國立臺灣科技大學營建工程系

高等鋼結構行為與設計 期末報告

組別:6

組員:M11205310 劉映彤

M11205314 張原嘉

教授:蕭博謙 教授

目錄

_	、 模型配置	l
二	、 基底剪力與側向地震力計算	2
	(一) 地震力參數	2
	(二) 基底剪力	5
	(三) 側向地震力	6
Ξ	、 載重組合選擇	9
四	、 斷面選擇	.10
	(一) 斷面選擇與應力比	.10
	(二) 寬厚比檢核	. 11
五	、 斷面檢核	.14
六	、 設計細節	.15
	(一) 雙層板檢核	.15
	(二) 連續板檢核	.16
	(三) 設計連接尺寸	.18
セ	、 模態分析	.20
	(一) 結構週期	.20
	(二) 結構模態	.20
八	、 層間變位	.22
九	、 非線性側推分析	.24
	(一) 側推曲線	.24
	(二) 層間變位	.25
	(三) X 方向塑鉸分布	.29
	(四) Y 方向塑鉸分布	.31
十	、 非線性歷時分析	.33
	(一) 最大層間變位	.36
	(二) 最大樓層加速度	.38
	(三) 樓層剪力分布	.40
+-	一、 討論與建議	.42

表目錄

表二-1	地震相關參數	3
表二-2	結構物相關參數	3
表二-3	相關參數和數值	6
表二-4	側向地震力計算	7
表三-1	載重組合	9
表四-1	抗彎矩構架斷面選擇	10
表四-2	支承構架斷面選擇	10
表四-3	寬厚比檢核	11
表四-4	梁斷面與柱翼板檢核	12
表四-5	抗彎矩構架柱腹板斷面檢核	12
表四-6	承重構架柱腹板斷面檢核	13
表五-1	強柱弱梁檢核	14
表六-1	雙層板檢核	15
表六-2	連續板寬度設計	16
表六-3	連續板厚度設計	16
表六-4	連續板設計	17
	結構週期	
表八-1	各樓層層間變位	23
表九-1	2%頂層位移之各樓層層間變位	26
	4%頂層位移之各樓層層間變位	
表十-1	各樓層層間變位	37
表十-2	各樓層最大加速度	39
表十-3	各樓層剪力	41

圖目錄

圖	—-1	模型示意圖	1
圖	二-1	Los Angeles (LA)地震相關參數	2
圖	二-2	加速度反應譜	4
圖	二-3	側向地震力配置	8
圖	三-1	載重組合	9
圖	六-1	連續板設計	16
圖	六-2	RBS 連接法之尺寸	18
圖	セ-1	Y 方向模態	20
圖	セ-2	X 方向模態	21
圖	セ-3	扭力方向模態	21
圖	八-1	X 向與 Y 向層間變位	.22
圖	九-1	X 向與 Y 向側推分析曲線	24
圖	九-2	2%頂層位移之 X 向與 Y 向層間變位	.25
圖	九-3	4%頂層位移之 X 向與 Y 向層間變位	.27
圖	九-4	0.5%與 1%頂樓側位移之塑鉸分佈	.29
圖	九-5	1.5%與 2%頂樓側位移之塑鉸分佈	.29
圖	九-6	4%頂樓側位移之塑鉸分佈	30
圖	九-7	0.5%與 1%頂樓側位移之塑鉸分佈	31
圖	九-8	1.5%與 2%頂樓側位移之塑鉸分佈	31
圖	九-9	4%頂樓側位移之塑鉸分佈	.32
圖	+-1	El Centro 地震地表歷時數據	.33
圖	+-2	El Centro 地震地表加速度歷時(X 向)	34
圖	+-3	El Centro 地震地表加速度歷時(Y 向)	34
圖	+-4	475 年回歸期加速度反應譜	35
圖	+-5	原始(藍)與校正後(紅)之加速度反應譜(X 向)	35
圖	+-6	原始(藍)與校正後(紅)之加速度反應譜(Y 向)	35
		X 向與 Y 向層間變位	
圖	+-8	X 向與 Y 向樓層最大加速度	38
圖	+-9	X 向與 Y 向樓層剪力	40

一、模型配置

建物地點:Los Angeles (LA) (34.051283, -118.246637)

