Notas de aula de Álgebra Linear

Programa de Verão 2012 B.6 - Álgebra Linear (turma 2) Gustavo de Lima Prado - glprado@ime.usp.br v1.1

Espaço vetorial

Definição 0.1. Seja X um conjunto não vazio. Uma operação binária sobre X é uma aplicação

$$*: X \times X \to X$$

que, a cada par de elementos $(x,y) \in X \times X$, associa um elemento $x * y \in X$.

Exemplo 0.2. Seja $\mathbb{N} := \{0, 1, 2, 3, \ldots\}$ o conjunto dos números naturais. Então a adição entre números naturais

$$+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

 $(m,n) \mapsto m+n$

é uma operação binária sobre N.

Observação 0.3. Denotaremos $\mathbb{N}^* := \mathbb{N} \setminus \{0\}$.

Definição 0.4. Um conjunto não vazio \mathbb{K} é um **corpo** se pudermos definir duas operações binárias sobre \mathbb{K} , + e ·, satisfazendo:

(a1)
$$\alpha + \beta = \beta + \alpha, \ \alpha, \beta \in \mathbb{K}$$

(a2)
$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma, \ \alpha, \beta, \gamma \in \mathbb{K}$$

(a3) existe
$$0 \in \mathbb{K}$$
 tal que $\alpha + 0 = \alpha$, $\alpha \in \mathbb{K}$

(a4) para todo $\alpha \in \mathbb{K}$, existe $-\alpha \in \mathbb{K}$ tal que $\alpha + (-\alpha) = 0$

$$(m1) \ \alpha.\beta = \beta.\alpha, \ \alpha, \beta \in \mathbb{K}$$

$$(m2) \alpha.(\beta.\gamma) = (\alpha.\beta).\gamma, \alpha, \beta, \gamma \in \mathbb{K}$$

(m3) existe
$$1 \in \mathbb{K}$$
 tal que $\alpha.1 = \alpha$, $\alpha \in \mathbb{K}$

(m4) para todo $\alpha \in \mathbb{K} \setminus \{0\}$, existe $\alpha^{-1} \in \mathbb{K}$ tal que $\alpha.\alpha^{-1} = 1$

(d)
$$(\alpha + \beta).\gamma = \alpha.\gamma + \beta.\gamma, \ \alpha, \beta, \gamma \in \mathbb{K}$$

Exemplo 0.5. Seja \mathbb{R} o conjunto dos números reais. Então \mathbb{R} com a adição entre números reais, +, e a multiplicação entre números reais, ·, é um corpo. Ainda, o conjunto dos números complexos, $\mathbb{C} := \{a + bi : a, b \in \mathbb{R}\}$, com a adição e a multiplicação entre números complexos também é um corpo.

Entretanto \mathbb{N} com a adição entre números naturais, +, e a multiplicação entre números naturais, ·, não é um corpo. De fato, já não vale (a4) (na verdade, não valem (a4) e (m4)).

Mostre que o conjunto dos números inteiros \mathbb{Z} com a adição e a multiplicação entre números inteiros não é um corpo.

Observação 0.6. De agora em diante, procuraremos denotar a multiplicação entre dois elementos $\alpha, \beta \in \mathbb{K}$, \mathbb{K} um corpo, simplesmente por $\alpha\beta := \alpha.\beta$. Ainda, observamos que, neste texto, os elementos de um corpo são chamados de escalares.

Definição 0.7. Um conjunto não vazio V é um espaço vetorial sobre (um corpo) \mathbb{K} se pudermos definir uma operação binária, +, e uma multiplicação por escalar, \cdot , sobre V:

$$\begin{array}{cccccc} \bullet & : & V \times V & \to & V \\ & (u,v) & \mapsto & u + v \\ & : & \mathbb{K} \times V & \to & V \\ & (\alpha,v) & \mapsto & \alpha.v \end{array}$$

satisfazendo:

(A1)
$$u+v = v+u, u, v \in V$$

$$\textit{(A2)}\ u \textbf{+} (v \textbf{+} w) = (u \textbf{+} v) \textbf{+} w,\ u, v, w \in V$$

(A3) existe
$$\overrightarrow{0} \in V$$
 tal que $u + \overrightarrow{0} = u$, $u \in V$

(A4) para todo
$$u \in V$$
, existe $-u \in V$ tal que $u+(-u) = 0$

(M1)
$$\alpha.(\beta.u) = (\alpha\beta).u, \ \alpha, \beta \in \mathbb{K}, \ u \in V$$

(M2)
$$1.u = u, u \in V$$
, onde $1 \notin o$ elemento dado por (m3)

(D1)
$$\alpha.(u+v) = \alpha.u+\alpha.v, \ \alpha \in \mathbb{K}, \ u,v \in V$$

(D2)
$$(\alpha + \beta).u = \alpha.u + \beta.u, \ \alpha, \beta \in \mathbb{K}, \ u \in V$$

Observamos que os elementos de um espaço vetorial são chamados de vetores e, em particular, $\overrightarrow{0}$ é chamado de o vetor nulo de V. Ainda, um espaço vetorial sobre $\mathbb K$ também é chamado de um $\mathbb K$ -espaço vetorial.

Vejamos agora alguns exemplos de espaços vetoriais.

Exemplo 0.8. Todo corpo \mathbb{K} é \mathbb{K} -espaço vetorial.

Com efeito, seja \mathbb{K} um corpo. Então temos definidas duas operações binárias, + e ·, sobre \mathbb{K} , satisfazendo as propriedades mencionadas na definição de corpo. Daí, pelas propriedades de (a1) até (a4), verificamos que + satisfaz as propriedades desde (A1) até (A4). Agora, por (m2), notamos que · satisfaz (M1) e, por (m1) e (m3), vemos que 1.u = u.1 = u, para todo $u \in \mathbb{K}$, donde · satisfaz (M2). Verifique agora que + e · satisfazem (D1) e (D2).

Exemplo 0.9. Sejam \mathbb{K} um corpo e $n \in \mathbb{N}^* = \{1, 2, 3, \ldots\}$. Então $\mathbb{K}^n := \{(\alpha_1, \ldots, \alpha_n) \in \mathbb{K} \times \cdots \times \mathbb{K} : \alpha_i \in \mathbb{K}, i = 1, \ldots, n\}$ é um espaço vetorial sobre \mathbb{K} com a adição entre vetores e a multiplicação por escalar feitas componente a componente, isto é:

$$+: \mathbb{K}^{n} \times \mathbb{K}^{n} \to \mathbb{K}^{n}$$

$$((a_{1}, \dots, a_{n}), (b_{1}, \dots, b_{n})) \to (a_{1}, \dots, a_{n}) + (b_{1}, \dots, b_{n}) :=$$

$$(a_{1} + b_{1}, \dots, a_{n} + b_{n})$$

$$\cdot: \mathbb{K} \times \mathbb{K}^{n} \to \mathbb{K}^{n}$$

$$(\alpha, (b_{1}, \dots, b_{n})) \to \alpha.(b_{1}, \dots, b_{n}) :=$$

$$(\alpha b_{1}, \dots, \alpha b_{n})$$

Verifique este fato, ou seja, mostre que + e · satisfazem as propriedades mencionadas na definição de espaço vetorial.

Exemplo 0.10. \mathbb{C} é um \mathbb{R} -espaço vetorial com + e · sendo tais que:

$$(a+bi)+(c+di) := (a+c)+(b+d)i,$$

$$\alpha.(c+di) := (\alpha c)+(\alpha d)i,$$

 $a, b, c, d, \alpha \in \mathbb{R}$. Verifique isto.

Exemplo 0.11. Seja \mathbb{K} um corpo. Para todo $m \in \mathbb{N}^*$, temos que o conjunto $\mathcal{P}_m(\mathbb{K}) := \{p(x) = a_n x^n + \dots + a_1 x + a_0 : a_0, \dots, a_n \in \mathbb{K}, 0 \leqslant n \leqslant m\}$ dos polinômios de grau menor ou igual a m (mais o nulo) com coeficientes em \mathbb{K} é um espaço vetorial sobre \mathbb{K} com as operações usuais de adição entre polinômios e multiplicação por escalar.

Em particular, $(a_3x^3 + a_2x^2 + a_1x + a_0) + (b_1x + b_0) = (a_3 + 0)x^3 + (a_2 + 0)x^2 + (a_1 + b_1)x + (a_0 + b_0) e \alpha.(b_1x + b_0) = (\alpha b_1)x + (\alpha b_0).$

Ainda, com estas mesmas operações, o conjunto $\mathcal{P}(\mathbb{K}) := \{p(x) = a_n x^n + \cdots + a_1 x + a_0 : a_0, \ldots, a_n \in \mathbb{K}, n \geq 0\}$ dos polinômios com coeficientes em \mathbb{K} também é um espaço vetorial sobre \mathbb{K} .

Exemplo 0.12. Sejam X um conjunto não vazio $e \mathbb{K}$ um corpo. Então o conjunto das funções de X em \mathbb{K} , $\mathcal{F}(X,\mathbb{K})$, \acute{e} um \mathbb{K} -espaço vetorial com + $e \cdot sendo tais que:$

$$(f+g)(x) := f(x) + g(x),$$
$$(\alpha.f)(x) := \alpha f(x),$$

 $\alpha \in \mathbb{R}$, $f, g \in \mathcal{F}(X, \mathbb{K})$. Verifique este fato, isto é, veja que + e · satisfazem as propriedades mencionadas na definição de espaço vetorial.

Exemplo 0.13. Seja \mathbb{K} um corpo. O conjunto das matrizes $m \times n$ com coeficientes em \mathbb{K} , $\mathbb{M}_{m \times n}(\mathbb{K})$ é um espaço vetorial sobre \mathbb{K} com a adição

entre matrizes e a multiplicação por escalar feitas entrada a entrada. Em particular,

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \end{pmatrix} \in \mathbb{M}_{2 \times 3}(\mathbb{K}),$$

$$\alpha \cdot \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{pmatrix} = \begin{pmatrix} a_{b_{11}} & a_{b_{12}} & a_{b_{13}} \\ a_{b_{21}} & a_{b_{22}} & a_{b_{23}} \end{pmatrix} \in \mathbb{M}_{2 \times 3}(\mathbb{K}).$$

A fim de termos mais com o que trabalhar, vejamos agora algumas propriedades de espaços vetoriais.

Proposição 0.14. Seja V um espaço vetorial sobre \mathbb{K} . Então o vetor nulo de V é único.

Com efeito, suponhamos que existe $\tilde{0} \in V$ tal que $u + \tilde{0} = u$, para todo $u \in V$. Então, em particular, tomando $u = \tilde{0}$, temos que $\tilde{0} = \tilde{0} + \tilde{0} \stackrel{(A1)}{=} \tilde{0} + \tilde{0} \stackrel{(A3)}{=} \tilde{0}$.

Proposição 0.15. Sejam V um espaço vetorial sobre \mathbb{K} e $u \in V$. Então o vetor oposto de $u, -u \in V$, é único.

De fato, suponhamos que existe
$$\tilde{u} \in V$$
 tal que $u + \tilde{u} = \vec{0}$. Então $-u \stackrel{(A3)}{=} (-u) + \vec{0} = (-u) + (u + \tilde{u}) \stackrel{(A2)}{=} ((-u) + u) + \tilde{u} \stackrel{(A1,A4)}{=} \vec{0} + \tilde{u} \stackrel{(A1,A3)}{=} \tilde{u}$.

Proposição 0.16. Sejam V um espaço vetorial sobre \mathbb{K} , $\alpha \in \mathbb{K}$ e $u \in V$. Então $0.u = \overrightarrow{0}$ e $\alpha.\overrightarrow{0} = \overrightarrow{0}$. Ainda, se $\alpha.u = \overrightarrow{0}$, então $\alpha = 0$ ou $u = \overrightarrow{0}$.

Mostremos que $0.u = \overrightarrow{0}$. De fato, por (A4), temos que existe $-0.u \in V$ tal que $0.u + (-0.u) = \overrightarrow{0}$. Daí, $\overrightarrow{0} = 0.u + (-0.u) = (0 + 0).u + (-0.u) = (0 + 0).u + (-0.u) = (0.u + 0.u) + (-0.u) = 0.u + (0.u + (-0.u)) = 0.u + \overrightarrow{0} = 0.u + \overrightarrow{0} = 0.u$. Mostremos agora que $\alpha.\overrightarrow{0} = \overrightarrow{0}$. Com efeito, $\alpha.\overrightarrow{0} = \alpha.\overrightarrow{0} + \overrightarrow{0} = \alpha.\overrightarrow{0} + (\alpha.\overrightarrow{0}) + (-\alpha.\overrightarrow{0}) = (\alpha.\overrightarrow{0} + \alpha.\overrightarrow{0}) + (\alpha.\overrightarrow{0} + \alpha.\overrightarrow{0}) + (\alpha.\overrightarrow{0} + \alpha.\overrightarrow{0}) = (\alpha$

Finalmente, seja $\alpha.u = \overrightarrow{0}$. Suponhamos que $\alpha \neq 0$. Então, por (m4), existe α^{-1} tal que $\alpha\alpha^{-1} = 1$. Daí, $\overrightarrow{0} = \alpha^{-1}$. $\overrightarrow{0} = \alpha^{-1}.(\alpha.u) \stackrel{(M1)}{=} (\alpha^{-1}\alpha).u \stackrel{(m1,m4)}{=} 1.u \stackrel{(M2)}{=} u$.

Proposição 0.17. Sejam V um espaço vetorial sobre \mathbb{K} , $\alpha \in \mathbb{K}$ e $u, v, w \in V$. Então

1.
$$(-\alpha).u = \alpha.(-u) = -(\alpha.u)$$

2.
$$-(-u) = u$$

3.
$$u + v = u + w \Rightarrow v = w$$

Exercício.

Observação 0.18. Denotaremos u - v := u + (-v). Ainda, muitas vezes, denotaremos $\alpha u := \alpha.u$, isto é, também omitiremos o ponto da multiplicação por escalar.

Base

Definição 0.19. Seja V um espaço vetorial sobre \mathbb{K} .

- 1. um vetor $v \in V$ é uma combinação linear (finita) de vetores $v_1, \ldots, v_n \in V$ se existem escalares $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ tais que $v = \alpha_1 v_1 + \cdots + \alpha_n v_n$.
- 2. Seja $\mathcal{G} \subset V$ um subconjunto qualquer de V. Dizemos que \mathcal{G} gera V (ou que \mathcal{G} é um conjunto gerador de V) se todo vetor de V for uma combinação linear de elementos de \mathcal{G} .

Observação 0.20. Destaquemos que uma combinação linear sempre é feita com uma quantidade finita de vetores.

Ainda, dizemos que uma combinação linear $\alpha_1 v_1 + \cdots + \alpha_n v_n$ é trivial se $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0 \in \mathbb{K}$.

Observação 0.21. Se V é um \mathbb{K} -espaço vetorial e $\{v_1, \ldots, v_n\} \subset V$, então o conjunto de todas as combinações lineares de v_1, \ldots, v_n é novamente um \mathbb{K} -espaço vetorial, denotado por $[v_1, \ldots, v_n]$. Note que $[v_1, \ldots, v_n] := \{\alpha_1 v_1 + \cdots + \alpha_n v_n : \alpha_1, \ldots, \alpha_n \in \mathbb{K}\}$.

Para o caso n = 2, se $\gamma \in \mathbb{K}$ e $(\alpha_1 v_1 + \alpha_2 v_2)$, $(\beta_1 v_1 + \beta_2 v_2) \in [v_1, v_2]$ são elementos quaisquer, então, usando as propriedades de V ser \mathbb{K} -espaço vetorial, obtemos que $(\alpha_1 v_1 + \alpha_2 v_2) + (\beta_1 v_1 + \beta_2 v_2) = (\alpha_1 + \beta_1) v_1 + (\alpha_2 + \beta_2) v_2 \in [v_1, v_2]$ e $\gamma(\beta_1 v_1 + \beta_2 v_2) = (\gamma \beta_1) v_1 + (\gamma \beta_2) v_2 \in [v_1, v_2]$. Convença-se de que, com esta adição e com esta multiplicação por escalar, $[v_1, v_2]$ é um \mathbb{K} -espaço vetorial.

Vejamos alguns exemplos.

Exemplo 0.22. Sejam \mathbb{K} um corpo e $n \in \mathbb{N}^*$. Então o conjunto das n-uplas $\{(1,0,\ldots,0),(0,1,0,\ldots,0),\ldots,(0,\ldots,0,1)\}\subset \mathbb{K}^n$ é um conjunto gerador de \mathbb{K}^n (sobre \mathbb{K}). Com efeito, seja $(\alpha_1,\alpha_2,\ldots,\alpha_n)\in \mathbb{K}^n$ é um elemento qualquer. Como $(\alpha_1,\alpha_2,\ldots,\alpha_n)=\alpha_1.(1,0,\ldots,0)+\cdots+\alpha_n.(0,\ldots,0,1)$, segue que um elemento qualquer de \mathbb{K}^n é uma combinação linear de elementos do conjunto acima.

Exemplo 0.23. Consideremos \mathbb{R}^2 como sendo espaço vetorial (sobre \mathbb{R}). Então $\mathcal{C} := \{(1,0),(0,1),(1,1)\} \subset \mathbb{R}^2$ gera \mathbb{R}^2 . De fato, seja $(r,s) \in \mathbb{R}^2$. Como existem $\alpha, \beta, \gamma \in \mathbb{R}$, $\gamma = \frac{s}{2}$, $\beta = \frac{s}{2}$ e $\alpha = r - \frac{s}{2}$, tais que $(r,s) = \alpha(1,0) + \beta(0,1) + \gamma(1,1)$, segue que \mathcal{C} gera \mathbb{R}^2 . Assim, por este exemplo e pelo anterior, vemos que um espaço vetorial (sobre algum corpo) pode admitir diferentes conjuntos geradores.

Exemplo 0.24. $\{1,i\} \subset \mathbb{C}$ é um conjunto gerador de \mathbb{C} (sobre \mathbb{R}).

Exemplo 0.25. $\{1, x, x^2, ..., x^m\} \subset \mathcal{P}_m(\mathbb{K})$ é um conjunto gerador de $\mathcal{P}_m(\mathbb{K})$ (sobre \mathbb{K}) e $\{1, x, x^2, ...\} \subset \mathcal{P}(\mathbb{K})$ é um conjunto gerador de $\mathcal{P}(\mathbb{K})$ (sobre \mathbb{K}).

Exemplo 0.26. $\{(1,0),(0,1)\}\subset \mathbb{C}^2$ não é um conjunto gerador de \mathbb{C}^2 sobre \mathbb{R} , pois existe $(i,0)\in \mathbb{C}^2$ tal que $(i,0)\neq \alpha(1,0)+\beta(0,1)$, para todo

 $\alpha, \beta \in \mathbb{R}$. Aqui vemos que a estrutura do espaço vetorial (o conjunto não vazio, o corpo e as operações satisfazendo as propriedades) é essencial na hora de dizermos se um conjunto é ou não gerador dele. Verificamos que $\{(1,0),(0,1)\}$ não é gerador. Precisamos então de mais "gente". Por exemplo, $\{(1,0),(0,1),(i,0),(0,i)\}$ já é um conjunto gerador de \mathbb{C}^2 sobre \mathbb{R} . Verifique.

Proposição 0.27. Seja V um \mathbb{K} -espaço vetorial. Se $\mathcal{B} \subset \mathcal{C} \subset V$ e \mathcal{B} é um conjunto gerador de V, então \mathcal{C} também o é.

De fato, seja $u \in V$. Como \mathcal{B} gera V, então existem $\alpha_i \in \mathbb{K}$, $u_i \in \mathcal{B}$, com i = 1, ..., m, tais que $u = \alpha_1 u_1 + \cdots + \alpha_m u_m$. Mas $\mathcal{B} \subset \mathcal{C}$. Logo, $u_i \in \mathcal{C}$, para todo i = 1, ..., m. Portanto, \mathcal{C} gera V.

Observação 0.28. Inicialmente, consideremos o espaço vetorial unitário $\{\vec{0}\}\$ (defina operações, + e ·, neste conjunto e convença-se de que ele é um espaço vetorial (sobre qualquer corpo)). Feito isto, temos que conjunto $\{\vec{0}\}\subset\{\vec{0}\}\$ gera o espaço vetorial $\{\vec{0}\}\$, pois sempre é possível escrevermos a seguinte combinação linear: $\vec{0}=0$. $\vec{0}$.

De um modo mais geral, se V é um espaço vetorial sobre \mathbb{K} , então o conjunto $V \subset V$ sempre é um conjunto gerador do espaço vetorial V. De fato, seja $v \in V$ um vetor qualquer. Desde que, por (M2), v = 1.v, segue que v é uma combinação linear de elementos de V (só precisamos usar o próprio vetor). Portanto, V sempre gera V. Será que existe $\mathcal{G} \subset V$ tal que $\mathcal{G} \neq V$ e \mathcal{G} gera V?

Definição 0.29. Sejam V um \mathbb{K} -espaço vetorial e $\mathcal{B} \subset V$ um subconjunto qualquer. Dizemos que \mathcal{B} é **linearmente independente** (LI) se toda combinação linear de vetores de \mathcal{B} resultando no vetor nulo for tal que os escalares já sejam todos nulos, isto é, se $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$, com $\alpha_i \in \mathbb{K}$, $v_i \in \mathcal{B}$, implicar que $\alpha_1 = \cdots = \alpha_n = 0$. E dizemos que \mathcal{B} é **linearmente dependente** (LD) se não for LI.

Observação 0.30. Explicitamente, dizemos que $\mathcal{B} \subset V$, V um \mathbb{K} -espaço vetorial, é LD quando o vetor nulo for uma combinação linear não trivial de elementos de \mathcal{B} .

Observação 0.31. Todo conjunto contendo o vetor nulo é LD. Por quê? Sejam V um espaço vetorial (sobre algum corpo) e $v \in V$ um vetor não nulo. Então $\{v\}$ é LI. Por quê?

Exemplo 0.32. Notemos que se consideramos \mathbb{C} como \mathbb{C} -espaço vetorial obtemos que $\{1,i\} \subset \mathbb{C}$ é LD e se consideramos \mathbb{C} como \mathbb{R} -espaço vetorial segue que $\{1,i\} \subset \mathbb{C}$ é LI. Aqui verificamos que a estrutura do espaço vetorial (o conjunto não vazio, o corpo e as operações satisfazendo as propriedades) é crucial no momento de dizermos se um conjunto é ou não LI.

Exemplo 0.33. $\{\operatorname{sen} x, \cos x\}$ subconjunto do \mathbb{R} -espaço vetorial das funções contínuas de $[0, 2\pi]$ em \mathbb{R} , $\mathcal{C}([0, 2\pi], \mathbb{R})$, é LI. De fato, sejam $\alpha, \beta \in \mathbb{R}$ tais que $\alpha \operatorname{sen} x + \beta \cos x = 0$. Mas esta igualdade deve valer para todo o domínio das funções. Logo, tomando ora x = 0, ora $x = \pi/2$, obtemos que $\beta = 0 = \alpha$.

Proposição 0.34. Seja V um \mathbb{K} -espaço vetorial. Se $\mathcal{B} \subset \mathcal{C} \subset V$ e \mathcal{C} é um conjunto LI, então \mathcal{B} também o é.

Com efeito, sejam $\alpha_i \in \mathbb{K}$, $u_i \in \mathcal{B}$, com i = 1, ..., m, tais que $\alpha_1 u_1 + \cdots + \alpha_m u_m = \overrightarrow{0}$. Mas $\mathcal{B} \subset \mathcal{C}$. Logo, $u_i \in \mathcal{C}$, para todo i = 1, ..., m. Como \mathcal{C} é LI, segue que $\alpha_1 = \cdots = \alpha_m = 0 \in \mathbb{K}$. Portanto, \mathcal{B} é LI.

Definição 0.35. Seja V um espaço vetorial (sobre algum corpo). Dizemos que um subconjunto $\mathcal{B} \subset V$ é uma base de V se \mathcal{B} for um conjunto gerador de V e LI.

Retomemos alguns exemplos.

Exemplo 0.36. Sejam \mathbb{K} um corpo e $n \in \mathbb{N}^*$. Então o conjunto das n-uplas $\mathcal{B}_C := \{(1,0,\ldots,0), (0,1,0,\ldots,0),\ldots, (0,\ldots,0,1)\} \subset \mathbb{K}^n$ é uma base de \mathbb{K}^n (sobre \mathbb{K}), chamada de base canônica de \mathbb{K}^n .

Exemplo 0.37. $\{(1,2),(3,1)\}\subset\mathbb{R}^2$ é uma base de \mathbb{R}^2 (sobre \mathbb{R}). De fato, mostremos inicialmente que $\mathcal{A}:=\{(1,2),(3,1)\}$ gera \mathbb{R}^2 . Seja $(r,s)\in\mathbb{R}^2$ um elemento qualquer. Escrevendo (r,s)=x(1,2)+y(3,1), com $x,y\in\mathbb{R}$, e resolvendo o sistema (em x e y), obtemos que $x=\frac{3s-r}{5}$ e $y=\frac{2r-s}{5}$ são escalares tais que (r,s) é combinação linear de vetores de \mathcal{A} . Vejamos agora que \mathcal{A} é LI. Escrevendo $(0,0)=\alpha(1,2)+\beta(3,1)$, com $\alpha,\beta\in\mathbb{R}$, segue que $\alpha+3\beta=0$ e $2\alpha+\beta=0$, donde $\alpha=-3\beta$ e $-5\beta=0$. Logo, devemos ter $\alpha=\beta=0$. Portanto, \mathcal{A} é base. Notemos que, pelo exemplo anterior, $\mathcal{B}_C=\{(1,0),(0,1)\}$ também é base de \mathbb{R}^2 . Logo, um espaço vetorial pode ter mais de uma base.

Exemplo 0.38. $\{1,i\} \subset \mathbb{C}$ é uma base de \mathbb{C} (considerado como \mathbb{R} -espaço vetorial).

Exemplo 0.39. $\{1, x, x^2, ..., x^m\}$ é uma base de $\mathcal{P}_m(\mathbb{K})$ e $\{1, x, x^2, ...\}$ é uma base de $\mathcal{P}(\mathbb{K})$, chamadas de bases canônicas respectivamente de $\mathcal{P}_m(\mathbb{K})$ e $\mathcal{P}(\mathbb{K})$. Verifique que $\{1, x, x^2 + 1\} \subset \mathcal{P}_2(\mathbb{K})$ também é uma base de $\mathcal{P}_2(\mathbb{K})$.

Espaço vetorial finitamente gerado

Definição 0.40. Dizemos que um espaço vetorial (sobre algum corpo) é finitamente gerado se admitir um conjunto gerador finito.

Proposição 0.41. Seja V um \mathbb{K} -espaço vetorial finitamente gerado por um conjunto $\{v_1, \ldots, v_m\} \subset V$. Então todo subconjunto LI de V tem no máximo m elementos.

Seja $\mathcal{A} := \{u_1, \ldots, u_n\} \subset V$, com n > m. Mostremos que \mathcal{A} é LD. Seja $1 \leq j \leq n$. Então $u_j = \alpha_{1j}v_1 + \cdots + \alpha_{mj}v_m$ (*), para algum $\alpha_{1j}, \ldots, \alpha_{mj} \in \mathbb{K}$, pois $\{v_1, \ldots, v_m\}$ é gerador. Consideremos uma combinação linear qualquer de vetores de \mathcal{A} , $\lambda_1 u_1 + \cdots + \lambda_n u_n$, com $\lambda_i \in \mathbb{K}$, para todo i = 1

 $1, \ldots, n$. Então $\lambda_1 u_1 + \cdots + \lambda_n u_n = \sum_{j=1}^n \lambda_j u_j \stackrel{\text{(*)}}{=} \sum_{j=1}^n \lambda_j \left(\sum_{i=1}^m \alpha_{ij} v_i\right) \stackrel{\text{(D1)}}{=} \sum_{j=1}^n \sum_{i=1}^m \lambda_j (\alpha_{ij} v_i) \stackrel{\text{(M1)}}{=} \sum_{j=1}^n \sum_{i=1}^m (\lambda_j \alpha_{ij}) v_i = \sum_{i=1}^m \left(\sum_{j=1}^n (\lambda_j \alpha_{ij})\right) v_i \stackrel{\text{(**)}}{=} \lambda_j (\alpha_{ij} v_i) \stackrel{\text{(M1)}}{=} \sum_{j=1}^m \sum_{i=1}^m (\lambda_j \alpha_{ij}) v_i = \sum_{i=1}^m \left(\sum_{j=1}^n (\lambda_j \alpha_{ij})\right) v_i \stackrel{\text{(**)}}{=} \lambda_j (\alpha_{ij} v_i) \stackrel{\text{(M1)}}{=} \sum_{j=1}^m \sum_{i=1}^m (\lambda_j \alpha_{ij}) v_i = \sum_{i=1}^m \left(\sum_{j=1}^n (\lambda_j \alpha_{ij})\right) v_i \stackrel{\text{(M1)}}{=} \lambda_j (\alpha_{ij} v_i) \stackrel{\text{(M1)}}{=} \sum_{j=1}^m \sum_{i=1}^m (\lambda_j \alpha_{ij}) v_i = \sum_{i=1}^m \left(\sum_{j=1}^n (\lambda_j \alpha_{ij})\right) v_i \stackrel{\text{(M1)}}{=} \sum_{i=1}^m \sum_{j=1}^m (\lambda_j \alpha_{ij}) v_i = \sum_{i=1}^m \left(\sum_{j=1}^n (\lambda_j \alpha_{ij})\right) v_i \stackrel{\text{(M2)}}{=} \sum_{i=1}^m \left(\sum_{j=1}^n (\lambda_j \alpha_{ij})\right) v_i \stackrel{\text{(M3)}}{=} \sum_{i=1}^m \left(\sum_{j=1}^n (\lambda_j \alpha_{ij})\right) v_i$

$$\begin{cases} \sum_{j=1}^{n} (\lambda_j \alpha_{1j}) &= 0\\ \sum_{j=1}^{n} (\lambda_j \alpha_{2j}) &= 0\\ &\vdots\\ \sum_{j=1}^{n} (\lambda_j \alpha_{mj}) &= 0 \end{cases}$$

Como este sistema homogêneo tem mais incógnitas $\lambda_1, \ldots, \lambda_n$ do que equações (pois n > m), segue que ele admite uma solução não trivial, ou seja, existem $\gamma_1, \ldots, \gamma_n \in \mathbb{K}$ não todos nulos tais que $\sum_{j=1}^n (\gamma_j \alpha_{ij}) = 0$, para todo $i = 1, \ldots, m$. Logo, tomando $\lambda_j = \gamma_j$ em (**), obtemos $\gamma_1 u_1 + \cdots + \gamma_n u_n = 0$, com $\gamma_1, \ldots, \gamma_n \in \mathbb{K}$ não todos nulos. Logo, \mathcal{A} é LD.

Exercício 0.42. Usando as propriedades de espaço vetorial, verifique que $\sum_{j=1}^{3} \left(\sum_{i=1}^{2} (\lambda_{j} \alpha_{ij}) v_{i} \right) = \sum_{i=1}^{2} \left(\sum_{j=1}^{3} (\lambda_{j} \alpha_{ij}) \right) v_{i}.$

Corolário 0.43. Seja $V \neq \{\overrightarrow{0}\}$ um \mathbb{K} -espaço vetorial finitamente gerado. Então duas bases quaisquer de V têm o mesmo número de elementos.

