Skript Algebra

Lukas Metzger

31. Oktober 2018

0 Konstruktion mit Zirkel und Lineal

Beispiel 0.1 (Konstruktion des regelmäßigen 5-Ecks). Anleitung zur Konstruktion

Erste Frage: Gegeben $n \in \mathbb{N}$, kann ich das regelmäßige n-Eck konstruieren?

Beispielproblem: Betrachte Das 5-Eck, sei a die Kantenkänge und s die Sekantenlänge.

Dann ist $\frac{s}{a} \notin \mathbb{Q}$.

Beweis. Angenommen $\frac{s}{a}$ wäre in \mathbb{Q} . Dann schreibe $\frac{s}{a} = \frac{p}{q}$ mit $p, q \in \mathbb{N}$. Dann gibt es also eine Länge $d \in \mathbb{R}$, so dass s und a beides ganzzahlige Vielfache von d sind. $\exists n, m \in \mathbb{N}$ $a = n \cdot d, s = m \cdot d$.

Betrachte/Erweitere die Konstruktion des 5-Ecks und erhalte kleines (blaues) 5-Eck wie gezeichnet mit Sekantenlänge s'=a und Kantenlänge a'=s-a.

Dann sind aber sowohl a' als auch s' wieder Vielfache von d. Das Verfahren kann ich wiederholen und erhalte immer kleinere 5-Ecke, deren Größe nach 0 konvergiert, wo Kanten- und Sekantenlänge ganzzahlige Vielfache von d sind. $\frac{1}{2}$

Weitere Konstruktionsprobleme:

- 3-Teilung des Winkels
- Verdoppelung des Würfels (d.h. Verdoppelung des Volumens)
- Quadratur des Kreises (Gegeben ein Kreis, konstruiere Quadrat mit demselben Flächeninhalt)

Wiederholung: Was kann ich mit Zirkel und Lineal eigentlich machen?

Antwort: 3 Konstruktionen

- 1) Gegeben Punkte a_1, a_2, b_1, b_2 der Ebene, betrachte die Geraden $\overline{a_1a_2}$ und b_1b_2 und erhalte Schnittpunkt $\overline{a_1a_2} \cap \overline{b_1b_2}$.
- 2) Gegeben Punkte a_1, a_2, b_1, b_2, b_3 der Ebene betrachte Kreis $K(b_1, ||b_2 b_3||)$ um b_1 mit Radius $||b_2 b_3||$ und erhalte die Schnittpunkte $\overline{a_1a_2} \cap K(b_1, ||b_2 b_3||)$
- 3) Gegeben Punkte $a_1, a_2, a_3, b_1, b_2, b_3$, erhalte Schnittpunkte $K(a_1, \|a_2 a_3\|) \cap K(b_1, \|b_2 b_3\|)$ **Definition 0.2.** Sei $M \subset \mathbb{R}^2$ eine Menge, $p \in \mathbb{R}^2$ ein Punkt.

Sage: p ist aus M mit Zirkel und Lineal konstruierbar, falls es Kette von Mengen gibt

$$M = M_1 \subseteq M_1 \subseteq \cdots \subseteq M_n \ni p$$

Wobei $\forall i$ die Menge M_i entsteht aus M_{i-1} durch Hinzunahme der Punkte die durch einen Konstruktionsschritt entstehen.

<u>Historie</u>: Einen Durchbruch bei der Lösung dieser Probleme gab es erst, als man begann, die Punkte des \mathbb{R}^2 mit komplexen Zahlen zu identifizieren.

Bemerkung. Frage nach der Konstruierbarkeit macht nur Sinn, wenn M mindestens 2 Punkte enthält \rightsquigarrow Häufig $M = \{0, 1\} \subset \mathbb{C}$.

In dieser Sprache

- Konstruktionsproblem: n-Eck ist äquivalent zu, kann ich die n-ten Einheitswurzeln $e^{\frac{i2\pi}{n}}$ aus $M=\{0,1\}$ konstruieren? Ist $e^{\frac{2\pi i}{n}}\in \mathrm{Kons}(\{0,1\})$?
- Verdopplung des Würfels \Leftrightarrow Ist $\sqrt[3]{2} \in \text{Kons}(\{0,1\})$
- Quadratur des Kreises \Leftrightarrow Ist $\sqrt{\pi} \in \text{Kons}(\{0,1\})$
- 3-teilung des Winkels \Leftrightarrow Ist für gegebenes $\varphi \in (0, 2\pi)$ $e^{\frac{i\varphi}{3}} \in \text{Kons}(\{0, 1, e^{i\varphi}\})$

Zentrale Beobachtung

Sei $M\subset \mathbb{C}$ eine Menge die 0 und 1 enthält. Sei Kons(M) die Menge der aus M konstruierbaren Punkte.

Dann ist $Kons(M) \subset \mathbb{C}$ ein Unterkörper.

Dazu zu prüfen: Konstruierbarkeit von Summen, Differenzen, Produkten, Quotienten

Zusammenfassung/zentrales Thema der Vorlesung

1 Körpererweiterungen

1.1 Ultrakurzwiederholung zentraler Begriffe

Definition 1.1 (Gruppe). Eine Gruppe ist eine Menge G zusammen mit einer Abbildung $m: G \times G \to G$ so dass folgendes gilt:

- 1) Assoziativ: $\forall a, b, c \in Gm(m(a, b), c) = m(a, m(b, c))$
- 2) Neutrales Element: $\exists n \in G \forall a \in G : m(n, a) = m(a, n) = a$
- 3) Inverse Elemente: $\forall a \in G \exists b \in G : ab = ba \text{ und dieses Produkt ist neutrales}$ Element wie in 2)

Lemma 1.2 (Elementare Eigenschaften von Gruppen). Für jede Gruppe gilt:

- Das neutrale Element ist eindeutig
- Inverse Elemente sind eindeutig

Definition 1.3 (Abelsche Gruppe). Nenne Gruppe (G, m) Abelsch, falls $\forall a, b \in G : m(a, b) = m(b, a)$.

Notation: Statt m schreibt man oft + oder ·, wobei + hauptsächlich für Abelsche Gruppen verwendet wird.

Beispiel 1.4. Beispiele für Gruppen:

- Abelsche Gruppen: $(\mathbb{Z}, +)$, $(\mathbb{Z}/p\mathbb{Z}, +)$, (Vektorraum, +)
- \bullet Nicht-Abelsche Gruppen: Sei M eine Menge mit > 2 Elementen. Die bijektiven Abbildungen $M\to M$ mit der Hintereinanderausführung ist eine nicht-Abelsche Gruppe.

Sei K ein Schiefkörper, z.B. $K=\mathbb{R},\mathbb{C},\mathbb{H}.$ Sei $K^*K\setminus\{0\}.$ Dann ist (K^*,\cdot) eine Gruppe.

• Nicht-Beispiel: $G = \mathbb{R}^3$. Ich erhalte durch das Kreuzprodukt keine Gruppenkonstruktion.

Definition 1.5 (Ring). Ein Ring ist eine Menge R mit 2 Verknüpfungen + und \cdot so dass gilt:

- (R, +) ist eine Abelsche Gruppe
- Distributivgesetz: $\forall a, b, c \in T(a+b) \cdot c = ac + bc \text{ und } a(b+c) = ab + ac$
- $(R \setminus 0, \cdot)$ ist fast Gruppe nämlich assoziativ und es existiert ein neutrales Element **Beispiel 1.6.** Beispiele für Ringe:
 - $\mathbb{R}, \mathbb{Z}/n\mathbb{Z}$, Polynome, \mathbb{Z}
 - \bullet Funktionen auf \mathbb{R}/\mathbb{C}
 - holomorphe/stetige/ C^{∞} /reell analytische lokal quadratintegrierbare Funktionen bilden ebenfalls einen Ring

Bemerkung. Mit Ringen kann ich fast rechnen wie mit Zahlen, aber ACHTUNG

- Nicht jedes Element in $R \setminus 0$ hat ein multiplikatives Inverses
- Ich kann aus $a \cdot b = 0$ und $a \neq 0$ im Allgemeinen nicht folgern, dass b = 0
- Ich kann aus ab = ac und $a \neq 0$ im allgemeinen nicht folgern, dass b = c ist

Definition 1.7 (Nullteiler). Sei R ein Ring, $a \in R \setminus \{0\}$. Falls $b \neq 0$ existiert mit $a \cdot b = 0$, nenne ich a einen Nullteiler.

Ringe ohne Nullteiler heißen Nullteilerfrei oder Integritätsringe.

Definition 1.8 (Abelscher Ring). Ein Ring heißt abelsch, falls $\forall a, b \in R \ ab = ba$.

Bemerkung. In der Literatur heißen unsere Ringe oft Ringe mit 1.

Beispiel 1.9. Beispiele zu Nullteilern

- \mathbb{R} , \mathbb{Z} sind nullteilerfrei
- $\mathbb{Z}/n\mathbb{Z}$ ist nullteilerfrei $\Leftrightarrow n$ ist Prim
- Polynome sind nullteilerfrei
- Stetige Funktionen sind nicht nullteilerfrei

Bemerkung. Sei R ein Ringe. Die Menge der Elemente, die ein multiplikatives Inverses haben, wir mit R^* bezeichnet.

- $\mathbb{Z}^* = \{1, -1\}$
- $(\mathbb{Z}/n\mathbb{Z})^* = \{[x] \mid x \text{ ist teilerfremd zu } n\}$
- $(C^{\infty}(\mathbb{R}))^* = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ ist } C^{\infty} \text{ und hat keine Nullstelle} \}$

Bemerkung. Sei R ein Ring, x eine Variable. Dann bezeichne mit R[x] die Polynome mit Koeffizienten in R und Variable x.

- $1x + 2 \in \mathbb{Z}[x]$
- $\bullet \ \frac{\pi}{4} \cdot x^2 \notin \mathbb{Z}[x]$

Definition 1.10 (Schiefkörper). Schiefkörper sind Ringe R wobei $R^* = R \setminus \{0\}$

Definition 1.11 (Körper). Ein Körper ist ein Schiefkörper, der auch noch kommutativ ist.

Beispiel 1.12. Beispiele für Körper und Schiefkörper

- Quaternionen sind Schiefkörper
- $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/p\mathbb{Z}$ sind Körper
- Kons($\{0,1\}$) ist Unterkörper von \mathbb{C}
- Die Menge der Rationale Funktionen über einem Körper bilden wieder einen Körper

1.2 Algebraische und transzendente Elemente

Sei L ein Körper und $k \subset L$ ein Unterkörper (z.B. $L = \mathbb{C}, k \subset \mathbb{R}$ oder $L = \mathbb{R}, k = \mathbb{Q}$).

Im Fall $k = \mathbb{Q}, L = \mathbb{R}$ wissen wir, dass es in \mathbb{R} sehr unterschiedliche Elemente gibt.

- $\sqrt{7}$... algebraisch
- $\pi, e \dots$ transzendent

Definition 1.13. Situation wie oben. Sei $a \in L$ gegeben. Nenne a algebraisch über k falls es ein Polynom gibt $f \in k[x]$ und $f \neq 0$ so dass f(a) = 0.

Bemerkung. Nicht algebraische Elemente heißen transzendent.

Beispiel 1.14. Beispiele für algebraische und transzendente Zahlen

- $\sqrt{7}$ ist algebraisch über \mathbb{Q} , denn $f(\sqrt{7}) = 0$ mit $f(x) = x^2 7$
- π ist nicht algebraisch über \mathbb{Q} (Lindemann, 1844)

Bemerkung. In \mathbb{R} gibt es praktisch keine Zahlen, die algebraisch über \mathbb{Q} sind.

Wir wissen \mathbb{Q} ist abzählbar, also sind auch die Polynome mit Koeffizienten in \mathbb{Q} abzählbar. Jedes Polynom hat aber nur endlich viele Nullstellen. Das heißt die Menge der algebraischen Zahlen ist abzählbar, also eine Nullmenge im Sinne der Integrationstheorie.

Beispiel 1.15. Körpererweiterung $\mathbb{R} \subset \mathbb{C}$ - Beobachte: i ist algebraisch über \mathbb{R} , denn f(i) = 0 wobei $f(x) = x^2 + 1$

$$z = i + 1$$
 ist Algebraisch mit $f(x) = (x - 1)^2 + 1$

$$z = a + bi$$
 ist Algebraisch mit $f(x) = \left(\frac{(x-a)}{b}\right)^2 + 1$

 \Rightarrow Jede komplexe Zahl ist algebraisch über $\mathbb R$

Definition 1.16. Eine Körpererweiterung $k \subset L$ heißt algebraisch, falls jedes $a \in L$ algebraisch über k ist.

Ansonsten nenne Körpererweiterung transzendent.

Bemerkung. Sei $k \subset L$ eine Körpererweiterung, sei $a \in L$ algebraisch über k und sei $f \in k[x]$ ein Polynom $\neq 0$ mit f(a) = 0.

Solche Polynome gibt es viele, wir interessieren uns für f's mit mimimalem Grad. Wenn so ein f gegeben ist:

$$f = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

dann dividiere durch a_n und erhalte Polynom

$$\hat{f} = x^n + \frac{a_{n-1}}{a_n} x^{n-1} + \dots + \frac{a_0}{a_n} \in k[x]$$

mit a als Nullstelle.

Falls \hat{f} und \overline{f} in k[x] zwei normierte Polynome von minimalem Grad sind mit $\hat{f}(a) = \overline{f}(a) = 0$, dann betrachte Polynom $(\hat{f} - \overline{f}) \in k[x]$. Dann gilt

$$(\hat{f} - \overline{f})(a) = \hat{f}(a) - \overline{f}(a) = 0 - 0 = 0$$

und der Grad von $(\hat{f} - \overline{f})$ ist kleiner als der Grad von \hat{f} . Weil aber der Grad von \hat{f} minimal war, folgt: $\hat{f} = \overline{f}$.

Satz 1.17. Sei $k \subset L$ eine Körpererweiterung, sei $a \in L$ algebraisch über k. Dann gibt es genau ein Polynom $f \in k[x] \setminus \{0\}$ so dass gilt:

- 1) f(a) = 0
- 2) deg f ist minimal unter den Graden der Polynome die a als Nullstelle haben:

$$\deg(f) = \min\{\deg g \mid g \in k[x] \setminus \{0\}, g(a) = 0\}$$

3) f ist normiert (d.h. Leitkoeffizient = 1)

Nenne dieses f das Minimalpolynom von a über k.

Die Zahl deg f wird als Grad von a über k bezeichnet, in Symbolen [a:k]

Bemerkung. Sei $k \subset L$ Erweiterung, $a \in L$ algebraisch über k. Falls [a:k]=1, dann $a \in k$.

Mehr Beispiele für Körpererweiterungen

Sei $k \subset L$ eine Körpererweiterung, sei $(L_i)_{i \in I}$ eine Menge von Zwischenkörpern, d.h. $k \subseteq L_i \subseteq L$.

Dann ist auch $K := \bigcap_{i \in I} L_i$ ein Körper.

<u>Nutzanwendung:</u> Sei $A \subset L$ irgendeine Teilmenge. Sei $(L_i)_{i \in I}$ die Menge der Zwischenkörper $k \subseteq L_i \subseteq L$ so dass $\forall i : A \subset L_i$. Dann betrachte K und es gilt:

- $k \subseteq K \subset L$, also K ist Zwischenkörper
- $A \subseteq K$
- K ist der kleinste Zwischenkörper der A enthält

Bemerkung. Bezeichne K mit k(A) und sage k(A) entsteht aus k durch Adjunktion der Elemente von A.

Spezialfall: $A = \{a\}$ dann schreibe ich k(a). Das ist dann der kleinste Unterkörper von L, der sowohl k als auch a enthält.

Definition 1.18 (Einfache Körpererweiterung). Eine Körpererweiterung $k \subset L$ heißt einfach, falls a existiert, so dass L = k(a).

Definition 1.19 (Grad der Körpererweiterung).

$$[L:k] = \dim_k L$$
 Grad der Körpererweiterung

Beispiele

$$[\mathbb{C}:\mathbb{R}]=2$$
 $[\mathbb{R}:\mathbb{Q}]=\infty$

Satz 1.20. Sei L/k eine Körpererweiterung, $a \in L$ dann gilt

$$[a:k] = [k(a):k]$$

Beweis. Falls a tanszendent, dann sind $1, a, a^2, \ldots k$ -linear unabhängig, also ist $\dim_k k(a) = \infty$.

Betrachte also den Fall, wo a algebraisch ist mit Minimalpolynom $f(x) = x^n + b_{n-1} + \cdots + b_0 \in k[x]$.

Also: $\dim_k k(a) \ge n$

Um Gleichheit zu zeigen, genügt es zu zeigen, dass $\langle 1, a, a^2, \dots, a^{n-1} \rangle_k =: \tilde{k}$ bereits k(a). Klar ist $\tilde{k} \in k(a)$. Wegen der Minimalität von k(a) genügt es für die Umkehrrichtung zu zeigen, dass \tilde{k} ein Körper ist.

Klar ist $0, 1 \in \tilde{k}$.

Zu zeigen ist Abgeschlossenheit unter Addition/Subtraktion (hier klar wegen Vektorraum) und unter Multiplikation/Division (noch nicht klar).

Zwischenbehauptung: Sei $s = \sum_{i=0}^{n-1} \lambda_i a^i \in \tilde{k}$ ein beliebiges Element. Dann ist $a \cdot s \in \tilde{k}$.

Wir wissen:

$$a \cdot s = \underbrace{\sum_{i=0}^{n-2} \lambda_i a^{i+1}}_{\in \tilde{k}} + \lambda_{n-1} a^n$$

Ein Blick auf das Minimalpolynom zeigt:

$$a^n = -\sum_{i=0}^{n-1} b_i \cdot a^i \in \tilde{k}$$

Konsequenz: Wenn $s,t\in \tilde{k}$ beliebig sind, dann $s\cdot t\in \tilde{k}$, also gilt die Abgeschlossenheit unter Multiplikation.

<u>Letzte Aufgabe:</u> Existenz von multiplikativen Inversen. Sei also $s \in \tilde{k}, s \neq 0$ gegeben. Wegen abgeschlossenheit unter Multiplikation ist s, s^2, s^3, \ldots wieder in \tilde{k} . Also ist $1, s, \ldots, s^n$ linear abhängig $\Rightarrow s$ ist algebraisch über k.

Sei $p(x) = x^m + p_{m-1} \cdot x^{m-1} + \cdots + p_0$ das Minimalpolynom.

Beobachtung: $p_0 \neq 0$, denn sonst könnte ich x ausklammern, p wäre nicht minimal. Damnach kann ich schreiben:

$$0 = p(s) = s^{m} + p_{m-1}s^{m-1} + \dots + p_{0}$$

$$\Leftrightarrow -p_{0} = s(s^{m-1} + p_{m-1}s^{m-1} + \dots + p_{1})$$

$$\Leftrightarrow \frac{1}{s} = \underbrace{\frac{1}{-p_{0}}}_{\in k} \underbrace{(s^{m-1+p_{m-1}s^{m-2}+\dots+p_{1}})}_{\in \tilde{k} \text{ wegen Abg. unter Mult.}} \in \tilde{k}$$

Folgerung 1.21.

1) Wenn [a:k] = n, dann ist $k(a) = \{\lambda_0 + \lambda_1 a + \dots + \lambda_{n-1} a^{n-1} \mid \lambda_i \in k\}$

2) Wenn $[a:k] < \infty$, dann ist k(a)/k algebraisch

Beispiel 1.22. Sei $L=\mathbb{C}, k\subset C$ ein Unterkörper, sei $b\in k$ und $a=\sqrt{b}$. Dann gilt:

$$[k(a):k] = \begin{cases} 2 & \text{falls } a \notin k \\ 1 & \text{falls } a \in k \end{cases}$$

Proposition 1.23 (Umkehrung der Beobachtung). Sei L/k eine Körpererweiterung von Grad 2. Dann entsteht L durch Adjunktion einer Quadratwurzel.

Lemma 1.24. Sei L/k eine algebraische Körpererweiterung, so dass der Erweiterungsgrad [L:k] eine Primzahl ist. Dann ist die Erweiterung einfach, das heißt $\exists a \in L: L = k(a)$.

Beweis. Übung

Beweis. (von Proposition 1.23) Wähle $a \in L$ wie im Lemma. Dann ist klar [a:k]=2. Also existieren $\lambda_1, \lambda_0 \in k$, so dass $a^2 + \lambda_1 a + \lambda_0 = 0$ ist. Also:

$$a \in \underbrace{\frac{-\lambda_1}{2}}_{\in k} \pm \underbrace{\sqrt{\left(\frac{\lambda_1}{2}\right)^2 - \lambda_0}}_{=b}$$

Weil a und b sich nur um Elemente von k unterscheiden, ist k(a) = k(b). Das Element b ist aber Quadratwurzel!

Bemerkung. Falls char(k) = 2 ist, muss man die Lösungsformel richtig hinschreiben.

Satz 1.25. Sei $k \subseteq L \subseteq M$ eine Kette von Körpern. Dann ist

$$[M:k] = [M:L] \cdot [L:k]$$

Beweis. (nur im Fall, wo $[M:L]<\infty$ und $[L:k]<\infty$)

Wähle Basis m_1, \ldots, m_a für M als L-Vektorraum und l_1, \ldots, l_b für L als k-Vektorraum.

Behauptung: Dann bilden die Elemente $(m_i \cdot l_j)_{i,j}$ eine Basis von M als k-Vektorraum.

Erzeugendensystem: Sei $m \in M$ gegeben. Dann ist m schreibbar als

$$m = \sum_{i=1}^{a} \lambda_i \cdot m_i$$

 $mit \ \lambda_i \in L.$

Dann kann ich jedes λ_i schreiben als

$$\lambda_i = \sum_{j=1}^b \mu_j^i \cdot l_j$$

mit $\mu_j \in k$.

Einsetzten zeigt m kann geschrieben werden als k-Linearkombination der Produkte $m_i \cdot l_j$.

Lineare Unabhängigkeit: Sei eine lineare Relation

$$0 = \sum_{i,j} \mu_j ij \cdot (m_i \cdot l_j)$$

gegeben, wobei $\mu_i ij \in k$. Dann gilt

$$0 = \sum_{i} \underbrace{\left(\sum_{j} \mu_{ij} \cdot l_{j}\right) \cdot m_{i}}_{\in L}$$

Weil die m_i per Wahl aber L-linear unabhängig sind folgt für alle $i \sum_j \underbrace{\mu_{ij}}_{C_k} \cdot l_j = 0$.

Weil die l_j per Wahl aber k-linear unabhängig sind, ist $\forall i \forall j \mu_{ij} = 0$.

Folgerung 1.26. Wenn eine Kette von Körpererweiterungen gegeben ist, $k \subseteq L \subseteq M$ und wenn $[M:k] < \infty$ dann ist $[L:k] < \infty$ und sogar ein Teiler von [M:k].

Satz 1.27. Sei L/k eine Körpererweiterung, dann ist äquivalent:

- 1) $[L:k]<\infty$
- 2) L ist algebraisch über k, und es gibt endlich viele $a_1, \ldots, a_n \in L : L = k(a_1, \ldots, a_n)$
- 3) Es gibt endlich viele $a_1 \ldots, a_n \in L$, die algebraisch über k sind und $L = k(a_1, \ldots, a_n)$

Beweis. $\underline{1} \Rightarrow \underline{2}$: Sei $s \in L$ beliebig. Dann sind $1, s, s^2, \ldots, s^{[L:k]}$ linear abhängig, also ist s algebraisch über k. Das heißt L/k ist algebraisch. Um a_1, \ldots, a_n zu finden, wähle Vektorraumbasis von L über k.

 $2 \Rightarrow 3$: trivial

 $3 \Rightarrow 1$: Betrachte

$$\underbrace{k}_{=:k_0} \subseteq \underbrace{k(a_1)}_{=:k_1} \subseteq \underbrace{k(a_1,a_2)}_{=:k_2} \subseteq \cdots \subseteq \underbrace{k(a_1,\ldots,a_n)}_{=:k_n}$$

Dann klar: $\forall i: a_i$ ist algebraisch über k_{i-1} (sogar algebraisch über k_0) also $[k_i: k_{i-1}] < \infty$, dann $k_i = k_{i-1}(a_i)$ und $[L:k] = \prod_i [k_i: k_{i-1}] < \infty$.

Lemma 1.28 (Nutzanwendung (Transitivität der Algebraizität)). Sei $k \subseteq L \subseteq M$ eine Kette von Körpererweiterungen. Falls L/k algebraisch ist und M/L algebraisch ist, dann ist M/k algebraisch.

Beweis. Sei $m \in M$ gegeben. Ziel: m ist algebraisch über k.

m ist algebraisch über L, das heißt es hat ein Minimalpolynom

$$f(x) = \sum_{i=0}^{a} l_i \cdot x^i \in L[x]$$

Wir wissen auch: Jedes der l_i ist algebraisch über k.

Betrachte jetzt den Zwischenkörper $L' = k(l_0, \ldots, l_a)$. Dann ist L'/k endlich und m ist algebraisch über L', also ist $m \in L'(m)$ und L'(m)/L' ist endlich. Damit ist L'(m)/k endlich, also algebraisch.

Proposition 1.29. Sei $k \subseteq L$ eine Körpererweiterung. Sei

$$\overline{k} := \{ a \in L \mid a \text{ ist algebraisch "uber } k \}$$

Dann ist \overline{k} ein Körper.

Man nennt \overline{k} den algebraischen Abschluss von k in L.

Beweis. Klar ist, dass $0, 1 \in \overline{k}$ sind. Wir müssen klären, ob mit $a, b \in \overline{k}$ auch $a+b, a-b, a\cdot b$ und gegebenenfalls für $\frac{1}{a} \in \overline{k}$ sind. Das ist aber klar, denn all diese Elemente liegen in k(a,b). Nach Satz ist k(a,b) algebraisch über k.

Bemerkung. Achtung: Es gibt einen anderen Begriff von (absolutem) algebraischen Abschluss, der nicht von einem Oberkörper $L \supseteq k$ abhängt.

1.3 Lösungsformel für Polynome

Wissen aus der Schule: Quadratische Gleichungen in einer Variable haben Lösungsformel.

Wissen seit der Renaissance: Haaben Formeln für Gleichungen von Grad 3 und 4.

Beispiel: $x^3 + ax^2 + bx + c = 0$ Setze:

$$h = -\frac{1}{2}c + \frac{1}{6}ab - \frac{1}{24}a^{3}$$

$$w_{1} = \sqrt{-3(a^{2}b^{2} - 4a^{3}c - 4b^{3} + 18abc - 27c^{2})}$$

$$w_{2} = \sqrt[3]{h + \frac{1}{18}w_{1}}$$

$$w_{2} = \sqrt[3]{h - \frac{1}{18}w_{1}}$$

Dann ist

$$x = -\frac{1}{3}a + w_2 - w_3$$

eine Lösung, wenn die Wurzeln w_2, w_3 so gewählt sind dass $w_2w_3 = \frac{1}{8}a^2 - \frac{1}{3}b$.

Frage: Gibt es eine Lösungsformel für Gleichungen vom Grad 5?

<u>Bescheidener:</u> Kann ich die Lösung überhaupt hinschreiben? (als komplizierten Ausdruck in Wurzeln/Polynomen)

Definition 1.30. Sei L/k eine Körpererweiterung, nenne diese Erweiterung Radikalerweiterung, falls es a_1, \ldots, a_n und $m_1, \ldots, m_n \in \mathbb{N}$ gibt, so dass

- 1) $L = k(a_1, \ldots, a_m)$
- 2) $\forall i a_i^{m_i} \in k(a_1, \dots, a_{i-1})$ also a_i ist die m_i -te Wurzel eines Elementes aus $k(a_1, \dots a_{i-1})$.

Was bedeutet das?

1)
$$a_1^{m_1} \in k$$
 Also $k(a_1) = \langle 1, a_1, a_1^2, \dots, a_1^{m_1 - 1} \rangle_k$

2)
$$a_2^{m_2} \in k$$
 Also $k(a_1, a_2) = \langle 1, a_2, a_2^2, \dots, a_2^{m_2-1} \rangle_{k(a_1)}$

3) ...

Bescheidene Frage, präzise formuliert: Gegeben ein Polynom

$$f(x) = \sum_{i=1}^{n} a_i x^i \in \mathbb{Q}[x] \text{ oder } \mathbb{R}[x]$$

gibt es dann eine Radikalerweiterung $L/\mathbb{Q}(a_0,\ldots,a_n)$ (beziehungsweise L/\mathbb{R}) so dass f in L eine Nullstelle hat? Gerne $L\subseteq\mathbb{C}$.

2 Ringe

Warum Ringe betrachten? Gegeben eine Körpererweiterung L/k und $a \in L$ und ich suche das Minimalpolynom $f_a(x) \in k[x]$.

Häufig findet man $g \in k[x]$ mit g(a) = 0 und muss dann entscheiden ob g das Minimal-polynom ist. Das ist gar nicht leicht!

Beobachtung: Polynomdivision zeigt:

$$g(x) = s(x) \cdot f_a(x) + \text{rest}(x)$$

wobei deg rest $(x) < \deg f_a(x)$. a einsetzen ergibt

$$\underbrace{g(a)}_{=0} = s(a) \cdot \underbrace{f_a(a)}_{=0} + \operatorname{rest}(a) \Rightarrow \operatorname{rest}(a) = 0$$

 $\Rightarrow \operatorname{rest}(x) \equiv 0$

$$\Rightarrow g(x) = s(x) \cdot f_a(x).$$

Wir sehen: Das Minimalpolynom ist ein Teiler von g im Ring der Polynome.

Ziel: Wir müssen Teilbarkeit verstehen!

2.1 Teilbarkeit

Definition 2.1. Sei R ein Ring. Dann bezeichne mit R[x] den Ring der Polynome mit Variable x und Koeffizienten aus R.

Warnung: Polynome geben Funktionen $R \to R$ aber Polynome sind nicht Funktionen.

Definition 2.2. Sei $f \in R[x]$ ein Polynom. Dann definiere den Grad von f wie üblich.

Lemma 2.3. Sei R ein Integritätsring, $f, g \in R[x]$. Dann ist

$$\deg(f \cdot g) = \deg(f) + \deg(g)$$

Beweis. Sei $n_f = \deg(f)$ und $n_g = \deg(g)$ schreibe

$$f(x) = a_f \cdot x^{n_f} + \text{(kleinere Terme)}, a_f \neq 0$$

 $g(x) = a_g \cdot x^{n_g} + \text{(kleinere Terme)}$

Dann ist

$$(f \cdot g)(x) = a_f \cdot a_g \cdot x^{n_f + n_g} + (\text{kleinere Terme})$$

und weil R ein Integritätsring ist, ist $a_f \cdot a_g \neq 0$, also $\deg(f \cdot g) = n_f + n_g$.

Folgerung 2.4. Sei R ein Integritätsring. Dann ist R[x] selbst wieder ein Integritätsring.

Beweis. Seien $f, g \in R[x] \setminus \{0\}$.

Wir müssen zeigen: $f \cdot g \not\equiv 0 \in R[x]$ (*).

Falls $\deg f = \deg g = 0$, folgt (*) weil R ein Integritätsring ist.

Ansonsten folgt (*), weil deg $f \cdot g = \deg f + \deg g > 0$.

Ausblick: Dann ist (R[x])[y] auch wieder ein Integritätsring. Und natürlich ist $(R[x])[y] \simeq R[x,y]$.

Folgerung 2.5. Sei R ein Integritätsring. Dann ist $(R[x])^* = R^*$.

Beweis. Sei $f(x) \in (R[x])^*$, das heißt $\exists g(x) \in R[x] : f \cdot g \equiv 1$.

$$\Rightarrow \deg f + \deg q = \deg 1 = 0$$

 \Rightarrow deg f = 0, also ist Polynom f konstant, ebenso für g.

Bemerkung. Per Induktion folgt auch $(R[x_1, \ldots, x_n])^* = R^*$

Definition 2.6. Sei R ein Ring, seien $s, r \in R$ Elemente. Ich sage: s ist Teiler von r (in Symbolen $s \mid r$), wenn es $a \in R$ gibt, so dass $s \cdot a = r$.

Lemma 2.7. Sei R ein Integritätsring, seien s, r Elemente. Dann ist äquivalent

- 1) $\exists \varepsilon \in R^*, s = \varepsilon \cdot r$
- 2) $s \mid r \text{ und } r \mid s$

Wenn diese Bedingungen erfüllt sind, nenne ich s und r assoziiert (in Symbolen $s \sim r$).

Beweis. 1) \Rightarrow 2) \checkmark

2)
$$\Rightarrow$$
 1) Aus $s \mid r$ und $r \mid s \Rightarrow a, b \in R : s \cdot a = r$ und $r \cdot b = s$.

$$\Rightarrow (r \cdot b) \cdot a \Rightarrow r(ba - 1) = 0$$

Da R Integritätsring ist: $\Rightarrow ba = 1$ $\Rightarrow b, a \in R^*$

Definition 2.8. Sei R ein Integritätsring, seien $s, r \in R$ Elemente. Dannn nenne s einen echten Teiler von r (in Symbolen $s \parallel r$) falls gilt:

- 1) $s \mid r$
- 2) $s \notin R^*$
- 3) r und s sind nicht assoziiert

Definition 2.9. Sei R ein Integritätsring. Ein Element $r \in R$ heißt irreduzibel, falls $r \notin R^*$ und falls r keine echten Teiler hat.

Beispiel 2.10. Die irreduziblen Elemente von $R = \mathbb{Z}$ sind exakt \pm (Primzahl).

Lemma 2.11. Sei R ein Integritätsring. Seien $r, s, t, s_1, s_2, u, v \in R$. Dann gilt:

- 1) $r \mid r$
- 2) $r \mid s \text{ und } s \mid t \Rightarrow r \mid t$
- 3) $r \mid s_1 \text{ und } r \mid s_2 \Rightarrow r \mid (s_1 + s_2)$
- 4) $r \mid s_1 \text{ und } r \mid (s_1 + s_2) \Rightarrow r \mid s_2$
- 5) $r \mid s \text{ und } u \mid v \Rightarrow ru \mid sv$

Nächstes Ziel: In \mathbb{Z} ist jede Zahl darstellbar als Produkt von Primzahlen und die Darstellung ist eindeutig bis auf Reihenfolge und Vorzeichen.

<u>Wunschtraum:</u> Sei R ein Integritätsring. Dann ist jedes Element eindeutig darstellbar als Produkt von irreduziblen Elementen.

Beispiel 2.12. Betrachte
$$R = \mathbb{Z}[\sqrt{-5}] = \{a + b \cdot \sqrt{-5} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$$

Dieser Ring ist ein Unterring von $\mathbb C$ und deshalb Nullteilerfrei und

$$9 = 3 \cdot 3 = \underbrace{(2 + \sqrt{-5})(2 - \sqrt{-5})}_{2^2 - (\sqrt{-5})^2}$$

Die Elemente $3, 2 \pm \sqrt{-5}$ sind irreduzibel und nicht zueinander assoziiert.

Definition 2.13. Sei R ein Integritätsring. Eine Teilerkette ist eine Folge $(r_i)_{i\in\mathbb{N}}$ von Elementen aus R, so dass $\forall i \ r_{i+1} \mid r_i$. Ich sage, im Ring R gilt der Teilerkettensatz für Elemente, falls in jeder Teilerkette die stärkere Bedigung $r_{i+1} \parallel r_i$ nur endlich oft gilt.

Beispiel 2.14. Im Ring \mathbb{Z} gilt der Teilerkettensatz für Elemente, denn falls $r_{i+1} \parallel r_i$ ist, dann gilt $|r_{i+1}| < |r_i|$.

Analog im Polynomring mit deg statt $|\cdot|$.

Satz 2.15. Sei R ein Integritätsring in dem der Teilerkettensatz für Elemente gilt. Dann ist jedes $r \in R, r \notin R^*, r \neq 0$ als Produkt von endliche vielen irreduziblen Elementen darstellbar.

Beweis. (Noether Rekursion) Wir wollen zeigen, dass $M = \{r \in R \mid r \notin R^*, r \neq 0 \text{ und } r \text{ nicht als Produkt von endlich vielen irreduziblen darstellbar} \}$ leer ist. Widerspruchsbeweis: angenommen $M \neq \emptyset$.

Beobachtungen:

- 1) $\forall r \in M \ r$ ist nicht irreduziblen (denn sonst wäre r eine Darstellung), also hat r echte Teiler
- 2) $\exists r \in M$, so dass alle echten Teiler von r nicht mehr in M liegen (denn sonst nehme echten Teiler aus M, widerhole das Verfahren, erhalte unendliche Teilerkette wo ich in jedem Schritt echte Teiler habe $\frac{\ell}{\ell}$ zur Annahme)

Also gegeben r wie in Beobachtung 2), dann ist jeder echte Teiler als Produkt von endlich vielen irreduziblen darstellbar, also auch r selbst. (Schreibe $r=r_1\cdot r_2$ mit r_1,r_2 echte Teiler. Dann $r_1=a_1\cdots a_n,r_2=b_1\ldots b_m$ mit $\forall i,ja_i,b_j$ irreduzibel dann $r=a_1\ldots a_nb_1\ldots b_m$) \not .

Definition 2.16. Sei R ein Integritätsring, sei $r \in R, r \notin R^*, r \neq 0$. Seien

$$r = a_1 \cdots a_n = b_1 \cdots b_m$$

zwei Darstellungen von r als Produkt von endlich vielen Irreduziblen.

Nenne die Darstellung äquivalent, falls gilt

- 1) gleich lang: n = m
- 2) \exists Permutation $\sigma \in S_n$ und Einheiten $\varepsilon_1 \cdots \varepsilon_n \in R^*$ so dass $\forall i : a_i = \varepsilon_i \cdot b_{\sigma(i)}$

Bemerkung. In Ringen, in denen der Teilerkettensatz gilt, sind Darstellungen nicht immer äquivalent! Zum Beispiel $R = \mathbb{Z}\sqrt{-5}$.

Das Problem ist, dass die irreduziblen Elemente in $\mathbb{Z}[\sqrt{-5}]$ nicht unbedingt prim sind.

Definition 2.17. Sei R ein Integritätsring, $r \in R, r \neq 0$ ein Element. Nenne r prim falls $\forall a,b \in R$

$$r \mid (a \cdot b) \implies r \mid a \text{ oder } r \mid b$$

Beispiel 2.18. In $R = \mathbb{Z}[\sqrt{-5}]$ ist $(2 + \sqrt{-5})$ irreduzibel, aber nicht prim, denn $(2 + \sqrt{-5}) \mid 3 \cdot 3$ aber $(2 + \sqrt{-5}) \nmid 3$.

Lemma 2.19 (Elementare Rechenregeln für Prim-Elemente). Sei R ein Integritätsring, $p,q\in R$

- 1) $p \text{ prim} \Rightarrow p \text{ irreduzibel}$
- 2) $p \text{ prim}, p \sim s \Rightarrow s \text{ prim}$
- 3) p, q prim und $p \mid q \Rightarrow p \sim q$
- 4) p prim und $p \mid a_1 \cdots a_n \Rightarrow \exists i \ p \mid a_i$

Beweis. zu 1)

Sei p prim. Angenommen p habe echten Teiler $a \in R$. Dann sei $b \in R$ so dass $p = a \cdot b$, insbesondere $p \mid ab$. Also $p \mid a$ oder $p \mid b$. oBdA gelte $p \mid a$.

Also $\exists h \in R, p \cdot h = a$. Einsetzen liefert

$$p = p \cdot h \cdot b$$
 \iff $p(1 - hb) = 0$ $\underset{R \text{ Integrit "atsring}}{\iff}$ $1 = h \cdot b$

 \Rightarrow b ist eine Einheit, kein echter Teiler.

Satz 2.20. Im Ring \mathbb{Z} ist jedes irreduzible Element auch prim.

Beweis. Angenommen es existiert in \mathbb{Z} ein irreduzibles Element p, das nicht prim ist. Dann ist -p irreduzible und auch nicht prim. Wir können also oBdA annehmen p > 0. Wir können auch annehmen das p das kleinste positive, irreduzible Element ist, das nicht prim ist.

Also $\exists a, b \in \mathbb{N} : p \mid a \cdot b \text{ aber } p \nmid a \text{ und } p \nmid b.$

Division mit Rest liefert

$$a = x \cdot a + a'$$
 wobei $a' < p$
 $b = y \cdot p + b'$ wobei $b' < p$

Sehe sofort $p \nmid a'$ und $p \nmid b'$.

Sehe auch $a \cdot b = xyp^2 + (xb' + a'y)p + a'b'$ also $p \mid a'b'$.

Wähle also a, b so, dass ab minimal ist, und dann ist $a < p, b < p, ab < p^2$.

Finde $h \in \mathbb{N} : p \cdot h = a \cdot b$.

Sei jetzt p' ein irreduzibler Teiler von h, p' > 0. Dann existiert $h' > 0, h = p' \cdot h'$ und $p' \leq h < p$. Nach Wahl von p (kleinstes irreduzibles das nicht prim ist) ist p' prim und $p \cdot p' \cdot h' = a \cdot b$.

Also gilt $p' \mid a \cdot b \underset{p'prim}{\Rightarrow} p' \mid a$ oder $p' \mid b$. oBdA gelte $p' \mid a$. Finde also a' < a so dass $p' \cdot a' = a$. Einsetzen liefert

$$p \cdot p' \cdot h' = p' \cdot a' \cdot b \underset{\mathbb{Z} \text{ Integritätsring}}{\Longrightarrow} p \cdot h' = a'b \Longrightarrow p \mid a'b$$

Da a'b < ab ist gilt nach Wahl von $a \cdot b$ (a, b Gegenbeispiel zur Prim-Eigenschaft mit minimalem Produkt) also $p \mid a'$ oder $p \mid b$. Da $a' \mid a$ ist folgt $p \mid a$ oder $p \mid b$. \not

Satz 2.21. Sei R ein Integritätsring. Dann ist äquivalent:

- 1) Jedes $r \in R, r \notin R^*, r \neq 0$ ist als Produkt von endlich vielen Irreduziblen darstellbar und je zwei Darstellungen sind äquivalent.
- 2) In R gilt der Teilerkettensatz für Elemente und alle irreduziblen sind prim.

Falls diese Eigenschaften gelten, nenne R faktoriell oder UFD.

Beweis. $1) \Rightarrow 2)$

Teilerkettensatz: Sei $(r_i)_{i\in\mathbb{N}}$ eine Teilerkette. Sei i so dass $r_{i+1} \parallel r_i$ das heißt $\exists h : h \notin R^*, h \neq 0 : r_{i+1} \cdot h = r_i$.

Nach Annahme, kann r_i, r_{i+1}, h als Produkt von endlich vielen irreduziblen geschrieben werden

$$r_i = a_1 \cdot a_n$$

$$r_{i+1} = b_1 \cdots b_m$$

$$h = c_1 \cdots c_k$$

Dann gilt

$$\underbrace{b_1 \cdots b_m}_{\text{Darstellung von } r_{i+1}} \cdot c_1 \cdots c_k = \underbrace{a_1 \cdots a_n}_{\text{Darstellung von } r_i}$$

Da alle Darstellungen äquivalent sind, folgt n = m + k > m.

Also in der Teilerkette gibt es höchstens endlich viele echte Teiler, nämlich höchstens so viele, wie eine (jede) Darstellung von r_1 lang ist. \Rightarrow Teilerkettensatz gilt

 $Irreduzibel \Rightarrow Prim$: Sei r irreduzibel und seien $a, b \in R \setminus \{0\}$ so dass $r \mid ab$. Also existiert $h \in R \setminus \{0\}$, so dass $r \cdot h = a \cdot b$. Wir wissen h, a, b haben Darstellung

$$a = a_1 \cdots a_n, \qquad b = b_1 \cdots b_m, \qquad h = h_1 \cdots h_k$$

Also

$$r \cdot h_1 \cdots h_k = a_1 \cdots a_n \cdot b_1 \cdots b_m$$

zwei Darstellungen von $a \cdot b$. Per Annahme sind diese Darstellungen äquivalent also $\exists i : r \sim a_i$ oder $\exists j : r \sim b_j$

 $\Rightarrow r \mid a \text{ oder } r \mid b$. Also ist r prim.

$$2) \Rightarrow 1)$$

Wir haben schon bewiesen: Teilerkettensatz \Rightarrow Darstellbarkeit, es fehlt noch die Äquivalenz $\forall r \in R, r \notin R^*, r \neq 0$ und für alle Darstellungen $r = a_1 \cdots a_n = b_1 \cdots b_m$ mit $n \neq m$ gilt, dass beide Darstellungen äquivalent sind.

Beweis per Induktion über n

Induktionsanfang: $n = 1 : a_1 = b_1 \cdots b_m$

Per Annahme ist a_1 prim, also $\exists j : a_1 \mid b_j$.

Rechenregeln: $a_1 \sim b_j$, insbesondere sind alle $b_k, k \neq j$ schon Einheiten. $\Rightarrow m = 1 = j$ (da die Faktoren in der Darstellung irreduzibel und keine Einheiten sind).

Induktionsschritt: Sei die Aussage für alle Zahlen < n schon bewiesen.

Wieder gilt $a_1 \mid b_1 \cdots b_m \Rightarrow \exists j : a_1 \sim b_j$. oBdA sei j = 1 also existiert eine Einheit $\varepsilon \in R^*$ so dass $a_1 = \varepsilon b_1$.

R ist also Integritätsring, kann also in (*) kürzen, erhalte

$$a_2 \cdots a_n = (\varepsilon b_2) \cdot b_3 \cdots b_m$$

Per Induktionsannahme sind diese Darstellungen äquivalent.

Folgerung 2.22. \mathbb{Z} ist faktoriell.

Folgerung 2.23. Alle Körper sind faktoriell.

Satz 2.24 (Gauß). Wenn R ein faktorieller Ring ist, dann auch R[x].

Und damit auch (R[x])[y] = R[x, y] und auch $R[x_1, \dots, x_n] \ \forall n \in \mathbb{N}$.

Beweis. Wir müssen zeigen:

- 1) In R[x] gilt der Teilerkettensatz
- 2) Je zwei Darstellungen sind äquivalent

<u>zu 1)</u>: Wenn $r(x), s(x) \in R[x]$ und $r(x) \parallel s(x)$, dann $\deg r(x) < \deg s(x)$ oder $\exists a \in \overline{R \setminus R^*}, a \neq 0 : a \cdot r(x) = s(x)$.

 \Rightarrow alle Koeffizienten von s werden von a geteilt. In R gilt aber der Teilerkettensatz!

Hausaufgabe: Also gilt der Teilerkettensatz auch in R[x].

<u>zu 2</u>): Widerspruchsbeweis! Angenommen es gibt $r(x) \in R[x], r \neq 0, r \notin R[x]^* = R^*$ so dass r zwei Darstellungen hat, die nicht äquivalent sind

$$r(x) = p_1(x) \cdots p_{\alpha}(x) = q_1(x) \cdots q_{\beta}(x) \tag{*}$$

Ich kann oBdA einige Annahmen treffen

 \bullet deg r(x) ist minimal unter allen Polynomen die nicht äquivalente Darstellungen haben

- die irreduziblen Polynome $p_1, \ldots, p_{\alpha}, q_1, \ldots, q_{\beta}$ sind nach Graden sortiert also deg $p_1 \ge \deg p_2 \ge \cdots \ge \deg p_{\alpha}$ und $\deg q_1 \ge \deg q_2 \ge \cdots \ge \deg q_{\beta}$
- $\deg q_1 \ge \deg p_1$

Sei $n := \deg p_1, m = \deg q_1$. Seien a, b die Leitkoeffizienten von p_1 beziehungsweise q_1 . Das heißt:

$$p_1 = a \cdot x^n + (lot)$$

$$p_1 = b \cdot x^m + (lot)$$

Beobachtungen:

• $\deg r(x) > 0$, denn sonst wären r(x) und alle $q_i(x), p_j(x)$ konstant, also in R. Per Annahme das R faktoriell ist müssten die Darstellungen dann äquivalent sein.

$$\Rightarrow n > 0$$
 und $m > 0$

• Angenommen es gäbe j: $p_1 \sim q_j$. Dann könnte ich in (*) auf beiden Seiten p_1 kürzen und erhielte Polynom von Grade $(\deg r(x)) - n < \deg r(x)$, das zwei nicht äquivalente Darstellungen hat $\frac{1}{2}$ zur Minimalität von $\deg r(x)$.

Betrachte Hilfspolynom:

$$s(x) = \underbrace{\left[b \cdot p_1(x) \cdot x^{m-n} - a \cdot q_1(x)\right]}_{\deg < \deg q_1(x)} \cdot q_2 \cdot \cdot \cdot q_\beta \tag{\diamondsuit}$$

Wir erhalten zwei offensichtliche Fälle

1) s(x) = 0: Dann ist

$$b \cdot p_1(x) \cdot x^{m-n} - a \cdot q_1(x)$$

2) $s(x) \neq 0$: Wir sehen $\deg s(x) < \deg r(x)$. Also sind je zwei Darstellungen von s(x) äquivalent! Schreibe s(x) um:

$$s(x) = b \cdot p_1(X)x^{m-n} \cdot q_2 \cdots q_{\beta} - a \underbrace{q_1 \cdots q_{\beta}}_{r(x)}$$

$$= b \cdot p_1 x^{m-n} \cdot q_2 \cdot q_{\beta} - a \cdot p_1 \cdots p_{\alpha}$$

$$= p_1(x) \left[b \cdot x^{m-n} \cdot q_2(x) \cdots q_{\beta}(x) - a \cdot p_2(x) \cdots p_{\alpha}(x) \right] \tag{(C)}$$

Wir können die Ausdrücke (\Leftrightarrow) und (\emptyset) verfeinern zu Produkten von irreduziblen indem wir die Ausdrücke in [...] als Produkt von irreduziblen schreiben. Diese Darstellungen von s(x) müssen dann äquivalent sein.

Konsequenz: In der Darstellung von $(\stackrel{\triangleright}{\Rightarrow})$ muss es einen Faktor geben, der zu p_1 assoziiert ist. Da $p_1 \nsim 1_2 \ldots p_1 \nsim q_\beta$ muss p_1 ein Primfaktor vom $[\ldots]$ -Ausdruck in $(\stackrel{\triangleright}{\Rightarrow})$ sein.

$$\Rightarrow$$
 $p_1 \mid (bp_1 \cdot x^{m-n} - aq_1) \Rightarrow p_1 \mid aq_1$

Insgesamt ergibt sich in jedem der beiden Fälle:

$$\exists h \in R[x]: \quad p_1(x) \cdot h(x) = a \cdot q_1(x) \tag{4}$$

Beobachte: Wenn $a \in R^*$, dann $p_1 \mid q_1$ und $p_1 \sim q_1 \nleq$. Also ist $a \in R \setminus R^*, a \neq 0$.

Zwischenbehauptung (Beweis später): Sei $p \in R$ irreduzibel. Dann ist das konstante Polynom $p \in R[x]$ prim.

Anwendung der Zwischenbehauptung: Schreibe a als Produkt von Irreduziblen. Wenn jetzt p einer der irreduziblen Faktoren ist, dann $p \mid p_1 \cdot h$.

 $\Rightarrow p \mid p_1$ oder $p \mid h$. $p \mid p_1$ kann nicht sein, denn p_1 ist irreduzibel, hat also überhaupt keine echten Teiler.

Also kann ich aus (\bullet) p herausteilen und erhalte

$$p_1 \cdot \frac{h}{p} = \frac{a}{p} q_1$$

Das geht mit jedem Primfaktor von a erhalte also am Ende:

$$p_1 \cdot \frac{h}{a} = q_1 \qquad \Rightarrow p_1 \mid q_1 \qquad \Rightarrow p_1 \sim q_1 \qquad \Rightarrow \sharp$$

Zwischenbehauptung (jetzt der Beweis): Sei $p \in R$ irreduzibel. Dann ist das konstante Polynom $p \in R[x]$ prim.

Sei $p \in R$ irreduzibel. Ich zeige die Kontraposition: wenn $a(x), b(x) \in R[x]$ Polynome sind mit $p \nmid a(x)$ und $p \nmid b(x) \Rightarrow p \nmid (a \cdot b)(x)$

Seien also a(x), b(x) gegeben. Schreibe

$$a(x) = a_0 + a_1 x + \dots + a_n x^n$$

 $b(x) = b_0 + b_1 x + \dots + b_m x^m$

Erinnere: $p \mid a(x) \Leftrightarrow \forall i : p \mid a_i$

Kann also minimale Indizes i und j wählen, so dass $p \nmid a_i$ und $p \nmid b_j$. Betrachte Produktpolynom $(a \cdot b)(x)$ und rechne den Koeffizienten von x^{i+j} im Produktpolynom aus. Dieser Koeffizient ist

$$\gamma \coloneqq \sum_{\substack{\alpha + \beta = i + j \\ \alpha, \beta \in \mathbb{N}}} a_{\alpha} \cdot b_{\beta}$$

In dieser Summe sind alle Summanden durch p teilbar, weil stets $\alpha < i$ oder $\beta < j$ mit der Ausnahme des Summanden $\alpha = i, \beta = j, (= a_i \cdot b_j)$.

Weil R faktoriell ist per Annahme und $p \in R$ deshalb prim ist $\Rightarrow p \nmid a_i \cdot b_j$

$$\Rightarrow p \nmid \gamma \qquad \Rightarrow p \nmid (a \cdot b)(x)$$

Was tun wir mit faktoriellen Ringen?

Sei R ein faktorieller Ring, betrachte die Äquivalenzrelation $a \sim b \Leftrightarrow a$ assoziiert zu b

Wähle Repräsentantensystem $P \subset R$ für die irreduziblen Elemente (= zu jedem irreduziblen $a \in R$ gibt es genau ein $b \in P$ mit $a \sim b$)

Wenn dann irgendein $a \in R$ gegeben ist, dann kann ich schreiben

$$a = \varepsilon \cdot \prod_{p \in P} p^{\alpha_p}$$

wobei $\varepsilon \in \mathbb{R}^*, \alpha_p \in \mathbb{N}$ und alle bis auf endlich viele $\alpha_p = 0$.

Teilbarkeit wird dann ganz einfach. Seien $a, b \in R$

$$a = \varepsilon_a \cdot \prod_{p \in P} p^{\alpha_{a,p}}, \qquad b = \varepsilon_b \cdot \prod_{p \in P} p^{\alpha_{b,p}}$$

und

$$a \mid b \Leftrightarrow \forall p \in P : \alpha_{a,p} \leq \alpha_{b,p}$$

 $a \mid\mid b \Leftrightarrow (\forall p \in P : \alpha_{a,p} \leq \alpha_{b,p})$ & $(\exists p \in P : \alpha_{a,p} < \alpha_{b,p})$
 $a \sim b \Leftrightarrow \forall p \in P : \alpha_{a,p} = \alpha_{b,p}$

Weiter mit Grundschulstoff:

Sei R ein Integritätsring, seien $a, b \in R \setminus R^*, a \cdot b \neq 0$

- 1) Ein Element $c \in R$ heißt größter Gemeinsamer Teiler wenn gilt $c \mid a$ und $c \mid b$ und wenn für jedes andere c' mit $c' \mid a$ und c'b gilt $c' \mid c$.
- 2) Ein Element $c \in R$ heißt kleinstes gemeinsames Vielfaches, wenn $a \mid c$ und $b \mid c$ ist und für alle $c' \in R$ mit $a \mid c'$ und $b \mid c'$ gilt $c \mid c'$.

Satz 2.25. Sei R faktoriell. Seien $a, b \in R$ dann existieren ggT und kgV.

Beweis. Wähle Repräsentantensystem $P \subset R$. Schreibe

$$a = \varepsilon_a \cdot \prod_{p \in P} p^{\alpha_{a,p}}, \qquad b = \varepsilon_b \cdot \prod_{p \in P} p^{\alpha_{b,p}}$$

Setze

$$ggT(a,b) := \prod_{p \in P} p^{\min(\alpha_{a,p},\alpha_{b,p})}$$

und

$$kgV(a,b) := \prod_{p \in P} p^{\max(\alpha_{a,p},\alpha_{b,p})}$$

Blick nach oben zeigt, dass dies exakt die Bedingungen erfüllt.