風險等級:III

地盤種類:D-Stiff Soil

模型尺寸:如圖一-1 所示,每層樓 4×6 跨,每跨 23ft,樓層高 13ft,共 10 樓。

模型外圍為固端之抗彎矩構架(MRF),內部為鉸接之支承構架(Gravity Frame)。

平面圖

立體圖圖一-1模型示意圖

二、基底剪力與側向地震力計算

(一) 地震力參數

根據 ATC Hazards by Location 網站,可找到相關參數,如圖二-1 所示,將參數整理如表二-1、表二-2 所示。

圖二-1 Los Angeles (LA)地震相關參數

表二-1 地震相關參數

Parameters	Value	Reference
S_S	1.927	By ATC Website
S_1	0.703	By ATC Website
F_a	1	By ATC Website
F_v	1.5	By table 11.4-2, $S_1 \ge 0.5$, Site Class D $F_v = 1.5$
S_{MS}	1.972	By ATC Website
S_{M1}	1.055	By equation $S_{M1} = F_{v}S_{1}$
S_{DS}	1.315	By ATC Website
S_{D1}	0.703	By equation $S_{D1} = \frac{2}{3}S_{M1}$

表二-2 結構物相關參數

Parameters	Value	Reference			
R	8	By ASCE 7, Steel special moment frames			
<i>I_e</i> 1.25 By table 1.5-2, Risk category III, Seismic important		By table 1.5-2, Risk category III, Seismic important factor			
C_d	5.5	By ASCE 7, Steel special moment frames			

1. 計算結構週期(Structural Period)

 $C_t = 0.028, h_n = 130 \text{ft}, x = 0.8$

$$C_u = 1.4$$

$$T_a = C_t h_n^x = 0.028 \times 130^{0.8} = 1.375 \text{ sec}$$

 $T = C_u T_a = 1.4 \times 1.375 = 1.925 \text{ sec}$

Let
$$T = T_a = 1.375 \text{ sec}$$

$$T_0 = 0.2 \frac{S_{D1}}{S_{DS}} = 0.107 \text{sec}$$

$$T_s = \frac{S_{D1}}{S_{Ds}} = \frac{0.703}{1.315} = 0.535 \text{ sec}$$

 $T_L = 8 \text{ sec (From ATC Hazards)}$

2. 計算反應譜加速度(Spectral Response Acceleration)

$$T_s < T < T_L$$
,如圖二-2

$$S_a = \frac{S_{D1}}{T} = \frac{0.703}{1.375} = 0.511g$$

圖二-2 加速度反應譜

(二) 基底剪力

1. 計算建物有效重量(Effective Weight of the Building)

Dead Load =
$$120 \text{ psf}$$

$$W = 120 \times (23 \times 23) \times (4 \times 6) \times 10/1000 = 15235.2$$
kips

2. 計算每層樓質量(Floor Mass at Each Floor Level)

$$m_x = W/g = \frac{15235.2/10}{32.174 \text{ ft/s}^2} = 47.352 \text{ kips} \cdot \text{s}^2/\text{ft}$$

3. 計算地震反應係數(Seismic Response Coefficient)

$$C_S = \frac{S_{DS}}{R/I_{\rho}} = \frac{1.315}{8/1.25} = 0.205$$

$$C_{S,max} = \frac{S_{D1}}{T \times R/I_e} = \frac{0.703}{1.375 \times R/1.25} = 0.07989$$

$$C_{S,min} = 0.044 S_{DS} I_e = 0.044 \times 1.315 \times 1.25 = 0.0723 \ge 0.01$$

Because
$$S_1 = 0.703 > 0.2$$
 and $T = 1.375$ sec $> 1.5T_s = 0.802$ sec

$$C_S = 1.5(0.07989) = 0.119826$$

4. 計算設計基底剪力(Design Base Shear)

$$V = C_S W = 0.119826 \times 15235.2 = 1825.573 \text{ kips}$$

(三) 側向地震力

1. 計算結構週期相關指數(Exponent Related to the Structure Period)

For the structure period $T \le 0.5$ sec, k = 1

$$T \ge 2.5 \sec_{k} = 2$$

so $0.5 \sec \le T = 1.375 \sec \le 2.5 \sec$, by interpolation k = 1.4375

2. 計算垂直分布係數(Vertical Distribution Factor)

$$C_{vx} = \frac{w_x h_n^k}{\sum_{i=1}^n w_i h_n^i}$$
, In ASCE 7, $\begin{cases} T \le 0.7 \text{sec}, F_t = 0 \\ T > 0.7 \text{sec}, F_t = 0.07 TV \end{cases}$

$$T = 1.375 \text{ sec} > 0.7 \text{ sec}, F_t = 0.07 \times 1.375 \times 1825.573 = 175.072 \text{ kips}$$

$$F_x = C_{vx} \times (V - F_t) = C_{vx} \times 1650.500$$

3. 計算每層樓設計剪力(Corresponding Design Story Shear)

$$V_{x} = \sum_{i=1}^{n} F_{i}$$

將上述計算的參數和數值整理成表格,如表二-3 所示,計算側向地震力如表二-4 所示,將計算出各樓層之側向地震力繪製如圖二-3 所示。

Parameters	Value		
T	1.375 sec		
S_a	0.511g		
W	15235.2 kips		
m_{χ}	47.352 kips·s²/ft		
C_S	0.119826		
V	1825.573 kips		
k	1.4375		

