RICERCA OPERATIVA

prova scritta del 24 novembre 2010

GRUPPO A

1. Scrivere il duale del seguente problema: min $x_1 - 4x_2 + 2x_3$ max $y_1 - 2y_2$

- **2.** Il vettore $\mathbf{w} = (-\frac{2}{3}, 1, \frac{2}{3})$ è combinazione convessa di $\mathbf{v}_1 = (1, 0, 2), \mathbf{v}_2 = (-1, 1, -1), \mathbf{v}_3 = (-2, 2, 1).$
- 3. Utilizzando il metodo di Fourier-Motzkin, risolvere il problema: min $-x_1 + 2x_2$ $3x_1 + 3x_2 + 2x_3 \le 1$

$$3x_1 + 3x_2 + 2x_3 \le 1$$

$$2x_1 - 3x_2 + 2x_3 \ge 4$$

$$x_1, x_2, x_3 \ge 0$$

z	x_1	x_2	x_3	<	\boldsymbol{z}	x_1	x_2	x_3	<	
-1	-1	2	0	0	-1	-1	2	0	0	
0	3	3	2	1	0	1	6	0	-3 0	
0	-2	3	-2	-4	0	-1	0	0	0	
0	-1	0	0	0	0	0	-1	0	0	
0	0	-1	0	0	0	3	3	0	1	
0	0	0	-1	0						

x_1	x_2	x_3	<	_	Z	x_1	x_2	x_3	-3 -3 1 1
-1	0	0	0		-1	0	0	0	-3
1	0	0	-3		0	0	0	0	-3
-1	0	0	0		-3	0	0	0	1
3	0	0	1		0	0	0	0	1
				•					

Il problema non ammette soluzione.

4. Risolvete il **Problema 3** con il metodo del simplesso.

Occorre prima portare il problema in forma standard con termini noti non negativi. Ciò si può fare, al solito, aggiungendo due variabili ausiliarie non negative, y_1 di slack e y_2 di surplus. Il problema si riscrive

$$\begin{array}{ll}
\max & x_1 - 2x_2 \\
& 3x_1 + 3x_2 + 2x_3 + y_1 = 1 \\
& 2x_1 - 3x_2 + 2x_3 - y_2 = 4 \\
& x_1, x_2, x_3, y_1, y_2 \ge 0
\end{array}$$

Il problema non è in forma canonica. Per trovarla bisogna risolvere il problema ausiliario

min
$$u$$

 $3x_1 + 3x_2 + 2x_3 + y_1 = 1$
 $2x_1 - 3x_2 + 2x_3 - y_2 + u = 4$
 $x_1, x_2, x_3, y_1, y_2, u \ge 0$

La tabella del simplesso si scrive

					y_2		
I	0	0	0	0	0 0 -1	1	0
ſ	3	3	2	1	0	0	1
ı	2	-3	2	0	-1	1	4

La forma canonica si ricava sottraendo la riga 2 alla riga 0:

x_1	x_2	x_3	y_1	y_2	u	
-2	3	-2	0	1	0	-4
3	3	2			0	-1
2	-3	2	0	-1	1	4

La soluzione di base corrente non soddisfa il criterio di ottimalità. Operando un pivot in riga 1 e colonna 3 si ottiene

x_1	x_2	x_3	y_1	y_2	u	
1	0	0	1	1	0	-3
$^{3}/_{2}$	$^{3}/_{2}$	1	1/2	0 -1	0	1/2
-1	-6	0	-1	-1	1	3

La soluzione è ottima, ma non è possibile far uscire u dalla base. Il problema originale non ammette quindi soluzione.

5. Globalization. La Kuru Incir SpA (KI) è una società multinazionale che si occupa della grande distribuzione di fichi secchi, operandone il trasporto da magazzini sparsi in giro per il mondo a centri alimentari altrettanto dispersi sul globo terrestre. In un giorno il magazzino i offre mediamente al mercato una certa quantità di merce p_i e il centro alimentare j assorbe mediamente una certa quantità q_j . La KI applica una tariffa per chilometro percorso e fico secco spedito che dipende dalla tratta ij collegata: indichiamo quindi con c_{ij} il costo sostenuto dal cliente per far spedire dalla KI un fico secco dal magazzino i al centro j e con u_{ij} la massima quantità di fichi secchi che con i suoi mezzi la KI è in grado di spedire da i a j. Sia inoltre T l'insieme delle tratte ij collegate.

