Analysis 2A

Luc Veldhuis

21 Februari 2016

WeiserStraß M-test

Beschouw de functie reeks $\sum_{k=1}^{\infty} f_k$, $\{f_k\}_{k=1}^{\infty}$

Als er een rij reeële getallen bestaat $\{M_k\}_{k=1}^{\infty}$, $M_r \in \mathbb{R}$ zodat

 $M_{k\geq 0}$, $\sum_{k=1}^{\infty}M_k$ convergent is en $|f(x)|\leq M_k$ $\forall x\in D$, dan volgt

 $\sum f_k$ convergeert uniform op D.

Cauchy Ration-test

Beschouw de functiereeks $\sum_{k=1}^{\infty} a_n$, $a_n \in \mathbb{R}$, $a_n \geq 0$.

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\rho$$

Als $\rho > 1$, dan divergeert $\sum a_n$

Als $\rho < 1$, dan convergeert $\sum a_n$

Definitie

Een machtreeks is een functiereeks waarbij $f(n) = a_n(x - x_0)^n$ voor $\{a_n\}_{n \in \mathbb{N}}$, $a_N \in \mathbb{R}$.

 $x_0 \in \mathbb{R}$ is het 'middelpunt van de machtreeks'.

$$a_0 + \sum_{n=1}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 want we nemen $0^0 = 1$

Vraag

Voor welke $x \in \mathbb{R}$ is de machtreeks convergent? Zeker voor $x = x_0$, want $\sum_{n=0}^{\infty} a_n (x_0 - x_0)^n = a_0$. Convergentie in andere punten onderzoeken we met de ration test.

Voorbeeld

 $\begin{array}{l} \sum\limits_{n=0}^{\infty}\frac{x^n}{n!} \text{ in dit geval } x_0=0 \text{ en } a_n=\frac{1}{n!} \ \forall n \in \mathbb{N} \\ \text{Met de ratio test onderzoeken we de absolute convergentie van de} \\ \text{reeks in } x \text{: } \lim\limits_{n \to \infty}|\frac{x^{n+1}}{(n+1)!}| = \lim\limits_{n \to \infty}\frac{|x|}{n+1} = 0 \text{ voor alle } x \in \mathbb{R}. \ 0 < 1 \text{ dus} \\ \text{het is absoluut convergent voor alle } x \in \mathbb{R}. \end{array}$

Voorbeeld

$$\sum_{n=0}^{\infty} 3(x-2)^n \text{ een machtreeks met } a_n=3 \text{ en } x_0=2.$$

$$\lim_{n\to\infty} |\frac{3(x-2)^{n+1}}{3(x-2)^n}| = \lim_{n\to\infty} = |x-2|. \text{ Dan volgt uit de ratio test dat}$$

- Als |x-2|<1 dan is $\sum\limits_{n=0}^{\infty}|3(x-2)^n|$ convergent en $\sum\limits_{n=0}^{\infty}3(x-2)^n$ dus absoluut convergent.
- Als |x-2| > 1 dan is $\sum_{n=0}^{\infty} 3(x-2)^n$ divergent

dus -1 < x - 2 < 1 oftewel 1 < x < 3 Er is sprake van convergentie als

$$x \in \{x \in \mathbb{R} : |x - 2| < 1\} = \{x \in \mathbb{R} : 1 < x < 3\} = (1, 3)$$

Voorbeeld

$$\sum_{n=0}^{\infty} n!(x+3)^n \text{ (machtreeks met } a_n=n! \text{ en middelpunt } x_0=-3).$$

$$\lim_{n\to\infty} |\frac{(n+1)!(x+3)^{n+1}}{n!(x+3)^n}| = \lim_{n\to\infty} (n+1)|x+3|.$$
 Convergeert alleen als $x=-3$ anders divergeert de reeks.

Opmerking

Deze 3 voorbeelden geven alle mogelijke uitkomsten voor machtreeksen. Zie stelling §8.5.5

Stelling §8.5.5

Als $\sum\limits_{n=0}^{\infty} a_n (x-x_0)^n$ convergeert in x_0+r , $r\in\mathbb{R}\setminus\{0\}$ dan convergeert de reeks absoluut voor alle $x\in\{x\in\mathbb{R}:|x-x_0|< r\}$

Comparison test

 $0 \le A_n \le MB_n$ en $\sum B_n$ convergeert, dan is $\sum A_n$ ook convergent.

Let op!

Boek zegt: $\sum a_k(x-a)^k x = a + x_0$

Aantekeningen: $\sum a_n(x-x_0)^n x = x_0 + r$

Let op: $x_0 = r$ in de aantekeningen!!!

Bewijs

De aanname is dat $\sum_{n=0}^{\infty} a_n r^n$ convergeert. Dan moet gelden $\lim_{n\to\infty} a_n r^n = 0$ dus dit betekend dat de rij begrenst is. Er bestaat dus $M\in\mathbb{R},\ M>0$ zodat $|a_n r^n|\leq M\ \forall n\in\mathbb{N}.$ Dus $|a_n(x-x_0)^n|=|a_nr^n||\frac{(x-x_0)^n}{r^n}|\leq M|\frac{x-x_0}{r}|^n$. Voor alle $x\in\mathbb{R}$ zodat $|x-x_0| < r$ geldt: $\left|\frac{x-x_0}{r}\right| < 1$. Dat betekend $\sum_{r=0}^{\infty} \left|\frac{x-x_0}{r}\right|^n$ is convergent. (Meetkundige reeks met 'straal' < 1). Samengevat: $|a_n(x-x_0)^n| \le M|\frac{x-x_0}{r}|^n$ en $\sum_{r=0}^{\infty} |\frac{x-x_0}{r}|^n$ is convergent. Uit de vergelijkings test volgt dat $\sum_{n=0}^{\infty} |a_n(x-x_0)^n|$ ook convergent is.

Definitie

Het **convergentie interval** van $\sum a_n(x-x_0)^n$ is de verzameling $I=\{x\in\mathbb{R}:\sum a_n(x-x_0)^n\}$ convergeert. $(x_0-R,x_0+R)\subseteq I\subseteq [x_0-R,x_0+R]$ waarbij $0\le R\le\infty$, met R de convergentiestraal van de machtreeks.

Wat we nu weten

- $\sum a_n(x-x_0)^n$ convergeert absoluut als $|x-x_0| < R$ (dat will zeggen x op (x_0-R,x_0+R))
- $\sum a_n(x-x_0)^n$ divergeert als $|x-x_0| > R$ (dat wil zeggen $x < x_0 R$ of $x > x_0 + R$)

Bovendien $\sum a_n(x-x_0)^n$ convergeert uniform op (x_0-r,x_0+r) voor alle $r \in (0,R)$.

Bewijs

Zij
$$x \in \mathbb{R}$$
 zodat $|x-x_0| < r < R$. Omdat $r < \mathbb{R}$, is $\sum_{n=0}^{\infty} a_n r^n$ absoluut convergent. Als $|x-x_0| < r$, geldt $|a_n(x-x_0)^n| < |a_n r^n| = M_n$. $M_n = \sum |a_n r^n|$ is convergent (omdat $\sum a_n r^n$ absoluut convergent is). Uit de Weierstraß M-test volgt dat $\sum_{n=0}^{\infty} |a_n(x-x_0)^n|$ uniform convergent is. Dat wil zeggen $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ absoluut uniform convergent is op (x_0-r,x_0+r)

Voorbeeld

$$\begin{split} &\sum_{n=0}^{\infty} \frac{(x-1)^k}{2^k (k+1)} \\ &\lim_{n \to \infty} |\frac{\frac{(x-1)^{k+1}}{2^k + 1(k+2)}}{\frac{(x-1)^k}{2^k (k+1)}}| = \lim_{n \to \infty} \frac{k+1}{2(k+2)}|x-1| = \frac{1}{2}|x-1|. \text{ De machreeks} \\ &\text{convergeert absoluut op } \{x \in \mathbb{R}: \frac{1}{2}|x-1| < 1\} = (-1,3) \end{split}$$

Rand gevallen

Wat gebeurt er in $x = x_0 \pm R$?

Zie voorbeeld. Vul x=-1 in. Dat geeft $\sum_{n=0}^{\infty} \frac{(-1)^k}{k+1}$ Dit geeft de alternerende harmonische reeks. (relatief convergent).

Vul x=3 in. Dat geeft $\sum\limits_{n=0}^{\infty}\frac{1}{(k+1)}$. Deze reeks divergeert.

De machtreeks convergeert op [-1,3)

Stelling van Abel

Als de reeks $\sum a_n(x-x_0)^n$ convergeert naar f op (x_0-R,x_0+R) en is convergent in x_0-R of x_0-R , dan is de som van de reeks continue in x_0+R . Dat wil zeggen dat

$$\lim_{x \to x_0 \pm R} \sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} a_n R^n.$$

Voorbeeld

 $\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$ op (-1,1). Deze reeks convergeert ook in x=1. Uit de stelling van Abel volgt nu dat de reeks nu ook continue is in x=1.

$$\lim_{x \to 1^{-}} \ln(1+x) = \lim_{x \to 1^{-}} \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{n+1}}{n+1} = \sum_{n=0}^{\infty} \frac{-1^{n}}{n+1} \ (= \ln(2))$$

Samenvatting

Machtreeksen:

Convergentie

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n \text{ met convergentiestraal } R:$$

- Convergeert absoluut op $(x_0 R, x_0 + R)$
- Divergeert als $x < x_0 R$ of $x > x_0 + R$
- is uniform convergent op $(x_0 r, x_0 + r) \forall rin(0, R)$
- Eindpunten $x = x_0 \pm R$ moten apart onderzocht worden.
- Continuïteit op het open convergentie interval Als de machtreeks $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ convergentie straal R heeft, dan is $f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$ ('de som van de machtreeks') continue op $(x_0 R, x_0 + R)$.
- Integreren & differentiëren

Bewijsschets voor stelling van Abel

f continue op $(x_0 - R, x_0 + R)$ betekent dat f continue is voor alle $x \in (x_0 - R, x_0 + R)$. Kies $x \in (x_0 - R, x_0 + R)$, dan bestaat er een $r \in (0, R)$ zodat $x \in (x_0 - r, x_0 + r)$ en omdat de convergentie op dit kleinere interval uniform is, dat is f is de uniforme limiet van een rij continue functies (polynomen) en dus continue.

Corollary

Continuiteit in de randpunten van het convergentie interval. Als $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ convergentiestraal R heeft en convergent is in $x_0 + R$ dan is $f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$ continue in $x_0 + R$ (en analoog voor $x_0 - R$)

Differentiëren en integreren

Neem $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ met convergentiestraal R. Dan geldt

- $\int_{x_0}^x f(t)dt = \sum_{n=0}^\infty \frac{a_n(x-x_0)^{n+1}}{n+1}$ voor alle $|x-x_0| < R$ (op het convergentie interval)
- f differentieerbaar op $(x_0 R, x_0 + R)$ en $f'(x) = \sum_{n=0}^{\infty} n a_n (x x_0)^{n-1}$ op het convergentie interval

Opmerking

- Voor (2) hebben we nodig dat $\sum_{n=0}^{\infty} na_n(x-x_0)^{n-1}$ uniform convergeert op (x_0-R,x_0+R) .
- f(x), F(x) en f'(x) hebben dezelfde convergentiestraal.

Voorbeeld 1.1 van §8.5

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \text{ voor } x \in (-1,1)$$

$$\frac{1}{1+x} = \frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-x)^n = \sum_{n=0}^{\infty} (-1)^n x^n \text{ voor } |x| < 1.$$
 Convergentie interval is nog steeds $(-1,1)$.
$$\frac{d}{dt} \arctan(x) = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n (x^2)^n$$
 Termsgewijs integreren geeft:
$$\arctan(x) = \int_0^x \frac{1}{1+t^2} dt = \int_0^x \sum_{n=0}^{\infty} (-1)^n (t^2)^n dt \text{ als } x \in (-1,1)$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$
 Convergentie in de eindpunten van $x \in (-1,1)$:
$$x = -1 \text{ is relatief convergent. } x = 1 \text{ is relatief convergent.}$$
 Dus de somreeks convergeert op $[-1,1]$. (De convergentie is absoluut op $(-1,1)$ relatief als $x = \pm 1$) Uit de stelling van Abel volgt dat de som continue is in $x = \pm 1$ en dus geldt $\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$ voor alle $x \in [-1,1]$

Voorbeeld arctan

$$\lim_{x\to 1}\arctan(x)=\lim_{x\to 1}\sum_{n=0}^{\infty}(-1)^n\tfrac{x^{2n+1}}{2n+1}=\sum_{n=0}^{\infty}\tfrac{(-1)^n}{2n+1}=\arctan(1)=\tfrac{\pi}{4}$$
 arctan(1) = $\tfrac{\pi}{4}$