OBE Outcome Based Education

EET142 Introduction to Electrical Engineering

Outline

Overview on outcome based education. Programme Education Objectives (PEO), Programme Outcome (PO), Course Outcome (CO). Bloom's Taxonomy.

OBE is a process that involves <u>assessment</u> and evaluation practices in education to reflect the <u>attainment</u> of <u>expected</u> <u>learning outcomes</u> and showing <u>mastery</u> in the programme area

"A powerful first step in becoming successful is to define your **End in Mind** by developing a mission statement. **Begin with the End in Mind.**"

—Dr. Stephen R. Covey, The 7 Habits of Highly Effective People

Different Levels of Outcomes

Upon course completion

• **Programme Objectives (PEO)** are specific goals consistent with the mission and vision of the IHL, are responsive to the expressed interest of programme stakeholders, and describe the expected achievements of graduates in their career and professional life a few years after graduation.

Processes and Results:

- Clear linkage between Programme Objectives and Programme Outcomes
- Process of on-going assessment and evaluation that demonstrates the achievement with documented results
- Evaluation results that are used in the continual improvement of the programme.

PEO 1

Graduates who have demonstrated career advancement in the field of Electrical Engineering or related engineering field.

appointed as a leader such as senior position, supervisor, specialist, technical leader, group leader, engineering entrepreneur, business creator or assigned multiple responsibilities.

Graduates who are involved in a professional body or society.

such as BEM, IEM (Corporate member), IEEE, IMechE, IET, BCS, NGO, Mercy and other reputable Organization

Graduates who pursue life-long learning.

postgraduate studies or participate in continual development activities

Outcome-Based Education (Closing the Loops)

PO1	Engineering Knowledge	Breadth & depth of knowledge
PO2	Problem Analysis	Complexity of analysis
PO3	Design/Development of Solutions	Breadth & uniqueness of engineering problems i.e. the extent to which problems are original and to which solutions have previously been identified and coded
PO4	Investigation	Breadth & depth of investigation and experimentation
PO5	Modern Tool Usage	Level of understanding of the appropriateness of the tool
PO6	The Engineer and Society	Level of knowledge and responsibility
PO7	Environment and Sustainability	Type of solutions
PO8	Ethics	Understanding and level of practice
PO 9	Individual and Team Work	Role in and diversity of team
PO10	Communication	Level of communication according to type of activities performed
PO11	Life-long Learning	Preparation for and depth of continuing learning
PO 12	Project Management and Finance	Level of management required for differing types of activity

(PO1) Engineering Knowledge – Breadth & Depth of Knowledge

(WA1) Apply knowledge of mathematics, natural science, engineering fundamentals and an engineering specialisation to the solution of complex engineering problems; (WK1 to WK4)

WA = Programme Outcome
WK = Knowledge Profile = Curriculum

(PO2) Problem Analysis - Complexity of analysis

(WA2) Identify, formulate, research literature and analyse <u>complex</u> engineering problems reaching substantiated conclusions using <u>first</u> principles of mathematics, natural sciences and engineering sciences (WK1 – WK4)

(PO3) Design/Development of Solutions – Breadth and uniqueness of engineering problems i.e. the extent to which problems are original and to which solutions have previously been identified or codified

(WA3) Design solutions for <u>complex</u> engineering problems and design systems, components or processes that <u>meet specified</u> needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations (WK5)

(PO4) Investigation - Breadth & Depth of Investigation & Experimentation

(WA4) Conduct investigation of <u>complex</u> problems using <u>research</u> based knowledge (WK8) and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions

(PO5) Modern Tool Usage - Level of understanding of the appropriateness of the tool

(WA5) Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to <u>complex</u> engineering problems, with an understanding of the limitations. (WK6)

(PO6) The Engineer and Society - Level of knowledge and responsibility

(WA6) Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems. (WK7)

(PO7) Environment and Sustainability - Type of solutions

(WA7) Understand and evaluate the sustainabilty and impact of professional engineering work in the solutions of complex engineering problems in societal and environmental contexts (demonstrate knowledge of and need for sustainable development) (WK7)

(PO8) Ethics - Understanding and level of practice

(WA8) Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice. (WK7)

(PO9) Individual and Team Work – Role in and diversity of team

(WA9) Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings

(PO10) Communication – Level of communication according to type of activities performed

(WA10) Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

(PO11) Life-long Learning – Preparation for and depth of continuing learning

(WA12) Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

(PO12) Project Management and Finance – Level of management required for differing types of activity

