Média da tx de mort. para o sexo Masc. (100000 pesooas ano) 40 30 20 DIAGRAMA DE 100 200 300 400 Consumo médio de Vegetais(gr/pessoa/dia) **DISPERSÃO**

Prof. Eveline Pereira

DIAGRAMA DE DISPERSÃO

- É uma ferramenta simples que permite a visualização gráfica do tipo de relacionamento existente entre duas variáveis.
- O entendimento dessas relações permite maior eficiência dos métodos de controle dos processos, facilitando a detecção de problemas e o planejamento para ações de melhoria a serem tomadas.

DIAGRAMA DE DISPERSÃO

- Exemplos de aplicação:
 - Como o rendimento de uma reação química varia em função do aumento da temperatura do reator?
 - Qual a relação existente entre resistência e dureza?
- O diagrama de dispersão é muito útil nesse tipo de estudo.

Diagrama de Dispersão: Horas Extras x Erros no Processo

Quantidade de erros cometidos no processo

DIAGRAMA

Diagrama de Dispersão: Horas Extras x Erros no Processo

DIAGRAMA DE DISPERSÃO

 Pela Linha de Tendência, podemos verificar que o aumento de uma variável, leva ao aumento da outra variável;

 Assim, pode-se verificar que, o trabalho, além do período regulamentar, compromete a qualidade do processo em questão

DIAGRAMA DE DISPERSÃO: ETAPAS PARA A CONSTRUÇÃO:

- 1- Colete no mínimo 30 pares de observações (x,y) das variáveis cujo tipo de relacionamento será estudado
- 2- Registre os dados coletados em uma tabela
- 3- Escolha a variável que será representada no eixo horizontal (x). Essa variável deve ser aquela que por algum motivo é considerada preditora da outra variável, que será plotada no eixo vertical (y).
- 4- Determine os valores máximo e mínimo das observações da cada variável

DIAGRAMA DE DISPERSÃO: ETAPAS PARA A CONSTRUÇÃO:

- 5- Escolha escalas adequadas e de fácil leitura para os eixos horizontal e vertical.
 - > O maior valor da escala deve ser maior que o máximo das observações da variável correspondente.
 - > Os comprimentos dos dois eixos devem ser aproximadamente iguais.
- 6- Para facilitar, desenhe as escalas em papel milimetrado.
- 7- Represente no gráfico os pares de observações (x,y). Se existirem pares repetidos indique esse fato desenhando círculos concêntricos :

DIAGRAMA DE DISPERSÃO: ETAPAS PARA A CONSTRUÇÃO:

- 8- Registre as informações importantes que devam constar no gráfico:
 - ▶ título,
 - > período de coleta de dados,
 - > número de pares de observação,
 - ▶ identificação
 - > unidade de medida de cada eixo,
 - > responsável pela construção do diagrama,
 - >etc...

- Uma indústria fabricante de refrigeradores constatou um elevado número de refugos na gaveta de legumes de um determinado modelo de refrigerador.
- A observação do problema indicou que a maior parte das gavetas refugadas apresentam o defeito "corte fora de esquadro".

 Os técnicos da empresa suspeitam que o corte fora de esquadro possa ser consequência da variação de tensão na rede elétrica que alimenta o equipamento de corte. Mas como verificar isso?

 Para a verificação validade da hipótese coletou-se dados sobre a tensão da rede elétrica (x) e variação no corte (y) que foram tabelados para gerar um gráfico de dispersão.

• Etapa 1 e 2:

Coleta e organização dos dados em tabela.

№ da Medida i	Tensão da Rede Elétrica (Volts) xi	Variação no Corte (mm) yi	№ da Medida i	Tensão da Rede Elétrica (Volts) xi	Variação no Corte (mm) yi
1	222,7	15,7	19	219,9	16,2
2	217,7	17	20	222,2	15,9
3	219,4	16,3	21	213,9	19,1
4	220,9	16,1	22	216	18
5	214,4	18,6	23	218,1	17
6	216,5	17,8	24	222	16
7	213	19,5	25	224,1	15,4
8	221,7	16	26	214,9	18,6
9	224,7	15,3	27	214,2	18,7
10	215,5	18,3	28	223,3	15,6
11	220	16,3	29	216,7	17,6
12	218,6	16,7	30	215,3	18,5
13	223,5	15,7	31	223,8	15,5
14	217	17,4	32	220,6	16,1
15	221,5	16,1	33	215,8	18,2
16	218,4	16,8	34	217,3	17,3
17	213,6	19,3	35	219,2	16,5
18	221,2	16,2			

Etapa 3:

• Escolha da variável tensão na rede elétrica para compor o eixo x, uma vez que suspeita-se que essa é preditora na variação do corte.

