Theory Of Automata

Assignment #3

$Question \ 1-DFA \ minimization$

Question 2 - RG and PDA

$$\begin{array}{c} \{ \ a^nb^m : (n+m) \ is \ even \ \} \\ (aa)^*(ab+\lambda)(bb)^* \end{array}$$

$$\begin{aligned} &\{a^nb^m, n \geq 4, m \leq 3\} \\ &a^4a^*(b^3{+}b^2{+}b{+}\lambda) \end{aligned}$$

$$\begin{aligned} & \{a^n b^m \,,\, n < 4,\, m \leq 4\} \\ & (a^3 {+} a^2 {+} a {+} \lambda) (b^4 {+} b^3 {+} b^2 {+} b {+} \lambda) \end{aligned}$$

having exactly one pair of consecutive zeros.

$$(1+01)^*00(1+10)^*$$

all strings that contain at least one occurrence of each symbol in alphabet

$$(a+b)^*a(a+b)^*b(a+b)^* + (a+b)^*b(a+b)^*a(a+b)^*$$

all string not ending in 0, 1 λ

all string having at least two occurrences of substring 00 $(0+1)^*00(0+1)^*00(0+1)^*$

$$\{w \vcentcolon n_a(w) \bmod 3 = 0\} \\ (b^*ab^*ab^*ab^*)^*$$

Question 3

$3.1 ightarrow ext{CFG \& PDA}$

The language of even length palindromes

$S \to aSa \mid bSb \mid \lambda$

The language of odd length palindromes

$$S \rightarrow aSa \mid bSb \mid a \mid b$$

The language of all length palindromes

$$S \rightarrow aSa \mid bSb \mid a \mid b \mid \pmb{\lambda}$$

 $ww: w \in \{a, b\}*$ not possible in PDA

$$\begin{aligned} &\left\{a^nb^mc^{n+m}\right\}\\ &S \to aSc \mid B\\ &B \to bBc \mid \lambda \end{aligned}$$

$$egin{aligned} \left\{ \mathbf{a}^{\mathrm{n}}\mathbf{b}^{\mathrm{n+m}}\mathbf{c}^{\mathrm{m}}
ight\} \ & \mathrm{S}
ightarrow \mathrm{AC} \ & \mathrm{A}
ightarrow \mathrm{aAb} \mid \lambda \ & \mathrm{C}
ightarrow \mathrm{bCc} \mid \lambda \end{aligned}$$

$$\begin{aligned} &\left\{\mathbf{a}^{\mathbf{n}}\mathbf{b}^{\mathbf{2m}}\right\} \\ &\mathbf{S} \to \mathbf{AB} \\ &\mathbf{A} \to \mathbf{aA} \mid \boldsymbol{\lambda} \\ &\mathbf{B} \to \mathbf{bbB} \mid \boldsymbol{\lambda} \end{aligned}$$

$egin{aligned} & \left\{ a^{2n}b^{3n} ight\} \ & S ightarrow aaSbbb \mid \lambda \end{aligned}$

$3.2 \rightarrow \text{ Pumping lemma}$

$$L=\{a^{2n}b^{3n}\}$$

If N = 3, then let $w = aabbb \rightarrow x = a$, y = a, z = bbb.

<u>i=0:</u> $xy^iz = abbb$ $\rightarrow does \ not \ belongs \ to \ L$

<u>i=1:</u> $xy^iz = aabbb$ $\rightarrow belongs to L$

<u>i=2:</u> $xy^iz = aaabbb$ $\rightarrow does \ not \ belongs \ to \ L$

<u>i=3:</u> $xy^iz = aaaabbb$ $\rightarrow does \ not \ belongs \ to \ L$

<u>i=4:</u> $xy^iz = aaaaabbb$ $\rightarrow does \ not \ belongs \ to \ L$

<u>i=5:</u> $xy^iz = aaaaaabbb \rightarrow does \ not \ belongs \ to \ L$

Hence, the language is not regular

$$L = \{a^nb^{n+m}c^m\}$$

If N = 3, then let $w = abbc \rightarrow x = a$, y = b, z = bc.

