ECE 2300 Digital Logic Design

Homework 6

Choi Tim Antony Yung April 7, 2020 1 Using a magnitude comparator, generate a logic one "Round" signal (to rounda number up by one) if the base 12 input, $N = N_3, N_2, N_1, N_0$, is six or higher. Let N connect to the comparator's A input.

$$Round = N > 5 = (N_3 N_2 N_1 N_0)_2 > (0101)_2$$

A simple mechanism moves between positions $P = (0000)_2$ and $P = (1111)_2$. Using a magnitude comparator, generate an enable signal, MV_OK, that is one if the position, P, is 12 or lower or if it is three or higher.

P_3		Thi	eshol	d	Relationship						
1	1	1	$\frac{1}{0}$	1	P valid if greater than threshold P valid if less than threshold						

3.a Design a magnitude comparator to compare two 4-bit two's complement numbers, X and Y.

3.b Complete the following chartgiving the outputs for the corresponding inputs (the leftmost X and Y bits are the MSBs). Indicate whether the output is correct (i.e. "OK") and give the true relationship of thesignedinputs.

	()					Y (in) A unsigned					B unsigned				X > Y	X = Y	X < Y	OK (Signed Result)	
1	1	0	0	0	1	0	1	0	1	0	0	1	1	0	1	0	0	1	OK $(-4 < +5)$
1	0	1	0	1	0	0	1	1	0	1	0	1	0	0	1	1	0	0	OK $(-6 > -7)$
1	0	0	0	0	1	0	1	0	0	0	0	1	1	0	1	0	0	1	OK $(-8 < +5)$
1	1	0	1	1	1	0	1	1	1	0	1	1	1	0	1	0	1	0	OK (-3 = -3)
0	0	1	1	1	1	0	1	1	0	1	1	0	1	0	1	1	0	0	OK $(+3 > -5)$
1	1	0	1	1	1	0	0	1	1	0	1	1	1	0	0	1	0	0	OK $(-3 > -4)$
0	1	1	1	0	1	0	1	0	1	1	1	0	1	0	1	1	0	0	OK $(+7 > +5)$
0	0	1	1	0	1	0	0	0	1	0	0	1	1	0	1	0	0	1	OK $(+3 < +4)$

4 Using magnitude comparators, create a circuit to compare two 8-bit unsigned numbers, X and Y. Let X connect to the comparator A inputs.

5 Using two 2:1 muxes and a magnitude comparator, design a circuit to compare 4-bit inputs X and Y as unsigned numbers when S=0 or as two's complement numbers when S=1.

