Deriválás			
f(x)	f'(x)		
c	0		
x^{α}	$\alpha x^{\alpha-1}$		
e^x	e^x		
a^x	$a^x \ln a$		
$\ln x$	$\frac{1}{2}$		
1	$\begin{bmatrix} x \\ 1 \end{bmatrix}$		
$\log_a x$	$\frac{1}{x \ln a}$		
$\sin x$	$\cos x$		
$\cos x$	$-\sin x$		
tgx	$\frac{1}{\cos^2 x}$		
	$\begin{bmatrix} \cos x \\ 1 \end{bmatrix}$		
ctgx	$-\frac{1}{\sin^2 x}$		
$\arcsin x$	1		
	$\sqrt{1-x^2}$		
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$		
arctgx	$\frac{1}{1+x^2}$		
arcoga.	$1 + x^2$	1	
$\operatorname{arcctg} x$	$-\frac{1}{1+x^2}$	-	
shx	$\operatorname{ch} x$	1	
chx	$\sinh x$	1	
thx	1		
	$\frac{\overline{\operatorname{ch}^2 x}}{1}$		
cthx	$-\frac{1}{\sinh^2 x}$		
$\operatorname{arsh} x$	1		
arsna	$\sqrt{1+x^2}$		
$\operatorname{arch} x$	$\frac{1}{\sqrt{x^2-1}}$		
	1	1	
arthx	$\frac{1}{1-x^2} x < 1$		
arcthx	$\frac{1}{1-x^2}$ $ x >1$		
$\frac{ arctnx }{1-x^2} \frac{ x > 1}{ arctnx }$ Deriválási szabályok			
$\frac{(cf)' = cf'}{}$			
$(cf) = cf$ $(f \pm g)' = f' \pm g'$			
$(J \perp g) = J \perp g$			

$$(cf)' = cf'$$

$$(f \pm g)' = f' \pm g'$$

$$(fg)' = f'g + fg'$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

$$(f \circ g)' = (f' \circ g) g'$$

$$(\bar{f})' = \frac{1}{f' \circ \bar{f}}$$

Paraméteres megadású függvény:

$$f(x): \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} \qquad f'(x) = \frac{\dot{\psi}(t)}{\dot{\varphi}(t)}$$

Kiegészítések

$$\sin^2 x = \frac{1 - \cos 2x}{2} \quad \cos^2 x = \frac{1 + \cos 2x}{2}$$

$$\sinh^2 x = \frac{\cosh 2x - 1}{2} \quad \cosh^2 x = \frac{\cosh 2x + 1}{2}$$

$$2 \sin \alpha \sin \beta = \cos(\alpha - \beta) - \cos(\alpha + \beta)$$

$$2 \cos \alpha \cos \beta = \cos(\alpha - \beta) + \cos(\alpha + \beta)$$

$$2 \sin \alpha \cos \beta = \sin(\alpha + \beta) + \sin(\alpha - \beta)$$

Integrálás			
f(x)	$F\left(x\right)$		
x^{α}	$\frac{F(x)}{\frac{x^{\alpha+1}}{\alpha+1}} \alpha \neq -1$		
$\frac{1}{x}$ e^x	$\frac{\alpha+1}{\ln x }$		
	$egin{array}{c} e^x \ a^x \end{array}$		
a^x	$\frac{a}{\ln a}$		
$\sin x$	$-\cos x$		
$\cos x$	$\sin x$		
$\frac{1}{\cos^2 x}$	$\operatorname{tg} x$		
$\frac{1}{\sin^2 x}$	$-\operatorname{ctg} x$		
shx	$\mathrm{ch}x$		
$\operatorname{ch} x$	$\mathrm{sh}x$		
$\frac{1}{\cosh^2 x}$	h x		
$\frac{1}{\sinh^2 x}$	$-\coth\!x$		
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x$		
$\frac{1}{\sqrt{1+x^2}}$	$\mathrm{arsh}x$		
$\frac{1}{\sqrt{x_1^2 - 1}}$	$\operatorname{arch} x$		
$\frac{1}{1+x^2}$	$\operatorname{arctg} x$		
$\frac{1}{1-x^2}$	$\frac{1}{2}\ln\left \frac{1+x}{1-x}\right $		

