LAPORAN KONVERSI DATA WAREHOUSE & OLAP "PENGEMBANGAN DATA WAREHOUSE DALAM ANALISIS PENYEWAAN DAN PERFORMA FILM BERDASARKAN GENRE, AKTOR DAN TREN PENYEWAAN" SEMESTER GANJIL 2024/2025

Dosen Pengampu:

Mohammad Irwan Afandi, S.T, M.Sc.

Disusun Oleh:

Marcellio Aurel Christian - 22082010019

PROGRAM STUDI SISTEM INFORMASI FAKULTAS ILMU KOMPUTER UNIVERSITAS PEMBANGUNAN NASIONAL "VETERAN" JAWA TIMUR 2024

DAFTAR ISI

DAFTAR ISI	
BAB 1 PENDAHULUAN	2
1.1 Deskripsi	2
1.2 Rumusan Masalah	2
1.3 Batasan	2
BAB 2 METODOLOGI	3
2.1 Metode Pengembangan	3
2.1.1 Perencanaan	3
2.1.2 Perancangkan Skema	3
2.1.3 Ekstrasi Data	4
2.1.4 Pembuatan CUBE Mondrian di Tomcat	5
BAB 3 HASIL DAN IMPLEMENTASI	6
3.1 Implementasi Model Multidimensi	6
3.1.1 Skema DWH	6
3.2 Implementasi Cube dan OLAP	13
3.2.1 Cube dan OLAP	13
LAMPIRAN	19

BAB 1 PENDAHULUAN

1.1 Deskripsi

Dalam industri hiburan, khususnya penyewaan film dapat memahami tentang preferensi pelanggan dan performa produk yang sangat penting dalam peningkatan pendapatan dan kepuasan pelanggan. Genre film, popularitas aktor, dan tren penyewaan merupakan faktor utama yang mempengaruhi keputusan pelanggan dalam menyewa film. Namun, banyak perusahaan menghadapi tantangan dalam menganalisis data ini secara efektif karena kurangnya infrastruktur data yang memadai dan alat analisis yang mendukung pengambilan keputusan strategis.

Proyek ini berfokus pada analisis penyewaan dan performa film berdasarkan genre, aktor, dan tren penyewaan. Maka dari itu digunakan **DVD Rental Database**, sebuah database yang mencakup data transaksi penyewaan, informasi pelanggan, dan detail produk (film). Database ini relevan karena menyediakan informasi yang lengkap untuk mengidentifikasi pola penyewaan dan mengukur performa film secara kuantitatif.

1.2 Rumusan Masalah

Bagaimana pengembangan data warehouse yang dapat digunakan untuk mendukung analisis data penyewaan film berdasarkan genre, aktor, dan tren penyewaan untuk mengidentifikasi preferensi pelanggan? Selain itu, bagaimana data tersebut dapat diolah untuk memberikan wawasan mendalam mengenai prefrensi pelanggan?

1.3 Batasan

Pada proyek ini, pengembangan data warehouse dalam analisis penyewaan dan performa film berdasarkan genre, aktor, dan tren penyewaan hanya mencakup data yang berasal dari database DVD Rental. Pembahasan dan analisis dibatasi pada dua measures yaitu, total transaksi (Jumlah keseluruhan transaksi penyewaan film), serta total pendapatan (Jumlah total pendapatan yang dihasilkan dari transaksi tersebut).

BAB 2

METODOLOGI

2.1 Metode Pengembangan

2.1.1 Perencanaan

Proses perencanaan dalam pengembangan data warehouse untuk analisis penyewaan dan performa film berdasarkan genre, aktor, dan tren penyewaan dimulai dengan analisis kebutuhan data dan identifikasi struktur database. Database yang digunakan adalah database DVD Rental, yang terdiri dari berbagai tabel utama seperti rental, payment, customer, store, staff, date, inventory, dan film. Setiap tabel memiliki peran spesifik dalam mencatat transaksi penyewaan, data pelanggan, hingga informasi detail film.

