

Offenlegungsschrift 2

27 33 071

Ø)

Aktenzeichen:

Anmeldetag:

P 27 33 071.8

Ø ❸

1

Anmeidetag:

21. 7.77

Offenlegungstag:

8. 2.79

•

.

Unionspriorität:

@ @ @

Bezeichnung:

Anordnung mit mehreren Thermoelementen in Reihenschaltung

@

Anmelder:

Siemens AG, 1000 Berlin und 8000 München

0

Erfinder:

Herbst, Heiner, Dr.-Ing., 8013 Haar; Stein, Karl-Ulrich, Dr.-Ing., 8000 München; Widmann, Dietrich, Dr.-Ing., 8025 Unterhaching

Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften: Nichts ermittelt

Patentansprüche

- Anordnung mit mehreren Thermoelementen in Reihenschaltung, bei der sich auf einem Halbleitersubstrat eine Isolierschicht und darüber mehrere Metall-Leiterbahnen befinden, bei der jedes Thermoelement als ersten Schenkel eine der metallischen Leiterbahnen, als zweiten Schenkel einen Halbleiterbereich und als Thermokontakt einen Metall-Halbleiterkontakt der metallischen Leiterbahnen mit dem jeweiligen Halbleiterbereich aufweist, dadurch geken zeich hat das Halbleitersubstrat (1) in demjenigen Bereich (100), innerhalb dessen die beim Betrieb der Anordnung zu erwärmenden Thermokontakte (6) angeordnet sind, weniger als 10 um, und in demjenigen Bereich, in dem sich beim Betrieb der Anordnung die kalt zu haltenden Kontakte befinden, mehr als 200 um dick ist.
 - Anordnung nach Anspruch 1, dadurch gekennzeich net, daß die beim Betrieb zu erwärmenden Thermokontakte
 (6) sternförmig von den kalt zu haltenden Thermokontakten
 (9) umgeben sind.
 - 3. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sich auf dem Halbleitersubstrat (1)
 eine gegenüber dem übrigen Teil des Substrates schwächer dotierte, an die Substratoberfläche angrenzende epitaxiale
 Halbleiterschicht (2) befindet.
 - 4. Anordnung nach Anspruch 3, dadurch gekennzeich net, daß sich auf der epitaxialen Halbleiterschicht (2) dazu entgegengesetzt dotierte epitaxiale Halbleiterbereiche (3) befinden.
 - 5. Anordnung nach Abspruch 3, dadurch gekennzeich net, daß in der epitaxialen Halbleiterschicht (2) vonein-

809886/0096

ander getrennte, dotierte Bereiche (3) vorhanden sind, die einen zur Schicht (2) entgegengesetzten Leitungstyp aufweisen.

- 6. Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeich ich net, daß das Halbleitersubstrat (1) sowie die Halbleiterschichten (2, 3) aus Silizium bestehen.
- 7. Anordnung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß das Halbleitersubstrat (1) stark n-dotiert ist, die Schicht (2) schwach n-dotiert und die Halbleiterbereiche (3) stark p-dotiert sind.
- 8. Anordnung nach Anspruch 1, dadurch gekennzeich ach net, daß die Halbleiterbereiche (3), mit denen Thermokontakte (6, 9) gebildet werden, Streifen (30) aus polykristallinem Silizium sind.
- 9. Anordnung nach Anspruch 8, dadurch gekennzeich net, daß sich zwischen dem Halbleitersubstrat (1) und den Streifen (30) aus polykristallinem Silizium eine elektrisch isolierende Schicht (24) befindet.
- 10. Anordmung nach Anspruch 9, dadurch gekennzeich net, daß die elektrisch isolierende Schicht (24) unter den zu erwärmenden Kontakten (6) entfernt ist.
- 11. Anordnung nach einem der Ansprüche 1 bis 10, dadurch gekennzeich ich net, daß eine Blende (7) vorhanden ist,
 welche die kalt zu haltenden Kontakte (9) von einfallender
 Wärmestrahlung (8) abdeckt und die zu erwärmenden Kontakte
 (6) freiläßt.
- 12. Anordnung nach einem der Ansprüche 1 bis 11, dadurch gekennzeich hnet, daß die metallischen Leiterbahnen (5) aus Aluminium bestehen.

SIEMENS AKTIENGESELLSCHAFT
Berlin und München

Unser Zeichen
VPA 77 P 7 0 8 6 BRD

Anordnung mit mehreren Thermoelementen in Reihenschaltung.

