What is claimed is:

1. A process for preparing a compound of Formula (I):

wherein:

5

R^{1a}, R^{1b}, R^{1c}, R^{1d}, and R^{1e} are each, independently, H, halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, OR⁷, SR⁷, SOR⁸, SO₂R⁸, COR⁸, COOR⁷, OC(O)R⁸, NR⁹R¹⁰, carbocyclyl optionally substituted by one or more R⁶ or heterocyclyl optionally substituted by one or more R⁶; or R^{1a} and R^{1b}, R^{1b} and R^{1c}, R^{1c} and R^{1d}, or R^{1d} and R^{1e} together with the carbon atoms to which they are attached form a fused C₅₋₇ cycloalkyl group or fused C₅₋₇ heterocycloalkyl group; wherein each of said C₁₋₆ alkyl, C₂₋₆ alkenyl, and C₂₋₆ alkynyl, is optionally substituted with one or more C₁₋₆ acyl, C₁₋₆ acyloxy, C₁₋₆ alkoxy, C₁₋₆ thioalkoxy, carboxamide, C₁₋₆ alkylcarboxamide, C₂₋₈ dialkylcarboxamide, C₁₋₆ alkylsulfonamide, C₁₋₆ alkylsulfinyl, C₁₋₆ alkylsulfonyl, C₁₋₆ alkylureido, amino, C₁₋₆ alkylamino, C₂₋₈ dialkylamino, C₁₋₆ haloalkyl, halogen, C₁₋₆ haloalkoxy, C₁₋₆ haloalkylsulfinyl, C₁₋₆ haloalkylsulfonyl, hydroxyl, mercapto or nitro;

15

10

 R^2 is C_{1-4} alkyl;

R³ is F, Cl, Br or I;

20

R⁴ is halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkoxy, SR¹¹, SOR¹², SO₂R¹², COR¹², COOR¹¹, OC(O)R¹², NR¹³R¹⁴, or C₃₋₇ cycloalkyl, wherein said C₁₋₆ alkoxy group is optionally substituted with one or more C₁₋₅ acyl, C₁₋₅ acyloxy, C₂₋₆ alkenyl, C₁₋₄ alkoxy, C₁₋₈ alkyl, C₁₋₆ alkylamino, C₂₋₈ dialkylamino, C₁₋₄ alkylcarboxamide, C₂₋₆ alkynyl, C₁₋₄ alkylsulfonamide, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₄ alkylsulfonyl, C₁₋₄ alkylureido, amino, (C₁₋₆ alkoxy)carbonyl, carboxamide, carboxy, cyano, C₃₋₆ cycloalkyl, C₂₋₆ dialkylcarboxamide, halogen, C₁₋₄ haloalkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkylsulfinyl, C₁₋₄ haloalkylsulfonyl, C₁₋₄

25

30

 R^5 , at each independent occurrence, is H, halo, cyano, nitro, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, SR^{11} , SOR^{12} , SO_2R^{12} , COR^{12} , COR^{11} , $OC(O)R^{12}$, $NR^{13}R^{14}$, or C_{3-7} cycloalkyl, wherein said C_{1-6} alkoxy group is optionally substituted with one or more C_{1-5} acyloxy, C_{2-6} alkenyl, C_{1-4} alkoxy, C_{1-8} alkyl, C_{1-6} alkylamino, C_{2-8} dialkylamino, C_{1-4} alkylcarboxamide, C_{2-6} alkynyl, C_{1-4}

10

15

20

25

30

WO 2005/103011 PCT/US2004/023880 51

alkylsulfonamide, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₄ thioalkoxy, C₁₋₄ alkylureido, amino, (C₁₋₆ alkoxy)carbonyl, carboxamide, carboxy, cyano, C₃₋₆ cycloalkyl, C₂₋₆ dialkylcarboxamide, halogen, C₁₋₄ haloalkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkylsulfinyl, C₁₋₄ haloalkylsulfonyl, C₁₋₄ halothioalkoxy, hydroxyl, nitro or phenyl optionally substituted with 1 to 5 halogen atoms;

R⁶ is halo, cyano, nitro, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, amino, (C₁₋₄ alkyl)amino, di(C₁₋₄ alkyl)amino, hydroxy, carboxy, (C₁₋₄ alkoxy)carbonyl, C₁₋₄ acyl, C₁₋₄ acyloxy, aminocarbonyl, (C₁₋₄ alkyl)aminocarbonyl, or di(C₁₋₄ alkyl)aminocarbonyl;

 R^7 and R^{11} are each, independently, H, C_{1-8} alkyl, C_{1-8} haloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, aryl, heteroaryl, C₃₋₇ cycloalkyl, 5-7 membered heterocycloalkyl, arylalkyl, heteroarylalkyl, (C₃₋₇ cycloalkyl)alkyl or (5-7 membered heterocycloalkyl)alkyl;

 R^8 and R^{12} are each, independently, H, C_{1-8} alkyl, C_{1-8} haloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, aryl, heteroaryl, C₃₋₇ cycloalkyl, 5-7 membered heterocycloalkyl, arylalkyl, heteroarylalkyl, (C₃₋₇ cycloalkyl)alkyl, (5-7 membered heterocycloalkyl)alkyl, amino, (C₁₋₄ alkyl)amino, or di(C₁₋₄ alkyl)amino;

 R^9 and R^{10} are each, independently, H, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, aryl, heteroaryl, C₃₋₇ cycloalkyl, 5-7 membered heterocycloalkyl, arylalkyl, heteroarylalkyl, (C₃₋ 7 cycloalkyl)alkyl, (5-7 membered heterocycloalkyl)alkyl, (C₁₋₈ alkyl)carbonyl, (C₁₋₈ haloalkyl)carbonyl, (C₁₋₈ alkoxy)carbonyl, (C₁₋₈ haloalkoxy)carbonyl, (C₁₋₄ alkyl)sulfonyl, (C₁₋₄ haloalkyl)sulfonyl or arylsulfonyl;

or R⁹ and R¹⁰, together with the N atom to which they are attached form a 5-7 membered heterocycloalkyl group; and

R¹³ and R¹⁴ are each, independently, H, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, aryl, heteroaryl, C₃₋₇ cycloalkyl, 5-7 membered heterocycloalkyl, arylalkyl, heteroarylalkyl, (C₃₋ ⁷ cycloalkyl)alkyl, (5-7 membered heterocycloalkyl)alkyl, (C₁₋₈ alkyl)carbonyl, (C₁₋₈ haloalkyl)carbonyl, $(C_{1-8}$ alkoxy)carbonyl, $(C_{1-8}$ haloalkoxy)carbonyl, $(C_{1-4}$ alkyl)sulfonyl, $(C_{1-4} \text{ haloalkyl})$ sulfonyl or arylsulfonyl;

or R¹³ and R¹⁴, together with the N atom to which they are attached form a 5-7 membered heterocycloalkyl group;

the process comprising:

a) reacting a compound of Formula (II):

with a compound of Formula (III):

5

10

15

wherein Z is an isocyanate group (-NCO) or isocyanate equivalent, for a time and under conditions suitable for forming said compound of Formula (I); or

b) reacting a compound of Formula (II) with an isocyanate-generating reagent for a time and under conditions suitable for forming a compound of Formula (IIa):

$$\mathbb{R}^2$$
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^3
(IIa)

wherein Y is an isocyanate group or isocyanate equivalent; and reacting said compound of Formula (Πa) with a compound of Formula (Πa):

$$R^{1a}$$
 R^{1b}
 R^{1c}
 R^{1c}
 R^{1d}
 R^{1d}
 R^{1d}
(IIIa)

for a time and under conditions suitable for forming said compound of Formula (I).

