



主讲人: 张玉

2024. 04. 03



1 Introduction

2 Timexer Structure

3 Experiment





## Introduction-Variable

内生变量(endogenous variables): 只关注感兴趣的目标 外生变量(exogenous variables): 为内生变量提供有价值的外部信息 通过外生变量引入辅助信息来促进内生变量的预测 Example(from datasets):

(1) ECL: 客户的每小时用电量数据。 将最后一个客户端的用电量作为内生变量,其他客户端作为外生变量。

(2)天气:气象站每10分钟收集的21个气象因子。 使用Wet Bulb因子作为内生变量,其他指标作为外生变量。

(3) ETT:变压器油温数据。 内生变量为<u>油温</u>,外生变量为6个<u>电力负荷特征</u>。

(4) 交通: 高速公路传感器测量的每小时道路占用率。 将最后一个传感器的测量作为内生变量,将其他传感器作为外生变量。 内生变量和外生变量之间: 需要调和差异和依赖性

外部因素对内生序列的影响: 可能是连续和时滞的

#### 主要参考:

- patchTST:只能捕获时间依赖性,不能捕获多变量之间的相关性(通道独立)
- itransformer:无法捕获不同子序列之间的时间变化(一个series对于一个token)



#### TimeXer:

- 在包含外生变量的基础上,不修改transformer的架构(模型简单)
- self-attention:对Patch-level的内生时序token提取时间依赖性(相关性)
- cross-attention:对变量token提取多变量相关性(外生变量对内生变量的影响)

**Original Transformer** 



Figure 2. Illustration of different levels of representation for time series data, ranging from point-wise, patch-wise to series-wise.



iTransformer





# Problem Definition

只预测内生时间序列, 外生变量是附加因素

内生序列: 
$$\mathbf{x}_{1:L} = \{x_1, x_2, ..., x_L\} \in \mathbb{R}^{L \times 1}$$

外生序列: 
$$\mathbf{z}_{1:L'} = \{\mathbf{z}_{1:L'}^{(1)}, \mathbf{z}_{1:L'}^{(2)}, ..., \mathbf{z}_{1:L'}^{(C)}\} \in \mathbb{R}^{L \times C}$$

其中,内生序列和外生序列的长度可以不一致,即L和L`可以不相等

预测:

$$\widehat{\mathbf{x}} = f(\mathbf{x}_{1:L}, \mathbf{z}_{1:L'})$$
.

预测长度为S,即  $\hat{\mathbf{x}} = \{x_{L+1}, x_{L+2}, ..., x_{L+S}\}$ 







基于Itransformer的嵌入方式(线性层)

series->token 全局标记

 $\mathbf{V}_{en} = \text{EnVariateEmbed}(\mathbf{x}),$ 

 $\mathbf{V}_{ex,i} = \text{ExVariateEmbed}\left(\mathbf{z}^{(i)}\right) i \in \{1, \cdots, C\}.$ 

EnVariateEmbed:  $\mathbb{R}^L o \mathbb{R}^D$ 

ExVariateEmbed:  $\mathbb{R}^{L'} o \mathbb{R}^D$ 

嵌入后的序列包含原始序列的全局信息



先将序列分为patch然后再嵌入为token 注意:此时采取的是不重叠的Patch块

$$\{\mathbf{s}_{1}, \mathbf{s}_{2}, ..., \mathbf{s}_{N}\} = \text{Patchify}(\mathbf{x}),$$
  
 $\mathbf{P}_{en} = \text{PatchEmbed}(\mathbf{s}_{1}, \mathbf{s}_{2}, ..., \mathbf{s}_{N}).$ 

