ELETTROSTATICA

CARICA ELETTRONE: $-e = -1,60207 \cdot 10^{-19} C$

LEGGE DI COULOMB:

$$F_e = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{d^2}$$

$$F_e = k \cdot \frac{q_1 q_2}{r^2}$$

$$F_e = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{d^2} \qquad F_e = k \cdot \frac{q_1 q_2}{r^2} \qquad k = \frac{1}{4\pi\epsilon_0} = 8,987 \cdot 10^9 \, N \frac{m^2}{C^2}$$

COSTANTE DIELETTRICA NEL VUOTO: $\varepsilon_0 = 8.85 \cdot 10^{-12} \frac{c^2}{(Nm)^2}$

PRINCIPIO DI SOVRAPPOSIZIONE: $F_e^{tot} = F_{e1} + F_{e2} + \cdots + F_{en}$

$$F_e^{tot} = F_{e1} + F_{e2} + \dots + F_{en}$$

CAMPO ELETTRICO:

$$E_0 = \frac{F_e}{q}$$

$$E_0 = k \frac{Q}{r^2}$$

$$E_0 = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$$

CAMPO ELETTRICO GENERATO DA PIU' CARICHE:

$$E_0 = \frac{1}{4\pi\varepsilon_0} \sum_i \frac{Q_i}{r_i^3}$$

MOMENTO ELETTRICO DI DIPOLO: $\rho = Q \cdot r$

DISTRIBUZIONE DI CARICA 3D:

$$dq = \delta(x,y,z)dr$$

densità spaziale di carica: δ

$$E_0 = \frac{1}{4\pi\varepsilon_0} \int_r \frac{dq(\vec{r})}{(\vec{r} - \vec{r_l})^3} (\vec{r} - \vec{r_l})$$

DISTRIBUZIONE DI CARICA 2D:

$$dq = \sigma(x,y,z)dS$$

densità superficiale di carica:
$$\sigma$$

$$E_0 = \frac{1}{4\pi\varepsilon_0} \int_r \frac{\sigma(x',y',z')\overline{(r-r_i)}}{\overline{(r-r_i)}^3} dS'$$

DISTRIBUZIONE DI CARICA 1D:

$$dq = \lambda(x, y, z)dl$$

densità lineare di carica: λ

$$E_0 = \frac{1}{4\pi\varepsilon_0} \int_r \frac{\lambda(x', y', z')\overline{(r} - \overline{r_l})}{\overline{(r} - \overline{r_l})^3} dl'$$

LEGGE DI GAUSS

FLUSSO DI UN CAMPO UNIFORME:

$$\Phi(A) = A \cdot \Delta S \cdot \cos \alpha$$

$$\Phi(E_0) = E_0 \cdot \Delta S \cdot \cos \alpha \qquad \Phi(E_0) = \frac{q_{tot}^{int}}{\varepsilon_0}$$

$$\Phi(E_0) = \frac{Q_{tot}^{int}}{\varepsilon_0}$$

FLUSSO DI UN CAMPO NON UNIFORME

$$d\Phi(A) = A \cdot dS \cdot \cos\alpha$$

$$\Phi_{S}(A) = \int_{S} d\Phi(A) = \int_{S} A \cdot dS$$

LEGGE DI GAUSS:

$$\Phi_{s}(E_{0}) = \int_{s} E_{0} \cdot \cos\alpha \cdot dS = \frac{1}{\varepsilon_{0}} \sum_{s} Q_{int} = \frac{Q_{tot}^{int}}{\varepsilon_{0}}$$

$$\Phi_s(E_0) = \frac{Q_{tot}^{int}}{\varepsilon_0}$$

CARICHE INTERNE AD UNA SUPERFICIE GAUSSIANA:

$$d\Phi(E_0) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} dS_n$$

ANGOLO DEL SOLIDO DEL CONO CON VERTICE IN Q DELIMITATO DA dS:

$$d\Omega = \frac{dS_n}{r^2}$$

$$d\Phi_{S}(E_{0}) = \frac{Q}{4\pi\varepsilon_{0}}d\Omega$$

$$d\Phi_s(E_0) = \frac{Q}{4\pi\varepsilon_0}d\Omega \qquad \Phi_s(E_0) = \int_{\mathcal{S}} d\Phi(E_0) = \int_{4\pi} \frac{Q}{4\pi\varepsilon_0}d\Omega = \frac{Q}{4\pi\varepsilon_0}\int_{4\pi}d\Omega = \frac{Q}{\varepsilon_0}$$

LEGGE DI GAUSS (CON PIU' CARICHE):

$$E_0 dS = (\sum_i E_{0i}) dS = \sum_i d\Phi_s(E_{0i})$$

$$E_0 dS = (\sum_i E_{0i}) dS = \sum_i d\Phi_S(E_{0i}) \qquad \Phi_S(E_0) = \int_S \sum_i d\Phi_S(E_{0i}) = \sum_i \int_S d\Phi_S(E_{0i}) = \sum_i \frac{Q_i}{\varepsilon_0} d\Phi_$$

$$\Phi_{s}(E_{0}) = \sum_{i} \frac{Q_{i}}{\varepsilon_{0}}$$

CARICA ESTERNA AD UNA SUPERFICIE GAUSSIANA: $\Phi_s(E_0) = 0$

$$\Phi_{\rm c}(E_0)=0$$

DENSITA' VOLUMETRICA DI UNA SFERA CARICA:

$$\rho = \frac{Q}{\frac{4}{3}\pi r_0^3} \qquad E = \frac{\rho \cdot r}{3\varepsilon_0}$$

POTENZIALE ELETTROSTATICO

LAVORO PER UNITÀ DI CARICA:

$$L_{a\to b} = \frac{L}{q} = \int_a^b \overrightarrow{E_0} \cdot d\overrightarrow{l} \qquad \qquad L_{a\to b} = \frac{Q}{4\pi\varepsilon_0} \cdot \left[\frac{1}{r_a} - \frac{1}{r_b}\right] \qquad \qquad L_{a\to b} = V_0(A) - V_0(B)$$

POTENZIALE DI UNA PARTICELLA DI PROVA NEL CAMPO DI UN NUMERO QUALSIASI DI CARICHE **PUNTIFORMI:**

F agente sulla particella di prova q0:

$$\vec{F} = q_0 := q_0(\vec{E_1} + \vec{E_2})$$

Lavoro di f quando q0 viene portata da A fino a B:

$$\int_{a}^{b} \vec{F} \cdot d\vec{l} = \int_{a}^{b} q_{0}(\vec{E_{1}} + \vec{E_{2}}) \cdot d\vec{l} = \left[\int_{a}^{b} \vec{E_{1}} \cdot d\vec{l} + \int_{a}^{b} \vec{E_{2}} \cdot d\vec{l}\right]$$

Caso di n cariche puntiformi:

Energia potenziale carica di prova:

$$V = \frac{1}{4\pi\varepsilon_0} \cdot \sum_{i=1}^{N} \frac{q_i}{r_i} \qquad \qquad U = q_0 \cdot V$$