表二-3 相關參數和數值

表二-4 側向地震力計算

Story	$w_{\chi}(kips)$	$h_{\chi}(\mathrm{ft})$	$w_x h_n^x$	C_{vx}	$F_{\chi}(kips)$	$V_x(kips)$
10	1523.520	130.000	1665994.019	0.217	532.834	
9	1523.520	117.000	1431846.159	0.186	307.480	532.834
8	1523.520	104.000	1208826.134	0.157	259.588	840.315
7	1523.520	91.000	997699.023	0.130	214.250	1099.902
6	1523.520	78.000	799397.034	0.104	171.666	1314.152
5	1523.520	65.000	615089.486	0.080	132.087	1485.818
4	1523.520	52.000	446301.870	0.058	95.841	1617.904
3	1523.520	39.000	295139.542	0.038	63.379	1713.745
2	1523.520	26.000	164775.854	0.021	35.385	1777.124
1	1523.520	13.000	60835.690	0.008	13.064	1812.509
Base	0.000	0.000	0.000	0.000	0.000	1825.573
Total	15235.200	715.000	7685904.811	1.000	1825.573	14019.877

圖二-3 側向地震力配置

三、載重組合選擇

圖三-1 載重組合 表三-1 載重組合

COMBO	Load
0	1.4(DL)
1	1.4(DL + SPDL)
2	1.2(DL + SPDL) + 1.6LL
3	1.2(DL + SPDL) + 1.0LL + 1.0Ex+
4	1.2(DL + SPDL) + 1.0LL + 1.0Ex
5	1.2(DL + SPDL) + 1.0LL + 1.0Ey+
6	1.2(DL + SPDL) + 1.0LL + 1.0Ey
7	1.2(DL + SPDL) + 1.0LL - 1.0Ex+
8	1.2(DL + SPDL) + 1.0LL - 1.0Ex
9	1.2(DL + SPDL) + 1.0LL - 1.0Ey+
10	1.2(DL + SPDL) + 1.0LL - 1.0Ey
11	0.9(DL + SPDL) + 1.0LL + 1.0Ex+
12	0.9(DL + SPDL) + 1.0LL + 1.0Ex
13	0.9(DL + SPDL) + 1.0LL + 1.0Ey+
14	0.9(DL + SPDL) + 1.0LL + 1.0Ey
15	0.9(DL + SPDL) + 1.0LL - 1.0Ex+
16	0.9(DL + SPDL) + 1.0LL - 1.0Ex
17	0.9(DL + SPDL) + 1.0LL - 1.0Ey+
18	0.9(DL + SPDL) + 1.0LL - 1.0Ey

四、斷面選擇

(一) 斷面選擇與應力比

在抗彎矩構架和支承構架的 1~10 樓中,分別選擇相同的梁斷面。而在 1~5 樓和 6~10 樓的抗彎矩構架與支承構架中,分別選擇相同的柱斷面,以確保結構不會發生應力集中。具體斷面選擇如表四-1 與表四-2 所示。

	表四-1 抗穹矩構架斷面選择							
Story	Room	Beam Stress		External Stress		Stress		
Story	Deam	Ratio	Column	Ratio	Column	Ratio		
10		0.056~0.090	BH 36x30x1.5x2.4	0.049~0.057		0.075~0.085		
9		0.100~0.135		0.062~0.067	BH 36x30x1.5x2.4	0.090~0.099		
8		0.154~0.183		0.078~0.088		0.130~0.136		
7		0.204~0.231		0.097~0.111		0.165~0.170		
6		0.248~0.272		0.123~0.140		0.195~0.197		
5	BH 36x18x1.3x1.75	0.283~0.304		0.208~0.233		0.204~0.205		
4		0.307~0.326		0.265~0.295		0.222~0.224		
3		0.314~0.337	BH 36x32x1.5x2.4	0.325~0.359	BH 36x32x1.5x2.4	0.239~0.244		
2		0.299~0.326		0.383~0.422		0.259~0.268		
1		0.236~0.262		0.431~0.475		0.298~0.303		

