Problem 1

1. Possible element orders are factors of 42 which are less than or equal to half of 42. The orders would be: 1, 2, 3, 6, 7, 14, 21 and 42 if the element does not form a cyclic group. Below is a table of the number of elements for each order:

2.

Order	Number of elements
1	1
2	1
3	2
6	2
7	6
14	6
21	12
42	12

3. Order of all elements:

Order	Elements
1	1
2	42
3	6, 36
6	7, 37
7	4, 11, 16, 21, 35, 41
14	2, 8, 22, 27, 32, 39
21	9, 10, 13, 14, 15, 17, 23, 24, 25, 31, 38, 40
42	3, 5, 12, 18, 19, 20, 26, 28, 29, 30, 33, 34

4. 3, 5, 12, 18, 19, 20, 26, 28, 29, 30, 33, 34 are possible generators

Problem 2

- a. X = 6
- b. No solution
- c. No solution
- d. X = 11

Problem 3

```
P = 709

a = 2

Alice private key (A) = 17

Bob private key (B) = 41
```

Part a - Alice's Public Key

```
Private key (y_A) = a^A \mod P
= 2^{17} \mod 709
= 616
```

Part b - Bob's Private Key

```
Private key (y_B) = a^B \mod P
= 2^{41} \mod 709
= 323
```

Part c - Common Key

$$z_A = z_B$$

```
z_A = y_B^A \mod P
= 323<sup>17</sup> mod 709
= 350
Check by finding z which should be
```

Check by finding $\boldsymbol{z}_{\scriptscriptstyle B},$ which should be the same number:

$$z_B = y_A^B \mod P$$

= 616⁴¹ mod 709
= 350

Part d - Explain How Keys Are Established

Alice and Bob establish the key by multiplying the same exponents so that the results are equal. A is Alice's private key, B is Bob's private key, g is the generator, p is the prime.

Alice's public key: $K_A = g^A \mod p$ Bob's public key: $K_B = g^B \mod p$

When the two compute the common key: Alice: $Z_A = K_B^A \mod p = (g^B)^A \mod p = g^{AB} \mod p$ Bob: $Z_B = K_A^B \mod p = (g^A)^B \mod p = g^{AB} \mod p$

Thus, $Z_A = Z_B$

Problem 4 - ElGamal Encryption

 $F = \mathbb{Z}^*_{971}$ g = 314

Part a

Private key x = 23 Random parameter k = 21 Message m = 49

 $\beta = g^x \mod p$ = 314²³ mod 971 = 865

Public key: $(p, g, \beta) = \{971, 314, 865\}$

Private key: $(x) = \{23\}$

Encryption:

 $Y_1 = g^k \mod p$ = 314²¹ mod 971 = 575

 $Y_2 = m*\beta^k \mod p$ = 49*865²¹ mod 971 = 751

Encryption: $(Y_1, Y_2) = (575, 751)$

Decryption

m =
$$Y_2$$
 (Y_1^x)⁻¹ mod p
= 751(575²³)⁻¹ mod 971
Using Fermat's little theorem:
 $575^{-23} = 575^{947}$
Since x^{-p} mod q = x^{q-p-1}
Same as taking multiplicative inverse of 575²³
947 in binary = 1110110011
Now use square and multiply to get:

575⁹⁴⁷ mod 971 = 525

 $751(525) \mod 971 = 49$

Message = 49

Part b

Private key x = 23 Random parameter k = 51 Message m = 49

 $\beta = g^x \mod p$ = 314²³ mod 971 = 865

Public key: $(p, g, \beta) = \{971, 314, 865\}$

Private key: $(x) = \{23\}$

Encryption:

 $Y_1 = g^k \mod p$ = 314⁵¹ mod 971 = 7 $Y_2 = m^*\beta^k \mod p$

 $Y_2 = m^2 p^2 \mod p$ = $49*865^{51} \mod 971$ = 285

Encryption: $(Y_1, Y_2) = (7, 285)$

Decryption:

$$m = Y_2 (Y_1^x)^{-1} \mod p$$

= 285(7²³)⁻¹ mod 971

Using Fermat's little theorem: $7^{-23} = 7^{947}$

$$7^{-23} = 7^{947}$$

Since $x^{-p} \mod q = x^{q-p-1}$

Same as taking multiplicative inverse of 7²³

947 in binary = 1110110011

Now use square and multiply to get:

$$7^{947} \mod 971 = 208$$

 $285(208) \mod 971 = 49$

Message = 49