Station A: Exterior Angles

There are two supplementary angles at each vertex: the interior angle and the exterior angle.

1. In the diagram of $\triangle KLM$ below, $m \angle L = 70$, $m \angle M = 50$ and \overline{MK} is extended through N.

What is the measure of $\angle LKN$?

- $(1) 60^{\circ}$
- (2) 120°
- (3) 180°
- (4) 300°

2. In $\triangle FGH$, $m \angle F = 42$ and an exterior angle at vertex H has a measure of 104. What is $m \angle G$?

- (1) 34
- (2) 62
- (3) 76
- (4) 146

3. In the diagram below of $\triangle ABC$. side \overline{BC} is extended to point D, $m\angle A=x$, $m\angle B=2x+15$, and $\angle ACD=5x+5$.

What is $m \angle B$?

- (1) 5
- (2) 20
- (3) 25
- (4) 55

4. In the diagram of $\triangle ABC$ below, \overline{AB} is extended to point D.

If $m\angle CAB = x + 40$, $m\angle ACB = 3x + 10$, and $m\angle CBD = 6x$, what is $m\angle CAB$?

- (1) 13
- (2) 25
- (3) 53
- (4) 65

5. In the diagram below of $\triangle HQP$, side \overline{HP} is extended through P to T, $\angle QPT = 6x + 20$, $\angle HQP = x + 40$, and $\angle PHQ = 4x - 5$. Find m $\angle QPT$

(Not drawn to scale)

11.2

Name:

5 June 2017

Exam Review - Stations

Station B: Congruent Triangles

- 6. Which statement is *not* always true when $\triangle ABC \cong \triangle XYZ$?
 - (1) $\overline{BC} \cong \overline{YZ}$

- (2) $\overline{CA} \cong \overline{XY}$
- (3) $\angle CAB \cong \angle ZXY$
- $(4) \angle BCA \cong \angle YZX$
- 7. Which of the following does not justify that two triangles are congruent?
 - (1) SAS
- (2) SSA
- (3) ASA
- (4) HL
- 8. If $\triangle ABC \cong \triangle JKL \cong \triangle RST$, then \overline{BC} must be congruent to
 - (1) \overline{JL}
- (2) \overline{JK}
- (3) \overline{ST}
- (4) \overline{RS}
- 9. Two right triangles must be congruent if
 - (1) an acute angle in each triangle is congruent
 - (2) the lengths of the hypotenuses are equal
 - (3) the corresponding legs are congruent
 - (4) the areas are equal
- 10. In the diagram below of $\triangle DAE$ and $\triangle BCE$, \overline{AB} and \overline{CD} intersect at E, such that $\overline{AE} \cong \overline{CE}$ and $\angle BCE \cong \angle DAE$.

Triangle DAE can be proved congruent to triangle BCE by

- (1) ASA
- (2) SAS
- (3) SSS
- (4) HL

5 June 2017

11. Which statement is sufficient evidence that ΔDEF is congruent to ΔABC ?

- (1) AB = DE and BC = EF
- (2) $\angle D \cong \angle A$, $\angle B \cong \angle E$, $\angle C \cong \angle F$
- (3) There is a sequence of rigid motions that maps \overline{AB} onto \overline{DE} , \overline{BC} onto \overline{EF} , and \overline{AC} onto \overline{DF} .
- (4) There is a sequence of rigid motions that maps point A onto point D, \overline{AB} onto \overline{DE} , and $\angle B$ onto $\angle E$.

Name:

5 June 2017

Station C: Similar Triangles

12. In the diagram below, $\triangle ABC \sim \triangle ADE$

Which measurements are justified by this similarity?

(1)
$$AD = 3$$
, $AB = 6$, $AE = 4$, and $AC = 12$

(2)
$$AD = 5$$
, $AB = 8$, $AE = 7$, and $AC = 10$

(3)
$$AD = 3$$
, $AB = 9$, $AE = 5$, and $AC = 10$

(4)
$$AD = 2$$
, $AB = 6$, $AE = 5$, and $AC = 15$

13. In the diagram below of $\triangle ABC$, \overline{DE} is a midsegment of $\triangle ABC$, DE = 7, AB = 10, and BC = 13. Find the perimeter of $\triangle ABC$.

- 14. If $\triangle RST \sim \triangle ABC$, $m \angle A = 8x 25$, $m \angle C = 4x + 8$, and $m \angle R = 3x + 40$, find $m \angle C$
 - (1) 55
- (2) 50
- (3) 60
- (4) 65

Exam Review - Stations

15. In the accompanying diagram, $\overline{AC} \parallel \overline{DE}$, AB = 10, BC = 15, and BD = 8.

What is the length of \overline{EC} ?

- (1) $5\frac{1}{3}$
- (2) 2
- $(3) \ 3$
- (4) 12
- 16. In the diagram of $\triangle ADC$ below, $\overline{EB} \parallel \overline{DC}$, AE = 9, ED = 5, and AB = 9.2.

What is the length of \overline{AC} , to the *nearest tenth*?

- (1) 5.1
- (2) 5.2
- (3) 14.3
- (4) 14.4
- 17. When $\triangle ABC$ is dilated by a scale factor of 2, its image is $\triangle A'B'C'$. Which statement is true?
 - (1) $\overline{AC} \cong \overline{A}'\overline{C}'$
 - (2) $\angle A \cong \angle A'$
 - (3) perimeter of $\triangle ABC$ = perimeter of $\triangle A'B'C'$
 - (4) 2(area of $\triangle ABC$) = area of $\triangle A'B'C'$

5 June 2017

Name:

18. In the diagram shown below, \overline{AC} is tangent to circle O at A and to circle Pat C, \overline{OP} intersects \overline{AC} at B, OA = 4, AB = 5, and PC = 10.

What is the length of \overline{BC} ?

- (1) 6.4
- (2) 8
- (3) 12.5
- (4) 16

19. In the diagram below, $\triangle ABC \sim \triangle DEC$.

If AC = 12, DC = 7, DE = 5, and the perimeter of $\triangle ABC$ is 30, what is the perimeter of ΔDEC ?

- (1) 12.5
- (2) 14.0
- (3) 14.8
- (4) 17.5