EVOLUTIONARY COMPUTING

M.K.H.Gunasekara AS2010377

Department of Computer Science University of Sri Jayewardenepura

OVERVIEW

- Introduction
- Problem
- Assumptions
- Player's Performance
- Solution

INTRODUCTION

- Genetic algorithms (GAs) are numerical optimization algorithms inspired by both natural selection and natural genetics
- Introduced by John Holland
- Genetic Algorithm promises results in NP-Complete problems

PROBLEM

• A cricket team for Sri Lanka has to be selected via genetic algorithms without the human intervention. The team must comprise a captain, a wicketkeeper, one all-rounder, four batsmen, two spinners and two fast bowlers. Assume that the Sri Lankan cricket board has a pool of players of captains, wicket-keepers, all-Rounders, batsmen, spinners and fast bowlers. The GA's task is to pick the best cricket team (11 players) out of the pool.

ASSUMPTIONS

- Pools of Players are mutually exclusive
- Size of the Pool is not static
- There is record of each player's performance
- There is no correlation between players

PLAYER'S PERFORMANCES

Like ICC Ratings

Test Allrounders

ICC Player Rankings								
Rank	Name	Country	Rating					
1	V.D. Philander	SA	366					
2	Shakib Al Hasan	BAN	364					
3	R. Ashwin	IND	358					
4	M.G. Johnson	AUS	280					
5	S.C.J. Broad	ENG	263					
6	S.R. Watson	AUS	246					
7	R.J. Harris	AUS	235					
8	T.G. Southee	NZ	214					
9	D.W. Steyn	SA	200					
10	J-P. Duminy	SA	185					
	Top 10							

CHROMOSOME REPRESENTATION

- Chromosome should be fixed size
- o Size 11

Captain	Wicket Keeper	All Rounder	Batsman 1	Batsman 2	Batsman 3	Batsman 4	Fast Bowler 2	Spin Bowler 1	Spin Bowler 2

11-genes

BIT REPRESENTATION

- In java we can represent each bit by using object references
- We can use Player's pool index

FITNESS FUNCTION

Summation of the player's performance

```
• Fitness= Captain * 3 +
WicketKeeper +
AllRounder +
Batsman(1) * 2 +
Batsman(2) * 2 +
Batsman(3) * 2 +
Batsman(4) * 2 +
FBowler(1) +
FBowler(2) +
SBowler(1) +
SBowler(2) +
```

Add Penalty for invalid chromosomes

SELECTION METHOD

- Tournament Selection method
- It always neglect invalid chromosomes
- This method is more efficient and leads to an optimal solution.

 Winner from a larger tournament will on average have a higher fitness than the winner of a smaller tournament

CROSSOVER OPERATOR

Single point Crossover

How to tackle invalid off springs

- Calculate the fitness of two off springs
- Then insert fittest off spring in to the new population

• Eg:

MUTATION OPERATOR

- Flipping Method
- Flipping of a bit involves changing value to available different value in the pool on a mutation chromosome generated

REPLACEMENT METHOD

 Used Steady State Update method with replacing worst member in the current generation

Increase the Genetic drift

ELITE PRESERVING OPERATOR

- Reserve current fittest team into next generation
- In this way, not only best solutions of the current population pass into the next generation, but they also participate with other members of the population in creating offspring

TUNING GENETIC ALGORITHM PARAMETERS

- Change Tournament size
- Change Crossover probability
- Change Mutation probability

IMPLEMENTATION

17

THANK YOU