Exercise2 StutzSascha

Sascha Stutz 25 September 2017

Exercise 2

Exploratory Data Analysis

Do an exploratory data analysis of a matrix of expression values. Load the data and display: * distributions: boxplot, density, limma::plotDensities * normalization: limma::normalizeQuantiles * clustering: hclust * heatmap: heatmap.2 or pheatmap * correlation matrix: cor and image * reduced dimensionality representation: cmdscale and prcomp

import

```
anno = read.table("Data/SampleAnnotation.txt", as.is=TRUE, sep="\t", quote="", row.names=1, header=TRUE
x = read.table("Data/expressiondata.txt", as.is=TRUE, sep="\t", quote="", row.names=1, header=TRUE, che
x = as.matrix(x)
```

define smaples and colors and phenotype

```
samples = rownames(anno)
colors = rainbow(nrow(anno))
isNorm = anno$TissueType == "norm"
isSick = anno$TissueType == "sick"
isAcute = anno$TissueType == "acute"
```

plot distributions

```
logx <- log2(x)
boxplot(logx, main = "Boxplot")</pre>
```

Boxplot


```
for(i in 1:ncol(logx)){
  hist(logx[,i], freq = FALSE, xlab = colnames(logx)[i], main = paste("Histogram of ", colnames(logx)[i])
}
```

Histogram of norm-02

Histogram of norm-05

Histogram of norm-07

Histogram of norm-09

Histogram of norm-10

Density 0.00 0.10 0.00 0.10 0.00 0.10 norm-10

Histogram of norm-11

Histogram of sick-04

Histogram of sick-12

Histogram of sick-13

Density 0.00 0.10 0.70 0.10 0.20 2 4 6 8 12 sick-13

Histogram of sick-14

Histogram of sick-15

Histogram of acute-04

Histogram of acute-04-a

Histogram of acute-12

Histogram of acute-13

Histogram of acute-14

Histogram of acute-15

limma::plotDensities(logx, legend = "topright")

normalization

```
norm.logx = limma::normalizeQuantiles(logx)
limma::plotDensities(norm.logx,main = 'Quantile normalization',legend="topright")
```

Quantile normalization

hclust

```
distances.small = dist(t(as.matrix(logx[sample(1:nrow(logx), size = 1000),])))
clusters = hclust(distances.small)
plot(clusters, main="Dendrogram")
```

Dendrogram

distances.small hclust (*, "complete")

heatmap.2

```
library(pheatmap)
# pheatmap(distances.small,main="Heatmap",legend = TRUE,annotation_legend = TRUE, annotation_names_row
# data way too big, can't run code
```

correlation matrix

```
image(cor(logx))
```


reduced dimensionality representation

```
fit.cmd <- cmdscale(distances.small, eig=TRUE, k=2)
x <- fit.cmd$points[,1]
y <- fit.cmd$points[,2]
plot(x, y, xlab="Coordinate 1", ylab="Coordinate 2",
    main="CMD")</pre>
```

CMD


```
fit.pca <- prcomp(logx, center = TRUE, scale. = TRUE)
plot(fit.pca, type = "l", main = "Principal Component Analysis")</pre>
```

Principal Component Analysis