Die Erfindung betrifft eine Anordnung mit mehreren Thermoelementen in Reihenschaltung, wie sie im Oberbegriff des Patentanspruches 1 näher angegeben ist.

3

- Thermoelemente sowie Reihenschaltungen von Thermoelementen, bei denen die Thermokontakte von Metall-Halbleiterkontakten gebildet werden, sind bekannt. Sie werden u.a. auch als Infrarotdetektoren mit hoher Empfindlichkeit verwendet. Aus der deutschen Offenlegungsschrift 2 247 962 ist eine derartige

 Thermoelementanordnung bekannt, die mit der technisch gut be
 - herrschten Silizium-Planartechnik hergestellt werden kann. Bei der dort angegebenen Anordnung besteht der aktive Teil aus diffundierten Halbleitergebieten und metallischen Leiterbahnen, die an der Oberfläche eines Silizium-Grundkörpers angebracht
- 15 sind. Da dieser Silizium-Grundkörper relativ groß ist, besitzt er selbst eine hohe Wärmekapazität, und aufgrund seiner Wärmelei fähigkeit ist der Wärmewiderstand zwischen den erwärmten und den kalt zu haltenden Metall-Halbleiterkontakten relativ klein,
- so daß es schwierig ist, die beim Betrieb der Anordnung kalt

 20 zu haltenden Metall-Halbleiterkontakte zu kühlen, ohne daß die
 der Wärmestrahlung ausgesetzten "heißen" Thermokontakte nicht
 ebenfalls gekühlt werden. Wünschenswert sind aber Anordnungen,

bei denen es möglich ist, die kalt zu haltenden Metall-Halbleiterkontakte zu kühlen, ohne daß davon die der Erwärmung ausgesetzten und zum Wärmenschweis dienenden Kontakte beeinflußt werden. Weiter sind Anordnungen wünschenswert, mit denen schnelle Temperaturveränderungen verfolgt werden können und die dazu eine nur kleine Wärmekapazität besitzen.

5

10

15.

Dementsprechend ist es auch Aufgabe der vorliegenden Erfindung, für den Aufbau einer Thermoelementanordnung Maßnahmen anzugeben, durch die sowohl die Wärmekapazität der gesamten Anordnung wie auch der Wärmewiderstand zwischen den zu erwärmenden und den zu kühlenden Kontakten gering gehalten werden kann.

Diese Aufgabe wird für eine wie im Oberbegriff des Patentanspruches 1 angegebene Anordnung erfindungsgemäß nach der im kennzeichnenden Teil des Patentanspruches 1 angegebenen Weise gelöst.

Weitere vorteilhafte Ausgestaltungen der Erfindung gehen aus den Unteransprüchen hervor.

Gemäß der Erfindung wird das Halbleitermaterial, das als Träger 20 für die Thermokontakte dient und selbst inaktiv ist, im Bereich der wärmeren Thermokontakte der Thermoelementanordnungen vor-Im Bereich der kälteren Konzugsweise durch Ätzen entfernt. takte bleibt das Halbleitermaterial in einer Dicke von beispielsweise 0,2 bis 0,5 mm stehen. Damit wird gewährleistet, 25 daß die kälteren Kontakte konstant auf Umgebungstemperatur gehalten werden können, da Silizium mit dieser Dicke eine ausreichende Wärmeleitung zur Abkühlung der kälteren Kontakte besitzt. Weiterhin wird mit dieser Anordnung erreicht, daß die Anordnung insgesamt mechanisch stabil ist. Eine entsprechend **30** den in den Unteransprüchen angegebenen Ausgestaltungen aufgebaute Thermoelementanordnung, bei der beispielsweise die wärmeren Kontakte in der Mitte eines in seiner Mitte verdünnten Halbleiterchips liegen und bei dem die kälteren Kontakte auf dem dickeren Randbereich des Chips angeordnet sind, kann ein-35 fach zur Abschirmung der kälteren Kontakte mit einer Lochblende versehen werden. Eine solche Anordnung kann in bekannter Weise in Gehäuse eingebaut und mit Drahtkontaktierungstechniken oder anderen bekannten Kontaktierungsmethoden elektrisch angeschlossen werden.

- 5 Im folgenden wird die Erfindung beschrieben und anhand der in den Figuren dargestellten Ausführungsbeispiele näher erläutert.
 - Fig.1 zeigt ein erstes Ausführungsbeispiel, bei dem diejenigen Halbleitergebiete, mit denen Thermokontakte gebildet werden, als epitaxiale Halbleiterschicht auf einem Substratkristall ausgebildet sind.

