Command	Explanation
t.test()	uh, it performs a t-test
qchisq(p, n-1)	gives x such that $P\left(\chi_{n-1}^2 \le x\right) = p$ for $\chi_{n-1}^2 \sim \chi^2(n-1)$
qchisq $(p, n-1, lower.tail=FALSE)$	gives x such that $P\left(\chi_{n-1}^2 \ge x\right) = p$ for $\chi_{n-1}^2 \sim \chi^2(n-1)$
$qf(p, v_1, v_2)$	gives x such that $P(F_{v_1,v_2} \leq x) = p$ for $F_{v_1,v_2} \sim F(v_1,v_2)$
$qf(p, v_1, v_2, lower.tail=FALSE)$	gives x such that $P(F_{v_1,v_2} \ge x) = p$ for $F_{v_1,v_2} \sim F(v_1,v_2)$
$\operatorname{cor}(x,y)$	finds the sample correlation r_{xy} between x and y
cor.test()	tests whether r_{xy} is statistically significant
$lm(y \sim x)$	regresses dependent variable y on independent variable x

t.test(x, mu = 5, conf.level = 0.90)

Performs a t-test using data in x for $H_0: \mu = 5$ against $H_1: \mu \neq 5$ at 10% significance.

t.test(x, alternative = c("greater"), mu = 5, conf.level = 0.95)

Performs a t-test using data in x for $H_0: \mu \leq 5$ against $H_1: \mu > 5$ at 5% significance.

t.test(x, y, conf.level = 0.95)

Performs a t-test using data in x and y for $H_0: \mu_x = \mu_y$ against $H_1: \mu_x \neq \mu_y$ at 5% significance.

qchisq(0.05,9, lower.tail = FALSE)

Finds the number $\chi^2_{9,0.05}$ such that 5% of the mass of the $\chi^2(9)$ distribution falls above it.

cor.test(x,y, method = c(''pearson''))

Tests whether the correlation coefficient r_{xy} is statistically significant or not.

regname <- $lm(weight \sim height)$

Regresses variable weight on height and saves the results as regname.

FIGURE 1: $\chi^2_{9,0.05}$ is the number such that 5% of the mass of the $\chi^2(9)$ distribution falls above it