Amendments to the Claims

The following listing of claims replaces all previous claim listings and versions.

1. (Currently Amended) A process for the preparation of a compound of formula

$$R^2$$
 R^3
 R^3
 R^3

wherein:

the wavy line indicates that the stereochemistry of the C=C double bond is not defined;

R¹ represents a hydrogen atom or a methyl group;

 R^2 represents a methyl or ethyl group or a saturated or unsaturated gem-dimethyl C_6 ring, optionally substituted, provided that if R^1 is a hydrogen atom R^2 is a group having at least two carbon atoms; or said R^1 and R^2 taken together form a saturated or unsaturated gem-dimethyl C_6 ring, possibly substituted, or a saturated or unsaturated C_{12} ring, said ring including the carbon atom of the carbonyl function and the carbon atom to which R^1 is bonded; and

R³ represents a hydrogen atom, a C₁ to C₄ linear or branched alkyl or alkenyl group, a linear or branched C₉ alkadienyl radical, or a CH₂R group, R being a saturated or unsaturated gem-dimethyl C₅ ring that is optionally substituted;

by reacting a starting ketone of formula

$$\mathbb{R}^2$$
 (II)

wherein R¹ and R² have the same meaning as in formula (I), with an aldehyde of formula

$$R^3$$
 (III)

wherein R³ has the same meaning as in formula (I), in the presence of a metal complex of formula

$$M(OR^8)_{4-n}X_n$$
 (VII)

wherein M is a tetravalent metal cation selected from [[the]] group 4 of the periodic table eonsisting of Ti, Zr-and Hf, R⁸ represents a C₁₋₆ linear or branched alkyl group, X represents an halide such as a Cl or F atom and the index n represents an integer from 1 to 3; and in the presence of a co-ingredient which is an alkyl or aromatic carboxylic acid anhydride containing 1 to 10 carbon atoms, BF₃ or an anhydrous salt selected from the group consisting of the sulfates, chlorides and bromides of a metal cation, wherein the metal cation is selected from the group consisting of Li⁺, Na⁺, K⁺, Cs⁺, Mg²⁺, Ni²⁺, Ca²⁺, Zn²⁺, Fe³⁺ and Al³⁺.

- 2. (original) The process of claim 1, wherein the ketone of formula (II) is selected from the group consisting of gem-dimethyl-cyclohexanones, gem-dimethyl-cyclohexenones and cyclododecanone, and the aldehyde of formula (III) selected from the group consisting of formaldehyde, acetaldehyde, 2-propenal and 2-butenal.
- 3. (original) The process of claim 1, wherein the ketone of formula (II) is methyl ethyl ketone and the aldehyde of formula (III) is 2,2,3-trimethyl-3-cyclopentene-1-acetaldehyde.
 - 4. (original) The process of claim 1, wherein the enone is of formula

$$\begin{array}{c|c}
 & O \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

wherein:

the wavy line indicates that the stereochemistry of the C=C double bond is not defined and the dotted lines indicate a single or a double bond;

R⁴ and R⁵ represent, simultaneously or independently, a hydrogen atom or a methyl, ethyl methylene or ethylidene group;

R⁶ represents a hydrogen atom or a methyl group; and

 R^7 represents a hydrogen atom or a C_1 to C_4 linear or branched alkyl or alkenyl group; the ketone is of formula

$$\begin{array}{c}
0 \\
R^5
\end{array}$$
(IV)

wherein R^1 and R^2 have the same meaning as in formula (VI), and the aldehyde is of formula

$$R^7$$
 H (V)

wherein R⁴ has the same meaning as in formula (VI).

- 5. (original) The process of claim 1, wherein R⁴ represents a methyl or methylene group, R⁵ represents a hydrogen atom or a methyl or methylene group, R⁶ represents a hydrogen atom and R⁷ represents a methyl group.
- 6. (original) The process of claim 5, wherein the starting aldehyde (V) is acetaldehyde and the ketone (IV) is selected from the group consisting of 1-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1-ethanone, 1-(2,6,6-trimethyl-2-cyclohexen-1-yl)-1-ethanone, 1-(2,6,6-trimethyl-3-cyclohexen-1-yl)-1-ethanone, 1-(2,2,6-trimethyl-3-cyclohexen-1-yl)-1-ethanone, 1-(2,2-dimethyl-6-methylene-1-cyclohexyl)-1-ethanone, 1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-1-ethanone, 1-(2,5,6,6-tetramethyl-1-cyclohexyl)-1-ethanone and 1-(2,2,6-trimethyl-3-methylene-1-cyclohexyl)-1-ethanone.
- 7. (original) The process of claim 5, wherein the starting ketone (IV) is in the form of a mixture of isomers.
- 8. (original) The process of claim 1, wherein M represents Ti(IV) or Zr(IV), R^8 represents a linear or branched C_{1-4} alkyl group, X represents a Cl atom and n is 2 or 3.

- 9. (original) The process of claim 1, wherein the co-ingredient is selected from the group consisting of acetic, propionic or butyric anhydride, BF₃, anhydrous Na_2SO_4 or K_2SO_4 and an anhydrous chloride or bromide of Mg^{2+} , Fe^{3+} or Zn^{2+} .
 - 10. (original) A catalytic system consisting of a metal complex of formula

$$M(OR^8)_{4-n}X_n$$
 (VII)

wherein M is a tetravalent metal cation selected from the group consisting of Ti, Zr and Hf, R^8 represents a C_{1-6} linear or branched alkyl group, X represents a Cl or F atom and the index n represents an integer from 1 to 3.

- 11. (new) The process of claim 1, wherein the tetravalent metal cation is selected from the group consisting of Ti, Zr and Hf
 - 12. (new) The process of claim 11, wherein the tetravalent metal cation is Ti.
 - 13. (new) The process of claim 11, wherein the tetravalent metal cation is Zr.
 - 14. (new) The process of claim 11, wherein the tetravalent metal cation is Hf.