

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»	

Лабораторная работа №2 по курсу "Математическая статистика"

а Интервальные оценки		
Студент Ковалец К. Э.		
Группа ИУ7-63Б		
Вариант 9		
Преподаватель Власов П. А.		

1 Содержание работы

- 1. Для выборки объема n из нормальной генеральной совокупности X реализовать в виде программы на ЭВМ:
 - (a) вычисление точечных оценок $\hat{\mu}(\vec{x}_n)$ и $S^2(\vec{x}_n)$ математического ожидания MX и дисперсии DX соответственно;
 - (b) вычисление нижней и верхней границ $\hat{\underline{\mu}}(\vec{x}_n)$, $\overline{\hat{\mu}}(\vec{x}_n)$ для γ доверительного интервала для математического ожидания MX;
 - (c) вычисление нижней и верхней границ $\hat{\underline{\sigma}}(\vec{x}_n)$, $\bar{\hat{\sigma}}(\vec{x}_n)$ для γ доверительного интервала для дисперсии DX.
- 2. Вычислить $\hat{\mu}$ и S^2 для выборки из индивидуального варианта.
- 3. Для заданного пользователем уровня доверия γ и N объема выборки из индивидуального варианта:
 - (а) на координатной плоскости Oyn построить прямую $y=\hat{\mu}(\vec{x}_N),$ также графики функций $y=\hat{\mu}(\vec{x}_n),\ y=\underline{\mu}(\vec{x}_n),\ y=\overline{\mu}(\vec{x}_n)$ как функций объема n выборки, где n изменяется от 1 до N;
 - (b) на другой координатной плоскости Ozn построить прямую $z=S^2(\vec{x}_N)$, также графики функций $z=S^2(\vec{x}_n), \ z=\underline{\sigma^2}(\vec{x}_n),$ $z=\overline{\sigma^2}(\vec{x}_n)$ как функций объема n выборки, где n изменяется от 1 до N.

2 Теоретическая часть

2.1 Определение γ -доверительного интервала для значения параметра распределения случайной величины

2.1.1 Интервальная оценка

Опр. Интервальной оценкой параметра θ уровня $\gamma \in (0,1)$ (γ - интервальной оценкой) называется пара статистик:

$$\underline{\theta}(\vec{X})$$
 и $\overline{\theta}(\vec{X})$ таких, что $P\{\theta \in (\underline{\theta}(\vec{X}), \ \overline{\theta}(\vec{X}))\} = \gamma.$

2.1.2 Доверительный интервал

Опр. γ - доверительным интервалом (доверительным интервалом уровня γ) для параметра θ называют реализацию интервальной оценки уровня γ для этого параметра, т. е. интервал:

$$(\underline{\theta}(\vec{x}), \ \overline{\theta}(\vec{x}))$$

с детерминированными границами.

2.2 Формулы для вычисления границ γ - доверительного интервала для математического ожидания и дисперсии нормальной случайной величины

Таблица 2.1 – Таблица границ доверительных интервалов

Параметры	Центральная статистика	Границы
μ — неизвестно,	_	$\underline{\mu}(\vec{X}_n) = \overline{X} - \frac{u_{1-\alpha}\sigma}{\sqrt{n}}$
σ — известно,	$\frac{\mu - \overline{X}}{\sigma} \sqrt{n} \sim N(0, 1)$	·
Оценить μ		$\overline{\mu}(\vec{X}_n) = \overline{X} + \frac{u_{1-\alpha}\sigma}{\sqrt{n}}$
μ — неизвестно,		$\overline{\mu}(\vec{X}_n) = \overline{X} + \frac{u_{1-\alpha}\sigma}{\sqrt{n}}$ $\underline{\mu}(\vec{X}_n) = \overline{X} - \frac{t_{1-\alpha}^{(n-1)}S(\vec{X}_n)}{\sqrt{n}}$
σ — неизвестно,	$\frac{\mu - \overline{X}}{S(\vec{X}_n)} \sqrt{n} \sim St(n-1)$	
Оценить μ	$O(\Lambda_n)$	$\overline{\mu}(\vec{X}_n) = \overline{X} + \frac{t_{1-\alpha}^{(n-1)}S(\vec{X}_n)}{\sqrt{n}}$
σ — неизвестно,		$\underline{\sigma^2(\vec{X}_n)} = \frac{S^2(\vec{X}_n)(n-1)}{h_n^{(n-1)}}$
Оценить σ^2	$\frac{(n-1)S(\vec{X}_n)}{\sigma^2}\sqrt{n} \sim \chi^2(n-1)$	$n_{1-\alpha}$
		$\overline{\sigma}^2(\vec{X}_n) = \frac{S^2(\vec{X}_n)(n-1)}{h_{\alpha}^{(n-1)}}$

