Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 2 з дисципліни «Проектування алгоритмів»

«Неінформативний, інформативний та локальний пошук»

виконав(ла)	ПТ-13 ХИМИЧ А.М	
,	(шифр, прізвище, ім'я, по батькові)	
Перевірив	<u>Соколовський В.В.</u>	
	(прізвище, ім'я, по батькові)	

3MICT

1	МЕТА ЛАБОРАТОРНОЇ РОБОТИ	3
2	ЗАВДАННЯ	4
3	виконання	8
	3.1 ПСЕВДОКОД АЛГОРИТМІВ	8
	3.2 ПРОГРАМНА РЕАЛІЗАЦІЯ	14
	3.2.1 Вихідний код	14
	3.2.2 Приклади роботи	20
	3.3 ДОСЛІДЖЕННЯ АЛГОРИТМІВ	22
B	исновок	29
K.	ритерії опиновання	30

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ

Мета роботи – розглянути та дослідити алгоритми неінформативного, інформативного та локального пошуку. Провести порівняльний аналіз ефективності використання алгоритмів.

2 ЗАВДАННЯ

Записати алгоритм розв'язання задачі у вигляді псевдокоду, відповідно до варіанту (таблиця 2.1).

Реалізувати програму, яка розв'язує поставлену задачу згідно варіанту (таблиця 2.1) за допомогою алгоритму неінформативного пошуку **АНП**, алгоритму інформативного пошуку **АНП**, що використовує задану евристичну функцію Func, або алгоритму локального пошуку **АЛП та бектрекінгу**, що використовує задану евристичну функцію Func.

Програму реалізувати на довільній мові програмування.

Увага! Алгоритм неінформативного пошуку **АНП,** реалізовується за принципом «AS IS», тобто так, як ϵ , без додаткових модифікацій (таких як перевірка циклів, наприклад).

Провести серію експериментів для вивчення ефективності роботи алгоритмів. Кожний експеримент повинен відрізнятись початковим станом. Серія повинна містити не менше 20 експериментів для кожного алгоритму. Початковий стан зафіксувати у таблиці експериментів. За проведеними серіями необхідно визначити:

- середню кількість етапів (кроків), які знадобилось для досягнення розв'язку (ітерації);
- середню кількість випадків, коли алгоритм потрапляв в глухий кут
 (не міг знайти оптимальний розв'язок) якщо таке можливе;
 - середню кількість згенерованих станів під час пошуку;
- середню кількість станів, що зберігаються в пам'яті під час роботи програми.

Передбачити можливість обмеження виконання програми за часом (30 хвилин) та використання пам'яті (1 Гб).

Використані позначення:

- 8-ферзів Задача про вісім ферзів полягає в такому розміщенні восьми ферзів на шахівниці, що жодна з них не ставить під удар один одного.
 Тобто, вони не повинні стояти в одній вертикалі, горизонталі чи діагоналі.
- **8-puzzle** гра, що складається з 8 однакових квадратних пластинок з нанесеними числами від 1 до 8. Пластинки поміщаються в квадратну коробку, довжина сторони якої в три рази більша довжини сторони пластинок, відповідно в коробці залишається незаповненим одне квадратне поле. Мета гри переміщаючи пластинки по коробці досягти впорядковування їх по номерах, бажано зробивши якомога менше переміщень.
- **Лабіринт** задача пошуку шляху у довільному лабіринті від початкової точки до кінцевої з можливими випадками відсутності шляху. Структура лабіринту зчитується з файлу, або генерується програмою.
 - **LDFS** Пошук вглиб з обмеженням глибини.
 - **BFS** Пошук вшир.
 - IDS Пошук вглиб з ітеративним заглибленням.
 - $A^* Пошук A^*$.
 - **RBFS** Рекурсивний пошук за першим найкращим співпадінням.
- **F1** кількість пар ферзів, які б'ють один одного з урахуванням видимості (ферзь A може стояти на одній лінії з ферзем B, проте між ними стоїть ферзь C; тому A не б'є B).
- F2 кількість пар ферзів, які б'ють один одного без урахування видимості.
 - **H1** кількість фішок, які не стоять на своїх місцях.
 - H2 Манхетенська відстань.
 - H3 Евклідова відстань.
- **COLOR** Задача розфарбування карти самостійно обраної країни, не менше 20 регіонів (областей). Необхідно розфарбувати карту не більше ніж у 4 різні кольори. Мається на увазі приписування кожному регіону власного кольору так, щоб кольори сусідніх регіонів відрізнялись. Використовувати евристичну функцію, яка повертає кількість пар суміжних вузлів, що мають

однаковий колір (тобто кількість конфліктів). Реалізувати алгоритм пошуку із поверненнями (backtracking) для розв'язання поставленої задачі. Для підвищення швидкодії роботи алгоритму використати евристичну функцію, а початковим станом вважати випадкову вершину.

