Esercizi di basi di dati

ESERCIZIO 1. Si consideri lo schema relazionale seguente in cui le chiavi primarie delle relazioni sono sottolineate:

MACCHINISTA (<u>CF</u>, Nome, Cognome, Età)
TRENO (<u>ID-treno</u>, Tipo(ES/IC/IR/D), Lunghezza, Ristorante(S/N))
PERCORRENZA (CF, ID-treno, Nome-linea, Nr-fermate)

Formulare in SQL quanto segue:

- 1. determinare CF, Nome e Cognome dei macchinisti di treni eurostar, elencandoli in ordine alfabetico per cognome;
- 2. determinare il CF dei macchinisti che percorrono il maggior numero di linee diverse;

Formulare in algebra relazionale ottimizzata quanto segue:

- 1. determinare codice e tipo dei treni che non percorrono linee;
- 2. determinare il CF dei macchinisti che effettuano percorrenze solo con treni interregionali (IR)

ESERCIZIO 2. Effettuare la traduzione in relazionale del seguente schema Entità-Relazione, **minimizzando il numero di relazioni** nello schema relazionale. Nello schema risultante, per ogni relazione evidenziare la chiave primaria (sottolineata), eventuali chiavi esterne (sottolineate con tratteggio) e eventuali attributi che possono assumere valore nullo (evidenziati con asterisco).

ESERCIZIO 3. Siano X, Y e Z tre relazioni definite come segue:

ХА	В	<u>Y B</u>	Z	<u>B</u>
а	1	1		2
а	2	3		3
а	3			
b	1			
b	2			
d	3			
С	1			
С	2			
С	3			
С	4			

Calcolare e mostrare la relazione risultato di X/Y e di X/Z (dove il simbolo / denota l'operatore di divisione).

Esercizio 4. Si consideri lo schema relazionale seguente (le chiavi primarie delle relazioni sono sottolineate):

DISPOSITIVO-HW(Codice, Marca, Tipo)

MANUTENZIONE(<u>Codice, Data, TipoGuasto, Costo, Addetto</u>)

Si richiede di formulare in SQL quanto segue:

1. trovare tutti i dati del dispositivo che ha subito la manutenzione meno costosa.

2. trovare i portatili di marca "Compaq" che hanno subito non più di 2 manutenzioni.

Si richiede di esprimere in Algebra Relazionale *ottimizzata* quanto segue:

- 1. trovare il codice dei dispositivi hw che non hanno subito manutenzioni con costo superiore a 500;
- 2. determinare i PC di marca "Dell" che hanno subito manutenzioni solamente per guasti all'hard disk.

Esercizio 5. Dato lo schema ER in figura, si richiede di:

- mostrare lo schema ER con la gerarchia ristrutturata secondo ciascuna possibile alternativa;
- per ciascuno schema ER ristrutturato ottenuto nel punto precedente specificare il corrispondente schema relazionale.

Esercizio 6. Si consideri il seguente frammento di tabella Sysauth (limitato per semplicità alle sole informazioni di interesse) dove Bianchi è il proprietario della relazione A.

id-utente	grantor	nome	tipo	SELECT	G.O.
Rossi	Bianchi	Α	R	15	Υ
Gialli	Bianchi	Α	R	25	Υ
Verdi	Rossi	Α	R	35	Υ
Verdi	Gialli	Α	R	55	Υ
Neri	Verdi	Α	R	45	Υ
Viola	Verdi	Α	R	65	Υ
Marroni	Neri	Α	R	75	N

Si richiede di:

- a) Costruire il grafo corrispondente alle operazioni di grant riportate nella tabella sopra.
- b) Al tempo 100 Rossi revoca a Verdi il privilegio concesso; scrivere il comando SQL di revoca.
- c) mostrare come si modifica il grafo e la tabella Sysauth a seguito della operazione di revoca di cui al punto precedente.

Esercizio 7. Si consideri il sequente schema relazionale (le chiavi primarie sono sottolineate):

VENDITA(<u>CodVend,CodCli,CodProd</u>,Qta)

VENDITORE(Codice, Nome, Città)

CLIENTE(CodiceCli,NomeCli,CittàCli)

Si richiede di formulare in SQL quanto segue:

- 1. determinare il venditore di Verona che ha venduto la maggiore quantità complessiva di prodotti nella base di dati;
- creare una vista VenditeMI-RO contenente tutte le informazioni sulle vendite di venditori milanesi o romani.

Si richiede di esprimere in Algebra Relazionale ottimizzata quanto segue:

- 1. determinare codice e nome dei venditori che hanno effettuato vendite a clienti milanesi;
- 2. determinare codice dei venditori che hanno venduto solo a clienti della propria città.

Esercizio 8. Nel seguente schema ER, specificare le cardinalità della relazione cura nei seguenti casi:

1. ogni medico deve curare dei pazienti e ogni paziente deve avere almeno un medico curante:

(_,_) (_,_) 2. un medico può curare dei pazienti e ogni paziente ha un solo medico curante:

(_,_) (_,_)
3. un medico cura al più 500 pazienti e ogni paziente può avere un medico curante:

 $(_,_)$

Esercizio 9. Dato lo schema relazionale dell'Esercizio 7, si specifichino i comandi SQL di creazione delle relazioni VENDITA, VENDITORE, CLIENTE. Si richiede di esprimere:

- le opportune clausole PRIMARY KEY e FOREIGN KEY:
- eventuali vincoli di integrità/valori di default per gli attributi, tenendo presente che non sono ammessi valori negativi di quantità;
- i sequenti vincoli di integrità referenziale:
 - non è possibile cancellare un venditore con vendite;
 - non è possibile cancellare un cliente con vendite.

Esercizio 10. Si consideri lo schema relazionale sequente, relativo ad una base di dati di gestione ordini per consegne di pizze a domicilio (le chiavi primarie delle relazioni sono sottolineate):

CLIENTE (Nr.telefono, Nome, Indirizzo)

ORDINE (Nr.telefono, Codice-Pizza, Codice-Operatore, Data, Costo)

PIZZA (Codice-Pizza, Nome, Prezzo)

Si richiede di formulare in SQL quanto segue:

- 1. determinare per ogni operatore e ogni pizza il costo totale degli ordini effettuati;
- 2. determinare il nome dei clienti che hanno ordinato pizze ad almeno due operatori diversi;

Si richiede di esprimere in Algebra Relazionale ottimizzata quanto segue:

- 1. determinare nr. telefono dei clienti che hanno ordinato sia pizza margherita sia pizza marinara;
- 2. determinare telefono e nome dei clienti che non hanno ordinato pizze in gennaio 2006.

Esercizio 11. A partire dallo schema relazionale seguente in cui le chiavi primarie sono sottolineate e le chiavi esterne per semplicità hanno lo stesso nome delle corrispondenti chiavi primarie:

ACQUIRENTE(CF, Nome, Città) FATTURA(#Fattura, DataFattura, CF, ImportoFattura) FATTURAZIONE(#Fattura, #Prodotto, Quantità) PRODOTTO(#Prodotto, Nome, Prezzo) SPEDIZIONE (#Fattura, #Negozio, DataSped) NEGOZIO(#Negozio, Città)

Si richiede di ricostruire il corrispondente schema Entità-Relazione (processo di reverse-engineering), rappresentando opportunamente entità, associazioni, attributi e vincoli di cardinalità a partire dalle informazioni dello schema relazionale.