Géométrie Différentielle, TD 1 du 8 Février 2019

1. Propriétés de base des variétés

- 1- Montrer que la réunion disjointe de deux variétés (de classe C^k) admet une structure naturelle de variété (de classe C^k).
- 2- Montrer qu'un ouvert / une composante connexe d'une variété (de classe C^k) admet une structure naturelle de variété (de classe C^k).
- 3– Montrer qu'une variété topologique connexe est de dimension constante et connexe par arcs.
- 4– Montrer qu'une variété topologique se plonge (au sens topologique) dans $[0,1]^{\mathbb{N}}$ (et est donc métrisable).

Solution:

- 1– Soit M et N deux variétés d'atlas de classe C^k $\mathcal{A}_M = (U_i, \varphi_i)_{i \in I}$, $\mathcal{A}_N = (V_j, \psi_j)_{j \in J}$. La famille $(U_i, \varphi_i)_{i \in I} \cup (V_j, \psi_j)_{j \in J}$ definit un atlas C^k sur l'ensemble $M \coprod N$, induisant une topologie séparée, dénombrable à l'infinie. On munit $M \coprod N$ de l'atlas C^k maximal contenant $(U_i, \varphi_i)_{i \in I} \cup (V_j, \psi_j)_{j \in J}$.
- 2- Soit M une variété C^k d'atlas $(U_{\alpha}, \varphi_{\alpha})_{\alpha}$, et soit V un ouvert de M. Alors l'atlas restreint $(U_{\alpha} \cap V, \varphi_{\alpha|U_{\alpha} \cap V})_{\alpha}$ sur V en fait une variété C^k .
 - Comme M est localement connexe, ses composantes connexes sont ouvertes et donc sont des variétés C^k en procédant comme dans le paragraphe précédent.
- 3- Soit M une variété topologique et $x_0 \in M$. Soit n la dimension de M en x_0 , et soit $(U, \varphi : U \to \mathbb{R}^{n_0})$ une carte de M au voisinage de x. Alors étant donné $y \in U$, $(U, \varphi : U \to \mathbb{R}^{n_0})$ est une carte de M au voisinage de y et donc la dimension de M en y est n_0 .
 - Cela signifie que la fonction $x\mapsto \dim_x M$ à valeurs dans $\mathbb N$ est localement constante. Par connexité, elle est constante.
 - Une variété différentielle localement connexe par arcs (car localement homéomorphe à \mathbb{R}^n), donc toute variété connexe est connexe par arcs.
- 4- Soit M une variété topologique. On se donne $(U_i)_{i\in\mathbb{N}}$ une base dénombrable d'ouverts de M. On peut supposer que chaque adhérence $\overline{U_i}$ s'écrit comme image réciproque d'une boule fermée par une carte de M. Cela permet de définir une famille de fonctions continues $\varphi_i: M \to [0,1]$ telles que $\{\varphi_i > 0\} = U_i$. On pose alors $\Phi: M \to [0,1]^{\mathbb{N}}, x \mapsto (\varphi_i(x))_{i\in\mathbb{N}}$. L'application Φ est injective car M est séparée. Elle est continue car les φ_i sont continues. Il reste à prouver que $\Phi: M \to \Phi(M)$ est ouverte. Comme tout ouvert de M est réunion de U_i , il suffit de montrer que pour

tout i on a $\Phi(U_i)$ ouvert dans $\Phi(M)$. Or $\Phi(U_i) = \Phi(M) \cap \{u \in [0,1]^{\mathbb{N}}, u_i > 0\}$ ce qui conclut.

2. Espace projectif

L'espace projectif \mathbb{RP}^n est l'ensemble des droites vectorielles de \mathbb{R}^{n+1} . On va le munir d'une structure de variété de dimension n. Chaque point $(x_0, \ldots, x_n) \in \mathbb{R}^{n+1} - \{0\}$ définit une droite (celle qui le contient), notée $[x_0 : x_1 : \ldots : x_n]$. Ainsi, $[x_0 : x_1 : \ldots : x_n] = [x'_0 : x'_1 : \ldots : x'_n] \iff \exists \lambda \in \mathbb{R}^*, (x_0, x_1, \ldots, x_n) = \lambda(x'_0, x'_1, \ldots, x'_n)$.

Pour i = 0, ..., n, on note $U_i := \{x \in \mathbb{RP}^n, x = [x_0 : x_1 : ... : x_n] \text{ avec } x_i \neq 0\}$. On définit des fonctions $f_i : U_i \to \mathbb{R}^n$ par

$$f_i([x_0:\ldots:x_n])=(\frac{x_0}{x_i},\ldots,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},\ldots,\frac{x_n}{x_i}).$$

Montrer que les f_i sont des bijections et qu'elles munissent \mathbb{RP}^n d'une structure de variété C^{∞} (et même analytique) compacte de dimension n.

Solution:

Tout élément $x \in U_i$ admet une unique écriture sous la forme $x = [x_0, \dots, x_{i-1}, 1, x_i, \dots, x_n]$. Ainsi, $U_i \equiv \mathbb{R}^n$ et l'application f_i est justement l'application réalisant cette identification, d'où la bijectivité. Le changement de carte $f_1 \circ f_0^{-1} : \{y \in \mathbb{R}^n, y_1 \neq 0\} \to \{y \in \mathbb{R}^n, y_1 \neq 0\}$ est donné par $f_1 \circ f_0^{-1}(y_1, \dots, y_n) = (\frac{1}{y_1}, \frac{y_2}{y_1}, \dots, \frac{y_n}{y_1})$ qui est un difféomorphisme C^{∞} (et même analytique). Idem pour les autres cartes. Ainsi la donnée $(U_i, f_i)_{i=0,\dots,n}$ définit un atlas C^{∞} sur \mathbb{RP}^n . Comme il est fini, la topologie induite est à base dénombrable. Pour la séparation, donnons nous deux points $x, x' \in \mathbb{RP}^n$ et $v \in x - \{0\}$, $v' \in x' - \{0\}$. On a $x \neq x' \iff (v, v')$ est une famille libre. Il existe $V, V' \subseteq \mathbb{R}^{n+1} - \{0\}$ des voisinages ouverts de v et v' tels que pour tout $w \in V, w' \in V'$, on a (w, w') libre. On pose alors U, U' les projetés de V et V' dans \mathbb{RP}^n . Ce sont des ouverts disjoints qui contiennent respectivement x et x'. Enfin, pour la compacité, on remarque que la projection $\mathbb{R}^{n+1} - \{0\} \to \mathbb{RP}^n$ est continue et que la restriction à la sphère (qui est compacte) est surjective. Ainsi \mathbb{RP}^n est compact comme image d'un compact par une application continue (à valeurs dans un espace séparé).

3. Surfaces classiques

Munir les espaces topologiques suivant d'une structure de variété:

- 1- Le ruban de Möbius : $[0,1] \times]0,1[\ /_{(0,y)\sim(1,1-y)}.$
- 2– Le tore : $[0,1] \times [0,1] / {(0,y) \sim (1,y) \atop (x,0) \sim (x,1)}$
- 3– Le plan projectif : $[0,1] \times [0,1] / {(0,y) \sim (1,1-y) \over (x,0) \sim (1-x,1)}$
- 4– La bouteille de Klein : $[0,1]\times[0,1]$ / ${(0,y)\sim (1,1-y)\over (x,0)\sim (x,1)}$.

Solution:

1- On considère les cartes suivantes :

$$\varphi: \left\{ \begin{array}{cccc}]0,1[\times]0,1[\subset M & \longrightarrow &]0,1[\times]0,1[\\ (x,y) & \mapsto & (x,y) \end{array} \right. \psi: \left\{ \begin{array}{cccc} [0,\frac{1}{2}[\cup]\frac{1}{2},1]\times]0,1[\subset M & \longrightarrow &]0,1[\times]0,1[\\ (x,y)\in[0,\frac{1}{2}[\times]0,1[& \mapsto & (x,y) \\ (x,y)\in]\frac{1}{2},1]\times]0,1[& \mapsto & (x,1-y) \end{array} \right.$$

On vérifie facilement que φ et ψ sont des homéomorphismes. Leurs domaines de définition sont bien des ouverts de M et forment un recouvrement de M. Il reste à montrer que $\psi \circ \varphi^{-1}$ est un difféomorphisme sur son domaine de définition. Or

$$\varphi \circ \psi^{-1} : \left\{ \begin{array}{ll}]0, \frac{1}{2}[\cup]\frac{1}{2}, 1[\times]0, 1[\subset M & \longrightarrow &]0, 1[\times]0, 1[\\ (x,y) \in]0, \frac{1}{2}[\times]0, 1[& \mapsto & (x,y)\\ (x,y) \in]\frac{1}{2}, 1] \times]0, 1[& \mapsto & (x,1-y) \end{array} \right.$$

est un difféomorphisme sur les ouverts $]0, \frac{1}{2}[\times]0, 1[$ et $]\frac{1}{2}, 1]\times]0, 1[$, donc c'est un difféomorphisme (la bijectivité est déjà acquise).

Les autres cas sont similaires (bien que plus fastidieux).

4. Somme connexe de deux variétés

Soient M_1 et M_2 deux variétés de dimension n, et (U_1, φ_1) (resp. (U_2, φ_2)) une carte de M_1 (resp. M_2) telle que φ_i soit un difféomorphisme de U_i sur la boule ouverte B(0,2) (\mathbb{R}^n est muni de la norme euclidienne standard). Soit C la couronne $\{x \in \mathbb{R}^n \mid \frac{1}{2} < \|x\| < 2\}$.

- 1– Montrer que $f: x \mapsto \frac{x}{\|x\|^2}$ est un difféomorphisme de C.
- 2- On considère l'espace topologique X obtenu à partir de la réunion disjointe

$$M_1 \setminus \varphi_1^{-1}(\overline{B(0,1/2)}) \coprod M_2 \setminus \varphi_2^{-1}(\overline{B(0,1/2)})$$

en identifiant $\varphi_1^{-1}(C)$ et $\varphi_2^{-1}(C)$ via le difféomorphisme $\varphi_2 \circ f \circ \varphi_1^{-1}$.

Montrer qu'il existe une (unique) structure de variété sur X telle que les projections $M_i \setminus \varphi_i^{-1}(\overline{B(0,1/2)}) \hookrightarrow X$ soient des difféomorphismes sur leurs images dans X. L'espace X muni de cette structure de variété est la somme connexe de M_1 et M_2 , notée $M_1 \# M_2$.

3– Si $n \ge 2$, montrer que $M_1 \# M_2$ est connexe si et seulement si M_1 et M_2 sont connexes.

- 4– Montrer que $M \# S^n$ est difféomorphe à M.
- 5– Montrer que la somme connexe de deux plans projectifs \mathbb{RP}^2 est une bouteille de Klein.

Remarque : toute surface connexe compacte est difféomorphe à la sphère, à la somme connexe de k tores, ou à la somme connexe de k plans projectifs.

Solution:

1- L'application f est une involution (donc bijective), continue et différentiable (immédiat avec l'expression en coordonnées), donc c'est un difféomorphisme de C.

2- Prouvons d'abord l'unicité d'une telle structure. On notera $M_i' := M_i \setminus \varphi_i^{-1}(\overline{B(0,1/2)})$, i = 1, 2. Soit $\pi : M_1' \coprod M_2' \to M_1 \sharp M_2$ la projection quotient. On se donne deux structures de variétés $\mathcal{A}, \mathcal{A}'$ sur $M_1 \sharp M_2$ telles que les $\pi(M_i') \subseteq M_1 \sharp M_2$ sont ouverts et $\pi : M_i' \to \pi(M_i')$ est un difféomorphisme. L'unicité à démontrer signifie que $Id : (M_1 \sharp M_2, \mathcal{A}) \to (M_1 \sharp M_2, \mathcal{A}')$ est un difféomorphisme. Par symétrie, il suffit de montrer que c'est une application C^{∞} . Sur $\pi(M_1')$, Id coïncide avec

$$(\pi(M_1'), \mathcal{A}) \underset{\pi_{|M_1'}^{-1}}{\to} M_1' \underset{\pi}{\to} (\pi(M_1'), \mathcal{A}')$$

où M_1' est muni de la structure de variété induite par M_1 . Ainsi Id est bien C^{∞} comme composée de fonctions C^{∞} , d'où l'unicité.

Construisons maintenant une structure qui convient. On identifie M'_i avec $\pi(M'_i)$ ce qui permet de voir $M'_i \subseteq M_1 \sharp M_2$ avec $M_1 \sharp M_2 = M'_1 \cup M'_2$. On a un atlas $\mathcal{A}_{M'_1}$ sur M'_1 induit par la M_1 et idem pour M'_2 . On pose $\mathcal{A} := \mathcal{A}_{M'_1} \cup \mathcal{A}_{M'_2}$ qui est un ensemble

de cartes recouvrant $M_1 \sharp M_2$. On doit vérifier que ces cartes sont compatibles au niveau du recollement $C':=M_1'\cap M_2'$. Pour cela, il suffit de le vérifier pour un certain recouvrement de C' par des cartes de $\mathcal{A}_{M'_1}$ et des cartes $\mathcal{A}_{M'_2}$. On pose C:= $B(0,2) - \overline{B(0,1/2)}$. On peut restreindre la carte φ_1 sur M_1 en une carte $\varphi_1: C' \to C$, de même on a une carte $\varphi_2: C' \to C$. La composée vérifie $\varphi_2 \circ \varphi_1^{-1} = f_{|C|}$ qui est bien un difféomorphisme de C. D'où la compatibilité des cartes.

Remarque : On pourrait vouloir détailler la preuve l'égalité $\varphi_2 \circ \varphi_1^{-1} = f_{|C|}$. Pour cela, on constate que par définition, chaque point $x \in C'$ est formellement une paire $\{x_1, x_2\}$ où $x_1 \in U_1$ et $x_2 \in U_2$ sont identifiés par le recollement. Plus précisément, xest de la forme $x = \{\varphi_1^{-1}(z), \varphi_2^{-1}(f(z))\}$ où $z \in C$. La carte φ_1 vu sur $M_1 \sharp M_2$ consiste donc à envoyer x sur z, et la carte φ_2 à envoyer x sur f(z). Ainsi la transition est bien f.

3– Si M ou N n'est pas connexe, il est immédiat que M#N n'est pas connexe. Supposons M et N connexes.

Montrons que $M \setminus \varphi^{-1}(B(0,1))$ est connexe. Soit $f: M \setminus \varphi^{-1}(B(0,1)) \to \{0,1\}$ continue. Par connexité de S^{n-1} , f est constante sur $\varphi^{-1}(S^{n-1})$. On peut donc prolonger fen une application continue de M sur $\{0,1\}$. Par connexité de M, ce prolongement de f est constant, donc f est constante. Cela montre que $M \setminus \varphi^{-1}(B(0,1))$ est connexe. De même, $N \setminus \psi^{-1}(B(0,1))$ est connexe.

Soit $d: M\#N \to \{0,1\}$ continue. Par connexité, d est constante sur $M \setminus \varphi^{-1}(B(0,1)) \to$ $\{0,1\}$ et $N \setminus \psi^{-1}(B(0,1))$. Par identification des bords, on en déduit que d est constante et donc que M#N est connexe.

4– On munit la sphère S^n des cartes φ_2 et ψ_2 données par les projections stéréographiques. On remarque alors que $S^n \setminus \varphi_2^{-1}(\overline{B(0,2)}) = \psi_2^{-1}(\underline{B(0,2)})$. Quitte à multiplier ces cartes par des scalaires, on peut supposer $S^n \setminus \varphi_2^{-1}(\overline{B(0,1/2)}) = \psi_2^{-1}(B(0,1/2))$. On considère alors l'application :

$$g: \begin{cases} M & \to M \# S^n \\ x \in M \setminus \varphi_1^{-1}(B(0, 1/2)) & \mapsto \pi(x) \\ x \in \varphi_1^{-1}(B(0, 1/2)) & \mapsto \pi(\psi_2^{-1}(\varphi_1(x))) \end{cases}$$

5- On remarque qu'un plan projectif privé d'une petite boule est difféomorphe à un ruban de Möbius avec bord :

Plan projectif

Plan projectif troué = Ruban de Möbius

En recollant deux rubans de Möbius sur leurs bords noirs on obtient une bouteille de Klein (il faut remarquer qu'un ruban de Mobius a un seul bord, et non pas deux!) : faire un dessin!

5. Grassmanniennes

Soit V un \mathbb{R} -espace vectoriel de dimension $n \geq 0$. Pour $k \in \{0, \ldots, n\}$, on note $\mathcal{G}_k(V)$ l'ensemble des sous-espaces vectoriels de V de dimension k. Par exemple, si $V = \mathbb{R}^{n+1}$ et k = 1, on retrouve l'espace projectif \mathbb{RP}^n de l'exercice 2. L'objet de cet exercice est de généraliser l'exercice 2 en munissant $\mathcal{G}_k(V)$ d'une structure de variété C^{∞} compacte.

Soit B est un sous-espace vectoriel de V dimension n-k. On veut construire à partir de B une carte de $\mathcal{G}_k(V)$ dont le domaine est l'ensemble des sous-espaces vectoriels supplémentaires de B, noté U_B . Soit A un supplémentaire de B. On note $\mathcal{L}(A,B)$ l'ensemble des applications linéaires de A dans B. On définit

$$\psi_{A,B}: \mathcal{L}(A,B) \to U_B$$

$$f \mapsto (\mathrm{Id} + f)(A)$$

- 1- Montrer que $\psi_{A,B}$ est bien définie et bijective.
- 2- Montrer que le domaine de définition et l'image de $\psi_{A',B'}^{-1} \circ \psi_{A,B}$ sont des ouverts de $\mathcal{L}(A,B)$ et de $\mathcal{L}(A',B')$. Montrer que $\psi_{A',B'}^{-1} \circ \psi_{A,B}$ est un C^{∞} -difféomorphisme de son domaine de définition sur son image.
- 3– Montrer qu'il existe une topologie sur $\mathcal{G}_k(V)$ telle que les U_B soient des ouverts et les $\psi_{A,B}$ des homéomorphismes. Vérifier que $\mathcal{G}_k(V)$ est séparé pour cette topologie.
- 4- Montrer que les $\psi_{A,B}$ forment un atlas faisant de $\mathcal{G}_k(V)$ une variété C^{∞} .
- 5– Montrer que $\mathcal{G}_k(V)$ est compacte.

Solution:

1- L'application $\psi_{A,B}$ associe à $f:A\to B$ son graphe dans $V=A\oplus B$. La projection π_A sur A parallèllement à B réalise un isomorphisme entre le graphe et A: celui-ci est bien de dimension k. D'autre part, son intersection avec B est $\{0\}$, de sorte que $(\mathrm{Id}+f)(A)\in U_B$ et que $\psi_{A,B}$ est bien définie.

Comme une fonction est déterminée par son graphe, $\psi_{A,B}$ est injective.

- Enfin, soit $C \in U_B$. Comme $C \cap B = \{0\}$, la projection $\pi_A|_C : C \to A$ sur A parallèllement à B est injective, donc un isomorphisme par dimension. Notant π_B la projection sur B parallèllement à A, on vérifie aisément que C est le graphe de $\pi_B \circ (\pi_A|_C)^{-1} : A \to B$. Ceci montre la surjectivité de $\psi_{A,B}$.
- 2- Le domaine de définition W de $\psi_{A',B'}^{-1} \circ \psi_{A,B}$ est l'ensemble des $f: A \to B$ dont le graphe est un supplémentaire de B'. Si (a_i) et (b'_i) sont des bases de A et B', cette

condition s'écrit $\det((a_i, f(a_i)), b'_j)_{i,j} \neq 0$, ce qui montre que W est ouvert. On montre de même que l'image de $\psi_{A',B'}^{-1} \circ \psi_{A,B}$ est un ouvert de $\mathcal{L}(A',B')$.

Il suffit pour conclure de montrer que $\psi_{A',B'}^{-1} \circ \psi_{A,B}$ est \mathcal{C}^{∞} sur ce domaine de définition W: en effet, le même raisonnement montrera que sa réciproque est \mathcal{C}^{∞} , donc que c'est un \mathcal{C}^{∞} -difféomorphisme.

Pour cela, fixons $x \in A'$ et montrons que $y = \psi_{A',B'}^{-1} \circ \psi_{A,B}(f)(x)$ dépend de manière \mathcal{C}^{∞} de $f \in W$. Or y est l'unique solution du système d'équations linéaires suivant :

$$\pi_{A'}(y) = 0$$

$$\pi_B(x+y) = f(\pi_A(x+y))$$

Les formules de Cramer montrent alors que y dépend de manière \mathcal{C}^{∞} des coefficients de ce système, donc de f.

3- On prend pour ouverts les $U \subset \mathcal{G}_k(V)$ tels que pour tout $A \in \mathcal{G}_k(V)$ et pour tout supplémentaire B de A, $\psi_{A,B}^{-1}(U \cap U_B)$ est un ouvert de $\mathcal{L}(A,B)$. Cela définit bien une topologie sur $\mathcal{G}_k(V)$.

Comme les $\psi_{A',B'}^{-1} \circ \psi_{A,B}$ sont des homéomorphismes, on vérifie que les ouverts inclus dans U_B sont exactement les sous-ensembles de la forme $\psi_{A,B}(V)$ pour V ouvert de $\mathcal{L}(A,B)$. Ainsi, U_B est ouvert et $\psi_{A,B}$ est un homéomorphisme.

Soit $A, A' \in \mathcal{G}_k(V)$. On peut trouver un supplémentaire commun B à A et A' de sorte que $A, A' \in U_B$. Comme U_B est séparé, on peut trouver deux ouverts de U_B séparant A et A'. $\mathcal{G}_k(V)$ est donc bien séparé.

- 4- C'est une conséquence immédiate des deux questions précédentes.
- 5– On introduit E l'ouvert de V^k constitué des familles libres et $g: E \to \mathcal{G}_k(V)$ l'application qui associe à une famille libre l'espace vectoriel qu'elle engendre. Montrons que g est continue. Vu la définition de la topologie sur $\mathcal{G}_k(V)$, il suffit de montrer que $V_B = g^{-1}(U_B)$ est ouvert et que $g|_{V_B}: V_B \to U_B$ est continue.

Pour le premier point, choisissons une base (b_j) de B. Alors $(v_i) \in E$ appartient à V_B si et seulement si $\det(v_i, b_j)_{i,j} \neq 0$, ce qui est bien une condition ouverte.

Pour le second point, il suffit de montrer que $\psi_{A,B}^{-1} \circ g|_{V_B}$ est continue. Fixons $x \in A$ et soit $(v_i) \in V_B$. Alors $\psi_{A,B}^{-1} \circ g|_{V_B}(v_i)(x)$ est l'unique solution en y du système d'équations linéaires à n+k équations et n+k inconnues y et λ_i suivant :

$$\pi_A(y) = 0$$
$$x + y = \sum_i \lambda_i v_i$$

Les formules de Cramer montrent alors que $\psi_{A,B}^{-1} \circ g|_{V_B}(v_i)(x)$ dépend de manière continue des coefficients de ce système, donc des v_i . Cela montre la continuité de g.

On peut alors conclure. Fixons un produit scalaire sur V. Si K est l'ensemble des familles orthonormales, K est compact car fermé borné dans V^k et $\mathcal{G}_k(V)=g(K)$ est compact comme image d'un compact par une application continue.