The adjoint semigroup on E* is given by the operators

 $T(t)^* := T(t)^*|_{E^*}, t \ge 0.$

Since $(T(t)^*)_{t\geq 0}$ is strongly continuous on E* we call its generator $(A^*,D(A^*))$ the <u>adjoint generator</u>.

The above definition makes sense since E* is norm-closed in E' and (T(t)')-invariant . The main point is that E* is still reasonably large. In fact, since $\int_0^t T(s)'\phi$ ds , understood in the weak sense, is contained in E* for every $\phi \in E'$, $t \ge 0$ it follows that $\sup\{<f,\phi>: \phi \in E^*$, $\|\phi\| \le 1\} \le \|f\| \le M \cdot \sup\{<f,\phi>: \phi \in E^*$, $\|\phi\| \le 1\}$ where $M:=\limsup_{t\to 0} \|T(t)\|$ In particular, E* separates E , i.e. E* is $\sigma(E',E)$ -dense in E'. In addition the estimate of $\|\cdot\|$ given above yields

 $\|T(t)^*\| \le \|T(t)\| \le M\|T(t)^*\|$ for all $t \ge 0$.

In the following proposition we describe the relation between $\,\text{A}^{\star}\,\,$ and $\,\text{A}^{\prime}\,\,$.

<u>Proposition</u>. For the adjoint generator A^* of a strongly continuous semigroup $(T(t))_{t\geq 0}$ on E the following assertions hold:

- (i) E* is the $|\cdot|$ -closure of D(A').
- (ii) $D(A^*) = \{ \phi \in D(A^*) : A^* \phi \in E^* \}$.
- (iii) A^* and A^* coincide on $D(A^*)$.

<u>Proof.</u> (i) Take $\phi \in D(A')$ fixed. For every $f \in D(A)$ with $||f|| \le 1$ we define a continuously differentiable function

 $t \rightarrow \xi_f(t) := \langle T(t) f, \phi \rangle$

on [0,1] with derivative $\xi_f'(t) = \langle T(t)Af, \phi \rangle = \langle T(t)f, A'\phi \rangle$. Since $\{\xi_f'(t) : t \in [0,1], f \in D(A), \|f\| \le 1\}$ is bounded it follows that the set

 $\{\xi_{\mathbf{f}} : \mathbf{f} \in D(\mathbf{A}), \|\mathbf{f}\| \le 1\}$

is equicontinuous at 0 , i.e. for every ϵ > 0 there exists 0 < t $_{\odot}$ < 1 such that

 $|\xi_f(s) - \xi_f(0)| = |\langle f, T(s) | \phi - \phi \rangle| \langle \varepsilon$

for every $0 \le s \le t_0$ and $f \in D(A)$, $||f|| \le 1$. But this implies $||T(s)'\phi' - \phi'|| < \epsilon$ and hence $\phi \in E^*$.

(ii) and (iii): Since the weak* topology on E' is weaker than the norm topology it follows that A' is an extension of A^* .

Now take $\phi \in D(A')$ such that $A'\phi \in E^*$. As above define the func-