

Agenda

- Questions from previous lectures.
- CUDA Threads, Warps, and Scheduling.
- Synchronization.
- Atomic Functions.

THREAD EXECUTION AND THREAD DIVERGENCE

CUDA Thread Execution

- Explanation of how a streaming multiprocessor executes threads in a thread block
- Single-Instruction Multiple-Thread (SIMT) execution model and performance model
- Control Flow Divergence

Scheduling Thread Blocks

GPU

 Hardware dispatches thread blocks to available processor (streaming multiprocessor)

Scheduling Thread Blocks

- A GPU has lots of processors (streaming multiprocessors)
 - * The GPUs found in contemporary HPC clusters usually have 14-16
- Each processor (streaming multiprocessors) can execute multiple blocks concurrently
 - Programmers need to ensure that kernel launches creates enough thread blocks to keep machine busy
- Hardware dispatches a block when resources become available, typically when a previous block completes
 - * No specific order in which blocks are dispatched and executed
 - Design algorithms to be insensitive to block execution order

Thread Blocks are Executed as Warps

- Each thread block is mapped to one or more warps
 - When the thread block size is not a multiple of the warp size, unused threads within the last warp are disabled automatically

- The hardware schedules each warp independently
 - Warps within a thread block can execute independently

Warps and SIMT

 A warp is a group of threads within a block that are launched together and (usually) execute together

Conceptual Programming Model

Conceptual SIMT Execution Model

Warps and SIMT

- SIMT = Single Instruction Multiple Threads
 - * Within CUDA context, refers to issuing a single instruction to the (multiple) threads in a warp.
- The warp size is currently 32 threads
- The warp size could change in future GPUs
- While we are on the topic of warp size
 - * Some code one will encounter relies on the warp size being 32 threads, and so you may notice the constant 32 in code
 - In general, it is poor form to exploit the fact that a warp consists of 32 threads that (usually) execute in lock-step
 - Code may not be portable to future architectures

Thread and Warp Scheduling

- The processors (streaming multiprocessors) can switch between warps with no apparent overhead
- Warps with instruction whose inputs are ready are eligible to execute, and will be considered when scheduling
- When a warp is selected for execution, all (active) threads execute the same instruction

Filling Warps

Prefer thread block sizes that result in mostly full warps

- Prefer to have enough threads per block to provide hardware with many warps to switch between
 - * This is how the GPU hides memory access latency
- Resource like <u>shared</u> may constrain threads per block
 - * Algorithm and decomposition will establish some preferred amount of shared data and <u>__shared__</u> allocation

Filling Warps

 When number of threads is not a multiple of preferred block size, insert bounds test into kernel

```
__global__ void kn(int n, int* x)
{
  int i = threadIdx.x + blockDim.x * blockIdx.x;
  if (i < n)
  {
     // very important code
  }
}</pre>
```

- Otherwise, threads may access memory outside of arrays
- Do not launch a second grid to process residual elements

```
kernel<<<n/128, 128>>>(...);
kernel<<<1, n % 128>>>(...); // !!! very bad !!!
```


Consider the following code

```
global__ void odd_even(int n, int* x)
{
  int i = threadIdx.x + blockDim.x * blockIdx.x;
  if ((i & 0x01) == 0)
  {
    x[i] = x[i] + 1;
  }
  else
  {
    x[i] = x[i] + 2;
  }
}
```

 Half the threads in the warp must execute the if clause, the other half the else clause

- The system automatically handles control flow divergence, conditions in which threads within a warp execute different paths through a kernel.
- Often, this requires that the hardware execute multiple paths through a kernel for a warp
 - For example, both the if clause and the corresponding else clause


```
global__ void kv(int* x, int* y)
int i = threadIdx.x +
  blockDim.x * blockIdx.x;
int t;
bool b = f(x[i]);
if (b)
                // g(x)
 t = g(x[i]);
else
                // h(x)
 t = h(x[i]);
y[i] = t;
```


