

Multiple Linear Regression model

x ₁ Age	X ₂ Income (hundred thousand dollar)	y Balance (thousand dollar)
32		5.651202
22	0.708148	7.321263
45	0.290905	5.167304
78	0.510828	5.609367
54	0.892947	9.406379
39	0.896293	9.379439
42	0.125585	2.734997
51	0.207243	4.876649
21	0.051467	3.584138
19	0.44081	5.437239

Linear Regression model with two variables

$$f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

Where
$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

	X ₂ Income (hundred thousand dollar)	y Balance (thousand dollar)
32	0.550798	,
22	0.708148	7.321263
45	0.290905	5.167304
78	0.510828	5.609367
54	0.892947	9.406379
39	0.896293	9.379439
42	0.125585	2.734997
51	0.207243	4.876649
21	0.051467	3.584138
19	0.44081	5.437239

Multiple Linear Regression model

	V	У
x ₁ Age	Income (hundred	Balance (thousand dollar)
32	thousand dollar) 0.550798	,
22	0.708148	7.321263
45	0.290905	5.167304
78	0.510828	5.609367
54	0.892947	9.406379
39	0.896293	9.379439
42	0.125585	2.734997
51	0.207243	4.876649
21	0.051467	3.584138
19	0.44081	5.437239

For given Training Set $T = \{ (x_{11}, x_{12}, y_1), (x_{21}, x_{22}, y_2), \dots, (x_{n1}, x_{n2}, y_n) \}$, we need to solve

$$Min \quad J(\beta_5, \beta_4, \beta_3, \beta_2, \beta_1, \beta_0) = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i}))^2 \qquad \dots (1)$$

$$\mathbf{u} = \begin{bmatrix} \beta_{2} \\ \beta_{1} \\ \beta_{0} \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} x_{12} & x_{11} & 1 \\ x_{22} & x_{21} & 1 \\ x_{21} & x_{11} & 1 \\ x_{22} & x_{21} & 1 \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} y_{1} \\ y_{2} \\ y_{2} \end{bmatrix}$$

$$\mathbf{u} = \begin{bmatrix} \beta_{2} \\ \beta_{1} \\ \beta_{0} \end{bmatrix} = (A^{T}A)^{-1} A^{T}\mathbf{Y}$$

$$\mathbf{u} = \begin{bmatrix} \beta_2 \\ \beta_1 \\ \beta_0 \end{bmatrix} = (A^T A)^{-1} A^T \mathbf{Y}$$

The Least Square problem reduces to

$$Min_{(u)}$$
 $J(u) = (Y - Au)^T (Y - Au)$

IT582 Foundation of Machine Learning

Quadratic Regression model with two variables

Quadratic Regression model with two variables

Quadratic Regression model with two variables

 $f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4 x_2^2 + \beta_5 x_1^2$

For given Training Set $T = \{ (x_{11}, x_{12}, y_1), (x_{21}, x_{22}, y_2),, (x_{n1}, x_{n2}, y_n) \}$, we need to solve

$$Min \quad J(\beta_5, \beta_4, \beta_3, \beta_2, \beta_1, \beta_0) = \sum_{i=1}^{n} (yi - (\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{1i} x_{2i} + \beta_4 x_{2i}^2 + \beta_5 x_{1i}^2))^2 \quad(1)$$

$$u = \begin{bmatrix} \beta_{5} \\ \beta_{4} \\ \beta_{3} \\ \beta_{2} \\ \beta_{1} \\ \beta_{0} \end{bmatrix}$$

$$A = \begin{bmatrix} x_{11}^{2} & x_{21}^{2} & x_{11} x_{12} & x_{12} & x_{11} & 1 \\ x_{21}^{2} & x_{22}^{2} & x_{21} x_{22} & x_{22} & x_{21} & 1 \\ \\ x_{n1}^{2} & x_{n2}^{2} & x_{n1} x_{n2} & x_{n2} & x_{n1} & 1 \end{bmatrix}$$

 $Y = \begin{bmatrix} y_n \end{bmatrix}$

The Least Square problem reduces to

$$Min_{(u)}$$
 $J(u) = (Y - Au)^T (Y - Au)$

 $\mathbf{u} = \begin{vmatrix} \beta_4 \\ \beta_3 \\ \beta_2 \\ \beta_1 \\ \beta \end{vmatrix} = (A^T A)^{-1} A^T \mathbf{Y}$

Train RMSE = 0.4621

IT582 Foundation of Machine Learning

IT582 Foundation of Machine Learning

Multiple Regression model working with k variables

x ₁	X ₂	х3		x _k
32	0.550798	283		2
22	0.708148	483	-	3
45	0.290905	514	-	4
78	0.510828	681	-	3
54	0.892947	357	-	2
39	0.896293	569	-	4
42	0.125585	259	-	2
51	0.207243	512	-	2
21	0.051467	266	-	5
19	0.44081	491	-	3

У	
Balance	
(thousand dollar)	
5.651202	
7.321263	
5.167304	
5.609367	
9.406379	
9.379439	
2.734997	
4.876649	
3.584138	
5.437239	

Multiple Regression model working with k variables

Linear Function:-

$$f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + ... + \beta_k x_k$$

For given Training Set $T = \{ (x_{11}, x_{12}, \dots, x_{1k}, y_1), (x_{21}, x_{22}, \dots, x_{2k}, y_2), \dots, (x_{n1}, x_{n2}, \dots, xnk, y_n) \}, \text{ we solve } x_{n1}, x_{n2}, \dots, xnk, x$

Min
$$J(\beta_k, ..., \beta_4, \beta_3, \beta_2, \beta_1, \beta_0) = \sum_{i=1}^n (yi - (\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + ... + \beta_k x_k))^2$$

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ y_n \end{bmatrix}$$

The Least Square problem reduces to

$$Min_{(u)}$$
 $J(u) = (Y - Au)^T (Y - Au)$

$$\mathbf{u} = \begin{bmatrix} \beta_k \\ \beta_2 \\ \beta_1 \\ \beta_0 \end{bmatrix} = (A^T A)^{-1} A^T \mathbf{Y}$$

https://colab.research.google.com/drive/1APfTBXi3U 1ADX1P mLkJ8DyhVCQBegtE?usp=sharing