Al and Optimization Approaches for Inverse Kinematics in a 7-DOF Robotic Arm

Overview

In this notebook we tackle the inverse kinematics issue for 7-DOF robotic arms by developing and analysing several AI models and optimisation strategies. The study specifically examines the following

- Al models
 - Decision Tree Regressor (DTR)
 - Multi-layer Perceptron regressor (MLP)
- Optimisation strategies
 - Simulated Annealing (SA)
 - Particle Swarm Optimisation (PSO)
 - Genetic Algorithms (GA)
 - Differential Evolution (DE)

We investigate how well these approaches map end-effector postures to joint configurations. This was done by

- Modelling the forward kinematics of a given 7-DOF robotic arm.
- Generation of dataset for training generated based on forward kinematics to obtain the position (in cartesian, polar and spherical coordinates system) that corresponded to various joint angles configurations.
- Iteratively selecting the best hyperparameter values for each approach
- Cross-comparison of the best estimator from each category based on the error between the actual position and the predicted positions.

Environment setup

This note book was run in python 3.9.6 environment. Run the below command to install the dependencies required to successfully run the notebook

```
pip install jupyter==1.0.0 numpy==1.26.4 pandas==2.2.1 scikit-learn==1.4.1.post1 scikit-opt==0.6.6 matplotlib==3.8.3
```

```
In [1]: # import required libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

In [2]: # Define robot's DH parameters
alpha = [np.deg2rad(90), 0, 0, 0, 0, 0, 0] # List of link twist angles in
a = [0, 1, 1, 1, 1, 1, 1] # List of link lengths along the common normal
```

d = [1, 0, 0, 0, 0, 0] # List of link offsets along the previous z-axis

Define joint constraints for the robot

```
joint constraints = [
    [2*np.pi, 0], # Joint 1: [max_angle, min_angle] in radians
    [np.pi/2, 0], # Joint 2: [max_angle, min_angle] in radians
    [np.pi/2, 0], # Joint 3: [max_angle, min_angle] in radians
    [np.pi/2, 0], # Joint 4: [max_angle, min_angle] in radians
    [np.pi/2, 0], # Joint 5: [max_angle, min_angle] in radians
    [np.pi/2, 0], # Joint 6: [max_angle, min_angle] in radians
    [np.pi/2, 0] # Joint 7: [max_angle, min_angle] in radians
```

```
In [3]: import numpy as np
        def forward kinematics(theta):
            Function to perform forward kinematics on a given set of joint angles.
            - theta (list): List of joint angles for the robot arm.
            Returns:
            position (numpy array): Final position of the end effector.
            - transformations_steps (numpy array): Individual transformation steps
            # Define Denavit-Hartenberg (DH) parameters (alpha, a, d)
            # Note: These parameters should be defined somewhere in the code before
            dh_params = list(zip(alpha, a, d, theta))
            # Define function to compute Denavit-Hartenberg transformation matrix
            def dh_matrix(alpha, a, d, theta):
                 return np.array([
                     [np.cos(theta), -np.sin(theta)*np.cos(alpha),
                     np.sin(theta)*np.sin(alpha), a*np.cos(theta)],
                     [np.sin(theta), np.cos(theta)*np.cos(alpha), -
                     np.cos(theta)*np.sin(alpha), a*np.sin(theta)],
                     [0, np.sin(alpha), np.cos(alpha), d],
                     [0, 0, 0, 1]
                1)
            # Compute transformation matrices for each joint
            T_matrices = [dh_matrix(alpha, a, d, theta)
                          for alpha, a, d, theta in dh_params]
            # Initialize transformation steps with identity matrix for the base fram
            T_prev = np.eye(4)
            transformations_steps = [T_prev[:3, 3]]
            # Compute transformation steps for each joint
            for T in T_matrices:
                T_prev = np.dot(T_prev, T)
                transformations_steps.append(T_prev[:3, 3])
            # Round the transformation steps and final position for better readabili
            transformations_steps = np.round(np.asarray(transformations_steps), 4)
            position = np.round(np.array(T_prev[:3, 3]), 4)
            return position, transformations_steps
```

```
In [4]: def cylindrical_to_cartesian(r, theta, z):
            Function to convert cylindrical cordinates to cartesian cordinates
            x = r * np.cos(theta)
```

```
y = r * np.sin(theta)
    return x, y, z
def cartesian_to_cylindrical(x, y, z):
    Function to convert cartesian cordinates to cylindrical cordinates
    # Compute radial distance
    rho = np.sqrt(x**2 + y**2)
    # Compute polar angle (theta)
    theta = np.arctan2(y, x)
    return rho, theta, z
def cartesian_to_spherical(x, y, z):
    Function to convert cartesian cordinates to spherical cordinates
    1.1.1
    # Compute radial distance
    r = np.sqrt(x**2 + y**2 + z**2)
    # Compute polar angle (theta)
    theta = np.arctan2(y, x)
    # Compute azimuthal angle (phi)
    phi = np.arccos(z / r)
    return r, theta, phi
```

```
In [5]:
        def expand_features(x, y, z) -> dict:
            Expands Cartesian coordinates (x, y, z) to include additional coordinate
            Parameters:
            - x (float): x-coordinate
            - y (float): y-coordinate
            - z (float): z-coordinate
            Returns:
            - dict: Dictionary containing expanded features including Cartesian, spl
            # Convert Cartesian coordinates to spherical coordinates
            r, theta, phi = cartesian_to_spherical(x, y, z)
            # Convert Cartesian coordinates to cylindrical coordinates
            rho, theta, z = cartesian_to_cylindrical(x, y, z)
            # Return dictionary containing expanded features
             return {
                 'X': X,
                                # Original x-coordinate
                'y': y,
                                 # Original y-coordinate
                 'Z': Z,
                                 # Original z-coordinate
                 'r': r,
                                 # Radius in spherical coordinates
                 'rho': rho,
                                # Radius in cylindrical coordinates
                 'theta': theta, # Angle theta in spherical and cylindrical coording
                               # Angle phi in spherical coordinates
                 'phi': phi,
            }
```

```
In [6]:
        def set_axes_equal_2d(ax):
            Make axes of 2D plot have equal scale so that squares appear as squares
```

