- 1. Let $V = \{(x, y, z) \in \mathbb{R}^3 : x y z = 0\}.$
- (A) V is not a subspace of \mathbb{R}^3 .
- (B) V is a 0 dimensional subspace of \mathbb{R}^3 .
- (C) V is a 1 dimensional subspace of \mathbb{R}^3 .
- (D) V is a 2 dimensional subspace of \mathbb{R}^3 .

2. Let

$$V = \{(x, y, z) \in \mathbf{R}^3 : x - y - z = 0 \text{ and } y - 2z = 0\}.$$

- (A) V is not a subspace of \mathbb{R}^3 .
- (B) V is a 0 dimensional subspace of \mathbb{R}^3 .
- (C) V is a 1 dimensional subspace of \mathbb{R}^3 .
- (D) V is a 2 dimensional subspace of \mathbb{R}^3 .

- 3. Let $V = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 0\}.$
- (A) V is not a subspace of \mathbb{R}^3 .
- (B) V is a 0 dimensional subspace of \mathbb{R}^3 .
- (C) V is a 1 dimensional subspace of \mathbb{R}^3 .
- (D) V is a 2 dimensional subspace of \mathbb{R}^3 .

- 4. Let $V = \{ p \in \mathcal{P}_2(\mathbf{R}) : p(-1) = p(1) \}.$
- (A) V is not a subspace of $\mathcal{P}_2(\mathbf{R})$.
- (B) V is a 0 dimensional subspace of $\mathcal{P}_2(\mathbf{R})$.
- (C) V is a 1 dimensional subspace of $\mathcal{P}_2(\mathbf{R})$.
- (D) V is a 2 dimensional subspace of $\mathcal{P}_2(\mathbf{R})$.

5. True or False?

If U and W are subspaces of \mathbf{R}^8 such that $\dim(U)=3$, $\dim(W)=5$ and $U+W=\mathbf{R}^8$, then in fact $U\oplus W=\mathbf{R}^8$.

- 6. If U and W are both 3 dimensional subspaces of \mathbb{R}^5 , then the set of possible dimensions for $U \cap W$ is...
- (A) 0, 1, 2, 3, 4, 5
- (B) 0, 1, 2, 3
- (C) 1, 2, 3
- (D) None of the above.