Amendments to the claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claims 1-14 (cancelled).

15. (Currently amended) A compound of formula (I) or a pharmaceutically acceptable derivative thereof:

$$R^{1} \qquad Z^{1} \qquad R^{3} \qquad NR^{2}R^{4}$$

$$Z^{2} \qquad Z^{3} \qquad N$$

(1)

wherein:

one of Z^{1} , Z^{2} , Z^{3} , Z^{4} and Z^{5} is N, one is CR^{1a} and the remainder are CH, or one of Z^{1} , Z^{2} , Z^{3} , Z^{4} and Z^{5} is CR^{1a} and the remainder are CH;

one of Z^1 , Z^2 and Z^3 is N, one of the remainder or Z^4 or Z^5 is CR^{1a} , and the remainder of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 are CH;

R1 and R1a are independently selected from hydrogen; hydroxy; (C_{1-6}) alkoxy optionally substituted by (C_{1-6}) alkoxy, amino, piperidyl, guanidino or amidino any of which is optionally N-substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups, CONH2, hydroxy, (C_{1-6}) alkylthio, heterocyclylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C_{1-6}) alkylsulphonyloxy; (C_{1-6}) alkoxy-substituted (C_{1-6}) alkyl; halogen; (C_{1-6}) alkyl; (C_{1-6}) alkylthio; trifluromethyl; nitro; azido; acyl; acyloxy; acylthio; (C_{1-6}) alkylsulphonyl; (C_{1-6}) alkylsulphoxide; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl

groups, or when Z^1 is CR^{1a} , R^1 and R^{1a} may together represent (C_{1-2})alkylenedioxy, or when Z^5 is CR^{1a} , R^{1a} may instead be, cyano, hydroxymethyl or carboxy, provided that when Z^1 , Z^2 , Z^3 , Z^4 and Z^5 are CR^{1a} or CH, then R^1 is not hydrogen;

 R^2 is hydrogen, or (C_{1-4}) alkyl or (C_{2-4}) alkenyl optionally substituted with 1 to 3 groups selected from: amino optionally substituted by one or two (C₁₋₄)alkyl groups; carboxy; (C₁₋ 4)alkoxycarbonyl; (C₁₋₄)alkylcarbonyl; (C₂₋₄)alkenyloxycarbonyl; (C₂₋ 4)alkenylcarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C_{1-4}) alkyl, hydroxy (C_{1-4}) alkyl, aminocarbonyl (C_{1-4}) alkyl, (C_{2-4}) 4)alkenyl, (C₁₋₄)alkylsulphonyl, trifluoromethylsulphonyl, (C₂₋₄)alkenylsulphonyl, (C_{1-4}) alkoxycarbonyl, (C_{1-4}) alkylcarbonyl, (C_{2-4}) alkenyloxycarbonyl or (C_{2-4}) 4)alkenylcarbonyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by R¹⁰; 3-hydroxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by R¹⁰; 5-oxo-1,2,4oxadiazol-3-yl; halogen; (C₁₋₄)alkylthio; trifluoromethyl; hydroxy optionally substituted by (C₁₋₄)alkyl, (C₂₋₄)alkenyl, (C₁₋₄)alkoxycarbonyl, (C₁₋₄)alkylcarbonyl, (C_{2-4}) alkenyloxycarbonyl, (C_{2-4}) alkenylcarbonyl; oxo; (C_{1-4}) alkylsulphonyl; (C_{2-4}) 4)alkenylsulphonyl; or (C_{1-4}) aminosulphonyl wherein the amino group is optionally substituted by (C₁₋₄)alkyl or (C₂₋₄)alkenyl;

R³ ishydroxy is hydroxy optionally substituted by (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylcarbonyl or (C_{2-6}) alkenylcarbonyl;

 R^{10} is selected from (C₁₋₄)alkyl and (C₂₋₄)alkenyleither of which may be optionally substituted by a group R^{12} as defined above; carboxy; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylsulphonyl, trifluoromethylsulphonyl, (C₂₋₆)alkenylsulphonyl, (C₁₋₆)

6)alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl or (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; (C_{1-6}) alkylsulphonyl; trifluoromethylsulphonyl; (C_{2-6}) alkenylsulphonyl; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl; (C_{2-6}) alkenyloxycarbonyl; and (C_{2-6}) alkenylcarbonyl;

 ${\sf R}^4$ is a group -CH₂-R⁵₁ in which ${\sf R}^5$ ₁ is selected from:

 $(C_{4-8}) \text{alkyl}; \ \text{hydroxy}(C_{4-8}) \text{alkyl}; \ (C_{1-4}) \text{alkoxy}(C_{4-8}) \text{alkyl}; \ (C_{1-4}) \text{alkoxy}(C_{4-8}) \text{alkyl}; \ (C_{1-6}) \text{alkoxy-or}$ $(C_{1-6}) \text{alkanoyloxy-}(C_{3-8}) \text{cycloalkyl}(C_{4-8}) \text{alkyl}; \ \text{cyano}(C_{4-8}) \text{alkyl}; \ (C_{4-8}) \text{alkenyl}; \ (C_{4-8}) \text{alkyl}; \ (C_{4-8}) \text{alkyl}; \ (C_{4-8}) \text{alkyl}; \ \text{acylamino}(C_{4-8}) \text{alkyl}; \ \text{acylamino}(C_{4-8}) \text{alkyl}; \ (C_{1-6}) \text{alkyl-or acyl-aminocarbonyl}(C_{4-8}) \text{alkyl}; \ \text{mono- or di-}(C_{1-6}) \text{alkylamino}(\text{hydroxy}) \ (C_{4-8}) \text{alkyl}; \ \text{or}$

 R^4 is a group $-U-R^5_2$ where R^5_2 is an optionally substituted bicyclic carbocyclic or heterocyclic ring system (A):

containing up to four heteroatoms in each ring in which

at least one of rings (a) and (b) is aromatic;

 X^1 is C or N when part of an aromatic ring or CR^{14} when part of a non aromatic ring;

 χ^2 is N, NR¹³, O, S(O)_X, CO or CR¹⁴ when part of an aromatic or non-aromatic ring or may in addition be CR¹⁴R¹⁵ when part of a non aromatic ring;

 X^3 and X^5 are independently N or C;

 Y^1 is a 0 to 4 atom linker group each atom of which is independently selected from N, NR¹³, O, S(O)_X, CO and CR¹⁴ when part of an aromatic or non-aromatic ring or may additionally be CR¹⁴R¹⁵ when part of a non aromatic ring,

 Y^2 is a 2 to 6 atom linker group, each atom of Y^2 being independently selected from N, NR¹³, O, S(O)_X, CO and CR¹⁴ when part of an aromatic or non-aromatic ring or may additionally be CR¹⁴R¹⁵ when part of a non aromatic ring;

each of R¹⁴ and R¹⁵ is independently selected from: H; (C₁₋₄)alkylthio; halo; carboxy(C₁₋₄)alkyl; halo(C₁₋₄)alkoxy; halo(C₁₋₄)alkyl; (C₁₋₄)alkyl; (C₂₋₄)alkenyl; (C₁₋₄)alkoxycarbonyl; formyl; (C₁₋₄)alkylcarbonyl; (C₂₋₄)alkenyloxycarbonyl; (C₂₋₄)alkenyloxycarbonyl; (C₂₋₄)alkenyloxycarbonyl; (C₁₋₄)alkylcarbonyloxy; (C₁₋₄)alkoxycarbonyl(C₁₋₄)alkyl; hydroxy; hydroxy(C₁₋₄)alkyl; mercapto(C₁₋₄)alkyl; (C₁₋₄)alkoxy; nitro; cyano; carboxy; amino or aminocarbonyl optionally substituted as for corresponding substituents in R³; (C₁₋₄)alkylsulphonyl; (C₂₋₄)alkenylsulphonyl; or aminosulphonyl wherein the amino group is optionally substituted by (C₁₋₄)alkyl or (C₂₋₄)alkenyl; aryl(C₁₋₄)alkyl; aryl(C₁₋₄)alkyl; aryl(C₁₋₄)alkoxy;

each R¹³ is independently H; trifluoromethyl; (C_{1-4}) alkyl optionally substituted by hydroxy, carboxy, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkoxy, (C_{1-6}) alkoxy, (C_{1-6}) alkylthio, halo or trifluoromethyl; (C_{2-4}) alkenyl; aryl; aryl (C_{1-4}) alkyl; arylcarbonyl; heteroarylcarbonyl; (C_{1-4}) alkoxycarbonyl; (C_{1-4}) alkylcarbonyl; formyl; (C_{1-6}) alkylsulphonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-4}) alkoxycarbonyl, (C_{1-4}) alkylcarbonyl, (C_{2-4}) alkenyloxycarbonyl, (C_{2-4}) alkenylcarbonyl, (C_{2-4}) alkenyl and optionally further substituted by (C_{1-4}) alkyl or (C_{2-4}) alkenyl;

each x is independently 0, 1 or 2; and U is CO, SO₂ or CH₂; or

 R^4 is a group - χ^{1a} - χ^{2a} - χ^{3a} - χ^{4a} in which:

 X^{1a} is CH_2 , CO or SO_2 ;

X^{2a} is CR^{14a}R^{15a};

X^{3a} is NR^{13a}, O, S, SO₂ or CR^{14a}R^{15a}; wherein:

each of R^{14a} and R^{15a} is independently selected from the groups listed above for R^{14} and R^{15} , provided that R^{14a} and R^{15a} on the same carbon atom are not both selected from optionally substituted hydroxy and optionally substituted amino; or

R14a and R15a together represent oxo;

R^{13a} is hydrogen; trifluoromethyl; (C_{1-6}) alkyl; (C_{2-6}) alkenyl; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl, (C_{2-6}) alkenyl and optionally further substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; or

two R^{14a} groups or an R^{13a} and an R^{14a} group on adjacent atoms together represent a bond and the remaining R^{13a}, R^{14a} and R^{15a} groups are as above defined; or

two R^{14a} groups and two R^{15a} groups on adjacent atoms together represent bonds such that X^{2a} and X^{3a} is triple bonded;

X^{4a} is phenyl or C or N linked monocyclic aromatic 5- or 6-membered heterocycle containing up to four heteroatoms selected from O, S and N and: optionally C-substituted by up to three groups selected from (C₁₋₄)alkylthio; halo; $carboxy(C_{1-4})alkyl;\ halo(C_{1-4})alkoxy;\ halo(C_{1-4})alkyl;\ (C_{1-4})alkyl;\ (C_{2-4})alkenyl;$ (C_{1-4}) alkoxycarbonyl; formyl; (C_{1-4}) alkylcarbonyl; (C_{2-4}) alkenyloxycarbonyl; (C_{2-4}) 4) alkenylcarbonyl; (C_{1-4}) alkylcarbonyloxy; (C_{1-4}) alkoxycarbonyl (C_{1-4}) alkyl; hydroxy; $\label{eq:continuous} \mbox{hydroxy}(\mbox{C}_{1-4})\mbox{alkyl; mercapto}(\mbox{C}_{1-4})\mbox{alkyl; }(\mbox{C}_{1-4})\mbox{alkoxy; nitro; cyano; carboxy; amino}$ or aminocarbonyl optionally substituted as for corresponding substituents in R³; (C₁₋ 4)alkylsulphonyl; (C₂₋₄)alkenylsulphonyl; or aminosulphonyl wherein the amino group is optionally substituted by (C_{1-4}) alkyl or (C_{2-4}) alkenyl; aryl, aryl (C_{1-4}) alkyl or aryl(C₁₋₄)alkoxy; and optionally N substituted by trifluoromethyl; (C1-4)alkyl optionally substituted by hydroxy, (C_{1-6}) alkoxy, (C_{1-6}) alkylthio, halo or trifluoromethyl; (C_{2-4}) alkenyl; aryl; aryl(C₁₋₄)alkyl; (C₁₋₄)alkoxycarbonyl; (C₁₋₄)alkylcarbonyl; formyl; (C₁₋ 6)alkylsulphonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-4}) alkoxycarbonyl, (C_{1-4}) alkylcarbonyl, (C_{2-4}) alkenyloxycarbonyl, (C_{2-4}) 4)alkenylcarbonyl, (C_{1-4})alkyl or (C_{2-4})alkenyl and optionally further substituted by (C₁₋₄)alkyl or (C₂₋₄)alkenyl;

n is 0 or 1 and AB is NR¹¹CO, CONR¹¹, CO-CR⁸R⁹, CR⁶R⁷-CO, O-CR⁸R⁹, CR⁶R⁷-O, NHR¹¹-CR⁸R⁹, CR⁶R⁷- NHR¹¹, NR¹¹SO₂, CR⁶R⁷-SO₂ or CR⁶R⁷-CR⁸R⁹.

provided that n=0, B is not NR¹¹, O or SO₂,

and provided that R^6 and R^7 , and R^8 and R^9 are not both optionally substituted hydroxy or amino;

and wherein:

6) alkyl or (C2-6) alkenyl;

each of R⁶, R⁷, R⁸ and R⁹ is independently selected from: H; (C₁₋₆)alkoxy; (C₁₋₆)alkylthio; halo; trifluoromethyl; azido; (C₁₋₆)alkyl; (C₂₋₆)alkenyl; (C₁₋₆)alkoxycarbonyl; (C₁₋₆)alkylcarbonyl; (C₂₋₆)alkenyloxycarbonyl; (C₂₋₆)alkenylcarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in R³; (C₁₋₆)alkylsulphonyl; (C₂₋₆)alkenylsulphonyl; or (C₁₋₆)aminosulphonyl wherein the amino group is optionally substituted by (C₁₋₆)

or R^6 and R^8 together represent a bond and R^7 and R^9 are as above defined; in optionally substituted amino the amino group is optionally mono- or disubstituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl, (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylsulphonyl, (C_{2-6}) alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl;

in optionally substituted aminocarbonyl the amino group is optionally substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl or (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl or (C_{2-6}) alkenyl;

and each R^{11} is independently H; trifluoromethyl; (C_{1-6}) alkyl; (C_{2-6}) alkenyl; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl, (C_{1-6}) alkyl or (C_{2-6}) alkenyl and optionally further substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl;

or where one of R^6 , R^7 , R^8 or R^9 contains a carboxy group they may together with R^3 form a cyclic ester linkage.

- 16. (Currently amended) A compound according to claim 15 wherein Z^5 is CH, Z^3 is CH or CF, Z^4 is CH or C OCH₃ and Z^2 and Z^4 are each CH, or Z^1 is N, Z^3 is CH or CF and Z^2 , Z^4 and Z^5 are each CH.
- 17. (Previously presented) A compound according to claim 15 wherein R^1 is methoxy or fluoro and R^{1a} is H or when Z^3 is CR^{1a} it may be C-F.
- 18. (Previously presented) A compound according to claim 15 wherein R² is hydrogen.
- 19. (Previously presented) A compound according to claim 15 wherein ${\sf R}^3$ is hydroxy.
- 20. (Previously presented) A compound according to claim 15 wherein n is 0 and either A is CHOH or CH_2 and B is CH_2 or A is NH and B is CO, and $AB(CH_2)_n$ and NR^2R^4 are trans.
- 21. (Previously presented) A compound according to claim 15 wherein R^4 is $-U-R^5_2$, the group -U- is $-CH_2-$, and R^5_2 is an aromatic heterocyclic ring (A) having 8-11 ring atoms including 2-4 heteroatoms of which at least one is N or NR^{13} or the heterocyclic ring (A) has ring (a) aromatic selected from optionally substituted benzo and pyrido and ring (b) non-aromatic and Y^2 has 3-5 atoms including NR^{13} , O or S bonded to X^5 and NHCO bonded via N to X^3 , or O bonded to X^3 .
- 22. (Currently amended) A compound according to claim 15 wherein ${\sf R}^5{}_2$ is selected from:

benzo[1,2,5]thiadiazol-5-yl; 4H-benzo[1,4] thiazin-3-one-6-yl; 2,3-dihydro-benzo[1,4]dioxin-6-yl; benzo[1,2,3]thiadiazol-5-yl;

3-oxo-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl;

7-fluoro-3-oxo-3,4-dihydro-2H-benzo[1,4] oxazin-6-yl;

2-oxo-2,3-dihydro-1H-pyrido[2,3-b][1,4]thiazin-7-yl;

2,3-dihydro-[1,4]dioxino[2,3-c]pyridin-7-yl;

3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-yl;

[1,2,3]thiadiazolo[5,4-b]pyridin-6-yl;

3-oxo-3,4-dihydro-2*H*-pyrido[3,2-*b*][1,4]thiazin-6-yl;

7-chloro-3-oxo-3,4-dihydro-2*H*-pyrido[3,2-*b*][1,4]thiazin-6-yl;

7-fluoro-3-oxo-3,4-dihydro-2*H*-pyrido[3,2-*b*][1,4]thiazin-6-yl; and

2-oxo-2,3-dihydro-1*H*-pyrido[3,4-*b*][1,4]thiazin-7-yl.

23. (Currently amended) A compound selected from:

(1R,4S)-1-hydroxy-4-[(3-oxo-3,4-dihydro-2*H*-pyrido[3,2-*b*][1,4]thiazin-6-ylmethyl)-amino]-cyclohex-2-enecarboxylic acid (6-methoxy-[1,5]naphthyridin-4-yl)-amide and (1*S*,4*R*)-1-hydroxy-4-[(3-oxo-3,4-dihydro-2*H*-pyrido[3,2-*b*][1,4]thiazin-6-ylmethyl)-amino]-cyclohex-2-enecarboxylic acid (6-methoxy-[1,5]naphthyridin-4-yl)-amide;

(1R,4S)-1-hydroxy-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-ylmethyl)-amino]-cyclohex-2-enecarboxylic acid <math>(6-methoxy-[1,5]naphthyridin-4-yl)-amide and (1S,4R)-1-hydroxy-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-ylmethyl)-

amino]-cyclohex-2-enecarboxylic acid (6-methoxy-[1,5]naphthyridin-4-yl)-amide; 1-hydroxy-*t*-4-[(2,3-dihydro[1,4]dioxino[2,3-*c*]pyridine-7-ylmethyl)-amino]-*r*-cyclohex-2-enecarboxylic acid (6-methoxy-[1,5]naphthyridin-4-yl)-amide (E2 isomer); and

compounds of the following formula:

in which:

$$R^4$$
 is and the compound is the E2 amide isomer; or R^4 is and the compound is the E2 amide isomer;

or a pharmaceutically acceptable derivative thereof.

- 24. (Currently amended) A method of treatment of bacterial infections in mammals, particularly in man, which method comprises the administration to a mammal in need of such treatment an effective amount of a compound according to claim 15.
- 25. (Previously presented) A pharmaceutical composition comprising a compound according to claim 15, and a pharmaceutically acceptable carrier.
- 26. (Currently amended) A process for preparing a compound according to claim 15, which process comprises reacting a compound of formula (IV) with a compound of formula (V):

wherein n is as defined in formula (I); Z1', Z2', Z3', Z4', Z5', R1' and R3' are Z1, Z2, Z3, Z4, Z5, R1 and R3 as defined in formula (I) or groups convertible thereto; Q1 is NR2'R4' or a group convertible thereto wherein R2' and R4' are R2 and R4 as defined in formula (I) or groups convertible thereto and Q2 is H or R3' or Q1 and Q2 together form an optionally protected oxo group; and X and Y may be the following combinations:

- (i) one of X and Y is CO₂R^y and the other is CH₂CO₂R^x;
- (ii) X is CHR^6R^7 and Y is $C(=0)R^9$;
- (iii) X is $CR^7 = PR^Z_3$ and Y is $C(=0)R^9$;
- (iv) X is $C(=0)R^7$ and Y is $CR^9=PR^2_3$;

- (v) one of Y and X is COW and the other is NHR¹¹;
- (vi) X is NHR^{11'} and Y is $C(=0)R^8$ or X is $C(=0)R^6$ and Y is NHR^{11'};
- (vii) X is NHR^{11'} and Y is CR^8R^9W ;
- (viii) X is W or OH and Y is CH₂OH;
- (ix) X is NHR^{11'} and Y is SO₂W;
- one of X and Y is $(CH_2)_p$ -W and the other is $(CH_2)_qNHR^{11}$, $(CH_2)_qOH$, $(CH_2)_qSCOR^x \text{ where p+q=1};$
- (xi) one of X and Y is OH and the other is -CH= N_2 ;
- (xii) Xis W and Y is CONHR¹¹;
- (xiii) X is W and Y is -C≡CH followed by selective reduction of the intermediate C≡C- group;

in which W is a leaving group, e.g. halo or imidazolyl; R^X and R^Y are (C_{1-6}) alkyl; R^X is aryl or (C_{1-6}) alkyl; A' and NR^{11} are A and NR^{11} as defined in formula (I), or groups convertible thereto; and oxirane is:

wherein R⁶, R⁸ and R⁹ are as defined in formula (I); and thereafter optionally or as necessary converting Q¹ and Q² to NR²'R⁴'; converting A', Z¹', Z²', Z³', Z⁴', Z⁵', R¹', R²', R³', R⁴' and NR¹¹' to A, Z¹, Z², Z³, Z⁴, Z⁵, R¹, R², R³, R⁴ and NR¹¹'; converting A-B to other A-B, interconverting R^V, R^W, R¹, R², R³ and/or R⁴, and/or forming a pharmaceutically acceptable derivative thereof.

- 27. Canceled.
- 28. (New) A method according to claim 24, wherein said mammal is a human.