HW#10 is due today,
HW#10 is due next Friday, may 2nd
Quiz#10 will be administered on Friday may 2nd
Final Exam will cover all sections of the text

Orthogonal Decomposition

Orthogonal Decomposition (1)

Given a subspace W:

Theorem: Every vector x in \mathbb{R}^n can be written as

$$x = x_W + x_{W^{\perp}}$$

for unique vectors x_W in W and $x_{W^{\perp}}$ in W^{\perp} .

The equation $x = x_W + x_{W^{\perp}}$ is called the **orthogonal decomposition** of x with respect to W. The vector x_W is called the **orthogonal projection** of x onto W.

Important observation: x_W is the <u>closest</u> vector to x in W.

 x_W is the closest vector because the vector $x - x_W$ is orthogonal to W. Note that $x - x_W = x_{W^{\perp}}$.

The distance from x to W which is the same as the distance from x to x_W is equal to the length of the vector from x_W to x which is exactly the length of $x_{W^{\perp}}$, $||x_{W^{\perp}}||$.

Orthogonal Decomposition (2)

Theorem: Every vector x in \mathbb{R}^n can be written as

$$x = x_W + x_{W^{\perp}}$$

for unique vectors x_W in W and $x_{W^{\perp}}$ in W^{\perp} .

Showing uniqueness: Suppose $x = x_W + x_{W^{\perp}} = x'_W + x'_{W^{\perp}}$. Then $x_W - x'_W = x_{W^{\perp}} - x_{W^{\perp}}$. So, the left side is in W, and the right side is in W^{\perp} which means the left side is orthogonal to the right side but the only vector that is orthogonal to itself is 0. This implies that $x_W - x_W' = 0$ and $x_{W^{\perp}} - x_{W^{\perp}} = 0$ which, in turn, shows that $x_W = x_W'$ and $x_{W^{\perp}} = x_{W^{\perp}}'$.

To <u>show existence</u> we will shortly show how to compute orthogonal decomposition.

Closest vector and distance. Let W be a subspace of \mathbb{R}^n and let x be a vector in \mathbb{R}^n .

- The orthogonal projection x_W is the closest vector to x in W.
- The distance from x to W is $||x_{W^{\perp}}||$.

Orthogonal Decomposition (3)

Decomposing a vector in \mathbb{R}^3 relative to the *xy*-plane

Let W be the xy -plane. Then what is W^{\perp} ?

The z-axis! Now, let
$$x = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \implies x_W = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$
 and $x_{W^{\perp}} = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$

More generally, let $x = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \implies x_W = \begin{bmatrix} a \\ b \\ 0 \end{bmatrix}$ and $x_{W^{\perp}} = \begin{bmatrix} 0 \\ 0 \\ c \end{bmatrix}$

The given vector has been decomposed into a "horizontal component" (in the *xy*-plane) and a "vertical component" (on the *z*-axis)

Orthogonal Decomposition (4)

How to compute x_W ? And $x_{W^{\perp}}$?

Theorem (The A^TA Trick): Let W be a subspace of \mathbb{R}^n . Let $v_1, v_2, ..., v_m$ be a spanning set

for
$$W$$
, and let $A = \begin{bmatrix} 1 & 1 & 1 \\ v_1 & v_2 & \cdots & v_m \\ 1 & 1 & 1 \end{bmatrix}$. Then for any x in \mathbb{R}^n , the matrix equation
$$A^T A v = A^T x \text{ (the unknown vector is } v\text{)}$$

is consistent, and $x_W = Av$ for any solution v.

Now, to find $x_{W^{\perp}}$, recall that $x_{W^{\perp}} = x - x_{W}$.

Recipe for Computing $x = x_W + x_{W^{\perp}}$

- ▶ Write W as a column space of a matrix A.
- Find a solution v of $A^TAv = A^Tx$ (by row reducing).
- ▶ Then $x_W = Av$ and $x_{W^{\perp}} = x x_W$.

