TÀI LIỆU DÀNH CHO HỌC SINH MỤC TIÊU 7-8 ĐIỂM

<u>D</u>ạng 1. Tìm m để hàm số đơn điệu trên các khoảng xác định của nó

Xét hàm số bậc ba $y = f(x) = ax^{3} + bx^{2} + cx + d$.

- Bước 1. Tập xác định: $D = \mathbb{R}$.
- Bước 2. Tính đạo hàm $y' = f'(x) = 3ax^2 + 2bx + c$.

+ Để
$$f(x)$$
 đồng biến trên $\mathbb{R} \Leftrightarrow y' = f'(x) \ge 0$, $\forall x \in \mathbb{R} \Leftrightarrow \begin{cases} a_{f'(x)} = 3a > 0 \\ \Delta_{f'(x)} = 4b^2 - 12ac \le 0 \end{cases} \Rightarrow m$?

+ Đề
$$f(x)$$
 nghịch biến trên $\mathbb{R} \Leftrightarrow y' = f'(x) \le 0$, $\forall x \in \mathbb{R} \Leftrightarrow \begin{cases} a_{f'(x)} = 3a < 0 \\ \Delta_{f'(x)} = 4b^2 - 12ac \le 0 \end{cases} \Rightarrow m$?

Luru ý: Dấu của tam thức bậc hai $f(x) = ax^2 + bx + c$.

• Để
$$f(x) \ge 0$$
, $\forall x \in \mathbb{R} \Leftrightarrow \begin{cases} a > 0 \\ \Delta \le 0 \end{cases}$ • $f(x) \le 0$, $\forall x \in \mathbb{R} \Leftrightarrow \begin{cases} a < 0 \\ \Delta \le 0 \end{cases}$

Câu 1. (Đề Tham Khảo Lần 2 2020)Có bao nhiều giá trị nguyên của tham số m sao cho hàm số $f(x) = \frac{1}{3}x^3 + mx^2 + 4x + 3$ đồng biến trên \mathbb{R} .

<u>A</u>. 5.

- **B.** 4
- **C.** 3.
- **D.** 2.

Lời giải

Chon A

Ta có $f'(x) = x^2 + 2mx + 4$.

Hàm số đã cho đồng biến trên \mathbb{R} khi và chỉ khi $f'(x) \ge 0, \forall x \in \mathbb{R}$ (Dấu '=' xảy ra tại hữu hạn điểm).

Ta có $f'(x) \ge 0, \forall x \in \mathbb{R} \Leftrightarrow \Delta' \le 0$

$$\Leftrightarrow \Delta' = m^2 - 4 \le 0$$

$$\Leftrightarrow$$
 $-2 \le m \le 2$.

Vì $m \in \mathbb{Z}$ nên $m \in \{-2; -1; 0; 1; 2\}$, vậy có 5 giá trị nguyên của m thỏa mãn.

Câu 2. (**Mã 123 - 2017**) Cho hàm số $y = -x^3 - mx^2 + (4m + 9)x + 5$, với m là tham số. Hỏi có bao nhiều giá trị nguyên của m để hàm số nghịch biến trên khoảng $(-\infty; +\infty)$

A. 5

- **B.** 4
- C. 6 Lời giải

<u>D</u>. 7

Chọn D

Ta có:

+) TXĐ:
$$D = \mathbb{R}$$

+)
$$y' = -3x^2 - 2mx + 4m + 9$$
.

Hàm số nghịch biến trên
$$(-\infty; +\infty)$$
 khi $y' \le 0, \forall x \in (-\infty; +\infty) \iff \begin{cases} a = -3 < 0 \\ \Delta' = m^2 + 3(4m + 9) \le 0 \end{cases}$

 $\Leftrightarrow m \in \lceil -9; -3 \rceil \Rightarrow$ có 7 giá trị nguyên của m thỏa mãn.

NGUYĒN BẢO VƯƠNG - 0946798489

Cho hàm số $y = -\frac{1}{3}x^3 + mx^2 + (3m+2)x + 1$. Tìm tất cả giá trị của m để hàm số nghịch biến trên

A.
$$\begin{bmatrix} m \ge -1 \\ m \le -2 \end{bmatrix}$$
. **B.** $-2 \le m \le -1$. **C.** $-2 < m < -1$. **D.** $\begin{bmatrix} m > -1 \\ m < -2 \end{bmatrix}$.

B.
$$-2 \le m \le -1$$

C.
$$-2 < m < -1$$
.

$$\mathbf{D.} \begin{bmatrix} m > -1 \\ m < -2 \end{bmatrix}$$

Chon B

TXĐ:
$$D = \mathbb{R}$$
, $y' = -x^2 + 2mx + 3m + 2$.

Hàm số nghịch biến trên \mathbb{R} khi và chỉ khi $y' \leq 0$, $\forall x \in \mathbb{R}$

$$\Leftrightarrow \begin{cases} a = -1 < 0 \\ \Delta' = m^2 + 3m + 2 \le 0 \end{cases} \Leftrightarrow -2 \le m \le -1.$$

Tìm m để hàm số $y = x^3 - 3mx^2 + 3(2m-1) + 1$ đồng biến trên \mathbb{R} . Câu 4.

A. Không có giá tri *m* thỏa mãn.

$$\underline{\mathbf{C}}$$
. $m=1$.

D. Luôn thỏa mãn với mọi m.

Lời giải

Chon C

$$y' = 3x^2 - 6mx + 3(2m-1)$$

Ta có: $\Delta' = (-3m)^2 - 3.3.(2m-1)$. Để hàm số luôn đồng biến trên \mathbb{R} thì $\Delta' \leq 0$

$$\Leftrightarrow 9m^2 - 18m + 9 < 0 \Leftrightarrow 9(m^2 - 2m + 1) \le 0 \Leftrightarrow 9(m - 1)^2 \le 0 \Leftrightarrow m = 1.$$

Tìm điều kiện của tham số thực m để hàm số $y = x^3 - 3x^2 + 3(m+1)x + 2$ đồng biến trên \mathbb{R} . Câu 5.

A.
$$m \ge 2$$
.

B.
$$m < 2$$
.

C.
$$m < 0$$
.

$$\underline{\mathbf{D}}$$
. $m \ge 0$.

Chọn D

Tập xác định: $D = \mathbb{R}$.

Ta có: $y' = 3x^2 - 6x + 3(m+1)$

 $YCBT \Leftrightarrow v' \ge 0, \forall x \in \mathbb{R} \Leftrightarrow \Delta' = -9m \le 0 \Leftrightarrow m \ge 0.$

Tìm tập hợp tất cả các giá trị của tham số thực m để hàm số $y = \frac{1}{2}x^3 + mx^2 + 4x - m$ đồng biến Câu 6. trên khoảng $(-\infty; +\infty)$.

$$\underline{\mathbf{A}}$$
. $[-2;2]$.

B.
$$(-\infty;2)$$

$$\underline{\mathbf{A}}$$
. $[-2;2]$. \mathbf{B} . $(-\infty;2)$. \mathbf{C} . $(-\infty;-2]$. \mathbf{D} . $[2;+\infty)$.

D.
$$[2;+\infty)$$
.

Lời giải

Chon A

Ta có: $v' = x^2 + 2mx + 4$.

Hàm số đồng biến trên khoảng $(-\infty; +\infty)$ khi và chỉ khi $y' \ge 0, \forall x \in (-\infty; +\infty)$.

$$\Leftrightarrow \Delta' = m^2 - 4 \le 0 \Leftrightarrow -2 \le m \le 2$$
.

Giá trị của m để hàm số $y = \frac{1}{3}x^3 - 2mx^2 + (m+3)x - 5 + m$ đồng biến trên \mathbb{R} là. Câu 7.

$$\underline{\mathbf{A}} \cdot -\frac{3}{4} \le m \le 1$$
.

B.
$$m \le -\frac{3}{4}$$
.

A.
$$-\frac{3}{4} \le m \le 1$$
. **B.** $m \le -\frac{3}{4}$. **C.** $-\frac{3}{4} < m < 1$. **D.** $m \ge 1$.

D.
$$m \ge 1$$
.

Chọn A

Ta có tập xác định $D = \mathbb{R}$.

$$y' = x^2 - 4mx + (m+3).$$

$$y' = 0 \Leftrightarrow x^2 - 4mx + (m+3) = 0.$$

Hàm số đã cho đồng biến trên $\mathbb R$ khi và chỉ khi $y' \ge 0, \forall x \in \mathbb R$, đẳng thức chỉ xảy ra tại hữu hạn

$$\operatorname{diểm} \Leftrightarrow \Delta' \leq 0 \Leftrightarrow \left(-2m\right)^2 - 1.\left(m+3\right) \leq 0 \Leftrightarrow 4m^2 - m - 3 \leq 0 \Leftrightarrow -\frac{3}{4} \leq m \leq 1.$$

$$V_{ay}^{2} - \frac{3}{4} \le m \le 1.$$

Câu 8. (Chuyên KHTN - Hà Nội - 2020) Tập hợp tất cả các giá trị của tham số m để hàm số $y = x^3 + (m+1)x^2 + 3x + 2$ đồng biến trên $\mathbb R$ là

B.
$$(-4;2)$$
.

$$\mathbf{C} \cdot (-\infty; -4] \cup [2; +\infty)$$
. $\mathbf{D} \cdot (-\infty; -4) \cup (2; +\infty)$.

Lời giải

Chon A

Tập xác đinh: $D = \mathbb{R}$.

Ta có:
$$y' = 3x^2 + 2(m+1)x + 3$$
.

Hàm số $y = x^3 + (m+1)x^2 + 3x + 2$ đồng biến trên \mathbb{R} khi và chỉ khi $y' \ge 0, \forall x \in \mathbb{R}$.

$$\Leftrightarrow \Delta' = (m+1)^2 - 9 \le 0 \Leftrightarrow m^2 + 2m - 8 \le 0 \Leftrightarrow -4 \le m \le 2.$$

Vậy $m \in [-4; 2]$.

Nếu hệ số a chứa tham số thì phải xét trường hợp a = 0 và $a \neq 0$

Câu 9. (Đề Tham Khảo - 2017) Hỏi có bao nhiều số nguyên m để hàm số $y = (m^2 - 1)x^3 + (m - 1)x^2 - x + 4$ nghịch biến trên khoảng $(-\infty; +\infty)$.

A. 0

B. 3

<u>C</u>. 2

D. 1

Lời giải

Chon C

TH1: m=1. Ta có: y=-x+4 là phương trình của một đường thẳng có hệ số góc âm nên hàm số luôn nghịch biến trên \mathbb{R} . Do đó nhận m=1.

TH2: m = -1. Ta có: $y = -2x^2 - x + 4$ là phương trình của một đường Parabol nên hàm số không thể nghich biến trên \mathbb{R} . Do đó loại m = -1.

TH3: $m \neq \pm 1$. Khi đó hàm số nghịch biến trên khoảng $(-\infty; +\infty) \Leftrightarrow y' \leq 0 \ \forall x \in \mathbb{R}$, dấu "=" chỉ xảy ra ở hữu hạn điểm trên \mathbb{R} .

$$\Leftrightarrow 3\left(m^2-1\right)x^2+2\left(m-1\right)x-1\leq 0\,,\ \forall x\in\mathbb{R}$$

$$\Leftrightarrow \begin{cases} a < 0 \\ \Delta' \le 0 \end{cases} \Leftrightarrow \begin{cases} m^2 - 1 < 0 \\ \left(m - 1\right)^2 + 3\left(m^2 - 1\right) \le 0 \end{cases} \Leftrightarrow \begin{cases} m^2 - 1 < 0 \\ \left(m - 1\right)\left(4m + 2\right) \le 0 \end{cases} \Leftrightarrow \begin{cases} -1 < m < 1 \\ -\frac{1}{2} \le m \le 1 \end{cases} \Leftrightarrow -\frac{1}{2} \le m < 1. \quad \forall i = 1$$

 $m \in \mathbb{Z}$ nên m = 0.

Vây có 2 giá tri m nguyên cần tìm là m = 0 hoặc m = 1.

Câu 10. Hỏi có tất cả bao nhiều giá trị nguyên của tham số m để hàm số hàm số $y = \frac{1}{3}(m^2 - m)x^3 + 2mx^2 + 3x - 2$ đồng biến trên khoảng $(-\infty; +\infty)$?

<u>**A.**</u> 4.

B. 5.

C. 3.

D. 0.

Lời giải

Chon A

$$y' = (m^2 - m)x^2 + 4mx + 3$$

Hàm số đã cho đồng biến trên khoảng $(-\infty; +\infty) \Leftrightarrow y' \geq 0 \text{ với } \forall x \in \mathbb{R}$.

+ Với m = 0 ta có y' = 3 > 0 với $\forall x \in \mathbb{R} \implies$ Hàm số đồng biến trên khoảng $(-\infty; +\infty)$.

+ Với m=1 ta có $y'=4x+3>0 \Leftrightarrow x>-\frac{3}{4} \Rightarrow m=1$ không thảo mãn.

$$+ \text{ V\'oi } \begin{cases} m \neq 1 \\ m \neq 0 \end{cases} \text{ ta c\'o } y' \geq 0 \text{ v\'oi } \forall x \in \mathbb{R} \iff \begin{cases} m^2 - m > 0 \\ \Delta' = m^2 + 3m \leq 0 \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} m > 1 \\ m < 0 \end{cases} \Leftrightarrow -3 \leq m < 0 \;.$$

Tổng hợp các trường hợp ta được $-3 \le m \le 0$.

$$m \in \mathbb{Z} \Longrightarrow m \in \{-3; -2; -1; 0\}$$
.

Vậy có 4 giá trị nguyên của *m* thỏa mãn bài ra.

Tìm tất cả các giá trị của tham số thực m để hàm số $y = mx^3 + mx^2 + m(m-1)x + 2$ đồng biến trên \mathbb{R} .

$$\mathbf{A.} \ m \le \frac{4}{3} \ \text{và} \ m \ne 0.$$

A.
$$m \le \frac{4}{3}$$
 và $m \ne 0$. **B.** $m = 0$ hoặc $m \ge \frac{4}{3}$.

$$\underline{\mathbf{C}}$$
. $m \ge \frac{4}{3}$.

C.
$$m \ge \frac{4}{3}$$
. **D**. $m \le \frac{4}{3}$.

Lời giải

Chon C

TH1: $m = 0 \Rightarrow y = 2$ là hàm hằng nên loại m = 0.

TH2: $m \neq 0$. Ta có: $y' = 3mx^2 + 2mx + m(m-1)$.

Hàm số đồng biến trên $\mathbb{R} \Leftrightarrow f'(x) \ge 0 \ \forall x \in \mathbb{R} \Leftrightarrow$

$$\begin{cases} \Delta' = m^2 - 3m^2(m-1) \le 0 \\ 3m > 0 \end{cases} \Leftrightarrow \begin{cases} m^2(4-3m) \le 0 \\ m > 0 \end{cases} \Leftrightarrow \begin{cases} m \ge \frac{4}{3} \Leftrightarrow m \ge \frac{4}{3} \end{cases}$$

Câu 12. Có tất cả bao nhiều giá trị nguyên của tham số m để hàm số $y = \frac{m}{3}x^3 - 2mx^2 + (3m+5)x$ đồng biến trên \mathbb{R} .

A. 4.

B. 2.

C. 5.

Lời giải

<u>D</u>. 6.

Chon D

Ta có
$$y' = mx^2 - 4mx + 3m + 5$$
.

Với $a = 0 \Leftrightarrow m = 0 \Rightarrow y' = 5 > 0$. Vậy hàm số đồng biến trên \mathbb{R} .

Với $a \neq 0 \Leftrightarrow m \neq 0$. Hàm số đã cho đồng biến trên \mathbb{R} khi và chỉ khi

$$y' \ge 0, \ \forall x \in \mathbb{R} \Leftrightarrow \begin{cases} a > 0 \\ \Delta \le 0 \end{cases} \Leftrightarrow \begin{cases} m > 0 \\ (2m)^2 - m(3m + 5) \le 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} m > 0 \\ m^2 - 5m \le 0 \end{cases} \Leftrightarrow \begin{cases} m > 0 \\ 0 \le m \le 5 \end{cases} \Leftrightarrow 0 < m \le 5.$$

$$Vì \ m \in \mathbb{Z} \Longrightarrow m \in \{0;1;2;3;4;5\} \ .$$

Câu 13. Tìm tất cả các giá trị của m để hàm số $y = (m-1)x^3 - 3(m-1)x^2 + 3x + 2$ đồng biến biến trên

A. $1 < m \le 2$.

- **D.** $1 \le m < 2$

Lời giải

Chon C

Ta có
$$y' = 3(m-1)x^2 - 6(m-1)x + 3$$
.

Hàm số đã cho đồng biến trên \mathbb{R} khi và chỉ khi $y' \ge 0, \forall x \in \mathbb{R} \iff \begin{bmatrix} m-1=0 \\ m-1>0 \end{bmatrix}$

$$\Leftrightarrow \begin{bmatrix} m=1 \\ m>1 \\ 9(m-1)^2 - 9(m-1) \le 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} m=1 \\ m>1 \\ 1 \le m \le 2.$$

(THPT Hoàng Hoa Thám - Hưng Yên - 2018) Số giá trị nguyên của m để hàm số Câu 14. $y = (4 - m^2)x^3 + (m - 2)x^2 + x + m - 1$ (1) đồng biến trên \mathbb{R} bằng.

A. 5.

- **B.** 3.
- **C.** 2.
- <u>**D**</u>. 4.

Lời giải

TH1: $4-m^2=0 \Leftrightarrow m=\pm 2$.

m = 2: (1) $\Leftrightarrow y = x + 1 \Rightarrow \text{hàm số luôn tăng trên } \mathbb{R} \Rightarrow m = 2 \text{ (nhận)}.$

m = -2: (1) $\Leftrightarrow y = -4x^2 + x - 3$ là hàm số bậc hai nên tăng trên khoảng $\left(-\infty; \frac{1}{8}\right)$, giảm trên

khoảng $\left(\frac{1}{8}; +\infty\right) \Rightarrow m = -2$ (loại).

