Exam Report

Bing Yao

Problem 1

(a) Metropolis-Hasting algorithm

- (1) Read data. Set X=the first column, Y=the second colum.
- (2) Calculate log of the joint distribution

$$log.h = log(\pi(\beta_1|Y,X)) = \sum_{i} log(EMF(5 + \beta_1 X, 1, 0.4)) - \frac{\beta_1^2}{200}$$
 (1)

- (3) Start off the initial value $\beta_1^{(0)} = 0$ (suggested, doesn't matter which value is (4) Generate a candidate $y* \sim N(\beta_1^{(t)}, \tau)$, (τ is the tuning parameter). picked).
- (5) Let $\beta_1^{(t+1)} = y*$ with $probability = min(1, exp(log.h(y*) log.h(\beta_1^{(t)}))).$
- (6) Loop back to step (4).

(b) Estimation and M.C.se with sample size N = 40000

$$E(\beta_1|Y,X) = 7.3414 \tag{2}$$

$$MC.se = 0.00390$$
 (3)

with sample size N = 10000, tuning parameter $\tau = 1$

(c) 95% credible interval, with N=40000

$$\beta_1 = (6.7259, 7.9241) \tag{4}$$

(d) Density plot of β_1 in figure 1

Figure 1: Density plot of β_1 with MC sample size N = 40000.

(e) supporting plots

According to figure 2, MC.se is quite small when sample size N > 20000, and auto-correlation plot guarantees the quality of my sample. ESS = 7580 for my sample, which is another evidence.

Figure 2: Estimations and MC.ses vs sample size .

Problem 2

(a) Variable at a time Metropolis Hasting algorithm

- (1) Read data. Set X=the first column, Y=the second colum.
- (2) Calculate log of the joint distribution

$$log.h = log(\pi(\beta_0, \beta_1, \lambda | Y, X))$$

$$= \sum_{i} log(EMF(\beta_0 + \beta_1 X, 1, \lambda)) - \frac{\beta_0^2}{200} - \frac{\beta_1^2}{200} - \frac{\lambda}{100} + (0.01 - 1) * log(\lambda)$$
 (5)

- (3) Start off the initial vector $(\beta_0, \beta_1, \lambda) = (1, 1, 1)$ (suggested, doesn't matter which initial vector is picked.)
 - (4) Generate $y_1^* \sim N(\beta_0^{(t)}, \tau)$, and let $\beta_0^{(t+1)} = y_1^*$ with

$$prob = min(1, exp(log.h(y_1^*, \beta_1^{(t)}, \lambda^{(t)}) - log.h(\beta_0^*, \beta_1^{(t)}, \lambda^{(t)})))$$
(6)

Generate $y_2^* \sim N(\beta_1^{(t)}, \tau)$, and let $\beta_1^{(t+1)} = y_2^*$ with

$$prob = min(1, exp(log.h(\beta_0^{(t+1)}, y_2^*, \lambda^{(t)}) - log.h(\beta_0^{(t+1)}, \beta_1^{(t)}, \lambda^{(t)})))$$
(7)

Generate $y_3^* \sim exp(\frac{1}{\lambda^{(t)}})$, and let $\lambda^{(t+1)} = y_3^*$ with

$$prob = min(1, exp(log.h(\beta_0^{(t+1)}, \beta_0^{(t+1)}, y_3^*) - log.h(\beta_0^{(t+1)}, \beta_1^{(t+1)}, \lambda^{(t)}) - \frac{y_3^*}{\lambda^{(t)}} + \frac{\lambda^{(t)}}{y_3^*} + log\frac{y_3^*}{\lambda^{(t)}}))$$
(8)

(5) Look back to step (4).

(b) Estimation with sample size N = 270000

	Estimation	95% interval	MC.se	Ess
β_0	2.3053	(1.9740, 2.6018)	0.00402	5145
β_1	3.4479	(2.9854, 3.9003)	0.00317	7991
λ	0.7819	$(0.6504 \ 0.9153)$	0.00157	5105

Table 1: Estimations

(c) Auto-correlation pf β_0 and β_1

$$cor(\beta_0, \beta_1) = 0.0478 \tag{9}$$

(d) Density plots

Density plot of beta0 and beta1

Density plot of lambda

Figure 3: Density plots of β_0 , β_1 and λ .

(e) Supporting plots

From figure 4 and the ESS values in table 1, we can conclude that the estimations are accurate.

Figure 4: Estimations and MC.se vs sample size.

 $\label{eq:Figure 5: Auto-correlation of samples. }$

Problem 3

(a) Estimation with sample size N = 270000

	Estimation	95% interval	MC.se	Ess
β_0	0.1392	(-0.1890, 0.4645)	0.002600	7204
β_1	2.4639	(1.9007, 3.0161)	0.00379	7718
λ	0.1602	(0.1497, 0.1721)	0.00016	5477

Table 2: Estimations

(b) Density plots

Density plot of beta0 and beta1

Density plot of lambda

Figure 6: Density plots.

(c) Methods tried for improvement

- (1) Adjust tuning parameters in β_0 and β_1 updates to reduce auto-correlation and improve ESS value.
 - (2) Try different initial vectors to reduce MC.se.
 - (3) Run long enough to reduce MC.se.