

IFSBM « Big Data »

Introduction à l'analyse de transcriptome par RNA-seq

Daniel Gautheret

Avec des diapos de Gaëlle Lelandais, U. Paris-Saclay

Github: https://github.com/gustaveroussy/IFSBM-bigdata

Le RNA-seq sert d'abord à mesurer l'expression

Mais pas que

- Mesurer l'expression des gènes
- Mesurer l'épissage alternatif
- Détecter les mutations exprimées
- Annoter les gènes: nouveaux exons
- Détecter les transcrits de fusion

Un pipeline d'analyse RNA-seq

FASTQ Format

```
@NB501949:31:H2NWHBGX3:1:11101:13085:7526 1:N:0:AGTTCC
@NB501949:31:H2NWHBGX3:1:11101:7216:7526 1:N:0:AGTTCC
@NB501949:31:H2NWHBGX3:1:11101:14260:7526 1:N:0:AGTTCC
GCCAGGCATAGGCTACCCCAGTGGTTCTCAAAGTGTCCTCCTTGGATCAGCAGCAGCAGCATCACCGGGGATGGA
AAAAAEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
@NB501949:31:H2NWHBGX3:1:11101:22341:7527 1:N:0:AGTTCC
CCCACCACCAGAAATGAACAAAAAGCATTTTACCTAAAAATACACCAGCAAAATGTACTCAGCTTCAATCACAAAT
AAAAAEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
@NB501949:31:H2NWHBGX3:1:11101:22098:7527 1:N:0:AGTTCC
\mathsf{GCCGAAGCCACTCCACTGTCTCAGCATTTCCATTGACTTGAAAAAGTCCTTGTTGCTCCAGACCTCCGTGTTAGCC
@NB501949:31:H2NWHBGX3:1:11101:8707:7528 1:N:0:AGTTCC
GTCTTGAGGACCTCTGTGTATTTGTCAATTTTCTTCTCCACGTTCTTCTCGGCCTGTTTCCCGTAGCCTCATGAGCT
AAAAAEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
@NB501949:31:H2NWHBGX3:1:11101:4370:7528 1:N:0:AGTTCC
GGCCACTGCACCCAGCTTTTATCGTGTTTTGTGCACTACTGTAAACCTTGAATAACACCATGGGGCCCATACGA
```

Sequence quality encoding: Phred score

<u>Phred scores Q</u>: Q scores are defined as a property that is logarithmically related to the base-calling error probabilities (P).

$$Q = -10 \log_{10} P$$

Phred Quality Score	Probability of Incorrect Base Call	Base Call Accuracy	
10	1 in 10	90%	
20	1 in 100	99%	
30	1 in 1,000	99.9%	
40	1 in 10,000	99.99%	
50	1 in 100,000	99.999%	
	Yannick Boursin		

Encodage de la qualité transformation des scores en lettres

@SEQ_ID1
GATTTGGGGT
+
*(å/\$#((((

FASTQC: Pass or Fail?

Alternative: trimming low quality bases: Cutadapt, FastqTrimmer, Trimmomatic

Mapping

Mapper=trouver tous les loci où le read est présent à k erreurs près.

ACGTTACCGAATCGATCAAGTCGA TAC

OK pour 1 read: O(3.10^9 x 100) Mais pour 1^8 reads???

Indexed Matching

- Créer à l'avance un index de la base à interroger
- Rechercher la chaîne dans l'index

L'algorithme de BLAST

- Index de k-mots de la référence
- Recherche des k-mots de la query dans l'index
- Extension autour des k-mots par Smith-Waterman

Gestion problématique des mismatches dans les k-mers Effet important de la taille de k

Suffix array

"GOOGOL"

Tableau trié de tous les suffixes d'une chaîne de caractères

```
0 GOOGOL$
                         6$
1 00GOL$
                         3 GOL$
2 OGOL$
                         0 GOOGOL$
3 GOL$
                         5 L$
                                                (6,3,0,5,2,4,1)
4 OL$
                         2 OGOL$
                                               (index relativement peu
5 L$
                         4 OL$
                                               encombrant)
6$
                         1 00GOL$
                         Suffix array trié
```

Toutes les occurrences d'une même chaîne sont regroupées.

