

MLSHNTWMKQRKQQATAIMKEVHGNDVDGMDLGKKVSIPRDIMLEELSHLSNRGARLFKM

RQRRSDKYTFENFQYQSRAQINHSIAMQNGKVDGSNLEGGSQQAPLTPPNTPDPRSPPNP

DNIAPGYSGPLKEIPPEKFNTTAVPKYYQSPWEQAISNDPELLEALYPKLFKPEGKAELP

DYRSFNRVATPFGGFEKASRMVKFKVPDFELLLLTDPRFMSFVNPLSGRRSFNRTPKGWI SENIPIVITTEPIDDITIVPESEDL

FIG. 1A

mouse CAP-1

MLSHSAMVKQRKQQASAITKEIHGHDVDGMDLGKKVSIPRDIMIEELSHFSNRGARLFKM

RORRSDKYTFENFOYESRAQINHNIAMONGRVDGSNLEGGSQOGPSTPPNTPDPRSPPNP

ENIAPGYSGPLKEIPPERFNTTAVPKYYRSPWEQAIGSDPELLEALYPKLFKPEGKAELR

DYRSFNRVATPFGGFEKASKMVKFKVPDFELLLLTDPRFLAFANPLSGRRCFNRAPKGWV SENIPVVITTEPTEDATVPESDDL

FIG. 1B

MPLSGTPAPNKKRKSSKLIMELTGGGQESSGLNLGKKISVPRDVMLEELSLLTNRGSKMF

120 Klromrvekfiyenhpdvfsdssmdhfokflptvggolgtagogfsysksngrggsqagg 180 SGSAGQYGSDQQHHLGSGSGAGGTGGPAGQAGRGGAAGTAGVGETGSGDQAGGEGKHITV 240 FKTYISPWERAMGVDPQQKMELGIDLLAYGAKAELPKYKSFNRTAMPYGGYEKASKRMTF

OMPKFDLGPLLSEPLVLYNQNLSNRPSFNRTPIPWLSSGEPVDYNVDIGIPLDGETEEL

FIG. 10

mouse CAP-2

MPLSGTPAPNKRRKSSKLIMELTGGGRESSGLNLGKKISVPRDVMLEELSLLTNRGSKMF

lzo KlromrvekfiyenhPdvfsdssmdhfokflptvggqletagogfsygkgssggqagssg SAGOYGSDRHQQGSGFGAGGSGGPGGQAGGGGAPGTVGLGEPGSGDQAGGDGKHVTVFKT

YISPWDRAMGVDPQOKVELGIDLLAYGAKAELPKYKSFNRTAMPYGGYEKASKRMTFQMP

KFDLGPLLSEPLVLYNQNLSNRPSFNRTPIPWLSSGEHVDYNVDVGIPLDGETEEL

<u>ධ</u>

1 MLSHSMHVMQMMQASAITKEIHGHDVDGHDLMMMVKIL 2 MPLSGTPMPNMRMMSSKLIMELTGGGRESSMLNMMMMMT	1 Pered I Wit Escripian F S Need A R L Frank Recard R S D M Y T F ESCRIP	1	1 EGGS ONOTO PSTPNTPDPRSPPNPENIAL SOPPL 2 SACOYGEDRH ONOTO GFGAGGSGGPGGAGGGG XANOTV CLG	1 KEIPPERFNT TAMPKY MR STIMEQ MICHS DEPELLEAMY 2 EPGSGDQAGGDGKHVTKFKTKTKTKTKTKTKTKTKTKTKKTKKTKKTKKTKKTKK	1 P X II F X P E G KANTEN D WA BETHER V MT FOR FORMANT H V K K V EL V M B X G A K X Y E X X X X X X X X X X X X X X X X X	1 DESECTION RELAFANTED FREED FOR CHRISTAL TO THE SENTEND OF THE SERVICE OF THE SE	1 ITTEPTEDATVPESODES 2 YNVD - VGIPLDGESTEE
mCAP-1 mCAP-2	mCAP-1 mCAP-2	mCAP-1	mCAP-1	mCAP-1 mCAP-2	mCAP-1 mCAP-2	mCAP-1 mCAP-2	mCAP-1 mCAP-2

