LECTURE 4: QUANTITATIVE MASS SPECTROMETRY-BASED PROTEOMICS

Quantitative Proteomics

 Quantitative proteomics aims at simultaneously quantitation of level differences between many proteins in different samples, not at measurement of their absolute concentrations.

- Mass spectrum records a whole bunch of m/z
- BUT MS intensity does
 NOT tell us peptide abundance directly.

Why does MS¹ intensity not tell us peptide abundance directly?

 There is a poor correlation between the amount of a peptide and the MS intensity in a single MS spectrum

- Many factors affect the MS intensity:
 - Peptide concentration
 - Day to day and long-term instrument reproducibility
 - Digestion efficiency
 - Recovery during sample preparation
 - Ionization efficiency
 - Instantaneous matrix effects

Quantitation Techniques in Proteomics

- Electrophoretic techniques
- Mass spectrometric techniques

Electrophoretic Technique

- It is often difficult to obtain reproducible separations by standard 2D PAGE.
- Quantitative proteomics utilizes fluorescent dyes
 - Ease of use
 - High sensitivity (1 ng)
 - Low background (not staining the gel)
 - Compatibility with MS
 - Broad range of linearity
- Differential gel electrophoresis (DIGE) is used in quantitative proteomics.

Quantitative LC-MS

- Fixed volume of the sample is injected
- Analyte spreads out, elutes over a certain timespan from the column (peaks)
- Only a fraction of the analyte really enters the MS

Cycle Time: A Crucial Parameter In Chromatography-based Quantification

To achieve maximum benefit in an LC/MSn experiment, the series of events starting from the process of filling the MS analyzer through detecting the ions must be optimized for a chromatographic timescale. The time taken to complete this series of events is the analytical **cycle time**.

Mass Spectrometry-based Quantification

- Accurate quantitative results can only be achieved when working within the linear dynamic range of every given peptide, respectively.
- The linear dynamic range and LLOQ and ULOQ are peptide and MS dependent

Label-free Methods: <u>Spectral Counting</u> or Peak Area

- Each sample is separately prepared and then subjected to individual LC-MS/MS runs.
- Spectral Counting: more abundant peptides are more likely to be observed and detected.
- **Peak Area**: signal intensities of ions after ESI correlate with ion concentrations.

Spectral Counting

Method summary:

- MS² spectra queried against a sequence database to make peptide-spectrum matches (PSMs)
- Peptide ions from more abundant proteins trigger many more MS² scans
- Count PSMs matched to a given protein => approximate protein abundance

• Requirements:

Not much – system setup for LC-MS/MS (most tandem mass spectrometers can perform spectral counting)

 MS^1

Advantages:

It's really easy to do!

Disadvantages:

- Unclear how accurate the protein abundance values are. Normalization and careful statistical evaluation are still needed.
 - Origin of MS2 spectra...
 - proteins with only a few observable peptides
 - the quantitative changes between experiments are small
- Need lots of replicates to get statistical significance (how many...?)
- · Lots of machine time needed

The Origin of Spectra Count

- Fully digested tryptic peptides can be positively charged at both *N* and *C*-terminus upon electrospray ionization. Some tryptic peptides, containing histidine or extra arginine/lysine due to missed cleavage, can be 3⁺ charged.
- The MS² spectra that matched to a protein is a combination of:
 - spectra from different partial tryptic peptides and full tryptic peptides,
 - spectra from the same peptide with different charges,
 - spectra of the same peptide with variable modifications,
 - repeated spectra from the same peptide due to expired dynamic exclusion.

Note: At some situations, spectra that are potentially matched to partial tryptic peptides or peptides with PTMs are not included during data analysis by spectral interpretation software.

Dynamic exclusion is a software technique, allowing the mass spectrometer to more efficiently identify peptides in a sample.

The first scan measures the ions with the highest intensity (most abundant). These masses are added to a temporary 'exclusion' list for a period

Once the high intensity peaks have been sequenced and excluded the MS can measure peaks under the threshold, thereby detecting less abundant peptides.

Case Study: Type IX Secretion System (T9SS)

- T9SS is a novel protein secretion system discovered in the phylum Bacteroidetes
- Secretion of proteins including virulence factors requires T9SS

OM

CM

Purpose and Strategy

• **Purpose**: to identify which proteins are secreted by the bacterial type IX secretion system (T9SS) and their abundance

 Strategy: Create T9SS mutants (ΔgldNO and ΔporV) and complementation → Cell culturing → SDS-PAGE of secreted extracellular proteins → Enzymatic in-gel digestion → LC-MS/MS

Soluble extracellular proteins of wild-type and mutant cells

TABLE 5 Candidate proteins secreted by the T9SS identified by LC-MS/MS analysis of cell-free culture fluid

