How it works...

pbzip2 internally uses the same compression algorithms as bzip2, but it compresses separate chunks of data simultaneously using pthreads - a threading library. However, this is all transparent to the user and all that happens is a much faster compression.

Just like gzip or bzip2, pbzip2 does not create archives itself, it can only work on a single file. Hence, to compress multiple files and directories, we use it in conjunction with tar.

There's more...

There are other useful options we can use with pbzip2:

Manually specifying the number of CPUs

Use the -p option to pbzip2 to specify the number of CPU cores manually. This is useful if the automatic detection fails or you want some CPU cores to be free for some other job.

pbzip2 -p4 myfile.tar

This will tell pbzip2 to use 4 CPUs.

Specifying the compression ratio

Just like other compression tools we saw up to now, we can use the options from 1 to 9 to specify the fastest and best compression ratios respectively.

Creating filesystems with compression

squashfs is a heavy-compression based read-only filesystem that is capable of compressing 2 to 3 GB of data onto a 700 MB file. If you have ever used a Linux LiveCD (or LiveUSB), they are built using squashfs. These CDs make use of a read-only compressed filesystem which keeps the root filesystem on a compressed file. It can be loopback mounted and loads a complete Linux environment. Thus, when some files are required by processes, they are decompressed and loaded onto the RAM and used.

squashfs can be useful when it is required to keep files heavily compressed and to access a few of them without extracting all the files. This is because completely extracting a large compressed archive takes a long time. However, if an archive is loopback mounted, it will be very fast since only the required portion of the compressed archive is decompressed when requested. Let's see how we can use squashfs.

Getting ready

squashfs internally uses compression algorithms such as gzip and lzma and is supported in all modern Linux distros. However, in order to create squashfs files we need to install **squashfs-tools** using the package manager.

How to do it...

Let's see how to create and mount squashfs files:

- 1. In order to create a squashfs file by adding source directories and files, use:
 - \$ mksquashfs SOURCES compressedfs.squashfs

Sources can be wildcards, or file, or folder paths.

For example:

More details will be printed on the terminal. The output is stripped to save space

- 2. To mount the squashfs file to a mount point, use loopback mounting as follows:
 - # mkdir /mnt/squash
 - # mount -o loop compressedfs.squashfs /mnt/squash

You can access the contents at /mnt/squashfs.

There's more...

The squashfs file system can be customized by specifying additional parameters. Let's go through the additional options.

Excluding files while creating a squashfs file

While creating a squashfs file, we can exclude a list of files or a file pattern specified using wildcards.