



(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets



(11)

EP 0 896 002 A1

(12)

**EUROPEAN PATENT APPLICATION**

published in accordance with Art. 158(3) EPC

(43) Date of publication:

10.02.1999 Bulletin 1999/06

(51) Int. Cl.<sup>6</sup>: C07K 14/705, C12N 15/12,  
G01N 33/50

(21) Application number: 98901043.4

(86) International application number:  
PCT/JP98/00370

(22) Date of filing: 29.01.1998

(87) International publication number:  
WO 98/32771 (30.07.1998 Gazette 1998/30)

(84) Designated Contracting States:  
DE FR GB IT

(72) Inventors:  
• KAINOH, Mie  
Kanagawa 251 (JP)  
• TANAKA, Toshiaki  
kanagawa 249 (JP)

(30) Priority: 29.01.1997 JP 15118/97  
29.08.1997 JP 234544/97

(74) Representative: Kador & Partner  
Corneliusstrasse 15  
80469 München (DE)

(71) Applicant:  
TORAY INDUSTRIES, INC.  
Tokyo 103 (JP)

(54) **CHIMERIC PROTEINS, HETERO DIMER COMPLEXES THEREOF AND SUBSTITUTE FOR PLATELET**

(57) Integrin-immunoglobulin chimeric protein heterodimer complexes in which the  $\alpha$ -chain and  $\beta$ -chain of integrins have been associated in a stable state. These complexes are not only usable as drugs as such but also applicable to the assaying of binding of integrins to ligands and the detection of substances binding to integrins or those inhibiting binding of integrins to ligands. These complexes are also usable as diagnostic agents. It has been found that integrins isolated in a stably associated structure would bind to extracellular matrixes under physiological conditions in the presence of plasma components, which indicates that integrins and, in its turn, extracellular matrix receptors might be usable as substitutes for platelets.

EP 0 896 002 A1

BEST AVAILABLE COPY

**Description****Technical Field:**

5 [0001] The present invention relates to chimeric proteins consisting of an integrin and an immunoglobulin, their heterodimer complexes, a production process thereof, their applications as drugs and reagents, etc. Furthermore, the present invention relates to medicinal application of isolated extracellular matrix receptors such as integrin-immunoglobulin chimeric protein heterodimer complexes, as platelet substitutes.

**10 Background Arts:**

[0002] Various cells have receptors which mediate the adhesion between a cell and a cell and receptors which mediate the adhesion between a cell and an extracellular matrix, and these receptors play important roles in immune reaction, inflammatory reaction, development, morphogenesis, wound healing, hemostasis, cancerous metastasis, etc. By separating and identifying the receptors which participate in these phenomena, the existence of so-called cell adhesion molecules has been clarified. Many of the molecules identified one after another are classified in reference to their structural features into integrin superfamily, immunoglobulin superfamily, selectin family, cadherin family, etc. (Carlos, T. M. and Harlan, J. M., Blood, 84, 2068-2101 (1994)). Of these families, the immunoglobulin superfamily, selectin family and cadherin family mediate mainly the adhesion between a cell and a cell, while the integrin superfamily is the so-called extracellular matrix receptors which mediate the adhesion to extracellular matrices such as fibronectin and collagens. In addition, extracellular matrix receptors which do not belong to any of these adhesion molecule families include CD26 (DDPIV), CD44, GPIV, GPVI, GPIb-vWF, etc. CD26 is a receptor for collagens, and CD44 is a receptor for hyaluronic acid, fibronectin and collagens ("Adhesion Molecules" p. 32-42, Masayuki Miyasaka (1991), Medical View (in Japanese)). Furthermore, it is reported that among the membrane glycoproteins (GPs) existing on platelets, GPIV, GPVI, GPIb-vWF, etc. are also collagen receptors ("Platelet Receptors", p. 119-132, Minoru Ohkuma et al., (1992), Kin-podo (in Japanese)).

[0003] A receptor belonging to the integrin superfamily has a heterodimer complex structure in which two subunits,  $\alpha$ -chain and  $\beta$ -chain as mutually different membrane proteins are associated with each other non-covalently (Hynes, R. O., Cell, 48, 549-554 (1987)). In the past, the integrin superfamily was classified into three subfamilies;  $\beta 1$  integrin,  $\beta 2$  integrin and  $\beta 3$  integrin. Later, new  $\beta$  chains and  $\alpha$  chains were discovered one after another, and presently eight  $\beta$  chains ( $\beta 1$ ,  $\beta 2$ ,  $\beta 3$ ,  $\beta 4$ ,  $\beta 5$ ,  $\beta 6$ ,  $\beta 7$  and  $\beta 8$  and fifteen  $\alpha$  chains ( $\alpha 1$ ,  $\alpha 2$ ,  $\alpha 3$ ,  $\alpha 4$ ,  $\alpha 5$ ,  $\alpha 6$ ,  $\alpha 7$ ,  $\alpha 8$ ,  $\alpha 9$ ,  $\alpha v$ ,  $\alpha L$ ,  $\alpha M$ ,  $\alpha X$ ,  $\alpha IIb$  and  $\alpha E$ ) have been identified (Elner, S. G. and Elner, V. M., Inv. Ophtal. Vis. Sci., 37, 696-701 (1996)). It is known that each  $\beta$  chain is associated with one to eight  $\alpha$  chains, and as a result, 21 pairs of an  $\alpha$  chain and a  $\beta$  chain, i.e., integrin molecules have been identified (Elner, S. G. and Elner, V. M., Inv. Ophtal. Vis. Sci., 37, 696-701 (1996)). They include  $\alpha 4\beta 1$  (VLA-4,  $\beta 1$  integrin),  $\alpha L\beta 2$  (LFA-1,  $\beta 2$  integrin),  $\alpha M\beta 2$  (Mac-1,  $\beta 2$  integrin),  $\alpha IIb\beta 3$  (GPIIb/IIIa,  $\beta 3$  integrin), etc. now targeted for drug development (Drug and Market Development, 6, 201-205 (1995)). Many other integrins are also expected to have relations with diseases.

[0004] The heterodimer complex structure of an integrin plays an important role in binding to a ligand (Hynes, R. O., Cell, 48, 549-554 (1987)). For example, it is estimated that the ligand binding region on an integrin consists of both an  $\alpha$  chain and a  $\beta$  chain (Hynes, R. O., Cell, 69, 11-25 (1992)). The fact that integrins having the same  $\alpha$  chain but associated with a different  $\beta$  chain, or integrins having the same  $\beta$  chain but associated with a different  $\alpha$  chain are respectively different in substrate specificity (Elner, S. G. and Elner, V. M., Inv. Ophtal. Vis. Sci. 37, 696-701 (1996)) supports this assumption. On the other hand, it was reported that the  $\alpha$  chains of some integrins have an sequence called an I domain consisting of about 180 amino acids inserted in the molecule, and data suggest that the I domain only could be bound to a ligand were reported (Ueda, T. et al., Proc. Natl. Acad. Sci. USA, 91, 10680-10684 (1994)). However, it was also reported that the I domain of an  $\alpha$  domain and the integrin as its original heterodimer complex are different in the style of binding to a ligand (Kamata, T. and Takada, Y., J. Biol. Chem., 269, 26006-26010 (1994)). It is also not clarified yet whether such parameters as specificity and affinity to a ligand are identical. It is not reported that in the case of an integrin not containing the I domain, for example, in the case of  $\alpha 4\beta 1$  a partial structure only is bound to a ligand.

[0005] If any integrin isolated and prepared retains its heterodimer complex structure, hence the ligand binding capability, it can be used for studying the style of binding to a ligand in a state close to nature. Furthermore, it can be used as it is as a drug and can also be used as a reagent for measuring the amount of a ligand in tissue or serum or as a material for searching for adhesion inhibiting compounds very usefully. However, isolating and preparing an integrin with its function retained is said to be very difficult. One reason is that since the association between an  $\alpha$  chain and a  $\beta$  chain of an integrin is maintained non-covalently as described before, they are easily dissociated during isolation and preparation. Since an integrin is a membrane protein, the necessity of using a surfactant, etc. for solubilization is considered to be a large cause in the dissociation of the complex. In other words, the non-covalent preservation of functional structure inhibits the preparation of such an integrin.

- [0006] Inspite of the difficulty as described above, some cases were reported, in which an integrin heterodimer complex was isolated and prepared with its function retained. For cases of  $\alpha 2\beta 1$ ,  $\alpha 5\beta 1$  and  $\alpha v\beta 3$ , it was reported that the binding to a ligand can be determined by letting a liposome incorporate an integrin purified by using affinity column chromatography (Santoro, S. A. et al., Biochem. Biophys. Res. Comm., 153, 217-223 (1988), Pytela, R. et al. Cell, 40, 191-198 (1985), Pytela, R. et al., Method Enzymol., 144, 475-489 (1987)). For other cases, it was that if purified  $\alpha 5\beta 1$  or  $\alpha v\beta 3$  is coated on a plate, a peptide which inhibits the cell adhesion through the integrin can be selected (Koivunen, E. et al., J. Biol. Chem., 268, 20205-20210 (1993), Healy, J. M. et al., Biochemistry, 34, 3948-3955 (1995)). For further other cases, it was reported that if purified  $\alpha v\beta 3$  or  $\alpha 4\beta 1$  is coated on a plate, the binding to a ligand can be determined (Charo, I. F. et al., J. Cell Biol., III, 2795-2800 (1990), Makarem, R. et al., J. Biol. Chem., 269, 4005-4011 (1994), Paul Mould, A. et al., J. Biol. Chem., 269, 27224-27230 (1994)). For a still further other case, it was reported that if an extracellular portion of  $\alpha 1\beta 3$  heterodimer complex prepared by gene manipulation is coated on a plate through a complex specific antibody, the binding to a ligand can be determined (Gulino, D. et al., Eur. J. Biochem., 227, 108-115 (1995)). These cases suggest that to exert the function of a purified integrin, its heterodimer complex must be bound to or included in any carrier. The reason why a carrier is considered to be necessary is that since a heterodimer complex is associated non-covalently in a solution, it tends to be dissociated and as a result, cannot retain its functional structure. In the finally stated case, only a molecule with a heterodimer complex structure is selected using a complex specific antibody, in a design to determine the binding in a state where both the chains are not dissociated from each other.
- [0007] As a case requiring no carrier, it was reported that purified  $\alpha 1\beta 1$ , or  $\alpha 2\beta 1$  allows the determination of the bonding to a ligand dependent on high concentration of metal ions even without using any carrier (Pfaff, M. et al., Eur. J. Biochem., 225, 975-984 (1994)). In this case, the surfactant added in the process of purification plays a role similar to that of a liposome, acting as a carrier. For a further other case, it was reported that an extracellular  $\alpha M\beta 2$  heterodimer complex prepared by using gene manipulation is bound to a ligand (Berman, P. W. et al., J. Cell Biochem., 52, 183-195 (1993)). These cases do not suggest the necessity of any carrier as described before, but the disadvantage that the association of molecules in a heterodimer complex is retained non-covalently is not improved.
- [0008] As a still further other case, a chimeric protein consisting of  $\alpha$  and an immunoglobulin is disclosed (Japanese Patent Laid-Open (Kokai) No. 8-507933), but only the result of immune precipitation is reported, without examining the binding to a ligand. Furthermore, since a  $\beta$  chain is not expressed in the chimeric protein as an immunoglobulin, the binding between an  $\alpha$  chain and a  $\beta$  chain remains non-covalent.
- [0009] The above facts suggest that any integrin with an  $\alpha$  chain and a  $\beta$  chain structurally stably associated and with its function retained has never been successfully prepared. That a complex structure is unstable restricts the use of its molecule.
- [0010] Of the molecules belonging to the integrin superfamily, integrin  $\alpha 2\beta 1$  is an extracellular matrix receptor found to be expressed in T cells, platelets, etc. activated for long time. However, it was reported that the  $\alpha 2\beta 1$  on the cell surfaces of platelets and fibroblasts is bound to collagens only and that the  $\alpha 2\beta 1$  on the surfaces of vascular endothelial cells is bound to both collagens and laminins (Elles, M. J. et al., Proc. Natl. Acad. Sci. USA, 86, 9906-9910 (1989)), and it is speculated that the function of  $\alpha 2\beta 1$  becomes different, depending on cells.
- [0011] In relation to the conditions of diseases, there are reports to suggest that integrin  $\alpha 2\beta 1$  plays an important role for wound healing and cancerous metastasis (Shiro, J. A. et al., Cell, 67, 403-410 (1991), Chen, F. et al., J. Exp. Med., 173, 1111-1119 (1991), Chan, B. M. C. et al., Science, 251, 1600-1602 (1991)). Furthermore, it was reported that from the analysis of platelet function of patients with bleeding tendency, the adherence of platelets and collagens through integrin  $\alpha 2\beta 1$  has close relation with the first step of hemostasis and thrombosis process (Nieuwenhuis, H. K. et al., Nature, 318, 470-472 (1985)). Though the relations of integrin  $\alpha 2\beta 1$  with conditions of diseases are suggested like this, any medical application of using the integrin  $\alpha 2\beta 1$  protein and other isolated extracellular matrix receptor proteins under physiological ion condition or in the presence of plasma components has not been examined.
- [0012] On the other hand, the necessity for artificial substitutes of platelets used as blood preparations in the clinical field is growing, and various attempts have been reported (Progress of Medicine 179, 406-407 (1996), Clinical Blood 37, 1353-1361 (1997) (respectively in Japanese)). However, they are not yet practically available.

## Disclosure of the Invention:

- [0013] The present invention relates to chimeric proteins in which the  $\alpha$  chain and  $\beta$  chain of an integrin are combined with the heavy chain or light chain of an immunoglobulin, their heterodimer complexes, a production process thereof, a method for testing the binding of an integrin-immunoglobulin chimeric protein heterodimer complex to a ligand and a cell, substances bound to an integrin obtained by using the method, a method for searching for a substance inhibiting the binding between an integrin and a ligand using the integrin-immunoglobulin chimeric protein heterodimer complex, substances for inhibiting the binding, and the application of integrin-immunoglobulin chimeric protein heterodimer complexes as drugs and reagents. Furthermore, the present invention relates to platelet substitutes containing an integrin-immunoglobulin chimeric protein heterodimer complex or any other isolated extracellular matrix receptor as an active

ingredient.

**Brief Description of the Drawings:**

**5 [0014]**

- Fig. 1 shows that  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex is bound to VCAM-1 expressing cell, and that the binding is inhibited by an anti-integrin antibody or EDTA, a cationic cheating agent.
- 10 Fig. 2 shows that  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex is bound to CS-1 peptide, and that the binding is inhibited by an anti-integrin antibody or EDTA, a cationic cheating agent.
- 15 Fig. 3 shows that the binding between  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1$  IgG heavy chain chimeric protein heterodimer complex and CS-1 peptide is inhibited by GPEILDVPST, and is not inhibited by any other peptide.
- 20 Fig. 4 shows that  $\alpha 2 \cdot$  IgG heavy chain- $\beta 1$  IgG heavy chain chimeric protein heterodimer complex is bound to a collagen, and that the binding is inhibited by an anti-integrin antibody and EDTA, a cationic cheating agent.
- 25 Fig. 5 shows that  $\alpha 2 \cdot$  IgG heavy chain- $\beta 1$  IgG heavy chain chimeric protein heterodimer complex liposome is bound to a collagen in the presence of plasma.
- 30 Fig. 6 shows that the binding of  $\alpha 2 \cdot$  IgG heavy chain- $\beta 1$  IgG heavy chain chimeric protein heterodimer complex liposome to a collagen is inhibited by an anti-integrin antibody or EDTA, a cationic chelating agent.

**20 The Best Embodiments of the Invention:**

- [0015]** The extracellular matrix receptors in the present invention refer generally to the receptors which mediate the adhesion between a cell and an extracellular matrix. The receptors include the integrin superfamily having a heterodimer complex structure in which an  $\alpha$  chain and a  $\beta$  chain are non-covalently associated with each other as two membrane proteins (Corlos, T. M. and Harlan, J. M. Blood, 84, 2068-2101 (1994)), and other receptors such as CD26 (DDPIV), CD44, GPIV, GPVI, GPb-vWF, etc. The integrins in the present invention refer to molecules belonging to the integrin superfamily, and also include the isomers of the molecules belonging to the family. The  $\alpha$  chains of the present invention include 15  $\alpha$  chains, i.e.,  $\alpha 1$ ,  $\alpha 2$ ,  $\alpha 3$ ,  $\alpha 4$ ,  $\alpha 5$ ,  $\alpha 6$ ,  $\alpha 7$ ,  $\alpha 8$ ,  $\alpha 9$ ,  $\alpha v$ ,  $\alpha L$ ,  $\alpha M$ ,  $\alpha X$ ,  $\alpha IIb$  and  $\alpha E$ , and among them,  $\alpha 4$  and  $\alpha 2$  are preferable, though preferable  $\alpha$  chains are not limited to them. The  $\beta$  chains of the present invention include eight  $\beta$  chains, i.e.,  $\beta 1$ ,  $\beta 2$ ,  $\beta 3$ ,  $\beta 4$ ,  $\beta 5$ ,  $\beta 6$ ,  $\beta 7$  and  $\beta 8$  and among them,  $\beta 1$  is preferable, though preferable  $\beta$  chains are not limited to it. The integrin molecules as pairs respectively consisting of an  $\alpha$  chain and a  $\beta$  chain include the twenty one integrins stated in Elner, S. G. and Elner, V. M., Inv. Ophtal. Vis. Sci., 37, 696-701 (1996), though not limited to them.
- 35 **[0016]** A chimeric protein consisting of the  $\alpha$  chain of an integrin and the heavy chain or light chain of an immunoglobulin refers to a molecule in which the extracellular region of the  $\alpha$  chain of an integrin is bound to the constant region of the heavy chain or light chain contained an immunoglobulin. In this case, a chimeric protein in which N terminus side of the protein is integrin molecule and then connected to an immunoglobulin molecule side by side is preferable. A chimeric protein consisting of the  $\beta$  chain of an integrin and the heavy chain or light chain of an immunoglobulin refers to a molecule in which the extracellular region of the  $\beta$  chain of an integrin is bound to the constant region of the heavy chain or light chain contained in an immunoglobulin. Also in this case, a chimeric protein in which N terminus side of the protein is an integrin molecule and then connected to an immunoglobulin molecule side by side is preferable. In either case of  $\alpha$  chain or  $\beta$  chain, a chimeric protein bound to the heavy chain of an immunoglobulin is preferable.
- 40 **[0017]** The isotype of the immunoglobulin to be bound to the  $\alpha$  chain or  $\beta$  chain is not especially limited. Any of IgG, IgM, IgA and IgE can be used, but it is preferable to use IgG. The subclasses of IgG include IgG<sub>1</sub>, IgG<sub>2</sub>, IgG<sub>3</sub> and IgG<sub>4</sub>, but it is preferable to use IgG<sub>1</sub>. Furthermore, it is possible to use a molecule with a dimer structure having a disulfide bond between molecules instead of the immunoglobulin.
- 45 **[0018]** In the present invention, a molecule in which a chimeric protein consisting of the  $\alpha$  chain of an integrin and the heavy chain or light chain of an immunoglobulin and a chimeric protein consisting of the  $\beta$  chain of the integrin and the heavy chain or light chain of the immunoglobulin are associated with each other is called an integrin-immunoglobulin chimeric protein heterodimer complex. In this case, a combination consisting of  $\alpha$  chain- $\cdot$  immunoglobulin heavy chain (which means a chimeric protein consisting of an  $\alpha$  chain and the heavy chain of an immunoglobulin; hereinafter this applies) and  $\beta$  chain- $\cdot$  immunoglobulin heavy chain, a combination consisting of  $\alpha$  chain- $\cdot$  immunoglobulin heavy chain and  $\beta$  chain- $\cdot$  immunoglobulin light chain, and a combination consisting of  $\alpha$  chain- $\cdot$  immunoglobulin light chain and  $\beta$  chain- $\cdot$  immunoglobulin heavy chain are preferable. A combination consisting of  $\alpha$  chain- $\cdot$  immunoglobulin heavy chain and  $\beta$  chain- $\cdot$  immunoglobulin heavy chain is more preferable.
- 50 **[0019]** In the integrin-immunoglobulin chimeric protein heterodimer complex of the present invention, the  $\alpha$  chain can be  $\alpha 1$ ,  $\alpha 2$ ,  $\alpha 3$ ,  $\alpha 4$ ,  $\alpha 5$ ,  $\alpha 6$ ,  $\alpha 7$ ,  $\alpha 8$ ,  $\alpha 9$ ,  $\alpha v$ ,  $\alpha L$ ,  $\alpha M$ ,  $\alpha X$ ,  $\alpha IIb$  or  $\alpha E$ , and the  $\beta$  chain can be  $\beta 1$ ,  $\beta 2$ ,  $\beta 3$ ,  $\beta 4$ ,  $\beta 5$ ,  $\beta 6$ ,  $\beta 7$  or

$\beta$ 8, it is preferable that the  $\alpha$  chain is  $\alpha$ 4 or  $\alpha$ 2 and that the  $\beta$  chain is  $\beta$ 1, though preferable chains are not limited to them.

[0020] The process for preparing an integrin-immunoglobulin chimeric protein heterodimer complex is described below, but the process is not limited thereto.

5 [0021] A DNA coding for the  $\alpha$  chain and  $\beta$  chain of an integrin can be obtained using the information of known cDNA sequences by such a method as gene amplification based on the PCR method, cDNA cloning or DNA synthesis. For example, the DNA sequences of  $\alpha$ 4 and  $\beta$ 1 are already reported in literature (Takada, Y. et al., EMBO J., 8, 1361-1368 (1989), Scott Argraves, W. et al., J. Cell Biol., 105, 1183-1190 (1987)). A DNA coding for the  $\alpha$  chain and  $\beta$  chain of an integrin can also be obtained by the expression cloning using an antibody, etc. For binding to a DNA coding for the constant region of an immunoglobulin, it is desirable to take out a DNA coding for the extracellular portions only of the  $\alpha$  chain and  $\beta$  chain of an integrin. For this purpose, it is preferable to use the PCR method and DNA synthesis. The extracellular portion of either an  $\alpha$  chain or  $\beta$  chain refers to the polypeptide sequence on the N terminus side from the portion speculated to be the transmembrane portion. Its partial sequence can also be used as far as the ligand binding capability is retained, but it is preferable to use most of the portion considered to be an extracellular region. For taking out a DNA, it is necessary to adjust for adaptation of frames after linking to a DNA coding for an immunoglobulin. For example, this can be achieved by modifying the primer when a DNA fragment is taken out by the PCR method. In this case, it is desirable to design for ensuring that amino acid modification is not caused by the base substitution of the primer. However, amino acid substitution is allowed as far as the function of the chimeric protein is not changed. For obtaining a DNA by chemical synthesis, the purpose can be achieved by designing a sequence to ensure the linking to a DNA coding for an immunoglobulin. In the case of cDNA, a DNA capable of being bound to a DNA coding for an immunoglobulin can be prepared by using DNA fragmentation and a synthetic DNA.

20 [0022] Then, a DNA coding for an immunoglobulin is prepared. In the present invention, it is desirable to use DNAs coding for the heavy chain and light chain of a human immunoglobulin, but DNAs coding for an immunoglobulin of another animal species can also be used. The preparation of a DNA coding for human IgG is already reported (Ellison, J. W. et al., Nucleic Acids Res., 10, 4071-4079 (1982)), but the preparation is not limited to this method. Any method similar to the above mentioned method for preparing DNAs coding for the  $\alpha$  chain and  $\beta$  chain of an integrin can also be used. In the present invention, for the heavy chain of a human immunoglobulin, it is preferable to use a genomic DNA, but a cDNA can also be used. As the DNA for the heavy chain of a human immunoglobulin, it is preferable to use a portion coding for the hinge region, CH2 region or CH3 region, but a DNA coding for the entire constant region of CH1 25 CH3 can also be used. For the light chain of an immunoglobulin, a DNA coding for the CL region is used. Finally, a DNA coding for the extracellular portion of an  $\alpha$  chain or  $\beta$  chain and a DNA coding for the constant region of human immunoglobulin heavy chain are linked with in frame. The obtained DNA codes for a polypeptide starting from the methionine of translation initiation and having the signal sequence of the  $\alpha$  chain or  $\beta$  chain of an integrin, its extracellular region and the constant region of human immunoglobulin heavy chain linked in this order.

30 [0023] The DNA coding for a chimeric protein consisting of the  $\alpha$  chain of an integrin and the heavy chain or light chain of an immunoglobulin, or the DNA coding for a chimeric protein consisting of the  $\beta$  chain of an integrin and the heavy chain or light chain of an immunoglobulin respectively obtained in the above is functionally linked in a proper expression control sequence, to obtain a recombinant vector. The general methods concerning gene recombination such as the method for preparing the recombinant vector, the method for transfecting it into a cell are described in a published book ("Molecular Cloning", Sambrook et al., (1989) Cold Spring Harbor Lab. Press, New York), but the methods are not limited to those stated there. In the present invention, it is desirable to use an expression control sequence suitable for protein expression in animal cells. For example, for manifestation of insect cells, polyhedrin promotor, p10 promotor, etc. are generally used as expression control sequences, and for expression of other animals' cells, SR $\alpha$  promotor, cytomegalovirus derived promotor, simian virus 40 derived promotor, polyhedrin promotor, p10 promotor, etc. are used. However, the expression control sequences are not limited to them. In the present invention, it is preferable to use SR $\alpha$  35 promotor.

40 [0024] If the obtained recombinant vector is transfected into a cell, a cell capable of producing an integrin-immunoglobulin chimeric protein heterodimer complex can be obtained. In this case it is preferable to use an animal derived cell as a host. For example, COS cell (simian renal cell), CHO cell (Chinese Hamster ovarian cell), SF9 (insect cell), etc. are generally used as hosts. Furthermore, myeloma cells such as P3U1 and Y3 can also be used. Other established cell lines and cloned cells can also be used, but the cells used as hosts are not limited to them. In the present invention, it is preferable to use a CHO cell.

