Sviluppo delle applicazioni software

Docenti: Viviana Bono, Giovanna Petrone, Claudia Picardi, Gianluca Torta

{...}@di.unito.it

• **CFU**: 9

• **Ore**: 40 (teoria) + 50 (laboratorio)

Grazie a Simona Bernardi (Universita` di Saragoza, Spagna), che ha messo a disposizione il suo materiale

Bibliografia

- Processo Unificato
 - Larman C.: "Applicare UML e i Pattern: Analisi e progettazione orientata agli oggetti" Pearson-Prentice Hall, terza edizione (testo di riferimento)
 - Jacobson I., Booch G., Rumbaugh J.: "The Unified Software Development Process" Addison Wesley. (libro degli ideatori di UP)
- Unified Modeling Language (UML)
 - Fowler M.: "UML Distilled", Terza edizione italiana, Pearson-Addison Wesley. (guida minima all'UML)
 - Bennet S., Skelton J., Lunn K.: "Introduzione a UML", Collana Schaum's, McGraw-Hill (esercizi su UML)
 - OMG: http://www.omg.org (documentazione on-line)
- Design patterns
 - Gamma, Helm, Johnson, Vlissides, "Design Patterns", Prima edizione italiana, Pearson Education Italia-Addison Wesley.

Materiale sul corso

• Sito I-learn:

http://informatica.i-learn.unito.it/course/view.php?id=716

Obiettivi di questa parte del corso

- Conoscere una metodologia di sviluppo del software (Unified Process)
- Imparare ad usare UML nell'ambito di UP.
- Conoscere uno strumento CASE a supporto della notazione UML.
- Imparare a progettare usando i pattern di progettazione e pattern architetturali.

Organizzazione

- Ingegneria del Software con metodologie O-O
 - Unified Process
 - UML
- Ingegneria dei requisiti
- Ingegneria della progettazione con pattern (design/architectural pattern)
- Uso dello strumento CASE Virtual Paradigm in lab.
- Progetto di uno studio di caso

Lezione I

- Introduzione a UP
- Prima fase: Ideazione
- Requisiti evolutivi
- Casi di studio

Ingegneria del software: problematiche (IEEE)

- Strategie sistematiche, a partire da richieste formulate dal committente, per lo sviluppo, esercizio e manutenzione del software
- Studio ed applicazione di tali strategie

Standard

- Esistono molte organizzazioni che si preoccupano di stabilire degli standard di processi o di prodotti per l'industria del software
- Lo scopo è migliorare la qualità dei prodotti software e dei processi di produzione
- Standard del software
 - Standard IEEE metodologie per lo sviluppo del sw
 - Standard OMG per UML, CORBA
 - Standard W3C, per tecnologie WEB

•

Standard OMG: UML

- Object Management Group è una organizzazione internazionale che raccoglie i principali vendor di sw
- UML è uno dei suoi standard più conosciuti
- UML è una notazione visuale per la specifica del sw
- Un modello UML è costituito da un insieme di diagrammi correlati, ciascuno dei quali descrive una "vista" del sistema
- Non è un processo di sviluppo
- Viene definito mediante un meta-modello

Origini di UML/(R)UP

- Inizio degli anni '90 tre metodi di sviluppo del sw
 - Metodo Booch (Grady Booch)
 - OMT (Jim Rumbaugh)

- '94 creano Rational Sw Co.
- Fusion/OOSE (Ivan Jacobson) '95 arriva a Rational
- 1994-95 Unified Modeling Language (v0.8) e RUP
- 1997 UML v1.1 standard OMG
- •
- 2001 UML v1.4
- 2003 UML v1.5
- 2004 Standard ISO/IEC 19501
- 2007 UML 2.1
- 2009 UML 2.2

Evoluzione (R)UP

UML e UP

Booch, Rumbaugh, Jacobson

UML

(Unified Modeling Language)

- notazione per specificare un sistema software
- standard OMG (Object Management Group) dal 1997