Pada tahap ini, hubungan antar-tabel dipetakan untuk memastikan data yang diperlukan dapat diintegrasikan dengan baik, terutama untuk menghasilkan informasi yang relevan terkait total transaksi dan total pendapatan. Pemahaman menyeluruh terhadap struktur dan sumber data ini menjadi dasar utama dalam merancang skema data warehouse yang efektif dan sesuai dengan tujuan analisis.

Selain itu, dirancang pula strategi untuk proses Extract, Transform, Load (ETL) guna memastikan data yang ada dapat diproses secara optimal. Proses ETL ini bertujuan untuk mengintegrasikan data dari berbagai tabel, membersihkan dan mengubah format data jika diperlukan, serta memuatnya ke dalam data warehouse, sehingga menghasilkan informasi yang terstruktur dan mendukung analisis penyewaan serta performa film secara komprehensif.

2.1.2 Perancangkan Skema

Data warehouse yang dirancang untuk mendukung analisis penyewaan dan performa film berdasarkan genre, aktor, dan tren penyewaan menggunakan model *star schema*. Model ini dipilih karena memiliki struktur yang sederhana, mudah dipahami, dan lebih efisien dalam implementasi dibandingkan dengan model lainnya. *Star schema* memungkinkan pengelolaan data yang terorganisir dengan baik melalui pemisahan antara tabel fakta dan tabel dimensi.

Tabel fakta yang dirancang adalah fact_rental, yang berisi informasi utama terkait transaksi, seperti tanggal sewa, jumlah transaksi, dan total pendapatan. Data ini menjadi pusat dari analisis dan dihubungkan dengan berbagai tabel dimensi yang relevan.

Adapun tabel dimensi yang dirancang adalah sebagai berikut:

- 1. Dim_Film: Berisi informasi detail mengenai genre, judul, dan rating film. Dimensi ini menggunakan *Slowly Changing Dimension (SCD)* Type 2 untuk mencatat perubahan historis data film.
- 2. Dim_Aktor: Menyimpan daftar aktor yang berperan dalam setiap film. Dimensi ini juga menggunakan *SCD Type 2* untuk melacak perubahan data aktor dari waktu ke waktu.
- 3. Dim_Waktu: Menyediakan data kalender yang mencakup tanggal, bulan, dan tahun. Dimensi ini dirancang dengan *SCD Type 1* karena data waktu bersifat tetap dan tidak memerlukan pelacakan historis.
- 4. Dim_Customer: Berisi informasi demografis pelanggan, seperti nama, alamat, dan preferensi. Dimensi ini menggunakan *SCD Type 2* untuk mencatat perubahan informasi pelanggan seiring waktu.
- 5. Dim_Staff: Berisi data staf yang terlibat dalam setiap transaksi penyewaan. Dimensi ini menggunakan *SCD Type 2* untuk melacak perubahan data staf.
- 6. Dim_Category: Menyimpan informasi kategori film yang tersedia. Dimensi ini menggunakan *SCD Type 1* karena kategori bersifat tetap dan jarang berubah.
- 7. Dim_Store: Berisi informasi detail mengenai toko penyewaan film, seperti lokasi dan identitas toko. Dimensi ini menggunakan *SCD Type 2* untuk mencatat perubahan historis data toko.

2.1.3 Ekstrasi Data

Pada proyek ini, proses ekstraksi data dilakukan dengan mengimpor database DVD Rental ke PostgreSQL sebagai langkah awal dalam pengelolaan data mentah. Proses ini mencakup pengambilan data dari tabel-tabel utama, seperti film, customer, rental, payment, dan store, dengan menggunakan *query* PostgreSQL untuk memperoleh subset data yang relevan dengan kebutuhan analisis.

Data yang diekstrak kemudian divalidasi untuk memastikan integritasnya, termasuk menghindari duplikasi data dan nilai *null* pada key utama. Setelah validasi, data dipindahkan ke staging area menggunakan Pentaho Data Integration (PDI). Di staging area, dilakukan proses pembersihan dan transformasi data untuk memastikan struktur data sesuai dengan kebutuhan analisis yang melibatkan total transaksi, total pendapatan, dan dimensi seperti genre, aktor, serta tren penyewaan.

