Data Enginering Project

Tokyo Olympic - AZURE).

Réalisé par :

Boujbair Oussamae

Supervisé par :

MOI MM

DEMOS

07 DEC 2023 Rabat, Maroc CONTENTS

Contents

1	Pro	ject architecture
2	Dat	a Source (GitHub Repo)
	2.1	GitHub: 5 files
3	Azu	
	3.1	Création compte de stockage
	3.2	Création conteneur:
	3.3	Data Factory
	3.4	Azure Databricks
	3.5	Azure synapse analytics

1 Project architecture

Voici l'architecture du projet:

2 Data Source (GitHub Repo)

2.1 GitHub: 5 files

On a crée un repo sur github et on a charger 5 fichiers qu'on va exploiter par la suite:

3 Azure

3.1 Création compte de stockage

3.2 Création conteneur:

On crée un conteneur et on crée deux fichiers raw-data et transform data dans ce conteneur.

3.3 Data Factory 3 AZURE

3.3 Data Factory

On importe les données de la source (github repo) dans data lake gen 2 (raw-data), on utilisant lien HTTP. Data factory permet d'ingester les données from diff sources, dans notre cas c'est github repo.

3.4 Azure Databricks

On crée un noutebook sur Databricks pour transformer les données.

On import les données de data lake gen 2 (Raw-data) avec script pyspark et on fait les transformations neccessaires et on charge les données transformées dans data lake gen 2 (transform data)

3.5 Azure synapse analytics

On crée un compte azure synapse analytics et on importe les données transformées from data lake gen 2 (transform data) et on fais les analyses necessaires avec des requetes SQL, et on des visualisations.

FIN