Examen de Matemática Discreta II 24 de febrero de 2010

Número de Examen	Cédula	Nombre y Apellido				

1. (25 puntos)

- a) (5 puntos) Enunciar el Teorema Chino del Resto.
- b) Sea $A = \{a_0, a_1, \dots, a_{10}\}$ un conjunto de once enteros positivos de hasta dos cifras y coprimos dos a dos. Un entero positivo se dice que es A-coherente si verifica la siguiente condición:

$$\frac{n+a_{i-1}}{a_i} \quad \text{es entero para } i=1,2,\dots,10.$$

- i) (15 puntos) Probar que existe un entero positivo A-coherente con a lo sumo 20 dígitos (es decir menor a 10^{20}).
- ii) (5 puntos) Probar que existen al menos 9 números A-coherentes con exactamente 21 dígitos.

2. (30 puntos)

- a) Sean G y H dos grupos finitos tal que |G| = m y |H| = n, y consideramos d = mcd(m, n). Consideramos $\varphi : G \to H$ morfismo de grupos. Probar que $x^d \in \text{ker}(\varphi)$, para todo $x \in G$.
- b) Sean G_1 y G_2 grupos finitos tales que $\operatorname{mcd}(|G_1|,|G_2|)=1$, y sean $\varphi_1:G_1\to H$, $\varphi_2:G_2\to H$. Probar que $\operatorname{Im}(\varphi_1)\cap\operatorname{Im}(\varphi_2)=\{e_H\}$.

3. (45 puntos)

- i) Describa el método de Diffie-Helmann para intercambio de claves.
- ii) Usted intercambia con su interlocutor una clave por el método Diffie-Helmann: fijan el primo n=61, y la base g=5. Usted elige el entero 4 y su interlocutor le envía el número 15 (módulo 61). ¿A qué clave común k arriban usted y su interlocutor?
- iii) Fijada la clave se comunicarán mediante el método de cifrado de Vigenère. La palabra clave se obtiene a partir de k (punto anterior) del siguiente modo: se descompone el entero k en factores primos, y se ordenan en forma creciente (poniendo los repetidos tantas veces como aparecen en la descomposición de k). Mediante la tabla siguiente se transforman los factores primos ordenados en caracteres y se obtiene la palabra clave. ¿Cuál es la palabra clave que se obtiene a partir de k?

A	В	С	D	E	F	G	Н	I	J	K	L	M	N
0	1	2	3	4	5	6	7	8	9	10	11	12	13
Ñ	О	Р	Q	R	S	Т	U	V	W	X	Y	Z	
14	15	16	17	18	19	20	21	22	23	24	25	26	27

iv) Desencripte el siguiente mensaje, que le ha enviado su interlocutor:

NCUGXCNLBRCPCTQGGOBSCOQGSWGGEKGTBXQRCOFV

 v) Respóndale a su interlocutor SABIAS PALABRAS encriptando el mensaje de acuerdo al método de cifrado pactado.

.