POTENZIALE DI UNA PARTICELLA DI PROVA NEL CAMPO DI UNA DISTRIBUZIONE CONTINUA DI CARICA:

3D
$$V_0(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{\tau} \frac{\rho(x', y', z')d\tau'}{|\vec{r} - \vec{r_1}|}$$

2D
$$V_0(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{\varepsilon} \frac{\rho(x',y',z')dS'}{|\vec{r}-\vec{r_1}|}$$

1D
$$V_0(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{\Delta} \frac{\rho(x',y',z')dl'}{|\vec{r}-\vec{r_1}|}$$

ELETTRONVOLT:
$$1eV = (1.6 \cdot 10^{-19} \text{ C})(1\text{V}) = 1.6 \cdot 10^{-19} \text{ J}$$

POTENZIALE DI UN DIPOLO ELETTRICO:

$$\vec{p} = q \cdot \vec{\delta}$$

$$V_0(P) = \frac{1}{4\pi\varepsilon_0} \frac{p \cdot \hat{r}}{r^3}$$

$$4\pi\varepsilon_0 r^3$$

$$U = -p \cdot E$$

 $\vec{\tau} = \vec{p} \times \vec{E}$

MOMENTO TORCENTE:

$$E = -(\frac{\partial V}{\partial x}i + \frac{\partial V}{\partial y}i + \frac{\partial V}{\partial y}k)$$

$$E = -(\frac{\vartheta V}{\vartheta x}i + \frac{\vartheta V}{\vartheta y}j + \frac{\vartheta V}{\vartheta z}k) \qquad grad = (\frac{\vartheta}{\vartheta x}i + \frac{\vartheta}{\vartheta y}j + \frac{\vartheta}{\vartheta z}k) \qquad E = -gradV$$

$$E = -aradV$$

CAMPO ELETTRICO RADIALE:

ESTERNO DI UNA SFERA UNIF. CAR:

$$E_r = -\frac{\vartheta V}{\vartheta r} \qquad \qquad E_r = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \qquad \qquad E_r = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \hat{r} \qquad \qquad V(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}$$

CONDUTTORI, CAPACITÀ E DIELETTRICI

CAPACITÀ DI UN CONDENSATORE: $C = \frac{Q}{V}$

CAPACITA' DI UN CONDENSATORE PIANO: $C = \frac{\varepsilon_0 A}{d}$

CAMPO IN UN CONDENSATORE PIANO: $E = \frac{\sigma}{\varepsilon_0} \hat{n}$ $E = \frac{Q_{int}}{A \cdot \varepsilon_0}$ $V = E \cdot d$

CAPACITA' DI UNA SFERA CONDUTTRICE ISOLATA: $C=rac{Q}{V}=4\pi arepsilon_0 r$ $V=rac{Q}{4\pi arepsilon_0 r}$

CONDENSATORI IN SERIE:

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \dots + \frac{1}{C_N} \qquad \qquad C_{eq} = \frac{C_1 \cdot \dots \cdot C_n}{C_1 + \dots + C_n}$$

$$Q_1 = Q_2 = \dots = Q_n$$
 $V_a - V_b = (V_a - V_c) - (V_c - V_b)$ $Q = C_{eq} \cdot V_{ab}$ $V_1 = \frac{Q}{C_1}$

CONDENSATORI IN PARALLELO:

$$C_{eq} = C_1 + \cdots + C_N$$

$$V_1 = V_2 = \dots = V_n$$
 $Q_{eq} = C_{eq} \cdot V$ $Q_{eq} = Q_1 + \dots + Q_n$ $Q_1 = C_1 \cdot V$

ENERGIA ELETTROSTATICA:

SISTEMA DI n CARICHE:

$$U = q \cdot V(P)$$

$$U = \frac{1}{4\pi\varepsilon_0} \cdot \sum_{i,j=0}^{N} \frac{(q_i \cdot q_j)}{r_{ij}}$$

DISTRIBUZIONI CONTINUE DI CARICA:

3D:
$$U = \frac{1}{2} \int_{\tau} \rho V d\tau$$
 2D: $U = \frac{1}{2} \int_{S} \sigma V dS$

ENERGIA IMMAGAZZINATA DA UN CONDENSATORE:
$$U = \frac{Q^2}{2C}$$
 $U = \frac{CV^2}{2}$ $U = \frac{QV}{C}$

DENSITÀ DI ENERGIA ELETTROSTATICA:
$$u=\frac{1}{2}\cdot \varepsilon_0\cdot E_0^2$$

COSTANTE DIELETTRICA RELATIVA:
$$K = \frac{\Delta V_0}{\Delta V} = \frac{\Delta C}{\Delta C_0}$$

COSTANTE DIELETTRICA DEL MATERIALE:
$$\varepsilon = kK$$

AUMENTO DELLA CAPACITA' IN PRESENZA DI UN DIELETTRICO:
$$C = K \cdot C_0$$
 $C = \frac{K \varepsilon_0 A}{d}$

RIDUZIONE DEL CAMPO ELETTRICO IN PRESENZA DI UN DIELETTRICO:

$$E = \frac{E_0}{K}$$
 $E = \frac{\sigma}{K\varepsilon_0}$ $E = E_0 - E_P$ $E_0 = KE$

RIDUZIONE DELL'ENERGIA ELETTROSTATICA IN PRESENZA DI UN DIELETTRICO:
$$U=rac{U_0}{\kappa}$$

DIELETTRICO IN UN CIRCUITO CON GEN. COLLEGATO (
$$\Delta V = \Delta V_0$$
): $Q = kQ_0$ $C = K\frac{Q_0}{\Delta V_0} = KC_0$

DENSITA' SUPERFICIALE DELLA CARICA LIBERA:
$$\sigma = \frac{VC}{A}$$
 $\sigma = \varepsilon_0 \cdot E_0$

DENSITA' SUPERFICIALE DELLA CARICA DI POLARIZZAZIONE(DIELETTRICO):
$$\sigma_P = \frac{\kappa-1}{\kappa} \sigma$$
 $\sigma_p = \varepsilon_0 \cdot E_p$

CORRENTI

VELOCITÀ ELETTRONE DI CONDUZIONE
$$v = \sqrt{3KT/m} \approx 10^5 m/s$$

$$v = \sqrt{3KT/m} \approx 10^5 m/s$$

$$V_{mol} = A/\rho$$

$$V_{mol} = A/\rho$$
 (A= massa di una mole) ($\rho = densità del materiale$)

NUMERO DI ELETTRONI:
$$n = \frac{N_A \rho}{A}$$
 $n = \frac{Q}{e}$

$$n = \frac{N_A \rho}{\Lambda}$$

$$n = \frac{Q}{a}$$

(
$$N_A$$
= NUMERO DI AVOGADRO)

$$i = \frac{dq}{dt}$$

CORRENTE ELETTRICA:
$$i = \frac{dq}{dt}$$
 (dq = quantità di carica)

