de Sitter spacetime

This worksheet demonstrates a few capabilities of <u>SageManifolds</u> (version 1.0, as included in SageMath 7.5) in computations regarding de Sitter spacetime.

Click <u>here</u> to download the worksheet file (ipynb format). To run it, you must start SageMath within the Jupyter notebook, via the command sage -n jupyter

NB: a version of SageMath at least equal to 7.5 is required to run this worksheet:

```
In [1]: version()
Out[1]: 'SageMath version 7.5.1, Release Date: 2017-01-15'
```

First we set up the notebook to display mathematical objects using LaTeX rendering:

```
In [2]: %display latex
```

We also define a viewer for 3D plots (use 'threejs' or 'jmol' for interactive 3D graphics):

```
In [3]: viewer3D = 'tachyon' # must be 'threejs', 'jmol', 'tachyon' or None (de fault)
```

Spacetime manifold

We declare the de Sitter spacetime as a 4-dimensional differentiable manifold:

```
In [4]: M = Manifold(4, 'M', r'\mathcal{M}')
print(M); M
```

4-dimensional differentiable manifold M

```
Out[4]: M
```

We consider hyperspherical coordinates (τ,χ,θ,ϕ) on \mathcal{M} . Allowing for the standard coordinate singularities at $\chi=0, \chi=\pi, \theta=0$ or $\theta=\pi$, these coordinates cover the entire spacetime manifold (which is topologically $\mathbb{R}\times\mathbb{S}^3$). If we restrict ourselves to *regular* coordinates (i.e. to consider only mathematically well defined charts), the hyperspherical coordinates cover only an open part of \mathcal{M} , which we call \mathcal{M}_0 , on which χ spans the open interval $(0,\pi)$, θ the open interval $(0,\pi)$ and ϕ the open interval $(0,2\pi)$. Therefore, we declare:

\mathbb{R}^5 as an ambient space

The de Sitter metric can be defined as that induced by the embedding of \mathcal{M} into a 5-dimensional Minkowski space, i.e. \mathbb{R}^5 equipped with a flat Lorentzian metric. We therefore introduce \mathbb{R}^5 as a 5-dimensional manifold covered by canonical coordinates:

The embedding of \mathcal{M} into \mathbb{R}^5 is defined as a differential mapping Φ from \mathcal{M} to \mathbb{R}^5 , by providing its expression in terms of \mathcal{M} 's default chart (which is X_hyp = $(\mathcal{M}_0, (\tau, \chi, \theta, \phi))$) and \mathbb{R}^5 's default chart (which is X5 = $(\mathbb{R}^5, (T, W, X, Y, Z))$):

Differentiable map Phi from the 4-dimensional differentiable manifold M to the 5-dimensional differentiable manifold R5

Out[7]:
$$\Phi$$
: \mathcal{M} \longrightarrow \mathbb{R}^5 on \mathcal{M}_0 : $(\tau, \chi, \theta, \phi)$ \longmapsto
$$= \left(\frac{\sinh(b\tau)}{b}, \frac{\cos(\chi)\cosh(b\tau)}{b}, \frac{\cos(\phi)\cosh(b\tau)\sin(\chi)\sin(\theta)}{b}, \frac{\cosh(b\tau)\sin(\chi)}{b}\right)$$

The constant b is a scale parameter. Considering de Sitter metric as a solution of vacuum Einstein equation with positive cosmological constant Λ , one has $b = \sqrt{\Lambda/3}$.

Let us evaluate the image of a point via the mapping $\Phi\colon$

```
In [8]: p = M.point((ta, ch, th, ph), name='p'); print(p)

Point p on the 4-dimensional differentiable manifold M

In [9]: p.coord()

Out[9]: (\tau, \chi, \theta, \phi)

In [10]: q = Phi(p); print(q)
```

Point Phi(p) on the 5-dimensional differentiable manifold R5

In [11]:
$$q.coord()$$

Out[11]:
$$\left(\frac{\sinh(b\tau)}{b}, \frac{\cos(\chi)\cosh(b\tau)}{b}, \frac{\cos(\phi)\cosh(b\tau)\sin(\chi)\sin(\phi)}{b}, \frac{\cos(\theta)\cosh(b\tau)\sin(\chi)\sin(\phi)}{b}, \frac{\cos(\theta)\cosh(b\tau)\sin(\chi)}{b} \right)$$

The image of \mathcal{M} by Φ is a hyperboloid of one sheet, of equation $-T^2+W^2+X^2+Y^2+Z^2=b^{-2}$. Indeed:

```
In [12]: (Tq,Wq,Xq,Yq,Zq) = q.coord()
s = -Tq^2 + Wq^2 + Xq^2 + Yq^2 + Zq^2
s.simplify_full()
```

Out[12]: $\frac{1}{b^2}$

We may use the embedding Φ to draw the coordinate grid (τ,χ) in terms of the coordinates (W,X,T) for $\theta=\pi/2$ and $\phi=0$ (red) and $\theta=\pi/2$ and $\phi=\pi$ (green) (the brown lines are the lines $\tau=\mathrm{const}$):

