Computer Vision 07 – Image processing and analysis 1b

doc. dr. Janez Perš (with contributions by prof. Stanislav Kovačič)

> Laboratory for Machine Intelligence Faculty of Electrical Engineering University of Ljubljana

Quick recap of the previous lectures

- Geometric aspects of image formation
- Photometric aspects of image formation
- Color
- Image processing
 - Image (pre)processing
 - Image enhancement/restoration
 - Image analysis
 - Point operations
 - Histogramming

Outline

- Local operations
 - Result depends on the local pixel neighborhood
 - Image filtering is a good example
- Edge detection
 - Sobel
 - Canny

Local operations

- Work on a small neighborhood of pixels (3x3, 5x5, ...)
 - Start with pixel value including its neighborhood and produce new pixel value.
- Typically:
 - Noise suppression
 - Gaussian noise: Linear filtering
 - Impulse/salt&peper noise: Nonlinear (median) filtering
- Other uses:
 - Edge detection
 - Corner detection

Linear filtering

Discrete 2D convolution

$$I_{out}(i,j) = \sum_{k} \sum_{l} h(k,l) \cdot I_{in}(i-k,j-l)$$

- -h(k,l) is convolution mask (or kernel, or filter)
- Equivalent shorthand notation is

$$I_{out}(i,j) = h(i,j) * I_{in}(i,j)$$

Usually h is symmetric or antisymmetric

 $I_{in}(i,j)$

A						_				
	0	0	0	0	0	0	0	0	0	0
AGO	0	0	0	0	0	0	0	0	0	0
4	0	0	0	90	90	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	90	0	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	90	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0

"box filter"

Shift the mask (raster scan) left to right, top to bottom.

 $I_{out}(i,j)$

Shift the mask (raster scan) left to right, top to bottom.

Shift the mask (raster scan) left to right, top to bottom.

 $I_{out}(i,j)$ 10 30

Shift the mask (raster scan) left to right, top to bottom.

Shift the mask (raster scan) left to right, top to bottom.

$I_{out}(i,j)$

What can be said about the result?

How is the result influenced by shape of the kernel?

Source: S. Seitz

Filter example and the result

Original

Box filter

Result

Filter example and the result

- Box filters (3x3, 5x5, ...) act as low-pass filters that smooth images.
 - They are used to reduce additive high frequency noise.
 - Of course, they filter out all high frequency components and therefore tend to blur images.
- In principle, box (rectangular) filters do simple averaging of pixel values within window.
- An unpleasant side effect (artifact) of box-like or disk-like filters is ringing.

Box and disk filter examples

27.11.2019 Note higher frequency lobes spreading out from central (low fr.) parts

Weighted averaging filter

- Ringing effect is caused by sharp (step) filter transitions, producing oscillations around edges in the images.
- Much better idea is to use weighted averaging filters, e.g. 3x 3

	1	2	1
1/16	2	4	2
	1	2	1

 Used quite frequently for filtering an image to suppress high frequency components before downsampling by 2.

Weighted averaging filter

 In fact, you can think of that filter also as a very rough (integer) approximation of (the smallest) 2D Gaussian with

DFT

Let's calculate frequency response for 1D case

$$\omega = 2\pi f = 2\pi / T$$

in pixel units

$$f = 0.25, T = 4, \omega = \frac{\pi}{2}, F(\omega) = 0.5$$

$$f = 0.5, T = 2, \omega = \pi, F(\omega) = 0$$

$$F(\omega) = \frac{1}{2} [1 + \cos(\omega)]$$

frequencies f>0.25 (T<4) are suppressed by at least 0.5!

Further examples

Original

Filter

Source: D. Lowe

No change!

Result

Further examples

7			
	0	0	0
	0	0	1
	0	0	0

Filter

Source: D. Lowe

One pixel image shift!

Result

Convolution is useful for many tasks – e.g. computation of derivatives/gradients.

$$G_{\sigma}(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

Normalization factor – coefficients must sum to 1! 5×5 , $\sigma = 1$

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

- In principle Gaussian extends from –inf to +inf and sums to 1.
- Due to finite extent and discretization we should re-normalize discrete coeficients such that they sum to 1.
- You can produce Gaussian with Matlab function fspecial(,gaussian', w, sigma);

- Gaussian acts as low-pass filter.
- Gaussian is well localized in spatial and spatiofrequency domain, $g(\sigma) \rightarrow DFT \rightarrow G(1/\sigma)$

Filtering using Gaussian kernel

original

 $\sigma = 3$

- In Matlab: imfilter(Image, filter)
- Practical advice: for given σ use the filter size of at least 3 σ ! (otherwise it will have steep cut-off at the edges)

- Could be differentiated as many times as you like!
 - Important property in edge detection, scale space...

$$\sigma = 1$$

It is separable!

$$g(x,y) * f(x,y) = g(x) * g(y) * f(x,y)$$

- Thus, 2D filtering can be implemented as two 1D convolutions
- First, row-wise 1D convolution, followed by column-wise 1D convolution
- Pretty good aproximation of 1D Gaussian with $\sigma = 1$:

```
1 4 6 4 1 x 1/16
```

Kernel separability example

2D convolution (center location only)

1	2	1
2	4	2
1	2	1

$$=2 + 6 + 3 = 11$$

 $= 6 + 20 + 10 = 36$
 $= 4 + 8 + 6 = 18$

65

The filter factors into a product of 1D filters:

x 1 2 1

Perform convolution along rows:

Followed by convolution along the remaining column:

		20	
=	117 117	65	
	2	165	

Local operations

- Smoothing supresses HF noise (+), but also blurs edges (-)
- "Unsharp masking" operation
 - To suppress image blur
- Non-linear filtering median filtering,
 - to suppress impulse noise
- Filtering can displace edges.
 - This can introduce errors when measuring dimensions!

