

Databases Introduction MySQL

How do RDBMS work?

Table of Content

- Data Management
- Database Engine
- Structured Query Language
- MySQL
- Table Relationships
- Programmability

Data Management

When Do We Need a Database?

4	Α		В	С	D	Е	F
1	Teacher Diary						
2	Date	¥	Class	Student Name	Subject	Term Mark	
3	09.02.2019		4A	Ivolyan	Mathematics	6.00	
4							
Е							

Data Management

 Storing data is not the primary reason to use a database

CODERDOJO

- Excel storage runs into issues with
 - Size
 - Ease of updating
 - Access

FR

Data Management

- A database is an organized collection of related information
 - It uses rules on the contained data
 - Access to data is usually provided by a "system" (DBMS) database management

FR

RDBMS

- Relational Data Base Management System
 - Database management
 - It parses requests from the user and takes the appropriate action
 - Data is presented by relations collection of tables related by common fields
 - MS SQL Server, DB2, Oracle and MySQL

Database Engine

Client-Server Model

Database Engine Flow

<BULGARIA>

FR

Top Database Engines

Rank				Score			
Feb 201 9	Jan 2011	Feb 2018	DBMS	Database Model	Feb 2019	Jan 2019	Feb 2018
1.	1.	1.	<u>Oracle</u>	Relational DBMS	1264.02	-4.82	-39.26
2.	2.	2.	<u>MySQL</u>	Relational DBMS	1167.29	+13.02	-85.18
3.	3.	3.	Microsoft SQL Server	Relational DBMS	1040.05	-0.21	-81.98
4.	4.	4.	<u>PostgreSQL</u>	Relational DBMS	473.56	+7.45	+85.18
5.	5.	5.	<u>MongoDB</u>	<u>Document store</u>	395.09	+7.91	+58.67
6.	6.	6.	IBM Db2	Relational DBMS	179.42	-0.43	-10.55
7.	7.	8.	<u>Redis</u>	<u>Key-value store</u>	149.45	+0.43	+22.43
8.	8.	9.	<u>Elasticsearch</u>	Search engine	145.25	+1.81	+19.93
9.	9.	7.	Microsoft Access	Relational DBMS	144.02	+2.41	+13.95
10.	10.	11.	<u>SQLite</u>	Relational DBMS	126.17	-0.63	+8.89

Query Components

 Programming language designed for managing data in a relational database

Developed at IBM in the early 1970s

To communicate with the Engine we use SQL

- Subdivided into several language elements
 - Queries
 - Clauses
 - Expressions
 - Predicates
 - Statements

CODERDOJO

- Logically divided in four sections
 - Data Definition describe the structure of our data
 - Data Manipulation store and retrieve data
 - Data Control define who can access the data
 - Transaction Control bundle operations and allow rollback

MySQL

Relational DB Management

MySQL

- Open-source relational database management system
- Used in many large-scale websites like Google, Facebook, YouTube etc.
- Works on many system platforms Windows, Linux, MAC OS
- Download MySQL Server
 - Windows: https://dev.mysql.com/downloads/windows/installer/
 - Ubuntu/Debian: https://dev.mysql.com/downloads/repo/apt/

MySQL Server Architecture

- Logical Storage
 - Instance
 - Database/Schema
 - Table
- Physical Storage
 - Data files and Log files
 - Data pages

MySQL Server Architecture

Database Table Elements

 The table is the main building block of any database

Each row is called a record or entity

 Columns (fields) define the type of data they contain

Database Table Elements

Row

Column

Date	Class	Student Name	Subject	Term Mark
09.02.2019	4A	Ivolyan	Mathematics	6.00
09.02.2019	4A	Mariya	BEL	6.00
09.02.2019	4A	Atanas	Physics	6.00

Cell

Table Relationships

Why Split Related Data?

Redundant Information

<BULGARIA>

Date	Class	student Name	Subject	Term Mark
09.02.2019	4A	Ivolyan	Mathematics	6.00
09.02.2019	4A	Mariya	BEL	6.00
09.02.2019	4A	Atanas	Mathematics	6.00

Related Tables

 We split the data and introduce relationships between the tables to avoid repeating information

 Connection via Foreign Key in one table pointing to the Primary Key in another

Related Tables

Id	Date	Class Id	Student Name	Subject Id	Term Mark
1	09.02.2019	1	Ivolyan	1	6.00
2	09.02.2019	1	Mariya	2	6.00
3	09.02.2019	1	Atanas	1	6.00

Primary Key

Id	Class Name
1	4A
2	4B

Foreign Key

Id	Subject Name
1	Mathematics
2	BEL

Table Relationships

<BULGARIA>

Programmability

Customizing Database Behavior

Indices

- Indices make data lookup faster
 - Clustered bound to the primary key, physically sorts data
 - Non-Clustered can be any field, references the primary index
- Structured as an ordered tree

Views

- Views are prepared queries for displaying sections of our data
- Evaluated at run time they do not increase performance

Procedures, Functions and Triggers

- A database can further be customized with reusable code
- Procedures carry out a predetermined action
 - E.g. get all employees with salary above 35000
- Functions receive parameters and return a result
 - E.g. get the age of a person using their birthdate and current date
- Triggers watch for activity in the database and react to it
 - E.g. when a record is deleted, write it to an archive

Procedures

CREATE PROCEDURE udp_get_employees_salary_above_35000()
BEGIN

SELECT first_name
 , last_name
FROM employees
WHERE salary > 35000;

END

CALL udp_get_employees_salary_above_35000

Functions

```
CREATE FUNCTION udf_get_age (dateValue DATE)

RETURNS INT

BEGIN

DECLARE result INT;

SET result = TIMESTAMPDIFF(YEAR, dateValue, NOW());

RETURN result;

END

SELECT udf_get_age('1988-12-21');
```


Thank You.

Mariyan Apostolov

mariyan.apostolov89@gmail.com