TH2: $4 - m^2 \neq 0$.

$$y' = 3(4-m^2)x^2 + 2(m-2)x + 1$$
. $\Delta' = (m-2)^2 - 3(4-m^2) = 4m^2 - 4m - 8$.

hàm số đồng biến trên $\mathbb{R} \iff y' \ge 0 \ \forall x \in \mathbb{R}$.

$$\Leftrightarrow \begin{cases} a > 0 \\ \Delta \le 0 \end{cases} \Leftrightarrow \begin{cases} 4 - m^2 > 0 \\ 4m^2 - 4m - 8 \le 0 \end{cases} \Leftrightarrow \begin{cases} m \in (-2; 2) \\ m \in [-1; 2] \end{cases} \Leftrightarrow m \in [-1; 2) \cdot m \in \mathbb{Z} \Rightarrow m = -1; m = 0; m = 1.$$

Vậy có 4 giá trị nguyên của *m* thỏa yêu cầu bài toán.

(Chuyên Hoàng Văn Thụ - Hòa Bình - 2018) Số các giá trị nguyên của tham số m trong đoạn Câu 15. [-100;100] để hàm số $y = mx^3 + mx^2 + (m+1)x - 3$ nghịch biến trên \mathbb{R} là:

A. 200.

- **B.** 99.
- **C.** 100.
- **D.** 201.

Lời giải

Trường họp 1: m = 0. Ta có:

y = x - 3 có y' = 1 > 0 với mọi $x \in \mathbb{R}$ nên hàm số luôn đồng biến trên trên \mathbb{R} .

Do đó loại m = 0.

Trường hợp 2: $m \neq 0$. Ta có: $y' = 3mx^2 + 2mx + m + 1$, $\Delta' = -2m^2 - 3m = m(-2m - 3)$

Hàm số nghịch biến trên \mathbb{R} khi và chỉ khi $y' \leq 0$ với mọi $x \in \mathbb{R}$

$$\Leftrightarrow \begin{cases} m < 0 \\ \Delta' \le 0 \end{cases} \Leftrightarrow \begin{cases} m < 0 \\ m(-2m-3) \le 0 \end{cases} \Leftrightarrow \begin{cases} m < 0 \\ -2m-3 \ge 0 \end{cases} \Leftrightarrow m \le -\frac{3}{2}.$$

Vì m là số nguyên thuộc đoạn $\left[-100;100\right]$ nên $m \in \left\{-2;-3;...;-99;-100\right\}$.

Vậy có 99 giá trị m.

Câu 16. (**Liên trường Nghệ An - 2020**) Tổng bình phương của tất cả các giá trị nguyên của tham số m để hàm số $y = (3m^2 - 12)x^3 + 3(m-2)x^2 - x + 2$ nghịch biến trên \mathbb{R} là?

A. 9.

B. 6.

<u>C</u>. 5.

D. 14.

Lời giải

Chon C

Tập xác định: $D = \mathbb{R}$.

Ta có: $y' = 9(m^2 - 4)x^2 + 6(m - 2)x - 1$.

Hàm số nghịch biến trên $\mathbb{R} \Leftrightarrow y' \leq 0 \forall x \in \mathbb{R}$ (dấu "=" xãy ra tại hữu hạn $x \in \mathbb{R}$)

TH1: $m^2 - 4 = 0 \Leftrightarrow m = \pm 2$.

+ Với m = 2 ta có $y' = -1 \le 0 \quad \forall x \in \mathbb{R}$ nên m = 2 thỏa mãn.

+ Với m = -2 ta có $y' = -24x - 1 \le 0 \Leftrightarrow x \ge -\frac{1}{24}$ (không thỏa với mọi $x \in \mathbb{R}$) nên loại m = -2.

TH2: $m^2 - 4 \neq 0 \iff m \neq \pm 2$. Ta có

 $y' \le 0, \forall x \in \mathbb{R} \Leftrightarrow \begin{cases} a = 9\left(m^2 - 4\right) < 0 \\ \Delta' = 9\left(m - 2\right)^2 + 9\left(m^2 - 4\right) \le 0 \end{cases} \Leftrightarrow \begin{cases} -2 < m < 2 \\ 0 \le m \le 2 \end{cases} \Leftrightarrow 0 \le m < 2 \xrightarrow{m \in \mathbb{Z}} m \in \{0;1\} \text{ V}$

ây $m \in \{0;1;2\} \Rightarrow 0^2 + 1^2 + 2^2 = 5$.

Câu 17. (**Lý Nhân Tông - Bắc Ninh - 2020**) Hỏi có bao nhiều số nguyên m để hàm số $y = (m^2 - 1)x^3 + (m - 1)x^2 - x + 4$ nghịch biến trên khoảng $(-\infty; +\infty)$.

<u>**A**</u>. 2.

R 1

C. 0.

D. 3.

Lời giải

 $\underline{\mathbf{C}}$ họn $\underline{\mathbf{A}}$

Ta có $y' = 3(m^2 - 1)x^2 + 2(m - 1)x - 1$

Hàm số đã cho nghịch biến trên khoảng $(-\infty; +\infty) \Leftrightarrow y' \leq 0, \forall x \in \mathbb{R}$

 $\Leftrightarrow 3(m^2-1)x^2+2(m-1)x-1\leq 0, \forall x\in\mathbb{R}.$

* Trường hợp 1: $m^2 - 1 = 0 \Leftrightarrow m = \pm 1$.

+ Với m=1, ta được $-1 \le 0$, $\forall x \in \mathbb{R}$ (luôn đúng), suy ra m=1 (nhận).

+ Với m = -1, ta được $-4x - 1 \le 0 \Leftrightarrow x \ge \frac{1}{4}$, suy ra m = -1 (loại).

* Trường họp 2: $m^2 - 1 \neq 0 \Leftrightarrow m \neq \pm 1$.

Ta có $\Delta' = (m-1)^2 + 3(m^2-1) = m^2 - 2m + 1 + 3m^2 - 3 = 4m^2 - 2m - 2$.

$$\vec{\mathrm{D}} \hat{\mathrm{e}} \ y' \leq 0 \,, \forall x \in \mathbb{R} \Leftrightarrow \begin{cases} m^2 - 1 < 0 \\ 4m^2 - 2m - 2 \leq 0 \end{cases} \Leftrightarrow \begin{cases} -1 < m < 1 \\ -\frac{1}{2} \leq m \leq 1 \end{cases} \Leftrightarrow -\frac{1}{2} \leq m < 1 \,.$$

Tổng hợp lại, ta có tất cả giá trị m cần tìm là $-\frac{1}{2} \le m \le 1$.

Vì $m \in \mathbb{Z}$, suy ra $m \in \{0;1\}$, nên có 2 giá trị nguyên của tham số m.

Xét hàm số nhất biến $y = f(x) = \frac{ax + b}{cx + d}$

- Bước 1. Tập xác định: $D = \mathbb{R} \setminus \left\{ -\frac{d}{c} \right\}$.
- Bước 2. Tính đạo hàm $y' = f'(x) = \frac{a.d b.c}{(cx+d)^2}$.
- + Để f(x) đồng biến trên $D \Leftrightarrow y' = f'(x) > 0$, $\forall x \in D \Leftrightarrow a.d b.c > 0 \Rightarrow m$?
- + Để f(x) nghịch biến trên $D \Leftrightarrow y' = f'(x) < 0, \forall x \in D \Leftrightarrow a.d b.c < 0 \Rightarrow m$?
- \bigstar Lưu $\acute{\mathbf{y}}$: Đối với hàm phân thức thì không có dấu "=" xảy ra tại vị trí \emph{y}' .
- **Câu 18.** (**Mã 105 2017**) Cho hàm số $y = \frac{mx 2m 3}{x m}$ với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số đồng biến trên các khoảng xác định. Tìm số phần tử của S.
 - A. Vô số
- **B**. 3
- **C**. 5

D. 4

Lời giải

Chọn B

 $y' = \frac{-m^2 + 2m + 3}{\left(x - m\right)^2}$ hàm số đồng biến trên khoảng xác định khi -1 < m < 3 nên có 3 giá trị của m nguyên

- **Câu 19.** (**Mã 104 2017**) Cho hàm số $y = \frac{mx + 4m}{x + m}$ với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số nghịch biến trên các khoảng xác định. Tìm số phần tử của S.
 - **A.** 4

- B. Vô số
- C. 3 Lời giải

<u>D</u>. 5

Chon D

$$D = \mathbb{R} \setminus \left\{-m\right\}; \ y' = \frac{m^2 - 4m}{\left(x + m\right)^2}.$$

Hàm số nghịch biến trên các khoảng xác định khi $y' < 0, \forall x \in D \iff m^2 - 4m < 0 \iff 0 < m < 4$. Mà $m \in \mathbb{Z}$ nên có 3 giá trị thỏa mãn.

- **Câu 20.** (THPT Hoa Lư A 2018) Có tất cả bao nhiều số nguyên m để hàm số $y = \frac{(m+1)x-2}{x-m}$ đồng biến trên từng khoảng xác đinh của nó?
 - **A.** 1.

B. 0.

<u>C</u>. 2.

D. 3.

Lời giải

TXĐ: $D = \mathbb{R} \setminus \{m\}$

$$y' = \frac{-m^2 - m + 2}{(x - m)^2}$$
.

Để hàm số đồng biến trên từng khoảng xác định của ta cần tìm m để $y' \ge 0$ trên $(-\infty; m)$ và $(m; +\infty)$ và dấu "="chỉ xảy ra tại hữu hạn điểm trên các khoảng đó

ĐK: $-m^2 - m + 2 > 0 \Leftrightarrow -2 < m < 1$. Vì $m \in \mathbb{Z}$ nên m = -1, 0.

(SGD& \overline{D} T Bắc Giang - 2018) Có bao nhiều giá trị nguyên của tham số m để hàm số Câu 21. $y = \frac{x + m^2}{x + \Delta}$ đồng biến trên từng khoảng xác định của nó?

A. 5.

B. 3.

D. 2.

Lời giải

TXD:
$$D = \mathbb{R} \setminus \{-4\}, \ y' = \frac{4 - m^2}{(x + 4)^2}.$$

Để hàm số đồng biến trên từng khoảng xác định của nó thì $4 - m^2 > 0 \Leftrightarrow -2 < m < 2$ Do đó có 3 giá trị nguyên của tham số m thỏa mãn.

(THPT Hà Huy Tập - 2018) Tìm tất cả giá trị thực của tham số m để hàm số $y = \frac{x+2-m}{x+1}$ nghịch Câu 22. biến trên các khoảng mà nó xác định?

A. $m \le 1$.

B. $m \le -3$.

C. m < -3. **D.** m < 1.

Lời giải

Với m = 1 thì hàm số là hàm hằng $(\forall x \neq -1)$ nên không nghịch biến.

Ta có
$$y' = \frac{m-1}{(x+1)^2}, \forall x \neq -1.$$

Hàm số nghịch biến trên từng khoảng của tập xác định khi và chỉ khi $y' < 0, x \ne -1 \Leftrightarrow m < 1$.

(SỞ GD&ĐT Yên Bái - 2018) Tìm tất cả các giá trị thực của tham số m để hàm số $y = \frac{mx-4}{x-m}$ Câu 23. nghịch biến trên từng khoảng xác định của nó.

$$\mathbf{A.} \begin{bmatrix} m \le -2 \\ m \ge 2 \end{bmatrix}$$

A. $\begin{bmatrix} m \le -2 \\ m \ge 2 \end{bmatrix}$. B. -2 < m < 2. $\underline{\mathbf{C}}$. $\begin{bmatrix} m < -2 \\ m > 2 \end{bmatrix}$. D. $-2 \le m \le 2$.

Tập xác định $D = (-\infty; m) \cup (m; +\infty)$.

Ta có $y = \frac{mx - 4}{x - m}$ $\Rightarrow y' = \frac{-m^2 + 4}{(x - m)^2}$. Vì hàm số nghịch biến trên từng khoảng xác định của nó nên

$$-m^2 + 4 < 0 \Leftrightarrow \begin{bmatrix} m < -2 \\ m > 2 \end{bmatrix}.$$

(THCS&THPT Nguyễn Khuyến - Bình Dương - 2018) Tìm tất cả các giá trị thực của m để Câu 24. hàm số $y = \frac{mx-2}{2x-m}$ đồng biến trên mỗi khoảng xác định

A.
$$\begin{bmatrix} m \le -2 \\ m \ge 2 \end{bmatrix}$$
. B. $-2 < m < 2$. C. $\begin{bmatrix} m < -2 \\ m > 2 \end{bmatrix}$. D. $-2 \le m \le 2$.

Ta có:
$$y' = \frac{-m^2 + 4}{(2x - m)^2}, \forall x \neq \frac{m}{2}$$

Hàm số đồng biến trên từng khoảng xác định khi $-m^2 + 4 > 0 \Leftrightarrow -2 < m < 2$.

Dạng 2. Tìm m để hàm số nhất biến đơn điệu trên khoảng cho trước

(Đề Tham Khảo Lần 1 2020) Cho hàm số $f(x) = \frac{mx-4}{x-m}$ (m là tham số thực). Có bao nhiều Câu 1. giá trị nguyên của m để hàm số đã cho đồng biến trên khoảng $(0;+\infty)$?

A. 5.

B. 4.

C. 3.

D. 2.

Lời giải

Chon D

Tập xác định $D = \mathbb{R} \setminus \{m\}$.

Đạo hàm
$$f'(x) = \frac{-m^2 + 4}{(x-m)^2}$$
.

Hàm số đồng biến trên $(0;+\infty)$ khi và chỉ khi

$$f'(x) > 0 \,\forall x \in (0; +\infty) \Leftrightarrow \begin{cases} -m^2 + 4 > 0 \\ m \notin (0; +\infty) \end{cases} \Leftrightarrow \begin{cases} -2 < m < 2 \\ m \le 0 \end{cases} \Leftrightarrow -2 < m \le 0.$$

Do $m \in \mathbb{Z} \Rightarrow m = \{-1; 0\}$. Vậy có hai giá trị nguyên của m thỏa mãn đề bài.

(Mã 101 – 2020 – Lần 1) Tập hợp tất cả các giá trị thực của tham số m để hàm số $y = \frac{x+4}{x+m}$ Câu 2. đồng biến trên khoảng $(-\infty; -7)$ là

A. [4;7).

- **B**. (4;7].
- **C.** (4;7). **D.** $(4;+\infty)$.

Lời giải

Chọn B

Tập xác định: $D = \mathbb{R} \setminus \{-m\}$.

Ta có:
$$y' = \frac{m-4}{(x+m)^2}$$
.

Hàm số đã cho đồng biến trên khoảng $(-\infty; -7) \Leftrightarrow y' > 0$, $\forall x \in (-\infty; -7)$

$$\Leftrightarrow \begin{cases} m-4>0 \\ -m \not\in \left(-\infty;-7\right) \end{cases} \Leftrightarrow \begin{cases} m>4 \\ -m \ge -7 \end{cases} \Leftrightarrow \begin{cases} m>4 \\ m \le 7 \end{cases} \Leftrightarrow 4 < m \le 7.$$

(Mã 102 – 2020 – Lần 1) Tập hợp tất cả các giá trị thực của tham số m để hàm số $y = \frac{x+5}{x+m}$ Câu 3. đồng biến trên khoảng $(-\infty; -8)$ là

A. $(5;+\infty)$.

- **B.** (5;8].
- **C.** [5;8).
- **D.** (5;8).

Lời giải

NGUYĒN BẢO VƯƠNG - 0946798489

Chọn B

Điều kiện $x \neq -m$.

Ta có
$$y' = \frac{m-5}{(x+m)^2}$$

Để hàm số $y = \frac{x+5}{x+m}$ đồng biến trên khoảng $(-\infty; -8)$ thì

$$\begin{cases} y' > 0 \\ -m \not\in \left(-\infty; -8\right) \Rightarrow \begin{cases} m - 5 > 0 \\ -m \ge -8 \end{cases} \Rightarrow 5 < m \le 8 \; .$$

- **Câu 4.** (**Mã 103 2020 Lần 1**) Tập hợp tất cả các giá trị thực của tham số m để hàm số $y = \frac{x+2}{x+m}$ đồng biến trên khoảng ($-\infty$; –5)
 - <u>**A**</u>. (2;5].
- **B.** [2;5).
- C. $(2; +\infty)$.
- **D.** (2;5).

Lời giải

Chon A

Tập xác định: $D = \mathbb{R} \setminus \{-m\}$.

Ta có:
$$y' = \frac{m-2}{(x+m)^2}$$

Hàm số đồng biến trên khoảng $(-\infty; -5) \Leftrightarrow \begin{cases} y' > 0 \forall x \in (-\infty; -5) \\ -m \notin (-\infty; -5) \end{cases} \Leftrightarrow \begin{cases} m-2 > 0 \\ -m \ge -5 \end{cases} \Leftrightarrow 2 < m \le 5.$

- **Câu 5.** (**Mã 104- 2020 Lần 1**) Tập họp tất cả các giá trị thực của tham số m để hàm số $y = \frac{x+3}{x+m}$ đồng biến trên khoảng $(-\infty; -6)$ là
 - <u>**A**</u>. (3;6].
- **B.** (3;6).
- **C.** $(3; +\infty)$.
- **D.** [3;6).

Lời giải

Chọn A

Hàm số xác định khi: $x + m \neq 0 \Leftrightarrow x \neq -m$.

$$y = \frac{x+3}{x+m} \Rightarrow y' = \frac{m-3}{(x+m)^2}$$

Hàm số đồng biến trên khoảng $(-\infty; -6)$ khi và chỉ khi: $\begin{cases} y' > 0, \forall x \in (-\infty; -6) \\ -m \notin (-\infty; -6) \end{cases}$

$$\Leftrightarrow \begin{cases} m-3>0 \\ -m \in \left[-6;+\infty\right) \end{cases} \Leftrightarrow \begin{cases} m>3 \\ -m \geq -6 \end{cases} \Leftrightarrow \begin{cases} m>3 \\ m \leq 6 \end{cases} \Leftrightarrow 3 < m \leq 6 \; .$$

Vậy: $m \in (3, 6]$.

- **Câu 6.** (**Mã 104-2018**) Có bao nhiều giá trị nguyên của tham số m để hàm số $y = \frac{x+2}{x+3m}$ đồng biến trên khoảng $(-\infty; -6)$.
 - <u>A</u>. 2

B. 6

- C. Vô số
- **D.** 1

Lời giải

Chọn A

Tập xác định: $D = (-\infty; -3m) \cup (-3m; +\infty)$.

Ta có
$$y' = \frac{3m-2}{(x+3m)^2}$$

Hàm số đổng biến trên khoảng $(-\infty; -6) \Leftrightarrow \begin{cases} 3m-2>0 \\ -6 \leq -3m \end{cases} \Leftrightarrow \begin{cases} m>\frac{2}{3} \Leftrightarrow \frac{2}{3} \Leftrightarrow \frac{2}{3} < m \leq 2. \end{cases}$

Mà m nguyên nên $m = \{1, 2\}$.