De fato, sejam \mathcal{C}, \mathcal{D} duas bases de V. Desde que V é finitamente gerado e \mathcal{C} e \mathcal{D} são LI, então, pela proposição anterior, \mathcal{C} e \mathcal{D} são conjuntos finitos (digamos que com c > 0 e d > 0 elementos respectivamente). Mas \mathcal{C} é um conjunto LI num espaço vetorial finitamente gerado por \mathcal{D} , donde $c \leq d$. Analogamente, \mathcal{D} é um conjunto LI num espaço vetorial finitamente gerado \mathcal{C} , donde $d \leq c$. Portanto, c = d.

Definição 0.44. Seja V um \mathbb{K} -espaço vetorial. Se V for finitamente gerado, chamamos o número de elementos de uma base de V simplesmente de dimensão de V (sobre \mathbb{K}). Caso contrário, isto é, se V não for finitamente gerado, dizemos que a dimensão de V (sobre \mathbb{K}) é infinita. Notação: $\dim_{\mathbb{K}} V$.

Observação 0.45. Usando a convenção de que o conjunto vazio \emptyset é uma base para o espaço vetorial unitário $U := \{\vec{0}\}$, temos que $\dim_{\mathbb{K}} U = 0$. De fato, os únicos subconjuntos de U são \emptyset e $\{\vec{0}\}$. Como $\{\vec{0}\} \subset U$ gera U, mas é LD, segue que não pode ser base de U. Daí, a única base de U é \emptyset e faz sentido escrevermos $\dim_{\mathbb{K}} \{\vec{0}\} = 0$ (que é o número de elementos de uma base qualquer de $\{\vec{0}\}$). Na verdade, $\dim_{\mathbb{K}} V = 0$ se, e somente se, $V = \{\vec{0}\}$.

Exemplo 0.46.

```
\dim_{\mathbb{K}} \mathbb{K} = 1,
\dim_{\mathbb{C}} \mathbb{C} = 1,
\dim_{\mathbb{K}} \mathbb{C} = 2,
\dim_{\mathbb{K}} \mathbb{K}^{n} = n,
\dim_{\mathbb{K}} \mathcal{P}_{m}(\mathbb{K}) = m + 1, \ pois \ \{1, x, \dots, x^{m}\} \subset \mathcal{P}_{m}(\mathbb{K}) \ \acute{e} \ base,
\dim_{\mathbb{K}} \mathcal{P}(\mathbb{K}) = \infty, \ pois \ \{1, x, \dots\} \subset \mathcal{P}(\mathbb{K}) \ \acute{e} \ base,
\dim_{\mathbb{K}} \mathbb{M}_{m \times n}(\mathbb{K}) = m.n. \ Por \ exemplo, \ para \ o \ caso \ m = n = 2, \ \{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \} \subset \mathbb{M}_{2 \times 2}(\mathbb{K}) \ \acute{e} \ base, \ chamada \ de \ base \ canônica \ de \ \mathbb{M}_{2 \times 2}(\mathbb{K}),
donde \ \dim_{\mathbb{K}} \mathbb{M}_{2 \times 2}(\mathbb{K}) = 4 = 2.2. \ A \ partir \ deste \ exemplo, \ que \ subconjunto \ de \ \mathbb{M}_{3 \times 2}(\mathbb{K}) \ seria \ a \ base \ canônica \ de \ \mathbb{M}_{3 \times 2}(\mathbb{K})?
```

Corolário 0.47. Seja V um \mathbb{K} -espaço vetorial, com $\dim_{\mathbb{K}} V = n > 0$. Então

- 1. todo conjunto de vetores de V com mais do que n vetores é LD.
- todo conjunto de vetores de V com menos do que n vetores n\u00e3o gera V.

Exercício (use a proposição anterior).

Proposição 0.48. Seja V um \mathbb{K} -espaço vetorial. Seja $\mathcal{C} \subset V$, \mathcal{C} LI. Se existe $v \in V$ que não é combinação linear de elementos de \mathcal{C} , então $\mathcal{C} \cup \{v\}$ é LI.

De fato, seja $v \in V$ qualquer. Seja $c := \alpha_1 v_1 + \dots + \alpha_n v_n + \beta v$ uma combinação linear qualquer de vetores de $\mathcal{C} \cup \{v\}$. Suponhamos que c é o vetor nulo. Se $\beta \neq 0$, então $v = \frac{\alpha_1}{-\beta} v_1 + \dots + \frac{\alpha_n}{-\beta} v_n$. Logo, se v não é combinação linear de elementos de \mathcal{C} , então β deve ser 0. Daí, $\alpha_1 v_1 + \dots + \alpha_n v_n = 0$ e portanto, como \mathcal{C} é LI e $v_1, \dots, v_n \in \mathcal{C}$, temos que $\alpha_1 = \dots = \alpha_n = 0$. Assim $\mathcal{C} \cup \{v\}$ é LI.

Teorema 0.49. Todo espaço vetorial finitamente gerado possui uma base.

De fato, seja V um \mathbb{K} -espaço vetorial finitamente gerado. Suponhamos que V é gerado por um conjunto com n>0 elementos. Então existe $v_1\in V$, $v_1\neq \overrightarrow{0}$. Temos que $\{v_1\}$ é LI. Se $\{v_1\}$ gera V, então $\{v_1\}$ é base de V e acabou. Caso contrário, então existe $v_2\in V$ tal que v_2 não é combinação linear de v_1 e pela preposição anterior $\{v_1,v_2\}$ é LI. Se $\{v_1,v_2\}$ gera V, então é base e acabou. Senão, como, por uma proposição anterior, não é possível termos um subconjunto LI de V com n+1 elementos, então, pelo menos no n-ésimo passo, obteremos um conjunto $\{v_1,v_2,\ldots,v_n\}$ (LI pela preposição anterior aplicada várias vezes) que deverá gerar V e portanto será base de V (notemos que este processo pode parar antes de V). Finalmente, observemos que se V é gerado por um conjunto com V0 elementos, então V1 e V2 e V3 e V4 é gerado por um conjunto com V3 elementos, então V4 e V4 e V5 e V6 gerado por um conjunto com V6 elementos, então V8 e V9 é gerado por um conjunto com V9 elementos, então V1 e V3 e V4 e V4 e gerado por um conjunto com V5 elementos, então V5 e V6 e V9 é gerado por um conjunto com V9 elementos, então V1 e V3 e V4 e V5 então existe V5 e V6 e V6 e V6 e V6 e V6 e V6 e V9 e

Usando a mesma idéia da demonstração acima, verifiquemos o seguinte resultado:

Proposição 0.50. Seja V um \mathbb{K} -espaço vetorial finitamente gerado. Seja $\mathcal{C} \subset V$, \mathcal{C} LI. Então existe uma base de V que contém \mathcal{C} .

Com efeito, suponhamos que V é gerado por um conjunto com $m \ge 0$ vetores. Se \mathcal{C} gera V, então \mathcal{C} é base de V e acabou. Caso contrário, então existe $u_1 \in V$ tal que u_1 não é combinação linear de elementos de \mathcal{C} e portanto $\mathcal{C} \cup \{u_1\}$ é LI. Se $\mathcal{C} \cup \{u_1\}$ gera V, então $\mathcal{C} \cup \{u_1\}$ é base de V e acabou. Senão, desde que não é possível termos um subconjunto LI de V com m+1 vetores, então, pelo menos no m-ésimo passo, obteremos um conjunto $\mathcal{C} \cup \{u_1, \ldots, u_m\}$ (LI pela preposição anterior aplicada várias vezes) que deverá gerar V e portanto será base de V (notemos que este processo pode parar antes de m).

Exemplo 0.51. Consideremos $(1,3,1) \in \mathbb{R}^3$. Como exibir uma base de \mathbb{R}^3 que contém $\mathcal{C} := \{(1,3,1)\}$? Consideremos o conjunto de todas as combinações lineares de (1,3,1), isto é, $[(1,3,1)] = \{(\alpha,3\alpha,\alpha)|\alpha \in \mathbb{R}\}$. Tomando, por exemplo, $(1,3,0) \in \mathbb{R}^3$, temos que $(1,3,0) \neq (\alpha,3\alpha,\alpha)$, para todo $\alpha \in \mathbb{R}$, donde $\mathcal{D} := \mathcal{C} \cup \{(1,3,0)\}$ é LI. Consideremos agora o conjunto de todas as combinações lineares de (1,3,1),(1,3,0), isto é, $[(1,3,1),(1,3,0)] = \{(\alpha+\beta,3\alpha+3\beta,\alpha)|\alpha,\beta \in \mathbb{R}\}$. Tomando, por exemplo, $(1,0,0) \in \mathbb{R}^3$, segue que $(1,0,0) \neq (\alpha+\beta,3\alpha+3\beta,\alpha)$, para todo $\alpha,\beta \in \mathbb{R}$, donde $\mathcal{E} := \mathcal{C} \cup \{(1,3,0),(1,0,0)\}$ é LI. Como existe uma base de \mathbb{R}^3 que contém \mathcal{E} e como toda base de \mathbb{R}^3 tem exatamente 3 elementos ($\dim_{\mathbb{R}} \mathbb{R}^3 = 3$), então \mathcal{E} é uma base de \mathbb{R}^3 .

Proposição 0.52. Seja V um \mathbb{K} -espaço vetorial, com $\dim_{\mathbb{K}} V = n > 0$. Seja $\mathcal{C} \subset V$. Então as condições abaixo são equivalentes:

- 1. C é base de V;
- cada vetor de V se escreve de maneira única como combinação linear de elementos de C.

De fato, suponhamos inicialmente que \mathcal{C} é base de V. Como $\dim_{\mathbb{K}} V = n$, podemos escrever $\mathcal{C} := \{v_1, \dots, v_n\}$. Seja $v \in V$ qualquer. Desde que \mathcal{C} gera V, existem $\alpha_1, \dots, \alpha_n \in \mathbb{K}$ tais que $v = \alpha_1 v_1 + \dots + \alpha_n v_n$. Suponhamos então que $v = \beta_1 v_1 + \dots + \beta_n v_n$, para algum $\beta_1, \dots, \beta_n \in \mathbb{K}$. Daí, $\alpha_1 v_1 + \dots + \alpha_n v_n = \beta_1 v_1 + \dots + \beta_n v_n$ e portanto $(\alpha_1 - \beta_1)v_1 + \dots + (\alpha_n - \beta_n)v_n = 0$. Como \mathcal{C} é LI, segue que $(\alpha_1 - \beta_1) = \dots = (\alpha_n - \beta_n) = 0$ e portanto v se escreve de

forma única como combinação linear de elementos de \mathcal{C} .

Reciprocamente, suponhamos que todo vetor de V se escreve de modo único como combinação linear de elementos de \mathcal{C} . Daí, já obtemos que \mathcal{C} gera V. Mostremos que \mathcal{C} é LI. Com efeito, consideremos uma combinação linear qualquer, $c := \gamma_1 u_1 + \cdots + \gamma_m u_m$, de vetores de \mathcal{C} . Suponhamos que c é o vetor nulo, isto é, $\gamma_1 u_1 + \cdots + \gamma_m u_m = \overrightarrow{0}$. Mas $\overrightarrow{0} = 0u_1 + \cdots + 0u_m$. Desde que $\overrightarrow{0} \in V$ se escreve de maneira única como combinação linear de elementos de \mathcal{C} , então $\gamma_1 = \cdots = \gamma_m = 0$. Portanto, \mathcal{C} é base de V.

Exemplo 0.53. Consideremos $\mathcal{C} := \{(1,0,0), (0,1,0), (1,1,0)\} \subset \mathbb{R}^3$. Notemos que (1,1,0) = 0.(1,0,0) + 0.(0,1,0) + 1.(1,1,0) e também (1,1,0) = 1.(1,0,0) + 1.(0,1,0) + 0.(1,1,0). Daí, (1,1,0) não se escreve de maneira única como combinação linear de elementos de \mathcal{C} e portanto \mathcal{C} não é base de \mathbb{R}^3 .

Exemplo 0.54. Consideremos $C := \{2, x, 3x + 5\} \subset \mathcal{P}_1(\mathbb{R})$. Observemos que $x + 1 = \frac{1}{2}.\mathbf{2} + 1.\mathbf{x} + 0.(\mathbf{3x + 5})$ e também $x + 1 = (-2).\mathbf{2} + (-2).\mathbf{x} + 1.(\mathbf{3x + 5})$. Assim, x + 1 não se escreve de forma única como combinação linear de elementos de C e portanto C não é base de $\mathcal{P}_1(\mathbb{R})$.

Coordenadas

Usando a proposição anterior, vejamos uma forma de identificar um \mathbb{K} -espaço vetorial finitamente gerado qualquer com \mathbb{K}^n , para algum $n \in \mathbb{N}^*$.

Observação 0.55. Seja V um \mathbb{K} -espaço vetorial, com $\dim_{\mathbb{K}} V = n > 0$. Notemos que, ao considerarmos uma base $\mathcal{B} := \{v_1, \ldots, v_n\}$, então, pela proposição anterior, dado $v \in V$, existem únicos escalares $\alpha_1, \ldots, \alpha_n$ tais que $v = \alpha_1 v_1 + \cdots + \alpha_n v_n$. Se considerarmos ainda que \mathcal{B} é uma base ordenada, isto é, uma base onde a ordem em que os vetores são dados importa, podemos identificar $v \in V$ com $(\alpha_1, \ldots, \alpha_n) \in \mathbb{K}$. Ao considerarmos bases ordenadas, temos, por exemplo, que $\mathcal{B} = \{v_1, v_2, v_3, \dots, v_n\} \neq \{v_2, v_1, v_3, \dots, v_n\} =: \mathcal{B}'$ (ambos, $\mathcal{B} \in \mathcal{B}'$, são bases, mas vistos como bases ordenadas são diferentes).

Definição 0.56. Seja V um \mathbb{K} -espaço vetorial finitamente gerado. Seja $\mathcal{B} := \{v_1, \dots, v_n\}$ uma base ordenada de V. Seja $v \in V$. Dizemos que $(\alpha_1, \dots, \alpha_n)_{\mathcal{B}} \in \mathbb{K}^n$ é a n-upla das coordenadas de v com relação à base \mathcal{B} se $v = \alpha_1 v_1 + \dots + \alpha_n v_n$. Notação: $[v]_{\mathcal{B}} := (\alpha_1, \dots, \alpha_n)_{\mathcal{B}}$.

Observação 0.57. Quando não houver risco de confusão, escreveremos simplesmente $[v]_{\mathcal{B}} := (\alpha_1, \dots, \alpha_n)$.

Exemplo 0.58. Já vimos que $\mathcal{C} := \{(1,2),(3,1)\}, \mathcal{B}_C = \{(1,0),(0,1)\} \subset \mathbb{R}^2$ são bases de \mathbb{R}^2 . Considerando-as ordenadas, temos que $\widetilde{\mathcal{C}} := \{(3,1),(1,2)\},$ $\widetilde{\mathcal{B}}_C := \{(0,1),(1,0)\} \subset \mathbb{R}^2$ são outras duas bases de \mathbb{R}^2 . Consideremos $(2,-1) \in \mathbb{R}^2$. Temos que $[(2,-1)]_{\mathcal{C}} = (-1,1)_{\mathcal{C}}$, pois (2,-1) = (-1).(1,2) + (1,3,1). Ainda, $[(2,-1)]_{\mathcal{B}_C} = (2,-1)_{\mathcal{B}_C}$, pois (2,-1) = 2.(1,0) + (-1).(0,1). Notemos ainda que $[(2,-1)]_{\widetilde{\mathcal{C}}} = (1,-1)_{\widetilde{\mathcal{C}}}$ e $[(2,-1)]_{\widetilde{\mathcal{B}}_C} = (-1,2)_{\widetilde{\mathcal{B}}_C}$. Logo, as coordenadas de um dado vetor variam conforme mudamos a base do espaço vetorial.

Exemplo 0.59. Seja $(\alpha_1, \alpha_2, ..., \alpha_n) \in \mathbb{K}^n$ qualquer. Consideremos $\mathcal{B}_C = \{(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1)\} \subset \mathbb{K}^n$ a base canônica de \mathbb{K}^n . Desde que $(\alpha_1, \alpha_2, ..., \alpha_n) = \alpha_1(1, 0, ..., 0) + \alpha_2(0, 1, 0, ..., 0) + ... + \alpha_n(0, ..., 0, 1)$, então as coordenadas do vetor $(\alpha_1, \alpha_2, ..., \alpha_n)$ com relação à \mathcal{B}_C são $[(\alpha_1, \alpha_2, ..., \alpha_n)]_{\mathcal{B}_C} = (\alpha_1, \alpha_2, ..., \alpha_n)$.

Exemplo 0.60. Seja $p(x) := a_2x^2 + a_1x + a_0 \in \mathcal{P}_2(\mathbb{K})$ qualquer. Consideremos $\mathcal{B}_C = \{1, x, x^2\} \subset \mathcal{P}_2(\mathbb{K})$ a base canônica de $\mathcal{P}_2(\mathbb{K})$. Como $p(x) = a_2.\mathbf{x^2} + a_1.\mathbf{x} + a_0.\mathbf{1}$, então as coordenadas do vetor p(x) com relação à \mathcal{B}_C são $[p(x)]_{\mathcal{B}_C} = (a_0, a_1, a_2)$.

Subespaço vetorial

Definição 0.61. Seja V um espaço vetorial sobre \mathbb{K} . Dizemos que um subconjunto $W \subset V$ é um subespaço vetorial de V se a restrição das operações de V a W o tornarem um espaço vetorial sobre \mathbb{K} .

Observação 0.62. Ou seja, a restrição das operações + $e \cdot de V$ a W devem ser tais que

$$+: W \times W \ni (u,v) \mapsto u+v \in W$$

 $\cdot: \mathbb{K} \times W \ni (\alpha,v) \mapsto \alpha.v \in W$

e as propriedades de espaço vetorial sejam satisfeitas (com W no lugar de V).

Exemplo 0.63. Se V é um \mathbb{K} -espaço vetorial, então $\{\overrightarrow{0}\} \subset V$ e $V \subset V$ são subespaços vetoriais de V, chamados de subespaços triviais de V.

Proposição 0.64. Seja V um \mathbb{K} -espaço vetorial. Seja $W \subset V$ um subconjunto qualquer. Então W é um subespaço vetorial de V se, e somente se, as condições abaixo valem:

- 1. $se \stackrel{\rightarrow}{0} \acute{e} o \ vetor \ nulo \ de \ V, \ ent \~ao \stackrel{\rightarrow}{0} \in W,$
- 2. se $u, v \in W$, então $u+v \in W$,
- 3. se $\alpha \in \mathbb{K}$ e $u \in W$, então $\alpha.u \in W$.

Exercício.

Observação 0.65. Se V é um \mathbb{K} -espaço vetorial e $\mathcal{C} \subset V$ é um subconjunto qualquer de V, então podemos considerar o conjunto de todas as combinações lineares de elementos de \mathcal{C} , denotado por $[\mathcal{C}]$. Então $[\mathcal{C}]$ é um subespaço vetorial de V, chamado de subespaço de V gerado por \mathcal{C} . Se \mathcal{C} é LI, então \mathcal{C} é uma base de $[\mathcal{C}]$. Notemos que se $\mathcal{C} := \{v_1, \ldots, v_n\}$ (um conjunto finito de vetores), então temos que $[\mathcal{C}] = [v_1, \ldots, v_n]$.

Proposição 0.66. Sejam V um \mathbb{K} -espaço vetorial e $W_1, W_2 \subset V$ subespaços vetoriais de V. Então $W_1 \cap W_2$ e $W_1 + W_2 := \{w_1 + w_2 : w_1 \in W_1, w_2 \in W_2\}$ também são subespaços vetoriais de V.

Exercício (use a caracterização de subespaço vetorial dada pela proposição acima).

Exemplo 0.67. Consideremos \mathbb{C} como \mathbb{R} -espaço vetorial. Consideremos $\{1,i\} \subset \mathbb{C}$. Então $[1] \cap [i]$ e [1] + [i] são subespaços vetoriais de \mathbb{C} . Com efeito, $[1] \cap [i] = \{0\}$ e $[1] + [i] = \mathbb{C}$. Verifique isto. Notemos que $[1] \cup [i]$ não é subespaço vetorial de \mathbb{C} , pois, por exemplo, $1 + i \notin [1]$ e $1 + i \notin [i]$, donde $1 + i \notin [1] \cup [i]$. Na verdade, se W_1, W_2 são subespaços de V, não segue, em geral, que $W_1 \cup W_2$ é um subespaço de V.

Exemplo 0.68. Consideremos \mathbb{R}^3 como \mathbb{R} -espaço vetorial. Consideremos ainda $W_1 := [(1,0,0),(0,1,0)] \subset \mathbb{R}^3$ e $W_2 := [(1,0,0),(0,0,1)] \subset \mathbb{R}^3$ subespaços vetoriais de \mathbb{R}^3 . Então $W_1 \cap W_2$ e $W_1 + W_2$ também o são.

Proposição 0.69. Sejam V um \mathbb{K} -espaço vetorial e $W \subset V$ um subespaço vetorial de V, com $W \neq V$ e $\dim_{\mathbb{K}} W$ finita. Então $\dim_{\mathbb{K}} W < \dim_{\mathbb{K}} V$.

Se $W = \{\vec{0}\}$, então, como $\{\vec{0}\} \neq V$, segue que $\dim_{\mathbb{K}} \{\vec{0}\} = 0 < \dim_{\mathbb{K}} V$. Se $W \neq \{\vec{0}\}$, existe $\mathcal{B} := \{v_1, \dots, v_n\} \subset W$ base de W, onde $n = \dim_{\mathbb{K}} W$. Daí, se $\dim_{\mathbb{K}} V = \infty$, é claro que $\dim_{\mathbb{K}} W = n < \infty$. Suponhamos agora que $\dim_{\mathbb{K}} V < \infty$ (ou seja, que V é finitamente gerado). Como $W \neq V$, então \mathcal{B} não gera V, donde existe $v \in V$ tal que v não é combinação linear de v_1, \dots, v_n . Daí, $\mathcal{B} \cup \{v\} \subset V$ é LI e portanto existe uma base de V que contém $\mathcal{B} \cup \{v\}$. Logo, $\dim_{\mathbb{K}} V \geqslant n+1 > n = \dim_{\mathbb{K}} W$.

Proposição 0.70. Sejam V um \mathbb{K} -espaço vetorial e $W_1, W_2 \subset V$ subespaços vetoriais de V, ambos de dimensão finita. Então $\dim_{\mathbb{K}}(W_1+W_2) = \dim_{\mathbb{K}}W_1 + \dim_{\mathbb{K}}W_2 - \dim_{\mathbb{K}}W_1 \cap W_2$.

Primeiramente, como W_1 é finitamente gerado, então $W_1 \cap W_2 \subset W_1$ também o é. Se $W_1 \cap W_2 \neq \{\vec{0}\}$, seja $\mathcal{B} := \{v_1, \dots, v_n\} \subset W_1 \cap W_2$ uma base de $W_1 \cap W_2$. Como \mathcal{B} é um conjunto LI contido em W_1 , então existe $\mathcal{B}_1 \subset W_1$ uma base de W_1 que contém \mathcal{B} , digamos $\mathcal{B}_1 := \{v_1, \dots, v_n, w_1, \dots, w_p\}$. Analogamente, existe $\mathcal{B}_2 \subset W_2$ uma base de W_2 que contém \mathcal{B} , digamos $\mathcal{B}_2 := \{v_1, \dots, v_n, u_1, \dots, u_m\}$.

Consideremos agora $\mathcal{C} := \{v_1, \dots, v_n, w_1, \dots, w_p, u_1, \dots, u_m\} \subset V$. Na verdade, $\mathcal{C} \subset W_1 + W_2$. Mostremos que \mathcal{C} é uma base de $W_1 + W_2$. Inicialmente, verifiquemos que é \mathcal{C} é LI. Com efeito, seja $c := \sum_{i=1}^n \alpha_i v_i + \sum_{i=1}^p \beta_i w_i + \sum_{i=1}^m \gamma_i u_i$ uma combinação linear qualquer de elementos de \mathcal{C} . Suponhamos que c é o vetor nulo, ou seja, $\sum_{i=1}^n \alpha_i v_i + \sum_{i=1}^p \beta_i w_i + \sum_{i=1}^m \gamma_i u_i = 0$ (*). Logo,

$$W_1 \ni \sum_{i=1}^{n} \alpha_i v_i + \sum_{i=1}^{p} \beta_i w_i = -\sum_{i=1}^{m} \gamma_i u_i \in W_2,$$

isto é, $-\sum_{i=1}^{m} \gamma_i u_i \in W_1 \cap W_2$. Logo, como \mathcal{B} gera $W_1 \cap W_2$, existem $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ tais que $-\sum_{i=1}^{m} \gamma_i u_i = \sum_{i=1}^{n} \lambda_i v_i$. Daí,

$$\sum_{i=1}^{n} \lambda_i v_i + \sum_{i=1}^{m} \gamma_i u_i = \stackrel{\rightarrow}{0}.$$

Como $v_1, \ldots, v_n, u_1, \ldots, u_m \in \mathcal{B}_2$ que é LI, segue que $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$ e $\gamma_1 = \gamma_2 = \cdots = \gamma_m = 0$. Substituindo estes valores em (*), segue que

$$\sum_{i=1}^{n} \alpha_i v_i + \sum_{i=1}^{p} \beta_i w_i = \stackrel{\rightarrow}{0}.$$

Desde que $v_1, \ldots, v_n, w_1, \ldots, w_p \in \mathcal{B}_1$ que é LI, então $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$ e $\beta_1 = \beta_2 = \cdots = \beta_p = 0$. Logo, os escalares são todos nulos em (*) e portanto \mathcal{C} é LI. Mostremos agora que \mathcal{C} gera $W_1 + W_2$. Seja $d := \left(\sum_{i=1}^n \alpha_i v_i + \sum_{i=1}^p \beta_i w_i\right) + \left(\sum_{i=1}^n \lambda_i v_i + \sum_{i=1}^m \gamma_i u_i\right) \in W_1 + W_2$ um elemento qualquer de $W_1 + W_2$. Como $d = \sum_{i=1}^n (\alpha_i + \lambda_i) v_i + \sum_{i=1}^p \beta_i w_i + \sum_{i=1}^m \gamma_i u_i$, ou seja, d se escreve como combinação linear de elementos de \mathcal{C} , obtemos que \mathcal{C} gera

 W_1+W_2 . Portanto, \mathcal{C} é base de W_1+W_2 e $\dim_{\mathbb{K}}(W_1+W_2)=n+p+m$. Logo, $\dim_{\mathbb{K}}(W_1+W_2)=(n+p)+(n+m)-n=\dim_{\mathbb{K}}W_1+\dim_{\mathbb{K}}W_2-\dim_{\mathbb{K}}W_1\cap W_2$. Se $W_1\cap W_2=\{\overrightarrow{0}\}$, consideremos $\widetilde{\mathcal{B}_1}:=\{w_1,\ldots,w_p\}\subset W_1$ uma base de W_1 e $\widetilde{\mathcal{B}_2}:=\{u_1,\ldots,u_m\}\subset W_2$ uma base de W_2 e mostremos que $\widetilde{\mathcal{C}}:=\widetilde{\mathcal{B}_1}\cup\widetilde{\mathcal{B}_2}$ é uma base de W_1+W_2 . É fácil ver que $\widetilde{\mathcal{C}}$ gera W_1+W_2 . Verifiquemos então que $\widetilde{\mathcal{C}}$ é LI. De fato, suponhamos $\sum_{i=1}^p\beta_iw_i+\sum_{i=1}^m\gamma_iu_i=\overrightarrow{0}$. Daí, $W_1\ni\sum_{i=1}^p\beta_iw_i=-\sum_{i=1}^m\gamma_iu_i\in W_2$ e portanto $-\sum_{i=1}^m\gamma_iu_i\in W_1\cap W_2=\{\overrightarrow{0}\}$. Logo, como $\widetilde{\mathcal{B}_1}$ é LI, os escalares γ_i são todos nulos. Mas $\sum_{i=1}^p\beta_iw_i=-\sum_{i=1}^m\gamma_iu_i=\overrightarrow{0}$. Então, como $\widetilde{\mathcal{B}_2}$ é LI, os escalares β_i são todos nulos. Logo, $\widetilde{\mathcal{C}}$ é LI e portanto é base de W_1+W_2 e $\dim_{\mathbb{K}}(W_1+W_2)=p+m-0=\dim_{\mathbb{K}}W_1+\dim_{\mathbb{K}}W_2-\dim_{\mathbb{K}}W_1\cap W_2$.

Definição 0.71. Seja V um espaço vetorial (sobre algum corpo) e sejam W_1, W_2 subespaços vetoriais de V. Dizemos que a **soma** $W_1 + W_2$ é **direta** se $W_1 \cap W_2 = \{\overrightarrow{0}\}$. Notação: $W_1 \oplus W_2$.

Ainda, dizemos que V é a soma direta de W_1 e W_2 se $V = W_1 \oplus W_2$.

Exemplo 0.72. Temos que $\mathbb{C} = [1] \oplus [i]$, pois $[1] + [i] = \mathbb{C}$ e $[1] \cap [i] = \{\overrightarrow{0}\}$.

Exemplo 0.73. Sejam $W_1 := [(1,0,0),(0,1,0)] \ e \ W_2 := [(1,0,0),(0,0,1)]$ dois subespaços vetoriais de \mathbb{R}^3 . Como $W_1 \cap W_2 = \{(\alpha,0,0) : \alpha \in \mathbb{R}\} \neq \{\overrightarrow{0}\}$, então a soma $W_1 + W_2 = \mathbb{R}^3$ não é direta.

O próximo resultado nos dá uma caracterização de quando um espaço vetorial é uma soma direta de dois subespaços vetoriais seus.

Proposição 0.74. Seja V um \mathbb{K} -espaço vetorial e sejam W_1, W_2 subespaços vetoriais de V. Então $V = W_1 \oplus W_2$ se, e só se, cada vetor $v \in V$ se escreve de forma única como $w_1 + w_2$, com $w_1 \in W_1$ e $w_2 \in W_2$.

Com efeito, suponhamos inicialmente que $V=W_1\oplus W_2$. Daí, se $v\in V$, então existem $w_1\in W_1, w_2\in W_2$ tais que $v=w_1+w_2$. Suponhamos então

que $v = u_1 + u_2$, para algum $u_1 \in W_1, u_2 \in W_2$. Daí, $w_1 + w_2 = u_1 + u_2$ e portanto $W_1 \ni -u_1 + w_1 = u_2 - w_2 \in W_2$. Logo, como $W_1 \cap W_2 = \{\overrightarrow{0}\}$, segue que $-u_1 + w_1 = u_2 - w_2 = \overrightarrow{0}$, isto é, a decomposição de v é única.

Reciprocamente, suponhamos que todo vetor $v \in V$ se escreve de forma única como $w_1 + w_2$, com $w_1 \in W_1$ e $w_2 \in W_2$. Em particular, segue que $V = W_1 + W_2$. Seja, agora, $w \in W_1 \cap W_2$ qualquer. Então

$$W_1 + W_2 \ni w + \overrightarrow{0} = w = \overrightarrow{0} + w \in W_1 + W_2.$$

Daí, desde que a decomposição de w é única, então $w = \overrightarrow{0}$ e portanto $W_1 \cap W_2 = \{\overrightarrow{0}\}$.

