

GraphsPart: Flows

Algorithms and Data Structures 2, 340300 Lecture – 2023W Univ.-Prof. Dr. Alois Ferscha, teaching@pervasive.jku.at

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at

Flow Analysis

Flows in Networks

Consider a directed, weighted graph, also called **network** *N*, where:

The weights are defined as capacity of the edge

In the graph there is one distinct vertex, which has **no incoming** edges, the **source** s

In the graph there is one distinct vertex which has **no outgoing** edges, the **sink** *t*

• $|flow| = \sum_{w \in out(s)} flow(s,w) = \sum_{u \in in(t)} flow(u,t)$ (Value of the flow)

Find the flow f in a given network N with maximum value

Example: maxFlow = 5

flow

Maximum value of the flow is not only determined by s and t, but also by each **cut** that **separates** s **from** t: **cut**

Cuts in Networks

A cut $X = (V_s, V_t)$ is a cut through the network that separates the set of vertices into two partitions.

The capacity of a cut is the sum of the capacities of the "cut" edges

$$c(X) = \sum_{v \in V_S, w \in V_t} capacity(v, w)$$

We have:

Value of the **maximum flow** = **capacity** of the **minimum cut**

Determination of the minimum cut:

Determine V_s as the set of vertices that are reached on the **augmenting path** in the network, and V_t as the set of **all other vertices** (variant of the **Ford-Fulkerson algorithm**)

Maximum Flow Theorem (Ford/Fulkerson 1956)
max flow ⇔ min cut

Each path s->t contains at least one **saturated** edge

Maximum Flow Theorem (Ford/Fulkerson 1956)
max flow ⇔ min cut

Each path s->t contains at least one **saturated** edge

Definition: augmenting path

Forward-edge:
 flow(u,v) < capacity(u,v)
 → Flow can be increased

Backward-edge:
 flow(u,v) > 0
 → Flow can be decreased

Maximum Flow Theorem (Ford/Fulkerson 1956)

The **flow** in a network is at **maximum**, if and only if the network has **no augmenting path**.

Each path s->t contains at least one **saturated** edge

Definition: augmenting path

Forward-edge:

flow(u,v) < capacity(u,v)

→ Flow can be increased

Backward-edge:

flow(u, v) > 0

→ Flow can be decreased

Ford-Fulkerson Algorithm

initialize network with null flow;

Method FindFlow
if augmenting paths exist then
find augmenting path;
increase flow;
recursive call to FindFlow;

A path s → t
(regardless of the direction of the arrow)
on which you can increase the flow is
called *augmenting path*

Ford-Fulkerson :: Example

Capacities

Initialize flow with zero

Increase flow by 1 unit
Increase flow by 1 unit
Increase flow by 1 unit

Send further unit over augmented path

Determination of the Augmenting Path

"Residual graph": describes all possibilities to increase the flow

Consider the **Residual Network** $N_f = (V, Ef, cf, s, t)$ to a network N = (V, E, c, s, t)

f(u,v) / c(u,v)

 $c_f(u,v) = c(u,v) - f(u,v)$

$$c_f(v,u) = f(u,v)$$

Edges with capacity 0 are removed

An **augmented path** in N corresponds to a directed path from s to t in N_f and can therefore be determined using DFS in N_f

Determination of the Augmenting Path

"Residual graph": describes all possibilities to increase the flow

Consider the **Residual Network** $N_f = (V, Ef, cf, s, t)$ to a network N = (V, E, c, s, t)

 $C_f(u,v) = C(u,v) - f(u,v)$ $C_f(v,u) = f(u,v)$

Edges with capacity 0 are removed

An **augmented path** in N corresponds to a directed path from s to t in N_f and can therefore be determined using DFS in N_f

AUGMENTED PATH :: EXAMPLE STEP 1/7

0/3

AUGMENTED PATH :: EXAMPLE STEP 2/7

1/3

1/3

+1

Algorithms and Data Structures 2 // 2023W // 15

1/3

AUGMENTED PATH :: EXAMPLE STEP 3/7

Algorithms and Data Structures 2 // 2023W // 16

+1

+1

A. Ferscha

AUGMENTED PATH :: EXAMPLE STEP 4/7

1/3

2/5

+1

2/4

AUGMENTED PATH :: EXAMPLE STEP 5/7

3/3

Algorithms and Data Structures 2 // 2023W // 18

+1

AUGMENTED PATH :: EXAMPLE STEP 6/7

2/3

3/5

AUGMENTED PATH :: EXAMPLE STEP 7/7

No augmenting path from source S to sink T exists where flow could be increased (when flow = capacity).

Max flow is: |f| = 6

AUGMENTED PATH :: EXAMPLE STEP 7/7

No augmenting path from source S to sink T exists where flow could be increased (when flow = capacity).

Max flow is: |f| = 6

Maximum Flow Algorithm

Part I: Setup

```
Algorithm: MaxFlow(N)
Input: network N
Output: network N_f with maximum flow
Start with null flow:
f(u,v) \leftarrow 0 \ \forall \ (u,v) \in E;
Initialize residual network:
N_f \leftarrow N;
```

Part II: Loop

Runtime O($F \cdot (n+m)$)

```
repeat search for directed path p in N _f from s to t if (path p found) D_f \leftarrow \text{min } \{c_f (u,v), f(u,v) \in p\}; for (each (u,v) \in p) do if (forward (u,v)) f(u,v) \leftarrow f(u,v) + D_f; if (backward (u,v)) f(u,v) \leftarrow f(u,v) - D_f; update N _f; until (no augmenting path exists);
```


Improvement of Maximum Flow

Theorem [Edmonds & Karp 1972]

By using **BFS** the maximum flow can be determine in a **runtime** of

$$O((n+m) \cdot n \cdot m) = O(n^5)$$

Advantage:

Runtime is **independent from** the **value** of the **maximum flow**.

GraphsPart: Flows

Algorithms and Data Structures 2, 340300 Lecture – 2023W Univ.-Prof. Dr. Alois Ferscha, teaching@pervasive.jku.at

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at