えば第1図Cに示すよ うに、通常PDI遺伝子の上流に該プレプロ配列をコー ドするDNAを配置させることによって作製され得る。 但し、ヒトPD I を適切なコンパートメント (小胞体と 考えられている)に輸送するためのリーダー配列として 的を達成するために鋭意研究した結果、ヒト血清アルブ 30 はヒト血清アルブミンのプレプロ配列に限定する必要は なく、他のシグナル配列やプレプロ配列であってもよ

【0023】具体的には、前配クローン pHPDI16及び p HPDIp4 DNAを、夫々EcoRI/PstI、PstI/BamHIで消化し、 約490bp 及び約1.3kbpのDNA断片を得、両断片をEcoR I/BamHI 消化プラスミドベクターpUC119に連結し (phPD IEB)、Kunkel法 [Kunkel, T. A. (1985)Proc. Natl. Acad. S ci. USA 82, 488] により cDNA上のPD I シグナル 配列とPDI本体との境界部分に制限酵素NaeI切断部位 プラリー (Clontech社) から次のようにして分辞され 40 を導入し(phPDINae)、NaeI/Hind III 消化によりPDI シグナル配列を含まない約1.7kb のPDI DNA 断片を得

[0024]

一方、pUC119をEcoRI 消化し、これにXhoIリンカー: 5 ' -AATTCTCGAG

GAGCTCTTAA-5 '

を連結し、XhoI/BamHI消化し、これにヒト血狩アルブミ ン(以下「HSA」と略称する)プレプロ配列を連結し (pUC 119 Sig) 、StuI/Hind III 消化し3.2kb のDNA のファージDNAをEcoRI 消化し、得られた約150 bpの 50 断片を得る (HSAプレプロ配列の合成法は後述の実施

例に示される)。

【0025】phPDINae由来の1.7kb DNA 断片とpUC 119 Sig 由来の3.2kb DNA 断片を連結し(phPDILy1)、EcoRI 消化、Klenow断片による平滑化、BamHI 消化を頃次行っ てHSAプレプロ配列下流にヒトPDI本体を接続した (第2図)、リーダー配列改変型の連結遺伝子を得るこ とができる。

【0026】本発明の連結遺伝子の作製方法及びその科 成设伝子間の配置は、上述の方法に限定されるものでは 含される。また、該連結遺伝子の類似体は本発明の範囲 外であるが、ヒト以外の他の助物由来の対応退伝子から 容易に作毀され得ることは自明であろう。

[0027] 本発明はまた、配列番号2に示される-2 4番目~+491番目のアミノ酸配列をコードする塩基 配列から成る該連結遺伝子を提供する。この場合、この 塩基配列と実質的に同様の作用を示す遺伝子、例えば追 伝子コードの縮重に基づく該塩基配列の誘導体は全て本 発明に包含される。例えば、本発明の実施強様により、 本発明は配列番号2に示される全塩基配列からなる該座 20 結迫伝子を提供する。

【0028】本発明はさらに、本発明連結遺伝子を宿主 内で発現させ得る複製可能な発現ペクターを提供する。

【0029】本発明連結迫伝子を組み込むためのペクタ ーは、宿主内で発現可能であり且つ複製能を有するもの である。一般的には、宿主細胞と適合し得る種から誘導 されたレブリコン及び制御配列を含むベクターが、宿主 と関連して使用される。ペクターは、通常、形質転換さ れた細胞中での表現型選択を可能にするマーカー配列と 複製部位とを保有している。

【0030】本発明の発現ベクターを构築するためのペ クターとしては、例えば本出願人による特開平 2-1173 84号公報に開示のプラスミド pJDB-ADH-HSA-A (第1図 - C参照)が使用される。このプラスミドはHSA cDNAを 含み、また酵母アルコールデヒドロゲナーゼI(ADH I) プロモーター、ADHターミネーター、アンピシリ ン耐性遺伝子(Amp')、及びLeu2遺伝子を含んでいる。 そのため、このプラスミドを、Xhol消化し、Klenov断片 により平滑し、BamHI 消化してHSA cDNAを除去する。得 られた約8kb DNA 断片の5′端を脱リン酸化した後、前 40 述の本発明連結遺伝子を連結することにより、発現プラ スミド(pAHhPDILy1)を得ることができる。もちろん、本 発明の連結遺伝子を発現させ得る同等の機能を果すこと ができる別の種類のベクターを使用することもできる。

【0031】本発明はさらに、本発明の発現ペクターで 宿主を形質転換して得られる形質転換体を提供する。

【0032】宿主としては、大脳菌、枯草菌などの原核 細胞、及び酔母が挙げられ、特にプロセシングを介して 成熟型PDIを分泌し得る宿主が好ましい。好適な宿主 は酵母である。宿主酵母としては、Saccharomyces ce 50

revisiae等が挙げられ、本発明の形質伝換体の作領にあ たっては特に酵母AH22株が好適に使用される。本発明 の筑囲外であるが、酵母以外の真核細胞(例えば、効物 細胞)も宿主として使用し得ることは自明であろう。宿 主細胞への発現ペクターの移入は慣用的方法で実施さ れ、例えば、塩化カルシウム処理法、プロトプラスト (又はスフェロプラスト) - ポリエチレングリコール

8

法、電気穿孔法などにより容易に実施され得る。目的の 形質伝換体は、発現ペクターがpAHhPDILy1の場合、得ら なく、PDIを発現させ得る能力を有するものは全て包 10 れた跛体をSD(-Leu)プレート上で培養することによっ てスクリーニングし、取得される。

> 【0033】従って、本発明はまた、上述のようにして 作製した形質転換体内で本発明の連結遺伝子を発現させ ることによる組換えヒトPDIの製造方法を提供する。 本発明の実施態様によれば、本発明の製造方法は以下に 示す段階を含む。

【0034】即ち、本発明連結遺伝子を宿主内で発現さ せ得る複裂可能な発現ペクターを构築する段階と、宿主 を前配発現ペクターで形質転換して形質転換体を得る段 階と、前記連結迫伝子を発現させ得る条件下で、前記形 曾広操体を培設して組換えヒトPD I を分泌させる段階 と、前記組換えPDIを回収する段階と、を包含する。

【0035】宿主として酵母を用いる場合には、ヒトP D I 前図体タンパク質がプロセシングを受けて、組換え ヒトPDIが迫伝子産物として分泌される。もし宿主と して蔚母以外の例えば大腸菌、枯草菌等の微生物が用い られる場合には、プロセシングを受けていないヒトPD I 前圏体タンパク質が得られるだろう。

【0036】 遠心分離により細胞と培養培地とを分離 し、必要に応じて細胞を破砕し、次に例えば限外濾過に より濃縮した濃縮液を疎水性カラムクロマクトグラフィ 一に掛けることにより組換えヒトPDIを容易に粕製単 **離することができる。このクロマトグラフィーに使用し** 得る疎水性カラムは特定のものに限定されるものではな いが、例えばTSK-gel Phenyl-5PV疎水性カラム(東ソー 図) が使用され得、この場合組換えヒトPDIはKC1 含有ホウ酸級衝液 (pH 8.0) 中0.85Mから 0M硫酸アン モニウムへの直線的過度勾配により溶出され得る(第4) 図)。SDS電気泳動分析(第5図)から組換えヒトP DIは、約55kDa の分子量を有し、またスクランプルド リポヌクレアーゼAの再构成の程度を指標として定量す ることにより、得られた組換えヒトPDIはPDI活性 をもつことも確認された(後述の実施例参照)。

【0037】本発明方法によって産生される組換えヒト PDIは、天然型のヒトPDIと比較してN末端アミノ 酸が AspからGly に改変されたものであった。従って、 本発明は 491個のアミノ酸から成る配列番号3に示され る Glv¹ ········· Leu⁴タ¹ のアミノ酸配列から构成され る組換えヒトPDIをも提供する。

【0038】本発明はさらに、共発現可能な、ヒトPD

I 迫伝子とヒト血剤アルプミンプレプロ配列をコードす るDNAとから成る連結遺伝子と、生産を目的とするポ リペプチドをコードする外来遺伝子とを含む形質伝換体 を提供する。

【0039】形質伝換体中の該連結辺伝子と該外来迎伝 子は、互いに共発現可能な状態であれば、同一ゲノム上 にあってもよく、又は異なるゲノム上にあってもよい。 宿主細胞の形質伝換は、例えば、該連結遺伝子及び該外 来设伝子を同一の又は異なるペクター内に組み込み、得 られたベクターを塩化カルシウム処理法、プロトプラス 10 ト (又はスフェロプラスト) -ポリエチレングリコール 法、電気穿孔法などの慣用的方法で宿主内に移入するこ とによって実施され得る。

【0040】該外来遺伝子によってコードされるポリペ プチドは、増幅発現されたPDIの独媒作用(即ちポリ ペプチド中のジスルフィド結合の形成、交換反応等を促 進する)が直接的に発揮されるために、その樽造中にジ スルフィド結合を含むものであれば如何なる種類のポリ ペプチドであってもよい。さらに、本発明は、増幅発現 されたPDI活性の効果が遺伝子発現、ポリペプチドの 20 フォールディング、輸送等に関与する蛋白質に対して発 **揮され、それにより間接的に生産性が増大するような場** 合にも適用される。本発明の実施強様により、本発明は また該外来遺伝子としてヒト血消アルプミン(HSA) をコードする遺伝子を提供する。

【0041】本明細啓中、「ポリペプチド」なる用語 は、短鎖及び長鎖ペプチド並びに蛋白質を含むことを意 味する。

【0042】また宿主としては、大脳菌、枯草菌などの 原核細胞、酵母、動物細胞などの真核細胞が挙げられ 30 る。特に、翻訳後修飾やプロセシングを介して成熟ポリ ペプチドを分泌し得る宿主、例えば真核細胞が好まし く、特に酵母が好ましい。

【0043】本発明はさらに、上記形質転換体内で、ヒ トPDI遺伝子と他のポリペプチドをコードする外来追 伝子とを共発現させて該ポリペプチドを産生させ、及び 該ポリペプチドを回収することから成るポリペプチドの 製造方法を提供する。

【0044】本発明の実施盤様により、ヒトアDI発現 プラスミドを用いてHSA生産酵母を形質転換して得ら 40 れた酵母内でHSA及びPDIを任意の培地中で共発現 させた場合には、単独に発現させた場合と比べて、HS Aの分泌量は平均で約60%増加した(第8図)。

【0045】理論に拘束されるつもりはないが、共発現 によるHSA分泌量の増加に関しては以下のように考え

【0046】 HSAは、17個のジスルフィド結合を持 つ蛋白質であり、かつ、in vitroでの変性蛋白質から の再构成実験において化学量論的量のPDIの存在によ り、その高次樽造形成が促進されることが知られてい 50 せることにより同様の分泌虽の増加効果が期待できると