Câu 7. (**Mã 103-2018**) Có bao nhiều giá trị nguyên của tham số m để hàm số $y = \frac{x+1}{x+3m}$ nghịch biến trên khoảng $(6; +\infty)$?

A. 0

B. 6

<u>C</u>. 3

Lời giải

D. Vô số

Chọn C

Tập xác định
$$D = \mathbb{R} \setminus \{-3m\}$$
; $y' = \frac{3m-1}{(x+3m)^2}$.

Hàm số $y = \frac{x+1}{x+3m}$ nghịch biến trên khoảng $(6; +\infty)$ khi và chỉ khi:

$$\begin{cases} y' < 0 \\ (6; +\infty) \subset D \end{cases} \Leftrightarrow \begin{cases} 3m - 1 < 0 \\ -3m \le 6 \end{cases} \Leftrightarrow \begin{cases} m < \frac{1}{3} \\ m \ge -2 \end{cases} \Leftrightarrow -2 \le m < \frac{1}{3}.$$

 $\text{Vi } m \in \mathbb{Z} \implies m \in \left\{-2; -1; 0\right\}.$

Câu 8. (**Mã 101- 2018**) Có bao nhiều giá trị nguyên của tham số m để hàm số $y = \frac{x+2}{x+5m}$ đồng biến trên khoảng $(-\infty;-10)$?

<u>**A**</u>. 2

B. Vô số

C. 1

Lời giải

D. 3

Chon A

TXĐ: $D = \mathbb{R} \setminus \{-5m\}$.

$$y' = \frac{5m-2}{\left(x+5m\right)^2}.$$

Hàm số đồng biến trên khoảng $\left(-\infty;-10\right)$ khi và chỉ khi $\begin{cases} 5m-2>0\\ -5m\in\left[-10;+\infty\right) \end{cases}$

$$\Leftrightarrow \begin{cases} m > \frac{2}{5} \\ -5m \ge -10 \end{cases} \Leftrightarrow \frac{2}{5} < m \le 2.$$

Vì m nguyên nên $m \in \{1; 2\}$. Vậy có 2 giá trị của tham số m.

Câu 9. (**Mã 102 - 2018**) Có bao nhiều giá trị nguyên của tham số m để hàm số $y = \frac{x+6}{x+5m}$ nghịch biến trên khoảng $(10; +\infty)$?

A. Vô số

B. 4

C. 5

D. 3

Chon B

Tập xác định $D = \mathbb{R} \setminus \{-5m\}$.

$$y' = \frac{5m - 6}{\left(x + 5m\right)^2}$$

Hàm số nghịch biến trên $(10; +\infty)$ khi và chỉ khi $\begin{cases} y' < 0, \forall x \in D \\ -5m \notin (10; +\infty) \end{cases} \Leftrightarrow \begin{cases} 5m - 6 < 0 \\ -5m \le 10 \end{cases} \Leftrightarrow \begin{cases} m < \frac{6}{5} \end{cases}.$

Mà $m \in \mathbb{Z}$ nên $m \in \{-2; -1; 0; 1\}$.

(Chuyên KHTN - 2020) Tập họp tất cả các giá trị của tham số m để hàm số $y = \frac{mx-4}{x-m}$ đồng Câu 10. biến trên khoảng $(-1; +\infty)$ là

- **A.** (-2;1].
- **B.** (-2;2).
- <u>C</u>. (-2;-1]. **D**. (-2;-1).

khi

Lời giải

Chon C

Đạo hàm $y' = \frac{-m^2 + 4}{(x - m)^2} > 0, \forall x \neq m$.

đồng hàm Do đó

 $y' > 0, \forall x \in (-1; +\infty) \Leftrightarrow \begin{cases} -m^2 + 4 > 0 \\ x - m \neq 0, \forall x \in (-1; +\infty) \end{cases} \Leftrightarrow \begin{cases} -m^2 + 4 > 0 \\ x \neq m, \forall x \in (-1; +\infty) \end{cases}$

$$\Leftrightarrow \begin{cases} -2 < m < 2 \\ m \le -1 \end{cases} \Leftrightarrow -2 < m \le -1.$$

(Chuyên Nguyễn Bỉnh Khiêm - Quảng Nam - 2020) Tìm tất cả các giá trị thực của tham số m Câu 11. để hàm số $y = \frac{mx-1}{m-4x}$ nghịch biến trên khoảng $\left(-\infty; \frac{1}{4}\right)$.

- **C.** -2 < m < 2. **D.** $-2 \le m \le 2$.

Lời giải

Chon B

Tập xác định: $D = \mathbb{R} \setminus \left\{ \frac{m}{4} \right\}$.

Ta có $y' = \frac{m^2 - 4}{(m - 4x)^2}$.

Hàm số nghịch biến trên khoảng $\left(-\infty; \frac{1}{4}\right)$ khi và chỉ khi $\begin{cases} m^2 - 4 < 0 \\ \frac{m}{4} \notin \left(-\infty; \frac{1}{4}\right) \end{cases} \Leftrightarrow \begin{cases} -2 < m < 2 \\ \frac{m}{4} \ge \frac{1}{4} \end{cases}$

 $\Leftrightarrow \begin{cases} -2 < m < 2 \\ m > 1 \end{cases} \Rightarrow 1 \le m < 2.$

Vây $1 \le m < 2$.

- **Câu 12.** (**Chuyên Thái Nguyên 2020**) Cho hàm số $y = \frac{mx 2m + 3}{x + m}$ với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số nghịch biến trên khoảng $(2; +\infty)$. Tìm số phần tử của S.
 - **A.** 5.

- **B.** 3.
- **C.** 4.
- **D.** 1.

Lời giải

Chon C

Điều kiện xác định: $x \neq -m$.

Ta có:
$$y' = \frac{m^2 + 2m - 3}{(x+m)^2}$$
.

Để hàm số nghịch biến trên khoảng $(2;+\infty)$ thì:

$$\begin{cases} y' < 0; \forall x \in \left(2; +\infty\right) \\ x \neq -m \end{cases} \Leftrightarrow \begin{cases} m^2 + 2m - 3 < 0 \\ -m \leq 2 \end{cases} \Leftrightarrow \begin{cases} -3 < m < 1 \\ m \geq -2 \end{cases} \Leftrightarrow -2 \leq m < 1.$$

Vậy giá trị nguyên của m là $S = \{-2; -1; 0\}$.

- **Câu 13. (ĐHQG Hà Nội 2020)** Có bao nhiều giá trị nguyên của tham số m để hàm số $y = \frac{x+18}{x+4m}$ nghịch biến trên khoảng $(2;+\infty)$?
 - A. Vô số.
- **B.** 0.
- **C.** 3.
- <u>D</u>. 5.

Lời giải

Chọn D

Điều kiện $x \neq -4m$.

Ta có
$$y = \frac{x+18}{x+4m} \Rightarrow y' = \frac{4m-18}{(x+4m)^2}$$
.

Hàm số đã cho nghịch biến trên khoảng $(2;+\infty)$

$$\Leftrightarrow \begin{cases} y' < 0 \\ -4m \notin (2; +\infty) \end{cases} \Leftrightarrow \begin{cases} 4m - 18 < 0 \\ -4m \le 2 \end{cases} \Leftrightarrow \begin{cases} m < \frac{9}{2} \\ m \ge -\frac{1}{2} \end{cases} \Leftrightarrow -\frac{1}{2} \le m < \frac{9}{2}.$$

Vì $m \in \mathbb{Z}$ nên $m \in \{0;1;2;3;4\}$. Vậy có 5 giá trị nguyên của tham số m để hàm số $y = \frac{x+18}{x+4m}$ nghịch biến trên khoảng $(2;+\infty)$.

- **Câu 14.** (Sở Hà Tĩnh 2020) Có bao nhiều giá trị nguyên của tham số m để hàm số $y = \frac{mx+9}{4x+m}$ nghịch biến trên khoảng (0;4)?
 - **A.** 5.

- **B.** 11.
- <u>C</u>. 6.

Lời giải

D. 7.

Chọn C

NGUYĒN BẢO VƯƠNG - 0946798489

Điều kiện: $x \neq -\frac{m}{4}$.

Ta có:
$$y' = \frac{m^2 - 36}{(4x+m)^2}$$
.

Hàm số đã cho nghịch biến trên khoảng $(0;4) \Leftrightarrow y' < 0, \ \forall x \in (0;4)$

$$\Leftrightarrow \begin{cases} m^2 - 36 < 0 \\ -\frac{m}{4} \notin (0;4) \end{cases} \Leftrightarrow \begin{cases} -6 < m < 6 \\ -\frac{m}{4} \le 0 \\ -\frac{m}{4} \ge 4 \end{cases} \Leftrightarrow \begin{cases} -6 < m < 6 \\ m \ge 0 \\ m \le -16 \end{cases} \Leftrightarrow 0 \le m < 6.$$

Vì $m \in \mathbb{Z}$ nên $m \in \{0,1,2,3,4,5\}$.

Vây có 6 giá tri *m* thỏa mãn yêu cầu bài toán.

(Sở Yên Bái - 2020) Tìm tất cả các giá trị thực của tham số m sao cho hàm số $y = \frac{-mx + 3m + 4}{x - m}$ Câu 15. nghịch biến trên khoảng $(1; +\infty)$

A. -1 < m < 4. **B.** $-1 < m \le 1$. **C.** $\begin{vmatrix} m < -1 \\ m > 4 \end{vmatrix}$. **D.** $1 \le m < 4$.

Lời giải

Chon B

$$y' = \frac{m^2 - 3m - 4}{(x - m)^2}$$

Để hàm số nghịch biến trên khoảng $(1;+\infty)$ thì $y' < 0, \forall x \in (1;+\infty)$.

$$\Leftrightarrow \begin{cases} m^2 - 3m - 4 < 0 \\ m \notin (1; +\infty) \end{cases} \Leftrightarrow \begin{cases} m \in (-1; 4) \\ m \le 1 \end{cases} \Leftrightarrow -1 < m \le 1.$$

(Đặng Thúc Hứa - Nghệ An - 2020) Có bao nhiều giá trị nguyên của tham số Câu 16. $m \in (-2020; 2020)$ sao cho hàm số $y = \frac{3x+18}{x-m}$ nghịch biến trên khoảng $(-\infty; -3)$?

A. 2020.

B. 2026.

C. 2018.

D. 2023.

Lời giải

Chon D

Điều kiện: $x \neq m$ nên $m \notin (-\infty; -3)$

$$y = \frac{3x+18}{x-m} \Rightarrow y' = \frac{-3m-18}{\left(x-m\right)^2}$$

Để hàm số $y = \frac{3x+18}{x-m}$ nghịch biến trên khoảng $(-\infty; -3)$ thì $-3m-18 < 0 \Leftrightarrow m > -6$

Vì $m \in (-2020; 2020)$ và $m \notin (-\infty; -3)$ nên $m \in [-2; 2020]$

Vậy có 2023 giá trị *m* nguyên thoả mãn.

Câu 17. (Lương Thế Vinh - Hà Nội - 2020) Có bao nhiều giá trị nguyên âm của tham số m để hàm số $y = \frac{x+4}{2x-m}$ nghịch biến trên khoảng (-3;4).

A. Vô số.

B. 1.

C. 3.

Lời giải

D. 2.

Chon D

Tập xác định $D = \mathbb{R} \setminus \left\{ \frac{m}{2} \right\}$.

Có
$$y' = -\frac{m+8}{\left(2x-m\right)^2}$$

Hàm số nghịch biến trên $(-3;4) \Leftrightarrow y' < 0 \ \forall x \in (-3;4) \Leftrightarrow -\frac{m+8}{(2x-m)^2} < 0 \ \forall x \in (-3;4)$

$$\Leftrightarrow \begin{cases} -(m+8) < 0 \\ \frac{m}{2} \notin (-3;4) \end{cases} \Leftrightarrow \begin{cases} m > -8 \\ \frac{m}{2} \le -3 \Leftrightarrow \begin{bmatrix} -8 < m \le -6 \\ m \ge 8 \end{cases}.$$

Do m nguyên âm nên $m \in \{-7, -6\}$, gồm 2 giá trị thỏa mãn.

(Chuyên KHTN - Hà Nội - Lần 3) Có bao nhiều giá trị nguyên của tham số m để hàm số Câu 18. $y = \frac{mx+4}{x+m}$ nghịch biến trên khoảng $(0;+\infty)$?

A. 1.

D. 5.

B. 2. **C.** 3. **Lòi giải**

Chon B

TXĐ: $D = \mathbb{R} \setminus \{-m\}$

Ta có
$$y' = \frac{m^2 - 4}{(x+m)^2}$$
.

Hàm số nghịch biến trên khoảng $(0;+\infty)$ khi và chỉ khi

$$\begin{cases} y' < 0, \forall x > 0 \\ -m \notin (0; +\infty) \end{cases} \Leftrightarrow \begin{cases} m^2 - 4 < 0 \\ -m \le 0 \end{cases} \Leftrightarrow \begin{cases} -2 < m < 2 \\ m \ge 0 \end{cases} \Leftrightarrow 0 \le m < 2.$$

Vây số giá tri nguyên của tham số m là 2.

Dạng 3. Tìm m để hàm số bậc 3 đơn điệu trên khoảng cho trước

(Mã 101 - 2020 -Lần 2) Tập hợp tất cả các giá trị thực của tham số m để hàm số Câu 1. $y = x^3 - 3x^2 + (4 - m)x$ đồng biến trên khoảng $(2; +\infty)$ là

A. $(-\infty;1]$

- $\mathbf{\underline{B}}.\ (-\infty;4]$
- C. $(-\infty;1)$ D. $(-\infty;4)$

Lời giải

Chon B

Ta có.

$$y' = 3x^2 - 6x + 4 - m \cdot ycbt \Leftrightarrow y' \ge 0, \forall x \in (2; +\infty)$$

$$\Leftrightarrow 3x^2 - 6x + 4 - m \ge 0, \forall x \in (2; +\infty) \Leftrightarrow m \le 3x^2 - 6x + 4, \forall x \in (2; +\infty)$$

NGUYĒN BẢO VƯƠNG - 0946798489

$$\Leftrightarrow m \le \min_{(2;+\infty)} g(x) \text{ v\'oi } g(x) = 3x^2 - 6x + 4$$

Ta có.

$$g'(x) = 6x - 6$$

$$g'(x) = 0 \Leftrightarrow 6x - 6 = 0 \Leftrightarrow x = 1$$

X	-∞	1	2	+∞
g'(x)		0	+	
g(x)			4	+∞

Dựa vào bảng biến thiên, suy ra: $m \le 4$ thỏa yêu cầu bài toán.

Vậy: $m \in (-\infty, 4]$ thì hàm số đồng biến trên khoảng $(2, +\infty)$.

(Mã 102 - 2020 - Lân 2) Tập hợp tất cả các giá trị của tham số m để hàm số Câu 2. $y = x^3 - 3x^2 + (5 - m)x$ đồng biến trên khoảng $(2; +\infty)$ là

A.
$$(-\infty; 2)$$
.

$$\underline{\mathbf{B}}.\ (-\infty;5).$$

$$\underline{\mathbf{C}}.\ (-\infty;5].$$

D.
$$(-\infty; 2]$$
.

Lời giải

Chon C

Ta có $v' = 3x^2 - 6x + 5 - m$.

Hàm số đã cho đồng biến trên $(2; +\infty)$ khi và chỉ khi $y' \ge 0, \forall x \in (2; +\infty)$

$$\Leftrightarrow 3x^2 - 6x + 5 - m \ge 0, \forall x > 2 \Leftrightarrow m \le 3x^2 - 6x + 5, \forall x > 2.$$

Xét hàm số $f(x) = 3x^2 - 6x + 5$ trên khoảng $(2; +\infty)$.

Có
$$f'(x) = 6x - 6$$
, $f'(x) = 0 \Leftrightarrow 6x - 6 = 0 \Leftrightarrow x = 1$ (loại).

Bảng biến thiên

Từ bàng biến thiên ta có $m \le 3x^2 - 6x + 5, \forall x > 2 \iff m \le 5$.

Vây $m \in (-\infty; 5]$.

(Mã 103 - 2020 - Lần 2) Tập hợp tất cả các giá trị thực của tham số m để hàm số Câu 3. $y = x^3 - 3x^2 + (2 - m)x$ đồng biến trên khoảng $(2; +\infty)$ là

A.
$$(-\infty; -1]$$
.

B.
$$(-\infty;2)$$
.

$$\mathbf{C}. (-\infty; -1).$$
 $\underline{\mathbf{D}}. (-\infty; 2].$

$$\mathbf{\underline{D}} \cdot (-\infty; 2]$$
.

Lời giải

Chon D

Ta có $y' = 3x^2 - 6x + 2 - m$.

Để hàm số đồng biến trên khoảng $(2; +\infty)$ khi và chỉ khi $y' \ge 0, \forall x \in (2; +\infty)$

$$\Leftrightarrow 3x^2 - 6x + 2 - m \ge 0, \forall x \in (2; +\infty) \ m \le 3x^2 - 6x + 2, \forall x \in (2; +\infty).$$

Xét hàm số $f(x) = 3x^2 - 6x + 2, \forall x \in (2; +\infty)$.

$$f'(x) = 6x - 6$$
; $f'(x) = 0 \Rightarrow 6x - 6 = 0 \Leftrightarrow x = 1$.

Bảng biến thiên:

x	$-\infty$	1 2		$+\infty$
$\int f'(x)$) /////////////////////////////////////	////%//	+	
f(x)				+∞

Từ bảng biến thiên ta thấy $m \le 2$. Vậy $m \in (-\infty; 2]$.

Câu 4. (Mã 104 - 2020 - Lần 2) Tập hợp tất cả các giá trị thực của tham số m để hàm số $y = x^3 - 3x^2 + (1 - m)x$ đồng biến trên khoảng $(2; +\infty)$ là

A.
$$(-\infty; -2)$$
.

B.
$$(-\infty;1)$$
.

C.
$$(-\infty;-2]$$
. $\underline{\mathbf{D}}$. $(-\infty;1]$.

$$\mathbf{D}$$
. $(-\infty;1]$.

Lời giải

Chon D

Ta có $v' = 3x^2 - 6x + 1 - m$.