Обозначения:

$$lpha = rac{1-\gamma}{2};$$
 u_lpha — квантиль уровня $lpha$ распределения $N(0,1);$ $t_lpha^{(n-1)}$ — квантиль уровня $lpha$ распределения $St(n-1);$ $h_lpha^{(n-1)}$ квантиль уровня $lpha$ распределения $\chi^2(n-1);$ $\overline{X} = rac{1}{n} \sum_{i=1}^n X_i;$ $S^2(\vec{X_n}) = rac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2.$

3 Практическая часть

3.1 Текст программы

```
function lab_2()
      clc
      % Было в защите
      \% Объяснить, почему график S^2(Xn) сначала резко растет, а потом падает
      % X = 10 * csvread('X.csv');
      % X = [X zeros(1, 300) - 110];
      X = csvread('X.csv');
      n = length(X);
10
11
      % Вычисление выборочного среднего
12
      mu = sum(X) / n;
      fprintf("Выборочное среднее = %.4f\n", mu);
14
15
      % Вычисление исправленной выборочной дисперсии
16
      if (n > 1)
17
          s2 = sum((X - mu) .^2) / (n - 1);
      else
          s2 = 0;
20
      endif
^{21}
      fprintf("Исправленная выборочная дисперсия = %.4f\n", s2);
23
24
25
      gamma = 0.9;
26
      alpha = (1 - gamma) / 2;
27
      % Вычисление доверительных интервалов
29
30
      % m - неизвестно,
      % sigma - неизвестно,
32
      % Оценить м
33
      quant_st = tinv((1 - alpha), (n - 1));
35
36
      lower_m = mu - (quant_st * sqrt(s2) / sqrt(n));
      upper_m = mu + (quant_st * sqrt(s2) / sqrt(n));
38
39
      fprintf("\nНижняя граница gamma-доверительного интервала для mu =
         %.4f\n'', lower_m);
```

```
fprintf("Верхняя граница gamma-доверительного интервала для mu =
41
          %.4f\n", upper_m);
      fprintf("\ngamma-доверительный интервал для mu: (%.4f, %.4f) \n",
43
          lower_m, upper_m);
44
      % sigma - неизвестно
45
      % Оценить sigma^2
46
47
      quant_xi2_lower = chi2inv((1 - alpha), (n - 1));
48
      quant_xi2_upper = chi2inv(alpha, (n - 1));
49
50
      lower_sigma = s2 * (n - 1) / quant_xi2_lower;
51
      upper_sigma = s2 * (n - 1) / quant_xi2_upper;
52
53
      fprintf("\nНижняя граница gamma-доверительного интервала для sigma =
54
          %.4f\n", lower_sigma);
      fprintf("Верхняя граница gamma-доверительного интервала для sigma =
          %.4f\n", upper_sigma);
56
      fprintf("\ngamma-доверительный интервал для sigma: (%.4f, %.4f) \n",
57
          lower_sigma, upper_sigma);
58
      % Построение графиков для задания 3 а)
59
60
      mu_arr = zeros(n, 1);
61
      s2_arr = zeros(n, 1);
62
63
      for i = 1 : n
64
           X_{part} = X(1 : i);
66
          mu_arr(i) = sum(X_part) / i;
67
68
69
           if (i > 1)
               s2_arr(i) = sum((X_part - mu_arr(i)) .^2) / (i - 1);
70
71
           else
               s2_arr(i) = 0;
72
           endif
73
      endfor
74
75
      mu_line = zeros(n, 1);
76
      mu_line(1 : n) = mu_arr(n);
77
78
      mu_lower = zeros(n, 1);
79
      mu_upper = zeros(n, 1);
80
      for i = 1 : n