10

[0047] **蔚母HIS23株によって、HSAは可溶** 性分子として分泌されるが、同菌体の細胞内にもHSA 分子が検出されている。SDS電気泳勁法により、細胞 内のHSAを分析すると、湿元剤存在下ではゲル上で単 ーパンドとして正常なHSA分子と同一の挙勁を示すの に対し、湿元剤非存在下では、より分子母の大きい不連 続なパンド群として検出され、明らかに正常なHSAと は異なる挙動を示す。これらの結果は、細胞内に存在す るHSA分子は、分子内ジスルフィド結合が不完全に形 成されているため生じると推定される。一方、PDIを 共発現させた細胞では、細胞内のHSAの還元剤非存在 下でのSDS電気泳助では、HSA分子は外来のPDI c DNAを共発現させていない酵母菌から得た細胞内H SA試料と比較してよりまとまったパンドとして検出さ れることから、PDIはHSA分子内の正常なジスルフ ィド結合の形成を促進し、より効率的にHSA分子の高 次构造形成を補助していると推定される。このことによ って、例えば、不安定な构造を持つHSAの細胞内での 会合や、プロテアーゼによる分解がより少なくなるため に分泌量が増加していると思われる。

【0048】また、PDIを共発現させた場合とさせな い場合でのHIS23株細胞内のHSAのmRNA存在 母をNorthernプロット法により比較すると、PD I 遺伝 子を発現させた場合にHSAのmRNA量が増加してい る。このことは、PDIが直接HSA分子に作用してい る可能性だけでなく、HSA遺伝子の転写レベルにも影 唇を与えている可能性をも示唆している。しかし、小胞 体への膜移行過程を介する細胞内輸送に働くヒト血清ア ルプミンのリーダー配列の融合によってヒトPDIが多 **園に酵母菌から分泌されたこととHSAの分泌量が増加** したこととが相関していることから、PDIは、小胞体 においてHSAと共存し、直接HSAに作用したことが HSAの産生レベルを上昇させた主要因であると考えた ほうがより単純であるようにみえる。さらに、HIS2 3株より分泌されたHSAとPDIの量をみると、PD IはHSAの数倍分泌されており、さらに細胞内に検出 されるヒトPDIレベルも高いことから、変性HSAの in vitro での再构成において促進効果を示すのに必要 とされるPDI量が十分に該酵母菌小胞体内でも確保さ れているものと推定される。このこともまた、PDIが HSAに直接作用していることを支持しているようにみ える。

【0049】このように、HSAの例でPDIの共発現 によってその分泌量の増加効果が得られ、その効果がP DIが直接HSAの高次樽造形成に働いている可能性が 高いことから、より一般的に、ジスルフィド結合の形成 が、高次构造の形成や安定化に寄与している分泌蛋白質 全般についても同一細胞内でPDIを高度に増幅発現さ

考えられる。

【0050】以下の実施例により、さらに本発明を説明 するが、本発明はこれらの実施例に限定されるものでは

[0051]

【奥施例】

ヒトPD I (protein disulphide isomerase)cDNAのクロ ーン化

ヒト肝臓 入gt11cDNAライブラリー (Clontech社) 約100. 000 クローンを 0.2%のマルトースを含むLB培地(1% 10 パクトトリプトン、 1% NaClおよび 0.5%イーストエキ ストラクト)で37℃一晩培發した大腸菌Y1090株培袋液 500 μ l と混合し、これに 1M MgCl₂ 5 μ l を加え37℃ で10分間加温することによりファージを大腸菌に感染さ せた。これを50mlのLB上層窓天培地(LB培地、 10m M MgCl:および 0.7%アガロース) に加え混合後、23cm ×23cmプレート中のLB寒天培地上にまいた。上層寒天 培地を固めた後、37℃で一晩培發しファージを増殖させ た。得られたファージをフィルター (Hybond-N, Amersh am社) に移し、アルカリ溶液 (0.5N NaOH および0.15M NaCl) に浸した3MM 遊紙 (Whatman 社) 上に、ファージ の付着面を上に向けて1分間置き、焼いて中和溶液[111] Tris-HCl(pH7.5)および1.5M NaCl] に浸した同趣紙上 に1分間置いた。さらにフィルターを 2×SSC 溶液(20 ×SSC = 3M NaCl および 0.3Mクエン酸三ナトリウム) で洗浄、風乾後、UV照射を2分間行うことによりファ ージDNAをフィルターに固定した。こうして得られた フィルターを用いて以下の手順に従ってヒトPDI cDNAの スクリーニングを行った。

【0052】プロープには、ヒトプロリン 4-水酸化醇 30 素(PDIと同一タンパク質)cDNA [Piblajaniemi, T. et al. (1987) EMBO J., 6,643] の 243番目から 2 82番目の塩基配列の相補鎖に対応する40mer のオリゴマ -DNA (5'-TGGCGTCCACCTTGGCCAACCTGATCTCGGAACCT TCTGC-3′) を、自動DNA合成機 (Applied Biosyste ms社モデル380B) により合成したものを用いた。

【0053】合成DNA(20pmoles)を 50mM Tris-HCl (pH7.5); 10mM MgCl₂ 、 5mMジチオスレイトール、10 0 μ Ci [γ -32 P] ATP (~3000Ci/mmol, Amersham 社) および12単位のT4ポリヌクレオチドキナーゼ (宝 40 酒造社)を含む溶液50μ1中で37℃60分間反応させるこ とによりその 5′ 端をリン酸化標識した。上記のフィル ターをプレハイプリダイゼーション溶液 [5×デンハル ト溶液(100×デンハルト溶液=2%ウシ血清アルプミ ン、2%フィコール 400および2%ポリピニルピロリド ン)、1M NaCl 、 50mM Tris-HCl(pH 7.5)、 10mM EDTA (pH8.0) 、 0.1%ドデシルザルコシン酸ナトリウムおよ び20μg/mlの超音波処理をしたサケ精子DNA]に37 ℃1時間浸したあと、ハイブリダイゼーション溶液(ブ レハイブリダイゼーション溶液に約10° cpm/mlの上記標 50 tech社) 約50,000クローンおよびヒト胎盤入gt11cDNAラ

12

蹴DNAを含む溶液) 中に37℃15時間浸した。このフィ ルターを 2×SSC 溶液を用いて室温で洗浄し、さらに2 ×SSC、0.1 %ドデシルザルコシン酸ナトリウム溶液 で42℃30分間洗浄した後X線フィルム(XAR-5、Kodak 社) に-80℃で一晩賦光させた。フィルムの現像の結 果、1次スクリーニングで8つの悶性シグナルを得た。 これらのシグナルに対応する位置にあるファージを上記 プレートからゲル切片として切り取り1mlのSM級銜液 [100mM NaCl, 10mM MgCl: 50mM Tris-HCl(pH7.5) および0.01%ゼラチン] に浸し、4℃で一晩静置するこ とにより、ゲル中のファージを溶液中に回収した。この ようにして得られた8種の1次スクリーニング陽性ファ ージについて、それぞれ1次スクリーニングと同様の条 件で2次スクリーニングを行った結果1つのみが陽性ク ローンとして残った。このクローンについてさらに3次 スクリーニングを行い完全に単一の陽性クローンとして 分離した。

【0054】得られた陽性クローンのファージDNA をLe der らの方法 [Leder,P., Tiemeir,D. & Enquist L. (1 977) Science 196, 175] により鋼製した。得られた ファージDNAの 1/5量を溶液 [100mM Tris-HCI(pH7. 5) 、 100mM NaCl、6mM MgCl: 、6mM メルカプトエタ ノール、 0.1%ゼラチン、20μg/mlリポヌクレアーゼ Aおよび20単位の EcoRI (ニッポンジーン社)] 50μl 中で37℃1時間消化後、0.8%アガロースゲルで열気泳 効を行った結果、この陽性クローンが約150 bpのインサ ートDNAを含むことが分かった。グラスパウダー(Ge ne Clean^{tn}、Bio-101 社)を用いてインサートDNAを 分離・精製した。回収したDNA断片約20ngと EcoRIで 消化したpUC19 ベクター約100 ngとをDNAライゲーシ ョンキット (宝酒造社) A液20μ1、B液4μ1の混合 液中で16℃15時間反応させることにより両DNAを連結 させた組換えプラスミドを得た。この反応液10μ1 を用 いてMandel法 [Mandel, M. & Higa, A. (1970) J. Mol. Bio 1.53,154] により大腸菌TG1株を形質転換した。 得られた形質伝換体を25μg/mlアンピシリンを含むL B培地 100mlで37℃一晩培發し、アルカリ溶菌法 [Birn boim, H. C. & Doly J. (1979) Nucleic Acids Res. 7, 15 13] によりプラスミドDNAを精製した。このプラスミ ドDNA10μgを溶液[100mM Tris-HCl(pH7.5)、100mM NaCl、6mM MgCl:、6mM メルカプトエタノール、 0.1% ゼラチンおよび 100単位の EcoRI (ニッポンジーン 社)] 200 µ1 中で37℃1時間消化後、フェノール抽 出、エタノール沈澱を行い濃縮し、 0.8%アガロースゲ ル電気泳動行った。約150bp のインサートDNAをグラ スパウダーで回収し、以下に記すPDI cDNAのスクリーニ ングに用いるプローブとした。

【0055】ヒトPDI cDNAの全長を含むクローンを得る ために、改めてヒト肝臓入gt11cDNAライプラリー (Clon イブラリー (同社) 約50,000クローンについてのスクリ ーニングを行った。上配の手熕と同様に両ライブラリー のファージDNAを固定したフィルターを作製した。上 記150bp ヒトPDI cDNA断片約100 ngを [α-32 P] dCTP ()400Ci/mmol, Amersham 社) およびニックトランスレ ーションキット (同社) を用いて放射性標識したものを 本スクリーニングに用いた。上記の両フィルターをプレ ハイブリダイゼーション溶液に60℃1時間浸した後、ハ イブリダイゼーション溶液(プレハイブリダイゼーショ ン溶液に約10° cpm/mlの上記標識DNAを含む溶液)中 10 に60℃15時間浸した。このフィルターを 2×SSC 溶液を 用いて室温で洗浄し、さらに 0.5×SSC 、 0.1%ドデシ ルザルコシン酸ナトリウム溶液で65℃1時間洗浄した後 X線フィルム (XAR-5, Kodak社) に-80℃で一晩鰯光さ せた。フィルムの現像の結果、肝臓 cDNAライブラリ ーより6個、胎盤 cDNAライプラリーより5個の陽性 シグナルを得た。これらをさらに2次、3次のスクリー ニングにかけることにより最終的に肝臓 cDNAライブ ラリーより4個、胎盤 cDNAライブラリーより3個の 陽性クローンを単態した。得られた7つのクローンの E 20 coRIインサートDNA断片を前述と同様の方法に従って プラスミドベクターpUC19 のEcoRI 部位にサプクローン 化した後、7クローンのインサートについての制限酵素 地図を作成した。その結果、肝臓 cDNAの4つおよび 胎盤 cDNAの2つが互いにオーパーラップしており、 かつ、そのうちの肝臓由来のクローン1つ(pEPDI16)と 胎盤由来のクローン1つ(pEPDIp4)の2つで目的とする ヒトPDI cDNAの全長をカパーしていることが、これらの クローンとPiblajaniemiらのクローンの制限酵素地図の 比較から予想された。両クローンについて M13 SEQUENC 30 ING KIT (東洋紡績社)、M13 Sequencing Kit (宝酒造 社) および自動DNAシークエンサー (370A, Applied Biosystems社) によりDNA塩基配列を決定した。Pibl ajaniemiらのデータとの比較により両クローンは全長24 54塩基対から成るヒトPDI cDNAをコードすることが明ら かとなった(配列番号1)。