Etapa 4:

Estabelecer valores mínimos e máximos de cada eixo

Tensão na red	de elétrica (x)	Variação no Corte (y)		
Valor Mínimo:	Valor Máximo:	Valor Mínimo:	Valor Máximo:	
213,0	224,7	15,3	19,5	

№ da Medida (i)	Tensão da Rede Elétrica (Volts) xi	Variação no Corte (mm) yi	№ da Medida (i)	Tensão da Rede Elétrica (Volts) xi	Variação no Corte (mm) yi
1	222,7	15,7	19	219,9	16,2
2	217,7	17	20	222,2	15,9
3	219,4	16,3	21	213,9	19,1
4	220,9	16,1	22	216	18
5	214,4	18,6	23	218,1	17
6	216,5	17,8	24	222	16
7	→ 213 −	→ 19,5	25	224,1	15,4
8	221,7	16	26	214,9	18,6
9	→ 224,7 -	→ 15,3	27	214,2	18,7
10	215,5	18,3	28	223,3	15,6
11	220	16,3	29	216,7	17,6
12	218,6	16,7	30	215,3	18,5
13	223,5	15,7	31	223,8	15,5
14	217	17,4	32	220,6	16,1
15	221,5	16,1	33	215,8	18,2
16	218,4	16,8	34	217,3	17,3
17	213,6	19,3	35	219,2	16,5
18	221,2	16,2			

Etapas 5 a 8:

- Escolha das escalas ,
- > Representação dos pares(x,y) no gráfico,
- Registro das informações importantes que devam constar no gráfico, etc...

Diagrama de Dispersão: Tensão Elétrica da Rede X Variação no Corte

Tensão (volts)

• Análise:

- O diagrama construído fornece as seguintes informações:
 - > 1- Existe uma correlação negativa de dados (maiores valores de tensão estão associados a uma menor variação no corte).
 - > 2- A relação entre as variáveis é aproximadamente linear.
 - > 3- A relação entre as variáveis observadas é forte, pois a faixa de dispersão dos pontos é pequena.
- Após análise do gráfico, a empresa pode montar um plano de ação com o objetivo de reduzir o número de gavetas com corte fora de esquadro.

- Os padrões da distribuição dos pontos, correspondentes aos pares que compõem o diagrama de dispersão, fornecem informações sobre o tipo de relacionamento entre as variáveis.
- Há cinco possíveis padrões:
 - Elevada Correlação Positiva;
 - Moderada Correlação Positiva;
 - 3. Não Existe Correlação Entre "x" e "y";
 - 4. Moderada Correlação Negativa;
 - 5. Elevada Correlação Negativa;

1. Elevada Correlação Positiva:

Se "x" aumenta, "y" também aumenta. É uma tendência muito clara.

2. Moderada Correlação Positiva;

A variável "y" aumenta com o aumento da variável "x" no entanto, há grande variabilidade (dispersão).

Nesse caso, a relação não é tão clara e outras variáveis além de "x" deverão ser consideradas.

Moderada Correlação Positiva

- Não Existe Correlação Entre "x" e "y";
- Os valores de uma variável não estão associados aos valores da outra variável

Ausência de Correlação

4. Moderada Correlação Negativa:

A variável "y" diminui com o aumento da variável "x", há grande variabilidade (dispersão).

Nesse caso, a relação não é tão clara e outras variáveis além de "x" deverão ser consideradas.

5. Elevada Correlação Negativa:

- Se "x" aumenta, "y" diminui.
- É uma tendência muito clara.

Elevada Correlação Negativa

Diagramas de dispersão que mostram correlação negativa entre as variáveis

Diagramas de dispersão que mostram correlação positiva entre as variaveis

DIAGRAMA DE DISPERSÃO: OUTLIERS:

- Ao analisar diagramas de dispersão deve-se sempre observar se existe a presença de pontos atípicos (outliers) na figura.
- Um "outlier" é uma observação extrema que não condiz com os demais dados.
- Os "outliers" fornecem informações importantes e devem ser analisados com cuidado, normalmente indicam eventos não usuais, erro no registro dos dados ou erro do instrumento de medição.