表四-1 抗彎矩構架斷面選擇

表四-2 支承構架斷面選擇

Story	Beam	Stress Ratio	Column	Stress Ratio
10		0.131 ~ 0.204		0.046 ~ 0.061
9		0.129 ~ 0.202		$0.075 \sim 0.084$
8		0.129 ~ 0.202	W12 x 336 W14 x 370	0.107 ~ 0.116
7		0.129 ~ 0.201		$0.225 \sim 0.232$
6	W12 126	0.129 ~ 0.200		0.279 ~ 0.286
5	W12 x 136	0.128 ~ 0.200		0.305 ~ 0.312
4		0.128 ~ 0.200		0.355 ~ 0.361
3		0.128 ~ 0.199		0.406 ~ 0.412
2		0.128 ~ 0.199		0.462 ~ 0.472
1		0.128 ~ 0.198		$0.506 \sim 0.522$

(二) 寬厚比檢核

根據 AISC 341-16 表 D1.1 可得公式如表四-3,計算出臨界寬厚比。

表四-3 寬厚比檢核

	梁	柱							
翼板	$\frac{b_f}{2t_f} \le 0.32 \sqrt{\frac{E}{R_y F_y}} = 0.32 \sqrt{\frac{29000}{(1.1)(50)}} = 7.348$								
腹板	For $C_a = 0 \le 0.114$ $\frac{h_w}{t_w} \le 2.57 \sqrt{\frac{E}{R_y F_y}} (1 - 1.04C_a)$ $\rightarrow \frac{h_w}{t_w} \le 2.57 \sqrt{\frac{29000}{(1.1)(50)}} = 59.013$	"							

將梁斷面與柱翼板檢核整理如表四-4所示;抗彎矩構架與承重構架柱腹板 斷面檢核整理分別如表四-5與表四-6所示。

表四-4 梁斷面與柱翼板檢核

		梁				柱	
		翼	板	腹	板	板 翼	
Story		$\frac{b_f}{2t_f}$	Upper Limit	$\frac{h_w}{t_w}$	Upper Limit	$\frac{b_f}{2t_f}$	Upper Limit
MDE	6-10F	5.142	7.348	25.00	59.013	6.670	7.348
MRF	1-5F	5.142	7.348	25.00	59.013	6.250	7.348
Gravity	6-10F	4.960	7.348	13.79	59.013	2.263	7.348
Frame	1-5F	4.960	7.348	13.79	59.013	3.101	7.348

表四-5 抗彎矩構架柱腹板斷面檢核

Story	P_u	$\frac{P_u}{\emptyset_c P_y}$	Compare with 0.114	$\frac{h_w}{t_w}$	$0.88\sqrt{\frac{E}{R_y F_y}} \left(2.68 - \frac{P_u}{\emptyset_c P_y} \right)$	Upper/ Lower Limit
10	130.52	0.013	Less	20.800		58.210
9	284.54	0.030	Less	20.800		57.160
8	465.81	0.049	Less	20.800		56.000
7	672.54	0.071	Less	20.800		54.650
6	901.21	0.095	Less	20.800		53.180
5	1148.57	0.115	Greater		51.810	36.051
4	1408.74	0.142	Greater		51.260	36.051
3	1676.59	0.169	Greater		50.720	36.051
2	1941.36	0.195	Greater		50.190	36.051
1	2173.67	0.219	Greater		49.710	36.051

表四-6 承重構架柱腹板斷面檢核

Story	P_u	$\frac{P_u}{\emptyset_c P_y}$	Compare with 0.114	$\frac{h_w}{t_w}$	$0.88\sqrt{\frac{E}{R_y F_y}}\left(2.68 - \frac{P_u}{\emptyset_c P_y}\right)$	Upper/ Lower Limit
10	243.04	0.049	Less	6.110		56.000
9	485.71	0.099	Less	6.110		52.930
8	728.05	0.148	Greater		51.140	36.051
7	969.86	0.198	Greater		50.130	36.051
6	1212.6	0.247	Greater		49.140	36.051
5	1456.15	0.269	Greater		48.700	36.051
4	1700.11	0.315	Greater		47.770	36.051
3	1944.94	0.360	Greater		46.860	36.051
2	2196.97	0.407	Greater		45.910	36.051
1	2452.24	0.454	Greater		44.960	36.051