<u>i=0:</u> $xy^iz = abc$ $\rightarrow does \ not \ belongs \ to \ L$

<u>i=1:</u> $xy^iz = abbc$ $\rightarrow belongs to L$

<u>i=2:</u> $xy^iz = abbbc$ $\rightarrow does \ not \ belongs \ to \ L$

i=3: $xy^iz = abbbbc$ → $does \ not \ belongs \ to \ L$

 $\underline{i=4:}$ $xy^iz = abbbbbc$ $\rightarrow does \ not \ belongs \ to \ L$

<u>i=5:</u> $xy^iz = abbbbbbc$ $\rightarrow does \ not \ belongs \ to \ L$

Hence, the language is not regular

$$L = \{a^nba^n\}$$

If N = 3, then let $w = aabaa \rightarrow x = a$, y = a, z = baa.

 \rightarrow does not belongs to L $\underline{i=0}$: $xy^{i}z = abaa$

 $\underline{i=1:}$ $xy^{i}z = aabaa$ \rightarrow belongs to L

 $\underline{i=2:}$ $xy^{i}z = aaabaa$ \rightarrow does not belongs to L

<u>i=3:</u> $xy^iz = aaaabaa \rightarrow does \ not \ belongs \ to \ L$

 $\underline{i=4:}$ $xy^iz = aaaaabaa$
→ $does \ not \ belongs \ to \ L$ $\underline{i=5:}$ $xy^iz = aaaaaabaa$
→ $does \ not \ belongs \ to \ L$

Hence, the language is not regular

$3.3 \rightarrow \text{Stack operations}$

String to derive: aabbb

Saad Bin Khalid Section F 20K-0161

String to derive: abbc


```
egin{aligned} \mathbf{a^nba^n} \ \mathbf{S} &
ightarrow \mathbf{aSa} \mid \mathbf{b} \ \mathbf{a, a} &
ightarrow \mathbf{\lambda} \ \mathbf{b, b} &
ightarrow \mathbf{\lambda} \ \mathbf{S, S} &
ightarrow \mathbf{aSa} \ \mathbf{S, S} &
ightarrow \mathbf{b} \end{aligned}
```

String to derive: aabaa

$Question \ 4-Simplification$


```
S \rightarrow aB \mid bX
A \rightarrow Bad \mid bSX \mid a
B \rightarrow aSB \mid bBX
X \rightarrow SBD \mid aBX \mid ad
S \rightarrow bX
X \rightarrow ad
S \rightarrow bad
```

$Question \ 5-PDA$

$$S \rightarrow xS \mid \varepsilon$$

 $A \rightarrow axb \mid Ab \mid ab$

$$S \rightarrow S+X \mid X$$

$$X \rightarrow X*Y \mid Y$$

$$Y \rightarrow (S)$$

$$\begin{array}{c} \lambda,\,S\to S+X\\ \lambda,\,S\to X\\ \lambda,\,X\to X^*Y & +,\, +\to \lambda\\ \lambda,\,X\to Y & *,\, ^*\to \lambda\\ \lambda,\,Y\to (S) & (,\,(\to\lambda\\),\,)\to \lambda\\ \end{array}$$

$$\begin{split} S &\rightarrow 0S1 \mid 1S0 \mid \epsilon \\ S &\rightarrow 0SX \mid 1SY \mid \epsilon \\ X &\rightarrow 1, Y \rightarrow 0 \end{split}$$

$Question\ 6-Ambiguity$

$$S \rightarrow ABC$$

$$A \rightarrow a, B \rightarrow b, C \rightarrow c$$

unambigious

$$S \,\to\, aS \mid \lambda$$

unambigious

$$X \rightarrow X+X \mid X*X \mid X \mid a$$

ambigious