SBML Model Report

Model name: "Kotte2010_Ecoli_Metabolic_Adaption"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by Lukas Endler¹ at March 14th 2010 at 11:34 p.m. and last time modified at April eighth 2016 at 4:08 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	47
events	2	constraints	0
reactions	109	function definitions	0
global parameters	213	unit definitions	6
rules	12	initial assignments	0

Model Notes

This is the model described in: **Bacterial adaptation through distributed sensing of metabolic** fluxes

Oliver Kotte, Judith B Zaugg and Matthias Heinemann; Mol Sys Biol 2010; 6:355. doi:10.1038/msb.2010.10; Abstract:

The recognition of carbon sources and the regulatory adjustments to recognized changes are

¹EMBL-EBI, lukas@ebi.ac.uk

of particular importance for bacterial survival in fluctuating environments. Despite a thorough knowledge base of Escherichia coli's central metabolism and its regulation, fundamental aspects of the employed sensing and regulatory adjustment mechanisms remain unclear. In this paper, using a differential equation model that couples enzymatic and transcriptional regulation of E. coli's central metabolism, we show that the interplay of known interactions explains in molecular-level detail the system-wide adjustments of metabolic operation between glycolytic and gluconeogenic carbon sources. We show that these adaptations are enabled by an indirect recognition of carbon sources through a mechanism we termed distributed sensing of intracellular metabolic fluxes. This mechanism uses two general motifs to establish flux-signaling metabolites, whose bindings to transcription factors form flux sensors. As these sensors are embedded in global feedback loop architectures, closed-loop self-regulation can emerge within metabolism itself and therefore, metabolic operation may adapt itself autonomously (not requiring upstream sensing and signaling) to fluctuating carbon sources.

In its current form this SBML model is parametrized for the glucose to acetate transition and to simulate the extended diauxic shift as shown in figure 3 and scenario 6 of the attached matlab file. In this scenario the cells first are grown from an OD600 (BM) of 0.03 with a starting glucose concentration of 0.5 g/l for 8.15 h (29340 sec). Then a medium containing 5 g/l acetate is inoculated with these cells to an OD600 of 0.03 and grown for another 19.7 hours (70920 sec). Finally the cells are shifted to a medium containing both glucose and acetate at a concentration of 3 g/l with a starting OD600 of 0.0005.

The shifts where implemented using events triggering at the times determined by the parameters shift1 and shift2 (in hours). To simulate other scenarios the initial conditions need to be changed as described in the supplemental materials (supplement 1)

The original SBML model and the MATLAB file used for the calculations can be down loaded as supplementary materials of the publication from the MSB website. (supplement 2).

The units of the external metabolites are in [g/I], those of the biomass in optical density, OD_{600} , taken as dimensionless, and [micromole/(gramm dry weight)] for all intracellular metabolites. As the latter cannot be implemented in SBML, it was chosen to be micromole only and the units of the parameters are left mostly undefined.

This model originates from BioModels Database: A Database of Annotated Published Models. It is copyright (c) 2005-2010 The BioModels Team.

For more information see the terms of use.

To cite BioModels Database, please use Le Novre N., Bornstein B., Broicher A., Courtot M., Donizelli M., Dharuri H., Li L., Sauro H., Schilstra M., Shapiro B., Snoep J.L., Hucka M. (2006) BioModels Database: A Free, Centralized Database of Curated, Published, Quantitative Kinetic Models of Biochemical and Cellular Systems Nucleic Acids Res., 34: D689-D691.

2 Unit Definitions

This is an overview of eight unit definitions of which two are predefined by SBML and not mentioned in the model.

2.1 Unit od

Name OD

Definition dimensionless

2.2 Unit substance

Name micromole

Definition μmol

2.3 Unit volume

Name volume

Definition 1

2.4 Unit time

Name seconds

Definition s

2.5 Unit hours

Name hours

Definition 3600 s

2.6 Unit gram_per_litre

Name gram_per_litre

Definition $g \cdot l^{-1}$

2.7 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.8 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
Environment Cell	Environment Cell		3 3	1 1	litre litre	1	

3.1 Compartment Environment

This is a three dimensional compartment with a constant size of one litre.

Name Environment

3.2 Compartment Cell

This is a three dimensional compartment with a constant size of one litre.

Name Cell

4 Species

This model contains 47 species. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

	Table 3: Properties of each species.							
Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion			
BM	BM	Environment	dimensionless		\Box			
ACT	ACT	Environment	$g \cdot l^{-1}$		\Box			
GLC	GLC	Environment	$g \cdot l^{-1}$		\Box			
ACoA	ACoA	Cell	μmol	\Box	\Box			
AKG	AKG	Cell	μmol	\Box	\Box			
cAMP	cAMP	Cell	μmol	\Box				
FBP	FBP	Cell	μmol	\Box				
G6P	G6P	Cell	μmol	\Box	\Box			
GLX	GLX	Cell	μmol	\Box				
ICT	ICT	Cell	μmol	\Box				
MAL	MAL	Cell	μmol	\Box				
OAA	OAA	Cell	μmol	\Box				
PEP	PEP	Cell	μmol	\Box				
PG3	PG3	Cell	μmol					
PYR	PYR	Cell	μmol	\Box				
AceA	AceA	Cell	μmol	\Box				
AceB	AceB	Cell	μmol	\Box				
AceK	AceK	Cell	μmol	\Box				
Acoa2act	Acoa2act	Cell	μmol	\Box				
Acs	Acs	Cell	μmol	\Box	\Box			
Akg2mal	Akg2mal	Cell	μmol	\Box				
CAMPdegr	CAMPdegr	Cell	μmol					

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Cya	Cya	Cell	μmol	\Box	
Emp	Emp	Cell	μmol		
Eno	Eno	Cell	μmol		
Fdp	Fdp	Cell	μmol		
GltA	GltA	Cell	μmol		
Icd	Icd	Cell	μmol		
Icd_P	Icd_P	Cell	μmol		
Mdh	Mdh	Cell	μmol		
Me	Me	Cell	μmol		
PckA	PckA	Cell	μmol		
Pdh	Pdh	Cell	μmol		
PfkA	PfkA	Cell	μmol		
Ррс	Ppc	Cell	μmol		
PpsA	PpsA	Cell	μmol		
PykF	PykF	Cell	μmol		
Cra	Cra	Cell	μmol		
CraFBP	CraFBP	Cell	μmol		
Crp	Crp	Cell	μmol		
CrpcAMP	CrpcAMP	Cell	μmol		
IclR	IclR	Cell	μmol		
PdhR	PdhR	Cell	μmol		
PdhRPYR	PdhRPYR	Cell	μmol		
EIIA	EIIA	Cell	μmol		\Box
EIIA_P	EIIA_P	Cell	μmol		
EIICB	EIICB	Cell	μmol		\Box

5 Parameters

This model contains 213 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
env_M_ACT	env_M_ACT	60.	050	✓
env_M_GLC	env_M_GLC	180.	156	$\overline{\mathbf{Z}}$
env_uc	env_uc	9.5 · 1	0^{-7}	$\overline{\mathbf{Z}}$
e_AceA_kcat	e_AceA_kcat	614.	000	$\overline{\mathbf{Z}}$
e_AceA_n	e_AceA_n	4.	000	$ \overline{\checkmark} $
e_AceA_L	e_AceA_L	50100.	000	\overline{Z}
e_AceA_Kict	e_AceA_Kict	0.	022	
e_AceA_Kpep	e_AceA_Kpep	0.	055	\overline{Z}
e_AceA_Kpg3	e_AceA_Kpg3	0.	720	$\overline{\mathbf{Z}}$
e_AceA_Kakg	e_AceA_Kakg	0.	827	$\overline{\mathbf{Z}}$
e_AceB_kcat	e_AceB_kcat	47.	800	\overline{Z}
e_AceB_Kglx	e_AceB_Kglx	0.	950	\overline{Z}
e_AceB_Kacoa	e_AceB_Kacoa	0.	755	$\overline{\mathscr{A}}$
e_AceB-	e_AceB_Kglxacoa	0.	719	<u> </u>
_Kglxacoa				_
e_AceK_kcat-	e_AceK_kcat_ki	3.4	10^{12}	
_ki				_
e_AceK_kcat-	e_AceK_kcat_ph	1.7	10^9	
_ph				
e_AceK_n	e_AceK_n	2.	000	
e_AceK_L	e_AceK_L		10^{8}	$\overline{\mathbf{Z}}$
e_AceK_Kicd	e_AceK_Kicd	0.	043	$\overline{\mathbf{Z}}$
e_AceK_Kicd_P	e_AceK_Kicd_P	0.	643	$ \overline{\checkmark} $
e_AceK_Kpep	e_AceK_Kpep	0.	539	$ \overline{\checkmark} $
e_AceK_Kpyr	e_AceK_Kpyr	0.	038	$ \overline{\checkmark} $
e_AceK_Koaa	e_AceK_Koaa	0.	173	$ \overline{\checkmark} $
e_AceK_Kglx	e_AceK_Kglx	0.	866	
e_AceK_Kakg	e_AceK_Kakg	0.	820	\overline{Z}
e_AceK_Kpg3	e_AceK_Kpg3	1.	570	$ \overline{\checkmark} $
e_AceK_Kict	e_AceK_Kict	0.	137	$ \overline{\checkmark} $
e_Acoa2act-	e_Acoa2act_kcat	3079.	000	$\overline{\mathbf{Z}}$
_kcat				_
e_Acoa2act_n	e_Acoa2act_n	2.	000	
e_Acoa2act_L	e_Acoa2act_L	639000.	000	$\overline{\mathscr{A}}$
e_Acoa2act-	e_Acoa2act_Kacoa	0.	022	$\overline{\mathbf{Z}}$
_Kacoa				_

Id	Name	SBO Value	Unit	Constant
e_Acoa2act-	e_Acoa2act_Kpyr	0.022		Ø
_Kpyr				
e_Acs_kcat	e_Acs_kcat	340.000		
e_Acs_Kact	e_Acs_Kact	0.001		$\overline{\mathscr{L}}$
e_Akg2mal-	e_Akg2mal_kcat	1530.000		<u></u>
_kcat				_
e_Akg2mal-	e_Akg2mal_Kakg	0.548		
_Kakg				_
e_CAMPdegr-	e_CAMPdegr_kcat	1000.000		
_kcat				_
e_CAMPdegr-	e_CAMPdegr-	0.100		
_KcAMP	_KcAMP			_
e_Cya_kcat	e_Cya_kcat	993.000		
e_Cya_KEIIA	e_Cya_KEIIA	0.002		$\overline{\mathbf{Z}}$
e_Emp_kcat_f	e_Emp_kcat_f	1000.000		$\overline{\mathbf{Z}}$
e_Emp_kcat_r	e_Emp_kcat_r	848.000		$\overline{\mathbf{Z}}$
e_Emp_Kfbp	e_Emp_Kfbp	5.920		$\overline{\mathbf{Z}}$
e_Emp_Kpg3	e_Emp_Kpg3	16.600		$\overline{\mathbf{Z}}$
e_Eno_kcatf	e_Eno_kcatf	695.000		$\overline{\mathbf{Z}}$
e_Eno_kcatr	e_Eno_kcatr	522.000		$\overline{\mathbf{Z}}$
e_Eno_Kpg3	e_Eno_Kpg3	4.760		$\overline{\mathbf{Z}}$
e_Eno_Kpep	e_Eno_Kpep	1.110		$ \overline{\checkmark} $
e_Fdp_kcat	e_Fdp_kcat	192.000		$\overline{\mathbf{Z}}$
e_Fdp_n	e_Fdp_n	4.000		$\overline{\mathbf{Z}}$
e_Fdp_L	e_Fdp_L	4000000.000		$\overline{\mathbf{Z}}$
e_Fdp_Kfbp	e_Fdp_Kfbp	0.003		$ \overline{\checkmark} $
e_Fdp_Kpep	e_Fdp_Kpep	0.300		$ \overline{\checkmark} $
e_GltA_kcat	e_GltA_kcat	1614.000		$ \overline{\checkmark} $
e_GltA_Koaa	e_GltA_Koaa	0.029		$ \overline{\checkmark} $
e_GltA_Kacoa	e_GltA_Kacoa	0.212		
e_GltA-	e_GltA_Koaaacoa	0.029		$ \overline{\checkmark} $
_Koaaacoa				
e_GltA_Kakg	e_GltA_Kakg	0.630		
e_Icd_kcat	e_Icd_kcat	695.000		
$e_{-}Icd_{-}n$	e_Icd_n	2.000		\checkmark
$e_{-}Icd_{-}L$	e_Icd_L	127.000		\checkmark
$e_{-}Icd_{-}Kict$	e_Icd_Kict	$1.6 \cdot 10^{-4}$		
$e_{-}Icd_{-}Kpep$	e_Icd_Kpep	0.334		
e_Mdh_kcat	e_Mdh_kcat	773.000		\checkmark
e_Mdh_n	e_Mdh_n	1.700		\square
e_Mdh_Kmal	e_Mdh_Kmal	10.100		\checkmark
e_Me_kcat	e_Me_kcat	1879.000		\square

Id	Name	SBO Value	Unit	Constant
e_Me_n	e_Me_n	1.330		
e_Me_L	e_Me_L	104000.000		
e_Me_Kmal	e_Me_Kmal	0.006		
e_Me_Kacoa	e_Me_Kacoa	3.640		\square
e_Me_Kcamp	e_Me_Kcamp	6.540		\square
e_PckA_kcat	e_PckA_kcat	55.500		
e_PckA_Koaa	e_PckA_Koaa	0.184		
e_PckA_Kpep	e_PckA_Kpep	1000.000		\square
e_Pdh_kcat	e_Pdh_kcat	1179.000		\square
e_Pdh_n	e_Pdh_n	2.650		\square
e_Pdh_L	e_Pdh_L	3.400		\square
e_Pdh_Kpyr	e_Pdh_Kpyr	0.128		
e_Pdh_KpyrI	e_Pdh_KpyrI	0.231		
e_Pdh_Kglx	e_Pdh_Kglx	0.218		
e_PfkA_kcat	e_PfkA_kcat	908000.000		\square
e_PfkA_n	e_PfkA_n	4.000		\square
e_PfkA_L	e_PfkA_L	$9.5 \cdot 10^7$		\square
e_PfkA_Kg6p	e_PfkA_Kg6p	0.022		\square
e_PfkA_Kpep	e_PfkA_Kpep	0.138		\square
e_Ppc_kcat	e_Ppc_kcat	5635.000		\square
e_Ppc_n	e_Ppc_n	3.000		\square
e_Ppc_L	e_Ppc_L	5200000.000		\square
e_Ppc_Kpep	e_Ppc_Kpep	0.048		
e_Ppc_Kfbp	e_Ppc_Kfbp	0.408		\square
e_PpsA_kcat	e_PpsA_kcat	1.320		\square
e_PpsA_n	e_PpsA_n	2.000		\square
e_PpsA_L	e_PpsA_L	10^{-79}		\square
e_PpsA_Kpyr	e_PpsA_Kpyr	0.002		\square
e_PpsA_Kpep	e_PpsA_Kpep	0.001		
e_PykF_kcat	e_PykF_kcat	5749.000		\square
e_PykF_n	e_PykF_n	4.000		\square
e_PykF_L	e_PykF_L	100000.000		\square
e_PykF_Kpep	e_PykF_Kpep	5.000		\square
e_PykF_Kfbp	e_PykF_Kfbp	0.413		\square
pts_k1	pts_k1	116.000		\square
${\tt pts_km1}$	pts_km1	46.300		\square
pts_k4	pts_k4	2520.000		\checkmark
${\tt pts_KEIIA}$	pts_KEIIA	0.009		\checkmark
${ t pts_Kglc}$	pts_Kglc	0.001		\checkmark
${\tt tf_Cra_scale}$	tf_Cra_scale	100.000		\checkmark
tf_Cra_kfbp	tf_Cra_kfbp	1.360		
tf_Cra_n	tf_Cra_n	2.000		

Id	Name	SBO	Value	Unit	Constant
tf_Crp_scale	tf_Crp_scale		108		Ø
${\tt tf_Crp_kcamp}$	tf_Crp_kcamp		0.895		\square
${\tt tf_Crp_n}$	tf_Crp_n		1.000		
${\tt tf_PdhR-}$	tf_PdhR_scale		100.000		
_scale					
tf_PdhR_kpyr	tf_PdhR_kpyr		0.164		\checkmark
${\tt tf_PdhR_n}$	tf_PdhR_n		1.000		\square
g_aceBAK -	g_aceBAK_vcra-	1	$1.9 \cdot 10^{-9}$		\square
$_vcra_unbound$	_unbound				
$g_{-}aceBAK-$	g_aceBAK_vcra-		$2 \cdot 10^{-6}$		
$_vcra_bound$	_bound				
g_aceBAK-	g_aceBAK_Kcra		0.004		
_Kcra					
g_aceBAK-	g_aceBAK-		0.300		$ \overline{\mathscr{L}} $
$_$ ace B factor	_aceBfactor				
g_aceBAK-	g_aceBAK-		0.030		\square
$_$ aceKfactor	_aceKfactor				
g_aceBAK-	g_aceBAK_KDNA		2.190		\square
_KDNA					
g_aceBAK_KP	g_aceBAK_KP		0.897		\square
g_aceBAK-	g_aceBAK-		0.003		\square
$_{ t KPprime}$	_KPprime				
g_aceBAK_KG	g_aceBAK_KG		0.005		\square
g_aceBAK_L	g_aceBAK_L		923.000		\square
g_aceBAK-	g_aceBAK_kcat-	Ģ	$9.3 \cdot 10^{-4}$		\square
$_\mathtt{kcat_iclr}$	_iclr				
g_aceBAK_DNA	g_aceBAK_DNA		1.000		\square
g_aceBAK-	g_aceBAK_vcrp-	2	$.3 \cdot 10^{-10}$		
$_\mathtt{vcrp}_\mathtt{bound}$	_bound				
g_aceBAK -	g_aceBAK_vcrp-		$2 \cdot 10^{-8}$		\square
$_\mathtt{vcrp}_\mathtt{unbound}$	_unbound				
g_aceBAK -	g_aceBAK_Kcrp		0.341		\square
$_\texttt{Kcrp}$					
g_acs_vcrp -	g_acs_vcrp-		0.000		\square
$_{ t unbound}$	_unbound				
g_acs_vcrp -	g_acs_vcrp_bound	1	$1.2 \cdot 10^{-6}$		\checkmark
$_{ extstyle }$ bound					
g_acs_n	g_acs_n		2.310		
g_acs_Kcrp	g_acs_Kcrp		0.005		
$g_akg2mal-$	g_akg2mal_vcrp-		0.000		$\overline{\mathbf{Z}}$
$_vcrp_unbound$	_unbound				

Id	Name	SBO	Value	Unit	Constant
g_akg2mal- _vcrp_bound	g_akg2mal_vcrp- _bound		$1.4 \cdot 10^{-6}$		Ø
g_akg2mal- _Kcrp	g_akg2mal_Kcrp		0.091		
$g_akg2mal_n$	g_akg2mal_n		0.740		\square
g_emp_vcra- _unbound	g_emp_vcra- _unbound		$6.2 \cdot 10^{-7}$		
g_emp_vcra- _bound	g_emp_vcra_bound		0.000		
$g_{\mathtt{emp}}$ Kcra	g_emp_Kcra		0.090		\square
$g_{\mathtt{emp_vcrp-}}$	g_emp_vcrp-		0.000		\square
$_$ unbound	_unbound				
g_emp_vcrp- _bound	g_emp_vcrp_bound		$4.7 \cdot 10^{-7}$		Ø
${\tt g_emp_Kcrp}$	g_emp_Kcrp		0.012		\square
g_eno_vcra- _unbound	g_eno_vcra- _unbound		$6.8 \cdot 10^{-7}$		
g_eno_vcra- _bound	g_eno_vcra_bound		0.000		
g_eno_Kcra	g_eno_Kcra		0.016		\square
g_fdp_vcra-	g_fdp_vcra-		0.000		
$_$ unbound	_unbound				
g_fdp_vcra- _bound	g_fdp_vcra_bound		$4.5 \cdot 10^{-8}$		
g_fdp_Kcra	g_fdp_Kcra		0.001		\square
g_gltA_vcrp- _unbound	g_gltA_vcrp- _unbound		0.000		
g_gltA_vcrp- _bound	g_gltA_vcrp_bound		$2.3 \cdot 10^{-6}$		
g_gltA_Kcrp	g_gltA_Kcrp		0.040		
g_gltA_n	g_gltA_n		1.070		$\overline{\mathbf{Z}}$
g_icd_vcra-	g_icd_vcra-		$1.1\cdot10^{-7}$		$\overline{\mathbf{Z}}$
_unbound	unbound				
g_icd_vcra- _bound	g_icd_vcra_bound		$8.5 \cdot 10^{-7}$		
g_icd_Kcra	g_icd_Kcra		0.001		\square
g_mdh_vcrp- _unbound	g_mdh_vcrp- _unbound		0.000		$\overline{\mathbf{Z}}$
g_mdh_vcrp- _bound	g_mdh_vcrp_bound		$9.1 \cdot 10^{-6}$		
g_mdh_Kcrp	g_mdh_Kcrp		0.060		

	Name	SBO	Value	Unit	Constant
g_pckA_vcra- _unbound	g_pckA_vcra- _unbound		0.000		Ø
g_pckA_vcra- _bound	g_pckA_vcra- _bound		$2.5 \cdot 10^{-6}$		
g_pckA_Kcra	g_pckA_Kcra		0.005		
g_pdh_vpdhr- _unbound	g_pdh_vpdhr- _unbound		$3.6 \cdot 10^{-7}$		
g_pdh_vpdhr- _bound	g_pdh_vpdhr- _bound		$1.3 \cdot 10^{-9}$		
g_pdh_Kpdhr	g_pdh_Kpdhr		0.003		
g_pfkA_vcra-	g_pfkA_vcra-		$8.2\cdot10^{-7}$		$\overline{\mathbf{Z}}$
$_$ unbound	_unbound				
g_pfkA_vcra-	g_pfkA_vcra-		$6.6 \cdot 10^{-9}$		
$_{ t bound}$	_bound				
g_pfkA_Kcra	g_pfkA_Kcra		$6.3 \cdot 10^{-7}$		\checkmark
g_ppsA_vcra-	g_ppsA_vcra-		0.000		
$_$ unbound	_unbound				
g_ppsA_vcra-	g_ppsA_vcra-		$3.3 \cdot 10^{-6}$		
_bound	_bound				_
g_ppsA_Kcra	g_ppsA_Kcra		0.017		$\mathbf{Z}_{\mathbf{z}}$
g_pykF_vcra-	g_pykF_vcra-		$3.9 \cdot 10^{-7}$		
_unbound	_unbound		2 1 10 0		
g_pykF_vcra-	g_pykF_vcra-		$2.1 \cdot 10^{-9}$		
_bound	_bound		0.002		_1
g_pykF_Kcra	g_pykF_Kcra		$0.002 \\ 2.8 \cdot 10^{-5}$		$ \mathbf{Z} $
d_k_degr	d_k_degr		2.8 · 10 2 20000.000		$ \mathbf{Z} $
bm_k_expr bm_muACT	bm_k_expr bm_muACT		$5.6 \cdot 10^{-5}$		Z
bm_muGLC	bm_muGLC		$1.8 \cdot 10^{-4}$		
bm_GLC_ACoA	bm_GLC_ACoA		1.880		Z
bm_GLC_AKG	bm_GLC_ACGA		0.978		
bm_GLC_AKG bm_GLC_G6P	bm_GLC_ARG		0.576		
bm_GLC_OAA	bm_GLC_OAA		6.400		2 2
bm_GLC_PEP	bm_GLC_PEP		0.423		∠ ∠
bm_GLC_PG3	bm_GLC_PG3		0.049		∠ ∠
bm_GLC_PYR	bm_GLC_PYR		0.553		Z
bm_ACT_ACoA	bm_ACT_ACoA		0.108		☑
bm_ACT_AKG	bm_ACT_AKG		0.056		☑
bm_ACT_G6P	bm_ACT_G6P		0.076		Z
bm_ACT_OAA	bm_ACT_OAA		1.430		\mathbf{Z}
bm_ACT_PEP	bm_ACT_PEP		0.047		\mathbf{Z}
bm_ACT_PG3	bm_ACT_PG3		0.066		$\overline{\mathbf{Z}}$

Id	Name	SBO	Value	Unit	Constant
bm_ACT_PYR	bm_ACT_PYR		5.185		$ \overline{\checkmark} $
alphaGLC	alphaGLC		0.000		
alphaACT	alphaACT		0.000		\Box
mu	mu		0.000		
k_bm_ACoA	k_bm_ACoA		0.000		
k_bm_AKG	k_bm_AKG		0.000		
k_bm_G6P	k_bm_G6P		0.000		
k_bm_0AA	k_bm_OAA		0.000		
k_bm_PEP	k_bm_PEP		0.000		
k_bm_PG3	k_bm_PG3		0.000		
k_bm_PYR	k_bm_PYR		0.000		
SS_Me	SS_Me		0.000		
SS_Ppc	SS_Ppc		0.000		
shift1	shift1		8.150	3600 s	
shift2	shift2		27.850	3600 s	
$GLC_{-}1$	GLC_{-1}		0.000	$g \cdot l^{-1}$	Ø
$GLC_{-}2$	GLC ₋₂		3.000	$g \cdot l^{-1}$	$\overline{\mathbf{Z}}$
$ACT_{-}1$	ACT_1		5.000	$g \cdot l^{-1}$	
ACT_2	ACT_2		3.000	$g \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
BM_1	$BM_{-}1$		0.030		$\overline{\mathbf{Z}}$
BM_2	$BM_{-}2$		$5\cdot 10^{-4}$		$\overline{\checkmark}$

6 Rules

This is an overview of twelve rules.

6.1 Rule alphaGLC

Rule alphaGLC is an assignment rule for parameter alphaGLC:

$$alphaGLC = \frac{[GLC]}{[GLC] + pts_Kglc}$$
 (1)

6.2 Rule alphaACT

Rule alphaACT is an assignment rule for parameter alphaACT:

$$alphaACT = \frac{[ACT]}{[ACT] + e_Acs_Kact} \cdot \left(1 - \frac{[GLC]}{[GLC] + pts_Kglc}\right) \tag{2}$$

6.3 Rule mu

Rule mu is an assignment rule for parameter mu:

$$mu = alphaGLC \cdot bm_muGLC + alphaACT \cdot bm_muACT$$
 (3)

6.4 Rule k_bm_ACoA

Rule k_bm_ACoA is an assignment rule for parameter k_bm_ACoA:

$$k_bm_ACoA = alphaGLC \cdot bm_GLC_ACoA + alphaACT \cdot bm_ACT_ACoA$$
 (4)

6.5 Rule k_bm_AKG

Rule k_bm_AKG is an assignment rule for parameter k_bm_AKG:

$$k_bm_AKG = alphaGLC \cdot bm_GLC_AKG + alphaACT \cdot bm_ACT_AKG$$
 (5)

6.6 Rule k_bm_G6P

Rule k_bm_G6P is an assignment rule for parameter k_bm_G6P:

$$k_bm_G6P = alphaGLC \cdot bm_GLC_G6P + alphaACT \cdot bm_ACT_G6P$$
 (6)

6.7 Rule k_bm_OAA

Rule k_bm_OAA is an assignment rule for parameter k_bm_OAA:

$$k_bm_OAA = alphaGLC \cdot bm_GLC_OAA + alphaACT \cdot bm_ACT_OAA$$
 (7)

6.8 Rule k_bm_PEP

Rule k_bm_PEP is an assignment rule for parameter k_bm_PEP:

$$k_bm_PEP = alphaGLC \cdot bm_GLC_PEP + alphaACT \cdot bm_ACT_PEP$$
 (8)

6.9 Rule k bm PG3

Rule k_bm_PG3 is an assignment rule for parameter k_bm_PG3:

$$k_bm_PG3 = alphaGLC \cdot bm_GLC_PG3 + alphaACT \cdot bm_ACT_PG3$$
 (9)

6.10 Rule k_bm_PYR

Rule k_bm_PYR is an assignment rule for parameter k_bm_PYR:

$$k_bm_PYR = alphaGLC \cdot bm_GLC_PYR + alphaACT \cdot bm_ACT_PYR$$
 (10)

6.11 Rule SS_Me

Rule SS_Me is an assignment rule for parameter SS_Me:

$$SS_Me = alphaGLC \cdot 9.99714 \cdot 10^{-4} + alphaACT \cdot 0.003399346$$
 (11)

6.12 Rule SS_Ppc

Rule SS_Ppc is an assignment rule for parameter SS_Ppc:

$$SS_Ppc = alphaGLC \cdot 9.99714 \cdot 10^{-4} + alphaACT \cdot 2.79893 \cdot 10^{-4}$$
 (12)

7 Events

This is an overview of two events. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

7.1 Event event_0

Name first shift

Trigger condition

$$time \ge 3600 \cdot shift1 \tag{13}$$

Assignments

$$GLC = GLC_{-1}$$
 (14)

$$ACT = ACT_{-1}$$
 (15)

$$[BM] = BM_{-1} \tag{16}$$

7.2 Event event_1

Name second shift

Trigger condition

$$time \ge 3600 \cdot shift2 \tag{17}$$

Assignments

$$GLC = GLC_2$$
 (18)

$$ACT = ACT_2 \tag{19}$$

$$[BM] = BM_2$$
 (20)

8 Reactions

This model contains 109 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	bm_ACoA	bm_ACoA	$ACoA \xrightarrow{ACT, GLC} \emptyset$	_
2	bm_AKG	bm_AKG	$AKG \xrightarrow{ACT, GLC} \emptyset$	
3	bm_G6P	bm_G6P	$G6P \xrightarrow{ACT, GLC} \emptyset$	
4	bm_OAA	bm_OAA	$OAA \xrightarrow{ACT, GLC} \emptyset$	
5	bm_PEP	bm_PEP	$\operatorname{PEP} \xrightarrow{\operatorname{ACT}, \operatorname{GLC}} \emptyset$	
6	bm_PG3	bm_PG3	$PG3 \xrightarrow{ACT, GLC} \emptyset$	
7	bm_PYR	bm_PYR	$\operatorname{PYR} \xrightarrow{\operatorname{ACT}, \operatorname{GLC}} \emptyset$	
8	pts_r1	pts_r1	$PEP + EIIA \Longrightarrow PYR + EIIA_P$	
9	pts_r4	pts_r4	$EIIA_P \xrightarrow{EIICB, GLC} G6P + EIIA$	
10	e_AceK_Ki	e_AceK_Ki	Icd AKG, AceK, GLX, ICT, OAA, PEP, PG3, PYR	Icd_P
11	e_AceK_Ph	e_AceK_Ph	$Icd_{P} \xrightarrow{AKG, AceK, OAA, PEP, PG3, PYR} Icd$	
12	tf_Cra	tf_Cra	Cra FBP ← CraFBP	
13	tf_Crp	tf_Crp	$Crp \stackrel{cAMP}{\longleftarrow} CrpcAMP$	
14	tf_PdhR	tf_PdhR	$PdhR \rightleftharpoons PdhRPYR$	
15	e_AceA	e_AceA	$ICT \xrightarrow{AceA, PEP, PG3} AKG + GLX$	
16	e_AceB	e_AceB	$ACoA + GLX \xrightarrow{AceB} MAL$	

N₀	Id	Name	Reaction Equation SBO
17	e_Acoa2act	e_Acoa2act	ACoA $\xrightarrow{\text{Acoa2act, PYR}} \emptyset$
18	e_Acs	e_Acs	$\emptyset \xrightarrow{ACT, Acs} ACoA$
19	e_Akg2mal	e_Akg2mal	$AKG \xrightarrow{Akg2mal} MAL$
20	e_CAMPdegr	e_CAMPdegr	$\operatorname{cAMP} \xrightarrow{\operatorname{CAMPdegr}} \emptyset$
21	e_Cya	e_Cya	$\emptyset \xrightarrow{\text{Cya, EIIA_P}} \text{cAMP}$
22	e_Emp	e_Emp	$0.5 \text{FBP} \xrightarrow{\text{Emp}} \text{PG3}$
23	e_Eno	e_Eno	$PG3 \stackrel{Eno}{=} PEP$
24	e_Fdp	e_Fdp	$FBP \xrightarrow{Fdp, PEP} G6P$
25	e_GltA	e_GltA	$ACoA + OAA \xrightarrow{AKG, GltA} ICT$
26	$e_{-}Icd$	e_Icd	$ICT \xrightarrow{Icd, PEP} AKG$
27	e_{Mdh}	e_Mdh	$MAL \xrightarrow{Mdh} OAA$
28	e_Me	e_Me	$MAL \xrightarrow{ACoA, Me, cAMP} PYR$
29	e_PckA	e_PckA	$OAA \xrightarrow{PckA} PEP$
30	e_Pdh	e_Pdh	$PYR \xrightarrow{GLX, Pdh} ACoA$
31	e_PfkA	e_PfkA	$G6P \xrightarrow{PEP, PfkA} FBP$
32	e_Ppc	e_Ppc	$PEP \xrightarrow{FBP, Ppc} OAA$
33	e_PpsA	e_PpsA	$PYR \xrightarrow{PpsA} PEP$
34	e_PykF	e_PykF	$PEP \xrightarrow{FBP, PykF} PYR$
35	${\sf g}_{\sf -aceA}$	g_aceA	\emptyset ACT, Cra, CrpcAMP, GLC, GLX, IclR, PYR \rightarrow AceA
36	g_aceB	g_aceB	$\emptyset \xrightarrow{ACT, Cra, CrpcAMP, GLC, GLX, IclR, PYR} AceB$

