

Two-Time-Scale Noisy EM Algorithms

Baidu Research, Cognitive Computing Lab

Belhal Karimi

March 20, 2020

Overview

1. How to Learn in Latent Data Models?

2. Two-Time-Scale Approximated EM Algorithms

3. Numerical Experiments

1. How to Learn in Latent Data Models?

Latent Data Models

- Models where the input-output relationship is not completely characterized by the observed $(x, y) \in X \times Y$ pairs in the training set
- Dependence on a set of unobserved latent variables $z \in Z \subset \mathbb{R}^m$.
- Mandatory: Simulation step to complete the observed data with realizations of the latent variables.
- ullet Formally, this specificity in our setting implies extending the loss function ℓ to accept a third argument as follows:

$$\ell(y, M_{\theta}(x)) = \int_{Z} \ell(z, y, M_{\theta}(x)) dz . \tag{1}$$

Maximizing the Likelihood

• We minimize the following *nonconvex* function on Θ , a convex subset of \mathbb{R}^d ,

$$\min_{\theta \in \Theta} \overline{\mathcal{L}}(\theta) := R(\theta) + \mathcal{L}(\theta)$$

$$\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}(\theta) := \frac{1}{n} \sum_{i=1}^{n} \left\{ -\log g(y_{i}; \theta) \right\},$$
(2)

- R : $\Theta \to \mathbb{R}$ is a smooth convex regularization function.
- $g(y_i; \theta)$, is the marginal of the complete data likelihood defined as $f(z_i, y_i; \theta)$, i.e.

$$g(y_i; \boldsymbol{\theta}) = \int_{Z} f(z_i, y_i; \boldsymbol{\theta}) \mu(\mathrm{d}z_i)$$

Exponential Family Setting

- $\{z_i\}_{i=1}^n$ are the (unobserved) latent variables.
- The complete data likelihood belongs to the curved exponential family, *i.e.*,

$$f(z_i, y_i; \boldsymbol{\theta}) = h(z_i, y_i) \exp\left(\langle S(z_i, y_i) | \phi(\boldsymbol{\theta}) \rangle - \psi(\boldsymbol{\theta})\right), \quad (3)$$

where $\psi(\theta)$, $h(z_i, y_i)$ are scalar functions, $\phi(\theta) \in \mathbb{R}^k$ is a vector function, and $S(z_i, y_i) \in \mathbb{R}^k$ is the complete data sufficient statistics.

4

EM and Variants

- "batch" EM (bEM) method is composed of two steps.
- When f(z_i, y_i; θ) is a curved exponential family model, the E-step amounts to computing the conditional expectation of the complete data sufficient statistics,

$$\bar{\mathbf{s}}(\boldsymbol{\theta}^{(k)}) = \frac{1}{n} \sum_{i=1}^{n} \bar{\mathbf{s}}_{i}(\boldsymbol{\theta}^{(k)}) \quad \text{where} \quad \bar{\mathbf{s}}_{i}(\boldsymbol{\theta}) = \int_{\mathbf{Z}} S(z_{i}, y_{i}) p(z_{i}|y_{i}; \boldsymbol{\theta}^{(k)}) \mu(\mathrm{d}z_{i}).$$

$$\tag{4}$$

Then Maximization

$$\text{M-step}: \; \pmb{\theta}^{(k)} = \bar{\pmb{\theta}}(\bar{\mathbf{s}}^{(k)})$$
 where $\bar{\mathbf{s}}^{(k)} = \bar{\mathbf{s}}(\pmb{\theta}^{(k)})$

5

Monte Carlo and Robbins Monro variants

- When expectations (4) are not available (in nonconvex models):
 - Monte Carlo (MC) Approximation:

MC-step:
$$\tilde{S} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{M} \sum_{m=1}^{M} S(z_{i,m}, y_i)$$
 (5)

where you draw M samples $z_{i,m} \sim p(z_i|y_i;\theta)$ (direct or MCMC)

Monte Carlo and Robbins Monro variants

- When expectations (4) are not available (in nonconvex models):
 - Monte Carlo (MC) Approximation:

MC-step:
$$\tilde{S} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{M} \sum_{m=1}^{M} S(z_{i,m}, y_i)$$
 (6)

where you draw M samples $z_{i,m} \sim p(z_i|y_i;\theta)$ (direct or MCMC)

- Caveats:
 - 1. Requires large MC samples M in order to converge.