- **HILL** Пошук зі сходженням на вершину з використанням із використанням руху вбік (на 100 кроків) та випадковим перезапуском (кількість необхідних разів запуску визначити самостійно).
- ANNEAL Локальний пошук із симуляцією відпалу. Робоча
 характеристика залежність температури Т від часу роботи алгоритму t.
 Можна розглядати лінійну залежність: T = 1000 k·t, де k − змінний коефіцієнт.
- **BEAM** Локальний променевий пошук. Робоча характеристика кількість променів k. Експерименти проводи із кількістю променів від 2 до 21.
 - MRV евристика мінімальної кількості значень;
 - **DGR** ступенева евристика.

Таблиця 2.1 – Варіанти алгоритмів

№	Задача	АНП	АШ	АЛП	Func
1	Лабіринт	LDFS	A*		H2
2	Лабіринт	LDFS	RBFS		Н3
3	Лабіринт	BFS	A*		H2
4	Лабіринт	BFS	RBFS		Н3
5	Лабіринт	IDS	A*		H2
6	Лабіринт	IDS	RBFS		Н3
7	8-ферзів	LDFS	A*		F1
8	8-ферзів	LDFS	A*		F2
9	8-ферзів	LDFS	RBFS		F1
10	8-ферзів	LDFS	RBFS		F2
11	8-ферзів	BFS	A*		F1
12	8-ферзів	BFS	A*		F2
13	8-ферзів	BFS	RBFS		F1

14	8-ферзів	BFS	RBFS		F2
15	8-ферзів	IDS	A*		F1
16	8-ферзів	IDS	A*		F2
17	8-ферзів	IDS	RBFS		F1
18	Лабіринт	LDFS	A*		Н3
19	8-puzzle	LDFS	A*		H1
20	8-puzzle	LDFS	A*		H2
21	8-puzzle	LDFS	RBFS		H1
22	8-puzzle	LDFS	RBFS		H2
23	8-puzzle	BFS	A*		H1
24	8-puzzle	BFS	A*		H2
25	8-puzzle	BFS	RBFS		H1
26	8-puzzle	BFS	RBFS		H2
27	Лабіринт	BFS	A*		Н3
28	8-puzzle	IDS	A*		H2
29	8-puzzle	IDS	RBFS		H1
30	8-puzzle	IDS	RBFS		H2
31	COLOR			HILL	MRV
32	COLOR			ANNEAL	MRV
33	COLOR			BEAM	MRV
34	COLOR			HILL	DGR
35	COLOR			ANNEAL	DGR
36	COLOR			BEAM	DGR

3 ВИКОНАННЯ

3.1 Псевдокод алгоритмів

```
Метод BFS_search():
```

Ініціалізувати чергу q

Додати в чергу q початковий стан startState

Поки **q НЕ** порожня

node = q.get()

ініціалізувати список children[]

children = node. generateChild()

Переглянути всі child в children

Якщо **child** – цільовий стан

Повернути **child**.findSolution()

q.put(child)

```
Метод generateChild(state)
```

```
ініціалізувати список children[]
ініціалізувати zeroPos значення індекса 0 в state[]
ініціалізувати zeroX = цілою частиною (<math>zeroPos/3)
ініціалізувати zeroY = залишком (zeroPos/3)
ініціалізувати posibleMoves[] = findposibleMoves(zeroX, zeroY)
Переглянути всі move в posibleMoves[]
      ChildState = state
      Якшо move == "UP"
            Поміняти значеннями childState[zeroPos] childState[zeroPos-3]
      Якщо move == "DOWN"
            Поміняти значеннями childState[zeroPos] childState[zeroPos+3]
      Якщо move == "LEFT"
            Поміняти значеннями childState[zeroPos] childState[zeroPos-1]
      Якщо move == "RIGHT"
            Поміняти значеннями childState[zeroPos] childState[zeroPos+1]
      Children.append(new-node(childstate, move))
```

