NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING

EXAMINATION FOR Semester 1 AY2008/9

CS2100 - COMPUTER ORGANISATION

Nov 2008	Time allowed: 2 hours
	Your Matriculation Number:

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper consists of EIGHT (8) questions and comprises NINETEEN (19) printed pages including this page.
- 2. This is an **OPEN BOOK** examination. You may use any approved calculators but not any PDA or laptop, especially those capable of external connectivity or communication.
- 3. Answer <u>all</u> questions. Note that the full mark for each question is different.
- 4. Write your answers on *this* **QUESTION AND ANSWER SCRIPT**. Answer only in the space given. Any writing outside this space will not be considered. No other submission is allowed.
- 5. Fill in your Matriculation Number with a <u>pen</u>, <u>clearly</u> on every page of this QUESTION AND ANSWER SCRIPT.
- 6. You may use pencil to write your answers.
- 7. At the end of the examination, please check to ensure that your script has all the pages properly stapled together.
- 8. Note that when a number is written as "0xNNNN" it means that "NNNN" is in base 16.

Total Score		/100
-------------	--	------

QUESTION 1 (10 marks)
The following is part of the content of memory:

Memory Location (in hexadecimal)	Content of word (in hexadecimal)
0x0000200	0x300
0x00000204	0x200
0x00000208	0x100
0x0000020c	0x1
0x00000210	0x0
•	
•	•
	•
0x0040000	0x200d0200
0x00400004	0x8db00004
0x00400008	0x8e040000
0x0040000c	0x008d1020
0x00400010	0xae020000

And the registers contain the following:

Values in the register file (all in hexadecimal)

			io (uii iii nonu					
R0	(r0)	=	00000000		R1	(at)	=	00002000
R2	(v0)	=	00000001		R3	(v1)	=	0000000a
R4	(a0)	=	00000005		R5	(a1)	=	7ffff000
R6	(a2)	=	7ffff004	1	R7	(a3)	=	000000b0
R8	(t0)	=	00000001		R9	(t1)	=	00000c00
R10	(t2)	=	0000c000		R11	(t3)	=	fffffff0
R12	(t4)	=	f0000000		R13	(t5)	=	00000fff
R14	(t6)	=	00001000	-	R15	(t7)	=	00000e00
R16	(s0)	=	00300000	1	R17	(s1)	=	00000c00
R18	(s2)	=	00040200	-	R19	(s3)	=	00011000
R20	(s4)	=	00030200	1	R21	(s5)	=	10000000
R22	(s6)	=	00055000	-	R23	(s7)	=	f0000000
R24	(t8)	=	00000005	-	R25	(t9)	=	000b0000
R26	(k0)	=	00000000	1	R27	(k1)	=	00000000
R28	(gp)	=	10008000		R29	(sp)	=	7fffeffc
R30	(s8)	=	1000000f		R31	(ra)	=	00400018

The PC is pointing at location 0x00400000.

Matrio	CS2100 – 2008/09 Sem 1
(1a)	What are the five MIPS instructions starting from location 0x00400000? (5 marks)
ANSV	VER:
41	
(1b)	At the end of the execution of the fifth instruction starting from location 0×00400000 what are the contents of memory and the registers that have changed?
	(5 marks)
ANSV	VER:
ļ	
 	
!	

QUESTION 2 (10 marks) The bgt (branch if greater) and bge (branch if greater or equal) assembly instructions are pseudo-instructions. Show:						
(2a)	How is bge \$t0, \$t1, L1 implemented using real MIPS instructions (instructions with actual opcodes). (5 marks)					
ANSV	WER:					
(2b)	How is bgt \$t0, \$t1, L1 implemented using real MIPS instructions (instructions with actual opcodes). (5 marks)					

CS2100 - 2008/09 Sem 1

QUESTION 3 (20 marks)

The C snippet below counts the number of blanks (ASCII value 32) and white tabs (ASCII value 9) in a C string. A C string is an array of bytes that is terminated by a last element that is zero. All other elements in this byte array are non-zero.

Assume that count is in \$t0 and index is in \$t1 while the address of str is in \$s0. Convert the above C code snippet into

Convert the above C code snippet into if-goto pseudo-code. (10 marks) (3a)ANSWER:

(3b)	MIPS assembly code by assuming that the starting address of the array s and the final count is to be left in $$v0$.	trisin\$s0 (10 marks)
ANSV	WER:	
<u> </u>		
}		
<u> </u>		
(
}		

CS2100 - 2008/09 Sem 1

Matric No:	CS2100 – 2008/09 Sem 1
QUESTION 4 (15 marks) Consider the process of adding two IEEE Standard 754 sin $0 \times 3 d51265f$ and $B = 0 \times 3 c4ef353$ in hexadecimal.	gle precision numbers $A =$
(4a) What is the amount of denormalization shifts needed to al	ign the binary points? (3 marks)
ANSWER:	
(4b) Perform the shift of the smaller number using the 3 bits bits). Leave your answer in base 16.	(i.e. guard, round and sticky (3 marks)
ANSWER:	

(4c)	Perform the addition of the mantissa parts of the two numbers (one of which has been denormalized by the shifting in Part (b)) using the 3 bits of guard, round and sticky bits, leaving the answer in base 16. (3 marks)
ANSV	WER:
}	
}	
,	
(4d)	What is the direction (left or right) and amount of the shifts needed to normalize the result? (3 marks)
ANSV	WER:
(4e)	What is the final result of the addition in base 16 after round-to-nearest is performed? (3 marks)
ANSY	WER:

CS2100 - 2008/09 Sem 1

QUESTION 5 (8 marks)

Consider the single cycle datapath with the values of the registers shown below.

