

TA201A Manufacturing Processes

Week-2 16 Aug, 2022 2022-2023 Semester-I

Lecture2

Export from India

Automobile sector: India 4th Position

Automobile Manufacture

- Millions of automobile are manufactured every year and each of them contain thousands of components
 - In 2017, a total of 272.48 million vehicles were registered in the U.S.
 - Over 30,000 parts

Courtesy: google Images https://www.mcrsafety.com/

Something Interesting....

This Programmer Hacked His Coffee Machine To Brew Coffee **Using Command Line**

Knowledge about manufacturing processes

https://www.evilsocket.net/

Automobile: Manufacturing Processes

Classification of Manufacturing Processes

TA201: Manufacturing Processes

Manufacturing processes used in automobile:

- Engine Block → Sand mold casting
- Body parts → Stamping and other sheet metal working
- Gears and many other small parts → Powder metallurgy
- Plastic components → Plastic injection molding and extrusion
- Assembling
 Mechanical joining to welding
- Many load bearing parts → Extrusion

More information on: https://thelibraryofmanufacturing.com/

Automobile Materials

BIW (Body-in-white) for a typical automobile

Crashworthiness Fundamentals – Two Key Zones

Energy Management Zones

(engine compartment, trunk) deform to absorb energy

Passenger Compartment resists deformation to prevent intrusion

www.autosteel.org

Safety and Materials

Carrie M Tamarelli, Steel Market Development Institute

Grey is mild steel
Blue is high-strength steel
Yellow is very high-strength steel
Orange is extra high-strength steel
Red is ultra-high-strength steel
Green is Aluminium

http://www.boronextrication.com/2017/08/05/2017-volvo-v90-body-structure/

Automobile Materials

High Strength Steel

High strength steel is used in the colored areas.

Why Newer Materials???

Materials Used for car components - 2007

Source: www.autosteel.org

Engineering Materials: Materials in Manufacturing

- Metals
 - Ferrous (steel and cast iron) and nonferrous (AI, Ti, Ni...)
- Ceramics
 - Compounds of metallic and
- Polymers
 - Thermoplastic
 - Flastomers
 - Thermosetting
- Composites
 - Matrix & Second phases

Atomic Structure and Elements

La	Ce Ce	Pr	Nd	Pm	Sm	Eu	Gd Gd	⁶⁵ Tb	Dy	Ho	Er	Tm	Yb	Lu
89 Ac	90 Th	Pa	92 U	93 N p	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	Fm	Md	102 No	103 Lr

Atomic Structure and Elements

Bonding between atoms and molecules Transfer of

- Primary
 - Ionic
 - Covalent
 - Metallic

Unpaired valence electrons

Atom 1 (nonmetal)

Atom 2 (nonmetal or metalloid)

Atomic Structure and Elements

- Secondary
 - van der Waals forces
 - Hydrogen bonding
- Bond type Vs properties
 - Electrical conductivity
 - Ductility
 - Hardness

Solids

Crystalline

Long-range Order (LRO)

Amorphous

No Long-range Order

Short range order (SRO)

Crystalline Structures

Crystalline Structures: Atoms are located at regular and recurring positions

Crystal structure = Motif + Lattice

- Motif: atom, group of atoms associated with each lattice point
- <u>Lattice</u>: infinite arrangement of points in space (1D, 2D or 3D) in which all points have same surrounding
- Lattice: how to repeat
- Motif (basis): what to repeat

Lattice

Translational Symmetry

Rotational Symmetry

Long-Range Order

3D crystal structure

- Crystal Systems
 → according to the shape of the elementary cell
- Bravais Lattices → 14

No.	Crystal System	Axes	Angles
1.	Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$
2.	Tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$
3.	Orthorhombic	a ≠ b ≠ c	$\alpha = \beta = \gamma = 90^{\circ}$
4.	Rhombohedral	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ} < 120^{\circ}$
5.	Hexagonal	$a = b \neq c$	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$
6.	Monoclinic	a≠ b≠ c	$\alpha = \gamma = 90^{\circ}, \beta > 90^{\circ}$
7.	Triclinic	a≠ b≠ c	$\alpha \neq \beta = \gamma \neq 90^{\circ}$

