**Chemistry Fundamentals** 

**LECTURE 6 : Atomic Structure:** 

Number & Mass

Mohamed Kamal



# The Atomic Revolution - From Indivisible to Complex

1 — Ancient Greeks

"Atomos" (indivisible) - atoms as fundamental, indivisible particles

<sup>2</sup> — Dalton (1803)

Elements composed of indivisible atoms; identical atoms have same mass

3 — Thomson (1897)

Discovery of electrons - atoms are divisible!

4 — Rutherford (1909)

Gold Foil Experiment revealed dense nucleus with orbiting electrons

Modern Understanding: Nucleus (protons + neutrons) surrounded by electron cloud

Size Perspective: If nucleus were a marble, atom would be size of football stadium



#### **Atomic Number - The Element's Identity Card**

**Definition:** Atomic number (Z) = number of protons in nucleus

**Fundamental Rule:** Atomic number defines the element - change protons, change element

**Neutral Atom Rule:** Number of protons = number of electrons

**Examples:** H (Z=1), He (Z=2), Li (Z=3), C (Z=6), O (Z=8), Au (Z=79)



**Periodic Table Organization:** Elements arranged by increasing atomic number

**Historical Note:** Mendeleev arranged by mass, modern table by atomic number



# Mass Number - Accounting for Nuclear Mass

#### **Definition**

Mass number (A) = number of protons + number of neutrons

Mathematical Relationship: A = Z + N (where N = number of neutrons)

#### **Notation**

Example: Carbon-12 can be written as <sup>12</sup>C, C-12, or Carbon-12

Example Calculation: Carbon-12: A = 6 + 6 = 12

#### **Mass Distribution**

>99.9% of atom's mass in nucleus

Electron Mass: ~1/1836 of proton mass (negligible for mass number)

# Solving Nuclear Composition Problems

**Given Information Types:** Element symbol, atomic number, mass number

#### **Problem-Solving Strategy:**

- 1. Identify Z from periodic table or given information
- 2. Use A = Z + N to find missing quantity
- 3. For neutral atoms: electrons = protons = Z

## Example 1: Find neutrons in 31P

- Z = 15 (from periodic table), A= 31
- N = A Z = 31 15 = 16
   neutrons

# Example 2: Find mass number of sulfur with 18 neutrons

- Z = 16 (from periodic table), N= 18
- $A = Z + N = 16 + 18 = 34 (^{34}S)$



8.2

3.2

8.2

8.8

### SOTOPE NOTATIO

C C MAS 19 MAS



MAS 19



#### **Isotope Notation and Symbols**

#### **Standard Notation**

<sup>A</sup><sub>k</sub>X (A = mass number, Z = atomic number, X = element symbol)

Writing Rules: Mass number top-left, atomic number bottomleft of symbol

#### **Alternative Notations**

2 X-A format (Carbon-14) or hyphen notation

Common Elements: <sup>1</sup>H, <sup>2</sup>H, <sup>3</sup>H (hydrogen isotopes), <sup>12</sup>C, <sup>14</sup>C (carbon isotopes)

#### Complete Example

<sup>238</sup><sub>92</sub>U

3

1

Mass number: 238

Atomic number: 92 (Uranium)

Neutrons: 238 - 92 = 146

**Practical Applications:** Nuclear medicine, dating methods, nuclear power

#### **Atomic Mass Units and Relative Mass**

#### **Definition and Standards**

Atomic mass unit (amu) = 1/12 mass of <sup>12</sup>C atom

Conversion Factor: 1 amu =  $1.66054 \times 10^{-27}$  kg

Reference Standard: 12C exactly 12.000000 amu by

definition

Historical Development: Originally based on oxygen-16, changed to carbon-12 in 1961

#### Particle Masses

| Particle | Approximate Mass |
|----------|------------------|
| Proton   | 1.007 amu        |
| Neutron  | 1.009 amu        |
| Electron | 0.0005 amu       |

Mass Defect: Actual atomic mass slightly less than sum of particles (Einstein's E=mc²)



#### Calculating Average Atomic Mass

Weighted Average Concept: Account for isotope abundance in nature

**Formula:** Average atomic mass =  $\Sigma$ (isotope mass × fractional abundance)

1

#### **Identify Isotopes**

Chlorine has two main isotopes:

<sup>35</sup>Cl: 34.97 amu (75.77% abundance)

<sup>37</sup>Cl: 36.97 amu (24.23% abundance)

2

# Convert Percentages

Convert percentages to decimal form:

75.77% = 0.7577

24.23% = 0.2423

3

#### Calculate Weighted Average

 $(34.97 \times 0.7577) + (36.97 \times 0.2423) = 35.45$  amu

This matches the periodic table value for chlorine

**Common Error:** Forgetting to convert percentages to decimals

#### Applications and Real-World Connections



#### **Medical Applications**

Radioisotopes for imaging (PET scans) and cancer treatment



#### **Carbon Dating**

<sup>14</sup>C decay for archaeological dating of organic materials



#### **Nuclear Power**

<sup>235</sup>U fission in power plants generating electricity



#### **Forensic Science**

Isotope ratios for determining origin of materials



#### **Environmental Monitoring**

Radioactive tracers to study ecosystems and pollution



#### **Food Safety**

Irradiation using radioactive isotopes to preserve food

# Next Lecture: Isotopes

Mohamed Kamal

