Partial Solution of 3 x N Chomp boards in the form of [2, H, 2]

Ezra Skwarka October 2021

Summer Research Project

- ► Summer Research 2020
- With Dr. B
- Combinatorial Games, specifically Chomp

Summer Research Project

- 1. What is the Combinatorial Game Chomp?
- 2. So What Did I Do?
- 3. Divide and Conquer
- 4. Postamble

What is the Combinatorial Game Chomp?

What Makes a Combinatorial Game?

- Deterministic, no randomness
- Perfect Information, nothing is hidden
- ▶ At one time only one of the players can be winning
- ► Two types:
 - Finite, the game will end, you can't loop
 - ▶ Infinite, the game may not end, you can create loops

But what is Chomp?

- ▶ Played on a board like a chocolate bar where the lower left piece is poisoned
- You don't want to eat the poison, unless you've built up a resistance to iocane powder
- ▶ Alternating turns where you choose a piece and break off all pieces above and to the right of it

What Are The Different Board Types?

- ▶ Prescriptive: 2 x N, N x N, etc.
- Pictographic: just a picture

- ▶ Long form: truncated, lists columns by height
 - **\}** {3, 3, 2, 2, 2, 1, 1}
- ▶ Short Form: truncated, lists width of groups of column heights
 - **[**2, 3, 2]

What Has Already Been Done?

▶ 1 x N: Go first, leave only poisoned piece

▶ *N* x *N*: Go first, make an L, Tweedledee-Tweedledum

▶ 2 x N: Go first, take top right, Tweedledee-Tweedledum

What Are The Board Positions?

- ▶ Winning and losing positions (P vs N)
 - Every board has a recursively defined Nim Number, but they blew up too fast
- Looking at 3 x N boards

- Note the arrow can be any number of blocks including zero
- I call this an "H-block"

So What Did I Do?

Data Mining with the Short Form

- Wrote a Python script to iterate through all boards from a maximum size to get its position state and those of its children recursively with memoization
 - Work toward the base case, can exit early
 - Code on my GitHub for the curious
- Noticed a pattern in the Long Form, but it was hard to see, so I made the Short Form
 - \triangleright {3, 3, 2, ...2, 1, 1} was always a winning position
 - \triangleright [2, H, 2]
- Saw a pattern, tried to prove it

Building a Seeded Kindergarten

Two ways to generate the children:

- Generating the first generation of children visually
- Generating the first generation of children algorithmically

Children of [2, H, 2]:

- ▶ In other words, if I gave my opponent a [2, *H*, 2], what could they give me back?
- ▶ All 1st generation children are losing positions

The Children of [2, H, 2]

As generated by the almighty algorithm

- Top:
 - [1, H+1, 2]
 - \triangleright [0, H + 2, 2]
- ► Middle:
 - \triangleright [2, H K, 2 + K]
 - \triangleright [2, H H, 2 + H]
 - [1,0,2+H+1]
 - \triangleright [0, 0, 2 + H + 2]

Bottom:

- \triangleright [2, H, 1] s.t. $H \ge 1$
- \triangleright [2, H, 1] s.t. H = 0
- \triangleright [2, H, 0]
- [2, H K, 0] s.t. $(H-K) \ge 2$
- \triangleright [2, H K, 0] s.t. (H K) = 1
- \triangleright [2, H K, 0] s.t. (H K) = 0
- **[**1,0,0]
- [0]

The Children of [2, H, 2]Simplified using two rules

- Top:
 - \triangleright [1, H, 2]
 - ► [*H*, 2]
- Middle:
 - \triangleright [2, H, 2 + K]
 - \triangleright $\{2,0,2+H\}$
 - \triangleright [1, 0, *H*]
 - ► [*H*]

- ▶ Bottom:
 - [2, H, 1]
 - [2, H, 1]
 - [2, H, 0]
 - [2, H, 0]
 - **[**2,1,0]
 - **[**2,0,0]
 - **[1,0,0]**
 - ► [0]

The Children of [2, H, 2] Reordered

- Group A:
 - ► [*H*]
 - **[**1,0,0]
- ► Group B:
 - \triangleright [1, H, 2]
 - \triangleright [0, *H*, 2]
 - **[**2,0,0]

- Group C:
 - \triangleright [1, 0, H]
 - **[**2, 0, 1]
 - **[**2,1,0]
- ► Group D:
 - \triangleright [2, H, 2 + K]
 - \triangleright [2, H, 1]
 - \triangleright [2, H, 0]

A Funky Dude

By which I mean the base case but who has time to say all that

- Aka [2, H, 2] when H = 0
 - Just Follow the normal table and treat H as zero
 - ▶ It works fine, but I just wanted to address the base case real fast

Divide and Conquer

The Children of [2, H, 2] Reordered

- Group A:
 - ► [*H*]
 - **[**1,0,0]
- ► Group B:
 - [1, H, 2]
 - \triangleright [0, *H*, 2]
 - \triangleright [2, 0, 0]