【0056】ヒトPDIの酵母発現プラスミドの构築 上記のヒトPDI cDNAをコードする2つのクローンp田DII 6 およびp田DIp4 をもとにしてヒトPDIの酵母におけ る発現用プラスミドを以下の手順で辯築した(第1図 40 A、BおよびC)。

【0057】アルカリ溶菌法により調製したpHPDI16 DN A 約1 μgを溶液 [10mM Tris-HCl(pH7.5)、100mM NaC l, 6mM MgCl₂、6mM メルカプトエタノール、0.1%ゼ ラチン、10単位の EcoRI (ニッポンジーン社) および10 単位のPstI (同社)] 20μ1 中で37℃1時間消化後、0. 8%アガロースゲルで電気泳動を行い、PDI cDNAの5端側 EcoRIからPstI部分の約490bp の長さのDNA断片をグ ラスパウダーにより分離・箱製した。一方 pHPDIp4 DNA 約1 μgを溶液 [10mM Tris-HCl(pH7.5), 100mMNaCl, 6 50 6GGGCGCCGCGCCGCCGCCGCC-3′, 宝酒造社)] 10pmolを溶液 [10

mM MgCl: ,6mMメルカプトエタノール、 0.1%ゼラチ ン、10単位のPstI (ニッポンジーン社) および10単位の BamHI (同社)] 20 μ l 中で37℃ 1 時間消化後同様にし TPDI cDNAの 3′端側PstIから BamHI部分の約1.3kb の 長さのDNA断片を分離・箱製した。 このようにして回 収した両DNA断片それぞれ約50mgおよび EcoRIおよび BamHI で消化し、線状にしたプラスミドベクターpUC119 DNA約20mgを宝酒造社のDNAライゲーションキットA 液25μl およびB液5μl 中で16℃15時間反応させるこ とにより連結させた。この反応液10μ1 を用いてカルシ ウム法により大腸菌MV1190株コンピテントセルを形質 転換した。大腸菌は、直径90mmのX-Gal プレート (50μ g/ml 5-プロモー4 ークロロー3 ーインドリルーβー $D - \mathcal{H} \supset \mathcal{L} \supset \mathcal{L$ -D-チオガラクトピラノシド、25μg/mlアンピシリ ン、LB培地および 1.5%窓天) にまいた。37℃で一晩 培發後、得られた白色コロニーを拾い、アルカリ溶菌法 でプラスミドDNAを調製し、制限酵素を用いた解析を

行い目的とするプラスミドを保持する形質転換体を選択

した。得られたプラスミドを phPDIEBと名付けた。

14

【0058】phPDIEBをもとにして、Kunkel法 [Kunkel. T.A. (1985) Proc. Natl. Acad. Sci. USA. 82, 488] によ り、 cDNA上のPDIシグナル配列とPDIの本体と の境界部分に制限酵素Nael切断部位を導入した。phPDIE B DNA を用いてカルシウム法により大腸菌BV313 株コン ピテントセルを形質伝換した。得られた形質伝換体の単 コロニーを 150 µg/mlのアンピシリンを含む2×YT 培地(1.6%パクトトリプトン、 0.5% NaCl および 1% パクトイーストエキストラクト)で37℃一晩前培袋を行 った。この培發液 1 mlを 150 μ g/mlのアンピシリンを 含む2×YT培地50mlに接種し37℃でさらに培養した。 濁度(ODsoo) が 0.3程度に達したところで M13K07 フ ァージをm.o.i.=2 程度で加え37℃30分間静置し感染さ せた。これに70μg/mlの設度になるようにカナマイシ ンを加え37℃20時間振盪培養を行った。培養液を遠心分 **離にかけ得られた上滑に1/5 容の 2.5% NaCl、20%ポリ** エチレングリコール#6000溶液を加え攪拌した後室温で 15分間静置した。遠心分離にかけ得られた沈殿を5回0の TE緩衝液 [10mM Tris-HCl 、1mM EDTA (pH8.0)] に溶 かし等容の中和フェノールを加え攪拌後遠心分離にかけ て水層を回収した。これに等容のクロロホルムを加え提 **拌後遠心分離にかけて水層を回収した。得られた溶液に** 1/10容の3 M酢酸ナトリウムおよび 2.5容のエタノール を加え攪拌後-80℃で30分間静置し遠心分離によりDN Aを沈殿として回収した。これを70%エタノールで洗浄 し減圧乾燥後 100µl のTE緩衝液に溶解した。以上の 方法で闘製したdUを含むphPDIEB 由来の一本鎖DNA を用いて以下の手順で目的とする変異即ちNael部位の導 入を行った。変異導入用合成オリゴヌクレオチド(5´-C

OmM Tris-HCl (pH8.0) 、10mM MgCl: 、 7mJジチオスレ イトール、 1ml ATP および10単位のT4ポリヌクレオ チドキナーゼ (宝酒造社)] 10μl 中で37℃15分間反応 **後70℃10分間加温してT4ポリヌクレオチドキナーゼを** 失活させた。上記phPDIEB 由来の一本領DNA 0.2pmol および1μl のアニーリング級銜液 (Site-directed mu tagenesissystem Mutants-K, 宝酒造社) に滅菌水を加 え最終容量を10μ1とし、そのうちの1μ1と上配リン 酸化変異導入用合成オリゴヌクレオチド溶液 1 μ 1 を混 合し、65℃15分、37℃15分静置後、25 µ1 の伸長緩衝液 10 (上記 Mutan^I "-K, 同社) 60単位の大脳菌DNAリガー ゼ(Mutan'*-K, 同社) および1単位のT4 DNAポリメ ラーゼ(Mutan™-K, 同社) を加え25℃2時間反応させる ことにより相補鎖合成を行った。この溶液に 3 μ1 の 0.2M EDTA(pH8.0) を加え、65℃で5分間加温すること により相補鎖合成を停止させた。得られたDNA溶液3 μ1 を30 μ1 の大腸菌BMH71-18mutSコンピテントセルと 混合し、氷中30分、42℃45秒さらに氷中1分間静置し た。これに 300μl のSOC培地 (2%パクトトリプト ン、 0.5%イーストエキストラクト、 10mH NaCl、 2.5 20 mil KCI、 10mM MgSO4 、 10mM MgCl2および20mMグルコ ース) を加え37℃1時間振盪した。さらに10µ!のM13K 07ファージを加え37℃で30分間静置後、 150µg/mlの アンピシリンおよび70μg/mlのカナマイシンを含む2 ×YT培地1mlを加え、37℃20時間振盪した。得られた 培發液を遠心分離し、上流20μ1を回収し、大腸菌MV 1190培養液80μ1 と混合し、37℃10分間加温後、 150μ g/mlのアンピシリンを含むLBプレートにまき37℃で 一晩培養した。得られた形質転換体のうち、目的とする NaeI部位導入プラスミドを保持するものをM13 SEQUENCI 30 ことにより目的とするXhoIリンカーがpUC119 EcoRI部位 NG KIT (東洋紡紋社) を用いたDNA塩基配列解析によ り同定した。このプラスミドをphPDINaeと名付けた。

【0059】アルカリ溶菌法で調製したphPDINae DNA 2*

幸μgを溶液 [10mM Tris-HCl (pH8.0), 20mM NaCl, 7mM MgCl2 , 7単位のNael (ニッポンジーン社) および10単 位のHind III (宝酒造社)] 30 µ1 中で37℃ 4 時間消化 後0.8%アガロースゲル電気泳勁を行い約1.7kb の長さの DNA断片をグラスパウダーにより分離・精製した。ヒ ト血物アルプミンのプレプロ配列を酵母において使用頻 度の高いコドンによりコードするDNA断片をクローン 化したプラスミドpUC119Sig の模築を以下の手順で行っ た (第1図A)。

16

【0060】プラスミドベクターpUC119 DNA 1μgを溶 液[100mH Tris · HCl (pH7.5), 10mM MgCl₂,50mM NaCl および12単位の EcoRI (ニッポンジーン社)] 20μl 中 で37℃1時間消化した後、70℃5分間加熱して酵素を失 活させた。次に滅菌水38μ1およびパクテリアアルカリ 性ホスファターゼ1単位(宝酒造社)を加えて37℃1時 間保温した後、フェノール抽出を行い、得られた水層を エタノール沈殿に用いDNAを回収した。このDNA ٤.

