Systèmes linéaires invariants dans le temps (LTI : Linear Time Invariant)

Système LTI (à temps discret) : Linéaire Invariant dans le Temps

Soit un système \mathcal{H} , une entrée de ce système x[n] et la sortie de ce système y[n]

$$x[n] \stackrel{\mathcal{H}}{\to} y[n] = \mathcal{H}\{x[n]\}$$

Un système est Linéaire ssi :

$$\forall (\alpha_1,\alpha_2) \text{ et } \forall (x_1[\textit{n}],x_2[\textit{n}]), \mathcal{H}\{\alpha_1x_1[\textit{n}]+\alpha_2x_2[\textit{n}]\} = \alpha_1\mathcal{H}\{x_1[\textit{n}]\} + \alpha_2\mathcal{H}\{x_2[\textit{n}]\}$$

Un système est Invariant dans le temps ssi :

$$\mathcal{H}\{x[n]\} = y[n] \qquad \Leftrightarrow \qquad \forall n_o, \mathcal{H}\{x[n-n_o]\} = y[n-n_o]$$

Un système LTI est complètement défini par sa réponse impulsionnelle

Soit la *réponse impulsionnelle*, définie par

$$h[n] = \mathcal{H}\{\delta[n]\}$$

Sachant qu'on peut écrire tout signal discret par : $x[n] = \sum_{k=0}^{\infty} x[k]\delta[n-k]$

Par linéarité et invariance dans le temps :

$$y[n] = \mathcal{H}\{x[n]\} = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

.... c'est une convolution!

Filtrage dans le domaine temporel : l'opérateur de convolution

La somme précédente est appelée *convolution* entre les deux séquences x[n] et h[n]. On la notera :

$$y[n] = x[n] * h[n]$$
 l'élément n_o : $y[n_o] = (x * h)[n_o]$

L'opérateur de convolution est :

- Linéaire et invariant dans le temps (vérifiez à titre d'exercice)
- **Commutatif**: x[n] * h[n] = h[n] * x[n] (changement de variables) **Conséquence**: on peut intervertir l'ordre des filtres!
- Pour les signaux de carré sommable : Associatif

$$(x[n] * h[n]) * w[n] = x[n] * (h[n] * w[n])$$

Conséquence : une suite de deux filtres équivaut à un seul filtre ... dont la réponse impulsionnelle est la convolution des rép. imp. originelles.

Filtre à moyenne mobile simple

■ idée : le bruit bouge "vite", faire une moyenne entre deux points successifs :

$$y[n] = \frac{x[n] + x[n-1]}{2}$$

De façon plus générale :

$$y[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k]$$

Réponse impulsionnelle du filtre MA

$$h[n] = \frac{1}{M} \sum_{k=0}^{M-1} \delta[n-k]$$

$$= \begin{cases} \frac{1}{M} & 0 \le n \le M-1 \\ 0 & \text{sinon} \end{cases}$$

Réponse impulsionnelle du filtre MA

Filtre MA: caractéristiques

- Moyennage "proportionnel" à M
- Complexité de calcul : *M* additions et multiplications
- Délai égal à *M*/2

$$y_{M}[n] = \frac{1}{M}[x[n] + x[n-1] + x[n-2] + \dots + x[n-(M-1)]]$$

$$= \frac{x[n]}{M} + \frac{1}{M}[x[n-1] + x[n-2] + \dots + x[n-(M-1)]]$$

$$= \frac{1}{M}[x[n-1] + x[n-2] + \dots + x[n-(M-1)]]$$

$$= \frac{x[n]}{M} + \frac{1}{M}[x[n-1] + x[n-2] + \dots + x[n-(M-1)]]$$

Versions de y_M

$$y_{M}[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k]$$

$$y_{M}[n-1] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-1-k] = \frac{1}{M} \sum_{k=1}^{M} x[n-k]$$

$$y_{M-1}[n] = \frac{1}{M-1} \sum_{k=0}^{M-2} x[n-k] = \frac{1}{M-1} \sum_{k=1}^{M-1} x[n-k]$$

$$y_{M-1}[n-1] = \frac{1}{M-1} \sum_{k=1}^{M-1} x[n-k] = \frac{1}{M} - 1 \sum_{k=1}^{M} x[n-k]$$

$$y_{M}[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k] \qquad y_{M-1}[n-1] = \frac{1}{M-1} \sum_{k=1}^{M-1} x[n-k]$$
$$\sum_{k=0}^{M-1} x[n-k] = x[n] + \sum_{k=1}^{M-1} x[n-k]$$
$$My_{M}[n] = x[n] + (M-1)y_{M-1}[n-1]$$

$$y_{M}[n] = \frac{M-1}{M} y_{M-1}[n-1] + \frac{1}{M} x[n]$$
$$y_{M}[n] = \lambda y_{M-1}[n-1] + (1-\lambda)x[n] \qquad \lambda = \frac{M-1}{M}$$

ressemble au filtre récursif suivant : Intégrateur à fuite

$$yr_M[n] = \lambda yr_M[n-1] + (1-\lambda)x[n]$$
 $\lambda = \frac{M-1}{M}$

Réponse Impulsionnelle ($x[n] = \delta[n]$)

$$yr_{M}[n] = 0 n < 0$$

= $(1 - \lambda) n = 0$
= $\lambda^{n}(1 - \lambda) n > 0$

Donc : réponse impulsionnelle infinie !

Filtres LTIs classifiés en fonction de leur réponse impulsionnelle

- FIR : Finite Impulse Response Filtre à réponse impulsionnelle finie
- IIR : Infinite Impulse Response Filtre à réponse impulsionnelle infinie
- Causal
- non causal

Filtre à réponse Impulsionnelle Finie : FIR

- La réponse impulsionnelle a un support fini
- Un nombre fini d'échantillons intervient dans le calcul de chaque échantillon de sortie

$$y[n] = \sum_{k=k_1}^{k=k_2} h[k]x[n-k]$$

Filtre à réponse Impulsionnelle Infinie : IIR

- La réponse impulsionnelle a un support infini
- Un nombre infini d'échantillons peut intervenir dans le calcul de chaque échantillon de sortie :

$$y[n] = \sum_{k=k_1}^{\infty} h[k]x[n-k]$$

Souvent, le calcul ne fait intervenir qu'un nombre fini d'opérations (addition multiplication):

$$y[n] = \lambda y[n-1] + (1-\lambda)x[n]$$
 $\lambda = \frac{M-1}{M}$

Causal ou non causal

filtre causal

- réponse impulsionnelle nulle pour n < 0</p>
- seuls les entrées du "passé" sont utilisées pour calculer le "présent"
- les filtres causaux sont utilisables "en ligne" (sans utiliser de mémoire)

filtre non causal

- \blacksquare réponse impulsionnelle non-nulle pour (certaines valeurs de) n < 0
- les entrées du "futur" sont utilisées pour calculer le "présent"
- les filtres non causaux sont utilisables "hors ligne", voire en ligne, mais nécessitent de mettre le signal en mémoire avant de calculer la sortie

Stabilité des filtres

Un filtre est stable si à une entrée "gentille" correspond une sortie "gentille"

Stabilité BIBO (Bounded Input/Bounded Output

- Un signal est dit borné (bounded) ssi $|x[n]| < M \forall n$.
- Un filtre est dit BIBO stalbe ssi