45 [0025] It is known that the methods for transfecting a recombinant vector into a cell include the lipofectin method, calcium phosphate method, electroporation method, etc., and any of the methods can be used. The method is not limited to them. It is preferable that when a cell is transfected by using a recombinant vector, a recombinant vector for expression of a chimeric protein consisting of the  $\alpha$  chain of an integrin and the heavy chain or light chain of an immunoglobulin and a recombinant vector for expression of a chimeric protein consisting of the  $\beta$  chain of the integrin and the heavy chain or light chain of the immunoglobulin are transfected into the cell one after another using different drug resistance

markers. The recombinant vectors can be transfected in any order or simultaneously. It is desirable that the two recombinant vectors to be transfected are vectors for expression of a combination consisting of  $\alpha$  chain • immunoglobulin heavy chain (which means a chimeric protein consisting of an  $\alpha$  chain and the heavy chain of an immunoglobulin; hereinafter this applies) and  $\beta$  chain • immunoglobulin heavy chain, or  $\alpha$  chain • immunoglobulin heavy chain and  $\beta$  chain • immunoglobulin light chain, or  $\alpha$  chain • immunoglobulin light chain and  $\beta$  chain • immunoglobulin heavy chain. Any of these combinations can be adopted, but a combination of recombinant vectors for expression of  $\alpha$  chain • immunoglobulin heavy chain and  $\beta$  chain • immunoglobulin heavy chain is desirable.

[0026] In any transfection method and any combination of vectors, it is important to select a cell which is transfected by the two recombinant vectors and produces a chimera protein consisting of an  $\alpha$  chain and the heavy chain or light chain of an immunoglobulin and a chimera protein consisting of a  $\beta$  chain and the heavy chain or light chain of an immunoglobulin simultaneously almost by the same amounts. This can be achieved by measuring the amounts of the chimeric protein consisting of an  $\alpha$  chain and the heavy chain or light chain of an immunoglobulin and a chimeric protein consisting of a  $\beta$  chain and the heavy chain or light chain of an immunoglobulin produced in the cultured supernatant solution of the cell transfected by the recombinant vectors. For measurement, for example, the transfected cell can be cultured in a medium containing  $^{35}$ S according to any publicly known method, for labeling the proteins, and the amounts of the chimeric protein consisting of an  $\alpha$  chain and the heavy chain or light chain of an immunoglobulin and a chimeric protein consisting of a  $\beta$  chain and the heavy chain or light chain of an immunoglobulin existing in the cultured supernatant solution can be estimated by immunoprecipitation using an anti- $\alpha$  chain antibody or an anti- $\beta$  chain antibody respectively. As another method, the amounts of the chimeric protein consisting of an  $\alpha$  chain and the heavy chain or light chain of an immunoglobulin and a chimeric protein consisting of a  $\beta$  chain and the heavy chain or light chain of an immunoglobulin existing in the cultured supernatant solution can be estimated according to the ELISA method using an anti-human immunoglobulin antibody and an anti- $\alpha$  chain antibody or an anti- $\beta$  chain antibody. Anyway, it is preferable to select a clone which produces almost the same large amounts of the chimeric proteins of the  $\alpha$  and  $\beta$  chains in the culture supernatant, for preparing an integrin-immunoglobulin chimeric protein heterodimer complex. The methods for labeling proteins, the methods of immunoprecipitation and the general methods of ELISA are described in a published book ("Antibody" Harlow, E., and Lane, D. (1988), Cold Spring Harbor Lab. Press, New York), but the methods are not limited to them. Any other method can also be used for detecting chimeric proteins.

[0027] The obtained transfected cell can be cultured according to a general cell culture method, to produce an integrin-immunoglobulin chimeric protein heterodimer complex. It is preferable that the medium contains about 5% of serum of a low immunoglobulin concentration, but any generally known serum-containing medium or a serum-less medium can also be used. After completion of cell culture, the cells and solid matter are removed by such operation as centrifugation, and the culture supernatant containing an integrin-immunoglobulin chimeric protein heterodimer complex is collected.

[0028] It can be estimated that the cultured supernatant solution contains not only the integrin-immunoglobulin chimeric proteins in which the chimeric protein consisting of an  $\alpha$  chain and the heavy chain or light chain of an immunoglobulin and a chimeric protein consisting of a  $\beta$  chain and the heavy chain or light chain of an immunoglobulin form a heterodimer complex, but also the chimeric protein consisting of an  $\alpha$  chain and the heavy chain or light chain of an immunoglobulin and a chimeric protein consisting of a  $\beta$  chain and the heavy chain or light chain of an immunoglobulin which do not form the heterodimer complex. However, since the molecules other than the heterodimer complex cannot be bound to a ligand, the supernatant solution can be used as a reagent for testing the binding to a ligand or cell, or searching for a substance inhibiting the binding between an integrin and a ligand, or for searching for a substance capable of being bound to an integrin, or for measuring the ligand amount of an integrin. These methods of utilization are basically the same as those for using a purified integrin-immunoglobulin chimeric protein heterodimer complex described later.

[0029] An integrin-immunoglobulin chimeric protein heterodimer complex can be purified by an established method using a protein A column chromatography by use of the nature of the immunoglobulin portion. Furthermore, affinity chromatography using an antibody against the  $\alpha$  or  $\beta$  chain can also be used. Moreover, the purification can also be achieved by affinity chromatography with a ligand bound to a carrier. General chromatographic methods can also be used in combination for the purification. If publicly known cases in which integrin molecules are purified by these methods (Pytela, R. et al., Methods Enzymol., 144, 475-489 (1987), Santoro, S. A. et al., Biochem. Biophys. Res. Comm., 153, 217-223 (1988), Charo, I.F. et al., J. Cell Biol., 111, 2795-2800 (1990), Makarem, R. et al., J. Biol. Chem., 269, 4005-4011 (1994), Pfaff, M. et al., Eur. J. Immunol., 225, 975-984 (1994), Gulino, D. et al., Eur. J. Biochem., 227, 108-115 (1995), etc.) are applied, the purification of an integrin-immunoglobulin chimeric protein heterodimer complex can be achieved.

[0030] A purified integrin-immunoglobulin chimeric protein heterodimer complex can be identified as a protein showing at least one band under non-reducing condition and at least two bands under reducing condition by SDS-PAGE. It can also be confirmed from it, that the heterodimer is linked by the disulfide bond between immunoglobulin heavy chains. It sometimes occurs that a plurality of bands are detected under reduction, but this is considered to be probably

because intramolecular cleavage of the  $\alpha$  chain has occurred. Especially, with  $\alpha 4$ , this phenomenon is known (Hemler, M. E. et al., J. Biol. Chem., 262, 11478-11485 (1987)). Furthermore, it can be confirmed by the Western blotting method that the respective bands indicate chimeric proteins. As another method, it can be confirmed by said ELISA method combining an anti- $\alpha$  chain antibody, anti- $\beta$  chain antibody and anti-human immunoglobulin antibody, that the obtained molecule is an integrin-immunoglobulin chimeric protein heterodimer complex. That is, the molecule can be identified as a protein molecule with epitopes for all the antibodies. As a further other method, an integrin-immunoglobulin chimeric protein heterodimer complex can also be identified by immunoprecipitation. In this case, if the purified protein is labeled by  $^{35}$ S, or  $^{125}$ I or biotin, etc. according to any known method, and immunoprecipitated using an anti- $\alpha$  chain antibody, anti- $\beta$  chain antibody and anti-human immunoglobulin antibody, the same electrophoretic pattern can be obtained in every case. So, it can be confirmed that the integrin-immunoglobulin chimeric protein heterodimer complex has the intended structure. Furthermore, even if a condition to dissociate the integrin complex on a cell membrane such as the coexistence of EDTA or boiling in the presence of SDS is applied, the immunoprecipitation pattern is not changed. So, it can be confirmed that the obtained integrin-immunoglobulin chimeric protein heterodimer complex is a structurally stabilized complex. The methods for confirming an integrin-immunoglobulin chimeric protein heterodimer complex are not limited to those stated above.

[0031] The binding between a prepared integrin-immunoglobulin chimeric protein heterodimer complex and a ligand can be tested as described below. After a ligand and an integrin-immunoglobulin chimeric protein heterodimer complex are brought into contact with each other, to make a mixture, the amount of the integrin-immunoglobulin chimeric protein heterodimer complex bound to the ligand or the amount of the ligand bound to the integrin-immunoglobulin chimeric protein heterodimer complex is measured. The amount of an integrin-immunoglobulin chimeric protein heterodimer complex can be measured by labeling the complex itself by a fluorescent dye or enzyme or radio isotope, etc. The amount of a ligand can also be measured by any similar method. A detection method such as SPA (Amasham) can also be used for the measurement. Furthermore, any reagent which can recognize a complex or ligand labeled by a fluorescent dye, enzyme or radioisotope, etc. can also be used for the measurement. The reagent for recognizing an integrin-immunoglobulin chimeric protein heterodimer complex can, for example, be an anti-human immunoglobulin antibody. In this test, it is preferable to bind the molecule to be detected, to any carrier such as a bead or plate. As a ligand, its entire molecule can be used, but a portion retaining the binding activity to an integrin can also be taken out for use. For example, for integrin  $\alpha 4\beta 1$  or integrin  $\alpha 2\beta 1$ , its ligand, fibronectin or collagen or its peptide fragment bound to a carrier can also be used.

[0032] Methods similar to the above can be used to test the binding between an integrin-immunoglobulin chimeric protein heterodimer complex and cells. The amount of the cells bound to a complex can be measured by labeling the cells by a fluorescent dye or radioisotope or using a reagent reacting with the cells, for example, an antibody reacting with a surface antigen. If something like a tissue section is used instead of cells, the amount of the bound integrin-immunoglobulin chimeric protein heterodimer complex is measured by any of the above mentioned methods.

[0033] The methods for examining the binding between an integrin-immunoglobulin chimeric protein heterodimer complex and a ligand or cell described above can be used for obtaining a substance inhibiting the binding between an integrin and a ligand, for example, for obtaining an antibody, polypeptide, peptide or low molecular weight compound. It is preferable to premix a sample and an integrin-immunoglobulin chimeric protein heterodimer complex, and then to measure the amount of the integrin-immunoglobulin chimeric protein heterodimer complex bound to a ligand in any of the above mentioned measuring systems. If the amount of the bound integrin-immunoglobulin chimeric protein heterodimer complex is lowered by adding a certain sample, it can be judged that the sample has inhibitory activity. However, in this system, a substance with metal ion chelating action or a substance with surfactant action, etc. may give a false positive result. The sources of samples used include the following integrin bound substances, peptide fragments of ligands, their derivatives, marketed compounds, etc., but are not limited to them.

[0034] A case where a purified integrin was coated on a plate to search for a peptide to be bound was reported (Healy, J. M. et al., Biochemistry 34, 3948-3955 (1995)). Even if the integrin-immunoglobulin chimeric protein heterodimer complex obtained in the present invention is used, a substance to be bound to an integrin can be similarly searched for. Especially when the chimeric protein heterodimer complex of the present invention is used, the operation to remove the non-specifically bound substances can be effected under more severe conditions. So, the operation can be simplified advantageously. Furthermore, since the complex is not dissociated during operation, a bound substance can be selected more specifically advantageously. Known sources suitable for selecting bound substances include a phage peptide library (e.g., Scott, J. K. and Smith, G. P., Science, 249, 386-390 (1990)) and a DNA oligomer library (e.g., O'Connell, D. et al., Proc. Natl. Acad. Sci. USA, 93, 5883-5887 (1996)), but in the present invention, it is preferable to use the former.

[0035] Furthermore, the method of testing the binding between an integrin-immunoglobulin chimeric protein heterodimer complex and a ligand or cell can also be used as a method for measuring the amount of an integrin ligand in a body fluid or tissue.

[0036] Moreover, the integrin-immunoglobulin chimeric protein heterodimer complexes of the present invention can

also be used as drugs. The present invention has clarified that integrins and other isolated extracellular matrix receptors can be used as platelet substitutes.

[0037] An extracellular matrix receptor preferably used as a platelet substitute is an integrin. The  $\alpha$  chain of the integrin can be  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$ ,  $\alpha_4$ ,  $\alpha_5$ ,  $\alpha_6$ ,  $\alpha_7$ ,  $\alpha_8$ ,  $\alpha_9$ ,  $\alpha_V$ ,  $\alpha_L$ ,  $\alpha_M$ ,  $\alpha_X$ ,  $\alpha_{1b}$  or  $\alpha_E$ , and among them,  $\alpha_2$  is preferable. The  $\beta$  chain can be  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$ ,  $\beta_4$ ,  $\beta_5$ ,  $\beta_6$ ,  $\beta_7$  or  $\beta_8$ , and among them,  $\beta_1$  is preferable. Integrin  $\alpha_2\beta_1$  is more preferable. The receptor source for isolation can be a tissue or cell expressing an extracellular matrix receptor, or a dissolved membrane fraction of a receptor expressing cell prepared by gene manipulation, etc. It is more preferable to design for obtaining a soluble protein by modifying a receptor gene by gene recombination, and to use the cultured supernatant solution of the cells capable of producing it, as a source. Furthermore in the design of the soluble protein, it is preferable that the functional structure of the extracellular matrix receptor is retained. For example, it is desirable to use an integrin-immunoglobulin chimeric protein heterodimer complex obtained by modifying the heterodimer structure of an integrin to allow its  $\alpha$  and  $\beta$  chains to be covalently associated with each other. As the integrin-immunoglobulin chimeric protein heterodimer complex, it is preferable that the  $\alpha$  chain of the integrin is  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$ ,  $\alpha_4$ ,  $\alpha_5$ ,  $\alpha_6$ ,  $\alpha_7$ ,  $\alpha_8$ ,  $\alpha_9$ ,  $\alpha_V$ ,  $\alpha_L$ ,  $\alpha_M$ ,  $\alpha_X$ ,  $\alpha_{1b}$  or  $\alpha_E$ , and among them,  $\alpha_2$  is more preferable. Furthermore, it is preferable that the  $\beta$  chain is  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$ ,  $\beta_4$ ,  $\beta_5$ ,  $\beta_6$ ,  $\beta_7$  or  $\beta_8$ , and among them,  $\beta_1$  is more preferable. It is further more preferable that the  $\alpha$  chain is  $\alpha_2$  and that the  $\beta$  chain is  $\beta_1$ . The platelet substitute of the present invention is described below mainly in reference to a typical extracellular matrix receptor, integrin  $\alpha_2\beta_1$ -immunoglobulin chimeric protein heterodimer complex, but the present invention is not limited thereto or thereby.

[0038] To confirm the applicability of a purified integrin-immunoglobulin chimeric protein heterodimer complex as a drug, the purified protein itself is used for examining its pharmacological activity. For obtaining higher capability of being bound to an extracellular matrix, it is more preferable to use an integrin-immunoglobulin chimeric protein heterodimer complex bound to a carrier such as a lipid or protein polymer, etc., but the present invention is not limited to this method.

[0039] For use as a platelet substitute, it is preferable to bind an integrin  $\alpha_2\beta_1$ -immunoglobulin chimeric protein heterodimer complex to a liposome covalently according to the method stated in a report (Martin, F. J. et al., Biochemistry, 20, 4229 (1981)). The carrier can also be any other drug carrier than a liposome as far as its use for drugs is permitted. If a liposome is used as the carrier, the liposome is prepared according to the composition and method stated in a published book "Preparation and Experiments of Liposomes (in Japanese)", Oku, N. (1994), Hirokawa Shoten), but a preferable method is such that the epitope bound to the extracellular matrix of an integrin  $\alpha_2\beta_1$ -immunoglobulin chimeric protein heterodimer complex is exposed outside the liposome membrane.

[0040] For confirming that an integrin  $\alpha_2\beta_1$ -immunoglobulin chimeric protein heterodimer complex is bound on the prepared liposome carrier, a flow cytometer is used. The reagents which can be used for recognizing the integrin  $\alpha_2\beta_1$ -immunoglobulin chimeric protein heterodimer complex include an anti-integrin  $\alpha_2$  antibody, anti-integrin  $\beta_1$  antibody, anti-human immunoglobulin antibody, etc. If the antibody used is fluorescently labeled, it can be used for determination directly, but if it is not fluorescently labeled, a secondary antibody which recognizes the immunoglobulin class of the animal species used for preparing the antibody is used as a fluorescent label. As a further other confirmation method, the integrin  $\alpha_2\beta_1$ -immunoglobulin chimeric protein heterodimer composite itself can be labeled by an enzyme or radioisotope, etc., for confirmation in proper combination with a color dye or radioactivity measuring instrument, etc.

[0041] To examine the extracellular matrix binding capability using an integrin  $\alpha_2\beta_1$ -immunoglobulin chimeric protein heterodimer complex liposome, it is preferable to suspend the integrin  $\alpha_2\beta_1$ -immunoglobulin chimeric protein heterodimer complex liposome into a buffer with a physiological cation concentration or plasma. The buffer with a physiological cation concentration refers to a buffer containing at least cations such as Mg ions or Ca ions and adjusted to about neutrality. The plasma is prepared by processing the blood collected in the presence of an anticoagulant, according to a general plasma preparation method. As the anticoagulant, for example, heparin or EDTA solution can be added by sufficient units. A marketed normal plasma, coagulation factor deficient plasma or serum, etc. can also be used. However, if the anticoagulant used lowers the cation concentration, cations are added to achieve a physiological concentration later. Then, the integrin  $\alpha_2\beta_1$ -immunoglobulin chimeric protein heterodimer complex liposome is mixed with an extracellular matrix or its fragment coated on a carrier for a certain time, to judge whether binding takes place. It is preferable that the coating of the extracellular matrix or its fragment as a solid phase is achieved by using a plastic plate, etc., but marketed beads for coating an extracellular matrix as a solid phase, etc. can also be used. When a collagen is used as the extracellular matrix, any animal species and type can be used. The binding reaction between an integrin  $\alpha_2\beta_1$ -immunoglobulin chimeric protein heterodimer complex liposome and an extracellular matrix is effected according to a general method adopted for observing the adherence reaction of platelets. In many cases, they are allowed to stand mainly in a static system for a certain time, to induce binding to the matrix, but it is preferable to apply a shaking or shear stress, etc.

[0042] The integrin  $\alpha_2\beta_1$ -immunoglobulin chimeric protein heterodimer complex liposome is bound to an extracellular matrix under the conditions as described above, and the amount of binding is measured by applying the above mentioned ELISA method using an anti-human immunoglobulin antibody. For more accurate determination, it is desirable to

immobilize the liposome bound to the matrix by 1% glutaraldehyde, etc. As another method than the ELISA method, for example, if a radio-labeled lipid is incorporated into the liposome beforehand, the amount of the liposome bound to the extracellular matrix can be obtained as radioactivity. Furthermore, to qualitatively judge the binding and covering degree to the extracellular matrix, a labeled antibody for recognizing the integrin  $\alpha 2\beta 1$ -immunoglobulin chimeric protein heterodimer complex on the bound liposome can be combined with a color dye, etc., to dye the portions where the liposome is bound. It is more preferable that the generally used tissue antibody dyeing method is used to use a peroxidase labeled antibody against the integrin  $\alpha 2\beta 1$ -immunoglobulin chimeric protein heterodimer complex and diaminobenzidine in combination, but the measuring method is not limited to it. As a further other method, the area covering the extracellular matrix can be obtained as a covering rate using an image processing analyzer.

[0043] Methods for examining the hemostasis of platelets include testing the adhering capability of platelets to the extracellular matrix and the agglutination capability induced by a collagen ("Handbook on the Examination of Blood Coagulation (in Japanese)", p. 65-78, Fukutake, M. and Fujimaki, M. (1987), Uchudo Yagi Shoten, Santro, S.A., Cell, 46, 913-920 (1986), Lethagen, S. and Ruggen, P., Thrombo Haemost., 67, 185-186 (1982)). Especially the adhering capability of platelets to the extracellular matrix is an indicator of primary hemostasis. The adhering capability is evaluated by using blood as it is, or platelet rich plasma or platelets washed by a buffer with physiological ions. Therefore, whether or not the integrin  $\alpha 2\beta 1$ -immunoglobulin chimeric protein heterodimer complex liposome obtained in the present invention can be a functional substitute of platelets can be judged in reference its binding capability and the level of the binding capability to the extracellular matrix in the existence of plasma components or at a physiological ion concentration.

[0044] If the binding capability of the integrin  $\alpha 2\beta 1$ -immunoglobulin chimeric protein heterodimer complex liposome obtained in the present invention to the extracellular matrix in the presence of the plasma components is strong, it suggests that the liposome can be a platelet substitute. Therefore, it can be used as a therapeutic or preventive agent against the congenital and acquired bleeding tendency due to platelet abnormality, and also widely as a platelet transfusion substitute.

[0045] Similarly the integrin  $\alpha 2\beta 1$ -immunoglobulin chimeric protein heterodimer complex liposome obtained in the present invention can be a therapeutic or preventive agent for conditions of diseases where vascular endothelial cell disorder is a problem. For example, it was reported that in the prognosis of PTCA (percutaneous coronary restenosis), the excessive accumulation of platelets on the extracellular matrix exposed by balloon catheter treatment triggers restenosis (Liu, M.W. et al., Circulation, 79, 1374-1378 (1989)). In Example 22, the effect of the integrin  $\alpha 2\beta 1$ -immunoglobulin chimeric protein heterodimer complex liposome to cover the extracellular matrix was confirmed, and this effect can reduce the excessive accumulation of platelets to allow use also as a restenosis preventive. Furthermore, if the integrin  $\alpha 2\beta 1$ -immunoglobulin chimeric protein heterodimer complex liposome is labeled by a medically allowable method, it can be used for monitoring the region of the extracellular matrix exposed by vascular endothelial cell injury, and furthermore, if a drug is enclosed in the liposome, it can also be applied to the targeting therapy for a local injured region.

[0046] When any integrin  $\alpha 2\beta 1$ -immunoglobulin chimeric protein heterodimer complex liposome stated in the present invention is used as a platelet substitute, the administration paths include infusion, intravenous administration, etc., and it is usually used by being suspended in any physiologically suitable solution such as a salt solution or plasma, etc. It can be used alone or also in combination with another chimeric protein heterodimer complex with an extracellular matrix receptor or its immunoglobulin. It can also be used together with another drug containing total platelets. The dose is properly selected to suit the symptom, age, body weight, etc. and can be 0.1 mg to 10 g per day as the amount of the protein for an adult, being able to be administered at a time or in several times. It can also be mixed with a pharmaceutically allowed carrier or excipient, etc., to be applied locally to the injured region as an externally applied drug such as an ointment, liniment or plaster. In this case, the externally applied drug is prepared to be 1 ng/cm<sup>2</sup> to 1 mg/cm<sup>2</sup> as the amount of the protein per one time of coating.

#### 45 Examples

[0047] To describe the present invention in more detail, examples are given below. The general methods of recombinant DNA experiments conformed to those stated in a published book ("Antibody", Harlow, E. and Lane, D. (1988), Cold Spring Harbor Lab. Press, New York).

#### Example 1

##### Construction of human IgG<sub>1</sub> heavy chain expression vector

[0048] As human IgG<sub>1</sub> genome gene, a clone identical with reported base sequence information (Ellison, J. W. et al., Nucleic Acids Res., 10, 4071-4079 (1982)) was acquired from a human genomic library (CLONTECH) using a hybridization cDNA probe based on the sequence information. This was used as the template DNA for PCR. As primers for

amplifying the DNA fragment containing the hinge region (H) and the constant region portions (CH2 and CH3) of human IgG<sub>1</sub> gene, a DNA oligomer shown in sequence No. 4 of the sequence table (hereinafter a sequence No. of the sequence table is simply called a sequence No.) with BamH I restriction site and a DNA oligomer shown in sequence No. 5 with Xba I restriction site were synthesized.

5

5' - CGGGATCCCCAGCTGCTGGAACCCAGGCTCAG -3' (Sequence No. 4)

10

5' - CCTCTAGACGGCCCTCGCACTCATTTA -3' (Sequence No. 5)

[0049] The template DNA, primers, dNTPs (an equimolar mixture of dATP, dCTP, dGTP and dTTP) and Taq polymerase (Takara) were mixed in a PCR buffer (100 mM Tris-HCl, 500 mM KCl, 15 mM MgCl<sub>2</sub>, 0.01% gelatin, pH 8.3), and in a thermal cycler (Perkin Elmer Cetus), the mixture was treated at 94 °C for 1 minute for DNA denaturation, at 58°C for 2 minutes for annealing the primers and at 72°C for 3 minutes for elongating the primers. This treatment was performed 30 cycles. The amplified DNA was digested by restriction enzymes BamH I and Xba I, and the DNA fragment was purified by 1% agarose gel according to a general method ("Antibody", Harlow, E. and Lane, D. (1988), Cold Spring Harbor Lab. Press, New York). It was linked, using a T4DNA ligase, with a large DNA fragment of pBluescriptSK(+) (STRATA-GENE) purified and digested by restriction enzymes BamH I and Xba I. The plasmid DNA was used to transform Escherichia coli (JM109), and the transformant was selected, to obtain a plasmid DNA (IgG<sub>1</sub> Bluescript). Then, expression vector pcDL-SR α296 was digested by restriction enzyme BamH I, and blunted at the termini by T4DNA polymerase treatment, and a Not I linker was linked. The large DNA fragment obtained by digesting it by restriction enzymes Not I and Xho I and the small DNA fragment obtained by digesting IgG<sub>1</sub> Bluescript by restriction enzymes Not I and Xho I were purified according to a general method, and linked by T4DNA ligase. It was transformed into Escherichia coli (HB101), and the transformant was selected, to obtain a plasmid DNA. Hereinafter this plasmid (IgG<sub>1</sub> SRα) is called human IgG<sub>1</sub> expression vector. In the following examples, since the basic protocol of gene manipulation is the same as above, the description will be simplified.