5 ' -AATTCTCGAG

GAGCTCTTAA-5 '

の配列から成るXhoI部位を含むXhoIリンカー等モルとを 溶液 [66mM Tris · HCl(pH 7.5) 、6.6mM MgCl2 、10mM ジチオスレイトール、0.1mM ATP および 300単位のT4 DNAリガーゼ(宝酒造社)]30μ1中で16℃一晩保温 した。この溶液10μl を用いて大腸菌 J M107 株コンピ テントセルをカルシウム法に従い形質転換し、50μg/ mlのアンピシリンを含むLBプレートにまき37℃一晩保 **温した。得られたコロニーについて、アルカリ溶菌法を** 用いてプラスミドDNAを胸製し、制限酵素解析を行う に挿入されたプラスミドDNAを選択取得した。

【0061】以下の配列をもつ4種類のオリゴヌクレオ チド:

- 1. 5' TCGAGAATTCATGAAGTGGGTTACCTTCATCTCTTTGTTGTT-3',
- 2. 5' AACAAGAACAACAAAGAGATGAAGGTAACCCACTTCATGAATTC-3',
- 3. 5' CTTGTTCTCTTCTGCTTACTCTAGAGGTGTTTTCAGAAGGCCTG-3',
- 4. 5' GATCCAGGCCTTCTGAAAACACCTCTAGAGTAAGCAGAAGAG-3'

を自動DNA合成機(Applied Biosystems社、モデル38 OB) を用いて合成した。これら各々約30 pmol を、溶液 スレイトール、0.2ml ATP 及び6単位のT4 ポリヌクレ オチドキナーゼ (宝酒造社)] 25 μ l 中で37℃ l 時間反 応させることにより5′端をリン酸化した。得られたオ リゴヌクレオチドを含む溶液を混ぜ(計 100μ1) 100 ℃の水浴に5分間放置した後室温で放冷しアニーリング を行った。これに 600単位のT4 DNAリガーゼ (宝暦 造社)を加え16℃で一晩保温し、フラグメント間の連結 を行い二本鎖フラグメントにした。この二本鎖DNAを フェノール抽出による除タンパク質後、エタノール沈段 により回収した。

【0062】上述のXhoIリンカーを導入したペクタープ ラスミド1μgを溶液 [100mM Tris・HCl(pH7.5)、 10m [50mM Tris ・HCl(pH7.6)、 10mM MgCl2 、5mMジチオ 40 M MgCl2 、100mM NaCl、10単位の BamHI(ニッポンジー ン社) および12単位のXhoI (宝酒造社)] 20 µ 1 中で37 ℃1時間消化した後、フェノール抽出を行い、得られた 水層からエタノール沈殿によりDNAを回収した。この DNAと上述の4つのオリゴヌクレオチドの連結により 得られた二本鎖DNAフラグメント等モルを溶液 [66回] Tris-HCl(pH7.5)、6.6mM MgCl2 、10mMジチオスレイ トール、0.1mM ATP および 300単位のT4 DNAリガー ゼ(宝酒造社)]30µ1中で16℃一晩保温した。この溶 液10μl を用いて大腿菌 J M107 株コンピテントセルを 50 カルシウム法に従い形質転換し、50 μg/mlのアンピシ

リンを含むLBプレート上にまき37℃一晩保温した。得 られたコロニーについて、それらの保持するプラスミド DNAの塩基配列解析を行うことにより目的とする組換 えプラスミドをもつ形質伝換体を選択した。このプラス ミドを pUC119Sigと名付けた。

【0063】上記の手順で作製したプラスミド pUC119S ig DNAをアルカリ溶菌法で胸製した。このDNA 2μg を溶液 [10mM Tris-HCl(pH8.0)、100mM NaCl、7mM MgCl 2 、8単位のStul (ニッポンジーン社) および10単位の Hind III (宝酒造社)] 中で37℃4時間消化後 0.8%ア 10 た。一方、アルカリ溶菌法で調製したpJDB-ADE-HSA-A ガロースゲル電気泳効にかけ、約3.2kb の長さのDNA 断片をグラスパウダーで分離・翰婆した。このようにし て得られたphPDINae由来の1.7kb DNA 断片約50ngとpUC1 19 Sig由来の3.2kb DNA 断片約50ngを宝酒造社ライゲー ションキットA液30μ1 B液 6μ1 中で16℃30分間反応 後、10 µ l を用いてカルシウム法により大腸菌株IB101 コンピテントセル(宝酒造社)を形質伝換し、50μ1/ mlのアンピシリンを含むLBプレートにまいた。このブ レートを37℃一晩辞置することにより得られたコロニー について、アルカリ溶菌法を用いてプラスミドDNAを 20 **調製し、制限酵素を用いた解析を行うことにより、ヒト** 血滑アルプミンのプレプロ配列下流にヒトPDI本体を 接続した形の (第2図) 組換えプラスミドを選択し取得 した。このプラスミドをphPDILy1と名付けた。

【0064】以上のようにして得られたリーダー配列改 変型PDIを酔母アルコールデヒドロゲナーゼI遺伝子 のプロモーター支配下で発現させるべく、以下の手順に よりヒトPDI発現プラスミドを網築した。アルカリ溶 菌法により調製した上記 phPDILyl DNA 7μl を溶液 [100mM Tris · HCl (pH8.0) , 100mM NaCl, 7mM MgCl₂ 30 および40単位の EcoRI (ニッポンジーン社)] 100 u l 中で37℃2時間消化後、等容のフェノール/クロロホル ム混液(飽和フェノールとクロロホルムを等容混合した 溶液)を加え提拌し、遠心分離後水層を回収した。この フェノール/クロロホルム抽出を繰返し、得られた水層 に1/10容の3M酢酸ナトリウム(pH5.3) および 2.5容の エタノールを加え混合し、-40℃2時間静貸した。遠心 により得られた沈殴を70%エタノールで洗浄後減圧乾燥 し50μl のKlenow級街液(Kilo-Sequence 用Deletion K it, 宝酒造社) に溶解し、4単位のKlenov fragment 緩 40 衛液(宝酒造社)を加え37℃45分間反応させることによ りEcoRI 切断部分の平滑化を行った。この溶液について 2回のフェノール/クロロホルム抽出を行ない、得られ た水層に1/10容の3M酢酸ナトリウム (pH5.3) および 2.5容のエタノールを加え混合し、-40℃1時間静置し た。遠心により得られた沈殿を70%エタノールで洗浄後 減圧乾燥し、50μlのKlenov緩衝液 (Kilo-Sequence 用 Deletion Kit,宝酒造社) に溶解し、4単位の Klenow f ragment (宝酒造社) を加え37℃45分間反応させること により EcoRI切断部分の平滑化を行った。この溶液につ 50 した。このようにして栂築したPDI 発現プラスミドをpA

18

いて2回のフェノール/クロロホルム抽出を行ない、得 られた水層に1/10容の3M酢酸ナトリウム (pH5.3) お よび 2.5容のエタノールを加え混合し、-40℃1時間静 置した。遠心により得られた沈殿を70%エタノールで洗 浄後減圧乾燥し、溶液[10mM Tris・HCl(pH8.0)、 60mM NaCl、7ml MgCl および10単位のBamHI(ニッポンジーン 社)] 40 µ1 に溶かし37℃3時間反応させた。得られた DNA溶液を 0.8%アガロースゲル電気泳劲にかけ、約 1.8kb のDNA断片をグラスパウダーで分離・精製し (特開平2-117384号公報) DNA5 μl を溶液 [10mM Tris HC!(pH 8.0), 100mM NaCl, 7mM MgCl: および24単位のXh οI (宝酒造社)] 100 μ1 中で37℃ 2時間消化後、フェ ノール/クロロホルム抽出を 2回行い得られた水層に、 1/10容の3M酢酸ナトリウム(pH5.3) および 2.5容のエ タノールを加え混合し、-40℃ 2時間静置後遠心により 沈禄としてDNA を回収した。このDNA 沈禄を70%エタノ ールで洗浄後減圧乾燥し、50μl のKlenov設価液 (Kilo -Sequence Deletion Kit. 宝酒造社) に溶解し、4単位 の Klenov (ragment (宝酒造社) を加え37℃45分間反応 させることによりXhoI切断部分の平滑化を行った。この 溶液について2回のフェノール/クロロホルム抽出を行 ない、得られた水層に1/10容の3M酢酸ナトリウム (pH 5.3) および 2.5容のエタノールを加え混合し、-40℃ 1時間静置後、遠心により沈禄としてDNAを回収した。 得られたDNA を70% エタノールで洗浄後減圧乾燥し、溶 液 [10mM Tris · HCl(pH8.0)、60mM NaCl.7mM MgClz お よび10単位のBamHI(ニッポンジーン社)] 40μl に溶か し、37℃75分間消化した。この溶液に10μ1 の 2M Tris ・HCl(pH8.0)、 110 μl の滅菌水および 1単位の大腸菌 C75 株由来アルカリフォスファターゼ(宝酒造社)を加 え混合し、60℃ 1時間加温することにより酵素切断部の 5′脱リン酸化反応を行った。得られた溶液に1/10容の 3M酢酸ナトリウム(pH5.3) および 2.5容のエタノールを 加え混合し、−40℃ 1時間静置した。遠心により沈羄と してDNA を回収し減圧乾燥後20 µ1 のTEに溶解し 0.8% アガロースゲル電気泳動にかけた。約8kb のDNA 断片を グラスパウダーを用いて回収した。以上のようにして得 られたphPDILy1由来の1.8kb DNA 断片約50ngおよびpJDB -ADH-HSA-A由来の8kbDNA断片約50ngを宝酒造社DNA ライ ゲーションキットA液30μI、B液 6μ1 と混合し、16 ℃ 2.5時間反応させ両DNA を連結させた。得られたDNA 溶液10μl を用いてカルシウム法により大腸菌C600株を 形質転換し、50 ul / ulのアンピシリンを含むLBプレ ートにまき37℃で一晩培鋆した。得られたコロニーにつ いてアルカリ溶菌法によりプラスミドDNA を調製し、制 限酵素解析を行なうことにより目的とするアルコールヒ ドロゲナーゼIプロモーター下流にリーダー配列改変型 PDI を連結したプラスミドを保持する形質伝換体を選択

EDPDILy1と名付けた。また、この将築の結果、成熟型PD I のN末端アミノ酸はAsp からGly に改変された。

【0065】一方、ヒトPDI 発現実験用のコントロール プラスミドを以下の手順で作製した。アルカリ溶菌法で 関製したpJDB-ADH-HSA-A DNA 5μl を溶液 [10mM Tris-HCI,100mM NaCl, 7mM MgCl2, 24単位のXhol(宝酒造 社) および29単位の BamHI (ニッポンジーン社)] 100 **μ1 中で37℃ 2時間消化後、フェノール/クロロホルム** 抽出を 2回行い得られた水柗に1/10容の3㎞酢酸ナトリウ 40℃2時間静置後遠心によりDNA を沈澱として回収し た。このDNA を70%エタノールで洗浄後、減圧乾燥し、 50μl のKlenow級街液 (Kilo-Sequence Deletion Kit, 宝酒造社)に溶解し、4単位の Klenow fragment (宝酒 造社)を加えて37℃45分間反応させることによりXhoIお よびBaull 切断部分の平滑化を行った。この溶液につい て 2回のフェノール/クロロホルム抽出を行い得られた 水周に1/10容の3M酢酸ナトリウム(pH 5.3)および 2.5容 のエタノールを加え混合し、-40℃1時間静置後遠心に より沈澱としてDNA を回収した。これを減圧乾燥後20 μ 20 1 のTEに溶解し、 0.8%アガロース電気泳動にかけ、約 8kb のDNA 断片をグラスパウダーで回収した。得られた DNA 断片約50mgを宝酒造社DNA ライゲーションキットの A被30μ1、B液 6μ1 と混合し、16℃一晩反応させ、 自己連結により環状化した。このDNA 溶液10μl を用い て大腸菌 101株コンピテントセル(宝酒造社)をカルシ ウム法により形質転換し、50μl/mlのアンピシリンを 含むLBプレートにまき37℃一晩培養した。得られたコロ ニーについてアルカリ溶菌法によりプラスミドDNA を調 製し、制限酵素解析を行い、目的とするコントロール用 30 プラスミドを選択取得した。得られたプラスミドをpAII と名付けた。