Data yang telah diproses di staging area menjadi dasar integrasi ke dalam data warehouse. Proses ini memastikan bahwa data yang dihasilkan siap digunakan untuk analisis penyewaan dan performa film secara komprehensif, mendukung pengambilan wawasan yang relevan sesuai dengan tujuan proyek ini.

2.1.4 Pembuatan CUBE Mondrian di Tomcat

Pembuatan *cube* Mondrian dilakukan untuk mendukung analisis multidimensional pada data warehouse dalam proyek analisis penyewaan dan performa film berdasarkan genre, aktor, dan tren penyewaan. Proses ini dimulai dengan mendefinisikan file skema XML yang menghubungkan tabel fakta dan tabel dimensi dalam *star schema*. Skema ini dirancang untuk memungkinkan analisis data secara mendalam dari berbagai sudut pandang, seperti berdasarkan genre, aktor, waktu, toko, atau pelanggan.

Setelah skema *cube* selesai dibuat, implementasi dilakukan pada server Tomcat. Server Tomcat bertindak sebagai penghubung antara data warehouse dan tools OLAP, seperti Pentaho. Dengan integrasi ini, pengguna dapat mengakses dan menganalisis data secara fleksibel melalui antarmuka OLAP yang mendukung eksplorasi data secara interaktif.

Dengan adanya *cube* Mondrian, analisis data menjadi lebih efisien dan mendalam, memungkinkan pengguna untuk menggali informasi berdasarkan kebutuhan, seperti pola penyewaan berdasarkan genre tertentu atau kontribusi aktor terhadap total pendapatan. Hal ini memberikan fleksibilitas lebih dalam menjelajahi data serta mendukung pengambilan keputusan berbasis wawasan yang dihasilkan dari data warehouse.

BAB 3 HASIL DAN IMPLEMENTASI

3.1 Implementasi Model Multidimensi

3.1.1 Skema DWH

Desain data warehouse ini menggunakan model star schema yang terdiri dari tabel fakta dan tabel dimensi:

1. dim_actor

B. Dimension Table

```
        Column Name
        # Data type
        Identity
        Collation
        Not Null
        Default

        123 sk_actor
        1 bigserial
        [v] nextval('dwh.dim_actor_sk_actor_seq'::regclass)

        123 actor_id
        2 int2
        []

        Az actor_name
        3 text
        default
        []

        123 film_id
        4 int2
        []

        123 version
        5 int4
        []

        Q date_from
        6 timestamp
        []

        Q date_to
        7 timestamp
        []
```

2. dim category

```
A. Create Table SQL

CREATE TABLE dwh.dim_category (

sk_category int4 NOT NULL,

category_id int2 NULL,

category_name varchar(25) NULL,

film_id int2 NULL,

CONSTRAINT dim_category_pkey PRIMARY KEY (sk_category)
);
```

CREATE INDEX idx dim category lookup ON dwh.dim category USING btree (sk category);

B. Dimension Table

Column Name	#	Data type	Identity	Collation	Not No
123 sk_category	1	int4			[v]
123 category_id		int2			[]
A-Z category_name		varchar(25)		<u>default</u>	[]
123 film_id	4	int2			[]

3. dim_customer

```
A. Create Table SQL
   CREATE TABLE dwh.dim customer (
         sk customer bigserial NOT NULL,
         customer id int4 NULL,
         customer store id int2 NULL,
         cutomer name text NULL,
         customer email varchar(50) NULL,
         customer active text NULL,
         customer address id int2 NULL,
         customer address varchar(50) NULL,
         customer district varchar(20) NULL,
         customer city id int2 NULL,
         customer postal code varchar(10) NULL,
         customer phone varchar(20) NULL,
         customer_city varchar(50) NULL,
         customer country id int2 NULL,
         customer country varchar(50) NULL,
         "version" int4 NULL,
         date from timestamp NULL,
         date to timestamp NULL,
         CONSTRAINT dim customer pkey PRIMARY KEY (sk customer)
   );
   CREATE INDEX idx dim customer lookup ON dwh.dim customer USING
   btree (customer id);
   CREATE INDEX idx dim customer tk ON dwh.dim customer USING btree
   (sk customer);
```

