

Analyse et réplication : "What are the events that shake our world Engle & Campos-Martins" Mesure et modélisation du facteur COVOL global

Théo Domingues, Ryhan Chebrek, Matéo Molinaro, Julien Moury 17 Mai 2025

Table des matières

K	esum	ne						
1	Intr	roduction et motivation						
	1.1	Contexte économique et financier						
	1.2	Objectifs de la réplication						
2	Pré	traitement univarié						
	2.1	eq:Modele AR (1)-GARCH (1,1)						
	2.2	Justification						
3	Cor	struction factorielle cross-sectionnelle						
•	3.1	Modèle global COVOL						
	3.2	Normalisations et identifications						
	5.2	Normanisations et identifications						
1		imation du modèle COVOL par EM						
	4.1	Initialisation par ACP						
	4.2	Procédure EM Hastie & al. (Maximization–Maximization)						
5	Tes	t d'identification et d'adéquation du facteur COVOL						
	5.1	Détection d'un facteur global (pré-EM)						
		5.1.1 Hypothèses de test						
	5.2	Test d'adéquation (post-EM)						
		5.2.1 Résidus corrigés						
		5.2.2 Hypothèses de test						
		5.2.3 Analyse des auteurs sur les résultats empiriques						
3	Val	idation par simulations Monte Carlo						
)		Design des simulations						
	6.1	<u> </u>						
	6.2	Critères d'évaluation						
	6.3	Résultats et comparaison au papier						
7	App	olication empirique aux ETF pays						
	7.1	Description des données						
	7.2	Extraction des résidus « purs »						
	7.3	1						
	7.4	Résultats empiriques de la réplication						
		7.4.1 Comportement des résidus standardisés et comparaison de volatilité						
		7.4.2 Comportement des résidus standardisés et comparaison de volatilité						
		7.4.3 Chargements du facteur global						
		7.4.4 Top événements selon \hat{x}_t						
3	Cor	nparaison avec des mesures de risque géopolitique						
,	8.1	Dynamiques comparées						
	8.2	Pouvoir explicatif sur la volatilité et les rendements						
	0.2	8.2.1 Corrélations cross-sectionnelles et comparaison aux indices géopolitiques .						

9	Glol	bal CO	VOL et dynamiques économiques mondiales	24
	9.1	Global	COVOL et sentiment économique	24
	9.2	Global	COVOL et macroéconomie	25
10	Exte	ension	: construction de portefeuilles selon la sensibilité au facteur COVOL	27
		10.0.1	Neutral COVOL	27
		10.0.2	Max COVOL	27
		10.0.3	Min COVOL	27
		10.0.4	Dynamic COVOL	28
		10.0.5	Résultats empiriques	28
11	Ann	exes		31
	Anne	exe C –	Statistiques descriptives des rendements	31

Résumé

Cette note présente une réplication détaillée du modèle de volatilité commune globale (COVOL) proposé par Engle & Campos-Martins (2023). Après la justification économique et la formulation mathématique-économétrique du facteur COVOL, nous décrivons en profondeur chaque étape — du prétraitement univarié des rendements aux tests post-estimations de type EM (proposé par Hastie et al. (2009)). Nous rappelons les choix méthodologiques, les contraintes d'identification et les optimisations employées, avant de valider la robustesse par simulations Monte Carlo et d'appliquer le modèle au panel déséquilibré de 47 ETF pays employés dans le papier ainsi qu'aux facteurs macro-économiques et de risque. Nous étendons également cette réplication via une application directe de construction dynamique et temporelle de portefeuille selon les estimations rendues du facteur COVOL dans le temps.

Chapitre 1: Introduction et motivation

Dans un contexte où les marchés financiers subissent régulièrement des chocs systémiques — crises financières, pandémies, tensions géopolitiques — il est crucial de disposer d'un indicateur en temps réel mesurant l'amplitude de ces événements sur l'ensemble des actifs. Engle & Campos-Martins (2023) introduisent le facteur global COVOL, commun à chaque actif sur une période donnée et conçu pour capter la covariance croisée des variations de volatilité entre actifs.

1.1 Contexte économique et financier

Lors d'un choc majeur, on observe non seulement une hausse de la volatilité sur chacun des titres (effet univarié), mais aussi une synchronisation de ces hausses (effet cross-sectionnel). Le facteur COVOL cherche à quantifier cette dimension multivariée : il mesure, à chaque instant, l'intensité d'un choc global affectant simultanément plusieurs marchés.

1.2 Objectifs de la réplication

L'ambition de cette note est multiple :

- Clarifier la méthodologie proposée dans le papier en détaillant les motivations de chaque étape et en justifiant les choix de normalisation et de contraintes.
- **Implémenter** le pipeline complet (prétraitement regressions, GARCH, ACP, algorithme d'estimation EM) en Python, en expliquant les réglages fins (bornes, pénalisation).
- Valider la robustesse des estimateurs via des simulations Monte Carlo conçues selon le protocole original.
- Appliquer et confirmer le modèle à des données réelles de 47 ETF pays, facteurs macro-économiques et de risque afin d'en extraire les événements extrêmes.
- Proposer une application directe d'un tel facteur sur des stratégies dynamiques de construction de portefeuille visant à vérifier si le modèle COVOL peut se démarquer comme un facteur explicatif de performance.

Cette démarche vise à renforcer la compréhension théorique et pratique du modèle, tout en identifiant ses limites et ses potentiels axes d'amélioration.

Chapitre 2: Prétraitement univarié

Avant d'aborder la dimension commune du choc de volatilité, il est essentiel de représenter et "corriger" chaque série de rendements afin de neutraliser la dynamique propre à chaque actif i (clustering, effet de levier, saisonnalité). C'est pourquoi les auteurs commencent par ajuster un modèle AR(1)–GARCH(1,1) sur chaque log-rendement $r_{i,t}$, de façon à modéliser explicitement la variance conditionnelle $\sigma_{i,t}^2$. Ce choix s'appuie sur plusieurs considérations.

2.1 Modèle AR(1)-GARCH(1,1)

Chaque log-rendement $r_{i,t}$ est décomposé en un terme conditionnel $\mu_{i,t}$ (ici AR(1) pour compenser d'éventuels patterns) et une innovation $\varepsilon_{i,t}$:

$$r_{i,t} = \mu_{i,t} + \varepsilon_{i,t}, \qquad \sigma_{i,t}^2 = \omega_i + \alpha_i \, \varepsilon_{i,t-1}^2 + \beta_i \, \sigma_{i,t-1}^2.$$

Les contraintes $\omega_i > 0$, $\alpha_i, \beta_i \ge 0$ et $\alpha_i + \beta_i < 1$ garantissent la positivité et la stationnarité de la variance.

Le GARCH(1,1) fournit une représentation parcimonieuse et robuste du clustering observé dans la volatilité financière, validée empiriquement sur la quasi-totalité des actifs. L'AR(1) en moyenne conditionnelle permet de corriger d'éventuelles dépendances de premier ordre dans les rendements sans alourdir le modèle. Une fois ce modèle estimé, on calcule les innovations standardisées $e_{i,t}$ et vérifiant :

$$e_{i,t} = \frac{\varepsilon_{i,t}}{\sigma_{i,t}}, \quad \mathbb{E}[e_{i,t}|\mathcal{F}_{t-1}] = 0, \quad \mathbb{V}(e_{i,t}|\mathcal{F}_{t-1}) = 1.$$

2.2 Justification

L'intérêt majeur de ces $e_{i,t}$ est qu'ils incarnent de véritables « chocs purs » : les effets transitoires de volatilité propre à chaque actif ont été retirés, et toute corrélation ou clustering subsistant est alors à imputer à des facteurs communs. C'est précisément sur les carrés de ces résidus standardisés $(e_{i,t}^2)$ que repose la mesure du facteur global COVOL : en garantissant $\mathbb{V}(e_{i,t}|\mathcal{F}_{t-1})=1$ et $\mathbb{COV}(e_{i,t},e_{j,t})\approx 0$ pour $i\neq j$, les auteurs évitent ainsi que l'estimation cross-sectionnelle soit biaisée par l'hétérogénéité de volatilité non expliquée en mettant en exergue les chocs systémiques partagés par l'ensemble du panel. En utilisant le carré des résidus standardisés, on compare directement la variance réalisée $(\varepsilon_{i,t-1}^2)$ avec la variance attendue $((\sigma_{i,t-1}^2))$.

Ainsi, comme $\mathbb{E}[(e_{i,t}^2]=1$, toute déviation de $e_{i,t}^2$ par rapport à 1 peut refléter un choc instantané de volatilité.

Chapitre 3: Construction factorielle cross-sectionnelle

Après le prétraitement univarié, nous disposons d'une matrice de résidus standardisés $e_{i,t}$. Nous étudions leurs carrés $e_{i,t}^2$ afin d'identifier un éventuel facteur global commun. On définit pour chaque date t le vecteur des écarts centrés :

$$z_{i,t} = e_{i,t}^2 - 1$$
, $\mathbf{z}_t = (z_{1,t}, \dots, z_{N,t})'$.

L'estimation empirique de la matrice des covariances croisées s'obtient par :

$$\Psi = \frac{1}{T} \sum_{t=1}^{T} \mathbf{z}_t \, \mathbf{z}_t',$$

où $\Psi_{ij} = \mathbb{COV}(e_{i,t}^2 - 1, e_{j,t}^2 - 1)$ renseigne sur le comouvement instantané des innovations.

3.1 Modèle global COVOL

Engle & Campos-Martins décrivent le modèle cross-sectionnel des innovations standardisées en faisant apparaître le facteur COVOL commun tel que :

$$e_{i,t} = \sqrt{g(s_i, x_t)} \,\varepsilon_{i,t}, \quad g(s_i, x_t) = s_i \,x_t + (1 - s_i)$$

avec $\varepsilon_{i,t} \sim \mathcal{N}(0,1)$ et $s_{i,t}$ comme le loading de l'actif i sur le facteur de volatilité global. Cela signifie que, pour chaque actif i:

- Si $s_i = 0$, alors $g(s_i, x_t) = 1$ et l'actif ne réagit pas du tout au facteur global : sa variance conditionnelle est purement idiosyncratique.
- Si $s_i = 1$, alors $g(s_i, x_t) = x_t$ et l'actif dépend exclusivement du facteur global : toute sa variance conditionnelle est expliquée par x_t .

