Subsystems of arithmetic as type theories with inductive definitions

Gyesik Lee (Joint work with Hugo Herbelin and Keiko Nakata)

Hankyong National University

CTFM, Feb. 18 - 20, 2013

Gyesik Lee (HKNU) 1/26

Contents

- Introduction of project
- Uniform Characterization of the Big Five
- Towards a computational content of the Big Five
- 4 Cosepration

Gyesik Lee (HKNU) 2 / 26

Introduction of project

- Korea-France joint project
- Started with a discussion with Hugo Herbelin, the team leader of the development of the proof assistant Coq
- Doing mathematical logic using Coq
- Cross-fertilization of computer science and reverse mathematics

Gyesik Lee (HKNU) 3 / 26

Doing mathematics using a proof assistant

- MSR-INRIA joint center (Georges Gonthier: Four Color Theorem)
- Freek Wiedijk: Formalizing 100 Problems
 (http://www.cs.ru.nl/~freek/100/)

Gyesik Lee (HKNU) 4 / 26

Doing reverse mathematics using Coq?

- The current version of Coq is too strong.
- Strength of CIC (Calculus of Inductive Constructions) is known to be stronger than ZFC.

Gyesik Lee (HKNU) 5 / 26

- Introduction of project
- Uniform Characterization of the Big Five
- 3 Towards a computational content of the Big Five
- Cosepration

Gyesik Lee (HKNU) 6 / 26

The Big Five

- $RCA_0 = \Sigma_1^0$ -IND + CA on Δ_1^0 formulas
- WKL₀ = RCA₀ + Weak König's Lemma
- ACA₀ = IND + CA on Σ_1^0 formulas
- ATR₀ = ACA₀ + Arithmetic Transfinite Recursion
- Π_1^1 -CA $_0$ = ACA $_0$ + CA on Π_1^1 formulas

Gyesik Lee (HKNU) 7/26

Induction axiom versus Σ_1^0 -IND

• RCA₀ and WKL₀ have induction over Σ_1^0 formulas:

$$(\Sigma_1^0$$
-IND) $A(0) \to \forall n(A(n) \to A(n+1)) \to \forall nA(n)$

• The other systems include induction axiom:

$$(\mathsf{IND}) \quad 0 \in X \to \forall n (n \in X \to n+1 \in X) \to \forall n (n \in X)$$

• All 5 systems could be uniformly based on the Σ_1^0 -IND: because

$$(\mathsf{CA}) \quad \exists X \, \forall n (n \in X \leftrightarrow A(n))$$

• (We also believe that) RCA₀ and WKL₀ could be based on

8/26

Gvesik Lee (HKNU)

Induction axiom versus Σ_1^0 -IND

• RCA_0 and WKL_0 have induction over Σ_1^0 formulas:

$$(\Sigma_1^0$$
-IND) $A(0) \to \forall n(A(n) \to A(n+1)) \to \forall nA(n)$

• The other systems include induction axiom:

$$(\mathsf{IND}) \quad 0 \in X \to \forall n (n \in X \to n+1 \in X) \to \forall n (n \in X)$$

• All 5 systems could be uniformly based on the Σ^0_1 -IND: because the strength of Σ^0_1 -IND is governed by which sets are definable by the comprehension axioms:

(CA)
$$\exists X \, \forall n (n \in X \leftrightarrow A(n))$$

 (We also believe that) RCA₀ and WKL₀ could be based on induction axiom too, if all prim. rec. functions are taken primitive.

4 L P 4 EP 4 E P 4 E P 4 C

Gyesik Lee (HKNU) 8 / 26

Induction axiom versus Σ_1^0 -IND

• RCA_0 and WKL_0 have induction over Σ_1^0 formulas:

$$(\Sigma_1^0$$
-IND) $A(0) \to \forall n(A(n) \to A(n+1)) \to \forall nA(n)$

• The other systems include induction axiom:

$$(\mathsf{IND}) \quad 0 \in X \to \forall n (n \in X \to n+1 \in X) \to \forall n (n \in X)$$

• All 5 systems could be uniformly based on the Σ^0_1 -IND: because the strength of Σ^0_1 -IND is governed by which sets are definable by the comprehension axioms:

(CA)
$$\exists X \, \forall n (n \in X \leftrightarrow A(n))$$

 (We also believe that) RCA₀ and WKL₀ could be based on induction axiom too, if all prim. rec. functions are taken primitive.

