министерство науки и высшего образования российской федерации федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ» (НИЯУ МИФИ)

ОТЧЕТ

по дисциплине «Проектная практика» на тему «Исследование влияния весового коэффициента в функции потерь PINN в двумерном уравнении Пуассона»

Группа Б23–215

Руководители работы к.ф.-м.н., доценты

Карачурин Р.Н, Ладыгин С.А

Аннотация

Отчет посвящен влиянию весового коэффициента в функции потерь PINN на точность решения

Двумерное уравнение Пуассона с граничными условиями Дирихле:

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x,y), & \text{для } (x,y) \in \Omega \\ u(x,y) = g(x,y), & \text{для } (x,y) \in \partial \Omega \end{cases}$$
 (1)

Задача: Реализовать PINN метод решения краевой задачи для уравнения Пуас- сона. Исследовать влияние весового коэффициента λ в функции потерь PINN на точность и эффективность решения.

Содержание

1.	Физическое описание	3
2.	Обзор метода	5
3.	Реализация	6
4.	Исследование	7

Введение

Hame исследование посвящено решению краевой задачи с помощью PINN (Physics-Informed Neural Networks) Дифференциальные уравнения — очень важная часть математики, это целый математический аппарат (Дифференциальные уравнения в частных производных) широко применяемый при разработке моделей в разных областях науки и техники.

К сожалению, явное решение этих уравнений в аналитическом виде оказывается возможным только в частных простых случаях. Поэтому для анализа математических моделей, основанных на дифференциальных уравнениях, используются приближенные численные методы.

В нашем исследовании мы используем метод PINN, он отличается от классических методов (Метод конечных разностей, метод конечных элементов, метод конечных объемов и пр.) и объединяет методы машинного обучения с фундаментальными физическими законами.

При этом для численных методов характерены: большой объем вычислений, использование вычислительных систем. Поэтому с появлением нейропроцессоров и цифровых сигнальных процессоров метод становится особенно интересным, ведь может дать выигрыш в скорости выполнения, а также он может помочь в случаях, когда традиционные численные методы сталкиваются с трудностями. (Этот метод предлагает новый взгляд на решение сложных физических задач, особенно в случаях, когда традиционные численные методы сталкиваются с трудностями.)

1. Физическое описание

Уравнение Пуассона — эллиптическое дифференциальное уравнение в частных производных.

Где можно встретить данное уравнение:

Электростатика:

$$\nabla^2 \varphi = -\frac{\rho}{\varepsilon_0},\tag{2}$$

- φ электростатический потенциал (B),
- ρ объемная плотность заряда (Kл/м³),
- ε_0 диэлектрическая проницаемость вакуума (Ф/м), $\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ оператор Набла.

Вывод уравнения из закона Гаусса div $\mathbf{E} \equiv \nabla \cdot \mathbf{E} = \rho/\varepsilon_0$ и определения статического потенциала ($\mathbf{E} = -\nabla \varphi$) (\mathbf{E} — напряженность электрического поля):

$$\frac{\rho}{\varepsilon_0} = \nabla \cdot \mathbf{E} = \nabla \cdot (-\nabla \varphi) = -\nabla \cdot \nabla \varphi = -\nabla^2 \varphi. \tag{3}$$

(Еще одно применение, но такое же по сути) Если мы имеем объемную сферически симметричную плотность гауссового распределения заряда $\rho(r)$:

$$\rho(r) = \frac{Q}{\sigma^3(\sqrt{2\pi})^3} e^{-r^2/(2\sigma^2)},\tag{4}$$

где

- E (B),
- $\bullet \ Q$ общий заряд системы,
- σ поверхностная плотность заряда, то решение $\Phi(r)$ уравнения Пуассона:

$$\nabla^2 \Phi = -\frac{\rho}{\varepsilon_0},\tag{5}$$

дается в виде:

$$\Phi(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r} \operatorname{erf}\left(\frac{r}{\sqrt{2}\sigma}\right),\tag{6}$$

где $\operatorname{erf}(x)$ — функция ошибок.

Это решение может быть проверено напрямую вычислением $\nabla^2 \Phi$.

Гравитационные силы:

Расчет гравитационного потенциала φ . Его градиент определяет напряженность гравитационного поля. Потенциал φ , создаваемый точечной массой m, расположенной в начале координат, равен

$$\varphi_m = -\frac{Gm}{r},\tag{7}$$

гле

- G гравитационная постоянная,
- r расстояние от начала координат.

