线性代数期中试卷 答案 (2021.4.24)

一. 简答与计算题(本题共6小题,每小题8分,共48分)

1. 计算
$$A_{11}+M_{12}-M_{13}$$
,此处 A_{ij} 是元素 a_{ij} 的代数余子式, M_{ij} 是 a_{ij} 的余子式, $D=\begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 2 \end{bmatrix}$

解:
$$A_{11} + M_{12} - M_{13} = 1 \times A_{11} - 1 \times A_{12} - 1 \times A_{13} + 0 \times A_{14} + 0 \times A_{15}$$

$$= \begin{vmatrix} 1 & -1 & -1 & 0 & 0 \\ 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 3 & 2 & 1 & 1 \\ 1 & 2 & 3 & 1 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 2 & 2 & 1 & 2 \end{vmatrix} = \begin{vmatrix} 3 & 2 & 1 & 1 \\ 2 & 3 & 1 & 1 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 1 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ -2 & -2 & -1 & 2 \end{vmatrix} = 1,$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{vmatrix} = 1,$$

$$\begin{bmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{vmatrix} = 1,$$

$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{vmatrix} = -1,$$

$$\begin{bmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{vmatrix} = 1,$$

$$\begin{bmatrix} 3 & 2 & 1 & 1 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 1 & 2 \end{vmatrix} = 1,$$

$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{vmatrix} = -1,$$

解法二:
$$A_{11} = \begin{vmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{vmatrix} = 5, M_{12} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{vmatrix} = 1, M_{13} = \begin{vmatrix} 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{vmatrix} = -1,$$

故 $A_{11} + M_{12} - M_{13} = 7$

2. 计算
$$A^{2021}$$
,此处 $A = \begin{pmatrix} -1 & 1 & -2 & -1 \\ 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 0 \\ 2 & -2 & 4 & 2 \end{pmatrix}$.

解:
$$A = \begin{pmatrix} -1\\1\\0\\2 \end{pmatrix} (1, -1, 2, 1) = \alpha \beta^{\mathrm{T}}$$
,因为 $\beta^{\mathrm{T}} \alpha = 0$,故有

 $A^{2021} = (\alpha \beta^{\mathrm{T}})^{2021} = \alpha (\beta^{\mathrm{T}} \alpha) \cdots (\beta^{\mathrm{T}} \alpha) \beta^{\mathrm{T}} = \alpha \times 0 \times 0 \cdots \times 0 \times \beta^{\mathrm{T}} = O.$ 解法二: $A^2 = O$, 故 $A^{2021} = A^2 A^{2019} = O$.

3.
$$A$$
 与 B 是 3 阶方阵, $AB = \begin{pmatrix} 6 & 2 & 7 \\ 2 & -1 & 1 \\ 7 & 3 & 3 \end{pmatrix}$, $C = BA$,求 $c_{11} + c_{22} + c_{33}$.

解: 因为 $|AB|=57\neq 0$,故 $|B|\neq 0$,从而 B 可逆. 于是有 $AB=B^{-1}(BA)B=B^{-1}CB$,即 $C\sim AB$, 故迹相同,于是 $c_{11} + c_{22} + c_{33} = tr(AB) = 8$.

解法二: 由
$$\begin{pmatrix} AB & A \\ O & O \end{pmatrix} \begin{pmatrix} E & O \\ -B & E \end{pmatrix} = \begin{pmatrix} O & A \\ O & O \end{pmatrix} = \begin{pmatrix} E & O \\ -B & E \end{pmatrix} \begin{pmatrix} O & A \\ O & BA \end{pmatrix}$$
 , $\begin{vmatrix} E & O \\ -B & E \end{vmatrix} = 0$, 知 $\begin{pmatrix} AB & A \\ O & O \end{pmatrix}$ 与 $\begin{pmatrix} O & A \\ O & BA \end{pmatrix}$ 相似,故有特征多项式相等,即

$$\begin{vmatrix} \lambda E - AB & -A \\ O & \lambda E \end{vmatrix} = \begin{vmatrix} \lambda E & -A \\ O & \lambda E - BA \end{vmatrix}, \quad \text{(A)} \quad \text{(A)} \quad \text{(A)} \quad \text{(A)} \quad \text{(B)} \quad \text{(A)} \quad \text{(B)} \quad \text{(A)} \quad \text{(B)} \quad \text{($$

于是 $|\lambda E - AB| = |\lambda E - BA|$,即 AB 与 BA 的特征值相同,迹也相同.

