Universidade Federal do Paraná

Eduardo Elias Ribeiro Junior

Modelo de Regressão Conway-Maxwell-Poisson para Modelagem de Dados de Contagem; Extensões e Aplicações

Curitiba

Eduardo Elias Ribeiro Junior

Modelo de Regressão Conway-Maxwell-Poisson para Modelagem de Dados de Contagem; Extensões e Aplicações

Projeto de Pesquisa apresentado à disciplina Laboratório A do Curso de Graduação em Estatística da Universidade Federal do Paraná, como requisito para elaboração do Trabalho de Conclusão de Curso

Curitiba

Sumário

1	INTRODUÇÃO	3
2	OBJETIVOS	4
2.1	Objetivos Gerais	4
2.2	Objetivos Específicos	4
3	MATERIAIS E MÉTODOS	5
3.1	Materiais	5
3.1.1	Dados para análise	5
3.1.2	Recursos Computacionais	5
3.2	Métodos	5
4	CRONOGRAMA DE ATIVIDADES	6
	REFERÊNCIAS	7
	NEI ENERGY	- 1

1 Introdução

Discutir a relevância e aplicação de modelos estatísticos de regressão no âmbito científico. Citar a introdução dos modelos lineares generalizados.

Abordar modelos de regressão para variáveis de contagem, descrever as características, e com isso a imitação do modelo de regressão Poisson. Apresentar o modelo COM-Poisson descrevendo sua flexibilidade.

Abordar modelos lineares mistos com situações exemplos, e discutir a aplicação de modelos mistos para acomodar sobredispersão.

Ressaltar a relevância do estudo para a comunidade estatística, principalmente como contribuição para a literatura estatística brasileira.

2 Objetivos

2.1 Objetivos Gerais

Apresentar o modelo de regressão COM-Poisson, alternativa paramétrica não comumente utilizada pela comunidade de Estatística aplicada, trazendo discussões sobre aspectos inferenciais deste modelo. Estender as aplicações do modelo COM-Poisson para situações específicas (efeitos aleatórios e inflação de zeros).

2.2 Objetivos Específicos

- Apresentar e discutir aspectos da distribuição COM-Poisson para modelagem de dados discretos;
- Avaliar a acurácia os métodos de estimação para os modelos de regressão de efeito fixo;
- Estender os modelos de regressão COM-Poisson para acomodar efeitos aleatórios e estimar seus parâmetros;
- Acomodar excesso de zeros no modelo de regressão COM-Poisson
- Aplicar e comparar os resultados dos modelos de interesse, COM-Poisson, com diferentes abordagens comumente utilizadas pela comunidade estatística (Modelos Poisson, Poisson de efeito aleatório, Binomial Negativo, Quasi-Poisson, VIF) para dados reais e/ou simulados.

3 Materiais e Métodos

3.1 Materiais

3.1.1 Dados para análise

Descrever os conjuntos de dados reais a serem utilizados no trabalho de conclusão de curso. Inicialmente temos os conjuntos defoliation, do pacote legTools também analisado via modelo de contagem Gama (ZEVIANI et al., 2014), e o conjunto aviurba, do pacote ade4 de análise de dados ecológicos, onde se pode aplicar um modelo de efeitos fixos e aleatórios.

Descrever os procedimentos de simulação de dados para avaliação da acurácia dos métodos de estimação e comparação de abordagens distintas.

3.1.2 Recursos Computacionais

Para análise e elaboração do trabalho será utilizado o software R, na versão 3.2 (R Core Team, 2015). Atualmente há três bibliotecas desenvolvidas em R dedicadas à distribuição COM-Poisson. São eles COMPoissonReg (SELLERS; LOTZE, 2011), este conjunto de funções foi desenvolvido com base nas análises apresentadas no artigo A flexible regression model for count data (SELLERS; SHMUELI, 2010); compoisson as funções desta biblioteca se dedicam apenas ao modelo probabilístico; e CompGLM esta é mais recente biblioteca de funções com ênfase no modelo COM-Poisson, escrita em C++ permite a estimação de modelos de regressão além de funções probabilísticas.

Outros recursos e bibliotecas, principalmente para otimização de funções e elaboração de gráficos, serão utilizadas.

3.2 Métodos

Descrever o método de máxima verossimilhança para estimação dos modelos de regressão e os critérios a serem utilizados para comparação de modelos.

4 Cronograma de Atividades

Fevereiro			Março				Abril				Maio				Junho				Julho				
1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
	<u>:</u>	:	:	:	:		:	:	:		<u>:</u>	:			<u>:</u>								

REFERÊNCIAS

CONWAY, R. W.; MAXWELL, W. L. A queuing model with state dependent service rates. *Journal of Industrial Engineering*, v. 12, p. 132—-136, 1962. Nenhuma citação no texto.

PAULA, G. A. Modelos de regressão com apoio computacional. IME-USP São Paulo, 2013. Disponível em: https://www.ime.usp.br/~giapaula/textoregressao.htm>. Nenhuma citação no texto.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria, 2015. Disponível em: http://www.R-project.org/>. Citado na página 5.

Ribeiro Jr, P. J. et al. Métodos computacionais para inferência com aplicações em R. In: 20° Simpósio Nacional de Probabilidade e Estatística. [s.n.], 2012. p. 282. Disponível em: http://leg.ufpr.br/doku.php/cursos:mcie. Nenhuma citação no texto.

SELLERS, K.; LOTZE, T. COMPoissonReg: Conway-Maxwell Poisson (COM-Poisson) Regression. [S.l.], 2011. R package version 0.3.4. Disponível em: http://CRAN.R-project.org/package=COMPoissonReg. Citado na página 5.

SELLERS, K. F.; SHMUELI, G. A flexible regression model for count data. *Annals of Applied Statistics*, v. 4, n. 2, p. 943–961, 2010. ISSN 19326157. Citado na página 5.

SHMUELI, G. et al. A useful distribution for fitting discrete data: Revival of the Conway-Maxwell-Poisson distribution. *Journal of the Royal Statistical Society. Series C: Applied Statistics*, v. 54, n. 1, p. 127–142, 2005. ISSN 00359254. Nenhuma citação no texto.

ZEVIANI, W. M. et al. The Gamma-count distribution in the analysis of experimental underdispersed data. *Journal of Applied Statistics*, n. October, p. 1–11, 2014. ISSN 0266-4763. Disponível em: <http://dx.doi.org/10.1080/02664763.2014.922168>. Citado na página 5.