

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 65200 N
                                                                        M_{\star}
                                                                                    = -1950000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 43700 N
                                                                                    = 200000 \text{ N/mm}^2
           = 114000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
                                                                         = -1910000 Nmm
Ν
          = 69700 N
                                                               M_{\star}
                                                                         = 220 \text{ N/mm}^2
          = 43800 N
                                                                         = 200000 \text{ N/mm}^2
          = 81600 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 75700 N
                                                                       M_{\star}
                                                                                  = 2340000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 36800 N
                                                                                  = 200000 \text{ N/mm}^2
           = 91400 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 54500 N
                                                                      M_{\star}
                                                                                  = 2270000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 37700 N
                                                                                  = 200000 \text{ N/mm}^2
           = 98400 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 98800 N
                                                                  M_{\star}
                                                                             = 5350000 Nmm
T<sub>y</sub>
M₊
                                                                             = 220 \text{ N/mm}^2
          = 86700 N
                                                                            = 200000 \text{ N/mm}^2
          = 204000 Nmm
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                    \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 104000 N	M _t	= 144000 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_y	= 93400 N	M_x	= 5480000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)$	_d =	σ_{ls}	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$) =	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)$	₃ =	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_{\alpha}$	_d =	$\sigma_{ ext{tresca}}$	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 120000 N
                                                               M_{\star}
                                                                         = 6650000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 67900 N
M,₊
                                                                         = 200000 \text{ N/mm}^2
          = 172000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                               \tau(T_{yc}) =
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 85200 N
                                                                  M_{\star}
                                                                            = 6650000 Nmm
T<sub>y</sub>
M₊
                                                                             = 220 \text{ N/mm}^2
          = 74000 N
                                                                            = 200000 \text{ N/mm}^2
          = 181000 Nmm
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                    \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 42700 N
                                                                M_{\star}
                                                                           = 729000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 22800 N
                                                                           = 200000 \text{ N/mm}^2
          = 60900 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 45700 N
                                                                M_{\star}
                                                                           = 682000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 22700 N
                                                                           = 200000 \text{ N/mm}^2
          = 43600 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 51300 N
                                                                M_{\star}
                                                                           = -930000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 18500 N
                                                                           = 200000 \text{ N/mm}^2
          = 50500 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 38900 N	M _t	= 57300 Nmm	σ_{a}	= 220 N/mm ² = 200000 N/mm ²	G	= 73000 N/mm ²
T_y	= 19800 N	M_{x}	= 909000 Nmm	Е	= 200000 N/MM		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_c$	₃ =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{vb})$) _d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$, =	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 87800 N
                                                                  M_{\star}
                                                                             = -4230000 Nmm
T<sub>y</sub>
M₊
                                                                             = 220 \text{ N/mm}^2
          = 68900 N
                                                                            = 200000 \text{ N/mm}^2
          = 171000 Nmm
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                    \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 89700 N
                                                                  M_{\star}
                                                                            = -3920000 Nmm
T<sub>y</sub>
M₊
                                                                            = 220 \text{ N/mm}^2
          = 67600 N
                                                                            = 200000 \text{ N/mm}^2
          = 116000 Nmm
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                    \sigma_{\text{IId}}
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 103000 N
                                                                M_{\star}
                                                                           = 5070000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 58900 N
                                                                          = 200000 \text{ N/mm}^2
          = 139000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 71300 N
                                                                  M_{\star}
                                                                             = 4660000 Nmm
T<sub>y</sub>
M₊
                                                                             = 220 \text{ N/mm}^2
          = 58200 N
                                                                            = 200000 \text{ N/mm}^2
          = 143000 Nmm
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                    \sigma_{\text{IId}}
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
                                                                                  = -2070000 Nmm
Ν
           = 62900 N
                                                                      M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
           = 41700 N
                                                                                  = 220 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 97300 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 67300 N	M _t	= 69400 Nmm	σ_{a}	= 220 N/mm ²	G	$= 73000 \text{ N/mm}^2$
T_y	= 42200 N	M_x	= -2050000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

