Package 'orloca.es'

October 14, 2022

Type Package

Depends or loca (>= 4.9)

Language es

Title Spanish version of orloca package. Modelos de localizacion en investigacion operativa

Version 4.9

Date 2020-03-06

Author Manuel Munoz-Marquez <manuel.munoz@uca.es>

Maintainer Manuel Munoz-Marquez <manuel.munoz@uca.es>

Description Help and demo in Spanish of the orloca package. (Ayuda y demo en espanol del paquete orloca.) Objetos y metodos para manejar y resolver el problema de localizacion de suma minima, tambien conocido como problema de Fermat-Weber. El problema de localizacion de suma minima busca un punto tal que la suma ponderada de las distancias a los puntos de demanda se minimice. Vease ``The Fermat-Weber location problem revisited" por Brimberg, Mathematical Programming, 1, pag. 71-76, 1995. <DOI:10.1007/BF01592245>.
Se usan algoritmos generales de optimizacion global para resolver el problema, junto con el metodo adhoc Weiszfeld, vease ``Sur le point pour lequel la Somme des distance de n points donnes est minimum", por Weiszfeld, Tohoku Mathematical Journal, First Series, 43, pag. 355-386, 1937 o ``On the point for which the sum of the distances to n given points is minimum", por E. Weiszfeld y F. Plastria, Annals of Operations Research, 167, pg. 7-41, 2009. <DOI:10.1007/s10479-008-0352-z>.

License GPL (>= 3)

URL http://knuth.uca.es/orloca

Repository CRAN

Repository/R-Forge/Project orloca

Repository/R-Forge/Revision 55

Repository/R-Forge/DateTimeStamp 2020-03-06 08:24:32

Date/Publication 2020-03-06 16:30:02 UTC

NeedsCompilation no

2 orloca.es-package

R topics documented:

orloca.es-package		Spanish version of orloca package - Versión española del paquete orloca			
Index			23		
	zsummin		2.		
	-				
	•				
	•				
	-				
	_				
	1				
	•				
	_				
	_				
	•				
	•				

Description

Ayuda y demo en español del paquete orloca.

Objetos y métodos para manejar y resolver el problema de localización de suma ponderada mínima, también conocido como problema de Fermat-Weber.

Detalles

El problema de localización de suma mínima busca un punto tal que la suma ponderada de las distancias a los puntos de demanda se minimice. Véase "The Fermat-Weber location problem revisited" por Brimberg, Mathematical Programming, 1, pag. 71-76, 1995. <DOI: 10.1007/BF01592245>.

Se usan algoritmos generales de optimización global para resolver el problema, junto con el método adhoc Weiszfeld, véase "Sur le point pour lequel la Somme des distance de n points donnes est minimum", por Weiszfeld, Tohoku Mathematical Journal, First Series, 43, pag. 355-386, 1937 o "On the point for which the sum of the distances to n given points is minimum", por E. Weiszfeld y F. Plastria, Annals of Operations Research, 167, pg. 7-41, 2009. <DOI:10.1007/s10479-008-0352-z>.

orloca.es-package 3

Package: orloca.es Type: Package Version: 4.9

Date: 2020-03-06 License: GPL (>= 3)

El paquete proporciona una clase, loca.p, que representa un problema de localización con un conjunto finito de puntos de demanda sobre el plano. También es posible representar los puntos y la función objetivo. Dicha función objetivo representa la suma de los desplazamientos de los usuarios al servicio.

El problema de localización no plano será abordado en futuras versiones del paquete.

Para una demostración, cargue el paquete con library(orloca.es) y use demo(orloca).

El paquete está preparado para su internacionalización. Las traducciones de los ficheros .mo recibidas serán añadidas en próximas versiones del paquete.

Autor

Manuel Munoz-Marquez <manuel.munoz@uca.es>

Mantenedor: Manuel Munoz-Marquez <manuel.munoz@uca.es>

Referencias

1 Brimberg, J. *The Fermat-Weber location problem revisited*, Mathematical Programming, 1, pg. 71-76, 1995. https://doi.org/10.1007/BF01592245.

[2] Love, R. F., Morris, J. G., Wesolowsky, G. O. Facilities Location: Chapter 2: Introduction to Single-Facility Location, 1988, North-Holland

[3] http://knuth.uca.es/orloca

Véase también

For the English version of the package see orloca-package.

