HOMEWORK 9

- 1. Find the invariant factors of the quotient group \mathbb{Z}^3/N , where N is generated by (-4,4,2), (16,-4,-8), (12,0,-6) and (8,4,2).
- 2. Find the rational canonical form over \mathbb{Q} of the matrix

$$\begin{pmatrix} -2 & 0 & 0 \\ -1 & -4 & -1 \\ 2 & 4 & 0 \end{pmatrix}$$

3. Find the rational canonical form over $\mathbb{Z}/2\mathbb{Z}$ of the matrix

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

4. Let $V \subset \mathbb{R}[x,y]$ be the subspace of all polynomials of the form ax + by + c, where $a,b,c \in \mathbb{R}$. Let \mathcal{A} be a linear operator in V defined by

$$A(ax + by + c) = a(x+1) + b(y-1) + c.$$

Find the elementary divisors and the canonical form of A.

5. Find the Jordan canonical form over \mathbb{C} of the matrix

$$\begin{pmatrix} 2i & 1 \\ 1 & 0 \end{pmatrix}$$

- 6. Prove that two 2×2 matrices over a field that are not scalar matrices are similar if and only if they have the same characteristic polynomials.
- 7. Prove that two 3×3 matrices are similar if and only if they have the same characteristic and the same minimal polynomials.
- 8. Show that the minimal polynomial of an $n \times n$ -matrix A has the same irreducible divisors as the characteristic polynomial of A.
- 9. Let A be a nilpotent $n \times n$ -matrix (that is $A^N = 0$ for some N > 0). Show that the invariant factors of A are powers of X. Prove that $A^n = 0$.
- 10. Prove that any $n \times n$ -matrix A is similar to its transpose A^t .