LDLN025

250 mA ultra low noise LDO

Datasheet - production data

Features

- Ultra low output noise: 6.5 μV_{RMS}
- Operating input voltage range: 1.5 V to 5.5 V
- Output current up to 250 mA
- Very low guiescent current: 12 µA at no-load
- Controlled I_a in dropout condition
- Very low-dropout voltage: 250 mV at 250 mA
- Very high PSRR: 80 dB@100 Hz, 60 dB@100 kHz
- Output voltage accuracy: 2 % across line, load and temperature
- Output voltage versions: from 1 V to 5 V, with 50 mV step
- Logic-controlled electronic shutdown
- Output discharge feature
- Internal soft-start
- Overcurrent and thermal protections
- Temperature range: from -40 °C to +125 °C
- Packages: Flip-Chip4, DFN4-1x1, SOT23-5L

Applications

- Smartphones/tablets
- Image sensors
- Instrumentation
- VCO and RF modules

Description

The LDLN025 is a 250 mA low-dropout voltage regulator, able to work with an input voltage range from 1.5 V to 5.5 V.

The typical dropout voltage at 250 mA load is 120 mV.

The very low quiescent current, which is just 12 µA at no-load, extends battery-life of applications requiring very long standby time.

Thanks to its ultra low noise value and high PSRR, the LDLN025 provides a very clean output, suitable for ultra-sensitive loads. It is stable with ceramic capacitors.

The enable logic control function puts the device into shutdown mode allowing a total current consumption lower than 1 µA.

The device also includes short-circuit and thermal protection.

Typical applications are noise sensitive loads such as ADC, VCO in mobile phones and tablets, wireless LAN devices. The LDLN025 is designed to keep the quiescent current under control and at a low value also during dropout operation, extending the operating time of battery-powered devices

Several small package options are available.

C	$\boldsymbol{\wedge}$	n	4	Δ	n	+	c
	LJ			_			

1	Block d	liagram	3
2	Pin con	figuration	4
3	Typical	application diagram	5
4	Maximu	ım ratings	6
5	Electric	cal characteristics	7
6	Typical	characteristics	10
7	Packag	e information	15
	7.1	Flip-Chip4 package information	16
	7.2	Flip-Chip4 packing information	18
	7.3	DFN4-1x1 package information	19
	7.4	DFN4-1x1 packing information	20
	7.5	SOT23-5L package information	21
8	Orderin	g information	23
	8.1	Marking information	24
q	Revisio	n history	25

LDLN025 Block diagram

1 Block diagram

Figure 1: Block diagram

Pin configuration LDLN025

2 Pin configuration

Figure 2: Pin configuration

Table 1: Pin description

Symbol	DFN4-1x1	Flip-Chip4	SOT23-5L	Description
V _{IN}	4	A1	1	LDO Supply voltage
Vout	1	A2	5	LDO Output voltage
GND	2	B2	2	Ground
EN	3	B1	3	Enable input: set V_{EN} = high to turn on the device; V_{EN} = low to turn off the device
EIN	3	ы	3	This pin is internally pulled down via 1 $\mbox{M}\Omega$ resistor
NC	-	-	4	Not internally connected: can be connected to GND
Exposed pad	Exposed pad	-	-	Must be connected to GND

3 Typical application diagram

Figure 3: Typical application diagram

Maximum ratings LDLN025

4 Maximum ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vin	Input supply voltage	-0.3 to 7	V
V _{OUT}	Output voltage	-0.3 to V _{IN} +0.3	V
Іоит	Output current	Internally limited	Α
EN	Enable pin voltage	-0.3 to V _{IN} +0.3	V
P _D	Power dissipation	Internally limited	W
ESD	Charge device model	±1000	V
E2D	Human body model	±2000	V
T _{J-OP}	Operating junction temperature	-40 to 125	°C
T _{J-MAX}	Maximum junction temperature	150	°C
T _{STG}	Storage temperature	-55 to 150	°C

Table 3: Thermal data

Symbol	Parameter	DFN4-1x1	Flip-Chip4	SOT23-5L	Unit
R _{thja}	Thermal resistance, junction-to-ambient	220	210	200	°C/W

LDLN025 Electrical characteristics

5 Electrical characteristics

(T_J = 25 °C, V_{IN} = V_{OUT(nom)} + 1 V or 1.5 V, whichever is greater; V_{EN} = 1.2 V; C_{IN} = 1 μ F; C_{OUT} = 1 μ F; I_{OUT} = 1 mA)

Table 4: Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IN}	Operating input voltage range		1.5		5.5	V
Vouт	Output voltage accuracy	Vout + 1 $V^{(1)}$ < V _{IN} < 5.5 V, 1 mA < lout < 0.25 A, V _{OUT} \ge 1.8 V, -40 °C < T _J < 125 °C	-2.0		+2.0	%
VOUT	(Flip-Chip package)	$V_{OUT} + 1 V^{(1)} < V_{IN} < 5.5 V,$ $1 \text{ mA} < I_{OUT} < 0.25 A,$ $V_{OUT} < 1.8 V,$ $-40 \text{ °C} < T_{J} < 125 \text{ °C}$	-3.0		+3.0	76
V	Output voltage	$V_{OUT} + 1 V^{(1)} < V_{IN} < 5.5 V,$ $1 \text{ mA} < I_{OUT} < 0.25 A,$ $V_{OUT} \ge 1.8 V,$ $-40 \text{ °C} < T_J < 125 \text{ °C}$	-2.0		+2.0	%
Vouт	accuracy (DFN and SOT23 packages)	V _{OUT} + 1 V ⁽¹⁾ < V _{IN} < 5.5 V, 1 mA < l _{OUT} < 0.25 A, V _{OUT} < 1.8 V, -40 °C < T _J < 125 °C	-4.0		+4.0	%
		Vout + 1 V ⁽¹⁾ < V _{IN} < 5.5 V		0.02		
ΔVουτ/ΔVιν	Static line regulation	-40 °C < T _J < 125 °C			0.06	%/V
	Line transient ⁽²⁾	$\Delta V_{IN} = +/- 0.6 \text{ V},$ $t_{rise} = t_{fall} = 30 \mu\text{s}$	-1		+1	mV
		1 mA < I _{ОUТ} < 0.25 A, V _{ОUТ} ≥ 1.8 V		0.002		0// 1
	Static load regulation	-40 °C < T _J < 125 °C, V _{OUT} ≥ 1.8 V			0.007	%/mA
ΔVουτ/ΔΙουτ		1 mA < I _{OUT} < 0.25 A, V _{OUT} < 1.8 V		20		mV
	Load transient ⁽²⁾	Δl_{OUT} = 1 mA to 250 mA and back, t_{rise} = t_{fall} = 10 μs	-40		+40	mV
ΔVουτ	Overshoot on startup ⁽²⁾	Percentage of VouT(nom)			5	%

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
		Iоит = 0.1 A		50			
		I _{OUT} = 0.25 A		120			
VDROP	Dropout voltage ⁽³⁾	I _{OUT} = 0.25 A, -40 °C < T _J < 125 °C (Flip-Chip4)			200	mV	
		I _{OUT} = 0.25 A, -40 °C < T _J < 125 °C (DFN4-1x1)			250		
eN	Output noise	f = 10 Hz to 100 kHz; lout = 1 mA		10		μV _{RMS}	
en	voltage (2)	f = 10 Hz to 100 kHz; lout = 250 mA		6.5		μvκms	
		f = 100 Hz; lout = 20 mA		80			
OV/D	Supply voltage	f = 1 kHz; I _{OUT} = 20 mA		80		J.D.	
SVR	rejection ⁽²⁾	f = 10 kHz; lout = 20 mA		75		dB	
		f = 100 kHz; I _{OUT} = 20 mA		60			
		lоит = 0 A		12		μA	
	Quiescent current ⁽⁴⁾	I _{OUT} = 0 A; -40 °C < T _J < 125 °C			25	·	
lα	Quiescent current.	louт = 0.25 A		250		μA	
		I _{OUT} = 0.25 A; -40 °C < T _J < 125 °C			425	·	
	Shutdown current	V _{EN} = 0 V		0.2	1	μA	
Isc	Short-circuit current	Vout = 0 V	250	500		mA	
R _{LOW}	Output discharge resistance	V _{EN} = 0 V		230		Ω	
V _{EN}	V _{IL} , enable input logic low	V _{OUT} + 1 V ⁽¹⁾ < V _{IN} < 5.5 V			0.4	V	
V EIN	V _{IH} , enable input logic high	-40 °C < T _J < 125 °C	1.2			v	
	Enable pin input	$V_{IN} = V_{EN} = 5.5 \text{ V}$		5.5			
len	current	V _{IN} = 5.5 V; V _{EN} = 0 V		0.001		μA	

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
ton	Turn-on time ⁽²⁾	From V _{EN} > V _{IH} to V _{OUT} = 95 % of V _{OUT(nom)}		80	150	μs	
т	Thermal shutdown ⁽²⁾	IOUT > 1 mA		160		3	
ISHDN	Hysteresis			20		°C	

Notes:

Table 5: Recommended input and output capacitors

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
CIN	Input capacitance	Otob ilita	0.7	1		
Соит	Output capacitance	Stability	0.7	1	10	μF
ESR	Output/input capacitance		5		500	mΩ

 $^{^{(1)}}$ V_{IN} = V_{OUT} + 1 V or 1.5 V, whichever is greater. Not applicable for 5 V output voltage versions.

⁽²⁾ Guaranteed by design.

 $^{^{(3)}}$ Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value.

 $^{^{\}rm (4)}$ The quiescent current is defined as $I_{\text{IN}}\text{-IouT}$ and does not include the EN pin current.

6 Typical characteristics

(The following plots are referred to LDLN025J2925R in the typical application circuit and, unless otherwise noted, at $T_A = 25$ °C).