【0066】<u>ヒトPDI の酵母による発現</u>

上記の手順で构築したヒトPDI 発現プラスミドpAHbPDIL y1を用いて以下に示す方法でヒトPDI の酵母による発現 を行った。

【0067】YPDプレート(2%パクトペプトン、1%イ ーストエキストラクト、2%プドウ糖および 1.5% 窓天) 上で培發した酵母AH22株の単コロニーを 5mlのYPD培 地(2%パクトペプトン、1%イーストエキストラクトおよ 40 び 2%ブドウ糖)に接種し30℃24時間振盪培養した。こ の前培養液 0.9mlを45mlのYPD培地に接種し30℃で振 湿培養し、ODaoo (濁度)が約 0.5に達したところで 低速遠心にかけ沈澱として菌を回収した。得られた菌体 を 3mlの 0.2MLiSCNに懸濁し、そのうちの 1mlを遠心に かけ沈殿として菌体を回収した。この菌体に46μ1の50 % PEG#4000、10μl のLiSCN およびアルカリ溶菌法で 関製したpAHbPDILyl DNA溶液10μl(DNA27μl 分)を加 えピペッティングにより混合し、30℃で一晩静置した。 これに lmlの滅菌水を加え感濁後遠心により菌体を沈澱 50

20 として回収した。この菌体を100μ1の滅菌水で感図 し、SD (-Leu) ブレート [SD(-Leu) 培地 (0.67%パクト ニトロゲンベース、2%プドウ糖、20mg/l のアデニン、 同ウラシル、同トリプトファン、同ヒスチジン、同アル **ギニン、同メチオニン、30mg/l のチロシン、同イソロ** イシン、同リジン、50mg/I のフェニルアラニン、100m g / Lのアスパラギン酸、同グルタミン酸、150mg / L のパリン、 200mg/l のスレオニンおよび 375mg/l の セリン(以上のアミノ酸は和光純蒸製)) および 1.5% ム(pH5.3) および 2.5容のエタノールを加え混合し、- 10 寒天] 上にまき、30℃で培養した。培養 5日目に得られ た形質転換体を 5mlのSD (-Leu) 培地に接種し30℃2日 間振盪培養した。この前培養液 100μl を 5mlのYPD 培地に接種し30℃24時間振盪培發した。得られた培袋液 1.5mlを遠心分離にかけ上滑 500 μl を回収し、これに 等容のエタノールを加え混合後氷中に1時間静置した。 これを遠心分離にかけ培地中の酵母細胞からの分泌物を 沈澱として回収し減圧乾燥した。得られた沈澱を10μ1 のSDS-PAGE用サンプル級衝液 (125mM Tris-HCI(pH6.8) 、4%SDS 、20%グリセリン、10% B - メルカプトエタ ノールおよび0.01%プロモフェノールプルー) に溶解 し、5分間煮沸後SDS-PAG ブレート10/20 (第一化学薬 品) にて電気泳動を行った。このゲルを染色液(0.15% クマシープリリアントプルー, 10%酢酸および40%メタ ノール)で染色後、脱色液(10%酢酸および40%メタノ ール)に浸し、発現物を視覚化した。この際コントロー ルとして上記pAH を出発点として上述のpAHhPDILy1につ いてと全く同様の操作により得られた培地サンブルを同 時に泳勁した。分子量標準としてフォスフォリラーゼb (分子量94,000)、ウシ血清アルプミン(67,000)、オ ポアルプミン(43,000)、カーポニックアンヒドラーゼ (30,000)、大豆トリプシンインヒビター(20,000)お よびα-ラクトアルプミン (14,000) を用いた (第3 図)。その結果、分子量約55K の発現物を見出すことが できた。この分子量は、成熟PDI の分子量と一致してお り目的とするヒトPDI が発現分泌したものと期待され

> 【0068】pAHhPDILy1を保持する酵母AH22株の単コ ロニーを80mlのSD (-Leu) 培地に接種し、30℃ 2日間振 盪培養した。得られた前培養液を80mlずつ41のYPD・ リン酸培地 (YPD培地、 6g/l のNa: HPO お よび 3g/l のKH₂ PO₄、pH 7.0) に接種し、30℃2 4時間振盪培發を行った。この培發液を遠心分離にかけ 上清を回収し以下の分泌発現物の精製に用いた。

た。そこで発現分泌物のタンパク質化学的特性を調べる

ことを目的として以下の手順で大鼠培袋を行った。

[0069]

上記のようにして得られた形質伝換酵母培養培地41 を、ミリボアーミリタン限外波過器(排除分子量30,00 O)を用い、40倍設縮を行った(100ml) 後、TSK-gel Phe nyl-5PW疎水性カラムにより、ヒトPDIを単離した。

培地からの組換えヒトPD I の単離とその特性化

疎水性カラムは0.85M磁安、0.05% NaNa を含む10mlボ ウ酸-10mM KCI 緩銜液pH 8.0で平衡化したものから、 1 25分間で、硫安を含まない同級領液へと直線的設度勾配 を形成させることによって溶出した。この時の流速は 2 ml/min である。この結果を第4図に示す。第5図に は、単確されたヒトPDIのSDS貸気泳勁図を示す。 図に示されるように、疎水性カラムクロマトグラフィー によってヒトPDIはほぼ単一の成分にまで分離され、 かつ、PDI活性を保持していることが明らかになっ た。YPD培地に由来する紫外部吸収物質は、このクロ 10 養し、OD。。。 (渦度) が 0.5程度に遠したところで齒 マトグラフィーによってきわめて効率よく除去できるこ とが分かる。

【0070】PDI活性の測定

PD I 活性の測定は、還元・変性・再酸化による方法で 作製したスクランブルドリポヌクレアーゼA(RNase A) の再构成への促進効果を見ることによって行った。リポ ヌクレアーゼAの再構成の程度は、その酵素活性の回復 の程度を指標として定量化した。具体的方法を以下に示

Nase A を6Mグアニジン塩酸、0.15Mジチオスレイトー ルを含む3mlの0.111トリス塩酸級衝液pH8.6 に溶解した 後、窒素気流下で、15時間室温で還元を行った。還元物 を0.01N HCl で平衡化させたセファデックスG-25カラム (15mmφ×38cm) で選元剤を除去した。この脱塩物にグ アニジン塩酸を最終設度GMとなるように加え、更にトリ スを加えpHを9.0 に合せ、S-S結合の交換反応を暗 所、4℃で14日間行なわせた。この試料を-80℃で保存 したものをスクランプルドRNase A として使用した。

【0072】PDI活性の測定:窒素置換を施した55ml 30 リン酸緩衝液 (pH 7.5) 20mlに、10μl の1Mジチオスレ イトールを加えたものを調製し、この溶液から10μ1を 取り、20μ1の酵素試料とまぜた55mMリン酸緩衝液(pH 7.5) 420 μ1 に加え30℃で5分半放置する。これに上記 スクランプルドRNase 溶液50μl を加え30℃、15分半反 応させる。ここで、 1.945mlの脱気した50mMトリス塩 酸、5mM 塩化マグネシウム、25mM塩化カリウムを含む綴 **衛液pH7.5 に、50μl のイーストRNA溶液(10mMトリ** ス塩酸緩衝液pH7.5/1mM EDTA,280nmの吸光度80になるよ うに調節したもの)を1cm角石英セルに加え、攪拌しな 40 がら温度を45℃になるように平衡化させる。このとき26 Onm での吸光度が変化しないことを確認しておく。ジチ オスレイトール処理したスクランブルド RNase A溶液か ら5 μl 取り、これをセル中の溶液とまぜながら、 0.2 分毎に2分間260nm での吸光度を測る。PD I 活性は26 Onm での吸光変化速度の初速から求められる。

【0073】ヒトPDI発現プラスミドpAHbPDILy1によ る酵母HIS23株の形質伝換

ヒトPD I 発現プラスミドpAHbPDILy1を用いて、以下の 手頃に従いHSA生産酵母HIS23株 [特願平2-57 *50* シープリリアントプルー、10%酢酸および40%メタ

22 885 号/微工研菌寄第11351 号 (FERM P-113 8)] を形質伝換した。

【0074】YPDプレート(2%パクトトリプトン、 1%パクトイーストエキストラクト、2%プドウ密およ び 1.5%寒天) 上で培袋したHSA発現酵母HIS23 株の単一コロニーを5mlのYPD培地(2%パクトトリ プトン、1%イーストエキストラクトおよび2%プドウ 簡) に接種し、30℃で24時間振盪培袋した。この培 袋液 1 mlを50mlのYPD培地に接種後30℃で振盪培 体を低速遠心により沈殿として回収した。集めた菌体に 4 6 μl の5 0 %ポリエチレングリコール#4000、1 0 μl のLiSCNおよびアルカリ溶菌法 [Birnboin, H. C. & Doly, J. (1979) Nucleic AcidsRes . 7, 151 3.]で調製したヒトPDI発現プラスミドpAHbPDILyl DN A溶液10μl (DNA約20μg分)を加えピペッテ ィングにより混合し、30℃で一晩静置した。これに1 mlの滅菌水を加え感濁後、遠心分極により菌体を沈段と して回収した。この菌体を100μ1の滅菌水で懸悶 【0071】スクランプルドRNase A の闕襞: 120mgのR 20 し、SD (-His、-Leu) プレート [SD (-H is、-Leu) 培地(0.67%パクトニトロゲンペー ス、2%プドウ糖、20mg/lのアデニン、同ウラシ ル、同トリプトファン、同アルギニン、同メチオニン、 30g/lのチロシン、同イソロイシン、同リジン、5 Omg/l のフェニルアラニン、100mg/l のアスパラ ギン酸、同グルタミン酸、150mg/lのパリン、20 0 嘘/1 のトレオニンおよび375 嘘/1 のセリン(以 上のアミノ酸は和光純薬株式会社製)) および 1.5%寒 天]上にまき30℃で培養した。培養5日目でプレート 上にコロニーとして形質転換体を得た。

