Interpreting and Critiquing Causal Evidence Day 2 - Fundamental Critiques

Jonathan Phillips

January 11, 2024

Introduction

•000000

Introduction

Door-to-door political campaigning works

- Door-to-door political campaigning works
- Proportional Representation electoral systems have more parties

- Door-to-door political campaigning works
- Proportional Representation electoral systems have more parties
- ▶ Democracies do not go to war with each other

- ▶ Door-to-door political campaigning works
- Proportional Representation electoral systems have more parties
- Democracies do not go to war with each other
- ► Development helps democracies endure

- ▶ Door-to-door political campaigning works
- Proportional Representation electoral systems have more parties
- Democracies do not go to war with each other
- ▶ Development helps democracies endure
- ► ...And that's about it

► Thousands of books and papers have *not* generated much knowledge about what explains political outcomes

- ► Thousands of books and papers have *not* generated much knowledge about what explains political outcomes
 - ► Many add **descriptive** knowledge

- ► Thousands of books and papers have *not* generated much knowledge about what explains political outcomes
 - ► Many add **descriptive** knowledge
 - ► Many investigate **specific** events, not generalizable variables

- ► Thousands of books and papers have *not* generated much knowledge about what explains political outcomes
 - ► Many add **descriptive** knowledge
 - ► Many investigate **specific** events, not generalizable variables
 - ► Many highlight **correlations** between variables

► Why aren't case studies enough?

- Why aren't case studies enough?
 - ► If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?

- Why aren't case studies enough?
 - ► If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?
 - ► Yes! But that's not sufficient

- Why aren't case studies enough?
 - ► If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?
 - ► Yes! But that's not sufficient
- ► The problem is that there are many variables that could explain success

- Why aren't case studies enough?
 - ► If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?
 - ► Yes! But that's not sufficient
- The problem is that there are many variables that could explain success
- And detailed case studies can help us identify plausible hypotheses

- Why aren't case studies enough?
 - ► If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?
 - ► Yes! But that's not sufficient
- ► The problem is that there are many variables that could explain success
- And detailed case studies can help us identify plausible hypotheses
- ▶ But the only way to *confirm* the hypothesis is to verify that:

- Why aren't case studies enough?
 - ► If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?
 - ► Yes! But that's not sufficient
- The problem is that there are many variables that could explain success
- And detailed case studies can help us identify plausible hypotheses
- ▶ But the only way to *confirm* the hypothesis is to verify that:
 - 1. In other cases, the presence of the condition also produces the same outcome (if not, the explanation is not sufficient)

- Why aren't case studies enough?
 - ► If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?
 - ► Yes! But that's not sufficient
- The problem is that there are many variables that could explain success
- And detailed case studies can help us identify plausible hypotheses
- ▶ But the only way to *confirm* the hypothesis is to verify that:
 - 1. In other cases, the presence of the condition also produces the same outcome (if not, the explanation is not sufficient)
 - 2. The absence of the condition does not produce the same outcome (if not, the explanation is not necessary)

► For example, we could look at India and conclude large Asian countries produce successful democracies

- ► For example, we could look at India and conclude large Asian countries produce successful democracies
 - ► But...China

- ► For example, we could look at India and conclude large Asian countries produce successful democracies
 - ► But...China
 - ► But...Costa Rica

- ► For example, we could look at India and conclude large Asian countries produce successful democracies
 - ▶ But...China
 - ► But...Costa Rica
- ► Only by looking at other cases, particularly 'control' cases (small non-Asian countries) can we understand if this explanation is plausible

Introduction

0000000

► Even when we compare multiple cases:

- ► Even when we compare multiple cases:
- ► Correlation is not causation

- ► Even when we compare multiple cases:
- ▶ Correlation is not causation
 - ► If we look hard enough we can always find correlations

- ► Even when we compare multiple cases:
- ▶ Correlation is not causation
 - ▶ If we look hard enough we can always find correlations
 - ► By chance...

- ► Even when we compare multiple cases:
- ▶ Correlation is not causation
 - ► If we look hard enough we can always find correlations
 - ► By chance...
 - ▶ Due to complex social patterns...

