Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/008461

International filing date: 27 April 2005 (27.04.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2005-031374

Filing date: 08 February 2005 (08.02.2005)

Date of receipt at the International Bureau: 26 May 2005 (26.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

27. 4. 2005

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2005年 2月 8日

出 願 番 号 Application Number:

特願2005-031374

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

J P 2 0 0 5 - 0 3 1 3 7 4

出 願 人

昭和電工株式会社

Applicant(s):

特部

特許庁長官 Commissioner, Japan Patent Office 2005年 4月 4日

1) 11]

ページ: 1/E

```
【書類名】
              特許願
【整理番号】
              1053002
【提出日】
              平成17年 2月 8日
【あて先】
              特許庁長官 小川 洋 殿
【国際特許分類】
             H01L 33/00
【発明者】
   【住所又は居所】
              千葉県市原市八幡海岸通5-1 昭和電工株式会社内
   【氏名】
              坂東 章
【発明者】
   【住所又は居所】
              千葉県市原市八幡海岸通5-1
                                  昭和電工株式会社内
                                                研究開発
              センター内
   【氏名】
              酒井 浩光
【特許出願人】
   【識別番号】
              000002004
   【氏名又は名称】
              昭和電工株式会社
【代理人】
  【識別番号】
              100099759
  【弁理士】
  【氏名又は名称】
              青木 篤
  【電話番号】
              03-5470-1900
【選任した代理人】
   【識別番号】
              100077517
  【弁理士】
  【氏名又は名称】
              石田 敬
【選任した代理人】
  【識別番号】
              100087413
  【弁理士】
  【氏名又は名称】
              古賀 哲次
【選任した代理人】
  【識別番号】
              100102990
  【弁理士】
  【氏名又は名称】
              小林 良博
【選任した代理人】
  【識別番号】
              100082898
  【弁理士】
  【氏名又は名称】
              西山 雅也
【先の出願に基づく優先権主張】
  【出願番号】
              特願2004-131617
  【出願日】
              平成16年 4月27日
【手数料の表示】
  【予納台帳番号】
              209382
  【納付金額】
              16,000円
【提出物件の目録】
  【物件名】
              特許請求の範囲
  【物件名】
              明細書 1
  【物件名】
              図面 1
  【物件名】
              要約書 1
```

1

【包括委任状番号】

0200971

【曺類名】特許請求の範囲

【請求項1】

基板上に積層されたGe原子高濃度層およびGe原子低濃度層からなり、該高濃度層上に該低濃度層が積層されていることを特徴とするGeドープn型III族窒化物半導体層状物。

【請求項2】

高濃度層の表面(基板と反対側の面)にはピットが形成されている請求項1に記載の層状物。

【請求項3】

ピットが 1×1 0^5 個 / c $m^2 \sim 1 \times 1$ 0^{10} 個 / c m^2 の範囲で形成されている請求項 2 に記載の層状物。

【請求項4】

低濃度層の表面(基板と反対側の面)の平坦性(Ra)が10A以下である請求項1~3のいずれか一項に記載の層状物。

【請求項5】

高濃度層および低濃度層が交互に周期的に存在する請求項1~4のいずれか一項に記載の層状物。

【請求項6】

高濃度層および低濃度層の厚さがそれぞれ0.5~500nmである請求項1~5いずれか一項に記載の層状物。

【請求項7】

低濃度層の厚さが高濃度層の厚さと等しいか、または高濃度層の厚さよりも厚い請求項 1~6のいずれか一項に記載の層状物。

【請求項8】

高濃度層および低濃度層の繰り返し周期数が10~1000である請求項5~7のいずれか一項に記載の層状物。

【請求項9】

層状物全体の厚さが $0.1\sim10\,\mu$ mである請求項 $1\sim8$ のいずれか一項に記載の層状物。

【請求項10】

高濃度層の $Ge原子濃度が<math>5 \times 10^{17} \sim 5 \times 10^{19} \text{ cm}^{-3}$ である請求項 $1 \sim 9$ のいずれか一項に記載の層状物。

【請求項11】

低濃度層のGe原子濃度が高濃度層のGe原子濃度より低く、かつ2×10¹⁹ cm⁻³以下である請求項1~10のいずれか一項に記載の層状物。

【請求項12】

低濃度層がGe原子を故意にドーピングされていない請求項11に記載の層状物。

【請求項13】

基板上にIII族窒化物半導体からなる発光層を有するIII族窒化物半導体発光素子に於いて、基板と発光層との間に、請求項1~12のいずれか一項に記載のGeドープn型III族窒化物半導体層状物を有することを特徴とするIII族窒化物半導体発光素子

【書類名】明細書

【発明の名称】Geドープn型III族窒化物半導体 【技術分野】

[0001]

本発明は、ゲルマニウム(Ge)をドーピングしたn型III族窒化物半導体およびそれを利用したIII族窒化物半導体発光素子に関する。

【背景技術】

[0002]

[0003]