故 $c_{11} + c_{22} + c_{33} = \operatorname{tr}(C) = \operatorname{tr}(AB) = 6 + (-1) + 3 = 8.$

4. 计算
$$(A^*)^*$$
,此处 $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$.
解: 易知 $|A| = 4, A^* = |A|A^{-1}, |A^*| = |A|^3|A^{-1}| = |A|^2 = 16$,

则
$$(A^*)^* = |A^*|(A^*)^{-1} = 16(|A|A^{-1})^{-1} = 16|A|^{-1}A = 4A = \begin{pmatrix} 8 & 4 & 4 \\ 4 & 8 & 4 \\ 4 & 4 & 8 \end{pmatrix}.$$

解法二: $|A^*|A = A(A^*A^{**}) = (AA^*)A^{**} = |A|A^{**}, |A| = 4, |A^*| = |A|^2 = 16$, 故 $(A^*)^* = 4A$.

5. 计算矩阵
$$X$$
 使得 $\begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$ X $\begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ $=$ $\begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$.

6. $A = (a_{ij})_{3\times 3}$, $\mathbf{r}(A) = 1$, α_1 、 α_2 与 α_3 是 Ax = b 的三个解向量, $\alpha_1 + \alpha_2 = (1, -1, 3)^{\mathrm{T}}$, $\alpha_2 + \alpha_3 = (0, -2, 1)^T, \alpha_3 + \alpha_1 = (3, 0, 4)^T, \quad R Ax = b \text{ 的通解}.$

解:因为 $\mathbf{r}(A)=1$ 且 Ax=b的有3个未知量,故 Ax=0的基础解系含两个解向量,易知 $eta_1 = (lpha_1 + lpha_2) - (lpha_2 + lpha_3) = (1,1,2)^{\mathrm{T}}, eta_2 = (lpha_3 + lpha_1) - (lpha_1 + lpha_2) = (2,1,1)^{\mathrm{T}}$ 是方程组 Ax = 0 的解且线性无关,故是基础解系. 再令 $\eta = \frac{1}{2}(lpha_1 + lpha_2) = (\frac{1}{2}, -\frac{1}{2}, \frac{3}{2})^{\mathrm{T}}$ 有 $A\eta = b$,

故
$$Ax = b$$
 的通解为: $\eta + k_1\beta_1 + k_2\beta_2$, $k_1, k_2 \in \mathbf{R}$.

解法二: $(\alpha_1, \alpha_2, \alpha_3)$ $\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 3 \\ -1 & -2 & 0 \\ 3 & 1 & 4 \end{pmatrix}$, 解得 $\alpha_1 = \begin{pmatrix} 2 \\ 0.5 \\ 3 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} -1 \\ -1.5 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ -0.5 \\ 1 \end{pmatrix}$.

因为 $\mathbf{r}(A) = 1$, 故 $\beta_1 = \alpha_1 - \alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}$, $\beta_2 = \alpha_3 - \alpha_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ 为 $Ax = 0$ 的基础解系,

二.(10分) 设有三个互异的实数 t_1, t_2, t_3 , 计算次数不超过2的(插值)多项式 $f(t) = a_0 + a_1 t + a_2 t^2$, 使得 $f(t_1) = f(t_2) = 0$, $f(t_3) = 1$. 这样的多项式是否唯一? 为什么?

