Macrocytic and
Hypoproliferative
Anemias

Macrocytic Anemias

Objectives

- Differentiate megaloblastic and nonmegaloblastic anemias
- Pathophysiology, clinical, and laboratory findings for:
 - Megaloblastic disorders
 - Folate Deficiency, Vitamin B12/Cobalamin Deficiency, Pernicious Anemia
 - Nonmegaloblastic disorders

Macrocytic Anemia

- MCV > 100 fL, MCHC is normal, ↑ MCH
- Classification of macrocytic anemia
 - Megaloblastic
 - Abnormal DNA maturation
 - Delayed nuclear maturation impairs cell division
 - Nuclear cytoplasm asynchrony
 - Nonmegaloblastic
 - Normoblastic maturations

Megaloblastic

- Nuclear maturation defect
- Anemia
 - Due to ineffective erythropoiesis
 - Disrupted DNA synthesis
- BM
 - Megaloblasts
 - Giant, abnormal appearing erythroid precursors

Megaloblastic

- 95% of megaloblastic anemias
- Deficiency of vitamin B12 or folic acid/folate
 - Vitamin B12 deficiency
 - Deficiency of intrinsic factor (IF)
 - Folic acid/folate deficiency
 - Inadequate dietary uptake

Clinical Presentation

- Onset is insidious
- Anemia symptoms
 - Lethargy, weakness, yellow or waxy pallor
- Other symptoms
 - Dyspeptic symptoms
 - Glossitis with beefy red or smooth pale tongue
 - Loss of weight or appetite
 - Pernicious anemia
 - Atrophy of gastric parietal cells
 - Diarrhea

Clinical Presentation

- Vitamin B12 / Folate deficiency
 - Neurological disturbances
 - Tingling, numbness, weakness of the extremities
 - Abnormal gait and mental disturbances
 - Loss of memory, depression, irritability

- CBC
 - MCV 100 to 140 fL (N or ↓ with coexisting IDA)
 - ↑ MCH, MCHC normal
 - RPI < 2
 - \downarrow Platelets, >100 × 10⁹/L
 - → WBC's due to neutropenia

- Smear evaluation
 - Macrocytic normochromic anemia
 - Macro ovalocytes
 - Howell-Jolly bodies
 - nRBC's
 - ↑ Anisopoikilocytosis
 - Segs > 5 lobes

- Bone Marrow
 - Hypercellular, ↓ M:E ratio, ineffective hematopoiesis
 - Large nRBC precursors (N-C asynchrony)
 - Nuclear maturation lags cytoplasmic maturation
 - Giant metamyelocytes and bands
 - Poor granulation
 - Megakaryocytes
 - Abnormal maturation

- Chemistries
 - Vitamin B12 levels
 - 150–400 pg/mL (normal)
 - Serum folate
 - Used for initial testing (> 4 ng/mL normal)
 - Red cell folate
 - Estimate of deficiency
 - Measures folate over preceding several months

- Chemistries
 - Intermediates in Folate and Vitamin B12 metabolism
 - Methylmalonic acid (MMA)
 - N in FD, ↑ in VB12D
 - Homocysteine levels
 - ↑ in VB12D and FD
 - Formiminoglutamic acid (FIGLU)
 - → in FD

Folate

- Present in many foods
- Liver stores 3–6 month supply of folate
- Depleted quickly during
 - Rapid cell turnover, growth, pregnancy
- Produced from inert folic acid
- Active form is tetrahydrofolate (THF)
 - Vitamin B12 needed to maintain active form

Folate Deficiency

- Marked slowing of DNA synthesis
- Ineffective erythropoiesis (↓ RPI)
- † heme catabolism and iron turnover
- Hemolysis, jaundice, pancytopenia
 - Circulating RBC survival ↓ by 30–50%
- † in compounds requiring folic acid as a cofactor
 - ↑ Homocysteine, ↑ FIGLU
- Causes: inadequate diet, ↑ requirement, malabsorption, drug inhibition (medication effect)

Vitamin B12 / Cobalamin

- Vitamin B12
 - Therapeutic form of crystalline cobalamin
 - Required for DNA synthesis and neurologic function
- Metabolism
 - VB12 food ingested
 - Released during digestion
 - Binds to intrinsic factor (IF \rightarrow VB12+IF)
 - VB12+IF complex captured by IF receptor on mucosal cells
 - Released to blood stream

Vitamin B12 Deficiency

- Causes: lack of IF, malabsorption, inadequate diet, impaired tissue utilization
 - Pernicious anemia
 - Absence of IF secondary to gastric atrophy
 - Disease of older adults (> 40 years)
 - Seen with other autoimmune disorders

Vitamin B12 Deficiency

- Laboratory Analysis –
 Schilling test
 - Gold Standard
 - Distinguishes cobalamin deficiency due to
 - Dietary deficiency, absence of IF, malabsorption

Nonmegaloblastic

- Normal RBC, WBC, PLT with round macrocytes
- Megaloblastic symptoms absent
- Common causes:
 - Alcoholism (direct toxic effect on RBC precursors)
 - Reticulocytosis (hemolysis, GI bleed)
 - Liver disease (RBC membrane changes)

