Noise evaluation and reduction

Hoang Duc Viet

ICT Lab

September 27, 2017

Introduction

- Problem
- Solution
- Evaluation
- ▶ Results and Discussion
- Conclusion

Problem

Noise:

An unwanted component of the image which can be additive or multiplicative.

► Denoise:

Popular solution for photography or remove noise in images processing.

Type of noise

- Salt and Pepper Noise
- Gaussian Noise
- Quantization Noise
- Speckle Noise

Original Image

Original Image

Noise

Solution

Spatial Filtering:

- Median Filter
- Average Filter
- ► Gaussian Filter

Frequency Domain Filtering:

Wiener Filter

Median Filter

A nonlinear digital filtering technique, often used to remove noise from an image or signal.

234	147	225	214	134
231	123	121	223	189
124	223	156	178	196
219	125	211	178	124
210	185	221	189	134

	178	

Example of median computation

Average Filter

Simply to replace each pixel value in an image with the average value of its neighbors, including itself.

$$k(u,v) = \frac{1}{M} \sum_{(p,q) \in N} i(p,q)$$

Filter 3×3								
1	1	1						
1	1	1						
1	1	1						
	ilte 1 1 1	ilter 32 1 1 1 1 1 1						

Average Filter(1)

Filter 5×5										
	1	1	1	1	1					
1	1	1	1	1	1					
$\frac{1}{25}$	1	1	1	1	1					
25	1	1	1	1	1					
	1	1	1	1	1					

	Filter 7×7										
	1	1	1	1	1	1	1				
	1	1	1	1	1	1	1				
1	1	1	1	1	1	1	1				
<u>1</u> 49	1	1	1	1	1	1	1				
49	1	1	1	1	1	1	1				
	1	1	1	1	1	1	1				
	1	1	1	1	1	1	1				

Example of Average Filter

Gaussian Filter

2-D convolution operator that is used to 'blur' images and remove detail and noise.

The Gaussian kernel in dimension 2:

$$G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Where σ is the standard deviation of the distribution.

Define the Gaussian mask(σ =2):

Filter 3×3								
1	1	2	1					
16	2	4	2					
	1	2	1					

Gaussian Filter(1)

Filter 5×5											
	1	4	7	4	1						
1	4	16	26	16	4						
272	7	26	41	26	7						
273	4	16	26	16	4						
	1	4	7	4	1						

Filter 7×7											
	0	0	1	2	1	0	0				
	0	3	13	22	13	3	0				
1	1	13	59	97	59	13	1				
1003	2	22	97	159	97	22	2				
1003	1	13	59	97	59	13	1				
	0	3	13	22	13	3	0				
	0	0	1	2	1	0	0				

Wiener Filter

Weiner filter is a frequency-domain method for image denosing.

- Assumption
- Requirement
- Performance criterion

Evaluation

Mean Squared Error:

$$MSE = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} (f'_{ij} - f_{ij})^2$$

Peak Signal To Noise Ratio:

$$PSNR = 10 \log_{10} \frac{R^2}{MSE}$$

Results and Discussion

SWARMS project dataset

Construction Sites

Figure: Evaluated construction site photos. From left to right: construction1, construction2, construction3, construction4, construction5

Evaluated metrics for construction site photos

Photo	Type	Metric	Median	Average	Gaussian	Wiener
	Noise	MSE	0.0125	0.0251	0.012	0.0084
construction1	Noise	PSNR	67.1535	64.1264	67.3409	68.8738
Construction	Denoise	MSE	0.0097	0.022	0.0095	0.007
	Denoise	PSNR	68.269	64.7115	68.3762	69.6511
	Noise	MSE	0.0096	0.0219	0.0096	0.0075
construction2	Noise	PSNR	68.298	64.7271	68.2967	69.3898
construction2	Denoise	MSE	0.0055	0.0166	0.0056	0.0044
	Denoise	PSNR	70.7071	65.9348	70.6237	71.654
	Noise	MSE	0.0078	0.0178	0.0077	0.0061
construction3		PSNR	69.2093	65.638	69.2572	70.2559
Constructions	Denoise	MSE	0.0034	0.0122	0.0035	0.0028
	Denoise	PSNR	72.761	67.2713	72.6781	73.6324
	Noise	MSE	0.0065	0.0183	0.0067	0.0054
construction4	Noise	PSNR	69.9904	65.5003	69.8929	70.8107
CONSTRUCTION4	Denoise	MSE	0.0026	0.0144	0.0031	0.0022
	Denoise	PSNR	73.9221	66.5571	73.1714	74.65
	Noise	MSE	0.0125	0.0351	0.0131	0.0098
construction5	noise	PSNR	67.1789	62.6729	66.9615	68.2047
Constituctions	Denoise	MSE	0.0048	0.0243	0.0056	0.0046
	Denoise	PSNR	71.3083	64.2764	70.6356	71.5275

Rubbish

Figure: Evaluated rubbish photos. From left to right: rubbish1, rubbish2, rubbish3, rubbish4, rubbish5

