P5: Identify Fraud from Enron Email

/Final project for Intro to Machine Learning/

By Igor Buinyi, igor.buinyi@gmail.com.

The goal of this project is to implement a machine learning algorithm to support a real-world decision making problem of whether a person is a 'person of interest' (POI). After the Enron scandal, more than 500,000 emails from Enron mail servers were open to public. Such amount of text and metadata cannot be normally assessed by a person, but machine learning is capable of quickly identifying hidden patterns in the megabytes of text or other data. In this project I demonstrate how features are extracted from text and how they are used in the classification model.

1. Remove outlier

We need to clean entry 'TOTAL' from the provided dataset because it does not represent a particular person (it just contains the sum of the corresponding financial and email features. Moreover, its values are too extreme.

Fig1. Outlier in the data. Left plot: with outlier; right plot: without outlier.

2. Summarize data

The data summary is presented in the table below. Similar tables for POIs and Not-POIs are presented in the appendix.

						L		
	name	persons	s cnt	cnt_NA	min	max	mean	sum
İ	poi	145	145	0	False	True	0.124	18.0
	bonus	145	81	64	70000	8000000	1201773.1	97343619.0
	deferral payments	145	38	107	-102500	6426990	841602.5	31980896.0
	deferred income	145	48	97	-3504386	-833	-581049.8	-27890391.0
	director fees	145	16	129	3285	137864	89822.9	1437166.0
	email address	145	111	34	None	None	0.0	0.0
	exercised stock options	145	101	44	3285	34348384	2959559.3	298915485.0
	expenses	145	94	51	148	228763	54192.0	5094049.0
	loan advances	145	3	142	400000	81525000	27975000.0	83925000.0
	long term incentive	145	65	80	69223	5145434	746491.2	48521928.0
	other	145	92	53	2	10359729	465276.7	42805453.0
	restricted stock	145	109	36	-2604490	14761694	1147424.1	125069226.0
1	restricted stock deferred	I 145	I 17	1 128	I - 1787380	15456290	I 621892.8	I 10572178.0 I

salary total_payments total_stock_value	 	145 145 145	,	94 24 25	51 21 20	 	477 148 -44093	 -+	1111258 103559793 49110078		284087.5 2623421.2 3352073.0		26704229.0 325304226.0 419009128.0	
from_messages to_messages from_poi_to_this_person from_this_person_to_poi shared_receipt_with_poi		145 145 145 145 145	8	36 36 36 36	59 59 59 59	.	12 57 0 0 2		14368 15149 528 609 5521	.	608.8 2073.9 64.9 41.2 1176.5		52356.0 178352.0 5581.0 3546.0 101176.0	

There are 145 persons in the data, including 18 POIs. There are total 20 features (not counting 'poi'), including 15 financial features and 5 email features. A few of the features have more than half missing values.

I will convert 5 email features to 3 ratios with values between 0 and 1 (shown in the table below) because the frequency of emails from/to POI is assumed to be more relevant than the number of emails.

name	+ cnt_all	+ cnt +	+ cnt_NA +	+ min +	+	+	++ sum +
from_poi_to_this_person_ratio	145	86		0.0	0.217	0.0	3.265
from_this_person_to_poi_ratio	145	86		0.0	1.0	0.2	15.829
shared_receipt_with_poi_ratio	145	86		0.018	1.001	0.6	52.379

A few scatterplots is show below. As compared with non-POIs, POIs on average had high salaries, received hefty bonuses, exercised more stock option and owned more stock. Therefore, financial features can be used for classification.

Fig.2. Scatterplots for financial features

Constructed email features are also useful for prediction as can be seen from Fig.3. The intensity of interaction between POI and POI is higher than between POI and non-POI.

Fig.3. Scatterplots for email features

3. Mining for text features

Although it was not necessary for completing the project, I decided to explore the Enron email corpus and extract features useful for POI prediction. Basically, I would like to find out patterns in email text which differentiate POI from non-POI.

First, I checked all email addresses in "From:" field. I found 3 additional email addresses that are likely to belong to people from our dataset.

GATHMANN WILLIAM D: bill.gathmann@enron.com LOCKHART EUGENE E: gene.lockhart@enron.com

NOLES JAMES L: james.noles@enron.com

However, I decided not to add these addresses to the dataset because I do not expect the performance to increase significantly. These three persons sent only few emails and all of them are non-POIs.