25.05.15

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 74100 N
                                                                         M_{\star}
                                                                                    = 2510000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 220 \text{ N/mm}^2
            = 34900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 79000 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 53200 N
                                                                         M_{\star}
                                                                                     = 2450000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 220 \text{ N/mm}^2
            = 36000 N
                                                                                     = 200000 \text{ N/mm}^2
           = 84800 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 65200 N
                                                                        M_{\star}
                                                                                    = -1950000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 43700 N
                                                                                    = 200000 \text{ N/mm}^2
           = 114000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
                                                                                  = -1910000 Nmm
Ν
           = 69700 N
                                                                      M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 43800 N
                                                                                  = 200000 \text{ N/mm}^2
           = 81600 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 75700 N
                                                                         M_{\star}
                                                                                    = 2340000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 220 \text{ N/mm}^2
            = 36800 N
                                                                                    = 200000 \text{ N/mm}^2
           = 91400 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 54500 N
                                                                         M_{\star}
                                                                                    = 2270000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 220 \text{ N/mm}^2
            = 37700 N
                                                                                    = 200000 \text{ N/mm}^2
           = 98400 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 98800 N
                                                                  M_{\star}
                                                                             = 5350000 Nmm
T_y \\ M_t
                                                                             = 220 \text{ N/mm}^2
           = 86700 N
                                                                             = 200000 \text{ N/mm}^2
          = 204000 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                     \sigma_{tresca} =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                                                     \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 104000 N	M _t	= 144000 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_y	= 93400 N	M_x	= 5480000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)$	_d =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$) =	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{ld}	=	r_{o}	=
J_{u}	=	$\tau(T_y)$; =	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_{\alpha}$	_i =	$\sigma_{ ext{tresca}}$, =	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 120000 N
                                                                M_{\star}
                                                                           = 6650000 Nmm
                                                                           = 220 \text{ N/mm}^2
          = 67900 N
M,₊
                                                                           = 200000 \text{ N/mm}^2
          = 172000 Nmm
                                                                \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 85200 N
                                                                  M_{\star}
                                                                             = 6650000 Nmm
T_y \\ M_t
                                                                             = 220 \text{ N/mm}^2
           = 74000 N
                                                                             = 200000 \text{ N/mm}^2
          = 181000 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                     \sigma_{tresca} =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                                                     \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 42700 N
                                                                  M_{\star}
                                                                             = 729000 Nmm
T_y \\ M_t
                                                                             = 220 \text{ N/mm}^2
           = 22800 N
                                                                             = 200000 \text{ N/mm}^2
          = 60900 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{IId}}
                                                                                                                                     \sigma_{tresca} =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                                                     \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 45700 N
                                                                       M_{\star}
                                                                                  = 682000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 22700 N
                                                                                  = 200000 \text{ N/mm}^2
           = 43600 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 51300 N
                                                                      M_{\star}
                                                                                  = -930000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 18500 N
                                                                                  = 200000 \text{ N/mm}^2
           = 50500 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 38900 N	M _t	= 57300 Nmm		= 220 N/mm ²	G	$= 73000 \text{ N/mm}^2$
T_y	= 19800 N	M_x	= 909000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_d$	_l =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 87800 N
                                                                  M_{\star}
                                                                            = -4230000 Nmm
T<sub>y</sub>
M₊
                                                                            = 220 \text{ N/mm}^2
          = 68900 N
                                                                            = 200000 \text{ N/mm}^2
          = 171000 Nmm
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                    \sigma_{\text{IId}}
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 89700 N
                                                                  M_{\star}
                                                                            = -3920000 Nmm
T<sub>y</sub>
M₊
                                                                            = 220 \text{ N/mm}^2
          = 67600 N
                                                                            = 200000 \text{ N/mm}^2
          = 116000 Nmm
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                    \sigma_{\text{IId}}
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 103000 N
                                                                 M_{\star}
                                                                            = 5070000 Nmm
T<sub>y</sub>
M₊
                                                                            = 220 \text{ N/mm}^2
          = 58900 N
                                                                            = 200000 \text{ N/mm}^2
          = 139000 Nmm
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 71300 N
                                                                       M_{\star}
                                                                                  = 4660000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 58200 N
                                                                                  = 200000 \text{ N/mm}^2
           = 143000 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
                                                                                    = -2070000 Nmm
Ν
           = 62900 N
                                                                        M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 41700 N
                                                                                    = 200000 \text{ N/mm}^2
           = 97300 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di BC Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 67300 N	M _t	= 69400 Nmm	σ_{a}	= 220 N/mm ²	G	$= 73000 \text{ N/mm}^2$
T_y	= 42200 N	M_{x}	= -2050000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 74100 N
                                                                         M_{\star}
                                                                                    = 2510000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 220 \text{ N/mm}^2
            = 34900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 79000 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 53200 N
                                                                         M_{\star}
                                                                                     = 2450000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 220 \text{ N/mm}^2
            = 36000 N
                                                                                     = 200000 \text{ N/mm}^2
           = 84800 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 65200 N
                                                                      M_{\star}
                                                                                  = -1950000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 43700 N
                                                                                 = 200000 \text{ N/mm}^2
           = 114000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
                                                                         = -1910000 Nmm
Ν
          = 69700 N
                                                               M_{\star}
                                                                         = 220 \text{ N/mm}^2
          = 43800 N
                                                                         = 200000 \text{ N/mm}^2
          = 81600 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 75700 N
                                                                       M_{\star}
                                                                                  = 2340000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 36800 N
                                                                                  = 200000 \text{ N/mm}^2
           = 91400 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 54500 N
                                                                       M_{\star}
                                                                                  = 2270000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 37700 N
                                                                                  = 200000 \text{ N/mm}^2
           = 98400 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 98800 N
                                                                M_{\star}
                                                                           = 5350000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 86700 N
                                                                           = 200000 \text{ N/mm}^2
          = 204000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 104000 N	M _t	= 144000 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_y	= 93400 N	M_x	= 5480000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)$	_d =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$) =	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)$; =	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_{\alpha}$	_i =	$\sigma_{ ext{tresca}}$, =	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 120000 N
                                                               M_{\star}
                                                                         = 6650000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 67900 N
M,₊
                                                                         = 200000 \text{ N/mm}^2
          = 172000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                               \tau(T_{yc}) =
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 85200 N
                                                                M_{\star}
                                                                           = 6650000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 74000 N
                                                                           = 200000 \text{ N/mm}^2
          = 181000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 42700 N
                                                                       M_{\star}
                                                                                  = 729000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 22800 N
                                                                                  = 200000 \text{ N/mm}^2
           = 60900 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 45700 N
                                                                M_{\star}
                                                                           = 682000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 22700 N
                                                                           = 200000 \text{ N/mm}^2
          = 43600 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 51300 N
                                                                M_{\star}
                                                                           = -930000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 18500 N
                                                                           = 200000 \text{ N/mm}^2
          = 50500 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto C di CD Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 38900 N	M _t	= 57300 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_y	= 19800 N	M_x	= 909000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)$		σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$) =	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)$	₃ =	σ_{IId}	=	J_{p}	=
J_{v}	=	$\tau(T_y)_{\alpha}$	_d =	$\sigma_{ ext{tresca}}$, =		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

