11.4: Mathematical Induction

Supplementary Notes

Mathematical Induction is a method for proving a proposition P(n) is true for all positive integers n. P(n) is true for all positive integers n if the following conditions hold

- P(1) is true, and (base case)
- if P(k) is true, then P(k+1) is true for some positive integer $k \ge 1$. (induction step)

Exercises

- 1. To prove by induction that $7+12+17+\cdots+(5n+2)=\frac{1}{2}(5n^2+9n)$ is true for all positive integers n, we assume $7+12+17+\cdots+(5k+2)=\frac{1}{2}(5k^2+9k)$ is true for some positive integer k, and show that $7+12+17+\cdots+(5k+2)+(5(k+1)+2)=A$ where A is
- 2. To prove by induction that $5+9+13+\cdots+(4n+1)=2n^2+3n$ is true for all positive integers n, we assume $5+9+13+\cdots+(4k+1)=2k^2+3k$ is true for some positive integer k, and show that $5+9+13+\cdots+(4k+1)+A=2(k+1)^2+3(k+1)$ where A is
- 3. To prove by induction that $n^2 5n 2$ is divisible by 2 is true for all positive integers n, we assume $k^2 5k 2$ is divisible by 2 is true for some positive integer k, and we show that A is divisible by 2, where A is
- 4. To prove by induction that $n^2 3n + 2$ is divisible by 2 is true for all positive integers n, we assume $k^2 3k + 2$ is divisible by 2 is true for some positive integer k, and we show that $k^2 3k + 2 + A$ is divisible by 2, where A is
- 5. Find a_2 and a_3 such that $1 + a_2 + a_3 + \cdots + a_n = 2^n 1$ for all n.