Speech Emotion Recognition

Utilizing Speech Emotion Recognition to Enhance Human-Computer Interaction

Table of contents

01

Introduction/ Problem Statement

04

Results

02

Use Cases

05

Lessons Learned 03

Working Principle

06

QnA

Problem Statement

- Near-Real-time prediction of emotions from audio input.
- Aiming for accurate emotion labels based on audio signal analysis.
- The increasing need is driven by the rising demand for advanced communication technologies.
- We are classifying 8 different emotions: Surprise, Angry, Calm, Disgust, Sad, Fear, Neutral, Happy.

Use Cases

Human-Computer Interaction

Improve user engagement and satisfaction by responding empathetically to emotional cues.

Customer Service

Analyze customer calls to identify emotional states and provide appropriate support.

Mental Health Monitoring

Detect signs of distress or emotional dysregulation in speech patterns.

Educational Technology

Assess student engagement and understanding by detecting emotions during lectures or discussions.

Working Principle

1. Gathering Data

RAVDESS, TESS, CREMA-D

3. Feature Extraction

Features such as Zero-Crossing Rate (ZCR), Root Mean Square Error (RMSE), and Mel-frequency Cepstral Coefficients (MFCC) are extracted from the recorded audio using Librosa

2. Pre-Processing

Data augmentation involves creating synthetic data samples by introducing small perturbations to the original training set.

4. Data processing and Encoding

Feature vectors are processed, handling missing values, standardized, and emotion labels are one-hot encoded for model training.

Build CNN Model

Results

Demo

Lessons Learned

- Selection audio features are crucial for emotion detection through speech.
- Training the model with good quality data can help in improving accuracy drastically.
- Tweaking the Epochs to optimum level plays an important role in improving accuracy.

References

[1]https://www.kaggle.com/datasets/uwrfkaggler/ravdess-emotional-speech-audio

[2]https://www.kaggle.com/datasets/ejlok1/toronto-emotional-speech-set-tess

[3]https://jonathanbgn.com/speech/2020/10/31/emotion-recognition-transfer-

learning-wav2vec.html

[4]https://github.com/CheyneyComputerScience/CREMA-D

[5]https://www.sciencedirect.com/science/article/abs/pii/S1746809420300501

