Flight Delay and Cancellation

Ficha Técnica

- Objetivo: Analisar atrasos e cancelamentos de voos para identificar padrões e causas subjacentes.
- Variáveis:
 - Tabela DOTCODEDICTIONARY:
 - Code
 - Description
 - Tabela AIRLINECODEDICTIONARY:
 - Code
 - Description
 - Tabela voos 202301:
 - FL DATE
 - AIRLINE_CODE
 - DOT CODE
 - FL NUMBER
 - ORIGIN
 - ORIGIN CITY
 - DEST
 - DEST_CITY
 - CRSDEPTIME
 - DEP_TIME
 - DEP DELAY
 - TAXI OUT
 - WHEELS OFF
 - WHEELS_ON
 - TAXI IN
 - CRSARRTIME
 - ARR TIME
 - ARR DELAY
 - CANCELLED
 - CANCELLATION_CODE
 - DIVERTED
 - CRSELAPSEDTIME
 - ELAPSED_TIME
 - AIR TIME
 - DISTANCE
 - DELAYDUECARRIER
 - DELAYDUEWEATHER
 - DELAYDUENAS

- DELAYDUESECURITY
- DELAYDUELATE AIRCRAFT
- Fontes dos Dados: U.S. Department of Transportation, Bureau of Transportation Statistics via Kaggle
- Técnicas Recomendadas:
 - Análise: Análise de Coorte para ver o comportamento ao longo do tempo, Teste de significância para determinar os fatores que têm impacto significativo nos atrasos e cancelamentos.
 - Regressão: Regressão logística para modelar a probabilidade de cancelamento de voos.
- Ferramentas: Python (pandas, numpy, scikit-learn, statsmodels), Jupyter Notebook, Visualização (matplotlib, seaborn, plotly)
- Perguntas de negócios a serem respondidas:
 - Existem rotas que apresentam atrasos frequentes?
 - Qual é o tempo de atraso médio por rota?
 - É possível identificar os principais motivos do atraso?
 - Existe alguma origem ou destino que gera mais atrasos?
 - Análise sugerida para "Existe alguma origem ou destino que gera mais atrasos?": Verificação com risco relativo.
 - Modelagem sugerida:
 - Regressão linear para prever o tempo do delay.
 - Regressão logística para determinar se um voo atrasará ou não.

Introdução

Título: Análise de Atrasos e Cancelamentos de Voos

Objetivo: Identificar padrões e causas subjacentes aos atrasos e cancelamentos de voos utilizando dados do Departamento de Transporte dos EUA.

Metodología

Fontes de Dados:

 Departamento de Transporte dos EUA, Bureau de Estatísticas de Transporte via Kaggle.

Técnicas Utilizadas:

- Análise de Coorte
- Testes de Significância
- Regressão Logística
- Regressão Linear

Ferramentas:

- Python (pandas, numpy, scikit-learn, statsmodels)
- Jupyter Notebook
- Visualização (plotly)

Análise Descritiva

Número de Voos Analisados: 538837.

Companhia Analisadas: 15.

Rutas Analisadas: 5580.

Origem e Destino: 339.

Número de Voos Cancelados: 10,29K

Data Analisada: Janeiro de 2023

Distribuição de Atrasos por Companhia Aérea:

• Southwest Airlines Co.:

o Número de Voos: 111,836

o **Tempo Médio de Atraso:** 29.37 minutos

Número de Cancelamentos: 3,233

A Southwest Airlines tem o maior número de voos entre todas as companhias listadas, com um tempo médio de atraso moderado de aproximadamente 29 minutos. Apesar disso, também lidera em termos de cancelamentos, o que pode impactar significativamente a experiência do passageiro e a eficiência operacional.

• Hawaiian Airlines Inc.:

o Número de Voos: 6,692

o **Tempo Médio de Atraso:** 24.96 minutos

Número de Cancelamentos: 72

A Hawaiian Airlines mostra o menor tempo médio de atraso entre as companhias listadas, com menos de 25 minutos. Além disso, o número de cancelamentos é significativamente baixo em comparação com as outras companhias, refletindo uma operação relativamente estável.

American Airlines Inc.:

o Número de Voos: 74,536

Tempo Médio de Atraso: 50.96 minutos
 Número de Cancelamentos: 1.417

A American Airlines tem um alto tempo médio de atraso, próximo a 51 minutos, e um número considerável de cancelamentos. Isso sugere desafios significativos em manter pontualidade e operações sem interrupções.

