Forecasting Lease Delinquency

Leases

- 1) Economics like loans
- 2) Delinquent >>> Charge-Off >>> -\$ Income
- 3) Predict delinquency trends, save +\$

Time Series Data

1 Target Variable

• Lease Delinquency Rate (US, all banks)

Time Series Data

7 Features

- Lease Receivable Balance
- ISM Purchasing Managers Index
- Consumer Sentiment (UofM)
- S&P 500 Price Index
- Loan Standard Tightening
- Business Inventories
- Retail Sales

Diagnostics

Correlations

Short Lags (1 to 3)

Longer Lags (7 to 9)

Time Series Models

Alternative Models

- 1) Baseline ARIMA
 - a) ARIMA(p,1,q) univariate model
- 2) Null ARIMA Exog
 - a) ARIMA(0,1,0) with exogenous variables
- 3) Full ARIMA
 - a) ARIMA(p,1,0) with exogenous variables

Time Series Results: Fit

Baseline ARIMA: Train, Test ARIMA(p,1,q)

Baseline ARIMA: Residuals, Model Selection

Time Series Results: Fit

Null ARIMA Exog: Train, Test ARIMA(0,1,0) with Exogenous

Null ARIMA Exog: Residuals, Model Selection

Time Series Results: Fit

Full ARIMA: Train, Test ARIMA(p,1,0) with Exogenous

Full ARIMA: Residuals, Model Selection

Time Series Results: Best Models

- 1) Baseline ARIMA
 - a) ARIMA(2,1,0) -
- 2) Null ARIMA Exog
 - a) ARIMA(0,1,0) with { tot_bus_inv_8, ret_sales_2, pmi_man_1, ls_rcvbl_8 }
- 3) Full ARIMA
 - a) ARIMA(1,1,0) with { pmi_man_1, ls_rcvbl_8 }

- Autocorrelation at short lags
- Correlations at short and longer lags

Regression Model

- Baseline ARIMA

 a) ARIMA(2,1,0)

 Null ARIMA Exog
 - a) ARIMA(0,1,0)
 with { tot_bus_inv_8, ret_sales_2, pmi_man_1, ls_rcvbl_8 }
 - 3) Full ARIMA
 - a) ARIMA(1,1,0) with { pmi_man_1, ls_rcvbl_8 }
 - 4) Regression Model
 - a) delinq_1, delinq_2, pmi_man_1, pmi_man_2, pmi_man_3, ls_rcvbl_7, ls_rcvbl_8, and ls_rcvbl_9

Regression Results: Fit

Regression: Train, Test

Regression: Residuals, Feature Importance

Comparing Models

- All models fit training data similarly
- Regression, Baseline ARIMA fit test data best

Forecast Test Data

• Test data: { 2020Q2, ..., 2021Q1 }

One-Quarter-Ahead: 2020Q2, 1.53% delinquency rate

Model	MAPE - Test Data	Forecast - 2020Q2	APE - 2020Q2
Baseline ARIMA	8.8%	1.31%	14.5%
Null ARIMA Exog	11.2%	1.38%	10.0%
Full ARIMA	13.2%	1.37%	10.5%
Regression	7.1%	1.44%	6.2%

Recommendations & Next Steps

Recommendations

- Regression for one-quarter-ahead forecast
- Monitor economic series as qualitative leading indicators
- Consider analysis with company-specific data

Next Steps

- Feature engineering to include more features
- Interactions among features, nonlinearity
- Principal Component Analysis for dimensionality reduction