# Notes on curved-sky quadratic estimation

Julien Carron

This document supplements the release of the Planck 2018 CMB lensing [1] pipeline. It collects the formulae relevant to curved-sky quadratic estimators in the spin-weight, position-space formalism, including in particular estimator cross-responses and Gaussian noise biases between arbitrary pairs of quadratic estimators. JC: Document to be included with the pipeline release after submission of the revised L08. in progress

## CONTENTS

- A. Gaussian covariance calculations
  B. Response and cross-responses calculations
  C. Derivation of optimal QE weights
- References 4

The purpose of this document is to collect the formulae relevant to CMB lensing and other quadratic estimators in the spin-weight, position-space formalism.

The gradient (g) and curl (c) modes of definite parity of a complex spin-r field  $_{r}\alpha(\hat{n})$  (defined by the condition that it transforms under a rotation of angle  $\psi$  of the local axes through  $_{r}\alpha(\hat{n}) \to e^{ir\psi} _{r}\alpha(\hat{n})$  ) are defined through

$$g_{LM}^r = -\frac{1}{2} \left( \frac{1}{|r|} \alpha_{LM} + (-1)^r - \frac{1}{|r|} \alpha_{LM} \right) \tag{0.1}$$

$$c_{LM}^{r} = -\frac{1}{2i} \left( {}_{|r|} \alpha_{LM} - (-1)^{r} {}_{-|r|} \alpha_{LM} \right)$$
 (0.2)

where  $\pm_r \alpha_{LM} \equiv \int d^2 n \pm_r \alpha(\hat{n}) \pm_r Y_{LM}^*(\hat{n})$  (we adopt the convention, standard in CMB lensing, to write quadratic estimator multipoles with L, M and use  $\ell, m$  for the CMB fields from which they are built). The inverse relation is

$$_{\pm|r|}\alpha_{LM} = -(\pm)^r \left(g_{LM}^r \pm ic_{LM}^r\right).$$
 (0.3)

Prior to projection onto gradient and curl modes, and prior to proper normalization, quadratic estimators can be written in the form

$$r\hat{\alpha}(\hat{n}) \equiv \left(\sum_{\ell m} w_{\ell}^{s_{o}s_{i}} {}_{s_{i}} \bar{X}_{\ell m} {}_{s_{o}} Y_{\ell m}(\hat{n})\right)$$

$$\cdot \left(\sum_{\ell m} w_{\ell}^{t_{o}t_{i}} {}_{t_{i}} \bar{X}_{\ell m} {}_{t_{o}} Y_{\ell m}(\hat{n})\right)$$

$$(0.4)$$

where  $s_i, t_i$  are input spins,  $s_o, t_o$  outputs spins, and  $w_\ell^{s_os_i}, w_\ell^{t_it_o}$  associated weights. Obviously,  $s_o + t_o = r$ , and by consistency with  $_{-r}\alpha(\hat{n}) = _{r}\alpha^*(\hat{n})$  the weights have symmetry  $w_\ell^{-s_o-s_i} = (-1)^{s_o+s_i}w_\ell^{*s_os_i}$ .

The maps  $_s\bar{X}_{lm}$  are the inverse variance filtered CMB maps; the filtered scalar temperature

$${}_0\bar{X}_{\ell m} = \bar{T}_{\ell m} \eqno(0.5)$$
 and filtered spin  $\pm 2$  Stokes polarization  ${}_{\pm 2}P = \bar{Q} \pm i\bar{U},$ 

$$_{\pm 2}\bar{X}_{\ell m} =_{\pm 2} \bar{P}_{\ell m} = -\left(\bar{E}_{\ell m} \pm i\bar{B}_{\ell m}\right),$$
 (0.6)

(for the purposes of the analytical calculations in this document) are isotropically related to the (beam-deconvolved) data maps  ${}_sX^{\rm dat}$  through a matrix F,

$$_{s}\bar{X}_{\ell m} \equiv \sum_{s_{2}=0,2,-2} F_{\ell}^{ss_{2}} {}_{s_{2}}X_{\ell m}$$
 (0.7)

(isotropic approximation of  $\bar{X}=\mathcal{B}^{\dagger}\mathrm{Cov}^{-1}X^{\mathrm{dat}}$  in the notation of Ref. [1]

$$\xi_{+}^{st}(\beta) \equiv \left\langle e^{-is\alpha} {}_{s}X(\hat{n}_{1}) \left( {}_{t}X(\hat{n}_{2})e^{-it\gamma} \right)^{*} \right\rangle 
\xi_{-}^{st}(\beta) \equiv \left\langle \left( e^{-is\alpha} {}_{s}X(\hat{n}_{1}) \right)^{*} \left( {}_{t}X(\hat{n}_{2})e^{-it\gamma} \right)^{*} \right\rangle$$
(0.8)

