EE 305 Project Results

Group 9

Lossless Case α=0:

1.Short Circuit Case (Z=0)

■ MATLAB App				_		×
TRANSMISSION LINE INPUT IMPEDENCE CALCULATOR AND PLOTTER						
SETTING WAVE PARAMETER			GENERATING PLOT FOR RANGE OF LOAD IMPEDENCE			
beta	6.28	rad/m	FORM _Z(LOAD) =	1 + j	1 Ω	Ω
ω	1	rad/sec	TO _Z(LOAD) =	200 + j	250	2
α	0	Np/m		PLOT_1 Rin Vs Z(LOA	AD)	
LINE PARAMETERS				PLOT_2 Xin Vs Z(LO/		
length =	0	.3 λ				
Zo =		4 + j	0 Ω			
CALCULATE FOR PARTICULAR LOAD						
$Z(LOAD) = \begin{bmatrix} 0 \\ +j \end{bmatrix} \Omega$						
CALCULATE						
Zin 0-12.3107i			Ω			

2. Quarter-wave sections $(1 = \lambda/4, \beta l = \pi/2)$

3. Half-wave sections $(1 = \lambda/2, \beta l = \pi)$

Lossy Case α≠0:

1. Short Circuit and Quarter-wave(ZL=0, $1 = \lambda/4$)

2. Short Circuit and Half-wave(ZL=0, $1 = \lambda/4$)