18	No	Id	Name	Reaction Equation	SBO
	37	g_aceK	g_aceK	\emptyset ACT, Cra, CrpcAMP, GLC, GLX, IclR, PYR Ac	еK
	38	g_acoa2act	g_acoa2act	$\emptyset \longrightarrow Acoa2act$	
	39	g_acs	g_acs	$\emptyset \xrightarrow{\text{ACT, CrpcAMP, GLC}} \text{Acs}$	
	40	g_akg2mal	g_akg2mal	$\emptyset \xrightarrow{\text{ACT, CrpcAMP, GLC}} \text{Akg2mal}$	
	41	${ t g}_{ t c}{ t AMPdegr}$	g_cAMPdegr	$\emptyset \longrightarrow CAMPdegr$	
	42	$g_{-}cra$	g_cra	$\emptyset \longrightarrow Cra$	
	43	$g_{-}crp$	g_crp	$\emptyset \longrightarrow Crp$	
	44	$g_{-}cya$	g_cya	$\emptyset \longrightarrow Cya$	
Proc	45	gemp	$g_{-}emp$	$\emptyset \xrightarrow{ACT, Cra, CrpcAMP, GLC} Emp$	
Produced by SBML2/ETEX	46	g_eno	g_eno	$\emptyset \xrightarrow{\text{ACT, Cra, GLC}} \text{Eno}$	
d by	47	gfdp	g_fdp	$\emptyset \xrightarrow{\text{ACT, Cra, GLC}} \text{Fdp}$	
88	48	g_gltA	$g_{-}gltA$	$\emptyset \xrightarrow{ACT, CrpcAMP, GLC} GltA$	
\[\sqrt{\sq}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}\sqrt{\sqrt{\sqrt{\sq}}}}}}}\signtimes\sqnt{\sqrt{\sq}}}}}}\signtiqses\sqnt{\sqrt{\sq}}}}}}\signtimes\sqnt{\sqnt{\sq}}}}}}\signtimes\sqnt{\sqrt{\sq}\sqnt{\sqrt{\sqrt{\sq}}\eqsint{\sqrt{\sqrt{\sqrt{\sqrt{\sq}\sq}}}}}\sqit{\sqrt{\sqrt{\sqrt{\sq}}}}}}}\signtimes\s	49	$g_{ extsf{-}}icd$	g_icd	$\emptyset \xrightarrow{\text{ACT, Cra, GLC}} \text{Icd}$	
Ę	50	${\sf g_iclr}$	g_iclr	$\emptyset \longrightarrow IclR$	
	51	g_mdh	g_mdh	$\emptyset \xrightarrow{\text{ACT, CrpcAMP, GLC}} \text{Mdh}$	
	52	g_me	g_me	$\emptyset \xrightarrow{\text{ACT, GLC}} \text{Me}$	
	53	$g_{-}pckA$	g_pckA	$\emptyset \xrightarrow{ACT, Cra, GLC} PckA$	
	54	g_pdh	g_pdh	$\emptyset \xrightarrow{ACT, GLC, PdhR} Pdh$	
		g_pdhr	g_pdhr	$\emptyset \longrightarrow PdhR$	
	56	g_pfkA	g_pfkA	$\emptyset \xrightarrow{ACT, Cra, GLC} PfkA$	
	57	g_ppc	$g_{-}ppc$	$\emptyset \xrightarrow{\text{ACT, GLC}} \text{Ppc}$	
	58	${\tt g_ppsA}$	$g_{-}ppsA$	$\emptyset \xrightarrow{ACT, Cra, GLC} PpsA$	

N⁰	Id	Name	Reaction Equation	SBO
59	g_pykF	g_pykF	$\emptyset \xrightarrow{ACT, Cra, GLC} PykF$	
60	g_EIIA	g_EIIA	$\emptyset \longrightarrow EIIA$	
61	g_EIICB	g_EIICB	$\emptyset \longrightarrow EIICB$	
62	d_AceA	d_AceA	$AceA \xrightarrow{ACT, GLC} \emptyset$	
63	d_AceB	d_AceB	$AceB \xrightarrow{ACT, GLC} \emptyset$	
64	d_AceK	d_AceK	$AceK \xrightarrow{ACT, GLC} \emptyset$	
65	d_Acoa2act	d_Acoa2act	Acoa2act $\longrightarrow \emptyset$	
66	d_Acs	d_Acs	$\operatorname{Acs} \xrightarrow{\operatorname{ACT}, \operatorname{GLC}} \emptyset$	
67	d_Akg2mal	d_Akg2mal	Akg2mal $\xrightarrow{\text{ACT, GLC}} \emptyset$	
68	${ t d}_{ t CAMPdegr}$	d_CAMPdegr	$CAMPdegr \longrightarrow \emptyset$	
69	d_Cra	d_Cra	$\operatorname{Cra} \longrightarrow \emptyset$	
70	$d_{-}CraFBP$	d_CraFBP	$CraFBP \longrightarrow \emptyset$	
71	$ exttt{d_Crp}$	d_Crp	$\operatorname{Crp} \longrightarrow \emptyset$	
72	${ t d_CrpcAMP}$	d_CrpcAMP	$CrpcAMP \longrightarrow \emptyset$	
73	$\mathtt{d}_{\mathtt{L}}\mathtt{Cya}$	d_Cya	$Cya \longrightarrow \emptyset$	
74	d_Emp	d.Emp	$\operatorname{Emp} \xrightarrow{\operatorname{ACT}, \operatorname{GLC}} \emptyset$	
75	d_Eno	d_Eno	Eno $\xrightarrow{\text{ACT, GLC}} \emptyset$	
76	d_Fdp	d_Fdp	$\operatorname{Fdp} \xrightarrow{\operatorname{ACT}, \operatorname{GLC}} \emptyset$	
77	${\tt d_GltA}$	d_GltA	GltA $\xrightarrow{\text{ACT, GLC}} \emptyset$	
78	$d_{-}Icd$	d_Icd	$\operatorname{Icd} \xrightarrow{\operatorname{ACT}, \operatorname{GLC}} \emptyset$	
79	d_Icd_P	d_Icd_P	$\operatorname{Icd_P} \xrightarrow{\operatorname{ACT}, \operatorname{GLC}} \emptyset$	
80	d_IclR	d_IcIR	$IclR \longrightarrow \emptyset$	
81	d_Mdh	d_Mdh	$Mdh \xrightarrow{ACT, GLC} \emptyset$	

No	Id	Name	Reaction Equation	SBO
82	d_Me	d_Me	$Me \xrightarrow{ACT, GLC} \emptyset$	
83	d_PckA	d_PckA	$\operatorname{PckA} \xrightarrow{\operatorname{ACT}, \operatorname{GLC}} \emptyset$	
84	$d_{-}Pdh$	d_Pdh	$Pdh \xrightarrow{ACT, GLC} \emptyset$	
85	d_PdhR	d_PdhR	$PdhR \longrightarrow \emptyset$	
86	$d_PdhRPYR$	d_PdhRPYR	$PdhRPYR \longrightarrow \emptyset$	
87	d_PfkA	d_PfkA	PfkA $\xrightarrow{ACT, GLC} \emptyset$	
88	d_Ppc	d_Ppc	$\operatorname{Ppc} \xrightarrow{\operatorname{ACT}, \operatorname{GLC}} \emptyset$	
89	d_PpsA	d_PpsA	$\operatorname{PpsA} \xrightarrow{\operatorname{ACT}, \operatorname{GLC}} \emptyset$	
90	d_PykF	d_PykF	$PykF \xrightarrow{ACT, GLC} \emptyset$	
91	d_EIIA	d_EIIA	$EIIA \longrightarrow \emptyset$	
92	d_EIIA_P	d_EIIA_P	$EIIA_P \longrightarrow \emptyset$	
93	d_EIICB	d_EIICB	$EIICB \longrightarrow \emptyset$	
94	d_ACoA	d_ACoA	$ACoA \xrightarrow{ACT, GLC} \emptyset$	
95	d_AKG	d_AKG	$AKG \xrightarrow{ACT, GLC} \emptyset$	
96	d_cAMP	d_cAMP	$cAMP \xrightarrow{ACT, GLC} \emptyset$	
97	d_FBP	d_FBP	$FBP \xrightarrow{ACT, GLC} \emptyset$	
98	d_G6P	d_G6P	$G6P \xrightarrow{ACT, GLC} \emptyset$	
99	$d_{-}GLX$	d_GLX	$GLX \xrightarrow{ACT, GLC} \emptyset$	
100	$d_{-}ICT$	d_ICT	$ICT \xrightarrow{ACT, GLC} \emptyset$	
101	d_MAL	d_MAL	$MAL \xrightarrow{ACT, GLC} \emptyset$	
102	d_OAA	$d_{-}OAA$	$OAA \xrightarrow{ACT, GLC} \emptyset$	
103	d_PEP	d_PEP	$\operatorname{PEP} \xrightarrow{\operatorname{ACT}, \operatorname{GLC}} \emptyset$	

N⁰	Id	Name	Reaction Equation	SBO
104	d_PG3	d_PG3	$PG3 \xrightarrow{ACT, GLC} \emptyset$	
105	d_PYR	d_PYR	$\operatorname{PYR} \xrightarrow{\operatorname{ACT}, \operatorname{GLC}} \emptyset$	
106	${\tt env_growth}$	env_growth	$\emptyset \xrightarrow{ACT, GLC} BM$	
107	${\tt env_GLCup}$	env_GLCup	GLC $\xrightarrow{\text{BM, EIIA_P, EIICB}} \emptyset$	
108	${\tt env_ACTup}$	env_ACTup	$ACT \xrightarrow{Acs, BM} \emptyset$	
109	${\tt env_ACTex}$	env_ACTex	$\emptyset \xrightarrow{ACoA, Acoa2act, BM, PYR} ACT$	

8.1 Reaction bm_ACoA

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name bm_ACoA

Reaction equation

$$ACoA \xrightarrow{ACT, GLC} \emptyset$$
 (21)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
ACoA	ACoA	

Modifiers

Table 7: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
GLC	GLC	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = k_b m_A CoA \cdot ACoA$$
 (22)

8.2 Reaction bm_AKG

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name bm_AKG

Reaction equation

$$AKG \xrightarrow{ACT, GLC} \emptyset$$
 (23)

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
AKG	AKG	

Modifiers

Table 9: Properties of each modifier.

Id	Name	SBO
	ACT GLC	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = k_b m_A KG \cdot AKG \tag{24}$$

8.3 Reaction bm_G6P

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name bm_G6P

Reaction equation

$$G6P \xrightarrow{ACT, GLC} \emptyset$$
 (25)

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
G6P	G6P	

Modifiers

Table 11: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
GLC	GLC	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = k_b m_G GP \cdot GGP \tag{26}$$

8.4 Reaction bm_OAA

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name bm_OAA

Reaction equation

$$OAA \xrightarrow{ACT, GLC} \emptyset$$
 (27)

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
OAA	OAA	

Modifiers

Table 13: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
GLC	GLC	

Kinetic Law

$$v_4 = k_b m_O A A \cdot O A A$$
 (28)

8.5 Reaction bm_PEP

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name bm_PEP

Reaction equation

$$PEP \xrightarrow{ACT, GLC} \emptyset$$
 (29)

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
PEP	PEP	

Modifiers

Table 15: Properties of each modifier.

vame	SBO
	ACT GLC

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{k_bm_PEP} \cdot \text{PEP}$$
 (30)

8.6 Reaction bm_PG3

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name bm_PG3

Reaction equation

$$PG3 \xrightarrow{ACT, GLC} \emptyset$$
 (31)

Reactant

Table 16: Properties of each reactant.

Id	Name	SBO
PG3	PG3	

Modifiers

Table 17: Properties of each modifier.

Id	Name	SBO
	ACT GLC	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{k_bm_PG3} \cdot \text{PG3} \tag{32}$$

8.7 Reaction bm_PYR

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name bm_PYR

Reaction equation

$$PYR \xrightarrow{ACT, GLC} \emptyset$$
 (33)

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
PYR	PYR	

Modifiers

Table 19: Properties of each modifier.

Id	Name	SBO
	ACT GLC	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = k_b m_P Y R \cdot P Y R \tag{34}$$

8.8 Reaction pts_r1

This is a reversible reaction of two reactants forming two products.

Name pts_r1

Reaction equation

$$PEP + EIIA \Longrightarrow PYR + EIIA_P \tag{35}$$

Reactants

Table 20: Properties of each reactant.

Id	Name	SBO
PEP	PEP	
EIIA	EIIA	

Products

Table 21: Properties of each product.

Id	Name	SBO
PYR	PYR	
$EIIA_P$	EIIA_P	

Kinetic Law

$$v_8 = pts_k 1 \cdot PEP \cdot EIIA - pts_k m1 \cdot PYR \cdot EIIA_P$$
 (36)

8.9 Reaction pts_r4

This is an irreversible reaction of one reactant forming two products influenced by two modifiers.

Name pts_r4

Reaction equation

$$EIIA_P \xrightarrow{EIICB, GLC} G6P + EIIA$$
 (37)

Reactant

Table 22: Properties of each reactant.

Id	Name	SBO
EIIA_P	EIIA_P	

Modifiers

Table 23: Properties of each modifier.

Id	Name	SBO
EIICB		
GLC	GLC	

Products

Table 24: Properties of each product.

Id	Name	SBO
G6P	G6P	
EIIA	EIIA	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \frac{\text{pts_k4} \cdot \text{EIICB} \cdot \text{EIIA_P} \cdot [\text{GLC}]}{(\text{pts_KEIIA} + \text{EIIA_P}) \cdot (\text{pts_Kglc} + [\text{GLC}])}$$
(38)

8.10 Reaction e_AceK_Ki

This is an irreversible reaction of one reactant forming one product influenced by eight modifiers.

Name e_AceK_Ki

Reaction equation

$$Icd \xrightarrow{AKG, AceK, GLX, ICT, OAA, PEP, PG3, PYR} Icd_P$$
 (39)

Reactant

Table 25: Properties of each reactant.

Id	Name	SBO
Icd	Icd	

Modifiers

Table 26: Properties of each modifier.

Id	Name	SBO
AKG	AKG	
AceK	AceK	
GLX	GLX	
ICT	ICT	
OAA	OAA	
PEP	PEP	
PG3	PG3	
PYR	PYR	

Product

Table 27: Properties of each product.

Id	Name	SBO
Icd_P	Icd_P	

Kinetic Law

$$\nu_{10} = \frac{\frac{AceK \cdot e_AceK_kcat_ki\cdot Icd}{e_AceK_Kicd} \cdot \left(1 + \frac{Icd}{e_AceK_Kicd}\right)^{e_AceK_n-1}}{\left(1 + \frac{Icd}{e_AceK_Kicd}\right)^{e_AceK_n} + e_AceK_L \cdot \left(1 + \frac{ICT}{e_AceK_Kict} + \frac{GLX}{e_AceK_Kglx} + \frac{OAA}{e_AceK_Koaa} + \frac{AKG}{e_AceK_Kakg} + \frac{PEP}{e_AceK_Kpep} + \frac{AKG}{e_AceK_Kpep} + \frac{AKG}{e_AceK_Kglx} + \frac{AKG}{e_AceK_Kglx$$

8.11 Reaction e_AceK_Ph

This is an irreversible reaction of one reactant forming one product influenced by six modifiers.

Name e_AceK_Ph

Reaction equation

$$Icd_P \xrightarrow{AKG, AceK, OAA, PEP, PG3, PYR} Icd$$
 (41)

Reactant

Table 28: Properties of each reactant.

Id	Name	SBO
${\tt Icd_P}$	Icd_P	

Modifiers

Table 29: Properties of each modifier.

Id	Name	SBO
AKG	AKG	
AceK	AceK	
OAA	OAA	
PEP	PEP	
PG3	PG3	
PYR	PYR	

Product

Table 30: Properties of each product.

Id	Name	SBO
Icd	Icd	

Kinetic Law

$$v_{11} = \frac{\frac{\text{AceK} \cdot \text{e_AceK_kcat_ph\cdot Icd_P}}{\text{e_AceK_Kicd_P}} \cdot \left(1 + \frac{\text{Icd_P}}{\text{e_AceK_Kicd_P}}\right)^{\text{e_AceK_n} - 1}}{\left(1 + \frac{\text{Icd_P}}{\text{e_AceK_Kicd_P}}\right)^{\text{e_AceK_n}}} + \frac{\text{e_AceK_K}}{\left(1 + \frac{\text{OAA}}{\text{e_AceK_Koaa}} + \frac{\text{AKG}}{\text{e_AceK_Kakg}} + \frac{\text{PEP}}{\text{e_AceK_Kpep}} + \frac{\text{PG3}}{\text{e_AceK_Kpyr}} + \frac{\text{PYR}}{\text{e_AceK_Kpyr}}\right)^{\text{e_AceK_Kpyr}}}\right)^{\text{e_AceK_N}}}$$

$$(42)$$

8.12 Reaction tf_Cra

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name tf_Cra

Reaction equation

$$\operatorname{Cra} \stackrel{\operatorname{FBP}}{\rightleftharpoons} \operatorname{CraFBP}$$
 (43)

Reactant

Table 31: Properties of each reactant.

Id	Name	SBO
Cra	Cra	

Modifier

Table 32: Properties of each modifier.

Id	Name	SBO
FBP	FBP	

Product

Table 33: Properties of each product.

Id	Name	SBO
CraFBP	CraFBP	

Kinetic Law

$$\nu_{12} = tf_Cra_scale \cdot \left(\frac{(Cra + CraFBP) \cdot FBP^{tf_Cra_n}}{FBP^{tf_Cra_n} + tf_Cra_kfbp^{tf_Cra_n}} - CraFBP \right) \tag{44}$$

8.13 Reaction tf_Crp

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name tf_Crp

Reaction equation

$$Crp \stackrel{cAMP}{\longleftarrow} CrpcAMP \tag{45}$$

Reactant

Table 34: Properties of each reactant.

