Courses 7 - Production ML Systems

Module 4: Designing High-Performance ML Systems

Lesson Title: Introduction

Format: Presenter

Presenter: Laurence Moroney

Video Name: T-PSML-O_4_I1_introduction

Designing High Performance ML Systems

Laurence Moroney

Title Safe >

Learn how to...

Identify performance considerations for ML models

Choose appropriate ML infrastructure

Select a distribution strategy

Learn how to...

Identify performance considerations for ML models

Choose appropriate ML infrastructure

Select a distribution strategy

Learn how to...

Identify performance considerations for ML models

Choose appropriate ML infrastructure

Select a distribution strategy

Courses 7 - Production ML Systems

Module 4: Designing High-Performance ML Systems

Lesson Title: Aspects of performance: Training

Format: Presenter

Presenter: Laurence Moroney

Video Name: T-PSML-O_4_I2_aspects_of_performance:_training

Agenda

Distributed training

Faster input pipelines

Data parallelism (All Reduce)

Parameter Server approach

Inference

The state of the s

Accuracy

Model Training can take a long time

Hours

The transmitted of the state of

Model Training can take a long time

The state of the s

Accuracy

Model Training can take a long time

Analyze Benefit of Model vs Running Cost

Optimize training dataset size

Choosing optimized infrastructure

Use earlier model checkpoints

Constraint	

Constraint	Input / Output

Constraint	Input / Output	CPU	

Constraint	Input / Output	CPU	Memory

Constraint	Input / Output	CPU	Memory
Commonly Occurs	Large inputs Input requires parsing Small models		

Constraint	Input / Output	CPU	Memory
Commonly Occurs	Large inputs Input requires parsing Small models	Expensive computations Underpowered Hardware	

Constraint	Input / Output	CPU	Memory
Commonly Occurs	Large inputs Input requires parsing Small models	Expensive computations Underpowered Hardware	Large number of inputs Complex model

Constraint	Input / Output	CPU	Memory
Commonly Occurs	Large inputs Input requires parsing Small models	Expensive computations Underpowered Hardware	Large number of inputs Complex model
Take Action	Store efficiently Parallelize reads Consider batch size		

Constraint	Input / Output	CPU	Memory
Commonly Occurs	Large inputs Input requires parsing Small models	Expensive computations Underpowered Hardware	Large number of inputs Complex model
Take Action	Store efficiently Parallelize reads Consider batch size	Train on faster accel. Upgrade processor Run on TPUs Simplify model	

Tuning Performance to reduce training time, reduce cost, and increase scale

Constraint	Input / Output	CPU	Memory
Commonly Occurs	Large inputs Input requires parsing Small models	Expensive computations Underpowered Hardware	Large number of inputs Complex model
Take Action	Store efficiently Parallelize reads Consider batch size	Train on faster accel. Upgrade processor Run on TPUs Simplify model	Add more memory Use fewer layers Reduce batch size

Courses 7 - Production ML Systems

Module 4: Designing High-Performance ML Systems

Lesson Title: Aspects of Performance: Predictions

Format: Presenter

Presenter: Laurence Moroney

Video Name: T-PSML-O_4_I3_aspects_of_performance:_predictions

Performance must consider prediction-time, not just training

Optimizing your Batch Prediction

Optimizing your Batch Prediction

Optimizing your Batch Prediction

Optimizing your Online Predictions

Optimizing your Online Predictions

Single-Machine

Optimizing your Online Predictions

Optimizing your Online Predictions

Courses 7 - Production ML Systems

Module 4: Designing High-Performance ML Systems

Lesson Title: Why distributed training?

Format: Presenter

Presenter: Laurence Moroney

Video Name: T-PSML-O_4_I4_why_distributed_training

Improving performance also adds complexity

Improving performance also adds complexity

DISTRIBUTED SYSTEMS

Improving performance also adds complexity

Machine learning gets complex quickly

Heterogeneous systems require our code to work anywhere

Heterogeneous systems require our code to work anywhere

Deep learning works because datasets are large, but the compute required keeps increasing

The unreasonable effectiveness of data

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/35179.pdf

Deep Learning scaling is predictable, empirically https://arxiv.org/abs/1712.00409

Deep learning works because datasets are large, but the compute required keeps increasing

https://blog.openai.com/ai-and-compute/

Distributed systems are a necessity for managing complex models with large data volumes

Large models could have millions of weights

Training can take a long time

Hours

Training can take a long time

Hours

How can you make model training faster?

Gaining speed through parallel training

Gaining speed through parallel training

Scaling with Distributed Training

Courses 7 - Production ML Systems

Module 4: Designing High-Performance ML Systems

Lesson Title: Distributed training architectures

Format: Presenter

Presenter: Laurence Moroney

Video Name: T-PSML-O_4_I5_distributed_training_architectures

Distributed Training Architectures

Adding a single accelerator

Adding many accelerators to a single device

Adding many machines with many possible devices

Two approaches to Data Parallelism

- 1. Parameter server
- 2. Sync Allreduce

Two approaches to Data Parallelism

- 1. Parameter server
- 2. Sync Allreduce

Sync Allreduce Architecture

Sync Allreduce Architecture

Sync Allreduce

Many low-power or unreliable workers

Consider Sync Allreduce if...

