Machine Learning 03 Preprocessing - Categorical to number conversions

Claudio Sartori

1 Preprocessing: transform categorical data

In scikit-learn the classifiers require numeric data. The library makes available a set of preprocessing fuctions which help the transformation. This exercise proposes two types of transformations:

- OneHotEncoder for purely categorical columns: if the column has **V** distinct values it is substituted by **V** binary columns where in each row only the bit corrosponding to the original value is true
- OrdinalEncoder for ordinal columns: the original V values are mapped into the 0..V-1 range

The additional function ColumnTransformer allows to apply the different transformations to the appropriate columns with a single statement.

1.0.1 To do:

- import the appropriate names
- set the random state
- import the data set with the appropriate column names
- inspect the content and the data types
- read carefully the .names file of the data set, to understand which are the ordinal and categorical data
- data cleaning
 - the ordinal transformer generates a mapping from strings to numbers according to the lexicographic sorting of the strings; in this particular case, the strings indicate numeric subranges, and ranges with one digit constitute exceptions '5-9' happens to be after '20-25'
 - it is necessary to transform '5-9' into '05-09', and the same for other similar cases
 - a way to do this is to prepare dictionaries for the translation and use the .map function
- prepare the lists of the ordinal, categorical and numeric columns
- prepare the preprocessor
- split the cleaned data into the X and y part
- fit_transform the preprocessor and generate the transformed data set
- split the transformed data set into train and test
- use the same method used for the exercise of 19/11 to test several classifiers

http://scikit-

learn.org/stable/auto_examples/model_selection/plot_grid_search_digits.html
@author: scikit-learn.org and Claudio Sartori

```
[2]:
                       Class
                                age menopause tumor-size inv-nodes node-caps \
     0 no-recurrence-events
                                                   30-34
                                                               0-2
                              30-39
                                      premeno
                             40-49
                                                   20-24
                                                               0-2
     1 no-recurrence-events
                                      premeno
                                                                          no
                             40-49
                                                   20-24
                                                               0-2
     2 no-recurrence-events
                                      premeno
                                                                          no
     3 no-recurrence-events
                              60-69
                                                   15-19
                                                               0-2
                                         ge40
                                                                          no
     4 no-recurrence-events
                             40-49
                                                     0-4
                                                               0-2
                                      premeno
                                                                          no
        deg-malig breast breast-quad irradiat
     0
                3
                    left
                            left_low
                                           no
                2
     1
                 right
                            right_up
                                           no
                2
     2
                   left
                            left_low
                                           no
                2 right
     3
                             left_up
                                           no
     4
                2 right
                           right_low
                                           no
```

Show the types of the columns

Class	object
age	object
menopause	object
tumor-size	object
inv-nodes	object
node-caps	object
deg-malig	int64
breast	object
breast-quad	object
irradiat	object
dtype: object	

