COMP 424 - Artificial Intelligence Lecture 13: Bayesian Networks

Instructor: Jackie CK Cheung (jcheung@cs.mcgill.ca)

Readings: R&N Ch 14

Quick Questions

- 1. What are some reasons for representing the world using probabilities, rather than by using a logical representation?
- 2. What are random variables?
- 3. What is Bayes Rule, and how do we use it to model beliefs?

Describing the World Probabilistically

- Recall these two opposite extremes:
 - No independence assumptions: all random variables may depend on each other
 - E.g., P(X,Y,Z) = P(X)P(Y|X)P(Z|X,Y)
 - Highly complex model! Too many parameters to estimate.
 - Full independence assumptions: all random variables are independent of each other
 - E.g., P(X,Y,Z) = P(X)P(Y)P(Z)
 - Model is too simple! Cannot capture interactions between variables.
- We need something in between!
 - Conditional independence to model some of the dependencies
 - Need systematic way to represent our independence assumptions

Review: Naïve Bayes model

Without any independence assumptions:

$$P(D, s_1, ..., s_N) = P(D)P(s_1|D)P(s_2|s_1, D) ... P(s_N|s_1, ..., s_{N-1}, D)$$

By the chain rule of probability

With the Naïve Bayes assumption:

$$P(D, s_1, ..., s_N) = P(D)P(s_1|D)P(s_2|D) ... P(s_N|D)$$

We represented the model graphically like so:

Bayesian networks

- Bayesian networks represent conditional independence relationships in a systematic way using a graphical model.
- Specify conditional independencies using graph structure.
- Graphical model = graph structure + parameters.

Bayesian networks - Basics

- Nodes are random variables
- Edges specify dependency between random variables
 - E.g., B: bronchitis, C: cough, F: fever (binary random variables)
 - Edges specify that B directly influences probability of C, F.
 - This results in conditional probability distributions:

nal probability distributions:	P((B)
(B)	<i>B</i> = 1	<i>B</i> = 0
	0.18	0.82

P(C B)		
C=1 $C=0$		
<i>B</i> = 0	0.07	0.93
<i>B</i> = 1	0.8	0.2

P(F B)		
F=1 $F=0$		<i>F</i> = 0
<i>B</i> = 0	0.05	0.95
<i>B</i> = 1	0.9	0.10

Semantics of network structure

 In Bayesian networks, joint probability distribution is the product of these conditional probability distributions

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | \text{parents}(X_i))$$

• e.g.,

$$P(B,C,F) = P(C|B)P(F|B)P(B)$$

P(B)	
<i>B</i> = 1	<i>B</i> = 0
0.18	0.82

P(C B)		
C=1 $C=0$		
<i>B</i> = 0	0.07	0.93
<i>B</i> = 1	0.8	0.2

P(F B)		
F=1 $F=0$		
<i>B</i> = 0	0.05	0.95
<i>B</i> = 1	0.9	0.10

Bayesian networks, formally speaking

A Bayesian network is a **directed** graph, where:

- There is one node for each variable in the problem.
- Directed links (i.e. arcs) represent "direct influences".

How to interpret the arrows? What does it mean?

- 1. X is a parent of Y.
 - -> X has a direct influence on Y.
- 2. X and Z are parents of Y.
 - -> X and Z have direct influence on Y.
- The graph cannot have directed cycles.
- Each node X_i , has an associated conditional probability distribution, $P(X_i \mid parents(X_i))$, that quantifies the effect of the parents on the node.

Network structure and conditional independence

1. A node is conditionally independent of its nondescendants, given its parents

$$X \perp Z_{ij} | U_1, U_m \quad \forall i$$

Network structure and conditional independence

2. A node is conditionally independent of all other nodes, given its **Markov blanket** (parents, children, children's parents)

$$X \perp W_k \mid U_1, U_m, Y_1, Y_n, Z_{ij} \forall k$$

Example 1

B=patient has bronchitis, **F**=patient has fever, **C**=patient has cough

P(B)	
<i>B</i> = 1	<i>B</i> = 0
0.18	0.82

	P(C B)
	C = 1	C = 0
<i>B</i> = 0	0.07	0.93
<i>B</i> = 1	0.8	0.2

P(F B)			
	F=1 $F=0$		
B=0	0.05	0.95	
<i>B</i> = 1	0.9	0.10	

In above graph,

$$C \perp F \mid B$$
,
but not $C \perp F$ (" \perp " = "indep. of")

C is "conditionally independent" of F, given B.