2. The process of claim 1 wherein R^{1a}, R^{1b}, R^{1c}, R^{1d}, and R^{1e} are each, independently, H, halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, OR⁷, SR⁷, SOR⁸, SO₂R⁸, COR⁸, COOR⁷, OC(O)R⁸, NR⁹R¹⁰, carbocyclyl optionally substituted by one or more R⁶ or heterocyclyl optionally substituted by one or more R⁶.

WO 2005/103011 PCT/US2004/023880 53

- The process of claim 1 wherein R^{1a}, R^{1b}, R^{1c}, R^{1d}, and R^{1e} are each, independently, H, halo, 3. cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, OR⁷ or carbocyclyl optionally substituted by one or more R⁶.
- The process of claim 1 wherein R^{1a}, R^{1b}, R^{1c}, R^{1d}, and R^{1e} are each, independently, H, halo, 5 4. C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkyl, or C_{1-6} haloalkyl.
 - 5. The process of claim 1 wherein R^{1a}, R^{1b}, R^{1c}, R^{1d}, and R^{1e} are each, independently, H, F, Cl, Br, or I.
- The process of claim 1 wherein R^{1a} is H or halo, R^{1b} is H, R^{1c} is halo, R^{1d} is H, and R^{1e} is 6. H.
 - The process of claim 1 wherein R^{1a} is halo, R^{1b} is H, R^{1c} is halo, R^{1d} is H, and R^{1e} is H. 7.
 - 8. The process of claim 1 wherein: R^{1a} is F, R^{1b} is H, R^{1c} is F, R^{1d} is H, and R^{1e} is H: R^{1a} is H, R^{1b} is H, R^{1c} is Cl, R^{1d} is H, and R^{1e} is H; R^{1a} is H, R^{1b} is H, R^{1c} is F, R^{1d} is H, and R^{1e} is H; or R^{1a} is H, R^{1b} is H, R^{1c} is Cl, R^{1d} is H, and R^{1e} is H.

10

15

20

25

- 9. The process of claim 1 wherein R² is methyl or ethyl.
- 10. The process of claim 1 wherein R^2 is methyl.
- The process of claim 1 wherein R³ is Cl or Br. 11.
- 12. The process of claim 1 wherein R³ is Br.
- The process of claim 1 wherein R⁴ is halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ 30 13. alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkoxy, wherein said C₁₋₆ alkoxy group is optionally substituted with one or more C₁₋₅ acyl, C₁₋₅ acyloxy, C₂₋₆ alkenyl, C₁₋₄ alkoxy, C₁₋₈ alkyl, C₁₋₆ alkylamino, C₂₋₈ dialkylamino, C₁₋₄ alkylcarboxamide, C₂₋₆ alkynyl, C₁₋₄ alkylsulfonamide, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₄ thioalkoxy, C₁₋₄ alkylureido, amino, (C₁₋₆ 35 alkoxy)carbonyl, carboxamide, carboxy, cyano, C₃₋₆ cycloalkyl, C₂₋₆ dialkylcarboxamide, halogen, C₁₋₄ haloalkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkylsulfinyl, C₁₋₄ haloalkylsulfonyl, C₁₋₄ halothioalkoxy, hydroxyl, nitro or phenyl optionally substituted with 1 to 5 halogen atoms.

15

20

30

35

- The process of claim 1 wherein R⁴ is C₁₋₆ alkoxy optionally substituted with one or more C₁₋₅ acyl, C₁₋₅ acyloxy, C₂₋₆ alkenyl, C₁₋₄ alkoxy, C₁₋₈ alkyl, C₁₋₆ alkylamino, C₂₋₈ dialkylamino, C₁₋₄ alkylcarboxamide, C₂₋₆ alkynyl, C₁₋₄ alkylsulfonamide, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₄ thioalkoxy, C₁₋₄ alkylureido, amino, (C₁₋₆ alkoxy)carbonyl, carboxamide, carboxy, cyano, C₃₋₆ cycloalkyl, C₂₋₆ dialkylcarboxamide, halogen, C₁₋₄ haloalkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkylsulfinyl, C₁₋₄ haloalkylsulfonyl, C₁₋₄ haloalkoxy, hydroxyl, nitro or phenyl optionally substituted with 1 to 5 halogen atoms.
- 10 15. The process of claim 1 wherein R^4 is C_{1-6} alkoxy.
 - 16. The process of claim 1 wherein R^4 is C_{1-3} alkoxy.
 - 17. The process of claim 1 wherein R^4 is methoxy or ethoxy.
 - 18. The process of claim 1 wherein R⁴ is methoxy.
 - The process of claim 1 wherein R⁵, at each independent occurrence, is H, halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, or C₁₋₆ alkoxy.
 - 20. The process of claim 1 wherein R⁵, at each independent occurrence, is H or halo.
 - 21. The process of claim 1 wherein R⁵, at each occurrence, is H.
- 25 22. The process of claim 1 wherein:

 R^{1a} , R^{1b} , R^{1c} , R^{1d} , and R^{1e} are each, independently, H, halo, cyano, nitro, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, OR^7 , SR^7 , SOR^8 , SO_2R^8 , COR^8 , $COOR^7$, $OC(O)R^8$, NR^9R^{10} , carbocyclyl optionally substituted by one or more R^6 or heterocyclyl optionally substituted by one or more R^6 ;

 R^3 is F, Cl, Br or I;

R⁴ is halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkoxy, wherein said C₁₋₆ alkoxy group is optionally substituted with one or more C₁₋₅ acyl, C₁₋₅ acyloxy, C₂₋₆ alkenyl, C₁₋₄ alkoxy, C₁₋₈ alkyl, C₁₋₆ alkylamino, C₂₋₈ dialkylamino, C₁₋₄ alkylcarboxamide, C₂₋₆ alkynyl, C₁₋₄ alkylsulfonamide, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₄ alkylsulfonyl, C₁₋₆ alkoxy)carbonyl, carboxamide, carboxy, cyano, C₃₋₆ cycloalkyl, C₂₋₆ dialkylcarboxamide, halogen, C₁₋₄ haloalkyl, C₁₋₄ haloalkylsulfinyl, C₁₋₄ haloalkylsulfonyl, C₁₋₄

halothioalkoxy, hydroxyl, nitro or phenyl optionally substituted with 1 to 5 halogen atoms; and

R⁵, at each independent occurrence, is H, halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, or C₁₋₆ alkoxy.

