Linjär algebra FMA420

 $Emil~Wihl ander \\ dat 15ewi@student.lu.se$

2016-05-12

Kapitel 1: Linjära ekvationssystem

1.1 (s.)

Börja nerifrån och upp och lös en variabel i taget.

$$\begin{cases} 2x + 3y - z = 5 \\ -3y + 5z = 1 \\ 4z = 8 \end{cases}$$

$$\Leftrightarrow \begin{cases} z = 2 \\ y = \frac{1 - 5 * 2}{-3} = 3 \\ x = \frac{5 + 2 - 3 * 3}{2} = -1 \end{cases}$$

Svar: (x, y, z) = (-1, 3, 2)

1.2 (s.)

Gausselimination:

$$\begin{cases} x - 2y + z = 2 \\ 2x - 6y + 11z = 35 \\ -3x + 5y + z = 8 \end{cases}$$
(a)
$$\begin{cases} x - 2y + z = 8 \\ (c) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 2 \\ -2y + 9z = 31 \\ -y + 4z = 14 \end{cases}$$
(b') = (b) - 2(a) (c') = (c) + 3(a)
$$\begin{cases} x - 2y + z = 2 \\ -2y + 9z = 31 \\ -2y + 9z = 31 \end{cases}$$
(b") = (b') (c") = (b') (c") = (c') - \frac{1}{2}(b')
$$\begin{cases} z = 3 \\ y = \frac{31 - 9 * 3}{-2} = -2 \\ x = 2 + 2 * (-2) - 3 = -5 \end{cases}$$

Svar: (x, y, z) = (-5, -2, 3)

1.3 (s.)

Gausselimination:

$$\begin{cases} x - 2y + z = 1 \\ 2x - 6y + 6z = 2 \\ -3x + 5y + z = 3 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \\ -y + 4z = 6 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x$$

Svar: (x, y, z) = (10, 6, 3)

1.4 (s.)

Gausselimination:

$$\begin{cases} x - 2y + z = 1 \\ 2x - 6y + 6z = 2 \\ -3x + 5y - z = 3 \end{cases}$$
 (a)

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \\ -y + 2z = 6 \end{cases}$$
 (b)

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 0 \\ 0z = 6 \end{cases}$$
 (a') = (a)
(b') = (b) - 2(a)
(c') = (c) + 3(a)
(a'') = (a')
(b'') = (b')
(c'') = (c') - $\frac{1}{2}$ (b')

Saknar lösning eftersom $0 \neq 6$.

Svar: Lösning saknas

1.5 (s.)

Gausselimination:

$$\begin{cases} 2x - 6y + 11z = 35 & (a) \\ x - 2y + z = 2 & (b) \\ -3x + 5y + z = 8 & (c) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 2 & (a') = (b) \\ 2x - 6y + 11z = 35 & (b') = (a) \\ -3x + 5y + z = 8 & (c') = (c) \end{cases}$$

Lös som i 1.2

Svar:
$$(x, y, z) = (-5, -2, 3)$$

1.6 (s.)

Gausselimination:

$$\begin{cases} x - 2y + 3z = 1 \\ 2x - 4y + 7z = 3 \\ -3x + 5y - z = 2 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ z = 1 \\ - y + 8z = 5 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ - y + 8z = 5 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (b') = (a) \\ (b') = (b) - 2(a) \\ (c') = (c) + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ - y + 8z = 5 \\ z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (c') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\ (c') = (b') + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = 1 \\$$

Svar: (x, y, z) = (4, 3, 1)

Gausselimination:

$$\begin{cases} 2w + x - y - 2z = -1 \\ -12w - 3x + 4y + 7z = 2 \\ -2w + 2x - 4y - 3z = -12 \\ -31w + 5x - y - 3z = -20 \end{cases}$$
(a)

$$\begin{cases} 2w + x - y - 2z = -1 \\ -6w + y + z = -1 \\ -6w - 2y + z = -10 \\ -41w + 4y + 7z = -15 \end{cases}$$
(a)

$$\begin{cases} 2w + x - y - 3z = -20 \\ 6w + y + z = -1 \\ -6w - 2y + z = -10 \\ -41w + 4y + 7z = -15 \end{cases}$$
(a') = (a)

$$\begin{cases} 2w + x - y - 2z = -1 \\ -6w + y + z = -1 \\ -18w + 3z = -12 \\ -17w + 3z = -11 \end{cases}$$
(a'') = (a')

$$\begin{cases} 2w + x - y - 2z = -1 \\ -6w + y + z = -1 \\ -18w + 3z = -11 \end{cases}$$
(a'') = (a'') = (b') = (b) + 3(a)

$$\begin{cases} 2w + x - y - 2z = -1 \\ -6w + y + z = -1 \\ -18w + 3z = -12 \end{cases}$$
(c'') = (c'') = (c') + 2(b')

$$\begin{cases} 2w + x - y - 2z = -1 \\ -6w + y + z = -1 \end{cases}$$
(b''') = (b'')

$$\begin{cases} 2w + x - y - 2z = -1 \\ -6w + y + z = -1 \end{cases}$$
(b''') = (b'')

$$\begin{cases} 2w + x - y - 2z = -1 \\ -6w + y + z = -1 \end{cases}$$
(c''') = (c'''') = (c''') = (c''')

Svar: (x, y, z, w) = (4, 3, 2, 1)

1.8 (s.)

Eftersom det endast är två variabler krävs endast två ekvationer för att lösa systemet. Testa sedan mot resterande ekvationer för att se om systemet har en lösning.

Gausselimination:

$$\begin{cases} x - 2y = 1 & (a) \\ 3x + 4y = 13 & (b) \\ -5x + 2y = -13 & (c) \\ 4x - 3y = 9 & (d) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y = 1 & (a') = (a) \\ 10y = 10 & (b') = (b) - 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} y = 1 \\ x = 1 + 2 * 1 = 3 \end{cases}$$
c) och (d):
$$-5 * 3 + 2 * 1 = -13$$

Kolla (c) och (d):

$$-5 * 3 + 2 * 1 = -13$$

$$4*3 - 3*1 = 9$$

Svar:
$$(x,y) = (3,1)$$

1.9 (s.)

Eftersom det endast är två variabler krävs endast två ekvationer för att lösa systemet. Testa sedan mot sista ekvationen för att se om systemet har en lösning.

Gausselimination:

elimination:

$$\begin{cases} x + y = -4 & (a) \\ x - 2y = 2 & (b) \\ 3x + 4y = 1 & (c) \end{cases}$$

$$\Leftrightarrow \begin{cases} x + y = -4 & (a') = (a) \\ -3y = 6 & (b') = (b) - (a) \end{cases}$$

$$\Leftrightarrow \begin{cases} y = -2 \\ x = -2 \end{cases}$$

Kolla (c):

$$3*(-2) + 4*(-2) = -14 \neq 1 \Rightarrow$$
 Saknar lösning

Svar: Saknar lösning

1.10 (s.)

