# CHM 101 Redox reactions and Electrochemistry

Prof (Mrs) M.A. Idowu

# Redox Reactions (Oxidation – reduction reaction)

- Keep us alive (photosynthesis; muscle operation)
- Recover metals from ores
- Convert petroleum into petrochemicals & pharmaceuticals
- Generate electricity
- ❖Power CD's, portable computers, cell phones

BUT CAN ALSO DESTROY CORROSION

Definition in terms of oxygen:

<u>Oxidation</u> = addition of  $O_2$  to a substance (element or compound) e.g. rusting of iron nails due to exposure to oxygen;

$$4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$$
(iron rust)

**Reduction** = Removal of  $O_2$  from a compound e.g. production of iron from iron-ore i.e. reduction of iron ore or iron oxide

$$2Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$

Definition in terms of hydrogen:

Oxidation = removal of hydrogen from a compound

$$CH_3CH_2OH(I) \rightarrow CH_3CHO(I) + H_2$$

**Reduction** = addition of  $H_2$  to an element or a compound

$$Cl_2(g) + H_2(g) \rightarrow 2HCl(g)$$

- Definition in terms of oxidation number
- Consider the reaction:

$$Zn(s) + CuSO4(aq) \rightarrow ZnSO4(aq) + Cu(s)$$

• (1) 
$$Zn^0 \rightarrow Zn^{2+} + 2e^-$$
 (2)  $Cu^{2+} + 2e^- \rightarrow Cu^0$ 

• (1) and (2) are called 'half-reactions'

 The overall equation can be obtained by adding the two 'half-reactions' together, so that the electrons cancel out on each side:

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$
 (1)  
 $Cu^{2+} + 2e^{-} \rightarrow Cu$  (2)

$$Zn + Cu^{2+} + 2e^{-} \rightarrow Zn^{2+} + Cu + 2e^{-}$$

The overall equation is

$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$
 (3)

- Oxidation: in half-reaction (1), oxidation number of Zinc increases from 0 to +2, i.e.
  - (a) increase in oxidation number OR
  - (b) Zn atom loses 2 electrons to become zinc ion.
- \* This process is termed oxidation and we say that Zn is oxidized to Zn<sup>2+</sup>
- Reduction: in half-reaction (2), oxidation number of copper decreases from +2 to 0 i.e.
  - (a) decrease in oxidation number OR
  - (b) the copper atom gains two electrons from the zinc atom.
- \*This process is termed reduction and we say that Cu ion is reduced

Therefore, **oxidation** occurs when electrons are lost, **reduction** occurs when electrons are gained.

#### Redox Reactions in terms of O.N.

- Oxidation is an increase in the oxidation number.
- Reduction is a decrease in the oxidation number.
- An oxidizing agent is a substance which brings
   about the oxidation of another substance. In the
   process, it is itself reduced; Cu salt
- A reducing agent is a specie which brings about the reduction of another substance. In the process, it is itself oxidized; Zn.



## Example

 Do example from print out to know half reactions (oxidation/reduction), overall reaction, spectator ions

## **Key points: Redox reactions**

- Oxidation (electron loss) and reduction (electron gain) must always occur together.
- Electrons given up in the oxidation half-reaction are taken up in the reduction half-reaction (electrons in both half reactions are equal. Therefore, the overall reaction is independent of electrons.
- The overall reaction must be balanced in terms of matter and charge, [law of conservation of mass].

## Oxidation Numbers (O.N.)

- Definition: The oxidation number or oxidation state of an atom is a positive or negative number which is decided using agreed rules.
- We assign a formal "+" charge to the H and call it H+, and a formal "-" charge to Cl and call it Cl-.
- \*Note that these are not real charges, and UNLIKE those of ions in aqueous solution, can not be measured experimentally
- Now H<sup>+</sup> has O.N. of +1, and Cl<sup>-</sup> has an O.N of -1.