对于内生变量而言,patch长度为P,N表示 patch块的数量 PathEmbed函数将每个长度为P的 patch转换为D维的嵌入

因此,得到的Pen的维度为NXD,N块D维度。

## Patch-wise Self-Attention



Self-Attention+残差+LN归一化层:

$$\widehat{\mathbf{P}}_{en}^{l}, \widehat{\mathbf{V}}_{en}^{l} = \operatorname{LN}\left(\left[\mathbf{P}_{en}^{l}, \mathbf{V}_{en}^{l}\right] + \operatorname{Self-Attn}\left(\left[\mathbf{P}_{en}^{l}, \mathbf{V}_{en}^{l}\right]\right)\right)$$

[]表示将Pen和Ven拼接,此时维度变为N+1,N 个patch,一个Series。 考虑到模型不需要预测外生变量,故只对 内生变量做多头自注意来捕获内生变量之间的 时间依赖性。

使用的内生变量为patch-wise的Pen和
Series-wise的Ven,其中 Ven为整个内生序列提供了全局信息。



cross-attention+残差+LN归一化层

$$\mathbf{V}_{en}^{l+1} = \mathrm{LN}\left(\widehat{\mathbf{V}}_{en}^{l} + \mathrm{Cross-Attn}\left(\widehat{\mathbf{V}}_{en}^{l}, \mathbf{V}_{ex}, \mathbf{V}_{ex}\right)\right)$$

使用交叉注意力来捕获外生序列与内生序列之间的相关性,其中,内生变量(series-wise的结果)作为查询(Q),外生变量(token)作为键和值(K,V)。

交叉注意力层的输出作为下一个Block的 自注意层的输入。





长时预测--用电量、天气、变压器油温、交通;一个内生,多个外生短时预测--5个主要市场的电价短期预测数据集:电价作为内生变量,两个明显影响电价的外生变量

长时预测

短时预测

| , | Dataset                        | set #Num Ex. Descriptions       |                                 | En. Descriptions                                      | Sampling Frequency | Dataset Size          |  |  |
|---|--------------------------------|---------------------------------|---------------------------------|-------------------------------------------------------|--------------------|-----------------------|--|--|
| ۲ | Electricity 320 Electricity Co |                                 | Electricity Consumption         | Electricity Consumption                               | 1 Hour             | (18317, 2633, 5261)   |  |  |
|   | Weather                        | 20                              | Climate Feature                 | CO2-Concentration                                     | 10 Minutes         | (36792, 5271, 10540)  |  |  |
| ┤ | ETTh                           | 6                               | Power Load Feature              | Oil Temperature                                       | 1 Hour             | (8545, 2881, 2881)    |  |  |
|   | ETTm 6 Power Load Feature      |                                 | Power Load Feature              | Oil Temperature                                       | 15 Minutes         | (34465, 11521, 11521) |  |  |
|   | Traffic                        | 861                             | Road Occupancy Rates            | Road Occupancy Rates                                  | 1 Hour             | (12185, 1757, 3509)   |  |  |
| r | NP                             | 2                               | Grid Load, Wind Power           | Nord Pool Electricity Price                           | 1 Hour             | (36500, 5219, 10460)  |  |  |
|   | РЈМ                            | 2                               | System Load, SyZonal COMED load | Pennsylvania-New Jersey-Maryland<br>Electricity Price | 1 Hour             | (36500, 5219, 10460)  |  |  |
| ┨ | BE                             | 2                               | Generation, System Load         | Belgium's Electricity Price                           | 1 Hour             | (36500, 5219, 10460)  |  |  |
|   | FR                             | 2                               | Generation, System Load         | France's Electricity Price                            | 1 Hour             | (36500, 5219, 10460)  |  |  |
|   | DE                             | Wind power, Ampirion zonal load |                                 | German's Electricity Price                            | 1 Hour             | (36500, 5219, 10460)  |  |  |