FIG. 1E

10	20	30	40	50	60	70	80	90	100
GTCCCAGGTTCAAG	GATAAAAACC	ATCAGGCCA	NGTGCCATCO	CATAGTCCAT	CTCCAGAGTC	TTCCTCCACA	AACTGGGATT	Catcccccctga	AAAAG
CAGGGTCCAAGTTC	CTATTTTGG	STAGTCCGGGT	TCACGGTAGO	STATCAGGTA	GAGGTCTCAG	AAGGAGGTGT	TTGACCCTAA	Ctaggggggct	TITTC
110 CACAATCTAACAGC GTGTTAGATTGTCG	120 AAGGGAACAA	130 NANANACCATO	140 CTATCACATA CATAGTGTAT	150 NATACTATGA ITATGATACT	160 TGAAGCAGAG ACTTCGTCTC	170 AAAACAGCAA TTTIGTCGTT	180 GCAACAGCCA CGTTGTCGGT	190 PCATGAAGGAAG AGTACTTCCTTC	200 TCCAT AGGTA
210 GGAAATGATGTTGA CCTTTACTACAACT	220 TGGCATGGAC	230 CTCCCCAAAA GACCCGTTT	240 NAGGTCAGCAT	250 PCCCAGAGA AGGGGTCTCT	260 CATCATGTTG GTAGTACAAC	270 GANGANTTAT CTTCTTANTA	280 CCCATCTCAG GGGTAGAGTC	290 PAACCGTGGTGC ATTGGCACCACG	300 CAGGC GTCCG
310	320	330	340	350	360	370	380	390	400
TATTTAAGATGCGT	CAAAGAAGAT	CTGACAAATA	ACACATTIGA	NATTTCCAG	TATCAATCTA	GAGCACAAAT	AAATCACAGT	ATTGCTATGCAG	AATGG
ATAAATTCTACGCA	GTTTCTTCTA	GACTGTTTA	IGTGTAAACTI	TTANAGGTC	TAGTTAGAT	CTCGTGTTTA	ITTAGTGTCA	FAACGATACGTC	TTACC
410 CARAGTGGATGGAA CTTTCACCTACCTT	420 GTAACTTGGA CATTGAAÇCT	430 NAGGTGGTTCC	440 EAGCAAGCCG GTCGTTCGG	450 CCTTGACTC	460 CTCCCAACAC GAGGGTTGTG	470 CCCAGATCCA GGGTCTAGGT	480 CGAAGCCCTC GCTTCGGGAG	490 CAAATCCAGACA CTTTAGGTCTGT	500 ACATT TGTAA
510 GCTCCAGGATATTC CGAGGTCCTATAAG	520 TGGACCACTG	530 EAAGGAAATTO ETTCCTTTAAG	540 CCTCCTGAAA GAGGACTTT	550 NATTCANCAC TTANGTTGTG	560 CACAGCTGTC GTGTCGACAG	570 CCTAAGTACT GGATTCATGA	580 ATCAATCTCC TAGTTAGAGG	590 CTGGGAGCAAGC CACCCTCGTTCG	600 CATTA GTAAT
610 GCAATGATCCGGAG CGTTACTAGGCCTG	620 CTTTTAGAGG GAAAATCTCG	630 CTITATATCC	640 TAAACTTTI ATTTGAAAA	650 CAAGCCTGAA CTTCGGACTT	660 GGAAAGGCAG CCTTTCCGTC	670 AACTGCCTGA TTGACGGACT	680 TTACAGGAGC AATGTCCTCG	690 TTTAACAGGGTT VAATTGTCCCAA	700 GCCAC CGGTG
710 ACCATTTGGAGGTT TGGTAAACCTCCAA	720 TTGAAAAAGG	730 CATCAAGAATO CTAGTTCTTAO	740 GTTAAATTT CAATTTAAA	750 NANGTTCCAG PTTCANGGTC	760 . ATTITGAGCT TAAAACTCGA	770 ACTATTGCTA TGATAACGAT	780 ACAGATCCCA IGTCTAGGGT	790 GGTTTATGTCCT CCAAATACAGGA	800 TTGTC AACAG
810	820	B30	840	850	860	870	880	890	900
AATCCCCTTTCTGG	CAGACGGTCC	CTTTAATAGG/	CTCCTAAGGC	CATGGATATC	TGAGAATATT	CCTATAGTGA	TAACAACCGAI	ACCTACAGATGA	TACCA