Eftersom det endast är tre variabler krävs endast tre ekvationer för att lösa systemet. Testa sedan mot sista ekvationen för att se om systemet har en lösning.

Gausselimination:

Kolla (d):

$$2 * 2 - 2 * (-1) - (-1) = 7$$

Svar: (x, y, z) = (2, -1, -1)

1.11 (s.)

Gausselimination:

$$\begin{cases} x - 2y + z = 1 \\ 2x - 6y + 6z = 4 \\ -3x + 5y - z = -2 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 2 \\ -y + 2z = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ (b') = (a) \\ (b') = (b) - 2(a) \\ (c') = (c) + 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 1 \\ -2y + 4z = 2 \\ 0z = 0 \end{cases}$$

$$(a'') = (a) \\ (c'') = (b') \\ (b'') = (b') \\ (c'') = (c') - \frac{1}{2}(b') \end{cases}$$

Alla zlöser $(c^{\prime\prime})$ så låt t vara ett godtyckligt tal och z=t. $(b^{\prime\prime})$ ger:

$$y = \frac{2 - 4t}{-2} = 2t - 1$$

(a'') ger:

$$x = 1 + 2(2t - 1) - t = 3t - 1$$

Svar:
$$(x, y, z) = (3t - 1, 2t - 1, t)$$

1.12 (s.)

Gausselimination:

$$\begin{cases} x - y + 2z = 4 \\ 2x + y - z = 1 \\ 3x + 3y - 4z = -2 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - y + 2z = 4 \\ 3y - 5z = -7 \\ 6y - 10z = -14 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - y + 2z = 4 \\ 3y - 5z = -7 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - y + 2z = 4 \\ 3y - 5z = -7 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - y + 2z = 4 \\ 3y - 5z = -7 \end{cases}$$

$$\Leftrightarrow \begin{cases} (a') = (a) \\ (c') = (c) - 3(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} (a') = (a') \\ (c'') = (c') - 2(b') \end{cases}$$

Alla z löser (c'') så låt t vara ett godtyckligt tal och z = 5 - 3t. (b'') ger:

$$y = \frac{-7 + 5(5 - 3t)}{3} = 6 - 5t$$

(a'') ger:

$$x = 4 + (6 - 5t) - 2(5 - 3t) = t$$

Svar:
$$(x, y, z) = (t, 6 - 5t, 5 - 3t)$$

1.13 (s.)

Gausselimination:

$$\begin{cases} x + 2y - z = 3 \\ x - y + 2z = 6 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 2y - z = 3 \\ -3y + 3z = 3 \end{cases}$$

$$(a)$$

$$(b)$$

$$(a') = (a)$$

$$(b') = (b) - (a)$$

Låt t vara ett godtyckligt tal och z = t.

(b') ger:

$$y = \frac{3 - 3t}{-3} = t - 1$$

(a') ger:

$$x = 3 - 2(t - 1) + t = 5 - t$$

Svar:
$$(x, y, z) = (5 - t, t - 1, t)$$

1.14 (s.)

Gausselimination:

$$\begin{cases} 2x + 3y + 4z = 5 & (a) \\ 4x - 3y + 2z = 1 & (b) \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x + 3y + 4z = 5 & (a') = (a) \\ -9y - 6z = -9 & (b') = (b) - 2(a) \end{cases}$$

Låt t vara ett godtyckligt tal och z = 3t

(b') ger:

$$y = \frac{-9 + 6 * 3t}{-9} = 1 - 2t$$

(a') ger:

$$x = \frac{5 - 3(1 - 2t) - 4 * 3t}{2} = 1 - 3t$$

Svar: (x, y, z) = (1 - 3t, 1 - 2t, 3t)

1.15 (s.)

Eftersom systemet redan är trappformat kan inte gausselimination användas för att förenkla det mer.

$$\begin{cases} 4w + x + 2y + 3z = 1 \\ -w + y - 3z = 5 \end{cases}$$
 (a)

Låt t och s vara godtyckliga tal, z = s och w = t.

(b) ger:

$$y = 5 + 3s + t$$

(a') ger:

$$x = 1 - 4t - 3s - 2(5 + 3s + t) = -9 - 9s - 6t$$

Svar:
$$(x, y, z) = (-9 - 9s - 6t, 5 + 3s + t, s, t)$$

1.16 (s.)

Gausselimination:

$$\begin{cases} 2x_1 + x_2 - x_3 + 3x_4 - 3x_5 = 0 & (a) \\ 3x_1 + 2x_2 + x_3 + 2x_4 + 2x_5 = 0 & (b) \\ -4x_1 + 3x_2 + 2x_3 + x_4 - 4x_5 = 0 & (c) \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x_1 + x_2 - x_3 + 3x_4 - 3x_5 = 0 & (a') = (a) \\ \frac{1}{2}x_2 + \frac{5}{2}x_3 - \frac{5}{2}x_4 + \frac{13}{2}x_5 = 0 & (b') = (b) - \frac{3}{2}(a) \\ 5x_2 + 7x_4 - 10x_5 = 0 & (c') = (c) + 2(a) \end{cases}$$

$$\begin{cases} 2x_1 + x_2 - x_3 + 3x_4 - 3x_5 = 0 & (a'') = (a') \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x_1 + x_2 - x_3 + 3x_4 - 3x_5 = 0 & (a'') = (a') \\ \frac{1}{2}x_2 + \frac{5}{2}x_3 - \frac{5}{2}x_4 + \frac{13}{2}x_5 = 0 & (b'') = (b') \\ -25x_3 + 32x_4 - 75x_5 = 0 & (c'') = (c') - 10(a) \end{cases}$$

Låt t_1 och t_2 vara godtyckliga tal, $x_4 = 25t_1$ och $x_5 = t_2$.

(c'') ger:

$$x_3 = \frac{-32 \cdot 25t_1 + 75t_2}{-25} = 32t_1 - 3t_2$$

(b'') ger:

$$x_2 = 2(-\frac{5}{2}(32t_1 - 3t_2) + \frac{5}{2} * 25t_1 - \frac{13}{2}t_2) = 2t_2 - 35t_1$$

(a'') ger:

$$x_1 = \frac{1}{2}(-(2t_2 - 35t_1) + (32t_1 - 3t_2) - 3 * 25t_1 + 3 * t_2) = -4t_1 - t_2$$

Svar: $(x_1, x_2, x_3, x_4, x_5) = (-4t_1 - t_2, 2t_2 - 35t_1, 32t_1 - 3t_2, 25t_1, t_2)$

1.17 (s.)