- ► Even when we compare multiple cases:
- ▶ Correlation is not causation
 - ► If we look hard enough we can always find correlations
 - ► By chance...
 - ▶ Due to complex social patterns...
 - ▶ But we cannot conclude that there is a causal effect of *D* on *Y*

- ► Even when we compare multiple cases:
- ▶ Correlation is not causation
 - ► If we look hard enough we can always find correlations
 - ► By chance...
 - ► Due to complex social patterns...
 - ▶ But we cannot conclude that there is a causal effect of *D* on *Y*
- ► *More* data will not help

- ► Even when we compare multiple cases:
- ▶ Correlation is not causation
 - If we look hard enough we can always find correlations
 - ► By chance...
 - ▶ Due to complex social patterns...
 - ▶ But we cannot conclude that there is a causal effect of *D* on *Y*
- ► More data will not help
- ► The problem is the *type* of data; it does not allow us to answer the causal question

Divorce rate in Maine

correlates with

Per capita consumption of margarine

tylervigen.com

Worldwide non-commercial space launches

correlates with

Sociology doctorates awarded (US)

tylervigen.com

US crude oil imports from Norway

correlates with

Drivers killed in collision with railway train

tylervigen.com

Figure 1. Correlation between Countries' Annual Per Capita Chocolate Consumption and the Number of Nobel Laureates per 10 Million Population.

► Why isn't correlation enough?

Learning from Data

- ► Why isn't correlation enough?
 - ► For **prediction**, correlation is fine: If we know a country has chocolate consumption of 10kg/yr/capita we can reasonably predict it will have about 25 Nobel Laureates

Learning from Data

- ► Why isn't correlation enough?
 - ► For **prediction**, correlation is fine: If we know a country has chocolate consumption of 10kg/yr/capita we can reasonably predict it will have about 25 Nobel Laureates
 - ▶ But for intervention, correlation does not help: forcing people to eat more chocolate does nothing on its own to produce more Nobel Laureates

Learning from Data

- ► Why isn't correlation enough?
 - ► For **prediction**, correlation is fine: If we know a country has chocolate consumption of 10kg/yr/capita we can reasonably predict it will have about 25 Nobel Laureates
 - ► But for **intervention**, correlation does not help: forcing people to eat more chocolate does nothing on its own to produce more Nobel Laureates
 - ► For **explanation**, correlation also fails it is no *explanation* to say that Switzerland has the most Nobel Laureates because it has the highest chocolate consumption

Section 2

► A focus on a single explanatory variable *D* requires us to clearly define this 'treatment'

- ► A focus on a single explanatory variable *D* requires us to clearly define this 'treatment'
- ► AND to clearly define a control

- ► A focus on a single explanatory variable *D* requires us to clearly define this 'treatment'
- ► AND to clearly define a control
 - ▶ What is the opposite of investing \$1bn in education?

- ► A focus on a single explanatory variable *D* requires us to clearly define this 'treatment'
- ► AND to clearly define a control
 - ▶ What is the opposite of investing \$1bn in education?
 - ► No investment, or investing it elsewhere?

- ► A focus on a single explanatory variable *D* requires us to clearly define this 'treatment'
- ► AND to clearly define a control
 - ▶ What is the opposite of investing \$1bn in education?
 - ► No investment, or investing it elsewhere?
- ▶ Define treatment:

$$D_i = \begin{cases} 1, & \text{if treated} \\ 0, & \text{if not treated} \end{cases}$$

Introduction

Defining our outcome is also crucial:

- ▶ Defining our outcome is also crucial:
 - ► Can we measure our outcome of interest?

- Defining our outcome is also crucial:
 - ► Can we measure our outcome of interest?
 - ► Is that outcome the end of the causal chain?

- ▶ Defining our outcome is also crucial:
 - ► Can we measure our outcome of interest?
 - ▶ Is that outcome the end of the causal chain?
 - Tempting to look at many outcomes, but the risk of cherry-picking

- ▶ Defining our outcome is also crucial:
 - ► Can we measure our outcome of interest?
 - ► Is that outcome the end of the causal chain?
 - Tempting to look at many outcomes, but the risk of cherry-picking
 - If we study 20 outcomes, on average one will show a significant effect even with no real causal effect

► The **causal effect** of treatment is how each unit's outcome differs when it is treated and not treated

- ➤ The causal effect of treatment is how each unit's outcome differs when it is treated and not treated
- ► This means comparing the **Potential Outcomes** for unit *i*:

$$Y_{Di} = \begin{cases} Y_{1i} \text{ Potential Outcome if unit i treated} \\ Y_{0i} \text{ Potential Outcome if unit i NOT treated} \end{cases}$$

- ➤ The causal effect of treatment is how each unit's outcome differs when it is treated and not treated
- ► This means comparing the **Potential Outcomes** for unit *i*:

$$Y_{Di} = \begin{cases} Y_{1i} \text{ Potential Outcome if unit i treated} \\ Y_{0i} \text{ Potential Outcome if unit i NOT treated} \end{cases}$$

