

PROJEKT INŻYNIERSKI

Tytuł pracy dyplomowej inżynierskiej

Jakub KULA Nr albumu: 296849

Kierunek: Automatyka i Robotyka **Specjalność:** Technologie Informacyjne

PROWADZĄCY PRACĘ

dr inż. Szymon Ogonowski, prof. PŚ
KATEDRA Katedry Pomiarów i Systemów Sterowania
Wydział Automatyki, Elektroniki i Informatyki

Gliwice 2023

Tytuł pracy

Tytuł pracy dyplomowej inżynierskiej

Streszczenie

(Streszczenie pracy – odpowiednie pole w systemie APD powinno zawierać kopię tego streszczenia.)

Słowa kluczowe

(2-5 slow (fraz) kluczowych, oddzielonych przecinkami)

Thesis title

Thesis title in English

Abstract

(Thesis abstract – to be copied into an appropriate field during an electronic submission – in English.)

Key words

(2-5 keywords, separated by commas)

Spis treści

1	Wst	tęp	1
	1.1	Cel i zakre pracy	1
	1.2	Aktualny stan wiedzy	1
	1.3	Charakterystyka rozdziałów	1
	1.4	Wkład autora	1
2	Zas	tosowane narzędzia w pracy	3
	2.1	Python	3
	2.2	Tensorflow	3
	2.3	Inne bibloteki	4
		2.3.1 Pandas	4
		2.3.2 Matlibplot	4
		2.3.3 Numpy	4
		2.3.4 Sckit-learn	4
	2.4	CUDA toolkit	4
3	Mo	delowanie sieci neuronowej	5
	3.1	Metodologia projektowania modelu sieci neuronowej	5
	3.2	Dane wejściowe i proces ich przetwarzania	6
	3.3	Projektowanie i ocena modeli	8
	3.4	Walidacja i próby dostrajania (?)	10
4	Pog	goda	13
5	Mo	delowanie zbiornika CWU	15
	5.1	Metodologia	15
		5.1.1 Opis matematyczny modelu	15
	5.2		15
6	Opt	tymalizacja	17
	6.1	Funkcja kosztów	17
	6.2	Funkcja komfortu	17

7 Podsumowanie i wnioski	19
Bibliografia	21
Spis skrótów i symboli	25
Źródła	27
Lista dodatkowych plików, uzupełniających tekst pracy	29
Spis rysunków	31
Spis tabel	33

Wstęp

1.1 Cel i zakre pracy

wprowadzenie w problem/zagadnienie

1.2 Aktualny stan wiedzy

osadzenie tematu w kontekście aktualnego stanu wiedzy ($state\ of\ the\ art$) o poruszanym problemie

studia literaturowe [3, 4, 2, 1] - opis znanych rozwiązań (także opisanych naukowo, jeżeli problem jest poruszany w publikacjach naukowych), algorytmów,

1.3 Charakterystyka rozdziałów

Krótkie wprowadzenie do zawartości Zarys głównych punktów i celów rozdziału

1.4 Wkład autora

jednoznaczne określenie wkładu autora, w przypadku prac wieloosobowych – tabela z autorstwem poszczególnych elementów pracy Wzory

$$y = \frac{\partial x}{\partial t} \tag{1.1}$$

jak i pojedyncze symbole x i y składa się w trybie matematycznym.

Zastosowane narzędzia w pracy

2.1 Python

Wybór głónego języka progarmowania zastowanego w projekcie, wiązał się z postawieniem pewnych wymagań. Pierwszym z tych wymagań była dostępność dedykowanej bibloteki do uczenia maszynowego, która posiada narzędzia do efektywnej pracy nad modelami czy ich tesowanie. Użycie bibloteki która jest dobrze utrzymana zapewnii ogromne wsparcie społeczności, które moze okazać sie nieocenione w procesie nauki czy rozwiązywnia problemów.

Kolejnym wymaganiem jest aby wybrana techonologia była ciągle wspierana i aktualizowana. Machine learning jest aktulanie jedną z najszyciej rozwijających sie dziedzin programowania, co wiąże sie z szybkimi zmianami.(DOPISAĆ COŚ TUTAJ)

- R.
- Python

R jest językiem skoncetrowanym na analizie danych i statystyce. Posiada on bardzo bogaty ekosystem jednak może stanowić to przyczyne wielu konfiliktów pomiędzy pakietami. Największą wadą tego jest jezyka jest problem ze skalowalnością. Praca z dużą ilością danych skutkuje zużyciem ogromnej ilości pamięci RAM.