#### Rules for Assigning an Oxidation Number (O.N.)

#### **General rules**

- 1. For an atom in its elemental form (uncombined) (Na,  $O_2$ ,  $Cl_2$ , etc.): O.N. = 0
- 2. For a monoatomic ion (e.g.  $Cu^{2+}/O_2^{-}$ ): O.N. = ion charge (+2,Cu or -1,O
- 3. The sum of O.N. values for all atoms in a compound equals zero. (e.g.  $Ca(OH)_2$ ) Total O.N here = 0
- 4. The sum of O.N. values for the atoms in a polyatomic ion equals the ion's charge on the formular unit in magnitude and sign. (e.g.  $NO_3^- = -1$ )

#### Rules for specific atoms or periodic table groups

- 1. For Group IA(1): O.N. = +1 in all compounds (e.g. alkali metals; Na<sup>+</sup>)
- 2. For Group IIA(2): O.N. = +2 in all compounds (e.g.  $Mg^{2+}$ )
- 3. For hydrogen: O.N. = +1 in combination with non-metals
- 4. For oxygen: O.N. = -1 in peroxides and superoxides)

O.N. = -2 in all other compounds(except with F:

 $OF_2$ ,  $O_2F_2$ , O.N. = -1/2)

5. For Group VIIA(17): O.N. = -1 in combination with metals, nonmetals (except O), and other halogens ( $IF_5$ ) lower in the group

#### Rules for Assigning an Oxidation Number (O.N.)

#### Rules

- 6. For Group VIA(16): O.N. = -2
- 7. For Group VA(15): O.N. = -3 when in their binary compounds with metals

NOTE! Rules 1 to 7 are in descending order i.e. 1 supercedes 2 etc.

#### Exercises

 Do exercises from print out to determine oxidation numbers applying the 7 rules given

# Sample Problem Recognizing Oxidizing and Reducing Agents (Do more from print out)



The O.N. of C increases; it is oxidized; it is the reducing agent.

The O.N. of Pb decreases; it is reduced; it is the oxidizing agent.

WHAT CAN BE SAID ABOUT OXYGEN ATOMS??

## **Summary: Redox Terminology**

$$Zn(s) + 2H^+(aq) \longrightarrow Zn^{2+}(aq) + H_2(g)$$

#### **OXIDATION**

One reactant loses electrons. Zn loses electrons.

Reducing agent is oxidized. **Zn is the reducing agent and becomes** oxidized.

Oxidation number increases. The oxidation number of Zn increases from 0 to +2.

#### REDUCTION

Other reactant gains electrons. Hydrogen ion gains electrons.

Oxidizing agent is reduced. Hydrogen ion is the oxidizing agent and becomes reduced.

Oxidation number decreases. The oxidation number of H decreases from +1 to 0.

## **Balancing Redox Equations**

To balance oxidation-reduction reactions in acidic or basic solutions we need to write the chemical equation so that on both sides of equation :

- number of atoms of each element is equal (mass conserved)
   AND
- sum of +ve and –ve charges is equal (charge conserved)

To do this, we'll need to assign oxidation numbers (O.N.) to all atoms.

## **Balancing Redox Equations**

- 1. Assign oxidation numbers (O.N.) and identify species with O.N. changes
- 2. Write incomplete half-reactions (oxidation and reduction)
- 3. Balance each half-reaction separately:
  - a. Balance atoms undergoing redox (put on hold O & H).
  - b. Balance remaining atoms.
    - i. Add H<sub>2</sub>O to balance oxygens.
    - ii. Add H+ to balance hydrogens.
- 4. Balance charges by adding electrons to the appropriate side of the equation.
- 5. Multiply each half-reaction so that the same number of electrons are involved in the reduction and the oxidation.
- 6. Add the half-reactions, bring same species together and cancel equal amounts of any species occurring on each side of the equation.
- 7. In basic solutions, add OH<sup>-</sup> (both side) to neutralize H<sup>+</sup>.

# **Balancing Redox Equations**(Acid Solution)

Consider the following redox reaction:

$$^{+7}$$
  $^{+2}$   $^{+2}$   $^{+2}$   $^{+3}$   $^{+3}$   $^{+3}$   $^{+3}$   $^{+4}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1}$   $^{-1$ 

#### Note:

To carry out **step 3**, balance (i) missing oxygen atoms with equal amount of H<sub>2</sub>O (ii) missing hydrogen atoms with equal amount of H<sup>+</sup>

# **Balancing Redox Equations**(Acid Solution)

Step 3b (i): Add water to balance the oxygens:

$$MnO_4^-$$
 (aq)  $\rightarrow$   $Mn^{2+}$ (aq) +  $4H_2O(I)$ 

Now H atoms have been introduced, so they need to be balanced with H<sup>+</sup> ions on LHS of equation [i.e. **step 3b** (ii)]:

$$MnO_4^{-}(aq) + 8H^+(aq) \rightarrow Mn^{2+}(aq) + 4H_2O(I)$$
 (red.)  
 $Fe^{2+}(aq) \rightarrow Fe^{3+}(aq)$  (ox.)

