Assignment 1 Advanced Machine Learning

Armand Nicolicioiu (AI - 407)

April 2021

Exercise 1 Give an example of a finite hypothesis class \mathcal{H} with $VC \dim(\mathcal{H}) = 2021$.

Solution:

Having $A = \{e1, e2, ..., e_n\}$ the orthonormal basis of \mathbb{R}^n , we define a finite hypothesis class \mathcal{H} as follows:

$$\mathcal{H} = \{h_{w,0} \colon \mathbb{R}^n \to \{-1,1\}, h_{w,0} = sign(\sum_{i=1}^n w_i x_i) \mid w_i = \begin{cases} 1, & \text{if } e_i \in B \\ -1, & \text{if } e_i \notin B \end{cases} \text{ for all subsets } B \text{ of } A\}.$$

We will show that $VC\dim(\mathcal{H})=n$ and pick n=2021 for our particular case.

Proof.

Part 1. We first show that $VC\dim(\mathcal{H}) \geq n$ by finding a set A of n points in \mathbb{R}^n that is shattered by \mathcal{H} . As in the halfspaces example from Lecture 7, we take $A = \{e1, e2, ..., e_n\}$ to be the orthonormal basis of \mathbb{R}^n . Using the alternative definition of shattering from Lecture 6, we need to show that for every subset B of A there is a function h_B that labels +1 all elements in B and -1 all elements in $A \setminus B$.

By construction, our \mathcal{H} contains exactly one corresponding hypothesis for each subset B in A:

$$h_B = h_{w,0} = sign(\sum_{i=1}^n w_i x_i) \text{ where } w_i = \begin{cases} 1, & \text{if } e_i \in B \\ -1, & \text{if } e_i \notin B \end{cases}.$$

We have $h_B = sign(\langle w, e_i \rangle) = w_i$, so it will assign +1 for all elements in B and -1 for all elements in $B \setminus A$, therefore proving that $VC \dim(\mathcal{H}) \geq n$.

Part 2. Now we will show that $VC \dim(\mathcal{H}) < n+1$. We use the property presented in *Lecture* 6 that for a finite hypothesis class \mathcal{H} we have the upper bound:

$$VC\dim(\mathcal{H}) \le |\log_2(|\mathcal{H}|)|$$

For our choice of \mathcal{H} we have exactly one hypothesis for each subset of A, resulting in $|\mathcal{H}| = 2^{|A|} = 2^n$. Therefore:

$$VC\dim(\mathcal{H}) \le |\log_2(2^n)| = n$$

Using both parts results in $VC \dim (\mathcal{H}) = n$.

Exercise 2 Give an example of a finite set A in \mathbb{R}^n of size 4 that is shattered by \mathcal{H}_{balls} or justify why you cannot find such set.

Solution:

We will show that there is not possible to find an example of a set A in \mathbb{R}^2 of size 4 that is shattered by \mathcal{H}_{balls} .

Let's group the positioning of the 4 points into two generic situations:

Case 1) The 4 points form a concave polygon. In this case, there is no way to assign label 1(+) to the points that form the convex hull without assigning 1(+) to the point in the middle as well. Therefore, no set in this configuration can be shattered by \mathcal{H}_{balls} .

Figure 1: Concave polygon with negative label only for the point inside the convex hull.

Case 2) The 4 points form a convex polygon. It is easy to show that we can group together any number of adjacent points (label them with 1(+) by covering with a circle) and exclude the others (leave them outside that circle, thus labeling with 0(-)).

The problem appears when we want to label as 1(+) two opposite points and as 0(-) the other two. If it is possible to label as 1(+) the first opposing points (let's say, without restraining generality, A and C) without covering the other two, then, if we want the label B and D as 1(+), we will not be able to do this without covering at least one of the remaining points, A or C as well. Therefore, the cases in which (A, B, CD) are labeled (1, 0, 1, 0) or, equivalently (0, 1, 0, 1) cannot be both realized by hypotheses in \mathcal{H}_{balls} .

Figure 2: Convex polygon with labels (1,0,1,0) or (0,1,0,1).

