Summary

Integrating factor

$$y' + p(t)y = f(t)$$
, integrating factor: $\mu(t) = e^{\int p(t)dt}$
 $\Rightarrow (\mu(t)y)' = \mu(t)f(t)$

Then: integrate both sides and divide by $\mu(t)$

Separation of variables

$$y' = g(x)h(y)$$
, if your equation can be rewritten in this form, separate variables: $\frac{1}{h(y)}y' = g(x)$

$$\Rightarrow \quad \frac{1}{h(y)}\frac{dy}{dx} = g(x) \quad \Rightarrow \quad \frac{dy}{h(y)} = g(x)dx$$
Then: Integrate both sides.

Bernoulli equation

$$y'+p(t)y=q(t)y^m, \quad (m\neq 0,1)$$
 $\Rightarrow \quad y^{-m}y'+p(t)y^{1-m}=q(t)$ substitute: $u=y^{1-m}$ and $u'=(1-m)y^{-m}y',$ $\Rightarrow \quad \frac{1}{1-m}u'+p(t)u=q(t)$ Then: Solve for u (you can use integrating factor or, if possible, separation of variables) don't forget to come back to y .

Exact Differential Equations

$$M(x,y)dx + N(x,y)dy = 0,$$
 if $\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}$ \Rightarrow Exact Differential Equation Find $G(x,y)$ such that
$$\frac{\partial G(x,y)}{\partial x} = M(x,y) \quad \text{and} \quad \frac{\partial G(x,y)}{\partial y} = N(x,y)$$
 Solution: $G(x,y) = c$

Integrating factor for Non-Exact Differential Equation

If
$$M(x,y)dx + N(x,y)dy = 0$$
 is **not** an Exact Differential Equation i.e.
$$\frac{\partial M(x,y)}{\partial y} \neq \frac{\partial N(x,y)}{\partial x} \Rightarrow \text{ use integrating factor}$$

$$\mu(x) = e^{\int u(x)dx}, \text{ where } u(x) = \frac{M_y(x,y) - N_x(x,y)}{N(x,y)}$$

$$\mu(y) = e^{\int v(y)dy}, \text{ where } v(y) = \frac{N_x(x,y) - M_y(x,y)}{N(x,y)}$$
 Then: $\left[\mu(x)M(x,y)\right]dx + \left[\mu(x)N(x,y)\right]dy = 0$ or
$$\left[\mu(y)M(x,y)\right]dx + \left[\mu(y)N(x,y)\right]dy = 0 \text{ is an exact diff. eq.}$$
 \Rightarrow solve this exact differential equation

Homogeneous first order differential equations

$$y'=g\left(\frac{y}{x}\right)$$
, substitute $u=\frac{y}{x}$ and $y'=u+xu' \Rightarrow u+xu'=g(u)$, now solve for u . You can use separation of variables:
$$\Rightarrow \frac{1}{g(u)-u}du=\frac{1}{x}dx$$
 Don't forget the solutions that might come from $g(u)-u=0$

Examples		
Equation	Method	Notes
$y' + \frac{1}{t}y = \frac{7}{t^2} + 3$	Integration factor	
$e^{t^2}y' + e^{t^2}\left(2t + \frac{1}{t}\right)y = t^2$	Integration factor	Divide by e ^{t^2} to get the standard form
$xy' + 3y = \frac{e^x}{x}$	Integration factor	Divide by x to get the standard form
$\frac{y'}{2y} - \frac{1}{2}\cos(x) = \frac{\sin(x)\cos(x)}{y}$	Integration factor	Multiply by 2y to get the standard form
$ty' + y + y^2 = 0$	Separation of variables, Bernoulli equation	Divide by t
$y' + 2x(y^2 - 3y + 2) = 0$	Separation of variables	
$x^2 y y' = (y^2 - 1)^{3/2}$	Separation of variables	
$y' + \frac{1}{t}y = -ty^3$	Bernoulli equation	m=3
$ty' + y = y^2 \ln(t)$	Bernoulli equation	m=2
$(3x^2 + y^2 - 4xy - 3y)dx + (-2x^2 + 6y + 2xy - 3x)dy = 0$	Exact Differential equation	
$\left(x\ln(y) + y\ln(x)\right)dx + \left(\frac{x^2}{2y} + x\ln(x) - x\right)dy = 0$	Exact Differential equation	
$xy' = y + x\cos^2\left(\frac{y}{x}\right)$	Homogeneous 1 st order diff. eq.	Divide by x
$3xyy' = x^2 + 4y^2$	Homogeneous 1 st order diff. eq.	Divide by x ²