$\dot{W_3} = W_4$

 $\dot{W} = f(w, u)$

At equilibrium, W = 0

 $W_1 = 0 \Rightarrow \overline{W_2} = 0$

 $\dot{W}_3 = 0 \Rightarrow \widetilde{W}_4 = 0$

$$S_2 = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} S \\ F \end{bmatrix} \qquad \begin{array}{c} S_1 = \begin{bmatrix} y \\ \dot{y} \\ \dot{y} \\ \end{matrix} \qquad \begin{array}{c} S_2 = \begin{bmatrix} x \\ \dot{x} \end{bmatrix} \end{array}$$

$$\begin{bmatrix} \psi \\ \dot{\psi} \end{bmatrix}$$

$$= y, \quad W_2 = \dot{y}, \quad W_3 = \dot{V}, \quad W_4 = \dot{V}$$

Let
$$W_1 = Y$$
, $W_2 = \dot{Y}$, $W_3 = V$, $W_4 = \dot{Y}$

$$V_1$$
, $W_2 = \dot{y}$, $W_3 = V_1$, $W_4 = \dot{V}$

$$\dot{W_1} = W_2$$

$$\dot{W_2} = -W_4 \dot{x} + 2C_X \left(\cos u_1 \left(u_1 - \left(W_1 - W_2\right)\right)\right)$$

$$W_1 = W_2$$

$$\dot{W}_2 = -W_4 \dot{x} + \frac{2C_d}{m} \left(\cos u_1 \left(u_1 - \left(\frac{W_2 + l_f W_4}{x^i} \right) \right) - \left(\frac{W_2 - l_r W_4}{x^i} \right) \right)$$

 $W_4 = 0 \Rightarrow 2l_5 C_{\alpha} \quad u_1 = 0 \Rightarrow \overline{u}_1 = 0$

$$W_2 = \dot{y}$$
, $W_3 = V$, $W_4 = V$

$$g = V$$
, $W_{ij} = V$

 $W_{4} = \frac{2 l_{f} \zeta_{x}}{I_{7}} \left(u_{1} - \left(\frac{w_{2} + l_{f} w_{4}}{\dot{x}} \right) \right) - \frac{2 l_{r} \zeta_{x}}{I_{7}} \left(- \left(\frac{w_{2} - l_{r} w_{4}}{\dot{x}} \right) \right)$

 $B_{1} = \left[\frac{\partial f}{\partial u}\right] = \left[\frac{2C_{x}}{m}\left(-u_{1}\sin u_{1} + \cos u_{1} + \frac{(W_{2} + l_{f}W_{4})}{x}\sin(u_{1})\right)\right]$

 $\dot{W}_{z}=0 \Rightarrow \frac{2\zeta_{x}}{m}\left(\cos u_{1}\left(u_{1}\right)\right)=0 \Rightarrow u_{1}\cos\left(u_{1}\right)=0 \Rightarrow \bar{u_{1}}=0 \text{ or } \left(2k+1\right)\frac{\pi}{2}$

 $A_{1} = \begin{bmatrix} \frac{\partial f}{\partial W} \end{bmatrix}_{\text{cos}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -\frac{2C_{K}(\cos(u_{1})+1)}{m} & 0 & -\dot{x} - \frac{2C_{K}[\cos(u_{1})l_{1} + bl_{2}]}{m\dot{x}} \\ 0 & 0 & 0 & 1 \\ 0 & -\frac{2l_{1}C_{K}}{I_{2}\dot{x}} + \frac{2l_{1}C_{K}}{I_{2}\dot{x}} & 0 & -\frac{2l_{1}C_{K}}{I_{2}} \frac{l_{1}}{\dot{x}} - \frac{2l_{1}C_{K}l_{1}}{I_{2}\dot{x}} \end{bmatrix}$

24 Gx Iz

Pl	NAVODIT	CHANDRA

Thus, the linearized system is:

$$\dot{S}_{1} = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & \frac{2C_{x}}{m\dot{x}} - 4C_{x} & 0 & -\dot{x} + 2C_{x} (l_{r} - l_{f}) \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\dot{S}_{1} = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & \frac{2C_{x}}{m\dot{x}} - 4C_{x} & 0 & -\dot{x} + 2C_{x} (l_{r} - l_{f}) \\
0 & 0 & 0
\end{bmatrix}$$

$$\dot{S}_{1} = \begin{bmatrix}
0 & 0 & 0 \\
\frac{2C_{x}}{m\dot{x}} & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\dot{S}_{1} = \begin{bmatrix}
0 & 0 & 0 \\
\frac{2C_{x}}{m\dot{x}} & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\dot{S}_{1} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\dot{S}_{1} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\dot{S}_{1} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\dot{S}_{1} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\dot{S}_{1} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\dot{S}_{1} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

Using
$$C_{x} = 20,000$$
 $m = 1888.6$ $l_{r} = 1.39$ $l_{f} = 1.55$ $I_{z} = 25854$

$$\dot{S}_{1} = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & -\frac{42.36}{\dot{x}} & 0 & -\dot{x} - \frac{3.39}{\dot{x}} \\
0 & 0 & 0 & 1 \\
0 & -\frac{0.247}{\dot{x}} & 0 & -\frac{6.706}{\dot{x}}
\end{bmatrix} S + \begin{bmatrix}
0 & 0 \\
21.18 & 0 \\
0 & 0 \\
2.398 & 0
\end{bmatrix}$$

Let
$$t_1 = x$$
, $t_2 = x$
 $t_1 = t_2$

$$\dot{t_2} = \dot{\psi}\dot{y} + \int_{m} (u_2 - f_{mg})$$

$$\dot{t} = f(t, u)$$

$$\delta \dot{t} = \frac{\partial f}{\partial t} \left| \begin{array}{ccc} \delta t & + & \underline{\partial f} \\ (\bar{t}, \bar{u}) & \end{array} \right| \left| \begin{array}{ccc} \delta u \\ (\bar{t}, \bar{u}) \end{array} \right|$$

$$A_2 = \frac{\partial f}{\partial t} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$B_2 = \frac{\partial f}{\partial u} = \begin{bmatrix} 0 & 0 \\ 0 & 1/m \end{bmatrix}$$

$$-\dot{S}_{2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} S_{2} + \begin{bmatrix} 0 & 0 \\ 0 & 1/m \end{bmatrix} u$$

$$S_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} S_2 + \begin{bmatrix} 0 & 0 \\ 0 & 5:29 \times 10^{-4} \end{bmatrix} U$$

The equilibrium points are: $t_1=0 \Rightarrow \overline{t_2}=0$ $\dot{t}_2 = 0 \Rightarrow \dot{\psi}\dot{y} + \int (\bar{u}_2 - fmg) = 0$ = $\bar{u}_2 = \psi \dot{y} m + f m g$

