```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   from sklearn.linear_model import LinearRegression
   from sklearn.model_selection import train_test_split
   import seaborn as sns
   import statsmodels.api as sm
```

In [2]: df=pd.read_csv("Downloads/DiamondsNew.csv")

In [3]: df.head()

Out[3]:

	Unnamed: 0	cut	clarity	color	price	depth	carat	table	x	у	z
0	1	Ideal	SI2	Е	326	61.5	0.23	55.0	3.95	3.98	2.43
1	2	Premium	SI1	Е	326	59.8	0.21	61.0	3.89	3.84	2.31
2	3	Good	VS1	E	327	56.9	0.23	65.0	4.05	4.07	2.31
3	4	Premium	VS2	I	334	62.4	0.29	58.0	4.20	4.23	2.63
4	5	Good	SI2	J	335	63.3	0.31	58.0	4.34	4.35	2.75

```
In [4]: #categorical variables
  cat_columns_data=df.loc[:,'Unnamed: 0':'color']
```

- In [5]: #dropping the category variable
 df.drop(['Unnamed: 0','cut','clarity','color'],axis=1,inplace=True)
- In [6]: $zero_indexs=df[(df['x']==0) | (df['y']==0) | (df['z']==0)].index$
- In [7]: #taking indexes of zero values x,y,z rows and dropping them
 df.drop(zero_indexs,axis=0,inplace=True)

In [8]: #to find correlation matrix sns.heatmap(df.corr(),annot=True) plt.title('Correlation Matrix') plt.show()

In [9]: $\#dropping \times y \ and \ z \ because \ of \ high \ multicollinearity \ as \ x \ y \ and \ z \ df.drop(['x','y','z'],axis=1,inplace=True)$

In [10]: from scipy import stats

In [11]: z = np.abs(stats.zscore(np.array(df.table)))
print(z)

[1.09972532 1.58598783 3.37646327 ... 1.13836898 0.24313126 1.0997 2532]

```
In [12]: #finding outliers using IQR
         percentile25Depth = df['depth'].quantile(0.25)
         percentile75Depth = df['depth'].quantile(0.75)
         IQR= percentile75Depth-percentile25Depth
         upper bound=percentile75Depth+1.5*IOR
         lower_bound=percentile25Depth-1.5*IQR
         #For table column
         Q3=df.table.quantile(0.75)
         Q1=df.table.quantile(0.25)
         IQR=03-01
         upper_tabel=Q3+1.5*IQR
         lower_table=(Q1-1.5*IQR)
         #For carat column
         Q3=df.carat.quantile(0.75)
         Q1=df.carat.quantile(0.25)
         IQR=03-01
         upper_carat=Q3+1.5*IQR
         lower_carat=(Q1-1.5*IQR)
In [13]: df=df[((df['depth']<upper_bound) & (df['depth']>lower_bound)) & ((df
In [14]: from sklearn.preprocessing import MinMaxScaler
         for i in ['carat','table','depth']:
             scaler=MinMaxScaler().fit(df[[i]])
             df[i]=scaler.transform(df[[i]])
In [15]: X=df.drop('price',axis=1)
         Y=df.price
```

In [16]: df

Out [16]:

	price	depth	carat	table
0	326	0.457627	0.016760	0.263158
1	326	0.169492	0.005587	0.789474
3	334	0.610169	0.050279	0.526316
4	335	0.762712	0.061453	0.526316
5	336	0.677966	0.022346	0.438596
53935	2757	0.338983	0.290503	0.438596
53936	2757	0.728814	0.290503	0.263158
53937	2757	0.677966	0.279330	0.701754
53938	2757	0.372881	0.368715	0.526316
53939	2757	0.576271	0.307263	0.263158

49100 rows × 4 columns

```
In [17]: X_train, X_test, Y_train, Y_test=train_test_split(X,Y,test_size=0.2,ra)
In [18]: linear_model=LinearRegression()
linear_model.fit(X_train, Y_train)
```

