

American International University – Bangladesh Faculty of Engineering

Department of Electrical and Electronic Engineering

Course Name:	Microprocessor and Embedded Systems	Course Cod	le:	EEE 4103					
Semester:	Spring 2023-2024	Section:							
Faculty Name:	Protik Parvez Sheikh								
Assignment No:	3 (individual submission consisting of 30 marks)								
Student Name:									
Student ID:		Program Name: BSc in EEE							
Submission Date:		Due Date: 11/05/2024							

Assessment Rubrics:

COs-POIs	Excellent [28-30]	Proficient [25-27]	Good [20-24]	Acceptable [10-19]	Unacceptable [1-9]	No Response [0]	Secured Marks
CO3 P.a.4.C.3	simulation processes are clearly described, and results are generated by combining all possible input patterns with appropriate outcomes. All necessary drawings	solved correctly. The simulation processes are clearly described,	simulation processes are not clearly described, and results are generated by combining all possible input patterns with appropriate outcomes. Some necessary drawings	All the problems are not solved correctly. The simulation processes are not clearly described, and results are generated by combining several wrong input patterns with inappropriate outcomes. Some necessary drawings and computations are missing.	All the problems are not solved correctly. The simulation processes are not described, and results are generated by combining mostly wrong input patterns with inappropriate outcomes. Almost all the necessary drawings and computations are missing.	No responses at all	
Comments					Total marks (30)		

Questions:

- 1. Find the baud rate for the asynchronous normal operating mode when the oscillator frequency, fOSC = 24 MHz, and register data is, UBRRn = 111010100101. Calculate the baud error and comment on whether there will be any communication errors or not.
 - [For Arduino Uno, standard Baud rates maybe 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, etc.]
- 2. Determine the necessary register setup to operate a microcontroller in the fast PWM mode in inverting mode. The counter should count to a maximum value of 235 and then reset to the BOTTOM and repeat. Draw the necessary timing waveform. Use a Timer0 of the Arduino Microcontroller.

3. Compute the duty cycle and sketch the waveforms obtained at port D of the Arduino. Identify the modes of operation and compute the operating frequency of that mode based on the following program segment. Identify the Timer of the Arduino Microcontroller. The system clock frequency is 8 MHz.

```
DDRD |= (1<<PD5);
pinMode(5, OUTPUT);
OCR0A = 200; // Load OCR0A register for setting the PWM frequency
OCR0B= 141; // Load OCR0B register for setting the duty cycle
// Configure TCCR0A and TCCR0B registers for the mode and pre-scaler
TCCR0A |= (1 << COM0B1) | (1 << COM0A0) | (1<<WGM01) | (1<<WGM00);
TCCR0B |= (1<<WGM02) | (1<<CS01) | (1<<CS00);</pre>
```

Table 1: Clock select function bits and corresponding pre-scaler values (L) and Compare output mode setting bits (R)

CSn2	CSn1	CSn0	Pre-scaler	COMnA1	COMnA0	Description
0	0	1	1	0	0	The normal port operation, OC0A disconnected
0	1	0	8	0	1	WGM02 = 0; Normal port operation, OC0A disconnected WGM02 = 1; Toggle OC0A on Compare Match
0	1	1	64	1	0	Clear OC0A on Compare Match, Set OC0A at BOTTOM (non-inverting mode)
1	0	0	256	1	1	Set OC0A on Compare Match, Clear OC0A at BOTTOM (inverting mode)
1	0	1	1024			

- 4. Design an adder/subtractor circuit with one selection variable 'S' and two inputs 'A' and 'B': when S = 0 the circuit performs A + B. When S = 1 the circuit performs A B by taking the 2's complement of B.
- 5. Develop the control words in binary and hexadecimal formats using the information provided in Table 2 for the following micro-operations:
 - i. R7←R3+R4
 - ii. R3←SHL R3
 - iii. R5←R1
 - iv. R2←SHR R5
 - v. R3←CRC R7

Table 2: Functions of control variables

Binary	Functions of selection variables										
Code	\boldsymbol{A}	В	D	F with $C_{in}=0$	F with $C_{in}=1$	Н					
000	Input Data	Input Data	None	A-1	A	1's to the output Bus					
0 0 1	R1	R1	R1	A+B	A+B+1	Shift Left with $I_L = 0$					
010	R2	R2	R2	A-B-1	A-B	No Shift					
011	R3	R3	R3	A	A+1	Circulate Left with Carry					
100	R4	R4	R4	$ar{A}$	X	0's to the output Bus					
101	R5	R5	R5	AX OR B	X	-					
110	R6	R6	R6	A AND B	X	Circulate-Right with Carry					
111	R7	R7	R7	A OR B	X	Shift Right with $I_R = 0$					

One example is shown as follows:

Micro-operation	A	В	D	F	C_{in}	Н	In Hex
R5← CRC (R3+R4)	011	100	101	001	0	110	7296h

6. The microinstructions for **signed addition** will be saved in a ROM, with each instruction being 14 bits long and stored sequentially starting from ROM location 000. To illustrate this, create a table (Table 4) detailing the contents of the control memory using the help of Table 3. You may add as many rows as necessary.

Table 3: Table for the functions of the multiplexer select bits for Question 6

RC 13	OM bits 14	MUX Select Function					
0	0	Load inputs to CAR if $E = 1$, increment CAR if $E = 0$					
0	1	Load inputs to CAR if $S = 1$, increment CAR if $S = 0$					
1	0	Load input to CAR					
1	1	Increment CAR					

Table 4: 14-bit Control Logic Output with ROM locations for Question 6

RO	M Add	ress	Control Word Address						Mux Select							
A2	A1	A0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
			X	s2	s1	s0	Cin	L	у	Z	W	A2	A1	A0	H1	H0
0	0	0														

- 7. Sketch a 4-bit status register with four flags: carry, overflow, zero, and sign. Predict the values of these flags after performing the operations outlined in **question 5**.
- 8. Prepare a flow chart that will count the number of 0's in register, R2, and then store the counts in register R5. Determine the outputs of the R5 (in binary) and R2 (in decimal) registers as well as of the carry flag after each clock cycle or timing state. Determine the number of states that are required to complete the operation.

Timing States	R2								C	R5 (Decimal)	R5 (Binary)
States	1	1	0	1	0	0	1	0	1	1	00000001
T1											
T2											
T3											
T4											
T5											
T6											
T7											
Т8											