# Module 7 Transcriptomics

Helminth Bioinformatics Khon Kaen University, 2023

## Module aims

You will learn how to:

- map RNA-seq data to reference genome
- acquire read counting results and import them to R
- visualise transcriptomic profiles in R
- using R packages to identify differentially expressed genes and finding patterns in the data
- performing GO term enrichment and interpret the results

# What is transcriptome?

All RNA being transcribed at a certain developmental stage in a certain type of cells in response to certain stimuli



Tyler Gable siRNA, miRNA, ceRNA, piRNA, piRNA-like RNA, pesRNA, many viral RNAs ALL DISAGREE.

Like · Reply · 4d

#### **Eukaryotic gene structure** Gene X Regulatory region Regulatory region Intron Intron DNA 5' H 3' Exon Promoter **Terminator** Exon Exon **Transcription** + pre-mRNA processing + 5' capping + Intron splicing + 3' poly-A tailing Untranslated region Untranslated region (UTR) Coding sequences (UTR) RNA (CDS) Cap **Translation** Protein

Protein X

Created with BioRender.com



## What RNA-seq sequences represent



# Common uses of RNA-seq data

## Gene expression study

e.g. differential expression, time course profile

Profiling total RNA (e.g. miRNA and mRNA)

e.g. in exosomes and other secretory products

## Splice isoform

only useful for organism with polished reference genomes

## **SNP** calling

use transcriptome as a reduced subset of genomic variation study

## Profiling genes in an organism

e.g. for gene annotation, refining gene model

## Terms you might come across

number of reads strand-specific

single-end/pair-end



## Terms you might come across

number of reads **strand-specific** single-end/pair-end

- More reliable quantification of genes on opposite strand
- Allow discovery of anti-sense transcription





## Terms you might come across

number of reads strand-specific

single-end/pair-end

#### Single-end

Read fragment from only one end

Can be good enough for gene expression study, if there is a good reference genome

#### Pair-end

Read from both ends of the fragment

Provide more information which can help with mapping

Highly recommend for organism with only draft reference genome, or wihtout a genome



# From sequencing data to read count



RNA-seq reads mapped to genome location (alignment)



which genome location is what gene (.GTF or .GFF file)



| Gene  |   |   | Count in sample C |  |
|-------|---|---|-------------------|--|
| gene1 | 4 | 8 | 20                |  |
| gene2 | 6 | 3 | 16                |  |
| gene3 | 5 | 5 | 15                |  |

planning | sequence data | read counts | read count analysis | functional analysis

# Almost hands-on time: genome indexing – why?

Mapping reads to a genome as approximate pattern matching

Finding your sequences (short texts) in a genome (large book)

#### Choices

A) Scan the whole genome (large book) for the sequence

B) Pre-process the genome – then searching through book index

instead of page by page

| A/B tests 107 absolute risk 31–2, 36–7, 383 adjustment 110, 133, 135, 383 adjuvant therapy 181–5, 183–4 agricultural experiments 105–6 AI (artificial intelligence) 144–5, 185–6, 383 | assertainment bias 96, 383<br>assessment of statistical claims 368-71<br>associations 109-14, 138<br>autism 113<br>averages 46-8, 383 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|
| alcohol consumption 112–13, 299–300<br>aleatory uncertainty 240, 306, 383<br>algorithms                                                                                               | bacon sandwiches 31-4<br>bar charts 28, 30                                                                                            |  |

## Hands-on time!

Index genome using hisat2 (this will take a few minutes)

```
/location/of/your/data/
replace text inside with information related to your situation e.g. location of your files
```

**USE TAB** (also try double tab)

When copy-paste, check this symbol - and this "

## What we did in unix

Genome indexing

- Map (align) reads to genome
  - SAM & BAM files

- Get read counts per gene
  - •(\*\_v10.count)

# From sequencing data to read count



RNA-seq reads mapped to genome location (alignment)



which genome location is what gene (.GTF or .GFF file)



| Gene  |   |   | Count in sample C |  |
|-------|---|---|-------------------|--|
| gene1 | 4 | 8 | 20                |  |
| gene2 | 6 | 3 | 16                |  |
| gene3 | 5 | 5 | 15                |  |

planning | sequence data | read counts | read count analysis | functional analysis

```
$ head *.count
==> D06_1_v10.count <==
Smp 000020.1 299
Smp 000030.1 1071
Smp 000040.1 425
Smp_000050.1 190
Smp 000070.1 156
==> D06_2_v10.count <==
Smp 000020.1 76
Smp 000030.1 310
Smp_000040.1 134
```

Smp 000050.1 67

Smp 000070.1 46

## Next.. R

• Prepare data for analysis in R

Identify differentially expressed (DE) genes

Create plots

Functional analysis

# Fold change

A (D13)

**B** (D06)

$$log_2\left(\frac{A(D13)}{B(D06)}\right)$$

$$log_2\left(\frac{8}{2}\right)$$

$$log_2\left(\frac{A(D13)}{B(D06)}\right)$$

$$log_2\left(\frac{2}{8}\right)$$

# **Functional analysis**

- Rather than going through the list of differentially expressed genes to find genes that you expect to see changes
  - Do functional analysis
  - Let data guide the way
- Possibly the most common = GO enrichment

### **GO** term enrichment

Genes often have associated GO terms (Gene Ontology terms).



## **GO** term enrichment

Genes often have associated GO terms (Gene Ontology terms).

GO terms describe functions of a gene, and can be derived from sequence similarity, experiment, homology etc.



### **GO** term enrichment

Genes often have associated GO terms (Gene Ontology terms).

GO terms describe functions of a gene, and can be derived from sequence similarity, experiment, homology etc.

**GO term enrichment**: "Are there any GO terms present in my data more frequently than expected by chance alone?"