Повернути children

```
Meтод findSoluiton(node)

Iніціалізувати список solutionLog[]

solutionLog.append(node.move)

path = node

Поки path.parent HE NULL

path = path.parent

solutionLog.append(path.move)

Інвертувати solutionLog

Повернути solutionlog

Метод Recursive-Best-First-Search(startState)
```

```
метод findPosibleMoves(zeroX,zeroY)
```

```
iніціалізувати posibleMoves = ["UP","DOWN","LEFT","RIGHT"]
якщо zeroX==0
видалити "UP" з possibleMoves
якщо zeroX==2
видалити "DOWN" з possibleMoves
якщо zeroY==0
видалити "LEFT" з possibleMoves
якщо zeroY==0
видалити "RIGHT" з possibleMoves
повернути posibleMoves
```

```
метод RBFS_search(node,fLimit)
```

ініціалізувати список successors[]

якшо **node** - цільовий стан

повернути node, NULL

ініціалізувати список children[]

children = generateChild()

Якщо **children** – порожній

Повернути NULL, maxConst

Ініціалізувати кількість нащадків Count = -1

Переглянути всі child в children

Count = count + 1

Successors.append(child.evaluationFunction,count,child)

Поки **successors** HE порожній

Відсортувати список Successors

Ініціалізувати bestNode першим вузлом із successors

Якщо **bestNode**.evaluationFunction > **fLimit**

Повернути NULL, bestNode.evaluationFunction

Ініціалізувати alternative наступним після bestNode вузлом із

successors

Ініціалізувати min мінімальним між fLimit та alternative

result та bestNode.evaluationFunction = значення, що поверне

RBFS_search(bestNode,min)

successors[0] = (bestNode.evaluationFunction, successors[0][1],

bestNode)

якщо result не NULL

перервати

повернути result, NULL

```
метод generateHeuristic(node)
```

повторити поки **num**<9

distance = abs(state.index(num)-puzzleSolution.index(num))

горизонтальна відстань до потрібного місця $\mathbf{x} =$ ціла частина (**distance**/3)

вертикальна відстань до потрібного місця $\mathbf{y} =$ дробова частина (distance/3)

node.heuristic = node.heuristic + x + y

повернути node

3.2 Програмна реалізація

3.2.1 Вихідний код

Main.py

Puzzle.py

```
from datetime import *
from memory_profiler import memory_usage

class Puzzle:
    puzzleSolution=[1,2,3,4,5,6,7,8,0]
    time = datetime.now()
    mem = memory_usage()
    movesCount=0

def __init__ (self,state,parent,move,pathCost):
    self.parent=parent
    self.state=state
    self.move=move
    if parent:
        self.pathCost = parent.pathCost + pathCost
    else:
        self.pathCost = pathCost
    Puzzle.movesCount+=1

def isSolved(self):
    if self.state == self.puzzleSolution:
        return True
    return False

def findPosibleMoves(self,x, y):
    posibleMoves = ['Up', 'Down', 'Left', 'Right']
    if x == 0:
        posibleMoves.remove('Up')
    elif x == 2:
```

```
def generateChild(self):
        children = []
                childState[zeroPos], childState[zeroPos + 3] =
childState[zeroPos - 1], childState[zeroPos]
childState[zeroPos + 1], childState[zeroPos]
        return children
    def findSolution(self):
            solutionLog.append(path.move)
    def printSolutionLog(self,solutionLog, startState):
```

BFS.py

```
import sys
from queue import Queue
from Puzzle import Puzzle
from datetime import *

def BFS_search(initialState):
    startNode = Puzzle(initialState, None, None, 0)
    if startNode.isSolved():
        return startNode.findSolution()
    q = Queue()
    q.put(startNode)
    visited = []

while not(q.empty()):
    if (Puzzle.mem[0] > 1024 * 1024 * 1024 or (datetime.now() -
Puzzle.time).seconds > 1800):
    print("no solution")
        sys.exit()

    node=q.get()
    visited.append(node.state)
    children=node.generateChild()
    for child in children:
        if child.isSolved():
            return child.findSolution()
        q.put(child)
    return
```

