Homework 2

Due: 2023 Oct. 9

- 1. Exercise 1 on page 22.
- 2. Exercise 1 on page 36.
- **3.** Consider the boundary-value problem below,

$$u_{,xx}+f=0,$$

$$u(1)=g,$$

$$-u_{,x}(0)=h.$$

Assume that $f = \sin(x)$.

- a. Employing the linear finite element space with equally spaced nodes, set up the stiffness matrix and load vector using 3 elements. Solve the matrix problem. Use $\hat{f} \approx \sum_{B=1}^{n+1} f_B N_B$ in the assembly of the load vector. Do you get nodally exact solution here?
- b. Repeat the calculation without invoking the approximation \hat{f} . In other words, calculate (N_A, f) rather than (N_A, \hat{f}) in the load vector. What do you observe? Notice that the following identity can be helpful.

$$\int x sin(x) dx = -\int x dcos(x) = -x cos(x) + \int cos(x) dx = -x cos(x) + sin(x).$$

4. A quadrature rule is often used for the calculation of integrals on computers. It involves the quadrature points ξ_l and their weights w_l . It approximates an integral as follows,

$$\int_{-1}^{1} g(\xi) d\xi \approx \sum_{l=1}^{n_{\text{int}}} w_{l} g(\xi_{l}),$$

where $n_{\rm int}$ is the number of quadrature points. For the Gaussian quadrature rule with $n_{\rm int}=2$, we have $\xi_1=-1/\sqrt{3}$, $w_1=1$ and $\xi_2=1/\sqrt{3}$, $w_2=1$. Verify that the two-point Gaussian rule can exactly integrate the monomials 1, ξ^2 , ξ^3 but not ξ^4 .