45 PASSO

AP

(12)

19 BUNDESREPUBLIK DEUTSCHLAND

B 3

Gebrauchsmuster

U 1

(11) Rollennummer/ G 90 13 615.2

(51) Hauptklasse HOIL 33/00

Nebenklasse(n) HO1S 3/10 HO1L 23/29

CO8L 33/12 CO8L 69/00

CO8K 3/36

Zusätzliche

Information // CO9B 3/14,57/02,CO9K 11/06

- (22) Anmeldetag 28.09.90
- (47) Eintragungstag 06.12.90
- (43) Bekanntmachung im Patentblatt 24.01.91
- (54) Bezeichnung des Gegenstandes

Elektrolumineszenz- oder Laserdiode

(71) Name und Wohnsitz des Inhabers Licentia Patent-Verwaltungs-GmbH, 6000 Frankfurt, DE

Rechercheantrag gemäß § 7 Abs. 1 GbmG gestellt

FSL 90/1 20.09.90

Elektrolumineszens- oder Laserdiode

Beschreibung:

Die Erfindung betrifft eine Elektrolumineszenz- oder Laserdiode mit einer einen lichtwandelnden Farbstoff enthaltenden Kunststoffmatrix, in die ein III/V Halbleiter samt Elektroden eingebettet ist.

Aus der DE-OS 38 04 293 ist es bereits bekannt, bei Elektrolumineszenz- oder Laserdioden dem Kunststoff einen lichtwandelnden fluoreszierenden Farbstoff zuzusetzen. Bei dieser Anordnung wird dem Kunststoff weiterhin Titandioxid beigemischt. Dies hat jedoch den Nachteil, das dieser Zusatz dem Kunststoff nur Streueigenschaften verleiht. Auch ermöglicht die Zugabe von einzelnen bzw. nicht aufeinander abgestimmten Farbstoffen nur eine sehr begrenzte Verschiebung des Lichtspektrums.

Aufgabe der Erfindung ist es, eine Elektrolumineszenz- oder Laserdiode zu schaffen, die eine erweiterete Farbpalette bei hohem Wirkungsgrad ermöglicht.

Diese Aufgabe wird bei einer Elektrolumineszenz- oder Laserdiode der eingangs genannten Art dadurch gelöst, daß die Kunststoffmatrix einen Zusatz von Siliziumdioxid mit einer Korngröße von etwa 20 bis 50 μ m und mindestens zwei fluoreszierende, das Spektrum des vom Halbleiter emmittierten Lichts verschiebende Farbstoffe enthält, die bezüglich ihres Verschiebungsbereiches nach Art einer Kaskade aufeinander abg stimmt sind, zwecks Erweiterung des Verschiebungsgrades. Der Vorteil des Zusatzes von Siliziumdioxid mit Filtereigenschaften zum Kunststoff besteht darin, daß das

Eingangsspektrum der Diode im Hinblick auf eine definierte Eingangsfarbe eingeschränkt wird. Diese Eingangsfarbe führt dann zu einer ebenso definierten Ausgangsfarbe infolge linearer Transformation mit Hilfe der zugesetzten Farbstoffe.

Durch das Beimischen aufeinander bezüglich der Verschiebung Farbstoffe abgestimmter kann beispielsweise Eingangsspektrum 565 nm (= grün) durch den ersten Farbstoff um den Betrag von 40 nm und weiter durch den zweiten Farbstoff um zusätzliche 90 nm verschoben werden. Ergebnis erhält dann man eine für die Anzeigediode verwendbare tiefrote Farbe von etwa 695 nm.

Weitere vorteilhafte Ausführungsformen der Erfindung sind durch Unteransprüche gekennzeichnet.

Im folgenden wird die Erfindung anhand eines Ausführungsbeispieles näher erläutert, aus dem sich weitere Merkmale und Vorteile der Erfindung entnehmen lassen.

Die zugehörige einzige Figur zeigt den Aufbau einer typischen Elektrolumineszenz- oder Laserdiode gemäß der Erfindung. In die Kunststoffmatrix 4 sind Kathode und Anode als Elektroden 1 von unten her eingebettet. Sie sind üblicherweise mit einem Draht 2 verbunden, welcher in der Regel aus Gold besteht. Mit 3 ist der Halbleiter bezeichnet, der gemäß bekannter Technik eine Reflektorwanne (nicht gesondert eingebettet ist. Diese strahlt das Eingangsspektrum von beispielsweise 565 nm durch die Kunststoffmatrix 4 nach oben zum eigentlichen Anzeigenbereich 6. Beim Durchgang durch die Kunststoffmatrix bis zum Erreichen des Anzeigenbereiches 6 tritt die oben geschilderte Verschiebung des Farbspektrums unter dem Einfluß der zugesetzten Farbstoffe Anzeigenbereich 6, der beispielsweise die Form einer Ziffer oder eines Pfeils oder eines anderen Symb ls haben kann, ist mit einer lichtdurchlässigen Kunststoffabdeckung 5 versehen.

sind geschilderten Leuchtdioden vorstehend Art der bekanntlich wartungsfreie Anzeigeeinheiten, die auch unter praktisch verschleißfrei dynamischen Belastungen betriebsbereit sind. Ihrer weiteren Ausbreitung stand bisher eine auf nur wenige Farben beschränkte Farbpalette im Wege. Der Vorteil eines Zusatzes von Siliziumdioxid besteht darin, daβ das Spektrum der Diode zunächst einmal eine eingeschränkt wird. Je nach Eingangsfarbe definierte aufeinander erfindungsgemäß verschiedener Beimischung abgestimmter Farbstoffe insbesondere aus dem Bereich der Perylen- und Cumarinderivate kann die originäre Eingangsfarbe in Farb- bzw Spektralbereiche verschoben werden, die bisher lassen sich geeignete waren. Dabei zugänglich Farbstoffkombinationen und ihre zweckmäßige Konzentration in der Kunststoffmatrix durch verhältnismäßig einfache Versuche ermitteln.

Elektroluminessens- oder Laserdiode

Schutzansprüche:

- 1. Elektrolumineszenz- oder Laserdiode mit einer einen lichtwandelnden Farbstoff enthaltenden Kunststoffmatrix (4), in die ein III/V Halbleiter (3) samt Elektroden (1) eingebettet ist, dadurch gekennseichnet, daβ die Kunststoffmatrix (4) einen Zusatz von Siliziumdioxid mit einer Korngröße von etwa 20 bis 50 μm und mindestens zwei fluoreszierende, das Spektrum des vom Halbleiter emmittierten Lichts verschiebende Farbstoffe enthält, die bezüglich ihres Verschiebungsbereiches nach Art einer Kaskade aufeinander abgestimmt sind.
- Diode nach Anspruch 1, dadurch gekennzeichnet, daβ die Kunststoffmatrix (4) aus Polycarbonat oder Polymethylmethacrylat besteht.
- 3. Diode nach Anspruch 1 oder 2, dadurch gekennseichnet, da β der Zusatz an Siliziumdioxid 0,003 bis 0,1 Gewichts-prozent des Kunststoffes beträgt.
- 4. Diode nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daβ der Zusatz an Farbstoff 0,003 bis 0, 1 Gewichtsprozent des Kunststoffes beträgt.

- 5. Diode nach einem der vorgenannten Ansprüche, dadurch gekennseichnet, daβ Perylenderivate und/oder Cumarinderivate als Farbstoffe enthalten sind.
- 6. Diode nach einem der vorgenannten Ansprüche, gekennzeichnet durch einen in die Kunststoffmatrix (4) eingebetteten Halbleiter (3), der einen Betrieb bei verschiedenen Spannungen ermöglicht.

