WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number	r: WO 96/35692
C07D 501/24, A61K 31/545	A1	(43) International Publication Date:	14 November 1996 (14.11.96)

AT

(21)	International Application Number:	PCT/EP96/02023
------	-----------------------------------	----------------

(22) International Filing Date:	10 May 1996 (10.05.96)

()	A 794/95	11 May 1995 (11.05.95)	AT
	A 992/95	12 June 1995 (12.06.95)	AT
	A 698/96	17 April 1996 (17.04.96)	AT
	A 733/96	23 April 1996 (23.04.96)	AT

(71) Applicant (for all designated States except US): BIOCHEMIE | Published GESELLSCHAFT MBH [AT/AT]; A-6250 Kundl (AT).

(72) Inventors; and

(30) Priority Data:

- (75) Inventors/Applicants (for US only): ASCHER, Gerd [AT/AT]; Daxerfeld 3, A-6250 Kundl (AT). LUDESCHER, Johannes [AT/AT]; Kleinsoell 101, A-6252 Breitenbach (AT).
- (74) Agents: WYMANN, Gerard et al.; Sandoz Technology Ltd., Patents & Trademarks Division, CH-4002 Basel (CH).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

amendments.

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of

(54) Title: ANTIBACTERIAL CEPHALOSPORINS

(57) Abstract

A compound of formula (I) wherein Ac, R1 and R2 have various meanings, a process for a preparation thereof and its use as a pharmaceutical, i.e. as antibacterial agent.

AcNH
$$S$$
 $CH=N-R_2$ (I)

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

A	CD	Date A Winsdom	NATH	Malawi
		•		Mexico
				Niger
Barbados		Greece		Netherlands .
Belgium	HU	Hungary	NO	Norway
Burkina Faso	IE	Ireland	NZ	New Zealand
Bulgaria	IT	Italy	PL	Poland
Benin	JР	Japan	PT	Portugal
Brazil	KE	Kenya	RO	Romania
Belarus	KG	Кутдузіап	RU	Russian Federation
Canada	KP	Democratic People's Republic	SD	Sodan
Central African Republic		of Korea	SE	Sweden
Congo	KR	Republic of Korea	SG	Singapore
Switzerland	KZ	Kazakhstan	SI	Slovenia
Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
Cameroon .	LK	Sri Lanka	SN	Senegal
China	LR	Libena	: SZ	Swaziland
Czechoslovakus	LT	Lithuania	TD	Chad
Czech Repubbe	w	Luxembourg	TG	Togo
•	LV	Lervis	TJ	Tapkıstan
Denmark	MC	Monaco	77	Trundad and Tobego
Estatus	MD	Republic of Moldova	ĽA	Ukrame
	MG	Madagascar	ľG	Uganda
- -	ML	Malı	t'S	United Suses of America
·	MN.	Monroba	17	Urbekman
Gabron	MR		11	Vact Name
	Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzertand Côte d'Ivoire Cameroon Chima Czechoslovakta Czech Republic Gevinany Dennant Estonia Spain Fin land Frunce	Austria GE Australia GN Barbados GR Belgium HU Burkisa Faso IE Bulgaria IT Benin JP Brazil KE Belarus KG Canada KP Central African Republic Congo KR Switzertand KZ Côte d'Ivoire LJ Cameroon LK Chima LR Czecholovakia LT Czech Republic LU Germany LV Dennant MC Estonia MD Spain MG Finland ML Frunce MN	Austria GE Georgia Australia GN Guinea Barbados GR Greece Belgium HU Hungary Burkina Faso IE Ireland Bulgaria IT haly Benin JP Japan Brazil KE Kenya Belarus KG Kyrgystan Canada KP Democratic People's Republic of Korea Central African Republic Congo KR Republic of Korea Switzerland KZ Kazakhstan Côte d'Ivoire LI Liechtenstein Cameroon , LK Sri Lanka China LR Liberta Czecholovakus LT Lirbunna Czecholovakus LT Lirbunna Czecholovakus LT Lizbunna Czech Republic Germany LV Larva Demark MC Monaco Emona MB Republic of Moldova Spam MG Madagascar Finland ML Mali Frunce	Australia GE Georgia MX Australia GN Guinea NE Barbados GR Greece NL Belgium HU Hungary NO Burkina Faso IE Ireland NZ Bulgaria IT haby PL Benin JP Japan PT Brazil KE Kenya RO Belarus KG Kyrgystan RU Canada KP Democratic People's Republic SD Central African Republic of Korea SE Congo KR Republic of Korea SG Switzertand KZ Kazakhstan SI Côte d'Ivoire LJ Licchernstein SK Cameroon LK Sri Lanka SN China LR Liberna SZ Czechoslovakia LT Lithuania TD Czech Republic LU Luxembourg TG Germany LV Larvia TJ Demark MC Monaco TT Estonia MD Republic of Moldova UA Spain MG Madagascar UG Finland ML Malı US Frunce

Antibacterial Cephalosporins

The present invention relates to antibacterial compounds which are 7-acylamino-3-(imino)methyl cephalosporins.

Particularly the present invention provides a compound of formula

wherein

R₁ denotes hydrogen or an ester moiety,

R₂ denotes a group of formula

$$-O-Y \qquad -N < \frac{R_4}{R_5} \qquad \text{or} \qquad -N = R_8$$
IIa IIb IIc

wherein

Y denotes hydrogen, alkyl, alkenyl, acyl, carbamoyl or aryl

R4 denotes hydrogen, alkyl, alkenyl, cycloalkyl, aryl, acyl or heterocyclyl

R₅ denotes hydrogen, alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, or a group of formula

$$-C \leqslant_{NR_8}^{SR_7} \qquad -C \leqslant_{N \leqslant_{R_{10}}}^{Z} \qquad \text{or} \qquad -C \leqslant_{R_7}^{Z}$$

$$= R_{10} \qquad \text{iff} \qquad \text{if} \qquad \text{iff} \qquad \text{if} \qquad \text{if$$

R7 denotes alkyl or aryl

R_g denotes hydrogen, cycloalkyl or alkyl

Ro denotes hydrogen or alkyl

R₁₀ denotes hydrogen, alkyl, hydroxy, amino, phenyl, alkenyl, cycloalkyl,aryl, heterocyclyl or a group of formula

-N=CH-Phe

wherein Phe denotes aryl

Re and Rin together with the nitrogen atom denote heterocyclyl,

Z denotes oxygen, sulphur or N-R₁₃, wherein

R₁₃ denotes hydrogen, alkyl or cycloalkyl

R₁₁ denotes hydrogen, alkyl, aryl, cycloalkyl or heterocyclyl, or

R4 and R5 together with the nitrogen atom denote heterocyclyl,

R₆ denotes heterocyclyl, and

Ac denotes

(i) a group

(ii) a group of formula

$$Z_{2}$$
, Z_{3}
 C $B-D-Z_{3}$
 $||$ or $||$ $||$ $-COC-Z_{1}$

- B denotes N or CH
- Z₁ denotes aryl, cycloalkyl, 1,4-cyclohexadienyl or heterocyclyl
- Z₂ denotes hydrogen, alkyl or -CH₂COOZ₅, wherein Z₅ denotes hydrogen, alkyl or cycloalkyl
- Z₃ denotes hydrogen or alkyl
- Z₄ denotes hydrogen or an organic radical
- D denotes oxygen or CH₂.

A subgroup of the invention comprises any of the individual groups of significances mentioned therein.

 R_1 may be hydrogen or an ester moiety. An ester moiety includes alkyl, preferably C_{1-6} alkyl; arylalkyl, for example benzyl, alkoxybenzyl, such as 4-methoxybenzyl; indanyl, phthalidyl, alkoxymethyl, e.g. methoxymethyl; (C_{1-6}) alkanoyloxy (C_{1-6}) alkyl, (C_{1-6}) alkyl, glycyloxymethyl, phenylglycyloxymethyl, (5-methyl-2-oxo-1,3-dioxolen-4-yl)methyl and ester moieties which form with the COO- group a physiologically hydrolysable and acceptable ester, e.g. such known to be hydrolysable ester groups in the field of cephalosporins. A compound of formula I may thus be in the form of an physiologically-hydrolysable and -acceptable ester. By physiologically-hydrolysable and -acceptable esters as used herein is meant an ester in which the COO-group is esterified and which is hydrolysable under physiological conditions to yield an acid which is itself physilogically tolerable at dosages to be administered. The term is thus to be understood as defining regular pro-drug forms. An ester moiety may be preferably a group which is easily hydrolysable under physiological conditions. Such esters may be administered preferably orally. Parenteral administration may be indicated if the ester per is an active compound or, if hydrolysis occurs in the blood.

Y may be preferably hydrogen, unsubstituted alkyl or alkyl substituted by e.g. hydroxy or, preferably the residue of a carboxylic acid. The residue of a carboxylic acid includes the residue of a carboxylic acid in free form or in salt form, of a carboxylic acid ester and of a carboxylic acid amide. The carboxylic acid is, for example, a $C_{1.7}$ carboxylic acid, preferably a $C_{1.5}$ aliphatic carboxylic acid, an alkyl part thereof including lower alkyl. The alkoxy group of a carboxylic acid ester includes $C_{1.6}$, preferably $C_{1.4}$ alkoxy. Alkyl is preferably lower alkyl. The alkyl group is preferably unsubstituted or substituted by

PCT/EP96/02023 WO 96/35692

4

carboxylic acid residues.

R₄ may be preferably hydrogen or alkyl, for example lower alkyl.

R₄ may be preferably hydrogen; unsubstituted alkyl; alkyl substituted for example by oxo, alkyl or halogenated alkyl; amino; one or several fold substituted heterocyclyl; or a group of formulae IId, IIe, IIf. Heterocyclyl includes unsaturated or saturated heterocyclyl having, e.g. 5 or 6 ring members and, for example, 1 to 3 hetero atoms, such as N, O, S, preferably N, or condensed heterocyclyl, such as benzothiazolyl.

R₄ and R₅ together with the nitrogen atom may be heterocyclyl, having preferably 5 or 6 ring members and having preferably 1 to 3 heteroatoms, for example N atoms; which may be unsubstituted heterocyclyl; or one or several fold substituted heterocyclyl, for example by oxo, amino, alkyl.

R₆ may be saturated or unsaturated heterocyclyl; having preferably 5 or 6 ring members and having for example 1 or 2 nitrogen hetero atoms; for example unsubstituted heterocyclyl; or one or several fold substituted heterocyclyl, for example by amino, alkyl or thiono.

R₂ may be preferably alkyl.

R₈ may be preferably alkyl or cycloalkyl.

R_o may be preferably hydrogen or lower alkyl.

R₁₃ may be preferably alkyl.

R₁₀ may be preferably hydrogen; aryl; alkenyl; cycloalkyl; unsubstituted alkyl; substituted alkyl, for example by hydroxy, halogen, heterocyclyl, such as pyridyl, amino, for example N(alkyl)₂ or N⁺(alkyl)₃; or a group

-N = CH - Ar

wherein Ar denotes heterocyclyl; unsubstituted aryl; or substituted aryl, for example by hydroxy or alkoxy; preferably aryl which may be preferably phenyl.

R₉ and R₁₀ together with the nitrogen atom may be heterocyclyl having preferably 5 or 6 ring members and 1 to 3 hetero atoms such as N, S, O, for example N, O; preferably saturated heterocyclyl. Heterocyclyl includes unsubstituted heterocyclyl, or substituted heterocyclyl, for example by acyl, formyl, alkyl, for example lower alkyl. Examples include pyrrolidine, morpholine, piperazine, preferably piperazine.

R₁₁ may be preferably hydrogen; unsubstituted alkyl; substituted alkyl, for example by aminoalkyl, diaminoalkyl, triaminoalkyl; aryl, such as dihydroxyphenyl; cycloalkyl; or unsubstituted heterocyclyl; or substituted heterocyclyl, for example by alkyl, thiono heterocyclyl; heterocyclyl having preferably 5 or 6 ring members and 1 to 3 hetero, preferably N atoms.

If not otherwise stated therein any carbon containing group may contain up to 20 carbon atoms, e.g. alkyl includes C_{1-20} , e.g. C_{1-8} alkyl. Lower alkyl includes e.g. $C_{1,2}$ alkyl, preferably $C_{1,2}$ alkyl. Alkenyl includes $C_{2,20}$, e.g. $C_{2,8}$ alkenyl. Lower alkenyl includes e.g. C₃₋₅alkenyl, preferably C₃alkyl. Cycloalkyl includes, for example, C_{36} cycloalkyl, particularly C_3 , C_5 or C_6 cycloalkyl. Alkyl, alkenyl and cycloalkyl include unsubstituted alkyl, alkenyl and cycloalkyl; and, substituted alkyl, alkenyl and cycloalkyl, for example, by halogen, a sulphonic acid derivative, such as SO₃H, CF₃, hydroxy, alkoxy, acyl, alkylamino, pyridyl. Cycloalkyl is preferably unsubstituted. Acyl includes C₁₋₁₂, e.g. C_{1.e}acyl, particularly C_{1.e}acyl. Acyl includes unsubstituted acyl and substituted acyl, for example, by hydroxy, alkoxy, amino. Aryl includes phenyl. Aryl may be unsubstituted aryl or substituted aryl, for example by alkyl, alkoxy, acyl, halogen, hydroxy, unprotected or protected amino. Alkoxy includes alkoxy wherein the alkyl part is as defined above. Heterocyclyl includes heterocyclyl having 5 or 6 ring members and 1 to 3 nitrogen, sulphur and/or oxygen hetero atoms including, for example, condensed heterocyclyl, such as for example benzthiazolyl. Heterocyclyl includes further unsubstituted hetercyclyl and substituted heterocyclyl, for example by oxo, alkoxy, hydroxy, thiono, mercapto, alkylthio, imino, alkylamino, alkylimino, amino, halogen, acyl, CF₃, CHO, alkyl, cycloalkyl. Carbamoyl includes the carbamoyl group or carbamoyl having alkyl and aryl residues. Z₁ denotes unsubstituted cycloalkyl, 1,4-cyclohexadienyl, heterocyclyl or aryl; and one or several fold substituted cycloalkyl, 1,4-cyclohexadiene, heterocyclyl or aryl; for example by carboxyl, amino, nitro, cyano, lower alkyl, lower alkoxy, hydroxy, halogen, -CO-N(Z,Z₆), -N(Z₆)-COOZ₇, Z₆CO-, Z₆OCO-, Z₆COO-.

Z₂ denotes hydrogen; CH₂COOZ₃; unsubstituted lower alkyl; one or several fold substituted lower alkyl, for example by carboxyl, amino, nitro, cyano, lower alkyl, lower alkoxy, hydroxy, halogen, -COZ₃Z₆, -N(Z₆)-COOZ₇, Z₆CO-, Z₆OCO- or Z₆COO-. Z₇ denotes hydrogen or lower alkyl.

Z₄ denotes hydrogen or an organic radical; preferably hydrogen; lower alkyl; cycloalkyl;

aralkyl; acyl; carboxyalkyl; Z_6CO -, $-C(Z_7Z_8)COOZ_6$ or, preferably in the case that Z_1 in group

denotes a group 2-amino-thiazol-4yl or 2-amino-thia-3,5-diazol-4yl, Z_4 denotes a group of formula

or

$$Z_{18}$$
 Z_{18}
 Z_{19}
 Z_{20}
 Z_{21}
 Z_{21}
 Z_{21}
 Z_{22}
 Z_{23}
 Z_{23}
 Z_{23}
 Z_{23}
 Z_{24}
 Z_{25}
 Z_{26}
 Z_{27}
 Z_{29}
 Z_{29}

or
$$Z_{25} \longrightarrow O \\ -C \longrightarrow OH$$
 or
$$-CH_{2} \longrightarrow Z_{28}$$

$$Z_{26} \longrightarrow OH$$
 or
$$OH \longrightarrow CH_{2} \longrightarrow Z_{28}$$

 Z_9 and Z_{10} independently of one another denote hydrogen or protected or unprotected carboxyl

Z₁₁ denotes hydrogen or acetyl,

Z₁₂ denotes unprotected or protected carboxyl,

Z₁₃ denotes hydrogen or methyl,

Z₁₄ denotes hydrogen; chloro; unprotected or protected carboxyl; methyl; isopropyl; hydroxy; methoxy; acetoxy,

Z₁₅ and Z₁₆ denote independently from one another hydrogen, hydroxy, methoxy, ethoxy, 2-methoxyethoxymethoxy, acetoxy, chloroacetoxy, butanoyloxy, methansulfonyloxy, p-toluenesulfonyloxy, amino, acetylamino, benzyloxycarbonylamino or methansulfonyl; or,

Z₁₅ and Z₁₆ denote together ethylendioxy or carbonyldioxy,

 Z_{17} denotes hydrogen, hydroxy, acetoxy, methyl, methoxy, chloroacetoxy, with the proviso, that not all of Z_{14} , Z_{15} , Z_{16} and Z_{17} denote hydrogen,

 Z_{18} and Z_{19} denote independently of one another hydrogen or methyl,

 Z_{20} , Z_{21} , Z_{22} , Z_{23} and Z_{24} denote independently of one another hydrogen, halogen or hydroxy,

 Z_{23} and Z_{26} denote independently from one another hydrogen; C_{1-5} alkyl; unsubstituted phenyl; or substituted phenyl,

Z₂₇ denotes unsubstituted lower alkyl; or substituted lower alkyl,

 Z_{28} and Z_{29} denote independently of one another hydrogen or hydroxy, and n denotes 0 or 1,

Z, denotes hydrogen, alkyl, preferably lower alkyl,

Z₆ and Z₇ independently of one another denote hydrogen or alkyl, preferably lower alkyl,

Z₆ and Z₇ together with the carbon atom denote cycloalkyl, and

 Z_3 and Z_6 together denote cycloalkyl.

Z₄ may be selected from the following groups:

or

For example, Ac may denote a group of formula

Preferably Ac denotes a compound of formula

wherein

W denotes CH or N

V denotes CH or N-O and

R₃ denotes hydrogen, acyl, carboxyl, alkyl.

The configuration of R_3 in group of $-C = V - R_3$ may be syn [(Z)] and anti [(E)] and is preferably syn [(Z)].

If R₃ denotes alkyl, R₃ includes unsubstituted alkyl or substituted alkyl, for example by halogen, carboxyl. Preferably W denotes CH.

In another aspect the present invention provides a compound of formula

wherein

W denotes CH or N

V denotes CH or N-O

R₁ denotes hydrogen or an ester moiety,

R₂ denotes a group of formula

$$-O-Y \qquad -N < \frac{R_4}{R_5} \qquad \text{or} \qquad -N = R_6$$
IIa IIb IIc

wherein

- Y denotes hydrogen; unsubstituted lower alkyl; or substituted lower alkyl, by the residue of a carboxylic acid, a carboxylic acid ester or a carboxylic acid amide,
- R₄ denotes hydrogen, phenyl, cycloalkyl or lower alkyl
- R, denotes hydrogen, lower alkyl, heterocyclyl or a group of formulae

$$-c \stackrel{\mathsf{SR}_7}{\underset{\mathsf{NR}_8}{\longleftarrow}} -c \stackrel{\mathsf{Z}}{\underset{\mathsf{R}_{10}}{\longleftarrow}} \text{ or } -c \stackrel{\mathsf{Z}}{\underset{\mathsf{R}_{10}}{\longleftarrow}}$$

R, denotes lower alkyl

R₈ denotes hydrogen, cycloalkyl or lower alkyl

R_q denotes hydrogen or lower alkyl,

R₁₀ denotes hydrogen, hydroxy; amino; phenyl; alkenyl; cycloalkyl; heterocyclyl; unsubstituted alkyl; substituted alkyl, by CF₃, OH, alkoxy, carboxyl, halogen, amino, monoalkylamino, dialkylamino, trialkylamino, pyridyl or a a sulfonic acid residue; a group of formula

wherein

R₁₂ denotes hydrogen or lower alkyl,

Z denotes oxygen, sulphur, or N-R₁₃, wherein
 R₁₃ denotes hydrogen or lower alkyl, and

R₁₁ denotes hydrogen; dihydroxyphenyl; cycloalkyl; heterocyclyl; unsubstituted lower alkyl; substituted lower alkyl by pyridyl or monoalkylamino, dialkylamino or trialkylamino; and,

 R_4 and R_5 and/or R_9 and R_{10} independently of one another together with the nitrogen denote heterocyclyl,

R₆ denotes heterocyclyl, and

R₃ denotes hydrogen; acyl; carboxyl; unsubstituted alkyl; substituted alkyl by halogen or carboxyl.

In another aspect the present invention provides a compound of formula

wherein

 R_{1p} is the same as R_1 in formula I, Ac is as defined in formula I,

 R_{2p} denotes a group of formulae

$$-OY_p$$
 or $-N < R_{4p}$

Ilap Ilbp

wherein

Y, is the same as Y in formula IA,

 R_{4p} is the same as R_4 in formula IA, and

R₅, denotes hydrogen, cycloalkyl, lower alkyl or a group of formula

$$-c \leqslant_{NR_{8p}}^{SR_{7p}} \qquad \text{or} \qquad -c \leqslant_{N \leqslant_{10p}}^{Z_p}$$

$$R_{10p}$$

wherein

 $R_{8\,p}$ is the same as R_8 in formula IA,

Z_p is the same as Z in formula IA,

 R_{9p} is the same as R_9 in formula IA.

R₇, denotes methyl,

 $R_{10\,p}$ denotes hydrogen, lower alkyl or hydroxy, and

 $R_{4\,p}$ and $R_{5\,p}$ and/or $R_{9\,p}$ and $R_{10\,p}$ independently of one another together with the nitrogen denote heterocyclyl, and

a compound of formulae IIbp, IIdp and IIep denote any tautomeric form, in free form, or, where such a form exists, in form of an acid addition salt, inner salt, quaternary salt or hydrate thereof.

In another aspect the present invention provides a compound of formula

wherein

Ac is as defined in formula I R_{1a} is he same as R_1 in formula IA, and

R_{2 q} denotes a group of formula

$$-OY_q$$
 or $-N < \frac{R_{4q}}{R_{5q}}$

wherein

Y_q is the same as Y in formula IA,

 $R_{4,q}$ is the same as R_4 in formula IA, and

 $R_{5\,q}$ denotes hydrogen, cycloalkyl, lower alkyl or a group of formulae

13

$$-c \leqslant_{NR_{8q}}^{SR_{7q}} \quad \text{or} \quad -c \leqslant_{NR_{8q}}^{Z_{q}}$$

$$R_{10q}$$
IIIdq IIeq

wherein

 R_{7a} is the same as R_7 in formula IA,

R_{8 q} is the same as R₈ in formula IA,

Z_a is the same as Z in formula IA,

R_{9 q} is the same as R₉ in formula IA,

R_{10 a} denotes hydrogen, lower alkyl or hydroxy, and

 $R_{4\,q}$ and $R_{5\,q}$ and/or $R_{9\,q}$ and $R_{10\,q}$ independently of one another together with the nitrogen denote heterocyclyl, and

a compound of formulae IIbp, IIdp and IIep denote any tautomeric form, in free form, or, where such a form exists, in form of an acid addition salt, inner salt, quaternary salt or hydrate thereof.

In a further aspect the present invention provides a compound of formula

wherein

R₁, is the same as R₁ in formula IA,

V, is the same as V in formula IA,

W, is the same as W in formula IA

R_{3.} denotes hydrogen, lower acyl; unsubstituted alkyl; substituted lower alkyl, by

carboxyl and/or fluoro; and

R₂, denotes a group of formula

$$-OY_{s} \qquad -N < R_{4s} \qquad OT \qquad -N = R_{6s}$$
Illus \quad Illus \qquad Illus \qquad Illus \qquad Illus \qquad Illus \qquad Illus \qquad Illu

wherein

Y, denotes hydrogen; unsubstituted lower alkyl; or substituted alkyl by carboxyl,

R4, denotes hydrogen or lower alkyl, and

R₅, denotes hydrogen; saturated or unsaturated, unsubstituted heterocyclyl having 5 or 6 ring members and 1 to 3 nitrogen hetero atoms; saturated or unsaturated one or several fold substituted heterocyclyl by oxo, lower alkyl, amino or CF₃, having 5 or 6 ring members and 1 to 3 nitrogen hetero atoms; benzothiazolyl; or a group of formula

$$-c \begin{cases} SR_{7s} \\ NR_{8s} \end{cases} - c \begin{cases} Z_{s} \\ R_{9s} \end{cases} \text{ or } -c \begin{cases} Z_{s} \\ R_{11s} \end{cases}$$

$$||ds||$$
 Illes || I

wherein

Z, is the same as Z in formula I,

R₇, denotes lower alkyl,

Ras denotes hydrogen, cycloalkyl or lower alkyl,

R₉, denotes hydrogen or lower alkyl,

R₁₀, denotes hydrogen; phenyl; allyl; cycloalkyl; unsubstituted alkyl; substituted alkyl by CF₃, dialkylamino, trialkylamino, hydroxy, pyridyl or SO₃H, and

R₁₁, denotes hydrogen; pyridyl; cycloalkyl; unsubstituted lower alkyl;

substituted lower alkyl by pyridyl or trialkylamino; saturated or unsaturated heterocyclyl having 5 or 6 ring members and 1 to 3 nitrogen hetero atoms; or one or several fold substituted heterocyclyl by lower alkyl and/or thiono, having 5 or 6 ring members and 1 to 3 nitrogen hetero atoms;

R_{4,2} and R_{5,2} together with the nitrogen atom denote heterocyclyl selected from saturated, unsubstituted heterocyclyl having 5 or 6 ring members and 1 or 2 nitrogen hetero atoms; saturated, one or several fold substituted heterocyclyl by oxo or lower alkyl, having 5 or 6 ring members and 1 or 2 nitrogen hetero atoms; and/or

R₉, and R₁₀, together with the nitrogen atom denote saturated, unsubstituted heterocyclyl having 5 or 6 ring members and 1 or 2 nitrogen and/or oxygen hetero atoms; unsaturated, one or several fold substituted heterocyclyl by CHO or lower alkyl, having 5 or 6 ring members and 1 or 2 nitrogen and/or oxygen hetero atoms.

In another aspect the present invention provides a compound of formula

wherein

W denotes CH or N

V denotes CH or N-O

R, denotes hydrogen or an ester moiety, and

R₂ denotes a group of formula

16

wherein

R₄ is as defined in claim 1 andR₅ denotes a group of formula

$$-\frac{Z}{II}$$

$$-R_{10}$$

$$R_{9}$$
IIe

wherein

Z denotes -N-R₁₃, wherein

R₁₃ is as defined in claim 1, and

 R_9 and R_{10} together with the nitrogen atom denote heterocyclyl which is a piperazinyl.

In another aspect the present invention provides a compound selected from 7-[[(2-amino-4-thiazolyl)-(Z)-(hydroxyimino)acetyl]amino]-3-[[(aminoiminomethyl)-hydrazono]methyl]-3-cephem-4-carboxylic acid (compound of Example 2), 7-[[(2-amino-4-thiazolyl)-(Z)-(hydroxyimino)acetyl]-amino]-3-[[(piperazinoiminomethyl)-hydrazono]methyl]-3-cephem-4-carboxylic acid (compound of Example 96) 7-[[(5-Amino-1,2,4-thiadiazol-3-yl)-(Z)-(fluormethoxyimino)acetyl]amino]-3-[[(piperazinoiminomethyl)hydrazono]methyl]-3-cephem-4-carboxylic acid (compound of Example 139).

A compound of formulae I, IA, I_p , I_q , I_s , IVi, IVa and VIa may exist in equilibrium with tautomeric forms. The present invention includes a compound of formulae I, IA, I_p , I_q , I_s IVi, IVa and VIa in any tautomeric form in which it may exists.

