Comparing estimators

Example

Suppose $X_1,\ldots,X_n\stackrel{iid}{\sim}Uniform[0,\theta].$ Some possible estimates:

What properties might I want an estimator $\hat{\theta}$ to possess?

Bias, Variance and MSE

Example

Suppose $X_1,\ldots,X_n\stackrel{iid}{\sim}N(\mu,\sigma^2)$. On homework, we considered

$$\widehat{\sigma}^2 = rac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 \hspace{0.5cm} s^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

and we showed that $\mathbb{E}\widehat{\sigma}^2=rac{n-1}{n}\sigma^2, \mathbb{E}(s^2)=\sigma^2,$ and $rac{(n-1)s^2}{\sigma^2}\sim \chi^2_{n-1}.$

Calculate the MSE of both $\widehat{\sigma}^2$ and s^2 . It may help that if $V\sim\chi^2_
u$, then E[V]=
u and Var(V)=2
u.

MSE and consistency

Best unbiased estimators

Cramer-Rao lower bound