PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

Unit 3

Chomsky Normal Norm

1)	Convert the fo	ollowing (CFG into a	an equiva	lent CF(G in C	Choms	ky normal	form
	C \ ACAIDI	1							

$$S \rightarrow ASA \mid B \mid \lambda$$

$$A \rightarrow 00 \mid \lambda$$

2) Convert the following grammar to Chomsky Normal Form

$$S \rightarrow X \mid X Y a \mid X b X$$

$$X \rightarrow X a \mid \lambda$$

$$Y \rightarrow Y b \mid YZ$$

$$Z \rightarrow Z Y \mid Z X \mid b Y$$

3) If ${\bf G}$ is the grammar in CNF, then fill the following table

W	w	Length of derivation	Max depth of the tree	Min depth of the tree
λ				
a_1				
$a_1 a_2$				
$a_{1}a_{2}a_{3}$				
$a_1a_2a_3 a_4$				
$a_{1}a_{2}a_{3} \ a_{4} \ a_{5}$				
$a_1 a_2 a_3 a_4 a_5 a_6$				

4) Convert the following CFG to CNF $S \rightarrow aAa \mid bBb \mid BB$ $A \rightarrow C$ $B \rightarrow S \mid A$ $C \rightarrow S \mid \lambda$ 5) Design a CNF grammar for the set of strings of balanced parentheses. CYK 1) Determine whether the string 00111 is the member of the language generated by the grammar $S \rightarrow XY$ $X \rightarrow YY \mid 0$ $Y \rightarrow XY \mid 1$ 2) Determine whether the string 0011 is the member of the language generated by the grammar $S \rightarrow XY$ $X \rightarrow YY \mid 0$ $Y \rightarrow XY \mid 1$ 3) Determine whether the string 11000 is the member of the language generated by the grammar $S \rightarrow PQ \mid QR$ $P \rightarrow QP \mid 0$ $Q \rightarrow RR \mid 1$ $R \rightarrow PQ \mid 0$ 4) Determine whether the string 00000 is the member of the language generated by the grammar $S \rightarrow PQ \mid QR$ $P \rightarrow QP \mid 0$ $Q \rightarrow RR \mid 1$ $R \rightarrow PQ \mid 0$ 5) Determine whether the string aabbbcc is the member of the language generated by

the grammar

S -> AB

C -> a

D -> b

 $E \rightarrow c$

F -> AD

Greibach Normal Form

- 1) Give the relationship between the length of a string and the length of its derivation if the grammar is given in GNF?
- 2) Convert the grammar into Greibach normal form.

 $S \rightarrow XY1|0$

 $X \to 00 X | X$

 $Y \rightarrow 1X1 | \lambda$

3) Convert the following grammar G into Greibach Normal Form (GNF)

 $S \rightarrow CA|BB$

 $B \rightarrow b|cB$

 $C \rightarrow p$

 $A \rightarrow a$

4) Consider the following CFG, find the number of productions in the grammar after it is converted into Greibach normal form.

$$S \rightarrow XX|a$$

$$X \rightarrow aaS \mid b$$

5) Convert the grammar

$$S \rightarrow XY1 \mid 0$$

$$X \rightarrow 00X \mid 1$$

$$Y \rightarrow 1X1 \mid 1YY \mid XYY \mid 0$$

CFG to PDA

- 1) Construct PDA for the following grammar $S \rightarrow 00S1 \mid 0S01 \mid 01S0 \mid 0S10 \mid 10S0 \mid 1S00 \mid \lambda$
- 2) Give an instantaneous description to show that the grammar below accepts the string 0000101000100011

$S \rightarrow 00S1 \mid 0S01 \mid 01S0 \mid 0S10 \mid 10S0 \mid 1S00 \mid \lambda$

- 3) Construct PDA for the following grammar
 - $S \rightarrow 0AB1$
 - $A \rightarrow BAS \mid \lambda$
 - $B \rightarrow 0 \mid 1$
- 4) Construct PDA for the following
 - $S \rightarrow 0XYX \mid 0YY$
 - $X \rightarrow 1X \mid 1$
 - $Y \rightarrow 2Y \mid 2$
- 5) Construct PDA for the following
 - $S \rightarrow aSb \mid a \mid b \mid \lambda$