CHAPITRE II: NOMBRES COMPLEXES

www.ecoles-rdc.net

• I! Soit
$$z_1 = 1 + 3i$$
; $z_2 = 1 + i$ et $\frac{1}{z} = \frac{1}{z_1} + \frac{1}{z_2}$ alors

)1.
$$z = 2 + 4i$$
 2. $z = 6 - 8i$ 3. $z = 0,6 - 8i$ 4. $z = -2 + 4i$

- 2. Soit le nombre complexe z = -1 + i; sur votre feuille de brouillon, faites les opérations demandées ci-dessous et identifiez les réponses que vous croyez bonnes parmi celles qui sont proposées.
 - a. 1'argument de z vaut a_1 . $\theta = 135^\circ$; a_2 . $\theta = -45^\circ$; a_3 . $\theta = 225^\circ$

b. le cube de z vaut b₁ .
$$z^3 = \sqrt{2}$$
 (cos 135° + i sin 135°); b₂ · $z^3 = \sqrt{8}$

$$[\cos(-45^\circ) + i\sin(-45^\circ)]$$
; $b_3 \cdot Z^3 = 2\sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$

c. une des racines carrées de z vaut
$$C_1 \cdot \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4}\right)$$
;

$$C_2$$
: $\sqrt{2}$ (cos 67°30′ +i sin 67°30′); C_3 : $\sqrt{2}$ (cos 22°30′+i sin 22°30′)

2.
$$a_1 b_2 c_2$$
 5. $a_2 b_3 c_3$ 8. $a_3 b_2 c_3$ 7. 3. $a_1 b_2 c_3$ 6. $a_2 b_1 c_3$ 9. $a_3 b_2 c_3$

•3. Le produit des solutions de l'équation
$$x^4 - (8i - 1)x^2 - 8i = 0$$
 est :

1.
$$-1$$
 2. $-8i$ 3. -4 4. $8+2i$ 5. la bonne réponse n'est pas reprise parmi les quatre

1.
$$\sqrt{3} - i$$
 3. $\sqrt{3} - 1 + i(\sqrt{3} + 1)$ 5. 0 6. $\sqrt{3}$

2.
$$\sqrt{3} - i\sqrt{3}$$
 4. I (MB – 76)

5. Déterminer le complexe opposé à
$$z = cos(-210^\circ) + i sin(-210^\circ)$$

3.
$$\cos 210^{\circ} + i \sin 210^{\circ}$$
 4. $\cos 330^{\circ} - i \sin 330^{\circ}$

(05(-a) = C059 (05(-a) = -1-59 Cos 2 10 - 8 2 200