30 Example 2

Construction of integrin α4 · IgG heavy chain chimeric protein expression vector

[0050] The DNA fragment coding for the extracellular portion of integrin α4 was obtained by cloning based on reported cDNA sequence information (Takada, Y. et al., EMBO J., 8, 1361-1368 (1989)). The restriction site EcoR I of 1801-base-position of sequence No. 1, the restriction site Stu I of 112-base-position and the restriction site BamH I of 2949-base-position were used for linking the region from the N terminus translation initiation site to Stu I cut site as α4-1, the region from Stu I cut site to EcoR I cut site as α4-2, and the region from EcoR I detached site to BamH I detached site as α4-3. The detailed methods are described below.

40 [0051] The portion coding for α4-1 was designed to be cloned by linking the DNA oligomers of sequence Nos. 6 to 9, and the DNA oligomers shown in sequence Nos. 6 to 9 were synthesized. For the sequence Nos. 6 and 7, restriction site Xba I was added on the side to code for the N terminus, for linking to a vector. Furthermore, compared with the known sequence information, the bases at the 60-, 63- and 64-positions were substituted from C to T, C to A and C to G respectively, and the bases at the 112- and 114-positions were substituted from C to A and C to G respectively.  
45 Because of substitution at the 112- and 114-position, restriction site Stu I was inserted on the side to code for the N terminus of sequence Nos. 8 and 9. The 5' termini of the synthesized oligomers were phosphated and annealed, and were linked using T4DNA ligase. After completion of linking, restriction enzymes Xba I and Stu I were used for cutting, and electrophoresis was effected by 5% agarose (NuSieve GTGagarose, FMC) gel. The intended DNA fragment (α4-1) of about 120 bp was cut out and purified.

50

55

5' - CTAGACCACCATGTTCCCACCGAGAGCCATGGCTTGCAGCCAGCCACGGCCGAACCGGGCCCCGA  
15 GCTGCA-3' (Sequence No. 6)

5' - GCTTCGGGGCCCGGGTCCCGCCTCGCTTCCAAGCCATGGCTCTGGCTGGGAACATGGCTCT-3'  
10 (Sequence No. 7)

5' - CTCCCCACACGGTATGCTGTGCTGGCTGGGGTCCCCACCCGCCAGG-3'

(Sequence No. 8)

5' - CCTCCCCGTCGGGACCCCCAGCCACGCCACAGCATCACCTCTCCCCACTCCA-3'

(Sequence No. 9)

[0052] Then, the RNA of human osteosarcoma cell line MG63 (ATCC CRL 1427) as an integrin  $\alpha$ 4 expressing cell was separated, and PolyA(+) RNA was purified using oligo dT cellulose column (NEB). Based on it, a single stranded cDNA was synthesized using a reverse transcriptase (GIBCO), and used as the template for PCR. As primers for amplifying  $\alpha$ 4-2 and  $\alpha$ 4-3 DNAs, four DNA oligomers of sequence Nos. 10 to 13 with Pst I and Stu I restriction sites inserted (sequence No. 10) or BamH I restriction site inserted (sequence No. 13) were synthesized:

5' - CACTGCCAGCCACCCCTTACAACCTGGACACTGACACC-3' (Sequence No. 10)

35 5' - CGAGAAACCTGTAATTGAGCAG-3' (Sequence No. 11)

5' - CCATTATCCCAAAGATCTGC-3' (Sequence No. 12)

40 5' - CGGGATCCGTCAAATAACGTTGGCTTT-3' (Sequence No. 13)

[0053] The template cDNA, primers, dNTPs and Taq polymerase were mixed in a PCR buffer, and the mixture was treated by a thermal cycler at 94°C for 1 minute for DNA denaturation, at 58°C for 2 minutes for annealing the primers and at 72°C for 3 minutes for elongating the primers. This treatment was performed 30 cycles. The amplified DNA fragments of  $\alpha$ 4-2 and  $\alpha$ 4-3 were digested by Pst I and EcoR I respectively, or EcoR I and BamH I and sub-cloned into pBluescriptKS(+) (STRATAGENE), to prepare plasmid DNAs (hereinafter called  $\alpha$ 4-2 Bluescript and  $\alpha$ 4-3 Bluescript). Then, upstream of the  $\alpha$ 4-2 Bluescript,  $\alpha$ 4-1 was linked using Xba I and Stu I restriction sites, to prepare a plasmid DNA (hereinafter called  $\alpha$ 4-1-2 Bluescript).

[0054] The  $\alpha$ 4-1-2 Bluescript was digested by restriction enzyme Not I, and blunted at the termini by T4DNA polymerase treatment, being digested by restriction enzyme EcoR I, to prepare a small DNA fragment. The  $\alpha$ 4-3 Bluescript was digested by restriction enzymes EcoR I and BamH I, to prepare a small DNA fragment. The two small DNA fragments were simultaneously linked to a large DNA fragment obtained by digesting IgG-SRa by restriction enzymes EcoR V and 55 BamH I, to obtain a plasmid DNA. The obtained base sequence coding for integrin  $\alpha$ 4·IgG heavy chain chimeric protein is shown as sequence No. 1. The plasmid (integrin  $\alpha$ 4·IgG-SRa) is hereinafter called integrin  $\alpha$ 4·IgG heavy chain chimeric protein expression vector.

## Example 3

Construction of  $\beta 1 \cdot \text{IgG}$  heavy chain chimeric protein expression vector

- 5 [0055] The RNA of human fibroblast cell line MRC5 (ATCC CCL 171) as an integrin  $\beta 1$  expressing cell was separated, and oligo dT cellulose column was used to purify PolyA (+)RNA. Based on it, a single stranded cDNA was synthesized using a reverse transcriptase, and used as the template for PCR. As primers, two DNA oligomers of sequence Nos. 14 and 15 with BamH I site (sequence No. 15) inserted on the side coding for C terminus were synthesized according to the sequence information (Cott Argraves, W. et al., J. Cell Biol., 105, 1183-1190 (1987)).

10

5' - CGGGAAAAGATGAATTTACAAC-3' (Sequence No. 14)

5' - CTGGCATCCTCTCGACCAGTGGCACAC-3' (Sequence No. 15)

15

- [0056] The template cDNA, primers, dNTPs and Taq polymerase were mixed in a PCR buffer, and treated by a thermal cycler at 94°C for 1 minute for DNA denaturation, at 57°C for 2 minutes for annealing the primers and at 72°C for 3 minutes for elongating the primers. This treatment was performed 30 cycles. The amplified DNA was blunted at the termini by T4DNA polymerase treatment, and digested by restriction enzyme BamH I. Then, the DNA fragment was purified. Subsequently, the DNA fragment obtained in PCR before was sub-cloned at the Sma I and BamH I sites of pBluescriptKS(+). A small DNA fragment purified by digesting it by restriction enzymes EcoR I and BamH I was inserted into a large DNA fragment of IgG<sub>1</sub>SR $\alpha$  treated by restriction enzymes EcoR I and BamH I, to obtain a plasmid DNA. 25 The obtained base sequence coding for  $\beta 1 \cdot \text{IgG}$  heavy chain chimeric protein is shown in sequence No. 2. The plasmid (integrin  $\beta 1 \cdot \text{IgGSR}\alpha$ ) is hereinafter called integrin  $\beta 1 \cdot \text{IgG}$  heavy chain chimeric protein expression vector.

## Example 4

- 30 Transfection of  $\alpha 4 \cdot \text{IgG}$  heavy chain chimeric protein expression vector and  $\beta 1 \cdot \text{IgG}$  heavy chain chimeric protein expression vector into animal cells, and their expression

- [0057] Integrin  $\beta 1 \cdot \text{IgGSR}\alpha$  as  $\beta 1 \cdot \text{IgG}$  heavy chain chimeric protein expression vector and pSV2dhfr (BRL) were mixed at a ratio of 10 : 1, and the mixture and lipofectin reagent (GIBCO BRL) were gently mixed and allowed to stand 35 at room temperature for 15 minutes. The mixture was added dropwise to dihydrofolic acid reductase deficient CHO cells (ATCC CRL 9096). After 18 hours of dropwise addition, the mixture was cultured in a medium (10% FBS (GIBCO), nucleic acid-containing  $\alpha$ MEM medium (GIBCO BRL)) for about 2 days, and the cells were dispersed by trypsin-EDTA treatment. The cells were suspended in a first selective medium (10% FBS-containing nucleic acid-free  $\alpha$ MEM medium (GIBCO BRL)), and the suspension was disseminated into a 96-well plate (CORNING), for selective culture for about 40 10 days. Then, the amount of integrin  $\beta 1 \cdot \text{IgG}$  heavy chain chimeric protein produced in the culture supernatant was determined according to the ELISA method (described later), and the clone showing the highest production was stabilized by cloning according to the limiting dilution method.

- [0058] Then, into the stabilized integrin  $\beta 1 \cdot \text{IgG}$  heavy chain chimeric protein producing CHO cells, the integrin  $\alpha 4 \cdot \text{IgG}$  heavy chain chimeric protein expression vector was transfected according to the lipofectin method as 45 described before. That is, integrin  $\alpha 4 \cdot \text{IgGSR}\alpha$  and pSV2neo (BRL) were mixed at 10 : 1, and the mixture was mixed with lipofectin reagent. The mixture was added dropwise into the cells. After 18 hours of dropwise addition, the mixture was cultured in the said first selective medium for about 2 hours, and the cells were dispersed by trypsin-EDTA treatment. The cells were suspended in a second selective medium (nucleic acid-free  $\alpha$ MEM medium (GIBCO BRL) containing 10% FBS (GIBCO) and 1 mg/ml neomycin (GIBCO)), and on a 96-well plate (CORNING), resistant cells were 50 selectively cultured for about 10 days. The amount of integrin  $\alpha 4 \cdot \text{IgG}$  heavy chain chimeric protein and the amount of integrin  $\beta 1 \cdot \text{IgG}$  heavy chain chimeric protein produced in the culture supernatant were determined according to the ELISA method (described later), and a clone which produced both the chimeric proteins by almost the same amounts was picked up. The clone was cloned twice according to the limiting dilution method, to be stabilized as a clone capable of producing  $\alpha 4 \cdot \text{IgG}$  heavy chain- $\beta 1 \cdot \text{IgG}$  heavy chain chimeric protein heterodimer complex.

55

## Example 5

Determination of produced integrin  $\alpha 4 \cdot \text{IgG}$  heavy chain chimeric protein and integrin  $\beta 1 \cdot \text{IgG}$  heavy chain chimeric protein by the ELISA method

[0059] Fifty microliter per well of anti-human integrin  $\alpha 4$  antibody (Becton & Dickinson, Clone L25.3) or anti-human integrin  $\beta 1$  antibody (Coulter, Clone 4B4) (12  $\mu\text{g}/\text{ml}$  each) was put into a 96-well immunoplate (NUNC), and allowed to stand at 4°C for 16 hours. Then, each well was washed by Dulbecco's phosphate buffered saline (Nissui Seiyaku, not containing Ca or Mg ions, hereinafter called PBS(-)) twice, and non-specific reaction was blocked by PBS(-) containing 5% Block Ace (Snow Brand Milk Products Co., Ltd.). After blocking, the culture supernatant of CHO cells grown in selective medium was properly diluted, and reacted with the coated antibody at room temperature for 1 hour. After the reaction, the surface of the plate was washed with 0.02% Tween-containing PBS(-) (hereinafter called T-PBS) twice. It was then caused to react with biotinated anti-human IgG antibody (Vector) for 1 hour, and the reaction mixture was washed with T-PBS twice, and in succession caused to react with avidin-horseradish peroxidase (Sigma) for 1 hour. The reaction mixture was washed with PBS(-) twice. The PBS(-) was perfectly aspirated, and o-phenylenediamine was used as a substrate for color development. The absorbance at 490 nm were measured using a microplate reader (Bio-rad NOVAPATH), and the clone showing a high absorbance value was selected.

## Example 6

Purification of  $\alpha 4 \cdot \text{IgG}$  heavy chain- $\beta 1 \cdot \text{IgG}$  heavy chain chimeric protein heterodimer complex

## (1) Culture of CHO cells and preparation of cultured supernatant solution

[0060] The CHO cells highly capable of producing the  $\alpha 4 \cdot \text{IgG}$  heavy chain- $\beta 1 \cdot \text{IgG}$  heavy chain chimeric protein heterodimer complex were cultured in nucleic acid-free  $\alpha$ MEM medium containing 5% FBS (Ultra-low IgG grade, GIBCO) for one day, to reach semiconfluent, and they were cultured in  $\alpha$ MEM(-) medium containing 1% FBS (Ultra-low IgG grade) for 3 days, and the culture supernatant was collected. It was concentrated to 1/10 volume by ultrafiltration using Prep-scale (Millipore), and 1M Hepes solution (pH 8.0) was added to achieve a final concentration of 5 mM, for preparing a starting solution for further purification.

## (2) Protein A column chromatography

[0061] The starting solution for further purification was passed through Prosep Guard column (bioPROCESSING), and applied to Prosep A column (bioPROCESSING). After completion of application, it was washed with 10 times the column volume of PBS(-), and the proteins were eluted at a pH 6-3 gradient of 0.1M citrate buffer solutions. The peak fraction eluted at pH 3 was collected, and 1M Tris-HCl solution (pH 8.5) was added by 0.1 volume for neutralization. The solution was dialyzed against PBS(-).

## (3) Affinity column chromatography

[0062] FMP activated Cellulofine (Seikagaku Kogyo) was equilibrated by a coupling buffer (50 mM  $\text{Na}_2\text{CO}_3$ - $\text{NaHCO}_3$ , pH 8.5), and a peptide showing sequence No. 3 (hereinafter called CS-1 peptide) synthesized by a peptide synthesizer was added. The mixture was inverted and mixed at 4 °C for 16 hours.

Cys Leu His Gly Pro Glu Ile Leu Asp Val Pro Ser Thr (Sequence No. 3)

After completion of mixing, the mixture was washed with the coupling buffer, and a blocking buffer (0.1 mM monoethanolamine, 50 mM Tris-HCl, pH 8.0) was added. The mixture was inverted and mixed further at room temperature for 6 hours. Then, the mixture was sufficiently washed with TBS solution (150 mM NaCl, 20 mM Tris-HCl, 1 mM  $\text{MnCl}_2$ , pH 7.5), to prepare CS-1 peptide bound Cellulofine column. To the column the starting solution for further purification was applied and allowed to stand at room temperature for 3 hours, and washed with 10 times the column volume of a washing buffer (1M NaCl, 0.1% Triton, 20 mM Tris-HCl, 1 mM  $\text{MnCl}_2$ , pH 7.5) and the same volume of the TBS solution. After completion of washing, an elution buffer (10 mM EDTA, 150 mM NaCl, 20 mM Tris-HCl, pH 7.5) was used, to elute the proteins bound to the CS-1 column. The eluate was collected and dialyzed against PBS(-).

## (4) SDS-PAGE

[0063] The eluted fractions of (3) were subjected to SDS-PAGE under non-reducing or reducing condition using 6.0 or 7.0% acrylamide gel, and the gel was stained with Coomassie-blue. As a result, under non-reducing condition, two bands considered to be attributable to the  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex and its polymer were observed. Under reducing condition, two bands (170 kDa and 135 kDa) considered to be attributable to the integrin  $\alpha 4 \cdot$  IgG heavy chain chimeric protein and the integrin  $\beta 1 \cdot$  IgG heavy chain chimeric protein and two bands (80 kDa and 90 kDa) considered to be attributable to the intramolecular cleavage of the integrin  $\alpha 4 \cdot$  IgG heavy chain chimeric protein (Hemler, M. E. et al., J. Biol. Chem., 262, 11478-11485 (1987)) were observed. These results suggest that the eluted protein of (3) has a molecular structure considered to be  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex, and that the molecules constituting the heterodimer are linked by a disulfide bond between the IgG heavy chains.

## Example 7

[0064] Identification of  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex, and examination of its structural stability

## (1) Immunoprecipitation using anti-integrin antibodies and influence of a cationic chelating agent

[0064] The basic method conformed to a published book ("Antibodies", Harlow, E. et al., (1988), Cold Spring Harbor Lab. Press, New York). That is, the eluted protein of Example 6 (3) considered to be  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex was  $^{125}$ I-labeled using the lactoperoxidase method. Then, Affigel-10 (Bio-rad) was washed with 0.1 M Hepes solution (pH 8.0), and normal murine IgG, anti-human integrin  $\alpha 4$  antibody (clone 11C2B) and anti-human integrin  $\beta 1$  antibody (clone 4B4) were added. Reaction was effected at 4°C for 16 hours to cause covalent bonding, to prepare normal murine IgG beads and the respective antibody beads. Then, the  $^{125}$ I labeled  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex and normal murine IgG beads were inverted and mixed at 4 °C for 4 hours for preclearing, and the mixture and the antibody beads were inverted and mixed at 4°C for 16 hours. After completion of mixing, the beads were washed with a washing buffer (200 mM Tris-HCl, 0.5 M NaCl, 0.1% NP-40, 1 mM MgCl<sub>2</sub> or 10 mM EDTA, pH 8.0) three times. After completion of washing, a sample buffer for electrophoresis was added to the beads for treatment at 100 °C for 5 minutes, and the mixture was centrifuged. The supernatant solution was analysed by electrophoresis under reducing condition. After completion of electrophoresis, the gel was dried by a gel dryer, and the protein was detected by autoradiography.

[0065] As a result of immunoprecipitation in the presence of 1 mM MgCl<sub>2</sub>, from the beads of both the anti-human integrin  $\alpha 4$  antibody and the anti-human integrin  $\beta 1$  antibody, the same precipitation patterns expected from the structure of  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex were obtained. Thus, the protein obtained in (3) of Example 6 was identified as  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex.

[0066] On the other hand, the immunoprecipitation pattern obtained by using the anti-integrin  $\beta 1$  antibody beads in the presence of 10 mM EDTA was the same as that in the presence of 1 mM MgCl<sub>2</sub>, to clarify that the association between integrin  $\alpha 4 \cdot$  IgG heavy chain chimeric protein and integrin  $\beta 1 \cdot$  IgG heavy chain chimeric protein does not depend on cations. The above results suggest that the eluted protein obtained in (3) of Example 6 was certain  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex, and if the result of (4) of Example 6 is also taken into account, it is strongly suggested that the association between both the proteins is stable association through a disulfide bond existing the IgG heavy chains.

(2) Examination on the structural stability of  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex by sequential immunoprecipitation

[0067] According to (1),  $^{125}$ I labeled  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex was caused to react with normal murine IgG beads, anti-human integrin  $\alpha 4$  antibody (11C2B) beads or anti-human integrin  $\beta 1$  antibody (4B4) beads at 4°C for 4 hours, and the reaction mixture was washed. After washing, the reaction mixture was boiled at 100°C for 5 minutes in the presence of 2% SDS and centrifuged, and the supernatant (primary immunoprecipitation sample) was diluted to 10 times by 1% BSA-containing PBS, and was again reacted with the anti-integrin  $\beta 1$  antibody beads and the anti-integrin  $\alpha 4$  antibody beads at 4°C for 16 hours. After completion of reaction, the beads were washed, and a sample buffer for electrophoresis was added. The mixture was treated at 100°C for 5 minutes and centrifuged. The supernatant solution (secondary immunoprecipitation sample) was analyzed by SDS-PAGE/autoradiography.

[0068] As a result, the electrophoretic pattern obtained by the primary immunoprecipitation was also similarly observed in the secondary immunoprecipitation. This result suggests that the association between the  $\alpha 4 \cdot$  IgG heavy chain chimeric protein and the  $\beta 1 \cdot$  IgG heavy chain chimeric protein in the  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex is not dissociated either by boiling in the presence of 2% SDS, and strongly supports that the complex has a stable heterodimer structure based on a disulfide bond.

#### Example 8

Binding of  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex to VCAM-1

[0069] It was examined that the  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex produced by CHO cells can be bound to the ligand of integrin  $\alpha 4\beta 1$  by using the cells expressing VCAM-1. Human normal umbilical intravenous endothelial cells were cultured with IL-1 3U/ml for 16 hours, to prepare VCAM-1 expressing cells. The cells were treated by 1 mM EDTA at 37°C for 15 minutes, for dispersion as single cells. The cells ( $2 \times 10^5$  cells per sample tube) were cultured with the supernatant of the CHO cells producing  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex for 30 minutes in the presence of 1 mM (final concentration)  $MnCl_2$  or 3 mM (final concentration) EDTA. After completion of reaction, the cells were washed twice by centrifugation at 1200 rpm at room temperature for 5 minutes using a buffer for binding assay (24 mM Tris-HCl, 10 mM Hepes, 150 mM NaCl, 1 mM  $MnCl_2$  or 1 mM EDTA, 1% BSA, 2 mM glucose, pH 7.4). After washing, FITC labeled anti-human IgG antibody (Cappel) was added, and incubated at room temperature for 20 minutes. The cells were washed by the same buffer, and the chimeric proteins bound to the cells were determined by a flow cytometer (ELITE, Coulter).

[0070] The results are shown in Fig. 1. It was observed that the fluorescence intensity showing the binding of  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex increased by culturing the VCAM-1 expression cells with the supernatant containing  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex. The binding was inhibited by adding anti-human integrin antibodies (anti- $\alpha$ - antibody: clone L25.3, 10  $\mu$ m/ml + anti- $\beta 1$  antibody: clone 4B4, 10  $\mu$ m/ml) or 3 mM EDTA. This result suggests that the  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex can be bound to VCAM-1 like the integrin  $\alpha 4\beta 1$  existing on the surfaces of cell membranes, and furthermore that the binding is  $\alpha 4\beta 1$ -specific and retains a feature of the binding that it is dependent on cations.

#### Example 9

Binding of  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex to a peptide fragment of fibronectin

[0071] The capability of  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex to be bound to the peptide fragment (sequence No. 3) of the other ligand, fibronectin was also examined.  
[0072] At first, according to the said report (Humphries, M. J. et al., J. Biol. Chem., 262, 6886-6892 (1987)), the peptide fragment of sequence No. 3 (CS-1 peptide) was bound to rabbit IgG (Sigma), to prepare CS-1-IgG. The CS-1-IgG was diluted by PBS(-), and put in a 96-well immunoplate (NUNC) by 100  $\mu$ l/well, and allowed to stand at 4°C for 16 hours, to be formed as a solid phase on the plate.

[0073] After completion of standing, the surface of the plate was washed with PBS(-) twice and treated with denatured 1% BSA(heat-natured at 80°C for 10 minutes)-PBS solution (300  $\mu$ l/well) at 4°C for 3 hours to block the nonspecific reaction. Then, the solid phase CS-1-IgG and the CHO culture supernatant (100  $\mu$ l) containing  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex were reacted with each other at 30°C for 3 hours. The non-bound  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex was removed by washing with 0.1% BSA-containing TBS buffer (150 mM NaCl, 25 mM Tris-HCl, 1 mM  $MnCl_2$ , pH 7.4) twice, and the bound  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex was detected by biotin labeled anti-human IgG antibody (Vector) as the primary antibody and avidin labeled horseradish peroxidase (Sigma) as the secondary antibody. The surface of the plate was washed with the TBS buffer. Orthophenylenediamine was added as a substrate to it for color development, and the absorbance at 490 nm were measured.

[0074] The results are shown in Fig. 2. The react ion with  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex showed a rise in the absorbance indicating the binding to CS-1 peptide. The binding was almost perfectly inhibited by the presence of anti-integrin  $\alpha A$  antibody (clone L25.3), anti-integrin  $\beta 1$  antibody (clone 4B4) or 5 mM EDTA. Therefore, it was clarified that  $\alpha 4 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex can be bound also to the CS-1 peptide which is a peptide fragment of fibronectin, and that a feature of binding that it depends on cations is retained.

## Example 10

Evaluation of an inhibitory peptide by using a system for determining the binding of  $\alpha$ 4 • IgG heavy chain- $\beta$ 1 • IgG heavy chain chimeric protein heterodimer complex to a peptide fragment of fibronectin

[0075] In the binding determination system of Example 9, the effects of three peptides, i.e., sequence No. 16 (hereinafter called GPEILDVPST), 17 (hereinafter called GPEILEVPST) and 18 (hereinafter called GRGDSP) were examined.

|    |                                         |                   |
|----|-----------------------------------------|-------------------|
| 10 | Gly Pro Glu Ile Leu Asp Val Pro Ser Thr | (Sequence No. 16) |
| 15 | Gly Pro Glu Ile Leu Glu Val Pro Ser Thr | (Sequence No. 17) |
| 15 | Gly Arg Gly Asp Ser Pro                 | (Sequence No. 18) |

[0076] The all peptides were synthesized by a peptide synthesizer. The peptide and 100  $\mu$ l of CHO cultured supernatant solution containing  $\alpha$ 4 • IgG heavy chain- $\beta$ 1 • IgG heavy chain chimeric protein heterodimer complex were mixed at room temperature for 20 minutes, and the binding to CS-1-IgG was determined according to the method in Example 9. The results are shown in Fig. 3. GPEILDVPST showed temperature-dependent inhibitory activity in a range of 0.1 to 10  $\mu$ mg/ml, but GPEILEVPST and GRGDSP did not show any inhibition of the binding. These results show that the binding determination system in Example 9 allows to detect the inhibiting effect of the peptide (GPEILDVPST) inhibiting the binding between integrin  $\alpha$ 4 $\beta$ 1 and CS-1 peptide specifically.

