CS2601 Linear and Convex Optimization Homework 8

Due: 2022.12.7

1. Consider the equality constrained quadratic program

$$\min_{x_1, x_2} f(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^2 - x_1 - 3x_2$$
s.t. $x_1 + 2x_2 = 1$

- (a). Find the optimal solution x_1^*, x_2^* by reduction to an unconstrained problem.
- (b). Find the optimal solution and the corresponding Lagrange multiplier λ^* using the Lagragian multipliers method.
- 2. Solve the following problem,

$$\min_{x_1, x_2} f(x_1, x_2) = x_1 x_2 + x_1^2$$
s.t.
$$x_1^2 + \frac{1}{8} x_2^2 = 1$$

3. Consider the equality constrained quadratic program

$$\min_{x} \quad \frac{1}{2}x^{T}Qx + g^{T}x + c$$
s.t. $Ax = b$

where $Q \in \mathbb{R}^{n \times n}$, $Q \succ O$, $g \in \mathbb{R}^n$, $c \in \mathbb{R}$, $A \in \mathbb{R}^{k \times n}$ with rank A = k, and $b \in \mathbb{R}^k$.

- (a). Write down the Lagrange condition for this problem.
- (b). Find a closed form solution for the optimal solution x^* and the corresponding Lagrange multiplier λ^* . Hint: Show $AQ^{-1}A^T \succ O$ and hence is invertible.
- (c). Use part (b) to find the projection $\operatorname{Proj}_S(\boldsymbol{x}_0)$ of a point \boldsymbol{x}_0 onto the the affine space $S = \{\boldsymbol{x} : \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}\}$, i.e. solve

1

$$\min_{\boldsymbol{x}} \quad \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{x}_0\|_2^2$$

When $x_0 = 0$, you should recover the result on slide 11 of §9.

(d). Consider a hyperplane $P = \{ \boldsymbol{x} : \boldsymbol{w}^T \boldsymbol{x} = b \}$. Use the result in (c) to find the distance $d(\boldsymbol{x}_0, P)$ between \boldsymbol{x}_0 and P. You should recover the result on slide 13 of §1.