Transformations

Short-answer problems about the definitions of basic rigid motions and dilations.

To define a translation, rotation, or reflection, we specify the image of a generic point P under the transformation as specified.

Question 1 Under a **rotation** about center O counterclockwise by an angle ϑ , the image of P is a point Q so that $OQ = \boxed{OP}$ and $m \angle POQ = \vartheta$, measured counterclockwise from \overrightarrow{OP} to \overrightarrow{OQ} if $\vartheta > 0$ and measured clockwise if $\vartheta < 0$. If P = O then Q = O = P.

Question 2 Under a **translation** by the distance and direction from A to B, the image of P is a point Q so that $\overline{PQ} \parallel \overline{AB}$, $PQ = \overline{AB}$, and \overline{PQ} is in the same direction as \overline{AB} .

Question 3 Under a **reflection** about a line ℓ , if P is on ℓ , then P is mapped to itself. If P is not on ℓ , then the image of P is a point Q so that ℓ is the perpendicular bisector of segment PQ.

Question 4 Under a **dilation** about center O and scale factor r > 0, the image of P is a point Q so that Q lies on \overrightarrow{OP} and $OQ = \boxed{rOP}$. The image of O is \boxed{O} .