### 输入长度-168, patch长度-24 预测长度-24

| MODEL  | TIMEXER (OURS) | ITRANS.<br>(2023) | RLINEAR (2023) | PATCHTST (2022) | Cross. (2022) | TIDE (2023) | TIMESNET (2023A) | DLINEAR<br>(2023) | SCINET (2022A) | STATIONARY (2022B) | АUТО.<br>(2021) |
|--------|----------------|-------------------|----------------|-----------------|---------------|-------------|------------------|-------------------|----------------|--------------------|-----------------|
| METRIC | MSE MAE        | MSE MAE           | MSE MAE        | MSE MAE         | MSE MAE       | MSE MAE     | MSE MAE          | MSE MAE           | MSE MAE        | MSE MAE            | MSE MAE         |
| NP     | 0.238 0.268    | 0.2650.300        | 0.335 0.340    | 0.267 0.284     | 0.245 0.289   | 0.335 0.340 | 0.250 0.289      | 0.309 0.321       | 0.373 0.368    | 0.294 0.308        | 0.4020.398      |
| PJM    | 0.0880.188     | 0.0970.197        | 0.1240.229     | 0.106 0.209     | 0.1490.198    | 0.124 0.228 | 0.097 0.195      | 0.108 0.215       | 0.143 0.259    | 0.122 0.228        | 0.168 0.267     |
| BE     | 0.374 0.241    | 0.3940.270        | 0.5200.337     | 0.403 0.264     | 0.4360.294    | 0.523 0.336 | 0.419 0.288      | 0.463 0.313       | 0.7310.412     | 0.433 0.289        | 0.500 0.333     |
| FR     | 0.381 0.211    | 0.439 0.233       | 0.507 0.290    | 0.4110.220      | 0.4400.216    | 0.5100.290  | 0.431 0.234      | 0.429 0.260       | 0.855 0.384    | 0.466 0.242        | 0.519 0.295     |
| DE     | 0.4400.418     | 0.479 0.443       | 0.5740.498     | 0.461 0.432     | 0.540 0.423   | 0.568 0.496 | 0.502 0.446      | 0.520 0.463       | 0.565 0.497    | 0.483 0.447        | 0.674 0.544     |
| AVG    | 0.304 0.265    | 0.335 0.289       | 0.4120.339     | 0.3300.282      | 0.362 0.284   | 0.4120.338  | 0.340 0.290      | 0.366 0.314       | 0.533 0.384    | 0.360 0.303        | 0.453 0.368     |



输入长度-96, patch长度-16 预测长度-{96,192,336,720}

| MODEL   | TIMEXER (OURS) | ITRANS.<br>(2023) | RLINEAR (2023) | PATCHTST (2022) | CROSS. (2022) | TIDE (2023) | TIMESNET (2023A) | DLINEAR (2023) | SCINET (2022A) | STATIONARY (2022B) | AUTO.<br>(2021) |
|---------|----------------|-------------------|----------------|-----------------|---------------|-------------|------------------|----------------|----------------|--------------------|-----------------|
| METRIC  | MSE MAE        | MSE MAE           | MSE MAE        | MSE MAE         | MSE MAE       | MSE MAE     | MSE MAE          | MSE MAE        | MSE MAE        | MSE MAE            | MSE MAE         |
| ECL     | 0.336 0.414    | 0.365 0.442       | 0.444 0.486    | 0.3940.446      | 0.3440.412    | 0.419 0.468 | 0.4100.476       | 0.393 0.457    | 0.427 0.490    | 0.372 0.450        | 0.495 0.528     |
| WEATHER | 0.002 0.031    | 0.002 0.031       | 0.002 0.029    | 0.002 0.031     | 0.005 0.055   | 0.002 0.029 | 0.097 0.115      | 0.0060.066     | 0.007 0.071    | 0.002 0.031        | 0.006 0.060     |
| ETTH1   | 0.074 0.210    | 0.075 0.211       | 0.084 0.224    | 0.078 0.215     | 0.285 0.447   | 0.083 0.223 | 0.076 0.215      | 0.1160.259     | 0.437 0.565    | 0.110 0.256        | 0.1300.282      |
| ЕТТН2   | 0.183 0.337    | 0.199 0.352       | 0.205 0.356    | 0.1920.345      | 1.027 0.873   | 0.205 0.356 | 0.2100.362       | 0.224 0.369    | 1.155 0.955    | 0.262 0.405        | 0.242 0.386     |
| ЕТТм1   | 0.051 0.169    | 0.053 0.175       | 0.053 0.173    | 0.053 0.173     | 0.4110.548    | 0.053 0.173 | 0.054 0.175      | 0.0660.188     | 0.098 0.241    | 0.077 0.204        | 0.085 0.230     |
| ЕТТм2   | 0.116 0.252    | 0.127 0.267       | 0.122 0.261    | 0.1200.258      | 0.9760.769    | 0.122 0.261 | 0.129 0.271      | 0.126 0.263    | 0.685 0.713    | 0.207 0.333        | 0.1540.305      |
| TRAFFIC | 0.150 0.227    | 0.161 0.246       | 0.324 0.412    | 0.173 0.253     |               | 0.324 0.411 | 0.171 0.264      | 0.323 0.404    | 0.447 0.500    | 0.361 0.361        | 0.302 0.353     |



