RESEARCH

Relación del polimorfismo rs5443 del gen GNB3 en la diabetes materna

Víctor Guirado Osorio*, Susana R. Fernández Giaccomassi, Pablo Bermúdez Gámez and Juan C. Vergara Ruz

*Correspondence: victorgo@uma.es ETSI Informática, Universidad de Málaga, Málaga, España Full list of author information is available at the end of the article

Abstract

Durante el embarazo, diversos mecanismos fisiológicos se ven afectados, incluyendo la regulación de leptina, adiponectina y la gluconeogénesis, lo que puede desencadenar complicaciones relacionadas con la diabetes materna (DM). Un mecanismo biológico de particular interés es la posible relación entre la DM y el polimorfismo rs5443 del gen GNB3, que está implicado en la ganancia de peso y la obesidad, factores que son conocidos por incrementar la resistencia a la insulina. Esto sugiere la necesidad de una mayor investigación para comprender mejor la contribución del gen GNB3, profundizando en su papel en la regulación de la glucosa y su influencia en el desarrollo de la DM.

Keywords: diabetes materna; insulina; GNB3

1 Introducción

La diabetes materna (DM) o diabetes gestacional (HP:0009800), es un trastorno que afecta a la secreción y la función de la insulina, conduciendo a la hiperglucemia [1]. Se caracteriza por su aparición en mujeres previamente normoglucémicas [1], tratándose de cualquier grado de intolerancia a la glucosa que se desarrolle por primera vez durante el embarazo [2], y que no sea claramente diabetes manifiesta [3]. Durante el embarazo se ve un aumento de hormonas locales y placentarias que conlleva a un estado de resistencia a la insulina, elevando los niveles de glucosa en sangre para soportar las demandas del feto [4]. Después de un embarazo saludable, la sensibilidad a la insulina vuelve a los niveles previos, mientras que en algunos casos no ocurre así, resultando en DM [4].

Se estima que el gasto en salud en personas diabéticas a nivel mundial en 2017 fue de 850 mil millones de dólares [5] y que las mujeres que padecen diabetes durante la gestación tienen diez veces más riesgo de desarrollar diabetes mellitus tipo 2 (DMT2) que mujeres con un embarazo normal [6] [7]. La prevalencia de hiperglucemia en el embarazo entre mujeres de 20 a 49 años es de un 16

Se asocia a la DM con enfermedades cardiacas en el feto [8] e incluso con enfermedades cardiovasculares y cerebrovasculares en la madre [9]. También se ha relacionado con afecciones que actúan como factores de riesgo, como la obesidad[10] y la DMT2 [11]. En ambas, el incremento de citoquinas proinflamatorias es la principal causa de riesgo[12]. Otras patologías metabólicas, como el hipotiroidismo[13] o la hipotiroxinemia materna[14], también se han asociado negativamente con la aparición de DM. Además de diversas complicaciones del recién nacido tras el embarazo[8][15], se ha observado cierta predisposición del bebé a desarrollar algún

Guirado Osorio et al. Page 2 of 3

tipo de diabetes neonatal[16]. Esta predisposición, así como la de la madre, aparecen relacionadas con factores genéticos, como los polimorfismos de los genes KCNJ11, KCNQ1[17] y ABCC8 [18] principalmente, también relacionados con la DMT2[19]. Por otra parte, se ha visto una potencial relación con el polimorfismo rs5443 del gen GNB3[20] implicado en diversos mecanismos relacionados con la ganancia de peso y la obesidad[21].

Durante el embarazo, se produce una leve resistencia a la insulina en pos del crecimiento del feto [22]. Esto provoca una adaptación de las células beta del páncreas de la madre para mantener la homeostasis de glucosa, pero si no es suficiente para sobrepasar la resistencia, se produce la DM [23]. El polimorfismo rs5443 del gen GNB3 que regula los niveles de glucosa mediante señalización, provoca una subida considerable de peso durante el embarazo y se ha visto altamente relacionado con la DMT2 [24]. Otros mecanismos afectados por la DM son la regulación de niveles de leptina [25, 26], la adiponectina [4, 26], tejido adiposo [4, 27] y la gluconeogénesis [28].

Según lo expuesto pasamos a presentar la siguiente hipótesis en la siguiente sección.

1.1 Hipóteisis

H1. Existe una asociación estadísticamente significativa entre la DM y el polimorfismo rs5443 del gen GNB3.

- 2 Materiales y métodos
- 3 Resultados
- 4 Discusión
- 5 Conclusiones

Abreviaciones

DM: diabetes materna DMT2: diabetes mellitus tipo 2

Disponibilidad de datos y materiales

Contribución de los autores

 $V.G.O: introducción; \ S.R.F.G: introducción; \ P.B.G: introducción; \ J.C.V.R: introducción$

Author details

ETSI Informática, Universidad de Málaga, Málaga, España.

References

- Rodolaki, K., Pergialiotis, V., lakovidou, N., Boutsikou, T., Iliodromiti, Z., Kanaka-Gantenbein, C.: The impact
 of maternal diabetes on the future health and neurodevelopment of the offspring: a review of the evidence
 (2023). doi:10.3389/fendo.2023.1125628
- 2. Association, A.D.: Diagnosis and classification of diabetes mellitus (2009). doi:10.2337/dc09-S062
- 3. Dalfrà, M.G., Burlina, S., Vescovo, G.G.D., Lapolla, A.: Genetics and Epigenetics: New Insight on Gestational Diabetes Mellitus (2020). doi:10.3389/fendo.2020.602477
- Plows, J.F., Stanley, J.L., Baker, P.N., Reynolds, C.M., Vickers, M.H.: The pathophysiology of gestational diabetes mellitus (2018). doi:10.3390/iims19113342
- Cho, N.H., Shaw, J.E., Karuranga, S., Huang, Y., da Rocha Fernandes, J.D., Ohlrogge, A.W., Malanda, B.: Idf diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice 138, 271–281 (2018). doi:10.1016/J.DIABRES.2018.02.023
- Vounzoulaki, E., Khunti, K., Abner, S.C., Tan, B.K., Davies, M.J., Gillies, C.L.: Progression to type 2 diabetes in women with a known history of gestational diabetes: systematic review and meta-analysis (2020). doi:10.1136/bmj.m1361
- You, H., Hu, J., Liu, Y., Luo, B., Lei, A.: Risk of type 2 diabetes mellitus after gestational diabetes mellitus: A systematic review meta-analysis. Indian Council of Medical Research (2021). doi:10.4103/ijmr.IJMR₈52₁8
- Depla, A.L., Wit, L.D., Steenhuis, T.J., Slieker, M.G., Voormolen, D.N., Scheffer, P.G., Heus, R.D., Rijn, B.B.V., Bekker, M.N.: Effect of maternal diabetes on fetal heart function on echocardiography: systematic review and meta-analysis. Ultrasound Obstet Gynecol 57, 539–550 (2021). doi:10.1002/uog.22163

Guirado Osorio *et al.* Page 3 of 3

9. Xie, W., Wang, Y., Xiao, S., Qiu, L., Yu, Y., Zhang, Z.: Association of gestational diabetes mellitus with overall and type specific cardiovascular and cerebrovascular diseases: systematic review and meta-analysis (2022). doi:10.1136/bmj-2022-070244

