

CANCER GENOMICS

Lecture 2:

Probabilistic Methods for Mutation Detection

GENOME 541 Spring 2023 May 11, 2023

Gavin Ha, Ph.D.

Public Health Sciences Division Human Biology Division

Outline: Probabilistic Methods for Mutation Detection

1. Primer on statistical modeling (cont'd)

Mixture models, inference and parameter estimation using the EM algorithm

2. Detecting Mutations in Cancer Genomes

- Visualizing somatic vs germline SNVs
- Sequencing read count data

3. Mixture Models for SNV Detection

- SNV genotyping strategy
- SNVMix probabilistic model and EM inference
- Predicting somatic SNVs in cancer

1. Primer on statistical modeling (cont'd)

- Probability
 - Unsupervised learning, probability rules & Bayes' theorem
 - Binomial distribution, Bayesian statistics
 - Beta-binomial model example
- Mixture models, EM inference & parameter learning
- References:
 - Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. ISBN: 9780262018029
 - Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer. ISBN: 0387310738

Fred Hutchinson Cancer Center

Mixture Model: Referee example with multiple coins

- Recall: There are T different referees who tossed the same coin $N = \{1, ..., N_T\}$ times and came up with counts of heads $x = \{1, ..., x_T\}$.
- Now suppose there are **3 types of coins**: (1) probably fair, (2) unfairly favors heads, (3) unfairly favors tails denoted as { fair, heads, tails }.
- Each referee draws one coin (with replacement) from a hat containing these coin types mixed together.

Mixture Model: Referee example with multiple coins

- Recall: There are T different referees who tossed the same coin $N = \{1, ..., N_T\}$ times and came up with counts of heads $x = \{1, ..., x_T\}$.
- Now suppose there are **3 types of coins**: (1) probably fair, (2) unfairly favors heads, (3) unfairly favors tails denoted as { fair, heads, tails }.
- Each referee draws one coin from a hat that contains a bunch of these coin types mixed together.
- 1. We don't know the proportion of each coin type in the hat.
- 2. We don't know which coin each referee drew from the hat.
- 3. We don't know the fairness (probability of heads) for each type of coin.

Referee	# of tosses (N)	# of heads (x)	Prop. of heads	Type of coin used?
Referee 1	40	25	0.63	?
Referee 2	42	35	0.83	?
Referee 3	39	27	0.69	?
Referee 4	XT	N _T	x _T /N _T	?

Coin Type	Proportion in hat	Prob. of heads
"Fair"	?	?
"Heads"	?	?
"Tails	?	?

Mixture Model: Latent state model

1. What is the proportion of each coin type in the hat?

Find the probability for drawing a coin type.

- π_k is the probability of drawing coin type $k \in \{fair, heads, tails\}$
- $\pi = (\pi_{fair}, \pi_{heads}, \pi_{tails})$ are the mixture weights where $\sum_{b=1}^K \pi_k = 1$

2. Which coin did each referee draw? Define the latent variables.

- Let $Z_i = k$ be the type of coin that referee i draws
- Z_i is called a *latent variable* and follows a *Categorical* distribution with parameter π

$$p(Z_i = k \mid \pi_{1:K}) = Cat(Z_i = k \mid \pi_{1:K})$$

$$= \begin{cases} \pi_{fair} & \text{if } k = fair \\ \pi_{heads} & \text{if } k = heads \\ \pi_{tails} & \text{if } k = tails \end{cases}$$

• The proportions $\pi_{1:K}$ of the coin types follows a Dirichlet distribution (conjugate prior)

Coin Type	Proportion in hat	Prob. of heads
"Fair"	π_{fair}	?
"Heads"	π_{heads}	?
"Tails	π_{tails}	?

Referee	Type of coin used?
Referee 1	Z_1
Referee 2	Z_2
Referee 3	Z_3
Referee T	Z_T

Recognition and Machine Learning

Mixture Model: Likelihood as a mixture of binomials

3. What is the fairness (prob. of heads) for each type of coin?

Find the probability of heads for each coin type.

