Which of the following matrices are singular? Why?

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Which of the following matrices are singular? Why?

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Which of the following matrices are singular? Why?

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Recall that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Which of the following matrices are singular? Why?

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Recall that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

So: Singularity is related to the value of ad - bc.

Which of the following matrices are singular? Why?

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Recall that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

So: Singularity is related to the value of ad - bc.

A:

Which of the following matrices are singular? Why?

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Recall that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

So: Singularity is related to the value of ad - bc.

A:
$$1 \cdot 4 - 2 \cdot 3 = -2$$
.

Which of the following matrices are singular? Why?

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Recall that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

So: Singularity is related to the value of ad - bc.

A:
$$1 \cdot 4 - 2 \cdot 3 = -2$$
. Nonsingular.

Which of the following matrices are singular? Why?

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Recall that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

So: Singularity is related to the value of ad - bc.

A: $1 \cdot 4 - 2 \cdot 3 = -2$. Nonsingular.

В:

Which of the following matrices are singular? Why?

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Recall that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

So: Singularity is related to the value of ad - bc.

A: $1 \cdot 4 - 2 \cdot 3 = -2$. Nonsingular.

B: $1 \cdot 4 - 2 \cdot 2 = 0$. Singular.

Which of the following matrices are singular? Why?

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Recall that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

So: Singularity is related to the value of ad - bc.

A: $1 \cdot 4 - 2 \cdot 3 = -2$. Nonsingular.

B: $1 \cdot 4 - 2 \cdot 2 = 0$. Singular.

C:

Which of the following matrices are singular? Why?

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Recall that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

So: Singularity is related to the value of ad - bc.

A: $1 \cdot 4 - 2 \cdot 3 = -2$. Nonsingular.

B: $1 \cdot 4 - 2 \cdot 2 = 0$. Singular.

C: $1 \cdot 1 - (-1) \cdot (-1) = 0$. Singular.

D:

Which of the following matrices are singular? Why?

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Recall that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

So: Singularity is related to the value of ad - bc.

- A: $1 \cdot 4 2 \cdot 3 = -2$. Nonsingular.
- *B*: $1 \cdot 4 2 \cdot 2 = 0$. Singular.
- C: $1 \cdot 1 (-1) \cdot (-1) = 0$. Singular.
- $D: 1 \cdot 1 1 \cdot 0 = 1$. Nonsingular.

For the matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

the quantity ad - bc is called a **determinant**.

For the matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

the quantity ad - bc is called a **determinant**. It has the following nice property:

$$det(A) = 0 \Leftrightarrow A \text{ is singular.}$$

For the matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

the quantity ad - bc is called a **determinant**. It has the following nice property:

$$det(A) = 0 \Leftrightarrow A \text{ is singular.}$$

Computing a determinant is a simple way to find if A is singular or not.

For the matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

the quantity ad - bc is called a **determinant**. It has the following nice property:

$$det(A) = 0 \Leftrightarrow A \text{ is singular.}$$

Computing a determinant is a simple way to find if A is singular or not.

Question: Are there determinant computations for general $n \times n$ matrices?

For the matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

the quantity ad - bc is called a **determinant**. It has the following nice property:

$$det(A) = 0 \Leftrightarrow A \text{ is singular.}$$

Computing a determinant is a simple way to find if A is singular or not.

Question: Are there determinant computations for general $n \times n$ matrices?

Yes!

A determinant is a function

 $\det: \mathbb{R}^{n \times n} \to \mathbb{R}$

with the following properties:

A determinant is a function

$$\det: \mathbb{R}^{n \times n} \to \mathbb{R}$$

with the following properties:

1.
$$\det(I_n) = 1$$
.

A determinant is a function

$$\det: \mathbb{R}^{n \times n} \to \mathbb{R}$$

with the following properties:

- 1. $\det(I_n) = 1$.
- 2. If A and B are row equivalent by swapping two rows, then

$$\det(B) = -\det(A).$$

A determinant is a function

$$\det: \mathbb{R}^{n \times n} \to \mathbb{R}$$

with the following properties:

- 1. $\det(I_n) = 1$.
- 2. If A and B are row equivalent by swapping two rows, then

$$\det(B) = -\det(A).$$

This condition says that the determinant is *antisymmetric* or *alternating* on matrix rows.

3 If A and B are row equivalent by scaling a row of A by k then $\det(B) = k \det(A).$

3 If A and B are row equivalent by scaling a row of A by k then det(B) = k det(A).

4 Label the rows of the matrix A by a_1, a_2, \ldots, a_n .

3 If A and B are row equivalent by scaling a row of A by k then

$$\det(B) = k \det(A).$$

4 Label the rows of the matrix A by a_1, a_2, \ldots, a_n . Choose one row, say a_j , and a covector $v \in \mathbb{R}^{1 \times n}$.

3 If A and B are row equivalent by scaling a row of A by k then

$$\det(B) = k \det(A).$$

4 Label the rows of the matrix A by a_1, a_2, \ldots, a_n . Choose one row, say a_i , and a covector $v \in \mathbb{R}^{1 \times n}$. We have:

$$\det \begin{pmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_{j-1} \\ a_j + v \\ a_{j+1} \\ \vdots \\ a_n \end{bmatrix} = \det \begin{pmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_{j-1} \\ a_j \\ a_{j+1} \\ \vdots \\ a_n \end{bmatrix} + \det \begin{pmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_{j-1} \\ v \\ a_{j+1} \\ \vdots \\ a_n \end{bmatrix} .$$

These conditions say that the matrix is *multilinear* on the rows of the matrix.

Verify these properties for the 2×2 determinant ad - bc.

Verify these properties for the 2×2 determinant ad-bc. Here is property 4:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \det(A) = ad - bc$$

Verify these properties for the 2×2 determinant ad-bc. Here is property 4:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \det(A) = ad - bc$$

$$B = \begin{bmatrix} a & b \\ e & f \end{bmatrix} \qquad \det(B) = af - be$$

Verify these properties for the 2×2 determinant ad - bc. Here is property 4:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$B = \begin{bmatrix} a & b \\ e & f \end{bmatrix}$$

$$det(A) = ad - bc$$

$$det(B) = af - be$$

$$C = \begin{bmatrix} a & b \\ c + e & d + f \end{bmatrix}$$

Verify these properties for the 2×2 determinant ad - bc. Here is property 4:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \det(A) = ad - bc$$

$$B = \begin{bmatrix} a & b \\ e & f \end{bmatrix} \qquad \det(B) = af - be$$

$$C = \begin{bmatrix} a & b \\ c + e & d + f \end{bmatrix} \qquad \det(C) = a(d + f) - b(c + e)$$

$$= ad + af - bc - be$$

$$= \det(A) + \det(B).$$

Notation: Sometimes the determinant is written with vertical bars (| ⋅ |):

$$|A| = \det(A)$$
 and $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \det\left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\right)$

Notation: Sometimes the determinant is written with vertical bars (| ⋅ |):

$$|A| = \det(A)$$
 and $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \det\left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\right)$

▶ Suppose A is a matrix with two identical rows. Then det(A) = 0.

Notation: Sometimes the determinant is written with vertical bars (| ⋅ |):

$$|A| = \det(A)$$
 and $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \det\left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\right)$

Suppose A is a matrix with two identical rows. Then det(A) = 0. Why?

Notation: Sometimes the determinant is written with vertical bars (| ⋅ |):

$$|A| = \det(A)$$
 and $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \det\left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\right)$

Suppose A is a matrix with two identical rows. Then det(A) = 0. Why? Because if we swap those two rows we get the same matrix and the negative determinant. So

$$|A| = -|A|$$

Notation: Sometimes the determinant is written with vertical bars (| ⋅ |):

$$|A| = \det(A)$$
 and $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \det\left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \right)$

Suppose A is a matrix with two identical rows. Then det(A) = 0. Why? Because if we swap those two rows we get the same matrix and the negative determinant. So

$$|A| = -|A| \Leftrightarrow |A| = 0.$$

Notation: Sometimes the determinant is written with vertical bars (| ⋅ |):

$$|A| = \det(A)$$
 and $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \det\left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \right)$

► Suppose A is a matrix with two identical rows. Then det(A) = 0. Why? Because if we swap those two rows we get the same matrix and the negative determinant. So

$$|A|=-|A|\Leftrightarrow |A|=0.$$

▶ Suppose *A* and *B* are row equivalent by adding two rows of *A* together and replacing one of them.

Notation: Sometimes the determinant is written with vertical bars (| ⋅ |):

$$|A| = \det(A)$$
 and $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \det\left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\right)$

► Suppose A is a matrix with two identical rows. Then det(A) = 0. Why? Because if we swap those two rows we get the same matrix and the negative determinant. So

$$|A|=-|A|\Leftrightarrow |A|=0.$$

▶ Suppose A and B are row equivalent by adding two rows of A together and replacing one of them. Then det(A) = det(B).

Notation: Sometimes the determinant is written with vertical bars (| ⋅ |):

$$|A| = \det(A)$$
 and $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \det\left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \right)$

► Suppose A is a matrix with two identical rows. Then det(A) = 0. Why? Because if we swap those two rows we get the same matrix and the negative determinant. So

$$|A|=-|A|\Leftrightarrow |A|=0.$$

▶ Suppose *A* and *B* are row equivalent by adding two rows of *A* together and replacing one of them. Then det(*A*) = det(*B*). Why?

Notation: Sometimes the determinant is written with vertical bars $(|\cdot|)$:

$$|A| = \det(A)$$
 and $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \det\left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \right)$

Suppose A is a matrix with two identical rows. Then det(A) = 0. Why? Because if we swap those two rows we get the same matrix and the negative determinant. So

$$|A|=-|A|\Leftrightarrow |A|=0.$$

▶ Suppose A and B are row equivalent by adding two rows of A together and replacing one of them. Then det(A) = det(B). Why?

$$|B| = |A| + |C|$$

and |C|=0 because it has two identical rows!

▶ A determinant of a 1 × 1 matrix is obvious:

$$\det([a]) = a$$
.

▶ A determinant of a 1 × 1 matrix is obvious:

$$\det([a]) = a$$
.

We already have a determinant formula for 2 × 2 matrices. You should memorize it.

▶ A determinant of a 1 × 1 matrix is obvious:

$$\det([a]) = a$$
.

- We already have a determinant formula for 2 × 2 matrices. You should memorize it.
- ► For larger matrices we can determine determinant values directly from the properties!

▶ A determinant of a 1 × 1 matrix is obvious:

$$\det([a]) = a$$
.

- We already have a determinant formula for 2 × 2 matrices. You should memorize it.
- ► For larger matrices we can determine determinant values directly from the properties! For example

$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix}$$

▶ A determinant of a 1×1 matrix is obvious:

$$\det([a]) = a$$
.

- We already have a determinant formula for 2 × 2 matrices. You should memorize it.
- ► For larger matrices we can determine determinant values directly from the properties! For example

$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix} = -1$$

from condition 2!

Argue the following computations:

$$\begin{vmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{vmatrix} = -6, \quad \begin{vmatrix} 0 & 3 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & -1 \end{vmatrix} = 6$$

$$\begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 3 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{vmatrix} = 6, \quad \begin{vmatrix} 2 & x & y \\ 0 & 3 & z \\ 0 & 0 & 1 \end{vmatrix} = 6$$

Note: in the last case, it does not matter what x, y, z are.