## Example 11

Construction of integrin  $\alpha$ 2 • IgG heavy chain chimeric protein expression vector

[0077] The DNA fragment coding for the extracellular portion of integrin  $\alpha$ 2 was divided into  $\alpha$ 2-1 and  $\alpha$ 2-2 based on the reported cDNA sequence information (Takada, Y. et al., J. Cell. Biol., 109, 397-407 (1989)) and subcloned, and they were integrated on an expression vector. At first, the RNA of human fibroblast cell line MRC-5 (ATCC CCL 171) as integrin  $\alpha$ 2 expressing cell was separated, and an oligo dT cellulose column was used to purify PolyA(+)RNA. Based on it, a single stranged cDNA was synthesized and used as the template of PCR. As PCR primers, DNA oligomers of sequence Nos. 20 and 21 were synthesized for  $\alpha$ 2-1, and DNA oligomers of sequence Nos. 22 and 23, for  $\alpha$ 2-2.

|    |                                     |                   |
|----|-------------------------------------|-------------------|
| 40 | 5' -GCTCCACCAAAACCCAGCGCAACTACGG-3' | (Sequence No. 20) |
| 45 | 5' -ATACTGCCCTGATGACCATTG-3'        | (Sequence No. 21) |
| 45 | 5' -GATGGCTTTAATGATGTGATTG-3'       | (Sequence No. 22) |
| 45 | 5' -TGTTGGTACTTCGGCTTCTC-3'         | (Sequence No. 23) |

[0078] The template cDNA, primers, dNTPs and Taq polymerase were mixed in a PCR buffer and PCR was performed 30 cycles by a thermal cycler (reaction conditions: 94°C 1 minute - 60°C 2 minutes - 72°C 3 minutes). The amplified DNA fragment of  $\alpha$ 2-1 was digested by restriction enzymes Xho I and EcoR I, and the DNA fragment of  $\alpha$ 2-2 was blunted at the termini by T4DNA polymerase treatment and digested by restriction enzyme EcoR I. Each fragment was purified. The two purified DNA fragments were caused to react in a phosphating reaction solution (50 mM Tris-HCl, 10 mM MgCl<sub>2</sub>, 25 mM DTT, 1 mM ATP, 0.1 U/ $\mu$ l T4 polynucleotide kinase (Takara), pH 8.0) at 37 °C for 1 hour, and the reaction mixture was heat-treated at 68°C for 5 minutes to inactivate the enzyme. Then, IgG<sub>1</sub>SR $\alpha$  prepared in Example 1 was digested by restriction enzyme BamH I and caused to react in Klenow reaction solution (66 mM Tris-HCl, 10 mM MgCl<sub>2</sub>, 10 mM DTT, 0.2 mM dNTPs, 0.05 U/  $\mu$ l Klenow fragment (Takara), pH 7.5) at 37°C for 30 minutes, to blunt the

termini, and the reaction mixture was heat-treated at 70°C for 5 minutes to inactivate the enzyme. Furthermore, a large DNA fragment was digested by restriction enzyme Xho I, and purified. The two ( $\alpha$ 2-1 and  $\alpha$ 2-2) DNA fragments phosphated before were inserted into the large DNA fragment, to obtain a plasmid DNA. The obtained base sequence coding for integrin  $\alpha$ 2 • IgG heavy chain chimeric protein is shown in sequence No. 19. This plasmid (integrin  $\alpha$ 2 • IgGS $\alpha$ ) is hereinafter called  $\alpha$ 2 • IgG heavy chain chimeric protein expression vector.

## 5      Example 12

10     Transfection of integrin  $\alpha$ 2 • IgG heavy chain chimeric protein expression vector and integrin  $\beta$ 1 • IgG heavy chain chimeric protein expression vector into animal cells, and their manifestation

[0079] The integrin  $\alpha$ 2 • IgG heavy chain chimeric protein expression vector was transfected into the integrin  $\beta$ 1 • IgG heavy chain chimeric protein producing CHO cells prepared and stabilized in Example 4, according to the lipofectin method described in Example 4. That is, integrin  $\alpha$ 2 • IgGS $\alpha$  and pSV2neo (BRL) were mixed at 10 : 1, and the mixture was mixed with lipofectin reagent. The mixture was added dropwise to the cells. Eighteen hours after completion of dropwise addition, the mixture was cultured in a first selective medium for 2 days, and the cells were dispersed by trypsin-EDTA treatment. The cells were suspended in a second selective medium, and the suspension was disseminated into a 96-well plate. Resistant cells were selectively cultured for about 10 days. Then, the amount of integrin  $\alpha$ 2 • IgG heavy chain chimeric protein and the amount of integrin  $\beta$ 1 • IgG heavy chain chimeric protein produced in the culture supernatant were determined according to the ELISA method (described later), and a clone producing almost the same amounts of both the chimeric proteins was picked up. The clone was cloned twice according to the limiting dilution analysis, to be stabilized as a clone capable of producing  $\alpha$ 2 • IgG heavy chain- $\beta$ 1 • IgG heavy chain chimeric protein heterodimer complex.

## 15     Example 13

Determination of the amounts of integrin  $\alpha$ 2 • IgG heavy chain chimeric protein and integrin  $\beta$ 1 • IgG heavy chain chimeric protein by the ELISA method

20     [0080] Fifty microliter per well of anti-human integrin  $\alpha$ 2 antibody (Becton & Dickinson, clone P1E6) or anti-human integrin  $\beta$ 1 antibody (clone 4B4) (2  $\mu$ g/ml each) was put into a 96-well immunoplate, and allowed to stand at 4°C for 16 hours. Then, each well was washed with PBS(-) twice, blocked, and the culture supernatant of the CHO cells grown in second selective medium was properly diluted and reacted with the coated-antibody at room temperature for 1 hour. After the reaction, the surface of the plate was washed with T-PBS twice, and caused to react with biotinylated anti-25     human IgG antibody for 1 hour and with avidin-horseradish peroxidase for 1 hour, and the reaction mixture was washed with PBS(-) twice. After completion of reaction, orthophenylenediamine was used as a substrate for color development, and the absorbance values at 490 nm were measured using a microplate reader. A clone showing a high absorbance value was selected.

## 30     Example 14

Purification of  $\alpha$ 2 • IgG heavy chain- $\beta$ 1 • IgG heavy chain chimeric protein heterodimer complex

## 35     (1) Culture of CHO cells and preparation of cultured supernatant solution

[0081] The CHO cells highly capable of producing  $\alpha$ 2 • IgG heavy chain- $\beta$ 1 • IgG heavy chain chimeric protein heterodimer complex were cultured in an  $\alpha$ MEM(-) medium containing 5% FBS (Ultra-low IgG grade) for 1 day, to reach semi-confluent, and they were cultured on an  $\alpha$ MEM(-) medium containing 1%FBS (Ultra-low IgG grade) for 3 days. The culture supernatant was collected, and concentrated to 1/10 volume by ultrafiltration. Then, 1M Hepes solution (pH 8.0) was added to achieve a final concentration of 5 mM, to obtain a starting solution for further purification.

## 40     (2) Protein A column chromatography

[0082] The starting solution for further purification was passed through Prosep Guard column, and applied to Prosep 45     A column. After completion of application, it was washed with 10 times the column volume of PBS (-), and in succession, the proteins were eluted at a pH 6 to 3 gradient of 0.1M citrate buffers. The peak fraction eluted at pH 3 was collected, and 1M Tris-HCl solution (pH 8.5) was added by 0.1 volume for neutralization. The mixture was dialyzed against PBS(-).

## (3) Affinity column chromatography

[0083] According to a report (Kirchhofer, D. et al., J. Biol. Chem., 265, 615-618 (1990)), a collagen immobilized column with a collagen (Type I, Sigma) coupled to cyanogen-bromide-activated Sepharose (Sigma) was prepared. Then, the starting solution for further purification was equilibrated in a TBS buffer (150 mM NaCl, 50 mM Tris-HCl, 1 mM MgCl<sub>2</sub>, 1 mM MnCl<sub>2</sub>, pH 7.5), applied to a column, allowed to stand at room temperature for 3 hours, and washed with 10 times the column volume of a washing buffer (150 mM NaCl, 50 mM Tris-HCl, 1 mM MgCl<sub>2</sub>, 1 mM MnCl<sub>2</sub>, 100 mM octyl glucopyranoside, pH 7.5). After completion of washing, an elution buffer (20 mM EDTA, 150 mM NaCl, 50 mM Tris-HCl, 50 mM octyl glucopyranoside, pH 7.5) was used to elute the protein bound to the column. The eluate was collected and dialyzed against PBS(-).

## (4) SDS-PAGE

[0084] The eluted fraction of (3) was subjected to SDS-PAGE using 7.0% acrylamide gel under non-reducing or under reducing condition, and the gel was stained with Coomassie-blue. As a result, a band considered to be attributable to  $\alpha 2 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex was observed. Under reducing condition, two bands (185 kDa and 135 kDa) considered to be attributable to integrin  $\alpha 2 \cdot$  IgG heavy chain chimeric protein and integrin  $\beta 1 \cdot$  IgG heavy chain chimeric protein were observed. These results suggest that the eluted protein has a molecular structure considered to be  $\alpha 2 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex, and is linked by a disulfide bond between the IgG heavy chains.

## Example 15

Identification of  $\alpha 2 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex, and examination of its structural stability

[0085] The eluted protein of (3) of Example 14 was <sup>125</sup>I-labeled, and subjected to immunoprecipitation using the beads coupled with normal murine IgG, anti-human integrin  $\alpha 2$  antibody (clone P1E6) or anti-human integrin  $\beta 1$  antibody (clone 4B4) as described in Example 7, and to SDS-PAGE/autoradiography under reducing condition.

[0086] As a result, in both 1 mM MgCl<sub>2</sub> and 10 mM EDTA, from the beads of both anti-human integrin  $\alpha 2$  antibody and anti-human integrin  $\beta 1$  antibody, the same precipitation patterns expected from the structure of  $\alpha 2 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex could be obtained. These results show that the eluted protein obtained in (3) of Example 14 is certainly  $\alpha 2 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex, and with the results of (4) of Example 14 also taken into account, it is strongly suggested that the association of both the proteins is stable through a disulfide bond existing the IgG heavy chains.

## Example 16

Examination on the capability of  $\alpha 2 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex to be bound to a collagen, and its specificity

[0087] The capability of  $\alpha 2 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex to be bound to a collagen which is a ligand of integrin  $\alpha 2\beta 1$  was examined.

[0088] At first, a collagen (Cell Matrix Type 3 mg/ml) was diluted to 0.1  $\mu$ g/ml by 0.02M acetic acid solution, and put in an immunoplate by 100  $\mu$ l/well, being kept at 4°C for 16 hours. Then, the collagen solution was removed by suction, and the plate was washed with PBS(-) twice for neutralization. Heat-denatured 1% BSA-PBS solution was put in the plate by 300  $\mu$ l/well for blocking at room temperature for 3 hours. After completion of blocking, it was rinsed with PBS (-) twice, to prepare a collagen coated plate.

[0089] The cultured supernatant of CHO (100  $\mu$ l) containing  $\alpha 2 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex was reacted at 30°C for 3 hours. After completion of reaction, as described in Example 9, the amount of bound  $\alpha 2 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex was determined.

[0090] As a result, as shown in Fig. 4, the absorbance showing the binding of  $\alpha 2 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex to the collagen was increased. The binding was almost perfectly inhibited in the coexistence of 10  $\mu$ g/ml of anti-human integrin  $\alpha 2$  antibody (clone P1E6) and anti-human integrin  $\beta 1$  antibody (clone 4B4), or in the presence of 5 mM EDTA respectively. This result shows that  $\alpha 2 \cdot$  IgG heavy chain- $\beta 1 \cdot$  IgG heavy chain chimeric protein heterodimer complex can be bound to a collagen like the integrin  $\alpha 2\beta 1$  existing on the surfaces of cell membranes, and furthermore that the binding is  $\alpha 2\beta 1$ -specific and that the feature of the binding that it depends on cations is retained.

## Example 17

Acquisition of a peptide capable of being bound to  $\alpha 4 \cdot \text{IgG heavy chain-}\beta 1 \cdot \text{IgG heavy chain chimeric protein heterodimer complex}$ , and evaluation of its inhibitory activity

[0091] At first,  $\alpha 4 \cdot \text{IgG heavy chain-}\beta 1 \cdot \text{IgG heavy chain chimeric protein heterodimer complex}$  purified in Example 6, or human IgG was prepared at a proper concentration by PBS (-) and was coated on a plastic plate at 4°C for 16 hours, being formed as a solid phase on a plastic plate. Then, according to a report (Cott, J. K. and Smoth, G. P., Science, 249, 386-390 (1990)), a phage peptide library in which a random six amino acid residues were cyclized by the disulfide bond of cysteine at both the ends was prepared and suspended in 0.1% BSA-containing TBS buffer. The phage peptide library was reacted with human IgG at 30°C for 3 hours, to absorb phage peptides capable of being bound to IgG. Then, the non-absorbed phases were reacted with  $\alpha 4 \cdot \text{IgG heavy chain-}\beta 1 \cdot \text{IgG heavy chain chimeric protein heterodimer complex}$  at 30°C for 3 hours, and the reaction mixture was washed with 0.1% BSA-containing TBS buffer twice to remove the phage peptides incapable of being bound to the heterodimer complex. Only the phage peptides capable of being bound were collected after elution with 0.1M glycine-hydrochloric acid (pH 2.2). After collection, the phage was amplified and the above mentioned binding operation was repeated further twice. The only the phage peptides capable of being bound to the heterodimer complex were selectively concentrated. In the final elution operation, phage peptides capable of being bound to the heterodimer complex were eluted using 10 mM EDTA and 0.1M glycine-hydrochloric acid in two steps, and the amino acid sequences of the respective peptides were analyzed. Of them, eight sequences (sequence Nos. 24 to 31) are shown in Table 1. Furthermore, they were examined using the binding assay system of Example 9, and the IC<sub>50</sub> values of the four peptide sequences showing binding inhibitory activity are shown in Table 1.

Table 1

| Elution condition | Sequence |     |     |     |     |     |     |      | Inhibitory activity IC <sub>50</sub> ( $\mu\text{M}$ ) | Sequence No. |
|-------------------|----------|-----|-----|-----|-----|-----|-----|------|--------------------------------------------------------|--------------|
| EDTA              | Cys*     | Ile | Pro | Glu | Leu | Ile | Val | Cys* | 1.2                                                    | 24           |
|                   | Cys*     | Met | Arg | Tyr | Thr | Ser | Ala | Cys* | 2.3                                                    | 25           |
|                   | Cys*     | Glu | Trp | Met | Lys | Arg | Phe | Cys* |                                                        | 26           |
|                   | Cys*     | Tyr | Thr | Thr | Arg | Leu | Lys | Cys* |                                                        | 27           |

|                           |      |     |     |     |     |     |     |      |     |    |
|---------------------------|------|-----|-----|-----|-----|-----|-----|------|-----|----|
| Glycine-hydrochloric acid | Cys* | Leu | Arg | Tyr | Ser | Val | Pro | Cys* | 1.8 | 28 |
|                           | Cys* | Ile | Val | Asn | Arg | Leu | Gly | Cys* |     | 29 |
|                           | Cys* | Gly | Leu | Gln | Ala | Leu | Pro | Cys* | 10  | 30 |
|                           | Cys* | Lys | Leu | Lys | Gly | Thr | Met | Cys* |     | 31 |

Cys\* indicates a disulfide bond.

50

55

## Example 18

Acquisition of a low weight molecular compound capable of inhibiting the binding between the peptide fragment on fibronectin and  $\alpha$ 4 • IgG heavy chain- $\beta$ 1 • IgG heavy chain chimeric protein heterodimer complex

- [0092] Reagents and reported compounds were picked up at random, adjusted to a final concentration of 50 or 100  $\mu$ g/ml, and added to the binding determination system in Example 9. Compounds showing inhibitory activity were obtained. Of the obtained compounds, the binding inhibitory activities of the four compounds of Norethynodrel (Sigma), D-Penicillamine (Aldrich, Weigert, W. M. et al., Angew. Chem. Int. Ed. Eng., 14, 330-336 (1975),  $\gamma$ -2-Naphthyl butyric acid (Fieser, L. F. J. Am. Chem. Soc., 70, 3197-3203 (1948)), 1-Adamantaneacetic acid (Aldrich) were shown in Table 2.

Table 2

| Name of compound                  | Concentration ( $\mu$ g/ml) | Inhibition rate (%) |
|-----------------------------------|-----------------------------|---------------------|
| Norethynodrel                     | 50                          | 28                  |
| D-Penicillamine                   | 50                          | 51                  |
| $\gamma$ -2-Naphthyl butyric acid | 100                         | 37                  |
| 1-Adamantaneacetic acid           | 100                         | 65                  |

## Example 19

Preparation of  $\alpha$ 2 • IgG heavy chain- $\beta$ 1 • IgG heavy chain chimeric protein heterodimer complex liposome

- [0093] A liposome was prepared according to the Martin et al.'s method (Martin, F. J. et al., Biochemistry, 20, 4229, (1981)). At first, an activated SH group was introduced into dipalmitoyl phosphatidyl ethanolamine (DPPE, Sigma) using di-crosslinking reagent N-succinimidyl 3-(2-pyridylthio)propionate (SDPD, Sigma), to prepare pyridylthiopropionyl dipalmitoyl phosphatidyl ethanolamine (PDP-DPPE). The PDP-DPPE, dipalmitoyl phosphatidyl choline (DPPC) and cholesterol were mixed, to prepare a lipid film, and it was treated by a sonicator. Then, a filter was used to obtain a liposome uniform in diameter (PDP-DPPE liposome). Then,  $\alpha$ 2 • IgG heavy chain- $\beta$ 1 • IgG heavy chain chimeric protein heterodimer complex or human IgG (Cappel) used as a negative control were dissolved in a Hepes buffer (100 mM Hepes, 150 mM NaCl, pH 8.0), and SDPD was added for reaction for 30 minutes. The reaction solution was applied to PD-10 column (Pharmacia), and eluted by 0.1M acetic acid-sodium acetate buffer (pH 5.5). To the eluate, dithiothreitol was added for treatment for 20 minutes, and the mixture was applied to PD-10 column again and eluted by a Hepes buffer (100 mM Hepes, 150 mM NaCl, pH 8.0), to obtain SDPD coupled  $\alpha$ 2 • IgG heavy chain- $\beta$ 1 • IgG heavy chain chimeric protein heterodimer complex. The SDPD modified heterodimer complex and the PDP-DPPE liposome were caused to react with each other at room temperature for 24 hours, and the reaction mixture was separated by Sepharose 4B column (Sigma). From the peak fraction,  $\alpha$ 2 • IgG heavy chain- $\beta$ 1 • IgG heavy chain chimeric protein heterodimer complex liposome was obtained.
- [0094] The amount of  $\alpha$ 2 • IgG heavy chain- $\beta$ 1 • IgG heavy chain chimeric protein heterodimer complex bound on the liposome was determined by a densitometer (ATTO) after SDS-PAGE/Coummassie staining, and adjusted to final concentration of 1 mg/ml.

## Example 20

Flow cytometry of  $\alpha$ 2 • IgG heavy chain- $\beta$ 1 • IgG heavy chain chimeric protein heterodimer complex liposome

- [0095]  $\alpha$ 2 • IgG heavy chain- $\beta$ 1 • IgG heavy chain chimeric protein heterodimer complex liposome was dispersed in 1 mM EDTA-containing PBS(-), and caused to react with anti-human integrin  $\alpha$ 2 antibody (clone P1E6) or anti-human integrin  $\beta$ 1 antibody (clone 4B4) at room temperature for 30 minutes. After completion of reaction, the reaction mixture was centrifuged at 15000 rpm for 10 minutes, being followed by washing with 1 mM EDTA-containing PBS(-) and suspended into the solution again. Into the suspension, FITC labeled anti-murine IgG antibody (Cappel, 10  $\mu$ g/ml) was added as a secondary antibody, and reacted at room temperature for 30 minutes. After completion of reaction, the reac-

tion mixture was similarly washed by centrifugation, and flow cytometry analysis (ELITE, Coulter) was performed.

[0096] As a result, the positive reactions for both the antibodies were detected, confirming that  $\alpha 2 \cdot \text{IgG heavy chain-}\beta 1 \cdot \text{IgG heavy chain chimeric protein heterodimer complex}$  was bound on the liposome.

#### 5 Example 21

Binding activity of  $\alpha 2 \cdot \text{IgG heavy chain-}\beta 1 \cdot \text{IgG heavy chain chimeric protein heterodimer complex}$  to a collagen

[0097] A collagen (Cell Matrix Type, 3 mg/ml) was diluted by 0.02M acetic acid solution, and the solution was put in an immunoplate by 100  $\mu\text{l}/\text{well}$ , being kept at 4°C for 16 hours. Then, the collagen solution was removed by suction, and the plate was washed with PBS(-) twice for neutralization, and heat-denatured 1% BSA-PBS solution was put in the plate by 300  $\mu\text{l}/\text{well}$  for blocking at room temperature for 3 hours. After completion of blocking, the plate was rinsed with PBS(-) twice, to prepare a collagen coated plate.

[0098] Normal human plasma (George King) and von Willebrand's factor deficient (severe) plasma (George Kind) were treated with anti-human IgG antibody and protein A, and dialyzed against PBS(-) for 24 hours, to remove the contained sodium citrate. In order that the Ca ion and Mg ion concentration might be a physiological concentration in the blood when used,  $\text{CaCl}_2$  and  $\text{MgCl}_2$  were added to achieve final concentrations of 1.2 mM and 0.2 mM respectively. Into the normal human plasma and von Willebrand's factor deficient plasma adjusted in cation concentration,  $\alpha 2 \cdot \text{IgG heavy chain-}\beta 1 \cdot \text{IgG heavy chain chimeric protein heterodimer complex}$  liposome or human IgG liposome was suspended to achieve protein concentrations of 1 to 100 ng/ml. Any of the suspensions was put in the collagen coated plate by 100  $\mu\text{l}/\text{well}$ . The plate was shaken by a plate shaker at 100 rpm, for react ion at room temperature for 15 minutes. After completion of reaction, the non-bound liposome was removed by washing with a PB solution (1.2 mM  $\text{CaCl}_2$ , 0.2 mM  $\text{MgCl}_2$ , 1% BSA-containing PBS, pH 7.4), and the bound liposome was immobilized by 1% glutaraldehyde-PBS at room temperature for 30 minutes. After completion of immobilization, a heat-denatured BSA-PBS solution was used for blocking at room temperature for 1 hour. Then, as described in Example 16, it was caused to react with biotin labeled human IgG antibody used as a primary antibody and avidin labeled horseradish peroxidase used as a secondary antibody, and washed with a TBS buffer. Into it, orthophenylenediamine was added as a substrate for color development, and the absorbance at 490 nm were measured. To examine the effect of 5 mM EDTA, anti-integrin  $\alpha 2$  antibody (clone P1E6, 10  $\mu\text{g}/\text{ml}$ ) and anti-integrin  $\beta 1$  antibody(clone 4B4, 10  $\mu\text{g}/\text{ml}$ ), it was caused to react with the liposome suspension at room temperature for 15 minutes before reaction with the collagen.

[0099] The results are shown in Figs. 5 and 6. In the normal human plasma, the human IgG liposome as a negative control was not found to be bound to the collagen, but the binding of  $\alpha 2 \cdot \text{IgG heavy chain-}\beta 1 \cdot \text{IgG heavy chain chimeric protein heterodimer complex}$  liposome to the collagen was increased with the concentration dependent on manner. Also when the von Willebrand's factor deficient plasma was used, equivalent binding was detected. Furthermore, the binding to the collagen observed when 30 ng/ml of  $\alpha 2 \cdot \text{IgG heavy chain-}\beta 1 \cdot \text{IgG heavy chain chimeric protein heterodimer complex}$  liposome was added to the normal plasma was completely inhibited by adding EDTA as a cation chelating agent or the antibodies. The results show that in plasma with a physiological cation concentration,  $\alpha 2 \cdot \text{IgG heavy chain-}\beta 1 \cdot \text{IgG heavy chain chimeric protein heterodimer complex}$  liposome is bound to a collagen like platelets, and strongly suggest that it can be a substitute of adhesive platelets, and can be a reagent for monitoring the collagen exposed region. Furthermore, it is indicated that since equivalent binding activity was shown also in von Willebrand's factor deficient plasma, the liposome can also be used in the plasma with coagulation abnormality such as von Willebrand's disease.

#### Example 22

45 Analysis of collagen covering state by  $\alpha 2 \cdot \text{IgG heavy chain-}\beta 1 \cdot \text{IgG heavy chain chimeric protein heterodimer complex}$  liposome

[0100] Five microliters of a collagen solution was spotted at the center of each of the wells of a Lab-Tek chamber slide (Intermed, 8-well type, plastic) and allowed to stand for 16 hours, then washed and treated for blocking. Then, a suspension in which  $\alpha 2 \cdot \text{IgG heavy chain-}\beta 1 \cdot \text{IgG heavy chain chimeric protein heterodimer complex}$  liposome was suspended in normal human plasma to achieve a protein concentration of 30 ng/ml as described in Example 21 was put in the slide by 200  $\mu\text{l}/\text{well}$ , for reaction under the same conditions. After completion of reaction, the non-bound liposome was removed by washing with a PB buffer, and the retained was immobilized and treated for blocking. Then, it was bound to biotin labeled anti-human IgG antibody as a primary antibody and with avidin labeled horseradish peroxidase as a secondary antibody, and was washed with a TBS buffer. After completion of washing, diaminobenzidine was added for staining, to observe the covering state of the  $\alpha 2 \cdot \text{IgG heavy chain-}\beta 1 \cdot \text{IgG heavy chain chimeric protein heterodimer complex}$  liposome bound on the collagen.

[0101] With the human IgG liposome, the collagen coated portion was not stained, but with  $\alpha_2$  • IgG heavy chain- $\beta_1$  • IgG heavy chain chimeric protein heterodimer complex liposome, the collagen coated portion was entirely stained. Therefore, since the  $\alpha_2$  • IgG heavy chain- $\beta_1$  • IgG heavy chain chimeric protein heterodimer complex liposome covered the collagen coated portion only, it was strongly suggested that the liposome could be a substitute of adhesive platelets.

5

Industrial Availability:

[0102] The present invention provides integrin-immunoglobulin chimeric protein heterodimer complexes in which the  $\alpha$  chain and the  $\beta$  chain of an integrin are stably associated. The obtained integrin-immunoglobulin chimeric protein heterodimer complexes can be directly used as drugs, and can also be used for determining the binding between an integrin and a ligand, and searching for a substance capable of being bound to an integrin and a substance inhibiting the binding between an integrin and a ligand. They can also be used as diagnostic reagents.

[0103] Furthermore, among the heterodimer complexes, especially integrin  $\alpha_2\beta_1$ -immunoglobulin chimeric protein heterodimer complex can be used as a substitute of platelets. Furthermore, integrin  $\alpha_2\beta_1$ -immunoglobulin chimeric protein heterodimer complex can be used as a therapeutic or preventive agent for bleeding tendency involved in thrombocytopenia, platelet function abnormality, etc. Furthermore, it can also be used as a reagent for monitoring the exposed region of an extracellular matrix and for the targeting therapy.

20

25

30

35

40

45

50

55

## Sequence Table

5                   **Sequence No. 1**

Length of sequence: 4228

Type of sequence: Nucleic acid

10                  **Sequence**

|     |     |     |     |     |     |     |     |     |     |     |     |     |         |     |     |      |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------|-----|-----|------|
| ATG | TTC | CCC | ACC | GAG | ACC | GCA | TGG | CTT | GGG | AAG | CGA | GGC | GCG     | AAC | CCG | 48   |
| Met | Phe | Pro | Thr | Glu | Ser | Ala | Trp | Leu | Gly | Lys | Arg | Gly | Ala     | Asn | Pro |      |
| 15  | -35 |     |     | -30 |     |     | -25 |     |     |     |     |     |         |     |     |      |
| GGC | CCC | GAA | GCT | GCA | CTC | CGG | GAG | ACG | GTG | ATG | CTG | TTG | CTG-TGC | CTG | 96  |      |
| 20  | Gly | Pro | Glu | Ala | Ala | Leu | Arg | Glu | Thr | Val | Met | Leu | Leu     | Cys | Leu |      |
| -20 | -15 |     |     | -10 |     |     |     |     |     |     |     |     |         |     |     |      |
| GGG | GTC | CCG | ACC | GCC | AGC | GGC | AGG | CCT | TAC | AAC | GTG | GAC | ACT     | GAG | AGC | 144  |
| 25  | Gly | Val | Pro | Thr | Gly | Arg | Pro | Tyr | Asn | Val | Asp | Thr | Glu     | Ser | Ala | Leu  |
| -5  | 1   |     |     | 5   |     |     |     |     |     |     |     |     |         |     |     |      |
| CTT | TAC | CAG | GGC | CCC | CAC | AAC | ACG | CTG | TTC | GGC | TAC | TCG | GTC     | GTG | CTG | 192. |
| 30  | Leu | Tyr | Gly | Pro | His | Asn | Thr | Leu | Phe | Gly | Tyr | Ser | Val     | Val | Leu |      |
| 10  | 10  | 15  |     | 20  |     |     | 25  |     |     |     |     |     |         |     |     |      |
| CAC | AGC | CAC | GGG | GCG | AAC | CGA | TGG | CTC | CTA | GTG | GGT | GCG | CCC     | ACT | GCC | 240  |
| 35  | His | Ser | His | Gly | Ala | Asn | Arg | Trp | Leu | Leu | Val | Gly | Ala     | Pro | Thr | Ala  |
| 30  | 35  |     |     | 40  |     |     |     |     |     |     |     |     |         |     |     |      |
| AAC | TGG | CTC | GCC | AAC | GCT | TCA | GTG | ATC | AAT | CCC | GGG | GCG | ATT     | TAC | AGA | 288  |
| 40  | Asn | Trp | Leu | Ala | Asn | Ala | Ser | Val | Ile | Asn | Pro | Gly | Ala     | Ile | Tyr | Arg  |
| 45  | 45  | 50  |     | 55  |     |     |     |     |     |     |     |     |         |     |     |      |
| TGC | AGG | ATC | CGA | AAG | AAT | CCC | GGC | CAG | ACG | TGC | GAA | CAG | CTG     | CAG | CTG | 336  |
| 45  | Cys | Arg | Ile | Gly | Lys | Asn | Pro | Gly | Cln | Thr | Cys | Glu | Gln     | Leu | Gln | Leu  |
| 60  | 60  | 65  |     | 70  |     |     |     |     |     |     |     |     |         |     |     |      |
| GCT | AGC | CCT | AAT | CGA | GAA | CCT | TGT | GCA | AAG | ACT | TGT | TTG | GAA     | GAG | AGA | 384  |
| 50  | Gly | Ser | Pro | Asn | Gly | Glu | Pro | Cys | Gly | Lys | Thr | Cys | Leu     | Glu | Arg |      |
| 75  | 75  | 80  |     | 85  |     |     |     |     |     |     |     |     |         |     |     |      |

## EP 0 896 002 A1

|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|    | GAC | AAT | CAG | TGG | TTC | GGG | GTC | ACA | CTT | TCC | AGA | CAG | CCA | GGA | GAA | AAT | 432 |
| 5  | Asp | Asn | Gln | Trp | Leu | Gly | Val | Thr | Leu | Ser | Arg | Gln | Pro | Gly | Glu | Asn |     |
|    | 90  |     |     | 95  |     |     |     | 100 |     |     | 105 |     |     |     |     |     |     |
|    | GGA | TCC | ATC | GTC | ACT | TGT | GGG | CAT | AGA | TGG | AAA | AAT | ATA | TTT | TAC | ATA | 480 |
| 10 | Gly | Ser | Ile | Val | Thr | Cys | Gly | His | Arg | Trp | Lys | Asn | Ile | Phe | Tyr | Ile |     |
|    |     |     |     |     |     | 110 |     |     |     | 115 |     |     |     | 120 |     |     |     |
|    | AAG | AAT | GAA | AAT | AAG | CTC | CCC | ACT | GCT | GGT | TGC | TAT | GGA | GTC | CCC | CCT | 528 |
| 15 | Lys | Asn | Glu | Asn | Lys | Leu | Pro | Thr | Gly | Gly | Cys | Tyr | Gly | Val | Pro | Pro |     |
|    |     |     |     |     |     | 125 |     |     | 130 |     |     | 135 |     |     |     |     |     |
|    | GAT | TTA | CGA | ACA | GAA | CTG | AGT | AAA | AGA | ATA | GCT | CCG | TGT | TAT | CAA | GAT | 576 |
| 20 | Asp | Leu | Arg | Thr | Glu | Leu | Ser | Lys | Arg | Ile | Ala | Pro | Cys | Tyr | Gln | Asp |     |
|    |     |     |     |     |     | 140 |     |     | 145 |     |     | 150 |     |     |     |     |     |
|    | TAT | GTG | AAA | AAA | TTT | GGA | GAA | AAT | TTT | GCA | TCA | TGT | CAA | GCT | GGA | ATA | 624 |
| 25 | Tyr | Val | Lys | Lys | Phe | Gly | Glu | Asn | Phe | Ala | Ser | Cys | Gln | Ala | Gly | Ile |     |
|    |     |     |     |     |     | 155 |     |     | 160 |     |     | 165 |     |     |     |     |     |
|    | TCC | ACT | TTT | TAC | ACA | AAG | GAT | TTA | ATT | GTG | ATG | GGG | GCC | CCA | GGA | TCA | 672 |
| 30 | Ser | Ser | Phe | Tyr | Thr | Lys | Asp | Leu | Ile | Val | Met | Gly | Ala | Pro | Gly | Ser |     |
|    |     |     |     |     |     | 170 |     |     | 175 |     |     | 180 |     |     | 185 |     |     |
|    | TCT | TAC | TGG | ACT | GGC | TCT | CTT | TTT | GTC | TAC | AAT | ATA | ACT | ACA | AAT | AAA | 720 |
| 35 | Ser | Tyr | Trp | Thr | Gly | Ser | Leu | Phe | Val | Tyr | Asn | Ile | Thr | Thr | Asn | Lys |     |
|    |     |     |     |     |     | 190 |     |     | 195 |     |     | 200 |     |     |     |     |     |
|    | TAC | AAG | GCT | TTT | TTA | GAC | AAA | CAA | AAT | CAA | GTA | AAA | TTT | GGA | AGT | TAT | 768 |
| 40 | Tyr | Lys | Ala | Phe | Leu | Asp | Lys | Gln | Asn | Gln | Val | Lys | Phe | Gly | Ser | Tyr |     |
|    |     |     |     |     |     | 205 |     |     | 210 |     |     | 215 |     |     |     |     |     |
|    | TTA | GGA | TAT | TCA | GTC | GGG | GCT | GCT | CAT | TTT | CCG | AGC | CAG | CAT | ACT | ACC | 816 |
| 45 | Leu | Gly | Tyr | Ser | Val | Gly | Ala | Gly | His | Phe | Arg | Ser | Gln | His | Thr | Thr |     |
|    |     |     |     |     |     | 220 |     |     | 225 |     |     | 230 |     |     |     |     |     |
|    | CAA | GTA | GTC | CGA | CGA | GCT | CCT | CAA | CAT | GAG | CAG | ATT | GGT | AAG | GCA | TAT | 864 |
| 50 | Glu | Val | Val | Gly | Gly | Ala | Pro | Gln | Ile | Glu | Gln | Ile | Gly | Lys | Ala | Tyr |     |
|    |     |     |     |     |     | 235 |     |     | 240 |     |     | 245 |     |     |     |     |     |

55

## EP 0896 002 A1

|    |                                                                 |      |
|----|-----------------------------------------------------------------|------|
|    | ATA TTC AGC ATT GAT GAA AAA GAA CTA AAT ATC TTA CAT GAA ATG AAA | 912  |
| 5  | Ile Phe Ser Ile Asp Glu Lys Glu Leu Asn Ile Leu His Glu Met Lys |      |
|    | 250 255 260 265                                                 |      |
|    | GGT AAA AAG CTT CGA TCG TAC TTT CGA CCT TCT CTC TGT GCT GTC GAC | 960  |
| 10 | Gly Lys Lys Leu Gly Ser Tyr Phe Gly Ala Ser Val Cys Ala Val Asp |      |
|    | 270 275 280                                                     |      |
|    | CTC AAT GCA GAT GGC TTC TCA GAT CTG CTC CTG GGA GCA CCC ATG CAG | 1008 |
| 15 | Leu Asn Ala Asp Gly Phe Ser Asp Leu Leu Val Gly Ala Pro Met Gln |      |
|    | 285 290 295                                                     |      |
|    | AGC ACC ATC AGA GAC GAA GGA AGA GTG TTT GTG TAC ATC AAC TCT GGC | 1056 |
| 20 | Ser Thr Ile Arg Glu Glu Gly Arg Val Phe Val Tyr Ile Asn Ser Gly |      |
|    | 300 305 310                                                     |      |
|    | TCG GGA GCA GTC ATG AAT GCA ATG GAA ACA AAC CTC GTT GGA AGT GAC | 1104 |
| 25 | Ser Gly Ala Val Met Asn Ala Met Glu Thr Asn Leu Val Gly Ser Asp |      |
|    | 315 320 325                                                     |      |
|    | AAA TAT GCT GCA AGA TTT GGG GAA TCT ATA GTT AAT CTT GGC GAC ATT | 1152 |
| 30 | Lys Tyr Ala Ala Arg Phe Gly Glu Ser Ile Val Asn Leu Gly Asp Ile |      |
|    | 330 335 340 345                                                 |      |
|    | GAC AAT GAT GGC TTT GAA GAT GTT GCT ATC GGA GCT CCA CAA GAA GAT | 1200 |
| 35 | Asp Asn Asp Gly Phe Glu Asp Val Ala Ile Gly Ala Pro Gln Glu Asp |      |
|    | 350 355 360                                                     |      |
|    | GAC TTG CAA CGT GCT ATT TAT ATT TAC AAT GGC CGT GCA GAT CGG ATC | 1248 |
| 40 | Asp Leu Gln Gly Ala Ile Tyr Ile Tyr Asn Gly Arg Ala Asp Gly Ile |      |
|    | 365 370 375                                                     |      |
|    | TCG TCA ACC TTC TCA CAG AGA ATT GAA GGA CTT CAG ATC AGC AAA TCG | 1296 |
| 45 | Ser Ser Thr Phe Ser Gln Arg Ile Glu Gly Leu Gln Ile Ser Lys Ser |      |
|    | 380 385 390                                                     |      |
|    | TTA ACT ATG TTT CGA CAG TCT ATA TCA GGA CAA ATT GAT GCA GAT AAT | 1344 |
| 50 | Leu Ser Met Phe Gly Gln Ser Ile Ser Gly Gln Ile Asp Ala Asp Asn |      |
|    | 395 400 405                                                     |      |

55

## EP 0 896 002 A1

|    |                                                                 |     |      |     |
|----|-----------------------------------------------------------------|-----|------|-----|
|    | AAT CCC TAT GTC GAT GTC GCA GTT CCT CCT TTT CCG TCT GAT TCT CCT |     | 1392 |     |
| 5  | Asn Gly Tyr Val Asp Val Ala Val Gly Ala Phe Arg Ser Asp Ser Ala |     |      |     |
|    | 410                                                             | 415 | 420  | 425 |
|    | GTC TTG CTA AGC ACA AGA CCT GTC GTC ATT GTT GAC CCT TCT TTA ACC |     | 1440 |     |
| 10 | Val Leu Leu Arg Thr Arg Pro Val Val Ile Val Asp Ala Ser Leu Ser |     |      |     |
|    | 430                                                             | 435 | 440  |     |
|    | CAC CCT GAG TCA GTC AAT AGA ACG AAA TTT GAC TGT GTT GAA AAT GGA |     | 1488 |     |
| 15 | His Pro Glu Ser Val Asn Arg Thr Lys Phe Asp Cys Val Glu Asn Gly |     |      |     |
|    | 445                                                             | 450 | 455  |     |
|    | TGG CCT TCT CTG TGC ATA GAT CTA ACA CTT TGT TTC TCA TAT AAG GGC |     | 1536 |     |
| 20 | Trp Pro Ser Val Cys Ile Asp Leu Thr Leu Cys Phe Ser Tyr Lys Gly |     |      |     |
|    | 460                                                             | 465 | 470  |     |
|    | AAG GAA GTT CCA GGT TAC ATT GTT TTG TTT TAT AAC ATG ACT TTG GAT |     | 1584 |     |
| 25 | Lys Glu Val Pro Gly Tyr Ile Val Leu Phe Tyr Asn Met Ser Leu Asp |     |      |     |
|    | 475                                                             | 480 | 485  |     |
|    | GTC AAC AGA AAG GCA GAG TCT CCA CCA AGA TTC TAT TTC TCT TCT AAT |     | 1632 |     |
| 30 | Val Asn Arg Lys Ala Glu Ser Pro Pro Arg Phe Tyr Phe Ser Ser Asn |     |      |     |
|    | 490                                                             | 495 | 500  | 505 |
|    | GGA ACT TCT GAC GTG ATT ACA CGA ACC ATA CAG GTG TCC AGC AGA GAA |     | 1680 |     |
| 35 | Gly Thr Ser Asp Val Ile Thr Gly Ser Ile Gln Val Ser Ser Arg Glu |     |      |     |
|    | 510                                                             | 515 | 520  |     |
|    | GCT AAC TGT AGA ACA CAT CAA GCA TTT ATG CGG AAA GAT GTG CGG GAC |     | 1728 |     |
| 40 | Ala Asn Cys Arg Thr His Gln Ala Phe Met Arg Lys Asp Val Arg Asp |     |      |     |
|    | 525                                                             | 530 | 535  |     |
|    | ATC CTC ACC CCA ATT CAG ATT GAA GCT GCT TAC CAC CTT CGT CCT CAT |     | 1776 |     |
| 45 | Ile Leu Thr Pro Ile Gln Ile Glu Ala Ala Tyr His Leu Gly Pro His |     |      |     |
|    | 540                                                             | 545 | 550  |     |
|    | CTC ATC ACT AAA CGA ACT ACA GAG GAA TTC CCA CCA CTT CAG CCA ATT |     | 1824 |     |
| 50 | Val Ile Ser Lys Arg Ser Thr Glu Glu Phe Pro Pro Leu Gln Pro Ile |     |      |     |
|    | 555                                                             | 560 | 565  |     |

55

## EP 0 896 002 A1

|    |                                                                          |      |
|----|--------------------------------------------------------------------------|------|
|    | CTT CAG CAG AAG AAA GAA AAA GAC ATA ATG AAA AAA ACA ATA AAC TTT          | 1872 |
| 5  | Leu Gln Gln Lys Lys Glu Lys Asp Ile Met Lys Lys Thr Ile Asn Phe          |      |
|    | 570                    575                    580                    585 |      |
|    | GCA AGG TTT TGT GCC CAT GAA AAT TGT TCT CCT GAT TTA CAG CTT TCT          | 1920 |
| 10 | Ala Arg Phe Cys Ala His Glu Asn Cys Ser Ala Asp Leu Gln Val Ser          |      |
|    | 590                    595                    600                        |      |
|    | GCA AAG ATT GGG TTT TTG AAG CCC CAT GAA AAT AAA ACA TAT CTT GCT          | 1968 |
| 15 | Ala Lys Ile Gly Phe Leu Lys Pro His Glu Asn Lys Thr Tyr Leu Ala          |      |
|    | 605                    610                    615                        |      |
| 20 | GTT GGG AGT ATG AAG ACA TTG ATG TTG AAT GTG TCC TTG TTT AAT GCT          | 2016 |
|    | Val Gly Ser Met Lys Thr Leu Met Leu Asn Val Ser Leu Phe Asn Ala          |      |
|    | 620                    625                    630                        |      |
| 25 | CGA GAT GAT GCA TAT GAA ACG ACT CTA CAT GTC AAA CTA CCC GTG GGT          | 2064 |
|    | Gly Asp Asp Ala Tyr Glu Thr Thr Leu His Val Lys Leu Pro Val Gly          |      |
|    | 635                    640                    645                        |      |
| 30 | CTT TAT TTC ATT AAG ATT TTA GAG CTG GAA GAG AAG CAA ATA AAC TGT          | 2112 |
|    | Leu Tyr Phe Ile Lys Ile Leu Glu Leu Glu Glu Lys Gln Ile Asn Cys          |      |
|    | 650                    655                    660                    665 |      |
| 35 | GAA GTC ACA GAT AAC TCT GGC GTG GTA CAA CTT GAC TGC AGT ATT GGC          | 2160 |
|    | Glu Val Thr Asp Asn Ser Gly Val Val Gln Leu Asp Cys Ser Ile Gly          |      |
|    | 670                    675                    680                        |      |
| 40 | TAT ATA TAT GTA GAT CAT CTC TCA AGG ATA GAT ATT AGC TTT CTC CTG          | 2208 |
|    | Tyr Ile Tyr Val Asp His Leu Ser Arg Ile Asp Ile Ser Phe Leu Leu          |      |
|    | 685                    690                    695                        |      |
| 45 | GAT GTG AGC TCA CTC ACC AGA CGG GAA GAG GAC CTC AGT ATC ACA GTG          | 2256 |
|    | Asp Val Ser Ser Leu Ser Arg Ala Glu Glu Asp Leu Ser Ile Thr Val          |      |
|    | 700                    705                    710                        |      |
| 50 | CAT CCT ACC TGT GAA AAT GAA CAG GAA ATG GAC AAT CTA AAG CAC AGC          | 2304 |
|    | His Ala Thr Cys Glu Asn Glu Glu Glu Met Asp Asn Leu Lys His Ser          |      |
|    | 715                    720                    725                        |      |

## EP 0896 002 A1

|    |                                                                 |     |      |     |
|----|-----------------------------------------------------------------|-----|------|-----|
|    | AGA CTG ACT GCA ATA CCT TTA AAA TAT GAG GTT AAG CTG ACT GTT     |     | 2352 |     |
| 5  | Arg Val Thr Val Ala Ile Pro Leu Lys Tyr Glu Val Lys Leu Thr Val |     |      |     |
|    | 730                                                             | 735 | 740  | 745 |
|    | CAT CGG TTT GCA AAC CCA ACT TCA TTT GTG TAT GCA TCA AAT GAT GAA |     | 2400 |     |
| 10 | His Gly Phe Val Asn Pro Thr Ser Phe Val Tyr Gly Ser Asn Asp Glu |     |      |     |
|    | 750                                                             | 755 | 760  |     |
|    | AAT GAG CCT GAA ACC TGC ATG CTG GAG AAA ATG AAC TTA ACT TTC CAT |     | 2448 |     |
| 15 | Asn Glu Pro Glu Thr Cys Met Val Glu Lys Met Asn Leu Thr Phe His |     |      |     |
|    | 765                                                             | 770 | 775  |     |
|    | GTT ATC AAC ACT GCC AAT AGT ATG GCT CCC AAT GTT AGT GTG_GAA ATA |     | 2496 |     |
| 20 | Val Ile Asn Thr Gly Asn Ser Met Ala Pro Asn Val Ser Val Glu Ile |     |      |     |
|    | 780                                                             | 785 | 790  |     |
|    | ATG GTA CCA AAT TCT TTT AGC CCC CAA ACT GAT AAG CTG TTC AAC ATT |     | 2588 |     |
| 25 | Met Val Pro Asn Ser Phe Ser Pro Gln Thr Asp Lys Leu Phe Asn Ile |     |      |     |
|    | 795                                                             | 800 | 805  |     |
|    | TTG GAT GTC CAG ACT ACT GCA GAA TGC CAC TTT GAA AAT TAT CAA     |     | 2592 |     |
| 30 | Leu Asp Val Gln Thr Thr Gly Glu Cys His Phe Glu Asn Tyr Gln     |     |      |     |
|    | 810                                                             | 815 | 820  | 825 |
|    | AGA CTG TGT GCA TTA GAG CAG CAA AAG AGT GCA ATG CAG ACC TTG AAA |     | 2640 |     |
| 35 | Arg Val Cys Ala Leu Glu Gln Gln Lys Ser Ala Met Gln Thr Leu Lys |     |      |     |
|    | 830                                                             | 835 | 840  |     |
|    | GGC ATA GTC CGG TTC TTG TCC AAG ACT GAT AAG AGG CTA TTG.TAC TGC |     | 2688 |     |
| 40 | Gly Ile Val Arg Phe Leu Ser Lys Thr Asp Lys Arg Leu Leu Tyr Cys |     |      |     |
|    | 845                                                             | 850 | 855  |     |
|    | ATA AAA GCT GAT CCA CAT TGT TTA AAT TTC TTG TGT AAT TTT GGG AAA |     | 2736 |     |
| 45 | Ile Lys Ala Asp Pro His Cys Leu Asn Phe Leu Cys Asn Phe Gly Lys |     |      |     |
|    | 860                                                             | 865 | 870  |     |
|    | ATG GAA ACT GGA AAA GAA CCC ACT GTT CAT ATC CAA CTG GAA CCC CGG |     | 2784 |     |
| 50 | Met Glu Ser Gly Lys Glu Ala Ser Val His Ile Gln Leu Glu Gly Arg |     |      |     |
|    | 875                                                             | 880 | 885  |     |

55

## EP 0 896 002 A1

CCA TCC ATT TTA GAA ATG CAT GAG ACT TCA CCA CTC AAG TTT GAA ATA 2832  
 5 Pro Ser Ile Leu Glu Met Asp Glu Thr Ser Ala Leu Lys Phe Glu Ile  
 890 895 900 905  
 AGA GCA ACA GGT TTT CCA GAG CCA AAT CCA AGA GCA ATT GAA CTA AAC 2880  
 10 Arg Ala Thr Gly Phe Pro Glu Pro Asn Pro Arg Val Ile Glu Leu Asn  
 910 915 920  
 AAG GAT GAG AAT GTT GCG CAT GTT CTA CTG GAA GGA CTA CAT CAT CAA 2928  
 15 Lys Asp Glu Asn Val Ala His Val Leu Leu Glu Gly Leu His His Glu.  
 925 930 935  
 AGA CCC AAA CGT TAT TTC ACG GAT CCC GAG CTGCTGGAAG CAGGCTCAGC 2978  
 20 Arg Pro Lys Arg Tyr Phe Thr Asp Pro Glu  
 940 945  
 . GCTCCTGCCT GGACCCATCC CGGCTATGCA GCCCCAGTCC AGGGCAGCAA GGCAGGCC 3038  
 25 GTCTGCCTCT TCACCCGGAG CCTCTGCCCC CCCCACTCAT GCTCAGGGAG AGGGTCTTCT 3098  
 GGCTTTTCC CAGGCTCTGG GCAGGCACAG GCTAGGTGCC CCTAACCCAG CCCCTGCACA 3158  
 CAAAGGGGCA GGTGCTGGGC TCAGACCTGC CAAGAGCCAT ATCCGGAGG ACCCTGCC 3218  
 30 TGACCTAACG CCACCCAAA GGCCTAAACTC TCCACTCCCT CAGCTCGGAC ACCTTCTCTC 3278  
 CTCCCCAGATT CCAGTAACTC CCAATCTTCT CTCTGCA GAG CCC AAA TCT TGT GAC 3333  
 Glu Pro Lys Ser Cys Asp  
 35 950  
 AAA ACT CAC ACA TGC CCA CCG TGC CCA CGTAAGCCAG CCCAGGCC 3380  
 Lys Thr His Thr Cys Pro Pro Cys Pro  
 40 955 960  
 GCCCTCCAGC TCAAGGGGGG ACAGGTGCC TAGACTACCC TGCATCCAGG GACAGGCC 3440  
 AGCCGGGTGC TGACACGTCC ACCTCCATCT CTTCTCA GCA CCT GAA CTC CTG 3493  
 45 Ala Pro Glu Leu Leu  
 965  
 GGG GGA CCC TCA GTC TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC CTC 3541  
 50 Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu  
 970 975 980

