Road Condition Monitoring (RCM) Challenge

Made by: Wael Chabir Date: March 2023

Project Introduction

Using an Unlabeled dataset taken from real truck, we are required to identify places where there is road anomalies :

- potholes
- speed bumps
- manholes
- cracks in the roads
- etc.

AGENDA

- 1. Dataset loading and Exploration
- 2. Dataset Pre-processing
- 3. Feature engineering
- 4. Build Model
- 5. Anomalies detection and Visualization

1- Dataset loading and Exploration

Dataset shape: (262443, 13)

	Perc_road_type (%)
MOTORWAY	72.3%
MAJOR_ROAD_OF_HIGH_IMPORTANCE	16.9%
SECONDARY_ROAD	7.1%
MAJOR_ROAD	1.9%
LOCAL_ROAD_OF_MAJOR_IMPORTANCE	1.2%
CONNECTING_ROAD	0.4%
DESTINATION ROAD	0.1%

time	datetime64[ns]
acc x	float64
acc y	float64
acc z	float64
speed	float64
latitude	float64
longitude	float64
heading	float64
road speed limit	int64
vehicle make	object
vehicle model	object
vehicle_type	object
road_type	object

time	acc_x	acc_y	acc_z	speed	latitude	longitude	heading	road_speed_limit	vehicle_make	vehicle_model	vehicle_type	
2022-09-29 03:46:06.458	-0.030	-0.028	1.009	0.0	43.238934	-2.877811	318.0	40	MAN	TGX	truck	LOCAL_ROAD_OF_MAJOR
2022-09-29 03:46:06.558	-0.032	-0.029	1.008	0.0	43.238934	-2.877811	318.0	40	MAN	TGX	truck	LOCAL_ROAD_OF_MAJOR
2022-09-29 03:46:06.658	-0.029	-0.027	1.008	0.0	43.238934	-2.877811	318.0	40	MAN	TGX	truck	LOCAL_ROAD_OF_MAJOR
BRIDGESTONE	-0.028	-0.029	1.009	0.0	43.238934	-2.877811	318.0	40	MAN	TGX	truck	LOCAL_ROAD_OF_MAJOR

2- Dataset Pre-processing

- The dataset we have is coming from physical sensor installed in a Truck.
- In order to deal this work with our dataset, we should pay attention to the following points:
 - Calibrate the sensors and identify axes
 - Change values in respect to Physical Units
 - Remove noise

3- Feature engineering

- In this section, we concentrate on:
 - Explore and understand the domain
 - Search for references
 - Find new features to enrich our model
 - Look at features inter-connection (correlation, ...)

4- Build Model

- 1. We will use Self-Organizing Map (SOM) to build the model
- 2. Prepare the data to match model input
- 3. Train the model

5- Anomalies detection and Visualization

Road Condition Monitoring

- SPEED_BUMP
- CLEAN_ROAD
- GENERAL_ANOMALIES

Thank you:-)

 $_{ extsf{I}}$ Wish I won the Position $__$