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				CTD^d	_	Spectrum count for:		
Fjoh_0601 208.2 OM 115 0 84 Fjoh_0602 279.3 OM 68 0 38 Fjoh_0604 144.2 E 47 0 39 Fjoh_0606 409.5 OM 163 0 172 Fjoh_0808/RemA 154.0 E TIGR04183 Motility adhesin 38 0 47 Fjoh_0886 99.1 E TIGR04183 Peptidase 12 0 19 Fjoh_1022 51.1 E TIGR04183 Licheninase 6 0 6 Fjoh_1123 121.9 E, OM TIGR04183 49 0 104 Fjoh_1188 152.7 E, OM TIGR04183 Lectin 74 0 112 Fjoh_1189 181.4 E TIGR04183 α-Amylase 45 0 66 Fjoh_1290 94.3 E TIGR04183 α-Amylase 45 0 66 Fjoh_22150 39.0								strain with
Fjoh_0602 279.3 OM 68 0 38 Fjoh_0604 144.2 E 47 0 39 Fjoh_0606 499.5 OM 163 0 172 Fjoh_0808/RemA 154.0 E TIGR04183 Motility adhesin 38 0 47 Fjoh_0886 99.1 E TIGR04183 Peptidase 12 0 19 Fjoh_1122 51.1 E TIGR04183 Licheninase 6 0 6 Fjoh_1188 152.7 E, OM TIGR04183 Lectin 74 0 104 Fjoh_1189 181.4 E TIGR04183 Lectin 74 0 112 Fjoh_1208 112.5 E TIGR04183 α-Amylase 45 0 66 Fjoh_1218 94.3 E, OM TIGR04183 α-Amylase 2 0 4 Fjoh_1408* 106.0 E TIGR04183 α-Amylase 2 0 <	Fjoh_0074	123.1	OM, E	TIGR04183	Nuclease/phosphatase	42	3	108
Fjoh_0604 144.2 E 47 0 39 Fjoh_0606 409.5 OM 163 0 172 Fjoh_0808/RemA 154.0 E TIGR04183 Motility adhesin 38 0 47 Fjoh_08866 99.1 E TIGR04183 Peptidase 12 0 19 Fjoh_1123 121.9 E, OM TIGR04183 Licheninase 6 0 6 Fjoh_1188 152.7 E, OM TIGR04183 Lectin 74 0 112 Fjoh_1288 152.7 E, OM TIGR04183 Lectin 74 0 112 Fjoh_1289 112.5 E TIGR04183 A-Amylase 45 0 66 Fjoh_1219 94.3 E, OM TIGR04183 α-Amylase 45 0 66 Fjoh_2169 94.3 E, OM TIGR04183 α-Amylase 2 0 4 Fjoh_2169f 258.1 E TIGR04183	Fjoh_0601	208.2	OM			115	0	84
Fjoh_0606 409.5 OM TIGR04183 Motility adhesin 38 0 47 Fjoh_0808/RemA 154.0 E TIGR04183 Peptidase 12 0 19 Fjoh_0886 99.1 E TIGR04183 Peptidase 12 0 19 Fjoh_1022 51.1 E TIGR04183 Licheninase 6 0 6 Fjoh_1123 121.9 E, OM TIGR04183 Licheninase 6 0 10 Fjoh_1188 152.7 E, OM TIGR04183 Lectin 74 0 112 Fjoh_1289 181.4 E TIGR04183 Lectin 74 0 112 Fjoh_1208 112.5 E TIGR04183 Pectate lyase 9 0 13 Fjoh_1269 94.3 E, OM TIGR04183 A-Amylase 2 0 4 Fjoh_1645f 258.1 E TIGR04183 A-Amylase 2 0 6	Fjoh_0602	279.3	OM			68	0	38
Fjoh_0808/RemA 154.0 E TIGR04183 Motility adhesin 38 0 47 Fjoh_0886 99.1 E TIGR04183 Peptidase 12 0 19 Fjoh_1022 51.1 E TIGR04183 Licheninase 6 0 6 Fjoh_1123 121.9 E, OM TIGR04183 Licheninase 49 0 104 Fjoh_1188 152.7 E, OM TIGR04183 Lectin 74 0 112 Fjoh_1189 181.4 E TIGR04183 Lectin 74 0 112 Fjoh_1208 112.5 E TIGR04183 A-Amylase 45 0 66 Fjoh_1231 97.8 E TIGR04183 A-Amylase 45 0 66 Fjoh_1269 94.3 E, OM TIGR04183 A-Amylase 2 0 4 Fjoh_1408f 106.0 E TIGR04183 A-Amylase 2 0 6	Fjoh_0604	144.2	E			47	0	39
Fjoh_0886 99.1 E TIGR04183 Peptidase 12 0 19 Fjoh_1022 51.1 E TIGR04183 Licheninase 6 0 6 Fjoh_1123 121.9 E, OM TIGR04183 Licheninase 6 0 6 Fjoh_1188 152.7 E, OM TIGR04183 Lectin 74 0 112 Fjoh_1208 112.5 E TIGR04183 Lectin 74 0 112 Fjoh_1208 112.5 E TIGR04183 Lectin 74 0 112 Fjoh_1208 112.5 E TIGR04183 Lectin 74 0 112 Fjoh_1269 94.3 E, OM TIGR04183 27 4 43 Fjoh_1408f 106.0 E TIGR04183 27 4 43 Fjoh_2150 39.0 E, OM TIGR04183 6 0 6 Fjoh_2273 93.3 E TIGR04183	Fjoh_0606	409.5	OM			163	0	172
