Problem 7.6

- (a)
- (b) By definition

$$\lim_{n \to \infty} \left| \int_{\mathbb{R}} f \, \mathrm{d}\mu_n - \int_{\mathbb{R}} f \, \mathrm{d}\mu \right| \le \varepsilon,$$

implies that for any $\delta > 0$

$$\left| \int_{\mathbb{R}} f \, \mathrm{d}\mu_n - \int_{\mathbb{R}} f \, \mathrm{d}\mu \right| < \varepsilon + \delta,$$

holds for large enough n. Note that this holds for any $\varepsilon, \delta > 0$.

Now pick $\eta > 0$ and set $\varepsilon = \eta/2 = \delta$, then the above inequality implies that

$$\lim_{n \to \infty} \left| \int_{\mathbb{R}} f \, \mathrm{d}\mu_n - \int_{\mathbb{R}} f \, \mathrm{d}\mu \right| = 0.$$

- (c) Consider the sequence of sets $A_n=\mathbb{R}\setminus [-n,n]$. Then $A_n\supset A_{n+1}$ and $A_n\downarrow\emptyset$. Hence, it follows from Proposition 2.12 2) that $\lim_{n\to\infty}\mu(A_n)=0$. Thus, there exists a N such that $\mu(A_n)<\varepsilon/(2M)$ holds for all $n\ge N$. We can then take any $\alpha>N$.
- (d) The function

$$g(x) = \mathbb{1}_{[-\alpha,\alpha]}(x) + \mathbb{1}_{(-(\alpha+1),-\alpha)}(x) (x + (\alpha+1)) + \mathbb{1}_{(\alpha,\alpha+1)}(x) (-x + \alpha + 1)$$

does the trick. This is simply a linear increase from zero to one from $-(\alpha+1)$ to $-\alpha$ and from $\alpha+1$ to α .

(e) Observe that g is a non-negative continuous bounded function that is zero outside the interval $[-(\alpha+1), \alpha+1]$, and thus we can apply (3). Using linearity of the integral, the fact that $|f| \leq M$ and the definition of g, we get

$$\left| \int_{\mathbb{R}} f \, d\mu - \int_{\mathbb{R}} f g \, d\mu \right| = \left| \int_{\mathbb{R}} f(1-g) \, d\mu \right| \le M \int_{\mathbb{R}} (1-g) \, d\mu$$

$$\le M \int_{\mathbb{R}} (1-g) \, d\mu$$

$$= M \left(1 - \int_{\mathbb{R}} g \, d\mu \right)$$

$$\le M\mu(\mathbb{R} \setminus [-\alpha, \alpha]) < \frac{\varepsilon}{2}.$$

(f) Again, using linearity of the integral and the fact that $|f| \leq M$ we get

$$\left| \int_{\mathbb{R}} f \, d\mu_n - \int_{\mathbb{R}} f g \, d\mu_n \right| = \left| \int_{\mathbb{R}} f(1-g) \, d\mu_n \right| \le M \int_{\mathbb{R}} (1-g) \, d\mu_n$$
$$\le M \int_{\mathbb{R}} (1-g) \, d\mu_n = M \left(1 - \int_{\mathbb{R}} g \, d\mu_n \right)$$

Now observe that the integral in the last term converges to $\int_{\mathbb{R}} g \, d\mu$ by (3). Thus, we obtain

$$\limsup_{n\to\infty} \left| \int_{\mathbb{R}} f \,\mathrm{d}\mu_n - \int_{\mathbb{R}} fg \,\mathrm{d}\mu_n \right| \leq M \int_{\mathbb{R}} (1-g) \,\mathrm{d}\mu \leq M \mu(\mathbb{R} \setminus [-\alpha,\alpha]) < \frac{\varepsilon}{2}.$$

(g) Recall that

$$\left| \int_{\mathbb{R}} f \, d\mu_n - \int_{\mathbb{R}} f \, d\mu \right| \le \left| \int_{\mathbb{R}} f \, d\mu_n - \int_{\mathbb{R}} f g \, d\mu_n \right| + \left| \int_{\mathbb{R}} f \, d\mu - \int_{\mathbb{R}} f g \, d\mu \right| + \left| \int_{\mathbb{R}} f \, d\mu_n - \int_{\mathbb{R}} f g \, d\mu \right|.$$

For the first two terms, the (e) and (f) imply that the $\limsup_{n\to\infty}$ is bounded by $\varepsilon/2$. For the third term we not that fg is a continuous bounded function and hence this term converges to zero by our assumption that (3) holds.

Together we then have that

$$\limsup_{n \to \infty} \left| \int_{\mathbb{R}} f \, \mathrm{d}\mu_n - \int_{\mathbb{R}} f \, \mathrm{d}\mu \right| < \varepsilon,$$

which implies the result.