

Course > Unit 7 Generalized Linear Models > Homework 11 > 4. Contingency tables

4. Contingency tables

(a)

2/2 points (graded)

Even though logistic regression is formulated with continuous input data in mind, one can also try to apply it to categorical inputs. For example, consider the following set-up: We observe n samples $Y_i \in \{0,1\}$, $i=1,\ldots,n$, and covariates $X_i \in \{0,1\}$, $i=1,\ldots,n$. Moreover, assume that given X_i , the Y_i are independent.

First, let us apply regular maximal likelihood estimation. To this end, write

$$egin{align} f_{00} &=& rac{1}{n} \# \{i: X_i = 0 ext{ and } Y_i = 0 \} \ f_{01} &=& rac{1}{n} \# \{i: X_i = 0 ext{ and } Y_i = 1 \} \ f_{10} &=& rac{1}{n} \# \{i: X_i = 1 ext{ and } Y_i = 0 \} \ f_{11} &=& rac{1}{n} \# \{i: X_i = 1 ext{ and } Y_i = 1 \} \ \end{cases}$$

and assume that $f_{00}, f_{01}, f_{10}, f_{11} > 0$. We can parametrize this model in terms of

$$egin{array}{ll} p_{01} = & P\left(Y_i = 1 | X_i = 0
ight) \ p_{11} = & P\left(Y_i = 1 | X_i = 1
ight) \end{array}$$

Compute the maximum likelihood estimators \hat{p}_{01} and \hat{p}_{11} for p_{01} and p_{11} , respectively. Express your answer in terms of f_{00} (enter "A"), f_{01} (enter "B"), f_{10} (enter "C"), f_{11} (enter "D") and p_{11} and p_{11} and p_{21} and p_{21} and p_{31} and $p_{$

$$\hat{p}_{01}$$
 B/(A+B)
$$\frac{B}{A+B}$$

$$\hat{p}_{11}$$
 D/(C+D)
$$\frac{D}{C+D}$$
 \star Answer: D/(C+D)

Solution:

The likelihood for the model can be written as

$$egin{align} P(Y_1=y_1,\;\;\ldots,Y_n=y_n|X_1=x_1,\ldots,X_n=x_n) \ &= &\prod_{i=1}^n \left[p_{01} \mathbf{1} \left(x_i=0,y_i=1
ight) + \left(1-p_{01}
ight) \mathbf{1} \left(x_i=0,y_i=0
ight) \ &+ p_{11} \mathbf{1} \left(x_i=1,y_i=1
ight) + \left(1-p_{11}
ight) \mathbf{1} \left(x_i=1,y_i=0
ight)
ight] \ &= &p_{01}^{nf_{01}} (1-p_{01})^{nf_{00}} p_{11}^{nf_{11}} (1-p_{11})^{nf_{10}}. \end{split}$$

Taking logarithms yields

$$\ln P\left(Y_{1}=y_{1},\ldots,Y_{n}=y_{n}|X_{1}=x_{1},\ldots,X_{n}=x_{n}
ight) = -n\left[f_{01}p_{01}+f_{00}\left(1-p_{01}
ight)+f_{11}p_{11}+f_{10}\left(1-p_{11}
ight)
ight].$$

Differentiating and setting the derivative to zero then leads to the maximum likelihood estimators

$$egin{array}{ll} \hat{p}_{01} = & rac{f_{01}}{f_{01} + f_{00}} \ \hat{p}_{11} = & rac{f_{11}}{f_{11} + f_{10}}. \end{array}$$

• Answers are displayed within the problem

(b)

2/2 points (graded)

Although the X_i are discrete, we can also use a logistic regression model to analyze the data. That is, now we assume

$$Y_i|X_i \sim \mathsf{Ber}\left(rac{1}{1+\mathbf{e}^{-(X_ieta_1+eta_0)}}
ight),$$

for $eta_0,eta_1\in\mathbb{R}$, and that given X_i , the Y_i are independent.

