AAOT 555nm nLw Time Series 2013 Adriatic Sea

Location: AAOT (Jan1 – Nov 20)	# data records	# data records after exclusions applied	# data records after satellite flags
SeaPrism AOC	686	382	382
APS –processing	233	93	73
VOCCO – processing	314	143	143
APS to SeaPrism matchups	116	44	35
VOCCO to SeaPrism matchups	68	46	46
APS to VOCCO matchups *	173	55	46

Exclusion Criteria: +/- 3hrs; Max SatZA = 56°; Max SolZA = 70°; 50% valid pixels; wind < 8m/s; max AOT 0.2

Satellite Flags: Atmos fail; High LT; cloud/ice; sea ice; low nLw; land; hi satZ; hi solZ; nav fail, High glint; max AER iteration, epsilon out of range; Moderate glint

^{*}the APS to VOCCO matchups are not screened for wind speed or any of the in situ parameters.

Gains

No Vical

Figure 2 shows the vLt/Lt over time using unity gains. In a perfect system in which all components are computed accurately, the original Lt and vicarious Lt should have a ratio of 1.0. Most of the ratios are below the 1.0 line suggesting the sensor without vicarious calibration is slightly high. The mean gain for the 412, 442, 490, 555, and 668 channels are 0.9709, 0.9801, 0.9860, 0.9843, and

Gains

with Vical

Figure 3 shows the vLt/Lt relationship over time by processing the MOBY imagery with the vicarious calibration coefficients. The ratios vary around the 1.0 line suggesting the sensor with vicarious calibration is on average performing better than it does with unity gains. The mean gain for the 412, 442, 490, 555, and 668 channels are 0.9910, 0.9946, 1.0008, 1.0047, and 0.992 respectively.

Korean Peninsula - March 5, 2013 - QAA vs LMI - MODIS vs VIIR AOPS v4.10

VIIRS(gains) vs, MODIS Rrs improvement at stations 2 & 3 in comparison to MODIS

DIS

VIIIRS (v02)

VIIRS

HORIZONTAL VISIBILITY (LMI 531)

DIS

VIIIRS (v02)

VIIRS

VERTICAL VISIBILITY (LMI 531)

Rrs Matchup MODIS vs. VIIRS (412,443)

Rrs Matchup MODIS vs. VIIRS (488,451)

a,bb Matchup MODIS vs. VIIRS

Persian Gulf - December 09, 2012 - QAA vs LMI - MODIS vs VIIRS

VIIRS(gains) vs, MODIS Rrs improvement in comparison

BEAM ATTENUATION

MODIS Horiz Visibility (v01)

VIIRS Horiz Visibility

HORIZONTAL VISIBILITY

DIS

VIIIRS (v02)

VIIRS

VERTICAL VISIBILITY

Rrs Matchup MODIS vs. VIIRS (412,443)

Rrs Matchup MODIS vs. VIIRS (488,451)

a,bb Matchup MODIS vs. VIIRS

GEOCAPE / Northern Gulf of Mexico Cruise July 9-19, 2013 Rrs and IOP Station Locations

Insitu: UMASS/NOAA

SEOCAPE / Northern Gulf of Mexico Cruise July 9-19, 2013 - Scat

Gomex GEOCAPE Cruise 09/09 - 09/19/2013							
(0.016						y = 1.0677x
E (0.012						$R^2 = 0.8092$
547nm				A		•	◆ MODIS
Rrs	800.0		• 44				■ VIIRS v01
Insitu Rrs	0.004						▲ VIIRS v02
_ (J.004						y = 0.9075x
	0						$R^2 = 0.9179$
		0	0.004	0.008	0.012	0.016	y = 0.9997x
	Satellite Rrs 547nm R ² = 0.900						

Slope	rrs412	rrs443	rrs488	rrs547
MODIS	0.85	0.82	0.94	1.07
WIRS v01	0.5	0.72	0.85	0.91
VIIRS√02	0.79	0.91	0.97	0.99
Rsquared	rrs412	rrs443	rrs488	ms547
MODIS	0.91	0.86	0.85	0.86
WIRS v01	0.44	0.77	0.89	0.92
VIIRS√02	0.40	0.78	0.88	0.92

Insitu: UMASS/NOAA

Both VIIRS and MODIS 412 a little off

OCAPE / Northern Gulf of Mexico Cruise July 9-19, 2013 - Spect

Insitu: UMASS/NOAA

Validation and Ocean Color Uncertainty Sept 12, 2013 - NPP-VIIRS Orbital Overlap

Of Minutes separation between orbital overlap - left and right side of some what is the product uncertainty between these NPP products?

