SELAYANG PANDANG

PELUANG

Ali Akbar Septiandri

Universitas Al-Azhar Indonesia aliak bars@live.com

February 21, 2020

Coba ini...

GAMBAR: Machine Learning Flashcards

- 1 PEUBAH ACAK
- 2 Peluang Bersyarat
- 3 Bayes' Rule

Coba ini...

Educational resources from machine learning

GAMBAR: Learn with Google AI

Coba ini...

GAMBAR: Machine Learning - Coursera

PEUBAH ACAK

Gambar: Statistics 110 - Harvard

RUANG SAMPEL

APA ITU?

S=himpunan dari semua keluaran yang mungkin terjadi

EXAMPLE

lemparan koin $S = \{Angka, Gambar\}$

lemparan dua koin $S = \{(A,A), (A,G), (G,A), (G,G)\}$

lemparan dadu $S = \{1, 2, 3, 4, 5, 6\}$

jumlah email dalam satu hari $S = \mathbb{N}$ jam bermain Mobile Legends S = [0, 24]

APA ITU?

 $E = \text{subhimpunan/subset dari } S \ (E \subseteq S)$

EXAMPLE

lemparan koin memunculkan angka $E = \{Angka\}$

 ≥ 1 angka dari dua koin $E = \{(A, A), (A, G), (G, A)\}$

lemparan dadu ≥ 3 $E = \{3, 4, 5, 6\}$

email dalam sehari ≤ 5 $E = \{x \leq 5, x \in \mathbb{N}\}$

"hari-hari tidak produktif" E = [8, 24]

These two books contain the sum total of all human knowledge

7:28 PM - Apr 5, 2013

28.2K 27.4K people are talking about this

$$E \cup E' = S$$

PROBABILITAS

Jadi, apa itu peluang/probabilitas?

GAMBAR: Persepsi akan probabilitas — Sumber: https://github.com/zonination/perceptions

- Kuantifikasi dari ketidakpastian
- Nilai antara 0 dan 1 yang kita pautkan pada suatu kejadian
- Faktanya, persepsi kita terhadap ketidakpastian bisa berbeda-beda

Frequentist vs Bayesian

Interpretasi Frequentist

Frekuensi kemunculan kejadian dalam jangka panjang

EXAMPLE

Peluang kemunculan sisi angka dari suatu lemparan ko
in adalah $0.43\,$

Interpretasi Bayesian

Kuantifikasi derajat kepercayaan terhadap sesuatu

EXAMPLE

Peluang besok¹ hujan adalah 0.3

¹Apakah mungkin mengulang "besok"?

$$P(E) = \lim_{n \to \infty} \frac{\#(E)}{n}$$

$$0 \le P(E) \le 1$$

- P(S) = 1
- 3 Jika $E \cap F = \emptyset$, maka $P(E \cup F) = P(E) + P(F)$

AKIBATNYA...

PEUBAH ACAK

- P(E') = 1 P(E)
- ${\color{red} 2}$ Jika $E\subseteq F,$ maka $P(E)\leq P(F)$
- **3** $P(E \cup F) = P(E) + P(F) P(E \cap F)$

- Peubah acak atau *random variables* (RV) X menunjukkan sebuah nilai yang dapat berubah-ubah, tergantung kejadian
- Dapat berupa hasil eksperimen (e.g. lemparan koin) atau pengukuran kuantitas yang fluktuatif (e.g. temperatur)
- X menggambarkan RV, x menggambarkan nilai, e.g. p(X = x)
- Dapat disingkat menjadi p(x)
- Sebuah RV dapat bernilai kontinu maupun diskrit

CONTOH KASUS

CONTOH KASUS (LANJUTAN)

EXAMPLE

Dua dadu dilempar bersamaan, berapa peluang munculnya sisi kedua dadu berjumlah 7?

PERTANYAAN

Apa yang harus didefinisikan terlebih dahulu?

JAWAB

Apa yang menjadi ruang sampelnya? Apa pula kejadiannya?

CONTOH KASUS

EXAMPLE

Ada 3,200 mahasiswa UAI, Anda berteman dengan 40 orang di antaranya. Jika Anda pergi ke suatu acara yang didatangi 20 orang mahasiswa UAI, berapa peluang Anda menemukan *paling tidak* satu orang teman Anda?

Definisikan

$$p(X \ge 1) = ...$$

Berapa banyak yang harus dihitung?

- $S = \{(1,1), (1,2), ..., (6,5), (6,6)\}$
- $E = \{(1,6), (2,5), ..., (5,2), (6,1)\}$
- $p(X_1 + X_2 = 7) = ?$
- $p((X_1 = 1 \cap X_2 = 6) \cup (X_1 = 2 \cap X_2 = 5) \cup ...) = \frac{6}{36}$

CONTOH KASUS (LANJUTAN)

- Hitung saja peluang tidak bertemu dengan teman sama sekali, i.e. p(X = 0).
- Maka nilainya dapat dihitung dengan

$$p(X \ge 1) = 1 - p(X = 0)$$
$$= 1 - \frac{\binom{3200 - 40}{20}}{\binom{3200}{20}} = 0.2230$$

 Coba lihat: http://web.stanford.edu/class/cs109/ demos/serendipity.html Ingat bahwa...

- $\sum_{x} p(x) = 1$
- Dalam kasus RV kontinu, $\int p(x)dx = 1$
- p(x) dalam kasus kontinu dikenal sebagai probability density function (PDF)
- Nilai p(x) mungkin > 1 (mengapa?)

