

IEL – protokol k projektu

Vojtěch, Šišma xsisma02

13. prosince 2022

Obsah

1	Příklad 1	2
	1.1 Zjednodušení obvodu	2
2	Příklad 2	9
3	Příklad 3	11
	3.1 Sestavení rovnic	12
	3.2 Sestavení do matice	12
	3.3 Dosazení do matice	13
	3.4 Výpočet determinantů	13
	3.5 Výpočet napětí	
	3.6 Výpočet U_{R4} a I_{R4}	14
4	Příklad 4	15
5	Příklad 5	16
6	Shrnutí výsledků	17

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
A	80	120	350	650	410	130	360	750	310	190

Zjednodušení obvodu

Obrázek 1: Zjednodušení ${\cal R}_2$ a ${\cal R}_3$

$$R_{23} = \frac{R_2 \times R_3}{R_2 + R_3}$$

$$R_{23} = \frac{650 \times 410}{650 + 410}$$

$$R_{23} \doteq 251.4151 \Omega$$

Obrázek 2: Zjednodušení ${\cal R}_6$ a ${\cal R}_8$

$$R_{68} = R_6 + R_8$$

 $R_{68} = 750 + 190$
 $R_{68} = 940 \Omega$

Obrázek 3: Úprava na hvězdu

$$R_A = \frac{R_5 \times R_{68}}{R_5 + R_{68} + R_7}$$

$$R_A = \frac{360 \times 940}{360 + 940 + 310}$$

$$R_A \doteq 210.1863 \Omega$$

$$R_B = \frac{R_5 \times R_7}{R_5 + R_{68} + R_7}$$

$$R_B = \frac{360 \times 310}{360 + 940 + 310}$$

$$R_B \doteq 69.3168 \Omega$$

$$R_C = \frac{R_7 \times R_{68}}{R_5 + R_{68} + R_7}$$

$$R_C = \frac{310 \times 940}{360 + 940 + 310}$$

$$R_C \doteq 180.9938 \Omega$$

Obrázek 4: Zjednodušení ${\cal R}_A$ a ${\cal R}_B$

$$R_{A23} = R_A + R_{23}$$

$$R_{A23} = 210.1863 + 251.4151$$

$$R_{A23} \doteq 461.6014 \Omega$$

$$R_{B4} = R_B + R_4$$

 $R_{B4} = 69.3168 + 130$
 $R_{B4} \doteq 199.9938 \Omega$

Obrázek 5: Zjednodušení ${\cal R}_{A23}$ a ${\cal R}_{B4}$

$$R_{A23B4} = \frac{R_{A23} \times R_{B4}}{R_{A23} + R_{B4}}$$

$$R_{A23B4} = \frac{461.6014 \times 199.9938}{461.6014 + 199.9938}$$

$$R_{A23B4} \doteq 139.2077 \Omega$$

Obrázek 6: Zjednodušení $R_1,\,R_{A23B4}$ a R_C

$$R = R_1 + R_{A23B4} + R_C$$

$$R = 350 + 139.2077 + 180.9938$$

$$R \doteq 670.2015 \Omega$$

Obrázek 7: Výsledný obvod

$$I = \frac{U}{R}$$

$$I = \frac{U_1 + U_2}{R}$$

$$I \doteq 0.2984 A$$

$$U_{R_1} = I \times R_1$$

 $U_{R_1} = 0.2984 \times 350$
 $U_{R_1} \doteq 104.4462 V$

$$U_{R_C} = I \times R_C$$

$$U_{R_C} = 0.2984 \times 180.9938$$

$$U_{R_C} \doteq 54.0118 \ V$$

$$U_{AB} = I \times R_{A23B4}$$

$$U_{AB} = 0.2984 \times 139.2077$$

$$U_{AB} \doteq 41.5420 \ V$$

$$I_A = \frac{U_{AB}}{R_{A23}}$$

$$I_A = \frac{41.5420}{461.6014}$$

$$I_A = 0.09 A$$

$$I_B = \frac{U_{AB}}{R_{B4}}$$

$$I_B = \frac{41.5420}{199.9938}$$

$$I_B \doteq 0.2084 A$$

$$U_{23} = I_A \times R_{23}$$

$$U_{23} = 0.09 \times 251.4151$$

$$U_{23} \doteq 22.6262 V$$

$$U_{RA} = I_A \times R_A$$

$$U_{RA} = 0.09 \times 210.1863$$

