Chapitre 12: Force des acides et des bases - Exercices

Exercice 1:

Une solution aqueuse d'acide ascorbique de volume $V = 500^{\circ}mL$ est obtenue en dissolvant n = 5,0 mmol d'acide ascorbique $C_6H_8O_6(s)$ dans l'eau. Le pH de la solution est pH = 2,7. Déterminer la composition finale de la solution.

Exercice 2:

L'état final de la réaction entre la base méthylamine $CH_3NH_2(aq)$ et l'eau H_2O (ℓ) est décrit ci-dessous. Le volume de la solution est V = 100,0 mL.

Équation	CH ₃ NH ₂ (aq) -	+ H ₂ O(ℓ) ==	CH ₃ NH ₃ (aq)	+ HO"(aq)
État final	0,75.mmol	Solvant	0,25 mmol	0,25 mmol

- 1. Déterminer la concentration en ions hydroxyde HO (aq) à l'état final.
- 2. En déduire la valeur de la concentration en ions oxonium H₃O⁺ à l'état final, puis celle du pH de la solution.
- 3. Déterminer la valeur de la concentration 6 en méthyl-amine de la solution.

Exercice 3:

Les couleurs rouge, mauve, violette et bleue des hortensias sont dues à la présence d'anthocyanes dans les pétales. La couleur violette est due à une molécule que l'on notera AH dans la suite.

La molécule AH appartient à deux couples acide-base : AH_2^+/AH de $pK_{A1}=4,3$ et AH/A^- de $pK_{A2}=7,0$. La présence des espèces AH_2^+ , AH et A^- en solution donne, respectivement, une coloration rouge, violette et bleue aux pétales.

- 1. Écrire les équations des réactions des acides AH₂⁺(aq) et AH (aq) avec l'eau.
- 2. Construire le diagramme de prédominance des espèces $AH_2^+(aq)$, AH(aq) et $A^-(aq)$.

3. Associer les constantes d'acidité ci-dessous aux équations de la question 1 :

$$= \frac{[A^{-}]_{\acute{e}q} \times [H_{3}O^{+}]_{\acute{e}q}}{[AH]_{\acute{e}q}} \text{ et } \frac{[AH]_{\acute{e}q} \times [H_{3}O^{+}]_{\acute{e}q}}{[AH_{2}^{+}]_{\acute{e}q}} =$$

- Identifier l'acide le plus fort dans l'eau.
- 5. Calculer la constante d'acidité K_{A2} du couple AH / A-.
- 6. Une solution 5 contenant l'espèce AH a un pH égal à 10,0.
- a. Exprimer puis calculer la valeur du rapport $\frac{[A^-]_{\acute{e}q}}{[AH]_{\acute{e}o}}$.
- b. En déduire la couleur de la solution S.
- 7. Le pH dans les cellules des pétales varie en sens inverse du pH du sol. Expliquer pourquoi et comment il est possible de faire passer de rose à bleu les fleurs d'un hortensia.

Exercice 4:

La leucine est un acide α-aminé dont le modèle est donné ci-contre.

- 1. Identifier les deux groupes caractéristiques présents dans cette molécule.
- 2. En solution aqueuse, un transfert intramoléculaire d'un ion hydrogène a lieu du groupe carboxyle vers le groupe amine. Écrire la formule de l'amphion formé.
- 3. L'amphion est une espèce amphotère. Écrire les deux couples acide-base auxquels il appartient.
- 4. La leucine est caractérisée par deux valeurs de pK_A: pK_{A1} = 2,4 et pK_{A2} = 9,9. Établir le diagramme de prédominance de la leucine.