解: 次数不超过2的多项式 f(t) 满足 $f(t_1) = f(t_2) = 0, f(t_3) = 1$,且 t_1, t_2, t_3 互异. 则有方程组

$$a_0 = \frac{t_1 t_2}{(t_3 - t_1)(t_3 - t_2)}, a_1 = -\frac{t_1 + t_2}{(t_3 - t_1)(t_3 - t_2)}, a_2 = \frac{1}{(t_3 - t_1)(t_3 - t_2)}, a_3 = \frac{1}{(t_3 - t_1)(t_3 - t_2)}, a_4 = \frac{1}{(t_3 - t_1)(t_3 - t_2)}, a_5 = \frac{1}{(t_3 - t_1)(t_3 - t_2)}, a_7 = \frac{1}{(t_3 - t_1)(t_3 - t_2)}, a_8 = \frac{1}{(t$$

解: 次数不超过2的多项式 f(t) 满足 $f(t_1) = f(t_2) = 0$, $f(t_2) = 0$, 由克莱姆法制,方程组有唯一解: $a_0 = \frac{t_1 t_2}{(t_3 - t_1)(t_3 - t_2)}, a_1 = -\frac{t_1 + t_2}{(t_3 - t_1)(t_3 - t_2)}, a_2 = \frac{1}{(t_3 - t_1)(t_3 - t_2)}, a_3 = \frac{1}{(t_3 - t_1)(t_3 - t_2)}, a_4 = \frac{$

$$\begin{pmatrix} 1 & t_1 & t_1^2 \\ 1 & t_2 & t_2^2 \\ 1 & t_3 & t_3^2 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, 记为 $Ax = \beta$,则有 $|A| = (t_2 - t_1)(t_3 - t_1)(t_3 - t_2) \neq 0$,由克莱姆法制,$$

方程组有唯一解: a_0, a_1, a_2 , 即多项式是唯一的.

三.(12分) 给定矩阵 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)$ 与向量 β , (1) 计算 $B = (b_{ij})_{5\times 5}$ 使得 AB = 0且 r(A) + r(B) = 5(7分); (2) 判断 $Ax = \beta$ 解的存在性,如有解则计算其通解(5分).

$$\alpha_{1} = \begin{pmatrix} 1 \\ -4 \\ -2 \\ -5 \end{pmatrix}, \alpha_{2} = \begin{pmatrix} 2 \\ 2 \\ 6 \\ 0 \end{pmatrix}, \alpha_{3} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \alpha_{4} = \begin{pmatrix} -3 \\ 5 \\ -11 \\ -2 \end{pmatrix}, \alpha_{5} = \begin{pmatrix} 1 \\ 1 \\ 3 \\ 0 \end{pmatrix}, \beta = \begin{pmatrix} -2 \\ 13 \\ 3 \\ 9 \end{pmatrix}.$$

$$\Re \colon (A, \beta) = \begin{pmatrix} 1 & 2 & 0 & -3 & 1 & | & -2 \\ -4 & 2 & 1 & 5 & 1 & | & 13 \\ -2 & 6 & 1 & -11 & | & 3 & | & 3 \\ -5 & 0 & 1 & -2 & 0 & | & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -0.2 & 0 & 0 & | & -2.04 \\ 0 & 1 & 0.1 & 0 & 0.5 & | & 0.92 \\ 0 & 0 & 0 & 1 & 0 & | & 0.6 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}. \tag{*}.$$

- (1) 从(*)可得: $\mathbf{r}(A) = 3, \gamma_1 = (0.2, -0.1, 1, 0, 0)^T, \gamma_2 = (0, -0.5, 0, 0, 1)^T$ 为 Ax = 0 的基础解系, $\Rightarrow B = (\gamma_1, \gamma_2, 0, 0, 0),$ 则有 AB = O 且 r(A) + r(B) = 5.
- (2) 从(*)还能得到 $Ax = \beta$ 的一个特解 $\eta = (-2.04, 0.92, 0, 0.6, 0)^{\mathrm{T}}$,则 $Ax = \beta$ 有解,

解法二: (1)
$$A = \begin{pmatrix} 1 & 2 & 0 & -3 & 1 \\ -4 & 2 & 1 & 5 & 1 \\ -2 & 6 & 1 & -11 & 3 \\ -5 & 0 & 1 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -0.2 & 0 & 0 \\ 0 & 1 & 0.1 & 0 & 0.5 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

可得: $\mathbf{r}(A) = 3, \gamma_1 = (0.2, -0.1, 1, 0, 0)^{\mathrm{T}}, \gamma_2 = (0, -0.5, 0, 0, 1)^{\mathrm{T}}$ 为 Ax = 0 的基础解系, 令 $B = (\gamma_1, \gamma_2, 0, 0, 0)$,则有 AB = O 且 r(A) + r(B) = 5.