A toute entrée bornée correspond une sortie bornée

Un filtre LTI est BIBO stable SSI sa réponse impulsionnelle est absolument sommable

Théorème de stabilité

$$|x[n]| < M$$
 et $\sum_n |h[n]| = L < \infty \Leftrightarrow \exists K \text{ fini tel que } |y[n]| < K$

Preuve \Rightarrow

$$|y[n]| = \left| \sum_{k=-\infty}^{\infty} h[k]x[n-k] \right|$$

$$\leq \sum_{k=-\infty}^{\infty} |h[k]x[n-k]|$$

$$\leq M \sum_{k=-\infty}^{\infty} |h[k]|$$

Un filtre LTI est BIBO stable SSI sa réponse impulsionnelle est absolument sommable

Théorème de stabilité

$$|x[n]| < M$$
 et $\sum_n |h[n]| = L < \infty \Leftrightarrow \exists K \text{ fini tel que } |y[n]| < K$

Preuve ← (par l'absurde)

- Soit $x[n] = sign\{h[n]\}$ (donc x[n] borné)
- $y[0] = \sum_{k=0}^{\infty} h[k]x[-k] = \sum_{k=0}^{\infty} |h[k]| = \infty$

Les Filtres FIR sont toujours stables

$$\operatorname{Car}|h[k]| < P \text{ (fini) donc } \sum_{k=0}^{N-1}|h[k]| < P.N$$

Filtre IIR : Exemple de l'intégrateur à fuite

$$\sum_{n=-\infty}^{\infty} |h[n]| = |1 - \lambda| \sum_{n=0} |\lambda|^n$$

$$= \lim_{n \to \infty} |1 - \lambda| \frac{1 - |\lambda|^{n+1}}{1 - |\lambda|}$$

$$< \infty \qquad \text{si } |\lambda| < 1$$

Donc l'intégrateur à fuite est stable pour $|\lambda|<1$

Un sinus ... reste un sinus après un filtre LTI

Réponse d'un sytème LTI à une entrée sinusoïdale

que vaut
$$y[n] = \mathcal{H}\{e^{j\omega_0 n}\}$$
 ?

$$y[n] = h[n] * e^{j\omega_0 n}$$

$$= \sum_{k=-\infty}^{\infty} h[k] e^{j\omega_0 (n-k)}$$

$$= e^{j\omega_0 n} \sum_{k=-\infty}^{\infty} h[k] e^{j\omega_0 (-k)}$$

$$= H(e^{j\omega_0}) e^{j\omega_0 n}$$

L'exponentielle complexe est une séquence propre des systèmes LTI

- Un sinus reste un sinus à la même fréquence
- La DTFT de la réponse impulsionnelle caractérise fréquentiellement le filtre

Réponse en magnitude et phase

Soit
$$H(e^{j\omega_o}) = Ae^{j\theta}$$

Alors, $\mathcal{H}\{e^{j\omega_o n}\} = Ae^{j(\omega_o n + \theta)}$
Avec

- A : la facteur d'amplification (ou d'atténuation)
- lacksquare : la phase qui est un délai sir heta<0 ou une avance si heta>0

Filtre et théorème de convolution

$$\mathbb{DTFT}(x[n] * h[n]) = \sum_{n=-\infty}^{\infty} (x * h)[n]e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k]h[n-k]e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k]h[n-k]e^{-j\omega(n-k)}e^{-j\omega k}$$

$$= \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k} \sum_{n=-\infty}^{\infty} h[n-k]e^{-j\omega(n-k)}$$

$$= H(e^{j\omega})X(e^{j\omega})$$

Reponse fréquentielle d'un filtre

$$H(e^{\jmath\omega})=\mathbb{DTFT}(h[n])$$

- **Amplitude** : Amplification ($|H(e^{j\omega})| > 1$) ou atténuation ($|H(e^{j\omega})| < 1$) en fonction de la fréquence
- Phase : délai et/ou modification de la "forme" des entrées.

Le retour de la moyenne mobile

Filtre à moyenne mobile : réponse fréquentielle en amplitude

$$|H(e^{j\omega})| = \frac{1}{M} \left| \frac{\sin\left(\frac{\omega}{2}M\right)}{\sin\left(\frac{\omega}{2}\right)} \right|$$

Filtre à moyenne mobile : réponse fréquentielle en amplitude

$$|H(e^{j\omega})| = \frac{1}{M} \left| \frac{\sin\left(\frac{\omega}{2}M\right)}{\sin\left(\frac{\omega}{2}\right)} \right|$$

Filtre à moyenne mobile : réponse fréquentielle en amplitude

$$|H(e^{j\omega})| = \frac{1}{M} \left| \frac{\sin\left(\frac{\omega}{2}M\right)}{\sin\left(\frac{\omega}{2}\right)} \right|$$

Filtre à moyenne mobile : Exemple du débruitage

Filtre à moyenne mobile : Exemple du débruitage

Phase de la réponse fréquentielle du filtre

Supposons
$$|H(e^{j\omega})|=1$$

- phase nulle : $\angle H(e^{j\omega}) = 0$
- lacktriangle phase linéaire : $\angle H(e^{\jmath\omega}) = \omega.$ cste
- phase non linéaire.

Phase et "forme" du signal

$$x[n] = \frac{1}{2}\sin(\omega_0 n) + \cos(2\omega_0 n) \qquad \omega_0 = \frac{2\pi}{40}$$

$$0.5 - \frac{1.0}{0.0} - \frac{1.0}{0.5} - \frac{1.0}{0.$$

Phase et "forme" du signal : phase linéaire

$$x[n] = \frac{1}{2}\sin(\omega_0 n + \theta_0) + \cos(2\omega_0 n + 2\theta_0) \qquad \theta_0 = \frac{8\pi}{5}$$

$$1 - \frac{1}{0} - \frac{1$$

Phase et "forme" du signal : phase non linéaire

$$x[n] = \frac{1}{2}\sin(\omega_0 n) + \cos(2\omega_0 n + 2\theta_0) \qquad \theta_0 = \frac{8\pi}{5}$$

$$1 - \frac{1}{0} -$$

Phase linéaire et décalage temporel

- Soit y[n] = x[n-d]
- $Y(e^{j\omega}) = e^{-j\omega d}(e^{j\omega})$
- $\blacksquare H(e^{j\omega}) = e^{-j\omega d}$
- Phase linéaire

En général si $H(e^{\jmath\omega})=A(e^{\jmath\omega})e^{-\jmath\omega d}$, avec $A(e^{\jmath\omega})\in\mathbb{R}$ Le signal de sortie est le signal d'entrée

- Multiplié par $A(e^{j\omega})$ en fréquence
- Retardé de d en temporel

le filtre MA est à phase linéaire

$$H(e^{j\omega}) = \frac{1}{M} \frac{\sin(\frac{\omega}{2}M)}{\sin(\frac{\omega}{2})} e^{-j\frac{M-1}{2}\omega}$$

Et l'intégrateur à fuite ?

