Trabajo 1 Estadísitca II

Autor

Juan Nicolas Piedrahita Salas Yarleny Catano Posada Valentina Vanessa Rodriguez Villamizar (Grupo 5)

Docentes

Carlos Mario Lopera Gómez

Asignatura

Estadística II

Sede Medellín Noviembre de 2021

Índice

Anan	sis descriptivo de las variables	3
Punto	1.	3
Est	timación del modelo	3
Pru	ueba de significancia e interpretación de los parámetros individuales	4
Pri	ueba de significancia de la regresion	4
Int	erpretacion de R^2	5
Punto	2.	5
Punto	3.	6
Punto) 4.	8
Índi	ice de figuras	
1.	Análisis de normalidad	8
2.	Estudentizados vs ajustados	9
3.	Análisis de balanceo, $h_{ii} > 2p/n = 0.143$	12
4.	Análisis de influencia, $ DFFITS_i > 2\sqrt{\frac{p}{n}} = 0.535$	13
Índi	ice de cuadros	
1.	Tabla de significancia de coeficientes	4
2.	Tabla de analisis de varianza	5
3.	Tabla de analisis de valores extremos $[1,40]$	10
4.	Tabla de analisis de valores extremos [41, 79]	11
5.	Tabla de analisis de valores extremos [80,84]	12

Analisis descriptivo de las variables

De la matriz de análisis de matriz de gráficos de dispersión, se observa que las variables X_3, X_4, X_5 están fuertemente correlacionadas linealmente, lo que podria indicar redundancia entre las variables.

Punto 1.

Estimación del modelo

En base a lo anterior se plantea un modelo de RLM para el problema, de la forma:

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \varepsilon_i$$
, con $\varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$, $i = 1, 2, ..., 84$

Con base a la tabla de parámetros estimados, se obtiene la ecuación de regresión ajustada:

$$\hat{y}_i = 0.74691 + 0.24196x_{i,1} + 0.06224x_{i,2} + 0.00294x_{i,3} - 0.00478x_{i,4} + 0.00250x_{i,5}, i = 1, 2, ..., 84x_{i,4} + 0.00250x_{i,5}, i = 1, 2, ..., 84x_{i,5} + 0.00250x_{i,5}, i = 1,$$

Prueba de significancia e interpretación de los parámetros individuales

Se probrara las hipotesis para la significancia marginal de los parametros del modelo

$$\begin{cases} H_0: \beta_j = 0 \\ H_a: \beta_j \neq 0 \end{cases} \quad j = 0, 1, 2, 3, 4, 5$$

El estadistico para esta prueba es:

$$T_{j,0} = \frac{\hat{\beta}_j}{se(\hat{\beta}_j)} \stackrel{bajo}{\sim}^{H_0} t_{84-6}$$

Cuadro 1: Tabla de significancia de coeficientes

	Estimacion	Error Estandar	T_0	valor p
β_0	0.7469	0.6184	1.2079	0.2308
β_1	0.2420	0.0716	3.3772	0.0011
β_2	0.0622	0.0119	5.2339	0.0000
β_3	0.0029	0.0032	0.9155	0.3628
β_4	-0.0048	0.0040	-1.1957	0.2354
β_5	0.0025	0.0021	1.2143	0.2283

A un nivel de significancia $\alpha=0.05$ se concluye que los parámetros individuales β_1,β_2 son significativos para le modelo en presencia de los demás parámetros, y por lo tanto son parámetros estimados interpretables.

Se realizara la interpretacion de dichos parametros:

 $\hat{\beta}_1$: Indica que por cada unidad que cambie la duración promedio de la estadía, se estima que el promedio del riesgo de infección aumenta 0.2420 unidades cuando los demás parámetros se mantienen fijos.

 $\hat{\beta}_2$: Indica que por cada unidad que cambie la rutina de cultivos, se estima que el promedio del riesgo de infección aumenta 0.0622 unidades cuando los demás parámetros se mantienen fijos.