Suffix arrays

Exemple: trouver la chaîne GO

```
6 $
3 GOL$
0 GOOGOL$
5 L$
2 OGOL$
4 OL$
1 OOGOL$
```

Suffix array trié

Burrows-Wheeler Transform (BWT)

 Permet de compresser efficacement une séquence en maintenant les propriétés d'un suffix array pour la recherche

Voir videos de Ben Langmead pour

- 1. Création d'une BWT (et décodage)
- 2. Utilisation d'une BWT comme index de recherche (FM index)

1: https://www.youtube.com/watch?v=6BJbEWyO_N0

2: https://www.youtube.com/watch?v=kvVGj5V65io

Les principaux logiciels de mapping

- Génomique
 - BOWTIE
 - BWA
- Transcriptomique (avec introns)
 - HiSAT
 - STAR

Le problème des répétitions

Approximately **50%** of the human genome is comprised of repeats

Repeat class	Repeat type	Number (hg19)	Cvg	Length (bp)
Minisatellite, microsatellite or satellite	Tandem	426,918	3%	2-100
SINE	Interspersed	1,797,575	15%	100-300
DNA transposon	Interspersed	463,776	3%	200-2,000
LTR retrotransposon	Interspersed	718,125	9%	200-5,000
LINE	Interspersed	1,506,845	21%	500-8.000
rDNA (16S, 18S, 5.8S and 28S)	Tandem	698	0.01%	2,000-43,000
Segmental duplications and other classes	Tandem or interspersed	2,270	0.20%	1,000-100,000

Séquençage paired-end *vs.* single end.

Benefits of paired-end sequencing

- Single-end alignment – repeated sequence

ACGACTC

ACGACTC

Reference Genome Sequence

ACTACGACT CTACGAGC ATCT ACGAGC TA CTAGCGAT CTACGAGCTGCGAGCA ACGGCC AAC

- Paired-end alignment – unique sequence

ACGACTC

GGCCAAC

ACGACTO

GGCCAAC

Reference Genome Sequence

A CTACGACT CTACGAGC ATCT A CGAGC TA CTAGCGAT CTACGAGCTGCGAGCA A CGGCC A A C

Yannick Boursin 25

La spécificité du mapping RNA-seq

Le programme STAR

Dobin et al. Bioinformatics, 2013

MMP=maximal perfect match (implemented through uncompressed suffix arrays)

a,b,c: 3 cas possibles pour les reads alignés de manière incomplète.

Reads alignés

Alignment formats

- SAM
- BAM
- PileUp

SAM and BAM are now the standard for aligned data PileUp is used for variant calling

Les méthodes de comptage

Mesure d'expression avec featureCounts

featureCounts takes as input SAM/BAM files and an annotation file including chromosomal coordinates of features. It outputs numbers of reads assigned to features (or meta-features).

Voir format GTF

Liao Y, Smyth GK, Shi W. Bioinformatics. 2014

Indexer les fichiers BAM

- Pour connaître les reads alignés sur une région donnée, il faut indexer le fichier BAM
- Sans index, il faudrait parcourir tout le fichier pour répondre
- Indexation= tri par position + création d'une table des positions
- Produit un fichier .BAI

```
samtools sort sample.bam -o sample_sorted.bam
samtools index sample sorted.bam
```

Expression: résumé!

Main software for counting

Software	Reference	EM
Htseq-count	genome	-
FeatureCounts	genome	-
Cufflinks	genome	yes
RSEM	transcriptome	yes
Kallisto	transcriptome (pseudo mapping)	yes
Sailfish/Salmon	transcriptome (pseudo mapping)	yes

Analyse différentielle

Problématique de normalisation (1/2)

Le nombre de sequences (reads) depend de la longueur des gènes ...

A1BG	4
A1CF	41
A2M	1
A2ML1	3
A2MP1	3
A3GALT2	1
A4GALT	420
A4GNT	1
AA06	0
AAAS	2452
AACS	3234
AACSP1	1544

Problématique de normalisation (2/2)

Le nombre de sequences (reads) dépend de la "taille des librairies" * ...

Somme 1 Somme 2

Table de comptage normalisée

^{*} La somme des comptages par expérience est souvent nommé *library size* dans les articles.

Common expression units for genes and transcripts

- Raw counts: no normalization
- RPM,CPM (read/million, count/million)
 - Normalized by library size
- RPKM/FPKM (read/kb/million, fragment/kb/million)
 - Normalized by library size and gene-size
- TPM (transcript/million)
 - Normalized by trancript size and by millions of transcripts

Quantifier l'expression différentielle

> Ratio

$$R = \frac{Q_A}{Q_B} = \frac{Valeur(s) \ de \ comptage \ Condition \ A}{Valeur(s) \ de \ comptage \ Condition \ B}$$

- ➤ Fold Change

$$FC = \begin{cases} R & \text{si } R \ge 1 \\ \frac{1}{R} & \text{si } R < 1 \end{cases}$$

➤ Log fold change

$$logFC = log2(R) = log2(Q_A) - log2(Q_B)$$

Interprétation du logFC (taille d'effet)

Les valeurs du logFC peuvent être positives et negatives. L'utilisation de la base 2 permet de traduire un doublement par une unité de variation (+/-).

$$\log FC_g > 0 \Leftrightarrow Q1_g > Q2_g$$
"Up-regulated gene"

$$\log FC_g < 0 \Leftrightarrow Q1_g < Q2_g$$
"Down-regulated gene"

Notion de taille d'effet

Utiliser la taille d'effet

Liste de gènes, candidats pour être différentiellement exprimés

Tenir compte de la reproductibilité

(dispersion)

Dans la pratique, les expériences sont répétées. La taille d'effet mesurée est fondée sur plusieurs observations.

Gène 1:
$$\log FC_{G1} = \frac{1}{3}(0.5 + 2.5 + 6) = 3$$

$$++++$$
 Gène 2: $\log FC_{G2} = \frac{1}{3}(3+2.8+3.2) = 3$

Meilleure cohérence entre les observations

Notion de dispersion

Quantifier la dispersion*

Variance (estimateur)
$$Var(X) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - m)^2$$

$$SD = \sqrt{Var(X)}$$

$$SD = \sqrt{Var(X)}$$

> Exemple :

	logFC	Variance	SD
Gène 1	3	7.75	2.78
Gène 2	3	0.04	0.20

^{*} Mais aussi le coefficient de variation biologique, l'erreur standard, etc.

Combiner taille d'effet et dispersion

Statistique de Student

➤ Taille d'effet, dispersion, nombre Down-regulated d'observations: genes (triés) Up-regulated genes (triés) # de gènes Liste de gènes, candidats pour être différentiellement exprimés Taille d'effet (logFC) Dispersion (SD) 100 200 300

Valeur T

... certains gènes ont des valeur T artificiellement gonflées!

Importance trop grande donnée au paramètre de dispersion (n = 3)

Estimer correctement la variabilité associée aux observations de comptage d'une gène est un défi statistique.

	_	_	_	_	_	
A1BG	4	6	2	7	6	7
A1CF	41	33	42	32	42	32
A2M	1	3	1	4	3	7
A2ML1	3	2	2	6	7	3
A2MP1	3	2	2	1	1	0
A3GALT2	1	4	4	3	2	1
A4GALT	420	344	291	327	360	371
A4GNT	1	1	2	1	3	3
AA06	0	0	0	0	0	0
AAAS	2452	2192	1977	2054	2134	2100
AACS	3234	2804	2609	1678	1670	1742
AACSP1	1544	1369	1300	1926	2015	1963

Source des données : Yang et al., Mol Cell Biol (2016)

Tenir compte du nombre de séquences alignées (force d'expression)

➤ Une même taille d'effet peut être observée pour des données de comptages différentes

Gene 1: $\log FC_{G1} = \log 2(8000/1000) = 3$

Gene 2: $\log FC_{G2} = \log 2(8/1) = 3$

Variations aléatoires?

La notion de "force d'expression" est intéressante à prendre en compte pour établir une liste de gène candidats, avec une meilleure fiabilité.

^{*} Cette information est nommée expression strength dans les articles statistiques.

Limma: the « Voom » transformation

Observation de la variance en fonction de l'expression moyenne des gènes

La régression permet d'estimer la variance attendue en fonction du log2 (count)

Bilan

L'analyse différentielle est un problème difficile qui nécessite l'utilisation de méthodologies d'analyses complexes.