Considerações Finais:

- **Eficiência Operacional:** Companhias com menor tempo médio de atraso tendem a oferecer uma experiência mais pontual aos passageiros.
- Impacto dos Cancelamentos: O número de cancelamentos pode afetar a confiança dos passageiros e a reputação da companhia aérea.
- Comparação Contextual: É importante contextualizar esses dados com as operações específicas de cada companhia aérea, como rotas, hub de operação, e políticas de gerenciamento de atrasos e cancelamentos.

Cidades de Origem com Maior Atraso Médio:

Pocatello, ID:

Número de Voos: 31

• Tempo Médio de Atraso: 390 minutos

Número de Cancelamentos: 0

Pocatello, ID, tem um tempo médio de atraso excepcionalmente alto de 390 minutos, indicando desafios significativos em operações pontuais. Embora não haja cancelamentos registrados, o alto tempo de atraso pode impactar severamente a experiência dos passageiros.

Laramie, WY:

Número de Voos: 53

o **Tempo Médio de Atraso:** 380.5 minutos

Número de Cancelamentos: 4

Laramie, WY, também apresenta um tempo médio de atraso muito alto e um número moderado de cancelamentos. Isso sugere dificuldades operacionais que podem afetar a confiabilidade dos serviços aéreos nesta região.

Texarkana, AR:

Número de Voos: 89

o **Tempo Médio de Atraso:** 200.94 minutos

Número de Cancelamentos: 3

Texarkana, AR, tem um tempo médio de atraso considerável e um número modesto de cancelamentos. Isso indica que há margem para melhorias na eficiência operacional e no gerenciamento de atrasos.

Cidades de Destino com Maior Atraso Médio:

Hattiesburg/Laurel, MS:

• Número de Voos: 52

• Tempo Médio de Atraso: 166.57 minutos

• Número de Cancelamentos: 1

Hattiesburg/Laurel, MS, apresenta um tempo médio de atraso considerável e um número moderado de cancelamentos. A gestão eficaz desses atrasos e cancelamentos pode melhorar a experiência dos passageiros nessa rota.

Grand Forks, ND:

• Número de Voos: 114

• Tempo Médio de Atraso: 145.59 minutos

• Número de Cancelamentos: 3

Grand Forks, ND, também enfrenta desafios com um tempo médio de atraso significativo. O número moderado de cancelamentos sugere áreas para melhorias operacionais e gestão de atrasos.

Valdosta, GA:

• Número de Voos: 81

• Tempo Médio de Atraso: 140 minutos

• Número de Cancelamentos: 0

Valdosta, GA, mostra um tempo médio de atraso considerável sem cancelamentos registrados. Isso pode indicar uma gestão relativamente estável das operações, mas ainda há margem para melhorias na pontualidade.

Considerações Finais:

- Impacto do Tempo de Atraso: Cidades com altos tempos médios de atraso enfrentam desafios operacionais que podem exigir intervenções específicas para melhorar a pontualidade.
- Gestão de Cancelamentos: O número de cancelamentos reflete diretamente na confiabilidade dos serviços aéreos e na satisfação dos passageiros.
- Otimização Operacional: Estratégias focadas na redução de atrasos e na gestão eficaz de cancelamentos são essenciais para melhorar a experiência do cliente e a eficiência operacional das companhias aéreas nessas localidades.

Rotas com Major Número de Atrasos:

Memphis, TN - Phoenix, AZ

Número de Voos: 3

o **Tempo Médio de Atraso:** 629.67 minutos

Esta rota apresenta um tempo médio de atraso muito alto, sugerindo possíveis desafios operacionais que precisam ser investigados e melhorados para garantir maior pontualidade.

Sanford, FL - Grand Forks, ND

Número de Voos: 4

o **Tempo Médio de Atraso:** 482.50 minutos

Com um tempo médio de atraso elevado, essa rota também demanda atenção especial para otimização das operações e redução de atrasos.

Baton Rouge, LA - Houston, TX

Número de Voos: 3

o Tempo Médio de Atraso: 442.00 minutos

Apesar do baixo número de voos, o tempo médio de atraso é significativo, indicando necessidade de melhorias na eficiência operacional nessa rota específica.

Grand Forks, ND - Sanford, FL

Número de Voos: 5

o **Tempo Médio de Atraso:** 405.60 minutos

Esta rota também mostra um tempo médio de atraso considerável, destacando a importância de estratégias para redução de atrasos e melhoria da pontualidade.

