Logistic Regression and Gradient Descent

Pattern Recognition and Machine Learning

Aniello Panariello, Lorenzo Bonicelli, Matteo Boschini October 7th, 2022

University of Modena and Reggio Emilia

Supervised learning setting

lo shop & Sept. clemant view obsto.

We are given a training set $\{X_i, Y_i\}_{i=1}^N$, with $X_i \in \mathbb{R}^m$ and $Y_i \in \{0, 1\}$ for each i = 1, ..., N.

- N is the number of training examples;
- each example $X_i = \{x_i^{(1)}, \dots, x_i^{(m)}\}$ is a vector of m features;
- each label Y_i is either 0 or 1.

Logistic regression

We need to learn a function that maps X to Y such that "it works well on the training set".

PORPOSE => VIOLOS of de proso × spit la part. Le g∈ X

Logistic regression

We need to learn the parameters \mathbf{w} of a parametric function that maps X to Y such that "it works well on the training set".

Logistic regression

We need to learn the parameters w of a parametric function that maps X to Y such that some error is as low as possible on the training set.

- Dofinia MEURA GONSAS - MINIMILIARE GOLDAE; - LOSS FUNCTION - W SI EMPONO CON Il GRADENT OSSIENT

let pl. J. ... vocao reflex che u

The function for classification has the following form:

$$F(X_i, w) = \sigma(w^T \cdot X_i), \text{ where } \sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{1 + e^x}$$

ENGINERADIO DE LA SINCECTIONS O CONSCION É MA CIESTRICATIONS

The function for classification has the following form:

(DACCHIOLOGO ON LITTLE N-OM. IN UMA FUM. THEMOOD CHE OBSTRUISCE (D. 1)

$$F(X_i, w) = \sigma(w^T \cdot X_i), \quad \text{where} \quad \sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{1 + e^x} \left(\frac{e^{-y} u}{\cos x} \right)$$

• $\sigma(x)$ is called **sigmoid function**;

The function for classification has the following form:

$$F(X_i, w) = \sigma(w^T \cdot X_i), \text{ where } \sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{1 + e^x}$$

- $\sigma(x)$ is called **sigmoid function**;
- w is a vector in R^m, and is called weight vector;

The function for classification has the following form:

$$F(X_i, w) = \sigma(w^T \cdot X_i), \text{ where } \sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{1 + e^x}$$

- $\sigma(x)$ is called **sigmoid function**;
- w is a vector in R^m, and is called weight vector;
- w is initialized randomly, but will improve as training goes.

Binary crossentropy loss

US LANGE Y, LOSMIFUA DISTRIBUZIONE CERSOR SU FRANCIC.

During training, we want to **minimize** the following function:

$$\mathcal{L}(w) = -\frac{1}{N} \sum_{i=1}^{N} [Y_i \log(\widetilde{F}(X_i, w)) + (1 - Y_i) \log(1 - F(X_i, w))]$$

June modo × manor w in modo de L(W) si nwillilli

$$\frac{L(\theta|0) - \sum_{i=0}^{\infty} y_i \log_{\theta}(P_y = a_{1x}) + (1 - y_i) \log_{\theta}(P_y = a_{1x})}{P(y|x) - \sum_{i=0}^{\infty} 2 \ln \delta c y \ln \delta c}$$

Wi
$$\rightarrow \times$$
i, $\omega_{i} = \{\omega_{i}, \ldots, \omega_{m}\}$

$$L(\omega) = \sum_{i} \omega_{i} \ldots \omega_{m}\}$$

$$\Delta(\omega) = \sum_{i} \omega_{i} \ldots \omega_{m}$$

Gradient Descent¹

Gradient descent is an iterative optimization algorithm for finding the minimum of a function. How? Take step proportional to the negative of the gradient of the function at the current point.

Figure 1: Gradient descent on a series of level sets

¹Credits for this slide: Andrea Palazzi https://github.com/ndrplz/deep_learning_lectures

Gradient Descent Update¹

If we consider a function $f(\theta)$, the **gradient descent update** can be expressed as:

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} f(\theta)$$

$$\delta_{\text{MN}} = 0 \cos - A \frac{\partial}{\partial \theta_{0}} \delta(\theta)$$

$$(1)$$

for each parameter θ_j .

The size of the step is controlled by **learning rate** α .

¹Credits for this slide: Andrea Palazzi https://github.com/ndrplz/deep_learning_lectures

Visualizing Gradient Descent¹

Gradient Descent for 1-d function $f(\theta)$.