5

23. The process of claim 1 wherein:

> R^{1a}, R^{1b}, R^{1c}, R^{1d}, and R^{1e} are each, independently, H, halo, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkyl, or C₁₋₆ haloalkyl;

R³ is F, Cl, Br or I;

10

15

 R^4 is C_{1-6} alkoxy group optionally substituted with one or more C_{1-5} acyl, C_{1-5} acyloxy, C₂₋₆ alkenyl, C₁₋₄ alkoxy, C₁₋₈ alkyl, C₁₋₆ alkylamino, C₂₋₈ dialkylamino, C₁₋₄ alkylcarboxamide, C₂₋₆ alkynyl, C₁₋₄ alkylsulfonamide, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₄ thioalkoxy, C₁₋₄ alkylureido, amino, (C₁₋₆ alkoxy)carbonyl, carboxamide, carboxy, cyano, C₃₋₆ cycloalkyl, C₂₋₆ dialkylcarboxamide, halogen, C₁₋₄ haloalkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkylsulfinyl, C₁₋₄ haloalkylsulfonyl, C₁₋₄ halothioalkoxy, hydroxyl, nitro or phenyl optionally substituted with 1 to 5 halogen atoms; and

R⁵, at each occurrence, is H.

20 24. The process of claim 1 wherein:

R^{1a}, R^{1b}, R^{1c}, R^{1d}, and R^{1e} are each, independently, H, F, Cl, Br or I;

R² is methyl or ethyl;

R³ is F, Cl, Br or I;

R4 is C1-6 alkoxy; and

R⁵, at each occurrence, is H. 25

25. The process of claim 1 wherein:

R^{1a}, R^{1b}, R^{1c}, R^{1d}, and R^{1e} are each, independently, H, F, or Cl;

R² is methyl;

R³ is Cl or Br; 30

R4 is methoxy; and

R⁵, at each occurrence, is H.

26.

The process of claim 1 wherein:

R^{1a} is F: 35

R1b is H;

R1c is F;

```
R^{1d} is H;

R^{1e} is H;

R^2 is methyl;

R^3 is Br;

R^4 is methoxy; and
```

5 R⁴ is methoxy; and

R⁵, at each occurrence, is H.

27. The process of claim 1 wherein:

R^{1a} is H;
R^{1b} is H;
R^{1c} is Cl;
R^{1d} is H;
R^{1e} is H;

R² is methyl;

15 R^3 is Br;

10

R⁴ is methoxy; and

R⁵, at each occurrence, is H.

28. The process of claim 1 wherein:

20 R^{1a} is H;
R^{1b} is H;
R^{1c} is F;
R^{1d} is H;
R^{1e} is H;

 R^2 is methyl;

R³ is Br;

R4 is methoxy; and

R⁵, at each occurrence, is H.

30 29. The process of claim 1 wherein:

R^{1a} is H; R^{1b} is H; R^{1c} is Cl; R^{1d} is H;

 R^{1e} is H; R^2 is methyl;

R³ is Cl;

15

R⁴ is methoxy; and

R⁵, at each occurrence, is H.

- 30. The process of claim 1 wherein Z is –NCO.
- 31. The process of claim 1 wherein Y is -NCO.
- 32. The process of claim 1 wherein the process comprises reacting a compound of Formula (II):

with a compound of Formula (III):

wherein Z is an isocyanate group, for a time and under conditions suitable for forming said compound of Formula (I).

- 33. The process of claim 32 wherein said reacting is carried out in an organic solvent.
- 34. The process of claim 33 wherein said organic solvent comprises an aromatic solvent.
- 20 35. The process of claim 33 wherein said organic solvent comprises toluene.
- 36. The process of claim 33 wherein, prior to said reacting, said compound of Formula (II) is dissolved in said organic solvent forming a solution, wherein said organic solvent comprises toluene, and said solution is refluxed for a time and under conditions to at least partially remove residual water optionally present in said solution.

20

30

- The process of claim 36 wherein the amount of water present in the solution after said refluxing is less than about 0.01 % by volume.
- The process of claim 36 wherein the amount of water present in the solution after said refluxing is less than about 0.005 % by volume.
 - 39. The process of claim 36 wherein the amount of water present in the solution after said refluxing is less than about 0.001 % by volume.
- 10 40. The process of claim 33 wherein said reacting is carried out at a reduced temperature.
 - 41. The process of claim 40 wherein said reduced temperature is about 10 to about 20 °C.
 - 42. The process of claim 33 wherein said reacting is carried out under an inert atmosphere.
 - 43. The process of claim 33 wherein said compound of Formula (III) is added to a solution containing said compound of Formula (II).
 - 44. The process of claim 43 wherein said addition is carried out portionwise.
 - The process of claim 33 wherein said compound of Formula (III) is added in molar excess relative to the amount of Formula (II).
- The process of claim 1 wherein said compound of Formula (II) is prepared by the process comprising reacting a compound of Formula (IV):

wherein:

Pr is an amino protecting group; and

RN is H;

or Pr and R^N together with the N atom to which they are attached form a cyclic amino protecting group;

15

20

25

30

with a deprotecting agent for a time and under conditions suitable for forming said compound of Formula (II).

- 47. The process of claim 46 wherein Pr is an acyl group.
- 48. The process of claim 46 wherein Pr is -C(O)- $(C_{1-4}$ alkyl).
- 49. The process of claim 46 wherein Pr is -C(O)Me.
- 10 50. The process of claim 46 wherein said deprotecting agent is a base.
 - 51. The process of claim 46 wherein said deprotecting agent comprises hydroxide.
 - 52. The process of claim 46 wherein said deprotecting agent comprises sodium hydroxide.
 - 53. The process of claim 46 wherein said reacting with a deprotecting agent is carried out in a organic solvent.
 - 54. The process of claim 53 wherein said organic solvent comprises an alcohol.
 - 55. The process of claim 53 wherein said organic solvent comprises methanol.
 - 56. The process of claim 46 wherein said reacting with a deprotecting agent is carried out at reflux temperature.
 - 57. The process of claim 46 wherein said reacting with a deprotecting agent results in formation of less than about 5 mole % of a compound of Formula (IIb):

$$\mathbb{R}^2$$
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5

relative to the amount of compound of Formula (II), and wherein said compound of Formula (IV) at the start of said reacting comprises a substantially undetectable amount of a compound of Formula (V):

$$R^{2}$$
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{7}
 R^{7}
 R^{5}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}

- 58. The process of claim 57 wherein said reacting with a deprotecting agent results in formation of less than about 3 mole % of a compound of Formula (IIa).
- 59. The process of claim 46 wherein said compound of Formula (IV) is prepared by the process comprising reacting a compound of Formula (V):

- with a halogenating reagent for a time and under conditions suitable for forming said compound of Formula (IV).
 - 60. The process of claim 59 wherein said halogenating reagent is a brominating or chlorinating reagent.
- 15 61. The process of claim 59 wherein said halogenating reagent is a brominating reagent.
 - 62. The process of claim 59 wherein said halogenating reagent comprises N-bromosuccinimide.
- 20 63. The process of claim 59 wherein said reacting with a halogenating reagent is carried out in an organic solvent.
 - 64. The process of claim 59 wherein said organic solvent comprises an alcohol.
- 25 65. The process of claim 59 wherein said organic solvent comprises methanol.