$$h[n] = (1 - \lambda)\lambda^n u[n]$$

$$\begin{split} H(\mathrm{e}^{\jmath\omega}) &= (1-\lambda) \sum_{n=0}^{\infty} \lambda^n \mathrm{e}^{-\jmath\omega n} \\ &= (1-\lambda) \frac{1}{1-\lambda \mathrm{e}^{-\jmath\omega}} \\ &= (1-\lambda) \frac{1}{(1-\lambda \mathrm{e}^{-\jmath\omega})} = (1-\lambda) \frac{1-\lambda \mathrm{e}^{\jmath\omega}}{1-2\lambda \cos\omega + \lambda^2} \\ &|H(\mathrm{e}^{\jmath\omega})|^2 = H(\mathrm{e}^{\jmath\omega}).H^*(\mathrm{e}^{\jmath\omega}) = \frac{(1-\lambda)^2}{1-2\lambda \cos\omega + \lambda^2} \\ & \angle H(\mathrm{e}^{\jmath\omega}) = \tan^{-1} \left\{ \frac{\lambda \sin\omega}{1-\lambda \cos\omega} \right\} \end{split}$$

Et l'intégrateur à fuite ... linéaire là où il faut

Et l'intégrateur à fuite ... linéaire là où il faut

Et l'intégrateur à fuite ... linéaire là où il faut

En fréquence : quatre (5) types de filtres

Les filtres idéaux

En fréquence : Phase linéaire ou pas

Le filtre passe-bas idéal

- Réponse strictement constante dans la bande passante
- Réponse strictement nulle hors de la bande passante
- Phase nulle (pas de délai)

Le filtre passe-bas idéal : réponse impulsionnelle infinie

$$h[n] = IDFT\{H(e^{j\omega})\}$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \frac{e^{j\omega_c n} - e^{-j\omega_c n}}{jn}$$

$$= \frac{\sin \omega_c n}{\pi n}$$

$$= \frac{\omega_c}{\pi} \operatorname{sinc} \left(\frac{\omega_c n}{\pi}\right)$$

DTFT d'une porte en fréquence

$$\mathrm{rect}\left(\frac{\omega}{\omega_{\mathit{c}}}\right) \overset{\mathrm{DTFT}}{\rightleftharpoons} \frac{\omega_{\mathit{c}}}{\pi} \mathrm{sinc}\left(\frac{\omega_{\mathit{c}} \mathit{n}}{\pi}\right)$$

Le filtre passe-bas idéal : réponse impulsionnelle infinie

- Réponse impulsionnelle infinie et bilatérale
- Réponse impulsionnelle qui décroit lentement avec n (en 1/n)

Pourquoi ce filtre idéal ... n'est pas idéal

- La fonction sinc n'est pas absolument sommable
- Le filtre n'est donc pas BIBO stable
- Prenez par exemple $\omega_c = \pi/4$: $h[n] = \frac{1}{4} \text{sinc}(n/4)$
- Soit x[n]: 4.sign $\{-\text{sinc}(n/4)\}$ et

$$y[0] = (x * h)[0] = \sum_{k=-\infty}^{\infty} |\operatorname{sinc}(k/4)| = \infty$$

Filtre Passe-Haut Idéal

$$H_{hp}(e^{\jmath\omega}) = \left\{ egin{array}{ll} 1 & \pi \geq |\omega| \geq \omega_c \ 0 & {
m sinon} \end{array}
ight. \ \ \, & ({
m implicitement} \ 2\pi{
m -p\'eriodique}) \ \\ & H_{hp}(e^{\jmath\omega}) = 1 - H_{lp}(e^{\jmath\omega}) \ \\ & h_{hp}[n] = \delta[n] - rac{\omega_c}{\pi} {
m sinc} \left(rac{\omega_c n}{\pi}
ight) \end{array}$$

Filtre Passe-Bande Idéal

Modulation et filtre passe-bande

$$H_{bp}(e^{j\omega}) = H_{lp}(e^{j(\omega - \omega_0)}) + H_{lp}(e^{j(\omega + \omega_0)})$$

$$h_{bp}[n] = e^{-j\omega_0} h_{lp}[n] + e^{j\omega_0} h_{lp}[n]$$

$$h_{bp}[n] = 2\cos(\omega_0 n) \frac{\omega_c}{\pi} \operatorname{sinc}\left(\frac{\omega_c n}{\pi}\right)$$

Transformée en z, l'outil de base pour les signaux discrets

Définition

Transformée en z

Soit un signal à temps discret x[n], sa transformée en z est une fonction complexe de la variable $z \in \mathbb{C}$:

$$X(z) = \mathcal{Z}\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

La transformé en z :

- n'est pas un outil d'analyse comme la transformée de Fourier
- permet de résoudre facilement les équations aux différences à coefficients constants
- Si X(z) converge en |z|=1 (on dit : sur le cercle unité), la DTFT de x[n] vaut $X(z)|_{z=a^{\gamma}\omega}$
- permet, avec la DTFT, de définir des critères simples de stabilité des filtres numériques

Linéarité et décalage

■ Linéarité : soient deux séquences x[n] et y[n] et deux scalaires complexes α et β

$$\mathcal{Z}\{\alpha x[n] + \beta y[n]\} = \alpha \mathcal{Z}\{x[n]\} + \beta \mathcal{Z}\{y[n]\}$$

Décalage :

$$\mathcal{Z}\{x[n-n_0]\}=z^{-n_0}X(z)$$

En particulier:

$$\mathcal{Z}\{x[n-1]\} = z^{-1}X(z)$$

Et donc, fréquemment, on peut représenter l'opération de décalage par un de ces deux circuits :

$$x[n]$$
 $y[n]$
 $x[n]$
 z^{-1}
 $y[n]$
 $y[n]$
 $y[n]$

Figure: Représentation de l'opérateur de décalage

Représentation et solution des équations aux différences

Soit un filtre LTI représenté par son équation aux différences (à coefficients constants) :

$$y[n] = \sum_{k=0}^{M-1} b_k x[n-k] - \sum_{k=1}^{N-1} a_k y[n-k]$$
 (1)

Sa transformée en z s'écrit :

$$Y(z) = \sum_{k=0}^{M-1} b_k z^{-k} X(z) - \sum_{k=1}^{N-1} a_k z^{-k} Y(z)$$
$$= \frac{\sum_{k=0}^{M-1} b_k z^{-k}}{1 + \sum_{k=1}^{N-1} a_k z^{-k}} X(z)$$
$$= H(z)X(z)$$

Fonction de transfert d'un système décrit par son équation aux différences

La fonction de transfert du système (1) est :

$$H(z) = \frac{\sum_{k=0}^{M-1} b_k z^{-k}}{1 + \sum_{k=1}^{N-1} a_k z^{-k}} = \frac{B(z)}{A(z)}$$

Fonction de transfert d'un système décrit par son équation aux différences

- La fonction de transfert d'un filtre (réalisable) est une fonction de transfert rationnelle.
- A partir de l'équation aux différences, on peut trouver directement $H(e^{j\omega}) = H(z)|_{z=e^{j\omega}}$.
- h[n] étant la réponse à une entrée $x[n] = \delta[n]$, et comme $\mathcal{Z}\{\delta[n]\} = 1$, on obtient que :

$$\mathcal{Z}\{h[n]\}=H(z)$$

■ On peut étendre le résultat à toutes séquences x[n] et h[n] de carré sommable : soit y[n] = x[n] * h[n] :

$$\mathcal{Z}\{y[n]\} = Y(z) = X(z)H(z)$$

Transformée en z et Causalité

Equation aux différences : "variante" anticausale

Soit l'équation (1) réécrite sous la forme : $\sum_{k=0}^{N-1} a_k y[n-k] = \sum_{k=0}^{M-1} b_k x[n-k]$ En posant

 $a_k':a_k/a_{N-1}$ et $b_k':b_k/a_{N-1},$ on peut la réécrire sous la forme :

$$y[n-N+1] = \sum_{k=0}^{M-1} b'_k x[n-k] - \sum_{k=0}^{N-2} a'_k y[n-k]$$

Soit, en posant m = n - N + 1

$$y[m] = \sum_{k=N-M}^{N-1} b'_k x[m+k] - \sum_{k=1}^{N-1} a'_k y[m+k]$$

Et donc, dans cette "version" de l'équation, y[m] dépend des valeurs **futures** des entrées et sorties, et on a une version *non-causale* du filtrage.

