Introduction to Midway2

Alina Gafanova, Linghui Wu

BFI

References:

- https://rcc.uchicago.edu/docs/
- Clindaniel MACS-30123

Contents

- Overview of Midway2
- 2 Basic Operations
- Running Jobs

What is and why Midway2?

- High-performance computing platform at the UChicago's Research Computing. Other computing resources such as Acropolis Cluster.
- Necessary and important when running out of computing powers on your local machine
 - Storing and working with heavy data files
 - Parallel computing of computationally expensive tasks

Requesting an account

- RPs request a General User Account associated with their Pls account via https://rcc.uchicago.edu/accounts-allocations/general-user-account-request.
- Your PI might or might not have resources allocated to their account. Allocation request can be submitted through https://rcc.uchicago.edu/accounts-allocations/research-i-allocation-request.

Connecting to Midway2: terminal

- Same credential as CNetID login and passwords
- Open terminal and enterssh <CNetID@midway2.rcc.uchicago.edu>
- It will prompt you to enter password and proceed with the regular two-factor authentication (2FA).

```
alinagafanova — agafanova@midway2-login2:- — ssh agafanova@midway2.rcc.uchicago.edu — 99×24
Last login: Mon Aug 15 15:11:51 on ttys000
(base) alinagafanova@bfi-33189 ~ № ssh agafanova@midway2.rcc.uchicago.edu
Password:
Duo two-factor login for agafanova
Enter a passcode or select one of the following options:
 1. Duo Push to +X XXX XXX-X9-65
 2. Phone call to +X XXX XXX-X9-65
 3. SMS passcodes to +X XXX XXX-X9-65
Passcode or option (1-3): 1
Success, Longing you in.
                                Welcome to Midway
                            Research Computing Center
                             University of Chicago
                            http://rcc.uchicago.edu
For the RCC Manual see the documentation site at
    http://docs.rcc.uchicago.edu
To check your allocation balance for the current period use this command:
```

Connecting to Midway2: graphical interface

• You can also connect and use Midway2 without terminal (though less efficient).

Checking resources

Once logged in, you can check your allocation, storage and etc. Enter rcchelp in terminal and you will see a list of commands.

- rcchelp balance: remaining and total allocation
- rcchelp quota: remaining and total space of data storage
- When working with large data, check on your storage from time to time.

Data storage on Midway has a hard and a soft limit.

Once you go over a soft limit, you can still store new data but only during a grace period.

After a grace period, you won't be able to store new data on server anymore.

Navigating Midway2 folders

- Two main commands
 - cd for changing directory
 - 1s for listing files
- For work, we would use PI's directory since it is a shared folder and generally has more space.
 - cd /project2/<PI CNetID>
 - cd /project/<PI CNetID>
- ullet Enter cd \sim to get back to your home directory /home/<CNetID>.

Transferring files

- Transfer a file from local machine to your home directory
 - \$ scp <some file> <CNetID>@midway2.rcc.uchicago.edu:<path>
- Transfer a directory to your home directory on Midway2
 - \$ scp -r <some dir> <CNetID>@midway2.rcc.uchicago.edu:<path>
- You will be prompted to enter your password and 2FA

Cloning git repository

- You may need to clone git repository to a specific directory on Midway2 to access files and code, pull updates and push changes.
 - \$ git clone https://github.com/linghui-wu/RP-orientation-2022.git
- If any adjustments to file before/after running the jobs on Midway is needed, you can do so with command text editors such as nano, vim, and etc.
 - \$ nano <file_name>
 - \$ vim <file_name>

Loading modules

- Before running jobs, you need to make sure appropriate software modules have been loaded
 - \$ module avail <module_name>
 - \$ module load <modle_name>
 - \$ module list

Run interactive jobs

- Intensive computational tasks are not recommended on the login nodes.
- You can specify memory allocation, runnning time, partition and etc by passing arguments.
 - \$ sinteractive --time=00:15:00 --ntasks=4 --partition=broadwl --nodes=2

Run parallel batch jobs with Slurm scripts

- Simple julia script: hello_world.jl
- Slurm script used for running parallel jobs: julia.sbatch
- To run the Julia script, simply submit the jobs to the cluster
 - \$ sbatch julia.slurm
- After the jobs complete, you can check the results in .out or debug in .err files
- Monitoring or canceling your job status
 - \$ squeue --user=\$USER
 - \$ scancel <your_job_ID>