Out[18]: LinearRegression()

```
In [19]: y_pred=linear_model.predict(X_test)
```

```
In [20]: linear_model.score(X_train,Y_train)
```

Out[20]: 0.8259078865390754

```
In [21]: new_linear_model=sm.OLS(Y, sm.add_constant(X)).fit()
```

In [22]: new_linear_model.summary()

Out [22]:

OLS Regression Results

Dep. Variable: price **R-squared:** 0.825

Model: OLS Adj. R-squared: 0.825

Method: Least Squares **F-statistic:** 7.733e+04

Date: Sat, 15 Jan 2022 Prob (F-statistic): 0.00

Time: 23:58:01 **Log-Likelihood:** -4.2551e+05

No. Observations: 49100 **AIC:** 8.510e+05

Df Residuals: 49096 **BIC:** 8.511e+05

Df Model: 3

Covariance Type: nonrobust

coef std err P>|t| [0.025]0.975] const 166.5470 28.361 5.872 0.000 110.960 222.134 depth -783.3942 34.965 -22.405 0.000 -851.927 -714.862 carat 1.402e+04 29.366 477.402 0.000 1.4e+04 1.41e+04 table -1064.1285 37.598 -28.302 0.000 -1137.822 -990.435

Omnibus: 19406.306 **Durbin-Watson:** 0.672

Prob(Omnibus): 0.000 **Jarque-Bera (JB):** 151500.037

Skew: 1.705 **Prob(JB):** 0.00

Kurtosis: 10.901 **Cond. No.** 9.65

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [23]: from sklearn.metrics import r2_score, mean_squared_error, mean_square

In [24]: r2_score(Y_test,y_pred)

Out[24]: 0.822990892006697

In [25]: RMSE=np.sqrt(mean_squared_error(Y_test,y_pred))

In [26]: RMSE

Out [26]: 1404.1348014173188

```
In [33]: #encoding the categorical column value according to the choice
          new_df=new_df.replace({'cut': {'Fair':0,'Good':1,'Very Good':2,'Pre
In [34]: new_df=new_df.replace({'clarity': {"IF": 8, 'VVS1' :7, 'VVS2': 6,
In [35]: new_df=new_df.replace({'color': { 'D': 6, 'E': 5, 'F': 4, 'G'
In [36]: new df.head()
Out [36]:
             cut clarity color price depth carat table
                                                     X
           0
               4
                              326
                                    61.5
                                         0.23
                                               55.0 3.95 3.98 2.43
                              326
                                    59.8
                                         0.21
                                               61.0 3.89 3.84 2.31
                     5
                           5
                              327
                                    56.9
                                         0.23
                                               65.0 4.05 4.07 2.31
               3
                              334
                                    62.4
                                         0.29
                                               58.0 4.20 4.23 2.63
                              335
                                    63.3
                                         0.31
                                               58.0 4.34 4.35 2.75
In [37]: |\text{new\_df.drop(new\_df[(new\_df.x==0)](new\_df.y==0)|(new\_df.z==0)].index}
In [38]: new_df.drop(['x','y','z'],axis=1,inplace=True)
```

```
In [39]: percentile25Depth = new_df['depth'].quantile(0.25)
         percentile75Depth = new df['depth'].quantile(0.75)
         IQR= percentile75Depth-percentile25Depth
         upper bound=percentile75Depth+1.5*IQR
         lower_bound=percentile25Depth-1.5*IQR
         #For table column
         Q3=new_df.table.quantile(0.75)
         Q1=new_df.table.quantile(0.25)
         IOR=03-01
         upper tabel=Q3+1.5*IQR
         lower_table=(Q1-1.5*IQR)
         #For carat column
         Q3=new_df.carat.quantile(0.75)
         Q1=new df.carat.quantile(0.25)
         IQR=Q3-Q1
         upper carat=03+1.5*IOR
         lower_carat=(Q1-1.5*IQR)
In [40]: new_df=new_df[((new_df['depth']<upper_bound) & (new_df['depth']>low
In [41]: | from sklearn.preprocessing import StandardScaler
         cols=['carat', 'depth', 'table'] #identifying the columns to be stan
         for i in cols:
             scale = StandardScaler().fit(df[[i]])
             df[i] = scale.transform(df[[i]])
In [42]: | x=new_df.drop('price',axis=1)
         y=new_df.price
In [43]: | x_train, x_test, y_train, y_test=train_test_split(x, y, test_size=0.2, ra
In [44]: | new_model=LinearRegression()
         new_model.fit(x_train,y_train)
Out[44]: LinearRegression()
In [45]: y_pred=new_model.predict(x_test)
In [46]: | new_model.score(x_train,y_train)
Out [46]: 0.8928951082031753
In [47]: | new_fitted_model=sm.OLS(y, sm.add_constant(x)).fit()
```