Exemplo 0.75. Sejam $W_1 := [(1,0,0),(0,1,0)]$ e $W_2 := [(1,0,0),(0,0,1)]$ dois subespaços vetoriais de \mathbb{R}^3 . Notemos, por exemplo, que podemos escrever (3,0,0) ora como $(1,0,0)+(2,0,0)\in W_1+W_2$, ora como $(3,0,0)+(0,0,0)\in W_1+W_2$, isto é, a decomposição de (3,0,0) não é única.

Exemplo 0.76. Sejam $W_1 := \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}$ $e \ W_2 := \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix} \end{bmatrix}$ dois subespaços vetoriais de $\mathbb{M}_{2\times 2}(\mathbb{R})$. Notemos, por exemplo, que podemos escrever $\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$ ora como $(2\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) + (2\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}) + (-\frac{1}{2})\begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix}) \in W_1 + W_2$, ora como $(0\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) + (4\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}) + (-1)\begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix}) \in W_1 + W_2$, isto é, a decomposição de $\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$ não é única. Logo, a soma $W_1 + W_2$ não é direta.

O próximo resultado nos diz quando é possível "completar" um subespaço vetorial a fim de obter o espaço vetorial todo.

Proposição 0.77. Seja V um \mathbb{K} -espaço vetorial finitamente gerado e seja W_1 um subespaço vetorial de V. Então existe $W_2 \subset V$ subespaço vetorial de V tal que $V = W_1 \oplus W_2$.

De fato, se $V = \{\vec{0}\}$, então $W_1 = \{\vec{0}\}$ e basta tomar $W_2 = \{\vec{0}\}$. Seja então $V \neq \{\vec{0}\}$. Notemos que se $W_1 = \{\vec{0}\}$ (ou se $W_1 = V$), basta tomar $W_2 = V$ (ou $W_2 = \{\vec{0}\}$). Como V é finitamente gerado, então W_1 também o é. Logo,

existe $\mathcal{B}_1 \subset W_1$ uma base de W_1 , digamos $\mathcal{B}_1 := \{v_1, \ldots, v_n\}$. Como \mathcal{B}_1 é um conjunto LI contido em V, então existe $\mathcal{C} \subset V$ uma base de V que contém \mathcal{B}_1 , digamos $\mathcal{C} := \{v_1, \ldots, v_n, u_1, \ldots, u_m\}$. Escrevamos $\mathcal{B}_2 := \{u_1, \ldots, u_m\}$ e consideremos $W_2 := [\mathcal{B}_2]$. Desde que cada vetor $v \in V$ se escreve de forma única como combinação linear de elementos de \mathcal{C} , $v = \sum_{i=1}^n \alpha_i v_i + \sum_{i=1}^m \beta_i u_i$, pois \mathcal{C} é base, e em particular $\sum_{i=1}^n \alpha_i v_i \in W_1$ e $\sum_{i=1}^m \beta_i u_i \in W_2$, então a decomposição de v em $W_1 + W_2$ é única e, pela proposição anterior, $V = W_1 \oplus W_2$.

Exemplo 0.78. Consideremos novamente $W_1 := \left[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right] \subset \mathbb{M}_{2\times 2}(\mathbb{R})$. Seja $\mathcal{C} := \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\} \subset \mathbb{M}_{2\times 2}(\mathbb{R})$. Desde que $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\} \cup \mathcal{C}$ é uma base de $\mathbb{M}_{2\times 2}(\mathbb{R})$ (verifique isto), temos que $\mathbb{M}_{2\times 2}(\mathbb{R}) = W_1 \oplus [\mathcal{C}]$.

Transformação linear

Definição 0.79. Sejam U, V espaços vetoriais sobre \mathbb{K} . Dizemos que uma aplicação $T: U \to V, U \ni u \mapsto T(u) \in V, \text{ \'e uma transformação linear se}$ $T(u+w) = T(u) + T(w) \text{ e } T(\alpha u) = \alpha T(u), \text{ para todo } \alpha \in \mathbb{K}, u, w \in U.$

Exemplo 0.80. Consideremos $T: \mathbb{R}^3 \to \mathbb{R}^2$, T((x,y,z)) = (z,0), para todo $x,y,z \in \mathbb{R}$. Então T é linear. De fato, $T((x_1,y_1,z_1)+(x_2,y_2,z_2)) = T((x_1+x_2,y_1+y_2,z_1+z_2)) = (z_1+z_2,0) = (z_1,0)+(z_2,0) = T((x_1,y_1,z_1))+T((x_2,y_2,z_2))$ e $T(\alpha(x_1,y_1,z_1)) = T((\alpha x_1,\alpha y_1,\alpha z_1)) = (\alpha z_1,0) = \alpha(z_1,0) = \alpha T((x_1,y_1,z_1))$, para todo $\alpha \in \mathbb{R}$, (x_1,y_1,z_1) , $(x_2,y_2,z_2) \in \mathbb{R}^3$. Portanto, T é linear.

Exemplo 0.81. Consideremos $T: \mathbb{R}^3 \to \mathbb{R}^2$, T((x,y,z)) = (z,1), para todo $x,y,z \in \mathbb{R}$. Então T não é linear. Com efeito, $T((\sqrt{2},\sqrt{3},2)+(0,1,3)) = T((\sqrt{2},\sqrt{3}+1,5)) = (5,1) \neq (5,2) = (2,1)+(3,1) = T((\sqrt{2},\sqrt{3},2)) + T((0,1,3))$. Logo, T não é linear.

Observação 0.82. Muitas vezes escreveremos apenas $T(x_1, x_2, ..., x_n)$ para denotar $T((x_1, x_2, ..., x_n))$, isto é, omitiremos o excesso de parênteses.

Observação 0.83. Sejam U, V espaços vetoriais sobre \mathbb{K} e $T: U \to V$ uma aplicação tal que $T(\alpha u + w) = \alpha T(u) + T(w)$, para todo $\alpha \in \mathbb{K}$, $u, w \in U$. Em particular, tomando $\alpha = -1$ e w = u, temos que $T((-1)u + u) = (-1)T(u) + T(u) = ((-1) + 1)T(u) = 0T(u) = \overrightarrow{0}$. Logo, $T(\overrightarrow{0}) = \overrightarrow{0}$.

Proposição 0.84. Sejam U, V espaços vetoriais sobre \mathbb{K} e $T: U \to V$ uma aplicação. Então T é linear se, e só se, $T(\alpha u + w) = \alpha T(u) + T(w)$, para todo $\alpha \in \mathbb{K}$, $u, w \in U$.

De fato, suponhamos inicialmente que T é linear. Daí, usando as duas propriedades de T ser linear, obtemos que $T(\alpha u + w) = T(\alpha u) + T(w) = \alpha T(u) + T(w)$, para todo $\alpha \in \mathbb{K}$, $u, w \in U$.

Reciprocamente, suponhamos agora que $T(\alpha u + w) = \alpha T(u) + T(w)$, para todo $\alpha \in \mathbb{K}$, $u, w \in U$. Mostremos que T é linear. Sejam $\alpha \in \mathbb{K}$, $u, w \in U$ quaisquer. Como T(u+w) = T(1.u+w) = 1.T(u) + T(w) = T(u) + T(w), obtemos a primeira propriedade para T ser linear. Desde que $T(\alpha u) = T(\alpha u + 0) = \alpha T(u) + T(0) = \alpha T(u) + 0 = \alpha T(u)$, obtemos a segunda propriedade para T ser linear.

Proposição 0.85. Seja $T: U \to V$ uma transformação linear. Então, para todo $\alpha_1, \ldots, \alpha_n \in \mathbb{K}, u, u_1, \ldots, u_n \in U, T$ satisfaz:

$$1. \ T(\overrightarrow{0}) = \overrightarrow{0}$$

$$2. T(-u) = -T(u)$$

3.
$$T(\sum_{i=1}^{n} \alpha_i u_i) = \sum_{i=1}^{n} \alpha_i T(u_i)$$

Exercício (use a caracterização de transformação linear dada pela proposição acima).

Exemplo 0.86. Consideremos $T : \mathcal{P}_1(\mathbb{R}) \to \mathbb{R}^2$, $T(a_1x + a_0) = (a_0, a_1)$, para todo $a_1x + a_0 \in \mathcal{P}_1(\mathbb{R})$. Então T é linear. Verifique.

Exemplo 0.87. Consideremos $T : \mathbb{M}_{2\times 2}(\mathbb{R}) \to \mathbb{R}^3$, $T(\begin{smallmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{smallmatrix}) = (a_{11}, a_{12}, 0)$, para todo $(\begin{smallmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{smallmatrix}) \in \mathbb{M}_{2\times 2}(\mathbb{R})$. Então T é linear. Verifique.

Exemplo 0.88. Consideremos $T: \mathbb{R} \to \mathcal{P}_2(\mathbb{R})$, $T(a) = ax^2 + a$, para todo $a \in \mathbb{R}$. Então T é linear. De fato, $T(\alpha a + b) = (\alpha a + b)x^2 + (\alpha a + b)$ e $\alpha T(a) + T(b) = \alpha(ax^2 + a) + (bx^2 + b) = (\alpha a + b)x^2 + (\alpha a + b)$. Portanto, $T(\alpha a + b) = \alpha T(a) + T(b)$, para todo $\alpha, a, b \in \mathbb{R}$ e T é linear.

Exemplo 0.89. Consideremos $T: \mathbb{R}^2 \to \mathbb{M}_{2\times 3}(\mathbb{R}), \ T(a,b) = \begin{pmatrix} a & b & a \\ 0 & a & 0 \end{pmatrix}$, para todo $(a,b) \in \mathbb{R}^2$. Então T é linear. De fato,

$$T(\alpha(a,b)+(a',b'))=T(\alpha a+a',\alpha b+b')=\left(\begin{smallmatrix} (\alpha a+a')&(\alpha b+b')&(\alpha a+a')\\0&(\alpha a+a')&0\end{smallmatrix}\right)\,e$$

$$\alpha T(a,b) + T(a',b') = \alpha \begin{pmatrix} a & b & a \\ 0 & a & 0 \end{pmatrix} + \begin{pmatrix} a' & b' & a' \\ 0 & a' & 0 \end{pmatrix} = \begin{pmatrix} (\alpha a + a') & (\alpha b + b') & (\alpha a + a') \\ 0 & (\alpha a + a') & 0 \end{pmatrix}.$$

Logo, $T(\alpha(a,b) + (a',b')) = \alpha T(a,b) + T(a',b')$, para todo $\alpha, a, b, a', b' \in \mathbb{R}$ e $T \in linear$.

Exemplo 0.90. Seja $T: U \to V$ uma aplicação tal que $T(u) = \overrightarrow{0}$, para todo $u \in U$ (com U, V \mathbb{K} -espaços vetoriais). Então T é linear pois, para todo $\alpha \in \mathbb{K}, u, w \in U$, $T(\alpha u + w) = \overrightarrow{0} = \overrightarrow{0} + \overrightarrow{0} = \alpha \overrightarrow{0} + \overrightarrow{0} = \alpha T(u) + T(w)$. Esta T é chamada de transformação identicamente nula.

Exemplo 0.91. Seja $T: U \to U$ uma aplicação tal que T(u) = u, para todo $u \in U$ (com U um \mathbb{K} -espaço vetorial). Então T é linear pois, para todo $\alpha \in \mathbb{K}, u, w \in U$, $T(\alpha u + w) = \alpha u + w = \alpha T(u) + T(w)$. Esta T é chamada de identidade (de U) e é denotada por Id_U (ou simplesmente por Id).

Exemplo 0.92. Seja $\beta \in \mathbb{K}$ qualquer. Seja $T: U \to U$ uma aplicação tal que $T(u) = \beta u$, para todo $u \in U$ (com U um \mathbb{K} -espaço vetorial). Então T é linear pois, para todo $\alpha \in \mathbb{K}$, $u, w \in U$, $T(\alpha u + w) = \beta(\alpha u + w) = \alpha(\beta u) + \beta w = \beta(\alpha u + w)$

 $\alpha T(u) + T(w)$. Esta T é chamada de transformação multiplicação por β e é denotada por T_{β} .

Exemplo 0.93. Seja $T : \mathbb{K} \to \mathbb{K}$ uma transformação linear qualquer. Então existe $\beta \in \mathbb{K}$ tal que $T = T_{\beta}$. De fato, se $\alpha \in \mathbb{K}$, temos que $T(\alpha) = T(1.\alpha) = T(\alpha.1) = \alpha.T(1) = T(1).\alpha$. Logo, tomando $\beta := T(1) \in \mathbb{K}$, temos que $T(\alpha) = \beta \alpha$, para todo $\alpha \in \mathbb{K}$, ou seja, $T = T_{\beta}$, com $\beta = T(1) \in \mathbb{K}$.

Exemplo 0.94. Seja $T: \mathbb{K}^n \to \mathbb{K}$ uma transformação linear qualquer. Então existem $\beta_1, \ldots, \beta_n \in \mathbb{K}$ tais que $T(\alpha_1, \ldots, \alpha_n) = \sum_{i=1}^n \beta_i \alpha_i$. Com efeito, se $(\alpha_1, \ldots, \alpha_n) \in \mathbb{K}^n$, então, como $(\alpha_1, \ldots, \alpha_n) = \alpha_1(1, 0, \ldots, 0) + \cdots + \alpha_n(0, \ldots, 0, 1)$, segue que $T(\alpha_1, \ldots, \alpha_n) = T(\alpha_1(1, 0, \ldots, 0) + \cdots + \alpha_n(0, \ldots, 0, 1)) = \alpha_1 T(1, 0, \ldots, 0) + \cdots + \alpha_n T(0, \ldots, 0, 1)$. Daí, tomando $\beta_1 := T(1, 0, \ldots, 0), \ldots, \beta_n := T(0, \ldots, 0, 1) \in \mathbb{K}$, obtemos que $T(\alpha_1, \ldots, \alpha_n) = \sum_{i=1}^n \beta_i \alpha_i$, para todo $(\alpha_1, \ldots, \alpha_n) \in \mathbb{K}^n$.

Teorema 0.95. Sejam U, V espaços vetoriais sobre \mathbb{K} . Seja $\mathcal{B} := \{u_1, \ldots, u_n\}$ uma base de U. Se $\mathcal{C} := \{v_1, \ldots, v_n\}$ é um subconjunto qualquer de V, então existe uma única transformação linear $T : U \to V$ tal que $T(u_i) = v_i$, para todo $i = 1, \ldots, n$.

De fato, seja $u \in U$. Então, como \mathcal{B} é base de U, existem $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ tais que $u = \sum_{i=1}^n \alpha_i u_i$. Definamos $T(u) = \sum_{i=1}^n \alpha_i v_i$, para todo $u = \sum_{i=1}^n \alpha_i u_i \in U$. Primeiramente, esta é uma boa definição para T, pois se $\sum_{i=1}^n \alpha_i u_i = \sum_{i=1}^n \beta_i u_i$, temos do fato de que cada vetor de U se escreve de maneira única como combinação linear de elementos de \mathcal{B} , que $\alpha_i = \beta_i, i = 1, \ldots, n$ e portanto que $T(\sum_{i=1}^n \alpha_i u_i) = \sum_{i=1}^n \alpha_i v_i = \sum_{i=1}^n \beta_i v_i = T(\sum_{i=1}^n \beta_i u_i)$. Ainda, desta definição, temos que $T(u_i) = T(1.u_i) = 1.v_i = v_i$, para todo $i = 1, \ldots, n$. Agora, verifiquemos que T é linear. Com efeito, $T(\beta(\sum_{i=1}^n \alpha_i u_i) + \sum_{i=1}^n \gamma_i u_i) = T(\sum_{i=1}^n (\beta \alpha_i + \gamma_i) u_i) = \sum_{i=1}^n (\beta \alpha_i + \gamma_i) v_i = \beta T(\sum_{i=1}^n \alpha_i u_i) + T(\sum_{i=1}^n \gamma_i u_i)$, para todo $\beta, \alpha_1, \ldots, \alpha_n, \gamma_1, \ldots, \gamma_n \in \mathbb{K}$. Finalmente, vejamos que T é a única transformação linear tal que $T(u_i) = v_i$.

Para isto, suponhamos que existe $S: U \to V$ uma transformação linear tal que $S(u_i) = v_i$, para todo i = 1, ..., n. Então $S(u) = S(\sum_{i=1}^n \alpha_i u_i) \stackrel{S \text{ linear}}{=} \sum_{i=1}^n \alpha_i S(u_i) = \sum_{i=1}^n \alpha_i v_i \stackrel{\text{def.}T}{=} T(u)$, para todo $u \in U$, ou seja S = T.

Definição 0.96. Seja $T:U\to V$ uma transformação linear.

- 1. Chamamos o subconjunto de U, $\{u \in U | T(u) = \overrightarrow{0}\}$, dos vetores que são "anulados pela T"simplesmente de **núcleo de** T (ou kernel de T) e denotamos-no por NucT (ou KerT).
- 2. Chamamos o subconjunto de V, $\{v \in V | v = T(u), para algum u \in U\}$, dos vetores que são "T de alguém" simplesmente de **imagem de** T e denotamos-no por ImT.

Observação 0.97. Com as mesmas notações, $\text{Im}T = \{v \in V | v = T(u), para algum <math>u \in U\} = \{T(u) | u \in U\} =: T(U).$

Relembremos algumas definições.

Observação 0.98. Uma aplicação $f: X \to Y$ é injetora se f(a) = f(b) implicar que a = b, e f é sobrejetora se para cada $y \in Y$ existe $x \in X$ tal que y = f(x). Ainda, f é bijetora se for injetora e sobrejetora, e neste caso temos que a inversa de f existe e a denotamos por $f^{-1}: Y \to X$. Se $f: X \to Y$ e $g: Y \to Z$ são aplicações, denotamos por $g \circ f: X \to Z$ a aplicação tal que $(g \circ f)(x) = g(f(x))$, com $x \in X$. Se $g \circ f$ é injetora (respectivamente, sobrejetora), então f é injetora (respectivamente, g é sobrejetora). De fato, se f(a) = f(b), então g(f(a)) = g(f(b)) e portanto, se $g \circ f$ é injetora, segue que a = b, isto é, f é injetora. Se $g \in Z$, então, se $g \circ f$ é sobrejetora, existe $g \in X$ tal que g(f(x)) = g(f(x)) =

Se $f: X \to Y$ é bijetora, então $f \circ f^{-1} = Id_Y$ e $f^{-1} \circ f = Id_X$.

Proposição 0.99. Sejam U, V, W espaços vetoriais sobre \mathbb{K} e sejam $T: U \to V$ e $S: V \to W$ transformações lineares. Então $S \circ T: U \to W$ é uma transformação linear.

De fato, sejam
$$u_1, u_2 \in U$$
 e $\alpha \in \mathbb{K}$ quaisquer. Como $(S \circ T)(\alpha u_1 + u_2) = S(T(\alpha u_1 + u_2)) \stackrel{T \text{ linear}}{=} S(\alpha T(u_1) + T(u_2)) \stackrel{S \text{ linear}}{=} \alpha S(T(u_1)) + S(T(u_2)) = \alpha(S \circ T)(u_1) + (S \circ T)(u_2)$, então $S \circ T$ é linear.

Vejamos agora caracterizações de T ser injetora e de T ser sobrejetora.

Proposição 0.100. Sejam U, V espaços vetoriais sobre \mathbb{K} e $T: U \to V$ uma transformação linear. Então:

- 1. KerT é um subespaço de U e ImT é um subespaço de V
- 2. T é sobrejetora se, e somente se, ImT = V
- 3. $T \in injetora \ se, \ e \ somente \ se, \ Ker T = \{\overrightarrow{0}\}$

Mostremos (1). Com efeito, sejam $\alpha \in \mathbb{K}$, $u, w \in \operatorname{Ker} T$. Em particular, temos que $T(u) = \overrightarrow{0}$ e $T(w) = \overrightarrow{0}$. Desde que $T(\alpha u + w) \stackrel{T \text{ linear}}{=} \alpha T(u) + T(w) = \alpha$. $\overrightarrow{0} + \overrightarrow{0} = \overrightarrow{0}$, então $\alpha u + w \in \operatorname{Ker} T$, e verificamos que tanto a soma de vetores como a multiplicação por escalar pertencem a $\operatorname{Ker} T$. Daí, como $T(\overrightarrow{0}) = \overrightarrow{0}$, segue que $\overrightarrow{0} \in \operatorname{Ker} T$, e $\operatorname{Ker} T$ é subespaço. Sejam, agora, $\beta \in \mathbb{K}$, $v_1, v_2 \in \operatorname{Im} T$. Em particular, existem $u_1, u_2 \in U$ tais que $v_1 = T(u_1)$ e $v_2 = T(u_2)$. Uma vez que $\beta v_1 + v_2 = \beta T(u_1) + T(u_2) \stackrel{T \text{ linear}}{=} T(\beta u_1 + u_2)$, então $\beta v_1 + v_2 \in \operatorname{Im} T$, e vemos que tanto a soma de vetores como a multiplicação por escalar pertencem a $\operatorname{Im} T$. Daí, como $\overrightarrow{0} = T(\overrightarrow{0})$, segue que $\overrightarrow{0} \in \operatorname{Im} T$, e $\operatorname{Im} T$ é subespaço. Mostremos, agora, (2). Seja T sobrejetora. Já temos que $\operatorname{Im} T \subset V$, donde basta vermos que $V \subset \operatorname{Im} T$. De fato, seja $v \in V$. Como T é sobrejetora,

Finalmente, mostremos (3). Seja T injetora. Se $u \in \text{Ker}T$, então $T(u) = \overrightarrow{0}$. Mas $T(\overrightarrow{0}) = \overrightarrow{0}$. Daí, como T é injetora e $T(u) = T(\overrightarrow{0})$, segue que $u = \overrightarrow{0}$ e $\text{Ker}T = \{\overrightarrow{0}\}$. Suponhamos agora que $\text{Ker}T = \{\overrightarrow{0}\}$. Se $u_1, u_2 \in U$ são tais que $T(u_1) = T(u_2)$, então, como T é linear, $T(u_1 - u_2) = \overrightarrow{0}$ e portanto $u_1 - u_2 \in \text{Ker}T = \{\overrightarrow{0}\}$. Logo, $u_1 - u_2 = \overrightarrow{0}$, isto é, $u_1 = u_2$ e T é injetora.

Observação 0.101. Notemos que o item 2 da proposição acima vale independemente de T ser linear.

Ainda, pela proposição acima, T é bijetora se, e somente se, $\operatorname{Im} T = V$ e $\operatorname{Ker} T = \{ \overrightarrow{0} \}.$

Definição 0.102. Seja $T: U \to V$ uma transformação linear. Chamamos a dimensão da imagem de T, $\dim_{\mathbb{K}} \operatorname{Im} T$, de **posto de** T e chamamos a dimensão do núcleo de T, $\dim_{\mathbb{K}} \operatorname{Ker} T$, de **nulidade de** T.

Exemplo 0.103. Seja $T: \mathbb{R}^3 \to \mathbb{M}_{2\times 2}(\mathbb{R})$ uma aplicação tal que $T(a,b,c) = \begin{pmatrix} c & 0 \\ 0 & a-b \end{pmatrix}$, para todo $(a,b,c) \in \mathbb{R}^3$. Então T é linear, a nulidade de T é 1 e o posto de T é 2. Ainda, T não é injetora, nem sobrejetora. De fato,

 $T(\alpha(a,b,c)+(a',b',c')) = T(\alpha a + a', \alpha b + b', \alpha c + c') = \begin{pmatrix} (\alpha c + c') & 0 \\ 0 & (\alpha a + a') - (\alpha b + b') \end{pmatrix} e$ $\alpha T(a,b,c) + T(a',b',c') = \alpha \begin{pmatrix} c & 0 \\ 0 & a - b \end{pmatrix} + \begin{pmatrix} c' & 0 \\ 0 & a' - b' \end{pmatrix} = \begin{pmatrix} (\alpha c + c') & 0 \\ 0 & (\alpha a + a') - (\alpha b + b') \end{pmatrix}.$ $Logo, T(\alpha(a,b,c) + (a',b',c')) = \alpha T(a,b,c) + T(a',b',c'), para todo \alpha, a, b, c,$ $a',b',c' \in \mathbb{R} \ e \ portanto \ T \ \'e \ linear.$

Agora, se $T(a,b,c) = \overrightarrow{0}$, então $\begin{pmatrix} c & 0 \\ 0 & a-b \end{pmatrix} = \overrightarrow{0}$ e portanto c = 0 e a = b. Logo, $\ker T = \{(a,b,c) \in \mathbb{R}^3 | T(a,b,c) = \overrightarrow{0}\} = \{(a,a,0) | a \in \mathbb{R}\} = [(1,1,0)]$. Como $\{(1,1,0)\}$ é LI, segue que é uma base de $\ker T$. Logo, a nulidade de T é 1. Agora, notemos que $T(a,b,c) = \begin{pmatrix} c & 0 \\ 0 & a-b \end{pmatrix} = \begin{pmatrix} c & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & a-b \end{pmatrix} = c \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + (a-b) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Daí, $\operatorname{Im} T = \{T(a,b,c) | (a,b,c) \in \mathbb{R}^3\} = \{c \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + (a-b) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} | a,b,c \in \mathbb{R}\} = [\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}]$. Desde que $\{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\}$ é LI (convença-se disto), então é uma base de $\operatorname{Im} T$. Assim o posto de T é 2. Notemos, ainda, que T não é injetora, pois $\operatorname{Ker} T \neq \{\overrightarrow{0}\}$, nem sobrejetora, pois $\operatorname{Im} T \neq \mathbb{M}_{2\times 2}(\mathbb{K})$.

Proposição 0.104. Sejam U, V espaços vetoriais sobre \mathbb{K} , com U sendo finitamente gerado. Seja $T: U \to V$ uma transformação linear. Se $\{u_1, \ldots, u_n\}$ é uma base de U, então $\{T(u_1), \ldots, T(u_n)\}$ gera $\mathrm{Im} T$.

De fato, seja $\mathcal{B} := \{u_1, \ldots, u_n\}$ uma base de U. Queremos mostrar que $\mathcal{G} := \{T(u_1), \ldots, T(u_n)\}$ é um conjunto gerador de $\operatorname{Im} T$. Consideremos então $v \in \operatorname{Im} T$ qualquer. Daí, existe $u \in U$ tal que v = T(u). Como $u \in U$ e \mathcal{B} é base de U, então existem $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ tais que $u = \alpha_1 u_1 + \cdots + \alpha_n u_n$. Logo, $T(u) = T(\alpha_1 u_1 + \cdots + \alpha_n u_n) \stackrel{T \text{ linear }}{=} \alpha_1 T(u_1) + \cdots + \alpha_n T(u_n)$. Daí, desde que v é uma combinação linear de vetores de \mathcal{G} , então \mathcal{G} gera $\operatorname{Im} T$.

Observação 0.105. Notemos que, na demonstração acima, só usamos o fato de que \mathcal{B} é um conjunto gerador de U, donde o resultado é mais geral do que o enunciado.

Vejamos agora o "teorema do núcleo e da imagem".

Teorema 0.106. Sejam U, V espaços vetoriais sobre \mathbb{K} , com U sendo finitamente gerado. Seja $T: U \to V$ uma transformação linear. Então $\dim_{\mathbb{K}} U = \dim_{\mathbb{K}} \operatorname{Ker} T + \dim_{\mathbb{K}} \operatorname{Im} T$.

Com efeito, como KerT é um subespaço vetorial de U e U é finitamente gerado, segue que KerT também o é. Daí, existe $\mathcal{B} := \{u_1, \ldots, u_m\} \subset \text{Ker}T$ uma base de KerT. Como \mathcal{B} é um conjunto LI contido em U, então existe uma base, \mathcal{C} , de U contendo \mathcal{B} , digamos $\mathcal{C} := \{u_1, \ldots, u_m, w_1, \ldots, w_p\}$. Daí, se mostrarmos que $\mathcal{D} := \{T(w_1), \ldots, T(w_p)\} \subset \text{Im}T$ é uma base de ImT, então $\dim_{\mathbb{K}} U = m + p = \dim_{\mathbb{K}} \text{Ker}T + \dim_{\mathbb{K}} \text{Im}T$. Façamos isto. Pelo resultado anterior, como \mathcal{C} é uma base de U, então $\{T(u_1), \ldots, T(u_m), T(w_1), \ldots, T(w_p)\}$ gera ImT. Desde que $T(u_1) = T(u_2) = \cdots = T(u_m) = 0$, pois $\mathcal{B} \subset \text{Ker}T$, então \mathcal{D} já gera ImT. Mostremos que é LI. Seja $c := \alpha_1 T(w_1) + \alpha_2 T(w_2) + \cdots + \alpha_p T(w_p)$ uma combinação linear qualquer de vetores de \mathcal{D} . Suponhamos que c é o vetor nulo. Daí, $0 = \alpha_1 T(w_1) + \alpha_2 T(w_2) + \cdots + \alpha_p T(w_p)$

 $T(\alpha_1 w_1 + \alpha_2 w_2 + \cdots + \alpha_p w_p)$, isto é, $\sum_{i=1}^p \alpha_i w_i \in \text{Ker}T$. Como \mathcal{B} é uma base de KerT, segue que existem escalares β_1, \ldots, β_m tais que $\sum_{i=1}^p \alpha_i w_i = \beta_1 u_1 + \beta_2 u_2 + \cdots + \beta_m u_m$. Já que $\sum_{i=1}^p \alpha_i w_i - \sum_{i=1}^m \beta_i u_i = 0$ é uma combinação linear de vetores de \mathcal{C} resultando no vetor nulo, então $\alpha_1 = \alpha_2 = \cdots = \alpha_p = 0$, $\beta_1 = \beta_2 = \cdots = \beta_m = 0$ e concluímos que \mathcal{D} é LI e portanto que é uma base de ImT.

Isomorfismo de espaços vetoriais

Definição 0.107. Sejam U, V espaços vetoriais sobre \mathbb{K} .

- 1. Seja $T: U \to V$ uma transformação linear. Dizemos que T é um isomorfismo (de espaços vetoriais) se T for bijetora.
- 2. Dizemos que U e V são isomorfos, se existe um isomorfismo (de espaços vetoriais) entre eles. Notação: $U \cong V$.

Exemplo 0.108. Seja U um espaço vetorial sobre \mathbb{K} , com $\dim_{\mathbb{K}} U > 0$. Então a identidade de U, $Id: U \to U$ dada por Id(u) = u, para todo $u \in U$, é um isomorfismo, mas a transformação identicamente nula, $T: U \to U$ dada por $T(u) = \stackrel{\rightarrow}{0}$, para todo $u \in U$, não o é. Aqui vemos que $U \cong U$, mas que nem toda transformação linear de U em U é um isomorfismo.

