In praise of linear models!

- Despite its simplicity, the linear model has distinct advantages in terms of its *interpretability* and often shows good *predictive performance*.
- Hence we discuss in this lecture some ways in which the simple linear model can be improved, by replacing ordinary least squares fitting with some alternative fitting procedures.

Why consider alternatives to least squares?

- Prediction Accuracy: especially when p > n, to control the variance.
- Model Interpretability: By removing irrelevant features that is, by setting the corresponding coefficient estimates to zero we can obtain a model that is more easily interpreted. We will present some approaches for automatically performing feature selection.

Three classes of methods

- Subset Selection. We identify a subset of the p predictors that we believe to be related to the response. We then fit a model using least squares on the reduced set of variables.
- Shrinkage. We fit a model involving all p predictors, but the estimated coefficients are shrunken towards zero relative to the least squares estimates. This shrinkage (also known as regularization) has the effect of reducing variance and can also perform variable selection.
- Dimension Reduction. We project the p predictors into a M-dimensional subspace, where M < p. This is achieved by computing M different linear combinations, or projections, of the variables. Then these M projections are used as predictors to fit a linear regression model by least squares.

Shrinkage Methods

Ridge regression and Lasso

- The subset selection methods use least squares to fit a linear model that contains a subset of the predictors.
- As an alternative, we can fit a model containing all *p* predictors using a technique that *constrains* or *regularizes* the coefficient estimates, or equivalently, that *shrinks* the coefficient estimates towards zero.
- It may not be immediately obvious why such a constraint should improve the fit, but it turns out that shrinking the coefficient estimates can significantly reduce their variance.

Ridge regression

• Recall that the least squares fitting procedure estimates $\beta_0, \beta_1, \dots, \beta_p$ using the values that minimize

RSS =
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
.

• In contrast, the ridge regression coefficient estimates $\hat{\beta}^R$ are the values that minimize

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2,$$

where $\lambda \geq 0$ is a tuning parameter, to be determined separately.

Ridge regression: continued

- As with least squares, ridge regression seeks coefficient estimates that fit the data well, by making the RSS small.
- However, the second term, $\lambda \sum_{j} \beta_{j}^{2}$, called a *shrinkage* penalty, is small when $\beta_{1}, \ldots, \beta_{p}$ are close to zero, and so it has the effect of *shrinking* the estimates of β_{i} towards zero.
- The tuning parameter λ serves to control the relative impact of these two terms on the regression coefficient estimates.
- Selecting a good value for λ is critical; cross-validation is used for this.

Credit data example

Details of Previous Figure

- In the left-hand panel, each curve corresponds to the ridge regression coefficient estimate for one of the ten variables, plotted as a function of λ .
- The right-hand panel displays the same ridge coefficient estimates as the left-hand panel, but instead of displaying λ on the x-axis, we now display $\|\hat{\beta}_{\lambda}^{R}\|_{2}/\|\hat{\beta}\|_{2}$, where $\hat{\beta}$ denotes the vector of least squares coefficient estimates.
- The notation $\|\beta\|_2$ denotes the ℓ_2 norm (pronounced "ell 2") of a vector, and is defined as $\|\beta\|_2 = \sqrt{\sum_{j=1}^p \beta_j^2}$.

Ridge regression: scaling of predictors

- The standard least squares coefficient estimates are scale equivariant: multiplying X_j by a constant c simply leads to a scaling of the least squares coefficient estimates by a factor of 1/c. In other words, regardless of how the jth predictor is scaled, $X_j\hat{\beta}_j$ will remain the same.
- In contrast, the ridge regression coefficient estimates can change *substantially* when multiplying a given predictor by a constant, due to the sum of squared coefficients term in the penalty part of the ridge regression objective function.
- Therefore, it is best to apply ridge regression after standardizing the predictors, using the formula

$$\tilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \overline{x}_j)^2}}$$

Why Does Ridge Regression Improve Over Least Squares?

