YÜKLEMLER VE NİCELEYİCİLER

DR. ZEYNEP BANU ÖZGER

- 1. Tahmin
- 2. Niceleyiciler
- 3. Cümlelerin Mantıksal İfade Edilmesi
- 4. İç içe Niteleyiciler

TAHMIN-PREDICATES

- Bazı ifadeler değişkenler belirtilmediği sürece «doğru» veya «yanlış» olarak nitelendirilemez.
- Örnek:
 - x>3, x=y+3, x+y=z gibi
- 'x>3' ifadesi 2 kısımdan oluşmaktadır.
 - x, ifadenin öznesidir.
 - İkinci kısım 'büyüktür 3' ise predicate dir.
- P(x) ifadesi, x'deki öneri fonksiyonunun değeri olarak nitelenir.
 - P(x), p önermesinin fonksiyon haline getirilmiş biçimidir.

PREDICATES

• x=y+3 gibi birden fazla değişkeni olan ifadeler Q(x,y) gibi temsil edilir.

Bu durumda;

• Değişkenler: x ve y

Predicate: Q

• Örnek: A(c,n) için ifade: 'c bilgisayarı n ağına bağlıdır' olsun.

 Örneğin 'Math1' bilgisayarı 'kampus2' ağına bağlandığında, A(math1,kampus2) ifadesi 'doğru' sonucunu üretir.

Önkoşullar Ve Son Koşullar

- Predicate'ler bilgisayar geçerli girdi verildiğinde doğru çıktıyı her zaman üretip üretmediğini test etmek için de kullanılır.
- Geçerli girdiyi tanımlayan ifadelere önkoşul (precondition) denir.
- Program çalıştığında çıktının yerine getirmesi gereken koşullara ise son koşul (postcondition) denir.
- Ön ve son koşulları tanımlamak için predicate'ler kullanılır.

NICELEYICILER (QUANTIFIERS)

- P(x): bir öneri fonksiyonu.
 - Değişkenlere değer atandığında önerme olur.
 - Sonuçta; 'doğru' veya 'yanlış' şeklinde bir değeri olur.
- Niceleme; bir dizi öğe üzerinde hangi predicate'in doğru olduğunu ifade eder.
- 2 tür niceleyici vardır;
 - Universal (evrensel) niceleyici (∀): Bir predicate in her değer için doğru olduğunu söyler.
 - Existential (varoluşsal) niceleyici (∃): Predicate i doğru yapan kısıtlı değer vardır.
- Bir P(x) ifadesi için belirli bir D kümesindeki tüm x değerleri, P(x)'i bir önerme yapıyorsa;
 - D, x'in ayrıntılı bilgi alanı (domain of discourse) dır.

NICELEYICILER (QUANTIFIERS)

- Örnek: P(n): $n^2 + 2n$ tek sayıdır.
 - D kümesi pozitif tam sayılardan oluşmak üzere;
 - If n tek sayı then $n^2 + 2n$ tek sayı
 - If n çift sayı then $n^2 + 2n$ tek sayı değildir.
- Örnek: P(x): Sınıftakiler 20 yaşından büyüktür.
 - D kümesi sınıftaki öğrenciler ise,
 - Öğrencilerin bazıları önermeyi 'doğru', bazıları ise 'yanlış' yapar.

Evrensel (Universal) Niceleyici

- Bir P(x) ifadesi, D kümesindeki her x değeri için doğru ise,
 - $\forall x P(x)$,
 - for all x P(x),
 - for every x P(x) şeklinde yazılır.
- $\{x_1, x_2, \dots x_n\}$ P(x) ifadesinin domaini ise,
 - Evremsel niceleyici ∀ x P(x) 'and' bağlacı ile eşdeğerdir.
 - Yani $\{P(x_1) \land P(x_2) \land \cdots \land P(x_n)\}$
- Örnek: Domain x: x<=4 ve $x^2 < 10$ için \forall x P(x) ifadesinin doğruluk değeri nedir?

$$\forall x P(x) = P(1) \land P(2) \land P(3) \land P(4)$$

x=4 için $4^2 < 10$ ifadesi 'yanlış' olduğundan \forall x P(x)'in doğruluk değeri de 'yanlış'

dır

Karşı Örnek (Counter Example)

- $\forall x \in D$ için P(x)'in değerini 'yanlış' yapan elemana **counter example** denir.
- Her x:x<=4 domaini için P(x): $x^2 < 10$ ise
 - x=4 için $x^2 = 16$ olacağından, x=4 P(x)'in sonucunu 'yanlış' yapar.
 - Yani 4 counter example'dır.