Ejemplos

- # Un objeto loca.p no ponderado o <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
- # Calcula la funcion objetivo en el punto (3, 4) zsum(0, 3, 4)
- # Calcula ls suma de las distancias al punto (3, 4) usando la norma lp zsum(0, 3, 4, lp=2.5)
- # Resuelve el problema de localización zsummin(o)
- # Curvas de nivel contour(o)
- # Ejecuta una demo del paquete demo(orloca)

4 as-methods

andalusia

Ciudades de Andalucia

Description

El conjunto de datos 'andalusia' tiene 12 filas y 4 columnas, que son la posición geográfica de las capitales de provincia andaluzas.

Format

name: El nombre de una ciudad o de una etiqueta relativa de posición

x: La coordenada x de los puntos

y: La coordenada y de los puntos

city: Si yes entonces el punto es una ciudad, en otro caso es un límite.

Uso

data('andalusia')

Fuente

Los datos se han tomado de wikipedia.

See Also

Véase también orloca.es-package.

as-methods

as-methods

Description

Conversiones entre la clase loca.p y algunas otras

Argumentos

x: es el objeto a convertir a la nueva clase.

row.names: Sin uso.optional: Sin uso.

...: Otros argumentos, sin uso.

Valor

as.data.frame.loca.p 5

Detalles

Métodos para convertir desde y a la clase loca.p.

No se permiten valores NA en ningún argumento.

La matrix a convertir en loca.p debe tener al menos dos columnas. La primera será considerada como la coordenada x, y la segunda como la coordenada y, y la tercera (si se ha suministrado) serán los valores de w.

El data.frame a convertir a loca.p debe tener al menos una columna x para la coordenada x, y una columna y para la coordenada y. Opcionalmente, puede tener una columna w para los valores de w

Ejemplos

```
# Un nuevo objeto loca.p loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# Conversion a matrix m <- as.matrix(loca)
```

Muestra la matrix m

Conversion desde matrix as.loca.p(m)

Véase también

Véase también loca.p

```
as.data.frame.loca.p as.data.frame.loca.p Método S3 para convertir de loca.p a data.frame
```

Description

Conversiones entre la clase loca.p y algunas otras

Argumentos

```
x: es el objeto a convertir a la nueva clase.
```

row.names: Sin uso.optional: Sin uso.

...: Otros argumentos, sin uso.

Valor

6 as.loca.p

Detalles

Métodos para convertir desde y a la clase loca.p.

No se permiten valores NA en ningún argumento.

La matrix a convertir en loca. p debe tener al menos dos columnas. La primera será considerada como la coordenada x, y la segunda como la coordenada y, y la tercera (si se ha suministrado) serán los valores de w.

El data.frame a convertir a loca.p debe tener al menos una columna x para la coordenada x, y una columna y para la coordenada y. Opcionalmente, puede tener una columna w para los valores de w.

Ejemplos

```
# Un nuevo objeto loca.p loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
```

- # Conversion a matrix m <- as.matrix(loca)
- # Muestra la matrix m
- # Conversion desde matrix as.loca.p(m)

Véase también

Véase también loca.p

as.loca.p

as.loca.p Método para compatibilidad con clases S3, principalmente para el test de documentación

Description

Conversiones entre la clase loca.p y algunas otras

Argumentos

x: es el objeto a convertir a la nueva clase.

row.names: Sin uso.

optional: Sin uso.

...: Otros argumentos, sin uso.

Valor

as.loca.p.data.frame 7

Detalles

Métodos para convertir desde y a la clase loca.p.

No se permiten valores NA en ningún argumento.

La matrix a convertir en loca. p debe tener al menos dos columnas. La primera será considerada como la coordenada x, y la segunda como la coordenada y, y la tercera (si se ha suministrado) serán los valores de w.

