Embeddings of neural field dynamics : simulations and fractal mappings

Lab meeting 2023-04-20

Nicole Vadot

quick recap: neural field equations

low-rank RNNs (rate neural networks) converge to a neural field equation in R^p as $N \rightarrow \infty$ [1]

^[1] Valentin Schmutz, Johanni Brea, Wulfram Gerstner Convergence of redundancy-free spiking neural networks to rate networks

low-rank RNNs (rate neural networks) converge to a neural field equation in R^p as $N \rightarrow \infty$ [1]

$$h_{N}(t) = -h_{i}(t) + \sum_{j=1}^{N} J_{ij}\phi(h_{j}(t))$$
 N neurons: dynamics in RN dynamics in RN

$$\dot{h}_i(t) = -h_i(t) + \sum_{j=1}^N J_{ij}\phi(h_j(t))$$

low-rank RNNs (rate neural networks) converge to a neural field equation in R^p as $N \rightarrow \infty$ [1]

$$\dot{h}_i(t) = -h_i(t) + \sum_{j=1}^N J_{ij}\phi(h_j(t))$$
 N neurons: dynamics in R^N

> if J is low-rank, neurons span a subspace of R^N > $(\xi_{i_1}, \dots, \xi_{i_p})$ gives the embedding of neuron i

$$J_{ij}=rac{1}{N}\sum_{\mu=1}^p rac{oldsymbol{\xi}_{\mu,i} ilde{\phi}(oldsymbol{\xi}_{\mu,j}),}{\mathsf{low-rank}} \quad oldsymbol{\xi}_{\mu,i}\sim \mathcal{N}(0,1), \quad ilde{\phi}(\xi)=rac{\phi(\xi)-\mathrm{E}[\phi(\xi)]}{\mathrm{Var}[\phi(\xi)]}$$

[1] Valentin Schmutz, Johanni Brea, Wulfram Gerstner Convergence of redundancy-free spiking neural networks to rate networks

low-rank RNNs (rate neural networks) converge to a neural field equation in R^p as $N \rightarrow \infty$ [1]

$$\dot{h}_i(t) = -h_i(t) + \sum_{j=1}^N J_{ij}\phi(h_j(t))$$

N neurons: dynamics in RN

> if J is low-rank, neurons span a subspace of RN > $(\xi_{i_1}, \dots, \xi_{ip})$ gives the embedding of neuron i

$$J_{ij}=rac{1}{N}\sum_{\mu=1}^p oldsymbol{\xi}_{\mu,i} ilde{\phi}(\xi_{\mu,j}), \quad \xi_{\mu,i}\sim \mathcal{N}(0,1), \ ext{low-rank}$$
 vectors

 $oldsymbol{\xi_{\mu,i}} ilde{\phi}(oldsymbol{\xi_{\mu,j}}), \quad oldsymbol{\xi_{\mu,i}} \sim \mathcal{N}(0,1), \quad ilde{\phi}(\xi) = rac{\phi(\xi) - 1}{ ext{Var}[t]}$

as $N \rightarrow \infty$

- > neurons sample a gaussian
- > potential looks smooth

[1] Valentin Schmutz, Johanni Brea, Wulfram Gerstner Convergence of redundancy-free spiking neural networks to rate networks

→ the dynamics is *structured* in the embedding

^^ simulation N=50_000, p=1, phi=sigmoid. at fixed point μ =0 \rightarrow overlap m_o =1 (only 5000 neurons are shown)

- \rightarrow at the fixed point, h(t; ξ_0) = ξ_0
- \rightarrow the activity follows $φ(h(t; ξ_0)) = φ(ξ_0)$ in the embedding

see animations

^^ simulation N=50_000, p=1, phi=sigmoid. at fixed point μ =0 \rightarrow overlap m_o =1 (only 5000 neurons are shown)

^^ simulation N=100_000, p=2, phi=sigmoid (only 5000 neurons shown) overlap m_o=1, m₁=0

