Computational Economics - Homework Set 9

James Graham

April 13, 2016

1

1.1

Note that we can write the Euclidean norm of Ax as a dot product:

$$||Ax||^2 = Ax \cdot Ax = x'A'Ax = x'Bx$$

where B = A'A is a symmetric, positive definite matrix. This means that B has an eigenvalue decomposition with eigenvectors that form an orthonormal basis in \mathbb{R}^n and eigenvalues that are all nonnegative. Let λ_i and b_i be the eigenvalues and associated eigenvectors so that we can write $Bb_i = \lambda_i b_i$ for $i = 1, \dots, n$.

Notice that for any i we can write

$$b_i'Bb_i = b_i'\lambda_i b_i = \lambda_i(b_i'b_i) = \lambda_i \tag{1.1}$$

where the final equality follows from the fact that b_i are orthonormal vectors. Now, since b_i are an orthonormal basis for \mathbb{R}^n , we can write any vector $x \in \mathbb{R}^n$ as $x = \sum_{i=1}^n y_i b_i$, for scalars $y_i \in \mathbb{R}$.

orthonormal basis for \mathbb{R}^n , we can write any vector $x \in \mathbb{R}^n$ as $x = \sum_{i=1}^n y_i b_i$, for scalars $y_i \in \mathbb{R}$. To find a vector x such that ||x|| = 1, then, we need $\sum_{i=1}^n y_i^2 = 1$, since the b_i are orthonormal. Now we can write

$$||Ax||^2 = x'Bx = \left(\sum_{i=1}^n y_i b_i\right)' B\left(\sum_{i=1}^n y_i b_i\right) = \left(y_1 b_1' + \dots + y_n b_n'\right) B\left(y_1 b_1 + \dots + y_n b_n\right) = \sum_{i=1}^n y_i^2 b_i' B b_i = \sum_{i=1}^n y_i^2 \lambda_i$$

where the fourth equality is dues to all cross product terms being zero since b_i are orthogonal, and the final equality follows from result (1.1).

Now, using the matrix norm $-\|A\| = \max_{s.t. \|x\|=1} \|Ax\|$ – we can write a Lagrangian (constrained optimization) problem:

$$\mathcal{L} = \max_{\{y_i\}_{i=1,\dots,n}} \sum_{i=1}^{n} y_i^2 \lambda_i + \mu \left(1 - \sum_{i=1}^{n} y_i^2 \right)$$

The first order condition for a given y_i yields:

$$2y_i\lambda_i - 2\mu y_i = 0$$
$$\Rightarrow \lambda_i = \mu$$

Since $\lambda_i = \mu$ holds for all i, we can see that the maximum is given by $\mu \sum_{i=1}^n y_i^2 = \mu$. This means that the norm is maximized when μ is the largest eigenvalue, λ_{max} . This we have that

$$||A||^2 = \max_{i}(\lambda_i) = \max_{i}(|\lambda_i|) = \rho(B) = \rho(A'A)$$

which means that

$$||A|| = \sqrt{\rho(A'A)}$$

as we wanted to show.

1.2

Gelfand's formula states that $\forall A \in \mathcal{M}(n \times n)$ we have that $\|A^k\|^{1/k} \to \rho(A)$ as $k \to \infty$. This means that for any $\varepsilon > 0$ there exists a $K \in \mathbb{N}$ such that $\forall k \geq K$ we have $\|A^k\|^{1/k} - \rho(A)\| < \varepsilon$. This means that $\forall k \geq K$

$$||A^k||^{1/k} - \rho(A) < \varepsilon$$

$$||A^k||^{1/k} < \rho(A) + \varepsilon$$

$$||A^k|| < (\rho(A) + \varepsilon)^k$$

Since $\rho(A) < 1$ and we can set ε arbitrarily small, let $r = \rho(A) + \varepsilon < 1$. Then we have that $||A^k|| < r^k C$, where in this case C = 1.

Now, we have

$$\sum_{k=0}^{\infty} ||A^k|| = \sum_{k=0}^{K} ||A^k|| + \sum_{k=K+1}^{\infty} ||A^k|| < \sum_{k=0}^{K} ||A^k|| + \sum_{k=K+1}^{\infty} r^k = \sum_{k=0}^{K} ||A^k|| + \frac{r^{K+1}}{1-r} < \infty$$

where the result of the second summation in the final equality follows from the properties of partial geometric sums. The final inequality follows from the facts that: $||A^k||$ is well defined for any matrix, and so is finite for any k and a finite sum of finite values is itself finite; $\frac{r^{K+1}}{1-r} < \infty$ as long as $r \neq 1$.

1.3

If A is diagonalizable, we can express it as $A = PVP^{-1}$, where P is matrix whose columns are the eigenvectors of A and form an orthogonal basis of \mathbb{R}^n , and where V is a diagonal matrix with diagonal elements equal to the eigenvalues of A. We can thus write

$$||A^k|| = ||(PVP^{-1})^k|| = ||PV^kP^{-1}|| \le ||P||||V^k||||P^{-1}|| \le ||P||||P^{-1}||||V||^k$$

Consider the matrix norm over V

$$||V|| = \max_{s.t. ||x||=1} ||Vx|| = \max_{s.t. ||x||=1} \sqrt{(\lambda_1 x_1)^2 + \dots + (\lambda_n x_n)^2} = \max_i \sqrt{\lambda_i^2} = \max_i |\lambda_i| = \rho(A)$$

where the final equality is simply via the definition of the spectral radius. Now observe that

$$||A^k|| \le ||P|| ||P^{-1}|| ||V||^k = ||P|| ||P^{-1}|| \rho(A)^k$$

and since $\rho(A) < 1$, we have that $||A^k|| \to 0$ as $k \to \infty$.

1.4

We want to show that the set of nonnegative definite matrices is a closed subset of $(\mathcal{M}(n \times n), \|\cdot\|)$. To do this, we will show that for any sequence of nonnegative definite matrices $\{M_k\}$, its limit point, M, is also a nonnegative definite matrix.

First, note that for any matrix, A, nonnegative definiteness means that $z'Az \ge 0$ for all $z \in \mathbb{R}^n/\{0\}$. Notice, also, that vector and matrix multiplication is a continuous function, i.e. f(A) := z'Az for some z.

Now, let M_k be a sequence of nonnegative definite matrices such that $M_k \to M$ as $k \to \infty$ under the matrix norm, $\|\cdot\|$. We will work towards a contradiction. Suppose the limit point M is such that z'Mz for some $z \in \mathbb{R}^n/\{0\}$ (i.e. M is not nonnegative definite).

 $M_k \to M$ means that $||M_k - M|| < \varepsilon \forall k \ge K \in \mathbb{N}$. Because $f(\cdot)$ is a continuous function we know that for all $\varepsilon > 0$ and all $k \ge K$, there exists a $\delta > 0$ such that $||M_k - M|| < \delta$ implies that $||f(M_k) - f(M)| < \varepsilon$.

Now, since ε is arbitrary, let $\varepsilon = \frac{z'Mz}{2}$. Then $|f(M_k) - f(M)| = |z'M_kz - z'Mz| < \frac{z'Mz}{2}$ implies that $-\frac{z'Mz}{2} < z'M_kz - z'Mz < \frac{z'Mz}{2}$. Rearranging, we find that $\frac{z'Mz}{2} < z'M_kz < \frac{3z'Mz}{2}$. Since we assumed that z'Mz < 0, this implies that $z'M_kz < 0$, which is a contradiction.

Therefore, it must be that the limit point, M, is also a nonnegative definite matrix. Thus, all sequences in the space of nonnegative definite matrices have limit points that also fall inside the space. Therefore, the space of nonnegative definite matrices is a closed subset of $(\mathcal{M}(n \times n), ||\cdot||)$.

1.5

For this question, we will make use of the following theorem:

Theorem 1.1 (Corollary to the Contraction Mapping Theorem). If T is a uniform contraction on a Banach space $(S, d(\cdot))$, $T: S' \to S'$, and $S' \subset S$, then the fixed point Tv = v is such that $v \in S'$. Further, if $TS' \subseteq S'' \subset S$, then $v \in S''$.

