Задание 1-4.

Расчёт областей аномалий геомагнитного поля на высотах ионосферы и прогноз областей высыпающихся энергичных частиц

Выполнил Лапин Ярослав. 12/12/2010.

Ход работы

Карта магнитного поля строилась следующим образом. Была выбрана область от -179 до 180 градусов по долготе и от -63 до 63 градусов по широте в координатах GEO на ионосферной высоте (100км). Для каждой точки с помощью п/п TRACE находилась сопряженная точка вдоль линий магнитного поля (T89C+IGRF_GSM) и считалось магнитное поле в ней. Дальше в файл записывались соответствующая широта и долгота, значение поля в точке и разница с полем в сопряженной точке.

Пример вывода

-101	-19	28145.04	-2516.13
-101	-18	28034.34	-2295.61
-101	-17	27944.14	-2071.82
-101	-16	27875.17	-1845.60
-101	-15	27828.22	-1617.31
-101	-14	27803.99	-1385.55
-101	-13	27803.15	-1152.45
-101	-12	27826.32	-917.87
-101	-11	27874.04	-922.42
-101	-10	27946.77	-615.67
-101	-9	28044.93	-495.93
-101	-8	28168.78	0.00
-101	-7	28318.53	0.00
-101	-6	28494.29	0.00
-101	-5	28696.04	0.00
-101	-4	28923.71	0.01
-101	-3	29177.00	0.00
-101	-2	29455.67	0.00

```
-101
         -1 29759.27
                          0.00
-101
          0 30087.25
                       1880.20
-101
          1 30439.02
                       2095.45
-101
          2 30813.84
                       2304.70
-101
          3 31210.98
                       2508.15
-101
          4 31629.53
                       2704.79
-101
          5 32068.56
                       2893.60
```

Исходный код

```
program task4
external igrf_gsm, t89c
        open (unit=1, file='field.dat')
R0=1.+100./6371.
RLIM=60.0
IOPT=1
call recalc(2000,90,1,1,1)
do long = -179, 180
do lat = -63,63
  print *, long, lat
  THETA = (90-lat)*3.14/180.0
  PHI = long*3.14/180.0
  call sphcar(R0, THETA, PHI, XGEO, YGEO, ZGEO, 1)
  call geogsm(XGEO,YGEO,ZGEO,XGSM,YGSM,ZGSM,1)
  if (lat.lt.0) then
    dir = -1.
  else
    dir = 1.
  end if
          call igrf_gsm(XGSM,YGSM,ZGSM,HX,HY,HZ)
  call trace(XGSM, YGSM, ZGSM, dir, RLIM, RO, IOPT, PARMOD, T89C,
     _ IGRF_GSM,XF,YF,ZF,XX,YY,ZZ,L)
  if (sqrt(xf**2+yf**2+zf**2).gt.2.) then
     print *, 'Error: line from ', lat, long, ' isn''t closed'
     print *, sqrt(xf**2+yf**2+zf**2)
```

```
stop 1
end if
call igrf_gsm(xf,yf,zf,HXf,HYf,HZf)
field = sqrt(HX**2+HY**2+HZ**2)
field_delta = field - sqrt(HXf**2+HYf**2+HZf**2)
write (1, '(2i8,2f10.2)') long, lat, field, field_delta
end do
end do
end program
```

Карты

Figure 1: Карта модуля магнитного поля

Figure 2: Карта разницы поля в сопряженных точках

Вывод

Об опасности зон с точки зрения корпускулярной радиации стоит судить следующим образом. Из карты модуля магнитного поля мы видим, что поле неоднородно и скажем если рассматривать точки на долготе -50° с широтой 40° и -40° (в координатах GEO), то видно, что в них поля существенно отличаются. А значит и выпадения частиц будут несимметричны и будут происходить там, где поле ниже. В нашем случае разница полей в этих точках порядка 15000 nT (по карте разницы полей в сопряженных точках).