Varoluşsal (Existential) Niceleyici

- P (x)'in varoluşsal nicelendirmesi, "x'in bilgi alanında P (x)'i 'doğru' yapacak şekilde x öğesi vardır" önerisidir.
- P(x) önermesi, D kümesi içindeki en az bir x değeri için doğru olmalıdır.
- Varoluşsal Niteleyiciler;
 - $\exists x P(x),$
 - There is an x such that P(x),
 - There is at least one x such that P(x) şeklinde yazılır.
- $\{x_1, x_2, \dots x_n\} P(x)$ ifadesinin domaini ise,
 - Varoluşsal niceleyici ∃ x P(x) 'veya' bağlacı ile eşdeğerdir.
 - Yani $\{P(x_1) \lor P(x_2) \lor \cdots \lor P(x_n)\}$

Varoluşsal (Existential) Niceleyici

• Örnek: Domain x: x<=4 ve $x^2 < 10$ için \exists x P(x) ifadesinin doğruluk değeri nedir?

$$\exists x P(x) = P(1) \lor P(2) \lor P(3) \lor P(4)$$

x=1 için $1^2 < 10$ ifadesi 'doğru' olduğundan $\exists \ x \ P(x)$ 'in doğruluk değeri de 'doğru' olur

CÜMLELERİN MANTIKSAL İFADEYE ÇEVRİLMESİ

- Amaç, doğal dildeki cümleler için basit ve kullanışlı mantıksal ifadeler elde etmektir.
- Örneğin: 'Bu sınıftaki her öğrenci matematik dersini aldı' cümlesini predicate ve niteleyiciler ile ifade edersek:
 - Cümleyi şöyle ifade edersek;
 - Sınıftaki her x öğrencisi matematik dersini aldı.
 - Predicate: C(x)
 - Domain: Sınıftaki tüm öğrenciler → ∀ x C(x),
 - Cümle: 'Sınıftaki bazı öğrenciler matematik dersini aldı' olsaydı
 - $\exists x C(x) olurdu$.

CÜMLELERİN MANTIKSAL İFADEYE ÇEVRİLMESİ

- Örnek: Bir insan bayan ve ebeveyn ise bu kişi birinin annesidir
 - F(x): x bir bayandır
 - P(x): x bir ebeveyndir.
 - M(x,y): x, y'nin annesidir.
 - Buna göre cümle mantıksal olarak şöyle ifade edilir.

CÜMLELERİN MANTIKSAL İFADEYE ÇEVRİLMESİ

- Örnek: Bir insan bayan ve ebeveyn ise bu kişi birinin annesidir
 - F(x): x bir bayandır
 - P(x): x bir ebeveyndir.
 - M(x,y): x, y'nin annesidir.
 - Buna göre cümle mantıksal olarak şöyle ifade edilir.
 - $\forall x((F(x) \land P(x)) \rightarrow \exists y M(x,y))$

- Örnek:
 - 'Sınıftaki tüm öğrenciler matematik dersini aldı.'
 - Evrensel niceleyici
 - $\forall x P(x)$.
 - P(x): Sınıftaki x öğrencisi matematik dersini aldı.
 - Domain : Sınıftaki tüm öğrenciler
 - İfadenin tersi: 'Sınıfta en az 1 öğrenci matematik dersini almadı' olur.
 - ∃ x ¬ P(x) şeklinde yazılır.
 - $\neg \forall x P(x) \equiv \exists x \neg P(x)$

- Örnek:
 - Bu sınıfta matematik dersi almış en az bir öğrenci var.
 - Varoluşsal niceleyici
 - ∃ x P(x) şeklinde yazılır.
 - P(x): Sınıftaki x öğrencisi matematik dersini aldı.
 - İfadenin tersi;
 - Sınıfta matematik dersini almış bir öğrenci olması söz konusu değil veya
 - Bu sınıftaki her öğrenci matematik almamıştır.
 - \forall x \neg P(x) olarak ifade edilir.
 - Bu durumda;
 - $\neg \exists x P(x) \equiv \forall x \neg P(x)$

Niceleyiciler İçin De Morgan Kanunları

$$\neg(\forall X P(X)) \rightarrow \exists X \neg P(X)$$

$$\neg (\exists x \ P(x)) \rightarrow \forall x \ \neg P(x)$$

İÇ İÇE NİCELEYİCİLER

- Bir niceleyici diğerinin alanı içindeyse, bunlara iç içe niceleyiciler denir.
 - Ör: $\forall x \exists y (x + y = 0)$

Eşitlik	Açıklama
$\forall x \forall y (x + y = y + x)$	Tüm x ve y reel sayıları için x+y=y+x dir
$\forall x \exists y (x + y = 0)$	Tüm x ve bazı y reel sayıları için x+y=0 dır.
$\forall x \forall y \forall z (x + (y + z) = (x + y) + z)$	Tüm reel x, y ve z sayıları için (x+(y+z))=((x+y)+z) dir
$\forall x \exists y P(x, y)$	Her x için P(x,y)'yi 'doğru' yapan en az 1 y değeri vardır.
$\exists x \forall y P(x, y)$	Her y için P(x,y) yi 'doğru' yapan bir x vardır.

