Validação

José Elvano Moraes

4/15/2021

Variáveis selecionadas

```
## Rows: 95,537
## Columns: 17
                               <fct> "(75,112]", "[1,38]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,75]", "(38,
## $ IDADE
## $ FEBRE
                               <fct> 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, ~
## $ GARGANTA
                               ## $ DISPNEIA
                               <fct> 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, ~
## $ SATURACAO <fct> 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1,~
## $ EVOLUCAO
                               <fct> 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 1,~
## $ RENAL
                               <fct> 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2,~
## $ DIABETES
                               <fct> 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,~
## $ UTI
                               ## $ CARDIOPATI <fct> 1, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, -
## $ SUPORT_VEN <fct> 2, 2, 2, 2, 3, 2, 1, 1, 9, 2, 3, 3, 2, 2, 1, 2, 3, 2, 2,~
```

Imposição de estrutura com arcos que fazem sentido clínico (White list)

Rede Causal (DAG, Directed Acyclic Graphic)

```
#par(mfrow=c(2,2))
graphviz.plot(bn1, shape='rectangle', highlight = list(arcs = w1), main = '...')
```

FEBRE **GARGANTA** DISPNEIA PERD_OLFT IDADE SATURAÇÃO PERD_PALA OBESIDADE SUPORT_VEN DIABETES UTI RENAL **EVOLUCAO** ANTIVIRAL NEUROLOGIC CARDIOPATI PNEUMOPATI

```
fitted.1 <- bn.fit(bn1, s1)</pre>
\#par(mfrow=c(2,2))
graphviz.chart(fitted.1, scale = c(2, 3), type = "barprob", col = "darkblue", bg = "azure", bar.col =
## Loading required namespace: gRain
##
## Attaching package: 'gRbase'
## The following objects are masked from 'package:bnstruct':
##
##
       dag, observations, observations <-
  The following objects are masked from 'package:igraph':
##
##
       is_dag, topo_sort
##
## The following objects are masked from 'package:bnlearn':
##
```

##

ancestors, children, parents

Rede de probabilidades

Bootstrapping

```
boots.trap <- 400
str.diff = suppressMessages(boot.strength(s1, R = boots.trap, algorithm = "mmhc"))
cat(paste('Threshold: ', attr(str.diff, "threshold")))

## Threshold: 0.5375
avg.diff = averaged.network(str.diff)
strength.plot(avg.diff, str.diff, shape = "rectangle", main = paste("Iterações = ", boots.trap))</pre>
```


How can we compare the averaged network (avg.diff) with the network we originally learned in from all the data? The most qualitative way is to plot the two networks side by side, with the nodes in the same positions, and highlight the arcs that appear in one network and not in the other, or that appear with different directions.

```
par(mfrow = c(1, 2))
graphviz.compare(avg.diff, bn1, shape = "rectangle", main = c("DAG médio", "DAG único"))
```


It is also a good idea to look at the threshold with respect to the distribution of the arc strengths

```
plot(str.diff)
abline(v = 0.75, col = "tomato", lty = 2, lwd = 2)
abline(v = 0.85, col = "steelblue", lty = 2, lwd = 2)
```

threshold = 0.537

The simpler network we obtain by setting threshold = 0.8 in averaged.network() is shown below; it is certainly easier to reason with from a qualitative point of view.

```
par(mfrow = c(1, 2))
avg.simpler = averaged.network(str.diff, threshold = 0.75)
strength.plot(avg.diff, str.diff, shape = "rectangle", main = paste("Iterações = ", boots.trap, " Thr = strength.plot(avg.simpler, str.diff, shape = "rectangle", main = 'Iterações = 100 Thr = 0.75')
```

Iterações = 400 Thr = 0.5375

Iterações = 100 Thr = 0.75

