Curs 2011-12

- 1. (a) Enuncieu el teorema de la funció implícita.
 - (b) Proveu que per a tot $a, b \in \mathbb{R}$ l'equació

$$\sin(ax + by + z) + e^z + 2y + x^2 + 3y^2 = 1$$

defineix una funció z = g(x, y) en un entorn de (0, 0, 0).

(c) Calculeu els valors de a i de b tals que g tingui un extrem relatiu en (0,0).

Solució:

(a) TEOREMA DE LA FUNCIÓ IMPLÍCITA

Siguin $U \subset \mathbb{R}^{n+m} = \mathbb{R}^n \times \mathbb{R}^m$ un conjunt obert i

$$f: U \subset \mathbb{R}^n \times \mathbb{R}^m \longrightarrow \mathbb{R}^m$$
$$(x,y) \xrightarrow{} f(x,y) = (f_1(x,y), \dots, f_m(x,y))$$

una funció de classe C^k $(1 \le k \le \infty)$. Si un punt $(x_0, y_0) \in U$ compleix que $f(x_0, y_0) = 0$ i

$$\frac{\partial(f_1,\ldots,f_m)}{\partial(y_1,\ldots,y_m)}(x_0,y_0)\neq 0,$$

aleshores existeixen un entorn obert $W \subset U$ del punt (x_0, y_0) , un entorn obert $V \subset \mathbb{R}^n$ del punt x_0 i una funció $g: V \to \mathbb{R}^m$ de classe C^k tals que

$$\{(x,y) \in W : f(x,y) = 0\} = \{(x,g(x)) : x \in V\},\$$

és a dir, els zeros de la funció f en W són els punts de la gràfica de g, o equivalentment, en un llenguatge més clàssic, les solucions del sistema d'equacions

$$\begin{cases} f_1(x_1, \dots, x_n, y_1, \dots, y_m) = 0 \\ \dots \\ f_m(x_1, \dots, x_n, y_1, \dots, y_m) = 0 \end{cases}$$

en W són els punts de la forma

$$(x_1, \ldots, x_n, g_1(x_1, \ldots, x_n), \ldots, g_m(x_1, \ldots, x_n)), \text{ amb } (x_1, \ldots, x_n) \in V.$$

Comentari: La tesi del teorema de la funció implícita es resumeix dient que l'equació f(x,y) = 0 defineix una funció implícita y = g(x) (de classe C^k) en un entorn del punt (x_0, y_0) .

(b) Siguin $a, b \in \mathbb{R}$. Volem aplicar el teorema de la funció implícita a la funció

$$f(x, y, z) = \sin(ax + by + z) + e^{z} + 2y + x^{2} + 3y^{2} - 1.$$

Observeu que f és una funció de classe C^{∞} en \mathbb{R}^3 , f(0,0,0)=0 i

$$\frac{\partial f}{\partial z}(0,0,0) = \cos(ax + by + z) + e^z|_{(0,0,0)} = \cos(0) + e^0 = 2 \neq 0.$$

Per tant, el teorema de la funció implícita assegura que l'equació f(x, y, z) = 0 defineix una funció implícita z = g(x, y) (de classe C^{∞}) en un entorn del punt (0, 0, 0). Concretament,

existeixen un entorn obert $W \subset \mathbb{R}^3$ de (0,0,0), un entorn obert $V \subset \mathbb{R}^2$ de (0,0) i una funció $g:V \to \mathbb{R}$ de classe C^{∞} tals que

$$\{(x, y, z) \in W : f(x, y, z) = 0\} = \{(x, y, g(x, y)) : (x, y) \in V\}.$$

En particular, com que $(0,0,0) \in W$ i f(0,0,0) = 0, tenim que g(0,0) = 0.

(c) Si g té un extrem relatiu en (0,0) llavors (0,0) ha de ser un punt crític de g. Calculem doncs les derivades parcials $g_x(0,0) = \frac{\partial g}{\partial x}(0,0)$ i $g_y(0,0) = \frac{\partial g}{\partial y}(0,0)$. Per fer això utilizem que f(x,y,g(x,y)) = 0, és a dir,

(1)
$$\sin(ax + by + g(x, y)) + e^{g(x,y)} + 2y + x^2 + 3y^2 = 1$$
, per a tot $(x, y) \in V$.

Si derivem respecte x la identitat (1) obtenim que, per a tot $(x,y) \in V$, es compleix

(2)
$$(a + g_x(x,y))\cos(ax + by + g(x,y)) + g_x(x,y)e^{g(x,y)} + 2x = 0.$$

Si derivem respecte y la identitat (1) obtenim que, per a tot $(x,y) \in V$, es compleix

(3)
$$(b + g_y(x, y))\cos(ax + by + g(x, y)) + g_y(x, y)e^{g(x,y)} + 2 + 6y = 0.$$

Avaluant (2) i (3) en (x,y) = (0,0) i tenint en compte que g(0,0) = 0 obtenim que

$$a + 2g_x(0,0) = 0$$
 i $b + 2g_y(0,0) + 2 = 0$, és a dir, $g_x(0,0) = -\frac{a}{2}$ i $g_y(0,0) = -\frac{b+2}{2}$.