¹Credits for this slide: Andrea Palazzi https://github.com/ndrplz/deep_learning_lectures

Learning Rate¹

Choosing the the right **learning rate** α is essential to correctly proceed towards the minimum. A step *too small* could lead to an extremely *slow* convergence. If the step is *too big* the optimizer could *overshoot* the minimum or even *diverge*.

Learning Rate too small

Learning Rate too big

¹Credits for this slide: Andrea Palazzi https://github.com/ndrplz/deep_learning_lectures

Simplify our loss

Back to our problem. We need to take the derivative of this function w.r.t. w:

$$\mathcal{L}(w) = -\frac{1}{N} \sum_{i=1}^{N} [Y_i \log(F(X_i, w)) + (1 - Y_i) \log(1 - F(X_i, w))]$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \left[Y_i \log\left(\frac{e^{w^T \cdot X_i}}{1 + e^{w^T \cdot X_i}}\right) + (1 - Y_i) \log\left(\frac{1}{1 + e^{w^T \cdot X_i}}\right) \right]$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \left[Y_i(w^T \cdot X_i) - Y_i \log\left(1 + e^{w^T \cdot X_i}\right) + (Y_i - 1) \log\left(1 + e^{w^T \cdot X_i}\right) \right]$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \left[Y_i(w^T \cdot X_i) - \log\left(1 + e^{w^T \cdot X_i}\right) \right]$$

Derive the loss function

GRADIENTE X

<.651m

Back to our problem. We need to take the derivative of this function w.r.t. w:

$$\mathcal{L}(w) = -\frac{1}{N} \sum_{i=1}^{N} \left[Y_i(w^T \cdot X_i) - \log\left(1 + e^{w^T \cdot X_i}\right) \right]$$

$$\stackrel{\mathcal{SDMA}}{\longrightarrow} \stackrel{\mathcal{COR}}{\longrightarrow} \stackrel{\mathcal{S}}{\longrightarrow} \frac{\mathcal{SDMA}}{\longrightarrow} \stackrel{\mathcal{COR}}{\longrightarrow} \stackrel{\mathcal{SDMA}}{\longrightarrow} \stackrel{\mathcal{SDMA}$$

Final gradient and update

$$\frac{(w)}{w} = \begin{bmatrix} \frac{\delta \mathcal{L}(w)}{\delta w_2} \\ \vdots \\ \frac{\delta \mathcal{L}(w)}{\delta w_m} \end{bmatrix} =$$

Back to our problem. We need to take the derivative of this function w.r.t.
$$w$$
:

il numero di parametri w dipende dalle features degli N sample Xi

$$\frac{\delta \mathcal{L}(w)}{\delta w} = \begin{bmatrix} \frac{\delta \mathcal{L}(w)}{\delta w_1} \\ \frac{\delta \mathcal{L}(w)}{\delta w_2} \\ \vdots \\ \frac{\delta \mathcal{L}(w)}{\delta w_m} \end{bmatrix} = \begin{bmatrix} -\frac{1}{N} \sum_{i=1}^{N} (Y_i - F(X_i, w)) x_i^{(1)} \\ -\frac{1}{N} \sum_{i=1}^{N} (Y_i - F(X_i, w)) x_i^{(2)} \\ \vdots \\ -\frac{1}{N} \sum_{i=1}^{N} (Y_i - F(X_i, w)) x_i^{(m)} \end{bmatrix} = -\frac{X^T \cdot (Y - F(X, w))}{N}$$

We will update the vector w accordingly:

$$w \leftarrow w - \alpha \frac{\delta \mathcal{L}(w)}{\delta w}$$

$$= -\frac{X^T \cdot (Y - F(X, w))}{N}$$

Wrap up: algorithm

Algorithm 1 pseudocode for training

- 1: $X, Y \leftarrow load_training_data()$
- 2: set learning rate $\alpha \sim 10^{-4} \sim 10^{-4}$
- 3: initialize w randomly
- 4: **for** e = 1 to number_of_training_steps **do**
- 5.
- 6:
- compute the prediction according to the current weights $F(X, w) = F(X_{N_1} w)$ compute the loss function $\mathcal{L}(w) = \emptyset$ $f(X_{N_2} w) = 0$ compute the derivative of the loss function
- update the weight vector $\mathbf{w} \leftarrow \mathbf{w} \alpha \frac{\delta \mathcal{L}(\mathbf{w})}{\delta \ldots}$
- 9: end for

Today's case study

- We want to predict if a character is alive or dead;
- (Some) of our features are:
 - male or female;
 - married or not;
 - number of deaths witnessed;
 - number of dead relatives;
 - ... and many more.