> 【0075】得られた形質転換体 (pAHhPDILy1/HIS23) について以下の手順によりPDIの発現を調べた。この 際コントロール実験として、pAHhPDILy1からPDIcDNA 部 分を除いたコントロールプラスミドpAHを用いて得ら れた形質転換体(pAH/HIS23)を以下使用した。プレート 上のコロニーを5mlのSD(-His、-Leu)培地 に接種し30℃で2日間振盪培袋した。この前培袋液1 00μlを5mlのYPD培地に接種後30℃24時間振 盪培荽し、得られた培袞液 1.5mlを遠心分醸にかけその 上滑500μ1を回収し、これに等容のエタノールを加 え混合後氷中で1時間静置した。これを遠心分離にかけ 培地中の酵母からの発現分泌物を沈殿として回収し遠心 エパポレーターにより減圧乾燥した。得られた沈殿を1 0 μl のSDS-PAGE用サンプル級銜液 [62.5mM] ris-HCl(pH6.8)、2%SDS、、5%β-メルカプトエ タノール、 0.005%プロモフェノールブルーおよび20 %グリセリン] に溶解し、5分間煮沸後SDS-PAG プレート4/20-1010 (第一化学薬品株式会社製) で 電気泳劲を行った。泳劲後のゲルを染色液(0.15%クマ

ノール)で染色後、脱色液(10%酢酸および40%メタノール)に浸し培地中の発現分泌物を視覚化した。この際、分子量標率としてフォスフォリラーゼb(分子量94,000ダルトンよ、ウシ血剤アルブミン(67,000)、オポアルブミン(43,000)、カーポニックアンヒドラーゼ(30,000)、大豆トリプシンインヒビター(20,000)およびαーラクトアルブミン(14,000)を用いた(第6図)。その結果、pAEDPDILy1によって形質転換した酵母HIS23株で、分子量約55,000ダルトンのPDIの発現分泌が検出された。

【0076】ヒトPDIのHSA発現分泌に対する効果上記の酵母におけるHSAおよびPDIの共発現系を用いて、ヒトPDIのHSA発現分泌に対する効果を以下の手順によって調べた。

【0077】コントロールプラスミドPAHおよびヒトPDI発現プラスミドPAHDPDILy1それぞれによって形質 伝換した酵母HIS23株、即ちPAH/HIS23株 およびPAHDPDILy1/HIS23株の独立したコロニー5つず つを各々5mlのSD(-His、-Leu) 培地に接種し30℃で24時間前培益を行った。この前培益液102041をそれぞれ5mlのYPD培地に接種し30℃で24時間振盈培益を行ない、各培益液から前項で述べた方法によりSDS-PAGE用の試料を調製しSDS-PAGEを行なった(第7図)。得られたゲルを用いて、各株のHSA分泌量をデンシトメーター(IMAGE ANALYS IS SYSTEM、テフコ株式会社製)で定量化し、PDIの共発現によるHSAの発現分泌量の変化を調べた(第8図)。その結果、PAH/HIS23株で平均0.93mg/

l またpAEhPDILy1/HIS23 株で同じく1.50ms/IのHSAを分泌しており、酵母HIS23株におけるヒトPDIの共発現により、HSAの分泌量は平均で約60%の増加を示した。

24

[0078]

【発明の効果】本発明は、ヒト血剤アルブミンプレプロ配列をコードするDNAとヒトプロテインジスルフィドイソメラーゼ遺伝子とから成る連結遺伝子を用いることにより、ヒトPDIの大量生産法の手段を初めて確立したものである。これにより、この方法は、S-S結合の掛け違い等の理由で高次构造形成が不完全な蛋白質の活性化を促進するために大量かつ安価な手段として用いることができる。主に遺伝子工学的に産生された不活性蛋白質の活性化に効果的であると考えられ、この酵素の発現を他の有用ポリペプチドの発現と共役させることにより、その有用ポリペプチドの宿主細胞による産生効率を上昇させることが可能となった。その他、研究用試薬としても使用できる。

[0079]

【配列表】

配列番号: 1 配列の長さ: 2454 配列の型: 核酸 鎖の数: 二本鎖 トポロジー: 直鎖状 配列の種類: cDNA to mRNA

起源:ヒト肝悶又は胎盤λgt 11 cDNAライプラリー(Cl

57

ontech社)

配列

Met Leu Arg -15Arg Ala Leu Leu Cys Leu Ala Val Ala Ala Leu Val Arg Ala Asp Ala -10 CCC GAG GAG GAG GAC CAC GTC CTG GTG CTG CGG AAA AGC AAC TTC GCG 153 Pro Glu Glu Glu Asp His Val Leu Val Leu Arg Lys Ser Asn Phe Ala 5 10 GAG GCG CTG GCG GCC CAC AAG TAC CTG CTG GTG GAG TTC TAT GCC CCT 201 Glu Ala Leu Ala Ala His Lys Tyr Leu Leu Val Glu Phe Tyr Ala Pro 25 TGG TGT GGC CAC TGC AAG GCT CTG GCC CCT GAG TAT GCC AAA GCC GCT 249 Trp Cys Gly His Cys Lys Ala Leu Ala Pro Glu Tyr Ala Lys Ala Ala GGG AAG CTG AAG GCA GAA GGT TCC GAG ATC AGG TTG GCC AAG GTG GAC 297 Gly Lys Leu Lys Ala Glu Gly Ser Glu Ile Arg Leu Ala Lys Val Asp GCC ACG GAG GAG TCT GAC CTG GCC CAG CAG TAC GGC GTG CGC GGC TAT 345 Ala Thr Glu Glu Ser Asp Leu Ala Gln Gln Tyr Gly Val Arg Gly Tyr 70 75

GAATTCCGGG GGCGACGAGA GAAGCGCCCC GCCTGATCCG TGTCCGAC ATG CTG CGC

									-,							14 24 1 0	_
	25														26		
								GGA				_				393	
Pro	Thr	_	Lys	Phe	Phe	Arg		Gly	Asp	Thr	Ala	_	Pro	Lys	Glu		
		85					90					95					
								GAC								441	
Tyr		Ala	Gly	Arg	Glu		Asp	Asp	He	Val		Trp	Leu	Lys	Lys		
	100					105					110						
								CTG								489	
_	Thr	Gly	Pro	Ala		Thr	Thr	Leu	Рго	_	Gly	Ala	Ala	Ala			
115					120					125					130		
								GCT								537	
Ser	Leu	Val	Glu		Ser	Glu	Val	Ala		He	Gly	Phe	Phe		ASP		
020	010	***	C1.C	135	000			TTT	140			ccı	CIC	145	A.T.C	FOF	
								TTT								585	
vai	GIU	261		3er	AIB	Lys	GID	Phe	ren	GID	AIB	RIB		AIR	116		
CAT	CAC	474	150	ттт	ccc	ATC.	A CT	155 TCC	AAC	ACT	CAC	CTC	160	TCC		622	
								Ser								633	
ASP	nsp	165	LIO	Luc	ULY	116	170	261	พรก	361	ענה	175	ruc	261	Lys		
TAC	CAG		CAC	888	CAT	ccc		GTC	ርተር	TTT	AAC		TTT	CAT	CAA	681	
								Val	-							001	
.,.	180	LCu	11111	2,5	1100	185		,	Ded		190	.,,,		шр	0.0		
GGC		AAC	AAC	TTT	GAA		GAG	GTC	ACC	AAG		AAC	CTG	CTG	GAC	729	
								Val								•	
195					200	·	-			205					210		
TTT	ATC	AAA	CAC	AAC	CAG	CTG	CCC	CTT	GTC	ATC	GAG	TTC	ACC	GAG	CAG	777	
Phe	Ile	Lys	His	Asn	Gln	Leu	Pro	Leu	Val	Ile	Glu	Phe	Thr	Glu	Gln		
				215					220					225			
ACA	GCC	CCG	AAG	ATT	TTT	GGA	GGT	GAA	ATC	AAG	ACT	CAC	ATC	CTG	CTG	825	
Tbr	Ala	Pro	Lys	Ile	Phe	Gly	Gly	Glu	He	Lys	Thr	His	He	Leu	Leu		
			230					235					240				
TTC	TTG	CCC	AAG	AGT	GTG	TCT	GAC	TAT	GAC	GGC	AAA	CTG	AGC	AAC	TTC	873	
Phe	Leu	Pro	Lys	Ser	Val	Ser	Asp	Tyr	Asp	Gly	Lys	Leu	Ser	Asp	Phe		
		245					250					255					
								GGC								921	
Lys		Ala	Ala	Glu	Ser		Lys	Gly	Lys	Ile		Phe	Ile	Phe	He		
	260	<u>-</u>				265					270						
								CGC								969	
-	Ser	Asp	HIS	Thr		ASD	GID	Arg	He		Glu	Phe	Phe	Gly			
275				T 00	280	ccc	OTC	000	040	285	400	CTC		C4C	290	1017	
								CGC								1017	
Lys	Lys	610	GIU		PTO	BIA	¥81	Arg		116	ınr	rea	GIU	305	GIU		
ATC	ACC	440	TAC	295	ccc	CAA	ተቦር	GAG	300	ርተር	ACC	CCA	CAC		ATC	1065	
								Glu								1005	
WCL	1111	r)3	310	_	110	GIU	261	315	GIU	Leu	1111	МІА	320	VIE	116		
۵۲۵	CAG	TTC			ርርር	TTC	CTG	GAG	ccc	ΔΔΔ	ΔŦC	AAC		CAC	CTG	1113	
								Glu								1110	
	- · · ·	325		-13	6		330	010	J.,	2,3	.10	335			204		
ATG	AGC			CTG	CCG	GAG		TGG	GAC	AAG	CAG		GTC	AAG	GTG	1161	
								Trp									
												•					

