Indexing big colored image bank: Texture 3.0

Etienne CAILLAUD, Thomas LE BRIS, Ibrahima GUEYE, Gaetan ADIER

XLIM-SIC Laboratory UMR CNRS 7252, Poitiers, France

Outline

Project context (1/2)

What is a imageCLEF?

International contest which purpose is to benchmark plant identification from images.

Project context (2/2)

Objectives

- Index image database composed of nature pictures
- Adapt XLIM's descriptor to the current image classification
- Benchmark results

Team presentation

Outline

SIFT(1/2)

Key-points detection (x,y,σ)

- Scale-space extrema detection
- Key-point location
- Orientation assignment
- key-point descriptor

FIGURE: SIFT Keypoints

SIFT(2/2)

FIGURE: SIFT matching for scale changes

What about nature images?

SIFT

- Description using orientation of shapes
- Natively used on grayscale images
- Only marginal methods for color images
- Unable to get the texture information from image

C_2O

- Description based on color difference
- Natively conceived for color images
- Take account of the texture information

C₂O (1/2)

The C₂O matrix for a poorly textured image :

FIGURE: Image to characterize

FIGURE: Signature

C₂O (1/2)

- CONTROL MICH DANCE STREAM.

 | Descriptor | Signature | COMPANSOR
- The C₂O matrix for a poorly textured image :
- The C₂O matrix for a more textured image :

FIGURE: Image to characterize

FIGURE: Signature

C₂O (1/2)

- The C₂O matrix for a poorly textured image :
- The C₂O matrix for a more textured image :
- The C₂O matrix for a more textured and colored image :

FIGURE: Image to characterize

CONTRET BASED BASER PETREVAL DESCRIPTION D

C₂O (2/2)

• The C₂O signature for a poorly textured image :

C₂O (2/2)

- The C₂O signature for a poorly textured image :
- The C₂O signature for a more textured image :

C₂O (2/2)

- The C₂O signature for a poorly textured image :
- The C₂O signature for a more textured image :
- The C₂O signature for a more textured and colored image :

Bag of word (1/2)

CONTRA SHICK MADE STREETS AND STREETS AND

Reducing the number of points (100 in our case).

- K-means
 - Attribute the vectors to centroid vectors.

FIGURE: K-means

Bag of word (2/2)

- Signature
 - Design histogram in function of assignment of the vectors.

FIGURE: Signature 100 words -

FIGURE: Signature 100 words - 2

K-nn(1/2)

- The k nearest neighbor method
 - Comparison to the dictionary.

K-nn(1/2)

- The k nearest neighbor method
 - Comparison to the dictionary.

- 4 Occurrences of the red class
- 1 occurrence of the blue class
- The new point is attributed to the red class

K-nn(2/2)

- Application for image classification
 - More complex data.
 - Distances on signature vectors extracted from the K-mean method.
 - One most adapted distance type for each descriptor.

Results (1/2)

 Reduce data-base of 100 images composed of only 4 species.

FIGURE: First specie

FIGURE: Second specie

FIGURE: Third specie

FIGURE: Fourth specie

Results (2/2)

Compare the two descriptors SIFT and C₂O.

TABLE: SIFT result

ID	Training Base	Test Base	Correct	Accuracy		
173	17	8	4	50%		
1102	22	3	1	33%		
1889	16	9	1	11%		
2717	15	10	7	70%		
Total	70	30	9	1		

TABLE: C2O result

ID	Training Base	Test Base	Correct	Accuracy
173	17	8	1	12.5%
1102	22	3	1	33%
1889	16	9	0	0%
2717	15	10	7	70%
Total	70	30	9	1

Discussion

- Classification
 - To much reducing on the K-means (100 words).
 - Euclidean distance not the most efficient or adapt.
- C₂O
 - The concatenation way is not optimal.
 - Parameters D, alpha, and beta has to be discussed regarding to the images.

Outline

Scheduling (1/2)

• The forecast Gantt chart :

ID	Task Name	П	mai 2015 juin :				n 2015	
	rask name		3/5	10/5	17/5	24/5	31/5	7/6
1	Writing the state of the art	X	>					
2	Preparing the database							
3	Programming	•						
14	Writing of the report					Q		
5	Preparation of the oral presentation							

- All time affectation done before the beginning of the project
- Rarely respected in important project

Scheduling (2/2)

The project backlog:

	Sprin →	Catégorie =	Sous catégorie -	Nom / Description -	Importance 📲	Estimation =	Critères de Vérification	Acteur =	Status -
y	5	Dev Logiciel	Redaction documentation	CLEF metrics - doc	65	0,5	presentation équipe scientifique	Thomas	A faire
1	5	Dev Logiciel		documentation sur le processus "complet"	60		présentation à l'ensemble des acteurs du projet		A faire

- Division of each main task in subtasks
- Time attribution for each subtask
- Tasks sorted by priority
- Each subtask attributed to team member
- Allow to change the affectation of a task
- Weekly time affectation : could be adapted to unforeseen

Outline

Sum-up of the situation

Starting objectives

- SIFT tests
- C2O programming
- classification programming
- Code optimizing for speed
- parallelization

Ending situation

- SIFT tests
- C2O programming
- classification programming

Issues

- C2O concatenation order
- distance calculation

Personal conclusion

Personal gains

- New way to organize teamwork
- Technical knowledge
- Contest participation context
- Code management on a project scale

Perspectives

- Fixing technical issues
- Test on the whole database
- Classification programming