Id	Name	SBO
Crp	Crp	

Modifier

Table 35: Properties of each modifier.

Id	Name	SBO
cAMP	cAMP	

Product

Table 36: Properties of each product.

Id	Name	SBO
CrpcAMP	CrpcAMP	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = tf_Crp_scale \cdot \left(\frac{(Crp + CrpcAMP) \cdot cAMP^{tf_Crp_n}}{cAMP^{tf_Crp_n} + tf_Crp_kcamp^{tf_Crp_n}} - CrpcAMP \right)$$
(46)

8.14 Reaction tf_PdhR

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name tf_PdhR

Reaction equation

$$PdhR \rightleftharpoons PdhRPYR \tag{47}$$

Reactant

Table 37: Properties of each reactant.

Id	Name	SBO
PdhR	PdhR	

Modifier

Table 38: Properties of each modifier.

Id	Name	SBO
PYR	PYR	

Product

Table 39: Properties of each product.

Id	Name	SBO
PdhRPYR	PdhRPYR	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = tf_PdhR_scale \cdot \left(\frac{(PdhR + PdhRPYR) \cdot PYR^{tf_PdhR_n}}{PYR^{tf_PdhR_n} + tf_PdhR_kpyr^{tf_PdhR_n}} - PdhRPYR\right)$$
(48)

8.15 Reaction e_AceA

This is an irreversible reaction of one reactant forming two products influenced by three modifiers.

Name e_AceA

Reaction equation

$$ICT \xrightarrow{AceA, PEP, PG3} AKG + GLX$$
 (49)

Reactant

Table 40: Properties of each reactant.

Id	Name	SBO
ICT	ICT	

Modifiers

Table 41: Properties of each modifier.

Id	Name	SBO
AceA	AceA	
PEP	PEP	
PG3	PG3	

Products

Table 42: Properties of each product.

Id	Name	SBO
	AKG GLX	
<u> </u>	GLZY	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{15} = \frac{\frac{AceA \cdot e_AceA_kcat \cdot ICT}{e_AceA_Kict} \cdot \left(1 + \frac{ICT}{e_AceA_Kict}\right)^{e_AceA_n - 1}}{\left(1 + \frac{ICT}{e_AceA_Kict}\right)^{e_AceA_n} + e_AceA_L \cdot \left(1 + \frac{PEP}{e_AceA_Kpep} + \frac{PG3}{e_AceA_Kpg3} + \frac{AKG}{e_AceA_Kakg}\right)^{e_AceA_n}}$$

8.16 Reaction e_AceB

This is an irreversible reaction of two reactants forming one product influenced by one modifier.

Name e_AceB

Reaction equation

$$ACoA + GLX \xrightarrow{AceB} MAL$$
 (51)

Reactants

Table 43: Properties of each reactant.

Id	Name	SBO
ACoA GLX	ACoA GLX	

Modifier

Table 44: Properties of each modifier.

Id	Name	SBO
AceB	AceB	

Product

Table 45: Properties of each product.

Id	Name	SBO
MAL	MAL	

Kinetic Law

Derived unit contains undeclared units

$$\begin{aligned} & \nu_{16} \\ &= \frac{AceB \cdot e_AceB_kcat \cdot GLX \cdot ACoA}{e_AceB_Kglxacoa \cdot e_AceB_Kacoa + e_AceB_Kacoa \cdot GLX + e_AceB_Kglx \cdot ACoA + GLX \cdot ACoA} \end{aligned}$$

8.17 Reaction e_Acoa2act

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name e_Acoa2act

Reaction equation

$$ACoA \xrightarrow{Acoa2act, PYR} \emptyset$$
 (53)

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
ACoA	ACoA	

Modifiers

Table 47: Properties of each modifier.

Id	Name	SBO
Acoa2act PYR	Acoa2act PYR	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \frac{\frac{\text{Acoa2act_k-Acoa2act_kcat-ACoA}}{\text{e_Acoa2act_Kacoa}} \cdot \left(1 + \frac{\text{ACoA}}{\text{e_Acoa2act_Kacoa}}\right)^{\text{e_Acoa2act_n} - 1}}{\left(1 + \frac{\text{ACoA}}{\text{e_Acoa2act_Kacoa}}\right)^{\text{e_Acoa2act_n}}} + \frac{\text{e_Acoa2act_L}}{\left(1 + \frac{\text{PYR}}{\text{e_Acoa2act_Kpyr}}\right)^{\text{e_Acoa2act_n}}}}$$
(54)

8.18 Reaction e_Acs

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name e_Acs

Reaction equation

$$\emptyset \xrightarrow{ACT, Acs} ACoA \tag{55}$$

Modifiers

Table 48: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
Acs	Acs	

Product

Table 49: Properties of each product.

Id	Name	SBO
ACoA	ACoA	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \frac{\text{Acs} \cdot \text{e_Acs_kcat} \cdot [\text{ACT}]}{[\text{ACT}] + \text{e_Acs_Kact}}$$
 (56)

8.19 Reaction e_Akg2mal

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name e_Akg2mal

Reaction equation

$$AKG \xrightarrow{Akg2mal} MAL$$
 (57)

Reactant

Table 50: Properties of each reactant.

Id	Name	SBO
AKG	AKG	

Modifier

Table 51: Properties of each modifier.

Id	Name	SBO
Akg2mal	Akg2mal	

Product

Table 52: Properties of each product.

Id	Name	SBO
MAL	MAL	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \frac{Akg2mal \cdot e_Akg2mal_kcat \cdot AKG}{AKG + e_Akg2mal_Kakg}$$
 (58)

8.20 Reaction e_CAMPdegr

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name e_CAMPdegr

Reaction equation

$$cAMP \xrightarrow{CAMPdegr} \emptyset$$
 (59)

Reactant

Table 53: Properties of each reactant.

Id	Name	SBO
cAMP	cAMP	

Modifier

Table 54: Properties of each modifier.

Id	Name	SBO
CAMPdegr	CAMPdegr	

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \frac{e_CAMPdegr_kcat \cdot CAMPdegr \cdot cAMP}{cAMP + e_CAMPdegr_KcAMP}$$
(60)

8.21 Reaction e_Cya

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name e_Cya

Reaction equation

$$\emptyset \xrightarrow{\text{Cya, EIIA.P}} \text{cAMP} \tag{61}$$

Modifiers

Table 55: Properties of each modifier.

Id	Name	SBO
Cya	Cya	
EIIA_P	EIIA_P	

Product

Table 56: Properties of each product.

Id	Name	SBO
cAMP	cAMP	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \frac{e_{\text{-}}Cya_{\text{-}}kcat \cdot Cya \cdot EIIA_{\text{-}}P}{EIIA_{\text{-}}P + e_{\text{-}}Cya_{\text{-}}KEIIA}$$
(62)

8.22 Reaction e_Emp

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name e_Emp

Reaction equation

$$0.5 \text{FBP} \stackrel{\text{Emp}}{\rightleftharpoons} PG3 \tag{63}$$

Table 57: Properties of each reactant.

Id	Name	SBO
FBP	FBP	

Table 58: Properties of each modifier.

Id	Name	SBO
Emp	Emp	

Product

Table 59: Properties of each product.

Id	Name	SBO
PG3	PG3	

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \frac{\frac{\text{Emp-e_Emp_kcat_f·FBP}}{\text{e_Emp_Kfbp}} - \frac{\text{Emp-e_Emp_kcat_r·PG3}}{\text{e_Emp_Kpg3}}}{1 + \frac{\text{FBP}}{\text{e_Emp_Kfbp}} + \frac{\text{PG3}}{\text{e_Emp_Kpg3}}}$$
(64)

8.23 Reaction e_Eno

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name e_Eno

Reaction equation

$$PG3 \stackrel{Eno}{\rightleftharpoons} PEP \tag{65}$$

Table 60: Properties of each reactant.

Id	Name	SBO
PG3	PG3	

Table 61: Properties of each modifier.

Id	Name	SBO
Eno	Eno	

Product

Table 62: Properties of each product.

Id	Name	SBO
PEP	PEP	

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \frac{\frac{\text{Eno-e_Eno_kcatr-PE3}}{\text{e_Eno_Kpg3}} - \frac{\text{Eno-e_Eno_kcatr-PEP}}{\text{e_Eno_Kpep}}}{1 + \frac{\text{PG3}}{\text{e_Eno_Kpg3}} + \frac{\text{PEP}}{\text{e_Eno_Kpep}}}$$
(66)

8.24 Reaction e_Fdp

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name e_Fdp

Reaction equation

$$FBP \xrightarrow{Fdp, PEP} G6P \tag{67}$$

Table 63: Properties of each reactant.

Id	Name	SBO
FBP	FBP	

Table 64: Properties of each modifier.

Id	Name	SBO
Fdp PEP	Fdp PEP	

Product

Table 65: Properties of each product.

Id	Name	SBO
G6P	G6P	

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \frac{\frac{\text{Fdp-e_Fdp_kcat·FBP}}{\text{e_Fdp_Kfbp}} \cdot \left(1 + \frac{\text{FBP}}{\text{e_Fdp_Kfbp}}\right)^{\text{e_Fdp_n} - 1}}{\left(1 + \frac{\text{FBP}}{\text{e_Fdp_Kfbp}}\right)^{\text{e_Fdp_n}}} + \frac{\text{e_Fdp_L}}{\left(1 + \frac{\text{PEP}}{\text{e_Fdp_Kfpep}}\right)^{\text{e_Fdp.n}}}$$

$$(68)$$

8.25 Reaction e_GltA

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name e_GltA

Reaction equation

$$ACoA + OAA \xrightarrow{AKG, GltA} ICT$$
 (69)

Table 66: Properties of each reactant.

Id	Name	SBO
ACoA OAA	ACoA OAA	

Table 67: Properties of each modifier.

Id	Name	SBO
AKG	AKG	
${\tt GltA}$	GltA	

Product

Table 68: Properties of each product.

Id	Name	SBO
ICT	ICT	

Kinetic Law

Derived unit contains undeclared units

$$= \frac{\text{GltA} \cdot \text{e_GltA_kcat} \cdot \text{OAA} \cdot \text{ACoA}}{\left(1 + \frac{\text{AKG}}{\text{e_GltA_Kakg}}\right) \cdot \text{e_GltA_Koaaacoa} \cdot \text{e_GltA_Kacoa} + \text{e_GltA_Kacoa} \cdot \text{OAA} + \left(1 + \frac{\text{AKG}}{\text{e_GltA_Kakg}}\right) \cdot \text{e_GltA_Koaaacoa}}$$

8.26 Reaction e_Icd

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name e_Icd

Reaction equation

$$ICT \xrightarrow{Icd, PEP} AKG \tag{71}$$

Table 69: Properties of each reactant.

Id	Name	SBO
ICT	ICT	

Table 70: Properties of each modifier.

Id	Name	SBO
Icd	Icd	
PEP	PEP	

Product

Table 71: Properties of each product.

Id	Name	SBO
AKG	AKG	

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \frac{\frac{\text{Icd} \cdot e_Icd_kcat \cdot ICT}{e_Icd_Kict} \cdot \left(1 + \frac{ICT}{e_Icd_Kict}\right)^{e_Icd_n - 1}}{\left(1 + \frac{ICT}{e_Icd_Kict}\right)^{e_Icd_n} + e_Icd_L \cdot \left(1 + \frac{PEP}{e_Icd_Kpep}\right)^{e_Icd_n}}$$
(72)

8.27 Reaction e_Mdh

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name e_Mdh

Reaction equation

$$MAL \xrightarrow{Mdh} OAA \tag{73}$$

Table 72: Properties of each reactant.

Id	Name	SBO
MAL	MAL	

Table 73: Properties of each modifier.

Id	Name	SBO
Mdh	Mdh	

Product

Table 74: Properties of each product.

Id	Name	SBO
OAA	OAA	

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = \frac{\text{Mdh} \cdot \text{e}_{\text{-}}\text{Mdh}_{\text{-}}\text{kcat} \cdot \text{MAL}^{\text{e}_{\text{-}}\text{Mdh}_{\text{-}}\text{n}}}{\text{MAL}^{\text{e}_{\text{-}}\text{Mdh}_{\text{-}}\text{n}} + \text{e}_{\text{-}}\text{Mdh}_{\text{-}}\text{Kmal}^{\text{e}_{\text{-}}\text{Mdh}_{\text{-}}\text{n}}}$$
(74)

8.28 Reaction e_Me

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name e_Me

Reaction equation

$$MAL \xrightarrow{ACoA, Me, cAMP} PYR$$
 (75)

Table 75: Properties of each reactant.

Id	Name	SBO
MAL	MAL	

Table 76: Properties of each modifier.

Id	Name	SBO
ACoA	ACoA	
Me	Me	
cAMP	cAMP	

Product

Table 77: Properties of each product.

Id	Name	SBO
PYR	PYR	

Kinetic Law

Derived unit contains undeclared units

$$v_{28} = \frac{\frac{\text{Me} \cdot \text{e_Me_kcat} \cdot \text{MAL}}{\text{e_Me_Kmal}} \cdot \left(1 + \frac{\text{MAL}}{\text{e_Me_Kmal}}\right)^{\text{e_Me_n} - 1}}{\left(1 + \frac{\text{MAL}}{\text{e_Me_Kmal}}\right)^{\text{e_Me_n}} + \text{e_Me_L} \cdot \left(1 + \frac{\text{ACoA}}{\text{e_Me_Kacoa}} + \frac{\text{cAMP}}{\text{e_Me_Kcamp}}\right)^{\text{e_Me_n}}}$$
(76)

8.29 Reaction e_PckA

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name e_PckA

Reaction equation

$$OAA \xrightarrow{PckA} PEP \tag{77}$$

Table 78: Properties of each reactant.

Id	Name	SBO
OAA	OAA	

Table 79: Properties of each modifier.

Id	Name	SBO
PckA	PckA	

Product

Table 80: Properties of each product.

Id	Name	SBO
PEP	PEP	

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \frac{\text{PckA} \cdot \text{e_PckA_kcat} \cdot \text{OAA}}{\text{OAA} + \text{e_PckA_Koaa} \cdot \left(1 + \frac{\text{PEP}}{\text{e_PckA_Kpep}}\right)}$$
(78)

8.30 Reaction e_Pdh

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name e_Pdh

Reaction equation

$$PYR \xrightarrow{GLX, Pdh} ACoA$$
 (79)

Table 81: Properties of each reactant.

Id	Name	SBO
PYR	PYR	

Table 82: Properties of each modifier.

Id	Name	SBO
GLX	GLX	
Pdh	Pdh	

Product

Table 83: Properties of each product.

Id	Name	SBO
ACoA	ACoA	

Kinetic Law

Derived unit contains undeclared units

$$v_{30} = \frac{\frac{\text{Pdh} \cdot e_Pdh_kcat \cdot PYR}{e_Pdh_Kpyr} \cdot \left(1 + \frac{PYR}{e_Pdh_Kpyr}\right)^{e_Pdh_n - 1}}{\left(1 + \frac{PYR}{e_Pdh_Kpyr}\right)^{e_Pdh_n}} + e_Pdh_L \cdot \left(1 + \frac{GLX}{e_Pdh_Kglx} + \frac{PYR}{e_Pdh_KpyrI}\right)^{e_Pdh_n}}$$
(80)

8.31 Reaction e_PfkA

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name e_PfkA

Reaction equation

$$G6P \xrightarrow{PEP, PfkA} FBP$$
 (81)

Table 84: Properties of each reactant.

Id	Name	SBO
G6P	G6P	

Table 85: Properties of each modifier.

Id	Name	SBO
PEP	PEP	
PfkA	PfkA	

Product

Table 86: Properties of each product.

Id	Name	SBO
FBP	FBP	

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = \frac{\frac{\text{PfkA} \cdot \text{e}.\text{PfkA}.\text{kcat} \cdot \text{G6P}}{\text{e}.\text{PfkA}.\text{Kg6p}} \cdot \left(1 + \frac{\text{G6P}}{\text{e}.\text{PfkA}.\text{Kg6p}}\right)^{\text{e}.\text{PfkA}.\text{n} - 1}}{\left(1 + \frac{\text{G6P}}{\text{e}.\text{PfkA}.\text{Kg6p}}\right)^{\text{e}.\text{PfkA}.\text{n}}} + \text{e}.\text{PfkA}.\text{L} \cdot \left(1 + \frac{\text{PEP}}{\text{e}.\text{PfkA}.\text{Kpep}}\right)^{\text{e}.\text{PfkA}.\text{n}}}$$
(82)

8.32 Reaction e_Ppc

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name e_Ppc

Reaction equation

$$PEP \xrightarrow{FBP, Ppc} OAA \tag{83}$$

Table 87: Properties of each reactant.

Id	Name	SBO
PEP	PEP	

Table 88: Properties of each modifier.

Id	Name	SBO
FBP	FBP	
Ppc	Ppc	

Product

Table 89: Properties of each product.

