(Fig. 1)

Amended sheet 1

Identification Label and Process for Producing an Identification

Label

5

The present invention relates to an identification label with a transponder unit for surface mounting on or for mounting around an object provided with a multi-layered layer structure with an identification layer for optical marking, a reinforcement layer for mechanical stabilization of the identification layer and an adhesion layer for mounting the identification label on the object. Furthermore, the invention relates to a process for producing such an identification label as well as additionally a base unit for producing the identification label. Identification labels of the type mentioned in the outset are generally embodied as so-called äself-adhesive labels" for marking objects. A particularly large range of use is the field of luggage identification of airfreight parcels. Here, labels are used which are provided with an essentially three-layered structure in the applied state, namely one identification layer, oriented visibly outwards for the purpose of the primary identification of the corresponding luggage parcel which is provided with an optical marking, a reinforcement layer which serves as a carrier layer for the identification layer and its mechanical stabilization, and finally an adhesion layer which enables an adhesive mounting to the luggage parcel when contacting the surface of the corresponding luggage parcel.

Amended sheet 2

The particular advantage of the known identification labels consists in their flexible nature, which enables an application of the labels not only on plane surfaces but on sharply curved surfaces as well, such as handles, for example.

In order to enable a touchless identification of the luggage parcels provided with the identification labels even at greater distances, in addition to an optical marking on the exterior identification layer of the identification label by means of so-called abar-codes" and alphanumeric markings, it is desirable to combine the identification labels known per se with so-called transponder units which enable a touchless access to the information stored in a chip unit of the transponder unit. The chip unit contacts an antenna coil and forms the transponder unit together therewith. For this purpose, the chip unit and the antenna coil are positioned on a common transponder substrate. Attempts to combine such a transponder unit with an identification label known per se for creating an overall identification label that allows an electronic marking in addition to an optical marking lead to an overall label structure in which a conventional identification label is supplemented with a transponder unit provided on the transponder substrate. Thus, an additional layer was added to the multi-layered layer structure of the conventional identification layer in form of the substrate of the transponder unit.

However, this change of the overall layer structure of the identification label results in disadvantages regarding the thickness and the flexibility of identification labels of such nature.

In EP-A-O 595 549 an identification label with a transponder and marking is known with the transponder provided on a transponder substrate being combined with a conventional identification label.