Математична логіка і теорія алгоритмів

Спеціальність – 113 прикладна математика

Формальні моделі алгоритмів

Машина Тьюринга. Машина натуральнозначних регістрів. Нормальні алгоритми Маркова

- 1. Для заданої функції $f(x_1,...,x_n)$ побудувати машину Тьюрінга (МТ) в алфавіті $\{1,\lambda\}$, де λ порожній символ. Пояснити призначення станів МТ і перевірити роботу програми в емуляторі МТ.
- 2. Для заданої функції $f(x_1,...,x_n)$ скласти програму машини натуральнозначних регістрів (МНР). Пояснити ідею алгоритму МНР і перевірити роботу програми в емуляторі МНР.
- 3. Для заданої функції $f(x_1,...,x_n)$ записати алгоритм Маркова (НА). Для алгоритму Маркова пояснити вибір алфавіту, призначення продукцій і перевірити його роботу для деяких аргументів функції $f(x_1,...,x_n)$ в емуляторі нормальних алгоритмів Маркова.
- 4. Скласти звіт, який складається з:
 - документу, в якому наведено таблиці з відповідними програмами (не картинки з емуляторів) та тести,
 - відповідні програми в форматі емуляторів.

No	$f(x_1,,x_n)$
1	f(x,y,z) = x + y - 1
2	f(x,y,z) = y-3
3	$f(x,y) = \begin{cases} x - y, & \text{якщо } x \ge y, \\ 0, & \text{якщо } x < y. \end{cases}$
4	$f(x,y) = \begin{cases} 4, & \text{якщо } x + y > 2\\ 1, & \text{якщо } x + y \le 2 \end{cases}$
5	$f(x,y) = \begin{cases} 0, & \text{якщо } x \ge y, \\ 1, & \text{якщо } x < y. \end{cases}$
6	f(x,y,z) = x - 3
7	$f(x,y) = \begin{cases} x, & \text{якщо } x \ge y, \\ y, & \text{якщо } x < y. \end{cases}$

8	$f(x,y) = \begin{cases} 5, & \text{якщо } x \cdot y = 0 \\ y, & \text{якщо } x \cdot y \neq 0 \end{cases}$
9	$f(x,y,z) = \begin{cases} z-3, & \text{якщо } z \ge 3, \\ 0, & \text{якщо } z < 3. \end{cases}$
10	f(x,y,z,w) = y + z - 2
11	$f(x,y,z) = \begin{cases} 0, & \text{якщо } x = 0, \\ y - 1, & \text{якщо } x \neq 0. \end{cases}$
12	$f(x,y) = \begin{cases} y - x, & \text{якщо } x \le y, \\ 0, & \text{якщо } x > y. \end{cases}$
13	$f(x,y) = \begin{cases} 2, & \text{якщо } y > 1 \\ x - 3, & \text{якщо } y \le 1. \end{cases}$
14	f(x,y,z) = y - z + 3
15	$f(x,y,z) = \begin{cases} y-1, & \text{якщо } x = 0, \\ 0, & \text{якщо } x \neq 0. \end{cases}$
16	$f(x,y) = \begin{cases} 0, & \text{якщо } x \ge y, \\ 1, & \text{якщо } x < y. \end{cases}$
17	$f(x,y,z) = \begin{cases} x+z-3, & \text{якщо } z \ge 3, \\ 0, & \text{якщо } z < 3. \end{cases}$
18	f(x, y, z, w) = y + z + 1
19	$f(x,y) = \begin{cases} x-1, & \text{якщо } x - \text{парне,} \\ y+1, & \text{якщо } x - \text{непарне.} \end{cases}$
20	$f(x,y) = \begin{cases} x+y, & \text{якщо } x \ge y, \\ y-x, & \text{якщо } x < y. \end{cases}$
21	$f(x,y,z) = \begin{cases} 0, & \text{якщо } z = 0, \\ z - 1, & \text{якщо } z \neq 0. \end{cases}$
22	$f(x,y) = \begin{cases} x - y, & \text{якщо } x - \text{парне,} \\ 1, & \text{якщо } x - \text{непарне.} \end{cases}$

