

Penyelesaian Persamaan Non Linear Metode Secant Dengan Modifikasi Tabel

Ahmad Zainudin, S.ST, M.T Workshop Metode Numerik 2014

Metode Secant

Metode secant merupakan perbaikan dari metode regula-falsi dan newton raphson dimana kemiringan dua titik dinyatakan sacara diskrit, dengan mengambil bentuk garis lurus yang melalui satu titik.

Algoritma Metode Secant dengan Modifikasi Tabel

- 1. Definisikan fungsi F(x)
- 2. Ambil range nilai x = [a,b] dengan jumlah pembagi p
- 3. Masukkan torelansi error (e) dan masukkan iterasi n
- Gunakan algoritma tabel diperoleh titik pendekatan awal x₀ dan x1 untuk setiap range yang diperkirakan terdapat akar dari :
 - $F(x_k) * F(x_{k+1}) < 0$ maka $x_0 = x_k \, dan \, x_1 = x_0 + (b-a)/p$. Sebaiknya gunakan metode tabel atau grafis untuk menjamin titik pendakatannya adalah titik pendekatan yang konvergensinya pada akar persamaan yang diharapkan.
- Hitung F(x₀) dan F(x₁) sebagai y₀ dan y₁
- 6. Untuk iterasi I = 1 s/d n atau $|F(x_i)| \ge e$

$$x_{i+1} = x_i - y_i \frac{x_i - x_{i-1}}{y_i - y_{i-1}}$$

Hitung $y_{i+1} = F(x_{i+1})$

7. Akar persamaan adalah nilai x yang terakhir.

Kurva Fungsi Persamaan (program python)

• F(x)=x*exp(-x)+cos(2*x)

Terdapat 3 nilai akar

Gunakan Metode Tabel Untuk Mendapatkan x0 dan x1

Modifikasi program metode tabel Tambahkan input untuk metode table : batas bawah (=a), batas atas(=b), jumlah pembagi(=p) $F(x_k) * F(x_{k+1}) < 0$ maka $x_0 = x_k \operatorname{dan} x_1 = x_0 + (b-a)/p$ else if(fx(x)*fx(x2)<0){ if(fabs(fx(x)) < fabs(fx(x2))){ printf("Titik Pendekatan Awal $x0 = %f\n",x$); $x1=x0+((x_atas-x_bawah)/n);$ printf("Titik Pendekatan Kedua x1 = %f\n",x1); else{ printf("Titik Pendekatan Awal $x0 = %f\n", x2$); x0=x2: $x1=x0+((x_atas-x_bawah)/n);$ printf("Titik Pendekatan Kedua x1 = %f\n",x1);

Gunakan Metode Tabel Untuk Mendapatkan x0 dan x1

```
C:\Data\Workshop Metode Numerik\Program>secant_modifikasi_tabel
Tentukan Batas Bawah : 0
Tentukan Batas Atas : 2
Tentukan Jumlah Iterasi : 10
Titik Pendekatan Awal x0 = 1.000000
Titik Pendekatan Kedua x1 = 1.200000
```

Program Metode Secant

Definisikan fungsi f(x)

```
float fx(float x)
{
         return x*exp(-x)+cos(2*x);
}
```

 Tentukan nilai pendekatan awal, nilai pendekatan kedua, toleransi error dan maksimum iterasi

```
printf("Titik Pendekatan Awal x0 = "); scanf("%f",&x0);
printf("Titik Pendekatan Kedua x1 = "); scanf("%f",&x1);
printf("Tentukan Toleransi Error = "); scanf("%f",&tol);
printf("Tentukan Jumlah Iterasi = "); scanf("%d",&n);
```

Program Metode Secant

Tentukan nilai iterasi awal = 0 dan cetak header tabel

```
it = 0:
 printf("It. \tx \t\tf(x) \t\tError\n");
Untuk iterasi I = 1 s/d n atau |F(x_i)| \ge e
           x_{i+1} = x_i - y_i \frac{x_i - x_{i-1}}{y_i - y_{i-1}}
Hitung y_{i+1} = F(x_{i+1})
          it = it + 1:
          xb = x1 - fx(x1)*(x1 - x0)/(fx(x1) - fx(x0));
          error = fabs(xb-x0);
          printf("%3d \t%.8f \t%.8f \t%.8f\n",it,xb,fx(xb),error);
          x0 = x1;
          x1 = xb:
} while(it <= n && error > tol);
```

Program Metode Secant

Cetak akar persamaan yang didapatkan

```
if(it<=n)
{
          printf("Toleransi terpenuhi\n");
          printf("Penyelesaian didapatkan x = %.8f dengan error = %.8f\n",xb,error);
} else printf("Toleransi tidak terpenuhi\n");</pre>
```

Gunakan Metode Secant Untuk Mendapatkan Akar Persamaan

```
C:\Data\Workshop Metode Numerik\Program>secant
Titik Pendekatan Awal x0 = 1
Titik Pendekatan Kedua x1 = 1.2
Tentukan Toleransi Error = 0.0001
Tentukan Jumlah Iterasi = 10
                        f(x)
                                        Error
Ιt.
        0.97054112
                        0.00583466
                                         0.02945888
        0.97404772
                        -0.00065751
                                        0.22595233
        0.97369260
                        -0.00000063
                                        0.00315148
        0.97369224
                        0.00000003
                                        0.00035548
        0.97369224
                        0.00000003
                                        0.00000036
Toleransi terpenuhi
Penyelesaian didapatkan x = 0.97369224 dengan error = 0.00000036
```

Pengujian Program

Menentukan titik pendekatan awal dan kedua

Batas bawah	Batas atas	X0	X1
0	2		
0	1.5		
0.5	2		
0.5	1.5		

• Tentukan akar persamaan dengan toleransi error = 0.0001 dan iterasi max=10

XO	X1	Akar Persamaan	Jumlah Iterasi	Error

Pengujian Program

• Menentukan akar persamaan dengan x0=1 dan x1=1.2, iterasi maksimum 10 (toleransi error berubah-ubah)

Toleransi Error	Jumlah Iterasi	Akar Persamaan	Error
0.1			
0.01			
0.001			
0.0001			
0.00001			
0.000001			