# Balancing Redox Equations (Acid Solution)

$$MnO_4^-(aq) + 8H^+(aq) + \mathbf{5e}^- \rightarrow Mn^{2+}(aq) + 4H_2O(I)$$
 (red.)  
 $Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + \mathbf{e}^-$  (ox.)  
 $MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(I)$  (red.)  
 $\mathbf{5}Fe^{2+}(aq) \rightarrow \mathbf{5}Fe^{3+}(aq) + \mathbf{5}\mathbf{e}^ \mathbf{5} \times (ox.)$   
 $MnO_4^-(aq) + 8H^+(aq) + 5Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O(I)$   
 $+ 5Fe^{3+}(aq)$ 

Check: Is this equation balanced i.t.o matter and charge

#### In basic solutions

- Add OH<sup>-</sup> (both side) to neutralize H<sup>+</sup>
- We do examples from print out together

# **Application: Redox Chemistry**

There are many industrial and laboratory applications of redox stoichiometry. For example:

- •a mining engineer must know the concentration of iron in a sample of iron ore in order to decide whether or not a mine would be profitable.
- •Chemical technicians in industry, monitoring the quality of their companies' products, must determine the concentration of substances such as sodium hypochlorite (NaClO) in bleach, or hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) in disinfectants.

# Application: Redox Chemistry (recall your CHM 191)

- In a titration, one reagent (the *titrant*) is slowly added to another (the *sample*) until an abrupt change in a solution property (the *endpoint*) occurs.
- In acid—base titrations, the titrant is generally a strong acid or base.
- In redox titrations, the titrant is always a strong oxidizing or reducing agent.

## Introduction: Electrochemistry

 Electrochemistry is the study of the transfer of electrons from one chemical species to another



transfer or shift of electrons

- In everyday life:
  - Car battery, Cell phone battery
  - Refining of metals; manufacturing of chemicals
- Why Cutlery or ornaments made of silver tarnish and become black? 4Ag(s) + O₂(g) → 2Ag₂O(s)
- Electroplating, galvanizing of metals, etc.

# Introduction: Electrochemistry

- Electrochemistry can also be put as the study of how chemical reactions can be used to produce electricity<sup>1</sup> and how electricity can be used to produce chemical reactions<sup>2</sup>
- i.e. there are two inherently different methods by which an electric current interacts with matter:

- (1) An electric current can cause a chemical reaction: **Electrolytic Cell**
- (2) A chemical reaction can produce an electric current: Voltaic/Galvanic cell

#### Metal in the solution of its ions



- When a strip of metal, M is put in a solution of its ions Mn+ then,
- M= electrodeThis is the material, either a metallic rod/bar/strip that
  allows passage of electrons. There are two types of
  electrodes (Anode and cathode)

- Anode = It sends electrons into the outer circuit. It has a negative charge and it is shown as (-) in cell diagrams
- Cathode = Electrode at which electrons are received from the outer circuit. It has a positive charge and it is shown as (+) in cell diagrams
- Current- Flow of electrons through a conductor
- Half-cell- Half of an electrochemical cell, it is actually the combination of the metal, M and the solution containing Mn+ (i.e. electrode and solution). One half is for oxidation while the other half is for reduction.
- The solution is called the electrolyte.

# Interaction between Electrode and Electrolyte • A metal ion Mn+may collide with the electrode and

- A metal ion M<sup>n+</sup>may collide with the electrode and undergo no change
- A metal ion M<sup>n+</sup>may collide with the electrode and gain 'n' electrons and be converted to metal M. The ion is therefore said to be reduced. M<sup>n+</sup>(aq)+ ne<sup>-</sup> → M(s)
- A metal atom may lose 'n' electrons and enter into solution. The metal atom is said to be oxidized.
   M(s) → M<sup>n+</sup>(aq) + ne<sup>-</sup>
- Overall reaction: M(s) ↔ M<sup>n+</sup>(aq) + ne<sup>-1</sup>

#### **Voltaic Cells**



**Voltaic Cells:** electrochemical cells in which electricity is generated as a result of spontaneous chemical reactions.