<i>2</i> 7			<i>28</i>
340	345	350	
CTT GTT GGG AAG	AAC TTT GAA GAC	GTG GCT TTT GAT GAG AAA A	AA AAC 1209
Leu Val Gly Lys	Asn Phe Glu Asp	Val Ala Phe Asp Glu Lys L	ys Asa
355	360	365	370
GTC TTT GTG GAG	TTC TAT GCC CCA	TGG TGT GGT CAC TGC AAA C	AG TTG 1257
Val Phe Val Glu	Phe Tyr Ala Pro	Trp Cys Gly His Cys Lys G	ln Leu
•	375	380 3	85
GCT CCC ATT TGG	GAT AAA CTG GGA	GAG ACG TAC AAG GAC CAT G	AG AAC 1305
Ala Pro Ile Trp	Asp Lys Leu Gly	Glu Thr Tyr Lys Asp His G	lu Asn
390	•	395 400	
ATC GTC ATC GCC	AAG ATG GAC TCG	ACT GCC AAC GAG GTG GAG G	CC GTC 1353
lle Val Ile Ala	Lys Met Asp Ser	Thr Ala Asn Glu Val Glu A	la Val
405	410	415	
AAA GTG CAC AGC	TTC CCC ACA CTC	AAG TTC TTT CCT GCC AGT G	CC GAC 1401
Lys Val His Ser	Phe Pro Thr Leu	Lys Phe Phe Pro Ala Ser A	la Asp
420	425	430	
AGG ACG GTC ATT	GAT TAC AAC GGG	GAA CGC ACG CTG GAT GGT T	TT AAG 1449
Arg Thr Val Ile	Asp Tyr Asm Gly	Glu Arg Thr Leu Asp Gly P	he Lys
435	440	445	450
		GAT GGG GCA GGG GAT GAT G	
Lys Phe Leu Giu		Asp Gly Ala Gly Asp Asp A	
	455		65
		GAG CCA GAC ATG GAG GAA G	
		Glu Pro Asp Met Glu Glu A	sp Asp
470		475 480	0000 1505
		CTG TAA TACGCAAAGC CAGACC	CGGG 1595
	Val Lys Asp Glu	ren a	
485	490		AACCCTCC 1655
		C CCAGCAGCAG CGCACGCCTC CO A ACCCAGGGAA CCTCTCTGAA G1	
		C ICTICCTICI GCTITICGGI TI	
		G GGGCTTGTTT CCTGAAACCA TO	
		G CTACCGTGTT CGGAGTCTCG CT	
		A TTCCGTCTGT GGGATTTTTA GA	
		A GGCCTCCTCG GAGAAGCTTG TO	
		C ACTCAGTACC GCCTGCAGTG TO	
		F GGAGACTTCC GGATCCTGTC AC	
		C AGCCCTGGGG CCCGGCACAG GC	
		C CTGTCGTGGG CTCATTGTGA CC	
		G GCAGAACCAC GACCCTTGAC TO	
		C AGACGCTGAC AGTTCTTCAG GC	
TTCACAATCG AATT	GAACAC ATTGGCCAA	A TAAAGTTGAA ATTTTACCCA CO	
AAAAAAAAA CCCG			2454
		鎖の数:二本鎖	
		トポロジー:直鎖状	
		配列の種類:他の核	酸(半合成DNA)

配列番号:2 配列の長さ:1545

配列の型:核酸 配列の種類:他の核酸(半合成DNA)

配列

ATG AAG TGG GTT ACC TTC ATC TCT TTG TTG 30 Met Lys Trp Val Thr Phe Ile Ser Leu Leu

								(1)	,,							ט ד מעצו	3 0
	29														<i>30</i>		
							•	AGA								78	
Phe	Leu	Phe	Ser	Ser	Ala	Tyr	Ser	Arg	Gly	Val	Phe	Arg	Arg	Gly	Ala		•
				-10					-5					1			
CCC	GAG	GAG	GAG	GAC	CAC	GTC	CTG	GTG	CTG	CGG	AAA	AGC	AAC	TTC	GCG	126	
Pro	Glu	Glu	Glu	Asp	His	Val	Leu	Val	Leu	Arg	Lys	Ser	Asn	Phe	Ala		
		5					10					15					
GAG	GCG	CTG	GCG	GCC	CAC	AAG	TAC	CTG	CTG	GTG	GAG	TTC	TAT	GCC	CCT	174	
Glu	Ala	Leu	Ala	Ala	His	Lys	Tyr	Leu	Leu	Val	Glu	Phe	Tyr	Ala	Pro		
	20					25					30						
TGG	TGT	GGC	CAC	TGC	AAG	GCT	CTG	GCC	CCT	GAG	TAT	GCC	AAA	GCC	GCT	222	
Trp	Cys	Gly	His	Cys	Lys	Ala	Leu	Ala	Рго	Glu	Туг	Ala	Lys	Ala	Ala		
35					40					45					50		
GGG	AAG	CTG	AAG	GCA	GAA	GGT	TCC	GAG	ATC	AGG	TTG	GCC	AAG	GTG	GAC	270	
Gly	Lys	Leu	Lys	Ala	Glu	Gly	Ser	Glu	Ile	Arg	Leu	Ala	Lys	Val	Asp		
				55					60					65			
GCC	ACG	GAG	GAG	TCT	GAC	CTG	GCC	CAG	CAG	TAC	GGC	GTG	CGC	GGC	TAT	318	
Ala	Thr	Glu	Glu	Ser	Asp	Leu	Ala	Gln	Gln	Tyr	Gly	Val	Arg	Gly	Tyr		
			70					75					80				
CCC	ACC	ATC	AAG	TTC	TTC	AGG	AAT	GGA	GAC	ACG	GCT	TCC	CCC	AAG	GAA	366	
Рго	Thr	He	Lys	Phe	Phe	Arg	Asn	Gly	Asp	Thr	Ala	Ser	Рго	Lys	Glu		
		85	-•				90					95		-			
TAT	ACA		GGC	AGA	GAG	GCT	GAT	GAC	ATC	GTG	AAC	TGG	CTG	AAG	AAG	414	
Туг	Thr	Ala	Gly	Arg	Glu	Ala	Asp	Asp	He	Val	Asn	Trp	Leu	Lys	Lys		
	100			_		105		-			110						
CGC	ACG	GGC	CCG	GCT	GCC	ACC	ACC	CTG	CCT	GAC	GGC	GCA	GCT	GCA	GAG	462	
								Leu									
115		·			120					125	_				130		
	TTG	GTG	GAG	TCC	AGC	GAG	GTG	GCT	GTC	ATC	GGC	TTC	TTC	AAG	GAC	510	
								Ala									
				135					140		•			145			
GTG	GAG	TCG	GAC		GCC	AAG	CAG	TTT	TTG	CAG	GCA	GCA	GAG	GCC	ATC	558	
								Phe									
			150			•		155					160				
GAT	GAC	ATA		TTT	GGG	ATC	ACT	TCC	AAC	AGT	GAC	GTG		TCC	AAA	606	
								Ser									
,	,	165			,		170					175			_,,		
TAC	CAG			AAA	GAT	GGG		GTC	СТС	TTT	AAG		TTT	GAT	GAA	654	
								Val									
•,•	180		,	-,0		185				•	190	-,-		,	•		
CCC			AAC	TTT	GAA		GAG	GTC	ACC	AAG		AAC	CTG	CTG	GAC	702	
								Val									
195	_		100		200	0.,	0.4			205	0.0		200	200	210		
		888	CAC	440		CTC	ccc	CTT	CTC		CAC	ፐፐር	ACC	CAC		750	
								Leu								100	
1 116	116	-73	пгэ	215		JUL		LUU	220		AIU			225	3.11		
ACA	ርሶሶ	ררר	880			CC+	ርርተ	GAA			ልቦታ	ር ልር	ΔŦſ		CTG	798	
								Glu								1 30	
tnl	AId	110	230		LIIG	GIY	GIÀ	235		Lys	141	піэ	240	rea	TEO		
TTC	TTC	ccc			CTC	TCT	CAC	Z35 TAT		CCC	884	ቦተቦ		8 4.0	TTC	846	
																0-10	
rne	Leu	rro	LYS	261	184	ser	ASP	Try	ASP	GIŸ	LYS	ren	ser	ASD	rue		

32 31 245 250 255 AAA ACA GCA GCC GAG AGC TTC AAG GGC AAG ATC CTG TTC ATC TTC ATC 894 Lys Thr Ala Ala Glu Ser Phe Lys Gly Lys Ile Leu Phe Ile Phe Ile 265 GAC AGC GAC CAC ACC GAC AAC CAG CGC ATC CTC GAG TTC TTT GGC CTG Asp Ser Asp His Thr Asp Asn Glu Arg Ile Leu Glu Phe Phe Gly Leu 280 285 AAG AAG GAA GAG TGC CCG GCC GTG CGC CTC ATC ACC CTG GAG GAG 990 Lys Lys Glu Glu Cys Pro Ala Val Arg Leu Ile Thr Leu Glu Glu Glu 300 ATG ACC AAG TAC AAG CCC GAA TCG GAG GAG CTG ACG GCA GAG AGG ATC 1038 Het Thr Lys Tyr Lys Pro Glu Ser Glu Glu Leu Thr Ala Glu Arg Ile 315 320 310 ACA GAG TTC TGC CAC CGC TTC CTG GAG GGC AAA ATC AAG CCC CAC CTG 1086 Thr Glu Phe Cys His Arg Phe Leu Glu Gly Lys Ile Lys Pro His Leu 325 330 335 ATG AGC CAG GAG CTG CCG GAG GAC TGG GAC AAG CAG CCT GTC AAG GTG 1134 Met Ser Gin Glu Leu Pro Giu Asp Trp Asp Lys Gin Pro Val Lys Val 345 CTT GTT GGG AAG AAC TTT GAA GAC GTG GCT TTT GAT GAG AAA AAA AAC 1182 Leu Val Gly Lys Asn Phe Glu Asp Val Ala Phe Asp Glu Lys Lys Asn 360 365 GTC TTT GTG GAG TTC TAT GCC CCA TGG TGT GGT CAC TGC AAA CAG TTG 1230 Val Phe Val Glu Phe Tyr Ala Pro Trp Cys Gly His Cys Lys Gln Leu 380 GCT CCC ATT TGG GAT AAA CTG GGA GAG ACG TAC AAG GAC CAT GAG AAC 1278 Ala Pro Ile Trp Asp Lys Leu Gly Glu Thr Tyr Lys Asp His Glu Asn 390 395 400 ATC GTC ATC GCC AAG ATG GAC TCG ACT GCC AAC GAG GTG GAG GCC GTC 1326 Ile Val Ile Ala Lys Met Asp Ser Thr Ala Asp Glu Val Glu Ala Val 405 410 415 AAA GTG CAC AGC TTC CCC ACA CTC AAG TTC TTT CCT GCC AGT GCC GAC 1374 Lys Val His Ser Phe Pro Thr Leu Lys Phe Phe Pro Ala Ser Ala Asp 425 AGG ACG GTC ATT GAT TAC AAC GGG GAA CGC ACG CTG GAT GGT TTT AAG 1422 Arg Thr Val Ile Asp Tyr Asn Gly Glu Arg Thr Leu Asp Gly Phe Lys 445 AAA TTC CTG GAG AGC GGT GGC CAG GAT GGG GCA GGG GAT GAT GAC GAT 1470 Lys Phe Leu Glu Ser Gly Gly Gln Asp Gly Ala Gly Asp Asp Asp 460 455 CTC GAG GAC CTG GAA GAA GCA GAG GAG CCA GAC ATG GAG GAA GAC GAT Leu Glu Asp Leu Glu Glu Ala Glu Glu Pro Asp Met Glu Glu Asp Asp 470 475 480 GAT CAG AAA GCT GTG AAA GAT GAA CTG 1545 Asp Gln Lys Ala Val Lys Asp Glu Leu

