

Introduction

One of the most heavily utilized distributions in Statistics is the Normal (aka Gaussian) distribution.

Normal pdf

The pdf of a Normal with mean μ and variance σ^2 :

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(x - \mu)^2\right\}$$
 (1)

Introduction

Arising commonly in nature, the Normal distribution has two parameters: it's mean μ and variance σ^2 (sometimes parameterized as standard deviation σ , or precision $1/\sigma^2$).

Introduction

• We will start with the one-parameter problem, that is, we will consider σ^2 to be known and attempt to do inference of the mean parameter μ .

• We will show that if the likelihood function is normal with known variance, then a normal prior on μ gives a normal posterior, that is, the conjugate prior for μ is a Gaussian.

- Suppose we have $X_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$ with i = 1, ..., n where the variance is known and equal to σ^2 .
- If we define a normal prior on μ with *hyperparameters*¹ m and s^2 , then for a normal likelihood, the posterior is also normal.
- A normal prior is conjugate to a normal likelihood with known σ^2 .
- This is known as the *Normal-Normal* Bayesian model.

 $^{^{1}\}mbox{a}$ hyperparameter is a parameter of a prior distribution; the term is used to distinguish them from parameters of the model

We distinguish between them using the following:

$$\mu \sim \mathcal{N}(m, s^2)$$

$$\mu \mid x \sim \mathcal{N}\left(\frac{\frac{n\overline{x}}{\sigma^2} + \frac{m}{s^2}}{\frac{n}{\sigma^2} + \frac{1}{s^2}}, \frac{1}{\frac{n}{\sigma^2} + \frac{1}{s^2}}\right)$$

Let's see how we arrive at this result . . .

Since we are modeling $\mu \sim \mathcal{N}(m, s^2)$ in (2) we will be replacing $x \to \mu$, $\mu \to m$ and $\sigma^2 \to s^2$, the prior takes the form:

$$p(\mu) = \frac{1}{\sqrt{2\pi s^2}} \exp\left\{-\frac{1}{2s^2}(\mu - m)^2\right\}$$
$$\propto \exp\left\{-\frac{1}{2s^2}(\mu - m)^2\right\}$$

Note: $\frac{1}{\sqrt{2\pi s^2}}$ is a constant of proportionality with respect to μ and therefore can be dropped.

Likelihood

- We have used pdf/pmfs to construct the likelihood before.
- Recall that the likelihood is not a probability distribution once we view it as a function of θ .
- More commonly we'll be finding our likelihood using:

$$\mathcal{L}(\theta \mid y) = p(y \mid \theta) = \prod_{i=1}^{n} p(y_i \mid \theta)$$

where $p(y_i \mid \theta)$ is the probability distribution for i.i.d random variables Y_1, \ldots, Y_n .

Denoting out sample by $x = (x_1, x_2, \dots, x_n)$ our likelihood is:

$$p(x \mid \mu, \sigma^{2}) = \prod_{i=1}^{n} p(x_{i} \mid \mu, \sigma^{2})$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{-\frac{1}{2\sigma^{2}}(x_{i} - \mu)^{2}\right\}$$

$$= (2\pi\sigma^{2})^{n/2} \exp\left\{-\frac{1}{2}\sum_{i=1}^{n} \left(\frac{x_{i} - \mu}{\sigma^{2}}\right)^{2}\right\}$$

Dropping the constant multiplier that does not depend on μ we see the likelihood function can be written:

$$\mathcal{L}(\mu) \propto \exp\left\{-\frac{1}{2}\sum_{i=1}^{n}\left(\frac{x_i-\mu}{\sigma^2}\right)^2\right\}$$

Likelihood

It can be shown (see your lab) that the likelihood can be simplified as:

$$\mathcal{L}(\mu) \propto \exp\left[-\frac{(\mu - \overline{x})^2}{2\sigma^2/n}\right]$$
 (2)

Since the likelihood depends on $\{\overline{x},\sigma^2\}$, these are often referred to as sufficient statistics.

The unnormalized posterior² can be computed as:

posterior \propto prior \times likelihood

$$p(\mu \mid x, \sigma^2) \propto p(\mu \mid \sigma^2) \times \mathcal{L}(\mu \mid \mu, \sigma^2)$$

$$\propto \exp\left\{-\frac{1}{2s^2}(\mu - m)^2\right\} \exp\left\{-\frac{1}{2}\sum_{i=1}^n \left(\frac{x_i - \mu}{\sigma^2}\right)^2\right\}$$

: details provided in lab

$$\propto \exp\left[-rac{(\mu-b/a)^2}{2(1/a)}
ight]$$

where
$$a = \frac{1}{s^2} + \frac{n}{\sigma^2}$$
 and $b = \frac{m}{s^2} + \frac{\sum x_i}{\sigma^2}$.