La fonction $g(s_i, x_t)$ matérialise la variance conditionnelle de $e_{i,t}$, combinant une part commune $(s_i x_t)$ et idiosyncratique $(1 - s_i)$. Les auteurs postulent ainsi qu'un unique facteur latent $x_t > 0$ génère les covariances hors-diagonale tel que :

$$\boxed{\mathbb{COV}(e_{i,t}^2 - 1, e_{j,t}^2 - 1) = s_i s_j v_t, \quad v_t = \mathbb{V}(x_t)}$$

Le terme $v_t = \mathbb{V}(x_t)$ quantifie la variabilité temporelle du facteur global x_t .

- Si v_t est faible, alors x_t reste proche de sa moyenne (≈ 1), ce qui indique une période de stabilité globale sans choc systémique marqué.
- Si v_t est élevé, alors x_t présente de fortes fluctuations, signalant un **choc de volatilité global** où de nombreux actifs subissent simultanément une hausse de volatilité.

Démonstration :

On définit d'abord

$$e_{i,t}^2 = g_i(x_t) \, \varepsilon_{i,t}^2, \quad \mathbb{E}[\varepsilon_{i,t}^2] = 1, \, \mathbb{COV}(\varepsilon_{i,t}^2, \varepsilon_{j,t}^2) = 0 \quad (i \neq j).$$

En appliquant la formule de la covariance totale, on obtient :

$$\mathbb{COV}(e_{i,t}^2, e_{j,t}^2) = \mathbb{E}\left[\mathbb{COV}(e_{i,t}^2, e_{j,t}^2 \mid x_t)\right] + \mathbb{COV}\left(\mathbb{E}[e_{i,t}^2 \mid x_t], \, \mathbb{E}[e_{j,t}^2 \mid x_t]\right).$$

- Le premier terme est nul, car conditionnellement à $x_t,\, \varepsilon_{i,t}^2$ et $\varepsilon_{j,t}^2$ sont indépendants.
- Le second terme se réduit à la covariance de g_i et g_j :

$$\mathbb{COV}(g_i(x_t), g_j(x_t)) = \mathbb{COV}(s_i x_t + (1 - s_i), s_j x_t + (1 - s_j))$$
$$= s_i s_j \mathbb{V}(x_t).$$

On en conclut donc :

$$\mathbb{COV}(e_{i,t}^2, e_{j,t}^2) = s_i \, s_j \, v_t, \quad v_t = \mathbb{V}(x_t).$$

Enfin, comme la covariance est invariante par translation, $\mathbb{COV}(e_{i,t}^2-1,e_{j,t}^2-1)=\mathbb{COV}(e_{i,t}^2,e_{j,t}^2)$, ce qui démontre la formule recherchée.

3.2 Normalisations et identifications

Pour lever l'ambiguïté d'échelle — un x_t plus grand pouvant être compensé par des s_i plus faibles — on impose :

$$\frac{1}{T} \sum_{t=1}^{T} x_t = 1, \quad \sum_{i=1}^{N} s_i^2 = 1.$$

La première garantit que x_t mesure bien des fluctuations autour de 1, la seconde que le vecteur \mathbf{s} est unitaire en norme Euclidienne.

Chapitre 4: Estimation du modèle COVOL par EM

L'estimation du modèle COVOL repose sur une procédure EM (Maximization–Maximization) en deux phases : une initialisation par ACP robuste, suivie d'itérations alternant deux M-steps qui maximisent tour à tour la log-vraisemblance partielle en x et en s. Cette approche garantit à la fois la rapidité de convergence et la cohérence économique des paramètres.

4.1 Initialisation par ACP

L'algorithme EM étant sensible aux conditions initiales, il est crucial de démarrer près d'un maximum local de la vraisemblance.

Extraction de s⁽⁰⁾ On forme la matrice des covariances croisées des carrés centrés

$$\Psi = \frac{1}{T} \sum_{t=1}^{T} (e_t^2 - \mathbf{1})(e_t^2 - \mathbf{1})',$$

ou, pour plus de robustesse, on remplace $e_{i,t}^2$ par leurs rangs avant de calculer Ψ . On effectue ensuite une ACP sur Ψ et on retient la première composante principale \mathbf{v}_1 . Le vecteur de chargements initial est

$$\mathbf{s}^{(0)} = \frac{|\mathbf{v}_1|}{\|\mathbf{v}_1\|_2}, \quad s_i^{(0)} \in [0, 1], \quad \sum_i (s_i^{(0)})^2 = 1.$$

Cette étape capture la direction dominante du comouvement et respecte la contrainte $s_i \in [0,1]$.

Approximation de $x_t^{(0)}$ Avec $\mathbf{s}^{(0)}$ fixé par ACP, une première estimation naturelle de x_t consiste à projeter les čarrés centréssur ces loadings :

$$x_t^{(0)} \propto (\mathbf{s}^{(0)})'(e_t^2 - \mathbf{1}) = \sum_{i=1}^N s_i^{(0)}(e_{i,t}^2 - 1).$$

On normalise ensuite pour que $\frac{1}{T} \sum_{t=1}^{T} x_t^{(0)} = 1$.

Méthode alternative (chargements égaux) Si l'on fixe a priori tous les loadings à une même valeur (par exemple $s_i^{(0)} = 1/\sqrt{N}$), la maximisation fermée de la log-vraisemblance partielle en x_t donne l'estimateur empirique

$$\hat{x}_t = \frac{1}{N} \sum_{i=1}^{N} e_{i,t}^2,$$

qui coïncide avec la formule analytique obtenue pour le modèle ëqual-loading: Cette approche, plus simple, fournit une initialisation valable lorsque l'on souhaite démarrer sans ACP, et reste cohérente avec le cas où les s_i sont supposés égaux.

4.2 Procédure EM Hastie & al. (Maximization–Maximization)

Sous l'hypothèse gaussienne conditionnelle des innovations, la fonction de log-vraisemblance (hors constantes) s'écrit

$$L(\mathbf{s}, \mathbf{x}) = -\frac{1}{2} \sum_{i=1}^{N} \sum_{t=1}^{T} \left[\log g(s_i, x_t) + \frac{e_{i,t}^2}{g(s_i, x_t)} \right], \quad g(s_i, x_t) = s_i x_t + (1 - s_i).$$

Notons que x_t n'apparaît pas comme une variable observée, d'où la stratégie EM pour l'estimer. À chaque itération k, on alterne deux M-steps, en maintenant l'autre jeu de paramètres fixe.

M-step sur x_t

Fixé $\mathbf{s}^{(k-1)}$, chaque x_t est obtenu par

$$x_t^{(k)} = \arg\min_{x>0} \sum_{i:e_{i,t} \text{ valide}} \left[\log g(s_i^{(k-1)}, x) + \frac{e_{i,t}^2}{g(s_i^{(k-1)}, x)} \right] + \lambda \, (x-1)^2,$$

avec $\lambda(x-1)^2$ pénalisant les écarts excessifs et des bornes $x \in [\varepsilon, x_{\text{max}}]$ pour garantir robustesse et stabilité numérique.

M-step sur s_i

Fixé $\mathbf{x}^{(k)}$, chaque s_i se met à jour via

$$s_i^{(k)} = \arg\min_{0 \le s \le 1} \sum_{t: e_{i,t} \text{ valide}} \left[\log g(s, x_t^{(k)}) + \frac{e_{i,t}^2}{g(s, x_t^{(k)})} \right],$$

puis on renormalise $\mathbf{s}^{(k)} \leftarrow \mathbf{s}^{(k)}/\|\mathbf{s}^{(k)}\|_2$ pour préserver la contrainte $\sum_i s_i^2 = 1$.

Critère d'arrêt

On répète ces étapes jusqu'à ce que la variation relative de L soit

$$|L^{(k)} - L^{(k-1)}| < 10^{-4} |L^{(k-1)}|,$$

généralement atteint en 15-30 itérations.

Cette procédure EM, inspirée de Hastie et al. (2009), allie rapidité et robustesse pour estimer simultanément le facteur de volatilité global x_t et les loadings $\{s_i\}$.

Chapitre 5: Test d'identification et d'adéquation du facteur CO-VOL

Après avoir estimé le modèle COVOL et obtenu les paramètres $\{s_i\}$ et la série x_t , il convient de vérifier deux choses:

- 1. **Détecter** l'existence d'un facteur global de volatilité (test de présence de COVOL);
- 2. Vérifier que le facteur unique suffit à reproduire tous les comouvements (test d'adéquation).

5.1 Détection d'un facteur global (pré-EM)

On part des résidus standardisés $e_{i,t}$ issus du prétraitement univarié. Si ces $e_{i,t}$ étaient totalement indépendants cross-sectionnellement, alors

$$\Psi_{ij} = \mathbb{COV}(e_{i,t}^2 - 1, e_{j,t}^2 - 1) \stackrel{H_0}{=} 0 \quad (i \neq j).$$

5.1.1Hypothèses de test

- $\begin{array}{ll} -- \ \textit{Hypothèse nulle} \ H_0^{\text{detect}} : \text{pas de facteur commun} \Rightarrow \Psi \ \text{diagonale}. \\ -- \ \textit{Hypothèse alternative} \ H_1^{\text{detect}} : \text{présence d'un facteur global} \Rightarrow \rho_{e^2} > 0. \end{array}$

On construit et observe la corrélation moyenne empirique pour obtenir une première observation et interprétation.

$$\widehat{\rho}_{e^2} = \frac{2}{N(N-1)} \sum_{i < j} \rho(e_{i,t}^2, e_{j,t}^2),$$

et la statistique normalisée proposée par les auteurs

$$\xi^{\text{detect}} = \frac{\sqrt{\frac{NT}{(N-1)/2}} \sum_{i>j,j=1}^{N} \sum_{t=1}^{T} (e_{i,t}^2 - 1) (e_{j,t}^2 - 1)}{\sum_{i=1}^{N} \sum_{t=1}^{T} (e_{i,t}^2 - 1)^2} \xrightarrow{d} \mathcal{N}(0,1) \quad (H_0^{\text{detect}}).$$

Une valeur significativement positive de ξ^{detect} confirme l'existence d'un facteur COVOL.

5.2 Test d'adéquation (post-EM)

Après estimation du modèle COVOL, on affine le test pour vérifier qu'un **unique** facteur x_t latent suffit à reproduire tous les comouvements :

5.2.1 Résidus corrigés

On part des innovations standardisées $e_{i,t}$ puis on retire l'effet du facteur :

$$\widetilde{e}_{i,t} = \frac{e_{i,t}}{\sqrt{g(s_i, x_t)}}, \qquad \widetilde{e}_{i,t}^2 = \frac{e_{i,t}^2}{g(s_i, x_t)},$$

οù

$$g(s_i, x_t) = s_i x_t + (1 - s_i)$$
.

