```
In [14]: # dummy variables
          import matplotlib.pyplot as plt
          import pandas as pd
          import numpy as np
          import statsmodels.api as sm
          import statsmodels.formula.api as smf
In [15]: #Example: automobile data
         #https://www.kaggle.com/toramky/automobile-dataset
          carsdata=pd.read_csv('Automobile_data.csv')
          carsdata.sample(5)
Out[15]:
                                                               num-
                          normalized-
                                              fuel-
                                                                        bodv-
                                                                                drive-
               symboling
                                       make
                                                    aspiration
                                                                 of-
                              losses
                                              type
                                                                         style wheels loc
                                                              doors
          141
                       0
                                 102 subaru
                                                          std
                                                                four
                                                                         sedan
                                                                                  fwd
                                               gas
           37
                       0
                                 106
                                      honda
                                                                two hatchback
                                                                                  fwd
                                                          std
                                               gas
           97
                       1
                                 103
                                      nissan
                                                          std
                                                                                  fwd
                                               gas
                                                                four
                                                                        wagon
           39
                       0
                                  85
                                      honda
                                               gas
                                                          std
                                                                four
                                                                         sedan
                                                                                  fwd
          203
                      -1
                                  95
                                       volvo diesel
                                                        turbo
                                                                four
                                                                         sedan
                                                                                  rwd
         5 rows × 26 columns
In [16]: # categorical variables: fuel-type
         carsdata['city-mpg'].replace('?', np.nan, inplace= True)
          carsdata['fuel-type'].replace('?', np.nan, inplace= True)
          cars=carsdata.dropna()
         #check the summary of 'fuel-type': two levels: gas and diesel
          print(cars['fuel-type'].value counts())
                   185
        gas
                    20
        diesel
        Name: fuel-type, dtype: int64
In [19]: # regression city-mpg~fuel-type, names wouldn't be recogonized in smf.ols
          cars['citympg']=cars['city-mpg']
          cars['fueltype']=cars['fuel-type']
          reg = smf.ols('citympg ~ fueltype', data=cars).fit()
          reg.summary()
```

in the summary it only showed 1 level: gas

```
Out[19]:
```

OLS Regression Results

Dep. Variable:	citympg	R-squared:	0.066
Model:	OLS	Adj. R-squared:	0.061
Method:	Least Squares	F-statistic:	14.23
Date:	Mon, 20 Sep 2021	Prob (F-statistic):	0.000212
Time:	14:11:04	Log-Likelihood:	-668.48
No. Observations:	205	AIC:	1341.
Df Residuals:	203	BIC:	1348.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	30.3000	1.418	21.374	0.000	27.505	33.095
fueltype[T.gas]	-5.6297	1.492	-3.773	0.000	-8.572	-2.687

Omnibus:	17.025	Durbin-Watson:	0.846
Prob(Omnibus):	0.000	Jarque-Bera (JB):	18.937
Skew:	0.668	Prob(JB):	7.73e - 05
Kurtosis:	3.658	Cond. No.	6.25

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [17]: #similarly, drivewheels has 3 levels
    cars['drivewheels']=cars['drive-wheels']
    print(cars['drivewheels'].value_counts())

    fwd 120
    rwd 76
    wd 9
    Name: drivewheels, dtype: int64

In [20]: reg1 = smf.ols('citympg ~ drivewheels', data=cars).fit()
    reg1.summary()