Då koefficienterna på diagonalen a^2 , a och a^2-1 framför x,y och z alla är skilda från noll kan ekvationssystemet lösas entydigt. a måste alltså vara skilt från 0 och ± 1 .

Ekvationssystemet är redan trappformat vilket innebär att gausselimination inte behöver användas.

$$\begin{cases} a^2x + 2y + & 3z = -1 \\ ay + (a-1)z = a+1 & (b) \\ (a^2 - 1)z = a+1 & (c) \end{cases}$$

(c) ger:

$$z = \frac{a+1}{a^2 - 1} = \frac{1}{a-1}$$

(b) ger:

$$y = \frac{a+1-(a-1)\frac{1}{a-1}}{a} = \frac{a+1-1}{a} = 1$$

(a) ger:

$$x = \frac{-1 - 2 * 1 - 3(\frac{1}{a-1})}{a^2} = \frac{-3(\frac{a-1+1}{a-1})}{a^2} = \frac{-3}{a(a-1)} = \frac{3}{a(1-a)}$$

$$(x, y, z) = \left(\frac{1}{a-1}, 1, \frac{3}{a(1-a)}\right), \quad a \neq 0, a \neq \pm 1$$

Om a = 1 blir systemet:

$$\begin{cases} x + 2y + 3z = -1 \\ y + = 2 \\ 0z = 2 \end{cases}$$

Saknar lösning eftersom $0 \neq 2$. Om a = -1 blir systemet:

$$\begin{cases} x+2y+3z = -1 & (a') \\ -y-2z = 0 & (b') \\ 0z = 0 & (c') \end{cases}$$

Har oändligt många lösningar eftersom 0=0. Låt t vara ett godtyckligt tal och z=t.

(b') ger:

$$y = -2t$$

(a') ger:

$$x = -1 - 2 * (-2t) - 3t = t - 1$$
$$(x, y, z) = (t - 1, -2t, t), \quad a = -1$$

Om a = 0 blir systemet:

$$\begin{cases} 0x + 2y + 3z = -1 & (a'') \\ -z = 1 & (b'') \\ -z = 1 & (c'') \end{cases}$$

Har o
ändligt många lösningar eftersom värdet på x inte påverkar. Lå
tt vara ett godtyckligt tal och x=t.

(b'') och (c'') ger:

$$z = -1$$

(a'') ger:

$$y = \frac{-1 - 3 * (-1)}{2} = 1$$
$$(x, y, z) = (t, 1, -1), \quad a = 0$$

Svar: Saknar lösning för a = 1

$$\begin{aligned} &(x,y,z) = \left(\frac{1}{a-1},1,\frac{3}{a(1-a)}\right), & a \neq 0, a \neq \pm 1 \\ &(x,y,z) = (t-1,-2t,t), & a = -1 \\ &(x,y,z) = (t,1,-1), & a = 0 \end{aligned}$$

1.18 (s.)

$$\begin{cases} ax + y + 2z = 4 & (a) \\ x + y + z = 1 & (b) \\ x + ay + 2z = 0 & (c) \end{cases}$$

$$\Leftrightarrow \begin{cases} ax + y + 2z = 4 & (a') = (a) \\ (a - 1)y + (a - 2)z = a - 4 & (b') = a(b) - (a) \\ (a^2 - 1)y + 2(a - 1)z = -4 & (c') = a(c) - (a) \end{cases}$$

$$\Leftrightarrow \begin{cases} ax + y + 2z = 4 & (a'') = (a') \\ (a - 1)y + (a - 2)z = a - 4 & (b'') = (b') \\ (3a - a^2)z = 3a - a^2 & (c'') = (c') - (a + 1)(b') \end{cases}$$

(c'') ger:

$$z = \frac{3a - a^2}{3a - a^2} = 1, \ a \notin \{0, 3\}$$

(b'') ger:

$$y = \frac{a-4-(a-2)}{a-1} = \frac{2}{1-a}, \quad a \notin \{0,1,3\}$$

(a") ger:
$$x = \frac{4-2-\frac{2}{1-a}}{a} = \frac{2}{a-1}, \quad a \not \in \{0,1,3\}$$

Systemet är entydigt när $a \notin \{0, 1, 3\}$.

a = 0 ger systemet:

$$\begin{cases} x+y+z=1 & (a) \\ y+2z=4 & (b) \\ x+2z=0 & (c) \end{cases}$$

$$\Leftrightarrow \begin{cases} x+y+z=1 & (a')=(a) \\ y+2z=4 & (b')=(b) \\ -y+z=-1 & (c')=(c)-(a) \end{cases}$$

$$\Leftrightarrow \begin{cases} x+y+z=1 & (a'')=(a') \\ y+2z=4 & (b'')=(b') \\ 3z=3 & (c'')=(c')+(a) \end{cases}$$

(c'') ger:

$$z = 1$$

(b'') ger:

$$y = 4 - 2 * 1 = 2$$

(a'') ger:

$$x = 1 - 2 - 1 = -2$$

Systemet är entydigt när a = 0.

a=1 ger systemet:

$$\begin{cases} x+y+2z = 4 & (a) \\ x+y+z = 1 & (b) \\ x+y+2z = 0 & (c) \end{cases}$$

$$\Leftrightarrow \begin{cases} x+y+2z = 4 & (a') = (a) \\ -z = 1 & (b') = (b) - (a) \\ 0z = -4 & (c') = (c) - (a) \end{cases}$$

Systemet saknar lösning när a = 1.

a = 3 ger systemet:

$$\begin{cases} 3x + y + 2z = 4 & (a) \\ x + y + z = 1 & (b) \\ x + 3y + 2z = 0 & (c) \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x + y + 2z = 4 & (a') = (a) \\ 2y + z = -1 & (b') = 3(b) - (a) \\ 8y + 4z = -4 & (c') = 3(c) - (a) \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x + y + 2z = 4 & (a'') = (a') \\ 2y + z = -1 & (b'') = (b') \\ 0z = 0 & (c'') = (c') - 4(b') \end{cases}$$

$$\Leftrightarrow \Rightarrow$$

Låt t vara ett godtyckligt tal och z = -1 - 2t. (b'') ger:

$$y = \frac{-1 - (-1 - 2t)}{2} = t$$

$$(a'')$$
 ger:

$$x = \frac{4 - t - 2(-1 - 2t)}{3} = \frac{6 - 3t}{3} = 3 - t$$

Systemet har oändligt många lösningar när a = 3.

Svar: a = 3, (x, y, z) = (3 - t, t, -1 - t)

1.19 (s.)

Gausselimination:

$$\begin{cases} x+ay = 1 & (a) \\ x-y = -1 & (b) \end{cases}$$

$$\Leftrightarrow \begin{cases} x+ay = 1 & (a') = (a) \\ -(a+1)y = -2 & (b') = (b) - (a) \end{cases}$$

(b') ger:

$$y = \frac{2}{a+1}, \quad a \neq -1$$

(a') ger:

$$x = 1 - a\frac{2}{a+1} = \frac{a+1-2a}{a+1} = \frac{1-a}{a+1}, \ a \neq -1$$

a = -1 ger systemet:

$$\begin{cases} x-y = 1 \\ x-y = -1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x-y = 1 \\ 0y = -2 \end{cases}$$

$$(a)$$

$$(b)$$

$$(a') = (a)$$

$$(b') = (b) - (a)$$

När a=-1 saknar ekvationssystemet lösning eftersom $0\neq -2$.

Svar: $(x,y) = (\frac{1-a}{a+1}, \frac{2}{a+1}), \quad a \neq -1$, Saknar lösning när a = -1

1.20 (s.)

Kirchhoffs första lag ger att (notera att I_1, I_2, I_5 får negativa tecken för att pilarna är vända åt fel håll):

$$\begin{cases} I_3 = -I_1 - I_5 \\ I_4 = -I_2 - I_5 \end{cases}$$

Kirchhoffs andra lag ger (sätt sedan in de givna värdena):

$$\begin{cases} U_3 + U_4 + R_5 I_5 - R_4 I_4 - R_3 I_3 = 0 \\ U_3 + R_1 I_1 - R_3 I_3 = 0 \\ U_4 + R_2 I_2 - R_4 I_4 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 3 + 2 + 4 I_5 - I_4 - I_3 = 0 \\ 3 + I_1 - I_3 = 0 \\ 2 + I_2 - I_4 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} -I_3 - I_4 + 4 I_5 = -5 \\ I_1 - I_3 = -3 \\ I_2 - I_4 = -2 \end{cases}$$

Lägg nu ihop ekvationerna från första och andra lagen genom att substituera I_3 och I_4 mot $-I_1-I_5$ respektive $-I_2-I_5$.

$$\begin{cases} -(-I_1 - I_5) - (-I_2 - I_5) + 4I_5 = -5 \\ I_1 - (-I_1 - I_5) = -3 \\ I_2 - (-I_2 - I_5) = -2 \end{cases}$$

$$\Leftrightarrow \begin{cases} I_1 + I_2 + 6I_5 = -5 \\ 2I_1 + I_5 = -3 \\ 2I_2 + I_5 = -2 \end{cases} \qquad (a)$$

$$\Leftrightarrow \begin{cases} 10I_5 = -5 \\ 2I_1 + I_5 = -3 \\ 2I_2 + I_5 = -3 \end{cases} \qquad (b') = (b)$$

$$\Leftrightarrow \begin{cases} 2I_1 + I_5 = -3 \\ 2I_2 + I_5 = -2 \end{cases} \qquad (c') = (c)$$

(a') ger:

$$I_5 = -\frac{1}{2}$$

(b') ger:

$$I_1 = -\frac{3 - \frac{1}{2}}{2} = -\frac{5}{4}$$

$$(c')$$
 ger:

$$I_2 = -\frac{2 - \frac{1}{2}}{2} = -\frac{3}{4}$$

Återgå sedan till ekvationerna för Kirchhoffs första lag för att bestämma I_3 och I_4 .

$$I_3 = -\left(-\frac{5}{4}\right) - \left(-\frac{1}{2}\right) = \frac{7}{4}$$
$$I_4 = -\left(-\frac{3}{4}\right) - \left(-\frac{1}{2}\right) = \frac{5}{4}$$

Svar: $(I_1, I_2, I_3, I_4, I_5) = (-1.25A, -0.75A, 1.75A, 1.25A, -0.5A)$

1.21 a) (s.)

Se det som att det måste finnas lika många av varje atomtyp och laddning på var sida och skapa ett ekvationssystem utifrån det.

$$\begin{cases} 2x_1 = y_1 & (Cr) \\ 3x_1 + 3x_2 + 3x_3 = 4y_1 + 2y_2 + 2y_3 & (O) \\ x_2 = y_2 & (N) \\ x_3 = y_3 & (C) \\ -x_2 - 2x_3 = -2y_1 - y_2 & (e) \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x_1 = y_1 & (Cr') = (Cr) \\ -5x_1 + x_2 + x_3 = 0 & (O') = (O) - 4(Cr) - 2(N) - 2(C) \\ x_2 = y_2 & (N') = (N) \\ x_3 = y_3 & (C') = (C) \\ 4x_1 - 2x_3 = 0 & (e') = (e) + (N) + 2(Cr) \end{cases}$$

Eftersom systemet är underbestämt kommer en variabel behövas användas för att lösa systemet. Låt därför t vara ett godtyckligt tal och $x_1=t.$

$$(Cr')$$
 ger:

$$y_1 = 2t$$

$$(e')$$
 ger:

$$x_3 = \frac{4t}{2} = 2t$$

(C') ger:

$$y_3 = 2t$$

(O') ger:

$$x_2 = 5t - 2t = 3t$$

(N') ger:

$$y_2 = 3t$$

Lösningen är inte entydig.

Svar: $(x_1, x_2, x_3, y_1, y_2, y_3) = (t, 3t, 2t, 2t, 3t, 2t)$

Se det som att det måste finnas lika många av varje atomtyp och laddning på var sida och skapa ett ekvationssystem utifrån det.

$$\begin{cases} 6x_1 = 12y_1 & (C) \\ 5x_1 + x_3 + 2x_4 = 10y_1 + 3y_2 & (H) \\ x_1 = 2y_1 & (N) \\ 2x_1 + x_3 + x_4 = 3y_2 & (O) \\ x_2 = y_2 & (Zn) \\ -x_3 = -3y_2 & (e) \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 = 2y_1 & (C') = \frac{1}{6}(C) \\ -2x_1 + x_4 = 0 & (H') = (H) - 5(N) - (O) \\ x_1 = 2y_1 & (N') = (N) \\ 2x_1 + x_4 = 2y_2 & (O') = (O) + (e) \\ x_2 = y_2 & (Zn') = (Zn) \\ -x_3 = -y_2 & (e') = (e) \end{cases}$$

$$\Leftrightarrow \Rightarrow$$

Eftersom är (C') och (N') är identiska är systemet underbestämt och en variabel kommer behövas användas för att lösa systemet. Låt därför t vara ett godtyckligt tal och $x_1 = 2t$.

$$(C')$$
 och (N') ger:

$$y_1 = t$$

$$(H')$$
 ger:

$$x_4 = 2 * 2t = 4t$$

$$(O')$$
 ger:

$$y_2 = \frac{2 * 2t + 4t}{2} = 4t$$

$$(Zn')$$
 ger:

$$x_2 = 4t$$

$$(e')$$
 ger:

$$x_3 = 4t$$

Svar: Allmän lösning $(x_1, x_2, x_3, x_4, y_1, y_2) = (2t, 4t, 4t, 4t, 4t, 4t)$

Svar:

Svar:

Svar:

1.25 (s.)