Id	Name	SBO
OAA	OAA	

Kinetic Law

Derived unit contains undeclared units

$$v_{32} = \frac{\frac{\text{Ppc-e_Ppc_kcat} \cdot \text{PEP}}{\text{e_Ppc_Kpep}} \cdot \left(1 + \frac{\text{PEP}}{\text{e_Ppc_Kpep}}\right)^{\text{e_Ppc_n} - 1}}{\left(1 + \frac{\text{PEP}}{\text{e_Ppc_Kpep}}\right)^{\text{e_Ppc_n}}} + \frac{\text{e_Ppc_L}}{\left(1 + \frac{\text{FBP}}{\text{e_Ppc_Kpep}}\right)^{\text{e_Ppc_n}}}$$
(84)

8.33 Reaction e_PpsA

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name e_PpsA

Reaction equation

$$PYR \xrightarrow{PpsA} PEP \tag{85}$$

Table 90: Properties of each reactant.

Id	Name	SBO
PYR	PYR	

Table 91: Properties of each modifier.

Id	Name	SBO
PpsA	PpsA	

Product

Table 92: Properties of each product.

Id	Name	SBO
PEP	PEP	

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = \frac{\frac{\text{PpsA} \cdot \text{e}_\text{PpsA}_\text{kcat} \cdot \text{PYR}}{\text{e}_\text{PpsA}_\text{Kpyr}} \cdot \left(1 + \frac{\text{PYR}}{\text{e}_\text{PpsA}_\text{Kpyr}}\right)^{\text{e}_\text{PpsA}_\text{n} - 1}}{\left(1 + \frac{\text{PYR}}{\text{e}_\text{PpsA}_\text{Kpyr}}\right)^{\text{e}_\text{PpsA}_\text{n}} + \text{e}_\text{PpsA}_\text{L} \cdot \left(1 + \frac{\text{PEP}}{\text{e}_\text{PpsA}_\text{Kpep}}\right)^{\text{e}_\text{PpsA}_\text{n}}}$$
(86)

8.34 Reaction e_PykF

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name e_PykF

Reaction equation

$$PEP \xrightarrow{FBP, PykF} PYR \tag{87}$$

Table 93: Properties of each reactant.

Id	Name	SBO
PEP	PEP	

Table 94: Properties of each modifier.

Id	Name	SBO
FBP	FBP	
PykF	PykF	

Product

Table 95: Properties of each product.

Id	Name	SBO
PYR	PYR	

Kinetic Law

Derived unit contains undeclared units

$$v_{34} = \frac{\frac{\text{PykF-e_PykF_kcat} \cdot \text{PEP}}{\text{e_PykF_Kpep}} \cdot \left(1 + \frac{\text{PEP}}{\text{e_PykF_Kpep}}\right)^{\text{e_PykF_n} - 1}}{\left(1 + \frac{\text{PEP}}{\text{e_PykF_Kpep}}\right)^{\text{e_PykF_n}}} + \frac{\text{e_PykF_L}}{\left(1 + \frac{\text{FBP}}{\text{e_PykF_Kfbn}}\right)^{\text{e_PykF_n}}}}$$
(88)

8.35 Reaction g_aceA

This is an irreversible reaction of no reactant forming one product influenced by seven modifiers.

Name g_aceA

Reaction equation

$$\emptyset \xrightarrow{ACT, Cra, CrpcAMP, GLC, GLX, IclR, PYR} AceA$$
(89)

Modifiers

Table 96: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
Cra	Cra	
${\tt CrpcAMP}$	CrpcAMP	
GLC	GLC	
GLX	GLX	
IclR	IclR	
PYR	PYR	

Product

Table 97: Properties of each product.

Id	Name	SBO
AceA	AceA	

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = bm_k_expr \cdot mu \cdot \left(\left(1 - \frac{Cra}{Cra + g_aceBAK_Kcra} \right) \cdot g_aceBAK_vcra_unbound \right. \\ \left. + \frac{Cra}{Cra + g_aceBAK_Kcra} \cdot g_aceBAK_vcra_bound \right. \\ \left. + \left(1 - \frac{CrpcAMP}{CrpcAMP + g_aceBAK_Kcrp} \right) \cdot g_aceBAK_vcrp_unbound \right. \\ \left. + \frac{CrpcAMP}{CrpcAMP + g_aceBAK_Kcrp} \cdot g_aceBAK_vcrp_bound + g_aceBAK_kcat_iclr \cdot IclR \cdot \left(1 - \frac{g_aceBAK_DNA}{g_aceBAK_KDNA} \cdot \left(1 + \frac{PYR}{g_aceBAK_KPprime} \right) \right. \\ \left. - \frac{\frac{g_aceBAK_DNA}{g_aceBAK_K} \cdot \left(1 + \frac{PYR}{g_aceBAK_KDNA} + \frac{PYR}{g_aceBAK_KDNA} + \frac{g_aceBAK_DNA}{g_aceBAK_KDNA} \right) \right) \right. \\ \left. - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{PYR}{g_aceBAK_KDNA} + \frac{g_aceBAK_DNA}{g_aceBAK_KDNA} \right) \right. \\ \left. - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{PYR}{g_aceBAK_KDNA} + \frac{g_aceBAK_DNA}{g_aceBAK_KDNA} \right) \right) \right. \\ \left. - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{PYR}{g_aceBAK_KDNA} \right) \right) \right. \\ \left. - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{PYR}{g_aceBAK_K} \right) \right) \right. \\ \left. - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \right) \right. \\ \left. - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{PYR}{g_aceBAK_K} \right) \right) \right. \\ \left. - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{PYR}{g_aceBAK_K} \right) \right. \\ \left. - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \right) \right. \\ \left. - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \right) \right. \\ \left. - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \right) \right. \\ \left. - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \right) \right. \\ \left. - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \right) \right. \\ \left. - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \right) \right. \\ \left. - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \right) \right. \\ \left. - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \right) \right. \\ \left. - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \right) \right. \\ \left. - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \right) \right. \\ \left. - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \right) \right. \\ \left. - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \right) \right. \\ \left. - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \right) \right. \\ \left. - \frac$$

8.36 Reaction g_aceB

This is an irreversible reaction of no reactant forming one product influenced by seven modifiers.

Name g_aceB

$$\emptyset$$
 ACT, Cra, CrpcAMP, GLC, GLX, IclR, PYR \rightarrow AceB (91)

Modifiers

Table 98: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
Cra	Cra	
${\tt CrpcAMP}$	CrpcAMP	
GLC	GLC	
GLX	GLX	
IclR	IclR	
PYR	PYR	

Product

Table 99: Properties of each product.

Id	Name	SBO
AceB	AceB	

Kinetic Law

Derived unit contains undeclared units

$$\begin{split} \nu_{36} &= g_aceBAK_aceBfactor \cdot bm_k_expr \cdot mu \cdot \left(\left(1 - \frac{Cra}{Cra + g_aceBAK_Kcra} \right) \right. \\ & \cdot g_aceBAK_vcra_unbound + \frac{Cra}{Cra + g_aceBAK_Kcra} \cdot g_aceBAK_vcra_bound \\ & + \left(1 - \frac{CrpcAMP}{CrpcAMP + g_aceBAK_Kcrp} \right) \cdot g_aceBAK_vcrp_unbound \\ & + \frac{CrpcAMP}{CrpcAMP + g_aceBAK_Kcrp} \cdot g_aceBAK_vcrp_bound + g_aceBAK_kcat_iclr \cdot IclR \cdot \left(1 - \frac{g_aceBAK_DNA}{g_aceBAK_KDNA} \cdot \left(1 + \frac{PYR}{g_aceBAK_KPprime} \right) \right. \\ & - \frac{\frac{g_aceBAK_DNA}{g_aceBAK_K} \cdot \left(1 + \frac{PYR}{g_aceBAK_KDNA} + \frac{g_aceBAK_DNA}{g_aceBAK_KDNA} \right) \\ & - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \right) + \frac{g_aceBAK_DNA}{g_aceBAK_KDNA} + \frac{PYR}{g_aceBAK_KPprime} \right) \\ & - \frac{\frac{GLX}{g_aceBAK_K} \cdot \left(1 + \frac{GLX}{g_aceBAK_K} \right) + \frac{g_aceBAK_DNA}{g_aceBAK_KDNA} + \frac{PYR}{g_aceBAK_KPprime} \\ & - \frac{g_aceBAK_DNA}{g_aceBAK_L} \cdot \frac{g_aceBAK_DNA}{g_aceBAK_KDNA} + \frac{g_aceBAK_DNA}{g_aceBAK_KPprime} \right) \end{aligned}$$

8.37 Reaction g_aceK

This is an irreversible reaction of no reactant forming one product influenced by seven modifiers.

Name g_aceK

Reaction equation

$$\emptyset \xrightarrow{\text{ACT, Cra, CrpcAMP, GLC, GLX, IclR, PYR}} \text{AceK}$$
 (93)

Modifiers

Table 100: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
Cra	Cra	
${\tt CrpcAMP}$	CrpcAMP	
GLC	GLC	
GLX	GLX	
IclR	IclR	
PYR	PYR	

Product

Table 101: Properties of each product.

Id	Name	SBO
AceK	AceK	

Kinetic Law

Derived unit contains undeclared units

$$\begin{split} v_{37} &= g_aceBAK_aceKfactor \cdot bm_k_expr \cdot mu \cdot \left(\left(1 - \frac{Cra}{Cra + g_aceBAK_Kcra} \right) \right. \\ & \cdot g_aceBAK_vcra_unbound + \frac{Cra}{Cra + g_aceBAK_Kcra} \cdot g_aceBAK_vcra_bound \\ & + \left(1 - \frac{CrpcAMP}{CrpcAMP + g_aceBAK_Kcrp} \right) \cdot g_aceBAK_vcrp_unbound \\ & + \frac{CrpcAMP}{CrpcAMP + g_aceBAK_Kcrp} \cdot g_aceBAK_vcrp_bound + g_aceBAK_kcat_iclr \cdot IclR \cdot \left(1 - \frac{g_aceBAK_DNA}{g_aceBAK_KDNA} \cdot \left(1 + \frac{PYR}{g_aceBAK_KPprime} \right) \\ & - \frac{\frac{g_aceBAK_DNA}{g_aceBAK_KDNA} \cdot \left(1 + \frac{PYR}{g_aceBAK_KPprime} \right)}{1 + \frac{g_aceBAK_KC}{g_aceBAK_KC}} + \frac{g_aceBAK_DNA}{g_aceBAK_KDNA} + \frac{PYR}{g_aceBAK_KDNA} + \frac{g_aceBAK_DNA}{g_aceBAK_KDNA} + \frac{g_aceBAK_DNA}{g_aceBAK_KPprime} \end{split}$$

8.38 Reaction g_acoa2act

This is an irreversible reaction of no reactant forming one product.

Name g_acoa2act

Reaction equation

$$\emptyset \longrightarrow Acoa2act$$
 (95)

Product

Table 102: Properties of each product.

Id	Name	SBO
Acoa2act	Acoa2act	

Kinetic Law

Derived unit not available

$$v_{38} = 0$$
 (96)

8.39 Reaction g_acs

This is an irreversible reaction of no reactant forming one product influenced by three modifiers.

Name g_acs

Reaction equation

$$\emptyset \xrightarrow{ACT, CrpcAMP, GLC} Acs$$
 (97)

Modifiers

Table 103: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
${\tt CrpcAMP}$	CrpcAMP	
GLC	GLC	

Product

Table 104: Properties of each product.

Id	Name	SBO
Acs	Acs	

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = bm_k = crpc + mu \cdot \left(\left(1 - \frac{CrpcAMP^{g_acs_n}}{CrpcAMP^{g_acs_n} + g_acs_Kcrp^{g_acs_n}} \right) \cdot g_acs_vcrp_unbound + \frac{CrpcAMP^{g_acs_n}}{CrpcAMP^{g_acs_n} + g_acs_Kcrp^{g_acs_n}} \cdot g_acs_vcrp_bound \right)$$

$$(98)$$

8.40 Reaction g_akg2mal

This is an irreversible reaction of no reactant forming one product influenced by three modifiers.

Name g_akg2mal

Reaction equation

$$\emptyset \xrightarrow{ACT, CrpcAMP, GLC} Akg2mal$$
 (99)

Modifiers

Table 105: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
${\tt CrpcAMP}$	CrpcAMP	
GLC	GLC	

Product

Table 106: Properties of each product.

Id	Name	SBO
Akg2mal	Akg2mal	

Kinetic Law

Derived unit contains undeclared units

$$\begin{split} v_{40} &= bm_k_expr \cdot mu \\ &\cdot \left(\left(1 - \frac{CrpcAMP^{g_akg2mal_n}}{CrpcAMP^{g_akg2mal_n} + g_akg2mal_Kcrp^{g_akg2mal_n}} \right) \cdot g_akg2mal_vcrp_unbound \\ &+ \frac{CrpcAMP^{g_akg2mal_n}}{CrpcAMP^{g_akg2mal_n} + g_akg2mal_Kcrp^{g_akg2mal_n}} \cdot g_akg2mal_vcrp_bound \right) \end{split}$$

8.41 Reaction g_cAMPdegr

This is an irreversible reaction of no reactant forming one product.

Name g_cAMPdegr

$$\emptyset \longrightarrow CAMPdegr$$
 (101)

Product

Table 107: Properties of each product.

Id	Name	SBO
CAMPdegr	CAMPdegr	

Kinetic Law

Derived unit not available

$$v_{41} = 0 (102)$$

8.42 Reaction g_cra

This is an irreversible reaction of no reactant forming one product.

Name g_cra

Reaction equation

$$\emptyset \longrightarrow Cra$$
 (103)

Product

Table 108: Properties of each product.

Id	Name	SBO
Cra	Cra	

Kinetic Law

Derived unit not available

$$v_{42} = 0 (104)$$

8.43 Reaction g_crp

This is an irreversible reaction of no reactant forming one product.

Name g_crp

$$\emptyset \longrightarrow Crp$$
 (105)

Product

Table 109: Properties of each product.

Id	Name	SBO
Crp	Crp	

Kinetic Law

Derived unit not available

$$v_{43} = 0 (106)$$

8.44 Reaction g_cya

This is an irreversible reaction of no reactant forming one product.

Name g_cya

Reaction equation

$$\emptyset \longrightarrow Cya$$
 (107)

Product

Table 110: Properties of each product.

Id	Name	SBO
Cya	Cya	

Kinetic Law

Derived unit not available

$$v_{44} = 0 ag{108}$$

8.45 Reaction g_emp

This is an irreversible reaction of no reactant forming one product influenced by four modifiers.

Name g_emp

$$\emptyset \xrightarrow{ACT, Cra, CrpcAMP, GLC} Emp$$
 (109)

Modifiers

Table 111: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
Cra	Cra	
${\tt CrpcAMP}$	CrpcAMP	
GLC	GLC	

Product

Table 112: Properties of each product.

Id	Name	SBO
Emp	Emp	

Kinetic Law

Derived unit contains undeclared units

$$v_{45} = \text{bm_k_expr} \cdot \text{mu} \cdot \left(\left(1 - \frac{\text{Cra}}{\text{Cra} + \text{g_emp_Kcra}} \right) \cdot \text{g_emp_vcra_unbound} \right.$$

$$+ \frac{\text{Cra}}{\text{Cra} + \text{g_emp_Kcra}} \cdot \text{g_emp_vcra_bound} + \left(1 - \frac{\text{CrpcAMP}}{\text{CrpcAMP} + \text{g_emp_Kcrp}} \right) \quad (110)$$

$$\cdot \text{g_emp_vcrp_unbound} + \frac{\text{CrpcAMP}}{\text{CrpcAMP} + \text{g_emp_kcrp}} \cdot \text{g_emp_vcrp_bound} \right)$$

8.46 Reaction g_eno

This is an irreversible reaction of no reactant forming one product influenced by three modifiers.

Name g_eno

Reaction equation

$$\emptyset \xrightarrow{ACT, Cra, GLC} Eno$$
 (111)

Table 113: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
${\tt Cra}$	Cra	
GLC	GLC	

Product

Table 114: Properties of each product.

Id	Name	SBO
Eno	Eno	

Kinetic Law

Derived unit contains undeclared units

$$v_{46} = \text{bm_k_expr} \cdot \text{mu} \cdot \left(\left(1 - \frac{\text{Cra}}{\text{Cra} + \text{g_eno_Kcra}} \right) \cdot \text{g_eno_vcra_unbound} + \frac{\text{Cra}}{\text{Cra} + \text{g_eno_Kcra}} \cdot \text{g_eno_vcra_bound} \right)$$
(112)

8.47 Reaction g_fdp

This is an irreversible reaction of no reactant forming one product influenced by three modifiers.

Name g_fdp

Reaction equation

$$\emptyset \xrightarrow{ACT, Cra, GLC} Fdp$$
 (113)

Modifiers

Table 115: Properties of each modifier.

Id	Name	SBO
Cra	Cra	
GLC	GLC	

Product

Table 116: Properties of each product.

Id	Name	SBO
Fdp	Fdp	

Kinetic Law

Derived unit contains undeclared units

$$v_{47} = bm_k_expr \cdot mu \cdot \left(\left(1 - \frac{Cra}{Cra + g_fdp_Kcra} \right) \cdot g_fdp_vcra_unbound + \frac{Cra}{Cra + g_fdp_Kcra} \cdot g_fdp_vcra_bound \right)$$

$$(114)$$

8.48 Reaction g_gltA

This is an irreversible reaction of no reactant forming one product influenced by three modifiers.

Name g_gltA

Reaction equation

$$\emptyset \xrightarrow{\text{ACT, CrpcAMP, GLC}} \text{GltA}$$
 (115)

Modifiers

Table 117: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
${\tt CrpcAMP}$	CrpcAMP	
GLC	GLC	

Product

Table 118: Properties of each product.

