Algorytmy równoległe 2015 (zad. 1)

Michał Liszcz

2015-10-11

Contents

1	1 Wstęp	2	,
2	2 Analiza problemu	2	,
3	3 Metoda różnic skończonych	2)
	3.1 Dyskretyzacja dziedziny	2	,
	3.2 Dyskretyzacja równania	3	į
	3.3 Warunki brzegowe	3	,
4	4 Algorytm sekwencyjny	4	Ł
5	5 Algorytm równoległy	4	Ĺ
	5.1 Partitioning	5)
	5.2 Communication	5)
	5.3 Agglomeration	5)
	5.4 Mapping	5)
	5.5 Opis algorytmu	6	;
6	6. Analiza wyników	7	,

1 Wstęp

Zaproponować algorytm równoległy wyliczający kolejne położenia drgającej membrany rozpiętej na kwadracie o ustalonym boku. Boki membrany są sztywno zamocowane (warunki brzegowe). Należy ustalić położenie początkowe i prędkość $\left(\frac{\partial p}{\partial t}\right)_{t=0}$ (warunki początkowe).

Zastosować metodę różnicową do równania:

$$\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} - \frac{\rho}{T} \frac{\partial^2 p}{\partial t^2} = 0 \tag{1}$$

gdzie p(x,y) - położenie punktu membrany, ρ - gęstość powierzchniowa, T - napięcie membrany.

2 Analiza problemu

Równanie (1) to klasyczne równanie falowe. Podstawiając $\frac{\rho}{T}\coloneqq\left(c^2\right)^{-1}$, można zapisać je w standardowej postaci:

$$\left[\partial_{tt} - c^2 \nabla^2\right] p(t, x, y) = 0 \tag{2}$$

Rozwiązania poszukujemy w obszarze Ω :

$$\Omega = [t_{\min}, t_{\max}] \times [x_{\min}, x_{\max}] \times [y_{\min}, y_{\max}]
W = [x_{\min}, x_{\max}] \times [y_{\min}, y_{\max}]$$
(3)

Zadane sa następujące warunki brzegowe:

$$p(t, x, y) = 0 \quad \forall t \in [t_{\min}, t_{\max}], \forall (x, y) \in \partial W$$
 (4)

Oraz warunki początkowe (membrana jest w pozycji P(x,y) i porusza się z prędkością S(x,y)):

$$\begin{cases}
p(0, x, y) = P(x, y) \\
p_t(0, x, y) = S(x, y)
\end{cases} \qquad \forall (x, y) \in W$$
(5)

3 Metoda różnic skończonych

Poszukujemy rozwiązania numerycznego metodą różnic skończonych.

3.1 Dyskretyzacja dziedziny

W obszarze Ω wprowadzamy siatkę dyskretnych punktów:

$$\Delta t = \frac{t_{\text{max}} - t_{\text{min}}}{K}$$

$$\Delta x = \frac{x_{\text{max}} - x_{\text{min}}}{N}$$

$$\Delta y = \frac{y_{\text{max}} - y_{\text{min}}}{M}$$
(6)

$$\begin{cases}
 t_k = x_{\min} + k\Delta t, & k = 0, 1, ..., K \\
 x_n = x_{\min} + n\Delta x, & n = 0, 1, ..., N \\
 y_m = y_{\min} + m\Delta y, & m = 0, 1, ..., M
 \end{cases}$$
(7)

Oznaczamy wartość p w punktach siatki:

$$p(t_k, x_n, y_m) = p_{n,m}^k \tag{8}$$

3.2 Dyskretyzacja równania

Operatory różniczkowe występujące w równaniu zastępujemy operatorami różnicowymi. Dla pochodnych pierwszego rzędu zapisujemy różnicę centralną (średnią z ilorazów różnicowyh "w przód" i "w tył"), natomiast pochodne drugiego rzędu otrzymujemy po odjęciu stronami rozwinięć p(x) w szereg Taylora wokół x_0 , kładąc w nich $x = x_0 \pm \Delta x$. Wyprowadzenia poniższych przybliżeń można znaleźć w literaturze [1].