UP (Unified Process)

- non è uno standard
- è un processo di sviluppo che utilizza UML
- versione commerciale (IBM-Rational): RUP (Rational Unified Process)

Unified Process

- E` uno schema generale di processo (framework) che deve essere adattato a diversi tipi di progetti.
- Caratteristiche principali
 - Iterativo e incrementale
 - Iterazioni iniziali guidate
 - · dal rischio,
 - dal cliente e
 - dall'architettura
 - Flessibile e può essere applicato usando un approccio "agile"

UP: Iterativo e incrementale

UP: iterazioni iniziali

- Gli obiettivi principali delle iterazioni iniziali sono scelti per
 - Identificare e ridurre i rischi maggiori
 - Costruire e rendere visibili le caratteristiche più importanti per il cliente
 - Stabilizzare il nucleo dell'architettura software

Cos'e' il rischio?

 Esistono "processi" di gestione (vari standard) del rischio associato allo sviluppo del software

AS/NZS 4360 standard

Criteri di rischio (esempi)

Risk criterion	Objective			
Safety	Safety must be upheld at all times. No injuries or fatalities will be accepted			
Financial impact	Project costs should remain within allocated budget			
Media exposure	The project must ensure that the reputation of the business is protected from negative media exposure			
Timing	The project must be completed within the contractual timeframe			
Staff management	The project must utilise existing staff skills. Where a particular skill set is not available, sub-contracting may be considered			
Environment	The project must operate within requirements of environmental legislation and be consistent with the business's environmental commitment			

Valutazione del rischio

UP e' agile

- UP incoraggia l'uso di pratiche agili introdotte da altre metodologie:
 - Iterazioni corte e timeboxed
 - Raffinamento di piani, requisiti, progettazione
 - Gruppi di lavoro auto-organizzati che si coordinano in riunioni regolari (Scrum)
 - Programmazione a coppie e sviluppo guidato dai test (XP=eXtremeProgramming)
 - Modellazione agile: l'obiettivo è la comprensione del sw piuttosto che la documentazione dello stesso

Cosa c'è in UP

- Un'organizzazione del piano di progetto per fasi sequenziali
- Indicazioni sulle attività da svolgere nell'ambito di discipline e sulle loro inter-relazioni
- Un insieme di ruoli predefiniti
- Un insieme di artefatti da produrre

Fasi di UP (I)

- Ideazione (Inception)
 - Visione approssimata, studio economico, portata, stima approssimativa dei costi e tempi di sviluppo
 - Milestone: Obiettivi
- Elaborazione (Elaboration)
 - Visione raffinata, implementazione iterativa del nucleo dell'architettura, risoluzione dei rischi maggiori, identificazione della maggior parte dei requisiti e della portata, stime più realistiche.
 - Milestone: Architetturale

Fasi di UP (II)

- Costruzione (Construction)
 - Implementazione iterativa degli elementi che rimangono, più facili e a rischio minore, preparazione al rilascio
 - Milestone: Capacità operazionale
- Transizione (Transition)
 - Beta test, rilascio prodotto, addestramento utenti
 - Milestone: Rilascio prodotto

UP: fasi ed iterazioni

Discipline UP

- Le attività in UP si eseguono nell' ambito di discipline (Core Workflow)
- Una disciplina è un insieme di attività ed artefatti (work product, in RUP) – come ad es. schemi di BD, documenti, modelli, codice – in un'area specifica

Discipline ingegneristiche

- Modellazione del business
 - Attività che modellano il dominio del problema ed il suo ambito
- Requisiti
 - Attività di raccolta dei requisiti del sistema
- Progettazione (analysis & design)
 - Attività di analisi dei requisiti e progetto architetturale del sistema
- Implementazione
 - Attività di progetto dettagliato e codifica del sistema, test su componenti
- Test
 - Attività di controllo di qualità, test di integrazione e di sistema
- Rilascio (Deployment)
 - Attività di consegna e messa in opera

Discipline di supporto

- Gestione delle configurazioni e del cambiamento
 - Attività di manutenzione durante il progetto
- Gestione progetto
 - Attività di pianificazione e governo del progetto
- Infrastruttura (Environment)
 - Attività che supportano il team di progetto, riguardo ai processi e strumenti utilizzati

UP: discipline ed iterazioni

Un'iterazione di 4 settimane, ad es. su un miniprogetto che comprende il lavoro svolto nelle varie discipline e che termina con un eseguibile stabile.

Sebbene
L'iterazione
includa
lavoro nella
maggiorparte
delle
discipline,
impegno e
l'enfasi
cambiano nel
tempo.
Questo è
solo un
esempio

Fasi e discipline

- Attenzione!
 - Le fasi sono sequenziali e la fine di una fase corrisponde ad una milestone
 - Le discipline (tipologie di attività) non sono sequenziali e si eseguono nel progetto in ogni iterazione
 - Il numero di iterazioni dipende dalla decisione del manager di progetto e dai rischi del progetto

Uso di UML in UP

- UP usa solo UML come linguaggio di modellazione (ad esempio, non si usano i Data Flow Diagram)
- I diagrammi UML si usano con variabilità: se un diagramma non è necessario non si usa, però tale scelta si indica esplicitamente. Bisogna personalizzare UP prima di applicarlo.
- I diagrammi si usano in UP seguendo le caratteristiche di iterazione ed incremento (incrementi definiti su uno stesso diagramma)
- UP dice quando usare un diagramma

Adattamento del processo

- In UP quasi tutto (tra artefatti e pratiche) è opzionale, eccetto che lo sviluppo iterativo e guidato dal rischio, la verifica continua della qualità e naturalmente il codice.
- La scelta delle pratiche e artefatti UP per un progetto si riassume in un documento chiamato Scenario di Sviluppo (artefatto della disciplina Infrastruttura)

Scenario di sviluppo (esempio)

Disciplina	Pratica	Artefatto	ld.	Elabor.	Constr.	Trans.
		Iterazioni →	(I1)	(E1Ei)	(C1Cj)	(T1Tk)
Modellazione del business	Modellazione agile, workshop dei requisiti	Modello di dominio		Inizio		
Requisiti	Workshop dei requisiti, esercizio sulla visione	Modello UC	ln.	Raffin.		
		Visione	ln.	Raffin.		
		Specifica Suppl.	ln.	Raffin.		
		Glossario	ln.	Raffin.		
Progettazione	Modellazione agile e sviluppo guidato dai test	Modello progetto		Inizio	Raffin.	
		Doc. Architett.sw		Inizio		
		Modello dei dati		Inizio	Raffin.	
Implementazione	Sviluppo guidato dai test, programmazione a coppie, integrazione continua, standard di codifica					
Gestione progetto	Gestione progetto agile, riunioni Scrum giornaliere					
						31

Non si è capito lo sviluppo iterativo o UP se....

- Si cerca di definire tutti i requisiti del sw prima di iniziare la progettazione o l'implementazione
- Si dedicano gg o settimane a modellare con UML prima di iniziare a programmare
- Si pensa: ideazione = requisiti, elaborazione = progettazione, costruzione = implementazione (cioè, si adotta l'approccio a "cascata")
- Si pensa che l'obiettivo dell'elaborazione sia quello di definire in maniera completa e dettagliata i modelli, che verranno tradotti in codice durante la costruzione
- Si pensa che la durata adeguata per una iterazione siano 3 mesi al posto di 3 settimane
- Si cerca di pianificare il progetto nei dettagli dall'inizio fino alla fine, e di prevedere in maniera speculativa tutte le iterazioni e cosa deve accadere in ognuna di esse.