Clean the column tumor-size

Clean the column inv-nodes

Inspect the data

```
[10]:
                                  age menopause tumor-size inv-nodes node-caps
                        Class
      0 no-recurrence-events 30-39
                                        premeno
                                                     30-34
                                                                00-02
                                                                             no
      1 no-recurrence-events 40-49
                                                     20-24
                                                                00-02
                                        premeno
                                                                             no
      2 no-recurrence-events 40-49
                                                     20-24
                                                               00-02
                                        premeno
                                                                             nο
      3 no-recurrence-events 60-69
                                           ge40
                                                     15-19
                                                               00-02
                                                                             no
      4 no-recurrence-events 40-49
                                                     00-04
                                                               00-02
                                        premeno
         deg-malig breast breast-quad irradiat
      0
                 3
                     left
                             left_low
      1
                 2 right
                             right_up
                                             no
      2
                 2
                             left_low
                    left
                                             no
      3
                 2 right
                             left_up
                                             no
                 2 right
      4
                            right_low
                                             no
     Prepare the lists of numeric features, ordinal features, categorical features
     The non-numeric features are:
     ['Class' 'age' 'menopause' 'tumor-size' 'inv-nodes' 'node-caps' 'breast'
      'breast-quad' 'irradiat']
     The numeric features are:
     ['deg-malig']
     The ordinal features are:
     ['age', 'tumor-size', 'inv-nodes']
     The categorical features are:
     ['menopause', 'irradiat', 'breast', 'node-caps', 'breast-quad']
     Prepare the transformer
     Split X and y and check the shapes
     The labels are:
     ['no-recurrence-events' 'recurrence-events']
[18]: (286, 9)
     Fit the preprocessor with X and check the parameters printing the .named_transformers_ at-
     tribute
[19]: ColumnTransformer(n_jobs=None, remainder='passthrough', sparse_threshold=0.3,
                        transformer_weights=None,
                        transformers=[('cat',
                                        OneHotEncoder(categorical_features=None,
                                                      categories=None, drop=None,
                                                      dtype=<class 'numpy.int32'>,
                                                      handle_unknown='ignore',
                                                      n_values=None, sparse=False),
                                        ['menopause', 'irradiat', 'breast',
                                         'node-caps', 'breast-quad']),
```

Fit-transform X and store the result in X_p, check the shape

[22]: (286, 20)

For ease of inspection transform X_p into a data frame df_p and inspect it

[24]:		0	1	2	3	4	5	\
	count	286.000000	286.000000	286.000000	286.000000	286.000000	286.000000	
	mean	0.451049	0.024476	0.524476	0.762238	0.237762	0.531469	
	std	0.498470	0.154791	0.500276	0.426459	0.426459	0.499883	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	0.000000	0.000000	0.000000	1.000000	0.000000	0.000000	
	50%	0.000000	0.000000	1.000000	1.000000	0.000000	1.000000	
	75%	1.000000	0.000000	1.000000	1.000000	0.000000	1.000000	
	max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	
		6	7	8	9	10	11	\
	count	286.000000	286.000000	286.000000	286.000000	286.000000	286.000000	
	mean	0.468531	0.027972	0.776224	0.195804	0.003497	0.073427	
	std	0.499883	0.165182	0.417504	0.397514	0.059131	0.261293	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	
	50%	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	
	75%	1.000000	0.000000	1.000000	0.000000	0.000000	0.000000	
	max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	
		12	13	14	15	16	17	/
	count	286.000000	286.000000	286.000000	286.000000	286.000000	286.000000	
	mean	0.384615	0.339161	0.083916	0.115385	2.664336	4.881119	
	std	0.487357	0.474254	0.277748	0.320046	1.011818	2.105930	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	0.000000	0.000000	0.000000	0.000000	2.000000	4.000000	
	50%	0.000000	0.000000	0.000000	0.000000	3.000000	5.000000	
	75%	1.000000	1.000000	0.000000	0.000000	3.000000	6.000000	
	max	1.000000	1.000000	1.000000	1.000000	5.000000	10.000000	

```
19
                       18
              286.000000
                            286.000000
      count
      mean
                 0.517483
                              2.048951
      std
                 1.110417
                              0.738217
                 0.000000
                              1.000000
      min
      25%
                 0.000000
                              2.000000
      50%
                 0.000000
                              2.000000
      75%
                 1.000000
                              3.000000
                 6.000000
                              3.000000
      max
[25]:
                                                                                    19
                    3
                       4
                           5
                              6
                                 7
                                                11
                                                     12
                                                         13
                                                              14
                                                                   15
                                                                       16
                                                                            17
                                                                                18
                                     8
                                            10
                                                                                      3
      0
                       0
                           1
                              0
                                 0
                                     1
                                        0
                                             0
                                                 0
                                                      1
                                                           0
                                                               0
                                                                    0
                                                                        1
                                                                             6
                                                                                 0
      1
                                                                                      2
          0
                    1
                       0
                         0
                              1
                                 0
                                     1
                                        0
                                             0
                                                 0
                                                      0
                                                               0
                                                                   1
                                                                        2
                                                                             4
                                                                                 0
                1
                    1
                       0
                              0
                                0
                                     1
                                                           0
                                                               0
                                                                   0
                                                                        2
                                                                             4
                                                                                 0
                                                                                      2
                          1
                                        0
                                             0
                                                 0
                                                      1
      3
         1
             0
                0
                    1
                       0
                           0
                              1
                                 0
                                     1
                                        0
                                             0
                                                 0
                                                      0
                                                           1
                                                               0
                                                                    0
                                                                        4
                                                                             3
                                                                                 0
                                                                                      2
          0
             0
                 1
                    1
                       0
                           0
                              1
                                 0
                                     1
                                        0
                                                 0
                                                      0
                                                           0
                                                               1
                                                                    0
                                                                        2
                                                                             0
                                                                                 0
                                                                                      2
```