Input

```
x_limits = ax.get_xlim()
                  y limits = ax.get ylim()
                  x_range = abs(x_limits[1] - x_limits[0])
                  x_middle = np.mean(x_limits)
                  y_range = abs(y_limits[1] - y_limits[0])
                  y_middle = np.mean(y_limits)
                  # The plot bounding box is a sphere in the sense of the infinity
                  # norm, hence I call half the max range the plot radius.
                  plot radius = 0.5*max([x range, y range,])
                  ax.set_xlim([x_middle - plot_radius, x_middle + plot_radius])
                  ax.set_ylim([y_middle - plot_radius, y_middle + plot_radius])
              def set_axes_equal_3d(ax):
                  Make axes of 3D plot have equal scale so that spheres appear as spheres
                  cubes as cubes, etc.
                  Input
                    ax: a matplotlib axis, e.g., as output from plt.gca().
                  x_{limits} = ax_{get_xlim3d()}
                  y_limits = ax.get_ylim3d()
                  z_limits = ax.get_zlim3d()
                  x_range = abs(x_limits[1] - x_limits[0])
                  x_middle = np.mean(x_limits)
                  y_range = abs(y_limits[1] - y_limits[0])
                  y_middle = np.mean(y_limits)
                  z_range = abs(z_limits[1] - z_limits[0])
                  z_middle = np.mean(z_limits)
                  # The plot bounding box is a sphere in the sense of the infinity
                  # norm, hence I call half the max range the plot radius.
                  plot_radius = 0.5*max([x_range, y_range, z_range])
                  ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
                  ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
                  ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
     In [7]: def plot_robot(joint_angles, actual=[0,0,0]):
                  Plots the robot arm in various perspectives based on the given joint and
                  Parameters:
                  - joint_angles (list): List of joint angles for the robot arm.
                  - actual (list, optional): Actual end effector position. Defaults to [0]
                  Returns:
                  None
                  # Create a new figure
                  fig = plt.figure()
                  # Perform forward kinematics to get the points of the robot arm
                  _, points = forward_kinematics(joint_angles)
localhost:8891/nbconvert/html/Desktop/7DOF.ipynb?download=false
```

ax: a matplotlib axis, e.g., as output from plt.gca().

```
# Add subplots for each perspective
   xy = fig.add_subplot(221)
   xy.set_title("Top")
   xy.set_xlabel('X')
   xy.set_ylabel('Y')
   yz = fig.add_subplot(222)
   yz.set_title("Side")
   yz.set_xlabel('Y')
   yz.set_ylabel('Z')
   xz = fig.add_subplot(223)
   xz.set_title("Front")
   xz.set xlabel('X')
   xz.set_ylabel('Z')
    xyz = fig.add_subplot(224, projection="3d")
   xyz.set_title("3D")
   xyz.set_xlabel('X')
   xyz.set_ylabel('Y')
   xyz.set_zlabel('Z')
    # Extract x, y, z coordinates from points
   x_coords = points[:,0]
   y_coords = points[:,1]
    z_coords = points[:,2]
    # Plot the robot arm in each perspective
   c = 'black' # Color of the robot arm
   xy.plot(x_coords, y_coords, c=c, marker='o')
   yz.plot(y_coords, z_coords, c=c, marker='o')
   xz.plot(x coords, z coords, c=c, marker='o')
   xyz.plot(x_coords, y_coords, z_coords, c=c, marker='o')
    # Plot the actual end effector position
   xy.plot(actual[0], actual[1], c='r', marker='o')
   yz.plot(actual[1], actual[2], c='r', marker='o')
   xz.plot(actual[0], actual[2], c='r', marker='o')
   xyz.plot(*actual, c='r', marker='o')
    # Set the aspect ratio of 2D subplots to be equal
    for ax in [xy, xz, yz]:
        ax.set_box_aspect(1)
        set_axes_equal_2d(ax)
    # Set the aspect ratio of 3D subplot to be equal
   xyz.set_box_aspect((1, 1, 1))
   set_axes_equal_3d(xyz)
    # Adjust layout and display the plot
   plt.tight_layout()
    plt.show()
   0,0,0,60,0,0,0
11
```

```
In [8]: joint_angles = [np.deg2rad(x) for x in [
        plot_robot(joint_angles,)
```



```
def plot_positions(positions):
In [9]:
             Function to plot positions in 2D space.
             - positions (numpy array): Array containing x, y, z positions of the end
             Returns:
             - None
             \mathbf{I}_{-}\mathbf{I}_{-}\mathbf{I}_{-}
             # Extract x, y, z coordinates from positions array
             x = positions[:, 0]
             y = positions[:, 1]
             z = positions[:, 2]
             # Create a new figure
             fig = plt.figure()
             # Loop through different 2D projections (XY, XZ, YZ)
             i = 0
             for xx, yy, xlabel, ylabel in [(x, y, 'X', 'Y'), (x, z, 'X', 'Z'), (y, z
                 i += 1
                 # Add subplot for each projection
                 ax = fig.add_subplot(int(f'13{i}'))
                 # Scatter plot of positions in the current projection
                 ax.scatter(xx, yy)
                 # Set labels and aspect ratio
                 ax.set_xlabel(xlabel)
                 ax.set_ylabel(ylabel)
                 ax.set_box_aspect(1)
                 set_axes_equal_2d(ax)
             # Adjust layout and display the plot
```

```
plt.tight_layout()
plt.show()
```

Dataset Generation

```
import pandas as pd

# Define joint names using list comprehension
joint_names = [f'j{i}' for i in range(1, 8)] # List of joint names 'j1' to

# Define column names for the DataFrame
columns = ['x', 'y', 'z', 'r', 'rho', 'theta', 'phi', *joint_names]
# Columns: x, y, z represent Cartesian coordinates, r, rho, theta, phi repre
# and joint_names represent joint angles

# Create an empty DataFrame with specified columns
df = pd.DataFrame(columns=columns)

# Display the first few rows of the DataFrame
df.head()
```

Out[10]: x y z r rho theta phi j1 j2 j3 j4 j5 j6 j7

```
In [11]: import pandas as pd
         import numpy as np
         # Create an empty DataFrame with specified columns
         df = pd.DataFrame(columns=columns)
         # Set seed for reproducibility
         np.random.seed(10)
         # Loop until DataFrame has 1000 entries
         while len(df.index) < 1000:</pre>
             # Generate random joint angles within the specified constraints
             angles = [np.random.uniform(*value) for value in joint_constraints]
             # Perform forward kinematics to get end effector position
             position, _ = forward_kinematics(angles)
             x, y, z = position
             # Skip if the position is at the origin
             if x == 0 and y == 0 and z == 0:
                  continue
             # Expand features based on end effector position
             extra_features = expand_features(x, y, z)
             # Skip if phi is greater than pi/2
             if extra_features['phi'] > np.pi/2:
                  continue
             # Create entry for DataFrame with expanded features and joint angles
             entry = {
                  **extra features.
                  **{name: ang for name, ang in zip(joint_names, angles)},
             }
             # Add entry to DataFrame
             df.loc[len(df.index)] = entry
```

```
# Round values in DataFrame to 3 decimal places
df = df.round(3)

# Print shape of DataFrame and display the first few rows
print(df.shape)
df.head()
```

(1000, 14)

Out[11]: j4 Z rho theta phi j1 j2 j3 j5 У 1.437 0.788 **0** -0.214 -1.588 1.825 2.429 1.603 -1.705 0.721 1.538 0.575 0.395 1.1 -1.682 **1** -0.112 0.515 1.763 1.686 -1.6371.274 1.505 1.305 1.432 0.494 0.073 1.5 **2** -0.674 -1.625 4.111 4.472 1.759 -1.964 0.404 1.177 0.609 0.437 1.112 0.129 0.4 **3** -1.204 1.496 1.749 2.597 1.920 2.248 0.832 5.390 0.984 0.512 0.877 0.889 0.6

In [12]: plot_positions(df[['x','y','z']].values)