PuzzleWithHeuristics.py

```
from sys import maxsize
from datetime import *
from memory_profiler import memory_usage

class PuzzleWithHeuristic():
    time = datetime.now()
    mem = memory_usage()
    puzzleSolution = [1,2,3,4,5,6,7,8,0]
    visited=[]
    movesCount = 0
    heuristic = None
    evaluationFunction = None
    def __init__ (self, state, parent, move, pathCost):
        self.parent = parent
        self.state = state
        self.move = move
    if parent:
        self.pathCost = parent.pathCost + pathCost
    else:
        self.pathCost = pathCost
    self.generateHeuristic()
```

```
def generateHeuristic(self):
def isSolved(self):
    zeroY = int(zeroPos % 3)
        childState = self.state.copy()
        children.append(PuzzleWithHeuristic(childState, self,move, 1))
    solutionLog.append(self.move)
```

```
def printSolutionLog(self, solutionLog, startState):
    print(str(startState[0:3]) + '\n' + str(startState[3:6]) + '\n' +
str(startState[6:9]))
    print("\t\\n\tv")

    for move in solutionLog:
        zeroPos = startState.index(0)
        if move == 'Up':
            startState[zeroPos], startState[zeroPos - 3] =
startState[zeroPos - 3], startState[zeroPos]
            print(str(startState[0:3]) + '\n' + str(startState[3:6]) + '\n'
+ str(startState[6:9]))
        print("\t\\n\tv")
        elif move == 'pown':
        startState[zeroPos], startState[zeroPos + 3] =
startState[zeroPos + 3], startState[zeroPos]
        print(str(startState[0:3]) + '\n' + str(startState[3:6]) + '\n'
+ str(startState[6:9]))
        print("\t\\n\tv")
        elif move == 'Left':
            startState[zeroPos], startState[zeroPos - 1] =
startState[zeroPos - 1], startState[zeroPos]
        print(str(startState[0:3]) + '\n' + str(startState[3:6]) + '\n'
+ str(startState[6:9]))
        print("\t\\n\tv")
        elif move == 'Right':
            startState[zeroPos], startState[zeroPos + 1] =
startState[zeroPos + 1], startState[zeroPos]
        print(str(startState[0:3]) + '\n' + str(startState[3:6]) + '\n'
+ str(startState[6:9]))
        print(str(startState[0:3]) + '\n' + str(startState[3:6]) + '\n'
+ str(startState[6:9]))
        print("\t\\n\tv")
```

RBFS.py

```
count+=1
    successors.append((child.evaluationFunction, count, child))

while len(successors):
    PuzzleWithHeuristic.movesCount += 1
    successors.sort()
    bestNode=successors[0][2]
    if bestNode.evaluationFunction > fLimit:
        return None, bestNode.evaluationFunction
    alternative=successors[1][0]

result,bestNode.evaluationFunction=search(bestNode, min(fLimit, alternative))
    successors[0]=(bestNode.evaluationFunction, successors[0][1],bestNode)
    if result is not None:
        break

return result,None
```

3.2.2 Приклади роботи

На рисунках 3.1 i 3.2 показані приклади роботи програми для різних алгоритмів пошуку.

```
moves: ['Right', 'Down', 'Left', 'Left', 'Up', 'Up', 'Right', 'Down', 'Right', 'Down']
```

Рисунок 3.1 – Алгоритм BFS для стану (4 1 3 7 0 2 8 6 5)

```
moves: ['Right', 'Up', 'Left', 'Down', 'Right', 'Down', 'Left', 'Up', 'Left', 'Down', 'Right', 'Right']
[1, 3, 7]
[5, 0, 2]
[4, 8, 6]
[1, 3, 7]
[5, 2, 0]
[1, 0, 3]
[5, 2, 7]
[4, 8, 6]
[1, 2, 3]
[5, 7, 0]
[4, 8, 6]
[1, 2, 3]
[0, 5, 6]
[4, 7, 8]
[1, 2, 3]
[4, 5, 6]
[0, 7, 8]
[1, 2, 3]
[4, 5, 6]
[7, 0, 8]
[1, 2, 3]
[4, 5, 6]
[7, 8, 0]
```

Рисунок 3.2 – Алгоритм RBFS стану(1 3 7 5 0 2 4 8 6)

3.3 Дослідження алгоритмів

В таблиці 3.1 наведені характеристики оцінювання алгоритму BFS, задачі 8 рuzzle для 20 початкових станів.

