MATH 2554:4.6 - 4.7 Review + A few problems

4.6 Linear Approximation - Important Concepts

- To approximate f near x = a, use $f(x) \approx L(x) = f(a) + f'(a)(x a)$ To approximate the change in $y(\Delta y)$ use $\Delta y \approx f'(a)\Delta x$

4.7 L'Hôpital's Rule

Suppose f and g are differentiable on an open interval I containing a with $g'(x) \neq 0$ on I when $x \neq a$. If $\lim_{x \to a} f(x) = 0$

 $\lim_{x\to a} g(x) = 0, \text{ then } \lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)} \text{ provided the limit on the right exists (or is } \pm \infty). \text{ This rule also applies if } x\to a \text{ is replaced with } x\to \pm \infty \text{ or a left/right limit.}$

Problem 1
$$\lim_{x\to\infty} x - \sqrt{x^2 - 1}$$

Problem 2
$$\lim_{x\to 0^+} x^x$$