Skorzystanie z Pythona będzie lepiej spełniać wymogi projektu. Jest on językiem bardziej wszechstronny oraz posiada obszerną bibioteke standardową jak i bardzo liczne zewnętrzne bibloteki. Największą wadą Pythona jest jego wydajność. Gdyż jest językiem interpretowanym, więc nie jest on kompilowany do kodu maszynowego przed jego uruchomieniem.

2.2 Tensorflow

Tensorflow jest jedną z dwóch głównych otwartych biblotek do uczenia maszynowego i głębokiego w Pythonie. Głównym konkurentem tensorflow jest PyTorch który jest roz-

wijany przez Facebook.

2.3 Inne bibloteki

- **2.3.1** Pandas
- 2.3.2 Matlibplot
- 2.3.3 Numpy
- 2.3.4 Sckit-learn

2.4 CUDA toolkit

Opis narzędzi które zostały uzyte w celu optymalizacji pracy pythona, takie jak wirtalne środowisko Conda, czy nvdia CUDA

Modelowanie sieci neuronowej

3.1 Metodologia projektowania modelu sieci neuronowej

Wstep teoretyczny o modelowaniu, opisanie rzeczy takich jak, warstwy, neurony, funckje aktywacjie, funkcje kosztu, optymalizator, liczba epok, batch size, walidacha, funckaj strat

3.2 Dane wejściowe i proces ich przetwarzania

Projekt wykorzystuje dane zebrane przez instytut ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Enginee) w 2018 roku. Informacje o zużyciu wody zostały pozykane z 77 domostwo znajdujacych sie na terenie Kanady, zamieszkiwanym przez dwoje osób dorosłych oraz dwójke dzieci oraz posiadajacych podstawowe urządzenia AGD takie jak pralka czy zmywarka. Dane były zbierane przez 16 tygodni, w cyklach trwajacych 4 tygodnie, aby równomiernie obejmować każdą pore roku. Próbkowanie danych odbywało sie co minute, nieprzerwanie przez całą dobę. Całość danych zostało podzielone na 73 odzielne pliki w formacie .csv. W każdym plikuu znajdował sie timestamp w formacie RR-MM-DD HH:MM:SS, który określał dzien i godzine pomiaru danych. Oprócz tego zawierał informacje o zużyciu wody, oraz temperature otoczenia. Dodatkowo dane były podzielone na poszczególne poru roku.

Rysunek 3.1: Podpis rysunku zawsze pod rysunkiem.

Pierwszy wykres przestawia dane zebrane z domu nr. 13 zebrane w dniu 05/02/2018. Oś X oznaczająca godzinę, począwszy od północy. Oś Y reprezentuje przepływ wody w danym momencie dnia. Wykres Przestwia nieregularne piki o nierównomiernym rozkładzie. Okresami o zwiększonym przepływie są godziny 7-13 oraz 14-15. Okresy mniejszej aktywyności możemy zaobserwowac w godzinach późno popołudniowych oraz nocnych. Drugi i trzeci wykres przedstawiają zbiżenie na godzine 7 oraz 15. Dzięki zwężeniu analizowanego zakresu czasu, możliwe było dokładniejsze zbadanie struktury występujących pików. Ta metoda wizualizacji ujawniła, że poszczególne piki, które na ogólnym wykresie dobowym mogły sprawiać wrażenie pojedynczych punktów, w rzeczywistości są złożone z wielu pojedynczych zdarzeń. To odkrycie jest istotne, ponieważ wskazuje na bardziej złożoną dynamikę przepływu w określonych momentach doby, co na pierwszy rzut oka mogło umknąć uwadze.

Rysunek 3.2: Porównanie przepływów dla przykładowych domów w dniu 05/02/2018

Analiza przedstawionych histogramów przepływów dla poszczególnych losowo wybranych domostw, wykonana na podstawie danych z dnia 05/02/2018, ukazuje wyraźne różnice w charakterystyce przepływów dla każdego z nich. Zgodnie z Rysunkiem 3.2, można stwierdzić, że każdy dom prezentuje unikalny wzór aktywności, co może odzwierciedlać różnorodność nawyków, planów dnia lub specyficznych potrzeb mieszkańców. Na przykład, dla domu nr 5 zużycie wody jest rozłożone przez większą część dnia, z obserwowaną aktywnością w rozmaitych godzinach. Jednakże, zarejestrowano również pojedyncze zużycie w nocy. Z kolei Dom 52 charakteryzuje się wyraźnym szczytem wieczornym, co stanowi kontrast w stosunku do pozostałych domów.