23	f(x,y,z)=2y
24	$f(x,y,z) = \begin{cases} z, & \text{якщо } x + y = 0 \\ 2, & \text{якщо } x \neq 0 \end{cases}$
25	$f(x,y,z) = \begin{cases} z-2, & \text{якщо } x \ge 2, \\ y, & \text{якщо } x < 2. \end{cases}$
26	f(x,y,z) = 2z
27	$f(x,y,z) = \begin{cases} z, & \text{якщо } x = 0 \\ 2, & \text{якщо } x \neq 0 \end{cases}$
28	$f(x) = \begin{cases} x - 2, & \text{якщо } x \ge 2, \\ 0, & \text{якщо } x < 2. \end{cases}$
29	f(x,y) = 2x - 1
30	$f(x,y) = \begin{cases} 2x, & \text{якщо } x - \text{парне,} \\ y, & \text{якщо } x - \text{непарне.} \end{cases}$
31	$f(x,y) = \begin{cases} 0, & \text{якщо } x \cdot y = 0, \\ x + y - 1, & \text{якщо } x \cdot y \neq 0. \end{cases}$
32	f(x,y,z) = y+3
33	$f(x,y) = \begin{cases} y-2, & \text{якщо } x = 0\\ 1, & \text{якщо } x \neq 0 \end{cases}$
34	f(x,y,z,w) = y + w - 1
35	$f(x,y) = \begin{cases} y-3, & \text{якщо } x = 1\\ x+2, & \text{якщо } x \neq 1 \end{cases}$
36	$f(x,y,z) = \begin{cases} y-1, & \text{якщо } z = 0\\ x+y, & \text{якщо } z \neq 0 \end{cases}$
37	$f(x, y, z, w) = \begin{cases} z, & \text{якщо } x > 2\\ w, & \text{якщо } x \le 2 \end{cases}$
38	f(x,y,z) = 2z - 1

39	f(x,y,z,w) = 4 - x - y
40	$f(x,y,z) = \begin{cases} z+y-2, & \text{якщо } x = 0\\ y, & \text{якщо } x \neq 0 \end{cases}$
41	$f(x, y, z) = \begin{cases} z, & \text{якщо } x + y = 3\\ 2, & \text{якщо } x = 0 \end{cases}$
42	$f(x,y,z) = \begin{cases} z-2, & \text{якщо } y \ge 2, \\ x, & \text{якщо } y < 2. \end{cases}$
43	$f(x, y, z, w) = \begin{cases} z, & \text{якщо } x + y > 1 \\ w, & \text{якщо } x + y \le 1 \end{cases}$
44	$f(x, y, z) = \begin{cases} 0, & \text{якщо } z < 2, \\ z - 3, & \text{якщо } z \ge 2. \end{cases}$
45	$f(x,y) = \begin{cases} x+y, & \text{якщо } x - \text{парне,} \\ 1, & \text{якщо } x - \text{непарне.} \end{cases}$

Література

- 1. Козакова Н. Л., Шевельова А. Є. Навчальний посібник до вивчення курсу «Теорія алгоритмів та автоматів» [Текст]/ Н.Л. Козакова, А.Є. Шевельова. Д.: РВВ ДНУ, 2015. –68 с.
- 2. Шевельова А.Є. Комп'ютерний практикум з теорії алгоритмів. Дніпро: Ліра, 2018 40 с.
- 3. Прийма С.М. Теорія алгоритмів: Навчальний посібник. Мелітополь: ФОП Однорог Т.В., 2018. 116 с.
- 4. Теорія алгоритмів: Посібник для студентів вищих навчальних закладів / І. Л. Бородкіна, Г. О. Бородкін. Київ: 2018. 213 с.
- 5. Ахо А., Хопкрофт Дж., Ульман Дж. Структуры данных и алгоритмы: Пер. с англ.: М.: Издательский дом «Вильямс», 2001 г. –384 с., ил.
- 6. Карпов Ю.Г. Теория автоматов СПб.: Питер, 2002 г. 224с., ил.
- 7. Новиков Ф. А. Дискретная математика для программистов. СПб.: Питер, 2001 г. 304 с.