(WA11) Demonstrate knowledge and understanding of engineering and management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

Bloom's Taxonomy

Produce new or original work

Design, assemble, construct, conjecture, develop, formulate, author, investigate

evaluate

Justify a stand or decision

appraise, argue, defend, judge, select, support, value, critique, weigh

analyze

Draw connections among ideas

differentiate, organize, relate, compare, contrast, distinguish, examine, experiment, question, test

apply

Use information in new situations

execute, implement, solve, use, demonstrate, interpret, operate, schedule, sketch

understand

Explain ideas or concepts

classify, describe, discuss, explain, identify, locate, recognize, report, select, translate

remember

Recall facts and basic concepts define, duplicate, list, memorize, repeat, state

Ask yourself upon preparing assessment Bloom

Bloom's Taxonomy

Creating:

Can students create a new product or point of view?

They would be able to assemble, construct, create, design, develop, formulate, write, or invent.

Evaluating:

Can the student justify a stand or decision?

To evaluate information, a student might: appraise, argue, defend, judge, select, support, value, and evaluate.

Analyzing:

Can the student distinguish between the different parts?

They would be able to compare, contrast, criticize,

differentiate, discriminate, distinguish, examine, experiment, question, or test.

Applying:

Can the student use the information in a new way?

They would be able to choose, demonstrate, dramatize, employ, illustrate, interpret, operate, sketch, solve, use, or write.

Understanding:

Can the student explain ideas or concepts?

They would be able to classify, describe, discuss, explain, identify, locate, recognize, report, select, translate, or paraphrase.

Remembering:

Can the student recall or remember the information?

They would be able to define, duplicate, list, memorize, recall, repeat, reproduce, or state.

Remembering	What is the formula related to Ohm's Law
Understanding	Derive Ohm's Law
Applying	
Analysing	
Evaluating	
Creating	

Psychomotor Domain

(doing, skills)

Affective Domain

(feeling, attitudes)

Definition: Integrates the value into **Organization** a value system that controls behavior. Definition: Conceptualizes the **Valuing** Sample Verbs: value and resolves act upon conflict between it and Definition: advocate other values Attaches value or worth defend Responding to something. exemplify Sample Verbs: influence Definition: · adapt Sample Verbs: · justify behavior Responds to stimuli. Receiving adjust maintain adopt arrange serve · assume responsibility Sample Verbs: balance Definition support behave according to · classify · agree to Selectively attends choose · answer freely conceptualize to stimuli · commit assist formulate · care for desire group communicate Sample Verbs: exhibit loyalty comply organize · express accept • rank • conform initiate acknowledge consent theorize prefer contribute · be aware · cooperate seek listen follow · show concern notice · obey show continual pay attention participate willingly desire to tolerate read voluntarily · use resources to respond visit volunteer Higher order Intermediate lower order

Internalizing

Complex Problems (Need High Taxonomy Level)

Complex Engineering Problems have characteristic WP1 and some or all of WP2 to WP7, EP1 and EP2, that can be resolved with in-depth forefront knowledge

reserved with in depth forement knowledge			
WP1	Depth of Knowledge required	Resolved with forefront in-depth engineering knowledge (WK3, WK4, WK5, WK6 or WK8) which allows a fundamentals-based, first principles analytical approach	
WP2	Range of conflicting requirements	Involve wide-ranging or conflicting technical, engineering and other issues.	
WP3	Depth of analysis required	Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models.	
WP4	Familiarity of issues	Involve infrequently encountered issues	
WP5	Extent of applicable codes	Beyond codes of practice	
WP6	Extent of stakeholder involvement and level of conflicting requirements	Involve diverse groups of stakeholders with widely varying needs.	
WP7	Interdependence	Are high level problems including many component parts or sub-problems.	
EP1	Consequences	Have significant consequences in a range of contexts.	
EP2	Judgement	Require judgement in decision making	

Complex Engineering Activities (Project based)

Preamble	Complex activities means (engineering) activities or projects that have some or all of the following characteristics listed below
Range of resources	Diverse resources (people, money, equipment, materials, information and technologies).
Level of interaction	Require resolution of significant problems arising from interactions between wide ranging or conflicting technical, engineering or other issues.
Innovation	Involve creative use of engineering principles and research-based knowledge in novel ways
Consequences to society and the environment	Have significant consequences in a range of contexts, characterised by difficulty of prediction and mitigation.
Familiarity	Can extend beyond previous experiences by applying principles-based approaches.

ACROSTIC COMPETITION For PEO and PO

The acrostic must be catchy and unique.

