Simple predictive models: Linear and logistic regression

Montserrat Guillen

6 de diciembre 2017

Contents

inear regression	
Linear model (quantitative regressors)	
Linear model (quantitative and qualitative regressors)	
Prediction	
ogistic regression model	
Estimation of the model	
Prediction with this model	
Improve the model	
ROC curve	

We have previously analysed the data. Just recall that the data contain 41188 cases and 21 variables. The variable names are: age, job, marital, education, default, housing, loan, contact, month, day_of_week, duration, campaign, pdays, previous, poutcome, emp.var.rate, cons.price.idx, cons.conf.idx, euribor3m, nr.employed, y.

Linear regression

We will study the duration of the telephone call as a function of age.

Linear model (quantitative regressors)

We introduce two variables: age and euribor.3m.

```
# Model estimation
attach(mydata)
Model.1.1<- lm(duration~age+ euribor3m, data=mydata )</pre>
summary(Model.1.1)
##
## lm(formula = duration ~ age + euribor3m, data = mydata)
##
## Residuals:
          1Q Median
                            ЗQ
                                  Max
                          60.1 4663.5
## -270.8 -155.5 -78.5
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 276.59970
                            5.70184 48.511 < 2e-16 ***
```

`geom_smooth()` using method = 'gam'


```
qplot(age,duration, data = mydata,geom = c("smooth", "point"))
```

`geom_smooth()` using method = 'gam'

The goodness-of-fit coefficient is 0.0010825

Linear model (quantitative and qualitative regressors)

We now also include month, day_of_week and contact

```
monthR=relevel(month, ref = 'mar')
day_of_weekR=relevel(day_of_week, ref = 'mon')
contactR=relevel(contact, ref = 'telephone')
Model.1.2<- lm(duration~age+ euribor3m+factor(monthR)+factor(day_of_weekR)+factor(contactR), data=mydat
summary(Model.1.2)
##
## Call:
## lm(formula = duration ~ age + euribor3m + factor(monthR) + factor(day_of_weekR) +
       factor(contactR), data = mydata)
##
##
## Residuals:
##
      Min
              1Q Median
                            3Q
                                  Max
  -340.7 -154.0 -77.0 58.8 4704.0
##
## Coefficients:
##
                             Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                            211.91697
                                        13.30118 15.932 < 2e-16 ***
                              0.06294
                                         0.12351
                                                 0.510 0.610337
## age
```

```
## euribor3m
                             0.99360
                                        1.13216
                                                  0.878 0.380159
## factor(monthR)apr
                                       12.17291
                                                  3.830 0.000128 ***
                            46.62301
                                       12.13000 -1.614 0.106461
## factor(monthR)aug
                           -19.58197
## factor(monthR)dec
                                       22.14814
                                                  4.546 5.49e-06 ***
                           100.67585
## factor(monthR) jul
                            23.33980
                                       12.12062
                                                  1.926 0.054158
## factor(monthR) jun
                                       11.98862
                             8.82025
                                                  0.736 0.461906
## factor(monthR)may
                            22.36805
                                       11.46354
                                                  1.951 0.051036 .
                                       12.13417 -0.363 0.716573
## factor(monthR)nov
                            -4.40525
## factor(monthR)oct
                            42.88593
                                       14.69139
                                                  2.919 0.003512 **
## factor(monthR)sep
                            50.88047
                                       15.49524
                                                  3.284 0.001026 **
## factor(day_of_weekR)fri
                             7.36957
                                        4.05461
                                                  1.818 0.069136 .
## factor(day_of_weekR)thu
                                                  4.728 2.27e-06 ***
                            18.69792
                                        3.95446
## factor(day_of_weekR)tue
                            16.05568
                                        4.02523
                                                  3.989 6.65e-05 ***
## factor(day_of_weekR)wed
                            21.17355
                                        4.02114
                                                  5.266 1.40e-07 ***
## factor(contactR)cellular 21.14074
                                        4.20038
                                                  5.033 4.85e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 258.4 on 41171 degrees of freedom
## Multiple R-squared: 0.006776,
                                   Adjusted R-squared: 0.00639
## F-statistic: 17.55 on 16 and 41171 DF, p-value: < 2.2e-16
```

The goodness-of-fit coefficient is in the first model 0.001 and in the second model 0.0064.

Prediction

Assume we have a new observation and want to predict the duration.

```
newdata=data.frame(age=30, euribor3m=1.0, monthR='jun', day_of_weekR='fri', contactR='cellular')
predict(Model.1.1, newdata)

## 1
## 271.301
predict(Model.1.2, newdata)

## 1
## 252.1293
```

Logistic regression model

Estimation of the model

```
We estimate the model for the dependent variable y = Term \ Diposit
```

```
Model.2.1=glm(y~age+euribor3m, family=binomial)
summary(Model.2.1)
```

```
##
## Call:
```

```
## glm(formula = y ~ age + euribor3m, family = binomial)
##
## Deviance Residuals:
##
      Min
                1Q
                     Median
                                   3Q
                                          Max
## -1.0056 -0.3953 -0.3010 -0.2857
                                        2.5801
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.801623
                          0.062184 -12.89 < 2e-16 ***
## age
               0.008145
                          0.001371
                                      5.94 2.85e-09 ***
## euribor3m
              -0.536241
                          0.009540 -56.21 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 28999
                            on 41187
                                      degrees of freedom
## Residual deviance: 25308
                            on 41185
                                      degrees of freedom
## AIC: 25314
##
## Number of Fisher Scoring iterations: 5
```

Prediction with this model

```
predict(Model.2.1, newdata, type="response")

##     1
## 0.2509548
```

The prediction for that custmer and the logistic model is 0.25.

Improve the model

We can improve the model now with more information

```
Model.2.2=glm(y~age+euribor3m+factor(day_of_weekR), family=binomial)
summary(Model.2.2)
##
## Call:
## glm(formula = y ~ age + euribor3m + factor(day_of_weekR), family = binomial)
## Deviance Residuals:
      Min
                 10
                     Median
                                   30
                                           Max
## -1.0542 -0.4029 -0.3069 -0.2780
                                        2.6561
##
## Coefficients:
                            Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                                       0.070895 -14.151 < 2e-16 ***
                           -1.003265
## age
                            0.008226
                                       0.001372
                                                  5.995 2.03e-09 ***
## euribor3m
                           -0.539354
                                       0.009562 -56.404 < 2e-16 ***
## factor(day_of_weekR)fri 0.125124
                                       0.053762
                                                  2.327
                                                          0.0199 *
## factor(day_of_weekR)thu 0.276230
                                       0.051449
                                                  5.369 7.92e-08 ***
```

```
## factor(day_of_weekR)tue 0.302954 0.052632 5.756 8.61e-09 ***
## factor(day_of_weekR)wed 0.319297 0.052673 6.062 1.35e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 28999 on 41187 degrees of freedom
## Residual deviance: 25252 on 41181 degrees of freedom
## AIC: 25266
##
## Number of Fisher Scoring iterations: 5
```

The Akaike Information Criterion (AIC) in the first model was 25314 and now it is 25266.

ROC curve

Predictive performance

```
#install.packages("pROC")
library(pROC)

## Type 'citation("pROC")' for a citation.

##

## Attaching package: 'pROC'

## The following objects are masked from 'package:stats':

##

## cov, smooth, var

prob=predict(Model.2.2,type=c("response"))

mydata$prob=prob
g=roc(y,prob, data=mydata)
plot(g)
```


auc(g)

Area under the curve: 0.7476

The AUROC is 0.75.