Chattanooga, TN - Chicago, IL

- Número de Voos: 3
- o **Tempo Médio de Atraso:** 402.33 minutos

Apesar do baixo número de voos, o tempo médio de atraso é alto, sugerindo possíveis oportunidades para melhorar a eficiência operacional e reduzir atrasos.

Considerações Finais:

- **Priorização de ações:** Rotas com tempo médio de atraso elevado devem ser priorizadas para análise detalhada e implementação de medidas corretivas.
- Eficiência Operacional: Investimentos em melhorias operacionais, como planejamento de rotas, gestão de tráfego aéreo e manutenção de aeronaves, podem contribuir significativamente para reduzir atrasos.
- Impacto no Serviço ao Cliente: Reduzir atrasos não apenas melhora a eficiência, mas também aumenta a satisfação dos passageiros e fortalece a reputação da companhia aérea.

Principais Motivos dos Atrasos e Cancelamento:

- Principais fatores de Atraso: Histórico de Desempenho da Companhia Aérea.
- Fatores de Tráfego Aéreo: Atraso de Aeronave Anterior e Atrasos devido ao Sistema Nacional de Aviação (NAS).
- Principais fatores de Atraso: o Clima.

Análise de Coorte de Atraso e Cancelamento

Análise por Dia do Mês (Atraso):

Os dados mostram variações significativas nos atrasos médios de partida ao longo do mês. Destacam-se os dias 1, 2 e 11 com atrasos consideravelmente mais altos, enquanto os dias 17, 18, 21 e 24 apresentam atrasos mais baixos. Isso sugere uma possível correlação entre o dia do mês e o padrão de atrasos, possivelmente relacionado a fatores sazonais ou operacionais específicos.

Análise por Hora do Dia:

Os atrasos médios variam bastante ao longo do dia. Horas noturnas, como 1h e 2h da manhã, mostram atrasos significativamente mais altos, o que pode indicar problemas operacionais noturnos ou programação de voos em horários menos favoráveis. As horas entre 5h e 10h da manhã apresentam atrasos menores ou até negativos, sugerindo uma possível eficiência operacional nas primeiras horas do dia.

Análise por Dia da Semana:

Há uma variação notável nos atrasos médios dependendo do dia da semana. Quartas-feiras se destacam com atrasos mais altos, enquanto sábados e domingos tendem a ter atrasos mais baixos. Isso pode refletir diferenças nas operações aéreas e no volume de tráfego ao longo da semana, influenciando diretamente nos atrasos observados.

Considerações Finais:

- Dia do Mês: Recomenda-se investigar mais profundamente os padrões de atraso nos dias 1, 2 e 11 para identificar possíveis causas específicas e implementar medidas corretivas.
- Hora do Dia: A análise sugere que melhorias operacionais podem ser focadas nas horas da madrugada para reduzir atrasos, enquanto os horários matinais mostram potencial para manter eficiências.
- Dia da Semana: Estratégias específicas podem ser adotadas para mitigar atrasos em dias de pico, como quartas-feiras, aproveitando os padrões observados nos fins de semana.

Análise por Dia do Mês (Cancelados):

- Os dias com maior média de cancelamentos são o dia 31 (10.51%) e o dia 11 (7.02%).
- Os dias com menor média de cancelamentos são os dias 21 (0.16%), 14 (0.23%), e 7 (0.28%).

Análise por Hora do Dia:

- A maioria das horas do dia apresenta baixas taxas de cancelamento, com valores próximos a 0.1% ou menos.
- A exceção é a hora 13, que possui uma taxa de cancelamento significativamente alta (24.22%).

Análise por Dia da Semana:

- As segundas-feiras têm a maior média de cancelamentos (2.63%).
- As sextas-feiras, sábados e domingos apresentam as menores médias de cancelamentos, todas abaixo de 1%.

Considerações Finais:

- **Dia do Mês:** Os dias 31 e 11 podem ser períodos críticos com potencial para maior número de cancelamentos. Isso pode estar relacionado a fatores como demanda sazonal, condições meteorológicas ou eventos especiais.
- Hora do Dia: A hora 13 se destaca com uma taxa muito alta de cancelamentos, o que pode indicar problemas operacionais específicos nesse horário.
- Dia da Semana: Segundas-feiras mostram consistentemente taxas de cancelamento mais altas, o que pode refletir desafios de início de semana na operação aérea.

