Matrix Computations Chapter 4: Eigenvalues, Eigenvectors, and Eigendecomposition Section 4.2 Schur Decomposition

Jie Lu ShanghaiTech University

Schur Decomposition

Theorem

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ with eigenvalues $\lambda_1, \dots, \lambda_n \in \mathbb{C}$. The matrix \mathbf{A} admits a decomposition

$$A = UTU^H$$

for some unitary $\mathbf{U} \in \mathbb{C}^{n \times n}$ and some upper triangular $\mathbf{T} \in \mathbb{C}^{n \times n}$ with $t_{ii} = \lambda_i$ for all i. If \mathbf{A} is real and $\lambda_1, \ldots, \lambda_n$ are all real, \mathbf{U} and \mathbf{T} can be taken as real.

- The above decomposition is called the Schur decomposition
- Suppose $\mathbf{A} = \mathbf{U}\mathbf{T}\mathbf{U}^H$ for some unitary \mathbf{U} and upper triangular \mathbf{T} , but it's unknown whether $t_{ii} = \lambda_i$. Indeed, $t_{ii} = \lambda_i$ has to be true:

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \det(\lambda \mathbf{I} - \mathbf{T}) = \prod_{i=1}^{n} (\lambda - t_{ii})$$

 Any square matrix is similar to an upper triangular matrix whose diagonal entries are its eigenvalues and the "triangularizer" is unitary

Proof of Schur Decomposition

Lemma

Let $\mathbf{X} \in \mathbb{C}^{n \times n}$ be block upper triangular in the form of

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_{11} & \mathbf{X}_{12} \\ \mathbf{0} & \mathbf{X}_{22} \end{bmatrix}$$

with $\mathbf{X}_{11} \in \mathbb{C}^{k \times k}$, $\mathbf{X}_{22} \in \mathbb{C}^{(n-k) \times (n-k)}$, $0 \le k < n$. There exists a unitary $\mathbf{U} \in \mathbb{C}^{n \times n}$ s.t.

$$\mathbf{U}^H \mathbf{X} \mathbf{U} = \begin{bmatrix} \mathbf{X}_{11} & \mathbf{Y}_{12} \\ \mathbf{0} & \mathbf{Y}_{22} \end{bmatrix}, \quad \mathbf{Y}_{22} = \begin{bmatrix} \bar{\lambda} & \times \\ \mathbf{0} & \times \end{bmatrix} \in \mathbb{C}^{(n-k)\times(n-k)}, \ \bar{\lambda} \in \mathbb{C}$$

Proof of lemma:

Proof of Schur Decomposition (cont'd)

Proof of Schur Decomposition (cont'd)

Computations of Schur Decomposition

- The proof of Schur Decomposition indicates how to compute the Schur factors U and T
- From the lemma in the proof, we need two sub-algorithms to construct U and T
 - An algorithm for computing an eigenvector of a given matrix (the power method, will be studied later)
 - An algorithm that finds a unitary matrix Q s.t. its first column is given (QR decomposition)
- There are other computationally more efficient methods for computing the Schur factors (key: QR decomposition)

Discussion

- The Schur decomposition is a powerful tool
- For example, we can use it to show that for any square **A** (with or without eigendecomposition), $\det(\mathbf{A}) = \prod_{i=1}^n \lambda_i$, $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^n \lambda_i$
- We can also use it to prove the convergence of the power method (later) when eigendecomposition does not exist
- An enhancement of the Schur decomposition: Every square matrix
 A is also similar to a block diagonal (indeed upper triangular and tri-diagonal) matrix
 J called Jordan canonical form

$$A = SJS^{-1}$$
, S is nonsingular

 We can apply the Schur decomposition to the proof of Jordan canonical form by showing that the Schur factor T is similar to J (non-trivial)

A Consequence of Schur Decomposition

Proposition

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$. For any $\varepsilon > 0$, there exists a matrix $\tilde{\mathbf{A}} \in \mathbb{C}^{n \times n}$ s.t. the n eigenvalues of $\tilde{\mathbf{A}}$ are distinct and

$$\|\mathbf{A} - \tilde{\mathbf{A}}\|_F^2 \le \varepsilon.$$

Implication: For any square A, we can always find \tilde{A} that is arbitrarily close to A and admits an eigendecomposition

Proof (construction of $\tilde{\mathbf{A}}$):

- Let $\mathbf{A} = \mathbf{U}\mathbf{T}\mathbf{U}^H$ be the Schur decomposition of \mathbf{A} . Let $\mathbf{D} = \mathrm{Diag}(d_1,\ldots,d_n)$ where d_1,\ldots,d_n are chosen such that (1) $|d_i| \leq \left(\frac{\varepsilon}{n}\right)^{1/2}$ for all i and (2) $t_{11} + d_1,\ldots,t_{nn} + d_n$ are distinct
- Let $\tilde{\mathbf{A}} = \mathbf{U}(\mathbf{T} + \mathbf{D})\mathbf{U}^H$
- We have $\|\mathbf{A} \tilde{\mathbf{A}}\|_F^2 = \|\mathbf{U}\mathbf{D}\mathbf{U}^H\|_F^2 = \|\mathbf{D}\|_F^2 \le \varepsilon$

