

**Vegetable
Tips**

Hydroponics at Home

Michigan State University
Cooperative Extension Service
Extension Bulletin E-1853 September 1985

Hydroponics at Home

By
Dara J. Philipsen*
J. Lee Taylor
Irvin E. Widders
Department of Horticulture
Former Student

A small plant growing
in a trial of nutrient
solution.

This publication provides information on the hydroponic culture of plants for the home gardener, hobbyist or experimenter. It is not intended for commercial growers. Anyone interested in commercial hydroponics should study one or more of the books on hydroponics, such as those listed in the back of this publication, visit several commercial operations, and set up and operate a small system for two or three years before investing much capital in a commercial venture.

What Is Hydroponics?

Hydroponics — also called nutriculture, soilless culture, chemiculture, gravel culture, aggregate culture, water gardening, tank farming and tray agriculture—is a procedure for growing plants without soil. There are several ways to do this, but the basic principle of all hydroponic methods is growing plants with their roots in contact with a solution containing all of the essential plant nutrients in amounts needed for optimum plant growth (Fig. 1). Hydroponics is an intensive growing method that requires optimum light, temperature and humidity.

Almost any herbaceous plant can be grown using a hydroponic system. Growing plants hydroponically is more

difficult and exacting than using traditional methods, however.

Advantages and Disadvantages

The major advantage of hydroponics is that plants can be grown where suitable soil is not available for cultivation. Another advantage is that weeds and soil pathogens are usually not a major problem in hydroponic systems.

Hydroponics also has a number of disadvantages. The setup, maintenance and operation of a hydroponic system are costly because of the specialized equipment required. The system must be monitored regularly by persons who are knowledgeable about the complex plant-nutrient solution interactions that occur. A growing plant can rapidly deplete a nutrient solution of water and mineral nutrients or modify its pH. Such changes can severely stress a plant and have deleterious effects on growth.

Even though a system may initially be free of pathogens, sanitation must be monitored carefully because introduced pathogens will spread very rapidly throughout the entire system. While a clean system has no pathogens, it also has no pathogenic antagonists. Therefore, once a pathogen gets into a system, its population will virtually explode because natural enemies are not present to check its spread.

Hydroponics does not necessarily result in larger yields or higher quality plants than soil culture. Plants must be spaced the same in both systems to

Two Basic Hydroponic Systems

There are two basic hydroponic systems: water culture and aggregate culture.

The water culture system involves growing plants in closed containers with the roots immersed in a nutrient solution. This provides total root contact with nutrients. The plants must be attached to physical supports above the solution. To prevent algae growth, the container should not allow light inside. Aeration of the solution is essential and must be done mechanically.

An aquarium (painted over) or similar container can be used for a home hydroponics system. A sheet of Styrofoam with holes through which the plants are placed makes a good support. An aquarium aerator that continuously injects air into the nutrient solution would provide adequate aeration.

Individual plant containers can also be used. Jars or bottles with stoppers and painted sides are adequate for individual plants or for several plants

allow light penetration. Soilless culture is justified only where arable soil is unavailable, where soil pathogens are uncontrollable, or for experimentation or hobby purposes. Some commercial growers produce plants by hydroponic methods, but the turnover of growers tends to be rather rapid.

*A gravity drip feed system:
The nutrient solution drips into
the pot just fast enough
to keep the aggregate moist.*

If you want to conserve nutrients, you may be able to occasionally flush the aggregate with water instead of always using the nutrient solution. How frequently this can be done is difficult to determine because many factors are involved. With experience, a grower may find that every other application may be water only for certain plants at certain times for certain aggregates.

Nutrient Solution

The nutrient solution must contain all of the elements essential for plant growth, it must have an optimum pH and it must be well aerated. The solu-

tion needs to be renewed (replaced) periodically—every one to four weeks, depending on the size of plants. If used longer, it will become depleted of essential mineral elements and plants will develop deficiency symptoms.

The nutrients essential to plant growth are nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, manganese, boron, zinc, copper, molybdenum and chlorine. Proper amounts and proportions are essential for optimum plant growth. The pH of the solution should be around 5.5 to 6.5.

The pH level can be tested quickly using nitrazine paper, available at pharmacies and drug stores. Test kits for swimming pools can also be used. For more accurate testing, use pH test kits for gardeners.

Premixed nutrient solutions are available through catalogs, garden supply stores and fertilizer suppliers. This would probably be the best way for beginners to obtain a nutrient mix with the proper balance of nutrients, which is so important for plants. The serious do-it-yourselfer, however, may want to mix a solution "from scratch." The ingredients are not easy to acquire and would have to be purchased through a chemical supply company or other supplier.

Water needs to be added to the nutrient solution system just as frequently as to the aggregate system. As water evaporates and/or is taken up by the plant and transpired, the volume of the solution is dramatically reduced. This can result in one of two

effects on the plant: a specific salt toxicity because of the resulting high salt concentration, or a potential reduction in water uptake. A good way to monitor fluctuations in soluble salt concentration is by measuring the electrical conductivity of the nutrient solution using a conductivity meter obtainable from garden centers or electronic suppliers. The higher the salt concentration, the higher the conductivity reading on the meter. An initial reading should be taken when the solution is first mixed up and additional readings taken regularly to monitor the concentration.

Though a conductivity meter is helpful in determining the salt concentration in the nutrient solution, it cannot indicate the concentrations of particular salts, so imbalances may still occur. Most growers just keep adding water to the solution to bring it back to the original volume, use the solution for a week to a month, and then discard the solution before serious imbalances occur.

Solutions will need to be changed weekly for large, fast-growing plants, whereas smaller plants may be able to grow satisfactorily for as long as a month. Some growers use a very dilute solution — perhaps 10 percent of normal nutrient solution — and run it through the system only once and discard it. This technique eliminates the possibility that imbalances will occur.

The Hoagland Solution

Various plant species require different relative amounts of mineral

nutrients for optimum growth. What might be an ideal formulation for one plant species may not be for another. The classic Hoagland solution, developed by Dr. D. R. Hoagland of the University of California, was formulated for culturing tomatoes. It may not suit other types of plants.

Plants also differ in their sensitivity to salts, their total nutrient requirements and the rates at which they remove mineral nutrients and water from the system. A hydroponic system, therefore, should be designed for the crop to be grown.

Hoagland worked out the solutions in Tables 1 and 2. The nutrient solution (Table 1) is composed of four salts that are measured either by weight (ounces) or volume (tablespoons) and added to 25 gallons of water. These four compounds provide the major elements (macroelements) needed by plants.

The five salts listed in Table 2 are all made into separate concentrated or stock solutions (1 quart to 1½ gallons), and a small amount is added to the 25 gallons of nutrient solution prepared from the salts in Table 1. These five microelement stock solutions provide the microelements essential for growth.

Nutrient Deficiency/ Toxicity Symptoms

Plants grown hydroponically are extremely sensitive to imbalances in the nutrient mix, so it's important to

recognize stress signs. Some common nutrient deficiency and toxicity symptoms are listed below.

Deficiency Symptoms:

Copper:
Veinal chlorosis starting in the middle leaves; a few leaves suddenly wilt and die and then a few more higher up, etc.

Zinc:
Malformation of leaves—leaves become asymmetric.

Boron:
Dieback of shoot resulting in witch's broom effect; flowers are deformed when open; stems and petioles become brittle.

Nitrogen:
Stunted growth and light or chlorotic foliage.

Phosphorus:

Stunted, very dark green foliage; lower leaves may become yellow between veins; monocots may have purple veins.

Potassium:
Lower leaves with interveinal chlorosis; browning leaf edges; brownish mottling.

Calcium:

Tip of shoot dies; interveinal chlorosis on upper leaves.

Magnesium:

Lower leaves with interveinal bleaching or chlorosis and dark green veins; leaf margins may curl; leaves eventually die.

Sulfur:

Light green upper leaves with veins lighter than surrounding tissue.

Iron:

Upper leaves develop interveinal chlorosis with green veins.

Manganese:

Also interveinal chlorosis of upper leaves but veins have wider green bands; upper leaves may also have necrotic spots.

*Nutrient
Solution*

A simple gravity feed system—Nutrient solution flows into the growing medium in the growing bed. When the aggregate is flooded, excess solution is allowed to drain out into the lower container.

Toxicity Symptoms:

Nitrogen:
Long internodes; crispy stem.

Iron:

Dark leaf edges.

Manganese:

Dark brown leaf veins; also iron deficiency symptoms because too much manganese inhibits iron uptake.

Zinc:

Copper deficiency symptoms.

Boron:

Necrosis of leaf edges.

A manual gravity feed system. The container attached to the growing bed with a flexible hose, is raised to allow nutrient solution to flow into the aggregate, and it is lowered to allow excess solution to drain out.

Sources of Hydroponic Supplies

Hydroponic supplies can be obtained from several places. Garden centers should carry some of the chemicals and perhaps even equipment. Fertilizer and chemical supply companies may carry the chemicals, but the minimum quantity that they may sell may be several pounds. Some suppliers advertise in garden magazines and related publications. Some of the books on hydroponics also list suppliers.

Table 1. Macroelements

Salt	Grade	Nutrients	Amount for 25 gal of nutrient solution		
			Ounces	OR	Level Tablespoons
Potassium phosphate (monobasic)	Technical	Potassium Phosphorus	½	1	
Potassium nitrate	Fertilizer	Potassium Nitrogen	2	4	(of powdered salt)
Calcium nitrate	Fertilizer	Calcium Nitrogen	3	7	
Magnesium sulfate	Technical	Magnesium Sulfur	1½	4	

Table 2. Microelements

Salt (all chemical grade)	Nutrients	Stock solutions (1 gal of water)	Amount of stock solution to use, for 25 gal of nutrient solution
Boric acid, powdered (H ₃ BO ₃)	Boron	2 tsp	1 cup
Manganese chloride (MnCl ₂ 4H ₂ O)	Manganese Chlorine	1 tsp	¾ cup
Zinc sulfate (ZnSO ₄ 7H ₂ O)	Zinc, Sulfur	2 tsp	½ tsp
Copper sulfate (CuSO ₄ 5H ₂ O)	Copper, Sulfur	1 tsp	¼ tsp
Iron chelate	Iron	4 tsp	½ cup

References

Bentley, Maxwell. 1974. *Hydroponics Plus the Bentley System: A New Approach to Intensified Farming*. O'Connor Printers, 3600 South Duluth Ave., Sioux Falls, SD 57105.

Bergman, E. L. Nutrient Solution Culture of Plants. Vegetable Crops Publication 3, Pennsylvania State University Agricultural Extension Service, University Park, PA.

Bridwell, R. 1972. *Hydroponic Gardening: The "Magic" of Modern Hydroponics for the Home Gardener*. Woodbridge Press Publishing Co., P.O. Box 2053, Beverly Hills, CA 90213.

Butler, J. D. and N. F. Oebker. 1962. *Hydroponics as a Hobby—Growing Plants Without Soil*. Circular 844. University of Illinois Cooperative Extension Service, Urbana, IL.

Carpenter, T. 1979. *Hydroponics: A Handbook for Beginners, Hobbyists and Commercial Growers*. Hydro-Gardens, Colorado Springs, CO.

Dekorne, J. B. 1975. *The Survival Greenhouse: An Ecosystem Approach to Home Food Production*.

Jones, L. 1977. *Hydroponics and How To Do It*. Ward Ritchie Press, Pasadena, CA.

Kramer, J. 1976. *Gardens Without Soil: House Plants, Vegetables, and Flowers*. Charles Scribner's Sons, New York, NY.

Maynard, D. N. and A. V. Barker. 1970. *Nutriculture—A Guide to the Soilless Culture of Plants*. Publication No. 41. Cooperative Extension Service, University of Massachusetts, Amherst, MA.

Mittleider, J. R. 1975. *More Food From Your Garden*. Woodbridge Press, Box 6189, Santa Barbara, CA 93111.

Nicholls, R. E. 1977. *Beginning Hydroponics*. Running Press, 38 S. 19th Street, Philadelphia, PA 19103.

Hoagland, D. R. and D. I. Arnon. 1950. *The Water-culture Method for Growing Plants Without Soil*. California Agricultural Experiment Station Circular 347. Agricultural Publication, University of California, Berkeley, CA 94720.

Jones, J. Benton Jr. 1983. *A Guide for the Hydroponic + Soilless Culture Grower*. Timber Press, P.O. Box 1631, Beaverton, OR 97075.

Jones, L. 1977. *Hydroponics and How To Do It*. Ward Ritchie Press, Pasadena, CA.

Schwarz, M. 1967. "Gravel Culture Home Unit." *HortScience* 2(1):22-23. (Hydroponics Department, Negev Institute for Arid Zone Research, Beersheba, Israel.)

Sherman, C. E. and H. Brenizer. 1975. *Hydroponic Gardening at Home*. Nolo Press, Box 544, Occidental, CA 95465.

Shive, J. W. and W. R. Robbins. 1956. *Methods of Growing Plants in Solution and Sand Cultures*. Bulletin 363. New Jersey Agricultural Experiment Station, New Brunswick, NJ.

Sholto, Douglas J. 1976. *Beginners Guide to Hydroponics: Soilless Gardening*. General Publishing Co., Ltd., 30 Lesmill Road, Don Mills, Ontario, Canada.

Taylor, James D. 1983. *Crow More Nutritious Vegetables Without Soil*. Parkside Press Publishing Co., P.O. Box 11585, Santa Ana, CA 92711.

Rotter, Hans A. 1983. *Growing Plants Without Soil*. Sterling Publishing

MICHIGAN STATE UNIVERSITY

MSU is an Affirmative Action/Equal Opportunity Institution. Cooperative Extension Service programs are open to all without regard to race, color, national origin, sex, or handicap. Issued in furtherance of cooperative extension work in agriculture and home economics, acts of May 8, and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Gordon E. Guyer, Director, Cooperative Extension Service, Michigan State University, E. Lansing, MI 48824. This information is for education purposes only. Reference to commercial products or trade names does not imply endorsement by the Cooperative Extension Service or bias against those not mentioned. This bulletin becomes public property upon publication and may be reprinted verbatim as a separate or within another publication with credit to MSU. Reprinting cannot be used to endorse or advertise a commercial product or company.

New-9-85-6.6M-UP-LKM, Price 40¢

O-15810