Many low-power or unreliable workers

Consider Sync Allreduce if...

Multiple devices on one host Fast devices with strong links (e.g. TPUs)

Many low-power or unreliable workers

More mature approach

Consider Sync Allreduce if...

Multiple devices on one host Fast devices with strong links (e.g. TPUs)

Many low-power or unreliable workers

More mature approach

Consider Sync Allreduce if...

Multiple devices on one host Fast devices with strong links (e.g. TPUs)

Better for multiple GPUs

Many low-power or unreliable workers

More mature approach

Constrained by I/O

Consider Sync Allreduce if...

Multiple devices on one host Fast devices with strong links (e.g. TPUs)

Better for multiple GPUs

Many low-power or unreliable workers

More mature approach

Constrained by I/O

Consider Sync Allreduce if...

Multiple devices on one host Fast devices with strong links (e.g. TPUs)

Better for multiple GPUs

Constrained by compute power

Model Parallelism

Courses 7 - Production ML Systems

Module 4: Designing High-Performance ML Systems

Lesson Title: Faster input pipelines

Format: Presenter

Presenter: Laurence Moroney

Video Name: T-PSML-O_4_I6_faster_input_pipelines

Agenda

Distributed training

Faster input pipelines

Data parallelism (All Reduce)

Parameter Server approach

Inference

Faster input pipelines

Training data

Reading Data into TensorFlow

1. Directly feed from Python

Reading Data into TensorFlow

2. Native TensorFlow Ops

Reading Data into TensorFlow

3. Read transformed tf records

1. Feed TensorFlow directly from Python

Shuffle the data

Courses 7 - Production ML Systems

Module 4: Designing High-Performance ML Systems

Lesson Title: Native TensorFlow Operations

Format: Screencast

Presenter: Laurence Moroney

Video Name: T-PSML-O_4_I7_native_tensorflow_operations

2. Using native TensorFlow ops to read CSV files

dataset = dataset.repeat(num_epochs).batch(batch_size)

return dataset.make_one_shot_iterator().get_next()

return _input_fn

```
CSV_COLUMNS = ['fare_amount', 'pickuplon','pickuplat',..., 'key']
                                                                                            TensorFlow
LABEL_COLUMN = 'fare_amount'
DEFAULTS = [[0.0], [-74.0], [40.0], [-74.0], [40.7], [1.0], ['nokey']]
def read_dataset(filename, mode, batch_size = 512):
  def _input_fn():
    def decode_csv(value_column):
      columns = tf.decode csv(value column, record defaults = DEFAULTS)
      features = dict(zip(CSV_COLUMNS, columns))
      label = features.pop(LABEL COLUMN)
      return features, label
    file_list = tf.gfile.Glob(filename) # create list of files that match pattern
    dataset = tf.data.TextLineDataset(file_list).map(decode_csv) # create dataset from file list
    if mode == tf.estimator.ModeKeys.TRAIN:
        num epochs = None # indefinitely
        dataset = dataset.shuffle(buffer size = 10 * batch size)
    else:
        num epochs = 1 # end-of-input after this
```

2. Using native TensorFlow ops to read CSV files

```
TensorFlow
```

```
CSV_COLUMNS = ['fare_amount', 'pickuplon','pickuplat',..., 'key']
LABEL_COLUMN = 'fare_amount'
DEFAULTS = [[0.0], [-74.0], [40.0], [-74.0], [40.7], [1.0], ['nokey']]
def read_dataset(filename, mode, batch_size = 512):
  def _input_fn():
    def decode_csv(value_column):
      columns = tf.decode csv(value column, record defaults = DEFAULTS)
      features = dict(zip(CSV_COLUMNS, columns))
      label = features.pop(LABEL COLUMN)
      return features, label
    file_list = tf.gfile.Glob(filename) # create list of files that match pattern
    dataset = tf.data.TextLineDataset(file_list).map(decode_csv) # create dataset from file list
    if mode == tf.estimator.ModeKeys.TRAIN:
        num epochs = None # indefinitely
        dataset = dataset.shuffle(buffer size = 10 * batch size)
    else:
        num epochs = 1 # end-of-input after this
    dataset = dataset.repeat(num_epochs).batch(batch_size)
    return dataset.make_one_shot_iterator().get_next()
  return _input_fn
```


2. Using native TensorFlow ops to read images


```
# Reads an image from a file, decodes it into a dense tensor, and resizes it to a fixed shape.
def _parse_function(filename, label):
    image_string = tf.read_file(filename)
    image_decoded = tf.image.decode_image(image_string)
    image_resized = tf.image.resize_images(image_decoded, [299, 299])
    return image_resized, label

# A vector of filenames.
file_list = tf.gfile.Glob(filename)
filenames = tf.constant(file_list)

# labels[i] is the label for the image in filenames[i].
labels = tf.constant(label_list)
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
dataset = dataset.map(_parse_function)
```

Courses 7 - Production ML Systems

Module 4: Designing High-Performance ML Systems

Lesson Title: TensorFlow Records

Format: Screencast

Presenter: Laurence Moroney

Video Name: T-PSML-O_4_I8_tensorflow_records

3. Preprocess data into TFRecord

```
def convert_to_example(csvline, categories):
  filename, label = csvline.encode('ascii', 'ignore').split(',')
  if label in categories:
    coder = ImageCoder()
    image_buffer, height, width = _get_image_data(filename, coder)
    example = _convert_to_example(filename, image_buffer,
                                   categories.index(label), label, height, width)
    yield example.SerializeToString()
LABELS = ['nails', 'screws']
(p
   beam.FlatMap(lambda line: convert_to_example(line, LABELS))
   beam.io.tfrecordio.WriteToTFRecord(os.path.join(OUTPUT_DIR, 'train')))
# https://github.com/tensorflow/tpu/blob/master/tools/datasets/jpeg_to_tf_record.py
```

3. Can use Tensorflow Transform to create tf records

3. Writing TFRecord from Spark

import org.apache.spark.sql.DataFrame

df.write.format("tfrecords").option("recordType", "Example").save(path)

Warning! Because preprocessing is carried out on DataFrame using Spark, you need to repeat the preprocessing during prediction using Spark Streaming (the code is different).

3. Read TFRecord produced by tf.transform or Spark

```
from tensorflow transform.saved import input fn maker
def gzip reader fn():
 return tf.TFRecordReader(options=tf.python io.TFRecordOptions(
                                                                               gzipped files
      compression type=tf.python io. TFRecordCompressionType.GZIP))
def get input fn(transformed metadata, transformed data paths, batch size, mode):
 return input_fn_maker.build_training_input_fn(
                                                             tf.transform writes out the
     metadata=transformed_metadata,
                                                             TFRecords with metadata
     file pattern=(
         transformed_data_paths[0] if len(transformed_data_paths) == 1
          else transformed data paths),
      training batch size=batch size,
                                                                Each read is of
      label keys=[TARGET FEATURE COLUMN],
                                                                Batch SIZE recs
      reader=gzip reader fn,
      key_feature_name=KEY_FEATURE_COLUMN,
     reader_num_threads=4,
      queue capacity=batch size * 2,
      randomize input=(mode != tf.contrib.learn.ModeKeys.EVAL),
     num epochs=(1 if mode == tf.contrib.learn.ModeKeys.EVAL else None))
```

Courses 7 - Production ML Systems

Module 4: Designing High-Performance ML Systems

Lesson Title: Parallel pipelines

Format: Screencast

Presenter: Laurence Moroney

Video Name: T-PSML-O_4_I9_parallel_pipelines

Three approaches to reading data into TensorFlow

Native TensorFlow ops

Read transformed tf records

A simple input pipeline for an image model


```
def input_fn(batch_size):
    files = tf.data.Dataset.list_files(file_pattern)
    dataset = tf.data.TFRecordDataset(files)
    dataset = dataset.shuffle(10000)
    dataset = dataset.repeat(NUM_EPOCHS)
    dataset = dataset.map(preproc_fn)
    dataset = dataset.batch(batch_size)
    return dataset
```

Input pipeline as an ETL Process

A simple input pipeline for an image model


```
def input_fn(batch_size):
  files = tf.data.Dataset.list_files(file_pattern)
  dataset = tf.data.TFRecordDataset(files)
  dataset = dataset.shuffle(10000)
  dataset = dataset.repeat(NUM_EPOCHS)
  dataset = dataset.map(preproc_fn)
  dataset = dataset.batch(batch_size)
  return dataset
```

Input pipeline bottleneck

Time

1. Parallelize file reading


```
def input_fn(batch_size):
 files = tf.data.Dataset.list_files(file_pattern)
 dataset = tf.data.TFRecordDataset(files, num_parallel_reads=40)
 dataset = dataset.shuffle(buffer_size=10000)
 dataset = dataset.repeat(NUM_EPOCHS)
 dataset = dataset.map(preproc_fn)
                                            Parallelize
 dataset = dataset.batch(batch_size)
                                            file reading
  return dataset
                                            from Google
                                            Cloud Storage
```

2. Parallelize map for transformations


```
def input_fn(batch_size):
 files = tf.data.Dataset.list_files(file_pattern)
 dataset = tf.data.TFRecordDataset(files, num_parallel_reads=40)
 dataset = dataset.shuffle(buffer_size=10000)
  dataset = dataset.repeat(NUM_EPOCHS)
  dataset = dataset.map(preproc_fn, num_parallel_calls=40)
  dataset = dataset.batch(batch_size)
  return dataset
                               Parallelize across many
                               CPU cores
```

3. Pipelining with prefetching


```
def input_fn(batch_size):
 files = tf.data.Dataset.list_files(file_pattern)
 dataset = tf.data.TFRecordDataset(files, num_parallel_reads=40)
 dataset = dataset.shuffle(buffer_size=10000)
 dataset = dataset.repeat(NUM_EPOCHS)
 dataset = dataset.map(preproc_fn, num_parallel_calls=40)
 dataset = dataset.batch(batch_size)
 dataset = dataset.prefetch(buffer_size=1)
  return dataset
                   Prefetch pipelines everything above
                   with the accelerator training
```

Input pipeline bottleneck

Time

Updated Input pipeline

4. Using fused transformation ops


```
def input_fn(batch_size):
    files = tf.data.Dataset.list_files(file_pattern)
    dataset = tf.data.TFRecordDataset(files, num_parallel_reads=40)
    dataset = dataset.shuffle(buffer_size=10000)
    dataset = dataset.repeat(NUM_EPOCHS)
    dataset = dataset.map(preproc_fn, num_parallel_calls=40)
    dataset = dataset.batch(batch_size)
    dataset = dataset.prefetch(buffer_size=1)
    return dataset
```

4. Using fused transformation ops


```
def input_fn(batch_size):
    files = tf.data.Dataset.list_files(file_pattern)
    dataset = tf.data.TFRecordDataset(files, num_parallel_reads=40)
    dataset = dataset.shuffle(buffer_size=10000)
    dataset = dataset.repeat(NUM_EPOCHS)
    dataset = dataset.map(preproc_fn, num_parallel_calls=40)
    dataset = dataset.batch(batch_size)
    dataset = dataset.prefetch(buffer_size=1)
    return dataset
```

4. Using fused transformation ops


```
def input_fn(batch_size):
  files = tf.data.Dataset.list_files(file_pattern)
  dataset = tf.data.TFRecordDataset(files, num_parallel_reads=40)
  dataset = dataset.apply(
      tf.contrib.data.shuffle_and_repeat(buffer_size=10000, NUM_EPOCHS))
  dataset = dataset.apply(
      tf.contrib.data.map_and_batch(parser_fn, batch_size))
  dataset = dataset.prefetch(buffer_size=1)
  return dataset
```

Updated Input pipeline

Accelerator nearly 100%
Time utilized

Courses 7 - Production ML Systems

Module 4: Designing High-Performance ML Systems

Lesson Title: Data parallelism with All Reduce

Format: On-Camera Screencast

Presenter: Laurence Moroney

Video Name: T-PSML-O_4_I10_data_parallelism_with_all_reduce

Agenda

Distributed training

Faster input pipelines

Data parallelism (All Reduce)

Parameter Server approach

Inference

Data parallelism is a way to increase training throughput

Distribution API Strategy

```
with tf.device("/cpu:0"):
    W = tf.Variable(...)
    b = tf.Variable(...)
with tf.device("/gpu:0"):
    output = tf.matmul(input, W) + b
    loss = f(output)
```


Distribution API Strategy

Easy to use

Fast to train

Training with Estimator API


```
run_config = tf.estimator.RunConfig()

classifier = tf.estimator.Estimator(
    model_fn=model_function,
    model_dir=model_dir,
    config=run_config)

classifier.train(input_fn=input_function)
```

Training with Estimator API


```
distribution = tf.contrib.distribute.MirroredStrategy()
                               MirroredStrategy for
                               multi GPU distribution
run_config = tf.estimator.RunConfig(train_distribute=distribution)
                                        Pass the
classifier = tf.estimator.Estimator(
                                        distribution to
   model_fn=model_function,
                                        RunConfig
   model_dir=model_dir,
   config=run_config)
classifier.train(input_fn=input_function)
```


Mirrored Strategy

Mirrored Strategy

- No change to the model or training loop
- No change to input function (requires tf.data.Dataset)
- Checkpoints and summaries are seamless

Mirrored Strategy Demo

Demo goes here

Training Time §

All Submissions

Objective: Time taken to train an image classification model to a top-5 validation accuracy of 93% or greater on ImageNet.

Rank	Time to 93% Accuracy	Model	Hardware	Framework
1 Apr 2018	0:30:43	ResNet50 Google source	Half of a TPUv2 Pod	TensorFlow 1.8.0-rc1
2 Apr 2018	1:06:32	AmoebaNet-D N6F256 Google source	1/4 of a TPUv2 Pod	TensorFlow 1.8.0-rc1
3 Apr 2018	1:58:24	AmoebaNet-D N6F256 Google source	1/16 of a TPUv2 Pod	TensorFlow 1.8.0-rc1
4 Apr 2018	2:57:28	Resnet 50 fast.ai + students team: Jeremy Howard, Andrew Shaw, Brett Koonce, Sylvain Gugger source	8 * V100 (AWS p3.16xlarge)	fastai / pytorch
5 Apr 2018	3:25:55	ResNet50 Intel(R) Corporation source	128 nodes with Xeon Platinum 8124M / 144 GB / 36 Cores (Amazon EC2 [c5.18xlarge])	Intel(R) Optimized Caffe

https://dawn.cs.stanford.edu/benchmark/

Courses 7 - Production ML Systems

Module 4: Designing High-Performance ML Systems

Lesson Title: Parameter Server Approach

Format: Presenter

Presenter: Laurence Moroney

Video Name: T-PSML-O_4_I11_parameter_server_approach

Agenda

Distributed training

Faster input pipelines

Data parallelism (All Reduce)

Parameter Server approach

Inference

Data parallelism is a way to increase training throughput

Model parallelism lets you distribute a model across GPUs

Large embeddings need multiple machines to map sparse data

Estimator train and evaluate() handles all this

Estimator contains the implementation of three functions

By encapsulating details about sessions and graphs, it also supports exporting the model for serving

train_and_evaluate bundles together a distributed workflow


```
def train_and_evaluate(output_dir, config, params):
  features = [tf.feature column.embedding column(...),
              tf.feature column.bucketized column(...)]
  estimator = tf.estimator.Estimator(model_fn = simple_rnn,
                         model dir = output dir)
  train_spec = tf.estimator.TrainSpec(input_fn = get_train(),
                                    \max \text{ steps} = 1000)
  exporter = tf.estimator.LatestExporter('exporter', serving_input_fn)
  eval_spec = tf.estimator.EvalSpec(input_fn = get_valid(),
                                   steps = None,
                                   exporters = exporter)
  tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
                                      Runs training, evaluation, etc.
                                      on Cloud ML
train_and_evaluate(output_dir)
```

Courses 7 - Production ML Systems

Module 4: Designing High-Performance ML Systems

Lesson Title: Inference

Format: Presenter

Presenter: Laurence Moroney

Video Name: T-PSML-O_4_I12_inference

Agenda

Distributed training

Faster input pipelines

Data parallelism (All Reduce)

Parameter Server approach

Inference

Performance must consider prediction-time, not just training

Aspects of performance during inference

Implementation Options

For Streaming Pipelines

Implementation Options

For Streaming Pipelines

For Batch Pipelines

Implementation Options

For Streaming Pipelines

For Batch Pipelines For Batch and Streaming Pipelines

Batch = Bounded Dataset

SELECT * FROM sales
WHERE date = '2018-01-01'

Performance for Streaming Pipelines

Courses 7 - Production ML Systems

Module 4: Designing High-Performance ML Systems

Lesson Title: Summary

Format: Presenter

Presenter: Laurence Moroney

Video Name: T-PSML-O_4_I13_summary

Consider Async Parameter Server if...

Many low-power or unreliable workers

More mature approach

Constrained by I/O

Consider Sync Allreduce if...

Multiple devices on one host Fast devices with strong links (e.g. TPUs)

Better for multiple GPUs

Constrained by compute power

Courses 7 - Production ML Systems

Module 4: Designing High-Performance ML Systems

Lesson Title: Minimalist Core [optional]

Format: Presenter

Presenter: Laurence Moroney

Video Name: T-PSML-O_4_I14_minimalist_core_[optional]

Distributed TensorFlow has a minimalist core. The core can be done on a single machine.

Distributed TensorFlow has a minimalist core The core can be done on a single machine.

You can assign variables to devices

```
with tf.device("/cpu:0"):
    W = tf.Variable(...)
    b = tf.Variable(...)
with tf.device("/gpu:0"):
    output = tf.matmul(input, W) + b
    loss = f(output)
```

Client

```
/job:worker/task:0/
cpu:0 gpu:0
```


GOOGLE

You can assign variables to devices

```
with tf.device("/cpu:0"):
    W = tf.Variable(...)
    b = tf.Variable(...)
with tf.device("/gpu:0"):
    output = tf.matmul(input, W) + b
    loss = f(output)
```

```
/job:worker/task:0/
cpu:0 gpu:0
```


GOOGLE Title Safe > < Action Safe

TensorFlow inserts necessary data transfers

```
with tf.device("/cpu:0"):
    W = tf.Variable(...)
    b = tf.Variable(...)
with tf.device("/gpu:0"):
    output = tf.matmul(input, W) + b
    loss = f(output)
```

```
/job:worker/task:0/
cpu:0 gpu:0
```


TensorFlow inserts necessary data transfers

```
with tf.device("/cpu:0"):
    W = tf.Variable(...)
    b = tf.Variable(...)
with tf.device("/gpu:0"):
    output = tf.matmul(input, W) + b
    loss = f(output)
```


What if you have a second machine?

```
with tf.device("/cpu:0"):
    W = tf.Variable(...)
    b = tf.Variable(...)
with tf.device("/gpu:0"):
    output = tf.matmul(input, W) + b
    loss = f(output)
```