Lezione I

- Introduzione a UP
- Prima fase: Ideazione
- Requisiti evolutivi
- Casi di studio

Ideazione (Inception)

- Permette stabilire una visione comune e la portata del progetto (studio di fattibilità)
- Durante la ideazione:
 - Si analizzano circa il 10% dei casi d'uso in dettaglio
 - Si analizzano i requisiti non funzionali più critici
 - Si realizza uno studio economico per stabilire l'ordine di grandezza del progetto e la stima dei costi
 - Si prepara l'ambiente di sviluppo
- Durata: normalmente breve (primo workshop dei requisiti e pianificazione della prima iterazione dell'elaborazione)

Artefatti nell'ideazione (I)

- Modello dei casi d'uso
 - Requisiti funzionali. Identificazione della maggior parte dei nomi dei casi d'uso, 10% descrizione dettagliata
- Specifiche supplementari
 - Altri requisiti (non funzionali)
- Visione e studio economico
 - Obiettivi e vincoli ad alto livello, studio economico, riassunto del progetto (executive summary)
- Glossario
 - Dizionario dei dati e terminologia del dominio

Artefatti nell'ideazione (II)

- Lista dei rischi e piano di gestione dei rischi
 - Rischi ed idee per affrontarli
- Prototipi e proof-of-concept
 - Chiarire la visione e verificare le idee tecniche
- Piano dell'iterazione
 - Cosa fare nella prima iterazione dell'elaborazione
- Piano delle fasi e piano di sviluppo del sw
 - Ipotesi sulla durata e sforzo dell'elaborazione
- Scenario di sviluppo
 - Personalizzazione di UP (passi ed artefatti)
 - Non sono troppi?
 - Si scelgono quelli che aggiungono valore al progetto
 - Si completano parzialmente
 - Sono preliminari ed approssimativi

Lezione I

- Introduzione a UP
- Prima fase: Ideazione
- Requisiti evolutivi
- Casi di studio

Requisiti evolutivi

- Capacità e condizioni alle quali il sistema deve essere conforme
- UP propone un insieme di best practice per gestire i requisiti che cambiano
- Modello FURPS+
 - Functional: caratteristiche comportamentali, capacità
 - Usability: fattori umani, help, documentazione
 - Reliability: frequenza dei guasti, capacità di riparazione
 - Performance: tempo di risposta, throughput, uso risorse
 - Supportability: adattamento, manutenzione, configurabilità
 - +: requisiti complementari e secondari (risorse limitate, linguaggi e hw, di interfaccia, legali)

Lezione I

- Introduzione a UP
- Prima fase: Ideazione
- Requisiti evolutivi
- Casi di studio

NextGen POS System [Larman]

- Un POS (point of sale) richiede lo sviluppo di software utilizzato tra l'altro per registrare vendite ed pagamenti, in negozi e supermercati. Comprende componenti hardware e software. Alcune funzionalità di servizio, ad es. il calcolo delle imposte, sviluppate da terzi e l'inventario devono interagire con il POS. Il sw POS deve essere tollerante ai guasti: ad es. se alcuni servizi non funzionano, il sw deve comunque permettere di registrare i pagamenti in modo che l'attività non si fermi.
- Il sw POS deve essere in grado di usare terminali diversi ed interfacce diverse, browser, PDA, touch screen, interfacce dedicate
- Poiché il sw verrà venduto a diversi clienti, è necessario pensare al grado di personalizzazione

VolBank System [Bennet&al]

- La VolBank è un'organizzazione senza fini di lucro che si occupa di mettere in contatto volontari con persone e gruppi che hanno bisogno di assistenza di qualsiasi genere. Il nome VolBank nasce dall' idea che le persone possono ''depositare'' il tempo che sono in grado di mettere a disposizione degli altri, così come una lista di capacità ed abilità che desiderano offrire.
- VolBank necessita di un sistema informatico per gestire la registrazione e l'abbinamento di volontari e bisognosi di aiuto, nonché la notifica degli abbinamenti alle varie parti in causa.
- Il sistema sw dovrà anche disporre di un collegamento con il web server di VolBank.