Evaluated metrics for rubbish photos

Photo	Type	Metric	Median	Average	Gaussian	Wiener
	Noise	MSE	0.007	0.0198	0.007	0.0053
rubbish1	Noise	PSNR	69.6741	65.1589	69.6536	70.8804
rubbisiii	Denoise	MSE	0.0032	0.0156	0.0036	0.0025
	Denoise	PSNR	73.1106	66.1969	72.5825	74.1694
	Noise	MSE	0.0078	0.0173	0.0076	0.0061
rubbish2	Noise	PSNR	69.2119	65.7582	69.3064	70.2561
Tubbisiiz	Denoise	MSE	0.0036	0.00126	0.0038	0.0029
	Denoise	PSNR	72.5146	67.1263	72.3851	73.4524
	Noise	MSE	0.0158	0.0336	0.015	0.0115
rubbish3		PSNR	66.1394	62.8625	66.3823	67.5195
rubbisha	Denoise	MSE	0.0083	0.0246	0.0081	0.0063
		PSNR	68.9656	64.2139	69.0718	70.1636
	Noise	MSE	0.0313	0.0567	0.0287	0.0235
rubbish4	Noise	PSNR	63.1696	60.5959	63.5549	64.4181
Tubbish4	Denoise	MSE	0.0207	0.0424	0.0185	0.0161
	Denoise	PSNR	64.9661	61.8601	65.4527	66.0756
	Noise	MSE	0.0096	0.0176	0.0092	0.007
rubbish5	roise	PSNR	68.3119	65.677	68.4872	69.698
Gustani	Denoise	MSE	0.0055	0.0123	0.0053	0.004
	Denoise	PSNR	70.7050	67.2474	70.9133	72.0813

Pagoda

Figure: Evaluated pagoda photos. From left to right: pagoda1, pagoda2, pagoda3, pagoda4, pagoda5 $\,$

Evaluated metrics for pagoda photos

Photo	Type	Metric	Median	Average	Gaussian	Wiener
	Noise	MSE	0.013	0.0168	0.0115	0.0068
pagoda1	Noise	PSNR	66.9999	65.8739	67.5091	69.7993
pagodai	Denoise	MSE	0.0098	0.0141	0.0093	0.0055
	Delioise	PSNR	68.2117	66.6490	68.4598	70.7544
	Noise	MSE	0.0138	0.0189	0.0122	0.0076
pagoda2	Noise	PSNR	66.7404	65.3739	67.2818	69.3011
pagodaz	Denoise	MSE	0.0098	0.0145	0.0088	0.0053
	Denoise	PSNR	68.2338	66.5220	68.6970	70.9009
	Noise	MSE	0.0150	0.0215	0.0131	0.0081
pagoda3		PSNR	66.3743	64.8131	66.9631	69.0515
pagodao	Denoise	MSE	0.0114	0.0177	0.0102	0.0065
	Denoise	PSNR	67.5543	65.6549	68.0291	70.0034
	Noise	MSE	0.0116	0.0229	0.0106	0.0069
pagoda4	Noise	PSNR	67.4972	64.5418	67.8751	69.7300
pagoda4	Denoise	MSE	0.0080	0.0188	0.0072	0.0047
	Denoise	PSNR	69.1060	65.3952	69.5399	71.4029
	Noise	MSE	0.0141	0.0230	0.0125	0.0086
pagoda5	TOISC	PSNR	66.6335	64.5060	67.1643	68.8033
pagodao	Denoise	MSE	0.0104	0.0179	0.0087	0.0062
	Denoise	PSNR	67.9741	65.6092	68.7310	70.2064

Pond

Figure: Evaluated pond photos. From left to right: pond1, pond2, pond3, pond4, pond5

Evaluated metrics for pond photos

Photo	Type	Metric	Median	Average	Gaussian	Wiener
	Noise	MSE	0.0151	0.0374	0.0148	0.0116
pond1	Noise	PSNR	66.3488	62.4067	66.4381	69.5
pondi	Denoise	MSE	0.0071	0.0267	0.0071	0.0057
	Denoise	PSNR	69.6156	63.8625	69.6193	70.5647
	Noise	MSE	0.009	0.0161	0.087	0.0066
pond2	Noise	PSNR	68.5651	66.0539	68.7473	69.9595
pondz	Denoise	MSE	0.0049	0.0118	0.0049	0.0037
	Delioise	PSNR	71.1950	67.4075	71.1985	72.4594
	Noise	MSE	0.0103	0.0181	0.0095	0.0071
pond3		PSNR	68.0057	65.5457	68.3309	69.5910
ponds	Denoise	MSE	0.0063	0.0136	0.0059	0.0045
	Denoise	PSNR	70.1294	66.7905	70.4278	71.5971
	Noise	MSE	0.0085	0.0148	0.0082	0.0062
pond4	Noise	PSNR	68.8176	66.4207	68.9979	70.1919
pond4	Denoise	MSE	0.0044	0.0103	0.0045	0.0034
	Denoise	PSNR	71.7345	67.9993	71.5601	72.7996
	Noise	MSE	0.0111	0.0191	0.0098	0.0068
pond5	roise	PSNR	67.6856	65.3228	68.2256	69.7923
pondo	Denoise	MSE	0.0076	0.0149	0.0065	0.0044
	Denoise	PSNR	69.3244	66.4011	70.0243	71.7026

Discussion

Photo	Median	Average	Gaussian	Weiner
construction1	9.762	3.038	2.161	15.524
rubbish1	9.145	3.187	2.158	11.795
pagoda1	8.909	2.998	2.170	12.372
pond1	7.543	2.68	1.826	7.329

Method runtimes (in milliseconds)

Conclusion

- ► The best of results
 Wiener filter with MSE is minimum mean square error and it is maximum PSNR.
- Disadvantage At all method, this method has runtimes which is the longest.
- Future development Improvement of the proposed method over the existing approaches in terms of visual quality.

THANK YOU!!!