TTAGGGGAAAGACG	GTCTGCCAGG	CAAATTATCCT	CAGGATTCCC	CTACCTATAG	ACTCTTATAA	GGATATCACT	ATTGTTGGCT	AGGATGTCTACT	ATGGT
910	920	930	940	950	960	970	980	990	1000
CTGTACCAGAATCA	IGAAGACCTAT	CAAAAGAAAC	CTTGTATGTGC	CACATAAAA	CTCTGAATAT	AAAAGTTGCT	GTTCTACTAT	TTTAACTACTGG	CAAAG
GACATGGTCTTAGT	CTTCTGGATA	CTTTTCTTTC	CAACATACAC	GTGTATTT	GAGACTTATA	TTTTCAACGA	CAAGATGATAI	AAATTGATGACC	GTTTC
1010 CACTTGCATTTTTC GTGAACGTAAAAA	1020 CATTAGTAGCA CTAATCATCGT	1030 NACAATAGCAA PTGTTATCGTT	1040 ATTTAGTGATT	1050 TTTCCTTTTC AAAGGAAAAG	1060 TGACATTCAA ACTGTAAGTT	1070 TTTCAATCTC AAAGTTAGAG	1080 AGATCAAATA ICTAGTTTAT	1090 TAATAAACAAT AATAATTGTIA	1100 TAGAN ATCTT
1110	1120	1130	1140	1150	1160	1170	1180	1190	1200
ATCTTACTTTARA	AACTTATAAC	TCACTTGTCT	TTCATTCATA	ATTTTGTTTT	CACCTGGTTT	AAAGAATCCA	GATATTTTACT	CCAAAAGTTCA	GATGG
TAGANTGAANTTT	TTGAATATT	SAGTGAACAGA	AGTAAGTAT	BAAAACAAAA	GTGGACCAAA	TTTCTTAGGT	CTATAAAATG	CGTTTTCAAGT	CTACC
1210	1220	1230	1240	1250	1260	1270	1280	1290	1300
AAAAGTAATTGACA	GCTTCACCTT	TTGTCTCATTI	TATATGATT	FATTACAGTG	TAAGTTTTTC.	AAGTGGAATC	FAGAATCAAA	ATACAGGAGAGA	ATATG
TTTTCATTAACTG	CGAAGTGGAJ	VACAGAGTAAJ	ATATACTAA	STAATGTCAC	ATTCAAAAAG	ITCACCTTAG	ATCTTAGTTI	FATGTCCCTCTC	TATAC
1310 AAGACCTATTCAGA TTCTGGATAAGTCT	1320 GTTTCATCTC CAAAGTAGAC	1330 GGGATGAAAG	1340 CTATGGAAGA GATACCTTC	1350 ATGATGTACA TACTACATGT	1360 AATGITATIG ITACAATAAC	1370 ATGGAGAAAA IACCTCTTTT	1380 IGGTTGGTGTO ACCAACCACAO	1390 FICCTITCTGGTV FAGGAAAGACCA	1400 GACCA CTGGT
1410	1420	1430	1440	1450	1460	1470	1480	1490	1500
TGAGAAAATAATAT	GTCTTGATG/	NAGTOTTTTCA	ATTAGTCACTO	TTAGAATTC	TAAAGTGCTT	FGCACTITTC	ANTATGTTTT	CANTCATTAGGT	AATTT
ACTCTTTTATTATA	CAGAACTACT	TTCAGAAAAGT	AATCAGTGAO	GAATCTTAAG	ATTTCACGAA	ACGTGAAAAG	ETATACAAAA	CTTAGTAATCCA	ITAAA
1510	1520	1530	1540	1550	1560	1570	1580	1590	1600
ATTCTCCATGATAT	TCTCCAAAA1	TTCAATTCAGI	TATTATATATA	CATTTAGCAT	TAAGTCAAGG	MGACTGAGAA	IGACTCAAGG	SACGTCATAGTA	CCATA
TANGACCTACTATA	AGAGGTTTT	VAGTTAAGTCA	ATAATATAA	CTAAATCGTA	ATTCAGTTCC	ICTGACTCTT	ACTGAGTTCC	TGCAGTATCAT	GGTAT
1610	1620	1630	1640	1650	1660	1670	1680	1690 ·	1700
GTTTTAAGGACCAA	AGGTGTGCCCA	AGANTTCANGT	TTTCACAAAT	CCAATGCTG	IGCATIGATI	ATGTTCAACT	FTATGTGTGCA	ATTCTTAGAAGAC	GTAAG
CAAAATTCCTGGTT	CCACACGGGT	PCTTANGTTC	AAGTGTTTA	GGTTACGAC	ACGTAACTAA	TACAAGTTGA	NATACACACGT	YAAGAATCTTCTV	CATTC