82
           quant_st = tinv((1 - alpha), (i - 1));
83
```

```
84
           mu_lower(i) = mu_arr(i) - (quant_st * sqrt(s2_arr(i)) / sqrt(i));
85
           mu_upper(i) = mu_arr(i) + (quant_st * sqrt(s2_arr(i)) / sqrt(i));
86
       endfor
87
       % Графики
89
       plot((10 : n), mu_line(10 : n), 'r', 'LineWidth', 1);
90
       hold on;
91
       plot((10 : n), mu_arr(10 : n), 'g', 'LineWidth', 1);
       hold on;
93
       plot((10 : n), mu_upper(10 : n), 'b', 'LineWidth', 1);
94
       hold on;
       plot((10 : n), mu_lower(10 : n), 'k', 'LineWidth', 1);
96
       hold on;
97
98
       grid on;
99
       xlabel("n");
100
       ylabel('\mu');
101
102
       legend('\mu\^(x_N)', '\mu\^(x_n)', '\mu^{-}(x_n)', '\mu_{-}(x_n)');
103
       % Построение графиков для задания 3 b)
105
106
       figure()
107
108
       mu_arr = zeros(n, 1);
109
       s2_arr = zeros(n, 1);
110
111
       for i = 1 : n
112
           X_{part} = X(1 : i);
113
114
           mu_arr(i) = sum(X_part) / i;
115
116
117
           if (i > 1)
                s2_arr(i) = sum((X_part - mu_arr(i)) .^2) / (i - 1);
118
119
           else
                s2_arr(i) = 0;
120
           endif
121
       endfor
122
123
       s2\_line = zeros(n, 1);
124
       s2_line(1 : n) = s2_arr(n);
125
126
       s2\_lower = zeros(n, 1);
127
       s2\_upper = zeros(n, 1);
128
129
       for i = 1 : n
130
           quant_xi2_lower = chi2inv((1 - alpha), (i - 1));
131
```

```
quant_xi2_upper = chi2inv(alpha, (i - 1));
132
133
           s2_lower(i) = s2_arr(i) * (i - 1) / quant_xi2_lower;
           s2_upper(i) = s2_arr(i) * (i - 1) / quant_xi2_upper;
135
       endfor
136
137
       % Графики
138
       plot((10 : n), s2_line(10 : n), 'r', 'LineWidth', 1);
139
       hold on;
140
       plot((10 : n), s2_arr(10 : n), 'g', 'LineWidth', 1);
141
       hold on;
142
       plot((10 : n), s2_upper(10 : n), 'b', 'LineWidth', 1);
143
       hold on;
144
       plot((10 : n), s2_lower(10 : n), 'k', 'LineWidth', 1);
145
       hold on;
146
147
       grid on;
148
       xlabel("n");
       ylabel('\sigma');
150
151
       legend('S^2(x_N)', 'S^2(x_n)', '\sigma^{2} -}(x_n)',
           '\sigma^2_{-}(x_n)');
153
154 endfunction
```

3.2 Результаты работы программы

```
>> lab_2
Выборочное среднее = -7.6609
Исправленная выборочная дисперсия = 0.7779
Нижняя граница датта-доверительного интервала для ти = -7.7944
Верхняя граница датта-доверительного интервала для ти = -7.5274
датта-доверительный интервал для ти: (-7.7944, -7.5274)
Нижняя граница датта-доверительного интервала для sigma = 0.6364
Верхняя граница датта-доверительного интервала для sigma = 0.9764
датта-доверительный интервал для sigma: (0.6364, 0.9764)
>> |
```

Рисунок 3.1 – Результаты расчетов для выборки из индивидуального варианта

Рисунок 3.2 – График для математического ожидания

Рисунок 3.3 – График для дисперсии