Prueba de significancia de la regresion

Se probaran las siguientes hipotesis

$$\begin{cases}
H_0: \beta_1 = \beta_2 = \dots = \beta_5 = 0 \\
H_a: algun \ \beta_j \neq 0, \ j = 1, 2, 3, 4, 5
\end{cases}$$

El estadistico para esta prueba es:

$$F_0 = \frac{MSR}{MSE} = 16.3171 \stackrel{bajo}{\sim} f_{5,84-6}$$

Cuadro 2: Tabla de analisis de varianza

	suma de cuadrados	gl	cuadrados medios	F_0	valor p
Regresion	78.2340	5	15.646806	16.3171	5.45558e-11
Error	74.7959	78	0.958921		

Con una confianza de $\alpha=0.05$, se rechaza H_0 concluyendo que el modelo de RLM es significativo, es decir que el riesgo de infección depende significativamente de al menos una de las variables predictoras del modelo.

Interpretacion de R^2

De la tabla de analisis de varianza se pueden obtener el valor del coeficiente de determinación múltiple.

$$R^2 = \frac{SSR}{SST} = 0.511233$$

El $51.12\,\%$ de la variabilidad total del riesgo de infección, es explicada por el modelo de RLM propuesto.

Punto 2.

Del cuadro 1 se obtiene que los mayores valores P de los parámetros corresponden a $\beta_3, \beta_4, y \beta_5$ se probará las siguientes hipótesis:

$$\begin{cases} H_0: \beta_3 = \beta_4 = \beta_5 = 0 \\ H_a: algun \ \beta_j \neq 0, \ j = 3, 4, 5 \end{cases}$$

Para probar esta hipotesis se usa la suma de cuadrados extra con subconjuntos $A = \{\beta_3, \beta_4, \beta_5\}$ y $B = \{\beta_0, \beta_1, \beta_2\}$

Esto es:

$$SSR(A|B) = SSE(\beta_0, \beta_1, \beta_2) - SSE(\beta_0, \beta_1, \beta_2, \beta_3, \beta_4, \beta_5)$$

De la tabla de todas las regresiones posibles para este modelo se obtiene:

$$SSE(\beta_0, \beta_1, \beta_2) = 80.455$$

 $SSE(\beta_0, \beta_1, \beta_2, \beta_3, \beta_4, \beta_5) = 74.796$

finalmente se obtiene:

$$SSR(A|B) = 80.455 - 74.796 = 5.659$$

con 3 grados de libertad

El estadístico de prueba será:

$$F_0 = \frac{SSR(A|B)/3}{MSE} = 1.967142 \stackrel{bajo}{\sim}^{H_0} f_{3,84-6}$$

de la prueba de hipótesis se obtiene $F_0>f_{0.05,3,84-6}\Rightarrow 1.967142>2.721783$, por lo que NO se rechaza H_0 . Según la prueba SI es posible descartar del modelo las variables del subconjunto A

Punto 3.

Se probaran las hipotesis

$$\begin{cases} H_0: \beta_3 = \beta_4, \beta_1 = \beta_2 \\ H_a: \beta_3 \neq \beta_4 \text{ o } \beta_1 \neq \beta_2 \end{cases}$$

Se puede reescribir H_0 como:

$$H_0: \beta_3 - \beta_4 = 0, \beta_1 - \beta_2 = 0$$

Se puede expresar H_0 de forma matricial como:

$$H_0: \begin{bmatrix} 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Por tanto, se tiene una prueba de hipótesis lineal general con:

$$L = \begin{bmatrix} 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \end{bmatrix}$$

que tiene r = 2 filas linealmente independientes

El modelo reducido en este caso es:

$$RM: Y = \beta_0 + \beta_1(X_1 + X_2) + \beta_3(X_3 + X_4) + \beta_5 X_5 + \varepsilon = \beta_0 + \beta_1 X_{1,2} + \beta_3 X_{3,4} + \beta_5 X_5 + \varepsilon$$
donde $X_{1,2} = X_1 + X_2$ y $X_{3,4} = X_3 + X_4$

En este modelo se tiene una suma de cuadrados del error $SSE(RM) = SSE(\beta_0, \beta_1, \beta_3, \beta_5) = 80.1439$ con 84 - 4 = 80 grados de libertad

Luego el SSH se calcula:

$$SSH = SSE(RM) - SSE(FM) = 80.1439 - 74.7959 = 5.348$$

que tiene 2 grados de libertad de manera que el cuadrado medio debido a la hipotesis es:

$$MSH = \frac{SSH}{2} = 2.674$$

Finalmente se define el estadistico de prueba:

$$F_0 = \frac{MSH}{MSE} = 2.7886 \stackrel{bajo}{\sim}^{H_0} f_{2,84-6}$$

Obteniendo un valor $P = P(f_{2,84-6} > F_0) = 0.0676526$, que bajo un nivel de significancia $\alpha = 0.05$ NO se rechaza H_0 , por lo que se asume que $\beta_3 = \beta_4$ y $\beta_1 = \beta_2$.

Punto 4.

• Se procede a validar los supuestos del modelo

Verificar supuesto de Normalidad: Se evaluan las hipotesis

$$\begin{cases} H_0 : \varepsilon_i \sim Normal \\ H_a : \varepsilon_i \nsim Normal \end{cases}$$

Normal Q-Q Plot of Residuals

Figura 1: Análisis de normalidad

• No se observan violaciones notorias del supuesto de normalidad en la gráfica, y en la prueba de Shapiro-Wilk se obtiene un valor P = 0.7554 que a un nivel de significancia $\alpha = 0.05$, NO se rechaza H_0 por lo que se asume que los errores se distribuyen normales.

Análisis de homocedasticidad y los valores atípicos

Figura 2: Estudentizados vs ajustados

■ Del gráfico anterior se puede observar una violación del supuesto de varianza constante ya que no hay homocedasticidad, tambien se puede observar que NO se presentan valores tales que $|r_i| > 3$, por lo que no hay valores atipicos.

Cuadro 3: Tabla de analisis de valores extremos [1,40]