0.181 -0.250 3.667 3.680 0.309 -0.945 0.084

2.197 0.627 0.306

0.751

0.143 1.0

```
In [13]:
         from sklearn.metrics import make_scorer
         def evaluate_prediction(positions: list, angles: list):
             Function to evaluate the prediction error between actual and predicted e
             Parameters:
             - positions (list): List of actual end effector positions.
             angles (list): List of predicted joint angles.
             Returns:

    error (float): Mean absolute error between actual and predicted positi

             distance_errors = []
             # Calculate distance error for each pair of actual and predicted position
             for position, angle in list(zip(positions, angles)):
                 end_effector_position, _ = forward_kinematics(angle)
                 error = np.linalg.norm(end_effector_position - position)
                 distance_errors.append(error)
             # Calculate mean absolute error
             error = np.round(np.mean(np.absolute(distance_errors)), 3)
              return error
         def optimization_scorer():
```

```
Function to create a custom optimization scorer for evaluating prediction
             - scorer (callable): Custom scorer function.
             def scorer(y_true, y_pred):
                 Custom scoring function for optimization.
                 Parameters:
                 - y_true (array-like): True end effector positions.
                 - y_pred (array-like): Predicted joint angles.
                 Returns:

    score (float): Optimization score based on mean absolute distance

                 distance_errors = []
                 # Calculate distance error for each pair of true and predicted posit
                 for actual, predicted in list(zip(y_true, y_pred)):
                     pos_true, _ = forward_kinematics(actual)
                     pos_pred, _ = forward_kinematics(predicted)
                     d = np.linalg.norm(pos_true - pos_pred)
                     distance errors.append(d)
                 # Calculate optimization score
                 score = -np.mean(np.abs(distance_errors))
                 return score
             # Return custom scorer using make_scorer
             return make scorer(scorer)
In [14]: # Define columns representing Cartesian coordinates
         cart columns = [
             'X',
             'y',
              'z',
         ]
         # Set seed for reproducibility
         np.random.seed(10)
         # Randomly choose 7 indices from the DataFrame
         index_choices = np.random.randint(0, len(df), 7)
         # Select Cartesian positions and corresponding joint angles based on chosen
         pos_choices = df[cart_columns].iloc[index_choices].values # Cartesian posit
         angle_choices = df[joint_names].iloc[index_choices].values # Joint angles
        from sklearn.model_selection import GridSearchCV
In [15]:
         import warnings
         from sklearn.exceptions import ConvergenceWarning
         def do_grid_search(estimator, params, X, y, x_plot=None, stringify_xplot=Fal
             Function to perform grid search with cross-validation and visualize resu
             Parameters:
             - estimator (object): Estimator object implementing 'fit' and 'predict'
             - params (dict): Dictionary with parameters names (str) as keys and list
             X (array-like): Input features for training.
```

```
y (array-like): Target variable for training.
- x_plot (str or None): Parameter to plot on x-axis (optional).
- stringify_xplot (bool): Whether to convert x_plot values to strings for
- bar_plot (bool): Whether to plot a bar plot instead of a line plot (or
- xticks_rotation (int): Rotation angle for x-axis tick labels (optional
Returns:
- results (DataFrame): DataFrame containing grid search results sorted (
# Filter out convergence warnings
warnings.filterwarnings("ignore", category=ConvergenceWarning)
# Perform grid search with cross-validation
gs = GridSearchCV(
    estimator=estimator.
    param_grid=params,
    cv=len(pos_choices), # Number of folds for cross-validation
    scoring=optimization_scorer(), # Scoring metric
    verbose=1,
)
qs.fit(X, y)
# Extract grid search results
results = pd.DataFrame(gs.cv_results_)
# Rename columns for readability
result columns = {
    **{f'param_{key}': key for key in params.keys()}, # Rename param_*
    'mean_test_score': "MAE", # Rename mean_test_score column to MAE (/
for key, value in result columns.items():
    results = results.rename(columns={key: value})
# Invert MAE values to represent optimization score
results['MAE'] = results['MAE'] * -1
# Visualize results if x_plot is specified
if x_plot is not None:
    key = f'{x_plot}'
    graph = results.sort_values(key)
    # Plotting
    if stringify_xplot:
        x_plot_str = [str(x) for x in graph[key]]
        plt.plot(x_plot_str, graph["MAE"], marker='o') if not bar_plot @real content
            x_plot_str, graph["MAE"])
        plt.xticks(x_plot_str)
    else:
        plt.plot(graph[key], graph["MAE"], marker='o') if not bar_plot (
            graph[key], graph["MAE"])
        plt.xticks(list(graph[key].values))
    plt.ylabel('MAE') # Set y-axis label
    plt.xlabel(x_plot) # Set x-axis label
    plt.xticks(rotation=xticks_rotation) # Rotate x-axis tick labels
    plt.show() # Display plot
# Return results DataFrame sorted by MAE
return results[result_columns.values()].sort_values('MAE')
```