Transformée en z et Causalité

Les valeurs (de z) pour les quelles la transformée en z existe déterminent la causalité du signal sous-jacent

Le filtre précédent peut "être vu" comme étant causal ou anticausal. Cette "ambiguité" peut se voir dans la transformée en z:

$$x_1[n] = u[n]; x_2[n] = \delta[n] - u[-n]$$

$$\Rightarrow X_1(z) = \frac{1}{1 - z^{-1}}; X_2(z) = 1 - \sum_{n=1}^{\infty} z^{-(-n)} = 1 - \frac{1}{1 - z} = \frac{1}{1 - z^{-1}}$$

Formellement $X_1(z)=X_2(z)$ mais $X_1(z)$ converge pour |z|<1 et $X_2(z)$ converge pour |z|>1 !

ROC: Region Of Convergence

Région de convergence (ROC) est

l'ensemble des points du plan complexe où $\sum_{n=-\infty}^{\infty} x[n]z^{-n}$ converge.

$$z \in \mathsf{ROC}\{X(z)\} \Leftrightarrow \sum_{n=-\infty}^{\infty} |x[n]z^{-n}| < \infty$$

ROC: Propriétés (1)

La ROC a une symétrie circulaire

la somme
$$\sum_{n=-\infty}^{\infty} |x[n]z^{-n}|$$
 ne dépend que de $|z|$

Donc, si $z_0 \in ROC\{\}$ il en est de même pour $\{ztq|z| = |z_0|\}$.

La ROC d'un signal à support fini est le plan complexe:

Soit
$$X(z) = \sum_{n=-N}^{M} x[n]z^{-n} = \sum_{n=1}^{N} x[n]z^{n} + \sum_{n=0}^{M} \frac{x[n]}{z^{n}} = X_{a}(z) + X_{c}(z)$$
 (M, N finis)

X(z) étant un polynome d'ordre fini, il converge (sauf en z=0 et $z=\infty$) .

■ La ROC d'un signal causal s'étend à l'infini

Soit
$$X_c(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$$
 et z_0 une valeur telle que $X_c(z_0)$ converge, alors, si z_1

telle que
$$|z_1| > |z_0|$$

$$|x[n]z_1^{-n}| < |x[n]z_0^{-n}|$$

et $X_c(z)$ converge pour tout $|z_1| > |z_0|$.

ROC: Propriétés (2)

La ROC d'un signal anticausal est un disque

Soit $X_a(z) = \sum x[n]z^n$ et z_0 une valeur telle que $X_c(z_0)$ converge, alors, si z_1 telle que $|z_1| < |z_0|$:

$$|x[n]z_1^n| < |x[n]z_0^n|$$

et $X_a(z)$ converge pour tout $|z_1| < |z_0|$.

signal anticausal

Figure: Régions de convergence (zone grisée)

La ROC indique si un filtre est stable

Un filtre LTI est stable si la ROC inclut le cercle unité (z = 1)

Filtre LTI BIBO stable
$$\Leftrightarrow \sum |h[n]| < \infty$$
 et

Donc, le filtre est stable ssi :

$$H(z)$$
 converge ssi $\sum |h[n]z^{-n}|\Big|_{|z|=1} < \infty$

La ROC d'un filtre rationnel $H(z) = \frac{B(z)}{A(z)}$

Dans $H(z) = \frac{B(z)}{A(z)}$, seuls les *zéros* de A(z) (toutes les valeurs z_i telles que $A(z_i) = 0$) peuvent faire diverger H(z).

On appelle ces valeurs les **pôles** de H(z).

Un filtre est stable si ses pôles sont à l'intérieur du cercle unité

Soit un filtre rationnel causal :

- Soient p_i les pôles de H(z) et p_o tel que $|p_o| \ge |p_i|, \forall i$
- La ROC comprend tout le plan complexe depuis le cercle $|z| = |p_0|$ exclu, jusque l'infini.
- lacksquare Si $|p_o| < 1$, la ROC comprend le cercle unité (|z| = 1)
- Donc, si TOUS les pôles sont dans le cercle unité, H(z) converge sur |z|=1 et H(z) est BIBO stable

Diagramme des pôles et zéros : un outil pour la stabilité

Soit h[n] un filtre causal à coefficients réels et à représentation par fraction rationnelle en $z: H(z) = \frac{B(z)}{A(z)}$.

Pour tout polynôme à coefficients réels, si z_0 est un zéro, z_0^* l'est également. On a donc que, pour les filtres à coefficients réels,

- les pôles et zéros sont :
 - soit réels
 - soit viennent en paires conjuguées $((z_o, z_o^*)$ ou (p_o, p_o^*)).
- Les filtres FIR n'ont que des zéros.

filtre IIR à valeurs réelles (stable)

filtre IIR à valeurs réelles (instable)

filtre FIR à valeurs réelles

Zéros des FIR à phase linéaire

Filtres FIR à phase linéaire et à coefficients réels

$$H(e^{\jmath\omega})=B(e^{\jmath\omega})e^{-\jmath(\omega au+\phi)}, B(e^{\jmath\omega})$$
 réel $, au,\phi$ constants.

si z_0 est un zéro de H(z), $\frac{1}{z_0}$ l'est également.

$$H(z_0) = 0 \Rightarrow H(z_0^*) = H(\frac{1}{z_0}) = H(\frac{1}{z_0^*}) = 0$$

Diagramme des pôles et zéros - réponse fréquentielle

Soit
$$H(z) = H_0 z^{N-M} \frac{\prod_{l=1}^{M} (z-z_l)}{\prod_{i=1}^{N} (z-p_i)}$$
 où z_l and p_i sont les zéros et pôles $H(z)$.

Dans le domaine fréquentiel :

$$\begin{split} H(e^{j\omega}) &= H_o e^{j\omega(N-M)} \frac{\prod_{l=1}^M (e^{j\omega} - z_l)}{\prod_{l=1}^N (e^{j\omega} - p_l)} \\ &|H(e^{j\omega})| = |H_o| \frac{\prod_{l=1}^M |e^{j\omega} - z_l|}{\prod_{l=1}^N |e^{j\omega} - p_l|} \\ \text{and } \Theta(\omega) &= \omega(N-M) + \sum_{l=1}^M \angle (e^{j\omega} - z_l) - \sum_{l=1}^N \angle (e^{j\omega} - p_l) \end{split}$$

Zéro: interprétation graphique

Soit
$$H(z)$$
 en z_0 : $H(z) = A.(1 - z_0.z^{-1}) = Az^{-1}(z - z_0)$:
$$H(e^{j\omega}) = A.e^{-j\omega}(e^{j\omega} - z_0),$$

avec

$$|H(e^{j\omega})| = |A| \cdot |e^{j\omega} - z_0|$$

$$\angle H(e^{j\omega}) = -\omega + \angle (e^{j\omega} - z_0)$$

On reconnait que $|e^{j\omega}-z_o|$ est la distance entre le point $e^{j\omega}$ (qui est sur le cercle unité) et le point z_o , et $\angle(e^{j\omega}-z_o)$, l'angle entre ces deux points.

