MOTIVES IN MAY EXERCISES

Pretalk 2: Sites

Exercise 8. Let X be a topological space, and let \mathbf{Top}_X be the category of topological spaces over X.¹ The purpose of this exercise is to study the categories of sheaves on different Grothendieck topologies on \mathbf{Top}_X . Consider the sites

$$(\mathbf{Top}_X)_{\mathrm{all}}, \quad (\mathbf{Top}_X)_{\mathrm{surj}}, \quad (\mathbf{Top}_X)_{\mathrm{\acute{e}t}}, \quad (\mathbf{Top}_X)_{\mathrm{Zar}}$$

all with underlying category \mathbf{Top}_X and whose coverings are as follows: a set $\{f_i \colon U_i \to U\}_{i \in I}$ of morphisms in (\mathbf{Top}_X) with the same target is a covering in

- $(\mathbf{Top}_X)_{\text{all}}$ no matter what.
- $(\mathbf{Top}_X)_{\text{surj}}$ if it is jointly surjective, i.e. $U = \bigcup_{i \in I} f(U_i)$.
- $(\mathbf{Top}_X)_{\text{\'et}}$ if it is jointly surjective and each f_i is a local homeomorphism, i.e. each point in U_i has an open neighborhood which f_i maps homeomorphically onto an open subset of U.
- $(\mathbf{Top}_X)_{\mathbf{Zar}}$ if it is jointly surjective and each f_i is an open embedding, i.e. f_i maps U_i homeomorphically onto an open subset of U.

After convincing yourself that each is in fact a site, show the following:

- (1) The category of sheaves of sets on $(\mathbf{Top}_X)_{\text{all}}$ is equivalent to the category with one object and one morphism.
- (2) The category of sheaves of sets on $(\mathbf{Top}_X)_{\text{surj}}$ is equivalent to the category of sets.
- (3) The category of sheaves of sets on $(\mathbf{Top}_X)_{\text{\'et}}$ and $(\mathbf{Top}_X)_{\text{Zar}}$ are equal: a presheaf on $(\mathbf{Top}_X)_{\text{\'et}}$ is a sheaf on $(\mathbf{Top}_X)_{\text{\'et}}$ if and only if it is on $(\mathbf{Top}_X)_{\text{Zar}}$.

Exercise 9. Let X be a topological space.

- (1) Show that for any $U \in \mathbf{Top}_X$, the representable functor $h_U \colon \mathbf{Top}_X^{\mathrm{op}} \to \mathbf{Set}$ given by $h_U(V) := \mathrm{Hom}_{\mathbf{Top}_X}(V, U)$ is a sheaf on $(\mathbf{Top}_X)_{\mathrm{Zar}}$ but not $(\mathbf{Top}_X)_{\mathrm{surj}}$. (By the previous exercise, it is also a sheaf on $(\mathbf{Top}_X)_{\mathrm{\acute{e}t}}$, which is less obvious!)
- (2) Conclude that the category of sheaves of sets on $(\mathbf{Top}_X)_{\mathbf{Zar}}$ need not be equivalent to the category of sheaves of sets on X (in the usual sense). (Hint: Take X to be a point.)
- (3) * Nevertheless, exhibit a fully faithful functor $B : \mathbf{Sh}(X, \mathbf{Set}) \hookrightarrow \mathbf{Sh}((\mathbf{Top}_X)_{\mathbf{Zar}}, \mathbf{Set})$, and show that if \mathcal{F} is a sheaf of Abelian groups on X, then its cohomology equals that of $B(\mathcal{F})$.

Exercise 10. Let $k \to A$ be a ring map, k a field. Prove that the following are equivalent:

- (1) A is Noetherian, zero-dimensional, and every local ring $(A \otimes_k k)_{\mathfrak{p}}$ is regular.
- (2) $A \cong \prod_{i \in I} k_i$ for some finite set I and finite separable extensions $k_i \mid k$.

(Hint: The structure theorem for Artinian rings might be useful; see Atiyah–Macdonald, Theorem 8.7.) Thus, under our definitions, "étale" is indeed equivalent to "smooth with zero-dimensional fibers".

¹That is, an object of \mathbf{Top}_X is a pair (Y, f) consisting of a topological space Y and a continuous map $f \colon Y \to X$; a morphism $(Y, f) \to (Z, g)$ in \mathbf{Top}_X is a continuous map $h \colon Y \to Z$ satisfying $g \circ h = f$. Note that \mathbf{Top}_X is (equivalent to) the category of all topological spaces if X is a point.

MOTIVES IN MAY EXERCISES

Exercise 11. Let X be a scheme, and let $x : \operatorname{Spec}(K) \to X$ be a point of X. An étale neighborhood of x is a commuting diagram of the form

$$\begin{array}{ccc}
& U \\
\downarrow \\
\operatorname{Spec}(K) & \xrightarrow{x} & X
\end{array}$$

in which $U \to X$ is étale. We abbreviate this diagram as " $(U, u) \to (X, x)$ ". The étale neighborhoods of x form a category in an obvious way.

Show that the category of étale neighborhoods of x is filtered. This means:

(1) Given $(U, u) \to (X, x)$ and $(U', u') \to (X, x)$, there exists a commutative diagram of the form

$$(U'', u'') \longrightarrow (U', u')$$

$$\downarrow \qquad \qquad \downarrow$$

$$(U, u) \longrightarrow (X, x);$$

(2) Given $f, g: (U, u) \to (X, x)$, there exists $h: (U', u') \to (U, u)$ with $h \circ f = g \circ f$. Thus if \mathcal{F} is a presheaf on $\mathbf{\acute{E}t}_X$, the filtered colimit

$$\mathcal{F}_x := \underset{(U,u)\to(X,x)}{\operatorname{colim}} \mathcal{F}(U)$$

can be computed in the usual way; it is called the *stalk* of \mathcal{F} at x.