Figure 3: Assignment of points in clock-wise order

We prove this formally in the following. We are in the case of convex polygons ABCD. Thus, there exists O the point of intersection of AB and CD (see Figure 3).

Let $l_1 = (1, 0, 1, 0)$ and $l_2 = (0, 1, 0, 1)$ be two labelings for some points $\{A, B, C, D\}$. We assume that these labelings can be realised, meaning we assume that there is a ball B_1 that contains only A and C (realising l_1) and a ball B_2 that contains only B and D (realising l_2). As the intersection of AC and BD, the point O must be contained by both balls.

Let's select the points $\{A, B, C, D\}$ by rotating clock-wise a ray centered in O. We start from A that must be in the first ball B_1 . We rotate clock-wise and select B from the second ball B_2 . We continue and select C from the ball B_1 . As D has different label than C, it should be in the second ball B_2 , and the last rotation will overpass the full circle as it passes over 360° . This is a contradiction.

Thus, the labelings l1 = (1, 0, 1, 0) and l2 = (0, 1, 0, 1) cannot be both realized by any hypotheses h_1 (ball B_1) and h_2 (ball B_2) in \mathcal{H}_{balls} .

In conclusion, no set A of size 4 exists such that it is shattered by \mathcal{H}_{balls} .

Exercise 3 Show that the class \mathcal{H}_{α} can be (ϵ, δ) - PAC learned by giving an algorithm A and determining an upper bound on the sample complexity $m_{\mathcal{H}}(\epsilon, \delta)$ such that the definition of PAC-learnability is satisfied.

Solution:

The hypothesis $\mathcal{H} = \mathcal{H}_{\alpha}$ is (ϵ, δ) - PAC learnable if for every $\epsilon, \delta > 0$, for every labeling function $f \in \mathcal{H}^2_{rec}$ (realizability case) and for every distribution \mathcal{D} on \mathbb{R}^2 we can find a function $m_{\mathcal{H}} : (0, 1)^2 \to \mathbb{N}$ and a learning algorithm A such that, when ran on a training set S consisting of $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ examples sampled i.i.d. from \mathcal{D} and labeled by f, the algorithm A returns a hypothesis $h_S \in \mathcal{H}$ that has a real risk lower than ϵ with probability at least $1 - \delta$.

$$P_{S \sim \mathcal{D}^m}(L_{f,\mathcal{D}}(h_S) \le \epsilon) \ge 1 - \delta$$

$$\Longrightarrow P_{S \sim \mathcal{D}^m}(L_{f,\mathcal{D}}(h_S) > \epsilon) < \delta$$

We will first define the algorithm A.

We denote the hypotheses represented by a right triangle $\triangle ABC$ with catheti AB and AC parallel to the axes (Ox and Oy) and $AB/AC = \alpha$ as $h_{a1,b1,a2,b2}$, where a1,b1,a2,b2 are the coordinates of the triangle's vertices as follows:

$$A = (a1, b1)$$
$$B = (a2, b1)$$
$$C = (a1, b2)$$

We are under the realizability assumption, so there exists a labeling function $f \in \mathcal{H}_{\alpha}$, $f = h^*_{(a_1^*, b_1^*, a_2^*, b_2^*)}$ that labels the training data.

Consider the training set
$$S = \left\{ (x_1, y_1), (x_2, y_2), \dots, (x_m, y_m) \mid \begin{array}{l} y_i = h^*_{(a_1^*, b_1^*, a_2^*, b_2^*)}(x_i), \\ x_i \in \mathbb{R}^2, x_i = (x_{i1}, x_{i2}) \end{array} \right\}$$