## EP 0 896 002 A1

|    |                                                                    |      |
|----|--------------------------------------------------------------------|------|
|    | ATG ATC TCC CGG ACC CCT GAG GTC ACA TGC GTG GTG GTG GAC GTG ACC    | 3589 |
| 5  | Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser    |      |
|    | 985 990 995                                                        |      |
|    | CAC GAA GAC CCT GAG GTC AAG TTC AAC TGG TAC GTG GAC CCC GTG GAG    | 3637 |
| 10 | Bis Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu    |      |
|    | 1000 1005 1010 1015                                                |      |
|    | GTG CAT AAT GCC AAG ACA AAG CCG CGG GAG GAG CAG TAC AAC AGC ACG    | 3685 |
| 15 | Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr    |      |
|    | 1020 1025 1030                                                     |      |
|    | TAC CGG GTG GTC AGC GTC CTC ACC GTC CTG CAC CAG GAC TGG CTG AAT    | 3733 |
| 20 | Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn    |      |
|    | 1035 1040 1045                                                     |      |
|    | GGC AAG GAG TAC AAG TCC AAG GTC TCC AAC AAA GCC-CTC CCA CCC CCC    | 3781 |
| 25 | Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro    |      |
|    | 1050 1055 1060                                                     |      |
|    | ATC GAG AAA ACC ATC TCC AAA GCC AAA GGTGGGACCC CTGGGGTGGCC         | 3828 |
| 30 | Ile Glu Lys Thr Ile Ser Lys Ala Lys                                |      |
|    | 1065 1070                                                          |      |
|    | AGGGCCACAT GGACAGAGGC CGGCTCGGCC CACCCCTCTGC CCTGAGACTG ACCGCTGTAC | 3888 |
| 35 | CAACCTCTGT CCTACA CGG CAG CCC CGA GAA CCA CAG CTG TAC ACC CTG      | 3937 |
|    | Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu                        |      |
| 40 | 1075 1080                                                          |      |
|    | CCC CCA TCC CGG GAT GAG CTG ACC AAG AAC CAG GTC AGC CTG ACC TGC    | 3985 |
|    | Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys    |      |
| 45 | 1085 1090 1095                                                     |      |
|    | CTG GTC AAA GCC TTC TAT CCC AGC GAC ATC GCC GTG GAG TGG GAG AGC    | 4033 |
| 50 | Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser    |      |
|    | 1100 1105 1110 1115                                                |      |

55

## EP 0 896 002 A1

|    |                                                                     |      |      |    |
|----|---------------------------------------------------------------------|------|------|----|
|    | AAT GGG CAG CCC GAG AAC AAC TAC AAC ACC ACC CCT CCC CTG CTC GAT     | 4081 |      |    |
| 5  | Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp     |      |      |    |
|    | 1120                                                                | 1125 | 1130 |    |
|    | TCC GAC GGC TCC TTC TTC CTC TAC ACC AAG CTC ACC CTG GAC AAG AGC     | 4129 |      |    |
| 10 | Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser     |      |      |    |
|    | 1135                                                                | 1140 | 1145 |    |
|    | AGG TCG CAG CAG GGG AAC GTC TTC TCA TGC TCC GTG ATG CAT GAG CCT     | 4177 |      |    |
| 15 | Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Val Met His Glu Ala |      |      |    |
|    | 1150                                                                | 1155 | 1160 |    |
|    | CTG CAC AAC CAC TAC ACG CAG AAG AGC CTC TCC CTG TCT CCG-GCT AAA     | 4225 |      |    |
| 20 | Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys     |      |      |    |
|    | 1165                                                                | 1170 | 1175 |    |
|    | TGA                                                                 |      | 4228 |    |
| 25 | <b>Sequence No. 2</b>                                               |      |      |    |
|    | <b>Length of sequence: 3463</b>                                     |      |      |    |
| 30 | <b>Type of sequence: Nucleic acid</b>                               |      |      |    |
|    | <b>Sequence</b>                                                     |      |      |    |
|    | ATG AAT TTA CAA CCA ATT TTC TGG ATT GGA CTG ATC AGT TCA GTT TGC     | 48   |      |    |
| 35 | Met Asn Leu Gln Pro Ile Phe Trp Ile Gly Leu Ile Ser Ser Val Cys     |      |      |    |
|    | -20                                                                 | -15  | -10  | -5 |
|    | TGT GTG TTT GCT CAA ACA GAT GAA AAT AGA TGT TTA AAA GCA AAT GCC     | 96   |      |    |
| 40 | Cys Val Phe Ala Gln Thr Asp Glu Asn Arg Cys Leu Lys Ala Asn Ala     |      |      |    |
|    | 1                                                                   | 5    | 10   |    |
|    | AAA TCA TGT GGA GAA TGT ATA CAA GCA GGG CCA AAT TGT GGC TGG TGC     | 144  |      |    |
| 45 | Lys Ser Cys Gly Glu Cys Ile Gln Ala Gly Pro Asn Cys Gly Trp Cys     |      |      |    |
|    | 15                                                                  | 20   | 25   |    |
|    | ACA AAT TCA ACA TTT TTA CAG GAA GGA ATG CCT ACT TCT GCA CCA TGT     | 192  |      |    |
| 50 | Thr Asn Ser Thr Phe Leu Gln Glu Gly Met Pro Thr Ser Ala Arg Cys     |      |      |    |
|    | 30                                                                  | 35   | 40   |    |
| 55 |                                                                     |      |      |    |

## EP 0 896 002 A1

|    |                                                                 |     |
|----|-----------------------------------------------------------------|-----|
|    | GAT GAT TTA GAA CCC TTA AAA AAG AAC CGT TCC CCT CCA GAT GAC ATA | 240 |
| 5  | Asp Asp Leu Glu Ala Leu Lys Lys Lys Gly Cys Pro Pro Asp Asp Ile |     |
|    | 45 50 55 60                                                     |     |
|    | GAA AAT CCC AGA GGC TCC AAA GAT ATA AAC AAA AAT AAA AAT GTC ACC | 288 |
| 10 | Glu Asn Pro Arg Gly Ser Lys Asp Ile Lys Lys Asn Lys Asn Val Thr |     |
|    | 65 70 75                                                        |     |
|    | AAC CGT AGC AAA CGA ACA GCA GAG AAG CTC AAG CCA GAG GAT ATT CAT | 336 |
| 15 | Asn Arg Ser Lys Gly Thr Ala Glu Lys Leu Lys Pro Glu Asp Ile His |     |
|    | 80 85 90                                                        |     |
|    | CAG ATC CAA CCA CAG CAG TTG GTT TTG CGA TTA AGA TCA GGG GAG CCA | 384 |
| 20 | Gln Ile Gln Pro Gln Gln Leu Val Leu Arg Leu Arg Ser Gly Glu Pro |     |
|    | 95 100 105                                                      |     |
|    | CAG ACA TTT ACA TTA AAA TTC AAG AGA CCT GAA GAC TAT CCC ATT GAC | 432 |
| 25 | Gln Thr Phe Thr Leu Lys Phe Lys Arg Ala Glu Asp Tyr Pro Ile Asp |     |
|    | 110 115 120                                                     |     |
|    | CTC TAC TAC CTT ATG GAC CTG TCT TAT TCA ATG AAA GAC GAT TTG GAG | 480 |
| 30 | Leu Tyr Tyr Leu Met Asp Leu Ser Tyr Ser Met Lys Asp Asp Leu Glu |     |
|    | 125 130 135 140                                                 |     |
|    | AAT GTC AAA AGT CTT GCA ACA GAT CTG ATG AAT GAA ATG AGG AGG ATT | 528 |
| 35 | Asn Val Lys Ser Leu Gly Thr Asp Leu Met Asn Glu Met Arg Arg Ile |     |
|    | 145 150 155                                                     |     |
|    | ACT TCG GAC TTC AGA ATT CGA TTT GGC TCA TTT GTC GAA AAC ACT GTG | 576 |
| 40 | Thr Ser Asp Phe Arg Ile Gly Phe Gly Ser Phe Val Glu Lys Thr Val |     |
|    | 160 165 170                                                     |     |
|    | ATG CCT TAC ATT ACC ACA ACA CCA CCT AAG CTC AGG AAC CCT TGC ACA | 624 |
| 45 | Met Pro Tyr Ile Ser Thr Thr Pro Ala Lys Leu Arg Asn Pro Cys Thr |     |
|    | 175 180 185                                                     |     |
|    | ACT GAA CAG AAC TGC ACC ACC CCA TTT AGC TAC AAA AAT GTC CTC ACT | 672 |
| 50 | Ser Glu Gln Asn Cys Thr Thr Pro Phe Ser Tyr Lys Asn Val Leu Ser |     |
|    | 190 195 200                                                     |     |

55

## EP 0896 002 A1

|    |                                                                 |      |
|----|-----------------------------------------------------------------|------|
|    | CTT ACT AAT AAA GCA GAA GTC TTT AAT GAA CTT CTT GCA AAA CAG CGC | 720  |
| 5  | Leu Thr Asn Lys Gly Glu Val Phe Asn Glu Leu Val Gly Lys Gln Arg |      |
|    | 205 210 215 220                                                 |      |
|    | ATA TCT GCA AAT TTG GAT TCT CCA GAA CCT CGT TTC GAT GCC ATC ATC | 768  |
| 10 | Ile Ser Gly Asn Leu Asp Ser Pro Glu Gly Gly Phe Asp Ala Ile Val |      |
|    | 225 230 235                                                     |      |
|    | CAA GTT GCA GTT TGT GGA TCA CTG ATT GCC TGG AGG AAT GTT ACA CGG | 816  |
| 15 | Gln Val Ala Val Cys Gly Ser Leu Ile Gly Trp Arg Asn Val Thr Arg |      |
|    | 240 245 250                                                     |      |
|    | CTG CTC GTG TTT TCC ACA GAT GCC GGG TTT CAC TTT GCT GGA GAT CGG | 864  |
| 20 | Leu Leu Val Phe Ser Thr Asp Ala Gly Phe His Phe Ala Gly Asp Gly |      |
|    | 255 260 265                                                     |      |
|    | AAA CTT GGT CGC ATT GTT TTA CCA AAT GAT GGA CAA TGT CAC CTG GAA | 912  |
| 25 | Lys Leu Gly Gly Ile Val Leu Pro Asn Asp Gly Gln Cys His Leu Glu |      |
|    | 270 275 280                                                     |      |
|    | AAT AAT ATG TAC ACA ATG AGC CAT TAT TAT GAT TAT CCT TCT ATT GCT | 960  |
| 30 | Asn Asn Met Tyr Thr Met Ser His Tyr Tyr Asp Tyr Pro Ser Ile Ala |      |
|    | 285 290 295 300                                                 |      |
|    | CAC CTT GTC CAG AAA CTG AGT GAA AAT AAT ATT CAG ACA ATT TTT GCA | 1008 |
| 35 | His Leu Val Gln Lys Leu Ser Glu Asn Asn Ile Gln Thr Ile Phe Ala |      |
|    | 305 310 315                                                     |      |
|    | GTT ACT GAA GAA TTT CAG CCT GTT TAC AAG GAG CTC AAA AAC TTG ATC | 1056 |
| 40 | Val Thr Glu Glu Phe Gln Pro Val Tyr Lys Glu Leu Lys Asn Leu Ile |      |
|    | 320 325 330                                                     |      |
|    | CCT AAG TCA GCA GTC GGA ACA TTA TCT GCA AAT TCT AGC AAT GTC ATT | 1104 |
| 45 | Pro Lys Ser Ala Val Gly Thr Leu Ser Ala Asn Ser Ser Asn Val Ile |      |
|    | 335 340 345                                                     |      |
|    | CAC TTG ATC ATT GAT GCA TAC AAT TCC CTT TCC TCA GAA GTC ATT TTG | 1152 |
| 50 | Gln Leu Ile Ile Asp Ala Tyr Asn Ser Leu Ser Ser Glu Val Ile Leu |      |
|    | 350 355 360                                                     |      |
| 55 |                                                                 |      |

## EP 0 896 002 A1

|    |                                                                 |     |      |     |
|----|-----------------------------------------------------------------|-----|------|-----|
|    | CAA AAC CGC AAA TTG TCA GAA CGA GTC ACA ATA AGT TAC AAA TCT TAC |     | 1200 |     |
| 5  | Glu Asn Gly Lys Leu Ser Glu Gly Val Thr Ile Ser Tyr Lys Ser Tyr |     |      |     |
|    | 365                                                             | 370 | 375  | 380 |
|    | TGC AAG AAC CGG CTG AAT CGA ACA GGG GAA AAT CGA AGA AAA TGT TCC |     | 1248 |     |
| 10 | Cys Lys Asn Gly Val Asn Gly Thr Gly Glu Asn Gly Arg Lys Cys Ser |     |      |     |
|    | 385                                                             | 390 | 395  |     |
|    | AAT ATT TCC ATT CGA GAT GAG GTT CAA TTT GAA ATT AGC ATA ACT TCA |     | 1296 |     |
| 15 | Asn Ile Ser Ile Gly Asp Glu Val Gln Phe Glu Ile Ser Ile Thr Ser |     |      |     |
|    | 400                                                             | 405 | 410  |     |
|    | AAT AAG TGT CCA AAA AAG GAT TCT GAC AGC TTT AAA ATT AGG CCT CTG |     | 1344 |     |
| 20 | Asn Lys Cys Pro Lys Lys Asp Ser Asp Ser Phe Lys Ile Arg Pro Leu |     |      |     |
|    | 415                                                             | 420 | 425  |     |
|    | GGC TTT ACG GAG GAA GTC CAG GTT ATT CTT CAG TAC ATC TGT GAA TGT |     | 1392 |     |
| 25 | Gly Phe Thr Glu Glu Val Glu Val Ile Leu Gln Tyr Ile Cys Glu Cys |     |      |     |
|    | 430                                                             | 435 | 440  |     |
|    | GAA TGC CAA AGC GAA GGC ATC CCT GAA AGT CCC AAG TGT CAT GAA GGA |     | 1440 |     |
| 30 | Glu Cys Gln Ser Glu Gly Ile Pro Glu Ser Pro Lys Cys His Glu Gly |     |      |     |
|    | 445                                                             | 450 | 455  | 460 |
|    | AAT GGG ACA TTT GAG TGT GGC GCG TGC AGG TGC AAT GAA GGG CCT GTT |     | 1488 |     |
| 35 | Asn Gly Thr Phe Glu Cys Gly Ala Cys Arg Cys Asn Glu Gly Arg Val |     |      |     |
|    | 485                                                             | 470 | 475  |     |
|    | GGT AGA CAT TGT GAA TGC AGC ACA GAT GAA GTT AAC AGT GAA GAC ATG |     | 1536 |     |
| 40 | Gly Arg His Cys Glu Cys Ser Thr Asp Glu Val Asn Ser Glu Asp Met |     |      |     |
|    | 480                                                             | 485 | 490  |     |
|    | GAT GCT TAC TGC AGG AAA GAA AAC AGT TCA GAA ATC TGC AGT AAC AAT |     | 1584 |     |
| 45 | Asp Ala Tyr Cys Arg Lys Glu Asn Ser Ser Glu Ile Cys Ser Asn Asn |     |      |     |
|    | 495                                                             | 500 | 505  |     |
|    | GGA GAG TGC GTC TCC GCA CAG TGT GTT TGT AGG AAG AGG GAT AAT ACA |     | 1632 |     |
| 50 | Gly Glu Cys Val Cys Gly Gln Cys Val Cys Arg Lys Arg Asp Asn Thr |     |      |     |
|    | 510                                                             | 515 | 520  |     |

55

EP 0 896 002 A1

|    |                                                                 |      |
|----|-----------------------------------------------------------------|------|
|    | AAT GAA ATT TAT TCT CCC AAA TTC TGC GAC TGT CAT AAT TTC AAC TGT | 1680 |
| 5  | Asn Glu Ile Tyr Ser Gly Lys Phe Cys Glu Cys Asp Asn Phe Asn Cys |      |
|    | 525 530 535 540                                                 |      |
| 10 | GAT AGA TCC AAT CGC TTA ATT TGT GCA GGA AAT GGT GTT TGC AAG TGT | 1728 |
|    | Asp Arg Ser Asn Gly Leu Ile Cys Gly Gly Asn Gly Val Cys Lys Cys |      |
|    | 545 550 555                                                     |      |
| 15 | CGT GTG TGT GAG TGC AAC CCC AAC TAC ACT GGC ACT GCA TGT GAC TGT | 1776 |
|    | Arg Val Cys Glu Cys Asn Pro Asn Tyr Thr Gly Ser Ala Cys Asp Cys |      |
|    | 560 565 570                                                     |      |
| 20 | TCT TTG GAT ACT AGT ACT TGT GAA GCC AGC AAC GGA CAG ATC TGC AAT | 1824 |
|    | Ser Leu Asp Thr Ser Thr Cys Glu Ala Ser Asn Gly Gln Ile Cys Asn |      |
|    | 575 580 585                                                     |      |
| 25 | GGC CGG GGC ATC TGC GAG TGT GGT GTC TGT AAG TGT ACA GAT CCG AAG | 1872 |
|    | Gly Arg Gly Ile Cys Glu Cys Gly Val Cys Lys Cys Thr Asp Pro Lys |      |
|    | 590 595 600                                                     |      |
| 30 | TTT CAA CGG CAA ACG TGT GAG ATG TGT CAG ACC TGC CTT CGT GTC TGT | 1920 |
|    | Phe Gln Gly Gln Thr Cys Glu Met Cys Gln Thr Cys Leu Gly Val Cys |      |
|    | 605 610 615 620                                                 |      |
| 35 | GCT GAG CAT AAA GAA TGT GTT CAG TGC AGA GCC TTC AAT AAA GGA GAA | 1968 |
|    | Ala Glu His Lys Glu Cys Val Gln Cys Arg Ala Phe Asn Lys Gly Glu |      |
|    | 625 630 635                                                     |      |
| 40 | AAG AAA GAC ACA TGC ACA CAG GAA TGT TCC TAT TTT AAC ATT ACC AAG | 2016 |
|    | Lys Lys Asp Thr Cys Thr Gln Glu Cys Ser Tyr Phe Asn Ile Thr Lys |      |
|    | 640 645 650                                                     |      |
| 45 | GTA GAA ACT CGG GAC AAA TTA CCC CAG CCG GTC CAA CCT GAT CCT GTG | 2064 |
|    | Val Glu Ser Arg Asp Lys Leu Pro Gln Pro Val Gln Pro Asp Pro Val |      |
|    | 655 660 665                                                     |      |
| 50 | TCC CAT TGT AAC GAG AAC GAT CTT GAC GAC TGT TCC TTC TAT TTT ACC | 2112 |
|    | Ser His Cys Lys Glu Lys Asp Val Asp Asp Cys Trp Phe Tyr Phe Thr |      |
|    | 670 675 680                                                     |      |

## EP 0 896 002 A1

5 TAT TCA GTG AAT CGG AAC AAC GAG GTC ATG CTT CAT CTT GTC GAG AAT 2160  
 Tyr Ser Val Asn Gly Asn Asn Glu Val Val Val His Val Val Glu Asn  
 685 690 695 700  
 CCA GAG TGT CCC ACT GGT CCA GAG GAT CCC GAG CTGCTGGAAG CAGGCTCAGC 2213  
 10 Pro Glu Cys Pro Thr Gly Pro Glu Asp Pro Glu  
 705 710  
 GCTCCTGCCT GGACGCATCC CGGCTATGCA GCCCCAGTCC AGGGCAGCAA GCCAGGGCCC 2273  
 15 CTCTGCCTCT TCACCCGGAG CCTCTGCCCG CCCCCACTCAT GCTCAGGGAG AGGGTCTTCT 2333  
 GGCTTTTCC CAGGCTCTGG GCAGGCACAG CCTAGGTGCC CCTAACCCAG GCCCTGCACA 2393  
 CAAAGGGCCA GGTGCTGGGC TCAGACCTGC CAAGAGCCAT ATCCGGGAGG ACCCTGCCCC 2453  
 20 TGACCTAAGC CCACCCAAA GGCCAAACTC TCCACTCCCT CAGCTCGGAC ACCTTCTCTC 2513  
 CTCCAGATT CCAGTAACTC CCAATCTTCT CTCTGCA GAG CCC AAA TCT TGT GAC 2568  
 Glu Pro Lys Ser Cys Asp  
 25 715  
 AAA ACT CAC ACA TGC CCA CCG TGC CCA GGTAAAGCCAG CCCAGGCCTC 2615  
 Lys Thr His Thr Cys Pro Pro Cys Pro  
 30 720 725  
 GCCCTCCAGC TCAAGGGGGG ACAGGTCCCC TAGAGTAGCC TGCATCCAGG GACAGGGCCC 2675  
 AGCCGGGTGC TGACACGTCC ACCTCCATCT CTTCTCA GCA CCT GAA CTC CTG 2728  
 35 Ala Pro Glu Leu Leu  
 730  
 GGG GGA CCG TCA GTC TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC CTC 2776  
 40 Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu  
 735 740 745  
 ATG ATC TCC CGG ACC CCT GAG GTC ACA TGC GTG GTG GTG GAC GTG ACC 2824  
 45 Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser  
 750 755 760  
 CAC GAA GAC CCT GAG GTC AAC TTC AAC TGG TAC GTG GAC GGC GTG GAG 2872  
 50 His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu  
 765 770 775

55

**EP 0896 002 A1**

|    |                                                                    |      |
|----|--------------------------------------------------------------------|------|
|    | CTG CAT AAT CCC AAG ACA AAC CCG CGG GAC GAG CAG TAC AAC ACC ACC    | 2920 |
| 5  | Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr    |      |
|    | 780 785 790 795                                                    |      |
|    | TAC CCG CTG CTC AGC GTC CTC ACC GTC CTC CAC CAG GAC TGG CTG AAT    | 2968 |
| 10 | Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn    |      |
|    | 800 805 810                                                        |      |
|    | GGC AAG GAG TAC AAG TGC AAG GTC TCC AAC AAA GCC CTC CCA CCC CCC    | 3016 |
| 15 | Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro    |      |
|    | 815 820 825                                                        |      |
|    | ATC GAG AAA ACC ATC TCC AAA GCC AAA GGTGGGACCC GTGGGGTGGC          | 3063 |
| 20 | Ile Glu Lys Thr Ile Ser Lys Ala Lys                                |      |
|    | 830 835                                                            |      |
|    | ACGGCCACAT GGACAGAGGC CGGCTCGGCC CACCCCTCTGC CCTGAGAGTG ACCGCTGTAC | 3123 |
| 25 | CAACCTCTGT CCTACA GGG CAG CCC CGA GAA CCA CAG GTG TAC ACC CTG      | 3172 |
|    | Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu                        |      |
| 30 | 840 845                                                            |      |
|    | CCC CCA TCC CGG GAT GAG CTG ACC AAG AAC CAG GTC ACC CTG ACC TGC    | 3220 |
|    | Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys    |      |
| 35 | 850 855 860                                                        |      |
|    | CTG GTC AAA GGC TTC TAT CCC ACC GAC ATC GCC GTG GAG TGG GAG AGC    | 3268 |
|    | Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser    |      |
| 40 | 865 870 875                                                        |      |
|    | AAT GGG CAG CGG GAG AAC AAC TAC AAG ACC ACC CCT CCC GTG CTG GAT    | 3316 |
| 45 | Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp    |      |
|    | 880 885 890 895                                                    |      |
|    | TCC GAC GGC TCC TTC CTC TAC ACC AAG CTC ACC GTG GAC AAG ACC        | 3364 |
| 50 | Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser    |      |
|    | 900 905 910                                                        |      |

55

EP 0 896 002 A1

AGG TCG CAC CAG GGG AAC GTC TTC TCA TGC TCC CTG ATG CAT GAG CCT 3412  
5 Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala  
915 920 925  
CTG CAC AAC CAC TAC ACG CAG AAG ACC CTC TCC CTG TCT CCC CGT AAA 3460  
10 Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys  
930 935 940  
TGA 3463  
15

