Correction Bac. Session principale 2013

Epreuve : **SCIENCES PHYSIQUES**

Section : Sciences de l'informatique

Chimie: (5points)

Q	Corrigé	Barème
I-1-	Electrolyse à anode soluble.	0,25
2-a	Métal déposé : le cuivre	0,25
2-b	$Cu \rightarrow Cu^{2+} + 2e^{-}$	0,25
2-с	électrode (A) de cuivre électrode (C) de graphite solution (S1) de sulfate de cuivre CuSO4	2 x 0,25
4-	$\begin{array}{c} Cu_{(A)} \rightarrow Cu^{2+}_{(S)} + 2 \ e^{-} \\ \underline{Cu^{2+}_{(S1)} + 2 \ e^{-} \rightarrow Cu_{(C)}} \\ \hline \\ Cu_{(A)} + Cu^{2+}_{(S1)} \rightarrow Cu^{2+}_{(S1)} + Cu_{(C)} \\ \end{array}$ Les ions Cu^{2+} consommés à la cathode (C) sont régénérés à l'anode (A) d'où la concentr ation de (S_1) en Cu^{2+} ne varie pas.	0,5
5-	L'utilisation d'une électrode de cuivre de mauvaise qualité (impure) n'influe pas sur la qualité du cuivre déposé sur l'électrode (C) de graphite. Les impuretés restent en solution.	0,25
II-1	Matériel nécessaire à la réalisation de (P): (b ₁), (b ₂), (A), (B) et pont salin.	0,5
2-a-	Le symbole de (P): Zn Zn^{2+} (1mol.L ⁻¹) Cu^{2+} (1mol.L ⁻¹) Cu L'équation chimique associée au symbole de (P): $Zn + Cu^{2+} \implies Zn^{2+} + Cu$	2x0, 25
2-b-	$\begin{split} E_i &= V_{bD} - V_{bG} = V_{bCu} - V_{bZn} \text{ or } E_i > 0 \text{ d'où } V_{bCu} > V_{bZn} \\ \text{On conclue que l'électrode de cuivre constitue le pôle (+) de la pile.} \\ \text{L'électrode de zinc constitue le pôle (-) de (P).} \end{split}$	2x0, 25
2-c-	$E_i>0$ d'où la réaction se produisant spontanément au sein de la pile s'écrit : $Zn+Cu^{2^+}\to\ Zn^{2^+}+Cu$	2x0, 25
3-a-	D'après l'équation de la réaction, le cuivre se dépose sur l'électrode de cuivre. Ce dépôt entraine l'augmentation de la masse de l'électrode de cuivre.	2x0, 25

	Concentration molaire en ions Cu^{2+} dans le bécher (b_1) .	
3-b	$[Cu^{2+}]_t = [Cu^{2+}]_i - \frac{m}{M V}, A.N : [Cu^{2+}]_t = 0.9 \text{ mol.L}^{-1}$	2x0, 25

Physique: (15 points)
Exercice 1: (6,5 points)

Q	Corrigé	Barème
1-	On appelle filtre électrique tout quadripôle ne transmettant que les signaux électriques de fréquences comprises dans un certain domaine.	0, 25
2-	 (F₁) est un filtre actif car il comporte un AOP. (F₂) est un filtre passif car il comporte uniquement des composants passifs. 	2 x 0, 25
3-a-	Le gain du filtre (F_2) noté G_2 tend vers 0 lorsque la fréquence N tend vers l'infini, d'où la courbe (\mathscr{C}) correspond à l'évolution du gain G_2 du filtre (F_2) .	0,25
3-b-	$G_{01} = 2dB$ et $G_{02} = 0$ dB	2 x 0, 25
3-с-	$G_{01} > 0$ d'où le filtre (F_1) peut amplifier la tension électrique.	2 x 0,25
3-d-	(F_1) est passant pour $G_1 \ge -1$ dB, d'où la fréquence de coupure $N_{C1} = 10^3 Hz$. (F_2) est passant pour $G_2 \ge -3$ dB, d'où la fréquence de coupure $N_{C2} = 10^2 Hz$.	4 x 0, 25
3-e-	(F ₁) est passant pour $0 \le N \le 10^3 Hz$: il s'agit d'un filtre passe bas. (F ₂) est passant pour $N \ge 10^2 Hz$: il s'agit d'un filtre passe haut.	2 x 0,25
3-f-	On hachure la zone de fréquences où : 10^2 Hz $\leq N \leq 10^3$ Hz	0, 5
4-a-	$\begin{split} & \text{filtres } (F_1) \text{: } G_1 \!\! \ge G_{01} \!\! - \!\! 3 \text{ dB} \Leftrightarrow \!\! 20 \log \frac{R'}{R} \!\! - \!\! 10 \log \! \left[1 \!\! + \!\! \left(2 \pi N R' C \right)^2 \right] \!\! \ge \!\! 20 \log \frac{R'}{R} \!\! - \!\! 3 \\ & \Leftrightarrow \log \! \left[1 \!\! + \!\! \left(2 \pi N R' C \right)^2 \right] \!\! \le 0,3 \text{ d'où } N \!\! \le \!\! \frac{\sqrt{10^{0,3} - \!\! 1}}{2 \pi R' C} \text{ donc } N_{C1} \!\! = \!\! \frac{\sqrt{10^{0,3} - \!\! 1}}{2 \pi R' C} \end{split} \\ & \text{Finalement } N_{C1} \!\! = \!\! \frac{1}{2 \pi R' C} \!\! . \\ & \text{filtres } (F_2) \text{: } G_2 \!\! \ge G_{02} \!\! - \!\! 3 \text{ dB} \Leftrightarrow \!\! - \!\! 10 \log \! \left[1 \!\! + \!\! \frac{1}{\left(2 \pi N R'' C \right)^2} \right] \!\! \ge \!\! - \!\! 3 \Leftrightarrow \\ & log \! \left[1 \!\! + \!\! \frac{1}{\left(2 \pi N R' C \right)^2} \right] \!\! \le 0,3 \text{ d'où } N \!\! \ge \!\! \frac{1}{2 \pi R'' C \sqrt{10^{0,3} - 1}} \\ & \text{donc } N_{C1} \!\! = \!\! \frac{1}{2 \pi R'' C \sqrt{10^{0,3} - 1}} \text{ Finalement } N_{C2} \!\! = \!\! \frac{1}{2 \pi R'' C} \end{split}$	2x0, 5
4-b-	$\mathbf{R'} = \frac{1}{2\pi N_{C1}C} \text{A.N : } \mathbf{R'} = 338,62\Omega$ $\mathbf{R''} = \frac{1}{2\pi N_{C2}C} \text{A.N : } \mathbf{R''} = 3386,27\Omega$	0, 25
	$\mathbf{R''} = \frac{1}{2\pi \mathbf{N}_{c2}\mathbf{C}} \text{A.N : } \mathbf{R''} = 3386,27\Omega$	0, 25

		$20\log\frac{\mathbf{R'}}{\mathbf{R}} = 2 \text{d'où } \mathbf{R} = 269\Omega$	0, 5
ſ		$N_{C1} = N_{C2} \Leftrightarrow R' = R''.$	
	5-	$G_{01}=G_{02}=0$ alors $\log \frac{R'}{R}=0$ ainsi $R=R'$ en conclusion $R=R'=R''$	2 x 0, 25

Exercice 2: (5,5 points)

Q	Corrigé	Barème
1-a-	*Un signal analogique est quantifiable et passe d'une valeur à une autre sans rupture(sans discontinuité). *un signal numérique ne peut prendre que des valeurs bien définies, en nombre limité.	2 x 0, 25
1-b-	On appelle convertisseur numérique-analogique (C.N.A) un dispositif qui transforme des mots binaires en valeurs analogiques de tension ou de courant électrique. Symbole du (C.N.A): ### ### ### ### ### ### ###	2 x 0, 25
2-a-	Expression des intensités I_0 , I_1 , I_2 et I_3 des courants circulant respectivement, dans les conducteurs ohmiques de résistance $8R$, $4R$, $2R$ et R : $I_0 = -\frac{a_0 U_{ref}}{8R}$, $I_1 = -\frac{a_1 U_{ref}}{4R}$, $I_2 = -\frac{a_2 U_{ref}}{2R}$ et $I_3 = -\frac{a_3 U_{ref}}{R}$	4 x 0, 25
2-b-	D'après la loi des nœuds l'intensité I du courant circulant dans le conducteur ohmique de résistance R' , a pour expression: $\mathbf{I'} = \mathbf{I_0} + \mathbf{I_1} + \mathbf{I_2} + \mathbf{I_3}$ ainsi $\mathbf{I'} = -\frac{\mathbf{U_{ref}}}{8\mathbf{R}} \Big(8\mathbf{a_3} + 4\mathbf{a_2} + 2\mathbf{a_1} + \mathbf{a_0} \Big) \text{d'où } \mathbf{I'} = -\frac{\mathbf{U_{ref}} \left[\mathbf{N} \right]}{8\mathbf{R}}$	2 x 0, 25
3-	Montrer que la tension de sortie U_S a pour expression : $U_S = \frac{R'}{8R} U_{ref} [N]$. On a $U_S = -R'.I'$ or $I' = -\frac{U_{ref} [N]}{8R} \Rightarrow U_S = \frac{R'}{8R} U_{ref} [N]$	2 x 0, 25
4-a-	q est appelé le quantum.	0, 25
4-b-	Expression de quantum : $\mathbf{q} = \frac{\mathbf{U}\mathbf{s}}{[\mathbf{N}]} = \frac{\mathbf{R}'\mathbf{U}_{ref}}{8\mathbf{R}}$	2 x 0, 25
5-a-	La tension pleine échelle $\mathbf{U}_{\mathbf{PE}}$ est la plus grande valeur de tension de sortie du	0,25
5-b-	Valeur de la tension de référence U_{ref} . $U_{ref} = \frac{8qR}{R'}$ or $q = \frac{U_{Smax}}{[N]_{max}}$ A.N: $q = \frac{9,38}{15} = 0,625$ V On a R'= R d'ou $U_{ref} = 8q = 5$ V	4 x 0, 25
5-c-	$U_S = q[N]$ A.N: $U_S = 0.625.10 = 6.25V$	2 x 0, 25

Exercice 3: (3 points)

Q	Corrigé	Barème
1-	On fait recours à l'onde porteuse dans la transmission de signaux, pour pallier la difficulté de parcourir de grandes distances.	0, 75
2-	Modulation d'amplitude (AM) et modulation de fréquence (FM).	2 x 0, 5
3-	Le démodulateur intervient pour séparer l'onde porteuse du signal qui contient l'information.	0, 75
4-	Le véhicule puissant désigne l'onde porteuse. Il s'agit d'une onde électromagnétique.	2 x 0, 25