- Nested branches are handled similarly
 - * Deeper nesting results in more threads being temporarily disabled
- In general, one does not need to consider divergence when reasoning about the correctness of a program
 - * Certain code constructs, such as those involving schemes in which threads within a warp spin-wait on a lock, can cause deadlock.
 - * However, most programmers are unlikely to be tempted to code such constructs.
- In general, one does need to consider divergence when reasoning about the performance of a program

Performance of Divergent Code

Performance decreases with degree of divergence in warps

```
_global__ void dv(int* x)
int i = threadIdx.x + blockDim.x * blockIdx.x;
switch (i % 32)
  case 0 : x[i] = a(x[i]);
    break;
  case 1 : x[i] = b(x[i]);
    break;
  case 31: x[i] = v(x[i]);
    break;
```

Performance of Divergence

- Compiler and hardware can detect when all threads in a warp branch in the same direction
 - * For example, all take the if clause, or all take the else clause
 - The hardware is optimized to handle these cases without loss of performance
- The compiler can also compile short conditional clauses to use predicates (bits that conditional convert instructions into null ops)
 - * Avoids some branch divergence overheads, and is more efficient
 - * Often acceptable performance with short conditional clauses

Data Address Divergence

- Concept is similar to control divergence and often conflated
- Hardware is optimized for accessing contiguous blocks of global memory when performing loads and stores
 - ※ Global memory blocks are aligned to multiples of 32,64,128 bytes.
 - If requests from a warp span multiple data blocks, multiple data blocks will be fetched from memory
 - Entire block is fetched even if only a single byte is accesses, which can waste bandwidth
- Hardware handles divergence within <u>shared</u> memory more efficiently
 - Designed to support parallel accesses from all threads in warp
 - * Still need to worry about addresses that map to the same bank

Data Address Divergence

- Hardware may need to issue multiple loads and stores when a warp accesses addresses that are far apart
 - Conceptually similar to executing the load or store multiple times
- Global memory accesses are most efficient when all load and store addresses generated within a warp are within the same memory block
 - For example, when addresses of loads and stores have stride 1 within a warp
 - * Common when array index is a linear function of threadIdx.x
- Consider both address and control divergence when designing algorithms and optimizing code

- Partition data to operate in well-sized blocks
 - Small enough to be staged in shared memory
 - * Assign each data partition to a thread block
 - * No different from cache blocking!
- Provides several significant performance benefits
 - * Have enough blocks to keep processors busy
 - Working in shared memory reduces memory latency dramatically
 - More likely to have address access patterns that coalesce well on load/store to shared memory

Partition data into subsets that fit into __shared__ memory

Process each data subset with one thread block

 Load the subset from global memory to shared memory, using multiple threads to exploit memory-level parallelism

Perform the computation on the subset from shared memory

Copy the result from <u>shared</u> memory back to global memory

- Almost all CUDA kernels are built this way
 - ** Blocking may not impact the performance of a particular problem, but one is still forced to think about it
 - Not all kernels require __shared__ memory
 - * All kernels do require registers
- Most high-performance CUDA kernels one encounters exploit blocking in some fashion

Questions about Threads and Divergence?

SYNCHRONIZATION

© 2010, 2011 NVIDIA Corporation

Synchronization

Communication

Race conditions

Synchronizing accesses to shared data

Global Communication

- Device threads communicate through shared memory locations
- Threads in different blocks and different grids
 - * Locations in global memory (global variables)
- Threads in same blocks
 - Locations in global memory
 - * Locations in shared memory (__shared__ variables)

Race Conditions

Race conditions arise when 2+ threads attempt to access the same memory location concurrently and at least one access is a write.

```
// race.cu
_global__ void race(int* x)
{
   int i = threadIdx.x + blockDim.x * blockIdx.x;
   *x = i;
}

// main.cpp
int x;
race<<<1,128>>>(d_x);
cudaMemcpy(&x, d_x, sizeof(int), cudaMemcpyDeviceToHost);
```