Example 2 (from Poole and Mackworth)

- The agent receives a report that everyone is leaving a building and it must decide whether there is a fire in the building.
 - The report sensor is noisy (for eg. human error or mischief).
 - The fire alarm going off can cause everyone to leave but it's not always the case (for eg. everyone is in the middle of an exciting lecture).
 - The fire alarm usually goes off when there is a **fire** but the alarm could have been **tampered** with.
 - A fire also causes smoke to come out from the building.

Question: Is there a fire? Should the agent alert the fire brigade?

Constructing Belief Nets: Variables

Variables and domains:

- Tampering = true when there is tampering with the alarm.
- Fire = true when there is a fire.
- Alarm = true when the alarm sounds.
- Smoke = true when there is smoke.
- Leaving = true if there is an exodus of people.
- Report = true if there is a report given by someone of people leaving.

Are there any independence relationships between these variables?

Constructing Belief Nets: Structure

Consider the variables in the order of causality:

- Fire is independent of Tampering.
- Alarm depends on both Fire and Tampering.
- Smoke depends only on Fire. It is conditionally independent of Tampering and Alarm given whether there is a Fire.
- Leaving only depends on Alarm and not directly on Fire or Tampering or Smoke.
- Report depends directly only on Leaving.

The network topology expresses the conditional independencies above.

Constructing Belief Nets: Structure

Consider the variables in the order of causality:

- Fire is independent of Tampering.
- Alarm depends on both Fire and Tampering.
- Smoke depends only on Fire. It is conditionally independent of Tampering and Alarm given whether there is a Fire.
- Leaving only depends on Alarm and not directly on Fire or Tampering or Smoke.
- Report depends directly only on Leaving.

The network topology expresses the conditional independencies above.

Constructing Belief Nets: CPDs

P(A T, F)		
A = 1 A = 0		
<i>T</i> =0, <i>F</i> =0	0.0001	0.9999
<i>T</i> =0, <i>F</i> =1	0.99	0.01
<i>T</i> =1, <i>F</i> =0	0.85	0.15
<i>T</i> =1, <i>F</i> =1	0.5	0.5

P(S F)			
	S = 1		
<i>F</i> = 0	0.01	0.99	
<i>F</i> = 1	0.90	0.10	

P(R L)		
	R=1 $R=0$	
<i>L</i> = 0	0.01	0.99
<i>L</i> = 1	0.75	0.25

Causality and Bayes Net Structure

• Directionality of edges *should* ideally specify causality, but this doesn't necessarily have to be the case.

E.g., fire and tampering cause alarm

Also we may not know direction of causality!

- Another graph structure (and corresponding CPTs) can produce the same joint probabilities!
- But not following causality usually results in more model parameters.

Inference in Bayes Nets

- What's the point of all this? Answer questions about state of the world!
 - Find joint probability distribution
 - Answer questions using conditional probabilities
 - Determine causes
 - Find explanations
- Use probability rules to figure out answers!
- Key operations:
 - Rewrite joint probabilities as conditional probabilities
 - Marginalize out variables

Inference in BNs: Joint prob.

P(S F)			
	S = 1 S = 0		
<i>F</i> = 0	0.01	0.99	
<i>F</i> = 1	0.90	0.10	

P(R L)			
	R=1 $R=0$		
<i>L</i> = 0	0.01	0.99	
<i>L</i> = 1	0.75	0.25	

<u>Full joint distribution</u>: *P(Tampering, Fire, Alarm, Smoke, Leaving, Report)* ?? Use structure to solve this!