Hàm số đồng biến trên khoảng $(2; +\infty) \Leftrightarrow y' \geq 0, \ \forall x \in (2; +\infty)$

$$\Leftrightarrow 3x^2 - 6x + 1 - m \ge 0, \ \forall x \in (2; +\infty)$$

$$\Leftrightarrow 3x^2 - 6x + 1 \ge m$$
, $\forall x \in (2; +\infty)$.

Xét hàm số $g(x) = 3x^2 - 6x + 1$ với $\forall x \in (2; +\infty)$.

$$g'(x) = 6x - 6$$
; $g'(x) > 0$, $\forall x \in (2; +\infty)$.

Bảng biến thiên g(x):

Vây $m \le 1$.

(\mathbf{D} ề Tham Khảo 2019) Tập hợp tất cả các giá trị thực của tham số m để hàm số Câu 5. $y = -x^3 - 6x^2 + (4m - 9)x + 4$ nghịch biến trên khoảng $(-\infty; -1)$ là

$$\mathbf{A} \cdot \left(-\infty; -\frac{3}{4} \right]$$

B.
$$[0; +\infty)$$

B.
$$[0;+\infty)$$
 C. $(-\infty;0]$ **D.** $\left[-\frac{3}{4};+\infty\right)$

Lời giải

Chon A

Ta có
$$y' = -3x^2 - 12x + 4m - 9$$

Để hàm số nghịch biến trên khoảng $(-\infty; -1)$ thì $y' = -3x^2 - 6x + 4m - 9 \le 0 \quad \forall x \in (-\infty; -1)$

$$\Leftrightarrow 4m \le 3x^2 + 12x + 9 \quad \forall x \in \left(-\infty; -1\right) \iff 4m \le \min_{(-\infty; -1]} f\left(x\right), \quad f\left(x\right) = 3x^2 + 12x + 9$$

Ta có
$$f'(x) = 6x + 12$$
; $f'(x) = 0 \Leftrightarrow x = -2$.

Khi đó, ta có bảng biến thiên

Suy ra $\min_{(-\infty,0]} f(x) = -3 \Rightarrow 4m \le -3 \Leftrightarrow m \le \frac{-3}{4}$.

Cho hàm số $y = x^3 + 3x^2 - mx - 4$. Tập hợp tất cả các giá trị của tham số m để hàm số đồng biến Câu 6. trên khoảng $(-\infty;0)$ là

A.
$$(-1;5)$$
.

B.
$$(-\infty; -3]$$

B.
$$(-\infty; -3]$$
. **C.** $(-\infty; -4]$. **D.** $(-1; +\infty)$.

D.
$$(-1;+\infty)$$
.

Chon B

Ta có $y' = 3x^2 + 6x - m$.

Để hàm số đồng biến trên khoảng $(-\infty;0)$ thì $y' \ge 0$, $\forall x \in (-\infty;0)$

$$\Leftrightarrow 3x^2 + 6x - m \ge 0, \forall x \in (-\infty, 0)$$

$$\Leftrightarrow m \leq 3x^2 + 6x, \forall x \in (-\infty, 0).$$

Đặt $g(x) = 3x^2 + 6x$, hàm số g(x) có bảng biến thiên

$$\begin{array}{c|cccc} x & -\infty & & -1 & & 0 \\ \hline y & & - & 0 & + \\ \hline y & -\infty & \searrow & -3 & \nearrow & 0 \\ \end{array}$$

Dựa vào bảng biến thiên ta có $\Leftrightarrow m \le 3x^2 + 6x, \forall x \in (-\infty, 0) \Leftrightarrow m \le -3$.

Tìm tất cả các giá trị thực của tham số m sao cho hàm số $y = f(x) = \frac{mx^3}{3} + 7mx^2 + 14x - m + 2$ Câu 7. giảm trên nửa khoảng $[1; +\infty)$?

$$\mathbf{A} \cdot \left(-\infty; -\frac{14}{15} \right]$$

B.
$$\left[-2; -\frac{14}{15} \right]$$

$$\mathbf{A.}\left(-\infty; -\frac{14}{15}\right]. \qquad \qquad \mathbf{B.}\left[-2; -\frac{14}{15}\right]. \qquad \qquad \mathbf{C.}\left[-\frac{14}{15}; +\infty\right). \qquad \qquad \mathbf{D.}\left(-\infty; -\frac{14}{15}\right).$$

$$\mathbf{D.}\left(-\infty; -\frac{14}{15}\right).$$

Chon A

Tập xác định $D = \mathbb{R}$, yêu cầu của bài toán đưa đến giải bất phương trình

$$mx^2 + 14mx + 14 \le 0, \forall x \ge 1$$
, tương đương với $g(x) = \frac{-14}{x^2 + 14x} \ge m$ (1)

Dễ dàng có được g(x) là hàm tăng $\forall x \in [1; +\infty)$, suy ra $\min_{x>1} g(x) = g(1) = -\frac{14}{15}$

Kết luận: (1) $\Leftrightarrow \min_{x > 1} g(x) \ge m \Leftrightarrow -\frac{14}{15} \ge m$

- Xác định các giá trị của tham số m để hàm số $y = x^3 3mx^2 m$ nghịch biến trên khoảng (0;1)? Câu 8.
 - A. $m \ge 0$.
- **B.** $m < \frac{1}{2}$. **C.** $m \le 0$.

Chon D

$$y' = 3x^2 - 6mx = 0 \Leftrightarrow \begin{bmatrix} x = 2m \\ x = 0 \end{bmatrix}$$

Hàm số $y = x^3 - 3mx^2 - m$ nghịch biến trên khoảng $(0,1) \Leftrightarrow 2m \ge 1 \Leftrightarrow m \ge \frac{1}{2}$

Tìm tất cả các giá trị của tham số m để hàm số $y = x^3 + 3x^2 - mx + 1$ đồng biến trên khoảng Câu 9. $(-\infty;0)$.

A.
$$m \le 0$$
.

B.
$$m \ge -2$$
.

C.
$$m \le -3$$
.

D.
$$m \le -1$$
.

Lời giải

Chon C

Tập xác định: $D = \mathbb{R}$.

Đạo hàm: $y' = 3x^2 + 6x - m$.

Hàm số đồng biến trên khoảng $(-\infty;0)$ khi và chỉ khi $y' \ge 0$, $\forall x < 0$

$$\Leftrightarrow 3x^2 + 6x - m \ge 0$$
, $\forall x < 0$.

Cách 1:

$$3x^2 + 6x - m \ge 0$$
, $\forall x < 0 \Leftrightarrow 3x^2 + 6x \ge m$, $\forall x < 0$.

Xét hàm số $f(x) = 3x^2 + 6x$ trên khoảng $(-\infty; 0)$, ta có:

$$f'(x) = 6x + 6$$
. Xét $f'(x) = 0 \Leftrightarrow 6x + 6 = 0 \Leftrightarrow x = -1$. Ta có $f(-1) = -3$.

Bảng biến thiên:

Dưa vào bảng biến thiên, ta có: $m \le -3$.

Cách 2:

Ta có $\Delta' = 9 + 3m$.

Nếu $\Delta' \le 0 \Leftrightarrow m \le -3$ thì $y' \ge 0 \ \forall x \in \mathbb{R} \Rightarrow y' \ge 0 \ \forall x < 0$.

Nếu $\Delta' > 0$ thì y' có hai nghiệm phân biệt x_1, x_2 . Khi đó để $y' \ge 0 \ \forall x < 0$ thì ta phải có $0 \le x_1 < x_2$. Điều này không thể xảy ra vì $S = x_1 + x_2 = -2 < 0$.

Vây $m \le -3$.

Cách 3:

Phương án B: Với m = -3 ta có $y = x^3 + 3x^2 + 3x + 1 = (x+1)^3$. Khi đó $y' = 3(x+1)^2 \ge 0 \ \forall x$.

Suy ra hàm số đồng biến trên khoảng $(-\infty;0)$. Vậy B là đáp án đúng.

Câu 10. Tìm tất cả các giá trị thực của tham số m để hàm số $y = x^3 - 3mx^2 - 9m^2x$ nghịch biến trên khoảng (0;1).

A.
$$-1 < m < \frac{1}{3}$$
. **B.** $m > \frac{1}{3}$.

B.
$$m > \frac{1}{3}$$
.

C.
$$m < -1$$
.

D.
$$m \ge \frac{1}{3}$$
 hoặc $m \le -1$.

Chon D

Tập xác định $D = \mathbb{R}$.

$$y' = 3x^2 - 6mx - 9m^2$$
; $y' = 0 \Leftrightarrow 3x^2 - 6mx - 9m^2 = 0 \Leftrightarrow x^2 - 2mx - 3m^2 = 0 \Leftrightarrow x = 3m$.

- •Nếu $-m = 3m \Leftrightarrow m = 0$ thì $y' \ge 0; \forall x \in \mathbb{R}$ nên hàm số không có khoảng nghịch biến.
- •Nếu $-m < 3m \Leftrightarrow m > 0$ thì hàm số nghịch biến trên khoảng (-m; 3m).

Do đó hàm số nghịch biến trên khoảng $(0;1) \Leftrightarrow \begin{cases} -m \le 0 \\ 3m \ge 1 \end{cases} \Leftrightarrow m \ge \frac{1}{3}$.

Kết hợp với điều kiện ta được $m \ge \frac{1}{3}$.

•Nếu $-m > 3m \iff m < 0$ thì hàm số nghịch biến trên khoảng (3m; -m).

Do đó hàm số nghịch biến trên khoảng $(0;1) \Leftrightarrow \begin{cases} 3m \le 0 \\ -m \ge 1 \end{cases} \Leftrightarrow m \le -1$.

Kết hợp với điều kiện ta được $m \le -1$.

Vậy hàm số nghịch biến trên khoảng (0;1) khi $m \le -1$ hoặc $m \ge \frac{1}{2}$.

Câu 11. Tìm các giá trị của tham số m để hàm số $y = \frac{1}{3}x^3 - mx^2 + (2m-1)x - m + 2$ nghịch biến trên khoảng (-2;0)...

A.
$$m = 0$$
.

B.
$$m > 1$$

B.
$$m > 1$$
. **C.** $m \le -\frac{1}{2}$. **D.** $m < -\frac{1}{2}$.

D.
$$m < -\frac{1}{2}$$

Lời giải

Chon C

Ta có:
$$y' = x^2 - 2mx + 2m - 1$$
. Cho $y' = 0 \Leftrightarrow x^2 - 2mx + 2m - 1 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = 2m - 1 \end{bmatrix}$.

Nếu $1 \le 2m-1$ thì ta có biến đổi $y' \le 0 \Leftrightarrow 1 \le x \le 2m-1$.

(trường hợp này hàm số không thể nghịch biến trên khoảng (-2;0)).

Xét 2m-1 < 1 ta có biến đổi $y' \le 0 \Leftrightarrow x \in [2m-1;1]$.

х	-∞		2m-1		1		$+\infty$
<i>y</i> ′		+	0	_	0	+	
	-∞ ,		* \		•		→ +∞

Vậy, hàm số nghịch biến trên khoảng (-2,0) thì $(-2,0) \subset [2m-1,1]$.

$$\Leftrightarrow 2m-1 \le -2 \Leftrightarrow m \le -\frac{1}{2}$$
.

Tìm tất cả các giá trị m để hàm số $y = x^3 - 3x^2 + mx + 2$ tăng trên khoảng $(1; +\infty)$.

A.
$$m < 3$$
.

B.
$$m \ge 3$$
.

C.
$$m \neq 3$$
.

D.
$$m \le 3$$
.

Lời giải

Chon B

Đạo hàm :
$$y' = 3x^2 - 6x + m$$

YCBT
$$\Leftrightarrow y' \ge 0, \forall x \in (1; +\infty)$$
.

$$\Leftrightarrow 3x^2 - 6x + m \ge 0, \forall x \in (1; +\infty) \Leftrightarrow m \ge -3x^2 + 6x, \forall x \in (1; +\infty)$$

Xét hàm số:
$$f(x) = -3x^2 + 6x$$
, $\forall x \in (1; +\infty) \Rightarrow f'(x) = -6x + 6 \Rightarrow f'(x) = 0 \Leftrightarrow x = 1$.

$$\lim_{x \to +\infty} f(x) = -\infty, \ f(1) = 3. \text{ Do d\'o}: \ m \ge f(x), x \in (1; +\infty) \Longrightarrow m \ge 3.$$

Tập hợp tất cả các giá trị của tham số m để hàm số $y = x^3 - mx^2 - (m-6)x + 1$ đồng biến trên Câu 13. khoảng (0;4) là:

A.
$$(-\infty;3)$$
. **B.** $(-\infty;3]$. **C.** $[3;6]$. **Lòi giải**

B.
$$(-\infty;3]$$
.

D.
$$\left(-\infty;6\right]$$
.

Chọn B

 $y' = 3x^2 - 2mx - (m-6)$. Để hàm số đồng biến trên khoảng (0;4) thì: $y' \ge 0$, $\forall x \in (0;4)$.

tức là
$$3x^2 - 2mx - (m-6) \ge 0 \ \forall x \in (0;4) \Leftrightarrow \frac{3x^2 + 6}{2x + 1} \ge m \ \forall x \in (0;4)$$

Xét hàm số
$$g(x) = \frac{3x^2 + 6}{2x + 1}$$
 trên $(0, 4)$.

$$g'(x) = \frac{6x^2 + 6x - 12}{(2x+1)^2}, \ g'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 1 \in (0;4) \\ x = -2 \notin (0;4) \end{bmatrix}$$

Ta có bảng biến thiên:

Vậy để $g(x) = \frac{3x^2 + 6}{2x + 1} \ge m \ \forall x \in (0, 4) \text{ thì } m \le 3.$

Câu 14. Tìm tất cả các giá thực của tham số m sao cho hàm số $y = 2x^3 - 3x^2 - 6mx + m$ nghịch biến trên

NGUYĚN BẢO VƯƠNG - 0946798489

khoảng (-1;1).

A.
$$m \le -\frac{1}{4}$$
. **B.** $m \ge \frac{1}{4}$.

B.
$$m \ge \frac{1}{4}$$
.

C.
$$m \ge 2$$
.

D.
$$m \ge 0$$
.

Lời giải

Chon C

Ta có $y' = 6x^2 - 6x - 6m$.

Hàm số nghịch biến trên khoảng (-1;1) khi và chỉ khi $y' \le 0$ với $\forall x \in (-1;1)$ hay $m \ge x^2 - x$ với $\forall x \in (-1;1)$.

Xét
$$f(x) = x^2 - x$$
 trên khoảng $(-1;1)$ ta có $f'(x) = 2x - 1$; $f'(x) = 0 \Leftrightarrow x = \frac{1}{2}$.

Bảng biến thiên

Dựa vào bảng biến thiên ta có $m \ge f(x)$ với $\forall x \in (-1,1) \Leftrightarrow m \ge 2$.

* Có thể sử dụng
$$y' \le 0$$
 với $\forall x \in (-1;1) \Leftrightarrow \begin{cases} y'(-1) \le 0 \\ y'(1) \le 0 \end{cases} \Leftrightarrow \begin{cases} -6m \le 0 \\ 12 - 6m \le 0 \end{cases} \Leftrightarrow \begin{cases} m \ge 0 \\ m \ge 2 \end{cases} \Leftrightarrow m \ge 2.$

Câu 15. Tìm tất cả các giá trị thực của tham số m sao cho hàm số $y = x^3 - 6x^2 + mx + 1$ đồng biến trên khoảng $(0;+\infty)$?

A.
$$m \ge 12$$
.

B.
$$m \le 12$$
.

$$\mathbf{C}$$
. $m \ge 0$.

D.
$$m \le 0$$
.

Lời giải

Chon A

Cách 1: Tập xác định: $D = \mathbb{R}$. Ta có $y' = 3x^2 - 12x + m$

☐ Trường hợp 1:

Hàm số đồng biến trên $\mathbb{R} \iff y' \ge 0, \ \forall x \in \mathbb{R} \iff \begin{cases} 3 > 0 \ (hn) \\ 36 - 3m \le 0 \end{cases} \iff m \ge 12$

 \Box Trường hợp 2: Hàm số đồng biến trên $(0;+\infty) \Leftrightarrow y'=0$ có hai nghiệm x_1,x_2 thỏa $x_1 < x_2 \le 0$ (*)

 \Box Trường hợp 2.1: y' = 0 có nghiệm x = 0 suy ra m = 0. Nghiệm còn lại của y' = 0 là x = 4 (không thỏa (*))

 \Box Trường họp 2.2: y' = 0 có hai nghiệm x_1, x_2 thỏa

$$x_1 < x_2 < 0 \Leftrightarrow \begin{cases} \Delta' > 0 \\ S < 0 \Leftrightarrow \end{cases} \begin{cases} 36 - 3m > 0 \\ 4 < 0(vl) \implies \text{không có } m. \text{Vậy } m \ge 12 \\ \frac{m}{3} > 0 \end{cases}$$

Cách 2: Hàm số đồng biến trên $(0; +\infty) \Leftrightarrow m \ge 12x - 3x^2 = g(x), \forall x \in (0; +\infty)$.

Lập bảng biến thiên của g(x) trên $(0;+\infty)$.

Câu 16. Tìm m để hàm số $y = -x^3 + 3x^2 + 3mx + m - 1$ nghịch biến trên $(0; +\infty)$.

A. $m \le -1$.

B. $m \le 1$.

C. m < 1.

D. m > -1.

Lời giải

Chọn A

Ta có $y' = -3x^2 + 6x + 3m = 3(-x^2 + 2x + m)$.

Vì hàm số liên tục trên nửa khoảng $[0;+\infty)$ nên hàm số nghịch biến trên $(0;+\infty)$ cũng tương đương hàm số nghịch trên $[0;+\infty)$ khi chỉ khi $y' \le 0$, $\forall x \in [0,+\infty)$.

$$\Leftrightarrow -x^2 + 2x + m \le 0 \ \forall x \in [0; +\infty) \Leftrightarrow m \le x^2 - 2x = f(x) \ \forall x \in [0; +\infty)$$

$$\Leftrightarrow m \le \min_{[0;+\infty)} f(x) = f(1) = -1$$

Câu 17. (THPT Chuyên Hạ Long - 2018) Gọi S là tập hợp các giá trị nguyên dương của m để hàm số $y = x^3 - 3(2m+1)x^2 + (12m+5)x + 2$ đồng biến trên khoảng $(2; +\infty)$. Số phần tử của S bằng

A. 1.

B. 2.

C. 3.

D. 0.

Lời giải

Tâp xác đinh $D = \mathbb{R}$.

$$y' = 3x^2 - 6(2m+1)x + 12m + 5$$
.