- Recall: for a single coin, $p(x_i | N_i, \mu) = Bin(x_i | N_i, \mu)$
- Define the likelihood for a **3-component mixture of binomials** with 3 parameters, μ_{fair} , μ_{heads} , μ_{tails} , one for each type of coin

$$p(x_i|Z_i=k,N_i,\mu_{1:K}) = Bin(x_i|N_i,\mu_k)$$
 Observed likelihood
$$p(x_i|N_i,\mu_{1:K},\pi_{1:K}) = \sum_{k=1}^K \pi_k Bin(x_i|N_i,\mu_k)$$
 Mixture model

• Beta prior distribution $p(\mu_k | \alpha_k, \beta_k) = Beta(\mu_k | \alpha_k, \beta_k)$

Log Likelihood Function of the Model

$$L(x_{1:T}, N_{1:T} | \mu_{1:K}, \pi_{1:K}) = \prod_{i=1}^{T} \sum_{k=1}^{K} \pi_k Bin(x_i | N_i, \mu_k)$$

$$\mathcal{E} = \sum_{i=1}^{T} \log \left(\sum_{k=1}^{K} \pi_k Bin(x_i | N_i, \mu_k) \right)$$

Likelihood function

Log likelihood

Coin Type	in nat	neads
"Fair"	π_{fair}	μ_{fair}
"Heads"	π_{heads}	μ_{heads}
"Tails	π_{tails}	μ_{tails}
	•	

Proportion

Prob. of

Mixture Model: Inference & parameter estimation using EM (1)

Springer

Expectation-Maximization

Initialize parameters: $\pi_{1:K}$ and $\mu_{1:K}$

E-Step: compute "responsibilities" (inference)

- 1. Which coin did each referee draw? (Posterior of the latent states $\gamma(Z_{1:T})$)
- Soft-clustering: Referee i has a probability for using each of the coins.
- **Responsibilities:** "coin that is responsible for generating observation x_i "

M-Step: Update parameters (learning)

- 2. What is the proportion of each coin type in the hat? $\pi_{1\cdot K}$
- 3. What is the fairness (prob. of heads) for each coin type? $\mu_{1\cdot K}$

Iterate between E-Step and M-Step,

check when log-posterior stops increasing.

Responsibilities				
Referee	Fair Coin	Heads Coin	Tails Coin	
1	$\gamma(Z_1 = F)$	$\gamma(Z_1 = H)$	$\gamma(Z_1 = T)$	
2	$\gamma(Z_2 = F)$	$\gamma(Z_2 = H)$	$\gamma(Z_2 = T)$	
3	$\gamma(Z_3 = F)$	$\gamma(Z_3 = H)$	$\gamma(Z_3=T)$	
Т	$\gamma(Z_T = F)$	$\gamma(Z_T = H)$	$\gamma(Z_T = T)$	

Section 3.3, 3.4, 11.2 in Murphy (2012). Chapter 9 in Bishop (2006). Pattern Machine Learning: A Probabilisting Recognition and Machine Learning. Perspective. MIT Press

Mixture Model: Inference & parameter estimation using EM (2)

E-Step: compute responsibilities (inference)

- 1. What is the probability for a referee to draw each coin type? (Posterior of the latent states $Z_{1:T}$)
- Find the responsibilities given the current parameters

$$p(Z_{i} = k \mid x_{i}, N_{i}, \pi_{1:K}, \mu_{1:K}) = \frac{p(x_{i} \mid Z_{i} = k)p(Z_{i} = k)}{p(x_{i})}$$

$$= \frac{Bin(x_{i} \mid N_{i}, \mu_{k})\pi_{k}}{\sum_{k'=1}^{K} Bin(x_{i} \mid N_{i}, \mu_{k'})\pi_{k'}}$$

$$= \gamma(Z_{i} = k)$$

Bayes' Rule Posterior distribution of the latent variables

Responsibilities

Matrix $T \times K$

Responsibilities = "coin that is responsible for generating observation x_i "

- Soft-clustering: Referee i has a probability for using each of the coins.
- $\gamma(Z_{1:T})$ is a matrix of probabilities with dimensions $T \times K$

Mixture Model: Inference & parameter estimation using EM (3) M-Step: Update parameters (learning)

2. What is the proportion of each coin type in the hat?

$$\hat{\pi}_k = \frac{\sum_{i=1}^T \gamma(Z_i = k) + \delta(k) - 1}{\sum_{j=1}^K \sum_{i=1}^T \left\{ \gamma(Z_i = j) + \delta(j) - 1 \right\}}$$

