Bài 8. Thiết kế tổng thể và Thiết kế kiểm soát

Nguyễn Hoài Anh

Khoa công nghệ thông tin Học viện kỹ thuật quân sự

nguyenhoaianh@yahoo.com

NỘI DUNG

- Tổng quan giai đoạn thiết kế
 - Tài liệu đầu vào và nhiệm vụ
 - Các phần thiết kế
- Thiết kế tổng thể
 - Phân định công việc thủ công máy tính
 - Hoàn chỉnh DFD hệ thống
- Thiết kế kiểm soát
 - Thiết kế bảo vệ hệ thống
 - Thiết kế bảo mật dữ liệu

- Tài liệu đầu vào
 - Tài liệu phân tích hệ thống
 BFD, DFD, P-Spec, RM, D-Spec.
 - Từ điển dữ liệu
 - Mô tả yêu cầu sử dụng dữ liệu
 loại, số lượng, vị trí, thời gian, cách dùng
 - Mong đợi của người dùng
 về sử dụng, tích hợp dữ liệu
 - Mô tả công nghệ và thiết bị sử dụng
 lưu trữ và quản lý dữ liệu, phương án cài đặt

- Nhiệm vụ
 - Chuyển mô tả logic thành mô tả vật lý biện pháp, phương tiện, cài đặt.
 - Thiết kế logic
 dữ liệu, xử lý, thông tin, ràng buộc
 - Thiết kế vật lý
 cách đưa dữ liệu, xử lý, thông tin, ràng buộc

- Các bước tiến hành
 - Thiết kế tổng thể
 - Ranh giới máy tính thủ công
 - Hệ con máy tính
 - Thiết kế kiểm soát
 - Bảo mật thông tin (quyền truy cập)
 - Bảo vệ hệ thống (hỏng hóc, thất thoát tài sản...)
 - Thiết kế cơ sở dữ liệu
 - Biến đổi mô hình lý tưởng thành mô hình thực tế
 - Chi tiết các bảng dữ liệu phục vụ kiểm soát

- Các bước tiến hành
 - Thiết kế chương trình
 - Thiết kế kiến trúc
 - Thiết kế xử lý
 - Thiết kế giao diện
 - Thiết kế hệ thống đơn chọn
 - Thiết kế màn hình giao diện
 - Thiết kế tài liệu in

- Các phần thiết kế
 - Thiết kế logic
 - Mẫu (form), báo cáo (report): nhập/xuất dữ liệu
 - Giao diện: môi trường giao tiếp hệ thống người dùng
 - CSDL logic: cấu trúc thông dụng cài đặt trên các hệ
 QTCSDL khác nhau
 - Cơ chế kiểm soát dữ liệu, chương trình
 - Thiết kế vật lý
 - Tệp CSDL trên máy tính
 - Modul chương trình
 - Thiết kế CSDL và chương trình phân phối trên mạng

THIẾT KẾ TỔNG THỂ

Mục đích

- Kiến trúc tổng thể của hệ thống, trong đó
 - Phần việc xử lý thủ công, các thủ tục xử lý thủ công
 - Phần việc máy tính, tiến trình do máy tính thực hiện

Cách thực hiện

- Phân định công việc thủ công, máy tính
 - Sử dụng DFD tách công việc thủ công máy tính
 - Kết quả: đường ranh giới thủ công máy tính
- Hoàn chỉnh DFD hệ thống

THIẾT KẾ TỔNG THỂ

- Phân định công việc thủ công máy tính
 - Cách thực hiện
 - Vạch đường ranh giới (nét đứt) thủ công máy tính
 - Đối với tiến trình:
 - Người xử lý: chuyển sang thủ công
 - Máy xử lý: chuyển sang máy tính
 - Cả máy và người cùng tham gia: phân rã thành các tiến trình nhỏ hơn (một mức).
 - Đối với kho dữ liệu:
 - Chuyển sang máy tính: có mặt trong mô hình dữ liệu
 - Chuyển sang thủ công: không có mặt trong MH dữ liệu
 - Các tệp thủ công (sổ sách, bảng biểu...)
 - Hồ sơ, chứng từ văn phòng.