²We condition on σ^2 to emphasize that it is assumed to be know

Functional form

Now we need to try and recognize the *functional form* of the last line. Recall the pdf of the normal

$$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

with the unnormalized posterior

$$\exp\left[-\frac{1}{2(\frac{1}{a})}\left(\mu - \frac{b}{a}\right)^2\right]$$

Hence $\mu \mid y, \sigma^2$ follows a Normal distribution with:

$$mean =$$

Functional form

Now we need to try and recognize the *functional form* of the last line. Recall the pdf of the normal

$$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

with the unnormalized posterior

$$\exp\left[-\frac{1}{2\left(\frac{1}{a}\right)}\left(\mu - \frac{b}{a}\right)^2\right]$$

Hence $\mu \mid y, \sigma^2$ follows a Normal distribution with:

$$mean = \frac{b}{a} \qquad variance = \frac{1}{a}$$

The posterior can therefore be expressed as:

$$\mu_n = \frac{\frac{m}{s^2} + \frac{\sum x_i}{\sigma^2}}{\frac{1}{s^2} + \frac{n}{\sigma^2}} = \frac{\frac{m}{s^2} + \frac{n\overline{x}}{\sigma^2}}{\frac{1}{s^2} + \frac{n}{\sigma^2}} = \frac{\sigma^2 m + s^2 n\overline{x}}{\sigma^2 + s^2 n}$$

Note: we will be using μ_n to denote the mean of the Normal posterior, and m to denote the mean (hyperparameter) of the Normal prior, and μ to denote the unknown population mean (parameter of interest).

The posterior variance can be expressed::

$$\sigma_n^2 = \frac{1}{\frac{1}{s^2} + \frac{n}{\sigma^2}} = \frac{s^2 \sigma^2}{s^2 n + \sigma^2}$$

As with our Beta-Binomial model, there posterior parameters are simply functions of the hyperparameters and summary statistics of the data (and σ^2 which we assume to be known).

Note: we will be using σ_n^2 to denote the variance of the Normal posterior, and s^2 to denote the variance (hyperparameter) of the Normal prior, and σ to denote the known population standard deviation.

Normal-normal model

- Suppose we have $X_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$ with i = 1, ..., n where the variance is known and equal to σ^2 . We denote the observed values by $x = (x_1, ..., x_n)$
- If we define a *normal prior* on μ to be:

$$\mu \sim \mathcal{N}(m, s^2)$$

then the *posterior* pdf is also *normal*:

$$\mu \mid x \sim \mathcal{N}\left(\frac{\frac{n\overline{x}}{\sigma^2} + \frac{m}{s^2}}{\frac{n}{\sigma^2} + \frac{1}{s^2}}, \frac{s^2\sigma^2}{s^2n + \sigma^2}\right)$$

Example

Football hippocampus

Among all people who have a history of concussions, we are interested in μ , the average volume (in cubic centimetres) of the hippocampus. Our data consists of 25 collegiate football players with a history of concussions that have an average hippocampal volume of $\overline{x}=5.735$. For now we assume the standard deviation is known to be $\sigma=0.5$ cm.

Section 5.3 of BayesRules!

Football hippocampus

- Though we don't have prior information about this group in particular, Wikipedia tells us that among the general population of human adults, both halves of the hippocampus have a volume between 3.0 and 3.5 cubic centimetres [Wikipedia: Hippocampus]
- Thus, the total hippocampal volume of both sides of the brain is between 6 and 7 cm.
- Using this as a starting point, we'll assume that the mean hippocampal volume among people with a history of concussions, μ is also somewhere between 6 and 7 cm with an average of 6.5.

Normal Prior

- As indicated in the title, we will be assuming a Normal (i.e. Gaussian) prior on μ .
- This may seem odd as volumes cannot be negative and the Normal distribution is defined from $-\infty$ to ∞ .
- Recall however, that roughly 95% of values will be within 2 standard deviations of the mean, and values beyond 3+ standard deviations from the mean will have negligible plausibility.
- Consequently, unreasonable values will have virtually 0 weight.

Normal Prior

- We may chose a variance such that our prior credible interval, roughly matches the range of plausible values reported by Wikipedia.
- However, we may choose to widen the range of 6–7 cm since
 - a) we haven't vetted those resources and
 - b) we don't know if there is more variability in this hippocampus amongst those who have a history of concussion.
- Hence we may choose a variance of 0.4^2 so that our prior assigns a 95% probability that μ is between 5.7 and 7.3 (6.5 \pm 2 * 0.4).