Observação 0.109. Sejam U, V espaços vetoriais sobre \mathbb{K} , com U sendo finitamente gerado. Se $U \cong V$, então $\dim_{\mathbb{K}} U = \dim_{\mathbb{K}} V$. De fato, como $U \cong V$, segue que existe um isomorfismo $T: U \to V$. Então, se $\mathcal{B} := \{u_1, \ldots, u_m\}$ é uma base de U, temos que $\mathcal{C} := \{T(u_1), \ldots, T(u_m)\}$ gera $\mathrm{Im} T = V$, pois T é sobrejetora. Daí, se mostrarmos que \mathcal{C} é também LI, então $\dim_{\mathbb{K}} U = m = \dim_{\mathbb{K}} V$. Façamos isto. Seja $c := \alpha_1 T(u_1) + \alpha_2 T(u_2) + \cdots + \alpha_m T(u_m)$ uma combinação linear qualquer de elementos de \mathcal{C} . Suponhamos que c é o vetor nulo. Daí, $\overrightarrow{0} = \alpha_1 T(u_1) + \alpha_2 T(u_2) + \cdots + \alpha_m T(u_m)$ $\overset{T \text{linear}}{=} T(\alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_m T(u_m))$

 $\cdots + \alpha_m u_m$) e portanto $\sum_{i=1}^m \alpha_i u_i \in \text{Ker} T = \{\overrightarrow{0}\}$, pois T é injetora. Assim, como $\sum_{i=1}^m \alpha_i u_i = \overrightarrow{0}$ e \mathcal{B} é LI, então $\alpha_1 = \alpha_2 = \cdots = \alpha_m = 0$ e portanto \mathcal{C} é LI.

Observação 0.110. Assim, se dois espaços são isomorfos e conhecemos a dimensão de um deles, então já sabemos que a dimensão do outro é a mesma coisa.

Veremos mais adiante a recíproca deste resultado, isto é, que se dois espaços têm a mesma dimensão, então eles são isomorfos.

Proposição 0.111. Seja $T: U \to V$ um isomorfismo. Então a inversa de $T, T^{-1}: V \to U$, é uma transformação linear.

De fato, lembremos que $T \circ T^{-1} = Id_V$ e $T^{-1} \circ T = Id_U$. Em particular, ambas as compostas são transformações lineares. Sejam $v_1, v_2 \in V$, $\alpha \in \mathbb{K}$ quaisquer e mostremos que $T^{-1}(\alpha v_1 + v_2) = \alpha T^{-1}(v_1) + T^{-1}(v_2)$. Com efeito, como $V = \operatorname{Im} T$, então existem $u_1, u_2 \in U$ tais que $v_1 = T(u_1)$ e $v_2 = T(u_2)$. Então $T^{-1}(\alpha v_1 + v_2) = T^{-1}(\alpha T(u_1) + T(u_2)) \stackrel{T \text{ linear}}{=} T^{-1}(T(\alpha u_1 + u_2)) = (T^{-1} \circ T)(\alpha u_1 + u_2) \stackrel{T^{-1} \circ T \text{ linear}}{=} \alpha (T^{-1} \circ T)(u_1) + (T^{-1} \circ T)(u_2) = \alpha T^{-1}(T(u_1)) + T^{-1}(T(u_2)) = \alpha T^{-1}(v_1) + T^{-1}(v_2)$ e portanto T^{-1} é linear.

Proposição 0.112. Sejam U, V espaços vetoriais sobre \mathbb{K} , com $\dim_{\mathbb{K}} U = \dim_{\mathbb{K}} V = n$. Seja $T: U \to V$ uma transformação linear. Então as condições abaixo são equivalentes:

- 1. T é um isomorfismo
- 2. T é sobrejetora
- 3. T é injetora

Façamos (1 \Leftrightarrow 2). De fato, se T é um isomorfismo, é claro que T é sobrejetora. Agora, se T é sobrejetora, então ImT = V. Daí, pelo teorema do núcleo e da

imagem, $n = \dim_{\mathbb{K}} U = \dim_{\mathbb{K}} \operatorname{Ker} T + \dim_{\mathbb{K}} \operatorname{Im} T = \dim_{\mathbb{K}} \operatorname{Ker} T + \dim_{\mathbb{K}} V = \dim_{\mathbb{K}} \operatorname{Ker} T + n$, donde $\dim_{\mathbb{K}} \operatorname{Ker} T = 0$ e portanto $\operatorname{Ker} T = \{\overrightarrow{0}\}$, isto é, T é injetora. Logo, como T é linear e bijetora, segue que é um isomorfismo. Façamos agora $(1 \Leftrightarrow 3)$. Com efeito, se T é um isomorfismo, é direto que T é injetora. Agora, se T é injetora, então $\operatorname{Ker} T = \{\overrightarrow{0}\}$. Assim, pelo teorema do

injetora. Agora, se T é injetora, então $\operatorname{Ker} T = \{\overrightarrow{0}\}$. Assim, pelo teorema do núcleo e da imagem, $n = \dim_{\mathbb{K}} U = \dim_{\mathbb{K}} \operatorname{Ker} T + \dim_{\mathbb{K}} \operatorname{Im} T = 0 + \dim_{\mathbb{K}} \operatorname{Im} T$, donde $\dim_{\mathbb{K}} \operatorname{Im} T = n$ e portanto $\operatorname{Im} T = V$, ou seja, T é sobrejetora. Logo, desde que T é linear e bijetora, então é um isomorfismo.

Exemplo 0.113. Seja $T: \mathbb{R}^2 \to \mathbb{R}^3$ uma aplicação tal que T(x,y) = (y,x,y-x), para todo $(x,y) \in \mathbb{R}^2$. Então T é linear, injetora e não é sobrejetora. Com efeito,

 $T(\alpha(x,y) + (\tilde{x},\tilde{y})) = T(\alpha x + \tilde{x}, \alpha y + \tilde{y}) = (\alpha y + \tilde{y}, \alpha x + \tilde{x}, (\alpha y + \tilde{y}) - (\alpha x + \tilde{x}))e$ $\alpha T(x,y) + T(\tilde{x},\tilde{y}) = \alpha(y,x,y-x) + (\tilde{y},\tilde{x},\tilde{y}-\tilde{x}) = (\alpha y + \tilde{y}, \alpha x + \tilde{x}, (\alpha y + \tilde{y}) - (\alpha x + \tilde{x})).$

Então $T(\alpha(x,y) + (\tilde{x},\tilde{y})) = \alpha T(x,y) + T(\tilde{x},\tilde{y})$, para todo $\alpha, x, y, \tilde{x}, \tilde{y} \in \mathbb{R}$ e T é linear.

A fim de verificarmos se T é, ou não, injetora, analisemos o núcleo de T. Se T(x,y)=(0,0,0), então (y,x,y-x)=(0,0,0) e portanto y=0=x, ou seja, se $(x,y)\in \mathrm{Ker}T$, então (x,y)=(0,0). Logo, $\mathrm{Ker}T=\{(0,0)\}$ e T é injetora. Um segundo jeito seria tomarmos $(x,y), (\tilde{x},\tilde{y})\in \mathbb{R}^2$ tais que $T(x,y)=T(\tilde{x},\tilde{y})$, fazermos as contas e concluirmos que $x=\tilde{x}$ e $y=\tilde{y}$.

Com o intuito de vermos se T é, ou não, sobrejetora, analisemos a imagem de T. Como (y, x, y - x) = y(1, 0, 1) + x(0, 1, -1), então $\operatorname{Im} T = [(1, 0, 1), (0, 1, -1)]$. Daí, $\dim_{\mathbb{R}} \operatorname{Im} T < 3 = \dim_{\mathbb{R}} \mathbb{R}^3$ e $\operatorname{Im} T$ não pode ser todo o \mathbb{R}^3 , ou seja, T não é sobrejetora. Uma segunda maneira seria exibirmos uma tripla $(x_0, y_0, z_0) \neq (y, x, y - x)$, para todo $x, y \in \mathbb{R}$. Por exemplo, tomando $z_0 := 0$ e $x_0 := 1 \neq 2 =: y_0$, temos que não existem $x, y \in \mathbb{R}$ tais que (1, 2, 0) = (y, x, y - x).

Exemplo 0.114. Seja $T : \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ uma aplicação tal que T(p(x)) = p'(x), onde se $p(x) = a_3x^3 + a_2x^2 + a_1x + a_0$, então $p'(x) = 3a_3x^2 + 2a_2x + a_1$. Então T é linear (verifique), sobrejetora e não é injetora.

De fato, para mostrarmos que T é sobrejetora, basta tomarmos $q(x) \in \mathcal{P}_2(\mathbb{R})$ qualquer e exibirmos $p(x) \in \mathcal{P}_3(\mathbb{R})$ tal que q(x) = p'(x). Dado $q(x) = b_2x^2 + b_1x + b_0$, queremos escrever $q(x) = 3a_3x^2 + 2a_2x + a_1$, para algum $a_3, a_2, a_1 \in \mathbb{R}$, donde basta escolhermos $a_3 := \frac{b_2}{3}$, $a_2 := \frac{b_1}{2}$ e $a_1 := b_0$. Daí, temos que $p(x) = \frac{b_2}{3}x^3 + \frac{b_1}{2}x^2 + b_0x \in \mathcal{P}_3(\mathbb{R})$ é tal que T(p(x)) = q(x) e T é sobrejetora. Um outro jeito seria vermos que $\operatorname{Im} T$ é gerada por um conjunto com 3 vetores que, por sua vez, também gera $\mathcal{P}_2(\mathbb{R})$, e concluirmos que $\operatorname{Im} T = \mathcal{P}_2(\mathbb{R})$.

Para verificarmos que T não é injetora, basta vermos que o núcleo de T é diferente de $\{\vec{0}\}$. Assim, se $T(a_3x^3 + a_2x^2 + a_1x + a_0) = \vec{0}$, então $3a_3x^2 + 2a_2x + a_1 = \vec{0}$ e portanto $a_3 = a_2 = a_1 = 0$. Daí, concluímos que $T(a_0) = \vec{0}$, para todo $a_0 \in \mathbb{R}$, isto é, todos os polinômios constantes de $\mathcal{P}_3(\mathbb{R})$ estão no núcleo de T. Logo, T não é injetora (notemos que mostramos também que KerT = [1]).

Os exemplos acima ilustram um fato mais geral:

Observação 0.115. Sejam U, V espaços vetoriais sobre \mathbb{K} , com U sendo finitamente gerado. Seja $T: U \to V$ uma transformação linear.

- 1. Se $\dim_{\mathbb{K}} U > \dim_{\mathbb{K}} V$, então T não é injetora
- 2. Se $\dim_{\mathbb{K}} U < \dim_{\mathbb{K}} V$, então T não é sobrejetora

De fato, temos que $\dim_{\mathbb{K}} U = \dim_{\mathbb{K}} \operatorname{Ker} T + \dim_{\mathbb{K}} \operatorname{Im} T$. Se $\dim_{\mathbb{K}} U > \dim_{\mathbb{K}} V \geqslant \dim_{\mathbb{K}} \operatorname{Im} T$, então $\dim_{\mathbb{K}} \operatorname{Ker} T > 0$ (isto é, não pode ser 0), donde $\operatorname{Ker} T \neq \{\overrightarrow{0}\}$ e T não é injetora. Por outro lado, se $\dim_{\mathbb{K}} V > \dim_{\mathbb{K}} U$, então $\dim_{\mathbb{K}} V > \dim_{\mathbb{K}} \operatorname{Im} T$ (ou seja, $\dim_{\mathbb{K}} \operatorname{Im} T$ não pode ser $\dim_{\mathbb{K}} V$), donde $\operatorname{Im} T \neq V$ e T não é sobrejetora.

Exemplo 0.116. Seja $T: \mathbb{R}^2 \to \mathbb{R}^3$ uma aplicação dada por T(x,y) = (2x - 2y, 0, y - x). Então T é linear (verifique), mas não é injetora, nem sobrejetora. De fato, pela observação acima, já sabemos que T não é sobrejetora. Para vermos que T não é injetora, basta notarmos, por exemplo, que T(2,3) = T(1,2). Um outro jeito seria verificarmos que T(2,3) = T(1,2).

Exemplo 0.117. Seja $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_1(\mathbb{R})$ uma aplicação dada por $T(a_2x^2 + a_1x + a_0) = (a_2 - a_1 + a_0)x$. Então T é linear (verifique), mas não é injetora, nem sobrejetora. Com efeito, pela observação acima, já sabemos que T não é injetora. Para vermos que T não é sobrejetora, basta notarmos, por exemplo, que $1 \in \mathcal{P}_1(\mathbb{R})$ não está na imagem de T (na verdade, nenhum polinômio que tem termo independente diferente de zero está na imagem de T). Um outro jeito seria verificarmos que $\text{Im} T = [x] \neq [1, x] = \mathcal{P}_1(\mathbb{R})$.

Teorema 0.118. Dois espaços vetoriais finitamente gerados de mesma dimensão são isomorfos.

De fato, sejam U, V espaços vetoriais sobre \mathbb{K} , com $\dim_{\mathbb{K}} U = \dim_{\mathbb{K}} V = m$. Sejam $\mathcal{B} := \{u_1, \ldots, u_m\}$ e $\mathcal{C} := \{v_1, \ldots, v_m\}$ bases de U e V, respectivamente. Por um lado, como \mathcal{B} é base de U, sabemos, por uma proposição anterior, que existe uma única transformação linear $T: U \to V$ tal que $T(u_i) = v_i$, com $i = 1, \ldots, m$. Por outro lado, desde que \mathcal{C} é base de V, sabemos, pela mesma proposição, que existe uma única transformação linear $S: V \to U$ tal que $S(v_i) = u_i$, com $i = 1, \ldots, m$. Daí, obtemos que $(S \circ T)(u_i) = S(T(u_i)) = S(v_i) = u_i$ (*) e $(T \circ S)(v_i) = v_i$, para todo $i = 1, \ldots, m$. Seja $u \in U$ qualquer. Então $u = \sum_{i=1}^m \alpha_i u_i$, para algum $\alpha_1, \ldots, \alpha_m \in \mathbb{K}$. Logo, como $S \circ T$ é linear, segue que $(S \circ T)(u) = (S \circ T)(\sum_{i=1}^m \alpha_i u_i) = \sum_{i=1}^m \alpha_i (S \circ T)(u_i) \stackrel{\text{(*)}}{=} \sum_{i=1}^m \alpha_i u_i = u$, para todo $u \in U$ e portanto $S \circ T = Id_U$ (transformação identidade de U). Analogamente, $T \circ S = Id_V$. Logo, T é bijetora e portanto isomorfismo.

Exemplo 0.119. Sejam $S,T: \mathbb{R}^2 \to \mathcal{P}_1(\mathbb{R})$ transformações lineares dadas por S(a,b) = ax + b e T(a,b) = b. Então S é um isomorfismo (como os espaços têm a mesma dimensão, basta ver que S é injetora, por exemplo) e T não é um isomorfismo (pois T não é injetora). Verifique.

Observação 0.120. Aqui vemos que $\mathbb{R}^2 \cong \mathcal{P}_1(\mathbb{R})$ (*), mas que nem toda transformação linear de um no outro é um isomorfismo. Podemos verificar (*) ao exibirmos um isomorfismo S, ou ao constatarmos que ambos têm a mesma dimensão e usarmos o resultado anterior.

Corolário 0.121. Se V é um espaço vetorial sobre \mathbb{K} , com $\dim_{\mathbb{K}} V = n$, então $V \cong \mathbb{K}^n$.

Basta notarmos que $\dim_{\mathbb{K}} \mathbb{K}^n = n$ e aplicarmos o teorema anterior.

Matriz de transformação linear

Sejam U, V espaços vetoriais sobre \mathbb{K} , com $\dim_{\mathbb{K}} U = n$, $\dim_{\mathbb{K}} V = m$. Sejam $\mathcal{B} := \{u_1, \dots, u_n\}$ e $\mathcal{C} := \{v_1, \dots, v_m\}$ bases de U e V, respectivamente. Seja $T: U \to V$ uma transformação linear. Desde que $T(u_1) \in V$ e \mathcal{C} é uma base de V, existem (únicos) escalares a_{11}, \dots, a_{m1} tais que $T(u_1) = a_{11}v_1 + a_{21}v_2 + \dots + a_{m1}v_m$. Analogamente, para todo j, existem (únicos) escalares a_{1j}, \dots, a_{mj} tais que $T(u_j) = a_{1j}v_1 + a_{2j}v_2 + \dots + a_{mj}v_m$. Seja $u \in U$. Desde que \mathcal{B} é uma base de U, existem (únicos) escalares $\alpha_1, \dots, \alpha_n$ tais que $[u]_{\mathcal{B}} = (\alpha_1, \dots, \alpha_n)_{\mathcal{B}}$. Como $T(u) \in V$ e \mathcal{C} é uma base de V, existem (únicos) escalares β_1, \dots, β_m tais que $[T(u)]_{\mathcal{C}} = (\beta_1, \dots, \beta_m)_{\mathcal{C}}$. Mas será que não conseguimos explicitar β_1, \dots, β_m em função das informações já fixadas? Vejamos: por um lado, $T(u) = \sum_{i=1}^m \beta_i v_i$. Por outro lado, $T(u) = T(\sum_{j=1}^n \alpha_j u_j)^{T \text{linear}} \sum_{j=1}^n \alpha_j T(u_j) = \sum_{j=1}^n \alpha_j (\sum_{i=1}^m a_{ij} v_i) = \sum_{i=1}^m \left(\sum_{j=1}^n \alpha_j a_{ij}\right) v_i$. Desde que a combinação linear é única, pois \mathcal{C} é base,

então $\beta_1 = \sum_{j=1}^n \alpha_j a_{1j}, \ldots, \beta_m = \sum_{j=1}^n \alpha_j a_{mj}$. Em notação matricial, obtemos que:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{pmatrix}$$

Definição 0.122. Sejam U, V espaços vetoriais sobre \mathbb{K} , com $\dim_{\mathbb{K}} U = n$, $\dim_{\mathbb{K}} V = m$. Sejam \mathcal{B} e \mathcal{C} bases de U e V, respectivamente, digamos $\mathcal{B} := \{u_1, \ldots, u_n\}$. Seja $T: U \to V$ uma transformação linear. Definimos a matriz de T com relação às bases \mathcal{B} e \mathcal{C} como sendo a matriz $(a_{ij}) \in \mathbb{M}_{m \times n}(\mathbb{K})$, onde $(a_{1j}, a_{2j}, \ldots, a_{mj}) = [T(u_j)]_{\mathcal{C}}$, para todo $j = 1, \ldots, n$. Notação: $[T]_{\mathcal{B},\mathcal{C}} := (a_{ij})$.

Observação 0.123. Com as mesmas notações, usando a notação matricial acima, notemos que $[T]_{\mathcal{B},\mathcal{C}}.[u]_{\mathcal{B}} = [T(u)]_{\mathcal{C}}$, onde vemos as coordenadas, por exemplo, de u com relação à base \mathcal{B} como sendo um vetor coluna $n \times 1$, isto é, se $[u]_{\mathcal{B}} = (\alpha_1, \alpha_2, \ldots, \alpha_n)$, então consideramos

$$[u]_{\mathcal{B}} := \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}.$$

Relembremos a definição de multiplicação entre matrizes.

Observação 0.124. Sabemos multiplicar duas matrizes do seguinte modo:

$$\begin{array}{ccc}
\cdot : & \mathbb{M}_{m \times n}(\mathbb{K}) \times \mathbb{M}_{n \times p}(\mathbb{K}) & \to & \mathbb{M}_{m \times p}(\mathbb{K}) \\
& ((a_{ij})_{i,j}, (b_{jk})_{j,k}) & \mapsto & (a_{ij})_{i,j}.(b_{jk})_{j,k} := \left(\sum_{j=1}^{n} a_{ij} b_{jk}\right)_{i,k}
\end{array}$$

isto é,

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{pmatrix} := \\ \begin{pmatrix} \sum_{j=1}^{n} a_{1j}b_{j1} & \sum_{j=1}^{n} a_{1j}b_{j2} & \cdots & \sum_{j=1}^{n} a_{1j}b_{jp} \\ \sum_{j=1}^{n} a_{2j}b_{j1} & \sum_{j=1}^{n} a_{2j}b_{j2} & \cdots & \sum_{j=1}^{n} a_{2j}b_{jp} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{j=1}^{n} a_{mj}b_{j1} & \sum_{j=1}^{n} a_{mj}b_{j2} & \cdots & \sum_{j=1}^{n} a_{mj}b_{jp} \end{pmatrix}.$$

Por exemplo,

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \cdot \begin{pmatrix} b_{11} \\ b_{21} \\ b_{31} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} \end{pmatrix}.$$

Exemplo 0.125. Seja $T: \mathbb{R}^2 \to \mathbb{R}^3$ uma transformação linear dada por T(x,y)=(y,x,y-x). Sejam \mathcal{B}_C^2 e \mathcal{B}_C^3 as bases canônicas de \mathbb{R}^2 e \mathbb{R}^3 , respectivamente. Sejam $\mathcal{B}:=\{(1,1),(1,2)\}$ e $\mathcal{C}:=\{(1,1,0),(1,1,1),(1,0,0)\}$ outras bases de \mathbb{R}^2 e \mathbb{R}^3 , respectivamente. Então

$$T(1,1) = (1,1,0) = \mathbf{1}.(1,1,0) + \mathbf{0}.(1,1,1) + \mathbf{0}.(1,0,0) \Rightarrow [T(1,1)]_{\mathcal{C}} = (1,0,0)$$
$$= \mathbf{1}.(1,0,0) + \mathbf{1}.(0,1,0) + \mathbf{0}.(0,0,1) \Rightarrow [T(1,1)]_{\mathcal{B}_{\mathcal{C}}^{3}} = (1,1,0),$$

$$\begin{split} T(1,2) = & (2,1,1) = \mathbf{0}.(1,1,0) + \mathbf{1}.(1,1,1) + \mathbf{1}.(1,0,0) \Rightarrow [T(1,2)]_{\mathcal{C}} = (0,1,1) \\ = & \mathbf{2}.(1,0,0) + \mathbf{1}.(0,1,0) + \mathbf{1}.(0,0,1) \Rightarrow [T(1,2)]_{\mathcal{B}^3_{\mathcal{C}}} = (2,1,1). \end{split}$$

Logo,

$$[T]_{\mathcal{B},\mathcal{C}} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} e [T]_{\mathcal{B},\mathcal{B}_C^3} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Ainda, como $[T(1,0)]_{\mathcal{C}} = (2,-1,-1), [T(0,1)]_{\mathcal{C}} = (-1,1,1), [T(1,0)]_{\mathcal{B}_{\mathcal{C}}^3} = (0,1,-1) \ e \ [T(0,1)]_{\mathcal{B}_{\mathcal{C}}^3} = (1,0,1), \ segue \ que$

$$[T]_{\mathcal{B}_{C}^{2},\mathcal{C}} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \\ -1 & 1 \end{pmatrix} e [T]_{\mathcal{B}_{C}^{2},\mathcal{B}_{C}^{3}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{pmatrix}.$$

Exemplo 0.126. Seja $S: \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ uma transformação linear dada por S(p(x)) = p'(x), onde se $p(x) = a_3x^3 + a_2x^2 + a_1x + a_0$, então $p'(x) = 3a_3x^2 + 2a_2x + a_1$. Sejam $\mathcal{B}_C^3 = \{1, x, x^2, x^3\}$ e $\mathcal{B}_C^2 = \{1, x, x^2\}$ as bases canônicas de $\mathcal{P}_3(\mathbb{R})$ e $\mathcal{P}_2(\mathbb{R})$, respectivamente. Como

$$\begin{cases} S(1) &= 0 &= 0.1 + 0.x + 0.x^2 + 0.x^3 \\ S(x) &= 1 &= 1.1 + 0.x + 0.x^2 + 0.x^3 \\ S(x^2) &= 2x &= 0.1 + 2.x + 0.x^2 + 0.x^3 \\ S(x^3) &= 3x^2 &= 0.1 + 0.x + 3.x^2 + 0.x^3 \end{cases}$$

 $ent\~ao$

$$[S]_{\mathcal{B}_C^3, \mathcal{B}_C^2} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

 $\acute{e} \ a \ matriz \ de \ S \ com \ relação \ às \ bases \ \mathcal{B}_{C}^{3} \ e \ \mathcal{B}_{C}^{2}.$

Observação 0.127. Sejam U, V espaços vetoriais sobre \mathbb{K} , e \mathcal{B}, \mathcal{C} bases de U, V, respectivamente, digamos $\mathcal{B} := \{u_1, \ldots, u_n\}$ e $\mathcal{C} := \{v_1, \ldots, v_m\}$. Por um lado, se $T: U \to V$ é uma transformação linear, então existe uma única matriz $[T]_{\mathcal{B},\mathcal{C}} \in \mathbb{M}_{m \times n}(\mathbb{K})$, em vista da unicidade das coordenadas de $T(u_j)$ com relação à base \mathcal{C} , para todo $j = 1, \ldots, n$.

Por outro lado, dada uma matriz $M = (a_{ij}) \in \mathbb{M}_{m \times n}(\mathbb{K})$, existe uma única transformação linear $S: U \to V$ tal que $[S]_{\mathcal{B},\mathcal{C}} = M$. De fato, consideremos $\mathcal{D} := \{\sum_{i=1}^m a_{i1}v_i \sum_{i=1}^m a_{i2}v_i \dots, \sum_{i=1}^m a_{in}v_i\}$ um subconjunto de vetores de V. Notemos que \mathcal{D} tem o mesmo número de vetores da base \mathcal{B} de U. Daí, temos um resultado que diz que existe uma única transformação linear $S: U \to V$ tal que $S(u_j) = \sum_{i=1}^m a_{ij}v_i$, para todo $j = 1, \dots, n$. Assim, $[S(u_j)]_{\mathcal{C}} = (a_{1j}, a_{2j}, \dots, a_{mj})$ e portanto $[S]_{\mathcal{B},\mathcal{C}} = (a_{ij}) = M$.

Proposição 0.128. Sejam U, V, W espaços vetoriais sobre \mathbb{K} , com $\dim_{\mathbb{K}} U = n$, $\dim_{\mathbb{K}} V = m$ e $\dim_{\mathbb{K}} W = p$. Sejam $\mathcal{B}, \mathcal{C}, \mathcal{D}$ bases de U, V, W, respectivamente. Sejam $T: U \to V$ e $S: V \to W$ transformações lineares. Então $[S \circ T]_{\mathcal{B},\mathcal{D}} = [S]_{\mathcal{C},\mathcal{D}}.[T]_{\mathcal{B},\mathcal{C}}$.

Inicialmente, notemos que $[S]_{\mathcal{C},\mathcal{D}} \in \mathbb{M}_{p\times m}(\mathbb{K})$ e $[T]_{\mathcal{B},\mathcal{C}} \in \mathbb{M}_{m\times n}(\mathbb{K})$, donde $[S]_{\mathcal{C},\mathcal{D}}.[T]_{\mathcal{B},\mathcal{C}} \in \mathbb{M}_{p\times n}(\mathbb{K})$ e faz sentido nos perguntarmos se esta é igual a $[S \circ T]_{\mathcal{B},\mathcal{D}} \in \mathbb{M}_{p\times n}(\mathbb{K})$. Seja $\mathcal{B} := \{u_1,\ldots,u_n\}$. Então $([S]_{\mathcal{C},\mathcal{D}}.[T]_{\mathcal{B},\mathcal{C}}).[u_j]_{\mathcal{B}} = [S]_{\mathcal{C},\mathcal{D}}.([T]_{\mathcal{B},\mathcal{C}}.[u_j]_{\mathcal{B}}) = [S]_{\mathcal{C},\mathcal{D}}.[T(u_j)]_{\mathcal{C}} = [S(T(u_j))]_{\mathcal{D}} = [(S \circ T)(u_j)]_{\mathcal{D}}$, isto é, $[S]_{\mathcal{C},\mathcal{D}}.[T]_{\mathcal{B},\mathcal{C}}$ é a matriz $(a_{ij}) \in \mathbb{M}_{p\times n}(\mathbb{K})$, onde $(a_{1j},a_{2j},\ldots,a_{pj}) = [(S \circ T)(u_j)]_{\mathcal{D}}$, para todo $j = 1\ldots,n$. Daí, pela definição de $[S \circ T]_{\mathcal{B},\mathcal{D}}$, então $[S]_{\mathcal{C},\mathcal{D}}.[T]_{\mathcal{B},\mathcal{C}} = [S \circ T]_{\mathcal{B},\mathcal{D}}$.

Observação 0.129. Notemos que uma transformação linear é invertível (isto é, tal que existe a inversa) se, e somente se, é um isomorfismo.

Corolário 0.130. Sejam U, V espaços vetoriais sobre \mathbb{K} , com $\dim_{\mathbb{K}} U = \dim_{\mathbb{K}} V = n > 0$. Sejam \mathcal{B}, \mathcal{C} bases de U, V, respectivamente. Seja $T: U \to V$ uma transformação linear. Então T é invertível se, e somente se, $[T]_{\mathcal{B},\mathcal{C}}$ é invertível (e neste caso, $([T]_{\mathcal{B},\mathcal{C}})^{-1} = [T^{-1}]_{\mathcal{C},\mathcal{B}}$).

Se T é invertível, então existe $T^{-1}: V \to U$, que é uma transformação linear, tal que $T \circ T^{-1} = Id_V$ e $T^{-1} \circ T = Id_U$. Notemos que $[T]_{\mathcal{B},\mathcal{C}}, [T^{-1}]_{\mathcal{C},\mathcal{B}} \in \mathbb{M}_{n \times n}(\mathbb{K})$. Daí, pelo resultado anterior, $[T]_{\mathcal{B},\mathcal{C}}.[T^{-1}]_{\mathcal{C},\mathcal{B}} = [T \circ T^{-1}]_{\mathcal{C},\mathcal{C}} = [Id_V]_{\mathcal{C},\mathcal{C}} = I_n$ e $[T^{-1}]_{\mathcal{C},\mathcal{B}}.[T]_{\mathcal{B},\mathcal{C}} = [T^{-1} \circ T]_{\mathcal{B},\mathcal{B}} = [Id_U]_{\mathcal{B},\mathcal{B}} = I_n$, onde $I_n \in \mathbb{M}_{n \times n}(\mathbb{K})$ denota a matriz identidade $n \times n$. Logo, $[T]_{\mathcal{B},\mathcal{C}}$ é invertível e $([T]_{\mathcal{B},\mathcal{C}})^{-1} = [T^{-1}]_{\mathcal{C},\mathcal{B}}.$

Agora, se $[T]_{\mathcal{B},\mathcal{C}}$ é invertível, então existe $([T]_{\mathcal{B},\mathcal{C}})^{-1} \in \mathbb{M}_{n\times n}(\mathbb{K})$ tal que $[T]_{\mathcal{B},\mathcal{C}}.([T]_{\mathcal{B},\mathcal{C}})^{-1} = I_n = ([T]_{\mathcal{B},\mathcal{C}})^{-1}.[T]_{\mathcal{B},\mathcal{C}}$. Mas, dada a matriz $([T]_{\mathcal{B},\mathcal{C}})^{-1}$, sabemos que existe uma única transformação linear $S: V \to U$ tal que $[S]_{\mathcal{C},\mathcal{B}} = ([T]_{\mathcal{B},\mathcal{C}})^{-1}$. Daí, pelo resultado anterior, temos que $[T \circ S]_{\mathcal{C},\mathcal{C}} = I_n = [S \circ T]_{\mathcal{B},\mathcal{B}}$.

