

The Landscape of Near-/Sub-Threshold Computing

Department of Electronics and Communication Engineering, PES University - Bangalore 560100

About Me

- I am a senior year undergraduate student at PES University, Electronic City Campus, Bengaluru with a major in Electronics and Communication Engineering
- I am currently working at the Centre for Heterogeneous and Intelligent Processing Systems on multi-objective optimization for the design of energy-efficient standard-cell-based RISC-V architectures
- My research interests are in Digital System Design and Very Large Scale Integrations of Low-power Digital circuits

Presentation Outline

- Trends and Challenges in Near / Sub- Threshold Computing
- Applications of Near- / Sub- Threshold Circuits and Comparison with conventional circuits
- EDA for Subthreshold Optimized CMOS
- Performance analysis of unoptimized subthreshold circuits

Operation of a MOS Field Effect Transistor

Operation of a MOSFET

- Bias voltage at gate and body
- Channel between Source and Drain
- Minimum bias voltage for channel formation threshold (Vth)
- Effect of field at gate (insulator SiO2)

Transistor Sizing

- IV characteristics are different
- mobility of electrons is much larger than the mobility of holes.
- UMC's commercial 180nm bulk CMOS (Wp/Wn)
- 13.28 for sub-vt
- 9.63 for regular
 - UMC's commercial 28nm high-k bulk CMOS (Wp/Wn)
- 10.28 for sub-vt
- 6.22 for regular

The standard cells are sized as

$$(W/L)_p = U_n/U_p \times (W/L)_n$$

- An increase in Wp/Wn
- improves the output-high swing
- degrades the output-low voltage
 - further compounded by process variations.

Why Near- / Sub- Threshold?

Presentation Outline

- Motivation, Trends and Challenges in Near / Sub- Threshold
 Computing
- Applications of Near- / Sub- Threshold Circuits and Comparison with conventional circuits
- EDA for Subthreshold Optimized CMOS
- Performance analysis of unoptimized subthreshold circuits

Why Near- / Sub- Threshold?

- Energy budget for portable applications
- Reducing circuit supply voltage also minimizes heat.
- Aim: take as much advantage as possible of fCV^2
- Voltage scaling is a known technique to reduce energy consumption.

What are the challenges?

Challenges of Near-Threshold

- Reduction in operating frequency
- Less control
- Requires additional power supplies
- Threshold can vary
- SRAM designs high bitline leakage
- Retention becomes a problem

Challenges of Sub-Threshold

- Custom Standard Cells
- Isub increases
- Poor transistor models
- Logic swings and noise
- Sensitivity to operating conditions
- Logistical challenges

What is Sub-Threshold Operation?

Sub-Threshold Operation

- Gate-to-source voltages below the threshold voltage
- Insufficient charge concentration
- Incomplete channel formation

Where is Subthreshold used?

Presentation Outline

- Motivation, Trends and Challenges in Near / Sub- Threshold
 Computing
- Applications of Near- / Sub- Threshold Circuits and Comparison with conventional circuits
- EDA for Subthreshold Optimized CMOS
- Performance analysis of unoptimized subthreshold circuits

Applications of Subthreshold Devices

- IoT devices
- Biomedical sensors/implants
- Self-sustainable systems outer space applications
- Processors with low energy budget
- FPGAs

Subthreshold Design Effort

Subthreshold Design Effort

- Custom standard cell library custom sizing
- Intensive MC analysis Process variations
- Minimisation of switching activity isolation circuitry
- Minimisation of switched capacitance logic level
- Exhaustive Testing

Some Existing Subthreshold Devices

Subthreshold FPGAs

What is an FPGA?

- Matrix of configurable logic blocks (CLBs)
- Connected via programmable interconnects
- Reprogrammable
- One-time programmable ones are available
- Dominant types are SRAM based

Applications of FPGAs

- Aerospace & Defense Radiation tolerance
- ASIC prototyping SoC system modeling
- Automotive driver assistance systems
- Data Centres high-bandwidth, low-latency servers, networking, and storage applications
- Accelarators Large workloads
- Wired and Wireless Communications connectivity, transport and networking

Subthreshold FPGAs

Virginia'a Custom Case

University of Virginia - RLP VLSI

- 9 BLEs in a CLB vs 4 BLEs
- Bi-directional tristate drivers -> TG single passgate switches
- Low swing (0.4 Vdd)
- Async sense amp for swing clock driver
- independent async sense amp dual Vdd
- 2.5x area efficient
- 7x faster
- 25x energy efficient
- number of FETs reduced by 3X