Let define the algorithm A that learns from the training set S as the tightest right triangle in \mathcal{H}_{α} that covers all the points in S, assigning 1(+) to all points inside it and 0(-) to all points outside. As in Figure 4, we pick a1 as the leftmost Ox coordinate of a point in S and b1 as the lowermost Oy coordinate of a point in S. Now that we found point A, we need to determine the other ends of the segments AB and AC— the points B and C. To do that, we draw a line of slant $-ctg^{-1}(\alpha)$ through each positive example x_i in S until it intersects the catethi in points B_i and C_i , respectively. To assure that all examples in the training set are labeled correctly by our algorithm, we pick the point $P(x_{P1}, x_{P2})$ that has the longest distance to the imaginary line drawn through A and parallel with BC. As a result, we have:

$$a_{1} = \min(x_{i1})$$

$$b_{1} = \min(x_{i2})$$

$$b_{2} = b_{2i} = \arg\max_{x_{i} \in S} \{x_{i2} + \alpha(x_{i1} - a_{1})\}$$

$$a_{2} = a_{2i} = \arg\max_{x_{i} \in S} \{\frac{b_{1} - x_{i2}}{\alpha} - x_{i1}\}$$

If there are no positive examples in the training set, we choose a new point $z = (z_1, z_2)$ outside the training set and pick A = B = C = z.

Figure 4: Algorithm A represented by the tightest right triangle in \mathcal{H}_{α} that covers all the points in S labeled with 1(+).

We defined an algorithm that generates $h_S = h_{a1,b1,a2,b2}$ as the tightest right triangle in \mathcal{H}_{α} enclosing all the positives examples in S. By construction, A is an ERM algorithm with $L_{h^*,\mathcal{D}}(h_S) = 0$ because h_S doesn't mislable any example in the training set.

We denote by T^* the triangle region determined by hypothesis h^* given by the realizability assumption. All the points inside T^* have 1(+) as the correct label, and all the points outside it have 0(-) as the correct label.

We denote by T_S the triangle region determined by hypothesis h_S given by our learning algorithm A trained on the set S.

Now we want to find the sample complexity $m_{\mathcal{H}}(\epsilon, \delta)$ such that

$$P_{S_{\mathcal{D}}\mathcal{D}^m}(L_{h^*,\mathcal{D}}(h_S) \leq \epsilon) \geq 1 - \delta$$
 where S contains $m \geq m_{\mathcal{H}}(\epsilon,\delta)$ examples.

Because of the realizability assumption and our of choice of A, it is assured that h_S will label correctly any point inside T_S . Also, we make the observation that $T_S \subset T^*$, meaning that h_S also labels correctly all the examples outside T^* because they are outside T_S too. Thus, the only region where h_S can make mistakes is $T^* \setminus T_S$.

Let's fix $\epsilon > 0, \delta > 0$ and consider a distribution \mathcal{D} over \mathbb{R}^2 .

Case 1)

$$\mathcal{D}(T^*) = \underset{x \sim \mathcal{D}}{P}(x \in T^*) \leq \epsilon$$

$$\implies L_{h^*, \mathcal{D}}(h_S) = \underset{x \sim \mathcal{D}}{P}(h_S(x) \neq h^*(x)) = \underset{x \sim \mathcal{D}}{P}(x \in T^* \setminus T_S) \leq \underset{x \sim \mathcal{D}}{P}(x \in T^*) \leq \epsilon$$

$$\implies \underset{S \sim \mathcal{D}^m}{P}(L_{h^*, \mathcal{D}}(h_S) \leq \epsilon) = 1 \text{ (this happens all the time)}$$

Case 2)
$$\mathcal{D}(T^*) = \underset{x \sim \mathcal{D}}{P}(x \in T^*) > \epsilon$$

We construct as in Figure 5 the regions R1, R2, R3 by drawing lines parallel to the triangle's sides, having $\mathcal{D}(R_i) = \underset{x \sim \mathcal{D}}{P}(x \in R_i) = \frac{\epsilon}{3}$.

Case 2.1) T_S intersects all regions R1, R2, R3 (See Figure 5a). This results in:

$$L_{h^*,\mathcal{D}}(h_S) = \underset{x \sim \mathcal{D}}{P}(h^*(x) \neq h_S(x)) = \underset{x \sim \mathcal{D}}{P}(x \in T^* \setminus T_S) \leq \underset{x \sim \mathcal{D}}{P}(x \in R_1 \cup R_2 \cup R_3) \leq$$

$$\leq \sum_{i=1}^{3} \underset{x \sim \mathcal{D}}{P}(x \in R_i) = \sum_{i=1}^{3} \mathcal{D}(R_i) = 3 \cdot \frac{\epsilon}{4} = \epsilon \quad \text{(with probability 1)}$$

Figure 5: The regions defined by the hypotheses: The yellow triangle is T^* , the green triangle is T_S and R1, R2, R3 are the trapezoids separated by the dotted lines. The examples in $T^* \setminus T_S$ area will be misclassified by our h_S as negative when in fact they should be positive because they are located inside T^* .