Orbene, la Biz Bir Banka Var! (BBBV!), grande cooperativa alimentare e principale cliente della KI, ha ben presente l'elevata incidenza del trasporto sul prezzo finale prodotto e vuole quindi soddisfare la propria domanda di fichi secchi minimizzando questa voce di costo. Quale problema deve formulare? Risolvetelo con il metodo del simplesso su reti ipotizzando i valori della seguente tabella.

	centro alimentare 1	centro alimentare 2	centro alimentare 3		offerta dei magazzini
costi di	10	14	8	magazzino 1	7000
spedizione c _{ij}	12	11	16	magazzino 2	9000
domanda dei centri	4500	4000	6000		
quantità max	2300	3000	2100	magazzino 1	
per tratta u _{ij}	3000	2000	5500	magazzino 2	

Il problema può formularsi indicando con x_{ij} il numero di fichi secchi che il centro j ritira giornalmente dal magazzino i. Obiettivo e vincoli si scrivono:

Con i dati della tabella il problema si riscrive

min
$$10x_{11} + 14x_{12} + 8x_{13} + 12x_{21} + 11x_{22} + 16x_{23}$$

$$x_{11} + x_{12} + x_{13} \le 7000 \qquad 0 \le x_{11} \le 2300$$

$$x_{21} + x_{22} + x_{23} \le 9000 \qquad 0 \le x_{12} \le 3000$$

$$x_{11} + x_{21} + x_{31} = 4500 \qquad 0 \le x_{13} \le 2100$$

$$x_{12} + x_{22} + x_{32} = 4000 \qquad 0 \le x_{21} \le 3000$$

$$x_{13} + x_{23} + x_{33} = 6000 \qquad 0 \le x_{22} \le 2000$$

$$0 \le x_{23} \le 5500$$

La formulazione implicitamente fa uso di un grafo bipartito con nodi u_1 , u_2 associati ai magazzini, nodi v_1 , v_2 , v_3 associati ai centri, e archi u_iv_j associati alle tratte ij di T. I nodi-centro sono altrettanti pozzi che richiedono ciascuno un flusso pari a q_j . Per utilizzare il simplesso su reti è sufficiente aggiungere un nodo sorgente s collegato a u_1 e u_2 con archi di capacità p_1 e p_2 . Il nodo s offre alla rete un flusso pari alla domanda complessiva dei nodi pozzo. Il modello così costruito fornisce la soluzione ottima riportata in tabella, corrispondente a un costo complessivo di 196500 lire turche¹.

	x_{11}	x_{12}	x_{13}	x_{21}	x_{22}	x_{23}
I	2000	2500	1500	3000	500	5500

¹ In effetti, "kuru incir" vuol dire "fico secco"; "biz bir banka var!" significa invece "abbiamo una banca!"

RICERCA OPERATIVA

GRUPPO

B

prova scritta del 24 novembre 2010

- 1. Scrivere il duale del seguente problema: min $-x_1 x_2 + 2x_3$ max $-4y_1 2y_2 + y_3$ $x_1 + x_2 \le 4$ $-y_1 + 2y_2 + y_3 \le -1$ $2x_1 3x_2 \ge -2$ $x_1 + x_2 x_3 = 1$ $y_3 = -2$ $x_1, x_2 \ge 0$ $y_1, y_2 \ge 0$
- 2. Il vettore $\mathbf{w} = (-1/9, 2/3, 0)$ è combinazione convessa di $\mathbf{v}_1 = (1/3, 0, 2/3)$, $\mathbf{v}_2 = (-1/3, 1, -1/3)$, $\mathbf{v}_3 = (-2/3, 2, 1/3)$
- 3. Utilizzando il metodo di Fourier-Motzkin, risolvere il problema: max $x_1 + x_2 + 2x_3$ $x_1 + x_2 \le 4$ $2x_1 3x_2 \ge 2$ $x_1, x_2, x_3 \ge 0$

\boldsymbol{z}	x_1	x_2	x_3	>	\boldsymbol{z}	x_1	x_2	x_3	>	\boldsymbol{z}	x_1	x_2	x_3	>
-1	1	1	2	0	0	-1	-1	0	-4	0	0	-1 -5 1	0	-4
0	-1	-1	0	-4	0	2	-3	0	2	0	0	-5	0	-6
0	2	-3	0	2	0	1	0	0	0	0	0	1	0	0
0	1	0	0	0	0	0	1	0	0					
0	0	1	0	0										•
0	0	0	1	0					•					

Il problema è illimitato superiormente: infatti fin dalla prima iterazione del metodo si osserva l'annullamento della colonna z. Per poter tuttavia affermare l'illimitatezza va verificata l'esistenza di almeno una soluzione. Con la seconda iterazione si ha $x_2 \le 4$, $5x_2 \le 6$ e $x_2 \ge 0$. Quindi le soluzioni con $0 \le x_2 \le \frac{6}{5}$ risultano tutte ammissibili.