Column Name	#	Data type	Identity	Collation	Not Null	Default
123 sk_customer		bigserial			[v]	nextval('dwh.dim_customer_sk_customer_seq'::regclass)
123 customer_id						
123 customer_store_id						
A-Z cutomer_name				<u>default</u>		
A-Z customer_email		varchar(50)		<u>default</u>		
A-Z customer_active				<u>default</u>		
123 customer_address_id						
A-Z customer_address				<u>default</u>		
A-Z customer_district		varchar(20)		<u>default</u>		
123 customer_city_id						
A-Z customer_postal_code				<u>default</u>		
A-Z customer_phone				<u>default</u>		
A-Z customer_city		varchar(50)		<u>default</u>		
123 customer_country_id						
A-Z customer_country				<u>default</u>		
123 version						
Ø date_from		timestamp				
Ø date_to		timestamp				

4. dim date

A. Create Table

```
CREATE TABLE dwh.dim date (
      sk waktu int4 NOT NULL,
      tanggal timestamp NULL,
      deskripsi tanggal text NULL,
      sk tahun float8 NULL,
      tahun angka int2 NULL,
      sk kuartal float8 NULL,
      kuartal angka float8 NULL,
      kuartal varchar(2) NULL,
      kuartal tahun varchar(32) NULL,
      sk bulan float8 NULL,
      bulan angka int2 NULL,
      bulan varchar(30) NULL,
      sk minggu float8 NULL,
      minggu varchar(32) NULL,
      minggu dalam tahun angka int2 NULL,
      minggu dalam bulan angka float8 NULL,
      minggu dalam bulan text NULL,
      hari varchar(30) NULL,
      hari dalam tahun angka int2 NULL,
      hari dalam bulan angka int2 NULL,
      hari dalam minggu angka int2 NULL,
      is weekend varchar(1) NULL,
      banyak hari dalam bulan int2 NULL,
      tahun sort varchar(4) NULL,
      hari dalam minggu sort varchar(60) NULL,
      CONSTRAINT dim date pkey PRIMARY KEY (sk waktu)
```

);

B. Dimension Table

Column Name	#	Data type	Identity	Collation	Not Null	Default
123 sk_customer	1	bigserial			[v]	nextval('dwh.dim_customer_sk_customer_seq'::regclass)
123 customer_id						
123 customer_store_id						
A-Z cutomer_name				<u>default</u>		
A-Z customer_email		varchar(50)		<u>default</u>		
A-Z customer_active				<u>default</u>		
123 customer_address_id						
A-Z customer_address		varchar(50)		<u>default</u>		
A-Z customer_district		varchar(20)		<u>default</u>		
123 customer_city_id						
A-Z customer_postal_code				<u>default</u>		
A-Z customer_phone				<u>default</u>		
A-Z customer_city		varchar(50)		<u>default</u>		
123 customer_country_id						
A-Z customer_country		varchar(50)		<u>default</u>		
123 version						
Ø date_from						
date_to						

5. dim_film

```
A. Create Table
   CREATE TABLE dwh.dim film (
          sk film bigserial NOT NULL,
          film id int4 NULL,
          film title varchar(255) NULL,
          film description text NULL,
          film year int4 NULL,
          film languange id int2 NULL,
          film language name varchar(20) NULL,
          film rental duration int2 NULL,
          film rental rate numeric(6, 2) NULL,
          film length int2 NULL,
          film replacement cost numeric(7, 2) NULL,
          film rating text NULL,
          film special features text NULL,
          "version" int4 NULL,
          date from timestamp NULL,
          date to timestamp NULL,
          CONSTRAINT dim film pkey PRIMARY KEY (sk film)
   );
   CREATE INDEX idx_dim_film_lookup ON dwh.dim_film USING btree
   (film id);
   CREATE INDEX idx dim film tk ON dwh.dim film USING btree (sk film);
```