En conseqüència, si g té un extrem relatiu en (0,0) aleshores a=0 i b=-2. Per tant, a partir d'ara suposarem que a=0 i b=-2, i en aquest cas hem de determinar si (0,0) és un extrem relatiu de g. Per fer això calculem la matriu hessiana de g en (0,0):

$$Hg(0,0) = \begin{pmatrix} \frac{\partial^2 g}{\partial x^2}(0,0) & \frac{\partial^2 g}{\partial x \partial y}(0,0) \\ \frac{\partial^2 g}{\partial x \partial y}(0,0) & \frac{\partial^2 g}{\partial y^2}(0,0) \end{pmatrix} = \begin{pmatrix} g_{xx}(0,0) & g_{xy}(0,0) \\ g_{xy}(0,0) & g_{yy}(0,0) \end{pmatrix}$$

Així doncs, hem de calcular les derivades parcials de segon ordre de g en (0,0). Derivant la identitat (2) respecte x i respecte de y, i la identitat (3) respecte y en el punt (0,0) (amb a = 0 i b = -2), i tenint en compte que $g(0,0) = g_x(0,0) = g_y(0,0) = 0$, obtenim

$$2g_{xx}(0,0) + 2 = 0,$$
 $2g_{xy}(0,0) = 0$ i $2g_{yy}(0,0) + 6 = 0,$

és a dir, $g_{xx}(0,0) = -1$, $g_{xy}(0,0) = 0$ i $g_{yy}(0,0) = -3$. Per tant, $Hg(0,0) = \begin{pmatrix} -1 & 0 \\ 0 & -3 \end{pmatrix}$ és definida negativa, ja que tots els seus valors propis són estrictament negatius. I en conseqüència (0,0) és un màxim relatiu de g, quan g = 0 i g = -2.

En conclusió, g té un extrem relatiu en (0,0) si i només si a=0 i b=-2, i es tracta d'un màxim relatiu.

2. Considerem la funció f(x,y) = xy + 2x i el conjunt

$$K = \{(x, y) \in \mathbb{R}^2 : 4x^2 + y^2 \le 24, y \le 0\}.$$

- (a) Justifiqueu que f assoleix els seus valors màxim i mínim sobre K.
- (b) Calculeu els punts de K on s'assoleixen els valors anteriors.

Solució:

- (a) Observeu que $f: \mathbb{R}^2 \to \mathbb{R}$ és una funció contínua (perquè és un polinomi!). A més a més, K és un subconjunt compacte de \mathbb{R}^2 ja que és tancat i acotat:
 - K és tancat perquè és la l'antiimatge d'un subconjut tancat de \mathbb{R}^2 per una funció contínua $F: \mathbb{R}^2 \to \mathbb{R}^2$. En efecte, $K = F^{-1}((-\infty, 24] \times (-\infty, 0])$, on $F(x, y) = (4x^2+y^2, y)$, que és contínua perquè les seves funcions components $F_1(x, y) = 4x^2+y^2$ i $F_2(x, y) = y$ ho són (són polinomis!).
 - K és acotat perquè si $(x,y) \in K$ llavors $||(x,y)||^2 = x^2 + y^2 \le 4x^2 + y^2 \le 24$.

En conseqüència, el teorema de Weierstrass assegura que f assoleix els seus valors màxim i mínim sobre K. I els punts de K on s'assoleixen aquests valors són els extrems absoluts de $f_{/K}$.

(b) Volem calcular els extrems absoluts de $f_{/K}$, que existeixen com hem vist en (a). Observeu que $K = K_1 \cup K_2 \cup K_3$, on $K_1 = \{(x,y) \in \mathbb{R}^2 : 4x^2 + y^2 < 24, y < 0\}$, $K_2 = \{(x,0) : -\sqrt{6} \le x \le \sqrt{6}\}$ i $K_3 = \{(x,y) \in \mathbb{R}^2 : 4x^2 + y^2 = 24, y < 0\}$:

El conjunt K_1 és obert perquè és l'antiimatge d'un obert de \mathbb{R}^2 per la funció contínua $F: \mathbb{R}^2 \to \mathbb{R}^2$ considerada en (a). En efecte, $K_1 = F^{-1}((-\infty, 24) \times (-\infty, 0))$. Per tant, si $(x_0, y_0) \in K$ és un extrem absolut de $f_{/K}$ hi ha tres possibilitats:

1) $(x_0, y_0) \in K_1$: Aleshores (x_0, y_0) és un extrem relatiu de f (perquè K_1 és obert) i per tant ha de ser un punt crític de f (perquè f és diferenciable, ja que és un polinomi). Ara els punts crítics de f són les solucions del sistema

$$\begin{cases} 0 = \frac{\partial f}{\partial x}(x, y) = y + 2 \\ 0 = \frac{\partial f}{\partial y}(x, y) = x. \end{cases}$$

Així doncs, (0, -2) és l'únic punt crític de f, i observeu que $(0, -2) \in K_1$. Per tant, en aquest cas $(x_0, y_0) = (0, -2)$.