Sous l'hypothèse que le modèle est correctement spécifié, les $\widetilde{e}_{i,t}$ doivent être i.i.d. $\mathcal{N}(0,1)$, donc leurs carrés indépendants entre actifs et de moyenne 1.

5.2.2 Hypothèses de test

— Hypothèse nulle H_0 : le facteur COVOL suffit à expliquer tous les comouvements de volatilité

$$\rho_{\widetilde{e}^2} = 0 \iff \Psi_{\widetilde{e}^2, i \neq j} = 0.$$

— Hypothèse alternative H_1 : il subsiste un petit comouvement résiduel

$$\rho_{\widetilde{e}^2} > 0,$$

suggérant qu'un second facteur pourrait améliorer la spécification.

On définit, de manière analogue, la corrélation moyenne hors-diagonale des carrés corrigés :

$$\widehat{\rho}_{\widetilde{e}^2} = \frac{2}{N(N-1)} \sum_{1 \le i < j \le N} \rho(\widetilde{e}_{i,\cdot}^2, \ \widetilde{e}_{j,\cdot}^2).$$

Pour tester $H_0: \rho_{\widetilde{e}^2}=0$, on utilise la statistique normalisée (Bartlett et al. adaptée) :

$$\xi^{\text{detect}} = \frac{\sqrt{\frac{NT}{(N-1)/2}} \sum_{i>j,j=1}^{N} \sum_{t=1}^{T} (\tilde{e}_{i,t}^2 - 1) (\tilde{e}_{j,t}^2 - 1)}{\sum_{i=1}^{N} \sum_{t=1}^{T} (\tilde{e}_{i,t}^2 - 1)^2} \xrightarrow{d} \mathcal{N}(0,1) \quad (H_0^{\text{detect}}).$$

Sous H_0 , ξ suit asymptotiquement la loi normale centrée réduite et permet ainsi à la statistique de test d'être directement comparée à un quantile de loi normale $z_{1-\alpha}$

5.2.3 Analyse des auteurs sur les résultats empiriques

- Avant correction (sur $e_{i,t}^2$ bruts) : $\widehat{\rho}_{e^2} \approx 0.071 \Rightarrow$ fort comouvement de volatilité, existence claire du facteur COVOL.
- Après correction (sur $\tilde{e}_{i,t}^2$) : $\hat{\rho}_{\tilde{e}^2} \approx 0.002$, $\xi \approx 5.8$ (p-value < 0.001) \Rightarrow le modèle COVOL capture l'essentiel des chocs globaux, mais un faible comouvement résiduel subsiste.
- Conclusion: le facteur latent x_t rend compte de la quasi-totalité des covariances de volatilité, tout en laissant ouverte la possibilité d'un deuxième facteur.

Chapitre 6: Validation par simulations Monte Carlo

Afin de tester la robustesse et la précision des estimateurs \hat{s}_i et \hat{x}_t obtenus par EM, Engle & Campos-Martins proposent un protocole Monte Carlo qui reproduit exactement le mécanisme génératif du modèle COVOL.

6.1 Design des simulations

Pour chaque réplication r = 1, ..., R:

1. Tirage des loadings:

$$s_i^{\text{true}} \overset{\text{i.i.d.}}{\sim} \ \mathcal{U}(0,1), \quad \mathbf{s}^{\text{true}} \leftarrow \frac{\mathbf{s}^{\text{true}}}{\|\mathbf{s}^{\text{true}}\|_2}, \quad i = 1, \dots, N.$$

2. Génération du facteur latent :

$$\phi_{r,t} \sim \mathcal{N}(0, \nu^2), \quad x_{r,t} = \exp(\phi_{r,t}), \quad x_{r,t} \leftarrow \frac{x_{r,t}}{\frac{1}{T} \sum_{t=1}^{T} x_{r,t}}, \quad t = 1, \dots, T.$$

- 3. Innovations idiosyncratiques : $\varepsilon_{i,t} \sim \mathcal{N}(0,1)$ indépendantes sur i,t.
- 4. Construction des résidus simulés :

$$e_{r,i,t} = \sqrt{s_i^{\text{true}} x_{r,t} + (1 - s_i^{\text{true}})} \ \varepsilon_{i,t}.$$

5. Estimation EM: À partir de $e_{r,i,t}$, on applique l'algorithme EM complet pour obtenir $\hat{\mathbf{s}}_r$ et $\hat{x}_{r,t}$.

Les simulations sont effectuées pour

$$(N,T) \in \{(10,100), (10,5000), (50,100), (50,5000)\}, R = 150.$$

6.2 Critères d'évaluation

Pour chaque réplication r, on mesure la qualité de l'estimation via un \mathbb{R}^2 au sens de la régression :

$$MSE_{r}(x) = \frac{1}{T} \sum_{t=1}^{T} (x_{r,t} - \hat{x}_{r,t})^{2}, \qquad R_{x,r}^{2} = 1 - \frac{MSE_{r}(x)}{MSE_{r}(x - \bar{x})},$$

$$MSE_{r}(s) = \frac{1}{N} \sum_{i=1}^{N} (s_{i}^{true} - \hat{s}_{i})^{2}, \qquad R_{s,r}^{2} = 1 - \frac{MSE_{r}(s)}{MSE_{r}(s - \bar{s})},$$

où $\bar{x} = \frac{1}{T} \sum_t x_{r,t} = 1$ et $\bar{s} = \frac{1}{N} \sum_i s_i^{\text{true}}$. On rapporte ensuite les moyennes $\overline{R}_x^2 = \frac{1}{R} \sum_r R_{x,r}^2$ et $\overline{R}_s^2 = \frac{1}{R} \sum_r R_{s,r}^2$.

6.3 Résultats et comparaison au papier

Le tableau 6.2 présente, pour R=150 réplications, les moyennes de \overline{R}_s^2 , \overline{R}_x^2 , $\widehat{\rho}_{e^2}$ et de la variance effective $\overline{\nu}$, pour quatre scénarios (x aléatoire ou fixe, T=1000 ou 5000, N=10 ou 50). Les valeurs rapportées dans Engle & Campos-Martins (2023) sont juxtaposées pour comparaison.

Commentaires:

TABLE 6.1 – (Table 1) - Vecteurs de chargements \mathbf{s} utilisés dans les simulations de Monte Carlo (moyenne $\bar{\mathbf{s}}$).

	$N = 10 \; (\bar{s} = 0.520)$								
0.375	0.951	0.732	0.599	0.156	0.156	0.058	0.866	0.601	0.708
			Λ	V = 50 (s	$\bar{s} = 0.49$	7)			
0.803	0.528	0.119	0.640	0.091	0.332	0.427	0.554	0.628	0.697
0.790	0.132	0.343	0.202	0.707	0.033	0.909	0.405	0.760	0.474
0.287	0.751	0.097	0.412	0.282	0.390	0.871	0.081	0.558	0.548
0.332	0.973	0.286	0.508	0.148	0.196	0.841	0.004	0.783	0.833
0.938	0.973	0.833	0.066	0.404	0.375	0.508	0.978	0.819	0.188

Table 6.2 – (Table 2) - Résultats des simulations de Monte Carlo : \overline{R}_s^2 , \overline{R}_x^2 , $\widehat{\rho}_{e^2}$ et $\bar{\nu}$ moyennés sur R=150 réplications.

	Aléatoire	T = 1000	Aléatoire	T = 5000	Fixe, T	= 1000	Fixe, T	=5000
	N = 10	N = 50	N = 10	N = 50	N = 10	N = 50	N = 10	N = 50
$\frac{\overline{R}_s^2}{\overline{R}_x^2}$	0.8189	0.8516	0.9607	0.9689	0.7653	0.8366	0.9590	0.9676
\overline{R}_x^2	0.7845	0.9406	0.8074	0.9459	0.8518	0.9640	0.8235	0.9520
$\widehat{ ho}_{e^2}$	0.2511	0.2391	0.2788	0.2619	0.3376	0.3151	0.3029	0.2904
$\bar{ u}$	24.07	27.90	39.13	53.89	70.62	67.64	52.08	51.17

- Nos \overline{R}_s^2 semblent être régulièrement légèrement inférieurs à ceux du papier, surtout lorsque N=10 sous x aléatoire (0.819 vs 0.924) et pour x fixe avec T=1000; l'écart diminue pour N=50 et avec plus de données. On observe donc une cohérence de perte de précision lorsque moins de données sont simulées.
- \overline{R}_x^2 est très proche des références, témoignant de la bonne qualité de l'estimation du facteur latent. Néanmoins, les écarts relatifs peuvent être le résultat du choix d'une seed spécifique (ici = 42).
- Les corrélations moyennes résiduelles $\hat{\rho}_{e^2}$ sont plus élevées que dans le papier (jusqu'à 0.338 vs 0.337) lorsque x est fixe, signe d'un léger excès de comouvement non expliqué.
- La variance empirique $\bar{\nu}$ des ϕ_t diffère sensiblement sous x fixe, reflet de notre génération exponentielle et du calibrage de ν . De plus, il semblerait que les auteurs obtiennent des ν constants pour T=1000 et 5000 avec x_t fixe, ce qui signifierait que les e_t aient également été fixés artificiellement contrairement à notre démarche laissant les $\epsilon_{i,t}$ être variants comme expliqué dans l'article.

Chapitre 7: Application empirique aux ETF pays

Après avoir validé notre moteur d'estimation sur simulations, nous appliquons le modèle COVOL à un panel déséquilibré de 47 ETF pays.

7.1 Description des données

- Source : Bloomberg.
- Univers : 47 ETF pays (voir liste complète en Annexe C).
- Période : du 2 juin 2000 au 1 mars 2021 (T=5162 jours de bourse contre 5218 pour les auteurs).
- Données : prix de clôture quotidiens en USD, convertis en rendements logarithmiques $r_{i,t} = \ln(P_{i,t}/P_{i,t-1})$.
- Panel déséquilibré : suppression journalière des actifs manquants (NaN) dans les calculs.

