Pavement Marking Fadeness Detection Project

with New York City Department of Transportation

Moya Zhu, Zihao Zhang, Megan Zhou, Ran Pan, Jingfei Fang (advised by Adam K.)

Columbia University

Introduction

- Primary Goal Quantify the fadeness of the pavement markings (crosswalk, bus lane, bicycle lane) based on aerial images
- Dataset (Sample)

• YOLO - You Only Look Once

Object Detection

- Preprocessing
 - Crop into tiles with a size of 640 * 640
- · Labeling Label Studio

- Model training
 - o YOLO v5 pretrained weight loaded
 - 175 cropped labelled images
 - o Colab GPU
 - o 8:2 training/validation set split
 - o 100 epochs with batch size = 10
- · Coordinate mapping

Fadeness

- · Convex hull around crosswalks
 - Denoise using morph_open in opency
 - Contour and minimum_area_rectangle
 - Filter using aspect ratio of rectangles
 - Draw convex hull
- Fadedness Score Calculation
 - o Based on Convex hull, locate the pixel that belong to the crosswalks
 - o Perform pixel values calibration
 - o Calculate the fadedness score based on the mean of pixel values
 - o Calculate the percentage fadedness score based on the threshold value

Result

o Bus Lane & Bicycle Lane

Crosswalk

o Convex Hull

Fadedness Scores

Further Improvement

- Cover of Shadow and passing vehicles
- · Quantification of the fadeness of colored
- Flaking of crosswalk, bus lane symbol