1710	1720	1730	1740	1750	1760	1770	1780	1790	1800
AACAAATAAAGTAC	CACCGTAATAI	FACATATAAA	FACATTCATG	PTTGTGAGAG	AAGGAAAGAG	IAAGTAATTT	EARTTGGCAGG	TTTCTTTGCTAL	AATCT
TTGTTTATTTCATC	CTGGCATTATA	ATGTATATTI	ATGTAAGTAC	NAACACTCTC	ITCCITTCIC	NTTCATTAAA	ETTARCCGTCG	LAAAGAAACGAT	ITAGA
1810	1820	1830	1840	1850	1860	1870	1880	1890	1900
TTANATTCTGTTAN	IGATCCTCAAC	STANCTGGGGI	AGTACATGCT	TTAGGACACA	NACANANACA	NAGGGCATGA	NAGTATCTGAJ	NGCANTGTAGCI	ACATA
ARTTTANGACAATT	CTAGGAGTTC	SATTGACCCCI	CATGTACGA	LATCCTGTGT	IIGIIIIIGI	PTCCCGTACT	PTCATAGACTI	TCGTTACATCGT	IGTAT
1910	1920	1930	1940	1950	1960	1970	1980	1990	2000
TCTATCGTAATATA	LTGTAATATAT	ITGACATAAAJ	NGACACAAACT	FAATATAAAG	ITATAGTTAT	ATCTTAAAAT	ATAATTGAAGI	LAGCATATGACA1	FATAA
AGATAGCATTATAT	ACATTATATA	AACTGTATTTI	CTGTGTTTGI	ATTATATTTC	AATATCAATA	FAGAATTTTA	PATTAACTTCT	TCGTATACTGT/	ATATT
2010	2020	2030	2040	2050	2060	2070	2080	2090	2100
CITATAGAAATCAG	TATCANTICO	CICCCATITCA	NATTCAGTTAI	NGACTICTGIN	GATAGATGTT	PATAGCAGAGA	NAGAAATGTCI	CATCAATAGGAJ	NAACT
GAATATCITTAGTG	ATAGTTANGO	CAGGGTAAAGI	TANGTCAAT	NGTGANGACA	CTATCTACAN	NTATCGTCTC	ITCTTTACAGA	GTAGTTATCCTT	TTGA
2110	2120	2130	2140	2150	2160	2170	2180	MATCIGICITIO	2200
ATCAGATAAAGTTT	TAGGAGATAGG	CAAGAAGGAC1	IGTGTGTAGTI	ATGAAAATA	CCAAGTTGCA	MCATTACATG	TTACAAAAA		TAGT
TAGTCTATTTCAAA	TCCTCTATCG	CTTCTTCCTGA	ACACACATCA	ITACTITTAT	CGTTCAACGT	IGIAAIGIAC	AATGTTTTT		CATCA
2210	2220	ZZZO	2240	2250	2260	2270	2280	CAGANAGTANCI	2300
GTGGAAGTTGGTGA	CTGTTTTAA1	CCATCATCTAC	CACTIGITANO	TAGAAAAAT	ITTAAAAATI:	FGCTTATGAA	ATATAACCCC		VATGA
CACCTTCAACCACT	GACAAAATTA	GCTAGTAGATC	TGANCANTIO	TATCTTTTA	AAATTITAA	MCGAATACTT	TATATTGGGG		ITACT
2310	2320	2330	2340	2350	2360	2370	2380	TITICGIGITIA	2400
CARAGTATTATATI	TATATATATAT	INTIGTAGAGA	NATTIGIATAT	TITITAAAGA:	IGTCTTAAGA:	FATCTTAATT	TATTTATAAG		ACCTG
GTTTCATARTATATA	ATATATATA	ITANCATCICI	TAAACATATI	WAAAATTICT:	ACAGAATTCT?	STAGAATTAA	MATAAATATTC		NGGAC
2410	2420	2430	2440	2450	2460	2470	2480	AXXXXXXXXXX	2500
TTTTAAAATGATAA	ITGTTGGCATC	ETGTGATAAAC	TATCAATGAC	GCTCOCATC	NIGCCATITI	FIGITCATITI	XXXCITIAXX		AGGCA
AAAATTTTACTATT	ACAACCGTAG	EACACTATTTG	ATAGTTACTC	CCACGGTAG	INCGGIAAAAI	NACANGTANAJ	LITAGAAXIII		ACCGT
2510	2520	2530							