Spacetime metric

First, we introduce on \mathbb{R}^5 the Minkowski metric h:

```
In [14]: h = R5.lorentzian_metric('h')
h[0,0], h[1,1], h[2,2], h[3,3], h[4,4] = -1, 1, 1, 1
h.display()
```

Out[14]:
$$h = -dT \otimes dT + dW \otimes dW + dX \otimes dX + dY \otimes dY + dZ \otimes dZ$$

As mentionned above, the de Sitter metric g on \mathcal{M} is that induced by h, i.e. g is the pullback of h by the mapping Φ :

The expression of g in terms of \mathcal{M} 's default frame is found to be

In [16]: g.display()

Out[16]:
$$g = -d\tau \otimes d\tau + \frac{\cosh(b\tau)^2}{b^2} d\chi \otimes d\chi + \frac{\cosh(b\tau)^2 \sin(\chi)^2}{b^2} d\theta \otimes d\theta + \frac{\cosh(b\tau)^2 \sin(\chi)^2 \sin(\theta)^2}{b^2} d\phi \otimes d\phi$$

In [17]: g[:]

Out[17]:
$$\begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & \frac{\cosh(b\tau)^2}{b^2} & 0 & 0 \\
0 & 0 & \frac{\cosh(b\tau)^2 \sin(\chi)^2}{b^2} & 0 \\
0 & 0 & 0 & \frac{\cosh(b\tau)^2 \sin(\chi)^2}{b^2}
\end{pmatrix}$$

Curvature

The Riemann tensor of g is

In [18]: Riem = g.riemann() print(Riem) Riem.display()