▶ Individual Treatment Effect for unit *i*: $\alpha_i = Y_{1i} - Y_{0i}$

- ► The **causal effect** of treatment is how each unit's outcome differs when it is treated and not treated
- ► This means comparing the **Potential Outcomes** for unit *i*:

$$Y_{Di} = \begin{cases} Y_{1i} \text{ GDP Growth of Brazil in 2010 if a Democracy} \\ Y_{0i} \text{ GDP Growth of Brazil in 2010 if NOT a Democracy} \end{cases}$$

► Individual Treatment Effect for unit *i*: $\alpha_i = Y_{1i} - Y_{0i}$

► We are relying on **counterfactuals**

- ► We are relying on **counterfactuals**
 - What would have happened to the same unit if the treatment had not happened?

- ► We are relying on **counterfactuals**
 - ► What would have happened to the same unit if the treatment had not happened?
 - ► Would World War I still have happened if Archduke Franz Ferdinand had not been assassinated in 1914?

- ► We are relying on **counterfactuals**
 - What would have happened to the same unit if the treatment had not happened?
 - ► Would World War I still have happened if Archduke Franz Ferdinand had not been assassinated in 1914?
 - Would people have voted for Brexit if the campaign had been better regulated?

- ► We are relying on **counterfactuals**
 - What would have happened to the same unit if the treatment had not happened?
 - ► Would World War I still have happened if Archduke Franz Ferdinand had not been assassinated in 1914?
 - Would people have voted for Brexit if the campaign had been better regulated?
 - ► Would Brazil have won the 2014 World Cup if Neymar had not been injured?

- ► We are relying on **counterfactuals**
 - What would have happened to the same unit if the treatment had not happened?
 - ► Would World War I still have happened if Archduke Franz Ferdinand had not been assassinated in 1914?
 - Would people have voted for Brexit if the campaign had been better regulated?
 - ► Would Brazil have won the 2014 World Cup if Neymar had not been injured?

Introduction 0000000

Treatment Assignment

Potential Outcomes are just another Variable for each Unit

	GDP Growth if		
	Democracy	NOT Democ-	Effect
		racy	
	Y ₁	Y ₀	$Y_1 - Y_0$
Brasil	6	3	3
Argentina	8	5	3
Uruguay	3	3	0
Bolivia	0	2	-2
Colombia	4	4	0
Peru	4	2	2

▶ Political Science is not about explaining individual events

- Political Science is not about explaining individual events
- ► We ideally want general theories that apply to all our units

- Political Science is not about explaining individual events
- We ideally want general theories that apply to all our units
- ➤ To explain a systematic treatment not a single event we need multiple counterfactual comparisons

- ► Political Science is not about explaining individual events
- ► We ideally want general theories that apply to all our units
- ➤ To explain a systematic treatment not a single event we need multiple counterfactual comparisons
- ► We know how democracy works in Europe; the question is what will happen if it becomes more common in the whole world?

- Political Science is not about explaining individual events
- ► We ideally want general theories that apply to all our units
- ► To explain a systematic treatment not a single event we need multiple counterfactual comparisons
- ► We know how democracy works in Europe; the question is what will happen if it becomes more common in the whole world?

Average Treatment Effect

We want to calculate an Average Treatment Effect

- Political Science is not about explaining individual events
- ► We ideally want general theories that apply to all our units
- ► To explain a systematic treatment not a single event we need multiple counterfactual comparisons
- We know how democracy works in Europe; the question is what will happen if it becomes more common in the whole world?

Average Treatment Effect

We want to calculate an Average Treatment Effect

$$ATE = E(\alpha_i) = E(Y_1 - Y_0) = E(Y_1) - E(Y_0) = \frac{\sum_i (Y_{1i} - Y_{0i})}{N}$$

Potential Outcomes are just another Variable for each Unit

	GDP Growth if Democracy	GDP Growth if NOT Democ-	Treatment Effect
		racy	
	Y ₁	Y ₀	$Y_1 - Y_0$
Brasil	6	3	3
Argentina	8	5	3
Uruguay	3	3	0
Bolivia	0	2	-2
Colombia	4	4	0
Peru	4	2	2
Average Treatment Effect	4.17	3.17	1

The Fundamental Problem of Causal Inference

▶ No units can receive **both** treatment and control

The Fundamental Problem of Causal Inference

- ▶ No units can receive **both** treatment and control
- ightharpoonup So we can never observe both Y_1 and Y_0 for the same unit

The Fundamental Problem of Causal Inference

- ▶ No units can receive **both** treatment and control
- ▶ So we can never observe both Y_1 and Y_0 for the same unit
- ► Individual Treatment Effects are Impossible to Estimate

The Fundamental Problem of Causal Inference

- ▶ No units can receive **both** treatment and control
- \blacktriangleright So we can never observe both Y_1 and Y_0 for the same unit
- ► Individual Treatment Effects are Impossible to Estimate

$$Y_i^{obs} = \begin{cases} Y_{1i} \text{ if } D_i = 1\\ Y_{0i} \text{ if } D_i = 0 \end{cases}$$

The Fundamental Problem of Causal Inference

- ▶ No units can receive **both** treatment and control
- \blacktriangleright So we can never observe both Y_1 and Y_0 for the same unit
- ► Individual Treatment Effects are Impossible to Estimate

$$Y_{i}^{obs} = \begin{cases} Y_{1i} \text{ if } D_{i} = 1\\ Y_{0i} \text{ if } D_{i} = 0 \end{cases}$$
$$Y_{i}^{obs} = D_{i} \cdot Y_{1i} + (1 - D_{i}) \cdot Y_{0i}$$

Potential Outcomes Example

	Democracy?	GDP Growth if Democ-	GDP Growth if NOT Democ-	Treatment Effect
		racy	racy	Litect
	Di	Y_1	Y ₀	Y_1-Y_0
Brasil	0	?	3	?
Argentina	0	?	5	?
Uruguay	0	?	3	?
Bolivia	1	0	?	?
Colombia	1	4	?	?
Peru	0	?	2	?

Introduction

Potential Outcomes Example

	Democracy?	Observed GDP Growth
	Di	Yobs
Brasil	0	3
Argentina	0	5
Uruguay	0	3
Bolivia	1	0
Colombia	1	4
Peru	0	2

► Actually, nothing stops us calculating the **Average**Treatment Effect

- ► Actually, nothing stops us calculating the **Average**Treatment Effect
- ► The question is, is the ATE accurate?

- Actually, nothing stops us calculating the Average
 Treatment Effect
- ► The question is, is the ATE accurate?

	Democracy?	GDP Growth if Democracy	GDP Growth if NOT Democ- racy	Treatment Effect
	Di	Y ₁	Y ₀	$Y_1 - Y_0$
Brasil	0	6	3	3
Argentina	0	8	5	3
Uruguay	0	3	3	0
Bolivia	1	0	2	-2
Colombia	1	4	4	0
Peru	0	4	2	2
Average Treatment Effect		4.17	3.17	1

- Actually, nothing stops us calculating the Average
 Treatment Effect
- ► The question is, is the ATE accurate?

	Democracy?	GDP Growth if Democracy	GDP Growth if NOT Democ- racy	Treatment Effect
	Di	Y ₁	Y ₀	$Y_1 - Y_0$
Brasil	0	?	3	?
Argentina	0	?	5	?
Uruguay	0	?	3	?
Bolivia	1	0	?	?
Colombia	1	4	?	?
Peru	0	?	2	?
Average Treatment Effect		2	3.25	-1.25

► So what went wrong?

- ▶ So what went wrong?
- ► The potential outcomes we observe are a biased representation of the potential outcomes of all the units

- ► So what went wrong?
- ► The potential outcomes we observe are a biased representation of the potential outcomes of all the units

- ► So what went wrong?
- The potential outcomes we observe are a biased representation of the potential outcomes of all the units

 $ightharpoonup E(Y_1)$ values are **biased lower** in the observed data

- ▶ So what went wrong?
- The potential outcomes we observe are a biased representation of the potential outcomes of all the units

- \triangleright $E(Y_1)$ values are **biased lower** in the observed data
- \triangleright $E(Y_0)$ values are **biased higher** in the observed data

- ► So what went wrong?
- The potential outcomes we observe are a biased representation of the potential outcomes of all the units

- \triangleright $E(Y_1)$ values are **biased lower** in the observed data
- $ightharpoonup E(Y_0)$ values are **biased higher** in the observed data
- ► So $E(Y_1) E(Y_0)$ is biased

► The Fundamental Problem of Causal Inference means we can only discover causal relationships by comparing **across** units

- ► The Fundamental Problem of Causal Inference means we can only discover causal relationships by comparing **across** units
- ► Comparing treated *i* and control *j* units

- ► The Fundamental Problem of Causal Inference means we can only discover causal relationships by comparing **across** units
- ► Comparing treated *i* and control *j* units
- If potential outcomes are biased in our observed data:

- ► The Fundamental Problem of Causal Inference means we can only discover causal relationships by comparing **across** units
- ► Comparing treated *i* and control *j* units
- ▶ If potential outcomes are biased in our observed data:
 - ► Our **counterfactual case** *j* does not represent what would have happened to *i* in the absence of treatment

- ► The Fundamental Problem of Causal Inference means we can only discover causal relationships by comparing **across** units
- ► Comparing treated *i* and control *j* units
- If potential outcomes are biased in our observed data:
 - ► Our **counterfactual case** *j* does not represent what would have happened to *i* in the absence of treatment
 - ► Counterfactuals are not **plausible**

- ► The Fundamental Problem of Causal Inference means we can only discover causal relationships by comparing **across** units
- ► Comparing treated *i* and control *j* units
- If potential outcomes are biased in our observed data:
 - Our counterfactual case j does not represent what would have happened to i in the absence of treatment
 - ► Counterfactuals are not plausible
 - ► Causal effects are biased

Introduction

Introduction

► Lots of averages:

		Hypothetical outcome	
		Y0	Y1
Actual Treatment	D = 0	$E(Y_{0i} D=0)$	$E(Y_{1i} D=0)$
	D = 1	$E(Y_{0i} D=1)$	$E(Y_{1i} D=1)$

► Lots of averages:

		Hypothetical outcome	
		Y0	Y1
Actual Treatment	D = 0	$E(Y_{0i} D=0)$	$E(Y_{1i} D=0)$
	D = 1	$E(Y_{0i} D=1)$	$E(Y_{1i} D=1)$

Introduction

Treatment Assignment

► The comparability of treatment and control units depends on *how* they got to be treated

- The comparability of treatment and control units depends on how they got to be treated
 - ► On the **Treatment Assignment Mechanism**

- ► The comparability of treatment and control units depends on how they got to be treated
 - ► On the **Treatment Assignment Mechanism**
- ► If we 'treated' an outlier like the Galapagos Islands, could we find a comparable control unit?

- ► The comparability of treatment and control units depends on how they got to be treated
 - On the Treatment Assignment Mechanism
- ► If we 'treated' an outlier like the Galapagos Islands, could we find a comparable control unit?
- ► Comparisons are 'better' where the **Treatment**Assignment Mechanism is independent of potential outcomes

- The comparability of treatment and control units depends on how they got to be treated
 - ► On the **Treatment Assignment Mechanism**
- ► If we 'treated' an outlier like the Galapagos Islands, could we find a comparable control unit?
- Comparisons are 'better' where the Treatment
 Assignment Mechanism is independent of potential outcomes
 - ► I.e. Whether you got treatment had **nothing** to do with how much you would benefit from treatment
 - ➤ This makes it more likely that potential outcomes are 'balanced'

► A 'real-world' treatment assignment is *highly unlikely* to create comparable potential outcomes

- ► A 'real-world' treatment assignment is *highly unlikely* to create comparable potential outcomes
- And we do not know what the treatment assignment mechanism was
 - ▶ Because we did not control treatment assignment ourselves

- ► A 'real-world' treatment assignment is *highly unlikely* to create comparable potential outcomes
- And we do not know what the treatment assignment mechanism was
 - ▶ Because we did not control treatment assignment ourselves

- ► A 'real-world' treatment assignment is *highly unlikely* to create comparable potential outcomes
- And we do not know what the treatment assignment mechanism was
 - ▶ Because we did not control treatment assignment ourselves
- So we do not know which units might be appropriate counterfactuals

Does fruit make you happier?

- Does fruit make you happier?
 - Write down on a piece of paper a number between 0 and 10 representing how happy you would be if I gave you an apple now.

Introduction

► Does fruit make you happier?

- Write down on a piece of paper a number between 0 and 10 representing how happy you would be if I gave you an apple now.
- ightharpoonup Label this number Y_1 .

- Does fruit make you happier?
 - Write down on a piece of paper a number between 0 and 10 representing how happy you would be if I gave you an apple now.
 - ightharpoonup Label this number Y_1 .
 - ► Then write down a second number between 0 and 10 representing how happy you would be if I did NOT give you an apple now.