- 66. The process of claim 59 wherein said reacting with a halogenating reagent is carried out at or below about room temperature.
- 67. The process of claim 59 wherein said compound of Formula (V) is prepared by the process comprising reacting a compound of Formula (VI):

$$\begin{array}{c|c}
R^{2a} & R^{4} & R^{5} \\
R^{2b} & N & Pr \\
0 & R^{5} & R^{N}
\end{array}$$
(VI)

wherein R^{2a} and R^{2b} are each, independently, C_{1-4} alkyl, with an alkylhydrazine having the formula NH_2NH-R^2 for a time and under conditions suitable for forming said compound of Formula (V).

- 10
- 68. The process of claim 67 wherein R^2 is methyl.
- 69. The process of claim 67 wherein said reacting with an alkylhydrazine is carried out in the presence of an organic solvent.
- 15
- 70. The process of claim 69 wherein said organic solvent comprises an alcohol.
- 71. The process of claim 69 wherein said organic solvent comprises methanol.
- The process of claim 67 wherein said reacting with an alkylhydrazine is carried out in the presence of an acid.
 - 73. The process of claim 72 wherein said acid comprises an inorganic acid.
- 25 74. The process of claim 72 wherein said acid comprises HCl.
 - 75. The process of claim 67 wherein said compound of Formula (VI) is added to a solution containing said alkylhydrazine and HCl.
- The process of claim 67 wherein said reacting with an alkylhydrazine further produces a compound of Formula (Va):

wherein said compound of Formula (Va) is produced in a lesser amount than said compound of Formula (V).

- 5 77. The process of claim 76 wherein the molar ratio of compound of Formula (V) to compound of Formula (Va) is greater than about 2.
 - 78. The process of claim 76 wherein the molar ratio of compound of Formula (V) to compound of Formula (Va) is greater than about 5.
 - 79. The process of claim 67 wherein said reacting with an alkylhydrazine is carried out at a temperature of about -10 to about 30 °C.
- 80. The process of claim 67 wherein said compound of Formula (VI) is prepared by the processes comprising reacting a compound of Formula (VII):

with an acetal of Formula (VIII):

10

20

25

wherein R and R' are each, independently, C₁₋₆ alkyl, arylalkyl or alkylaryl, or R and R' together with the O atoms to which they are attached and the intervening CH group form a 5- or 6-membered heterocycloalkyl group, for a time and under conditions suitable for forming said compound of Formula (VI).

81. The process of claim 80 wherein said R and R' are both C_{1-4} alkyl.

- 82. The process of claim 80 wherein said R and R' are both methyl.
- 83. The process of claim 80 wherein said R^{2a} and R^{2b} are both methyl.
- 5 84. The process of claim 80 wherein said reacting with an acetal of Formula (VIII) is carried out in a solvent.
 - 85. The process of claim 84 wherein said solvent comprises an alcohol.
- 10 86. The process of claim 84 wherein said solvent comprises ethanol.
 - 87. The process of claim 80 wherein said reacting with an acetal of Formula (VIII) is carried out at about reflux temperature.
- 15 88. The process of claim 80 wherein said acetal is added to a mixture of said compound of Formula (VII) and solvent.
 - 89. The process of claim 80 wherein said acetal is provided in molar excess relative to the amount of compound of Formula (VII).
 - 90. The process of claim 89 wherein the molar ratio of said acetal to said compound of Formula (VII) is about 1.5 to 3.
 - 91. A process for preparing a compound of Formula (II):

$$R^{2}$$
 R^{4}
 R^{5}
 R^{5}

30

20

wherein:

 R^2 is C_{1-4} alkyl;

 R^3 is F, Cl, Br or I;

R⁴ is halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkoxy, SR¹¹, SOR¹², SO₂R¹², COR¹², COOR¹¹, OC(O)R¹², NR¹³R¹⁴, or C₃₋₇ cycloalkyl, wherein said C₁₋₆ alkoxy group is optionally substituted with one or more C₁₋₅ acyl, C₁₋₅ acyloxy, C₂₋₆ alkenyl, C₁₋₄ alkoxy, C₁₋₈ alkyl, C₁₋₆ alkylamino, C₂₋₈ dialkylamino, C₁₋₄

alkylcarboxamide, C₂₋₆ alkynyl, C₁₋₄ alkylsulfonamide, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₄ thioalkoxy, C₁₋₄ alkylureido, amino, (C₁₋₆ alkoxy)carbonyl, carboxamide, carboxy, cyano, C₃₋₆ cycloalkyl, C₂₋₆ dialkylcarboxamide, halogen, C₁₋₄ haloalkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkylsulfinyl, C₁₋₄ haloalkylsulfonyl, C₁₋₄ haloalkoxy, hydroxyl, nitro or phenyl optionally substituted with 1 to 5 halogen atoms;

R⁵, at each independent occurrence, is H, halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkoxy, SR¹¹, SOR¹², SO₂R¹², COR¹², COOR¹¹, OC(O)R¹², NR¹³R¹⁴, or C₃₋₇ cycloalkyl, wherein said C₁₋₆ alkoxy group is optionally substituted with one or more C₁₋₅ acyl, C₁₋₅ acyloxy, C₂₋₆ alkenyl, C₁₋₄ alkoxy, C₁₋₈ alkyl, C₁₋₆ alkylamino, C₂₋₈ dialkylamino, C₁₋₄ alkylcarboxamide, C₂₋₆ alkynyl, C₁₋₄ alkylsulfonamide, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₄ thioalkoxy, C₁₋₄ alkylureido, amino, (C₁₋₆ alkoxy)carbonyl, carboxamide, carboxy, cyano, C₃₋₆ cycloalkyl, C₂₋₆ dialkylcarboxamide, halogen, C₁₋₄ haloalkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkylsulfinyl, C₁₋₄ haloalkylsulfonyl, C₁₋₄ halothioalkoxy, hydroxyl, nitro or phenyl optionally substituted with 1 to 5 halogen atoms;

 R^{11} is, independently, H, C_{1-8} alkyl, C_{1-8} haloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, aryl, heteroaryl, C_{3-7} cycloalkyl, 5-7 membered heterocycloalkyl, arylalkyl, heteroarylalkyl, (C_{3-7} cycloalkyl)alkyl or (5-7 membered heterocycloalkyl)alkyl;

 R^{12} is, independently, H, C_{1-8} alkyl, C_{1-8} haloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, aryl, heteroaryl, C_{3-7} cycloalkyl, 5-7 membered heterocycloalkyl, arylalkyl, heteroarylalkyl, (C_{3-7} cycloalkyl)alkyl, (5-7 membered heterocycloalkyl)alkyl, amino, (C_{1-4} alkyl)amino, or $di(C_{1-4}$ alkyl)amino; and

 R^{13} and R^{14} are each, independently, H, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, aryl, heteroaryl, C_{3-7} cycloalkyl, 5-7 membered heterocycloalkyl, arylalkyl, heteroarylalkyl, (C_{3-7} cycloalkyl)alkyl, (5-7 membered heterocycloalkyl)alkyl, (C_{1-8} alkyl)carbonyl, (C_{1-8} haloalkyl)carbonyl, (C_{1-8} alkoxy)carbonyl, (C_{1-8} haloalkoxy)carbonyl, (C_{1-4} alkyl)sulfonyl, (C_{1-4} haloalkyl)sulfonyl or arylsulfonyl;

or R¹³ and R¹⁴, together with the N atom to which they are attached form a 5-7 membered heterocycloalkyl group;

comprising reacting a compound of Formula (IV):

wherein:

10

5

15

20

25

30

15

25

Pr is an amino protecting group; and

R^N is H;

or Pr and R^N together with the N atom to which they are attached form a cyclic amino protecting group;

with a base for a time and under conditions suitable for forming said compound of Formula (\mathbf{H}) .

