PHYC90045 Introduction to Quantum Computing: Outline 2020

Week	Lectures	Lab session	
1	Introduction to quantum computing - overview of quantum computing - complex numbers	Lab 1: Complex numbers - state representation - Quantum User Interface (QUI)	
2	Single qubit representation and operations - linear algebra and notation - single qubits, operations, measurement	Lab 2: - single qubit states - single qubit operations	
3	Two and more qubits - operations, measurement, entanglement - teleportation and dense coding	Lab 3: - two qubit gates, entanglement - teleportation - dense coding	Assignment 1 posted on LMS
4	Simple quantum algorithms - Universality - classical logic and reversible computation - algorithms: Deutsch-Josza, Bernstein-Vazirani, Simon	Lab 4: - logical statements - adders - simple algorithms	
5	Quantum search (Grover's algorithm) - Grover's algorithm - amplitude amplification - quantum counting	Lab 5: - Grover's algorithm - amplitude amplification	
6	Quantum factorization (Shor's algorithm) - Quantum Fourier Transform (QFT) - Shor's factoring algorithm	Lab 6: - QFT - Shor's factoring algorithm	Hand in Assignment 1 (details TBA)
7	Quantum supremacy and noise - Boson Sampling - Instantaneous Quantum Polynomial (IQP) circuits - quantum errors - randomised benchmarking	Lab 7: - quantum errors - noisy circuits - random circuits	
8	Programming real quantum computers (IBM Q) - introduction to the Quantum Experience - introduction to QISKIT - qubit connectivity, circuit compression techniques	Lab 8: IBM Quantum Experience	
9	Quantum error correction (QEC) - basic QEC codes - topological QEC codes Semester break (5-11 Oct)	Lab 9: Quantum error correction	Assignment 2 Posted on LMS
10	QUBO problems and Adiabatic Quantum Computation (AQC) - mapping and solving QUBO problems - introduction to AQC	Lab 10: - QUBO problem mapping - QUBO problem solving	
11	Variational/hybrid quantum algorithms (QAOA and VQE) - Variational Quantum Eigensolver (VQE) - Quantum Approximate Optimisation Algorithm (QAOA)	Lab 11: - problem mapping - VQE/QAOA examples	
12	Solving linear equations, QC computing hardware - linear algebra and the HHL algorithm - current status of QC hardware	Lab 12: - implementing HHL	Hand in Assignment 2 (details TBA)