Math

August 19, 2022

1 Problem 1

a in all forms purely changes the shape and direction of the parabola. c in the expanded form is the y-intercept. d in the vertex form is the x coordinate of the vertex. h in vertex form is the y coordinate of the vertex. x_1 and x_2 in the factored form represent the two x-intercepts. Increasing b while a is positive moves the vertex of the parabola left while maintaining the same shape and y-intercept. Decreasing b while a is positive moves the vertex of the parabola right while maintaining the same shape and y-intercept. Increasing b while a is negative moves the vertex of the parabola right while maintaining the same shape and y-intercept. Decreasing b while a is positive moves the vertex of the parabola left.

2 Problem 2

A quadratic does not have a factored form if $4ac > b^2$

3 Problem 3

 x_1 and x_2 are solutions to the equation $0 = ax^2 + bx + c$.

4 Problem 4

4.1 Expanded to Vertex

We start by expanding the $a(x-d)^2$ term:

$$a(x-d)^2 = a(x^2 - 2xd + d^2)$$

$$= ax^2 - 2axd + ad^2$$

The ax^2 is good and matches the expanded form. We want the -2axd to equal +bx. We can do this by setting d to $\frac{-b}{2a}$.

Next for the h term. To get the h term we first want to remove the ad^2 from the previous expansion and add c. So $h=c-ad^2$. Since we already know $d=\frac{-b}{2a}$ we can plug that in and get $h=c-\frac{-ab^2}{4a^2}$. We can simplify to $h=c-\frac{-b^2}{4a}=\frac{4ac+b^2}{4a}$

4.2 Expanded to Factored

a is the same in both forms. x_1 and x_2 are the two solutions to the quadratic formula $\frac{-b\pm\sqrt{b^2-4ac}}{2a}=0$.

4.3 Vertex to Expanded

a is the same in both forms. b = -2da and $c = h + \frac{-ab^2}{4a^2}$.

4.4 Vertex to Factored

a is the same in both forms. x_1 and x_2 are the two solutions to $0 = a(x+d)^2 + h$

4.5 Factored to Expanded

a is the same in both forms. $b = ax_1x_2$, $c = x_1x_2$.

4.6 Factored to Vertex

a is the same in both forms. We already know $d=\frac{-b}{2a}$ and $h=c-\frac{-ab^2}{4a^2}$. We also know $b=ax_1x_2$ and $c=x_1x_2$. If we plug these into the first to equations we get $d=\frac{-(ax_1x_2)}{2a}=\frac{-x_1x_2}{2a}$ and $h=x_1x_2-\frac{-ab^2}{4a^2}$.

5 Problem 5

Let (x_0, y_0) be a solution to the equation y = f(x). If you change the x to x - s, increasing x_0 by s to account for the decrease by s would also be a solution. Therefore $x_0 + s, y_0$ is a solution to y = f(x - s). If you change y to y - t, if you added t to x_0 it would cancel out the t, therefore $(x_0, y_0 + t)$ is a solution. If we combine the two we find that $(x_0 + s, y_0 + t)$ is always a solution to y - t = f(x - s) if (x_0, y_0) is a solution to y = f(x). This means that if you increase s, every point moves right, and if you increase t every point moves up.