10

- Fig.2 zeigt ein weiteres Ausführungsbeispiel, bei dem die zur Bildung der Thermokontakte verwendeten Halbleitergebiete aus polykristellinem Material bestehen.
- 15 Fig. 3 zeigt in einer Draufsicht schematisch ein Lay-out für eine erfindungsgemäße Thermoelementanordnung.

Ein erstes Ausführungsbeispiel ist in Fig.1 dergestellt. ordnung ist auf einem Halbleitersubstrat 1 aufgebaut. Dieses Halbleitersubstrat 1 besteht beispielsweise aus n⁺-dotiertem 20 Silizium mit einer Trägerkonzentration von 10²⁰cm⁻³, wobei dieses Substrat eine Stärke von etwa 0,2 bis 0,5 mm besitzt. Auf diesem Substrat befindet sich eine ebenfalls n-dotierte, etwa 5 um dicke Epitaxieschicht 2. Diese Epitaxieschicht 2 besitzt eine wesentlich geringere Trägerkonzentration als das Substrat. 25 Das Siliziumsubstrat 1 ist in demjenigen Bereich 100. innerhalb dessen die zu erwärmenden Thermokontakte 6 der Anordnung angebracht werden, bis auf die epitaxiale Schicht 2 abgeätzt. Rand dieses abgeätzten Bereiches ist mit dem Bezugszeichen 10 versehen (Fig.1, 2, 3). In der epitaxialen Schicht 2 befinden 30 sich Halbleiterbereiche 3, die vorzugsweise umdotierte Teile der Epitaxieschicht 2 sind. Sie können auch als weitere epitaxiale Schicht auf der Schicht 2 abgeschieden werden. Bereiche 3 sind stark p-dotiert mit einer Ladungsträgerkonzentration von etws 10¹⁹cm⁻³. Diese Halbleiterbereiche 3 stellen 35 die jenigen Halbleiterbereiche dar, mit denen die Metall-Leiterbahnen 5 die Thermokontakte 9 und 6 bilden. Auf diesen Halbleiterbereichen 3 kann zur Isolation der Metall-Leiterbahnen, die jeweils die andere Seite der Thermokontakte bilden, eine Isolierschicht 4 aus SiO₂ aufgebracht sein. Diese Isolierschicht 4 ist an den für die Thermokontakte 6 und 9 vorgesehenen Stellen mit Kontaktlöchern versehen. Die Leiterbahnen 5 können mit Ausnahme der Kontaktbereiche auch seitlich von den Halbleiterbereichen 3 verlaufen (Fig.3). In einer anderen Ausführungsform sind die Halbleiterbereiche 3 umdotierte Teile der Epitaxieschicht 2. Die Thermokontakte 6, die sich innerhalb des dünn geätzten Bereiches 100 des Substrates 1 befinden, werden der nachzuweisenden Wärmestrahlung 8 ausgesetzt, während die Thermokontakte 9, die sich außerhalb dieses Bereiches 100 befinden, gekühlt und mittels einer Blende 7 von der nachzuweisenden Wärmestrahlung 8 abgeschirmt werden.

15

10

5

Fig. 2 zeigt ein weiteres Ausführungsbeispiel. Bei diesem Ausführungsbeispiel befindet sich auf dem Substrat 1. das beispielsweise aus Silizium besteht, eine Siliziumdioxidschicht 24. Das Substrat 1 ist ebenfalls in dem Bereich 100, innerhalb dessen die 20 zu erwärmenden Thermokontakte 6 liegen, abgeätzt. Auf dem Substrat 1 befindet sich eine elektrisch isolierende Schicht 24, beispielsweise eine Siliziumdioxidschicht. Diese Isolierschicht 24 hat eine Stärke von etwa 5 um. Auf dieser Isolierschicht 24 befinden sich Streifen 30 aus polykristallinem Silizium, die diejenigen Halbleitergebiete 3 darstellen, mit denen die Thermokon-**25** takte 6, 9 gebildet werden. Diese polykristallinen Siliziumstreifen 30 haben eine Stärke von etwa 2 um und sind beispielsweise mit Bor oder Phosphor mit einer Dotierungsstärke von 10¹⁹cm⁻³ dotiert. Die Leiterbahnen 5 verlaufen außerhalb der polykristallinen Siliziumstreifen 30 auf der Isolierschicht 24 und bilden 30 an ihren Enden Thermokontakte 6 bzw. 9 mit diesen Si-Bereichen 30 (vergl. Fig.3). Beim Betrieb werden die kalt zu haltenden Kontakte 9 durch eine Blende 7 abgedeckt. Zur Verminderung der Wärmekapazität kann die Isolierschicht 24 unter den zu erwärmenden Kontakten 6 entfernt sein. Die Schnittzeichnung der Fig.2 ent-**35** ° spricht in etwa dem Schnitt A-A' des in der Fig.3 dargestellten Lay-out.