Monte Carlo and Robbins Monro variants

- When expectations (4) are not available (in nonconvex models):
 - Monte Carlo (MC) Approximation:

MC-step:
$$\tilde{S} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{M} \sum_{m=1}^{M} S(z_{i,m}, y_i)$$
 (7)

where you draw M samples $z_{i,m} \sim p(z_i|y_i;\theta)$ (direct or MCMC)

- Caveats:
 - 1. Requires large MC samples M in order to converge.
 - 2. Do not scale to large n.

2. Two-Time-Scale

Approximated EM Algorithms

Large Scale Learning

FIRST LEVEL

• Incremental Updates:

$$\boxed{\mathsf{Incremental\text{-}step}: \ \tilde{S}^{(k+1)} = \tilde{S}^{(k)} + \rho_{k+1} \big(\boldsymbol{\mathcal{S}}^{(k+1)} - \tilde{S}^{(k)} \big)}$$

where $\{\rho_k\}_{k=1}^{\infty} \in [0,1]$ is a sequence of step sizes, $\mathcal{S}^{(k)}$ is a proxy for $\tilde{\mathcal{S}}^{(k)}$.

• Several possible updates

Incremental
$$\rho_k = 1$$
 $\boldsymbol{\mathcal{S}}^{(k+1)} = \boldsymbol{\mathcal{S}}^{(k)} + \frac{1}{n} (\tilde{S}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(\tau_{i_k}^k)})$

9

Large Scale Learning

FIRST LEVEL

• Incremental Updates:

$$\boxed{\mathsf{Incremental\text{-}step}: \ \tilde{\mathcal{S}}^{(k+1)} = \tilde{\mathcal{S}}^{(k)} + \rho_{k+1} \big(\boldsymbol{\mathcal{S}}^{(k+1)} - \tilde{\mathcal{S}}^{(k)} \big)}$$

where $\{\rho_k\}_{k=1}^{\infty} \in [0,1]$ is a sequence of step sizes, $\mathcal{S}^{(k)}$ is a proxy for $\tilde{\mathcal{S}}^{(k)}$.

• Several possible updates

Incremental
$$\rho_k = 1$$

$$\mathcal{S}^{(k+1)} = \mathcal{S}^{(k)} + \frac{1}{n} \left(\tilde{S}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(\tau_{i_k}^k)} \right)$$
 Variance Reduction $\rho_k = cst$
$$\mathcal{S}^{(k+1)} = \tilde{S}^{(\ell(k))} + \left(\tilde{S}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(\ell(k))} \right)$$

Large Scale Learning

FIRST LEVEL

• Incremental Updates:

Incremental-step :
$$ilde{S}^{(k+1)} = ilde{S}^{(k)} +
ho_{k+1} ig(ilde{\mathcal{S}}^{(k+1)} - ilde{S}^{(k)} ig)$$

where $\{\rho_k\}_{k=1}^{\infty} \in [0,1]$ is a sequence of step sizes, $\mathcal{S}^{(k)}$ is a proxy for $\tilde{\mathcal{S}}^{(k)}$.

• Several possible updates

Incremental
$$\rho_k = 1$$

$$\mathcal{S}^{(k+1)} = \mathcal{S}^{(k)} + \frac{1}{n} \left(\tilde{S}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(\tau_{i_k}^k)} \right)$$
 Variance Reduction $\rho_k = cst$
$$\mathcal{S}^{(k+1)} = \tilde{S}^{(\ell(k))} + \left(\tilde{S}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(\ell(k))} \right)$$
 Fast Incremental $\rho_k = cst$
$$\mathcal{S}^{(k+1)} = \overline{\mathcal{S}}^{(k)} + \left(\tilde{S}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)} \right)$$

$$\overline{\mathcal{S}}^{(k+1)} = \overline{\mathcal{S}}^{(k)} + n^{-1} \left(\tilde{S}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)} \right) .$$

Overcome Large MC Sampling

SECOND LEVEL

• Stochastic Approximation (SA):

$$\mathsf{SA}\text{-step}: \ \hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} + \gamma_{k+1} (\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)})$$

with decreasing stepsize and $\tilde{S}^{(k+1)}$ MC approximation defined as:

$$\tilde{S}^{(k+1)} = \frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(k+1)} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{M} \sum_{m=1}^{M} S(z_{i,m}^{(k)}, y_{i})$$

Overcome Large MC Sampling

SECOND LEVEL

• Stochastic Approximation (SA):

$$oxed{\mathsf{SA} ext{-step}: \; \hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} + \gamma_{k+1}(ilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)})}$$

with decreasing stepsize and $\tilde{S}^{(k+1)}$ MC approximation defined as:

$$\tilde{S}^{(k+1)} = \frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(k+1)} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{M} \sum_{m=1}^{M} S(z_{i,m}^{(k)}, y_{i})$$

- This update converges well with relatively small M. See [Robbins, Monro, 1951] or [Delyon et. al., 1999].
- ullet Then $oldsymbol{ heta}^{(k+1)} = ar{ heta}(\hat{\mathbf{s}}^{(k+1)})$

Two-Time-Scale Formulation

$\begin{tabular}{lll} \textbf{Algorithm 1} & Two-Time-Scale Noisy EM methods. \end{tabular}$

- 1: **Input:** initializations $\hat{\boldsymbol{\theta}}^{(0)} \leftarrow 0$, $\hat{\mathbf{s}}^{(0)} \leftarrow \hat{S}^{(0)}$, $K_{\text{max}} \leftarrow \text{max}$. iteration number.
- 2: Set the terminating number, $K \in \{0, ..., K_{max}\}$, as a r.v.
- 3: **for** $k = 0, 1, 2, \dots, K$ **do**
- 4: Draw index $i_k \in [1, n]$ uniformly (and $j_k \in [1, n]$ for fiSAEM).
- 5: Compute $\tilde{S}_i^{(k)}$ using the MC-step , for the drawn indices.
- 6: Compute the surrogate sufficient statistics $S^{(k+1)}$.
- 7: Compute $\tilde{S}^{(k+1)}$ and $\hat{\mathbf{s}}^{(k+1)}$ using first and second level:

$$\tilde{S}^{(k+1)} = \tilde{S}^{(k)} + \rho_{k+1} (\mathbf{S}^{(k+1)} - \tilde{S}^{(k)})
\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} + \gamma_{k+1} (\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)})$$
(8)

- 8: Compute $\hat{oldsymbol{ heta}}^{(k+1)} = ar{oldsymbol{ heta}}(\hat{f s}^{(k+1)})$.
- 9: end for

Intuition Behind The Two Stages

- First Level: Incremental and Variance Reduction
 - Incremental updates to scale to large datasets. See [Neal and Hinton, 1998], [Bottou and Bousquet, 2008].
 - Variance reduction to control variance induced by incremental sampling. See [Johnson et. al., 2013], [Karimi et. al., 2019].
- Second Level: Robbins Monro update/ Pointwise convergence
 - Robbins Monro update. Decreasing stepsize to smooth the iterates.
 - Smaller Monte Carlo batchsize M.
 - Kind of like averaging scheme (memory term in the drift term). See [Ruppert, 1988] and [Polyak, 1990].

Intuition: Variance Reduction

- Need to temper the variance induced by incremental sampling.
- See SVRG [Johnson et. al., 2013] or SAGA [Defazio et. al., 2014] in optimization literature.
- The whole point is to temper the variance term

$$\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \boldsymbol{\mathcal{S}}^{(k+1)}\|^2]$$

Depending on the update, this term can be controlled to increase speed of convergence.

• Control variate, as we are using it here, can be used for other algorithms. See control variate for MCMC [Brosse et. al., 2019].

Intuition: Control MC Fluctuations

- Recall: expectations are never available and requires Monte Carlo approximation.
- There are errors (MC fluctuations) when approximating the expectation $\bar{\mathbf{s}}_i(\hat{\boldsymbol{\theta}}(\hat{\mathbf{s}}^{(k-1)}))$.

$$\eta_{i,\vartheta} := \frac{1}{\sqrt{M}} \sum_{m=1}^{M} \left\{ \tilde{S}_i(y_i, z_{i,m}) - \bar{\mathbf{s}}_i(\vartheta) \right\}$$
(9)