従来のIII族窒化物半導体発光素子において、発光層には、n型またはp型のIII族窒化物半導体層がクラッド層として接合されるのが一般的である。高い強度の発光を得るために、ヘテロ接合構造の発光部を構成するためである。例えば、ダブルヘテロ接合構造の発光部を構成するために、発光層は、G a y I n z N ($0 \le Y$, $Z \le 1$, Y + Z = 1) 等からなり、クラッド層としてn型またはp型のIII族窒化物半導体層が接合されている(例えば非特許文献 1 参照)。

[0004]

例えば、基板と発光層との中間に配置されている n型III 族窒化物半導体層は、従来から、もっぱら、珪素(Si)をドーピングした III 族窒化物半導体から構成されている。珪素のドーピング量を調整することによって、制御された抵抗率を有する例えば、Sii ドープn型AlxGayN($0 \le X$, $Y \le 1$, X + Y = 1) 層が利用されている(例えば、特許文献 4 参照)。

[0005]

しかしながら、低抵抗のn型III族窒化物半導体層を気相成長させるために、珪素を 多量にドーピングすると、亀裂が発生する問題があった。即ち、珪素をドーピングする従 来の技術手段では、低抵抗で、しかも連続性のあるn型III族窒化物半導体層を安定し て得られていない。

[0006]

一方、珪素以外のn型不純物としては、ゲルマニウム(Ge)が公知である(例えば特許文献5参照)。しかし、Siの場合と比較すると、ドーピング効率は低く、低抵抗のn型III族窒化物半導体層を得るには不利とされている。また、低抵抗のn型III族窒化物半導体層を得るためにGeを高濃度にドーピングすると、n型III族窒化物半導体層の表面には、平坦性を損なう小孔(ピット)が発生する欠点があった。

[0007]

【特許文献1】特開2000-332364号公報

【特許文献2】特開2003-229645号公報

【特許文献3】特公昭55-3834号公報

【特許文献4】特許第3383242号公報

【特許文献 5】 特開平 4 - 1 7 0 3 9 7 号公報

【非特許文献1】赤崎勇著、「III-V族化合物半導体」、(株)培風館、1995年5月20日発行、第13章参照

【発明の開示】

【発明が解決しようとする課題】

[0008]

本発明の目的は、ピットの発生が少ない平坦性に優れた低抵抗のGeドープn型III 族窒化物半導体層を提供し、それを用いて順方向電圧が低く、かつ発光効率に優れたII I族窒化物半導体発光素子を提供することである。

【課題を解決するための手段】

[0009]

本発明は以下の発明を提供する。

(1) 基板上に積層されたGe原子高濃度層およびGe原子低濃度層からなり、該高濃度層上に該低濃度層が積層されていることを特徴とするGeドープn型III族窒化物半導体層状物。

[0010]

(2) 高濃度層の表面(基板と反対側の面)にはピットが形成されている上記1項に記載の層状物。

[0011]

(3) ピットが 1×10^5 個 $/ \text{cm}^2 \sim 1 \times 10^{10}$ 個 $/ \text{cm}^2$ の範囲で形成されている上記 2項に記載の層状物。

[0012]

(4)低濃度層の表面(基板と反対側の面)の平坦性(Ra)が10A以下である上記1~3項のいずれか一項に記載の層状物。

[0013]

(5) 高濃度層および低濃度層が交互に周期的に存在する上記1~4項のいずれか一項に 記載の層状物。

[0014]

(6) 高濃度層および低濃度層の厚さがそれぞれ0.5~500nmである上記1~5項のいずれか一項に記載の層状物。

[0015]

(7) 低濃度層の厚さが高濃度層の厚さと等しいか、または高濃度層の厚さよりも厚い上記1~6項のいずれか一項に記載の層状物。

[0016]

(8) 高濃度層および低濃度層の繰り返し周期数が10~1000であることを特徴とする上記5~7項のいずれか一項に記載の層状物。

[0017]

(9) 層状物全体の厚さが 0. $1\sim10~\mu$ mである上記 $1\sim8$ 項のいずれか一項に記載の層状物。

[0018]

(10) 高濃度層の $Ge原子濃度が<math>5 \times 10^{17} \sim 5 \times 10^{19} \text{ cm}^{-3}$ である上記 $1 \sim 9$ 項のいずれか一項に記載の層状物。

[0019]

(11)低濃度層のGe原子濃度が高濃度層のGe原子濃度より低く、かつ2×10¹⁹ cm⁻³以下である上記1~10項のいずれか一項に記載の層状物。

[0020]

(12) 低濃度層が、Ge原子が故意にドーピングされていない上記11項に記載の層状物。

[0021]

(13) 基板上にIII 族窒化物半導体からなる発光層を有するIII 族窒化物半導体発光素子に於いて、基板と発光層との間に、上記1~12項のいずれか一項に記載のGeドープn型III 族窒化物半導体層状物を有することを特徴とするIII 族窒化物半導体発光素子。

【発明の効果】

[0022]

本発明のGeドープn型III族窒化物半導体層状物は、低抵抗のGe原子高濃度層に発生するピットをGe原子低濃度層が埋めるため、n型III族窒化物半導体層状物全体として低抵抗であり、かつ平坦性に優れる。従って、このようなGeドープn型III族窒化物半導体層状物を用いた本発明の発光素子は順方向電圧が低く、かつ優れた発光効率を有する。