4. Risolvete il **Problema 3** con il metodo del simplesso.

Occorre prima portare il problema in forma standard con termini noti non negativi. Ciò si può fare, al solito, aggiungendo due variabili ausiliarie non negative, y_1 di slack e y_2 di surplus. Il problema si riscrive

Questo problema non è in forma canonica. Per calcolarla bisogna risolvere il problema ausiliario

min
$$u$$

 $x_1 + x_2 + y_1 = 4$
 $2x_1 + 3x_2 - y_2 + u = 2$
 $x_1, x_2, x_3, y_1, y_2, u \ge 0$

La tabella del simplesso si scrive

	x_2				u	
0	0	0	0	0	1	0 4 2
1	1	0	1	0	0	4
2	3	0	0	-1	1	2

La forma canonica si ricava sottraendo la riga 2 alla riga 0:

	x_1	x_2	x_3	y_1	y_2	u	
1	-2	-3	0	0	<i>y</i> ₂ 1 0 -1	0	-2
	1	1	0	1	0	0	4
	2	3	0	0	-1	1	2

La soluzione di base corrente non soddisfa il criterio di ottimalità. Operando un pivot in riga 2 e colonna 2 si ottiene

	x_1	x_2	x_3	y_1	y_2	u	
I	0	0	0	0	0	1	0
ſ	$^{1}/_{3}$	0	0	1	1/3	$\frac{1}{-\frac{1}{3}}$	$^{10}/_{3}$
	$^{2}/_{3}$	0 1	0	0	$-\frac{1}{3}$	$^{1}/_{3}$	$^{2}/_{3}$

Il problema originale ammette dunque la soluzione iniziale di base $x_2 = 2/_3$, $y_1 = 10/_3$. La corrispondente tabella del simplesso si scrive

x_1	x_2	x_3	y_1	y_2	
1	1	2	0	0	0
$^{1}/_{3}$	0	0	1	1/3	$^{10}/_{3}$
$^{2}/_{3}$	1	0	0	$-\frac{1}{3}$	$^{2}/_{3}$

E' evidente la presenza di una colonna (quella corrispondente alla variabile x_3) che soddisfa il criterio di illimitatezza.

5. Collocamento. La Köle Tüccarları, nota società di lavoro interinale, deve distribuire gli impegni di lavoro del personale assegnato a varie aziende che figurano tra i suoi clienti. In seguito ad accordi sindacali, le ore giornaliere di un impiegato vanno divise rispettando le seguenti regole: non più del 25% in front-end, almeno il 40% in back-office, non più del 35% in attività di supporto (pulire i pavimenti e cose così). Le ore dedicate al back-office devono inoltre essere divise fra attività tecniche (non meno del 30% del back-office) e attività di segreteria (il rimanente). La somma delle attività tecniche e di front-end non può infine superare il 60% del totale delle attività giornaliere. A seconda della mansione la società ottiene per ciascuna ora lavorata un ricarico in base alla tabella seguente:

mansione	front-end	supporto	tecnico	segreteria
retribuzione oraria	10	7	25	8

Si supponga che le ore richieste nelle diverse mansioni siano sufficientemente numerose da mettere la società in condizione di scegliere liberamente come assegnarle.

 Attribuendo soglie, capacità e profitti agli archi della rete illustrata, formulate come flusso ottimo il problema di determinare una soluzione che distribuisca un carico di lavoro tipo di 8 ore in modo da massimizzare il ricavo complessivo delle ore lavorate.

- 2) Determinate quindi una soluzione ottima utilizzando il metodo del simplesso su reti.
- 1) L'attribuzione di soglie, capacità e profitti alla rete è riportata in figura seguente

In questa rete va distribuito un flusso complessivo di 8 unità entranti nel nodo 0 e uscenti dal nodo 3. I costi associati agli archi sono $c_{01} = 10$, $c_{02} = 0$, $c_{03} = 7$, $c_{13} = 0$, $c_{21} = 25$, $c_{23} = 8$.

2) Applicando il simplesso su reti al modello così costruito si può ottenere la soluzione ottima riportata in tabella, corrispondente a un costo complessivo di 192 euro, che regaleranno il massimo profitto possibile alla Köle Tüccarları².

x_{01}	x_{02}	x_{o3}	x_{13}	x_{21}	x_{23}
0	8	0	5,6	5,6	2,4

² In Turco, "mercanti di schiavi".