Race Conditions

- Programs with race conditions may produce unexpected, seemingly arbitrary results
 - ***** Updates may be missed, and updates may be lost

```
// race.cu
__global__ void race(int* x)
{
   int i = threadIdx.x + blockDim.x * blockIdx.x;
   *x = *x + 1;
}

// main.cpp
int x;
race<<<<1,128>>>(d_x);
cudaMemcpy(&x, d_x, sizeof(int), cudaMemcpyDeviceToHost);
```

Synchronization

- Accesses to shared locations need to be correctly synchronized (coordinated) to avoid race conditions
- In many common shared memory multithreaded programming models, one uses coordination objects such as locks to synchronize accesses to shared data
- CUDA provides several scalable synchronization mechanisms, such as efficient barriers and atomic memory operations.
- In general, always most efficient to design algorithms to avoid synchronization whenever possible.

Synchronization

Assume thread T1 reads a value defined by thread To

```
// update.cu
__global__ void update_race(int* x, int* y)
{
   int i = threadIdx.x + blockDim.x * blockIdx.x;
   if (i == 0) *x = 1;
   if (i == 1) *y = *x;
}

// main.cpp
update_race<<<1,2>>>(d_x, d_y);
cudaMemcpy(&y, d_y, sizeof(int), cudaMemcpyDeviceToHost);
```

 Program needs to ensure that thread T1 reads location after thread To has written location.

Synchronization within Block

 Threads in same block: can use __synchthreads() to specify synchronization point that orders accesses

```
// update.cu
__global__ void update(int* x, int* y)
{
   int i = threadIdx.x + blockDim.x * blockIdx.x;
   if (i == 0) *x = 1;
   __syncthreads();
   if (i == 1) *y = *x;
}

// main.cpp
update<<<<1,2>>>(d_x, d_y);
cudaMemcpy(&y, d_y, sizeof(int), cudaMemcpyDeviceToHost);
```

 Important: all threads within the block must reach the __synchthreads() statement

Synchronization between Grids

 Threads in different grids: system ensures writes from kernel happen before reads from subsequent grid launches.

```
// update.cu
 _global__ void update_x(int* x, int* y)
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 if (i == 0) *x = 1;
 global void update y(int* x, int* y)
  int i = threadIdx.x + blockDim.x * blockIdx.x;
 <u>if</u> (i == 1) *y = *x;
// main.cpp
update_x<<<1,2>>>(d_x, d_y);
update_y<<<1,2>>>(d_x, d_y);
cudaMemcpy(&y, d_y, sizeof(int), cudaMemcpyDeviceToHost);
```

Synchronization within Grid

- Often not reasonable to split kernels to synchronize reads and writes from different threads to common locations
 - * Values of <u>shared</u> variables are lost unless explicitly saved
 - * Kernel launch overhead is non-trivial, and introducing extra launches can degrade performance
- CUDA provides atomic functions (commonly called atomic memory operations) to enforce atomic accesses to shared variables that may be accessed by multiple threads
- Programmers can synthesize various coordination objects and synchronization schemes using atomic functions.

ATOMICS

© 2010, 2011 NVIDIA Corporation

Introduction to Atomics

- Atom memory operations (atomic functions) are used to solve all kinds of synchronization and coordination problems in parallel computer systems.
- General concept is to provide a mechanism for a thread to update a memory location such that the update appears to happen atomically (without interruption) with respect to other threads.
- This ensures that all atomic updates issued concurrently are performed (often in some unspecified order) and that all threads can observe all updates.