Notation: Zn/Zn<sup>2+</sup> // Cu<sup>2+</sup>/Cu

#### **Cell Notation**



Notation: Zn/Zn<sup>2+</sup> // Cu<sup>2+</sup>/Cu

#### At the anode

- The electrode is made of Zn metal
- The electrolyte is a Zn<sup>2+</sup> solution (e.g. ZnSO<sub>4</sub>)
- Zn metal loses e<sup>-</sup>s & is oxidized to Zn<sup>2+</sup>(aq)
- Electrode is eroded during the process and loses
   Mass
- Electrons lost by Zn metal passes to the cathode

#### At the cathode

- The electrode is made of Cu metal
- The electrolyte is a Cu<sup>2+</sup> solution
- Cu<sup>2+</sup> is reduced to Cu metal
- Copper is deposited on the electrode and it gains mass (since electrons are gained by Cu<sup>2+</sup> to form Cu

- Salt bridge consists of a tube containing a solution of KNO<sub>3</sub>(aq) and plugged at the ends.
- As Zn is oxidized to Zn<sup>2+</sup>, excess cations at the anode is neutralized by NO<sub>3</sub><sup>-</sup> from the salt bridge.
- As Cu<sup>2+</sup> is reduced to Cu metal, a negative charge arises at the cathode is neutralized by K+ from the salt bridge.

## **Electrolytic Cells**

 An electrolytic cell is an electrical arrangement for driving a non-spontaneous redox reaction using an external electrical energy source



#### Comparison of Electrochemical cells

- There are 2 main types
- Voltaic (Galvanic) cells:
- ✓ Here, reaction occurs spontaneously
- ✓ The chemical changes during this reaction produce electricity
- ✓ They have a positive voltage
- ✓ Two electrolytes are employed
- ✓ Assume solutions of equal concentration of 1 M

## Comparison of Electrochemical cells

#### Electrolytic cells

- ✓ Here reactions are non-spontaneous
- ✓ When electricity is applied to this type of cell, a chemical change is produced.

## Standard Electrode Potentials

- The relative oxidizing or reducing strengths of redox couples are expressed in terms of their standard electrode potentials ( $E^{\theta}$ )
- To measure the  $E^{\theta}$  of any redox couples, we arbitrarily choose a reference redox couple in an electrochemical cell.
- The reference redox couple used is H<sup>+</sup>(aq)/H<sub>2</sub>(g),
   (standard hydrogen electrode (SHE)) which (under agreed standard conditions) is given a E<sup>θ</sup> value of zero.

# The standard hydrogen electrode (SHE)

- H<sub>2</sub>(g) is passed at 1 atm pressure over an inert Platinum metal surface in a solution of H<sup>+</sup> whose activity is 1 at 25
   °C.
- As the H<sub>2</sub>(g) is passed, electrons are released to the H<sup>+</sup> in solution and there is a cycle of reaction (clockwise flow of electrons).
- The SHE is given an E<sup>o</sup> value (by convention) of 0.00V.All E<sup>o</sup> values are referenced relative to this zero.

## **Standard Redox Table**

| Oxidizing agent                                     | Reducing agent    | $E_{red}^0/V$ |
|-----------------------------------------------------|-------------------|---------------|
| $\mathrm{Li}^{+}(aq) + \mathrm{e}^{-} \rightarrow$  | Li(s)             | -3.05         |
| $K^+(aq) + e^- \to$                                 | K(s)              | -2.93         |
| $Na^+(aq) + e^- 	o$                                 | Na(s)             | -2.71         |
| $\mathrm{Mg}^{2+}(aq) + 2\mathrm{e}^- \rightarrow$  | Mg(s)             | -2.37         |
| $AI^{3+}(aq) + 3e^- \to$                            | Al(s)             | -1.66         |
| $Zn^{2+}(aq) + 2e^- \to$                            | Zn(s)             | -0.76         |
| $\mathbf{2H}^{+}(aq) + \mathbf{2e}^{-} \rightarrow$ | $\mathbf{H_2}(g)$ | 0.00          |
| $Cu^{2+}(aq) + 2e^- 	o$                             | Cu(s)             | +0.34         |
| $I_2(s) + 2e^-  ightarrow$                          | $2I^-(aq)$        | +0.53         |
| $Br_2(l) + 2e^- \to$                                | $2Br^-(aq)$       | +1.07         |
| $Cl_2(g) + 2e^- \to$                                | $2CI^-(aq)$       | +1.36         |
| $F_2(g) + 2e^- 	o$                                  | $2F^-(aq)$        | +2.87         |

