

Universidad Nacional de Ingeniería

Ciclo 2015-2

Facultad de Ciencias - Escuela Profesional de Matemática

Septiembre 23, 2015

Práctica Calificada ${
m N}^002$ de Cálculo Vectoria I - CM142

Semana 05

[Temas: Dependencia e Independencia lineal-Bases -Producto interno- Proyección.]

- P1. Determine el valor de verdad de las proposiciones que se fomulan para un \mathbb{R} -espacio vectorial V, provisto de un producto interno \langle , \rangle . [1 ptos. c/u.]
 - a. Dos vectores son linealmente dependientes si, y solo si, uno de estos es combinación lineal del otro.
 - b. Si V es el espacio euclideano \mathbb{R}^2 y si $\langle u, v \rangle = 0$, entonces el ángulo que forman tales vectores es 90^0 .
 - c. Si tres vectores son linealmente independientes, entonces dos cualquiera de estos tambien son linealmente independientes.
 - d. Si tres vectores son linealmente dependientes, entonces dos cualquiera de estos también son linealmente dependientes.
 - e. Si $\{u, v\}$ forman una base de V y $w \in V$, entonces existen escalares α y β , pero no únicos, tales que $w = \alpha u + \beta v$.
- P2. Considere el $\mathbb R$ espacio vectorial $\mathbb R^2$ provisto de las operaciones usuales. [2.5 ptos. c/u.]
 - a. Demuestre que dos vectores son linealmente independientes generan \mathbb{R}^2 .
 - b. Siendo u un vector no nulo, responda a la pregunta: z es una base de \mathbb{R}^2 la colección $\{u, u^{\perp}\}$?
- P3. Considere el \mathbb{R} espacio vectorial \mathbb{R}^2 provisto de las operaciones usuales y del producto interno canónico \langle , \rangle . Sean u y v vectores no nulos.
 - a. Demuestre que el ángulo $0 \le \theta \le \pi$ que forman tales vectores, es tal que

$$sen(\theta) = \frac{\left|\left\langle u \,,\, v^{\perp} \right
angle \right|}{\left\| u \right\| \left\| v \right\|}$$

- b. Si $Proy_u(Proy_vu) = Proy_v(Proy_uv)$, demuestre que u y v^{\perp} son paralelos o que u y v tienen igual módulo.
- P4. Sean las rectas $L_1(P_0, \overrightarrow{u})$ y $L_2(Q_0, \overrightarrow{v})$, contenidas en \mathbb{R}^2 , y no paralelas. Demuestre que su intersección es un conjunto unitario, es decir, estas se cortan en un único punto. [5ptos.]

[†]Hecho en LATEX / Los Profesores.