Matrix Groups: Assignment #1

Based on untill isometry

Dr. Sachchidanand Prasad

Problem 1

If $\lambda \in \mathbb{H}$ commutes with every element of \mathbb{H} , prove that $\lambda \in \mathbb{R}$.

Problem 2

Let $q \in \mathbb{H}$, and define

$$\mathbb{C} \cdot q = \{\lambda \cdot q : \lambda \in \mathbb{C}\} \subset \mathbb{H} \text{ and } q \cdot \mathbb{C} = \{q \cdot \lambda : \lambda \in \mathbb{C}\} \subset \mathbb{H}.$$

- (i) Let $g_1:\mathbb{H}\to\mathbb{C}^2$, $(a+b\cdot \pmb{i}+c\cdot \pmb{j}+d\cdot \pmb{k}\mapsto (a+b\cdot \pmb{i},c+d\cdot \pmb{i})$. Show that $g_1(\mathbb{C}\cdot q)$ is a one-dimensional subspace \mathbb{C} -subspace of \mathbb{C}^2 .
- (ii) Define an indetification $\tilde{g}_1: \mathbb{H} \to \mathbb{C}^2$ such that $\tilde{g}_1(q \cdot \mathbb{C})$ is a one-dimensional \mathbb{C} -subspace of \mathbb{C}^2 .

Problem 3

Recall that for any subsegt $X \subset \mathbb{R}^2$, the symmetry group

$$\operatorname{Symm}(X) := \{ f \in \operatorname{Isom}(X) : f(X) = X \}.$$

- (i) Consider $X \subset \mathbb{R}^2$. Show that if $\operatorname{Symm}(X)$ is a finite set, then its elements must share a common fixed point and hence isomorphic to a subgroup of O(2).
- (ii) The only finite subgroups of O(2) are \mathbb{Z}_m and D_m , where D_m is the dihedral group.

Problem 4

Think of Sp(1) as the group of unit-length quaternions; that is,

$$Sp(1) = \{ q \in \mathbb{H} : |q| = 1 \}.$$

- (i) For every $q \in Sp(1)$, show that the conjugation map $C_q : \mathbb{H} \to \mathbb{H}$, defined as $C_q(v) = q \cdot v \cdot \overline{v}$, is an orthogonal linear transformation. Thus, with respect to the natural basis $\{1, i, j, k\}$ of \mathbb{H} , C_q can be regarded as an element of O(4).
- (ii) For every $q \in Sp(1)$, verify that $C_{q(1)} = 1$ and therefore, that C_q sends $\operatorname{Im}(\mathbb{H}) = \operatorname{span}(\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k})$ to itself. Conclude that the restriction $C_q \mid_{\operatorname{Im}(\mathbb{H})}$ can be regarded as an element of O(3).
- (iii) Define $\varphi: Sp(1) \to O(3)$ as

$$\varphi(q) = C_q \mid_{\operatorname{Im}(\mathbb{H})}.$$

Verify that φ is a group homomorphism.

- (iv) Verify that the kernel of φ is $\{1, -1\}$ and therefore, that φ is two-to-one map.
- (v) [Bonus Problem] Show that the image of φ is SO(3).
- (vi) Also show that Sp(1) is homomorphic to SU(2).
- (vii) Finally can you identify something from here.

From now onward a matrix group G means a closed (topological closed) subgroup of $GL_n(\mathbb{F})$. By closedness, we mean that if a sequence in G has a limit in $GL_n(\mathbb{F})$, then that limit must lie in G.

Problem 5

Let G be a matrix group and $H \subset G$ be closed subgroup of G. Prove that H is a matrix group.

Problem 6

Prove that $\mathrm{Aff}_n(\mathbb{F})$ is NOT closed in $M_{n+1}(\mathbb{F})$ but it is a matrix group. Is it compact?

Problem 7

A matrix $A \in M_n(\mathbb{F})$ is called *upper triangular matrix* if all entries below the diagonal are zero, that is, $a_{ij} = 0$ for i > j. Prove that

$$UT_n(\mathbb{F}) = \{A \in M_n(\mathbb{F}) : A \text{ is an upper triangular matrix}\}$$

is not closed in $M_n(\mathbb{F})$.

Note that if the diagonal elements are not zero, then $UT_n(\mathbb{R})$ is a subset of $GL_n(\mathbb{R})$. Is it a matrix group?

Problem 8

Prove that $\text{Isom}(\mathbb{R}^n)$ is a matrix group. Is it compact?

Problem 9

Let $G \subset GL_n(\mathbb{R})$ be a compact subgroup.

- (i) Prove that every element of G has determinant 1 or -1.
- (ii) Is it true that $G \subset O(n)$?

Problem 10

There are two natural functions from $SU(n)\times U(1)$ to U(n). The first is $f_1(A,\lambda)=\lambda\cdot A$. The second is $f_2(A,\lambda)=$ the result of multiplying each entry of the first row of A times λ .

- (i) Prove that f_1 is an n-to-1 homomorphism.
- (ii) Prove that f_2 is a homeomorphism but not a homomorphism when $n \geq 2$.