CONTOH KASUS

EXAMPLE

Saya akan melempar sebuah koin. Jika sisi yang keluar angka, maka saya akan memberikan Anda Rp 200,000. Jika keluarnya gambar, maka Anda harus memberikan saya Rp 100,000. Apakah Anda akan bermain?

Solusi

$$\mathbb{E}[f(x)] = \sum_{x} f(x)p(x)$$

$$= 200000 \cdot \frac{1}{2} + (-100000) \cdot \frac{1}{2}$$

$$= 50000$$

• Anggap kita punya fungsi f(x) yang memetakan x ke nilai numerik

EKSPEKTASI

$$\mathbb{E}[f(x)] = \sum_{x} f(x)p(x)$$
$$= \int f(x)p(x)dx$$

untuk variabel diskrit dan kontinu.

- Saat f(x) = x, kita akan mendapatkan mean, μ_x
- Saat $f(x) = (x \mu_x)^2$, kita akan mendapatkan variansi

PELUANG BERSYARAT

Joint Distributions

MARGINAL PROBABILITY

- Kita akan lebih sering berurusan dengan banyak RV \rightarrow butuh joint distributions
- $p(X_1 = x_1, X_2 = x_2, ..., X_D = x_D)$
- Saat ragu, selalu mulai dari sini
- Contoh (Koller & Friedman, 2009):

	Intelligence $= low$	Intelligence = high
Grade = A	0.07	0.18
Grade = B	0.28	0.09
Grade = C	0.35	0.03

- Berapa p(Grade = A)?
- Gunakan *sum rule*:

$$p(x) = \sum_{y} p(x, y)$$

• Ganti sum dengan integral untuk RV kontinu

CONDITIONAL PROBABILITY

• Peluang bersyarat:

$$p(X = x|Y = y) = p(x|y) = \frac{p(x,y)}{p(y)}$$

• Product rule:

$$p(x,y) = p(x)p(y|x) = p(y)p(x|y)$$

• Contoh: Tentukan nilai p(Intelligence = high|Grade = A)!

CHAIN RULE

Aturan rantai ($\frac{chain\ rule}{rule}$) didapatkan dengan mengaplikasikan $product\ rule$ berulang kali.

$$\begin{split} p(X_1,...,X_D) &= p(X_1,...,X_{D-1})p(X_D|X_1,...,X_{D-1}) \\ &= p(X_1,...,X_{D-2})p(X_{D-1}|X_1,...,X_{D-2})p(X_D|X_1,...,X_{D-1}) \\ &= ... \\ &= p(X_1)\prod_{i=2}^D p(X_i|X_1,...,X_{i-1}) \end{split}$$

Break
BAYES' RULE

KISAH ABRAHAM WALD

Credit: Cameron Moll

Gentlemen, you need to put more armour-plate where the holes aren't because that's where the holes were on the airplanes that didn't return - Abraham Wald 1942.

GAMBAR: Pendekatan matematisnya membuat sekutu berhasil menyelamatkan banyak pesawat pada Perang Dunia II

Bayes' Rule

Berdasarkan product rule,

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

dengan bagian penyebut yang dapat dijabarkan dengan sum rule sebagai berikut

$$p(X) = \sum_{Y} p(X|Y)p(Y)$$

EXAMPLE

Terdapat 0.08% orang yang terkena virus Corona. Dari 1000 orang yang terkena virus Corona, 900 orang akan menunjukkan hasil tes positif. Di sisi lain, terdapat 7% orang tanpa virus Corona yang juga akan terdeteksi mengidap virus Corona berdasarkan tes yang sama. Jika seseorang menjalani tes tersebut dan dinyatakan positif, berapa peluangnya dia benar-benar mengidap virus Corona?

TERMINOLOGI

$$\underbrace{P(C|T)}_{posterior} = \underbrace{\frac{P(C|Z)}{P(C)}}_{likelihood} \underbrace{\frac{prior}{P(C)}}_{prior}$$

$$\underbrace{\frac{P(C|T)}{P(C)}}_{normalizing\ constant}$$

Solusi

- $p(C) = 8 \times 10^{-4}$
- p(T|C) = 0.9
- p(T|C') = 0.07
- $p(C|T) = \frac{p(T|C)p(C)}{p(T)} \approx 0.01$

Cari: Monty Hall problem

IKHTISAR

- Peubah acak, ruang sampel, dan kejadian
- Probabilitas dan kuantifikasi ketidakpastian
- Aksioma probabilitas, $0 \le p(x) \le 1$ dan $\sum_{x} p(x) = 1$
- Ekspektasi dan variansi
- Peluang bersyarat, aturan penjumlahan dan perkalian, dan aturan rantai
- Bayes' rule yang mengubah keyakinan berdasarkan observasi

Referensi

Chris Piech (Sep. 2017)

Probability

http://web.stanford.edu/class/archive/cs/cs109/cs109.1178/lectureHandouts/035-probability.pdf

Chris Piech (Oct. 2017)

Conditional Probability

http://web.stanford.edu/class/archive/cs/cs109/cs109.1178/lectureHandouts/040-cond-probability.pdf

Chris Williams (Sep. 2015)

Probability - Machine Learning and Pattern Recognition https://www.inf.ed.ac.uk/teaching/courses/mlpr/2015/

- PMF
- Distribusi Bernoulli
- Distribusi Binomial
- Distribusi Poisson
- Maximum Likelihood Estimation

Terima kasih