- 92. The process of claim 91 wherein Pr is an acyl group.
- 10 93. The process of claim 91 wherein Pr is -C(O)- $(C_{1-4}$ alkyl).
 - 94. The process of claim 91 wherein Pr is -C(O)Me.
 - 95. The process of claim 91 wherein said base is sodium hydroxide.
 - 96. The process of claim 91 wherein said reacting is carried out in an organic solvent.
 - 97. The process of claim 97 wherein said organic solvent comprises an alcohol.
- 20 98. The process of claim 97 wherein said organic solvent comprises methanol.
 - 99. The process of claim 91 wherein the product of said reacting comprises less than about 5 mole % of a compound of Formula (IIb):

$$R^2$$
 R^4
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5

- relative to the amount of compound of Formula (II).
 - 100. The process of claim 99 wherein the product of said reacting comprises less than about 3 mole % of a compound of Formula (IIb).
- 30 101. A process for the preparation of a compound of Formula (IV):

wherein:

 R^2 is C_{1-4} alkyl;

R³ is F, Cl, Br or I;

5

R⁴ is halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkoxy, SR¹¹, SOR¹², SO₂R¹², COR¹², COOR¹¹, OC(O)R¹², NR¹³R¹⁴, or C₃₋₇ cycloalkyl, wherein said C₁₋₆ alkoxy group is optionally substituted with one or more C₁₋₅ acyl, C₁₋₅ acyloxy, C₂₋₆ alkenyl, C₁₋₄ alkoxy, C₁₋₈ alkyl, C₁₋₆ alkylamino, C₂₋₈ dialkylamino, C₁₋₄ alkylcarboxamide, C₂₋₆ alkynyl, C₁₋₄ alkylsulfonamide, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₄ alkylsulfonyl, C₁₋₆ alkoxy)carbonyl, carboxamide, carboxy, cyano, C₃₋₆ cycloalkyl, C₂₋₆ dialkylcarboxamide, halogen, C₁₋₄ haloalkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkylsulfinyl, C₁₋₄ haloalkylsulfonyl, C₁₋₄

R⁵, at each independent occurrence, is H, halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkoxy, SR¹¹, SOR¹², SO₂R¹², COR¹², COOR¹¹,

OC(O)R¹², NR¹³R¹⁴, or C₃₋₇ cycloalkyl, wherein said C₁₋₆ alkoxy group is optionally

10

15

20

25

30

substituted with one or more C_{1-5} acyl, C_{1-5} acyloxy, C_{2-6} alkenyl, C_{1-4} alkoxy, C_{1-8} alkyl, C_{1-6} alkylamino, C_{2-8} dialkylamino, C_{1-4} alkylcarboxamide, C_{2-6} alkynyl, C_{1-4} alkylsulfonamide, C_{1-4} alkylsulfonyl, C_{1-4} alkylsulfonyl, C_{1-4} thioalkoxy, C_{1-4} alkylureido, amino, (C_{1-6} alkoxy)carbonyl, carboxamide, carboxy, cyano, C_{3-6} cycloalkyl, C_{2-6} dialkylcarboxamide, halogen, C_{1-4} haloalkoxy, C_{1-4} haloalkyl, C_{1-4} haloalkylsulfonyl, C_{1-4} halothioalkoxy, hydroxyl, nitro or phenyl optionally substituted with 1 to 5 halogen atoms;

 R^{11} is, independently, H, C_{1-8} alkyl, C_{1-8} haloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, aryl, heteroaryl, C_{3-7} cycloalkyl, 5-7 membered heterocycloalkyl, arylalkyl, heteroarylalkyl, (C_{3-7} cycloalkyl)alkyl or (5-7 membered heterocycloalkyl)alkyl;

 R^{12} is, independently, H, C_{1-8} alkyl, C_{1-8} haloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, aryl, heteroaryl, C_{3-7} cycloalkyl, 5-7 membered heterocycloalkyl, arylalkyl, heteroarylalkyl, (C_{3-7} cycloalkyl)alkyl, (5-7 membered heterocycloalkyl)alkyl, amino, (C_{1-4} alkyl)amino, or di(C_{1-4} alkyl)amino;

 R^{13} and R^{14} are each, independently, H, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, aryl, heteroaryl, C_{3-7} cycloalkyl, 5-7 membered heterocycloalkyl, arylalkyl, heteroarylalkyl, (C_{3-1})

10

 $_{7}$ cycloalkyl)alkyl, (5-7 membered heterocycloalkyl)alkyl, (C_{1-8} alkyl)carbonyl, (C_{1-8} haloalkyl)carbonyl, (C_{1-8} alkoxy)carbonyl, (C_{1-8} haloalkoxy)carbonyl, (C_{1-4} alkyl)sulfonyl, (C_{1-4} haloalkyl)sulfonyl or arylsulfonyl;

or R¹³ and R¹⁴, together with the N atom to which they are attached form a 5-7 membered heterocycloalkyl group;

Pr is an amino protecting group; and

R^N is H;

or Pr and R^N together with the N atom to which they are attached form a cyclic amino protecting group;

comprising reacting a compound of Formula (V):

with a halogenating reagent for a time and under conditions suitable for forming said compound of Formula (IV).

- 15 102. The process of claim 101 wherein said halogenating reagent is a brominating or chlorinating reagent.
 - 103. The process of claim 102 wherein said halogenating reagent is a brominating reagent.
- 20 104. The process of claim 103 wherein said halogenating reagent comprises N-bromosuccinimide.
 - 105. The process of claim 104 wherein said reacting is carried out in an organic solvent.
- 25 106. The process of claim 105 wherein said organic solvent comprises an alcohol.
 - 107. The process of claim 106 wherein said organic solvent comprises methanol.
 - 108. A process for preparing a compound of Formula (V):

wherein:

 R^2 is C_{1-4} alkyl;

R³ is F, Cl, Br or I;

5

R⁴ is halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkoxy, SR¹¹, SOR¹², SO₂R¹², COR¹², COOR¹¹, OC(O)R¹², NR¹³R¹⁴, or C₃₋₇ cycloalkyl, wherein said C₁₋₆ alkoxy group is optionally substituted with one or more C₁₋₅ acyl, C₁₋₅ acyloxy, C₂₋₆ alkenyl, C₁₋₄ alkoxy, C₁₋₈ alkyl, C₁₋₆ alkylamino, C₂₋₈ dialkylamino, C₁₋₄ alkylcarboxamide, C₂₋₆ alkynyl, C₁₋₄ alkylsulfonamide, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₄ alkylsulfonyl, C₁₋₄ alkylsulfonyl, C₁₋₆ alkoxy)carbonyl, carboxamide, carboxy, cyano, C₃₋₆ cycloalkyl, C₂₋₆ dialkylcarboxamide, halogen, C₁₋₄ haloalkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkylsulfinyl, C₁₋₄ haloalkylsulfonyl, C₁₋₄