Column Name	#	Data type	Identity	Collation	Not Null	Default
123 sk_film	1	bigserial			[v]	nextval('dwh.dim_film_sk_film_seq'::regclass)
123 film_id		int4				
A-Z film_title		varchar(255)		<u>default</u>		
A-Z film_description		text		<u>default</u>		
123 film_year						
123 film_languange_id						
A-Z film_languange_name		varchar(20)		<u>default</u>		
123 film_rental_duration		int2				
123 film_rental_rate		numeric(6, 2)				
123 film_length		int2				
123 film_replacement_cost		numeric(7, 2)				
A-Z film_rating		text		<u>default</u>		
A-Z film_special_features		text		<u>default</u>		
123 version		int4				
Ø date_from		timestamp				
Ø date_to		timestamp			[]	<u> </u>

6. dim_staff

```
A. Create Table SQL
   CREATE TABLE dwh.dim staff (
          sk staff bigserial NOT NULL,
          staff id int4 NULL,
          staff name text NULL,
          staff email varchar(50) NULL,
          staff address id int2 NULL,
          staff address varchar(255) NULL,
          staff district varchar(50) NULL,
          staff city id int2 NULL,
          staff postal code varchar(20) NULL,
          staff phone varchar(20) NULL,
          staff city varchar(50) NULL,
          staff country id int2 NULL,
          staff country varchar(50) NULL,
          staff active text NULL,
          staff store id int2 NULL,
          staff username varchar(40) NULL,
          staff password varchar(40) NULL,
          "version" int4 NULL,
          date from timestamp NULL,
          date to timestamp NULL,
          CONSTRAINT dim_staff_pkey PRIMARY KEY (sk_staff)
   );
   CREATE INDEX idx dim staff lookup ON dwh.dim staff USING btree
   (staff id);
   CREATE INDEX idx dim staff tk ON dwh.dim staff USING btree (sk staff);
```

Column Name	# Data type	Identity Collation	Not Null	Default
123 sk_staff	1 bigserial	•	[v]	nextval('dwh.dim_staff_sk_staff_seq'::regclass)
123 staff_id	2 int4			
A-Z staff_name				
A-Z staff_email	4 varchar(50)	<u>default</u>		
123 staff_address_id	5 int2			
A-Z staff_address	6 varchar(255)	<u>default</u>		
A-Z staff_district	7 varchar(50)	<u>default</u>		
123 staff_city_id				
A-Z staff_postal_code	9 varchar(20)	<u>default</u>		
A-Z staff_phone	10 varchar(20)	<u>default</u>		
A-Z staff_city	11 varchar(50)	<u>default</u>		
123 staff_country_id	12 int2			
A-Z staff_country	13 varchar(50)	<u>default</u>		
A-Z staff_active		<u>default</u>		
123 staff_store_id				
A-Z staff_username	16 varchar(40)	<u>default</u>		
A-Z staff_password	17 varchar(40)	<u>default</u>		
123 version	18 int4			
Ø date_from	19 timestamp			
Ø date_to	20 timestamp	<u> </u>	[]	

7. dim store

```
A. Create Table SQL
   CREATE TABLE dwh.dim store (
          sk store bigserial NOT NULL,
          store id int4 NULL,
          store staff id int2 NULL,
          store staff name text NULL,
          store staff email varchar(50) NULL,
          store address id int2 NULL,
          store address varchar(255) NULL,
          store district varchar(50) NULL,
          store city id int2 NULL,
          store city varchar(50) NULL,
          store posta code varchar(10) NULL,
          store phone varchar(20) NULL,
          store country id int2 NULL,
          store country varchar(50) NULL,
          "version" int4 NULL,
          date from timestamp NULL,
          date to timestamp NULL,
          CONSTRAINT dim store pkey PRIMARY KEY (sk store)
   CREATE INDEX idx dim store lookup ON dwh.dim store USING btree
   (store id);
   CREATE INDEX idx dim store tk ON dwh.dim store USING btree (sk store);
```