Hàm số đồng biến trong khoảng $(2; +\infty)$ khi $y' \ge 0$, $\forall x \in (2; +\infty)$

$$\Leftrightarrow 3x^2 - 6(2m+1)x + 12m + 5 \ge 0, \ \forall x \in (2; +\infty).$$

$$3x^2 - 6(2m+1)x + 12m + 5 \ge 0 \iff m \le \frac{3x^2 - 6x + 5}{12(x-1)}$$

Xét hàm số
$$g(x) = \frac{3x^2 - 6x + 5}{12(x-1)}$$
 với $x \in (2; +\infty)$.

$$g'(x) = \frac{3x^2 - 6x + 1}{12(x - 1)^2} > 0 \text{ với } \forall x \in (2; +\infty) \implies \text{hàm số } g(x) \text{ đồng biến trên khoảng } (2; +\infty).$$

Do đó
$$m \le g(x), \forall x \in (2; +\infty) \implies m \le g(2) \iff m \le \frac{5}{12}$$
.

Vậy không có giá trị nguyên dương nào của m thỏa mãn bài toán.

Câu 18. (Chuyên KHTN - 2018). Tập hợp tất cả các giá trị của tham số m để hàm số $y = x^3 - mx^2 - (m-6)x + 1$ đồng biến trên khoảng (0;4) là:

A. $(-\infty; 6]$.

B. $(-\infty;3)$.

 $\underline{\mathbf{C}}.\ (-\infty;3].$

D. [3;6].

 $y' = 3x^2 - 2mx - (m-6)$. Để hàm số đồng biến trên khoảng (0;4) thì: $y' \ge 0$, $\forall x \in (0;4)$.

tức là
$$3x^2 - 2mx - (m-6) \ge 0 \ \forall x \in (0;4) \Leftrightarrow \frac{3x^2 + 6}{2x + 1} \ge m \ \forall x \in (0;4)$$

Xét hàm số $g(x) = \frac{3x^2 + 6}{2x + 1}$ trên (0;4).

$$g'(x) = \frac{6x^2 + 6x - 12}{(2x+1)^2}, \ g'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 1 \in (0;4) \\ x = -2 \notin (0;4) \end{bmatrix}$$

Ta có bảng biến thiên:

Vậy để $g(x) = \frac{3x^2 + 6}{2x + 1} \ge m \ \forall x \in (0, 4) \text{ th} \ m \le 3.$

(Chuyên ĐH Vinh - Nghệ An -2020) Có bao nhiều số nguyên m để hàm số Câu 19. $f(x) = \frac{1}{3}x^3 - mx^2 + (m+6)x + \frac{2}{3} \text{ dồng biến trên khoảng } (0; +\infty)?$ **A.** 9. **B.** 10. **C.** 6.

D. 5.

Chon B

Ta có
$$f'(x) = x^2 - 2mx + (m+6)$$

Hàm số $f(x) = \frac{1}{3}x^3 - mx^2 + (m+6)x + \frac{2}{3}$ đồng biến trên khoảng $(0; +\infty)$ khi và chỉ khi $f'(x) \ge 0, \forall x \in (0; +\infty).$

Xét hàm số $y = f'(x) = x^2 - 2mx + (m+6)$ trong 3 trường hợp:

Trường hợp 1: m = 0

 $y = f'(x) = x^2 + 6 > 0, \forall x \in \mathbb{R}$. Lúc này hàm số f(x) đồng biến trên \mathbb{R} nên cũng đồng biến trên $(0;+\infty)$ (1).

Trường hợp 2: m < 0, ta có bảng biến thiên của hàm số $y = f'(x) = x^2 - 2mx + (m+6)$ như sau:

$$f'(x) \ge 0, \forall x \in (0; +\infty) \Leftrightarrow \begin{cases} m+6 \ge 0 \\ m<0 \end{cases} \Leftrightarrow -6 \le m < 0$$
 (2).

Trường hợp 3: m > 0, ta có bảng biến thiên của hàm số $y = f'(x) = x^2 - 2mx + (m+6)$ như sau:

$$f'(x) \ge 0, \forall x \in (0; +\infty) \Leftrightarrow \begin{cases} -m^2 + m + 6 \ge 0 \\ m > 0 \end{cases} \Leftrightarrow 0 < m \le 3 (3).$$

Từ (1),(2) và (3) suy ra có 10 giá trị nguyên của m để hàm số $f(x) = \frac{1}{3}x^3 - mx^2 + (m+6)x + \frac{2}{3}$ đồng biến trên khoảng $(0; +\infty)$.

(Chuyên Sơn La - 2020) Tìm tất cả các giá trị thực của tham số m để hàm số Câu 20. $y = -x^3 - 6x^2 + (4m - 9)x + 4$ nghịch biến trên khoảng $(-\infty; -1)$ là

$$\underline{\mathbf{A}} \cdot \left(-\infty; -\frac{3}{4} \right]$$

$$\underline{\mathbf{A}} \cdot \left(-\infty; -\frac{3}{4} \right].$$
 $\mathbf{B} \cdot \left[-\frac{3}{4}; +\infty \right).$

C.
$$[0;+\infty)$$

D.
$$\left(-\infty;0\right]$$
.

Lời giải

Chon A

Ta có: $v' = -3x^2 - 12x + 4m - 9$

Ycbt $\Leftrightarrow -3x^2 - 12x + 4m - 9 \le 0$, $\forall x \in (-\infty; -1)$

$$\Leftrightarrow m \le \frac{3}{4}(x^2 + 4x + 3), \ \forall x \in (-\infty; -1)$$

$$\Leftrightarrow m \le \frac{3}{4} \Big[(x+2)^2 - 1 \Big], \ \forall x \in (-\infty; -1)$$

$$\iff m \le \min_{x \in (-\infty; -1)} \left\{ \frac{3}{4} \left[\left(x + 2 \right)^2 - 1 \right] \right\} = -\frac{3}{4}.$$

(Sở Bắc Ninh - 2020) Cho hàm số $y = \frac{x^3}{3} - (m-1)x^2 + 3(m-1)x + 1$. Số các giá trị nguyên của Câu 21. m để hàm số đồng biến trên $(1;+\infty)$ là

A. 7.

- **B.** 4.
- <u>C</u>. 5. Lời giải

D. 6.

Chon C

Ta có: $y' = x^2 - 2(m-1)x + 3(m-1)$.

Yebt $\Leftrightarrow x^2 - 2(m-1)x + 3(m-1) \ge 0, \forall x \in (1; +\infty)$

$$\Delta' = \left[-(m-1) \right]^2 - 3(m-1) = m^2 - 5m + 4.$$

Trường hợp 1: $\Delta' \le 0 \Leftrightarrow m^2 - 5m + 4 \le 0 \Leftrightarrow m \in [1;4]$. Ta được 4 giá trị nguyên của m.

Trường hợp 2:

 $\Delta' > 0 \Leftrightarrow m^2 - 5m + 4 > 0 \Leftrightarrow \begin{vmatrix} m < 1 \\ m > 4 \end{vmatrix}$. Khi đó phương trình $x^2 - 2(m-1)x + 3(m-1) = 0$ có hai

nghiệm phân biệt $x_1 < x_2 \le 1$

$$\Leftrightarrow \begin{cases} (x_1 - 1) + (x_2 - 1) < 0 \\ (x_1 - 1)(x_2 - 1) \ge 0 \end{cases} \Leftrightarrow \begin{cases} (x_1 + x_2) - 2 < 0 \\ x_1 x_2 - (x_1 + x_2) + 1 \ge 0 \end{cases} \Leftrightarrow \begin{cases} 2(m - 1) - 2 < 0 \\ 3(m - 1) - 2(m - 1) + 1 \ge 0 \end{cases}$$
$$\Leftrightarrow 0 \le m < 2.$$

NGUYỄN <mark>BẢO VƯƠNG - 0946798489</mark>

Kết hợp với điều kiện ta được $0 \le m < 1$. Khi đó có 1 giá trị nguyên của m. Vậy có 5 giá trị nguyên của m.

Câu 22. (**Kim Liên - Hà Nội - 2020**) Số giá trị nguyên thuộc khoảng (-2020; 2020) của tham số m để hàm số $y = x^3 - 3x^2 - mx + 2019$ đồng biến trên $(0; +\infty)$ là

A. 2018.

B. 2019.

C. 2020.

D. 2017.

Lời giải

Chọn D

Ta có $y' = 3x^2 - 6x - m$.

Hàm số đồng biến trên khi $y' \ge 0$, $\forall x \in (0; +\infty) \Leftrightarrow 3x^2 - 6x - m \ge 0$, $\forall x \in (0; +\infty)$

$$\Leftrightarrow 3x^2 - 6x \ge m, \forall x \in (0; +\infty)$$
 (1)

Xét hàm số $f(x) = 3x^2 - 6x$ trên $(0; +\infty)$

Ta có
$$f'(x) = 6x - 6$$
, $f'(x) = 0 \Leftrightarrow x = 1$. Do đó $\min_{(0;+\infty)} f(x) = f(1) = -3$

(1) \Leftrightarrow $m \le -3$. Kết hợp với giả thiết ta được $m \in (-2020; -3]$. Nên có 2017 số nguyên thỏa mãn Vây chon **D.**

Câu 23. (**Lê Lai - Thanh Hóa - 2020**) Có bao nhiều giá trị nguyên của m thuộc [-2020; 2020] để hàm số $y = x^3 - 6x^2 + mx + 1$ đồng biến trên $(0; +\infty)$.

A. 2004.

B. 2017.

C. 2020.

D. 2009.

Lời giải

Chọn D

Ta có: $y' = 3x^2 - 12x + m$.

Hàm số đồng biến trên (0;+∞) khi và chỉ khi

$$y' \ge 0, \forall x \in (0; +\infty) \Leftrightarrow 3x^2 - 12x + m \ge 0, \forall x \in (0; +\infty).$$

Do đó $m \ge -3x^2 + 12x$, $\forall x \in (0; +\infty) \Leftrightarrow m \ge \max_{(0; +\infty)} g(x)$ với $g(x) = -3x^2 + 12x$.

Ta có: $g(x) = -3(x-2)^2 + 12 \le 12, \forall x \in (0; +\infty)$ nên $\max_{(0; +\infty)} g(x) = 12 = g(2)$.

Vậy $m \ge 12$.

Số các số nguyên m cần tìm là: 2020-12+1=2009.

Câu 24. (Nguyễn Huệ - Phú Yên - 2020) Cho hàm số $f(x) = x^3 - (m+1)x^2 - (2m^2 - 3m + 2)x + 2$. Có bao nhiêu giá trị nguyên của tham số m sao cho hàm số đã cho đồng biến trên khoảng $(2; +\infty)$?

A. 2.

B. 3.

C. 4

D. 5.

Lời giải

Chọn C

$$f(x) = x^3 - (m+1)x^2 - (2m^2 - 3m + 2)x + 2 \Rightarrow f'(x) = 3x^2 - 2(m+1)x - 2(m+1)x + 2 \Rightarrow f'(x) = 3x^2 - 2(m+1)x - 2(m+1)x + 2 \Rightarrow f'(x) = 3x^2 - 2(m+1)x - 2(m+1)x + 2 \Rightarrow f'(x) = 3x^2 - 2(m+1)x - 2(m+1)x + 2 \Rightarrow f'(x) = 3x^2 - 2(m+1)x +$$

Nhận xét
$$2m^2 - 3m + 2 > 0 \ \forall m \in \mathbb{R}$$
 nên $f'(x) = 3x^2 - 2(m+1)x - (2m^2 - 3m + 2) = 0$

luôn có hai nghiệm phân biệt với mọi m

Do đó hàm số đã cho đồng biến trên khoảng $(2; +\infty)$ khi và chỉ khi $f'(x) \ge 0$ với mọi $x \in (2; +\infty)$

Điều này xảy ra khi
$$\begin{cases} 3.f'(2) \ge 0 \\ x_1 < x_2 < 2 \end{cases} \Leftrightarrow \begin{cases} 3. \left[3.4 - 4\left(m+1\right) - \left(2m^2 - 3m + 2\right) \right] \ge 0 \\ \frac{S}{2} < 2 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2m^2 - m + 6 \ge 0 \\ \frac{(m+1)}{3} < 2 \end{cases} \Leftrightarrow \begin{cases} -2 \le m \le \frac{3}{2} \Leftrightarrow -2 \le m \le \frac{3}{2} \\ m < 5 \end{cases}$$

Do m nguyên nên $m \in \{-2; -1; 0; 1\}$.

Câu 25. (**Tiên Du - Bắc Ninh - 2020**) Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc (-2020;2020) sao cho hàm số $y = 2x^3 + mx^2 + 2x$ đồng biến trên khoảng (-2;0). Tính số phần tử của tập hợp S.

A. 2025.

B. 2016.

C. 2024.

D. 2023.

Lời giải

Chọn C

Ta có
$$y = 2x^3 + mx^2 + 2x \Rightarrow y' = 6x^2 + 2mx + 2$$
.

Hàm số đã cho đồng biên trên khoảng $(-2;0) \Leftrightarrow y' = 6x^2 + 2mx + 2 \ge 0, \forall x \in (-2;0)$

$$\Leftrightarrow m \le -3x - \frac{1}{x}, \forall x \in (-2,0).$$

Xét hàm số
$$g(x) = -3x - \frac{1}{x}, \forall x \in (-2, 0)$$

$$\Rightarrow g'(x) = -3 + \frac{1}{x^2} \Rightarrow g'(x) = 0 \Leftrightarrow -3 + \frac{1}{x^2} = 0 \Leftrightarrow x = \pm \frac{\sqrt{3}}{3}.$$

Bảng biến thiên

x	-2		$-\frac{\sqrt{3}}{3}$	-	0
g'(x)	0	+	0	_	
g(x)	$\frac{13}{2}$		$-2\sqrt{3}$	<u></u>	+∞

Từ bảng biến thiên suy ra $m \le -2\sqrt{3}$. Mà $m \in \mathbb{Z}, m \in (-2020; 2020)$ nên $m \in \{-2019; -2018; ...; -4\}$.

Vậy có 2016 giá trị nguyên của tham số m thuộc (-2020;2020) sao cho hàm số $y = 2x^3 + mx^2 + 2x$ đồng biến trên khoảng (-2;0).

Câu 26. (**Tiên Lãng - Hải Phòng - 2020**) Với mọi giá trị $m \ge a\sqrt{b}$, $(a,b \in \mathbb{Z})$ thì hàm số $y = 2x^3 - mx^2 + 2x + 5$ đồng biến trên khoảng (-2;0). Khi đó a-b bằng

A. 1

D.
$$-5$$
.

Lời giải

Chọn D

Ta có:
$$y' = 6x^2 - 2mx + 2$$
.

Hàm số đồng biến trên khoảng (-2;0) khi $y' \ge 0, \forall x \in (-2;0)$

$$\Leftrightarrow$$
 $3x^2 - mx + 1 \ge 0, \forall x \in (-2, 0)$

$$3x^2 + 1 \ge mx \iff 3x + \frac{1}{x} \le m$$
.

Xét hàm số
$$f(x) = 3x + \frac{1}{x}$$
; $f'(x) = 3 - \frac{1}{x^2} = \frac{3x^2 - 1}{x^2}$; $f'(x) = 0 \Leftrightarrow \frac{3x^2 - 1}{x^2} = 0 \Leftrightarrow x = -\frac{1}{\sqrt{3}}$

Bảng biến thiên của hàm số f(x).

Từ bảng biến thiên để $f(x) \le m$, $\forall x \in (-2,0)$

thì
$$\max_{(-2;0)} f(x) \le m \Rightarrow m \ge -2\sqrt{3} \Rightarrow \begin{cases} a = -2 \\ b = 3 \end{cases} \Rightarrow a - b = -5.$$

Dạng 4. Tìm m để hàm số khác đơn điệu trên khoảng cho trước

Câu 1. (Đề Minh Họa 2017) Tìm tất cả các giá trị thực của tham số m sao cho hàm số $y = \frac{\tan x - 2}{\tan x - m}$ đồng biến trên khoảng $\left(0; \frac{\pi}{4}\right)$.

$$\underline{\mathbf{A}}$$
. $m \le 0$ hoặc $1 \le m < 2$ \mathbf{B} . $m \le 0$

C.
$$1 \le m < 2$$

D.
$$m \ge 2$$

Lời giải

Chọn A

Đặt
$$t = \tan x$$
, vì $x \in \left(0; \frac{\pi}{4}\right) \Rightarrow t \in \left(0; 1\right)$

Xét hàm số
$$f(t) = \frac{t-2}{t-m} \forall t \in (0,1)$$
. Tập xác định: $D = \mathbb{R} \setminus \{m\}$

Ta có
$$f'(t) = \frac{2-m}{(t-m)^2}$$
.