$$\partial_{t}p(t_{k}, x_{n}, y_{m}) \approx \frac{p_{n,m}^{k-1} - p_{n,m}^{k+1}}{2\Delta t} \qquad := D_{t}p_{n,m}^{k}$$

$$\partial_{tt}p(t_{k}, x_{n}, y_{m}) \approx \frac{p_{n,m}^{k-1} - 2p_{n,m}^{k} + p_{n,m}^{k+1}}{(\Delta t)^{2}} \qquad := D_{tt}p_{n,m}^{k}$$

$$\partial_{xx}p(t_{k}, x_{n}, y_{m}) \approx \frac{p_{n-1,m}^{k} - 2p_{n,m}^{k} + p_{n+1,m}^{k}}{(\Delta x)^{2}} \qquad := D_{xx}p_{n,m}^{k}$$

$$\partial_{yy}p(t_{k}, x_{n}, y_{m}) \approx \frac{p_{n,m-1}^{k} - 2p_{n,m}^{k} + p_{n,m+1}^{k}}{(\Delta y)^{2}} \qquad := D_{yy}p_{n,m}^{k}$$
(9)

Równanie (1) przyjmuje postać równania różnicowego:

$$\frac{p_{n,m}^{k-1} - 2p_{n,m}^k + p_{n,m}^{k+1}}{(\Delta t)^2} = c^2 \left(\frac{p_{n-1,m}^k - 2p_{n,m}^k + p_{n+1,m}^k}{(\Delta x)^2} + \frac{p_{n,m-1}^k - 2p_{n,m}^k + p_{n,m+1}^k}{(\Delta y)^2} \right)$$
(10)

Poszukujemy wartośći p w chwili k+1, zakładając że znane jest całe rozwiązanie w chwilach poprzednich:

$$p_{n,m}^{k+1} = 2p_{n,m}^k - p_{n,m}^{k-1} + (\Delta t)^2 c^2 (D_{xx} + D_{yy}) p_{n,m}^k$$
(11)

3.3 Warunki brzegowe

Równanie (4) prowadzi do następujących warunków brzegowych:

$$p_{0,m}^k = p_{N,m}^k = p_{n,0}^k = p_{n,M}^k = 0 \qquad \forall k, n, m$$
 (12)

Warunki początkowe (5) są zadane przez odwzorowania P i S:

$$p_{n,m}^{0} = P_{n,m}$$

$$D_{t}p_{n,m}^{0} = S_{n,m}$$
(13)

Drugie z powyższych równań rozpisujemy korzystając z definicji operatora D_t , kładziemy k = 0 w (11), a następnie eliminujemy ujemny czas, łącząc ze sobą te dwa równania:

$$p_{n,m}^{-1} - p_{n,m}^{1} = 2\Delta t S_{n,m}$$

$$p_{n,m}^{1} = 2p_{n,m}^{0} - p_{n,m}^{-1} + (\Delta t)^{2} c^{2} (D_{xx} + D_{yy}) p_{n,m}^{0}$$

$$p_{n,m}^{1} = p_{n,m}^{0} - \Delta t S_{n,m} + \frac{1}{2} (\Delta t)^{2} c^{2} (D_{xx} + D_{yy}) p_{n,m}^{0}$$
(14)

4 Algorytm sekwencyjny

Algorytm sekwencyjny operuje na trójwymiarowej tablicy liczb zawierającej wartości p w trójkach (k, n, m).

W pierwszej kolejności ustawiane są wartości dla k = 0, zgodnie z (13). Następnie dla k = 1, przy użyciu (14). Pozostała część tablicy uzupełniana jest na podstawie zadanego równania różnicowego (11).