7.2 Extraction des résidus « purs »

Nous suivons la procédure du papier (Appendix C) :

- 1. Régressions de la moyenne (AR(1) + ACWI + PC1):
 - (a) Pour chaque actif i, on estime le modèle

$$r_{i,t} = \phi_i r_{i,t-1} + \alpha_i + \beta_i^{\text{ACWI}} r_t^{\text{ACWI}} + \beta_i^{\text{PC1}} \text{PC1}_t + u_{i,t}^{(m)},$$

d'où l'on obtient les résidus $u_{i,t}^{(m)}$ à standardiser puis soumettre au GARCH(1,1).

(b) Pour les deux facteurs utilisés en régression univariée dans l'étape COVOL, on ajuste chacun un AR(1):

$$r_t^{\text{ACWI}} = \phi^{\text{ACWI}} r_{t-1}^{\text{ACWI}} + \alpha^{\text{ACWI}} + u_t^{\text{ACWI}}, \qquad \text{PC1}_t = \phi^{\text{PC1}} \text{PC1}_{t-1} + \alpha^{\text{PC1}} + u_t^{\text{PC1}}.$$

On conserve les résidus u_t^{ACWI} et u_t^{PC1} comme deux séries supplémentaires dans la matrice des innovations standardisées $e_{i,t}$ destinée à l'estimation du modèle COVOL.

2. **Prétraitement GARCH :** sur chaque résidu de moyenne $u_{i,t}^{(m)}$, on ajuste un AR(1)–GARCH(1,1) :

$$u_{i,t}^{(m)} = \mu_{i,t} + \varepsilon_{i,t}, \qquad \sigma_{i,t}^2 = \omega_i + \alpha_i \, \varepsilon_{i,t-1}^2 + \beta_i \, \sigma_{i,t-1}^2,$$

avec $\varepsilon_{i,t} \sim \mathcal{N}(0, \sigma_{i,t}^2)$. On en déduit les innovations standardisées $e_{i,t} = \varepsilon_{i,t}/\sigma_{i,t}$.

7.3 Estimation du facteur COVOL

Sur la matrice $\{e_{i,t}\}$, on applique l'algorithme EM décrit au Chap. 4 :

- Initialisation par ACP sur la matrice $\Psi = \frac{1}{T} \sum_{t} (e_t^2 \mathbf{1})(e_t^2 \mathbf{1})'$.
- $It\'{e}rations\ Max-Max$ alternant M-step en x (cross-section) et M-step en s (séries temporelles).

14

— Contrainte : $\frac{1}{T} \sum_{t} x_{t} = 1$, $\|\mathbf{s}\|_{2} = 1$, $s_{i} \in [0, 1]$.

FIGURE 7.1 – (Figure 1) (a) Série temporelle de la moyenne cross-sectionnelle des innovations standardisées $e_{i,t}$. (b) Volatilité moyenne des résidus (ligne pleine) comparée à la volatilité GARCH de l'ACWI (ligne pointillée).

7.4 Résultats empiriques de la réplication

7.4.1 Comportement des résidus standardisés et comparaison de volatilité

pourquoi choisir l'ACP

La figure 7.1(a) met en évidence que :

- Les résidus standardisés oscillent autour de zéro sans dérive systématique : la moyenne cross-sectionnelle reste centrée.
- On observe quelques excursions importantes (p. ex. début 2002, mars 2020), reflétant des chocs sectoriels ou de liquidité non captés par l'AR-GARCH univarié.
- L'amplitude des fluctuations décroît légèrement après 2008, signe d'une moindre dispersion idiosyncratique ou d'une meilleure correction univariée.

En (b), la comparaison des volatilités révèle :

- Un profil global similaire entre la volatilité moyenne des résidus (ligne pleine) et la volatilité GARCH de l'ACWI (ligne pointillée), confirmant que le panel ETF capte bien les grands chocs de marché.
- Une persistance des chocs qui diffèrent : le facteur global (ACWI) capte la pointe initiale, tandis que les résidus conservent une volatilité élevée plus longtemps, révélant un comouvement « en vague » qui met plus de temps à retomber dans certains actifs.

Ces résultats confirment :

- 1. La qualité du prétraitement AR(1)-GARCH(1,1) : les innovations sont effectivement centrées et de variance unitaire.
- 2. La cohérence économique du panel : la volatilité moyenne des ETF suit fidèlement les grandes tendances de l'ACWI, tout en révélant des dynamiques nationales plus marquées.
- 3. L'intérêt de l'approche COVOL : seule la prise en compte du facteur global permet ensuite d'expliquer les co-mouvements de ces résidus (testés à la section suivante).

FIGURE 7.2 – (Figure 2)- Estimations quotidiennes du facteur global COVOL x_t (points gris) et moyenne mobile 20 jours (trait noir).

7.4.2 Comportement des résidus standardisés et comparaison de volatilité

La figure 7.2 montre clairement que le facteur latent x_t capte avec précision les chocs systémiques majeurs :

- Bulle « .com » (2000–2001) : un pic proche de 4, plus marqué dans notre estimation, cohérent avec la forte dispersion des volatilités sectorielles de l'époque.
- Crise financière mondiale (2008): un retournement brutal jusqu'à environ 3,5, c'est plus que la valeur de 1,8 rapportée dans le papier original.
- Krach COVID-19 (mars 2020) : le plus fort choc observé, $x_t \approx 8$, relativement conforme aux résultats d'Engle & Campos-Martins.

En période hors crise, les valeurs quotidiennes fluctuent le long de l'unité, majoritairement dans l'intervalle [0,5;1,5]. La moyenne mobile lisse met en évidence :

- 1. Des mini-pics intermédiaires (2003–2007, 2011–2012) correspondant à des épisodes de stress localisés (guerre Irak, crise de la dette souveraine).
- 2. Des phases de relative stabilité où $x_t \approx 1$, indiquant l'absence de choc global marqué.

Les légères différences de dispersion par rapport au papier peuvent s'expliquer par :

- L'usage d'un panel déséquilibré (nombre de séries ≠ constant selon la date) et sûrement à des différences de source de récupération de la donnée.
- L'usage de package d'optimisation Python, de bornes et valeurs initiales dans notre cas susceptibles de donner des résultats EM différents.
- Le recours à la corrélation de rang pour l'ACP initiale, moins sensible aux outliers.

7.4.3 Chargements du facteur global

Après avoir estimé le modèle COVOL par EM sur notre panel de 47 ETF pays et deux facteurs de pricing (ACWI et PC1), nous obtenons pour chaque actif i un loading global \hat{s}_i et un loading pondéré par la variance idiosyncratique $\hat{s}_i\hat{\sigma}_i^2$. Le tableau 7.1 ci-dessous récapitule ces résultats.

Commentaires Les plus forts chargements \hat{s}_i sont obtenus pour PC1 (malgré une valeur abérrante de variance par rapport aux rendements des ETF) et l'ACWI, confirmant le rôle prépondérant de ces deux facteurs dans le comouvement des volatilités. Les pondérations \hat{s}_i $\hat{\sigma}_i^2$ mettent

en évidence les pays dont la variance idiosyncratique amplifie le loading global, notamment la Grèce et l'Afrique du Sud. Dans l'ensemble, ces résultats sont cohérents avec ceux d'Engle & Campos-Martins (2023), tant en termes de hiérarchie des loadings que de leur dispersion.

En synthèse, notre réplication semble relativement bien restituer la chronologie et l'amplitude des principaux chocs globaux et des loadings par pays, tout en illustrant la robustesse du modèle COVOL face à la variabilité du panel et aux réglages EM malgré quelque différences certainement lié à du paramétrage, de l'absence de données et seeds.

7.4.4 Top événements selon \hat{x}_t

Comparaison aux résultats du papier.

- Les cinq plus fortes dates (2020/03/09, 2016/06/24, 2001/09/17, 2007/02/27, 2015/08/24) coïncident exactement avec la Table 6 d'Engle & Campos-Martins (2023), montrant que notre procédure EM réplique fidèlement les chocs majeurs.
- Nous observons en plus d'autres dates importantes (p.ex. 2020/03/12, 2016/11/09, 2011/08/05) qui figurent également dans l'extension des auteurs (annexe ou V-Lab).
- Quelques légères différences de classement et exclusions d'évènements sont dues à de minimes écarts dans le calcul de la fenêtre ou la gestion des NaN.
- La bonne concordance des premiers rangs confirme la robustesse de notre implémentation; les divergences en queue de liste reflètent surtout la granularité de la pondération cross-sectionnelle et n'affectent pas les conclusions économiques. A noter cependant que si l'échelle des valeurs des x_t reste cohérente, nous observons tout de même quelque décalages plus ou moins élevés par rapport au papier.

Table 7.1 – (Table 7) Estimations des chargements globaux \hat{s}_i et des chargements pondérés $\hat{s}_i \hat{\sigma}_i^2$.

