H.T.No:											Course Code: 232CS2E07
---------	--	--	--	--	--	--	--	--	--	--	------------------------

ADITYA COLLEGE OF ENGINEERING & TECHNOLOGY (A)

M.Tech – II Semester End Examinations Regular (ACETR23) – JULY 2024

ADVANCED DATA BASES & MINING

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 75

Answer ONE question from each unit All Questions Carry Equal Marks

All parts of the questions must be answered at one place only

UNIT – **I** 1 a

L2 CO1 [8M]

N	Р
1	2
3	2
6	8
9	8
2	5
8	5
5	NULL

Binary Tree

1Leaf 2Inner 3Leaf 5Root 6Leaf 8Inner 9Leaf

OUTPUT

We are given a table, which is a Binary Search Tree consisting of two columns **Node** and **Parent.** We must write a query that returns the node type ordered by the value of nodes in ascending order. There are 3 types.

Root — if the node is a root

Leaf — if the node is a leaf

Inner — if the node is neither root nor leaf.

b An organization needs to maintain database having attributes A, B, C,
 D, E, F, G, H. These attributes are functionally dependent on each other for which functionally dependency set F is given as:

F: { $A \rightarrow B$, ABCD $\rightarrow E$, EF \rightarrow GH, ACDF \rightarrow EG }. Find the Minimal cover F' of functional dependency set F

OR

- 2 a Difference between 3NF and BCNF and find the BCNF decomposition of L3 CO1 [8M] R(A,B,C,D,E) { AB->CD, D->E, A->C, B->D}
 - b Explain about DDL, DML, DCL Commands and write equivalent SQL L1 CO1 [7M] for relational algebra division operator?

UNIT - II

- 3 a Explain ACID properties and how the serializability is guaranteed?
 - L1 CO2 [10M]
 - b Check whether the given schedule S is conflict serializable and L2 CO2 [5M] recoverable or not

T2	Т3	T4
R(X)		
	W(X)	
	Commit	
W(Y)		
R(Z)		
Commit		
		R(X)
		R(Y)
		Commit
	R(X) W(Y) R(Z)	R(X) W(X) Commit W(Y) R(Z)

OR

- 4 a What is a deadlock and how it is detected in schedulers and how to L1 CO2 [8M] prevent it
 - b Explain the various types schedulers

L1 CO2 [7M]

UNIT - III

5 a Differentiate OLAP and OLTP

L1 CO3 [8M]

b Explain snow flake architecture in data ware housing

L1 CO3 [7M]

- OR
- 6 a Explain the data mining life cycle

- L1 CO3 [8M]
- b What are the value ranges of the following normalization methods?
- L3 CO3 [7M]
- Use these methods to normalize the following group of data: 200,300,400,600,1000
- (a) min-max normalization by setting min 0 and max 1
- (b) z-score normalization
- (c)z-score normalization using the mean absolute deviation instead of standard deviation
- (d) normalization by decimal scaling

UNIT – IV

7 a Generate association rules using Apriori algorithm form below dataset L3 CO4 [10M] with support threshold=50%, confidence= 60%.

Transaction	List of items
T1	11, 12, 13
T2	12, 13, 14
T3	14, 15
T4	11, 12, 14
T5	11, 12, 13, 15
Т6	11, 12, 13, 14

b What are Frequent and Closed item sets in association mining?

L1 CO4 [5M]

OR

a Solve frequent pattern growth algorithm with Support threshold=50%, L3 CO4 [10M] 8 Confidence= 60%

TID	Items
T1	I1, I2, I3
T2	I2, I3, I4
Т3	I4, I5
T4	I1, I2, I4
Т5	I1, I2, I3, I5
Т6	I1, I2, I3, I4

b How do you measure quality of association rules

L1 CO4 [5M]

L3 CO5 [8M]

UNIT - V

9 a

Objects	X	Y	Z
OB-1	1	4	1
OB-2	1	2	2
OB-3	1	4	2
OB-4	2	1	2
OB-5	1	1	1
OB-6	2	4	2
OB-7	1	1	2
OB-8	2	1	1

The sample dataset contains 8 objects with their X, Y and Z coordinates. Cluster these objects

b Differentiate the K-means and K-Medoids algorithm and its L2 CO5 [7M] limitations?

OR

10 a a) Construct the decision tree using the ID3 for the following dataset. L3 CO5 [8M]

X	Υ	Z	C
1	1	1	_
1	1	0	_
0	0	1	\equiv
1	0	0	Ш

b Discuss the procedure to fine to K in K-Medoids algorithm? L1 CO5 [7M]