Orthogonal Decomposition (5)

Recipe for Computing $x = x_W + x_{W^{\perp}}$

- ▶ Write W as a column space of a matrix A.
 - Find a solution v of $A^T A v = A^T x$ (by row reducing).
 - ▶ Then $x_W = Av$ and $x_{W^{\perp}} = x x_W$.

Example 1

Example 1

Let
$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and let $W = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ in $\mathbb{R}^3 \middle| x_1 - x_2 + x_3 = 0 \right\}$. Find x_W and compute the distance

from x to W.

We need a basis for W = Nul[1 -1 1]. [1 -1 1] is already in RREF.

$$A^{T}A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \qquad A^{T}x = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

Orthogonal Decomposition (6)

Recipe for Computing $x = x_W + x_{W^{\perp}}$

- ▶ Write W as a column space of a matrix A.
- Find a solution v of $A^T A v = A^T x$ (by row reducing).
- ▶ Then $x_W = Av$ and $x_{W^{\perp}} = x x_W$.

Example 1 (continued)

$$A^{T}A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \qquad A^{T}x = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \qquad \begin{bmatrix} 2 & -1 & 3 \\ -1 & 2 & 2 \end{bmatrix} \xrightarrow{RREF} \begin{bmatrix} 1 & 0 & \frac{8}{3} \\ 0 & 1 & \frac{7}{3} \end{bmatrix} \implies v = \begin{bmatrix} \frac{8}{3} \\ \frac{7}{3} \end{bmatrix}$$

$$x_{W} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{8}{3} \\ \frac{7}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{8}{3} \\ \frac{7}{3} \end{bmatrix}$$

$$x_{W^{\perp}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} \frac{1}{3} \\ \frac{8}{3} \\ \frac{7}{3} \end{bmatrix} = \begin{bmatrix} \frac{2}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{bmatrix}$$

distance from x to W

$$\left| \left| x_{W^{\perp}} \right| \right| = \sqrt{\frac{4}{9} + \frac{4}{9} + \frac{4}{9} = \frac{\sqrt{12}}{3} = \frac{2\sqrt{3}}{3} \approx 1.15$$

Orthogonal Decomposition (7)

Orthogonal Projection Onto a Line

Let $L = \text{Span}\{u\}$ be a line in \mathbb{R}^n and let x be a vector in \mathbb{R}^n . Let's compute x_L

We must solve $u^T uv = u^T x$, where u is an $n \times 1$ matrix. Note that $u^T u = u \cdot u$ and $u^T x = u \cdot x$ so both quantities are scalars. So, $v = \frac{u \cdot x}{u \cdot u}$ $\implies x_L = uv = \frac{u \cdot x}{u \cdot u} u$

The projection of x onto a line $L = Span\{u\}$ is

$$x_L = \frac{u \cdot x}{u \cdot u} u \qquad x_{L^{\perp}} = x - x_L.$$

Orthogonal Decomposition (8)

Projection onto a Line

The projection of x onto a line $L = \text{Span}\{u\}$ is

$$x_L = \frac{u \cdot x}{u \cdot u} u \qquad x_{L^{\perp}} = x - x_L.$$

Example 2

Compute the orthogonal projection of $x = \begin{bmatrix} -5 \\ 5 \end{bmatrix}$ onto the line L spanned by $u = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and

find the distance from x to L.

$$x_{L} = \frac{\begin{bmatrix} 1 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} -5 \\ 5 \end{bmatrix}}{\begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \end{bmatrix}} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \frac{10}{10} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \qquad x_{L^{\perp}} = \begin{bmatrix} -5 \\ 5 \end{bmatrix} - \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -6 \\ 2 \end{bmatrix}$$

distance from x to L

$$||x_{L^{\perp}}|| = \sqrt{36 + 4} = \sqrt{40} = 2\sqrt{10}$$

Orthogonal Decomposition (9)