The columns in the transformed dataset are generated according to the order you see printing the preprocessor after fitting, therefore the last four columns correspond to 'age', 'tumor-size', 'inv-nodes', 'deg-malig'.

In order to inspect if the translation and check if the mapping is as expected, compare the sorted values of df['tumor-size'] and df_p[17], e.g. comparing the index sequences

The number of index discordances between 'tumor-size' and '17' is 0

Train/test split

```
Classification and test
_____
# Tuning hyper-parameters for recall_macro
Trying model Decision Tree
Best parameters set found on train set:
{'max_depth': 14}
Grid scores on train set:
0.567 (+/-0.086) for {'max_depth': 1}
```

```
0.610 (+/-0.115) for {'max_depth': 2}
0.583 (+/-0.127) for {\max_{depth': 3}}
0.551 (+/-0.082) for {\max_depth': 4}
0.574 (+/-0.148) for {\max_{depth': 5}}
0.574 (+/-0.138) for {\max_depth': 6}
0.597 (+/-0.148) for {'max_depth': 7}
0.591 (+/-0.226) for {'max_depth': 8}
0.567 (+/-0.223) for {\max_{depth': 9}}
```

```
0.576 (+/-0.285) for {'max_depth': 10}

0.577 (+/-0.168) for {'max_depth': 11}

0.552 (+/-0.166) for {'max_depth': 12}

0.564 (+/-0.163) for {'max_depth': 13}

0.620 (+/-0.187) for {'max_depth': 14}

0.565 (+/-0.142) for {'max_depth': 15}

0.573 (+/-0.089) for {'max_depth': 16}

0.608 (+/-0.121) for {'max_depth': 17}

0.571 (+/-0.154) for {'max_depth': 18}

0.576 (+/-0.177) for {'max_depth': 19}
```

Detailed classification report for the best parameter set:

The model is trained on the full train set. The scores are computed on the full test set.

	precision	recall	f1-score	support
no-recurrence-events	0.72	0.84	0.77	49
recurrence-events	0.47	0.30	0.37	23
accuracy			0.67	72
macro avg	0.59	0.57	0.57	72
weighted avg	0.64	0.67	0.64	72

[[41 8] [16 7]]

Trying model Gaussian Naive Bayes
Best parameters set found on train set:

{'var_smoothing': 0.01}

Grid scores on train set:

```
0.500 (+/-0.000) for {'var_smoothing': 10}
0.506 (+/-0.049) for {'var_smoothing': 1}
0.593 (+/-0.115) for {'var_smoothing': 0.1}
0.629 (+/-0.134) for {'var_smoothing': 0.01}
0.627 (+/-0.125) for {'var_smoothing': 0.001}
0.624 (+/-0.121) for {'var_smoothing': 0.0001}
0.611 (+/-0.076) for {'var_smoothing': 1e-05}
0.601 (+/-0.092) for {'var_smoothing': 1e-06}
0.591 (+/-0.094) for {'var_smoothing': 1e-07}
0.577 (+/-0.124) for {'var_smoothing': 1e-08}
0.556 (+/-0.142) for {'var_smoothing': 1e-09}
0.551 (+/-0.135) for {'var_smoothing': 1e-10}
```

