TP4-2025

El objetivo de esta práctica es que comiencen a trabajar con matrices. En particular operarán con matrices de 3x3.

Forma de entrega

- Se indicará un par de ejercicios que deberán ser subidos al campus para su verficación.
- Cada punto debe ser entregado en un archivo independiente.
- El nombre de cada archivo debe ser ejercicio seguido del número de ejercicios más .c, de esta manera, el primer ejercicio será entonces ejercicio1.c.
- Recuerden tener en cuenta las Cuestiones de Estilo
- En ningún caso se aceptará el uso de variables globales. Toda la información necesaria para el funcionamiento de las funciones a desarrollar tienen que ser pasado como argumentos de las mismas.
- Mantengan separado lo que es entrada, del algoritmo y la salida.
- No olviden documentar las funciones implementadas indicando el propósito de los argumentos y que es lo que retorna.

Enunciado

Un docente se encuentra con un problema: necesita practicar operaciones con matrices para entrenar a sus alumnos en la programación en C. En lugar de hacerlo en papel, decide programar funciones que realicen las operaciones básicas de las matrices **3×3**.

Se pide:

- 1. Escribir algoritmos en C para las operaciones: a. Suma de matrices. b. Multiplicación de matrices. c. Transpuesta. d. Multiplicación por la identidad. e. Determinante 3x3. f. Producto matriz-vector. g. Rotación 90°.
- 2. Explicar en cada caso el nombre, la fórmula y cómo se realiza la operación.
- 3. Dejar un ejercicio más difícil para resolver durante la semana.

Descripción de los problemas

- 1. Suma de matrices:
 - Fórmula: C[i][j] = A[i][j] + B[i][j]

- Ayuda de implementación:
 - Usar dos bucles anidados (filas y columnas).
 - En cada posición de la matriz de resultados, guardar la suma de los dos valores.

Α			В			A + B			
	1	2	3	9	8	7	10	10	10
	4	5	6	6	5	4	10	10	10
	7	8	9	3	2	1	10	10	10

- 2. Multiplicación de matrices:
 - Fórmula: $C[i][j] = \sum A[i][k] + B[k][j] k=0,1,2$
 - Ayuda de implementación:
 - Usar tres bucles (filas, columnas y sumatoria).
 - Multiplicar cada elemento de la fila por el correspondiente de la columna y acumular.

A (3×3)			B (3×3)			C = A·B (3×3)		
1	2	3	9	8	7	30	24	18
4	5	6	6	5	4	84	69	54
7	8	9	3	2	1	138	114	90

- 3. Transpuesta de matrices:
 - Fórmula: T[i][j] = A[j][i]
 - Idea de implementación:
 - Recorrer filas y columnas y en la nueva matriz, colocar los elementos cruzados.

	Α		
1	2	3	1
4	5	6	2
7	8	9	3

	A^{\scriptscriptstyleT}		
1	4	7	
2	5	8	
3	6	9	

- 4. Multiplicación por la identidad:
 - o Fórmula: I[i][j] = 1 si i=j o 0 si i!=j
 - Idea de implementación:
 - Generar la matriz con los elementos como los que se describen en la fórmula.
 - Comprobar usando la multiplicación de matrices, que A*I
 A

	Α	
1	2	3
4	5	6
7	8	9

Α ^τ						
1	4	7				
2	5	8				
3	6	9				

5. Determinante de 3x3.

• Fórmula: para las matrices de 3x3 el determinante se calcula evaluando la expresión:

$$det(A) = a*(e*i-f*h)-b*(d*i-f*g)+c*(d*h-e*g)$$

- 6. Producto matriz-vector.
 - Fórmula: $r[i] = \sum A[i][k]*v[k]$
 - Idea de implementación:
 - Recorrer filas de la matriz.
 - Multiplicar cada valor por el componente del vector correspondiente y sumar.
 - El resultado es un arreglo de una dimensión.

	Α		v (3×1)	A·v (3×1)
1	2	3	1	14
4	5	6	2	32
7	8	9	3	50

7. Rotación a 90°

• Fórmula: R[i][j] = A[2-j][i]

• Idea de implementación:

• Transponer la matriz y luego invertir filas (o columnas).

A (original)					A rotada 90°	
1	2	3		7	4	1
4	5	6		8	5	2
7	8	9		9	6	3