Zéros: interprétation graphique

Pour $H(z)=(z-z_0)$, réponse en $\omega=\omega_0$

Pôle: interprétation graphique

Soit
$$H(z)$$
 en $p_0: H(z) = \frac{1}{(z-p_0)}$:

$$H(e^{j\omega})=rac{1}{e^{j\omega}-p_o},$$

avec

$$|H(e^{j\omega})| = \frac{1}{|e^{j\omega} - p_o|}$$

$$\angle H(e^{j\omega}) = -\angle (e^{j\omega} - p_o)$$

On reconnait que $|e^{j\omega}-p_o|$ est la distance entre le point $e^{j\omega}$ (qui est sur le cercle unité) et le point p_o , et $\angle(e^{j\omega}-p_o)$, l'angle entre ces deux points.

Pôle: interprétation graphique

Pour
$$H(z) = \frac{1}{z-\rho_2}$$
, réponse en $\omega = \omega_0$

Exemple avec 2 zéros et 4 pôles

Rappels de variables aléatoires

Variable aléatoire

Une variable aléatoire X, à valeurs réelles, est caractérisée par

■ Sa fonction de répartition (Cumulative Density Function : cdf)

$$F_X(x) = \mathbb{P}(X \le x), \quad x \in \mathbb{R}$$

Sa densité de probabilité - dans le cas continu (Probability Density Function : pdf)

$$f_X(x) = \frac{dF_X(x)}{dx}, \qquad x \in \mathbb{R}$$

Et donc:

$$F_X(x) = \int_{-\infty}^x f_X(t) \, dt$$

Espérance et statistiques d'ordre 2

Espérance mathématique

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx = m_X$$

L'espérance est linéaire, de plus si on a une fonction g(x) de $\mathbb R$ dans $\mathbb R$:

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

Corrélation

$$R_{XY} = E[XY]$$

Les v.a. sont dites décorrélées si :

$$\mathrm{E}[XY] = \mathrm{E}[X]\,\mathrm{E}[Y]$$

Espérance et statistiques d'ordre 2

Covariance

$$K_{XY} = \operatorname{cov}[X, Y] = \operatorname{E}[(X - m_X)(Y - m_Y)]$$

= \text{E}[XY] - \text{E}[X] \text{E}[Y]

Les v.a. sont dites décorrélées si :

$$E[XY] = E[X]E[Y]$$

Variance

$$\sigma_X^2 = \mathrm{E}\big[(X - m_X)^2\big]$$

Vecteurs aléatoires

Un vecteur aléatoire

X est une colleciton de *N* variables aléatoires $[X_o, X_1, \cdots, X_{N-1}]^T$, telles que la cdf $F_{\mathbf{X}}(\mathbf{x})$, où $\mathbf{x} = [x_o, x_1, \cdots x_{N-1}]^T \in \mathbb{R}^N$, vaut :

$$F_{\mathbf{X}}(\mathbf{x}) = \mathbb{P}(X_i < x_i, i = 0, \dots N-1)$$

En supposant que la cdf est différentiable, la pdf vaut :

$$F_{\mathbf{X}}(\mathbf{x}) = \frac{\partial^{N}}{\partial x_{0}, \partial x_{1}, \dots, \partial x_{N-1}} F_{\mathbf{X}}(x_{0}, x_{1}, \dots, x_{N-1})$$

Indépendance - distribution identique

Les éléments X_i sont indépendants ssi

$$f_{X_0,X_1,\dots,X_{N-1}}(x_0,x_1,\dots,x_{N-1})=f_{X_0}(x_0).f_{X_1}(x_1)....f_{X_{N-1}}(x_{N-1})$$

éléments i.i.d. : indépendants et identiquement distribués

Les X_i sont i.i.d. s'ils sont indépendants et ont la même distribution :

$$f_X(x_i) = f(x_i) \quad \forall i$$

Espérance mathématique et statistiques d'ordre 2

Statistiques d'ordre deux

Soit **X** un vecteur aléatoire, son espérance vaut :

$$\mathbf{E}[\mathbf{X}] = \left[\mathbf{E}[X_o], \mathbf{E}[X_1] \cdots \mathbf{E}[X_{N-1}]\right]^T = \mathbf{m}_X$$

La matrice de corrélation entre deux vecteurs aléatoires X et Y vaut :

$$\mathbf{R}_{XY} = \mathrm{E} \Big[\mathbf{X} \mathbf{Y}^T \Big]$$

La matrice de covariance vaut :

$$\mathbf{K}_{XY} = \mathrm{E} \Big[(\mathbf{X} - \mathbf{m}_X) (\mathbf{Y} - \mathbf{m}_Y)^T \Big]$$

Vecteur Gaussien

Soit un vecteur ${\bf m}$ de dimension ${\it N}$ et une matrice ${\bf \Lambda}$ de dimension ${\it N} \times {\it N}$. ${\bf X}$ est un vecteur Gaussien de moyenne ${\bf m}$ et d'autocorrélation ${\bf \Lambda}$, si sa pdf est donnée par :

$$f_{\chi}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^N |\mathbf{\Lambda}|}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{m})^T \mathbf{\Lambda}^{-1}(\mathbf{x} - \mathbf{m})}, \qquad \mathbf{x} \in \mathbb{R}^N$$

Vecteur Gaussien

$$f_X(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^N |\mathbf{\Lambda}|}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{m})^T \mathbf{\Lambda}^{-1}(\mathbf{x} - \mathbf{m})}, \quad \mathbf{x} \in \mathbb{R}^N$$

Si $N = 1$, $\mathbf{m} = m_X$, $\mathbf{\Lambda} = \sigma^2$: revient à la Gaussienne scalaire!
Si $N = 2$, $\mathbf{m} = 0$ et $\mathbf{\Lambda} = \begin{bmatrix} \sigma^2 & 0 \end{bmatrix}$.

Si
$$N=2$$
, $\mathbf{m}=\mathbf{0}$ et $\mathbf{\Lambda}=\left[\begin{array}{cc}\sigma^2 & 0\\ 0 & \sigma^2\end{array}\right]$:

$$f_{X}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^{2}\sigma^{4}}} e^{-\frac{1}{2}[x_{o}x_{1}]} \begin{bmatrix} \sigma^{2} & 0 \\ 0 & \sigma^{2} \end{bmatrix}^{-1} \begin{bmatrix} x_{o} \\ x_{1} \end{bmatrix}$$

$$= \frac{1}{\sqrt{(2\pi)^{2}\sigma^{4}}} e^{-\frac{1}{2}\frac{x_{o}^{2}}{\sigma^{2}}} e^{-\frac{1}{2}\frac{x_{1}^{2}}{\sigma^{2}}}$$

$$= \left(\frac{1}{\sqrt{(2\pi)\sigma^{2}}} e^{-\frac{1}{2}\frac{x_{o}^{2}}{\sigma^{2}}}\right) \times \left(\frac{1}{\sqrt{(2\pi)\sigma^{2}}} e^{-\frac{1}{2}\frac{x_{1}^{2}}{\sigma^{2}}}\right)$$

$$= f_{X_{o}}(x_{o}) \times f_{X_{1}}(x_{1})$$

Et on voit que si Λ est diagonale, on a des v.a. Gaussiennes indépendantes (ici i.i.d.). Les éléments "hors diagonale" de Λ représente la corrélation entre les éléments du vecteur (ici X_0 et X_1).