### **Experiment--ShowCase**

曲线拐点用于评估预测质量。如果预测值保持在 0.05 的范围内,与基本事实相比,我们将此预测视为成功的预测,并在其周围放置一个半径为 0.05 的绿色圆圈。否则,我们将此预测作为超出范围的预测,并将半径为 0.05 的红圈标记为其故障。



TimeXer更准确的预测, 比其他模型更稳健

### 使用完整的内生序列 对外生序列的掩码从0~99%



Figure 4. Forecasting performance with the masked exogenous series on three EPF datasets, simulating the missing data scenario.

可以观察到,随着外生序列质量的降低,模型预测性能也会随之降低,但TimeXer仍然表现得比较好,说明TimeXer能够支持低质量的数据场景。



### 消融实验--嵌入方式的有效性

*Table 6.* Full results of the ablation study.

| DESIGN  | Endogenous       | Exogenous | Horizon     | ЕТТн2     |       | ЕТТм2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRAFFIC                                                                                                                                                                                                      |       |  |  |  |
|---------|------------------|-----------|-------------|-----------|-------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| DESIGN  | ENDOGENOUS       | LAGGENGES | liokizon    | MSE       | MAE   | MSE   | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MSE                                                                                                                                                                                                          | MAE   |  |  |  |
|         |                  |           | 96          | MSE   MAE | 0.062 | 0.180 | 0.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.219                                                                                                                                                                                                        |       |  |  |  |
|         | TEMPORAL+VARIATE |           | 192         | 0.179     | 0.330 | 0.095 | 0.229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.146                                                                                                                                                                                                        | 0.220 |  |  |  |
| OURS    |                  | Variate   | 336         | l .       |       | 0.127 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.145                                                                                                                                                                                                        | 0.224 |  |  |  |
|         |                  |           | 720         | I         |       | 0.180 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.165                                                                                                                                                                                                        | 0.246 |  |  |  |
|         |                  |           | AVG         | 0.183     | 0.337 | 0.116 | 0.252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.150                                                                                                                                                                                                        | 0.227 |  |  |  |
|         | TEMPORAL+VARIATE |           | 96          | 0.131     | 0.279 | 0.067 | 0.186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.252         0.150         0.22           0.186         0.155         0.23           0.235         0.152         0.23           0.280         0.151         0.23           0.335         0.174         0.25 |       |  |  |  |
|         |                  |           | 192         | 0.180     | 0.332 | 0.100 | 0.235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.152                                                                                                                                                                                                        | 0.231 |  |  |  |
| REPLACE |                  | TEMPORAL  | 336         | 0.222     | 0.375 | 0.135 | 0.280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.151                                                                                                                                                                                                        | 0.233 |  |  |  |
|         |                  | TEMPORAL  | 720         | 0.234     | 0.387 | 0.185 | 0.335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.174                                                                                                                                                                                                        | 0.258 |  |  |  |
|         |                  |           | Avg         | 0.192     | 0.343 | 0.122 | 0.259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.158                                                                                                                                                                                                        | 0.239 |  |  |  |
|         |                  |           | 96          | 0.132     | 0.279 | 0.064 | 0.183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.153                                                                                                                                                                                                        | 0.230 |  |  |  |
|         |                  |           | 192         | 0.183     | 0.335 | 0.099 | 0.236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.152                                                                                                                                                                                                        | 0.230 |  |  |  |
|         | w/o Variate      | Variate   | MPORAL   96 |           |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.151                                                                                                                                                                                                        | 0.234 |  |  |  |
|         |                  |           | 720         | 0.249     | 0.398 | 0.179 | E MAE   M3<br>52 0.180   0.1<br>55 0.229   0.1<br>27 0.270   0.1<br>80 0.330   0.1<br>16 0.252   0.1<br>57 0.186   0.1<br>58 0.280   0.1<br>58 0.280   0.1<br>59 0.259   0.1<br>54 0.183   0.1<br>59 0.236   0.1<br>59 0.236   0.1<br>60 0.235   0.1<br>61 0.183   0.1<br>62 0.270   0.1<br>63 0.183   0.1<br>63 0.183   0.1<br>63 0.183   0.1<br>64 0.255   0.1<br>65 0.280   0.1<br>66 0.259   0.1<br>67 0.270   0.1<br>68 0.183   0.1<br>69 0.275   0.1<br>60 0.275   0.1<br>61 0.332   0.1 | 0.175                                                                                                                                                                                                        | 0.260 |  |  |  |
| w/o     |                  |           | Avg         | 0.197     | 0.347 | 0.117 | 0.255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.158                                                                                                                                                                                                        | 0.239 |  |  |  |
| ***     |                  |           | 96          | 0.133     | 0.282 | 0.063 | 0.183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.149                                                                                                                                                                                                        | 0.226 |  |  |  |
|         |                  |           | 192         | 0.176     | 0.329 | 0.097 | 0.234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.147                                                                                                                                                                                                        | 0.224 |  |  |  |
|         | w/o Temporal     | VARIATE   | 336         | 0.211     | 0.367 | 0.129 | 0.275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.145                                                                                                                                                                                                        | 0.230 |  |  |  |
|         |                  |           | 720         | 0.234     | 0.387 | 0.181 | 0.332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.166                                                                                                                                                                                                        | 0.251 |  |  |  |
|         |                  |           | AVG         | 0.188     | 0.341 | 0.118 | 0.256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.152                                                                                                                                                                                                        | 0.233 |  |  |  |

消除任何一种类型的嵌入都会使 模型性能下降。 交叉注意力机制中的内生变量和外生变量之间的相关性的注意力图



使用了交叉注意力机制后,内生变量与外生变量之间相关性的可解释性更强,(有关的变量受到的关注更多,无关的变量受到的关注更少),注意力图更集中。

注意力分数最低

Figure 5. Visualization of learned attention map alongside the endogenous time series and the exogenous time series with highest and lowest attention scores.



CKA(中心核对齐)相似度:

多层模型中,第一层与最后一层表示之间的相似度,越高 的相似度代表越好的模型效果



绿色空心点: itransformer用所有序列表示;

绿色点: itransformer只用内生变量表示

对于MSE,越低越好,CKA越高越好,即图中位于右下角的位置代表模型效果更好。

两类绿色点的结果表明:直接应用 多元变量进行预测相较于只用内生变量 预测,虽然相似度更好,但效果却没有 提升,说明直接使用多元变量会引入一 些不必要的噪声,干预预测性能。 内生变量的长度固定为96,增加外生变量的长度(横轴)



在大多数情况下, 预测性能受益于外生回溯长度的增加



数据集中的变量视为相互独立的内生变量,每个变量考虑所有其他变量作为外生变量



可以观察到, TimeXer在基线模型的多变量预测任务中表现出了具有竞争力的性能, 突出了其有效性和通用性





## Questions and Discussions