#two levels: fwd, rwd showed up, 4wd as the baseline level doesn't show
```

Out[20]:

OLS Regression Results

Dep. Variable:	citympg	R-squared:	0.324
Model:	OLS	Adj. R-squared:	0.317
Method:	Least Squares	F-statistic:	48.38
Date:	Mon, 20 Sep 2021	Prob (F-statistic):	6.81e - 18
Time:	14:11:09	Log-Likelihood:	-635.31
No. Observations:	205	AIC:	1277.
Df Residuals:	202	BIC:	1287.
Df Model:	2		
Covariance Type:	nonrobust		

P>|t| [0.025 coef std err 0.975] 26.664 23.1111 0.000 19.558 Intercept 1.802 12.825 drivewheels[T.fwd] 5.2056 1.868 2.786 0.006 1.522 8.890 drivewheels[T.rwd] -2.5322 1.906 -1.329 0.185 -6.290 1.225

 Omnibus:
 15.581
 Durbin-Watson:
 1.175

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 19.666

 Skew:
 0.537
 Prob(JB):
 5.36e-05

 Kurtosis:
 4.072
 Cond. No.
 10.2

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [22]: sm.stats.anova_lm(reg1, typ=2) #in anova, it's analysis as a whole # reduce: null model # full: y~drivewheels_fwd+ drivewheels_rwd # notice: df of drivewheels is 2, since there are two parameters to estimate
```

```
        Out [22]:
        sum_sq
        df
        F
        PR(>F)

        drivewheels
        2827.740080
        2.0
        48.379345
        6.809467e-18

        Residual
        5903.381871
        202.0
        NaN
        NaN
```

```
In [23]: # same for MLR with categorical variables
    cars['enginesize']=cars['engine-size']
    reg2 = smf.ols('citympg ~ enginesize+ drivewheels + fueltype', data=cars).fi
    reg2.summary()
```

Out[23]:

OLS Regression Results

Dep. Variable:	C	citympg	R	t-square	ed: (0.599
Model:		OLS	Adj. R	-square	ed:	0.591
Method:	Least S	Squares	F	-statist	ic:	74.59
Date:	Mon, 20 Se	ep 2021	Prob (F	-statisti	c): 1.36	Se-38
Time:	1	4:16:28	Log-L	.ikelihoo	od: -5	81.84
No. Observations:		205		Α	IC:	1174.
Df Residuals:		200		В	IC:	1190.
Df Model:		4				
Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]
Intercept	38.9139	1.954	19.911	0.000	35.060	42.768
drivewheels[T.fwd]	4.5714	1.449	3.156	0.002	1.715	7.428
drivewheels[T rwd]	0 2171	1537	0 141	0.888	-2 813	3 247

Intercept	38.9139	1.954	19.911	0.000	35.060	42.768
drivewheels[T.fwd]	4.5714	1.449	3.156	0.002	1.715	7.428
drivewheels[T.rwd]	0.2171	1.537	0.141	0.888	- 2.813	3.247
fueltype[T.gas]	-7.0471	0.994	- 7.090	0.000	- 9.007	- 5.087
enginesize	-0.0795	0.009	-9.319	0.000	-0.096	-0.063

 Omnibus:
 33.046
 Durbin-Watson:
 1.095

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 84.717

 Skew:
 0.689
 Prob(JB):
 4.02e-19

 Kurtosis:
 5.832
 Cond. No.
 1.19e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.19e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In [24]: sm.stats.anova_lm(reg2, typ=2)

Out[24]:

	sum_sq	df	F	PR(>F)
drivewheels	699.332669	2.0	19.958355	1.250114e - 08
fueltype	880.634747	1.0	50.265123	2.260697e - 11
enginesize	1521.368276	1.0	86.837095	2.213074e - 17
Residual	3503.959410	200.0	NaN	NaN

```
sm.stats.anova_lm(reg2, typ=2)
In [10]:
Out[10]:
                                                 F
                          sum_sq
                                     df
                                                         PR(>F)
          drivewheels
                      699.332669
                                     2.0 19.958355 1.250114e-08
             fueltype
                       880.634747
                                         50.265123 2.260697e-11
           enginesize
                                     1.0 86.837095 2.213074e-17
                     1521.368276
             Residual 3503.959410 200.0
                                              NaN
                                                           NaN
In [13]: # when the variable is categorical, but the levels are incidated as numbers
         # or if you want to analyze an ordinal variable as categorical
         # we can "force" it to be categorical using "C()" in smf.ols
          credit = pd.read_csv("Credit.csv")
          credit.sample(5)
Out[13]:
               Unnamed:
                                  Limit Rating Cards Age Education Gender Student Ma
                          Income
          358
                                  4336
                    359
                           30.111
                                           339
                                                    1
                                                        81
                                                                  18
                                                                        Male
                                                                                  No
          165
                     166
                          25.383
                                  4527
                                           367
                                                        46
                                                    4
                                                                  11
                                                                        Male
                                                                                  No
          283
                    284
                          49.927
                                  6396
                                           485
                                                        75
                                                                  17
                                                                      Female
                                                    3
                                                                                  No
           92
                      93
                          30.733
                                  2832
                                           249
                                                    4
                                                        51
                                                                  13
                                                                        Male
                                                                                   No
                                                        62
          184
                     185 158.889 11589
                                           805
                                                    1
                                                                  17
                                                                      Female
                                                                                  No
In [12]: # example: number of cards
         # without changing anything, it will be analyzed as numeric
          reg3= smf.ols('Balance~Cards', data=credit).fit()
          reg3.summary()
```

```
#not a perfect example since there are too many levels, but you get the idea
# then we see compared to having just one card, if there's significant chang
```