На бесконечности потенциал такого вида обращается в ноль. В общем случае произвольного распределения массы, описываемого координатно-зависимой плотностью ρ (кг/м³), уравнение Пуассона записывается:

$$\nabla^2 \varphi = 4\pi G \rho. \tag{8}$$

С точностью до замены $-1/\varepsilon_0 \to 4\pi G$ и изменения смысла величины ρ («плотность заряда» \to «плотность массы»), уравнение подобно соответствующему электростатическому уравнению. Правда, в случае гравитационных сил не бывает ситуации отталкивания, но на решении этот факт никак не сказывается.

Решение имеет вид:

$$\varphi(x,y,z) = \int G \frac{\rho(\xi,\eta,\zeta)}{\sqrt{(x-\xi)^2 + (y-\eta)^2 + (z-\zeta)^2}} d\xi d\eta d\zeta. \tag{9}$$

Рассмотрение уравнения Пуассона в остальных областях физики (в которых он встречается) может быть выполнено аналогично, только со специфическим для конкретной области смыслом входящих в него величин.

2. Обзор метода

Идея состоит в том, чтобы решать краевые задачи (определенные на Декартовой прямоугольной системе координат), представляя численное решение с помощью нейронной сети и обучая полученную сеть удовлетворять условиям, требуемым дифференциальным уравнением и граничными условиями. Это решение включает нейронную сеть в качестве основного элемента аппроксимации, параметры которой (веса и смещения) подстраиваются для минимизации функции ошибки (Loss). Для обучения мы используем методы оптимизации, которые требуют вычисления градиента ошибки по параметрам сети.

Разберем метод на нашем уравнении Пуассона:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y).$$

Возьмем, например, $\forall x,y\in\Omega=[0,2]\times[0,2].$ Вид граничных условий Дирихле такой:

$$u(x,y)=g(x,y),$$
 для $(x,y)\in\partial\Omega.$

Чтобы решить эту проблему, мы аппроксимируем решение с помощью нейронной сети:

$$NN(x,y) \approx u(x,y).$$

Если NN(x,y) является истинным решением, то должно выполняться равенство

$$\frac{\partial^2 NN(x,y)}{\partial x^2} + \frac{\partial^2 NN(x,y)}{\partial y^2} = f(x,y) \quad \forall (x,y) \in \Omega.$$

Таким образом, мы превращаем это условие в нашу функцию потерь. Это обосновывает выбор функции потерь. Обозначив параметры нейросети (веса и смещения) буквой ω , запишем:

$$L(\omega) = \frac{1}{n} \sum_{x_i, y_i \in \Omega \setminus \partial \Omega} \left(\frac{\partial^2 NN(x_i, y_i)}{\partial x^2} + \frac{\partial^2 NN(x_i, y_i)}{\partial y^2} - f(x_i, y_i) \right)^2$$

— среднеквадратичная функция потерь

Выбор x_i, y_i может быть выполнен различными способами, в нашем случае, времена множество точек представлено в виде сетки прямоугольной равномерной сетки. В любом случае, когда эта функция потерь минимизируется (в нашем случае вычисляем градиенты с помощью стандартного обратного дифференцирования tensorflow), мы имеем, что

$$\frac{\partial^2 NN(x_i, y_i)}{\partial x^2} + \frac{\partial^2 NN(x_i, y_i)}{\partial y^2} \approx f(x_i, y_i),$$

и, следовательно, NN(x,y) аппроксимирует решение краевой задачи.

Но нам все еще нужно учесть граниченое условие. Один из простых способов сделать это — добавить потери на границе в функцию стоимости.

$$L(\omega, \lambda) = \frac{1}{n} \sum_{x_i, y_i \in \Omega \setminus \partial \Omega} \left(\frac{\partial^2 NN(x_i, y_i)}{\partial x^2} + \frac{\partial^2 NN(x_i, y_i)}{\partial y^2} - f(x_i, y_i) \right)^2 + \frac{\lambda}{n} \sum_{x_i, y_i \in \partial \Omega} (NN(x_i, y_i) - u(x_i, y_i))^2$$

где λ — гиперпараметр, определяющий нейронную сеть NN, аппроксимирующую u. Таким образом, решение задачи снова сводится к нахождению весов, которые минимизируют функцию потерь!