Análise Correlação Pearson:

Correlação entre Atrasos de Partida (DEP_DELAY) e Chegada (ARR_DELAY):

 Existe uma forte correlação positiva de 0.96 entre o atraso na partida e o atraso na chegada. Isso indica que voos que partem com atraso tendem a chegar com atraso, o que é esperado.

Correlação com Causas de Atraso:

- O atraso devido à companhia aérea (DELAY_DUE_CARRIER) tem uma correlação significativa (0.68) com o atraso na partida, o que sugere que a performance da própria companhia influencia os atrasos iniciais.
- Atrasos devido a problemas de aeronave tardia (DELAY_DUE_LATE_AIRCRAFT) também mostram uma correlação considerável com o atraso na partida (0.58), indicando que problemas mecânicos ou de manutenção podem ser uma causa frequente de atrasos na partida.

Outras Correlações Relevantes:

- O tempo planejado de partida (CRS_DEP_TIME) tem uma correlação muito fraca com os atrasos (-0.03), o que sugere que o horário planejado não está fortemente associado aos atrasos.
- A distância do voo (DISTANCE) tem uma correlação quase nula com o atraso na chegada (0.01), indicando que a distância do voo não influencia significativamente os atrasos na chegada.
- Há uma correlação negativa (-0.07), indicando uma relação leve onde os atrasos na partida tendem a ser menores em determinados dias da semana(FL_DAY).

Correlação com Cancelamentos:

- Existe uma correlação negativa fraca entre cancelamentos e atrasos (-0.03), o que indica que voos cancelados não têm atrasos associados (o que é esperado, já que são cancelados).
- Existe uma correlação muito forte de 0.80 entre voos cancelados e a presença do Clima (CANCELLATION_CODE_B). Isso indica que esse código específico está fortemente associado aos voos que são cancelados.

Testes de Significância

Qui-Quadrado, Identificação de Padrões:

Padrões de Atraso - Companhias Aéreas: Verificar se certas companhias aéreas têm uma maior probabilidade de atraso em comparação com outras.

Associação de Atraso/Cancelamentos com Condições Meteorológicas: Verificar se atrasos ou cancelamentos estão significativamente associados com condições meteorológicas.

Associação com Aeroportos de Origem/Destino: Verificar se determinados aeroportos têm uma maior incidência de atrasos e cancelamentos.

Conclusão:

Em todas as análises, rejeitamos a hipótese nula de que não há associação entre as variáveis. Os resultados sugerem que tanto os atrasos quanto os cancelamentos de voos têm associações significativas com as companhias aéreas e as condições meteorológicas. Isso implica que fatores relacionados às companhias aéreas e ao clima desempenham um papel importante nos atrasos e cancelamentos de voos.

Modelo de Regressão Linear

Desempenho do Modelo:

- Cross-Validation R² Scores: [0.93089451, 0.93979803, 0.9223652, 0.94537138, 0.94826544]
 - Esses valores indicam a variabilidade explicada pelo modelo em diferentes subconjuntos de dados. O R² médio de 0.9373389128422434 sugere que o modelo explica aproximadamente 93.73% da variabilidade nos dados de atraso de decolagem.
- R² Score no Conjunto de Teste: 0.9308945105738246
 - Um R² de 0.93 no conjunto de teste confirma que o modelo está generalizando bem para novos dados, mantendo um desempenho consistente com a validação cruzada.

Erros do Modelo:

- Mean Squared Error (MSE): 205.0487060705964
 - O MSE fornece a média dos erros quadráticos, e um valor menor é desejável. No entanto, o MSE é sensível a outliers devido à quadratura dos erros.
- Root Mean Squared Error (RMSE): 14.319521852024124
 - O RMSE é a raiz quadrada do MSE, trazendo a métrica de volta à mesma escala dos dados originais, facilitando a interpretação. Um RMSE de aproximadamente 14.32 indica que, em média, as previsões de atraso de decolagem estão a 14.32 minutos do valor real.
- Mean Absolute Error (MAE): 7.58600384199678
 - O MAE é a média dos erros absolutos e é menos sensível a outliers comparado ao MSE. Um MAE de cerca de 7.59 sugere que, em média, as previsões de atraso diferem dos valores reais por cerca de 7.59 minutos.

Interpretação dos Resultados:

- O alto R² e os valores de validação cruzada indicam que o modelo é robusto e capaz de capturar bem a relação entre as variáveis preditoras e o atraso de decolagem.
- Os valores de MSE, RMSE e MAE são razoáveis e indicam um bom desempenho do modelo, com erros relativamente baixos nas previsões.

