Conducción autónoma de un robot con visión mediante aprendizaje por refuerzo.

Ignacio Arranz Águeda • Octubre 2020

Tutor: José María Cañas Cotutor: Eduardo Perdices

Índice

- 1. Introducción
- 2. Objetivos
- 3. Infraestructura
- 4. Aprendizaje por refuerzo de un controlador visual
- 5. Validación experimental
- 6. Conclusiones

Motivación

- Creciente interés en los campos:
 - Inteligencia artificial.
 - o Robótica.
 - Visión artificial.

Robótica

- Constante crecimiento.
- Actualización de las cadenas de montaje.
- Sector automovilístico demanda más robótica a nivel mundial.

Visión Artificial

- Reconstrucción.
- Reconocimiento.
- Detección.
- Segmentación.

Inteligencia artificial

- Supervisado
- No Supervisado
- Aprendizaje por Refuerzo
- Aprendizaje Profundo

Conducción Autónoma

- Seguimiento del carril.
- Detección de vehículos.
- Detección de señales.
- Navegación.

Ejemplo de aplicación

2. Objetivos

2. Objetivos

Son:

- Programar un entorno de aprendizaje por refuerzo con visión y robots.
- Entrenar un controlador visual para conducción autónoma siguiendo una línea.
- Validación experimental y análisis de las posibilidades del aprendizaje por refuerzo.

3. Infraestructura

3. Infraestructura

Herramientas y librerías:

Diseño:

Escenarios y modelos:

Circuito Simple

Manual Property of the Park of

Modelo de Fórmula-1

Nürburgring

4. Infraestructura

Gym-Gazebo:

- Distintos ejercicios

- Repositorio congelada

4. Infraestructura

Fases:

Fase 1

Seguir el carril con el Turtlebot

Fase 2

Nuevo ejercicio con el Fórmula-1 y el láser

Fase 3

Cambio de sensor. Uso de la cámara

Fase 4

Reinicios aleatorios

Q-Learning:

$$Q(s,a) \leftarrow (1-\alpha)Q_{s,a} + \alpha(r + \gamma \cdot \max_{a'} Q_{s',a'})$$

- 1. Tabla-Q vacía
- 2. Se obtiene de un paso los valores:
 - a. Estado
 - b. Acción
 - c. Recompensa
 - d. Estado siguiente
- 3. Se actualiza la ecuación de Bellman
- 4. Se comprueban las condiciones de convergencia.

$$Q = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 0 & 80 & 0 \\ 0 & 0 & 0 & 64 & 0 & 100 \\ 0 & 0 & 0 & 64 & 0 & 0 \\ 0 & 80 & 51 & 0 & 80 & 0 \\ 64 & 0 & 0 & 64 & 0 & 100 \\ 5 & 0 & 80 & 0 & 0 & 80 & 100 \end{bmatrix}$$

Flujo del programa de entrenamiento:

Número de percepciones:

• 1, 2 y 3 puntos.

Número de acciones:

• Simple, medio y difícil

Acción	0	1	2
V. Lineal (m/s)	3	2	2
V. Angular (rad/s)	0	1	-1

Acción	0	1	2	3	4
V. Lineal (m/s)	3	2	2	1	1
V. Angular (rad/s)	0	1	-1	1.5	-1.5

Acción	0	1	2	3	4	5	6
V. Lineal (m/s)	3	2	2	1.5	1.5	1	1
V. Angular (rad/s)	0	1	-1	1	-1	1.5	-1.5

Flujo de procesamiento:

Cálculo de la recompensa:

Ejemplo para tres puntos de percepción:

Análisis de los entrenamientos

 Entrenamiento en el Circuito Simple con un punto de percepción y conjunto de acciones simple.

Análisis de los entrenamientos

• Entrenamiento en el Circuito Simple con un punto de percepción y conjunto de acciones simple.

Entrenamiento	1	2	3
Vuelta completada	Sí	Sí	Sí
Tiempo	20:06 min	6:53 min	4:26 min
Épocas hasta completar	20	2	1
Tamaño de la Tabla-Q	40	23	22
Total épocas	61	10	10

Análisis de los entrenamientos

• Entrenamiento en Nürburgring con dos puntos de percepción y conjunto de acciones medio (contador de estados).

Análisis de los entrenamientos

• Entrenamiento en Nürburgring con dos puntos de percepción y conjunto de acciones medio.

Entrenamiento	1	2	3	
Vuelta completada	Sí	Sí	Sí	
Tiempo	19:32 min	9:11 min	13:12 min	
Épocas hasta completar	75	21	29	
Tamaño de la Tabla-Q	147	140	115	
Total épocas	143	124	163	

Tabla de tiempos

Los mejores resultados se obtienen con la combinación de:

- Un punto de percepción
- Conjunto de acciones simple

Circuito	Piloto manual	Piloto RL	Diferencia
Circuito Simple	2.35 min	3.18 min	+43 seg
Nürburgring	3.19 min	4.13 min	+54 seg
Montreal	8.45 min	10.54 min	+2.09 min

6. Conclusiones

Conclusiones y líneas de trabajo futuras

Conclusiones

- Modificación, extensión y actualización del entorno Gym-Gazebo para el entrenamiento de algoritmos de aprendizaje por refuerzo con Visión.
- Entrenamientos con diferentes combinaciones que solucionan el problema. Distintos parámetros como: número de acciones o niveles de percepción.
- La mejor combinación de parámetros devuelve una ejecución con resultados satisfactorios.

Conclusiones y líneas de trabajo futuras

Líneas futuras

- Entrenamiento de los parámetros de √ y w.
- Extensión del número de problemas robóticos entrenados con aprendizaje por refuerzo.
- Aprendizaje con refuerzo profundo usando DQN.

iMuchas Gracias!

Repositorio:

https://github.com/RoboticsLabURJC/2019-tfm-ignacio-arranz

• Cuaderno de bitácora:

https://roboticslaburjc.github.io/2019-tfm-ignacio-arranz/