ANALYSIS OF ALGORITHMS

LECTURE 7:TREES

BASED ON SECTION 5.1

TREES

- Connected, Acyclic Graphs
- Not necessarily a binary tree
- Doesn't necessarily look like a tree

TREES

- Some vertex can be the root
- Let's say vertex I is the root, we could redraw the tree in A as shown in B
- There is exactly one path from a vertex to the root
- This leads to a more compact representation that we can use for trees.

PARENT ARRAY

- Instead of using an adjacency matrix or adjacency list, we can use a parent array
- For every vertex, we keep only the first vertex on the path between it and the root (besides itself)

0	1	2	3	4	5
3	I	3	1	3	I

PROPERTIES OF TREES

- **Theorem 5.1.** Let T be a graph with n vertices. Then the following statements are equivalent.
 - I. T is a tree
 - 2. T is connected, and has n-1 edges
 - 3. T contains no cycles and has n-1 edges
 - 4. T is connected, and every edge is a bridge
 - 5. Any two vertices of T are connected by exactly one path
 - 6. T contains no circuits, but the addition of any new edge creates exactly one circuit

OUR OLD FRIEND INDUCTION

- Prove $I \Rightarrow 2$
- T is any graph with n vertices
- Prove T is a tree \Rightarrow T is connected, and has n-1 edges
- Induction!
- Consider a Base Case of n=1. Now we need to show that all trees with I vertex have 0 edges
- This is kind of trivially true. If there were any edges, we'd have a cycle as the only possible edge is from 0 to itself. But we know that T is a tree, so it can't have any cycle.

- Now we can assume I ⇒ 2 for all trees with k vertices, and we need to prove that I ⇒ 2 for all trees with k+I vertices
- So we can assume all trees with k vertices have k-I edges, and we need to prove that all trees with k+I vertices have k edges
- We will use a similar strategy to what we used for the graph colouring proof in the previous lecture
- Let T be a tree with k+l vertices

- Let T be a tree with k+l vertices
- We want to prove that it has k edges, but we know nothing about trees with k+l vertices
- We do know stuff about trees with k vertices, so we want to do something to the tree to turn it into a tree with k vertices
- Remove a vertex v from T, to produce T'
- Now, T' has k vertices. But is T' necessarily a tree?
 - Is it necessarily acyclic?
 - Is it necessarily connected?

- Let T be a tree with k+l vertices
- We want to prove that it has k edges, but we know nothing about trees with k+l vertices
- We do know stuff about trees with k vertices, so we want to do something to the tree to turn it into a tree with k vertices
- Remove a vertex v from T, to produce T'
- Now, T' has k vertices. But is T' necessarily a tree?
 - Is it necessarily acyclic?
 - Is it necessarily connected? NO!

- The key is not to remove a random vertex v. Instead remove a leaf node v
- Any leaf node will have only I edge, so we will remove that I edge as well
- So when we remove v from T to produce T', T' will have k vertices
 - Is T' acyclic?
 - Is T' connected?
- Now, if T' is a tree with k vertices, we know it has k-I edges
- But T has exactly one more edge than T', so it has k edges
- So every tree with k+l vertices has k edges
- So our induction meme has gone viral
- So $I \Rightarrow 2$ for all trees of size k, for all natural numbers k
- So I \Rightarrow 2 for all trees

READING

 Read Sections 5.1 (Properties of Trees) and 5.3 (Search Trees) in the book