بِينِ مِ ٱللَّهِ ٱلرَّحْمَزِ ٱلرَّحِيمِ

المادة: مقدمة في بحوث العمليات (100 بحث) الفصل الدراسي 1437/1436هـ الاختبار الفصلي الثاني

اسم الطالب:	الرقم الجامعي:
أستاذ المقرر:	الدرجة:

أكتب اختيارك لرمز الإجابة الصحيحة لكل سؤال في الجدول التالي:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
A	D	C	A	D	C	В	D	C	D	C	A	В	A	В

25	24	23	22	21	20	19	18	17	16
D	C	В	A	В	C	D	В	D	C

السوال الأول:

ليكن لدينا البرنامج الخطي التالي:

s.t.
$$4x_1 + 2x_2 \le 12$$
 :(1)

$$2x_1 + 3x_2 \le 9$$
 :(2) القيد

$$-x_1 + x_2 \le 0$$
 القيد (3) القيد

$$x_1 - x_2 \le 2$$
 :(4) القيد

$$x_1 \ge 0$$
, $x_2 \ge 0$

 $x_1^*=rac{9}{4}$, $x_2^*=rac{3}{2}$, $z^*=7.5$ الحل الأمثل هو:

1. القيود الرابطة هي القيدان:

3. أكبر زيادة اقتصادية يمكن إضافتها لمورد القيد (1) هي:

4. أكبر زيادة اقتصادية يمكن إضافتها لمورد القيد (2) هي:

5. أكبر توفير اقتصادي يمكن إنقاصه من مورد القيد (3) هو:

6. أكبر توفير اقتصادي يمكن إنقاصه من مورد القيد (4) هو:

	D	1.25	C	1	В	0.75	A	0.5	
--	---	------	---	---	---	------	---	-----	--

7. فترة الحساسية لمعامل المتغير x_1 في دالة الهدف هو:

D
$$1 \le c_1 \le 3$$

$$C \qquad \frac{\frac{4}{3} \le c_1 \le 4}{}$$

$$\mathbf{B} \qquad -4 \le c_1 \le -\frac{4}{3}$$

$$\mathbf{A} \qquad \frac{1}{2} \le c_1 \le 3$$

8. فترة الحساسية لمعامل المتغير x_2 في دالة الهدف هو:

$$\mathbf{D} \qquad 1 \le c_2 \le 3$$

$$\mathbf{C} \qquad \frac{4}{3} \le c_2 \le 4$$

$$\mathbf{B} \qquad 1 \le c_2 \le 4$$

$$\mathbf{A} \qquad \frac{1}{2} \le c_2 \le \frac{3}{2}$$

9. سعر الظل (القيمة الاقتصادية للوحدة الإضافية) لمورد القيد (1):

10. سعر الظل (القيمة الاقتصادية للوحدة الإضافية) لمورد القيد (2):

السؤال الثاني:

ليكن لدينا البرنامج الخطى التالى:

(1)

max
$$z = 2x_1 + 2x_2$$

s.t. $3x_1 + 2x_2 \le 6$:(1)
 $3x_1 + 4x_2 \le 9$:(2)

$$2x_1 + 4x_2 \le 8$$
 :(2) القيد $x_1 \ge 0$, $x_2 \ge 0$

11. القيود الخطية في الصيغة القياسية لهذا البرنامج الخطي هي:

$$\begin{array}{c|c}
\mathbf{D} & 3x_1 + 2x_2 + s_1 = 6 \\
2x_1 + 4x_2 + s_2 = 8 \\
x_1, x_2, s_1, s_2 \ge 0
\end{array}$$

C
$$3x_1 + 2x_2 + s_1 \le 6$$

 $2x_1 + 4x_2 + s_2 \le 8$
 $x_1, x_2, s_1, s_2 \ge 0$

$$\begin{array}{c|c}
\mathbf{B} & 3x_1 + 2x_2 + s_1 = 6 \\
2x_1 + 4x_2 + s_2 = 8 \\
x_1, x_2 \ge 0
\end{array}$$

$$\begin{array}{c|c}
A & 3x_1 + 2x_2 = 6 \\
\hline
2x_1 + 4x_2 = 8 \\
x_1, x_2 \ge 0
\end{array}$$

12. إذا كانت المتغيرات غير الأساسية هي (x_1, x_2) ، فإن الحل الأساسي هو:

$$\mathbf{D} \qquad \begin{array}{c} (x_1, x_2, s_1, s_2) = \\ (1, 1.5, 0, 0) \end{array}$$

C
$$(x_1, x_2, s_1, s_2) = (6, 8, 0, 0)$$

$$\mathbf{B} \qquad \begin{array}{c} (x_1, x_2, s_1, s_2) = \\ (0, 0, 1, 1.5) \end{array}$$

$$\mathbf{A} \qquad \begin{array}{c} (x_1, x_2, s_1, s_2) = \\ (0, 0, 6, 8) \end{array}$$

13. إذا كانت المتغيرات غير الأساسية هي (x_1,x_2) ، فإن النقطة الموافقة لها في الرسم البياني هي:

14. إذا كانت المتغيرات الأساسية هي (x_1,s_1) ، فإن الحل الأساسي هو:

$$\mathbf{D} \qquad \begin{array}{c} (x_1, x_2, s_1, s_2) = \\ (4, 0, -6, 0) \end{array}$$

C
$$(x_1, x_2, s_1, s_2) = (1, 1.5, 0, 0)$$

$$\mathbf{B} \qquad \begin{array}{c} (x_1, x_2, s_1, s_2) = \\ (0, 3, 0, -4) \end{array}$$

$$\mathbf{A} \qquad (x_1, x_2, s_1, s_2) = \\ (6, 0, 8, 0)$$

15. إذا كانت المتغيرات الأساسية هي (x_1,s_1) ، فإن النقطة الموافقة لها في الرسم البياني هي:

D Н

C K

	السؤال الثالث:
$\max z = 2x_1 + 3x_2 - x_3$	ليكن لدينا البرنامج الخطي التالي:
s. t. $x_1 + 2x_2 + 2x_3 \le 2$	القيد (1):
$x_1 + 2x_2 + x_3 \le 4$	القيد (2):
$x_1 \ge 0 , \ x_2 \ge 0 , \ x_3 \ge$	≥ 0
لسمبلكس المبدئي التالي:	18. بعد تحويل البرنامج للصيغة القياسية ، سوف يتم تكوين جدول ال

RHS

2

4

RHS

4

A

C

 \mathbf{BV}

 x_1

 \mathbf{BV}

 s_1

 s_2

2

1

1

2

1

3

2

2

3

2

2

2

1

-1

1

0

0

0

B

В

غير ممكن

 $(x_1, x_2) = (6, 8)$

 \mathbf{C}

 \mathbf{C}

16. إذا كانت المتغيرات الأساسية هي (x_1,s_1) ، فإن الحل الأساسي سيكون:

17. إذا كانت المتغيرات غير الأساسية هي (s_1, s_2) ، فإن المتغيرات الأساسية هي:

A

ممكن

 $(x_1, x_2) = (1.5, 1)$

أمثل

 $(x_1, x_2) = (0, 0)$

RHS

0

2

4

RHS

0

2

4

1

0

19. في جدول السمبلكس المبدئي ، إذا اخترنا المتغير الغير أساسي x_2 ليصبح متغير أساسي ، فإن اختبار النسبة الصغرى (ratio test)

	ratio test		ratio test		ratio test		ratio test
D	2/2 = 1	C	2/1 = 2	В	2/2 = 1	A	2/2 = 1
	4/2 = 2		4/1 = 4		2/4 = 0.5		4/1 = 4

20. في جدول السمبلكس المبدئي ، إذا اخترنا المتغير الغير أساسي χ_2 ليصبح متغير أساسي ، فإن المتغير الأساسي الذي سوف يخرج ليصبح متغير غير أساسي هو:

D	So	C	Ç.	R	Υ.,	Δ	Υ.
ע	S ₂		s_1	D	x_2	A	x_1

D

D

В

D

 \mathbf{BV}

 x_1

 x_2

-2

1

1

-2

1

-3

2

2

-3

2

2

1

2

1

1

1

0

0

0

0

1

مقبول

 $(x_1, x_2) = (1, 1.5)$

السؤال الرابع:

إذا كان لدينا جدول السمبلكس التالي لمسألة ما (دالة الهدف هي دالة تعظيم: max z):

BV	x_1	x_2	x_3	s_1	s_2	RHS
z	-1	-2	-1	0	0	0
s_1	-1	2	2	1	0	8
s_2	1	2	4	0	1	4

المتغير الغير أساسى الداخل ليصبح متغير أساسى هو ير.

بعد معرفة المتغير الأساسي الخارج وإكمال عملية تحديث الجدول، سنحصل على جدول السمبلكس التالي:

BV	x_1	x_2	x_3	s_1	s_2	RHS
Z.	0	0	\mathbf{F}	0	1	G
s_1	-2	0	-2	1	H	4
${f E}$	1/2	1	2	0	1/2	2

21. المتغير الذي في موقع الحرف E هو:

	D	s ₂	C	s_1	В	x_2	A	x_1
--	---	----------------	---	-------	---	-------	---	-------

22. القيمة التي في موقع الحرف F هو:

D	0	C	1	В	-3	A	3
---	---	---	---	---	----	---	---

23. القيمة التي في موقع الحرف G هو:

D	0	C	8	R	4	A	2
•	V	C	O	D	•	1 1	-

24. القيمة التي في موقع الحرف H هو:

_	_			_			_	
D	1	\mathbf{C}	-1	B	()	Α	2	
_	*	_	*	_	· ·		_	

25. الحل الأساسي الحالي يعتبر حل:

D	أمثل	C	غير محدود	В	غیر ممکن	A	غير أمثل	
---	------	---	-----------	---	----------	---	----------	--