Conclusão:

O modelo de regressão linear ajustado é eficaz para prever atrasos de decolagem com base nas variáveis selecionadas. A análise sugere que o modelo pode ser usado com confiança para entender e prever padrões de atraso, ajudando a identificar fatores subjacentes e potencialmente mitigando atrasos futuros.

Regressão Logística para Determinar atrasos:

Interpretação dos Resultados:

- O modelo apresenta uma alta precisão para a classe de atraso (1), mas o recall é
 relativamente baixo, indicando que o modelo tende a prever atrasos corretamente
 quando os identifica, mas pode não identificar todos os casos reais de atraso.
- A alta acurácia e ROC-AUC sugerem que o modelo é eficaz na classificação geral, mas o desequilíbrio no recall entre as classes indica que há espaço para melhorias na detecção de atrasos.

Conclusão:

A regressão logística é eficaz para prever atrasos de voos, com uma precisão geral razoável e uma boa capacidade discriminativa. No entanto, melhorar o recall para a classe de atraso pode ajudar a identificar mais casos reais de atraso, aumentando a utilidade prática do modelo. Isso pode ser abordado através de técnicas como ajuste de pesos, resampling, ou experimentação com diferentes algoritmos de classificação.

Modelo de Regressão Linear (Cancelados)

Desempenho do Modelo:

- Cross-Validation R² Scores: [1. 1. 1. 1. 1.]
 - Esses valores indicam a variabilidade explicada pelo modelo em diferentes subconjuntos de dados. O R² médio de 1 sugere que o modelo explica aproximadamente100% da variabilidade nos dados de atraso de decolagem.
- R² Score no Conjunto de Teste: 1
 - Um R² de 1 no conjunto de teste confirma que o modelo está generalizando bem para novos dados, mantendo um desempenho consistente com a validação cruzada.

Erros do Modelo:

Mean Squared Error (MSE): 4.6254072139905086e-32

- O MSE fornece a média dos erros quadráticos, e um valor menor é desejável. No entanto, o MSE é sensível a outliers devido à quadratura dos erros.
- Root Mean Squared Error (RMSE): 2.1506759900065163e-16
 - O RMSE é a raiz quadrada do MSE, trazendo a métrica de volta à mesma escala dos dados originais, facilitando a interpretação. Um RMSE de aproximadamente 14.32 indica que, em média, as previsões de atraso de decolagem estão a 14.32 minutos do valor real.
- Mean Absolute Error (MAE): 1.5615099456362932e-16
 - O MAE é a média dos erros absolutos e é menos sensível a outliers comparado ao MSE. Um MAE de cerca de 1.56 sugere que, em média, as previsões de cancelamento diferem dos valores reais por cerca de 1.56 cancelamentos.

Conclusão:

Com base nos resultados obtidos com o modelo de Regressão Logística, podemos concluir que os códigos de cancelamento são altamente informativos para prever o cancelamento de voos. A alta precisão e o desempenho consistente do modelo reforçam a importância dessas variáveis na previsão. Recomenda-se realizar validações adicionais e explorar outras características para garantir a robustez e a aplicabilidade do modelo em diferentes contextos.

Regressão Logística para Determinar cancelados:

Interpretação dos Resultados:

- O modelo apresenta uma alta precisão para a classe de atraso (1), o recall tende a prever atrasos corretamente quando os identifica, 0 erro.
- A alta acurácia e ROC-AUC sugerem que o modelo é eficaz na classificação gera.

Conclusão:

Os resultados perfeitos indicam que o modelo precisa ser reavaliado para garantir que não está sobreajustado e que é capaz de generalizar bem para novos dados. A introdução de técnicas de regularização e a validação em conjuntos de dados externos são etapas essenciais para melhorar a robustez do modelo.

Modelo Lasso e Ridge:

Ridge Mean Squared Error: 1.1035659267200446e-13 Ridge R^2 Score:

0.999999999941115

Lasso Mean Squared Error: 0.0003928752624561363 Lasso R^2 Score:

0.9790363925243897

Ridge Cross-Validation R^2 Scores: [0.89996454 0.99999967 0.99999951 0.99999978 0.99999986] **Ridge Mean Cross-Validation R^2 Score:** 0.9799926720748016

Lasso Cross-Validation R^2 Scores: [0.21497997 0.23540913 0.15215268 0.11477737 0.1517006]

Ridge Mean Cross-Validation R^2 Score: 0.17380395062493975

Conclusão:

Os resultados mostram que a regularização Ridge é altamente eficaz para o conjunto de dados atual, proporcionando uma previsão quase perfeita com robustez através da validação cruzada. No entanto, a variabilidade nos resultados de Lasso indica que este método pode não ser o mais adequado para este conjunto de dados específico. Recomenda-se continuar a experimentar diferentes modelos e métodos de combinação de modelos para alcançar a melhor performance possível.