Ta thấy hàm số
$$t(x) = \tan x$$
 đồng biến trên khoảng $\left(0; \frac{\pi}{4}\right)$. Nên để hàm số $y = \frac{\tan x - 2}{\tan x - m}$ đồng biến trên khoảng $\left(0; \frac{\pi}{4}\right)$ khi và chỉ khi: $f'(t) > 0 \ \forall t \in (0;1)$

$$\Leftrightarrow \frac{2-m}{\left(t-m\right)^{2}} > 0 \ \forall t \in \left(0;1\right) \Leftrightarrow \begin{cases} 2-m>0 \\ m \notin \left(0;1\right) \end{cases} \Leftrightarrow \begin{cases} m<2 \\ m \leq 0 \Leftrightarrow m \in \left(-\infty;0\right] \cup \left[1;2\right) \end{cases}$$

Câu 2. (Đề Tham Khảo 2018) Có bao nhiều giá trị nguyên âm của tham số m để hàm số $y = x^3 + mx - \frac{1}{5x^5}$ đồng biến trên khoảng $(0; +\infty)$

A. (

B. 4

C. 5

Lời giải

D. 3

. n

Chọn B

$$y' = 3x^2 + m + \frac{1}{x^6}$$

Hàm số đồng biến trên $(0; +\infty)$ khi và chỉ khi $y' = 3x^2 + m + \frac{1}{x^6} \ge 0, \forall x \in (0; +\infty)$

$$\Leftrightarrow -3x^2 - \frac{1}{x^6} \le m, \forall x \in (0; +\infty). \text{ X\'et h\`am s\'o} \ g(x) = -3x^2 - \frac{1}{x^6} \le m, \ x \in (0; +\infty)$$

$$g'(x) = -6x + \frac{6}{x^7} = \frac{-6(x^8 - 1)}{x^7}, \ g'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = -1(\text{loai}) \end{bmatrix}$$

Bảng biến thiên:

x	0 1 +∞
g'(x)	+ 0 –
g(x)	-∞ -∞

Dựa vào BBT ta có $m \ge -4$, suy ra các giá trị nguyên âm của tham số m là -4; -3; -2; -1

Câu 3. (THPT Bạch Đằng Quảng Ninh 2019) Gọi S là tập hợp tất cả các giá trị của tham số m để hàm số $f(x) = \frac{1}{5}m^2x^5 - \frac{1}{3}mx^3 + 10x^2 - (m^2 - m - 20)x$ đồng biến trên $\mathbb R$. Tổng giá trị của tất cả các phần tử thuộc S bằng

A.
$$\frac{5}{2}$$
.

B. –2

C. $\frac{1}{2}$.

D. $\frac{3}{2}$.

Lời giải

Ta có
$$f'(x) = m^2 x^4 - mx^2 + 20x - (m^2 - m - 20) = m^2 (x^4 - 1) - m(x^2 - 1) + 20(x + 1)$$

$$= m^2 (x - 1)(x + 1)(x^2 + 1) - m(x - 1)(x + 1) + 20(x + 1)$$

$$= (x + 1) \lceil m^2 (x - 1)(x^2 + 1) - m(x - 1) + 20 \rceil$$

$$f'(x) = 0 \Leftrightarrow \begin{bmatrix} x = -1 \\ m^2(x-1)(x^2+1) - m(x-1) + 20 = 0(*) \end{bmatrix}$$

Ta có f'(x) = 0 có một nghiệm đơn là x = -1, do đó nếu (*) không nhận x = -1 là nghiệm thì f'(x) đổi dấu qua x = -1. Do đó để f(x) đồng biến trên \mathbb{R} thì $f'(x) \ge 0, \forall x \in \mathbb{R}$ hay (*) nhận x = -1 làm nghiệm (bậc lẻ).

Suy ra
$$m^2(-1-1)(1+1)-m(-1-1)+20=0 \Leftrightarrow -4m^2+2m+20=0$$
.

NGUYĒN BĀO VƯƠNG - 0946798489

Tổng các giá trị của m là $\frac{1}{2}$.

(THPT Lê Quý Đôn Đà Nẵng 2019) Tập hợp các giá trị thực của tham số m để hàm số Câu 4. $y = x + 1 + \frac{m}{x - 2}$ đồng biến trên mỗi khoảng xác định của nó là

A.
$$[0;1)$$
.

B.
$$(-\infty;0]$$
.

$$\mathbf{C}. [0; +\infty) \setminus \{1\}.$$
 $\mathbf{D}. (-\infty; 0).$

D.
$$(-\infty;0)$$

Lời giải

• Tập xác định: $D = \mathbb{R} \setminus \{2\}$.

Hàm số đã cho đồng biến trên mỗi khoảng xác định của nó khi và chỉ khi:

$$y' \ge 0, \forall x \in D \iff 1 - \frac{m}{(x-2)^2} \ge 0, \forall x \in D$$

$$\Leftrightarrow m \le (x-2)^2, \forall x \in D$$

Xét hàm số $f(x) = (x-2)^2$ ta có:

$$f'(x) = 2x - 4 \Rightarrow f'(x) = 0 \Leftrightarrow x = 2$$

Bảng biến thiên:

x	-∞	2		+∞
f'(x)	-	0	+	
f(x)	+∞	→ 0—		→ +∞

Vậy, để hàm số đã cho đồng biến trên mỗi khoảng xác định của nó thì $m \le 0$.

(THPT Minh Khai Hà Tĩnh 2019) Tìm tất cả các giá trị thực của tham số để hàm số Câu 5. $y = \frac{\cos x - 3}{\cos x - m}$ nghịch biến trên khoảng $(\frac{\pi}{2}; \pi)$

A.
$$\begin{bmatrix} 0 \le m < 3 \\ m \le -1 \end{bmatrix}$$
 B.
$$\begin{bmatrix} 0 < m < 3 \\ m < -1 \end{bmatrix}$$
 C. $m \le 3$.

B.
$$\begin{bmatrix} 0 < m < 3 \\ m < -1 \end{bmatrix}$$

C.
$$m \leq 3$$
.

D.
$$m < 3$$
.

Điều kiện: $\cos x \neq m$. Ta có: $y' = \frac{(-m+3)}{(\cos x - m)^2} \cdot (-\sin x) = \frac{(m-3)}{(\cos x - m)^2} \cdot \sin x$

Vì
$$x \in \left(\frac{\pi}{2}; \pi\right) \Rightarrow \sin x > 0$$
, $\left(\cos x - m\right)^2 > 0$, $\forall x \in \left(\frac{\pi}{2}; \pi\right) : \cos x \neq m$.

Để hàm số nghịch biến trên khoảng

$$\left(\frac{\pi}{2};\pi\right) \Leftrightarrow y' < 0 \ \forall x \in \left(\frac{\pi}{2};\pi\right)$$

$$\Leftrightarrow \begin{cases} m-3<0 \\ \cos x\neq m \ \forall x\in\left(\frac{\pi}{2};\pi\right) \Leftrightarrow \begin{cases} m-3<0 \\ m\notin\left(-1;0\right) \end{cases} \Leftrightarrow \begin{cases} m<3 \\ m\leq-1 \Leftrightarrow \begin{bmatrix} 0\leq m<3 \\ m\leq-1 \end{cases}.$$

Chú ý : Tập giá trị của hàm số $y = \cos x$, $\forall x \in \left(\frac{\pi}{2}; \pi\right)$ là $\left(-1; 0\right)$.

(**Hoàng Hoa Thám 2019**) Cho hàm số $y = \frac{(4-m)\sqrt{6-x}+3}{\sqrt{6-x}+m}$. Có bao nhiều giá trị nguyên của m Câu 6.

trong khoảng (-10;10) sao cho hàm số đồng biến trên (-8;5)?

A. 14.

B. 13.

C. 12.

D. 15.

Lời giải

Đặt
$$t = -\sqrt{6-x}$$
 vì $x \in (-8;5) \implies t \in (-\sqrt{14};-1)$ và $t = -\sqrt{6-x}$ đồng biến trên $(-8;5)$.

Hàm số trở thành
$$y = \frac{-(4-m)t+3}{-t+m}$$
 tập xác định $D = \mathbb{R} \setminus \{m\} \implies y' = \frac{m^2-4m+3}{(-t+m)^2}$.

Để hàm số đồng biến trên khoảng
$$\left(-\sqrt{14};-1\right) \Leftrightarrow \begin{cases} m^2 - 4m + 3 > 0 \\ m \le -\sqrt{14} \\ m \ge -1 \end{cases} \Leftrightarrow \begin{bmatrix} m \le -\sqrt{14} \\ -1 \le m < 1. \\ m > 3 \end{cases}$$

$$\Rightarrow m = \{-9, -8, -7, -6, -5, -4, -1, 0, 4, 5, 6, 7, 8, 9\}$$
 có 14 giá trị.

Câu 7. (THPT Lương Thế Vinh Hà Nội 2019) Có bao nhiều giá trị nguyên âm của tham số m để hàm số $y = \frac{1}{4}x^4 + mx - \frac{3}{2x}$ đồng biến trên khoảng $(0; +\infty)$.

A. 2.

B. 1

C. 3.

D. 0.

Lời giải

Tập xác định :
$$D = \mathbb{R}$$
. $y' = x^3 + m + \frac{3}{2x^2}$.

Ta có: hàm số đã cho đồng biến trên khoảng $(0; +\infty)$ khi và chỉ khi $y' \ge 0$ với $\forall x \in (0; +\infty)$

$$\Leftrightarrow x^3 + m + \frac{3}{2x^2} \ge 0, \forall x \in (0; +\infty) \iff x^3 + \frac{3}{2x^2} \ge -m, \forall x \in (0; +\infty)$$

$$\Leftrightarrow -m \le \min_{(0;+\infty)} f(x), \text{v\'oi } f(x) = x^3 + \frac{3}{2x^2}(1).$$

Cách 1:

Theo bất đẳng thức Cauchy ta có
$$f(x) = x^3 + \frac{3}{2x^2} = \frac{x^3}{2} + \frac{x^3}{2} + \frac{1}{2x^2} + \frac{1}{2x^2} + \frac{1}{2x^2} \ge 5\sqrt[5]{\frac{1}{2^5}} = \frac{5}{2}$$
.

Dấu bằng xảy ra khi và chỉ khi x = 1. Do đó $\min_{(0,+\infty)} f(x) = \frac{5}{2}(2)$.

Từ (1) và (2) ta có
$$-m \le \frac{5}{2} \Leftrightarrow m \ge -\frac{5}{2}$$
. Do m nguyên âm nên $m = -1$ hoặc $m = -2$.

Vậy có hai giá trị nguyên âm của tham số m thỏa mãn điều kiện bài ra.

Cách 2:

Xét hàm số
$$f(x) = x^3 + \frac{3}{2x^2}, \forall x \in (0; +\infty).$$

Ta có
$$f'(x) = 3x^2 - \frac{3}{x^3}, f'(x) = 0 \iff x = 1.$$

Bảng biến thiên

\boldsymbol{x}	0	2	$+\infty$
f'(x)	_	0	+
f(x)		$\frac{5}{2}$	

Từ bảng biến thiên ta có $-m \le \frac{5}{2} \iff m \ge -\frac{5}{2}$. Do m nguyên âm nên m = -1 hoặc m = -2.

Vậy có hai giá trị nguyên âm của tham số m thỏa mãn điều kiện bài ra.

(Chuyên Bắc Giang 2019) Cho hàm số $y = \frac{\ln x - 4}{\ln x - 2m}$ với m là tham số. Gọi S là tập hợp các Câu 8. giá trị nguyên dương của m để hàm số đồng biến trên khoảng (1;e). Tìm số phần tử của S.

A. 3

B. 2

C. 1

D. 4

Lời giải

Chon C

$$y = f(x) = \frac{\ln x - 4}{\ln x - 2m}$$

Đặt $t = \ln x$, điều kiện $t \in (0,1)$

$$g(t) = \frac{t-4}{t-2m}$$
; $g'(t) = \frac{-2m+4}{(t-2m)^2}$

Để hàm số f(x) đồng biến trên (1;e) thì hàm số g(t) đồng biến trên (0;1)

$$\Leftrightarrow g'(t) > 0, t \in (0;1) \Leftrightarrow \frac{-2m+4}{(t-2m)^2} > 0, t \in (0;1)$$

$$\Leftrightarrow \begin{cases} -2m+4>0 \\ 2m \notin (0;1) \end{cases} \Leftrightarrow \begin{bmatrix} \frac{1}{2} < m < 2 \\ m < 0 \end{cases}$$

S là tập hợp các giá trị nguyên dương \Rightarrow S = {1}.

Vậy số phần tử của tập S là 1.

(Chuyên Vĩnh Phúc 2019) Tìm m để hàm số $y = \frac{\cos x - 2}{\cos x - m}$ đồng biến trên khoảng $\left(0; \frac{\pi}{2}\right)$ A. $\begin{bmatrix} m \ge 2 \\ m \le -2 \end{bmatrix}$ B. m > 2C. $\begin{bmatrix} m \le 0 \\ 1 \le m < 2 \end{bmatrix}$ D. -1 < m < 1Câu 9.

$$\mathbf{A.} \begin{bmatrix} m \ge 2 \\ m \le -2 \end{bmatrix}$$

B.
$$m > 2$$

D.
$$-1 < m < 1$$

Chon C

Ta có
$$y' = \frac{2-m}{\left(\cos x - m\right)^2} \cdot \left(-\sin x\right), \sin x > 0 \,\forall x \in \left(0; \frac{\pi}{2}\right).$$

Do đó: Hàm số nghịch biến trên khoảng $\left(0; \frac{\pi}{2}\right)$ khi và chỉ khi

$$\begin{cases} 2-m>0\\ \cos x-m\neq 0 \ \forall x\in \left(0;\frac{\pi}{2}\right) \Leftrightarrow \begin{cases} m<2\\ m\not\in \left(0;1\right) \Leftrightarrow \begin{bmatrix} m\leq 0\\ 1\leq m<2 \end{cases}. \end{cases}$$

Câu 10. (Chuyên Lương Thế Vinh Đồng Nai 2019) Có bao nhiều giá trị nguyên âm của tham số m để hàm số

 $y = \frac{3}{4}x^4 - \frac{9}{2}x^2 + (2m+15)x - 3m+1 \text{ d'ong biến trên khoảng } (0; +\infty)?$

A. 2.

B. 3.

D. 4.

Yêu cầu bài toán $\Leftrightarrow y' = 3x^3 - 9x + 2m + 15 \ge 0 \ \forall x \in (0; +\infty)$ và dấu bằng xảy ra tại hữu hạn điểm thuộc $(0; +\infty) \Leftrightarrow 3x^3 - 9x + 15 \ge -2m \ \forall x \in (0; +\infty)$.

Xét hàm số: $g(x) = 3x^3 - 9x + 15$ trên $(0; +\infty)$.

Ta có: $g'(x) = 9x^2 - 9$

$$g'(x) = 0 \implies \begin{cases} x = 1 \\ x = -1 \ (l) \end{cases}$$

Bảng biến thiên:

Từ BBT ta có: $-2m \le 9 \Leftrightarrow m \ge -\frac{9}{2}$

Vây $m \in \{-4, -3, -2, -1\}$.

- **Câu 11.** Có tất cả bao nhiều giá trị nguyên của tham số m để hàm số $y = 3x + \frac{m^2 + 3m}{r + 1}$ đồng biến trên từng khoảng xác định của nó?
 - **A.** 4.

- **C.** 1.

D. 3.

Lời giải

Tập xác định $D = \mathbb{R} \setminus \{-1\}$.

$$y = 3x + \frac{m^2 + 3m}{x+1} \Rightarrow y' = \frac{3(x+1)^2 - (m^2 + 3m)}{(x+1)^2}.$$

Hàm số đồng biến trên từng khoảng xác định khi $y' \ge 0$,

$$\forall x \neq -1 \Leftrightarrow m^2 + 3m \leq 0 \Leftrightarrow -3 \leq m \leq 0.$$

Do
$$m \in \mathbb{Z} \Rightarrow m \in \{-3, -2, -1, 0\}$$
.

Vậy có 4 giá trị nguyên của m thỏa yêu cầu bài toán.

Câu 12. Tìm m để hàm số $y = \frac{\cos x - 2}{\cos x - m}$ nghịch biến trên khoảng $\left(0; \frac{\pi}{2}\right)$

A.
$$m > 2$$
.

$$\mathbf{B.} \begin{bmatrix} m \le 0 \\ 1 \le m < 2 \end{bmatrix}. \qquad \mathbf{C.} \ m < 2 .$$

C.
$$m < 2$$
.

D. $m \le 2$.

Lời giải

 $\operatorname{Dat} t = \cos x.$

Ta có:
$$t' = -\sin x < 0, \forall x \in \left(0; \frac{\pi}{2}\right)$$
.

 \Rightarrow hàm số $t = \cos x$ nghịch biến trên khoảng $\left(0; \frac{\pi}{2}\right)$.

Do đó hàm số $y = \frac{\cos x - 2}{\cos x - m}$ nghịch biến trên khoảng $\left(0; \frac{\pi}{2}\right) \Leftrightarrow$ hàm số $y = \frac{t - 2}{t - m}$ đồng biến trên khoảng (0;1).

NGUYĒN BẢO VƯƠNG - 0946798489

Tập xác định $D = \mathbb{R} \setminus \{m\}$.

Hàm số $y = \frac{t-2}{t-m}$ đồng biến trên khoảng $(0;1) \Leftrightarrow y' = \frac{2-m}{(t-m)^2} > 0, \forall t \in (0;1)$.

$$\Leftrightarrow \begin{cases} 2-m>0 \\ 1\leq m \\ m\leq 0 \end{cases} \begin{cases} m<2 \\ 1\leq m \Leftrightarrow \begin{bmatrix} 1\leq m<2 \\ m\leq 0 \end{cases}.$$

Vậy với $\begin{bmatrix} m \le 0 \\ 1 \le m < 2 \end{bmatrix}$ thì hàm số $y = \frac{\cos x - 2}{\cos x - m}$ nghịch biến trên khoảng $\left(0; \frac{\pi}{2}\right)$.

(Toán Học Tuổi Trẻ Số 5 2018) Tìm tất cả các giá trị của m để hàm số Câu 13. $y = 8^{\cot x} + (m-3) \cdot 2^{\cot x} + 3m - 2$ (1) đồng biến trên $\left(\frac{\pi}{4}; \pi\right)$.

A. $-9 \le m < 3$. **B.** $m \le 3$.

 $\Rightarrow v' = 3t^2 + m - 3$.

Để hàm số (1) đồng biến trên $\left|\frac{\pi}{4};\pi\right|$ thì hàm số (2) phải nghịch biến trên (0;2] hay $3t^2 + m - 3 \le 0, \forall t \in (0, 2] \iff m \le 3 - 3t^2, \forall t \in (0, 2].$

Xét hàm số: $f(t) = 3 - 3t^2$, $\forall t \in (0, 2] \Rightarrow f'(t) = -6t$.

$$f'(t) = 0 \Leftrightarrow t = 0$$
.

Ta có bảng biến thiên:

Dựa vào bảng biến thiên ta thấy $-9 \le f(t) < 3, \forall t \in (0,2]$.

Vậy hàm số (1) đồng biến trên $\left| \frac{\pi}{4}; \pi \right|$ khi $m \le -9$.

(Toán Học Tuổi Trẻ Số 6 2018) Cho hàm số $y = \frac{\ln x - 4}{\ln x - 2m}$ với m là tham số. Gọi S là tập hợp Câu 14. các giá trị nguyên dương của m để hàm số đồng biến trên khoảng (1;e). Tìm số phần tử của S.

A. 2.

B. 4.

C. 3.

D. 1.

Lời giải

Điều kiện $\ln x - 2m \neq 0 \Leftrightarrow m \neq \frac{1}{2} \ln x$.

Do $x \in (1; e)$ nên $\ln x \in (0; 1) \Rightarrow m \in (-\infty; 0] \cup \left[\frac{1}{2}; +\infty\right]$.