Normal Prior

Normal Likelihood

- We can reasonably assume that the hippocampal volumes of our n=25 subjects, (X_1,X_2,\ldots,X_n) , are independent and Normally distributed around a mean volume μ (unknown) and standard deviation $\sigma=0.5$
- Note this suggests that most people have hippocampal volumes within 2σ or 1 cm of the average.
- We may write this as

$$X_i \mid \mu \sim N(\mu, 0.5^2) \tag{3}$$

Likelihood

For equation (2) we have

$$\mathcal{L}(\mu) \propto \exp\left[-rac{(\mu - \overline{x})^2}{2\sigma^2/n}
ight]$$

$$\propto \exp\left[-rac{(\mu - 5.735)^2}{2\sigma^2/n}
ight] \ (\overline{x} \ \text{provided in question})$$

which has the functional form of a Normal distribution with

Note: Recall the pdf of the normal

$$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

Likelihood

For equation (2) we have

$$\mathcal{L}(\mu) \propto \exp\left[-rac{(\mu - \overline{x})^2}{2\sigma^2/n}
ight]$$

$$\propto \exp\left[-rac{(\mu - 5.735)^2}{2\sigma^2/n}
ight] \; (\overline{x} \; \text{provided in question})$$

which has the functional form of a Normal distribution with

$$mean = 5.735$$

variance =
$$\sigma^2/n$$

Note: Recall the pdf of the normal

$$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

Drawing from our results from slide 15 and 26 we have

Prior
$$\mu \sim N(6.5, 0.4^2)$$

Likelihood $\mu \sim N(5.735, \sigma^2/n)$

$$\begin{split} \textbf{Posterior} \; \mu \sim \textit{N} \left(\frac{\textit{ns}^2}{\textit{ns}^2 + \sigma^2} \, \overline{\textbf{x}} + \frac{\sigma^2}{\textit{ns}^2 + \sigma^2} \textit{m}, \frac{\textit{s}^2 \sigma^2}{\textit{s}^2 \textit{n} + \sigma^2} \right) \\ \sim \textit{N} \left(\frac{25 \cdot 0.4^2}{25 \cdot 0.4^2 + 0.5^2} \, \frac{5.735}{25 \cdot 0.4^2 + 0.5^2} \frac{0.5^2}{25 \cdot 0.4^2 + 0.5^2} 6.5, \frac{0.4^2 \cdot 0.5^2}{0.4^2 \cdot 25 + 0.5^2} \right) \\ \sim \textit{N} \left(5.78, 0.097^2 \right) \end{split}$$

Note: I believe the BayesRules! has a typo in stating the variance as 0.009^2 ; it should either be displayed as 0.097^2 or $0.0009(=0.097^2)$

In-house plotting:

- > library(bayesrules)

The posterior mean can be rewritten as a weight average of the data (sample mean, \overline{x} , aka MLE estimate for μ) and prior mean m:

$$\left(\frac{\sigma^2}{\sigma^2}\right) \frac{\frac{n}{\sigma^2}}{\frac{n}{\sigma^2} + \frac{1}{s^2}} \overline{x} + \left(\frac{\sigma^2}{\sigma^2}\right) \frac{\frac{1}{s^2}}{\frac{n}{\sigma^2} + \frac{1}{s^2}} m$$

$$\frac{n}{n + \frac{\sigma^2}{s^2}} \overline{x} + \frac{\frac{\sigma^2}{s^2}}{n + \frac{\sigma^2}{s^2}} m$$

$$a \overline{x} + (1 - a)m$$

Once again we see that posterior mean is a weighted average of the prior mean and the likelihood.

Notice the numerators for the two weights:

$$\frac{n}{n + \frac{\sigma^2}{s^2}} \, \overline{x} + \frac{\frac{\sigma^2}{s^2}}{n + \frac{\sigma^2}{s^2}} m$$

 $\frac{n}{s^2}$ is the number of observations in our sample data and $\frac{\sigma^2}{s^2}$ is the akin to the "prior samples" that we discussed in out Beta-Binomial lecture.

If $n \ll \frac{\sigma^2}{s^2}$ the posterior will be influenced heavily by our prior belief.

If $n \gg \frac{\sigma^2}{s^2}$ the posterior will be influenced heavily by the data.

$$\frac{n}{n + \frac{\sigma^2}{s^2}} \, \overline{x} + \frac{\frac{\sigma^2}{s^2}}{n + \frac{\sigma^2}{s^2}} m$$

• If n is large, \overline{x} will have a strong influence on the posterior mean.