Optimization Algorithms Implementation

```
from sklearn.base import BaseEstimator, RegressorMixin
In [16]:
         from sko.GA import GA
         class GA_Optimizer(BaseEstimator, RegressorMixin):
             Genetic Algorithm (GA) Optimizer for joint angle prediction.
             Parameters:
             - pop_size (int): Population size for genetic algorithm.
             - max_iteration (int): Maximum number of iterations for genetic algorit
             - mutation (float): Mutation probability for genetic algorithm.
             Attributes:
             pop_size (int): Population size for genetic algorithm.
             - max_iteration (int): Maximum number of iterations for genetic algorit
             - mutation (float): Mutation probability for genetic algorithm.
             def init (self, pop size=None, max iteration=None, mutation=None):
                 self.pop_size = pop_size
                 self.max_iteration = max_iteration
                 self.mutation = mutation
             def fit(self, X, y=None):
                 Fit method for the genetic algorithm optimizer.
                 Parameters:
                 - X (array-like): Input features (not used in fitting).
                 y (array-like): Target variable (not used in fitting).
                 Returns:
                 - self (object): Instance of the estimator.
                 return self
             def predict(self, X):
                 Predict method to predict joint angles using genetic algorithm optim
                 Parameters:
                 - X (array-like): Input features containing end effector positions.
                 Returns:
                 - predictions (list): Predicted joint angles for each input position
                 predictions: list = [] # Initialize list to store predictions
                 # Iterate over each end effector position
                 for position in X:
                     np.random.seed(1) # Set seed for reproducibility
                     # Initialize genetic algorithm with specified parameters
                     ga = GA(
                         func=lambda y: evaluate_prediction([position], [y]),
                         n_dim=7,
                         size_pop=self.pop_size,
                         max_iter=self.max_iteration,
                         prob_mut=self.mutation,
                         lb=[x[1] for x in joint_constraints],
                         ub=[x[0] for x in joint_constraints],
                         precision=1e-7,
```

```
# Run genetic algorithm to find optimal joint angles
y_pred, _ = ga.run()
predictions.append(y_pred) # Append predicted joint angles to
return predictions # Return list of predicted joint angles
```

```
In [17]:
         from sklearn.base import BaseEstimator, RegressorMixin
         from sko.DE import DE
         class DE_Optimizer(BaseEstimator, RegressorMixin):
             Differential Evolution (DE) Optimizer for joint angle prediction.
             Parameters:
             - pop_size (int): Population size for differential evolution.
             - max_iteration (int): Maximum number of iterations for differential evo
             - mutation (float): Mutation probability for differential evolution.
             Attributes:
             - pop size (int): Population size for differential evolution.
             - max_iteration (int): Maximum number of iterations for differential eve

    mutation (float): Mutation probability for differential evolution.

             def init (self, pop size=None, max iteration=None, mutation=None):
                 self.pop size = pop size
                 self.max_iteration = max_iteration
                 self.mutation = mutation
             def fit(self, X, y=None):
                 Fit method for the differential evolution optimizer.
                 Parameters:
                 - X (array-like): Input features (not used in fitting).
                 - y (array-like): Target variable (not used in fitting).
                 Returns:

    self (object): Instance of the estimator.

                 return self
             def predict(self, X):
                 Predict method to predict joint angles using differential evolution
                 Parameters:

    X (array-like): Input features containing end effector positions.

                 Returns:
                 - predictions (list): Predicted joint angles for each input position
                 predictions: list = [] # Initialize list to store predictions
                 # Iterate over each end effector position
                 for position in X:
                     np.random.seed(1) # Set seed for reproducibility
                     # Initialize differential evolution with specified parameters
                      de = DE(
                          func=lambda y: evaluate_prediction([position], [y]),
```

```
n_dim=7,
    size_pop=self.pop_size,
    max_iter=self.max_iteration,
    prob_mut=self.mutation,
    lb=[x[1] for x in joint_constraints],
    ub=[x[0] for x in joint_constraints],
)

# Run differential evolution to find optimal joint angles
    y_pred, _ = de.run()
    predictions.append(y_pred) # Append predicted joint angles to

return predictions # Return list of predicted joint angles
```

```
In [18]: from sklearn.base import BaseEstimator, RegressorMixin
         from sko.PSO import PSO
          class PS0_Optimizer(BaseEstimator, RegressorMixin):
             Particle Swarm Optimization (PSO) Optimizer for joint angle prediction.
              Parameters:
              - pop_size (int): Population size for particle swarm optimization.
              - max_iteration (int): Maximum number of iterations for particle swarm (

    inertia (float): Inertia weight for particle swarm optimization.

              - cognitive_param (float): Cognitive parameter for particle swarm optim:

    social param (float): Social parameter for particle swarm optimization

             Attributes:
              - pop_size (int): Population size for particle swarm optimization.
             - max_iteration (int): Maximum number of iterations for particle swarm (
              - inertia (float): Inertia weight for particle swarm optimization.
             - cognitive_param (float): Cognitive parameter for particle swarm optim
              social_param (float): Social parameter for particle swarm optimization
              def __init__(
                      self,
                      pop_size=None,
                      max_iteration=None,
                      inertia=None,
                      cognitive_param=None,
                      social_param=None
              ):
                  self.pop_size = pop_size
                  self.max_iteration = max_iteration
                  self.inertia = inertia
                  self.cognitive_param = cognitive_param
                  self.social_param = social_param
              def fit(self, X, y=None):
                  Fit method for the particle swarm optimization optimizer.
                  Parameters:
                  - X (array-like): Input features (not used in fitting).
                  - y (array-like): Target variable (not used in fitting).
                  Returns:

    self (object): Instance of the estimator.

                  return self
```

```
def predict(self, X):
    Predict method to predict joint angles using particle swarm optimization
    Parameters:
    - X (array-like): Input features containing end effector positions.
    Returns:
    - predictions (list): Predicted joint angles for each input position
    predictions: list = [] # Initialize list to store predictions
    # Iterate over each end effector position
    for position in X:
        np.random.seed(1) # Set seed for reproducibility
        # Initialize particle swarm optimization with specified paramete
        pso = PSO(
            func=lambda y: evaluate_prediction([position], [y]),
            n_dim=7,
            pop=self.pop_size,
            max_iter=self.max_iteration,
            w=self.social param,
            c1=self.cognitive param,
            c2=self.social_param,
            lb=[x[1] for x in joint_constraints],
            ub=[x[0] for x in joint_constraints],
        )
        # Run particle swarm optimization to find optimal joint angles
        y_pred, _ = pso.run()
        predictions.append(y_pred) # Append predicted joint angles to
    return predictions # Return list of predicted joint angles
```

```
In [19]: from sklearn.base import BaseEstimator, RegressorMixin
         from sko.SA import SAFast
         class SA_Optimizer(BaseEstimator, RegressorMixin):
             Simulated Annealing (SA) Optimizer for joint angle prediction.
             Parameters:
             - iteration_count (int): Number of iterations for simulated annealing.
             - T_min (float): Minimum temperature for simulated annealing.
             - T_max (float): Maximum temperature for simulated annealing.
             Attributes:
             iteration_count (int): Number of iterations for simulated annealing.
             - T_min (float): Minimum temperature for simulated annealing.

    T_max (float): Maximum temperature for simulated annealing.

             def __init__(
                     self,
                      iteration_count=None,
                     T_min=None,
                     T_max=None
             ):
                 self.iteration_count = iteration_count
                 self.T_min = T_min
                 self.T_max = T_max
```

```
def fit(self, X, y=None):
    Fit method for the simulated annealing optimizer.
    Parameters:
    - X (array-like): Input features (not used in fitting).
    - y (array-like): Target variable (not used in fitting).
    Returns:

    self (object): Instance of the estimator.

    return self
def predict(self, X):
    Predict method to predict joint angles using simulated annealing.
    Parameters:
    - X (array-like): Input features containing end effector positions.
    Returns:
    - predictions (list): Predicted joint angles for each input position
    predictions: list = [] # Initialize list to store predictions
    # Iterate over each end effector position
    for position in X:
        np.random.seed(1) # Set seed for reproducibility
        # Initialize simulated annealing with specified parameters
        sa = SAFast(
            func=lambda y: evaluate_prediction([position], [y]),
            x0=[0, 0, 0, 0, 0, 0, 0], # Initial guess for joint angles
            T_max=self.T_max,
            T_min=self.T_min,
            L=self.iteration count,
        )
        # Run simulated annealing to find optimal joint angles
        y_pred, _ = sa.run()
        predictions.append(y_pred) # Append predicted joint angles to
    return predictions # Return list of predicted joint angles
```

GA Hyperparameters Selection

```
In [20]: # varing the population size
params = {
         'pop_size': [10, 30, 50, 100, 200],
         'max_iteration': [10],
         'mutation': [0.0],
}

result=do_grid_search(
         estimator=GA_Optimizer(),
         params=params,
          X=pos_choices,
          y=angle_choices,
          x_plot='pop_size'
          )
          result
```

Fitting 7 folds for each of 5 candidates, totalling 35 fits

Out[20]:		pop_size	max_iteration	mutation	MAE
	4	200	10	0.0	0.082448
	2	50	10	0.0	0.102636
	3	100	10	0.0	0.109003
	1	30	10	0.0	0.343511
	0	10	10	0.0	0.755009

```
In [21]: # varing the maximum iteration
params = {
    'pop_size': [50],
    'max_iteration': [10, 30, 50, 70, 100,],
    'mutation': [0.0],
}

result = do_grid_search(
    estimator=GA_Optimizer(),
    params=params,
    X=pos_choices,
    y=angle_choices,
    x_plot='max_iteration',
    )
    result
```

Fitting 7 folds for each of 5 candidates, totalling 35 fits

Out[21]:		pop_size	max_iteration	mutation	MAE
	1	50	30	0.0	0.091389
	2	50	50	0.0	0.091389
	3	50	70	0.0	0.091389
	4	50	100	0.0	0.091389
	0	50	10	0.0	0.102636

```
In [22]: # varying the mutation probability
params = {
    'pop_size': [50],
    'max_iteration': [30],
    'mutation': [x*0.1 for x in range(0,10)],
}

result = do_grid_search(
    estimator=GA_Optimizer(),
    params=params,
    X=pos_choices,
    y=angle_choices,
    x_plot='mutation',
    )
result
```

Fitting 7 folds for each of 10 candidates, totalling 70 fits

Out[22]:		pop_size	max_iteration	mutation	MAE
	0	50	30	0.0	0.091389
	1	50	30	0.1	0.107893
	3	50	30	0.3	0.133579
	2	50	30	0.2	0.175807
	5	50	30	0.5	0.181660
	4	50	30	0.4	0.200507
	9	50	30	0.9	0.211136
	8	50	30	0.8	0.223277
	6	50	30	0.6	0.225369
	7	50	30	0.7	0.226610

DE Hyperparameters Selection

```
result=do_grid_search(
    estimator=DE_Optimizer(),
    params=params,
    X=pos_choices,
    y=angle_choices,
    x_plot='pop_size',
    )
result
```

Fitting 7 folds for each of 5 candidates, totalling 35 fits

Out[24]:		pop_size	max_iteration	mutation	MAE
	4	200	10	0.0	0.353903
	3	100	10	0.0	0.489629
	2	50	10	0.0	0.646348
	1	30	10	0.0	0.875871
	0	10	10	0.0	1.160889

```
In [25]: # varing the max_iteration
params = {
    'pop_size': [50],
    'max_iteration': [10, 30, 50,100,200],
    'mutation': [0.0],
}

result=do_grid_search(
    estimator=DE_Optimizer(),
    params=params,
    X=pos_choices,
    y=angle_choices,
    x_plot='max_iteration',
    )
result
```

Fitting 7 folds for each of 5 candidates, totalling 35 fits

Out[25]:		pop_size	max_iteration	mutation	MAE
	0	50	10	0.0	0.646348
	1	50	30	0.0	0.646348
	2	50	50	0.0	0.646348
	3	50	100	0.0	0.646348
	4	50	200	0.0	0.646348

```
In [26]: # varing the probability mutation
params = {
    'pop_size': [50],
    'max_iteration': [10,],
    'mutation': [x*0.1 for x in range(0,10)],
}

result=do_grid_search(
    estimator=DE_Optimizer(),
    params=params,
    X=pos_choices,
    y=angle_choices,
    x_plot='mutation',
    )
result
```

Fitting 7 folds for each of 10 candidates, totalling 70 fits

Out[26]:		pop_size	max_iteration	mutation	MAE
	9	50	10	0.9	0.117777
	3	50	10	0.3	0.174451
	8	50	10	0.8	0.177221
	5	50	10	0.5	0.191906
	7	50	10	0.7	0.193149
	4	50	10	0.4	0.206472
	1	50	10	0.1	0.207397
	6	50	10	0.6	0.230605
	2	50	10	0.2	0.234121
	0	50	10	0.0	0.646348

PSO Hyperparameters Selection

```
result = do_grid_search(
    estimator=PSO_Optimizer(),
    params=params,
    X=pos_choices,
    y=angle_choices,
    x_plot='pop_size',
)
result
```

Fitting 7 folds for each of 5 candidates, totalling 35 fits

Out[28]:		pop_size	max_iteration	inertia	cognitive_param	social_param	MAE
	4	200	10	0.1	0.1	0.1	0.260409
	3	100	10	0.1	0.1	0.1	0.392450
	2	50	10	0.1	0.1	0.1	0.456814
	1	30	10	0.1	0.1	0.1	0.580813
	0	10	10	0.1	0.1	0.1	0.977069

```
y=angle_choices,
   x_plot='max_iteration',
)
result
```

Fitting 7 folds for each of 5 candidates, totalling 35 fits

Out[29]:		pop_size	max_iteration	inertia	cognitive_param	social_param	MAE
	4	10	200	0.1	0.1	0.1	0.653666
	3	10	100	0.1	0.1	0.1	0.654531
	2	10	50	0.1	0.1	0.1	0.683623
	1	10	30	0.1	0.1	0.1	0.787767
	0	10	10	0.1	0.1	0.1	0.977069

```
In [30]: # varing the inertia
    params = {
        'pop_size': [10],
        'max_iteration': [10],
        "inertia": [x*0.1 for x in range(11)],
        "cognitive_param": [0.1],
        "social_param": [0.1]
}

result = do_grid_search(
        estimator=PSO_Optimizer(),
        params=params,
        X=pos_choices,
        y=angle_choices,
        x_plot='inertia',
    )
    result
```

Fitting 7 folds for each of 11 candidates, totalling 77 fits

Out[30]:		pop_size	max_iteration	inertia	cognitive_param	social_param	MAE
	0	10	10	0.0	0.1	0.1	0.977069
	1	10	10	0.1	0.1	0.1	0.977069
	2	10	10	0.2	0.1	0.1	0.977069
	3	10	10	0.3	0.1	0.1	0.977069
	4	10	10	0.4	0.1	0.1	0.977069
	5	10	10	0.5	0.1	0.1	0.977069
	6	10	10	0.6	0.1	0.1	0.977069
	7	10	10	0.7	0.1	0.1	0.977069
	8	10	10	8.0	0.1	0.1	0.977069
	9	10	10	0.9	0.1	0.1	0.977069
	10	10	10	1.0	0.1	0.1	0.977069

```
In [31]: # varing the cognitive_param and social_param simultaneously

fig = plt.figure()

interval = [0,  0.25,  0.5,  0.75,  1]
for count, i in enumerate(interval, 1):
    ax = fig.add_subplot(3, 2, count)
    params = {
        'pop_size': [10],
        'max_iteration': [10],
        "inertia": [0.1],
        "cognitive_param": [i],
        "social_param": [x*0.1 for x in range(11)],
}
```

```
result = do_grid_search(
                  estimator=PSO_Optimizer(),
                  params=params,
                  X=pos_choices,
                  y=angle_choices,
              result = result.sort_values('social_param')
              ax.plot(result['social_param'].values, result['MAE'].values, marker='o'
              ax.set_title(f'cognitive_param={i}')
              ax.set_ylabel('MAE')
              ax.set_xlabel('social param')
              # ax.set_xticks(list(result['social_param'].values))
          fig.tight layout()
         plt.show()
         Fitting 7 folds for each of 11 candidates, totalling 77 fits
         Fitting 7 folds for each of 11 candidates, totalling 77 fits
         Fitting 7 folds for each of 11 candidates, totalling 77 fits
         Fitting 7 folds for each of 11 candidates, totalling 77 fits
         Fitting 7 folds for each of 11 candidates, totalling 77 fits
                      cognitive_param=0
                                                            cognitive_param=0.25
             1.0
                                                     1.0
          0.5
                                                    0.5
                0.00
                       0.25
                              0.50
                                     0.75
                                            1.00
                                                        0.00
                                                               0.25
                                                                      0.50
                                                                             0.75
                                                                                    1.00
                          social param
                                                                  social param
                     cognitive param=0.5
                                                            cognitive param=0.75
             1.0
                                                     1.0
                                                    0.5
             0.5
                              0.50
                0.00
                                     0.75
                                                        0.00
                                                                      0.50
                       0.25
                                            1.00
                                                               0.25
                                                                             0.75
                                                                                    1.00
                          social param
                                                                  social param
                      cognitive param=1
             1.0
             0.5
                              0.50
                0.00
                       0.25
                                     0.75
                                            1.00
                          social param
In [32]:
         best_pso=PS0_Optimizer(
              pop_size=200,
              max_iteration=100,
              cognitive_param=0.25,
              social_param=0.5,
              inertia=0.1,
```

SA Hyperparameters Selection

```
In [33]: # varing the iteration_count
params = {
        'iteration_count':[10, 30, 50,70, 100,150, 200],
        'T_max': [10],
        'T_min': [0.1]
}

result = do_grid_search(
        estimator=SA_Optimizer(),
        params=params,
        X=pos_choices,
        y=angle_choices,
        x_plot='iteration_count'
)
result
```

Fitting 7 folds for each of 7 candidates, totalling 49 fits

Out[33]:		iteration_count	T_max	T_min	MAE
	6	200	10	0.1	0.136070
	5	150	10	0.1	0.203034
	4	100	10	0.1	0.219811
	2	50	10	0.1	0.258056
	3	70	10	0.1	0.267426
	1	30	10	0.1	0.290436
	0	10	10	0.1	0.405041

```
In [34]: # varing the T_max and T_min simultaneously
fig = plt.figure()

interval = [10, 30, 50, 100, 200,500]
```

```
for count, i in enumerate(interval, 1):
              ax = fig.add_subplot(3, 2, count)
              params = {
                  'iteration_count': [50],
                  'T_max': [i],
                  'T_min': [1e-5,1e-4,1e-3,1e-2,1e-1,1,2]
              }
              result = do_grid_search(
                  estimator=SA_Optimizer(),
                  params=params,
                  X=pos_choices,
                  y=angle_choices,
              result = result.sort values('T min')
              ax.plot(result['T_min'].values, result['MAE'].values, marker='o')
              ax.set_title(f'T_max={i}')
              ax.set_ylabel('MAE')
              ax.set_xlabel('T_min')
              # ax.set_xticks(list(result['social_param'].values))
          fig.tight_layout()
         plt.show()
         Fitting 7 folds for each of 7 candidates, totalling 49 fits
         Fitting 7 folds for each of 7 candidates, totalling 49 fits
         Fitting 7 folds for each of 7 candidates, totalling 49 fits
         Fitting 7 folds for each of 7 candidates, totalling 49 fits
         Fitting 7 folds for each of 7 candidates, totalling 49 fits
         Fitting 7 folds for each of 7 candidates, totalling 49 fits
                           T max=10
                                                                   T max=30
                                                     0.3
             0.2
                                                    0.2
             0.1
                                                     0.1
                        0.5
                                      1.5
                                             2.0
                                                                0.5
                                                                              1.5
                 0.0
                               1.0
                                                         0.0
                                                                       1.0
                                                                                     2.0
                              T_min
                                                                      T_min
                           T max=50
                                                                  T max=100
                                                     0.3
                                                     0.2
                                                     0.1
             0.1
                        0.5
                                      1.5
                                             2.0
                                                                0.5
                                                                              1.5
                                                                                     2.0
                 0.0
                               1.0
                                                         0.0
                                                                       1.0
                              T_min
                                                                      T_min
                                                                  T max=500
                          T max=200
             0.2
                                                     0.2
            0.1
                                                     0.1
                        0.5
                                      1.5
                                                                                     2.0
                 0.0
                               1.0
                                             2.0
                                                         0.0
                                                                0.5
                                                                       1.0
                                                                              1.5
                              T_min
                                                                      T_min
          best_sa=SA_Optimizer(
In [35]:
              iteration_count=200,
              T_max=100,
              T_{min}=1e-5,
```

Data Splitting For Model Training

```
In [36]: from sklearn.model_selection import train_test_split
          # Split the data into training and test sets
          # 80% of the data will be used for training, and 20% for testing
          # Random state is set for reproducibility
          df_train: pd.DataFrame # Define variable for training set
          df_test: pd.DataFrame # Define variable for test set
          df_train, df_test = train_test_split(
               df, test_size=0.2, random_state=10,)
          # Print information about the data
          print('DF') # Print heading for the data
          print('Training Size: ', len(df_test)) # Print size of training set
          plot_positions(df_train[['x', 'y', 'z']].values) # Plot positions for train print('Test Size: ', len(df_test)) # Print size of test set
          plot_positions(df_test[['x', 'y', 'z']].values) # Plot positions for test :
          DF
          Training Size:
                           200
               2
                                                                   Ζ
                                        Ν
                                          2
                                                                     2
             -2
             -4
                    -2.5
                          0.0
                                2.5
                                               -2.5
                                                     0.0
                                                           2.5
                                                                         -2.5
                                                                                0.0
                                                                                       2.5
                           Х
                                                      Х
                                                                                 Υ
          Test Size: 200
               2
                                                                   Ζ
                                       Ν
                                                                      2
             -2
                  -2.5
                         0.0
                               2.5
                                             -2.5
                                                    0.0
                                                           2.5
                                                                         -2.5
                                                                                0.0
                                                                                       2.5
                           Х
                                                      Х
                                                                                 Υ
         # Define the list of features
In [37]:
          features = [
               'X',
               'rho',
               'theta',
               'phi'
          # Define the maximum values for each feature
          features_max_values = {
```

```
'x': 6,
    'y': 6,
    'z': 6,
    'r': 6,
    'rho': 6,
    'theta': 2 * np.pi,
    'phi': np.pi,
    **{joint_name: joint_angle for joint_name, joint_angle in list(zip(joint_
# Define the minimum values for each feature
features_min_values = {
    'x': 0,
    'y': 0,
    'z': 0,
    'r': 0,
    'rho': 0,
    'theta': 0,
    'phi': 0,
    **{joint_name: joint_angle for joint_name, joint_angle in list(zip(joint
}
# Create DataFrames for maximum and minimum values of features
features max df = pd.DataFrame(features max values, index=[0])
features_min_df = pd.DataFrame(features_min_values, index=[0])
# Create a combined DataFrame containing both maximum and minimum values
features_combined_df = pd.DataFrame(
    [features_min_values, features_max_values], index=[0, 1])
def do_max_scaling(features: list[str], dataframe: pd.DataFrame):
    Function to perform max scaling on specified features of a DataFrame
    Args:
        features (list[str]): List of feature names to be scaled
        dataframe (pd.DataFrame): DataFrame containing the features
    Returns:
        pd.DataFrame: DataFrame with the scaled features
    modified_df = dataframe[features].values / features_max_df[features].va
    return pd.DataFrame(modified_df, columns=features)
def undo_max_scaling(features: list[str], array: np.array):
    Function to undo max scaling on specified features of a NumPy array
        features (list[str]): List of feature names to be unscaled
        array (np.array): NumPy array containing the scaled features
    Returns:
        pd.DataFrame: DataFrame with the unscaled features
    modified_array = array * features_max_df[features].values
    return pd.DataFrame(modified_array, columns=features)
```

```
['r', 'theta', 'phi'],
  ['x', 'y', 'z', 'r', 'rho', 'theta', 'phi'],
  ['z', 'r', 'rho', 'theta', 'phi'],
  ['x', 'y', 'z', 'theta', 'phi'],
  ['r', 'rho', 'theta', 'phi'],
  ['x', 'y', 'z', 'r', 'rho', 'theta'],
  ['rho', 'theta', 'phi'],
]
```

