# Линейные модели классификации.

Елена Кантонистова

#### ПЛАН

- Метод опорных векторов
- Калибровка вероятностей

## МЕТОД ОПОРНЫХ ВЕКТОРОВ

## ЛИНЕЙНО РАЗДЕЛИМАЯ ВЫБОРКА

Выборка *линейно разделима*, если существует такой вектор параметров  $w^*$ , что соответствующий классификатор a(x) не допускает ошибок на этой выборке.



Цель метода опорных векторов (Support Vector Machine) – максимизировать ширину разделяющей полосы.



- $a(x) = sign((w, x) + w_0)$
- ullet Нормируем параметры w и  $w_0$  так, что

$$\min_{x \in X} |(w, x) + w_0| = 1$$

- $a(x) = sign((w, x) + w_0)$
- Нормируем параметры w и  $w_0$  так, что

$$\min_{x \in X} |(w, x) + w_0| = 1$$

Расстояние от точки  $x_0$  до разделяющей гиперплоскости,

задаваемой

классификатором:

$$\rho(x_0, a) = \frac{|(w, x_0) + w_0|}{||w||}$$



• Нормируем параметры w и  $w_0$  так, что

$$\min_{x \in X} |(w, x) + w_0| = 1$$

Тогда расстояние от точки  $x_0$  до разделяющей гиперплоскости, задаваемой классификатором:

$$\rho(x_0, a) = \frac{|(w, x_0) + w_0|}{||w||}$$

• Расстояние до ближайшего объекта  $x \in X$ :

$$\min_{x \in X} \frac{|(w, x) + w_0|}{||w||} = \frac{1}{||w||} \min_{x \in X} |(w, x) + w_0| = \frac{1}{||w||}$$

## РАЗДЕЛЯЮЩАЯ ПОЛОСА



## ОПТИМИЗАЦИОННАЯ ЗАДАЧА SVM ДЛЯ РАЗДЕЛИМОЙ ВЫБОРКИ

$$\begin{cases} \frac{1}{2} ||w||^2 \to \min_{w} \\ y_i((w, x_i) + w_0) \ge 1, i = 1, ..., l \end{cases}$$

**Утверждение.** Данная оптимизационная задача имеет единственное решение.

## ЛИНЕЙНО НЕРАЗДЕЛИМАЯ ВЫБОРКА

• Существует хотя бы один объект  $x \in X$ , что

$$y_i\big((w,x_i)+w_0\big)<1$$

## ЛИНЕЙНО НЕРАЗДЕЛИМАЯ ВЫБОРКА

• Существует хотя бы один объект  $x \in X$ , что

$$y_i\big((w,x_i)+w_0\big)<1$$



## ЛИНЕЙНО НЕРАЗДЕЛИМАЯ ВЫБОРКА

• Существует хотя бы один объект  $x \in X$ , что

$$y_i((w, x_i) + w_0) < 1$$

Смягчим ограничения, введя штрафы  $\xi_i \ge 0$ :

$$y_i((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l$$

#### Хотим:

- ullet Минимизировать штрафы  $\sum_{i=1}^{l} \xi_i$
- Максимизировать отступ  $\frac{1}{||w||}$

#### Хотим:

- ullet Минимизировать штрафы  $\sum_{i=1}^{l} \xi_i$
- Максимизировать отступ  $\frac{1}{||w||}$

#### Задача оптимизации:

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{l} \xi_i \to \min_{w, w_0, \xi_i} \\ y_i ((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l \\ \xi_i \ge 0, i = 1, ..., l \end{cases}$$

Утверждение. Задача

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{l} \xi_i \to \min_{w, w_0, \xi_i} \\ y_i ((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l \\ \xi_i \ge 0, i = 1, ..., l \end{cases}$$

Является выпуклой и имеет единственное решение.