Case 2.2) T_S will not intersect at least one region of R1, R2, R3 (See Figure 5b). This allows for the possibility to have $L_{h^*,\mathcal{D}}(h_S) > \epsilon$.

We denote with F_i this event of T_S not intersecting R_i , so we have $F_i = \{S \sim \mathcal{D}^m \mid T_S \cap R_i = \emptyset\}$.

at least one
$$F_i$$
 happens
$$\underset{S \sim \mathcal{D}^m}{P}(L_{h^*,\mathcal{D}}(h_S) > \epsilon) \leq \underset{S \sim \mathcal{D}^m}{P}(F1 \cup F2 \cup F3) \leq \sum_{i=1}^{3} \underset{S \sim \mathcal{D}^m}{P}(F_i)$$

Now, $\underset{S \sim \mathcal{D}^m}{P}(F_i) = \text{ the probability that } T_S \text{ will not intersect } R_i$ $= \text{ the probability that no point from } R_i \text{ is sampled in } S$ $= \left(1 - \frac{\epsilon}{3}\right)^m$

So

$$\underset{S \sim \mathcal{D}^m}{P}(L_{h^*,\mathcal{D}}(h_S) > \epsilon) \le \sum_{i=1}^{3} \underset{S \sim \mathcal{D}^m}{P}(F_i) = 3 \cdot \left(1 - \frac{\epsilon}{3}\right)^m$$

From Lecture 2 we know that $1-x \leq e^{-x}$, so $1-\frac{\epsilon}{3} \leq e^{-\frac{\epsilon}{3}}$, meaning that

$$\Pr_{S \sim \mathcal{D}^m}(L_{h^*, \mathcal{D}}(h_S) > \epsilon) \le 3 \cdot \left(1 - \frac{\epsilon}{3}\right)^m \le 3 \cdot e^{-\frac{\epsilon}{3}m}$$

We want $\underset{S \sim \mathcal{D}^m}{P} (L_{h^*,\mathcal{D}}(h_S) > \epsilon) < \delta.$

$$\implies 3 \cdot e^{-\frac{\epsilon}{3}m} < \delta$$

$$\implies e^{-\frac{\epsilon}{3}m} < \frac{\delta}{3}$$

$$\implies -\frac{\epsilon}{3} \cdot m < \log \frac{\delta}{3}$$

$$m > -\frac{3}{\epsilon} \log \frac{\delta}{3} = \frac{3}{\epsilon} \log \frac{3}{\delta}$$

Therefore, for a training set S of size $m \geq m_{\mathcal{H}}(\epsilon, \delta) = \frac{3}{\epsilon} \cdot \log \frac{3}{\delta}$ i.i.d. samples from \mathcal{D} , our learning algorithm A obtains a hypothesis h_S with $\underset{S \sim \mathcal{D}^m}{P}(L_{h^*, \mathcal{D}}(h_S) \leq \epsilon) \geq 1 - \delta$, showing that \mathcal{H}_{α} is (ϵ, δ) - PAC learnable. \square

Exercise 4 Show that the class \mathcal{H} can be (ϵ, δ) - PAC learned by giving an algorithm A and determining an upper bound on the sample complexity $m_{\mathcal{H}}(\epsilon, \delta)$ such that the definition of PAC-learnability is satisfied. Compute VCdim (\mathcal{H}) .

Solution:

Similar to the previous problem, we start by defining an algorithm A.