- Does fruit make you happier?
 - Write down on a piece of paper a number between 0 and 10 representing how happy you would be if I gave you an apple now.
 - ightharpoonup Label this number Y_1 .
 - ► Then write down a second number between 0 and 10 representing how happy you would be if I did NOT give you an apple now.
 - ightharpoonup Label this number Y_0 .

- Does fruit make you happier?
 - Write down on a piece of paper a number between 0 and 10 representing how happy you would be if I gave you an apple now.
 - ightharpoonup Label this number Y_1 .
 - ► Then write down a second number between 0 and 10 representing how happy you would be if I did NOT give you an apple now.
 - ightharpoonup Label this number Y_0 .
- ► These are your **potential outcomes**.

Now we will consider how estimates of the average effect of fruit on happiness vary depending on how treatment (apples) are assigned.

- Now we will consider how estimates of the average effect of fruit on happiness vary depending on how treatment (apples) are assigned.
 - 1. All the female participants are given an apple.

- Now we will consider how estimates of the average effect of fruit on happiness vary depending on how treatment (apples) are assigned.
 - 1. All the female participants are given an apple.
 - 2. The tallest half are given an apple.

- Now we will consider how estimates of the average effect of fruit on happiness vary depending on how treatment (apples) are assigned.
 - 1. All the female participants are given an apple.
 - 2. The tallest half are given an apple.
 - 3. You are free to choose yourself to take an apple or not.

- Now we will consider how estimates of the average effect of fruit on happiness vary depending on how treatment (apples) are assigned.
 - 1. All the female participants are given an apple.
 - 2. The tallest half are given an apple.
 - 3. You are free to choose yourself to take an apple or not.
 - 4. Apples are distributed randomly

► Explanation is more reliable where the **Treatment**Assignment Mechanism is Independent of Potential
Outcomes

- ► Explanation is more reliable where the **Treatment**Assignment Mechanism is Independent of Potential
 Outcomes
 - ► Independent means the values of the potential outcomes give us no information about whether that unit was treated

- ► Explanation is more reliable where the **Treatment**Assignment Mechanism is Independent of Potential Outcomes
 - ► Independent means the values of the potential outcomes give us no information about whether that unit was treated
 - Potential outcomes are 'balanced' across control and treatment groups

- ► Explanation is more reliable where the **Treatment**Assignment Mechanism is Independent of Potential
 Outcomes
 - ► Independent means the values of the potential outcomes give us no information about whether that unit was treated
 - ► Potential outcomes are 'balanced' across control and treatment groups

Independence of Treatment Assignment

Treatment Assignment does NOT depend on the values of units' Potential Outcomes

- ► Explanation is more reliable where the **Treatment**Assignment Mechanism is Independent of Potential Outcomes
 - ► Independent means the values of the potential outcomes give us no information about whether that unit was treated
 - ► Potential outcomes are 'balanced' across control and treatment groups

Independence of Treatment Assignment

- Treatment Assignment does NOT depend on the values of units' Potential Outcomes
- $ightharpoonup (Y_1, Y_0) \perp D$

- ► Explanation is more reliable where the **Treatment**Assignment Mechanism is Independent of Potential
 Outcomes
 - ► Independent means the values of the potential outcomes give us no information about whether that unit was treated
 - Potential outcomes are 'balanced' across control and treatment groups

Independence of Treatment Assignment

- Treatment Assignment does NOT depend on the values of units' Potential Outcomes
- $ightharpoonup (Y_1, Y_0) \perp D$
- $ightharpoonup Pr(D|(Y_1, Y_0)) = Pr(D)$

- Explanation is more reliable where the Treatment
 Assignment Mechanism is Independent of Potential
 Outcomes
 - ► Independent means the values of the potential outcomes give us no information about whether that unit was treated
 - Potential outcomes are 'balanced' across control and treatment groups

Independence of Treatment Assignment

- Treatment Assignment does NOT depend on the values of units' Potential Outcomes
- $ightharpoonup (Y_1, Y_0) \perp D$
- $ightharpoonup Pr(D|(Y_1, Y_0)) = Pr(D)$
- ightharpoonup E(Y|D=1) = E(Y|D=0) = E(Y)

Section 4

▶ Why are potential outcomes biased in our data?