El data.frame a convertir a loca.p debe tener al menos una columna x para la coordenada x, y una columna y para la coordenada y. Opcionalmente, puede tener una columna w para los valores de w

Ejemplos

```
# Un nuevo objeto loca.p loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# Conversion a matrix m <- as.matrix(loca)
```

- # Muestra la matrix m
- # Conversion desde matrix as.loca.p(m)

Véase también

Véase también loca.p

```
as.loca.p.data.frame as.loca.p.data.frame Método S3 para convertir de data.frame a loca.p
```

Description

Conversiones entre la clase loca.p y algunas otras

Argumentos

```
x: es el objeto a convertir a la nueva clase.
```

```
row.names: Sin uso.optional: Sin uso....: Otros argumentos, sin uso.
```

Valor

8 as.loca.p.matrix

Detalles

Métodos para convertir desde y a la clase loca.p.

No se permiten valores NA en ningún argumento.

La matrix a convertir en loca. p debe tener al menos dos columnas. La primera será considerada como la coordenada x, y la segunda como la coordenada y, y la tercera (si se ha suministrado) serán los valores de w.

El data.frame a convertir a loca.p debe tener al menos una columna x para la coordenada x, y una columna y para la coordenada y. Opcionalmente, puede tener una columna w para los valores de w

Ejemplos

```
# Un nuevo objeto loca.p loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
```

- # Conversion a matrix m <- as.matrix(loca)
- # Muestra la matrix m
- # Conversion desde matrix as.loca.p(m)

Véase también

Véase también loca.p

as.loca.p.matrix

as-methods

Description

Conversiones entre la clase loca.p y algunas otras

Argumentos

```
x: es el objeto a convertir a la nueva clase.
```

row.names: Sin uso.optional: Sin uso.

...: Otros argumentos, sin uso.

Valor

as.matrix.loca.p

Detalles

Métodos para convertir desde y a la clase loca.p.

No se permiten valores NA en ningún argumento.

La matrix a convertir en loca. p debe tener al menos dos columnas. La primera será considerada como la coordenada x, y la segunda como la coordenada y, y la tercera (si se ha suministrado) serán los valores de w.

El data.frame a convertir a loca.p debe tener al menos una columna x para la coordenada x, y una columna y para la coordenada y. Opcionalmente, puede tener una columna w para los valores de w

Ejemplos

```
# Un nuevo objeto loca.p loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
```

- # Conversion a matrix m <- as.matrix(loca)
- # Muestra la matrix m
- # Conversion desde matrix as.loca.p(m)

Véase también

Véase también loca.p

as.matrix.loca.p

as.matrix.loca.p Método para convertir de loca.p a matriz

Description

Conversiones entre la clase loca.p y algunas otras

Argumentos

```
x: es el objeto a convertir a la nueva clase.
```

row.names: Sin uso.
optional: Sin uso.

...: Otros argumentos, sin uso.

Valor

10 contour.loca.p

Detalles

Métodos para convertir desde y a la clase loca.p.

No se permiten valores NA en ningún argumento.

La matrix a convertir en loca. p debe tener al menos dos columnas. La primera será considerada como la coordenada x, y la segunda como la coordenada y, y la tercera (si se ha suministrado) serán los valores de w.

El data.frame a convertir a loca.p debe tener al menos una columna x para la coordenada x, y una columna y para la coordenada y. Opcionalmente, puede tener una columna w para los valores de w.

Ejemplos

```
# Un nuevo objeto loca.p loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
```

- # Conversion a matrix m <- as.matrix(loca)
- # Muestra la matrix m
- # Conversion desde matrix as.loca.p(m)

Véase también

Véase también loca.p

contour.loca.p

Gráfica de la función objetivo min-sum

Description

contour proporcionan la representación gráfica de la función del problema min-sum (zsum).

Uso

```
## Método S3 para la clase 'loca.p' contour(x, lp = numeric(0), xmin = min(min(x@x), xleft), xmax = max(max(x@x), xright), ymin = min(min(x@y), ybottom), ymax = max(max(x@y), ytop), n = 100, img = NULL, xleft = min(x@x), ybottom = min(x@y), xright = max(x@x), ytop = max(x@y), ...)
```

Argumentos

```
x: El objeto loca. p para calcular el objetivo.
```

lp: Si se proporciona, entonces se usa la norma l_p en vez de la euclídea.

xmin: El valor mínimo del eje x.

xmax: El valor máximo del eje x.

ymin: El valor mínimo del eje y.

ymax: El valor máximo del eje y.

distsum 11

```
n: El número de divisiones para la rejilla.
```

img: Una imagen en formato raster para el fondo.

xleft: Posición del borde izquierdo de la imagen.

ybottom: Posición del borde inferior de la imagen.

xright: Posición del borde derecho de la imagen.

ytop: Posición del borde superior de la imagen.

