

IUBAT – International University of Business Agriculture and Technology

Assignment No: 3

Title of Assignment:

Program for Turing Machine capable of recognizing the language 1^n0^n where $n{>}0$

Course Name: Theory of Computation Course Code: CSC 397

Submitted To:

Dr. Ehteshamul Haque Faculty, Dept. of CSE

Submitted By:

Naimul Ferdous ID: 13303042 Sec-C, CSC397

Submission Date: 20.11.2017

Formal definition of Turing Machine (TM)

A Turing Machine is a 7-tuple (Q, Σ , Γ , δ , q_0 , q_{accept} , q_{reject}), where Q, Σ , Γ are all finite sets and

- 1. Q is the set of states,
- 2. \sum is the input alphabet not containing the blank symbol B,
- 3. Γ is the tape alphabet, where $B \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- 4. $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5. $q_0 \in Q$ is the start state,
- 6. $q_{accept} \in Q$ is the accept state, and
- 7. $q_{reject} \in Q$ is the reject state, where $q_{reject} \neq q_{accept}$.

State Diagram

Here,

1.
$$Q = \{q_0, q_1, q_2, q_3, q_4\}$$

2.
$$\Sigma = \{0, 1\}$$

3.
$$\Gamma = \{0, 1, X, Y, B\}$$

4.
$$q_s = q_0$$

5.
$$q_{accept} = \{q_4\}$$

6.
$$q_{reject} = \{ \emptyset \}$$

7. δ is given by the following transition table

Transition Table:

States\ Tape Symbols	0	1	X	Y	В
$ ightarrow q_0$	Ø	(q ₁ , X, R)	Ø	(q ₃ , Y, R)	Ø
q ₁	(q ₂ , Y, L)	(q ₁ , 1, R)	Ø	(q ₁ , Y, R)	Ø
q ₂	Ø	$(q_2, 1, L)$	(q ₀ , X, R)	(q ₂ , Y, L)	Ø
q ₃	Ø	Ø	Ø	(q ₃ , Y, R)	(q ₄ , B, R)
*q4	Ø	Ø	Ø	Ø	Ø

Program

```
#include<stdio.h>
#define BlankSpace '\0'
int main()
  char inpstr[50];
  int head, state;
  printf("Enter String: ");
  scanf("%s",inpstr);
  state=0;
  head=0;
  printf("\n");
  printf("%s", inpstr);
  while(1)
     if(state==0)
       if(inpstr[head]=='1')
          state=1;
          inpstr[head++]='X';
       else if(inpstr[head]=='Y')
          state=3;
          inpstr[head++]='Y';
       else
          state=5;
          break;
     else if(state==1)
       if(inpstr[head]=='1')
          state=1;
          inpstr[head++]='1';
       else if(inpstr[head]=='Y')
```

```
state=1;
    inpstr[head++]='Y';
  else if(inpstr[head]=='0')
     state=2;
    inpstr[head--]='Y';
  else
     state==5;
     break;
else if(state==2)
  if(inpstr[head]=='1')
     state=2;
    inpstr[head--]='1';
  else if(inpstr[head]=='Y')
     state=2;
    inpstr[head--]='Y';
  else if(inpstr[head]=='X')
     state=0;
    inpstr[head++]='X';
  }
  else
     state=5;
     break;
else if(state==3)
  if(inpstr[head]=='Y')
     state=3;
    inpstr[head++]='Y';
  else if(inpstr[head]==BlankSpace)
```

```
state=4;
       inpstr[head]=BlankSpace;
        break;
     else
       state=5;
        break;
   else
     state=5;
     break;
}
if(state==4)
   printf("
            Accepted");
else
  printf(" Rejected");
printf("\n");
return 0;
```

I/O:

Input: **11110000** Output: **Accepted**

Input: **000111**

Output: Rejected

Input: **111100**

Output: Rejected