Out[12]:

OLS Regression Results

Dep. Variable:	Balance	R-squared:	0.007
Model:	OLS	Adj. R-squared:	0.005
Method:	Least Squares	F-statistic:	2.997
Date:	Mon, 26 Oct 2020	Prob (F-statistic):	0.0842
Time:	16:22:31	Log-Likelihood:	-3017.9
No. Observations:	400	AIC:	6040.
Df Residuals:	398	BIC:	6048.
Df Model:	1		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	434.2861	54.569	7.958	0.000	327.006	541.566
Cards	28.9869	16.743	1.731	0.084	-3.929	61.903

Omnibus:	28.964	Durbin-Watson:	1.957
Prob(Omnibus):	0.000	Jarque-Bera (JB):	26.603
Skew:	0.566	Prob(JB):	1.67e-06
Kurtosis:	2.437	Cond. No.	8.37

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [13]: #change it to categorical
  reg3= smf.ols('Balance~C(Cards)', data=credit).fit()
  reg3.summary()
```

Out[13]:

OLS Regression Results

Dep. Variable:	Balance	R-squared:	0.023
Model:	OLS	Adj. R-squared:	0.003
Method:	Least Squares	F-statistic:	1.144
Date:	Mon, 26 Oct 2020	Prob (F-statistic):	0.332
Time:	16:22:31	Log-Likelihood:	-3014.7
No. Observations:	400	AIC:	6047.
Df Residuals:	391	BIC:	6083.
Df Model:	8		

Covariance Type: nonrobust

V	coef	std err	t	P> t	[0.025	0.975]
Intercept	531.1373	64.286	8.262	0.000	404.748	657.527
C(Cards)[T.2]	- 58.1720	77.236	- 0.753	0.452	-210.023	93.679
C(Cards)[T.3]	-39.0742	77.663	-0.503	0.615	-191.763	113.615
C(Cards)[T.4]	45.2794	84.024	0.539	0.590	-119.916	210.475
C(Cards)[T.5]	- 8.1373	101.645	-0.080	0.936	-207.977	191.702
C(Cards)[T.6]	149.6809	152.622	0.981	0.327	- 150.381	449.743
C(Cards)[T.7]	497.6127	238.379	2.087	0.037	28.947	966.278
C(Cards)[T.8]	106.8627	463.574	0.231	0.818	-804.547	1018.272
C(Cards)[T.9]	- 149.1373	463.574	-0.322	0.748	-1060.547	762.272

 Omnibus:
 28.038
 Durbin-Watson:
 1.928

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 26.387

 Skew:
 0.568
 Prob(JB):
 1.86e-06

 Kurtosis:
 2.459
 Cond. No.
 22.5

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In []:

EX: Y= cal in coffee X= level of suge: (low, med, high) DNMMY low is baseline Alternatively, What if I encode the levels as: X=) it 100 Y= Bot B1 X+E; this type of encoding is de Lyon are ok with the assum that there is a true linear effect Hu category lands by.

EX: the color

2 Cati d Gender X2 $\chi_2 - M$ X_1 bhe X1-green X2-NB

1=Bo+ B1 X16he+ B2 X1green +B3 X2-M+ B4 X2-N8 + Si

Conly maineffects > no interactions

What is an interaction?

Y= Stylishness

X = Wearing casual pink shirt

X= want business pants

There is potential formulations we need an interaction:

Y== Bo+B1X1-shirt+B2X2-pents

+ B3 X1-snirt X2-pats +2i

Finding new ways for explaining interaction is a passion of mine.

