

DYNAMIC CAUSAL MODELING FOR EEG

DARIO SCHÖBI

TRANSLATIONAL NEUROMODELING UNIT (TNU)
UNIVERSITY OF ZURICH & ETH ZURICH

Computational Psychiatry Course 2018

Friston et al., 2003, Neurolmage; David et al., 2006, Neurolmage

fMRI

Model inversion:

Estimating neuronal mechanisms

$$\frac{dx}{dt} = f(x, u, \theta)$$

Glossary:

- ERP (Evoked Response Potential)
- LFP (Local Field Potential)
- SEP (Somatosensory Evoked Potential)
- CMC (Canonical Microcircuit)
- NMM (Neural Mass Model)
- MFM (Mean Field Model)
- NFM (Neural Field Model)

Glossary:

- ERP (Evoked Response Potential)
- LFP (Local Field Potential)
- SEP (Somatosensory Evoked Potential)
- CMC (Canonical Microcircuit)
- NMM (Neural Mass Model)
- MFM (Mean Field Model)
- NFM (Neural Field Model)

I. Macroscale

Scalp maps, dipoles and connected networks

EEG

- Temporary accumulation of positive and negative charge during the generation of action potentials
- Resulting Electrical Potential (Energy) is a scalar quantity. It depends on the medium, and the location wrt the 'source', thus leading to Potential Energy differences on the scalp.

Buzsaki et al., 20012, Nature Reviews, Neuroscience

Forward Model

- Local Field Potentials (LFP)
 - Measure the activity much closer to the source.
 - 'Simpler' forward model, because we have a much more direct measure of source activity.
- Sensor-Level Data
 - Electrical Potential 'travels' from source to the scalp.
 - This mapping is usually referred to as Leadfield matrix

Aguiar et al, 2000, Symposium on Applied Computing

Ebersole, Handbook of Clinical Neurophysiology, 2004

Forward Model > ECD

- Sensor-Level Data
 - Given some neural activity modeled as a dipole at some location in the cortex and some momentum (vector), the leadfield matrix computes the projection of this activity onto the scalp.

Figure | Different possible dipole configurations that lead to different scalp potentials.

Almost Dynamic Causal Model

- We want to model the full sensor x time space
- Electrode Activity , Scalp Activity and Source Activity
- In DCM, the dipole moments are constant quantities, but act as gain factor on the neural dynamics!

Figure | Changes in the scalp and electrode potential, as the dipole moments change over time.

Connected Network

Sources / Regions

Connections

- Forward
- Backward
- Lateral

Figure | Changes in the scalp and electrode potential, as the underlying source activity changes over time. The moments of the leadfield act as constant gain factors.

Hypothesis Testing

- Macroscale view (similar to DCM for fMRI)
- Framework to test multiple hypotheses as Bayesian Model Selection (BMS -> Stefan Frässle) questions:

Data

(Hidden) Neuronal Model

Inverse Problem: Inference

Forward model: Prediction

$$y = g(x, \theta) + \varepsilon$$

Dynamic Equations

$$\frac{dx}{dt} = f(x, u, \theta)$$

Hypothesis Testing

- Macroscale view (similar to DCM for fMRI)
- Framework to test multiple hypotheses as Bayesian Model Selection (BMS -> Stefan Frässle) questions:
 - Does a model including regions A, B and C explain the data better than a model including only A and B.

Only possible for scalp data (not LFP or fMRI)!

Hypothesis Testing

- Macroscale view (similar to DCM for fMRI)
- Framework to test multiple hypotheses as Bayesian Model Selection (BMS -> Stefan Frässle) questions:
 - Does a model including regions
 A, B and C explain the data better
 than a model including only A
 and B
 - Can we explain a difference in activation between conditions as a condition specific modulation of one of the connections?

STUDY: IDENTIFYING MECHANISMS

Experimental Design

 $t_i = \text{trial i}, 1 \le i \le 11$

Effect of manipulation

Competing Hypotheses with regard to mechanisms expressed through different modulation structure.

