Taller 2 aprendizaje de máquina.

Integrantes: Luis Frontuso, Miguel Zúñiga.

Este documento aborda un problema de clasificación de imágenes que contienen números escritos a mano. Estas imágenes corresponden a 10 clases: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. El conjunto de datos consta de 70,000 observaciones, divididas en un conjunto de entrenamiento (60,000 85%) y un conjunto de prueba (10,000 15%). Las clases están balanceadas en ambos conjuntos, con una distribución cercana al 10% para cada una.

Por último, con el fin de mejorar las métricas de precisión del modelo —sensibilidad, especificidad, precisión, y F1-score— se llevan a cabo una serie de experimentos sobre la arquitectura de la red, incluyendo la cantidad de capas, y el número de neuronas en cada capa, cambiando dichos componentes de forma aleatoria. De esta forma se proponen los siguientes experimentos:

	Input	Hidden Layer 01		Hidden Layer 02		Hidden Layer 03		Output layer	
	layer	Units	Act.	Units	Act.	Units	Act.	Units	Act. Func.
			Func.		Func.		Func.		
Model_00	784	90	ReLU	100	ReLU		ReLU	10	softmax
Model_01	784	97	ReLU	52	ReLU	47	ReLU	10	softmax
Model_02	784	95	ReLU	50	ReLU	43	ReLU	10	softmax
Model_03	784	93	ReLU	54	ReLU	38	ReLU	10	softmax
Model_04	784	92	ReLU	52	ReLU	36	ReLU	10	softmax

En los que se obtuvieron los siguientes resultados con el training stop por defecto de la librería. Para el cálculo de las métricas generales: sensibility, specificity, F1 se hizo mediante el promedio de métrica para cada clase. Además el drift se calculo como la diferencia entre la métrica train menos la métrica en test.

Los experimentos obtuvieron los siguientes resultados:

		Valid	ation		Drift				
	sensibility	specificity	accuracy	F1	sensibility	specificity	accuracy	F1	
Model_00	61.7679%	95.8478%	63.0350%	63.3159%	0.5309%	0.0499%	0.0000%	0.8461%	
Model_01	90.1553%	98.9182%	90.2600%	90.1604%	8.1490%	0.8951%	8.0583%	9.6529%	
Model_02	88.2690%	98.7108%	88.3900%	88.2482%	3.6915%	0.4094%	3.6883%	10.8720%	
Model_03	26.3948%	91.9755%	27.6200%	20.9052%	0.1883%	0.0232%	0.2667%	0.3455%	
Model_04	51.2620%	94.6824%	52.0400%	52.9558%	0.0692%	0.0171%	0.1917%	0.2394%	

Con base en los resultados, el modelo Model_02 presenta un mejor desempeño general en las métricas de precisión. Además, la diferencia en estos indicadores entre los conjuntos de entrenamiento y prueba es inferior al 4 %, excepto en la métrica F1, donde la diferencia del 10 % sugiere un posible sobreajuste. Para mejorar Model_02, se podrían aplicar técnicas de regularización. Asimismo, estas técnicas también podrían implementarse en Model_01 para reducir el sobreajuste y mejorar su desempeño.