$$(2) (A, \beta) = \begin{pmatrix} 1 & 2 & 0 & -3 & 1 & -2 \\ -4 & 2 & 1 & 5 & 1 & 13 \\ -2 & 6 & 1 & -11 & 3 & 3 \\ -5 & 0 & 1 & -2 & 0 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -0.2 & 0 & 0 & -2.04 \\ 0 & 1 & 0.1 & 0 & 0.5 & 0.92 \\ 0 & 0 & 0 & 1 & 0 & 0.6 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

可得 $Ax = \beta$ 有解, $\eta = (-2.04, 0.92, 0, 0.6, 0)^{\mathrm{T}}$ 为方程组的一个特解 故通解为: $\eta + k_1 \gamma_1 + k_2 \gamma_2$, $k_1, k_2 \in \mathbf{R}$.

- 四.(10分) 给定 $A \in \mathbf{R}^{m \times n}$ 与 $\beta \in \mathbf{R}^m$, $A^{\mathrm{T}}A = A^{\mathrm{T}}\beta$ 称为 $Ax = \beta$ 的法方程组,证明:
 - (1) 法方程组必有解(4分); (2) 当 A 列满秩时, 法方程组有唯一解(4分);
 - (3) 当 $\mathbf{r}(A) = \mathbf{r}(A,\beta)$ 时, $A^{\mathrm{T}}Ax = A^{\mathrm{T}}\beta$ 与 $Ax = \beta$ 同解(2分).
- $\text{i.i.}: (1) \ r(A^{T}A) \le r(A^{T}A, A^{T}\beta) = r(A^{T}(A, \beta)) \le r(A^{T}) = r(A).$ 知 Ax = 0 与 $A^{T}Ax = 0$ 同解,故有 $\mathbf{r}(A) = \mathbf{r}(A^{T}A)$.

于是有 $\mathbf{r}(A^{\mathrm{T}}A) \leq \mathbf{r}(A^{\mathrm{T}}A, A^{\mathrm{T}}\beta) \leq \mathbf{r}(A) = \mathbf{r}(A^{\mathrm{T}}A)$,即 $\mathbf{r}(A^{\mathrm{T}}A) = \mathbf{r}(A^{\mathrm{T}}A, A^{\mathrm{T}}\beta)$,法方程组有解. (2) 由(1)的证明知 $\mathbf{r}(A^{\mathrm{T}}A) = \mathbf{r}(A) = n$,故 $A^{\mathrm{T}}A$ 列满足,故法方程组有唯一解.

- (3) 当 $\mathbf{r}(A) = \mathbf{r}(A,\beta)$ 时, $Ax = \beta$ 有解,易知 $Ax = \beta$ 的解也是 $A^{T}Ax = A^{T}\beta$ 的解, 设 η 为 $Ax = \beta$ 的特解,则也是 $A^{T}Ax = A^{T}\beta$ 的特解.设 γ 为 $A^{T}Ax = A^{T}\beta$ 的任意解, 则有 $A^{T}A(\gamma - \eta) = 0$,由于 Ax = 0 与 $A^{T}Ax = 0$ 同解,故有 $A\gamma = A\eta = \beta$, 于是 $A^{T}Ax = A^{T}\beta$ 的解也是 $Ax = \beta$ 的解, 故 $Ax = \beta$ 与 $A^{T}Ax = A^{T}\beta$ 同解.
- 证法二: (1) 设 $\mathbf{r}(A) = r$,则有 $A = PQ^{\mathrm{T}}$,其中 $P \in \mathbf{R}^{m \times r}, Q \in \mathbf{R}^{n \times r}, \mathbf{r}(P) = \mathbf{r}(Q) = r$. P 列满秩,由施密特正交化定理可知 P 的列可组合出标准正交向量组 $\beta_1,\beta_2,\cdots,\beta_r$,于是有 r 阶对角元非零的上三角矩阵 M 使得 $PM=(\beta_1,\beta_2,\cdots,\beta_r)$,显然 M 可逆,

