

TD n°1: Algèbre I

SMP (S1) - Licence I - 2022/2023

Pr. Hamza El Mahjour

Sous-espaces vectoriels, familles libres et liées

Exercice 1

Dites si les sous-ensembles suivants sont des sous-espaces de \mathbb{F}^3 :

(a)
$$\{(x_1, x_2, x_3) \in \mathbb{F}^3 / x_1 + 2x_2 + 3x_3 = 0\}$$

(b)
$$\{(x_1, x_2, x_3) \in \mathbb{F}^3 / x_1 + 2x_2 + 3x_3 = 4\}$$

(c)
$$\{(x_1, x_2, x_3) \in \mathbb{F}^3 / x_1 \cdot x_2 \cdot x_3 = 0\}$$

(d)
$$\{(x_1, x_2, x_3) \in \mathbb{F}^3 / x_1 = 5x_3\}$$

Correction ▼ [01]

Exercice 2

Montrer que l'ensemble des fonctions dérivables réelles sur l'intervalle]-4,4[telles que f'(-1)=3f(2) est un sous-espace vectoriel de $\mathbb{R}^{]-4,4[}$.

Correction ▼ [02]

Exercice 3

Soit $b \in \mathbb{R}$. Montrer que l'ensemble des fonctions réelles continues sur [0,1] telles que $\int_0^1 f(t)dt = b$ est un sous-espace vectoriel de $\mathbb{R}^{[0,1]}$ ssi b = 0.

Correction ▼ [03]

Exercice 4

Donner un exemple d'un ensemble stable pour l'addition et pour l'opposé mais qui n'est pas un sous-espace vectoriel du \mathbb{R} -e.v $(\mathbb{R}, +, \cdot)$.

Correction ▼ [04]

Exercice 5

Soient U et V deux sous-espaces vectoriels d'un \mathbb{F} -e.v $(E, +, \cdot)$.

- (a) Montrer que $U \cap V$ est toujours un ss-e.v. de E.
- (b) Montrer que $U \mid V$ est un ss-e.v $\iff U \subset V$ ou $V \subset U$.

Correction ▼ [05]

Exercice 6

Soit U le sous-ensemble de \mathbb{F}^4 défini comme suit :

$$U = \{(x, x, y, y) \in \mathbb{F}^4, \quad x, y \in \mathbb{F}\}.$$

Cherchez un sous-espace vectoriel W inclus dans \mathbb{F}^4 t.q:

$$\mathbb{F}^4 = U \oplus W$$

Correction ▼ [06]

Exercice 7

Supposons que $\{v_1, v_2, v_3, v_4\}$ engendre un sous-espace vectoriel V. Prouver que la famille $\{v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4\}$ engendre aussi V.

Exercice 8

On rappelle que $(\mathbb{C},+,\cdot)$ est un $\mathbb{F}-\text{e.v}$ où $\mathbb{F}=\mathbb{R}$ ou \mathbb{C} . Étudiez la dépendance ou l'indépendance linéaire de la famille $K=\{1+i,1-i\}$ dans le cas où $\mathbb{C},+,\cdot$ est un $\mathbb{R}-\text{e.v}$ et dans le cas où il est un $\mathbb{C}-\text{e.v}$.

Exercice 9

Soient $P_0(X), P_1(X), \dots, P_m(X)$ des polynômes de l'espace-vectoriel $\mathbb{F}_m[X]$. On suppose que :

$$\forall j \in \{0, \dots, m\} \qquad P_j(2) = 0.$$

[]

Montrer que la famille $\{P_0, \dots, P_m\}$ est linéairement dépendante.