Svar:

1.26 (s.)

Svar:

Kapitel 2: Vektorer i planet och rummet

2.1 a) (s.)

b) (s.)

c) (s.)

d) (s.)

Svar: Nollvektor

2.3 (s.)

Gausselimination:

$$\begin{cases} \hat{u} + \hat{v} = u \\ 2\hat{u} + 3\hat{v} = u \end{cases}$$

$$\Leftrightarrow \begin{cases} \hat{u} + \hat{v} = u \\ \hat{v} = v - 2u \end{cases}$$

$$\Leftrightarrow \begin{cases} \hat{v} = v - 2u \\ \hat{u} = u - (v - 2u) = 3u - v \end{cases}$$

$$(a)$$

$$(b)$$

$$(b') = (a)$$

$$(b') = (b) - 2(a)$$

Svar: $\hat{v} = v - 2u, \ \hat{u} = 3u - v$

2.4 (s.)

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{OA} + \frac{1}{4}\overrightarrow{AB}$$

$$\overrightarrow{OA} = \overrightarrow{OB} - \overrightarrow{AB} \Leftrightarrow \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$\overrightarrow{OC} = \overrightarrow{OA} + \frac{1}{4}\overrightarrow{AB} = \overrightarrow{OA} + \frac{1}{4}(\overrightarrow{OB} - \overrightarrow{OA}) = \frac{3}{4}\overrightarrow{OA} - \frac{1}{4}\overrightarrow{OB} \quad \text{V.S.V}$$

2.5 (s.)

$$\overrightarrow{OM} = \overrightarrow{OB} - \overrightarrow{MB} = \overrightarrow{OB} - \frac{1}{2}\overrightarrow{AB}$$

$$\overrightarrow{OB} - \overrightarrow{AB} = \overrightarrow{OA} \Leftrightarrow \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$\overrightarrow{OM} = \overrightarrow{OB} - \frac{1}{2}\overrightarrow{AB} = \overrightarrow{OB} - \frac{1}{2}(\overrightarrow{OB} - \overrightarrow{OA}) = \frac{1}{2}(\overrightarrow{OB} + \overrightarrow{OA}) \quad \text{V.S.V}$$

2.6 (s. 26-27)

Enligt uppgiften:

$$\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AA_1}$$

Vilket ger:

$$\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{AM} = \overrightarrow{OA} + \frac{2}{3}\overrightarrow{AA_1}$$

Mittpunktsformeln:

$$\overrightarrow{AA_1} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC})$$

Vilket ger:

$$\overrightarrow{OM} = \overrightarrow{OA} + \frac{2}{3} * \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{AC}) = \overrightarrow{OA} + \frac{1}{3} (\overrightarrow{AB} + \overrightarrow{AC})$$

Enligt figuren:

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}, \quad \overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}$$

Vilket ger:

$$\overrightarrow{OM} = \overrightarrow{OA} + \frac{1}{3}(\overrightarrow{OB} - \overrightarrow{OA} + \overrightarrow{OC} - \overrightarrow{OA}) = \frac{1}{3}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}) \quad \text{V.S.V}$$

2.7 (s.)

Enligt uppgiften:

$$\overrightarrow{AM} = \frac{3}{4}\overrightarrow{AA_1}$$

Vilket ger:

$$\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{AM} = \overrightarrow{OA} + \frac{3}{4}\overrightarrow{AA_1}$$

Tyngdpunktsformeln:

$$\overrightarrow{AA_1} = \frac{1}{3}(\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD})$$

Vilket ger:

$$\overrightarrow{OM} = \overrightarrow{OA} + \frac{3}{4} * \frac{1}{3} (\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}) = \overrightarrow{OA} + \frac{1}{4} (\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD})$$

Enligt figuren:

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}, \quad \overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}, \quad \overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA}$$

Vilket ger:

$$\overrightarrow{OM} = \overrightarrow{OA} + \frac{1}{4}(\overrightarrow{OB} - \overrightarrow{OA} + \overrightarrow{OC} - \overrightarrow{OA} + \overrightarrow{OD} - \overrightarrow{OA}) = \frac{1}{4}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD}) \quad \text{V.S.V}$$

2.8 (s.)

Låt O ligga i punkten M. tyngdpunktsformeln ger:

$$\overrightarrow{OM} = \frac{1}{3}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC})$$

Eftersom O = M:

$$\begin{cases} \overrightarrow{OM} = 0 \\ \overrightarrow{OA} = \overrightarrow{MA} \\ \overrightarrow{OB} = \overrightarrow{MB} \\ \overrightarrow{OC} = \overrightarrow{MC} \end{cases}$$

Vilket ger:

$$\frac{1}{3}(\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}) = 0 \Leftrightarrow \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3*0 = 0 \quad \text{V.S.V}$$

2.9 (s.)

Låt O vara en godtycklig punkt i rummet. Vilket ger:

$$\begin{cases} \overrightarrow{A_1 A_2} = \overrightarrow{OA_2} - \overrightarrow{OA_1} \\ \overrightarrow{B_1 B_2} = \overrightarrow{OB_2} - \overrightarrow{OB_1} \\ \overrightarrow{C_1 C_2} = \overrightarrow{OC_2} - \overrightarrow{OC_1} \end{cases}$$

Tyngdpunktsformeln baklänges samt hur differens för vektorer funkar ger:

$$\overrightarrow{A_1A_2} + \overrightarrow{B_1B_2} + \overrightarrow{C_1C_2} = \overrightarrow{OA_2} - \overrightarrow{OA_1} + \overrightarrow{OB_2} - \overrightarrow{OB_1} + \overrightarrow{OC_2} - \overrightarrow{OC_1} = 3 * \frac{1}{3} (\overrightarrow{OA_2} + \overrightarrow{OB_2} + \overrightarrow{OC_2}) - 3 * \frac{1}{3} (\overrightarrow{OA_1} + \overrightarrow{OB_1} + \overrightarrow{OC_1}) = 3(\overrightarrow{OM_2} - \overrightarrow{OM_1}) = 3\overrightarrow{M_1M_2} \quad \text{V.S.V}$$

2.10 (s.)

