Overview of Probability

Mark Schmidt September 12, 2017

Practical Application...

- Dungeons & Dragons scenario:
 - You roll dice 1:
 - Roll 5 or 6 you sneak past monster.
 - Otherwise, you are eaten.
 - If you survive, you roll dice 2:
 - Roll 4-6, find pizza.
 - Otherwise, you find nothing.

Practical Application ...

- Dungeons & Dragons scenario:
 - You roll dice 1:
 - Roll 5 or 6 you sneak past monster.
 - Otherwise, you are eaten.
 - If you survive, you roll dice 2:
 - Roll 4-6, find pizza.
 - Otherwise, you find nothing.

Probabilities defined on 'event space':

D1\D2	1	2	3	4	5	6
1						
2						
3		D ₁ =3,D ₂ =2				
4						
5						
6						

Practical Application ...

- Dungeons & Dragons scenario:
 - You roll dice 1:
 - Roll 5 or 6 you sneak past monster.
 - Otherwise, you are eaten.
 - If you survive, you roll dice 2:
 - Roll 4-6, find pizza.
 - Otherwise, you find nothing.

Probabilities defined on 'event space':

D1\D2	1	2	3	4	5	6
1						
2			Ciir	vive		
3			Jui	VIVE		
4						
5			Cir	/ive)i776	
6		,	oui '	/IVE	IZZC	1

Calculating Basic Probabilities

- Probability of event 'A' is ratio:
 - p(A) = Area(A)/TotalArea.
 - "Likelihood" that 'A' happens.
- Examples:
 - p(Survive) = 12/36 = 1/3.
 - p(Pizza) = 6/36 = 1/6.
 - -p(-Survive) = 1 p(Survive) = 2/3.

Calculating Basic Probabilities

- Probability of event 'A' is ratio:
 - p(A) = Area(A)/TotalArea.
 - "Likelihood" that 'A' happens.
- Examples:
 - p(Survive) = 12/36 = 1/3.
 - p(Pizza) = 6/36 = 1/6.
 - -p(-Survive) = 1 p(Survive) = 2/3.
 - $p(D_1 \text{ is even}) = 18/36 = \frac{1}{2}$.

Random Variables and 'Sum to 1' Property

- Random variable: variable whose value depends on probability.
- Example: event $(D_1 = x)$ depends on random variable D_1 .
- Convention:
 - We'll use p(x) to mean p(X = x), when random variable X is obvious.
- Sum of probabilities of random variable over entire domain is 1:

$$-\sum_{x} p(x) = 1.$$
- E.g, $\sum_{i} p(D_{1} = i) = 1/6+1/6 + ...$

D1\D2	1	2	3	4	5	6
1			D_1	=1		
2			D_1	=2		
3			D_1^-	= 3		
4			D_1	= 4		
5			D_1	= 5		
6			D_1	= 6		

Joint Probability

- Joint probability: probability that A and B happen, written 'p(A,B)'.
 - Intersection of Area(A) and Area(B).
- Examples:
 - $p(D_1 = 1, Survive) = 0.$
 - p(Survive, Pizza) = 6/36 = 1/6.

Joint Probability

- Joint probability: probability that A and B happen, written 'p(A,B)'.
 - Intersection of Area(A) and Area(B).
- Examples:
 - $p(D_1 = 1, Survive) = 0.$
 - p(Survive, Pizza) = 6/36 = 1/6.
 - $p(D_1 \text{ even, Pizza}) = 3/36 = 1/12.$

D1\D2	1	2	3	4	5	6
1						
2			D_1 is	even		
3						
4			D_1 is	even		
5);	
6			D_1 is	even		1

Note: order of A and B does not matter

Marginalization Rule

Marginalization rule:

- $-P(A) = \sum_{x} P(A, X = x).$
- Summing joint over all values of one variable gives probability of the other.
- Example: $P(Pizza) = P(Pizza, Survive) + P(Pizza, -Survive) = \frac{1}{6}$.

D1\D2	1	2	3	4	5	6
1						
2			-Sur	`\		
3			Jui	VIVE		
4						
5			Sur	i)i77′	
6		,	Sur	/IVE		1

– Applying rule twice: $\sum_{x} \sum_{y} p(Y = y, X = x) = 1$.

Conditional Probability

- Conditional probability:
 - probability that A will happen if we know that B happens.
 - "probability of A restricted to scenarios where B happens".
 - Written p(A|B), said "probability of A given B".
- Calculation:
 - Within area of B:
 - Compute Area(A)/TotalArea.
 - p(Pizza | Survive) =

D1\D2	1	2	3	4	5	6
1						
2			CIIK			
3			-Sur	vive		
4						
5			Sur	ivid)i77	
6		•	Sur	/IVE		

Conditional Probability

Conditional probability:

- probability that A will happen if we know that B happens.
- "probability of A restricted to scenarios where B happens".
- Written p(A|B), said "probability of A given B".

Calculation:

— Within area of B:

Compute Area(A)/TotalArea.

- p(Pizza | Survive) = $\frac{6}{p(Pizza, Survive)/p(Survive)} = 6/12 = \frac{1}{2}$.

- p(Pizza, Survive)/p(Survive) = 6/12 = 7 — Higher than p(Pizza, Survive) = 6/36 = 1/6.
- More generally, $p(A \mid B) = p(A,B)/p(B)$.

Geometrically: compute area of A on new space where B happened.

D1\D2	1	2	3	4	5	6
5			Curv	/iv c)i771	
6		,	Jui v			

'Sum to 1' Properties and Bayes Rule.

- Conditional probability P(A | B) sums to one over all A:
 - $-\sum_{x} P(x \mid B) = 1.$
 - P(Pizza | Survive) + P(– Pizza | Survive) = 1.
 - P(Pizza | Survive) + P(Pizza | –Survive) ≠ 1.
- Product rule: $p(A,B) = p(A \mid B)p(B)$.
- Bayes Rule:

$$P(A|B) = P(B|A)p(A)$$

$$P(B)$$

- Allows you to "reverse" the conditional probability.
- Example:
 - P(Pizza | Survive) = P(Survive | Pizza)P(Pizza)/P(Survive) = (1) * (1/6) / (1/3) = $\frac{1}{2}$.
 - http://setosa.io/ev/conditional-probability

Independence of Random Variables

- Events A and B are independent if p(A,B) = p(A)p(B).
 - Equivalently: p(A|B) = p(A).
 - "Knowing B happened tells you nothing about A".
 - We use the notation:

- Random variables are independent if p(x,y) = p(x)p(y) for all x and y.
 - Flipping two coins:

```
p(C_1 = \text{'heads'}, C_2 = \text{'heads'}) = p(C_1 = \text{'heads'})p(C_2 = \text{'heads'}).
p(C_1 = \text{'tails'}, C_2 = \text{'heads'}) = p(C_1 = \text{'tails'})p(C_2 = \text{'heads'}).
```

...

Conditional Independence

- A and B are conditionally independent given C if
 p(A, B | C) = p(A | C)p(B | C).
 - Equivalently: $p(A \mid B, C) = p(A \mid C)$.
 - "Knowing C happened, also knowing B happened says nothing about A".
 - Example: $p(Pizza | D_1, Survive) = p(Pizza | Survive)$.
 - Knowing you survived, dice 1 gives no information about chance of pizza.
 - We use the notation:

- Semantics of p(A, B | C, D):
 - "probability of A and B happening, if we know that C and D happened".

Conditional Independence

- Example: food poisoning
 - If food was bad, each person independently gets sick with probability 50%
 - Unconditionally, me getting and and you getting sick are NOT independent
 - If I got sick, that makes me think the food was bad, which makes it more likely that you will get sick also. So knowing my situation influences my beliefs about yours.
 - But, conditioned on knowing the food was bad (or not bad), my sickness and your sickness are independent.

More Tutorial Material

- Wikipedia's conditional probability article is good:
 - https://en.wikipedia.org/wiki/Conditional probability
- Visual/interactive introduction to probability:
 - http://students.brown.edu/seeing-theory/basicprobability/index.html#first
 - http://students.brown.edu/seeing-theory/compoundprobability/index.html#first
- "Probability Primer" (advanced, PP 1.S-5.4 are most relevant):
 - https://www.youtube.com/playlist?list=PL17567A1A3F5DB5E4

Fun with Probabilities

- Probabilities can be used for a huge variety of problems:
 - Are you the hottest person in your group?
 - Poker Odds
 - Are shy students likely to be math students?
 - Battleship
 - Should you put all your eggs/tickets in one basket/lottery?
 - The Price is Right