Billiards

Jonathan Allen, John Wang

Massachusetts Institute of Technology

November 22nd, 2013

Introduction

- Billiard ball bouncing in a square
- Assume no gravity or friction

Basic Notation

Definition

A table $T \subset \mathbb{R}^2$ is the unit square. Vertical sides are labelled with a v. Horizontal sides are labelled with an h.

Definition

A ball $p \in T$ begins at position $\vec{r}_0 \in T$ with initial velocity $\vec{v}_0 \neq 0$. When the ball collides with an edge of the table, it reflects its angle with the table edge.

Example

Example

Examine the periodic sequence: 'abab'

Another Example

Example

Examine the periodic sequence: 'aaabaaab'

Problem Statement

Problem: Characterize the properties of collision sequences.

- Given a sequence of a's and b's, determine if it is a valid collision sequence.
- Given a valid collision sequence, determine a possible starting position and velocity.

Presentation Outline

- Introduction
 - Examples
 - Outline
 - Notation and Problem Statement
- 2 Lemmas
 - Tiling
 - 1-dimensional Problem
- Algorithm
- Future Research
 - Tileable Polygons
 - Non-Tileable Polygons
 - Circles

Secondary Side Theorem

Theorem

At least one side will never have more than one consecutive occurrence in a valid collision string.

Secondary Side Theorem Examples

Example

Valid: vhhhvhhhv

Example

Valid: vhvhvhv

Example

Valid: vvvvvhvvvvhvvvvhvvvv

Example

Invalid: vvhhhvvvhhhvvhhh

Example

Invalid: vhhhvvhvh

Secondary Side Theorem Proof

- ullet A billiard ball trajectory must be a line in the tiled grid with slope m.
- Case 1: m = 1.
- Case 2: m < 1 or m > 1.

Secondary Side Theorem Proof

If m = 1, v and h alternate.

Secondary Side Theorem Proof

If m < 1, there must exist an h between each v. If m > 1, similar argument holds.

Definition

Secondary side: a side which never has more than one consecutive occurrences. **Primary side**: a side which is not a secondary side.

Definition

Secondary side: a side which never has more than one consecutive occurrences. **Primary side**: a side which is not a secondary side.

Definition

Primary substring: a subsequence from the collision string which contains a consecutive sequence of primary sides.

Definition

Secondary side: a side which never has more than one consecutive occurrences. **Primary side**: a side which is not a secondary side.

Definition

Primary substring: a subsequence from the collision string which contains a consecutive sequence of primary sides.

Example

Collision string: vvhvvvhvvhvvh Secondary Side: h Primary Side: v Primary substrings: vv, vvv

- Introduction
 - Examples
 - Outline
 - Notation and Problem Statement
- 2 Lemmas
 - Tiling
 - 1-dimensional Problem
- 3 Algorithm
- Future Research
 - Tileable Polygons
 - Non-Tileable Polygons
 - Circles

- Reflect squares about each side to create a tiling
- Solutions become lines in the plane
- Intersections become places where collisions occur

Tiling of
$$\vec{x}_0 = (0, 0.5)$$
 and $\vec{v} = (0.25, 0.25)$.

Tiling of
$$\vec{x}_0 = (0, 0.5)$$
 and $\vec{v} = (0.25, 0.25)$.

Tiling of
$$\vec{x}_0 = (0, 0.5)$$
 and $\vec{v} = (0.25, 0.25)$.

Tiling of
$$\vec{x}_0 = (0, 0.5)$$
 and $\vec{v} = (0.25, 0.25)$.

Tiling of
$$\vec{x}_0 = (0, 0.5)$$
 and $\vec{v} = (0.25, 0.25)$.

Tiling of
$$\vec{x}_0 = (0, 0.5)$$
 and $\vec{v} = (0.25, 0.25)$.

Tiling of
$$\vec{x}_0 = (0, 0.5)$$
 and $\vec{v} = (0.25, 0.25)$.

Tiling of
$$\vec{x}_0 = (0, 0.5)$$
 and $\vec{v} = (0.25, 0.25)$.

- Introduction
 - Examples
 - Outline
 - Notation and Problem Statement
- 2 Lemmas
 - Tiling
 - 1-dimensional Problem
- Algorithm
- 4 Future Research
 - Tileable Polygons
 - Non-Tileable Polygons
 - Circles

Algorithm

$$dx_{n} = \bigcap_{i=0}^{n} \left(\frac{i}{1 + \sum_{j=0}^{i} n_{j}}, \frac{1}{-1 + \sum_{j=0}^{i} n_{j}} \right)$$
$$\delta_{n} = \bigcap_{i=0}^{n} \left(i - dx_{n,max} \left(1 + \sum_{j=0}^{i} n_{j} \right), i - dx_{n,min} \left(1 + \sum_{j=0}^{i} n_{j} \right) \right)$$

- Introduction
 - Examples
 - Outline
 - Notation and Problem Statement
- 2 Lemmas
 - Tiling
 - 1-dimensional Problem
- 3 Algorithm
- Future Research
 - Tileable Polygons
 - Non-Tileable Polygons
 - Circles

Extensions to Tileable Polygons

Other Tileable Polygons:

Figure: Regular Hexagons

Figure: Equilateral Triangles

Extensions to Non-Tileable Polygons

- Irregular triangles
- Pentagons
- Octagons

Extensions to Circles

- Characterize how particle bounces around circle
- Analog to a, b might be sequence of collision points as you move around circle.