Client

/job:worker/task:0/

cpu:0 gpu:0

/job:ps/task:0/
cpu:0

Title Safe >

< Action Safe

GOOGLE

What if you have a second machine?

```
with tf.device("/cpu:0"):
    W = tf.Variable(...)
    b = tf.Variable(...)
with tf.device("/gpu:0"):
    output = tf.matmul(input, W) + b
    loss = f(output)
```


GOOGLE Title Safe > < Action Safe

Assign different tasks to different machines

```
with tf.device("/job:ps/task:0/cpu:0"):
    W = tf.Variable(...)
    b = tf.Variable(...)
with tf.device("/job:worker/task:0/gpu:0"):
    output = tf.matmul(input, W) + b |
    loss = f(output)
```

Client

/job:worker/task:0/

cpu:0 gpu:0

/job:ps/task:0/
cpu:0

Assign different tasks to different machines

```
with tf.device("/job:ps/task:0/cpu:0"):
        W = tf.Variable(...)
         b = tf.Variable(...)
      with tf.device("/job:worker/task:0/gpu/:0"):
        output = tf.matmul(input, W) + b
         loss = f(output)
        Client
/job:worker/task:0/
                                        /job:ps/task:0/
  cpu:0
             gpu:0
                                             cpu:0
```

GOOGLE Title Safe > < Action Safe

Now, the graph is split between two processes ...

```
with tf.device("/job:ps/task:0/cpu:0"):
    W = tf.Variable(...)
    b = tf.Variable(...)
with tf.device("/job:worker/task:0/gpu:0"):
    output = tf.matmul(input, W) + b
    loss = f(output)
```


Now, the graph is split between two processes ...

```
with tf.device("/job:ps/task:0/cpu:0"):
    W = tf.Variable(...)
    b = tf.Variable(...)
with tf.device("/job:worker/task:0/gpu:0"):
    output = tf.matmul(input, W) + b
    loss = f(output)
```


... we just get need to get the device placements right

```
with tf.device("/job:ps/task:0/cpu:0"):
    W = tf.Variable(...)
    b = tf.Variable(...)
with tf.device("/job:worker/task:0/gpu:0"):
    output = tf.matmul(input, W) + b
    loss = f(output)
```

Client

Title Safe >

... we just get need to get the device placements right

```
with tf.device("/job:ps/task:0/cpu:0"):
    W = tf.Variable(...)
    b = tf.Variable(...)
with tf.device("/job:worker/task:0/gpu:0"):
    output = tf.matmul(input, W) + b
    loss = f(output)
```

Client

Title Safe >

Courses 7 - Production ML Systems

Module 4: Designing High-Performance ML Systems

Lesson Title: Simplifying device placement [optional]

Format: Screencast

Presenter: Laurence Moroney

Video Name:

T-PSML-O_4_I15_simplifying_device_placement_[optional]

One way to simplify this is to think in terms of parameter servers and worker replicas

PS tasks

- Variables
- Update ops

Worker tasks

- Pre-processing
- Loss calculation
- Backpropagation

In TensorFlow, it's the same program for both

PS tasks

- Variables
- Update ops

Worker tasks

- Pre-processing
- Loss calculation
- Backpropagation

Use in-graph replication: if a single step can be done on a single machine

Each worker works on different subsets of the data

With in-graph replication, data is broken into equal-sized chunks and each worker works on a chunk

Replicas are run in parallel, and loss is averaged across workers

```
with tf.device("/job:ps/task:0/cpu:0"):
                            W = tf.Variable(...)
                            b = tf.Variable(...)
                          inputs = tf.split(0, num_workers, input)
                          outputs = []
                          for i in range(num_workers):
                            with tf.device("/job:worker/task:%d/gpu:0" %
                          i):
                               outputs.append(tf.matmul(input[i], W) + b)
      Client
                           loss = f(outputs)
/job:worker/task:0/
                                                                 /job:worker/task:1/
                                   /job:ps/task:0/
                                                                   gpu:0
                                                                            cpu:0
 cpu:0
          gpu:0
                                       cpu:0
```

Courses 7 - Production ML Systems

Module 4: Designing High-Performance ML Systems

Lesson Title: Between-graph replication [optional]

Format: Screencast

Presenter: Laurence Moroney

Video Name: T-PSML-O_4_I16_between-graph_replication_[optional]

In-graph replication doesn't work for very large models

In between-graph replication, there are multiple client programs; this is the recommended approach in Cloud MLE

Client

Both clients build the same graph

```
with tf.device("/job:ps/task:0/cpu:0"):
  W = tf.Variable(...)
  b = tf.Variable(...)
with tf.device("/job:worker/task:0/gpu:0"):
  output = tf.matmul(input, W) + b
  loss = f(output)
```

```
with tf.device("/job:ps/task:0/cpu:0"):
  W = tf.Variable(...)
  b = tf.Variable(...)
with tf.device("/job:worker/task:1/gpu:0"):
  output = tf.matmul(input, W) + b
  loss = f(output)
```