[0023]

また、本発明のGeドープn型III族窒化物半導体層状物は、特に発光素子のn型コンタクト層として利用した場合に、効果を発揮する。低抵抗であることに加えて、濃度差を設けずにGeをドープして成膜を行った場合に比べ表面の平坦性に優れており、その上に成膜される発光層の結晶性を損なうことがない。また、ドライエッチされた表面に微細なピットを生じることにより、電極との接触抵抗が低下する。

【発明を実施するための最良の形態】

[0024]

[0025]

本発明のGeF-プn型III族窒化物半導体層状物は、組成式 $AlxGayInzN_{1-a}Ma(0 \le X \le 1、0 \le Y \le 1、0 \le Z \le 1$ で且つ、X+Y+Z=1。記号Mは窒素とは別の第V族元素を表し、 $0 \le a < 1$ である。)のIII族窒化物半導体から構成する。基板と、その上に形成するIII族窒化物半導体層との間に格子ミスマッチがある場合は、そのミスマッチを緩和して、結晶性に優れるIII族窒化物半導体層をもたらす低温緩衝層或いは高温緩衝層を介在させて積層するのが得策である。緩衝層は、例えば、窒化アルミニウム・ガリウム($AlxGayInzN:0 \le X,Y,Z \le 1$ で且つ、X+Y+Z=1)等から構成できる。

[0026]

また、GeはSiに比較して結晶内で拡散しにくいため、Geをドーパントとして用いて素子構造を作製すれば、ドーピングした層とドーピングしていない層との界面を急峻にすることが可能となる。また、エージングなどによってもその界面の急峻性が損なわれないという特徴がある。

[0027]

上記組成のIII族窒化物半導体層は、有機金属化学的気相堆積法(MOCVD、MOVPEまたはOMVPEなどと略称される)、分子線エピタキシャル法(MBE)、ハロゲン気相成長法、ハイドライド(水素化物)気相成長法等の気相成長手段に依り形成できる。これらの中でもMOCVD法が好ましい。

[0028]

MOCVD法では、キャリアガスとして水素(H_2)または窒素(N_2)、III族原料であるGa源としてトリメチルガリウム(TMG)またはトリエチルガリウム(TEG)、AI源としてトリメチルアルミニウム(TMA)またはトリエチルアルミニウム(TEA)、In源としてトリメチルインジウム(TMI)またはトリエチルインジウム(TEI)、窒素源としてアンモニア(NH_3)またはヒドラジン(N_2H_4)などが用いられる

[0029]

ゲルマニウム源としては、ゲルマンガス(GeH_4)や、テトラメチルゲルマニウム(CH_3) $_4Ge$)やテトラエチルゲルマニウム($(C_2H_5)_4Ge$)等の有機ゲルマニウム化合物を利用できる。なかでも(CH_3) $_4Ge$ が好ましい。MBE法では、元素状のゲ

ルマニウムもドーピング源として利用できる。

[0030]

MOCVD法では、上記原料を用いて基板上に、目的に応じたIII族窒化物半導体層を900℃~1250℃の温度範囲で成長させることが好ましい。

[0031]

Ge原子高濃度層および低濃度層は、III族窒化物半導体層の気相成長時にGeのドーピング源の気相成長反応系への供給量を変化させて形成する。例えば、気相成長反応系へ多量のGeドーピング源を瞬時に供給して、Ge原子を高い濃度で含む層を形成した後、Geのドーピング源を気相成長反応系へ供給せずに、アンドープの層すなわちGe原子濃度がゼロの層を形成する。また、Ge原子を高濃度に含む層を成長させた後、一旦成長を中断し、V/III族原料比率等の成長条件をGe原子が低濃度の層に適した条件に調整して、Ge原子濃度を低濃度とする層を成長させてもよい。

[0032]

このGeドーピング源の気相成長反応系への供給量を経時的に増減させれば、Ge原子 濃度の異なる薄層を交互に周期的に形成できる。本発明におけるGe原子高濃度層および Ge原子低濃度層からなるGeドープn型III族窒化物半導体層は、このようにGe原 子濃度の高い薄層とGe原子濃度の低い薄層が交互に周期的に多数積層されていることが 好ましい。

[0033]

この場合、Ge原子を高濃度に含む薄層の膜厚は、<math>0.5nm以上500nm以下が適する。好ましくは、<math>2nm以上200nm以下、さらに好ましくは、<math>3nm以上50nm以下である。膜厚が0.5nm以下になると、<math>GeF-プn型半導体層全体でのGeF-プ量が十分でなく高抵抗化してしまう。逆に、<math>500nm以上では低濃度層でピットが埋まりきらず、平坦性が悪くなる。また、ピットを埋めるために低濃度層を十分厚くすると、やは<math>0GeF-プn型半導体層全体として高抵抗化してしまう。

[0034]

また、Ge原子を低濃度に含む薄層の膜厚は、Ge原子を高濃度に含む薄層と同様に、0.5 nm以上500 nm以下が好ましく、2 nm以上200 nm以下がさらに好ましく、3 nm以上50 nm以下が特に好ましい。膜厚が0.5 nm以下になると高濃度層で形成されるピットを十分埋められず平坦性が損なわれる。また、500 nm以上では、Geドープn型半導体層全体として高抵抗化してしまい、順方向電圧(Vf)或いは閾値電圧(Vth)の低いIII族窒化物半導体発光素子を得るに不利である。