 $\gamma$  is the angle at  $\hat{n}_1$  that aligns the local x-axis to the geodesic connecting  $\hat{n}_1$  and  $\hat{n}_2$  (with the axis pointing towards  $\hat{n}_2$ ),  $\beta$  the angle between  $\hat{n}_1$  and  $\hat{n}_2$ , and  $\alpha$  is defined just as  $\gamma$  but at  $\hat{n}_2$ .[2, 3] JC: Mixups with n1 and n2 defs...fix this!

$$\xi_{+}^{st}(\beta) = (+1)^{s} \sum_{L} \left(\frac{2L+1}{4\pi}\right) \left[ C_{L}^{g^{s}g^{t}} + C_{L}^{c^{s}c^{t}} - i\left(C_{L}^{g^{s}c^{t}} + C_{L}^{c^{s}g^{t}}\right) \right] d_{st}^{L}(\beta)$$

$$\xi_{-}^{st}(\beta) = (-1)^{s} \sum_{L} \left(\frac{2L+1}{4\pi}\right) \left[ C_{L}^{g^{s}g^{t}} - C_{L}^{c^{s}c^{t}} - i\left(C_{L}^{g^{s}c^{t}} - C_{L}^{c^{s}g^{t}}\right) \right] d_{-st}^{L}(\beta)$$

$$(0.9)$$

The formulae exposed in this document can be derived

through simple application of this formal relation,

$$\begin{split} & \sum_{m_1,m_2} \int d^2 n_1 \, {}_{s_1} Y_{\ell_1 m_1}(\hat{n}_1) \, {}_{s_2} Y_{\ell_2 m_2}(\hat{n}_1) \, {}_{r_1} Y_{LM}(\hat{n}_1) \int d^2 n_2 \, {}_{t_1} Y_{\ell_1 m_1}(\hat{n}_2) \, {}_{t_2} Y_{\ell_2 m_2}(\hat{n}_2) \, {}_{r_2} Y_{L'M'}(\hat{n}_2) \\ & = \delta_{LL'} \delta_{MM'} \frac{2\ell_1 + 1}{4\pi} \frac{2\ell_2 + 1}{4\pi} 2\pi \int_{-1}^1 d\beta \, d^{\ell_1}_{s_1,t_1}(\beta) d^{\ell_2}_{s_2 t_2}(\beta) d^L_{r_1 r_2}(\beta) \quad \text{(whenever } s_1 + s_2 + r_1 = 0 = t_1 + t_2 + r_2). \end{split}$$

where  $d_{mm'}^{\ell}$  are Wigner small d-matrices.



FIG. 1. The geometry and angles in Eq. (0.8), with the local axes in green. It holds  $\alpha(\hat{n}_2,\hat{n}_1)=\pi-\gamma(\hat{n}_1,\hat{n}_2)$  and  $\gamma(\hat{n}_2,\hat{n}_1)=\pi-\alpha(\hat{n}_1,\hat{n}_2)$ . Figure originally from Wayne Hu tutorials, http://background.uchicago.edu/~whu/tamm/webversion/node5.html.

#### A. Gaussian covariance calculations

Q.E. noise covariance can be evaluated with a series of one-dimensional integrals as was first demonstrated by Ref. []. For two generic estimators as defined in Eq. (0.4), we now obtain their gradient (g) and curl (c) covariances with four integrals as follows. JC: describe here the matrix FFor an isotropy estimator  $_{r}\hat{\alpha}$  let  $s=(s_{\rm i},s_{\rm o},w^{s_{\rm i}s_{\rm o}})$  collectively describes the in and out spins and weight function of the left leg, and similarly with t for the right leg (with  $s_{\rm o}+t_{\rm o}=r$ ). In the same way, let u and v describes another estimator  $_{r'}\hat{\alpha}$  (with  $u_{\rm o}+v_{\rm o}=r'$ ). Then, their Gaussian correlation functions are

$$\xi_{\pm}^{rr'}(\beta) = \xi^{\pm s, u}(\beta) \xi^{\pm t, v}(\beta) + \xi^{\pm s, v}(\beta) \xi^{\pm t, u}(\beta), \quad (0.11)$$