Fjoh_1022 51.1 E TIGR04183 Licheninase 6 0 6 Fjoh_1123 121.9 E, OM TIGR04131 34 0 10 Fjoh_1188 152.7 E, OM TIGR04183 49 0 104 Fjoh_1189 181.4 E TIGR04183 Lectin 74 0 112 Fjoh_1208 112.5 E TIGR04183 α-Amylase 45 0 66 Fjoh_1231 97.8 E TIGR04183 Pectate lyase 9 0 13 Fjoh_1269 94.3 E, OM TIGR04183 α-Amylase 2 0 4 Fjoh_1408f 106.0 E TIGR04183 α-Amylase 2 0 4 Fjoh_1408f 106.0 E TIGR04183 α-Amylase 2 0 6 Fjoh_2150 39.0 E, OM TIGR04183 Peptidase 2 0 7 Fjoh_2287 57.7 E, OM <td>Fjoh_0808/RemA</td> <td>154.0</td> <td>E</td> <td>TIGR04183</td> <td>Motility adhesin</td> <td>38</td> <td>0</td> <td>47</td>	Fjoh_0808/RemA	154.0	E	TIGR04183	Motility adhesin	38	0	47
Fjoh_1123 121.9 E, OM TIGR04131 34 0 10 Fjoh_1188 152.7 E, OM TIGR04183 49 0 104 Fjoh_1189 181.4 E TIGR04183 Lectin 74 0 112 Fjoh_1208 112.5 E TIGR04183 α-Amylase 45 0 66 Fjoh_1231 97.8 E TIGR04183 α-Amylase 9 0 13 Fjoh_1269 94.3 E, OM TIGR04183 α-Amylase 2 0 4 Fjoh_1408f 106.0 E TIGR04183 α-Amylase 2 0 4 Fjoh_1408f 106.0 E TIGR04183 α-Amylase 2 0 6 Fjoh_1408f 106.0 E TIGR04183 α-Amylase 2 0 6 Fjoh_2150 39.0 E, OM TIGR04183 α-Amylase 2 0 6 Fjoh_2267 12.0 TIGR04183 <td>Fjoh_0886</td> <td>99.1</td> <td>E</td> <td>TIGR04183</td> <td>Peptidase</td> <td>12</td> <td>0</td> <td>19</td>	Fjoh_0886	99.1	E	TIGR04183	Peptidase	12	0	19
Fjoh_1188 152.7 E, OM TIGR04183 49 0 104 Fjoh_1189 181.4 E TIGR04183 Lectin 74 0 112 Fjoh_1208 112.5 E TIGR04183 α-Amylase 45 0 66 Fjoh_1231 97.8 E TIGR04183 Pectate lyase 9 0 13 Fjoh_1269 94.3 E, OM TIGR04183 27 4 43 Fjoh_1408f 106.0 E TIGR04183 α-Amylase 2 0 4 Fjoh_1408f 106.0 E TIGR04183 α-Amylase 2 0 6 Fjoh_1408f 106.0 E TIGR04183 α-Amylase 2 0 6 Fjoh_2150 39.0 E, OM TIGR04183 4 0 5 Fjoh_2389f 57.7 E, OM TIGR04183 Peptidase 2 0 7 Fjoh_2667 129.7 OM E	Fjoh_1022	51.1	E	TIGR04183	Licheninase	6	0	6
Fjoh_1189 181.4 E TIGR04183 Lectin 74 0 112 Fjoh_1208 112.5 E TIGR04183 α-Amylase 45 0 66 Fjoh_1231 97.8 E TIGR04183 Pectate lyase 9 0 13 Fjoh_1269 94.3 E, OM TIGR04183 27 4 43 Fjoh_1408f 106.0 E TIGR04183 α-Amylase 2 0 4 Fjoh_1408f 106.0 E TIGR04183 α-Amylase 2 0 4 Fjoh_1408f 106.0 E TIGR04183 α-Amylase 2 0 4 Fjoh_1645f 258.1 E TIGR04183 α-Amylase 2 0 6 Fjoh_2273 93.3 E TIGR04183 α-Amylase 2 0 6 Fjoh_2389f 57.7 E, OM TIGR04183 Peptidase 2 0 7 Fjoh_2667 129.7	Fjoh_1123	121.9	E, OM	TIGR04131		34	0	10
Fjoh_1208 112.5 E TIGR04183 α-Amylase 45 0 66 Fjoh_1231 97.8 E TIGR04183 Pectate lyase 9 0 13 Fjoh_1269 94.3 E, OM TIGR04183 Pectate lyase 9 0 13 Fjoh_1269 94.3 E, OM TIGR04183 Pectate lyase 9 0 13 Fjoh_1408f 106.0 E TIGR04183 α-Amylase 2 0 4 Fjoh_1408f 106.0 E TIGR04183 α-Amylase 2 0 4 Fjoh_2150 39.0 E, OM TIGR04183 α-Amylase 2 0 6 Fjoh_2273 93.3 E TIGR04183 Peptidase 2 0 7 Fjoh_2389f 57.7 E, OM TIGR04183 Peptidase 2 0 7 Fjoh_2687 155.8 E E TIGR04183 Peptidase 12 0 7 Fjoh_3108 30.9 OM, E TIGR04183 Carbohydrate binding 16	Fjoh_1188	152.7	E, OM	TIGR04183		49	0	104
