Catálogo Gaia de estrelas até 23.0 parsecs do Sol

- 1. A interseção aumentou de 744 para 755 (11 estrelas a mais).
- 2. Como está sendo feita a interseção:

Fixada uma designação Gaia, é buscado no Simbad todos os identificadores para esta designação. Os identificadores para a estrela HD 146233 são os seguintes:

All access of full data is availab	le using the icon Vizier near	the identifier of the catalog	ue
LHS 3171 🕯	GES J16153746-0822162	NLTT 42344 @	TYC 5613-1378-1
* 18 Sco	GJ 616 🕯	NSV 7577 @	UBV 13804
AKARI-IRC-V1 J1615373-082213 🕮	HD 146233 @	PLX 3687 @	UBV M 21288
AP J16153726-0822096 🕮	HIC 79672 🕮	PLX 3687.00	uvby98 100146233 🕮
BD-07 4242 🕯	HIP 79672 @	PM 16129-0814	WDS J16156-0822A 🕮
CCDM J16156-0822A @	HR 6060 🕯	PPM 199464 🕯	WEB 13483
Ci 20 976	IDS 16102-0806 A	RAVE J161537.3-082210 @	WISEA J161537.45-082215.2
CSI-07 4242 1	IRAS 16129-0814 @	SAO 141066 @	YZ 98 5647
CSV 101566	LFT 1259	SKY# 29346	[B10] 4137
GALAH 140710003901284 🕮	LPM 594	SPOCS 698	Gaia DR3 4345775217221821312 @
GC 21864	LTT 6482	SV* ZI 1223	Gaia DR2 4345775217221821312 @
GCRV 9353	2MASS J16153726-0822096 @	TD1 19805 🕯	
GEN# +1.00146233	N30 3644	TIC 135656809	

Depois, selecionamos somente os identificadores que começam por HIP, se houver algum. O identificador é anexado no registro da estrela Gaia.

- 3. Gaia \cap Hipparcos: No diagrama M(Vt) versus BT-VT, saíram 2 estrelas. Passou de 556 estrelas para 554 estrelas.
- 4. Hipparcos Gaia: No diagrama M(Vt) versus BT-VT, saíram 2 estrelas. Passou de 635 estrelas para 633 estrelas.
- 5. No Diagrama Hipparcos Gaia, M(V) versus B-V, tem uma estrela no canto inferior direito que não estava aparecendo no diagrama anterior porque o tamanho da imagem estava pequeno
- 6. Somando-se as estrelas não plotadas com as plotadas, obtemos o total de estrelas do sub catálogo
- 7. No botão Gaia Hipparcos, a estrela que está em vermelho no diagrama M(G) versus Bp-Rp é a HD 131156B
- 8. A estrela que aparece em azul nos diagramas é a HD 146233.

$$M(G) = phot_g_mean_mag + 5 + 5 \cdot \log_{10} \left(\frac{parallax}{1000} \right)$$

$$M(G)^{+} = phot_g_mean_mag + 5 + 5 \cdot \log_{10} \left(\frac{parallax + parallax_error}{1000} \right)$$

$$M(G)^{-} = phot_g_mean_mag + 5 + 5 \cdot \log_{10} \left(\frac{parallax - parallax_error}{1000} \right)$$

$$M(G)\;error = \frac{\mid M(G) - M(G)^{+} \mid + \mid M(G) - M(G)^{-} \mid}{2}$$

 $B_p - R_p = phot_pb_mean_mag - phot_rp_mean_mag$

$$M(R_p) = phot_rp_mean_mag + 5 + 5 \cdot \log_{10} \left(\frac{parallax}{1000} \right)$$

$$M(R_p)^+ = phot_rp_mean_mag + 5 + 5 \cdot \log_{10} \left(\frac{parallax + parallax_error}{1000} \right)$$

$$M(R_p)^- = phot_rp_mean_mag + 5 + 5 \cdot \log_{10} \left(\frac{parallax - parallax_error}{1000} \right)$$

$$M(R_p) \ error = \frac{\mid M(R_p) - M(R_p)^+ \mid + \mid M(R_p) - M(R_p)^- \mid}{2}$$

$$B_p - R_p = phot_pb_mean_mag - phot_rp_mean_mag$$

$$M(V) = V_{mag} + 5 + 5 \cdot \log_{10} \left(\frac{Plx}{1000} \right)$$

$$M(V)^{+} = V_{mag} + 5 + 5 \cdot \log_{10} \left(\frac{Plx + e_Plx}{1000} \right)$$

$$M(V)^{-} = V_{mag} + 5 + 5 \cdot \log_{10} \left(\frac{Plx - e_Plx}{1000} \right)$$

$$M(V) \ error = \frac{|M(V) - M(V)^{+}| + |M(V) - M(V)^{-}|}{2}$$

$$M(V_t) = VT_{mag} + 5 + 5 \cdot \log_{10} \left(\frac{Plx}{1000}\right)$$

$$M(V_t)^+ = VT_{mag} + 5 + 5 \cdot \log_{10} \left(\frac{Plx + e_Plx}{1000}\right)$$

$$M(V_t)^- = VT_{mag} + 5 + 5 \cdot \log_{10} \left(\frac{Plx - e_Plx}{1000}\right)$$

$$M(V_t) = \frac{|M(V_t) - M(V_t)^+| + |M(V_t) - M(V_t)^-|}{2}$$

$$BT - VT = BT_{mag} - VT_{mag}$$