- = P(Tampering) X P(Fire) X P(Alarm | Tampering, Fire) X P(Smoke | Fire) X P(Leaving | Alarm) X P(Report | Leaving)
- $= 0.02 \times 0.01 \times 0.5 \times 0.9 \times 0.88 \times 0.75$

Inference in BNs: Joint prob.

P(S F)		
S = 1 S = 0		
<i>F</i> = 0	0.01	0.99
<i>F</i> = 1	0.90	0.10

P(R L)			
	R=1 $R=0$		
<i>L</i> = 0	0.01	0.99	
<i>L</i> = 1	0.75	0.25	

Full joint distribution: $P(\sim T, F, A, S, L, \sim R)$??

Inference in BNs: Joint prob.

A = 0

A = 1

0.001

0.88

0.999

0.12

P(S F)			
	S = 1 S = 0		
<i>F</i> = 0	0.01	0.99	
<i>F</i> = 1	0.90	0.10	

P(R L)			
	R=1 $R=0$		
<i>L</i> = 0	0.01	0.99	
<i>L</i> = 1	0.75	0.25	

Full joint distribution: $P(\sim T, F, A, S, L, \sim R)$??

0.15

0.5

= P(~T) X P(F) X P(A | ~T, F) X P(S | F) X P(L | A) X P(~R | L)

0.85

0.5

 $= 0.98 \times 0.01 \times 0.99 \times 0.9 \times 0.88 \times 0.25$

T=1, *F*=0

T=1, *F*=1

Inference in BNs: Marginal prob.

P(S F)			
	S = 1 S = 0		
F = 0	0.01	0.99	
<i>F</i> = 1	0.90	0.10	

P(R L)			
	R = 1 R = 0		
<i>L</i> = 0	0.01	0.99	
<i>L</i> = 1	0.75	0.25	

Marginal probabilities: Eg. Prob of getting a report P(R)??

Inference in BNs: Marginal prob.

P(A T, F)		
A = 1 A = 0		
<i>T</i> =0, <i>F</i> =0	0.0001	0.9999
<i>T</i> =0, <i>F</i> =1	0.99	0.01
<i>T</i> =1, <i>F</i> =0	0.85	0.15
<i>T</i> =1, <i>F</i> =1	0.5	0.5

F = 0

0.99

	P(R L))
	<i>R</i> = 1	R = 0
<i>L</i> = 0	0.01	0.99
<i>L</i> = 1	0.75	0.25

P(S | F)

S = 1

0.01

0.90

F = 0

F = 1

S = 0

0.99

0.10

Marginal probabilities: Eg.	Prob o	of getting a	report P(R) ??

$$= P(R = 1) = \sum_{t,f,a,s,l} P(T=t, F=f, A=a, S=s, L=l, R = 1)$$

 $=\sum_{t,f,a,s,l} P(T) P(F) P(A|T,F) P(S|F) P(L|A) P(R=1|L)$

Sum over domain of marginalized vars: $T=\{0,1\}$, $F=\{0,1\}$, $A=\{0,1\}$, $S=\{0,1\}$, $L=\{0,1\}$

Inference in BNs: Causal reasoning

P(S F)			
	S = 1 S = 0		
<i>F</i> = 0	0.01	0.99	
<i>F</i> = 1	0.90	0.10	

P(R L)		
	<i>R</i> = 1	<i>R</i> = 0
<i>L</i> = 0	0.01	0.99
<i>L</i> = 1	0.75	0.25

Causal reasoning: Eg. Prob of receiving a report in case of fire, $P(R \mid F)$??

Inference in BNs: Causal reasoning

P(F)	
<i>F</i> = 1	<i>F</i> = 0
0.01	0.99

P(A T, F)		
	<i>A</i> = 1	A = 0
<i>T</i> =0, <i>F</i> =0	0.0001	0.9999
<i>T</i> =0, <i>F</i> =1	0.99	0.01
<i>T</i> =1, <i>F</i> =0	0.85	0.15
<i>T</i> =1, <i>F</i> =1	0.5	0.5