Seja $u \in U$ qualquer. Como $[(S \circ T)(u)]_{\mathcal{B}} = [S \circ T]_{\mathcal{B},\mathcal{B}}.[u]_{\mathcal{B}} = I_n.[u]_{\mathcal{B}} = [u]_{\mathcal{B}}$, isto é, os vetores $(S \circ T)(u)$ e u têm as mesmas coordenadas com relação à base \mathcal{B} , então $(S \circ T)(u) = u$, para todo $u \in U$. Logo, $S \circ T = Id_U$. Analogamente, obtemos que $T \circ S = Id_V$. Portanto, T é invertível, $T^{-1} = S$ e $[T^{-1}]_{\mathcal{C},\mathcal{B}} = ([T]_{\mathcal{B},\mathcal{C}})^{-1}$.

Observação 0.131. Sejam U, V espaços vetoriais sobre \mathbb{K} . Sejam S, T: $U \to V$ transformações lineares e $\lambda \in \mathbb{K}$. Definindo $S + T : U \to V$ por (S + T)(u) = S(u) + T(u) e $\lambda S : U \to V$ por $(\lambda S)(u) = \lambda . S(u)$, temos que ambas são transformações lineares (verifique). Consideremos o conjunto, $\mathcal{L}(U, V)$, de todas as transformações lineares de U em V, e as operações sobre $\mathcal{L}(U, V)$:

$$+: \mathcal{L}(U,V) \times \mathcal{L}(U,V) \to \mathcal{L}(U,V)$$

$$(S,T) \to S+T$$

$$\cdot: \mathbb{K} \times \mathcal{L}(U,V) \to \mathcal{L}(U,V)$$

$$(\lambda,S) \to \lambda S$$

Então, com estas operações, $\mathcal{L}(U,V)$ é um espaço vetorial sobre \mathbb{K} (verifique as propriedades). Notemos apenas que o vetor nulo de $\mathcal{L}(U,V)$ é a transformação identicamente nula.

Observação 0.132. Sejam U, V espaços vetoriais sobre \mathbb{K} , com $\dim_{\mathbb{K}} U = n$ e $\dim_{\mathbb{K}} V = m$. Sejam \mathcal{B}, \mathcal{C} bases de U, V, respectivamente, digamos $\mathcal{C} := \{v_1, \ldots, v_m\}$. Sejam $S, T \in \mathcal{L}(U, V)$ e $\lambda \in \mathbb{K}$. Então $[S + T]_{\mathcal{B},\mathcal{C}} = [S]_{\mathcal{B},\mathcal{C}} + [T]_{\mathcal{B},\mathcal{C}}$ e $[\lambda S]_{\mathcal{B},\mathcal{C}} = \lambda.[S]_{\mathcal{B},\mathcal{C}}$. De fato, seja $u \in U$. Se $[S(u)]_{\mathcal{C}} = (\alpha_1, \ldots, \alpha_m)$ e $[T(u)]_{\mathcal{C}} = (\beta_1, \ldots, \beta_m)$, então $(S + T)(u) = S(u) + T(u) = \sum_{i=1}^m \alpha_i v_i + \sum_{i=1}^m \beta_i v_i = \sum_{i=1}^m (\alpha_i + \beta_i) v_i$, ou seja, $[(S + T)(u)]_{\mathcal{C}} = (\alpha_1 + \beta_1, \ldots, \alpha_m + \beta_m) = [S(u)]_{\mathcal{C}} + [T(u)]_{\mathcal{C}}$. Da mesma forma, obtemos que $[(\lambda S)(u)]_{\mathcal{C}} = (\lambda \beta_1, \ldots, \lambda \beta_m) = \lambda[S(u)]_{\mathcal{C}}$. Logo, $[S + T]_{\mathcal{B},\mathcal{C}}.[u]_{\mathcal{B}} = ([S]_{\mathcal{B},\mathcal{C}} + [T]_{\mathcal{B},\mathcal{C}}).[u]_{\mathcal{B}}$ e $[\lambda S]_{\mathcal{B},\mathcal{C}}.[u]_{\mathcal{B}}$, para todo $u \in U$ e portanto $[S + T]_{\mathcal{B},\mathcal{C}} = [S]_{\mathcal{B},\mathcal{C}} + [T]_{\mathcal{B},\mathcal{C}}$ e $[\lambda S]_{\mathcal{B},\mathcal{C}} = \lambda.[S]_{\mathcal{B},\mathcal{C}}$.

Proposição 0.133. Sejam U, V espaços vetoriais sobre \mathbb{K} , com $\dim_{\mathbb{K}} U = n$ e $\dim_{\mathbb{K}} V = m$. Então $\dim_{\mathbb{K}} \mathcal{L}(U, V) = m.n$.

De fato, sejam \mathcal{B} e \mathcal{C} bases de U e V, respectivamente. Sabemos que $\dim_{\mathbb{K}} \mathbb{M}_{m \times n}(\mathbb{K}) = m.n$ e que, para toda $T \in \mathcal{L}(U, V)$, existe uma única $[T]_{\mathcal{B},\mathcal{C}} \in \mathbb{M}_{m \times n}(\mathbb{K})$. Assim, se mostrarmos que $\mathcal{L}(U, V) \cong \mathbb{M}_{m \times n}(\mathbb{K})$, então $\dim_{\mathbb{K}} \mathcal{L}(U, V) = \dim_{\mathbb{K}} \mathbb{M}_{m \times n}(\mathbb{K}) = m.n$. Façamos isto. Definamos φ : $\mathcal{L}(U, V) \to \mathbb{M}_{m \times n}(\mathbb{K})$ por $\varphi(T) = [T]_{\mathcal{B},\mathcal{C}}$ e verifiquemos que φ é um isomorfismo. Com efeito, φ é bem definida, pois dada T, existe uma única $[T]_{\mathcal{B},\mathcal{C}}$. Ainda, φ é linear, pois $\varphi(\lambda S + T) = [\lambda S + T]_{\mathcal{B},\mathcal{C}} = \lambda.[S]_{\mathcal{B},\mathcal{C}} + [T]_{\mathcal{B},\mathcal{C}} = \lambda \varphi(S) + \varphi(T)$, com $S, T \in \mathcal{L}(U, V)$, $\lambda \in \mathbb{K}$. Agora, φ é sobrejetora, pois, dada uma matriz $M \in \mathbb{M}_{m \times n}(\mathbb{K})$, existe uma única transformação linear $S: U \to V$ tal que $[S]_{\mathcal{B},\mathcal{C}} = M$, isto é, $\varphi(S) = M$. Finalmente, φ é injetora, pois, se $\varphi(T) = 0$ $\mathbb{M}_{m \times n}(\mathbb{K})$, então $[T]_{\mathcal{B},\mathcal{C}} = 0$ $\mathbb{M}_{m \times n}(\mathbb{K})$ e portanto $[T(u)]_{\mathcal{C}} = 0$ \mathbb{K}^m , para todo $u \in U$. Daí, T(u) = 0, para todo $u \in U$ e portanto T é a transformação identicamente nula. Logo, $\operatorname{Ker} \varphi = \{0 \mathcal{L}(U,V)\}$.

Observação 0.134. Notemos que, na demonstração acima, desde que, dada $M \in \mathbb{M}_{m \times n}(\mathbb{K})$, existe uma única $S \in \mathcal{L}(U,V)$ tal que $\varphi(S) = M$, então já poderíamos ter concluído direto que φ era bijetora, pois $\varphi(S) = \varphi(T)$ implica, da unicidade de S, que S = T.

Definição 0.135. Seja U um espaço vetorial sobre \mathbb{K} . Chamamos uma transformação linear $T: U \to U$ de um **operador linear**.

Corolário 0.136. Seja U um espaço vetorial sobre \mathbb{K} , com $\dim_{\mathbb{K}} U = n$. $Ent\tilde{a}o \dim_{\mathbb{K}} \mathcal{L}(U,U) = n^2$.

Basta aplicarmos a proposição anterior.

Observação 0.137. Seja U um espaço vetorial sobre \mathbb{K} . Observemos que, sobre $\mathcal{L}(U,U)$, além das operações + e \cdot , que o tornam um espaço vetorial,

podemos considerar a operação $\circ: \mathcal{L}(U,U) \times \mathcal{L}(U,U) \to \mathcal{L}(U,U)$ dada por $(S,T) \mapsto S \circ T$. Daí, denotamos

$$T^k := \underbrace{T \circ T \circ \cdots \circ T}_{k} e T^0 := Id.$$

Ainda, dado $p(x) \in \mathcal{P}(\mathbb{K})$, $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, denotamos o operador linear $a_n T^n + a_{n-1} T^{n-1} + \cdots + a_1 T + a_0 I d \in \mathcal{L}(U, U)$ simplesmente por p(T). Daí, temos que $p(T)(u) = a_n . T^n(u) + a_{n-1} . T^{n-1}(u) + \cdots + a_1 . T(u) + a_0 . u$. Notemos que as três operações, $+, \cdot, \circ$, aparecem em p(T).

Observação 0.138. Seja U um espaço vetorial sobre \mathbb{K} , com $\dim_{\mathbb{K}} U = n > 0$. Sejam \mathcal{B}, \mathcal{C} bases de U. Consideremos o operador linear identidade (de U), $Id: U \to U$. Já temos que $[Id]_{\mathcal{B},\mathcal{C}}.[u]_{\mathcal{B}} = [Id(u)]_{\mathcal{C}} = [u]_{\mathcal{C}}$, ou seja, $[Id]_{\mathcal{B},\mathcal{C}}$ é tal que a partir das coordenadas de u com relação à base \mathcal{B} , obtemos as coordenadas de u com relação à base \mathcal{C} , para todo $u \in U$. Notemos ainda que $[Id]_{\mathcal{B},\mathcal{B}} = I_n = [Id]_{\mathcal{C},\mathcal{C}}$, isto é, ambas são iguais à matriz identidade $n \times n$.

Definição 0.139. Chamamos $[Id]_{\mathcal{B},\mathcal{C}}$ de matriz de mudança (de bases) com relação às bases \mathcal{B} e \mathcal{C} .

Exemplo 0.140. Sejam $\mathcal{B} := \{(0,1), (1,1)\}\ e\ \mathcal{C} := \{(1,1), (1,2)\}\ bases\ de\ \mathbb{R}^2$. Se $(2,3)_{\mathcal{C}}$ são as coordenadas de um vetor (x,y) com relação à base \mathcal{C} , quais são suas coordenadas com relação à base \mathcal{B} ? Calculemos $[Id]_{\mathcal{C},\mathcal{B}}$. Bem, $[Id(1,1)]_{\mathcal{B}} = [(1,1)]_{\mathcal{B}} = (0,1)$, pois $(1,1) = \mathbf{0}.(0,1) + \mathbf{1}.(1,1)$ e $[Id(1,2)]_{\mathcal{B}} = [(1,2)]_{\mathcal{B}} = (1,1)$, pois $(1,2) = \mathbf{1}.(0,1) + \mathbf{1}.(1,1)$, donde $[Id]_{\mathcal{C},\mathcal{B}} = ({}_{1}^{0}{}_{1}^{1})$. Daí, $[(x,y)]_{\mathcal{B}} = [Id]_{\mathcal{C},\mathcal{B}}.[(x,y)]_{\mathcal{C}} = ({}_{1}^{0}{}_{1}^{1})({}_{3}^{2}) = ({}_{5}^{3})$. Ou de outra forma, se $(x,y) = 2(1,1) + 3(1,2) = (5,8) = \alpha(0,1) + \beta(1,1)$, então $\alpha = 3$ e $\beta = 5$, donde $[(x,y)]_{\mathcal{B}} = (3,5)$.

Observação 0.141. Em geral, a matriz de mudança com relação às bases C e B, $[Id]_{C,B}$, é diferente de $[Id]_{B,C}$. Mas, como Id é invertível e $Id^{-1} = Id$ (*), segue, por um resultado anterior, que $[Id]_{C,B} \stackrel{(*)}{=} [Id^{-1}]_{C,B} = ([Id]_{B,C})^{-1}$, ou seja, uma é a inversa da outra.

Vejamos a definição de semelhança entre matrizes.

Observação 0.142. Sejam $M, N \in \mathbb{M}_{n \times n}(\mathbb{K})$. Lembremos que M e N são semelhantes se existe existe uma matriz invertível $P \in \mathbb{M}_{n \times n}(\mathbb{K})$ tal que $M = P^{-1}NP$. Notação: $M \sim N$.

Proposição 0.143. Seja U um espaço vetorial sobre \mathbb{K} , com $\dim_{\mathbb{K}} U = n > 0$. Sejam \mathcal{B}, \mathcal{C} bases de U. Seja $T \in \mathcal{L}(U, U)$. Então $[T]_{\mathcal{B},\mathcal{B}} \sim [T]_{\mathcal{C},\mathcal{C}}$.

De fato, consideremos a matriz invertível $[Id]_{\mathcal{B},\mathcal{C}} \in \mathbb{M}_{n \times n}(\mathbb{K})$. Como podemos ver T como sendo a composta $Id \circ T \circ Id$, então

$$[T]_{\mathcal{B},\mathcal{B}} = [Id \circ T \circ Id]_{\mathcal{B},\mathcal{B}}$$

$$= [Id]_{\mathcal{C},\mathcal{B}}.[T]_{\mathcal{C},\mathcal{C}}.[Id]_{\mathcal{B},\mathcal{C}}$$

$$= ([Id]_{\mathcal{B},\mathcal{C}})^{-1}.[T]_{\mathcal{C},\mathcal{C}}.[Id]_{\mathcal{B},\mathcal{C}}$$

e portanto $[T]_{\mathcal{B},\mathcal{B}} \sim [T]_{\mathcal{C},\mathcal{C}}$.

Observação 0.144. Chamamos a matriz de T com relação às bases \mathcal{B} e \mathcal{B} , $[T]_{\mathcal{B},\mathcal{B}}$, simplesmente de matriz de T com relação à base \mathcal{B} e a denotamos por $[T]_{\mathcal{B}}$. Assim, o resultado anterior nos diz que $[T]_{\mathcal{B}}$ e $[T]_{\mathcal{C}}$ são semelhantes.

Exemplo 0.145. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ um operador linear dado por T(x,y) = (x, x + y). Sejam $\mathcal{B} := \{(0,1), (1,1)\}$ e $\mathcal{C} := \{(1,1), (1,2)\}$ bases de \mathbb{R}^2 . Então

$$T(0,1) = (0,1) = \mathbf{1}.(0,1) + \mathbf{0}.(1,1) \Rightarrow [T(0,1)]_{\mathcal{B}} = (1,0)$$

$$= -\mathbf{1}.(1,1) + \mathbf{1}.(1,2) \Rightarrow [T(0,1)]_{\mathcal{C}} = (-1,1),$$

$$T(1,1) = (1,2) = \mathbf{1}.(0,1) + \mathbf{1}.(1,1) \Rightarrow [T(1,1)]_{\mathcal{B}} = (1,1)$$

$$= \mathbf{0}.(1,1) + \mathbf{1}.(1,2) \Rightarrow [T(1,1)]_{\mathcal{C}} = (0,1).$$

Logo, $[T]_{\mathcal{B}} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ e $[T]_{\mathcal{B},\mathcal{C}} = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}$. Ainda, como $[T(1,1)]_{\mathcal{C}} = (0,1)$ e $[T(1,2)]_{\mathcal{C}} = (-1,2)$, então $[T]_{\mathcal{C}} = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$ (do mesmo modo, obtenha $[T]_{\mathcal{C},\mathcal{B}}$). Agora, desde que $[Id(0,1)]_{\mathcal{C}} = [(0,1)]_{\mathcal{C}} = (-1,1)$ e $[Id(1,1)]_{\mathcal{C}} = [(1,1)]_{\mathcal{C}} = (1,0)$, então $[Id]_{\mathcal{B},\mathcal{C}} = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$. Notemos que, pelo resultado anterior, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$, ou melhor, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$.

Observação 0.146. Seja U um espaço vetorial sobre \mathbb{K} de dimensão finita. Sejam $\mathcal{B}, \mathcal{C}, \mathcal{D}$ bases de U. Como podemos ver Id como sendo a composta $Id \circ Id$, então $[Id]_{\mathcal{B},\mathcal{C}} = [Id \circ Id]_{\mathcal{B},\mathcal{C}} = [Id]_{\mathcal{D},\mathcal{C}}.[Id]_{\mathcal{B},\mathcal{D}} = ([Id]_{\mathcal{C},\mathcal{D}})^{-1}.[Id]_{\mathcal{B},\mathcal{D}}$, donde se conhecemos estas duas últimas matrizes de mudança, obtemos $[Id]_{\mathcal{B},\mathcal{C}}$.

Exemplo 0.147. Sejam $\mathcal{B} := \{(0,1), (1,1)\}\ e\ \mathcal{C} := \{(1,1), (1,2)\}\ bases\ de$ \mathbb{R}^2 . Como $[Id]_{\mathcal{B},\mathcal{B}_C} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}\ e\ [Id]_{\mathcal{C},\mathcal{B}_C} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$, então

$$[Id]_{\mathcal{B},\mathcal{C}} = ([Id]_{\mathcal{C},\mathcal{B}_{\mathcal{C}}})^{-1}[Id]_{\mathcal{B},\mathcal{B}_{\mathcal{C}}} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1}\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}.$$

Operador diagonalizável

Sejam V um espaço vetorial sobre \mathbb{K} e $T:V\to V$ um operador linear. Se $\mathcal{B}:=\{v_1,\ldots,v_n\}$ é uma base de V tal que

$$[T]_{\mathcal{B}} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda_2 & & 0 & 0 \\ \vdots & & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda_{n-1} & 0 \\ 0 & 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$

para algum $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$, então, pela construção de $[T]_{\mathcal{B}}$, temos que $T(v_1) = \lambda_1 v_1 + 0 v_2 + \cdots + 0 v_n = \lambda_1 v_1, T(v_2) = \lambda_2 v_2, \ldots, T(v_n) = \lambda_n v_n.$

Observação 0.148. Seja $M := (a_{ij}) \in \mathbb{M}_{n \times n}(\mathbb{K})$. Dizemos que M é diagonal, se $a_{ij} = 0$, para todo $i \neq j$.

Exemplo 0.149. Temos que $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ $\in \mathbb{M}_{2\times 2}(\mathbb{R})$ são diagonais. Temos que $\begin{pmatrix} 0 & 0 \\ 3 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 3 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix}$ $\in \mathbb{M}_{2\times 2}(\mathbb{R})$ não são diagonais.

Definição 0.150. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $e \ T : V \to V$ um operador linear.

- 1. Se, para algum $v \in V$, $v \neq \stackrel{\rightarrow}{0}$, existe $\lambda \in \mathbb{K}$ tal que $T(v) = \lambda v$, dizemos que λ é um autovalor de T
- 2. Seja $\lambda \in \mathbb{K}$ um autovalor de T. Todo vetor $v \in V$, $v \neq \stackrel{\rightarrow}{0}$, é chamado de autovetor de T associado a λ . Denotamos por $\operatorname{Aut}_T(\lambda)$ o subespaço de V gerado pelos autovetores de T associados a λ e chamamos-no de autoespaço de T associado a λ
- 3. Dizemos que T é diagonalizável se existe uma base B de V tal que $[T]_{\mathcal{B}}$ é diagonal, ou seja, se V admite uma base formada por autovetores de T

Exemplo 0.151. Considere \mathbb{R}^2 como espaço vetorial sobre \mathbb{R} . Seja $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ dado por T(x, y) = (-y, 5x + 6y). Então T é diagonalizável. De fato, suponhamos que $T(x, y) = \lambda(x, y)$, isto é, $(-y, 5x + 6y) = \lambda(x, y)$, para algum $\lambda \in \mathbb{R}$. Então

$$\begin{cases} -y = \lambda x \\ 5x + 6y = \lambda y \end{cases}$$

e daí $(\lambda^2 - 6\lambda + 5)x = 0$. Se x = 0, então y = 0, e não obtemos informações acerca de autovalores (estamos dizendo que T(0,0) = (0,0), o que é verdade). Se $x \neq 0$, então $\lambda^2 - 6\lambda + 5 = 0$ e portanto ou $\lambda = 1$, ou $\lambda = 5$. Se $\lambda = 1$, temos que y = -x e portanto os autovetores de T associados a 1 são da forma (x, -x), com $x \in \mathbb{R}$, e $\operatorname{Aut}_T(1) = [(1, -1)]$. Agora, se $\lambda = 5$, segue que y = -5x e daí os autovetores de T associados a 5 são da forma (x, -5x), com $x \in \mathbb{R}$, e $\operatorname{Aut}_T(5) = [(1, -5)]$. Como $\mathcal{B} := \{(1, -1), (1, -5)\}$ é uma base de \mathbb{R}^2 formada por autovetores de T (ou equivalentemente, como $[T]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}$ diagonal), então T é diagonalizável.

Exemplo 0.152. Considere \mathbb{R}^2 como espaço vetorial sobre \mathbb{R} . Seja $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ dado por T(x, y) = (-y, x). Então T não é diagonalizável. Com efeito, suponhamos que $T(x, y) = \alpha(x, y)$, isto é, $(-y, x) = \alpha(x, y)$, para

algum $\alpha \in \mathbb{R}$. Então

$$\begin{cases} -y = \alpha x \\ x = \alpha y \end{cases}$$

e daí $(1-\alpha^2)x=0$. Se x=0, então y=0, e não obtemos informações sobre de autovalores (estamos dizendo que T(0,0)=(0,0), o que é verdade). Se $x \neq 0$, então $1-\alpha^2=0$, o que não ocorre, pois $\alpha \in \mathbb{R}$. Como T não admite autovalores, segue que também não admite autovetores. Logo, V não admite uma base formada por autovetores e daí T não é diagonalizável.

Observação 0.153. Se $T \in \mathcal{L}(V, V)$ é não injetor, então $0 \in \mathbb{K}$ é um autovalor de T. De fato, como $\operatorname{Ker} T \neq \{\overrightarrow{0}\}$, então existe $v \in V$, $v \neq \overrightarrow{0}$, tal que $T(v) = \overrightarrow{0}$. Daí, T(v) = 0v, com $v \neq \overrightarrow{0}$, e portanto 0 é autovalor de T.

Exemplo 0.154. Considere \mathbb{R}^2 como espaço vetorial sobre \mathbb{R} . Seja $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ dado por T(x,y) = (x,0). Então 1 e 0 são autovalores de T. Com efeito, se $(x,0) = \beta(x,y)$, para algum $\beta \in \mathbb{R}$, então $x = \beta x$ e $0 = \beta y$. Se $x \neq 0$, então $\beta = 1$ e y = 0, donde 1 é autovalor e os autovetores associados são da forma (x,0), com $x \in \mathbb{R}$. Se $y \neq 0$, então $\beta = 0$ e x = 0, donde 0 é autovalor e os autovetores associados são da forma (0,y), com $y \in \mathbb{R}$. Assim, $\operatorname{Aut}_T(1) = [(1,0)]$ e $\operatorname{Aut}_T(0) = [(0,1)]$.

Relembremos a definição de determinante.

Observação 0.155. Seja $A := (a_{ij}) \in \mathbb{M}_{n \times n}(\mathbb{K})$. Se n = 1, definimos $\det A = a_{11}$. Se n = 2, definimos $\det A = a_{11} \det A_{11} - a_{12} \det A_{12}$, onde A_{11} (respectivamente, A_{12}) é a matriz 1×1 dada quando desconsideramos a primeira linha e a primeira (respectivamente, segunda) coluna da matriz A. Isto é, se n = 2, $\det A = a_{11}a_{22} - a_{12}a_{21}$. Assim, se A_{ij} é a matriz $(n-1) \times (n-1)$ dada quando desconsideramos a i-ésima linha e a j-ésima coluna de A, definimos, a partir de uma linha i fixada, o \det ode A como sendo A como sendo

de uma linha j fixada, $\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij}$. Observemos que, em geral, o melhor para fazermos este cálculo é escolhermos ou uma linha, ou uma coluna, com o maior número de zeros possível. Observemos ainda que $\det A \in \mathbb{K}$, para todo $A \in \mathbb{M}_{n \times n}(\mathbb{K})$.

Notemos que uma matriz $M \in \mathbb{M}_{n \times n}(\mathbb{K})$ é invertível se, e somente se, $\det M \neq 0$.

Exemplo 0.156. Seja $A := (a_{ij}) \in \mathbb{M}_{3\times 3}(\mathbb{K})$. Então, a partir da primeira linha por exemplo, $\det A = a_{11} \det A_{11} + a_{12} \det A_{12} + a_{13} \det A_{13}$, onde $A_{11} = \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix}$, $A_{12} = \begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix}$, $A_{13} = \begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$. Seja

$$B = \begin{pmatrix} 1 & 0 & 7 \\ 2 & 1 & 6 \\ 3 & 0 & 5 \end{pmatrix} \in \mathbb{M}_{3 \times 3}(\mathbb{R}).$$

Como entre todas as linhas e entre todas as colunas, a que tem mais zeros é a segunda coluna, então calculemos o determinante de B a partir desta. Daí, $\det B = 0 \det A_{12} + 1 \det A_{22} + 0 \det A_{32} = \det A_{22} = \det \begin{pmatrix} \frac{1}{3} & \frac{7}{5} \end{pmatrix} = 1.5 - 7.3 = -16.$

Relembremos agora a definição de matriz adjunta.

Observação 0.157. Seja $A := (a_{ij}) \in \mathbb{M}_{n \times n}(\mathbb{K})$. Com as mesmas notações acima, definimos a matriz adjunta de A como sendo $Adj(A) := (b_{ji}) \in \mathbb{M}_{n \times n}(\mathbb{K})$, onde $b_{ij} = (-1)^{i+j} \det A_{ij}$. Notemos que $Adj(A).A = A.Adj(A) = (\det A)I$, donde, se $\det A \neq 0$, então $A^{-1} = \frac{Adj(A)}{\det A}$.

Exemplo 0.158. Seja $A := (a_{ij}) \in \mathbb{M}_{2\times 2}(\mathbb{K})$. Se det $A \neq 0$, então $A^{-1} = \frac{1}{\det A} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$. Seja

$$B = \begin{pmatrix} 1 & 0 & 7 \\ 2 & 1 & 6 \\ 3 & 0 & 5 \end{pmatrix} \in \mathbb{M}_{3 \times 3}(\mathbb{R}).$$

 $Ent\~ao$

$$Adj(B) = \begin{pmatrix} 5 & 0 & -7 \\ 8 & -16 & 8 \\ -3 & 0 & 1 \end{pmatrix} \in \mathbb{M}_{3\times 3}(\mathbb{R})$$

$$e B^{-1} = \frac{Adj(B)}{-16}$$
.

Observação 0.159. Sejam V um espaço vetorial sobre \mathbb{K} , com $\dim_{\mathbb{K}} V = n > 0$, $e \ T \in \mathcal{L}(V, V)$. Se \mathcal{C} é uma base de V, podemos considerar $[T]_{\mathcal{C}} \in \mathbb{M}_{n \times n}(\mathbb{K})$. Daí, para toda base \mathcal{B} de V, existe P invertível tal que $[T]_{\mathcal{B}} = P^{-1}[T]_{\mathcal{C}}P$ e, por propriedades de determinante,

$$\det([T]_{\mathcal{B}}) = \det(P^{-1}) \det([T]_{\mathcal{C}}) \det P = (\det P)^{-1} \det([T]_{\mathcal{C}}) \det P = \det([T]_{\mathcal{C}}).$$

Notemos que se $\lambda \in \mathbb{K}$, então $\lambda Id - T$ é um operador linear de V em V e $\det([\lambda Id - T]_{\mathcal{B}}) = \det([\lambda Id - T]_{\mathcal{C}})$. Ainda, se $[T]_{\mathcal{C}} := (a_{ij})$, notemos que

$$\det([xId-T]_{\mathcal{C}}) = \det\begin{pmatrix} x - a_{11} & -a_{12} & \cdots & -a_{1(n-1)} & -a_{1n} \\ -a_{21} & x - a_{22} & -a_{2(n-1)} & -a_{2n} \\ \vdots & \ddots & \vdots & \vdots \\ -a_{(n-1)1} & -a_{(n-1)2} & \cdots & x - a_{(n-1)(n-1)} & -a_{(n-1)n} \\ -a_{n1} & -a_{n2} & \cdots & -a_{n(n-1)} & x - a_{nn} \end{pmatrix},$$

que é um polinômio em x de grau n com coeficientes em \mathbb{K} e é tal que $\det([xId-T]_{\mathcal{B}}) = \det([xId-T]_{\mathcal{C}})$, isto é, independe da base escolhida.

Definição 0.160. Sejam V um espaço vetorial sobre \mathbb{K} , com $\dim_{\mathbb{K}} V = n > 0$, $e \ T \in \mathcal{L}(V, V)$. Seja \mathcal{C} uma base de V. Chamamos o polinômio $\det([xId - T]_{\mathcal{C}})$ (que é de grau n com coeficientes em \mathbb{K}) de **polinômio característico** de T e denotamos-no por $p_T(x)$.

Proposição 0.161. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $e \ T \in \mathcal{L}(V, V)$. Então as condições abaixo são equivalentes:

- 1. $\lambda \in \mathbb{K}$ é um autovalor de T
- 2. $\operatorname{Ker}(\lambda Id T) \neq \{\overrightarrow{0}\}\$
- 3. $\det([\lambda Id T]_{\mathcal{C}}) = 0$, para alguma base \mathcal{C} de V
- 4. $\lambda \in \mathbb{K}$ é uma raiz de $p_T(x)$

De fato, seja \mathcal{C} uma base de V.

Mostremos $(1 \Leftrightarrow 2)$. Se λ é um autovalor de T, então existe $v \neq \overrightarrow{0}$ tal que $T(v) = \lambda v = \lambda Id(v)$. Daí, $(\lambda Id - T)(v) = \overrightarrow{0}$ e portanto $v \in \text{Ker}(\lambda Id - T)$. Logo, como $v \neq \overrightarrow{0}$, $\text{Ker}(\lambda Id - T) \neq \{\overrightarrow{0}\}$. Agora, se $\text{Ker}(\lambda Id - T) \neq \{\overrightarrow{0}\}$, então existe $v \neq \overrightarrow{0}$ tal que $(\lambda Id - T)(v) = \overrightarrow{0}$. Daí, $T(v) = \lambda Id(v) = \lambda v$ e portanto, como $v \neq \overrightarrow{0}$, λ é um autovalor de T.

Mostremos agora $(2 \Leftrightarrow 3)$. Se $\operatorname{Ker}(\lambda Id - T) \neq \{\overrightarrow{0}\}$, então $\lambda Id - T$ não é injetor e portanto $\lambda Id - T$ não é invertível. Daí, $[\lambda Id - T]_{\mathcal{C}}$ não é invertível e portanto $\det([\lambda Id - T]_{\mathcal{C}}) = 0$. Se agora $\det([\lambda Id - T]_{\mathcal{C}}) = 0$, então $[\lambda Id - T]_{\mathcal{C}}$ não é invertível e portanto $\lambda Id - T$ não é invertível. Em particular, como as dimensões do domínio e do contra-domínio de $\lambda Id - T$ são as mesmas, $\lambda Id - T$ não é sobrejetor, nem injetor. Deste último, segue que, $\operatorname{Ker}(\lambda Id - T) \neq \{\overrightarrow{0}\}$. Mostremos finalmente $(3 \Leftrightarrow 4)$. Se $\det([\lambda Id - T]_{\mathcal{C}}) = 0$, então $p_T(\lambda) = \det([\lambda Id - T]_{\mathcal{C}}) = 0$ e portanto λ é uma raiz de $p_T(x)$. Se agora $p_T(\lambda) = 0$, então é claro que $\det([\lambda Id - T]_{\mathcal{C}}) = 0$.

