Stratégie et sélectivité en chimie organique

Agrégation

Molécule cible : paracétamol

2 voies réactionnelles envisageables

Voie réactionnelle n°1

Voie réactionnelle n°2

Protocole de la synthèse du paracétamol

Para-aminophénol (4-aminophénol)

Anhydride acétique

Paracétamol

Acide acétique

$$5.5g = 5.0.10^{-2}$$
 mol

$$^{-7}$$
,0mL = 7,4 .10⁻² mol

Mise en œuvre du protocole

Chauffage à reflux

Mise en œuvre du protocole

Essorage sous pression réduite

Analyse du produit

Solide Liquide

Spectroscopie: UV-visible, IR,RMN

Chromatographie: sur couche mince ou sur colonne

Température de fusion

Indice de réfraction

Spectre benzoate d'éthyle

Spectre IR du paracétamol

Rendement de la synthèse

	Para-aminophénol + C ₈ H ₄ (NH ₂)O	Anhydride acétique C ₄ H ₆ O ₂	→ Paracétamol C ₈ H ₉ NO ₂	+ acide acétique CH ₃ COOH
Etat initial (en mol)	5,0.10 ⁻²	7,4.10 ⁻²	0	0
Etat intermédiaire (en mol)	5,0.10 ⁻² - x	7,4.10 ⁻² - x	X	X
Etat final (en mol)	0	2,4. 10 ⁻²	5,0.10 ⁻²	5,0.10 ⁻²

$$n_{max} = 5,0.10^{-2} \text{ mol}$$
 \longrightarrow $m_{max} = 7,6g$

Groupe acétal

HO

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Α

Synthèse du dipeptide Ala-Gly

1 protéger le groupe amino du premier acide α -aminé et le groupe carboxyle du deuxième acide α -aminé ;

2 effectuer la réaction entre le groupe carboxyle du premier acide α -aminé et le groupe amino du deuxième acide α -aminé ;

🌕 déprotéger le groupe amino et le groupe carboxyle protégés lors de la première étape.

Ouverture

$$\begin{array}{c} CH_3 \\ H_3C \\ H_3C \\ \end{array}$$

$$\begin{array}{c} H_3C \\ H_3C \\ \end{array}$$

$$\begin{array}{c} H_3C \\ \end{array}$$

$$\begin{array}{c} CH_3 \\ H_3C \\ \end{array}$$

$$\begin{array}{c} CH_3 \\ \end{array}$$

Merci