CT OR HMT

Periodic Table and Crystal structures

1 H																		2 He
HEX																		HCP
3	4												5	6	7	8	9	10
Li	Be												В	С	N	О	F	Ne
BCC	HCP												RHO	HEX	HEX	SC	SC	FCC
11	12												13	14	15	16	17	18
Na	Mg												Al	Si	Р	S	CI	Ar
BCC	HCP												FCC	DC	ORTH	ORTH	ORTH	FCC
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
BCC	FCC		HCP	HCP	BCC	BCC	BCC	BCC	HCP	FCC	FCC	HCP	ORTH	DC	RHO	HEX	ORTH	FCC
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
BCC	FCC		HCP	HCP	BCC	BCC	HCP	HCP	FCC	FCC	FCC	HCP	TETR	TETR	RHO	HEX	ORTH	FCC
55	56		71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
BCC	BCC		HCP	HCP	BCC/TETR	BCC	HCP	HCP	FCC	FCC	FCC	RHO	HCP	FCC	RHO	SC/RHO	[FCC]	FCC
87	88		103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
[BCC]	BCC		[HCP]	[HCP]	[BCC]	[BCC]	[HCP]	[HCP]	[FCC]	[BCC]	[BCC]	[HCP]	[HCP]	[FCC]				[FCC]
			57		59 -	60	61	62	63	64	65	66	67	68	69	70		
		*	La		Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
			DHCP	DHCP/FCC	DHCP	DHCP	DHCP	RHO	BCC	HCP	HCP	HCP	HCP	HCP	HCP	FCC		
			89	90	91	92	93	94	95	96	97	98	99	100	101	102		
		**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
			FCC	FCC	TETR	ORTH	ORTH	MON	DHCP	DHCP	DHCP	DHCP	FCC	[FCC]	[FCC]	[FCC]		

 90% of metals have Body centred cubic (BCC), face centred cubic (FCC) or hexagonal close packing (HCP) crystal structure

Wikipedia

BCC, FCC and HCP crystal structure

Imperfections in Crystals

- Naturally due to the inability of the solidifying material to continue the replication of the unit cell indefinitely without interruption
- Intentionally introduced (alloying)
- Type of defects
 - Point (0D)
 - Line (1D)
 - Surface (2D)
 - Volume (3D)

Point Defects

Pure Metal

Vacancy

Alloying Solid Solution

Interstitial

C in Fe

Substitutional

Zn in Cu

NaCl crystal structure

sodium cations (Na+, grey) and chloride anions (Cl-, green)

https://www.sciencephoto.com/

Imperfections in Crystals

- They disturb the perfect arrangement
- Their concentration depends on their formation energy
- On external parameters such as temperature and pressure

Line defects (1D)

Line defect: connected group of point defects that form a line

Screw Dislocation

Introduction to dislocations: Hull and Bacon book

www.beautifulchemistry.net

https://www.youtube.com/shorts/n811aTMkZiQ

Types of Imperfections in Crystals

- Surface defect:
 - Imperfection extending in two directions to form a boundary

Volume Defects:

Voids and internal cracks

Non-crystalline (Amorphous) Structures

Non-crystalline

- No long-range order
- Generally, translational symmetry is absent
- Rapidly cooling through the freezing temperature favors the formation of a non-crystalline solid, since little time is allowed for the ordering process
- Non-crystalline solids lack a systematic and regular arrangement of atoms over relatively large atomic distances. Also called <u>amorphous</u> (meaning literally without form), or supercooled liquids, as structure resembles that of a liquid
 - Metals normally form crystalline solids
 - Some ceramic materials are crystalline, whereas others, the inorganic glasses, are amorphous
 - Polymers may be completely non-crystalline and semi-crystalline consisting of varying degrees of crystallinity

Crystalline versus Non-crystalline

Figure 3.22 Two-dimensional schemes of the structure of (a) crystalline silicon dioxide and (b) noncrystalline silicon dioxide.

- An amorphous condition may be illustrated by comparison of the crystalline and noncrystalline structures of the ceramic compound silicon dioxide (SiO₂ in silicates), which may exist in both states.
- Even though each silicon ion bonds to four oxygen ions for both states, however similarity ends beyond this. The structure can be ordered or disordered depending on how they interconnect

- Glassy, or non-crystalline, materials do not solidify in the same sense as do those that are crystalline. There is no definite temperature at which the liquid transforms to a solid as with crystalline materials
- One of the distinctions between crystalline and non-crystalline materials lies in the dependence of specific volume (or volume per unit mass, the reciprocal of density) on temperature.
- A slight decrease in slope of the curve occurs at what is called the <u>glass</u>
 <u>transition temperature</u>, <u>Tg</u>. Below this temperature, the material is
 considered to be a glass; above, it is first a supercooled liquid, and finally a
 liquid

Glass Properties

Glass transition temperature

Characteristic change in Specific volume for a pure metal, compared with glass and semi-crystalline material

Relationship of mechanical properties, portrayed as deformation resistance, as a function of temperature for an amorphous thermoplastic, a 100% crystalline thermoplastic, and a partially crystallized thermoplastic

Fundamentals of Modern Manufacturing: Materials, Mikell P. Groover

Quasi....Quasi....

IUCr: In 1991, changed the definition of crystals