Intuitivement, un processus aléatoire est un vecteur aléatoire $[X_o, X_1, ... X_{N-1}]$, où chaque $X_n = X[n]$ est un échantillon du signal $\{X[n], n \in \mathbb{Z}\}$. Un processus est donc défini par la spécification de tous les vecteurs $[X[i_o], X[i_1], ... X[i_{k-1}]]$, pour tout $k \in \mathbb{N}$ et toute combinaison possible de i_k ! Soit

$$f_{X[i_o],X[i_1],...X[i_{k-1}]}(x_o,x_1,....x_{k-1})$$

On considèrera souvent des processus i.i.d. si les échantillons sont des v.a. i.i.d. :

$$f_{X[i_0],X[i_1],...X[i_{k-1}]}(x_0,x_1,....x_{k-1}) = \prod_{i=0}^{k-1} f(x_i)$$

Description au second ordre

moyenne, corrélation, covariance

- **moyenne** : $m_{X[n]} = E[X[n]]$, dépend en général de n
- (auto-)corrélation : $R_X[l,k] = E[X[l]X[k]]$, $l,k \in \mathbb{Z}$
- (auto-)covariance : $K_X[l,k] = \mathrm{E}\big[(X[l]-m_{X[l]})(X[k]-m_{X[k]})\big] \\ = R_X[l,k]-m_{X[l]}m_{X[k]} \quad l,k\in\mathbb{Z}$
- **cross-corrélation** : soit X[n] et Y[n] : $R_{XY}[I,k] = E[X[I]Y[k]]$

Stationarité et Ergodisme

Stationarité

Stationarité au sens strict : La description probabiliste ne dépend pas du temps (de n) ...

Stationarité à l'ordre deux - Stationarité au sens large

$$E[X[n]] = m_X, \quad n \in \mathbb{Z}$$

$$E[(X[n] - m_X)^2] = \sigma_X^2, \quad n \in \mathbb{Z}$$

$$R_X[l, k] = r_X[l - k] \quad l, k \in \mathbb{Z}$$

$$k_X[l, k] = k_X[l - k] \quad l, k \in \mathbb{Z}$$

Stationarité et Ergodisme

Ergodisme

Moyenne d'ensemble = moyenne temporelle

Un processus est ergodique (au sens large) si :

Il est stationnaire (au sens large)

•
$$m_X = E[X[n]] = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x[n]$$

$$T_X[l-k] = E[X[l]X[k]] = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x[n]x[n-(l-k)]$$

Les processus Gaussiens ($\mathbf{X} = [X[0], X[1], \cdots, X[k-1]]$ est un vecteur Gaussien) sont ergodiques.

Utilité de l'ergodisme : on peut travailler sur une seul réalisation de $\{X[n]\}$!

Signaux de puissance

Les signaux stationnaires sont à énergie infinie

En effet
$$\sigma_X^2 = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x[n] x[n]$$
, et donc l'énergie $\sum_{n=N}^{N} x[n]^2$ est infinie!

On appelle ses signaux des signaux de puissance.

D'autre part

$$E\left[\frac{1}{2N+1}\sum_{n=-N}^{N}X[n]^{2}\right] = \frac{1}{2N+1}\sum_{n=-N}^{N}E\left[X[n]^{2}\right]$$
$$= \frac{1}{2N+1}\sum_{n=-N}^{N}\sigma^{2}$$
$$= \sigma^{2}$$

Et donc σ^2 représente la **puissance**

Densité spectrale de puissance (DSP)

Un signal tronqué x[n] a une représentation spectrale :

$$X_N(e^{j\omega}) = \sum_{n=-N}^N x[n]e^{-j\omega n}$$

Densité spectrale de puissance

$$P(e^{j\omega}) = \lim_{N \to \infty} \frac{1}{2N+1} E\Big[|X_N(e^{j\omega})|^2 \Big]$$

 $P(e^{j\omega})$ est périodique de période 2π , réel et positif.

Si X[n] est périodique de période M:

$$P(e^{j\omega}) = \sum_{k=0}^{M-1} |S[k]|^2 \delta\left(\omega - \frac{2\pi}{M}k\right)$$

DSP d'un processus stationnaire

On peut réécrire la DFT "au carré" d'un "morceau" du processus X[n]:

$$|X_N(e^{j\omega})|^2 = \left|\sum_{n=-N}^N X[n]e^{-j\omega n}\right|^2$$

qui peut être interprété comme une distribution locale d'énergie, et est une variable aléatoire, fonction de la pulsation ω .

On peut donc calculer sa moyenne:

$$\begin{split} \mathbf{E}\Big[|X_N(\mathbf{e}^{\jmath\omega})|^2\Big] &= \mathbf{E}\big[X_N^*(\mathbf{e}^{\jmath\omega})X_N(\mathbf{e}^{\jmath\omega})\big] \\ &= \mathbf{E}\left[\sum_{n=-N}^N X[n]\mathbf{e}^{\jmath\omega n}\sum_{m=-N}^N X[m]\mathbf{e}^{-\jmath\omega m}\right] \\ &= \sum_{n=-N}^N \sum_{m=-N}^N \mathbf{E}[X[n].X[m]]\,\mathbf{e}^{\jmath\omega n}\mathbf{e}^{-\jmath\omega m} \\ &= \sum_{n=-N}^N \sum_{m=-N}^N r_X[m-n]\mathbf{e}^{-\jmath\omega(m-n)} \end{split}$$

DSP d'un processus stationnaire

On peut alors réécrire cette expression en fonction de k = m - n:

$$E[|X_N(e^{j\omega})|^2] = \sum_{k=-2N}^{2N} (2N+1-|k|) r_X[k] e^{-j\omega k}$$

Et la DSP s'écrit alors :

$$P_X(e^{j\omega}) = \lim_{N \to \infty} \left\{ \frac{1}{2N+1} \mathbb{E} \left[|X_N(e^{j\omega})|^2 \right] \right\}$$
$$= \lim_{N \to \infty} \sum_{k=-2N}^{2N} \left(1 - \frac{|k|}{2N+1} \right) \left(r_X[k] e^{-j\omega k} \right)$$
$$= \lim_{N \to \infty} \sum_{k=-\infty}^{\infty} w_k(N) r_X[k] e^{-j\omega k}$$

Avec
$$w_k(N) = \begin{cases} 1 - \frac{|k|}{2N+1}, & |k| \leq 2N \\ 0, & |k| > 2N \end{cases}$$

DSP d'un processus stationnaire

On constate que $\lim_{N \to \infty} w_k(N) = 1$, et donc :

DSP d'un processus stationnaire

$$P_X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} r_X[k]e^{-j\omega k}$$

La Densité Spectrale de Puissance d'un processus stationnaire est

La transformée de Fourier de sa fonction d'autocorrélation

Bruit Blanc

Un bruit blanc est un processus stationnaire au sens large, tel que les W[n] sont $d\acute{e}corr\'el\'es$. de moyenne nulle. Donc :

$$r_W[n] = \sigma_X^2 \delta[n]$$

et

$$P_W(e^{j\omega}) = \sigma_W^2$$

- \blacksquare la densité de probabilité de W[n] peut être quelconque (mais à moyenne nulle)
- W[n] ne doit pas nécessairement être i.i.d.
- un bruit blanc est ergodique, on peut donc estimer sa densité à partir d'une seule réalisation!