Id	Name	SBO
GltA	GltA	

Kinetic Law

Derived unit contains undeclared units

$$\begin{split} v_{48} = bm_k_expr \cdot mu \cdot \left(\left(1 - \frac{CrpcAMP^{g_gltA_n}}{CrpcAMP^{g_gltA_n} + g_gltA_Kcrp^{g_gltA_n}} \right) \cdot g_gltA_vcrp_unbound \right. \\ \left. + \frac{CrpcAMP^{g_gltA_n}}{CrpcAMP^{g_gltA_n} + g_gltA_Kcrp^{g_gltA_n}} \cdot g_gltA_vcrp_bound \right) \end{split}$$

8.49 Reaction g_icd

This is an irreversible reaction of no reactant forming one product influenced by three modifiers.

Name g_icd

Reaction equation

$$\emptyset \xrightarrow{ACT, Cra, GLC} Icd$$
 (117)

Modifiers

Table 119: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
${\tt Cra}$	Cra	
GLC	GLC	

Product

Table 120: Properties of each product.

Id	Name	SBO
Icd	Icd	

Kinetic Law

Derived unit contains undeclared units

$$v_{49} = bm_k = cxpr \cdot mu \cdot \left(\left(1 - \frac{Cra}{Cra + g_i = cd_k Cra} \right) \cdot g_i = cd_v cra_u bound + \frac{Cra}{Cra + g_i = cd_k Cra} \cdot g_i = cd_v cra_b bound \right)$$

$$(118)$$

8.50 Reaction g_iclr

This is an irreversible reaction of no reactant forming one product.

Name g_iclr

Reaction equation

$$\emptyset \longrightarrow IclR$$
 (119)

Product

Table 121: Properties of each product.

Id	Name	SBO
IclR	IclR	

Kinetic Law

Derived unit not available

$$v_{50} = 0 ag{120}$$

8.51 Reaction g_mdh

This is an irreversible reaction of no reactant forming one product influenced by three modifiers.

Name g_mdh

Reaction equation

$$\emptyset \xrightarrow{ACT, CrpcAMP, GLC} Mdh$$
 (121)

Modifiers

Table 122: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
${\tt CrpcAMP}$	CrpcAMP	
GLC	GLC	

Product

Table 123: Properties of each product.

Id	Name	SBO
Mdh	Mdh	

Kinetic Law

Derived unit contains undeclared units

$$v_{51} = bm_k expr \cdot mu \cdot \left(\left(1 - \frac{CrpcAMP}{CrpcAMP + g_mdh_Kcrp} \right) \cdot g_mdh_vcrp_unbound + \frac{CrpcAMP}{CrpcAMP + g_mdh_Kcrp} \cdot g_mdh_vcrp_bound \right)$$

$$(122)$$

8.52 Reaction g_me

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name g_me

Reaction equation

$$\emptyset \xrightarrow{ACT, GLC} Me$$
 (123)

Modifiers

Table 124: Properties of each modifier.

	_	
Id	Name	SBO
ACT	ACT	
GLC	GLC	

Product

Table 125: Properties of each product.

Id	Name	SBO
Ме	Me	

Kinetic Law

Derived unit not available

$$v_{52} = (mu + d_k_degr) \cdot SS_Me$$
 (124)

8.53 Reaction g_pckA

This is an irreversible reaction of no reactant forming one product influenced by three modifiers.

Name g_pckA

Reaction equation

$$\emptyset \xrightarrow{ACT, Cra, GLC} PckA$$
 (125)

Modifiers

Table 126: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
${\tt Cra}$	Cra	
GLC	GLC	

Product

Table 127: Properties of each product.

Id	Name	SBO
PckA	PckA	

Kinetic Law

Derived unit contains undeclared units

$$v_{53} = bm_k = crn \cdot mu \cdot \left(\left(1 - \frac{Cra}{Cra + g_pckA_kcra} \right) \cdot g_pckA_vcra_unbound + \frac{Cra}{Cra + g_pckA_kcra} \cdot g_pckA_vcra_bound \right)$$

$$(126)$$

8.54 Reaction g_pdh

This is an irreversible reaction of no reactant forming one product influenced by three modifiers.

Name g_pdh

Reaction equation

$$\emptyset \xrightarrow{ACT, GLC, PdhR} Pdh$$
 (127)

Modifiers

Table 128: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
GLC	GLC	
PdhR	PdhR	

Product

Table 129: Properties of each product.

Id	Name	SBO
Pdh	Pdh	

Kinetic Law

Derived unit contains undeclared units

$$v_{54} = bm_k expr \cdot mu \cdot \left(\left(1 - \frac{PdhR}{PdhR + g_pdh_Kpdhr} \right) \cdot g_pdh_vpdhr_unbound + \frac{PdhR}{PdhR + g_pdh_Kpdhr} \cdot g_pdh_vpdhr_bound \right)$$
(128)

8.55 Reaction g_pdhr

This is an irreversible reaction of no reactant forming one product.

Name g_pdhr

Reaction equation

$$\emptyset \longrightarrow PdhR$$
 (129)

Product

Table 130: Properties of each product.

Id	Name	SBO
PdhR	PdhR	

Kinetic Law

Derived unit not available

$$v_{55} = 0 (130)$$

8.56 Reaction g_pfkA

This is an irreversible reaction of no reactant forming one product influenced by three modifiers.

Name g_pfkA

Reaction equation

$$\emptyset \xrightarrow{\text{ACT, Cra, GLC}} \text{PfkA} \tag{131}$$

Modifiers

Table 131: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
${\tt Cra}$	Cra	
GLC	GLC	

Product

Table 132: Properties of each product.

Id	Name	SBO
PfkA	PfkA	

Kinetic Law

Derived unit contains undeclared units

$$v_{56} = bm_k = cxpr \cdot mu \cdot \left(\left(1 - \frac{Cra}{Cra + g_pfkA_k} \right) \cdot g_pfkA_vcra_unbound + \frac{Cra}{Cra + g_pfkA_k} \cdot g_pfkA_vcra_bound \right)$$

$$(132)$$

8.57 Reaction g_ppc

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name g_ppc

Reaction equation

$$\emptyset \xrightarrow{ACT, GLC} Ppc$$
 (133)

Modifiers

Table 133: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
GLC	GLC	

Product

Table 134: Properties of each product.

Id	Name	SBO
Ррс	Ppc	

Kinetic Law

Derived unit not available

$$v_{57} = (\text{mu} + \text{d_k_degr}) \cdot \text{SS_Ppc}$$
 (134)

8.58 Reaction g_ppsA

This is an irreversible reaction of no reactant forming one product influenced by three modifiers.

Name g_ppsA

Reaction equation

$$\emptyset \xrightarrow{ACT, Cra, GLC} PpsA$$
 (135)

Modifiers

Table 135: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
Cra	Cra	
GLC	GLC	

Product

Table 136: Properties of each product.

Id	Name	SBO
PpsA	PpsA	

Kinetic Law

Derived unit contains undeclared units

$$v_{58} = \text{bm_k_expr} \cdot \text{mu} \cdot \left(\left(1 - \frac{\text{Cra}}{\text{Cra} + \text{g_ppsA_Kcra}} \right) \cdot \text{g_ppsA_vcra_unbound} \right) + \frac{\text{Cra}}{\text{Cra} + \text{g_ppsA_Kcra}} \cdot \text{g_ppsA_vcra_bound} \right)$$

$$(136)$$

8.59 Reaction g_pykF

This is an irreversible reaction of no reactant forming one product influenced by three modifiers.

Name g_pykF

Reaction equation

$$\emptyset \xrightarrow{ACT, Cra, GLC} PykF$$
 (137)

Modifiers

Table 137: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
${\tt Cra}$	Cra	
GLC	GLC	

Product

Table 138: Properties of each product.

Id	Name	SBO
PykF	PykF	

Kinetic Law

Derived unit contains undeclared units

$$v_{59} = bm_k = cxpr \cdot mu \cdot \left(\left(1 - \frac{Cra}{Cra + g_pykF_kcra} \right) \cdot g_pykF_vcra_unbound + \frac{Cra}{Cra + g_pykF_kcra} \cdot g_pykF_vcra_bound \right)$$

$$(138)$$

8.60 Reaction g_EIIA

This is an irreversible reaction of no reactant forming one product.

Name g_EIIA

Reaction equation

$$\emptyset \longrightarrow EIIA$$
 (139)

Product

Table 139: Properties of each product.

Id	Name	SBO
EIIA	EIIA	

Kinetic Law

Derived unit not available

$$v_{60} = 0 (140)$$

8.61 Reaction g_EIICB

This is an irreversible reaction of no reactant forming one product.

Name g_EIICB

Reaction equation

$$\emptyset \longrightarrow EIICB$$
 (141)

Product

Table 140: Properties of each product.

Id	Name	SBO
EIICB	EIICB	

Kinetic Law

Derived unit not available

$$v_{61} = 0 (142)$$

8.62 Reaction d_AceA

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_AceA

Reaction equation

AceA
$$\xrightarrow{\text{ACT, GLC}} \emptyset$$
 (143)

Reactant

Table 141: Properties of each reactant.

Id	Name	SBO
AceA	AceA	

Modifiers

Table 142: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
GLC	GLC	

Kinetic Law

Derived unit contains undeclared units

$$v_{62} = (\mathbf{mu} + \mathbf{d_k} \cdot \mathbf{degr}) \cdot \mathbf{AceA}$$
 (144)

8.63 Reaction d_AceB

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_AceB

Reaction equation

AceB
$$\xrightarrow{\text{ACT, GLC}} \emptyset$$
 (145)

Reactant

Table 143: Properties of each reactant.

Id	Name	SBO
AceB	AceB	

Table 144: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
GLC	GLC	

Derived unit contains undeclared units

$$v_{63} = (\text{mu} + \text{d}_{\text{L}}\text{degr}) \cdot \text{AceB}$$
 (146)

8.64 Reaction d_AceK

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_AceK

Reaction equation

$$AceK \xrightarrow{ACT, GLC} \emptyset$$
 (147)

Reactant

Table 145: Properties of each reactant.

Id	Name	SBO
AceK	AceK	

Modifiers

Table 146: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
GLC	GLC	

Kinetic Law

$$v_{64} = (\text{mu} + \text{d_k_degr}) \cdot \text{AceK}$$
 (148)

8.65 Reaction d_Acoa2act

This is an irreversible reaction of one reactant forming no product.

Name d_Acoa2act

Reaction equation

$$Acoa2act \longrightarrow \emptyset \tag{149}$$

Reactant

Table 147: Properties of each reactant.

Id	Name	SBO
Acoa2act	Acoa2act	

Kinetic Law

Derived unit not available

$$v_{65} = 0 (150)$$

8.66 Reaction d_Acs

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_Acs

Reaction equation

$$Acs \xrightarrow{ACT, GLC} \emptyset$$
 (151)

Reactant

Table 148: Properties of each reactant.

Id	Name	SBO
Acs	Acs	

Table 149: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
GLC	GLC	

Derived unit contains undeclared units

$$v_{66} = (mu + d_k_degr) \cdot Acs$$
 (152)

8.67 Reaction d_Akg2mal

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_Akg2mal

Reaction equation

$$Akg2mal \xrightarrow{ACT, GLC} \emptyset$$
 (153)

Reactant

Table 150: Properties of each reactant.

Id	Name	SBO
Akg2mal	Akg2mal	

Modifiers

Table 151: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
GLC	GLC	

Kinetic Law

$$v_{67} = (mu + d_k_degr) \cdot Akg2mal$$
 (154)

8.68 Reaction d_CAMPdegr

This is an irreversible reaction of one reactant forming no product.

Name d_CAMPdegr

Reaction equation

$$CAMPdegr \longrightarrow \emptyset$$
 (155)

Reactant

Table 152: Properties of each reactant.

Id	Name	SBO
CAMPdegr	CAMPdegr	_

Kinetic Law

Derived unit not available

$$v_{68} = 0 (156)$$

8.69 Reaction d_Cra

This is an irreversible reaction of one reactant forming no product.

Name d_Cra

Reaction equation

$$\operatorname{Cra} \longrightarrow \emptyset$$
 (157)

Reactant

Table 153: Properties of each reactant.

Id	Name	SBO
Cra	Cra	

Kinetic Law

$$v_{69} = 0 (158)$$

8.70 Reaction d_CraFBP

This is an irreversible reaction of one reactant forming no product.

Name d_CraFBP

Reaction equation

$$CraFBP \longrightarrow \emptyset \tag{159}$$

Reactant

Table 154: Properties of each reactant.

Id	Name	SBO
CraFBP	CraFBP	

Kinetic Law

Derived unit not available

$$v_{70} = 0 (160)$$

8.71 Reaction d_Crp

This is an irreversible reaction of one reactant forming no product.

Name d_Crp

Reaction equation

$$Crp \longrightarrow \emptyset \tag{161}$$

Reactant

Table 155: Properties of each reactant.

Id	Name	SBO
Crp	Crp	

Kinetic Law

$$v_{71} = 0 (162)$$

8.72 Reaction d_CrpcAMP

This is an irreversible reaction of one reactant forming no product.

Name d_CrpcAMP

Reaction equation

$$CrpcAMP \longrightarrow \emptyset \tag{163}$$

Reactant

Table 156: Properties of each reactant.

Id	Name	SBO
CrpcAMP	CrpcAMP	

Kinetic Law

Derived unit not available

$$v_{72} = 0 (164)$$

8.73 Reaction d_Cya

This is an irreversible reaction of one reactant forming no product.

Name d_Cya

Reaction equation

$$Cya \longrightarrow \emptyset \tag{165}$$

Reactant

Table 157: Properties of each reactant.

Id	Name	SBO
Cya	Cya	

Kinetic Law

$$v_{73} = 0 (166)$$

8.74 Reaction d_Emp

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_Emp

Reaction equation

$$\operatorname{Emp} \xrightarrow{\operatorname{ACT}, \operatorname{GLC}} \emptyset \tag{167}$$

Reactant

Table 158: Properties of each reactant.

Id	Name	SBO
Emp	Emp	

Modifiers

Table 159: Properties of each modifier.

Name	SBO
ACT GLC	
	ACT

Kinetic Law

Derived unit contains undeclared units

$$v_{74} = (\text{mu} + \text{d_k_degr}) \cdot \text{Emp}$$
 (168)

8.75 Reaction d_Eno

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_Eno

Reaction equation

Eno
$$\xrightarrow{\text{ACT, GLC}} \emptyset$$
 (169)

Reactant

Table 160: Properties of each reactant.

Id	Name	SBO
Eno	Eno	

Modifiers

Table 161: Properties of each modifier.

Id	Name	SBO
	ACT GLC	

Kinetic Law

Derived unit contains undeclared units

$$v_{75} = (\text{mu} + \text{d.k.degr}) \cdot \text{Eno}$$
 (170)

8.76 Reaction d_Fdp

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_Fdp

Reaction equation

$$Fdp \xrightarrow{ACT, GLC} \emptyset$$
 (171)

Reactant

Table 162: Properties of each reactant.

Id	Name	SBO
Fdp	Fdp	

Table 163: Properties of each modifier.

Id	Name	SBO
	ACT GLC	

Derived unit contains undeclared units

$$v_{76} = (mu + d_k_degr) \cdot Fdp \tag{172}$$

8.77 Reaction d_GltA

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_GltA

Reaction equation

GltA
$$\xrightarrow{\text{ACT, GLC}} \emptyset$$
 (173)

Reactant

Table 164: Properties of each reactant.

Id	Name	SBO
GltA	GltA	

Modifiers

Table 165: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
GLC	GLC	

Kinetic Law

$$v_{77} = (\text{mu} + \text{d_k_degr}) \cdot \text{GltA}$$
 (174)

8.78 Reaction d_Icd

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_Icd

Reaction equation

$$\operatorname{Icd} \xrightarrow{\operatorname{ACT}, \operatorname{GLC}} \emptyset \tag{175}$$

Reactant

Table 166: Properties of each reactant.

Id	Name	SBO
Icd	Icd	

Modifiers

Table 167: Properties of each modifier.

Name	SBO
ACT GLC	
	ACT

Kinetic Law

Derived unit contains undeclared units

$$v_{78} = (\text{mu} + \text{d}_{\text{-}}\text{k}_{\text{-}}\text{degr}) \cdot \text{Icd}$$
 (176)

8.79 Reaction d_Icd_P

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_Icd_P

Reaction equation

$$Icd_{-}P \xrightarrow{ACT, GLC} \emptyset$$
 (177)

Reactant

Table 168: Properties of each reactant.

Id	Name	SBO
Icd_P	Icd_P	

Modifiers

Table 169: Properties of each modifier.

Id	Name	SBO
	ACT GLC	

Kinetic Law

Derived unit contains undeclared units

$$v_{79} = (\text{mu} + \text{d_k_degr}) \cdot \text{Icd_P}$$
 (178)

8.80 Reaction d_IclR

This is an irreversible reaction of one reactant forming no product.

Name d_IclR

Reaction equation

$$IclR \longrightarrow \emptyset \tag{179}$$

Reactant

Table 170: Properties of each reactant.