	у	\hat{y}	$se(\hat{y})$	e_i	r_i	Cook Dist.	h_{ii}	DFFITS
1	4.8	5.7053	0.2519	-0.9053	-0.9536	0.0128	0.0658	-0.2529
2	4.6	3.1321	0.1894	1.4679	1.5231	0.0179	0.0372	0.3020
3	4.0	4.3249	0.1492	-0.3249	-0.3347	0.0005	0.0231	-0.0511
4	4.5	5.1492	0.2023	-0.6492	-0.6755	0.0040	0.0424	-0.1417
5	7.8	7.2158	0.4191	0.5842	0.6576	0.0193	0.1821	0.3092
6	4.4	3.7492	0.1653	0.6508	0.6722	0.0026	0.0283	0.1143
7	4.4	3.9708	0.1514	0.4292	0.4423	0.0010	0.0238	0.0687
8	5.7	5.8519	0.2402	-0.1519	-0.1595	0.0003	0.0598	-0.0400
9	3.7	3.6605	0.1713	0.0395	0.0408	0.0000	0.0304	0.0072
10	2.7	3.3740	0.1597	-0.6740	-0.6955	0.0026	0.0265	-0.1143
11	4.8	4.4455	0.2348	0.3545	0.3718	0.0017	0.0572	0.0910
12	4.1	3.3753	0.1965	0.7247	0.7531	0.0047	0.0400	0.1534
13	1.8	2.8053	0.2239	-1.0053	-1.0512	0.0121	0.0520	-0.2463
14	4.3	5.0135	0.2703	-0.7135	-0.7556	0.0094	0.0758	-0.2157
15	5.3	3.6879	0.1461	1.6121	1.6598	0.0125	0.0221	0.2525
16	1.4	2.8448	0.2115	-1.4448	-1.5063	0.0221	0.0464	-0.3349
17	4.9	4.4770	0.1341	0.4230	0.4347	0.0007	0.0186	0.0596
18	5.6	4.9715	0.1548	0.6285	0.6480	0.0021	0.0248	0.1030
19	4.2	3.4794	0.1583	0.7206	0.7434	0.0029	0.0260	0.1211
20	5.3	4.7774	0.1821	0.5226	0.5415	0.0021	0.0344	0.1017
21	4.3	4.6480	0.1659	-0.3480	-0.3595	0.0008	0.0285	-0.0613
22	5.6	4.5104	0.2433	1.0896	1.1451	0.0171	0.0614	0.2934
23	4.5	5.7215	0.2545	-1.2215	-1.2876	0.0239	0.0671	-0.3469
24	4.6	4.2892	0.1219	0.3108	0.3189	0.0003	0.0154	0.0397
25	4.3	3.4345	0.1549	0.8655	0.8923	0.0041	0.0249	0.1423
26	5.5	3.8229	0.1563	1.6771	1.7296	0.0155	0.0253	0.2824
27	3.4	3.9352	0.2174	-0.5352	-0.5588	0.0032	0.0490	-0.1263
28	4.5	4.5480	0.2027	-0.0480	-0.0500	0.0000	0.0426	-0.0105
29	4.1	3.7035	0.1968	0.3965	0.4121	0.0014	0.0402	0.0838
30	4.4	4.0953	0.1180	0.3047	0.3125	0.0003	0.0144	0.0376
31	5.9	6.8510	0.6207	-0.9510	-1.2493	0.2075	0.3993	-1.0223
32	6.2	4.7384	0.2197	1.4616	1.5268	0.0246	0.0501	0.3535
33	6.5	6.4983	0.6315	0.0017	0.0023	0.0000	0.4134	0.0019
34	2.0	3.4206	0.1706	-1.4206	-1.4687	0.0134	0.0302	-0.2610
35	5.0	4.8513	0.1548	0.1487	0.1533	0.0001	0.0248	0.0243
36	5.8	5.9043	0.3237	-0.1043	-0.1125	0.0003	0.1086	-0.0390
37	4.3	4.5907	0.3278	-0.2907	-0.3139	0.0025	0.1114	-0.1105
38	4.1	4.5382	0.1425	-0.4382	-0.4509	0.0009	0.0211	-0.0658
39	6.3	4.9165	0.2160	1.3835	1.4439	0.0212	0.0484	0.3279
40	2.3	3.1014	0.1836	-0.8014	-0.8305	0.0050	0.0349	-0.1577

Cuadro 4: Tabla de analisis de valores extremos [41, 79]

	у	ŷ	$se(\hat{y})$	e_i	r_i	Cook Dist.	h_{ii}	DFFITS
41	4.9	6.0128	0.3318	-1.1128	-1.2037	0.0373	0.1141	-0.4332
42	3.9	4.1012	0.2442	-0.2012	-0.2115	0.0006	0.0618	-0.0540
43	4.4	3.5853	0.1501	0.8147	0.8394	0.0034	0.0234	0.1296
44	4.3	3.9089	0.2399	0.3911	0.4107	0.0021	0.0597	0.1029
45	5.6	4.3402	0.1900	1.2598	1.3074	0.0133	0.0374	0.2589
46	3.7	2.7729	0.2049	0.9271	0.9651	0.0085	0.0435	0.2058
47	3.1	3.5033	0.1631	-0.4033	-0.4164	0.0010	0.0276	-0.0698
48	4.7	4.8945	0.1702	-0.1945	-0.2011	0.0003	0.0300	-0.0352
49	3.8	3.5458	0.1446	0.2542	0.2617	0.0003	0.0217	0.0387
50	5.5	3.7150	0.1780	1.7850	1.8480	0.0232	0.0329	0.3460
51	4.2	3.8914	0.1516	0.3086	0.3180	0.0005	0.0238	0.0494
52	1.6	3.2069	0.1894	-1.6069	-1.6674	0.0215	0.0372	-0.3315
53	3.1	4.3685	0.1706	-1.2685	-1.3115	0.0107	0.0302	-0.2323
54	4.2	4.2861	0.2035	-0.0861	-0.0896	0.0001	0.0429	-0.0189
55	3.9	4.1403	0.1881	-0.2403	-0.2493	0.0005	0.0367	-0.0484
56	2.1	3.1051	0.1879	-1.0051	-1.0425	0.0083	0.0366	-0.2033
57	5.5	4.8486	0.1690	0.6514	0.6733	0.0028	0.0296	0.1172
58	2.0	3.4150	0.1780	-1.4150	-1.4650	0.0146	0.0328	-0.2720
59	4.7	3.4128	0.1740	1.2872	1.3316	0.0115	0.0314	0.2408
60	2.9	3.9862	0.2219	-1.0862	-1.1352	0.0139	0.0511	-0.2638
61	4.9	4.5077	0.3183	0.3923	0.4222	0.0042	0.1051	0.1439
62	5.1	5.2725	0.1974	-0.1725	-0.1793	0.0003	0.0404	-0.0365
63	2.9	4.0516	0.2723	-1.1516	-1.2203	0.0248	0.0768	-0.3532
64	5.7	4.8557	0.3978	0.8443	0.9402	0.0347	0.1640	0.4162
65	4.1	5.2443	0.4889	-1.1443	-1.3433	0.1189	0.2478	-0.7749
66	4.5	3.3364	0.2044	1.1636	1.2112	0.0133	0.0433	0.2585
67	3.7	3.5252	0.1836	0.1748	0.1812	0.0002	0.0349	0.0343
68	2.7	3.5508	0.1779	-0.8508	-0.8808	0.0053	0.0328	-0.1620
69	2.9	3.6213	0.1479	-0.7213	-0.7429	0.0026	0.0227	-0.1128
70	4.2	3.8155	0.1429	0.3845	0.3957	0.0007	0.0212	0.0579
71	4.8	4.5252	0.2046	0.2748	0.2861	0.0007	0.0434	0.0606
72	2.8	4.2734	0.1488	-1.4734	-1.5177	0.0108	0.0230	-0.2346
73	2.6	3.5696	0.1924	-0.9696	-1.0068	0.0081	0.0384	-0.2012
74	3.4	4.0017	0.1591	-0.6017	-0.6208	0.0021	0.0263	-0.1015
75	5.4	3.2441	0.1689	2.1559	2.2282	0.0302	0.0296	0.3992
76	4.6	4.7772	0.4087	-0.1772	-0.1984	0.0016	0.1732	-0.0903
77	7.6	5.3862	0.3993	2.2138	2.4670	0.2409	0.1652	1.1352
78 70	5.0	4.9421	0.1580	0.0579	0.0598	0.0000	0.0259	0.0097
79	2.9	3.6304	0.2899	-0.7304	-0.7783	0.0116	0.0871	-0.2398

Cuadro 5: Tabla de analisis de valores extremos [80,84]

	у	\hat{y}	$se(\hat{y})$	e_i	r_i	Cook Dist.	h_{ii}	DFFITS
80	2.5	4.7396	0.2008	-2.2396	-2.3295	0.0474	0.0418	-0.5010
81	6.4	5.2353	0.1998	1.1647	1.2112	0.0127	0.0414	0.2524
82	7.7	7.0758	0.3488	0.6242	0.6799	0.0133	0.1261	0.2574
83	4.4	4.8386	0.1733	-0.4386	-0.4537	0.0013	0.0311	-0.0809
84	1.7	3.3086	0.1609	-1.6086	-1.6602	0.0152	0.0268	-0.2789

Posteriormente se analiza los valores de balanceo y de influencia:

Figura 3: Análisis de balanceo, $h_{ii}>2p/n=0.143\,$

Figura 4: Análisis de influencia, $|DFFITS_i|>2\sqrt{\frac{p}{n}}=0.535$

• Respecto a la influencia se encuentran 3 observaciones, que no son muy representativas, mientras que para el balanceo se tienen 7 observaciones, de las cuales 3 se encuentran muy alejadas del resto pero que no afectan las estimaciones de los parámetros.