Second, I tried a variety of models to predict whether a POI was the sender or a recipient of a particular email. My goal was to extract the best words for prediction. The final algorithm is the following:

- From each of 517394 emails I extract the sender's email address and stemmed email text excluding the text
 after words "Original Message". So, I do not analyze the text that was replied or forwarded. Also, I exclude
 stopwords (names and reduced email addresses like 'vkaminsnsf') from the analysis.
- For the next stage I select only 52431 emails sent by people from our dataset, including 4211 emails sent by POIs.
- Then I use Tfldf vectorizer to extract 1500 text features from the selected emails.
- Then I implement a decision tree model to find the best features to predict whether an individual email was sent by POI. As a result, I got a list of text features. A few of the features ordered by the predictive power: 'ena', 'ect', 'guy', 'rob', 'review', 'turbin', 'forward', 'deal', 'thank', 'plan'.

Given the small number of persons (N=145) in our dataset and a high number of potentially useful text features, we cannot use an occurrence of a word in the person's vocabulary (1 if the person used the word in one of emails and 0 if he did not) to predict whether he is a POI. Such a straightforward way would lead to overfitting, with random words becoming the best predictors of whether the person is a POI. However, using the word frequency ratio (ratio of emails with a word to the total number of sent emails) would overcome this problem. Each email with a 'poi-word' will increase the probability that the person is POI.

So, in **the third step** I calculated the number of emails from a particular email with particular predicting words. Later I will use the ratios of emails_with_the_word/total_sent_emails in the model.

All steps covered in this section are implemented in final_project_preprocess.py.

4. Building and tuning classification model.

4.1. Feature selection

Although I tried different combinations, I present here my best selection.

<u>Financial features:</u> I use 8 features with the smallest number of missing values: ['expenses', 'other', 'bonus', 'total_stock_value', 'restricted_stock', 'salary', 'total_payments', 'exercised_stock_options']. It should be noted that using the other financial features would slightly improve the decision tree model but the SVM model would become much worse with them.

<u>Email features:</u> As described in section 2, I transform 5 features to 3 ratios and use them: ['from_this_person_to_poi_ratio','from_poi_to_this_person_ratio', 'shared_receipt_with_poi_ratio'].

<u>Text features:</u> I transform the data from the previous section to ratios emails_with_the_word/total_sent_emails (only if there are at least 10 emails sent from a particular email address). The top-3 features from previous section ['ena', 'ect', 'guy'] improve the model. The most of the others make it worse. So, I use only 3 these features.

Fig.4. Scatterplots for text features

4.2. Imputing missing values.

Financial features were got from *enron61702insiderpay.pdf*. After analyzing the structure of the file, I realized that missing values correspond to just zeros. So, I replace 'NaN' with 0 in financial features.

Missing values in email and text features I decided to replace with the corresponding median values using sklearn.preprocessing.Imputer.

4.3. Feature scaling.

I used sklearn scaler to scale financial features. Email features are not scaled because they are already between 0 and 1.

Because of the necessity to implement imputing and scaling, I had to implement my own analog of featureFormat function (named dict_to_nparray). For the results to be compatible with tester.py and featureFormat function, I submit the dataset in the transformed form: financial features scaled and imputed, other features imputed.

4.4. Different classification models.

I used Naïve Bayes, SVM and Decision tree models on data split into training and testing sets (70%/30%). I tried to reduce the number of features with PCA to avoid overfitting, but got worse results.

4.5. Parameter tuning and classification results.

Below are shown mean recall and precision obtained for 1000-fold validation (my implementation of *StratifiedShuffleSplit*, different from *tester.py*). Multifold validation is important because the results (especially in our case with quite small number of observations) highly depend on which points end up in training and testing sets. For instance, there many splits for which even the best model demonstrates zero precision and recall, so we cannot rely on model comparision for one particular data split.

Naive Bayes model	Accuracy	Recall	Precision
	0.847	0.305	0.334

SVM model tuning	Accuracy	Recall	Precision
Kernel=linear, C=1.0	0.891	0.130	0.468
Kernel=linear, C=10.0	0.877	0.168	0.445
Kernel=linear, C=100.0	0.859	0.209	0.377
Kernel=rbf, C=1.0	0.885	0.001	0.006
Kernel=rbf, C=100.0	0.836	0.289	0.289
Kernel=rbf, C=1000.0	0.824	0.313	0.271
Kernel=rbf, C=10000.0	0.824	0.313	0.271
Kernel=rbf, C=10000.0, gamma=0.0001	0.889	0.123	0.460
Kernel=rbf, C=10000.0, gamma=0.001	0.850	0.200	0.277
Kernel=rbf, C=10000.0, gamma=0.003	0.842	0.330	0.332
Kernel=rbf, C=10000.0, gamma=0.005	0.842	0.383	0.350
Kernel=rbf, C=10000.0, gamma=0.007	0.841	0.395	0.349
Kernel=rbf, C=10000.0, gamma=0.01	0.835	0.386	0.328
Kernel=rbf, C=10000.0, gamma=0.02	0.829	0.370	0.306

Rbf kernel produces better results than linear kernel due to significantly higher value of recall. Moreover, it takes much time to run SVM model with linear kernel at high values of parameter C.

Decision tree model tuning	Accuracy	Recall	Precision
max_depth=None, min_samples_leaf=1	0.818	0.293	0.251
max_depth=None, min_samples_leaf=2	0.831	0.247	0.260
max_depth=5, min_samples_leaf=1	0.821	0.286	0.254

max_depth=5, min_samples_leaf=2	0.831	0.246	0.258
max_depth=3, min_samples_leaf=1	0.839	0.223	0.283
max_depth=3, min_samples_leaf=2	0.839	0.214	0.269

Min_samples_leaf=2 improves precision at the cost of recall. Highest recall for max_depth=None, highest precision for max_depth=3.

4.6. Check whether text features improve model performance.

3 models: Naïve Bayes, SVM(Kernel=rbf, C=10000.0, gamma=0.007) and Decision Tree (max_depth=None, min samples leaf=1).

Model recall:

Features	NB	SVM	DT
Financial + email + text	0.305	0.395	0.328
Financial + email	0.253	0.242	0.297
Financial	0.238	0.177	0.290

Model precision:

Features	NB	SVM	DT
Financial + email + text	0.334	0.349	0.290
Financial + email	0.316	0.253	0.261
Financial	0.346	0.236	0.249

So, additional text features improve the performance a lot.

5. Results and explanation.

I managed to get precision=0.42179 and recall=0.40850 from tester.py, well above the required 0.3.

It means that if my model identified a POI, the probability that this person is a real POI is 42% (precision). If there is a real POI in the dataset, my model identifies him as POI with a probability of 41% (recall). Therefore, in our case the output of the machine learning algorithm is not a self-contained tool for identifying POI. It can only help to support or refute other considerations.

I would also like to comment the words with the best prediction power ('ena', 'ect', 'guy'). **ECT** is an acronym for Enron Capital & Trade Resources, Inc., which changed its name to Enron North America Corp. **(ENA)** in 1999 (http://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=2963298). It is now known that this entity was at the center of financial manipulation within Enron (http://www.justice.gov/archive/dag/cftf/chargingdocs/delaineyindictment.pdf). So, our model correctly identified a place where major fraud occurred. The importance of word **'guy'** may indicate that POIs conducted fraud very cooperatively and their interaction was closer than formal work relations.