Mittpunktsformeln ger:

$$\begin{cases} \overrightarrow{OA_m} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB}) \\ \overrightarrow{OB_m} = \frac{1}{2}(\overrightarrow{OB} + \overrightarrow{OC}) \\ \overrightarrow{OC_m} = \frac{1}{2}(\overrightarrow{OC} + \overrightarrow{OA}) \end{cases}$$

Vilket ger:

$$VL = \overrightarrow{OA_m} + \overrightarrow{OB_m} + \overrightarrow{OC_m} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB}) + \frac{1}{2}(\overrightarrow{OB} + \overrightarrow{OC}) + \frac{1}{2}(\overrightarrow{OC} + \overrightarrow{OA}) = \frac{1}{2}(2\overrightarrow{OA} + 2\overrightarrow{OB} + 2\overrightarrow{OC}) = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = HL \quad \text{V.S.V}$$

2.11 (s.)

Låt ABCD vara en godtycklig tetraeder i rummet och O vara en godtycklig punkt i rummet. Om alla sammanbindningar skär tyngdpunkt vet vi även att alla skär varandra i tyngdpunkten. Antag att tyngdpunkten ligger i punkten M och $\overrightarrow{OM} = \frac{1}{4}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD})$.

Mittpunktsformeln ger:

$$\begin{array}{ll} p_1 = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB}) & \text{motsatta punkt:} & q_1 = \frac{1}{2}(\overrightarrow{OC} + \overrightarrow{OD}) \\ p_2 = \frac{1}{2}(\overrightarrow{OB} + \overrightarrow{OC}) & \text{motsatta punkt:} & q_2 = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OD}) \\ p_3 = \frac{1}{2}(\overrightarrow{OC} + \overrightarrow{OA}) & \text{motsatta punkt:} & q_3 = \frac{1}{2}(\overrightarrow{OB} + \overrightarrow{OD}) \end{array}$$

En slumpmässig punkt på varje sammanbindning kan beskrivas som där x, y, z ligger mellan 0 och 1:

$$\begin{array}{l} s_1 = p_1 + x(q_1 - p_1) = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB}) + x\frac{1}{2}((\overrightarrow{OA} + \overrightarrow{OB}) - (\overrightarrow{OC} + \overrightarrow{OD})) \\ s_2 = p_2 + y(q_2 - p_2) = \frac{1}{2}(\overrightarrow{OB} + \overrightarrow{OC}) + y\frac{1}{2}((\overrightarrow{OB} + \overrightarrow{OC}) - (\overrightarrow{OA} + \overrightarrow{OD})) \\ s_2 = p_3 + z(q_3 - p_3) = \frac{1}{2}(\overrightarrow{OC} + \overrightarrow{OA}) + z\frac{1}{2}((\overrightarrow{OC} + \overrightarrow{OA}) - (\overrightarrow{OB} + \overrightarrow{OD})) \end{array}$$

Om vi sätter $x=y=z=\frac{1}{2}$ så kommer $s_1=s_2=s_3=\frac{1}{4}(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD})$ vilket är samma punkt som vi antog att tyngdpunkten M skulle ligga i. Eftersom alla tre skär M skär även alla tre varandra i M. V.S.V

2.12 (s.)

Låt O vara en godtycklig punkt i rummet. Om två stycken sträckor beskriver samma vektor måste de vara parallella enligt definitionen från vektorer. Så om $\overrightarrow{A_1B_1} = \overrightarrow{D_1C_1}$ och $\overrightarrow{B_1C_1} = \overrightarrow{A_1D_1}$ är $A_1B_1C_1D_1$ en parallellogram.

mittpunktsformeln:

 $\overrightarrow{A_1B_1} = \overrightarrow{D_1C_1}$ och $\overrightarrow{B_1C_1} = \overrightarrow{A_1D_1}$ är alltså sant vilket innebär att $A_1B_1C_1D_1$ är en parallellogram. V.S.V

2.13 a) (s.)

$$u_1 = 3e_1 + 2e_2$$

Svar: (3,2)

b) (s.)

$$u_2 = 2e_1 + 3e_2$$

Svar: (2,3)

c) (s.)

$$u_3 = -2e_1 + 2e_2$$

Svar: (-2, 2)

d) (s.)

$$u_4 = -3e_1 - 2e_2$$

Svar: (-3, -2)

e) (s.)

$$u_5 = 2e_1 - 3e_2$$

Svar: (2, -3)

f) (s.)

$$e_1 = 1e_1 + 0e_2$$

Svar: (1,0)

g) (s.)

$$e_2 = 0e_1 + 1e_2$$

Svar: (0,1)

2.14 a) (s.)

$$\hat{v} = v - 2u, \ \hat{u} = 3u - v$$

$$u = a\hat{u} + b\hat{v} = a(3u - v) + b(v - 2u) = (3a - 2b)u + (b - a)v \Leftrightarrow \begin{cases} 3a - 2b = 1 \\ b - a = 0 \end{cases} \Leftrightarrow \begin{cases} a = 1 \\ b = 1 \end{cases} \Leftrightarrow u = 1\hat{u} + 1\hat{v}$$

$$u = a\hat{u} + b\hat{v} = a(3u - v) + b(v - 2u) = (3a - 2b)u + (b - a)v \Leftrightarrow \begin{cases} 3a - 2b = 0 \\ b - a = 1 \end{cases} \Leftrightarrow \begin{cases} a = 2 \\ b = 3 \end{cases} \Leftrightarrow u = 2\hat{u} + 3\hat{v}$$

Svar: u: (1,1) och v: (2,3)

b) (s.)

$$\hat{u} = 3u - v = 3u - 1v$$

$$\hat{v} = v - 2u = -2u + 1v$$

Svar: $\hat{u}: (3,-1) \text{ och } \hat{v}: (-2,1)$

2.15 (s.)

$$\overrightarrow{OC} = \frac{3}{4}\overrightarrow{OA} + \frac{1}{4}\overrightarrow{OB}$$

Svar: \overrightarrow{OC} : (3/4, 1/4)

2.16 (s.)

För \overrightarrow{TC} använd tyndpunktsformeln och låt T vara den godtyckliga punkten i rummet.

$$\overrightarrow{TT} = \frac{1}{3}(\overrightarrow{TA} + \overrightarrow{TB} + \overrightarrow{TC}) \Leftrightarrow 0 = \frac{1}{3}\overrightarrow{TA} + \frac{1}{3}\overrightarrow{TB} + \frac{1}{3}\overrightarrow{TC} \Leftrightarrow \overrightarrow{TC} = -\overrightarrow{TA} - \overrightarrow{TB}$$

För \overrightarrow{TM} använd mittpunktsformeln där T är den godtyckliga punkten i rummet.

$$\overrightarrow{TM} = \frac{1}{2}(\overrightarrow{TA} + \overrightarrow{TB}) = \frac{1}{2}\overrightarrow{TA} + \frac{1}{2}\overrightarrow{TB}$$

Svar: \overrightarrow{TC} : (-1,-1) och \overrightarrow{TM} : (1/2,1/2)

2.17 a) (s.)

Vi ansätter lösningen:

$$(4,1,-5) = x(2,1,-1) + y(1,1,1)$$

Identifierar variablerna (gausselimination):

$$\begin{cases} 2x + y = 4 \\ x + y = 1 \\ -x + y = -5 \end{cases} \Leftrightarrow \begin{cases} 2x + y = 4 \\ y = -2 \\ 3y = -6 \end{cases} \Leftrightarrow \begin{cases} x = 3 \\ y = -2 \end{cases}$$

Svar: (4,1,-5) är en linjärkombination av u_1 och u_2

b) (s.)

Vi ansätter lösningen:

$$(4,3,2) = x(2,1,-1) + y(1,1,1)$$

Identifierar variablerna (gausselimination):

$$\begin{cases} 2x + y = 4 \\ x + y = 3 \\ -x + y = 2 \end{cases} \Leftrightarrow \begin{cases} 2x + y = 4 \\ y = 2 \\ 3y = 0 \end{cases} \Leftrightarrow y = 2 \neq 0 \Rightarrow \text{ Saknar lösning.}$$

Svar: (4,3,2) är inte en linjärkombination av u_1 och u_2

c) (s.)

Vi ansätter lösningen:

$$(-9, -7, -3) = x(2, 1, -1) + y(1, 1, 1)$$

Identifierar variablerna (gausselimination):

$$\begin{cases} 2x + y = -9 \\ x + y = -7 \\ -x + y = -3 \end{cases} \Leftrightarrow \begin{cases} 2x + y = -9 \\ y = -5 \\ 3y = -15 \end{cases} \Leftrightarrow \begin{cases} x = -7 \\ y = -5 \end{cases}$$

Svar: (-9, -7, -3) är en linjärkombination av u_1 och u_2

2.18 a) (s.)

För att två vektorer ska vara parallella ska det finnas ett k så att:

$$u = kv$$

Ansätt därför en lösning och identifiera k och a:

$$(a, 1+a) = k(2, -3) \Leftrightarrow \begin{cases} a = 2k \\ 1+a = -3k \end{cases} \Leftrightarrow \begin{cases} a = -\frac{2}{5} \\ k = -\frac{1}{5} \end{cases}$$

Svar: $a = -\frac{2}{5}$

b) (s.)

För att två vektorer ska vara parallella ska det finnas ett k så att:

$$u = kr$$

Ansätt därför en lösning och identifiera k och a:

$$(a, -3) = k(2, 1 - a) \Leftrightarrow \begin{cases} a = 2k \\ -3 = k(1 - a) \end{cases}$$

Substitutionsmetoden:

$$-3 = k(1 - 2k) \Leftrightarrow 2k^{2} - k - 3 = 0 \Leftrightarrow k^{2} - \frac{k}{2} - \frac{3}{2} = 0$$

$$k = \frac{1}{4} \pm \sqrt{\frac{1}{16} + \frac{24}{16}} = \frac{1}{4} \pm \frac{5}{4}$$

$$\begin{cases} k_{1} = \frac{3}{2} \Leftrightarrow a_{1} = 3\\ k_{2} = -1 \Leftrightarrow a_{2} = -2 \end{cases}$$

Svar: a = 3 eller a = -2

c) (s.)

För att två vektorer ska vara parallella ska det finnas ett k så att:

$$u = kv$$

Ansätt därför en lösning och identifiera k och a:

$$(a,3) = k(2,1-a) \Leftrightarrow \begin{cases} a = 2k \\ 3 = k(1-a) \end{cases}$$

Substitutionsmetoden:

$$3 = k(1 - 2k) \Leftrightarrow 2k^2 - k + 3 = 0 \Leftrightarrow k^2 - \frac{k}{2} + \frac{3}{2} = 0$$

$$k = \frac{1}{4} \pm \sqrt{\frac{1}{16} - \frac{24}{16}} = \frac{1}{4} \pm \sqrt{-\frac{23}{16}} \Rightarrow \text{ Saknar reell lösning}$$

Svar: Saknar lösning

d) (s.)

För att två vektorer ska vara parallella ska det finnas ett k så att:

$$u = kv$$

Ansätt därför en lösning och identifiera k och a:

$$(a,1+a,3) = k(4,2,-6) \Leftrightarrow \begin{cases} a = 4k \\ 1+a = 2k \\ 3 = -6k \end{cases} \Leftrightarrow \begin{cases} a = 4k \\ 1 = -2k \\ 3 = -6k \end{cases} \Leftrightarrow \begin{cases} a = -2 \\ k = -\frac{1}{2} \end{cases}$$

Svar: a = -2

2.19 a) (s.)

För att vektorerna ska vara linjärt beroende ska de gå att beskriva med hjälp av varandra vilket innebär att det ska finnas ett k så att:

$$(2,4) = k(-4,-2)$$

Identifiera variabeln:

$$\begin{cases} 2 = -4k \\ 4 = -2k \end{cases} \Leftrightarrow k = -\frac{1}{2} \neq -2 \Rightarrow \text{ saknar lösning}$$

Svar: Vektorerna är inte linjärt beroende

b) (s.)

För att vektorerna ska vara linjärt beroende ska de gå att beskriva med hjälp av varandra vilket innebär att det ska finnas ett k så att:

$$(6,-3) = k(-4,2)$$

Identifiera variabeln:

$$\begin{cases} 6 = -4k \\ -3 = 2k \end{cases} \Leftrightarrow k = -\frac{3}{2}$$

Svar: Vektorerna är linjärt beroende

c) (s.)

För att vektorerna ska vara linjärt beroende ska de vara parallella och enligt definition är nollvektorn (0,0) parallell med alla vektorer och därför är vektorerna linjärt beroende.

Svar: Vektorerna är linjärt beroende

d) (s.)

För att vektorerna ska vara linjärt beroende ska de gå att beskriva med hjälp av varandra vilket innebär att det ska finnas ett k_1 och ett k_2 så att:

$$(1,0) = k_1(0,1) + k_2(7,5)$$

Identifiera variablerna:

$$\begin{cases} 1 = 7k_2 \\ 0 = k_1 + 5k_2 \end{cases} \Leftrightarrow \begin{cases} k_1 = -\frac{5}{7} \\ k_2 = \frac{1}{7} \end{cases} \Rightarrow \text{linjärt beroende}$$

Svar: Vektorerna är linjärt beroende

e) (s.)