Id	Name	SBO
IclR	IclR	

Kinetic Law

$$v_{80} = 0 (180)$$

8.81 Reaction d_Mdh

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_Mdh

Reaction equation

$$Mdh \xrightarrow{ACT, GLC} \emptyset$$
 (181)

Reactant

Table 171: Properties of each reactant.

Id	Name	SBO
Mdh	Mdh	

Modifiers

Table 172: Properties of each modifier.

vame	SBO
	ACT GLC

Kinetic Law

Derived unit contains undeclared units

$$v_{81} = (\mathbf{mu} + \mathbf{d_k_degr}) \cdot \mathbf{Mdh} \tag{182}$$

8.82 Reaction d_Me

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_Me

Reaction equation

$$Me \xrightarrow{ACT, GLC} \emptyset$$
 (183)

Reactant

Table 173: Properties of each reactant.

Id	Name	SBO
Ме	Me	

Modifiers

Table 174: Properties of each modifier.

Id	Name	SBO
	ACT GLC	

Kinetic Law

Derived unit contains undeclared units

$$v_{82} = (\mathbf{mu} + \mathbf{d} \cdot \mathbf{k} \cdot \mathbf{degr}) \cdot \mathbf{Me} \tag{184}$$

8.83 Reaction d_PckA

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_PckA

Reaction equation

$$PckA \xrightarrow{ACT, GLC} \emptyset$$
 (185)

Reactant

Table 175: Properties of each reactant.

Id	Name	SBO
PckA	PckA	

Table 176: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
GLC	GLC	

Derived unit contains undeclared units

$$v_{83} = (\mathbf{mu} + \mathbf{d}_{\mathbf{k}} \cdot \mathbf{degr}) \cdot \mathbf{PckA}$$
 (186)

8.84 Reaction d_Pdh

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_Pdh

Reaction equation

$$Pdh \xrightarrow{ACT, GLC} \emptyset$$
 (187)

Reactant

Table 177: Properties of each reactant.

Id	Name	SBO
Pdh	Pdh	

Modifiers

Table 178: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
GLC	GLC	

Kinetic Law

$$v_{84} = (\mathbf{mu} + \mathbf{d_k_degr}) \cdot \mathbf{Pdh} \tag{188}$$

8.85 Reaction d_PdhR

This is an irreversible reaction of one reactant forming no product.

Name d_PdhR

Reaction equation

$$PdhR \longrightarrow \emptyset \tag{189}$$

Reactant

Table 179: Properties of each reactant.

Id	Name	SBO
PdhR	PdhR	

Kinetic Law

Derived unit not available

$$v_{85} = 0 (190)$$

8.86 Reaction d_PdhRPYR

This is an irreversible reaction of one reactant forming no product.

Name d_PdhRPYR

Reaction equation

$$PdhRPYR \longrightarrow \emptyset \tag{191}$$

Reactant

Table 180: Properties of each reactant.

Id	Name	SBO
PdhRPYR	PdhRPYR	

Kinetic Law

$$v_{86} = 0 (192)$$

8.87 Reaction d_PfkA

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_PfkA

Reaction equation

$$PfkA \xrightarrow{ACT, GLC} \emptyset$$
 (193)

Reactant

Table 181: Properties of each reactant.

Id	Name	SBO
PfkA	PfkA	

Modifiers

Table 182: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
GLC	GLC	

Kinetic Law

Derived unit contains undeclared units

$$v_{87} = (mu + d_k_degr) \cdot PfkA \tag{194}$$

8.88 Reaction d_Ppc

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_Ppc

Reaction equation

$$\operatorname{Ppc} \xrightarrow{\operatorname{ACT}, \operatorname{GLC}} \emptyset \tag{195}$$

Reactant

Table 183: Properties of each reactant.

Id	Name	SBO
Ррс	Ppc	

Modifiers

Table 184: Properties of each modifier.

Id	Name	SBO
	ACT GLC	

Kinetic Law

Derived unit contains undeclared units

$$v_{88} = (\text{mu} + \text{d}_{\text{-k}} \cdot \text{degr}) \cdot \text{Ppc}$$
 (196)

8.89 Reaction d_PpsA

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_PpsA

Reaction equation

$$PpsA \xrightarrow{ACT, GLC} \emptyset$$
 (197)

Reactant

Table 185: Properties of each reactant.

Id	Name	SBO
PpsA	PpsA	

Table 186: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
GLC	GLC	

Derived unit contains undeclared units

$$v_{89} = (\mathbf{mu} + \mathbf{d_k} \cdot \mathbf{degr}) \cdot \mathbf{PpsA}$$
 (198)

8.90 Reaction d_PykF

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_PykF

Reaction equation

$$PykF \xrightarrow{ACT, GLC} \emptyset$$
 (199)

Reactant

Table 187: Properties of each reactant.

Id	Name	SBO
PykF	PykF	

Modifiers

Table 188: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
GLC	GLC	

Kinetic Law

$$v_{90} = (mu + d_k_degr) \cdot PykF \tag{200}$$

8.91 Reaction d_EIIA

This is an irreversible reaction of one reactant forming no product.

Name d_EIIA

Reaction equation

$$EIIA \longrightarrow \emptyset \tag{201}$$

Reactant

Table 189: Properties of each reactant.

Id	Name	SBO
EIIA	EIIA	

Kinetic Law

Derived unit not available

$$v_{91} = 0 (202)$$

8.92 Reaction d_EIIA_P

This is an irreversible reaction of one reactant forming no product.

Name d_EIIA_P

Reaction equation

$$EIIA.P \longrightarrow \emptyset$$
 (203)

Reactant

Table 190: Properties of each reactant.

Id	Name	SBO
EIIA_P	EIIA_P	

Kinetic Law

$$v_{92} = 0 (204)$$

8.93 Reaction d_EIICB

This is an irreversible reaction of one reactant forming no product.

Name d_EIICB

Reaction equation

$$EIICB \longrightarrow \emptyset \tag{205}$$

Reactant

Table 191: Properties of each reactant.

Id	Name	SBO
EIICB	EIICB	

Kinetic Law

Derived unit not available

$$v_{93} = 0 (206)$$

8.94 Reaction d_ACoA

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_ACoA

Reaction equation

$$ACoA \xrightarrow{ACT, GLC} \emptyset$$
 (207)

Reactant

Table 192: Properties of each reactant.

Id	Name	SBO
ACoA	ACoA	

Table 193: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
GLC	GLC	

Derived unit contains undeclared units

$$v_{94} = \text{mu} \cdot \text{ACoA} \tag{208}$$

8.95 Reaction d_AKG

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_AKG

Reaction equation

$$AKG \xrightarrow{ACT, GLC} \emptyset$$
 (209)

Reactant

Table 194: Properties of each reactant.

Id	Name	SBO
AKG	AKG	

Modifiers

Table 195: Properties of each modifier.

Id	Name	SBO
	ACT GLC	

Kinetic Law

$$v_{95} = \text{mu} \cdot \text{AKG} \tag{210}$$

8.96 Reaction d_cAMP

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_cAMP

Reaction equation

$$cAMP \xrightarrow{ACT, GLC} \emptyset$$
 (211)

Reactant

Table 196: Properties of each reactant.

Id	Name	SBO
cAMP	cAMP	

Modifiers

Table 197: Properties of each modifier.

Name	SBO
ACT GLC	
	ACT

Kinetic Law

Derived unit contains undeclared units

$$v_{96} = \text{mu} \cdot \text{cAMP} \tag{212}$$

8.97 Reaction d_FBP

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_FBP

Reaction equation

$$FBP \xrightarrow{ACT, GLC} \emptyset$$
 (213)

Reactant

Table 198: Properties of each reactant.

Id	Name	SBO
FBP	FBP	

Modifiers

Table 199: Properties of each modifier.

Id	Name	SBO
	ACT GLC	

Kinetic Law

Derived unit contains undeclared units

$$v_{97} = \text{mu} \cdot \text{FBP} \tag{214}$$

8.98 Reaction d_G6P

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_G6P

Reaction equation

$$G6P \xrightarrow{ACT, GLC} \emptyset$$
 (215)

Reactant

Table 200: Properties of each reactant.

Id	Name	SBO
G6P	G6P	

Table 201: Properties of each modifier.

Id	Name	SBO
	ACT	
GLC	GLC	

Derived unit contains undeclared units

$$v_{98} = \text{mu} \cdot \text{G6P} \tag{216}$$

8.99 Reaction d_GLX

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_GLX

Reaction equation

$$GLX \xrightarrow{ACT, GLC} \emptyset$$
 (217)

Reactant

Table 202: Properties of each reactant.

Id	Name	SBO
GLX	GLX	

Modifiers

Table 203: Properties of each modifier.

Id	Name	SBO
	ACT GLC	

Kinetic Law

$$v_{99} = \text{mu} \cdot \text{GLX} \tag{218}$$

8.100 Reaction d_ICT

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_ICT

Reaction equation

$$ICT \xrightarrow{ACT, GLC} \emptyset$$
 (219)

Reactant

Table 204: Properties of each reactant.

Id	Name	SBO
ICT	ICT	

Modifiers

Table 205: Properties of each modifier.

Name	SBO
ACT GLC	
	ACT

Kinetic Law

Derived unit contains undeclared units

$$v_{100} = \text{mu} \cdot \text{ICT} \tag{220}$$

8.101 Reaction d_MAL

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_MAL

Reaction equation

$$MAL \xrightarrow{ACT, GLC} \emptyset$$
 (221)

Reactant

Table 206: Properties of each reactant.

Id	Name	SBO
MAL	MAL	

Modifiers

Table 207: Properties of each modifier.

Id	Name	SBO
	ACT GLC	

Kinetic Law

Derived unit contains undeclared units

$$v_{101} = \text{mu} \cdot \text{MAL} \tag{222}$$

8.102 Reaction d_OAA

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_OAA

Reaction equation

$$OAA \xrightarrow{ACT, GLC} \emptyset$$
 (223)

Reactant

Table 208: Properties of each reactant.

Id	Name	SBO
OAA	OAA	

Table 209: Properties of each modifier.

Id	Name	SBO
	ACT	
GLC	GLC	

Derived unit contains undeclared units

$$v_{102} = \text{mu} \cdot \text{OAA} \tag{224}$$

8.103 Reaction d_PEP

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_PEP

Reaction equation

$$PEP \xrightarrow{ACT, GLC} \emptyset$$
 (225)

Reactant

Table 210: Properties of each reactant.

Id	Name	SBO
PEP	PEP	

Modifiers

Table 211: Properties of each modifier.

Id	Name	SBO
ACT	ACT	
GLC	GLC	

Kinetic Law

$$v_{103} = \text{mu} \cdot \text{PEP} \tag{226}$$

8.104 Reaction d_PG3

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_PG3

Reaction equation

$$PG3 \xrightarrow{ACT, GLC} \emptyset$$
 (227)

Reactant

Table 212: Properties of each reactant.

Id	Name	SBO
PG3	PG3	

Modifiers

Table 213: Properties of each modifier.

Id	Name	SBO
	ACT GLC	
GLC	OLC	

Kinetic Law

Derived unit contains undeclared units

$$v_{104} = \text{mu} \cdot \text{PG3} \tag{228}$$

8.105 Reaction d_PYR

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name d_PYR

Reaction equation

$$PYR \xrightarrow{ACT, GLC} \emptyset$$
 (229)

Reactant

Table 214: Properties of each reactant.

Id	Name	SBO
PYR	PYR	

Modifiers

Table 215: Properties of each modifier.

Id	Name	SBO
	ACT GLC	

Kinetic Law

Derived unit contains undeclared units

$$v_{105} = \text{mu} \cdot \text{PYR} \tag{230}$$

8.106 Reaction env_growth

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name env_growth

Reaction equation

$$\emptyset \xrightarrow{\text{ACT, GLC}} \text{BM}$$
 (231)

Modifiers

Table 216: Properties of each modifier.

Id	Name	SBO
	ACT GLC	

Product

Table 217: Properties of each product.

Id	Name	SBO
BM	BM	

Derived unit contains undeclared units

$$v_{106} = BM \cdot mu \tag{232}$$

8.107 Reaction env_GLCup

This is an irreversible reaction of one reactant forming no product influenced by three modifiers.

Name env_GLCup

Reaction equation

GLC
$$\xrightarrow{\text{BM}}$$
, EIIA_P, EIICB \emptyset (233)

Reactant

Table 218: Properties of each reactant.

Id	Name	SBO
GLC	GLC	

Modifiers

Table 219: Properties of each modifier.

Name	SBO
BM	
EIIA_P	
EIICB	
	BM EIIA_P

Kinetic Law

$$v_{107} = \frac{\text{env_uc} \cdot \text{env_M_GLC} \cdot \text{BM} \cdot \text{pts_k4} \cdot \text{EIICB} \cdot \text{EIIA_P} \cdot [\text{GLC}]}{(\text{pts_KEIIA} + \text{EIIA_P}) \cdot (\text{pts_Kglc} + [\text{GLC}])}$$
(234)

8.108 Reaction env_ACTup

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name env_ACTup

Reaction equation

$$ACT \xrightarrow{Acs, BM} \emptyset$$
 (235)

Reactant

Table 220: Properties of each reactant.

Id	Name	SBO
ACT	ACT	

Modifiers

Table 221: Properties of each modifier.

Id	Name	SBO
Acs BM	Acs BM	

Kinetic Law

Derived unit contains undeclared units

$$v_{108} = \frac{\text{env_uc} \cdot \text{env_M_ACT} \cdot \text{BM} \cdot \text{Acs} \cdot \text{e_Acs_kcat} \cdot [\text{ACT}]}{[\text{ACT}] + \text{e_Acs_Kact}}$$
(236)

8.109 Reaction env_ACTex

This is an irreversible reaction of no reactant forming one product influenced by four modifiers.

Name env_ACTex

Reaction equation

$$\emptyset \xrightarrow{ACoA, Acoa2act, BM, PYR} ACT$$
 (237)

Table 222: Properties of each modifier.

Name	SBO
ACoA	
Acoa2act	
BM	
PYR	
	ACoA Acoa2act BM

Product

Table 223: Properties of each product.

Id	Name	SBO
ACT	ACT	

Kinetic Law

Derived unit contains undeclared units

$$v_{109} = \frac{\frac{\text{env_uc-env_M_ACT·BM·Acoa2act_e_Acoa2act_kcat·ACoA}{\text{e_Acoa2act_Kacoa}} \cdot \left(1 + \frac{\text{ACoA}}{\text{e_Acoa2act_Kacoa}}\right)^{\text{e_Acoa2act_n} - 1}}{\left(1 + \frac{\text{ACoA}}{\text{e_Acoa2act_Kacoa}}\right)^{\text{e_Acoa2act_n}}} + \frac{\text{e_Acoa2act_L}}{\left(1 + \frac{\text{PYR}}{\text{e_Acoa2act_Kpyr}}\right)^{\text{e_Acoa2act_n}}}}$$
(238)

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

9.1 Species BM

Name BM

Initial amount 0.03 Unknownunitod

Involved in events event_0, event_1

This species takes part in four reactions (as a product in env_growth and as a modifier in env_GLCup, env_ACTup, env_ACTex).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{BM} = v_{106} \tag{239}$$

Furthermore, two events influence this species' rate of change.

9.2 Species ACT

Name ACT

SBO:0000247 simple chemical

Initial amount 0 g

Involved in events event_0, event_1

This species takes part in 60 reactions (as a reactant in env_ACTup and as a product in env_ACTex and as a modifier in bm_ACoA, bm_AKG, bm_G6P, bm_OAA, bm_PEP, bm_PG3, bm_PYR, e_Acs, g_aceA, g_aceB, g_aceK, g_acs, g_akg2mal, g_emp, g_eno, g_fdp, g_gltA, g_icd, g_mdh, g_me, g_pckA, g_pdh, g_pfkA, g_ppc, g_ppsA, g_pykF, d_AceA, d_AceB, d_AceK, d_Acs, d_Akg2mal, d_Emp, d_Eno, d_Fdp, d_GltA, d_Icd, d_Icd_P, d_Mdh, d_Me, d_PckA, d_Pdh, d_PfkA, d_Ppc, d_PpsA, d_PykF, d_ACoA, d_AKG, d_cAMP, d_FBP, d_G6P, d_GLX, d_ICT, d_MAL, d_OAA, d_PEP, d_PG3, d_PYR, env_growth).

$$\frac{d}{dt}ACT = |v_{109}| - |v_{108}| \tag{240}$$

Furthermore, two events influence this species' rate of change.

9.3 Species GLC

Name GLC

SBO:0000247 simple chemical

Initial amount 4.8 g

Involved in events event_0, event_1

This species takes part in 59 reactions (as a reactant in env_GLCup and as a modifier in bm_ACoA, bm_AKG, bm_G6P, bm_OAA, bm_PEP, bm_PG3, bm_PYR, pts_r4, g_aceA, g_aceB, g_aceK, g_acs, g_akg2mal, g_emp, g_eno, g_fdp, g_gltA, g_icd, g_mdh, g_me, g_pckA, g_pdh, g_pfkA, g_ppc, g_ppsA, g_pykF, d_AceA, d_AceB, d_AceK, d_Acs, d_Akg2mal, d_Emp, d_Eno, d_Fdp, d_GltA, d_Icd, d_Icd_P, d_Mdh, d_Me, d_PckA, d_Pdh, d_PfkA, d_Ppc, d_PpsA, d_PykF, d_ACoA, d_AKG, d_cAMP, d_FBP, d_G6P, d_GLX, d_ICT, d_MAL, d_OAA, d_PEP, d_PG3, d_PYR, env_growth).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GLC} = -v_{107} \tag{241}$$

Furthermore, two events influence this species' rate of change.

