Ömer Morgül, F. Ömer İlday

 \overline{NAME}

FAMILYNAME

 $\overline{SECTION}$

EEE 202 CIRCUIT THEORY Second Midterm, Spring 2014-15

No credits will be given for unjustified answers. Good luck.

Problem 1	Problem 2	Problem 3	Problem 4	TOTAL

Prob. 1: (28 pt.s)

 $i:(15\ \mathrm{pt.s})$ Consider the following circuit. Assume that the circuit is stable.

i-1 Find the value of α so that $\lim_{t\to\infty}v_o(t)=3$ V.

i-2 Now let $\alpha=2,\,v_C(0)=3$ V. Find $v_C(t)$ and $i_x(t)$.

ii : Consider the following circuit. Let $i_L(0)=1$ A. Find $i_L(t)$ and $i_x(t)$.

Prob. 2: (22 pt.s) Consider the following circuit.

i: Find a second order ODE for v_C . (i.e. of the form $\ddot{v}_C + a\dot{v}_C + bv_C = u$. Note that some coefficients may depend on β).

ii : Find the range of β so that the solution $v_C(t)$ contains a damped sinusoid term (i.e. a term $e^{-\alpha t}\cos(\omega t + \phi)$).

iii : Let $\beta = 3$, $v_C(0) = 2$ V, $i_L(0) = 1$ A. Find $v_C(t)$ and $i_L(t)$.

Prob. 3: (25 pt.s) Consider the following circuit. Assume that $v_i(t) = V_i \cos \omega t$ and that the circuit is in sinusoidal steady state. The load represents an arbitrary (nonzero and finite) impedance.

i: Assume that we measured $i_L(t)=0$ A. Find R_x and L_x in terms of ω , R and C.

ii : Now assume that the load is as given below (in fig. 2). Let $v_i(t)=4\cos 1000t\ V,\ C=$ 1 μF , $L_x = 0.5$ H, $R_x = 2$ $k\Omega$, R = 1 $k\Omega$. Find $v_o(t)$.

iii : Find the average power dissipated in the load.

Prob. 4: (25 pt.s) Consider the following circuit. Assume that $v_{in}(t) = V_i \cos \omega t$, the op-amps are linear, operate in linear region, and that the circuit is in sinusoidal steady state. Here Z_1, Z_2, Z_3, Z_4, Z_5 represent arbitrary impedances.

i: Find $Z_{eq} = \frac{V_{in}}{I_{in}}$ in terms of impedances Z_1 , Z_2 , Z_3 , Z_4 , Z_5 . ii: Choose four of these impedances as resistors of equal value R, and the last impedance as a capacitance C such that this circuit is equivalent to the circuit shown below (fig.2). Find L_{eff} in terms of R and C. Which impedances can be chosen as the capacitor to obtain this result?