Atomic Functions

 Atomic functions perform read-modify-write operations on data residing in global and shared memory

```
//example of int atomicAdd(int* addr, int val)
__global__ void update(unsigned int* x)
{
   int i = threadIdx.x + blockDim.x * blockIdx.x;
   int j = atomicAdd(x, 1);  // j = *x; *x = j + i;
}

// main.cpp
int x = 0;
cudaMemcpy(d_x, x, cudaMemcpyHostToDevice);
update<<<1,128>>>;
cudaMemcpy(&x, d_x, cudaMemcpyHostToDevice);
```

 Atomic functions guarantee that only one thread may access a memory location while the operation completes

Atomic Functions

Synopsis of atomic function atomicOP(a,b) is typically

```
t1 = *a;  // read
t2 = t1 OP b; // modify
*a = t2;  // write
return t;
```

- The hardware ensures that all statements are executed atomically without interruption by any other atomic functions.
- The atomic function returns the initial value, not the final value, stored at the memory location.

Atomic Functions

- The name atomic is used because the update is performed atomically: it cannot be interrupted by other atomic updates.
- The order in which concurrent atomic updates are performed is not defined, and may appear arbitrary.
- However, none of the atomic updates will be lost.
- Many different kinds of atomic operations
 - * Add (add), Sub (subtract), Inc (increment), Dec (decrement)
 - * And (bit-wise and), Or (bit-wise or), Xor (bit-wise exclusive or)
 - # Exch (Exchange)
 - Min (Minimum), Max (Maximum)
 - Compare-and-Swap

Histogram Example


```
Compute histogram of colors in an image
 color - pointer to picture color data
  bucket - pointer to histogram buckets, one per color
global__ void histogram(int n, int* color, int* bucket)
int i = threadIdx.x + blockDim.x * blockIdx.x;
if (i < n)
  int c = colors[i];
  atomicAdd(&bucket[c], 1);
```

Work Queue Example


```
// For algorithms where the amount of work per item
// is highly non-uniform, it often makes sense for
// to continuously grab work from a queue
 _device__ int do_work(int x)
 return f(x-1) + f(x) + f(x+1);
  global void process_work_q(int* work_q, int* q_counter,
                               int* output, int queue_max)
  int i = threadIdx.x + blockDim.x * blockIdx.x;
  int q_index = atomicInc(q_counter, queue_max);
  int result = do_work(work_q[q_index]);
  output[i] = result;
```

Performance Notes

- Atomics are slower than normal accesses (loads, stores)
- Performance can degrade when many threads attempt to perform atomic operations on a small number of locations
- Possible to have all threads on the machine stalled, waiting to perform atomic operations on a single memory location.

Example: Global Min/Max (Naive)

- Compute maximum across all threads in a grid
- One can use a single global maximum value, but it will be VERY slow.

```
__global__ void global_max(int* values, int* global_max)
{
  int i = threadIdx.x + blockDim.x * blockIdx.x;
  int val = values[i];
  atomicMax(global_max, val);
}
```

Example: Global Min/Max (Better)

 Introduce local maximums and update global only when new local maximum found.

 Reduces frequency at which threads attempt to update the global maximum, reducing competition access to location.

Lessons from global Min/Max

- Many updates to a single value causes serial bottleneck
- One can create a hierarchy of values to introduce more parallelism and locality into algorithm
- However, performance can still be slow, so use judiciously

Important note about Atomics

50

 Atomic updates are not guaranteed to appear atomic to concurrent accesses using loads and stores

```
global void broken(int n, int* x)
  int i = threadIdx.x + blockDim.x * blockIdx.x;
  if (n == 0)
   *x = *x + 1;
  else
    int j = atomicAdd(x, 1); // j = *x; *x = j + i;
// main.cpp
broken<<<1,128>>>(128, d_x); // d_x = d_x + \{1, 127, 128\}
```

Summary of Atomics

- Cannot use normal load/store for reliable inter-thread communication because of race conditions
- Use atomic functions for infrequent, sparse, and/or unpredictable global communication
- Decompose data (very limited use of single global sum/max/min/etc.) for more parallelism
- Attempt to use shared memory and structure algorithms to avoid synchronization whenever possible

Questions on Atomics?

© 2010, 2011 NVIDIA Corporation