[0035]

本発明では、互に接触している高濃度層と低濃度層の一組を一周期という。各周期の高濃度層の膜厚と低濃度層の膜厚の合計、すなわち、1周期の膜厚は、1nm以上1000nm以下が適する。好ましくは、4nm以上400nm以下、さらに好ましくは、6nm以上100nm以下である。1000nm以上では、ピットの形成を抑制できないか、もしくは、Geドープn型半導体層全体として高抵抗化してしまう。また、膜厚の合計を1nm以下にするためにはGe原料の供給量を頻繁に変更せねばならず、作業効率が低下する。

[0036]

1周期中において高濃度層が低濃度層より厚い場合、ピット形成の抑制が十分でなく、平坦性が十分に得られない。一方、1周期中において低濃度層が高濃度層と同等かそれ以上厚い場合は、平坦性は良好になる。従って、低濃度層の厚さは高濃度層の厚さ以上とすることが好ましい。

[0037]

Geドープn型 I I I 族窒化物半導体層全体の層厚は、0. 1μ m以上 10μ m以下が好ましく、0. 3μ m以上 5μ m以下がさらに好ましく、0. 5μ m以上 3μ m以下が特に好ましい。層厚が 0. 1μ m以下になると発光素子の順方向電圧が高くなる。また、 10μ m以上にしても得られる効果に大差なく、コストが上昇するのみである。

[0038]

上記の1周期の厚さおよびGeドープn型半導体層全体の厚さから、積層させる周期数 は1以上で10000以下が好ましく、10以上で1000以下がさらに好ましく、20 以上で200以下が特に好ましい。例えば、厚さ10nmの高濃度層および厚さ10nm の低濃度層の繰り返しを一周期として、100周期に亘り積層させて、合計で厚さを2μ mとするGeドープn型半導体層を形成する。

[0039]

高濃度層のGe原子の濃度は、5×10¹⁷ cm⁻³以上5×10¹⁹ cm⁻³以下とするのが 好ましく、 $1 \times 10^{18} \, \mathrm{cm^{-3}}$ 以上 $3 \times 10^{19} \, \mathrm{cm^{-3}}$ 以下がさらに好ましく、 $3 \times 10^{18} \, \mathrm{c}$ m⁻³以上2×10¹⁹ c m⁻³以下が特に好ましい。5×10¹⁷ c m⁻³以下の濃度では、G e ドープn型半導体層全体の抵抗が高くなり、順方向電圧の低いLEDが得られ難い。一方 5×10¹⁹ c m⁻³の原子濃度を超えてG e をドーピングすると、表面のピットの密度が急 激に増加するため好ましくはない。高濃度層のGe原子濃度は、Geドープn型半導体層 全体に亙って必ずしも一定でなくても良く、各周期毎に濃度が連続的もしくは不連続に変 化していても良い。また、一つ一つの薄層内部でGe原子濃度が変化していてもよい。

[0040]

低濃度層のGe原子の濃度は、高濃度層のGe原子の濃度より低濃度であり、かつ、2 ×10¹⁹ c m⁻³以下とするのが好ましい。G e 原子の濃度を 2 × 10¹⁹ c m⁻³以上とする と、表面のピットの密度が急激に増加するため好ましくない。さらに好ましくは1×10 ¹⁹ c m⁻³以下、特に好ましくは 5 × 1 0 ¹⁸ c m⁻³以下である。下限に関しては低ければ低 い程よく、むしろ故意にドーピングしない方が好ましい。Ge原子濃度をより小とするた め、低濃度層をアンドープのIII族窒化物半導体薄層から構成すると、高濃度層の表面 に発生するピットを埋め尽くす効果がさらに高まり、表面の平坦なn型半導体層を得るの に好ましい。なお、低濃度層のGe原子濃度が低ければ低い程、低濃度層の厚さを薄くす ることが望ましい。

[0041]

また、低濃度層においても高濃度層と同様、低濃度層のGe原子濃度は、n型半導体層 全体に亙って必ずしも一定でなくても良く、各周期毎に濃度が連続的もしくは不連続に変 化していても良い。また、一つ一つの薄層内部でGe原子濃度が変化していてもよい。

[0042]

Ge原子の濃度は、例えば、2次イオン質量分析法(SIMS)で測定できる。これは 、試料の表面に1次イオンを照射することにより、イオン化して飛び出した元素を質量分 析する手法であり、特定の元素の深さ方向の濃度分布を観察かつ定量できる。III族窒 化物半導体層中に存在するGe元素についてもこの手法が有効である。その際に各層の厚 さも算出できる。

[0043]

Geドープ層のキャリア濃度は、高濃度層と低濃度層を交互に積層した構造全体を一つ の層としてみなし測定することができる。この場合のキャリア濃度は、概ね高濃度層と低 濃度層のGeのドープ量に膜厚の比率をかけた平均値となる。キャリア濃度の測定は、通 常のファンデパウ(Van de Paw)法のホール(Hall)効果測定などのほか 、C-V法によっても行うことができる。