Tensor field Riem(g) of type (1,3) on the 4-dimensional differentiable

Out[18]: $Riem(g) = \cosh(b\tau)^2 \frac{\partial}{\partial \tau} \otimes d\chi \otimes d\tau \otimes d\chi - \cosh(b\tau)^2 \frac{\partial}{\partial \tau} \otimes d\chi \otimes d\chi \otimes d\tau$ $+\cosh(b\tau)^2\sin(\chi)^2\frac{\partial}{\partial \tau}\otimes d\theta\otimes d\tau\otimes d\theta-\cosh(b\tau)^2\sin(\chi)^2\frac{\partial}{\partial \tau}\otimes d\theta\otimes d\theta$ $\otimes d\tau + \cosh(b\tau)^2 \sin(\chi)^2 \sin(\theta)^2 \frac{\partial}{\partial \tau} \otimes d\phi \otimes d\tau \otimes d\phi - \cosh(b\tau)^2 \sin(\chi)^2 \sin(\chi)^2$ $(\theta)^{2} \frac{\partial}{\partial \tau} \otimes d\phi \otimes d\phi \otimes d\tau + b^{2} \frac{\partial}{\partial r} \otimes d\tau \otimes d\tau \otimes d\chi - b^{2} \frac{\partial}{\partial r} \otimes d\tau \otimes d\chi \otimes d\tau$ $+\cosh(b\tau)^2\sin(\chi)^2\frac{\partial}{\partial x}\otimes d\theta\otimes d\chi\otimes d\theta-\cosh(b\tau)^2\sin(\chi)^2\frac{\partial}{\partial x}\otimes d\theta\otimes d\theta$ $\otimes d\chi + \cosh(b\tau)^2 \sin(\chi)^2 \sin(\theta)^2 \frac{\partial}{\partial \chi} \otimes d\phi \otimes d\chi \otimes d\phi - \cosh(b\tau)^2 \sin(\chi)^2 \sin(\chi)^2$ $(\theta)^2 \frac{\partial}{\partial \nu} \otimes \mathrm{d} \phi \otimes \mathrm{d} \phi \otimes \mathrm{d} \chi + b^2 \frac{\partial}{\partial \theta} \otimes \mathrm{d} \tau \otimes \mathrm{d} \tau \otimes \mathrm{d} \theta - b^2 \frac{\partial}{\partial \theta} \otimes \mathrm{d} \tau \otimes \mathrm{d} \theta \otimes \mathrm{d} \tau$ $+\left(-\frac{\sin(\chi)^2\sinh(b\tau)^2-\cos(\chi)^2+1}{\sin(\chi)^2}\right)\frac{\partial}{\partial\theta}\otimes\mathrm{d}\chi\otimes\mathrm{d}\chi\otimes\mathrm{d}\theta+\cosh(b\tau)^2\frac{\partial}{\partial\theta}$ $\otimes d\chi \otimes d\theta \otimes d\chi + \cosh(b\tau)^2 \sin(\chi)^2 \sin(\theta)^2 \frac{\partial}{\partial \theta} \otimes d\phi \otimes d\theta \otimes d\phi - \cosh(b\tau)^2 \sin(\chi)^2 \sin(\theta)^2 \frac{\partial}{\partial \theta} \otimes d\phi \otimes d\phi \otimes d\phi$ $(b\tau)^2 \sin(\chi)^2 \sin(\theta)^2 \frac{\partial}{\partial \theta} \otimes d\phi \otimes d\phi \otimes d\theta + b^2 \frac{\partial}{\partial \phi} \otimes d\tau \otimes d\tau \otimes d\phi - b^2 \frac{\partial}{\partial \phi}$ $\otimes d\tau \otimes d\phi \otimes d\tau + \left(-\frac{\sin(\chi)^2 \sinh(b\tau)^2 - \cos(\chi)^2 + 1}{\sin(\chi)^2} \right) \frac{\partial}{\partial \phi} \otimes d\chi \otimes d\chi$ $\otimes d\phi + \cosh(b\tau)^2 \frac{\partial}{\partial \phi} \otimes d\chi \otimes d\phi \otimes d\chi - \cosh(b\tau)^2 \sin(\chi)^2 \frac{\partial}{\partial \phi} \otimes d\theta \otimes d\theta$ $\otimes d\phi + \cosh(b\tau)^2 \sin(\chi)^2 \frac{\partial}{\partial \phi} \otimes d\theta \otimes d\phi \otimes d\theta$

```
In [19]: Riem.display_comp(only_nonredundant=True)
Out[19]: \operatorname{Riem}(g)^{\tau}_{\gamma \tau \gamma} = \cosh(b\tau)^2
                \operatorname{Riem}(g)^{\tau}_{\theta \tau \theta} = \cosh(b\tau)^{2} \sin(\chi)^{2}
                \operatorname{Riem}(g)^{\tau}_{\phi \tau \phi} = \cosh(b\tau)^{2} \sin(\chi)^{2} \sin(\theta)^{2}
                Riem(g)^{\chi}_{\tau\tau\chi} = b^2
                Riem(g)^{\chi}_{\theta \chi \theta} = \cosh(b\tau)^2 \sin(\chi)^2
                \operatorname{Riem}(g)^{\chi}_{\phi \chi \phi} = \cosh(b\tau)^2 \sin(\chi)^2 \sin(\theta)^2
                Riem(g)^{\theta}_{\tau\tau\theta} = b^2
                \operatorname{Riem}(g)^{\theta}_{\chi\chi\theta} = -\frac{\sin(\chi)^2 \sinh(b\tau)^2 - \cos(\chi)^2 + 1}{\sin(\chi)^2}
                \operatorname{Riem}(g)^{\theta}_{\ \phi \theta \phi} = \cosh(b\tau)^2 \sin(\chi)^2 \sin(\theta)^2
                Riem(g)^{\phi}_{\tau\tau\phi} = b^2
                \operatorname{Riem}(g)^{\phi}_{\chi\chi\phi} = -\frac{\sin(\chi)^2 \sinh(b\tau)^2 - \cos(\chi)^2 + 1}{\sin(\chi)^2}
                Riem(g)^{\phi}_{\theta\theta\phi} = -\cosh(b\tau)^2 \sin(\chi)^2
                The Ricci tensor:
In [20]: Ric = g.ricci()
                print(Ric)
                Ric.display()
                Field of symmetric bilinear forms Ric(g) on the 4-dimensional different
                iable manifold M
                    \operatorname{Ric}(g) = -3b^2 d\tau \otimes d\tau + 3\cosh(b\tau)^2 d\chi \otimes d\chi + 3\cosh(b\tau)^2 \sin(\chi)^2 d\theta \otimes d\theta
Out[20]:
                                                 + 3 \cosh(b\tau)^2 \sin(\gamma)^2 \sin(\theta)^2 d\phi \otimes d\phi
In [21]: Ric[:]
Out[21]: (-3b^2)
                                                                                                                             0)
                        0 \quad 3 \cosh(b\tau)^2
                                              0 \quad 3 \cosh(b\tau)^2 \sin(\chi)^2
                                                                                0 \quad 3 \cosh(b\tau)^2 \sin(\chi)^2 \sin(\theta)^2
                The Ricci scalar:
In [22]: R = g.ricci scalar()
                print(R)
                R.display()
                Scalar field r(g) on the 4-dimensional differentiable manifold M
                                 \mathcal{M}
Out[22]: r(g):
                on \mathcal{M}_0: (\tau, \chi, \theta, \phi) \longmapsto 12 b^2
```

SageManifolds 1.0

We recover the fact that de Sitter spacetime has a constant curvature. It is indeed a **maximally symmetric space**. In particular, the Riemann tensor is expressible as

$$R^{i}_{jlk} = \frac{R}{n(n-1)} \left(\delta^{i}_{k} g_{jl} - \delta^{i}_{l} g_{jk} \right),$$

where n is the dimension of \mathcal{M} : n=4 in the present case. Let us check this formula here, under the form $R^i_{\ j|k}=-\frac{R}{6}g_{j[k}\delta^i_{\ l]}$:

In [23]: delta = M.tangent_identity_field()
Riem == - (R/6)*(g*delta).antisymmetrize(2,3) # 2,3 = last positions o
f the type-(1,3) tensor g*delta

Out[23]: True

We may also check that de Sitter metric is a solution of the vacuum **Einstein equation** with (positive) cosmological constant:

In [24]: $\begin{bmatrix} Lambda = 3*b^2 \\ Ric - 1/2*R*g + Lambda*g == 0 \end{bmatrix}$

Out[24]: True