Таблиця 3.1 – Характеристики оцінювання BFS

Початкові стани	Ітерації	К-сть гл.	Всього	Всього станів
		кутів	унікальних	у пам'яті
			станів	
1 2 7	127407	44029	1485	127407
3 4 5				
608				
1 3 7	518413	179045	3540	518413
5 0 2				
486				
182	13816	9014	444	13816
0 4 3				
7 6 5				
1 3 5	45557	29590	724	45557
7 0 2				
8 4 6				
160	162427	105163	1440	162427
7 3 2				
5 4 8				
3 5 0	2094765	723221	20142	2094765
1 4 8				
7 6 2				
1 5 2	21438	13900	551	21438
873				
0 4 6				
1 3 0	217416	14102	561	217416
4 6 5				
7 2 8				
162	330778	115112	655	330778

7 8 0 1436397 503765 9354 1436397 5 3 1 7 8 6 130 3613 2358 249 3613 8 2 5 47 6 23925 15559 583 23925 4 1 5 07 8 251411 2056 386479 7 0 8 562 2300 242869 158791 1887 242869 1 5 7 48 6 219973 143527 1658 219973 4 1 6 72 8 2306 242 3565 2 8 5 0 7 6 2306 242 3565 0 5 3 193717 126023 1607 193717 2 1 7 4 8 6 130 243229 159030 1905 243229 8 2 7 4 6 5 46 5 46 5 47 2000 </th <th>453</th> <th></th> <th></th> <th></th> <th></th>	453				
5 3 1 7 8 6 1 3 0 3613 2358 249 3613 8 2 5 47 6 23925 15559 583 23925 4 1 5 07 8 251411 2056 386479 7 0 8 386479 251411 2056 386479 7 0 8 56 2 2300 242869 158791 1887 242869 1 5 7 48 6 41 6 219973 143527 1658 219973 4 1 6 72 8 3565 2306 242 3565 2 8 5 0 7 6 243229 159030 1905 243229 8 2 7 159030 1905 243229	7 8 0				
786 3613 2358 249 3613 825 476 23925 15559 583 23925 415 078 251411 2056 386479 708 562 2300 242869 158791 1887 242869 157 486 219973 143527 1658 219973 416 728 3565 2306 242 3565 285 076 253 193717 126023 1607 193717 486 130 243229 159030 1905 243229 827 243229 159030 1905 243229	2 4 0	1436397	503765	9354	1436397
1 3 0 3613 2358 249 3613 8 2 5 47 6 23925 15559 583 23925 4 1 5 07 8 251411 2056 386479 7 0 8 562 386479 251411 2056 386479 2 3 0 242869 158791 1887 242869 1 5 7 48 6 219973 143527 1658 219973 4 1 6 7 2 8 242 3565 2306 242 3565 2 8 5 0 7 6 0 5 3 193717 126023 1607 193717 4 8 6 1 3 0 243229 159030 1905 243229 8 2 7 243229 159030 1905 243229	5 3 1				
8 2 5 47 6 23 6 23925 15559 583 23925 4 1 5 0 7 8 251411 2056 386479 7 0 8 251411 2056 386479 7 0 8 56 2 23 0 242869 158791 1887 242869 1 5 7 4 8 6 219973 143527 1658 219973 4 1 6 7 2 8 242 3565 2 8 5 0 7 6 242 3565 0 5 3 193717 126023 1607 193717 2 1 7 4 8 6 243229 159030 1905 243229 8 2 7 243229 159030 1905 243229	786				
476 236 23925 15559 583 23925 415 078 251411 2056 386479 708 562 230 242869 158791 1887 242869 157 486 219973 143527 1658 219973 416 728 3565 2306 242 3565 285 076 253 193717 126023 1607 193717 217 486 130 243229 159030 1905 243229 827 159030 1905 243229	1 3 0	3613	2358	249	3613
2 3 6 23925 15559 583 23925 4 1 5 0 7 8 251411 2056 386479 7 0 8 5 6 2 23 0 242869 158791 1887 242869 1 5 7 4 8 6 219973 143527 1658 219973 4 1 6 7 2 8 2306 242 3565 2 8 5 0 7 6 2306 242 3565 2 1 7 4 8 6 13 0 243229 159030 1905 243229 8 2 7 243229 159030 1905 243229	8 2 5				
4 1 5 0 7 8 8 251411 2056 386479 4 1 3 386479 251411 2056 386479 7 0 8 5 6 2 2 23 0 242869 158791 1887 242869 1 5 7 4 8 6 219973 143527 1658 219973 4 1 6 7 2 8 2306 242 3565 2 8 5 0 7 6 2306 242 3565 2 8 5 0 7 6 250 1607 193717 2 1 7 4 8 6 243229 159030 1905 243229 8 2 7 243229 159030 1905 243229	476				