3. Реализация

Область определения и граница

В нашей задаче не даны определенные функции, они могут варьироваться в зависимости от того, что именно уравнение описывает. Мы решили выбрать уравнение

$$u = \sin(\pi x)\sin(\pi y), \quad x, y \in int(\Omega),$$

где
$$\Omega = [0,2] \times [0,2]$$
, тогда $\forall (x,y) \in \partial \Omega \implies g \equiv 0$

$$f(x) = \sin(5x) \tag{10}$$

$$f(x) = \sin(x) \tag{11}$$

Описание модели нейронной сети

Решение основывается на библиотеке Python TensorFlow и Keras (который встроен в TensorFlow) — это открытые программные библиотеки для машинного обучения.

Для эффективного обновления параметров модели был использован оптимизатор Adam.

Архитектура модели

- Количество слоев: 6
 - 1 входной слой
 - 5 скрытых слоев
 - 1 выходной слой
- Количество нейронов:
 - Входной слой: 2 нейрона
 - Скрытые слои: 32 нейрона в каждом
 - Выходной слой: 1 нейрон

Функции активации

В модели используются следующие функции активации для скрытых слоев:

- 1-й скрытый слой: $\sin(5x)$, договоримся называть custom function2,
- 2-5 скрытые слои: $\sin(x)$, договоримся называть custom—function1.

Такие функции были выбраны, чтобы учесть период решения, то есть множитель π в sin в решении, но для упрощения вычислений на следующих слоях мы решили использовать обычный $\sin(x)$.

Выходной слой использует линейную активацию. Это означает, что он просто выдает результат полученный прохождением через предыдущие слои нейросети.

Визуализация архитектуры

Ниже представлена текстовая визуализация архитектуры нейронной сети:

Layer (type)	Output Shape	Param #
dense_6 (Dense)	(None, 32)	96
dense_7 (Dense)	(None, 32)	1,056
dense_8 (Dense)	(None, 32)	1,056
dense_9 (Dense)	(None, 32)	1,056
dense_10 (Dense)	(None, 32)	1,056
dense_11 (Dense)	(None, 1)	33

Total params: 4,353 (17.00 KB)

Trainable params: 4,353 (17.00 KB)

Non-trainable params: 0 (0.00 B)

Figure 1. Нейронная сеть - состояние

Наша нейронная сеть будет обучена для нахождения функции, которая удовлетворяет этому уравнению, используя соответствующие граничные условия и данные. Нетренируемых параметров, иначе гиперпараметров нет, потому что коэффициент λ мы подбираем сами, тренируя нейросеть с одинаковыми изначальными параметрами в цикле.

4. Исследование

Для оценки натренированных моделей мы использовали следующие функции ошибки:

$$MSE = \frac{1}{n} \sum_{x_i, y_i \in \Omega} (NN(x_i, y_i) - u(x_i, y_i))^2,$$

$$MAX = \max_{x_i, y_i \in \Omega} |NN(x_i, y_i) - u(x_i, y_i)|.$$

При подборе гиперпараметра часто используется достаточно небольшое количество эпох, чтобы определить динамику сходимости и погрешности. Мы не всегда придерживались этого принципа. Например, для демонстрации какой-никакой работоспособности метода для диапазона параметров в промежутке [0.3, 20000] полученного с помощью функции numpy logspace, генерирующей последовательность в заданном промежутке, возрастающую экспоненциально, мы тренировали модель в течение 15 000 эпох.

Это дало следующие результаты:

Figure 2. 15000 эпох, среднеквадратичная и максимальная ошибка

Точные цифры привести, к сожалению, не приведены. Но ошибка, будет видно позже по тепловой карте, не превышает 5e-3.

Figure 3. 15000 эпох, потери, сходимость

Можно сделать, очевидный вывод о том, что меньшее значение функции потерь необязательно приводит к уменьшению ошибки аппроксимации. Очевидный в силу того, что для больших лямбда функция $L(\omega,\lambda)$ больше из-за роста множителя при второй сумме.

Figure 4. Тепловая карта настоящей функции и значений модели (гиперпараметр неизвестен)

Figure 5. Разница приведенных сверху карт

Различие достаточно большое в рамках численных методов, но видно, что нейросеть приближает то, что нужно.

В качестве дополнительных проверок была сделана небольшая визуализация сечения решений и графики ошибки на разных частях Ω .