Now, let L be the Lyapunov operator on $(\mathcal{M}(n \times n), \|\cdot\|)$, where

$$LX = AXA' + M (1.2)$$

From the lecture notes we know that L is a uniform contraction on $(\mathcal{M}(n \times n), \|\cdot\|)$, and so has a unique fixed point X^* .

Part 1: M symmetric $\Rightarrow X^*$ symmetric

Consider the solution to the Lyapunov equation, X^* . We have $X^* = AX^*A' + M$. We know that M is symmetric. We know that for any $X^* \in \mathcal{M}(n \times n)$, it will be the case that

$$(X^*)' = (AX^*A' + M)' = (AX^*A')' + M' = A(X^*)'A' + M$$

This means that there is another solution to the Lyapunov equation, $(X^*)'$, but we know that there is only a unique solution, therefore $X^* = (X^*)'$. And so we have showed that if M is symmetric, then so is X^* .

Part 2: M nonnegative definite $\Rightarrow X^*$ nonnegative definite

Denote the space of nonnegative definite matrices as $\mathcal{ND}(n \times n)$. As we saw in the previous problem, a nonnegative definite matrix B has the property that $z'Bz \geq 0$ for all $z \in \mathbb{R}^n/\{0\}$. Let M be a nonnegative definite matrix. Consider our Lyapunov operator in (1.2). Note that for any $X \in \mathcal{M}(n \times n)$,

AXA' is nonnegative definite because AXA' is a quadratic form, and so is automatically nonnegative definite. Because the space of nonnegative definite matrices is a linear space, it is closed under addition, and so AXA' + M is also nonnegative definite. Thus, we can see that if X is nonnegative definite, the Lyapunov operator is such that: $L: \mathcal{ND}(n \times n) \to \mathcal{ND}(n \times n)$.

As I proved in exercise 4, $\mathcal{ND}(n \times n) \subset \mathcal{M}(n \times n)$. So we can apply the Corollary to the Contraction Mapping Theorem again, and we immediately see that the fixed point of the Lyapunov operator, X^* , is contained in $\mathcal{ND}(n \times n)$. Thus, M nonnegative definite $\Rightarrow X^*$ nonnegative definite, as we wanted to show.

Part 3: M positive definite $\Rightarrow X^*$ positive definite

Denote the space of positive definite matrices as $\mathcal{P}(n \times n)$. A positive definite matrix B has the property that z'Bz > 0 for all $z \in \mathbb{R}^n/\{0\}$. Let M be a positive definite matrix. Consider our Lyapunov operator in (1.2). Note that for any $X \in \mathcal{M}(n \times n)$, AXA' is nonnegative definite because AXA' is a quadratic form, and so is automatically nonnegative definite.

Now, note that z'(AXA'+M)z = z'AXA'z + z'Mz. We argued that AXA' is nonnegative definite, and since z'AXA'z is another quadratic form and must be greater than or equal to zero. So we have $z'AXA'z \ge 0$ and z'Mz > 0 and so z'AXA'z + z'Mz > 0. Thus, we know that the Lyapunov operator takes the space of nonnegative definite matrices to the space of positive definite matrices $L : \mathcal{ND}(n \times n) \to \mathcal{P}(n \times n)$.

Again from above, we know that $\mathcal{ND}(n \times n) \subset \mathcal{M}(n \times n)$. Note, too, that that $\mathcal{P}(n \times n) \subset \mathcal{ND}(n \times n)$. This is because the set of positive definite matrices is just the set of nonnegative definite matrices less all of the matrices that are indefinite i.e. z'Mz = 0 for some $z \in \mathcal{R}^n/\{0\}$.

This time we can apply the second part of the Corollary to the Contraction Mapping Theorem: $L(\mathcal{ND}(n \times n)) \subseteq \mathcal{P}(n \times n) \subset \mathcal{ND}(n \times n)$ implies that the fixed point, X^* , is contained in $\mathcal{P}(n \times n)$. Thus, M positive definite $\Rightarrow X^*$ positive definite, as we wanted to show.

1.6