РАЗБОР КР по ДМ (2 семестр)

1. Используя метод Магу, найти (а) все максимальные внутренне устойчивые множества; (б) все минимальные внешне устойчивые множества вершин орграфа D, заданного матрицей смежности A(D); (в) ядра (или доказать, что их нет).

$$A(D) = \begin{bmatrix} a_{ij} \end{bmatrix}_{4\times4} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

Решение. а) Составляем формулу математической логики для нахождения максимальных внутренне устойчивых множеств:

$$F_1 = \underset{a_{ij}=1}{\&} (\overline{Y}_i \vee \overline{Y}_j) = (\overline{Y}_1 \vee \overline{Y}_2) \& (\overline{Y}_2 \vee \overline{Y}_4) \& (\overline{Y}_3 \vee \overline{Y}_2) \& (\overline{Y}_3 \vee \overline{Y}_4) \& (\overline{Y}_1 \vee \overline{Y}_4) \equiv$$

(упрощаем F_1 , используя равносильности: $A \lor (B \& C) \equiv (A \lor B) \& (A \lor C)$, опускаем символ &)

$$\equiv (\overline{Y}_2 \vee \overline{Y}_1 \overline{Y}_3 \overline{Y}_4) (\overline{Y}_4 \vee \overline{Y}_1 \overline{Y}_3) \equiv$$

(приводим к ДНФ, а затем к сокращенной ДНФ, используя законы поглощения: $A \equiv A \lor (A \& B)$, $A \equiv A \& A$, $A \equiv A \lor A$, пока это возможно):

$$\equiv \overline{Y}_2 \overline{Y}_4 \vee \overline{Y}_1 \overline{Y}_2 \overline{Y}_3 \vee \overline{Y}_1 \overline{Y}_3 \overline{Y}_4.$$

Тогда каждому дизъюнктивному члену полученной сокращенной ДНФ соответствует максимальное внутрение устойчивое множество (номера вершин этого множества не присутствуют среди номеров переменных этого члена): $\{v_1, v_3\}, \{v_4\}, \{v_2\}$.

б) Составляем формулу математической логики для нахождения минимальных внешне устойчивых множеств:

$$F_2 = \&(Y_i \lor \bigvee_{a_{ij}=1} Y_j) = (Y_1 \lor Y_2) \& (Y_2 \lor Y_4) \& (Y_3 \lor Y_2 \lor Y_4) \& (Y_4 \lor Y_1) \equiv$$

(упрощаем F_2 , используя равносильности: $A \equiv A \& (A \lor B)$,

$$A \lor (B \& C) \equiv (A \lor B) \& (A \lor C)$$
, опускаем символ &)

$$\equiv (Y_1 \lor Y_2)(Y_2 \lor Y_4)(Y_4 \lor Y_1) \equiv (Y_2 \lor Y_1Y_4)(Y_4 \lor Y_1) \equiv$$

(приводим к ДНФ, а затем к сокращенной ДНФ, используя законы поглощения: $A \equiv A \lor (A \& B), A \equiv A \& A, A \equiv A \lor A$, пока это возможно):

$$\equiv Y_2 Y_4 \vee Y_1 Y_2 \vee Y_1 Y_4.$$

Тогда каждому дизъюнктивному члену полученной сокращенной ДНФ соответствует минимальное внешне устойчивое множество (номера вершин этого множества присутствуют среди номеров переменных этого члена): $\{v_2, v_4\}, \{v_1, v_2\}, \{v_1, v_4\}.$

в) Для нахождения ядер воспользуемся утверждением о том, что ядро (если оно существует) является одновременно максимальным внутренне устойчивым множеством, а также минимальным внешне устойчивым множеством. Среди найденных множеств таких не оказалось. Следовательно, ядер нет.

2. Решить уравнение
$$\pi^{77} \cdot x \cdot \sigma = \tau$$
, где $\pi, \sigma, \tau \in S_7$. $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 5 & 2 & 4 & 1 & 6 \end{pmatrix}$, $\sigma = (2 & 7 & 3 & 5)$, $\tau = (1 & 6 & 2 & 5 & 4)$,

x — неизвестная перестановка, которую нужно представить как произведение независимых циклов.

Решение.
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 5 & 2 & 4 & 1 & 6 \end{pmatrix} = (1 & 3 & 5 & 4 & 2 & 7 & 6), x = \pi^{-77} \cdot \tau \cdot \sigma^{-1}.$$
 Заметим, что $\pi^{-77} = (\pi^7)^{-11} = e, x = e \cdot \tau \cdot \sigma^{-1} = (1 & 6 & 2 & 5 & 4)(2 & 5 & 3 & 7) = (1 & 6 & 2 & 4)(3 & 7 & 5).$

- 3. Для группы G самосовмещений ромба (не являющегося квадратом):
- а) Указать единичный и образующие элементы.
- б) Составить таблицу Кэли.
- в) Указать изоморфную G подгруппу $H \subseteq S_4$.
- г) Определить подгруппы индекса 2 группы G.

Решение. Перечислим элементы группы преобразований ромба $G = \{e, \pi, s_1, s_2\}$. Порядок выполнения операций $\alpha \circ \beta$: сначала к фигуре применяется преобразование β , а затем к полученной фигуре применяется преобразование α . Пример:

Рис. 1

- а) Единичным элементом является преобразование e, при котором оставляем фигуру на месте. Образующие элементы определим, исходя из таблицы Кэли.
 - б) Действуя в соответствии с рис. 1, заполним таблицу Кэли:

0	=	e	π	s_1	s_2
==	=				==
е	=	е	π	s_1	s_2
π	=	π	e	s_2	S_1
s_1	=	s_1	s_2	e	π
s_2	=	s_2	s_1	π	e

Теперь из построенной таблицы заключаем, что

$$G = <\pi, s_1> = <\pi, s_2> = < s_1, s_2>,$$

т.е. имеем три пары образующих элементов.

в) Поставим в соответствие каждому преобразованию $\alpha \in G$ перестановку φ_{α} из S_4 , где для любой угловой точки $i \in \{1,2,3,4\}$ $\varphi_{\alpha}(i)$ — номер угловой точки фигуры в исходном положении, в которую перешла точка i после преобразования. В соответствии с этим имеем:

$$\varphi_{\pi} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = (1 & 3)(2 & 4), \ \varphi_{s_1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} = (2 & 4),$$
$$\varphi_{s_2} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} = (1 & 3), \ \varphi_e = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = e \in S_4.$$

Таким образом, φ_{α} : $G \to H = \{e, (1\ 3), (2\ 4), (1\ 3)(2\ 4)\} \subset S_4$. Очевидно, что H – подгруппа группы S_4 . Покажем на примере выполнение основной формулы изоморфизма: $\forall \alpha, \beta \in G \ \varphi_{\alpha \circ \beta} = \varphi_{\alpha} \varphi_{\beta}$. Действительно,

$$\varphi_{\pi \circ s_1} = \varphi_{s_2} = (1\ 3), \varphi_{\pi} \varphi_{s_1} = (1\ 3)(2\ 4)(2\ 4) = (1\ 3) = \varphi_{\pi \circ s_1}.$$

г) Подгруппой индекса 2 для группы G с |G| = 2n называется любая ее подгруппа H такая, что |H| = n. В нашем примере такими подгруппами будут:

$$<\pi>=\{e,\pi\}, < s_1>=\{e,s_1\}, < s_2>=\{e,s_2\}.$$

4. Выяснить, является ли данная алгебраическая структура полем, кольцом, содержит ли делители нуля?

- (a) (\mathbb{Z} , +, ·) является коммутативным кольцом, содержит $1 \neq 0$ и не имеет делителей нуля, то есть является целостным кольцом ($ab = 0 \Rightarrow$ или a = 0, или b = 0). Не является полем, так как ($\mathbb{Z} \setminus \{0\},1$) не является группой, например, элемент $2 \in \mathbb{Z} \setminus \{0\}$ не имеет обратного на множестве целых чисел \mathbb{Z} .
- (б) $(2\mathbb{Z}, +, \cdot)$ аналогично $(\mathbb{Z}, +, \cdot)$ является коммутативным кольцом, не имеет делителей нуля и не является полем. Но в отличие от $(\mathbb{Z}, +, \cdot)$ не содержит 1 = > не является целостным кольцом. Аналогично рассматривается любое кольцо $(n\mathbb{Z}, +, \cdot)$, где $n \in \mathbb{N} \setminus \{1\}$.

- (в) (\mathbb{Q} , +, ·) поле (\mathbb{Q} множество несократимых дробей вида $\frac{m}{n}$, где $n \in \mathbb{N}$, $m \in \mathbb{Z}$). Тогда $\forall q = \frac{m}{n} \neq 0 \Rightarrow m \neq 0, n \neq 0 \Rightarrow q^{-1} = \frac{n}{m}$ (в случае необходимости отрицательный знак из знаменателя переносим в числитель), т.е. является полем, поскольку каждый отличный от 0 элемент имеет обратный, а остальные свойства аналогичны (\mathbb{Z} , +, ·).
- (Γ) (\mathbb{R} , +, ·) поле, поскольку каждый отличный от 0 элемент имеет обратный, а остальные свойства аналогичны (\mathbb{Z} , +, ·);
- (д) (\mathbb{C} , +, \cdot) поле: $\forall z = x + iy \neq 0$ (т. е. при $x^2 + y^2 \neq 0$) имеем: $z^{-1} = \frac{1}{x+iy} = \frac{x}{x^2+y^2} i\frac{y}{x^2+y^2} \in \mathbb{C}$;
- (е) $\{a+b\sqrt{2}|\ a,b\in\mathbb{Z}\}=\mathbb{Z}+\sqrt{2}\mathbb{Z}$. Заметим, что $\mathbb{Z}+\sqrt{2}\mathbb{Z}\subset\mathbb{R}; x,y\in\mathbb{Z}+\sqrt{2}\mathbb{Z}\Rightarrow (x-y)\in\mathbb{Z}+\sqrt{2}\mathbb{Z}, xy\in\mathbb{Z}+\sqrt{2}\mathbb{Z}$ (действительно, для $x=a+b\sqrt{2}, y=c+d\sqrt{2}, x-y=(a-c)+(b-d)\sqrt{2}\in\mathbb{Z}+\sqrt{2}\mathbb{Z}, xy=(a+b\sqrt{2})(c+d\sqrt{2})=(ac+2bd)+(ad+bc)\sqrt{2}\in\mathbb{Z}+\sqrt{2}\mathbb{Z})=>\mathbb{Z}+\sqrt{2}\mathbb{Z}$ является подкольцом кольца \mathbb{R} . Это кольцо содержит $1=1+0\cdot\sqrt{2}$ и не имеет делителей нуля (поскольку \mathbb{R} целостное кольцо), то есть кольцо $\mathbb{Z}+\sqrt{2}\mathbb{Z}$ является целостным. Не является полем, так как, например, у элемента $2=2+0\sqrt{2}\in\mathbb{Z}+\sqrt{2}\mathbb{Z}$ не существует обратного в $\mathbb{Z}+\sqrt{2}\mathbb{Z}$ ($1/2\notin\mathbb{Z}+\sqrt{2}\mathbb{Z}$).
- (ж) Числа вида $a+\sqrt{2}b$, $a,b\in\mathbb{Q}$. Обозначим это множество $\mathbb{Q}+\sqrt{2}\mathbb{Q}$. Как и в случае (д) является целостным подкольцом кольца \mathbb{R} . Если $a+\sqrt{2}b\neq 0$, то $a^2-2b^2\neq 0\Rightarrow \left(a+b\sqrt{2}\right)^{-1}=\frac{1}{a+b\sqrt{2}}=\frac{a-b\sqrt{2}}{a^2-2b^2}=\frac{a}{a^2-2b^2}+\sqrt{2}\frac{b}{2b^2-a^2}\in\mathbb{Q}+\sqrt{2}\mathbb{Q}$.

Покажем справедливость неравенства $a^2-2b^2\neq 0$. Предположим обратное, т.е. пусть $a^2-2b^2=0$. Тогда, в силу $a+\sqrt{2}b\neq 0$ имеем: $a\neq 0$, $b\neq 0$ (например, если a=0, то из условия $a^2-2b^2=0$ заключаем, что и b=0, откуда $a+\sqrt{2}b=0$, т.е. пришли к противоречию), а следовательно, $\frac{a}{b}=-\sqrt{2}$, откуда $\frac{|a|}{|b|}=\sqrt{2}$. Поскольку $\frac{|a|}{|b|}\in \mathbb{Q}$, то $\sqrt{2}=\frac{|a|}{|b|}=\frac{m}{n}$, где $n,m\in \mathbb{Z}$; n,m>0 (поскольку $a\neq 0$, $b\neq 0$). Будем считать, что $\frac{m}{n}$ — несократимая дробь, т.е. НОД(n,m)=1. Из $\frac{m}{n}=\sqrt{2}$ получаем $m^2=2n^2$, откуда m делится на 2, а следовательно m^2 делится на 4. Таким образом, $2n^2$ делится на 4, а следовательно, n делится на 2, т.е. n,m имеют общий делитель, а это противоречит условию НОД(n,m)=1.

