Постановка задачи

Дано: $\{x_1,\ldots,x_\ell\}\subset X$ — выборка; $y_i=y(x_i)\in\{1,\ldots,K\},\ i=1,\ldots,\ell$ — известные ответы.

Найти: $a: X \to Y$ — алгоритм, решающую функцию, приближающую y на всём множестве объектов X.

Вопросы:

- Как свести задачу к бинарной классификации?
- 2 Как измерить качество решения?

Идея: построить K классификаторов, отделяющих каждый класс от остальных.

Получим K задач бинарной классификации:

- Объекты: $X^k = X^\ell$;
- Ответы: $y_i^k = [y_i = k];$
- Оценка принадлежности: $b_k(x) \in \mathbb{R}$.

Итоговый алгоритм:

$$a(x) = \operatorname*{arg\,max}_{k=1,\ldots,K} b_k(x).$$

All-vs-all

Идея: построить классификаторы для каждой пары классов.

Получим K(K-1) задач бинарной классификации:

- ullet Объекты: $X^{km} = \{x \in X^{\ell} \mid y(x) = k \$ или $y(x) = m\};$
- \bullet Ответы: $y_i^{km} = [y_i = k];$
- ullet Оценка принадлежности: $b_{km}(x) \in \mathbb{R}$;
- Симметрия: $b_{km}(x) = -b_{mk}(x)$.

Итоговый алгоритм:

$$a(x) = \underset{k=1,\dots,K}{\operatorname{arg max}} \sum_{m=1}^{K} b_{km}(x).$$

Сравнение

One-vs-all:

- Линейное число классификаторов, но каждый обучается на полной выборке.
- Может возникнуть проблема с несбалансированными выборками.

All-vs-all:

 Квадратичное число классификаторов, но каждый обучается на небольшой подвыборке.

Метрики качества

Доля правильных ответов (accuracy):

$$\frac{1}{\ell}\sum_{i=1}^{\ell}[a(x_i)=y_i].$$

Матрица ошибок:

	y = 1	 y = K
a(x) = 1	q_{11}	 q_{1K}
a(x) = K	q_{K1}	 q _{KK}

где

$$q_{ij} = \sum_{m=1}^{\ell} [a(x_m) = i][y_m = j].$$

Метрики качества

Как обобщить точность, полноту, AUC?

Рассмотрим K задач отделения одного из классов от остальных.

- Микро-усреднение (micro-averaging):
 - Найдем TP, FP, FN, TN для каждой из задач;
 - Усредним их по всем задачам;
 - Вычислим итоговую метрику.

Вклад каждого класса зависит от его размера.

- Макро-усреднение (macro-averaging):
 - Вычислим итоговую метрику для каждой из задач;
 - Усредним по всем классам.

Все классы вносят равный вклад.

Метрики качества

	TP	FP	FN	TN
y = 1	900	120	100	930
y=2	850	70	150	980
y = 3	10	100	40	1900

Чему равна точность (precision)?

Микро-усреднение:

TP	FP	FN	TN
586.7	96.7	96.7	1270

Точность: 86%

Макро-усреднение:

Класс 1	Класс 2	Класс 3
88%	92%	9%

Точность: 63%

Заключение

- Многоклассовую классификацию можно свести к серии бинарных задач
- Два подхода: one-vs-all и all-vs-all
- Вычисление качества также производится через сведение к бинарным задачам
- Микро-усреднение учитывает наиболее крупные классы
- Макро-усреднение учитывает все классы одинаково, без учета их размеров