1 Ćwiczenie 3: CSP

Proszę zobaczyć poniższy link, aby mieć wyobrażenie o tym, jak można przedstawić i rozwiązać CSP.

https://www.emse.fr/~picard/cours/ai/csp/index.html

Czerpiąc z przykładowego programu napisz program do poniższych zadań.

1. Napisz swój program reprezentujący następujący CSP, który ma zbiór zmiennych $\{X_1, X_2, X_3\}$; na obrazku pokazana jest domena każdej zmiennej i wszystkie ograniczenia między zmiennymi.

- 2. Załóżmy, że przy przypisywaniu wartości do zmiennych jako pierwszy wybierany jest X_2 . Napisz program w taki sposób, aby przy wyborze kolejnej zmiennej przestrzegał zasady minimalnych pozostałych wartości (Zobacz MRV z wykładu 5).
- 3. Napisz program, aby znaleźć rozwiązanie CSP.

2 Znajdowanie reguły z systemu decyzyjnego

Poniższy link pokazuje jedną metodę sekwencyjnego algorytmu pokrywania.

http://www.cs.bc.edu/~alvarez/ML/covering.html

Przeczytaj także strony 3-15 poniższego linku, aby dowiedzieć się, jak napisać algorytm pokrywania sekwencyjnego i jaką miarę wydajności wybrać.

Link do przeczytania: https://jmvidal.cse.sc.edu/talks/learningrules/sequentialcovering.html?style=White

Za pomocą pomysłu na napisanie programu do znajdowania reguł z systemu decyzyjnego wykonaj następujące zadanie:

2.1 Zdania do zrobienia

(4) można rozważyć dowolny z systemów decyzyjnych z pierwszego zestawu ćwiczeń. Można także rozważyć następujący przykład systemu decyzyjnego. Napisz program, który znajdzie regułę z danego systemu decyzyjnego zgodnie z następującą metodą pokrywania sekwencyjnego.

(5) Rozważmy przykład systemu decyzyjnego omawianego na wykładzie (SI-W6). Załóżmy, że chcemy opisać klasy decyzyjne odpowiadające 'tak' i 'nie' w odniesieniu do zbioru atrybutów $A = \{a_1, a_2, a_3\}$. Oznacza to, że podzbiory obiektów, które chcemy opisać, to odpowiednio $X_1 = \{o_1, o_2, o_3, o_7, o_9\}$ i X_2 $= \{o_5, o_6, o_8\}$. Znajdź opis (tj. przybliżenie dolne i przybliżenie górne) dla X_2 w odniesieniu do A. (ii) Znajdź podobnie opis dla X_1 i X_2 w odniesieniu do $B = \{a_1, a_2\}.$

Fig. 1. Rough set approximation based on decision system

	a_1	a_2	a_3	dec
o_1	wysoka	bliski	średni	tak
o_2	wysoka	bliski	średni	tak
03	wysoka	bliski	średni	tak
o_4	więcej niż średnia	daleki	silny	nie pewne
05	więcej niż średnia	daleki	silny	nie
06	więcej niż średnia	daleki	lekki	nie
07	wysoka	bliski	średni	tak
08	więcej niż średnia	daleki	lekki	nie
09	więcej niż średnia	daleki	lekki	tak

Sequential covering: Idea algorytmu pokrywającego obiekty

Szukamy w obiektach systemu decyzyjnego, począwszy od pierwszego, a skończywszy na ostatnim reguł długości jeden, które są niesprzeczne. Po znalezieniu reguły niesprzecznej, dany obiekt wyrzucamy z rozważań, pamiętając o tym, że dalej bierze udział w sprawdzaniu sprzeczności i może wspierać inne reguły.

Jeśli po przeszukaniu wszystkich obiektów, pozostają obiekty nie wyrzucone z rozważań, szukamy w nich kombinacji niesprzecznej długości dwa i postępujemy analogicznie jak w przypadku reguł pierwszego rzędu. Wyszukiwanie reguł niesprzecznych jest kontynuowane do momentu wyeliminowania wszystkich obiektów niesprzecznych. Jeśli w systemie pojawią się obiekty, które są sprzeczne na wszystkich deskryptorach, nie kreujemy z nich reguł.

 $o_1 | 1 | 1 | 1 | 1 | 3 | 1 | 1$ 1 3 2 1 1 1 o_3 Example 1. 3 3 2 1 1 o_5 2 1 1 1 2 $2 \mid 3 \mid$ 1 0 $o_8 | 1 | 1 |$ 2 2

 $|a_1|a_2|a_3|a_4|a_5|a_6|d$

```
Reguły: rząd-1: o_1 brak reguły o_2: (a_6=2)\Rightarrow (d=1)[3], wyrzucamy z rozważań obiekty o_2, o_4, o_6. o_3 brak reguły o_5 brak reguły o_7 brak reguły o_8: (a_5=4)\Rightarrow (d=1)[1], wyrzucamy z rozważań obiekt o_8. Reguły: rząd-2: o_1: (a_3=1)\wedge (a_4=1)\Rightarrow (d=1)[2], wyrzucamy z rozważań obiekt o_1. o_3: (a_3=1)\wedge (a_5=2)\Rightarrow (d=0)[1], wyrzucamy z rozważań obiekt o_5. o_5: (a_5=2)\wedge (a_6=1)\Rightarrow (d=0)[2], wyrzucamy z rozważań obiekt o_5. o_7: (a_3=2)\wedge (a_5=3)\Rightarrow (d=0)[2], wyrzucamy z rozważań obiekt o_7.
```