...: Otras opciones.

Detalles

Si p < 1 entonces l_p no es norma, por tanto, sólo $p \ge 1$ es válido.

Valor

La función contour.loca.p representa un gráfico de curvas de nivel de la función min-sum (zsum).

Véase también

Véase también orloca.es-package, plot.loca.p y loca.p.

Ejemplos

```
# Un objeto loca.p sin pesos
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# El grafico de curvas de nivel de la fucion min-sum para el objeto contour(loca)
```

distsum

distsum y distsumgra del paquete orloca

Description

La función objetivo para el problema de localización min-sum.

Uso

```
distsum(o, x=0, y=0, lp=numeric(0))
```

Argumentos

- o: Un objeto de la clase loca.p
- x: La coordenada x del punto a ser evaluado
- y: La coordenada y del punto a ser evaluado
- **lp:** Si se proporciona, entonces se usa la norma l_p en vez de la euclídea

12 distsumgra

Valor

distsum devuelve la función objetivo para el problema de localización min-sum, $\sum_{a_i \in o} w_i d(a_i, (x, y))$, donde $d(a_i, (x, y))$ es la distancia euclídea o la distancia l_p entre a_i y (x, y).

Detalles

La función zsum está marcada como obsoleta y será borrada de nuevas versiones del paquete.

Véase también

Véase también orloca. es-package y distsummin.

Ejemplos

```
# Un nuevo objeto loca.p sin pesos loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
```

Evaluacion de distsum en (0, 0) distsum(loca)

Evaluación de distsum at (1, 3) distsum(loca, 1, 3)

Calculo de la fucion objetivo en el punto (3, 4) usando la norma lp con p = 2.5 distsum(loca, 3, 4, lp=2.5)

La funcion gradiente en (1,3) distsumgra(loca, 1, 3)

distsumgra

Calculo del gradiente de la funcion distsum

Description

distsumgra calcula el gradiente de la fución distsum

Uso

```
distsumgra(o, x = 0, y = 0, lp = numeric(0), partial = F)
```

Argumentos

- o Un objeto de clase loca.p.
- x La coordenada x del punto a evaluar.
- y La coordenada y del punto a evaluar.
- ${f lp}~{
 m Si}$ se proporciona, la norma l_p será usada en vez de la norma euclídea.

partial Si (x,y) es un punto de demanda partial=T significa que se ignore dicho punto para el cálculo del gradiente. Esta opción es principalmente para uso interno.

Valor

distsumgra devuelve el vector gradiente de la función min-sum del problema de localización, $\sum_{a_i \in o} w_i d(a_i, (x, y))$, donde $d(a_i, (x, y))$ da la distancia euclídea o la distancia l_p entre a_i y el punto (x, y).

distsuml2min 13

Detalles

La función zsumgra está marcada como obsoleta y será borrada de nuevas versiones del paquete.

Ejemplos

```
# Un nuevo objeto loca.p no ponderado loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
```

Evaluación de distsum en (0, 0) distsum(loca)

Evaluacion de distsum en (1, 3) distsum(loca, 1, 3)

Calculo de la funcion objetivo en el punto (3, 4) usando la norma lp con p = 2.5 distsum(loca, 3, 4, lp=2.5)

El gradiente de la funcion en el punto (1,3) distsumgra(loca, 1, 3)

See Also

Véase orloca-package y distsum.

distsuml2min

distsuml2min en el paquete orloca

Description

La función distsummin para la norma euclídea (l_2) . Principalmente para uso interno.

Uso

distsuml2min(o, x=0, y=0, max.iter=100, eps=0.001, verbose=FALSE, algorithm="Weiszfeld", ...)

Argumentos

- o Un objeto de la clase loca.p.
- x La coordenada x del punto inicial.
- y La coordenada y del punto inicial.

max.iter Número máximo de iteraciones permitido.

eps La norma del gradiente en la regla de parada.

verbose Si es TRUE la función proporciona salida detallada.

- algorithm El algoritmo a utilizar. Los valores válidos son: "gradient" para un algoritmo de gradiente, "search" para un algoritmo de búsqueda local (esta opción está obsoleta), "Weiszfeld" para el algoritmo de Weiszfeld o cualquiera de los métodos válidos para la función optim, a saber, "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN". "Weiszfeld" es el valor por defecto.
- ... Otras opciones para los algoritmos de optimización.

Valor

distsummin devuelve un vector con las coordenadas del punto solución.

14 distsumlp

Detalles

Los algoritmos de Weiszfeld y gradiente incluyen un test de optimalidad para los puntos de demanda. El algoritmo de Weiszfeld también implementa un test de convergencia lenta y un procedimiento acelerador.

Si p < 1 entonces l_p no es una norma, por ello, solo se admiten valores $p \ge 1$.

 l_2 es la norma euclídea, cuando p=2 distsumlpmin es igual a distsuml2min. Pero los cálculos involucrados en la primera forma son mucho mayores.

max.iter en el algoritmo SANN es el número de evaluaciones de la función objetivo, por lo que este método requiere de valores grandes de max.iter para alcanzar el óptimo.

La función zsuml2min está marcada como obsoleta y será borrada de nuevas versiones del paquete.

Véase también

Vea también orloca.es-package, loca.p y distsum.

distsumlp

distsumlp y distsumlpgra del paquete orloca

Description

Las funciones distsum y distsumgra con norma l_p . Principalmente para uso interno.

Uso

distsumlp(o, x=0, y=0, p=2) distsumlpgra(o, x=0, y=0, p=2, partial=F)

Argumentos

- o Un objeto de clase loca.p.
- x La coordenada x del punto a ser evaluado.
- y La coordenada y del punto a ser evaluado.
- **p** La norma l_p a usar.

partial Si (x,y) es un punto de demanda, partial=T significa que se ignore dicho punto para el cálculo del gradiente. Principalmente para uso interno.

Valor

distsumlp devuelve el valor de la función objetivo del problema de localización min-sum con norma $l_p, \sum_{a_i \in o} w_i d(a_i, (x, y))$, donde $d(a_i, (x, y))$ es la distancia entre a_i y el punto (x, y) usando la norma l_p .

distsumlpgra devuelve el vector gradiente de la función distsumlp.

distsumlpmin 15

Details

Si p < 1 entonces l_p no es una norma, por tanto, sólo valores p >= 1 son válidos.

Dado que l_2 es la norma euclídea, cuando p=2 distsumlp es igual a distsum, y distsumlpgra es igual a distsumgra. Pero los cálculos necesarios son mayores para la primera forma.

La función zsumlp está marcada como obsoleta y será borrada de nuevas versiones del paquete.

Véase también

Véase también distsum, orloca.es-package y distsumlpmin.

distsumlpmin

distsumlpmin en el paquete orloca

Description

La función distsummin con norma l_p . Principalmente para uso interno.

Uso

distsumlpmin(o, x=0, y=0, p=2, max.iter=100, eps=1.e-3, verbose=FALSE, algorithm="Weiszfeld", ...)

Argumentos

- o Un objeto de la clase loca.p.
- x La coordenada x del punto inicial.
- y La coordenada y del punto inicial.
- **p** Valor de p para la norma l_p .

max.iter Número máximo de iteraciones permitido.

eps El módulo del gradiente para la regla de parada.

verbose Si es TRUE la función proporciona salida detallada.

- algorithm El algoritmo a utilizar. Para esta versión del paquete, los valores válidos son: "gradient" para un algoritmo de gradiente, "search" para un algoritmo de búsqueda local (esta opción está obsoleta), "Weiszfeld" para el algoritmo de Weiszfeld o cualquiera de los métodos válidos para la función optim, a saber, "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN". "Weiszfeld" es el valor por defecto.
- ... Otras opciones para los algoritmos de optimización.

Detalles

Si p < 1 entonces l_p no es una norma, por tanto, sólo valores p >= 1 son válidos.

Dado que l_2 es la norma euclídea, para p=2 distsumlpmin es equivalente a distsummin. Pero los cálculos involucrados son mayores en la primera forma.

La función zsumlpmin está marcada como obsoleta y será borrada de nuevas versiones del paquete.

16 distsummin

Valor

distsummin devuelve un vector con las coordenadas del punto solución.

Ejemplos

```
# Un nuevo objeto loca.p loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
```

- # Calcular el minimo sol<-distsummin(loca)
- # Mostrar el resultado sol
- # Evaluar la funcion en el punto solucion distsum(loca, sol[1], sol[2])

Véase también

Véase Vease también distsummin, orloca.es-package, loca.p y distsum.

distsummin

distsummin en el paquete orloca

Description

Resuelve el problema de localización min-sum para un objeto dado de la clase loca.p.

Uso

```
distsummin(o, x=0, y=0, lp=numeric(0), max.iter=100, eps=1.e-3, verbose=FALSE, algorithm="Weiszfeld", ...)
```

Argumentos

- o Un objeto de la clase loca.p.
- x La coordenada x del punto inicial.
- y La coordenada y del punto inicial.
- ${f lp}~{
 m Si}$ se proporciona, la norma l_p se usa en vez de la norma euclídea.

max.iter Número máximo de iteraciones permitido.

eps La norma del gradiente en la regla de parada.

verbose Si es TRUE la función proporciona salida detallada.

algorithm El algoritmo a utilizar. En esta versión del paquete los valores válidos son: "gradient" o "g" para el método basado en gradiente, "search" o "s" para el método de búsqueda local, "ucminf" o "u" para usar optimizar usando ucminf del paquete ucminf, y "weiszfeld" o "w" para el método de Weiszfeld o cualquier otro método válido para la función optim, ahora "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN". "weiszfeld" es el valor por defecto.

... Otras opciones para los algoritmos de optimización.

loca.p-class 17

Detalles

Los algoritmos de Weiszfeld y gradiente incluyen un test de optimalidad para los puntos de demanda. El algoritmo de Weiszfeld también implementa un test de convergencia lenta y un procedimiento acelerador.

Si p < 1 entonces l_p no es una norma, por tanto, sólo $p \ge 1$ es válido.

 l_2 es la norma euclídea, cuando p=2 distsumlpmin es igual a distsuml2min. Pero los cálculos involucrados en la primera forma son mucho mayores.

max.iter en el algoritmo SANN es el número de evaluaciones de la función objetivo, por lo que este método requiere de valores grandes de max.iter para alcanzar el óptimo.

La función zsummin está marcada como obsoleta y será borrada de nuevas versiones del paquete.

Valor

distsummin devuelve un vector con las coordenadas del punto solución.

Véase también

VéaseVease también orloca.es-package, loca.p y distsum.

Examples

```
# Un objeto loca.p sin pesos
loca <- new("loca.p", x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# Calcula el minimo
sol <- distsummin(loca)
# Muestra el resultado
sol
# Evaluacion de la funcion objetivo en el punto solucion
distsum(loca, sol[1], sol[2])</pre>
```

loca.p-class

Clase de objetos loca.p para Localizacion en Investigacion Operativa

Description

Un objeto de la clase loca. p representa un problema de localización ponderado con un conjunto finito de puntos de demanda en el plano. El orloca. es-package está principalmente dedicado a abordar problemas de localización plana.

18 persp.distsum

Argumentos

x: es un vector con las coordenadas x de los puntos de demanda

y: es un vector con las coordenadas y de los puntos de demanda

w: es un vector de pesos de los puntos de demanda. Si w se omite entonces todos los pesos se consideran iguales a 1

label: Si se explicita, es la etiqueta del nuevo objeto

Detalles

```
El principal generador es loca.p(x, y, w = numeric(0), label = "") o alternativamente new("loca.p", x, y, w = numeric(0), label = "").
```

Las longitudes de los vectores x e y deben ser iguales. La longitud de w debe ser igual a los anteriores o 0. Los valores NA no están permitidos en ninguno de los argumentos.

Valor

Si los argumentos son valores válidos, devuelve un objeto de la clase loca.p, en caso contrario devuelve un error. summary(x) devuelve un resumen del objeto x de la clase loca.p y print(x) imprime el objeto x de la clase loca.p en formato tabla.

Véase también

Véase también orloca.es-package.

Ejemplos

```
# Un objeto loca.p sin pesos loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# o loca <- new("loca.p", x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# Un ejemplo con pesos y nombre locb <- new("loca.p", x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1), y = c(-1, -1, 1, 1, 1), y =
```

persp.distsum

Grafica de la funcion objetivo min-sum

Description

persp proporciona la representación gráfica de la función objetivo del problema min-sum (distsum).

