TEORIA DO AMPLIFICADOR OPERACIONAL

Por Leandro Teodoro 09 jun 2012

O texto a seguir faz um apanhado básico sobre o amplificador operacional, que serve como introdução aos estudos deste circuito integrado.

1. INTRODUÇÃO

amplificador operacional (AmpOp) inicialmente foi projetado realizar operações matemáticas, e este fato carrega em seu nome. O primeiro AmpOp integrado a tornar-se largamente disponível foi o Fairchild UA-709, no final dos anos 60. O circuito integrado 741 foi a base para o desenvolvimento dos circuitos integrados atuais sendo considerado um clássico e fabricado pelas maiores empresas do setor.

Basicamente um AmpOp é um amplificador que possui alto ganho; alta impedância de entrada; baixa impedância de saída e duas entradas, uma inversora e outra não-inversora.

2. O AMPLIFICADOR DIFERENCIAL

Para compreender o funcionamento do AmpOp e as entradas inversora e não-inversora, é importante começar estudando o amplificador diferencial. O circuito do amplificador diferencial com saída com terminal simples é mostrado a seguir:

Figura 1 - Amplidicador Diferencial

Façamos a análise ca da entrada Vin1. Assim, a entrada Vin2 é aterrada e Vcc é substituído pelo terra (já que a fonte cc comporta-se como um curto para ca).

Figura 2 - Análise ca

Aplicando um sinal alternado a entrada Vin1 temos que:

Verifica-se que quando aterrado Vin2, o transistor Q2 apresenta uma configuração de base comum, estando a tensão Vo em fase com Vin1. Pois é característica da configuração base a não inversão do sinal amplificado. Podemos notar então que Vin1 é a entrada não-inversora.

Agora façamos a análise ca da entrada Vin2. Assim, aterramos a entrada Vin1.

Figura 4 - Entrada Inversora

Verifica-se nestas condições que o transistor Q2 está em configuração emissor comum, e como é característico desta configuração o sinal de saída (Vo) é invertido em relação ao sinal de entrada (Vin2).

Com estas análises podemos checar claramente a diferença entre as entradas inversora e não-inversora.

3. A ALIMENTAÇÃO

A maioria dos circuitos utilizando amplificadores operacionais utilizam fonte de alimentação simétrica. Qual fornece uma tensão positiva e outra negativa tendo como referência o terra.

O AmpOp é alimentado da seguinte forma:

Para fontes de alimentação que utilizam retificação transformador com center-trap. variações do circuito abaixo podem ser utilizados, desde que não exceda o limite de corrente do 1A do CI regulador. Os circuitos integrados 7812 e 7912 realizam a regulação de tensão, sendo a família 78XX regula a tensão positiva e a família 79XX a negativa.

Figura 7 - Fonte com transformador [2]

Em muitos casos não é possível o uso de transformador, como por exemplo, um circuito alimentado com bateria. Então, a alimentação simétrica pode ser conseguida pelo uso de divisor de tensão.

4. CARACTERÍSTICAS BÁSICAS DO AMPLIFICADOR OPERACIONAL

As características básicas de um amplificador ideal operacional podem ser simplificadas no quadro abaixo:

Impedância de entrada	Infinita
Impedância de saída	Zero
Ganho de tensão em malha	Infinito
aberta	

No entanto, como o amplificador operacional não pode ser fabricado, veremos algumas características dos amplificadores operacionais reais.

4.1. Impedância de entrada

A impedância de entrada (Z_{in}) de um AmpOp real é considerada alta. Para um amplificador 741 a impedância é da ordem de $2M\Omega$. Para impedâncias de entrada

maiores são usados amplificadores com entrada a transistor de efeito de campo. Por exemplo, a impedância de entrada do amplificador TL072 está na ordem de $10^{12}\Omega$.

Figura 9 - Impedância de Entrada

4.2. Tensão de OFFSET

Mesmo com as entradas inversora e não-inversora aterradas surge uma tensão na saída do amplificador esta tensão denominada tensão de Offset. Esta tensão aparece porque os transistores de entrada tem valores diferentes de V_{RF} . Alguns amplificadores disponibilizam terminais para ajuste de Offset. Por exemplo, para o 741C esta tensão é da ordem de ±2mV.

Figura 10 - Ajuste de Offset

4.3. Taxa de inclinação ou SLEW RATE

É a taxa de quanto a tensão pode variar em um período de tempo, normalmente expressa em volts por microsegundo (V/µs). Se a taxa de variação da entrada for maior que a Slew Rate o amplificador produzirá uma saída com o sinal distorcido.

4.3. Resposta em frequência

É o ganho do amplificador em malha aberta em função da frequência do sinal de entrada.

Figura 12 - Ganho em frequência [3]

4.4. Máxima corrente de saída

O AmpOp é um circuito integrado de baixa potência. Tendo como exemplo o 741C, mesmo com sua baixa impedância de saída, a corrente máxima é de 25mA.

4.5.Tensão máxima de alimentação

Os amplificadores operacionais cobrem uma ampla faixa de tensões de alimentação. Sendo seu limite compatível com as tecnologias TTL e CMOS. Alguns limites máximos de tensões de alimentação são mostrados baixo:

LM741	±22V
LM741A	±22V
LM741C	±18V
TL072	±18V

REFERÊNCIAS

- [1] AMPLIFICADORES OPERACIONAIS, Luiz Alberto Danilow, Pedro Celestino, Editora Érica, 1ª Edição
- [2] Fonte simétrica 12+12 V x 1 A, Newton C. Braga, Disponível em: http://www.sabereletronica.com.br
- [3] TL072 DATASHEET, Texas Instruments, disponível em: www.datasheetarchive.com