[0044]

層構造全体としてのキャリア濃度は、 1×10^{17} c m⁻³から 3×10^{19} c m⁻³の範囲で あることが望ましい。中でも、 5 × 1 0 ¹⁷ c m ⁻³ から 1 × 1 0 ¹⁹ c m ⁻³ の範囲であること が、n型コンタクト層として用いるのに都合が良い。

[0045]

本発明のGeドープn型III族窒化物半導体層を利用して、III族窒化物半導体発 光素子を作製する場合、当該Geドープn型半導体層は基板と発光層の間の何処にでも配 置できる。例えば、基板の表面に直接、接合させて設けられるし、基板の表面に設けた緩 衝層上に接合させて設けることもできる。また、アンドープのGaN等からなる下地層の

上に接合させて設けることもできる。基板或いは緩衝層等に近接する本発明のGeドープn型半導体層の上方にIII族窒化物半導体層を設ければ、結晶性に優れるIII族窒化物半導体層が得られる。本発明のGeドープn型半導体層を設けることに依り、基板との格子ミスマッチに基づくミスフィット転位等の層の上方への伝搬が抑止されるからである

[0046]

本発明のGeドープn型半導体層を設けると、下方から貫通して来る転位の上層への伝搬を抑制できるので、その上方に形成された発光層は結晶性に優れ、従って高い発光強度のIII族窒化物半導体発光素子を得ることができる。

[0047]

本発明のGeドープn型III族窒化物半導体層状物は、特にIII族窒化物半導体発光素子のn型コンタクト層として利用した場合に効果を発揮する。つまり、本来表面にピットを生じるくらいにドーパント濃度が高いにもかかわらず、平坦な表面を実現することができるので、非常に抵抗の低いn型半導体結晶膜を作製することが可能である。

[0048]

本発明で提案する技術で使用するGe原子高濃度層は、ドーパントとしてGeを用いた場合に、本来その表面にピットを生じるほどの高濃度である。これを、Ge原子低濃度層で埋め込むことにより、従来の方法でGeを高濃度でドープした場合に比べ平坦な表面を実現することが可能となる。すなわち本発明により、高濃度層と低濃度層の界面のうち、高濃度層側の表面(基板と反対側)は凹の形状のピットを含んでいるが、低濃度層側の表面(基板と反対側)は、平坦な表面が得られる。

[0049]

本発明の、Ge原子高濃度層で生じたピットをGe原子低濃度層で埋め込んだ層構造の概念の断面図を図1に示す。図中、4 a がGe原子高濃度層であり、4 c がピットである。4 b はGe原子低濃度層である。高濃度層 4 a の表面に生成したピット 4 c を低濃度層 4 b が埋め込んで、低濃度層 4 b の表面は平坦になっている。

[0050]

本発明のGe原子高濃度層に発生するピットは、基板とIII族窒化物半導体層との界面から発生したいわゆる貫通転位の位置に発生すると考えられる。よって、高濃度層に発生するピットの密度は、おおむね下地の貫通転位の密度と一致する場合が多い。下地の貫通転位は、一般的なサファイア基板上のGa N結晶では $I \times 1$ 0 7 個/C m^2 $\sim 1 \times 1$ 0 10 個/C m^2 の範囲内である。 $I \times 1$ 0 7 個/C m^2 以下のものは、現在あまり実現されておらず、 $I \times 1$ 0 10 個/C m^2 以上では、電子素子の基板として使用しても充分な機能を発揮できない。

[0051]

ピット密度は、下地の貫通転位密度にもよるが、 1×10^5 個 $/cm^2\sim1\times10^{10}$ 個 $/cm^2$ の範囲内である。一般的には、 1×10^6 個 $/cm^2\sim1\times10^9$ 個 $/cm^2$ の範囲内である。このピットは、高濃度層のみを10nm程度以上の膜厚で作製した場合に、原子間力顕微鏡(AFM)などの手法を用いて見る事ができる。また、さらに500nm程度まで厚くした場合には、光学顕微鏡などで見ることができるようになる。高濃度層の膜厚が非常に薄い場合は、原子間力顕微鏡の解像力の関係でピットを観察できない場合もあるが、ある程度の厚みにしてピットを観察できる成膜条件であれば、10nm未満という薄い場合にもピットは発生しているものと考えられる。

[0052]

本発明のGe原子低濃度層の表面は、平坦であることが望ましい。その平坦性は、Ra値で10A以下程度であることが望ましく、さらに望ましくは5A以下である。

[0053]

本発明で提案する技術のように、Ge原子高濃度層で発生したピットをGe原子低濃度層で埋め込んだ構造の層状物の場合、nコンタクト層に用いることが有用である。III 族窒化物半導体発光素子の場合、n電極を作製するためにドライエッチングによって積層 された半導体層の一部を除去し、nコンタクト層を露出させることが一般的である。このドライエッチング処理によって本発明の層状物にはnコンタクト層にピット状の凹部分が生じる。この凹部が電極金属との接触表面積を増やし、アンカー効果によって接触抵抗を下げるため、発光素子の駆動電圧を低く抑えることができる。

