## Notation from Lutkepohl 2005:

(Section 2.1.1., p.13)

The object of interest in the following is the VAR(p) model (VAR model of order p),

$$y_t = \nu + A_1 y_{t-1} + \dots + A_p y_{t-p} + u_t, \quad t = 0, \pm 1, \pm 2, \dots,$$

where

- $y_t = (y_{1t}, \dots, y_{Kt})'$  is a  $(K \times 1)$  random vector,
- the  $A_i$  are fixed  $(K \times K)$  coefficient matrices,
- $\nu = (\nu_1, \dots, \nu_K)'$  is a fixed  $(K \times 1)$  vector of intercept terms allowing for the possibility of a nonzero mean  $E(y_t)$ ,
- $u_t = (u_{1t}, \dots, u_{Kt})'$  is a K-dimensional white noise or innovation process:
  - $-E(u_t)=0,$
  - $E(u_t u_t') = \Sigma_u,$
  - $-E(u_t u_s') = 0 \text{ for } s \neq t,$
  - The covariance matrix  $\Sigma_u$  is assumed to be nonsingular if not otherwise stated.

It is assumed that a time series  $y_1, \ldots, y_T$  of the y variables is available, that is, we have a sample of size T for each of the K variables for the same sample period. In addition, p presample values for each variable,  $y_{p+1}, \ldots, y_0$ , are assumed to be available. Partitioning a multiple time series into sample and presample values is convenient in order to simplify the notation.

$$Y := (y_1, \dots, y_T)$$

$$B := (v, A_1, \dots, A_p)$$

$$(K \times T)$$

$$(K \times (Kp+1))$$

$$Z_t := \begin{bmatrix} 1 \\ y_t \\ \vdots \\ y_{t-p+1} \end{bmatrix}$$

$$((Kp+1) \times 1)$$