

Semialgebraic Representation of ReLU Networks and Their Applications to

ROBUSTNESS CERTIFICATION

Tong Chen, Jean-Bernard Lasserre, Victor Magron, Edouard Pauwels

LAAS-CNRS, MIT, IRIT, ANITI

Introduction

Robustness verification of neural network F: input \mathbf{x}_0 , perturbation threshold ϵ .

$$\max \|F(\mathbf{x}) - F(\mathbf{x}_0)\|, \quad \text{s.t. } \|\mathbf{x} - \mathbf{x}_0\| \le \varepsilon^2$$

General methodology:

• exact semi-algebraic representation + polynomial optimization + SDP relaxation.

Contributions:

- Estimating Lipschitz constant of relu networks [3];
- SDP relaxation taylored to NN certification [5].
- Robustness certification of implicit networks [4].

Structure of neural networks

Input layer: x, hidden layer: z, output layer: y.

Activation function: $\sigma(x) = \text{ReLU}(x) = \max\{0, x\}$

- Deep neural network (DNN weights A, b):
 - z = ReLU(Ax + b)
- Monotone equilibrium model (monDEQ, weights $\mathbf{W}, \mathbf{U}, \mathbf{u}$):

$$z = ReLU(Wz + Ux + u)$$

Semialgebraicity of ReLU, \(\partial\) ReLU

•
$$y = \text{ReLU}(x)$$
 \Leftrightarrow $y(y-x) = 0, y \ge x, y \ge 0.$
• $y = \partial \text{ReLU}(x)$ \Leftrightarrow $y(y-1) = 0, (y-\frac{1}{2})x \ge 0$

Hidden layer in DNN:

$$\mathbf{z}(\mathbf{z} - (\mathbf{A}\mathbf{x} + \mathbf{b})) = 0, \ \mathbf{z} \ge (\mathbf{A}\mathbf{x} + \mathbf{b}), \ \mathbf{z} \ge 0.$$
 Hidden in monDEQ:

 $\mathbf{z}(\mathbf{z} - \mathbf{W}\mathbf{z} - \mathbf{U}\mathbf{x} - \mathbf{u}) = 0, \ \mathbf{z} \ge \mathbf{W}\mathbf{z} + \mathbf{U}\mathbf{x} + \mathbf{u}, \ \mathbf{z} \ge 0.$

Polynomial optimization

Polynomial optimization problem (POP):

$$\max_{\mathbf{x} \in \mathbb{R}^n} \{ f(\mathbf{x}) : g_i(\mathbf{x}) \ge 0, i = 1, \dots, p \}$$

where f and g_i are polynomials in variable $\mathbf{x} \in \mathbb{R}^n$.

Semidefinite Programming (SDP)

Semidefinite programming (SDP):

Input:
$$\mathbf{C} \in \mathbb{S}^n$$
, $\mathbf{A}_k \in \mathbb{S}^n$, $b_k \in \mathbb{R}$, $k = 1, \dots, m$.

$$\min_{\mathbf{X} \in \mathbb{S}^n} \{ \langle \mathbf{C}, \mathbf{X} \rangle_{\mathbb{S}^n} : \langle \mathbf{A}_k, \mathbf{X} \rangle_{\mathbb{S}^n} = b_k, k = 1, \dots, m; \mathbf{X} \succeq 0 \},$$

where \mathbb{S}^n is the space of real symmetric $n \times n$ matrices, and $\langle \cdot, \cdot \rangle_{\mathbb{S}^n}$ is the Frobenius scalar product in \mathbb{S}^n .

From POP to SDP: Lasserre's relaxation

Set $\omega_i = \lceil \deg g_i/2 \rceil$ and choose $d \in \mathbb{N}$ a degree bound: $\max_{\mathbf{y}: L_{\mathbf{y}}(1)=1} \{ L_{\mathbf{y}}(f) : \mathbf{M}_d(\mathbf{y}) \succeq 0, \mathbf{M}_{d-\omega_i}(g_i\mathbf{y}) \succeq 0 \}.$

This is an SDP with:

- p+1 positive semidefinite matrices.
- of size $\binom{n+2d}{2d}$, $\binom{n+2(d-\omega_i)}{2(d-\omega_i)}$.

Main features:

- For any d: certified POP upper bound.
- As $d \to \infty$: converges to POP solution.

Main challenge for NN certification: scalability.

Lipschitz model of DNN

Fix input \mathbf{x}_0 and perturbation ε .

$$\max_{\mathbf{x}, \mathbf{s}, \mathbf{t}} \quad \mathbf{t}^T \mathbf{A}^T \mathbf{diag}(\mathbf{s}) \mathbf{c}$$

$$\mathbf{s}(\mathbf{s} - 1) = 0,$$

$$(\mathbf{s} - \frac{1}{2})(\mathbf{A}\mathbf{x} + \mathbf{b}) \ge 0;$$

$$\mathbf{t}^2 \le 1,$$

Robustness model of monDEQ

 $\|\mathbf{x} - \mathbf{x}_0\|^2 \le \varepsilon^2.$

Fix input \mathbf{x}_0 and perturbation ε .

$$\max_{\mathbf{x}, \mathbf{z}} \quad \mathbf{c}^T \mathbf{z}$$
s.t.
$$\begin{cases} \mathbf{z}(\mathbf{z} - \mathbf{W}\mathbf{z} - \mathbf{U}\mathbf{x} - \mathbf{u}) = 0, \\ \mathbf{z} \ge \mathbf{W}\mathbf{z} + \mathbf{U}\mathbf{x} + \mathbf{u}, \\ \mathbf{z} \ge 0, \\ (\mathbf{x}_0 - \bar{\mathbf{x}}_0 + \varepsilon)(\mathbf{x}_0 - ||\mathbf{x} - \mathbf{x}_0||^2 \le \varepsilon^2. \end{cases}$$

Numerical results: Lipschitz constant of DNNs

Upper bounds of Lipschitz constant and running time of various methods for SDP-NN network:

	Our SDP method [3]	Shor	LP method [1]			
Bound	14.56	17.85	OfM			
Time	12246	2869	OfM			
OfM: out of memory.						

Numerical results: Robustness certification of monDEQs

Ratio of certified examples among the first 100 test examples of MNIST dataset for robustness model.

Norm	arepsilon	Our method [4]	Pabbaraju et. al.[2]
$\overline{}L_2$	0.1	99%	91%
	0.1	0%	0%
L_{∞}	0.05	24%	0%
	0.01	99%	24%

Conclusion

Advantage:

- guaranteed upper bounds for Lipschitz constant and certifying robustness of neural networks;
- significantly improves state of the art.

Main challenge and future research:

- scalability.
- limitation of SDP solvers.

References

- [1] Latorre et. al. Lipschitz constant estimation of neural networks via sparse polynomial optimization. ICLR 2020.
- [2] Pabbaraju et. al. Estimating lipschitz constants of monotone deep equilibrium models. ICLR 2021.
- [3] C. L. M. P. Semialgebraic optimization for lipschitz constants of relu networks. NeurIPS 2020.
- [4] C. L. M. P. Semialgebraic representation of monotone deep equilibrium models and applications to certification. NeurIPS 2021.
- [5] C. L. M. P. A sublevel moment-sos hierarchy for polynomial optimization. *Computational Optimization and Applications*, 81(1):31–66, 2022.