根據表四-4、表四-5與表四-6的計算結果,梁、柱斷面皆符合檢核要求。

五、斷面檢核

根據 AISC 341-16,檢核抗彎矩構架梁與柱彎矩比值之公式:

$$\frac{\sum M^*_{pc}}{\sum M^*_{pb}} > 1.0$$

$$\sum {M^*}_{pc} = \sum Z_c \left(F_{yc} - \frac{\alpha_s P_r}{A_g} \right)$$
, $\alpha_s = 1.0$ in LRFD

$$M_p = F_y Z_x, M_{pr} = 1.1 R_y M_p, V_{beam} = \frac{2 M_{pr}}{L_h}$$

$$\sum {M^*}_{pb} = \sum \left(M_{pr} + \alpha_s M_v \right) = \sum \left[M_{pr} + \alpha_s V_{beam} \left(s_h + \frac{d_{col}}{2} \right) \right]$$

表五-1 強柱弱梁檢核

Story		M^*_{pc} (kip · in)	M^*_{pb} (kip · in)	M^*_{pc}/M^*_{pc}
MDE	6-10F	252125~274615	215933	1.167~1.271
MRF	1-5F	238504~268739	215933	1.104~1.244
Gravity	6-10F	45513~57336	30491	1.492~1.880
Frame	1-5F	40483~53935	30605	1.322~1.762

根據表五-1的計算結果,梁、柱斷面彎矩之比值 M^*_{pc}/M^*_{pb} 皆符合檢核要求。

六、設計細節

(一) 雙層板檢核

$$\begin{split} M_p &= F_y Z_x, M_{pr} = 1.1 R_y M_p \\ V_{beam} &= \frac{2 M_{pr}}{L_h}, M_f = 2 \big(M_{pr} + V_{beam} \times S_h \big) \\ V_c &= \frac{2 \big[M_{pr} + V_{beam} \times (S_h + d_c/2) \big]}{h_{story}} \\ &\sum M_{\epsilon} \end{split}$$

$$R_u = \frac{\sum M_f}{(d_b - t_b)} - V_c, R_u \le \emptyset_v R_v \text{ where } \emptyset_v = 1.0$$

$$R_v = 0.6 F_y d_c t_p \left[1 + \frac{3 b_{cf} t_{cf}^2}{d_b d_c t_p} \right]$$
, the thickness of doubler plate

根據 AISC 341-16 的規定,雙層板的厚度需大於下限公式:

$$t \ge \frac{d_z + w_z}{90}$$

表六-1 雙層板檢核

St	ory	R_u (kips)	R_{v} (kips)	t_p (in.)	Doubler Plate (in.)	Lower Limit $\frac{d_z + w_z}{90}$
MDE	6-10F	4192.271	2052.000	3.481	1.981	0.707
MRF	1-5F	4192.271	2080.800	3.454	1.954	0.707
Gravity	6-10F	2169.962	1685.664	2.740	0.960	0.242
Frame	1-5F	2169.227	1675.544	2.578	0.918	0.260

根據表六-1 的計算結果,雙層板的厚度均大於下限 0.707,符合檢核要求。 因此可以得出以下結論:

抗彎矩構架中,1-5層需使用 1.954 in.的雙層板

,6-10 層需使用 1.981 in.的雙層板;

承重構架中,1-5層需使用 0.918 in.的雙層板

,6-10 層需使用 0.960 in.的雙層板。

(二) 連續板檢核

圖六-1 連續板設計

根據 AISC 341-16 的規定,當柱翼板厚度小於標準時,梁柱接頭必須使用連續板。公式如下:

$$t_{cf} = 2.4$$
in. $< \frac{b_{bf}}{6} = \frac{18}{6} = 3$ in. \rightarrow Continuity plates required.

規範中規定之連續板規格如表六-2與表六-3所示。

 $\frac{b_{bf}-t_{cw}}{2}$ $\frac{b_{cf}-t_{cw}}{2}$ Design **Story** Width **Lower Limit Upper Limit** 6-10F 8.25 9 14.25 **MRF** 8.25 15.25 9 1-5F

表六-2 連續板寬度設計

表六-3 連續板厚度設計

Story		Lower	Design	
		$0.5t_{bf}$	$0.75t_{bf}$	Thickness
MRF	Interior		1.312	1.5
1-10F	External	0.875		0.9

表六-4 連續板設計

Story		Width (in.)	Thickness (in.)	Full Depth (in.)	Configuration (in.)
MRF	Interior	9	1.5	31.2	Two plates 1.5 x 9 x 31.2
1-10F	External	9	0.9	31.2	Two plates 0.9 x 9 x 31.2

依據表六-2 與表六-3 設計連續板規格如表六-4 所示,在抗彎矩構架之內部 梁柱接頭兩側使用 $1.5 \times 9 \times 31.2$ in.的連續板;外部梁柱接頭兩側使用 $0.9 \times 9 \times 31.2$ in.的連續板。

(三) 設計連接尺寸

在梁與柱的連接中,參考 AICS 358-16 規範,使用減弱梁段連接法(Reduced Beam Section, RBS)。這種方法通過減少梁的截面積,使梁在 RBS 區域的彎曲強度低於相鄰區域,從而導致塑鉸在此區域形成,避免脆性斷裂。RBS 連接法之尺寸細節如圖六-2 所示。

圖六-2 RBS 連接法之尺寸

AICS 358-16 規範中, RBS 連接法之相關限制:

▶ 梁限制

- 1. 梁深度 = 36 in. ≤ 36 in. ······ (OK)
- 2. $t_{bf} = 1.75 \text{in.} \le 1^3/_4 \text{in.} \cdots \cdots (0 \text{K})$
- 3. 梁淨跨度高與深度之比值 = $\frac{23(12)}{36}$ = 7.667 in. ≥ 7 in. ······ (OK)

▶ 柱限制

- 1. 柱深度 = 36 in. ≤ 36 in. ······ (OK)
- ▶ 寬厚比限制
 - 1. 梁與柱之翼板及腹板的寬厚比符合 AISC 規定要求。

設計流程:

步驟 1.
$$b_{bf}=18 \text{ in.}, d=36 \text{ in.}$$

$$0.5b_{bf} \leq a \leq 0.75b_{bf} \qquad 9 \leq a \leq 13.5 \qquad \text{Choose} \qquad a=9 \text{ in.}$$

$$0.65d \leq b \leq 0.85d \qquad 23.4 \leq b \leq 30.6 \qquad b=24 \text{ in.}$$

$$0.1b_{bf} \leq c \leq 0.25b_{bf} \qquad 1.8 \leq c \leq 4.5 \qquad c=4.5 \text{ in.}$$
步驟 2. $Z_{RBS}=Z_x-2ct_{bf}(d-t_{bf})$

$$=1422.158-2(4.5)(1.75)(36-1.75)=882.72 \text{ in}^2$$
步驟 3. $M_{pr}=C_{pr}R_yF_yZ_{RBS}=1.15(1.1)(50)(882.72)=55832.04 \text{ kip} \cdot \text{in}$
步驟 4. $M_f=M_{pr}+V_{RBS}S_h=55832.04+448.989(21)=65260.8 \text{ kip} \cdot \text{in}$
步驟 5. $M_{pe}=R_yF_yZ_x=1.1(50)(1422.158)=78218.8 \text{ kip} \cdot \text{in}$
步驟 6. $M_f=65260.8 \text{ kip} \cdot \text{in} \leq \emptyset_d M_{pe}=78218.8 \text{ kip} \cdot \text{in} \cdots (OK)$

七、模態分析

(一) 結構週期

根據 ASCE 7-10 規範,結構週期檢核公式:

$$T = 1.187 \text{ sec} < C_u T_a = 1.4 \times 1.375 = 1.925 \text{ sec}$$
 OK

表七-1 結構週期

Case	Mode	Period (sec)	Frequency (cyc/sec)	CircFreq (rad/sec)	Eigenvalue (rad²/sec²)
Modal	1	1.187	0.842	5.293	28.079
Modal	2	1.185	0.844	5.304	28.137
Modal	3	0.755	1.324	8.320	69.213

(二) 結構模態

第一模態:Y方向

圖七-1 Y 方向模態

第二模態: X 方向

圖七-2 X 方向模態

第三模態: 扭力

圖七-3 扭力方向模態

八、層間變位

根據 ASCE 7-10 規範,層間變位檢核公式:

$$\delta_{ANA} \le \delta_{xe} = \frac{I_e \delta_x}{C_d} = 0.00341$$

圖八-1 X 向與 Y 向層間變位

表八-1 各樓層層間變位

C.	Elevation	T 4.	X-Dir Seis	mic Force	Y-Dir Seismic Force	
Story	(ft)	Location	X-Dir	Y-Dir	X-Dir	Y-Dir
10	130	Тор	0.001124	0.000017	0.000016	0.001093
9	117	Тор	0.001594	0.000006	0.000003	0.001585
8	104	Тор	0.002102	0.000006	0.000002	0.002097
7	91	Тор	0.002540	0.000006	0.000001	0.002539
6	78	Тор	0.002895	0.000007	0.000002	0.002899
5	65	Тор	0.003119	0.000007	0.000001	0.003116
4	52	Тор	0.003259	0.000007	0.000001	0.003263
3	39	Тор	0.003256	0.000010	0.000001	0.003264
2	26	Тор	0.002916	0.000002	0.000006	0.002957
1	13	Тор	0.001700	0.000005	0.000009	0.001689

由圖八-1 與表八-1 可以發現,X 向和 Y 向最大層間變位均發生在第四層樓, 且都小於規範值 0.00341,因此皆符合檢核要求。

九、非線性側推分析

(一) 側推曲線

將塑鉸設置於梁與柱的 0.05 和 0.95 桿件相對位置後,進行側推分析,其曲線如圖九-1 所示。

圖九-1 X 向與 Y 向側推分析曲線

可以發現在設計地震力 V=1825.573 kips 時,X 向與 Y 向側位移量皆為 2.799 in.。當 X 向與 Y 向側位移量為 18 in.時,強度開始下降,相當於 1.15% $(18in./62.4in. <math>\times$ 4%) 的頂樓側位移。

(二) 層間變位

在 2%的頂層位移下進行非線性側推分析,其產生的層間變位曲線如圖九-2 所示,各樓層之層間變位如表九-1 所示。

圖九-22%頂層位移之 X 向與 Y 向層間變位

表九-12%頂層位移之各樓層層間變位

64	Elevation		X-Dir Pushover		Y-Dir Pushover	
Story	(ft)	Location	X-Dir	Y-Dir	X-Dir	Y-Dir
10	130	Тор	0.000230	0.000010	0.000010	0.000218
9	117	Тор	0.000312	0.000014	0.000014	0.000299
8	104	Тор	0.000389	0.000018	0.000018	0.000374
7	91	Тор	0.000453	0.000021	0.000021	0.000436
6	78	Тор	0.000503	0.000023	0.000023	0.000485
5	65	Тор	0.000534	0.000025	0.000024	0.000514
4	52	Тор	0.000552	0.000025	0.000025	0.000532
3	39	Тор	0.000547	0.000025	0.000025	0.000528
2	26	Тор	0.000490	0.000023	0.000023	0.000475
1	13	Тор	0.000287	0.000014	0.000014	0.000273

由圖九-2 與表九-1 可以發現,在 2%的頂層位移下進行非線性側推分析時, X 向和 Y 向的最大層間位移均發生在第四層樓。 在 4%的頂層位移下進行非線性側推分析,其產生的層間變位曲線如圖九-3 所示,各樓層之層間變位如表九-2 所示。

圖九-34%頂層位移之X向與Y向層間變位

表九-24%頂層位移之各樓層層間變位

C4	Elevation		X-Dir Pushover		Y-Dir Pushover	
Story	(ft)	Location	X-Dir	Y-Dir	X-Dir	Y-Dir
10	130	Тор	0.000460	0.000021	0.000020	0.000436
9	117	Тор	0.000624	0.000028	0.000028	0.000597
8	104	Тор	0.000778	0.000036	0.000035	0.000747
7	91	Тор	0.000906	0.000042	0.000041	0.000871
6	78	Тор	0.001007	0.000046	0.000046	0.000969
5	65	Тор	0.001068	0.000049	0.000049	0.001027
4	52	Тор	0.001104	0.000051	0.000051	0.001064
3	39	Тор	0.001093	0.000051	0.000050	0.001056
2	26	Тор	0.000979	0.000046	0.000046	0.000949
1	13	Тор	0.000574	0.000027	0.000027	0.000546

由圖九-3 與表九-2 可以發現,在 4%的頂層位移下進行非線性側推分析時, X 向和 Y 向的最大層間位移均發生在第四樓層。

(三) X 方向塑鉸分布

圖九-40.5%與1%頂樓側位移之塑鉸分佈

圖九-5 1.5%與 2%頂樓側位移之塑鉸分佈

圖九-64%頂樓側位移之塑鉸分佈

由圖九-4 可以發現,在頂樓側向位移達到 1%之前,沒有出現塑鉸;當位移達到 1.5%時,如圖九-5 所示,一樓至六樓皆產生了塑鉸,這表明在達到 1.5%頂樓側位移之前強度就已經開始下降,與側推曲線的觀察結果一致。當位移達到 4%時,如圖九-6 所示,塑性鉸已發展到第九樓層,但第十樓層仍未出現塑性鉸,其中,值得注意的是當頂樓側向位移達到 2%時,如圖九-5,在二樓柱子底部出現了塑鉸,表示柱子強度不足。