Modelo Random Forest

Random Forest Mean Squared Error: 0.0 Random Forest R^2 Score: 1.0 Random Forest Cross-Validation R^2 Scores: [0.89995316 1. 1. 1. 1.] Random Forest Mean Cross-Validation R^2 Score: 0.979990631353516.

Esses resultados indicam que o modelo Random Forest está se ajustando muito bem aos dados, com um R^2 Score perfeito nos dados de teste e alta consistência nos dados de validação cruzada.

Recomendações

Melhoria da Logística:

- Otimização da Gestão de Frota para Minimizar Atrasos Causados por Aeronaves Anteriores.
- Implementação de Sistemas de Gerenciamento de Frota Avançados:
 - Utilização de Tecnologia de Previsão e Monitoramento para otimizar alocação de aeronaves.
 - Integração de Módulos de Manutenção Preventiva para reduzir falhas inesperadas.

• Melhoria da Programação de Voos:

- Análise de Dados Históricos para ajustar horários de partida e chegada.
- Criação de Horários Flexíveis para permitir ajustes rápidos em caso de atrasos imprevistos.

• Treinamento e Desenvolvimento de Equipe:

- Capacitação em Logística para equipes de logística e operações de voo.
- Realização de Simulações de Cenários para preparar a equipe para gerenciar atrasos.

• Colaboração com Outros Aeroportos e Companhias Aéreas:

- Estabelecimento de Parcerias Estratégicas para compartilhamento de recursos.
- Coordenação com Aeroportos para garantir eficiência nos processos.

Comunicação com Passageiros:

Melhorar a Comunicação em Caso de Atrasos Devidos a Fatores Climáticos:

- o Transparência e Proatividade com atualizações regulares.
- Utilização de Estratégias de Comunicação Multicanal, incluindo aplicativos móveis e mídias sociais.

Serviço ao Cliente e Suporte:

- o Estabelecimento de Equipes de Suporte Dedicadas.
- Oferta de Canais de Comunicação Diretos para assistência rápida.

Oferecimento de Compensações e Benefícios:

- o Políticas Claras de Reembolso e Remarcação.
- Benefícios Adicionais para minimizar desconfortos durante atrasos prolongados.

• Educação e Conscientização dos Passageiros:

- Campanhas Informativas sobre fatores climáticos e gerenciamento de atrasos.
- Fornecimento de Guias de Viagem com dicas úteis para passageiros.

Conclusão

Implementar melhorias na logística de gerenciamento de frota e aprimorar a comunicação com os passageiros são passos cruciais para mitigar atrasos de voos e aumentar a satisfação dos clientes. Ao investir em tecnologia avançada, treinamento especializado para equipes e sistemas de comunicação eficazes, as companhias aéreas não apenas melhoram sua eficiência operacional, mas também fortalecem a confiança e lealdade dos passageiros.

A adoção das recomendações propostas neste estudo não só capacita as companhias aéreas a responder de maneira mais ágil aos desafios operacionais e climáticos, mas também assegura uma experiência de viagem mais tranquila e confiável para todos os envolvidos. Ao colocar em prática sistemas avançados de previsão e monitoramento, programas de manutenção preventiva, e ajustes flexíveis na programação de voos, as companhias aéreas estarão melhor preparadas para lidar com a complexidade dos atrasos e oferecer um serviço mais consistente e de qualidade.

Considerações Finais

- Limitações do Estudo: Este estudo dependeu principalmente de dados históricos e não considerou todos os fatores imprevistos que podem influenciar a operação aérea.
- Próximos Passos: Recomenda-se investigar a influência de fatores sazonais e eventos especiais nos atrasos e cancelamentos, a fim de refinar ainda mais as estratégias de gerenciamento.
- Impacto: Compreender melhor os padrões de atrasos tem o potencial de não apenas melhorar a experiência dos passageiros, mas também otimizar significativamente a eficiência operacional das companhias aéreas, contribuindo para um setor de aviação mais resiliente e adaptável às demandas do mercado e às condições ambientais.