Zhongping Lee, ac-9

Overlap comparison

1 100 per

NPP-VIIRS validation using Orbital OverLap -Sept 12, 2013 - Northern Gulf

NPP Ocean product validation Characterizing Satellite and insitu uncertainty - Northern Gulf - GeoCape

NOAA IDPS - VOCCO Matchups (Negative in Blue Channels - NO NIR

Coastal Iteration

VIRUS_pass1

DCAPE / Northern Gulf of Mexico Cruise July 9-19, 2013 - Scatter

a412	a443	a488	a547	c412	c443	c488	c 547
1.27	1.28	1.45	1.56	1.56	1.82	2.22	2.69
1.24	1.30	1.08	0.99	1.41	1.51	1.52	1.54
1.42	1.66	1.40	1.51	1.33	1.71	2.07	2.59
1.21	1.32	1.00	0.89	1.11	1.27	1.32	1.33
a412	a443	a488	a547	c412	c443	c488	c 547
0.01	0.02	0.05	0.06	0.91	0.92	0.94	0.95
0.20	0.78	0.75	0.99	0.92	0.93	0.93	0.93
0.75	0.68	0.68	0.55	0.88	0.88	0.85	0.85
	1.27 1.24 1.42 1.21 a412 0.01 0.20	1.27 1.28 1.24 1.30 1.42 1.66 1.21 1.32 a412 a443 0.01 0.02 0.20 0.78	1.27 1.28 1.45 1.24 1.30 1.08 1.42 1.66 1.40 1.21 1.32 1.00 a412 a443 a488 0.01 0.02 0.05 0.20 0.78 0.75	1.27 1.28 1.45 1.56 1.24 1.30 1.08 0.99 1.42 1.66 1.40 1.51 1.21 1.32 1.00 0.89 a412 a443 a488 a547 0.01 0.02 0.05 0.06 0.20 0.78 0.75 0.99	1.27 1.28 1.45 1.56 1.24 1.30 1.08 0.99 1.41 1.42 1.66 1.40 1.51 1.33 1.21 1.32 1.00 0.89 1.11 a412 a443 a488 a547 c412 0.01 0.02 0.05 0.06 0.91 0.20 0.78 0.75 0.99 0.92	1.27 1.28 1.45 1.56 1.56 1.82 1.24 1.30 1.08 0.99 1.41 1.51 1.42 1.66 1.40 1.51 1.33 1.71 1.21 1.32 1.00 0.89 1.11 1.27 a412 a443 a488 a547 c412 c443 0.01 0.02 0.05 0.06 0.91 0.92 0.20 0.78 0.75 0.99 0.92 0.93	1.27 1.28 1.45 1.56 1.56 1.82 2.22 1.24 1.30 1.08 0.99 1.41 1.51 1.52 1.42 1.66 1.40 1.51 1.33 1.71 2.07 1.21 1.32 1.00 0.89 1.11 1.27 1.32 a412 a443 a488 a547 c412 c443 c488 0.01 0.02 0.05 0.06 0.91 0.92 0.94 0.20 0.78 0.75 0.99 0.92 0.93 0.93

Insitu: UMASS/NOAA

For total absorption, VIIRS performing slightly better than MODIS

DCAPE / Northern Gulf of Mexico Cruise July 9-19, 2013 - Scatter

SLOPE	a412	a443	a488	a547	c412	c443	c488	c547
ModLMI	1.27	1.28	1.45	1.56	1.56	1.82	2.22	2.69
ModQAA	1.24	1.30	1.08	0.99	1.41	1.51	1.52	1.54
VIRSLMI	1.42	1.66	1.40	1.51	1.33	1.71	2.07	2.59
VIIRSQAA	1.21	1.32	1.00	0.89	1.11	1.27	1.32	1.33
R2	a412	a443	a488	a547	c412	c443	c488	c 547
ModLMI	0.01	0.02	0.05	0.06	0.91	0.92	0.94	0.95
ModQAA	0.20	0.78	0.75	0.99	0.92	0.93	0.93	0.93
VIIRSLMI	0.75	0.68	0.68	0.55	0.88	0.88	0.85	0.85
VIIRSQAA	0.79	0.73	0.87	0.87	0.86	0.88	0.87	0.87

Insitu: UMASS/NOAA

CAPE / Northern Gulf of Mexico Cruise July 9-19, 2013 - Spectra

SEOCAPE / Northern Gulf of Mexico Cruise July 9-19, 2013 - Scat

bb440	Rsquared	Slope
modis qaa	0.9895	0.5600
viirs qaa	0.9586	0.7500
VOCCO	0.8408	1.1300

cean Color Cruise - November 20, 2013 - Mississippi 9 and IOP (Surface FlowThru +/- 30 Minutes from Satell

Ocean Color Cruise Mississippi Sound November 20, 2013 - Sca

Slope	rrs412	rrs443	rrs488	ms547
MODIS 1845	1.31	1.09	0.97	0.95
WIRS 1815	0.76	0.79	0.80	0.86
WIRS 1957	0.77	0.83	0.89	1.06
Rsquared	rrs412	rrs443	rrs488	rrs547
Rsquared MODIS 1845	nrs412 0.93	nrs443 0.94	nrs488 0.93	nrs547
MODIS 1845	0.93	0.94	0.93	0.81

Ocean Color Cruise Mississippi Sound November 20, 2013 - Spe

R/V Ocean Color Cruise Mississippi Sound November 20, 2013 FlowThru (+/- 30 minutes of early/late satellite pass)

Satellite bb/b bb/b Insitu profile

R/V Ocean Color Cruise Mississippi Sound November 20, 2013 FlowThru (+/- 30 minutes of early/late satellite pass)

MIRSLMI

MIRSOAA

0.72

0.80

0.78

0.90

0.84

0.88

0.78

0.79

0.1

0.15

0.2

Satellite a 547

0.25

0.3

0.35

v = 0.8307x

 $R^2 = 0.79$

R/V Ocean Color Cruise Mississippi Sound November 20, 2013 FlowThru (+/- 30 minutes of early/late satellite pass)

SLOPE	c412	c443	c488	c 547
ModLMI	1.84	2.09	2.45	2.84
ModQAA	1.41	1.43	1.43	1.43
VIIRSLMI	1.56	1.89	2.24	2.75
VIIRSQAA	1.37	1.47	1.48	1.47
R2	c412	c443	c488	c547
ModLMI	0.31	0.27	0.22	0.18
ModQAA	0.59	0.59	0.58	0.58
VIIRSLMI	0.67	0.69	0.68	0.66
VIIRSQAA	0.71	0.72	0.70	0.70

Evaluation of GOCI, MODIS, and VIIRS Imagery Objective

- Evaluate current NRL processing of GOCI level 1b water leaving radiance (nL_w)
- Provide an inter-sensor comparison between GOCI, MODIS, and VIIRS remote sensing reflectances
- Compare GOCI, MODIS, and VIIRS with East China Sea Aeronet Ocean Color (Gageocho and leodo) data

2014 AGU OCEAN SCIENCES (Crout, et.al.)

Evaluation of GOCI, MODIS, and VIIRS Imagery Background - Data

- MODIS
 - Processed with MOBY gains
- VIIRS
 - Processed with MOBY gains
- GOCI
 - Processed with MODIS-SWIR-derived vicarious calibration gains
 - GOCI data from 4Z GTM (corresponds to local 1 pm)
 - Reduces sun glint and sensor issues
- Aeronet SeaPrism
 - Gageocho Aeronet (SeaPrism #624) was moved to leodo
 - Results in a data gap from May 2012 December 2013
 - The quality control of the data is near real time?

Evaluation of GOCI, MODIS, and VIIRS Imagery Background - Processing

- Operational Ocean Color Processing
 - NRL's Automated Processing System (APS) based on n2gen software (NRL/NASA R&D)
 - Level 1b data obtained from NOAA CLASS (MODIS) and NAVO (GOCI and MODIS)
 - Atmospheric correction using Gordon-Wang NIR with 80 aerosol models
 - Glint and cloud removal

Evaluation of GOCI, MODIS, and VIIRS Imagery JD 118 2012 Spectra - Gageocho and leodo

Evaluation of GOCI, MODIS, and VIIRS Imagery JD 277 2013 Spectra - Gageocho

Evaluation of GOCI, MODIS, and VIIRS Imagery JD 341 2013 spectra - leodo

Evaluation of GOCI, MODIS, and VIIRS Imagery All sensors (4Z) time series - rrs 550

RATORY * SW

Evaluation of GOCI, MODIS, and VIIRS Imagery

rrs 555: MODIS, in situ, VIIRS, and

GOCI Comparison

GOCI - VIIRS

GOCI - VIIRS

rrs 555	Slope	R ²
GOCI In situ	0.893	0.962
GOCI MODIS	0.813	0.980
VIIRS In situ	0.948	0.985
VIIRS MODIS	0.871	0.979

Seems MODIS
Is a lower in coas
NASA coming
Out with new
Calibration in
Mid March.

Evaluation of GOCI, MODIS, and VIIRS Imagery JD 277 MODIS - GOCI Image Comparison

Evaluation of GOCI, MODIS, and VIIRS Imagery JD 277 MODIS - VIIRS Image Comparison

Evaluation of GOCI, MODIS, and VIIRS Imagery JD 277 Full Image comparison to sites from multiple images - R²

Valuac **Multiple Images, Single** R² Values Single Image, all Sample samples Channel GOCI-GOCI-VIIRS-VIIRS-**MODIS MODIS MODIS MODIS** 412 0.539 0.970 0.842 0.942 443 0.835 0.993 0.943 0.971 490 0.930 0.992 0.976 0.985 555 0.979 0.980 0.983 0.990 0.914 **690** 0.959 0.972 0.983

ed to MODIS, VIIRS doing a little better overall than GOCI (mair e sensors consistent.

Evaluation of GOCI, MODIS, and VIIRS Imagery Conclusions

- MODIS, VIIRS, and GOCI remote sensing reflectances compare favorably in the East China Sea
- Application of Gains to GOCI and VIIRS visibly improves data
- Application of Gains lowers rrs in most cases
 GOCI 412 and 443 channels appear to be exceptions
- Data from single points and imagery show similar statistics, except at GOCI 412 and 443 Channels
- Overall, the comparison between the sensors are good

- Investigate application of greenwater gains for VIIRS and MODIS
- Attempt to acquire more in-situ data and re-analyze the rrs data
- Analyze the Inherent Optical Properties.