Metoda maksimalne entropije

Miha Čančula

26. februar 2012

1 Uvod

Spekter moči vhodnega signala smo približali z izrazom, ki ima v imenovalcu polinom stopnje m spremenljivke $z=exp(-2\pi i\frac{1}{N}).$

$$|S(f)|^2 = \frac{C}{1 - b_1 z - b_2 z^2 - \dots}$$
 (1)

Če koeficiente izberemo tako, da vsi razen konstante nastopajo z minusom, so b_i enaki avtoregresijskim (AR) koeficientom izvirnega signala.

$$y_n = b_1 y_{n-1} + b_2 y_{n-2} + \dots = \sum_{i=1}^m y_{n-1} b_i$$
 (2)

Signal torej približamo z rešitvijo diferenčne enačbe s karakterističnim polinomom

$$Q(z) = 1 - b_1 z - b_2 z^2 - \dots {3}$$

Rešitev takšne enačbe je linearna kombinacija eksponentnih funkcij, ki ima m prostih konstant, v eksponentu pa nastopajo koreni polinoma Q(x). Polinom ima vedno m korenov, ki jih označimo z r_i , $i=1\ldots m$ če so vsi koeficinti realni pa ti koreni nastopajo v konjugiranih parih.

$$y_n = \sum_{i=1}^m c_i e^{r_i n} \tag{4}$$

Konstante c_i lahko izračunamo, če poznamo vrednost signala y v vsaj m točkah. V našem primeru imamo točk vedno več kot m, zato je napoved za y dobro določena. Pri svojem računu nisem uporabil formule (4), saj je nabor podatkov dovolj majhen, da sem vrednosti izračunal direktno z rekurzijo.

Avtoregresija ima širso uporabo v obdelavi signalov, zato obstaja kar nekaj orodij, ki znajo izračunati te koeficiente. Uporabil sem paket za analizo časovnih zaporedji (Time-Series analysis - TSA) programa Octave. Koeficiente b_i izračuna z uporabo avtokovariance in Durbin-Levinsove rekurzije.

2 Frekvenčni spekter

Najprej sem za vse naštete datoteke s podatki približal spekter signalov. V vseh primerih sem uporabil največ m=25 koeficientov.

Slika 1: Spekter signala val2.dat

2.1 Položaj polov

3 Ločljivost

Ločljivost metode sem definiral kot najmanjšo razliko frekvenc $\Delta \nu$, pri kateri ima spekter signala $y(t) = \sin(\nu t) + \sin((\nu + \Delta \nu)t)$ dva vidna vrhova. Generiral sem takšen signal z osnovno frekvenco $\nu = 0.2$ in opazoval, pri kateri vrednosti $\Delta \nu$ bo imel spekter vsaj dva vrhova. To mejno frekvenca je seveda odvisna od števila dovoljenih polov, ta odvisnost je prikazana na sliki 5.

Višja ločljivost seveda pomeni manjši $\Delta\nu$, torej je po pričakovanju metoda natančnejsa ob uporabi višjega števila polov oz. višje stopnje polinoma. Okrog m=30, kjer sem opravljal večino izračunov, se ločljivost le malo spreminja in ostaja okrog vrednosti $\nu_1=0.05$. Tudi povečanje števila polov ločljivosti ne izboljša bistveno, medtem ko jo zmanjšanje števila pod 15 znatno poslabša.

4 Napovedi

Če poznamo koeficiente avtoregresije, lahko iz dosedanjih podatkov napovemo prihodnje. Za preverjanje te napovedi sem koeficiente izračunal na podlagi polovice meritev, nato pa napovedi primerjal z drugi polovico meritev.

Slika 2: Spekter signala val3.dat

Vidimo, da napoved ni stabilna, saj se njena amplituda spreminja, kljub temu da je amplituda izvirnega signala približno konstantna. Pri obeh datotekah z valovi metoda napove eksponentno pojemanje signala. Eksponentno odvisnost pričakujemo po enačbi (4).

Slika 3: Spekter signala co2.dat

Slika 4: Poli preslikave za signal co2.dat

Slika 5: Ločljivost metode pri različnem številu polov

Slika 6: Napoved signala val2.dat z avtoregresijo

Slika 7: Napoved signala val3.dat z avtoregresijo

Slika 8: Napoved signala co2.dat z avtoregresijo