Geometría Solar Energía Solar Fotovoltaica

Oscar Perpiñán Lamigueiro http://oscarperpinan.github.io

Geometría Solar

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Tierra

sistemas fotovoltaicos

Geometría Sol y Tierra

Geometría Sol y Tierra Movimiento Sol-Tierra

Sistemas de coordenadas Ángulos Solares Hora solar y oficial

Movimiento terrestre

- ► La Tierra gira sobre si misma alrededor de su eje polar.
 - Periodo aproximado: 24 horas.

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometria Sol y Tierra

Movimiento Sol-Tierra

Ángulos Solares Hora solar y ofici

Geometría de los istemas

Movimiento terrestre

- ► La Tierra gira sobre si misma alrededor de su eje polar.
 - Periodo aproximado: 24 horas.
- ► La Tierra se mueve **alrededor del Sol** siguiendo una elipse de baja excentricidad.
 - Periodo aproximado: 1 año.
 - ► Este movimiento está contenido en el llamado *plano* de la eclíptica

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometría Sol y Tierra

Movimiento Sol-Tierra

Ángulos Solare Hora solar y of

Movimiento terrestre

- ► Entre el eje polar y el plano de la eclíptica hay un ángulo constante de 23,45°.
- ► Entre el plano ecuatorial y la linea que une la Tierra y el Sol hay un ángulo variable: *declinación*.

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometría Sol y Tierra

Movimiento Sol-Tierra

Ángulos Solares Hora solar v ofi

Geometría de los istemas

Movimiento Sol-Tierra

Ángulos Solares Hora solar y oficial

Geometría de los sistemas

▶ Distancia Sol-Tierra

$$r = r_0 \{ 1 + 0.017 \sin\left[\frac{2\pi \cdot (d_n - 93)}{365}\right] \}$$

► Distancia promedio

$$r_0 = 1.496 \times 10^8 \,\mathrm{km} = 1 \,\mathrm{UA}$$

Excentricidad

$$\epsilon_0 = (\frac{r_0}{r})^2 = 1 + 0,033 \cdot \cos(\frac{2\pi d_n}{365})$$

Estaciones

Las estaciones se deben al ángulo entre el plano ecuatorial y el plano de la eclíptica

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometría Sol y Tierra

Movimiento Sol-Tierra

Ángulos Solares Hora solar y oficial

Geometría de los sistemas

Estaciones

- Las estaciones se deben al ángulo entre el plano ecuatorial y el plano de la eclíptica
- Solsticio de junio
 - Declinación máxima.
 - Días más largos en hemisferio Norte (verano)
 - El Sol amanece por el Noreste y anochece por el Noroeste en el hemisferio Norte.

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Tierra

Movimiento Sol-Tierra

Ángulos Solares Hora solar y oficial

> leometría de los estemas

Movimiento Sol-Tierra

Ángulos Solares Hora solar y oficial

Geometría de lo sistemas

- Las estaciones se deben al ángulo entre el plano ecuatorial y el plano de la eclíptica
- Solsticio de junio
 - Declinación máxima.
 - Días más largos en hemisferio Norte (verano)
 - El Sol amanece por el Noreste y anochece por el Noroeste en el hemisferio Norte.
- ► Solsticio de diciembre
 - Declinación mínima.
 - Días más cortos en hemisferio Norte (invierno)
 - El Sol amanece por el Sureste y anochece por el Suroeste en el hemisferio Norte.

Movimiento Sol-Tierra

Solsticio de diciembre

Solsticio de junio

Declinación mínima.

Declinación máxima.

Días más cortos en hemisferio Norte (invierno)

 Días más largos en hemisferio Norte (verano) El Sol amanece por el Noreste y anochece por el

Las estaciones se deben al ángulo entre el plano

ecuatorial y el plano de la eclíptica

Noroeste en el hemisferio Norte.

► El Sol amanece por el Sureste y anochece por el Suroeste en el hemisferio Norte.

Equinoccios

- Declinación nula
- La duración de noche y día coincide.
- ► El Sol amanece por el Este y anochece por el Oeste.

