Machine Learning Assignment 3

Lee Kuczewski 4.15.20-4.20.20 ML_Assignment3_Option2 First Draft

Looking at metadata for features:

)	pl	given location on the planar dimensions
L	si	variations in height, width, area
2	va	the various degrees between white and black
3	te	variation in the fineness or coarseness of an area having a given value; includes blur
Ē	со	hue, using the repertoire of colored sensations which can be produced at equal value
j	or	various orientations, ranging from the vertical to the horizontal in a distinct direction
j	sh	a mark with a constant size can nonetheless have an infinite number of different shapes
7	reflection	indicates the work contains an image given back by a reflecting surface, or an image seen in a mirror or shiny surface
3	ро	A POINT represents a location on the plane that has no theoretical length or area. This signification is independent of the size and character of the mai
)	li	A LINE signifies a phenomenon on the plane which has measurable length but no area. This signification is independent of the width and characteristic
)	ar	An AREA signifies something on the plane that has a measurable size. This signification applies to the entire area covered by the visible mark.
Ĺ	notes	notes, description

In order to read in the metadata, we will need to transform the datatype.

Out[30]:

notes	reflection	date	country_of_origin	artist	
distorted perspective, shadow, signification o	False distorted perspective, shadow, signification	1913	gio de Chirico Italy		0
hard to understand the viewpoint, sense of for	False	1967	Italy	Giovanni Anselmo	1
flatish, textured shapes & specific colors-lin	False	1958	America	Milton Avery	2
shapes, layers, paint handlng/texture, orienta	False	1957	UK	Gillian Avery	3
ambiguity through abstraction, odd shape, v te	False	1956	France	Joseph (Jef) Banc	4

ValueError: could not convert string to float: 'shapes placed separately on ground, vary in s ize, sense of liquid paint, shapes & lines bleed / merge, ambiguity through abstraction, shap es are somewhat moorless & float in relation to each other, what is the space, but less about uncertainty'

Part 1 to change data type of reflection from Bool to int64 using astype()

```
# Transform the data type values of 'reflection' from bool True/False to to int64 '0', or '1' #
# Find the data type of Reflection Column
reflection_isbool = type(data.reflection[0])
# Convert to 'int64'
data.reflection = data.reflection.astype('int64')
# Find data type after casting
after = type(data.reflection[0])
# Print new data type of 'reflection'
after
```

Part 2 Set (True, False) values to (1, 0)

Transform Data type for columns 'reflection' & 'has_text'

Convert data type in Featured Columns

```
In [147]: # Convert the "reflection" and "has_text" colums from True/False to 0,1
    data['reflection'] = data['reflection'].astype(int)
    data['has_text'] = data['has_text'].astype(int)
```

has_text	pri	reflection
0		0
0		0
0		0
0		0
0		0
1		0
0		0
0		0
0		0
0		1

plot inertia scores by number of clusters

```
In [289]: # first attempt at fitting K means to view change in Inertia
           # class sklearn.cluster.KMeans(n_clusters=8, init='k-means++', n_init=10,
           # container to store inertia scores over iterations
           distortions = []
           # fit KMeans iteratively to begin to assess the appropriate number of clu
           for i in range(15, 19):
               km = KMeans(n_clusters=i)
               km.fit(X)
               distortions.append(km.inertia)
           # vizualize change in inertia
          plt.plot(range(15, 19), distortions, marker='o')
plt.xlabel('Number of clusters')
           plt.ylabel('Inertia')
           plt.show()
              1520
              1500
              1480
              1460
              1440
              1420
              1400
                                       16.5
                                                    17.5
                                                           18.0
                  15.0
                         15.5
                                16.0
                                             17.0
                                  Number of clusters
```

More Work is to be done on printing images, using IPython.display