Filtrage de processus stochastiques

Soit un processus stationnaire au sens large (SSL) X[n], filtré par un filtre LTI de réponse impulsionnelle h[n]:

$$Y[n] = \sum_{k=-\infty}^{\infty} h[k]X[n-k]$$

Moyenne de la sortie

$$m_{Y[n]} = \mathbb{E}[Y[n]] = \mathbb{E}\left[\sum_{k=-\infty}^{\infty} h[k]X[n-k]\right] = \sum_{k=-\infty}^{\infty} h[k]\mathbb{E}[X[n-k]]$$

$$m_{Y} = m_{X} \sum_{k=-\infty}^{\infty} h[k] = m_{X}H(e^{j0})$$

La moyenne ne dépend pas du temps !

La moyenne de la sortie (sa composante continue) est la composante continue de l'entrée multiplié par $H(e^{j\omega})$ à la fréquence 0.

Filtrage de processus stochastiques

Autocorrélation de la sortie

On peut "aisément" montrer que

$$R_Y[n,m] = r_y[n-m]$$

et

$$r_Y[n] = \sum_{k=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} h[k]h[i]r_X[n-i+k]$$

soit:

$$r_Y[n] = h[n] * h[-n] * r_X[n]$$

De même

$$r_{XY}[n] = h[n] * r_X[n]$$

Les filtres LTI préservent la stationnarité

Si X[n] est SSL, alors, Y[n] = X[n] * h[n] est stationnaire.

Réponse fréquentielle d'un filtre LTI

De l'expression : $r_Y[n] = h[n] * h[-n] * r_X[n]$, on déduit :

$$P_Y(e^{j\omega}) = |H(e^{j\omega})|^2 P_X(e^{j\omega})$$

de même

$$P_{XY}(e^{j\omega}) = H(e^{j\omega})P_X(e^{j\omega})$$

Supposons que X[n] est un bruit blanc $(P_X(e^{j\omega}) = \sigma_X^2 = r_X[0])$, on peut alors facilement identifier les caractéristique du filtre :

$$P_{XY}(e^{j\omega}) = H(e^{j\omega})\sigma_X^2$$

La puissance est l'intégrale de la DSP

$$\sigma_X^2 = r_X[0] = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_X(e^{j\omega}) e^{j\omega(n=0)} d\omega$$

$$\sigma_Y^2 = r_Y[0] = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_X(e^{j\omega}) |H(e^{j\omega})|^2 d\omega$$

Application au débruitage: filtre de Wiener

Soient S[n], un signal d'intérêt, bruité par W[n] pour donner X[n] = S[n] + W[n]. Tous les signaux sont supposés SSL.

L'objectif est de filtrer X[n] pour trouver $\hat{S}[n]$ le plus proche possible de S[n].

Selon le figure ci-dessus,

$$\hat{S}[n] = h[n] * X[n]$$

$$\Delta[n] = S[n] - \hat{S}[n]$$

Et on désire minimiser $E[|\Delta[n]|^2]$. On peut montrer que c'est équivalent à remplir la **condition d'orthogonalité** entre l'erreur et la sortie :

$$E[\Delta[n]X[m]] = 0 \Rightarrow E[S[n]X[m]] = E[\hat{S}[n]X[m]]$$

filtre de Wiener

Sachant que $r_{SX}[n] = r_{\hat{S}X}[n] = h[n] * r_X[n]$, et que le signal et le bruit sont indépendants ::

$$r_{SX}[n] = r_{S}[n]$$

$$r_{X}[n] = r_{S}[n] + r_{W}[n]$$

On obtient:

$$\begin{split} P_{\mathcal{S}}(e^{\jmath\omega}) &= H(e^{\jmath\omega}) \times (P_{\mathcal{S}}(e^{\jmath\omega}) + P_{\mathcal{W}}(e^{\jmath\omega})) \\ \Rightarrow \\ H(e^{\jmath\omega}) &= \frac{P_{\mathcal{S}}(e^{\jmath\omega})}{P_{\mathcal{S}}(e^{\jmath\omega}) + P_{\mathcal{W}}(e^{\jmath\omega})} \end{split}$$

Ce résultat est donné pour le cas général. En nous limitant au FIR d'ordre N-1, $r_{SX}[n] = h[n] * r_X[n]$ s'écrit :

$$\sum_{k=0}^{N-1} h[k] r_{X}[n-k] = r_{S}[n]$$

Soit, sous forme matricielle:

$$\begin{bmatrix} r_X[0] & r_X[1] & \cdots & r_X[N-1] \\ r_X[1] & r_X[0] & \cdots & r_X[N-2] \\ r_X[2] & r_X[1] & \cdots & r_X[N-3] \\ \vdots & \vdots & \ddots & \vdots \\ r_X[N-1] & r_X[N-2] & \cdots & r_X[0] \end{bmatrix} \begin{bmatrix} h[0] \\ h[1] \\ h[2] \\ \vdots \\ h[N-1] \end{bmatrix} = \begin{bmatrix} r_S[0] \\ r_S[1] \\ r_S[2] \\ \vdots \\ r_S[N-1] \end{bmatrix}$$

Exemple : débruitage de signaux

On prend deux sinusoïdes aux fréquences f_1 et f_2 , d'amplitude 2 et 1 : la puissance vaut 2.5

On ajoute un bruit blanc de puissance 25.

Le rapport signal/bruit est donc de $10 \log_{10}(\frac{2.5}{25}) = -10$.

En sortie, on obtient un SNR d'environ 4 db : Gain en SNR de -14 dB !

Voir le programme python sur Jalon.

Exemple : débruitage de signaux

Du temps discret au temps continu (et vice versa)

- \blacksquare T_s : période d'échantillonnage (en s)
- $F_s = \frac{1}{T_s}$ (en éch/sec, parfois exprimé en Hz).
- $\Omega_s = 2\pi/T_s$

Corrélation et convolution

Comme pour les signaux discrets, si le signal s(t) est de carré intégrable :

Corrélation (produit intérieur)

Soient deux signaux s(t) et v(t) de carré intégrable, leur produit intérieur est :

$$< s(t), v(t) > = \int_{-\infty}^{\infty} s^*(t)v(t)dt$$

Convolution

Soient deux signaux s(t) et v(t) de carré intégrable, leur produit convolution est :

$$(s*v)(t) = < s(t-\tau), v(\tau) > = \int_{-\infty}^{\infty} s^*(t-\tau)v(\tau)d\tau$$

L'opérateur de convolution est LTI!