W celu sprawdzenia poprawności rozwiązania, uruchomiłem program z następującymi parametrami:

$$t_{\min} = x_{\min} = y_{\min} = 0$$
 $t_{\max} = x_{\max} = y_{\max} = 30$
 $K = 100, \qquad N, M = 30$
 $c = 1$
(15)

Przyjąłem nieznaczne początkowe zaburzenie na środku membrany:

$$P_{n,m} = 5$$
 $\forall (n,m) \in \{13, 14, 15, 16, 17\}^2$ $P_{15,15} = 7$ (16)

W pozostałych punktach membrana jest w stanie równowagi: $P_{n,m} = 0$. W każdym punkcie membrana początkowo spoczywa $(S_{n,m} = 0 \quad \forall n,m)$.

Figure 1: Wizualizacja fali rozchodzącej się w membranie.

Otrzymany wynik jest zgodny z przewidywaniami. Do sprawozdania dołączona jest animacja przedstawiająca propagację fali w czasie.

5 Algorytm równoległy

W dalszej części zostanie przedstawiony algorytm równoległy zgodny z metodologia PCAM.

Algorytm sekwencyjny uzupełniał trójwymiarową tablicę warstwami, kolejne iteracje były parametryzowane zmienną czasową (parametr k). W każdej iteracji generowana była dwuwymiarowa tablica reprezentująca wartości w punktach siatki w ustalonej chwili t_k . Można ją utożsamiać z obszarem W gdzie zdefiniowano problem (3). Kolejne punkty opisują próbe efektywnego zrównoleglenia tego algorytmu.

5.1 Partitioning

Ze względu na model problemu, najlepiej dokonać tutaj dekompozycji domenowej, poprzez podzielenie danych na porcje, które prztwarzane beda równolegle.

Najmniejszym, niepodzielnym zadaniem jest obliczenie pojednycznego elementu z trójwymiarowej tablicy $p_{n,m}^k$. Takich elementów jest $K \times N \times M$.

Dekompozycja funkcjonalna nie ma tutaj zastosowania - jest tylko jeden rodzaj operacji.

5.2 Communication

Stosując dekompozycję zaproponowaną w poprzednim punkcie, można łatwo określić wymagania dotyczące komunikacji. Siatka użyta do dyskretyzacji przestrzeni narzuca strukturę komunikacyjną. Jest to komunikacja lokalna - do obliczenia wartości komórki $p_{n,m}^{k+1}$ należy znać wartości:

$$p_{n,m}^k, \qquad p_{n,m}^{k-1}, \qquad p_{n-1,m}^k, \qquad p_{n+1,m}^k, \qquad p_{n,m-1}^k, \qquad p_{n,m+1}^k$$
 (17)

Daje to sześć wymian komunikatów dla każdej komórki.

5.3 Agglomeration

Przedstawiony w poprzednich punktach sposób podziału zadań i wynikający z niego schemat komunikacji jest bardzo nieefektywny.

W typowych zastosowaniach ilość zadań będzie kilka rzędów wielkości większa od liczby procesorów. Pojedyncze zadanie jest bardzo proste - składa się z kilku operacji dodawania i mnożenia.

Należy pogrupować zadania tak, by były wykonywane w sposób najbardziej efektywny na maszynie wyposażonej w kilkanaście procesorów.

W pierwszej kolejności zakładamy, że dane będziemy dzielić względem przestrzeni, to znaczy, że najmniejszą porcją danych z trójwymiarowej tablicy $p_{n,m}^k$ będzie zbiór komórek o ustalonych indeksach n i m, natomiast k będzie dowolny:

$$E_{n,m} = \left\{ p_{n,m}^k : k = 0, 1, ..., K \right\}$$
 (18)

Algorytm równoległy będzie działał iteracyjnie względem czasu, podzielonego na K iteracji. W każdej iteracji zostanie wyliczona wartość jednej komórki $p_{n,m}^k$.