MAP for π

3. What is the fairness (prob. of heads) for each coin type?

$$\hat{\mu}_k = \frac{\sum_{i=1}^T \gamma(Z_i = k) x_i + \alpha_k - 1}{\sum_{i=1}^T \gamma(Z_i = k) N_i + \alpha_k + \beta_k - 2}$$

MAP for μ

Evaluate the log likelihood and log posterior: use updated parameters

$$\log \mathbb{P} = \sum_{i=1}^{T} \log \left(\sum_{k=1}^{K} \hat{\pi}_{k} Bin(x_{i} | N_{i}, \hat{\mu}_{k}) \right) + \log Dir(\hat{\boldsymbol{\pi}} | \boldsymbol{\delta}) + \sum_{k=1}^{K} \log Beta(\hat{\mu}_{k} | \alpha_{k}, \beta_{k})$$
Log likelihood Log priors

Log posterior

Iterate between E-Step and M-Step:

Stop EM when new $\log \mathbb{P}$ changes less than ϵ compared to previous EM iteration.

Perspective. MIT Press

Recall: MAP estimate

Beta-Binomial Model: Posterior distribution

$$p(\mu \mid x_i) \propto Bin(x_i \mid N_i, \mu) \times Beta(\mu \mid \alpha, \beta) = Beta(\mu \mid x_i + \alpha, N_i - x_i + \beta)$$
Posterior

• Then, what is the probability of heads, μ , of this coin given the **evidence** and the **prior**?

Maximum a posteriori (MAP) estimate

- From the posterior, we can estimate the parameter using the $\emph{maximum a posteriori (MAP)}, \hat{\mu}_{MAP}$
- MAP refers to the mode of the posterior distribution and the mode of a Beta is $\frac{\alpha-1}{\alpha+\beta-2}$
- Since the posterior has the form of a Beta distribution, then the MAP is $\frac{\alpha'-1}{\alpha'+\beta'-2}$

$$\alpha' = x_i + \alpha$$
$$\beta' = (N_i - x_i) + \beta$$

Section 3.3 in Murphy (2012). Machine Learning: A Probabilistic Perspective. MIT Press

$$\hat{\mu}_{MAP} = \frac{x_i + \alpha - 1}{N_i + \alpha + \beta - 2}$$

MAP

- 1.Take log of the posterior
- 2. Take the derivative wrt μ
- 3. Equate to 0
- 4. Solve for μ

Algorithm 1 Binomial Mixture Model Inference and Learning using EM

```
1: Inputs:
        Data: x_{1:T}, N_{1:T}
        Initial parameters: \pi_{1:K}^{(0)}, \, \mu_{1:K}^{(0)},
        Hyperparameters: \delta_{1:K}, \alpha_{1:K}, \beta_{1:K}
 2: Initialize:
        \pi_{1:K} \leftarrow \pi_{1:K}^{(0)}, \, \mu_{1:K} \leftarrow \mu_{1:K}^{(0)}
        logP \leftarrow -Inf
 4: Compute the observed likelihood using initial parameters:
         lik \leftarrow compute.binom.lik()
 6: while converged = false do
        E-Step: Compute responsibilities:
             \gamma(Z_{1:T}) \leftarrow \texttt{compute.responsibilities()}
 8:
        M-Step: Update parameters:
 9:
             \hat{\pi}_{1:K} \leftarrow \texttt{update.pi()}
10:
             \hat{\mu}_{1:K} \leftarrow \texttt{update.mu()}
11:
        Assign updated parameters:
12:
             \pi_{1:K} \leftarrow \hat{\pi}_{1:K}, \, \mu_{1:K} \leftarrow \hat{\mu}_{1:K}
13:
        Re-compute the observed likelihood using updated parameters:
14:
             obs.lik ← compute.binom.lik()
15:
        Compute the log-likelihood:
16:
             loglik ← compute.loglik()
17:
        Compute log Posterior:
18:
               logP[curr.iter] ← compute.log.posterior()
19:
        if (logP[curr.iter] - logP[prev.iter] < \epsilon) then
20:
            converged = true
21:
        end if
22:
        logP[prev.iter] ← logP[curr.iter]
24: end while
25: return Responsibilites \gamma(Z_{1:T}), Converged parameters \hat{\pi}_{1:K}, \hat{\mu}_{1:K}
```

