MATH 520 MIDTERM II SPRING 2017 BROWN UNIVERSITY SAMUEL S. WATSON

Ν	ame:

This is a pencil-and-paper-only exam. You have two hours.

Problem 1(a) (8 points)

Find
$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 3 & 2 & 1 \end{bmatrix}^{-1}$$

Solution

Final answer:

Problem 1(b) (8 points)

Suppose
$$A^{-1}\mathbf{v}_1 = \mathbf{e}_1$$
, $A^{-1}\mathbf{v}_2 = \mathbf{e}_2$, and $A^{-1}\mathbf{v}_3 = \mathbf{e}_3$, where $\mathbf{v}_1 = \begin{bmatrix} -4 \\ 2 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix}$. Find A . (Note: $\mathbf{e}_1\mathbf{e}_2$, \mathbf{e}_3 denote the standard basis vectors in \mathbb{R}^3 .)

Solution

Final answer:

Problem 2(a) (8 points)
----------------	-----------

Consider the linear transformation $S\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 3x \\ 4y \end{bmatrix}$. Define T to be the 135-degree counterclockwise rotation in \mathbb{R}^2 . Find the determinant of the composition $S \circ T$. Explain your reasoning.

Solution		

Problem 2(b) (8 points)

Show that $det(kA) = k^n det A$, if k is a real number and A is an $n \times n$ matrix.

Solution

Final answer:

Problem 3(a) (10 points)

The matrices
$$A = \begin{bmatrix} 1 & 4 & 5 & 8 & 2 \\ 0 & 1 & -2 & 3 & 5 \\ -2 & -7 & -12 & -13 & 1 \end{bmatrix}$$
 and $\begin{bmatrix} 1 & 0 & 13 & -4 & -18 \\ 0 & 1 & -2 & 3 & 5 \\ 0 & 2 & -4 & 6 & 10 \end{bmatrix}$ are row equivalent.

Find a basis for the row space of *A* and a basis for the column space of *A*.

Problem 3(b) (5 points)

Find the rank and the nullity of *A*.

Final answer:

Problem 4(a) (8 points)
-------------	--------------

Consider the set $S = \{f(x) = 0 \text{ for } \mathbf{some } x \in [0,1]\}$ of continuous functions from [0,1] to \mathbb{R} which are zero somewhere. For example, the function $\left(x - \frac{1}{2}\right)^3$ is in S since it vanishes at $x = \frac{1}{2}$, but the function $1 + x^2$ is not in S.

Show that S is closed under scalar multiplication in C([0,1]) but is **not** closed under vector addition. So is S a subspace of C([0,1])?

Solution		

Problem 4(b) (8 points)

Consider the subset of \mathbb{P}_4 consisting of all polynomials whose cubic and quadratic terms have the same coefficient. For example, $-1+3t^2+3t^3+t^4$ is in this set, while $-1+2t^2+3t^3+t^4$ is not. Is this set a subspace of \mathbb{P}_4 ? Explain your reasoning.

Solution	

Problem 5 (10 points)	
Consider the linear transformation $T: \mathbb{P}_7 \to \mathbb{P}_7$, where $T(p) = p''$. In other words, T acts by taking the second derivative. So, for example, $T(-3t^4+t^2-t)=-36t^2+2$.	
Find the range and the kernel of T . Feel free to describe these sets using either a verbal description or math notation, as you prefer (as long as they are clearly specified). Explain your reasoning.	
	_
Solution	

Problem 6(a) (6 points)

Show that $\{1+t^2, 1+t+2t^4\}$ is a basis of the span of $\{1+t^2, 1+t+2t^4\}$ (here $1+t^2$ and $1+t+2t^4$ are polynomials in the vector space of all polynomials, with the usual notions of addition and scalar multipliation). Find the coordinates of $1+4t-3t^2+8t^4$ with respect to the basis.

Problem 6(b) (9 points)

Use Cramer's rule to solve

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} e \\ f \end{array}\right]$$

for *x* and *y* in terms of *a*, *b*, *c*, *d*, *e*, *f*, assuming that $ad - bc \neq 0$.

not necessarily a	nd V are four-dimension subspace of W . (b) Show	v that the span of U	$I \cup V$, which is a su	bspace of W, is not	equal to W.
Solution					
oration		,			

Problem 7 (12 points)

Addition space page 1	

Addition space page 2		

Addition space page 3		

Addition space page 4	

Addition space page 5		