Calculate the maximum likelihood estimator $\widehat{\beta}_0$, $\widehat{\beta}_1$ for β_0 and β_1 , where we again assume that all $f_{kl}>0$. Express your answer in terms of f_{00} (enter "A"), f_{01} (enter "B"), f_{10} (enter "C"), f_{11} (enter "D") and n.

$$\widehat{\beta}_0 \quad \ln(\text{B/A})$$

$$\ln\left(\frac{B}{A}\right)$$

$$\widehat{\beta}_1 \quad \ln(\text{D/C}) - \ln\left(\frac{B}{A}\right)$$

$$\ln\left(\frac{D}{C}\right) - \ln\left(\frac{B}{A}\right)$$

$$\star \text{Answer: } \ln(\text{B/A})$$

Solution:

The gradient equations that determines the maximum likelihood estimator the one calculated for logistic regression in class and can be written as

$$\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} \frac{1}{1 + \mathbf{e}^{-x_i \hat{\beta}_1 - \hat{\beta}_0}}$$
 (11.1)

$$\sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} x_i \frac{1}{1 + \mathbf{e}^{-x_i \hat{\beta}_1 - \hat{\beta}_0}}$$
 (11.2)

We note that by counting the elements where $\,y_i=1\,$ and $\,x_i=1\,$,

$$egin{array}{lll} \sum_{i=1}^n y_i &=& n \left(f_{01} + f_{11}
ight) \ &\sum_{i=1}^n x_i y_i &=& n f_{11} \ &\sum_{i=1}^n x_i rac{1}{1 + \mathbf{e}^{-x_i \widehat{eta}_1 - \widehat{eta}_0}} &=& n \left(f_{10} + f_{11}
ight) rac{1}{1 + \mathbf{e}^{-\widehat{eta}_1 - \widehat{eta}_0}} \ &\sum_{i=1}^n rac{1}{1 + \mathbf{e}^{-x_i \widehat{eta}_1 - \widehat{eta}_0}} &=& n \left(f_{01} + f_{00}
ight) rac{1}{1 + \mathbf{e}^{-\widehat{eta}_0}} + n \left(f_{10} + f_{11}
ight) rac{1}{1 + \mathbf{e}^{-\widehat{eta}_1 - \widehat{eta}_0}}. \end{array}$$

This means we can rewrite the second gradient equation to

$$f_{11} = (f_{10} + f_{11}) \, rac{1}{1 + {f e}^{-\widehat{eta}_1 - \widehat{eta}_0}} \iff {f e}^{-\widehat{eta}_1 - \widehat{eta}_0} = rac{f_{10}}{f_{11}}.$$

Plugging this into the first gradient equation then leads to

$$(f_{01}+f_{00})\,rac{1}{1+{f e}^{-{\widehateta}_0}}+f_1 1=f_{01}+f_{11} \iff {f e}^{-{\widehateta}_0}=rac{f_{00}}{f_{01}}.$$

Inserted back into the previous equation, we arrive at

$$\mathbf{e}^{-\widehat{eta}_1} = rac{f_{10}f_{01}}{f_{00}f_{11}}.$$

Taking logarithms then finally yields

$$egin{align} \widehat{eta}_0 &=& \ln\left(rac{f_{01}}{f_{00}}
ight) \ \widehat{eta}_1 &=& \ln\left(rac{f_{00}f_{11}}{f_{01}f_{10}}
ight).
onumber \end{aligned}$$

Submit

You have used 3 of 3 attempts

• Answers are displayed within the problem

(c)

2/2 points (graded)

Given the maximum likelihood estimators $\,\widehat{eta}_0$, $\,\widehat{eta}_1$, what are the associated predicted probabilities

$$\widetilde{p_{01}} = \ \ P\left(Y_i = 1 | X_i = 0, \widehat{eta}_0, \widehat{eta}_1
ight)$$

$$\widetilde{p_{11}} = \ \ P\left(Y_i = 1 | X_i = 1, \widehat{eta}_0, \widehat{eta}_1
ight)$$

in terms of f_{kl} , for $k,l \in \{0,1\}$?