Garrido et. al, 2008, Neurolmage

II. Mesoscale

Layered Structure of the cortical column

(Hidden) Neuronal Model

Inverse Problem: Inference

Forward model: Prediction

$$y = g(x, \theta) + \varepsilon$$

Dynamic Equations

$$\frac{dx}{dt} = f(x, u, \theta)$$

(Hidden) Neuronal Model

Recurrent network of cortical sources

Layered Structure of the cortical column

$$\frac{dx}{dt} = f(x, u, \theta)$$

Superficial and deep pyramidal and inhibitory cells are combined in a single population

Superficial and deep pyramidal cell populations are modeled individually

Kandel et al. 2000 (from Heimer 1994)

Mesoscale

Three types of Cell Populations:

Pyramidal, Inhibitory, Stellate

Inhibitory / Excitatory effects on different populations

Extrinsic Connectivity / Driving Input

Mesoscale

- Name of a between source connection refers to the layer, which a connection targets Felleman & van Essen 1991
- Output from the Pyramidal cell population
- Pyramidal Cell contribute most to the EEG signal
- Driving input into stellate cell layer IV

Considerations:

- Importance of distinguishing layer III and V pyramidal cells to model task (e.g. Predictive coding)
- Modeling of particular data features, i.e. Oscillations of particular frequencies.

III. Microscale

Mechanisms governing the generation of average post-synaptic potentials

(Hidden) Neuronal Model

Recurrent network of cortical sources

Layered Structure of the cortical column

Mechanisms governing generation of average post-synaptic potentials:

$$\frac{dx}{dt} = f(x, u, \theta)$$

Microscale > convolution based DCM

- Jansen and Rit (1995)
- A convolution kernel transforms the presynaptic firing rate into postsynaptic potential
- Kernel parametrized by two parameters

$$v(t) = \int_{-\infty}^{t} h(t - \tau, H, \kappa) \sigma(\tau) d\tau$$

Voltage over time shows similarities with Harmonic Oscillator.

(This is a consequence of the convolution operation)

$$\ddot{v} = f(Input) - \frac{2}{\tau}\dot{v} - \frac{1}{\tau^2}v$$

Equation describing the post synaptic potential in the convolution based DCM.

$$\ddot{x} = f(Input) - f\dot{x} - sx$$

Equation describing the behavior of a mass attached to a spring (H.O.)

Microscale > convolution based DCM

- Jansen and Rit (1995)
- A convolution kernel transforms the presynaptic firing rate into postsynaptic potential
- Kernel parametrized by two parameters
- For mathematical convenience, the second order differential equations are transformed into first order differential equations.

$$\ddot{v} = f(Input) - \frac{2}{\tau}\dot{v} - \frac{1}{\tau^2}v$$

$$k_e A_{back} + k_e A_{lateral} + k_e G^*$$

IV. Inferring on parameters

Getting a feeling for how different parameters affect different aspects generated data

Inferring on parameters

- Multiple manipulations might lead to similar changes in data features
- One objective measure, which of the competing hypotheses is the best, is Bayesian model selection
- Inference will only be as good as your model and inversion machinery
- Always check results for pitfalls

Inferring on parameters

- Multiple manipulations might lead to similar changes in data features
- One objective measure, which of the competing hypotheses is the best, is Bayesian model selection
- Inference will only be as good as your model and inversion machinery
- Always check results for pitfalls:
 - 'Blindly' trusting inversion results
 - 'Overinterpretation' of single parameter estimates
 - Priors

V. Conductance Based DCM

A very brief outlook on modeling synaptic mechanisms much more explicitly

Conductance based DCM

Morris- Lecar (1998)

Hodgkin and Huxley: Current discharging the capacitor = Current passing through the resistor

Moran et al, Current Biology, 2011

STUDY 1: INFERRING ON SYNAPTIC PARAMETERS

Working Memory activation **Theta**

Moran et al, Current Biology, 2011

Hypotheses about parameter changes under pharma

Inferred parameters predict behavior

VI. Importance for computational psychiatry

Testable hypotheses from 'cheap', 'fast', 'simple' and non-invasive measurements

Computational assays: Models of disease mechanisms

2 Application to brain activity and behaviour of individual patients

4 Individual treatment prediction

3 Detecting physiological subgroups (based on inferred mechanisms)

Stephan et al. 2015, Neuron

Data

(Hidden) Neuronal Model

Forward model: Likelihood

$$y = g(x, \theta) + \varepsilon$$

Data Features

Network of cortical sources and modulation of connection strength

Structure of the cortical column

Mechanisms governing generation of average post-synaptic potentials

MANY THANKS TO STEFAN FRÄSSLE, JAKOB HEINZLE AND KLAAS ENNO STEPHAN FOR SOME OF THE SLIDES!

