

Bayes' Rule & Random Variables

Lecture 4

STA 371G

Announcements

- Homework 1 is due tonight at 11:59 PM (through MyStatLab)
- Quiz 1 is Tuesday night at 6:30 PM (covers material through last week — not today)

1. Bayes' Rule

Discrete random variables

3. Continuous random variables: Normal distributions

 COVID testing is important for public health, but COVID tests are not perfect

- COVID testing is important for public health, but COVID tests are not perfect
- The Beckman Coulter Access SARS-CoV-2 IgG test has the following properties:

- COVID testing is important for public health, but COVID tests are not perfect
- The Beckman Coulter Access SARS-CoV-2 IgG test has the following properties:
 - If you have COVID, there is a 96.8% chance the test will show a positive result

- COVID testing is important for public health, but COVID tests are not perfect
- The Beckman Coulter Access SARS-CoV-2 IgG test has the following properties:
 - If you have COVID, there is a 96.8% chance the test will show a positive result
 - If you do not have COVID, there is a 99.6% chance the test will show a negative result

- COVID testing is important for public health, but COVID tests are not perfect
- The Beckman Coulter Access SARS-CoV-2 IgG test has the following properties:
 - If you have COVID, there is a 96.8% chance the test will show a positive result
 - If you do not have COVID, there is a 99.6% chance the test will show a negative result
- Let's suppose that 1% of people in the population being tested actually have COVID

$$C = \text{has COVID}, \qquad T = \text{tests positive for COVID}$$

We know P(T|C) = 0.968, but we really want to know is P(C|T)!

For any events A and B,

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

For any events A and B,

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$
$$= \frac{P(B|A)P(A)}{P(B \text{ and } A) + P(B \text{ and } A^c)}$$

For any events A and B,

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

$$= \frac{P(B|A)P(A)}{P(B \text{ and } A) + P(B \text{ and } A^c)}$$

$$= \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}$$

For any events A and B,

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

$$= \frac{P(B|A)P(A)}{P(B \text{ and } A) + P(B \text{ and } A^c)}$$

$$= \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}$$

Bayes Rule allows us to "reverse the conditioning" and find P(A|B) when we know P(B|A).

Bayes Rule says

$$P(C|T) = \frac{P(T|C)P(C)}{P(T|C)P(C) + P(T|C^c)P(C^c)}$$

We know

$$P(T|C) = 0.968$$
, $P(T^{c}|C^{c}) = 0.996$, $P(C) = 0.01$

Bayes Rule says

$$P(C|T) = \frac{P(T|C)P(C)}{P(T|C)P(C) + P(T|C^{c})P(C^{c})}$$

We know

$$P(T|C) = 0.968$$
, $P(T^{c}|C^{c}) = 0.996$, $P(C) = 0.01$

So:

•
$$P(C^c) = 1 - P(C) = 0.99$$

Bayes Rule says

$$P(C|T) = \frac{P(T|C)P(C)}{P(T|C)P(C) + P(T|C^c)P(C^c)}$$

We know

$$P(T|C) = 0.968$$
, $P(T^{c}|C^{c}) = 0.996$, $P(C) = 0.01$

So:

•
$$P(C^c) = 1 - P(C) = 0.99$$

•
$$P(T|C^c) = 1 - P(T^c|C^c) = 0.004$$

$$P(C|T) = \frac{P(T|C)P(C)}{P(T|C)P(C) + P(T|C^{c})P(C^{c})}$$

$$= \frac{(0.968)(0.01)}{(0.968)(0.01) + (0.004)(0.99)}$$

$$= 0.71$$

 If you have COVID, there is a 96.8% chance the test will show a positive result

- If you have COVID, there is a 96.8% chance the test will show a positive result
- If you do not have HIV, there is a 99.6% chance the test will show a negative result

- If you have COVID, there is a 96.8% chance the test will show a positive result
- If you do not have HIV, there is a 99.6% chance the test will show a negative result
- But if you test positive there is only a 71% chance you have COVID!