- ^^ simulation N=100_000, p=2, phi=sigmoid (only 5000 neurons shown) overlap $m_0=1$, $m_1=0$
- \rightarrow all the variation is along ξ_{\circ} , constant along ξ_{\perp}
- $\rightarrow h(t;\xi_0,\xi_1) = \xi_0$

- cycling RNN version

demo : embedding in p=2 dimensions - cycling RNN version

$$\dot{h}_i(t) = -h_i(t) + \sum_{j=1}^N \frac{1}{N} \sum_{\mu=1}^p \xi_{\mu+1,i} \tilde{\phi}(\xi_{\mu,j}) \phi(h_j(t-\delta))$$
 δ : delay $\mu+1$: "rolling" (p+1=1 by

(p+1=1 by convention)

demo : embedding in p=2 dimensions - cycling RNN version

$$\dot{h}_i(t) = -h_i(t) + \sum_{j=1}^N rac{1}{N} \sum_{\mu=1}^p rac{\xi_{\mu+1,i} ilde{\phi}(\xi_{\mu,j}) \phi(h_j(t-\delta))}{(p+1=1)}$$
 δ : delay $\mu+1$: "rolling" (p+1=1) by

(p+1=1 by convention)

initial: $h(t<0;\xi_0,\xi_1) = \xi_0$

- → overlaps are exponentials that get smoothed every cycle
- → oscillations flatten out over time

see animation

^^ N=20 000, p=2, delta=10, shift=1, phi=sigmoid

can we go to an even lower dimension?

can we go to an even lower dimension?

can we go to an even lower dimension?

^[2] Kharazishvili, A. (2017).
Strange Functions in Real Analysis (3rd ed.)

- Peano : surjective and continuous
 - > easy example : linear projections
 (see animation)
 - > clearly not bijective

linear mappings of a RNN in state $h=\xi_o+\xi_1$ N=20_000, p=2, phi=sigmoid

[2] Kharazishvili, A. (2017).
Strange Functions in Real Analysis (3rd ed.)

>>

- Peano : surjective and continuous
 - > easy example : linear projections
 (see animation)
 - > clearly not bijective
- Cantor : bijective (= 1-to-1 mapping)
 - > example : see next slides

linear mappings of a RNN in state $h=\xi_o+\xi_1$ N=20_000, p=2, phi=sigmoid

[2] Kharazishvili, A. (2017).
Strange Functions in Real Analysis (3rd ed.)

- Peano : surjective and continuous
 - > easy example : linear projections
 (see animation)
 - > clearly not bijective
- Cantor : bijective (= 1-to-1 mapping)
 - > example : see next slides

Fact: there is no homeomorphism (continuous bijective function) between [0,1]² and [0,1]

linear mappings of a RNN in state $h=\xi_0+\xi_1$ N=20_000, p=2, phi=sigmoid

[2] Kharazishvili, A. (2017).
Strange Functions in Real Analysis (3rd ed.)

[3] Cong Dan Pham. (2016)

The existence of a measure-preserving bijection from a unit square to unit segment

- split into
 quadrants
- 2. assign mapping
 coordinate
- 3. recurse for every quadrant

[3] Cong Dan Pham. (2016)
The existence of a measure-preserving bijection from a unit square to unit segment

- split into
 quadrants
- 2. assign mapping
 coordinate
- 3. recurse for every quadrant

[3] Cong Dan Pham. (2016)

The existence of a measure-preserving bijection from a unit square to unit segment

- split into
 quadrants
- 2. assign mapping
 coordinate
- 3. recurse for every quadrant
- → discontinuous, but bijective

see animation

- mean activity
 in each bin
- there is some "locality"

can we write a neural field in an even lower dimension?

can we write a neural field in an even lower dimension ?

number of dimensions

2. map R^p to [0,1] neural field using φ in R^p

can we write a neural field in an even lower dimension ?

smoothness in $R^p \Rightarrow \text{all neurons inside each bin are similar} \Rightarrow \text{take the average potential}$

smoothness in $R^p \Rightarrow all$ neurons inside each bin are similar ⇒ take the average potential

$$H_2:=\frac{\sum h_i}{\text{throwons ies}}$$
 $H_{\alpha}(t)=\frac{1}{|\alpha|}\sum_{i\in\alpha}h_i(t)$

$$H_{lpha}(t) = rac{1}{|lpha|} \sum_{i \in lpha} h_i(t)$$

↓ discretized dynamics, with rescaled J

$$\dot{H}_lpha(t) = -H_lpha(t) + \sum_{eta \in ext{segments of length } 4^{-n}} ilde{J}_{lpha,eta} \phi(H_eta(t)) \qquad ilde{J}_{lpha,eta} = rac{1}{|lpha|} \sum_{i \in lpha} \sum_{j \in eta} J_{ij}$$

$$ilde{J}_{lpha,eta} = rac{1}{|lpha|} \sum_{i \in lpha} \sum_{j \in eta} J_{ij}$$

smoothness in $R^p \Rightarrow \text{all neurons inside each bin are similar} \Rightarrow \text{take the average potential}$

$$H_{lpha}(t) = rac{1}{|lpha|} \sum_{i \in lpha} h_i(t)$$

↓ discretized dynamics, with rescaled J

$$\dot{H}_{lpha}(t) = -H_{lpha}(t) + \sum_{eta \in ext{segments of length } 4^{-n}} ilde{J}_{lpha,eta}\phi(H_{eta}(t)) \qquad ilde{J}_{lpha,eta} = rac{1}{|lpha|} \sum_{i \in lpha} \sum_{j \in eta} J_{ij}$$

 \rightarrow J_αβ converges to a (possibly discontinuous !) connectivity kernel w(α,β) as nrec $\rightarrow \infty$

Note: since J_ij is low-rank, (we can prove that) J_αβ is too!

→ good news, because low-rank RNNs

are computationally cheap to simulate

directly computing the connectivity $J_{\alpha\beta}$ in [0,1]

directly computing the connectivity $J_{\alpha\beta}$ in [0,1]

steps: 1. discretize the PDF on a grid

- 2. apply mapping
- 3. generate $J_{\alpha\beta}$

Note: gaussian wings decay fast

- ⇒ approximate PDF by compact support
- ⇒ the [-4,4]² bounding box approximation
 is OK

directly computing the connectivity $J_{\alpha\beta}$ in [0,1]

steps: 1. discretize the PDF on a grid

2. apply mapping

3. generate $J_{\alpha\beta}$

 $ilde{F}_{\mu,lpha}=Z_{\mu,lpha},\quad ilde{G}_{\mu,lpha}= ilde{\phi}(Z_{\mu,lpha}),\quad ilde{J}_{lpha,eta}= ilde{
ho}(Z_{:,eta})\sum^p ilde{F}_{\mu,lpha} ilde{G}_{\mu,eta}$

gaussian

PDF

Note: gaussian wings decay fast

⇒ approximate PDF by compact support

⇒ the [-4,4]² bounding box approximation
is OK

^^ connectivity inside
 the mapping, nrec=2

- > for a fair
 comparison, we
 downsample the
 mapping to
 N=1024 segments
- > the neural field
 is the "ground
 truth"

Note: the neural field drifts due to finite N effects

- > for a fair
 comparison, we
 downsample the
 mapping to
 N=1024 segments
- > the neural field
 is the "ground
 truth"
- → fractal mapping has oscillations

Note: the neural field drifts due to finite N effects

nrec=1

- 1. split into
 4^nrec quadrants
- 2. enumerate every
 square column
 by column

- split into
 4^nrec quadrants
- 2. enumerate every
 square column
 by column

- split into
 4^nrec quadrants
- 2. enumerate every
 square column
 by column

- split into
 4^nrec quadrants
- 2. enumerate every
 square column
 by column
 - \rightarrow in the limit, tends to a projection along the ξ_{\circ} axis
 - \rightarrow "locality" only along ξ_{\circ}
 - → limit is not bijective

are dynamics in [0,1] are the same as in R^p ?

- > for a fair
 comparison, we
 downsample the
 mappings to
 N=1024 segments
- > the neural field
 is the "ground
 truth"
- → fractal mapping
 has oscillations
- → reshape mapping
 does not

Note: the neural field drifts due to finite N effects

why doesn't the reshape mapping work?

why doesn't the reshape mapping work?

- \rightarrow the reshape mapping converges to a projection along ξ_{\circ}
 - > in the state ξ_o , the projection can "encode the variation"

why doesn't the reshape mapping work?

- → the reshape mapping converges to a projection
 - > in the state ξ_o , the projection can "encode the variation"

> but in the state ξ_1 , all the variation gets "averaged out"

summary of mappings so far

Mapping	Bijective in limit	"Locality"	Equivalent dynamics
Recursive Local	Yes	Yes	Yes
Reshape	No (→ projection)	Only along one axis	No

summary of mappings so far

```
Mapping Bijective "Locality" Equivalent dynamics

Recursive Local Yes Yes Yes No (→ projection) Only along one axis No
```

```
what's next?
```

→ what conditions on the mapping must be met for equivalent dynamics in [0,1] ?

summary of mappings so far

```
MappingBijective<br/>in limit"Locality"Equivalent<br/>dynamicsRecursive Local<br/>ReshapeYes<br/>No (→ projection)Yes<br/>Only along one axisYes<br/>No
```

what's next ?

- → what conditions on the mapping must be met for equivalent dynamics in [0,1] ?
- → explore tradeoff between dimensionality and "regularity" in R² the kernel is continuous -- but high dimension in [0,1] we lose continuity -- but low dimension
 - ⇒ here we have presented the first example of such equivalent neural fields

extra slides →

rank-p RNNs converge to a neural field equation in R^p as $N \rightarrow \infty$

rank-p RNNs converge to a neural field equation in R^p as $N \rightarrow \infty$

$$\dot{h}_i(t) = -h_i(t) + \sum_{j=1}^N J_{ij}\phi(h_j(t))$$
 $J_{ij} = rac{1}{N}\sum_{\mu=1}^p \xi_{\mu,i} ilde{\phi}(\xi_{\mu,j})$ N-dimensional system

$$J_{ij} = rac{1}{N} \sum_{\mu=1}^p \xi_{\mu,i} ilde{\phi}(\xi_{\mu,j})$$

$$\xi_{\mu,i} \sim \mathcal{N}(0,1), \quad ilde{\phi}(\xi) = rac{\phi(\xi) - \mathrm{E}[\phi(\xi)]}{\mathrm{Var}[\phi(\xi)]}$$

- h=0 and $h=\xi$ are fixed points

rank-p RNNs converge to a neural field equation in R^p as $N \rightarrow \infty$

$$\dot{h}_i(t) = -h_i(t) + \sum_{j=1}^N J_{ij} \phi(h_j(t))$$
 $J_{ij} = rac{1}{N} \sum_{\mu=1}^p \xi_{\mu,i} ilde{\phi}(\xi_{\mu,j})$ N-dimensional system

$$J_{ij} = rac{1}{N} \sum_{\mu=1}^p \xi_{\mu,i} ilde{\phi}(\xi_{\mu,j})$$

$$\xi_{\mu,i}\sim\mathcal{N}(0,1),\quad \tilde{\phi}(\xi)=\frac{\phi(\xi)-\mathrm{E}[\phi(\xi)]}{\mathrm{Var}[\phi(\xi)]}$$
 — h=0 and h= ξ are fixed points

sum \rightarrow int limit, h spans a p-dim subspace of R^N

$$\partial_t h(t,ec z) = -h(t,ec z) + \int_{\mathbb{R}^p} w(ec z,ec y) \phi(h(t,ec y))
ho(\mathrm{d}ec y) \qquad w(ec z,ec y) = \sum_{\mu=1}^p ilde\phi(y_\mu) z_\mu$$

$$w(ec{z},ec{y}) = \sum_{\mu=1}^p ilde{\phi}(y_\mu) z_\mu$$

p-dimensional system

low-rank case

numerical aspects of simulating fractal mappings low-rank case

"mean patterns" lead to low-rank dynamics in the mapping
→ inexpensive to simulate

$$ilde{F}_{\mu,lpha}=rac{1}{|lpha|}\sum_{i\inlpha}rac{F_{\mu,i}}{|lpha|},\, ilde{G}_{\mu,lpha}=rac{1}{|lpha|}\sum_{i\inlpha}rac{G_{\mu,i}}{|lpha|}$$

low-rank case

"mean patterns" lead to low-rank dynamics in the mapping

 \rightarrow inexpensive to simulate

$$\tilde{F}_{\mu,\alpha} = \frac{1}{|\alpha|} \sum_{i \in \alpha} F_{\mu,i}, \ \tilde{G}_{\mu,\alpha} = \frac{1}{|\alpha|} \sum_{i \in \alpha} G_{\mu,i}$$

$$\tilde{J}_{\alpha,\beta} = \frac{|\beta|}{\sum_{\beta'} |\beta'|} \left(\sum_{\mu=1}^{p} \tilde{F}_{\mu,\alpha} \tilde{G}_{\mu,\beta} - \delta_{\alpha,\beta} \sum_{\mu=1}^{p} \sum_{i \in \alpha} F_{\mu,i} \frac{G_{\mu,i}}{|\alpha|} \frac{G_{\mu,i}}{|\alpha|} \right)$$
weighted binning term
$$\text{exclude self-connections}$$
(vanishes at large N)

low-rank case

"mean patterns" lead to low-rank dynamics in the mapping

→ inexpensive to simulate

$$ilde{F}_{\mu,lpha} = rac{1}{|lpha|} \sum_{i \in lpha} rac{F_{\mu,i}}{|lpha|}, \ ilde{G}_{\mu,lpha} = rac{1}{|lpha|} \sum_{i \in lpha} rac{G_{\mu,i}}{|lpha|} \qquad ilde{J}_{lpha,eta} = rac{|eta|}{|eta|} \left[\sum_{\mu=1}^p ilde{F}_{\mu,lpha} ilde{G}_{\mu,eta} - \delta_{lpha,eta} \sum_{\mu=1}^p \sum_{i \in lpha} rac{F_{\mu,i}}{|lpha|}
ight]$$

< numerical demo of binning the connectivity N=1024, nrec=4

low-rank case

"mean patterns" lead to low-rank dynamics in the mapping

→ inexpensive to simulate

$$ilde{F}_{\mu,lpha} = rac{1}{|lpha|} \sum_{i \in lpha} rac{F_{\mu,i}}{|lpha|}, \ ilde{G}_{\mu,lpha} = rac{1}{|lpha|} \sum_{i \in lpha} rac{G_{\mu,i}}{|lpha|} \qquad ilde{J}_{lpha,eta} = rac{|eta|}{\sum_{eta'} |eta'|} \left[\sum_{\mu=1}^p ilde{F}_{\mu,lpha} ilde{G}_{\mu,eta} - \delta_{lpha,eta} \sum_{\mu=1}^p \sum_{i \in lpha} rac{1}{i \in lpha} \sum_{i \in lpha} rac{1}{i \in lpha}
ight]$$

exclude self-connections (vanishes at large N)

rare neurons might not show up !

< numerical demo of binning the connectivity N=1024, nrec=4 dynamics inside the fractal mapping converge

dynamics inside the fractal mapping converge

→ we get the same oscillatory behavior !

Note: this is expected, as we are just doing a mean field, and the mappings are just reorderings of the bins.
Connectivity is invariant to permutation of neurons

(if time remains)
discrete probability spaces
reduce to population dynamics
which can easily be embedded in [0,1]