6. domača naloga: TensorFlow

Jernej Henigman (Kaggle: Jernej Henigman)

19. maj 2016

1 Uvod

Cilj domače naloge je bil pridelati, kar se da dobre napovedne vrednosti na podatkih MNIST iz portala Kaggle, z uporabo knjižnice TensorFlow.

2 Metode

• Obdelava podatkov

Podatke normaliziramo. Vhodno matriko train in test delimo z vrednostjo 255. Dobimo vrednosti med 0 in 1.

• Večnivojska nevronska mreža

Dva konvolucijska nivoja, ter softmax izhodni nivo.

• Regularizacija

. Dodamo L2 regularizacijo na softmax nivoju.

• Element relu

Dodamu relu element.

• 2 različni kriterijski funkciji

Poskusimo z uporabo dveh različnih kriterisjkih funkcij.

• Paketni pristop

Model treniramo z uporabo paketnega pristopa. Napovedi prav tako dobimo z paketnim pristopom.

• Pooling

Uporabimo 2x2 pooling.

3 Rezultati

Model	Točnost
Logistična regresija	0.8812
Softmax	0.8911
Stacking	0.9498
NN - TensorFlow	0.9908

Tabela 1.1. Točnosti napovedi na portalu Kaggle

Vidimo, da je implementirana kovolucijska nevronska mreža prava pošast v primerjavi z prejšnimi rešitvami. Največ k izbolšanju rešitve je pripomoglo povečanje števila epoh, pri učenju/treniranju mreže. 1500 epoh 0.95 točnost. 25000 epoh točnost 0.99.

4 Poganjanje, testirnaje

Program deluje, vendar je potrebno v domač direktorji dodati "train.p" in "test.p", ki sta numpy pickle objekta učne in testne množice MNIST podatkov iz portala Kaggle.