4 D > 4 D > 4 E > 4 E > 4 E > 9Q(*

8/26

Gyesik Lee (HKNU)

Comprehension vs. Separation

$$\exists X \, \forall n (n \in X \leftrightarrow A(n))$$
 for any $A \in S$
$$(S\text{-SEP})$$

$$\forall n \, \neg (A_1(n) \land A_2(n)) \rightarrow \exists X \, \forall n ((A_1(n) \rightarrow n \in X) \land (A_2(n) \rightarrow n \notin X))$$
 for any $A_1(n) \land A_2(n) \in S$

Gyesik Lee (HKNU)

Comprehension vs. Separation

(S-CA):
$$\exists X\, \forall n (n\in X \leftrightarrow A(n))$$
 for any $A\in S$

$$\forall n \neg (A_1(n) \land A_2(n)) \rightarrow \exists X \, \forall n ((A_1(n) \rightarrow n \in X) \land (A_2(n) \rightarrow n \notin X))$$

for any $A_1(n), A_2(n) \in S$.

Gyesik Lee (HKNU) 9 / 26

Separation Scheme

Gyesik Lee (HKNU) 10/26

Separation Scheme

Gyesik Lee (HKNU) 11 / 26

Summary (Simpson '99)

system	characterization	
RCA ₀	Δ_1^0 -CA	
WKL_0	Σ_1^0 -SEP (or WKL)	
ACA ₀	Σ_1^0 -CA (or Π_1^0 -CA)	
ATR_0	Σ_1^1 -SEP (or ATR)	
Π^1_1 -CA $_0$	Σ_1^1 -CA (or Π_1^1 -CA)	

Gyesik Lee (HKNU) 12 / 26

S_1 - S_2 -Interpolation

$$\forall n [A_1(n) \to A_2(n)] \to \exists X \, \forall n [(A_1(n) \to n \in X) \land (n \in X \to A_2(n))]$$

for $A_i(n) \in S_i$.

Gyesik Lee (HKNU) 13 / 26

Interpolation Scheme

Gyesik Lee (HKNU) 14 / 26

Interpolation Scheme

Gyesik Lee (HKNU) 15/26

S_1 - S_2 -Interpolation

$$\forall n \left[A_1(n) \to A_2(n) \right] \to \exists X \, \forall n \left[\left(A_1(n) \to n \in X \right) \land \left(n \in X \to A_2(n) \right) \right]$$

- S-CA iff S-S-INTERPOL.
- S-SEP iff S- \neg S-INTERPOL, where $\neg S := {\neg A \mid A \in S}$.

<ロ > ∢♪ ∢♪ ∢ き > ∢き > うへの

Gyesik Lee (HKNU) 16 / 26

Summary 2

system	new characterization	old characterization
RCA ₀	Π_1^0 - Σ_1^0 -INTERPOL	(i.e. Δ_0^0 -CA)
14/121		(: • \(\nabla \) \(\nabla \)
WKL ₀	Σ_1^0 - Π_1^0 -INTERPOL	(i.e. Σ_1^0 -SEP)
ACA ₀	Σ^0_1 - Σ^0_1 -INTERPOL	(i.e., Σ_1^0 -CA)
		, , , ,
ATR_0	Σ^1_1 - Π^1_1 -INTERPOL	(i.e., Σ_1^1 -SEP)
1	1 1	
Π_1^1 -CA ₀	Σ_1^1 - Σ_1^1 -INTERPOL	(i.e., Σ_1^1 -CA)

Gyesik Lee (HKNU) 17 / 26

- Introduction of project
- Uniform Characterization of the Big Five
- Towards a computational content of the Big Five

4 Cosepration

Gyesik Lee (HKNU) 18 / 26

Computational content of proofs

- The computational content of proofs can be explained by the Curry-Howard correspondence.
- Curry (1958): Hilbert-style propositional logic = simply-typed combinatory logic
- Howard (1969): Gentzen's natural deduction = some simply-typed λ -calculus
- Martin-Löf's type theory with W-type (around 1980):
 - ▶ an intuitionistic logic with the strength II¹-CA₀
 - also a programming language
- Griffin [1990] showed that proofs in classical logic are closely related to the control operators (callcc/throw).

