Welcome

- Reading: Welcome and Course Information
- Video: Course Overview 3 min
- Reading: Certificate or Audit?
- Practice Quiz: Diagnostic Quiz
- 5 questions

 Reading: How to Write Math in the Discussions using MathJax

Introduction to Week One

Vectors

Analytic Geometry

Vector Algebra

Fields

Supplemental Videos

Quiz

How to Write Math in the Discussions using MathJax

Coursera uses MathJax, and math is written using LaTeX syntax, enclosed in double-dollar signs. For example,

\$\$a_1b_2 - a_2b_1\$\$

will look to the reader like

$$a_1b_2 - a_2b_1$$
.

For those of you who don't know LaTeX, I will show you how to write some math expressions that you can use to model your mathematical writing. For a more general overview of the syntax, you may refer to

https://math.meta.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference

Here are a selection of some sample math expressions from this course. Remember to add the double-dollar signs to the math expressions (not added here to prevent MathJax from translating).

(1)

$$\mathbf{A} + \mathbf{B} = (A_1 + B_1)\mathbf{i} + (A_2 + B_2)\mathbf{j} + (A_3 + B_3)\mathbf{k}$$

(2)

 $\label{lem:mathbf} $$\operatorname{A\times \mathbb B} = \left(\operatorname{wmatrix} \right) $$\operatorname{A\times \mathbb A}_2&A_3\right. $$$

$$\mathbf{A} imes\mathbf{B}=egin{array}{cccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \ A_1 & A_2 & A_3 \ B_1 & B_2 & B_3 \ \end{array}$$

(3)

 $\mathbb{A} \subset A \subset B = \mathbb{B} \subset A$

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$$

(4)

$$\frac{x-x_0}{u_1} = \frac{y-y_0}{u_2} = \frac{z-z_0}{u_2}$$

(5)

$$\delta_{ij} = egin{cases} 1, & ext{if } i=j; \ 0, & ext{if } i
eq j. \end{cases}$$

(c)

$$rac{\partial^2 f}{\partial x \partial y} = rac{\partial^2 f}{\partial y \partial x}$$

(7)

\boldsymbol\nabla \times \boldsymbol\nabla f

$$oldsymbol{
abla} imesoldsymbol{
abla}f$$

(8)

 $\label{thm:condition} $$ \bigg| \sup_{y_0}^{y_1} \int_{x_0}^{x_1} f(x,y) \, dx \, dy $$$

$$\int_{y_0}^{y_1} \int_{x_0}^{x_1} f(x,y) \, dx \, dy$$

(9)

$$rac{d\hat{\mathbf{r}}}{d heta}=\hat{ heta}$$

(10)

$$\int_{V} \left(\mathbf{\nabla} \cdot \mathbf{u} \right) \, dV = \oint_{S} \mathbf{u} \cdot d\mathbf{S}$$

(11)

 $\label{left} $$\left(\left(\right) \ \left(\right) \ d_{\mathbf g} = \int_{\mathbf u} \ d_{\mathbf g} = \int_{\mathbf$

$$\int_{S} \left(oldsymbol{
abla} imes \mathbf{u}
ight) \cdot d\mathbf{S} = \oint_{C} \mathbf{u} \cdot d\mathbf{r}$$

√ Completed Go to next item

Like 🖓 Dislike 🏳 Report an issue