# Key Points about E<sup>0</sup>

- The standard states for aqueous ions and gases are 1 M concentration and 1 atm pressure, respectively. The tabulated potentials hold only for standard conditions.
- The half-equations are all written as reductions, and the  $E^{\theta}$  apply to the reduction reaction. When the equations are reversed (oxidation), the sign of the  $E^{\theta}$  must change.
- It can be applied in many quantitative determination:
  - Determination of strength of an oxidant or reductant
  - To calculate the standard cell voltage of a cell
  - Spontaneity of redox reactions

# Standard Cell Voltage

- The standard voltage for a cell-reaction ( $E^{\theta}_{tot}$ ) is the potential difference measured across the cell when all species in solution are at 1 M concentration and all gases are at pressure of 1 atm.
- Procedure to calc. the standard cell voltage of a cell
  - Split the cell reaction into half-reactions
  - Look up  $E^{\theta}$  in a standard table and identify the redn. and oxidation reaction and write against each half reaction
  - $-E^{\theta}_{red}$  = half cell potential of the reduction reaction
  - $-E_{ox}^{\theta}$  = half-cell potential of the oxidation reaction

# Standard Cell Voltage

- Change the reduction equation of the half-cell reaction with lower value of  $E^{\theta}$  to an oxidation equation. The sign of the  $E^{\theta}$  value will also change
- Balance the number of electrons in the two half equations (NOTE, this does not affect the E<sup>0</sup> since it is an intensive property)
- Add up the two half equations and do the same to the F<sup>0</sup>
- $E_{\text{tot}}^{\theta} = E_{\text{red}}^{\theta} + E_{\text{ox}}^{\theta}$ , where  $E_{\text{tot}}^{\theta}$  (or  $E_{\text{cell}}^{\theta}$ ) is the standard cell voltage

# Standard Cell Voltage: Example

Q. Given the cell reaction, calculate the standard cell potential of the cell:

$$H_2(g) + 2Ag^+(aq) \rightarrow 2H^+(aq) + 2Ag(s)$$

A. Half reactions:

$$2Ag^{+}(aq) + 2e^{-} \rightarrow 2Ag(s)$$
 reduction  
 $H_{2}(g) \rightarrow 2H^{+}(aq) + 2e^{-}$  oxidation

#### From the table:

Ag<sup>+</sup>(aq)+ 
$$e^{-} \rightarrow$$
 Ag(s) +0.80 V  
2H<sup>+</sup>(aq)+2 $e^{-} \rightarrow$  H<sub>2</sub>(g) 0.00 V

Reverse the hydrogen half-reaction: (Note sign changes where applicable)

$$H_2(g) \rightarrow 2H^+(aq) + 2e^- 0.00 \text{ V}$$
  
Now:  $E^{\theta}_{tot} = E^{\theta}_{red} + E^{\theta}_{ox} = (0.80 + 0.00) \text{ V} = +0.80 \text{ V}$ 

### NOTE

- The values of E<sup>0</sup> are independent of the number of electrons transferred, therefore,
- DO NOT MULTIPLY BY STOICHIOMETRIC COEFFICIENTS!