Unsharp masking

Subtract blurred image from the original

$$- g(x,y) = f_i(x,y) - f_g(x,y)$$

Add portion of difference image g(x,y) to the original $f_0(x, y) = (1-k) \cdot f_i(x,y) + k \cdot g(x,y)$

- Could be implemented using Laplacean operator!
 - Matlab: imsharpen()

1	1	1
1	-8	1
1	1	1

Unsharp masking example

Input image

Output image

Median filtering

- To filter out impulse noise
- Pixel value is replaced with median calculated within pixel neighborhood
 - Central pixel and its neighborhood
 - Median value:

1 1 4 4 4 4 5 5 5

 Deals efficiently with large disturbances

- Result:

1	5	5
4	4	4
4	5	4

1	5	5
4	1	4
4	5	4

Median filtering

original

pepper & salt 10%

median filtered 5x5

- Note: median filter is a special case of rank filters
- Matlab function: medfilt2()

What exactly is an edge?

Edge point: Brightness change in an image

Edge point

- Remember: edge points are not lines, or contours, they must be connected first!
- Anyway, by edge detection we refer to detection of edge points!

27.11.2019

What exactly is an edge?

An edge is a place of rapid change in the image intensity
 intensity function

image

extrema of derivative

- Perceptually, this is an edge,
- consisting of edge points

Edge detection - basic idea

- In principle edge detectors (also called edge operators) implement numerical computation of derivatives, by so-called finite difference approximation
 - Finite difference: A finite difference is a mathematical expression of the form f(x + b) f(x + a)
 - If a finite difference is divided by b a, one gets a difference quotient
 - Nowadays mainly used for approximation of derivatives

Edge detection - basic idea

Finite difference approximation:

$$f(x+h, y) = f(x,y) + h x f_x(x,y) + h^2/2 x f_{xx}(x,y) + O(h^3)$$

$$f(x-h, y) = f(x,y) - h x f_x(x,y) + h^2/2 x f_{xx}(x,y) - O(h^3)$$

$$f(x+h,y) - f(x-h,y) = 2h x f_x(x,y) + O(h^3)$$

$$2h x f_x(x,y) = f(x+h,y) - f(x-h,y) + O(h^3)$$

Second order central difference approximation:

$$f_x(x,y) = \frac{f(x+h,y) - f(x-h,y)}{2h} + O(h^2)$$
for h = 1, and ignoring scaling by ½
$$f_x(x,y) \approx f(x+1,y) - f(x-1,y)$$
Edge detector in x direction

We can repeat these steps to get vertical edge (derivative) component

Edge detection operators

Most well known:

Roberts operator

Prewitt operator

Sobel operator

-1 1 1 -2 2 -1 1

9_y

Matlab functions:

edge(), imgradient(), imgradientxy()

Sobel edge detection algorithm

- Convolve image with 1-st Sobel mask (e.g. inhorizontal direction).
- Convolve image with 2-nd Sobel mask (e.g. in vertical direction)
- Now you have components of intensity gradient vector at each pixel position.
- Compute gradient magnitude, this gives candidates for edge points.
- Threshold by gradient magnitude to produce edge image (edge map).
- Gradient direction could also be used, perhaps to connect edge points together

Sobel edge detector at work

Input: grayscale image

A 10 A 10 A		
-1	-2	-1
1	2	1
-1		1
-1 -2		1

Sobel

Result: gradient magnitude

Sobel edge detector at work

Effect of noise on edge detection

- Noise is a serious problem in edge detection.
 - All difference operators (filters) respond strongly to noise.
 - Image noise results in pixels that look very different from their neighbors, and therefore gradient is large.
 - Generally, the larger the frequency, the stronger response
 - Note: $d(A \sin(\omega x)) / dx = \omega A \cos(\omega x)$
 - What can we do about it?

Noise amplification!

Effects of noise

Consider single row or column of an image:

Where is the edge?

Solution: smooth first

To find edges, look for peaks in $\frac{\partial}{\partial t}$

 $\frac{d}{dx}(f*g)$

Slide credit: S. Seitz

Derivative theorem of convolution

• Differentiation and convolution are linear operations: $\frac{d}{dx}(f*g)=f*\frac{d}{dx}g$

This saves us one operation!

f

$$\frac{d}{dx}g$$

Slide credit: S. Seitz

$$f * \frac{d}{dx}g$$

Derivative of Gaussian filter

- Discrete convolution of Gaussian with derivative filter gives derivative of Gaussian!
- But you can do it analitically!
- Differentiate Gaussian to get derivative of Gaussian, then discretize.

gx(x,y)

Edge detection

- General approach:
 - Low-pass filtering with gaussian of suitable sigma to suppress noise
 - Computing derivatives (intensity gradient), applying edge operator
 - Thresholding, thinning if needed
- But, we can combine Gaussian filtering with differentiation.
 - Thus, we compute first derivatives of Gaussian, and filter (convolve) image
 - with derivatives of Gaussian.