- ▶ Why are potential outcomes biased in our data?
 - 1. Omitted Variables

- ▶ Why are potential outcomes biased in our data?
 - 1. Omitted Variables
 - 2. Reverse Causation

- ▶ Why are potential outcomes biased in our data?
 - 1. Omitted Variables
 - 2. Reverse Causation
 - 3. Selection Bias

- ▶ Why are potential outcomes biased in our data?
 - 1. Omitted Variables
 - 2. Reverse Causation
 - 3. Selection Bias
- ▶ In all of these cases the potential outcomes are distorted

- ▶ Why are potential outcomes biased in our data?
 - 1. Omitted Variables
 - 2. Reverse Causation
 - 3. Selection Bias
- In all of these cases the potential outcomes are distorted
- ► So basic regression is **biased**

A real causal relationship:

A real causal relationship:

Treatment Outcome

Being misled by omitted variable bias:

A real causal relationship:

Being misled by omitted variable bias:

 A third variable causes some units to have different values of potential outcomes, AND for those same units to be treated

A real causal relationship:

Being misled by omitted variable bias:

- ➤ A third variable causes some units to have different values of potential outcomes, AND for those same units to be treated
- ► So treated units have non-representative Y₁

Treatment Assignment

Omitted Variable Bias

A real causal relationship: Being misled by omitted variable bias:

- ► A third variable causes some units to have different values of potential outcomes, AND for those same units to be treated
- ► So treated units have non-representative Y₁
- ► And control units have non-representative Y₀

A real causal relationship:

GDP Growth Democracy

variable bias:

Being misled by omitted

A real causal relationship: variable bias:

Being misled by omitted

 Southern Cone countries faced conditions that encouraged both democracy and rapid GDP growth

	Andean?	Democracy?	GDP Growth if Dem	GDP Growth if NOT Dem	Treatment Effect
	Xi	Di	<i>Y</i> ₁	Y ₀	Y_1-Y_0
Brasil	1	1	6	?	?
Argentina	1	1	8	?	?
Uruguay	1	1	3	?	?
Bolivia	0	0	?	2	?
Colombia	0	0	?	4	?
Peru	0	0	?	2	?
Average Treat- ment Effect			5.7	2.7	3

Introduction

Omitted Variable Bias

$$ightharpoonup E(Y_1|D=1) - E(Y_0|D=0) = 5.7 - 2.7 = 3$$

► Let's say that $Y_{1i} = Y_{0i} + \alpha$, where α is the real constant treatment effect

$$A\hat{T}E = E(Y_1|D=1) - E(Y_0|D=0)$$

Omitted Variable Bias

► Let's say that $Y_{1i} = Y_{0i} + \alpha$, where α is the real constant treatment effect

$$A\hat{T}E = E(Y_1|D=1) - E(Y_0|D=0)$$

$$A\hat{T}E = \underbrace{\alpha}_{\text{Real ATE}} + \underbrace{E(Y_0|D=1) - E(Y_0|D=0)}_{\text{Bias}}$$

A real causal relationship:

A real causal relationship: causation:

Being misled by reverse

A real causal relationship: causation:

Being misled by reverse

► D does not affect Y, but higher Y makes treatment (D) more likely

A real causal relationship: causation:

Being misled by reverse

- ► D does not affect Y, but higher Y makes treatment (D) more likely
- ► So the two variables are correlated

A real causal relationship: causation:

Being misled by reverse

A real causal relationship: causation:

Being misled by reverse

► GDP Growth encourages democratization

A real causal relationship: causation:

Being misled by reverse

- ► GDP Growth encourages democratization
- So democracies are more likely to have experienced high growth rates

$$ightharpoonup E(Y_1|D=1) - E(Y_0|D=0) = 6 - 2.3 = 3.7$$

Causal Inference

	Democracy?	GDP Growth if Dem	GDP Growth if NOT Dem	Treatment Effect
	Di	Y ₁	Y ₀	Y_1-Y_0
Brasil	1	6	?	?
Argentina	1	8	?	?
Uruguay	0	?	3	?
Bolivia	0	?	2	?
Colombia	1	4	?	?
Peru	0	?	2	?
Average Treat- ment Effect		6	2.3	3.7

A real causal relationship:

Being misled by Selection Bias:

A real causal relationship:

Being misled by Selection Bias:

A real causal relationship:

Being misled by Selection Bias:

► The units which benefit most from treatment (largest $y_1 - y_0$) choose treatment

A real causal relationship:

Being misled by Selection Bias:

- ► The units which benefit most from treatment (largest $y_1 y_0$) choose treatment
- ▶ We don't see any of the low y₁'s of units which avoid treatment

A real causal relationship:

Being misled by Selection Bias:

- ► The units which benefit most from treatment (largest $y_1 y_0$) choose treatment
- ➤ We don't see any of the low y₁'s of units which avoid treatment
 - Countries which can boost their GDP growth by becoming a democracy choose to democratize

A real causal relationship:

Being misled by Selection Bias:

► Ex. Mexico? Myanmar?