Solsticios y equinoccios

- ► Equinoccio de marzo:
 - 21-22 Marzo (Dia del Año 80-81)
- ► Equinoccio de septiembre:
 - 22-23 Septiembre (Dia del Año 265-266)
- ► Solsticio de junio:
 - 21-22 Junio (Dia del Año 172-173)
- ► Solsticio de diciembre
 - ▶ 21-22 Diciembre (Dia del Año 355-356)

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Tierra

Movimiento Sol-Tierra

Ángulos Solares Hora solar y oficial

eometría de los stemas

Declinación

$$\delta = 23,45^{\circ} \cdot \sin\left(\frac{2\pi \cdot (d_n + 284)}{365}\right)$$

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometría Sol y Tierra

Movimiento Sol-Tierra

Ángulos Solares Hora solar y oficial

Geometría de los istemas

Otras ecuaciones

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometría Sol y Tierra

Movimiento Sol-Tierra

Ángulos Solares Hora solar y oficial

Geometría de los istemas

Geometría Sol y Tierra

Movimiento Sol-Tierra Sistemas de coordenadas Ángulos Solares Hora solar y oficial

Ejes terrestres

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Tierra Movimiento Sol-Tierra

Sistemas de coordenadas Ángulos Solares

Geometría de los istemas

$$\vec{\mu}_{s} = \left[\cos\left(\delta\right)\cos\left(\omega\right)\right] \cdot \vec{\mu}_{ec} + \left[\cos\left(\delta\right)\sin\left(\omega\right)\right] \cdot \vec{\mu}_{\perp} + \sin\left(\delta\right) \cdot \vec{\mu}_{p}$$

Ejes terrestres

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Tierra

Movimiento Sol-Tierra

Sistemas de coordenadas

Ángulos Solares Hora solar y oficial

Ejes locales

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Movimiento Sol-Tierra
Sistemas de coordenadas

ingulos Solares

Geometría de los istemas

$$\vec{\mu}_s = \left[\cos\left(\psi_s\right)\sin\left(\theta_z\right)\right] \cdot \vec{\mu}_h + \left[\sin\left(\psi_s\right)\sin\left(\theta_z\right)\right] \cdot \vec{\mu}_\perp + \cos\left(\theta_z\right) \cdot \vec{\mu}_c$$

Ejes locales

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Tierra

Movimiento Sol-Tierra Sistemas de coordenadas

Ángulos Solares Hora solar y oficial

Geometría de los sistemas

Relación entre sistemas de coordenadas

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometría Sol y Tierra

Movimiento Sol-Tierra Sistemas de coordenadas

Ángulos Solares Hora solar v oficial

Geometría de los sistemas

Movimiento Sol-Tierra
Sistemas de coordenadas

Ángulos Solares Hora solar y oficial

Geometría de los sistemas fotovoltaicos

$$\begin{split} \vec{\mu}_s &= \operatorname{signo}(\phi) \cdot \left[\cos \left(\delta \right) \cos \left(\omega \right) \sin \left(\phi \right) - \cos \left(\phi \right) \sin \left(\delta \right) \right] \cdot \vec{\mu}_h - \\ &- \left[\cos \left(\delta \right) \sin \left(\omega \right) \right] \cdot \vec{\mu}_\perp + \\ &+ \left[\cos \left(\delta \right) \cos \left(\omega \right) \cos \left(\phi \right) + \sin \left(\delta \right) \sin \left(\phi \right) \right] \cdot \vec{\mu}_c \end{split}$$

Latitud (ϕ) con signo: Positivo para Hemisferio Norte, Negativo para Hemisferio Sur.

Geometría Sol y Tierra

Movimiento Sol-Tierra Sistemas de coordenadas Ángulos Solares Hora solar y oficial

Cenit solar

$$\cos(\theta_z) = \vec{\mu}_c \cdot \vec{\mu}_s = \cos(\delta)\cos(\omega)\cos(\phi) + \sin(\delta)\sin(\phi)$$

Azimut solar

$$\begin{split} \vec{\mu_s} \cdot \vec{\mu}_{\perp} &= -\sin\left(\psi_s\right) \sin\left(\theta_{zs}\right) \\ \vec{\mu_s} \cdot \vec{\mu}_{h} &= \text{signo}(\phi) \cdot \cos\left(\psi_s\right) \sin\left(\theta_{zs}\right) \\ \cos\left(\psi_s\right) &= \text{signo}(\phi) \cdot \frac{\cos\left(\delta\right) \cos\left(\omega\right) \sin\left(\phi\right) - \cos\left(\phi\right) \sin\left(\delta\right)}{\sin\left(\theta_{zs}\right)} \\ \sin(\psi_s) &= \frac{\cos(\delta) \sin(\omega)}{\sin(\theta_{zs})} = \frac{\cos(\delta) \sin(\omega)}{\cos(\gamma_s)} \end{split}$$

Trayectoria Solar (60°N)

Geometría Solar

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Geometría Sol y Tierra

Ángulos Solares

Hora solar y oficial

Trayectoria Solar (40°S)

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometría Sol y Tierra

Movimiento Sol-Tierra Sistemas de coordenada

Ángulos Solares

Geometría de los istemas

Mediodía, amanecer y anocher

► Mediodía:

$$\psi_s = 0 \Rightarrow \sin(\psi_s) \Rightarrow \omega = 0$$

► Amanecer / Anochecer:

$$\gamma_s = 0$$
, $\theta_z = \frac{\pi}{2} \Rightarrow \cos(\theta_z) = 0$
 $\cos(\omega_s) = -\tan(\delta)\tan(\phi)$

Geometría Solar

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Tierra

Movimiento Sol-Tierra

Ángulos Solares

Geometría de los sistemas

Duración del día

Geometría Solar

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Geometría Sol y Tierra

Movimiento Sol-Tierra Sistemas de coordenada

Ángulos Solares

Hora solar y oficial

- Azimut, Ángulo Cenital y Altura Solar, Duración del Dia para el:
 - Día del Año: 120, 2 horas después del mediodía, Latitud: 37.2N
 - Día del Año: 340, 2 horas después del amanecer, Latitud: 15S
- Duración del día 261 del año en las latitudes 10N, 40N, 70N, 10S, 40S, 70S.
- ▶ Altura solar en el mediodía del día 25 del año en las latitudes 10N, 40N, 10S, 40S.

Geometría Sol y Tierra

Movimiento Sol-Tierra Sistemas de coordenadas Ángulos Solares Hora solar y oficial

Hora solar y oficial

Geometría de los

sistemas

- $\omega = 15 \cdot (\text{TO} \text{AO} 12) + \Delta\lambda + \frac{\text{EoT}}{4}$
- ω: hora solar real o aparente[°]
- ► TO: hora oficial [h]
- ► *AO*: adelanto oficial por horario de verano [h]
- Δλ corrección por huso horario [°]
- EoT: Ecuación del tiempo (dia solar real y dia solar medio) [min]

- La hora oficial es una medida del tiempo ligada a un meridiano que sirve de referencia para una zona determinada.
- ► La hora oficial de la España peninsular se rija por el huso horario de Centroeuropa. Este huso horario está situado en 15°E.

- ► **Corrección**: $\Delta \lambda = \lambda_L \lambda_H$, con λ_L la longitud local y λ_H la longitud del huso horario.
- ► Longitudes *positivas* al *este* del meridiano de Greenwich. $\Delta\lambda$ es positiva cuando la localidad está situada al este de su huso horario.
- ▶ Diferencia adicional: horario de verano.

del Sol por el meridiano local, varía a lo largo del año.
El promedio anual de esta variación es nulo: día solar

tiempo que transcurre entre dos pasos consecutivos

▶ La duración del día solar real, definido como el

El promedio anual de esta variación es nulo: día solar medio, cuya duración es constante a lo largo del año e igual al valor medio de la duración del día solar real.

Ecuación del Tiempo

 $\begin{aligned} & \text{EoT} = \\ & 229.18 \cdot (-0.0334 \cdot \sin(M) + 0.04184 \cdot \sin(2 \cdot M + 3.5884)) \end{aligned}$

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometría Sol y Tierra

Movimiento Sol-Tierra Sistemas de coordenada Ángulos Solares

Hora solar y oficial

Geometría de los sistemas

Calcule la hora solar real correspondiente al día 23 de Abril de 2010 (EoT = 1,78 min) a las 12 de la mañana, hora oficial de la ciudad de A Coruña, Galicia. Esta localidad está contenida en el meridiano de longitud 8.38°W y su hora oficial está regida por el huso horario GMT+1.

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometría Sol y Tierra

> Sistemas de coordenada Ángulos Solares

Hora solar y oficial

Solución

$$\omega = 15 \cdot (\text{TO} - \text{AO} - 12) + \Delta\lambda + \frac{\text{EoT}}{4}$$

 λ_L = −8.38°, λ_H = 15° y $\Delta \lambda$ = −23.38°.

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometria Sol Tierra

Herra

Sistemas de coordenad Ángulos Solares

Hora solar y oficial

Geometría de los sistemas

Solución

$$\omega = 15 \cdot (\text{TO} - \text{AO} - 12) + \Delta\lambda + \frac{\text{EoT}}{4}$$

- $\lambda_L = -8.38^{\circ}, \lambda_H = 15^{\circ} \text{ y } \Delta \lambda = -23.38^{\circ}.$
- ► En España se aplica el horario de verano y este día está incluido en el período afectado, AO = 1.

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometría Sol y Tierra

Movimiento Sol-Tie

Angulos Solares Hora solar y oficial

Coomotrío do lo

Geometria de los sistemas

Solución

$$\omega = 15 \cdot (\text{TO} - \text{AO} - 12) + \Delta\lambda + \frac{\text{EoT}}{4}$$

- $\lambda_L = -8.38^{\circ}, \lambda_H = 15^{\circ} \text{ y } \Delta \lambda = -23.38^{\circ}.$
- ► En España se aplica el horario de verano y este día está incluido en el período afectado, AO = 1.
- ▶ Por último, para este día EoT = 1,78 min.

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometria Sol y Tierra

Movimiento Sol-Herra
Sistemas de coordenad
Ángulos Solares

Hora solar y oficial

Geometría de los sistemas fotovoltaicos

Ángulos Solares Hora solar y oficial

Hora solar y oficial

Geometría de los sistemas fotovoltaicos

- $\omega = 15 \cdot (\text{TO} \text{AO} 12) + \Delta\lambda + \frac{\text{EoT}}{4}$
- $\lambda_L = -8.38^{\circ}, \lambda_H = 15^{\circ} \text{ y } \Delta \lambda = -23.38^{\circ}.$
- ► En España se aplica el horario de verano y este día está incluido en el período afectado, AO = 1.
- ▶ Por último, para este día EoT = 1,78 min.
- Así $\omega = -37.94^{\circ}$ (aproximadamente las 9 y media de la mañana). El Sol culminará ($\omega = 0$) cuando sean las 14:31, hora oficial.

Geometría Sol y Tierra

Geometría de los sistemas fotovoltaicos

Geometría Sol y Tierra

Geometría de los sistemas fotovoltaicos Sistemas Estáticos y de Seguimiento Ángulos

Sistemas estáticos

Geometría Solar

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Geometría Sol y Tierra

Geometría de los istemas otovoltaicos

Sistemas Estáticos y de Seguimiento

Sistemas con seguimiento

► Fundamento:

- Radiación incidente aumenta al seguir al sol
- Pérdidas por reflexión disminuyen si el apuntamiento al sol mejora

Geometría Solar

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Geometría Sol y Tierra

Geometría de los istemas otovoltaicos

Sistemas Estáticos y de Seguimiento

Sistemas con seguimiento

Fundamento:

- Radiación incidente aumenta al seguir al sol
- Pérdidas por reflexión disminuyen si el apuntamiento al sol mejora
- Las diferentes técnicas de seguimiento son un compromiso entre un apuntamiento perfecto y sistemas estructurales más económicos y mejores aprovechamientos del terreno.

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometria Sol y Tierra

otovoltaicos Sistemas Estáticos y de

Seguimiento

Ángulos

Algunos tipos de seguimiento solar

▶ Doble eje

- Apuntamiento «perfecto»
- Mejor productividad, peor ocupación de terreno.

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometría Sol y Tierra

Geometría de los sistemas

Sistemas Estáticos y de Seguimiento

igulos

Algunos tipos de seguimiento solar

Doble eje

- Apuntamiento «perfecto»
- Mejor productividad, peor ocupación de terreno.

Seguimento acimutal

 Sacrifica un movimiento (inclinación del generador) para conseguir sistemas más económicos.

Geometría Solar

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Sistemas Estáticos y de Seguimiento

Algunos tipos de seguimiento solar

Doble eje

- Apuntamiento «perfecto»
- Mejor productividad, peor ocupación de terreno.

Seguimento acimutal

 Sacrifica un movimiento (inclinación del generador) para conseguir sistemas más económicos.

Seguimiento horizontal con eje Norte-Sur

- Sencillez y estabilidad estructural (el eje es horizontal y paralelo al terreno, con tantos puntos de apoyo como se consideren necesarios),
- Facilidad de motorización,
- ▶ Buen aprovechamiento del terreno.

Geometría Solar

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Geometria Sol y Tierra

sistemas fotovoltaicos Sistemas Estáticos y de

Seguimiento Ángulos

Seguidor de eje horizontal N-S

Geometría Solar

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Geometría Sol y Tierra

Geometría de los sistemas fotovoltaicos

Sistemas Estáticos y de Seguimiento

Seguidor de doble eje

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometría Sol y Tierra

seometria de los istemas

Sistemas Estáticos y de Seguimiento

Geometría Sol y Tierra

Geometría de los sistemas fotovoltaicos Sistemas Estáticos y de Seguimiento Ángulos

Sistema Estático

Vector de posición

$$\vec{\mu}_{\beta} = [\sin(\beta)\cos(\alpha)] \cdot \vec{\mu}_{h} + [\sin(\beta)\sin(\alpha)] \cdot \vec{\mu}_{\perp} + \cos(\beta) \cdot \vec{\mu}_{c}$$

Geometría Solar

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Geometría Sol y Tierra

sistemas fotovoltaicos Sistemas Estáticos y de Seguimiento

$$\cos(\theta_s) = \operatorname{signo}(\phi) \cdot \left[\sin(\beta) \cos(\alpha) \cos(\delta) \cos(\omega) \sin(\phi) - \\ - \sin(\beta) \cos(\alpha) \cos(\phi) \sin(\delta) \right] + \\ + \sin(\beta) \sin(\alpha) \cos(\delta) \sin(\omega) + \\ + \cos(\beta) \cos(\delta) \cos(\omega) \cos(\phi) + \\ + \cos(\beta) \sin(\delta) \sin(\phi)$$

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometria Sol y Tierra

sistemas fotovoltaicos Sistemas Estáticos y de Seguimiento Ángulos

Sistema Estático

Cuando $\alpha = 0$

$$\cos(\theta_s) = \cos(\delta)\cos(\omega)\cos(\beta - |\phi|) - \\ - \operatorname{signo}(\phi) \cdot \sin(\delta)\sin(\beta - |\phi|)$$

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometría Sol y Tierra

sistemas otovoltaicos

Sistemas Estáticos y de Seguimiento Ángulos

Ángulo de Incidencia de Sistema Estático

▶ 40°N

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometría Sol y Tierra

> istemas otovoltaicos Sistemas Estáticos y de

Eje Horizontal N-S, generador horizontal

Vector de posición

$$\vec{\mu}_{ns} = \sin(\psi_{ns}) \cdot \vec{\mu}_{\perp} + \cos(\psi_{ns}) \cdot \vec{\mu}_{c}$$

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometría Sol y Tierra

sistemas fotovoltaicos Sistemas Estáticos y de

Geometría Solar

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

$$\cos(\theta_s) = \cos(\delta) \sqrt{\sin^2(\omega) + (\cos(\omega)\cos(\phi) + \tan(\delta)\sin(\phi))^2}$$
 for $\cos(\theta_s) = \cos(\delta) \sqrt{\sin^2(\omega) + (\cos(\omega)\cos(\phi) + \tan(\delta)\sin(\phi))^2}$

Inclinación de Eje Horizontal N-S

▶ 40°N

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometría Sol y Tierra

> istemas otovoltaicos Sistemas Estáticos y de

Ángulo de Incidencia de Eje Horizontal N-S

▶ 40°N

Geometría Solar

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Geometría Sol y Tierra

> stemas otovoltaicos istemas Estáticos y de

Acimutal

$$eta = cte.$$
 $lpha = \psi_s$
 $\cos(\theta_s) = \cos(\beta - \theta_z)$

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Geometría Sol y Tierra

sistemas fotovoltaicos

Sistemas Estáticos y de Seguimiento Ángulos

Orientación de un seguidor acimutal

▶ 40°N

Geometría Solar

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Geometría Sol y Tierra

> istemas otovoltaicos

Sistemas Estáticos y de Seguimiento Ángulos

Ángulo de Incidencia en Acimutal

▶ 40°N

Geometría Solar

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Geometría Sol y Tierra

> sistemas otovoltaicos Sistemas Estáticos y de

Doble Eje

$$\beta = \theta_z$$

$$\alpha = \psi_s$$

$$\cos(\theta_s) = 1$$

Geometría Solar

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Geometría Sol y Tierra

sistemas fotovoltaicos

Seguimiento Ángulos

Inclinación de un seguidor de Doble Eje

▶ 40°N

Geometría Solar

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Geometría Sol y Tierra

> sistemas otovoltaicos Sistemas Estáticos y de

Ejercicio: cálculo de ángulo de incidencia

Para:

- Un sistema estático orientado al Sur y con inclinación de 30;
- Un sistema de seguimiento horizontal N-S;
- Un sistema de seguimiento acimutal con inclinación a 35;
- Un sistema de seguimiento a doble eje,

Calcular el ángulo de incidencia para el:

- Día del Año: 120, 2 horas después del mediodía, Latitud: 37.2N;
- ▶ Día del Año: 340, 2 horas después del amanecer, Latitud: 15S;

Geometría Solar

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Tierra Sol y

sistemas fotovoltaicos Sistemas Estáticos y de Seguimiento Ángulos

