Compute the largest and smallest positive numbers that can be represented in the 32-bit normalized form.

Q1.sol:

Largest positive number: S=0, E=1111 1110 (254), F=111 1111 1111 1111 1111 1111.

Smallest positive number: S=0, E=0000 00001 (1), F=000 0000 0000 0000 0000 0000.

Compute the largest and smallest negative numbers can be represented in the 32-bit normalized form.

Q2.sol:

Largest negative number: S=1, E=1111 1110 (254), F=111 1111 1111 1111 1111.

Smallest Negative: S=1, E=0000 00001 (1), F=000 0000 0000 0000 0000 0000

find the decimal value of the following IEEE Thee field contains 01111111 = 12710

number.

011111111**001100000000000000**...

First convert each individual field to decimal.

The sign bit s is 1.

The mantissa is $0.0011... = 0.1875_{10}$

Then just plug these decimal values of s, e and f into the formula.

$$(1 - 2s) * (1 + f) * 2e-blas$$

This gives us

$$(1-2)*(1+0.1875)*2^{127-127}$$

= $(-1.1875*2^{0})$

= -1.1875

find the decimal value of the following IEEE The e field contains 01111111 = 12710 number.

10111111110011000000000000000...

First convert each individual field to decimal.

The sign bit s is 1.

The mantissa is 0.0011 ... = 0.187510

Then just plug these decimal values of s, e and f into the formula.

This gives us

$$(1-2)*(1+0.1875)*2^{127-127}$$

= $(-1.1875*2^0)$

Test the associativity of the following operation.

$$X = -10.1 \times 2^{17}$$
, $Y = 1.010 \times 2^{18}$, $Z = 1.0 \times 2^{-23}$

$$X + (Y + Z) & (X+Y) + Z.$$

sol: Q4.

Make exponentials of both the numbers equal

$$\begin{aligned} X+(Y+Z) &= -10.1x2^{17} + (1.010x2^{18} + 1.0 x2^{23}) \\ &= -10.1x2^{17} + (1.010 x2^{18} + 0.00....1 x2^{18}) \\ &= -10.1x2^{17} + (1.010 x2^{18}) \\ &= -10.1x2^{17} + 10.1x2^{17} = 0. \end{aligned}$$

$$(X+Y)+Z = (-10.1x2^{17} + 1.010x 2^{18}) +1.0 x2^{-23}$$

= 0.0 + 1.0 x2⁻²³ = .00000012

Q5. Find the result of following operation:

a)
$$m = 3.2 \times 10^8$$
 $n = 5.8 \times 10^6$

$$m \times n = ?$$

b) m =
$$11.0011 \times 2^{-1}$$
 n = -101.1100×2^{-2}

Sol: Q5:

a)
$$m \times n = 3.2 \times 5.8 \times 10^8 \times 10^6$$

= $18.56 \times 10^{14} = 18.56 \times 10^{14}$
= 1.856×10^{15} .

b)
$$m \times n = 1.10011 \times -1.011100$$

= -1.0010100₂ × 2¹
= -1.15625₁₀ × 2¹ = -2.3125₁₀.

Q5. Find the result of following operation:

a)
$$m = 3.2 \times 10^8$$
 $n = 5.8 \times 10^6$

$$m \times n = ?$$

b) m =
$$11.0011 \times 2^{-1}$$
 n = -101.1100×2^{-2}

Sol: Q5:

a)
$$m \times n = 3.2 \times 5.8 \times 10^8 \times 10^6$$

= $18.56 \times 10^{14} = 18.56 \times 10^{14}$
= 1.856×10^{15} .

b)
$$m \times n = 1.10011 \times -1.011100$$

= -1.0010100₂ × 2¹
= -1.15625₁₀ × 2¹ = -2.3125₁₀.

The IEEE single precision floating point standard allows us to represent less than 2^32 different numbers. Of these numbers:

- (a) How many are strictly between 2-5 and 2-4?
- (b) How many are strictly between 213 and 214?
- (c) How many are strictly between 247 and 248?

Approximate the decimal number 43.00008 as a normalized binary number in scientific notation, with ten bits of significand.