ELECTRONS

The Bohr Model of the Atom:

- Electrons orbiting the nucleus are <u>not</u> like plants orbiting the sun, but they are like bees around a hive.

Quantum Mechanical Model of the Atom:

 Mathematical laws can identify the regions outside of the nucleus where electrons are most likely to be found.

Heisenberg Uncertainty Principle:

- As said by Werner Heisenberg "one cannot simultaneously determine both the position and the momentum of an electron."
- You can find out where the electron is, but not where it is going. Or you can find out where the electron is going, but not where it is.

Electron Energy Level:

- Generally symbolized by n, it denotes the probable distance of the electron from the nucleus. "n" is also known as the Principle Quantum number
- Number of electrons that can fit in a shell: 2n²

Electron Orbitals:

- An orbital is a region within an energy level where there is a probability of finding an electron.
- Orbital shapes are defined as the surface that contains 90% of the total electron probability.

S Orbital Shape:

- The S orbital has a spherical shape centered around the origin of the three axes in space.

P Orbital Shape:

- There are three dumbbell-shaped p orbitals in each energy level above n=1, each assigned to its own axis (x, y, and z) in space.

D Orbital Shape:

- Things get a bit more complicated with the five d orbitals that are found in the d sublevels beginning with n=3.
- To remember the shapes, think of "double dumbbells" and a "dumbbell with a donut.

Energy Levels, Orbitals, Electrons:

Energy Level (n)	Orbital type in the energy level (types = n)	Number of Orbitals	Number of Electrons	Number of Electrons per Energy Level (2n²)
1	S	1	2	2
2	S	1	2	8
	P	3	6	
3	S	1	2	18
	P	3	6	

	D	5	10	
4	S	1	2	32
	P	3	6	
	D	5	10	
	F	7	14	

Electron Spin:

- Electron spin describes the behavior (direction of spin) of an electron within a magnetic field.
- Possibilities for electron spin: +1/2 -1/2