25.05.15

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 87800 N
                                                                M_{\star}
                                                                           = -4230000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 68900 N
                                                                          = 200000 \text{ N/mm}^2
          = 171000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 89700 N
                                                                M_{\star}
                                                                           = -3920000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 67600 N
                                                                          = 200000 \text{ N/mm}^2
          = 116000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 103000 N
                                                                M_{\star}
                                                                          = 5070000 Nmm
T_y \\ M_t
                                                                          = 220 \text{ N/mm}^2
          = 58900 N
                                                                          = 200000 \text{ N/mm}^2
          = 139000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 71300 N
                                                                  M_{\star}
                                                                             = 4660000 Nmm
T<sub>y</sub>
M₊
                                                                             = 220 \text{ N/mm}^2
          = 58200 N
                                                                            = 200000 \text{ N/mm}^2
          = 143000 Nmm
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                    \sigma_{\text{IId}}
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
                                                                         = -2070000 Nmm
Ν
          = 62900 N
                                                               M_{\star}
          = 41700 N
                                                                         = 220 \text{ N/mm}^2
                                                                         = 200000 \text{ N/mm}^2
          = 97300 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 67300 N	 M₊	= 69400 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_y	= 42200 N	M_x	= -2050000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)$	_d =	σ_{ls}	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$) =	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{vb})$) _d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_{\nu})_{\xi}$; =	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{c}$	₁ =	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 74100 N
                                                                       M_{\star}
                                                                                  = 2510000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 34900 N
                                                                                  = 200000 \text{ N/mm}^2
           = 79000 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 53200 N
                                                                       M_{\star}
                                                                                  = 2450000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 36000 N
                                                                                  = 200000 \text{ N/mm}^2
           = 84800 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 65200 N
                                                                      M_{\star}
                                                                                  = -1950000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 43700 N
                                                                                 = 200000 \text{ N/mm}^2
           = 114000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
                                                                         = -1910000 Nmm
Ν
          = 69700 N
                                                               M_{\star}
                                                                         = 220 \text{ N/mm}^2
          = 43800 N
                                                                         = 200000 \text{ N/mm}^2
          = 81600 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 75700 N
                                                                       M_{\star}
                                                                                  = 2340000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 36800 N
                                                                                  = 200000 \text{ N/mm}^2
           = 91400 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 54500 N
                                                                      M_{\star}
                                                                                  = 2270000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 37700 N
                                                                                  = 200000 \text{ N/mm}^2
           = 98400 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 98800 N
                                                                M_{\star}
                                                                           = 5350000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 86700 N
                                                                           = 200000 \text{ N/mm}^2
          = 204000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

00 N/mm ²

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

25.05.15

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 120000 N
                                                                M_{\star}
                                                                          = 6650000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 67900 N
                                                                          = 200000 \text{ N/mm}^2
          = 172000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 85200 N
                                                                M_{\star}
                                                                           = 6650000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 74000 N
                                                                           = 200000 \text{ N/mm}^2
          = 181000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 42700 N
                                                                       M_{\star}
                                                                                  = 729000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 22800 N
                                                                                  = 200000 \text{ N/mm}^2
           = 60900 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 45700 N
                                                                M_{\star}
                                                                           = 682000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 22700 N
                                                                           = 200000 \text{ N/mm}^2
          = 43600 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```