Représentation fréquentielle des signaux à temps continu

De manière similaire au cas discret :

$$X(\jmath\Omega) = \int_{-\infty}^{\infty} x(t)e^{-\jmath\Omega t}dt$$

$$X(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega$$

Ces intégrales convergent pour les signaux de carré intégrable (à énergie fine). On peut l'étendre aux signaux de puissance (à énergie infinie et à puissance finie), à l'aide de la fonction généralisée de Dirac :

$$\mathsf{TF}\{e^{j\Omega_O t}\} = 2\pi\delta(\Omega - \Omega_O)$$

On utilise:

- \blacksquare Ω (et F) pour les signaux continus
- \blacksquare Ω (et F) pour les signaux à temps discret (T_s spécifié)
- lacksquare ω (et f) pour les signaux discrets
- \blacksquare ω (et f) la pulsation (fréquence) réduite

$$\triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle$$

Théorème de convolution

Toujours de manière similaire au cas des signaux discrets, on a la paire de transformées de Fourier :

$$(s*v)(t) \rightleftharpoons S(\jmath\Omega)V(\jmath\Omega)$$

Signaux à bande limitée

Un signal à bande limitée est tel que :

$$X(\jmath\Omega) = 0; \qquad \forall |\Omega| \geq \Omega_N$$

On appellera $F_N = \frac{\Omega_N}{2\pi}$ la fréquence de Nyquist.

Notez qu'un signal peut également être à durée finie, ne peut être "à la fois" à durée finie et à bande limitée :

$$s(at) = \frac{1}{a}S\left(j\frac{\Omega}{a}\right)$$

Prototype de Signal à Bande limitée et fonction SINC

Fonction porte

$$\Pi_T(t) = \begin{cases} 1 & |t| \le \frac{T}{2} \\ 0 & |t| > \frac{T}{2} \end{cases}$$

On peut alors définir la TF d'un signal s(t) à bande limitée comme :

$$S(j\Omega) = \frac{\pi}{\Omega_N} \Pi_{2\Omega_N}(\Omega)$$

et s(t) est sa transformée inverse :

$$s(t) = \frac{\sin \Omega_N t}{\Omega_N t} = \operatorname{sinc}\left(\frac{t}{T_s}\right) = \operatorname{sinc}(2tF_N)$$

où la fonction sinc (sinus cardinal) est définie par :

$$\operatorname{sinc}(x) = \begin{cases} \frac{\sin(\pi x)}{\pi x} & x \neq 0\\ 1 & x = 0 \end{cases}$$

Signal à bande limitée

$$F_N = \frac{\Omega_N}{2\pi}$$
; $T_s = \frac{\pi}{\Omega_N} = \frac{1}{2F_N} = \frac{1}{F_s}$

Interpolation "locale": filtrage

Fonction d'interpolation

$$x(t) = \sum_{n = -\infty}^{\infty} x[n] I\left(\frac{t - nT_s}{T_s}\right)$$

Avec I(0) = 1; I(k) = 0 (k entier non nul) \Rightarrow

$$x(t)|_{t=nTs}=x[n]$$

Exemple :
$$I(t) = \Pi_1(t) :\Rightarrow I\left(\frac{t}{T_s}\right) = \Pi_{T_s}(t)$$

Bloqueur d'ordre 0

Bloqueur du premier ordre - interpolation linéaire

$$I_1(t) = (1 - |t|)\Pi_2(t)$$
 $(= I_o(t) * I_o(t)))$

Théorème d'échantillonnage

Théorème d'échantillonnage

Soit x(t) un signal à temps continu et à bande limtée Ω_N , alors $x[n] = x(nT_s)$, avec $T_s \leq \frac{\pi}{\Omega_N}$ représente complètement x(t) et :

$$x(t) = \sum_{n = -\infty}^{\infty} x[n] \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right)$$

La preuve demande quelques préliminaires ... Soit le signal **échantillonné** :

$$x_{s}(t) = \sum_{n=-\infty}^{\infty} x(nT_{s})\delta(t - nT_{s}) = x(t). \coprod_{T_{s}}(t)$$

Peigne de Diracs et sa Série de Fourier

Peigne de Diracs

Peigne de Diracs : Diracs se répétant à la période T_s

$$III_{T_s}(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$$

$\coprod_{T_s}(t)$ périodique : Série de Fourier

$$\begin{aligned} \mathrm{III}_{T_{S}}(t) &= \sum_{n} S_{n} e^{\jmath 2\pi n f_{e} t}; S_{n} &= \frac{1}{T_{S}} \int_{-T_{e}/2}^{T_{S}/2} \mathrm{III}_{T_{S}}(t) e^{-\jmath 2\pi n f_{e} t} dt \\ &= \frac{1}{T_{S}} \int_{-T_{e}/2}^{T_{S}/2} \delta(t) e^{-\jmath 2\pi n f_{e} t} dt = \frac{1}{T_{S}} \end{aligned}$$

Peigne de Diracs et sa Transformée de Fourier

$$\begin{aligned} \text{TF}^{-1}[\delta(f+f_o)] &= \int_{-\infty}^{\infty} e^{\jmath 2\pi f t} \delta(f+f_o) df = e^{-\jmath 2\pi f_o t} \text{(intégrand avec } f+f_o=0) \\ &\Rightarrow \quad e^{-\jmath 2\pi f_o t} \rightleftharpoons \delta(f+f_o) \\ &\text{III}_{T_s}(t) \rightleftharpoons \sum_n \frac{1}{T_s} e^{\jmath 2\pi n f_o t} \rightleftharpoons \frac{1}{T_s} \sum_n \delta(f+nf_o) \end{aligned}$$

Peigne de Diracs en fréquence

Soit x(t), de spectre $X(\Omega)$, alors :

Le signal échantillonné :

$$x_{s}(t) = \sum_{n=-\infty}^{\infty} x(nT_{s})\delta(t - nT_{s}) = x(t). \coprod_{T_{s}}(t)$$

a comme spectre

$$X_s(\Omega) = X(\Omega) * \mathsf{TF}[\coprod_{T_s}(t)]$$

$$X_s(\Omega) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X(\Omega - \frac{2\pi}{T_s}k)$$

et le signal discret :

$$x_d[n] = x(nT_s)$$

a comme spectre

$$X_d(e^{j\omega}) = \sum_{k=-\infty}^{\infty} X(T_s\Omega - 2\pi k) = \sum_{k=-\infty}^{\infty} X(\omega - 2\pi k) = \sum_{k=-\infty}^{\infty} X(f - k)$$

De la répétition du spectre au théorème de Shannon

Si $X(\Omega)$ est à bande limitée de bande $\Omega_N=\frac{\pi}{T_s}$, on obtient $X_s(\Omega)$ selon la figure suivante :

Il suffit alors, pour retrouver le spectre initial, de filtrer par un filtre idéal de largeur Ω_N .

Interpolation idéale : filtrage

On obtient alors :
$$x(t) = x(nTs) * TF^{-1}[\Pi_{\Omega_N}(\Omega)]$$

or $TF^{-1}[\Pi_{\Omega_N}(\Omega)] = \frac{\Omega_N}{\pi} \mathrm{sinc}\left(\frac{\Omega_N.t}{\pi}\right) = T_s \mathrm{sinc}\left(\frac{t}{T_s}\right)$, on obtient donc :
$$x(t) = \sum_{n=-\infty}^{\infty} x[n] \mathrm{sinc}\left(\frac{t-nT_s}{T_s}\right)$$

C.Q.F.D.

De la répétition du spectre au repli de spectre

