```
# EMILIO BERBER MALDONADO - A01640603
# ACT 1: Cartwheel and Iris
# SEMANA TEC
```

Undertanding the cartwheel data set

The notebook aims to undertand the content of the cartwheel data set.

Acknowledgments

• Data from https://www.coursera.org/ from the course "Understanding and Visualizing Data with Python" by University of Michigan

Cartwheel data set

1. A cartwheel

cartwheel1.png

- 2. The dataset description
 - o The dataset used here is an extension from the original cartwheel dataset from cursera
 - o Total numer of observations: 28
 - · Many observations/measurements/recordings of the characteristics/attributes/variables of cartwheel executions
 - o Variables: Age, Gender, GenderGroup, Glasses, GlassesGroup, Height, Wingspan, CWDistance, ... (X variables)

Importing and inspecting the data

```
# Define where you are running the code: colab or local
RunInColab
                    = True
                               # (False: no | True: yes)
# If running in colab:
if RunInColab:
    # Mount your google drive in google colab
    from google.colab import drive
   drive.mount('/content/drive')
    # Find location
    #!pwd
   #!1s
   #!ls "/content/drive/My Drive/Colab Notebooks/MachineLearningWithPython/"
    # Define path del proyecto
                    = "/content/drive/My Drive/Colab Notebooks/MachineLearningWithPython/"
    Ruta
else:
    # Define path del proyecto
    Mounted at /content/drive
# Import the packages that we will be using
import pandas as pd
# Dataset url
url = "/content/drive/MyDrive/cartwheel.csv"
# Load the dataset
data = pd.read_csv(url)
```

Print the dataset data

		ID	Age	Gender	GenderGroup	Glasses	GlassesGroup	Height	Wingspan	CWDista
	0	1	56.0	F	1	Υ	1	62.00	61.0	
	1	2	26.0	F	1	Υ	1	62.00	60.0	
	2	3	33.0	F	1	Υ	1	66.00	64.0	
	3	4	39.0	F	1	N	0	64.00	63.0	
	4	5	27.0	M	2	N	0	73.00	75.0	
	5	6	24.0	M	2	N	0	75.00	71.0	
	6	7	28.0	M	2	N	0	75.00	76.0	
	7	8	22.0	F	1	N	0	65.00	62.0	
	8	9	29.0	M	2	Υ	1	74.00	73.0	
# Print the number of Nrows = data.shape[0] Nrows					NS	V		22.22	^^ ^	
	52	A A	00.0	-	A	k I	^	04 50	F7 F	
<pre># Print the number of Ncol = data.shape[1] Ncol</pre>					lumns					
	12									
data.	17 . sha	18 pe	27 ∩	M	2	N	n	66 NN	66 N	
	(52,	12)								

Activity: work with the iris dataset

- 1. Load the iris.csv file in your computer and understand the dataset
- 2. How many observations (rows) are in total?
- 3. How many variables (columns) are in total? What do they represent?
- 4. How many observations are for each type of flower?
- 5. What is the type of data for each variable?
- 6. What are the units of each variable?

```
dataIris = pd.read_csv("/content/drive/MyDrive/iris.csv", header = None)
dataIris #1
```

```
1
           0 1 2 3
      0 5.1 3.5 1.4 0.2 Iris-setosa
     46 44.9 2 8.0 1.4 N.2 Iris-setosa
                                          N
                                                       0 /8.00
                                                                      /5.0
from google.colab import drive
drive.mount('/content/drive')
Nrows= dataIris.shape[0]
Nrows #2
    150
    146 63 25 50 19 Iris-virginica
Ncol = dataIris.shape[1]
Ncol #3
         --- --- --- --- ----
dataIris.shape
    (150, 5)
dataIris[4].value_counts() #4
    Iris-setosa
    Iris-versicolor
    Iris-virginica
    Name: 4, dtype: int64
dataIris.dtypes #5
         float64
    1
         float64
         float64
         float64
         object
    dtype: object
# 6
# UNIDADES:
# 0
       float64 --> cm [Sepalo_Largo]
       float64 --> cm [Sepalo_Ancho]
# 1
       float64 --> cm [Petalo_Largo]
# 2
       float64 --> cm [Petalo_Ancho]
# 3
```