we deduce that the subsequence (\widetilde{R}_{ℓ}) also converges to some matrix \widetilde{R} , which is also upper triangular with positive diagonal entries. By passing to the limit (using the subsequences), we get $\widetilde{R} = (\widetilde{Q})^*$, that is,

$$I = \widetilde{Q}\widetilde{R}$$
.

By the uniqueness of a QR-decomposition (when the diagonal entries of R are positive), we get

 $\widetilde{Q} = \widetilde{R} = I.$

Since the above reasoning applies to any subsequences of (\widetilde{Q}_k) and (\widetilde{R}_k) , by the uniqueness of limits, we conclude that the "full" sequences (\widetilde{Q}_k) and (\widetilde{R}_k) converge:

$$\lim_{k \to \infty} \widetilde{Q}_k = I, \quad \lim_{k \to \infty} \widetilde{R}_k = I.$$

Since by $(*_4)$,

$$A^k = QR(\Lambda^k L \Lambda^{-k}) \Lambda^k U,$$

by $(*_5)$,

$$R(\Lambda^k L \Lambda^{-k}) = (I + RF_k R^{-1})R,$$

and by $(*_6)$

$$I + RF_k R^{-1} = \widetilde{Q}_k \widetilde{R}_k,$$

we proved that

$$A^{k} = (Q\widetilde{Q}_{k})(\widetilde{R}_{k}R\Lambda^{k}U). \tag{*7}$$

Observe that $Q\widetilde{Q}_k$ is a unitary matrix, and $\widetilde{R}_kR\Lambda^kU$ is an upper triangular matrix, as a product of upper triangular matrices. However, some entries in Λ may be negative, so we can't claim that $\widetilde{R}_kR\Lambda^kU$ has positive diagonal entries. Nevertheless, we have another QR-decomposition of A^k ,

$$A^{k} = (Q\widetilde{Q}_{k})(\widetilde{R}_{k}R\Lambda^{k}U) = P_{k}\mathcal{R}_{k}.$$

It is easy to prove that there is diagonal matrix D_k with $|(D_k)_{ii}| = 1$ for $i = 1, \ldots, n$, such that

$$P_k = Q\widetilde{Q}_k D_k. \tag{*8}$$

The existence of D_k is consequence of the following fact: If an invertible matrix B has two QR factorizations $B = Q_1R_1 = Q_2R_2$, then there is a diagonal matrix D with unit entries such that $Q_2 = DQ_1$.

The expression for P_k in $(*_8)$ is that which we were seeking.

Step 3. Asymptotic behavior of the matrices $A_{k+1} = P_k^* A P_k$.

Since
$$A = P\Lambda P^{-1} = QR\Lambda R^{-1}Q^{-1}$$
 and by $(*_8)$, $P_k = Q\widetilde{Q}_k D_k$, we get

$$A_{k+1} = D_k^* (\widetilde{Q}_k)^* Q^* Q R \Lambda R^{-1} Q^{-1} Q \widetilde{Q}_k D_k = D_k^* (\widetilde{Q}_k)^* R \Lambda R^{-1} \widetilde{Q}_k D_k. \tag{*9}$$