Theorem 51.18. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a proper convex function. For any $x \notin \text{dom}(f)$, we have $\partial f(x) = \emptyset$. For any $x \in \text{relint}(\text{dom}(f))$, we have $\partial f(x) \neq \emptyset$, the map $y \mapsto f'(x; y)$ is convex, closed and proper, and

$$f'(x;y) = \sup_{u \in \partial f(x)} \langle y, u \rangle = \delta^*(y|\partial f(x))$$
 for all $y \in \mathbb{R}^n$.

The subdifferential $\partial f(x)$ is nonempty and bounded (also closed and convex) if and only if $x \in \text{int}(\text{dom}(f))$, in which case f'(x;y) is finite for all $y \in \mathbb{R}^n$.

Theorem 51.18 is proven in Rockafellar [138] (Theorem 23.4). If we write

$$dom(\partial f) = \{ x \in \mathbb{R}^n \mid \partial f(x) \neq \emptyset \},\$$

then Theorem 51.18 implies that

$$\operatorname{relint}(\operatorname{dom}(f)) \subseteq \operatorname{dom}(\partial f) \subseteq \operatorname{dom}(f).$$

However, $dom(\partial f)$ is not necessarily convex as shown by the following counterexample.

Example 51.11. Consider the proper convex function defined on \mathbb{R}^2 given by

$$f(x,y) = \max\{g(x), |y|\},\$$

where

$$g(x) = \begin{cases} 1 - \sqrt{x} & \text{if } x \ge 0 \\ +\infty & \text{if } x < 0. \end{cases}$$

See Figure 51.21. It is easy to see that $dom(f) = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0\}$, but $dom(\partial f) = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0\} - \{(0, y) \mid -1 < y < 1\}$, which is not convex.

The following theorem is important because it tells us when a convex function is differentiable in terms of its subdifferential, as shown in Rockafellar [138] (Theorem 25.1).

Theorem 51.19. Let f be a convex function on \mathbb{R}^n , and let $x \in \mathbb{R}^n$ such that f(x) is finite. If f is differentiable at x then $\partial f(x) = {\nabla f_x}$ (where ∇f_x is the gradient of f at x) and we have

$$f(z) \ge f(x) + \langle z - x, \nabla f_x \rangle$$
 for all $z \in \mathbb{R}^n$.

Conversely, if $\partial f(x)$ consists of a single vector, then $\partial f(x) = {\nabla f_x}$ and f is differentiable at x.

The first direction is easy to prove. Indeed, if f is differentiable at x, then

$$f'(x;y) = \langle y, \nabla f_x \rangle$$
 for all $y \in \mathbb{R}^n$,

so by Proposition 51.16, a vector u is a subgradient at x iff

$$\langle y, \nabla f_x \rangle \ge \langle y, u \rangle$$
 for all $y \in \mathbb{R}^n$,

so $\langle y, \nabla f_x - u \rangle \ge 0$ for all y, which implies that $u = \nabla f_x$.

We obtain the following corollary.