• Quando se tem certeza de que o "outlier" é decorrente de erro no registro ou no instrumento, é possível desconsiderar os dados mas, se for decorrente de algum evento especial do processo, deve-se investiga-lo mais a fundo pois pode se tratar de uma oportunidade de melhoria para o processo.

- a) Diagrama de dispersão e relacionamentos entre causa e efeito entre variáveis:
- A existência de uma correlação entre duas variáveis não implica na existência de um relacionamento de causa e feito entre elas.
- Ex.: Aumento do número de doentes mentais no Reino Unido a cada
 10.000 habitantes (y) e o número de aparelhos de rádio nesse país (x):

Número de Aparelhos de Rádio (em milhões) X Número de doentes Mentais a cada 10.000 habitantes no Reino Unido

Número de Aparelhos de Rádio

- No gráfico, apesar de haver correlação entre as variáveis, é pouco provável que o número de doentes mentais esteja associado ao número de rádios.
- Isso acontece porque as duas variáveis aumentam com o passar dos anos: os aparelhos de rádio tiveram decréscimo no valor e por isso o consumo aumentou da mesma forma, o diagnóstico de doenças mentais tornou-se mais sofisticado o que aumentou o número de diagnósticos.

- b) Intervalos de Variação das Variáveis:
- Para a construção de um diagrama de dispersão, o intervalo de variação das variáveis deve ser um pouco maior do que a faixa usual de operação do processo isso porque para diferentes faixas de variação os resultados podem ser diferentes, veja:

Variação Positiva

Variação Negativa

Totalidade dos dados: Curva

- c) Estratificação:
- Em muitos casos a estratificação dos dados permite a descoberta da causa de um problema, veja:
- Foram coletados dados sobre o tempo de vida de uma ferramenta de corte empregada em um torno (y) e a velocidade de corte (x):

 Inicialmente parece não haver correlação, mas quando estratificamos em Fabricante A e Fabricante B temos:

 Agora podemos concluir que a ferramenta de corte do fornecedor "A" tem maior vida útil do que a do fornecedor "B"

DIAGRAMA DE DISPERSÃO: COEFICIENTE DE CORRELAÇÃO:

- Um diagrama de dispersão mostra a direção, a forma e a intensidade da relação entre duas variáveis quantitativas.
- A correlação mede a intensidade e a direção da relação linear entre duas variáveis quantitativas;
- Costuma-se representar a correlação pela letra "r";
- Suponha que tenhamos dados sobre variáveis x e y para n amostras.
- Os valores para a primeira amostra são x1 e y1, os valores para a segunda amostra são x2 e y2, e assim por diante.

DIAGRAMA DE DISPERSÃO: COEFICIENTE DE CORRELAÇÃO:

 Um valor positivo de "r" indica associação positiva entre as variáveis, e um valor negativo de indica "r" uma associação negativa.

A correlação "r" estará sempre entre –1 e 1.

 Pode ser calculada através de fórmulas especificas ou fornecida por softwares que tenham análise estatística, como por exemplo o MS Excel.

DIAGRAMA DE DISPERSAO: COEFICIENTE DE CORRELAÇÃO:

• É possível quantificar o relacionamento existente entre duas variáveis de interesse pelo coeficiente de correlação linear :

$$r = \frac{S_{xy}}{\sqrt{S_{xx} \cdot S_{yy}}}$$

Sendo:

• Cálculo de
$$S_{xx}$$
:

$$S_{xx} = \sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n}$$

• Cálculo de
$$S_{vv}$$
:

• Cálculo de
$$S_{yy}$$
: $S_{yy} = \sum y_i^2 - \frac{\left(\sum y_i\right)^2}{n}$

• i varia de l a n

• Cálculo de
$$S_{xy}$$
:

$$S_{xy} = \sum x_i \cdot y_i + \frac{\left(\sum x_i\right)\left(\sum y_i\right)}{n}$$

DIAGRAMA DE DISPERSÃO:

Vamos facilitar os cálculos usando uma tabela:

 y_n

n

Total:

 $\mathbf{X}_{\mathbf{n}}$

Nº da Medida	x _i	y i	x_i^2	$\mathbf{y_i}^2$	$\mathbf{x_i} \cdot \mathbf{y_i}$
1	\mathbf{x}_1	y 1	$\mathbf{x_1}^2$	y ₁ ²	$\mathbf{x}_1 \cdot \mathbf{y}_1$
2	\mathbf{x}_2	\mathbf{y}_2	$\mathbf{x_2}^2$	y ₂ ²	\mathbf{x}_2 . \mathbf{y}_2
3	\mathbf{x}_3	y ₃	x ₃ ²	y ₃ ²	x ₃ , y ₃

 x_n^2

 $\sum (\mathbf{X}_i)$ $\sum (\mathbf{Y}_i)$ $\sum (\mathbf{X}_i^2)$ $\sum (\mathbf{y}_i^2)$ $\sum (\mathbf{x}_i \cdot \mathbf{y}_i)$

 x_n, y_n

- Dando continuidade ao exemplo da indústria fabricante de eletrodomésticos deseja melhorar o alto índice de refugos da gaveta de legumes de um modelo de refrigerador devido ao problema de corte fora do esquadro.
- Vamos calcular o coeficiente de correlação linear (r) entre as 2
 variáveis: corte fora do esquadro e variação de tensão da rede elétrica
- Primeiramente, vamos organizar a tabela:

i	хi	yi	xi^2	yi^2	xi.yi
ı	313	17,8	48369	211,21	4182,8
5	313,6	19,3	48534,95	373,49	4133,48
2	313,4	19,1	48283,31	364,81	4000,49
4	314,3	18,2	48881,64	349,69	4000,04
	214,4	18,6	48957,26	348,46	3182,84
h	314,4	18,6	46183,81	348,46	2997,14
7	318,3	18,8	46384,84	343,38	3483,88
Nº da Medida	x_{i}	Уi	x _i ²	y i²	$x_i \cdot y_i$
1	\mathbf{x}_1	y ₁	x ₁ ²	y 1 ²	$x_1 \cdot y_1$
2	\mathbf{x}_2	\mathbf{y}_2	x ₂ ²	$\mathbf{y_2}^2$	\mathbf{x}_2 . \mathbf{y}_2
3	x ₃	y ₃	x ₃ ²	y ₃ ²	x ₃ . y ₃
				•••	
n	x _n	Уn	$\mathbf{x_n}^2$	$\mathbf{y_n}^2$	$\mathbf{x_n}$. $\mathbf{y_n}$
Total	$\sum (\mathbf{X}_i)$	$\sum_{i} (\mathbf{Y_i})$	$\sum (\mathbf{X_i}^2)$	$\sum (\mathbf{y_i}^2)$	$\sum (\mathbf{x_i} \cdot \mathbf{y_i})$
34	333,3	18,4	19373,84	282,81	3833,48
38	223,7	18,7	49898,39	346,44	3496,39
31	333,3	I II , Is	49863,89	343,36	2482,48
23	222,8	18,2	49983,38	346,49	3111,11
33	222,8	18,8	8888b,44	348,38	3468,9
34	334,1	18,4	88338,81	227,16	3481,14
38	224,7	18,3	88498,89	334,89	2427,41
total	7657,6	595,3	1675792,4	10178,11	130103,39

Pela tabela, temos que:

$$n = 35$$

$$-\sum (X_i) = 7.657,6$$

$$-\sum (Y_i) = 595,3$$

$$\sum (X_i^2) = 1.675.792,4$$

$$-\sum (y_i^2) = 10.178,11$$

$$-\sum (x_i \cdot y_i) = 130.103,39$$

Aplicando as fórmulas:

• Cálculo de
$$S_{xx}$$
:

Cálculo de
$$S_{xx}$$
: $S_{xx} = \sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n}$

• Cálculo de
$$S_{yy}$$
: $S_{yy} = \sum_{i} y_i^2 - \frac{\left(\sum_{i} y_i\right)^2}{n}$

Cálculo de
$$S_{xy}$$
:

$$S_{xy} = \sum x_i \cdot y_i + \frac{\left(\sum x_i\right)\left(\sum y_i\right)}{n}$$

Cálculo de S_{xx}:

$$S_{xx} = \sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n}$$

35

• $Sxx = 1.675.792, 4 - (7.657, 6)^2$

Dados:

$$n = 35$$

$$-\sum (X_i) = 7.657,6$$

•
$$\sum (\mathbf{Y}_i) = 595,3$$

$$\sum (X_i^2) = 1.675.792,4$$

$$-\sum (y_i^2) = 10.178,11$$

$$-\sum (x_i \cdot y_i) = 130.103,39$$

Sxx = 396,6

Cálculo de S_{yy}:

$$S_{yy} = \sum y_i^2 - \frac{\left(\sum y_i\right)^2}{n}$$

$$n = 35$$

$$-\sum (X_i) = 7.657,6$$

•
$$\sum (\mathbf{Y}_i) = 595,3$$

$$-\sum (X_i^2) = 1.675.792,4$$

$$-\sum (y_i^2) = 10.178,11$$

$$-\sum (x_i \cdot y_i) = 130.103,39$$

• Syy =
$$10.178,11 - (595,3)^2$$

35

$$Syy = 52,8$$

Cálculo de S_{xy}:

$$S_{xy} = \sum x_i.y_i \vdash \frac{(\sum x_i)(\sum y_i)}{n}$$

•
$$Sxy = 130.103,39 - (7.657,6) \times (595,3)$$

Dados:

$$n = 35$$

•
$$\sum (X_i) = 7.657,6$$

•
$$\sum (\mathbf{Y}_i) = 595,3$$

$$\sum (X_i^2) = 1.675.792,4$$

$$-\sum (y_i^2) = 10.178,11$$

$$-\sum (x_i \cdot y_i) = 130.103,39$$

35

$$Sxy = -141,8$$

Dados:

$$-$$
 Sxx = 396,6

•
$$Syy = 52,8$$

$$-$$
 Sxy = - 141,88

$$r = \frac{S_{xy}}{\sqrt{S_{xx} \cdot S_{yy}}}$$

$$r = \frac{-141.8}{\sqrt{(396.6 \times 52.8)}}$$

$$r = -0.98$$

Conclusão: Existe uma forte correlação negativa (≈ -1) entre a tensão na rede elétrica e a variação no corte das gavetas.

DIAGRAMA DE DISPERSÃO: COEFICIENTE DE CORRELAÇÃO: INTERPRETAÇÃO

Coeficiente de Correlação Linear

 $-1,0 \le r \le 1,0$

DIAGRAMA DE DISPERSÃO: EXEMPLO DE APLICAÇÃO:

Diagrama de Dispersão: Tensão Elétrica da Rede X Variação no Corte

APLICAÇÃO:

Diagrama de Dispersão: Tensão Elétrica da Rede X Variação no Corte

EXEMPLOS

EXEMPLOS

EXEMPLOS

Diagrama de Dispersão Estresse x Produtividade

DÚVIDAS???

ATIVIDADE:

 No laboratório de uma empresa produtora de aços, foram feitos testes para estabelecer a relação entre o teor de carbono nos aços (%) e a resistência à tração (N/mm2) dos aços produzidos.

tracionado um corpo-de-prova, sendo obtida a resistência (yi), cujos valores estão apresentados na tabela ao lado: Em função dos pares ordenados de

Para cada amostra de aço, com um

teor de carbono específico (xi), foi

- Teor de Carbono e Resistência a tração:
- a) Construa o diagrama de dispersão; b) Calcule e interprete o coeficiente de

correlação linear (r).

(%) 0,20

Teor de C

(N/mm2)

422 451 441

431

Resistência

à tração

0,24 0,22 0,24

0,28

0,22

0,27

471 422 461

470

431

441

441

0,25 0,23 0,25

0,23 0,22

440

RESPOSTA:

$$n = 12$$

$$-\sum (X_i) = 2.85$$

$$-\sum (Y_i) = 5322$$

$$-\sum (X_i^2) = 0,6825$$

$$-\sum (y_i^2) = 2363396,0$$

$$-\sum (x_i \cdot y_i) = 1267,4$$

Aplicando as fórmulas:

• Cálculo de
$$S_{xx}$$
: $S_{xx} = \sum x_i^2 - \frac{(\sum x_i)^2}{n}$ =0,005625

• Cálculo de
$$S_{yy}$$
: $S_{yy} = \sum_{i} y_i^2 - \frac{(\sum_{i} y_i)^2}{n} = 3089$

