Td 3 Sefri UIC Les caractéristiques de position

Exercice 1.

Le recensement des exploitations agricoles susceptibles de faire l'objet d'une expropriation a permis d'établir le tableau suivant :

Surface en hectares	[10 - 20[[20 - 30[[30 - 40[[40 - 50[[50 - 60[[60 – 70[[70 - 80[
Nombre d'exploitations	10	5	18	3	1	2	1

Déterminer, puis expliquer le résultat des caractéristiques suivantes :

- 1. Le mode;
- 2. La médiane ;
- **3.** La moyenne arithmétique.

Exercice 2.

Les résultats d'un devoir sont les suivants :

Notes	6	7	8	9	10	11	12	13	14	15	17
Effectifs	1	2	1	3	4	3	5	2	1	2	1

- 1. Construire le graphique des effectifs correspondant à cette situation ;
- 2. Construire le polygone des effectifs cumulés ;
- 3. Calculer le mode, la médiane et la moyenne ;
- 4. Calculer le premier quartile et le troisième quartile de cette série.

Exercice 3.

Les montants des commandes reçues au cours du mois sont les suivants :

Montant des commandes	Nombre de commandes
[0 - 60[140
[60 – 120[180
[120 – 180[260
[180 – 240[320
[240 – 300[300
[300 – 360[270
[360 – 420[200
[420 – 480[150
[480 – 540]	100
[540 – 600]	80

- 1. Représenter par un graphique cette statistique.
- 2. Calculer la médiane, le montant moyen d'une commande.
- 3. Calculer le premier quartile et le troisième quartile de cette série.

Exercice 4.

Le tableau suivant donne la répartition mensuelle des salaires (en milliers de dirhams) dans une entreprise de 460 salariés.

Salaires	[1 - 2[[2 - 3[[3 - 4[[4 - 6[[6 - 7[[7 - 8[[8 -9[[9 - 10[[11 - 12[
Ouvriers	32	56	118	94	58	36	30	20	16

- 1. Présenter l'histogramme relatif à cette distribution.
- 2. Déterminer la moyenne arithmétique, la médiane, les quartiles et le mode.

<u>Exercice 5.</u> La répartition des salaires d'une entreprise se présente ainsi :

Salaires	Ampl	centres x _i	Salariés	ECC	n _i x _i	$\mathbf{f_{i}}$	f _{i cc}
	itude		$\mathbf{n_i}$			en %	en %
	$\mathbf{a_{i}}$						
[800 - 1200[30				
[1200 - 1600[276				
[1600 - 2000[1000				
[2000 - 2600[663				
[2600 - 3200[576				
[3200 - 4000[300				
[4000 - 5000[150				
[5000 – 6000[35				
[6000 - 8000]			12				

- 1. Compléter le tableau suivant et tracer le polygone de fréquences cumulées croissants. (vous pouvez également tracer le polygone des effectifs cumulés croissant)
- 2. Calculer la médiane et la moyenne.
- 3. Que faut-il faire pour calculer le mode de cette série ?
- 4. Calculer le mode de cette série.

Exercice 6.

Considérons la série statistique consignée dans le tableau ci-dessous donnant la distribution des exploitations agricoles d'une région suivant leur SAU (Surface Agricole Utilisable) :

SAU (en ha)	Nombre d'exploitation
[0;5[56
[5;10[100
[10;12[123
[12;14[150
[14;18[200
[18;23[130
[23;30[250
[30;40[300
[40;100[98
[100; 200[26
[200; 500[12

- 1) Construire l'histogramme de la série.
- 2) Calculer : a) le mode des SAU de cette série ;
 - b) la médiane des SAU de cette série ;
 - c) la moyenne arithmétique des SAU de cette série ;
 - d) la moyenne quadratique des SAU de cette série ;
 - e) la moyenne harmonique des SAU de cette série.
- 3) Déterminer les quartiles Q_1 , Q_2 et Q_3 .