Observação 0.162. Ainda, com as mesmas notações acima, se $\lambda \in \mathbb{K}$ é um autovalor de T, segue, da demonstração, que $\operatorname{Aut}_T(\lambda) = \operatorname{Ker}(\lambda Id - T)$.

Exemplo 0.163. Considere \mathbb{R}^2 como espaço vetorial sobre \mathbb{R} . Seja $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ dado por T(x, y) = (-y, 5x + 6y). Já vimos que T é diagonalizável. Temos que $[T]_{\mathcal{B}_C} = \begin{pmatrix} 0 & -1 \\ 5 & 6 \end{pmatrix}$. Daí, $p_T(x) = \det \begin{pmatrix} x & 1 \\ -5 & x - 6 \end{pmatrix} = x(x - 6) + 5 = x^2 - 6x + 5 = (x - 1)(x - 5)$ e portanto $1 \in S$ são autovalores de T.

Exemplo 0.164. Considere \mathbb{R}^2 como espaço vetorial sobre \mathbb{R} . Seja $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ dado por T(x, y) = (-y, x). Já vimos que T não é diagonalizável. Temos que $[T]_{\mathcal{B}_C} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Daí, $p_T(x) = \det \begin{pmatrix} x & 1 \\ -1 & x \end{pmatrix} = x^2 + 1$ que não possui raízes reais.

Exemplo 0.165. Considerando \mathbb{C}^2 como \mathbb{C} espaço vetorial e $S \in \mathcal{L}(\mathbb{C}^2, \mathbb{C}^2)$ dado por S(x,y) = (-y,x), então $p_S(x) = x^2 + 1 = (x-i)(x+i)$ e portanto $i \ e - i \ são \ autovalores \ de \ S$. Ainda, existe uma base \mathcal{B} de \mathbb{C}^2 (determine \mathcal{B}) tal que $[S]_{\mathcal{B}} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \in \mathbb{M}_{2\times 2}(\mathbb{C})$.

Exemplo 0.166. Considere \mathbb{R}^3 como espaço vetorial sobre \mathbb{R} . Seja $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$ tal que

$$[T]_{\mathcal{C}} = \begin{pmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{pmatrix},$$

para alguma base C de \mathbb{R}^3 . Determine os autovalores e os autovetores de T. Bem,

$$[xId - T]_{\mathcal{C}} = \begin{pmatrix} x - 3 & -1 & 1 \\ -2 & x - 2 & 1 \\ -2 & -2 & x \end{pmatrix} e$$

$$p_{T}(x) = \det([xId - T]_{\mathcal{C}})$$

$$= (x - 3)(x - 2)x + 2 + 4 + 2(x - 2) + 2(x - 3) - 2x$$

$$= (x - 3)(x - 2)x + 2 + 4 + 2x - 4 + 2x - 6 - 2x$$

$$= (x - 3)(x - 2)x + 2(x - 2)$$

$$= ((x - 3)x + 2)(x - 2)$$

$$= (x^{2} - 3x + 2)(x - 2)$$

e daí 1 e 2 são autovalores de T (pois são as raízes de $p_T(x)$). Consideremos as matrizes

$$[1Id - T]_{\mathcal{C}} = \begin{pmatrix} 1 - 3 & -1 & 1 \\ -2 & 1 - 2 & 1 \\ -2 & -2 & 1 \end{pmatrix} e [2Id - T]_{\mathcal{C}} = \begin{pmatrix} 2 - 3 & -1 & 1 \\ -2 & 2 - 2 & 1 \\ -2 & -2 & 2 \end{pmatrix}.$$

Temos que $\operatorname{Aut}_T(1) = \operatorname{Ker}(1Id - T)$, donde os autovetores de T associados a 1 são os vetores $v \in \mathbb{R}^3 \setminus \{ \stackrel{\rightarrow}{0} \}$ tais que $(1Id - T)v = \stackrel{\rightarrow}{0}$, isto é,

$$\begin{pmatrix} -2 & -1 & 1 \\ -2 & -1 & 1 \\ -2 & -2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Notemos que, na verdade, (x, y, z) são as coordenadas de v na base C (entretanto trataremos os dois termos como sendo a mesma coisa quando não houver mais de uma base envolvida). Assim, os autovetores de T associados a 1 são os vetores da forma (x, 0, 2x), isto é, $\operatorname{Aut}_T(1) = [(1, 0, 2)]$. Da mesma forma, $\operatorname{Aut}_T(2) = \operatorname{Ker}(2Id - T)$ e resolvendo

$$\begin{pmatrix} -1 & -1 & 1 \\ -2 & 0 & 1 \\ -2 & -2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

obtemos que os autovetores de T associados a 2 são os vetores da forma (x, x, 2x), ou seja, $\operatorname{Aut}_T(2) = [(1, 1, 2)]$. Como $\{(1, 0, 2), (1, 1, 2)\}$ não é uma base de \mathbb{R}^2 (pois não gera), segue que T não é diagonalizável.

Exemplo 0.167. Considere \mathbb{R}^3 como espaço vetorial sobre \mathbb{R} . Seja $S \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$ tal que

$$[S]_{\mathcal{B}} = \left(\begin{array}{rrr} 1 & 0 & 0 \\ -1 & 2 & 1 \\ -2 & 0 & 3 \end{array}\right),$$

para alguma base \mathcal{B} de \mathbb{R}^3 . Determine os autovalores e os autovetores de S. Bem,

$$[xId - S]_{\mathcal{B}} = \begin{pmatrix} x - 1 & 0 & 0\\ 1 & x - 2 & -1\\ 2 & 0 & x - 3 \end{pmatrix} e$$
$$p_{S}(x) = \det([xId - S]_{\mathcal{B}})$$
$$= (x - 1)(x - 2)(x - 3)$$

e daí 1, 2 e 3 são autovalores de S (pois são as raízes de $p_S(x)$). Então $\operatorname{Aut}_S(1) = [(1,0,1)]$, $\operatorname{Aut}_S(2) = [(0,1,0)]$ e $\operatorname{Aut}_S(3) = [(0,1,1)]$. Como $\{(1,0,1),(0,1,0),(0,1,1)\}$ é uma base de \mathbb{R}^3 , então S é diagonalizável.

O próximo resultado nos dá uma forma de obter uma base formada por autovetores de um certo operador linear.

Proposição 0.168. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $e \ T \in \mathcal{L}(V, V)$. Sejam $\lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{K}$ autovalores de T distintos entre si.

- 1. Se $v_1 + v_2 + \cdots + v_k = \vec{0}$, com $v_i \in \text{Aut}_T(\lambda_i)$, $i = 1, 2, \dots, k$, então $v_1 = v_2 = \cdots = v_k = \vec{0}$.
- 2. Se \mathcal{B}_i é um subconjunto LI de $\operatorname{Aut}_T(\lambda_i)$, então $\bigcup_{i=1}^k \mathcal{B}_i$ é um subconjunto LI de V.

De fato, mostremos (1). Façamos por indução em k. Se k=1, acabou. Se k>1, suponhamos que o resultado vale para k-1 (HI) e mostremos que vale para k. Sejam $v_i \in \operatorname{Aut}_T(\lambda_i)$, $i=1,2,\ldots,k$, tais que $v_1+v_2+\cdots+v_k=\overrightarrow{0}$. Daí, $T(v_1+v_2+\cdots+v_k)=\overrightarrow{0}$ e portanto, como T é linear, $\lambda_1v_1+\lambda_2v_2+\cdots+\lambda_kv_k=\overrightarrow{0}$ (*). Ainda, $\lambda_k(v_1+v_2+\cdots+v_k)=\overrightarrow{0}$, isto é, $\lambda_kv_1+\lambda_kv_2+\cdots+\lambda_kv_k=\overrightarrow{0}$ (**). Fazendo (*) menos (**), obtemos que $(\lambda_1-\lambda_k)v_1+(\lambda_2-\lambda_k)v_2+\cdots+(\lambda_{k-1}-\lambda_k)v_{k-1}=\overrightarrow{0}$. Notemos que $(\lambda_j-\lambda_k)v_j\in\operatorname{Aut}_T(\lambda_j)$. Então, por (HI), segue que $(\lambda_j-\lambda_k)v_j=0$, para todo $j=1,2,\ldots,k-1$. Como $\lambda_j-\lambda_k\neq 0$, para todo $j\neq k$ (pois os autovalores são distintos entre si), então $v_1=v_2=\cdots=v_{k-1}=\overrightarrow{0}$. Daí, a partir

da igualdade inicial, obtemos também que $v_k = \stackrel{\rightarrow}{0}$ o que encerra a primeira demonstração.

Mostremos agora (2). Seja $\mathcal{B}_i := \{v_{1i}, \dots, v_{n_i i}\}$ um subconjunto LI de $\operatorname{Aut}_T(\lambda_i)$. Seja $c := \sum_{j=1}^{n_1} \alpha_{j1} v_{j1} + \sum_{j=1}^{n_2} \alpha_{j2} v_{j2} + \dots + \sum_{j=1}^{n_k} \alpha_{jk} v_{jk}$ uma combinação linear qualquer de elementos de $\bigcup_{i=1}^k \mathcal{B}_i$. Suponhamos que c é o vetor nulo. Daí, como $\sum_{j=1}^{n_i} \alpha_{ji} v_{ji} \in \operatorname{Aut}_T(\lambda_i)$ (pois este é subespaço), segue pela primeira parte que $\sum_{j=1}^{n_i} \alpha_{ji} v_{ji} = \vec{0}$ e portanto, como \mathcal{B}_i é LI, obtemos que $\alpha_{1i} = \alpha_{2i} = \dots = \alpha_{n_i i} = 0$, para todo $i = 1, 2, \dots, k$. Logo, $\bigcup_{i=1}^k \mathcal{B}_i$ é LI.

Observação 0.169. Com as mesmas notações, este resultado nos diz, em particular, que se $v_1 \in \operatorname{Aut}_T(\lambda_1) \setminus \{\overrightarrow{0}\}\ e\ v_2 \in \operatorname{Aut}_T(\lambda_2) \setminus \{\overrightarrow{0}\}\ ,\ com\ \lambda_1 \neq \lambda_2,$ então $\{v_1, v_2\}\ \acute{e}\ LI$.

Corolário 0.170. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita e $T \in \mathcal{L}(V,V)$. Sejam $\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{K}$ todos os autovalores de T (distintos entre si). Então T é diagonalizável se, e somente se, $\dim_{\mathbb{K}} V = \sum_{i=1}^k \dim_{\mathbb{K}} \operatorname{Aut}_T(\lambda_i)$.

Seja \mathcal{B}_i uma base de $\operatorname{Aut}_T(\lambda_i)$, com n_i vetores. Então, pelo resultado anterior, $\bigcup_{i=1}^k \mathcal{B}_i$ é um subconjunto LI de V, com $n_1+n_2+\cdots+n_k$ vetores. Daí, $W:=[\bigcup_{i=1}^k \mathcal{B}_i]$ é um subespaço vetorial de V, com $\dim_{\mathbb{K}} W = \sum_{i=1}^k \dim_{\mathbb{K}} \operatorname{Aut}_T(\lambda_i)$. Notemos que W é o subespaço gerado por todos os autovetores de T, uma vez que $\lambda_1, \lambda_2, \ldots, \lambda_k$ são todos os autovalores de T. Ainda, temos que $\dim_{\mathbb{K}} W \leqslant \dim_{\mathbb{K}} V$, pois W é subespaço vetorial. Por um lado, se $\dim_{\mathbb{K}} W = \dim_{\mathbb{K}} V$, então W = V e portanto $\bigcup_{i=1}^k \mathcal{B}_i$ é uma base de V formada por autovetores de T, donde T é diagonalizável. Por outro lado, se T é diagonalizável, então V admite uma base, C, formada por autovetores de T. Desde que os elementos de C são autovetores de T, então $C \subset W$, donde $\dim_{\mathbb{K}} V \leqslant \dim_{\mathbb{K}} W$ e portanto $\dim_{\mathbb{K}} V = \dim_{\mathbb{K}} W$.

Definição 0.171. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita, $T \in \mathcal{L}(V,V)$ e $\lambda \in \mathbb{K}$ um autovalor de T. Se $p_T(x) = (x-\lambda)^m q(x)$, onde $q(\lambda) \neq 0$, dizemos que $m \in \mathbb{N}$ é a multiplicidade algébrica de λ e a denotamos por $ma(\lambda)$. Ainda, dizemos que $\dim_{\mathbb{K}} \operatorname{Aut}_T(\lambda) \in \mathbb{N}$ é a multiplicidade geométrica de λ e a denotamos por $mg(\lambda)$.

Observação 0.172. Com as mesmas notações, observemos que $ma(\lambda)$ é o maior inteiro j tal que $(x - \lambda)^j$ divide $p_T(x)$.

Proposição 0.173. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita, $T \in \mathcal{L}(V, V)$ e $\lambda \in \mathbb{K}$ um autovalor de T. Então $mg(\lambda) \leqslant ma(\lambda)$.

Seja $W := \operatorname{Aut}_T(\lambda)$ e seja $\mathcal{B} := \{u_1, u_2, \dots, u_m\}$ uma base de W (em particular, notemos que $mg(\lambda) = m$). Como \mathcal{B} é LI, existe uma base de V, $\mathcal{C} := \{u_1, u_2, \dots, u_m, v_1, v_2, \dots, v_n\}$, contendo \mathcal{B} . Notemos que $T(u_i) = \lambda u_i$, donde $T(u_i) = 0u_1 + \dots + 0u_{i-1} + \lambda u_i + 0u_{i+1} + \dots + 0u_m + 0v_1 + 0v_2 + \dots + 0v_n$, para todo $i = 1, \dots, m$. Daí,

$$[T]_{\mathcal{C}} = \begin{pmatrix} \lambda I_m & A \\ \stackrel{\rightarrow}{0} & B \end{pmatrix},$$

para alguma matriz $A \in \mathbb{M}_{m \times n}(\mathbb{K})$, $B \in \mathbb{M}_{n \times n}(\mathbb{K})$, onde I_m é a matriz identidade $m \times m$ e 0 é a matriz nula $n \times m$. Por uma propriedade de determinante, $\det(xI_{m+n} - [T]_{\mathcal{C}}) = \det(xI_m - \lambda I_m) \cdot \det(xI_n - B) = (x - \lambda)^m \cdot q(x)$, com $q(x) := \det(xI_n - B)$. Daí, $p_T(x) = (x - \lambda)^m \cdot q(x)$, donde já sabemos que $ma(\lambda)$ é maior ou igual a m (pode ser que λ também seja raiz de q(x)). Logo, $mg(\lambda) = m \leqslant ma(\lambda)$.

Observação 0.174. Sejam V um espaço vetorial sobre \mathbb{K} , com $\dim_{\mathbb{K}} V = n > 0$, $e \ T \in \mathcal{L}(V, V)$. Sejam $\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{K}$ autovalores de T (distintos entre si). Observemos que, se $ma(\lambda_i) = n_i$, $i = 1, \ldots, k$, então $p_T(x) = (x - \lambda_1)^{n_1} \cdot (x - \lambda_2)^{n_2} \cdot \cdots \cdot (x - \lambda_k)^{n_k} \cdot q(x)$, para algum $q(x) \in \mathcal{P}(\mathbb{K})$, pois $\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{K}$ são raízes de $p_T(x)$. Ainda, desde que o grau de $p_T(x)$

 $\acute{e} \ n = \dim_{\mathbb{K}} V, \ temos \ que \ n \geqslant \sum_{i=1}^{k} n_i. \ Notemos \ ainda \ que \ q(x) \ \acute{e} \ tal \ que$ $q(\lambda_i) \neq 0, \ pois \ n_i = ma(\lambda_i), \ para \ todo \ i = 1, \ldots, k.$

Teorema 0.175. Sejam V um espaço vetorial sobre \mathbb{K} , com $\dim_{\mathbb{K}} V = n > 0$, $e \ T \in \mathcal{L}(V, V)$. Sejam $\lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{K}$ todos os autovalores de T (distintos entre si). Então as condições abaixo são equivalentes:

- 1. T é diagonalizável
- 2. $\dim_{\mathbb{K}} V = \sum_{i=1}^{k} \dim_{\mathbb{K}} \operatorname{Aut}_{T}(\lambda_{i})$
- 3. $p_T(x) = (x \lambda_1)^{n_1} \cdot (x \lambda_2)^{n_2} \cdot \cdots \cdot (x \lambda_k)^{n_k}$, onde $n_i = ma(\lambda_i) = mg(\lambda_i)$, i = 1, ..., k

De fato, já mostramos $(1 \Leftrightarrow 2)$. Mostremos então $(2 \Leftrightarrow 3)$. Se $p_T(x) = (x - \lambda_1)^{n_1}.(x - \lambda_2)^{n_2}.\cdots.(x - \lambda_k)^{n_k}$, onde $n_i = ma(\lambda_i) = mg(\lambda_i)$, então o grau de $p_T(x)$ é igual a $\sum_{i=1}^k n_i$. Mas, por definição, o grau de $p_T(x)$ é igual a dim $\mathbb{K} V$. Logo, dim $\mathbb{K} V = \sum_{i=1}^k n_i = \sum_{i=1}^k mg(\lambda_i) = \sum_{i=1}^k \dim \mathbb{K} \operatorname{Aut}_T(\lambda_i)$. Suponhamos agora que dim $\mathbb{K} V = \sum_{i=1}^k \dim \mathbb{K} \operatorname{Aut}_T(\lambda_i)$. A princípio, se $ma(\lambda_i) = n_i$, $i = 1, \ldots, k$, sabemos que $p_T(x) = (x - \lambda_1)^{n_1}.(x - \lambda_2)^{n_2}.\cdots.(x - \lambda_k)^{n_k}.q(x)$, para algum $q(x) \in \mathcal{P}(\mathbb{K})$. Então, pelo resultado anterior, dim $\mathbb{K} V = \sum_{i=1}^k \dim \mathbb{K} \operatorname{Aut}_T(\lambda_i) = \sum_{i=1}^k mg(\lambda_i) \leqslant \sum_{i=1}^k ma(\lambda_i) = \sum_{i=1}^k n_i \leqslant \dim \mathbb{K} V$, pois o grau de $p_T(x)$ é igual a dim $\mathbb{K} V$. Logo, q(x) = 1, pois dim $\mathbb{K} V = \sum_{i=1}^k mg(\lambda_i) = \sum_{i=1}^k ma(\lambda_i)$. Agora, sabemos que $mg(\lambda_i) \leqslant ma(\lambda_i)$, com $i = 1, \ldots, n$. Suponhamos, por absurdo, que $mg(\lambda_i) < ma(\lambda_j)$, para algum $j = 1, \ldots, k$. Daí, $\sum_{i=1}^k mg(\lambda_i) < \sum_{i=1}^k ma(\lambda_i)$, o que não ocorre. Logo, $mg(\lambda_i) = ma(\lambda_i)$, para todo $i = 1, \ldots, k$ e portanto $p_T(x) = (x - \lambda_1)^{n_1}.(x - \lambda_2)^{n_2}.\cdots.(x - \lambda_k)^{n_k}$, onde $n_i = ma(\lambda_i) = mg(\lambda_i)$, $i = 1, \ldots, n$.

Observação 0.176. Sejam V um espaço vetorial sobre \mathbb{K} e $T \in \mathcal{L}(V, V)$. Notemos que se $\lambda \in \mathbb{K}$ é um autovalor de T, segue que $\operatorname{Aut}_T(\lambda) \neq \{\overrightarrow{0}\}$, donde $\dim_{\mathbb{K}} \operatorname{Aut}_{T}(\lambda) \geqslant 1$ (ou seja, não é 0). Logo, se $ma(\lambda) = 1$, então $1 = ma(\lambda) \geqslant mg(\lambda) = \dim_{\mathbb{K}} \operatorname{Aut}_{T}(\lambda) \geqslant 1$, isto é, $1 = ma(\lambda) = mg(\lambda)$.

Exemplo 0.177. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ um operador linear tal que $p_T(x) = (x-1)(x-2)(x-3)$. Como ma(1) = 1, segue, da observação acima, que 1 = ma(1) = mg(1). Analogamente, 1 = ma(2) = mg(2) e 1 = ma(3) = mg(3). Logo, pelo teorema acima, T é diagonalizável. Daí, existe uma base \mathcal{B} de \mathbb{R}^3 tal que

$$[T]_{\mathcal{B}} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array}\right).$$

Exemplo 0.178. Seja $S: \mathbb{R}^3 \to \mathbb{R}^3$ um operador linear dado por

$$[S]_{\mathcal{C}} = \begin{pmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{pmatrix},$$

para alguma base C de \mathbb{R}^3 . Já sabemos que $p_S(x) = (x-1)(x-2)^2$. Como $\operatorname{Aut}_S(2) = [(1,1,2)]$, então $\{(1,1,2)\}$ é uma base de $\operatorname{Aut}_S(2)$ e portanto $mg(2) = \dim_{\mathbb{K}} \operatorname{Aut}_S(2) = 1 \neq 2 = ma(2)$. Logo, S não é diagonalizável. Notemos apenas que, como ma(1) = 1, segue, da observação acima, que 1 = ma(1) = mg(1).

Exemplo 0.179. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ um operador linear dado por

$$[T]_{\mathcal{C}} = \begin{pmatrix} 1 & 2 & -1 \\ -2 & -3 & 1 \\ 2 & 2 & -2 \end{pmatrix},$$

para alguma base C de \mathbb{R}^3 . T é diagonalizável? Bem,

$$[xId - T]_{\mathcal{C}} = \begin{pmatrix} x - 1 & -2 & 1\\ 2 & x + 3 & -1\\ -2 & -2 & x + 2 \end{pmatrix} e$$

$$p_{T}(x) = \det([xId - T]_{\mathcal{C}})$$

$$= (x - 1)(x + 3)(x + 2) - 4 - 4 + 2(x + 3) - 2(x - 1) + 4(x + 2)$$

$$= (x - 1)(x + 3)(x + 2) - 8 + 2x + 6 - 2x + 2 + 4(x + 2)$$

$$= (x - 1)(x + 3)(x + 2) + 4(x + 2)$$

$$= ((x - 1)(x + 3) + 4)(x + 2)$$

e daí 1 e 2 são autovalores de T (pois são as raízes de $p_T(x)$). Da observação acima, como ma(-2) = 1, já temos que 1 = ma(-2) = mg(-2). Calculemos então $Aut_T(-1)$. Consideremos a matriz

 $= (x+1)^2(x+2)$

$$[-1Id - T]_{\mathcal{C}} = \begin{pmatrix} -1 - 1 & -2 & 1\\ 2 & -1 + 3 & -1\\ -2 & -2 & -1 + 2 \end{pmatrix}.$$

Temos que $\operatorname{Aut}_T(-1) = \operatorname{Ker}(-1Id-T)$, donde os autovetores de T associados a (-1) são os vetores tais que

$$\begin{pmatrix} -2 & -2 & 1 \\ 2 & 2 & -1 \\ -2 & -2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

isto é, são os vetores da forma (x, y, 2x+2y). Ou seja, temos que $\operatorname{Aut}_T(-1) = \{(x, y, 2x+2y) | x, y \in \mathbb{R}\} = \{x(1, 0, 2) + y(0, 1, 2) | x, y \in \mathbb{R}\} = [(1, 0, 2), (0, 1, 2)].$ Como $\{(1, 0, 2), (0, 1, 2)\}$ é LI, pois um não é múltiplo do outro, então é uma base de $\operatorname{Aut}_T(-1)$. Em particular, $\dim_{\mathbb{K}} \operatorname{Aut}_T(-1) = 2$. Portanto, como $p_T(x) = (x+1)^2(x+2)$, com 2 = ma(-1) = mg(-1) e 1 = ma(-2) = mg(-2), segue que T é diagonalizável.

Polinômio minimal

Observação 0.180. Sejam V um espaço vetorial sobre \mathbb{K} , $T \in \mathcal{L}(V, V)$ e $p(x) \in \mathcal{P}(\mathbb{K})$. Então podemos considerar o operador linear $p(T) \in \mathcal{L}(V, V)$. Lembremos que se $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, então $p(T) = a_n T^n + a_{n-1} T^{n-1} + \cdots + a_1 T + a_0 Id$, onde

$$T^k = \underbrace{T \circ T \circ \cdots \circ T}_k.$$

Agora, dizemos que T é raiz de p(x), se $p(T) = \overset{\rightarrow}{0}_{\mathcal{L}(V,V)}$, isto é, se p(T) for o operador identicamente nulo. Lembremos que se $\dim_{\mathbb{K}} V = n$, então $\dim_{\mathbb{K}} \mathcal{L}(V,V) = n^2$. Daí, se $m \ge n^2 = \dim_{\mathbb{K}} \mathcal{L}(V,V)$, temos que o conjunto, $\{Id, T, T^2, \ldots, T^m\}$, de vetores de $\mathcal{L}(V,V)$ é LD, donde existem escalares $a_0, a_1, a_2, \ldots, a_m$ não todos nulos tais que $a_m T^m + a_{m-1} T^{m-1} + \cdots + a_1 T + a_0 Id = \overset{\rightarrow}{0}_{\mathcal{L}(V,V)}$. Em particular, T é raiz de q(x), com $q(x) = a_m x^m + a_{m-1} x^{m-1} + \cdots + a_1 x + a_0$.

Exemplo 0.181. Seja $T \in \mathcal{L}(\mathbb{R}, \mathbb{R})$. Como $\dim_{\mathbb{R}} \mathcal{L}(\mathbb{R}, \mathbb{R}) = 1^2 = 1$, então o conjunto $\{Id, T\}$ é LD. De fato, sabemos que $T = T_{\beta}$, para algum $\beta \in \mathbb{R}$, isto é, T é dada por $T(x) = \beta x$, para algum $\beta \in \mathbb{R}$. Se $\beta = 0$, então $T = \overset{\rightarrow}{0}_{\mathcal{L}(\mathbb{R},\mathbb{R})}$ e o conjunto é LD. Suponhamos então $\beta \neq 0$. Seja c := aId + bT uma combinação linear qualquer de Id, T. Suponhamos que c é o vetor nulo. Assim, $aId + bT = \overset{\rightarrow}{0}_{\mathcal{L}(\mathbb{R},\mathbb{R})}$, donde em particular (aId + bT)(1) = 0 (isto é, $a + b\beta = 0$). Portanto, $(-\beta)Id + T = \overset{\rightarrow}{0}_{\mathcal{L}(\mathbb{R},\mathbb{R})}$ é uma combinação linear não trivial de Id, T resultando no vetor nulo. Logo, o conjunto é LD.

Observação 0.182. Mas pode ser que $\{Id, T, T^2, \ldots, T^k\}$ já seja LD, para algum $k < n^2$. Consideremos k > 0 tal que $\{Id, T, T^2, \ldots, T^{k-1}\}$ é LI, mas $\{Id, T, T^2, \ldots, T^k\}$ é LD. Mas, então, T^k deve ser combinação linear de $Id, T, T^2, \ldots, T^{k-1}$, ou seja, existem escalares $a_0, a_1, a_2, \ldots, a_{k-1}$ tais que $T^k = a_{k-1}T^{k-1} + \cdots + a_1T + a_0Id$. Daí, T é raiz de $m_T(x)$, onde $m_T(x) = a_{k-1}T^{k-1} + \cdots + a_1T + a_0Id$.

 $x^k - a_{k-1}x^{k-1} - \cdots - a_1x - a_0$. Notemos $m_T(x)$ é um polinômio mônico, pois $a_k := 1$.

Exemplo 0.183. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ um operador linear dado por T(x,y) = (x+y,x-y). Temos que $T^2(x,y) = T(T(x,y)) = T(x+y,x-y) = (x+y+(x-y),x+y-(x-y)) = (2x,2y) = 2Id(x,y)$, donde $T^2 = 2Id$. Já sabemos que $\{Id\}$ é LI. Verifiquemos que $\{Id,T\}$ é LI. De fato, se $\alpha Id + \beta T = \overset{\rightarrow}{0}_{\mathcal{L}(\mathbb{R}^2,\mathbb{R}^2)}$, então $\alpha(x,y) + \beta(x+y,x-y) = (0,0)$, para todo $(x,y) \in \mathbb{R}^2$, donde $(\alpha+\beta)x+\beta y = 0$ e $\beta x + (\alpha-\beta)y = 0$. Se x = 0 e y = 1, obtemos que $\beta = 0 = \alpha$, donde $\{Id,T\}$ é LI. Agora, desde que $T^2 = 2Id$, obtemos que $\{Id,T,T^2\}$ é LD. Então, pela construção de $m_T(x)$, como $T^2 - 2Id = \overset{\rightarrow}{0}_{\mathcal{L}(\mathbb{R}^2,\mathbb{R}^2)}$, segue que $m_T(x) = x^2 - 2$.

Proposição 0.184. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $e \ T \in \mathcal{L}(V,V)$. Se $p(x) \in \mathcal{P}(\mathbb{K})$ é tal que $p(T) = \overset{\rightarrow}{0}_{\mathcal{L}(V,V)}$, então p(x) é um múltiplo de $m_T(x)$.

De fato, seja $p(x) \in \mathcal{P}(\mathbb{K})$ tal que $p(T) = \overset{\rightarrow}{0}_{\mathcal{L}(V,V)}$. Consideremos a divisão de p(x) por $m_T(x)$. Daí, existem $q(x), r(x) \in \mathcal{P}(\mathbb{K})$ tais que $p(x) = m_T(x)q(x) + r(x)$, com ou $r(x) = \overset{\rightarrow}{0}_{\mathcal{P}(\mathbb{K})}$, ou o grau de r(x) menor do que o grau de $m_T(x)$. Daí, $\overset{\rightarrow}{0}_{\mathcal{L}(V,V)} = P(T) = m_T(T) \circ q(T) + r(T) = \overset{\rightarrow}{0}_{\mathcal{L}(V,V)} \circ q(T) + r(T) = \overset{\rightarrow}{0}_{\mathcal{L}(V,V)} + r(T) = r(T)$. Como $m_T(x)$ é o polinômio mônico de menor grau tal que T é raiz, e $r(T) = \overset{\rightarrow}{0}_{\mathcal{L}(V,V)}$, segue que $r(x) = \overset{\rightarrow}{0}_{\mathcal{P}(\mathbb{K})}$, isto é, r(x) é o polinômio identicamente nulo. Logo, $p(x) = m_T(x)q(x)$ e portanto p(x) é um múltiplo de $m_T(x)$.

Definição 0.185. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $e \ T \in \mathcal{L}(V,V)$. Chamamos o polinômio $m_T(x) \in \mathcal{P}(\mathbb{K})$ (que é mônico, de menor grau tal que $m_T(T) = \stackrel{\rightarrow}{0}_{\mathcal{L}(V,V)}$) de **polinômio minimal de** T.