Client

/job:worker/task:0/ gpu:0 cpu:0

/job:ps/task:0/ cpu:0

/job:worker/task:1/ gpu:0 cpu:0

Local devices get a replica from "their" client

```
with tf.device("/job:ps/task:0/cpu:0"):
    W = tf.Variable(...)
    b = tf.Variable(...)
with tf.device("/job:worker/task:0/gpu:0"):
    output = tf.matmul(input, W) + b
    loss = f(output)
```

```
with tf.device("/job:ps/task:0/cpu:0"):
    W = tf.Variable(...)
    b = tf.Variable(...)
with tf.device("/job:worker/task:1/gpu:0"):
    output = tf.matmul(input, W) + b
    loss = f(output)
```

Client

```
/job:worker/task:0/
cpu:0
gpu:0
```


Machines without a client share variables, leading to shared storage

```
with tf.device("/job:ps/task:0/cpu:0"):
with tf.device("/job:ps/task:0/cpu:0"):
  W = tf.Variable(...)
                                                        W = tf.Variable(...)
  b = tf.Variable(...)
                                                        b = tf.Variable(...)
                                                      with tf.device("/job:worker/task:1/gpu:0"):
with tf.device("/job:worker/task:0/gpu:0"):
  output = tf.matmul(input, W) + b
                                                        output = tf.matmul(input, W) + b
  loss = f(output)
                                                        loss = f(output)
          Client
                                                                                        Client
   /job:worker/task:0/
                                            /job:ps/task:0/
                                                                              /job:worker/task:1/
                                                                                gpu:0
     cpu:0
               gpu:0
                                                cpu:0
                                                                                          cpu:0
```

Here, weights and biases are shared, but loss is not

```
with tf.device("/job:ps/task:0/cpu:0"):
with tf.device("/job:ps/task:0/cpu:0"):
  W = tf.Variable(...)
                                                        W = tf.Variable(...)
  b = tf.Variable(...)
                                                        b = tf.Variable(...)
                                                      with tf.device("/job:worker/task:1/gpu:0"):
with tf.device("/job:worker/task:0/gpu:0"):
  output = tf.matmul(input, W) + b
                                                        output = tf.matmul(input, W) + b
  loss = f(output)
                                                        loss = f(output)
          Client
                                                                                        Client
                                                                              /job:worker/task:1/
   /job:worker/task:0/
                                            /job:ps/task:0/
                                                                                gpu:0
     cpu:0
               gpu:0
                                                                                          cpu:0
```

Defining variable placement with strings is brittle

```
with tf.device("/job:ps/task:0"):
    weights_1 = tf.get_variable("weights_1", [784, 100])
with tf.device("/job:ps/task:1"):
    biases_1 = tf.get_variable("biases_1", [100])
with tf.device("/job:ps/task:2"):
    weights_2 = tf.get_variable("weights_2", [100, 10])
    biases_2 = tf.get_variable("biases_2", [10])
Hardcoding strings in your
program is a bad idea
```

/job:ps/task:0

weights_1

/job:ps/task:1

biases_1

/job:ps/task:2

weights_2

biases_2

Courses 7 - Production ML Systems

Module 4: Designing High-Performance ML Systems

Lesson Title: Device Placement Strategies [optional]

Format: Screencast

Presenter: Laurence Moroney

Video Name: T-PSML-O_4_I17_device_placement_strategies_[optional]

Defining variable placement with strings is brittle

```
with tf.device("/job:ps/task:0"):
    weights_1 = tf.get_variable("weights_1", [784, 100])
with tf.device("/job:ps/task:1"):
    biases_1 = tf.get_variable("biases_1", [100])
with tf.device("/job:ps/task:2"):
    weights_2 = tf.get_variable("weights_2", [100, 10])
    biases_2 = tf.get_variable("biases_2", [10])
Hardcoding strings in your
program is a bad idea
```

/job:ps/task:0

weights_1

/job:ps/task:1

biases_1

/job:ps/task:2

weights_2

biases_2

Use device placement functions instead

```
with
tf.device(tf.train.replica_device_setter(ps_tasks=3)):

weights_1 = tf.get_variable("weights_1", [784, 100])
biases_1 = tf.get_variable("biases_1", [100])
weights_2 = tf.get_variable("weights_2", [100, 10])
biases_2 = tf.get_variable("biases_2", [10])
```

Variables are assigned in round-robin fashion, so this is between-graph replication

/job:ps/task:0

weights_1

biases_2

/job:ps/task:1

biases_1

/job:ps/task:2

weights_2

A load balancing strategy can improve performance

```
greedy = tf.contrib.training.GreedyLoadBalancingStrategy(...)
with tf.device(tf.train.replica_device_setter(
    ps_tasks=3, ps_strategy=greedy)):
    weights_1 = tf.get_variable("weights_1", [784, 100])
    biases_1 = tf.get_variable("biases_1", [100])
    weights_2 = tf.get_variable("weights_2", [100, 10])
    biases_2 = tf.get_variable("biases_2", [10])
```

