2N960 (GERMANIUM)

2N961

2N962

2N962JAN AVAILABLE 2N964 2N964JAN AVAILABLE 2N965

2N966

 $\ensuremath{\mathsf{PNP}}$ germanium epitaxial mesa transistors for high-speed switching applications.

(TO-18)
Collector connected to case
MAXIMUM RATINGS

Characteristic	Symbol	2N960 2N964	2N961 2N965	2N962 2N966	Unit
Collector-Emitter Voltage	v _{CE}	15	12	12	Vdc
Collector-Base Voltage	v _{CB}	15	12	12	Vdc
Emitter-Base Voltage	v_{EB}	2. 5	2. 0	1. 25	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	150 2.0			mW mW/ ^O C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	300			mW mW/ ^o C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +100			°C

NORMALIZED D C CURRENT TRANSFER RATIO versus collector current

CURRENT GAIN-BANDWIDTH PRODUCT (f_{τ}) versus collector current

2N960 SERIES (continued)

STORAGE TIME versus CIRCUIT RATIO

COLLECTOR-EMITTER SATURATION VOLTAGE versus ambient temperature

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteris	stic	Symbol	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage (I_C = 100 μAdc , I_E = 0)	2N960, 2N964 2N961, 2N962, 2N965, 2N966	вусво	15 12	25 20	-	Vdc
Emitter-Base Breakdown Voltage (I_E = 100 μ Adc, I_C = 0)	2N960, 2N964 2N961, 2N965 2N962, 2N966	BV _{EBO}	2.5 2.0 1.25	- - -	- - -	Vdc
Collector-Latch-up Voltage VCC = 11.5 Vdc		LVCEX	11.5	-	-	Vdc
Collector-Emitter Cutoff Current (V _{CE} = 15 Vdc) (V _{CE} = 12 Vdc)	2N960, 2N964 2N961, 2N962, 2N965, 2N966	I _{CES}	-	- -	100 100	μAdc
Collector-Base Cutoff Current $(V_{CB} = 6 \text{ Vdc}, I_{E} = 0)$		СВО	-	0.4	3.0	μAdc
DC Current Gain (I _C = 10 mAdc, V _{CE} = 0.3 Vdc)	2N960, 2N961, 2N962 2N964, 2N965, 2N966	h _{FE}	20 40	40 70	-	-
$(I_C = 50 \text{ mAdc}, V_{CE} = 1 \text{ Vdc})$	2N960, 2N961, 2N962 2N964, 2N965, 2N966		20 40	55 90	-	
$(I_C = 100 \text{ mAdc}, V_{CE} = 1 \text{ Vdc})$	2N960, 2N961, 2N962 2N964, 2N965, 2N966		20 40	50 85	-	
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1 \text{ mAdc}$)	2N964, 2N965, 2N966 2N960, 2N961, 2N962	V _{CE(sat)}	1 1	0. 11 0. 13	0. 18 0. 20	Vdc
$(I_C = 50 \text{ mAdc}, I_B = 5 \text{ mAdc})$	2N964, 2N965, 2N966 2N960, 2N961, 2N962		-	0. 18 0. 20	0.35 0.40	
$(I_C = 100 \text{ mAdc}, I_B = 10 \text{ mAdc})$	2N964, 2N965, 2N966 2N960, 2N961, 2N962		-	0.27 0.30	0.60 0.70	
Base-Emitter Saturation Voltage $(I_C = 10 \text{ mAdc}, I_B = 1 \text{ mAdc})$	All Types	V _{BE(sat)}	0.30	0. 40	0.50	Vdc
$(I_C = 50 \text{ mAdc}, I_B = 5 \text{ mAdc})$ $(I_C = 100 \text{ mAdc}, I_B = 10 \text{ mAdc})$	All Types 2N960, 2N961, 2N964, 2N965 2N962, 2N966		0.40 0.40 0.40	0. 55 0. 65 0. 75	0.75 1.00 1.25	
Current-Gain - Bandwidth Product (I _E = 20 mAdc, V _{CB} = 1.0 Vdc, f =	100 MHz)	f _T	300	460	-	MHz

2N960 SERIES (continued)

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Capacitance $(v_{CB} = 10 \text{ Vdc}, I_{E} = 0, f = 1 \text{ MHz})$	C _{ob}	-	2. 2	4.0	pF
Emitter Transition Capacitance $(V_{EB} = 1 \text{ Vdc})$	C _{Te}		2. 0	3.5	pF
Turn-On Time All Types $(I_C = 10 \text{ mAdc}, I_{B1} = 5 \text{ mAdc}, V_{BE(off)} = 1.25 \text{ Vdc})$	ton	-	35	50	ns
$(I_C = 100 \text{ mAdc}, I_{B1} = 5 \text{ mAdc}, V_{BE(off)} = 1.25 \text{ Vdc})$		-	30	50	·
Turn-Off Time (I _C = 10 mAdc, I _{R1} = 1 mAdc, I _{R2} = 0.25 mAdc)	toff				ns
2N960, 2N961, 2N964, 2N 2N962, 2N966	1965	-	60 80	85 100	
$(I_C = 100 \text{ mAdc}, I_{B1} = 5 \text{ mAdc}, I_{B2} = 1.25 \text{ mAdc})$					
2N960, 2N961, 2N964, 2N 2N962, 2N966	1965	-	50 60	85 100	
Rise Time Constant	$ au_{ m RE}$	-	0.6	-	ns
Hole Storage Factor	K's	-	16		ns
Fall Time Constant	$ au_{ ext{FE}}$	-	0.5	-	ns
Total Control Charge (I _C = 10 mAdc, I _B = 1 mAdc) 2N960, 2N961, 2N964, 2N 2N962, 2N966	1965 Q _T	-	50 60	80 90	pC
(I _C = 100 mAdc, I _B = 5 mAdc) 2N960, 2N961, 2N964, 2N 2N962, 2N966	1965	· I I	80 100	125 150	

2N**963** (GERMANIUM) 2N967

 $\ensuremath{\mathsf{PNP}}\xspace$ germanium epitaxial mesa transistors for highspeed switching applications.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	v _{CES}	12	Vdc
Collector-Base Voltage	v _{CB}	12	Vdc
Total Device Dissipation $@T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	P _D	150 2.0	mW mW/ ^O C
Total Device Dissipation @ T _C = 25 ^o C Derate above 25 ^o C	P _D	300 4.0	mW mW/ ^o C
Operating and Storage Junction Temperature Range	${ m T_J, T_{stg}}$	100	°C