W przypadku Domu nr 4, nie odnotowano żadnego przepływu w analizowanym dniu. Brak danych może wynikać z co najmniej dwóch potencjalnych przyczyn. Pierwszą z nich jest zastosowany czas próbkowania, który wynosił jedną minutę. Taki interwał może nie być wystarczająco krótki, aby zarejestrować sporadyczne lub krótkotrwałe zdarzenia przepływu. Drugą możliwością, która może wyjaśniać brak zarejestrowanej aktywności, jest potencjalna nieobecność mieszkańców w domu w danym dniu.

Pomimo iż zgromadzone dane charakteryzowały się wysoką jakością, ich specyficzny format wymagał przygotowania skryptu celem ich przetwarzania i ekstrakcję istotnych informacji.

```
for f in csv_files:
      dataset = pd.read_csv(f)
      for i in range(len(dataset)):
          dt = dataset.loc[i, "Summer_Timestamps"]
          data, time = dt.split('_{\sqcup}')
          year, month, day = (int(x) for x in data.split('-'))
          ans = datetime.date(year, month, day)
          dzied_tygodnia = dni_tygodnia_mapa[ans.strftime("%A")]
          hours, minutes, null = time.split(":")
10
          time = (int (hours)*60+int (minutes))/(60*24)
11
12
          przeplyw = dataset.loc[i, "Summer_Water_Consumption"]
13
14
          dane.loc[len(dane)] = { 'Pora_roku': 2,
15
                                   'Dzien_tygodnia': dzied_tygodnia,
16
                                   'Czas dnia': time,
17
                                   'Przeplyw': przeplyw}
18
```

Rysunek 3.3: Fragment skryptu przetwarzającego dane.

W ramach procesu dostowania formatu aby przystosować go do wymagań tensorflow, dzień tygodnia zostal zamieniona na etykiete liczbową, która przyjmuje wartośc od 1 do 7, co odpowiada kolejnym dniom tygodnia. Podobny proces został zastosowany do etykietowania pór roku. Każda została zakodowana jako etykieta w zakresie od 1 do 4 co prezentuje kolejno, wiosne, lato, jesień i zimę. Dodatkowo czas dnia został zmieniony na procent dnia w skali od 0 do 1.

3.3 Projektowanie i ocena modeli

W ramach realizacji badań nad optymalizacją architektury sieci neuronowej oraz doborem hiperparametrów, zdecydowano się na podział danych uczących na trzy zbiory. Pierwszy z nich to zestaw który zawiera dane pochodzące z 12 losowo wybranych domostw, co ma na celu zapewnienie reprezentatywności i różnorodności w ramach próby badawczej. Drugi zestaw stanowi podzbiór zawierający dane z pojedynczego gospodarstwa domowego, co pozwala na szczegółową analizę wydajności modelu w warunkach bardziej jednorodnych danych. Dodatkowo, utworzony został trzeci zestaw danych, który obejmował informacje z wszystkich 77 domów biorących udział w badaniu.

Po przeprowadzeniu serii eksperymentów, w procesie selekcji optymalnej architektury sieci neuronowej, najbardziej efektywną konfiguracją okazała się struktura składająca się z sześciu warstw, z których cztery pełniły funkcję warstw ukrytych. W procesie iteracyjnego dostosowywania i ewaluacji różnych architektur sieci, model o takiej budowie wykazał najlepsze wyniki w zakresie dokładności i generalizacji na testowanych zbiorach danych. Architektura ta charakteryzowała się kolejno malejącą liczbą neuronów w poszczególnych warstwach: pierwsza warstwa zawierała 512 neuronów, druga 256, trzecia 128, czwarta 64, piąta 32, a szósta, będąca warstwą wyjściową, miała 1 neuron. Wszystkie warstwy, z wyjątkiem ostatniej, wykorzystywały funkcję aktywacji ReLU. Natomiast ostatnia warstwa, pełniąca rolę warstwy wyjściowej, zastosowała funkcję aktywacji typu 'linear'

Tabela 3.1: Hiperparametry Sieci Neuronowej

Optymalizator	Funkcja strat	Początkowy współczynnik uczenia	Rozmiar partii
Adam	mse	0.0001	64

W ramach opracowanego modelu sieci neuronowej zastosowano dynamicznie zmieniający się współczynnik uczenia, oparty na metodzie wykładniczego spadku, opisanego wzorem:

Wspołczynik uczenia
$$(epoka) = \begin{cases} Początkowy wspołczynik uczenia & jeżeli $epoka < 5 \\ Wspołczynik uczenia(epoka - 1) \times e^{-0.1} & jeżeli $epoka \ge 5 \end{cases}$ (3.1)$$$

Użycie tej motyody pozwoliło na zmniejszanie wartości współczynnika uczenia w trakcie procesu trenowania, co zwiększyło zdolności adaptacyjne sieci. Został on zastosowany gdyż częstym zjawiskiem było generowanie przez sieć stałej wartości wyjściowej, niezależnie od różnych danych wejściowych.

TUTAJ ZROBIC CAŁE WYNIKI I OPIS

3.4 Walidacja i próby dostrajania (?)

W celu weryfikacji poprawności i efektywności opracowanego modelu sieci neuronowej, przeprowadzono porównanie modelu nauczonych na danych ze wszystkich 12 domostw z modelami utworzonymi dla każdego z tych domów osobno. Taki eksperyment miał na celu ocenę zdolności generalizacji modelu nauczonych na zbiorze 12 domostw w porównaniu z modelami specyficznymi dla poszczególnych domów.

Rysunek 3.4: DODAĆ OPIS, WŁĄCZYC JESZCZE RAZ SYMULACJE I WSTAWIĆ POPRAWNE ZDJĘCIE

W celu dalszego zwiększenia skuteczności modelu sieci neuronowej zaproponowano wprowadzenie dodatkowego wejścia do systemu – tygodniowego zużycia. Implementacja tego rozwiązania została przeprowadzona w specyficzny sposób, mający na celu uniknięcie przekształcenia tego parametru w niezamierzony label identyfikujący poszczególne domy. W fazie uczenia modelu, do każdego tygodnia przypisywano sumę zużycia zarejestrowanego w tym okresie. Natomiast w fazie testowania, model otrzymywał średnią wartość tygodniowego zużycia. Celem tej strategii było umożliwienie modelowi korzystania z danych historycznych zużycia w sposób, który poprawiałby jego zdolność do przewidywania, jednocześnie zachowując elastyczność i możliwość generalizacji wyników na różne domostwa.

Tabela 3.2: test

Wartość MSE dla modelu	MSE											
wartosc wise dia modelu		2	3	4	5	6	7	8	9	10	11	12
bez dodatkowego parametrem												
z dodatkowym parametrem												

Rysunek 3.5: DODAĆ OPIS

Pogoda

Rysunek 4.1: Porównanie warunkuch atmosferycznych na przestrzeni dnia

Modelowanie zbiornika CWU

5.1 Metodologia

5.1.1 Opis matematyczny modelu

$$\frac{dT_{wo}^3}{dt} = b_1^3 F_z (T_{zi} - T_{wo}^3) - b_2^3 F_w (T_{wo}^3 - T_{wo}^2) - b_3^4 (T_{wo}^3 - T_{ot})$$
(5.1)

$$\frac{dT_{zi}}{dt} = p_1 Q_g - p_2 F_z (T_{zi} - T_{wo}^3) - p_3 (T_{zi} - T_{ot})$$
(5.2)

$$\frac{dT_{wo}^2}{dt} = b_1^2 F_z (T_{zi} - T_{wo}^2) - b_2^2 F_w (T_{wo}^2 - T_{wo}^1) - b_2^3 (T_{wo}^2 - T_{ot}) - b_2^4 (T_{wo}^2 - T_{wo}^1) + b_2^5 (T_{wo}^3 - T_{wo}^2)$$
(5.3)

$$\frac{dT_{wo}^1}{dt} = -b_1^1 F_w (T_{wo}^1 - T_{wi}) - b_1^3 (T_{wo}^1 - T_{ot}) + b_1^5 (T_{wo}^2 - T_{wo}^1)$$
(5.4)

Przedstawienie modelu warstwowego, równań stanu, pokazanie wyników symulacji modelu

5.2 Wyniki symulacji

Krótka wstawka kodu w linii tekstu jest możliwa, np. **int a**; (biblioteka listings). Dłuższe fragmenty lepiej jest umieszczać jako rysunek, np. kod na rys 5.1, a naprawdę długie fragmenty – w załączniku.

Rysunek 5.1: Pseudokod w listings.