 $^{^{3}}$ precision = 1/variance

$$\frac{n}{n + \frac{\sigma^2}{s^2}} \, \overline{x} + \frac{\frac{\sigma^2}{s^2}}{n + \frac{\sigma^2}{s^2}} m$$

- If n is large, \overline{x} will have a strong influence on the posterior mean.
- If s^2 is small relative to σ^2 then m will have a strong influence on the posterior mean.

 $^{^{3}}$ precision = 1/variance

$$\frac{n}{n + \frac{\sigma^2}{s^2}} \, \overline{x} + \frac{\frac{\sigma^2}{s^2}}{n + \frac{\sigma^2}{s^2}} m$$

- If *n* is large, \overline{x} will have a strong influence on the posterior mean.
- If s^2 is small relative to σ^2 then m will have a strong influence on the posterior mean.
- If σ^2 is very small relative to s^2 , the data is said to be very precise³ and would dominate the posterior in comparison to the small contribution from the prior.

 $^{^{3}}$ precision = 1/variance

lodel rior Sample Size osterior variance rior specificatior

$$n = 25 \gg \frac{\sigma^2}{s^2} = \frac{0.5^2}{0.4^2} = 1.5625$$

• We have talked about this generally but let's formalize it . . .

$$Var(\theta) = E[Var(\theta \mid y)] + Var(E(\theta \mid y))$$

$$\implies E[Var(\theta \mid y)] = Var(\theta) - Var(E(\theta \mid y))$$
(4)

- In words (4) states that the posterior variance is on average smaller than the prior variance.
- The relations only describe expectations, hence in particular situations the posterior variance can be similar to or even larger than the prior variance.

• For the normal-normal problem, however, we know that the posterior variance will always be smaller than the prior variance since:

prior variance > posterior variance

$$s^2 > \frac{1}{\frac{n}{\sigma^2} + \frac{1}{s^2}} = \frac{s^2}{\frac{s^2n}{\sigma^2} + 1}$$

since $\frac{s^2n}{\sigma^2} + 1 > 1$ with s^2, σ^2, n all guaranteed to be positive.

Comments

- While the uniform distribution is a special case of the Beta distribution, the Normal priors (or any proper models with infinite support) can be tuned to be totally flat.
- One way to diffuse these types of priors is to have very high variance, so that they're almost flat.
- The rationale for using noninformative prior distributions is "to let the data speak for themselves" so that inferences are unaffected by information external to the current data.

- We have already discussed how a non-informative prior might come in the form of a flat uniform distribution.
- Suppose we want to define a uniform prior a parameter that takes values over an infinite range. We could use

$$p(\theta) = c,$$

for some constant c and $-\infty < \theta < \infty$.

 Notice how this is an improper prior since the this prior since it does not integrate to 1 (the integral is infinite!)

A note on "improper" priors

- Some textbooks classify densities as "improper" if they have non-finite integral while others use something other than 1.
- Moving forward, I will use unnormalized to describe densities that integrate to a positive finite value, k, and improper to mean that the density integrates to infinity.
- Unnormalized priors are not a problem since we usually work up to a constant of proportionality anyway and make the posterior prior by multiplying it by the normalizing constant.
- While an an improper prior may lead to a proper posterior this is not always the case and we should exercise caution.

- To see an example for when an improper prior does in fact produce a proper posterior distribution, let's assume a Uniform($-\infty$, ∞) prior on μ .
- Note that this is an improper prior since $\int_{-\infty}^{\infty} c \ d\theta = \infty$.
- By working out the normalizing constant p(y), it can be shown that this improper prior distribution yields a proper posterior distribution, given at least one data point.⁴
- We can approximate this result by considering a $N(m, s^2)$ prior on μ as s^2 approaches infinity.

⁴The hairy details can be seen here

Using the results we obtained previously and investigating the limiting case when $s^2 \to \infty$ we see:

$$p(\mu \mid x) \sim N \left(\frac{\frac{n\overline{x}}{\sigma^2} + \frac{m'}{\cancel{s}^2}}{\frac{n}{\sigma^2} + \frac{1}{\cancel{s}^2}}, \frac{1}{\frac{n}{\sigma^2} + \frac{1}{\cancel{s}^2}} \right)$$
$$\sim N \left(\overline{x}, \frac{\sigma^2}{n}\right)$$

Notice how the posterior mean for this model coincides with the likelihood.