F 329 – Exp. 3. Distribuição de potencial e campo elétrico

Conceitos

Potencial e campo elétricos. Equipotenciais e linhas de força. Efeito de ponta e para-raios. Blindagem e "gaiola de Faraday".

Fenômeno

Presenciamos diariamente fenômenos típicos da área da eletrostática. Porém experiências ilustrativas de fenômenos deste tipo, realizáveis em condições controladas, são raras, pois os efeitos interessantes e observáveis são de baixa intensidade. Nos experimentos propostos aqui, procura-se observar e medir as distribuições de potencial através do levantamento das curvas equipotenciais e da obtenção das linhas de campo elétrico. As linhas de campo elétrico são sempre perpendiculares às curvas equipotenciais e o vetor campo elétrico é sempre tangente à linha de campo. As situações experimentais propostas permitem explorar os seguintes efeitos:

- "efeito de ponta" é capaz de amplificar o campo uniforme em que está posicionada. Geometria tipicamente usada em 'para-raios' por induzir a descarga do raio em um local apropriado.
- "gaiola de Faraday" é capaz de atenuar o campo elétrico em que está posicionada. Geometria tipicamente utilizada nas proteções e blindagens contra os efeitos dos campos elétricos espúrios, por exemplo, nos cabos coaxiais.

Medida do campo elétrico

O campo elétrico é definido como o negativo do gradiente do potencial elétrico V (ou tensão elétrica, como foi visto até aqui):

$$\vec{E} = -\nabla V$$

Portanto V é encontrado integrando o campo elétrico de um ponto inicial a um ponto final, ao longo de um caminho s. Se o campo elétrico for paralelo a esse caminho (para cada elemento de caminho), isto é, se $\vec{E}/\!\!/ d\vec{s}$, então:

$$V_{if} = -\int_{i}^{f} E \cdot ds$$

e portanto a componente de E na direção de s é dada por:

$$E_s = -\frac{dV}{ds} = -\left(\frac{V_f - V_i}{s_f - s_i}\right)$$
 [1]

Características especiais da situação experimental

A eletrostática trata, entre outros, de potenciais e campos elétricos estáticos, em situações onde o meio não apresenta condutividade elétrica (vácuo ou isolante). É praticamente impossível medir potenciais elétricos no vácuo e assim usam-se simulações. Para este estudo, utilizaremos a propriedade de que a distribuição do potencial elétrico entre eletrodos condutores polarizados, colocados em um eletrólito fraco e uniforme, é a mesma que apareceria se estes eletrodos, eletricamente carregados, estivessem em igual disposição geométrica no vácuo [veja, por exemplo, a ref. 4].

Os fenômenos eletrostáticos acontecem no espaço tridimensional. Neste experimento, para facilitar a visualização, estudaremos situações nas quais as características relevantes aparecem em planos bidimensionais.

Mapeamento de Potencial Elétrico e do Campo Elétrico

Dado que o campo elétrico é definido como o negativo do gradiente do potencial elétrico V, o vetor campo elétrico sempre é perpendicular a uma linha de potencial constante, chamada linha equipotencial. Assim, para podermos determinar o campo elétrico em uma região do espaço precisamos basicamente determinar onde estão as linhas equipotenciais. O campo será perpendicular a elas e sua intensidade pode ser determinada, em cada posição, considerando-se pares de pontos que ligam as equipotenciais (veja o anexo).

Assim, para se determinar o campo elétrico em uma região do espaço é preciso fazer um mapa do potencial, ou seja, determinar como ele (potencial) varia em uma região do espaço. Um exemplo é o mapeamento do potencial gravitacional, proporcional à altitude, em um local com grande variação de relevo, como uma montanha. Veja um exemplo de curvas de equipotencial na Figura 1. Na figura, vemos as variações de potencial e as direções mais íngremes.

Para fazer os mapas de potencial, duas estratégias são possíveis:

1- medir o potencial em muitos pontos da região de interesse. Nessa abordagem, o potencial é medido em posições (x,y) de toda a área de interesse. É preciso definir quantos pontos serão medidos, ou seja, a distância entre os pontos. Como as variações de potencial são a priori desconhecidas, pode ser preciso medir muitos pontos para que o mapa permita a observação de linhas equipotenciais e consequentemente o campo elétrico. Interpolação de potencial entre pontos medidos pode resultar em resultados incorretos se os pontos são adquiridos com distâncias muito grandes frente às variações do potencial.

2- Localizar linhas de equipotencial. Nessa abordagem, ao invés de se medir o potencial, se 'procura' um valor de potencial dentro da faixa de interesse e se anota várias coordenadas X,Y para esse valor de potencial. Assim, será possível localizar a posição de uma linha de potencial com certa confiança. Obtendo-se algumas dessas linhas, é possível caracterizar a variação do potencial em uma região do espaço medindo-se bem menos pontos que da outra forma.

Figura 1: Ilustração em 3D de uma montanha. As curvas de potencial (gravitacional) estão indicadas colo linhas de altitude constante (linhas equipotenciais).

Objetivos

- Explorar o Potencial elétrico e Campo elétrico em três geometrias, tal como na figura 2. Para cada caso, determine linhas equipotenciais para caracterizar o campo elétrico.
- Determinar **quantitativamente** o efeito de pontas e o efeito de gaiola de Faraday.

Figura 2. Configuração dos eletrodos para: (a) Campo elétrico uniforme; (b) Campo elétrico uniforme distorcido por uma ponta; (c) campo elétrico uniforme distorcido por um aro.

Nota: As curvas equipotenciais podem apresentar alguma simetria e por isso pode ser possível medir em uma região reduzida e, devido à simetria, repetir os mesmos dados em outras regiões.

Material

Cuba plástica, eletrodos de cobre, solução de sulfato de cobre, fonte de tensão, multímetro.

Montagem experimental

Uma cuba de plástico, de fundo plano, contém uma camada uniforme de 4 ou 5 mm de uma solução aquosa de Cu₂SO₄. Eletrodos de cobre de forma geométrica predefinida são mergulhados na solução e são polarizados; uma corrente elétrica fraca circula entre os eletrodos, atravessando o eletrólito. O levantamento do potencial no eletrólito em função da posição é realizado com as pontas de prova do multímetro.

Atenção: Use no máximo 2V para alimentar os eletrodos fixos da cuba.

Planejamento Experimental

- 1. Escolha uma estratégia para mapeamento do potencial (veja acima).
- 2. Defina um sistema de coordenadas.
- 3. Verifique se há simetrias que podem ser exploradas para que seja possível medir uma parte da cuba de plástico e extrapolar os resultados para o restante dela.
- 4. Reflita sobre as incertezas de cada grandeza da equação 1 levando em conta: a estabilidade da medida de tensão; o posicionamento e o tamanho da ponteira usada para medir tensão.

Bibliografia

- [1] Halliday D; Resnick R; Merrill J. Fundamentos de Física vol.3, Eletromagnetismo, 3ª Edição, LTC, RJ, 1995. Cap. 24 e 26.
- [2] Freeman I. M. *Physics: Principles and Insights*. McGraw-Hill, New York, 1968, pp.430-433. Biblioteca IFGW # 530.F877p.
- [3] Feynman R.P.; Leighton R.B.; Sands M. *The Feynman Lectures on Physics*; vol.2, cap.7, cap.9, cap.12. Addison-Wesley, 1964.
- [4] Flügge S. *Handbuch der Physik*, vol XVI, pp.159-163. Springer Verlag, 1958. Biblioteca IFGW # R530.3.F646e, vol.16.