/job:ps/task:0

weights_1

/job:ps/task:1

biases_1

biases_2

You can partition very large variables as needed

```
greedy = tf.contrib.training.GreedyLoadBalancingStrategy(...)
with tf.device(tf.train.replica_device_setter(
    ps_tasks=3, ps_strategy=greedy)):

embedding = tf.get_variable(
    "embedding", [1000000000, 20],
    partitioner=tf.fixed_size_partitioner(3))
```


replica_device_setter provides a simple heuristic for between-graph partitioning

Round-robin variable placement by default

Add load balancing to improve weight placement across machines

Partition if your variables are too large to fit on a single machine

Courses 7 - Production ML Systems

Module 4: Designing High-Performance ML Systems

Lesson Title: Sessions and Servers [optional]

Format: Presenter

Presenter: Laurence Moroney

Video Name: T-PSML-O_4_I18_sessions_and_servers_[optional]

Distributed TensorFlow runs on a cluster of servers, but tf.Session knows only about local devices

Create a TensorFlow server on each machine, and configure them to communicate over network

The setup is defined by a cluster spec that is identical for each machine in the cluster

```
1. ClusterSpec: set of jobs (worker, ps)
# Distributed code for a worker task. 2. For each job, specify a list of tasks
cluster = tf.train.ClusterSpec({"worker": ["192.168.0.1:2222", ...],
                                "ps": ["192.168.1.1:2222", ...]})
                                     3. For each task, specify machine:
                                     network port to listen on
server = tf.train.Server(cluster, job_name="worker", task_index=0)
with tf.Session(server.target) as sess:
 # ...
```

tf.train.Server implements a task in cluster

```
# Distributed code for a worker task.
cluster = tf.train.ClusterSpec({"worker": ["192.168.0.1:2222", ...],
                                "ps": ["192.168.1.1:2222", ...]})
server = tf.train.Server(cluster, job_name="worker", task_index=0)
                                                Which job, which
with tf.Session(server.target) as sess:
                                                task
 # ... Can run code on
          any device in
          cluster
```

A PS task simply needs to respond to workers

Recap: Create a cluster spec for two types of jobs

Worker jobs

- Each worker has a tf.train.Server.
- Specify the server's own address as the Session target.
- Can run code on any device in the cluster.

Parameter Server (PS) jobs

Simply call
server.join()

"A distributed system is a system where I can't get my work done because a computer has failed that I've never even heard of."

Leslie Lamport

Source https://upload.wikimedia.org/wik ipedia/commons/5/50/Leslie_La mport.jpg

Title Safe >

Courses 7 - Production ML Systems

Module 4: Designing High-Performance ML Systems

Lesson Title: Fault Tolerance [optional]

Format: Presenter

Presenter: Laurence Moroney

Video Name: T-PSML-O_4_I19_fault_tolerance_[optional]

For fault tolerance, save sharded checkpoints to Google Cloud Storage

```
with tf.device(tf.train.replica_device_setter(ps_tasks=3)):
  weights_1 = tf.get_variable("weights_1", [784, 100])
  biases_1 = tf.get_variable("biases_1", [100])
 # ...
                                                   Each PS task
                                                   writes "its"
                                                   variables;
saver = tf.train.Saver(sharded=True)
                                                   together the
                                                   shards form a
                                                   checkpoint
with tf.Session(server.target) as sess:
  while True:
                                                  Write to Cloud Storage
    # ...
    if step % 1000 == 0:
      saver.save(sess, "gs://mybucket/chk_{}".format(step))
```

For between-graph replication, make worker 0 the one to write checkpoints

```
with tf.device(tf.train.replica_device_setter(ps_tasks=3)):
  weights_1 = tf.get_variable("weights_1", [784, 100])
  biases 1 = tf.get variable("biases 1", [100])
 # ...
saver = tf.train.Saver(sharded=True)
is_chief = FLAGS.task_index == 0
with tf.Session(server.target) as sess:
  while True:
   # ...
    if is_chief and step % 1000 == 0:
      saver.save(sess, "gs://mybucket/chk {}".format(step))
```

When a fault occurs, the response is dependent on the failed task

When a worker fails, it will recover and carry on

When a PS task fails, the chief interrupts training and restores PS tasks from the last checkpoint

When a chief fails, it doesn't know whether a PS task has failed

So, a chief interrupts training and restores from a checkpoint

With local training and tf.Session(), you have to manage initialization or restoring from a checkpoint

```
# Single-process code.
with tf.Session() as sess:
    sess.run(init_op) # Or saver.restore(sess, ...)
    for _ in range(NUM_STEPS):
        sess.run(train_op)
```

MonitoredTrainingSession automates recovery process

Automatically initializes and/or restores variables

```
# Distributed code.
server = tf.train.Server(...)
is_chief = FLAGS.task_index == 0
with tf.train.MonitoredTrainingSession(server.target, is_chief) as sess:
    while not sess.should_stop():
    sess.run(train_op)
```

Recovers from PS failures, and can run additional code in hooks

