Meccanica Classica

Esercitazione 1 – Propagazione degli Errori

Alessandro Lodi, D.Phil.

Anno Accademico 2024–2025

Indice

1	Calcolo dell'Area di un Lotto Rettangolare	2
2	Determinazione del Volume di Scavo	3
3	Calcolo della Pendenza di un Tetto	4
4	Calcolo del Carico Strutturale su una Trave	5
5	Calcolo della Differenza di Livello tra Due Punti	6
6	(Avanzato) Calcolo del Modulo di Elasticità di un Materiale	7
7	(Avanzato) Propagazione degli Errori nella Funzione Seno	8

1 Calcolo dell'Area di un Lotto Rettangolare

Applicazione Pratica

I topografi edili spesso devono determinare l'area di appezzamenti di terreno per progetti di costruzione, divisione del terreno o valutazioni immobiliari.

Enunciato del Problema

Un topografo misura la lunghezza (L) e la larghezza (W) di un lotto rettangolare come:

- Lunghezza, $L = 50, 0 \,\mathrm{m} \pm 0, 1 \,\mathrm{m}$
- Larghezza, $W = 30,0 \,\mathrm{m} \pm 0,1 \,\mathrm{m}$

Calcolare l'area (A) del lotto e determinare l'incertezza nell'area dovuta agli errori di misura nella lunghezza e nella larghezza.

2 Determinazione del Volume di Scavo

Applicazione Pratica

Geometri e topografi calcolano volumi di scavo per le opere di fondazione. Una stima accurata permette una pianificazione di progetto efficace.

Enunciato del Problema

Un topografo misura la profondità (D) e l'area trasversale media (A) di un sito di scavo come:

- Profondità, $D = 10,0 \,\mathrm{m} \pm 0,2 \,\mathrm{m}$
- Area Trasversale, $A=200,0\,\mathrm{m}^2\pm5,0\,\mathrm{m}^2$

Calcolare il volume (V) dello scavo e determinare l'incertezza nel volume.

3 Calcolo della Pendenza di un Tetto

Applicazione Pratica

Misurazioni accurate della pendenza sono cruciali per la progettazione del tetto, la pianificazione del drenaggio e la valutazione dell'integrità strutturale.

Enunciato del Problema

Un topografo misura la corsa orizzontale (R) e la salita verticale (S) di un tetto come:

- Corsa, $R = 8,0 \,\mathrm{m} \pm 0,05 \,\mathrm{m}$
- Salita, $S = 2,0 \,\mathrm{m} \pm 0,02 \,\mathrm{m}$

Calcolare la pendenza (m) del tetto (definita come salita divisa per corsa) e determinare l'incertezza nella pendenza.

4 Calcolo del Carico Strutturale su una Trave

Applicazione Pratica

Determinare il carico sugli elementi strutturali garantisce la sicurezza e la conformità ai codici edilizi.

Enunciato del Problema

Un topografo calcola il carico totale (F) su una trave misurando la sua lunghezza (L) e il carico per unità di lunghezza (w) come:

- Lunghezza, $L = 6.0 \,\mathrm{m} \pm 0.01 \,\mathrm{m}$
- Carico per Unità di Lunghezza, $w = 500, 0 \,\mathrm{N/m} \pm 5, 0 \,\mathrm{N/m}$

Calcolare il carico totale sulla trave e determinare l'incertezza nel carico.

5 Calcolo della Differenza di Livello tra Due Punti

Applicazione nel Mondo Reale

I topografi edili spesso devono calcolare la differenza di livello tra due punti per la progettazione di sistemi di drenaggio, terrazze o strutture portanti.

Enunciato del Problema

Un topografo misura l'elevazione di due punti $(E_1 \ e \ E_2)$ su un sito di costruzione come:

- $\bullet\,$ Elevazione del Punto 1, $E_1=120,0\,\mathrm{m}\pm0,2\,\mathrm{m}$
- \bullet Elevazione del Punto 2, $E_2=115,0\,\mathrm{m}\pm0,3\,\mathrm{m}$

Calcolare la differenza di livello (ΔE) tra i due punti e determinare l'incertezza nella differenza.

6 (Avanzato) Calcolo del Modulo di Elasticità di un Materiale

Applicazione nel Mondo Reale

Il modulo di elasticità è fondamentale per valutare la resistenza e la deformabilità dei materiali utilizzati nelle costruzioni. I topografi possono collaborare con ingegneri per determinare le proprietà meccaniche dei materiali in loco.

Enunciato del Problema

Un ingegnere misura la deformazione (ϵ) di un campione di acciaio sotto una forza (F) e la lunghezza originale (L) come:

- Deformazione, $\epsilon = 0,002 \pm 0,0001$
- Forza, $F = 1000, 0 \text{ N} \pm 10, 0 \text{ N}$
- Lunghezza Originale, $L = 2.0 \,\mathrm{m} \pm 0.01 \,\mathrm{m}$

Il modulo di elasticità (E) è dato dalla formula:

$$E = \frac{F \cdot L}{A \cdot \epsilon}$$

dove A è l'area della sezione trasversale del campione, costante con $A=0,005\,\mathrm{m}^2\pm0,0001\,\mathrm{m}^2$. Calcolare il modulo di elasticità (E) e determinare l'incertezza nel valore calcolato, considerando sia esponenti positivi che negativi nella formula.

7 (Avanzato) Propagazione degli Errori nella Funzione Seno

Applicazione nel Mondo Reale

Nel settore della topografia edilizia, è comune utilizzare funzioni trigonometriche per calcolare componenti di vettori, angoli di inclinazione e altre grandezze geometriche.

Come vedremo in esercizi futuri, le componenti delle forze possono essere scomposte utilizzando il seno e il coseno degli angoli di inclinazione. Ad esempio, una forza \vec{F} inclinata di un angolo θ rispetto all'orizzontale avrà una componente verticale

$$F_v = |\vec{F}| \cdot \sin(\theta).$$

Un altro esempio riguarda la determinazione della pendenza. Se si conosce la differenza di altezza (h) e la distanza orizzontale (d), il seno dell'angolo può essere calcolato come:

$$\sin(\theta) = \frac{h}{\sqrt{h^2 + d^2}}.$$

Enunciato del Problema

Un topografo misura l'angolo di inclinazione (θ) di una collina rispetto all'orizzontale utilizzando un inclinometro. Supponiamo che:

$$\theta = 30^{\circ} \pm 1^{\circ}$$

Calcolare il seno dell'angolo e determinare l'incertezza associata.