Sequence No. 3

Length of sequence: 13

20 Type of sequence: Amino acid

Topology: Linear

Kind of sequence: Peptide

25 Sequence

Cys Leu His Gly Pro Glu Ile Leu Asp Val Pro Ser Thr

1 5 10

30

Sequence No. 4

Length of sequence: 31

35 Type of sequence: Nucleic acid

Number of strands: Single

Topology: Linear

40 Kind of sequence: Other nucleic acid, synthetic DNA

Sequence

GCGGATCCCC AGCTGCTGGA ACCAGGCTCA G

31

45

Sequence No. 5

Length of sequence: 27

50 Type of sequence: Nucleic acid

Number of strands: Single

55

Topology: Linear

Kind of sequence: Other nucleic acid, synthetic DNA  
Sequence

CCTCTAGACG CCCGTGGCAC TCATTTA

27

10

Sequence No. 6

Length of sequence: 73

15

Type of sequence: Nucleic acid

Number of strands: Single

Topology: Linear

20 Kind of sequence: Other nucleic acid, synthetic DNA  
Sequence

CTAGACCACC ATGTTCCCCA CCGAGAGCCG ATGGCTTGGG AAGCCAGGGG CGAACCCGGG  
25 CCCCCGGAGCT GCA

73

Sequence No. 7

30 Length of sequence: 65

Type of sequence: Nucleic acid

Number of strands: Single

35

Topology: Linear

Kind of sequence: Other nucleic acid, synthetic DNA  
Sequence

40

GCTTCGGGGC CCGGGTTCGC GCCTCGCTTC CCAAGCCATG CGCTCTCGGT GGGGAACATG  
GTGCT

65

45

Sequence No. 8

Length of sequence: 51

Type of sequence: Nucleic acid

50

Number of strands: Single

Topology: Linear

55

Kind of sequence: Other nucleic acid, synthetic DNA  
Sequence

5

CTCCGGGAGA CGGTGATGCT CTTGCTGTGC CTGGGGGTCC CGACCGGGCAG G

51

10

Sequence No. 9

Length of sequence: 55

Type of sequence: Nucleic acid

Number of strands: Single

15

Topology: Straight chain

Kind of sequence: Other nucleic acid, synthetic DNA  
Sequence

20

CCTGCCGGTC GGGACCCCCA GGCAACAGCAA CAGCATCACCC GTCTCCCCGA GTCGA

55

25

Sequence No. 10

Length of sequence: 37

Type of sequence: Nucleic acid

Number of strands: Single

30

Topology: Linear

Kind of sequence: Other nucleic acid, synthetic DNA  
Sequence

35

CACTGCAGGC AGCCCTTACA ACCTGGACAC TGAGAGC

37

40

Sequence No. 11

Length of sequence: 22

Type of sequence: Nucleic acid

Number of strands: Single

45

Topology: Linear

Kind of sequence: Other nucleic acid, synthetic DNA  
Sequence

50

CCAGAAACCT GAAATCAGC AC

22

55

Sequence No. 12

Length of sequence: 22

Type of sequence: Nucleic acid

Number of strands: Single

Topology: Linear

Kind of sequence: Other nucleic acid, synthetic DNA  
Sequence

GCATTTATGC CGAAAGATGT GC

22

Sequence No. 13

Length of sequence: 29

Type of sequence: Nucleic acid

Number of strands: Single

Topology: Linear

Kind of sequence: Other nucleic acid, synthetic DNA  
Sequence

CGGGATCCGT GAAATAACGT TTGGGTCTT

29

Sequence No. 14

Length of sequence: 22

Type of sequence: Nucleic acid

Number of strands: Single

Topology: Linear

Kind of sequence: Other nucleic acid, synthetic DNA  
Sequence

GCGGAAAAGA TCAATTACAC

22

Sequence No. 15

Length of sequence: 27

55

Type of sequence: Nucleic acid

5 Number of strands: Single

Topology: Linear

Kind of sequence: Other nucleic acid, synthetic DNA

10 Sequence

GTCGGATCCT CTGGACCAGT GGGACAC

27

15 Sequence No. 16

Length of sequence: 10

Type of sequence: Amino acid

20 Topology: Linear

Kind of sequence: Peptide

Sequence

25 Gly Pro Glu Ile Leu Asp Val Pro Ser Thr

1 5 10

30 Sequence No. 17

Length of sequence: 10

Type of sequence: Amino acid

35 Topology: Linear

Kind of sequence: Peptide

Sequence

40 Gly Pro Glu Ile Leu Glu Val Pro Ser Thr

1 5 10

45 Sequence No. 18

Length of sequence: 6

Type of sequence: Amino acid

50 Topology: Linear

Kind of sequence: Peptide

55

## Sequence

5 Gly Arg Gly Asp Ser Pro

1 5

Sequence No. 19

10 Length of sequence: 4675

Type of sequence: Nucleic acid

Sequence

|    |                                                                 |     |
|----|-----------------------------------------------------------------|-----|
| 15 | ATG GGG CCA GAA CGG ACA GGG GCC GCG CCG CTG CCG CTG CTG CTG GTG | 48  |
|    | Met Gly Pro Glu Arg Thr Gly Ala Ala Pro Leu Pro Leu Leu Val     |     |
| 20 | -25 -20 -15                                                     |     |
|    | TTA GCG CTC AGT CAA GGC ATT TTA AAT TGT TGT TTG GCC TAC AAT GTT | 96  |
|    | Leu Ala Leu Ser Gln Gly Ile Leu Asn Cys Cys Leu Ala Tyr Asn Val |     |
| 25 | -10 -5 1                                                        |     |
|    | GGT CTC CCA GAA GCA AAA ATA TTT TCC GGT CCT TCA ACT GAA CAG TTT | 144 |
|    | Gly Leu Pro Glu Ala Lys Ile Phe Ser Gly Pro Ser Ser Glu Gln Phe |     |
| 30 | 5 10 15                                                         |     |
|    | GGG TAT GCA GTG CAG CAG TTT ATA AAT CCA AAA GGC AAC TGG TTA CTG | 192 |
|    | Gly Tyr Ala Val Gln Gln Phe Ile Asn Pro Lys Gly Asn Trp Leu Leu |     |
| 35 | 20 25 30 35                                                     |     |
|    | GTT GGT TCA CCC TGG AGT GGC TTT CCT GAG AAC CGA ATG GGA GAT GTG | 240 |
|    | Val Gly Ser Pro Trp Ser Gly Phe Pro Glu Asn Arg Met Gly Asp Val |     |
| 40 | 40 45 50                                                        |     |
|    | TAT AAA TGT CCT GTT GAC CTA TCC ACT GCC ACA TGT GAA AAA CTA AAT | 288 |
|    | Tyr Lys Cys Pro Val Asp Leu Ser Thr Ala Thr Cys Glu Lys Leu Asn |     |
| 45 | 55 60 65                                                        |     |
|    | TTG CAA ACT TCA ACA ACC ATT CCA AAT GTT ACT GAC ATG AAA ACC AAC | 336 |
|    | Leu Gln Thr Ser Thr Ser Ile Pro Asn Val Thr Glu Met Lys Thr Asn |     |
| 50 | 70 75 80                                                        |     |

55

EP 0 896 002 A1

|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|    | ATG | AGC | CTC | GGC | TTG | ATC | CTC | ACC | AGC | AAC | ATG | CGA | ACT | CGA | GGT | TTT | 384 |
| 5  | Met | Ser | Leu | Gly | Leu | Ile | Leu | Thr | Arg | Asn | Met | Gly | Thr | Gly | Gly | Phe |     |
|    | 85  |     | 90  |     | 95  |     |     |     |     |     |     |     |     |     |     |     |     |
| 10 | CTC | ACA | TGT | GGT | CCT | CTG | TGG | GCA | CAG | CAA | TCT | GGG | AAT | CAG | TAT | TAC | 432 |
|    | Leu | Thr | Cys | Gly | Pro | Leu | Trp | Ala | Gln | Gln | Cys | Gly | Asn | Gln | Tyr | Tyr |     |
| 15 | 100 |     | 105 |     | 110 |     | 115 |     |     |     |     |     |     |     |     |     |     |
|    | ACA | ACG | GGT | CTG | TGT | TCT | GAC | ATC | AGT | CCT | GAT | TTT | CAG | CTC | TCA | GCC | 480 |
| 20 | Thr | Thr | Gly | Val | Cys | Ser | Asp | Ile | Ser | Pro | Asp | Phe | Gln | Leu | Ser | Ala |     |
|    |     |     |     |     |     |     |     | 120 |     | 125 |     | 130 |     |     |     |     |     |
| 25 | AGC | TTC | TCA | CCT | GCA | ACT | CAG | CCC | TGC | CCT | TCC | CTC | ATA | GAT | GTT | CTG | 528 |
|    | Ser | Phe | Ser | Pro | Ala | Thr | Gln | Pro | Cys | Pro | Ser | Leu | Ile | Asp | Val | Val |     |
| 30 |     |     |     |     |     | 135 |     | 140 |     | 145 |     |     |     |     |     |     |     |
|    | GTT | GTG | TGT | GAT | GAA | TCA | AAT | AGT | ATT | TAT | CCT | TGG | GAT | GCA | GTA | AAG | 576 |
| 35 | Val | Val | Cys | Asp | Glu | Ser | Asn | Ser | Ile | Tyr | Pro | Trp | Asp | Ala | Val | Lys |     |
|    |     |     |     |     |     | 150 |     | 155 |     | 160 |     |     |     |     |     |     |     |
| 40 | AAT | TTT | TTG | GAA | AAA | TTT | GTA | CAA | GGC | CTT | GAT | ATA | GGC | CCC | ACA | AAG | 624 |
|    | Asn | Phe | Leu | Glu | Lys | Phe | Val | Gln | Gly | Leu | Asp | Ile | Gly | Pro | Thr | Lys |     |
| 45 |     |     |     |     |     | 165 |     | 170 |     | 175 |     |     |     |     |     |     |     |
|    | ACA | CAG | GTG | GGG | TTA | ATT | CAG | TAT | GCC | AAT | AAT | CCA | AGA | GTT | GTG | TTT | 672 |
| 50 | Thr | Gln | Val | Gly | Leu | Ile | Gln | Tyr | Ala | Asn | Asn | Pro | Arg | Val | Val | Phe |     |
|    |     |     |     |     |     | 180 |     | 185 |     | 190 |     | 195 |     |     |     |     |     |
|    | AAC | TTG | AAC | ACA | TAT | AAA | ACC | AAA | GAA | GAA | ATG | ATT | GTA | GCA | ACA | TCC | 720 |
| 55 | Asn | Leu | Asn | Thr | Tyr | Lys | Thr | Lys | Glu | Glu | Met | Ile | Val | Ala | Thr | Ser |     |
|    |     |     |     |     |     | 200 |     | 205 |     | 210 |     |     |     |     |     |     |     |
|    | CAG | ACA | TCC | CAA | TAT | GGT | GGG | GAC | CTC | ACA | AAC | ACA | TTC | GGG | GCA | ATT | 768 |
| 60 | Gln | Thr | Ser | Gln | Tyr | Gly | Gly | Asp | Leu | Thr | Asn | Thr | Phe | Gly | Ala | Ile |     |
|    |     |     |     |     |     | 215 |     | 220 |     | 225 |     |     |     |     |     |     |     |
|    | CAA | TAT | GCA | ACA | AAA | TAT | CCC | TAT | TCA | GCA | GCT | TCT | GGT | GGG | CGA | CGA | 816 |
| 65 | Gln | Tyr | Ala | Arg | Lys | Tyr | Ala | Tyr | Ser | Ala | Alu | Ser | Gly | Gly | Arg | Arg |     |
|    |     |     |     |     |     | 230 |     | 235 |     | 240 |     |     |     |     |     |     |     |

## EP 0 896 002 A1

|    |                                                                 |      |
|----|-----------------------------------------------------------------|------|
|    | AGT GCT ACG AAA GCA ATG CTA CTT CTA ACT GAC GCT GAA TCA CAT GAT | 864  |
| 5  | Ser Ala Thr Lys Val Met Val Val Val Thr Asp Gly Glu Ser His Asp |      |
|    | 245 250 255                                                     |      |
|    | GCT TCA ATG TTG AAA GCT GTG ATT GAT CAA TGC AAC CAT GAC AAT ATA | 912  |
| 10 | Gly Ser Met Leu Lys Ala Val Ile Asp Gln Cys Asn His Asp Asn Ile |      |
|    | 260 265 270 275                                                 |      |
|    | CTG AGG TTT GGC ATA GCA CTT CTT GGG TAC TTA AAC AGA AAC GCC CTT | 960  |
| 15 | Leu Arg Phe Gly Ile Ala Val Leu Gly Tyr Leu Asn Arg Asn Ala Leu |      |
|    | 280 285 290                                                     |      |
|    | GAT ACT AAA AAT TTA ATA AAA GAA ATA AAA GCG ATC GCT AGT ATT CCA | 1008 |
| 20 | Asp Thr Lys Asn Leu Ile Lys Glu Ile Lys Ala Ile Ala Ser Ile Pro |      |
|    | 295 300 305                                                     |      |
|    | ACA GAA AGA TAC TTT TTC AAT GTG TCT GAT GAA GCA GCT CTA CTA GAA | 1056 |
| 25 | Thr Glu Arg Tyr Phe Phe Asn Val Ser Asp Glu Ala Ala Leu Leu Glu |      |
|    | 310 315 320                                                     |      |
|    | AAG GCT GGG ACA TTA GGA GAA CAA ATT TTC AGC ATT GAA GGT ACT GTT | 1104 |
| 30 | Lys Ala Gly Thr Leu Gly Glu Gln Ile Phe Ser Ile Glu Gly Thr Val |      |
|    | 325 330 335                                                     |      |
|    | CAA GGA GGA GAC AAC TTT CAG ATG GAA ATG TCA CAA GTG GGA TTC AGT | 1152 |
| 35 | Gln Gly Asp Asn Phe Gln Met Glu Met Ser Gln Val Gly Phe Ser     |      |
|    | 340 345 350 355                                                 |      |
|    | GCA GAT TAC TCT TCT CAA AAT GAT ATT CTG ATG CTG GGT GCA GTG GGA | 1200 |
| 40 | Ala Asp Tyr Ser Ser Gln Asn Asp Ile Leu Met Leu Gly Ala Val Gly |      |
|    | 360 365 370                                                     |      |
|    | GCT TTT GGC TGG AGT GGG ACC ATT GTC CAG AAG ACA TCT CAT GGC CAT | 1248 |
| 45 | Ala Phe Gly Trp Ser Gly Thr Ile Val Gln Lys Thr Ser His Gly His |      |
|    | 375 380 385                                                     |      |
|    | TTC ATC TTT CCT AAA CAA CCC TTT GAC CAA ATT CTG CAG GAC AGA AAT | 1296 |
| 50 | Leu Ile Phe Pro Lys Gln Ala Phe Asp Gln Ile Leu Gln Asp Arg Asn |      |
|    | 390 395 400                                                     |      |

55

## EP 0 896 002 A1

|    |                                                                 |      |
|----|-----------------------------------------------------------------|------|
|    | CAC ACT TCA TAT TTA CGT TAC TCT GTG CCT GCA ATT TCT ACT GGA GAA | 1344 |
| 5  | His Ser Ser Tyr Leu Gly Tyr Ser Val Ala Ala Ile Ser Thr Gly Glu |      |
|    | 405 410 415                                                     |      |
|    | AGC ACT CAC TTT GCT CGT CCT CGG GCA AAT TAT ACC CGC CAG         | 1392 |
| 10 | Ser Thr His Phe Val Ala Gly Ala Pro Arg Ala Asn Tyr Thr Gly Gln |      |
|    | 420 425 430 435                                                 |      |
|    | ATA CTG CTA TAT AGT CTG AAT GAG AAT GCC AAT ATC ACG GTT ATT CAG | 1440 |
| 15 | Ile Val Leu Tyr Ser Val Asn Glu Asn Gly Asn Ile Thr Val Ile Gln |      |
|    | 440 445 450                                                     |      |
|    | GCT CAC CGA GGT GAC CAG ATT GGC TCC TAT TTT CGT ACT CTG CTG TGT | 1488 |
| 20 | Ala His Arg Gly Asp Gln Ile Gly Ser Tyr Phe Gly Ser Val Leu Cys |      |
|    | 455 460 465                                                     |      |
|    | TCA GTT GAT GTG GAT AAA GAC ACC ATT ACA GAC GTG CTC TTG GTA GGT | 1536 |
| 25 | Ser Val Asp Val Asp Lys Asp Thr Ile Thr Asp Val Leu Leu Val Gly |      |
|    | 470 475 480                                                     |      |
|    | GCA CCA ATG TAC ATG AGT GAC CTA AAC AAA GAG GAA CGA AGA GTC TAC | 1584 |
| 30 | Ala Pro Met Tyr Met Ser Asp Leu Lys Lys Glu Glu Gly Arg Val Tyr |      |
|    | 485 490 495                                                     |      |
|    | CTG TTT ACT ATC AAA AAG GGC ATT TTG GGT CAG CAC CAA TTT CTT GAA | 1632 |
| 35 | Leu Phe Thr Ile Lys Lys Gly Ile Leu Gly Gln His Gln Phe Leu Glu |      |
|    | 500 505 510 515                                                 |      |
|    | GGC CCC GAG GGC ATT GAA AAC ACT CGA TTT GGT TCA GCA ATT GCA GCT | 1680 |
| 40 | Gly Pro Glu Gly Ile Glu Asn Thr Arg Phe Gly Ser Ala Ile Ala Ala |      |
|    | 520 525 530                                                     |      |
|    | CTT TCA GAC ATC AAC ATG GAT GGC TTT AAT GAT GTG ATT GTT GGT TCA | 1728 |
| 45 | Leu Ser Asp Ile Asn Met Asp Gly Phe Asn Asp Val Ile Val Gly Ser |      |
|    | 535 540 545                                                     |      |
|    | CCA CTA GAA AAT CAG AAT TCT GGA GCT GTA TAC ATT TAC AAT GGT CAT | 1776 |
| 50 | Pro Leu Glu Asn Gln Asn Ser Gly Ala Val Tyr Ile Tyr Asn Gly His |      |
|    | 550 555 560                                                     |      |

55

## EP 0 896 002 A1

|    |     |     |     |     |     |     |     |     |     |     |      |     |     |     |            |     |      |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|------------|-----|------|
|    | CAG | GCC | ACT | ATC | CGC | ACA | AAC | TAT | TCC | CAG | AAA  | ATC | TTC | GGA | TCC        | GAT | 1824 |
| 5  | Gln | Gly | Thr | Ile | Arg | Thr | Lys | Tyr | Ser | Gln | Lys  | Ile | Leu | Gly | Ser        | Asp |      |
|    | 565 |     |     | 570 |     |     |     |     |     |     |      |     |     |     | 575        |     |      |
|    | GGA | GCC | TTT | AGG | AGC | CAT | CTC | CAG | TAC | TTT | GGG  | AGG | TCC | TTC | GAT        | GCC | 1872 |
| 10 | Gly | Ala | Phe | Arg | Ser | His | Leu | Gln | Tyr | Phe | Gly  | Arg | Ser | Leu | Asp        | Gly |      |
|    | 580 |     |     | 585 |     |     |     |     |     |     |      |     |     |     | 595        |     |      |
|    | TAT | GGA | GAT | TTA | AAT | GGG | GAT | TCC | ATC | ACC | GAT  | GTG | TCT | ATT | GGT        | GCC | 1920 |
| 15 | Tyr | Gly | Asp | Leu | Asn | Gly | Asp | Ser | Ile | Thr | Asp  | Val | Ser | Ile | Gly        | Ala |      |
|    | 600 |     |     | 605 |     |     |     |     |     |     |      |     |     |     | 610        |     |      |
|    | TTT | GGA | CAA | GTG | GTT | CAA | CTC | TGG | TCA | CAA | ACT  | ATT | GCT | GAT | <u>GTA</u> | GCT | 1968 |
| 20 | Phe | Gly | Gln | Val | Val | Gln | Leu | Trp | Ser | Gln | Ser  | Ile | Ala | Asp | Val        | Ala |      |
|    | 615 |     |     | 620 |     |     |     |     |     |     |      |     |     |     | 625        |     |      |
|    | ATA | GAA | GCT | TCA | TTC | ACA | CCA | GAA | AAA | ATC | ACT  | TTG | GTC | AAC | AAG        | AAT | 2016 |
| 25 | Ile | Glu | Ala | Ser | Phe | Thr | Pro | Glu | Lys | Ile | Thr  | Leu | Val | Asn | Lys        | Asn |      |
|    | 630 |     |     | 635 |     |     |     |     |     |     |      |     |     |     | 640        |     |      |
|    | GCT | CAG | ATA | ATT | CTC | AAA | CTC | TCC | TTC | ACT | GCA  | AAG | TTC | AGA | CCT        | ACT | 2064 |
| 30 | Ala | Gln | Ile | Ile | Leu | Lys | Leu | Cys | Phe | Ser | Ala  | Lys | Phe | Arg | Pro        | Thr |      |
|    | 645 |     |     | 650 |     |     |     |     |     |     |      |     |     |     | 655        |     |      |
|    | AAG | CAA | AAC | AAT | CAA | GTG | GCC | ATT | GTA | TAT | 'AAC | ATC | ACA | CTT | GAT        | GCA | 2112 |
| 35 | Lys | Gln | Asn | Asn | Gln | Val | Ala | Ile | Val | Tyr | Asn  | Ile | Thr | Leu | Asp        | Ala |      |
|    | 660 |     |     | 665 |     |     |     |     |     |     |      |     |     |     | 675        |     |      |
|    | GAT | GGA | TTT | TCA | TCC | ACA | CTA | ACC | TCC | AGG | GGG  | TTA | TTT | AAA | GAA        | AAC | 2160 |
| 40 | Asp | Gly | Phe | Ser | Ser | Arg | Val | Thr | Ser | Arg | Gly  | Leu | Phe | Lys | Glu        | Asn |      |
|    | 680 |     |     | 685 |     |     |     |     |     |     |      |     |     |     | 690        |     |      |
|    | AAT | GAA | AGG | TGC | CTG | CAG | AAG | AAT | ATG | GTA | GTA  | AAT | CAA | CCA | CAG        | ACT | 2208 |
| 45 | Asn | Glu | Arg | Cys | Leu | Gln | Lys | Asn | Met | Val | Val  | Asp | Gln | Ala | Gln        | Ser |      |
|    | 695 |     |     | 700 |     |     |     |     |     |     |      |     |     |     | 705        |     |      |
|    | TGC | CCC | GAC | CAC | ATC | ATT | TAT | ATA | CAG | GAC | CCC  | TCT | GAT | GTT | CTC        | AAC | 2256 |
| 50 | Cys | Pro | Glu | His | Ile | Ile | Tyr | Ile | Gln | Glu | Pro  | Ser | Asp | Val | Val        | Asn |      |
|    | 710 |     |     | 715 |     |     |     |     |     |     |      |     |     |     | 720        |     |      |

55

## EP 0 896 002 A1

|    |                                                                          |      |
|----|--------------------------------------------------------------------------|------|
|    | TCT TTG GAT TTG CCT GTG GAC ATC ACT CTG GAA AAC CCT CCC ACT ACC          | 2304 |
| 5  | Ser Leu Asp Leu Arg Val Asp Ile Ser Leu Glu Asn Pro Gly Thr Ser          |      |
|    | 725                    730                    735                        |      |
|    | CCT GCC CTT GAA GCC TAT TCT GAG ACT GCC AAG GTC TTC ACT ATT CCT          | 2352 |
| 10 | Pro Ala Leu Glu Ala Tyr Ser Glu Thr Ala Lys Val Phe Ser Ile Pro          |      |
|    | 740                    745                    750                    755 |      |
|    | TTC CAC AAA GAC TGT GGT GAG GAT GGA CTT TCC ATT TCT GAT CTA GTC          | 2400 |
| 15 | Phe His Lys Asp Cys Gly Glu Asp Gly Leu Cys Ile Ser Asp Leu Val          |      |
|    | 760                    765                    770                        |      |
|    | CTA GAT GTC CGA CAA ATA CCA GCT CCT CAA GAA CAA CCC TTT ATT GTC          | 2448 |
| 20 | Leu Asp Val Arg Gln Ile Pro Ala Ala Gln Glu Gln Pro Phe Ile Val          |      |
|    | 775                    780                    785                        |      |
|    | AGC AAC CAA AAC AAA AGG TTA ACA TTT TCA GTA ACA CTG AAA AAT AAA          | 2496 |
| 25 | Ser Asn Gln Asn Lys Arg Leu Thr Phe Ser Val Thr Leu Lys Asn Lys          |      |
|    | 790                    795                    800                        |      |
|    | AGG GAA AGT CCA TAC AAC ACT GGA ATT GTT GTT GAT TTT TCA GAA AAC          | 2544 |
| 30 | Arg Glu Ser Ala Tyr Asn Thr Gly Ile Val Val Asp Phe Ser Glu Asn          |      |
|    | 805                    810                    815                        |      |
|    | TTG TTT TTT GCA TCA TTC TCC CTA CCG GTT GAT GGG ACA GAA GTA ACA          | 2592 |
| 35 | Leu Phe Phe Ala Ser Phe Ser Leu Pro Val Asp Gly Thr Glu Val Thr          |      |
|    | 820                    825                    830                    835 |      |
|    | TGC CAG GTG GCT GCA TCT CAG AAG TCT GTT GCC TGC GAT GTA GCC TAC          | 2640 |
| 40 | Cys Gln Val Ala Ala Ser Gln Lys Ser Val Ala Cys Asp Val Gly Tyr          |      |
|    | 840                    845                    850                        |      |
|    | CCT GCT TTA AAG AGA GAA CAA CAG GTG ACT TTT ACT ATT AAC TTT GAC          | 2688 |
| 45 | Pro Ala Leu Lys Arg Glu Gln Gln Val Thr Phe Thr Ile Asn Phe Asp          |      |
|    | 855                    860                    865                        |      |
|    | TTC AAT CTT CAA AAC CTT CAG AAT CAG CGG TCT CTC ACT TTC CAA GCC          | 2736 |
| 50 | Phe Asn Leu Gln Asn Leu Gln Asn Gln Ala Ser Leu Ser Phe Gln Ala          |      |
|    | 870                    875                    880                        |      |

## EP 0896 002 A1

|    |                                                                          |      |
|----|--------------------------------------------------------------------------|------|
|    | TTA ACT GAA AGC CAA GAA AAC AAC AAG GCT GAT AAT TTC GTC AAC CTC          | 2784 |
| 5  | Leu Ser Glu Ser Gln Glu Glu Asn Lys Ala Asp Asn Leu Val Asn Leu          |      |
|    | 885                    890                    895                        |      |
|    | AAA ATT CCT CTC CTG TAT GAT GCT GAA ATT CAC TTA ACA AGA TCT ACC          | 2832 |
| 10 | Lys Ile Pro Leu Leu Tyr Asp Ala Glu Ile His Leu Thr Arg Ser Thr          |      |
|    | 900                    905                    910                    915 |      |
|    | AAC ATA AAT TTT TAT GAA ATC TCT TCG GAT CGG AAT GTT CCT TCA ATC          | 2880 |
| 15 | Asn Ile Asn Phe Tyr Glu Ile Ser Ser Asp Gly Asn Val Pro Ser Ile          |      |
|    | 920                    925                    930                        |      |
|    | GTG CAC AGT TTT GAA GAT GTT GGT CCA AAA TTC ATC TTC TCC CTG AAG          | 2928 |
| 20 | Val His Ser Phe Glu Asp Val Gly Pro Lys Phe Ile Phe Ser Leu Lys          |      |
|    | 935                    940                    945                        |      |
|    | GTA ACA ACA GGA AGT GTT CCA GTA AGC ATG GCA ACT GTA ATC ATC CAC          | 2976 |
| 25 | Val Thr Thr Gly Ser Val Pro Val Ser Met Ala Thr Val Ile Ile His.         |      |
|    | 950                    955                    960                        |      |
|    | ATC CCT CAG TAT ACC AAA GAA AAG AAC CCA CTG ATG TAC CTG ACT GGG          | 3024 |
| 30 | Ile Pro Gln Tyr Thr Lys Glu Lys Asn Pro Leu Met Tyr Leu Thr Gly          |      |
|    | 965                    970                    975                        |      |
|    | GTG CAA ACA GAC AAG GCT GGT GAC ATC ACT TGT AAT GCA GAT ATC AAT          | 3072 |
| 35 | Val Gln Thr Asp Lys Ala Gly Asp Ile Ser Cys Asn Ala Asp Ile Asn          |      |
|    | 980                    985                    990                    995 |      |
|    | CCA CTG AAA ATA GGA CAA ACA TCT TCT GCA TCT TTC AAA ACT GAA              | 3120 |
| 40 | Pro Leu Lys Ile Gly Gln Thr Ser Ser Val Ser Phe Lys Ser Glu              |      |
|    | 1000                    1005                    1010                     |      |
|    | AAT TTC ACC CAC ACC AAA GAA TTG AAC TCC AGA ACT GCT TCC TGT ACT          | 3168 |
| 45 | Asn Phe Arg His Thr Lys Glu Leu Asn Cys Arg Thr Ala Ser Cys Ser          |      |
|    | 1015                    1020                    1025                     |      |
|    | AAT GTT ACC TGC TGG TTG AAA GAC GTT CAC ATG AAA GGA GAA TAC TTT          | 3216 |
| 50 | Asn Val Thr Cys Trp Leu Lys Asp Val His Met Lys Gly Glu Tyr Phe          |      |
|    | 1030                    1035                    1040                     |      |