mouse CAP-1

1110400	0, 11								
10	20	30	40	50	60	70	80	90	100
	ACCUTCCYCCC)								
TAAGCCGTGTA	CCCTAGCTCCCT	rggtacgcaa	GGTCCAAGTT	CTATTTTGG	GTAACCCGGT.	ATCACGGCAG	TATAAGGTGG	AAGTCACGGA	AGGAGGT
110	120	130	140	150	160	170	180	190	200
	CACCCCTGCTGA								
GTTAACCCCTAA	GTGGGGACGACT	TTTCCCGTCC	CACTGTCGTT	CCTIGITIT	TTGATACGAT	AGTGTATCAC	GGTACCACTT	CITICCITY	STCGTTC
210	220	230	240	250	260	270	280	290	300
	ACGAAGGAAATC								
GTAGTCGGTAG	TGCTTCCTTTAC	GTACCTGTAC	TACAACTGCCC	STACCTGGAC	CCGITITITC	AATCGTAGGG	STCTCTGTAG	PACTATETTE	TAACAG
310	320	330	340	350	360	370	380	390	400
	NTCCTGGGGCC)								
GGTAAAGTCAT	TAGCACCCCGGT	CCGACAAATTI	CTACGCAGTT	CTTCTAGAC	IGTT TATGTG	SAAACTTTA	AAGGTCATAC	TAGATCTCGT	GTTTAA
410	420	430	440	450	460	470	480	490	500
	CGCCATGCAGAA								
TTAGTGTTATA	GCGGTACGTCTT	ACCCTCTCAA	CTACCTICGT	IGGACCTTCC.	ACCEAGTGTC	STTCCGGGGA	STTGAGGCGG	TTGTGGGGG	TAGGTG
510	520	530	540	550	560	570	580	590	600
	ANTCCAGAGAA								
CTTCGGGGGGGT	TTAGGTCTCTTC	STAGEGTGGTC	CTATAAGACCT	rcgtgacttc	CTTTAAGGAGG	SACTTTCCAA	ATTGTGCTGCC	GGCAAGGATI	TADTAY
610	620	630	640	650	660	670	680	690	700
	CGCAGCAGGCCA								
GGCCAGAGGTA	CCC1CC1CCCC1	AACCGTCGCT	AGGCCTCGAGC	SACCTCCGAA	ACATGGGTTT	rgaaaagttee	GACTTCCTTT	TCGTCTTGAC	GCCCTA
710	720	730	740	750	760	770	780	790	800
	TAACAGGGTTCC								
ATGTCCTCGAA	WILL LCCCWYCO	GTGAGGTAAA	CTCCARARCI	TTTTCGTAG	ITTTACCAG	TTANGTTTC	LAGGTCTAAA	CTTGATGACG	ACGACT
810	820	830	840	850	860	870	880	890	900
	TTCTTGGCCTTT								
GTCTAGGGTCC	WYCYYCCCCYYY	CCCTTACCACI	AAAGCCCGTCT	GCTACGAAA1	TGTCCCGCG(STTTCCCCAC	CATAGACTCT	TATAGGGGCA	GCACTA
910	920	930	940	950	960	970	980		
	CTACAGAAGACG								
GTGTTGACTCG	GATGTCTTCTGC	CGTCACATCG	CTTAGTCTAG	TGGACACTCT	CCCTTCGACC	CCTACGGTGT	CCTTCAAG		