- Shah, A., Stotland, N.E., Cheng, Y.W., Ramos, G.A., Caughey, A.B.: The association between body mass index and gestational diabetes mellitus varies by race/ethnicity. American Journal of Perinatology 28 (2011). doi:10.1055/s-0031-1272968
- 11. Ben-Haroush, A., Yogev, Y., Hod, M.: Epidemiology of gestational diabetes mellitus and its association with Type 2 diabetes (2004). doi:10.1046/j.1464-5491.2003.00985.x
- Pantham, P., Aye, I.L.M.H., Powell, T.L.: Inflammation in maternal obesity and gestational diabetes mellitus. Placenta 36 (2015). doi:10.1016/j.placenta.2015.04.006
- Gong, L.L., Liu, H., Liu, L.H.: Relationship between hypothyroidism and the incidence of gestational diabetes: A meta-analysis. Taiwanese Journal of Obstetrics and Gynecology 55 (2016). doi:10.1016/j.tjog.2016.02.004
- Ömercan Topaloğlu, Uzun, M., Topaloğlu, S.N., Sahin, I.: Isolated maternal hypothyroxinemia may be associated with insulin requirement in gestational diabetes mellitus. Hormone and Metabolic Research 55 (2022). doi:10.1055/a-2003-0211
- Metzger, B.E., Persson, B., Lowe, L.P., Dyer, A.R., Cruickshank, J.K., Deerochanawong, C., Halliday, H.L., Hennis, A.J., Liley, H., Ng, P.C., Coustan, D.R., Hadden, D.R., Hod, M., Oats, J.J.N., Trimble, E.R.: Hyperglycemia and adverse pregnancy outcome study: Neonatal glycemia. Pediatrics 126 (2010). doi:10.1542/peds.2009-2257
- Dabelea, D., Hanson, R.L., Lindsay, R.S., Pettitt, D.J., Imperatore, G., Gabir, M.M., Roumain, J., Bennett, P.H., Knowler, W.C.: Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: A study of discordant sibships. Diabetes 49 (2000). doi:10.2337/diabetes.49.12.2208
- Ao, D., Wang, H.J., Wang, L.F., Song, J.Y., Yang, H.X., Wang, Y.: The rs2237892 polymorphism in kcnq1 influences gestational diabetes mellitus and glucose levels: A case-control study and meta-analysis. PLoS ONE 10 (2015). doi:10.1371/journal.pone.0128901
- Piccini, B., Coviello, C., Drovandi, L., Rosangela, A., Monzali, F., Casalini, E., Giglio, S., Toni, S., Dani, C.: Transient neonatal diabetes mellitus in a very preterm infant due to abcc8 mutation. AJP Reports 8 (2018). doi:10.1055/s-0038-1636427
- Khan, V., Verma, A.K., Bhatt, D., Khan, S., Hasan, R., Goyal, Y., Ramachandran, S., Alsahli, M.A., Rahmani, A.H., Almatroudi, A., Shareef, M.Y., Meena, B., Dev, K.: Association of genetic variants of kcnj11 and kcnq1 genes with risk of type 2 diabetes mellitus (t2dm) in the indian population: A case-control study. International Journal of Endocrinology 2020 (2020). doi:10.1155/2020/5924756
- Feng, Y., Jiang, C.D., Chang, A.M., Shi, Y., Gao, J., Zhu, L., Zhang, Z.: Interactions among insulin resistance, inflammation factors, obesity-related gene polymorphisms, environmental risk factors, and diet in the development of gestational diabetes mellitus (2019). doi:10.1080/14767058.2018.1446207
- Hsiao, T.J., Hwang, Y., Liu, C.H., Chang, H.M., Lin, E.: Association of the c825t polymorphism in the gnb3 gene with obesity and metabolic phenotypes in a taiwanese population. Genes and Nutrition 8 (2013). doi:10.1007/s12263-012-0304-8
- Kalhan, S.C., Devapatla, S.: Pregnancy, insulin resistance and nitrogen accretion (1999). doi:10.1097/00075197-199909000-00001
- Moyce, B.L., Dolinsky, V.W.: Maternal -Cell adaptations in pregnancy and placental signalling: Implications for gestational diabetes (2018). doi:10.3390/ijms19113467
- Rizvi, S., Raza, S.T., Rahman, Q., Mahdi, F.: Role of GNB3, NET, KCNJ11, TCF7L2 and GRL genes single nucleotide polymorphism in the risk prediction of type 2 diabetes mellitus (2016). doi:10.1007/s13205-016-0572-x
- 25. Pérez-Pérez, A., Vilariño-García, T., Guadix, P., Dueñas, J.L., Sánchez-Margalet, V.: Leptin and nutrition in gestational diabetes. Nutrients 12 (2020). doi:10.3390/nu12071970
- Xu, J., Zhao, Y.H., Chen, Y.P., Yuan, X.L., Wang, J., Zhu, H., Lu, C.M.: Maternal circulating concentrations
 of tumor necrosis factor-alpha, leptin, and adiponectin in gestational diabetes mellitus: A systematic review and
 meta-analysis. Scientific World Journal 2014 (2014). doi:10.1155/2014/926932
- 27. Desoye, G., Herrera, E.: Adipose tissue development and lipid metabolism in the human fetus: The 2020 perspective focusing on maternal diabetes and obesity (2021). doi:10.1016/j.plipres.2020.101082
- 28. Catalano, P.M.: Trying to understand gestational diabetes (2014). doi:10.1111/dme.12381