55

## EP 0 896 002 A1

|    |                                                                    |      |
|----|--------------------------------------------------------------------|------|
|    | CTT AAT GTG ACT ACC AGA ATT TCG AAC GGG ACT TTC GCA TCA TCA ACG    | 3264 |
| 5  | Val Asn Val Thr Thr Arg Ile Trp Asn Gly Thr Phe Ala Ser Ser Thr    |      |
|    | 1045 1050 1055                                                     |      |
|    | TTC CAG ACA GCA CAG CTA ACC GCA GCT GCA GAA ATC AAC ACC TAT AAC    | 3312 |
| 10 | Phe Gln Thr Val Gln Leu Thr Ala Ala Ala Glu Ile Asn Thr Tyr Asn    |      |
|    | 1060 1065 1070 1075                                                |      |
|    | CCT CAG ATA TAT GTG ATT GAA GAT AAC ACT GTT ACC ATT CCC CTG ATG    | 3360 |
| 15 | Pro Glu Ile Tyr Val Ile Glu Asp Asn Thr Val Thr Ile Pro Leu Met    |      |
|    | 1080 1085 1090                                                     |      |
|    | ATA ATG AAA CCT GAT GAG AAA GCC GAA GCA CCA ACA GAT CCC GAG        | 3405 |
| 20 | Ile Met Lys Pro Asp Glu Lys Ala Glu Val Pro Thr Asp Pro Glu        |      |
|    | 1095 1100 1105                                                     |      |
|    | CTGCTGGAAC CAGGCTCAGC GCTCCTGCCT GCACGGATCC CGGCTATGCA GCCCCAGTCC  | 3465 |
| 25 | AGGGCAGCAA GGCAGGGCCC CTCTGCCTCT TCACCCGGAG CCTCTGCCCG CCCCCACTCAT | 3525 |
|    | GCTCAGGGAG AGGGTCTTCT GGCTTTTCC CAGGCTCTGG GCAGGCACAG GCTAGGTGCC   | 3585 |
|    | CCTAACCCAG CCCCTGCACA CAAACGGGCA GGTGCTGGGC TCAGACCTGC CAAGAGCCAT  | 3645 |
| 30 | ATCCGGGAGG ACCCTGCCCC TGACCTAACG CCACCCAAA GGCCAAACTC TCCACTCCCT   | 3705 |
|    | CAGCTCGGAC ACCTTCTCTC CTCCCCAGATT CCAGTAACTC CCAATTTCT CTCTGCA     | 3762 |
|    | GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC CCA CCG TGC CCA        | 3807 |
| 35 | Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro        |      |
|    | 1110 1115 1120                                                     |      |
|    | GGTAAGCCAG CCCAGGCCTC GCCCTCCAGC TCAAGGGGG ACAGGTGCC TAGAGTAGCC    | 3867 |
| 40 | TGCATCCAGG GACAGGGCCC AGCCGGGTGC TGACACCTCC ACCTCCATCT CTTCCTCA    | 3925 |
|    | GCA CCT GAA CTC CTG GGG GGA CCG TCA GTC TTC CTC TTC CCC CCA AAA    | 3973 |
|    | Ala Pro Glu Leu Leu Gly Pro Ser Val Phe Leu Phe Pro Pro Lys        |      |
| 45 | 1125 1130 1135                                                     |      |
|    | CCC AAC GAC ACC CTC ATG ATC TCC CCG ACC CCT GAG GTC ACA TGC GTG    | 4021 |
| 50 | Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val    |      |
|    | 1140 1145 1150                                                     |      |

## EP 0896 002 A1

|    |                                                                    |      |
|----|--------------------------------------------------------------------|------|
|    | GTG GTG GAC GTG ACC CAC GAA GAC CCT GAG GTC AAG TTC AAC TGG TAC    | 4069 |
| 5  | Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr    |      |
|    | 1155 1160 1165                                                     |      |
|    | GTG GAC GGC GTG GAG GTG CAT AAT GCC AAG ACA AAG CCG CGG GAG GAG    | 4117 |
| 10 | Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu    |      |
|    | 1170 1175 1180 1185                                                |      |
|    | CAG TAC AAC AGC ACG TAC CCG GTG GTC AGC CTC CTC ACC GTC CTG CAC    | 4165 |
| 15 | Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His    |      |
|    | 1190 1195 1200                                                     |      |
|    | CAG GAC TGG CTG AAT GGC AAG GAG TAC AAG TGC AAG GTC TCC AAC AAA    | 4213 |
| 20 | Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys    |      |
|    | 1205 1210 1215                                                     |      |
|    | GCC CTC CCA GCC CCC ATC GAG AAA ACC ATC TCC AAA GCC AAA            | 4255 |
| 25 | Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys            |      |
|    | 1220 1225 1230                                                     |      |
|    | GGTGGGACCC GTGGGGTGCG AGGGCCACAT GGACAGAGGC CGGCTGGGCC CACCCCTCTGC | 4315 |
| 30 | CCTGAGACTG ACCGCTGTAC CAACCTCTGT CCTACA CGG CAG CCC CGA GAA CCA    | 4369 |
|    | Gly Gln Pro Arg Glu Pro                                            |      |
| 35 | 1235                                                               |      |
|    | CAG GTG TAC ACC CTG CCC CCA TCC CGG GAT GAG CTG ACC AAG AAC CAG    | 4417 |
|    | Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln    |      |
| 40 | 1240 1245 1250                                                     |      |
|    | GTC AGC CTG ACC TGC CTG GTC AAA GGC TTC TAT CCC ACC GAC ATC GCC    | 4465 |
|    | Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala    |      |
| 45 | 1255 1260 1265                                                     |      |
|    | GTG GAG TGG GAG ACC AAT GGG CAG CCG GAG AAC AAC TAC AAG ACC ACC    | 4513 |
|    | Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr    |      |
| 50 | 1270 1275 1280 1285                                                |      |

55

EP 0 896 002 A1

CCT CCC CTG CTG GAT TCC GAC CCC TCC TTC TTC CTC TAC ACC AAC CTC 4561  
Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu  
5 1290 1295 1300  
ACC GTG GAC AAG AGC AGG TGG CAG CAG CGG AAC GTC TTC TCA TGC TCC 4609  
Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser  
10 1305 1310 1315  
CTG ATG CAT GAG GCT CTG CAC AAC CAC TAC ACC CAG AAG AGC CTC TCC 4657  
15 Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser  
1320 1325 1330  
CTG TCT CCC CGT AAA TGA 4675  
20 Leu Ser Pro Gly Lys  
1335  
Sequence No. 20  
25 Length of sequence: 27  
Type of sequence: Nucleic acid  
Number of strands: Single  
30 Topology: Linear  
Kind of sequence: Other nucleic acid, synthetic DNA  
Sequence  
35 GCTCGACCAA ACCCAGGCCA ACTACGG 27  
  
Sequence No. 21  
40 Length of sequence: 21  
Type of sequence: Nucleic acid  
Number of strands: Single  
45 Topology: Linear  
Kind of sequence: Other nucleic acid, synthetic DNA  
Sequence  
50 ATACTGCCCT GATGACCATT C 21

55

Sequence No. 22

Length of sequence: 22

Type of sequence: Nucleic acid

Number of strands: Single

Topology: Linear

Kind of sequence: Other nucleic acid, synthetic DNA

Sequence

15 GATGGCTTTA ATGATGTGAT TG

22

Sequence No. 23

Length of sequence: 21

Type of sequence: Nucleic acid

Number of strands: Single

Topology: Linear

Kind of sequence: Other nucleic acid, synthetic DNA

Sequence

30 TGTTGGTACT TCGGCTTTCT C

21

Sequence No. 24

Length of sequence: 8

Type of sequence: Amino acid

Topology: Circular

40 Kind of sequence: Peptide

Sequence

45 Cys Ile Pro Glu Leu Ile Val Cys

1

5

Sequence No. 25

Length of sequence: 8

55

EP 0 896 002 A1

Type of sequence: Amino acid

Topology: Circular

5 Kind of sequence: Peptide

Sequence

10 Cys Met Arg Tyr Thr Ser Ala Cys

1 5

15 Sequence No. 26

Length of sequence: 8

Type of sequence: Amino acid

Topology: Circular

20 Kind of sequence: Peptide

Sequence

25 Cys Glu Trp Met Lys Arg Phe Cys

1 5

30 Sequence No. 27

Length of sequence: 8

Type of sequence: Amino acid

Topology: Circular

35 Kind of sequence: Peptide

Sequence

40 Cys Tyr Thr Thr Arg Leu Lys Cys

1 5

45 Sequence No. 28

Length of sequence: 8

Type of sequence: Amino acid

Topology: Circular

50 Kind of sequence: Peptide

55

Sequence

5 Cys Leu Arg Tyr Ser Val Pro Cys  
1 5

Sequence No. 29

10 Length of sequence: 8  
Type of sequence: Amino acid  
15 Topology: Circular  
Kind of sequence: Peptide  
Sequence

20 Cys Ile Val Asn Arg Leu Gly Cys  
1 5

Sequence No. 30

25 Length of sequence: 8  
Type of sequence: Amino acid  
30 Topology: Circular  
Kind of sequence: Peptide  
Sequence

35 Cys Gly Leu Gln Ala Leu Pro Cys  
1 5

Sequence No. 31

40 Length of sequence: 8  
Type of sequence: Amino acid  
45 Topology: Circular  
Kind of sequence: Peptide  
Sequence

50 Cys Lys Leu Lys Gly Thr Met Cys  
1 5

55

**Claims**

1. A chimeric protein comprising the  $\alpha$  chain or  $\beta$  chain of an integrin and the heavy chain or light chain of an immunoglobulin.
- 5 2. A chimeric protein heterodimer complex, characterized in that a chimeric protein stated in claim 1 comprising the  $\alpha$  chain of an integrin and the heavy chain or light chain of an immunoglobulin and a chimeric protein stated in claim 1 comprising the  $\beta$  chain of the integrin and the heavy chain or light chain of the immunoglobulin are associated with each other.
- 10 3. A chimeric protein heterodimer complex, according to claim 2, wherein the chimeric proteins stated in claim 1 are associated with each other in any of the following combinations (1), (2) and (3):
  - (1) An  $\alpha$  chain • immunoglobulin heavy chain- $\beta$  chain • immunoglobulin heavy chain chimeric protein heterodimer complex, in which a chimeric protein comprising the  $\alpha$  chain of an integrin and the heavy chain of an immunoglobulin and a chimeric protein comprising the  $\beta$  chain of the integrin and the heavy chain of the immunoglobulin are associated with each other.
  - 15 (2) An  $\alpha$  chain • immunoglobulin heavy chain- $\beta$  chain • immunoglobulin light chain chimeric protein heterodimer complex, in which a chimeric protein comprising the  $\alpha$  chain of an integrin and the heavy chain of an immunoglobulin and a chimeric protein comprising the  $\beta$  chain of the integrin and the light chain of the immunoglobulin are associated with each other.
  - 20 (3) An  $\alpha$  chain • immunoglobulin light chain- $\beta$  chain • immunoglobulin heavy chain chimeric protein heterodimer complex, in which a chimeric protein comprising the  $\alpha$  chain of an integrin and the light chain of an immunoglobulin and a chimeric protein comprising of the  $\beta$  chain of the integrin and the heavy chain of the immunoglobulin are associated with each other.
- 25 4. A chimeric protein or a chimeric protein heterodimer complex, according to any one of claims 1 through 3, wherein the  $\alpha$  chain of an integrin is  $\alpha 1$ ,  $\alpha 2$ ,  $\alpha 3$ ,  $\alpha 4$ ,  $\alpha 5$ ,  $\alpha 6$ ,  $\alpha 7$ ,  $\alpha 8$ ,  $\alpha 9$ ,  $\alpha v$ ,  $\alpha L$ ,  $\alpha M$ ,  $\alpha X$ ,  $\alpha IIb$  or  $\alpha E$ .
- 30 5. A chimeric protein or a chimeric protein heterodimer complex, according to any one of claims 1 through 3, wherein the  $\beta$  chain of an integrin is  $\beta 1$ ,  $\beta 2$ ,  $\beta 3$ ,  $\beta 4$ ,  $\beta 5$ ,  $\beta 6$ ,  $\beta 7$  or  $\beta 8$ .
6. A chimeric protein heterodimer complex, according to claim 2 or 3, wherein the  $\alpha$  chain of an integrin is  $\alpha 4$  or  $\alpha 2$  and the  $\beta$  chain is  $\beta 1$ .
- 35 7. A chimeric protein or a chimeric protein heterodimer complex, according to any one of claims 1 through 3, wherein the chimeric protein comprising the  $\alpha 4$  of an integrin and the heavy chain of an immunoglobulin is identified as the amino acid sequence of sequence No. 1.
8. A chimeric protein or a chimeric protein heterodimer complex, according to any one of claims 1 through 3, wherein the chimeric protein comprising the  $\alpha 2$  of an integrin and the heavy chain of an immunoglobulin is identified as the amino acid sequence of sequence No. 19.
- 40 9. A chimeric protein or a chimeric protein heterodimer complex, according to any one of claims 1 through 3, wherein the chimeric protein comprising the  $\beta 1$  of an integrin and the heavy chain of an immunoglobulin is identified as the amino acid sequence of sequence No. 2.
10. A DNA coding for a chimeric protein stated in claim 1.
- 45 50 11. A DNA coding for a chimeric protein stated in claim 1, wherein the  $\alpha$  chain of an integrin is  $\alpha 1$ ,  $\alpha 2$ ,  $\alpha 3$ ,  $\alpha 4$ ,  $\alpha 5$ ,  $\alpha 6$ ,  $\alpha 7$ ,  $\alpha 8$ ,  $\alpha 9$ ,  $\alpha v$ ,  $\alpha L$ ,  $\alpha M$ ,  $\alpha X$ ,  $\alpha IIb$  or  $\alpha E$ .
12. A DNA coding for a chimeric protein stated in claim 1, wherein the  $\beta$  chain of an integrin is  $\beta 1$ ,  $\beta 2$ ,  $\beta 3$ ,  $\beta 4$ ,  $\beta 5$ ,  $\beta 6$ ,  $\beta 7$  or  $\beta 8$ .
- 55 13. A DNA, according to claim 11, which is identified as the nucleotide sequence of sequence No. 1 or 19.
14. A DNA, according to claim 12, which is identified as the nucleotide sequence of sequence No. 2.

EP 0 896 002 A1

15. A recombinant vector, wherein a DNA stated in claim 10 is functionally linked to an expression control sequence.
16. A recombinant vector, wherein a DNA stated in claim 11 is functionally linked to an expression control sequence.
- 5 17. A recombinant vector, wherein a DNA stated in claim 12 is functionally linked to an expression control sequence.
18. A recombinant vector, wherein a DNA stated in claim 13 is functionally linked to an expression control sequence.
19. A recombinant vector, wherein the DNA stated in claim 14 is functionally linked to an expression control sequence.
- 10 20. An animal cell, comprising being transfected simultaneously by a recombinant vector in which a DNA coding for a chimeric protein comprising the  $\alpha$  chain of an integrin and the heavy chain or light chain of an immunoglobulin is functionally linked to an expression control sequence, and a recombinant vector in which a DNA coding for a chimeric protein comprising the  $\beta$  chain of the integrin and the heavy chain or light chain of the immunoglobulin is functionally linked to an expression control sequence.
- 15 21. An animal cell, according to claim 20, which is transfected simultaneously by the recombinant vectors stated in claims 16 and 17.
- 20 22. An animal cell, according to claim 20, which is transfected simultaneously by the recombinant vectors stated in claims 18 and 19.
23. A method for producing the chimeric protein heterodimer complex stated in claim 2, comprising culturing the animal cell stated in claim 20.
- 25 24. A drug, comprising a chimeric protein or chimeric protein heterodimer complex stated in any one of claims 1 through 9.
- 25 25. A drug composition, comprising a chimeric protein or chimeric protein heterodimer complex stated in any one of claims 1 through 9.
26. A platelet substitute, comprising an isolated extracellular matrix receptor as an active ingredient.
27. A platelet substitute, according to claim 26, wherein the extracellular matrix receptor is an integrin.
- 35 28. A platelet substitute, according to claim 27, wherein the  $\alpha$  chain of an integrin is  $\alpha 1$ ,  $\alpha 2$ ,  $\alpha 3$ ,  $\alpha 4$ ,  $\alpha 5$ ,  $\alpha 6$ ,  $\alpha 7$ ,  $\alpha 8$ ,  $\alpha 9$ ,  $\alpha v$ ,  $\alpha L$ ,  $\alpha M$ ,  $\alpha X$ ,  $\alpha IIb$  or  $\alpha E$ .
29. A platelet substitute, according to claim 27, wherein the  $\beta$  chain of an integrin is  $\beta 1$ ,  $\beta 2$ ,  $\beta 3$ ,  $\beta 4$ ,  $\beta 5$ ,  $\beta 6$ ,  $\beta 7$  or  $\beta 8$ .
- 40 30. A platelet substitute, according to claim 27, wherein the integrin is integrin  $\alpha 2\beta 1$ .
31. A platelet substitute, according to claim 26, wherein the extracellular matrix receptor is a chimeric protein heterodimer complex comprising an extracellular matrix receptor and an immunoglobulin.
- 45 32. A platelet substitute, according to claim 31, wherein the chimeric protein heterodimer complex is a chimeric protein heterodimer complex comprising an integrin and an immunoglobulin.
33. A platelet substitute, according to claim 32, wherein the chimeric protein heterodimer complex is the chimeric protein heterodimer complex stated in claim 2.
- 50 34. A platelet substitute, according to claim 33, wherein the chimeric protein heterodimer complex is the chimeric protein heterodimer complex stated in claim 6.
- 55 35. A platelet substitute, according to any one of claims 26 through 34, wherein the extracellular matrix receptor is bound to a carrier when used.
36. A platelet substitute, according to any one of claims 26 through 35, which is hemostatic.

**EP 0 896 002 A1**

37. A method for testing the binding between a chimeric protein heterodimer complex stated in any one of claims 2 to 9, and a ligand or cells, comprising the steps of bringing a chimeric protein heterodimer complex comprising an integrin and an immunoglobulin, and a ligand or cells into contact with each other, to prepare a mixture, and measuring the amount of the chimeric protein heterodimer complex bound to the ligand or cells or the amount of the ligand or cells bound to the chimeric protein heterodimer complex.
- 5                   38. A method for searching for a substance capable of being bound to an integrin, comprising using a chimeric protein heterodimer complex stated in any one of claims 2 though 9.
- 10                 39. A substance capable of being bound to an integrin, obtained by using the method stated in claim 38.
- 15                 40. A method for searching for a substance which inhibits the binding between an integrin and a ligand, comprising using the method stated in claim 37.
- 20                 41. A method, according to claim 40, wherein the ligand is a fibronectin fragment identified as sequence No. 3 or a collagen.
- 25                 42. A protein, peptide or low molecular weight compound which inhibits the binding between an integrin and a ligand, obtained by using the method stated in claim 40 or 41.
- 30                 43. A method for measuring the amount of a ligand of an integrin, comprising using a chimeric protein heterodimer complex stated in any one of claims 2 through 9.
- 35                 44. A method for identifying an extracellular matrix exposed region, comprising using a chimeric protein heterodimer complex stated in any one of claims 2 through 9.

30

35

40

45

50

55

Fig. 1



Fig. 2



Fig. 3



Fig. 4



Fig. 5



Fig. 6



## INTERNATIONAL SEARCH REPORT

International application No.  
PCT/JP98/00370

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                        |                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| <b>A. CLASSIFICATION OF SUBJECT MATTER</b><br>Int.Cl <sup>®</sup> C07K14/705, C12N15/12, G01N33/50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                        |                                                                                  |
| According to International Patent Classification (IPC) or to both national classification and IPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                        |                                                                                  |
| <b>B. FIELDS SEARCHED</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                        |                                                                                  |
| Minimum documentation searched (classification system followed by classification symbols)<br>Int.Cl <sup>®</sup> C07K14/705, C12N15/12, G01N33/50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                        |                                                                                  |
| Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                        |                                                                                  |
| Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)<br>BIOSIS (DERWENT), WPI (DERWENT), GenBank/EMBL (geneseq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |                                                                                  |
| <b>C. DOCUMENTS CONSIDERED TO BE RELEVANT</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                        |                                                                                  |
| Category <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Citation of document, with indication, where appropriate, of the relevant passages                                                                     | Relevant to claim No.                                                            |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WO, 92/13559, A1 (PROGENICS PHARMACEUTICALS, INC.), August 20, 1992 (20. 08. 92)<br>& AU, 9214385, A                                                   | 1-25, 26-34,<br>37-38, 40, 41                                                    |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WO, 95/02421, A1 (ALKERMES INC.), January 26, 1995 (26. 01. 95) (Family: none)                                                                         | 1-25, 26-34,<br>37-38, 40, 41                                                    |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JP, 6-87899, A (Educational Foundation Fujita Gakuen), March 29, 1994 (29. 03. 94)<br>& EP, 466505, A2 & US, 5475100, A                                | 1-25, 26-34,<br>37-38, 40, 41                                                    |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nucleic Acids Res., Vol. 10, No. 13 (1982) J.W. Ellison et al., "The nucleotide sequence of a human immunoglobulinC , gene" p.4071-4079                | 1-25, 26-34,<br>37-38, 40, 41                                                    |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cell, Vol. 29, No. 2 (1982) N. Takahashi et al., "Structure of human immunoglobulin gamma genes: implications for evolution of gene family", p.671-679 | 1-25, 26-34,<br>37-38, 40, 41                                                    |
| <input checked="" type="checkbox"/> Further documents are listed in the continuation of Box C. <input type="checkbox"/> See patent family annex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |                                                                                  |
| * Special categories of cited documents:<br>"A" documents defining the general state of the art which is not considered to be of particular relevance<br>"B" earlier document but published on or after the international filing date<br>"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)<br>"O" document referring to an oral disclosure, use, exhibition or other means<br>"P" document published prior to the international filing date but later than the priority date claimed                                                                               |                                                                                                                                                        |                                                                                  |
| "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention<br>"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone<br>"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art<br>"&" document member of the same patent family |                                                                                                                                                        |                                                                                  |
| Date of the actual completion of the international search<br>June 8, 1998 (08. 06. 98)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        | Date of mailing of the international search report<br>June 16, 1998 (16. 06. 98) |
| Name and mailing address of the ISA/<br>Japanese Patent Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        | Authorized officer                                                               |
| Facsimile No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                        | Telephone No.                                                                    |

Form PCT/ISA/210 (second sheet) (July 1992)

| INTERNATIONAL SEARCH REPORT                          |                                                                                                                                                                                                                                               | International application No.<br>PCT/JP98/00370 |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT |                                                                                                                                                                                                                                               |                                                 |
| Category*                                            | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                            | Relevant to claim No.                           |
| Y                                                    | EMBO J., Vol. 8, No. 5 (1989) Y. Takada et al., "The primary structure of the $\alpha^4$ subunit of VLA-4: homology to other integrins and a possible cell-cell adhesion function", p.1361-1368                                               | 1-25, 26-34,<br>37-38, 40, 41                   |
| Y                                                    | Mol. Immunol., Vol. 32 (1995) M.C. Szabo et al., "Identification of two variants of the human integrin $\alpha^4$ subunit", p.1453-1454                                                                                                       | 1-25, 26-34,<br>37-38, 40, 41                   |
| Y                                                    | J. Cell Biol. Vol. 105 (1987) W.S. Argraves et al., "Amino acid sequence of the human fibronectin receptor", p.1183-1190                                                                                                                      | 1-25, 26-34,<br>37-38, 40, 41                   |
| Y                                                    | US, 5516634, A (Newman P.J.), May 14, 1996 (14. 05. 96) (Family: none)                                                                                                                                                                        | 1-25, 26-34,<br>37-38, 40, 41                   |
| Y                                                    | J. Cell Biol., Vol. 109 (1989) Y. Takada et al., "The primary structure of the VLA-2/collagen receptor $\alpha^2$ subunit (platelet GPIa): homology to other integrins and the presence of a possible collagen-binding domain", p.397-407     | 1-25, 26-34,<br>37-38, 40, 41                   |
| Y                                                    | J. Clin. Invest., Vol. 92 (1993) S. Santoso et al., "The human platelet alloantigens Br <sup>a</sup> and Br <sup>b</sup> are associated with a single amino acid polymorphism on glycoprotein Ia (Integrin subunit $\alpha^2$ )", p.2427-2432 | 1-25, 26-34,<br>37-38, 40, 41                   |
| X/Y                                                  | JP, 7-500721, A (The Regents of the University of California), January 26, 1995 (26. 01. 95) & WO, 92/12236, A1                                                                                                                               | 39/37-38,<br>43, 44                             |
| X/Y                                                  | JP, 5-505179, A (La Jolla Cancer Research Foundation), August 5, 1993 (05. 08. 93) & WO, 91/09874, A & EP, 507836, A & US, 5169930, A                                                                                                         | 39/37-38,<br>43, 44                             |
| Y                                                    | JP, 5-502228, A (Scripps Clinic & Research Foundation), April 22, 1993 (22. 04. 93) & WO, 91/07977, A & EP, 502124, A & US, 5196511, A                                                                                                        | 26-36, 42                                       |

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

**This Page is Inserted by IFW Indexing and Scanning  
Operations and is not part of the Official Record**

**BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** \_\_\_\_\_

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.**