THIẾT KẾ TỔNG THỂ

- Hoàn chỉnh DFD hệ thống
 - Mục đích
 - Mô tả tiến trình hệ thống thực hiện
 - Phương thức xử lý (theo lô, trực tuyến, thời gian thực...)
 - Đối tượng thực hiện, phương tiện, công cụ sử dụng
 - Nội dung xử lý (thuật toán, công thức)
 - Khi nào thực hiện
 - Kho dữ liệu lưu trữ bởi máy tính
 - Sẽ xuất hiện trong mô hình dữ liệu của hệ thống
 - Thực hiện:
 - Diễn tả ý tưởng thiết kế bằng DFD hệ thống

- Mục đích
 - Tính chính xác (accuracy)
 - Hệ thống làm việc đúng đắn
 - Dữ liệu xác thực
 - Tính an toàn (safety)
 - Hệ thống không bị xâm hại khi có lỗi kỹ thuật
 - Tính bảo mật (security)
 - Khả năng ngăn ngừa xâm hại từ phía người dùng
 - Tính riêng tư (privacy)
 - Quyền riêng tư của các loại người dùng khác nhau

- Các khía cạnh cần kiểm soát
 - Kiểm tra thông tin nhập/xuất
 - Tình huống gián đoạn chương trình
 - Tình huống xâm hại từ con người

- Kiểm tra thông tin nhập/xuất
 - Mục đích
 - Đảm bảo tính xác thực của thông tin
 - Yêu cầu
 - Kiểm trả mọi thông tin nhập/xuất
 - Nơi tiến hành kiểm tra
 - Nơi thu thập thông tin vào
 - Trung tâm máy tính
 - Nơi nhận dữ liệu xuất
 - Nội dung kiểm tra
 - Phát hiện lỗi và sửa lỗi

- Kiểm tra thông tin nhập/xuất
 - Hình thức kiểm tra
 - Bằng tay/bằng máy
 - Đầy đủ/không đầy đủ
 - Trực tiếp/gián tiếp
 - Thứ tự kiểm tra
 - Trực tiếp trước
 - Gián tiếp sau

- Khả năng gián đoạn chương trình
 - Nguyên nhân
 - Hỏng phần cứng
 - Giá mang tin có sự cố
 - Hỏng hệ điều hành
 - Nhầm lẫn trong thao tác
 - Dữ liệu sai
 - Lập trình sai

- Khả năng gián đoạn chương trình
 - Hậu quả
 - Mất thời gian chạy lại chương trình
 - Mất, sai lạc dữ liệu
 - Cách thức đảm bảo an toàn thông tin
 - Khóa từng phần dữ liệu
 - Tạo các file sao lưu

- Khả năng gián đoạn chương trình
 - Thủ tục phục hồi chương trình
 - Đưa CSDL trở về trạng thái đúng đắn ngay trước khi bị hỏng vì gián đoạn chương trình.
 - Khi nào dùng thủ tục phục hồi
 - Giá mang của tệp có sự cố
 - Hỏng môi trường máy tính
 - Hỏng hệ điều hành
 - Thực hiện sai quy định của hệ điều hành
 - Lỗi lập trình
 - Nhầm lẫn trong thao tác

- Khả năng gián đoạn chương trình
 - Nguyên tắc hoạt động của thủ tục phục hồi
 - Sao lưu định kỳ
 - Khi có sự cố gián đoạn
 - Đọc các giá trị cuối cùng của các biến mốc
 - định vị lại đầu đọc các file đang dùng
 - Xử lý một số lô trên các file vận động
 - Khởi động lại chương trình từ chỗ bị ngắt.

- Khả năng gián đoạn chương trình
 - Vấn đề cân nhắc khi sử dụng thủ tục phục hồi
 - Thời gian bị mất do phục hồi
 - Chương trình không bắt đầu lại được khi đã gián đoạn
 - Xử lý theo mẻ có thể bắt đầu lại
 - Xử lý trực tuyến không thể bắt đầu lại
 - Tính phức tạp và các ràng buộc về khai thác
 - Cần thêm thiết bị ngoại vi.

- Xâm hại từ con người
 - Các hình thức xâm hại
 - Vô tình: nhầm lẫn, tò mò không ác ý
 - Cố ý: tấn công hệ thống nhằm
 - Lấy cắp dữ liệu
 - Phá hoại dữ liệu
 - Gây các quyết định sai lạc
 - Gây thất thoát, lãng phí tài sản

- Xâm hại từ con người
 - Mục đích bảo vệ
 - Bảo vệ tính bí mật: thông tin không bị lộ
 - Bảo vệ tính toàn vẹn: ngăn chặn việc tạo và thay đối bất hợp pháp hoặc phá hoại dữ liệu
 - Bảo vệ tính khả dụng: người dùng hợp pháp không bị từ chối truy nhập.
 - Bảo đảm tính riêng tư: các tài nguyên không bị sử dụng bởi các cá nhân không có quyền hoặc theo các cách không hợp pháp.