Projection onto a Line

The projection of x onto a line $L = \text{Span}\{u\}$ is

$$x_L = \frac{u \cdot x}{u \cdot u} u \qquad x_{L^{\perp}} = x - x_L.$$

Example 3

Let
$$L = \text{Span} \left\{ \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \right\}$$
 and let $b = \begin{bmatrix} -2 \\ -3 \\ -1 \end{bmatrix}$. Find b_L and $b_{L^{\perp}}$.

$$b_{L} = \frac{\begin{bmatrix} -1\\1\\1\end{bmatrix} \cdot \begin{bmatrix} -2\\-3\\-1\end{bmatrix}}{\begin{bmatrix} -1\\1\\1\end{bmatrix} \cdot \begin{bmatrix} -1\\1\\1\end{bmatrix}} \begin{bmatrix} -1\\1\\1\end{bmatrix} = \frac{-2}{3} \begin{bmatrix} -1\\1\\1\end{bmatrix} = \begin{bmatrix} \frac{2}{3}\\-\frac{2}{3}\\-\frac{2}{3} \end{bmatrix}$$

$$b_{L^{\perp}} = \begin{bmatrix} -2\\-3\\-1\end{bmatrix} - \begin{bmatrix} \frac{2}{3}\\-\frac{2}{3}\\-\frac{2}{3} \end{bmatrix} = \begin{bmatrix} -\frac{8}{3}\\-\frac{7}{3}\\-\frac{1}{3} \end{bmatrix}$$

$$b_{L^{\perp}} = \begin{bmatrix} -2 \\ -3 \\ -1 \end{bmatrix} - \begin{bmatrix} \frac{2}{3} \\ -\frac{2}{3} \\ -\frac{2}{3} \end{bmatrix} = \begin{bmatrix} -\frac{8}{3} \\ \frac{7}{7} \\ -\frac{7}{3} \\ \frac{1}{-\frac{1}{3}} \end{bmatrix}$$

Orthogonal Decomposition (10)

Example 4

Find
$$x_W$$
 if $x = \begin{bmatrix} 6 \\ 5 \\ 4 \end{bmatrix}$ and $W = \text{Span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$.

Steps: Find A^TA and A^Tx . Then solve $A^TAv = A^Tx$ for v. Then use $x_W = Av$

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad A^{T} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad A^{T}A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \quad A^{T}X = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 \\ 1 &$$

How far is *x* from *W*?

Orthogonal Decomposition (11)

Corollary: Let *A* be an $m \times n$ matrix with <u>linearly independent</u> columns and let W = Col(A). Then the $n \times n$ matrix $A^T A$ is invertible, and for all vectors x in \mathbb{R}^m , we have

Example 5

$$x_W = A(A^T A)^{-1} A^T x$$

Let
$$W = \text{Span}\left\{\begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}\right\}$$
 and let $x = \begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix}$. Find a matrix expression for x_W in terms of x_1, x_2, x_3 . Use the above corollary. Use your result to find x_W if $x = \begin{bmatrix} 1\\0 \end{bmatrix}$.

$$x_1, x_2, x_3$$
. Use the above corollary. Use your result to find x_W if $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

$$A = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \quad A^T = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad A^T = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad A^T = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad A^T = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad A^T = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad A^T = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad A^T = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad A^T = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad A^T = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad A^T = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad A^T = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad A^T = \begin{bmatrix} 1 \\ 0 \\$$

Orthogonal Decomposition (12)

Orthogonal projections as transformations

Properties of Orthogonal Projections. Let W be a subspace of \mathbb{R}^n and define

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$$
 by $T(x) = x_W$. Then:

- \succ T is a linear transformation.
- $ightharpoonup T(x) = x ext{ if and only if } x ext{ is in } W.$
- ightharpoonup T(x) = 0 if and only if x is in W^{\perp} .
- $\succ T \circ T = T$
- \triangleright The range of *T* is *W*.