M5MS06 - Bayesian Statistics

Homework 2 – Winter 2012

Due: 4:00pm, Monday, 18 February 2013

- 1. Suppose $y_j \sim N(\theta_j, \sigma_j^2)$ for j = 1, ..., J with $\theta_j \sim N(\mu, \tau^2)$. Let $\theta = (\theta_1, ..., \theta_J)$ and $y = (y_1, ..., y_J)$ and assume that $\sigma_1^2, ..., \sigma_J^2$ are know.
 - (a) Suppose that $p(\mu, \tau) \propto 1$. Specify the posterior $p(\theta, \mu, \tau^2 | y)$ by first deriving $p(\theta | \mu, \tau^2, y)$ and then $p(\mu | \tau^2, y)$, and finally $p(\tau^2 | y)$.
 - (b) Now suppose $p(\mu,\tau) \propto 1/\tau$. Show that the posterior distribution, $p(\theta,\mu,\tau|y)$ is improper. [Hint: Derive $p(\tau^2|y)$ as in (a) and examine its integrability near zero. Does $p(\tau^2|y)$ behave like τ^{-1} , τ^{-J} , or something else?]
 - (c) Reproduce the computations in Section 5.5 of Gelman et al. for the educational testing example. (The Section number is the same in both edition.)
 - (d) For each school j, compute the probability that its coaching program is the best. For each pair of schools, j and k, compute the probability that the coaching program for school j is better than that for school k.
 - (e) Suppose $\tau^2 = \infty$. What does this mean for the individual coaching programs? Under this assumption, repeat the computation of the probabilities in part (d).
 - (f) Now suppose $\tau^2 = 0$. What does this mean for the individual coaching programs? Under this assumption, again repeat the computation of the probabilities in part (d).
 - (g) Discuss how your answers to parts (d)–(f) differ.
- 2. Problem 6.2 in Gelman et al. (The problem number is the same in both editions.)