

#### FUNCTION RESTRICTIONS AND EXTENSIONS

# Why

The relationship between the inclusion map and the identity map is characteristic of making small functions out of large ones.<sup>1</sup>

## **Definition**

Let  $X \subset Y$  and  $f: Y \to Z$ . There is a natural function  $g: X \to Z$ , namely the one defined by g(x) = f(x) for all  $x \in X$ . We call g the restriction of f to X. We call f an extension of g to Y. Clearly, there may be more than one extension of a function

### Notation

We denote the restriction of  $f: Y \to Z$  to the set  $X \subset Y$  by  $f \mid X$ .

### Example

A simple example is the that the inclusion mapping from X to Y with  $X \subset Y$  is a restriction of the identity map on X

#### An extension order

Here is a natural order involving set extensions and restrictions. Fix two sets A and B. Let F be the set of all functions  $f: X \to Y$  with  $X \subset A$  and  $Y \subset B$ . Define a relation R in F by  $(f,g) \in R$  if  $\mathrm{dom}\, f \subset \mathrm{dom}\, g$  and f(x) = g(x) for all x in  $\mathrm{dom}\, f$ . In other words,  $(f,g) \in R$  if f is a restriction of g (or, equivalently, g is an extension of f. We recognize that R is a special case of the inclusion partial order by recognizing the elements of F as subsets  $A \times B$ .

 $<sup>^{1}\</sup>mathrm{Future}$  editions will modify this language.

