

- † Conjugate Priors (CR Sec 3.3)
 - **Def 3.3.1:** A family \mathcal{F} of probability distributions on Θ is said to be *conjugate* (or closed under sampling) for a likelihood function $f(x \mid \theta)$ if, for every $\pi \in \mathcal{F}$, the posterior distribution $\pi(\theta \mid x)$ also belong to \mathcal{F} .
- e.g1 A beta prior distribution and a binomial sampling model lead to a beta posterior distribution. We say "The class of beta priors is conjugate for the binomial sampling distribution."
- e.g2 Similarly, normal priors are a conjugate family for normal sampling distributions.

- † Examples: Conjugate Priors
- e.g1 Assume $x \mid \theta \sim N(\theta, \sigma^2)$ and $\theta \sim N(\mu, \underline{\tau^2})$.

$$\Rightarrow \theta \mid x \sim N \left(\left(\frac{1}{\sigma^2} + \frac{1}{\tau^2} \right)^{-1} \left(\frac{x}{\sigma^2} + \frac{\mu}{\tau^2} \right), \left(\frac{1}{\sigma^2} + \frac{1}{\tau^2} \right)^{-1} \right).$$

- ** Normal priors are a conjugate family for normal sampling distributions.
- e.g2 Assume $X \mid \theta \sim Bin(n, \theta)$ and $\theta \sim Be(\alpha, \underline{\beta})$.

$$\Rightarrow \theta \mid x \sim \underline{\mathsf{Be}(\alpha + x, \beta + n - x)}.$$

** Beta priors are a conjugate family for binomial sampling distributions.

If F is a conjugate family,

obtaining the posterior \Leftrightarrow updating the corresponding parameters

- i.e, data does not modify the whole structure of the distribution of θ , but simply updates its parameters.
- A classical parametric approach to build up prior distributions based on limited prior input
- main motivation: tractability
- A conjugate family can frequently be determined by examining the likelihood functions $\ell(\theta \mid x)$ and choosing, as a conjugate family, the class of distributions with the same functional form as these likelihood functions.
 - ⇒ often called natural conjugate priors.
 - ⇒ can find a conjugate family for the sampling distribution in the exponential family.

Find a conjugate prior for a Poisson sampling distribution.

• Show a Poisson distribution, $X \sim \operatorname{Poi}(\theta)$ with $\theta > 0$ is an exponential family.

Assume 0 ~ Ga (a, b) and lets find T(O(x)

$$= \frac{\frac{x_i}{6-\theta \theta_{x}}}{\frac{b_{x}}{100}} \cdot \frac{\frac{b_{x}}{b_{x}}}{\frac{b_{x}}{100}} \cdot \frac{b_{x}}{\theta_{x}} e_{-p_{\theta}}$$

a kernel for Oa (atx, b+1)

- † Exponential Families (CR §3.3.3, Casella & Berger §3.4)
 - A family of pdfs or pmfs is called an exponential family if it can be expressed as

$$f(x \mid \theta) = h(x)\underline{c(\theta)} \exp(R(\theta)T(x)).$$

- $\star\star h(x) \geq 0$
- ** $T(x) = [t_1(x), \dots, t_k(x)]$ are real-valued functions of the observations x (cannot depend on θ)
- ** natural sufficient statistic.
- ** all the information about θ in the sample is summarized in T(x).
- $\star\!\star$ $c(\theta) \geq 0$
- ** $R(\theta) = (\underline{r_1}(\theta), \dots, \underline{r_k}(\theta))$ are real-valued functions of the possibly vector-valued parameter θ (cannot depend on x)

- † Exponential Families (contd)
 - The sufficient statistic and the parameter vectors are usually of equal length.
 - These include the continuous families- <u>normal</u>, <u>gamma</u>, and beta, and the discrete families- binomial, Poisson, and negative binomial.

** consider a change of variables z = T(x) and a reparameterization $\eta = R(\theta)$ (natural parameter) and rewrite

$$f(z \mid \boldsymbol{\eta}) = C^{\star}(\boldsymbol{\eta})h^{\star}(z) \exp(\boldsymbol{\eta} \boldsymbol{z})$$

 \Rightarrow the canonical form

• Show a Poisson distribution, $X \sim \operatorname{Poi}(\theta)$ with $\theta > 0$ is an exponential family.

$$f(x|\theta) = \frac{e^{-\theta} \theta^{x}}{x!} = \frac{1}{x!} \times Z \Rightarrow Rei(\theta) = \frac{1}{5} \times \frac{1}{5}$$

$$R(\theta) = \log \theta$$

$$T(x) = x$$

• Show a normal distribution, $X \sim N(\mu, \sigma^2)$ with $\underline{\theta = (\mu, \sigma)}$, where $\mu \in \mathbb{R}$ and $\sigma > 0$, is an exponential family.

$$f(x \mid \mu_1, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma^2} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$= \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma} \exp\left(-\frac{x^2}{2\sigma^2} + \frac{x\mu}{\sigma^2} - \frac{\mu^2}{2\sigma^2}\right)$$

$$= \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{\sigma} \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \exp\left(-\frac{x^2}{2\sigma^2} + \frac{x\mu}{\sigma^2}\right)$$

$$h(x) = \frac{1}{\sqrt{2\sigma}}$$

$$f(x) = (-\frac{x^2}{2\sigma^2} + \frac{x\mu}{\sigma^2})$$

$$f(x) = (-\frac{x\mu}{2\sigma^2} + \frac{x\mu}{\sigma^2} + \frac{x\mu}{\sigma^2} + \frac{x\mu}{\sigma^2})$$

$$f(x) = (-\frac{x\mu}{2\sigma^2} + \frac{x\mu}{\sigma^2} + \frac{x\mu}{\sigma^2} + \frac{x\mu}{\sigma^2})$$

$$f(x) = (-\frac{x\mu}{2\sigma^2} + \frac{x\mu}{\sigma^2} + \frac{$$

• CR §3.3.4 Conjugate distributions for exponential families: See Propositions 3.3.13 and 3.3.14.

♣ <u>Table 3.3.1</u> Natural conjugate priors for some common exponential families

$$X \mid \theta \sim N(M, \theta), \quad M \text{ fixed } \theta : \text{ variouse}$$

$$\theta \sim TS(M, \theta)$$

$$T(\theta \mid X) \propto f(X \mid \theta) T(\theta)$$

$$= \theta^{-(M+M_0)-1} \exp\left(-\frac{1}{\theta}\left(\frac{(X - M_0)^2}{2}\right) - \theta^{-M-1} \exp\left(-\frac{\beta}{\theta}\right)\right)$$

$$= \theta^{-(M+M_0)-1} \exp\left(-\frac{1}{\theta}\left(\frac{(X - M_0)^2}{2} + \beta\right)\right)$$

$$X \mid \eta \sim N(M, M_0) \text{ i.e. } \eta = \frac{1}{\theta}$$

$$W \mid \eta \sim G_{M}(M, \beta)$$

$$T(\eta \mid X) \propto f(X \mid \eta) T(\eta)$$

$$\propto (\eta)^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta}{2}\right)$$

$$= \eta^{M+\frac{1}{\theta}-1} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta}{2}\right)$$

$$= \eta^{M+\frac{1}{\theta}-1} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta}{2}\right)$$

$$= \eta^{M+\frac{1}{\theta}-1} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta(X - M_0)^2}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta(X - M_0)^2}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta(X - M_0)^2}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta(X - M_0)^2}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta(X - M_0)^2}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta(X - M_0)^2}{2}\right)$$

$$= \eta^{M_0} \exp\left(-\frac{\eta(X - M_0)^2}{2}\right) - \eta^{M_0} \exp\left(-\frac{\beta \eta(X$$

- † Improper Prior Distributions (CR 1.4)
 - Recall that the parameter is a random variable following a probability distribution $\pi(\theta)$.
 - We say the prior distribution is improper (or generalized) if

$$\int_{\Theta} \pi(\theta) d\theta = +\infty.$$

- Bayesian methods apply as long as the posterior distribution is defined.
- The posterior exists when the <u>pseudo</u> marginal distribution $\int_{\Theta} \pi(\theta) f(x \mid \theta) d\theta$ is well defined.

 \clubsuit Example 3: Assume that an observation, x is normally distributed with mean θ and known variance σ^2 . The parameter of interest, θ has an improper prior distribution, $\underline{\pi(\theta) = c}$. Check it produces a proper posterior distribution. If so, find the posterior distribution.

$$\int_{-\infty}^{\infty} \pi(\Theta) d\Theta = \int_{-\infty}^{\infty} C d\Theta = \infty$$

$$\Rightarrow m(x) < \infty ??$$

$$m(x) = \int_{-\infty}^{\infty} f(x(\Theta) \pi(\Theta) d\Theta$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{g\pi a^{2}}} \exp\left(-\frac{1}{2a^{2}}(x-\Theta)^{2}\right) \cdot C d\Theta$$

$$= C < \infty$$

$$\Rightarrow exp\left(-\frac{1}{2a^{2}}(x-\Theta)^{2}\right) \cdot C$$

$$\Rightarrow exp\left(-\frac{1}{2a^{2}}(x-\Theta)^{2}\right) \cdot C$$

- † Two fundamental principles for the Bayesian paradigm
 - Sufficiency principle
 - Likelihood principle

† Sufficient Statistics

- **Def 5.2.1 (Casella & Berger)** Let x_1, \ldots, x_n be a random sample of size n from a population and let $T(x_1, \ldots, x_n)$ be a real-valued or vector-valued function whose domain includes the sample space of (x_1, \ldots, x_n) . Then the random variable or random vector $T(x_1, \ldots, x_n)$ is called a *statistic*. The probability distribution of $T(x_1, \ldots, x_n)$ is called the *sampling distribution* of T.
 - e.g. If an independent sample x_1, \ldots, x_n is taken, the sample mean $\bar{x} = \sum_{i=1}^n x_i/n$, the sample variance $s^2 = \sum_{i=1}^n (x_i \bar{x})^2/(n-1)$ and the sample standard deviation $s = \sqrt{s^2}$ are statistics that are often used and provide good summaries of the sample.

† Sufficient Statistics-contd

- **Def 1.3.1** When $x \sim f(x \mid \theta)$, a function T of x (also called a statistic) is said to be *sufficient* if the distribution of x conditional upon T(x) does not depend on θ .
- How to show that a certain statistic T(x) is or is not a sufficient statistic? Use the **Fisher–Neyman factorization lemma**.

Under some measure theoretic regularity conditions, the likelihood can be represented as

$$f(x \mid \theta) = g(T(x) \mid \theta)h(x \mid T(x))$$

- $\Rightarrow T(x)$: a function of data which summarizes all the available sample information concerning θ
- \Rightarrow Any additional information in the sample, besides the value of the sufficient statistic, does not contain any more information about θ .

• Casella & Berger: Example 6.2.3 Consider x_1, \ldots, x_n be iid Bernoulli random variables with unknown parameter θ , $0 < \theta < 1$. Show $T(x) = x_1 + \ldots + x_n$ is a sufficient statistic for θ .

$$X_{i} \mid \theta \stackrel{\text{rid}}{\sim} \text{Ber}(\theta), \quad X_{i} \in \{0, 1\} \qquad \underbrace{0 < \theta < 1} \qquad \underbrace{1} \qquad \underbrace{1} \qquad \underbrace{(\frac{5}{3})} \qquad \\ X = (X_{1}, \ldots, X_{5}) \qquad h = 5$$

$$= (1, 1, 1, 0, 0)$$

$$= (1, 0, 1, 0, 1) \qquad = T \qquad e^{T} \qquad e^{$$

1□ → **4**□ →

- **Example 1.3.2** Consider x_1, \ldots, x_n independent observations from a normal distribution $N(\mu, \sigma^2)$ where μ and σ^2 are unknown.
 - By the factorization theorem, the pair $T(x)=(\bar{x},s^2)$ where $\bar{x} = \sum_{i=1}^{n} x_i/n$ and $s^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2$ is a sufficient statistic for the parameter (μ, σ) .

$$f(\mathbf{x} \mid \Theta) = \frac{n}{\ln \sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x_i - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \cdot \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i \pm x - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2 - \frac{\Omega}{2\sigma^2}(x - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2 - \frac{\Omega}{2\sigma^2}(x - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i + x - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2 - \frac{\Omega}{2\sigma^2}(x - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2 - \frac{\Omega}{2\sigma^2}(x - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2 - \frac{\Omega}{2\sigma^2}(x - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2 - \frac{\Omega}{2\sigma^2}(x - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2 - \frac{\Omega}{2\sigma^2}(x - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2 - \frac{\Omega}{2\sigma^2}(x - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2 - \frac{\Omega}{2\sigma^2}(x - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2 - \frac{\Omega}{2\sigma^2}(x - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2 - \frac{\Omega}{2\sigma^2}(x - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2 - \frac{\Omega}{2\sigma^2}(x - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2 - \frac{\Omega}{2\sigma^2}(x - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2 - \frac{\Omega}{2\sigma^2}(x - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2 - \frac{\Omega}{2\sigma^2}(x - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2 - \frac{\Omega}{2\sigma^2}(x - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2 - \frac{\Omega}{2\sigma^2}(x - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2 - \frac{\Omega}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - x_i)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\right)^n \exp\left(-\frac{1}{2\sigma^2}\right)^2$$

$$= \left(\frac{1}{\sqrt{2\sigma$$

=

$$\mathbf{x} = (1, 1, 0, 0, 1) \rightarrow \pm (\mathbf{x}) = 3$$

 $\mathbf{y} = (1, 1, 1, 0, 0) \rightarrow \pm (\mathbf{y}) = 3$

† Sufficiency Principle

- Sufficiency Principle Two observations x and y factorizing through the same value of a sufficient statistic T, that is, such that T(x) = T(y), must lead to the same inference.
- If principle is adopted, all inference about θ should depend on sufficient statistics since $\underline{\ell(\theta)} \propto g(T(x), \theta)$.
- Sometimes criticized since it assumes that the statistical model is the one underlying the data generation.