Mixture Model: Inference & parameter estimation using EM (extra slide 1)

Incomplete data log likelihood

$$L(x_{1:T}, N_{1:T} | \mu_{1:K}, \pi_{1:K}) = \prod_{i=1}^{T} \sum_{k=1}^{K} \pi_k Bin(x_i | N_i, \mu_k)$$

The incomplete data log likelihood (plus the priors) is used to monitor EM convergence

Expected complete data log likelihood

Complete data log likelihood

$$\begin{split} L(\mu_{1:K}, \pi_{1:K} | \, x_{1:T}, Z_{1:T}, N_{1:T}) &= \prod_{i=1}^{T} \prod_{k=1}^{K} \pi_k Bin(x_i | N_i, \mu_k)^{\mathbb{I}(Z_i = k)} \\ \ell(\mu_{1:K}, \pi_{1:K} | \, x_{1:T}, Z_{1:T}, N_{1:T}) &= \sum_{i=1}^{T} \sum_{k=1}^{K} \mathbb{I}(Z_i = k) \big\{ \log \pi_k + \log Bin(x_i | N_i, \mu_k) \big\} \\ Q &= \mathbb{E} \left[\ell(\mu_{1:K}, \pi_{1:K} | \, x_{1:T}, Z_{1:T}, N_{1:T}) \right] &= \sum_{i=1}^{T} \sum_{k=1}^{K} \mathbb{E} \left[\mathbb{I}(Z_i = k) \right] \big\{ \log \pi_k + \log Bin(x_i | N_i, \mu_k) \big\} \end{split}$$

 $i=1 \ k=1$

 $= \sum_{i=1}^{n} \sum_{j=1}^{n} \gamma(Z_i = k) \left\{ \log \pi_k + \log Bin(x_i | N_i, \mu_k) \right\}$

The expected complete data log likelihood in the M-Step is used when updating parameters.

Mixture Model: Inference & parameter estimation using EM (extra slide 2)

M-Step: Update the parameters given the responsibilities

$$p(\pi_{1:K}, \mu_{1:K}) = Dir(\boldsymbol{\pi} \mid \boldsymbol{\delta}) \prod_{k=1}^{K} Beta(\mu_k \mid \alpha, \beta)$$
 Priors

$$\mathcal{O} = Q + \log p(\pi_{1:K}, \mu_{1:K})$$
 Complete data log likelihood + log priors

• The object function $\mathcal O$ is used to obtain the update equations for $\pi_{1:K}$ and $\mu_{1:K}$

$$\frac{\partial \mathcal{O}}{\partial \mu_k} = 0$$
, find $\hat{\mu}_k$ and $\frac{\partial \mathcal{O}}{\partial \pi_k} = 0$, find $\hat{\pi}_k$

EM Convergence: after each iteration, monitor the log posterior

$$\mathcal{E} = \sum_{i=1}^{T} \log \left(\sum_{k=1}^{K} \pi_k Bin(x_i | \mu_k, N_i) \right)$$
 Incomplete Data Log likelihood

$$\log \mathbb{P}(\pi_{1:K}, \mu_{1:K} | x_{1:T}) = \ell + \log p(\pi_{1:K}, \mu_{1:K})$$
 Log posterior

- If the log posterior, $\log \mathbb{P}(\pi_{1:K}, \mu_{1:K} | x_{1:T})$, stops increasing by ϵ , then EM is converged.
- If not using a Bayesian framework, then use the log likelihood, ℓ , to monitor convergence.

2. Detecting Mutations in Cancer Genomes

Fred Hutchinson Cancer Center

Visual inspection using IGV: Germline SNVs

Integrative Genomics Viewer (https://software.broadinstitute.org/software/igv)

- ~1.5 to 2 million SNPs per individual
- Identify SNPs from normal peripheral blood mononuclear cells (PBMC)

Heterozygous SNP with 17 reads containing the variant and having depth 33 reads

17/33 (48%) variant allele fraction (VAF)

Visual inspection using IGV: Germline SNVs

Integrative Genomics Viewer (https://software.broadinstitute.org/software/igv)

- ~1.5 to 2 million SNPs per individual
- Identify SNPs from normal peripheral blood mononuclear cells (PBMC)

Visual inspection using IGV: Somatic SNVs

- Somatic SNV requires comparing case (tumor) with control (PBMC)
- On the order of 10 to 10^4 number of mutations