• Cálculo de
$$S_{xy}$$
: $S_{xy} = \sum x_i \cdot y_i \vdash \frac{\left(\sum x_i\right)\left(\sum y_i\right)}{n} = 3,425$

$$r = \frac{S_{xy}}{\sqrt{S_{xx} \cdot S_{yy}}}$$

r = 0.82 (positiva forte)

n	xi	yi	xi2	yi2	xii.yi				_		_	. ~	
1	0,2	422	0,040	178084,000	84,400			D	iagrar	na de	Corre	lação	
2	0,24	451	0,058	203401,000	108,240		48	0					
3	0,22	441	0,048	194481,000	97,020		47 46	o 📙			•	•	
4	0,24	431	0,058	185761,000	103,440		E 40						
5	0,28	471	0,078	221841,000	131,880		로 46	J					
6	0,22	422	0,048	178084,000	92,840		00 45	0 +			-• /		
7	0,27	461	0,073	212521,000	124,470		r 44	o		•	* / *		
8	0,25	470	0,063	220900,000	117,500		43: 42:	,		/	•		
9	0,23	431	0,053	185761,000	99,130	1	15te			_/_			
10	0,25	441	0,063	194481,000	110,250		§ 42	0 +					
11	0,23	441	0,053	194481,000	101,430		41	o 🕌	-	-	-	-	
12	0,22	440	0,048	193600,000	96,800			0,15	0,18	0,21	0,24	0,27	0,3
	2,85	5322	0,6825	2363396	1267,4		Teor de C (%)						
sxx:	0,005625		17,375625										
syy:	3089												
sxy:	3,425												
r:	0,82165662												

n	хi	yi	xi2	yi2	xii.yi	
12	2,85	5322	0,6825	2363396	1267,4	

• Cálculo de
$$S_{xx}$$
: $S_{xx} = \sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n}$

• Cálculo de
$$S_{yy}$$
: $S_{yy} = \sum y_i^2 - \frac{\left(\sum y_i\right)^2}{n}$

• Cálculo de
$$S_{xy}$$
: $S_{xy} = \sum x_i \cdot y_i + \frac{\left(\sum x_i\right)\left(\sum y_i\right)}{n}$

$$Sxx = \sum x^2 - (\sum x)^2/n$$

$$Sxx = 0.6825 - (2.85)^2/12$$

$$Sxx = 0.6825 - 8.1225/12$$

$$Sxx = 0.6825 - 0.676875$$

$$Sxx = 0.005625$$

Syy =
$$\sum y^2 - (\sum y)^2/n$$

$$Syy = 2363396 - (5322)^2/12$$

$$Syy = 2363396 - 28323684/12$$

$$Syy = 2363396 - 2360307$$

$$Syy = 3089$$

$$Sxy = \sum xy - (\sum x).(\sum y)/n$$

$$Sxy = 1267,40 - (2,85.5322)/12$$

$$Sxy = 1267,40 - 15167,7/12$$

$$Sxy = 1267,4 - 1263,975$$

$$Sxy = 3,425$$

$$Sxx = \sum x^2 - (\sum x)^2/n$$

$$Sxx = 0.6825 - (2.85)^2/12$$

$$Sxx = 0.6825 - 8.1225/12$$

$$Sxx = 0.6825 - 0.676875$$

$$Sxx = 0.005625$$

Syy =
$$\sum y^2 - (\sum y)^2/n$$

$$Syy = 2363396 - (5322)^2/12$$

$$Syy = 2363396 - 28323684/12$$

$$Syy = 2363396 - 2360307$$

Syy = 3089

$$Sxy = \sum xy - (\sum x).(\sum y)/n$$

$$Sxy = 1267,40 - (2,85.5322)/12$$

$$Sxy = 1267,40 - 15167,7/12$$

$$Sxy = 1267,4 - 1263,975$$

$$Sxy = 3,425$$

o Coeficiente de Correlação Linear

$$r = \frac{S_{xy}}{\sqrt{S_{xx} \cdot S_{yy}}}$$

$$r = Sxy / \sqrt{(Sxx . Syy)}$$

$$r = 3,425 / \sqrt{(0,005625.3089)}$$

$$r = 3,425 / \sqrt{17,375625}$$

$$r = 3,425 / 4,168407969$$

$$r = 0.8216$$

