Licenciatura en Informática, Universidad Nacional de Quilmes

1er cuatrimestre de 2022

Ejercicio 1. Sea $\ell = [x_1, x_2, \dots, x_n]$ una lista de 0s y 1s, es decir $x_i \in \{0, 1\}$ para cada $i \in 1..n$. Un salto es un índice i tal que $1 \le i < n$ y además $x_i \ne x_{i+1}$. Por ejemplo, la lista [0, 0, 0, 0, 0] no tiene saltos, la lista [0, 0, 1, 1, 1, 1] tiene un salto, la lista [1, 1, 0, 0, 1, 1] tiene dos saltos y la lista [0, 1, 0, 1, 0, 1] tiene cinco saltos.

Sea φ una fórmula de la lógica proposicional arbitraria¹ que usa n variables x_1, x_2, \ldots, x_n . Decimos que φ es satisfactible con k saltos si existe una asignación de variables que hace verdadera a la fórmula y tiene k saltos. Por ejemplo, la fórmula $((x_1 \vee \neg x_2) \wedge x_3 \wedge \neg x_4 \wedge \neg x_5)$ es satisfactible con un salto, asignándole los valores [1, 1, 1, 0, 0] a las variables x_1, x_2, x_3, x_4, x_5 respectivamente. Considerar el lenguaje:

3-SALTO =
$$\{\langle \varphi \rangle \mid \varphi \text{ es satisfactible con 3 saltos}\}$$

Elegir **exactamente una** de las cuatro afirmaciones siguientes y demostrarla²:

- 1. 3-SALTO \in (P \cap NP), es decir, está en las clases P y NP.
- 2. 3-SALTO \in (P \ NP), es decir, está en la clase P pero no en la clase NP.
- 3. 3-SALTO \in (NP \ P), es decir, está en la clase NP pero no en la clase P.
- 4. 3-SALTO \notin (NP \cup P), es decir, no está en la clase P ni en la clase NP.

Ejercicio 2. Dados lenguajes $A, B \subseteq \Sigma^*$ notamos $A \uplus B$ al lenguaje $\{0.w \mid w \in A\} \cup \{1.w \mid w \in B\}$. Decidir si las siguientes afirmaciones son verdaderas o falsas y demostrar:

- 1. Si $A \leq_P A'$ y $B \leq_P B'$, entonces $(A \uplus B) \leq_P (A' \uplus B')$.
- 2. Si A es NP-completo y B es NP, entonces $(A \uplus B) \leq_P A$.
- 3. Si A es NP-completo v B es NP, entonces $(A \uplus B)$ es NP-completo.

Ejercicio 3. Dadas dos listas de números naturales $\ell_1 = [a_1, a_2, \dots, a_n]$ y $\ell_2 = [b_1, b_2, \dots, b_n]$, decimos que una lista $\ell_3 = [x_1, x_2, \dots, x_n]$ es una combinación de ℓ_1 y ℓ_2 si para todo $i \in 1..n$ se tiene que o bien $x_i = a_i$ o bien $x_i = b_i$. Por ejemplo, la lista $\ell_3 = [1, 8, 7, 4, 5]$ es una combinación de $\ell_1 = [1, 2, 3, 4, 5]$ y $\ell_2 = [9, 8, 7, 6, 0]$. La lista $\ell_3' = [9, 8, 3, 6, 0]$ es otra posible combinación.

Definimos el lenguaje COMB-SUM del siguiente modo:

$$\mathsf{COMB-SUM} = \{ \langle \ell_1, \ell_2, k \rangle \mid \text{hay una combinación de } \ell_1 \text{ y } \ell_2 \text{ que suma } k \}$$

Por ejemplo, $\langle [1,2,3], [50,50,50], 101 \rangle \in \mathsf{COMB\text{-}SUM}$, ya que [1,50,50] suma 101 y es una combinación de las listas [1,2,3] y [50,50,50].

Demostrar que COMB-SUM es NP-completo.

Ejercicio 4. Sea $F: \Sigma^* \times \Sigma^* \to \Sigma^*$ una función computable en tiempo polinomial que dadas dos palabras $w_1, w_2 \in \Sigma^*$ devuelve una palabra $F(w_1, w_2) \in \Sigma^*$. Definimos la noción de palabra **buena** recursivamente del siguiente modo:

- Caso base. La palabra vacía (λ) es buena.
- Caso recursivo. Una palabra w no vacía es buena si y sólo si existen palabras $w_1, w_2 \in \Sigma^*$ tales que (1) w_1 y w_2 son buenas, (2) w_1 y w_2 son subcadenas de w (estrictamente más cortas que w), y (3) $F(w_1, w_2) = w$.

Demostrar que el lenguaje BUENA = $\{w \in \Sigma^* \mid w \text{ es una palabra buena}\}$ está en la clase PSPACE.

Justificar todas las respuestas.

¹Usando los conectivos \neg , \wedge , \vee pero no necesariamente en 3-CNF.

 $^{^2\}mathrm{Puede}$ haber varias afirmaciones verdaderas, pero alcanza con elegir una y demostrarla.