CARICA NETTA:
$$q = \int i \, dt$$

$$q = \int i dt$$

INTENSITÀ:

$$I = \frac{|Q|}{t}$$

$$I = nS V_d c$$

$$I = j \cdot S$$

$$I = \frac{\Delta V}{R}$$

$$I = \frac{|Q|}{t}$$
 $I = nS V_d q$ $I = j \cdot S$ $I = \frac{\Delta V}{R}$ $Q = nS V_d t q$

RESISTENZE:

$$R = \frac{V}{I}$$

$$R = \frac{V}{l}$$
 $R = \rho \cdot \left(\frac{l}{s}\right)$ $R = \frac{1}{\sigma} \cdot \frac{l}{s}$ $V = RI$

$$R = \frac{1}{\sigma} \cdot \frac{l}{s}$$

$$V = R$$

RESISTENZE IN SERIE:

$$R_{eq} = R_1 + \dots + R_N$$

$$I = I_1 = \cdots = I_n$$

$$V = V_1 + \cdots + V_n$$

$$I=I_1=\cdots=I_n \hspace{1cm} V=V_1+\cdots+V_n \hspace{1cm} V=IR_1+\cdots+IR_n \hspace{1cm} V=IR_{eq} \hspace{1cm} V_1=R_1I$$

$$V = IR_{ea}$$

$$V_1 = R_1 R_1$$

RESISTENZE IN PARALLELO:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \dots + \frac{1}{R_n} \qquad \qquad R_{eq} = \frac{R_1 \cdot \dots \cdot R_n}{R + \dots + R_n}$$

$$R_{eq} = \frac{R_1 \cdot ... \cdot R_n}{R + ... + R}$$

$$V = V_1 = \cdots = V_n$$

$$I = I_1 + \dots + I_n$$

$$V = V_1 = \dots = V_n$$
 $I = I_1 + \dots + I_n$ $I = \frac{V}{R_1} + \dots + \frac{V}{R_n}$ $I = \frac{V}{R_{eq}}$ $I_1 = \frac{V}{R_1}$

$$I = \frac{V}{R_{eq}}$$

$$I_1 = \frac{V}{R_1}$$

RESISTIVITA':
$$\rho = \rho_0 [1 + \alpha (T - T_0)]$$

VELOCITÀ DI DERIVA:
$$V_d = \frac{\sigma E}{Na}$$
 $V_d = \frac{I}{nSa}$

$$V_d = \frac{\sigma E}{Nq}$$

$$V_d = \frac{I}{nSa}$$

LEGGI DI KIRCHHOFF:

$$\sum_{i} j_{i} = 0$$

1^ LEGGE: nodi ->
$$\sum_k i_k = 0$$
 2^ LEGGE: nodi -> $\sum_k i_k R_k = \sum_k V_k$

LEGGE DI OHM:

$$\Delta V = R \cdot i$$

$$\Delta V = R \cdot i$$
 $\vec{E} = \sigma \cdot J$ (in forma locale)

DENSITÀ DI CORRENTE:

$$J = \frac{I}{S} \quad J = n \cdot v_d \cdot |Q| \qquad \qquad J = \frac{l}{S \cdot R} \cdot E \qquad \qquad \vec{J} = \frac{n \cdot e^2 \cdot \tau}{m} \cdot \vec{E}$$

$$J = \frac{l}{S \cdot R} \cdot E$$

$$\vec{j} = \frac{n \cdot e^2 \cdot \tau}{m} \cdot \vec{E}$$

FLUSSO DI J:
$$\phi_j = \frac{dQ}{dt}$$
 $\phi_j = -\frac{dQ_{int}}{dt}$

$$\phi_j = \frac{dQ}{dt}$$

$$\phi_i = -\frac{dQ_{in}}{dQ_{in}}$$

CONDUCIBILITA' (ATTENZIONE NON CONFONDERE CON DENSITA' SUP DI CARICA):

$$\sigma = \frac{l}{\varsigma_{\cdot R}}$$

$$\rho = \frac{1}{\sigma}$$

$$\rho = \frac{1}{\sigma} \qquad \qquad \sigma = \frac{n \cdot e^2 \cdot \tau}{m}$$

(τ = intervallo di tempo medio tra gli urti)

$$I = \sigma \cdot \bar{B}$$

 $I = \sigma \cdot \vec{E}$ (m=massa della particella)

BATTERIE IN SCARICA

BATTERIE IN CARICA

F.E.M

$$V = \varepsilon - I \cdot r$$

$$V = \varepsilon + I \cdot r$$

 $\varepsilon = V$ circuito aperto

ENERGIA DISSIPATA RESISTENZA: (EFFETTO JOULE)

$$P_R = V \cdot I$$

$$P_R = V \cdot I$$
 $P_R = I^2 \cdot R$ $P_R = \frac{V^2}{R}$

$$P_R = \frac{V^2}{R}$$

BILANCIO ENERGETICO:

 $P_u = V*I \ (Energia\ spesa\ dalla\ batteria)$ $P_u = arepsilon \cdot I - I^2 \cdot r$ (potenza di batteria che si scarica)

CIRCUITI RC:

dq = carica sul condensatore

carica di un condensatore:
$$i = \frac{dq}{dt}$$
 $(v_a - v_b) + (v_b - v_c) + (v_c - v_d) + (v_a - v_d) = 0$

$$(\varepsilon) + \left(-\frac{q}{c}\right) + (0) + (-i \cdot R) = 0$$

$$(\varepsilon) + \left(-\frac{q}{c}\right) + (0) + (-i \cdot R) = 0$$
 carica su un cond. che viene caricato: $q(t) = \varepsilon \cdot C \cdot (1 - e^{-\frac{t}{RC}})$

$$-\Delta \mathbf{U} = \frac{1}{2} \cdot \varepsilon^2 \cdot C$$

$$-\Delta \mathbf{U} = \frac{1}{2} \cdot \varepsilon^2 \cdot \mathcal{C}$$
 carica su un cond. che si scarica: $q(t) = Q_0 \cdot e^{-\frac{t}{RC}}$

PROCESSO DI CARICA DI UN CONDENSATORE:

$$Q_0 = C\varepsilon$$

$$Q_0 = C\epsilon$$
 $V_C = \frac{Q_0}{C} = \epsilon$

PROCESSO DI SCARICA DI UN CONDENSATORE:

$$Q(t) = Q_0 e^{-\frac{t}{RC}}$$

GENERATORE IDEALE DI TENSIONE:

$$V = IR = \frac{\varepsilon}{R}R = \varepsilon$$

METALLO (alla temperatura di 20° C)		
Argento	$1.6 \cdot 10^{-8} \Omega \cdot m$	$3.8 \cdot 10^{-3}$
Rame	$1.7 \cdot 10^{-8} \Omega \cdot m$	$4,26 \cdot 10^{-3}$
Alluminio	$2.8 \cdot 10^{-8} \Omega \cdot m$	$4,3 \cdot 10^{-3}$
Ottone	$\sim 7 \cdot 10^{-8} \Omega \cdot m$	
Nichel	$7.8 \cdot 10^{-8} \Omega \cdot m$	
Ferro	$10 \cdot 10^{-8} \Omega \cdot m$	
Acciaio	$\sim 11 \cdot 10^{-8} \Omega \cdot m$	
Costantana	$49 \cdot 10^{-8} \Omega \cdot m$	
Nichelcromo	$100 \cdot 10^{-8} \Omega \cdot m$	

