Hoja 6

Transformaciones lineales y matrices

Problema 6.1 Demostrar que las siguientes aplicaciones T son transformaciones lineales encontrando una matriz apropiada A_T asociada a la transformación. Indicar si son inyectivas y encontrar una base y la dimensión del núcleo y de la imagen de T.

- a) $T: \mathbb{R}^2 \to \mathbb{R}$, definida por $T((x,y)^t) = x$.
- b) $T : \mathbb{R}^2 \to \mathbb{R}$, definida por $T(v) = w^t v$, donde $w \neq 0$ es un vector fijo de \mathbb{R}^2 .
- c) $T: \mathbb{R}^n \to \mathbb{R}^n$, definida por T(v) = 3v.
- d) $T: \mathbb{P}_2 \to \mathbb{P}_2$, definida por $T(a_0 + a_1x + a_2x^2) = 3a_2x^2$.

Problema 6.2 Una transformación lineal T : $\mathbb{R}^2 \to \mathbb{R}^2$ asocia a los vectores $v_1 = (1,1)^t$ y $v_2 = (2,-1)^t$ (expresados respecto a la base canónica B_0) los vectores $w_1 = (2,-1)^t$ y $w_2 = (1,-5)^t$, respectivamente. Encontrar una matriz 2×2 , A_{T,B_0} , asociada a T respecto a la base canónica B_0 . Demostrar que A_T es no-singular (y, por tanto, un isomorfismo).

Problema 6.3 Sea la transformación lineal $T:\mathbb{R}^3\to\mathbb{R}^3$ con matriz asociada respecto a la

base canónica:

$$A = \left(\begin{array}{rrr} 1 & -2 & 0 \\ -3 & 8 & 1 \\ 0 & 1 & 1 \end{array}\right).$$

Demostrar que T tiene inversa y encontrar la matriz asociada a T^{-1} respecto a la base canónica.

Problema 6.4 Consideremos los vectores

$$b_1 = (1,0,1)^t$$
, $b_2 = (-1,1,2)^t$, $b_3 = (0,1,5)^t$, $u = (1,2,3)^t$.

Demostrar que $B=(b_1,b_2,b_3)$ es una base de \mathbb{R}^3 . Hallar las coordenadas de u con respecto a B.

Cierta transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ verifica que $T(b_1) = e_1$, $T(b_2) = e_2$, $T(b_3) = e_3$, siendo $B_0 = (e_1, e_2, e_3)$ la base canónica. Escribir la correspondiente matriz A_{T,B_0} y hallar el núcleo y la imagen de T.

Problema 6.5 Sean los vectores

$$v_1 = (1, 0, -1)^t$$
, $v_2 = (2, 1, 2)^t$, $v_3 = (5, 1, -1)^t$, $u = (u_1, u_2, u_3)^t$.

Consideremos la transformación lineal $T: \mathbb{R}^4 \to \mathbb{R}^3$ que verifica $T(e_1) = \nu_1$, $T(e_2) = \nu_2$, $T(e_3) = \nu_3$, $T(e_4) = \mathfrak{u}$. Supongamos que el vector \mathfrak{u} es tal que T verifica $rg(T) = n\mathfrak{u}l(T)$. Encontrar la condición que deben cumplir las coordenadas de \mathfrak{u} para que esto ocurra. Encontrar una base de Im(T).

Problema 6.6 Encontrar una matriz A tal que T(u) = Au (respecto a la base canónica), para cada una de las siguientes transformaciones lineales:

a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, definida por $T((1,1)^t) = (1,-2)^t$ y $T((2,3)^t) = (-2,5)^t$.

b) $T : \mathbb{R}^2 \to \mathbb{R}^2$, definida por una rotación de 30° en el sentido de las agujas del reloj.

Problema 6.7 Sean la base de \mathbb{R}^2 , $B = (\nu_1, \nu_2)$, donde $\nu_1 = (1, 1)^t$ y $\nu_2 = (-1, 0)^t$, y la transformación lineal dada por $T((x, y)^t) = (4x - 2y, 2x + y)^t$, expresada respecto a la base canónica. Encontrar la matriz de T relativa a la base dada.

Problema 6.8 Consideremos la matriz

$$A = \left(\begin{array}{rrrr} 1 & 2 & -1 & 3 \\ 2 & 3 & 0 & 1 \\ -4 & -5 & -2 & 3 \end{array}\right).$$

- 1. Hallar una base para el espacio fila y para el espacio columna de A.
- 2. Determinar la dimensión del espacio nulo de A y de su traspuesta.
- 3. ¿Para qué valores de α el vector $\mathbf{b} = (-1, \alpha, \alpha^2)^{\mathrm{t}}$ pertenece al espacio columna de A?

Problema 6.9 Consideremos la transformación lineal $T: \mathbb{R}^4 \to \mathbb{R}^2$ definida por

$$T((1,0,0,0)^{t}) = (1,0)^{t},$$

$$T((1,1,0,0)^{t}) = (-1,0)^{t},$$

$$T((0,0,1,0)^{t}) = (-2,0)^{t},$$

$$T((1,2,3,4)^{t}) = (3,0)^{t}.$$

- 1. Determinar una matriz A_T que la represente (respecto a la base canónica). Hallar el núcleo y la imagen de T así como sus dimensiones.
- 2. Hallar los cuatro subespacios fundamentales asociados a la matriz A_T , sus dimensiones y una base para cada uno de ellos.

Problema 6.10 Sea la transformación $T: \mathbb{P}_2 \to \mathbb{R}^3$ definida por

$$T(\alpha_0 + \alpha_1 x + \alpha_2 x^2) = (\alpha_0, \alpha_1 + \alpha_2, 0)^t.$$

Encontrar alguna matriz A_{T,B2B1} que represente T de manera que

$$[\mathsf{T}(\mathsf{p})]_{\mathsf{B}_2} = \mathsf{A}_{\mathsf{T},\mathsf{B}_2\mathsf{B}_1}[\mathsf{p}]_{\mathsf{B}_1},$$

para ciertas bases B₁ y B₂. Determinar los subespacios fundamentales asociados a A_T.

Problema 6.11 Sea la transformación $T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^2$ definida por

$$T\left(\left(egin{array}{c} a & b \ c & d \end{array}
ight)
ight)=\left(egin{array}{c} a+b \ c+d \end{array}
ight)\,.$$

Encontrar alguna matriz A_{T,B_2B_1} que represente T de manera que

$$[\mathsf{T}(\mathsf{M})]_{\mathsf{B}_2} = \mathsf{A}_{\mathsf{T},\mathsf{B}_2\mathsf{B}_1} [\mathsf{M}]_{\mathsf{B}_1},$$

con respecto a las bases elegidas B_1 y B_2 . Determinar los subespacios fundamentales asociados a A_{T,B_2B_1} .