- Group C:
 - \triangleright [1, 0, H]
 - **[**2,0,1]
 - **[**2,1,0]
- ► Group D:
 - \triangleright [2, H, 2 + K]
 - \triangleright [2, H, 1]
 - \triangleright [2, H, 0]

Group A

Reduces to 1 \times *N*

[H]

Group A: Reduces to $1 \times N$

$$[0,0,H+2+2]$$
;
Opponent left only the bottom row

[1];

Leave only the last piece

Group A: Reduces to $1 \times N$

$$[1, H - H, 2 - 2]$$
;
Opponent broke off all 2's, all 1's, and one 3

Leave only the last piece

The Children of [2, H, 2] Reordered

- \triangleright Reduces to 1 x N:
 - ► [H]
 - **[**1,0,0]
- ► Group B:
 - \triangleright [1, H, 2]
 - \triangleright [0, *H*, 2]
 - \triangleright [2, 0, 0]

- Group C:
 - \triangleright [1, 0, H]
 - **(**2, 0, 1]
 - **[**2,1,0]
- ▶ Group D:
 - \triangleright [2, H, 2 + K]
 - \triangleright [2, H, 1]
 - \triangleright [2, H, 0]

Group B

Reduces to 2 x N

Group B: Reduces to 2 x N

$$[2-1,H+1,2]$$
;
Opponent removed one top block

Break off all but one 2

Group B: Reduces to 2 x N

$$[2-2, H+2, 2-2]$$
;
Opponent broke off both 3's

Group B: Reduces to 2 x N

$$[2, H - H, 2 - 2];$$

Opponent broke off all 2's and all 1's

Break off one 3, Sideways Staircase

The Children of [2, H, 2] Reordered

- \triangleright Reduces to 1 x N:
 - ► [*H*]
 - ► [1, 0, 0]
- \triangleright Reduces to 2 x N:
 - \triangleright [1, H, 2]
 - \triangleright [0, *H*, 2]
 - **[**2,0,0]

- Group C:
 - \triangleright [1, 0, H]
 - **[**2,0,1]
 - **[**2,1,0]
- ► Group D:
 - \triangleright [2, H, 2 + K]
 - \triangleright [2, H, 1]
 - \triangleright [2, H, 0]

Group C

Reduces to $N \times N$

Group C: Reduces to $N \times N$

$$[2,0,2-1];$$

Opponent broke off an end piece from

$$H = 0$$

Leave only the last piece

Group C: Reduces to $N \times N$

$$[2, 1, 2 - 2];$$

Opponent broke off both end pieces

when
$$H = 1$$

Break out the center three pieces

Group C: Reduces to $N \times N$

$$[1,0,H+2+1];$$

Opponent all the 2's and one 3 to 1's

Break off the long part of the foot

The Children of [2, H, 2] Reordered

- \triangleright Reduces to 1 x N:
 - ► [*H*]
 - **[**1,0,0]
- \triangleright Reduces to 2 x N:
 - [1, H, 2]
 - \triangleright [0, *H*, 2]
 - **[**2,0,0]

- \triangleright Reduces to $N \times N$:
 - [1,0,H]
 - **[**2,0,1]
 - **[**2,1,0]
- ▶ Group D:
 - \triangleright [2, H, 2 + K]
 - \triangleright [2, H, 1]
 - \triangleright [2, H, 0]

Group D

Maintain [2, H, 2]

$$[2, H, 2 + K]$$

Group D: Maintain [2, H, 2]

$$[2, H - K, 2 + K]$$
;
Opponent reduced some/all of the 2's

$$[2, H, 2 - K];$$

Remove K 1's

Group D: Maintain [2, H, 2]

Group D: Maintain [2, H, 2]

$$[2, H, 2-2]$$
;
Opponent broke off both end pieces

$$[2, H-2, 2];$$

Reduce two 2's to 1's

The Children of [2, H, 2] Reordered

- \triangleright Reduces to 1 x N:
 - ► [*H*]
 - **▶** [1, 0, 0]
- \triangleright Reduces to 2 x N:
 - \triangleright [1, H, 2]
 - \triangleright [0, *H*, 2]
 - **[**2,0,0]

- \triangleright Reduces to $N \times N$:
 - [1,0,H]
 - **[**2,0,1]
 - **[**2,1,0]
- \blacktriangleright Maintain [2, H, 2]:
 - \triangleright [2, H, 2 + K]
 - \triangleright [2, H, 1]
 - \triangleright [2, H, 0]

Postamble

Summary and Current Problems

- As far as I can tell, no one else used the truncated forms before
- ▶ Partial solution and stable boards

- Not very elegant, cases may reduce
- Can't reach in one move from 3 x N, but it is stable

Slide Template Credit

I (Matt Torrence) who has been speaking to you through these slides designed this template myself. Feel free to delete this slide in your presentation.

I was inspired by the following stack overflow response and used it as a starting point for this template: tex.stackexchange.com/a/146682/188835

Typography used includes 4 typefaces:

- Charis SIL, for the default serif type
- ▶ IBM Plex Mono for monospace text
- Carlito for the default sans-serif type
- ► TeX Gyre Termes Math for all math mode text