- ► The units which benefit most from treatment (largest $y_1 y_0$) choose treatment
- ▶ We don't see any of the low y₁'s of units which avoid treatment
 - Countries which can boost their GDP growth by becoming a democracy choose to democratize

	Democracy?	GDP Growth if Dem	GDP Growth if NOT Dem	Treatment Effect
	Di	Y ₁	Y ₀	Y_1-Y_0
Brasil	1	6	?	?
Argentina	1	8	?	?
Uruguay	0	?	3	?
Bolivia	0	?	2	?
Colombia	0	?	4	?
Peru	1	4	?	?
Average Treat- ment Effect		6	3	3

$$ightharpoonup E(y_1|D=1) - E(y_0|D=0) = 6 - 3 = 3$$

► Allow treatment effects to vary across individuals, so $Y_{1i} = Y_{0i} + \alpha_i$

► Allow treatment effects to vary across individuals, so $Y_{1i} = Y_{0i} + \alpha_i$

$$\underbrace{E(Y_i|D=1) - E(Y_i|D=0)}_{\text{Observed Effect}} = \underbrace{E(Y_{1i} - Y_{0i})}_{\text{Real ATE}} + \underbrace{\frac{1}{2} \Big[E(Y_{1i}|D=1) - E(Y_{1i}|D=0) \Big]}_{\text{Imbalance on } Y_1} + \underbrace{\frac{1}{2} \Big[E(Y_{0i}|D=1) - E(Y_{0i}|D=0) \Big]}_{\text{Imbalance on } Y_0}$$
(1)

NB: For equal-sized treatment and control groups

► Allow treatment effects to vary across individuals, so $Y_{1i} = Y_{0i} + \alpha_i$

$$\underbrace{E(Y_i|D=1) - E(Y_i|D=0)}_{\text{Observed Effect}} = \underbrace{E(Y_{1i} - Y_{0i})}_{\text{Real ATE}} + \underbrace{\frac{1}{2} \Big[E(Y_{1i}|D=1) - E(Y_{1i}|D=0) \Big]}_{\text{Imbalance on } Y_1} + \underbrace{\frac{1}{2} \Big[E(Y_{0i}|D=1) - E(Y_{0i}|D=0) \Big]}_{\text{Imbalance on } Y_0}$$

NB: For equal-sized treatment and control groups

► Selection Bias occurs where our data sample does not tell the complete story:

Treatment Assignment

- ► Selection Bias occurs where our data sample does not tell the complete story:
 - Self-selection Bias: Units that benefit most from treatment choose to receive treatment
 - ▶ Those with the biggest difference in potential values, $Y_1 Y_0$
 - Data Availability Bias: Some types of units don't report data
 - ► For reasons related to the treatment and potential outcomes

- ► Selection Bias occurs where our data sample does not tell the complete story:
 - Self-selection Bias: Units that benefit most from treatment choose to receive treatment
 - ▶ Those with the biggest difference in potential values, $Y_1 Y_0$
 - Data Availability Bias: Some types of units don't report data
 - For reasons related to the treatment and potential outcomes
 - Eg. Wealthy autocracies and poor democracies do not like to report data

- ► Selection Bias occurs where our data sample does not tell the complete story:
 - Self-selection Bias: Units that benefit most from treatment choose to receive treatment
 - ▶ Those with the biggest difference in potential values, $Y_1 Y_0$
 - Data Availability Bias: Some types of units don't report data
 - For reasons related to the treatment and potential outcomes
 - Eg. Wealthy autocracies and poor democracies do not like to report data
 - Only wealthy democracies 'select' into our sample
 - 3. Survival Bias: Some types of units drop out of our sample
 - ► For reasons related to the treatment and potential outcomes

Problems with Observational Data

Depending on the treatment assignment mechanism we get a range of Average Treatment Effects:

Comparing Average Treatment Effects

Treated Units	ATE
Real Effect for all units	1
Bolivia and Colombia treated	-1.25
Omitted Variable Bias (Southern Cone)	3
Reverse Causation	3.7
Self-selection (Biggest GDP gains)	3

► ANY time you see a paper based on observational data, you should try to make the three critiques:

3 Critiques

- ► ANY time you see a paper based on observational data, you should try to make the three critiques:
 - 1. Omitted Variables
 - 2. Reverse Causation
 - 3. Selection Bias
- In all these cases, treatment assignment is not independent of potential outcomes