Hannah Pieper

LinkedIn | Github | hannah.e.pieper@gmail.com | 360-348-3683

Mathematics PhD with expertise in data science, machine learning and computational modeling. Has experience managing long term projects and passion for accessible technical communication.

EDUCATION

BOSTON UNIVERSITY

(Dec. 2023) | Boston, MA PHD IN MATHEMATICS GPA: 4.00/4.00

BOSTON UNIVERSITY

May 2020 | Boston, MA MA IN MATHEMATICS GPA: 3.98/4.00

OBERLIN COLLEGE

May 2018 | Oberlin, OH BA IN MATHEMATICS with high honors

SKILLS

PROGRAMMING

Python • Julia • MySQL • Matlab • R • Java • Bash • \(\text{MT}_FX \)

TOOLS

Scikit-learn • PyTorch • TensorFlow • Pyro • Matplotlib • Seaborn • Pandas • Git • Jupyter • RStudio

COURSEWORK

UNDERGRADUATE

Mathematical Modeling Data Structures Linear Optimization Probability Statistics

GRADUATE

Statistical Learning Deep Learning Algorithms for Big Data Optimization for ML

CERTIFICATIONS

COURSERA

SQL for Data Science

THE ERDÖS INSTITUTE

Data Science Bootcamp

INDUSTRY EXPERIENCE

DYNO THERAPEUTICS

Machine Learning Engineer Intern

WATERTOWN, MA
JANUARY - MAY 2022

- Increased flexibility of machine learning models and design pipeline for sequence prediction of Adeno-Associated Virus (AAV) for gene therapy.
- Validated current model quality by researching, testing and implementing new dynamic ensemble strategies in Pyro and Pytorch as benchmarks.
- Increased correlation between predictions and actual score by up to .05 of top performing AAV sequences via feature engineering; presented results department-wide.

RESEARCH EXPERIENCE

BOSTON UNIVERSITY

GRADUATE RESEARCHER

Spectral Stability of Nonlinear PDEs

BOSTON, MA

JULY 2020 - PRESENT

- Developed new computational frameworks and computer assisted proofs for the instability of pulse solutions to the Swift-Hohenberg equation.
- Designed packages for computer assisted proofs in dynamics using Matlab and object-oriented design.
- Presented in 2 international conferences; 2 publications are in progress.

Machine Learning and Anomaly Detection

- Classified cancerous gene data with a novel functional data analysis approach, outperforming benchmark metrics by 1%.
- Measured effects of limited data on predictions by running simulations on the BU supercomputer (Linux cluster).

GRADUATE INSTRUCTOR

SEPTEMBER 2018 - DECEMBER 2020

 Taught 3 full undergraduate courses; designed inquiry based learning activities and metacognition exercises; distributed original materials among other instructors for reuse.

TECHNICAL PROJECTS

CLASSIFYMYMEDS: PREDICTING CLAIM APPROVAL AND VOLUME

The Erdös Institute | Github

- Corporate data science project sponsored by CoverMyMeds; placed 3rd out of 50 teams.
- Surveyed 7 classifiers to predict claim approval rate; analyzed statistical significance of results.
- Forecasted future volume of claims at daily and yearly levels with time series analysis techniques; volume forecasts were within 5% of true volume with high probability.

SOLVING PDES VIA DEEP NEURAL NETS

University Project | Github

- Reconstructed the dynamics underlying noisy spatio-temporal data by implementing two deep learning models in Tensorflow.
- Reproduced published results; extended analysis by studying a previously unexplored system resulting in a written report.