Near- / Sub- Threshold Processors

Subthreshold Processors

Synopsys' ARC using PLSense's subthreshold libraries

PLSense PLS10 IC based on Synopsys' ARC Data Fusion Subsystem

- DSP Processor
- FS and SF corners
- 312 K-80 MHz
- Adaptive Dynamic Voltage Control (ADVC)
- First-Fail Circuitry DLLs

Subthreshold Processors

Synopsys' ARC using PLSense's subthreshold libraries

PLSense PLS10 IC based on Synopsys' ARC Data Fusion Subsystem

First-Fail Circuit

- Critical path monitor
- FFail indicated delay match
- Voltage is scaled until DLL path is matched

Near-Threshold Processors

Quentin PULP - ETH Zurich

- Heterogeneous SCM + SRAM
- Power gated SRAM
- Separate supplies for SRAM, SCM and BB
- Peak 670 MHz without FBB
- Large area overhead

Technology	CMOS 22nm FDX		
TransistorType	Flip-Well (LVT)		
SoC Area	2.3mm ²		
VDD range	0.5V - 0.8V		
Body Bias Range	0.0V - 1.4V		
Memory Transistors	24.8M		
Logic Transistors	4.18M		
Frequency Range	32 kHz - 670 MHz		
(with ABB)	32 kHz - 938 MHz		
Power Range	300 μW - 10.4 mW		
(with ABB)	300 μW - 66.2 mW		

How are these designed?

Presentation Outline

- Motivation, Trends and Challenges in Near / Sub- Threshold
 Computing
- Applications of Near- / Sub- Threshold Circuits and Comparison with conventional circuits
- EDA for Subthreshold Optimized CMOS
- Performance analysis of unoptimized subthreshold circuits

EDA for Sub-Threshold optimized CMOS

Standard Cell Creation

- SF and FS corners vs TT corners
- Large FETs Transistor Sizing
- Less Polysilicon
- Low voltage MC analysis
- PVT Variations

ECTs for Device Sizing

- Particle Swarm
- Simulated Annealing
- Genetic Algorithms
- Pareto Search (Preference based)

ML for Device Sizing

- Reward based
- More iterations
- Unconstrained
- Convergence is not guarenteed

Logic Synthesis for Low Power

- Re-factoring (1a)
- Polarity assignment (1b)
- Pin Swapping (1c)
- Re-wiring transformation

ML for Logic Synthesis

LSOracle - Utah

- KMImages
- DNNs for Image classification
- k-way partitioning
- AIG/MIG optimizers

\DEF										
ABC\	000	001	011	010	110	111	101	100		
000	1	1	1	1	1	1	1	1		
001	1	1	0	0	0	0	1	1] .	
011	1	1	1	1	0	0	0	0	1	
010	1	0	0	1	1	0	0	1		
110	1	0	0	1	1	0	0	1		
111	1	1	1	1	0	0	0	0		_
101	1	1	0	0	0	0	1	1		
100	0	0	0	0	0	0	0	0		
										KMImage

ML for Logic Synthesis

- Multi-objective reward function area and delay
- Actor Critic
- Primary objective Reduction in area

			Optimizing (Area)			
			Decr.	None	Incr.	
	Met		+++	0	-	
Constraint	Not Met	Decr.	+++	++	+	
(Delay)		None	++	0		
		Incr.	-			

How do these designs compare?

Presentation Outline

- Motivation, Trends and Challenges in Near / Sub- Threshold
 Computing
- Applications of Near- / Sub- Threshold Circuits and Comparison with conventional circuits
- EDA for Subthreshold Optimized CMOS
- Performance analysis of unoptimized subthreshold circuits

Sub- Vt vs Near- Vt vs Super- Vt

- Low Vt is not always Low Power
- Area is almost same in sub vt and near vt
- No body bias required for subvt
- Separate standard cells required for subvt

	Sub-Vt	Near-Vt	Super-Vt
Area	High	High	Low
Power	High	Low	Highest
Delay	High	High	Low

Synthesis results (UMC 180)

- Standard cell library 180nm 7 cells
- Unconstrained synthesis
- All cells are symmetric

	8 bit ALU				
Parameter	Subvt cells	With XOR (Subvt)	Regular cells		
Critical path	26.37 us	26.12 us	7.162 ns		
Parameter	Subvt	With XOR (Subvt)	Regular cells		
Leakage	12.27 nW	12.05 nW	102.39 nW		
Internal	12.38 uW	12.18 uW	282.44 uW		
Switching	29.49 uW	29.20 uW	1.00 mW		
Total power	41.90 uW	41.40 uW	1.29 mW		

Conclusion

- Use sub-threshold circuits throughout by default
- Use near-threshold in those few cases where it's possible
- Use super-threshold in those few cases where required for speed or bandwidth

Questions?

