University of Toronto at Scarborough Department of Computer and Mathematical Sciences

Linear Programming and Optimazation

MATB61 Winter 2020

Answers to the odd number questions may be found at the end of the textbook.

Selected answers to the assignment #1

Section 1.1

x: number of machines of model A, y: number of machines of model B.

$$\min 15000x + 20000y$$

 $30x + 50y \ge 320$
 $x + 2y \le 12$
 $x, y \ge 0$

x₁, x₂, x₃: number of acres of corn, soybeans, oats respectively.

$$\begin{array}{rcl} \max 40x_1 + 30x_2 + 20x_3 \\ x_1 + x_2 + x_3 & \leq & 12 \\ 6x_1 + 6x_2 + 2x_3 & \leq & 48 \\ 36x_1 + 24x_2 + 18x_3 & \leq & 360 \\ x_1, x_2, x_3 \geq 0 \end{array}$$

x, y: number of barrels using four-field/five-field collector

$$\min 0.14x + 0.18y$$

 $x + y \leq 2500000$
 $.18x - 0.12y \leq 0$
 $x, y \geq 0$

The second inequality comes from the constraint

$$1.5x + 1.8y \le 0.84(2x + 2y)$$

x₁, x₂, x₃: amount invested in utilities stock, electronics stock and bonds (in tens
of thousands of dollars).

$$\max 0.09x_1 + 0.04x_2 + 0.05x_3$$

$$x_1 + x_2 + x_3 \leq 20$$

$$0.5x_1 + 0.5x_2 - 0.5x_3 \leq 0$$

$$x_1 \leq 4$$

$$x_3 \geq 7$$

$$x_1, x_2, x_3 \geq 0$$

 x_{ij} ith component of jth mixture, where components 1, 2, 3, 4 are alkylate, catalytic cracked, straight run, isopentane and mixtures 1, 2 are high and low octane.

$$\max 6.5 \sum_{i=1}^4 x_{i1} + 7.5 \sum_{i=1}^4 x_{i2} - 7.2(x_{11} + x_{12}) - 4.35(x_{21} + x_{22}) - 3.8(x_{31} + x_{32}) - 4.3(x_{41} + x_{42})$$

$$108x_{11} + 94x_{21} + 87x_{31} + 108x_{41} = 100 \sum_{i=1}^{4} x_{i1}$$

$$99x_{12} + 87x_{22} + 80x_{32} + 100x_{41} = 90 \sum_{i=1}^{4} x_{i2}$$

$$5x_{11} + 6.5x_{21} + 4x_{31} + 18x_{41} = 7 \sum_{i=1}^{4} x_{i1}$$

$$5x_{12} + 6.5x_{22} + 4x_{32} + 18x_{41} = 7 \sum_{i=1}^{4} x_{i2}$$

$$x_{11} + x_{12} \leq 700$$

$$x_{21} + x_{22} \leq 600$$

$$x_{31} + x_{32} \leq 900$$

$$x_{41} + x_{42} \leq 500$$

$$\sum_{i=1}^{4} x_{i1} = 1300$$

$$\sum_{i=1}^{4} x_{i2} = 800$$

$$x_{ij} \geq 0 \text{ for } i = 1, 2, 3, 4; j = 1, 2$$

In addition:

1.

x = number of days per week mine X is operated y = number of days per week mine Y is operated minimize 180x + 160y subject to $6x + y \ge 12$ $3x + y \ge 8$ $4x + 6y \ge 24$ $x \le 5$

y ≤ 5

2. a) Set
$$x_1 = x_1' - 1$$
 and $x_2 = 2 - x_2'$.
Max $z = 4x_1' - 2x_2' + x_3$
Subject to $x_1' + 3x_2' + x_3 \le 6$
 $5x_1' + 3x_3 \le 10$
 $-5x_1' - 3x_3 \le -10$
 $x_1' - x_2' + x_3 \le 0$
 $x_1', x_2', x_3 \ge 0$.

b) Maximize
$$x + 2y + 4z$$

Subject to $3x + 2y - 8z \le 0$
 $-5x - 4x + 6z \le 0$
 $x, y, z \ge 0$.

3. a) Set
$$x_3 = x_3^+ - x_3^-$$
.

$$\begin{aligned} \text{Max } z &= -x_1 - 2x_2 - x_3^+ + x_3^- \\ \text{Subject to } x_1 - x_2 + x_3^+ - x_3^- - s_1 &= 2 \\ x_1 + x_2 + s_2 &= 3 \\ x_1 + x_2 - s_3 &= -3 \\ x_1, x_2, x_3^+, x_3^- &\geq 0, s_i \geq 0, i = 1, 2, 3. \end{aligned}$$

b) Set
$$x = x^+ - x^-$$
, $y = -y'$ and $z = z' + 1$.
Max $z = -x^+ + x^- - 12y' - 3z'(-3)$
Subject to $5x^+ - 5x^- + y' - 2z' = 12$
 $-2x^+ + 2x^- + y' + 10z' + s_1 = 20$
 $z' + s_2 = 3$
 $x^+, x^-, y', z', s_1, s_2 \ge 0$.