- \bullet We want and need to control the $\sup_{\vartheta \in \Theta}$ of this quantity
- Standard assumption in empirical processes and stochastic optimization
- Have recourse to Dudley's inequality and Bracketing Number
- BUT curse of dimensionality

Intuition: Control MC Fluctuations

• In [Vershynin, High-Dimensional Probability, 2018]:

$$\mathbb{E}\sup_{f\in\mathcal{F}}\left|\frac{1}{M}\sum_{i=1}^{M}f\left(X_{i}\right)-\mathbb{E}\left[f(X)\right]\right|\leq\frac{CL}{\sqrt{M}}$$

• In [Wainwright, High-Dimensional Statistics, 2019], the application of the Dudley's inequality yields:

$$\mathbb{E}\sup_{f}|X_{f}| = \mathbb{E}\sup_{f \in \mathcal{F}}|X_{f} - X_{0}| \leq \frac{1}{\sqrt{M}} \int_{0}^{1} \sqrt{\log \mathcal{N}\left(\mathcal{F}, \|\cdot\|_{\infty}, \varepsilon\right)} d\varepsilon$$

where $\mathcal{N}\left(\mathcal{F},\|\cdot\|_{\infty},\varepsilon\right)$ is the bracketing number and ϵ denotes the level of approximation (the bracketing number goes to infinity when $\epsilon \to 0$)

• In [Van Der Vaart, Asymptotic Statistics, 2000]:

$$\mathcal{N}\left(\mathcal{F},\|\cdot\|_{\infty},arepsilon
ight) \leq \mathcal{K}\left(rac{\mathsf{diam}\,\Theta}{arepsilon}
ight)^{d}, \quad ext{every} \quad 0 < arepsilon < \mathsf{diam}\,\Theta$$

Finite-Time Analysis

To set our stage, we consider the minimization problem:

$$\min_{\mathbf{s} \in S} V(\mathbf{s}) := \overline{\mathcal{L}}(\overline{\theta}(\mathbf{s})) = R(\overline{\theta}(\mathbf{s})) + \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}(\overline{\theta}(\mathbf{s})), \tag{10}$$

where $\overline{\theta}(s)$ is the unique map defined in the M-step (??).

Lemma 1

Assume (A1) to (A4). For all $\mathbf{s}, \mathbf{s}' \in S$ and $i \in [1, n]$, we have

$$\|\bar{\mathbf{s}}_{i}(\overline{\boldsymbol{\theta}}(\mathbf{s})) - \bar{\mathbf{s}}_{i}(\overline{\boldsymbol{\theta}}(\mathbf{s}'))\| \leq \mathsf{L}_{\mathbf{s}} \|\mathbf{s} - \mathbf{s}'\|, \ \|\nabla V(\mathbf{s}) - \nabla V(\mathbf{s}')\| \leq \mathsf{L}_{V} \|\mathbf{s} - \mathbf{s}'\|,$$

$$\tag{11}$$

where $L_s := C_Z L_p L_\theta$ and $L_V := v_{max}(1 + L_s) + L_B C_S$.

Finite-Time Analysis

Theorem 1

• Consider the iSAEM method. There exists a universal constant $\mu \in (0,1)$ (independent of n) such that if we set the step size as $\gamma_k \propto 1/k^{\alpha}$.

$$\sum_{k=0}^{K_{\text{max}}-1} \alpha_{k} \mathbb{E}\left[\left\|\bar{s} \circ \mathsf{T}\left(\widehat{S}^{k}\right) - \widehat{S}^{k}\right\|^{2}\right]$$

$$\leq n \frac{2\bar{L}_{\mathsf{v}}}{\mu K_{\text{max}}} \frac{v_{\text{max}}^{2}}{v_{\text{min}}^{2}} \mathbb{E}[V(\hat{\mathbf{s}}^{(0)}) - V(\hat{\mathbf{s}}^{(K_{\text{max}})})]$$

$$+ O\left(\sum_{k=1}^{K_{\text{max}}} \sum_{i=1}^{n} \eta_{i,\theta^{(k)}}^{(k)}\right)$$
(12)

 Similar to linear rate of incremental EM (deterministic) PLUS a Monte Carlo noise term.

Finite-Time Analysis

Also we can show:

$$\frac{1}{v_{\max}^{2}} \sum_{k=0}^{K_{\max}-1} \alpha_{k} \mathbb{E}\left[\left\|\dot{V}\left(\widehat{S}^{k}\right)\right\|^{2}\right] \leq \sum_{k=0}^{K_{\max}-1} \alpha_{k} \mathbb{E}\left[\left\|\bar{s} \circ \top\left(\widehat{S}^{k}\right) - \widehat{S}^{k}\right\|^{2}\right]$$
(13)

ullet which gives a bound on the gradient of the Lyapunov function V.

3. Numerical Experiments

Gaussian Mixture Models

- Fit a GMM model to a set of n observations {y_i}ⁿ_{i=1} whose
 distribution is modeled as a Gaussian mixture of M components,
 each with a unit variance.
- $z_i \in [M]$ are the latent labels, the complete log-likelihood is:

$$\log f(z_i, y_i; \boldsymbol{\theta}) = \sum_{m=1}^{M} 1_m(z_i) \left[\log(\omega_m) - \mu_m^2 / 2 \right] + \sum_{m=1}^{M} 1_m(z_i) \mu_m y_i + \text{constant} .$$
(14)

where $\theta := (\omega, \mu)$ with $\omega = \{\omega_m\}_{m=1}^{M-1}$ are the mixing weights with t $\omega_M = 1 - \sum_{m=1}^{M-1} \omega_m$ and $\mu = \{\mu_m\}_{m=1}^{M}$ are the means.

- We use the penalization $R(\theta) = \frac{\delta}{2} \sum_{m=1}^{M} \mu_m^2 \log \text{Dir}(\omega; M, \epsilon)$ where $\delta > 0$ and $\text{Dir}(\cdot; M, \epsilon)$ is the M dimensional symmetric Dirichlet distribution with concentration parameter $\epsilon > 0$.
- Generate samples from a GMM model with M=2, $\mu_1=-\mu_2=0.5$.

Gaussian Mixture Models

Fixed sample size We use $n=10^4$ synthetic samples and run to get μ^{\star} . We compare the bEM, iEM, iSAEM, vrSAEM and fiSAEM methods. RM stepsize is $\gamma_k=1/k^{0.6}$, and for vrSAEM and fiSAEM, ρ_k is constant and proportional to $1/n^{2/3}$. We average over 5 independent runs for each method using the same stepsizes as in the finite sample size case above.

Deformable Template for Image Analysis

- $(y_i, i \in [1, n])$ images modelled as deformation of a template.
- The model reads as follows:

$$y_i(s) = I(x_s - \Phi_i(x_s)) + \sigma \varepsilon_i(s)$$

where s is the pixel index, x_s its coordinate, I the template and Φ_i the deformation.

 The template model given p_k landmarks on template and a fixed kernel:

$$I_{\xi} = \mathbf{K}_{\mathbf{p}}\xi, \quad \text{where} \quad (\mathbf{K}_{\mathbf{p}}\xi)(x) = \sum_{k=1}^{k_{p}} \mathbf{K}_{\mathbf{p}}(x, p_{k})\xi(k)$$
 (15)

The deformation model given landmarks and a fixed kernel:

$$\Phi_{i}(x) = (\mathbf{K}_{\mathbf{g}}z_{i})(x) = \sum_{k=1}^{k_{s}} \mathbf{K}_{\mathbf{g}}(x, g_{k}) \left(z_{i}^{(1)}(k), z_{i}^{(2)}(k)\right)$$
(16)

where $z_i \sim (0, \Gamma)$.

• Learn the parameters $\theta = (\sigma, \xi, \Gamma)$ using the above methods.

Deformable Template for Image Analysis

- USPS Digits Dataset
- For a credit of epochs (running time maybe?), we generate images using the learnt model and see which one are similar to the template.

Figure 2: Estimation of the template: first row: using SAEM (benchmark); second row: using new incremental method with minibatch size of 0.1; columns correspond to 1, 2 and 3 epochs, respectively.

Deformable Template for Image Analysis

• For a credit of number of images used in training.

Figure 3: Synthetic images sampled from the model for digit 5 using the parameter estimates obtained with the batch version on 20 images (top) and with the mini-batch version with 1/5th of the data with 100 images.

ONGOING TASKS

- Implement Deformable Template analysis on USPS digits
- Proofs for Variance Reduction and Fast Incremental Two-Time-Scale methods
- Finish writing

Thank you! Questions?