Principles of Distributed Database Systems

M. Tamer Özsu Patrick Valduriez

© 2020, M.T. Özsu & P. Valduriez

1

1

Outline

- Introduction
- Distributed and Parallel Database Design
- Distributed Data Control
- Distributed Query Processing
- Distributed Transaction Processing
- Data Replication
- Database Integration Multidatabase Systems
- Parallel Database Systems
- Peer-to-Peer Data Management
- Big Data Processing
- NoSQL, NewSQL and Polystores
- Web Data Management

© 2020, M.T. Özsu & P. Valduriez

2

Outline

- Big Data Processing
 - Distributed storage systems
 - Processing platforms
 - Stream data management
 - Graph analytics
 - Data lake

© 2020, M.T. Özsu & P. Valduriez

3

3

Four Vs

- Volume
 - □ Increasing data size: petabytes (10¹⁵) to zettabytes (10²¹)
- Variety
 - Multimodal data: structured, images, text, audio, video
 - 90% of currently generated data unstructured
- Velocity
 - Streaming data at high speed
 - Real-time processing
- Veracity
 - Data quality

© 2020, M.T. Özsu & P. Valduriez

4

Δ

Distributed Storage System

Storing and managing data across the nodes of a sharednothing cluster

- Object-based
 - □ Object = (oid, data, metadata)
 - Metadata can be different for different object
 - Easy to move
 - □ Flat object space → billions/trillions of objects
 - Easily accessed through REST-based API (get/put)
 - □ Good for high number of small objects (photos, mail attachments)
- File-based
 - Data in files of fixed- or variable-length records
 - Metadata-per-file stored separately from file
 - □ For large data, a file needs to be partitioned and distributed

© 2020, M.T. Özsu & P. Valduriez

7

7

Google File System (GFS)

- Targets shared-nothing clusters of thousands of machines
- Targets applications with characteristics:
 - Very large files (several gigabytes)
 - Mostly read and append workloads
 - High throughput more important than low latency
- Interface: create, open, read, write, close, delete, snapshot, record append

© 2020, M.T. Özsu & P. Valduriez

8

Outline

- Big Data Processing
 - Distributed storage systems
 - Processing platforms
 - □ Stream data management
 - Graph analytics

© 2020, M.T. Özsu & P. Valduriez

9

9

Big Data Processing Platforms

- Applications that do not need full DBMS functionality
 - Data analysis of very large data sets
 - □ Highly dynamic, irregular, schemaless, ...
- "Embarrassingly parallel problems"
- MapReduce/Spark
- Advantages
 - Flexibility
 - Scalability
 - Efficiency
 - □ Fault-tolerance
- Disadvantage
 - Reduced functionality
 - Increased programming effort

© 2020, M.T. Özsu & P. Valduriez

0

MapReduce Basics

- Simple programming model
 - Data structured as (key, value) pairs
 - E.g. (doc-id, content); (word, count)
 - Functional programming style with two functions
 - map(k1, v1) \rightarrow list(k2, v2)
 - reduce(k2, list(v2)) → list(v3)
- Implemented on a distributed file system (e.g. Google File System) on very large clusters

© 2020, M.T. Özsu & P. Valduriez

11

11

map Function

- User-defined function
 - Processes input (key, value) pairs
 - □ Produces a set of intermediate (key, value) pairs
 - Executes on multiple machines (called mapper)
- map function I/O
 - Input: read a chunk from distributed file system (DFS)
 - Output: Write to intermediate file on local disk
- MapReduce library
 - Execute map function
 - Groups together all intermediate values with same key
 - Passes these lists to reduce function
- Effect of map function
 - Processes and partitions input data
 - Builds a distributed map (transparent to user)
 - Similar to "group by" operator in SQL

© 2020, M.T. Özsu & P. Valduriez

2

reduce Function

- User-defined function
 - Accepts one intermediate key and a set of values for that key (i.e. a list)
 - Merges these values together to form a (possibly) smaller set
 - Computes the reduce function generating, typically, zero or one output per invocation
 - Executes on multiple machines (called reducer)
- reduce function I/O
 - □ **Input**: read from intermediate files using remote reads on local files of corresponding mappers
 - Output: Write result back to DFS
- Effect of map function
 - Similar to aggregation function in SQL

© 2020, M.T. Özsu & P. Valduriez

13

13

Example

Consider EMP(ENO, ENAME, TITLE, CITY)

```
SELECT CITY, COUNT(*)
FROM EMP
```

WHERE ENAME LIKE "%Smith"

GROUP BY CITY

```
map (Input: (TID,EMP), Output: (CITY, 1)
   if EMP.ENAME like ``\%Smith'' return (CITY, 1)
reduce (Input: (CITY, list(1)), Output: (CITY,
SUM(list)))
   return (CITY, SUM(1))
```

© 2020, M.T. Özsu & P. Valduriez

MapReduce Implementations of DB Ops

- Select and Project can be easily implemented in the map function
- Aggregation is not difficult (see next slide)
- Join requires more work

© 2020, M.T. Özsu & P. Valduriez

20

θ -Join

Baseline implementation of $R(A,B) \bowtie S(B,C)$

- 1) Partition R and assign each partition to mappers
- 2) Each mapper takes (a,b) tuples and converts them to a list of key-value pairs of the form (b, (a,R))
- 3) Each reducer pulls the pairs with the same key
- 4) Each reducer joins tuples of R with tuples of S

© 2020, M.T. Özsu & P. Valduriez

MapReduce Iterative Computation DFS: Invariant Files Job 1 Job 1 Job 1 Result DFS: Variant Files Job 2 Result OFS: Variant Files OFS: Variant Files

25

Problems with Iteration

- MapReduce workflow model is acyclic
 - Iteration: Intermediate results have to be written to HDFS after each iteration and read again
- At each iteration, no guarantee that the same job is assigned to the same compute node
 - Invariant files cannot be locally cached
- Check for fixpoint
 - At the end of each iteration, another job is needed

© 2020, M.T. Özsu & P. Valduriez

Spark

- Addresses MapReduce shortcomings
- Data sharing abstraction: Resilient Distributed Dataset (RDD)
- Cache working set (i.e. RDDs) so no writing-to/readingfrom HDFS
- 2) Assign partitions to the same machine across iterations
- 3) Maintain lineage for fault-tolerance

© 2020, M.T. Özsu & P. Valduriez

27

27