R⁵, at each independent occurrence, is H, halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkoxy, SR¹¹, SOR¹², SO₂R¹², COR¹², COOR¹¹,

OC(O)R¹², NR¹³R¹⁴, or C₃₋₇ cycloalkyl, wherein said C₁₋₆ alkoxy group is optionally

C₁₋₆ alkylamino, C₂₋₈ dialkylamino, C₁₋₄ alkylcarboxamide, C₂₋₆ alkynyl, C₁₋₄

amino, (C₁₋₆ alkoxy)carbonyl, carboxamide, carboxy, cyano, C₃₋₆ cycloalkyl, C₂₋₆

substituted with one or more C₁₋₅ acyl, C₁₋₅ acyloxy, C₂₋₆ alkenyl, C₁₋₄ alkoxy, C₁₋₈ alkyl,

alkylsulfonamide, C_{1-4} alkylsulfinyl, C_{1-4} alkylsulfonyl, C_{1-4} thioalkoxy, C_{1-4} alkylureido,

10

15

20

25

30

dialkylcarboxamide, halogen, C₁₋₄ haloalkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkylsulfinyl, C₁₋₄ haloalkylsulfonyl, C₁₋₄ halothioalkoxy, hydroxyl, nitro or phenyl optionally substituted with 1 to 5 halogen atoms;

R¹¹ is, independently, H, C₁₋₈ alkyl, C₁₋₈ haloalkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, aryl, heteroaryl, C₃₋₇ cycloalkyl, 5-7 membered heterocycloalkyl, arylalkyl, heteroarylalkyl, (C₃₋₇ cycloalkyl)alkyl or (5-7 membered heterocycloalkyl)alkyl;

R¹² is, independently, H, C₁₋₈ alkyl, C₁₋₈ haloalkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, aryl, heteroaryl, C₃₋₇ cycloalkyl, 5-7 membered heterocycloalkyl, arylalkyl, heteroarylalkyl, (C₃₋₇ cycloalkyl)alkyl, (5-7 membered heterocycloalkyl)alkyl, amino, (C₁₋₄ alkyl)amino, or di(C₁₋₄ alkyl)amino;

 R^{13} and R^{14} are each, independently, H, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, aryl, heteroaryl, C_{3-7} cycloalkyl, 5-7 membered heterocycloalkyl, arylalkyl, heteroarylalkyl, (C_{3-8})

 $_{7}$ cycloalkyl)alkyl, (5-7 membered heterocycloalkyl)alkyl, (C_{1-8} alkyl)carbonyl, (C_{1-8} haloalkyl)carbonyl, (C_{1-8} alkoxy)carbonyl, (C_{1-8} haloalkoxy)carbonyl, (C_{1-4} alkyl)sulfonyl, (C_{1-4} haloalkyl)sulfonyl or arylsulfonyl;

or R¹³ and R¹⁴, together with the N atom to which they are attached form a 5-7 membered heterocycloalkyl group;

Pr is an amino protecting group; and

 R^{N} is H;

or Pr and R^N together with the N atom to which they are attached form a cyclic amino protecting group;

comprising reacting a compound of Formula (VI):

wherein R^{2a} and R^{2b} are each, independently, C_{1-4} alkyl, with an alkylhydrazine having the formula NH_2NH-R^2 for a time and under conditions suitable for forming said compound of Formula (V).

15

5

10

- 109. The process of claim 108 wherein R^2 is methyl.
- 110. The process of claim 108 wherein said reacting is carried out in the presence of an organic solvent.

20

- 111. The process of claim 110 wherein said organic solvent comprises an alcohol.
- 112. The process of claim 110 wherein said organic solvent comprises methanol.
- 25 113. The process of claim 108 wherein said reacting is carried out in the presence of an acid.
 - 114. The process of claim 113 wherein said acid comprises an inorganic acid.
 - 115. The process of claim 113 wherein said acid comprises HCl.

30

116. The process of claim 108 wherein said compound of Formula (VI) is added to a solution containing said alkylhydrazine and HCl.

10

15

20

25

117. The process of claim 108 wherein said reacting further produces a compound of Formula (Va):

wherein said compound of Formula (Va) is produced in a lesser amount than said compound of Formula (V).

- 118. The process of claim 117 wherein the molar ratio of compound of Formula (V) to compound of Formula (Va) is greater than about 2.
- 119. The process of claim 117 wherein the molar ratio of compound of Formula (V) to compound of Formula (Va) is greater than about 5.
- 120. A process for preparing a compound of Formula (VI):

wherein:

R^{2a} and R^{2b} are each, independently, C₁₋₄ alkyl;

R⁴ is halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkoxy, SR¹¹, SOR¹², SO₂R¹², COR¹², COOR¹¹, OC(O)R¹², NR¹³R¹⁴, or C₃₋₇ cycloalkyl, wherein said C₁₋₆ alkoxy group is optionally substituted with one or more C₁₋₅ acyl, C₁₋₅ acyloxy, C₂₋₆ alkenyl, C₁₋₄ alkoxy, C₁₋₈ alkyl, C₁₋₆ alkylamino, C₂₋₈ dialkylamino, C₁₋₄ alkylcarboxamide, C₂₋₆ alkynyl, C₁₋₄ alkylsulfonamide, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₄ thioalkoxy, C₁₋₄ alkylureido, amino, (C₁₋₆ alkoxy)carbonyl, carboxamide, carboxy, cyano, C₃₋₆ cycloalkyl, C₂₋₆ dialkylcarboxamide, halogen, C₁₋₄ haloalkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkylsulfinyl, C₁₋₄ haloalkylsulfonyl, C₁₋₄ haloalkoxy, hydroxyl, nitro or phenyl optionally substituted with 1 to 5 halogen atoms;

10

15

20

25

30

R⁵, at each independent occurrence, is H, halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkoxy, SR¹¹, SOR¹², SO₂R¹², COR¹², COOR¹¹, OC(O)R¹², NR¹³R¹⁴, or C₃₋₇ cycloalkyl, wherein said C₁₋₆ alkoxy group is optionally substituted with one or more C₁₋₅ acyl, C₁₋₅ acyloxy, C₂₋₆ alkenyl, C₁₋₄ alkoxy, C₁₋₈ alkyl, C₁₋₆ alkylamino, C₂₋₈ dialkylamino, C₁₋₄ alkylcarboxamide, C₂₋₆ alkynyl, C₁₋₄ alkylsulfonamide, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₄ thioalkoxy, C₁₋₄ alkylureido, amino, (C₁₋₆ alkoxy)carbonyl, carboxamide, carboxy, cyano, C₃₋₆ cycloalkyl, C₂₋₆ dialkylcarboxamide, halogen, C₁₋₄ haloalkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkylsulfinyl, C₁₋₄ haloalkylsulfonyl, C₁₋₄ halothioalkoxy, hydroxyl, nitro or phenyl optionally substituted with 1 to 5 halogen atoms;

 R^{11} is, independently, H, C_{1-8} alkyl, C_{1-8} haloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, aryl, heteroaryl, C_{3-7} cycloalkyl, 5-7 membered heterocycloalkyl, arylalkyl, heteroarylalkyl, (C_{3-7} cycloalkyl)alkyl or (5-7 membered heterocycloalkyl)alkyl;

 R^{12} is, independently, H, C_{1-8} alkyl, C_{1-8} haloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, aryl, heteroaryl, C_{3-7} cycloalkyl, 5-7 membered heterocycloalkyl, arylalkyl, heteroarylalkyl, (C_{3-7} cycloalkyl)alkyl, (5-7 membered heterocycloalkyl)alkyl, amino, (C_{1-4} alkyl)amino, or di(C_{1-4} alkyl)amino;

 R^{13} and R^{14} are each, independently, H, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, aryl, heteroaryl, C_{3-7} cycloalkyl, 5-7 membered heterocycloalkyl, arylalkyl, heteroarylalkyl, (C_{3-7} cycloalkyl)alkyl, (5-7 membered heterocycloalkyl)alkyl, (C_{1-8} alkyl)carbonyl, (C_{1-8} haloalkyl)carbonyl, (C_{1-8} alkoxy)carbonyl, (C_{1-8} haloalkyl)sulfonyl or arylsulfonyl;

or R¹³ and R¹⁴, together with the N atom to which they are attached form a 5-7 membered heterocycloalkyl group;

Pr is an amino protecting group; and

 $\mathbb{R}^{\mathbb{N}}$ is H;

or Pr and R^N together with the N atom to which they are attached form a cyclic amino protecting group;

comprising reacting a compound of Formula (VII):

with an acetal of Formula (VIII):

10

15

25

wherein R and R' are each, independently, C_{1-6} alkyl, arylalkyl or alkylaryl, or R and R' together with the O atoms to which they are attached and the intervening CH group form a 5- or 6-membered heterocycloalkyl group; for a time and under conditions suitable for forming said compound of Formula (VI).

- 121. The process of claim 120 wherein said R and R' are both C₁₋₄ alkyl.
- 122. The process of claim 120 wherein said R and R' are both methyl.
- 123. The process of claim 120 wherein said R^{2a} and R^{2b} are both methyl.
- 124. The process of claim 120 wherein said reacting with an acetal of Formula (VIII) is carried out in a solvent.
- 125. The process of claim 124 wherein said solvent comprises an alcohol.
- 126. The process of claim 124 wherein said solvent comprises ethanol.
- The process of claim 120 wherein said reacting with an acetal of Formula (VIII) is carried out at about reflux temperature.
 - 128. The process of claim 120 wherein said acetal is added to a mixture of said compound of Formula (VII) and solvent.
 - 129. The process of claim 120 wherein said acetal is provided in molar excess relative to the amount of compound of Formula (VII).
- The process of claim 129 wherein the molar ratio of said acetal to said compound of Formula (VII) is about 1.5 to about 3.
 - 131. A compound of Formula (II), (IV), (V) or (VI):

$$R^{2}$$
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}

wherein:

 R^2 is C_{1-4} alkyl;

R³ is F, Cl, Br or I;

5

R⁴ is halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkoxy, SR¹¹, SOR¹², SO₂R¹², COR¹², COOR¹¹, OC(O)R¹², NR¹³R¹⁴, or C₃₋₇ cycloalkyl, wherein said C₁₋₆ alkoxy group is optionally substituted with one or more C₁₋₅ acyl, C₁₋₅ acyloxy, C₂₋₆ alkenyl, C₁₋₄ alkoxy, C₁₋₈ alkyl, C₁₋₆ alkylamino, C₂₋₈ dialkylamino, C₁₋₄ alkylcarboxamide, C₂₋₆ alkynyl, C₁₋₄ alkylsulfonamide, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₄ alkylsulfonyl, C₁₋₆ alkoxy)carbonyl, carboxamide, carboxy, cyano, C₃₋₆ cycloalkyl, C₂₋₆ dialkylcarboxamide, halogen, C₁₋₄ haloalkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkylsulfinyl, C₁₋₄ haloalkylsulfonyl, C₁₋₄ haloalkylsulfonyl, C₁₋₄ haloalkylsulfonyl, C₁₋₄ haloalkylsulfonyl, nitro or phenyl optionally substituted with 1 to 5 halogen atoms;

10

15

20

R⁵, at each independent occurrence, is H, halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkoxy, SR¹¹, SOR¹², SO₂R¹², COR¹², COOR¹¹, OC(O)R¹², NR¹³R¹⁴, or C₃₋₇ cycloalkyl, wherein said C₁₋₆ alkoxy group is optionally substituted with one or more C₁₋₅ acyl, C₁₋₅ acyloxy, C₂₋₆ alkenyl, C₁₋₄ alkoxy, C₁₋₈ alkyl, C₁₋₆ alkylamino, C₂₋₈ dialkylamino, C₁₋₄ alkylcarboxamide, C₂₋₆ alkynyl, C₁₋₄ alkylsulfonamide, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₄ thioalkoxy, C₁₋₄ alkylureido, amino, (C₁₋₆ alkoxy)carbonyl, carboxamide, carboxy, cyano, C₃₋₆ cycloalkyl, C₂₋₆ dialkylcarboxamide, halogen, C₁₋₄ haloalkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkylsulfinyl, C₁₋₄ haloalkylsulfonyl, C₁₋₄ haloalkoxy, hydroxyl, nitro or phenyl optionally substituted with 1 to 5 halogen atoms;

 R^{11} is, independently, H, C_{1-8} alkyl, C_{1-8} haloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, aryl, heteroaryl, C_{3-7} cycloalkyl, 5-7 membered heterocycloalkyl, arylalkyl, heteroarylalkyl, (C_{3-7} cycloalkyl)alkyl or (5-7 membered heterocycloalkyl)alkyl;

 R^{12} is, independently, H, C_{1-8} alkyl, C_{1-8} haloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, aryl, heteroaryl, C_{3-7} cycloalkyl, 5-7 membered heterocycloalkyl, arylalkyl, heteroarylalkyl, (C_{3-7} cycloalkyl)alkyl, (5-7 membered heterocycloalkyl)alkyl, amino, (C_{1-4} alkyl)amino, or di(C_{1-4} alkyl)amino;

 R^{13} and R^{14} are each, independently, H, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, aryl, heteroaryl, C_{3-7} cycloalkyl, 5-7 membered heterocycloalkyl, arylalkyl, heteroarylalkyl, (C_{3-7} cycloalkyl)alkyl, (5-7 membered heterocycloalkyl)alkyl, (C_{1-8} alkyl)carbonyl, (C_{1-8} haloalkyl)carbonyl, (C_{1-8} alkoxy)carbonyl, (C_{1-8} haloalkoxy)carbonyl, (C_{1-4} alkyl)sulfonyl, (C_{1-4} haloalkyl)sulfonyl or arylsulfonyl;

or R¹³ and R¹⁴, together with the N atom to which they are attached form a 5-7 membered heterocycloalkyl group;

Pr is an amino protecting group;

R^N is H;

or Pr and R^N together with the N atom to which they are attached form a cyclic amino protecting group; and

 R^{2a} and R^{2b} are each, independently, $C_{1\text{--}4}$ alkyl.