Detailed classification report for the best parameter set:

The model is trained on the full train set. The scores are computed on the full test set.

	precision	recall	f1-score	support
no-recurrence-events	0.73	0.88	0.80	49
recurrence-events	0.54	0.30	0.39	23
accuracy			0.69	72
macro avg	0.63	0.59	0.59	72
weighted avg	0.67	0.69	0.67	72

[[43 6] [16 7]]

Trying model Linear Perceptron
Best parameters set found on train set:

{'early_stopping': True}

Grid scores on train set:

0.564 (+/-0.111) for {'early_stopping': True}

Detailed classification report for the best parameter set:

The model is trained on the full train set. The scores are computed on the full test set.

	precision	recall	f1-score	support
no-recurrence-events recurrence-events	1.00 0.35	0.14 1.00	0.25 0.52	49 23
accuracy			0.42	72
macro avg	0.68	0.57	0.39	72
weighted avg	0.79	0.42	0.34	72

[[7 42] [0 23]]

Trying model Support Vector

Best parameters set found on train set:

{'C': 10, 'kernel': 'linear'}

Grid scores on train set:

```
0.500 (+/-0.000) for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
0.500 (+/-0.000) for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
0.495 (+/-0.048) for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
0.500 (+/-0.000) for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
0.549 (+/-0.064) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
0.495 (+/-0.048) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
0.574 (+/-0.122) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
0.574 (+/-0.074) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
0.554 (+/-0.091) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
0.599 (+/-0.159) for {'C': 10, 'kernel': 'linear'}
0.599 (+/-0.159) for {'C': 100, 'kernel': 'linear'}
0.599 (+/-0.159) for {'C': 100, 'kernel': 'linear'}
```

Detailed classification report for the best parameter set:

The model is trained on the full train set.

The scores are computed on the full test set.

	precision	recall	f1-score	support
no-recurrence-events	0.73	0.92	0.81	49
recurrence-events	0.60	0.26	0.36	23
accuracu			0.71	72
accuracy macro avg	0.66	0.59	0.71	72
weighted avg	0.69	0.71	0.67	72

[[45 4] [17 6]]

Trying model K Nearest Neighbor
Best parameters set found on train set:

{'metric': 'manhattan', 'n_neighbors': 7}

Grid scores on train set:

```
0.567 (+/-0.088) for {'metric': 'euclidean', 'n_neighbors': 1} 0.524 (+/-0.037) for {'metric': 'euclidean', 'n_neighbors': 2} 0.554 (+/-0.190) for {'metric': 'euclidean', 'n_neighbors': 3} 0.542 (+/-0.104) for {'metric': 'euclidean', 'n_neighbors': 4} 0.548 (+/-0.115) for {'metric': 'euclidean', 'n_neighbors': 5}
```

```
0.502 (+/-0.075) for {'metric': 'euclidean', 'n_neighbors': 6}
0.555 (+/-0.096) for {'metric': 'euclidean', 'n_neighbors': 7}
0.523 (+/-0.080) for {'metric': 'euclidean', 'n_neighbors': 8}
0.521 (+/-0.091) for {'metric': 'euclidean', 'n_neighbors': 9}
0.524 (+/-0.079) for {'metric': 'euclidean', 'n_neighbors': 10}
0.578 (+/-0.077) for {'metric': 'manhattan', 'n_neighbors': 1}
0.554 (+/-0.063) for {'metric': 'manhattan', 'n_neighbors': 2}
0.554 (+/-0.170) for {'metric': 'manhattan', 'n_neighbors': 3}
0.570 (+/-0.086) for {'metric': 'manhattan', 'n_neighbors': 4}
0.562 (+/-0.052) for {'metric': 'manhattan', 'n_neighbors': 5}
0.553 (+/-0.097) for {'metric': 'manhattan', 'n_neighbors': 6}
0.584 (+/-0.124) for {'metric': 'manhattan', 'n_neighbors': 7}
0.566 (+/-0.158) for {'metric': 'manhattan', 'n_neighbors': 8}
0.560 (+/-0.161) for {'metric': 'manhattan', 'n_neighbors': 9}
0.561 (+/-0.095) for {'metric': 'manhattan', 'n_neighbors': 10}
0.490 (+/-0.152) for {'metric': 'chebyshev', 'n_neighbors': 1}
0.521 (+/-0.128) for {'metric': 'chebyshev', 'n_neighbors': 2}
0.575 (+/-0.146) for {'metric': 'chebyshev', 'n_neighbors': 3}
0.539 (+/-0.090) for {'metric': 'chebyshev', 'n_neighbors': 4}
0.576 (+/-0.095) for {'metric': 'chebyshev', 'n_neighbors': 5}
0.518 (+/-0.087) for {'metric': 'chebyshev', 'n_neighbors': 6}
0.531 (+/-0.100) for {'metric': 'chebyshev', 'n_neighbors': 7}
0.518 (+/-0.068) for {'metric': 'chebyshev', 'n_neighbors': 8}
0.520 (+/-0.086) for {'metric': 'chebyshev', 'n_neighbors': 9}
0.539 (+/-0.070) for {'metric': 'chebyshev', 'n_neighbors': 10}
```

Detailed classification report for the best parameter set:

The model is trained on the full train set.

The scores are computed on the full test set.

	precision	recall	f1-score	support
no-recurrence-events	0.69	0.92	0.79	49
recurrence-events	0.43	0.13	0.20	23
accuracy			0.67	72
macro avg	0.56	0.52	0.49	72
weighted avg	0.61	0.67	0.60	72

[[45 4] [20 3]]

Trying model Random Forest
Best parameters set found on train set:

{'max_depth': 8}

Grid scores on train set:

```
0.533 (+/-0.082) for {'max_depth': 1}

0.604 (+/-0.076) for {'max_depth': 2}

0.587 (+/-0.130) for {'max_depth': 3}

0.595 (+/-0.111) for {'max_depth': 4}

0.599 (+/-0.194) for {'max_depth': 5}

0.590 (+/-0.115) for {'max_depth': 6}

0.580 (+/-0.117) for {'max_depth': 7}

0.614 (+/-0.110) for {'max_depth': 8}

0.560 (+/-0.087) for {'max_depth': 9}

0.600 (+/-0.112) for {'max_depth': 10}
```

Detailed classification report for the best parameter set:

The model is trained on the full train set.

The scores are computed on the full test set.

	precision	recall	f1-score	support
no-recurrence-events	0.73	0.96	0.83	49
recurrence-events	0.75	0.26	0.39	23
accuracy			0.74	72
macro avg	0.74	0.61	0.61	72
weighted avg	0.74	0.74	0.69	72

[[47 2] [17 6]]

Trying model Adaboost

Best parameters set found on train set:

{'learning_rate': 0.01}

Grid scores on train set:

```
0.586 (+/-0.146) for {'learning_rate': 1.0}

0.620 (+/-0.102) for {'learning_rate': 0.1}

0.643 (+/-0.161) for {'learning_rate': 0.01}

0.567 (+/-0.086) for {'learning_rate': 0.001}

0.567 (+/-0.086) for {'learning_rate': 0.0001}
```

Detailed classification report for the best parameter set:

The model is trained on the full train set.

The scores are computed on the full test set.

	precision	recall	f1-score	support
	_			
no-recurrence-events	0.72	0.98	0.83	49
recurrence-events	0.80	0.17	0.29	23
accuracy			0.72	72
macro avg	0.76	0.58	0.56	72
weighted avg	0.74	0.72	0.65	72

[[48 1] [19 4]]

Summary of results for recall_macro

Estimator

Decision Tree - score: 0.62%
Gaussian Naive Bayes - score: 0.63%
Linear Perceptron - score: 0.56%
Support Vector - score: 0.6%
K Nearest Neighbor - score: 0.58%
Random Forest - score: 0.61%
Adaboost - score: 0.64%