## СВЕДЕНИЕ К БЕЗУСЛОВНОЙ ЗАДАЧЕ

$$\begin{cases} \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{l} \xi_{i} \to \min_{w,w_{0},\xi_{i}} (1) \\ y_{i}((w,x_{i}) + w_{0}) \ge 1 - \xi_{i}, i = 1, ..., l (2) \\ \xi_{i} \ge 0, i = 1, ..., l (3) \end{cases}$$

• Перепишем (2) и (3):

$$\begin{cases} \xi_i \ge 1 - y_i ((w, x_i) + w_0) = 1 - M_i \\ \xi_i \ge 0 \end{cases}$$

## СВЕДЕНИЕ К БЕЗУСЛОВНОЙ ЗАДАЧЕ

$$\begin{cases} \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{l} \xi_{i} \to \min_{w,w_{0},\xi_{i}} (1) \\ y_{i}((w,x_{i}) + w_{0}) \ge 1 - \xi_{i}, i = 1, ..., l (2) \\ \xi_{i} \ge 0, i = 1, ..., l (3) \end{cases}$$

• Перепишем (2) и (3):

$$\begin{cases} \xi_i \ge 1 - y_i ((w, x_i) + w_0) \\ \xi_i \ge 0 \end{cases} \Rightarrow \xi_i = \max(0, 1 - y_i ((w, x_i) + w_0))$$

## СВЕДЕНИЕ К БЕЗУСЛОВНОЙ ЗАДАЧЕ

$$\begin{cases} \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{l} \xi_{i} \to \min_{w,w_{0},\xi_{i}} (1) \\ y_{i} ((w,x_{i}) + w_{0}) \ge 1 - \xi_{i}, i = 1, ..., l (2) \\ \xi_{i} \ge 0, i = 1, ..., l (3) \end{cases}$$

• Перепишем (2) и (3):

$$\begin{cases} \xi_i \ge 1 - y_i ((w, x_i) + w_0) \\ \xi_i \ge 0 \end{cases} \Rightarrow \xi_i = \max(0, 1 - y_i ((w, x_i) + w_0))$$

Получаем безусловную задачу оптимизации:

$$\frac{1}{2}||w||^{2} + C\sum_{i=1}^{l} \max(0, 1 - y_{i}((w, x_{i}) + w_{0})) \to \min_{w, w_{0}}$$

## МЕТОД ОПОРНЫХ ВЕКТОРОВ: ЗАДАЧА ОПТИМИЗАЦИИ

• На задачу оптимизации SVM можно смотреть, как на оптимизацию функции потерь  $L(M) = max(0,1-M) = (1-M)_+$  с регуляризацией:

$$Q(a,X) = \sum_{i=1}^{l} \left(1 - M_i(w, w_0)\right)_+ + \frac{1}{2C} ||w||^2 \to \min_{w, w_0}$$



$$\begin{cases} \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{l} \xi_{i} \to \min_{w,w_{0},\xi_{i}} (1) \\ y_{i}((w,x_{i}) + w_{0}) \ge 1 - \xi_{i}, i = 1, ..., l (2) \\ \xi_{i} \ge 0, i = 1, ..., l (3) \end{cases}$$

Положительная константа *С* является управляющим параметром метода и позволяет находить компромисс между максимизацией разделяющей полосы и минимизацией суммарной ошибки.











### ТИПЫ ОБЪЕКТОВ В SVM



## КАЛИБРОВКА ВЕРОЯТНОСТЕЙ

#### КАЛИБРОВКА ВЕРОЯТНОСТЕЙ

**Калибровка вероятностей** - приведение ответов алгоритма к значениям, близким к вероятностям объектов принадлежать конкретному классу.

Зачем это нужно?

- Вероятности гораздо проще интерпретировать
- Вероятности могут дать дополнительную информацию о результатах работы алгоритма

#### КАЛИБРОВКА ПЛАТТА

• Пусть есть два класса,  $Y = \{+1, -1\}$ 

**Задача:** для классификатора a(x), предсказывающего значения из отрезка [0,1], либо предсказывающего класс (+1 или -1), сделать калибровку, чтобы предсказания были вероятностями p(y=+1|x).

#### КАЛИБРОВКА ПЛАТТА

• Пусть есть два класса,  $Y = \{+1, -1\}$ 

**Задача:** для классификатора a(x), предсказывающего значения из отрезка [0,1], либо предсказывающего класс (+1 или -1), сделать калибровку, чтобы предсказания были вероятностями p(y=+1|x).

**Идея:** обучаем логистическую регрессию на ответах классификатора a(x).

#### ПРИМЕР ИЗ SKLEARN



#### КАЛИБРОВКА ПЛАТТА

• Пусть есть два класса,  $Y = \{+1, -1\}$ 

**Задача:** для классификатора a(x), предсказывающего значения из отрезка [0,1], либо предсказывающего класс (+1 или -1), сделать калибровку, чтобы предсказания были вероятностями p(y=+1|x).

Идея: обучаем логистическую регрессию на ответах классификатора a(x).