20

15

5

10

- 132. The compound of claim 131 wherein R² is methyl or ethyl.
- 133. The compound of claim 131 wherein R^2 is methyl.
- 25 134. The compound of claim 131 wherein R³ is Cl or Br.
 - 135. The compound of claim 131 wherein R³ is Br.
 - 136. The compound of claim 131 wherein R⁴ is other than H.

30

35

137. The compound of claim 131 wherein R⁴ is halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkoxy, wherein said C₁₋₆ alkoxy group is optionally substituted with one or more C₁₋₅ acyl, C₁₋₅ acyloxy, C₂₋₆ alkenyl, C₁₋₄ alkoxy, C₁₋₈ alkyl, C₁₋₆ alkylamino, C₂₋₈ dialkylamino, C₁₋₄ alkylcarboxamide, C₂₋₆ alkynyl, C₁₋₄ alkylsulfonamide, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₄ thioalkoxy, C₁₋₄ alkylureido, amino, (C₁₋₆ alkoxy)carbonyl, carboxamide, carboxy, cyano, C₃₋₆ cycloalkyl, C₂₋₆ dialkylcarboxamide, halogen, C₁₋₄ haloalkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkylsulfinyl, C₁₋₄

haloalkylsulfonyl, C_{1-4} halothioalkoxy, hydroxyl, nitro or phenyl optionally substituted with 1 to 5 halogen atoms.

- The compound of claim 131 wherein R⁴ is C₁₋₆ alkoxy optionally substituted with one or more C₁₋₅ acyl, C₁₋₅ acyloxy, C₂₋₆ alkenyl, C₁₋₄ alkoxy, C₁₋₈ alkyl, C₁₋₆ alkylamino, C₂₋₈ dialkylamino, C₁₋₄ alkylcarboxamide, C₂₋₆ alkynyl, C₁₋₄ alkylsulfonamide, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₄ thioalkoxy, C₁₋₄ alkylureido, amino, (C₁₋₆ alkoxy)carbonyl, carboxamide, carboxy, cyano, C₃₋₆ cycloalkyl, C₂₋₆ dialkylcarboxamide, halogen, C₁₋₄ haloalkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkylsulfinyl, C₁₋₄ haloalkylsulfonyl, C₁₋₄ haloalkoxy, hydroxyl, nitro or phenyl optionally substituted with 1 to 5 halogen atoms.
 - 139. The compound of claim 131 wherein R^4 is C_{1-6} alkoxy.
 - 140. The compound of claim 131 wherein R^4 is C_{1-3} alkoxy.

15

30

35

- 141. The compound of claim 131 wherein R⁴ is methoxy or ethoxy.
- 142. The compound of claim 131 wherein R^4 is methoxy.
- 20 143. The compound of claim 131 wherein R⁵, at each independent occurrence, is H, halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, or C₁₋₆ alkoxy.
 - 144. The compound of claim 131 wherein R⁵, at each occurrence, is H.
- 25 145. The compound of claim 131 wherein R^{2a} and R^{2b} are both methyl.
 - 146. The compound of claim 131 wherein Pr is -C(O)Me.
 - 147. The compound of claim 131 wherein:

 R^3 is F, Cl, Br or I;

R⁴ is halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkoxy, wherein said C₁₋₆ alkoxy group is optionally substituted with one or more C₁₋₅ acyl, C₁₋₅ acyloxy, C₂₋₆ alkenyl, C₁₋₄ alkoxy, C₁₋₈ alkyl, C₁₋₆ alkylamino, C₂₋₈ dialkylamino, C₁₋₄ alkylcarboxamide, C₂₋₆ alkynyl, C₁₋₄ alkylsulfonamide, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₄ thioalkoxy, C₁₋₄ alkylureido, amino, (C₁₋₆ alkoxy)carbonyl, carboxamide, carboxy, cyano, C₃₋₆ cycloalkyl, C₂₋₆ dialkylcarboxamide, halogen, C₁₋₄ haloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkylsulfinyl, C₁₋₄ haloalkylsulfonyl, C₁₋₄

halothioalkoxy, hydroxyl, nitro or phenyl optionally substituted with 1 to 5 halogen atoms; and

 R^5 , at each independent occurrence, is H, halo, cyano, nitro, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, or C_{1-6} alkoxy.

5

10

15

20

148. The compound of claim 131 wherein:

R³ is F, Cl, Br or I;

R⁴ is C₁₋₆ alkoxy group optionally substituted with one or more C₁₋₅ acyl, C₁₋₅ acyloxy, C₂₋₆ alkenyl, C₁₋₄ alkoxy, C₁₋₈ alkyl, C₁₋₆ alkylamino, C₂₋₈ dialkylamino, C₁₋₄ alkylcarboxamide, C₂₋₆ alkynyl, C₁₋₄ alkylsulfonamide, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₄ thioalkoxy, C₁₋₄ alkylureido, amino, (C₁₋₆ alkoxy)carbonyl, carboxamide, carboxy, cyano, C₃₋₆ cycloalkyl, C₂₋₆ dialkylcarboxamide, halogen, C₁₋₄ haloalkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkylsulfinyl, C₁₋₄ haloalkylsulfonyl, C₁₋₄ haloalkoxy, hydroxyl, nitro or phenyl optionally substituted with 1 to 5 halogen atoms; and

R⁵, at each occurrence, is H.

149. The compound of claim 131 wherein:

R² is methyl or ethyl;

R³ is F, Cl, Br or I;

R4 is C1-6 alkoxy; and

R⁵, at each occurrence, is H.

150. The compound of claim 131 wherein:

 R^2 is methyl;

R³ is Cl or Br;

R⁴ is methoxy; and

R⁵, at each occurrence, is H.

- 30 151. The compound of claim 131 wherein said compound has Formula (II).
 - 152. The compound of claim 131 wherein said compound has Formula (IV).
 - 153. The compound of claim 131 wherein said compound has Formula (V).

35

154. The compound of claim 131 wherein said compound has Formula (VI).

WO 2005/103011 PCT/US2004/023880 77

- 155. The compound of claim 131 wherein said compound has Formula (II) and R² is methyl; R³ is Cl or Br; R⁴ is methoxy; and R⁵, at each occurrence, is H.
- 156. The compound of claim 131 wherein said compound has Formula (IV) and R² is methyl; R³ is Br; R⁴ is methoxy; R⁵, at each occurrence, is H; and Pr is -C(O)Me.

5

15

- 157. The compound of claim 131 wherein said compound has Formula (IV) and R² is methyl; R³ is Cl; R⁴ is methoxy; R⁵, at each occurrence, is H; and Pr is -C(O)Me.
- 10 158. The compound of claim 131 wherein said compound has Formula (V) and R² is methyl; R⁴ is methoxy; R⁵, at each occurrence, is H; and Pr is -C(O)Me.
 - 159. The compound of claim 131 wherein said compound has Formula (VI) and R^{2a} is methyl; R^{2b} is methyl; R⁴ is methoxy; R⁵, at each occurrence, is H; and Pr is -C(O)Me.