

Lecture 4: MACH TO HOP

Biên soạn:Th.S Bùi Quốc Bảo (Base on Floyd, Pearson Ed.)

RÚT GON HÀM BOOLEAN

$$F(A,B) = A + \overline{A}B$$

$$F = A + \overline{A}B = A(B + \overline{B}) + \overline{A}B$$
$$= AB + A\overline{B} + AB + \overline{A}B = A + B$$

RÚT GON HÀM BOOLEAN

- Hai hàm Boolean bằng nhau khi với cùng ngõ vào chúng cho ngõ ra giống nhau.
- Khi thực hiện mạch, ta nên đưa hàm Boolean về dạng tối ưu nhất
- Điều đó giúp thực hiện hàm Boolean với số cổng ít nhất, giảm chi phí thực hiện và tăng tốc độ của mạch.

DANG CHÍNH TẮC SOP

a	b	С	F
0	0	0	0
0	0	1	1)
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1)
1	1	0	1
1	1	1	0

Condition that a is 0, b is 0, c is 1.

$$\overline{a} \bullet \overline{b} \bullet c$$

$$\overline{a} \bullet b \bullet \overline{c}$$

$$\overline{a} \bullet b \bullet c$$

$$a \bullet \overline{b} \bullet c$$

$$a \bullet b \bullet \overline{c}$$

Function F is true if any of these and-terms are true!

$$F = (\overline{a} \bullet \overline{b} \bullet c) + (\overline{a} \bullet b \bullet \overline{c}) + (\overline{a} \bullet b \bullet c) + (a \bullet \overline{b} \bullet c) + (a \bullet b \bullet \overline{c})$$

Sum-of-Products form (SOP)

CÁC DẠNG CHÍNH TẮC

a	b	C	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$$\overline{a} \bullet \overline{b} \bullet \overline{c} = m_0$$
 $\overline{a} \bullet \overline{b} \bullet \overline{c} = m_1$
 $\overline{a} \bullet \overline{b} \bullet \overline{c} = m_2$
 $\overline{a} \bullet \overline{b} \bullet \overline{c} = m_3$
 $a \bullet \overline{b} \bullet \overline{c} = m_4$
 $a \bullet \overline{b} \bullet \overline{c} = m_5$

 $a \bullet b \bullet c = m_7$

Một minterm là một tích của các biến ngõ vào, các biến ở dạng bình thường hoặc là bù.

Note: Binary ordering

 $a \bullet b \bullet \overline{c} = m_6$ Dạng chính tắc 1 (SOP) gồm các minterm OR lại với nhau

$$F = (\overline{a} \bullet \overline{b} \bullet c) + (\overline{a} \bullet b \bullet \overline{c}) + (\overline{a} \bullet b \bullet c) + (a \bullet \overline{b} \bullet c) + (a \bullet \overline{b} \bullet c) + (a \bullet b \bullet \overline{c})$$

$$F = m_1 + m_2 + m_3 + m_5 + m_6$$

$$F = \sum_{m} (1,2,3,5,6)$$

Two variables:

а	b	minterm
0	0	$a'b' = m_0$
0	1	a'b = m₁
1	0	a b' = m ₂
1	1	a b = m ₃

Three variables:

a	b	C	minterm
0	0	0	a'b'c' = m ₀
0	0	1	a'b'c = m ₁
0	1	0	a'b c' = m ₂
0	1	1	a'b c = m_3^-
1	0	0	a b'c' = m₄
1	0	1	a b'c = m ₅
1	1	0	a b c' = m_6
1	1	1	$abc = m_7$

Four variables:

a	b	С	d	minterm
0	0	0	0	$a'b'c'd' = m_0$
0	0	0	1	a'b'c'd = m ₁
0	0	1	0	$a'b'cd'=m_2$
0	0	1	1	$a'b'cd = m_3$
0	1	0	0	$a'b c'd' = m_4$
0	1	0	1	$a'b c'd = m_5$
0	1	1	0	$a'b c d' = m_6$
0	1	1	1	$a'bcd = m_7$
1	0	0	0	a b'c'd' = m ₈
1	0	0	1	$a b'c'd = m_9$
1	0	1	0	a b'c d' = m ₁₀
1	0	1	1	a b'c d = m ₁₁
1	1	0	0	a b c'd' = m ₁₂
1	1	0	1	a b c'd = m ₁₃
1	1	1	0	a b c d' = m ₁₄
1	1	1	1	a b c d = m ₁₅

RÚT GỌN HÀM Ở DẠNG SOP

F ở dạng SOP:

$$F = (\overline{a} \bullet \overline{b} \bullet c) + (\overline{a} \bullet b \bullet \overline{c}) + (\overline{a} \bullet b \bullet c) + (a \bullet \overline{b} \bullet c) + (a \bullet b \bullet \overline{c})$$

Sử dụng các định lý của đại số Boolean để rút gọn

Nhóm các phần tử giống nhau lại với nhau

$$F = (\overline{a} \bullet \overline{b} \bullet c) + (a \bullet \overline{b} \bullet c) + (\overline{a} \bullet b) \bullet \overline{c}) + (\overline{a} \bullet b) \bullet \overline{c}) + (\overline{a} \bullet b) \bullet \overline{c})$$

$$F = (\overline{a} + a)(\overline{b} \bullet c) + (\overline{c} + c)(\overline{a} \bullet b) + (a + \overline{a})(\overline{b} \bullet \overline{c})$$

$$Ta co x' + x = 1$$

$$F = (\overline{b} \bullet c) + (\overline{a} \bullet b) + (b \bullet \overline{c})$$

DANG CHÍNH TẮC POS

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	l 1

Α	В	С	<u> </u>
0	0	0	$A + B + C = M_0$
0	0	1	$A + B + \overline{C} = M_1$
0	1	0	$A + \overline{B} + C = M_2$
0	1	1	$\underline{A} + \overline{B} + \overline{C} = M_3$
1	0	0	$\overline{A} + B + C = M_4$
1	0	1	$\overline{A} + B + \overline{C} = M_5$
1	1	0	$\overline{A} + \overline{B} + C = M_6$
1	1	1	$\overline{A} + \overline{B} + \overline{C} = M_7$

F ở dạng chuẩn 2 (POS):

$$F = (A + B + C) \bullet (A + B + \overline{C}) \bullet (A + \overline{B} + C)$$

$$F = M_0 \bullet M_1 \bullet M_2$$

$$F = \prod M(0, 1, 2)$$

BẢN ĐỒ KARNAUGH (BÌA K)

- Ngoài 3 phương pháp biểu diễn hàm Boolean đã nói, ta còn dùng bìa K để biểu diễn hàm Boolean.
- Bìa K là 1 bảng các ô, mỗi ô ứng với một tổ hợp các ngõ vào của hàm Boolean, và chứa giá trị của hàm Boolean tại giá trị ngõ vào đó
- Thực chất, bìa K là một bảng chân trị

BẢN ĐỒ KARNAUGH

2-variable K-map

4

Bản đồ Karnaugh có thể mở rộng đến 4 biến

K-map

 Trên bìa K, chỉ cần ghi hoặc giá trị 1, hoặc giá trị 0

AB CD	00	01	11	10
00				
01			1	
11	~	~		
10			1	1

AB CD	00	01	11	10
00	0	0	0	0
01	0	0		0
11			0	0
10	0	0		

4

Dùng bìa K để rút gọn hàm Boolean:

We can combine A'B and AB

A 0 1
0 1 1
1 0 0

We can combine A'B' and A'B

$$G = A'B' + A'B$$
$$= A'$$

Các ô trong vòng khuyên như trên là các ô kế cận

Các ô kế cận:

01

0

В

$$F(C,B,A) = A'BC' + AB'C + A'B'$$

In the K-map, adjacency wraps from left to right and from top to bottom

$$F(C,B,A) = A'C' + B'C$$

Same function, alternative "circling" Note: Larger circles are better

Để rút gọn hàm Boolean bằng bìa K:

- Biểu diễn hàm lên bìa K
- Nhóm các ô kế cận mang cùng giá trị 1 (hoặc 0) thành các nhóm bằng các vòng khuyên
- Số phần tử trong mỗi vòng khuyên là 2ⁿ
- Một phần tử có thể nằm trong nhiều vòng khuyên
- Số vòng khuyên là ít nhất, số phần tử là nhiều nhất.
- Viết biểu thức rút gọn.