

ENERGY HACK UN

ENERGY HACK UN

Krzysztof Szczepanek Kamil Chłosta Maciej Żyrkowski

Departament Badań i Rozwoju PGE Energia Ciepła

Opis zadania konkursowego

Elektrociepłownia, z którą zmierzą się uczestniczy konkursu, posiada 4 jednostki wytwórcze oraz akumulator ciepła.

Zadaniem zakładu jest dostarczanie ciepła dla mieszkańców miasta. Jednostki produkują również energię elektryczną, która zasila krajową sieć elektroenergetyczną.

Produkcja ciepła i energii elektrycznej jednocześnie (tzw. kogeneracja), pozwala na podniesienie sprawności i obniżenie emisji dwutlenku węgla do atmosfery.

Opis zadania konkursowego

Zadaniem uczestników, będzie rozwiązanie problemu optymalizacji planu produkcji dla przedstawionej elektrociepłowni. Funkcję celu należy zmaksymalizować tak, aby zachowane zostały wszystkie narzucone ograniczenia.

Uczestnicy będą mieli za zadanie ułożyć optymalny plan produkcji dla jednego wybranego roku w rozdzielczości godzinnej. Oznacza to, że dla każdej godziny w roku (łącznie 8760 rekordów), należy zadecydować jak mają pracować dostępne jednostki wytwórcze oraz akumulator ciepła.

Uczestnicy otrzymają plik, który należy uzupełnić o wyniki przeprowadzonej symulacji. Nie należy zmieniać struktury pliku. Wszystkie zależności niezbędne do rozwiązania zadania znajdują się w załączonych materiałach. Każdy zespół otrzyma pendrive'a zawierającego następujące pliki:

dane.csv funkcja.pdf jednostki.pdf

Opis zadania konkursowego

dane.csv Zawiera wartości wejściowe (Ptz, t, K, D) jak również strukturę uzupełniania wyników

funkcja.pdf — Zawiera opis funkcji celu

jednostki.pdf — Zawiera obszary pracy jednostek, ograniczenia oraz zależności pozwalające na wyznaczenie wszystkich wartości niezbędnych do wykonania zadania konkursowego

Dostępne jednostki wytwórcze

Krzywe, obszary pracy jednostek

Energia Ciepła S.A.

Obszary pracy jednostek przedstawiają zależności pomiędzy poszczególnymi parametrami, pozwalające obliczyć potrzebne wartości. Nie dozwolone jest definiowanie punktów pracy urządzeń poza wyznaczonymi obszarami pracy. Wszystkie zależności, równania oraz obszary pracy zawarte są w pliku *jednostki.pdf*.

Godzina	Pracujące jednostki							
2179	A A	B	D	Akumulator ciepła				
2180	A A	D						

j	Ptz	t	K	DA	DB	DC	DD	Y	Pt	Pe	Zg	Zw	PtA	PtB	PtC	PtD	PtS
2179	394,7	5,3	232,7143	1	. 1	. 1	. 1										
2180	396,1	5	238,9298	1	. 1	. 1	. 1										
2181	392,3	4,7	240,1148	1	. 1	. 1	. 1										
2182	383,6	4,5	238,9298	1	. 1	. 1	. 1										
2183	380,5	4,2	262,4252	1	. 1	. 1	. 1										
2184	370,1	2,8	231,5353	1	. 1	. 1	. 1										
2185	368	2,9	191,5704	1	. 1	. 1	. 1										
2186	370,9	2,7	187,6451	1	. 1	. 1	. 1										
2187	381,3	2,8	187,3651	1	. 1	. 1	. 1										

	E	PeA	PeB	PeC	PeD	ZgA	ZwB	ZwC	ZwD	RA	RB	RC	RD
2179													
2180													
2181													
2182													
2183													
2184													
2185													
2186													
2187													

Przykłady

Energia Ciepła S.A.

Powyżej, zaprezentowano dwa przykład rozwiązania zadania dla wybranej godziny, dla której zapotrzebowanie na ciepło (Ptz) wynosi 570 jednostek. W wariancie 1, jednostki A÷D produkują mniej ciepła (Pt) niż wynika to z zapotrzebowania (Ptz) a brakującą część uzupełnia akumulator ciepła. W wariancie 2, jednostki A÷D produkują więcej ciepła (Pt) niż wynika to z zapotrzebowania (Ptz), a nadwyżka ładowana jest do akumulatora.

Zakończenie konkursu

15:00	KONIEC programowania
15:00 – 17:30	Prezentacja prac - ok. 10 minut dla każdego zespołu
17:30 – 18:15	Ocena prac - obrady Komisji Oceniającej

- Po zakończeniu prac (najpóźniej w sobotę o godzinie 15:00), zespół przekazuje Komisji Oceniającej pendrive z zapisanym plikiem *wyniki.csv* oraz kodem źródłowym. Kod źródłowy należy umieścić w osobnym folderze o nazwie "Kod".
- Podczas 10 minutowej prezentacji, zespół ma za zadanie opisać sposób w jaki rozwiązał problem optymalizacji, jak również **wykonać obliczenia na nowym zestawie danych wejściowych** (*dane_kk.csv*), które zostaną przekazane przez komisję za pomocą pendrive'a. Wyniki wygenerowane dla nowego zestawu danych, zostaną zapisane pod nazwą wyniki kk.csv.

Uwaga: obliczenia na nowym zestawie danych wejściowych muszę się zakończyć do 8 minut (na komputerze, którym dysponuje zespół).

• Na podstawie otrzymanych wyników (pliki: wyniki.csv oraz wyniki_kk.csv), Komisja Oceniająca dokonuje ewaluacji prac konkursowych. Punkty zostaną przyznane według następujących kryteriów:

Ocena merytoryczna (90%) Kreatywność (5%) Prezentacja wyników (5%)

Konsultacje z ekspertami

	Piątek				
20:00 – 22:30 Jedna konsultacja na zespół – do 10 minut					
	Sobota				
09:00 – 11:30	Jedna konsultacja na zespół – do 10 minut				

- Każdemu z zespołów przysługują w sumie 2 konsultacje z zespołem ekspertów 1 w piątek oraz 1 w sobotę.
 Każda z konsultacji może trwać do 10 minut.
- Każdy z zespołów, jeżeli chce skorzystać z konsultacji, powinien wpisać się na udostępnioną w tym celu listę oraz zarezerwować sobie dogodne dla siebie okno czasowe.

Kamil Chłosta PGE Energia Ciepła

Maciej Żyrkowski PGE Energia Ciepła

Maciej Bujalski PGE Energia Ciepła

Krzysztof Szczepanek PGE Energia Ciepła

Paweł Madejski AGH

ENERGY HACK UN

