# **Tree-based Regression**

#### 葉建華

jhyeh@mail.au.edu.tw

http://jhyeh.csie.au.edu.tw/



### The Problem

- We know there are many nonlinearities in real life.
   How can we expect to model everything with a global linear model?
  - Build a model for our data is to subdivide the data into sections that can be modeled easily
  - These partitions can then be modeled with linear regression
  - If we first partition the data and the results don't fit a linear model, then we can partition the partitions
  - Trees and recursion are useful tools for this sort of portioning
- CART: Classification And Regression Trees

# **Tree-based Regression**

#### **Tree-based regression**

Pros: Fits complex, nonlinear data

Cons: Difficult to interpret results

Works with: Numeric values, nominal values



#### **Decision Trees**

- The algorithm we used to construct trees was ID3
  - Chooses the best feature on which to split the data and then splits the data into all possible values that the feature can take
- Problem of ID3
  - This type of splitting separates the data too quickly
  - Couldn't directly handle continuous features
- CART
  - Makes binary splits
  - Handles continuous variables



## **General Approach**

#### **General approach to tree-based regression**

- 1. Collect: Any method.
- 2. Prepare: Numeric values are needed. If you have nominal values, it's a good idea to map them into binary values.
- 3. Analyze: We'll visualize the data in two-dimensional plots and generate trees as dictionaries.
- 4. Train: The majority of the time will be spent building trees with models at the leaf nodes.
- 5. Test: We'll use the R<sup>2</sup> value with test data to determine the quality of our models.
- 6. Use: We'll use our trees to make forecasts. We can do almost anything with these results.



#### **Tree Node Structure**

```
class treeNode():
    def __init__(self, feat, val, right, left):
        featureToSplitOn = feat
        valueOfSplit = val
        rightBranch = right
        leftBranch = left
```



### **Pseudo Code**

Find the best feature to split on:

If we can't split the data, this node becomes a leaf node

Make a binary split of the data

Call createTree() on the right split of the data

Call createTree() on the left split of the data



# **Tree-building Code**

#### Listing 9.1 CART tree-building code

```
from numpy import *
def loadDataSet(fileName):
    dataMat = []
    fr = open(fileName)
    for line in fr.readlines():
                                                            Map everything
        curLine = line.strip().split('\t')
                                                            to float()
        fltLine = map(float,curLine)
        dataMat.append(fltLine)
    return dataMat
def binSplitDataSet(dataSet, feature, value):
    mat0 = dataSet[nonzero(dataSet[:,feature] > value)[0],:][0]
    mat1 = dataSet[nonzero(dataSet[:,feature] <= value)[0],:][0]</pre>
    return mat0, mat1
def createTree(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):
    feat, val = chooseBestSplit(dataSet, leafType, errType, ops)
    if feat == None: return val
                                                              Return leaf value if
    retTree = {}
                                                              stopping condition met
    retTree['spInd'] = feat
    retTree['spVal'] = val
    lSet, rSet = binSplitDataSet(dataSet, feat, val)
    retTree['left'] = createTree(lSet, leafType, errType, ops)
                                                                              8
    retTree['right'] = createTree(rSet, leafType, errType, ops)
    return retTree
```

# **Tree-building Code**

#### Listing 9.2 Regression tree split function

```
def reqLeaf (dataSet):
    return mean(dataSet[:,-1])
def regErr(dataSet):
    return var(dataSet[:,-1]) * shape(dataSet)[0]
def chooseBestSplit(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):
    tolS = ops[0]; tolN = ops[1]
    if len(set(dataSet[:,-1].T.tolist()[0])) == 1:
                                                                    Exit if all values
                                                                    are equal
        return None, leafType(dataSet)
    m,n = shape(dataSet)
    S = errType(dataSet)
    bestS = inf; bestIndex = 0; bestValue = 0
    for featIndex in range(n-1):
        for splitVal in set(dataSet[:,featIndex]):
            mat0, mat1 = binSplitDataSet(dataSet, featIndex, splitVal)
            if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN): continue
            newS = errType(mat0) + errType(mat1)
            if newS < bestS:
                bestIndex = featIndex
                bestValue = splitVal
                                                                    Exit if low error
                bestS = newS
                                                                    reduction
    if (S - bestS) < tolS:
        return None, leafType(dataSet)
    mat0, mat1 = binSplitDataSet(dataSet, bestIndex, bestValue)
                                                                       Exit if split
    if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN):</pre>
                                                                       creates small
        return None, leafType(dataSet)
                                                                        dataset
    return bestIndex, bestValue
```

# **Tree Pruning**

- Trees with too many nodes are an example of a model overfit
- The procedure of reducing the complexity of a decision tree to avoid overfitting is known as pruning
- Postpruning
  - Use a test set to prune the tree
  - Use no user-defined parameters
  - Need to split data into test and training set



### **Pseudo Code**

Split the test data for the given tree:

If the either split is a tree: call prune on that split

Calculate the error associated with merging two leaf nodes

Calculate the error without merging

If merging results in lower error then merge the leaf nodes



# **Tree Pruning Function**

#### **Listing 9.3 Regression tree-pruning functions**

```
def isTree(obj):
    return (type(obj). name =='dict')
def getMean(tree):
    if isTree(tree['right']): tree['right'] = getMean(tree['right'])
    if isTree(tree['left']): tree['left'] = getMean(tree['left'])
    return (tree['left']+tree['right'])/2.0
                                                                   Collapse tree if
def prune(tree, testData):
                                                                   no test data
    if shape(testData)[0] == 0: return getMean(tree)
    if (isTree(tree['right']) or isTree(tree['left'])):
        lSet, rSet = binSplitDataSet(testData, tree['spInd'],
                     tree['spVal'])
    if isTree(tree['left']): tree['left'] = prune(tree['left'], lSet)
    if isTree(tree['right']): tree['right'] = prune(tree['right'], rSet)
    if not isTree(tree['left']) and not isTree(tree['right']):
        lSet, rSet = binSplitDataSet(testData, tree['spInd'],
                     tree['spVal'])
        errorNoMerge = sum(power(lSet[:,-1] - tree['left'],2)) +\
            sum(power(rSet[:,-1] - tree['right'],2))
        treeMean = (tree['left']+tree['right'])/2.0
        errorMerge = sum(power(testData[:,-1] - treeMean,2))
        if errorMerge < errorNoMerge:</pre>
            print "merging"
            return treeMean
        else: return tree
    else: return tree
```

# **Summary**

- Regression is the process of predicting a target value similar to classification
  - Ridge regression is an example of a shrinkage method
- Another shrinkage method that's powerful is the lasso
- The lasso is difficult to compute, but stagewise linear regression is easy to compute and gives results close to those of the lasso
- Shrinkage methods can also be viewed as adding bias to a model and reducing the variance