Uso

```
## Metodo S3 para la clase loca.p persp(x, lp=numeric(0), xmin=min(x@x), xmax=max(x@x), ymin=min(x@y), ymax=max(x@y), n=10,...)
```

plot 19

Argumentos

```
x: El objeto loca. p para calcular el objetivo
```

lp: Si se proporciona, entonces se usa la norma l_p en vez de la euclídea

xmin: El valor mínimo del eje xxmax: El valor máximo del eje xymin: El valor mínimo del eje yymax: El valor máximo del eje y

n: El número de divisiones para la rejilla

... Otras opciones

Detalles

```
Si p < 1 entonces l_p no es norma, por tanto, sólo p \ge 1 es válido.
```

Valor

Un gráfico 3D de la función min-sum.

Véase también

Véase también orloca.es-package, plot.loca.p y loca.p.

Ejemplos

```
# Un objeto loca.p sin pesos loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# El grafico 3D del objeto loca.p persp(loca)
```

plot

Grafico de un objeto de la clase loca.p

Description

Este método proporciona una representación gráfica de un objeto de la clase loca.p.

Uso

```
## Metodo S3 para la clase 'loca.p' plot(x, xlab = "", ylab = "", main = gettext("Plot of loca.p object", domain = "R-orloca"), img = NULL, xlim = c(\min(xleft, \min(x@x)), \max(xright, \max(x@x))), ylim = c(\min(ybottom, \min(x@y)), max(ytop, max(x@y))), xleft = \min(x@x), ybottom = \min(x@y), xright = \max(x@x), ytop = \max(x@y), ...)
```

20 rloca.p

Argumentos

```
x: El objeto loca.p a representar.
xlab: La etiqueta para el eje x.
ylab: La etiqueta para el eje y.
main: El título principal del gráfico.
img: Una imagen en formato raster para el fondo.
xlim: Límite sobre el eje x del gráfico.
ylim: Límite sobre el eje y del gráfico.
xleft: Posición del borde izquierdo de la imagen.
ybottom: Posición del borde derecho de la imagen.
xright: Posición del borde superior de la imagen.
ytop: Posición del borde superior de la imagen.
```

...: Otras opciones gráficas.

Detalles

Gráfico de los puntos de demanda con límites de evaluación automáticos.

Valor

La representación gráfica de los puntos de demanda.

Véase también

Véase también orloca.es-package, loca.p y plot.

Ejemplos

```
# Un objeto de la clase loca.p sin pesos loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1)) # El grafico del objeto loca.p plot(loca)
```

rloca.p

Generador de instancias aleatorias de objetos de la clase loca.p

Description

Devuelve una instancia aleatoria de un objeto de la clase loca. p en una región dada.

Uso

```
rloca.p(n, xmin = 0, xmax = 1, ymin = 0, ymax = 1, groups = 0, xgmin = xmin, xgmax = xmax, ygmin = ymin, ygmax = ymax)
```

rloca.p 21

Argumentos

n: El número de puntos de demanda.

xmin: Mínimo valor para la coordenada x de los puntos de demanda.

xmax: Máximo valor para la coordenada x de los puntos de demanda.

ymin: Mínimo valor para la coordenada y de los puntos de demanda.

ymax: Máximo valor para la coordenada y de los puntos de demanda.

groups: El número de grupos (de aproximadamente igual tamaño) o una lista con los tamaños de los grupos a generar. En el segundo caso n se ignora.

xgmin: Mínimo valor para la coordenada x de los puntos de demanda respecto del punto referencia del grupo.

xgmax: Máximo valor para la coordenada x de los puntos de demanda respecto del punto referencia del grupo.

ygmin: Mínimo valor para la coordenada y de los puntos de demanda respecto del punto referencia del grupo.

ygmax: Máximo valor para la coordenada y de los puntos de demanda respecto del punto referencia del grupo.

Detalles

n debe ser al menos 1.

xmin debe ser menor o igual que xmax.

ymin debe ser menor o igual que ymax.

Cuando se suministra valor no nulo para groups los puntos se generan en dos fases, en la primera se genera un punto de referencia, en la segunda se genera un desplazamiento sobre dicho punto de referencia que se suma a éste.