ISOLANTE			
Polietilene	$2 \cdot 10^{11} \Omega \cdot m$		
Vetro	$\sim 10^{12} \Omega \cdot m$		
Porcellana non vetrificata	$\sim 10^{12} \Omega \cdot m$		
Ebanite	$\sim 10^{13} \Omega \cdot m$		
Resina epossidica	$\sim 10^{15} \Omega \cdot m$		

TABELLA MULTIPLI

Ехр	Prefisso	Simbolo	
10^{1}	Deca-	Da-	
10^{2}	Etto-	h-	
10^{3}	Kilo-	k-	
10 ⁶	Mega-	M-	
109	Giga-	G-	
10^{12}	Tera-	T-	
10^{15}	Peta-	P-	
10^{18}	Exa-	E-	
10 ²¹	Zetta-	Z-	
10 ²⁴	Yotta-	Υ-	

TABELLA SOTTOMULTIPLI

Ехр	Prefisso	Simbolo	
10^{-1}	Deci-	d-	
10^{-2}	Centi-	C-	
10^{-3}	Milli-	m-	
10^{-6}	Micro-	M-	
10^{-9}	Nano-	n-	
10^{-12}	Pico-	p-	
10^{-15}	Femto-	f-	
10^{-18}	Atto-	a-	
10^{-21}	Zepto-	Z-	
10^{-24}	Yopto-	у-	

Variabile	Unità di misura	Variabile	Unità di misura
Q/q (carica)	C (coulomb)	V (potenziale)	V (volt)
F (forza)	N (newton)	L (lavoro)/U(en pot)	J (joule)
E (campo elettrico)	$\frac{N}{C} = \frac{V}{m}$	au (momento torcente)	$N \cdot m$
$oldsymbol{ ho}$ (momento dielettrico)	C·m	C (capacità di un condensatore)	F (farad)= C/V
$oldsymbol{\Phi}$ (flusso)	$\frac{N}{Cm^2}$	u(densità di energia)	$\frac{j}{m^3}$
R (resistenza)	Ω (ohm)	I (intensità)	A (ampere)
$oldsymbol{\sigma}$ (conducibilità)	$\frac{1}{\Omega \cdot m}$	J (densità di corrente)	$\frac{A}{m^2}$

MAGNETOSTATICA

FORZA DI LORENTZ(MAGNETICA):
$$\vec{F} = q\vec{v} \times \vec{B}$$
 $\vec{F} = |q\vec{v}\vec{B}\sin\theta|$

$$\vec{F} = q\vec{v} \times \vec{I}$$

$$\vec{F} = |q\vec{v}\vec{B}\sin\theta|$$

$$B = \frac{F}{aa}$$

CAMPO MAGNETICO:
$$B = \frac{F}{qv \sin \theta}$$
 $B = \frac{F}{qv \sin \theta}$

TESLA/GAUSS:
$$1 T = 1 \frac{N}{C \cdot m/c} = 1 \frac{N}{A \cdot m}$$

$$1T = 10^4G$$

$$1 T = 10^4 G$$
 & $1 G = 10^{-4} T$

PARTICELLA IN MOVIMENTO IN UN CAMPO CON TRAIETTORIA AD ARCO (con $B\perp v$):

$$F_B = qvb = ma_c = m\frac{v^2}{r}$$
 $r = \frac{mv}{qB}$ $\omega = \frac{v}{r} = \frac{q}{m}B$ $f_c = \frac{\omega}{2\pi} = \frac{qB}{2\pi m}$

$$r = \frac{mv}{aR}$$

$$\omega = \frac{v}{r} = \frac{q}{m}I$$

$$f_c = \frac{\omega}{2\pi} = \frac{qB}{2\pi m}$$

SE NELLO SPAZIO SIA CAMPO E CHE CAMPO B: $\vec{F}_{tot} = \vec{F}_E + \vec{F}_B$ $\vec{F}_{tot} = qE \sin\theta + qvB \sin\theta$

$$\vec{F}_{tot} = \vec{F}_E + \vec{F}_I$$

$$\vec{F}_{tot} = aE \sin \theta + avB \sin \theta$$

$$v = \frac{E}{R}$$

$$r = \frac{mv}{qB_0}$$

SE Ftot=0:
$$v = \frac{E}{B}$$
 $r = \frac{mv}{qB_0}$ $\frac{m}{q} = \frac{rB_0}{v}$

EFFETTO HALL: accumulazione di carica fino a che $F_B = F_{E\mu}$

$$F_B = F_{E_H}$$

 F_{E_H} = campo di hall

$$E_H = v_d B$$

$$q v_d B = e E_H$$

$$j = n q v_d$$

$$j = \frac{I}{S} = \frac{I}{dt}$$

 $E_H = v_d B$ $q \ v_d B = e \ E_H$ $j = n \ q \ v_d$ $j = \frac{I}{S} = \frac{I}{dt}$ j= densità di corrente

$$v_d = \frac{j}{nq} = \frac{I}{nqdt}$$

$$E_H = \frac{I}{nadt} E$$

$$E_H = \frac{jB}{na}$$

$$\frac{\Delta V_H}{d} = \frac{I}{nqdt} B$$

$$v_d = \frac{j}{ng} = \frac{I}{ngdt}$$
 $E_H = \frac{I}{ngdt}B$ $E_H = \frac{jB}{ng}$ $\frac{\Delta V_H}{d} = \frac{I}{ngdt}B$ $\Delta V_H = \frac{IB}{ngt} = R_H \frac{IB}{t}$