Column Name	#	Data type	Identity	Collation	Not Null	Default
123 sk_store	1	bigserial			[v]	nextval('dwh.dim_store_sk_store_seq'::regclass)
123 store_id		int4				
123 store_staff_id						
A-Z store_staff_name		text		<u>default</u>		
A-Z store_staff_email		varchar(50)		<u>default</u>		
123 store_address_id		int2				
A-Z store_address		varchar(255)		<u>default</u>		
A-Z store_district		varchar(50)		<u>default</u>		
123 store_city_id		int2				
A-Z store_city		varchar(50)		<u>default</u>		
A-Z store_posta_code		varchar(10)		<u>default</u>		
A-Z store_phone		varchar(20)		<u>default</u>		
123 store_country_id		int2				
A-Z store_country		varchar(50)		<u>default</u>		
123 version		int4				
Ø date_from		timestamp				
Ø date_to	17	timestamp			[]	

8. fact rental

```
A. Create Table SQL

CREATE TABLE dwh.fact_rental (

trx_id float8 NULL,

sk_customer int8 NULL,

sk_staff int8 NULL,

sk_film int8 NULL,

sk_category int4 NULL,

sk_actor int8 NULL,

sk_actor int8 NULL,

sk_rental_date int4 NULL,

sk_return_date int4 NULL,

sk_payment_date int4 NULL,

amount numeric(7, 2) NULL

);
```

B. Dimension Table

Column Name	#	Data type	Identity	Collation	Not Null
123 trx_id	1	float8			[]
123 sk_customer		int8			[]
123 sk_staff		int8			[]
123 sk_film		int8			[]
123 sk_category	5	int4			[]
123 sk_actor		int8			[]
123 sk_store		int8			[]
123 sk_rental_date		int4			[]
123 sk_return_date		int4			[]
123 sk_payment_date		int4			[]
123 amount	11	numeric(7, 2)			[]

3.2 Implementasi Cube dan OLAP

3.2.1 Cube dan OLAP

a. Cube rental.xml

b. Cube dw_phiquery.jsp

c. Customer

Query

- Hasil

PHI-Minimart - Cube Pendapatan

d. Waktu

Query

```
<Level name="Bulan" visible="true" column="bulan" type="String"
uniqueMembers="false" levelType="TimeMonths"
hideMemberIf="IfBlankName">
        </Level>
        </Hierarchy>
        </Dimension>
```

- Hasil

PHI-Minimart - Cube Pendapatan

e. Genre

- Query

- Hasil

PHI-Minimart - Cube Pendapatan

					Measures	
Customer	Waktu	Genre	Film	Actor	Total Transaksi	Total Pendapatan
+ Semua Customer	+Semua Waktu	-Semua Genre	+Semua Film	+Semua Actor	16.044	64.889,56
		Action	+Semua Film	*Semua Actor	1.112	4.617,88
		Animation	 Semua Film	*Semua Actor	1.166	4.735,34
		Children	+Semua Film	*Semua Actor	945	3.827,55
		Classics	◆Semua Film	*Semua Actor	939	3.759,61
		Comedy	+Semua Film	*Semua Actor	941	3.904,59
		Documentary	♦Semua Film	*Semua Actor	1.050	4.150,5
		Drama	+Semua Film	*Semua Actor	1.060	4.271,4
		Family	+Semua Film	*Semua Actor	1.096	4.411,04
		Foreign	♦Semua Film	*Semua Actor	1.033	4.063,67
		Games	+Semua Film	*Semua Actor	969	3.935,31
		Horror	+Semua Film	*Semua Actor	846	3.476,54
		Music	♦Semua Film	*Semua Actor	830	3.379,7
		New	+Semua Film	*Semua Actor	940	3.758,6
		Sci-Fi	♦Semua Film	*Semua Actor	1.101	4.410,99
		Sports	+Semua Film	+Semua Actor	1.179	4.829,21
		Travel	+Semua Film	+Semua Actor	837	3.357,63