[0054]

III族窒化物半導体からなる発光層としては、 $A 1_X G a_Y I n_2 N_{1-a} M_a$ ($0 \le X \le 1$ 、 $0 \le Y \le 1$ 、 $0 \le Z \le 1$ で且つ、X + Y + Z = 1。記号Mは窒素とは別の第V族元素を表し、 $0 \le a < 1$ である。)で表わされる各種組成の単一量子井戸構造および多重量子井戸構造等の発光層が知られており、それら公知の発光層を何ら制限なく用いることができる。また、ダブルヘテロ構造の発光部を構成するためのp型III族窒化物半導体もMgやZ n等のp型ドーパントをドープした前記組成式で表わされる各種組成のものが知られており、それら公知のものを何ら制限なく用いることができる。

[0055]

目的とする半導体層を積層したのち、所定の位置にp電極およびn電極を形成する。化合物半導体発光素子用のp電極およびn電極として、各種の構成および構造が知られており、これら公知のp電極およびn電極を本発明においても何ら制限なく用いることができる。また、それらの製造方法も、真空蒸着法およびスパッタリング法等公知の方法を何ら制限なく用いることができる。

【実施例】

[0056]

以下に実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。

[0057]

(実施例1)

図2は、本実施例で作製したGeドープn型III族窒化物半導体層を含む積層構造体の断面構造を模式的に示した図である。

[0058]

サファイア基板上にIII族窒化物半導体を積層した構造体は、一般的な減圧MOCV D手段を利用して以下の手順で形成した。先ず、(0001)ーサファイア基板1を、高 周波(RF)誘導加熱式ヒータで成膜温度に加熱される半導体用高純度グラファイト製の サセプタ上に載置した。載置後、ステンレス鋼製の気相成長反応炉内に窒素ガスを流通し 、炉内をパージした。

[0059]

気相成長反応炉内に、窒素ガスを 8 分間に亘って流通させた後、誘導加熱式ヒータを作動させ、基板 1 の温度を、 1 0 分間で室温から 6 0 0 ℃に昇温した。基板 1 の温度を 6 0 0 ℃に保ったまま、水素ガスと窒素ガスを流通させて、気相成長反応炉内の圧力を 1 . 5 × 1 0 4 パスカル (P a) とした。この温度及び圧力下で 2 分間、放置して、基板 1 の表面をサーマルクリーニングした。サーマルクリーニングの終了後、気相成長反応炉内への窒素ガスの供給を停止した。水素ガスの供給は継続させた。

[0060]

その後、水素雰囲気中で、基板1の温度を1120℃に昇温させた。1120℃で温度が安定したのを確認した後、トリメチルアルミニウム(TMA)の蒸気を随伴する水素ガスを8分30秒間、気相成長反応炉内へ供給した。これにより、気相成長反応炉の内壁に以前より付着していた窒素を含む堆積沈着物の分解により生じる窒素原子と反応させて、サファイア基板1上に、厚さ数nmの窒化アルミニウム(A1N)薄膜からなる高温緩衝層2を付着させた。TMAの蒸気を随伴する水素ガスの気相成長反応炉内への供給を停止しA1Nの成長を終了させた後、4分間待機し、気相成長炉内に残ったTMAを完全に排出した。

[0061]

続いて、アンモニア (NH₃) ガスを気相成長反応炉内に供給し、4分が経過した後、

アンモニアガスの流通を続けながら、サセプタの温度を1040℃に降温した。サセプタの温度が1040℃になったのを確認した後、暫時、温度が安定するのを待ち、トリメチルガリウム(TMG)の気相成長反応炉内への供給を開始し、アンドープのGaNからなる下地層 3 を 1 時間に亘って成長させた。下地層 3 の層厚は 2 μ m とした。

[0062]

次に、基板温度を1120℃に上昇し、温度が安定させたところで、テトラメチルゲルマニウム((CH_3) $_4Ge$)を18秒間流通、その後<math>18秒間流通を停止した。このサイクルを<math>100回繰り返し、厚さ 2.0μ mのGe 濃度が周期的に変化する本発明のGe 原子高濃度層とGe 原子低濃度層からなるGe ドープn型Ga N層 4 を形成した。

[0063]

Geドープn型GaN層4の成長を終了した後、誘導加熱式ヒータへの通電を停止して、基板1の温度を、室温迄、約20分間で降温した。降温中は、気相成長反応炉内の雰囲気を窒素のみから構成した。基板1の温度が室温まで降温したのを確認して、積層構造体を気相成長反応炉より外部へ取り出した。

[0064]

得られた積層構造体のGeF-プn型GaN層4のホール測定によるキャリア濃度は、 7×10^{18} c m⁻³であった。 n 型GaN層4の表面は、ピット密度が200個/ c m²以下の非常に平坦な面であった。SIMS分析の結果、高濃度層は $Ge原子濃度が1.2\times10^{19}$ c m⁻³であり、厚さが10n mであった。また、低濃度層はGe 原子濃度が 1×10^{18} c m⁻³であり、厚さが10n mであった。