TENSIONE DI HALL:

$$\Delta V_H = E_H \cdot d$$

$$\Delta V_H = \frac{IB}{nqt} = R_H \frac{IB}{t}$$

COEFFICIENTE DI HALL:
$$R_H = \frac{E_H}{iB} = \frac{1}{ng}$$
 $B = \frac{E_H}{iB_H}$

$$R_H = \frac{E_H}{iB} = \frac{1}{nq}$$

$$B = \frac{E_H}{iR_I}$$

FORZA MAGNETICA SU UN CONDUTTORE PERCORSO DA CORRENTE STAZIONARIA:

$$F_B = nAlq v_d B \sin \theta$$
 $F_B = IlB \sin \theta$

$$F_B = IlB \sin \theta$$

FILO DI FORMA ARBITRARIA: $dF_B = IdlB \sin \theta$ $F_B = I(\int dl)B \sin \theta$

$$dF_{\rm D} = IdIB \sin \theta$$

$$F_{\rm p} = I(\int dl)B \sin \vartheta$$

MOMENTO MECCANICO DI UNA SPIRA: $\tau = ISB \sin \theta$ $\tau = \mu \cdot B \sin \theta$

$$\tau = ISB \sin \theta$$

$$\tau = \mu \cdot B \sin \theta$$

MOMENTO DI DIPOLO MAGNETICO: $\mu = I \cdot S$

$$\mu = I \cdot S$$

MOMENTO DELLA FORZA MAGNETICA AGENTE SU UNA BOBINA: $\tau = NISB \sin \theta$ $\tau = \mu B \sin \theta$

$$\tau = NISB \sin \theta$$

$$\tau = \mu B \sin \theta$$

MOMENTO DI DIPOLO MAGNETICO BOBINA: $\mu = N \cdot I \cdot S$

$$u = N \cdot I \cdot S$$

ENERGIA POTENZIALE DI DIPOLO: $U = -\mu \cdot B \sin \theta$

$$U = -\mu \cdot B \sin \theta$$

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{I\vec{dl} \times \vec{r}}{r^2}$$

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{I \vec{dl} \times \hat{r}}{r^2} \qquad \qquad \vec{B} = \frac{\mu_0 I}{4\pi} \int \frac{\vec{dl} \times \hat{r}}{r^2}$$

PERMEABILITA' MAGNETICA NEL VUOTO:

$$\mu_0 = 4\pi \cdot 10^{-7} \frac{T \cdot m}{A}$$

FILO RETTILINEO(BIOT-S.):

$$B = \frac{\mu_0 I}{4\pi r} (\cos \theta_1 - \cos \theta_2)$$

se filo indefinito (θ_1 =0 & θ_2 = π):

$$B = \frac{\mu_0 I}{2\pi r}$$

SPIRA CIRCOLARE(BIOT-S.): $B_y = 0$

$$B_{\nu} = 0$$

$$B_{x} = \frac{\mu_{0}I2\pi r^{2}}{4\pi(r^{2}+x^{2})^{3/2}} \qquad B_{x} = \frac{\mu_{0}}{2\pi} \frac{\mu}{(r^{2}+x^{2})^{3/2}}$$

$$B_{\chi} = \frac{\mu_0}{2\pi} \frac{\mu}{(r^2 + \chi^2)^{3/2}}$$

Nel centro della spira(x=0):

$$B_{\chi} = \frac{\mu_0 I}{2r}$$

A grande distanza(x>>r allora $(r^2 + x^2)^{3/2} \approx x^3$): $B_x = \frac{\mu_0 I r^2}{2 x^3} = \frac{\mu_0 I r^2 2 \pi}{2 x^3 2 \pi} = \frac{\mu_0 2 I A}{4 \pi x^3}$ $B_x = \frac{\mu_0}{4 \pi} \frac{2 \mu}{x^3}$

$$B_{\chi} = \frac{\mu_0 I r^2}{2 \chi^3} = \frac{\mu_0 I r^2 2 \pi}{2 \chi^3 2 \pi} = \frac{\mu_0 2 I A}{4 \pi \chi^3}$$

$$B_{\chi} = \frac{\mu_0}{4\pi} \frac{2\mu}{\chi^3}$$

FILI PARALLELI PERCORSI DA CORRENTE: $F = \frac{\mu_0 I_1 I_2}{2\pi r} l$ se correnti concordi, f attrattiva, altrimenti repulsiva

$$F = \frac{\mu_0 I_1 I_2}{2\pi r} l$$

$$\vec{B} = \overrightarrow{B_1} + \overrightarrow{B_2}$$

$$B_1 = \frac{\mu_0 I_1}{2r_1}$$

$$B_1 = \frac{\mu_0 I_1}{2r_1} \qquad \qquad B_2 = \frac{\mu_0 I_2}{2r_2}$$

Forza per unità di lunghezza:

$$\frac{F}{l} = \frac{\mu_0 I_1 I_2}{2\pi r}$$

LEGGE DI AMPERE:

$$\oint \vec{B} \cdot \vec{dl} = \mu_0 I_{conc} \qquad I_{conc} = \iint \vec{J} \cdot dS$$

$$I_{conc} = \iint \vec{j} \cdot d\vec{k}$$

CAMPO MAGNETICO GENERATO DA UN FILO RETTILINEO DI RAGGIO R PERCORSO DA UNA CORRENTE I_0

$$\oint \vec{B} \cdot \vec{dl} = \oint B \cdot dl = B \oint dl = B2\pi r = \mu_0 I_{conc} \qquad B = \frac{\mu_0 I_{conc}}{2\pi r}$$

$$B = \frac{\mu_0 I_{cond}}{2\pi r}$$

• SE
$$r \ge R$$

$$I_{conc} = I_0$$
 $\boldsymbol{B} = \frac{\mu_0 I_0}{2\pi r}$

• SE
$$r < R$$

$$I_{conc} = j\pi r^2 = \frac{I_0}{\pi R^2} \pi r^2 = I_0 \frac{r^2}{R^2}$$
 $B = \frac{\mu_0}{2\pi R} \frac{I_0 r^2}{R^2} = \frac{\mu_0 I_0}{2\pi R^2} r$

$$B = \frac{\mu_0}{2\pi r} \frac{I_0 r^2}{R^2} = \frac{\mu_0 I_0}{2\pi R^2} r$$

CAMPO MAGNETICO IN UN SOLENOIDE:

N=n° tot spire presenti nel tratto I; n= n° spire per unità di lunghezza

$$\oint \vec{B} \cdot \vec{dl} = \int_{A}^{B} \vec{B} \cdot \vec{dl} + \int_{B}^{C} \vec{B} \cdot \vec{dl} + \int_{C}^{D} \vec{B} \cdot \vec{dl} + \int_{D}^{A} \vec{B} \cdot \vec{dl} = \int_{B}^{C} \vec{B} \cdot \vec{dl} = Bl = \mu_{0} I_{conc} = \mu_{0} NI = \mu_{0} n II$$

$$N = nl \qquad Bl = \mu_{0} NI \qquad B = \mu_{0} \frac{N}{l} I = \mu_{0} n I$$

CAMPO MAGNETICO IN UN TOROIDE (SOLENOIDE TOROIDALE):

$$\oint \vec{B} \cdot \vec{dl} = \oint B \cdot dl = B \oint dl = B2\pi r = \mu_0 NI \qquad B = \frac{\mu_0 NI}{2\pi r}$$

$$B = \frac{\mu_0 NI}{2\pi m}$$

FLUSSO MAGNETICO:
$$d\Phi_{B} = \vec{B} \cdot d\vec{S}$$

FLUSSO MAGNETICO:
$$d\Phi_B = \vec{B} \cdot d\vec{S}$$
 $\Phi_B = \oiint \vec{B} \cdot d\vec{S} = \iint \vec{B} \cdot d\vec{S} = B \cos \theta \cdot \int d\vec{S} = B \cos \theta \cdot S$

LEGGE DI GAUSS PER IL CAMPO DI INDUZIONE MAGNETICA: $\Phi_B = 0$ $\oiint \vec{B} \cdot d\vec{S} = 0$

$$\Phi_{P} = 0$$

$$\text{df} \vec{B} \cdot d\vec{S} = 0$$

MAGNETISMO DELLA MATERIA

PERMEABILITA' MAGNETICA MATERIALE INSERITO IN UN SOLENOIDE:

$$\mu_r = \frac{B}{B_0} \qquad \qquad \mu = \mu_0 \mu_r$$

$$\mu = \mu_0 \mu_r$$

$$B = \mu_r B_0 = \mu_0 \mu_r n I = \mu n I \qquad |\overrightarrow{B_0}| = \mu_0 I n$$

$$|\overrightarrow{B_0}| = \mu_0 In$$

$$|\vec{B}| = \mu I r$$

$$\vec{B} = \mu \vec{H}$$

$$|\vec{B}| = \mu In$$
 $\vec{B} = \mu \vec{H}$ $H_0 = \frac{B_0}{\mu_0} = nI$

SOSTANZE DIAMAGNETICHE:

$$\mu_r < 1$$

$$\mu_r < 1$$
 $\overrightarrow{B} < \overrightarrow{B_0}$

NEL VUOTO:

$$u_m =$$

$$\mu_r = 1$$
 $\vec{B} = \vec{B_O}$

SOSTENZA PARAMAGNETICHE:

$$\mu_r > 1$$

$$\vec{B} > \vec{B_O}$$

SOSTENZE FERROMAGNETICHE:

$$u_r \gg 1$$

$$\vec{B} \gg \overline{B_O}$$

INTERPRETAZIONE MICROSCOPICA (ORBITA ELETTRONE): $I=rac{e}{T}=erac{\omega_0}{2\pi}=rac{ev_0}{2\pi r_0}$

$$I = \frac{e}{T} = e \frac{\omega_0}{2\pi} = \frac{ev_0}{2\pi r_0}$$

$$|\vec{m}| = IS = I\pi r_0^2 = \frac{ev_0}{2\pi r_0}\pi r_0^2 = \frac{1}{2}ev_0r_0$$

$$|\vec{L}| = m_e v_0 r_0$$
 $\vec{m} = -\frac{e}{2m_e} L$

$$\vec{m} = -\frac{e}{2m_e}L$$

RAPPORTO GIROMAGNETICO PER IL MOTO ORB. DEL'ELETTRONE: $g_0 = -\frac{e}{2m}$ $\vec{m} = g_0(\vec{L} + \delta \vec{S})$

$$g_0 = -\frac{e}{2m}$$

$$\vec{m} = g_0(\vec{L} + \delta \vec{S})$$

PRECESSIONE DI LARMOR (DIAMAGNETISMO):

in assenza di campo B:

$$\overrightarrow{F_{el}} = m_e a_c$$

$$\overrightarrow{F_{el}} = m_e a_c$$
 $\frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2} = m_e \frac{v_0^2}{r} = m_e \omega_0^2 r$ $\omega_0 = \sqrt{\frac{1}{4\pi\varepsilon_0} \frac{e^2}{m_e r^2}}$

$$\omega_0 = \sqrt{\frac{1}{4\pi\varepsilon_0} \frac{e^2}{m_0 r^2}}$$

$$\overrightarrow{F_{el}} + \overrightarrow{F_L} = m_e a_e$$

in presenza del campo
$$B^*$$
:
$$\overrightarrow{F_{el}} + \overrightarrow{F_L} = m_e a_c \qquad \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2} + ev B^* = m_e \frac{v^2}{r} \rightarrow \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2} + e\omega r B^* = m_e \omega^2 r$$

$$\frac{e^2}{4\pi\varepsilon_0 m_e r^3} + \frac{eB^*}{m_e}\omega = \omega^2 \ \rightarrow \ \omega^2 - \frac{eB^*}{m_e}\omega - \omega_0^2 = 0 \qquad \qquad \text{poniamo:} \qquad \omega_L = \frac{eB^*}{2m_e} \quad \text{frequenza di Larmor}$$

$$\omega_L = rac{eB^*}{2m_e}$$
 frequenza di Larmor

$$\omega^2 - 2\omega_L \omega - \omega_0^2 \to \omega = \omega_L \mp \sqrt{\omega_0^2 + \omega_L^2} \approx \omega_0 \mp \omega_L \qquad \omega = \omega_0 + \omega_L$$

$$\omega = \omega_0 + \omega_I$$

$$I_L = e \frac{\omega_L}{2\pi}$$

Corrente:
$$I_L = e \frac{\omega_L}{2\pi}$$
 momento megnetico: $m_L = I_L S = e \frac{\omega_L}{2\pi} S = \frac{e^2 S}{4\pi m_e} B^*$ $\overrightarrow{m_L} = \frac{e^2 S}{4\pi m_e} \overrightarrow{B^*}$

$$\overrightarrow{m_L} = \frac{e^2 S}{4\pi m_*} \overrightarrow{B}^*$$

POLARIZZAZIONE PER ORIENTAMENTO (PARAMAGNETISMO): $\langle \overrightarrow{m} \rangle = \frac{\sum_i m_i}{N}$

$$\langle \overrightarrow{m} \rangle = \frac{\sum_{i} m_{i}}{N}$$

N=numero di atomi

VETTORE INTENSITA' DI MAGNETIZZAZIONE: $\vec{M} = \frac{\sum_{i}^{dN} \vec{m_i}}{dV} = \langle \vec{m} \rangle \frac{dN}{dV} = \langle \vec{m} \rangle n$ n=n° di at. per unità vol

$$\vec{M} = \frac{\sum_{i}^{dN} \vec{m_i}}{dV} = \langle \vec{m} \rangle \frac{dN}{dV} = \langle \vec{m} \rangle$$

$$\vec{M} = \frac{\sum_{i}^{\Delta N} \overrightarrow{m_{i}}}{\Delta V} = \frac{\Delta \overrightarrow{m}}{\Delta V} = \langle \overrightarrow{m} \rangle \frac{\Delta N}{\Delta V} = \langle \overrightarrow{m} \rangle n$$

$$\Delta \overrightarrow{m} = \sum_{i}^{\Delta N} \overrightarrow{m_{i}} \qquad \qquad d\overrightarrow{m} = \overrightarrow{M}dV$$

$$d\vec{m} = \vec{M}dV$$

$$\overrightarrow{m_i} = \overrightarrow{M} \Delta V$$

$$\vec{M} = x_m \frac{\vec{B}}{\mu}$$

$$\vec{M} = x_m \vec{H}$$

$$\overrightarrow{M}=x_{m}\overrightarrow{H}$$
 con x_{m} suscettibilità magnetica di volume

$$\vec{M} = \frac{C\vec{B}}{\mu_0 T}$$

$$x_m = A + \frac{C}{T}$$

$$x_m = \mu_r - 1$$

LEGGE DI CURIE: $\vec{M} = \frac{C\vec{B}}{\mu_0 T}$ $x_m = A + \frac{C}{T}$ $x_m = \mu_r - 1$ con T temperatura, A e C costanti

RELAZIONE TRA M E LA DENSITA' DI CORRENTE AMPERIANA: $I_m = \frac{dQ_m}{dt} = j_m t l = j_{ms} l$

$$I_m = \frac{dQ_m}{dt} = j_m t l = j_{ms} l$$

$$dI_m = j_{ms}dl$$

$$dm = dI_m S \rightarrow MdlS = j_{ms}dlS \rightarrow j_{ms} = |\vec{M}|$$

DENSITA' DI CORRENTE DI SUPERFICIE [ampere/metro]: $j_{ms} = j_m t$

$$j_{ms} = j_m$$

$$j_{ms} = |\vec{M}|$$

INTENSITA' DEL CAMPO MAGNETICO:

$$\vec{H} = \frac{\vec{B}}{u}$$

$$\vec{H} = \frac{\vec{M}}{x_m}$$

$$\vec{H} = rac{\vec{B}}{\mu} \qquad \qquad \vec{H} = rac{\vec{M}}{\kappa_m} \qquad \qquad \vec{H} = rac{\vec{B}}{\mu_0} - \vec{M}$$

RELAZIONE TRA QUANTITA' MACROSCOPICHE E MICROSCOPICHE(solenoide):

$$B = B_0 + B_m = \mu_0 I n + \mu_0 I' n'$$

$$I'n' = j_{ms}$$

$$|B| = \mu_0 In + \mu_0 M$$

$$M = \frac{B}{\mu_0} - In = \frac{\mu}{\mu_0} In - In = \left(\frac{\mu}{\mu_0} - 1\right) In = (\mu_r - 1) In$$
 $\vec{H} = \vec{H}_0 = In\hat{x}$

$$\vec{H} = \vec{H}_0 = In\hat{x}$$

$$\overrightarrow{M}=(\mu_r-1)\overrightarrow{H}$$
 e $\overrightarrow{M}=x_m\overrightarrow{H}$ quindi $x_m=\mu_r-1$

$$\vec{M} = x_m \vec{H}$$

$$x_m = \mu_r - 1$$

FORZA AGENTE SU UN DIPOLO MAGNETICO: $E = -\overrightarrow{m} \cdot \overrightarrow{B}$ $\vec{F} = -grad \ E = grad \ (\overrightarrow{m} \cdot \overrightarrow{B})$

$$E = -\overrightarrow{m} \cdot \overrightarrow{R}$$

$$\vec{F} = -grad E = grad(\vec{m} \cdot \vec{B})$$

Sostanze diamagnetiche:
$$\mu_r - 1 < 0 \rightarrow m < 0 \rightarrow F < 0$$
 repulsione

Sostanze paramagnetiche:

$$\mu_r - 1 > 0 \rightarrow m > 0 \rightarrow F > 0$$
 attrazione

Sostanze ferromagnetiche:

$$\mu_r > 1$$

RELAZIONE TRA B, H E M:
$$\int \vec{H} \, \vec{dl} = NI \, \rightarrow Hl = NI \, \rightarrow H = \frac{N}{l} I$$

$$\vec{B} = \mu_0(\vec{H} + \vec{M})$$

CICLO DI ISTERESI: B = B(H)

$$B = B(H)$$

$$M = M(H)$$

CAMPI DIPENDENTI DAL TEMPO

CORRENTE DI SPOSTAMENTO TRA LE ARMATURE DI UN CONDENSATORE:

$$I_d = \varepsilon_0 \frac{d\Phi_E}{dt}$$

LEGGE DI AMPERE-MAXWELL:

$$\oint \vec{B} \, \vec{dl} = \mu_0(I + I_d) = \mu_0 I + \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$$

FEM INDOTTA (causa una I indotta): $\varepsilon = I_{indotta}R$

$$\varepsilon = I_{indotta}R$$

$$\varepsilon = -\frac{d\Phi_B}{dt}$$

$$\varepsilon = Blv$$

LEGGE DI FARADAY-NEUMANN-LENZ: $\varepsilon = -\frac{d\Phi_B}{d\epsilon}$

$$\varepsilon = -\frac{d\Phi_I}{dt}$$

$$[1 Wb/s = 1 V$$

FEM INDOTTA BOBINA TOROIDALE:

$$\varepsilon_T = N\varepsilon = -N\frac{d\Phi_B}{dt}$$

$$\Phi_B = \int B dS = B l x$$

FEM DI MOVIM(LENZ):
$$\Phi_B = \int B dS = Blx \qquad \qquad \varepsilon = \frac{d\Phi_B}{dt} = \frac{d(Blx)}{dt} = Bl\frac{dx}{dt} = Blv$$

Sulla sbarretta:
$$F_E = F_B \rightarrow -eE = -evB \rightarrow E = vB$$

$$V_A - V_B = -\int_A^B E dl = \int_A^B E dl = E \int_A^B dl = El \rightarrow V_A - V_B = El = vBl \equiv \varepsilon$$
 $\varepsilon = El = vBl$

$$I = \frac{\varepsilon}{R} = \frac{vBl}{R}$$
 $F_B = Il \times B \rightarrow F_B = \frac{vBl}{R}lB \rightarrow F_B = \frac{B^2l^2v}{R}$

Per mantenere in moto la sbarra serve una f:

$$F = -F_B$$
 $P = Fv = \frac{B^2 l^2 v^2}{R}$ $P = \frac{\varepsilon^2}{R} = RI^2 = \varepsilon I$

GENERATORI

FLUSSO MAG. IN UNA SPIRA ROTANTE:
$$\Phi_B = \int \vec{B} \vec{dS} = \vec{B} \cdot d\vec{S} = BS \cos \theta = BS \cos \omega t$$

FEM INDOTTA IN UNA SPIRA ROTANTE:

$$\varepsilon = -\frac{d\Phi_B}{dt} \rightarrow \varepsilon = BS\omega \cdot \sin \omega t$$

FEM INDOTTA IN UN AVVOLGIMENTO ROTANTE:

$$\varepsilon = NBS\omega \cdot \sin \omega t$$

MOMENTO TORCENTE DELLA SPIRA:

$$\vec{\tau} = I\vec{S} \times \vec{B} = \vec{m} \times \vec{B}$$

CAMPI ELETTRICI INDOTTI:
$$\varepsilon = \frac{W}{a} = \oint \frac{\vec{F} \cdot d\vec{l}}{a} = (\oint \vec{E}) \cdot d\vec{l}$$
 $\varepsilon = \oint \vec{E} \cdot d\vec{l}$

$$\varepsilon = \oint \vec{E} \cdot d\vec{l}$$

CAMPO ELETTROSTATICO:

$$\oint \vec{E} \cdot d\vec{l} = 0$$

FORMA INTEGRALE DELLA LEGGE DI FARADAY:

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

LEGGE DI AMPERE:
$$\oint \vec{B} \ \vec{dl} = \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$$

INDUTTANZA:

$$\Phi_B = \int \vec{B} \vec{dl} = \iint rac{dl imes \vec{d} \vec{l} imes \vec{r}}{4\pi} rac{dl imes \vec{r}}{r^2} \cdot d\vec{S} = LI$$
 in henry $1H = 1 \cdot rac{V \cdot s}{A}$

$$\Phi_{n} - II$$

in henry
$$1H = 1 \cdot \frac{V \cdot s}{4}$$

F.E.M. AUTOINDOTTA: $\varepsilon_L = -\frac{d\Phi_B}{dt} = -L\frac{dI}{dt}$

$$c_{-} = -\frac{d\Phi_B}{dI} = -I\frac{dI}{dI}$$

INDUTTANZA BOBINA:

$$N\Phi_B = LI$$

INDUTTANZA DI UN SOLENOIDE: $L = \mu_0 n^2 l S = \mu_0 n^2 V$ $L = \mu_0 n^2 V$

$$L = \mu_0 n^2 lS = \mu_0 n^2 V$$

$$I = \mu_1 n^2 L$$

CIRCUITI LR

DIF. DI POT:
$$\varepsilon_0 + \varepsilon_L - RI = 0 \qquad \qquad \varepsilon_0 - L \frac{dI}{dt} - RI = 0 \qquad \qquad \varepsilon_0 = L \frac{dI}{dt} + RI$$

CORRENTE NEL CIRCUITO:
$$I = \frac{\varepsilon_0}{R} \left(1 - e^{-t/\tau_L} \right)$$

COSTANTE DI TEMPO DEL CIRCUITO:
$$\tau_L = \frac{L}{R}$$

I SENZA BATTERIA/GEN:
$$L\frac{dI}{dt} + RI = 0$$
 $I = I_0 e^{-t/\tau}$

POTENZA: effetto joule:
$$P = IV = I(IR) = I^2R$$
 induttanza: $P = LI\frac{dI}{dt}$

ENERGIA IMMAGAZZINATA DALL'INDUTTORE:
$$U = \frac{1}{2}LI^2$$
 $dU = LIdI$

Densita' di energia del campo magnetico:
$$u_B=rac{B^2}{2\mu_0}$$

MUTUA INDUTTANZA:
$$N_2\Phi_{21}=MI_1$$
 $N_1\Phi_{12}=MI_2$ $\varepsilon_{12}=-M\frac{dI_1}{dt}$ $\varepsilon_{21}=-M\frac{dI_2}{dt}$

TRASFORMATORI:
$$\frac{V_2}{V_1} = \frac{N_2}{N_1} \qquad \frac{I_2}{I_1} = \frac{N_2}{N_1}$$

CIRCUITI LC

TENSIONE NEL CIRCUITO:
$$(V_A - V_B) + (V_B - V_A) = 0$$
 $\frac{Q}{C} - L \frac{dI}{dt} = 0$ $\frac{d^2Q}{dt^2} = -\frac{1}{LC}Q$

CORRENTE NEL CIRCUITO:
$$I=\omega Q_m \sin \omega t = I_m \sin \omega t$$
 Q_m =carica massima sul condensatore

CARICA SUL CONDENSATORE:
$$Q=Q_m\cos(\omega t+arphi)$$
 $\omega=rac{1}{\sqrt{LC}}$ se t=0: $Q=Q_m$

ENERGIA ELETTRICA:
$$U_E = \frac{1}{2} * \frac{Q^2}{C} = \frac{1}{2} * \frac{Q_M^2}{C} cos^2 \omega t$$

ENERGIA MAGNETICA:
$$U_B = \frac{1}{2}LI^2 = \frac{1}{2}LI_m^2\sin^2\omega t$$

ENERGIA TOTALE:
$$U = U_B + U_E = \frac{1}{2}LI_M^2$$

ONDE

EQUAZIONE ONDA PIANA PROGRESSIVA/REGRESSIVA:
$$f(x,t) = fp(x-v*t) + fr(x+v*t)$$

EQUAZIONE ONDE PIANE:
$$\frac{\delta^2 f}{\delta x^2} - \frac{\delta^2 f}{v^2} * \frac{\delta^2 f}{\delta t^2} = 0$$

EQUAZIONE DELLE ONDE:
$$\frac{\delta^2 f}{\delta x^2} + \frac{\delta^2 f}{\delta y^2} + \frac{\delta^2 f}{\delta z^2} - \frac{1}{v^2} * \frac{\delta^2 f}{\delta t^2} = 0$$

EQUAZIONE ONDE SFERICHE:
$$f(r,t) = \frac{1}{r} f p(r-v*t) + \frac{1}{r} f r(r+v*t)$$

ONDE ARMONICHE:
$$f(x \mp v * t) = A * sen(k * x \mp \omega * t + \varphi)$$

PERIODO T=
$$T=\frac{2\pi}{\omega}$$
 LUNG D'ONDA: $\lambda=\frac{2\pi}{k}$ PULSAZ.: $\omega=2\pi v$ V(frequenza) = $v=\frac{1}{T}$

NUM D'ONDA
$$k=\frac{2\pi}{\lambda}$$
 VELOCITÀ: $\frac{\lambda}{T}=\frac{\omega}{k}$

POTENZA ONDA
$$\frac{\Delta E}{\Delta t} = u^{lin} * v$$
 $u^{lin} = densità lineare di energia$

INTENSITÀ ISTANTANEA: $I = \frac{P}{\Delta s} = u * s$ u = DENSITÀ DI VOLUME DI ENERGIA

INTENSITÀ MEDIA: $< I> = \frac{P}{4\pi r^2}$

ONDE STAZIONARIE $y(x, t) = 2Asen(kx)\cos(\omega t)$

VELOCITÀ DELLA LUCE NEL VUOTO: $C = \frac{1}{\sqrt{\varepsilon_0 * \mu_0}} = 2,998 * 10^8 m/s$

VELOCITÀ DELLA LUCE IN QUALUNQUE ALTRO MATERIALE: $v=rac{1}{\sqrt{arepsilon_0 k \mu_0 \mu_r}}=rac{C}{\sqrt{k \mu_r}}$

Indice di Rifrazione: $N=rac{c}{v}=\sqrt{k\mu_r}$ Relazione tra i campi: $\vec{E}=\vec{B}~X~\vec{C}$

INTENSITÀ ONDE $u_E = u_B$

INTENSITÀ DELL'ONDA $S=\mu_{EM}*c=arepsilon_0*E^2*C=rac{E^2}{\sqrt{arepsilon_0/\mu_0}}$

VETTORE DI POYNTING $S=rac{1}{\mu_0}*\vec{E}~x~\vec{B}~< S> = rac{1}{2\mu_0}*E_0B_0$