

Introduction

The goal is to create a low-cost switch interface that can be alternative to commercial options. The device needs be able to perform the main functions that is offered in alternative devices.

Research

Commercial Alternatives

Device	Company	Inputs	Information	
<u>Swifty</u>	Origin Instruments	• 2 - Stereo Jack (Requires splitter)	 Splitter is sold separately: \$10 USB Extension: \$10 	\$99
<u>Tapio</u>	Origin Instruments	• 2 - Stereo Jack (Requires splitter)	 iPad and iPhone Switch Interface 	\$120
Tecla Shield	Tecla	• 2 mono jacks + 4 way Joystick d-pad	Discontinued?9-pin DB connection for joysticks	
Hitch 2	Ablenet	• 4	 Ability to program one to four keystrokes of your choice 9-pin DB connection for joysticks 	\$120
<u>JoyCable</u>	Thinksmartbox	• 2	• Up to 2 switches	£99.00 or \$118
Crick USB Switch Box	Crick Software Inc.	• 4	 Works on Windows and Mac computers Crick Software application 	\$160

DIY Alternatives

Device	Creator	Inputs		Information	Cost (\$US)
Enabled Controller Mini	Milador	•	4 input jacks and 2- axis analog input	 Morse code mode Morse mouse mode Gaming firmware 	\$40
ATMakers KeySwitch	ATMakers	•	5	 Low memory issue with the selected MCU Gaming firmware 	\$40
FAIO Multiplexer	Milador	•	4	 Morse code mode Morse mouse mode Gaming firmware 	\$55

Requirements

Goals

ID	Description
G01	Cost Effective (Low cost comparing to alternative options)
G02	Easy to use
G03	Easy to assemble
G04	Minimal size

Functional Requirements

ID	Description
F01	The device shall have one or more input channels.
F02	The device shall send output data via USB HID to the host device.
F03	The device shall be compatible with switch control software.
F04	The device switch shall incorporate minimal input protection.
F05	The device latency shall not exceed 50 milliseconds.
F06	The device shall support visual feedback for user interactions.
F07	The device shall not consume more than 20 mA of current from the USB port.
F08	The device shall be able to perform Mouse button, joystick button and keyboard emulation.
F09	The device shall weigh less than 25 grams.
F10	The device shall be smaller than 50mm x 40mm x 20mm.

© 2023 by Neil Squire / Makers Making Change.

Non-functional Requirement

ID	Description
NF01	Shall look professional with tight tolerance on case size.
NF02	Input ports should be legibly labelled for easy identification

Constraints

	ID	Description
Ī	C01	Shall be able to be built as a single unit for ≤ \$40 CAD
Ī	C02	Shall be easily manufacturable by a moderately skilled maker

Ideation

The initial idea was to add a custom PCB to an existing, small-sized commercially available microcontroller board.

There are a few other ways this could be accomplished:

- Using components with a proto board and breadboard-friendly 3.5 mm jacks
- Using components in a 3D printed jig / 3d printed PCB
- Using panel mount switch jacks mounted in a 3d printed enclosure

Conceptual Design

Components

Dev Board/MCU

The TRINKEY board is a great low-cost option to design the switch interface based of it, as it offers the basic requirement for creation of a switch interface. Trinkey offer one to three GPIO's and a built-in RGB LED in a small footprint (USB Flash Stick size).

The Trinkey is offered in following versions:

- 1. Adafruit NeoKey Trinkey
 - Digikey Link: https://www.digikey.ca/en/products/detail/adafruit-industries-llc/5020/14307382
 - Cost: \$10 CAD
 - Pros:
 - USB NeoPixel Mechanical Key Switch

© 2023 by Neil Squire / Makers Making Change.

This work is licensed under the CC BY SA 4.0 License: http://creativecommons.org/licenses/by-sa/4.0 Files available at https://makersmakingchange.com/project/rocket-switch-interface/

- o LED Visible from top and bottom
- o One Touch pad
- o Factory code is compatible with Switch control on Android
- Cons:
 - o One GPIO
 - No exposed ground pad (Needs to use pull down)

2. Adafruit Rotary Trinkey

- DigiKey Link: https://www.digikey.ca/en/products/detail/adafruit-industries-llc/4964/14307384
- Cost: \$10
- Pros:
 - 2 Analog pins and 1 digital pin exposed which can be used as three GPIO's
 - One Touch pad
 - Power and ground pads exposed
- Cons:
 - Factory code is not compatible with switch control software
 - o LED Visible from bottom side

3. Adafruit Proximity Trinkey

- Digikey Link: https://www.digikey.ca/en/products/detail/adafruit-industries-llc/5022/15222465
- Cost: \$14 CAD
- Pros:
 - o Two Touch pads
 - Two RGB LEDs on top side
- Cons:
 - o Factory code is not compatible with switch control software
 - No Exposed GPIO's
 - No exposed power and ground pad

This is not a suitable option because there are no solder pads readily accessible to connect a switch easily.

Both the Adafruit NeoKey Trinkey and the Adafruit Rotary Trinkey could be used to create a switch interface. The Adafruit Rotary Trinkey was selected for the following reasons:

- 1. Ability to use 2 switches
- 2. Ground pad is exposed.
- 3. The rotary switch has thru hole connections that make it easier to connect the switch jacks.

3.5 mm Input Jack Options

5.5 IIIII IIIput Jack	-	T	T	T	
3.5 mm Jack	SJ1-3533NG	SJ1-3535NG	MJ-3536N	SJ-43514	STX-3120-3B
Type	Stereo (3	Stereo (3	Mono	Stereo (4	Stereo (3
Type	Conductor, TRS)	Conductor,	IVIOTIO	Conductor,	Conductor,
	Conductor, TK3)	TRS)		TRRS)	TRS)
0 (0000)	4.0.1.4.00	,	4.27.4.20	,	•
Cost (CAD\$)	1.9 to 1.92	1.93 to 1.96	1.37 to 1.39	1.45 to 1.47	1.15 to 1.16
Availability	689,251 from	109,033 from	22,746 from	28,000 from	4,467 from
	Digikey, 21,251	Digikey, 5,468	Digikey, 8,534	Digikey, 27,750	Digikey,
	from Mouser	from Mouser	from Mouser	from Mouser	5,220 from
					Mouser
Manufacturer	CUI Devices	CUI Devices	CUI Devices	CUI Devices	Kycon, Inc.
Dimensions	14(+4) mm x	14(+4) mm x	15.8(+3) mm x	11(+3) mm x	10.5(+3.5)
	8.2mm x	8.2mm x	10mm x	4.9mm x 5mm	mm x 12mm
	12.3mm	12.3mm	10mm		x 10mm
Number of	1	1	1	1	1
Sets					
Number of	3 Conductors, 3	3 Conductors,	2 Conductors,	4 Conductors,	3
Positions	Contacts	5 Contacts	3 Contacts	4 Contacts	Conductors,
					3 Contacts
Voltage -	12VDC	16VDC	12VDC	12VDC	N/A
Rated					
Current Rating	1A	1A	1A	1A	N/A
Internal Switch	None	2 Switches	Single Switch	None	None
ProtoBoard	No	No	No	No	Yes
Friendly					
	0	O		P-0	
	9 .0	4	©		
	T T		7	1-21	, ,
		, THAN			

Trinkey doesn't provide enough pins to support jack internal switch (touch pad may not be a reliable method to provide additional input)

SJ-43514 is a reliable and low-cost option.

Hardware pullup

Hardware pullup can be added as an optional feature

© 2023 by Neil Squire / Makers Making Change.

This work is licensed under the CC BY SA 4.0 License: http://creativecommons.org/licenses/by-sa/4.0
Files available at https://makersmakingchange.com/project/rocket-switch-interface/

Mounting Hole

A single M3 mounting hole to provide additional support for the enclosure.

Concepts

Concept 1: Mono

- Adafruit NeoKey Trinkey
- One switch input through pull-down resistor
- Factory code can be used
- Total cost without PCB: \$11.36
 - o Adafruit NeoKey Trinkey x 1: \$9.73
 - o SJ-43514 3.5mm Jack Stereo x 1: \$1.48
 - 4.7 kΩ 1/4W Through Hole Resistor x 1: \$0.15

Concept 2: Dual version 1

- Adafruit Rotary Trinkey
- Two switch inputs through software/hardware pull-up resistor
- Low-cost option
- Total cost without PCB: \$12.99
 - 1) Adafruit Rotary Trinkey x 1: \$9.73
 - 2) SJ-43514 3.5mm Jack Stereo x 2: \$1.48
 - 3) $4.7 \text{ k}\Omega \text{ } 1/4\text{W} \text{ Through Hole Resistor x 2: } 0.15$

Concept 3: Dual Version 2

- Adafruit Rotary Trinkey
- Two vertical switch inputs (Jack with 2 sets) through software pull-down resistor
- Total cost without PCB: \$14.47
 - 4) Adafruit Rotary Trinkey x 1: \$9.73
 - 5) SJ-43514 3.5mm Jack Stereo x 1: \$4.44
 - 6) 4.7 kΩ 1/4W Through Hole Resistor x 2: \$0.15

Concept 4: Dual Version 3

- Adafruit NeoKey Trinkey
- Two switch inputs through software/hardware pull-up resistor
- Total cost without PCB: \$12.99
 - 1) Adafruit NeoKey Trinkey x 1: \$9.73
 - 2) SJ-43514 3.5mm Jack Stereo x 2: \$1.48
 - 3) $4.7 \text{ k}\Omega \text{ } 1/4\text{W} \text{ Through Hole Resistor x 2: } 50.15$

Concept 5: Triple

- Adafruit Rotary Trinkey
- Three vertical switch inputs (Jack with 3 sets) through software pull-up resistor
- Total cost without PCB: \$14.85
 - 4) Adafruit NeoKey Trinkey x 1: \$9.73

- 5) SJ-43514 3.5mm Jack Stereo x 1: \$4.67
- 6) 4.7 kΩs 1/4W Through Hole Resistor x 3: \$0.15

Concept 6: Breadboard

- Adafruit Rotary Trinkey
- SparkFun ProtoBoard
- Two breadboard friendly 3.5mm switch inputs through software pull-up resistor
- Total cost: \$16.13
 - 1) Adafruit NeoKey Trinkey x 1: \$9.73
 - 2) STX-3120-3B 3.5mm Jack Stereo x 2: \$1.16
 - 3) $4.7 \text{ k}\Omega\text{s}$ 1/4W Through Hole Resistor x 2: \$0.15
 - 4) SparkFun ProtoBoard Square 1" Single Sided x 1: \$2.73
 - 5) Hook-Up Wire x 1: \$1.05

Protoboard / Breadboard

Item	Dimension	Availability	Cost \$CAD	Link
Sparkfun -	2.54mm x	2000 units	\$2.42 to \$3.99	<u>Digikey</u>
Square 1" Single Sided	2.54mm (9 by 9 0.1 standard	available from Digikey and 388		<u>Mouser</u>
	spacing)	from Mouser		<u>Sparkfun</u>
				elmwoodelectronics
ELEGOO Double	20mm x 80mm to	Amazon and	\$1.97 to \$3.45	Amazon.ca
Sided PCB Board	90mm x 150mm	AliExpress		Aliexpress
		70mm x 100mm version on <u>Mouser</u>	Or \$0.56 per unit for 32 units	
Chip Quik	44.5mm x	86 units available	\$1.5 to \$1.62	<u>Digikey</u>
Solder-in breadboard	17.8mm	from Digikey and 48 from Mouser		<u>Mouser</u>

STX-3120-3B 3.5mm jack would be idea for this concept due to it's breadboard friendly characteristic.

Concept 7: 3D Printed

- Adafruit Rotary Trinkey
- Total cost: \$13.9
 - 1) Adafruit NeoKey Trinkey x 1: \$9.73
 - 2) STX-3120-3B 3.5mm Jack Stereo x 2: \$1.16
 - 3) $4.7 \text{ k}\Omega\text{s}$ 1/4W Through Hole Resistor x 2: \$0.15
 - 4) Hook-Up Wire x 1: \$1.05
 - 5) Filament Cost: ~ \$0.5

Circuit Board

1. PCB (Dual Concept 1)

Units	1	5	10
Minimum order Unit	5	5	5
PCB Cost \$US	\$2 (\$2.6 CAD)	\$2 (\$2.6 CAD)	\$2 (\$2.6 CAD)
Shipping Cost \$US	~\$18 (\$23.5 CAD)	~\$18 (\$23.5 CAD)	~\$18 (\$23.5 CAD)
Component Cost \$US	\$9.94 (\$12.99 CAD)	\$49.7 (\$64.95 CAD)	\$99.4 (\$129.9 CAD)
Unit Cost \$(US)	\$29.91 (\$39.09 CAD)	\$13.93 (\$18.21 CAD)	\$11.94 (\$15.6 CAD)

2. 3D Printed

Unit cost: \$10.2 (\$13.9 CAD)

Concept Selection

- Low cost (\$10 less than Enabled controller Mini)
- Easy to assemble
- Small footprint
- Individual jacks instead of stereo jack that requires cable adapter.

Concept	Microcontrol ler	Inputs	Single Unit Cost	Qty 5 Unit Cost	Qty 10 Unit Cost	Size
Mono	Neokey Trinkey	1	\$37.46	\$16.58	\$13.97	32mm x 16.5mm x 11mm (Total: 44.7 x 16.5mm x 11mm)
Dual1	Rotary Trinkey	2	\$39.09	\$18.21	\$15.6	33.3mm x 29mm x 11mm (Total: 44.6 x 29mm x 11mm)
Dual2	Rotary Trinkey	2	\$40.57	\$19.69	\$17.08	33.8mm x 16.5mm x 31.7mm (Total: 45.1 x 16.5mm x 31.7mm)
Dual3	Neokey Trinkey	2	\$39.09	\$18.21	\$15.6	31.8mm x 29mm x 11mm (Total: 44.4 x 29mm x 11mm)
Triple	Rotary Trinkey	3	\$40.95	\$20.07	\$17,46	41mm x 16.5mm x 42.5mm (Total: 52.3 x 16.5mm x 42.5mm)
Breadboa rd	Rotary Trinkey	2	\$16.13	\$16.13	\$16.13	10mm x 10mm x 11mm (Total: 21.3 x 10mm x 11mm)
3D Printed	Rotary Trinkey	2	\$13.9	\$13.9	\$13.9	N/A

The breadboard concept introduces challenges for makers with assembly process as the solder pads of breadboard pins are not large enough for solder to make connection with solder pads of the Trinkey board. The breadboard concept would require special tools to drill/cut the breadboard. This would make the assembly process complex for most makers and could result in mis assembly of the unit.

The concept selected is to look at offering both the 3D Printed and Dual-Version 1 options, so that a maker can utilize the 3D Printed version for the least expensive option and use a custom PCB when producing quantities of 5 or more.

Prototyping

- Mono version was fabricated and assembled using PCB.
- The Concept 2: Dual version 1 was fabricated and assembled using PCB.

Detailed Design

Concept 2: Dual version 1 was selected as the final concept due to the following reasons:

- It offers all the required features including exposed GPIO pads and ground pads
- It's a more cost-effective option compared to other PCB base concepts
- This concept has a smaller footprint compared to other concepts
- The selected Trinkey board for this concept has additional solder pads which can help with the assembly process of the device.

Enclosure

<Enclosure Design details>

The enclosure is a snap fit design which includes a top case and bottom case. The two case components are snapped together using four lips added to inner walls of the enclosure. A M3 screw is also inserted through the mounting hole located at the bottom of the enclosure, this is to prevent the PCB to move inside the enclosure. The bottom case includes a cut-out which is used to insert a light pipe.

Testing

The Mono and Dual versions were successfully tested with Universal Switch accessibility feature of an Android smartphone.

Opportunities for Improvement

- Create the 3D Printed version for smaller builds of 5 or less
- Improve the software settings and use GUI based settings
- Minimize the dimensions of the case to allow easier connection for USB ports beside