IPESUP 2023/2024

Colle 9 MPSI/MP2I Jeudi 14 décembre 2023

Planche 1

- 1. Caractérisation séquentielle de la limite en un point. Énoncé général. Démonstration dans le cas d'une limite finie en un réel.
- 2. Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues telles que $\forall x \in \mathbb{R}, f(x)^2 = 1$.
- 3. Soit f,g deux fonctions continues sur [0,1] telles que

$$\forall x \in [0, 1], 0 < f(x) < g(x)$$

Montrer que $\exists C > 1, \forall x \in [0,1], Cf(x) \leq g(x)$.

Planche 2

- 1. Théorème des valeurs intermédiaires. Énoncé et démonstration.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ périodique, i.e $\exists T > 0, \forall x \in \mathbb{R}, f(x+T) = f(x)$. On suppose que f admet une limite finie en $+\infty$. Montrer que f est constante.
- 3. Soit $f : \mathbb{R} \to \mathbb{R}$ continue. On note $g : \mathbb{R} \to \mathbb{R}$, $x \mapsto \lfloor x \rfloor + f(x \lfloor x \rfloor)$. A quelle condition nécessaire et suffisante sur f, la fonction g est-elle continue?

Planche 3

- 1. Théorème des bornes atteintes. Énoncé et démonstration.
- 2. On note $f: \mathbb{R}^* \to \mathbb{R}, x \mapsto x \left\lfloor \frac{1}{x} \right\rfloor$. Étudier les limites éventuelles de f en 0 et $+\infty$.
- 3. Étudier la continuité de la fonction $f: \mathbb{R}_+^* \to \mathbb{R}, x \mapsto \sup_{n \in \mathbb{N}} \frac{x^n}{n!}$

Bonus

Soit $f:I\to\mathbb{R}$. Montrer que $\{y\in\mathbb{R}|\exists M\in\mathbb{R}, \forall x\in I, xy-f(x)\leqslant M\}$ est un intervalle. Le déterminer lorsque f est continue sur un segment.