0 7 8 386479 251411 2056 386479 7 0 8 5 6 2 2 386479 386479 5 6 2 23 0 242869 158791 1887 242869 1 5 7 4 8 6 219973 143527 1658 219973 4 1 6 7 2 8 2306 242 3565 2 8 5 0 7 6 2306 242 3565 2 8 5 0 7 6 193717 126023 1607 193717 2 1 7 4 8 6 243229 159030 1905 243229 8 2 7 243229 159030 1905 243229	2 3 6	23925	15559	583	23925
4 1 3 386479 251411 2056 386479 7 0 8 5 6 2 23 0 242869 158791 1887 242869 1 5 7 4 8 6 219973 143527 1658 219973 4 1 6 7 2 8 2306 242 3565 2 8 5 0 7 6 2306 242 3565 0 5 3 193717 126023 1607 193717 2 1 7 4 8 6 13 0 243229 159030 1905 243229 8 2 7 243229 159030 1905 243229	4 1 5				
7 0 8 5 6 2 2 3 0 242869 158791 1887 242869 1 5 7 4 8 6 219973 143527 1658 219973 4 1 6 7 2 8 2306 242 3565 2 8 5 3565 2306 242 3565 0 5 3 193717 126023 1607 193717 2 1 7 4 8 6 13 0 243229 159030 1905 243229 8 2 7 243229 159030 1905 243229	0 7 8				
5 6 2 23 0 242869 158791 1887 242869 1 5 7 4 8 6 219973 143527 1658 219973 4 1 6 7 2 8 2306 242 3565 2 8 5 0 7 6 2306 242 3565 0 5 3 193717 126023 1607 193717 2 1 7 4 8 6 13 0 243229 159030 1905 243229 8 2 7 243229 159030 1905 243229	413	386479	251411	2056	386479
2 3 0 242869 158791 1887 242869 1 5 7 4 8 6 219973 143527 1658 219973 4 1 6 7 2 8 2306 242 3565 2 8 5 0 7 6 2306 242 3565 0 5 3 193717 126023 1607 193717 2 1 7 4 8 6 243229 159030 1905 243229 8 2 7 243229 159030 1905 243229	7 0 8				
157 486 219973 143527 1658 219973 416 728 3565 2306 242 3565 285 076 2193717 126023 1607 193717 217 486 130 243229 159030 1905 243229 827 243229 159030 1905 243229	5 6 2				
4 8 6 219973 143527 1658 219973 4 1 6 1658 219973 4 1 3 3565 2306 242 3565 2 8 5 0 7 6 242 3565 0 5 3 193717 126023 1607 193717 2 1 7 4 8 6 13 0 243229 159030 1905 243229 8 2 7 243229 159030 1905 243229	2 3 0	242869	158791	1887	242869
0 5 3 219973 143527 1658 219973 4 1 6 7 2 8 3565 2306 242 3565 2 8 5 0 7 6 126023 1607 193717 2 1 7 4 8 6 13 0 243229 159030 1905 243229 8 2 7 243229 159030 1905 243229	1 5 7				
4 1 6 7 2 8 3565 2306 242 3565 2 8 5 0 7 6 242 3565 3565 0 5 3 193717 126023 1607 193717 2 1 7 4 8 6 13 0 243229 159030 1905 243229 8 2 7 2 43229 159030 1905 243229	4 8 6				
7 2 8 3565 2306 242 3565 2 8 5 0 7 6 126023 1607 193717 2 1 7 4 8 6 13 0 243229 159030 1905 243229 8 2 7 243229 159030 1905 243229	053	219973	143527	1658	219973
4 1 3 3565 2306 242 3565 2 8 5 0 7 6 193717 126023 1607 193717 2 1 7 4 8 6 13 0 243229 159030 1905 243229 8 2 7 243229 159030 1905 243229	4 1 6				
2 8 5 0 7 6 193717 126023 1607 193717 2 1 7 4 8 6 13 0 243229 159030 1905 243229 8 2 7 243229 159030 1905 243229	7 2 8				
0 7 6 193717 126023 1607 193717 2 1 7 48 6 243229 159030 1905 243229 8 2 7 243229 159030 1905 243229	413	3565	2306	242	3565
0 5 3 193717 126023 1607 193717 2 1 7 48 6 243229 159030 1905 243229 8 2 7 243229 243229 159030 1905 243229	285				
2 1 7 4 8 6 1 3 0 243229 8 2 7 159030 1905 243229 2 4 3 2 2 9 1590 3 0	0 7 6				
4 8 6 243229 159030 1905 243229 8 2 7 243229 159030 1905 243229	053	193717	126023	1607	193717
1 3 0 243229 159030 1905 243229 8 2 7 243229	2 1 7				
8 2 7	486				
	1 3 0	243229	159030	1905	243229
4 6 5	8 2 7				
	4 6 5				

