Theorem (2.4.22). The sum of squares from 1 to n is $\frac{n(n+1)(2n+1)}{6}$.

Proof. Let n and k be integers. By the Binomial Theorem, $(k-1)^3=k^3-3k^2+3k-1$. This means that $k^3-(k-1)^3=3k^2-3k+1$. By Theorem 2.4.19, $n^3=\sum_{k=1}^n k^3-(k-1)^3$. Thus, $n^3=\sum_{k=1}^n 3k^2-3k+1$. This statement is equivalent to $n^3=(3\sum_{k=1}^n k^2)-(3\sum_{k=1}^n k)+(\sum_{k=1}^n 1)$. By Theorem 2.4.21a, and by Theorem 2.4.21b, that is $n^3=(3\sum_{k=1}^n k^2)-3\frac{n(n+1)}{2}+n$; or rather $n^3+3\frac{n(n+1)}{2}-n=3\sum_{k=1}^n k^2$. Eliminating the coefficient 3 from the right-hand side, all that is left to do is to simplify the left-hand side $\frac{1}{3}[n^3+3\frac{n(n+1)}{2}-n]=\sum_{k=1}^n k^2$. On the left-hand side we have $\frac{2n^3+3n^2+3n-2n}{6}=\frac{2n^3+3n^2+n}{6}$. Factoring $\frac{1}{6}n$ out of this expression gives $\frac{1}{6}n(2n^2+3n+1)=\frac{1}{6}n(2n^2+2n+n+1)$. Factoring the first two terms in the sum, $\frac{1}{6}n[2n(n+1)+(n+1)]$. The simplification process is completed by factoring (n+1) out of the sum, $\frac{1}{6}n(n+1)(2n+1)$. That is, $\sum_{k=1}^n k^2=\frac{n(n+1)(2n+1)}{6}$.