For More

JOIN @PuneEngineers Telegram

UNIT VI: NUMERICAL METHODS

1] Find Lagrange's interpolation for

Χ	2	3	5	7
Y=log X	0.3010	0.4771	0.6990	0.8451

Use it to find log 47.

- 2] Evaluate $\int_{0.2}^{1.4} (\sin x \log_e x + e^x) dx$ by Simpson's $\frac{3}{8}^{th}$ rule. Take h = 0.1.
- Solve $\frac{dy}{dx} = x^2 + y$, $x_0 = 0$, $y_0 = 1$, to find y at x=0.1, x=0.2 using modified Euler's method.
- Using Runge-Kutta method of 4th order solve $\frac{dy}{dx} = x^2 + y^2$ Subject to the conditions x = 1, y = 1.5 to find y at x = 1.1, x = 1.2, h = 0.1.
- Using Runge-Kutta method of 2^{nd} order solve $\frac{dy}{dx} = \frac{1}{x+y}$ Subject to the conditions x = 0, y = 1 to find y at x = 0.4, h = 0.2.
- 6] Use Simpson's $\frac{1}{3}^{rd}$ rule with 10 intervals to find $\int_0^{\frac{\pi}{2}} \left[\frac{\sin x}{x} \right] dx$.
- 7] Use Trapezoidal rule with 4 intervals to find $\int_0^2 \left[\frac{x}{\sqrt{2+x^2}} \right] dx$.
- Find the values of y for x = 1.5, x = 4.5 and $\frac{dy}{dx}$ at x = 1.5 for

X	1	2	3	4	5
Υ	3.47	6.92	11.25	16.75	22.94

- 9] Find Lagrange's interpolation for
- 10] X 0 1 2 Y 4 3 6

Use it to find y at x=1.5.

- 11] Evaluate $\int_0^{\pi} \frac{\sin^2 \theta}{5 + 4\cos \theta} d\theta$ by Simpson's $\frac{3}{8}^{th}$ rule. Take h = $\pi/6$.
- Solve $\frac{dy}{dx} = 1 + xy$, $x_0 = 0$, $y_0 = 1$, to find y at x=0.1, x=0.2 using modified Euler's method.
- Using Runge-Kutta method of 4th order solve $\frac{dy}{dx} = \sqrt{x+y}$ Subject to the conditions x=0, y=1 to find y at x=0.2, h=0.1.
- Use Simpson's $\frac{1}{3}^{rd}$ rule with 10 intervals to find $\int_{1}^{2} \frac{1}{x} dx$.
- 15] Find the values of y for x = 0.5 for

Χ	0	1	2	3	4
Υ	1	5	25	100	250

By Newton's Forward Difference.

From the Table ,Estimate the values of f(0.05), f(047) using appropriate interpolation

16] formulae

Torritative								
X	0	0.1	0.2	0.3	0.4	0.5		
У	1	1.046	1.09423	1.44	1.297	1.252		

Given: $\log 2=0.3010$, $\log 3=0.4771$, $\log 5=0.6990$, $\log 7=0.8451$ find $\log 47$ by using Lagrange's interpolation formula.

	From the Ta	bla Estimata	the values	of f(0.25)	ucing I agr	ango's into	nolation fo	rmula	
18]	X	0	0.1	0.2).4	0.5	
-,	y	1	1.046	1.094	23		.297	1.252	
Evaluate $\int_{0}^{3} \frac{dx}{1+x}$ with 7 ordinates by using Simpson's 3/8 th rule									
Hint: To get 7ordinates divide interval into 6 equal parts.									
	From table, Use i) Trapezoidal rule ii) Simpson's 1/3 rd rule iii) Simpson's 3 th /8 rule to find								
20]	$\int_{1}^{7} f(t)dt$								
	t	1	2	3	4	5	6	7	
	f(t)	81	75	80	83	78	70	60	
21]	Evaluate $\int_{0}^{0.8} [\log_e(x+1) + \sin 2x] dx$ where x is in radian. Using simpson's $1/3^{\text{rd}}$ rule, divide entire interval into 8 strips.								
22]	Solve $\frac{dy}{dx} = y^2 - \frac{y}{x}$, $y(1) = 1$ for the interval $0(0.1)1.5$ by using Modified Euler's method								
23]	Solve $\frac{dy}{dx} = x + y$, $y(0) = 1$ for $h = 0.2$ find $y(0.4) \land y(0.6)$ by using Modified Euler's method								
24]	Solve $\frac{dy}{dx} = 0$	1+x)y, $y(0)$	=1 find y	$y(0.2) \wedge y(0)$	0. 4)by usin	g Runge-Kı	utta Mehto	of fourth	
	order.	2 2							
25]	Solve $\frac{dy}{dx} = \frac{1}{2}$	$\frac{y^2-x^2}{y^2+x^2}$, $y(0)$	=1 find $y($	$(0.2) \wedge y(0.2)$	4)by using	g Runge-Ku	tta Mehto o	f fourth	
	order.				_				
		Predictor-co	-						
	0.1	$dy = y^2 - 3 = 0$							

Solution of equation $5 x \frac{dy}{dx} + y^2 - 2 = 0$ is tabulated as

X	4	4.1	4.2	4.3
y	1	1.0049	1.0097	1.0143