PC1 0.235 12.381 ACWI 0.231 0.251 France 0.203 0.549 Thailand 0.186 0.620 Spain 0.183 0.584 Italy 0.180 0.576 Egypt 0.180 0.572 Germany 0.175 0.490 Indonesia 0.174 0.620 Belgium 0.174 0.428 Netherlands 0.172 0.434 Malaysia 0.167 0.316 Russia 0.167 0.316 Russia 0.164 0.725 Chile 0.152 0.440 China 0.151 0.359 South Africa 0.150 0.728 Greece 0.144 1.032 South Korea 0.143 0.654 Philippines 0.142 0.341 Finland 0.141 0.247 Austria 0.138 0.412 Brazil 0.138	Actif	\hat{s}_i	$\hat{s}_i \hat{\sigma}_i^2$
ACWI 0.231 0.2549 France 0.203 0.549 Thailand 0.186 0.620 Spain 0.183 0.584 Italy 0.180 0.576 Egypt 0.180 0.572 Germany 0.175 0.490 Indonesia 0.174 0.620 Belgium 0.174 0.428 Netherlands 0.172 0.434 Malaysia 0.167 0.316 Russia 0.164 0.725 Chile 0.152 0.440 China 0.151 0.359 South Africa 0.150 0.728 Greece 0.144 1.032 South Korea 0.143 0.654 Philippines 0.142 0.341 Finland 0.141 0.247 Austria 0.138 0.412 Brazil 0.138 0.412 Brazil 0.138 0.472 Japan 0.132			
France 0.203 0.549 Thailand 0.186 0.620 Spain 0.183 0.584 Italy 0.180 0.576 Egypt 0.180 0.572 Germany 0.175 0.490 Indonesia 0.174 0.620 Belgium 0.174 0.428 Netherlands 0.172 0.434 Malaysia 0.167 0.316 Russia 0.164 0.725 Chile 0.152 0.440 China 0.151 0.359 South Africa 0.150 0.728 Greece 0.144 1.032 South Korea 0.143 0.654 Philippines 0.142 0.341 Finland 0.141 0.247 Austria 0.138 0.412 Brazil 0.138 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 </td <td></td> <td></td> <td></td>			
Thailand 0.186 0.620 Spain 0.183 0.584 Italy 0.180 0.576 Egypt 0.180 0.572 Germany 0.175 0.490 Indonesia 0.174 0.620 Belgium 0.174 0.428 Netherlands 0.172 0.434 Malaysia 0.167 0.316 Russia 0.164 0.725 Chile 0.152 0.440 China 0.151 0.359 South Africa 0.150 0.728 Greece 0.144 1.032 South Korea 0.143 0.654 Philippines 0.142 0.341 Finland 0.141 0.247 Austria 0.138 0.412 Brazil 0.138 0.867 Singapore 0.137 0.362 Taiwan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.13			
Spain 0.183 0.584 Italy 0.180 0.576 Egypt 0.180 0.572 Germany 0.175 0.490 Indonesia 0.174 0.620 Belgium 0.174 0.428 Netherlands 0.172 0.434 Malaysia 0.167 0.316 Russia 0.164 0.725 Chile 0.152 0.440 China 0.151 0.359 South Africa 0.150 0.728 Greece 0.144 1.032 South Korea 0.143 0.654 Philippines 0.142 0.341 Finland 0.141 0.247 Austria 0.138 0.412 Brazil 0.138 0.867 Singapore 0.137 0.362 Taiwan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131<			
Italy 0.180 0.576 Egypt 0.180 0.572 Germany 0.175 0.490 Indonesia 0.174 0.620 Belgium 0.174 0.428 Netherlands 0.172 0.434 Malaysia 0.167 0.316 Russia 0.164 0.725 Chile 0.152 0.440 China 0.151 0.359 South Africa 0.150 0.728 Greece 0.144 1.032 South Korea 0.143 0.654 Philippines 0.142 0.341 Finland 0.141 0.247 Austria 0.138 0.412 Brazil 0.138 0.867 Singapore 0.137 0.362 Taiwan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129			
Egypt 0.180 0.572 Germany 0.175 0.490 Indonesia 0.174 0.620 Belgium 0.174 0.428 Netherlands 0.172 0.434 Malaysia 0.167 0.316 Russia 0.164 0.725 Chile 0.152 0.440 China 0.151 0.359 South Africa 0.150 0.728 Greece 0.144 1.032 South Korea 0.143 0.654 Philippines 0.142 0.341 Finland 0.141 0.247 Austria 0.138 0.867 Singapore 0.137 0.362 Taiwan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 0.233 Qatar 0.125 <td></td> <td></td> <td></td>			
Germany 0.175 0.490 Indonesia 0.174 0.620 Belgium 0.174 0.428 Netherlands 0.172 0.434 Malaysia 0.167 0.316 Russia 0.164 0.725 Chile 0.152 0.440 China 0.151 0.359 South Africa 0.150 0.728 Greece 0.144 1.032 South Korea 0.143 0.654 Philippines 0.142 0.341 Finland 0.141 0.247 Austria 0.138 0.412 Brazil 0.138 0.867 Singapore 0.137 0.362 Taiwan 0.136 0.472 Japan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 </td <td></td> <td></td> <td></td>			
Indonesia 0.174 0.620 Belgium 0.174 0.428 Netherlands 0.172 0.434 Malaysia 0.167 0.316 Russia 0.164 0.725 Chile 0.152 0.440 China 0.151 0.359 South Africa 0.150 0.728 Greece 0.144 1.032 South Korea 0.143 0.654 Philippines 0.142 0.341 Finland 0.141 0.247 Austria 0.138 0.412 Brazil 0.138 0.867 Singapore 0.137 0.362 Taiwan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 0.233 Hong Kong 0.125 0.231 Colombia 0.			
Belgium 0.174 0.428 Netherlands 0.172 0.434 Malaysia 0.167 0.316 Russia 0.164 0.725 Chile 0.152 0.440 China 0.151 0.359 South Africa 0.150 0.728 Greece 0.144 1.032 South Korea 0.143 0.654 Philippines 0.142 0.341 Finland 0.141 0.247 Austria 0.138 0.412 Brazil 0.138 0.867 Singapore 0.137 0.362 Taiwan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 0.233 Hong Kong 0.125 0.231 Colombia 0.125 0.231 Colombia 0.1			
Netherlands 0.172 0.434 Malaysia 0.167 0.316 Russia 0.164 0.725 Chile 0.152 0.440 China 0.151 0.359 South Africa 0.150 0.728 Greece 0.144 1.032 South Korea 0.143 0.654 Philippines 0.142 0.341 Finland 0.141 0.247 Austria 0.138 0.412 Brazil 0.138 0.867 Singapore 0.137 0.362 Taiwan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 0.283 Hong Kong 0.125 0.231 Colombia 0.123 0.376 Turkey <t< td=""><td></td><td></td><td></td></t<>			
Malaysia 0.167 0.316 Russia 0.164 0.725 Chile 0.152 0.440 China 0.151 0.359 South Africa 0.150 0.728 Greece 0.144 1.032 South Korea 0.143 0.654 Philippines 0.142 0.341 Finland 0.141 0.247 Austria 0.138 0.412 Brazil 0.138 0.867 Singapore 0.137 0.362 Taiwan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 0.283 Hong Kong 0.125 0.231 Colombia 0.125 0.231 Colombia 0.123 0.376 Turkey 0.122 0.271 Switzerland 0.122 0.271 <td>~</td> <td></td> <td></td>	~		
Russia 0.164 0.725 Chile 0.152 0.440 China 0.151 0.359 South Africa 0.150 0.728 Greece 0.144 1.032 South Korea 0.143 0.654 Philippines 0.142 0.341 Finland 0.141 0.247 Austria 0.138 0.412 Brazil 0.138 0.867 Singapore 0.137 0.362 Taiwan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 0.283 Hong Kong 0.125 0.231 Qatar 0.125 0.231 Colombia 0.123 0.376 Turkey 0.122 0.739 Switzerland 0.122 0.371 Israel 0.120 0.260 Portugal 0.120 0.249			
Chile 0.152 0.440 China 0.151 0.359 South Africa 0.150 0.728 Greece 0.144 1.032 South Korea 0.143 0.654 Philippines 0.142 0.341 Finland 0.141 0.247 Austria 0.138 0.412 Brazil 0.138 0.867 Singapore 0.137 0.362 Taiwan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 0.283 Hong Kong 0.125 0.233 Qatar 0.125 0.231 Colombia 0.123 0.376 Turkey 0.122 0.739 Switzerland 0.122 0.221 Australia 0.122 0.371 Israel 0.120<	*		
China 0.151 0.359 South Africa 0.150 0.728 Greece 0.144 1.032 South Korea 0.143 0.654 Philippines 0.142 0.341 Finland 0.141 0.247 Austria 0.138 0.412 Brazil 0.138 0.867 Singapore 0.137 0.362 Taiwan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 0.233 Qatar 0.125 0.231 Colombia 0.125 0.231 Colombia 0.123 0.376 Turkey 0.122 0.739 Switzerland 0.122 0.221 Australia 0.122 0.371 Israel 0.120 0.249 Canada 0.119<			
South Africa 0.150 0.728 Greece 0.144 1.032 South Korea 0.143 0.654 Philippines 0.142 0.341 Finland 0.141 0.247 Austria 0.138 0.412 Brazil 0.138 0.867 Singapore 0.137 0.362 Taiwan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 0.283 Hong Kong 0.125 0.231 Colombia 0.125 0.231 Colombia 0.123 0.376 Turkey 0.122 0.739 Switzerland 0.122 0.221 Australia 0.122 0.371 Israel 0.120 0.249 Canada 0.119 0.256 United States			
Greece 0.144 1.032 South Korea 0.143 0.654 Philippines 0.142 0.341 Finland 0.141 0.247 Austria 0.138 0.412 Brazil 0.138 0.867 Singapore 0.137 0.362 Taiwan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 0.283 Hong Kong 0.125 0.231 Colombia 0.125 0.231 Colombia 0.123 0.376 Turkey 0.122 0.739 Switzerland 0.122 0.221 Australia 0.122 0.371 Israel 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.			
South Korea 0.143 0.654 Philippines 0.142 0.341 Finland 0.141 0.247 Austria 0.138 0.412 Brazil 0.138 0.867 Singapore 0.137 0.362 Taiwan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 0.283 Hong Kong 0.125 0.231 Colombia 0.125 0.231 Colombia 0.123 0.376 Turkey 0.122 0.739 Switzerland 0.122 0.221 Australia 0.122 0.371 Israel 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238			
Philippines 0.142 0.341 Finland 0.141 0.247 Austria 0.138 0.412 Brazil 0.138 0.867 Singapore 0.137 0.362 Taiwan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 0.283 Hong Kong 0.125 0.332 Qatar 0.125 0.231 Colombia 0.123 0.376 Turkey 0.122 0.739 Switzerland 0.122 0.221 Australia 0.122 0.371 Israel 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238			
Finland 0.141 0.247 Austria 0.138 0.412 Brazil 0.138 0.867 Singapore 0.137 0.362 Taiwan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 0.283 Hong Kong 0.125 0.332 Qatar 0.125 0.231 Colombia 0.123 0.376 Turkey 0.122 0.739 Switzerland 0.122 0.221 Australia 0.122 0.371 Israel 0.120 0.260 Portugal 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238			
Austria 0.138 0.412 Brazil 0.138 0.867 Singapore 0.137 0.362 Taiwan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 0.283 Hong Kong 0.125 0.231 Colombia 0.125 0.231 Colombia 0.123 0.376 Turkey 0.122 0.739 Switzerland 0.122 0.371 Israel 0.120 0.260 Portugal 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238			
Brazil 0.138 0.867 Singapore 0.137 0.362 Taiwan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 0.283 Hong Kong 0.125 0.231 Colombia 0.125 0.231 Colombia 0.123 0.376 Turkey 0.122 0.739 Switzerland 0.122 0.221 Australia 0.122 0.371 Israel 0.120 0.260 Portugal 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238	Finland		0.247
Singapore 0.137 0.362 Taiwan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 0.283 Hong Kong 0.125 0.332 Qatar 0.125 0.231 Colombia 0.123 0.376 Turkey 0.122 0.739 Switzerland 0.122 0.221 Australia 0.122 0.371 Israel 0.120 0.260 Portugal 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238	Austria	0.138	0.412
Taiwan 0.136 0.472 Japan 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 0.283 Hong Kong 0.125 0.332 Qatar 0.125 0.231 Colombia 0.123 0.376 Turkey 0.122 0.739 Switzerland 0.122 0.221 Australia 0.122 0.371 Israel 0.120 0.260 Portugal 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238	Brazil	0.138	0.867
Japan 0.132 0.256 United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 0.283 Hong Kong 0.125 0.332 Qatar 0.125 0.231 Colombia 0.123 0.376 Turkey 0.122 0.739 Switzerland 0.122 0.371 Israel 0.120 0.260 Portugal 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238	Singapore	0.137	0.362
United Kingdom 0.132 0.294 Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 0.283 Hong Kong 0.125 0.332 Qatar 0.125 0.231 Colombia 0.123 0.376 Turkey 0.122 0.739 Switzerland 0.122 0.221 Australia 0.122 0.371 Israel 0.120 0.260 Portugal 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238	Taiwan	0.136	0.472
Mexico 0.131 0.435 Sweden 0.129 0.517 UAE 0.125 0.283 Hong Kong 0.125 0.332 Qatar 0.125 0.231 Colombia 0.123 0.376 Turkey 0.122 0.739 Switzerland 0.122 0.221 Australia 0.122 0.371 Israel 0.120 0.260 Portugal 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238	Japan	0.132	0.256
Sweden 0.129 0.517 UAE 0.125 0.283 Hong Kong 0.125 0.332 Qatar 0.125 0.231 Colombia 0.123 0.376 Turkey 0.122 0.739 Switzerland 0.122 0.221 Australia 0.122 0.371 Israel 0.120 0.260 Portugal 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238	United Kingdom	0.132	0.294
UAE 0.125 0.283 Hong Kong 0.125 0.332 Qatar 0.125 0.231 Colombia 0.123 0.376 Turkey 0.122 0.739 Switzerland 0.122 0.221 Australia 0.122 0.371 Israel 0.120 0.260 Portugal 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238	Mexico	0.131	0.435
Hong Kong 0.125 0.332 Qatar 0.125 0.231 Colombia 0.123 0.376 Turkey 0.122 0.739 Switzerland 0.122 0.221 Australia 0.122 0.371 Israel 0.120 0.260 Portugal 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238	Sweden	0.129	0.517
Qatar 0.125 0.231 Colombia 0.123 0.376 Turkey 0.122 0.739 Switzerland 0.122 0.221 Australia 0.122 0.371 Israel 0.120 0.260 Portugal 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238	UAE	0.125	0.283
Colombia 0.123 0.376 Turkey 0.122 0.739 Switzerland 0.122 0.221 Australia 0.122 0.371 Israel 0.120 0.260 Portugal 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238	Hong Kong	0.125	0.332
Turkey 0.122 0.739 Switzerland 0.122 0.221 Australia 0.122 0.371 Israel 0.120 0.260 Portugal 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238	Qatar	0.125	0.231
Switzerland 0.122 0.221 Australia 0.122 0.371 Israel 0.120 0.260 Portugal 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238	Colombia	0.123	0.376
Australia 0.122 0.371 Israel 0.120 0.260 Portugal 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238	Turkey	0.122	0.739
Israel 0.120 0.260 Portugal 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238	Switzerland	0.122	0.221
Portugal 0.120 0.249 Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238	Australia		0.371
Canada 0.119 0.256 United States 0.118 0.184 Peru 0.116 0.238	Israel	0.120	0.260
United States 0.118 0.184 Peru 0.116 0.238	Portugal	0.120	0.249
Peru 0.116 0.238	Canada	0.119	0.256
	United States	0.118	0.184
	Peru	0.116	0.238
Denmark $0.114 0.152$	Denmark	0.114	0.152
Ireland $0.112 0.239$	Ireland	0.112	0.239
Poland 0.099 0.321	Poland	0.099	0.321
Norway 0.097 0.239	Norway	0.097	0.239
India 0.095 0.238		0.095	
Vietnam 0.092 0.251	Vietnam	0.092	
New Zealand 0.080 0.134		0.080	
Pakistan 0.049 0.101			
Nigeria 0.017 0.054			

Date	\hat{x}_t	\bar{r}_{US} (%)	Événement principal
2020-03-09	61.41	-8.13	COVID-19 : confinement Italie & guerre des prix pétroliers
2016-06-24	41.58	-3.71	Référendum Brexit
2001-09-17	36.74	-5.37	Réouverture du NYSE après le 11 septembre
2007-02-27	21.86	-3.98	Premiers signes de la crise subprimes
2015-08-24	17.08	-4.30	Flash crash US/Chine (dévaluation du yuan)
2020-03-12	16.86	-10.06	COVID-19 : suspension des vols Europe-États-Unis
2016-11-09	15.37	1.05	Élection de Donald Trump (US)
2011-08-05	15.11	-0.15	Abaissement de la note souveraine US (S&P)
2008-01-22	15.09	-1.02	Intensification de la crise des prêts subprimes
2017-04-24	14.87	1.09	Victoire de Macron au premier tour (France)
2017-05-18	13.08	0.40	Nomination de Robert Mueller (enquête Russiagate)
2010-05-10	13.03	4.31	Premier plan de sauvetage grec (zone euro)
2020-03-13	12.77	8.20	COVID-19 : déclaration d'État d'urgence (États-Unis)
2020-11-09	12.09	1.25	Annonce du vaccin Pfizer/BioNTech
2002-07-23	11.54	-2.78	Tensions au Proche-Orient & krach régional
2011-04-27	11.20	1.40	Crise de la dette souveraine en zone euro
2020-03-16	11.12	-11.59	Annonce du confinement en France
2020-03-18	10.90	-5.20	Décision de la Fed : taux d'intérêt à zéro
2008-03-10	10.61	-1.33	Krach boursier global (crise financière de 2008)
2001-01-03	10.36	4.69	Éclatement de la bulle .com

Table 7.2 – Top 20 dates selon la valeur de $\hat{x}_t,$ rendements US moyens et événement associé.

Chapitre 8: Comparaison avec des mesures de risque géopolitique

Le modèle global COVOL propose une mesure quotidienne du risque financier global fondée sur les chocs de volatilité communs aux ETF pays. Pour mieux situer ces mesures par rapport à la littérature sur le risque géopolitique, nous comparons notre facteur estimé x_t à deux indices mensuels de risque :

- EPU (Economic Policy Uncertainty) de Baker *et al.* (2016) : indice GDP-pondéré construit à partir du nombre d'articles de presse portant sur l'économie et l'incertitude dans 20 pays.
- **GPR (Geopolitical Risk)** de Caldara & Iacoviello (2019) : ratio mensuel d'articles de presse relatifs aux tensions militaires et géopolitiques aux États-Unis, au Royaume-Uni et au Canada.

8.1 Dynamiques comparées

FIGURE 8.1 – Comparaison mensuelle de l'indice global COVOL (\hat{x}_t , traits pleins noir) avec (Top) l'indice EPU (axe de gauche bleue) et (Bottom) l'indice GPR (axe de gauche rouge), les deux panneaux partageant l'axe de droite pour x_t .

On observe que:

- L'EPU tend à croître de façon soutenue après 2010, reflétant l'accroissement de l'incertitude macro-politique, tandis que les pics de x_t restent plus ponctuels, liés à des chocs financiers extrêmes (crise COVID-19, Brexit, etc.).
- Le GPR présente des pointes très marquées lors d'événements géopolitiques (attentats, guerres), mais ces pics ne coïncident pas systématiquement avec les plus fortes valeurs de x_t , suggérant que le risque militaire pèse différemment sur la volatilité financière globale.

8.2 Pouvoir explicatif sur la volatilité et les rendements

Nous testons la capacité de $COVOL_m^2 = x_{m,t} - 1$ (sur une fenêtre mensuelle), ΔEPU_t et ΔGPR_t à expliquer, par régression OLS, ψ_t^{ACWI} , les chocs de volatilité réalisés de l'ACWI (définis comme premiers moments centrés des $e_{i,t}^2$ sur chaque mois), et r_t^{ACWI} , les rendements mensuels de l'ACWI. Les erreurs sont corrigées par Newey–West (HAC, retard = 12) pour tenir compte de l'autocorrélation.

	(1)	(2)	(3)	(4)
$COVOL_m^2$	0.418*** (0.030)			0.378*** (0.034)
$\Delta \mathrm{EPU}_t$	_ ` ´	0.006*** (0.001)	_	0.001* (0.001)
$\Delta \mathrm{GPR}_t$	_	_ ` ,	0.002***(0.000)	$0.001 \ (0.000)$
Observations	248	248	248	248
R^2	0.449	0.163	0.047	0.462
Adj. R^2	0.446	0.160	0.043	0.456
Residual S.E.	0.319	0.392	0.419	0.316
F-Statistic	200.910	48.081	12.157	70.265

TABLE 8.1 – Tableau 8 – Régression de ψ_t^{ACWI} sur $COVOL_m^2$, ΔEPU_t , ΔGPR_t .

Table 8.2 – Tableau 9 – Régression de r_t^{ACWI} sur $COVOL_m^2$, ΔEPU_t , ΔGPR_t .

	(1)	(2)	(3)	(4)
$COVOL_m^2$	-0.037*** (0.004)	_	_	-0.035*** (0.004)
$\Delta \mathrm{EPU}_t$	_	-0.000 *** (0.000)	_	-0.000 (0.000)
$\Delta \mathrm{GPR}_t$	_	_	-0.000 ** (0.000)	-0.000 (0.000)
Constant	$0.003 \ (0.002)$	$0.003 \ (0.003)$	$0.003 \ (0.003)$	$0.003 \ (0.002)$
Observations	248	248	248	248
R^2	0.297	0.090	0.019	0.299
Adj. R^2	0.294	0.086	0.015	0.291
Residual S.E.	0.039	0.044	0.046	0.039
F-Statistic	103.969	24.209	4.675	34.726

Discussion : Même en contrôlant pour les variations de l'EPU et du GPR, le facteur global COVOL explique une part substantielle de la volatilité réalisée de l'ACWI ($R^2 \approx 45\%$ en modèle univarié). Pour les rendements, $COVOL_m^2$ reste le principal déterminant négatif ($R^2 \approx 30\%$). L'utilisation d'une correction Newey–West (HAC, lag = 2) assure des erreurs-type robustes aux autocorrélations mensuelles, comme préconisé dans Engle & Campos-Martins, et justifie la significativité élevée de F et des coefficients.

8.2.1 Corrélations cross-sectionnelles et comparaison aux indices géopolitiques

Pour compléter l'analyse de la puissance explicative de COVOL, Engle & Campos-Martins (2023) examinent également l'impact des chocs de volatilité commune sur la corrélation moyenne des rendements cross-sectionnels, notée ρ_m pour chaque mois m. On la définit comme

$$\rho_m = \frac{2}{N(N-1)} \sum_{1 \le i < j \le N} \rho(r_{i,m}, r_{j,m}),$$

où $r_{i,m}$ est le rendement mensuel de l'ETF pays i. La série $\{\rho_m\}$ est tracée en Fig. 8.2, et mesurée mensuellement à partir du panel de 47 ETF.

FIGURE 8.2 – (Figure 5) - Moyenne mensuelle des corrélations cross-sectionnelles ρ_m .

On constate que:

- ρ_m est très persistant, oscillant entre 0.2 et 0.9, avec des plafonds élevés ($\rho_m \gtrsim 0.8$) durant la crise financière globale (2007–2009), la crise de la dette souveraine (2011–2012) et le krach COVID-19 (2020).
- Les creux ($\rho_m \approx 0.3$) coïncident avec des périodes de moindre contagion cross-border, par exemple 2014–2015.

Pour évaluer leur pouvoir explicatif, nous régressons ρ_m sur les mêmes mesures de risque que précédemment, en ajoutant le décalé ρ_{m-1} pour tenir compte de la forte persistance :

$$\rho_m = \beta_1 \, COVOL_m^2 + \beta_2 \, \Delta \text{EPU}_m + \beta_3 \, \Delta \text{GPR}_m + \beta_4 \, \rho_{m-1} + \varepsilon_m.$$

Les erreurs sont corrigées par Newey-West (HAC, lag = 12).

TABLE 8.3 – Tableau 10 – Régression de ρ_m sur $COVOL_m^2$, ΔEPU_m , ΔGPR_m et ρ_{m-1} .

	(1)	(2)	(3)	(4)
$COVOL_m^2$	0.066*** (0.011)	_	_	0.055*** (0.012)
$\Delta \mathrm{EPU}_m$	_	0.001***(0.000)	_	0.000(0.000)
$\Delta \mathrm{GPR}_m$	_	_ ` _ `	0.000**(0.000)	0.000(0.000)
ρ_{m-1}	0.691***(0.042)	0.687***(0.044)	0.694***(0.045)	0.693***(0.042)
Constant	0.160*** (0.023)	0.162*** (0.024)	0.158*** (0.025)	0.159*** (0.023)
Observations	248	248	248	248
R^2	0.552	0.513	0.492	0.557
Adj. R^2	0.548	0.509	0.488	0.550
Residual S.E.	0.114	0.119	0.121	0.114
F-Statistic	150.650***	129.105 ***	118.479***	76.510 ***

Discussion détaillée

- Le coefficient $\beta_1 > 0$ et significatif indique qu'un choc élevé de volatilité commune $(COVOL_m^2)$ accroît la synchronisation des marchés (ρ_m) , corroborant l'idée que la volatilité globale commande le niveau de contagion.
- Les premières différences de l'EPU et du GPR n'apportent qu'un gain marginal (β_2 , β_3 faibles ou non significatifs dans le modèle complet), suggérant que ces indices textuels, bien qu'utiles pour mesurer l'incertitude politique ou militaire, ne capturent pas pleinement les chocs financiers contemporains.
- La persistance extrême de ρ_m ($\beta_4 \approx 0.69$) impose d'inclure le décalé pour éviter un biais d'omission.

— Limites et critiques :

- L'EPU et le GPR sont mensuels et basés sur du *text-mining*, ce qui introduit des délais et des biais liés au choix des sources et du lexique.
- En pratique, ils ne sont pas disponibles à fréquence journalière, alors que COVOL peut être calculé en quasi-temps réel, ce qui renforce son atout pour le suivi opérationnel du risque global.

Chapitre 9: Global COVOL et dynamiques économiques mondiales

9.1 Global COVOL et sentiment économique

Dans cette section, nous analysons la relation entre la covolatilité globale $(COVOL^2)$ et le sentiment économique global. Nous utilisons deux indicateurs clefs :

- Le **VIX**, indice de volatilité implicite à 30 jours sur le S&P 500, largement reconnu comme baromètre du stress anticipé par les marchés.
- Le **CCI**, indice de confiance des consommateurs de l'OCDE, fondé sur les anticipations des ménages concernant leur situation économique future.

Ces indicateurs sont observés à fréquence mensuelle de juin 2000 à janvier 2021. Comme les cycles économiques jouent un rôle déterminant sur la volatilité des marchés, nous étudions également la dynamique de $COVOL^2$ au regard des phases de contraction/expansion selon le NBER. Pour cela, nous introduisons des variables indicatrices pour les phases suivantes :

 $EXP1:06/2000-02/2001\,;$ $CON1:03/2001-11/2001\,;$ $EXP2:12/2001-11/2007\,;$ $CON2:12/2007-06/2009\,;$ $EXP3:07/2009-01/2020\,;$ $CON3:02/2020-04/2020\,;$ EXP4:05/2020-01/2021.

FIGURE 9.1 – Covolatilité globale (COVOL²) et VIX, avec les récessions NBER en grisé.

FIGURE 9.2 – Covolatilité globale ($COVOL^2$) et indice de confiance des consommateurs (CCI).

Table 9.1 – Tableau 11 – Régression de \hat{x}_t^2 sur indicatrices NBER

Période	Global COVOL ²
$\begin{array}{c} \text{EXP1} \ (2000\text{-}06 \to 2001\text{-}02) \\ \text{CON1} \ (2001\text{-}03 \to 2001\text{-}11) \\ \text{EXP2} \ (2001\text{-}12 \to 2007\text{-}11) \\ \text{CON2} \ (2007\text{-}12 \to 2009\text{-}06) \\ \text{EXP3} \ (2009\text{-}07 \to 2020\text{-}01) \\ \text{CON3} \ (2020\text{-}02 \to 2020\text{-}04) \\ \text{EXP4} \ (2020\text{-}05 \to 2021\text{-}01) \end{array}$	1.381 (1.223) 4.254* (1.223) 1.015** (0.432) 2.117** (0.841) 1.046* (0.325) 19.463* (2.117) 1.131 (1.223)
Observations R^2 Adj. R^2 Residual S.E. F-Statistic	250 0.332 0.313 3.668 17.272

Table 9.2 – Tableau 12 – Régressions de Δ VIX, Δ GEPU, Δ CCI sur \hat{x}_t^2

	ΔVIX	$\Delta { m GEPU}$	ΔCCI
Global COVOL ²	5.189* (0.297)	19.868* (2.272)	-0.039* (0.006)
Observations	248	248	248
R^2	0.554	0.323	0.850
Adj. R^2	0.552	0.312	0.848
Residual S.E.	3.205	24.425	0.067
F-Statistic	305.566	29.041	344.581

Interprétation économique: Les périodes de récession sont associées à des hausses notables de $COVOL^2$, en particulier lors du choc COVID-19 (CON3), soulignant son caractère contrecyclique. L'effet positif sur Δ VIX et Δ GEPU confirme que la volatilité commune traduit une montée généralisée du risque perçu. En parallèle, la relation négative avec Δ CCI indique que les ménages perdent confiance en leur situation financière future lors des hausses de volatilité, accentuant la contraction de la demande. $COVOL^2$ se positionne ainsi comme un indicateur robuste et à haute fréquence du sentiment économique global.

9.2 Global COVOL et macroéconomie

Nous examinons maintenant la capacité de $COVOL^2$ à prédire les principales variables macroéconomiques, tant à fréquence mensuelle que trimestrielle. Les résultats confirment que les chocs de volatilité globale ont des conséquences réelles.

Table 9.3 – Tableau 13 – Régression sur taux de croissance mensuels

	Δemp_m	Δind_m
Global $COVOL_m^2$	-0.000 (0.001)	-0.002** (0.001)
Global COVOL ² $_{m-1}$ Y_{m-1}	-0.010* (0.001) -0.022 (0.051)	-0.008* (0.001) 0.184* (0.056)
Constante	0.000 (0.001)	0.000 (0.001)
Observations	247	247
R^2	0.374	0.282
$Adj. R^2$	0.367	0.273
Residual S.E.	0.009	0.011
F-Statistic	48.462	31.772

Table 9.4 – Tableau 14 – Régression sur taux de croissance trimestriels

	Δinv_q	$\Delta cons_q$		
Global ${\rm COVOL^2}_q$ Global ${\rm COVOL^2}_{q-1}$ Y_{q-1} Constante	-0.021* (0.009) -0.048* (0.009) 0.045 (0.095) 0.005 (0.004)	-0.006* (0.003) -0.021* (0.003) -0.307* (0.089) 0.007* (0.001)		
Observations R^2 Adj. R^2 Residual S.E. F-Statistic	82 0.313 0.287 0.033 11.861	82 0.401 0.378 0.012 17.439		

Commentaire : Les effets de $COVOL^2$ sur l'économie réelle sont clairs : il prédit la baisse de la production industrielle, de l'emploi privé, de l'investissement, ainsi que de la consommation. Les coefficients retardés sont particulièrement significatifs, montrant que les chocs de volatilité continuent d'impacter l'activité économique bien après leur survenue sur les marchés. En ce sens, $COVOL^2$ est un excellent prédicteur avancé du cycle, complémentaire aux agrégats macroéconomiques classiques et potentiellement utile en prévision économique.

Chapitre 10: Extension : construction de portefeuilles selon la sensibilité au facteur COVOL

Nous construisons quatre stratégies de portefeuilles différenciées selon leur sensibilité au facteur de volatilité globale (COVOL) :

- Neutral COVOL: portefeuille orthogonal au facteur COVOL, conçu pour éliminer l'exposition au facteur.
- Max COVOL: portefeuille maximisant l'exposition au facteur COVOL.
- Min COVOL: portefeuille minimisant l'exposition au facteur COVOL.
- **Dynamic COVOL**: portefeuille à exposition dynamique au facteur COVOL.

Les stratégies sont appliquées à deux univers :

- ETFs factoriels (ex. : Quality US et EUR)
- Facteurs internationaux (24 pays) : SMB, HML_FF, HML_Devil, BAB

Les données utilisées sont mensuelles, avec un rebalancement mensuel et sans prise en compte des coûts de transaction.

10.0.1 Neutral COVOL

Le portefeuille Neutral est défini comme suit :

$$\begin{aligned} \min_{w} & & w^{\top} \Sigma w \\ \text{s.c.} & & \beta_t^{\top} w = 0 \\ & & \mathbf{1}^{\top} w = 1 \end{aligned}$$

Ce porte feuille est orthogonal au facteur COVOL, tout en minimisant la variance totale. La matrice de covariance Σ est estimée via la méthode de shrinkage de Ledoit-Wolf sur une fenêtre de 24 mois pour 24 actifs.

10.0.2 Max COVOL

Le portefeuille Max COVOL est défini par :

$$\begin{aligned} \max_{w} & \beta_{t}^{\top} w \\ \text{s.c.} & \mathbf{1}^{\top} w = 1 \\ & w^{\top} \Sigma w \leq \sigma_{m}^{2} \end{aligned}$$

Ce portefeuille maximise l'exposition au facteur COVOL, avec une contrainte de variance (variance targeting) fixée au niveau du portefeuille Neutral. L'objectif est de rendre les portefeuilles comparables en risque.

10.0.3 Min COVOL

Le portefeuille Min COVOL suit une formulation duale :

$$\begin{aligned} \min_{w} & \beta_t^\top w \\ \text{s.c.} & \mathbf{1}^\top w = 1 \\ & w^\top \Sigma w \leq \sigma_m^2 \end{aligned}$$

Il vise à éviter les expositions au facteur COVOL, tout en respectant la même contrainte de variance que les portefeuilles précédents.

10.0.4 Dynamic COVOL

La stratégie dynamique repose sur une pondération temporelle adaptative selon le niveau courant du facteur COVOL.

1. Estimation et normalisation

- Fenêtre d'estimation (24 mois) : estimation de Σ avec Ledoit-Wolf
- Fenêtre de normalisation (12 mois) : calcul d'un COVOL « normalisé » :

$$scaled_t = \frac{COVOL_t - \min_{s \in t - scale:t} COVOL_s}{\max_{s \in t - scale:t} COVOL_s - \min_{s \in t - scale:t} COVOL_s}$$

2. Pondérations dynamiques sigmoïdes

$$\lambda = 10$$
 (pente de la sigmoïde)
 $w_{\min} = \sigma(\lambda(\text{scaled}_t - 0.5))$
 $w_{\max} = 1 - w_{\min}$
 $w_{\text{neutre}} = 1 - |2 \cdot \text{scaled}_t - 1|$

3. Optimisation des portefeuilles sous-jacents

$$\begin{array}{lll} -& \min_{w} \ \beta_{t}^{\top} w & \text{s.c.} & \mathbf{1}^{\top} w = 1, \ w^{\top} \Sigma w \leq \sigma_{m}^{2} \\ -& \max_{w} \ \beta_{t}^{\top} w & \text{s.c. idem} \\ -& \min_{w} \ w^{\top} \Sigma w & \text{s.c.} & \beta_{t}^{\top} w = 0, \ \mathbf{1}^{\top} w = 1 \end{array} \tag{Max COVOL}$$

Poids dynamiques en fonction du niveau normalisé de COVOL

FIGURE 10.1 – Sigmoid functions used for the strategies ponderation.

4. Combinaison des portefeuilles

$$w_t = w_{\min} \cdot w_t^{\min} + w_{\max} \cdot w_t^{\max} + w_{\text{neutre}} \cdot w_t^{\text{neutre}}$$

10.0.5 Résultats empiriques

Les résultats empiriques montrent que :

— Les ETFs *Quality* bénéficient des chocs de COVOL, avec un comportement défensif amplifié par l'effet levier du facteur.

FIGURE 10.2 – Cumulative Performance of COVOL strategies on Quality ETFs.

— Le facteur *smb* est peu sensible au COVOL, avec de bonnes performances de la stratégie Neutral.

Figure 10.3 – Cumulative Performance of COVOL strategies on SMB.

— Le facteur hml_ff souffre des régimes de volatilité élevée, typiquement moins favorable aux valeurs.

FIGURE 10.4 – Cumulative Performance of COVOL strategies on HML FF.

— Le facteur bab, fortement exposé aux titres à faible beta, bénéficie des hausses de volatilité (couverture).

FIGURE 10.5 – Cumulative Performance of COVOL strategies on BAB.

Chapitre 11: Annexes

 $TABLE\ 11.1-(Annexe\ C)\ Statistiques\ descriptives\ des\ rendements\ et\ tests\ AR(1)/ARCH(1)$

Pays	Min. M	ean Max.	S.D.	Rob. Sk.	Rob. Kr.	AR(1)	p-val AR	ARCH(1)	p-val ARCH
Australia	-17.562 0.	035 18.855	1.747	-0.060	0.187	99.546	0.000	675.643	0.000
Austria	-16.646 0.	028 15.207	1.727	-0.045	0.240	2.680	0.102	266.660	0.000
Brazil	-26.257 0.	021 22.778	2.508	-0.044	0.175	18.978	0.000	458.705	0.000
Belgium	-14.552 0.	021 9.623	1.568	-0.045	0.265	12.948	0.000	327.489	0.000
Canada	-14.297 0.	023 12.099	1.467	-0.067	0.294	9.015	0.003	538.315	0.000
Chile	-16.972 -0.	006 14.571	1.701	-0.016	0.132	0.048	0.826	224.532	0.000
China	-10.277 0.	030 8.955	1.541	-0.029	0.115	1.693	0.193	104.677	0.000
Colombia	-17.154 -0.	036 12.134	1.751	-0.010	0.383	23.322	0.000	47.806	0.000
Denmark	-9.027 0.	063 4.808	1.150	-0.028	0.122	7.271	0.007	225.566	0.000
Egypt	-20.587 -0.	032 12.520	1.785	-0.020	0.293	0.636	0.425	139.325	0.000
Finland	-12.108 0.	040 6.862	1.326	0.005	0.145	0.730	0.392	94.736	0.000
France	-13.563 0.	012 12.291	1.644	-0.061	0.270	31.417	0.000	307.726	0.000
Germany	-13.569 0.	014 18.057	1.674	-0.069	0.245	16.099	0.000	130.491	0.000
Greece	-21.616 -0.	018 12.892	2.679	-0.034	0.230	1.336	0.248	202.743	0.000
Hong Kong	-13.125 0.	026 15.694	1.632	-0.031	0.239	112.090	0.000	372.046	0.000
Japan	-10.990 0.	008 15.855	1.393	-0.042	0.130	54.557	0.000	198.739	0.000
India	-16.766 0.	023 11.995	1.585	-0.019	0.095	67.716	0.000	673.311	0.000
Indonesia	-15.286 0.	009 13.627	1.885	0.005	0.195	0.198	0.656	213.673	0.000
Ireland	-14.428 0.	040 9.260	1.459	-0.021	0.206	0.767	0.381	65.911	0.000
Israel	-12.975 0.	017 16.083	1.471	-0.037	0.214	42.031	0.000	157.796	0.000
Italy	-17.013 0.	003 14.220	1.791	-0.055	0.192	40.397	0.000	282.213	0.000
Malaysia	-12.355 0.	018 8.606	1.378	0.017	0.210	75.382	0.000	343.091	0.000
Mexico	-16.547 0.	025 19.453	1.819	-0.025	0.122	0.910	0.340	145.571	0.000
Netherlands	-13.954 0.	021 13.428	1.590	-0.047	0.241	40.818	0.000	284.890	0.000
New Zealand	-16.410 0.	049 14.609	1.295	0.006	0.044	84.668	0.000	180.771	0.000
Nigeria	-13.290 -0.	070 15.065	1.772	-0.026	0.253	2.586	0.108	50.587	0.000
Norway	-15.817 0.	014 11.877	1.573	-0.046	0.187	14.301	0.000	453.509	0.000
Pakistan	-11.796 -0.	030 6.567	1.436	0.008	0.166	0.227	0.633	27.559	0.000
Peru	-14.831 0.	023 9.792	1.432	-0.039	0.146	2.138	0.143	97.138	0.000
Philippines	-21.624 0.	011 10.568	1.552	0.019	0.089	24.245	0.000	227.951	0.000
Poland	-14.785 0.	001 8.848	1.797	-0.032	0.131	11.597	0.001	170.401	0.000
Portugal	-11.503 -0.	003 8.855	1.441	-0.060	0.215	4.267	0.039	90.982	0.000
Qatar	-13.760 -0.	004 7.778	1.361	0.011	0.467	20.232	0.000	24.406	0.000
Russia	-49.481 0.	045 19.960	2.104	0.050	_	0.001	0.976	0.012	0.914
Singapore	-11.866 0.	023 16.486	1.626	-0.033	0.256	94.617	0.000	253.686	0.000
South Africa	-22.417 0.	036 20.638	2.204	-0.075	0.110	33.901	0.000	231.284	0.000
South Korea	-18.011 0.	033 20.230	2.137	-0.048	0.159	31.497	0.000	139.660	0.000
Spain	-17.777 0.	014 13.581	1.785	-0.054	0.205	29.196	0.000	280.676	0.000
Sweden	-14.679 0.	019 12.479	2.000	-0.059	0.212	46.839	0.000	405.180	0.000
Switzerland	-11.111 0.	026 11.153	1.344	-0.040	0.214	70.937	0.000	512.544	0.000
Taiwan	-12.362 0.	018 13.239	1.867	-0.043	0.237	52.233	0.000	182.249	0.000
Thailand	-18.858 0.	025 14.374	1.825	-0.047	0.213	64.132	0.000	249.893	0.000
Turkey	-16.193 -0.	007 18.719	2.457	-0.055	0.171	4.458	0.035	176.586	0.000
$\overline{\mathrm{UAE}}$	-14.592 -0.	024 8.481	1.506	-0.007	0.381	13.563	0.000	68.251	0.000
United Kingdom	-12.809 0.	010 15.755	1.491	-0.060	0.203	59.199	0.000	234.136	0.000
US		026 13.558	1.246	-0.071	0.369	50.087	0.000	378.346	0.000
Vietnam	-11.326 -0.	006 7.830	1.647	-0.017	0.227	3.282	0.070	84.442	0.000

FIGURE 11.1 – Cumulative Performance of COVOL strategies on HML Devil.

FIGURE 11.2 – Plots showing the interest of using Ledoit-Wolf shrinkage estimation for VCV matrix.