故
$$\mathbf{r}(P^{\mathrm{T}}P) = \mathbf{r}(M^{\mathrm{T}}P^{\mathrm{T}}PM) = \mathbf{r}\begin{pmatrix} \beta_{1}^{\mathrm{T}} \\ \beta_{2}^{\mathrm{T}} \\ \vdots \\ \beta_{r}^{\mathrm{T}} \end{pmatrix} (\beta_{1}, \beta_{2}, \cdots, \beta_{r})) = \mathbf{r}(E_{r}) = r = \mathbf{r}(P), \quad \mathbb{P} P \, \mathbb{P} \,$$

考虑 $A^{\mathrm{T}}Ax = A^{\mathrm{T}}\beta$,即 $QP^{\mathrm{T}}PQ^{\mathrm{T}}x = QP^{\mathrm{T}}\beta = Q\gamma$, 由于 $\mathbf{r}(P^{\mathrm{T}}PQ^{\mathrm{T}},\gamma) \leq$ 增广矩阵行数r,而 $\mathbf{r}(P^{\mathrm{T}}PQ^{\mathrm{T}}) = \mathbf{r}((P^{\mathrm{T}}P)Q^{\mathrm{T}}) = \mathbf{r}(Q) = \mathbf{r}$,故 $\mathbf{r}(P^{\mathrm{T}}PQ^{\mathrm{T}},\gamma) = \mathbf{r}(P^{\mathrm{T}}PQ^{\mathrm{T}})$,即方程组 $P^{\mathrm{T}}PQ^{\mathrm{T}}x = \gamma$ 有解, 于是 $QP^{T}PQ^{T}x = Q\gamma$ 也有解, 即 $A^{T}Ax = A^{T}\beta$ 有解.

(3) 因为 $\mathbf{r}(A) = \mathbf{r}(A, \beta)$, 故 $Ax = \beta$ 有解, 设为 x_0 , 则 $\beta = Ax_0$. 假设 x 满足 $A^{\mathrm{T}}Ax = A^{\mathrm{T}}\beta$, 则 $(Ax - \beta)^{\mathrm{T}}(Ax - \beta) = (A(x - x_0))^{\mathrm{T}}(Ax - \beta) = (x - x_0)^{\mathrm{T}}A^{\mathrm{T}}(Ax - \beta) = 0$, 故 $Ax - \beta = 0$, 即 x 满足 $Ax = \beta$, 反之显然, 故同解.

五.(10分)
$$A = (\alpha_1, \alpha_2, \cdots, \alpha_n), B = A^{-1} = \begin{pmatrix} \beta_1^{\mathrm{T}} \\ \beta_2^{\mathrm{T}} \\ \vdots \\ \beta_n^{\mathrm{T}} \end{pmatrix}, C = \alpha_1 \beta_1^{\mathrm{T}} + \alpha_2 \beta_2^{\mathrm{T}} + \cdots + \alpha_k \beta_k^{\mathrm{T}} \quad (k < n),$$

(1) 证明
$$C$$
 为投影矩阵,即 $C^2 = C$ (5分); (2) 写出 $Cx = 0$ 的一个基础解系 (5分). 解: (1) 易知 $C = A \begin{pmatrix} E_k \\ O \end{pmatrix} B$,故有 $C^2 = A \begin{pmatrix} E_k \\ O \end{pmatrix} (BA) \begin{pmatrix} E_k \\ O \end{pmatrix} B = A \begin{pmatrix} E_k \\ O \end{pmatrix} B = C$.

(2)
$$Cx = A \begin{pmatrix} E_k \\ O \end{pmatrix} Bx = 0 \Leftrightarrow \begin{pmatrix} E_k \\ O \end{pmatrix} Bx = \begin{pmatrix} E_k \\ O \end{pmatrix} y = 0,$$

解得 $y = e_{k+1}, e_{k+2}, \cdots, e_n$ 为基础解系.

因为 y = Bx, 故 x = Ay, 于是 $Ae_{k+1}, Ae_{k+2}, \cdots, Ae_n$ 即 $\alpha_{k+1}, \alpha_{k+2}, \cdots, \alpha_n$ 为 Cx = 0 的一组基础解系.