$$U_{RA} \doteq 18.9158 V$$

$$U_{R_4} = I_B \times R_4$$

 $U_{R_4} = 0.2084 \times 130$
 $U_{R_4} \doteq 27.0948 V$

$$U_{RB} = I_B \times R_B$$

$$U_{RB} = 0.2084 \times 69.3168$$

$$U_{RB} \doteq 14.4472 V$$

$$U_{R_5} = U_{R_4} - U_{23}$$

$$U_{R_5} = 27.0948 - 22.6262$$

$$U_{R_5} \doteq 4.4687 V$$

$$U_{R7} = U_1 + U_2 - U_{R_1} - U_{R_4}$$

$$U_{R7} = 80 + 120 - 104.4462 - 27.0948$$

$$U_{R7} \doteq 68.4589 V$$

$$U_{R_{68}} = U_1 + U_2 - U_{R_1} - U_{23}$$

$$U_{R_{68}} = 80 + 120 - 104.4462 - 22.6262$$

$$U_{R_{68}} \doteq 72.9276 \ V$$

$$I_{68} = \frac{U_{R_{68}}}{R_{68}}$$
$$I_{68} = \frac{72.9276}{940}$$
$$I_{68} \doteq 0.0776 A$$

$$U_{R_6} = I_{68} * R_6$$

 $U_{R_6} = 0.0776 \times 750$
 $U_{R_6} \doteq 58.1869 V$

$$U_{R_8} = I_{68} \times R_8$$
 $U_{R_8} = 0.0776 \times 190$ $U_{R_8} \doteq 14.7407 V$

$$I_{R2} = \frac{U_{23}}{R_2}$$

$$I_{R2} = \frac{22.6262}{650}$$

$$I_{R2} \doteq \underline{0.0348 \ A}$$

$$U_{R2} = U_{23}$$

$$U_{R2} \doteq \underline{22.6262 \, V}$$

Stanovte napětí U_{R5} a proud $I_{R5}.$ Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
D	150	200	200	660	200	550

Obrázek 8: Zkratovaní zdroje napětí

Obrázek 9: Zjednodušení ${\cal R}_1,\,{\cal R}_3$ a ${\cal R}_2$

$$R_{123} = R_1 + R_2 + R_3$$

 $R_{123} = 200 + 200 + 660$
 $R_{123} = 1060 \Omega$

Obrázek 10: Nahrazení ${\cal R}_5$

Obrázek 11: R_{123} a R_4 paralelně

$$R_i = \frac{R_{123} \times R_4}{R_{123} + R_4}$$

$$R_i = \frac{1060 \times 200}{1060 + 200}$$

$$R_i \doteq 168.254 \,\Omega$$

$$I_0 = \frac{U}{R_{123} + R_4}$$

$$I_0 = \frac{150}{1060 + 200}$$

$$R_i \doteq 168.254 \,\Omega$$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
D	115	0.6	0.9	50	38	48	37	28

Obrázek 12: Převod napěťového zdroje na proudový

$$I = \frac{U}{R_1}$$

$$I = \frac{115}{50} = 2.3 A$$

Obrázek 13: Převod odporů na vodivosti

$$G_{1} = \frac{1}{R_{1}} \qquad G_{1} = \frac{1}{50} S$$

$$G_{2} = \frac{1}{R_{2}} \qquad G_{2} = \frac{1}{38} S$$

$$G_{3} = \frac{1}{R_{3}} \qquad G_{3} = \frac{1}{48} S$$

$$G_{4} = \frac{1}{R_{4}} \qquad G_{4} = \frac{1}{37} S$$

$$G_{5} = \frac{1}{R_{5}} \qquad G_{5} = \frac{1}{28} S$$

Sestavení rovnic

$$U_A(G_1 + G_2 + G_3) + U_B(-G_2) + 0 = I$$

$$U_A(-G_2) + U_B(G_2 + G_4) + U_C(-G_4) = -I_2$$

$$0 + U_B(-G_4) + U_C(G_4 + G_5) = I_2 - I_1$$

Sestavení do matice

$$\begin{pmatrix} G_1 + G_2 + G_3 & -G_2 & 0 \\ -G_2 & G_2 + G_4 & -G_4 \\ 0 & -G_4 & G_4 + G_5 \end{pmatrix} \times \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} I \\ -I_2 \\ I_2 - I_1 \end{pmatrix}$$

