Overview of Statistical Stock Assessment FISH 6004 (Introduction to Fish Stock Assessment in R)

Dr. Noel Cadigan, noel.cadigan@mi.mun.ca

Lab Instructor: Andrea Perreault, andrea.perreault@mi.mun.ca

Course Outline for Fall 2021

Lectures are 1:00-4:00 pm each Tuesday, and labs are 9-11:30 am Thursdays.

No lab September 30 (to be confirmed) and November 11 (confirmed). Fall semester break, October 11-12. No Lecture October 12.

Lecture Topics

- 1. Overview of fish stock assessment (Sept 14)
 - i. What is stock assessment (SA).
 - ii. SA vs. Management.
 - iii. Different types of SA.
 - iv. Fish population dynamics: growth, recruitment, mortality, intrinsic growth, carrying capacity.
 - v. yield vs. fishing effort.
 - vi. The progression of fishing a new stock, changes in the fish and changes in the fishery.
 - vii. SA data
- 2. Fisheries Dependent and Independent (Surveys) Indices of Stock Size (Sept 21)
 - i. Data from fisheries
 - a. catch per unit effort (CPUE),
 - b. interpreting fishery catch data (relation to stock abundance and distribution)
 - c. measures from individual fish (weights, lengths, age determination, condition factor)
 - ii. Data from surveys
 - a. Survey types (trawl, acoustic, fishery gear surveys, questionnaires to fishermen, visual counts)
 - b. Survey design (random, stratification, systematic, transect methods)
 - c. Survey indices and relation to stock abundance and distribution
 - d. Measures from individual fish
- 3. Population Models and Management Reference Points (Sept 28)
 - i. Exponential and Logistic models
 - ii. The surplus production model
 - iii. Yield per recruit (age-based)

- a) Fmax and derivatives (e.g., F0.1)
- b) Age, weight and F how to get the most from a fishery
- c) Uncertainties in yield per recruit.
- iv. Spawner per recruit
- v. Age-based Maximum Sustainable Yield (MSY)
- vi. Discrete- and Continuous-time models

4. Models, Data, and Statistical Inference using R (2 lectures: Oct 5+19)

- i. Bringing models and data together, judging how well model predictions and the data "fit"
- ii. Complexity in models, adding parameters, reality vs. simplicity
- iii. Methods to judge how well models and data "fit"
- iv. Least squares approach residual error
- v. Non-linear estimation, using R to find minimum sum of residual error
- vi. Numerical optimization and root finding.
- vii. Estimating uncertainty about the model
- viii. Methods based on parametric statistics, SD, SE, 95% CI, Variance...Normal distributions
- ix. Bootstrap

5. Growth of Individual Fish (Oct 26)

- i. Growth data length and weight at age or weight at length, tagging data
- ii. Use of data and problems with extrapolations
- iii. Von Bertalanffy growth model for length at age $(L_t = L_{inf}(1-e^{-K(t-t\theta)}))$
 - a) estimation using nls()
 - b) weighted estimation
 - c) Regression confidence intervals and bootstrap-t
 - d) parameter collinearity
 - e) alternative formulation of the Von Bertalanffy model
- iv. Biphasic model
- v. Growth in Weight $(W_t = a L_t^b)$
- vi. Gompertz Growth Model
- vii. Fabens model for growth from tagging data.
- viii. Individual variability in growth
- ix. Non-random samples due to gear selectivity and sampling designs
- x. Age measurement error
- xi. Several populations

6. Population Model Estimation and Inference (Nov 2)

- i. Estimation of Surplus Production Models
 - a) Parameter constraints versus estimation
 - b) Parameter correlations and model identifiability
 - c) Stock status evaluations

- ii. Implications of process error
- iii. A little on Bayesian methods
- iv. 3LN redfish case study

7. Stock Recruitment models (Nov 9)

- i. Importance of stock-recruit models in sustainable fisheries management
- ii. Properties of a good stock-recruit relationship
- iii. Important life-history processes
- iv. Stock-recruit data uncertainties
- v. Beverton-Holt, Ricker, Hockey-Stick models
- vi. Estimation
- vii. Auto-correlated errors

8. Age Structured Population Models (Nov 16)

- i. Why is Age Important?
- ii. Cohort Strength Model
 - a) Estimation
 - b) Case Study: 3NO cod
- iii. Cohort Strength Model with Random year Effects
- iv. SURBA: Survey-based cohort model
 - a) Estimation
 - b) Case Study: 3NO cod
- v. Retrospective Analysis
- vi. Harvest Advice
 - a) Catch multiplier projections

9. Virtual and Sequential Population Analysis (Nov 23)

- i. Virtual Population Analysis
- ii. Sequential Population Analysis
- iii. Convergence
- iv. Estimation
- v. ADAPT and other software
- vi. 3NO cod ADAPT

10. Modern Stock Assessment (Nov 30)

- i. Integrated Assessments
- ii. Data weighting
- iii. State-space models
- iv. Northern cod NCAM
- v. Censored likelihoods
 - a) catch
 - b) survey zero's

- c) partial surveys
- vi. Age Compositions
 - a) Additive logistic normal multinomial
 - b) Multiplicative logistic normal multinomial
- vii. Likelihood components
- viii. Future
- ix. Statistical Catch-at-Age (SCA): 3NO cod

Useful Texts:

Modelling and Quantitative Methods in Fisheries by Malcolm Haddon Marine Fisheries Ecology by Jennings, Kaiser and Reynolds.

Additional texts:

A Guide to Fisheries Stock Assessment. From Data to Recommendations by Andy Cooper. Surveys of Fisheries Resources by Gunderson 1993 Some papers will be assigned in lectures

Marking scheme:

Five assignments of 25 marks each (one every 2 weeks approximately). Course mark based on best 4 assignment marks. No exams.