解法二: (1) 因为
$$BA = A^{-1}A = E$$
,而 $BA = \begin{pmatrix} \beta_1^{\mathrm{T}}\alpha_1 & \beta_1^{\mathrm{T}}\alpha_2 & \cdots, \beta_1^{\mathrm{T}}\alpha_n \\ \beta_2^{\mathrm{T}}\alpha_1 & \beta_2^{\mathrm{T}}\alpha_2 & \cdots, \beta_2^{\mathrm{T}}\alpha_n \\ \vdots & \vdots & & \vdots \\ \beta_n^{\mathrm{T}}\alpha_1 & \beta_n^{\mathrm{T}}\alpha_2 & \cdots, \beta_n^{\mathrm{T}}\alpha_n \end{pmatrix}$,

故有
$$\beta_i^T \alpha_j = \delta_{ij}, i, j = 1, 2, \cdots, n$$
. 于是
$$C^2 = (\alpha_1 \beta_1^T + \alpha_2 \beta_2^T + \cdots + \alpha_k \beta_k^T) \times (\alpha_1 \beta_1^T + \alpha_2 \beta_2^T + \cdots + \alpha_k \beta_k^T)$$

$$= \sum_{i=1}^n \sum_{j=1}^n \alpha_i \beta_i^T \alpha_j \beta_j^T = \sum_{i=1}^n \alpha_i \beta_i^T \alpha_i \beta_i^T = \sum_{i=1}^n \alpha_i \beta_i^T = C.$$

(2) 当 $j = k + 1, k + 2, \dots, n$ 时有 $\beta_i^T \alpha_i = 0, i = 1, 2, \dots, k$ 故有 $C\alpha_j=\alpha_1\beta_1^{\mathrm{T}}\alpha_j+\alpha_2\beta_2^{\mathrm{T}}\alpha_j+\cdots+\alpha_k\beta_k^{\mathrm{T}}\alpha_j=0$. 又因为 A 可逆,故 A 的列 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 非零且线性无关,故 $\alpha_{k+1},\alpha_{k+2},\cdots,\alpha_n$ 为 Cx=0 的 n-k 个线性无关解.

注意到
$$\mathbf{r}(C) = \mathbf{r}(BCA) = \mathbf{r}(B(\alpha_1, \dots, \alpha_k, 0, \dots, 0)) = \mathbf{r}\begin{pmatrix} E_k \\ O \end{pmatrix} = k,$$
 数知 $\alpha_1 \dots \alpha_k \in \mathbb{R}$ 为 $Cx = 0$ 的基础解系

故知 $\alpha_{k+1}, \alpha_{k+2}, \dots, \alpha_n$ 为 Cx = 0 的基础解系.

- 六.(10分) $A = (a_{ij})_{m \times n}, B = (b_{ij})_{n \times k}, AB = O, r(A) + r(B) = n, B 与 C = (\gamma_1, \gamma_2, \dots, \gamma_k)$ 列等价, 证明 $\gamma_1, \gamma_2, \dots, \gamma_k$ 的极大无关组给出 Ax = 0 的一个基础解系.
- 证: 因为 AB = O, r(A) + r(B) = n, 故 B 的极大无关的列可以作为 Ax = 0 的一组基础解系, 即 Ax = 0 的所有解可由 B 的列表示. 又因为 B 与 $C = (\gamma_1, \gamma_2, \dots, \gamma_k)$ 列等价, 故 $\gamma_1, \gamma_2, \dots, \gamma_k$ 的极大无关组也可以表示 Ax = 0 的所有解,再有极大无关组的 无关性可得 $\gamma_1, \gamma_2, \dots, \gamma_k$ 的极大无关组给出 Ax = 0 的一个基础解系.
- 证法二: 因为 B 与 $C=(\gamma_1,\gamma_2,\cdots,\gamma_k)$ 列等价,故存在矩阵 $P=(p_{ij})_{k\times k}$ 使得 C=BP, 且 B 与 C 的列秩相等,即 r(B) = r(C).

知 $\gamma_1, \gamma_2, \dots, \gamma_k$ 的极大无关组给出 Ax = 0 的一个基础解系.