485490配列番号: 3トポロジー: 直鎖状配列の長さ: 491配列の極類: タンパク質

配列の型:アミノ酸

配列

Gly	Ala	Pro	Glu	Glu	Glu	Asp	His	Val	Leu	Val	Leu	Arg	Lys	Ser	Asp
1					5				10					15	
Phe	Ala	Glu	A1 a 20	Leu	Ala	Ala	His	Lys 25	Tyr	Leu	Leu	Val	Glu 30	Phe	Tyr
Ala	Pro	7rp 35	Cys	Gly	His	Cys	Lys 40	Ala	Leu	Ala	Pro	Glo 45	Туг	Ala	Lys
Ala	Ala 50	Gly	Lys	Leu	Lys	Ala 55	Glu	Gly	Ser	Glu	Ile 60	Arg	Leu	Ala	Lys
Va 1 65	Asp	Ala	Thr	Glu	Glu 70	Ser	Asp	Leu	Ala	Gln 75	Glo	Tyr	Gly	Val	Arg 80
Gly	Tyr	Pro	Thr	Ile 85	Lys	Phe	Phe	Arg	Asn 90	Gly	Asp	Thr	Ala	Ser 95	Pro
Lys	Glu	Tyr	Thr 100	Ala	Gly	Arg	Glu	Al a 105	Asp	Asp	Ile	Val	Asn 110	Trp	Leu
Lys	Lys	Arg 115	Thr	Gly	Pro	Ala	Ala 120	Thr	Thr	Leu	Pro	Asp 125	Gly	Ala	Ala
Ala	Glu 130	Ser	Leu	Val	Glu	Ser	Ser 135	Glu	Val	Ala	Va l 140	Ile	Gly	Phe	Phe
Lys	Asp	Val	Glu	Ser	Asp	Ser	Ala	Lys	Gln	Phe	Leu	Gln	Ala	Ala	Glu
145					150					155					160
Ala	Ile	Asp	Asp	Ile 165	Pro	Phe	Gly	Ile	Thr 170	Ser	Asn	Ser	Asp	Val 175	Phe
Ser	ľ ve	Tur	Gln		Asn	Īve	Asn	Civ		Va 1	Len	Phe	Lvs		Phe
501	LJS	.,.	180	DCu	nop	LJS	nop	185	101	161	Lcu	1 110	190	2,5	1 110
Asp	Glu	Gly	Arg	Asn	Asn	Phe	Glu		Glu	Val	Thr	Lys		Asn	Leu
		195					200					205			
Leu	Asp	Phe	Ile	Lys	His	Asn	Gln	Leu	Pro	Leu	Val	Ile	Glu	Phe	Thr
	210					215					220				
Glu	Gln	Thr	Ala	Pro	Lys	He	Phe	Gly	Gly	Glu	He	Lys	Thr	His	Ile
225					230					235					240
Leu	Leu	Phe	Leu	Pro 245	Lys	Ser	Val	Ser	Asp 250	Туг	Asp	Gly	Lys	Leu 255	Ser
Asn	Phe	Lys	Thr 260	Ala	Ala	Glu	Ser	Phe 265	Lys	Gly	Lys	Ile	Leu 270	Phe	Ile
Phe	Ile	Asp 275	Ser	Asp	His		Asp 280		Gln	Arg		Leu 285		Phe	Phe
Gly	Leu 290	Lys	Lys	Glu	Glu	Cys 295		Ala	Val	Arg	Leu 300	He	Thr	Leu	Glu
Glu	Glu	Me t	Thr	Lys	Tyr	Lys	Pro	Glu	Ser	Glu	Glu	Leu	Thr	Ala	Glu
305					310					315					320
Arg	Ile	Thr	Glu	Phe 325	Cys	His	Arg	Phe	Leu 330		Gly	Lys	He	Lys 335	Pro
His	Leu	He t	Ser 340		Glu	Leu	Pro	G1 u 345		Trp	Asp	Lys	Gln 350		Val
Lys	Val	Leu 355	Val	Gly	Lys	Asd	Phe 360	Glu	Asp	Val	Ala	Phe 365		Glu	Lys
	370		Phe			375					380				
Glo	Leu	Ala	Pro	Ile	Trp	Asp	Lys	Leu	Gly	Glu	Thr	Tyr	Lys	Asp	His
385					390					395					400

Glu Asn Ile Val Ile Ala Lys Met Asp Ser Thr Ala Asn Glu Val Glu
405 410 415

Ala Val Lys Val His Ser Phe Pro Thr Leu Lys Phe Phe Pro Ala Ser 420 425 430

Ala Asp Arg Thr Val IIe Asp Tyr Asn Gly Glu Arg Thr Leu Asp Gly
435 440 445

Phe Lys Lys Phe Leu Glu Ser Gly Gly Gln Asp Gly Ala Gly Asp Asp 450 455 460

Asp Asp Leu Glu Asp Leu Glu Glu Ala Glu Glu Pro Asp Net Glu Glu
465 470 475 480

Asp Asp Asp Gln Lys Ala Val Lys Asp Glu Leu

485

【図面の簡単な説明】

【図1】第1図Aは、発現プラスミド pAEhPDILyl の构 築工程図を示す。

【図2】第1図Bは、発現プラスミド pAIDPDILy1 の构 毎工程図を示す。

【図3】第1図Cは、発現プラスミド pAEhPDILyl の料 築工程図を示す。

【図4】第2図は、ヒト発現プラスミド上のHSAプレ 20 プロ配列とPDIの境界部を示す図である。

【図5】第3図は、発現・分泌された粗組換えヒトPD IのSDS電気泳励結果を示す写真であり、ここでレーン1は分子量マーカー、レーン2はpAE/AE22(コントロール)、レーン3は pAEhPDILy1/AE22を示す。

【図6】第4図は、疎水性カラムクロマトグラフィーに

よる組換えヒトPDIの分離を示す図である。

【図7】第5図は、粕製組換えヒトPDIのSDS電気 泳効結果を示す図であり、図面中、下側の数字は第4図 に示す疎水性カラムクロマトグラフィーの分面番号を、 またMは分子母マーカーを示す。

【図8】第6図は、辞母HIS23におけるヒトPDIの発現を示す電気泳動写真である。

【図9】第7図は、酵母HIS23におけるヒトPDIとHSAとの共発現によるHSA分泌を示すSDS電気 泳効写真である。

【図10】第8図は、第7図のSDS電気泳助ゲルを用いてHSA分泌量をデンシトメーターで定量化した結果を示す図である。

[図5]

第3図

[図6]

第4図 (WU 080) (WU 008) (WU 008)

【図1】 EcoRI BamHi Hind III 第 I 図 A pucn9 EcoR 1 EcoRI EcoRI & BamHI (HindE) Amp Xho!リンカー 連結 EcoRi Xhoi EcoR i Bamhi Hin d II Amp^r Xhol/BamHI EcoRI Stul BamHi HSA7 **Amp**r HSAフレフロ色Cを) 建結 EcoRi Stul BamHi Xhol Hindiii pUC 119Sig

【図7】

第5図

【図2】

第 I 図 B

[図3]

第 I 図 C

【図4】

第2図

TAC TICT AGA GGT GTT TTC AGA AGG GGC CCC CCC GAG GAG GAG GAC CAC...

Tyr Ser Ang GIy Val Phe Ang Ang Gly Ala Pro Glu Glu Glu Asp His... 유명 동덕 【図8】

第6図

1:pAH/HIS23

2: pAHhPDILy1/HIS23

[図9]

第7図

1.3.5.7 . 9 : pAH/HIS23

2, 4, 6, 8, 10:pAHhPDILy1/HIS23

11: HSA標準0.25μg 12: HSA標準0.5μg

【図10】

第8図

1, 3, 5, 7, 9; pAH/HIS23
2, 4, 6, 8, 10; pAHhPDILy1/HIS23

【手続補正書】

【提出日】平成5年3月2日

【手続補正1】

【補正対象啓類名】明細書

【補正対象項目名】図面の簡単な説明

【補正方法】変更

【補正内容】

【図面の簡単な説明】

【図1A】 第1図Aは、発現プラスミドpAHhPD ILylの構築工程図を示す。

【図1B】 第1図Bは、発現プラスミドpAHhPD ILylの構築工程図を示す。

【図1C】 第1図Cは、発現プラスミドpAHhPD ILylの構築工程図を示す。

【図2】 第2図は、ヒト発現プラスミド上のHSAプレプロ配列とPDIの境界部を示す図である。

【図3】 第3図は、発現・分泌された粗組換えヒトPDIのSDS電気泳動結果を示す写真であり、ここでレーン1は分子量マーカー、レーン2はpAH/AH22(コントロール)、レーン3はpAHhPDILy1/A22を示す。

*【図4】 第4図は、疎水性カラムクロマトグラフィーによる粗換えヒトPDIの分離を示す図である。

【図5】 第5図は、特製組換えヒトPDIのSDS 電気泳動結果を示す図であり、図面中、下側の数字は第4図に示す疎水性カラムクロマトグラフィーの分画番号を、またMは分子量マーカーを示す。

【図6】 第6図は、酵母HIS23におけるヒトPDIの発現を示す電気泳動写真である。

【図7】 第7図は、酵母HIS23におけるヒトPDIとHSAとの共発現によるHSA分泌を示すSDS電気泳動写真である。

【図8】 第8図は、第7図のSDS電気泳動ゲルを 用いてHSA分泌量をデンシトメーターで定量化した結 果を示す図である。

【手続補正2】

【補正対象書類名】図面

【補正対象項目名】全図

【補正方法】変更

【補正内容】

【図3】

【図4】

【図5】

第5図

【図1B】

第 I 図 B

[図1C]

第 I 図 C

【図2】

... ATG ANG TEGGTT ACC TIC ATC TCT TTG TTG TTC TTG TCT TCT CCT ... WET LYS TIP YET THE PIE SET SET ALB

区 (V

箫

技術表示箇所

[図7]

1、3、5、7 29、 pANHTS 3 3 2、4、6、8、10、pAHEPD1 Ly 1/H 1 S 2 3 11: H S A 4 4 4 0 . 2 5 μ g 1 2: H S A 4 4 4 0 . 5 μ g

[図8]

第8図.

3, 5, 7, 9: pAH/HIS23

2, 4, 6, 8, 10:pAHhPDILy1/HIS23

フロントページの続き

(51) Int. Cl. 5 識別記号 庁内整理番号 FΙ C 1 2 N 15/12 C 1 2 P 21/02 C 8214-4B // G 0 1 N 30/00 8310-2 J (C12N 1/19 C 1 2 R 1:865) (C12N 9/90 C 1 2 R 1:865) (C 1 2 P 21/02

(72)発明者 鈴木 正則

C 1 2 R 1:865)

埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内