## Aufgabe 2

Beweisen Sie die folgenden Gleichungen für reguläre Ausdrücke r, s und t  $(r \equiv s$  bedeutet L(r) = L(s)):

a) 
$$r \mid s \equiv s \mid r$$

b) 
$$(r \mid s) \mid t \equiv r \mid (s \mid t)$$

c) 
$$(rs)t \equiv r(st)$$

d) 
$$r(s \mid t) \equiv rs \mid rt$$

e) 
$$\emptyset^* \equiv \varepsilon$$

f) 
$$(r^*)^* \equiv r^*$$

g) 
$$r^* \equiv rr^* \mid \varepsilon$$

h) 
$$(\varepsilon \mid r)^* \equiv r^*$$

Die Sprache  $\mathbf{L}(\alpha)$  eines regulären Ausdrucks  $\alpha$  ist induktiv definiert:

$$L(\emptyset) = \emptyset$$

$$\mathbf{L}(\epsilon) = \{\epsilon\}$$

$$L(a) = \{a\}$$
 für jedes  $a \in \Sigma$ 

$$L((\alpha\beta)) = L(\alpha) \circ L(\beta)$$

$$L((\alpha \mid \beta)) = L(\alpha) \cup L(\beta)$$

$$L((\alpha)^*) = L(\alpha)^*$$

iro

$$C)$$
  $C((rs)t) = C(rs) \circ C(t)$   
 $= C(r) \circ C(s) \circ C(t)$   
 $= C(r) \circ C(st)$   
 $= C(r(st)) D$ 

$$d) L(v(s(t))) \geq L(v) \circ L(s(t)) \geq L(v) \circ (c(s) \circ L(t))$$
  
 $\geq L(v) \circ L(s) \circ L(v) \circ L(t)$   
 $\leq L(v) \circ L(v) \circ L(v) \circ L(v)$ 

$$e((\phi^*) = \phi^0 \cup \phi^1 \cup \phi^2 \cup ...$$

$$= \{ \epsilon \} \cup \phi = \{ \epsilon \}$$

miro

$$f) L((r^{*})^{*}) = L(r^{*})^{*} = (L(r)^{*})^{*} = (L(r)^{*})^{*} = L(r^{*})^{*} = L(r^{*})^{$$

## Aufgabe 3

Geben Sie zu jedem der regulären Ausdrücke  $r_i$  einen NFA  $\mathcal{M}_i$  mit  $L(\mathcal{M}_i) = L(r_i)$  an.

a) 
$$r_1 = (ab)^*$$

b) 
$$r_2 = a(b \mid c)a^* \mid a^*$$

Wenden Sie dabei jeweils den kompositionellen Ansatz sowie den expliziten Ansatz zur Konstruktion von NFAs aus der Vorlesung an.

 $\frac{\xi}{4}$   $\frac{2}{4}$   $\frac{\xi}{4}$   $\frac{4}{4}$   $\frac{4}{4}$   $\frac{4}{4}$   $\frac{4}{4}$ 

Nach E-Elimi





miro

explizit:



Nach E-Ellmi





on NFAs

Aufgabe 4

Entwickeln Sie für die Sprache Lüber dem Alphabet  $\Sigma=\{a,b,c\}$ einen regulären Ausdruck rmit L=L(r). Für alle Wörter  $w\in L$ gilt:

- w enthält aaa
- w endet mit c.
- Die Anzahl der b in w ist gerade.







miro

## **Lemma (Arden):** Aus $\alpha \equiv \beta \alpha \mid \gamma \text{ mit } \epsilon \notin \mathbf{L}(\beta) \text{ folgt } \alpha \equiv \beta^* \gamma.$

Ardenni  $\alpha_3 = (aic)^* b \alpha_2$ Einsclein:  $\alpha_2 = (aic) \alpha_2 | b(aic)^* b \alpha_2 | \epsilon$   $\alpha_2 = (aic) (aic)^* b) \alpha_2 | \epsilon$ Ardeni  $\alpha_3 = (aic)^* b (aic)^* b)^*$ Einselzeni  $\alpha_3 = (aic)^* b (aic)^* b)^*$   $\alpha_1 = (aic) \alpha_1 | aaa \alpha_3 | bao$ Arden  $\alpha_1 = (aic)^* (aaaa_3 | bao)$ 

Einsetzenr  $d_0 = (alc) d_0 | ana d_2 | b d_1$   $d_0 \ge (alc) d_0 | ana d_2 | b (alc) + (ana d_3 | b d_0)$  $= |alc|b(alc) + b d_0 | ana d_2 | b (alc) + (ana d_3)$ 

Arakun dozlasciblale)\*b)\*(aaa az 16(ale)\*(aaa az))

Ensetzini do-falcib(alc)\*b)\*(ana (alc16(alc)\*b)\* | b(alc)\*(ana (alc)\*b (alc16(alc)\*b)\*))

 $\alpha = \alpha_0 C$