

Three forces $\overrightarrow{F_1}$, $\overrightarrow{F_2}$, and $\overrightarrow{F_3}$ act on the member on the wall. If $\overrightarrow{F_1}$ has a magnitude of F_1 and $\overrightarrow{F_2}$ has a magnitude of F_2 , find the angle θ and the magnitude of $\overrightarrow{F_3}$ such that the total resultant force $\overrightarrow{F_R}$ is equal to $3\overrightarrow{F_2}$. If more than one possible set of answers exist, choose the set with the smaller magnitude of $\overrightarrow{F_3}$.

$$\overrightarrow{F_R} = \Sigma \overrightarrow{F} = \overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} = 3\overrightarrow{F_2}$$

$$\Rightarrow \overrightarrow{F_1} + \overrightarrow{F_3} = 2\overrightarrow{F_2}$$

Since we want smaller magnitude,

$$\Rightarrow F_3 = \frac{8F_2 - \sqrt{25F_1^2 - 36F_2^2}}{5}$$

$$\Rightarrow \theta = \cos^{-1}\left(\frac{3F_3}{5F_1}\right)$$