

Model Development Phase Template

Date	06-06-2024
TeamID	740031
Project Title	DETECTION OF PHISHING WEBSITE FROM URLS
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

Theinitialmodeltrainingcodewillbeshowcasedinthefuturethroughascreenshot. Themodel validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

InitialModelTrainingCode:

```
[35]: #Splitting data as independent and dependent #removing index column in independent dataset x=ds.iloc[:,1:31].values y=ds.iloc[:,-1].values print(x,y)

[[ 37. 19. 0. ... 0. 0. 0. 0.]
[ 77. 23. 1. ... 0. 0. 0.]
[ 126. 50. 1. ... 0. 0. 0.]
[ 138. 30. 0. ... 0. 0. 0.]
[ 38. 30. 0. ... 0. 0. 0.]
[ 477. 14. 1. ... 0. 0. 1.]] ['legitimate' 'phishing' 'phishing' ... 'legitimate' 'phishing']

[36]: y=ds.iloc[:, -1].values y

[36]: array(['legitimate', 'phishing', 'phishing', ..., 'legitimate', 'legitimate', 'phishing']; import pandas as pd
from sklearn.model_selection import train_test_split
# Split data after x and y are defined
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
```


${\bf Model Validation and Evaluation Report:}$

Model	Classification Report	F1 Scor e	Confusion Matrix
Logistic Regressi on	[[37. 19. 0 0. 0. 0.] [77. 23. 1 0. 0. 0.] [126. 50. 1 0. 0. 0.] [105. 16. 1 0. 0. 0.] [38. 30. 0 0. 0. 0.] [477. 14. 1 0. 0. 1.]]['legitimate' 'phishing' 'phishing' 'legitimate' 'legitimate' 'phishing']	80%	

Decision Tree	-				79%	<pre>confusion_matrix(y_test,ypred) array([[62, 13],</pre>
KNN	print(classification_repor	t(y_test,ypm precision 0.60 0.67 0.63 0.64	f1-score 0.59 0.68 0.64 0.63 0.64	support 75 94 169 169	64%	<pre>confusion_matrix(y_test,ypred) array([[43, 32],</pre>
Gradient Boosting	print(classification_report Loan will be Approved Loan will not be Approved accuracy macro avg weighted avg	t(y_test,ypr precision 0.71 0.85 0.78 0.79	 f1-score 0.77 0.78 0.78 0.77 0.78	support 75 94 169 169	78%	<pre>confusion_matrix(y_test,ypred) array([[63, 12],</pre>