Exemplo 0.186. Seja $S: \mathbb{R}^3 \to \mathbb{R}^3$ um operador linear dado por

$$[S]_{\mathcal{B}} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right),$$

para alguma base \mathcal{B} de \mathbb{R}^3 . S é diagonalizável? Bem,

$$[xId - S]_{\mathcal{B}} = \begin{pmatrix} x & 0 & 0 \\ -1 & x & 0 \\ 0 & -1 & x \end{pmatrix}$$

e portanto $p_S(x) = \det([xId - S]_B) = x^3$, donde 0 é o único autovalor de S (pois é a única raiz de $p_T(x)$, a menos de multiplicade). É fácil ver que $\operatorname{Aut}_S(0) = [(0,0,1)]$, donde S não é diagonalizável (pois $mg(0) = \dim_{\mathbb{K}} \operatorname{Aut}_T(0) = 1 \neq 3 = ma(0)$.

Observemos agora que $[S]_{\mathcal{B}} \neq 0$, $([S]_{\mathcal{B}})^2 \neq 0$, $mas\ ([S]_{\mathcal{B}})^3 = 0$ _{$\mathbb{M}_{3\times 3}(\mathbb{R})$}, $donde\ S \neq 0$, $S^2 \neq 0$, $mas\ S^3 = 0$ _{$\mathcal{L}(\mathbb{R}^3,\mathbb{R}^3)$}. Então S é raiz de x^3 e portanto x^3 é um múltiplo de $m_S(x)$. Como os únicos divisores de x^3 são x, x^2 e x^3 , e S não anula os dois primeiros segue que $m_S(x) = x^3$.

Exemplo 0.187. Seja $T : \mathbb{R}^3 \to \mathbb{R}^3$ um operador linear dado por T(x, y, z) = (z, z, z). Mostre que T é diagonalizável. De fato,

$$[T]_{\mathcal{B}_C} = \left(\begin{array}{ccc} 0 & 0 & 1\\ 0 & 0 & 1\\ 0 & 0 & 1 \end{array}\right),$$

e portanto $p_T(x) = \det([xId - T]_{\mathcal{B}_C}) = x^2(x - 1)$, donde 0 e 1 são autovalores de T. Já sabemos que ma(1) = mg(1) = 1. Como $\operatorname{Aut}_T(0) = [(1,0,0),(0,1,0)]$ (verifique), então $\{(1,0,0),(0,1,0)\}$ é uma base de $\operatorname{Aut}_T(0)$, donde $mg(0) = \dim_{\mathbb{K}} \operatorname{Aut}_T(0) = 2 = ma(0)$. Logo, T é diagonalizável. Agora, notemos que

$$[T]_{\mathcal{B}_C}.([T]_{\mathcal{B}_C} - I_3) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

donde, obtemos que $T(T-I) = \overrightarrow{0}_{\mathcal{L}(\mathbb{R}^3,\mathbb{R}^3)}$, isto é, T é raiz de x(x-1) e portanto x(x-1) é um múltiplo de $m_T(x)$. Desde que os únicos divisores de x(x-1) são x, x-1 e x(x-1), e T não anula os dois primeiros segue que $m_T(x) = x(x-1)$.

Observação 0.188. Notemos que, nos exemplos anteriores, verificamos que as raízes do polinômio minimal do operador são os autovalores do operador.

Vejamos agora, sem demonstração, o teorema de Cayley-Hamilton.

Teorema 0.189. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita e $T \in \mathcal{L}(V, V)$. Então T é raiz de $p_T(x)$.

Observação 0.190. Assim, pelos resultados anteriores, obtemos que $p_T(x)$ é um múltiplo de $m_T(x)$.

Proposição 0.191. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $e \ T \in \mathcal{L}(V,V)$. Então $p_T(x)$ $e \ m_T(x)$ têm as mesmas raízes (a menos de multiplicidade).

De fato, suponhamos que $\lambda \in \mathbb{K}$ é uma raiz de $p_T(x)$. Então λ é um autovalor de T e portanto existe $v_0 \neq \stackrel{\rightarrow}{0}_V$ tal que $T(v_0) = \lambda v_0$. Daí, $T^2(v_0) = \lambda^2 v_0, T^3(v_0) = \lambda^3 v_0, \dots, T^j(v_0) = \lambda^j v_0$, para todo j > 0. Seja $m_T(x) = x^k + a_{k-1}x^{k-1} \cdots + a_1x + a_0$, para algum $a_0, \dots, a_k \in \mathbb{K}$. Então $\stackrel{\rightarrow}{0}_{\mathcal{L}(V,V)} = m_T(T) = T^k + a_{k-1}T^{k-1} \cdots + a_1T + a_0Id$, donde

$$\overrightarrow{0}_{V} = m_{T}(T)(v_{0}) = T^{k}(v_{0}) + a_{k-1}T^{k-1}(v_{0}) + \dots + a_{1}T(v_{0}) + a_{0}Id(v_{0})
= \lambda^{k}v_{0} + a_{k-1}\lambda^{k-1}v_{0} + \dots + a_{1}\lambda v_{0} + a_{0}v_{0}
= (\lambda^{k} + a_{k-1}\lambda^{k-1} + \dots + a_{1}\lambda + a_{0})v_{0}$$

e portanto, como $v_0 \neq \overrightarrow{0}_V$, então $\lambda^k + a_{k-1}\lambda^{k-1} + \cdots + a_1\lambda + a_0 = 0$, isto é, λ é uma raiz de $m_T(x)$.

Suponhamos agora que $\lambda \in \mathbb{K}$ é uma raiz de $m_T(x)$. Então $m_T(x) = (x - x)$

 $\lambda)q(x)$, para algum $q(x) \in \mathcal{P}(\mathbb{K})$. Daí, notemos que $\overset{\rightarrow}{0}_{\mathcal{L}(V,V)} = m_T(T) = (T - \lambda Id) \circ q(T)$. Agora, como o grau de q(x) é menor do que o grau de $m_T(x)$, então $q(T) \neq \overset{\rightarrow}{0}_{\mathcal{L}(V,V)}$. Daí, existe $u_0 \in V$ tal que $q(T)(u_0) \neq \overset{\rightarrow}{0}_V$. Denotemos $v_0 := q(T)(u_0)$. Logo, $\overset{\rightarrow}{0}_V = m_T(T)(u_0) = ((T - \lambda Id) \circ q(T))(u_0) = (T - \lambda Id)(q(T)(u_0)) = T(v_0) - \lambda v_0$, isto é, $T(v_0) = \lambda v_0$, com $v_0 \neq \overset{\rightarrow}{0}_V$, donde λ é um autovalor de T. Daí, λ é uma raiz de $p_T(x)$.

Proposição 0.192. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $e \ T \in \mathcal{L}(V, V)$. Sejam $\lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{K}$ todos os autovalores de T (distintos entre si). Se T é diagonalizável, então $m_T(x) = (x - \lambda_k) \cdot (x - \lambda_{k-1}) \cdot \dots \cdot (x - \lambda_1)$.

De fato, seja $q(x) := (x - \lambda_k).(x - \lambda_{k-1}).\cdots.(x - \lambda_1)$. Desde que q(x) é o polinômio mônico de menor grau que tem as mesmas raízes do que $p_T(x)$, então se mostrarmos que $q(T) = \overset{\rightarrow}{0}_{\mathcal{L}(V,V)}$, obteremos que $m_T(x) = q(x)$. Façamos isto. Seja \mathcal{B} uma base de V formada por autovetores de T. Se $v \in \mathcal{B}$, então existe um autovalor λ_i tal que $T(v) = \lambda_i v$. Daí, $(T - \lambda_i Id)(v) = \overset{\rightarrow}{0}_V$. Logo, se $q(T) = (T - \lambda_k Id) \circ (T - \lambda_{k-1} Id) \circ \cdots \circ (T - \lambda_1 Id)$, então $q(T)(v) = \overset{\rightarrow}{0}_V$, para todo $v \in \mathcal{B}$. Portanto, $q(T)(v) = \overset{\rightarrow}{0}_V$, para todo $v \in V$, donde $q(T) = \overset{\rightarrow}{0}_{\mathcal{L}(V,V)}$.

Observação 0.193. Na demonstração acima, suponha que $\dim_{\mathbb{K}} V = 3$ e $\mathcal{B} := \{v_1, \tilde{v_1}, v_2\}$, onde $v_1, \tilde{v_1} \in \operatorname{Aut}_T(\lambda_1)$ e $v_2 \in \operatorname{Aut}_T(\lambda_2)$. Então um vetor v de V se escreve de forma única, digamos $v = \alpha_1 v_1 + \tilde{\alpha_1} \tilde{v_1} + \alpha_2 v_2$. Assim,

$$((T - \lambda_2 Id) \circ (T - \lambda_1 Id))(v) =$$

$$(T - \lambda_2 Id) (T(v) - \lambda_1 v) =$$

$$(T - \lambda_2 Id) (T(\alpha_1 v_1 + \tilde{\alpha}_1 \tilde{v}_1 + \alpha_2 v_2) - \lambda_1 (\alpha_1 v_1 + \tilde{\alpha}_1 \tilde{v}_1 + \alpha_2 v_2)) \stackrel{\text{linear}}{=}$$

$$(T - \lambda_2 Id) (\alpha_1 T(v_1) + \tilde{\alpha}_1 T(\tilde{v}_1) + \alpha_2 T(v_2) - \lambda_1 (\alpha_1 v_1 + \tilde{\alpha}_1 \tilde{v}_1 + \alpha_2 v_2)) \stackrel{\text{autovet.}}{=}$$

$$(T - \lambda_2 Id) (\alpha_1 \lambda_1 v_1 + \tilde{\alpha}_1 \lambda_1 \tilde{v}_1 + \alpha_2 \lambda_2 v_2 - \lambda_1 (\alpha_1 v_1 + \tilde{\alpha}_1 \tilde{v}_1 + \alpha_2 v_2)) =$$

$$(T - \lambda_2 Id) (\alpha_2 \lambda_2 v_2 - \lambda_1 \alpha_2 v_2) \stackrel{\text{linear}}{=}$$

$$(\alpha_2 \lambda_2 - \lambda_1 \alpha_2) (T - \lambda_2 Id)(v_2) \stackrel{\text{autovet.}}{=}$$

$$(\alpha_2 \lambda_2 - \lambda_1 \alpha_2) \stackrel{\text{of }}{0} = \stackrel{\text{of }}{0}$$

ou seja, neste caso obtemos que $(T - \lambda_2 Id) \circ (T - \lambda_1 Id) = \stackrel{\rightarrow}{0}_{\mathcal{L}(V,V)}$.

Agora, sem demonstração, vejamos o resultado abaixo.

Proposição 0.194. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $e \ T \in \mathcal{L}(V,V)$. Sejam $\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{K}$ todos os autovalores de T (distintos entre si). Se $m_T(x) = (x - \lambda_k).(x - \lambda_{k-1}).\cdots.(x - \lambda_1)$, então T é diagonalizável.

Observação 0.195. Com os dois resultados anteriores, temos mais uma caracterização de T ser diagonalizável, a saber: T é diagonalizável se, e somente se, $m_T(x)$ só admite raízes simples (cada autovalor de T deve ser raiz de $m_T(x)$ uma única vez).

Exemplo 0.196. Seja $T: \mathbb{R}^{11} \to \mathbb{R}^{11}$ um operador linear dado por

$$T(x_1, x_2, \dots, x_{11}) = (0, x_1, 0, \dots, 0).$$

Então T não é diagonalizável. Com efeito,

$$T^{2}(x_{1}, x_{2}, \dots, x_{11}) = T(T(x_{1}, x_{2}, \dots, x_{11})) = T(0, x_{1}, 0, \dots, 0) = (0, 0, \dots, 0),$$

donde segue que $T^2 = \overset{\rightarrow}{0}_{\mathcal{L}(\mathbb{R}^{11},\mathbb{R}^{11})}$, ou seja, T é raiz de x^2 e portanto x^2 é um múltiplo de $m_T(x)$. Já que os únicos divisores de x^2 são x e x^2 , e T não anula o primeiro, então $m_T(x) = x^2$ e portanto T não é diagonalizável (pois 0 não é uma raiz simples de $m_T(x)$).

Exemplo 0.197. Seja $S: \mathbb{R}^{11} \to \mathbb{R}^{11}$ um operador linear dado por

$$S(x_1, x_2, \dots, x_{11}) = (x_1, 0, \dots, 0).$$

Então S é diagonalizável. Com efeito,

$$S^{2}(x_{1}, x_{2}, \dots, x_{11}) = S(S(x_{1}, x_{2}, \dots, x_{11})) = S(x_{1}, 0, \dots, 0) = (x_{1}, 0, \dots, 0),$$

donde segue que $S^2 = S$, ou seja, S é raiz de $x^2 - x$ e portanto $x^2 - x$ é um múltiplo de $m_S(x)$. Como os únicos divisores de $x^2 - x$ são x, x - 1 e x(x-1), e S não anula os dois primeiros, então $m_S(x) = x(x-1)$ e portanto S é diagonalizável (pois 0 e 1 são raízes simples de $m_S(x)$).

Espaço vetorial com produto interno

De agora em diante, consideraremos apenas espaços vetoriais sobre \mathbb{R} (corpo dos números reais).

Definição 0.199. Seja V um \mathbb{R} -espaço vetorial. Um produto interno em V é uma função

$$\langle , \rangle : V \times V \to \mathbb{R}$$

 $(u, v) \mapsto \langle u, v \rangle \in \mathbb{R}$

satisfazendo:

(P1)
$$\langle \lambda u + v, w \rangle = \lambda \langle u, w \rangle + \langle v, w \rangle$$
, se $u, v, w \in V$, $\lambda \in \mathbb{R}$

$$(P2) \langle v, u \rangle = \langle u, v \rangle, \text{ se } u, v \in V$$

$$(P1)\ \langle u,u\rangle > 0,\ se\ u\neq \stackrel{\rightarrow}{0},\ u\in V$$

Assim, um \mathbb{R} -espaço vetorial V munido com um produto interno é chamado de um espaço vetorial (real) com produto interno.

Proposição 0.200. Seja V um espaço vetorial com produto interno \langle , \rangle . Então:

1.
$$\langle v, \overrightarrow{0} \rangle = \langle \overrightarrow{0}, v \rangle = 0$$
, se $v \in V$

2.
$$\langle u, \lambda v + w \rangle = \lambda \langle u, v \rangle + \langle u, w \rangle$$
, se $u, v, w \in V$, $\lambda \in \mathbb{R}$

3.
$$\langle \sum_{i=1}^{m} \alpha_i u_i, \sum_{j=1}^{n} \beta_j v_j \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j \langle u_i, v_j \rangle$$
, se $\alpha_i, \beta_j \in \mathbb{R}$, $u_i, v_j \in V$, com $i = 1, \ldots, m, j = 1, \ldots, n$

4.
$$\langle u, u \rangle = 0$$
 se, e somente se, $u = 0$

Mostremos (1). Como $\overrightarrow{0}=1.\overrightarrow{0}+\overrightarrow{0}$, então $\langle \overrightarrow{0},v\rangle=\langle 1.\overrightarrow{0}+\overrightarrow{0},v\rangle \stackrel{(P1)}{=}1\langle \overrightarrow{0},v\rangle+\langle \overrightarrow{0},v\rangle$ e portanto, somando $-\langle \overrightarrow{0},v\rangle$ dos dois lados igualdade, obtemos que $\langle \overrightarrow{0},v\rangle=0$. Por (P2), segue então que $\langle v,\overrightarrow{0}\rangle=\langle \overrightarrow{0},v\rangle=0$, para todo $v\in V$. Mostremos (2). Para todo $u,v,w\in V,\,\lambda\in\mathbb{R},\,\langle u,\lambda v+w\rangle\stackrel{(P2)}{=}\langle\lambda v+w,u\rangle\stackrel{(P1)}{=}\lambda\langle v,u\rangle+\langle w,u\rangle\stackrel{(P2)}{=}\lambda\langle u,v\rangle+\langle u,w\rangle.$

Mostremos (3). Sejam $u_i, v_j, v \in V$, $\alpha_i, \beta_j \in \mathbb{R}$, com $i = 1, \ldots, m, j = 1, \ldots, n$. Mostremos primeiro que $\langle \sum_{i=1}^m \alpha_i u_i, v \rangle = \sum_{i=1}^m \alpha_i \langle u_i, v \rangle$. Façamos por indução em m. Se m = 1, então o resultado segue por (P1). Suponhamos que o resultado vale para m - 1 (HI). Logo, $\langle \sum_{i=1}^m \alpha_i u_i, v \rangle = \langle \sum_{i=1}^{m-1} \alpha_i u_i + \alpha_m u_m, v \rangle \stackrel{(P1)}{=} \langle \sum_{i=1}^{m-1} \alpha_i u_i, v \rangle + \langle \alpha_m u_m, v \rangle \stackrel{(HI)}{=} \sum_{i=1}^{m-1} \alpha_i \langle u_i, v \rangle + \alpha_m \langle u_m, v \rangle$. Agora, por (P2), obtemos que $\langle v, \sum_{j=1}^n \beta_j v_j \rangle = \sum_{i=1}^n \beta_j \langle v, v_j \rangle$. Usando estas duas igualdades, obtemos o resultado.

Mostremos (4). Se $u \neq \overrightarrow{0}$, então, por (P3), $\langle u, u \rangle > 0$ e portanto $\langle u, u \rangle \neq 0$. Se $u = \overrightarrow{0}$, então, pela primeira parte, $\langle \overrightarrow{0}, \overrightarrow{0} \rangle = 0$. Logo, $\langle u, u \rangle = 0$ se, e só se, $u = \overrightarrow{0}$.

Exemplo 0.201. Consideremos \mathbb{R}^n como sendo \mathbb{R} -espaço vetorial. Definamos $\langle , \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ por $\langle (x_1, \dots, x_n), (y_1, \dots, y_n) \rangle := x_1.y_1 + \dots + x_n.y_n \in \mathbb{R}$.

Mostremos que \langle , \rangle é um produto interno em \mathbb{R}^n . De fato, $\langle \lambda(x_1, \ldots, x_n) + (y_1, \ldots, y_n), (z_1, \ldots, z_n) \rangle = \langle (\lambda x_1 + y_1, \ldots, \lambda x_n + y_n), (z_1, \ldots, z_n) \rangle = (\lambda x_1 + y_1).z_1 + \cdots + (\lambda x_n + y_n).z_n = \lambda(x_1.z_1 + \cdots + x_n.z_n) + y_1.z_1 + \cdots + y_n.z_n = \lambda((x_1, \ldots, x_n), (z_1, \ldots, z_n)) + \langle (y_1, \ldots, y_n), (z_1, \ldots, z_n) \rangle$. Ainda, é fácil ver que (P2) vale. Finalmente, como $\langle (x_1, \ldots, x_n), (x_1, \ldots, x_n) \rangle = x_1^2 + \cdots + x_n^2$ que é maior do que 0, se $(x_1, \ldots, x_n) \neq (0, \ldots, 0)$, segue que \langle , \rangle é um produto interno em \mathbb{R}^n , chamado de produto interno canônico de \mathbb{R}^n .

Exemplo 0.202. Consideremos \mathbb{R}^n como sendo \mathbb{R} -espaço vetorial. Sejam $\alpha_1, \alpha_2, \ldots, \alpha_n$ escalares positivos. Definamos $\langle , \rangle_{\alpha_1...\alpha_n} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ por $\langle (x_1, \ldots, x_n), (y_1, \ldots, y_n) \rangle_{\alpha_1...\alpha_n} := \alpha_1.x_1.y_1 + \alpha_2.x_2.y_2 + \cdots + \alpha_n.x_n.y_n \in \mathbb{R}$. Mostremos que $\langle , \rangle_{\alpha_1...\alpha_n}$ é um produto interno em \mathbb{R}^n . É fácil ver que (P1) e (P2) valem. Agora, desde que $\langle (x_1, \ldots, x_n), (x_1, \ldots, x_n) \rangle_{\alpha_1...\alpha_n} = \alpha_1.x_1^2 + \alpha_2.x_2^2 + \cdots + \alpha_n.x_n^2$ que é maior do que 0, se $(x_1, \ldots, x_n) \neq (0, \ldots, 0)$, segue que $\langle , \rangle_{\alpha_1...\alpha_n}$ é um produto interno em \mathbb{R}^n . Assim, por este exemplo, vemos que um \mathbb{R} -espaço vetorial pode admitir diferentes produtos internos.

Exemplo 0.203. Consideremos o \mathbb{R} -espaço vetorial das matrizes $m \times n$ com coeficientes em \mathbb{R} , $\mathbb{M}_{m \times n}(\mathbb{R})$. Definamos $\langle , \rangle_{:} \mathbb{M}_{m \times n}(\mathbb{R}) \times \mathbb{M}_{m \times n}(\mathbb{R}) \to \mathbb{R}$ por

$$\langle (a_{ij})_{i,j}, (b_{ij})_{i,j} \rangle := \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}.b_{ij} \in \mathbb{R}.$$

Então \langle , \rangle é um produto interno em $\mathbb{M}_{m \times n}(\mathbb{R})$ (verifique), chamado de produto interno canônico de $\mathbb{M}_{m \times n}(\mathbb{R})$.

Exemplo 0.204. Consideremos o \mathbb{R} -espaço vetorial das funções contínuas de [a,b] em \mathbb{R} , $\mathcal{C}([a,b],\mathbb{R})$. Definamos $\langle , \rangle_{:}\mathcal{C}([a,b],\mathbb{R}) \times \mathcal{C}([a,b],\mathbb{R}) \to \mathbb{R}$ por

$$\langle f, g \rangle := \int_a^b f(x) \cdot g(x) dx \in \mathbb{R}.$$

Então $\langle \, , \, \rangle$ é um produto interno em $\mathcal{C}([a,b],\mathbb{R})$. De fato, basta usarmos que $\int_a^b (\lambda f(x) + g(x)) .h(x) dx = \lambda \int_a^b f(x) .h(x) dx + \int_a^b g(x) .h(x) dx, \int_a^b g(x) .f(x) dx = \int_a^b f(x) .g(x) dx, \ e \int_a^b (f(x))^2 dx > 0$, se f não for identicamente nula, isto é,

se $f \neq \stackrel{\rightarrow}{0}_{\mathcal{C}([a,b],\mathbb{R})}$. Com estas propriedades, verifique que \langle , \rangle é um produto interno em $\mathcal{C}([a,b],\mathbb{R})$

O próximo resultado nos dá uma maneira de obter um produto interno a partir de um outro produto interno.

Proposição 0.205. Sejam V, W \mathbb{R} -espaços vetoriais, V sendo com produto interno \langle , \rangle_V . Seja $T: W \to V$ uma transformação linear injetora. Então a função $\langle , \rangle_T: W \times W \to \mathbb{R}$ dada por $\langle w_1, w_2 \rangle_T := \langle T(w_1), T(w_2) \rangle_V$ é um produto interno em W.

Com efeito, sejam $\lambda \in \mathbb{R}$, $w_1, w_2, w_3 \in W$. Então $\langle \lambda w_1 + w_2, w_3 \rangle_T = \langle T(\lambda w_1 + w_2), T(w_3) \rangle_V \stackrel{T \text{ linear}}{=} \langle \lambda T(w_1) + T(w_2), T(w_3) \rangle_V \stackrel{\langle , \rangle_V \text{ p.i.}}{=} \lambda \langle T(w_1), T(w_3) \rangle_V + \langle T(w_2), T(w_3) \rangle_V = \lambda \langle w_1, w_3 \rangle_T + \langle w_2, w_3 \rangle_T.$ Ainda, $\langle w_1, w_2 \rangle_T = \langle T(w_1), T(w_2) \rangle_V \stackrel{\langle , \rangle_V \text{ p.i.}}{=} \langle T(w_2), T(w_1) \rangle_V = \langle w_2, w_1 \rangle_T.$ Finalmente, $\langle w_1, w_1 \rangle_T = \langle T(w_1), T(w_1) \rangle_V \stackrel{\langle , \rangle_V \text{ p.i.}}{>} 0$, se $T(w_1) \neq 0$. Como T é injetora, segue que $T(w_1) \neq 0$ se, e só se, $w_1 \neq 0$. Logo, $\langle w_1, w_1 \rangle_T > 0$, se $w_1 \neq 0$. Portanto, \langle , \rangle_T é um produto interno em W.

Corolário 0.206. Todo \mathbb{R} -espaço vetorial de dimensão finita admite um produto interno.

De fato, sejam V um \mathbb{R} -espaço vetorial e $\mathcal{B}:=\{v_1,\ldots,v_n\}$ uma base de V. Consideremos \mathbb{R}^n como sendo \mathbb{R} -espaço vetorial e \mathcal{B}_C a base canônica de \mathbb{R}^n . Desde que \mathcal{B} e \mathcal{B}_C são bases que têm o mesmo número de elementos, existe uma única transformação linear $T:V\to\mathbb{R}^n$ tal que $T(v_1)=(1,0,\ldots,0),T(v_2)=(0,1,0,\ldots,0),\ldots,T(v_n)=(0,\ldots,0,1)$ e existe uma única $S:\mathbb{R}^n\to V$ que faz o contrário. Assim, T é um isomorfismo (pois verificamos que $S=T^{-1}$) dado por $T(\sum_{i=1}^n\alpha_iv_i)=(\alpha_1,\alpha_2,\ldots,\alpha_n)\in\mathbb{R}^n$. Logo, $(\sum_{i=1}^n\alpha_iv_i,\sum_{i=1}^n\beta_iv_i)_T:=((\alpha_1,\alpha_2,\ldots,\alpha_n),(\beta_1,\beta_2,\ldots,\beta_n))_{\mathbb{R}^n}$ é um produto interno em V, onde $(\alpha_1,\alpha_2,\ldots,\alpha_n)$ e palavras, se $(\alpha_1,\alpha_2,\ldots,\alpha_n)$ e palavras, se $(\alpha_1,\alpha_2,\ldots,\alpha_n)$ e palavras.

Definição 0.207. Seja V um espaço vetorial com produto interno \langle , \rangle . Para cada $v \in V$, chamamos o número $\sqrt{\langle v, v \rangle} \in \mathbb{R}$ de **norma de** v e o denotamos por ||v||.

Exemplo 0.208. Consideremos \mathbb{R}^n com o produto interno (canônico)

$$\langle (x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \rangle = x_1 \cdot y_1 + x_2 \cdot y_2 + \dots + x_n \cdot y_n.$$

 $Ent\tilde{a}o$

$$||(x_1, x_2, \dots, x_n)|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Com efeito,
$$||(x_1, x_2, ..., x_n)|| = \sqrt{\langle (x_1, x_2, ..., x_n), (x_1, x_2, ..., x_n) \rangle} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$
.

Exemplo 0.209. Consideremos $C([a,b],\mathbb{R})$ com o produto interno

$$\langle f, g \rangle = \int_a^b f(x).g(x)dx \in \mathbb{R}.$$

 $Ent\tilde{a}o$

$$||f|| = \sqrt{\int_a^b f(x)^2 dx}.$$

De fato,
$$||f|| = \sqrt{\langle f, f \rangle} = \sqrt{\int_a^b f(x)^2 dx}$$
.

Proposição 0.210. Seja V um espaço vetorial com produto interno \langle , \rangle . Então:

- 1. $||v|| \ge 0$, para todo $v \in V$
- 2. ||v|| = 0 se, e somente se, $v = \overrightarrow{0}$
- 3. $||\alpha.v|| = |\alpha|.||v||$, para todo $\alpha \in \mathbb{R}$, $v \in V$

Com efeito, por um lado, se $v = \overrightarrow{0}$, então $\langle v, v \rangle = \langle \overrightarrow{0}, \overrightarrow{0} \rangle = 0$, donde $||v|| = \sqrt{\langle v, v \rangle} = \sqrt{0} = 0$. Por outro lado, se $v \neq \overrightarrow{0}$, então, por (P3), $\langle v, v \rangle > 0$ e portanto $||v|| = \sqrt{\langle v, v \rangle} > 0$. Logo, em qualquer caso, $||v|| \geqslant 0$. Agora, notemos que, com esta argumentação, também já mostramos que $v = \overrightarrow{0}$ se, e somente se, ||v|| = 0. Mostremos, finalmente, (3). De fato, $||\alpha v|| = \sqrt{\langle \alpha v, \alpha v, v \rangle} = \sqrt{\alpha \alpha \langle v, v \rangle} = \sqrt{\alpha^2} \cdot \sqrt{\langle v, v \rangle} = |\alpha| \cdot ||v||$, para todo $\alpha \in \mathbb{R}$, $v \in V$.

Proposição 0.211. Seja V um espaço vetorial com produto interno \langle , \rangle . Sejam $u, v \in V$. Então:

1.
$$\langle u, v \rangle = \frac{1}{4}||u + v||^2 - \frac{1}{4}||u - v||^2$$

2. $|\langle u,v\rangle| \leq ||u||.||v||$, e a igualdade vale se, e somente se, $\{u,v\}$ é LD

3.
$$||u+v|| \le ||u|| + ||v||$$

Com efeito, mostremos (1). Temos que

$$||u+v||^{2} = \langle u+v, u+v \rangle \stackrel{(P1)}{=} \langle u, u+v \rangle + \langle v, u+v \rangle$$

$$= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle$$

$$\stackrel{(P2)}{=} \langle u, u \rangle + \langle u, v \rangle + \langle u, v \rangle + \langle v, v \rangle$$

$$= ||u||^{2} + 2\langle u, v \rangle + ||v||^{2},$$

$$||u-v||^{2} = \langle u-v, u-v \rangle \stackrel{(P1)}{=} \langle u, u-v \rangle - \langle v, u-v \rangle$$

$$= \langle u, u \rangle - \langle u, v \rangle - \langle v, u \rangle + \langle v, v \rangle$$

$$\stackrel{(P2)}{=} ||u||^{2} - 2\langle u, v \rangle + ||v||^{2}.$$

Logo, $||u+v||^2 - ||u-v||^2 = 4\langle u,v\rangle$, donde o resultado segue. Mostremos agora (2). Se $\alpha,\beta\in\mathbb{R}$, então

$$0 \leqslant \langle \alpha u - \beta v, \alpha u - \beta v \rangle \stackrel{(P1)}{=} \alpha \langle u, \alpha u - \beta v \rangle - \beta \langle v, \alpha u - \beta v \rangle$$

$$= \alpha^2 \langle u, u \rangle - \alpha \beta \langle u, v \rangle - \beta \alpha \langle v, u \rangle + \beta^2 \langle v, v \rangle$$

$$\stackrel{(P2)}{=} \alpha^2 ||u||^2 - 2\alpha \beta \langle u, v \rangle + \beta^2 ||v||^2.$$

Tomando $\alpha := ||v||^2$ e $\beta := \langle u, v \rangle$, obtemos que

$$0 \leqslant (||v||^2)^2.||u||^2 - 2||v||^2.\langle u,v\rangle.\langle u,v\rangle + \langle u,v\rangle^2.||v||^2,$$

isto é, $0 \leqslant ||v||^2 \cdot (||u||^2 \cdot ||v||^2 - \langle u, v \rangle^2)$, donde, como $||v|| \geqslant 0$, segue que $||u||^2 \cdot ||v||^2 - \langle u, v \rangle^2 \geqslant 0$. Daí, $|\langle u, v \rangle| = \sqrt{\langle u, v \rangle^2} \leqslant \sqrt{||u||^2 \cdot ||v||^2} = ||u|| \cdot ||v||$. Agora, por um lado, se $\{u, v\}$ é LD, então $v = \lambda u$, para algum $\lambda \in \mathbb{R}$. Daí, $|\langle u, v \rangle| = |\langle u, \lambda u \rangle| = |\lambda \langle u, u \rangle| = |\lambda| \cdot \langle u, u \rangle = |\lambda| \cdot ||u||^2 = ||u|| \cdot ||v||$, pois $||v|| = |\lambda| \cdot ||u||$. Por outro lado, se $|\langle u, v \rangle| = ||u|| \cdot ||v||$, então $0 = \langle \alpha u - \beta v, \alpha u - \beta v \rangle$, onde $\alpha := ||v||^2$ e $\beta := \langle u, v \rangle$. Logo, $\alpha u + \beta v = 0$. Se v = 0, acabou, pois $\{u, 0\}$ é LD. Se $v \neq 0$, então $\alpha = ||v||^2 \neq 0$ e portanto $u = \frac{\beta}{\alpha} v$, ou seja, u é um múltiplo de v e daí $\{u, v\}$ é LD.

