DM865 - Heuristics & Approximation Algorithms
(Marco) (Lere)

Cambinatorial problems:

First -> Traveling Schesman (TSP)

MAX SAT

Set Caver

Knapsack

Bin packing Scheduling decision vosion

E NPC

Polynomial algorithm: algo. with runing time $O(n^c)$, for some constant c.

P: The set of decision problems that allow for a poly. algo.

NP: A problem belongs to NP, if solutions can be verified in pdy time.

If any NP-hard problem has a poly. algo., then all problems in NPC have poly. algo.s.

Optimal solutions in poly time for all instances

(1)

(2)

(3)

- Choose two!

(2) L(3)

Section 1.1

An approximation algorithm comes with a performance guarantee:

Def 1.1: \a-approximation algorithm

An α -approximation algorithm for an optimization problem P is a poly time algo. ALG s.t. for any instance I of P,

- $\frac{ALG(I)}{OPT(I)} \leq \propto$, if P is a minimization problem
- $\frac{ALG(I)}{OPT(I)} \gg \propto$, if P is a maximization problem

Thus, for max. problems, $0 \le \alpha \le 1$, and, for min. problems, $\alpha \ge 1$.

The approximation factor / approximation ratio is

- the smallest possible & (for min. problems)

- the largest possible & (for max. problems)

More precisely, the approx. Jactor R is $R = \inf_{X \in \mathcal{X}} \int_{X} \alpha | \forall I : \frac{ALG(I)}{OPT(I)} \leq \alpha f \text{ for min. problems}$ $R = \sup_{X \in \mathcal{X}} \int_{X} \alpha | \forall I : \frac{ALG(I)}{OPT(I)} \geq \alpha f \text{ for max. problems}$

We will cover the rest of Section !! later.

Section 2.4: TSP

The Traveling Solusinan Problem (TSP)

Input: Weighted complete graph G

$$C_{ij} = C_{ji}$$
, $i, j \in V$
 $C_{ii} = O$, $i \in V$

$$C_{ii} = 0$$
, $i \in V$

Output: Hamiltonian cycle of min total weight

Cycle visiting each votex exactly once.

Decision bersion of TSP;

Does there exist a tour of cost = x?

Decision vosion of TSP is NP-hard Reduction from Hamilton Cycle:

Ham. cycle

I ham cycle (=> I tow of cost n

Even	worse,	no	approximation	guarantee	possible:
------	--------	----	---------------	-----------	-----------

Theorem 2.9

 $\forall \alpha > 1$, $\exists \alpha - approx alg. for <math>\forall SP$ (unless P = NP)

Proof: Reduction from Hamilton Cycle:

Ham. cycle

TSP

I ham. Cycle

 \iff

I tow of cost n

 \Rightarrow

x-approx. alg. gives tow of cost ≤ an

(=>

x-approx. alg. returns a tour with no red edges, i.e., a tour

of cost n.

I ham. cycle

 \Leftarrow

of cost n (i.e. a tow with no red edges).

Note: The proof does not require α to be a constant. In fact, it could be 2° , or any function computable in pdy. time.

Thus, we will only consider a special case of TSP:

Metric TSP:

The edge weights satisfy the triangle inequality:

Cij

Cik + Cij, for all i,j,ke V

i o j

For metric T3P, the proof of Thm 2.9 does not work (the max. possible cost of the red edges would be 2).

For Metric TSP, we will consider three algorithms:

The Nearest Addition algorithm 2-approx.

The Double Tree algorithm 2-approx.

Christofide's Algorithm 3/2-approx

Nearest Addition (NA)

 $u, v \leftarrow two$ nearest neighbors in V $Tour \leftarrow \langle u, v, u \rangle$ For $i \leftarrow | to n-2$ $v \leftarrow nearest$ neighbor of Tour $u_1 \leftarrow nearest$ neighbor of v in Tour $u_2 \leftarrow u_i's$ successor in TourAdd v to Tour between u_1 and u_2

Ex:

$$C_{NA} = 1 + 3 + 2 + 3 + 5$$
= 14

For Metric TSP, Nearest Neighbor is a 2-approx. alg.: We will prove that

(1)
$$C_{NA} \leq \lambda \cdot C(MST)$$

(2) $C(MST) \leq C_{OPT}$ (Lemma 2.10)

(2)
$$C(MST) \leq C_{OPT}$$
 (Lemma 2.10)

(1): The solid red edges are exactly those chosen by Prim's Algorithm:

$$C = |+3+|+2 = 7$$

Thus, the total cost C of these edges is that of a minimum spanning tree:

Adding a new votex or to the tour, we add two edges and dulok one:

Adding v costs

$$x + y - z \le x + (x + z) - z = 2x$$

where x is the cost of Prim's Alg. in this step

Thus, $C_{NA} \leq 2C = 2c(MST)$

(2): Deleting any edge from a tour, we get a sparring tree:

For any spanning tree \top obtained by deleting an edge e from an optimal tour,

$$C_{OPT} \geqslant C(T)$$
, since $W(e) \geqslant 0$
 $\Rightarrow C(MST)$

Now,

(1) & (2)
$$\Rightarrow$$
 $C_{NA} \leq 2 c(MST) \leq 2 c_{OPT}$

This proves:

Theorem 2.11

For Metric TSP, Nearest Addition is a 2-approx. alg.