Ta có
$$y' = \frac{\frac{1}{x}(4-2m)}{(\ln x - 2m)^2}$$
.

Để hàm số đồng biến trên khoảng (0;1) thì y' > 0 với mọi $x \in (0;1)$

$$\Leftrightarrow \frac{\frac{1}{x}(4-2m)}{(\ln x-2m)^2} > 0 \ 4-2m > 0 \Leftrightarrow m < 2.$$

Do m là số nguyên dương nên m = 1.

Câu 15. (THPT Chuyên Lê Hồng Phong 2018) Tìm tất cả các giá trị thực của tham số m để hàm số $y = \frac{m \ln x - 2}{\ln x - m - 1}$ nghịch biến trên $(e^2; +\infty)$.

A. $m \le -2$ hoặc m = 1. **B.** m < -2 hoặc m = 1.

C. m < -2.

D. m < -2 hoặc m > 1.

Lời giải

Tập xác định $D = (0; +\infty) \setminus \{e^{m+1}\}$.

Cách 1:
$$y' = \frac{-m^2 - m + 2}{x(\ln x - m - 1)^2}$$

Vậy yêu cầu bài toán tương đương $\begin{cases} -m^2 - m + 2 < 0 \\ e^{m+1} \not\in \left(e^2; +\infty\right) \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} m > 1 \\ m < -2 \iff m < -2 \\ m + 1 \le 2 \end{cases}$

Cách 2: Đặt $t = \ln x$, ta biết rằng hàm số $f(x) = \ln x$ đồng biến trên $(e^2; +\infty)$.

Xét hàm số
$$g(t) = \frac{mt-2}{t-m-1}$$
 với $t \in (2; +\infty)$, ta có $g'(t) = \frac{-m^2-m+2}{(t-m-1)^2}$.

Vậy hàm số ban đầu nghịch biến trên $(e^2; +\infty) \Leftrightarrow \text{hàm số } g \text{ nghịch biến trên}$

$$(2;+\infty) \Leftrightarrow \begin{cases} g'(t) < 0 \\ m+1 \neq (2;+\infty) \end{cases} \Leftrightarrow \begin{cases} -m^2 - m + 2 < 0 \\ m+1 \leq 2 \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} m > 1 \\ m < -2 \Leftrightarrow \end{bmatrix} \begin{bmatrix} m > 1 \\ m < -2 \Leftrightarrow m < -2 \end{cases}$$

Câu 16. (Chuyên Lương Thế Vinh - 2018) Có bao nhiều số nguyên âm m để hàm số $y = \frac{1}{3}\cos^3 x - 4\cot x - (m+1)\cos x$ đồng biến trên khoảng $(0;\pi)$?

<u>**A**</u>. 5

B. 2

C, vô số.

D. 3.

Lời giải

- Ta có:
$$y' = -\cos^2 x \cdot \sin x + \frac{4}{\sin^2 x} + (m+1) \cdot \sin x = \sin^3 x + \frac{4}{\sin^2 x} + m \cdot \sin x$$
.

- Hàm số đồng biến trên $(0;\pi)$ khi và chỉ khi $y' \ge 0$, $\forall x \in (0;\pi)$

$$\Leftrightarrow \sin^3 x + \frac{4}{\sin^2 x} + m \cdot \sin x \ge 0, \ \forall x \in (0; \pi)$$

$$\Leftrightarrow \sin^2 x + \frac{4}{\sin^3 x} \ge -m, \ \forall x \in (0; \pi) \ (1).$$

NGUYĒN BĀO VƯƠNG - 0946798489

- Xét hàm số: $g(x) = \sin^2 x + \frac{4}{\sin^3 x}$, trên $(0; \pi)$.

Có
$$g'(x) = 2\sin x \cdot \cos x - \frac{12\cos x}{\sin^4 x} = 2\cos x \cdot \left(\sin x - \frac{6}{\sin^4 x}\right) = 2\cos x \cdot \frac{\sin^5 x - 6}{\sin^4 x}$$

$$\Rightarrow g'(x) = 0 \Leftrightarrow x = \frac{\pi}{2} \in (0; \pi).$$

Bảng biến thiên:

- Do đó: $(1) \Leftrightarrow -m \le \min_{x \in (0;\pi)} g(x) \Leftrightarrow -m \le 5 \Leftrightarrow m \ge -5$.

Lại do m nguyên âm nên $m \in \{-5, -4, -3, -2, -1\}$. Vậy có 5 số nguyên âm.

Câu 17. (**Chuyên Ngữ - Hà Nội - 2018**) Có bao nhiều giá trị nguyên âm của m để hàm số $y = x + 5 + \frac{1 - m}{x - 2}$ đồng biến trên $[5; +\infty)$?

A. 10.

B. 8

C. 9

D. 11.

Lời giải

Tập xác định: $D = \mathbb{R} \setminus \{2\}$. Đạo hàm: $y' = 1 + \frac{m-1}{(x-2)^2} = \frac{x^2 - 4x + m + 3}{(x-2)^2}$.

Xét hàm số $f(x) = x^2 - 4x + 3$ trên $[5; +\infty)$.

Đạo hàm: f'(x) = 2x - 4. Xét $f'(x) = 0 \Leftrightarrow x = 2 \Rightarrow y = -1$. Ta có: f(5) = 8.

Bảng biến thiên:

Do $(x-2)^2 > 0$ với mọi $x \in [5; +\infty)$ nên $y' \ge 0$, $\forall x \in [5; +\infty)$ khi và chỉ khi $f(x) \ge -m$, $\forall x \in [5; +\infty)$. Dựa vào bảng biến thiên ta có: $-m \le 8 \Leftrightarrow m \ge -8$.

Mà m nguyên âm nên ta có: $m \in \{-8; -7; -6; -5; -4; -3; -2; -1\}$.

Vậy có 8 giá trị nguyên âm của m để hàm số $y = x + 5 + \frac{1 - m}{x - 2}$ đồng biến trên $[5; +\infty)$.

Câu 18. (Chuyên Vĩnh Phúc - 2018) Có bao nhiều giá trị nguyên dương của tham số m để hàm số $y = \frac{3}{4}x^4 - (m-1)x^2 - \frac{1}{4x^4}$ đồng biến trên khoảng $(0; +\infty)$.

A. 1.

B. 2.

C. 3.

D. 4.

Lời giải

Ta có
$$y' = 3x^3 - 2(m-1)x + \frac{1}{x^5}$$
.

Hàm số đồng biến trong khoảng $(0; +\infty)$ khi và chỉ khi $y' \ge 0$ với $\forall x \in (0; +\infty)$.

$$y' \ge 0 \Leftrightarrow 2(m-1) \le 3x^2 + \frac{1}{x^6}$$
.

Xét
$$g(x) = 3x^2 + \frac{1}{x^6}$$
 với $\forall x \in (0; +\infty)$. Ta có $g'(x) = 6x - \frac{6}{x^7}$; $g'(x) = 0 \Leftrightarrow x = 1$

Bảng biến thiên:

$$2(m-1) \le g(x) \Leftrightarrow 2(m-1) \le 4 \Leftrightarrow m \le 3$$
.

Vì m nguyên dương nên $m \in \{1, 2, 3\}$.

Vây có 3 giá tri *m* nguyên dương thỏa mãn bài toán.

Câu 19. (**Kim Liên - Hà Nội - 2018**) Có bao nhiều giá trị nguyên dương của tham số m để hàm số $y = \frac{x^2}{2} - mx + \ln(x-1)$ đồng biến trên khoảng $(1; +\infty)$?

<u>A</u>. 3.

B. 4.

C. 2.

D. 1.

Lời giải

Ta có
$$y' = x - m + \frac{1}{x - 1}$$
.

Để hàm số $y = \frac{x^2}{2} - mx + \ln(x - 1)$ đồng biến trên khoảng $(1; +\infty)$ thì $y' \ge 0$ với $\forall x \in (1; +\infty)$

$$\Leftrightarrow x + \frac{1}{x-1} \ge m \text{ v\'oi } \forall x \in (1; +\infty) \Rightarrow m \le \min_{(1; +\infty)} f(x).$$

Xét hàm số $f(x) = x + \frac{1}{x-1}$ trên khoảng $(1; +\infty)$ ta có

$$f(x) = x - 1 + \frac{1}{x - 1} + 1 \ge 2\sqrt{(x - 1)\frac{1}{(x - 1)}} + 1 \ge 3 \Rightarrow \min_{(1; +\infty)} f(x) = 3$$
. Do $m \in \mathbb{Z}^+$ nên $m \in \{1; 2; 3\}$.

Câu 20. (**Chuyên Vinh - 2018**) Có bao nhiều giá trị nguyên $m \in (-10;10)$ để hàm số $y = m^2 x^4 - 2(4m-1)x^2 + 1$ đồng biến trên khoảng $(1;+\infty)$?

A. 15.

B. 6.

C. 7

D. 16.

Lời giải

+ Với m = 0, hàm số trở thành $y = 2x^2 + 1$ đồng biến trên $(0; +\infty)$ nên hàm số cũng đồng biến trên khoảng $(1; +\infty)$, do đó m = 0 thỏa mãn.

+ Với $m \neq 0$, hàm số đã cho làm hàm số trùng phương với hệ số $a = m^2 > 0$.

$$y' = 4m^2x^3 - 4(4m - 1)x = 4x(m^2x^2 - 4m + 1), \ y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = \frac{4m - 1}{m^2} \end{bmatrix}$$

Để hàm số đồng biến trên khoảng $(1; +\infty)$ thì phương trình $x^2 = \frac{4m-1}{m^2}$ vô nghiệm hoặc có hai nghiệm phân biệt x_1 , x_2 sao cho $-1 \le x_1 < x_2 \le 1$

NGUYĒN BAO VƯƠNG - 0946798489

$$\Leftrightarrow \begin{bmatrix} 4m-1 \leq 0 \\ 4m-1 > 0 \\ \sqrt{\frac{4m-1}{m^2}} \leq 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} m \leq \frac{1}{4} \\ m > \frac{1}{4} \\ -m^2 + 4m - 1 \leq 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} m \leq \frac{1}{4} \\ \left[\frac{1}{4} < m < 2 - \sqrt{3} + \frac{1}{4} +$$

Vậy điều kiện để hàm số đồng biến trên $(1;+\infty)$ là $m \in (-\infty;2-\sqrt{3}) \cup (2+\sqrt{3};+\infty)$.

Vì m nguyên, $m \in (-10;10)$ nên $m \in \{-9; -8; ...; 0; 4; 5; ...; 9\}$, có 16 giá trị.

(Chuyên Thái Bình - 2018) Có bao nhiều giá trị nguyên của tham số $m \in [-2018; 2018]$ để hàm Câu 21. số $y = \sqrt{x^2 + 1} - mx - 1$ đồng biến trên $(-\infty; +\infty)$.

Lời giải

$$TXD: D = \mathbb{R}$$
.

$$y' = \frac{x}{\sqrt{x^2 + 1}} - m.$$

Hàm số đồng biến trên $\mathbb{R} \iff y' \ge 0$, $\forall x \in \mathbb{R} \iff m \le \frac{x}{\sqrt{x^2 + 1}}$, $\forall x \in \mathbb{R}$ (1).

Xét
$$f(x) = \frac{x}{\sqrt{x^2 + 1}}$$
 trên \mathbb{R} .

$$\lim_{x \to -\infty} f(x) = -1; \lim_{x \to +\infty} f(x) = 1.$$

$$f'(x) = \frac{1}{(x^2+1)\sqrt{x^2+1}} > 0$$
, $\forall x \in \mathbb{R}$ nên hàm số đồng biến trên \mathbb{R} .

Ta có: $m \le \frac{x}{\sqrt{x^2 + 1}}$, $\forall x \in \mathbb{R} \iff m \le -1$.

Mặt khác $m \in [-2018; 2018] \Rightarrow m \in [-2018; -1]$.

Vậy có 2018 số nguyên m thoả điều kiện.

(**Lê Quý Đôn - Quảng Trị- 2018**) Tìm tất cả các giá trị của m để hàm số $y = 2^{\frac{mx+1}{x+m}}$ nghịch biến Câu 22. trên $\left(\frac{1}{2}; +\infty\right)$.

A.
$$m \in (-1;1)$$

B.
$$m \in \left(\frac{1}{2}; 1\right)$$

C.
$$m \in \left[\frac{1}{2};1\right]$$

A.
$$m \in (-1;1)$$
. **B.** $m \in \left[\frac{1}{2};1\right]$. **C.** $m \in \left[\frac{1}{2};1\right]$. $\underline{\mathbf{D}}$. $m \in \left[-\frac{1}{2};1\right]$.

Hàm số $y = 2^{\frac{mx+1}{x+m}}$ nghịch biến trên $\left(\frac{1}{2}; +\infty\right)$ khi và chỉ khi hàm số $y = \frac{mx+1}{x+m}$ nghịch biến trên $\left(\frac{1}{2};+\infty\right).$

Xét hàm số
$$y = \frac{mx+1}{x+m}$$
, ta có: $y' = \frac{m^2-1}{(x+m)^2}$.

Hàm số
$$y = \frac{mx+1}{x+m}$$
 nghịch biến trên $\left(\frac{1}{2}; +\infty\right) \Leftrightarrow \begin{cases} m^2 - 1 < 0 \\ -m \le \frac{1}{2} \end{cases} \Leftrightarrow \begin{cases} -1 < m < 1 \\ m \ge -\frac{1}{2} \end{cases} \Leftrightarrow -\frac{1}{2} \le m < 1.$

- **Câu 23.** (**Chuyên Hưng Yên 2020**) Có bao nhiều giá trị nguyên của tham số m để hàm số $y = \frac{x^2 + 2x + m}{x 1}$ nghịch biến trên khoảng (1;3) và đồng biến trên khoảng (4;6).
 - **A.** 6.

- **B.** 7.
- **C.** 5.
- <u>**D**</u>. 4.

Lời giải

Chon D

Ta có
$$y' = \frac{x^2 - 2x - 2 - m}{(x - 1)^2}$$
.

Hàm số nghịch biến trên khoảng (1;3) và đồng biến trên khoảng (4;6) khi và chỉ khi $\begin{cases} y' \le 0, \forall x \in (1;3) \\ y' \ge 0, \forall x \in (4;6) \end{cases}$

$$\Leftrightarrow \begin{cases} x^2 - 2x - 2 - m \le 0, \forall x \in (1;3) \\ x^2 - 2x - 2 - m \ge 0, \forall x \in (4;6) \end{cases} \Leftrightarrow \begin{cases} m \ge x^2 - 2x - 2, \forall x \in (1;3) \\ m \le x^2 - 2x - 2, \forall x \in (4;6) \end{cases}$$
(*)

Xét hàm số $g(x) = x^2 - 2x - 2$, g'(x) = 2x - 2 ta có bảng biến thiên của g(x) như sau

Từ bảng biến thiên của g(x) ta có (*) $\Leftrightarrow 3 \le m \le 6$, và vì m là số nguyên nên chọn $m \in \{3; 4; 5; 6\}$. Vậy có 4 giá trị nguyên của m thỏa mãn bài toán.

Câu 24. (**Chuyên Hưng Yên - 2020**) Cho hàm số $y = \frac{\sqrt{1 - \ln x} + 1}{\sqrt{1 - \ln x} + m}$. Có bao nhiều giá trị nguyên của

tham số m thuộc $\left[-5;5\right]$ để hàm số đã cho đồng biến trên khoảng $\left(\frac{1}{e^3};1\right)$.

A. 7.

- **B**. 6.
- **C.** 5.

Lời giải

D. 4.

Chon B

Ta có đạo hàm của
$$y = \frac{\sqrt{1 - \ln x} + 1}{\sqrt{1 - \ln x} + m}$$
 là $y' = \frac{1 - m}{2x\sqrt{1 - \ln x}(\sqrt{1 - \ln x} + m)^2}$

Hàm số đã cho đồng biến trên khoảng $\left(\frac{1}{e^3};1\right)$ khi và chỉ khi $y'>0, \forall x\in\left(\frac{1}{e^3};1\right)$

NGUYĒN BAO VƯƠNG - 0946798489

$$\Leftrightarrow \begin{cases} 1 - m > 0 \\ \sqrt{1 - \ln x} + m \neq 0, \forall x \in \left(\frac{1}{e^3}; 1\right) \Leftrightarrow \begin{cases} m < 1 \\ \sqrt{1 - \ln x} + m \neq 0, \forall x \in \left(\frac{1}{e^3}; 1\right) \end{cases}$$
 (*)

Xét hàm số $g(x) = \sqrt{1 - \ln x}, x \in \left(\frac{1}{e^3}; 1\right)$, ta có $g'(x) = \frac{-1}{2x\sqrt{1 - \ln x}} < 0, \forall x \in \left(\frac{1}{e^3}; 1\right)$ do đó ta có

bảng biến thiên của hàm số g(x) như sau

Qua bảng biến thiên ta có (*) \Leftrightarrow $\begin{cases} m < 1 \\ m \notin (-2; -1) \end{cases}$, kết hợp với $m \in [-5; 5]$ ta có 6 giá trị nguyên của $m \text{ là } m \in \{-5, -4, -3, -2, -1, 0\}.$

(Chuyên Hùng Vương - Phú Thọ - 2020) Có bao nhiều giá trị nguyên dương của m để hàm số Câu 25. (Chuyen Frang) $y = \frac{\ln x - 6}{\ln x - 2m}$ đồng biến trên khoảng (1;e)? $\underline{\mathbf{A}}. 2. \qquad \mathbf{B}. 1. \qquad \mathbf{C}. 4.$ $\underline{\mathbf{L}}$ Lời giải

D. 3.

Chon A

Đặt $t = \ln x$ thì $t = \ln x$ đồng biến trên khoảng (1; e) và $t \in (0; 1)$

Ta được hàm số $f(t) = \frac{t-6}{t-2m}$. Điều kiện $t \neq 2m$ và $f'(t) = \frac{6-2m}{(t-2m)^2}$.

Hàm số $y = \frac{\ln x - 6}{\ln x - 2m}$ đồng biến trên khoảng (1;e) khi và chỉ khi hàm số $f(t) = \frac{t - 6}{t - 2m}$ đồng

biến trên khoảng
$$(0;1) \Leftrightarrow \begin{cases} 2m \notin (0;1) \\ f'(t) > 0 \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} 2m \ge 1 \\ 2m \le 0 \\ 6 - 2m > 0 \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} m \ge \frac{1}{2} \\ m \le 0 \\ m < 3 \end{cases} \Leftrightarrow \begin{bmatrix} \frac{1}{2} \le m < 3 \\ m \le 0 \end{cases}.$$

Vì m nguyên dương nên $m \in \{1, 2\}$.