We consider the training set $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}.$

We find the point x_S that is furthest away from the origin, from the set S_+ of points with label 1.

$$r_S = \max_{x_i \in S_+} ||x_i||_2 \tag{1}$$

We define the hyphotheis $h_S = B(r_S) = B_S$ the ball of radius equal to the distance from the origin to the point x_S . By construction, A is an ERM algorithm with $L_{h^*,\mathcal{D}}(h_S) = 0$ because h_S doesn't mislable any

example in the training set.

From the realizability assumption, there exists a hypothesis $h^* = B(r^*) = B^*$ such that all the points inside the ball $B(r^*)$ have 1(+) as the correct label, and all the points outside it have 0(-) as the correct label.

Figure 6

Now we want to find the sample complexity $m_{\mathcal{H}}(\epsilon, \delta)$ such that

$$P_{S \sim \mathcal{D}^m}(L_{h^*,\mathcal{D}}(h_S) \leq \epsilon) \geq 1 - \delta$$
 where S contains $m \geq m_{\mathcal{H}}(\epsilon,\delta)$ examples.

Because of the realizability assumption and our of choice of A, it is assured that h_S will label correctly any point inside B_S . Also, we make the observation that $B_S \subset B^*$, meaning that h_S also labels correctly all the examples outside B^* because they are outside B_S too. Thus, the only region of space where h_S can make mistakes is $B^* \setminus B_S$.

Case 1)

$$\mathcal{D}(B^*) = \underset{x \sim \mathcal{D}}{P}(x \in B^*) \leq \epsilon$$

$$\implies L_{h^*, \mathcal{D}}(h_S) = \underset{x \sim \mathcal{D}}{P}(h_S(x) \neq h^*(x)) = \underset{x \sim \mathcal{D}}{P}(x \in B^* \setminus B_S) \leq \underset{x \sim \mathcal{D}}{P}(x \in B^*) \leq \epsilon$$

$$\implies \underset{S \sim \mathcal{D}^m}{P}(L_{h^*, \mathcal{D}}(h_S) \leq \epsilon) = 1 \text{ (this happens all the time)}$$

Case 2)
$$\mathcal{D}(B^*) = \Pr_{x \sim \mathcal{D}}(x \in B^*) > \epsilon$$
 (2)

We define $T_{\epsilon} = B^* \setminus B_{\epsilon} = B(r^*) \setminus B(r_{\epsilon})$ is a region of space close to the margins of the B^* such that $\underset{x \sim \mathcal{D}}{P}(x \in T_{\epsilon}) = \epsilon$ (see Figure 7)

Figure 7: T_{ϵ} (orange color) represents the region at the margin of the B^* ball.

Case 2.1) B_S intersects T_{ϵ} , results:

$$L_{h^*,\mathcal{D}}(h_S) = \underset{x \sim \mathcal{D}}{P}(h^*(x) \neq h_S(x)) = \underset{x \sim \mathcal{D}}{P}(x \in B^* \setminus B_S) \leq \underset{x \sim \mathcal{D}}{P}(x \in T_\epsilon) = \epsilon \quad \text{(with probability 1)}$$

Case 2.2) $B_S \cap T_{\epsilon} = \emptyset$

$$\underset{S \sim \mathcal{D}^m}{P} (L_{h^*, \mathcal{D}}(h_S) > \epsilon) = \underset{S \sim \mathcal{D}^m}{P} (B_S \cap T_{\epsilon} = \emptyset)$$

 $P_{S \sim \mathcal{D}^m}(B_S \cap T_{\epsilon} = \emptyset)$ is the probability that no point from T_{ϵ} is sampled in the training set S. This probability is $(1 - \epsilon)^m$. We obtain:

$$\frac{P}{S \sim \mathcal{D}^m} (L_{h^*, \mathcal{D}}(h_S) > \epsilon) = \frac{P}{S \sim \mathcal{D}^m} (B_S \cap T_{\epsilon} = \emptyset) = (1 - \epsilon)^m \le e^{-\epsilon m}$$

