Capítulo 6

Integrales impropias

Integrales de primera especie.

1. Calcula las siguientes integrales:

a)
$$\int_1^\infty \frac{1}{x} dx$$
, b) $\int_1^\infty \frac{1}{x^3} dx$, c) $\int_3^\infty \frac{1}{\sqrt{x}} dx$.

- 2. Discute la convergencia de $\int_1^\infty \frac{dx}{x^p}$ en función de p.
- 3. Calcula las siguientes integrales:

$$\mathbf{a})\quad \int_0^\infty \mathbf{e}^{-3x}\,dx,\quad \mathbf{b})\quad \int_0^\infty \mathbf{e}^{-x}\,dx,\quad \mathbf{c})\quad \int_0^\infty \mathbf{e}^{\frac{1}{2}x}\,dx.$$

- 4. Discute la convergencia de $\int_0^\infty \mathbf{e}^{-px} \, dx$ en función de p.
- 5. Calcula el área de la región comprendida entre la curva de Agnesi $y = \frac{a^3}{x^2 + a^2}$ y el eje $x \ (a > 0)$.
- 6. Calcula las siguientes integrales:

$$\mathbf{a}) \quad \int_0^\infty x \cos x \, dx, \qquad \mathbf{b}) \quad \int_{-\infty}^\infty \frac{1}{1+x^2} \, dx, \quad \mathbf{c}) \quad \int_0^\infty \lambda \mathbf{e}^{-\lambda x} \, dx, \lambda > 0,$$

$$\mathbf{d}) \quad \int_0^\infty \lambda x \mathbf{e}^{-\lambda x} \, dx, \lambda > 0, \quad \mathbf{e}) \quad \int_0^\infty \mathbf{e}^{-x} \sin x \, dx.$$

Integrales de segunda especie.

7. Calcula las siguientes integrales:

a)
$$\int_0^1 \ln x \, dx$$
, **b)** $\int_0^1 \frac{1}{x} \, dx$, **c)** $\int_0^3 \frac{1}{x^2} \, dx$.

- 8. Estudia la convergencia de $\int_a^b \frac{1}{(b-x)^{\alpha}} \, dx$ para los distintos valores de α .
- 9. Calcula las integrales:

a)
$$\int_0^1 \frac{1}{\sqrt{1-x}} dx$$
, **b**) $\int_{-1}^1 \frac{1}{\sqrt{1-x^2}} dx$, **c**) $\int_{-1}^0 \frac{1}{x^4} dx$, **d**) $\int_0^\infty \frac{1}{x^2 - 3x + 2} dx$.

1

Soluciones de los problemas propuestos.

1.- a)
$$\infty$$
, b) $\frac{1}{2}$, c) ∞ .

2.-
$$\infty$$
 si $p \le 1$, $\frac{1}{p-1}$ si $p > 1$.

3.- a)
$$\frac{1}{3}$$
, b) 1, c) ∞ .

4.-
$$\frac{1}{p}$$
 si $p > 0$, ∞ si $p \le 0$.

5.-
$$\pi a^2$$
.

6.- a) no existe, b)
$$\pi$$
, c) 1, d) $\frac{1}{\lambda}$, e) $\frac{1}{2}$.

7.- a)
$$-1$$
, b) ∞ , c) ∞ .

8.-
$$\infty$$
 si $\alpha \ge 1$, $\frac{(b-a)^{1-\alpha}}{1-\alpha}$ si $\alpha < 1$.

9.- a) 2, b)
$$\pi$$
, c) ∞ , d) $-\ln 2$.