İÇ İÇE NİCELEYİCİLER

Örnek: 'İki pozitif tam sayının toplamı her zaman pozitiftir.' Cümlesini mantıksal olarak ifade edersek:

- Her iki tamsayı için, eğer bu tamsayıların her ikisi de pozitifse, bu tamsayıların toplamı pozitiftir.
- Bahsi geçen sayılar x ve y olursa,
 - x ve y pozitif ise x+y pozitiftir denir.
- Mantiksal ifade edersek;
 - Domain tüm sayılardır.
 - $\forall x \forall y ((x > 0) \land (y > 0) \rightarrow (x + y > 0))$
 - Domain pozitif sayılar olarak kısıtlandığında
 - $\forall x \forall y (x + y > 0)$ olarak ifade edilebilir

İÇ İÇE NİCELEYİCİLER

Örnek: $\forall x(c(x) \lor \exists y (c(y) \land f(x, y)))$ ifadesi için doğal dil cümlesini yazmak istersek.

- C(x): x'in bilgisayarı vardır.
- F(x,y): x ve y arkadaştır.
- Domain: okuldaki tüm öğrenciler
- Okuldaki her x öğrencisinin, bilgisayarı vardır veya okuldan bilgisayarı olan bir y öğrencisi ile arkadaştır.

- Matematiksel bir ifadenin gerçekliğinin belirlenmesine **ispat** denir.
- Matematiksel bir ifade farklı bileşenler içerir.
 - Tanımlanmamış terimler
 - Aksiyomlar
 - Tanımlar
 - Teoremler
 - İspatlar
- Terim tanımlamanın sonsuz bir tanım dizisine dönüşmemesi için bazı terimler tanımlanmamış olarak bırakılır. Bunlara tanımlanmamış terim denir.

- İspat yapmaksızın doğru kabul edilen önermelere aksiyom denir.
- Aksiyomların doğruluğu veya yanlışlığından söz edilemez.
- Tanım; Yeni bir kavram oluşturmak için önceden kabul edilmiş kavramlar ve tanımlanmamış terimlerden bir önerme oluşturmaktır.
- Teorem; Önceden ispatlanmış teoremleri, aksiyomları, tanımlamaları kullanarak ve p nin doğru olduğunu farz ederek doğruluğu önerilebilen p → q formundaki önermelerdir.
- Lemma; Büyük bir teoremi ispatlamak için kullanılan daha küçük teoremlerdir.
- Corollary (Sonuç); bir başka teoremin mantıksal sonucu ile diğer bir teoremin ispatlanmasıdır

İspat Çeşitleri

- 2 tür ispat vardır;
 - Doğrudan ispat;
 - p→q ispatlanmış teorem, aksiyom ve p önermesinin doğruluğunu kabul ederek çözüme ulaşmaktır.
 - Dolaylı ispat;
 - Yani $p \rightarrow q = \neg q \rightarrow \neg p \text{ dir.}$
 - Bir önermenin ters pozitifi ispat edildiğinde, önermenin kendisi de ispat edilmiş olur.

DOĞRUDAN İSPAT ÖRNEK

• a ve b birer rasyonel sayı ise;

•
$$a = \frac{x}{y}$$
, $x, y \in Z$, $y \neq 0$ dir

•
$$b = \frac{z}{t}$$
, $z, t \in Z$, $t \neq 0$ dir

•
$$a + b = \frac{x}{y} + \frac{z}{t}$$
, $yt \neq 0$, $yt \in Z$, $xk + zy \in Z$ olacaktır

• Yani a+b de bir rasyonel sayıdır.

DOLAYLI İSPAT ÖRNEK

- $p \rightarrow q \equiv \neg q \rightarrow \neg p \text{ dir.}$
- p:3n+2 tek sayıdır
- q=n tek sayıdır
- Karşıt tersi: n çift sayı ise 3n+2 çift sayıdır
- $n = 2x, x \in Z$
 - 3n + 2 = 3 * 2x + 2 = 6x + 2 = 2 * (3x + 1)
 - $k \in \mathbb{Z}$ olmak üzere $k = 3x + 1 \rightarrow 3n + 2 = 2k$