In another aspect the present invention provides a process for the production of a compound of formula I by reaction of a compound of formula

wherein Ac is as defined in formula I and

- a) either
 - a) R_b denotes hydroxy and R_c and R_d together form a bond, or
 - β) R_d denotes hydrogen, a cation, an ester forming group or a silyl group, and R_b and R_c together denote oxo,

in free form or in form of an acid addition salt with a group of formula

$$H_2N - R_2$$
 IV

wherein R_2 is as defined in formula I, or b) reacting a compound of formula

$$H_2N$$
 $CH-N=R_2$ VI

wherein R₁ and R₂ are as defined in formula I, with a compound of formula

wherein Ac is as defined in formula I and X' denotes a leaving group.

If desired reactive groups may be protected with protecting groups, which may be, or,

which are split off under the reaction conditions, or after termination of the reaction described above. A compound of formula I wherein R_1 denotes hydrogen may be converted into a compound of formula I, wherein R_1 denotes an carboxylic acid ester group. A compound of formula I may be isolated from the reaction mixture in conventional manner.

Process a) may be carried out as follows:

A compound of formula III in a solvent which is inert under the reaction conditions, such as water, a mixture of water and a lower alcohol and/or dioxane, or a dipolar aprotic solvent, for example dimethylformamide or dimethylsulfoxide, optionally mixed with an alcohol or water is reacted with a compound of formula IV at a temperature of about -20 to 50° C. An optimal pH may be adjusted by addition of an inorganic or organic acid or base. A compound of formula I thus obtained may be isolated in conventional manner, for example by addition of an anti-solvent or by chromatographic techniques.

Process b) may be carried out as follows:

The reaction may be carried out as conventional, e.g. a compound of formula VI may be reacted with a compound of formula VII in a solvent, for example dissolved or suspended in a mixture of acetone/water, for example at room temperature.

A reactive group may be protected, preferably by silyl protecting group technology. Suitable solvents include solvents which are inert under the reaction conditions, such as chlorinated hydrocarbons, nitriles, such as acetonitrile, ethers, such as tetrahydrofuran or a mixture of such solvents. Further suitable solvents include dipolar aprotic solvents, e.g. N,N-dimethylformamide. Protecting groups may be split off in conventional manner.

A starting compound of formula II may, for example, be obtained by

a) reaction of a compound of formula

PCT/EP96/02023

19

wherein either

a) R_a denotes a salt of -NH₂ with an inorganic or organic acid, R'_b denotes hydroxy, and R'c and R'd denote together a bond, or

β) R_a denotes NH₂, R'_d denotes hydrogen and R'_b and R'_c together denote oxo, with a silylation agent and,

a compound obtained in step a) of formula

wherein Sil denotes a silyl group and either

 $\alpha)$ $R"_{b}$ denotes -OSil and $R"_{c}$ and $R"_{d}$ together denote a bond

 β) R''_d denotes Sil and R''_b and R''_c together denote oxo

is acylated either directly in the reaction mixture or after isolation from the reaction mixture.

Acylation may be carried out in conventional manner.

A compound of formula IIIc may be obtained

a) for the production of a compound of formula

which is an the form of a salt of an inorganic or organic acid and wherein R_b^m denotes hydroxy and R_c^m and R_d^m together denote a bond, reacting a salt of an inorganic or organic acid of a compound of formula

$$H_2N$$
 $CH=C$
 R_{15}
 V

 R_{14} and R_{15} are the same or different and each denote hydrogen or an organic residue

in an organic solvent optionally in the presence of water with ozone

b) for the production of a compound of formula

treating a compound of formula IIIe wherein R_b^m , R_c^m and R_d^m are as defined above, with a base.

Compounds of formulae IV are partially new and may be obtained analogously to conventional methods, or, as described in the examples.

In another aspect the present invention provides a compound of formula

$$H_2N - R_{2i}$$
 IVi

wherein

R₂₁ denotes a group of formula

-
$$N(R_4R_5)$$
 Ilbi

 R_{4i} is the same as R_4 in formula I and denotes preferably hydrogen or alkyl and R_{5i} denotes a group of formula

$$\begin{array}{c|c}
Z_{i} \\
-C \\
N - R_{10i} \\
R_{9i}
\end{array}$$
Hei

wherein

Z_i denotes N-R_{13i}, wherein

 R_{13i} is the same as R_{13} in formula I and denotes preferably hydrogen or alkyl, and

 R_{9i} and R_{10i} together with the nitrogen atom denote heterocyclyl which is a piperazinyl; or

 R_{4i} is the same as R_4 in formula I and denotes preferably hydrogen, and R_{5i} denotes a group of formula

IIdi

wherein

 R_{8i} denotes alkyl, preferably at least C_2 alkyl; or cycloalkyl, preferably cyclopropyl, and

R₇₁ denotes alkyl, preferably methyl; or

 R_{4i} is the same as R_4 in formula I and denotes preferably hydrogen or alkyl and R_{5i} denotes a group of formula

$$-C \setminus_{\substack{N-R_{10i}\\R_{0i}}}^{N-R_{10i}}$$

Z_i denotes N-R_{13i}, wherein

R_{13i} denotes hydrogen, alkyl or cycloalkyl, preferably hydrogen or alkyl

R_{9i} denotes hydrogen and

R_{10i} denotes CH₂CF₃, C(CH₃)₃, OH or an alkyl group having at least 2 carbon atoms which is substituted by dialkyl amine or trialkyl ammonium, hydroxy; or

 R_{4i} is the same as R_4 in formula I and denotes preferably hydrogen R_{5i} denotes a group of formula

$$- C \underbrace{ \begin{bmatrix} Z_i \\ || \\ N - R_{10i} \end{bmatrix}}_{R_{0i}}$$
 Hei

wherein

Z_i denotes N-R_{13i}, wherein

R_{13i} denotes alkyl or cycloalkyl, preferably alkyl, and

 R_{9i} and R_{10i} together with the nitrogen atom denote heterocyclyl which is morpholyl or pyrrolidinyl; or

 R_{4i} is the same as R_4 in formula I and denotes preferably hydrogen R_{5i} denotes a group of formula

$$-\frac{Z_{i}}{C} - \frac{N}{R_{0i}} - R_{10i}$$

Z_i denotes N-R_{13i}, wherein

 R_{13i} denotes hydrogen, alkyl or cycloalkyl, preferably hydrogen, and R_{9i} denotes hydrogen, and

R_{10i} denotes cycloalkyl, preferably cyclopropyl; or

 R_{4i} is the same as R_4 in formula I and denotes preferably hydrogen R_{5i} denotes a group of formula

$$-\frac{\mathbf{Z}_{i}}{\mathbf{C}} \\ -\mathbf{R}_{10i} \\ \mathbf{R}_{0i}$$
 He

wherein

Z_i denotes N-R_{13i}, wherein

 R_{13i} is the same as R_{13} in formula I and denotes preferably hydrogen, R_{9i} denotes hydrogen or alkyl, preferably hydrogen, and R_{10i} denotes a group

$$-N = CH - Phe$$

wherein Phe denotes phenyl, preferably a dihydroxy phenyl, or

 R_{4i} is the same as R_4 in formula I and denotes preferably hydrogen R_{5i} denotes a group of formula

wherein

Z_i denotes N-R_{13i}, wherein

R_{13i} denotes hydrogen, alkyl or cycloalkyl, preferably hydrogen,

 $R_{\rm H{\sc i}}$ denotes a dihydroxyphenyl or substituted pyrrolidyl by alkyl; or

Z, denotes oxygen and

R_{IIi} denotes the group of formula

In another aspect the present invention provides a compound of formula

wherein

R, is a group of formula

$$-N$$
 NH or $-N$ $N-CH_3$ or $-N$ $N < CH_3$ or CH_3

R_y is NH and R_z is hydrogen; or

R_x is a group of formula

$$-N$$
 N— CHO or $-N$ NH or $-NH - (CH2)2 - $\stackrel{+}{N}$ (CH₃)₃$

R_y is NH and R_z is CH₃; or

R_x is - SCH₃

R_y is a group of formula

$$= N - C_4 H_9$$

and

R_z is hydrogen, or

R_a is a group of formula'

$$-N$$
 or $-N$ NH or -NHOH

R_y is N - CH₃ and R_z is hydrogen; or

R, is the group

$$-N$$

 R_y is N - C_2H_5 and R_z is hydrogen; or

R, is the group

R_y is oxygen and R_z is hydrogen.

Compounds of formulae VI are partially new and may be obtained analogously to conventional methods, or, as described in the examples.

In another aspect the present invention provides a compound of formula

WO 96/35692 PCT/EP96/02023

27

$$H_2N$$
 $CH=N-R_{xx}$
 $COOR_1$

wherein

R₁ is as defined in formula I and

R_{xx} denotes the group

wherein

R, R, and R as defined above.

In this specification unless otherwise indicated terms such as "compound of formula I, IA, I_p, I_q, IVi, IVa and VIa" embrace the compound in any form, for example in salt form and free base form. The present invention thus includes a compound in free or base form or, where such forms exist, in salt form, for example in form of an acid addition salt, inner salt, quaternary salt and/or in solvate, for example hydrate form thereof. A salt may be a pharmaceutically acceptable salt of a compound of formulae I, IA, I_p, I_q such as a metal salt or an amine salt. Metal salts include for example sodium, potassium, calcium, barium, zinc, aluminum salts, preferably sodium or potassium salts. Amine salts include for example trialkylamine, procaine, dibenzylamine and benzylamine salts. A free form of a compound of formulae I, IA, I_p, I_p, I_q, IVi, IVa and VIa may be converted into a salt form and vice versa.

In a further aspect the present invention provides a compound of formulae I, IA, I_p , I_q , IVi, IVa and VIa in free form; or in salt form, for example in acid addition salt form or in metal salt form; and a compound of formulae I, IA, I_p , I_q , IVi, IVa and VIa in solvate form.

A compound of formula I may also be obtained analogously to other processes conventional in the β -lactam chemistry.

The compounds of formula I, hereinafter designated as "active compound(s) of the invention" exhibits pharmacological activity and are therefore useful as pharmaceuticals. In particular, the active compounds of the invention show antimicrobial, e.g. antibacterial, activity against gram negative and gram positive bacteria such as Pseudomonas, e.g. Pseudomonas aeruginosa, Pseudomonas fluorescens; Enterobacter, e.g. Enterobacter cloacae; Enterococcus, e.g. Enterococcus faecalis; Moraxella, e.g. Moraxella catarrhalis; Haemophilus, e.g. Haemophilus influenza; Klebsiella, e.g. Klebsiella edwardsii, Klebsiella pneumoniae; Streptococcus, e.g. Streptococcus pneumoniae, Streptococcus durans, Streptococcus faecium, Streptococcus pyogenes; Staphylococcus, e.g. Staphylococcus aureus, Staphylococcus pyogenes; Escherichia, e.g. Escherichia coli; and Proteus, e.g. Proteus mirabilis in vitro in the Agar Dilution Test according to National Committee for Clinical Laboratory Standards (NCCLS) 1993, Document M7-A3Vol.13, No. 25: "Methods for dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically - Third Edition, Approved Standard" and in vivo in the septikaemic mouse model. The active compounds of the invention show activity in the mouse when administerd at dosages from about 0.05 to 50 mg/kg body weight (ED_{so} values). The active compounds show an MHK(µg/ml) in the Agar Dilution Test from about 0.005 to ca. 50. The active compounds of the invention show an surprising overall activity spectrum.

It has, for example, been determined that the MHK (μg/ml) of the compound of Example 139 against, for example Enterococcus faecalis strains ATTC 29212 or ATCC 51299, is of ca. 0.08 to 0.25; ainst Staphylococcus aureus strains ATCC 29213 or ATCC 9144 is of ca. 0.2 to 0.4 and against Pseudomonas aeruginosa strain 27853 is ca. 0.8.

The active compounds of the invention are, therefore, useful for the treatment of microbial, e.g. bacterial diseases.

In another aspect the present invention provides a compound of claim 1 for use as a pharmaceutical, preferably as an antimicrobial agent, such as an antibiotic.

In a further aspect the present invention provides a compound of claim 1 for use in the preparation of a medicament for the treatment of microbial diseases, for example of diseases caused by bacterias selected from *Pseudomonas*, *Enterobacter*, *Enterococcus*, *Moraxella*, *Haemophilus*, *Klebsiella*, *Streptococcus*, *Staphylococcus*, *Escherichia*, and *Proteus*.

In a further aspect the present invention provides a method of treatment of microbial diseases which comprises administering to a subject in need of such treatment an effective amount of a compound of formula I.

For this indication, the appropriate dosage will, of course, vary depending upon, for example, the compound of formula I employed, the host, the mode of administration and the nature and severity of the conditions being treated. However, in general, for satisfactory results in larger mammals, for example humans, an indicated daily dosage is in the range from about 0.05 to 5 g, for example 0.1 to about 2.5 g, of an active compound of the invention conveniently administered, for example, in divided doses up to four times a day.

An active compound of the invention may be administered by any conventional route, for example orally, e.g. in form of tablets or capsules, or parenterally in the form of injectable solutions or suspensions, e.g. in analogous manner to cefotaxime.

The compound 7-[[(5-Amino-1,2,4-thiadiazol-3-yl)-(Z)-(fluormethoxyimino)acetyl]amino]-3-[[(piperazinoiminomethyl)hydrazono]methyl]-3-cephem-4-carboxylic acid (compound of Example 139) is the preferred compound of the invention for use as an antimicrobial agent.

It has, for example been determined that the MHK (µg/ml) of the compound of Example 139 (tested in form of the trihydrochloride) against, for example Streptococcus pneumoniae, strain ATCC 49619 is ca. 0.01 whereas, for example ceftriaxone shows an MHK (µg/ml) of ca. 0.02. It is therefore, indicated that for the treatment of microbial diseases, e.g. bacterial diseases the preferred compounds of the invention may be administered to larger mammals, for example humans, by similar modes of administration at similar dosages than conventionally employed with ceftriaxone.

WO 96/35692 PCT/EP96/02023

30

The compounds of formula I may be administered in pharmaceutically acceptable salt form, e.g. acid addition salt form or base addition salt form or in the corresponding free forms, optionally in solvate form. Such salts exhibit the same order of activity as the free forms.

The present invention also provides pharmaceutical compositions comprising a compound of formula I in pharmaceutically acceptable salt form or free form in association with at least one pharmaceutical carrier or diluent.

Such compositions may be manufactured in conventional manner.

Unit dosage form may contain, for example 10 mg to about 1 g, for example 10 mg to about 700 mg.

In the following Examples the temperatures indicated are in degree Celsius.

Example 1

Dihydrochloride of 7-[(2-Amino-4-thiazolyl)-(Z)-(methoxyimino)acetyl]amino-3-[[(aminoimino-methyl)hydrazono]methyl]-3-cephem-4-carboxylic acid (Process a)
1.24 g of the hydrogen carbonate of aminoguanidine are dissolved in 9.15 ml of
2 N HCl and added under stirring to a solution of 3.2 g of the trifluoroacetate of
N-(1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-azeto[2,1-b]furo[3,4-d][1,3]thiazin-6-yl)-2-(2-aminothiazol-4yl)-(Z)-2-methoxyimino acetic acid amide in 125 ml of
4% aqueous acetonitrile. After ca. 90 minutes the precipitated dihydrochloride of
7-[(2-Amino-4-thiazolyl)(methoxyimino)acetyl]amino-3-[[(aminoimino-methyl)hydrazono]methyl]-3-cephem-4-carboxylic acid is filtered off, washed with acetonitrile
and dried.

Example 2

Dihydrochloride of 7-[[(2-Amino-4-thiazolyl)-(Z)-(hydroxyimino)acetyl]amino]-3-[[(amino-iminomethyl)hydrazono]methyl]-3-cephem-4-carboxylic acid (Process a)

- a) 10 g of the hydrochloride of N-(1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-azeto[2,1-b]furo[3,4-d][1,3]-thiazin-6-yl)-2-(2-aminothiazol-4-yl)-(Z)-2-(acetoxyimino)-acetic acid amide are suspended in 160 ml of acetonitrile and treated with 53 ml of water and 11 ml of 8 N HCl. The reaction mixture is stirred for ca. 14 hours at room temperature. A clear solution is obtained in which the acetoxyimino group being hydrolyzed to give the hydroxyimino group.
- b) 3 g of the hydrogen carbonate of aminoguanidine are dissolved in 11 ml of 1 N HCl and added dropwise to the solution obtained in step a) which is cooled to 0°. After ca. 30 minutes the reaction mixture is warmed to room temperature and stirred for ca. another 2.5 hours. The dihydrochloride of 7-[[(2-Amino-4-thiazolyl)-(Z)-(hydroxyimino)acetyl]amino]-3-[[(amino-iminomethyl)hydrazono]methyl]-3-cephem-4-carboxylic acid precipitate, is filtered off, washed with a mixture of acetonitrile and water, acetonitrile and with ether and dried.

Example 3

Sodium salt of 7-[(2-Amino-4-thiazolyl)(methoxyimino)acetyl]amino-3-[(methoxyimino)methyl]-3-cephem-4-carboxylic acid (Process b)

0.5 g of 7-amino-3-[(methoxyimino)methyl]-3-cephem-4-carboxylic acid and 0.75 g of (2-amino-4-thiazolyl)(methoxyimino)acetic acid mercaptobenzthiazolyl ester are suspended in a mixture of 2.4 ml of water and 4.8 ml of acetone. Ca. 1.8 ml of 2N sodium hydroxide solution are added dropwise in such a way that a pH of 8.0 is kept. The reaction mixture is stirred at 20° for ca. 1 hour. 2.4 ml of acetone are added dropwise. A clear solution is obtained within 3 hours. 120 ml of acetone are slowly added. A suspension is obtained which is cooled to 0°. After ca. 5 hours the precipitate formed is filtered off and redissolved in 4 ml of water. The clear solution is treated with 0.2 g of active charcoal and stirred for ca. 15 minutes. Active charcoal is filtered off and 100 ml of acetone are added within ca. 1 hour at 0°. The sodium salt of 7-[(2-amino-4-thiazolyl)(methoxyimino)acetyl]amino-3-[(methoxy-imino)methyl]-3-cephem-4-carboxylic acid is obtained in form of colourless crystals, which are filtered off, washed with ca. 5 ml of acetone and dried.

The compounds of the following TABLE 1 of formula IA (V is =N-O- in all of the Examples; and W is CH in Examples 4 to 68 and 70 to 138; and W is N in Examples 69 and 139 of TABLE 1) may be obtained in analogous manner to that described in Examples 1 to 3. Salt forms are exemplified. The configuration of R_3 in group $-C = N - R_3$ is syn [(Z)].

Table 1

Ex- ample	R ₃	R ₂	R _i	Salt
4	CH₃	ОН	Н	-
5	-СН₁СООН	-NH-C NH	Н	2HCI
6	СН,	-OCH₂COONa	Na	-
7	CH ₃	-NH-CO-NH₂	Н	-
8	СН₃	—ин-с< <mark>ин</mark>	Н	2HC1
9	CH ₃	-NH-C ₆ H ₅	Н	-
10	COCH ₃	—NH-C≷NH₂	Н	2НС1
11	СН₃	—NH-C≦NH-C₂H₅	Н	2HCl
12	СН,	-NH-C-N	Н	2HCI
13	CH ₃	NH-C€N-CH³	Н	2HCI
14	СН,	-NH-NH	Н	2HCI

15	СН3	N-C ₂ H ₅	Н	2HC1
16	Н	NH-C≪NH-CH₃	Н	2HCI
17	H	NH	Н	2HCl
18	H	—ин—с (N—сн ₃	Н	2HCl
19	Н	HA HA	Н	2HCI
20	CH ₃	-NH-CS-NH ₂	H	2HCl
21	СН,	-NH-C-NH	Н	HCI
22	СН,	-NH-C-NH	Н	HCl
23	СН3	s nнс nнсн ₃	Н	HCI
24	CH ₃	—N_N-CH,	Н	2HCI

25	СН3	-NH-C NH	Н	2HCl
26	СН ₃	—ин— ин—	Н	2HCl
27	CH,	-NH-C NH	Н	2HCI
28	СН,	S -N-C-NH-CH ₃ CH ₃	Н	HCI
29	СН,	- NH-C-N	Н	2HCl
30	СН,	-NH-C(OH)3	Н	2HC1
31	СН,	CH ₃ N-CH ₃ −NH-C N-CH ₃	Н	2HCI
32	СН3	—HN−C NH	Н	2HC1
33	СН,	-NH-C-N 0	н	2HC1

34	СН3	O CH ₃ II I CH ₂ -NH-C-CH ₂ -N ⁺ -CH ₃ CH ₃	H	Cl-
35	CH ₃	-NH-C NH	Н	2HCl
36	СН,	NH-OH -NH-CNH	H	2HCl
37	СН,	—ин-с≤ <mark>ин</mark> —ин-с≤ <mark>ин</mark>	Н	2HCI
38	СН₃	-NH-CKNH-CH2N-	Н	2HCl
39	СН3	-NH-CKNH-CH2-N	н	2HCl
40	СН3	-NH-CKNH-CH₂ NH	Н	2HCI
41	CH ₃	N N N N N N N N N N N N N N N N N N N	Н	HCI

42	СН,	-NH-C-N NH	Н	3HC1
43	СН	-NH-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	2HCl
44	СН,	NH ₂ NH—NH	Н	HCI
45	СН,		H	2HCl
46	СН,	-NH-C-N NH	н	3НСІ
47	СН ₃	NH-C € N-CH3	H	2HCl
48	СН3	CH ₃	Н	2HCl
49	СН3	-NH-C-N	н	НСІ

				
50	СН₃	—NH—C—N N—CHO	Н	2HCI
51	CH ₃	-NH-C-CH ₂ +N	Н	Cl-
52	СН,	O=C HN CH,	Н	HCI
53	СН	N-N N-CH ₃ NH ₂ O	Н	2HCI
54	СН,	-NH-C ⟨NH	н	2HCl
55	СН3	-NH-C N-CH ₃	н	2HCl
56	СН3	-NH-N	Н	HCI
57	CH ₃	-N-C NH CH ₃	Н	2HCI

58	СН₃	_n—c≷ ^{nh} ch₃	н	2HC1
59	СН,	_NH_C——	Н	2HCl
60	СН3	NH C NH C	Н	2HCl
61	СН,	-NH-C-	H	HCI
62	СН ₃	-NH-C-N N CH3	H	CI- 2HCI
63	СН3	N—CH ₃ CH ₃ II —NH—C— NH-(CH ₂) ₂ —N [±] —CH ₃ CH ₃	Н	CI- 2HCI
64	CH ₃	-NH- N= CF ₃	Н	HCl

65	СН,	-NH-NH	Н	HCI
66	CH ₃	-N-C-N NH	. н	3НСІ
67	СН	NH -N-C-N N-CHO CH ₃	н .	2НСІ
68	СН3	NH -NH-C - - - - - - - - - - -	н	2HCl
69	CH₂F	-NH-C NH	Н	2HCI
70	н		Н	2HCI
71	Н	S NH-C-NH-CH ₃	Н	НСІ
72	Н .	S NH-C-NH ₂	Н	НСІ

73	H	N-C ₂ H ₅	Н	2HCl
74	Н	-HN-C NH	H	2HCl
75	H	—ин-	Н	2HCl
76	Н	-NH-C NH	Н	2HC1
7 7	H	OCH ₃	H	HCl
78	Н	-NH-C≪NH	H	2HC1
79	H	CH ₃ −NH−C N−CH ₃	Н	2HCl
80	Н	-HN-C NH	Н	2HCI
81	Н	-NH-C-N 0	Н	2HCl
82	H	-NH-C≤NH	Н	2HCI

83	Н	-NH-C NH-OH	Н	2HC1
84	Н	-NH-C NH	Н	2HCl
85	Н	-NH-CKNH-CH2 N	Н	2HCi
86	Н	-NH-C NH-CH2 NH	н	2HCl
87	н	-NH-CKNH-CH2 N	Н	2HCI
88	Н	O NH O	Н	HCI
89	Н	S II -NH-C-NH-C	H	HCl
90	н	—ин— N=	Н	2HCl
91	н	NH ₂ NH ₂ S NH—NH	Н	НСІ

				
92	сн, с-соон сн,	-NH-CH₃	н	2HCl
93	H	-NH-C NH-OH	Н	2HC1
94	H	-NH-C N-CH ₃	Н	2HCI
95	H	$-NH$ $N-N$ NH_2 O	Н	2HCl
96	Н	-NH-C-N NH	H	3НС1
97	H	N	Н	2HCI
98	Н	-N-C NH CH3	Н	2HCl
99	н .	−NH-C CH3	Н	2HCl
100	Н	-NH-CH=NH	Н	2HCI

•				
101	CH ₃	-NH-CH=NH	Н	2HC1
102	сн ₃ с-соон сн ₃	-NH-C NH	н	2HCl
103	сн, -с-соон сн,	-NH-C NH	н	2HCI
104	сн, -с-соон -с,	-NH-C NH-CH2 N=	H	2HCl
105	сн ₃ -с-соон - сн ₃	—ин-с< <mark>ин</mark>	Н	2HCl
106	сн, -с-соон I сн,	N—CH ₃ —NH—C NH—CH ₃	н	2HCl
107	СН ₃ — С— СООН — СН ₃	-NH-C-N	Н	2HCI

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		· · · · · · · · · · · · · · · · · · ·	
108	СН,	-NH-CNH	н	2HCl
109	СН₂СООН	NH-C€NH-	Н	2HCl
110	СН₂СООН	NH-C, NH-CH³	Н	2HCI
111	СН₂СООН	-ин-с-и Ин	Н	2HC1
112	Н	-NH-C-N=	н	2HCI
113	н	NH -NH-C✓	Н	2HCl
114	Н	-NH-C-N	Н	2HC1
115	Н	-NH-C-N N-CHO	н	2HCl
116	н	N-CH ₃ -NH-C-NH-(CH ₂) ₂ -N CH ₃	Н	3НС1

117	н .	N—CH₃ CH₃ —NH—C—NH—(CH₂)₂—N [‡] —CH₃ CH₃	Н	CI- 2HCI
118	Н	-NH-C-OH	Н	2HCI
119	Н	NH C L, C	Н	2HCi
120	Н	-NH-C-\(\big _N	Н	2HCl
121	Н	-NH-C-N N+ CH,	Н	CI- 2HCI
122	Н	-NH-C-N N-CH,	Н	3НС1
123	Н	-N-C I NH- CH₃	Н	2HCI

124	Н	NH 	Н	2HCl
125	н	NH CH ₂) ₂ — N CH ₃ CH ₃ CH ₃	Н	3НС1
126	H	NH -NH-C-NH-N=CH-(-) OH	н	3НСІ
127	Н	NH —NH—C—NH— NH₂	Н	3НС1
128	Н	-N-C-N NH	н	3HCl
129	CH ₃	S NHC-NH✓	Н	HCI
130	СН3	S NH-C-NH-(CH ₂) ₃ CH ₃	Н	НСІ
131	СН3	s—ch₃ —nн—c=n—<	Н	2HCl
132	СН,	S-CH ₃ NH-C=N-(CH ₂) ₃ -CH ₃	Н	2HCI

133	СН,	S II —NH—C—NH—(CH₂)₂—SO₃H	Н	· <u>-</u>
134	Н	S II III III III III III III III III II	Н	HCI
135	н	S 	Н	HCl
136	СН3		Н	2HCl
137	. СН3	S II —N—C—NH ₂ — CH ₃	H	HCI
138	СН3	-NH-COC(CH ₃) ₃	Н	HCI
139	CH₂F		H	3НС1

WO 96/35692

Example 140

Dihydrochloride of 7-[2-(2-aminothiazol-4-yl)-(Z)-2-pentenoylamino]3-[[(aminoimino-methyl)hydrazono]methyl]-3-cephem-4-carboxylic acid
1 g of N-(1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-azeto[2,1-b]furo[3,4-d][1,3]-thiazin-6-yl)-2-[2-(tert.-butoxycarbonylamino)thiazol-4-yl]-(Z)-2-pentenoic acid amide is dissolved in a mixture of 30 ml of methanol and 30 ml of acetonitrile and 0.3 g of the hydrogencarbonate of aminoguanidine are added. A pH of 2.0 is adjusted by addition of methanolic HCI. Stirring is continued at room temperature. Within ca. 30 minutes a light coloured precipitate forms, which is filtered off after ca. 3 hours, washed with acetonitrile and ether and dried. The dihydrochloride of 7-[2-(2-aminothiazol-4-yl)-(Z)-2-pentenoylamino]-3-{[(aminoimino-methyl)hydrazono]-methyl}-3-cephem-4-carboxylic acid is obtained in the form of a light yellow powder.

49

Example 141

Trifluoroacetate of 7-[(2-Amino-4-thiazolyl)-(Z)-(methoxyimino)acetyl]amino-3-(hydrazonomethyl)-3-cephem-4-carboxylic acid

A suspension of 3 g of 7-[(2-amino-4-thiazolyl)-(Z)-(methoxyimino)acetyl]amino-3-[[2-(1,1-dimethylethoxy)-2-oxoethoxy]hydrazonomethyl]-3-cephem-4-carboxylic acid in 75 ml of methylenchloride is treated at ca. 0° with 0,6 ml of anisol. 10 ml of trifluoro acetic acid are added dropwise under stirring. The solution obtained is stirred for ca. further 3 hours at 0°. The reaction mixture is poured into 600 ml of ether. The trifluoroacetate of 7-[(2-Amino-4-thiazolyl)-(Z)-(methoxyimino)acetyl]-amino-3-(hydrazono)-3-cephem-4-carboxylic acid precipitates, is filtered off and dried.

Example 142

Hydrobromide of 7-[(2-amino-4-thiazolyl)-(Z)-(methoxyimino)acetyl]amino-3-[(4-methylthiazol-2-yl)hydrazonomethyl]-3-cephem-4-carboxylic acid

1 g of 7-[(2-amino-4-thiazolyl)-(Z)-(methoxyimino)acetyl]amino-3-[(aminothioxomethyl)-hydrazonomethyl]-3-cephem-4-carboxylic acid is suspended in 30 ml of acetonitrile and stirred after addition of 2.5 ml of N.O-bistrimethylsilylacetamide for

PCT/EP96/02023 WO 96/35692

50

ca. 20 minutes. The clear solution obtained is treated with 0.6 g of bromoacetone and stirred overnight. 1 ml of water are added. The precipitate is filtered off and dried. The hydrobromide of 7-[(2-amino-4-thiazolyl)-(Z)-(methoxyimino)acetyl]amino-3-[(4methylthiazol-2-yl)hydrazonomethyl]-3-cephem-4-carboxylic acid is obtained as a vellow solid.

Example 143

Hydrobromide of 7-[(2-amino-4-thiazolyl)-(Z)-(methoxyimino)acetyl]amino-3-[(4methylthiazol-2-yl)methylhydrazonomethyl]-3-cephem-4-carboxylic acid 1 g of 7-[(2-amino-4-thiazolyl)-(Z)-(methoxyimino)acetyl]amino-3-[(aminothioxomethyl)- methylhydrazonomethyl]-3-cephem-4-carboxylic acid is reacted in analogous manner as described in Example 142 with N.O-bistrimethylsilylacetamide and with bromoacetone. The hydrobromide of 7-[(2-amino-4-thiazolyl)-(Z)-(methoxyimino)acetyl]amino-3-[(4-methylthiazol-2-yl)methylhydrazonomethyl]-3-cephem-4carboxylic acid is obtained as a yellow solid.

Example 144

Dihydrate of 6R-trans (Z)-7-[(2-Amino-4-thiazolyl)(methoxyimino)-acetyl]amino-3[[(imino(methylamino)methyl)hydrazono]methyl]-3-cephem-4-carboxylic acid 1.1 g of the dihydrochloride obtained according to Example 8 are dissolved in 25 ml of water, treated with 0.5 g of active charcoal and stirred for ca. 5 minutes. The almost colourless filtrate is poured into 5 ml of water under stirring. A pH of about 7 is kept by addition of 2.5% aqueous ammonia. The precipitate obtained is filtered off and dried. The dihydrate of 6R-trans (Z)-7-[(2-Amino-4-thiazolyl)-(methoxyimino)-acety]]amino-3[[(imino(methylamino)methyl)hydrazono]methyl]-3-cephem-4-carboxylic acid is obtained as a yellowish powder.

Example 145

6R-trans (Z)-7-[(2-amino-4-thiazolyl)(methoxyimino)acetyl]amino-3-[[(imino(methylamino)methyl)hydrazono]methyl]-3-cephem-4-carboxylic acid 1-(isopropoxycarbonyloxy)ethyl ester

5.5 g of the dihydrate obtained according to Example 144 are dissolved in 55 ml of

dimethylacetamide under addition of 1.43 ml tetramethylguanidine. This solution is cooled to 0°, treated with a solution of 4.4 g of 1-iodoethyl-isopropylcarbonate in 30 ml of toluene and stirred for ca. 90 minutes at 0°. The reaction mixture is poured into 1 liter of diethylether. The precipitate obtained is filtered off and stirred twice each with 500 ml of acetonitrile. The acetonitrile phases are combined, filtered and evaporated to a volume of ca. 10 ml. The oily residue is treated with 400 ml of water. A precipitate forms which is filtered off and dried. The precipitate is stirred with 700 ml of ethyl acetate. After evaporation of the ethyl acetate yellow coloured 6R-trans (Z)-7-[(2-amino-4-thiazolyl)-(methoxyimino)acetyl]amino-3-[[(imi-no(methylamino)methyl)hydrazono]methyl]--3-cephem-4-carboxylic acid 1- (isopropoxycarbonyloxy)ethyl ester is obtained in the form of a diastereomeric mixture in the ratio of ca. 1:1.

Example 146

6R-trans (Z)-7-[((Acetoxyimino)-2-amino-4-thiazolyl)acetyl]amino-3-[[(aminoiminomethyl)hydrazono]methyl]-3-cephem-4-carboxylic acid 1-(isopropoxycarbonyloxy) ethyl ester

0,72 g of the hydrogen carbonate of aminoguanidine are dissolved in 5.2 ml of 2 N HCl. This solution is added to a solution of 2 g of 6R-trans (Z)-7-[((acetoxyimino)-2-amino-4-thiazolyl)acetyl]amino-3-formyl-3-cephem-4-carboxylic acid 1-(isopropoxycarbonyloxy)ethyl ester in 14 ml of acetonitrile containing 1.3 ml of water. The reaction mixture is stirred for ca. 45 minutes at room temperature and poured into 100 ml of acetonitrile. The precipitate formed is filtered off and dissolved in 100 ml of water. The pH of the solution obtained is adjusted to 7 by addition of 0.5 N aqueous sodium hydrogen carbonate. A yellow suspension is obtained which is extracted twice with a mixture of 200 ml of ethyl acetate and 40 ml of acetonitrile. The organic phases are combined, dried over Na₂SO₄ and evaporated. 6R-trans (Z)-7-[((acet-oxyimino)-2-amino-4-thiazolyl)acetyl]amino-3-[[(aminoiminome-thyl)hydrazono]-methyl]-3-cephem-4-carboxylic acid 1-(isopropoxycarbonyloxy) ethyl ester is obtained in the form of a yellow diastereomeric mixture in the ratio of ca. 1:1.

WO 96/35692 PCT/EP

52

Example 147

Ditosylate of 6R-trans (Z)-7-[(2-amino-4-thiazolyl)(hydroxyimino)acetyl]amino-3[[(aminoiminomethyl)hydrazono]methyl]-3-cephem-4-carboxylic acid (isopropoxycarbonyloxy)ethyl ester

A solution of 0.6 g of a compound obtained according to Example 146 in a mixture of 50 ml of acetonitrile and 20 ml of isopropanol is treated with 0.66 g of the monohydrate of toluene-4-sulfonic acid and stirred overnight at 25°. The reaction mixture is poured into 150 ml of tert.butyl-methylether. The precipitate obtained is filtered off, washed with tert.butyl-methylether and dried. The ditosylate of 6R-trans (Z)-7-[(2-amino-4-thiazolyl)(hydroxyimino)acetyl]amino-3[[(aminoiminomethyl)-hydrazono]methyl]-3-cephem-4-carboxylic acid (isopropoxycarbonyloxy)ethyl ester is obtained in the form of a light coloured diastereomeric mixture in the ratio of ca. 1:1.

Example 148

Dihydrochloride of 7-[[(2-amino-4 thiazolyl)-(Z)-[(carboxymethoxy)imino]actyl]-amino]-3-[[(aminoiminomethyl)hydrazono]methyl]-3-cephem-4-carboxylic acid (Compound of Example 5)

a) Dihydrochloride of 7-Amino-3-[(aminoiminomethyl)hydrazonolmethyl]-3-cephem-4-carboxylic acid

To 1.0 g of 7-amino-3-formyl-3-cephem-4-carboxylic acid in a mixture of 50 ml of acetonitrile and 5 ml of 2N HCl are added dropwise 0.6 g of the hydrogen carbonate of aminoguanidine, dissolved in 2.2 ml of 2N HCl. The dihydrochloride of 7-amino-3-[[(aminoiminomethyl)hydrazono]methyl]-3-cephem-4-carboxylic acid precipitates, is filtered off, washed with acetonitrile and dried.

- b) Hydrochloride of 7-[[(2-amino-4-thiazolyl)-(Z)-[[2-(1,1-dimethylethoxy)-2-oxoetoxylimino]acetyllamino]-3-[[(aminoiminomethyl)hydrazonolmethyl]-3-cephem-4-carboxylic acid
- 4 g of the dihydrochloride of 7-amino-3-[[(aminoiminomethyl)hydrazono]methyl]-3-cephem-4-carboxylic acid are dissolved in 80 ml of methanol. The solution is cooled

to 0° and treated with a solution of 7 g of (2-amino-4-thiazolyl)-(Z)-[2-(1,1-dimethylethoxy)-2-oxoethoxy]imino]thioacetic acid S-benzothiazol ester in 50 ml of methylene chloride. The reaction mixture is stirred for about 2.5 hours at 20°. About a third of the solvent is evaporated off and 120 ml of ether are added to the residue. The hydrochloride of 7-[[(2-amino-4-thiazolyl)-(Z)-[[2-(1,1-dimethylethoxy)-2-oxoetoxy]imino]-acetyl]amino]-3-[[(aminoiminomethyl)hydrazono]methyl]-3-cephem-4-carboxylic acid precipitates, is filtered off, washed with ether and dried.

c) Dihydrochloride of 7-[[(2-amino-4 thiazolyl)-(Z)-[(carboxymethoxy)iminolactyl]aminol-3-[[(aminoiminomethyl)hydrazonolmethyl]-3-cephem-4-carboxylic acid
3.5 g of the hydrochloride of 7-[[(2-amino-4-thiazolyl)-(Z)-[[2-(1,1-dimethylethoxy)2-oxoetoxy]imino]acetyl]amino]-3-[[(aminoiminomethyl)hydrazono]methyl]-3cephem-4-carboxylic acid are dissolved in 20 ml of trifluoroacetic acid at 0°. The
solution is stirred for ca. 15 minutes at 0° and for ca. 1 hour at 20°. The reaction
mixture is treated with 40 ml of ether. A precipitate forms, is filtered off, washed
with ether, dried, dissolved in 15 ml of 2N HCl and stirred for ca. 1 hour at 20°. A
light brownish precipitate of the dihydrochloride of 7-[[(2-amino-4 thiazolyl)-(Z)[(carboxy-methoxy)imino]actyl]-amino]-3-[[(aminoiminomethyl)hydrazono]methyl]-3cephem-4-carboxylic acid is obtained, filtered off and dried.

The compounds of Examples 1 to 146 may be obtained as described in Example 147 using the appropriate starting material.

Compounds used as starting material may be prepared as follows:

Example A)

Trifluoroacetate of N-(1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-azeto[2,1-b]furo[3,4-d][1,3]-thiazin-6-yl)-2-(2-aminothiazol-4-yl)-(Z)-2-methoxyiminoacetic acid amide

a) Hydrochloride of 6-amino-1.4.5a,6-tetrahydro-3-hydroxy-1.7-dioxo-3H.7H-ace-to[2.1-b]furo[3.4-d][1.3]thiazin (hydroxylactone of the hydrochloride of 7-amino-3-formyl-3-cephem-4-carboxylic acid)

WO 96/35692

13.8 g of the hydrochloride of 7-amino-3-[(Z/E)-prop-1-en-1-yl]-3-cephem-4-carboxylic acid are dissolved in 200 ml of methanol. The solution is cooled to -50° and 8 l of O₂ containing ca. 2 percent v/v ozone are introduced per minute under stirring at this temperature. After ca. 20 minutes the hydrochloride of 6-amino-1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-aceto[2,1-b]furo[3,4-d][1,3]thiazin being practically quantitatively formed and ozonolysis is terminated as determined by HPLC. 8 l of N₂ are bubbled through the reaction mixture within ca. 2 minutes. The slight cloudy solution is poured into 1400 ml of tert.butyl-methyl ether. The precipitate is filtered off under N₂, washed with a little of tert.butyl-methyl ether and acetonitrile and dried. The hydrochloride of 6-amino-1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-aceto[2,1-b]furo[3,4-d][1,3]thiazin is obtained in the form of a white powder (HPLC content of more than 95%).

54

b) (6R-trans)-7-Amino-3-formyl-8-oxo-5-thia-1-azabicyclo[4,2.0]oct-2-en-2-carboxylic acid (7-amino-3-formyl-3-cephem-4-carboxylic acid) 2.64 g of the hydrochloride of 6-amino-1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-aceto[2,1-b]furo[3,4-d][1,3]thiazin are dissolved in 50 ml of methanol. To this solution a solution of 0.78 g of pyridin in 10 ml of methanol is added dropwise under ice cooling and stirring. The precipitate obtained is filtered off moisture free under nitrogen, washed with a little methanol and dried. (6R-trans)-7-Amino-3-formyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-en-2-carboxylic acid is obtained in the form of a light brownish powder.

IR (KBr): 1799 cm⁻¹ (β -lactam), 1672 cm⁻¹ (CHO), 1606 and 1542 cm⁻¹ (carboxylate) UV-Spectrum: λ_{max} in H₂O = 302 nm.

c) N-(1.4.5a.6-Tetrahydro-3-hydroxy-1.7-dioxo-3H,7H-azeto[2,1-b]furo[3,4-d][1,3]thiazin-6-yl)-2-(2-tritylaminothiazol-4-yl)-(Z)-2-methoxyiminoacetic acid amide

10 g of 7-amino-3-formyl-3-cephem-4-carboxylic acid in 200 ml of acetonitrile: methylenchloride (1:1) are treated with 37.4 ml of N,O-bis(trimethylsilyl)acetamide at room temperature within ca. 5 minutes. After ca. 30 minutes the reaction mixture is cooled to -10° and 21 g of 2-(2-tritylaminothiazol-4-yl)-(Z)-2-methoxyiminoacetic

acid chloride are added in 3 portions. The temperature raises to -5°. After ca. 45 minutes the reaction mixture is treated with 4 ml of water. The temperature raises to 20°. The reaction mixture is stirred for ca. 10 minutes and filtered. 15 g of active charcoal are added to this filtrate and stirring is continued for ca. 10 minutes. After filtration the solvent of the filtrate obtained is evaporated. The evaporation residue is treated with tert.butyl-methyl ether. A crystalline, almost colourless precipitate is obtained, filtered off and dried. Crystalline N-(1,4,5a,6-Tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-azeto[2,1-b]furo[3,4-d][1,3]thiazin-6-yl)-2-(2-tritylaminothiazol-4-yl)-2-methoxyiminoacetic acid amide is obtained in form of a diastereomeric mixture in the ratio of ca. 1:1.

- d) Trifluoroacetate of N-(1.4.5a,6-tetrahydro-3-hydroxy-1.7-dioxo-3H,7H-azeto[2,1-b]furo[3,4-d][1,3]thiazin-6-yl)-2-(2-aminothiazol-4-yl)-(Z)-2-methoxyiminoacetic acid amide
- 5 g of N-(1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-azeto[2,1-b]furo[3,4-d][1,3]-thiazin-6-yl)-2-(2-aminothiazol-4-yl)-2-methoxyiminoacetic acid amide are introduced into 20 ml of trifluoro acetic acid at 0°. The temperature raises to 10°. The reaction mixture is stirred for ca. 30 minutes at 0° and added dropwise into 200 ml of diethylether. The mixture obtained is stirred for ca. 5 minutes and filtered. A crystalline, diastereomeric mixture of the trifluoroacetate of N-(1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-azeto[2,1-b]furo[3,4-d][1,3]thiazin-6-yl)-2-(2-aminothiazol-4-yl)-2-methoxyiminoacetic acid amide in the ratio of ca. 1:1 is obtained.

Example B)

Trifluoroacetate of N-(1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-azeto[2,1-b]furo[3,4-d][1,3]-thiazin-6 yl)-(Z)-2-(2-aminothiazol-4-yl)-2-(hydroxyimino)acetic acid amide

is obtained in form of a light yellow powder analogously as described in Example A) c) to d) but using in step c) 2-(2-tritylaminothiazol-4-yl)-(Z)-2-hydroxyimino acetic acid chloride instead of 2-(2-tritylaminothiazol-4-yl)-(Z)-2-methoxyimino-acetic acid chloride.

WO 96/35692

56

Example C)

Hydrochloride of N-(1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-azeto[2,1b]furo[3,4-d][1,3]-thiazin-6-yl)-2-(5-amino-1,2,4-thiadiazol-3-yl)-(Z)-2-(fluoromethoxvimino)acetic acid amide

A suspension of 3.73 g of 7-amino-3-formyl-3-cephem-4-carboxylic acid in a mixture of 80 ml of methylenchloride and 30 ml of acetonitrile is stirred at 0° with 16 ml of N,O-bis(trimethylsilylacetamide). Within ca.15 minutes a clear solution is obtained to which 3.9 g of (5-amino-1,2,4-thiadiazol-3-yl)-(Z)-2-fluormethoxyiminoacetic acid chloride, obtainable for example as described in Example 1 of EP-0 590 681, are added. The reaction mixture is stirred for ca. 1 hour at 0°. 500 ml of acetonitrile containing 10 g of water are added and the mixture is filtered to remove insolubles. The filtrate is evaporated. The residue is treated with 500 ml of acetonitrile, the mixture is filtered and the filtrate is evaporated. The solid obtained is treated with tert, butyl-methyl ether and dried. The hydrochloride of N-(1,4,5a,6-Tetrahydro-3hydroxy-1.7-dioxo-3H.7H-azeto[2,1-b]furo[3,4-d][1,3]-thiazin-6-yl)-2-(5-amino-1,2,4thiadiazol-3-yl)-(Z)-2-(fluoro-methoxyimino)acetic acid amide is obtained in the form of a light brownish powder.

Example D)

Hydrochloride of N-(1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-azeto[2,1b]furo[3,4-d][1,3]-thiazin-6-yl)-2-(2-aminothiazol-4-yl)-(Z)-2-(acetoxyimino)acetic acid amide

40 g of 7-amino-3-formyl-3-cephem-4-carboxylic acid are suspended in 1500 ml of acetonitrile and cooled to 0°. Within ca. 20 minutes 170 ml of N,O-bis(trimethylsilyl)acetamide are added under stirring. Within ca.15 minutes at 0° a clear solution is obtained, which is cooled to -10° and to which 48 g of (2-aminothiazol-4-yl)-(Z)-(acetoxyimino)acetic acid chloride are added in portions in such a way that the temperature of the reaction mixture does not exceed - 8°. Stirring is continued for ca. 60 minutes at -10° and 168 ml of water are added. Stirring is continued for ca. further 20 minutes at 0° and for ca. 2 hours at room temperature. A crystalline precipitate forms, is filtered off, washed with ca. 350 ml of acetonitrile and ca. 100 ml of ether and dried. The hydrochloride of N-(1,4,5a,6-tetra-hydro-3-hydroxy-1,7WO 96/35692 PCT/EP96/02023

57

-dioxo-3H,7H-azeto[2,1-b]furo-[3,4-d][1,3]-thiazin-6-yl)-2-(2-aminothiazol-4-yl)-(Z)-2-(acetoxyimino)acetic acid is obtained in form of a diastereomeric mixture in the ratio of ca. 1:1.

Example E)

Hydrochloride of N-(1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-azeto[2,1-b]furo[3,4-d][1,3]-thiazin-6-yl)-2-(2-aminothiazol-4-yl)-(Z)-2-(hydroxyimino)acetic acid amide

10 g of the hydrochloride of N-(1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-azeto[2,1-b]furo[3,4-d][1,3]thiazin-6-yl)-2-(2-aminothiazol-4-yl)-(Z)-2-(acetoxyimino)-acetic acid amide are suspended in 160 ml of acetonitrile and treated with 53 ml of water and 11 ml of 8 N HCl. The reaction mixture is stirred for ca. 14 hours at room temperature. A clear solution is obtained which is diluted with water-free acetonitrile to obtain the 3-fold volume. The solvent is evaporated off to obtain a volume of ca. 10 ml, which is treated with ca. 200 ml of acetonitrile. A precipitate forms which is treated with ether, filtered off and dried. The hydrochloride of N-(1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-azeto[2,1-b]furo[3,4-d][1,3]-thiazin-6-yl)-2-(2-aminothiazol-4-yl)-(Z)-2-(hydroxyimino)acetic acid amide is obtained in yellowish coloured form.

Example F)

Trifluoracetate of N-(1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-azeto[2,1-b]furo[3,4-d][1,3-]-thiazin-6-yl)-2-(2-aminothiazol-4-yl)-(Z)-2-[(1-carboxy-1-methylethoxy)imino]acetic acid amide

is obtained in form of a light brownish powder analogously as described in Example A) a) to c) but using 2-(2-tritylaminothiazol-4-yl)-(Z)-2-[(1-carboxy-1-methylethoxy)-iminoacetic acid chloride instead of 2-(2-tritylaminothiazol-4-yl)-(Z)-2-methoxyiminoacetic acid chloride.

Example G)

N-(1,4,5a,6-Tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-azeto[2,1-b]furo[3,4-d][1,3]-thiazin-6-yl)-2-[2-(tert.-butoxycarbonylamino)thiazol-4-yl]-(Z)-2-pentenoic acid

amide

is obtained in form of a light brownish powder analogously as described in Example A) c) to d) but using 2-(2-(tert.butoxycarbonylamino)thiazol-4-yl)-(Z)-2-pentenoic acid chloride instead of 2-(2-tritylaminothiazol-4-yl)-(Z)-2-methoxyimino-acetic acid chloride.

Example H)

Dihydrochloride of 1-(hydrazinoiminomethyl)piperazine

a) Hydroiodide of 4-formyl-1-[imino(methylthio)methyl]piperazine

25.5 g of 4-formyl-1-piperazinecarbothioamide are suspended in 80 ml of methanol, treated with 22 g of methyliodide and refluxed. Within ca.10 minutes a clear solution is obtained. The mixture is cooled to room temperature. The solvent is evaporated. Crystalline hydroiodide of 4-formyl-1-[imino(methylthio)methyl]piperazine is obtained.

b) Hydrochloride of 4-formyl-1-(hydrazinoiminomethyl)piperazine

48.1 g of the hydroiodide of 4-formyl-1-[imino(methylthio)methyl]piperazine are dissolved in 100 ml of water, run through a column filled with 800 ml of a strong basic ion exchanger in chloride form and eluated with 850 ml of water. The solvent is evaporated to obtain a volume of ca. 100 ml which is treated with 7.35 g of hydrazinehydrate. The reaction mixture is stirred for ca. 1 hour at room temperature and the solvent is evaporated off. The oily hydrochloride of 4-formyl-1-(hydrazinoiminomethyl)piperazine crystallizes on drying.

c) Dihydrochloride of 1-(hydrazinoiminomethyl)piperazine

11 g of the hydrochloride of 4-formyl-1-(hydrazinoiminomethyl)piperazine are dissolved in 400 ml of methanol and treated with 50 of HCl_{cooc}. The reaction mixture is stirred for ca. 14 hours at room temperature. A white precipitate forms, is filtered off, washed with methanol and ether, dried and recrystallized with water/ethanol. The dihydrochloride of 1-(hydrazinoiminomethyl)-piperazine is obtained in crystalline, colourless form.

Analogous in the manner as described in Example H) compounds of formula IV of TABLE 2 may be obtained:

TABLE 2

Ex.	R ₂	Salt	Process
I)	N-C NH-NH ₂	HCI	H) a) to c)
Ŋ	ON-CNH-NH ₂	HCl	H) a) to c)
K)	(CH ²) ² C—NH—C NH-NH ²	HCI ,	H) a) to c)
L)	CH3 -N N-C NH-NH3	2HC1	H) a) to c)
M)	(CH ₂) ₃ -N-(CH ₂) ₂ -NH-C NH-NH ₂	2HCL	H) a) to c)
N)	OHC-NN-C, NH-NH	HCI	H) a) to b)
O)	HN N-C NH-NH;	3HCI	Н) с)

Example P)

1-Amino-3-(2-hydroxyethyl)-4-methylguanidine

12.7 g of 2-methylamino-2-oxazoline ar dissolved in 50 ml of water, treated with 3 g of hydrazinehydrate and stirred for ca. 17 hours at room temperature. The solvent is evaporated and 1-amino-3-(2-hydroxyethyl)-4-methylguanidine is obtained as oily residue crystallizing upon cooling.

Example Q)

Hydrochloride of 1,1-dimethyl-4-(hydrazinoiminomethyl)piperaziniumchloride

- a) Hydroiodide of 1.1-dimethyl-4-limino(methylthio)methyllpiperaziniumiodide 3.2 g of 4-methyl-1-piperazinecarbothioamide are suspended in 100 ml of methanol. 6.2 g of methyliodide are added and the mixture is refluxed for ca. 2 hours and cooled to 20° ab. The hydroiodide of 1,1-dimethyl-4-[imino-(methylthio)methyl]piperaziniumiodide precipitates, is filtered off and dried.
- b) Hydrochloride of 1.1-dimethyl-4-(hydrazinoiminomethyl)piperaziniumchloride 6.57 g of the hydroiodide of 1,1-dimethyl-4-[imino(methylthio)methyl]piperaziniumiodide are dissolved in 70 ml of water, run through a column filled with 150 ml of a strong basic ion exchanger in chloride form and eluated with 250 ml of water. Water is evaporated off the eluate to obtain to a volume of ca. 50 ml, which is treated with 0.9 ml of hydrazinehydrate and stirred overnight. The solvent is evaporated off and the residue obtained is treated with n-hexane. The hydrochloride of 1,1-dimethyl-4-(hydrazinoiminomethyl)piperaziniumchloride is obtained.

Example R)

Trihydrochloride of 1-[hydrazino(methylimino)methyl]piperazine

a) Hydrochloride of S-methyl-2-methylisothiosemicarbazide

A solution of 239.8 g of the hydroiodide of S-Methyl-2-methylisothiosemicarbazide in 100 ml of water is run through a column filled with 1500 ml of a strong basic ion exchanger in chloride form and eluated with water. The eluate is lyophilized and the lyophilization residue is treated with ether. The precipitate is filtered off and dried. The hydrochloride of S-methyl-2-methylisothiosemicarbazide is obtained as a white solid.

Melting point: 116°

WO 96/35692

b) Hydrochloride of 4-formyl-1-[hydrazino(methylimino)methyl]piperazine

A mixture of 20 g of freshly distilled formylpiperazine and 27.3 g of the hydrochloride of S-methyl-2-methylisothiosemicarbazide in 250 ml of ethanol is refluxed overnight and the solvent is evaporated. The oily residue is dissolved in 70 ml of hot isopropanol and the solution is slowly cooled to 20°. A precipitate forms and the mixture is allowed to stand for ca. 2 hours at 4°. The hydrochloride of 4-formyl-1-[hydrazino(methylimino)methyl]piperazine is filtered off and recrystallized from isopropanol.

c) Trihydrochloride of 1-[hydrazino(methylimino)methyl]piperazine

10 g of the hydrochloride of 1-formyl-4-[hydrazino(methylimino)methyl]piperazine are dissolved in 250 ml of methanol. 50 ml of HCl_{cooc.} are added, the mixture obtained is stirred overnight and the solvent is evaporated. A solid residue is obtained which is dried over solid KOH. The trihydrochloride of 1-[hydrazino-(methylimino)methyl]piperazine is obtained in form of a white product.

In analogous manner as described in Example R) but reacting the hydrochloride of S-methyl-isothiosemicarbazide or the hydrochloride of S-methyl-2-methylisothiosemicarbazide or the hydrochloride of S-methyl-4-methylisothiosemicarbazide with a corresponding amine compounds of formula IV of TABLE 3 may be obtained.

TABLE 3

I	Ex.	R ₂	Salt
ı	!		

S)	CF₃CH₂—NH—C NH-NH₂	HCI
T)	NH-CH NH-NH,	HCI
U)	HONH—C NH-NH₂	HCI
v)	CH ₃ N—(CH ₂) ₂ —NH—C NH CH ₃ CH ₃ CH ₃	2HCl

Example W)

Hydrochloride of 1-Amino-3-(3,4-dihydroxybenzylidenamino)guanidine

1 g of the hydrochloride of diaminoguanidine are dissolved in 10 ml of 4 N HCl and diluted with 20 ml of methanol. This solution is treated quickly with a solution of 1 g of 3,4-dihydroxybenzaldehyde in 40 ml of methanol. The reaction mixture is stirred for some minutes at room temperature and the solvent is evaporated off. The residue is suspended in 50 ml of acetonitrile. The precipitate formed is filtered off and dried. The hydrochloride of 1-amino-3-(3,4-dihydroxybenzylidenamino)-guanidine is obtained.

Example X)

Hydroiodide of S-Methyl-4-cyclopropylthiosemicarbazide

295 mg of 4-cyclopropylthiosemicarbazide are dissolved in 5 ml of dry methanol and treated with 154 ml of methyliodide. The mixture is stirred at 40° under nitrogen for ca. 5 hours, cooled and treated with diethylether. A colourless precipitate of the

hydroiodide of S-Methyl-4-cyclopropylthiosemicarbazide is formed, filtered off, washed with diethylether and dried.

Example Y)

Hydroiodide of S-methyl-4-n-butylthiosemicarbazide

147 mg of 4-n-butylthiosemicarbazide in 2,5 ml of dry methanol are treated with 149 mg of methyliodide. The mixture is stirred under nitrogen for ca. 5 hours, cooled and treated with diethylether. A colourless precipitate of the hydroiodide of S-methyl-4-n-butylthiosemicarbazide is formed, filtered off, washed with diethylether and dried.

Example Z)

1-Methyl-5-mercapto-1,2,4-triazol-3-carboxylic acid hydrazide

0.48 g of 1-methyl-5-mercapto-1,2,4-triazol-3-carboxylic acid methyl ester are dissolved in 10 ml of methanol, treated with 450 µl of hydrazinehydrate and stirred for ca. 2 hours at 20°. A precipitate of 1-methyl-5-mercapto-1,2,4-triazol-3-carboxylic acid hydrazide is formed, filtered off, washed with methanol and dried.

IR (KBr): 1669 cm⁻¹, 1608 cm⁻¹, 1517 cm⁻¹

¹³C-NMR (300 MHz, DMSO-d₆): 35.4 (NCH₃); 143.3, 154.3 and 166.7

Example AA)

Hydroiodide of 1,5-dimethyl-2-(hydrazinoiminomethyl)pyrrol

a) 1.5-Dimethylpyrrol-2-carbothioamide

5 g of 2-cyano-1,5-dimethylpyrrol are dissolved in 40 ml of ethanol and treated with 10 ml of triethylamine. 50 ml of an ethanolic H₂S solution (3.8 g/100 ml) are added and the mixture is heated for ca. 15 hours in an autoclave at 70°. The reaction mixture is cooled and the solvent is evaporated off to obtain ca. a quarter of its volume. 1,5-dimethylpyrrol-2-carbothioamide crystallizes upon cooling at 0° in the form of a light yellow precipitate.

b) Hydroiodide of 1.5-dimethyl-2-limino(methylthio)methyllpyrrol

1 g of 1.5-dimethylpyrrol-2-carbothioamide are dissolved in 20 ml of methanol

and treated with 1.7 g of methyliodide. The reaction mixture is stirred for about 5 hours at room temperature. The solvent is evaporated until crystallization starts. The residue is cooled to ca. 0°. The crystalline hydroiodide of 1,5-dimethyl-2-[imino(methylthio)methyl]pyrrol is filtered off, washed with methanol and dried.

c) Hydroiodide of 1,5-dimethyl-2-(hydrazinoiminomethyl)pyrrol

1.3 g of the hydroiodide of 1,5-dimethyl-2-[imino(methylthio)methyl]pyrrol are dissolved in 20 ml of methanol. 0.28 g of hydrazinehydrate are added. The reaction mixture is stirred for ca. 3 hours, the solvent is evaporated off and the residue is recrystallized from acetonitrile/ether. The hydroiodide of 1,5-dimethyl-2-(hydrazinoiminomethyl)pyrrol is obtained.

Example AB)

WO 96/35692

Hydroiodide of 3,4-dihydroxy-2-(hydrazinoiminomethyl)benzene is obtained in analogous manner as described in Example AA), but using 3,4-dihydroxy-thiobenzamide instead of 1,5-dimethylpyrrol-2-carbothioamide.

Example AC)

7-Amino-3-[[(carboxymethoxy)imino]methyl]-3-cephem-4-carboxylic acid
A solution of 1.86 g of the hydrochloride of aminooxyacetic acid in 20 ml of water
is treated under stirring at 0° with 3.16 g of the hydrochloride of 6-amino-1,4,5a,6tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-azeto[2,1-b]furo[3,4-d][1,3]thiazin. The
mixture is stirred for ca. 8 hours at 0°. 7-Amino-3-[[(carboxymethoxy)imino]methyl]3-cephem-4-carboxylic acid precipitates in form of colourless crystals, which are
filtered off, washed with 5 ml of cold water and 5 ml of acetone and dried.

Example AD)

7-Amino-3-[(methoxyimino)methyl]-3-cephem-4-carboxylic acid

A solution of 0.5 g of the hydrochloride of O-methylhydroxylamine in 10 ml of water is treated under stirring at 0° with 1.38 g of 7-amino-3-formyl-3-cephem-4-carboxylic acid and stirred for ca. 8 hours at 0°. 7-Amino-3-[(methoxyimino)methyl]-3-cephem-4-carboxylic acid precipitates in form of almost white crystals, which are

65

filtered off, washed with 5 ml of cold water and 5 ml of acetone and dried.

Example AE)

WO 96/35692

7-Amino-3-[(hydroxyimino)methyl]-3-cephem-4-carboxylic acid

- a) A solution of 1.26 g of the hydrochloride of hydroxylamine in 7.5 ml of water is treated under stirring at 0° with 4.74 g of the hydrochloride of 6-amino-1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-azeto[2,1-b]furo[3,4-d][1,3]thiazin and stirred for ca. 8 hours at 0° under nitrogen. The pH of the reaction mixture is adjusted to 3.5 using solid sodium hydrogen carbonate. 7-Amino-3-[(hydroxy-imino)methyl]-3-cephem-4-carboxylic acid precipitates in form of colourless crystals, which are filtered off, washed with ca. 5 ml of cold water and 5 ml of acetone and dried.
- b) A suspension of 0.79 g of the hydrochloride of 6-amino-1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-azeto[2,1-b]furo[3,4-d][1,3]thiazin in 10 ml of dichloromethane is treated under stirring at 4° with 2.67 g of N,O-bis-(trimethylsilyl)acetamide. A clear solution is obtained within 10 minutes. 0.21 g of the hydrochloride of hydroxylamine are added. The reaction mixture is stirred for ca. 2 hours under nitrogen at 4° and the solvent is evaporated off. The residue is treated with 10 ml of isopropylalkohol, precooled to 1°. 7-Amino-3-[(hydroxy-imino)methyl]-3-cephem-4-carboxylic acid precipitates in form of almost colourless crystals which are filtered off, washed with 5 ml of acetone and dried.

Analoguously as described in Examples AC) to AE) the compounds of Table 4 of formula VI may be obtained.

Table 4

Den:	Q	R.	Salz
DSp.	101	1 1 1	
B			

AF)	н	-NH-C NH ₂	2HCI
AG)	Н	-NH-CO-NH2	2НСІ
AH)	Н	-NH-CS-NH ₂	2HCI
AI)	H	-NH-C S-CH ₃	HCI
AJ)	Н	-NH-C NH-CH,	2HCl
AK)	Н	-NH-C ₆ H ₅	H ₂ N-NH-C ₆ H ₅

WO 96/35692 PCT/EP96/02023

¹H-NMR-Spectra of the compounds obtained according to the Examples (Ex.)

Ex. Spectrum

- 1 (300 MHz, CD₃OD): 8.43 (s, 1H, CH=N); 6.96 (s, 1H, CH); 5.99 (d, J=4.9 Hz, 1H, CH); 5.22 (d, J=4.9 Hz, 1 H, CH); 4.04 (s, 3H, OCH₃); 3.99 and 3.56 (AB quartet, J=17.8 Hz, 2H, SCH₂).
- 2 (90 MHz, DMSO-d₆ + D₂O): 3.6 and 4.3 (AB quartet, J=18 Hz, 2H, SCH₂); 5.3 (d, J=5.1 Hz, 1H, B-lactam-H); 5.95 (d, J=5.1 Hz, 1H, B-lactam-H); 6.95 (s, 1H, thiazolyl-H); 8.35 (s, 1H, CH=N).
- 3 (300 MHz, CD₃OD): 7.97 (s, 1H, CH=N); 6.84 (s, 1H, CH); 5.69 (d, J=4.9 Hz, 1H, CH); 5.13 (d, J=4.9 Hz, 1H, CH); 4.13 and 3.93 (AB quartet, J=16.8 Hz, 2H, SCH₂), 3.81 (s, 3H, OCH₃); 3.67 (s, 3H, OCH₃).
- 4 (300 MHz, CD₃OD): 8.36 (s, 1H, CH=N); 6.87 (s, 1H, CH); 5.88 (d, J=4.9 Hz, 1H, CH); 5.29 (d, J=4.9 Hz, 1 H, CH); 4.00 (s, 3H, OCH₃); 3.95 and 3.60 (AB quartet, J=17.8 Hz, 2H, SCH₂).
- 5 (300 MHz, DMSO-d₆): 3.57 and 4.43 (AB quartet, J=18.2 Hz, 2H, S-CH₂); 4.71 (s, 2H, O-CH₂); 5.30 (d, J=5.0 Hz, 1H, β-lactam-H); 5.91 (dd, J=5.0 and 7.9 Hz, 1H, β-lactam-H); 7.02 (s, 1H, CH thiazol); 7.9 (broad 4H, NH); 8.29 (s, 1H, CH=N); 9.88 (d, J=7.9 Hz, 1H, NH); 12.25 (s, 1H, OH).
- 6 (300 MHz, CD₃OD): 8.10 (s, 1H, CH=N); 7.01 (s, 1H, CH); 5.84 (d, J=4.9 Hz, 1H, CH); 5.29 (d, J=4.9 Hz, 1 H, CH); 3.98 (s, 3H, OCH₃); 3.96 and 3.59 (AB quartet, J=16.8 Hz, 2H, SCH₂).
- 7 (300 MHz, CD₃OD): 8.26 (s, 1H, CH=N); 7.04 (s, 1H, CH); 5.90 (d, J=5.1 Hz, 1H, CH); 5.24 (d, J=5.1 Hz, 1 H, CH); 4.05 (s, 3H, OCH₃);

- 4.32 and 3.65 (AB quartet, J=17.8 Hz, 2H, SCH₂).
- 8 (300 MHz, CD₃OD): 8.46 (s, 1H, CH=N); 6.99 (s, 1H, CH); 5.95 (d, J=5.2 Hz, 1H, CH); 5.27 (d, J=5.2 Hz, 1 H, CH); 4.01 (s, 3H, OCH₃); 4.37 and 3.63 (AB quartet, J=18.1 Hz, 2H, SCH₂); 2.95 (s, 3H, N-CH₃).
- 9 (90 MHz, DMSO-d₆): 9.78 (d, J=8.0 Hz, 1H, CONH); 8.26 (s, 1H, CH=N); 6.91 (s, 1H, CH); 7.32 (dd, J=7.3 Hz, 2H, H_m); 7.05 (d, J=7.3 Hz, 2H, H_c); 6.78 (t, J=7.3 Hz, 1H, H_p); 5.76 (dd, J₁=4.8 Hz, J₂=8.0 Hz, 1H, CH); 5.25 (d, J=4.8 Hz, 1 H, CH); 3.91 (s, 3H, OCH₃); 4.16 and 3.76 (AB quartet, J=17.4 Hz, 2H, SCH₂).
- 10 (90 MHz, DMSO-d₆): 2.25 (s, 3H, CH₃CO); 3.65 and 4.55 (AB quartet, J=18 Hz, 2H, SCH₂); 5.4 (d, J=5 Hz, 1 H, ß-lactam-H); 5.95 (dd, J=5Hz and 8 Hz, 1H, ß-lactam-H); 7,32 (s, 1H, thiazolyl-H); 8.4 (s, 1H, CH=N); 10,2 (d, J=8.0 Hz, 1H, NH).
- 11 (90 MHz, DMSO-d₆): 1.12 (t, J=7.1 Hz, 3H, CH₃); 3.29 (q, 2H, CH₂); 3.56 and 4.50 (AB quartet, J=18.1 Hz, 2H, SCH₂); 3.93 (s, 3H, N-O-CH₃); 5.30 (d, J=5Hz, 1H, CH); 5.9 (q, J=6Hz, and 8Hz, 1H, CH); 6.90 (s, 1H, thiazolyl-H); 8.32 (s, 1H, CH=N); 9.86 (d, J=8.0Hz, NH).
- 12 (90 MHz, DMSO-d₆): 1.85-2.15 (m, 4H); 3.25-3.7 (m, 5H, -CH₂-N-CH₂-and 1H of SCH₂); 4.0 (s, 3H, N-O-CH₃); 4.5 (part of the AB quartet, J=18Hz, 1H of SCH₂); 5.3 (d, J=5Hz, 1H, CH); 5.9 (q, J=5Hz and 8Hz, 1H, CH); 7.0 (s, 1H, thiazolyl-H); 8.8 (s, 1H, CH=N); 10.1 (d, J=7.9Hz, NH).
- 13 (90 MHz, DMSO-d₆): 2.9 (broad s, 6H, N-CH₃), 3); 3.6 and 4.5 (AB quartet, J=18Hz, 2H, SCH₂); 3.9 (s, 3H, N-O-CH₃); 5.3 (d, J=5Hz, 1H, CH)); (q, J=5Hz and 8Hz, 1H, CH); 6.95 (s, 1H, thiazolyl-H); 8.75 (s, 1H, CH=N); 9.95 (d, J=8Hz, NH).

- 14 (90 MHz, DMSO-d₆): 3.65 (broad s, 4H, N-CH₂-CH₂-N); 3.5 and 4.4 (AB quartet, J=18Hz, 2H, SCH₂); 3.9 (s, 3H, N-O-CH₃); 5.3 (d, J=5.0Hz, 1H, CH); 5.85 (q, J=5Hz and 8Hz, 1H, CH); 6.9 (s, 1H, thiazolyl-H); 8.35 (s, 1H, CH=N); 9.9 (d, J=8Hz, NH).
- 15 (90 MHz, DMSO-d₆): 1.16 (t, J=7.1Hz, 3H, CH₃); 1.8-2 (m, 4H); 3.32 (q, 2H, CH₂); 3.45-3.65 (m, 5H, -CH₂-N-CH₂- and 1H of SCH₂); 3.91 (s, 3H, N-O-CH₃); 4.1 (part of the AB quartet, J=18Hz, 1H of SCH₂); 5.27 (d, J=5Hz, 1H, CH); 5.9 (q, J=5Hz and 8Hz, 1H, CH); 6.86 (s, 1H, thiazolyl-H); 8.56 (s, 1H, CH=N); 9.82 (d, J=8Hz, NH).
- 16 (90 MHz, DMSO-d₆): 2.86 (broad s, 3H, N-CH₃); 3.5 and 4.5 (AB quartet, J=18Hz, 2H, SCH₂); 5.3 (d, J=6Hz, 1H, CH); 5.9 (q, J=5Hz and 8Hz, 1H, CH); 6.85 (s, 1H, thiazolyl-H); 8.4 (s, 1H, CH=N); 9.8 (d, J=8Hz, NH).
- 17 (90 MHz, DMSO-d₆): 1.85-2.15 (m, 4H); 3.25-3.8 (m, 5H, -CH₂-N-CH₂-and 1H of SCH₂); 4.5 (part of the AB quartet, J=18Hz, 1H of SCH₂); 5.3 (d, J=5Hz, 1H, CH); 5.85 (q, J=5Hz and 8Hz, 1H, CH); 6.85 (s, 1H, thiazolyl- H); 8.7 (s, 1H, CH=N); 9.8 (d, J=7.9Hz, NH).
- 18 (90 MHz, DMSO-d₆): 2.86 (broad s, 6H, N-CH₃), 3); 3.55 and 4.47 (AB quartet, J=18.9Hz, 2H, SCH₂); 5.31 (d, J=5.1Hz, 1H, CH); 5.91 (q, J=5.1Hz and 7.9Hz, 1H, CH); 6.8 (s, 1H, thiazolyl-H); 8.58 (s, 1H, CH=N); 9.72 (d, J=7.9Hz, NH).
- 19 (90 MHz, DMSO-d₆): 3.7 (broad s, 4H, N-CH₂-CH₂-N); 3.55 and 4.35 (AB quartet, J=18.1Hz, 2H, SCH₂); 5.31 (d, J=5.0Hz, 1H, CH); 5.9 (q, J=5.1Hz and 8Hz, 1H, CH); 6.8 (s, 1H, thiazolyl-H); 8.38 (s, 1H, CH=N); 9.73 (d, J=8.0Hz, NH).
- 20 (300 MHz, CD₃OD): 8.34 (s, 1H, CH=N); 7.06 (s, 1H, CH); 5.93 (d,

J=4.9 Hz, 1H, CH); 5.32 (d, J=4.9 Hz, 1 H, CH); 4.09 (s, 3H, OCH₃); 4.33 and 3.64 (AB quartet, J=18.2 Hz, 2H, SCH₂).

- 21 (90 MHz, DMSO-d₆): 3.65 and 4.7 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.95 (s, 3 H, O-CH₃); 4.2 (part of the AB quartet, J = 18 Hz, 1H of SCH₂); 5.3 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 7.0 (s, 1 H, thiazolyl-H); 7 to 7.7 (m, 5 H, aromatic H); 8.45 (s, 1 H, CH=N); 9 (d, J = 8 Hz, NH).
- 22 (90 MHz, DMSO-d₆):3.55 and 4.6 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.93 (s, 3 H, O-CH₃); 4.2 (part of the AB quartet, J = 18 Hz, 1H of SCH₂); 5.3 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 7.0 (s, 1 H, thiazolyl-H); 7 to 7.7 (m, 5 H, aromatic-H); 8.3 (s, 1 H, CH=N); 9.9 (d, J = 8 Hz, NH).
- 23 (90 MHz, DMSO-d₆): 3.05 (d, J = 4 Hz, 3 H, NHCH₃); 3.55 and 4.5 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.93 (s, 3 H, O-CH₃); 4.2 (part of the AB quartet, J = 18 Hz, 1H of SCH₂); 5.25 (d, J = 5 Hz, 1 H, β-lactam-H); 5.8 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.95 (s, 1 H, thiazolyl-H); 8.25 (s, 1 H, CH=N);8.4 (d, J = 4 Hz, NHCH₃);9.85 (d, J = 8 Hz, NH).
- 24 (90 MHz, DMSO-d₆): 2.85 (s, 3H, NCH₃); 3.1 to 3.7 (m, 9 H, 8 piperazinyl-H's and 1H of SCH₂); 3.95(s, 3 H, OCH₃); 4.1 (part of the AB quartet, J = 18 Hz, 1H of SCH₂); 3.95 (s, 3 H,O-CH₃); 5.3 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β-lactam-H);6.95 (s, 1 H, thiazolyl-H); 7.95 (s, 1 H, CH=N); 9.9 (d, J = 8 Hz, NH).
- 25 (90 MHz, DMSO-d₆): 3.6 and 4.55 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.9 to 4.1 (m, 5 H, -OCH₃ and -N-CH₂-CH=CH₂); 5.1 to 5.5 (m, 3 H, B-lactam-H and -N-CH₂-CH=CH₂); 5.7 to 6.1 (m,2H, B-lactam-H and N-CH₂-CH=CH₂);6.95 (s, 1 H, thiazolyl-H);8.3 (s, 1 H, CH=N); 9.95 (d, J = 8 Hz, NH).

WO 96/35692 PCT/EP96/02023

- 26 (90 MHz, DMSO-d₆): 1.7 to 2 (m, 2 H, -CH₂-CH₂-CH₃); 3.1 to 3.5 (m, 4 H); 3.55 and 4.5(AB quartet, J = 18 Hz, 2H, SCH₂); 3.95 (s, 3 H, O-CH₃); 5.3 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.95 (s, 1 H, thiazolyl-H); 8.3 (s, 1 H, CH=N); 9.9 (d, J = 8 Hz, NH).
- 27 (90 MHz, DMSO-d₆): 0.8 to 1.1 and 1.1 to 1.7 (m, 7 H, -CH₂-CH₂-CH₃); 3.15 to 3.45 (m, 2 H, -NHCH₂-); 3.6 and 4.55 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.95 (s, 3 H, O-CH₃); 5.3 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.95 (s, 1 H, thiazolyl-H); 8.4 (s, 1 H, CH=N); 9.95 (d, J = 8 Hz, NH).
- 28 (90 MHz, DMSO-d₆): 3.05 (d, J = 4 Hz, 3 H, NHCH₃); 3.65 (s, 3 H, NCH₃); 3.55 and 4.6 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.93 (s, 3 H, O-CH₃); 4.2 (part of the AB quartet, J = 18 Hz, 1H of SCH₂); 5.3 (d, J = 5 Hz, 1 H, B-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, B-lactam-H); 7.0 (s, 1 H, thiazolyl-H); 8.6 (s, 1 H, CH=N); 9.4 (d, J = 8 Hz, NH).
- 300 MHz, DMSO-d₆): 2.93 (d, J = 4.6 Hz, 3 H, NCH₃); 3.4 to 3.6 (m, 5H); 3.6 to 3.8 (m, 4H); 3.93 (s, 3 H, O-CH₃); 4.2 (part of the AB quartet, J = 18 Hz, 1H of SCH₂); 5.3 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.93 (s, 1 H, thiazolyl-H); 8.6 (s, 1 H, CH=N); 9.92 (d, J = 8 Hz, NH).
- 30 (90 MHz, DMSO-d₆):1.3 (s, 9 H, -C(CH₃)₃); 3.55 and 4.55 (AB quartet, J = 18 Hz, 2H, SCH₂); 5.3 (d, J = 5 Hz, 1 H, B-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, B-lactam-H); 6.95 (s, 1 H, thiazolyl-H); 8.25 (s, 1 H, CH=N); 9.95 (d, J = 8 Hz, NH).
- 31 (90 MHz, DMSO-d₆): 2.9 (s, 3 H, NCH₃); 3.0 (s, 6 H, N(CH₃)₂); 3.6 and 4.2 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.95 (s, 3 H, O-CH₃); 5.3 (d, J = 5 Hz, 1 H, B-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, B-lactam-H); 7.0 (s,

- 1 H, thiazolyl-H); 8.55 (s, 1 H, CH=N); 9.95 (d, J = 8 Hz, NH).
- 32 (90 MHz, DMSO- d_6): 2.85 (s, 2 H); 3.55 and 4.6 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.95 (s, 3 H, O-CH₃); 5.3 (d, J = 5 Hz, 1 H, β -lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β -lactam-H); 6.95 (s, 1 H, thiazolyl-H); 8.65 (s, 1 H, CH=N); 9.9 (d, J = 8 Hz, NH).
- 33 (90 MHz, DMSO-d₆): 3.4 to 3.8 (m, 9 H, morpholino H's and 1H of SCH₂); 3.95 (s, 3 H, O-CH₃); 4.6 (part of the AB quartet, J = 18 Hz, 1H of SCH₂); 5.3 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.95 (s, 1 H, thiazolyl-H); 8.7 (s, 1 H, CH=N); 9.9 (d, J = 8 Hz, NH).
- 34 (300 MHz, DMSO-d₆): 3.32 (s, 9H,-N*(CH₃)₃); 0.4 to 1 (m, 4 H, -CH₂-CH₂-); 2.5 to 2.8 (m, 1 H); 3.65 and 4.17 (AB quartet, J = 18.1 Hz, 2H, SCH₂); 3.94 (s, 3 H, O-CH₃); 4.8 (q, J = 17 Hz, 2H); 5.3 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.94 (s, 1 H, thiazolyl-H); 8.26 (s, 1 H, CH=N); 9.93 (d, J = 8 Hz, NH).
- 35 (90 MHz, DMSO-d₆): 0.4 to 1 (m, 4 H, -CH₂-CH₂-); 2.5 to 2.8 (m, 1 H), 3.55 and 4.6 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.95 (s, 3 H, O-CH₃); 5.3 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.9 (s, 1 H, thiazolyl-H); 8.35 (s, 1 H, CH=N); 9.85 (d, J = 8 Hz, NH).
- 36 (90 MHz, DMSO-d₆): 3.6 and 4.55 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.95 s, 3 H, O-CH₃); 5.3 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.9 (s, 1 H, thiazolyl-H); 8.5 (s, 1 H, CH=N); 9.85 (d, J = 8 Hz, NH); 10.4 (broad singulet, 1 H, -NH-O<u>H</u>).
- 37 (90 MHz, DMSO- d_6): 3.1 (s, 3 H, N-CH₃); 3.55 and 4.6 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.9 (s, 3 H, O-CH₃); 5.3 (d, J = 5 Hz, 1 H, B-lactam-

- H); 5.85 (dd, J = 5 Hz and 8 Hz, 8-lactam-H); 6.9 (s, 1 H, thiazolyl-H); 8.7 (s, 1 H, CH=N); 9.85 (d, J = 8 Hz, NH).
- 38 (300 MHz, DMSO-d₆): 3.56 and 4.54 (AB quartet, J = 18.1 Hz, 2H, SCH₂); 3.91 (s, 3 H, O-CH₃); 4.87 (d, J = 6.5 Hz, 2 H); 5.3 (d, J = 5 Hz, 1 H, β-lactam-H); 5.89 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.88 (s, 1 H, thiazolyl-H); 7.6 (m, 2 H, pyridinyl-H); 8.15 (m, 1 H, pyridinyl-H); 8.39 (s, 1 H, CH=N); 8.86 (m, 1 H, pyridinyl-H); 9.83 (d, J = 8 Hz, NH).
- 39 (300 MHz, DMSO-d₆): 3.57 and 4.52 (AB quartet, J = 18.1 Hz, 2H, SCH₂); 3.91 (s, 3 H, O-CH₃); 4.87 (d, J = 6 Hz, 2 H); 5.3 (d, J = 5 Hz, 1 H, β-lactam-H); 5.89 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.88 (s, 1 H, thiazolyl-H); 8.15 (m, 1 H, pyridinyl-H); 8.38 (s, 1 H, CH=N); 8.45 (m, 1 H, pyridinyl-H); 8.85 (s, 1 H, pyridinyl-H); 9.91 (d, J = 8 Hz, NH).
- 40 (300 MHz, DMSO-d₆): 3.58 and 4.57 (AB quartet, J = 18.3 Hz, 2H, SCH₂); 3.9 (s, 3 H, O-CH₃); 5.06 (broad singulet, 2 H); 5.3 (d, J = 5 Hz, 1 H, β-lactam-H); 5.88 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.94 (s, 1 H, thiazolyl-H); 8.02 (d, J = 6.6 Hz, 2 H, pyridinyl-H); 8.4 (s, 1 H, CH=N); 8.92 (d, J = 6.6 Hz, 2 H, pyridinyl-H); 9.91 (d, J = 8 Hz, NH).
- 41 (90 MHz, DMSO-d₆): 3.65 and 4.35 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.9 (s, 3 H, O-CH₃); 4.2 (d, J = 7 Hz, 2H); 5.2 (d, J = 5 Hz, 1 H, β-lactam-H); 5.75 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.95 (s, 1 H, thiazolyl-H); 7.85 (s, 1 H, CH=N); 9.8 (d, J = 8 Hz, NH).
- 42 (90 MHz, DMSO-d₆): 2.95 (broad duplet, 3 H, N-CH₃); 3.0 to 3.3 (m, 4 H, -CH₂-N-CH₂); 3.4 to 3.8 (m, 5 H, -CH₂-NH*-CH₂- and 1H of SCH₂); 3.85 (s, 3 H, O-CH₃); 4.1 (part of the AB quartet, J = 18 Hz, 1H of SCH₂); 5.25 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.8 (s, 1 H, thiazolyl-H); 8.65 (s, 1 H, CH=N); 9.75 (d, J =

8 Hz, NH).

- (90 MHz, DMSO-d₆): 3.7 and 4.85 (AB quartet, J = 18 Hz, 2H, SCH₂);
 3.95 (s, 3 H, O-CH₃); 5.35 (d, J = 5 Hz, 1 H, β-lactam-H); 5.95 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 7.0 (s, 1 H, thiazolyl-H); 7.2 (t, J = 6 Hz, 1 H, pyridinyl-H); 7.4 (d, J = 8 Hz, 1 H, pyridinyl-H); 8.15 (t, J = 6 Hz, 2 H, pyridinyl-H); 8.55 (s, 1 H, CH=N); 9.95 (d, J = 8 Hz, NH).
- 44 (90 MHz, DMSO-d₆): 3.6 and 4.05 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.95 (s, 3 H, O-CH₃); 5.25 (d, J = 5 Hz, 1 H, β-lactam-H); 5.75 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.9 (s, 1 H, thiazolyl-H); 8.5 (s, 1 H, CH=N); 9.85 (d, J = 8 Hz, NH).
- (300 MHz, DMSO-d₆): 1.4 to 1.7 (m, 6 H); 3.4 to 3.7 (m, 5 H, -CH₂-N-CH₂- and 1H of SCH₂); 3.92 (s, 3 H, O-CH₃); 4.55 (part of the AB quartet, J = 18 Hz, 1H of SCH₂); 5.29 (d, J = 5 Hz, 1 H, β-lactam-H); 5.89 (dd, J = 5 Hz and 7.8 Hz, β-lactam-H); 6.89 (s, 1 H, thiazolyl-H); 8.6 (s, 1 H, CH=N); 9.84 (d, J = 7.8 Hz, NH).
- 46 (90 MHz, DMSO-d₆): 3.1 to 3.4 (m, 4 H, -CH₂-NH⁺-CH₂-); 3.65 and 4.65 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.85 (s, 3 H, O-CH₃); 4 to 4.3 (m, 4 H, -CH₂-N-CH₂-); 4.65 (part of the AB quartet, J = 18 Hz, 1H of SCH₂); 5.2 (d, J = 5 Hz, 1 H, β-lactam-H); 5.8 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.75 (s, 1 H, thiazolyl-H); 8.5 (s, 1 H, CH=N); 9.7 (d, J = 8 Hz, NH).
- (300 MHz, DMSO-d₆): 2.85 (broad singulet, 3 H, N-CH₃); 3.54 and 4.52 (AB quartet, J = 18.1 Hz, 2H, SCH₂); 3.93 (s, 3 H, O-CH₃); 5.3 (d, J = 5 Hz, 1 H, β-lactam-H); 5.89 (dd, J = 5 Hz and 7.9 Hz, β-lactam-H); 6.91 (s, 1 H, thiazolyl-H); 8.62 (s, 1 H, CH=N); 9.88 (d, J = 7.9 Hz, NH); 12.0 (s, 1 H, OH).

- (90 MHz, DMSO-d₆): 3.2 (s, 6 H, NCH₃); 3.7 (s, 4 H, -N-(CH₂)₂-N-);
 3.65 and 4.0 (AB quartet, J = 17.8 Hz, 2H, SCH₂); 3.95 (s, 3 H, O-CH₃);
 5.3 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.95 (s, 1 H, thiazolyl-H); 8.8 (s, 1 H, CH=N); 9.9 (d, J = 8 Hz, NH).
- (300 MHz, DMSO-d₆): 3.7 and 4.13 (AB quartet, J = 17.8 Hz, 2H, SCH₂); 3.9 (s, 3 H, O-CH₃); 5.31 (d, J = 5 Hz, 1 H, β-lactam-H); 5.89 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.92 (s, 1 H, thiazolyl-H); 8.13 (d, J = 6 Hz, 2 H, pyridinyl-H); 8.7 (s, 1 H, CH=N); 8.93 (m, 3 H, pyridinyl-H); 9.88 (d, J = 8 Hz, NH).
- 50 (300 MHz, DMSO-d₆): 2.94 (d, J = 4.7 Hz, 3 H, N-CH₃); 3.29 (broad s, 6 H, N⁺(CH₃)₂); 3.3 to 3.7 (m, 9H, piperazinyl-H's and 1H of SCH₂); 3.93 (s, 3 H, O-CH₃); 4.2 (part of the AB quartet, J = 18 Hz, 1H of SCH₂); 5.28 (d, J = 5 Hz, 1 H, B-lactam-H); 5.89 (dd, J = 5 Hz and 7.6 Hz, B-lactam-H); 6.9 (s, 1 H, thiazolyl-H); 8.1 (s, 1 H, formyl-H); 8.6 (s, 1 H, CH=N); 9.9 (d, J = 8 Hz, NH).
- (300 MHz, DMSO-d₆): 3.7 and 4.2 (AB quartet, J = 18 Hz, 2H, SCH₂);
 3.93 (s, 3 H, O-CH₃); 5.35 (d, J = 5 Hz, 1 H, B-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, B-lactam-H); 6.0 (AB quartet, J = 9 Hz, 2H); 6.93 (s, 1 H, thiazolyl-H); 8.2 (t, J = 7 Hz, 2 H), 8.7 (t, J = 7 Hz, 1 H) and 9.1 (d, J = 6 Hz, 2H), pyridinium-H; 8.32 (s, 1 H, CH=N); 9.95 (d, J = 8 Hz, NH).
- 52 (90 MHz, DMSO-d₆): 3.7 (s, 3 H, N-CH₃); 3.65 and 4.1 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.95 (s, 3 H, O-CH₃); 5.35 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 7.0 (s, 1 H, thiazolyl-H); 8.75 (s, 1 H, CH=N); 9.9 (d, J = 8 Hz, NH).
- 53 (90 MHz, DMSO-d₆): 2.25 (s, 3 H. triazinyl-CH₃); 3.5 and 4.65 (AB quartet, J = 18 Hz, 2H, SCH₂); 4.0 (s, 3 H, O-CH₃); 5.35 (d, J = 5 Hz, 1

ž

- H, B-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, B-lactam-H); 6.95 (s, 1 H, thiazolyl-H); 8.85 (s, 1 H, CH=N); 9.95 (d, J = 8 Hz, NH).
- 54 (90 MHz, DMSO-d₆): 2.3 (s, 3 H, CH₃); 1.8 to 2.1 (m, 1 H); 3.6 and 4.55 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.95 (s, 3 H, O-CH₃); 5.35 (d, J = 5 Hz, 1 H, β-lactam-H); 5.9 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.95 (s, 1 H, thiazolyl-H); 8.65 (s, 1 H, CH=N); 9.9 (d, J = 8 Hz, NH).
- 55 (90 MHz, DMSO-d₆): 2.8 (broad duplet, 3H, N-CH₃); 3.2 to 3.7 (m, 5 H, N-CH₂-CH₂-O and 1H of SCH₂); 3.95 (s, 3 H, O-CH₃); 4.5 (part of the AB quartet, J = 18 Hz, 1H of SCH₂); 5.3 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.95 (s, 1 H, thiazolyl-H); 8.65 (s, 1 H, CH=N); 9.9 (d, J = 8 Hz, NH).
- 56 (90 MHz, DMSO-d₆): 3.7 and 4.15 (AB quartet, J = 18 Hz, 2H, SCH₂); 4.0 (s, 3 H, O-CH₃); 5.35 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 7.0 (s, 1 H, thiazolyl-H); 7 to 7.8 (m, 4 H, aromatic-H); 8.45 (s, 1 H, CH=N); 9.95 (d, J = 8 Hz, NH).
- 57 (90 MHz, DMSO-d₆): 3.35 broad singulet, 3 H, NCH₃); 3.55 and 4.55 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.95 (s, 3 H, O-CH₃); 5.3 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.95 (s, 1 H, thiazolyl-H); 8.15 (s, 1 H, CH=N); 9.85 (d, J = 8 Hz, NH).
- 58 (90 MHz, DMSO-d₆): 2.95 (broad duplet, 3 H, NCH₃); 3.35 (broad singulet, 3 H, NCH₃); 3.65 and 4.65 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.95 (s, 3 H, O-CH₃); 5.3 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.95 (s, 1 H, thiazolyl-H); 8.1 (s, 1 H, CH=N); 9.85 (d, J = 8 Hz, NH).
- 59 (90 MHz, DMSO-d₆): 1 to 1.5 (m, 4 H, -CH₂-CH₂-); 1.8 to 2.1 (m, 1 H); 3.55 and 4.55 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.95 (s, 3 H, O-CH₃);

5.3 (d, J = 5 Hz, 1 H, \(\text{B-lactam-H}\); 5.85 (dd, J = 5 Hz and 8 Hz, \(\text{B-lactam-H}\); 6.9 (s, 1 H, thiazolyl-H); 8.65 (s, 1 H, CH=N); 9.9 (d, J = 8 Hz, NH).

- 60 (90 MHz, DMSO-d₆): 3.7 and 4.8 (AB quartet, J = 18 Hz, 2H, SCH₂); 4.0 (s, 3 H, O-CH₃); 5.35 (d, J = 5 Hz, 1 H, β-lactam-H); 5.95 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 7.0 (s, 1 H, thiazolyl-H); 7.85 (dd, J = 4 Hz and 6 Hz, pyridinyl-H); 8.2 (dt, J = 2 and 8 Hz, pyridinyl-H); 8.5 (d, J = 6 Hz, pyridinyl-H); 8.9 (d, J = 4 Hz, pyridinyl-H); 8.95 (s, 1 H, CH=N); 9.95 (d, J = 8 Hz, NH).
- 61 (90 MHz, DMSO-d₆): 3.6 and 4.15 (AB quartet, J = 18 Hz, 2H, SCH₂);
 3.85 (s, 3 H, O-CH₃); 5.25 (d, J = 5 Hz, 1 H, B-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, B-lactam-H); 6.75 (s, 1 H, thiazolyl-H); 7.5 (dd, J = 5 Hz and 8 Hz, pyridinyl-H); 8.25 (broad duplet, J = 8 Hz, pyridinyl-H);
 8.65 (broad triplet, J = 6 Hz, pyridinyl-H); 9.05 (s, 1 H, CH=N); 9.7 (d, J = 8 Hz, NH).
- (300 MHz, DMSO-d₆): 3.13 (broad duplet, 3 H, N-CH₃); 3.29 (broad s, 6 H, N⁺(CH₃)₂); 3.4 to 3.75 (m, 5 H, -CH₂-N⁺-CH₂- and 1H of SCH₂); 3.85 (s, 3 H, O-CH₃); 4 to 4.3 (m, 4 H, -CH₂-N-CH₂-); 4.65 (part of the AB quartet, J = 18 Hz, 1H of SCH₂); 5.27 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 7.6 Hz, β-lactam-H); 6.78 (s, 1 H, thiazolyl-H); 8.75 (s, 1 H, CH=N); 9.75 (d, J = 7.6 Hz, NH).
- 63 (90 MHz, DMSO-d₆ +TFA): 3.0 (broad duplet, 3 H, N-CH₃); 3.2 (s, 9 H, N*(CH₃)₃); 3.5 to 3.8 (m, 5 H, N-CH₂-CH₂-N* and 1H of SCH₂); 3.90 (s, 3 H, O-CH₃); 4.65 (part of the AB quartet, J = 18 Hz, 1H of SCH₂); 5.3 (d, J = 5 Hz, 1 H, \(\text{B-lactam-H}\); 5.85 (dd, J = 5 Hz and 8 Hz, \(\text{B-lactam-H}\); 6.8 (s, 1 H, thiazolyl-H); 8.75 (s, 1 H, CH=N); 9.75 (d, J = 8 Hz, NH).

- (90 MHz, DMSO-d₆): 3.65 and 4.15 (AB quartet, J = 18 Hz, 2H, SCH₂); 4.0 (s, 3 H, O-CH₃); 5.25 (d, J = 5 Hz, 1 H, β-lactam-H); 5.8 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 7.0 (s, 1 H, thiazolyl-H); 7.2 (d, J = 5 Hz, 1 H, pyrimidinyl-H); 8.45 (s, 1 H, CH=N); 8.8 (d, J = 5 Hz, 1 H, pyrimidinyl-H); 9.9 (d, J = 8 Hz, NH).
- 65 (90 MHz, DMSO-d₆ +TFA): 4.0 (s, 3 H, O-CH₃); 3.6 and 4.65 (AB quartet, J = 18 Hz, 2H, SCH₂); 5.25 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 7.0 (s, 1 H, thiazolyl-H); 8.3 (s, 1 H, CH=N); 9.85 (d, J = 8 Hz, NH).
- 66 (90 MHz, DMSO-d₆): 3.2 (broad singulet, 3 H, N-CH₃); 3.0 to 3.4 (m, 4 H, -CH₂-N-CH₂); 3.4 to 3.8 (m, 5 H, -CH₂-NH⁺-CH₂- and 1H of SCH₂); 3.95 (s, 3 H, O-CH₃); 4.3 (part of the AB quartet, J = 18 Hz, 1H of SCH₂); 5.35 (d, J = 5 Hz, 1 H, B-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, B-lactam-H); 7.0 (s, 1 H, thiazolyl-H); 8.15 (s, 1 H, CH=N); 9.9 (d, J = 8 Hz, NH).
- 67 (90 MHz, DMSO-d₆): 3.3 (s, 3 H, N-CH₃); 3.3 (broad s, 6 H, N⁺(CH₃)₂); 3.3 to 3.7 (m, 9H, piperazinyl-H's and 1H of SCH₂); 3.85 (s, 3 H, O-CH₃); 4.25 (part of the AB quartet, J = 18 Hz, 1H of SCH₂); 5.25 (d, J = 5 Hz, 1 H, β-lactam-H); 5.8 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.8 (s, 1 H, thiazolyl-H); 8.1 (s, 1 H, formyl-H); 8.15 (s, 1 H, CH=N); 9.75 (d, J = 8 Hz, NH).
- 68 (90 MHz, DMSO-d₆): 2.25 (s, 3 H); 3.65 (s, 3 H, N-CH₃); 3.7 and 4.6 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.9 (s, 3 H, O-CH₃); 5.3 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.05 (d, J = 4 Hz, pyrrol-H); 6.85 (d, J = 4 Hz, pyrrol-H); 6.9 (s, 1 H, thiazolyl-H); 8.75 (s, 1 H, CH=N); 9.9 (d, J = 8 Hz, NH).
- 69 (90 MHz, DMSO-d_x): 3.5 and 4.45 (AB quartet, J = 20 Hz, 2H, SCH₂);

5.25 (d, J = 5 Hz, 1 H, β -lactam-H); 5.75 (d, J = 55 Hz, 2H, -CH₂F); 5.85 (dd, J = 5 Hz and 8 Hz, β -lactam-H); 8.25 (s, 1 H, CH=N); 9.85 (d, J = 8 Hz, NH).

- 70 (300 MHz, DMSO-d₆): 1.13 (t, J=7.1 Hz, 3H, CH₃); 3.31 (qd, J=7.1 and ca. 6 Hz, 2H, CH₂); 3.55 and 4.47 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.29 (d, J=5.0 Hz, 1H, β-lactam-H); 5.89 (dd, J=5.0 and 7.9 Hz, 1H, β-lactam-H); 6.78 (s, 1H, CH thiazol); 8.01 (broad, 2H, NH); 8.19 (broad t 1H, NH); 8.32 (s, 1H, CH=N); 9.70 (d, J=7.9 Hz, 1H, NH); 12.03 (s, 1H, OH).
- 71 (300 MHz, DMSO-d₆): 2.98 (d, J=4.6 Hz, 3H, N-CH₃); 3.56 and 4.46 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.28 (d, J=4.9 Hz, 1H, β-lactam-H); 5.87 (dd, J=4.9 and 7.9 Hz, 1H, β-lactam-H); 6.83 (s, 1H, CH thiazol); 8.22 (s, 1H, CH=N); 8.48 (q broad J=4.6 Hz, 1H, NH); 9.75 (d, J=7.9 Hz, 1H, NH); 11.63 (s, 1H, OH); 12.28 (s, 1H, OH).
- 72 (300 MHz, DMSO-d₆): 3.53 and 4.47 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.26 (d, J=5.0 Hz, 1H, β-lactam-H); 5.88 (dd, J=4.9 and 7.9 Hz, 1H, β-lactam-H); 6.84 (s, 1H, CH thiazol); 8.00 (s, 1H, NH); 8.23 (s, 1H, CH=N); 8.28 (s, 1H, NH); 9.76 (d, J=7.9 Hz, 1H, NH); 11.56 (s, 1H, OH); 12.31 (s, 1H, OH).
- 73 (300 MHz, DMSO-d₆): 1.16 (t, J=7.1 Hz, 3H, CH₃); 1.90 (m broad, 4H, CH₂); 3.39 (qd, J=7.1 and ca. 6 Hz, 2H, CH₂); 3.56 (m broad, 4H, CH₂); 3.63 and 4.07 (AB quartet, J=18.0 Hz, 2H, S-CH₂); 5.28 (d, J=5.0 Hz, 1H, β-lactam-H); 5.88 (dd, J=5.0 and 7.8 Hz, 1H, β-lactam-H); 6.81 (s, 1H, CH thiazol); 7.97 (t broad, J= ca. 6 Hz 1H, NH); 8.60 (s, 1H, CH=N); 9.76 (d, J=7.8 Hz, 1H, NH); 11.70 (s, 1H, OH); 12.26 (s, 1H, OH).
- 74 (300 MHz, DMSO-d₆): 3.57 and 4.48 (AB quartet, J=18.1 Hz, 2H,

S-CH₂); 3.97 (broad, 2H, N-CH₂-C=C); 5.1-5.3 (m, 2H, C=CH₂); 5.30 (d, J=5.1 Hz, 1H, β-lactam-H); 5.8-5.9 (m, 1H, C-CH=C); 5.89 (dd, J=4.9 and 8.2 Hz, 1H, β-lactam-H); 6.83 (s, 1H, CH thiazol); 8.10 (s, 2H, NH); 8.34 (s, 1H, CH=N); 8.41 (s, 1H, NH); 9.77 (d, J=8.0 Hz, 1H, NH); 12.26 (s, 1H, OH); 12.38 (s, 1H, OH).

- 75 (300 MHz, DMSO-d₆): 1.89 (m broad 2H, CH₂); 3.33 (s broad, 4H, N-CH₂); 3.54 and 4.42 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.29 (d, J=5.0 Hz, 1H, β-lactam-H); 5.89 (dd, J=5.0 and 8.0 Hz, 1H, β-lactam-H); 6.76 (s, 1H, CH thiazol); 8.29 (s, 1H, CH=N); 8.38 (s, 2H, NH); 9.66 (d, J=8.0 Hz, 1H, NH); 11.90 (s, 1H, OH); 12.03 (s, 1H, OH).
- 76 (300 MHz, DMSO-d₆): 0.89 (t, 3H, C-CH₃); 1.2-1.4 (m, 2H, C-CH₂-C); 1.4-1.6 (m, 2H, C-CH₂-C); 3.2-3.4 (m, 2H, N-CH₂-C); 3.56 and 4.47 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.30 (d, J=5.0 Hz, 1H, β-lactam-H); 5.89 (dd, J=5.0 and 7.9 Hz, 1H, β-lactam-H); 6.83 (s, 1H, CH thiazol); 8.04 (s, 2H, NH); 8.24 (s, 1H, CH=N); 8.32 (s, 1H, NH); 9.76 (d, J=7.9 Hz, 1H, NH); 12.13 (s, 1H, OH); 12.36 (s, 1H, OH).
- 77 (300 MHz, DMSO-d₆): 3.66 and 3.92 (AB quartet, J=17.9 Hz, 2H, S-CH₂); 3.86 (s, 3H, O-CH₃); 5.27 (d, J=5.0 Hz, 1H, β-lactam-H); 5.88 (dd, J=5.0 and 7.8 Hz, 1H, β-lactam-H); 6.84 (s, 1H, CH thiazol); 8.22 (s, 1H, CH=N); 9.78 (d, J=7.8 Hz, 1H, NH); 12.34 (s, 1H, OH).
- 78 (300 MHz, DMSO-d₆): 1.39 (s, 9H, C-CH₃); 3.56 and 4.47 (AB quartet, J=18.0 Hz, 2H, S-CH₂); 5.29 (d, J=5.0 Hz, 1H, β-lactam-H); 5.89 (dd, J=5.0 and 7.9 Hz, 1H, β-lactam-H); 6.81 (s, 1H, CH thiazol); 7.90 (s broad 2H, NH); 7.99 (s broad 1H, NH); 8.25 (s, 1H, CH=N); 9.68 (d, J=7.9 Hz, 1H, NH); 12.03 (s, 1H, OH); 12.16 (s, 1H, OH).
- 79 (300 MHz, DMSO-d₆): 2.92 (d, J=4.8 Hz, 3H, N-CH₃); 3.03 (s, 6H, N-CH₃); 3.61 and 4.17 (AB quartet, J=18.0 Hz, 2H, S-CH₂); 5.29 (d,

J=5.0 Hz, 1H, β -lactam-H); 5.88 (dd, J=5.0 and 7.8 Hz, 1H, β -lactam-H); 6.81 (s, 1H, CH thiazol); 8.20 (q broad J=4.8 Hz, 1H, NH); 8.55 (s, 1H, CH=N); 9.76 (d, J=7.5 Hz, 1H, NH); 11.83 (s, 1H, OH); 12.28 (s, 1H, OH).

- 80 (300 MHz, DMSO-d_c): 2.75 (s, 2H, N-CH₂); 3.55 and 4.54 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.32 (d, J=5.1 Hz, 1H, β-lactam-H); 5.93 (dd, J=5.1 and 7.9 Hz, 1H, β-lactam-H); 6.79 (s, 1H, CH thiazol); 8.59 (s, 1H, CH=N); 9.73 (d, J=8.0 Hz, 1H, NH); 12.13 (s, 1H, OH).
- 81 (300 MHz, DMSO-d₆): 3.55 and 4.54 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 3.5-3.6 (m, 4H, CH₂); 3.6-3.7 (m, 4H, CH₂); 5.30 (d, J=5.1 Hz, 1H, β-lactam-H); 5.89 (dd, J=5.0 and 7.9 Hz, 1H, β-lactam-H); 6.84 (s, 1H, CH thiazol); 8.35 (broad, 2H, NH); 8.65 (s, 1H, CH=N); 9.80 (d, J=7.9 Hz, 1H, NH); 12.27 (s, 1H, OH); 12.51 (s, 1H, OH).
- 82 (300 MHz, DMSO-d₆): 0.64 (m, 2H, cyclopr. CH₂); 0.83 (m, 2H, cyclopr. CH₂); 2.62 (m, 1H, cyclopr. CH); 3.53 and 4.49 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.29 (d, J=5.0 Hz, 1H, β-lactam-H); 5.89 (dd, J=5.0 and 8.0 Hz, 1H, β-lactam-H); 6.79 (s, 1H, CH thiazol); 8.09 (s, 2H, NH); 8.35 (s, 1H, CH=N); 8.59 (s, 1H, NH); 9.70 (d, J=8.0 Hz, 1H, NH); 12.08 (s, 1H, OH); 12.13 (s, 1H, OH).
- 83 (300 MHz, DMSO-d₆): 3.54 and 4.48 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.29 (d, J=5.0 Hz, 1H, β-lactam-H); 5.89 (dd, J=4.9 and 7.8 Hz, 1H, β-lactam-H); 6.83 (s, 1H, CH thiazol); 8.15 (s, 2H, NH); 8.39 (s, 1H, CH=N); 9.79 (d, J=7.9 Hz, 1H, NH); 11.21 (s, 1H, OH); 12.15 (s, 1H, OH); 12.44 (s, 1H, OH).
- 84 (300:MHz, DMSO-d₆): 3.09 (s, 6H, N-CH₃); 3.55 and 4.55 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.30 (d, J=5.0 Hz, 1H, β -lactam-H); 5.89 (dd, J=5.0 and 7.8 Hz, 1H, β -lactam-H); 6.84 (s, 1H, CH thiazol); 8.07 (s, 2H,

NH); 8.65 (s, 1H, CH=N); 9.81 (d, J=7.9 Hz, 1H, NH); 11.86 (s, 1H, OH); 12.53 (s, 1H, OH).

- 85 (300 MHz, DMSO-d₆): 3.58 and 4.50 (AB quartet, J=18.0 Hz, 2H, S-CH₂); 4.90 (d, J=6.4 Hz, 2H, N-CH₂); 5.31 (d, J=5.1 Hz, 1H, β-lactam-H); 5.90 (dd, J=5.2 and 7.8 Hz, 1H, β-lactam-H); 6.84 (s, 1H, CH thiazol); 7.6-7.8 (m, 2H, CH aromatic); 8.1-8.3 (m, 1H, CH aromatic); 8.35 (s broad, 1H, NH); 8.39 (s, 1H, CH=N); 8.7-8.8 (m, 2H, CH aromatic); 9.3 (broad, 1H, NH); 9.78 (d, J=7.8 Hz, 1H, NH); 12.42 (s, 1H, OH); 12.49 (s, 1H, OH).
- 86 (300 MHz, DMSO-d₆): 3.57 and 4.52 (AB quartet, J=18.0 Hz, 2H, S-CH₂); 4.85 (d, J=6.6 Hz, 2H, N-CH₂); 5.30 (d, J=5.0 Hz, 1H, β-lactam-H); 5.90 (dd, J=5.0 and 7.8 Hz, 1H, β-lactam-H); 6.82 (s, 1H, CH thiazol); 7.9-8.1 (m, 1H, CH aromatic); 8.38 (s, 1H, CH=N); 8.4-8.6 (m, 1H, CH aromatic); 8.8-8.9 (m, 1H, CH aromatic); 8.9-9.0 (m, 1H, CH aromatic); 8.7-8.8 (m, 2H, CH aromatic); 9.77 (d, J=7.9 Hz, 1H, NH); 12.32 (s, 1H, OH); 12.45 (s, 1H, OH).
- 87 (300 MHz, DMSO-d₆): 3.57 and 4.52 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 4.98 (d, J=6.2 Hz, 2H, N-CH₂); 5.30 (d, J=5.0 Hz, 1H, β-lactam-H); 5.90 (dd, J=5.0 and 7.9 Hz, 1H, β-lactam-H); 6.81 (s, 1H, CH thiazol); 7.9-8.0 (m, 2H, CH aromatic); 8.40 (s, 1H, CH=N); 8.8-9.0 (m, 1H, CH aromatic); 9.00 (s broad 1H, NH); 9.76 (d, J=7.9 Hz, 1H, NH); 12.30 (s, 1H, OH); 12.56 (s, 1H, OH).
- 88 (300 MHz, DMSO-d₆): 3.68 and 4.05 (AB quartet, J=17.9 Hz, 2H, S-CH₂); 4.19 and 4.38 (AB quartet, J=16.4 Hz, 2H, N-CH₂-C=O); 5.30 (d, J=5.0 Hz, 1H, β-lactam-H); 5.87 (dd, J=5.0 and 7.7 Hz, 1H, β-lactam-H); 6.87 (s, 1H, CH thiazol); 7.86 (s, 1H, CH=N); 9.82 (d, J=7.7 Hz, 1H, NH); 11.35 (s, 1H, OH); 12.45 (s, 1H, OH).

- 89 (300 MHz, DMSO-d₆): 3.58 and 4.64 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.29 (d, J=4.9 Hz, 1H, β-lactam-H); 5.89 (dd, J=4.9 and 7.9 Hz, 1H, β-lactam-H); 6.84 (s, 1H, CH thiazol); 7.1-7.6 (m, CH aromatic); 8.33 (s, 1H, CH=N); 9.78 (d, J=7.9 Hz, 1H, NH); 10.03 (s, 1H, NH); 11.86 (s, 1H, OH); 12.35 (s, 1H, OH).
- 90 (300 MHz, DMSO-d₆): 3.66 and 4.70 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.34 (d, J=5.0 Hz, 1H, β-lactam-H); 5.92 (dd, J=5.0 and 7.9 Hz, 1H, β-lactam-H); 6.84 (s, 1H, CH thiazol); 7.0-7.2 (m, 1H, CH aromatic); 7.2-7.3 (m, 1H, CH aromatic); 8.0-8.2 (m, 2H, CH aromatic); 8.49 (s, 1H, CH=N); 9.79 (d, J=8.0 Hz, 1H, NH); 12.32 (s, 1H, OH); 13.41 (s, 1H, OH).
- 91 (300 MHz, DMSO-d₆): 3.65 and 4.03 (AB quartet, J=17.8 Hz, 2H, S-CH₂); 5.27 (d, J=4.9 Hz, 1H, β-lactam-H); 5.83 (dd, J=4.9 and 7.7 Hz, 1H, β-lactam-H); 6.88 (s, 1H, CH thiazol); 8.52 (s, 1H, CH=N); 9.77 (d, J=7.7 Hz, 1H, NH); 11.08 (s, 1H, OH); 12.35 (s, 1H, OH).
- 92 (300 MHz, DMSO-d₆): 1.51 (s, 3H, C-CH₃); 1.54 (s, 3H, C-CH₃); 2.86 (d, J=4.9 Hz, 3H, N-CH₃); 3.55 and 4.50 (AB quartet, J=18.2 Hz, 2H, S-CH₂); 5.32 (d, J=5.1 Hz, 1H, β-lactam-H); 5.96 (dd, J=5.0 and 8.2 Hz, 1H, β-lactam-H); 6.95 (s, 1H, CH thiazol); 8.03 (s broad 2H, NH); 8.18 (s broad 1H, NH); 8.32 (s, 1H, CH=N); 9.74 (d, J=7.9 Hz, 1H, NH); 12.19 (s, 1H, OH).
- 93 (300 MHz, DMSO-d₆): 2.9 (broad, 3H, N-CH₃); 3.54 and 4.50 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.30 (d, J=5.1 Hz, 1H, β-lactam-H); 5.89 (dd, J=5.0 and 7.8 Hz, 1H, β-lactam-H); 6.83 (s, 1H, CH thiazol); 8.62 (s, 1H, CH=N); 9.79 (d, J=7.9 Hz, 1H, NH); 11.98 (s, 1H, OH); 12.42 (s, 1H, OH).
- 94 (300 MHz, DMSO-d₆): 3.39 (m broad 2H, CH₂); 3.54 (m broad 2H, CH₂);

2.89 (d, J=4.6 Hz, 3H, N-CH₃); 3.55 and 4.49 (AB quartet, J=18.0 Hz, 2H, S-CH₂); 5.30 (d, J=5.0 Hz, 1H, β -lactam-H); 5.90 (dd, J=5.0 and 7.9 Hz, 1H, β -lactam-H); 6.79 (s, 1H, CH thiazol); 8.61 (s, 1H, CH=N); 9.71 (d, J=7.9 Hz, 1H, NH); 11.73 (s, 1H, OH); 12.10 (s, 1H, OH).

- 95 (300 MHz, DMSO-d₆): 2.26 (s, 3H, CH₃); 3.57 and 4.70 (AB quartet, J=18.0 Hz, 2H, S-CH₂); 5.33 (d, J=5.0 Hz, 1H, β-lactam-H); 5.93 (dd, J=5.0 and 7.9 Hz, 1H, β-lactam-H); 6.83 (s, 1H, CH thiazol); 8.77 (s, 1H, CH=N); 9.80 (d, J=7.9 Hz, 1H, NH); 12.40 (s, 1H, OH).
- 96 (300 MHz, DMSO-d₆): 3.22 (m broad 4H, N-CH₂); 3.55 and 4.52 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 3.85 (m broad 4H, N-CH₂); 5.30 (d, J=5.0 Hz, 1H, β-lactam-H); 5.90 (dd, J=5.0 and 7.9 Hz, 1H, β-lactam-H); 6.82 (s, 1H, CH thiazol); 8.5 (broad, 2H, NH); 8.65 (s, 1H, CH=N); 9.76 (d, J=7.9 Hz, 1H, NH); 9.82 (s, 2H, NH); 12.31 (s, 1H, OH); 12.47 (s, 1H, OH).
- 97 (300 MHz, DMSO-d₆): 3.14 (s, 6H, N-CH₃); 3.64 and 3.94 (AB quartet, J=17.9 Hz, 2H, S-CH₂); 3.68 (s 4H, N-CH₂); 5.28 (d, J=5.0 Hz, 1H, β-lactam-H); 5.89 (dd, J=5.0 and 7.7 Hz, 1H, β-lactam-H); 6.81 (s, 1H, CH thiazol); 8.64 (s, 1H, CH=N); 9.77 (d, J=7.7 Hz, 1H, NH); 12.29 (s, 1H, OH); 12.36 (s, 1H, OH).
- 98 (300 MHz, DMSO-d₆): 3.33 (s, 3H, N-CH₃); 3.54 and 4.55 (AB quartet, J=18.3 Hz, 2H, S-CH₂); 5.29 (d, J=5.0 Hz, 1H, β-lactam-H); 5.91 (dd, J=5.1 and 7.9 Hz, 1H, β-lactam-H); 6.76 (s, 1H, CH thiazol); 8.10 (s, 1H, CH=N); 8.2 (s, NH); 9.67 (d, J=7.8 Hz, 1H, NH); 11.92 (s, 1H, OH).
- 99 (300 MHz, DMSO-d₆): 2.80 (s, 3H, CH₃); 3.57 and 4.48 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.34 (d, J=5.1 Hz, 1H, β-lactam-H); 5.94 (dd, J=5.1 and 7.9 Hz, 1H, β-lactam-H); 6.82 (s, 1H, CH thiazol); 8.55 (s, 1H, CH=N); 9.28 (s, 1H, NH); 9.80 (d, J=7.9 Hz, 1H, NH); 9.90 (s, 1H, NH);

12.39 (s, 1H, OH); 13.52 (s, 1H, OH).

- (300 MHz, DMSO-d₆): 3.58 and 4.46 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.34 (d, J=5.1 Hz, 1H, β-lactam-H); 5.94 (dd, J=5.1 and 7.9 Hz, 1H, β-lactam-H); 6.82 (s, 1H, CH thiazol); 8.28 (dd, J=6.7 and 14.8 Hz, 1H, N-CH=N); 8.58 (s, 1H, CH=N); 9.58 (d, J=14.8 Hz 1H, NH); 9.77 (d, J=8.0 Hz, 1H, NH); 9.9 (d, J=6.7 Hz 1H, NH); 12.29 (s, 1H, OH).
- 101 (300 MHz, DMSO-d₆): 3.57 and 4.48 (AB quartet, J=18.0 Hz, 2H, S-CH₂); 3.9 (s, 3H, O-CH₃); 5.33 (d, J=5.1 Hz, 1H, β-lactam-H); 5.92 (dd, J=5.1 and 8.0 Hz, 1H, β-lactam-H); 6.87 (s, 1H, CH thiazol); 8.27 (dd, J=6. 9 and 14.6 Hz, 1H, N-CH=N); 8.60 (s, 1H, CH=N); 9.55 (d, J=14.4 Hz 1H, NH); 9.79 (d, J=8.0 Hz, 1H, NH); 9.91 (d, J=6.5 Hz 1H, NH).
- 102 (300 MHz, DMSO-d₆): 1.49 (s, 3H, C-CH₃); 1.50 (s, 3H, C-CH₃); 3.54 and 4.48 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.31 (d, J=4.9 Hz, 1H, β-lactam-H); 5.97 (dd, J=4.9 and 8 Hz, 1H, β-lactam-H); 6.84 (s, 1H, CH thiazol); 8.29 (s, 1H, CH=N); 9.65 (d, J=8 Hz, 1H, NH); 12.06 (s, 1H, OH).
- (300 MHz, DMSO-d₆): 1.51 (s, 3H, C-CH₃); 1.53 (s, 3H, C-CH₃); 3.52 and 4.52 (AB quartet, J=18.3 Hz, 2H, S-CH₂); 5.30 (d, J=5.0 Hz, 1H, β-lactam-H); 5.95 (dd, J=5.0 and 8.1 Hz, 1H, β-lactam-H); 6.94 (s, 1H, CH thiazol); 7.61 (s broad 2H, NH); 8.15 (s broad 2H, NH); 8.38 (s, 1H, CH=N); 9.74 (d, J=8.1 Hz, 1H, NH); 11.20 (s, 1H, OH); 12.16 (s, 1H, OH).
- (300 MHz, DMSO-d₆): 1.49 (s. 3H, C-CH₃); 1.51 (s. 3H, C-CH₃); 3.56 and 4.52 (AB quartet, J=18.3 Hz, 2H, S-CH₂); 4.90 (d. J=6.3 Hz, 2H, CH₂); 5.32 (d. J=5.0 Hz, 1H, β-lactam-H); 5.97 (dd. J=5.0 and 8.1 Hz, 1H, β-lactam-H); 6.91 (s. 1H, CH thiazol); 7.6-7.8 (m 2H, CH aromatic);

8.2-8.3 (m 1H, CH aromatic); 8.38 (s, 1H, CH=N); 8.6-8.8 (m 1H, CH aromatic); 9.71 (d, J=8.2 Hz, 1H, NH); 12.48 (s, 1H, OH).

- 105 (300 MHz, DMSO-d₆): 0.64 (m broad 2H, CH₂); 0.84 (m broad 2H, CH₂); 1.50 (s, 3H, C-CH₃); 1.52 (s, 3H, C-CH₃); 2.61 (m broad 1H, N-CH); 3.53 and 4.53 (AB quartet, J=18.2 Hz, 2H, S-CH₂); 5.31 (d, J=5.0 Hz, 1H, β-lactam-H); 5.96 (dd, J=5.0 and 8.2 Hz, 1H, β-lactam-H); 6.90 (s, 1H, CH thiazol); 8.10 (s broad 2H, NH); 8.34 (s, 1H, CH=N); 8.60 (s broad 1H, NH); 9.70 (d, J=8.2 Hz, 1H, NH); 12.08 (s, 1H, OH).
- (300 MHz, DMSO-d₆): 1.50 (s, 3H, C-CH₃); 1.52 (s, 3H, C-CH₃); 2.87 (broad 6H, N-CH₃); 3.54 and 4.51 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.33 (d, J=5.0 Hz, 1H, β-lactam-H); 5.96 (dd, J=5.0 and 8.1 Hz, 1H, β-lactam-H); 6.91 (s, 1H, CH thiazol); 8.06 (s broad 1H, NH); 8.30 (s broad 1H, NH); 8.62 (s, 1H, CH=N); 9.71 (d, J=8.4 Hz, 1H, NH); 11.76 (s, 1H, OH).
- 107 (300 MHz, DMSO-d₆): 1.51 (s, 3H, C-CH₃); 1.53 (s, 3H, C-CH₃); 1.8-2.0 (m, 4H, C-CH₂); 1.8-2.0 (m, 4H, N-CH₂); 3.54 and 4.55 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.31 (d, J=5.0 Hz, 1H, β-lactam-H); 5.95 (dd, J=5.0 and 8.3 Hz, 1H, β-lactam-H); 6.90 (s, 1H, CH thiazol); 7.70 (s broad NH); 7.93 (s broad NH); 8.63 (s, 1H, CH=N); 9.62 (d, J=8.2 Hz, 1H, NH); 9.75 (s, 1H, NH); 11.71 (s, 1H, OH).
- 108 (300 MHz, CD₃OD): 8.59 (s, 1H, CH=N); 6.94 (s, 1H, CH); 5.95 (d, J=5.0 Hz, 1H, CH); 5.29 (d, J=5.0 Hz, 1 H, CH); 4.02 (s, 3H, OCH₃); 4.34 and 3.61 (AB quartet, J=18.0 Hz, 2H, SCH₂); 2.73 (s, 3H, SCH₃).
- (300 MHz, DMSO-d₆): 0.64 (m broad 2H, CH₂ cyclopr); 0.84 (m broad 2H, CH₂ cyclopr); 2.62 (m broad 1H, N-CH cyclopr); 3.54 and 4.51 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 4.66 (s, 2H, O-CH₂); 5.30 (d, J=5.0 Hz, 1H, β-lactam-H); 5.93 (dd, J=5.0 and 8.1 Hz, 1H, β-lactam-H); 6.93 (s,

1H, CH thiazol); 8.09 (broad 2H, NH); 8.35 (s, 1H, CH=N); 8.58 (broad, 1H, NH); 9.77 (d, J=8.0 Hz, 1H, NH); 12.04 (s, 1H, OH).

- (300 MHz, DMSO-d₆): 2.87 (s, 6H, N-CH₃); 3.56 and 4.50 (AB quartet, J=18.0 Hz, 2H, S-CH₂); 4.67 (s, 2H, O-CH₂); 5.32 (d, J=5.0 Hz, 1H, β-lactam-H); 5.92 (dd, J=5.0 and 8.1 Hz, 1H, β-lactam-H); 6.94 (s, 1H, CH thiazol); 8.1 (broad 1H, NH); 8.35 (broad 1H, NH); 8.63 (s, 1H, CH=N); 9.80 (d, J=8.1 Hz, 1H, NH); 11.77 (s, 1H, OH).
- 111 (300 MHz, DMSO-d₆): 1.93 (broad, 4H, C-CH₂); 3.47 (broad, 4H, N-CH₂); 3.55 and 4.54 (AB quartet, J=17.9 Hz, 2H, S-CH₂); 4.67 (s, 2H, O-CH₂); 5.30 (d, J=5.0 Hz, 1H, β-lactam-H); 5.92 (dd, J=5.0 and 7.9 Hz, 1H, β-lactam-H); 6.94 (s, 1H, CH thiazol); 7.96 (broad 2H, NH); 8.62 (s, 1H, CH=N); 9.79 (d, J=7.8 Hz, 1H, NH); 11.72 (s, 1H, OH).
- (300 MHz, DMSO-d₆): 3.62 and 4.67 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.37 (d, J=5.1 Hz, 1H, β-lactam-H); 5.96 (dd, J=5.1 and 7.9 Hz, 1H, β-lactam-H); 6.83 (s, 1H, CH thiazol); 7.7-7.9 (m, 1H, CH aromatic); 8.1-8.3 (m, 1H, CH aromatic); 8.4-8.6 (m, 1H, CH aromatic); 8.8-8.9 (m, 1H, CH aromatic); 8.97 (s, 1H, CH=N); 9.79 (d, J=7.9 Hz, 1H, NH); 9.85 (s, 1H, NH); 10.37 (s, 1H, NH); 12.31 (s, 1H, OH).
- (300 MHz, DMSO-d₆): 1.1-1.3 (m, 2H, CH₂ cyclopr); 1.2-1.4 (m, 2H, CH₂ cyclopr); 1.9-2.0 (m, 1H, CH₂ cyclopr); 3.54 and 4.49 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.32 (d, J=5.1 Hz, 1H, β-lactam-H); 5.93 (dd, J=5.1 and 8.0 Hz, 1H, β-lactam-H); 6.76 (s, 1H, CH thiazol); 8.59 (s, 1H, CH=N); 9.07 (s, 1H, NH); 9.23 (s, 1H, NH); 9.67 (d, J=8.0 Hz, 1H, NH); 11.92 (s, 1H, OH); 13.27 (s, 1H, OH).
- 114 (300 MHz, DMSO-d₆): 1.59 (broad, 6H, C-CH₂); 3.53 (broad 4H, N-CH₂); 3.6 and 4.52 (AB quartet, J=18.4 Hz, 2H, S-CH₂); 5.29 (d, J=5.0 Hz, 1H, β-lactam-H); 5.89 (dd, J=5.0 and 7.6 Hz, 1H, β-lactam-H); 6.82 (s, 1H,

CH thiazol); 8.16 (s 2H, NH); 8.60 (s, 1H, CH=N); 9.75 (d, J=7.6 Hz, 1H, NH); 11.94 (s, 1H, OH); 12.30 (s, 1H, OH).

- (300 MHz, DMSO-d₆): 3.5 and 4.53 (AB quartet, J=17.9 Hz, 2H, S-CH₂); 3.4-3.7 (m, 8H, N-CH₂); 5.31 (d, J=5.0 Hz, 1H, β-lactam-H); 5.90 (dd, J=5.0 and 7.9 Hz, 1H, β-lactam-H); 6.82 (s, 1H, CH thiazol); 8.08 (s, 1H, CH=O); 8.38 (broad 2H, NH); 8.62 (s, 1H, CH=N); 9.75 (d, J=7.9 Hz, 1H, NH); 12.18 (s, 1H, OH); 12.28 (s, 1H, OH).
- (300 MHz, DMSO-d₆/D₂O): 2.81 (s, 6H, N-CH₃); 2.92 (s, 3H, C=N-CH₃); 3.54 and 4.58 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 3.6 (broad, 2H, N-CH₂); 3.97 (broad, 2H, N-CH₂); 5.30 (d, J=4.8 Hz, 1H, β-lactam-H); 5.90 (d, J=4.8 Hz, 1H, β-lactam-H); 6.81 (s, 1H, CH thiazol); 8.55 (s, 1H, CH=N).
- (300 MHz, DMSO-d₆/D₂O): 2.91 (s, 3H, C=N-CH₃); 3.19 (s, 9H, N-CH₃); 3.29 (broad, 2H, N-CH₂); 3.56 and 4.48 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 3.82 (broad, 2H, N-CH₂); 5.31 (d, J=5.0 Hz, 1H, β-lactam-H); 5.90 (d, J=5.0 Hz, 1H, β-lactam-H); 6.84 (s, 1H, CH thiazol); 8.56 (s, 1H, CH=N).
- 118 (300 MHz, DMSO-d₆): 3.61 and 4.59 (AB quartet, J=18.0 Hz, 2H, S-CH₂); 5.35 (d, J=5.1 Hz, 1H, β-lactam-H); 5.59 (dd, J=5.1 and 7.9 Hz, 1H, β-lactam-H); 6.82 (s, 1H, CH thiazol); 6.9-7.1 (m, 1H, CH aromatic); 7.2-7.4 (m, 2H, CH aromatic); 8.74 (s, 1H, CH=N); 9.31 (s 1H, NH/OH); 9.76 (s 1H, NH/OH); 9.78 (d, J=7.9 Hz, 1H, NH); 12.25 (s, 1H, OH); 13.03 (s, 1H, OH).
- (300 MHz, DMSO-d₆): 2.30 (s, 3H, C-CH₃); 3.59 and 4.57 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 3.67 (s, 3H, N-CH₃); 5.34 (d, J=5.1 Hz, 1H, β-lactam-H); 5.94 (dd, J=5.1 and 8.0 Hz, 1H, β-lactam-H); 6.13 (d,

J=3.9 Hz 1H, CH Pyrrol); 6.77 (s, 1H, CH thiazol); 6.86 (d, J=3.9 Hz 1H, CH Pyrrol); 8.66 (s, 1H, CH=N); 9.25 (s 1H, NH); 9.46 (s 1H, NH); 9.70 (d, J=8.0 Hz, 1H, NH); 11.96 (s, 1H, OH); 12.90 (s, 1H, OH).

- (300 MHz, DMSO-d₆): 3.71 and 4.12 (AB quartet, J=17.9 Hz, 2H, S-CH₂); 5.32 (d, J=5.1 Hz, 1H, β-lactam-H); 5.91 (dd, J=5.0 and 7.9 Hz, 1H, β-lactam-H); 6.84 (s, 1H, CH thiazol); 7.9-8.0 (m, 2H, CH aromatic); 8.66 (s, 1H, CH=N); 8.8-8.9 (m, 2H, CH aromatic); 8.8 (broad 1H, NH); 9.76 (d, J=8.0 Hz, 1H, NH); 12.17 (s, 1H, OH); 12.37 (s, 1H, OH).
- 121 (300 MHz, DMSO-d₆): 3.22 (s, 6H, N-CH₃); 3.54 and 4.55 (AB quartet, J=18.5 Hz, 2H, S-CH₂); 3.6 (broad, 4H, N-CH₂); 4.0 (broad, 4H, N-CH₂); 5.30 (d, J=5.0 Hz, 1H, β-lactam-H); 5.91 (dd, J=5.0 and 7.9 Hz, 1H, β-lactam-H); 6.82 (s, 1H, CH thiazol); 8.73 (s, 1H, CH=N); 9.75 (d, J=7.6 Hz, 1H, NH); 12.30 (s, 1H, OH); 12.76 (s, 1H, OH).
- 122 (300 MHz, DMSO-d₆): 2.76 (s, 3H, N-CH₃); 3.1-3.3 (broad, 2H, N-CH₂); 3.4-3.6 (broad, 2H, N-CH₂); 3.5-3.7 (broad, 2H, N-CH₂); 3.55 and 4.53 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 4.2-4.4 (broad, 2H, N-CH₂); 5.31 (d, J=5.0 Hz, 1H, β-lactam-H); 5.90 (dd, J=5.0 and 7.8 Hz, 1H, β-lactam-H); 6.82 (s, 1H, CH thiazol); 8.66 (s, 1H, CH=N); 9.77 (d, J=7.8 Hz, 1H, NH); 11.74 (s, 1H, NH); 12.36 (s, 1H, OH); 12.56 (s, 1H, OH).
- (300 MHz, DMSO-d₆): 2.90 (d, J=4.7 Hz 3H, N-CH₃); 3.34 (s, 3H, N-CH₃); 3.55 and 4.59 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.30 (d, J=5.0 Hz, 1H, β-lactam-H); 5.91 (dd, J=5.0 and 7.9 Hz, 1H, β-lactam-H); 6.81 (s, 1H, CH thiazol); 8.09 (s, 1H, CH=N); 8.25 (s, 2H, NH); 8.37 (s, 1H, NH); 9.72 (d, J=7.9 Hz, 1H, NH); 12.14 (s, 1H, OH).
- 124 (300 MHz, DMSO-d₆): 2.81 (d, J=4.3 Hz 6H, N-CH₃); 3.2-3.4 (m broad 2H, N-CH₂); 3.56 and 4.55 (AB quartet, J=18.0 Hz, 2H, S-CH₂); 3.7-3.9 (m broad 2H, N-CH₃); 5.30 (d, J=4.9 Hz, 1H, β-lactam-H); 5.9 (dd, J=4.9 Hz, 1H, R); 5.9 (dd, J=4.9 Hz,

and 7.9 Hz, 1H, β-lactam-H); 6.82 (s, 1H, CH thiazol); 8.3 (broad, NH); 8.38 (s, 1H, CH=N); 8.47 (broad, NH); 9.76 (d, J=7.9 Hz, 1H, NH); 10.84 (s, 1H, NH); 12.31 (s, 2H, OH).

- (300 MHz, DMSO-d₆): 2.82 (d, J=4.5 Hz 6H, N-CH₃); 3.2-3.3 (m broad 2H, N-CH₂); 3.40 (s, 3H, N-CH₃); 3.56 and 4.73 (AB quartet, J=18.3 Hz, 2H, S-CH₂); 3.8-3.9 (m broad 2H, N-CH₂); 5.29 (d, J=5.0 Hz, 1H, β-lactam-H); 5.91 (dd, J=5.0 and 7.8 Hz, 1H, β-lactam-H); 6.82 (s, 1H, CH thiazol); 8.11 (s, 1H, CH=N); 8.68 (s, 2H, NH); 8.74 (m broad 1H, NH); 9.77 (d, J=7.9 Hz, 1H, NH); 10.91 (s, 1H, OH); 12.32 (s, 1H, OH).
- (300 MHz, DMSO-d₆): 3.60 and 4.56 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.32 (d, J=5.0 Hz, 1H, β-lactam-H); 5.92 (dd, J=5.0 and 7.9 Hz, 1H, β-lactam-H); 6.83 (s, 1H, CH thiazol); 6.8-6.9 (m, 1H, CH aromatic); 7.1-7.2 (m, 1H, CH aromatic); 7.3-7.4 (m, 1H, CH aromatic); 8.23 (s, 1H, CH=N); 8.37 (2H, NH/OH); 8.51 (s, 1H, CH=N); 9.78 (d, J=7.9 Hz, 1H, NH); 12.27 (s, 1H, OH).
- 127 (300 MHz, DMSO-d₆): 3.53 and 4.49 (AB quartet, J=18.1 Hz, 2H, S-CH₂); 5.29 (d, J=5.0 Hz, 1H, β-lactam-H); 5.89 (dd, J=5.0 and 7.9 Hz, 1H, β-lactam-H); 6.79 (s, 1H, CH thiazol); 7.93 (broad, 2H, NH); 8.37 (broad, 1H, CH=N); 9.73 (d, J=7.8 Hz, 1H, NH); 12.15 (s, 1H, OH).
- 128 (300 MHz, DMSO-d₆): 3.25 (broad, 4H, N-CH₂); 3.31 (s, 3H, N-CH₂); 3.62 and 4.27 (AB quartet, J=18.0 Hz, 2H, S-CH₂); 3.74 (broad, 4H, N-CH₂); 5.30 (d, J=5.0 Hz, 1H, β-lactam-H); 5.89 (dd, J=4.9 and 7.9 Hz, 1H, β-lactam-H); 6.79 (s, 1H, CH thiazol); 8.11 (s, 1H, CH=N); 9.03 (broad, 1H, NH); 9.31 (broad, 1H, NH); 9.67 (d, J=7.9 Hz, 1H, NH); 9.87 (s, 2H, NH); 12.07 (s, 1H, OH).
- 129 (300 MHz, DMSO-d₆): 0,70 (m; 4H, -CH₂-CH₂-); 3,05 (m, 1H); 3,51 and 4,49 (AB quartet, J=18 Hz, 2H, SCH₂); 4,38 (s, 3H, O-CH₃); 5,24 (d,

J=4,9 Hz,1H, β-lactam-H); 5,84 (dd, J=7,9 Hz and 4,9 Hz, 1H, β-lactam-H); 6,86 (s, 1H, thiazolyl-H); 8,19 (d, J=3,9 Hz, 1H); 8,21(s, 1H, CH=N); 9,72 (d, J=8,0 Hz, 1H, NH);11,58 (s, 1H).

- (300 MHz, CD₃CN + D₂O): 1,26 (t, J=7 Hz, 3H); 1,68 (sextet, J=7 Hz, 2H); 1,93 (quintet, J=7 Hz, 2H); 3,93 (t, J=7,1 Hz, 2H); 3,95 (s, 3H, O-CH₃); 3,98 and 4,57 (AB quartet, J=18 Hz, 2H, SCH₂); 5,59 (d, J=4,9 Hz, 1H, β-lactam-H); 6,18 (d, J=4,9 Hz, 1H, β-lactam-H); 7,40 (s, 1H, thiazolyl-H); 8,63 (s, 1H, CH=N).
- (300 MHz, D₂O): 0,74 (m, 2H); 0,88 (m, 2H); 2,58 and 2,38 (two singulets, 3H, SCH₃); 2,68 (m, 1H); 3,45 and 3,94 (AB-system, broad, 2H, SCH₂); 3,95 (s, 3H, O-CH₃); 5,23 (d, J=4,7 Hz, 1H, β-lactam-H); 5,75 (d, J=4,7 Hz, 1H, β-lactam-H); 7,03 (s, 1H, thiazolyl-H); 8,36 (s, broad, 1H, CH=N).
- (300 MHz, D₂O): 0,82 (t, J=7,3 Hz, 3H); 1,29 (sextet, J=7 Hz, 2H); 1,56 (quintet, J=7 Hz, 2H); 2,61 and 2,46 (two singulets, 3H, SCH₃); 3,46 (t, J=7,1 Hz, 2H); 3,55 and 4,01 (AB quartet, J=18 Hz, 2H, SCH₂); 3,98 (s, 3H, O-CH₃); 5,25 (d, J=4,9 Hz, 1H, B-lactam-H); 5,78 (d, J=4,9 Hz, 1H, B-lactam-H); 7,05 (s, 1H, thiazolyl-H); 8,39 (s, 1H, CH=N).
- (300 MHz, DMSO-d₆): 2,68 (m, 2H); 3,73 (m, 2H); 3,57 and 4,23 (AB quartet, J=18 Hz, 2H, SCH₂); 3,96 (s, 3H, O-CH₃); 5,29 (d, J=4,9 Hz, 1H, B-lactam-H); 8,48 (dd, J=8 Hz and J=4,9 Hz, 1H, B-lactam-H); 6,91 (s, 1H, thiazolyl-H); 8,24 (s, 1H, CH=N); 9,20 (s, 1H); 9,90 (d, J=8,0 Hz, 1H NH).
- (300 MHz, DMSO-d₆+ D₂O): 0,68 (m, 2H); 0,84 (m, 2H); 2,91 (m, 1H); 3,62 and 4,22 (AB quartet, J=18 Hz, 2H, SCH₂); 5,28 (d, J=4,9 Hz, 1H, B-lactam-H); 5,85 (d, J=4,8 Hz, 1H, B-lactam-H); 7,06 (s, 1H, thiazoly)-H); 8,23 (s, 1H, CH=N).

- (300 MHz, DMSO-d₆): 0,89 (t, J=7 Hz, 3H); 1,29 (sextet, J=7 Hz, 2H); 1,54 (quintet, J=7 Hz, 2H); 3,51 and 4,47 (AB quartet, J=18 Hz, 2H, SCH₂); 3,52 (m, 2H); 5,24 (d, J=4,8 Hz, 1H, β-lactam-H); 5,85 (dd, J=7,9 Hz and 4,8 Hz, 1H, β-lactam-H); 6,69 (s, 1H, thiazolyl-H); 8,21 (s, 1H, CH=N); 8,47 (m, 1H); 9,55 (d, J=7,9 Hz, 1H, NH); 11,44 (s, 1H); 11,54 (s, 1H).
- (300 MHz, DMSO-d₆): 2,77 (s,3H, NCH₃); 3,0-3,2 (m, 4H); 3,35-3,6 (m, 4H); 3,63 and 4,03 (AB quartet, J=18 Hz, 2H, SCH₂); 3,95 (s, 3H, OCH₃); 5,26 (d, J=4,9 Hz, 1H, β-lactam-H); 5,84 (dd, J=7,9 Hz and J=4,9 Hz, 1H, β-lactam-H); 6,85 (s, 1H, thiazolyl-H); 8,40 (s, 1H, CH=N); 9,69 (d, J=8,0 Hz, 1H, NH); 11,67 (s, 1H).
- (300 MHz, DMSO-d₆): 3.59 and 4.54 (AB quartet, J = 18.2 Hz, 2H, SCH₂); 3.66 (d, J = 4 Hz, 3 H, NHCH₃); 3.95 (s, 3 H, O-CH₃); 5.26 (d, J = 5 Hz, 1 H, \(\textit{B-lactam-H}\); 5.85 (dd, J = 5 Hz and 8 Hz, \(\textit{B-lactam-H}\); 6.95 (s, 1 H, thiazolyl-H); 7.96 (s, 1 H, CH=N); 8.4 (d, J = 4 Hz, NHCH₃); 9.84 (d, J = 8 Hz, NH).
- 138 (300 MHz, DMSO-d₆): 1,43 (s, 9H, -OC(CH₃)₃); 3.62 and 4.02 (AB quartet, J = 17.8 Hz, 2H, SCH₂); 5.25 (d, J = 4.9 Hz, 1H, β -lactam-H); 5.83 (dd, J = 4.9 and 8,0 Hz, 1H, β -lactam-H); 6,93 (s, 1H, thiazolyl-H); 8,20 (s, 1H, CH=N); 9,69 (d, J = 8.0 Hz, 1H, NH).
- (300 MHz, DMSO-d₆): 3.21 (broad singulet, 4 H); 3.89 (broad singulet, 4 H); 3.50 and 4.53 (AB quartet, J = 18.1 Hz, 2H, SCH₂); 5.27 (d, J = 5 Hz, 1 H, B-lactam-H); 5.77 (d, J = 58 Hz, 2H, -CH₂F); 5.90 (dd, J = 5 Hz and 8.2 Hz, B-lactam-H); 8.66 (s, 1 H, CH=N); 9.85 (d, J = 8.2 Hz, NH).
- 140 (300 MHZ, DMSO-d₆): 1.02 (t, J=7.4 Hz, 3H, C-CH₃); 2.32 (qd, J=7.4 and 7.5 Hz, 2H, C=C-CH₂-C); 3.52 and 4.15 (AB, J=17.7 Hz, 2H, S-CH₂); 5.17 (d, J=5.2 Hz, 1H, β-lactam-H); 5.73 (dd, J=5.2 and 8.8 Hz,

- 1H, β-lactam-H); 6.48 (s, 1H, CH thiazol); 6.61 (t, J=7.5 Hz, 1H, C=CH-C); 8.93 (s, 1H, CH=N); 9.14 (d, J=8.8 Hz, 1H, NH).
- (90 MHz, DMSO-d₆): 2.3 (s, 3 H, CH₃); 1.8 to 2.1 (m, 1 H); 3.95 (s, 2H, SCH₂); 3.9 (s, 3 H, O-CH₃); 5.35 (d, J = 5 Hz, 1 H, β-lactam-H); 5.9 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.95 (s, 1 H, thiazolyl-H); 8.65 (s, 1 H, CH=N); 9.9 (d, J = 8 Hz, NH).
- 142 (90 MHz, DMSO-d₆): 2.3 (s, 3 H, thiazolyl-CH₃); 4.0 (s, 3 H, O-CH₃); 3.75 and 4.3 (AB quartet, J = 18 Hz, 2H, SCH₂); 5.4 (d, J = 5 Hz, 1 H, B-lactam-H); 5.95 (dd, J = 5 Hz and 8 Hz, B-lactam-H); 6.7 (s, 1 H, thiazolyl-H); 7.05 (s, 1 H, thiazolyl-H); 8.55 (s, 1 H, CH=N); 9.95 (d, J = 8 Hz, NH).
- (90 MHz, DMSO-d₆): 2.25 (s, 3 H, thiazolyl-CH₃); 3.60 (s, 3 H, N-CH₃); 3.7 and 4.15 (AB quartet, J = 18 Hz, 2H, SCH₂); 3.95 (s, 3 H, O-CH₃); 5.35 (d, J = 5 Hz, 1 H, β-lactam-H); 5.85 (dd, J = 5 Hz and 8 Hz, β-lactam-H); 6.7 (s, 1 H, thiazolyl-H); 7.02 (s, 1 H, thiazolyl-H); 8.15 (s, 1 H, CH=N); 9.95 (d, J = 8 Hz, NH).
- (300 MHz, DMSO-d₆): 2.83 (d, 3H, NCH₃); 3.55 and 4.23 (AB quartet, J = 19.8 Hz, 2H, SCH₂); 3.84 (s, 3H, =N-OCH₃); 5.21 (d, J = 5.5 Hz, 1H, β-lactam-H); 5.70 (dd, J = 5.5 Hz and 9 Hz, β-lactam-H); 6.77 (s, 1H, thiazolyl-H); 9.28 (s, 1 H, CH=N); 9.63 (d, J = 9 Hz, 1H, NH).
- 145 (300 MHz, DMSO-d₆):
 Diastereomer A: 1.25 (d, J = 6 Hz, 3H); 1.24 (d, J = 6 Hz, 3H); 1.53 (d, J = 5.4 Hz, 3H, -O(CH₃)CH-O-); 2.9 (d, J = 4.9 Hz, 3H, NCH₃); 3.62 and 4.61 (AB quartet, J = 18.3 Hz, 2H, SCH₂); 3.94 (s, 3H, =N-OCH₃); 4.75 to 4.84 (m, 1 H, -O-CH(CH₃)₂); 5.34 (d, J = 5 Hz, 1H, β-lactam-H); 5.94 (dd, J = 5 Hz and 7.8 Hz, β-lactam-H); 6.9 (q, J = 5.3 Hz, 1 H, -O(CH₃)CH-O-); 6.92 (s, 1 H, thiazolyl-H); 8.3 (s, 1 H, CH=N); 9.96 (d, J

= 7.8 Hz, 1H, NH).

Diastereomer B: 1.24 (d, J = 6 Hz, 3H); 1.22 (d, J = 6 Hz, 3H); 1.51 (d, J = 5.5 Hz, 3H, $-O(CH_3)CH-O-$); 2.9 (d, J = 4,9 Hz, 3H, NCH_3); 3.60 and 4.65 (AB quartet, J = 18.3 Hz, 2H, SCH_2); 3.93 (s, 3H, =N-OCH₃); 4.75 to 4.84 (m, 1 H, $-O-CH(CH_3)_2$); 5.30 (d, J = 5 Hz, 1H, B-lactam-H); 6.04 (dd, J = 5 Hz and 7.6 Hz, B-lactam-H); 6.8 (q, J = 5.3, 1 H, $-O(CH_3)CH-O-$); 6.92 (s, 1 H, thiazolyl-H); 8.14 (s, 1 H, -CH=N); 9.95 (d, J = 7.6 Hz, 1H, -CH=N).

146 (300 MHz, DMSO- d_6):

Diastereomer A: 1.25 (d, J = 6 Hz, 6H); 1.50 (d, J = 5.4 Hz, 3H, - $O(CH_3)CH-O-$); 2.18 (s, 3H, CH_3CO); 3.76 and 4.48 (AB quartet, J = 17.9 Hz, 2H, SCH_2); 4.7 to 4.9 (m, 1 H, -O- $CH(CH_3)_2$); 5.31(d, J = 4.8 Hz, 1H, \$\text{B-lactam-H}\$); 5.88 (dd, J = 4.8 Hz and 7.6 Hz, \$\text{B-lactam-H}\$); 6.87 (q, J = 5.3 Hz, 1 H, -O(CH_3)CH-O-); 7.1 (s, 1 H, thiazolyl-H); 8.28 (s, 1 H, CH=N); 9.93 (d, J = 7.6 Hz, 1H, NH).

Diastereomer B: 1.23 (d, J = 6 Hz, 6H); 1.49 (d, J = 5.4 Hz, 3H, - $O(CH_3)CH-O-$); 2.17 (s, 3H, CH_3CO); 3.70 and 4.38 (AB quartet, J = 18 Hz, 2H, SCH_2); 4.7 to 4.9 (m, 1 H, -O- $CH(CH_3)_2$); 5.28 (d, J = 4.8 Hz, 1H, \$\text{B-lactam-H}\$); 5.83 (dd, J = 4.8 Hz and 7.6 Hz, \$\text{B-lactam-H}\$); 6.80 (q, J = 5.2, 1 H, -O(CH_3)CH-O-); 7.1 (s, 1 H, thiazolyl-H); 8.18 (s, 1 H, CH=O); 9.91 (d, J = 7.6 Hz, 1H, NH).

147 (300 MHz, DMSO- d_6)

Diastereomer A: 1.26 (d, J = 6.2 Hz, 6H); 1.53 (d, J = 5 Hz, 3H, $-O(C\underline{H}_3)CH-O-$); 2.29 (s, 6H, 2 aryl-CH₃); 3.60 and 4.54 (AB quartet, J = 18.5 Hz, 2H, SCH₂); 4.75 to 4.84 (m, 1 H, $-O-C\underline{H}(CH_3)_2$); 5.34 (d, J = 5 Hz, 1H, $-O-CH_3$); 5.97 (dd, J = 5 Hz and 7.7 Hz, $-O-CH_3$); 6.91 (q, J = 5.3 Hz, 1 H, $-O(CH_3)C\underline{H}-O-$); 6.92 (s, 1 H, thiazolyl-H); 7.12 and 7.49 (AB quartet, J = 8 Hz, 2 x 4 aromatic-H); 8.34 (s, 1 H, CH=N); 9.69 (d, J = 7.7 Hz, 1H, NH).

Diastereomer B: 1.24 (d, J = 6.2 Hz, 6H); 1.52 (d, J = 5.5 Hz, 3H, -

O(CH₃)CH-O-); 2.29 (3. 6 H, 2 Aryl-CH₃); 3.59 and 4.51 (AB quartet, J = 18.4 Hz, 2H, SCH₂); 4.75 to 4.84 (m, 1 H, -O-CH(CH₃)₂); 5.31 (d, J = 5 Hz, 1H, \(\text{B-lactam-H}\); 5.93 (dd, J = 5 Hz and 7.7 Hz, \(\text{B-lactam-H}\); 6.83 (q, J = 5.3, 1 H, -O(CH₃)CH-O-); 6.84 (s, 1 H, thiazolyl-H); 7.12 and 7.49 (AB quartet, J = 8 Hz, 2 x 4 aromatic-H); 8.24 (s, 1 H, CH=N); 9.69 (d, J = 7.7 Hz, 1H, NH).

- A) a) (D₂O + DCl): 3.62 (AB quartet, J=16Hz, 2H, S-CH₂); 5.10 (2d, J=5Hz, 2H, B-lactam-H); 6.20 (s, broad, 1H, O-CH-O).
- A) c) (DMSO-d₆): 3.55 and 3.73 (AB quartet, J=18Hz) resp. 3.70 (s), (2H, S-CH₂); 3.87 (s, 3H, N-O-CH₃), 5.11 (d, J=5Hz, B-lactam-H); 5.87 (m, 1H, B-lactam-H); 6.20 resp. 6.26 (s, 1H, O-CH-O); 6.77 resp. 6.78 (s, 1H, thiazolyl-H); 7.27-7.35 (m, 15H, Ar-H); 9.6 (s, broad, 1H, NH-thiazolyl); 9.72 resp. 9.74 (d, J=8Hz, 1H, NH).
- A) d) (DMSO-d₆): 3.58 and 3.76 (AB quartet, J=18Hz) resp. 3.72 (s), (2H, S-CH₂); 3.88 (s, 3H, N-O-CH₃), 5.15 (d, J=5Hz, B-lactam-H); 5.94 (dd, J=8Hz and 5Hz, 1H, B-lactam-H); 6.21 resp. 6.28 (s, 1H, O-CH-O); 6.81 resp. 6.82 (s, 1H, thiazolyl-H); 9.77 resp. 9.78 (d, J=8Hz, 1H, NH).
- B) c) (CDCl₃): 3.2- 3,5 (m, 2H, S-CH₂); 5.05 (d, J=5Hz, B-lactam-H); 6,0 (dd, J= 5 and 8Hz, 1H, B-lactam-H); 6.4 (s, 1H, O-CH-O); 7-7.4 (m, 30H, Ar-H).
- B) d) (DMSO-d₆): 3.72 (m, 2H, S-CH₂); 5.15 (d, J=5Hz, \(\beta\)-lactam-H); 5.95 (dd,J=8Hz and 5Hz, 1H, \(\beta\)-lactam-H); 6.3 (broad s, 1H, O-CH-O); 6.8 (s, 1H, thiazolyl-H); 9.75 (d,J=8Hz, 1H, NH).
- C) (300 MHz, DMSO-d₆): 3.55 and 3.77 (AB quartet, J=18Hz) resp. 3.71 (s), (2H, S-CH₂); 5.14 (d, J=5Hz, B-lactam-H); 5.97 (m, 1H, B-lactam-H); 5.79 (d, J=55 Hz, 2H, -CH₂F); 6.20 resp. 6.27 (s, 1H, O-CH-O); 9.81 resp. 9.84

(d, J=8Hz, 1H, NH).

- D) (300 MHz, DMSO-d₆): 2.20 resp. 2.21 (s, 3H, O=C-CH₃); 3.63 and 3.80 (AB quartet, J=18 Hz) resp. 3.76 (s) (2H, S-CH₂); 5.20 (d, J=5Hz, 1H, ß-lactam-H); 6,00 (dd, J=8Hz and 5Hz, 1H, ß-lactam-H); 6,23 resp. 6,29 (s, 1H, O-CH-O); 7.16 resp. 7.17 (s, 1H, CH thiazol); 10,04 resp. 10,05 (d, J=8Hz, 1H, NH).
- E) (300 MHz, DMSO-d₆): 3.58 and 3.79 (AB quartet, J=18.2Hz) resp. 3.75 (s) (2H, S-CH₂); 5.17 (d, J=5Hz, 1H, \(\text{B-lactam-H}\); 5.94 (dd, J=8Hz and 5Hz, 1H, \(\text{B-lactam-H}\); 6,21 resp. 6,28 (s, 1H, O-CH-O); 6.85 resp. 6.86 (s, 1H, CH thiazol); 9.74 (d, J=8Hz, 1H, NH); 12.38 (s, 1H, OH).
- F) c) (300 MHz, DMSO-d₆): 1.4 (2s, 6H, C-(CH₃)₂); 1.5 (s, 9H, C-(CH₃)₃); 3.6 and 3.7 (AB quartet, J=18 Hz) resp. 3.7 (s) (2H, S-CH₂); 5.2 (d, J=5Hz, 1H, β-lactam-H); 5.9 (dd, J=8Hz and 5Hz, 1H, β-lactam-H); 6,2 resp. 6,3 (s, 1H, O-CH-O); 6.8 (s, 1H, CH thiazol); 7.2-7.5 (m, 15H, CH aromatic); 9.6 (d, J=8Hz, 1H, NH).
- (300 MHz, DMSO-d₆): 1.48 resp. 1.50 (s, 6H, C-(CH₃)₂); 3.60 and 3.77 (AB quartet, J=18 Hz) resp. 3.74 (s) (2H, S-CH₂); 5.19 (d, J=5.2Hz, 1H, β-lactam-H); 6,01 (dd, J=8.5Hz and 5.2Hz, 1H, β-lactam-H); 6,23 resp. 6,29 (s, 1H, O-CH-O); 6.87 resp. 6.88 (s, 1H, CH thiazol); 9.67 (d, J=8.5Hz, 1H, NH).
- G) (300 MHz, DMSO-d₆): 1.00 (t, J=7.5 Hz, 3H, C-CH₃); 1.47 (s, 9H,O-C(-CH₃)₃); 2.27 (qd, J=7.5 Hz, 2H, C=C-CH₂-C); 3.57 and 3.74 (AB quartet, J=18,3 Hz) resp. 3.73 (s) (2H, S-CH₂); 5.11 (d, J=5.1 Hz, 1H, β-lactam-H); 5.88 (dd, J=8.5 Hz and 5.1 Hz, 1H, β-lactam-H); 6,22 resp. 6,26 (s, 1H, O-CH-O); 6.56 (t, J=7.5 Hz, 1H, C=CH-C); 7.05 (s, 1H, CH thiazol); 8.80 resp. 8.81 (d, J=8.4 Hz, 1H, NH).

- H) a) (300 MHz, DMSO-d₆): 2.7 (s, 3H, S-CH₃); 3.5-3.6 (m, 4H, N-CH₂); 3.7-3.8 (m, 2H, N-CH₂); 3.8-3.9 (m, 2H, N-CH₂); 8.1 (s, 1H, CH=O); 9.6 (broad, 2H, NH).
- H) b) (300 MHz, DMSO-d₆): 3.42 (s, 4H, N-CH₂); 3.4-3.6 (m, 4H, N-CH₂); 4.8 (broad, 2H, NH); 7.9 (broad, 2H, NH); 8.1 (s, 1H, CH=O); 9.5 (broad, 1H, NH).
- H) c) (300 MHz, DMSO-d₆): 3.1-3.2 (s, 4H, N-CH₂); 3.7-3.8 (m, 4H, N-CH₂);
 4.8 (broad, 2H, NH); 8.0 (broad, 2H, NH); 9.6 (broad, 1H, NH); 10.0 (broad, 2H, NH).
- I) (90 MHz, D_2O): 1,2 ppm (t, 3H); 1,9 2,1 ppm (m, 4H); 3,3 3,7 ppm (m, 6H).
- J) (90 MHz, DMSO-d₆): 2,9 ppm (d, J = 5 Hz, 3H, NCH₃), 3,4 3,8 ppm
 (m, 8H), 7,55 ppm (broad quartet, 1 H, NH).
- K) (90 MHz, D₂O): 1,3 ppm (s, 9H).
- L) (90 MHz, DMSO- $d_6 + D_2O$): 2,8 ppm (s, 3H, NCH₃); 3,4 3,65 ppm (m, 4H); 4,0 4,4 ppm (m, 4H).
- M) (300 MHz, DMSO-d₆): 2.74 (s, 3H, C=N-CH₃); 3.15 (s, 9H, N(CH₃)₃); 3.49 (m broad, 2H, N-CH₂); 3.64 (m broad, 2H, N-CH₂); 4.8 (broad, 2H, NH); 7.8 (broad, 3H, NH).
- N) (90 MHz, DMSO-d₀): 2,85 ppm (s, 3H, NCH₃); 3,2 3,65 ppm (m, 8H); 8,1 ppm (s, 1H, CH=O).

- O) (90 MHz, DMSO- $d_6 + D_2O$): 2,85 ppm (s, 3H, NCH₃); 3,2 3,5 ppm (m, 4H); 3,5 -3,9 ppm (m, 4H).
- P) (300 MHz, D₂O): 2.84 (s, 3H, N-CH₃); 3.3-3.4 (m, 2H, N-CH₂); 3.7-3.8 (m, 2H, N-CH₂).
- Q) a) (90 MHz, DMSO-d₆): 2,65 ppm (s, 3H, S-CH₃); 3,35 ppm (s, 6H, NCH₃)₂); 3,65 4,0 ppm (m, 4H); 4,0 4,3 ppm (m, 4H), 9,45 ppm (broad singulet, 1H, NH).
- Q) b) (90 MHz, DMSO-d₆): 3,3 ppm (s, 6H, NCH₃)₂); 3,5 3,8 ppm (m, 4H); 3,8 4,2 ppm (m, 4H).
- R) a) (90 MHz, DMSO-d₆): 2,55 ppm (s, 3H, SCH₃); 3,45 ppm (s, 3H, NCH₃).
- R) b) (90 MHz, DMSO-d₆): 3,15 ppm (s, 3H, NCH₃); 3,2 3,28 ppm (m, 2H); 3,28 3,35 ppm (m, 2H); 3,4 3,55 ppm (m, 4H); 5,18 ppm (broad singulet, 2H); 8,05 (s, 1H, -CH=O); 8,1 8,3 (broad singulet, 2H).
- R) c) (300 MHz, DMSO-d₆): 3,16 ppm (m, 3 + 4 H); 3,63 ppm (m, 4H); 6,7 ppm (broad singulet, 5H); 8,5 (broad singulet, 1H); 10,0 ppm (broad singulet, 2H).
- S) (300 MHz, DMSO d₆): 2.55 (s, 2H, N-CH₂); 5.92 (s, 2H, NH).
- T) (300 MHz, DMSO d₆): 0.5 (m, 2H, CH₂); 0.7-0.8 (m, 2H, CH₂); 2.4-2.5 (m, 1H, N-CH); 4.7 (broad, 2H, NH); 7.5 (broad, 2H, NH); 8.2 (broad, 1H, NH); 8.9 (broad, 1H, NH).
- U) (300 MHz, DMSO d₆): 2.7 (s, 3H, N-CH₃); 4.7 (broad, 2H, NH); 7.7

- (broad, 1H, NH); 9.2 (broad, 1H, NH/OH); 9.8 (broad, 1H, NH/OH).
- V) (300 MHz, DMSO d₆): 2.79 (d, J=4.8Hz 6H, N(CH₃)₂); 3.20 (s, 3H, N-CH₃); 3.2 (m, 2H, N-CH₂); 3.6 (m, 2H, N-CH₂); 4.7 (very broad, 2H, NH); 7.7 (broad, 2H, NH); 10.4 (broad, 1H, NH).
- W) (300 MHz, D₂O): 6.75-6.85 (m, 1H, CH aromatic); 6.9-7.0 (m, 1H, CH aromatic); 7.1-7.15 (m, 1H, CH aromatic); 7.7 (s, 1H, CH=N).
- X) (300 MHz, D₂O): 2,0 (m, 1H); 2,47, 2,35 (s, s, together 3H, -SCH₃); 0,84 (m, 2H); 0,69 (m, 2H).
- Y) (300 MHz, D₂O): 3,36 (t, J=7 Hz, 2H); 2,51, 2,43 (s, s, together 3H, -SCH₃); 1,55 (quintet, J=7 Hz, 2H); 1,29 (sextet, J=7 Hz, 2H); 0,85 (t, J=7 Hz, 3H).
- Z) (90 MHz, DMSO-d₆): 3,65 ppm (s, 3H, NCH₃).
- AA) a) (300 MHz, DMSO d₆): 2.19 (s, 3H, C-CH₃); 3.84 (s, 3H, N-CH₃); 5.84 (d, J=3.8Hz 1H, C=CH); 6.58 (d, J=3.8Hz 1Hz, C=CH); 8.76 (s, 1H, NH); 8.93 (s, 1H, NH).
- AA) b) (300 MHz, DMSO d₆): 2.3 (s, 3H, C-CH₃); 2.75 (s, 3H, S-CH₃); 3.65 (s, 3H, N-CH₃); 6.2 (d, J=4Hz 1H, C=CH); 7.1 (d, J=4Hz 1Hz, C=CH); 10.6 (s, broad 5H, NH).
- AA) c) (300 MHz, DMSO d₆): 2.2 (s, 3H, C-CH₃); 3.1 (s, 3H, N-CH₃); 5.95 (d, J=4Hz 1H, C=CH); 6.5 (d, J=4Hz 1Hz, C=CH); 7.2 (very broad 5H, NH).
- AB) (300 MHz, DMSO d₂/D₂O): 6.75-6.85 (m, 1H, CH aromatic); 7.00-7.05 (m, 1H, CH aromatic); 7.05-7.10 (m, 1H, CH aromatic).

- AC) (300 MHz, DMSO d₆/D₂O): 8.24 (s, 1H, CH=N); 5.20 (d, J=5.2 Hz, 1H, β-lactam-H); 4.07 (d, J=5.2 Hz, 1H, β-lactam-H); 3.89 and 3.61 (ABq, J=17.8 Hz, 2H, SCH₂).
- AD) (300 MHz, DMSO d₆/CD₃CO₂D+CF₃COOD): 8.67 (s, 1H, CH=N); 5.38-5.40 (2d, 2H, 2B-lactam-H); 4,01 (s, 3H, CH₃-O); 3,98-4.00 (ABq, 2H, SCH₂).
- AE) (300 MHz, DMSO d₆): 8.14 (s, 1H, CH=N); 5.33 (d, J=5.6 Hz, 1H, CH); 4.80 (d, J=5.6 Hz, 1H, CH); 3.88 and 3.58 (ABq, J=17.8 Hz, 2H, SCH₂).
- AF) (300 MHz, DMSO d₆): 7.96 (s, 1H, CH=N); 5.17 (d, J=5.2 Hz, 1H, CH); 5.02 (d, J=5.2 Hz, 1H, CH); 3.96 and 3.47 (ABq, J=17.7 Hz, 2H, SCH₂).
- AG) (300 MHz, DMSO d₆): 8.35 (s, 1H, CH=N); 5.31 (d, J=5.1 Hz, 1H, CH); 5.14 (d, J=5.1 Hz, 1H, CH); 4.28 and 3.84 (ABq, J=17.9 Hz, SCH₂).
- AH) (300 MHz, DMSO d₆): 8.41 (s, 1H, CH=N); 5.34 (d, J=5.1 Hz, 1H, CH); 5.18 (d, J=5.1 Hz, 1H, CH); 4.37 and 3.80 (ABq, J=17.9 Hz, SCH₂).
- AI) (300 MHz, DMSO d₆): 8.61 (s, 1H, CH=N); 5.36 (d, J=5.1 Hz, 1H, CH); 5.18 (d, J=5.1 Hz, 1H, CH); 4.42 und 3.71 (ABq, J=18.0 Hz, SCH₂); 2.74 (s, 3H, SCH₃).
- AJ) (300 MHz, DMSO d₆): 8.52 (s, 1H, CH=N); 5.36 (d, J=5.1 Hz, 1H, CH); 5.21 (d, J=5.1 Hz, 1H, CH); 4.46 and 3.79 (ABq, J=17.7 Hz, 2H, SCH₂); 2.95 (s, 3H, N-CH₃).
- AK) (300 MHz, DMSO d₆): 8.51 (s, 1H, CH=N); 7.56-6.84 (m, 10H, 2Ph); 5.28 (d, J=4.8 Hz, 1H, CH); 5.00 (d, J=5.1 Hz, 1H, CH); 4.13 and 3.93 (ABq, J=16.8 Hz, 2H, SCH₂).

Claims:

1. A compound of formula

wherein

R₁ denotes hydrogen or an ester moiety,

R₂ denotes a group of formula

$$-O-Y \qquad -N < \frac{R_4}{R_5} \qquad \text{or} \qquad -N = R_6$$
IIa IIb IIc

wherein

Y denotes hydrogen, alkyl, alkenyl, acyl, carbamoyl or aryl

R₄ denotes hydrogen, alkyl, alkenyl, cycloalkyl, aryl, acyl or heterocyclyl

R₅ denotes hydrogen, alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, or a group of formula

$$-c \begin{cases} SR_7 \\ NR_8 \end{cases} - c \begin{cases} Z \\ N \\ R_{10} \end{cases}$$
 or
$$-c \begin{cases} Z \\ R_{11} \end{cases}$$
 IIId IIIe IIIf

102

wherein

R₇ denotes alkyl or aryl

R₈ denotes hydrogen, cycloalkyl or alkyl

R₉ denotes hydrogen or alkyl

R₁₀ denotes hydrogen, alkyl, hydroxy, amino, phenyl, alkenyl, cycloalkyl, aryl, heterocyclyl or a group of formula

-N=CH-Phe

wherein Phe denotes aryl

R₉ and R₁₀ together with the nitrogen atom denote heterocyclyl,

Z denotes oxygen, sulphur or N-R₁₃, wherein

R₁₃ denotes hydrogen, alkyl or cycloalkyl

R₁₁ denotes hydrogen, alkyl, aryl, cycloalkyl or heterocyclyl, or

R4 and R5 together with the nitrogen atom denote heterocyclyl,

R₆ denotes heterocyclyl, and

Ac denotes

(i) a group

(ii) a group of formula

wherein

- B denotes N or CH
- Z₁ denotes aryl, cycloalkyl, 1,4-cyclohexadienyl or heterocyclyl
- Z₂ denotes hydrogen, alkyl or -CH₂COOZ₅, whereinZ₅ denotes hydrogen, alkyl or cycloalkyl
- Z₃ denotes hydrogen or alkyl
- Z₄ denotes hydrogen or an organic radical
- D denotes oxygen or CH₂.

2. A compound of claim 1 of formula

wherein

W denotes CH or N

V denotes CH or N-O

R₁ denotes hydrogen or an ester moiety,

R₂ denotes a group of formula

$$-O-Y \qquad -N < \frac{R_4}{R_5} \qquad \text{or} \qquad -N = R_4$$
IIa IIb IIc

wherein

- Y denotes hydrogen; unsubstituted lower alkyl; or substituted lower alkyl, by the residue of a carboxylic acid, a carboxylic acid ester or a carboxylic acid amide.
- R4 denotes hydrogen, phenyl, cycloalkyl or lower alkyl
- R, denotes hydrogen, lower alkyl, heterocyclyl or a group of formulae

$$-c \stackrel{\mathsf{SR}_7}{\underset{\mathsf{R}_{10}}{\bigvee}} -c \stackrel{\mathsf{Z}}{\underset{\mathsf{R}_{10}}{\bigvee}} \quad \text{or} \quad -c \stackrel{\mathsf{Z}}{\underset{\mathsf{R}_1}{\bigvee}}$$

wherein

R₇ denotes lower alkyl

R₈ denotes hydrogen, cycloalkyl or lower alkyl

. Ro denotes hydrogen or lower alkyl,

R₁₀ denotes hydrogen, hydroxy; amino; phenyl; alkenyl; cycloalkyl; heterocyclyl; unsubstituted alkyl; substituted alkyl, by CF₃, OH, alkoxy, carboxyl, halogen, amino, monoalkylamino, dialkylamino, trialkylamino, pyridyl or a a sulfonic acid residue; a group of formula

$$-N = CH - OR_{12}$$

$$OR_{12}$$

wherein

R₁₂ denotes hydrogen or lower alkyl,

Z denotes oxygen, sulphur, or N-R₁₃, wherein R₁₃ denotes hydrogen or lower alkyl, and

R₁₁ denotes hydrogen; dihydroxyphenyl; cycloalkyl; heterocyclyl; unsubstituted lower alkyl; substituted lower alkyl by pyridyl or monoalkylamino, dialkylamino or trialkylamino; and,

R₄ and R₅ and/or R₉ and R₁₀ independently of one another together with the nitrogen denote heterocyclyl,

R₆ denotes heterocyclyl, and

R₃ denotes hydrogen; acyl; carboxyl; unsubstituted alkyl; substituted alkyl by halogen or carboxyl.

3. A compound of anyone of claims 1 to 3 of formula

wherein

 R_1 , is the same as R_1 in formula IA,

V, is the same as V in formula IA,

W, is the same as W in formula IA

R_{3.2} denotes hydrogen, lower acyl; unsubstituted alkyl; substituted lower alkyl, by carboxyl and/or fluoro; and

R₂, denotes a group of formula

$$-OY_s$$
 $-N < R_{4s}$ or $-N = R_{6s}$

Has libs lics

wherein

Y, denotes hydrogen; unsubstituted lower alkyl; or substituted alkyl by carboxyl,

R₄, denotes hydrogen or lower alkyl, and

R₅, denotes hydrogen; saturated or unsaturated, unsubstituted heterocyclyl having 5 or 6 ring members and 1 to 3 nitrogen hetero atoms; saturated or unsaturated one or several fold substituted heterocyclyl by oxo, lower alkyl, amino or CF₃, having 5 or 6 ring members and 1 to 3 nitrogen hetero atoms; benzothiazolyl; or a group of formula

$$-C \begin{cases} SR_{7s} \\ NR_{8s} \end{cases} - C \begin{cases} Z_s \\ N \\ R_{9s} \end{cases}$$
 or
$$-C \begin{cases} Z_s \\ R_{11} \end{cases}$$
 Ilds Illes Illfs

wherein

Z, is the same as Z in formula I,

R₇, denotes lower alkyl,

R₈, denotes hydrogen, cycloalkyl or lower alkyl,

R₉, denotes hydrogen or lower alkyl,

R₁₀, denotes hydrogen; phenyl; allyl; cycloalkyl; unsubstituted alkyl; substituted alkyl by CF₃, dialkylamino, trialkylamino, hydroxy, pyridyl or SO₃H, and

R₁₁, denotes hydrogen; pyridyl; cycloalkyl; unsubstituted lower alkyl; substituted lower alkyl by pyridyl or trialkylamino; saturated or unsaturated heterocyclyl having 5 or 6 ring members and 1 to 3 nitrogen hetero atoms; or one or several fold substituted heterocyclyl by lower alkyl and/or thiono, having 5 or 6 ring members and 1 to 3 nitrogen hetero atoms;

 R_{4} , and R_{5} , together with the nitrogen atom denote heterocyclyl selected from saturated, unsubstituted heterocyclyl having 5 or 6 ring members and 1 or 2 nitrogen hetero atoms; saturated, one or several fold substituted heterocyclyl by oxo or lower alkyl, having 5 or 6 ring members and 1 or 2 nitrogen hetero atoms; and/or

 R_{9} , and R_{10} , together with the nitrogen atom denote saturated, unsubstituted heterocyclyl having 5 or 6 ring members and 1 or 2 nitrogen and/or oxygen hetero atoms; unsaturated, one or several fold substituted heterocyclyl by CHO or lower alkyl, having 5 or 6 ring members and 1 or 2 nitrogen and/or oxygen hetero atoms.

4. A compound of any one of claims 1 to 3 of formula

wherein

W denotes CH or N

V denotes CH or N-O

R, denotes hydrogen or an ester moiety,

R₂ denotes a group of formula

$$-N(R_4R_5)$$
 IIb

wherein

R₄ is as defined in claim 1 and

R₅ denotes a group of formula

$$\begin{array}{c|c}
Z \\
\parallel \\
C \\
N - R_{10}
\end{array}$$
Ile

wherein

Z denotes N-R₁₃, wherein

R₁₃ is as defined in claim 1, and

 R_9 and R_{10} together with the nitrogen atom denote heterocyclyl which is a piperazinyl.

5. 7-[[(2-amino-4-thiazolyl)-(Z)-(hydroxyimino)acetyl]amino]-3-[[(aminoiminomethyl)-hydrazono]methyl]-3-cephem-4-carboxylic acid;

7-[[(2-amino-4-thiazolyl)-(Z)-(hydroxyimino)acetyl]-amino]-3-[[(piperazino-iminomethyl)-hydrazono]methyl]-3-cephem-4-carboxylic acid;
7-[[(5-Amino-1,2,4-thiadiazol-3-yl)-(Z)-(fluormethoxyimino)acetyl]amino]-3-[[(piperazinoiminomethyl)hydrazono]methyl]-3-cephem-4-carboxylic acid.

6. A compound of formula

wherein

 R_{1p} is the same as R_1 in formula I,

Ac is as defined in formula I,

 R_{2p} denotes a group of formulae

$$-OY_p$$
 or $-N < R_{5p}$

wherein

Y, is the same as Y in formula IA,

 R_{4p} is the same as R_4 in formula IA, and

 $R_{5\,p}$ denotes hydrogen, cycloalkyl, lower alkyl or a group of formula

$$-c \leqslant_{NR_{8p}}^{SR_{7p}} \quad \text{or} \quad -c \leqslant_{NR_{8p}}^{Z_{p}}$$

$$R_{10p}$$
Ildp

 R_{8p} is the same as R_{8} in formula IA, Z_{p} is the same as Z in formula IA,

 R_{9p} is the same as R_9 in formula IA,

R_{7 p} denotes methyl,

R_{10 p} denotes hydrogen, lower alkyl or hydroxy, and

 R_{4p} and R_{5p} and/or R_{9p} and R_{10p} independently of one another together with the nitrogen denote heterocyclyl, and

a compound of formulae IIbp, IIdp and IIep denote any tautomeric form, in free form, or, where such a form exists, in form of an acid addition salt, inner salt, quaternary salt or hydrate thereof.

7. A compound of formula

wherein

Ac is as defined in formula I $R_{1\,q}$ is he same as R_1 in formula IA, and $R_{2\,q}$ denotes a group of formulae

$$-OY_q$$
 or $-N < \frac{R_{4q}}{R_{5q}}$

wherein

 Y_q is the same as Y in formula IA, R_{4n} is the same as R_{4n} in formula IA, and

-

R_{5 a} denotes hydrogen, cycloalkyl, lower alkyl or a group of formulae

$$-C \begin{cases} SR_{7q} & \text{or} & -C / Z_q \\ NR_{8q} & \text{or} & -R_{9q} \end{cases}$$
Ildq Ileq

wherein

R₇₀ is the same as R₇ in formula IA,

R_{8 a} is the same as R₈ in formula IA,

Z_q is the same as Z in formula IA,

R_{9 a} is the same as R₉ in formula IA,

 R_{100} denotes hydrogen, lower alkyl or hydroxy, and

 $R_{4\,q}$ and $R_{5\,q}$ and/or $R_{9\,q}$ and $R_{10\,q}$ independently of one another together with the nitrogen denote heterocyclyl, and

a compound of formulae IIbp, IIdp and IIep denote any tautomeric form, in free form, or, where such a form exists, in form of an acid addition salt, inner salt, quaternary salt or hydrate thereof.

8. A process for the production of a compound of formula I as defined in claim I by reaction of a compound of formula

wherein Ac is as defined in formula I and a) either

- α) R_b denotes hydroxy and R_c and R_d together form a bond, or
- β) R_d denotes hydrogen, a cation, an ester forming group or a silyl group, and R_b and R_c together denote oxo,

in free form or in form of an acid addition salt with a group of formula

$$H_2N - R_2$$

IV

wherein R_2 is as defined in formula I, or

b) reacting a compound of formula

$$H_2N$$
 $CH - N = R_2$ VI

wherein R₁ and R₂ are as defined in formula I, with a compound of formula

VII

wherein Ac is as defined in formula I and X' denotes a leaving group.

9. A compound of formula

$$H_2N - R_{2i}$$

IVi

wherein

R₂₁ denotes a group of formula

- N (R4,R5,)

∐bi

 R_{4i} is the same as R_4 in formula I, R_{5i} denotes a group of formula

$$-\frac{Z_{i}}{C} - R_{10i}$$

$$- R_{9i}$$
IIei

wherein

Z_i denotes N-R_{13i}, wherein

R_{13i} is hydrogen, alkyl or cycloalkyl, and

 R_{9i} and R_{10i} together with the nitrogen atom denote heterocyclyl which is a piperazinyl; or

 R_{4i} is the same as R_4 in formula I, and R_{5i} denotes a group of formula

$$-c \leqslant_{NR_a}^{SR_{7_i}}$$

IIdi

wherein

R_{8i} denotes alkyl, preferably at least C₂ alkyl; or cycloalkyl, preferably cyclopropyl, and

R71 denotes alkyl, preferably methyl; and

R4i is the same as R4 in formula I and

R_{si} denotes a group of formula

Z, denotes N-R_{13i}, wherein

R_{13i} denotes hydrogen, alkyl or cycloalkyl

Roi denotes hydrogen and

R_{10i} denotes CH₂CF₃, C(CH₃)₃, OH or an alkyl group having at least 2 carbon atoms which is substituted by dialkyl amine or trialkyl ammonium, hydroxy; or

 R_{4i} is the same as R_4 in formula I, R_{5i} denotes a group of formula

$$- \begin{matrix} Z_i \\ \parallel \\ C \\ N - R_{10i} \\ R_{9i} \end{matrix}$$
 He

wherein

Z_i denotes N-R_{13i}, wherein

R_{13i} denotes alkyl, and

 R_{9i} and R_{10i} together with the nitrogen atom denote heterocyclyl which is morpholyl or pyrrolidinyl; or

 R_{4i} is the same as R_4 in formula I and denotes preferably hydrogen R_{5i} denotes a group of formula

$$-\frac{Z_{i}}{C} - \sum_{\substack{N - R_{10}, \\ R_{9},}}^{N-R_{10}}$$
 He

wherein

Z, denotes N-R₁₃, wherein

 R_{13i} denotes hydrogen, alkyl or cycloalkyl, . R_{9i} denotes hydrogen, and R_{10i} denotes cycloalkyl; or

 R_{4i} is the same as R_4 in formula I, R_{5i} denotes a group of formula

$$- \overset{Z_{i}}{\underset{\underset{R_{9i}}{|}}{|}} R_{10i}$$

$$= \overset{Z_{i}}{\underset{\underset{R_{9i}}{|}}{|}} R_{10i}$$

$$= \overset{Z_{i}}{\underset{\underset{R_{9i}}{|}}{|}} R_{10i}$$

wherein ...

 Z_i denotes N-R_{13i}, wherein R_{13i} denotes hydrogen, alkyl or cycloalkyl, R_{9i} denotes hydrogen or alkyl, and R_{10i} denotes a group

$$-N = CH - Phe$$

wherein Phe denotes phenyl or

 R_{4i} is the same as R_4 in formula I, R_{5i} denotes a group of formula

$$-\frac{Z_{i}}{C} - \prod_{R_{11i}} IIfi$$

wherein

Z_i denotes N-R_{13i}, wherein

R_{13i} denotes hydrogen, alkyl or cycloalkyl,

or

R_{11i} denotes a dihydroxyphenyl or substituted pyrrolyl by alkyl; or

Z denotes oxygen and

R_{11i} denotes the group of formula

10. A compound according to claim 8 of formula

wherein

R, is a group of formula

R_y is NH and R_z is hydrogen; or

R_x is a group of formula

$$-N$$
 N— CHO or $-N$ NH or $-NH - (CH2)2 - $\stackrel{+}{N}$ (CH₃)₃$

R_y is NH and R_z is CH₃; or

R_x is - SCH₃
R_y is a group of formula

$$= N - C_4 H_9$$

and

R_z is hydrogen; or

R, is a group of formula

$$-N$$
 or $-N$ NH or -NHOH

- NH - CH₂ - CH₂ - OH

R_y is N - CH₃ and R_z is hydrogen; or

 R_x is the group

$$-N$$

 R_y is N - C_2H_5 and R_z is hydrogen; or

R_x is the group

 R_y is oxygen and R_z is hydrogen.

11. A compound of formula

$$R_{2}N$$
 $CH = N - R_{xx}$
 $COOR_{1}$

wherein

 R_1 is as defined in formula I and

R_{ax} denotes a group

 R_x , R_y and R_z as defined in claim 9.

- 12. A compound of formulae I, IA, I_p , I_q , IVi, IVa or VIa according to any preceding claim in free form.
- 13. A compound of formulae I, IA, I_p, I_p, I_q, IVi, IVa or VIa according to any preceding claim in salt form.
- 14. A compound of formulae I, IA, I_p, I_q, IVi, IVa or VIa according to claim 13 in acid addition salt form.
- 15. A compound of formulae I, IA, I, Ip, Iq, IVi, IVa or VIa according to claim 13 in metal salt form.
- 16. A compound of formulae I, IA, I_p, I_q, IVi, IVa or VIa according to any one of claims 12 to 15 in solvate form.
- 17. Pharmaceutical composition, comprising a compound of claim 1 in pharmaceutically acceptable salt form or free form in association with at least one pharmaceutical carrier or diluent.
- 18. A compound of claim 1, or a composition of claim 17, for use as a pharmaceutical.
- 19. A compound of claim 1, or a composition of claim 17, for use as an as an antibioticum.

WO 96/35692 PCT/EP96/02023

119

- 20. A compound of claim 1 for use in the preparation of a medicament for the treatment of microbial diseases.
- 21. A compound of claim 1 for use according to claim 20 in the treatment of microbial diseases caused by bacterias selected from *Pseudomonas*, *Enterobacter*, *Enterococcus*, *Moraxella*, *Haemophilus*, *Klebsiella*, *Streptococcus*, *Staphylococcus*, *Escherichia*, or *Proteus*.
- 22. Use of a compound of formula I as defined in claim 1, or use of a composition as defined in claim 11, as a pharmaceutical.
- 23. A method of treatment of microbial diseases which comprises administering to a subject in need of such treatment an effective amount of a compound of formula I.

Interns al Application No PCT/EP 96/02023

A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C07D501/24 A61K31/545		
According to	to International Patent Classification (IPC) or to both national cla	ssification and IPC	
<u>_</u>	SEARCHED		
	ocumentation searched (classification system followed by classifi	cation symbols)	•
IPC 6	C07D		:
Documentat	tion searched other than minimum documentation to the extent th	at such documents are included in the fields a	earched
Electronic d	lata base consulted during the international search (name of data	hase and, where practical, search terms used)	·
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	e relevant passages	Relevant to claim No.
A	FR,A,2 191 881 (CIBA-GEIGY AG)	8 February	1-22
	see page 82 - page 89; claims		
A	FR.A.2 220 248 (SHIONOGI & CO L October 1974	TD) 4	1-22
	see page 32 - page 37; claims		
A	FR,A,2 248 845 (SHIONOGI & CO,L	TD) 23 May	1-22
	see page 34 - page 41; claims		1 00
Α .	DE,A,22 62 500 (ELI LILLYAND CO) 5 July	1-22
	see page 44 - page 51; claims		
		-/	
X Fu	rther documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
* Special c	ategories of cited documents:	"T" later document published after the in- or priority date and not in conflict w	ternational filing date
CORS	ment defining the general state of the art which is not idered to be of particular relevance	cated to understand the principle or to invention	heory underlying the
film	r document but published on or after the international g date	"X" document of particular relevance; the cannot be considered novel or canno	K DE COURTOILLES AN
which	ment which may throw doubts on priority claim(s) or h is cited to establish the publication date of another	"Y" document of particular relevance; the	e claimed invention
.O. qoca	on or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or r means	cannot be considered to involve an a document is combined with one or a menta, such combination being obvi	Pole other shen doen-
P' docu	ment published prior to the international filing date but than the priority date claimed	m the art. "At" document member of the same pater	
Date of th	ne actual completion of the international search	Date of mailing of the international s	carch report
	29 August 1996	0 5 09 96	
Name and	d mailing address of the ISA European Patent Office, P.B. 3818 Patentiaan 2	Authorized officer	
	NL - 2220 HV Rpwph Td. (-31-70) 340-2040, Tx. 31 651 epo nl, Fac (-31-70) 340-3016	Luyten, H	

Interns 1 Application No
PCT/EP 96/02023

(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT	
ategory * Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
CHEMICAL ABSTRACTS, vol. 88, no. 17, 24 April 1978 Columbus, Ohio, US; abstract no. 121203u, page 551; column 1; XP002011061 see abstract & JP,A,07 783 865 (TAKEDA CHEMICAL INDUSTRIES LTD)	1-22
CHEMICAL ABSTRACTS, vol. 92, no. 9, 3 March 1980 Columbus, Ohio, US; abstract no. 76491f, page 679; column r; XP002011062 see abstract & JP,A,07 970 294 (TAKEDA CHEMICAL INDUSTRIES LTD)	1-22
CHEMICAL ABSTRACTS, vol. 85, no. 7, 16 August 1976 Columbus, Ohio, US; abstract no. 46704r, page 543; column r; XP002011063 see abstract & JP,A,75 131 982 (SHIONOGI AND CO.,LTD)	1-22
CHEMICAL ABSTRACTS, vol. 84, no. 11, 15 March 1976 Columbus, Ohio, US; abstract no. 74282z, page 455; column r; XP002011064 see abstract & JP,A,07 593 990 (TAKEDA CHEMICAL INDUSTRIES, LTD)	1-22
CHEMICAL ABSTRACTS, vol. 84, no. 7, 16 February 1976 Columbus, Ohio, US; abstract no. 44095y, page 500; column r; XP002011065 see abstract & JP,A,07 583 391 (SHIONOGI AND CO.,LTD) -/	1-22

1

Interns d Application No?
PCT/EP 96/92923

	OCUMENTS CONSIDERED TO BE RELEVANT		
Category Citatio	n of document, with indication, where appropriate, of the relevant passages	·	Relevant to claim No.
2 Cc ai pa XI	HEMICAL ABSTRACTS, vol. 84, no. 5, February 1976 clumbus, Ohio, US; cstract no. 31096z, age 470; column 1; P802011066 ee abstract JP,A,07 576 085 (SHIONOGI AND CO., LTD)		1-22
7 Co al po XI So &	HEMICAL ABSTRACTS, vol. 83, no. 1, July 1975 Dlumbus, Ohio, US; Destract no. 10104q, age 850; column r; P002011067 ee abstract JP,A,74 124 091 (TAKEDA CHEMICAL NDUSTRIES LTD.)		1-22
22 CC al pa X Sc	HEMICAL ABSTRACTS, vol. 83, no. 25, 2 December 1975 olumbus, Ohio, US; bstract no. 206299b, age 399; column 1; P002011068 ee abstract JP,A,07 513 389 (TAKEDA CHEMICAL NDUSTRIES,LTD)		1-22
			· .
:		· ·	

Perm PCT/ISA/218 (continuetoes of second sheet) (July 1992)

International application No.

PCT/EP 96/02023

Box 1	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This inte	ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
	Chims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim 23 is directed to a method of treatment of (diagnostic method practised on) the human/animal body the search has been carried out and based on the alleged effects of the compound/composition.	i
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:	
٠		ĺ
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	<u>.</u>
Bex II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This Int	ernational Searching Authority found multiple inventions in this international application, as follows:	
		i
		ļ
ı. 🗆	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.	
2. 🗌	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:	
4. 🗍	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	٤
Remark	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	:3

a armstion on patent family members

Interna 1 Application No PCT/EP 96/02023

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
FR-A-2191881	08-02-74	BE-A- DE-A- NL-A-	802020 2333263 7309511	07-01-74 24-01-74 09-01-74
FR-A-2229248	04-10-7 4	JP-A- AU-B- CH-A- DE-A- GB-A- NL-A- US-A- US-A-	49109391 6609174 601311 2409647 1466954 7402776 3987039 4053469	17-10-74 28-08-75 14-07-78 12-09-74 16-03-77 30-08-74 19-10-76 11-10-77
FR-A-2248845	23-05-75	JP-A- CH-A- DE-A- GB-A-	50093989 608809 2450618 1460377	26-07-75 31-01-79 30-04-75 06-01-77
DE-A-2262500	05-07-73	NONE		

Perm PCT/ISA/218 (present family seess) (July 1992)