Digital Logic Circuits 'Common Combinational Circuits' ELEC2200 Summer 2009

David J. Broderick brodedj@auburn.edu http://www.auburn.edu/~brodedj

Office: Broun 360

Modular Design

- Common combinational circuits are often lumped together into components
- A collection of gates is described by a block with inputs and outputs
- The behavior of the block is defined to meet a common purpose
- Used to make common operations easier/faster to implement

We can use a combinational circuit to add binary values

Recall:

Carries-->

1	1	//	1		0		0	
		1		0		1		0
	4/	1		1		1		1
		1		0		0		1

<--Result

- Each column can be thought of as a group of circuits
- Look at inputs and outputs

- Each column shares these set of inputs
- Look at inputs and outputs

Carries>	1	1	1	0	0	
		1	0	1	0	
		1	1	1	1	
		1	0	0	1	<result< td=""></result<>

- Each column shares these set of inputs
- Look at inputs and outputs

Carries>	1	1	1	0	0	
		1	0	1	0	
		1	1	1	1	
		1	0	0	1	<result< td=""></result<>

- Each column shares these set of inputs
- Look at inputs and outputs

Carries>	1	1	1	0	0	
		1	0	1	0	
		1	1	1	1	
		1	0	0	1	<res<mark>ult</res<mark>

Half-Adder

• Ignoring carry-in:

c a + b

a	b	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- s=a(+)b
- c=a·b

Full-Adder

CO

• With carry-in:

СО	ci
	a
+	b
	S

а	b	ci	S	СО
0	0	0	0	0
0	0	17	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

S					
	a∖b ci	00	01	11	10
	0	0	1	0	1
	1	1	0	1	0

a∖b ci	00	01	11	10
0	0	0	1	0
1	0	1	1	1

- s=a(+)b
- c=a·b

Full-Adder

• $s=a \cdot \overline{b} \cdot \overline{c}_i + \overline{a} \cdot \overline{b} \cdot c_i + a \cdot b \cdot c_i + \overline{a} \cdot b \cdot \overline{c}_i$

$$s=a(+)b(+)c_{i}$$

• $c_0 = a \cdot c_1 + b \cdot c_1 + a \cdot b$

S

a∖b ci	00	01	11	10
0	0	1	0	1
1	1	0	1	0

CO

a∖b ci	00	01	11	10
0	0	0	1	0
1	0	1	1	1

Ripple-Carry Adder

A slow (but small) method of adding larger

values:

Ripple-Carry Adder

• Often redrawn as:

Fully Parallel Adders

- If all inputs are known (9 inputs) expressions can be written for all outputs (5 outputs)
- Creates a faster adder but does not scale well
 - 9 input K-map!
- Intermediate solutions exist
 - Carry look-ahead adders
 - Carry-save adders
 - etc...

Subtractors

Using 2's complement, subtraction looks like addition

- Selects between multiple inputs to pass through to output
- n control signals are used to select up to 2ⁿ inputs to pass to the single output
- A 2-to-1 MUX:

- If S=0, Z=A
- If S=1, Z=B
- 3 inputs, 1 output

Α	В	S	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

AB\S	0	1
00	0	0
01	0	1
11	1	1
10	1	0

$$Z=A\cdot\overline{S}+B\cdot S$$

- The multiplexer is a functionally complete set
- Need to show AND, OR, and NOT
- AND: A=0, Z=B·S

A	В	S	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- The multiplexer is a functionally complete set
- Need to show AND, OR, and NOT
- OR: B=1, Z=A+S

A	В	S	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- The multiplexer is a functionally complete set
- Need to show AND, OR, and NOT
- NOT: A=1, B=0, Z=\overline{S}

A	В	S	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Adder/Subtractor

Adder/Subtractor

Demultiplexers

- Opposite of a multiplexer
- Input passed to selected output, all other outputs are zero

Decoders/Encoders

- Decoders
 - N inputs produce M outputs (typically M>N)
 - BCD to 7-segment decoder is a good example
- Encoder
 - N inputs produce M outputs (typically N>M)
 - We could just as easily have taken the 7-segment values, (A-G) and encode to BCD or HEX
- Convertors
 - N inputs produce M outputs (typically N=M)
 - Binary to Gray-Code convertor is a good example

Comparators

- Equal-to comparators us XOR function
 - XOR produces 1 when inputs differ
 - Do bit-wise compare of N bit number
- Outputs of XORs then ORed together.
- If any bit differs, output =1

Comparators

- Greater than/Less than performed with 2's comp subtraction
- Examine sign (MSB) of result to determine result

Parity Circuits

Parity makes use of the XOR function

 XOR produces a 1 for an odd # of 1s

 Implements even parity

 An XNOR on the output can be used for odd parity

Parity Circuits

Check for correct parity by comparing P_{gen} with incoming parity bit P_{in}

One more XOR gate for comparison