f. Film

- Query

```
<Dimension type="StandardDimension" visible="true" highCardinality="false"</pre>
name="Film">
  <Hierarchy name="Film" visible="true" hasAll="true"</pre>
allMemberName="Semua Film" primaryKey="sk film">
   <Table name="dim film" schema="dwh">
   </Table>
   <Level name="Film" visible="true" column="film id"</pre>
nameColumn="film title" ordinalColumn="film id" type="String"
uniqueMembers="false" levelType="Regular" hideMemberIf="IfBlankName">
   </Level>
   <Level name="Tahun Film" visible="true" column="film id"</pre>
nameColumn="film year" ordinalColumn="film id" type="Numeric"
uniqueMembers="false" levelType="Regular" hideMemberIf="IfBlankName">
   </Level>
  </Hierarchy>
 </Dimension>
```

- Hasil

PHI-Minimart - Cube Pendapatan

					Measures	
Customer	Waktu	Genre	Film	Actor	 Total Transaksi 	 Total Pendapatan
Semua Custon	er +Semua Waktu	+Semua Genre	-Semua Film	+Semua Actor	16.044	64.889,56
			*Academy Dinosaur	+Semua Actor	23	85,77
			+Ace Goldfinger	+Semua Actor	7	24,93
			*Adaptation Holes	+Semua Actor	12	64,88
			+Affair Prejudice	+Semua Actor	23	92,77
			+African Egg	+Semua Actor	12	61,88
			+Agent Truman	+Semua Actor	21	69,79
			+Airplane Sierra	+Semua Actor	15	58,85
			+Airport Pollock	+Semua Actor	18	81,82
			+Alabama Devil	+Semua Actor	12	52,88
			+Aladdin Calendar	+Semua Actor	23	103,77
			*Alamo Videotape	+Semua Actor	24	109,76
			+Alaska Phantom	+Semua Actor	26	116,74
			+Ali Forever	+Semua Actor	9	38,91
			+Alice Fantasia	+Semua Actor		
			+Alien Center	+Semua Actor	22	75,78
			+Alley Evolution	+Semua Actor	14	59,86
			+Alone Trip	+Semua Actor	18	70,82
			+Alter Victory	+Semua Actor	22	99,78
			*Amadeus Holy	♦Semua Actor	21	87,79

g. Actor

Query

```
<Dimension type="StandardDimension" visible="true" highCardinality="false"</p>
name="Film">
  <Hierarchy name="Film" visible="true" hasAll="true"</pre>
allMemberName="Semua Film" primaryKey="sk film">
   <Table name="dim film" schema="dwh">
   </Table>
   <Level name="Film" visible="true" column="film id"</pre>
nameColumn="film title" ordinalColumn="film id" type="String"
uniqueMembers="false" levelType="Regular" hideMemberIf="IfBlankName">
   </Level>
   <Level name="Tahun Film" visible="true" column="film id"</pre>
nameColumn="film year" ordinalColumn="film id" type="Numeric"
uniqueMembers="false" levelType="Regular" hideMemberIf="IfBlankName">
   </Level>
  </Hierarchy>
 </Dimension>
 <Dimension type="StandardDimension" visible="true" name="Actor">
  <Hierarchy name="Actor" visible="true" hasAll="true"</pre>
allMemberName="Semua Actor" primaryKey="sk actor">
   <Table name="dim actor" schema="dwh" alias="">
   </Table>
```

<Level name="Actor" visible="true" column="actor id"</pre> nameColumn="actor_name" ordinalColumn="actor_id" type="String" uniqueMembers="false" levelType="Regular" hideMemberIf="IfBlankName"> </Level> </Hierarchy> </Dimension>

Hasil

PHI-Minimart - Cube Pendapatan

64.889,56

LAMPIRAN

Link Github:

https://github.com/aceldut/Konversi-DWO_22082010019_Marcellio-Aurel-Christian