Finalmente, mostremos (3). De fato, por (2), temos que $||u+v||^2 = ||u||^2 + 2\langle u,v\rangle + ||v||^2 \le ||u||^2 + 2|\langle u,v\rangle| + ||v||^2 \le ||u||^2 + 2||u||.||v|| + ||v||^2 = (||u|| + ||v||)^2$. Logo, $||u+v|| \le ||u|| + ||v||$.

Observação 0.212. A igualdade do item (1) acima é a chamada de identidade de polarização (para \mathbb{R}). A desigualdade do item (2) acima é chamada de desigualdade de Schwarz. E a desigualdade do item (3) acima é chamada de desigualdade triangular.

Observação 0.213. Seja V um espaço vetorial com produto interno \langle , \rangle . Definindo $d: V \times V \to \mathbb{R}$ por d(u,v) = ||u-v||, para todo $u,v \in V$, temos que d é uma **métrica** em V, pois:

- 1. $d(u,v) \ge 0$, se $u,v \in V$
- 2. d(u,v) = 0 se, e somente se, u = v
- 3. d(u, v) = d(v, u), se $u, v \in V$
- 4. $d(u, v) \leq d(u, w) + d(w, v)$, se $u, v, w \in V$

Exemplo 0.214. Consideremos \mathbb{R}^3 com o produto interno

$$\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle_* = 17x_1.y_1 + 13x_2.y_2 + 11x_3.y_3$$

(verifique que de fato \langle , \rangle_* é um produto interno). Então $||(x_1, x_2, x_3)||_* = \sqrt{17x_1^2 + 13x_2^2 + 11x_3^2}$ e portanto $||(1,0,0)||_* = \sqrt{17}$, $||(0,1,0)||_* = \sqrt{13}$ e $||(0,0,1)||_* = \sqrt{11}$. Daí, $||(\frac{1}{\sqrt{17}},0,0)||_* = 1$, $||(0,\frac{1}{\sqrt{13}},0)||_* = 1$ e $||(0,0,\frac{1}{\sqrt{11}})||_* = 1$. Consideremos agora \mathbb{R}^3 com o produto interno canônico. Então ||(1,0,0)|| = 1, ||(0,1,0)|| = 1 e ||(0,0,1)|| = 1.

Exemplo 0.215. Seja V um espaço vetorial com produto interno \langle , \rangle . Sejam $u, v \in V$ tais que:

- a) ||u||=3, ||v||=4 e ||u+v||=7. Calculemos $\langle u,v\rangle$ e ||u-v||. Como $7^2=||u+v||^2=\langle u+v,u+v\rangle=\langle u,u\rangle+\langle u,v\rangle+\langle v,u\rangle+\langle v,v\rangle=3^2+2\langle u,v\rangle+4^2,$ então $\langle u,v\rangle=12$. Daí, como $||u-v||^2=\langle u-v,u-v\rangle=\langle u,u\rangle+\langle u,-v\rangle+\langle -v,u\rangle+\langle -v,-v\rangle=3^2-2.12+4^2=1$, então ||u-v||=1.
- b) ||u|| = 3, ||v|| = 4 e ||u v|| = 5. Calculemos $\langle u, v \rangle$ e ||u + v||. Desde que $5^2 = ||u v||^2 = 3^2 2\langle u, v \rangle + 4^2$, então $\langle u, v \rangle = 0$. Daí, como $||u + v||^2 = 3^2 + 2.0 + 4^2 = 25$, então ||u + v|| = 5.
- c) ||u|| = 0 e ||v|| = 1. Calculemos $\langle u, v \rangle$ e ||u-v|| e ||u+v||. Já que ||u|| = 0, então u = 0, donde $\langle u, v \rangle = \langle 0, v \rangle = 0$, ||u-v|| = ||-v|| = |-1|||v|| = 1 e ||u+v|| = ||v|| = 1.
- d) ||u-v||=2 e ||u+v||=4. Calculemos $\langle u,v\rangle$. Temos que $\langle u,v\rangle=\frac{1}{4}||u+v||^2+\frac{1}{4}||u-v||^2=\frac{1}{4}4^2-\frac{1}{4}2^2=3$.

Observação 0.216. Seja V um espaço vetorial com produto interno \langle , \rangle . Se, para todo $v \in V$, $\langle u, v \rangle = 0$, então $u = \stackrel{\rightarrow}{0}$. Com efeito, tomando em particular v = u, obtemos que $\langle u, u \rangle = 0$ e portanto $u = \stackrel{\rightarrow}{0}$.

Ortogonalidade

Definição 0.217. Seja V um espaço vetorial com produto interno \langle , \rangle .

1. Sejam $u, v \in V$. Dizemos que u e v são **ortogonais** se $\langle u, v \rangle = 0$.

- 2. Um subconjunto S de V é chamado de **ortogonal** se $\langle u, v \rangle = 0$, para todo $u \neq v$, $u, v \in S$
- 3. Um subconjunto S de V é chamado de **ortonormal** se for ortogonal e ||u|| = 1, para todo $u \in S$

Observação 0.218. Notemos que, se V é um espaço vetorial com produto interno \langle , \rangle , então o vetor nulo de V é ortogonal a todos os vetores de V, pois $\langle \stackrel{\rightarrow}{0}, v \rangle = 0$, para todo $v \in V$. Além disto, mostramos que se $\langle u, v \rangle = 0$, para todo $v \in V$, então $u = \stackrel{\rightarrow}{0}$, donde $\stackrel{\rightarrow}{0}$ é o único vetor de V que é ortogonal a todos os vetores de V.

Exemplo 0.219. A base canônica de \mathbb{R}^n (este com o produto interno canônico) é ortonormal.

A base canônica de $\mathbb{M}_{m\times n}(\mathbb{R})$ (este com o produto interno canônico) é ortonormal. De fato, para m=n=2, lembremos que $\langle \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \rangle = a_{11}.b_{11} + a_{12}.b_{12} + a_{21}.b_{21} + a_{22}.b_{22} \ e \ \mathcal{B}_C = \{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \}$. Como $\langle \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \rangle = 1.1 + 0.0 + 0.0 + 0.0 = 1$, então $||\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}|| = \sqrt{1} = 1$. Analogamente, $||\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}|| = 1$, $||\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}|| = 1$ e $||\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}|| = 1$. Logo, os quatro vetores de \mathcal{B}_C são unitários. Agora, desde que, $\langle \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \rangle = 1.0 + 0.1 + 0.0 + 0.0 = 0$, então $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ e $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ são ortogonais. Analogamente, obtemos que $\langle \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \rangle = 0$, $\langle \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \rangle = 0$, donde \mathcal{B}_C é ortonormal.

Proposição 0.220. Seja V um espaço vetorial com produto interno \langle , \rangle . Seja S um subconjunto ortogonal de V formado por vetores não nulos. Então:

1. Se
$$v \in [v_1, v_2, \dots, v_n]$$
, com $v_1, v_2, \dots, v_n \in \mathcal{S}$, segue que $v = \frac{\langle v, v_1 \rangle}{||v_1||^2} v_1 + \frac{\langle v, v_2 \rangle}{||v_2||^2} v_2 + \dots + \frac{\langle v, v_n \rangle}{||v_n||^2} v_n$

2. S é LI

De fato, se $v \in [v_1, v_2, \dots, v_n]$, então existem escalares $\alpha_1, \alpha_2, \dots, \alpha_n$ tais que $v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$. Mas $\langle v_i, v_j \rangle = 0$, se $i \neq j$, pois $v_1, v_2, \dots, v_n \in \mathcal{S}$ e \mathcal{S} é ortogonal. Daí, $\langle v, v_1 \rangle = \langle \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n, v_1 \rangle \stackrel{(P1)}{=} \alpha_1 \langle v_1, v_1 \rangle + \alpha_2 \langle v_2, v_1 \rangle + \dots + \alpha_n \langle v_n, v_1 \rangle = \alpha_1 \langle v_1, v_1 \rangle$. Como $v_1 \neq 0$, então $\langle v_1, v_1 \rangle \neq 0$, donde $\alpha_1 = \frac{\langle v, v_1 \rangle}{\langle v_1, v_1 \rangle} = \frac{\langle v, v_1 \rangle}{||v_1||^2}$. Da mesma forma, $\alpha_2 = \frac{\langle v, v_2 \rangle}{||v_2||^2}, \dots, \alpha_n = \frac{\langle v, v_n \rangle}{||v_n||^2}$. Logo, $v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = \frac{\langle v, v_1 \rangle}{||v_1||^2} v_1 + \frac{\langle v, v_2 \rangle}{||v_2||^2} v_2 + \dots + \frac{\langle v, v_n \rangle}{||v_n||^2} v_n$. Mostremos (2). Seja $c := \beta_1 u_1 + \beta_2 u_2 + \dots + \beta_m u_m$ uma combinação linear qualquer de vetores de \mathcal{S} (com $u_1, u_2, \dots, u_m \in \mathcal{S}$ e $\beta_1, \beta_2, \dots, \beta_m \in \mathbb{R}$). Suponhamos que c é o vetor nulo. Daí, $0 = \beta_1 u_1 + \beta_2 u_2 + \dots + \beta_m u_m$. Pela prova de (1), como $0 \in [u_1, u_2, \dots, u_m]$, obtemos que $\beta_1 = \frac{\langle \vec{0}, u_1 \rangle}{||u_1||^2}, \beta_2 = \frac{\langle \vec{0}, u_2 \rangle}{||u_2||^2}, \dots, \beta_m = \frac{\langle \vec{0}, u_m \rangle}{||u_m||^2}$, donde $\beta_1 = \beta_2 = \dots = \beta_m = 0$ e portanto \mathcal{S} é LI.

Corolário 0.221. Seja V um espaço vetorial com produto interno \langle , \rangle . Seja $\mathcal{B} := \{v_1, v_2, \dots, v_n\}$ uma base ortonormal de V. Então, para cada $v \in V$, $v = \langle v, v_1 \rangle v_1 + \langle v, v_2 \rangle v_2 + \dots + \langle v, v_n \rangle v_n$.

Com efeito, desde que \mathcal{B} é uma base de V, então $[v_1, v_2, \ldots, v_n] = V$. Agora, como \mathcal{B} é, em particular, um subconjunto ortogonal de V formado por vetores não nulos, então, pelo resultado anterior, $v = \frac{\langle v, v_1 \rangle}{||v_1||^2} v_1 + \frac{\langle v, v_2 \rangle}{||v_2||^2} v_2 + \cdots + \frac{\langle v, v_n \rangle}{||v_n||^2} v_n$, para todo $v \in [v_1, v_2, \ldots, v_n] = V$. Finalmente, desde que $||v_1|| = ||v_2|| = \cdots = ||v_n|| = 1$, pois \mathcal{B} é ortonormal, então o resultado segue.

O próximo resultado nos fornece um modo de obtermos um conjunto ortogonal a partir de um conjunto LI.

Teorema 0.222. Seja V um espaço vetorial com produto interno \langle , \rangle . Se $S := \{v_1, v_2, \ldots, v_n\}$ é um subconjunto LI de V, então existe $\widetilde{S} := \{w_1, w_2, \ldots, w_n\}$ um subconjunto ortogonal de V tal que $[\widetilde{S}] = [S]$.

Façamos por indução em n.

Se n=2, tomemos $w_1:=v_1$ e $w_2:=v_2-\frac{\langle v_2,w_1\rangle}{||w_1||^2}w_1$. Notemos que $w_2\neq \overrightarrow{0}$, pois v_2 não é um múltiplo de $w_1=v_1$, já que $\{v_1,v_2\}$ é LI. Como $\langle w_1,w_2\rangle=0$

$$\begin{split} \langle v_1, v_2 \rangle &- \tfrac{\langle v_2, v_1 \rangle}{||v_1||^2} \langle v_1, v_1 \rangle = \langle v_1, v_2 \rangle - \langle v_2, v_1 \rangle = 0, \text{ então } \{w_1, w_2\} \text{ \'e ortogonal. Ainda, como } w_1, w_2 \in [v_1, v_2], \text{ então } [w_1, w_2] \subset [v_1, v_2]. \text{ Da\'i, desde que } \dim_{\mathbb{R}}[w_1, w_2] = 2 = \dim_{\mathbb{R}}[v_1, v_2] \text{ (pois } \{w_1, w_2\} \text{ \'e base para } [w_1, w_2] \text{ e } \{v_1, v_2\} \text{ \'e base para } [v_1, v_2]), \text{ segue que } [w_1, w_2] = [v_1, v_2]. \end{split}$$

Suponhamos por hipótese de indução (HI) que o resultado vale para n-1. Seja $\mathcal{S}:=\{v_1,v_2,\ldots,v_n\}$ um subconjunto LI de V. Como $\{v_1,v_2,\ldots,v_{n-1}\}$ é LI, então, por (HI), existe $\{w_1,w_2,\ldots,w_{n-1}\}$ um subconjunto ortogonal de V tal que $[v_1,v_2,\ldots,v_{n-1}]=[w_1,w_2,\ldots,w_{n-1}]$ (*). Tomemos $w_n:=v_n-\sum_{i=1}^{n-1}\frac{\langle v_n,w_i\rangle}{||w_i||^2}w_i$. Seja $\widetilde{\mathcal{S}}:=\{w_1,w_2,\ldots,w_n\}$. Notemos que $w_n\neq \overset{\rightarrow}{0}$, pois v_n não é combinação linear de v_1,\ldots,v_{n-1} , já que \mathcal{S} é LI, e portanto também não é combinação linear de w_1,\ldots,w_{n-1} , por (*). Agora, para todo $j=1,2,\ldots,n-1$,

$$\langle w_n, w_j \rangle = \langle v_n - \sum_{i=1}^{n-1} \frac{\langle v_n, w_i \rangle}{||w_i||^2} w_i, w_j \rangle$$

$$= \langle v_n, w_j \rangle - \sum_{i=1}^{n-1} \frac{\langle v_n, w_i \rangle}{||w_i||^2} \langle w_i, w_j \rangle$$

$$= \langle v_n, w_j \rangle - \frac{\langle v_n, w_j \rangle}{||w_j||^2} \langle w_j, w_j \rangle$$

$$= 0,$$

pois $\langle w_i, w_j \rangle = 0$, se $i \neq j$, uma vez que $\{w_1, w_2, \dots, w_{n-1}\}$ é ortogonal. Daí, \widetilde{S} é ortogonal. Ainda, como, pela construção de w_n e por $(*), w_1, w_2, \dots, w_n \in [v_1, v_2, \dots, v_n]$, segue que $[\widetilde{\mathcal{S}}] \subset [\mathcal{S}]$. Daí, desde que $\dim_{\mathbb{R}}[\widetilde{\mathcal{S}}] = n = \dim_{\mathbb{R}}[\mathcal{S}]$ (pois $\widetilde{\mathcal{S}}$ é base para $[\widetilde{\mathcal{S}}]$ e \mathcal{S} é base para $[\mathcal{S}]$), segue que $[\widetilde{\mathcal{S}}] = [\mathcal{S}]$.

Observação 0.223. A construção feita na prova acima é chamada de processo de ortogonalização de Gram-Schmidt.

Observação 0.224. Se V é um espaço vetorial com produto interno \langle , \rangle e $v \in V \setminus \{\overrightarrow{0}\}$, então o vetor $\frac{v}{||v||}$ é um múltiplo por escalar de v tal que $||\frac{v}{||v||}|| = 1$, pois $||\frac{v}{||v||}|| = |\frac{1}{||v||}|.||v|| = \frac{1}{||v||}.||v|| = 1$.

Corolário 0.225. Todo espaço vetorial (de dimensão finita maior do que 0) com produto interno tem uma base ortonormal.

De fato, seja V um espaço vetorial com produto interno, com $\dim_{\mathbb{R}} V = n > 0$. Seja $\mathcal{B} := \{v_1, v_2, \dots, v_n\}$ uma base de V. Pelo resultado anterior, existe $\widetilde{\mathcal{B}} := \{w_1, w_2, \dots, w_n\}$ um subconjunto ortogonal de V tal que $[\widetilde{\mathcal{B}}] = [\mathcal{B}]$. Tomemos $\mathcal{C} := \{\frac{w_1}{||w_1||}, \frac{w_2}{||w_2||}, \dots, \frac{w_n}{||w_n||}\}$. Como \mathcal{C} é LI, pois é um subconjunto ortonormal de V, e gera V, pois $[\mathcal{C}] = [\widetilde{\mathcal{B}}] = [\mathcal{B}] = V$, segue que \mathcal{C} é uma base ortonormal de V.

Exemplo 0.226. Consideremos \mathbb{R}^2 com o produto interno canônico $\langle \, , \, \rangle$. Temos que $\{(1,1),(1,2)\}$ é uma base de \mathbb{R}^2 . Vamos construir uma base ortonormal de \mathbb{R}^2 . Sejam $v_1 := (1,1)$ e $v_2 := (1,2)$. Tomemos $w_1 := v_1$. Temos que $||w_1||^2 = \langle w_1, w_1 \rangle = 1.1 + 1.1 = 2$ e $\langle v_2, w_1 \rangle = 1.1 + 2.1 = 3$. Daí, tomemos $w_2 := v_2 - \frac{\langle v_2, w_1 \rangle}{||w_1||^2} w_1 = (1,2) - \frac{3}{2}(1,1) = (1-\frac{3}{2},2-\frac{3}{2}) = (-\frac{1}{2},\frac{1}{2})$. Logo, $\{w_1, w_2\}$ é ortogonal (pelo processo acima). Daí, $\{\frac{w_1}{||w_1||}, \frac{w_2}{||w_2||}\}$ é uma base ortonormal de \mathbb{R}^2 (pois é um conjunto LI com dois vetores). Notemos que $\frac{w_1}{||w_1||} = \frac{(1,1)}{\sqrt{2}} = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$ e $\frac{w_2}{||w_2||} = \frac{(-\frac{1}{2},\frac{1}{2})}{\frac{\sqrt{2}}{2}} = (-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$.

Definição 0.227. Seja V um espaço vetorial com produto interno \langle , \rangle . Seja S um subconjunto de V. Chamamos de **ortogonal a** S ao conjunto $S^{\perp} := \{v \in V | \langle v, u \rangle = 0, \text{ para todo } u \in S\}.$

Proposição 0.228. Seja V um espaço vetorial com produto interno \langle , \rangle . Se S é um subconjunto de V, então S^{\perp} é um subespaço de V.

De fato, $\overrightarrow{0} \in \mathcal{S}^{\perp}$, pois $\langle \overrightarrow{0}, u \rangle = 0$, para todo $u \in V$. Sejam $\lambda \in \mathbb{R}$, $v, w \in \mathcal{S}^{\perp}$. Como $\langle \lambda v + w, u \rangle = \lambda \langle v, u \rangle + \langle w, u \rangle = \lambda.0 + 0 = 0$, para todo $u \in V$, então $\lambda v + w \in \mathcal{S}^{\perp}$. Assim, \mathcal{S}^{\perp} é um subespaço de V.

Observação 0.229. Notemos que S^{\perp} é sempre um subespaço de V, mesmo que S não o seja.

Ainda, se $S = \{\overrightarrow{0}\}$, então, para todo $v \in V$, $\langle v, \overrightarrow{0} \rangle = 0$, donde $V \subset S^{\perp}$ e portanto $S^{\perp} = V$.

Se S contém uma base ortogonal $\{u_1, u_2, \dots, u_n\}$ de V, então $S^{\perp} = \{\overrightarrow{0}\}$. De

fato, se $v \in \mathcal{S}^{\perp}$, existem escalares $\alpha_1, \alpha_2, \ldots, \alpha_n$ tais que $v = \alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_n u_n$. Daí, $0 = \langle v, u \rangle = \alpha_1 \langle u_1, u \rangle + \alpha_2 \langle u_2, u \rangle + \cdots + \alpha_n \langle u_n, u \rangle$, para todo $u \in \mathcal{S}$. Em particular, $0 = \langle v, u_1 \rangle = \alpha_1 \langle u_1, u_1 \rangle$, donde, como $\langle u_1, u_1 \rangle > 0$, segue que $\alpha_1 = 0$. Analogamente, obtemos que $\alpha_2 = \cdots = \alpha_n = 0$. Portanto, neste caso, se $v \in \mathcal{S}^{\perp}$, então v = 0, isto é, $\mathcal{S}^{\perp} = \{0\}$.

Exemplo 0.230. Consideremos \mathbb{R}^3 com o produto interno canônico \langle , \rangle . Seja $\mathcal{S} := \{(1,1,1),(1,1,2)\}$. Calculemos \mathcal{S}^{\perp} e mostremos que $\mathbb{R}^3 = [\mathcal{S}] \oplus \mathcal{S}^{\perp}$. Se $(x,y,z) \in \mathcal{S}^{\perp}$, então $\langle (x,y,z),(1,1,1)\rangle = 0$ e $\langle (x,y,z),(1,1,2)\rangle = 0$, isto \acute{e} ,

$$\begin{cases} 1x + 1y + 1z = 0 \\ 1x + 1y + 2z = 0 \end{cases}$$

Logo, z = 0 e y = -x, donde $S^{\perp} = \{(x, -x, 0) | x \in \mathbb{R}\} = [(1, -1, 0)]$. Agora, $[S] = [(1, 1, 1), (1, 1, 2)] = \{\alpha(1, 1, 1) + \beta(1, 1, 2) | \alpha, \beta \in \mathbb{R}\} = \{(\alpha + \beta, \alpha + \beta, \alpha + 2\beta) | \alpha, \beta \in \mathbb{R}\}$. Se $(\alpha + \beta, \alpha + \beta, \alpha + 2\beta) = (x, -x, 0)$, então $\alpha + \beta = x = -(\alpha + \beta)$ e $\alpha + 2\beta = 0$. Daí, $\beta = 0$ e $\alpha = 0$, donde $(\alpha + \beta, \alpha + \beta, \alpha + 2\beta) = (0, 0, 0)$ e portanto $[S] \cap S^{\perp} = \{(0, 0, 0)\}$. Ainda, como $\{(1, 1, 1), (1, 1, 2), (1, -1, 0)\}$ gera \mathbb{R}^3 (verifique), segue que $\mathbb{R}^3 = [S] + S^{\perp}$. Portanto, $\mathbb{R}^3 = [S] \oplus S^{\perp}$.

O próximo resultado nos dá uma caracterização dos vetores do ortogonal a um subespaço.

Proposição 0.231. Seja V um espaço vetorial com produto interno \langle , \rangle . Sejam W um subespaço de V e $\mathcal{B} := \{w_1, w_2, \dots, w_k\}$ um conjunto gerador de W. Então $v \in W^{\perp}$ se, e somente se, $\langle v, w_i \rangle = 0$, para todo $i = 1, \dots, k$.

De fato, se $w \in W$, então existem escalares $\alpha_1, \alpha_2, \ldots, \alpha_k$ tais que $w = \alpha_1 w_1 + \alpha_2 w_2 + \cdots + \alpha_k w_k$. Daí, se $v \in V$, então $\langle v, w \rangle = \langle v, \alpha_1 w_1 + \alpha_2 w_2 + \cdots + \alpha_k w_k \rangle = \alpha_1 \langle v, w_1 \rangle + \alpha_2 \langle v, w_2 \rangle + \cdots + \alpha_k \langle v, w_k \rangle$. Por um lado, se $\langle v, w_i \rangle = 0$, para todo $i = 1, \ldots, k$, então $\langle v, w \rangle = 0$, para todo $w \in W$, e

portanto $v \in W^{\perp}$. Por outro lado, se $v \in W^{\perp}$, então, para todo $w \in W$, $\langle v, w \rangle = 0$ e daí $\langle v, w_i \rangle = 0$, para todo $i = 1, \ldots, k$, pois $w_1, w_2, \ldots, w_k \in W$.

Observação 0.232. Seja V um espaço vetorial com produto interno \langle , \rangle . Se S é um subconjunto de V, então $[S]^{\perp} = S^{\perp}$. De fato, por um lado, se $w \in [S]^{\perp}$, então, em particular, $\langle w, u \rangle = 0$, para todo $u \in S$, donde $w \in S^{\perp}$ e portanto $[S]^{\perp} \subset S^{\perp}$. Por outro lado, se $w \in S^{\perp}$, então $\langle w, u \rangle = 0$, para todo $u \in S$. Daí, como S é um conjunto gerador de [S], então, pelo resultado anterior, $w \in [S]^{\perp}$ e portanto $S^{\perp} \subset [S]^{\perp}$. Logo, $[S]^{\perp} = S^{\perp}$.

Proposição 0.233. Seja V um espaço vetorial com produto interno $\langle \, , \, \rangle$ de dimensão finita. Se W é um subespaço de V, então $V=W\oplus W^{\perp}$.

Com efeito, se $V = \{\vec{0}\}$, então $\{\vec{0}\} = \{\vec{0}\} \oplus \{\vec{0}\}$ e o resultado segue. Seja então $V \neq \{\vec{0}\}$. Seja W um subespaço de V. Se $W = \{\vec{0}\}$, então $W^{\perp} = V$ e portanto $V = \{0\} \oplus V$. Seja então $W \neq \{0\}$. Como W é um subespaço de dimensão finita maior do que 0, segue que W possui uma base ortonormal $\mathcal{B} := \{w_1, w_2, \dots, w_k\}$. Como \mathcal{B} é LI, existe uma base de V que contém \mathcal{B} , digamos $\{w_1, w_2, \dots, w_k, v_1, v_2, \dots, v_n\}$. Aplicando o processo de ortogonalização de Gram-Schmidt, obtemos $\mathcal{C} := \{u_1, u_2, \dots, u_{k+n}\}$, com

$$u_{1} := w_{1},$$

$$u_{2} := w_{2} - \frac{\langle w_{2}, u_{1} \rangle}{||u_{1}||^{2}} u_{1} = w_{2}$$

$$\vdots$$

$$u_{k} := w_{k} - \sum_{i=1}^{k-1} \frac{\langle w_{k}, u_{i} \rangle}{||u_{i}||^{2}} u_{i} = w_{k},$$

pois $\langle w_j, w_i \rangle = 0$, para todo $j \neq i$. Verifiquemos que $W^{\perp} = [u_{k+1}, \dots, u_{k+n}]$. De fato, como $\langle u_{k+1}, w_i \rangle = 0$, para todo $i = 1, \dots, k$, pois \mathcal{C} é ortogonal, então pela proposição anterior segue que $u_{k+1} \in W^{\perp}$. Da mesma forma, $u_{k+2}, \dots, u_{k+n} \in W^{\perp}$, donde, como W^{\perp} é um subespaço, segue que $[u_{k+1}, \dots, u_{k+n}] \subset W^{\perp}$. Mas se $w \in W^{\perp}$, então sabemos que $w = \sum_{i=1}^{k+n} \frac{\langle w, u_i \rangle}{||u_i||^2} u_i$,

pois em particular $w \in [u_1, \ldots, u_{k+n}] = [\mathcal{C}]$ e \mathcal{C} é um conjunto ortogonal formado por vetores não nulos. Daí, desde que, $\langle w, w_i \rangle = 0$, pois $w \in W^{\perp}$ e $w_i \in W$, para todo $i = 1, \ldots, k$, então $w = \sum_{i=k+1}^{k+n} \frac{\langle w, u_i \rangle}{||u_i||^2} u_i$ e portanto $w \in [u_{k+1}, \ldots, u_{k+n}]$. Logo, $W^{\perp} = [u_{k+1}, \ldots, u_{k+n}]$. Finalmente, notemos que $V = W + W^{\perp}$ pois \mathcal{C} gera V, e $W \cap W^{\perp} = \{0\}$ pois \mathcal{C} é LI. Portanto, $V = W \oplus W^{\perp}$.

Observação 0.234. Seja V um espaço vetorial com produto interno \langle , \rangle de dimensão finita. Se S é um subconjunto de V, então, pelos resultados anteriores, $V = [S] \oplus S^{\perp}$, pois $V = [S] \oplus [S]^{\perp}$ e $[S]^{\perp} = S^{\perp}$.

Exemplo 0.235. Consideremos \mathbb{R}^2 com o produto interno canônico \langle , \rangle . Seja $\mathcal{S} := \{(11,13)\}$. Calculemos \mathcal{S}^{\perp} . Se $(x,y) \in \mathcal{S}^{\perp}$, então $\langle (x,y), (11,13) \rangle = 0$, isto é, 11x + 13y = 0. Logo, $y = -\frac{11}{13}x$, donde $\mathcal{S}^{\perp} = \{(x, -\frac{11}{13}x) | x \in \mathbb{R}\} = [(1, -\frac{11}{13})]$. Pela observação anterior, $\mathbb{R}^2 = [\mathcal{S}] \oplus \mathcal{S}^{\perp} = [(11,13)] \oplus [(1, -\frac{11}{13})]$.

Corolário 0.236. Seja V um espaço vetorial com produto interno \langle , \rangle de dimensão finita. Se W é um subespaço de V, então $\dim_{\mathbb{R}} V = \dim_{\mathbb{R}} W + \dim_{\mathbb{R}} W^{\perp}$.

Com efeito, seja W um subespaço de V. Então, pelo resultado anterior, $V = W \oplus W^{\perp}$. Daí, $\dim_{\mathbb{R}} V = \dim_{\mathbb{R}} W + \dim_{\mathbb{R}} W^{\perp} - \dim_{\mathbb{R}} (W \cap W^{\perp}) = \dim_{\mathbb{R}} W + \dim_{\mathbb{R}} W^{\perp} - 0 = \dim_{\mathbb{R}} W + \dim_{\mathbb{R}} W^{\perp}$.

Programa de Verão 2012

04/01/2012 a 17/02/2012

B.6 - Álgebra Linear (turma 2)

 $2^{\rm a}$ a $6^{\rm a}$ das 19h às 21h - sala B-16

Gustavo de Lima Prado - glprado@ime.usp.br - www.ime.usp.br/ glprado

Programa: Vetores no \mathbb{R}^n . Espaços vetoriais e subespaços. Transformações lineares e matrizes. Semelhança e Diagonalização. Determinantes. Produto interno e ortogonalidade.

Pré-requisitos: 1 a 2 anos de graduação em Ciências Exatas.

Público: Alunos de graduação em Ciências Exatas.

Carga Horária: 120h

Bibliografia:

- F. U. Coelho e M. L. Lourenço, Um curso de Álgebra Linear, EDUSP, 2010;
- C. A. Callioli, H. H. Domingues e R. C. F. Costa, Álgebra L. e Aplicações, Editora Atual, 1998;
- K. Hoffman e R. Kunze, Álgebra Linear, LTC, 1979;
- A. Howard e R. C. Busby, Álgebra L. Contemporânea, Editora Bookman, 2006.