Correction de l'exercice 1

- 1. $A = \{(x_1, x_2, x_3) \in \mathbb{F}^3 / x_1 + 2x_2 + 3x_3 = 0\}$
 - (i) $(0;0;0) \in A \text{ alors } A \neq \emptyset$.
 - (ii) Soit $u = (u_1, u_2, u_3)$ et $v = (v_1, v_2, v_3)$, on a

$$u+v = (u_1+v_1; u_2+v_2; u_3+v_3)$$
 donc
 $u_1+v_1+2(u_2+v_2)+u_3+v_3 = u_1+2u_2+3u_3$
 $+v_1+2v_2+3v_3$
 $= 0$

(iii) Soit $u \in A$ et $\lambda \in \mathbb{F}$:

$$\lambda u_1 + 2\lambda u_2 + 3\lambda u_3 = \lambda \underbrace{(u_1 + 2u_2 + 3u_3)}_{=0} = 0$$

donc A est un ss-e.v de $(\mathbb{F}^3,+,\cdot)$

- 2. $B = \{(x_1, x_2, x_3) \in \mathbb{F}^3 / x_1 + 2x_2 + 3x_3 = 4\}$. On remarque que $(0; 0; 0) \notin B$ donc B n'est pas un sousespace vectoriel de \mathbb{F}^3 .
- 3. $C = \{(x_1, x_2, x_3) \in \mathbb{F}^3 / x_1, x_2, x_3 = 0\}$. On remarque que $x = (1; 1; 0) \in C$ et $y = (0; 0; 3) \in C$ car $1 \cdot 1 \cdot 0 = 0$ et 0.0.3 = 0 mais $x + y = (1; 1; 0) + (0; 0; 3) = (1; 1; 3) \notin C$. On en déduit que C n'est pas stable par addition donc C n'est pas un ss-e.v vectoriel de \mathbb{F}^3 .
- 4. $D = \{(x_1, x_2, x_3) \in \mathbb{F}^3 / x_1 = 5x_3\}$
 - (i) On a $(0;0;0) \in D$ donc $D \neq \emptyset$
 - (ii) Soient $x, y \in D$; in a $x_1 + y = (x_1 + y_1x_2 + y_{21}x_3 + y_3)$ et $5(x_3 + y_3) = 5x_3 + 5y_3 = x_1 + y_1$ donc $x + y \in D$
 - (iii) Soient $x \in D$ et $\lambda \in \mathbb{F}$, alors $\lambda x = (\lambda x_1, \lambda x_2, \lambda x_3)$ et $5\lambda x_3 = \lambda 5x_3 = \lambda x_1$ donc $\lambda x \in D$. donc D est un ss-e.v de $(\mathbb{F}^3, +, \cdot)$.

Correction de l'exercice 2

Soit

$$V = \{f :]-4,4 \longrightarrow \mathbb{R} \text{ dérivables} | f'(-1) = 3f(2) \}$$

- (i) La fonction Θ nulle de]-4,4[vers $\mathbb R$ est dérivable at vérifie bien : $0=\Theta'(-1)=3\Theta(2)=0$. donc $V\neq\emptyset$.
- (ii) Soient f, g dans V alors (f+g)'(-1) = f'(-1) + g'(-1) = 3f(2) + 3g(2) = 3(f+g)(2). Donc $f+g \in V$
- (iii) Soit $\lambda \in \mathbb{R}$ et $f \in V$ alors $(\lambda f)'(-1) = \lambda f'(-1) = \lambda 3f(2) = 3 \cdot (\lambda f)(2)$. Alors : $\lambda f \in V$ donc V est un sous-e.v.

Correction de l'exercice 3

soit
$$V_b = \left\{ f \in \mathscr{C}(\mathbb{R}, \mathbb{R}) / \int_0^1 f(t) dt = b \right\}$$

• \Rightarrow Si V_b est un ss-e.v de $(\mathscr{C}(\mathbb{R},\mathbb{R}),+,\cdot)$ alors la fonction nulle $\Theta:x\mapsto 0$ doit être nécessairement un élément de V_b or :

$$\int_0^1 \Theta_t \ dt = \int_0^1 0 \ dt = 0 - 0 = 0 = b.$$

donc forcément b = 0 (condition nécessaire)

• \Leftarrow Si b = 0 abres : (i) La fonction mulle $\in V_0$.

(ii) Soient
$$f, g \in V_0$$
 alors $\int_0^1 (f+g)(t)dt = \int_0^1 f dt + \int_0^1 g dt = 0$.
donc $f+g \in V_0$.