 $Figure\ 6.$ Сечение u(x,y) и NN(x,y) при x=1.83

Видно, что разница между между графиками небольшая.

Figure7. Ошибка на $int(\Omega)$ и $\partial\Omega$ при 600 эпохах

Figure~8.~Ошибка на $int(\Omega)$ и $\partial\Omega$ при 1000 эпох

Работа функции потерь подтверждается, так как при больших значениях гиперпараметра ошибка на границе растет слабее, чем внутри множества, в силу стремления нейросети минимизировать функцию потерь, в которую как раз наибольший вклад дает ошибка на границе.

Интересно было узнать, есть ли такое предельное значение для количества эпох, в течение которых тренируется модель, что гиперпараметр перестает влиять на ошибку. Поэтому для той же модели, что и раньше, мы решили проверить это.

Figure 9. Малое и большое число эпох, графики ошибки

Видно, что динамика на меньшую ошибку при $\lambda \in [10^2, 10^3]$ сохраняется, несмотря на "тренированность" модели. Можно сделать **вывод**: неважно сколько вы будете тренировать модель, с правильным гиперпараметром она будет всегда выдывать лучший результаты.

Также любопытно, как связаны размер модели, значение гиперпараметра и ошибка. Например, справедливо ли утверждение: для легкой модели выбор правильного гиперпараметра менее важен? Или для всех моделей сохраняется одинаковое поведение ошибки, как например было с разным числом эпох.

Мы сделали тесты на 4 моделях. Вот архитектуры 3х дополнительных моделей, помимо той, которая была представлена ранее.

Model: sequential		
Layer (type)	Param #	Activation
dense (Dense) dense_1 (Dense) dense_2 (Dense)	96 1056 33	custom_activation2 custom_activation1 linear
Total params: 1185 Trainable params: 1 Non-trainable param	185	

Figure 10. Модель с 2 внутренними слоями

Layer (t	ype)	Param #	Activation
dense (D	ense)	 96	custom activation2
dense 1	(Dense)	1056	custom activation1
dense_2	(Dense)	1056	custom_activation1
dense_3	(Dense)	1056	custom_activation1
dense 4	(Dense)	1056	custom activation1
dense_5	(Dense)	1056	custom activation1
dense_6	(Dense)	1056	custom_activation1
dense 7	(Dense)	1056	custom activation1
danca	(Dense)	33	linear

Figure 11. Модель с 8 внутренними слоями

Layer (type)	Param #	Activation
dense (Dense)	96	custom activation2
dense 1 (Dense)	1056	custom activation1
dense 2 (Dense)	1056	custom activation1
dense_3 (Dense)	1056	custom_activation1
dense 4 (Dense)	1056	custom_activation1
dense_5 (Dense)	1056	custom_activation1
dense_6 (Dense)	1056	custom_activation1
dense_7 (Dense)	1056	custom_activation1
dense_8 (Dense)	1056	custom_activation1
dense_9 (Dense)	1056	custom_activation1
dense_10 (Dense)	1056	custom_activation1
dense_11 (Dense)		linear
Total params: 10689)	

Figure 12. Модель с 11 внутренними слоями

Как видно, было просто увеличено количество внутренних слоев.

Картинки идут в порядке возрастания количества параметров у моделей. Видно, что у больших моделей, видимо в силу их "гибкости" влияние гиперпараметра

Figure~13. Результаты тестов 1

Figure 14. Результаты тестов 2

становится слабее, при примерно такой ошибке, т.е. λ , "выравнивая" ошибку, не увеличивает ее.

Конечно нужно делать гораздо больше тестов, проверять другие функции, а главное новые гипотезы. Поэтому проекту есть куда расти и развиваться.

Список литературы и интернет-ресурсов

- [1] https://www.tensorflow.org/api_docs TensorFlow documentation
- [2] https://keras.io/api/ Keras documentation
- [3] Raissi M., Perdikaris P., Karniadakis G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations //Journal of Computational Physics. 2019. T. 378. C. 686-707.
- [4] Lagaris I.E., Likas A., Fotiadis D.I. Artificial neural networks for solving ordinary and partial differential equations //IEEE transactions on neural networks. 1998. T. 9. No. 5. C. 987-1000.
- [5] https://pytorch.org/docs/stable/generated/torch.optim.Adam.html Pytorch optimizator Adam documentation