Logistic Regression with Neural Networks

Fatemeh Mansoori

University of Isfahan

Perceptron Conlcultion

The (classic) Perceptron has many problems (as discussed in the previous lecture)

- Linear classifier, no non-linear boundaries possible
- Binary classifier
- Does not converge if classes are not linearly separable
- Many "optimal" solutions in terms of 0/1 loss on the training data, most will not be optimal in terms of generalization performance

Non-Separable Case

Non-Separable Case: Probabilistic Decision

How to get probabilistic decisions?

- Perceptron scoring: $z = w \cdot f(x)$
- If $z = w \cdot f(x)$ very positive \rightarrow want probability of + going to 1
- If $z = w \cdot f(x)$ very negative \rightarrow want probability of + going to 0
- Sigmoid function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$
$$= \frac{e^z}{e^z + 1}$$

How to get probabilistic decisions?

- Perceptron scoring: $z = w \cdot f(x)$
- If $z = w \cdot f(x)$ very positive \rightarrow want probability of + going to 1
- If $z = w \cdot f(x)$ very negative \rightarrow want probability of + going to 0
- Sigmoid function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

$$P(y = +1 \mid x; w) = \frac{1}{1 + e^{-w \cdot f(x)}}$$

$$P(y = -1 \mid x; w) = 1 - \frac{1}{1 + e^{-w \cdot f(x)}}$$

= Logistic Regression

A 1D Example

$$P(red|x; w) = \phi(w \cdot f(x)) = \frac{1}{1 + e^{-w \cdot f(x)}}$$

A 1D Example: varying w

$$P(red|x; w) = \phi(w \cdot f(x)) = \frac{1}{1 + e^{-w \cdot f(x)}}$$

Best w?

Likelihood =
$$P(\text{training data}|w)$$

= $\prod_{i} P(\text{training datapoint }i \mid w)$
= $\prod_{i} P(\text{point }x^{(i)} \text{ has label }y^{(i)}|w)$
= $\prod_{i} P(y^{(i)}|x^{(i)};w)$
Log Likelihood = $\sum_{i} \log P(y^{(i)}|x^{(i)};w)$

Best w?

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

Logistic regression cost function

Loss Optimization

We want to find the network weights that achieve the lowest loss

$$W^* = \underset{W}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; W), y^{(i)})$$
$$W^* = \underset{W}{\operatorname{argmin}} J(W)$$

Cross Entropy Loss Optimization

Recap:
$$\hat{y} = \sigma(w^T x + b)$$
, $\sigma(z) = \frac{1}{1 + e^{-z}}$

$$J(w, b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$
Want to find w, b that minimize $J(w, b)$

Loss Optimization

Gradient Descent

"Walking downhill and always taking a step in the direction that goes down the most."

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights

Logistic regression derivatives

$$x_{1}$$

$$w_{1}$$

$$x_{2}$$

$$z = w_{1}x_{1} + w_{2}x_{2} + b$$

$$dz = \frac{dl}{dz} = \frac{dl(a_{y})}{dz}$$

$$= \frac{dl(a_{y})}{dz}$$

$$= \frac{dl}{dz} = \frac{dl(a_{y})}{dz}$$

$$= -\frac{d}{a} + \frac{1-d}{1-a}$$

$$= \frac{dl}{dz} = \frac{d}{dz}$$

$$= \frac{d}{dz} = \frac{d}{dz}$$

$$= \frac{d}{dz} + \frac{1-d}{1-a}$$

$$= \frac{d}{dz} = \frac{d}{dz} = \frac{d}{dz}$$

$$dz = \frac{d}{dz} = \frac{d}{dz} = \frac{d}{dz}$$

$$= \frac{d}{dz} + \frac{1-d}{1-a}$$

$$= \frac{d}{dz} = \frac{d}{dz} = \frac{d}{dz} = \frac{d}{dz} = \frac{d}{dz}$$

$$dz = \frac{d}{dz} = \frac{d}{dz} = \frac{d}{dz} = \frac{d}{dz} = \frac{d}{dz}$$

$$dz = \frac{d}{dz} = \frac{d}{dz}$$