[0065]

なお、SIMSの測定条件は、一次イオン種として Cs^+ を用いて、加速電圧を14.5keV、イオン電流を40nAとした。また、ラスタ領域は $100\mu m^2$ であり、分析領域を $30\mu m^2$ とした。

[0066]

また、高濃度層成長後に別途炉外に取り出したサンプルについて原子間力顕微鏡で観察したところ、高濃度層表面に形成されたピットは 2×10^7 個 $/cm^2$ であった。

[0067]

(実施例2)

Geドープn型GaN層4の形成を、(CH3)4Geを9秒間流通、その後9秒間流通停止のサイクルを200回繰り返して厚さ2.0 μ mの層としたこと以外は、実施例1と同様にして積層構造体を作製した。

[0068]

得られた積層構造体のGeF-プn型GaN層4のホール測定によるキャリア濃度は、 7×10^{18} c m⁻³で実施例1と同じであった。SIMS分析の結果、高濃度層は $Ge原子濃度が1.2\times10^{19}$ c m⁻³であり、厚さが5nmであった。また、低濃度層は $Ge原子濃度が1\times10^{18}$ c m⁻³であり、厚さが5nmであった。n型GaN層4の表面は、ピット密度が4000個/ c m²と実施例1に比較すれば若干増加したが、従来のGeF-プn型半導体層に比べれば、非常に平坦な面であった。

[0069]

(比較例1)

Geドープn型GaN層4の形成を、(CH₃)₄Geを常に同一流量で流通させながら厚さ2.0 μ mの層としたこと以外は、実施例1と同様にして積層構造体を作製した。なお、(CH₃)₄Geの流量は、Geドープn型GaN層4のホール測定によるキャリア濃度が実施例1と同じ7×10¹⁸ cm⁻³になるように調製した。

[0070]

得られた積層構造体のGeドープn型GaN層4の表面はピット密度が 1×1 0 6 c $m^ ^3$ と極めて高く、平坦な表面が得られなかった。

[0071]

(実施例3)

実施例1で作製した積層構造体の上にさらにIII族窒化物半導体層を積層させ、III族窒化物半導体発光素子を作製した。図3は、本実施例で作製したIII族窒化物半導体発光素子の断面構造を模式的に示した図である。

[0072]

Geドープn型GaN層4の形成までは実施例1と同じである。Geドープn型GaN層4を積層した後、1060℃で、アンドープn型A $1_{0.07}$ Ga $_{0.93}$ Nクラッド層5を積積した。このクラッド層5の層厚は12.5nmとした。

[0073]

次に、基板 1 の温度を 730 ℃として、 $A1_{003}$ $Ga_{0.97}$ N からなる障壁層 6a と、 $In_{0.25}$ $Ga_{0.75}$ N よりなる井戸層 6b とを含む 5 周期構造の多重量子井戸構造発光層 6 をアンドープ n 型 $A1_{0.07}$ $Ga_{0.93}$ N クラッド層 5 上に設けた。多重量子井戸構造の発光層 6 にあっては、先ず、 $A1_{003}$ $Ga_{0.97}$ N 障壁層 6a をアンドープ n 型 $A1_{0.07}$ $Ga_{0.93}$ N クラッド層 5 に接合させて設けた。

[0074]

 $A\ loo_3\ G\ a_{0.97}\ N$ 障壁層 $6\ a$ は、トリメチルアルミニウム(TMA)をアルミニウム源とし、トリエチルガリウム(TEG)をガリウム源として成長させた。層厚は $8\ n$ m とし、アンドープとした。 $I\ n_{0.25}\ G\ a_{0.75}\ N$ 井戸層 $6\ b$ は、トリエチルガリウム(TEG)をガリウム源とし、トリメチルインジウム(TMI)をインジウム源として成長させた。層厚は、 $2.5\ n$ m とし、アンドープとした。

[0075]

多重量子井戸構造からなる発光層 6 上には、マグネシウム(Mg)をドーピングした p型A 10.07 G a0.93 Nクラッド層 7 を形成した。層厚は 10 nmとした。 p型A 10.07 G a0.93 Nクラッド層 7 上には、更に、Mgをドーピングした p型G a Nコンタクト層 8 を形成した。Mgのドーピング源には、ビスーシクロペンタジエニルMgを用いた。Mgは、p型G a Nコンタクト層 8 の正孔濃度が 8×10^{17} cm⁻³となる様に添加した。 p型G a Nコンタクト層 8 の層厚は 100 nmとした。

[0076]

p型GaNコンタクト層8の成長を終了した後、誘導加熱式ヒータへの通電を停止して、基板1の温度を、室温迄、約20分間で降温した。降温中は、気相成長反応炉内の雰囲気を窒素のみから構成した。基板1の温度が室温まで降温したのを確認して、積層構造体を気相成長反応炉より外部へ取り出した。この時点で、上記のp型GaNコンタクト層8は、p型キャリア(Mg)を電気的に活性化するためのアニール処理を行わなくても、既に、p型の伝導性を示した。

[0077]