- Xây dựng giải pháp kiểm soát hệ thống
 - Hai loại giải pháp
 - Liên quan đến phần cứng
 - Biện pháp vật lý: chống hư hỏng vật lý: bảo vệ ổ ghi dữ liệu, bảo vệ máy in...
 - Sử dụng thiết bị đi kèm bảo vệ phần cứng
 - Liên quan đến phần mềm và tổ chức dữ liệu
 - Tổ chức các hệ lưu trữ dự phòng
 - Tổ chức kiểm soát truy cập
 - Mã hóa thông tin trên đường truyền

- Xây dựng giải pháp kiểm soát hệ thống
 - Các giai đoạn thiết kế kiểm soát
 - Xác định các điểm hở của hệ thống
 - Xác định các kiểu đe dọa có thể xảy ra
 - Xác định các trạng thái phát sinh đe dọa
 - Lựa chọn thiết kế kiểm soát

- Xây dựng giải pháp kiểm soát hệ thống
 - Xác định các điểm hở yếu của hệ thống
 - Dữ liệu trên đường truyền từ nơi lưu trữ đến nơi sử dụng
 - Luồng dữ liệu từ DFD đi tới một tác nhân ngoài
 - Luồng dữ liệu đi từ máy tính sang người sử dụng
 - Thông tin trao đổi qua giao diện
 - Nơi lưu trữ thông tin

- Xây dựng giải pháp kiểm soát hệ thống
 - Các kiểu đe dọa có thể xảy ra từ điểm hở
 - Ăn cắp thông tin và tài sản
 - Thất thoát tài sản
 - Quyết định sai
 - Tốn kém, lãng phí
 - Lộ bí mật
 - Đánh giá đe dọa
 - Xác định trạng thái đe dọa (Khi nào? Tình huồng nào?)
 - Mức độ thiệt hại (Cao, vừa, bình thường)

- Xây dựng giải pháp kiểm soát hệ thống
 - Xác định trạng thái phát sinh đe dọa
 - Bước 1: Xác định tình huống đặc biệt phát sinh đe dọa
 - Sử dụng DFD hệ thống
 - Bước 2: Đánh giá xác suất xảy ra đe dọa
 - Cao: tình huống có thể xuất hiện một cách đều đặn và tương đối thường xuyên
 - Vừa: tình huống có thể xuất hiện nhưng không thường xuyên và không đều đặn
 - Thấp: sự kiện hầu như không xuất hiện nhưng cũng có khả năng đó.

- Xây dựng giải pháp kiểm soát hệ thống
 - Lựa chọn giải pháp kiểm soát hệ thống
 - Xác định điểm hở và đe dọa cần kiểm soát.
 - Khả năng kiểm soát: về kỹ thuật, về tài chính
 - Chi phí hiệu quả
 - Câu hỏi phải trả lời khi thực hiện yêu cầu
 - Điểm hở có cần kiểm soát không ?
 - Những đe dọa gì ở những điểm hở cần kiểm soát ?
 - Sử dụng biện pháp nào ?
 - Tổng chi phí cho kiểm soát ?

- Xây dựng giải pháp kiểm soát hệ thống
 - Lựa chọn giải pháp kiểm soát hệ thống
 - Các biện pháp bảo mật
 - Bảo mật vật lý
 - Nhận dạng nhân sự
 - Mật khẩu
 - Mật mã
 - Bảo mật bằng gọi lại
 - Tường lửa

- Xây dựng giải pháp kiểm soát hệ thống
 - Lựa chọn giải pháp kiểm soát hệ thống
 - Phân biệt quyền riêng tư
 - Mức thấp: mỗi người một mật khẩu truy cập
 - Mức vừa: phân loại người dùng và gán mỗi loại người dùng một số quyền nhất định
 - Mức cao: sử dụng nhiều tầng truy cập

- Xây dựng giải pháp kiểm soát hệ thống
 - Lựa chọn giải pháp kiểm soát hệ thống
 - Đối với dữ liệu
 - Quyền cơ bản: CERD (Create, Edit, Read, Delete)
 - Quyền nâng cao: Expand(thêm thuộc tính), Drop (xoá file), Index (tạo chỉ mục)
 - Đối với chương trình
 - Quyền truy cập: có thể thi hành (Run)

THẢO LUẬN

- Quy trình thiết kế tổng thể
- Các công việc thiết kế kiểm soát