## **Spontaneity of Redox Reactions**

Remember: Gibbs Free Energy Change in a

cell;  $\Delta G = \Delta H - T \Delta S$ 

 $\Delta G$  = Gibbs' energy change

 $\Delta H$  = enthalpy change

T = temperature and

 $\Delta S$  = entropy change

Note: Maximum useful workdone by a system at constant pressure =  $\Delta G$ 

Workdone by a system is negative For electrochem., Wmax = Welec.

$$\therefore \Delta G^{\theta} = -w_{\text{max}} = -nFE^{\theta}_{\text{tot}}$$

 $W_{\text{max}}$  = maximum amount of work reactant can produce

n = number of moles of electrons

F = Faraday's constant (96485 C.mol<sup>-1</sup>)

# **Spontaneity of Redox Reactions**

$$\Delta G^{\theta} = -w_{\text{max}} = -nFE^{\theta}_{\text{tot}}$$

### **Deductions:**

- A positive  $E_{tot}^{\theta}$  means a negative  $\Delta G^{\theta}$  and a spontaneous forward reaction
- A negative  $E_{tot}^{\theta}$  means a positive  $\Delta G^{\theta}$  and a non-spontaneous forward reaction
- A zero E<sup>θ</sup><sub>tot</sub> means the cell is in equilibrium and there is no net reaction in either direction

# **Example**

Work out  $\Delta G^0$  for the following reaction:

$$Zn(s)+Cl_2(g,\ 1\ atm) 
ightarrow ZnCl_2(aq,\ 1\ M)$$
 2.121 V 
$$Zn^{2+}(aq)+2e^- 
ightarrow Zn(s) \quad -0.763 \ V$$
 
$$Cl_2(g)+2e^- 
ightarrow 2Cl^- (aq)\ 1.360 \ V$$

Remember:

$$\Delta G^0 = -nFE_{\rm tot}^0$$

The oxidation state of the Zn changes from 0 to  $\pm 2$ , so two electrons were transferred.

$$\Delta G^0 = -2 \times 96485 \,\mathrm{C\,mol^{-1}} \times 2.121 \,\mathrm{J\,C^{-1}}$$

$$= -409.3 \,\mathrm{kJ\,mol^{-1}} \quad \text{Note: 1 V = 1 J C^{-1}} \quad \text{More examples from your print out}$$

# Standard cell potential and Equilibrium constant Keq

Recall from Thermodynamics:  $\Delta G^0 = -RT \ln K_{eq}$ 

Also, that 
$$\Delta G^0 = -nFE_{\mathrm{tot}}^0$$

Re-arrange to get: 
$$E_{\text{cell}}^0 = \frac{RT}{nF} \ln K_{\text{eq}}$$

$$E^0 = \frac{2.303RT}{nF} \log K$$

At standard conditions, T= 25°C/298K, R=8.314 Jmol<sup>-1</sup>K<sup>-1</sup>, F=96485 C/mol of e-

$$E_{cell}^0 = \frac{0.0592}{n} \log K$$

## **Example**

#### Q. Given that:

$$Cu(s) + 2Fe^{3+}(aq) \rightarrow Cu^{2+}(aq) + 2Fe^{2+}(aq)$$
  
the cell potential is 0.431 V, calculate  $K_{eq}$ at 298 K.

#### A. Balanced half equations to know no. of electrons

$$2 \text{Fe}^{3+}(aq) + 2 \text{e}^{-} \rightarrow 2 \text{Fe}^{2+}(aq)$$

$$C u^{2+}(aq) + 2 \text{e}^{-} \rightarrow C u(s)$$

$$E_{\text{cell}}^{0} = \frac{RT}{nF} \ln K_{\text{eq}}$$

$$\therefore \ln K_{\text{eq}} = E_{\text{cell}}^{0} \times \frac{nF}{RT}$$

$$= 0.431 \, \text{J C}^{-1} \times \frac{2 \times 96485 \, \text{C mol}^{-1}}{8.31 \, \text{J K}^{-1} \, \text{mol}^{-1} \times 298 \, \text{K}}$$

$$= 33.6 \, (\text{dimensionless})$$

$$K_{\text{eq}} = e^{33.6} = 4 \times 10^{14} \, (\text{dimensionless})$$

# The Nernst Equation

 The Nernst equation shows relationship between E<sup>0</sup> and concentration of reactants. Consider a reaction:

$$a A + b B \rightarrow c C + d D$$

$$K = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

From Thermodynamics,  $\Delta G = \Delta G^0 + RTInK$ 

$$\Delta G = \Delta G^0 + 2.303 \text{ RT logK}$$

$$\Delta G$$
= -nFEcell;  $\Delta G$ <sup>0</sup>= -nFE<sup>0</sup>cell

-nFEcell = -nFE<sup>0</sup>cell + RT lnK

Divide through by (-nF)

$$E_{cell} = E_{cell}^{0} - \frac{RT \ln K}{nF} or E_{cell}^{0} - \frac{2.303RT \log K}{nF}$$