- (3) Комплексные числа вида a+bi с целыми a и b. Рассуждаем как в случае (e). Является целостным подкольцом поля комплексных чисел, но полем не является, поскольку, например, у элемента $2=2+0\cdot i$ не существует обратного.
- (и) Комплексные числа вида a+bi с рациональными a и b. Является не только целостным кольцом, но и полем, так как в случае $a+bi\neq 0$ (откуда $a^2+b^2\neq 0$) имеем

$$(a+bi)^{-1}=rac{1}{a+bi}=rac{a-bi}{a^2+b^2}=rac{a}{a^2+b^2}-rac{b}{a^2+b^2}i$$
, где $rac{a}{a^2+b^2}$, $rac{b}{a^2+b^2}$ - рациональные числа.

- (к) Квадратных матриц порядка n с целыми (рациональными, действительными, комплексными числами) элементами относительно сложения и умножения матриц. Очевидно, является кольцом, но не целостным, так как имеются делители нуля. Например, $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
- (л) Функции с действительными значениями, непрерывные на отрезке [-1, 1] относительно операции сложения и умножения (f+g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x). Является кольцом, но не целостным (см. на рис. 2 делители нуля)

Рис. 2

(м) Многочлены от одного неизвестного х с целыми (рациональными, действительными) коэффициентами относительно обычных операций сложения и умножения многочленов являются целостным кольцом. Для любого многочлена $p(x) = a_0 + a_1x + \ldots + a_nx^n$, где $a_n \neq 0$, обозначим deg p = n, coef $p = a_n$.

Тогда $\forall p(x) \neq 0, g(x) \neq 0$ выполняется:

соеf $pg = \operatorname{coef} p$ соеf g, $\deg pg = \deg p + \deg g$, (1) откуда следует, что рассматриваемое кольцо не имеет делителей нуля, а единицей является p(x) = 1, т.е. является целостным. Полем не является, так как p(x) = x не имеет обратного многочлена (следует из (1)). Действительно, если найдется многочлен q(x) такой, что xq(x)=1, то $q(x) \neq 0$ и в силу (1) $0 = \deg 1 = \deg(xq(x)) = \deg x + \deg q(x) \geq 1$, т.е. пришли к противоречию.

5. Даны: транспортная сеть D=(V,X), поток φ в этой сети. Определить: (а) является ли φ полным потоком; (б) орграф приращений $I(D,\varphi)$; (в) является ли φ максимальным потоком; (г) увеличить поток φ до максимального.

Решение. (а) Строим вспомогательный орграф \vec{D} , исключая из транспортной сети D насыщенные дуги (помеченные знаком \times):

Если в \acute{D} сток не достижим из источника, то ϕ – полный поток. В нашем примере это условие выполняется, следовательно, поток ϕ – полный.

(б) Строим орграф приращений $I(D,\varphi)$ (или модифицированный $\tilde{I}(D,\varphi)$):

- (в) По теореме Форда Фалкерсона φ максимальный поток, тогда и только тогда, когда в $I(D,\varphi)$ сток не достижим из источника. Находим в $I(D,\varphi)$ (или в $\tilde{I}(D,\varphi)$) простую цепь $\eta=v_1v_3v_2v_4$ из источника в сток.
- (г) Пропускаем по цепи $\eta=v_1v_3v_2v_4$ дополнительный поток максимально возможной величины 3 (до насыщения дуги v_1v_3). В результате получаем новый поток φ_1 :

 $arphi_1$ Для проверки потока $arphi_1$ на максимальность строим $I(D,arphi_1)$ (или $ilde{I}(D,arphi_1)$): В $I(D, \varphi_1)$ (или в $\tilde{I}(D, \varphi_1)$) сток не достижим из источника. Следовательно, φ_1 – максимальный поток.