$$e^{-\epsilon m} < \delta$$

$$\implies -\epsilon m < \log \delta$$

$$\implies m > -\frac{1}{\epsilon} \log \delta$$

$$\implies m > \frac{1}{\epsilon} \log \frac{1}{\delta}$$

Therefore, for a training set S of size $m \geq m_{\mathcal{H}}(\epsilon, \delta) = \frac{1}{\epsilon} \log \frac{1}{\delta}$ i.i.d. samples from \mathcal{D} , our learning algorithm A obtains a hypothesis h_S with $\underset{S \sim \mathcal{D}^m}{P}(L_{h^*, \mathcal{D}}(h_S) \leq \epsilon) \geq 1 - \delta$, showing that \mathcal{H}_{α} is (ϵ, δ) - PAC learnable. \square

b. $VCdim(\mathcal{H})$

It is easy to see that any set of one point $C = \{x\}$ is shattered by \mathcal{H} . We denote $d = ||x||_2$ the distance from the point x to the origin. The two possible labelings can be realised by selecting a ball with radius r < d for label 0(-) or selecting a ball with radius r > d for label 1(+).

So:

$$VCdim(gH) \ge 1 \tag{3}$$

Let $C_2 = \{x_1, x_2\}$ a set of two points. We will show that \mathcal{H} cannot shatter C_2 .

Without loosing generality, we can sort any two points such that the first one is closer to the origin than the second point (or at equal distance) $||x_1||_2 \le ||x_2||_2$.

Let's assume that the labeling (0,1) is realised by a hyphothesis h = B(r). The second point x_2 has label 1(+), so:

$$x_2 \in B(r) \implies ||x_2|| < r$$
$$||x_1||_2 \le ||x_2||_2 < r \implies x_1 \in B(r)$$

Thus, the first point x_1 also has label 1(+), contradicting the assumption. Thus, the labeling (0,1) cannot be realised for any set of two points, which means that any such set C_2 cannot be shattered.

This results in

$$VCdim(gH) < 2$$
 $Eq.3 \implies VCdim(gH) = 1$

Exercise 5 Let $\mathcal{H} = \{h_{\theta} : \mathbb{R} \to \{0,1\}, h_{\theta} = \mathbb{1}_{[\theta,\theta+1]\cup[\theta+2,+\infty)}(x), \theta \in \mathbb{R}\}$. Compute VCdim(\mathcal{H}).

Solution:

We first show that there exists a set $C = \{a, b, c\}$ of size 3 that is shattered by \mathcal{H} , thus $VCdim(\mathcal{H}) \geq 3$. For a = 0, b = 0.3, c = 1.2, we show that we could choose different values of θ such that the resulting hypothesis realises all possible labelings.

For $\theta = 2$ we obtain the labeling (0, 0, 0):

$$a = 0.0 < 2 = \theta \implies h_{\theta}(a) = 0$$

$$b = 0.6 < 2 = \theta \implies h_{\theta}(b) = 0$$

$$b = 1.2 < 2 = \theta \implies h_{\theta}(c) = 0$$

For $\theta = -0.5$ we obtain the labeling (1,0,0):

$$a = 0.0 \in [\theta, \theta + 1] = [-0.5, 0.5] \implies h_{\theta}(a) = 1$$

$$b = 0.6 \in (\theta + 1, \theta + 2) = (0.5, 1.5) \implies h_{\theta}(b) = 0$$

$$b = 1.2 \in (\theta + 1, \theta + 2) = (0.5, 1.5) \implies h_{\theta}(c) = 0$$

For $\theta = 0.1$ we obtain the labeling (0, 1, 0):

$$a = 0.0 < \theta = 0.1 \implies h_{\theta}(a) = 0$$
$$b = 0.6 \in [\theta, \theta + 1] = [0.1, 1.1] \implies h_{\theta}(b) = 1$$
$$b = 1.2 \in (\theta + 1, \theta + 2) = (1.1, 2.1) \implies h_{\theta}(c) = 0$$

For $\theta = 1.0$ we obtain the labeling (0, 0, 1):

$$a = 0.0 < \theta = 1.0 \implies h_{\theta}(a) = 0$$

 $b = 0.6 < \theta = 1.0 \implies h_{\theta}(b) = 0$
 $c = 1.2 \in [\theta, \theta + 1] = [1.0, 2.0] \implies h_{\theta}(c) = 1$

For $\theta = 0.5$ we obtain the labeling (0, 1, 1):

$$a = 0.0 < \theta = 0.5 \implies h_{\theta}(a) = 0$$

 $b = 0.6 \in [\theta, \theta + 1] = [0.5, 1.5] \implies h_{\theta}(b) = 1$
 $c = 1.2 \in [\theta, \theta + 1] = [0.5, 1.5] \implies h_{\theta}(c) = 1$

For $\theta = -0.1$ we obtain the labeling (1, 1, 0):

$$a = 0.0 \in [\theta, \theta + 1] = [0.1, 0.9] \implies h_{\theta}(a) = 1$$
$$b = 0.6 \in [\theta, \theta + 1] = [0.1, 0.9] \implies h_{\theta}(b) = 1$$
$$c = 1.2 \in (\theta + 1, \theta + 2) = (0.9, 1.9) \implies h_{\theta}(c) = 0$$

For $\theta = -0.9$ we obtain the labeling (1,0,1):

$$a = 0.0 \in [\theta, \theta + 1] = [-0.9, 0.1] \implies h_{\theta}(a) = 1$$

$$b = 0.6 \in (\theta + 1, \theta + 2) = (0.1, 0.9) \implies h_{\theta}(b) = 0$$

$$c = 1.2 \in [\theta + 2, \infty) = [1.1, \infty) \implies h_{\theta}(c) = 1$$

For $\theta = -2$ we obtain the labeling (1, 1, 1):

$$a = 0.0 \in [\theta + 2, \infty] = [0.0, \infty) \implies h_{\theta}(a) = 1$$

$$b = 0.6 \in [\theta + 2, \infty] = [0.0, \infty) \implies h_{\theta}(b) = 1$$

$$c = 1.2 \in [\theta + 2, \infty] = [0.0, \infty) \implies h_{\theta}(c) = 1$$

Thus, $C = \{0, 0.6, 1.2\}$ is shattered by \mathcal{H} , obtaining:

$$VCdim(\mathcal{H}) \ge 3.$$
 (4)

Let's consider any set $C = \{a, b, c, d\}$ of size 4 with $a \le b \le c \le d$.

If \mathcal{H} shatters $C = \{a, b, c, d\}$ then there should exists θ such that h_{θ} realizes the labeling (1, 0, 1, 0).

From the definition of h_{θ} if $h_{\theta}(a) = 1$, $h_{\theta}(b) = 0$, $h_{\theta}(c) = 1$ then $a \in [\theta, \theta+1]$, $b \in (\theta+1, \theta+2)$, $c \in [\theta+2, \infty]$. From $c \leq d \implies d \in [\theta+2, \infty] \implies h_{\theta}(d) = 1$.

Thus, the labeling (1,0,1,0) cannot be realised and

$$VCdim(\mathcal{H}) < 4. \tag{5}$$

From Eq.4 and Eq.5 it result that

$$VCdim(\mathcal{H}) = 3. \tag{6}$$

Exercise 6 Let \mathcal{X} be an instance space and consider $\mathcal{H} \subseteq \{0,1\}^{\mathcal{X}}$ a hypothesis space with finite VC dimension. For each $x \in \mathcal{X}$ we consider the function $z_x : \mathcal{X} \to \{0,1\}$ such that $z_x(h) = h(x)$ for each $h \in \mathcal{H}$. Let $Z = \{z_x : \mathcal{H} \to \{0,1\}, x \in \mathcal{X}\}$. Prove that $\operatorname{VCdim}(Z) < 2^{\operatorname{VCdim}(\mathcal{H})+1}$.

Solution:

Let's denote $n = VCdim(\mathcal{H})$ and $M = 2^{n+1}$.

Let's assume $VCdim(Z) \ge 2^{VCdim(\mathcal{H})+1} = M$.

Thus, there exits a set $C = \{h_1, h_2, ..., h_M\}$ with elements $h_i \in \mathcal{H}$ from the domain of the functions $z \in \mathbb{Z}$, |C| = M that is shattered by Z.