Fig. 3 zeigt schematisch eine Draufsicht auf eine erfindungsgemäße Anordnung von Thermoelementen. Die Halbleiterbereiche 3, mit denen die Thermokontakte 6 bzw. 9 von den Metall-Leiterbahnen 5 gebildet werden, sind als Streifen ausgebildet und sternförmig angeordnet. Diejenigen Thermokontakte, die der Erwärmung ausgesetzt werden, befinden sich innerhalb eines kreisförmigen Bereiches 100, dessen Rand durch die gestrichelte Linie 1 angedeutet ist und in dem das Substrat 1 dünn geätzt ist. Zum Anbringen von Außenkontakten sind Kontaktflecken 11 und 12 vorg sehen. Die Isolierschicht 24 ist zur besseren Übersicht in Fig. 3 nicht dargestellt.

5

10

Die Herstellung einer in Fig. 1 dargestellten erfindungsgemäßen Anordnung von Thermoelementen erfolgt vorzugsweise in der Weise daß auf ein Siliziumsubstrat 1, das beispielsweise eine Dicke 15 zwischen 200 und 500 um besitzt und mit einer Phosphorkonzentra tion won etwa 10²⁰cm²³ n-leitend dotiert ist, mittels Epitaxie eine beispielsweise 7 um dicke, mit Phosphor n-dotierte Schicht 2 mit einer Trägerkonzentration von 10¹⁵cm-3 aufgebracht wird. Sodann werden beispielsweise mittels Ionenimplantation oder mit 20 tels Diffusion durch geeignete word von dieser n-dotierten Schicht Bereiche 3 stark p-dotiert. Danach wird eine Isolierschicht 4 auf der Schicht 2 bzw. auf den Halbleiterbereichen 3 abgeschieden. Diese Isolierschicht 4 wird beispielsweise mit Hilfe eines fotolithografischen Verfahrens mit Kontaktlöchern 25 für die Thermokontakte 6 bzw. 9 versehen. Auf dieser Isolierschicht 4 werden sodann beispielsweise ebenfalls mit einem foto lithografischen Verfahren die Leiterbahnen 5 abgeschieden. Leiterbahnen 5 bestehen beispielsweise aus Aluminium. auf diese Weise die Thermokontakte hergestellt sind, wird von 30 der Rückseite der Anordnung her das Substrat 1 innerhalb eines Bereiches 100, der um die zu erwärmenden Kontakte 6 herum liegt bis heren en die epitaxiale Schicht 2 abgeätzt. wird bevorzugt ein in "Journ. of the Electrochemical Soc." 117 (1970), Seiten 553 ff. beschriebenes Verfahren eingesetzt. 35 diesem elektrochemischen Ätzverfahren wird das mit Phosphor stark n-dotierte Siliziumsubstrat sehr viel schneller abgetrage

als ein schwach n-dotiertes, mit Phosphor dotiertes Silizium mit einer Trägerkonzentration von weniger als 10¹⁶cm⁻³, so daß an der epitaxialen Schicht 2 automatisch ein Ätzstop auftritt. Das Abätzen des Substrates 1 wird bevorzugt erst am Ende des Herstellungsverfahrens ausgeführt, da die nach dem Abätzen verbleibenden, innerhalb des Bereiches 100 liegenden Strukturen relativ dünn und damit mechanisch empfindlich sind.

Bei dem in Fig.2 dargestellten Ausführungsbeispiel wird das Siliziumsubstrat 1 innerhalb des Bereiches 100 vollständig abgeätzt. Bei diesem Ausführungsbeispiel kann auch die Siliziumdioxidschicht 24 unter den Streifen 30 aus polykristallinem Silizium im Bereich der Kontakte 6 abgeätzt werden.

- 12 Patentansprüche
 - 3 Figuren

5

_9 -Leerseite 2733071

Nummer: Int. Cl.²: Anmeldetag: Offenlegungstag: **27 33 671 H 01 L 35/04**21. Juli 1977
8. Februar 1979

Fig.3

