1.
$$\overline{X}$$
 suit la loi normale $\mathcal{N}\left(m; \frac{\sigma^2}{n}\right)$ avec $\sigma = 0,2$ et $m = 4,2$.

Donc
$$\overline{X}$$
 suit la loi normale de moyenne $m = 4.2$ et d'écart type $\frac{0.2}{\sqrt{n}}$.

2. La variable
$$T = \frac{\overline{X} - 4.2}{\frac{0.2}{\sqrt{n}}}$$
 suit la loi normale centrée

réduite
$$\mathcal{N}$$
 (0; 1).

$$P(4,17 \le \overline{X} \le 4,23) = 0,95 \text{ équivaut à :}$$

réduite
$$\mathcal{N}$$
 (0; 1).
 $P(4,17 \le \overline{X} \le 4,23) = 0.95$ équivaut à :
 $P\left(\frac{4,17-4,2}{\frac{0,2}{\sqrt{n}}} \le T \le \frac{4,23-4,2}{\frac{0,2}{\sqrt{n}}}\right) = 0.95$