CORRECTION DE LA SERIE 3

Exercice 1:

Surface	Effectif ni	eff cumul croissant	centre ci	ni*ci
[10,20[10	10	15	150
[20,30[5	15	25	125
[30,40[18	33	35	630
[40,50[3	36	45	135
[50,60[1	37	55	55
[60,70[2	39	65	130
[70,80[1	40	75	75
TOTAL	40			1300

1) Calcul du mode de la série :

On applique la formule : Mo = $x_1 + \frac{k_1}{k_1 + k_2} \times (x_2 - x_1)$

- $[x_1; x_2] = [30,40]$ « La classe ayant l'effectif le plus élevé » C'est la classe modale.
- k_1 = l'effectif de la classe modale l'effectif de la classe [20 ; 30[= 18 5 = 13
- k_2 = l'effectif de la classe modale l'effectif de la classe [40; 50] = 18 3 = 15
- L'amplitude $x^2 x_1 = 40 30 = 10$

Si on remplace ces quantités dans l'expression de "Mo", on trouve :

$$Mo = 30 + \frac{(18-5)}{(18-5)+(18-3)} \times (40-30) = 34,65.. \cong 35$$

2) Calcul de la médiane de la série :

- On applique la formule : $Me = x_i + \frac{N/2 N_{\{i-1,cc\}}}{n_i}(x_{i+1} x_i)$
- $[x_i; x_{i+1}] = [30,40]$ d'effectif $\mathbf{n_i} = 18$.
- $N_{\{i-1,cc\}}=$ 15 est l'effectif cumulé croissant situé avant la classe médiane.
- Si on remplace ces quantités dans l'expression de "Me", on trouve :

$$Me = 30 + \frac{20 - 15}{18} \times (40 - 30) \approx 32,78$$

3) Calcul de la moyenne de la série :

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{7} n_i c_i = \frac{1300}{40} = 32,55$$

EXERCICE 2:

<u></u>			
		Effectif cumulé	
Notes xi	Effectif ni	croissant	ni*xi
6	1	1	6
7	2	3	14
8	1	4	8
9	3	7	27
10	4	11	40
11	3	14	33
12	5	19	60
13	2	21	26
14	1	22	14
15	2	24	30
17	1	25	17
TOTAL	25		275

- 1) <u>Le diagramme en bâtons :</u>
- 2) Le polygone des effectifs cumulés croissant
- 3) Le mode:

Mo = 12 (la modalité ayant l'effectif le plus élevé)

La médiane :

On a rang = $\frac{25}{2}$ = 12,5 « qu'on arrondi au 13éme rang » D'où Me = 11

<u>La moyenne arithmétique</u>: $\overline{x} = \frac{1}{25} \sum_{i=1}^{11} n_i \ x_i = \frac{275}{25} = 11$

- 4) Les quartiles :
 - <u>Premier quartile</u>: On a $\frac{25}{4} = 6.25$ donc le premier quartile se trouve au 7éme rang Ainsi : $Q_1 = 9$
 - <u>Troisième quartile</u>: On a $3 \times \frac{25}{4} = 3 \times 6.25 = 18.75$ donc le troisième quartile se trouve au 19éme rang

Ainsi : $Q_3 = 12$

Exercice 3:

		Effectif cumulé		
Classes	Effectif ni	croissant	ci	ni * ci
[0 - 60[140	140	30	4200
[60 - 120[180	320	90	16200
[120 - 180[260	580	150	39000
[180 - 240[320	900	210	67200
[240 - 300[300	1200	270	81000
[300 - 360[270	1470	330	89100
[360 - 420[200	1670	390	78000
[420 - 480[150	1820	450	67500
[480 - 540[100	1920	510	51000
[540 - 600[80	2000	570	45600
TOTAL	2000			538800

1) L'histogramme:

2) La moyenne arithmétique se calcul à partir de la formule :

$$\bar{\mathbf{x}} = \frac{1}{2000} \sum_{i=1}^{10} n_i \ c_i = 269,4$$

Avec c_i est le centre de la ième classe.

Calcul de la médiane de la série :

- On applique la formule : $Me = x_i + \frac{n/2 N_{\{i-1,cc\}}}{n_i}(x_{i+1} x_i)$
- $[x_i; x_{i+1}] = [240,300]$ d'effectif $n_i = 300$.
- $N_{\{i-1,cc\}}$ = 900 est l'effectif cumulé croissant situé avant la classe médiane.
- Si on remplace ces quantités dans l'expression de "Me", on trouve :

$$Me = 240 + \frac{1000 - 900}{300} \times (300 - 240) = 260$$

3) Les quartiles :

On applique la formule : $Q_j = x_i + \frac{n \times j - N_{\{i-1,cc\}}}{n_i} (x_{i+1} - x_i)$

✓ <u>Le premier quartile</u>: j=1/4 = 0.25 et $\frac{n}{4} = \frac{2000}{4} = 500$ Donc la classe du premier quartile c'est [120,180]

$$Q_1 = 120 + \frac{2000 \times 0.25 - 320}{260} (180 - 120) \approx 161,54$$

✓ <u>Le troisième quartile</u>: j=3/4=0.75 et $3 \times \frac{n}{4} = 3 \times 500 = 1500$ Donc la classe du troisième quartile c'est [360,420[

$$Q_3 = 360 + \frac{2000 \times 0.75 - 1470}{200} (420 - 360) = 369$$

Exercice 4

Salaires	Salariés ni	Amplitude ai	Effectif corrigé	eff cumulé croissant	centre ci	ni*ci
[1,2[32	1	32	32	1,5	48
[2,3[56	1	56	88	2,5	140
[3,4[118	1	118	206	3,5	413
[4,6[94	2	47	300	5	470
[6,7[58	1	58	358	6,5	377
[7,8[36	1	36	394	7,5	270
[8,9[30	1	30	424	8,5	255
[9,10[20	1	20	444	9,5	190
[11,12[16	1	16	460	11,5	184
TOTAL	460					2347

1) L'histogramme:

2)

> la moyenne arithmétique :

$$\bar{\mathbf{x}} = \frac{1}{460} \sum_{i=1}^{9} n_i c_i = 2347/460 = 5,10$$

➤ le mode :

On applique la formule : Mo = $x_1 + \frac{k_1}{k_1 + k_2} \times (x_2 - x_1)$

- $[x_1; x_2] = [3,4]$ « La classe ayant l'effectif corrigé le plus élevé ». C'est la classe modale.
- k_1 = l'effectif de la classe modale l'effectif de la classe [2 ; 3] = 118 56 = **62**
- k_2 = l'effectif de la classe modale l'effectif de la classe [4 ; 5[= 118 47 = **71**]
- L'amplitude : $x^2 x_1 = 4 3 = 1$

Si on remplace ces quantités dans l'expression de "Mo", on trouve :

$$Mo = 3 + \frac{62}{62 + 71} \times 1 \cong 3,47$$

Les quartiles :

On applique la formule : $Q_j = x_i + \frac{n \times j - N_{\{i-1,cc\}}}{n_i} (x_{i+1} - x_i)$

✓ <u>Le premier quartile</u>: j=1/4 = 0.25 et $\frac{n}{4} = 115$ Donc la classe du premier quartile c'est [3,4]

$$Q_1 = 3 + \frac{460 \times 0.25 - 88}{118} (4 - 3) \approx 3,3$$

✓ <u>Le deuxième quartile (médiane)</u>: j=1/2 = 0.5 et $\frac{n}{2} = 230$ Donc la classe de la médiane c'est [4,6[

$$Me = Q_2 = 4 + \frac{460 \times 0.5 - 206}{94}(6 - 4) = 4,5$$

✓ <u>Le troisième quartile</u>: j=3/4=0.75 et $3 \times \frac{n}{4} = 145$ Donc la classe du premier quartile c'est [6,7]

$$Q_3 = 6 + \frac{460 \times 0.75 - 300}{58} (7 - 6) \approx 6,78$$