2 3 6	34677	22727	719	34677
1 5 8				
0 4 7				
4 1 3	68021	44566	991	68021
7 0 2				
865				

В таблиці 3.2 наведені характеристики оцінювання алгоритму RBFS, задачі 8 рuzzle для 20 початкових станів.

Початкові стани	Ітерації	К-сть	гл. Всього	Всього станів у пам'яті
		кутів	унікальних станів	у нам ян
1 2 7	118	79	81	80
3 4 5				
608				
1 3 7	2776	35	1998	36
5 0 2				
486				
182	27	8	9	9
0 4 3				
7 6 5				
1 3 5	31	19	10	20
7 0 2				
8 4 6				
160	36	35	24	36
7 3 2				
5 4 8				
3 5 0	78	54	42	56
1 4 8				
762				
1 5 2	39	18	21	18
873				
0 4 6				
1 3 0	62	33	28	34
4 6 5				
7 2 8				

162	41	21	30	22
453		21		22
780	21.67	2201	1.57.4	2202
2 4 0	3167	2381	1654	2382
5 3 1				
786				
1 3 0	32	11	24	12
8 2 5				
476				
2 3 6	86	57	56	58
4 1 5				
0 7 8				
413	46	15	20	16
7 0 8				
5 6 2				
2 3 0	1700	1285	1286	1286
1 5 7				
486				
053	2330	1675	1104	1676
416				
7 2 8				
413	45	21	30	22
285				
076				
053	1751	1283	1294	1284
2 1 7				
486				
1 3 0	257	167	93	168
8 2 7				

4 6 5				
2 3 6	25	9	10	10
1 5 8				
0 4 7				
413	44	21	22	22
7 0 2				
8 6 5				

Таблиця 3.2 – Характеристики оцінювання RBFS

ВИСНОВОК

При виконанні даної лабораторної роботи було розглянуто алгоритми інформативного та неінформативного пошуку, а саме BFS та RBFS для вирішення задачі 8риzzle. Було розроблено програмні специфікації для імплементації даних алгоритмів. За результатами тестування вищезгаданих алгоритмів на 20 різних вхідних станах можна зробити висновок:

Алгоритми інформативного пошуку мають переваги у всіх критеріях оцінювання, так як в загальному випадку генерують менше станів, а отже потребують менше пам'яті, та не можуть ввійти в цикл

КРИТЕРІЇ ОЦІНЮВАННЯ

За умови здачі лабораторної роботи до 23.10.2022 включно максимальний бал дорівню ϵ – 5. Після 23.10.2022 максимальний бал дорівню ϵ – 1.

Критерії оцінювання у відсотках від максимального балу:

- псевдокод алгоритму -10%;
- програмна реалізація алгоритму 60%;
- дослідження алгоритмів 25%;
- висновок -5%.