

IoT Embedded Platforms Introduction

- Motivation
- Definitions
- **©** Characteristics
- Energy
- Alternatives
- 2024 Gallery
- **6** Future

- Motivation
- Definitions
- **©** Characteristics
- Energy
- Alternatives
- © 2024 Gallery
- **6** Future

IoT Embedded Platforms

- Present of IT characterized by terms such as
 - Disappearing computer,
 - Pervasive computing,
 - Ambient intelligence,
 - Cyber-physical systems.
 - IoT
- Basic technologies:
 - Embedded Platforms
 - Communication technologies

It's the network!

Networked systems of embedded computers ... have the potential to change radically the way people interact with their environment by linking together a range of devices and sensors that will allow information to be collected, shared, and processed in unprecedented ways"

Source. Edward A. Lee, UC Berkeley,

https://www.youtube.com/watch?v=7zSCnnJE1cs

Augmented Reality, a vision for IoT?

- **The Immersed Human**
- © [...] "Real-life interaction between humans (physical space) and cyberspace, enabled by enriched input and output devices on the body and in the surrounding environment"

Source. J. Rabey UC Berkeley; Nicholas Negroponte MIT

https://www.youtube.com/watch?v=O9vAeeJZ9xM

- Motivation
- Definitions
- **©** Characteristics
- Energy
- Alternatives
- 2024 Gallery
- **6** Future

Definitions

Embedded Platforms: two Views

- Dortmund: [Peter Marwedel, 2006]
 - Systems embedded into a larger product
 - Bought not as information processing systems
- Øerkeley: [Edward A. Lee, 2006]
 - Integrates computation with physical processes
 - This is our IoT vision!
 - Cyber-Physical Systems (CPS)

- Motivation
- Definitions
- **©** Characteristics
- Energy
- Alternatives
- 2024 Gallery
- **6** Future

In IoT EP, we trust!

- Must be dependable
 - Systems can fail ...
 - ... If assumptions about workload turn out to be wrong
- Must be efficient
 - Code-size, Run-time and Energy
- Dedicated towards a certain application
 - Behavior at run-time used to maximize efficiency

Too Late is Wrong

- Many ES must meet real-time constraints
 - React to stimuli within a time interval
 - Right answers arriving too late are wrong
 - Hard = not meeting a constraint results in a catastrophe
 - Soft = any other time-constraints

No Interface!

- Dedicated user interface
 - No mouse, keyboard and screen
 - https://www.youtube.com/watch?v=Hp7YgZAHLos

Comparison

IoT Embedded Systems

- Few applications known at design-time
- Not programmable by end-user
- Fixed run-time requirements
- Additional computing power not useful
- Criteria = energy efficiency, predictability, ...

Comparison

General Purpose Computing

- Broad class of applications, usually not known at design time
- Prøgrammable by end-user
- No run-time requirements, best effort policy
- Faster is better
- Criteria = Cost, average speed

- Motivation
- **Definitions**
- **©** Characteristics
- Energy
- Alternatives
- 2024 Gallery
- **6** Future

Scaling

- The number of transistors doubles every two years, roughly speaking (18 months)
 - Moore's Law
- Why? ... Smaller Transistors are manufactured
- Smaller transistors run faster and consume less
 - Frequency follows Moore's Law
 - Computing performance follows Moore's Law
 - Power dissipation decrease follows Moore's Law
 - Typical total power dissipated at chip-level increases

Scaling Stopped!

But ... from 2004 to our days the scaling has stopped!!

- © Current technology node has a 48 nm gate pitch... it means that a TRT is
 - Lattice spacing is 0.543 nm
 - 89 atoms wide
 - Oxide layer is 2 atoms high

Source. Wikipedia

Exponential Scaling for Single Processor

Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond

Power Constrains Single-Processor Scaling

Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond

Transition to Multicore

- The problem is how to dissipate the generated heat
 - Practical limit is 100 W / cm2
 - Comparable to that of a nuclear plant
- Energy and power constraints have motivated the transition to *multiple processors* integrated onto a single chip

Multicore Performance Scaling

Multicore Performance Scaling

Multicore ... a Solution?

The trouble with multicore (D. Patterson)

Source. D. Patterson, The Trouble with Multicore. IEEE Spectrum. June 30th 2010.

🏂 The problem with threads (E. A. Lee)

Source. E. A. Lee, The Problem with Threads. IEEE Computer. Vol. 39, Issue 5, May 2006

 Homework: read the first paper and summarize the main ideas by Oct. 16th

Processor Consumption

- Approximate energy consumption in 28 nm processor
 - One 64-bit floating-point multiply-add = 50 pJ
 - Access to a 1K-256 bit on-chip SRAM = 50 pJ
 - Moving 64 bits 1mm on-chip = 64 pJ/mm
 - Reading 64 bits from external DRAM = 4000 pJ

Source: Bill Dally, Stanford University, Nvidia Chief Scientist

- Motivation
- **©** Definitions
- **©** Characteristics
- Energy
- Alternatives
- **%**/2024 Gallery
- **6** Future

Intuitive Idea

```
total = 0;
for (i = 0; i < N; i++) {
   total += M[i]
}</pre>
```

What are the available technologies today to solve this problem?

General Purpose Processors (GPP)

- Features
 - Harvard Architecture
 - Program memory
 - Data memory
 - General datapath
 - Large register file
 - General ALU

Specialized Processors (e.g. GPU)

- Optimized for particular processing applications
- Features
 - Harvard Architecture
 - Program memory
 - Data memory
 - Optimized datapath
 - Specialized functional units

Field-Programmable Gate Arrays (FPGAs)

- Designed to execute exactly a single program
 - Hardware accelerator
- **©**/Features
 - No program memory

GPP

Operating System

We focus on GPP-based embedded Platforms

- © GPPs are good at performing Operating System (OS)-like tasks

 - Linux Kernel! ... but depends on the available resources

- Best-effort policy to service processes
 - No guarantee deadline

GPP

ARM Processor

- **SA = Instruction Set Architecture**
 - Core: STM32L072CZ
 - ARM Cortex M0+
 - Ultra-low-power.
 - ARMv7

Recently, ARMv8 and ARMv9

Examples	Profiles
■ Cortex-A57 ■ Cortex-A53	
Cortex-A15 Cortex-A9 Cortex-A8 Cortex-A7 Cortex-A5	Cortex-A
Cortex-R7 Cortex-R5 Cortex-R4	Cortex-R
Cortex-M4 Cortex-M3 Cortex-M1 Cortex-M0+ Cortex-M0	Cortex-M
SC100 SC300	SecurCore

- Motivation
- Definitions
- **©** Characteristics
- Energy
- Alternatives
- [©]/2024 Gallery
- **6** Future

Rasperry Pi 5, €57

- https://www.raspberrypi.org/
- Quad-core ARM Cortex A-76 SoC
- Bluetooth 5.0
- 4Ø-pin GPIO header

© ESP32 Brick, €45

- https://www.tinkerforge.com/
- ESP32 Tensillica Xtensa dual-core LX6 microcontroller
- This Brick controls others "bricks" (add-on modules)

Renegade Elite, €69

- https://libre.computer/
- 2 ARM Cortex A-72 + 4 ARM Cortex A-53
- 4 Mali-T860 GPU
- PCle 60-pin expansión header

- Banana Pi BPI-F3, €75
 - http://www.banana-pi.org
 - Octa-core RISC-V (SpacemiT K1)

and many more

- Motivation
- Definitions
- **©** Characteristics
- Energy
- Alternatives
- 2024 Gallery
- **6** Future

Future

Anytime, anywhere

- Embedded Systems have overtaken market of PCs
- Pervasive computing:
 - Wearable computers
 - "Smart" Al-based consumer products
 - Intelligent buildings
 - Environmental Monitoring
 - Traffic control and communicating vehicles
- Embedded platforms and communication networks provide the basic technology for IoT