Tarjetas de Expansión

1. Tarjetas Gráficas

1.1. Component es de una Tarjeta Gráfica

- Memoria VRAM: Almacena datos e instrucciones gráficas de alta velocidad.
- Conectores de Salida (HDMI, DisplayPort, DVI): Permiten la conexión con pantallas externas.
- Ventiladores y sistema de refrigeración: Controlan el calor generado durante el procesamiento.
- Interfaz de conexión (PCI Express):
 Conecta la tarjeta a la placa base.

Ejemplo:

NVIDIA RTX 4090 cuenta con 24 GB de memoria VRAM GDDR6X, una GPU potente para gráficos avanzados y múltiples salidas para varios monitores.

1.2. Características Clave de las Tarjetas Gráficas

Frecuencia del reloj (MHz):
Cuanto más alta sea la frecuencia, más rápido es el procesamiento gráfico.

Memoria (GB):
Afecta la
capacidad de
manejar
texturas,
modelos 3D, y
datos
complejos.

TDP (Thermal Design Power):
La cantidad de calor que genera la tarjeta y que necesita disiparse.

Tecnologías de soporte (Ray Tracing, DLSS, G-SYNC):
 Mejoran la calidad visual y la fluidez en juegos y gráficos.

1.3. Procesa miento en Paralelo

Las tarjetas gráficas pueden realizar cientos o miles de operaciones simultáneamente gracias a sus núcleos CUDA (en NVIDIA) o núcleos Stream (en AMD).

Aplicaciones como renderización 3D o minería de criptomonedas se benefician de este paralelismo. Ejemplo: Las GPU modernas, como las de NVIDIA con arquitectura Ampere, pueden manejar más de 10.000 núcleos, lo que las hace ideales para tareas de Machine Learning.

1.4. Multi Monitor

La mayoría de las tarjetas gráficas actuales soportan configuraciones multi-monitor.

Ejemplo: La tarjeta AMD Radeon RX 6800 permite hasta 6 pantallas simultáneamente mediante tecnologías como Eyefinity, mejorando la productividad y la experiencia en juegos.

2. Tarjetas de Red

2.1. Tarjetas de Red LAN (Ethernet)

- Función: Permiten la conexión a redes cableadas mediante RJ-45.
- Velocidades: Desde 100 Mbps hasta 10 Gbps (Gigabit Ethernet). Ejemplo: La tarjeta Intel Ethernet I350-T4 soporta velocidades Gigabit y es muy utilizada en servidores.

2.2. Tarjetas de Red Wi-Fi

- Función: Conectan dispositivos a redes inalámbricas mediante estándares Wi-Fi 4, 5 o 6.
- Características: Ofrecen mayores velocidades, menor latencia y más seguridad con tecnologías como MIMO y WPA3. Ejemplo: La tarjeta Wi-Fi TP-Link Archer TX3000E con Wi-Fi 6 soporta hasta 2400 Mbps en redes de 5 GHz.

3. Tarjetas Multimedia

3.1. Tarjetas de Sonido

Permiten procesar y gestionar audio con mayor calidad que las tarjetas integradas.

Soportan tecnologías como Dolby Atmos, 7.1 Surround, y ofrecen salidas de alta definición para sistemas de sonido avanzados. Ejemplo: La tarjeta Creative Sound Blaster AE-9 incluye DACs de alta resolución para audiófilos.

3.2. Capturadora de Vídeo

Permiten grabar o transmitir video en alta definición desde cámaras o consolas a un PC.

Aplicaciones: Streaming, grabación de gameplays o producción de contenido multimedia. Ejemplo: La Elgato HD60 S permite capturar video a 1080p y 60 FPS, ideal para streamers.

3.3. Sintonizadoras de TV

Permiten recibir y grabar señales de televisión en el PC.

Función: Convertir el ordenador en un televisor con capacidades de grabación o pausa en vivo. Ejemplo: La Hauppauge WinTV-DualHD permite recibir y grabar TV digital HD con soporte para dos sintonizadores simultáneos.

4. Otras Tarjetas de Expansión

Tarjetas PCIe SSD (Almacenamiento): Permiten añadir almacenamiento ultrarrápido mediante la interfaz PCIe.

Tarjetas Controladoras USB/Thunderbolt: Añaden puertos adicionales de alta velocidad al equipo. Ejemplo: Asus ThunderboltEX 3-TR, tarjeta de expansión PCIe que añade puertos Thunderbolt 3 para transferencias ultrarrápidas y conexión de dispositivos externos.