Hypoproliferative Anemias

Objectives

- Define hypoproliferative anemias
- Pathophysiology, clinical, and laboratory findings for:
 - Aplastic Anemia
 - Disorders mimicking hypoproliferative anemia:
 - Myelophthisic Anemia, Myelodysplastic Syndromes, Hypersplenism
- Erythroid aplasias:
 - Pure Red Cell Aplasia, Renal Disease

Hypoproliferative Anemias

- Heterogeneous group of acquired and inherited disorders
- Normocytic/normochromic or macrocytic/normochromic anemias
- Hypocellular bone marrow
- Hematopoietic tissue in BM replaced by fat
- Overall BM \downarrow = Aplastic, aplasia, hypoplastic

Aplastic Anemia

- Pancytopenia associated with a hypocellular BM
- Mature blood cells appear normal
- With disease progression, all cells become depleted
 - Impaired capacity of BM cells for renewal of cells
- BM cellularity < 25% plus two of:
 - Granulocyte $< 0.5 \times 10^9/L$
 - $PLT < 20 \times 10^9/L$
 - Corrected Retic < 1%

Aplastic Anemia

- Epidemiology
 - Rare
 - Most commonly seen in:
 - 2–5-year-olds (inherited forms)
 - 15–25-year-olds (inherited forms)
 - Adults > 60 (acquired forms)
 - » Acquired = immune-mediated diseases

Classification

- Two groups:
 - Acquired
 - Environmental exposures
 - Drugs, chemicals, radiation, infectious agents, and other factors
 - Idiopathic
 - No environmental link can be identified
 - Inherited

Classification

- Two groups:
 - Acquired
 - Inherited (Fanconi anemia)
 - Rare
 - Chronic failure of the BM
 - Due to an inherited abnormality
 - May or may not be present at birth
 - Can be associated with other congenital abnormalities

Clinical Findings

- Symptoms
 - Insidious
 - Related to cytopenias
 - Most common signs
 - Bleeding
 - Petechial and mucosal hemorrhages
 - Anemia (pallor, fatigue)
 - Infection

- Peripheral blood
 - Pancytopenia
 - Hb < 7.0 g/dL
 - RBC's normo-/macro-cytic, normochromic, cRetic < 1%
 - Thrombocytopenia
 - Relative lymphocytosis
 - Neutrophil granules
 - Frequently larger and stain dark red

- Bone marrow
 - Necessary to diagnosis AA
 - Hypocellular, > 70% fat
 - "Dry tap" BM due to fat or infiltration of cancer cells leading to fibrosis

- Other abnormal findings not specific:
 - HbF can be ↑
 - EPO is often ↑
 - ↑ serum iron, > 50% saturation of transferrin
 - Flow cytometry CD34+ cells < 0.3%

Differentiation of AA

- Myelophthisic Anemia
 - Marrow replacement or infiltration by fibrotic, granulomatous, or neoplastic cells
 - Reduce normal hematopoiesis
 - Disrupt normal BM architecture
 - Leukoerythroblastic reaction (characteristic finding)
 - Moderate or marked poikilocytosis
 - Dacryocytes, large bizarre platelets

Differentiation of AA

- Myelodysplastic Syndromes
 - Often terminate in acute leukemia
 - Peripheral blood findings
 - Pancytopenia, bicytopenia, or isolated cytopenia
 - Macrocytic anemia
 - BM normo- to hypo- cellular

Differentiation of AA

- Hypersplenism
 - Cells become pooled and sequestered in the spleen
 - BM is hyperplastic, corresponding to PB cytopenia
 - Anemia with reticulocytosis
 - Granulocytopenia, shift to the left
 - Splenectomy corrects cytopenias

Pure Red Cell Aplasia

- Selective aplasia of erythroid lineage
 - Hypoproliferation of the committed erythroid progenitor
- Normal leukocyte and platelet counts
- Corrected reticulocyte < 1%
- Cause
 - Acquired (acute or chronic)
 - Acute Temporary depression of erythropoiesis (eg infections)
 - Inherited

Renal Disease

- BM erythroid hypoproliferation
 - → in EPO by diseased kidney
- Normocytic normochromic anemia
- Hgb 5-8 g/dL, RPI ~ 1
- Moderate anisocytosis, some microcytosis
- Moderate to severe poikilocytosis
 - Echinocytes correlate roughly with severity of azotemia
 - Spherocytes, NRBCs
- WBC's and PLT's are normal

References

- American Society for Clinical Laboratory Science. (2016). Hematology and Hemostasis Medical Laboratory Scientist Entry Level Curriculum. American Society for Clinical Laboratory Science.
- American Society for Clinical Pathology. (2021). Medical Laboratory Scientist, MLS(ASCP) Examination Content Guideline. American Society for Clinical Pathology.
- Greer, J. (2014). Wintrobe's clinical hematology (Thirteenth ed.). Philadelphia, Pennsylvania: Lippincott Williams & Wilkins.
- Kaushansky, Kenneth. (2016). Williams hematology (9th ed.). New York: McGraw Hill Education.
- McKenzie, S. B., & Williams, J. L. (2015). Clinical laboratory hematology (3rd ed.). Boston: Pearson.
- McPherson, R., & Pincus, M. (2017). Henry's clinical diagnosis and management by laboratory methods (23rd ed., ClinicalKey). St. Louis, Mo.: Elsevier.
- Rodak, B. F., & Carr, J. H. (2015). Clinical Hematology Atlas. Elsevier Health Sciences.