Calculus: single

The Robert Ghrist Approach Mark

Relearn

Functions 1

e, sin, and cos

Euler's Formula

for now take as a fact

$$e^{ix} = \cos(x) + i\sin(x)$$

Define e^x using Taylor as

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{2}}{2!} + \frac{x^{2}}{2!} + \dots$$
$$= \sum_{k=0}^{\infty} \frac{x^{k}}{k!}.$$

By Euler's Formula,

$$e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \dots$$

$$= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + i(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots) \qquad \text{(breaking up real and imaginary)}$$

$$= \cos(x) + i\sin(x).$$

1.2 **Taylor**

The **Taylor Series** of a function
$$f$$
 at $x = 0$ is
$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots$$

*Taylor series can be differented term by term! At any other point a it's

$$f(x) = f(a) + f'(a)(x - a) + \frac{f^{(2)}}{2!}(x - a)^2 + \dots$$

(remember, a must be inside the domain of convergece for the Taylor Poly)

Does Taylor exist for every function?

NO, more on this later

Geometric Series $1 + r + r^2 + r^3 + r^4 + \dots = \frac{1}{1 - r}$ (for |r| < 1)

proof:
$$s_n = 1 + r + r^2 + r^3 + \dots + r^n$$

Then, $s_n - rs_n = 1 - r^{n+1} \implies s_n = \frac{1 - r^{n+1}}{1 - r}$
(as $n \to \infty$, this becomes $\frac{1}{1 - r}$ if $|r| < 1$)

e.g., A neat example is the **Bessel function** used to describe the waves in water when a stone drops:

$$J_0(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{2^{2k} (k!)^2}$$

= $1 - \frac{1}{2^2} x^2 + \frac{1}{2^4 (2!)^2} x^4 - \frac{1}{2^6 (3!)^2} x^6 + \dots$

note the Bessel function is defined by its Taylor series.

It's a decaying cosine-like wave, since the denominator grows faster than cosine's.

Orders of Growth and Error Size

Big-O: "not faster than"

- f(x) = O(1) if $|f(x)| \le c * 1$ as $x \to \infty$ (for some c)
- f(x) = O(g(x)) if $|f(x)| \le c * |g(x)|$ as $x \to \infty$ (for some c)

Can be equivalently defined for $x \to 0$ to describe how quickly a function decays. **Little-o**: "ultimately smaller than"

•
$$f(x) = o(g(x))$$
 means $\frac{f(x)}{g(x)} \to 0$ as $g(x) \to 0$.

1.3 Hyperbolic Trigonometric Functions

These fuctions have similar algebraic properties to \sin, \cos and similarities in their taylor expansions.

(Taylor is the same without alternating signs–all +)

Define

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

A variation of the Pythagorean Theorem holds:

$$\cosh^2(x) - \sinh^2(x) = 1$$

Geometrically, \cosh and \sinh give x,y coordinates on the hyperbola $x^2-y^2=1$ (similar to \sin , \cos with the unit circle).

What are hyperbolas?

They are two parabolas approaching approaching asymptotes (facing up/down or right/left):

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

(negative sign on x, instead of y, for up/down)

Tricks

Multiplying Taylor Polynomials

$$\cos(x)\cos(x) = \left(1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \dots\right)\left(1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \dots\right)$$
$$= 1 + \left(-\frac{1}{2!} - \frac{1}{2!}\right)x^2 + \left(\frac{1}{4!} + \frac{1}{2!}\frac{1}{2!} + \frac{1}{4!}\right)x^4 + \dots$$

idea: what are the coefficients of x^4

Binomial Series (for |x| < 1) $(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + \dots$

$$(1+x) = 1 + \alpha x + \frac{1}{2!} x + \frac{1}{3!}$$
$$= \sum_{k=0}^{\infty} {\alpha \choose k} x^k.$$

by computing derivatives and using Taylor Expansion

Exercises

- 1. Find the Taylor Expansion of $\ln(1+x)$ using $\ln(1+x) = \int \frac{1}{1+x} dx$ and the geometric series.
- 2. Similarly find the Taylor Expansion of $\arctan(x)$ using $\arctan(x) = \int \frac{1}{1+x^2} dx$ and the geometric series.

Summarizing, using Geometric + Taylor Expansion we have: ONLY FOR |x| < 1, based on geometric series convergence

•
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$

•
$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$

1.4 Limits

The limit as x approaches a of f(x) **exists** if for all x close, but NOT equal to a, f(x) is close to the value of the limit.

A limit may not exist at a discontinuity, blow-up, or oscillation.

A function is **continuous** at a if $\lim_{x\to a} f(x) = f(a)$.

If $\lim_{x\to a} f(x) = l$ and $\lim_{x\to a} g(x) = m$, then

•
$$\lim_{x \to a} f(x) + g(x) = l + m$$

•
$$\lim_{x \to a} f(x)g(x) = lm.$$

• "root of a limit"
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$
.

If a function is continuous, then you can evaluate a limit by simply plugging in the value a.

4

Exercises

1. Evaluate $\lim_{x\to 0} \frac{\sin(x)}{x}$. use Taylor (about x=0), since we are interested in $\sin(x)$ as x approaches 0

Differentiation 2

Integration 3

Series

Curiosities

Striling's Approximation

Gives a good asymptotic (as n gets bigger) approximation for n!:

$$n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$$

Typically written as $\ln(n!) = n \ln(n) - n + O(\ln(n))$.