	P(L A)		
		<i>L</i> = 1	<i>L</i> = 0
R	A = 0	0.001	0.999
	A = 1	0.88	0.12

P(S F)		
	S = 1	S = 0
<i>F</i> = 0	0.01	0.99
<i>F</i> = 1	0.90	0.10

P(R L)		
	<i>R</i> = 1	<i>R</i> = 0
<i>L</i> = 0	0.01	0.99
<i>L</i> = 1	0.75	0.25

Causal reasoning: Eg. Prob of receiving a report in case of fire, $P(R \mid F)$??

$$P(R = 1 \mid F = 1) = P(R = 1, F = 1) / P(F = 1)$$

=
$$\sum_{t,a,s,l} P(T=t,F=1,A=a,S=s,L=l,R=1) / \sum_{t,a,s,l,r} P(T=t,F=1,A=a,S=s,L=l,R=r)$$

P(S F)		
	S = 1	S = 0
F = 0	0.01	0.99
<i>F</i> = 1	0.90	0.10

P(R L)		
	R=1 $R=0$	
<i>L</i> = 0	0.01	0.99
<i>L</i> = 1	0.75	0.25

- Suppose agent receives a report.
 - Prob that there is a fire?
 - Prob that there is tampering?

P(S F)		
	S = 1	S = 0
<i>F</i> = 0	0.01	0.99
<i>F</i> = 1	0.90	0.10

P(R L)		
	<i>R</i> = 1	<i>R</i> = 0
<i>L</i> = 0	0.01	0.99
<i>L</i> = 1	0.75	0.25

- Suppose agent receives a report.
 - Prob that there is a fire? $P(F \mid R) = P(R, F) / P(R) = P(R \mid F) P(F) / P(R)$
 - Prob that there is tampering? P(T | R) = P(T,R) / P(R)
- Suppose agent sees smoke instead.
 - Prob that there is a fire?
 - Prob that there is tampering?

P(S F)		
	S = 1	S = 0
<i>F</i> = 0	0.01	0.99
<i>F</i> = 1	0.90	0.10

P(R L)		
	<i>R</i> = 1	<i>R</i> = 0
<i>L</i> = 0	0.01	0.99
<i>L</i> = 1	0.75	0.25

- Suppose agent receives a report.
 - Prob that there is a fire? P(F | R) = P(R, F) / P(R) = P(R | F) P(F) / P(R)
 - Prob that there is tampering? $P(T \mid R) = P(T,R) / P(R)$
- Suppose agent sees smoke instead.
 - Prob that there is a fire? P(F | S) = P(F, S) / P(S)
 - Prob that there is tampering? P(T | S) = P(T, S) / P(S)

P(S F)		
	S = 1	S = 0
F = 0	0.01	0.99
<i>F</i> = 1	0.90	0.10

P(R L)		
	R=1 $R=0$	
<i>L</i> = 0	0.01	0.99
<i>L</i> = 1	0.75	0.25

Evidential reasoning or explanation. Compare posteriors with priors!

- Suppose agent receives a report.
 - Prob that there is a fire? $P(F \mid R) = 0.2305$
 - Prob that there is tampering? P(T | R) = 0.399
- Suppose agent sees smoke instead.
 - Prob that there is a fire? P(F | S) = 0.476
 - Prob that there is tampering? P(T | S) = 0.02

P(S F)		
S = 1 S = 0		
F = 0	0.01	0.99
<i>F</i> = 1	0.90	0.10

P(R L)		
	R=1 $R=0$	
<i>L</i> = 0	0.01	0.99
<i>L</i> = 1	0.75	0.25

Evidential reasoning or explanation.

Suppose agent receives a report <u>and</u> sees smoke.

P(S F)		
S = 1 S = 0		
F = 0	0.01	0.99
<i>F</i> = 1	0.90	0.10

P(R L)		
	R=1 $R=0$	
<i>L</i> = 0	0.01	0.99
<i>L</i> = 1	0.75	0.25

- Suppose agent receives a report <u>and</u> sees smoke.
 - Prob that there is a fire? $P(F \mid R, S) = P(F, R, S) / P(R, S) = 0.964$
 - Prob that there is tampering? $P(T \mid R, S) = P(T,R,S) / P(R,S) = 0.0286$

P(S F)		
	S = 1	S = 0
F = 0	0.01	0.99
<i>F</i> = 1	0.90	0.10

P(R L)		
	R=1 $R=0$	
<i>L</i> = 0	0.01	0.99
<i>L</i> = 1	0.75	0.25

Evidential reasoning or explanation.

- Suppose agent receives a report <u>and</u> sees smoke.
 - Prob that there is a fire? $P(F \mid R, S) = P(F, R, S) / P(R, S) = 0.964$
 - Prob that there is tampering? $P(T \mid R, S) = P(T,R,S) / P(R,S) = 0.0286$

Compare to: $P(F \mid R) = 0.2305$ and $P(T \mid R) = 0.399$. This is called <u>explaining away</u>. $P(F \mid R, {}^{\sim}S) = 0.0294$ and $P(T \mid R, {}^{\sim}S) = 0.501$.

Types of queries for graphical models

1. Unconditional probability query

• What is the prob of some value assignment for a subset of variables Y? P(Y)

2. Conditional probability query

 What is the prob of different value assignments for query variable Y, given evidence about variables Z?

$$P(Y \mid Z = z)$$

3. Maximum a posterior (MAP) queries

 Given evidence Z=z, what is the most likely assignment of values to variables Y?

$$MAP(Y \mid Z = z) = argmax_y P(Y = y \mid Z = z)$$

Inference in BNs: MAP queries

P(S F)		
	S = 1	S = 0
F = 0	0.01	0.99
<i>F</i> = 1	0.90	0.10

P(R L)		
	R=1 $R=0$	
<i>L</i> = 0	0.01	0.99
<i>L</i> = 1	0.75	0.25

Calculating the MAP from the posteriors.

- Suppose agent receives a report.
 - Prob that there is a fire? *P(F | R)* = **0.2305**.

What's the MAP?

Inference in BNs: MAP queries

P(S F)		
S = 1 S = 0		
F = 0	0.01	0.99
<i>F</i> = 1	0.90	0.10

P(R L)		
	R=1 $R=0$	
<i>L</i> = 0	0.01	0.99
<i>L</i> = 1	0.75	0.25

Calculating the MAP from the posteriors.

- Suppose agent receives a report.
 - Prob that there is a fire? P(F | R) = 0.2305.
 - Prob that there is tampering? $P(T \mid R) = 0.399$

$$F = 0$$

Inference in BNs: MAP queries

P(S F)		
	S = 1	S = 0
<i>F</i> = 0	0.01	0.99
<i>F</i> = 1	0.90	0.10

P(R L)			
	<i>R</i> = 1	<i>R</i> = 0	
<i>L</i> = 0	0.01	0.99	
<i>L</i> = 1	0.75	0.25	

Calculating the MAP from the posteriors.

- Suppose agent receives a report.
 - Prob that there is a fire? $P(F \mid R) = 0.2305$.

- Prob that there is tampering? $P(T \mid R) = 0.399$

T = 0

F = 0

- Suppose agent sees smoke AND receives a report.
 - Prob that there is a fire? P(F | R, S)

MAP?

Other examples of MAP queries

- In speech recognition:
 - given a speech signal
 - determine sequence of words most likely to have generated signal.
- In medical diagnosis:
 - given a patient
 - determine the most probable diagnosis.
- In robotics:
 - given sensor readings
 - determine the most probably location of the robot.

Complexity of inference in Bayes Nets

 Given a Bayes net and a random variable X, deciding whether P(X=x) > 0 is NP-hard.

Bad news:

No general inference procedure that will work efficiently for all network configurations.

Good news:

For particular families of networks, inference can be done efficiently. E.g. Naïve Bayes Model!

Recall the Naïve Bayes Model

- A common assumption in early diagnosis is that the symptoms are independent of each other given the disease.
- Let s_1 , ..., s_n be the symptoms exhibited by a patient (e.g. fever, headache, etc.). Let D be the patient's disease.
- Using the Naive Bayes assumption:

$$P(D, s_1, ..., s_n) = P(D) P(s_1 | D) ... P(s_n | D)$$

Only 2n+1 parameters!