För att vektorerna ska vara linjärt beroende ska de gå att beskriva med hjälp av varandra vilket innebär att det ska finnas ett k_1 och ett k_2 så att:

$$(5,9) = k_1(3,-2) + k_2(2,1)$$

Identifiera variablerna:

$$\begin{cases} 5 = 3k_1 + 2k_2 \\ 9 = -2k_1 + k_2 \end{cases} \Leftrightarrow \begin{cases} k_1 = -\frac{13}{7} \\ k_2 = \frac{37}{7} \end{cases} \Rightarrow \text{ linjärt beroende}$$

Svar: Vektorerna är linjärt beroende

2.20 a) (s.)

För att vektorerna ska vara linjärt beroende ska de gå att beskriva med hjälp av varandra vilket innebär att det ska finnas ett k_1 och ett k_2 så att:

$$(1,1,1) = k_1(3,1,2) + k_2(0,2,1)$$

Identifiera variablerna:

$$\begin{cases} 1 = 3k_1 + 0k_2 \\ 1 = k_1 + 2k_2 \\ 1 = 2k_1 + k_2 \end{cases} \Leftrightarrow \begin{cases} k_1 = \frac{1}{3} \\ k_2 = \frac{1}{3} \end{cases} \Rightarrow \text{linjärt beroende}$$

Svar: Vektorerna är linjärt beroende

För att vektorerna ska vara linjärt beroende ska de gå att beskriva med hjälp av varandra vilket innebär att det ska finnas ett k_1 och ett k_2 så att:

$$(0,1,1) = k_1(1,0,1) + k_2(1,1,0)$$

Identifiera variablerna:

$$\begin{cases} 0 = k_1 + k_2 \\ 1 = 0k_1 + k_2 \\ 1 = k_1 + 0k_2 \end{cases} \Leftrightarrow \begin{cases} k_1 = 1 \\ k_2 = 1 \neq -1 \end{cases} \Rightarrow \text{linjärt oberoende}$$

Svar: Vektorerna är inte linjärt beroende

För att vektorerna ska vara linjärt beroende ska de gå att beskriva med hjälp av varandra vilket innebär att det ska finnas ett k så att:

$$(1,1,1) = k(3,1,2)$$

Identifiera variabeln:

$$\begin{cases} 1=3k\\ 1=k & \Leftrightarrow k=\frac{1}{3}\neq 1\neq \frac{1}{2} \Rightarrow \text{ linjärt oberoende}\\ 1=2k \end{cases}$$

Svar: Vektorerna är inte linjärt beroende

d) (s.)

För att vektorerna ska vara linjärt beroende ska de gå att beskriva med hjälp av varandra vilket innebär att det ska finnas ett k så att:

$$(1,0,2) = k(-2,0,-4)$$

Identifiera variabeln:

$$\begin{cases} 1 = -2k \\ 0 = 0k & \Leftrightarrow k = -\frac{1}{2} \Rightarrow \text{ linjärt beroende} \\ 2 = -4k \end{cases}$$

Svar: Vektorerna är linjärt beroende

e) (s.)

Eftersom (1,0,2) och (-2,0,-4) är linjärt beroende (se **d**) är även (2,0,3), (1,0,2) och (-2,0,-4) det.

Svar: Vektorerna är linjärt beroende

f) (s.)

För att vektorerna ska vara linjärt beroende ska de gå att beskriva med hjälp av varandra vilket innebär att det ska finnas ett k_1 och ett k_2 så att:

$$(1,0,2) = k_1(3,0,4) + k_2(5,0,6)$$

Identifiera variablerna (gausselimination):

$$\begin{cases} 1 = 3k_1 + 5k_2 \\ 0 = 0k_1 + 0k_2 \\ 2 = 4k_1 + 6k_2 \end{cases} \Leftrightarrow \begin{cases} k_1 = 2 \\ k_2 = -1 \end{cases} \Rightarrow \text{linjärt beroende}$$

Svar: Vektorerna är linjärt beroende

g) (s.)

För att vektorerna ska vara linjärt beroende ska de gå att beskriva med hjälp av varandra vilket innebär att det ska finnas ett k_1 , ett k_2 och ett k_3 så att:

$$(1,1,0) = k_1(1,0,1) + k_2(0,1,1) + k_3(3,3,3)$$

Identifiera variablerna (gausselimination):

$$\begin{cases} 1 = k_1 + 0k_2 + 3k_3 \\ 1 = 0k_1 + k_2 + 3k_3 \\ 0 = k_1 + k_2 + 3k_3 \end{cases} \Leftrightarrow \begin{cases} k_1 = -1 \\ k_2 = -1 \\ k_3 = \frac{2}{3} \end{cases} \Rightarrow \text{linjärt beroende}$$

Svar: Vektorerna är linjärt beroende

2.21 (s.)

För att vektorerna ska vara linjärt beroende ska de gå att beskriva med hjälp av varandra (de ska vara parallella) vilket innebär att det ska finnas ett k och a så att:

$$(a, -2) = k(1, a - 1)$$

Identifiera variabeln:

$$\begin{cases} a = k \\ -2 = k(a-1) \end{cases}$$

Substitutions metoden:

$$-2 = k(k-1) \Leftrightarrow k^2 - k + 2 = 0$$

$$k=rac{1}{2}\pm\sqrt{rac{1}{4}-rac{8}{4}}=rac{1}{2}\pm\sqrt{-rac{7}{4}}\Rightarrow ext{ saknar reell lösning}$$

Svar: Nej, det finns inget a så att vektorerna är linjärt beroende

2.22 a) (s.)

$$u = 5e_1 + 3e_2$$

Svar: (5,3)

b) (s.)

Ja, eftersom de inte är parallella.

Svar: Ja

c) (s.)

$$2\hat{e}_1 + \hat{e}_2 = u$$

Svar: (2,1)

d) (s.)

$$\hat{e}_1 = e_1 + 2e_2 \Rightarrow (1,2)$$

$$\hat{e}_2 = 3e_1 - e_2 \Rightarrow (3, -1)$$

Svar: \hat{e}_1 : (1,2) och \hat{e}_2 : (3,-1)

e) (s.)

$$x_1e_1 + x_2e_2 = v = \hat{x}_1\hat{e}_1 + \hat{x}_2\hat{e}_2 = \hat{x}_1(e_1 + 2e_2) + \hat{x}_2(3e_1 - e_2) =$$

$$= (\hat{x}_1 + 3\hat{x}_2)e_1 + (2\hat{x}_1 - \hat{x}_2)e_2 \Rightarrow (x_1, x_2) = (\hat{x}_1 + 3\hat{x}_2, 2\hat{x}_1 - \hat{x}_2)$$

2.23 (s.)

Svar:

2.24 a) (s.)

Svar:

b) (s.)

Svar:

c) (s.)

Svar:

2.25 (s.)

Svar:

2.26 (s.)

Svar:

2.27 (s.)

Svar:

2.28 a) (s.)

Svar:

b) (s.)

Svar:

2.29 (s.)

Svar:

2.30 (s.)

Svar: