COMPLEX NUMBER

LEVEL-I

1.	If z_1 , z_2 are two con Im(z_1z_2) = 0, then (A) $z_1 = -z_2$ (C) $z_1 = \overline{z}_2$	mplex numbers si	(B) z ₁ =	
2.	Roots of the equation x' (A) form a regular poly (C) are non-collinear.			(B) lie on a circle. (D) A & B
3.	Which of the following (A) $6 + i > 8 - i$ (C) $6 + i > 4 + 2i$	g is correct	(B) 6 + (D) Nor	i > 4 - i ne of these
4.	If $(1+i\sqrt{3})^{1999} = a+ib$, the second of	√3		2^{1999} , b = $2^{1999}\sqrt{3}$ ne of these
5.	If $z = 1 + i\sqrt{3}$, then (A) $\pi/3$ (C) 0	arg (z) + arg (z) equals (B) 2π/3 (D) π/2	3
6.	The equation $z\left(\overline{z+i}\right)$	$+i\sqrt{3}$ $+z(z+1+i\sqrt{3})$	$\overline{3}$) = 0 repre	esents a circle with
	(A) centre $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$	and radius 1	(B) cen	tre $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$ and radius 1
	(C) centre $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$	and radius 2	(D) cen	tre $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$ and radius 2
7.	Number of solutions t (A) 1 (C) 3	o the equation (1 -	-i) ^x = 2 ^x is (B) 2 (D) no s	solution
8.	If $arg(z) < 0$, then $arg(z) = 0$	$g(-z) - \arg(z) =$		
	(A) π	$(B)\frac{-\pi}{4} \qquad (C)$	$-\frac{\pi}{2}$	(D) $-\frac{\pi}{2}$
9.	The number of solution (A) one), where $z \in C$ is (D) infinitely many
10.	If ω is an imaginary condition (A) 128 ω (C) 128 ω^2	ube root of unity, th	nen (1 + ω – (B) –12 (D) –12	8 ω

If $z^3 - 2z^2 + 4z - 8 = 0$ then (A) |z| = 120.

(B) |z| = 2

(C) |z| = 3

(D) None

LEVEL-II

1.	If a,b, c are three complex numbers such real number λ , then points corresponding (A) vertices of a triangle (C) lying on a circle	that $c = (1 - \lambda) a + \lambda b$, for some non-zero g to a,b, c are (B) collinear (D) none of these
2.	If z be any complex number such that (A) an ellipse (C) a line-segment	3z-2 + 3z+2 =4, then locus of z is (B) a circle (D) None of these
3.	If $arg(\overline{z}_1) = arg(z_2)$, then (A) $z_2 = k z_1^{-1} (k > 0)$ (C) $ z_2 = \overline{z}_1 $	(B) $z_2 = kz_1$ (k > 0) (D) None of these.
4.	The value of the expression $2\left(1+\frac{1}{\omega}\right)\left(1+\frac{1}{\omega^2}\right)$	$\left(2 + \frac{1}{\omega}\right) + 3\left(2 + \frac{1}{\omega^2}\right) + 4\left(3 + \frac{1}{\omega}\right)\left(3 + \frac{1}{\omega^2}\right) + .$
	+ (n+1) $\left(n + \frac{1}{\omega}\right)\left(n + \frac{1}{\omega^2}\right)$, where ω is an	imaginary cube root of unity, is
	(A) $\frac{n(n^2+2)}{3}$ (B) $\frac{n(n^2-2)}{3}$	(C) $\frac{n^2(n+1)^2 + 4n}{4}$ (D) none of these
5.	For a complex number z, z-1 + z +1 (A) parabola (C) circle	=2. Then z lies on a (B) line segment (D) none of these
6.	If z_1 and z_2 are two complex numbers such	/ \
	(A) $\operatorname{Im}\left(\frac{z_1}{z_2}\right) = 0$	(B) $\operatorname{Re}\left(\frac{z_1}{z_2}\right) = 0$
	(C) $\operatorname{Re}\left(\frac{z_1}{z_2}\right) = \operatorname{Im}\left(\frac{z_1}{z_2}\right)$	(D) none of these.
7.	If $\left \frac{z_1}{z_2} \right = 1$ and arg $(z_1 z_2) = 0$, then	
	(A) $z_1 = z_2$ (C) $z_1 z_2 = 1$	(B) $ z_2 ^2 = z_1 z_2$ (D) none of these.
8.	Number of non-zero integral solutions to (3 (A) 1	$(+4i)^n = 25^n is$ (B) 2
	(C) finitely many	(D) none of these.
9.	If z < 4, then iz +3 - 4i is less than (A) 4 (C) 6	(B) 5 (D) 9
10	If z is a complex number then $7^2 \pm \overline{7}^2$ -	- 2 rangeants

11.	If $\frac{1-i\alpha}{1+i\alpha}$ = A + iB, then A ² +B ² equals to	
	(A) 1 (B) -1	(B) α^2 (D) - α^2
	,	` '
12.		blex numbers z_1 , z_2 and z_3 . If the circumcentre the altitude AD of the triangle meets the the complex number
	(A) $-\frac{z_1 z_2}{z_3}$	(B) $-\frac{z_2 z_3}{z_1}$
	$(C) - \frac{z_3 z_1}{z_2}$	(D) $\frac{Z_1Z_2}{Z_3}$
13.	If $ z_1 = z_2 $ and $arg(z_1) + arg(z_2) = \pi/2$, the	n
	(A) $\arg(z_1^{-1}) + \arg(z_2^{-1}) = -\pi/2$ (C) $(z_1+z_2)^2$ is purely imaginary	(B) z ₁ z ₂ is purely imaginary (D) All the above.
14.	If z ₁ and z ₂ are two complex numbers satisf	fying the equation $\left \frac{z_1 + iz_2}{z_1 - iz_2} \right = 1$, then $\frac{z_1}{z_2}$ is a
	(A) purely real	(B) of unit modulus
	(C) purely imaginary	(D) none of these
15.	If the complex numbers z_1 , z_2 , z_3 , z_4 , take rhombus, then	en in that order, represent the vertices of a
	(A) $z_1 + z_3 = z_2 + z_4$	(B) $ z_1 - z_2 = z_2 - z_3 $
	(C) $\frac{z_1 - z_3}{z_2 - z_4}$ is purely imaginary	(D) none of these
16.	If $\left \frac{z_1 z - z_2}{z_1 z + z_2} \right = k, (z_1, z_2 \neq 0)$ then (A) for k = 1 locus of z is a straight line	
	(B) for $k \notin \{1, 0\}$ z lies on a circle	
	\ /	cular bisector of the line segment joining
	• •	cala. 5.555.61 of the line beginning
	$\frac{z_2}{z_1}$ and $-\frac{z_2}{z_1}$	

If the equation $|z-z_1|^2+|z-z_2|^2=k$ represents the equation of a circle, where $z_1\equiv 2+3i$, $z_2\equiv 4+3i$ are the extremities of a diameter, then the value of k is

(B)

(D)

4

None of these

(B) a straight line (D) an ellipse

(A) a circle

17.

 $\frac{1}{4}$

2

(A)

(C)

(C) a hyperbola

4(a + b)

4 ab

(B) (D)

26.

(A) $-2 (a^2 + b^2)$ (C) 4 (a - b)