Gyesik Lee (HKNU) 19 / 26

Inference rules

$$\frac{\Gamma \vdash (0 \in P) \quad \Gamma, n \in P \vdash n + 1 \in P \quad n \text{ fresh}}{\Gamma \vdash t \in P} \quad \text{(IND)}$$

$$\frac{\Gamma \vdash A_1[t/n] \quad A_1 \in S_1}{\Gamma \vdash t \in \{n \mid A_1 \lhd A_2\}} \text{ (INTERPOL}_I)$$

$$\frac{\Gamma \vdash t \in \{n \mid A_1 \rhd A_2\} \quad A_2 \in S_2 \quad \Gamma, A_1 \vdash A_2}{\Gamma \vdash A_2[t/n]} \ (\mathsf{INTERPOL}_E)$$

(ロ) ∢団 > ∢토 > ∢토 > ・ E ・ りへ()

Gyesik Lee (HKNU) 20 / 26

Inference rules

$$\frac{\Gamma \vdash p : (0 \in P) \quad \Gamma, a : (n \in P) \vdash q : (n+1 \in P) \quad n \text{ fresh}}{\Gamma \vdash \text{ind } t \text{ of } [p \mid (n,a).q] : (t \in P)} \text{ (IND)}$$

$$\frac{\Gamma \vdash p : A_1[t/n] \quad A_1 \in S_1}{\Gamma \vdash \texttt{interpol} \ p : (t \in \{n \mid A_1 \lhd A_2\})} \ (\texttt{INTERPOL}_I)$$

$$\frac{\Gamma \vdash p : (t \in \{n \mid A_1 \rhd A_2\}) \quad A_2 \in S_2 \quad \Gamma, a : A_1 \vdash q : A_2}{\Gamma \vdash \mathsf{compose} \ p \ \mathsf{as} \ a \ \mathsf{in} \ q : A_2[t/n]} \ (\mathsf{INTERPOL}_E)$$

(□) <□) <=) <=) <=) <</p>

Gyesik Lee (HKNU) 21 / 26

- Introduction of project
- Uniform Characterization of the Big Five
- Towards a computational content of the Big Five
- Cosepration

Gyesik Lee (HKNU)

RCA₀ with cosepration

- Onc can show that RCA₀ is conservative over $iRCA_0$ on Σ_1^0 formulae.
- For intuitionistic analysis, Σ_1^0 -coseparation behaves better than Π_1^0 -separation or Δ_1^0 -comprehension.

$$\begin{array}{l} (\Sigma_1^0\text{-coSEP}) \\ \forall n(A_1(n) \vee A_2(n)) \to \\ \exists X \, Y \{ \forall n(n \in X \vee n \in Y) \, \wedge \, \forall n[\, (n \in X \to A_1(n)) \wedge (n \in Y \to A_2(n)) \,] \} \end{array}$$

• $(\Sigma_1^0$ -coSEP) is classically equivalent to Π_1^0 -separation.

(□) <□) <=) <=) <=) <</p>

Gyesik Lee (HKNU) 23 / 26

RCA₀ with cosepration

A variation of Coquand-Hofmann (1999) translation is used:

where $T_X(A) := \forall Y \supseteq X[\, \forall Y' \supseteq Y(A^{Y'} o \exists n(n \in Y')) o \exists n(n \in Y)\,].$

Gyesik Lee (HKNU) 24 / 26

RCA₀ with cosepration

- $A^X = A$ for any Σ_1^0 formula A.
- $\bullet \vdash_{\mathsf{RCA}_0} A$, then $\vdash_{i\mathsf{RCA}_0} T_X(A)$.
- $\vdash_{\mathsf{RCA}_0} A$, then $\vdash_{i\mathsf{RCA}_0} A$ if A is Σ^0_1 .

Gyesik Lee (HKNU) 25 / 26

Thank you!

Gyesik Lee (HKNU) 26 / 26