Dosazení do matice

$$\begin{pmatrix} \frac{1}{50} + \frac{1}{38} + \frac{1}{48} & -\frac{1}{38} & 0\\ -\frac{1}{38} & \frac{1}{38} + \frac{1}{37} & -\frac{1}{37}\\ 0 & -\frac{1}{37} & \frac{1}{37} + \frac{1}{28} \end{pmatrix} \times \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} 2.3 \\ -0.9 \\ 0.9 - 0.6 \end{pmatrix}$$

Výpočet determinantů

$$D = \begin{vmatrix} \frac{1}{50} + \frac{1}{38} + \frac{1}{48} & -\frac{1}{38} & 0\\ -\frac{1}{38} & \frac{1}{38} + \frac{1}{37} & -\frac{1}{37}\\ 0 & -\frac{1}{37} & \frac{1}{37} + \frac{1}{28} \end{vmatrix} = 0.000132235148682517$$

$$D_{U_A} = \begin{vmatrix} 2.3 & -0.9 & 0.9 - 0.6 \\ -\frac{1}{38} & \frac{1}{38} + \frac{1}{37} & -\frac{1}{37} \\ 0 & -\frac{1}{37} & \frac{1}{37} + \frac{1}{28} \end{vmatrix} = 0.00474497053444422$$

$$D_{U_B} = \begin{vmatrix} \frac{1}{50} + \frac{1}{38} + \frac{1}{48} & -\frac{1}{38} & 0\\ 2.3 & -0.9 & 0.9 - 0.6\\ 0 & -\frac{1}{37} & \frac{1}{37} + \frac{1}{28} \end{vmatrix} = 0.000550231152204836$$

$$D_{U_C} = \begin{vmatrix} \frac{1}{50} + \frac{1}{38} + \frac{1}{48} & -\frac{1}{38} & 0\\ -\frac{1}{38} & \frac{1}{38} + \frac{1}{37} & -\frac{1}{37}\\ 2.3 & -0.9 & 0.9 - 0.6 \end{vmatrix} = 0.0008693100996$$

Výpočet napětí

$$U_A = \frac{D_{U_A}}{D}$$

$$U_A = \frac{0.00424710424710425}{0.00013223514}$$

$$U_A = 35.8828237554026 V$$

$$U_B = \frac{D_{U_B}}{D}$$

$$U_B = \frac{-0.0007201576577}{0.00013223514}$$

$$U_B = 4.161005282535612 V$$

$$U_C = \frac{D_{U_C}}{D}$$

$$U_C = \frac{-0.001153271692745}{0.00013223514}$$

$$U_C = 6.573971506323034 \, V$$

Výpočet U_{R4} a I_{R4}

$$U_{R4} + U_C - U_B = 0$$

$$U_{R4} = U_B - U_C$$

$$U_{R4} = -5.446038098287183 - (-8.721370257723710)$$

$$U_{R4} \doteq -2.4130 V$$

$$I_{R4} = \frac{U_{R4}}{R_4}$$

$$I_{R4} = \frac{3.2753}{37}$$

$$I_{R4} \doteq -0.0652 A$$

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{C_2} = U_{C_2} \cdot \sin(2\pi f t + \varphi_{C_2})$ určete $|U_{C_2}|$ a φ_{C_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega})$.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	L_2 [mH]	C_1 [μ F]	C_2 [µF]	f [Hz]
Α	3	5	12	14	120	100	200	105	70

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

	sk.	U[V]	L [H]	$R [\Omega]$	$i_L(0)$ [A]
	E	50	30	40	10
		R_			
			_		
t = 0 s	_\0		Ť. r		
s	_		<u>L</u> L		
	٦		200		
			3		
υlt					
↓ - <u>`</u>	$\overline{\bigcirc}$				

Shrnutí výsledků

Příklad	Skupina	Výsledk	y
1	A	$U_{R2} = 22.6262 V$	$I_{R2} = 0.0348 A$
2	D	$U_{R5} =$	$I_{R5} =$
3	D	$U_{R4} =$	$I_{R4} =$
4	A	$ U_{C_2} =$	$\varphi_{C_2} =$
5	E	$i_L =$	