Potential SNV with 128/342 (37%) VAF

p.V1181I

Visual inspection using IGV: Somatic SNVs

Somatic **SNV** requires comparing case (tumor) with control (PBMC)

Human hg19

chr17

chr17:41,243,947-41,244,067

Single Nucleotide Variant (SNV) Calling: Single Sample

Reference seq aattcaggaccaacacgacgggaagacaagttcatgtacttt

Allelic counts

SNV Variant Allele Fraction and Genotypes

Variant Allele Fraction (VAF) Analysis

Genotypes: AA, AB, BB

Homozygous Heterozygous Homozygous Variant (not SNV) (Het SNV) (Homd SNV)

Genotype	AA	AB	BB
Allelic Fraction	~1.0	~0.5	~0

- Allelic Fraction is defined as the fraction of reference reads, $\frac{A}{N}$, where depth N=A+B
- Values in the table are the expected proportions of reference reads for each genotype
- Why might the observed allelic fractions be different than the expected values?

Fred Hutchinson Cancer Center

3. Mixture Model for SNV Detection

- SNVMix probabilistic model and EM inference
- Predicting somatic SNVs in cancer

References:

- Goya et al. SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors.
 Bioinformatics 26:730-36 (2010)
- Roth et al. JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/ tumour paired next-generation sequencing data. Bioinformatics 28:907-13 (2012)

Mapping the Referee Example to Mutation Calling

Referee Coin Toss Example

<u>Data</u>

Referees $1, \dots, T$

For each Referee i

- Coin Tosses: N_i
- Count of heads: x_i
- Count of tails: $N_i x_i$

<u>Parameters</u>

Probability to draw coins: π_{fair} , π_{heads} , π_{tails}

Probability of heads for 3 types of coins

 μ_{fair} , μ_{heads} , μ_{tails}

<u>Responsibilities</u>

Probability that Referee i used coin k: $\gamma(Z_i = k)$

Mutation Calling from Sequencing Data

Data

Genomic loci 1,..., T

For each locus i

- Depth (total reads): N_i
- Count of reference reads: x_i
- Count of variant reads: $N_i x_i$

<u>Parameters</u>

Probability of genotypes: $\pi_{AA}, \ \pi_{AB}, \ \pi_{BB}$

Probability of reference base for 3 genotypes:

$$\mu_{AA}, \mu_{AB}, \mu_{BB}$$

<u>Responsibilities</u>

Probability that locus i has genotype k: $\gamma(Z_i = k)$

SNVMix: Probabilistic Model

Sequence Data

There are T different genomic loci with read depths $N = \{1, ..., N_T\}$ and reference base counts $\mathbf{x} = \{1, ..., x_T\}$. There are K = 3 different possible genotypes AA, AB, BB

Mixture Model Setup

- 1. The probabilities for the genotypes are π_{AA} , π_{AB} , π_{BB}
- 2. Thus, a specific genotype $k \in AA$, AB, BB can be assigned to the **latent state** Z_i at locus i with these probabilities

$$p(Z_i = k \mid \pi_{1:K}) = \begin{cases} \pi_{AA} \text{ if } k = AA \\ \pi_{AB} \text{ if } k = AB \\ \pi_{BB} \text{ if } k = BB \end{cases}$$

- 3. The probability of observing a reference base for the genotypes are $\mu_{aa}, \mu_{ab}, \mu_{bb}$
- 4. The likelihood is a **3-component mixture of binomials**

$$p(x_i | N_i, \mu_{1:K}, \pi_{1:K}) = \sum_{k=1}^K \pi_k Bin(x_i | N_i, \mu_k)$$

5. The **priors** for genotype $k \in \{aa, ab, bb\}$ in the model are

$$p(\pi_{1:K} | \delta_{1:K}) = Dirichlet(\pi_{1:K} | \delta_{1:K})$$
$$p(\mu_k | \alpha_k, \beta_k) = Beta(\mu_k | \alpha_k, \beta_k)$$

Fred Hutchinson Cancer Center

SNVMix: Inference & parameter estimation using EM (revisited)

E-Step: compute responsibilities

1. What is the probability of locus i having genotype k?

$$\gamma(Z_{i} = k) = \frac{\pi_{k}Bin(x_{i} | N_{i}, \mu_{k})}{\sum_{j=1}^{K} \pi_{j}Bin(x_{i} | N_{i}, \mu_{j})}$$

