

UNIVERSIDAD DEL CAUCA FACULTAD DE INGENIERIA ELECTRONICA Y TELECOMUNICACIONES PROGRAMA DE INGENIERIA DE SISTEMAS CURSO DE DE ESTRUCTURAS DE DATOS II GRUPO: B

Proyecto Parcial: Implementación de Grafos dirigidos/no dirigidos ponderados

El propósito de este proyecto tiene como objetivo la implementación de un grafo dirigido/no dirigido ponderado, con el fin de analizar su aprendizaje y destreza en la realización de algoritmos sobre esta temática.

Funcionalidades para implementar:

1. (Valor 1.5) Crear un grafo dirigido/no dirigido ponderado mediante un archivo (grafo.txt) Ejemplo: grafo dirigido

```
Tipo de Grafo: 1. Dirigido; 2. No dirigido - Característica del grafo-> 1. Números 0. Letras
0
Vertices
a,b,c,d,e,f
Edges
a,b,10
a,c,9
b,a,15
b,d,5
b,e,10
c,d,20
c,e,8
d,e,20
d,f,12
e,f,10
f,d,10
```

Restricciones básicas:

- i. Garantizar que los vértices coincidan con la característica del grafo (Número/Letras)
- ii. No pueden existir más de dos aristas/arcos entre un par de vértices. En el caso de los dirigidos con la misma dirección.
- iii. No pueden existir bucles.
- iv. La función de coste no puede ser negativa.

Figura 1. Grafo ejemplo

UNIVERSIDAD DEL CAUCA FACULTAD DE INGENIERIA ELECTRONICA Y TELECOMUNICACIONES PROGRAMA DE INGENIERIA DE SISTEMAS CURSO DE DE ESTRUCTURAS DE DATOS II GRUPO: B

2. (Valor 0.5) Mostrar el grafo **Tipo de grafo:** Dirigido

Vértices:

 $V = \{a,b,c,d,e,f\}$

Aristas

 $E = \{\{a,b,10\},\{a,c,9\},\{b,a,15\},\{b,d,5\},\{b,e,10\},\{c,d,20\},\{c,e,8\},\{d,e,20\},\{d,f,12\},\{e,f,10\},\{f,d,10\}\}\}$

3. (Valor 0.5) Mostrar la matriz de pesos del grafo.

	a	b	c	d	e	f
a	0	10	9	∞	∞	8
b	15	0	∞	5	10	8
c	8	∞	0	20	8	8
d	8	∞	∞	0	20	12
e	8	∞	∞	∞	0	10
f	8	∞	∞	10	∞	0

4. (Valor 2.5) Implementar al algoritmo de Dijkstra para encontrar los caminos mínimos desde un vértice inicial a un vértice final.

Ejemplo	Respuesta		
Vértice Inicial: a	Camino: a,b,d,f		
Vértice Final: f	Longitud del camino: 27		
Vértice Inicial: g	¡Error! No existe el vértice inicial.		
Vértice Final: a			
Vértice Inicial: a	¡Error! No existe el vértice final.		
Vértice Final: g			
Vértice Inicial: q	¡Error! No existe el vértice inicial y final.		
Vértice Final: g			
En el caso de que existan los dos vértices, pero no un	No existe camino, el grafo debido a que el grafo no es		
camino mínimo.	conexo/fuertemente conexo.		

Condiciones de Entrega: El proyecto final deberá ser enviado únicamente por el link dispuesto en la plataforma para esta actividad. El proyecto se podrá realizar en parejas.