27.	•	+i) ⁿ = 2 ⁿ , where n is an integer, then n is a multiple of 5 n is a multiple of 10	(B) (D)	n is a multiple of 6 none of these
28.	and C	· · · · · · · · · · · · · · · · · · ·		, z_2 and z_3 in the Argand plane are A,B ight angled at B then a possible value
	(A) (C)		(B) (D)	-1 none of these
29.		and z_2 are two complex numbers satisf $\frac{z_2}{z_2} = 1$, then $\frac{z_1}{z_2}$ is a number which is		equation
	(A) (C)	Real Zero	(B) (D)	Imaginary None of these
30.	If z =	1, then z-1 is		
	(A) (C)	< arg z = arg z	(B) (D)	> arg z None of these
31.		z_2 and z_3 , z_4 are two pairs of conjugate	comple	ex numbers then
	$arg\left(\frac{1}{2}\right)$	$\left(\frac{z_1}{z_4}\right) + \arg\left(\frac{z_2}{z_3}\right)$ equals		
	(A)	$\frac{\pi}{2}$	(B)	π
	(C)	$\frac{3\pi}{2}$	(D)	0
32.	(A)	$ z - z - 2 = a^2, z \in C$ is representing [-1, 0] (0, ∞)	g a hyp (B) (D)	perbola for $a \in S$, then S contains $(-\infty, 0]$ none of these
33.	If z =	1 and $z \neq \pm i$, then $\frac{z+i}{z-i}$ is		
	(A) (B) (C) (D)	purely real purely imaginary a complex number with equal real annone of these	nd imaç	ginary parts
34.	(A) x-	ocus of z which satisfied the inequestrian control of the control	(B) x -	
35.	Let Z ₁	and Z_2 be the complex roots of $ax^2 +$	bx + c	= 0, where $a \ge b \ge c > 0$. Then

(A)
$$|Z_1 + Z_2| \le 1$$

(B)
$$|Z_1 + Z_2| > 2$$

(C)
$$|Z_1| = |Z_2| = 1$$

(D) none of these

If the roots of $z^3 + az^2 + bz + c = 0$, a, b, $c \in C$ (set of complex numbers) acts as the 36. vertices of a equilateral triangle in the argand plane, then

(A)
$$a^2 + b = c$$

(B) $a^2 = b$

$$(C)$$
 $a^2 + b = 0$

(D) none of these

37. If $|z_1| = 4$, $|z_2| = 4$, then $|z_1 + z_2 + 3 + 4i|$ is less than

(D) 13

If z = x + iy satisfies $Re\{z - |z - 1| + 2i\} = 0$, then locus of z is 38.

(A) parabola with focus
$$\left(-\frac{1}{2}, \frac{1}{2}\right)$$
 and directrix $x + y = \frac{1}{2}$

(B) parabola with focus
$$\left(-\frac{1}{2}, \frac{1}{2}\right)$$
 and directrix $x + y = -\frac{1}{2}$

(C) parabola with focus
$$\left(0, \frac{1}{2}\right)$$
 and directrix $y = -\frac{1}{2}$

(D) parabola with focus
$$\left(\frac{1}{2}, 0\right)$$
 and directrix $x = -\frac{1}{2}$

39. If |z+1| = z+1, where z is a complex number, then the locus of z is

(A) a straight line

(B) a ray

(C) a circle

(D) an arc of a circle

Length of the curved line traced by 40. the point represented by z, when $arg \frac{z-1}{z+1} = \frac{\pi}{4}$, is

(A) $2\sqrt{2}\pi$

(B) $\sqrt{2} \pi$

(C) $\frac{\pi}{\sqrt{2}}$

(D) none of these

If $8iz^3 + 12z^2 - 18z + 27i = 0$ then 41.

- (A) |z| = 3/2 (B) |z| = 1 (C) |z| = 2/3 (D) |z| = 3/4

If $|z-i| \le 2$ and $z_1 = 5 + 3i$ then the maximum value of $|iz + z_1|$ is 42.

- (A) $2 + \sqrt{31}$ (B) $\sqrt{31} 2$ (C) $\sqrt{31} + 2$ (D) 7

 $\sin^{-1}\left\{\frac{1}{i}(z-1)\right\}$, where z is not real, can be the angle of the triangle if 43.

- (A) $Re(z) = 1, I_m(z) = 2$
- (B) $Re(z) = 1, -1 \le I_{m}(z) \le 1$
- (C) $Re(z) + I_m(z) = 0$
- (C) None of these

44.	The value of $ln(-1)$ (A) does not exist (B) 2 ln <i>i</i>	(C) <i>i</i> π	(D) 0		
45.	If n_1, n_2 are positive if and only if (A) $n_1 = n_2 + 1$				$+(1+i^7)^{n_2}$ is a real three integers	Number
46.	Let z_1, z_2 be two nequation of a circle (A) 4 (B) 3	with z_1, z_2 as er		ter then the va	$ z-z_1 ^2 + z-z_1 ^2 = \lambda$ lue of λ is	be the
47.	The center of the arc (A) (4,1)	, ,	$\left(\frac{i}{i}\right) = \frac{\pi}{4}$ is (C) (2)	2,5)	(D) (3,1)	
48.	The value of $\sum_{k=1}^{6} \left(\sin \left(\mathbf{B} \right) \right) = 0$	$\frac{2\pi k}{7} - i\cos\frac{2\pi k}{7}$ $i \qquad (C) 1$	/	1		
49.	The complex number triangle which is (A) of area zero (C) equilateral	ers z_1 , z_2 and z_3	(B) ri	$\frac{z_3}{z_3} = \frac{1 - i\sqrt{3}}{2}$ ght angled isosbtuse angled is	sceles	
50.	If z = 3 then the null (A) purely real (C) a mixed number	$mber \frac{z-3}{z+3} is$		urely imaginary one of these	/	
51.	If $iz^3 + z^2 - z + i = 0$, t	then z is equal	to			
52.	If α and β are differe	nt complex num	nbers with $ eta $ =	= 1, then $\left \frac{\beta - \alpha}{1 - \overline{\alpha}} \right $	$\frac{\alpha}{\beta}$ is equal to	
53.	If the complex numb	ers z_1 , z_2 , z_3 are	e in A.P., then	they lie on a		

(B) parabola

(D) ellipse

(A) circle

(C) line

- 54. If z_1 and z_2 are two nth roots of unity, then $arg\left(\frac{z_1}{z_2}\right)$ is a multiple of
- 55. The maximum value of |z| when z satisfies the condition $\left|z + \frac{2}{z}\right| = 2$ is
- 56. All non-zero complex numbers z satisfying $\bar{z} = iz^2$ are.....
- 57. Common roots of the equation $z^3 + 2z^2 + 2z + 1 = 0$ and $z^{1985} + z^{100} + 1 = 0$ is

LEVEL-III

1.	If points corresponding to the corhombus, taken in order, then for (A) $z_1 - z_3 = i k(z_2 - z_4)$ (C) $z_1 + z_3 = k(z_2 + z_4)$	emplex numbers z_1 , z_2 , z_3 and z_4 are the vertices of a non-zero real number k (B) $z_1 - z_2 = i k(z_3 - z_4)$ (D) $z_1 + z_2 = k(z_3 + z_4)$	а
2.	If z_1 and z_2 are two complex number $argz_1 - argz_2$ is equal to	pers such that $ z_1 - z_2 = z_1 - z_2 $, then	
	(A) - $\pi/4$	(B) - π/2	

	(C) π/2	(D) 0	
3.	If $f(x)$ and $g(x)$ are two polynomials such is divisible by $x^2 + x + 1$ then	ch that the polynomial $h(x) = x f(x^3) + x^2 g(x^6)$	3)

is divisible by x ² +x +1, then		
(A) $f(1) = g(1)$	(B) $f(1) \neq -g(1)$	
(C) $f(1) = g(1) \neq 0$	(D) $f(1) = -g(1) \neq 0$	

4. Consider a square OABC in the argand plane, where 'O' is origin and $A = A(z_0)$. Then the equation of the circle that can be inscribed in this square is; (vertices of square are given in anticlockwise order)

(A)
$$|z - z_0(1+i)| = |z_0|$$
 (B) $2|z - \frac{z_0(1+i)}{2}| = |z_0|$

(C)
$$\left| z - \frac{z_0(1+i)}{2} \right| = \left| z_0 \right|$$
 (D) none of these.

- For a complex number z, the minimum value of $|z| + |z \cos\alpha i\sin\alpha|$ is 5. (A) 0(C) 2 (D) none of these
- The roots of equation $z^n = (z + 1)^n$ 6. (A) are vertices of regular polygon (B) lie on a circle (D) none of these (C) are collinear

The vertices of a triangle in the argand plane are 3+4i, 4+3i and $2\sqrt{6}+i$, then 7. distance between orthocentre and circumcentre of the triangle is equal to,

(A)
$$\sqrt{137 - 28\sqrt{6}}$$
 (B) $\sqrt{137 + 28\sqrt{6}}$ (C) $\frac{1}{2}\sqrt{137 + 28\sqrt{6}}$ (D) $\frac{1}{3}\sqrt{137 + 28\sqrt{6}}$.

One vertex of the triangle of maximum area that can be inscribed in the curve 8. |z-2i|=2, is 2+2i, remaining vertices is / are

(A)
$$-1+i(2+\sqrt{3})$$
 (B) $-1-i(2+\sqrt{3})$ (C) $1+i(2-\sqrt{3})$ (D) $-1-i(2-\sqrt{3})$

(C) Re (z)
$$\in \left\{ \frac{3}{2}, \frac{5}{2} \right\}$$

(D) None of these

17. If x = 1 + i, then the value of the expression

$$x^4 - 4x^3 + 7x^2 - 6x + 3$$
 is

(A) -1

(B) 1

(C) 2

(D) None of these

18. If z lies on the circle centred at origin. If area of the triangle whose vertices are z, ω z and z + ω z, where ω is the cube root of unity, is $4\sqrt{3}$ sq. unit. Then radius of the circle is

(A) 1 unit

(B) 2 units

(C) 3 units

(D) 4 units

19. If $\theta_i \in [0, \pi/6]$, i = 1, 2, 3, 4, 5 and $\sin \theta_1 z^4 + \sin \theta_2 z^3 + \sin \theta_3 z^2 + \sin \theta_4 z + \sin \theta_5 = 2$, then z satisfies.

(A) $|z| > \frac{3}{4}$

(B) $|z| < \frac{1}{2}$

(C) $\frac{1}{2} < |z| < \frac{3}{4}$

(D) None of these

20. If α is the angle which each side of a regular polygon of n sides subtends at its centre, then 1 + $\cos \alpha$ + $\cos 2\alpha$ + $\cos 3\alpha$... + $\cos (n-1)\alpha$ is equal to

(A) n

(B) 0

(C)1

(D) None of these

21. Triangle ABC, $A(z_1)$, $B(z_2)$, $C(z_3)$ is inscribed in the circle |z| = 2. If internal bisector of the angle A meets its circumcircle again at $D(z_d)$ then

(A)
$$Z_d^2 = Z_2 Z_3$$

(B) $z_d^2 = z_1 z_3$

(C)
$$z_d^2 = z_2 z_1$$

(D) none of these

ANSWERS

LEVEL -I

- \mathbf{C} 1. 5. В
- 2. D 6. В 10. D
- 3. D 7. A
- 4. A 8. A

- 9. D 13. 0 17. A
- 14. В 18. A
- 11. D 15. \mathbf{C} C 19.
- 12. A 16. A 20. В

LEVEL -II

- 1. В 5. В 9. D
- 2. C 6. A C 10.
- 3. A 7. В A A, B, C
- 4. \mathbf{C} 8. D 12. В

13. D 17. В 21. D 25. 0 29. В

В

D

14. A 18. \mathbf{C} 22. A 26. A 30. A

 \mathbf{C}

D

- 11. 15. 19. D 23. 20 27. D 31. D 35. A 39. В 43. В 47. A 51. 1
- A, B, C, D 16. 20. В 24. φ C 28. 32. A 36. D 40. D C 44. 48. A

41. A C C 45. 49.

33.

37.

52.

42. D 46. В 50. В 53. \mathbf{C}

34.

38.

- $\frac{2\pi}{2\pi}$ 54.
- $1 + \sqrt{3}$ 55.

$$56. \qquad \left(\pm \frac{\sqrt{3}}{2}, \frac{1}{2}\right)$$

A

A

1

57.
$$\omega, \omega^2$$

LEVEL -III

1.

21.

- 5. В C 9. 13. B, C 17. В
- 2. D 6. \mathbf{C} 10. D A, B 14. 18. D
- 3. A 7. В 11. \mathbf{C} 15. Α 19. A
- 4. В 8. A 12. Α 16. \mathbf{C} 20. В