Express your answer in terms of f_{00} (enter "A"), f_{01} (enter "B"), f_{10} (enter "C"), f_{11} (enter "D") and n.

$$\widetilde{p_{01}}$$
 B/(A+B) \checkmark Answer: B/(A+B) $\frac{B}{A+B}$

Solution:

We plug the solutions $\widehat{\beta}_0, \widehat{\beta}_1$ back into the associated likelihoods:

$$egin{array}{ll} \widetilde{p_{01}} &=& \mathbf{P}\left(Y_i = 1 | X_i = 0, \widehat{eta}_0, \widehat{eta}_1
ight) \ &=& rac{1}{1 + \mathbf{e}^{-\widehat{eta}_0}} = rac{1}{1 + rac{f_{00}}{f_{01}}} = rac{f_{01}}{f_{00} + f_{01}}. \ &\widetilde{p_{11}} &=& \mathbf{P}\left(Y_i = 1 | X_i = 1, \widehat{eta}_0, \widehat{eta}_1
ight) \ &=& rac{1}{1 + \mathbf{e}^{-\widehat{eta}_0 - \widehat{eta}_1}} = rac{1}{1 + rac{f_{01}f_{10}f_{00}}{f_{00}f_{11}f_{01}}} = rac{f_{11}}{f_{10} + f_{11}}. \end{array}$$

In fact, this coincides with the result we obtained in (a), so we can conclude that this is merely a re-parametrization of the original Bernoulli model. In this case, the logistic regression model only excludes zeros in the frequencies f_{kl} and otherwise does not pose any restriction.

Submit

You have used 2 of 3 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 7 Generalized Linear Models: Homework 11 / 4. Contingency tables

Add a Post

Show all posts ▼ by recent activity ▼	
• [staff]: (b) Beta estimator expression terms	3
■ [Staff] Typographical Error I think the following log-likelihood has some typo: [mathjax]\displaystyle n \left[f {01} p {01} + f {00} (1 - p {01}) + f {11} p {11} + f {10} (1 - p {11}) \right][/mathjax] Typographical Error think the following log-likelihood has some typo: [mathjax]\displaystyle n \left[f {01} p {01} + f {00} (1 - p {01}) + f {11} p {11} + f {10} (1 - p {11}) \right][/mathjax] Typographical Error think the following log-likelihood has some typo: [mathjax]\displaystyle n \left[f {01} p {01} + f {00} (1 - p {01}) + f {11} p {11} + f {10} (1 - p {11}) \right][/mathjax] Typographical Error think the following log-likelihood has some typo: [mathjax]\displaystyle n \left[f {01} p {01} + f {00} (1 - p {01}) + f {11} p {11} + f {10} (1 - p {11}) \right][/mathjax] Typographical Error think the following log-likelihood has some typo: [mathjax]\displaystyle n \left[f {01} p {01} + f {00} (1 - p {01}) + f {11} p {11} + f {10} (1 - p {11}) \right][/mathjax] Typographical Error think the following log-likelihood has some typo: [mathjax]\displaystyle n \left[f {01} p {01} + f {00} (1 - p {01}) + f {01} (2 ux] lt should
? [Staff] Why Can't We Review the Midterms Anymore?	1_

	LOOKING at the problems of the exams would be a very good way to get prepared for the final. I don't understand why the exam content is no longer available.	•
?	Please Review My Answer to b I did b differently than what is given in the answer. Thought I'd share and see if my way is permissible or if I got lucky.	8
Q	Any hints for b Been struggling with this for quite some time now. I can find the likelihood and take derivatives w.r.t to both beta 0 and beta 1, but not sure how that would get me an answe	14
Q	A nice problem to solve, what is the interpretation / insights obtained from the results? ★ Following	3
Q	Great Lecture on High Level Stuff Hi Folks, I hope all is well. I just wanted to share a lecture I found that I think really puts what we are learning into perspective. It's more high level stuff but I think it helped me	3
?	Part (b): beta_0 and beta_1	3
∀	What does "#" mean? I am sorry, but after completing the lecture and the exercises I do not understand what the problem is stating: f. 00 f. 01 etc.	4

© All Rights Reserved