- If you have COVID, there is a 96.8% chance the test will show a positive result
- If you do not have HIV, there is a 99.6% chance the test will show a negative result
- But if you test positive there is only a 71% chance you have COVID!
- This is counterintuitive, and is due to the low 1% "base rate" of people that actually COVID

- If you have COVID, there is a 96.8% chance the test will show a
 positive result
- If you do not have HIV, there is a 99.6% chance the test will show a negative result
- But if you test positive there is only a 71% chance you have COVID!
- This is counterintuitive, and is due to the low 1% "base rate" of people that actually COVID
- It's surprisingly low because of the way we as humans are wired (it even has a name: "base rate fallacy")

Another way to look at it

Another way to look at it

Of the 9680 + 3960 = 13640 people that tested positive, only 9680 (71%) are actually COVID positive!

Think of Bayes' Rule as a way to update our thinking based on new information:

 $P(C) \leftarrow$ Prior probability $P(C|T) \leftarrow$ Posterior probability (includes new information)

.....

Home Video World US & Canada UK Business Tech Science Stories Entertainment & Arts Health More •

Magazine

Do doctors understand test results?

By William Kremer BBC World Service

① 7 July 2014

Are doctors confused by statistics? A new book by one prominent statistician says they are - and that this makes it hard for patients to make informed decisions about treatment. Health Check

The pigeon will see you now

Top Stories

China 'as big a US threat' as

The CIA boss tells the BBC he is as worried about Chinese efforts to influence the West as he is about Russia.

③ 9 minutes ago

'We'll do our damnedest to steal secrets'

() 8 hours ago

What really happened after this photo was taken

(7 hours ago

Features

What really happened after this photo was taken

Just 21% of gynecologists got the right answer!

Just 21% of gynecologists got the right answer!

In other words, this is hard, and it goes against our intuition!

1. Bayes' Rule

2. Discrete random variables

3. Continuous random variables: Normal distributions

Random variables

Definition

A random variable is a variable that can take on different numeric values with different probabilities. The distribution of a random variable indicates each possible outcome with its corresponding probability.

iPhone prices

Let *T* be the possible prices, in dollars, of a randomly-selected iPhone 12 sold in October-November 2020. The probabilities come from the actual percentage sold:

Model	Price (x)	P(T=x)
iPhone 12	\$799	0.35
iPhone 12 Pro	\$999	0.29
iPhone 12 Pro Max	\$1,099	0.28
iPhone 12 Mini	\$699	0.08

iPhone prices

Let *T* be the possible prices, in dollars, of a randomly-selected iPhone 12 sold in October-November 2020. The probabilities come from the actual percentage sold:

Model	Price (x)	P(T=x)
iPhone 12	\$799	0.35
iPhone 12 Pro	\$999	0.29
iPhone 12 Pro Max	\$1,099	0.28
iPhone 12 Mini	\$699	0.08

How would we quantify the price of a "typical" or "average" iPhone 12? And how would we quantify how different the prices paid by different customers are?

Expected value

The expected value represents the long-run average price if we selected iPhones over and over an infinite number of times:

$$E(T) = \sum_{\text{All prices } x} x \cdot P(T = x)$$

$$= 700 \cdot 0.35 + 999 \cdot 0.29 + 1099 \cdot 0.28 + 699 \cdot 0.08$$

$$= \$933.$$

It can be thought of as the price of a "typical" iPhone.

Calculating expected values in R

In R, define the probabilities and values (prices) in separate vectors:

```
prices <- c(799, 999, 1099, 699)
probs <- c(0.35, 0.29, 0.28, 0.08)
# Calculate expected value
sum(prices * probs)
[1] 933</pre>
```

Variance and standard deviation

The variance and standard deviation represents the long-run variance and standard deviation of the prices of an infinite number of iPhones selected at random:

$$Var(T) = \sum_{\text{All prices } x} (x - E(T))^2 \cdot P(T = x)$$

$$= (700 - 933)^2 \cdot 0.35 + (999 - 933)^2 \cdot 0.29 +$$

$$(1099 - 933)^2 \cdot 0.28 + (699 - 933)^2 \cdot 0.08$$

$$= 19644$$

$$SD(T) = \sqrt{Var(T)}$$

$$= $140.16.$$

Calculating variance and SD in R

```
# Expected value
iphone.ev <- sum(prices * probs)</pre>
# Variance
iphone.var <- sum((prices - iphone.ev)^2 * probs)</pre>
iphone.var
[1] 19644
# Standard deviation
sqrt(iphone.var)
```