In [48]: new_fitted_model.summary()

Out [48]:

OLS Regression Results

Dep. Variable: price R-squared: 0.893 OLS Model: Adj. R-squared: 0.893 Method: F-statistic: 6.820e+04 Least Squares Date: Sat, 15 Jan 2022 Prob (F-statistic): 0.00 Time: 23:58:02 Log-Likelihood: -4.1351e+05 No. Observations: 49100 AIC: 8.270e+05 **Df Residuals:** BIC: 49093 8.271e+05 **Df Model: Covariance Type:** nonrobust coef std err P>|t| [0.025 0.975] const -2899.6305 426.756 -6.795 0.000 -3736.077 -2063.184 cut 62.9910 5.907 10.663 0.000 51.412 74.570 clarity 504.7449 3.256 155.032 0.000 498.364 511.126 101.584 0.000 color 312.8014 3.079 306.766 318.837 -26.8626 depth -5.251 0.000 5.115 -36.889 -16.836

 Omnibus:
 16489.248
 Durbin-Watson:
 0.565

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 96018.304

13.871

2.985

 Skew:
 1.499
 Prob(JB):
 0.00

 Kurtosis:
 9.160
 Cond. No.
 7.27e+03

630.170 0.000

-10.332 0.000

Notes:

carat

table

8741.2666

-30.8440

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

8714.079

-36.695

8768.454

-24.993

[2] The condition number is large, 7.27e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In [49]: from sklearn.metrics import r2_score,mean_squared_error,mean_square

In [50]: r2_score(y_test,y_pred)

Out [50]: 0.8927916059469776

```
In [51]: RMSE=np.sqrt(mean_squared_error(y_test,y_pred))
In [52]: RMSE
Out [52]: 1092.7615158662854
In [53]: | SSR=np.sum((y_pred-np.mean(y_test))**2)
In [54]: SSE=np.sum((y_test-y_pred)**2)
In [55]: SST=SSR+SSE
In [56]: SST
Out [56]: 110169614239,6313
In [57]: from statsmodels.formula.api import ols
          # Ordinary Least Squares (OLS) model
          model = ols('price ~depth+carat+table', data=new_df).fit()
          anova_table = sm.stats.anova_lm(model)
          anova_table
Out [57]:
                       df
                                                                   PR(>F)
                              sum_sq
                                        mean_sq
                      1.0 1.271498e+07 1.271498e+07
                                                     6.447938
                                                              1.111118e-02
             depth
             carat
                      1.0 4.558855e+11 4.558855e+11 231185.654069
                                                             0.000000e+00
             table
                      1.0 1.579588e+09 1.579588e+09
                                                   801.030253 8.228284e-175
           Residual 49096.0 9.681463e+10 1.971945e+06
                                                        NaN
                                                                    NaN
In [58]: #RMSE WAS 1404======>WITHOUT CATEGORICAL VARIABLES
          #RMSE IS 1092=====>WITH CATEGORICAL VARIABLES
 In [ ]:
```