9.4 Species ACoA

Name ACoA

SBO:0000247 simple chemical

Initial amount 0.351972298 µmol

This species takes part in nine reactions (as a reactant in bm_ACoA, e_AceB, e_Acoa2act, e_GltA, d_ACoA and as a product in e_Acs, e_Pdh and as a modifier in e_Me, env_ACTex).

$$\frac{d}{dt}ACoA = |v_{18}| + |v_{30}| - |v_{1}| - |v_{16}| - |v_{17}| - |v_{25}| - |v_{94}|$$
(242)

9.5 Species AKG

Name AKG

SBO:0000247 simple chemical

Initial amount 0.191190619 µmol

This species takes part in eight reactions (as a reactant in bm_AKG, e_Akg2mal, d_AKG and as a product in e_AceA, e_Icd and as a modifier in e_AceK_Ki, e_AceK_Ph, e_GltA).

$$\frac{\mathrm{d}}{\mathrm{d}t} AKG = |v_{15}| + |v_{26}| - |v_{2}| - |v_{19}| - |v_{95}|$$
(243)

9.6 Species cAMP

Name cAMP

SBO:0000247 simple chemical

Initial amount 0.202804098 µmol

This species takes part in five reactions (as a reactant in e_CAMPdegr, d_cAMP and as a product in e_Cya and as a modifier in tf_Crp, e_Me).

$$\frac{d}{dt}cAMP = |v_{21}| - |v_{20}| - |v_{96}| \tag{244}$$

9.7 Species FBP

Name FBP

SBO:0000247 simple chemical

Initial amount 6.57504207 µmol

This species takes part in seven reactions (as a reactant in e_Emp, e_Fdp, d_FBP and as a product in e_PfkA and as a modifier in tf_Cra, e_Ppc, e_PykF).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{FBP} = |v_{31}| - 0.5 |v_{22}| - |v_{24}| - |v_{97}| \tag{245}$$

9.8 Species G6P

Name G6P

SBO:0000247 simple chemical

Initial amount 1.908140784 µmol

This species takes part in five reactions (as a reactant in bm_G6P, e_PfkA, d_G6P and as a product in pts_r4, e_Fdp).

$$\frac{\mathrm{d}}{\mathrm{d}t}G6P = |v_9| + |v_{24}| - |v_3| - |v_{31}| - |v_{98}| \tag{246}$$

9.9 Species GLX

Name GLX

SBO:0000247 simple chemical

Initial amount $5.70593 \cdot 10^{-9} \mu mol$

This species takes part in eight reactions (as a reactant in e_AceB, d_GLX and as a product in e_AceA and as a modifier in e_AceK_Ki, e_Pdh, g_aceA, g_aceB, g_aceK).

$$\frac{d}{dt}GLX = |v_{15}| - |v_{16}| - |v_{99}| \tag{247}$$

9.10 Species ICT

Name ICT

SBO:0000247 simple chemical

Initial amount 0.001408116 µmol

This species takes part in five reactions (as a reactant in e_AceA, e_Icd, d_ICT and as a product in e_GltA and as a modifier in e_AceK_Ki).

$$\frac{\mathrm{d}}{\mathrm{d}t}ICT = |v_{25}| - |v_{15}| - |v_{26}| - |v_{100}| \tag{248}$$

9.11 Species MAL

Name MAL

SBO:0000247 simple chemical

Initial amount 3.278779135 μmol

This species takes part in five reactions (as a reactant in e_Mdh, e_Me, d_MAL and as a product in e_AceB, e_Akg2mal).

$$\frac{d}{dt}MAL = v_{16} + v_{19} - v_{27} - v_{28} - v_{101}$$
(249)

9.12 Species OAA

Name OAA

SBO:0000247 simple chemical

Initial amount 0.050535354 µmol

This species takes part in eight reactions (as a reactant in bm_OAA, e_GltA, e_PckA, d_OAA and as a product in e_Mdh, e_Ppc and as a modifier in e_AceK_Ki, e_AceK_Ph).

$$\frac{d}{dt}OAA = v_{27} + v_{32} - v_4 - v_{25} - v_{29} - v_{102}$$
 (250)

9.13 Species PEP

Name PEP

SBO:0000247 simple chemical

Initial amount 0.210455879 µmol

This species takes part in 14 reactions (as a reactant in bm_PEP, pts_r1, e_Ppc, e_PykF, d_PEP and as a product in e_Eno, e_PckA, e_PpsA and as a modifier in e_AceK_Ki, e_AceK_Ph, e_AceA, e_Fdp, e_Icd, e_PfkA).

$$\frac{d}{dt}PEP = v_{23} + v_{29} + v_{33} - v_5 - v_8 - v_{32} - v_{34} - v_{103}$$
 (251)

9.14 Species PG3

Name PG3

SBO:0000247 simple chemical

Initial amount 5.720977255 µmol

This species takes part in seven reactions (as a reactant in bm_PG3, e_Eno, d_PG3 and as a product in e_Emp and as a modifier in e_AceK_Ki, e_AceK_Ph, e_AceA).

$$\frac{\mathrm{d}}{\mathrm{d}t} PG3 = |v_{22}| - |v_6| - |v_{23}| - |v_{104}| \tag{252}$$

9.15 Species PYR

Name PYR

SBO:0000247 simple chemical

Initial amount 0.863278018 µmol

This species takes part in 15 reactions (as a reactant in bm_PYR, e_Pdh, e_PpsA, d_PYR and as a product in pts_r1, e_Me, e_PykF and as a modifier in e_AceK_Ki, e_AceK_Ph, tf_PdhR, e_Acoa2act, g_aceA, g_aceB, g_aceK, env_ACTex).

$$\frac{d}{dt}PYR = |v_8| + |v_{28}| + |v_{34}| - |v_7| - |v_{30}| - |v_{33}| - |v_{105}|$$
(253)

9.16 Species AceA

Name AceA

SBO:0000014 enzyme

Initial amount 0.00472323 µmol

This species takes part in three reactions (as a reactant in d_AceA and as a product in g_aceA and as a modifier in e_AceA).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{AceA} = v_{35} - v_{62} \tag{254}$$

9.17 Species AceB

Name AceB

SBO:0000014 enzyme

Initial amount 0.001416969 µmol

This species takes part in three reactions (as a reactant in d_AceB and as a product in g_aceB and as a modifier in e_AceB).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{AceB} = |v_{36}| - |v_{63}| \tag{255}$$

9.18 Species AceK

Name AceK

SBO:0000014 enzyme

Initial amount $1.41697 \cdot 10^{-4} \mu mol$

This species takes part in four reactions (as a reactant in d_AceK and as a product in g_aceK and as a modifier in e_AceK_Ki, e_AceK_Ph).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{AceK} = |v_{37}| - |v_{64}| \tag{256}$$

9.19 Species Acoa2act

Name Acoa2act

SBO:0000014 enzyme

Initial amount $0.0010 \mu mol$

This species takes part in four reactions (as a reactant in d_Acoa2act and as a product in g_acoa2act and as a modifier in e_Acoa2act, env_ACTex).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Acoa2act} = |v_{38}| - |v_{65}| \tag{257}$$

9.20 Species Acs

Name Acs

SBO:0000014 enzyme

Initial amount 0.001096222 µmol

This species takes part in four reactions (as a reactant in d_Acs and as a product in g_acs and as a modifier in e_Acs, env_ACTup).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Acs} = v_{39} - v_{66} \tag{258}$$

9.21 Species Akg2mal

Name Akg2mal

SBO:0000014 enzyme

Initial amount 0.001026848 µmol

This species takes part in three reactions (as a reactant in d_Akg2mal and as a product in g-akg2mal and as a modifier in e_Akg2mal).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Akg2mal} = v_{40} - v_{67} \tag{259}$$

9.22 Species CAMPdegr

Name CAMPdegr

Initial amount 0.0010 µmol

This species takes part in three reactions (as a reactant in d_CAMPdegr and as a product in g_cAMPdegr and as a modifier in e_CAMPdegr).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CAMPdegr} = |v_{41}| - |v_{68}| \tag{260}$$

9.23 Species Cya

Name Cya

SBO:0000014 enzyme

Initial amount 0.0010 µmol

This species takes part in three reactions (as a reactant in d_Cya and as a product in g_cya and as a modifier in e_Cya).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Cya} = v_{44} - v_{73} \tag{261}$$

9.24 Species Emp

Name Emp

SBO:0000014 enzyme

Initial amount 0.011515593 µmol

This species takes part in three reactions (as a reactant in d_Emp and as a product in g_emp and as a modifier in e_Emp).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Emp} = |v_{45}| - |v_{74}| \tag{262}$$

9.25 Species Eno

Name Eno

SBO:0000014 enzyme

Initial amount 0.011552813 µmol

This species takes part in three reactions (as a reactant in d_Eno and as a product in g_eno and as a modifier in e_Eno).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Eno} = v_{46} - v_{75} \tag{263}$$

9.26 Species Fdp

Name Fdp

SBO:0000014 enzyme

Initial amount $1.57492 \cdot 10^{-4} \mu mol$

This species takes part in three reactions (as a reactant in d_Fdp and as a product in g_fdp and as a modifier in e_Fdp).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Fdp} = v_{47} - v_{76} \tag{264}$$

9.27 Species GltA

Name GltA

SBO:0000014 enzyme

Initial amount 0.001029612 µmol

This species takes part in three reactions (as a reactant in d_GltA and as a product in g_gltA and as a modifier in e_GltA).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GltA} = |v_{48}| - |v_{77}| \tag{265}$$

9.28 Species Icd

Name Icd

SBO:0000014 enzyme

Initial amount 0.004290789 µmol

This species takes part in five reactions (as a reactant in e_AceK_Ki, d_Icd and as a product in e_AceK_Ph, g_icd and as a modifier in e_Icd).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Icd} = |v_{11}| + |v_{49}| - |v_{10}| - |v_{78}| \tag{266}$$

9.29 Species Icd_P

Name Icd_P

SBO:0000014 enzyme

Initial amount $2.20477 \cdot 10^{-4} \, \mu \text{mol}$

This species takes part in three reactions (as a reactant in e_AceK_Ph, d_Icd_P and as a product in e_AceK_Ki).

$$\frac{d}{dt}Icd_{-}P = v_{10} - v_{11} - v_{79}$$
 (267)

9.30 Species Mdh

Name Mdh

SBO:0000014 enzyme

Initial amount 0.00345727 µmol

This species takes part in three reactions (as a reactant in d_Mdh and as a product in g_mdh and as a modifier in e_Mdh).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mdh} = |v_{51}| - |v_{81}| \tag{268}$$

9.31 Species Me

Name Me

SBO:0000014 enzyme

Initial amount $9.99714 \cdot 10^{-4} \mu mol$

This species takes part in three reactions (as a reactant in d_Me and as a product in g_me and as a modifier in e_Me).

$$\frac{d}{dt}Me = |v_{52}| - |v_{82}| \tag{269}$$

9.32 Species PckA

Name PckA

SBO:0000014 enzyme

Initial amount 0.002290892 µmol

This species takes part in three reactions (as a reactant in d_PckA and as a product in g_pckA and as a modifier in e_PckA).

$$\frac{\mathrm{d}}{\mathrm{d}t} \operatorname{PckA} = |v_{53}| - |v_{83}| \tag{270}$$

9.33 Species Pdh

Name Pdh

SBO:0000014 enzyme

Initial amount 0.004647401 µmol

This species takes part in three reactions (as a reactant in d_Pdh and as a product in g_pdh and as a modifier in e_Pdh).

$$\frac{d}{dt}Pdh = |v_{54}| - |v_{84}| \tag{271}$$

9.34 Species PfkA

Name PfkA

SBO:0000014 enzyme

Initial amount $1.43816 \cdot 10^{-4} \mu mol$

This species takes part in three reactions (as a reactant in d_PfkA and as a product in g_pfkA and as a modifier in e_PfkA).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{PfkA} = |v_{56}| - |v_{87}| \tag{272}$$

9.35 Species Ppc

Name Ppc

SBO:0000014 enzyme

Initial amount $9.99714 \cdot 10^{-4} \mu mol$

This species takes part in three reactions (as a reactant in d_Ppc and as a product in g_ppc and as a modifier in e_Ppc).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ppc} = |v_{57}| - |v_{88}| \tag{273}$$

9.36 Species PpsA

Name PpsA

SBO:0000014 enzyme

Initial amount $9.87493 \cdot 10^{-4} \mu mol$

This species takes part in three reactions (as a reactant in d_PpsA and as a product in g_ppsA and as a modifier in e_PpsA).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{PpsA} = |v_{58}| - |v_{89}| \tag{274}$$

9.37 Species PykF

Name PykF

SBO:0000014 enzyme

Initial amount 0.005977168 µmol

This species takes part in three reactions (as a reactant in d_PykF and as a product in g_pykF and as a modifier in e_PykF).

$$\frac{d}{dt} PykF = |v_{59}| - |v_{90}|$$
 (275)

9.38 Species Cra

Name Cra

SBO:0000245 macromolecule

Initial amount $2.99098 \cdot 10^{-4} \mu mol$

This species takes part in 14 reactions (as a reactant in tf_Cra, d_Cra and as a product in g_cra and as a modifier in g_aceA, g_aceB, g_aceK, g_emp, g_eno, g_fdp, g_icd, g_pckA, g_pfkA, g_ppsA, g_pykF).

$$\frac{d}{dt}Cra = |v_{42}| - |v_{12}| - |v_{69}| \tag{276}$$

9.39 Species CraFBP

Name CraFBP

SBO:0000253 non-covalent complex

Initial amount 0.006990902 µmol

This species takes part in two reactions (as a reactant in d_CraFBP and as a product in tf_Cra).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CraFBP} = |v_{12}| - |v_{70}| \tag{277}$$

9.40 Species Crp

Name Crp

SBO:0000245 macromolecule

Initial amount 0.005943273 µmol

This species takes part in three reactions (as a reactant in tf_Crp, d_Crp and as a product in g_crp).

$$\frac{d}{dt}Crp = |v_{43}| - |v_{13}| - |v_{71}| \tag{278}$$

9.41 Species CrpcAMP

Name CrpcAMP

SBO:0000253 non-covalent complex

Initial amount 0.001346727 µmol

This species takes part in ten reactions (as a reactant in d_CrpcAMP and as a product in tf_Crp and as a modifier in g_aceA, g_aceB, g_aceK, g_acs, g_akg2mal, g_emp, g_gltA, g_mdh).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CrpcAMP} = |v_{13}| - |v_{72}| \tag{279}$$

9.42 Species IclR

Name IclR

SBO:0000245 macromolecule

Initial amount 0.00729 μmol

This species takes part in five reactions (as a reactant in d_IclR and as a product in g_iclr and as a modifier in g_aceA, g_aceB, g_aceK).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IclR} = |v_{50}| - |v_{80}| \tag{280}$$

9.43 Species PdhR

Name PdhR

SBO:0000245 macromolecule

Initial amount 0.001163813 µmol

This species takes part in four reactions (as a reactant in tf_PdhR, d_PdhR and as a product in g_pdhr and as a modifier in g_pdh).

$$\frac{d}{dt} P dh R = |v_{55}| - |v_{14}| - |v_{85}| \tag{281}$$

9.44 Species PdhRPYR

Name PdhRPYR

SBO:0000253 non-covalent complex

Initial amount 0.006126187 µmol

This species takes part in two reactions (as a reactant in d_PdhRPYR and as a product in tf-_PdhR).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PdhRPYR} = v_{14} - v_{86} \tag{282}$$

9.45 Species EIIA

Name EIIA

SBO:0000014 enzyme

Initial amount 0.09647707 µmol

This species takes part in four reactions (as a reactant in pts_r1, d_EIIA and as a product in pts_r4, g_EIIA).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{EIIA} = |v_9| + |v_{60}| - |v_8| - |v_{91}| \tag{283}$$

9.46 Species EIIA_P

Name EIIA_P

SBO:0000014 enzyme

Initial amount 0.00352292 µmol

This species takes part in five reactions (as a reactant in pts_r4, d_EIIA_P and as a product in pts_r1 and as a modifier in e_Cya, env_GLCup).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{EIIA}.\mathrm{P} = |v_8| - |v_9| - |v_{92}| \tag{284}$$

9.47 Species EIICB

Name EIICB

SBO:0000014 enzyme

Initial amount 0.0030 µmol

This species takes part in four reactions (as a reactant in d_EIICB and as a product in g_EIICB and as a modifier in pts_r4, env_GLCup).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{EIICB} = |v_{61}| - |v_{93}| \tag{285}$$

A Glossary of Systems Biology Ontology Terms

SBO:0000014 enzyme: A protein that catalyzes a chemical reaction. The word comes from en "a" or "i") and simo "leave" or "yeas")

SBO:0000245 macromolecule: Molecular entity mainly built-up by the repetition of pseudo-identical units. CHEBI:3383

SBO:0000247 simple chemical: Simple, non-repetitive chemical entity

SBO:0000253 non-covalent complex: Entity composed of several independant components that are not linked by covalent bonds

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany