Noregs teknisk-naturvitskaplege universitet Institutt for matematiske fag

Side 1 av 4 Inklusive Laplacetabell

Fagleg kontakt under eksamen: Lisa Lorentzen tlf. 73 59 35 48

EKSAMEN I TMA4120 MATEMATIKK 4K

Nynorsk Dag 30. november 2005 kl. 9–13

Hjelpemiddel (kode C): Enkel kalkulator (HP 30S)

Rottmann: Matematisk formelsamling

Sensurdato: 22.12.2005

Grungje alle svar. Det skal vere med så mykje mellomrekning at framgangsmåten framgår tydeleg av besvarelsen.

Oppgåve 1 Bruk Laplacetransformasjonen til å løyse initialverdiproblemet

$$y' + y + \int_0^t y(\tau)e^{t-\tau}d\tau = u(t-1)$$
 for $t > 0$, $y(0) = 1$.

Oppgåve 2

a) Finn alle løysninger på forma u(x, t) = F(x)G(t) av differensiallikninga

$$(1) u_{tt} + u_t = u_{xx} for 0 \le x \le \pi, t \ge 0$$

med randvilkår

(2)
$$u(0,t) = u(\pi,t) = 0, \quad t > 0.$$

b) Finn u(x, t) som oppfyller (1) og (2) og initialvilkåra

$$u(x, 0) = 0$$
 og $u_t(x, 0) = \sin 4x$.

Oppgåve 3 La f vere den 2π -periodiske funksjonen gjeve ved $f(x) = x^4$ for $-\pi < x \le \pi$. Vi oppgjev at f har Fourierrekke

$$\frac{\pi^4}{5} + \sum_{n=1}^{\infty} \frac{8(-1)^n (\pi^2 n^2 - 6)}{n^4} \cos nx.$$

Bruk dette til å finne summen av rekkene

$$\sum_{n=1}^{\infty} \frac{\pi^2 n^2 - 6}{n^4} \quad \text{og} \quad \sum_{n=1}^{\infty} \frac{\pi^4 n^4 - 12\pi^2 n^2 + 36}{n^8}.$$

Oppgåve 4

a) Finn alle Laurentrekkene om punktet z = 0 for funksjonen

$$f(z) = \frac{1}{z(8z^3 - 1)},$$

og dei åpne konvergensområda for kvar av rekkene.

b) La C vere einheitssirkelen |z|=1 med positiv orientering (mot klokka). Bestem verdien av integrala

$$\oint_C f(z) dz \quad \text{og} \quad \oint_C (\operatorname{Re} z) dz$$

når f(z) er funksjonen i **a**).

Oppgåve 5

a) Vis at funksjonen

$$f(z) = \frac{e^{iz} - e^{5iz}}{z^2}$$

kan skrivast som

$$f(z) = \frac{b}{z} + g(z) \quad \text{når} \quad |z| > 0,$$

der b er eit komplekst tal og g(z) er ein analytisk funksjon. Bestem b.

La S_R vere halvsirkelen med parametriseringa $z=Re^{i\theta}, 0\leq \theta\leq \pi$. Vis ved utrekning at

$$\int_{S_R} f(z)dz \to 4\pi \quad \text{når} \quad R \to 0.$$

b) Vis ved utrekning at

$$\int_{S_R} f(z)dz \to 0 \quad \text{når} \quad R \to \infty,$$

der funksjonen f(z) og halvsirkelen S_R er gjeve i a). Finn verdien av integralet

$$\int_0^\infty \frac{\cos x - \cos 5x}{2x^2} dx.$$

Du kan anta at integralet konvergerer/eksisterer.

Table of Laplace transforms

f(t)	$\mathcal{L}(f)$
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
$t^n (n=0,1,2,\ldots)$	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
cos ωt	$\frac{s}{s^2 + \omega^2}$
sin ωt	$\frac{\omega}{s^2 + \omega^2}$
cosh at	$\frac{s}{s^2 - a^2}$
sinh at	$\frac{a}{s^2 - a^2}$
$e^{at}\cos\omega t$	$\frac{s-a}{(s-a)^2+\omega^2}$
$e^{at}\sin\omega t$	$\frac{\omega}{(s-a)^2 + \omega^2}$