# The Nernst Equation

Inserting K:

$$E_{cell} = E_{cell}^{0} - \frac{RT}{nF} \ln \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} or E_{cell}^{0} - \frac{RT}{nF} \ln \frac{oxidized}{reduced} or E_{cell}^{0} - \frac{RT}{nF} \ln M^{n+1}$$

$$E_{\text{tot}} = E^{\theta}_{\text{tot}} - \frac{0.0592}{n} \log \frac{[C]^{c}[D]^{a}}{[A]^{a}[B]^{b}}$$

 $E_{\text{tot}}$  = potential under non-standard conditions  $E_{\text{tot}}^{\theta}$  = potential under standard conditions RT/F = 0.0592 n = the number of moles of electrons, and [ ] = concentrations

## Example (check print out for more)

Q. Calculate the value of E for the oxidation of iron(II) to iron(III) in a solution of 0.100 M Fe<sup>2+</sup> and 0.500 M Fe<sup>3+</sup> according to the following equations:

$$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$$

Α.

$$E_{\text{tot}} = E_{\text{tot}}^{\theta} - \frac{0.0592}{n} \log \frac{[\text{C}]^{c}[\text{D}]^{a}}{[\text{A}]^{a}[\text{B}]^{b}}$$

$$E_{\text{tot}} = E_{\text{tot}}^{\theta} - \frac{0.0592}{1} \log \frac{[\text{Fe}^{3+}]}{[\text{Fe}^{2+}]}$$

$$= -0.771 - 0.0592 \log \frac{(0.500)}{(0.100)}$$

$$= -0.771 - 0.0414$$

$$= -0.812 \text{ V}$$

# **Example of Electrolysis: Ionic Compound**

In the reaction:

$$2NaCl(I) \rightarrow 2Na(I) + Cl_2(g)$$
Molten ionic cmpd
Molten metal

Two half-reactions:

$$2\mathsf{Na}^+ + 2\mathsf{e}^- \to 2\mathsf{Na}(l)$$
 red.: cathode  $2\mathsf{Cl}^- \to \mathsf{Cl}_2(g) + 2\mathsf{e}^-$  ox.: anode  $2\mathsf{Na}^+ + 2\mathsf{Cl}^- \to 2\mathsf{Na}(l) + \mathsf{Cl}_2(g)$  net rxn

## **Electrolysis in Aqueous Solution**

#### At the cathode, possible reactions are:

- $M^{n+}(aq) + ne^{-} \rightarrow M(s)$  for M = Transition metal
- 2H<sup>+</sup>(aq) + 2e<sup>-</sup> → H<sub>2</sub>(g) in solution of strong acid (HCl)
- 2H<sub>2</sub>O + 2e<sup>-</sup> → H<sub>2</sub>(g) + 2OH<sup>-</sup>(aq) (If cation in solution is group 1 or 2 metal or aluminium)

#### Generally:

The ease of *reduction* is

$$Ag^+ > Cu^{2+} > H^+ > H_2O > Na^+$$

## **Electrolysis in Aqueous Solution**

#### At the anode, possible reactions are:

- $X^{n-}(aq) \rightarrow X + ne^{-}$  if X = Halogen)
- 2OH⁻(aq) → 1/2O₂(g) + H₂O(l) + 2e⁻ (in solution of strong base, e.g. = NaOH)
- H<sub>2</sub>O → 1/2O<sub>2</sub>(g) + 2H<sup>+</sup>(aq) + 2e<sup>-</sup> for anions which are difficult to oxidize, e.g. F<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup>

#### **Generally:**

The ease of *oxidation* at the anode is:

$$I^- > Br^- > Cl^- > H_2O > SO_4^{2+}$$

# **Application of Electrolysis**

- Extraction of metals like: sodium, magnesium, aluminium, etc.
- Industrial-scale manufacturing of chemicals (e.g., chlorine)
- · Electroplating, galvanization of metals etc.