COGTENARIO ACCTENETCE TECHANGETE CTEGACCEA GEGAGNEETE ACCACTECCE GAGCAGCEG CTEANTECA CTECACAME CEGETTECAG

CAACCECCEGC CCCTANTAM AAGAGGAAAT CCAGCAAGCT GATCATEGAA CTCACTEGAG GTEGACAGGA CACCTCAGCE TTEAACCTG GCAAAAAGAAT

CAGTGTECCA AGGGATGTA TGTTGCAGGA ACTGTCGCTG CTTACCAACC GGGGCTCCAA GATGTTCAAA CTGCGGCAGA TGAGGGTGGA GAAGTTTATT

TATCAGAACC ACCCTCATGT TTTCTCTCAC ACCTCAATGG ATCACTTCCA GAAGTTCCTT CCAACAGTGG GCGGACAGCT GCGCACACCT GGTCAGGGAT

TCTCATACAG CAACAGCAAC GGCAGAGGCG GCAGCCAGGC AGGGGGCAGT GCCTCTCCG GACAGTATGG CTCTGATCAG CAGCACCATC TGGGCTTCGG

GTCTGGAGCT GGGGGTACAG GTCGCTCCCC GCGCCAGGCC GCCAAGCAG GACCCCCTG GACAGCAGG GTTGGTGAGA CAAGAATGGA CTTGCCATTG

GCCGGACAAG GAAAACATAT CACTGTGTC AAGACCTATA TTACCCCATG GAGGGAGGCG CAATGCCCTA TGGTGGATAT GACCCCAGCA

GACCTCCCGG CTATGGGGCC AAAGCTGAC TTCCCAAATA TAAGTCCTTC AACAGGAGG CAATGCCCTA TGGTGGATAT GAGAAGGCCT CCAAAAGCAT

GACCTTCCAG ATGCCCAAGT TTGACCTGGG GCCCTTGCTG AGTGAACCCC TGGTCCTCTA CAACCAAAAC CTCTCCAACA GCCCTTCTTT CAATCGAACC

CCTATTCCCT GGCTGAGCTC TGGGGAGCCT GTAGACTACA ACGTGGATAT TGGCATCCCC TTGGATGAG AAACAGAGGA GCCTTCTTTCCACTCCCC

CCTATTTCCA TCATTTCCCC TCTCTGCCTC CAATTTGGAG

mouse CAP-2

FIG. 3

FIG. 4D

FIG. 4E

FIG. 4B

FIG. 5A

FIG. 5B

FIG. 7

FIG. 8

FIG. 9

γ -filamin	Cs-1 Cs-2			
telethonin	1 Cs-1 Cs-2			
α-actinin	Cs-1 Cs-2			
calcineurin	Cs-1 Cs-2	audjobare i kangangan kangangan kangangan kangangan kangangan kangangan kangangan kangangan kangangan kanganga		
		IP: Myc W: Flag	Input: Flag	Input: Myc

FIG. 10

FIG. 11

FIG. 12

ClustalW Formatted Alignments

· ~ . :

47	102	152	183	231
55	108		213	265
53	94		177	229
1 MP L S O TP A P N K K K K S S K K T M A A M O D L T E P V P T L D L O K K R S V P Q D P N M B E L S L L E N R S I M L S H N T N M K O R K O R N O O O O O O O O O O O O O O O O O	48 GS LLFGKRQRRVOKFFFFLAAS QRAML, AGSARRKY OCTABSGTVANANGPEOPNY 10 56 GSKWAFKPRQRRVEKFFFBN PDV-FSDSSMDFFQKFTPPNVGGOTGOFFAYS 10 54 GARLFKWRQRRSDKWTFFNFQYQSRACINHSIA WONGKVDG	103 PRELMIFFAM PGASLOGPEGMHPAMAPAGCVPSPSPSMAPGYMEPLKOMPPF 13 109 NSNOM GGSQQAPLTPPNTPDPRSPDASGSGAGGGGGGGGGAGGG	153 · · · · · · B.K. · · · · · · · · · · · · · · · · · ·	184 HTPSPNDYRNFNWTPNPPGGPLVOG···TFPRP····GTPFIPEPSGGELLRLR 23 214 ELP···KYWSFNRTAWPGGGYEKASKRYTFGWPKFDLGPLLSEPLLTNONLSNR 26 178 ELP···DYRSFNRVATPFGGEKASRMYRKYPDFELLLTDPRFMSEKNPDR 22
in-2 in-1	5 5 T	n-3 n-1		
calsarcin-3	calsarcin-3	calsarcin-3	calsarcin-3	calsarcin-3
calsarcin-2	calsarcin-2	calsarcin-2	calsarcin-2	calsarcin-2
calsarcin-1	calsarcin-1	calsarcin-1	calsarcin-1	calsarcin-1

FIG. 13

WENTPONE DAM VOIGIPLES... BEL251
WAS ENTIPEVINE TEPTOTIVE BY BY BEL299

PSFNRTPIPW PSFNRTPIPW RSFNRTPIGW

232

calsarcin-3 calsarcin-2 calsarcin-1