Linear and Multiple Regression using scikit-learn

Arbaaz Khan

PhD Student, Computational EM Lab

Dept. of Electrical & Computer Engineering

McGill University

May 13th, 2019

Outline

- Introduction
- Model Development
- Linear Regression
 - Implementation with scikit-learn
- Multiple Regression
 - Implementation with scikit-learn
- Conclusion

<u>Introduction</u> Model Development Linear Regression Multiple Regression Conclusion

Introduction – Machine Learning

- Although Machine Learning has gained a lot of importance in recent times, it has been in existence since 1940.
- Some factors that are directly responsible for the growth in past few years are:
 - Computation Power (GPUs, ASICs, TPU).
 - Data.
 - Improvement in algorithms (CNN, LSTM).
 - Infrastructure & Frameworks (Git, scikit-learn, Tensorflow).

Why should you study ML?

Neural nets have gained immense popularity in recent time for tasks such as Pattern Recognition, Image classification, Text summarization, etc.

Building blocks of neural nets.

Model Development

Predict the value of the car, given input data.

More the relevant information, the better the accuracy.

Additional information such as the 'color of the car' will be beneficial.

Linear Regression

Linear Regression uses one independent variable to make a prediction.

 $y = b_0 + b_1 x$

 b_0 : the intercept

 b_1 : the slope

Linear Regression using scikit-learn

Import the *linear_model* from *scikit-learn*

from sklearn.linear model import LinearRegression

Create a *Linear Regression* object using the constructor

model = LinearRegression()

Data is represented in machine readable format.

Highway – mpg (x)	Price of the car (y)		
3	37486		
7	35258		
13	31230		
22	22698		

Use the method *model.fit()* to train the model.

model.fit(X, y)

$$y(x) = 40000 + 750x$$

$$y(20) = 40000 + 750 * 20 = 25000$$
\$

Linear Regression - revisited

Linear Regression uses one independent variable to make a prediction.

model.intercept_

model.coef_

 b_0 : the intercept

 b_1 : the slope

$$b_0 = [40000]$$

 $b_1 = [750]$

Multiple Linear Regression (MLR)

- Multiple Linear Regression is used to explain the relationship between:
 - A continuous variable (y)
 - Two or more predictor variables(X)
- For 3 predictor variables: $y(X) = b_0 + b_1x_1 + b_2x_2 + b_3x_3$ where:

 b_0 : intercept (X=0) b_1 : coefficient of x_1

 b_2 : coefficient of x_2 and so on....

Train the model as before:

Remember that the predictor (X) here is a multi-dimensional vector

Highway – mpg (x_1)	Length (x_2)	Engine size (x_3)	Horse Power (x_4)	Price of the car (y)
3	540	740	150	37486

Linear and Multiple Regression using scikit-learn

Thank you!

Questions or Comments?

McGill University

Email address: <u>arbaaz.khan@mail.mcgill.ca</u>