CENG 424 Fall 2024 Homework 4

Yancı, Baran e2449015@ceng.metu.edu.tr

December 10, 2023

Q1)

Definitions

- \bullet h: the horse
- A(x): x is an animal
- P(x): x is a plant
- G(x,y): x grooms y
- S(x): x is a stableman

Premises

- $(A(h) \to \exists y (S(y) \land G(y,h)))$
- $(P(h) \to \neg \exists y (S(y) \land G(y,h)))$

Goal

• $A(h) \rightarrow \neg P(h)$

Negated Goal

• $\neg(A(h) \to \neg P(h))$

Conversion to CNF

$A(h) \to \exists y (S(y) \land G(y,h))$	Premise #1
$\neg A(h) \lor \exists y (S(y) \land G(y,h))$	I
$\neg A(h) \vee \exists y (S(y) \wedge G(y,h))$	N
$\neg A(h) \lor \exists y (S(y) \land G(y,h))$	S
$\neg A(h) \lor (S(c) \land G(c,h))$	E
$\neg A(h) \lor (S(c) \land G(c,h))$	A
$(\neg A(h) \vee S(c)) \wedge (\neg A(h) \vee G(c,h))$	D
$\{\neg A(h), S(c)\}$	0
$\{\neg A(h), G(c,h)\}$	0

$P(h) \to \neg \exists y (S(y) \land G(y,h))$	Premise #2
$\neg P(h) \lor \neg \exists y (S(y) \land G(y,h))$	I
$\neg P(h) \lor \forall y \neg (S(y) \land G(y,h))$	N
$\neg P(h) \lor \forall y (\neg S(y) \lor \neg G(y,h))$	N
$\neg P(h) \lor \forall y (\neg S(y) \lor \neg G(y,h))$	S
$\neg P(h) \lor \forall y (\neg S(y) \lor \neg G(y,h))$	E
$\neg P(h) \lor (\neg S(y) \lor \neg G(y,h))$	A
$\neg P(h) \lor \neg S(y) \lor \neg G(y,h)$	D
$\{\neg P(h), \neg S(y), \neg G(y,h)\}$	О

$\neg (A(h) \to \neg P(h))$	Negated Goal
$\neg(\neg A(h) \vee \neg P(h))$	I
$\neg \neg A(h) \land \neg \neg P(h)$	N
$A(h) \wedge P(h)$	N
$A(h) \wedge P(h)$	S
$A(h) \wedge P(h)$	E
$A(h) \wedge P(h)$	A
$A(h) \wedge P(h)$	D
$\{A(h)\}$	O
$\{P(h)\}$	O

Resolution

$\{\neg A(h), S(c)\}$	Premise #1	(1)
$\{\neg A(h), G(c,h)\}$	Premise #1	(2)
$\{\neg P(h), \neg S(y), \neg G(y,h)\}$	Premise #2	(3)
$\{A(h)\}$	Negated Goal	(4)
$\{P(h)\}$	Negated Goal	(5)
$\{S(c)\}$	1,4	(6)
$\{G(c,h)\}$	2,4	(7)
$\{\neg P(h), \neg S(c)\}$	$3,5\{y\leftarrow c\}$	(8)
$\{\neg P(h)\}$	6, 8	(9)
{}	5,9	(10)
		(11)

Q2)

Premises

- T
- $\bullet \ \neg S \vee \neg T \vee \neg R$
- $\bullet \ \neg T \vee R$
- $\bullet \ S \vee \neg R$

Conversion to CNF

T	Premise #1
T	I
T	N
T	S
T	E
T	A
T	D
$\{T\}$	O

$\neg S \vee \neg T \vee \neg R$	Premise #2
$\neg S \vee \neg T \vee \neg R$	I
$\neg S \vee \neg T \vee \neg R$	N
$\neg S \vee \neg T \vee \neg R$	S
$\neg S \vee \neg T \vee \neg R$	E
$\neg S \vee \neg T \vee \neg R$	A
$\neg S \vee \neg T \vee \neg R$	D
$\{\neg S, \neg T, \neg R\}$	O

$\neg T \vee R$	Premise #3
$\neg T \vee R$	I
$\neg T \vee R$	N
$\neg T \vee R$	S
$\neg T \vee R$	E
$\neg T \vee R$	A
$\neg T \vee R$	D
$\{\neg T, R\}$	O

a) Unit Resolution

$\{T\}$	Premise #1	(1)
$\{\neg S, \neg T, \neg R\}$	Premise #2	(2)
$\{\neg T, R\}$	Premise #3	(3)
$\{S, \neg R\}$	Premise #4	(4)
$\{R\}$	1,3	(5)
$\{\neg S, \neg T\}$	2,5	(6)
$\{\neg S\}$	1,6	(7)
$\{\neg R\}$	4,7	(8)
$\{\neg T\}$	3,8	(9)
{}	1,9	(10)

b) Input Resolution

$\{T\}$	Premise #1	(1)
$\{\neg S, \neg T, \neg R\}$	Premise #2	(2)
$\{\neg T, R\}$	Premise #3	(3)
$\{S, \neg R\}$	Premise #4	(4)
$\{R\}$	1,3	(5)
$\{\neg S, \neg T\}$	2,5	(6)
$\{\neg S\}$	1,6	(7)
$\{\neg R\}$	4,7	(8)
$\{\neg T\}$	3,8	(9)
{}	1,9	(10)

c) Linear Resolution

$\{T\}$	Premise #1	(1)
$\{\neg S, \neg T, \neg R\}$	Premise #2	(2)
$\{\neg T, R\}$	Premise #3	(3)
$\{S, \neg R\}$	Premise #4	(4)
$\{R\}$	1,3	(5)
$\{\neg S, \neg T\}$	2,5	(6)
$\{\neg S\}$	1, 6	(7)
$\{\neg R\}$	4,7	(8)
$\{\neg T\}$	3,8	(9)
{}	1,9	(10)

Q3)

Premises

- $\bullet \ \ R \vee P \vee \neg Q$
- $\bullet \ \neg P \vee R$
- $\bullet \ \neg Q \vee \neg R$
- Q

Conversion to CNF

$R \vee P \vee \neg Q$	Premise #1
$R \vee P \vee \neg Q$	I
$R \vee P \vee \neg Q$	N
$R \vee P \vee \neg Q$	S
$R \vee P \vee \neg Q$	E
$R \vee P \vee \neg Q$	A
$R \vee P \vee \neg Q$	D
$\{R, P, \neg Q\}$	O

$\neg P \vee R$	Premise #2
$\neg P \vee R$	I
$\neg P \vee R$	N
$\neg P \vee R$	S
$\neg P \vee R$	E
$\neg P \vee R$	A
$\neg P \vee R$	D
$\{\neg P, R\}$	O

Q	Premise #4
Q	I
Q	N
Q	S
Q	E
Q	A
Q	D
$\{Q\}$	O

Ordered Resolution

Order = P > R > Q

$\{R,P,\neg Q\}$	Premise #1	(1)
$\{\neg P, R\}$	Premise #2	(2)
$\{\neg Q, \neg R\}$	Premise #3	(3)
$\{Q\}$	Premise #4	(4)
$\{R, \neg Q\}$	1, 2	(5)
$\{\neg Q\}$	3,5	(6)
{}	4,6	(7)
		(8)