³⁴S(pol d,p) **1977Ab07**

 J^{π} =0⁺ for ³⁴S g.s.

1977Ab07: A vector-polarized 11.8-MeV deuteron beam was produced from the University of Wisconsin Lamb-shift polarized ion source and tandem accelerator. The target was a 90% enriched 34 S, $610-\mu g/cm^2$ thick, evaporated onto a $100-\mu g/cm^2$ gold foil and covered by a $50-\mu g/cm^2$ gold layer. The reaction products were detected using four ΔE -E counter telescopes of freon-cooled surface-barrier and Si(Li) detectors with FWHM \approx 60 keV. Measured $\sigma(E_p,\theta)$, iT₁₁(E_p,θ). Deduced levels, J, π , L-transfers, spectroscopic factors from finite-range, non-locality corrected DWUCK-DWBA analysis of the angular distributions of cross sections and analyzing powers.

35S Levels

Spectroscopic factor $C^2S = \sigma(\theta)_{exp}/\sigma(\theta)_{DWBA}/N$, where N=1.95 is a normalization factor (1977Ab07).

E(level) [†]	\mathbf{J}^{π}	L	$C^2S^{\textcircled{0}}$	Comments
0	3/2+‡	2	0.56,0.48‡	
1572	1/2+#	0	0.27,0.18#	
1992	7/2 ^{-#}	3	1.16,0.73 [#]	
2348	3/2 ^{-#}	1	0.56,0.46 [#]	
2718	5/2 ^{+#}	2	$0.03, 0.02^{\#}$	
2939	3/2+,5/2+	2	0.10,0.06	C ² S: extracted from an incoherent superposition of direct and compound cross sections
3421 3563	5/2+#	2	0.04,0.03#	in 1977Ab07.
3802 3818	3/2-#	1	0.10,0.08#	
4190	1/2-#	1	0.15,0.13	
4482	7/2-#	3	0.06, 0.05#	
4575 4837				
4904	$1/2^{-\frac{1}{4}}$	1	$0.48, 0.41^{\ddagger}$	
4963	3/2-#	1	0.19,0.17 [#]	
5058 5126	7/2-#	3	0.03,0.03#	

[†] As given in 1977Ab07, originally from 1973EnVA rounded to the nearest integer.

[‡] L-1/2 transfer from analyzing power measurements.

[#] L+1/2 transfer from analyzing power measurements.

[®] Calculated for two sets of optical model potentials. Set 1: the deuteron elastic potential and the Becchetti-Greenlees proton parameters; Set 2: Adiabatic model parameters and the Hecchetti-Greenlees proton parameters.