Vậy có 2 giá trị nguyên dương của m để hàm số $y = \frac{\ln x - 6}{\ln x - 2m}$ đồng biến trên khoảng (1;e).

(Chuyên Lê Hồng Phong - Nam Định - 2020) Có bao nhiều số nguyên m để hàm số $f(x) = m(2020 + x - 2\cos x) + \sin x - x$ nghịch biến trên \mathbb{R} ?

A. Vô số.

B. 2.

D. 0.

Lời giải

Chon C

Ta có:

Hàm số $f(x) = m(2020 + x - 2\cos x) + \sin x - x$ nghịch biến trên \mathbb{R} khi và chỉ khi

$$f'(x) \le 0 \ \forall x \in \mathbb{R} \Leftrightarrow m(2\sin x + 1) + \cos x - 1 \le 0 \ \forall x \in \mathbb{R}$$

$$\Leftrightarrow 2m\sin x + \cos x \le 1 - m \ (1) ; \forall x \in \mathbb{R}$$

Ta lai có:

$$2m\sin x + \cos x \le \sqrt{(4m^2 + 1)(\sin^2 x + \cos^2 x)} = \sqrt{4m^2 + 1}$$

 $\Rightarrow 2m \sin x + \cos x \le \sqrt{4m^2 + 1}$. Dấu bằng xảy ra khi $2m \cos x = \sin x$

Do đó

$$(1) \Leftrightarrow \sqrt{4m^2 + 1} \le 1 - m \Leftrightarrow \begin{cases} 1 - m \ge 0 \\ 4m^2 + 1 \le 1 - 2m + m^2 \end{cases} \Leftrightarrow \begin{cases} m \le 1 \\ 3m^2 + 2m \le 0 \end{cases} \Leftrightarrow \frac{-2}{3} \le m \le 0$$

(Chuyên Quang Trung - 2020) Tập hợp tất cả các giá trị thực của tham số m để hàm số Câu 27. $y = \ln(x^2 + 4) + mx + 12$ đồng biến trên \mathbb{R} là

$$\underline{\mathbf{A}} \cdot \left[\frac{1}{2}; +\infty \right].$$

$$\mathbf{B.}\left(-\frac{1}{2};\frac{1}{2}\right)$$

B.
$$\left(-\frac{1}{2};\frac{1}{2}\right)$$
 C. $\left(-\infty;-\frac{1}{2}\right]$. **D.** $\left(\frac{1}{2};+\infty\right)$

D.
$$\left(\frac{1}{2}; +\infty\right)$$

Lời giải

Chon A

+ TXÐ: ℝ

+ Ta có
$$y' = \frac{2x}{x^2 + 4} + m$$
. Hàm số đồng biến trên $\mathbb{R} \iff \frac{2x}{x^2 + 4} + m \ge 0, \forall x \in \mathbb{R}$

$$\Leftrightarrow m \ge \frac{-2x}{x^2 + 4}, \forall x \in \mathbb{R}$$

Xét
$$f(x) = \frac{-2x}{x^2 + 4}$$
. Ta có: $f'(x) = \frac{2(x^2 - 4)}{(x^2 + 4)} = 0 \Leftrightarrow x = \pm 2$

Bảng biến thiên

Vậy giá trị m cần tìm là $m \ge \frac{1}{2}$

(Chuyên Thái Bình - 2020) Có tất cả bao nhiều giá trị nguyên của m để hàm số Câu 28. $y = |x^3 - mx^2 + 12x + 2m|$ luôn đồng biến trên khoảng $(1; +\infty)$?

Lời giải

Chon D

Xét
$$f(x) = x^3 - mx^2 + 12x + 2m$$
. Ta có $f'(x) = 3x^2 - 2mx + 12$ và $f(1) = 13 + m$.

Để hàm số
$$y = |x^3 - mx^2 + 12x + 2m|$$
 đồng biến trên khoảng $(1; +\infty)$ thì có hai trường họp sau

Trường hợp 1: Hàm số
$$f(x)$$
 nghịch biến trên $(1; +\infty)$ và $f(1) \le 0$.

NGUYĒN BẢO VƯƠNG - 0946798489

Điều này không xảy ra vì $\lim_{x\to +\infty} \left(x^3 - mx^2 + 12x + 2m\right) = +\infty$.

Trường hợp 2: Hàm số f(x) đồng biến trên $(1;+\infty)$ và $f(1) \ge 0$.

$$\Leftrightarrow \begin{cases} 3x^2 - 2mx + 12 \ge 0, \forall x > 1 \\ 13 + m \ge 0 \end{cases} \Leftrightarrow \begin{cases} m \le \frac{3}{2}x + \frac{6}{x}, \forall x > 1 \\ m \ge -13 \end{cases}$$

Xét $g(x) = \frac{3}{2}x + \frac{6}{x}$ trên khoảng $(1; +\infty)$: $g'(x) = \frac{3}{2} - \frac{6}{x^2}$; $g'(x) = 0 \Leftrightarrow \frac{3}{2} - \frac{6}{x^2} = 0 \Rightarrow x = 2$.

Bảng biến thiên:

Từ bảng biến thiên suy ra $m \le \frac{3}{2}x + \frac{6}{x}, \forall x > 1 \iff m \le 6$.

Kết hợp (*) suy ra $-13 \le m \le 6$. Vì m nguyên nên $m \in \{-13; -12; -11; ...; 5; 6\}$. Vậy có 20 giá trị nguyên của m.

Câu 29. (ĐHQG Hà Nội - 2020) Có bao nhiều giá trị nguyên của tham số m thuộc khoảng (-8;8) sao cho hàm số $y = \left|-2x^3 + 3mx - 2\right|$ đồng biến trên khoảng $(1;+\infty)$?

A. 10.

B. 9

- **C**. 8.
- **D.** 11.

Lời giải

Chọn B

$$f(x) = -2x^3 + 3mx - 2$$

$$f'(x) = -6x^2 + 3m$$

Nếu $m \le 0$: $f'(x) \le 0$, $\forall x \Rightarrow$ hàm số f(x) nghịch biến trên \mathbb{R} .

Hàm số y = |f(x)| đồng biến trên $(1; +\infty) \Leftrightarrow f(1) \le 0 \Leftrightarrow m \le \frac{4}{3} \Rightarrow m \le 0$.

Nếu m > 0: $f'(x) = 0 \Leftrightarrow x = \pm \sqrt{\frac{m}{2}}$

$$\begin{cases} \sqrt{\frac{m}{2}} > 1 \\ f\left(\sqrt{\frac{m}{2}}\right) = 0 \\ \begin{cases} \sqrt{\frac{m}{2}} > 1 \\ m = \sqrt[3]{2} \end{cases} & (L) \\ m = 2 \\ f\left(\sqrt{\frac{m}{2}}\right) \le 0 \end{cases}$$
 Hàm số $y = |f(x)|$ đồng biến trên $(1; +\infty) \Leftrightarrow$
$$\begin{cases} \sqrt{\frac{m}{2}} = 1 \\ f\left(\sqrt{\frac{m}{2}}\right) \le 0 \end{cases} \Leftrightarrow \begin{cases} m = 2 \\ 2m\sqrt{\frac{m}{2}} - 2 \le 0 \end{cases} \Rightarrow 0 < m \le \frac{4}{3}.$$

$$\begin{cases} \sqrt{\frac{m}{2}} < 1 \\ f(1) \le 0 \end{cases} \end{cases}$$

 $m \in \mathbb{Z}, m \in (-8;8) \Rightarrow m \in \{-7; -6; ...; -1; 0; 1\}.$

(Sở Ninh Bình) Gọi T là tập hợp tất cả các giá trị nguyên dương của tham số m để hàm số Câu 30. $y = x^4 - 2mx^2 + 1$ đồng biến trên khoảng $(3; +\infty)$. Tổng giá trị các phần tử của T bằng

A. 9.

C. 55.

D. 36.

Lời giải

Chon B

+ Tập xác định:
$$D = \mathbb{R}$$
.
+ Ta có $y' = 4x^3 - 4mx = 4x(x^2 - m)$

Theo đề m > 0 nên y' = 0 có 3 nghiệm phân biệt $x = -\sqrt{m}$, x = 0, $x = \sqrt{m}$.

Để hàm số đồng biến trên khoảng $(3; +\infty)$ thì $y' \ge 0, \forall x \in (3; +\infty) \Leftrightarrow \sqrt{m} \le 3 \Leftrightarrow m \le 9$

Vì m nguyên dương nên m=1, 2, 3, 4, 5, 6, 7, 8, 9 (là cấp số cộng)

Vậy Tổng giá trị các phần tử của T bằng $\frac{9}{2}(1+9)=45$.

(Đô Lương 4 - Nghệ An - 2020) Tìm tập hợp tất cả các giá trị của m để hàm số $y = \frac{m - \sin x}{\cos^2 x}$ Câu 31. nghịch biến trên $\left(0; \frac{\pi}{6}\right)$.

A. $m \ge 1$.

B. $m \le 2$.

 $\underline{\mathbf{C}}. \ m \le \frac{5}{4}. \qquad \qquad \mathbf{D}. \ m \le 0.$

Lời giải

Chon C

Ta có
$$y' = \frac{-\cos^2 x + 2m\sin x - 2\sin^2 x}{\cos^3 x} = \frac{-1 + 2m\sin x - \sin^2 x}{\cos^3 x}$$

NGUYỄN BẢO VƯƠNG - 0946798489

Để hàm số nghịch biến trên $\left(0; \frac{\pi}{6}\right)$ thì

$$y' \le 0, \forall x \in \left(0; \frac{\pi}{6}\right) \iff -\sin^2 x + 2m\sin x - 1 \le 0, \forall x \in \left(0; \frac{\pi}{6}\right), \text{ vì } \cos^3 x > 0, \forall x \in \left(0; \frac{\pi}{6}\right)$$
 (1)

Đặt
$$\sin x = t, t \in \left(0; \frac{1}{2}\right)$$
.

Khi đó
$$(1) \Leftrightarrow -t^2 + 2mt - 1 \leq 0, \forall t \in \left(0; \frac{1}{2}\right) \Leftrightarrow m \leq \frac{t^2 + 1}{2t}, \forall t \in \left(0; \frac{1}{2}\right) \left(2\right)$$

Ta xét hàm
$$f(t) = \frac{t^2 + 1}{2t}, \forall t \in \left(0; \frac{1}{2}\right)$$

Ta có
$$f'(t) = \frac{2(t^2 - 1)}{4t^2} < 0, \forall t \in (0, \frac{1}{2}).$$

Bảng biến thiên

Từ bảng biến thiên suy ra $(2) \Leftrightarrow m \leq \frac{5}{4}$.

Câu 32. (Yên Lạc 2 - Vĩnh Phúc - 2020) Cho hàm số y = f(x) có đạo hàm $f'(x) = 3x^2 + 6x + 4, \forall x \in \mathbb{R}$. Có tất cả bao nhiều giá trị nguyên thuộc (-2020; 2020) của tham số m để hàm số g(x) = f(x) - (2m+4)x - 5 nghịch biến trên (0;2)?

A. 2008.

B. 2007.

C. 2018

D. 2019.

Lời giải

Chon A

Ta có
$$g'(x) = f'(x) - (2m+4)$$
.

Hàm số
$$g(x) = f(x) - (2m+4)x - 5$$
 nghịch biến trên $(0;2)$ khi $g'(x) \le 0, \forall x \in (0;2)$

$$\Leftrightarrow f'(x) - (2m+4) \le 0, \forall x \in (0;2) \Leftrightarrow 3x^2 + 6x + 4 \le 2m+4, \forall x \in (0;2).$$

Xét hàm số
$$h(x) = 3x^2 + 6x + 4 \Rightarrow h'(x) = 6x + 6$$
. Ta có BBT:

X	0		2
h'(x)		+	
			28
h(x)			
	4		

Vậy $2m+4 \ge 28 \Leftrightarrow m \ge 12$. Vì m nguyên thuộc (-2020;2020) nên có 2008 giá trị thỏa mãn.

(Thanh Chương 1 - Nghệ An - 2020) Có bao nhiều giá trị nguyên của tham số m thuộc đoạn [-10;10] sao cho hàm số $y = \frac{x^4}{4} - \frac{mx^3}{3} - \frac{x^2}{2} + mx + 2020$ nghịch biến trên khoảng (0;1)?

A. 12.

B. 11.

C. 9.

D. 10.

Lời giải.

Chon B

Ta có $y' = x^3 - mx^2 - x + m$. Hàm số đã cho nghịch biến trên khoảng (0;1) khi và chỉ khi $y' \le 0, \forall x \in (0;1) \text{ hay } x^3 - x \le m(x^2 - 1), \forall x \in (0;1).$

 $\forall x \in (0;1): x^2 - 1 < 0 \text{ nên } x^3 - x \le m(x^2 - 1), \forall x \in (0;1) \Leftrightarrow m \le x, \forall x \in (0;1) \Leftrightarrow m \le 0.$

Mặt khác $m \in [-10;10] \cap \mathbb{Z}$ nên có 0-(-10)=11 giá trị của m thỏa mãn yêu cầu bài toán.

Câu 34. (Chuyên Lê Hồng Phong - Nam Định - 2020) Có bao nhiều số nguyên m để hàm số $f(x) = m(2020 + x - 2\cos x) + \sin x - x$ nghịch biến trên \mathbb{R} ?

A. Vô số.

B. 2.

D. 0.

Chon C

Ta có $f(x) = \sin x - 2m\cos x + (m-1)x + 2020m$ có đạo hàm liên tục trên \mathbb{R} .

Cần tìm m nguyên để $f'(x) = \cos x + 2m \sin x + m - 1 \le 0, \forall x$

$$\Leftrightarrow \max_{x \in \mathbb{R}} \left[\cos x + 2m \sin x + m - 1 \right] \le 0 \Leftrightarrow \sqrt{1 + 4m^2} + m - 1 \le 0 \Leftrightarrow \sqrt{1 + 4m^2} \le 1 - m$$

$$\Leftrightarrow \begin{cases} 1-m\geq 0 \\ 1+4m^2\leq 1-2m+m^2 \end{cases} \Leftrightarrow \begin{cases} m\leq 1 \\ -\frac{2}{3}\leq m\leq 0 \end{cases} \Leftrightarrow -\frac{2}{3}\leq m\leq 0 \text{ . K\'e\'t hợp } m \text{ nguyên c\'o } m=0 \text{ .}$$

(Chuyên Quang Trung - Bình Phước - Lần 2 - 2020) Tập hợp tất cả các giá trị thực của tham Câu 35. số thực m để hàm số $y = \ln(x^2 + 4) + mx + 12$ đồng biến trên $\mathbb R$ là

 $\underline{\mathbf{A}} \cdot \left| \frac{1}{2}; +\infty \right|$.

 $\mathbf{B.}\left(-\frac{1}{2};\frac{1}{2}\right). \qquad \mathbf{C.}\left(-\infty;-\frac{1}{2}\right]. \qquad \mathbf{D.}\left(\frac{1}{2};+\infty\right).$

Lời giải

Chon A

Ta có $y' = \frac{2x}{x^2 + 4} + m, \forall x \in \mathbb{R}$.

Hàm số đã cho đồng biến trên $\mathbb{R} \Leftrightarrow y' \ge 0 \forall x \in \mathbb{R}$ (vì y' = 0 chỉ có hữu hạn nghiệm)

$$\Leftrightarrow \frac{2x}{x^2+4} + m \ge 0 \,\forall x \in \mathbb{R} \Leftrightarrow m \ge -\frac{2x}{x^2+4} \,\forall x \in \mathbb{R} .$$

NGUYĒN BAO VƯƠNG - 0946798489

Ta có
$$-\frac{1}{2} - \frac{2x}{x^2 + 4} = -\frac{(x+2)^2}{2(x^2 + 4)} \le 0 \forall x \in \mathbb{R} \Rightarrow -\frac{2x}{x^2 + 4} \le \frac{1}{2} \forall x \in \mathbb{R} \text{ trên } \mathbb{R}.$$

Do đó,
$$m \ge -\frac{2x}{x^2 + 4} \forall x \in \mathbb{R} \iff m \ge \frac{1}{2}$$
.

(Chuyên Thái Bình - Lần 3 - 2020) Tìm tất cả các giá trị thực của m để hàm số $y = 2^{x^3 - x^2 + mx + 1}$ Câu 36. đồng biến trên (1;2).

A.
$$m > -8$$
.

B.
$$m \ge -1$$

B.
$$m \ge -1$$
. **C.** $m \le -8$. **D.** $m < -1$.

D.
$$m < -1$$

Lời giải

Chọn B

Ta có:
$$y' = (3x^2 - 2x + m) \cdot 2^{x^3 - x^2 + mx + 1} \cdot \ln 2$$

Hàm số đồng biến trên $(1,2) \Leftrightarrow y' \ge 0, \ \forall x \in (1,2)$

$$\Leftrightarrow$$
 $(3x^2 - 2x + m) \cdot 2^{x^3 - x^2 + mx + 1} \cdot \ln 2 \ge 0$, $\forall x \in (1; 2)$

$$\Leftrightarrow 3x^2 - 2x + m \ge 0, \ \forall x \in (1,2)$$

$$\Leftrightarrow m \ge -3x^2 + 2x, \ \forall x \in (1,2)$$

$$\Leftrightarrow m \ge \max_{(1:2)} \left(-3x^2 + 2x\right).$$

Xét hàm số $f(x) = -3x^2 + 2x$, với $x \in (1,2)$.

Ta có:
$$f'(x) = -6x + 2$$
.

Cho
$$f'(x) = 0 \Leftrightarrow -6x + 2 = 0 \Leftrightarrow x = \frac{1}{3}$$
.

Bảng biến thiên:

Vậy $m \ge -1$ thỏa yêu cầu bài toán.

Theo dõi Fanpage: Nguyễn Bảo Vương Fhttps://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương 🕝 https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIỀU TOÁN) # https://www.facebook.com/groups/703546230477890/

Ân sub kênh Youtube: Nguyễn Vương

https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view as=subscriber

Tải nhiều tài liệu hơn tại: http://diendangiaovientoan.vn/

ĐỂ NHẬN TÀI LIỆU SỚM NHẤT NHÉ!