Responsibilities

Matrix $T \times K$

M-Step: update parameters

2. What is the probability of genotype k?

$$\hat{\pi}_{k} = \frac{\sum_{i=1}^{T} \gamma(Z_{i} = k) + \delta(k) - 1}{\sum_{j=1}^{K} \left\{ \sum_{i=1}^{T} \gamma(Z_{i} = j) + \delta(j) - 1 \right\}}$$

MAP for π

3. What is the probability of observing a reference base for genotype k?

$$\hat{\mu}_k = \frac{\sum_{i=1}^T \gamma(Z_i = k) x_i + \alpha_k - 1}{\sum_{i=1}^T \gamma(Z_i = k) N_i + \alpha_k + \beta_k - 2}$$

MAP for μ

Evaluate the log likelihood and log posterior: use updated parameters

$$\log \mathbb{P} = \sum_{i=1}^{T} \log \left(\sum_{k=1}^{K} \hat{\pi}_k Bin(x_i | \hat{\mu}_k, N_i) \right) + \log Dir(\hat{\pi}_k | \delta_k) + \sum_{k=1}^{K} \log Beta(\hat{\mu}_k | \alpha_k, \beta_k)$$

Log posterior

Iterate between E-Step and M-Step: stop when $\log \mathbb{P}$ changes less than ϵ compared to previous EM iteration.

SNVMix: Calling somatic SNVs from genotype inference

Responsibilities			
Locus	AA	AB	ВВ
1	$\gamma(Z_1 = AA)$	$\gamma(Z_1 = AB)$	$\gamma(Z_1 = BB)$
2	$\gamma(Z_2 = AA)$	$\gamma(Z_2 = AB)$	$\gamma(Z_2 = BB)$
3	$\gamma(Z_3 = AA)$	$\gamma(Z_3 = AB)$	$\gamma(Z_3 = BB)$
Т	$\gamma(Z_T = AA)$	$\gamma(Z_T = AB)$	$\gamma(Z_T = BB)$

- Sum $\gamma(Z_i=AB)$ and $\gamma(Z_i=BB)$ to get the overall probability (either genotype AB or BB) that locus i is a variant containing the non-reference allele (B)
- Additional steps required for filtering and determining if variant is somatic vs germline
 - Minimum 3 variant reads $(N_i x_i)$ is typically required
 - Account for mapping and base qualities of sequenced reads (i.e. SNVMix2)
 - Compare locus i in tumor sample to (1) matched normal sample, (2) germline databases

SNV Genotyping Callers

Variant Allele Fraction Analysis

Reference Genome

Normal

Tumour

Allelic Counts

Single sample

Genotypes: AA, AB, BB

Homozygous Reference (not SNV)

Heterozygous Variant (Het SNV)

Homozygous

Variant Allelic Counts

(Homd SNV)

Joint tumor-normal

Joint Genotypes:

$g_N \backslash g_T$	AA	AB	ВВ	
AA	0.01	0.95	0.00	
AB	0.00	0.04	0.00	
ВВ	0.00	0.00	0.00	

ACTCCCGTCGGAACGAATGCCACG

ACTCCCGTCGGAACCAATGCC - ---CTCCCGTCGGAACCAATGCCACC

GTCG(GAACCAATG	CCACG
	- <mark>-</mark> <mark>C</mark> AATG	CCACC
	- -	-CACC
12233556666		
1223356666	5 <mark>6</mark> 66 7 7777	78777
ACTCCCGTCG	GAACCAATG	CCACC
TCCCGTCG	GAACCAATG	CCACC
CCCGTCG	GAACCAATG	CCACC
GTCG	GCACCAATG	CCACG
CG	GCACCAATG	CCACG
	GCACCAATG	CCACG
	- - - AATG	CCACG
		CCACG
11233344550		
11233344550	566667777	88888
nline	7	1
atic (AA.AB)	(BB.BB)	(AB.AB)

BB 0.00 0.00	
el or panel: Machine Learning (supervi	sed)

Variant caller	Type of variant	Single-sample mode	Type of core algorithm
BAYSIC [48]	SNV	No	Machine learning (ensemble caller)
CaVEMan [34]	SNV	No	Joint genotype analysis
deepSNV [38]	SNV	No	Allele frequency analysis
EBCall [37]	SNV, indel	No	Allele frequency analysis
FaSD-somatic [31]	SNV	Yes	Joint genotype analysis
FreeBayes [44]	SNV, indel	Yes	Haplotype analysis
HapMuC [42]	SNV, indel	Yes	Haplotype analysis
JointSNVMix2 [30]	SNV	No	Joint genotype analysis
LocHap [43]	SNV, indel	No	Haplotype analysis
LoFreq [36]	SNV, indel	Yes	Allele frequency analysis
LoLoPicker [39]	SNV	No	Allele frequency analysis
MutationSeq [45]	SNV	No	Machine learning
MuSE [40]	SNV	No	Markov chain model
MuTect [35]	SNV	Yes	Allele frequency analysis
SAMtools [8]	SNV, indel	Yes	Joint genotype analysis
Platypus [41]	SNV, indel, SV	Yes	Haplotype analysis
qSNP [24]	SNV	No	Heuristic threshold
RADIA [26]	SNV	No	Heuristic threshold
Seurat [33]	SNV, indel, SV	No	Joint genotype analysis
Shimmer [25]	SNV, indel	No	Heuristic threshold
SNooPer [47]	SNV, indel	Yes	Machine learning
SNVSniffer [32]	SNV, indel	Yes	Joint genotype analysis
SOAPsnv [27]	SNV	No	Heuristic threshold
SomaticSeq [46]	SNV	No	Machine learning (ensemble caller)
SomaticSniper [28]	SNV	No	Joint genotype analysis
Strelka [17]	SNV, indel	No	Allele frequency

analysis

Ion Torrent specific

Heuristic threshold

Heuristic threshold

Joint genotype analysis

Cohort leve

Fred Hutchinson Cancer Center

SNV, indel

SNV

SNV, indel, SV Yes

Yes

Yes

No

SNV, indel, SV

TVC [97]

VarDict [18]

VarScan2 [9]

Virmid [29]

Somatic SNV Detection using Joint Inference from Tumor-Normal Pairs

1.Latent variable state space

- 9 genotype pairs (k_n, k_t)
- $n, t \in \{AA, AB, BB\}$

• 9 mixture weights $\pi_{(k_n,k_t)}$

Normal, n

rumor, t			
$k_n \backslash k_t$	AA	AB	ВВ
AA	0.01	0.95	0.00
AB	0.00	0.04	0.00
ВВ	0.00	0.00	0.00

Tumor t

Reference Genome

Normal

ACTCCCGTCGGAACGAATGCCACG

ACTCCCGTCGGAACCAATGCC - --CTCCCGTCGGAACCAATGCCACC ---CCCGTCGGAACCAATGCCACG ----CGTCGGAACCAATGCCACG ----CATCGGAACCAATGCCACC

----GTCGGAACCAATGCCACG

ACTCCCGTCGGAACCAATGCCACC

--TCCCGTCGGAACCAATGCCACC

---CCCGTCGGAACCAATGCCACC

----GTCGGCACCAATGCCACG

1223355666666660777778773 **Allelic Counts** 122335666666667777778777

3. Joint binomial mixture model

2. Probability of the genotypes

9-component mixture model

$$p(x_i^n, x_i^t | N_i^n, N_i^t, \mu_{1:K}^n, \mu_{1:K}^t) = \sum_{k_n=1}^K \sum_{k_t=1}^K \pi_{(k_n, k_t)} Bin(x_i^n | N_i^n, \mu_{k_n}^n) Bin(x_i^t | N_i^t, \mu_{k_t}^t)$$

with 9 parameter tuples (μ^n, μ^t)

Tumour

Allelic Counts

-----CGGCACCAATGCCACG -----GCACCAATGCCACG 112333445563660777788883

112333445566666777788888

Germline Somatic

(AA,AB)

(BB,BB)

Fred Hutchinson Cancer Center

Homework #7: Single-nucleotide Genotype Caller

Implement a standard binomial mixture model described in Lecture 2.

- Learn the parameters and infer the genotypes
- Annotate the mutation status for a set of genomic loci.
- Expected outputs for each question will be provided so that you can check your code.
- RStudio Markdown and Python Jupyter Notebook templates provided.

Due: May 19th, 2023