1. Bayes' Rule

Discrete random variables

3. Continuous random variables: Normal distributions

Data set

The data set ut2000 contains information on all 5191 students that entered UT Austin in Fall 2000 and graduated within 6 years.

head(ut2000)						
	SAT.V	SAT.Q	SAT.C	School	GPA	Status
1	690	580	1270	BUSINESS	3.8	G
2	530	710	1240	NATURAL SCIENCE	3.5	G
3	610	700	1310	NATURAL SCIENCE	3.4	G
4	730	700	1430	ENGINEERING	3.3	G
5	700	710	1410	NATURAL SCIENCE	3.7	G
6	540	690	1230	LIBERAL ARTS	2.7	G

Data from James Scott:

• The most popular TV show was Survivor

- The most popular TV show was Survivor
- Britney Spears' Oops!...I did it again had just come out

- The most popular TV show was Survivor
- Britney Spears' Oops!...I did it again had just come out
- Angelina Jolie was married to Billy Bob Thorton

- The most popular TV show was Survivor
- Britney Spears' Oops!...I did it again had just come out
- Angelina Jolie was married to Billy Bob Thorton
- I was a college freshman

hist(ut2000\$SAT.C, main="", col="orange", xlab="SAT")

This random variable is approximately Normal, with mean $\mu = 1215.03$ and SD $\sigma = 145.38$:

- About 68% of a Normal random variable falls within ±1 SD of the mean
- About 95% of a Normal random variable falls within ± 2 SD of the mean
- About 99.7% of a Normal random variable falls within ± 3 SD of the mean

About 68% of students scored between
 1215.03 — 145.38 = 1069.65 and 1215.03 + 145.38 = 1360.41

- About 68% of students scored between
 1215.03 145.38 = 1069.65 and 1215.03 + 145.38 = 1360.41
- About 95% of students scored between
 1215.03 2 · 145.38 = 924.27 and
 1215.03 + 2 · 145.38 = 1505.79

About 68% of students scored between
 1215.03 — 145.38 = 1069.65 and 1215.03 + 145.38 = 1360.41

About 95% of students scored between
 1215.03 — 2 · 145.38 = 924.27 and
 1215.03 + 2 · 145.38 = 1505.79

• About 99.7% of students scored between 1215.03 - 3.145.38 = 778.89 and 1215.03 + 3.145.38 = 1651.17

Calculating probabilities using R

The pnorm(x, μ , σ) function calculates P(X < x) if X is a Normal random variable with mean μ and SD σ .

$$P(SAT < 1000) = pnorm(1000, 1215.03, 145.38) = 0.07$$

$$P(SAT > 1500) = 1 - pnorm(1500, 1215.03, 145.38) = 0.02$$

$$P(1100 < SAT < 1400) = ?$$

How to tell if data is Normal?

Variables can fail to be Normal in multiple ways:

- Normal random variables are unimodal; multimodal random variables are not Normal
- Normal random variables are symmetric; skewed random variables are not Normal
- Normal random variables have a bell shape; random variables with extreme outliers (or tails that are too "fat" or too "skinny") are not Normal

The qqnorm function creates a Normal probability plot; a perfectly Normal distribution will have a straight line.

qqnorm(ut2000\$SAT.C)

32/35

The skewness measures skewness; it is negative for left-skewed distributions, symmetric for symmetric distributions, and positive for right-skewed distributions.

```
library(moments)
skewness(ut2000$SAT.C)

[1] -0.1
```

The kurtosis is < 3 for distributions with skinny tails, = 3 for Normal distributions, and > 3 for distributions with fat tails.

```
kurtosis(ut2000$SAT.C)
```

[1] 2.9

The Q-Q plot is almost a straight line, the skewness is almost exactly 0, and the kurtosis is almost exactly 3, so the SAT distribution is almost exactly Normal.