Porcja danych $E_{n,m}$ to jednowymiarowa tablica. Daje to mniej zadań - $N \times M$. Dodatkowo, wyliczenie pojedynczej komórki z E wymaga już tylko czterech aktów komunikacji.

5.4 Mapping

Zadania $E_{n,m}$ należy przypisać do fizycznych procesorów, na których będą wykonywane. Zadania mają identyczny rozmiar - można więc podzielić je równo na Z procesorów, pamiętając o wymaganiach komunikacyjnych (17). Jeden procesor powinien obsługiwać zadania sąsiadujące ze sobą przestrzennie - o kolejnych ideksach n i m.

Optymalnym sposobem podziału jest przydzielenie pojedynczemu procesorowi kilku całych, sąsiednich wierszy (ciągły obszar pamięci) ze zbioru $\{E_{n,m}\}$.

Niech Q_n oznacza zbiór zadań $E_{n,m}$ w n-tym wierszu przestrzeni:

$$Q_n = \{E_{n,m} : m = 0, 1, ..., M\}$$
(19)

Figure 2: Podział siatki na zadania. Odpowiednimi kolorami oznaczono zadania: $p_{n,m}^k$, $E_{n,m}$, Q_n .

Przyjmujemy następujący podział zadań między procesory:

$$Z_{1} = \left\{ Q_{0}, Q_{1}, ..., Q_{|Z_{1}|-1} \right\}$$

$$Z_{2} = \left\{ Q_{|Z_{1}|+0}, Q_{|Z_{1}|+1}, ..., Q_{|Z_{1}|+|Z_{2}|-1} \right\}$$
...
$$(20)$$

W zależności od mocy obliczeniowej procesorów, podział może być dokonany na nierówne części. W testowanym przypadku każdy z procesorów otrzymał taką samą liczbę zadań.

5.5 Opis algorytmu

W algorytmie równoległym każdy procesor będzie wykonywał w pętli następujące operacje:

- 1. pobranie od sąsiednich procesorów informacji o wartościach obliczonych w poprzednim kroku na brzegach ich obszarów,
- 2. przekazanie sąsiadom informacji o wartościach obliczonych w poprzednim kroku na brzegu swojego obszaru,
- 3. wyliczenie wartości dla aktualnego kroku na całym obsługiwanym obszarze.

Należy uważać na zakleszczenie w punktach 1. i 2.. Dwa procesory obsługujące sąsiadujące porcje danych mogą wzajemnie czekać na dane z poprzedniej iteracji sąsiedniego procesora. Istnieje kilka rozwiązań: można przykładowo wymusić ustaloną kolejność operacji 1. i 2. w komunikujacych się procesorach, lub użyć komunikacji asynchronicznej.

W implementacji z wykorzystaniem MPI użyta zostanie funkcja MPI_Sendrecv, która w abstrakcyjny sposób ukrywa detale komunikacji asynchronicznej (MPI_Isend oraz MPI_Irecv).

6 Analiza wyników

Proponowany algorytm równoległy został przetestowany na klastrze Zeus w ACK Cyfronet. Testy obejmowały pomiary standardowych metryk programów równoległych: przyspieszenia, efektywności oraz oszacowania wpływu komunikacji na wydajność.

References

- [1] P. Frey, M. De Buchan, *The numerical simulation of complex PDE problems*, http://www.ann.jussieu.fr/frey/cours/UdC/ma691/ma691_ch6.pdf, 2008.
- [2] Hans Petter Langtangen, Finite difference methods for wave motion, http://hplgit.github.io/INF5620/doc/pub/main wave.pdf, 2013.
- [3] Ian Foster, Designing and Building Parallel Programs, www.mcs.anl.gov/~itf/dbpp/.
- [4] Knut-Andreas Lie, The Wave Equation in 1D and 2D, http://www.uio.no/studier/emner/matnat/ifi/INF2340/v05/foiler/sim04.pdf, 2005.
- [5] https://en.wikipedia.org/wiki/Finite_difference.