Values in the register file (all in base 16)

- 41465 441 6116	<u> </u>		ie (aii iii case		<i>/</i>			
R0	(r0)	=	00000000	-	R1	(at)	=	00002000
R2	(v0)	=	00000001		R3	(v1)	=	0000000a
R4	(a0)	=	00000005	-	R5	(a1)	=	7ffff000
R6	(a2)	=	7ffff004		R7	(a3)	=	000000b0
R8	(t0)	=	00000001	1	R9	(t1)	=	00000c00
R10	(t2)	=	0000c000		R11	(t3)	=	fffffff0
R12	(t4)	=	f0000000		R13	(t5)	=	00000fff
R14	(t6)	=	00001000		R15	(t7)	=	00000e00
R16	(s0)	=	00300000		R17	(s1)	=	00000c00
R18	(s2)	=	00040200		R19	(s3)	=	00011000
R20	(s4)	=	00030200		R21	(s5)	=	10000000
R22	(s6)	=	00055000		R23	(s7)	=	f0000000
R24	(t8)	=	00000005		R25	(t9)	=	0000d000
R26	(k0)	=	00000000	1	R27	(k1)	=	00000000
R28	(gp)	=	10008000	1	R29	(gp)	=	7fffeffc
R30	(s8)	=	1000000f	1	R31	(ra)	=	00400018

The current PC is 200 and the instruction being executed is:

lw \$t2, -4(\$sp)

Fill in the values of the fields (in hexadecimal) in the table below:

ANSWER:

Field	Value (in hexadecimal)
RegDst	
MemRead	
Branch	
MemtoReg	
MemWrite	
ALUSrc	
RegWrite	
Instruction[31-26]	
Instruction[25-21]	
Instruction[20-16]	
Instruction[15-11]	
0	
2	
•	
4	
6	

QUESTION 6 (12 marks)

A file consists of 8 file blocks, each 1024 bytes. The file contains a running sequence of 4-byte binary words starting from 0 in big endian form, i.e.

File byte position	Byte content		
7.0	0		
	0		
2-2	0 45 6.35		
3	0		
4	0		
5	0		
6	0		
7	1		
8	0		
9	0		
10	0		
11 % 5	2		
	•		
	•		

Using the notation "blk[i]" to stand for the i-th block, "blk[i].byte[j]" to mean "byte j of block i" and "blk[i].byte[j].bit[k]" to stand for "bit k of byte j of block i", show how this file would be stored on:

1	(6a)) A RAID	Level 0 s	system	consisting	of 4	disks
١	Va.	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Devel 0 3	SYSTORI	Compraint	OI T	arono.

(4 marks)

ANS [®]	WER:
------------------	------

Disk 0:	Disk 1:
Disk 2:	Disk 3:

(6b) A RAID Level 1 system consisting of 2 disks.

(4 marks)

	 	 	-	
Disk 0:	 	 		
Dials 1.		 _		
Disk 1:	 	 	-	
Disk 1:	 	 		
Disk 1:		 		
Disk 1:	 			
Disk 1:				-
Disk 1:				

(6c)	A RAID Level	0+1	system	consisting	of 4 disks.
------	--------------	-----	--------	------------	-------------

(4 marks)

ANSWER:

Disk 0:	D	Disk 1:	
			Ì
Disk 2:	г	Disk 3:	
			Ì

QUESTION 7 (15 marks)

A machine with byte addresses and a word size of 32 bits and address width of 32 bits has a direct-mapped cache with 4 blocks each consisting of 2 words.

(7a) Given the MIPS program below, and assuming that array A starts at memory hexadecimal location 0×1000 while array B starts at memory hexadecimal location 0×4010 . Fill in the first 10 address requests seen at the data cache and indicate whether the reference is a hit (H) or a miss (M). Assume that the cache is initially empty.

```
la
           $s0, A
           $s1, B
      la
      li
           $t0, 1
loop:
           $t1, $t0, 1000
      slt
           $t1, $zero, end loop
      beq
      sll
           $t2, $t0, 2
      add
           $t3, $s0, $t2
           $a0, 0($t3)
      lw
      add
           $t4, $s1, $t2
           $a1, 0($t4)
      lw
      add
           $v0, $a0, $a1
           $v0, -4($t3)
      SW
      addi $t0, $t0, 1
      j
           loop
end loop:
```

ANSWER:

Memory address seen at D\$	Hit (H) or Miss (M)?
(in hexadecimal)	

(7b) Given the above program, fill in the final contents of the cache. Use the notation M[i] to denote the word at memory address i. (i may be in hexadecimal.) (6 marks)

ANSWER:

Index	Tag	Block 0	Block 1
0			
1			
2			
3			

What is the total number of data cache memory references, hits and misses after the (7c) execution of the above MIPS program? (4 marks) ANSWER:

CS2100 - 2008/09 Sem 1

(8c) Given the following content of a full associative 4-entry TLB:

Valid Bit	Virtual Page Number	Physical Page Number	Dirty	Ref	Access
1	0x20531	0x102c8	1	20	rw
1	0x814c5	0x84c5	0	1	rwx
0	0x40A6A	0x40AA	0	8	rw
1	0x40A62	0x5A62	1	9	rw

	What is the physical address for the virtual address 0x40A62E90?	(3 marks)
ANSV	VER:	
(8d)	Given that the bit length of the physical and virtual addresses is the s reasons why virtual addressing is still desirable.	ame, give two (3 marks)
ANSV	T TO D	
	VER:	

== END OF PAPER ===