Attorney Docket Number: 62306-1070

CLAIMS

What is claimed is:

1	1. A circular directional array antenna comprising:	٠
2	a driven omnidirectional traveling-wave antenna element coupled to a	
3	transceiver via a feed network; and	
4	a plurality of surface-waveguide elements symmetrically positioned about and	l
5	concentrically spaced from the driven omnidirectional traveling-wave antenna	
6	element, each surface-waveguide element configured to receive a control signal	
7	configured to alter a surface-waveguide transmission characteristic.	
1	2. The circular directional array antenna of claim 1, further comprising:	
2	a ground plane having a plurality of vias, wherein the driven element and the	
3	surface-waveguide elements are adjacent to the ground plane and connected to the	
4	transceiver and control signal, respectively, through the corresponding feed network	
5	and the vias.	
1	3. The circular directional array antenna of claim 2, wherein the ground	
2	plane comprises a reactive surface.	
1	4. The circular directional array antenna of claim 2, wherein the ground	
2	plane comprises a conductive surface.	
1	5. The circular directional array antenna of claim 2, wherein the ground	
2	plane is finite and symmetrical about the driven element.	
1	6. The circular directional array antenna of claim 2, wherein the driven	
2	omnidirectional traveling-wave antenna element generates an omnidirectional surface	;
3	wave substantially parallel to the ground plane.	

Attorney Docket Number: 62306-1070

7. The circular directional array antenna of claim 2, wherein the ground plane comprises a reactive surface which modifies the shape of the radiation pattern in elevation with respect to the ground plane.

- 1 8. The circular directional array antenna of claim 1, wherein the driven 2 omnidirectional traveling-wave antenna element comprises a mode-0 slow-wave 3 antenna.
- 9. The circular directional array antenna of claim 1, wherein the driven omnidirectional traveling-wave antenna element comprises a mode-0 spiral-mode microstrip antenna.

1

2

3

4

5

1

2

3

1 2

3

4 5

- 10. The circular directional array antenna of claim 1, further comprising: a switching circuit having a plurality of inputs and a corresponding plurality of outputs, the outputs independently responsive to a beam steering means coupled to the inputs, wherein a respective output is coupled to each of the surface-waveguide elements.
- 11. The circular directional antenna of claim 10, wherein the waveguide characteristic of each of the surface-waveguide elements is selectively controlled to pass or reflect a traveling wave.
- 12. The circular directional array antenna of claim 10, comprising:
 a conducting enclosure configured to surround the switching circuit to
 suppress radio frequency leakage and electromagnetic coupling between the driven
 omnidirectional traveling-wave antenna element and the surface-waveguide elements
 through the control circuit.
- 13. The circular directional array antenna of claim 12, wherein the
 conducting enclosure comprises mode suppressors arranged around the switching
 circuit with a distance between adjacent mode suppressors being less than λ/4, where
 λ is the wavelength of the highest operating frequency.

14. A method for operating a broadband/multiband beam-steered circular 1 2 array antenna, comprising: 3 locating a driven broadband/multiband traveling wave antenna element that generates an omnidirectional electromagnetic radiation pattern on a ground plane; 4 concentrically arranging a plurality of broadband/multiband surface-waveguide 5 elements around the driven omnidirectional traveling-wave antenna; and 6 applying control signals configured to steer the electromagnetic radiation by 7 selectively altering waveguide characteristics of respective surface-waveguide 8 elements that receive the control signals. 9