Fjoh_1231 97.8 E TIGR04183 Pectate lyase 9 0 13 Fjoh_1269 94.3 E, OM TIGR04183 α-Amylase 2 0 4 Fjoh_1408f 106.0 E TIGR04183 α-Amylase 2 0 4 Fjoh_1645f 258.1 E TIGR04131 2 0 6 Fjoh_2150 39.0 E, OM TIGR04183 6 0 6 Fjoh_2273 93.3 E TIGR04183 Peptidase 2 0 7 Fjoh_2389f 57.7 E, OM TIGR04183 Peptidase 2 0 7 Fjoh_2667 129.7 OM TIGR04183 Peptidase 2 0 7 Fjoh_3108 30.9 OM, E, P 7 0 10 10 Fjoh_3246 299.4 OM, E TIGR04183 Carbohydrate binding 16 1 40 Fjoh_3772 128.1 OM TIGR04183<	Fjoh_1189	181.4	E	TIGR04183	Lectin	74	0	112
Fjoh_1269 94.3 E, OM TIGR04183 27 4 43 Fjoh_1408f 106.0 E TIGR04183 α-Amylase 2 0 4 Fjoh_1645f 258.1 E TIGR04131 2 0 6 Fjoh_2150 39.0 E, OM TIGR04183 6 0 6 Fjoh_2273 93.3 E TIGR04131 4 0 5 Fjoh_2389f 57.7 E, OM TIGR04183 Peptidase 2 0 7 Fjoh_2667 129.7 OM TIGR04183 Peptidase 2 0 7 Fjoh_2687 155.8 E 26 1 26 Fjoh_3108 30.9 OM, E, P 7 0 10 Fjoh_3246 299.4 OM, E TIGR04183 Carbohydrate binding 16 1 40 Fjoh_3729 195.1 OM TIGR04183 Deacylase 10 0 25 Fjoh_3952 330.6 E TIGR04183 Carbohydrate binding 40 5 <td< td=""><td>Fjoh_1208</td><td>112.5</td><td>E</td><td>TIGR04183</td><td>α-Amylase</td><td>45</td><td>0</td><td>66</td></td<>	Fjoh_1208	112.5	E	TIGR04183	α-Amylase	45	0	66
Fjoh_1269 94.3 E, OM TIGR04183 α-Amylase 27 4 43 Fjoh_1408f 106.0 E TIGR04183 α-Amylase 2 0 4 Fjoh_1645f 258.1 E TIGR04131 2 0 6 Fjoh_2150 39.0 E, OM TIGR04183 6 0 6 Fjoh_2273 93.3 E TIGR04131 4 0 5 Fjoh_2389f 57.7 E, OM TIGR04183 Peptidase 2 0 7 Fjoh_2667 129.7 OM TIGR04183 Peptidase 2 0 7 Fjoh_2687 155.8 E E 26 1 26 Fjoh_3108 30.9 OM, E, P 7 0 10 Fjoh_3246 299.4 OM, E TIGR04183 Carbohydrate binding 16 1 40 Fjoh_3729 195.1 OM TIGR04183 Deacylase 10 0 <td< td=""><td>Fjoh_1231</td><td>97.8</td><td>E</td><td>TIGR04183</td><td>Pectate lyase</td><td>9</td><td>0</td><td>13</td></td<>	Fjoh_1231	97.8	E	TIGR04183	Pectate lyase	9	0	13
Fjoh_1645f 258.1 E TIGR04131 2 0 6 Fjoh_2150 39.0 E, OM TIGR04183 6 0 6 Fjoh_2273 93.3 E TIGR04131 4 0 5 Fjoh_2389f 57.7 E, OM TIGR04183 Peptidase 2 0 7 Fjoh_2667 129.7 OM 28 0 7 0 10 Fjoh_2687 155.8 E 26 1 26 1 26 Fjoh_3108 30.9 OM, E, P 7 0 10 10 10 7 10 10 10 7 10 10 7 10 10 7 10 10 7 10 10 7 10 10 7 10 10 7 10 10 7 10 10 7 10 10 7 7 10 10 7 10 10 10 20 77 10 10 10 20 20 11 10 20<		94.3	E, OM	TIGR04183		27	4	43
Fjoh_1645f 258.1 E TIGR04131 2 0 6 Fjoh_2150 39.0 E, OM TIGR04183 6 0 6 Fjoh_2273 93.3 E TIGR04131 4 0 5 Fjoh_2389f 57.7 E, OM TIGR04183 Peptidase 2 0 7 Fjoh_2667 129.7 OM 28 0 7 0 10 Fjoh_2687 155.8 E 26 1 26 1 26 Fjoh_3108 30.9 OM, E, P 7 0 10 10 10 7 10 10 10 7 10 10 7 10 10 7 10 10 7 10 10 7 10 10 7 10 10 7 10 10 7 10 10 7 10 10 7 7 10 10 7 10 10 10 20 77 10 10 10 20 20 11 10 20<	Fjoh_1408 ^f	106.0	E	TIGR04183	α-Amylase	2	0	4
Fjoh_2273 93.3 E TIGR04131 4 0 5 Fjoh_2389f 57.7 E, OM TIGR04183 Peptidase 2 0 7 Fjoh_2667 129.7 OM 28 0 7 0 1 26 Fjoh_2687 155.8 E 26 1 2 0 7 0 10 10 10 1 40 1 2 0 7 7 0 10 1 40 1 2 2 0 11 1		258.1	E	TIGR04131		2	0	6
Fjoh_2389f 57.7 E, OM TIGR04183 Peptidase 2 0 7 Fjoh_2667 129.7 OM 28 0 7 Fjoh_2687 155.8 E 26 1 26 Fjoh_3108 30.9 OM, E, P 7 0 10 Fjoh_3246 299.4 OM, E TIGR04183 Carbohydrate binding 16 1 40 Fjoh_3324 105.3 E TIGR04183 Carbohydrate binding 16 1 40 Fjoh_3729 195.1 OM 46 0 32 Fjoh_3777 128.1 OM, E TIGR04183 Deacylase 10 0 25 Fjoh_4174 102.5 E TIGR04183 Carbohydrate binding 40 5 40 Fjoh_4176 95.4 E TIGR04183 Glycoside hydrolase 22 0 35 Fjoh_4750 158.1 E TIGR04131 13 0 3 <t< td=""><td>Fjoh_2150</td><td>39.0</td><td>E, OM</td><td>TIGR04183</td><td></td><td>6</td><td>0</td><td>6</td></t<>	Fjoh_2150	39.0	E, OM	TIGR04183		6	0	6
Fjoh_2667 129.7 OM 28 0 7 Fjoh_2687 155.8 E 26 1 26 Fjoh_3108 30.9 OM, E, P 7 0 10 Fjoh_3246 299.4 OM, E TIGR04183 Carbohydrate binding 16 1 40 Fjoh_3324 105.3 E TIGR04183 Carbohydrate binding 16 1 40 Fjoh_3729 195.1 OM 46 0 32 Fjoh_3777 128.1 OM, E TIGR04183 Deacylase 10 0 25 Fjoh_3952 330.6 E TIGR04131 22 0 11 Fjoh_4174 102.5 E TIGR04183 Carbohydrate binding 40 5 40 Fjoh_4176 95.4 E TIGR04183 Glycoside hydrolase 22 0 35 Fjoh_4750 158.1 E TIGR04131 13 0 3 Fjoh_4819	Fjoh_2273	93.3	E	TIGR04131		4	0	5
Fjoh_2687 155.8 E 26 1 26 Fjoh_3108 30.9 OM, E, P 7 0 10 Fjoh_3246 299.4 OM, E TIGR04183 12 0 77 Fjoh_3324 105.3 E TIGR04183 Carbohydrate binding 16 1 40 Fjoh_3729 195.1 OM 46 0 32 Fjoh_3777 128.1 OM, E TIGR04183 Deacylase 10 0 25 Fjoh_3952 330.6 E TIGR04131 22 0 11 Fjoh_4174 102.5 E TIGR04183 Carbohydrate binding 40 5 40 Fjoh_4176 95.4 E TIGR04183 Carbohydrate binding 48 3 65 Fjoh_4177 144.9 E TIGR04183 Glycoside hydrolase 22 0 35 Fjoh_4819 112.5 C, OM, P Glycoside hydrolase 34 0 5	Fjoh_2389 ^f	57.7	E, OM	TIGR04183	Peptidase	2	0	7
Fjoh_3108 30.9 OM, E, P 7 0 10 Fjoh_3246 299.4 OM, E TIGR04183 12 0 77 Fjoh_3324 105.3 E TIGR04183 Carbohydrate binding 16 1 40 Fjoh_3729 195.1 OM 46 0 32 Fjoh_3777 128.1 OM, E TIGR04183 Deacylase 10 0 25 Fjoh_3952 330.6 E TIGR04131 22 0 11 Fjoh_4174 102.5 E TIGR04183 Carbohydrate binding 40 5 40 Fjoh_4176 95.4 E TIGR04183 Carbohydrate binding 48 3 65 Fjoh_4750 158.1 E TIGR04131 13 0 3 Fjoh_4819 112.5 C, OM, P Glycoside hydrolase 34 0 5	Fjoh_2667	129.7	OM			28	0	7
Fjoh_3246 299.4 OM, E TIGR04183 12 0 77 Fjoh_3324 105.3 E TIGR04183 Carbohydrate binding 16 1 40 Fjoh_3729 195.1 OM 46 0 32 Fjoh_3777 128.1 OM, E TIGR04183 Deacylase 10 0 25 Fjoh_3952 330.6 E TIGR04131 22 0 11 Fjoh_4174 102.5 E TIGR04183 Carbohydrate binding 40 5 40 Fjoh_4176 95.4 E TIGR04183 Carbohydrate binding 48 3 65 Fjoh_4177 144.9 E TIGR04183 Glycoside hydrolase 22 0 35 Fjoh_4750 158.1 E TIGR04131 13 0 3 Fjoh_4819 112.5 C, OM, P Glycoside hydrolase 34 0 5	Fjoh_2687	155.8	E			26	1	26
Fjoh_3324 105.3 E TIGR04183 Carbohydrate binding 16 1 40 Fjoh_3729 195.1 OM 46 0 32 Fjoh_3777 128.1 OM, E TIGR04183 Deacylase 10 0 25 Fjoh_3952 330.6 E TIGR04131 22 0 11 Fjoh_4174 102.5 E TIGR04183 Carbohydrate binding 40 5 40 Fjoh_4176 95.4 E TIGR04183 Carbohydrate binding 48 3 65 Fjoh_4177 144.9 E TIGR04183 Glycoside hydrolase 22 0 35 Fjoh_4750 158.1 E TIGR04131 13 0 3 Fjoh_4819 112.5 C, OM, P Glycoside hydrolase 34 0 5	Fjoh_3108	30.9	OM, E, P			7	0	10
Fjoh_3324 105.3 E TIGR04183 Carbohydrate binding 16 1 40 Fjoh_3729 195.1 OM 46 0 32 Fjoh_3777 128.1 OM, E TIGR04183 Deacylase 10 0 25 Fjoh_3952 330.6 E TIGR04131 22 0 11 Fjoh_4174 102.5 E TIGR04183 Carbohydrate binding 40 5 40 Fjoh_4176 95.4 E TIGR04183 Carbohydrate binding 48 3 65 Fjoh_4177 144.9 E TIGR04183 Glycoside hydrolase 22 0 35 Fjoh_4750 158.1 E TIGR04131 13 0 3 Fjoh_4819 112.5 C, OM, P Glycoside hydrolase 34 0 5	Fjoh_3246	299.4	OM, E	TIGR04183		12	0	77
Fjoh_3729 195.1 OM 46 0 32 Fjoh_3777 128.1 OM, E TIGR04183 Deacylase 10 0 25 Fjoh_3952 330.6 E TIGR04131 22 0 11 Fjoh_4174 102.5 E TIGR04183 Carbohydrate binding 40 5 40 Fjoh_4176 95.4 E TIGR04183 Carbohydrate binding 48 3 65 Fjoh_4177 144.9 E TIGR04183 Glycoside hydrolase 22 0 35 Fjoh_4750 158.1 E TIGR04131 13 0 3 Fjoh_4819 112.5 C, OM, P Glycoside hydrolase 34 0 5	•	105.3	E	TIGR04183	Carbohydrate binding	16	1	40
Fjoh_3952 330.6 E TIGR04131 22 0 11 Fjoh_4174 102.5 E TIGR04183 Carbohydrate binding 40 5 40 Fjoh_4176 95.4 E TIGR04183 Carbohydrate binding 48 3 65 Fjoh_4177 144.9 E TIGR04183 Glycoside hydrolase 22 0 35 Fjoh_4750 158.1 E TIGR04131 13 0 3 Fjoh_4819 112.5 C, OM, P Glycoside hydrolase 34 0 5	Fjoh_3729	195.1	OM			46	0	32
Fjoh_4174 102.5 E TIGR04183 Carbohydrate binding 40 5 40 Fjoh_4176 95.4 E TIGR04183 Carbohydrate binding 48 3 65 Fjoh_4177 144.9 E TIGR04183 Glycoside hydrolase 22 0 35 Fjoh_4750 158.1 E TIGR04131 13 0 3 Fjoh_4819 112.5 C, OM, P Glycoside hydrolase 34 0 5	Fjoh_3777	128.1	OM, E	TIGR04183	Deacylase	10	0	25
Fjoh_4176 95.4 E TIGR04183 Carbohydrate binding 48 3 65 Fjoh_4177 144.9 E TIGR04183 Glycoside hydrolase 22 0 35 Fjoh_4750 158.1 E TIGR04131 13 0 3 Fjoh_4819 112.5 C, OM, P Glycoside hydrolase 34 0 5	Fjoh_3952	330.6	E	TIGR04131		22	0	11
Fjoh_4177 144.9 E TIGR04183 Glycoside hydrolase 22 0 35 Fjoh_4750 158.1 E TIGR04131 13 0 3 Fjoh_4819 112.5 C, OM, P Glycoside hydrolase 34 0 5	Fjoh_4174	102.5	E	TIGR04183	Carbohydrate binding	40	5	40
Fjoh_4750 158.1 E TIGR04131 13 0 3 Fjoh_4819 112.5 C, OM, P Glycoside hydrolase 34 0 5	Fjoh_4176	95.4	E	TIGR04183	Carbohydrate binding	48	3	65
Fjoh_4819 112.5 C, OM, P Glycoside hydrolase 34 0 5	Fjoh_4177	144.9	E	TIGR04183	Glycoside hydrolase	22	0	35
Fjoh_4819 112.5 C, OM, P Glycoside hydrolase 34 0 5	Fjoh_4750	158.1	E	TIGR04131	-	13	0	3
Fjoh_4934 84.8 E TIGR04131 11 1 7	-	112.5	C, OM, P		Glycoside hydrolase	34	0	5
	Fjoh_4934	84.8	E	TIGR04131		11	1	7

Peak Area/Peptide Ion Intensity Based Protein Quantification

- MS signal intensity for the peptide at a certain time is proportional to the concentration eluting off the column
- The area under the chromatographic peak is proportional to the total amount of analyte eluting and thus to the amount in the sample. Hence, we want to integrate over time.

Method summary:

- Compare MS¹ peptide ion abundance across runs;
- Specialist software must align different parallel LC-MS runs
- Calculate ratios from aligned MS1 data

Peak Area/ Peptide Ion Intensity Based Protein Quantification

Advantages:

- In theory, should be more accurate than spectral counting uses real intensity data
- No complicated labelling protocols

Disadvantages:

- Data processing is fairly CPU intensive
- Only works well if experimental system has high technical and biological reproducibility

• Requirements:

- Very good LC delivery system (must be reproducible)
- High resolution mass spec (Orbitrap etc...)
- Good PC for running software

Acquired Data

Acquired Data

Retention time

Peptide Ion Intensity

The total ion current (TIC) chromatogram represents the summed intensity across the entire range of masses being detected at every point in the analysis

In an extracted-ion chromatogram (XIC or EIC), also called a reconstructed-ion chromatogram (RIC), one or more m/z values representing one or more analytes of interest are extracted from the entire data set for a chromatographic run.

LC-MS Chromatographic Alignment

- To extract the peptide peak area, two basic parameters, m/z and retention time, must be determined.
- Typically, the m/z value is measured reproducibly in low resolution mass spectrometers such as the LTQ linear ion trap MS and extremely reproducibly in high resolution mass spectrometers such as LTQ-Orbitrap.
- Retention time of peptides can shift between experiments
- LC-MS maps can contain millions of peaks
- In label-free quantification, maps thus need to be aligned in order to find the corresponding peaks

What should be considered?

- Fact 1: A single chromatographic condition, e.g., one specific column with a specific mobile phase and gradient, will not be optimal for each of the thousands of peptides in a single injection of a complex sample.
 → Multiple runs.
- Fact 2: A peptide shared by different proteins → the intensity of this
 peptide should be divided by sharing frequency.
- Fact 3: Systematic bias → normalization and filtration of unquantifiable peptides

Label-free Methods: spectral counting or peak area

Pros:

- Simple workflow
 - No complicated (or expensive) labelling or tagging protocol
- Whole proteome analysis
- Comparison of multiple states (relative quantification)

Cons:

- Still can be expensive
 - Need plenty of replicates to get statistical power (machine time!)
- Reproducible sample prep, chromatography and MS performance is critical for this approach
- Not straightforward to validate results from big data sets
- Low abundance proteins hard to measure accurately

Applications of Label-free Quantitative methods

- Identifying expression profiles in different biological processes
- Diagnosing certain diseases and cancer biomarkers
- Monitoring changes in certain biological process proteomes
- Studying protein interaction networks

Stable-isotope Labeled Methods

- Provide a useful means of determining the relative expression level of individual proteins between samples with high precision (coefficients of variation less than 10%).
- Because two or more samples tagged with different numbers of stable isotopes can be mixed before any processing steps, sample-to-sample recovery differences are eliminated.
- Also allow post-translational modifications, splice variations and mutations (often unnoticed in immunoassays) to be detected and identified, increasing the clinical relevance of the assay and avoiding the issues of non-specific binding and cross-reactivity observed in immunoassays.

Labeling: ICAT (Isotope-Coded Affinity Tagging)

Heavy ICAT: (X=deuterium)

Light ICAT: (X=hydrogen)

Biotin moiety,
which permits
isolation of the
labeled molecules
by affinity
chromatography
(interact with
avidin

immobilized)

Linker containing light (X= H) or heavy (X=D) isotopes

Iodoacetamide moiety, which
binds to cysteine
thiol group

ICAT (Isotope-Coded Affinity Tagging)

Advantages

- High specificity
- High sensitivity
- Applicability to samples of different origin (cell, tissues, fluids)
- Effective labeling in the presence of guanidine, SDS, or urea

Disadvantages

 It doesn't allow for quantification of proteins that do not contain Cys residues.

Solid-phase ICAT

- Faster and easier to conduct, because it doesn't require isolation of labeled peptides by chromatographic methods.
- Better, but it's expensive and light sensitive.

Labeling: iTRAQ (Isobaric Tags for Relative and Absolute Quantitation)

- iTRAQ permits simultaneous analysis of 2-8 samples.
 - TMT– 6-plex
 - iTRAQ-8 8-plex
- It is based on labeling of peptides with isobaric tags but produce different fragment ions during fragmentation.

iTRAQ Reagents

Produces an ion of MW = 114 after fragmentation

Produces an ion of MW = 115 after fragmentation

Produces an ion of MW = 116 after fragmentation

Produces an ion of MW = 117 after fragmentation

General Workflow with iTRAQ Method

same peptide

from 4 different

Ahmed Moghieb, Manasi Mangaonkar, Kevin K.W. Wang. Translational proteomics I (2013) 65-73

Labeling: SILAC (Stable Isotope Labeling with Amino Acids in Cell Culture) 13C 15N

$$H_2N$$
 NH
 NH
 NH
 NH_2
 OH

$$H_2N$$
 NH
 NH
 NH_2
 NH_2

Arg₊₆ (Medium)

Arg₊₁₀ (Heavy)

SILAC (Stable Isotope Labeling with Amino Acids in Cell Culture)

Optional protein or peptide fractionation analyze sample with mass spectrometry

Drawbacks:

- Limited plex level (3 max)
- The method does not allow for the analysis of proteins directly from tissue.
- The stable-isotope enriched media are costly and may themselves affect cellular growth and protein production.
- The increase in nominal mass because of stable-isotope incorporation is not known until the sequence is determined.

Label-free quantification (1 sample at a time)

Summary

of MS-based

Chemical labeling (up to 10 samples at a time)

Metabolic labeling (SILAC) (up to 3 samples at a time)

Increasing precision

Label versus Label-free

Label (cons and pros)

- Stable isotopes are expensive and not suitable for clinical samples
- But... less experimental variation if samples are mixed
- Improved quantitative precision and accuracy
- Improved confidence in peak identification

Label-free (cons and pros)

- Need lots of replicates to get statistical power
- So lots of time on MS instrument therefore also can be expensive
- Fairly new technique therefore not enough high-quality published studies showing best practice
- No labelling needed
- No limit on the number of samples
- Applicable to any kind of samples

Challenges in LC-MS Platform

- Highly reproducible LC-MS analysis (retention time shift, fluctuations in MS signal intensity, peptide identification in separated MS/MS)
- Complex samples (overlapping signals, misaligned peptides)
- Large sample size (column degradation)

Definition of Absolute vs Relative Protein Quantification

Relative quantification

- Relative comparison of the same protein between samples
- ≥2 samples
- Output: protein ratio

Absolute quantification

- Comparison of the same protein between samples and different proteins within the same sample
- ≥1 sample
- Output: protein concentration (copies/cell, fmol/µg extract, ng/mL body fluid)

The multitude of quantitative MS-application

- Which type of quantitative mass spectrometric approach is most suited for my project?
 - What type of MS platform do I have access to?
 - How precise and accurate do my quantitative results have to be?
 - What type of sample am I working with?
 - How large is my project (number of samples)
 - Budget (costs and time)
 - Do I need relative or absolute quantitative data?

Application: Protein Biomarker Development

- Biomarker: molecular signature representing a state of a living organ/cell
 - Its expression is associated specially with a particular pathological state (e.g., level affected, modification).
- -- Diagnostics
- -- Prognostics
- -- Target identification
- -- Monitoring drug efficacy

REVIEW ARTICLE

https://doi.org/10.1038/s41596-021-00566-6

Tutorial: best practices and considerations for mass-spectrometry-based protein biomarker discovery and validation

Ernesto S. Nakayasu ¹ Marina Gritsenko ¹, Paul D. Piehowski Yuqian Gao Daniel J. Orton, Athena A. Schepmoes, Thomas L. Fillmore, Brigitte I. Frohnert, Marian Rewers, Jeffrey P. Krischer, Charles Ansong, Astrid M. Suchy-Dicey, Carmella Evans-Molina, Wei-Jun Qian ¹, Bobbie-Jo M. Webb-Robertson ¹, and Thomas O. Metz