Integrálási szabályok

$$\int f(ax+b) dx = \frac{F(ax+b)}{a(x+b)} + C$$

$$\int f^{\alpha}(x) f'(x) dx = \frac{f^{\alpha+1}(x)}{\alpha+1} + C$$

$$ha \quad \alpha \neq -1$$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$

$$\int f(g(x)) g'(x) dx = F(g(x)) + C$$

$$\int u'(x) v(x) dx =$$

$$= u(x) v(x) - \int u(x) v'(x) dx$$

$$t = tg\frac{x}{2} \text{ helyettesítés:}$$

$$\sin x = \frac{2t}{1+t^2} \qquad \cos x = \frac{1-t^2}{1+t^2}$$

$$V = \pi \int_{a}^{b} f^{2}(x)dx$$

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx$$

$$F = 2\pi \int_{a}^{b} f(x) \sqrt{1 + (f'(x))^{2}} dx$$

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$$

$$V = \pi \int_{t_{1}}^{t_{2}} \psi^{2}(t)\dot{\varphi}(t)dt$$

 $L = \int_{0}^{t_{2}} \sqrt{\dot{\varphi}^{2}(t) + \dot{\psi}^{2}(t)} dt$

 $F = 2\pi \int_{t_1}^{t_1} \psi(t) \sqrt{\dot{\varphi}^2(t) + \dot{\psi}^2(t)} dt$

Laplace-transzformáció		
f(t)	$\bar{f}\left(s\right) = L\left[f\left(t\right)\right]$	
e^{at}		
$\sin\left(at\right)$	$\frac{s-a}{a}$ $\frac{s^2+a^2}{s^2+a^2}$	
$\cos\left(at\right)$	$\frac{s}{s^2 + a^2}$	
t^n	$\frac{n!}{s^{n+1}}$	
sh(at)	$\frac{a}{s^2 - a^2}$	
ch(at)	$\frac{s}{s^2 - a^2}$	
$e^{at}f\left(t\right)$	$\bar{f}\left(s-a\right)$	
$t^{n}f\left(t\right)$	$(-1)^n \frac{d^n \tilde{f}(s)}{ds^n}$	
$f^{\prime}\left(t\right)$	$s\bar{f}\left(s\right) - f\left(0\right)$	
$f^{\prime\prime}\left(t\right)$	$s^{2}\bar{f}\left(s\right)-sf\left(0\right)-f'\left(0\right)$	
$f^{(n)}\left(t\right)$	$s^{n}\bar{f}\left(s\right)-s^{n-1}f\left(0\right)-\dots$	
	$\dots - f^{(n-1)}\left(0\right)$	
$\int_{0}^{t} f(u) du$	$\frac{1}{s}\bar{f}\left(s\right)$	

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!}$$

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} {n \choose n} x^{n} \quad |x| < 1$$

$${n \choose 0} = 1 \quad {n \choose n} = \frac{\alpha(\alpha-1) \cdot \dots \cdot (\alpha-n+1)}{n!}$$

Fourier-sorok

$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos(n\omega x) + b_n \sin(n\omega x))$$

$$a_0 = \frac{1}{T} \int_a^{a+T} f(x) dx$$

$$a_n = \frac{2}{T} \int_a^{a+T} f(x) \cos(n\omega x) dx$$

$$b_n = \frac{2}{T} \int_a^{a+T} f(x) \sin(n\omega x) dx$$

$$f(x+T) = f(x) \text{ és } \omega = \frac{2\pi}{T}$$

Vektoranalízis

Vektoranalízis
$$s = \int_{t_1}^{t_2} |\dot{\underline{r}}| dt$$

$$G = \frac{|\dot{\underline{r}} \times \ddot{\underline{r}}|}{|\dot{\underline{r}}|^3} \qquad T = \frac{\dot{\underline{r}} \ddot{\underline{r}} \ddot{\underline{r}}}{|\dot{\underline{r}} \times \ddot{\underline{r}}|^2}$$

$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$

$$\operatorname{grad} u = \nabla u$$

$$\operatorname{div} \underline{\underline{v}} = \nabla \underline{\underline{v}} \qquad \operatorname{rot} \underline{\underline{v}} = \nabla \times \underline{\underline{v}}$$