

Année académique 21/22 Rapport de projet 1

Fléchettes évolutives et prestige de Pi-créatures

Option 2MAU3MAY

Étudiant Jean Heibig

Enseignants responsables Robert Eymard et Jacques Printems

Date 8 octobre 2021

I. Autour de π : estimateurs statistiques

II. Dynamiques de jeu simulées par Monte-Carlo 3

III. Perron-Frobenius ou le prestige des Pi-créatures 4

2

I. Autour de π : estimateurs statistiques

Soit $\Omega := [-1, 1]^2$. Définissons sur l'espace probabilisé $(\Omega, \mathcal{B}(\Omega), \mathbb{P})$ la variable aléatoire $J \sim \mathcal{U}(\Omega)$, qui correspond à un *jet* uniforme de fléchette sur la cible Ω . Nous simulons une suite de variables aléatoires indépendantes $(J_n)_{\mathbb{N}} \sim J$. Pour R réel positif, nous notons B(0, R) le disque centré en 0 et de rayon R. Soit $X_1^J := \mathbb{1}_{J_1 \in B(0,1)}$, alors

$$\mathbb{E}(X_1^J) = \int_{\Omega} \mathbb{1}_{J_1(\omega) \in \mathcal{B}(0,1)} d\mathbb{P}(\omega) = \frac{\pi}{4} \quad \text{et} \quad \sigma_1^2 = \left(1 - \frac{\pi}{4}\right) \frac{\pi}{4}$$

FIGURE 1 – Estimation $\hat{\pi} = 3,140$

Nous considérons la suite $(X_n^J)_{\mathbb{N}}$ de variables aléatoires mutuellement dépendantes où $X_n^J := \mathbbm{1}_{J_n \in \mathcal{B}(0,R_n)}$ telle que la suite des rayons respecte ¹

$$R_1 = 1$$
 et $\forall n \in \mathbb{N}, R_{n+1}^2 = \max(0, R_n^2 - ||J_n||^2)$

Si le jet J_n atteint le disque de rayon R_n , alors le nouveau rayon R_{n+1} correspond à la distance au cercle $C(0, R_n)$ selon la corde tangente au jet. Sinon, les rayons suivants stationnent à zéro. Nous appelons $(X_n^J)_{\mathbb{N}}$ une partie selon la distribution J.

Nous notons $N^J := \sum_{n} X_n^J$, le niveau d'une partie, alors ²

$$\begin{split} \mathbb{E}(N^J) &= \sum_{n\geqslant 1} \mathbb{P}(N^J\geqslant n) \\ &= \sum_{n\geqslant 1} \frac{\mathrm{Volume}(\mathrm{Boule}^{2n}(0,1))}{\mathrm{Volume}(\mathrm{Carr\acute{e}}^{2n}(0,1))} \\ &= \sum_{n\geqslant 1} \frac{(\pi/4)^n}{n!} \\ &= e^{\pi/4} - 1 \end{split}$$

J. Heibig 2/4

^{1.} Idéee originale de Numberphile et 3blue1brown, Fléchettes en grande dimension

^{2.} Nous avons vu en cours que le volume de la n-boule vaut $V_n(R) = \pi^{n/2} R^n / \Gamma(n/2 + 1)$

II. Dynamiques de jeu simulées par Monte-Carlo

Nous remplaçons désormais la distribution uniforme J par des distributions paramétriques Π_K de $Pi\text{-}créatures^3$. Pour tirer une fléchette selon Π_K , nous sélectionnons uniformément un point sur une courbe en forme de pi, puis ajoutons un bruit gaussien. L'ensemble K des paramètres contient notamment l'emplacement et la taille. Nous considérons S la variable aléatoire associée au score sur la cible de fléchettes 4 . Nous nous intéressons au score total T^{Π_K} d'une telle distribution :

$$T^{\Pi_K} \coloneqq \sum (XS)_n^{\Pi_K}$$

FIGURE 2 – Estimation Monte-Carlo du score total $\hat{T}^{\Pi_K}=26$

J. Heibig

^{3.} Davantage de détails au sujet de K et de Π_K sont donnés sur GitHub - Fléchettes évolutives

^{4.} Description du jeu et règles officielles

III. Perron-Frobenius ou le prestige des Pi-créatures

FIGURE 3 – Classement des Pi-créatures dans les deux catégories

Nous utilisons 500 individus dotés de 1000 parties en 20 fléchettes. Nous reprenons le travail vu en cours au sujet du tennis 5 afin de quantifier le prestige des Pi-créatures. Nous pouvons garantir l'irréductibilité de la matrice d'adjacence Q grâce aux règles d'évolution de notre expérience. Nous définissons alors le vecteur de prestige P par

$$P = QP$$

où P est l'unique vecteur propre positif de la matrice stochastique Q, dont l'existence et l'unicité découlent du théorème de Perron-Frobenius. Nous affichons ci-dessous le résultat d'une expérience, qui illustre correctement le fait que la mesure de prestige introduite est corrélée avec le score moyen d'une Pi-créature.

FIGURE 4 – Corrélation du prestige avec le score

J. Heibig 4/4

^{5.} Who Is the Best Player Ever? A Complex Network Analysis of the History of Professional Tennis