Appendix

Summary table for POIs

+	+	+	+	+	+	+	+
name	cnt_all	cnt	cnt_NA	min	max	mean	sum
bonus	18	16	2	200000	7000000	2074999.9	33199999.0
deferral payments	18	5	13	10259	2144013	519894.2	2599471.0
deferred income	18	11	7	-3504386	-833	-1035313.5	-11388448.0
director fees	18	0	18	None	None	0.0	0.0
email address	18	18	0	None	None	0.0	0.0
exercised stock options	18	12	6	384728	34348384	10463793.7	125565524.0
expenses	18	18	0	16514	127017	59873.8	1077729.0
from messages	18	14	4	16	3069	300.4	4205.0
from poi to this person	18	14	4	13	240	97.8	1369.0
from this person to poi	18	14	4	4	609	66.7	934.0
loan advances	18	1	17	81525000	81525000	81525000.0	81525000.0
long term incentive	18	12	6	71023	3600000	1204862.4	14458349.0
other	18	18	0	486	10359729	802997.4	14453953.0
poi	18	18	0	True	True	1.0	18.0
restricted stock	18	17	1	126027	14761694	2318620.8	39416553.0
restricted stock deferred	18	0	18	None	None	0.0	0.0
salary	18	17	1	158403	1111258	383444.9	6518563.0
shared receipt with poi	18	14	4	91	5521	1783.0	24962.0
to messages	18	14	4	225	7991	2417.1	33840.0
total payments	18	18	0	91093	103559793	7913589.8	142444616.0
total_stock_value	18	18	0	126027	49110078	9165670.9	164982077.0
from poi to this person ratio	+ 18	+ 14	+ 4	0.021	+ 0.137	 0.0	+ 0.665
from this person to poi ratio	18	14	4	0.174	0.656	0.3	4.837
shared_receipt_with_poi_ratio	18	14	4	0.404	1.001	0.8	10.932
t	+	+	+		+	+	+

Summary table for Non-POIs

+	+	+	·		·	+	
name	cnt_all	cnt	cnt_NA	min	max	mean	sum
bonus	127	65	62	70000	8000000	986824.9	64143620.0
deferral payments	127	33	94	-102500	6426990	890346.2	29381425.0
deferred income	127	37	90	-3367011	-1042	-445998.5	-16501943.0
director fees	127	16	111	3285	137864	89822.9	1437166.0
email address	127	93	34	None	None	0.0	0.0
exercised stock options	127	89	38	3285	15364167	1947752.4	173349961.0
expenses	127	76	51	148	228763	52846.3	4016320.0
from messages	127	72	55	12	14368	668.8	48151.0
from poi to this person	127	72	55	0	528	58.5	4212.0
from this person to poi	127	72	55	0	411	36.3	2612.0
loan advances	127	2	125	400000	2000000	1200000.0	2400000.0
long term incentive	127	53	74	69223	5145434	642709.0	34063579.0
other	127	74	53	2	7427621	383128.4	28351500.0
poi	127	127	0	False	False	0.0	0.0
restricted stock	127	92	35	-2604490	13847074	931007.3	85652673.0
restricted stock deferred	127	17	110	-1787380	15456290	621892.8	10572178.0
salary	127	77	50	477	1060932	262151.5	20185666.0
shared receipt with poi	127	72	55	2	4527	1058.5	76214.0
to messages	127	72	55	57	15149	2007.1	144512.0
total payments	127	106	21	148	17252530	1725090.7	182859610.0
total_stock_value	127	107	20	-44093	23817930	2374084.6	254027051.0
from poi to this person ratio	127	+ 72	55	0.0	0.217	0.0	2.6
from this person to poi ratio	127	72	55	0.0	1.0	0.2	10.992
shared_receipt_with_poi_ratio	127	72	55	0.018	0.969	0.6	41.447

Sources

Sklearn algorithms

http://scikit-learn.org/stable/modules/naive bayes.html

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

http://scikit-learn.org/stable/modules/tree.html

http://scikit-learn.org/stable/modules/preprocessing.html

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Imputer.html

http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.KFold.html

http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.StratifiedShuffleSplit.html

Remove empty line in csv ouput

http://stackoverflow.com/questions/8746908/why-does-csv-file-contain-a-blank-line-in-between-each-data-line-when-outputting

Imputation of missing values

http://stackoverflow.com/questions/11441751/how-to-get-svms-to-play-nicely-with-missing-data-in-scikit-learn

http://scikit-learn.org/stable/modules/preprocessing.html#imputation-of-missing-values

Replace value in Numpy arrays

 $\frac{http://stackoverflow.com/questions/19666626/replace-all-elements-of-python-numpy-array-that-are-greater-than-some-value}{}$

Pyplot legend

http://stackoverflow.com/questions/17411940/matplotlib-scatter-plot-legend

Enron

https://en.wikipedia.org/wiki/Enron

https://en.wikipedia.org/wiki/Enron_scandal

http://www.justice.gov/archive/dag/cftf/chargingdocs/delaineyindictment.pdf

ENA and ECT

http://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=2963298

Enron email dataset (version May 7,2015)

https://www.cs.cmu.edu/~./enron/