The Bias-Variance tradeoff

Simulated data with n=50 observations, p=45 predictors, all having nonzero coefficients. Squared bias (black), variance (green), and test mean squared error (purple) for the ridge regression predictions on a simulated data set, as a function of λ and $\|\hat{\beta}_{\lambda}^R\|_2/\|\hat{\beta}\|_2$. The horizontal dashed lines indicate the minimum possible MSE. The purple crosses indicate the ridge regression models for which the MSE is smallest.

The Lasso

- Ridge regression does have one obvious disadvantage: unlike subset selection, which will generally select models that involve just a subset of the variables, ridge regression will include all p predictors in the final model
- The Lasso is a relatively recent alternative to ridge regression that overcomes this disadvantage. The lasso coefficients, $\hat{\beta}_{\lambda}^{L}$, minimize the quantity

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|.$$

• In statistical parlance, the lasso uses an ℓ_1 (pronounced "ell 1") penalty instead of an ℓ_2 penalty. The ℓ_1 norm of a coefficient vector β is given by $\|\beta\|_1 = \sum |\beta_j|$.

The Lasso: continued

- As with ridge regression, the lasso shrinks the coefficient estimates towards zero.
- However, in the case of the lasso, the ℓ_1 penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when the tuning parameter λ is sufficiently large.
- Hence, much like best subset selection, the lasso performs variable selection.
- We say that the lasso yields *sparse* models that is, models that involve only a subset of the variables.
- As in ridge regression, selecting a good value of λ for the lasso is critical; cross-validation is again the method of choice.

Example: Credit dataset

The Variable Selection Property of the Lasso

Why is it that the lasso, unlike ridge regression, results in coefficient estimates that are exactly equal to zero?

The Variable Selection Property of the Lasso

Why is it that the lasso, unlike ridge regression, results in coefficient estimates that are exactly equal to zero?

One can show that the lasso and ridge regression coefficient estimates solve the problems

minimize
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
 subject to $\sum_{j=1}^{p} |\beta_j| \le s$

and

minimize
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
 subject to $\sum_{j=1}^{p} \beta_j^2 \le s$,

respectively.

The Lasso Picture

Comparing the Lasso and Ridge Regression

Left: Plots of squared bias (black), variance (green), and test MSE (purple) for the lasso on simulated data set of Slide 32. Right: Comparison of squared bias, variance and test MSE between lasso (solid) and ridge (dashed). Both are plotted against their \mathbb{R}^2 on the training data, as a common form of indexing. The crosses in both plots indicate the lasso model for which the MSE is smallest.

Comparing the Lasso and Ridge Regression: continued

Left: Plots of squared bias (black), variance (green), and test MSE (purple) for the lasso. The simulated data is similar to that in Slide 38, except that now only two predictors are related to the response. Right: Comparison of squared bias, variance and test MSE between lasso (solid) and ridge (dashed). Both are plotted against their R^2 on the training data, as a common form of indexing. The crosses in both plots indicate the lasso model for which the MSE is smallest.

Conclusions

- These two examples illustrate that neither ridge regression nor the lasso will universally dominate the other.
- In general, one might expect the lasso to perform better when the response is a function of only a relatively small number of predictors.
- However, the number of predictors that is related to the response is never known *a priori* for real data sets.
- A technique such as cross-validation can be used in order to determine which approach is better on a particular data set.

Selecting the Tuning Parameter for Ridge Regression and Lasso

- As for subset selection, for ridge regression and lasso we require a method to determine which of the models under consideration is best.
- That is, we require a method selecting a value for the tuning parameter λ or equivalently, the value of the constraint s.
- Cross-validation provides a simple way to tackle this problem. We choose a grid of λ values, and compute the cross-validation error rate for each value of λ .
- We then select the tuning parameter value for which the cross-validation error is smallest.
- Finally, the model is re-fit using all of the available observations and the selected value of the tuning parameter.

Credit data example

Left: Cross-validation errors that result from applying ridge regression to the Credit data set with various values of λ . Right: The coefficient estimates as a function of λ . The vertical dashed lines indicates the value of λ selected by cross-validation.

Simulated data example

Left: Ten-fold cross-validation MSE for the lasso, applied to the sparse simulated data set from Slide 39. Right: The corresponding lasso coefficient estimates are displayed. The vertical dashed lines indicate the lasso fit for which the cross-validation error is smallest.