where  $\mathcal{E}^{s,t}$  is

$$\xi^{s,t}(\mu) \equiv \sum_{\ell} \left( \frac{2\ell+1}{4\pi} \right) w_{\ell}^{s_{o}s_{i}} w_{\ell}^{*t_{o}t_{i}} \bar{C}_{\ell}^{s_{i}t_{i}} d_{s_{o}t_{o}}^{\ell}(\mu)$$
 (0.12)

and  $\bar{C}_{\ell}^{s_i t_i} \equiv \langle_{s_i} \bar{X}_{\ell m \ t_i} \bar{X}_{\ell m}^* \rangle$ . Projecting onto gradient and curl modes results in

$$\left\langle \hat{g}_{LM}^{r} \hat{g}_{L'M'}^{*,r'} \right\rangle \Big|_{G.} = \delta_{LL'} \delta_{MM'} \frac{1}{2} \Re \left[ C_{L}^{rr'} + (-1)^{r} C_{L}^{-rr'} \right] 
\left\langle \hat{c}_{LM}^{r} \hat{c}_{L'M'}^{*,r'} \right\rangle \Big|_{G.} = \delta_{LL'} \delta_{MM'} \frac{1}{2} \Re \left[ C_{L}^{rr'} - (-1)^{r} C_{L}^{-rr'} \right] 
\left\langle \hat{g}_{LM}^{r} \hat{c}_{L'M'}^{*,r'} \right\rangle \Big|_{G.} = \delta_{LL'} \delta_{MM'} \frac{1}{2} \Im \left[ -C_{L}^{rr'} - (-1)^{r} C_{L}^{-rr'} \right] 
\left\langle \hat{c}_{LM}^{r} \hat{g}_{L'M'}^{*,r'} \right\rangle \Big|_{G.} = \delta_{LL'} \delta_{MM'} \frac{1}{2} \Im \left[ C_{L}^{rr'} - (-1)^{r} C_{L}^{-rr'} \right]$$
(0.13)

where

$$C_L^{\pm rr'} \equiv 2\pi \int_{-1}^{1} d\mu \, d_{\pm rr'}^L(\mu) \xi_{\pm}^{rr'}(\beta)$$
 (0.14)

( $\Re$  and  $\Im$  stands for real and imaginary parts respectively). Ref. [1] calculates the covariance matrix based on these equations using the empirical, realisation dependent power spectra  $\bar{C}^{s_i,t_i}_\ell$ . A gradient-curl mode cross-covariance may be sourced by gradient-curl couplings in the inverse-variance filtered CMB fields (i.e., non-zero  $C^{\bar{T}\bar{B}}_\ell$  or  $C^{\bar{E}\bar{B}}_\ell$ ). In most relevant situations there is no such couplings and the gradient to curl and curl to gradient covariance vanish.

## B. Response and cross-responses calculations

We now turn to the calculation of the response of the estimator to a source of anisotropy. Anisotropy can sometimes be parametrized at the level of the CMB maps, (for example for lensing), with

$${}_s\delta X(\hat{n}) = \sum_{a=\pm r} {}_a\alpha(\hat{n}) \left( \sum_{\ell m} \left. R_\ell^{a,s} \right. {}_s X_{\ell m} \right. {}_{s-a} Y_{\ell m}(\hat{n}) \right) \tag{0.15}$$

for response kernel functions  $R_{\ell}^{r,s}$ . More generally, let the covariance of the CMB data respond as follows to a spin-r anisotropy source  $\alpha$ :

$$\delta \langle_{s} X(\hat{n}_{1}) _{t} X^{*}(\hat{n}_{2}) \rangle = \sum_{\ell m, a = \pm r} {}_{a} \alpha(\hat{n}_{1}) W_{\ell}^{a, st} {}_{s-a} Y_{\ell m}(\hat{n}_{1}) {}_{t} Y_{\ell m}^{*}(\hat{n}_{2}) + W_{\ell}^{*a, ts} {}_{s} Y_{\ell m}(\hat{n}_{1}) {}_{t-a} Y_{\ell m}^{*}(\hat{n}_{2}) {}_{a} \alpha^{*}(\hat{n}_{2})$$
(0.16)

for some weights functions  $W_{\ell}^{a,st}$ . For map-level descriptions in Eq. (0.15) then holds

$$W_{\ell}^{a,st} = R^{a,s} C_{\ell}^{st}. \tag{0.17}$$

However, Eq. (0.16) is more general. Examples include:

1. Lensing[4]: The source of anisotropy is the spin-1 field  ${}_{1}\alpha(\hat{n})$ , with linear response (see Ref. [5])  $\delta_{s}X(\hat{n}) = -\frac{1}{2}\alpha_{1}(\hat{n})\bar{\eth}_{s}X(\hat{n}) - \frac{1}{2}\alpha_{-1}(\hat{n})\bar{\eth}_{s}X(\hat{n})$  where  $\eth$  and  $\bar{\eth}$  are the spin raising and spin lowering operator respectively. Hence

$$R_{\ell}^{-1,s} = -\frac{1}{2}\sqrt{(l-s)(l+s+1)}$$

$$R_{\ell}^{1,s} = +\frac{1}{2}\sqrt{(l+s)(l-s+1)}$$
(0.18)

2. CMB modulation: The source is a scalar, with response  $\delta_s X(\hat{n}) = {}_0 \alpha(\hat{n})_s X(\hat{n})$ , hence

$$R_{\ell}^{0,s} = 1 \tag{0.19}$$

3. Point sources in temperature  $(S^2$ , see Ref. [6]): here anisotropy is sought of the form  $\delta \langle T(\hat{n}) T(\hat{n}') \rangle = \delta_{\hat{n}\hat{n}'} S^2(\hat{n})$ . Hence,

$$W_{\ell}^{r,st} = \frac{1}{4} \delta_{r0} \delta_{s0} \delta_{t0} \tag{0.20}$$

4. Polarization rotation (for example from polarization angle miscalibration). There the observed polarization is rotated according to  ${}_{\pm 2}X$  is  $e^{\mp 2i\,_0\alpha}{}_{\pm 2}X$ . Hence,

$$R_{\ell}^{0,\pm 2} = \mp 2i \tag{0.21}$$

5. Noise variance map anisotropies (basically the same as point sources but acting on beam-convolved maps)

$$W_{\ell}^{r,st} = \frac{1}{4} \delta_{r0} \delta_{s0} \delta_{t0} \frac{1}{b_{\ell}^{2}}$$
 (0.22)

Let as before s,t denote collectively the QE spins and weight functions for an estimator  $_{r}\hat{\alpha}(\hat{n})$  of spin  $r=s_{o}+t_{o}$ , and let r' be the spin of anisotropy source  $_{r'}\beta(\hat{n})$  with covariance response kernel  $W^{r'}$  as above. Let  $\mathcal{R}_{L}^{g_{r}g_{r'}}\delta_{LL'}\delta_{MM'}$  be defined as the response of the gradient mode of  $\alpha_{LM}$  to the gradient mode of  $\beta_{L'M'}$ , and similarly for the curl. It holds:

$$\begin{split} \mathcal{R}_{L}^{g_{r}g_{r'}} &= \Re \left[ R_{L}^{st,r'} + (-1)^{r'} R_{L}^{st,-r'} \right] \\ \mathcal{R}_{L}^{c_{r}c_{r'}} &= \Re \left[ R_{L}^{st,r'} - (-1)^{r'} R_{L}^{st,-r'} \right] \\ \mathcal{R}_{L}^{g_{r}c_{r'}} &= \Im \left[ - R_{L}^{st,r'} + (-1)^{r'} R_{L}^{st,-r'} \right] \\ \mathcal{R}_{L}^{c_{r}g_{r'}} &= \Im \left[ R_{L}^{st,r'} + (-1)^{r'} R_{L}^{st,-r'} \right] \end{split}$$
(0.23)

where

$$R_L^{st,r'} = 2\pi \int_{-1}^1 d\mu \, d_{rr'}^L(\mu) \sum_{\tilde{s}_i,\tilde{t}_i=0,2,-2} \left[ \xi^{s_o s_i \tilde{s}_i}(\mu) \psi^{t_o t_i \tilde{t}_i \tilde{s}_i,r'}(\mu) + \xi^{t_o t_i \tilde{t}_i}(\mu) \psi^{s_o s_i \tilde{s}_i \tilde{t}_i,r'}(\mu) \right] \tag{0.24}$$

and

$$\xi^{s_{o}s_{i}\tilde{s}_{i}}(\mu) \equiv \sum_{\ell} \left(\frac{2\ell+1}{4\pi}\right) w_{\ell}^{s_{o}s_{i}} F_{\ell}^{s_{i}\tilde{s}_{i}} d_{s_{o},\tilde{s}_{i}}^{\ell}(\mu)$$

$$\psi^{s_{o}s_{i}\tilde{s}_{i}\tilde{t}_{i},r'}(\mu) \equiv \sum_{\ell} \left(\frac{2\ell+1}{4\pi}\right) w^{s_{o}s_{i}} F_{\ell}^{s_{i}\tilde{s}_{i}} W_{\ell}^{*-r',-\tilde{t}_{i}\tilde{s}_{i}} d_{s_{o},-\tilde{t}_{i}+r'}^{\ell}(\mu)$$
(0.25)

Again, in most relevant cases, the gradient to curl and curl to gradient responses do vanish. If there is a unique source of anisotropy, properly normalized gradient and curl estimators are then given by  $\hat{g}_{LM}^r/\mathcal{R}_L^{g_rg_r}$  and  $\hat{c}_{LM}^r/\mathcal{R}_L^{c_rc_r}$ .

# C. Derivation of optimal QE weights

Optimal (in the sense of minimal Gaussian variance) QE weights are easily gained from the representation in Eq. 0.16 of the anisotropy. Let the CMB likelihood gradients be

$$\pm r \hat{\alpha}(\hat{n}) = \left. \frac{\delta}{\delta_{\pm r} \alpha(\hat{n})} - \frac{1}{2} {}_{s_1} X \operatorname{Cov}_{s_1 s_2}^{-1} {}_{s_2} X \right|_{\alpha = 0}$$
(0.26)

where  $\operatorname{Cov}_{s_1s_2}(\hat{n}, \hat{n}') \equiv \langle s_1 X(\hat{n}) s_2 X(\hat{n}') \rangle$ , and where  $r\alpha(\hat{n})$  and  $-r\alpha(\hat{n})$  are treated as independent variables. Using Eq. (0.16) and comparing to Eq. (0.4), we find

$$w_{\ell}^{st} = \delta_{st} \text{ (1st leg)} \quad w_{\ell}^{-s+r,t} = 2W_{\ell}^{-r,-st} \text{ (2nd leg)}$$
(0.27)

JC: why 2 again? JC: FIXME: The right expression is

$$_{r}\hat{g}(\hat{n}) = \sum_{s} _{-s}\bar{X}(\hat{n}) \cdot \left(2W_{\ell}^{-r,st} _{t}\bar{X}_{\ell m} _{s+r}Y_{\ell m}(\hat{n})\right) (0.28)$$

where  $\bar{X}$  has the (0, 2, -2) elements (note the additional factor of 2! in pol w.r.t. to naive spin defs.)

$$\begin{pmatrix}
\bar{T} \\
-\frac{1}{2}(\bar{E}+i\bar{B}) \\
-\frac{1}{2}(\bar{E}-i\bar{B})
\end{pmatrix}$$
(0.29)

Factor of 2 in front of W comes from 2  $\delta/\delta_{-r}\alpha(\hat{n})$  to get d/dre + d/dim (?).

- N. Aghanim et al. (Planck), "Planck 2018 results. VIII. Gravitational lensing," (2018), arXiv:1807.06210 [astro-ph.CO].
- [2] Gayoung Chon, Anthony Challinor, Simon Prunet, Eric Hivon, and Istvan Szapudi, "Fast estimation of polarization power spectra using correlation functions," Mon. Not. Roy. Astron. Soc. 350, 914 (2004), arXiv:astro-ph/0303414 [astro-ph].
- [3] Anthony Challinor and Antony Lewis, "Lensed CMB power spectra from all-sky correlation functions," Phys. Rev. D71, 103010 (2005), arXiv:astro-ph/0502425 [astro-ph].
- [4] Takemi Okamoto and Wayne Hu, "CMB lensing reconstruction on the full sky," Phys. Rev. D67, 083002 (2003), arXiv:astro-ph/0301031 [astro-ph].
- [5] Anthony Challinor and Gayoung Chon, "Geometry of weak lensing of CMB polarization," Phys. Rev. D66, 127301 (2002), arXiv:astro-ph/0301064 [astro-ph].
- [6] Stephen J. Osborne, Duncan Hanson, and Olivier Doré, "Extragalactic Foreground Contamination in Temperature-based CMB Lens Reconstruction," JCAP 1403, 024 (2014), arXiv:1310.7547 [astro-ph.CO].



FIG. 2. Lensing gradient and curl reconstruction noise levels for a  $\it planck$  -like experiment.