

Seguridad Web

Unidad II

- Activo: Todo recurso ya sea tangible o intangible con valor para un individuo u organización.
- Vulnerabilidad: Debilidad en el diseño, arquitectura o modo de funcionamiento de un componente.
- Amenaza: Entidad capaz de explotar una vulnerabilidad para aprovecharla.
- Ataque (Exploit): Escenario en el que una o varias amenazas explotan una vulnerabilidad.
- Riesgo: Probabilidad de que una o varias amenazas exploten una vulnerabilidad.
- Impacto: Grado de afectación debido a un ataque o exploit.

- Las vulnerabilidades se listan en bases de datos:
 - CVE (Common vulnerabilities and Exposures)
 - NVD (National Vulnerability Database)
 - OSV (Open Source Vulnerabilities)
 - CWE (Common Weakness Enumeration)
 - Bugtraq

Tarea 1: CVE

Identificar de la base de datos CVE tres vulnerabilidades de cualquier dominio y describir cada uno en una ficha técnica identificando el código y el principio de seguridad de la información que afecta.

Los ataques contra las amenazas pueden ser encontrados en el MITRE ATT&CK.

(+593) 96 356 1961

- Tarea 2: MITRE ATT&CK
- Identificar tres ataques en el dominio Enterprise y construir una ficha técnica de cada ataque.

- Procedure
- Mitigations
- Detection

2.2 Controles y Riesgo Residual

- **Control:** Medida de protección para mitigar el riesgo inherente por la presencia de amenazas.
 - Firewalls
 - Cifrado
 - CAPTCHAs
 - Hash
- **Riesgo residual:** Riesgo resultante después de la aplicación de uno o varios controles.

2.2 Controles y Riesgo Residual

Ejemplo de matriz de riesgo 5×5

Impacto

¿Qué tan severos serían los resultados si ocurriera el riesgo?

	Insignificante 1	Menor 2	Significativo 3	Mayor 4	Severo 5
5 Casi seguro	Medio 5	Alto 10	Muy alto 15	Extremo 20	Extremo 25
4 Probable	Medio 4	Medio 8	Alto 12	Muy alto 16	Extremo 20
3 Moderado	Bajo 3	Medio 6	Medio 9	Alto 12	Muy alto 15
2 Poco probable	Muy bajo 2	Bajo 4	Medio 6	Medio 8	Alto 10
l Raro	Muy bajo 1	Muy bajo 2	Bajo3	Medio 4	Medio 5

SafetyCulture

(+593) 96 356 1961

2.3 Mecanismos de Protección: CAPTCHA

- Completely Automated Public Turing test to tell Computers and Humans Apart.
- Comprende un control de protección contra bots y web crawlers: amenazas automatizadas.

 Presenta desafíos visuales o cognitivos fáciles de resolver para un humano pero complejos para una máquina:

- Selección de imágenes.
- Resolución de recompecabezas de texto.
- Resolución de operaciones matemáticas simples.
- Identificación de objetos.
- Completar la secuencia de textos o números.

- Mecanismo de protección para precautelar la integridad.
- Varios algoritmos:
 - MD5
 - SHA-1
 - SHA-2
 - SHA-3
- Cada algoritmo genera una salida de un determinado número de bits.
 - MD5 -> 128 bits (32 caracteres hexadecimales)
 - SHA-1 -> 160 bits (40 caracteres hexadecimales)

Calculando hashes en Windows:

certutil -hashfile <file> <algorithm>

```
Símbolo del sistema
                                                                                                                :\Users\DELL>certutil -hashfile C:\Users\DELL\Desktop\descarga.jpg sha256
Hash SHA256 del archivo C:\Users\DELL\Desktop\descarga.jpg:
:7930df393a462e74b1c06653f7d0b6930b1b9c30fbef208bb9117b32e31fabb
CertUtil: -hashfile comando completado correctamente.
:\Users\DELL>
```



```
import hashlib
texto = "Curso de Seguridad Web:"
hash = hashlib.sha1()
hash.update(texto.encode())
hash.hexdigest()
```


b23d4140381eabe4dd849c6a7a127e914201e2d9b

2.5 Mecanismos de Protección: Cifrado simétrico

- También llamado cifrado de clave privada (o llave privada).
- Emplea la misma clave para cifrar y para descifrar.
- El secreto de la clave comprende la fortaleza del método de cifrado, pero no así el algoritmo por sí mismo.
- Por lo tanto la clave ser fuerte y dinámica.
- Algoritmos:
 - Fernet
 - AES
 - Blowfish
 - DES
 - 3DES
 - RC6
 - RC5
 - RC4

2.5 Mecanismos de Protección: Cifrado simétrico

from cryptography.fernet import Fernet

2.5 Mecanismos de Protección: Cifrado simétrico

```
clave = Fernet.generate key()
cipher suite = Fernet(clave)
print(clave)
texto original = "Este es un mensaje secreto"
texto bytes = texto original.encode()
texto cifrado = cipher suite.encrypt(texto bytes)
print("Texto cifrado:", texto cifrado)
```

b'U2PuHGcqeDXGoJ4yvMpRc Lf QAr3-IJQyO-9kkKUIU=' Texto cifrado: b'gAAAAABlV5IIHSH70-MchdMqzuzgWajpmROF27AyyDTrYn7d YzH02p0UDH2z2DLRfUfSFWvSbKLYBt19XTk6_1KrTymisEUhEatVXtEKeTZmHlagnArq74='

2.5 Mecanismos de Protección: Cifrado simétrico

```
clave = b'U2PuHGcqeDXGoJ4yvMpRc Lf QAr3-IJQyO-9kkKUIU='
cipher suite = Fernet(clave)
texto_descifrado = cipher_suite.decrypt(texto_cifrado)
texto_claro = texto_descifrado.decode()
print("Texto descifrado:", texto descifrado)
```

Texto descifrado: b'Este es un mensaje secreto'

2.6 Mecanismos de Protección: Cifrado asimétrico

- También llamado cifrado de clave pública (o llave pública).
- Se emplean dos claves: una pública y una privada.
- Algoritmos:
 - RSA
 - ElGamal
 - ECDSA (Elliptic Curve Digital Signature Algorithm)

2.6 Mecanismos de Protección: Cifrado asimétrico

2.6 Mecanismos de Protección: Firma digital

- Mecanismo para precautelar: Autenticación, Integridad y No repudio.
- Comprende un hash cifrado con la clave privada del emisor.
- Entonces se valida la identidad del emisor pues la firma se puede decifrar con su clave pública por cualquier entidad.
- Ampliamente utilizado en comercio electrónico.

2.6 Mecanismos de Protección: Firma digital