次いで、公知のフォトリングラフィー技術及び一般的なドライエッチング技術を利用して、n型オーミック電極9を形成する予定の領域に限り、Geドープn型Ga N層4のGe 原子高濃度層を露出させた。露出させたGe 原子高濃度層の表面に、チタンおよび金を積層した(半導体側がチタン)n型オーミック電極9を形成した。残置した積層構造体の表面をなすp型Ga N3ンタクト層8の表面の全域には、一般的な真空蒸着手段、及び公知のフォトリングラフィー手段等を利用して、半導体側から順に、ニッケルおよび金を積層させたp型オーミック電極10を形成した。

[0078]

然る後、 350μ m角の正方形のLEDチップに切断し、リードフレーム上に載置し、金導線をリードフレームに結線して、リードフレームよりLEDチップへ素子駆動電流を流せる様にした。

[0079]

リードフレームを介してn型およびp型オーミック電極9、10間に順方向に素子駆動電流を流した。順方向電流を20mAとした際の順方向電圧は3.5 Vであった。また、20mAの順方向電流を流した際の出射される青色帯発光の中心波長は460nmであった。また、一般的な積分球を使用して測定される発光の強度は、5mWに達し、高い強度

ページ: 10/

の発光をもたらすIII族窒化物半導体発光素子が得られた。

[0080]

(実施例4)

実施例2で作製される積層構造体を用いる以外は、実施例3と同様にしてIII族窒化物半導体発光素子を作製した。実施例3と同様に順方向電圧および発光強度を測定したところ、3.5 Vおよび4.8 mWであった。また、青色帯発光の中心波長は455 nmであった。

[0081]

(比較例2)

比較例1で作製される積層構造体を用いる以外は、実施例3と同様にしてIII族窒化物半導体発光素子を作製した。実施例3と同様に順方向電圧および発光強度を測定したところ、順方向電圧は実施例3および4と同じ3.5 Vであったが、発光強度は0.4 mWと低い強度の発光しか得られなかった。

[0082]

(比較例3)

本比較例では、実施例3において、 $GeF-プn型GaN層4を形成する代わりに、Siを均一に7×10¹⁸ cm⁻³ <math>F-プした厚さ2\mu m on 型GaN層を形成する以外は、実施例3と同様にIII族窒化物半導体発光素子を作製した。実施例3と同様に順方向電圧および発光強度を測定したところ、順方向電圧は実施例3および4と同じ3.5 <math>V$ であったが、発光強度は4mWと実施例3よりも20%低い発光強度であった。

[0083]

(実施例5)

本実施例では、 $GeF-プn型GaN層4のホール測定によるキャリア濃度が<math>3\times10^{17}$ c m^{-3} になるように、テトラメチルゲルマニウム((CH_3) $_4Ge$)の供給量を変更した以外は、実施例1と同様に積層構造体を作製した。

[0084]

[0085]

また、高濃度層成長後に別途炉外に取り出したサンプルについて原子間力顕微鏡で観察したところ、高濃度層表面に形成されたピットは1×10⁵個/cm²であった。

[0086]

この積層構造体の上に、さらにIII族窒化物半導体層を実施例3と同様に積層させ、III族窒化物半導体発光素子を作製した。

[0087]

実施例3と同様に順方向電圧および発光強度を測定したところ、発光強度は5mWと実施例3と同じであったが、順方向電圧は4.2 Vと実施例3および4よりも高くなった。 【産業上の利用可能性】

[0088]

本発明によって得られるGeドープn型III族窒化物半導体層状物は表面平坦性に優れ、かつ低抵抗であるため、III族窒化物半導体発光素子用として有用である。

【図面の簡単な説明】

[0089]

【図1】Ge高濃度層で生じたピットをGe低濃度層で埋め込んだ層構造の概念を示した断面図である。

【図2】実施例1で作製した積層構造体の断面構造を模式的に示した図である。

【図3】実施例3で作製したIII族窒化物半導体発光素子の断面構造を模式的に示した図である。

【符号の説明】

- [0090]
- 1 サファイア基板
- 2 AIN高温緩衝層
- 3. アンドープGaN下地層
- 4 Geドープn型GaN層
- 4 a G e 原子高濃度層
- 4 b G e 原子低濃度層
- 5 アンドープA1GaNクラッド層
- 6 多重量子井戸構造発光層
- 6 a 障壁層
- 6 b 井戸層
- 7 p型AlGaNクラッド層
- 8 p型GaNコンタクト層
- 9 n型オーミック電極
- 10 p型オーミック電極

【書類名】図面【図1】

図1

【図2】

図 2

図3

【書類名】要約書

【要約】

【課題】 ピットの発生が少ない平坦性に優れた低抵抗のGeドープn型III族窒化物 半導体層を提供すること。

【解決手段】 基板上に積層されたGe原子高濃度層およびGe原子低濃度層からなり、該高濃度層上に該低濃度層が積層されていることを特徴とするGeドープn型III族窒化物半導体層状物。

【選択図】 図1

ページ: 1/E

特願2005-031374

出 願 人 履 歴 情 報

識別番号

[000002.004]

1. 変更年月日 [変更理由]

1990年 8月27日 新規登録

住所

東京都港区芝大門1丁目13番9号

氏 名 昭和電工株式会社