Decision Tree Regressor Hyperparameters Selection

```
In [39]: from sklearn.tree import DecisionTreeRegressor
         # Initialize a list to store the results
         data = []
         # Loop through each feature combination
         for features in features_combinations:
             # Extract training and test data based on current feature combination
             X_train = df_train[features].values
             Y_train = df_train[joint_names].values
             X_test = df_test[features].values
             # Initialize DecisionTreeRegressor with hyperparameters
             tree = DecisionTreeRegressor(
                 max_depth=30,
                 max_features=7,
                 min_samples_split=2,
                 min_samples_leaf=1,
                 random state=10,
             )
             # Fit the model on training data
             tree = tree.fit(X_train, Y_train)
             # Make predictions on test data
             y_pred = tree.predict(X_test)
             # Calculate Mean Absolute Error (MAE) without scaling
             mae_without_scaling = evaluate_prediction(
                 df_test[['x', 'y', 'z']].values, y_pred)
             # Append results to the data list
             data.append([','.join(features), mae_without_scaling])
         # Convert the results to a DataFrame
         data = pd.DataFrame(data, columns=['features', 'MAE'])
         # Sort the DataFrame based on MAE
         data = data.sort_values('MAE')
         # Plot a horizontal bar chart showing MAE for each feature combination
         plt.barh(data['features'], data['MAE'])
```

Out[39]: <BarContainer object of 9 artists>


```
In [40]: # Define the list of features selected as the best by the decision tree mode
best_tree_features = ['r', 'theta', 'phi']
```

```
In [41]:
         # varying the max_depth
         from sklearn.tree import DecisionTreeRegressor
         X_train = df_train[best_tree_features].values
         Y_train = df_train[joint_names].values
         X_test = df_test[best_tree_features].values
         param_grid = {
              "max_depth": [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200],
             "max_features": [7,],
              "min_samples_split": [2,],
             "min_samples_leaf": [1],
             "random_state": [10],
         }
          result = do_grid_search(
             DecisionTreeRegressor(),
             param_grid,
             X_train,
             Y_train,
             x_plot='max_depth'
          result
```

Fitting 7 folds for each of 11 candidates, totalling 77 fits

Out[41]:		max_depth	max_features	min_samples_split	min_samples_leaf	random_state	МА
	1	20	7	2	1	10	0.67134
	2	30	7	2	1	10	0.67134
	3	40	7	2	1	10	0.67134
	4	50	7	2	1	10	0.67134
	5	60	7	2	1	10	0.67134
	6	70	7	2	1	10	0.67134
	7	80	7	2	1	10	0.67134
	8	90	7	2	1	10	0.67134
	9	100	7	2	1	10	0.67134
	10	200	7	2	1	10	0.67134
	0	10	7	2	1	10	0.73450

```
In [42]: # varying the max_features
    from sklearn.tree import DecisionTreeRegressor

X_train = df_train[best_tree_features].values
Y_train = df_train[joint_names].values
X_test = df_test[best_tree_features].values

param_grid = {
        "max_depth": [30],
        "max_features": [1,2,3,4,5,6,7,8,9],
        "min_samples_split": [2,],
        "min_samples_leaf": [1],
        "random_state": [10],
}
```

```
result = do_grid_search(
    DecisionTreeRegressor(),
    param_grid,
    X_train,
    Y_train,
    x_plot='max_features'
)
result
```

Fitting 7 folds for each of 9 candidates, totalling 63 fits

Out[42]:		max_depth	max_features	min_samples_split	min_samples_leaf	random_state	MAI
	2	30	3	2	1	10	0.671342
	3	30	4	2	1	10	0.671342
	4	30	5	2	1	10	0.671342
	5	30	6	2	1	10	0.671342
	6	30	7	2	1	10	0.671342
	7	30	8	2	1	10	0.671342
	8	30	9	2	1	10	0.671342
	1	30	2	2	1	10	0.684389
	0	30	1	2	1	10	0.81915{

```
In [43]: # varying the min_samples_split
    from sklearn.tree import DecisionTreeRegressor

X_train = df_train[best_tree_features].values
```

```
Y_train = df_train[joint_names].values
X_test = df_test[best_tree_features].values

param_grid = {
    "max_depth": [30],
        "max_features": [7],
        "min_samples_split": [2,5,10,50,100],
        "min_samples_leaf": [1],
        "random_state": [10],
    }

result = do_grid_search(
    DecisionTreeRegressor(),
    param_grid,
    X_train,
    Y_train,
    x_plot='min_samples_split'
)

result
```

Fitting 7 folds for each of 5 candidates, totalling 35 fits

Out[43]:		max_depth	max_features	min_samples_split	min_samples_leaf	random_state	MAE
	0	30	7	2	1	10	0.671342
	1	30	7	5	1	10	0.743469
	2	30	7	10	1	10	0.837039
	3	30	7	50	1	10	1.228862
	4	30	7	100	1	10	1.477298

```
In [44]: # varying the min_samples_leaf
from sklearn.tree import DecisionTreeRegressor
```

```
X_train = df_train[best_tree_features].values
Y_train = df_train[joint_names].values
X_test = df_test[best_tree_features].values
param_grid = {
         "max_depth": [30],
         "max_features": [7],
        "min_samples_split": [2,],
"min_samples_leaf": [1,5,10,50,100],
         "random_state": [10],
    }
result = do_grid_search(
    DecisionTreeRegressor(),
    param_grid,
    X_train,
    Y_train,
    x_plot='min_samples_leaf'
result
```

Fitting 7 folds for each of 5 candidates, totalling 35 fits

Out[44]:		max_depth	max_features	min_samples_split	min_samples_leaf	random_state	MAE
	0	30	7	2	1	10	0.671342
	1	30	7	2	5	10	0.893656
	2	30	7	2	10	10	1.000134
	3	30	7	2	50	10	1.480432
	4	30	7	2	100	10	1.687194

```
In [45]: from sklearn.tree import DecisionTreeRegressor

tree = DecisionTreeRegressor(
    max_depth=30,
    max_features=7,
    min_samples_leaf=1,
    min_samples_split=2,
    random_state=10,
)

X_train = df_train[best_tree_features]
Y_train = df_train[joint_names]
X_test = df_test[best_tree_features]
best_tree = tree.fit(X_train, Y_train)
```

MLP Hyperparameters Selection

```
In [46]: best_mlp_features=['x', 'y', 'z', 'r', 'rho', 'theta', 'phi']
In [47]: # varying the hidden_layer_sizes
          from sklearn.neural_network import MLPRegressor
          X_train = df_train[best_mlp_features].values
          Y_train = df_train[joint_names].values
          X_test = df_test[best_mlp_features].values
          param_grid = {
              "hidden_layer_sizes": [
                  [7],
                   [7, 14],
                   [7, 7**2],
                   [7**2],
                   [7**3],
                   [7,7**3],
              "activation": ['relu'],
              "solver": ['adam'],
              "max_iter": [10],
"learning_rate": ['constant'],
              "learning_rate_init": [0.001],
              "random_state": [10],
              "batch_size": [5],
          }
          result = do_grid_search(
              MLPRegressor(),
              param_grid,
              X_train,
              Y_train,
```

```
x_plot='hidden_layer_sizes',
stringify_xplot=True,
bar_plot=True
)
```

Fitting 7 folds for each of 6 candidates, totalling 42 fits


```
In [48]: # varying the activation function
         from sklearn.neural network import MLPRegressor
         X_train = df_train[best_mlp_features].values
         Y_train = df_train[joint_names].values
         X_test = df_test[best_mlp_features].values
         param_grid = {
             "hidden_layer_sizes": [
                  [7**3],
              "activation": ['identity', 'logistic', 'tanh', 'relu',],
              "solver": ['adam'],
             "max_iter": [10],
             "learning_rate": ['constant'],
             "learning_rate_init": [0.001],
             "random_state": [10],
             "batch_size": [5],
         }
          result = do_grid_search(
             MLPRegressor(),
             param_grid,
             X_train,
              Y_train,
              x_plot='activation',
              bar_plot=True
```

Fitting 7 folds for each of 4 candidates, totalling 28 fits


```
In [49]: # varying the solver
          from sklearn.neural_network import MLPRegressor
          X_train = df_train[best_mlp_features].values
          Y train = df train[joint names].values
          X_test = df_test[best_mlp_features].values
          param_grid = {
              "hidden_layer_sizes": [
                  [7**3],
              ],
              "activation": ['relu'],
              "solver": ['adam', 'sgd'],
              "max_iter": [10],
"learning_rate": ['constant'],
              "learning_rate_init": [0.001],
              "random_state": [10],
              "batch_size": [5],
          }
          result = do_grid_search(MLPRegressor(), param_grid, X_train, Y_train)
          result = do_grid_search(
              MLPRegressor(),
              param_grid,
              X_train,
              Y_train,
              x_plot='solver',
              bar_plot=True
```

Fitting 7 folds for each of 2 candidates, totalling 14 fits Fitting 7 folds for each of 2 candidates, totalling 14 fits


```
In [50]:
         # varying the learning_rate_init
         from sklearn.neural_network import MLPRegressor
         X_train = df_train[best_mlp_features].values
         Y_train = df_train[joint_names].values
         X_test = df_test[best_mlp_features].values
         param_grid = {
              "hidden_layer_sizes": [
                  [7**3],
              ],
              "activation": ['relu'],
             "solver": [ 'adam'],
             "max_iter": [10],
             "learning_rate": ['constant'],
             "learning_rate_init": [1e-4,1e-3,1e-2,1e-1,1],
             "random_state": [10],
             "batch_size": [5],
         }
          result = do_grid_search(
             MLPRegressor(),
             param_grid,
             X_train,
              Y_train,
             x_plot='learning_rate_init',
             xticks_rotation=45,
              stringify_xplot=True,
             bar_plot=True
          )
```

Fitting 7 folds for each of 5 candidates, totalling 35 fits


```
In [51]: # varying the learning_rate strategy
          from sklearn.neural_network import MLPRegressor
          X_train = df_train[best_mlp_features].values
          Y_train = df_train[joint_names].values
         X_test = df_test[best_mlp_features].values
          param_grid = {
              "hidden_layer_sizes": [
                  [7**3],
              "activation": ['relu'],
              "solver": [ 'adam'],
              "max_iter": [10],
"learning_rate": ['constant', 'invscaling', 'adaptive'],
              "learning_rate_init": [0.001],
              "random_state": [10],
              "batch_size": [5],
          }
          result = do_grid_search(
              MLPRegressor(),
              param_grid,
              X_train,
              Y_train,
              x_plot='learning_rate',
              xticks_rotation=45,
              stringify_xplot=True,
              bar_plot=True
```

Fitting 7 folds for each of 3 candidates, totalling 21 fits


```
In [52]: # varying the batch_size
         from sklearn.neural_network import MLPRegressor
         X_train = df_train[best_mlp_features].values
         Y_train = df_train[joint_names].values
         X_test = df_test[best_mlp_features].values
         param_grid = {
             "hidden_layer_sizes": [
                  [7**3],
              ],
             "activation": ['relu'],
             "solver": [ 'adam'],
             "max_iter": [10],
              "learning_rate": ['constant'],
             "learning_rate_init": [0.001],
             "random_state": [10],
             "batch_size": [5,10,50,100],
         }
          result = do_grid_search(
             MLPRegressor(),
              param_grid,
             X_train,
              Y_train,
             x_plot='batch_size',
              xticks_rotation=45,
              stringify_xplot=True,
              # bar_plot=True
```

Fitting 7 folds for each of 4 candidates, totalling 28 fits


```
In [53]: from sklearn.neural_network import MLPRegressor

mlp1=MLPRegressor(
    hidden_layer_sizes= [7**3],
    activation='relu',
    solver='adam',
    max_iter=200,
    learning_rate='constant',
    learning_rate_init=0.001,
    random_state=10,
    batch_size=5,

)

X_train = df_train[best_mlp_features]
Y_train = df_train[joint_names]
X_test = df_test[best_mlp_features]
best_mlp = mlp1.fit(X_train, Y_train)
```

Cross-comparison of the best estimators from each category

Best GA MAE: 0.062


```
In [63]: predictions=best_de.predict(positions)
  print('Best DE')
  print('MAE: ',evaluate_prediction(positions,predictions))
  for prediction,position in zip(predictions,positions):
    plot_robot(prediction,position)
```

Best DE MAE: 0.006


```
In [64]: predictions=best_pso.predict(positions)
    print('Best PSO')
    print('MAE: ',evaluate_prediction(positions,predictions))
    for prediction,position in zip(predictions,positions):
        plot_robot(prediction,position)
```

Best PS0 MAE: 0.0

In [65]: predictions=best_sa.predict(positions)
 print('Best SA')
 print('MAE: ',evaluate_prediction(positions,predictions))
 for prediction,position in zip(predictions,positions):
 plot_robot(prediction,position)

Best SA MAE: 0.014


```
In [66]: expanded_features=pd.DataFrame(expand_features(*positions[0,:]),index=[0])
    predictions=best_tree.predict(expanded_features[best_tree_features])
    print('Best DTR')
    print('MAE: ',evaluate_prediction(positions,predictions))

for prediction,position in zip(predictions,positions):
    plot_robot(prediction,position)
```

Best DTR MAE: 0.315


```
In [67]: expanded_features=pd.DataFrame(expand_features(*positions[0,:]),index=[0])[{}
    predictions=best_mlp.predict(expanded_features)
    print('Best MLP')
    print('MAE: ',evaluate_prediction(positions,predictions))

for prediction,position in zip(predictions,positions):
    plot_robot(prediction,position)
```

Best MLP MAE: 1.316

7DOF 19/04/2024, 15:42

Χ

2