Optymalizacja

6.1 Funkcja kosztów

$$G = \int p_1 Q_g \, dt \tag{6.1}$$

6.2 Funkcja komfortu

$$J = \int (T_{wo} - T_{wym})^2 \left| \frac{\text{sign}(T_{wo} - T_{wym} - \delta) + \text{sign}(T_{wo} - T_{wym} + \delta)}{2} \right| dt$$
 (6.2)

- sposób testowania w ramach pracy (np. odniesienie do modelu V)
- organizacja eksperymentów
- przypadki testowe zakres testowania (pełny/niepełny)
- wykryte i usunięte błędy
- opcjonalnie wyniki badań eksperymentalnych

Tabela 6.1: Nagłówek tabeli jest nad tabelą.

				metoda			
				alg. 3		alg. 4	$\gamma = 2$
ζ	alg. 1	alg. 2	$\alpha = 1.5$	$\alpha = 2$	$\alpha = 3$	$\beta = 0.1$	$\beta = -0.1$
0	8.3250	1.45305	7.5791	14.8517	20.0028	1.16396	1.1365
5	0.6111	2.27126	6.9952	13.8560	18.6064	1.18659	1.1630
10	11.6126	2.69218	6.2520	12.5202	16.8278	1.23180	1.2045
15	0.5665	2.95046	5.7753	11.4588	15.4837	1.25131	1.2614
20	15.8728	3.07225	5.3071	10.3935	13.8738	1.25307	1.2217
25	0.9791	3.19034	5.4575	9.9533	13.0721	1.27104	1.2640
30	2.0228	3.27474	5.7461	9.7164	12.2637	1.33404	1.3209
35	13.4210	3.36086	6.6735	10.0442	12.0270	1.35385	1.3059
40	13.2226	3.36420	7.7248	10.4495	12.0379	1.34919	1.2768
45	12.8445	3.47436	8.5539	10.8552	12.2773	1.42303	1.4362
50	12.9245	3.58228	9.2702	11.2183	12.3990	1.40922	1.3724

Podsumowanie i wnioski

- uzyskane wyniki w świetle postawionych celów i zdefiniowanych wyżej wymagań
- kierunki ewentualnych danych prac (rozbudowa funkcjonalna ...)
- problemy napotkane w trakcie pracy

Bibliografia

- [1] Imię Nazwisko i Imię Nazwisko. *Tytuł strony internetowej.* 2021. URL: http://gdzies/w/internecie/internet.html (term. wiz. 30.09.2021).
- [2] Imię Nazwisko, Imię Nazwisko i Imię Nazwisko. "Tytuł artykułu konferencyjnego".
 W: Nazwa konferecji. 2006, s. 5346–5349.
- [3] Imię Nazwisko, Imię Nazwisko i Imię Nazwisko. "Tytuł artykułu w czasopiśmie". W: *Tytuł czasopisma* 157.8 (2016), s. 1092–1113.
- [4] Imię Nazwisko, Imię Nazwisko i Imię Nazwisko. *Tytuł książki*. Warszawa: Wydawnictwo, 2017. ISBN: 83-204-3229-9-434.

Dodatki

Spis skrótów i symboli

DNA kwas deoksyrybonukleinowy (ang. deoxyribonucleic acid)

 $MVC \mod - \text{widok} - \text{kontroler (ang. } model-view-controller)$

 ${\cal N}\,$ liczebność zbioru danych

 $\mu\,$ stopnień przyleżności do zbioru

 $\mathbb E \,$ zbi
ór krawędzi grafu

 ${\cal L}\,$ transformata Laplace'a

Źródła

Jeżeli w pracy konieczne jest umieszczenie długich fragmentów kodu źródłowego, należy je przenieść w to miejsce.

Lista dodatkowych plików, uzupełniających tekst pracy

W systemie do pracy dołączono dodatkowe pliki zawierające:

- źródła programu,
- dane testowe,
- film pokazujący działanie opracowanego oprogramowania lub zaprojektowanego i wykonanego urządzenia,
- itp.

Spis rysunków

3.1	Podpis rysunku zawsze pod rysunkiem	6
3.2	Porównanie przepływów dla przykładowych domów w dniu $05/02/2018$	7
3.3	Fragment skryptu przetwarzającego dane	8
3.4	DODAĆ OPIS, WŁĄCZYC JESZCZE RAZ SYMULACJE I WSTAWIĆ	
	POPRAWNE ZDJĘCIE	10
3.5	DODAĆ OPIS	11
4.1	Porównanie warunkuch atmosferycznych na przestrzeni dnia	13
5.1	Pseudokod w listings	16

Spis tabel

3.1	Hiperparametry Sieci Neuronowej	9
3.2	test	10
6.1	Nagłówek tabeli jest nad tabelą	18