- 2) $(x_0, y_0) \in K_2$: Aleshores (x_0, y_0) és un extrem absolut de h(x) = f(x, 0) = 2x en l'interval $[-\sqrt{6}, \sqrt{6}]$, que obviament només té dos extrems absoluts: $x = -\sqrt{6}$ (mínim absolut) i $x = \sqrt{6}$ (màxim absolut). Per tant, en aquest cas $(x_0, y_0) = (-\sqrt{6}, 0)$ o bé $(x_0, y_0) = (\sqrt{6}, 0)$
- 3) $(x_0, y_0) \in K_3$: Aleshores (x_0, y_0) és un extrem relatiu de $f_{/K_2}$. I podem aplicar el teorema dels multiplicadors de Lagrange a f i K_3 , ja que $f: \mathbb{R}^2 \to \mathbb{R}$ és una funció de classe C^{∞} (perqué és un polinomi) i K_3 és un arc d'el·lipse. Concretament, $K_3 = g^{-1}(0)$, on $g: \mathbb{R} \times (-\infty, 0) \to \mathbb{R}$ és la funció definida per $g(x, y) = 4x^2 + y^2 24$, que també és de classe C^{∞} (perqué és la restricció d'un polinomi a l'obert $\mathbb{R} \times (-\infty, 0)$) i compleix que

$$\nabla g(x,y) = (8x,2y) \neq (0,0), \quad \text{per a tot } (x,y) \in K_3.$$

 $(\nabla g(x,y) = (0,0)$ només per a (x,y) = (0,0), i $(0,0) \notin K_2$.) Així doncs, pel teorema dels multiplicadors de Lagrange, existeix $\lambda \in \mathbb{R}$ tal que (x_0,y_0) és solució de l'equació vectorial $\nabla f(x,y) = \lambda \nabla g(x,y)$, o equivalentment, del sistema d'equacions escalars

$$\begin{cases} y+2 &= 8\lambda x \\ x &= 2\lambda y \end{cases}$$

Observeu que tota solució del sistema anterior en K_3 compleix que $x \neq 0$. En efecte, si (0, y) és solució d'aquest sistema llavors la primera equació implica que y = -2, però $(0, -2) \notin K_3$. Per tant, podem dividir la primera equació per la segona a fi d'obtenir que

$$\frac{y+2}{x} = \frac{8\lambda x}{2\lambda y} = \frac{4x}{y}$$
, és a dir, $y(y+2) = 4x^2$.

Però, com que busquem les solucions (x, y) que estan en K_3 , tenim que $4x^2 = 24 - y^2$. Per tant, $y(y+2) = 24 - y^2$, és a dir, $y^2 + y - 12 = 0$, que té per solucions

$$y = \frac{-1 \pm \sqrt{1+48}}{2} = \frac{-1 \pm 7}{2} = \begin{cases} 3\\ -4 \end{cases}$$

Com que $(x, y) \in K_3$, ens queda y = -4 i $4x^2 = 24 - y^2 = 8$, és a dir, $(x, y) = (\pm \sqrt{2}, -4)$ és la única solució en K_3 del sistema anterior. Per tant, en aquest cas $(x_0, y_0) = (-\sqrt{2}, -4)$ o bé $(x_0, y_0) = (\sqrt{2}, -4)$

Resumint, els punts candidats a ser extrems absoluts de $f_{/K}$ són (0,2), $(\pm\sqrt{6},0)$ i $(\pm\sqrt{2},-4)$, I entre ells hi ha almenys un màxim absolut de $f_{/K}$ i almenys un mínim absolut de $f_{/K}$. Com que $f(-\sqrt{6},0)=-2\sqrt{6}$, $f(\sqrt{6},0)=2\sqrt{6}$, $f(\sqrt{2},-4)=-2\sqrt{2}$, $f(-\sqrt{2},-4)=2\sqrt{2}$ i f(0,-2)=0, concloem que:

- $2\sqrt{6}$ és el valor màxim de $f_{/K}$, i l'únic punt de K on s'assoleix és $(\sqrt{6},0)$.
- $-2\sqrt{6}$ és el valor mínim de $f_{/K}$, i l'únic punt de K on s'assoleix és $(-\sqrt{6},0)$.