Найти кратчайшие расстояния от е1.

1.
$$I(e1) = 0+$$
; $I(ei) = ∞$, для всех $i ≠ 1$, $p = e1$

Результаты итерации запишем в таблицу

$$\begin{array}{c|c}
1 \\
e1 & 0^{+} \\
e2 & \infty \\
e3 & \infty \\
e4 & \infty
\end{array}$$

2. $\Gamma = 1 = \{e2, e4\}$ - все пометки временные, уточним их:

$$I(e2) = min[\infty, 1+0] = 1$$

$$I(e4) = min[\infty, 2+0] = 2$$

3.
$$I(ei^+) = min[I(ei)] = I(e2) = 1^+$$

4. Вершина e2 получает постоянную отметку $I(e2) = 1^+$, p = e2

$$\begin{array}{c|cc}
 & 1 & 2 \\
e1 & 0^{+} & \\
e2 & \infty & 1^{+} \\
e3 & \infty & \infty \\
e4 & \infty & 2
\end{array}$$

5. Не все вершины имеют постоянные пометки,

$$\Gamma$$
e2 = {e1, e3}

Временную пометку имеет вершина е3 - уточняем её:

$$I(e3) = min[\infty, 5+1] = 6$$

6.
$$I(ei^+) = min[I(ei)] = I(e3) = 6^+$$

7. Вершина e3 получает постоянную отметку $I(e3) = 6^+$, p = e3

	1	2	3
e1	0+		
e2	8	1+	
e3	8	8	6+
e4	∞	2	2

Очевидно, что расстояние 2 между е1 и е4 меньше, чем то, которое можно получить на следующем шаге, так что можно поставить его.

	1	2	3	4
e1	0+			
e2	∞	1+		
e3	∞	8	6+	
e4	∞	2	2	2+