Arda YAKAKAYI - 19253519

FORMAL LANGUAGES & AUTOMATA

Page 51 and 52;

1.8.1. What language is represented by the regular expression $(((a^*a)b) \cup b)$?

ANSWER:

$$(((a*a)b) \cup b) = \{(a*a)b, b\} = \{ab, aab, aaab, ..., b\}$$

- **1.8.2.** Rewrite each of these regular expressions as a simpler expression representing the same set.
 - (a) $\oslash^* Ua^* Ub^* U(aUb)^*$
 - (b) $((a^*b^*)^*(b^*a^*)^*)^*$
 - $(c) (a^*b)^* U(b^*a)^*$
 - (d) $(a \cup b)^* a (a \cup b)^*$

ANSWER:

(a)
$$\emptyset^* \cup a^* \cup b^* \cup (a \cup b)^* = (a \cup b)^*$$

(b)
$$((a^* b^*)^* (b^* a^*)^*)^* = (a \cup b)^*$$

(c)
$$(a^* b)^* \cup (b^* a)^* = (a \cup b)^*$$

(d)
$$(a \cup b)^* a(a \cup b)^* = (a \cup b)^* a(a \cup b)^*$$

- **1.8.3.** Let $\Sigma = \{a, b\}$. Write regular expressions for the following sets:
 - (a) All strings in Σ^* with no more than three a's.
 - (b) All strings in Σ^* with a number of a's divisible by three.
 - (c) All strings in Σ^* with exactly one occurrence of the substring aaa.

ANSWER:

(a) aaa
$$\cup$$
 b* = {a} o {a} o {a} \cup {b}*

(b)
$$(aaa)^* = ({a} o {a} o {a})^*$$

1.8.5. Which of the following are true? Explain.

- (a) $baa \in a^*b^*a^*b^*$
- (b) $b^*a^* \cap a^*b^* = a^* \cup b^*$
- (c) $a^*b^* \cap b^*c^* = \emptyset$
- (d) $abcd \in (a(cd)^*b)^*$

ANSWER:

- (a) True
- (b) True
- (c) False
- (d) False