On Computing Minimal Independent Support and Its Applications to Sampling and Counting

Alexander Ivrii¹, Sharad Malik², **Kuldeep S. Meel**³, Moshe Y. Vardi³

¹ IBM Research Haifa

² Princeton University

³ Rice University

(Author names are ordered alphabetically by last name)

SAT Sampling and Counting

Given a propositional logic formula F in CNF

- Generate satisfying assignments uniformly at random
 - Uniform over the space of satisfying assignments

Count the number of satisfying assignments

SAT Sampling

- F = (a V b)
- \blacksquare R_F: {(0,1), (1,0), (1,1)}
- G: A uniform generator
- Pr [G(F) = (0,1)] = Pr [G (F) = (1,1)] = = 1/3

SAT Counting

- F = (a V b)
- \blacksquare R_F: {(0,1), (1,0), (1,1)}
- #F: 3

- #P: The class of counting problems for decision problems in NP
 - #P-complete (Valiant 1979)

Diverse Applications

SAT Sampling and Counting: Prior Work

- Prior work (before 2013) either failed to scale or provided very weak guarantees
- (Since 2013) Recent Hashing-based approach to approximate variants of sampling and counting
 - Strong theoretical guarantees
 - Scales to large instances

[Chakraborty et al 13a,13b,14,15, Chakraborty et al. 14, Ermon et al. 13a,14,15, Belle 15, Chistikov 15 and others]

Core Idea

Partitioning into cells

Cells should be roughly equal in size and small enough to enumerate completely

Uniform Sampling

Counting through Partitioning

How to Partition?

How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Universal Hashing [Carter-Wegman 1979]

XOR-based Hashing

Variables:

$$X_1, X_2, X_3, ..., X_n$$

Pick every variable with probability $1/2: X_1, X_3, X_4, X_n$

XOR all the picked variables

: $X_1 \oplus X_3 \oplus X_4 \oplus \oplus X_n$

Equate to 0 or 1 with prob 1/2

: $X_1 \oplus X_3 \oplus X_4 \oplus \oplus X_n = 0$

$$X_{1} \oplus X_{3} \oplus X_{4} \oplus \dots \oplus X_{n} = 0$$
$$X_{2} \oplus X_{3} \oplus X_{7} \oplus \dots \oplus X_{n-2} = 1$$

 $m XOR constraints \Rightarrow 2^m cells$

.

.

$$X_1 \oplus X_5 \oplus X_6 \oplus \oplus X_n = 0$$

XOR-Based Hashing

- The cell: F Λ {μ XOR constraints}
- CryptoMiniSAT: Efficient for CNF+XOR
- Avg Length : n/2
- Smaller the XORs, better the performance

How to shorten XOR clauses?

Independent Support

- Set of variables such that assignments to these uniquely determine assignments to rest of variables for formula to be true
- agree on I then
- $c \longleftrightarrow (a \lor b)$; Independent Support (I): {a, b}
- Hash only on the independent variables [Chakraborty et al. DAC 2014]

Independent Support

- Hash only on the Independent Support
- Average size of XOR: n/2 to I/2

- Ad-hoc (and often wrong) estimation of Independent support
- No procedure to determine Independent Support

Contributions

- MIS: The first algorithmic procedure to determine minimal Independent Support
- Scales to formulas with tens of thousands of variables
- Speeds up the state of the art sampling and counting techniques by 1-2 orders of magnitude

Key Idea

Input Formula: F, Solution space: R_F

$$\forall \sigma_1, \sigma_2 \in R_F$$
, If σ_1 and σ_2 agree on I, then $\sigma_1 = \sigma_2$

$$F(x_1, \dots, x_n) \land F(y_1, \dots, y_n) \land \bigwedge_{i \mid x_i \in I} (x_i = y_i) \implies \bigwedge_j (x_j = y_j)$$

where
$$F(y_1, \ldots, y_n) = F(x_1 \rightarrow y_1, \ldots, x_n \rightarrow y_n)$$

Key Idea

$$F(x_1, \dots, x_n) \land F(y_1, \dots, y_n) \land \bigwedge_{i \mid x_i \in I} (x_i = y_i) \implies \bigwedge_j (x_j = y_j)$$

$$Q_{F,I} = F(x_1, \dots, x_n) \land F(y_1, \dots, y_n) \land \bigwedge_{i \mid x_i \in I} (x_i = y_i) \land \neg \left(\bigwedge_j (x_j = y_j) \right)$$

Theorem: $Q_{F,I}$ is unsatisfiable if and only if I is independent support

Key Idea

$$H_1 = \{x_1 = y_1\}, \dots, H_n = \{x_n = y_n\}$$

 $\Omega = F(x_1, \dots, x_n) \land F(y_1, \dots, y_n) \land (\neg \bigwedge_i (x_j = y_j))$

I is minimal independent support iff $H^I \wedge \Omega$ is unsatisfiable where $H^I = \{H_i | x_i \in I\}$

Minimal Independent Support

Group-oriented Minimal Unsatisfiable

Impact on Sampling and Counting **Techniques**

Experimental Results

- Prototype implementation (MIS)
 - Employs Muser2 for MUS computation

- Experimented with over 200+ benchmarks to study impact on sampling and counting tools
 - UniGen2: Almost uniform sampler
 - ApproxMC: Approximate model counter

Size of Minimal Independent Supports

Performance Impact on Approximate Model Counting

Performance Impact on Uniform Sampling

Conclusion

- Sampling and counting are fundamental problems with wide variety of applications
- Independent support is key to scalability of the recent techniques
- MIS: First algorithmic procedure to determine independent support
- Provides 1-2 orders of performance improvement in the state-of-art sampler and counters