2

-75

-25

Figure 8: Quiescent current vs temperature (lout = 0 mA) $V_{IN} = V_{OUT} + 1 \text{ V, } V_{EN} = 1.2 \text{ V, } I_{OUT} = 0 \text{ A, } C_{IN} = 1 \text{ } \mu\text{F, } C_{OUT} = 1 \text{ } \mu\text{F}$

25

Temperature [°C]

125

AMG010720161034MT

Figure 10: GND current vs input voltage V_{IN} = EN = from 0 to 6 V, I_{OUT} = 0 A, C_{IN} = 1 μF , C_{OUT} = 1 μF 26 24 22 20 GND current [µA] 18 16 14 12 10 6 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 Input voltage [V] AMG010720161036MT

LDLN025

LDLN025 Package information

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

7.1 Flip-Chip4 package information

Figure 28: Flip-Chip4 package outline

Table 6: Flip-Chip4 mechanical data

Dim	mm					
Dim.	Min.	Тур.	Max.			
А	0.375	0.410	0.445			
A1	0.145	0.160	0.175			
A2	0.230	0.250	0.270			
b	0.189	0.210	0.231			
D	0.598	0.628	0.658			
D1		0.350				
Е	0.598	0.628	0.658			
E1		0.350				
SD		0.175				
SE		0.175				
f		0.139				
ccc		0.075				

Figure 29: Flip-Chip4 recommended footprint

7.2 Flip-Chip4 packing information

Figure 30: Flip-Chip4 carrier tape

LDLN025 Package information

7.3 DFN4-1x1 package information

Figure 31: DFN4-1x1 package outline

Table 7: DFN4-1x1 package mechanical data

Dim	mm				
Dim.	Min.	Тур.	Max.		
A	0.36		0.40		
A1	0.00		0.05		
A2	0.15	0.25	0.35		
A3		0.125			
b	0.15	0.20	0.25		
D	0.95	1.00	1.05		
D2	0.38	0.48	0.58		
е		0.65			
Е	0.95	1.00	1.05		
E2	0.38	0.48	0.58		
L	0.15	0.25	0.35		
К		0.15			
N		4			

7.4 DFN4-1x1 packing information

Figure 32: DFN4 (1x1x0.38 pitch 4 mm) carrier tape

LDLN025 Package information

7.5 SOT23-5L package information

Figure 33: SOT23-5L package outline

Table 8: SOT23-5L package mechanical data

Dim	mm					
Dim.	Min.	Тур.	Max.			
А	0.90		1.45			
A1	0		0.15			
A2	0.90		1.30			
b	0.30		0.50			
С	0.09		0.20			
D		2.95				
Е		1.60				
е		0.95				
Н		2.80				
L	0.30		0.60			
θ	0°		8°			

Figure 34: SOT23-5L recommended footprint

22/26

Dimensions are in mm

8 Ordering information

Table 9: Order code

Order code	Package	Output voltage (V)	Marking	Packing
LDLN025PU18R	DFN4-1x1	1.8	18	Tape and reel
LDLN025PU25R		2.5	25	
LDLN025PU275R		2.75	2Z	
LDLN025PU28R		2.8	28	
LDLN025PU29R		2.9	29	
LDLN025PU30R		3.0	30	
LDLN025PU32R		3.2	32	
LDLN025PU33R		3.3	33	
LDLN025PU50R		5.0	50	
LDLN025J12R ⁽¹⁾	Flip-Chip4	1.2	М	
LDLN025J18R		1.8	Е	
LDLN025J25R		2.5	Н	
LDLN025J28R		2.8	I	
LDLN025J2925R		2.925	K	
LDLN025J30R ⁽¹⁾		3.0	G	
LDLN025J32R		3.2	N	
LDLN025J33R		3.3	F	
LDLN025J50R ⁽¹⁾		5.0	Р	
LDLN025M12R ⁽¹⁾	- SOT23-5L	1.2	LN12	
LDLN025M15R ⁽¹⁾		1.5	LN15	
LDLN025M18R ⁽¹⁾		1.8	LN18	
LDLN025M25R ⁽¹⁾		2.5	LN25	
LDLN025M28R ⁽¹⁾		2.8	LN28	
LDLN025M30R ⁽¹⁾		3.0	LN30	
LDLN025M33R ⁽¹⁾		3.3	LN33	
LDLN025M45R ⁽¹⁾		4.5	LN45	

Notes:

 $[\]ensuremath{^{(1)}}\mbox{Part}$ number in development. Contact our sales office.

8.1 Marking information

Figure 35: Flip-Chip marking composition (marking view)

The symbol # indicates the marking digit, as per Table 9: "Order code".

LDLN025 Revision history

9 Revision history

Table 10: Document revision history

Date	Revision	Changes	
03-Aug-2016	1	First release.	
01-Sep-2016	2	Updated <i>Table 8: "Order code".</i> Minor text changes.	
24-Oct-2016	3	Updated <i>Table 2: "Absolute maximum ratings"</i> . Minor text changes.	
17-Nov-2016	4	Updated Section 9: "Ordering information". Minor text changes.	
12-Jul-2017	5	Added SOT23-5L package. Modified silhouette, features, Figure 1: "Block diagram", Section 2: "Pin configuration" and Table 4: "Electrical characteristics". Added Section 7.5: "SOT23-5L package information". Updated Table 9: "Order code". Minor text changes.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved