Lista 10

Zadanie 1. Niech A będzie dodatnią macierzą kolumnowo stochastyczną. Pokaż, że A nie ma wartości własnej -1.

Wskazówka: Rozpatrz A^2 , rozumowanie podobne jak w przypadku grafów silnie spójnych. Jaka jest krotność geometryczna wartości własnej 1? Możesz korzystać z Twierdzeń udowodnionych na wykładzie.

Zadanie 2. Pokaż, że dla dowolnej macierzy kwadratowej M (odpowiedniego rozmiaru) zachodzi

$$\vec{U} \cdot (M\vec{V}) = (M^T \vec{U}) \cdot \vec{V} .$$

gdzie · oznacza standardowy iloczyn skalarny.

Niech M będzie macierzą symetryczną (tj. $M=M^T$). Pokaż, że

$$\vec{U} \cdot (M\vec{V}) = (M\vec{U}) \cdot \vec{V} \tag{**}$$

(zakładamy, że wymiary się zgadzają). Pokaż też własność odwrotną: jeśli M spełnia własność (**) dla każdych \vec{U}, \vec{V} , to M jest symetryczna.

Wywnioskuj z tego, że jeśli $\lambda \neq \lambda'$ są różnymi wartościami własnymi macierzy symetrycznej M o wektorach własnych \vec{V} oraz \vec{U} , to $\vec{V} \cdot \vec{U} = 0$, tj. \vec{V} i \vec{U} są prostopadłe.

jednostkowych.

Wskazówka: Dla "własności odwrotnej": jak wyglądają obie strony równości gdy rozpatrzymy je dla wektorów

Zadanie 3. Udowodnij nierówność

$$|\vec{U} \cdot \vec{V}| \le \|\vec{U}\| \cdot \|\vec{V}\|$$

dla $\vec{U}, \vec{V} \in \mathbb{R}^n$.

Wskazówka: Rozważ najpierw $U \perp V$, potem liniowo zależne a potem dowolne.

Zadanie 4. Udowodnij, że w przestrzeni \mathbb{R}^n ze standardowym iloczynem skalarnym dla dowolnej pary wektorów \vec{U}, \vec{V} zachodzi

$$\|\vec{U}\| = \|\vec{V}\| \quad \Longleftrightarrow \quad (\vec{U} - \vec{V}) \bot (\vec{U} + \vec{V}) \ .$$

Zinterpretuj ten fakt jako stwierdzenie: "przekątne równoległoboku są prostopadłe wtedy i tylko wtedy, gdy równoległobok ten jest rombem".

$$\dot{V} + \dot{V}$$
, $\dot{V} - \dot{V}$ zezrq \dot{V} , \dot{V} is zeryW : Wyraka:

Zadanie 5. Dla podanych poniżej układów wektorów podaj bazy dopełnień ortogonalnych przestrzeni liniowych przez nie generowanych:

- $[1,0,1]^T$, $[2,3,1]^T$ nad \mathbb{R} ;
- [1,0,1,0],[0,1,0,1] nad \mathbb{Z}_2 ;
- [1,0,2] nad \mathbb{Z}_3 .

Uwaga: w przestrzeniach \mathbb{Z}_p^n dopełnienie ortogonalne \mathbb{W}^\perp może nie być rozłączne z \mathbb{W} , może nawet zachodzić równość $\mathbb{W}^\perp = \mathbb{W}$.

Zadanie 6. Niech $\mathbb{V}_1, \mathbb{V}_2 \leq \mathbb{F}^n$, rozpatrzmy standardowy iloczyn skalarny (na \mathbb{F}^n). Pokaż, że:

- $\mathbb{V}_1 \leq \mathbb{V}_2 \iff \mathbb{V}_1^{\perp} \geq \mathbb{V}_2^{\perp}$,
- $(\mathbb{V}_1 + \mathbb{V}_2)^{\perp} = \mathbb{V}_1^{\perp} \cap \mathbb{V}_2^{\perp},$
- $(\mathbb{V}_1 \cap \mathbb{V}_2)^{\perp} = \mathbb{V}_1^{\perp} + \mathbb{V}_2^{\perp}$.

Zadanie 7 (* nie liczy się do podstawy, choć nietrudne). Pokaż, że dla każdego kodu liniowego istnieje kod mu równoważmy, który ma kodowanie systematyczne.

Wskazówka: Eliminacja Gauba na kolumnach.

Zadanie 8. Rozpatrzmy przestrzeń liniową wielomianów o współczynnikach rzeczywistych stopnia najwyżej 3. Zdefiniujmy iloczyn skalarny jako

$$\langle p, q \rangle = \int_{-1}^{1} p(x)q(x) \, \mathrm{d}x$$
.

Oblicz iloczyny skalarne $\langle x^i, x^j \rangle$ dla $0 \le i \le j \le 3$.

Zadanie 9. Niech $\mathbb V$ będzie skończenie-wymiarową przestrzenią Euklidesową. Udowodnij, że dla zbioru wektorów $U\subseteq V$ zachodzi

$$U^{\perp} = (\text{LIN}(U))^{\perp} \quad \text{oraz} \quad (U^{\perp})^{\perp} = \text{LIN}(U) ,$$

gdzie $^{\perp}$ oznacza dopełnienie ortgonalne względem iloczynu skalarnego w $\mathbb{V}.$

Zadanie 10 (Macierz Grama). Zdefiniujmy macierz Grama układu wektorów $\{\vec{v}_1, \dots, \vec{v}_k\}$ w przestrzeni Euklidesowej \mathbb{V} wymiaru k jako

$$G(\{\vec{v}_1,\ldots,\vec{v}_k\}) = (\langle \vec{v}_i,\vec{v}_j\rangle)_{i,j=1,\ldots,k}$$
.

Niech $B = \vec{b}_1, \dots, \vec{b}_k$ będzie bazą ortonormalną \mathbb{V} . Zdefiniujmy macierz $A = [(\vec{v}_1)_B \mid (\vec{v}_2)_B \mid \dots \mid (\vec{v}_k)_B]$, tj. macierz, której j-ta kolumna to wektor z \mathbb{R}^n będący wyrażeniem \vec{v}_i w bazie B. Pokaż, że

$$G(\{\vec{v}_1,\ldots,\vec{v}_k\})=A^TA.$$

Korzystając z tej reprezentacji udowodnij, że

- $\det(G(\{\vec{v}_1,\ldots,\vec{v}_k\}))$ jest nieujemny
- $\det(G(\{\vec{v}_1,\ldots,\vec{v}_k\}))=0$ wtedy i tylko wtedy, gdy $\{\vec{v}_1,\ldots,\vec{v}_k\}$ jest liniowo zależny.

Komentarz: Założenie, że wymiar przestrzeni i liczba wektorów w układzie są takie sama nie jest potrzebne, ale ułatwia rachunki.

Zadanie 11 (Nierówność Bessela; równość Parsevala). Niech $\{\vec{e}_1, \dots, \vec{e}_k\}$ będą układem ortonormalnym (nie zakładamy, że jest bazą). Pokaż, że dla dowolnego wektora \vec{v} :

$$\sum_{i=1}^{k} |\langle \vec{e_i}, \vec{v} \rangle|^2 \le ||\vec{v}||^2.$$

Co więcej, $\{\vec{e}_1,\ldots,\vec{e}_k\}$ jest bazą wtedy i tylko wtedy, gdy dla każdego \vec{v} zachodzi równość.