(四) Y 方向塑鉸分布

圖九-70.5%與1%頂樓側位移之塑鉸分佈

圖九-81.5%與2%頂樓側位移之塑鉸分佈

圖九-94%頂樓側位移之塑鉸分佈

Y方向的塑鉸發展與X方向相似。

十、非線性歷時分析

根據 PEER 地震資料庫,此節選用 1940 年在加利福尼亞州南部發生的 El Centro 地震來做非線性歷時分析,地表加速度歷時數據如圖十-1 所示,將數據繪製如圖十-2 與圖十-3 所示。

圖十-1 El Centro 地震地表歷時數據

圖十-2 El Centro 地震地表加速度歷時(X 向)

圖十-3 El Centro 地震地表加速度歷時(Y 向)

繪製出設計基礎水準(Design-Based Level)之 475 年回歸期加速度反應譜如圖十-4 所示,並使用 ETABS 功能,將原始加速度反應譜如圖十-5 與圖十-6 中之藍色線乘以等效倍數,使之與 475 年回歸期加速度反應譜相似,如圖十-5 與圖十-6中之紅色線。

圖十-4 475 年回歸期加速度反應譜

圖十-5 原始(藍)與校正後(紅)之加速度反應譜(X向)

圖十-6 原始(藍)與校正後(紅)之加速度反應譜(Y向)

(一) 最大層間變位

圖十-7X向與Y向層間變位

表十-1 各樓層層間變位

Story	Elevation (ft)	X-Dir	Y-Dir
10	130	0.003024	0.003175
9	117	0.004402	0.004701
8	104	0.005984	0.006450
7	91	0.007450	0.008018
6	78	0.008715	0.009129
5	65	0.009655	0.009720
4	52	0.010309	0.010458
3	39	0.010419	0.011224
2	26	0.009306	0.010516
1	13	0.005381	0.006062

由圖十-7可以發現,在非線性分析下,X 向和 Y 向層間變位隨著樓層增加而增加,在第三層樓達到最大值,之後逐層遞減至最高樓層。將數據整理如表十-1 所示。

(二) 最大樓層加速度

圖十-8 X 向與 Y 向樓層最大加速度

表十-2 各樓層最大加速度

Story	Elevation (ft)	X-Dir (in./sec²)	Y-Dir (in./sec ²)
10	130	373.948	364.643
9	117	332.591	310.042
8	104	309.396	325.251
7	91	266.335	284.937
6	78	244.47	265.738
5	65	223.792	322.135
4	52	239.777	322.981
3	39	222.692	246.921
2	26	182.729	177.216
1	13	189.095	159.893

由圖十-8 可以發現,在非線性分析下,X向和Y向樓層最大加速度皆隨著樓層增加而增加,這是合理的。將各樓層數據整理如表十-2 所示。

(三) 樓層剪力分布

圖十-9 X 向與 Y 向樓層剪力

表十-3 各樓層剪力

Story	Elevation (ft)	X-Dir (kips)	Y-Dir (kips)
10	130	1357.407	1981.747
9	117	3137.564	3901.019
8	104	4889.720	5445.413
7	91	6114.814	6449.419
6	78	6783.177	6897.094
5	65	7783.089	7619.272
4	52	8621.436	9025.905
3	39	9326.020	10119.277
2	26	9841.671	10815.761
1	13	10070.777	11085.612

由圖十-9可以發現,在非線性分析下,X向和Y向樓層剪力逐層遞減至最高樓層,這與預期相符,表明先前的地震歷時分析是合理的。將數據整理如表十-3所示。

十一、討論與建議

- 1. 當頂樓側向位移達到 2%時,在二樓柱子底部出現了塑鉸,表示柱子強度不足。 建議加大截面以提高強度。
- 2. 在選擇抗彎矩構架所需之雙層板時,尺寸過大,需用到厚度約 2in.的雙層板, 可能代表本次選用的斷面過大,需要更大的雙層板來維持結構穩定。
- 3. 在斷面選擇上,應力比普遍偏小,大部分在 ETABS 上顯示為淺藍色至灰色, 這表明本次的截面設計較為保守,經濟性不高。
- 4. 由於本次模型皆使用抗彎矩構架(MRF),為確保層間變位不超過規定值 0.00341,梁與柱均採用大截面設計。然而,建議可以使用特殊同心支撐框架 (SCBF),這或許可以提升經濟性。