Thus, for each labelings $l = [l(1), l(2), ..., l(M)] \in \{0, 1\}^M$ there exists a function z_x that realises it:

$$z_x(h_1) = l(1), \quad z_x(h_2) = l(2), \quad \dots \quad z_x(h_M) = l(M)$$

or equivalently, for functions $C = \{h_1, h_2, ..., h_M\}$, \forall labeling $l \in \{0, 1\}^M = l \in \{0, 1\}^{2^{n+1}}$ with 2^{n+1} elements, there exists a point x such that

$$h_1(x) = l(1), \quad h_2(x) = l(2), \quad \dots \quad h_M(x) = l(M).$$
 (7)

Let's consider the set of all labelings of n+1 elements $Q = \{q_i | \forall i \leq M = 2^{n+1}\}$.

All labelings $q_i = [q_i(1), q_i(2), ...q_i(n+1)]$ could be organized into a matrix Q where each labeling reprezents a column

$$Q = \begin{bmatrix} | & | & & | \\ q_1^T & q_2^T & \dots & q_M^T \\ | & | & & | \end{bmatrix} \in \{0, 1\}^{n \times M}$$

Each row i of the matrix Q could be seen as a labeling $l_i = [l_i(1), l_i(2), ..., l_i(M)] \in \{0, 1\}^M$.

$$Q = \begin{bmatrix} & | & & & & | \\ q_1^T & q_2^T & \dots & q_M^T \\ & | & & & | \end{bmatrix} = \begin{bmatrix} & - & l_1 & - \\ & - & l_2 & - \\ & \vdots & & \\ & - & l_{n+1} & - \end{bmatrix}$$

From Eq. 7, \forall such labeling l_i , there $\exists x_i$ such that:

$$h_1(x_i) = l_i(1), \quad h_2(x_i) = l_i(2), \quad \dots \quad h_M(x_i) = l_i(M)$$
 (8)

Expanding the previous equation for all i, we obtain

$$\begin{split} h_1(x_1) &= l_1(1), \quad h_2(x_1) = l_1(2), \quad \dots \quad h_M(x_1) = l_1(M) \\ h_1(x_2) &= l_2(1), \quad h_2(x_2) = l_2(2), \quad \dots \quad h_M(x_2) = l_2(M) \\ &\vdots \\ h_1(x_{n+1}) &= l_{n+1}(1), \quad h_2(x_{n+1}) = l_{n+1}(2), \quad \dots \quad h_M(x_{n+1}) = l_{n+1}(M) \end{split}$$

Rewriting the previous equations, we obtain

$$\begin{split} h_1(x_1) &= l_1(1), \quad h_1(x_2) = l_2(1), \quad \dots \quad h_1(x_{n+1}) = l_{n+1}(1) \\ h_2(x_1) &= l_1(2), \quad h_2(x_2) = l_2(2), \quad \dots \quad h_2(x_{n+1}) = l_{n+1}(2) \\ &\vdots \\ h_M(x_1) &= l_1(M), \quad h_M(x_2) = l_2(M), \quad \dots \quad h_M(x_{n+1}) = l_{n+1}(M) \end{split}$$

As we defined it, $q_i = [l_1(i), l_2(i)], \dots l_M(i)$ is a column of Q, meaning one of the possible $M = 2^{n+1}$ labelings of size n+1. Thus, we have shown that there exists a set of points $C_2 = \{x_1, x_2, ..., x_{n+1}\}$ and for any labeling q_i there exists a hypothesis $h_i \in \{h_1, h_2, ..., h_M\}$ such that:

$$h_i(x_1) = q_i(1), \quad h_i(x_2) = q_i(2), \quad \dots \quad h_i(x_{n+1}) = q_i(n+1)$$
 (9)

Thus, $C_2 = \{x_1, x_2, ... x_{n+1}\}$ is shattered by \mathcal{H} resulting in $\operatorname{VCdim}(\mathcal{H}) \geq n+1 = \operatorname{VCdim}(\mathcal{H}) + 1$. This results in a contradictions, therefore $\operatorname{VCdim}(Z) < 2^{\operatorname{VCdim}(\mathcal{H})+1}$.