Obsérvese que groups = 1 no es equivalente a groups = 0, debido a que en el primer caso se genera un punto de referencia en la primera etapa.

Valor

Si los argumentos son valores válidos, devuelve un nuevo objeto de la clase loca_p, en otro caso informa de un error.

Véase también

Véase también orloca-package y loca.p

Ejemplos

```
# Un objeto aleatorio loca.p en el cuadrado unidad con 5 puntos de demanda rloca.p(5)
```

- # En otra region rloca.p(10, xmin=-2, xmax=2, ymin=-2, ymax=2)
- # Cinco grupos rloca.p(48, groups=5)
- # Tres grupos de distinto tamano rloca.p(1, groups=c(10, 7, 2))

22 zsummin

zsum

zsum

Description

La función zsum esta obsoleta y podría ser suprimida en sucesivas versiones del paquete. Use distsum en su lugar.

Usage

```
zsum(...)
```

Arguments

... Parámetros pasados a distsum

zsumgra

zsumgra

Description

La función zsumgra esta obsoleta y podría ser suprimida en sucesivas versiones del paquete. Use distsumgra en su lugar.

Usage

```
zsumgra(...)
```

Arguments

... Parámetros pasados a distsumgra

zsummin

zsummin

Description

La función zsummin esta obsoleta y podría ser suprimida en sucesivas versiones del paquete. Use distsummin en su lugar.

Usage

```
zsummin(...)
```

Arguments

... Parámetros pasados a distsummin

Index

* Andalucia	* optimize
andalusia,4	distsum, 11
* Andalusia	distsumgra, 12
andalusia,4	distsuml2min, 13
* classes	distsumlp, 14
as-methods, 4	distsumlpmin, 15
as.data.frame.loca.p,5	loca.p-class, 17
as.loca.p,6	orloca.es-package,2
as.loca.p.data.frame, 7	* package
as.loca.p.matrix,8	orloca.es-package,2
as.matrix.loca.p,9	
contour.loca.p, 10	andalucia (andalusia), 4
distsum, 11	andalusia, 4
distsumgra, 12	as-methods, 4
distsuml2min, 13	as.data.frame(as-methods),4
distsumlp, 14	as.data.frame.loca.p,5
distsumlpmin, 15	as.loca.p, 6
loca.p-class, 17	as.loca.p,data.frame-method
persp.distsum, 18	(as-methods), 4
plot, 19	as.loca.p,matrix-method(as-methods),4
* datagen	as.loca.p.data.frame,7
rloca.p, 20	as.loca.p.matrix, 8
* data	as.matrix(as-methods),4
andalusia, 4	as.matrix.loca.p,9
* hplot	
contour.loca.p, 10	<pre>contour,loca.p-method(contour.loca.p),</pre>
persp.distsum, 18	10
plot, 19	contour.loca.p, 10
* methods	distsum, 11, <i>13–17</i> , 22
as-methods, 4	distsum, loca.p-method (distsum), 11
as.data.frame.loca.p,5	distsumgra, 12, 22
as.loca.p,6	distsumgra, loca.p-method (distsumgra),
as.loca.p.data.frame,7	12
as.loca.p.matrix, 8	distsuml2min, 13
as.matrix.loca.p,9	distsuml2min,loca.p-method
* obsoleta	(distsuml2min), 13
zsum, 22	distsumlp, 14
zsumgra, 22	distsumlp, loca.p-method(distsumlp), 14
zsummin, 22	distsumlpgra (distsumlp), 14

24 INDEX

```
distsumlpgra,loca.p-method(distsumlp),
distsumlpmin, 15, 15
distsumlpmin, loca.p-method
        (distsumlpmin), 15
distsummin, 12, 16, 16, 22
distsummin, loca.p-method (distsummin),
        16
initialize (loca.p-class), 17
loca.p, 5–11, 14, 16, 17, 19–21
loca.p(loca.p-class), 17
loca.p-class, 17
orloca(orloca.es-package), 2
orloca-package, 3
orloca.es-package, 2
persp,loca.p-method(persp.distsum), 18
persp.distsum, 18
persp.loca.p(persp.distsum), 18
plot, 19, 20
plot.loca.p, 11, 19
print (loca.p-class), 17
rloca.p, 20
summary (loca.p-class), 17
zsum, 22
zsumgra, 22
zsummin, 22
```