References

- 1. Zhai et al. A 2.60pJ/Inst Subthreshold Sensor Processor for Optimal Energy Efficiency (2006)
- 2. Huang et al. Machine Learning for Electronic Design Automation: A Survey (2021)
- 3. Hosny et al. DRiLLS: Deep Reinforcement Learning for Logic Synthesis (2020)
- 4. Calhoun et al. Sub-threshold Circuit Design with Shrinking CMOS Devices (2009)
- 5. Schiavone et al. Quentin: an Ultra-Low-Power PULPissimo SoC in 22nm FDX (2018)
- 6. Neto et al. LSOracle: a Logic Synthesis Framework Driven by Artificial Intelligence: Invited Paper (2019)
- 7. Luca Benini, Giovanni De Michelli LOGIC SYNTHESIS FOR LOW POWER
- 8. Settaluri et al. AutoCkt: Deep Reinforcement Learning of Analog Circuit Designs (2020)
- 9. Sankaranarayanan et al. A Single-VDD Ultra-Low Energy Sub-threshold FPGA (2012)
- 10. Grossmann et al. A Prototype FPGA Tile for Subthreshold-Optimized CMOS
- 11. Hrishikesh Kanitkar, Subthreshold circuits: Design, implementation and application (2008)
- 12. Li et al. Sub-threshold Standard Cell Library Design for Ultra-Low Power Biomedical Applications (2013)
- 13. Zangi et al. 0.45 v and 18 μ A/MHz MCU SOC with Advanced Adaptive Dynamic Voltage Control (ADVC) (2018)
- 14. Chowdhury et al. Computing With Subthreshold Leakage: Device/Circuit/Architecture Co-Design for Ultralow-Power Subthreshold Operation (2005)
- 15. Keane et al. Subthreshold logical effort: a systematic framework for optimal subthreshold device sizing (2006)

Links

- 1. http://blaauw.engin.umich.edu/wp-content/uploads/sites/342/2018/02/Zhai-A-2.60pJlnst.-Subthreshold-Sensor-Processor.pdf
- 2. https://arxiv.org/pdf/2102.03357.pdf
- 3. https://sci-hub.st/10.1109/ASP-DAC47756.2020.9045559 https://github.com/scale-lab/DRiLLS
- 4. https://rlpvlsi.ece.virginia.edu/sites/rlpvlsi.virginia.edu/files/Calhoun_ISCAS2009subvt_slides.pdf
- 5. https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/338279/S3S_Quentin.pdf?sequence=1&isAllowed=y
- 6. https://github.com/lnis-uofu/LSOracle https://lsoracle.readthedocs.io/en/master/
- 7. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.5435&rep=rep1&type=pdf
- 8. https://arxiv.org/abs/2001.01808 https://github.com/ksettaluri6/AutoCkt
- 9. https://sci-hub.st/10.1109/VLSI-SoC.2012.7332104
- 10. https://archive.ll.mit.edu/HPEC/agendas/proc10/Day1/PA12_Grossmann_abstract.pdf
- 11. https://core.ac.uk/download/pdf/232133726.pdf
- 12. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.712.687&rep=rep1&type=pdf
- 13. https://res.mdpi.com/d_attachment/jlpea/jlpea-08-00014/article_deploy/jlpea-08-00014.pdf https://www.synopsys.com/dw/ipdir.php?ds=smart-data-fusion-subsystem
- 14. https://swarup.ece.ufl.edu/papers/J/J28.pdf
- 15. https://sci-hub.st/10.1145/1146909.1147022

Additional Links

- 1. https://www.truechip.net/articles-details/low-power-design-techniques-basics-concepts-in-chip-design/26234
- 2. https://www.techdesignforums.com/practice/guides/subthreshold-near-threshold-computing-logic-ntv/
- 3. https://www-cnx--software-com.cdn.ampproject.org/c/s/www.cnx-software.com/2021/08/22/ultra-low-power-risc-v-system-on-chip-features-adaptive-body-biasing-technology/?amp=1
- 4. https://www.techdesignforums.com/practice/technique/sub-threshold-circuit-techniques-to-iot-device-design/
- 5. https://www.edn.com/sub-threshold-design-a-revolutionary-approach-to-eliminating-power/
- 6. http://iis-projects.ee.ethz.ch/index.php/Standard_Cell_Compatible_Memory_Array_Design
- 7. https://rlpvlsi.ece.virginia.edu/project-type/energy-efficient-circuit-design
- 8. https://mtlsites.mit.edu/researchgroups/icsystems/pubs/conferences/2004/aliwang_isscc2004_paper.pdf

Thank you!