Redex, Reductum y Regla β en el Paradigma Funcional

Daniel Rios Rodriguez Lizeth Barrios Retana

¿Qué es un Redex?

1 Definición

Un redex es una expresión que puede ser reducida aplicando una regla de evaluación.

2 Forma de Redex

En el cálculo lambda, un redex toma la forma de una aplicación de función, donde una función es aplicada a un argumento.

3 Ejemplo

 $(\lambda x. x + 1)$ 3 es un redex, donde " $(\lambda x. x + 1)$ " es la función y "3" es el argumento.

g the lambda

ulus with boolear false | test | \x.e | e | test | \x.e

$$\frac{e1 --> e1'}{e1 e2 e3 --> test e1' e2 e3}$$
 (test2) $\frac{e}{2' e3}$ (test2) $\frac{e}{test v1 v2 e}$

the other lambda calculus ru

test false

st-true)

 $(\lambda x. E M) \Rightarrow E\{M/x\}$

There are two possible evaluation orders:

$$\lambda x.(\lambda x.x^{2} (\lambda x.x+1 x))$$

$$\Rightarrow \lambda x.(\lambda x.x^{2} x+1)$$

$$\Rightarrow \lambda x.x+1^{2}$$

Applicative Order

¿Qué es el Reductum?

Definición

El reductum es el resultado de reducir un redex mediante la aplicación de una regla de evaluación.

Proceso

Cuando se aplica una función a un argumento, el redex se reduce al valor resultante de la evaluación de la función con ese argumento.

Ejemplo

 $(\lambda x. x + 1) 3 \Rightarrow 3 + 1 \Rightarrow 4,$ donde el reductum es "4".

$$= ((\lambda a.a)\lambda bc.b)(x)\lambda e.f$$

$$= (\lambda bc.b)(x)\lambda e.f$$

$$= (\lambda c.x)\lambda e.f$$

La Regla β

1 2 3

Definición

La regla β describe cómo se realiza la evaluación de una aplicación de función en el cálculo lambda.

Proceso

Se reemplaza la variable ligada por el argumento en el cuerpo de la función.

Ejemplo

$$(\lambda x. x + 1) 3 \Rightarrow [3/x](x + 1) \Rightarrow 3 + 1 \Rightarrow 4$$

Aplicación de la Regla β

Reducción Paso a Paso

Para reducir una aplicación de función, se aplica la regla β paso a paso hasta obtener el reductum.

Equivalencia de Expresiones

Las expresiones reducidas por la regla β son equivalentes, ya que producen el mismo resultado.

Importancia en Programación Funcional

La regla β es esencial para entender la evaluación de funciones en lenguajes de programación funcional.

Ejemplos de Redex y Reductum

Cálculo Lambda

En el cálculo lambda, los redex y reductum son conceptos fundamentales.

Lenguajes Funcionales

Estos conceptos también se aplican a lenguajes funcionales como Haskell.

Evaluación de Expresiones

El entendimiento de redex y reductum es crucial para comprender la evaluación de expresiones funcionales.

Reducción de Expresiones

La reducción de redex a reductum es un proceso clave en el paradigma funcional.

Beneficios de Comprender Redex y Reductum

—— Entendimiento Profundo

Dominar estos conceptos proporciona una comprensión más profunda del paradigma funcional.

2 — Depuración de Código

Conocer redex y reductum facilita la depuración de programas funcionales.

3 — Optimización de Rendimiento

Entender la reducción de redex puede llevar a optimizaciones de rendimiento.

Pause, step ov

```
nal Help
                     app.js - myExpressApp -
             JS app.js
                     var createError =
                     var express = red
                     var path = requir
                     var cookieParser
                     var logger = requ
                     var indexRouter =
                     var usersRouter :
               10
                     var app = express
               11
  RUNNING
                     // view engine se
                     app.set('views',
                     ann.set('view eng
              DEBUG CONSOLE
                                  Filter (
                C:\Program Files\node
                                 Debug
essApp)
```

Aplicaciones Prácticas

Lenguajes Funcionales

Redex y reductum se aplican a lenguajes como Haskell, Erlang y Lisp.

Compiladores y Interpretes

Estos conceptos son fundamentales para el diseño de compiladores e intérpretes funcionales.

Teoría de la Computación

El cálculo lambda, que utiliza redex y reductum, es un pilar de la teoría de la computación.