(iii) Soient $\lambda \in \mathbb{R}$ et $f \in V_0$. $\int_0^1 \lambda f(t) dt = \lambda \int_0^1 f dt = 0$ donc $\lambda f \in V_0$. done V_0 ast un ss-e.v si b = 0 (condition suffisante)

Correction de l'exercice 4 A

Soit $(\mathbb{Z}, +1\cdot)$, on prend $k, k' \in \mathbb{Z}$. On a bien $k+k' \in \mathbb{Z}$ et $-k \in \mathbb{Z}$ mais sion prend $\lambda = \sqrt{2} \in \mathbb{R}$ et $k = 3 \in \mathbb{Z}$ on a $\lambda \cdot k = \sqrt{2} \cdot 3 \notin \mathbb{Z}$. Donc, $(\mathbb{Z}_1 + 1^\circ)$ n'est pas un ss-e.v de $(\mathbb{R}^3, +1^\circ)$.

Correction de l'exercice 5

- 1. Déjà démontré en cours pour l'intersection.
- 2. Pour l'union, l'idée essentielle de cette démonstration se base sur la proposition suivante :

Proposition *

Soient U et V deux sous-espaces vectoriel de $(E, +, \cdot)$. Si $x \in U$ et $y \notin U$ alors $x + y \notin U$

Preuve: supposons que $x \in U$ $y \notin U$ et soit z = x + y. On suppose que $x + y = z \in U$. On a y = z + (-x), puisque U est un ss-e.v donc $-x \in U$ de plus $z \in U$. Avec le fait que U est un ss-e.v on obtient donc que $z + -x \in U$ donc $y \in U$. C'est une contradiction car nous avons supposé que $y \notin U$. Conclusion: $x + y \notin U$.

Soient U et V deux sous-espaces vectoriels.

Montrons que $U \subseteq V$ ou $V \subseteq U \implies U \bigcup V$ est un ss-e.v

- Si $U \subseteq V$ alors $U \cup V = V$ et V est un ss-e.v donc $U \cup V$ est un sous-e.v.
- Si $V \subseteq U$ alors $U \cup V = U$ et U est un ss-e.v donc $U \cup V$ est un sous-e.v.

Montrons l'implication inverse : $V \subseteq U \Longrightarrow U \bigcup V$ est un ss-e.v $\Longrightarrow U \subseteq V$ ou $V \subseteq U$. On va procéder par contradiction. Supposons que $U \cup V$ est un ss-e.v mais $U \not\subset V$ et $V \not\subset U$. Soit $x \in U$ et $x \notin V$ et $y \notin V$ et $y \notin U$ (comme la figure ci-dessous)

Selon la proposition \star et $x+y\notin V$ et de même $y+x\notin V$. Donc en fait $x+y\notin U\cup V$. Mais ceci contredit le fait que c'est un ss-e.v. Donc $V\subseteq U$ ou $U\subseteq V$.

Correction de l'exercice 6

$$U = \{(x, x, y, y) \in \mathbb{F}^4, x, y \in \mathbb{F}\}\$$

Prenons : $W = \{(0, t-x, 0, z-y) \in \mathbb{F}^4/x, y, z, t \in \mathbb{F}\}$. On a clairement $U + W \subseteq \mathbb{F}^4$. Montrons que $\mathbb{F}^4 \subseteq U + W$

Soit $(x, t, y, z) \in \mathbb{F}^4$ on a :

$$(x,t,y,z) = \underbrace{(x,x,y,y)}_{\in U} + \underbrace{0,t-x,0,z-y)}_{\in W}$$

donc
$$\mathbb{F}^4\subseteq U+W$$
 et $U+W\subseteq \mathbb{F}^4$ c-à-d

$$\mathbb{F}^4 = U + W$$

Montrons que cette somme est directe.

Soit $(x_1, x_2, x_3, x_4) \in U \cap W$ alors :

$$x_1 = x_2$$
 et $x_3 = x_4$ et $x_1 = 0$ et $x_3 = 0$

donc
$$x_1 = x_2 = x_3 = x_4 = 0$$
 alors $U \cap W = 0_{\mathbb{F}^4}$, ce qui prouve que $\mathbb{F}^4 = U \oplus W$.