Taille d'effet

Dispersion

Niveau expression

http://www.rnajournal.org/cgi/doi/10.1261/rna.053959.115

ANNEXES

Format bed

```
obligatoire

chr7 127471196 127472363 Pos1 0 + 127471196 127472363 255,0,0

chr7 127472363 127473530 Pos2 0 + 127472363 127473530 255,0,0

chr7 127473530 127474697 Pos3 0 + 127473530 127474697 0,255,0

chr7 127474697 127475864 Pos4 0 + 127474697 127475864 255,0,255
```

Attention

Le premier nucléotide est numéroté 0. end - start = taille de la séquence

Format GFF

Permet de décrire les features et leur position

- seqname The name of the sequence (chromosome/scaffold)
- 2. source The program that generated this feature
- 3. feature Type of feature ("CDS", "start_codon", "stop_codon", "exon")
- start Starting position of the feature in the sequence (starts at 1)
- end Ending position of the feature (inclusive).
- 6. score Score between 0 and 1000 (or "." if no value)
- 7. strand '+', '-', or '.'
- 8. frame If coding exon, frame should be 0-2: reading frame of the first base.
- 9. group All lines with the same group are linked together into a single item.

Format GTF

=format GFF avec extension du champ 9

```
gene_id "ENSG00000224387.1"; transcript_id "ENST00000424657.1"; gene_type "antisense"; gene_s
              transcript
                                                                gene_id "ENSG00000224387.1"; transcript_id "ENST00000424657.1"; gene_type "antisense"; gene_status "K
       HAVANA
                        2424540 2424697 .
               exon
                                                                gene_id "ENSG00000224387.1"; transcript_id "ENST00000424657.1"; gene_type "antisense"; gene_status "K
chr1
       HAVANA
               exon
                       2423739 2424035 .
                                                                gene_id "ENSG00000229393.1"; gene_type "antisense"; gene_status "KNOWN"; gene_name "RP3-395M20.3"; le
       HAVANA
                       2424876 2425918
               gene
                                                                        gene_id "ENSG00000229393.1"; transcript_id "ENST00000442305.1"; gene_type "antisense"; gene_s
chr1
       HAVANA
                                2424876 2425918
              transcript
                                                                gene_id "ENSG00000229393.1"; transcript_id "ENST00000442305.1"; gene_type "antisense"; gene_status "K
chr1
       HAVANA exon
                        2425822 2425918 .
                                                                gene id "ENSG00000229393.1"; transcript id "ENST00000442305.1"; gene type "antisense"; gene status "K
chr1
       HAVANA
                       2424876 2425292 .
               exon
                                                                gene_id "ENSG00000157881.13"; gene_type "protein_coding"; gene_status "KNOWN"; gene_name "PANK4"; lev
chr1
       HAVANA
               gene
                       2439972 2458067 .
chr1
                                2439972 2458067
                                                                        gene_id "ENSG00000157881.13"; transcript_id "ENST00000378466.7"; gene_type "protein_coding";
               transcript
                                                                gene_id "ENSG00000157881.13"; transcript_id "ENST00000378466.7"; gene_type "protein_coding"; gene_sta
chr1
       HAVANA
              exon
                       2457903 2458067
                                                                gene_id "ENSG000000157881.13"; transcript_id "ENST00000378466.7"; gene_type "protein_coding"; gene_sta
chr1
       HAVANA
              CDS
                       2457903 2458050
                                                                        gene_id "ENSG00000157881.13"; transcript_id "ENST00000378466.7"; gene_type "protein_coding";
chr1
       HAVANA
              start codon
                                2458048 2458050
                                                                gene_id "ENSG00000157881.13"; transcript_id "ENST00000378466.7"; gene_type "protein_coding"; gene_sta
chr1
       HAVANA
               exon
                       2453157 2453239
                                                                gene_id "ENSG00000157881.13"; transcript_id "ENST00000378466.7"; gene_type "protein_coding"; gene_sta
chr1
       HAVANA
               CDS
                        2453157 2453239 .
                                                                gene_id "ENSG00000157881.13"; transcript_id "ENST00000378466.7"; gene_type "protein_coding"; gene_sta
chr1
       HAVANA
                       2452540 2452754 .
              exon
                                                                gene_id "ENSG000000157881.13"; transcript_id "ENST00000378466.7"; gene_type "protein_coding"; gene_sta
chr1
       HAVANA
               CDS
                        2452540 2452754 .
```

position annotation

#1 à #8

#9