#### КАЛИБРОВКА ПЛАТТА

• Пусть есть два класса,  $Y = \{+1, -1\}$ 

**Задача:** для классификатора a(x), предсказывающего значения из отрезка [0,1], либо предсказывающего класс (+1 или -1), сделать калибровку, чтобы предсказания были вероятностями p(y=+1|x).

Идея: обучаем логистическую регрессию на ответах классификатора a(x).

• 
$$\pi(x; \alpha; \beta) = \sigma(\alpha \cdot \mathbf{a}(x) + \beta) = \frac{1}{1 + e^{-(\alpha \cdot a(x) + \beta)}}$$

#### Изотоническая регрессия для калибровки вероятностей

Калибровка вероятностей — это процесс преобразования выходов модели (обычно вероятностей) таким образом, чтобы они соответствовали истинным вероятностям события. Например, если модель предсказывает вероятность 0.8 для класса 1, мы хотим, чтобы примерно 80% таких объектов действительно принадлежали к классу 1.

#### Изотоническая регрессия используется для этого, так как она:

- 1. Обеспечивает монотонную зависимость между входными значениями (сырыми вероятностями модели) и откалиброванными значениями.
- 2. Минимизирует квадратичную ошибку на обучающих данных.

#### Математическая постановка

Пусть:

- $\hat{p}_i$  предсказания модели (сырые вероятности или оценки).
- ullet  $y_i \in \{0,1\}$  истинные метки классов.

Изотоническая регрессия минимизирует следующую ошибку:

$$\min_f \sum_{i=1}^n (y_i - f(\hat{p}_i))^2,$$

где f — монотонно неубывающая функция (изотоническая регрессия), которая калибрует вероятности.

После обучения, для любого нового предсказания  $\hat{p}$ , откалиброванная вероятность вычисляется как:

$$\hat{p}_{ ext{cal}} = f(\hat{p}).$$

#### РАЗЛИЧНЫЕ КАЛИБРОВКИ



#### Как это работает?

#### 1. Сортируем предсказания.

Сначала мы располагаем все предсказания модели  $\hat{p}$  по возрастанию:

$$\hat{p}_1 \leq \hat{p}_2 \leq \cdots \leq \hat{p}_n$$
.

К каждому из них привязываем соответствующую истинную метку y (0 или 1).

#### 2. Группируем соседей, нарушающих порядок монотонности.

Например, если модель предсказала вероятность  $\hat{p}_i=0.4$ , а из реальных данных видно, что только 30% таких случаев относятся к положительному классу, то это нужно исправить. Изотоническая регрессия объединяет такие точки в группы и вычисляет для них общее значение вероятности, чтобы соблюдалась монотонность.

#### 3. Вычисляем вероятности в группах.

Для каждой группы вычисляем среднее истинных значений y (процент положительных примеров). Это значение станет откалиброванной вероятностью для всех точек в группе.

#### 4. Создаём преобразующую функцию.

В итоге мы получаем кусочно-постоянную монотонную функцию  $f(\hat{p})$ , которая отображает "сырые" вероятности  $\hat{p}$  в откалиброванные.

Предположим, у нас есть следующие данные:

- Сырые вероятности модели:  $\hat{p} = [0.1, 0.4, 0.35, 0.8];$
- Истинные метки классов: y = [0, 0, 1, 1].

#### 1. Сортируем данные:

• Упорядочим  $\hat{p}$ : [0.1, 0.35, 0.4, 0.8], и соответствующие метки y: [0, 1, 0, 1].

#### 2. Ищем нарушения монотонности:

- Для  $\hat{p}=0.35$  модель ошиблась: вероятность выше, чем у  $\hat{p}=0.4$ , но реальная метка говорит обратное.
- Изотоническая регрессия объединяет эти точки ( $\hat{p}=0.35$  и  $\hat{p}=0.4$ ).

#### 3. Вычисляем средние вероятности для групп:

- Для объединённой группы ( $\hat{p}=0.35,0.4$ ): средняя истинная вероятность =(1+0)/2=0.5.
- Обновляем предсказания:  $\hat{p}_{\mathrm{cal}} = [0.1, 0.5, 0.5, 1.0].$

Теперь все предсказания  $\hat{p}_{\mathrm{cal}}$  соответствуют вероятностной интерпретации:

- $\hat{p}_{\mathrm{cal}} = 0.5$  означает, что 50% таких случаев действительно положительные.
- $\hat{p}_{\mathrm{cal}} = 1.0$  означает, что 100% таких случаев действительно положительные.