Limbaje Formale, Automate și Compilatoare

Curs 5

2018-19

Curs 5

- Expresii regulate
- Automatul echivalent cu o expresie regulată
 - Algoritm
- Lema Bar-Hillel
- Gramatici şi limbaje independente de context
- Eliminarea regulilor de ştergere şi a redenumirilor

Curs 5

- Expresii regulate
- 2 Automatul echivalent cu o expresie regulată
 - Algoritm
- Lema Bar-Hillel
- Gramatici şi limbaje independente de context
- 5 Eliminarea regulilor de ştergere şi a redenumirilor

De la o expresie regulată la automatul finit

Teorema 1

Pentru orice expresie regulată E peste Σ există un automat finit (cu ϵ - tranziții) A, astfel încât L(A) = L(E).

Demonstratie: inducție structurală.

• Dacă $E \in \{\emptyset, \epsilon, a\}$ $(a \in \Sigma)$ atunci automatul corespunzător este respectiv:

Demonstraţie

• $E = E_1 | E_2$

• $E = E_1 E_2$

• $E = E_1^*$

Reprezentarea expresiilor regulate sub formă de arbore

Intrare: Expresia regulată E = e₀e₁...e_{n-1}
 Precedenţa operatorilor:
 prec(|) = 1, prec(·) = 2, prec(*) = 3 (prec(()= 0).

- leşire: Arborele asociat: t.
- Metoda: Se consideră două stive:
 - STIVA1 stiva operatorilor
 - STIVA2 stiva arborilor (care va conţine arborii parţiali construiţi)
 - Metoda tree(r, tS, tD)

Algoritm

```
i = 0;
while(i < n)  {
     c = e_i;
     switch(c) {
         case '(': { STIVA1.push(c); break; }
         case simbol (din alfabet): { STIVA2.push(tree(c,NULL,NULL)); break; }
         case operator: {
              while (prec(STIVA1.top())>=prec(c))
                     build_tree();
              STIVAl.push(c); break;
         case ')': {
              do { build_tree();} while(STIVA1.top()!= '(');
              STIVA1.pop(); break;
     i++;
while(STIVA1.not_empty()) build_tree();
t = STIVA2.pop();
```

Algoritm

```
build.tree()
    op = STIVA1.pop();
    t1 = STIVA2.pop();
    switch (op) {
        case '*': {
            t = tree(op, t1, NULL);
            STIVA2.push(t); break;
        }
        case'|', '.': {
            t2 = STIVA2.pop();
            t = tree(op, t2, t1);
            STIVA2.push(t); break;
        }
}
```

Exemplu

$$a^* \cdot (b|a) \cdot b^*$$

Curs 5

- Expresii regulate
- 2 Automatul echivalent cu o expresie regulată
 - Algoritm
- Lema Bar-Hillel
- Gramatici şi limbaje independente de context
- Eliminarea regulilor de ştergere şi a redenumirilor

Automatul echivalent cu o expresie regulată

• $E = E_1 | E_2$

 $\bullet \ E=E_1E_2$

• E = E₁*

Observaţii

- pentru orice apariţie a unui simbol din Σ, cât şi pentru ε, dacă acesta apare explicit în E, este nevoie de 2 stări în automatul construit.
- fiecare din apariţiile operatorilor | şi * dintr-o expresie regulată E introduce două noi stări în automatul construit
- operatorul · nu introduce alte stări
- dacă n este numărul de simboluri din E iar m este numărul de paranteze împreună cu apariţiile simbolului · , atunci numărul stărilor automatului echivalent cu E este p = 2(n m).

Algoritm

- Intrare: Expresia regulată E cu n simboluri dintre care m sunt paranteze şi apariţii ale operatorului produs;
- leşire:Automatul (cu p=2(n-m) stări) cu ϵ tranziţii echivalent cu E
- Metoda:
- 1. Se construiește arborele atașat expresiei *E*;
- Se parcurge arborele în preordine şi se ataşează nodurilor vizitate, exceptând pe cele etichetate cu produs, respectiv numerele 1, 2, ..., n – m;

Exemplu

$$E = a|b^* \cdot c$$

- 3. Se parcurge arborele în postordine şi se ataşează fiecărui nod N o pereche de numere (N.i, N.f) care reprezintă starea iniţială respectiv finală a automatului echivalent cu expresia corespunzătoare subarborelui cu rădăcina N, astfel:
 - Dacă nodul are numărul k (de la pasul 2) atunci:

$$N.i = 2k - 1, N.f = 2k;$$

Dacă nodul este etichetat cu produs şi S este fiul stâng al lui N, iar
 D fiul drept, atunci:

$$N.i = S.i$$
 iar $N.f = D.f$

Exemplu

$$E = a|b^* \cdot c$$

Dacă N este nodul curent iar S si D sunt fii sai, atunci, în funcție de eticheta lui N, se execută următoarele:

Dacă N este nodul curent iar S si D sunt fii sai, atunci, în funcție de eticheta lui N, se execută următoarele:

Dacă N este etichetat cu a (deci este frunza):

$$\delta(N.i, a) = N.f$$

- 4. Se parcurge din nou arborele obţinut în postordine.
 - Dacă N este nodul curent iar S si D sunt fii sai, atunci, în funcție de eticheta lui N, se execută următoarele:
 - Dacă N este etichetat cu a (deci este frunza):

$$\delta(N.i, a) = N.f$$

Dacă N este etichetat cu |:

$$\delta(N.i, \epsilon) = \{S.i, D.i\},$$

$$\delta(S.f, \epsilon) = N.f, \ \delta(D.f, \epsilon) = N.f$$

Dacă N este nodul curent iar S si D sunt fii sai, atunci, în funcție de eticheta lui N, se execută următoarele:

Dacă N este etichetat cu a (deci este frunza):

$$\delta(N.i, a) = N.f$$

Dacă N este etichetat cu |:

$$\delta(N.i, \epsilon) = \{S.i, D.i\},$$

$$\delta(S.f, \epsilon) = N.f, \ \delta(D.f, \epsilon) = N.f$$

Dacă N este etichetat cu · :

$$\delta(S.f, \epsilon) = D.i$$

Dacă N este nodul curent iar S si D sunt fii sai, atunci, în funcție de eticheta lui N, se execută următoarele:

Dacă N este etichetat cu a (deci este frunza):

$$\delta(N.i, a) = N.f$$

Dacă N este etichetat cu |:

$$\delta(N.i, \epsilon) = \{S.i, D.i\},$$

$$\delta(S.f, \epsilon) = N.f, \ \delta(D.f, \epsilon) = N.f$$

Dacă N este etichetat cu · :

$$\delta(S.f, \epsilon) = D.i$$

Dacă N este etichetat cu * (D nu există în acest caz):

$$\delta(N.i, \epsilon) = \{S.i, N.f\},\$$

$$\delta(S.f,\epsilon) = \{S.i, N.f\}$$

Dacă N este nodul curent iar S si D sunt fii sai, atunci, în funcție de eticheta lui N, se execută următoarele:

Dacă N este etichetat cu a (deci este frunza):

$$\delta(N.i,a) = N.f$$

Dacă N este etichetat cu |:

$$\delta(N.i, \epsilon) = \{S.i, D.i\},$$

$$\delta(S.f, \epsilon) = N.f, \ \delta(D.f, \epsilon) = N.f$$

Dacă N este etichetat cu · :

$$\delta(S.f, \epsilon) = D.i$$

Dacă N este etichetat cu * (D nu există în acest caz):

$$\delta(N.i,\epsilon) = \{S.i, N.f\},\$$

$$\delta(S.f,\epsilon) = \{S.i, N.f\}$$

5. Starea iniţială a automatului este N.i, starea finală N.f, unde N este nodul rădăcină;

Exemplu

$$E = a|b^* \cdot c$$

Exemplu

δ	а	b	С	ϵ
1	Ø	Ø	Ø	{3,5}
2	Ø	Ø	Ø	Ø
3	4	Ø	Ø	Ø
4	Ø	Ø	Ø	{2}
5	Ø	Ø	Ø	{6,7}
6	Ø	Ø	Ø	{9}
7	Ø	8	Ø	Ø
8	Ø	Ø	Ø	$\{6, 7\}$
9	Ø	Ø	10	Ø
10	Ø	Ø	Ø	{2}

Corectitudinea algoritmului

Teorema 2

Algoritmul descris este corect: automatul cu ϵ - tranziții obținut este echivalent cu expresia regulată E.

Demonstrație:

- Modul în care au fost alese perechile (i, f) de stări pentru fiecare nod al arborelui construit corespunde construcțiilor din teorema 2.
- Deasemenea, tranziţiile care se definesc în pasul 5 al algoritmului urmăresc construcţia din teorema 1.

Automatul obținut este echivalent cu expresia dată la intrare.

Curs 5

- Expresii regulate
- 2 Automatul echivalent cu o expresie regulată
 - Algoritm
- Lema Bar-Hillel
- Gramatici şi limbaje independente de context
- 5 Eliminarea regulilor de ştergere şi a redenumirilor

Lema Bar-Hillel (lema de pompare)

Lema 3.1

Fie L un limbaj de tip 3. Există un număr k astfel încât oricare ar fi cuvântul $w \in L$ cu $|w| \ge k$, acesta are o descompunere de forma w = xyz, unde $0 < |y| \le k$, şi $xy^iz \in L$ oricare ar fi $i \ge 0$.

```
Fie A=(Q,\Sigma,\delta,q_0,F) astfel ca L(A)=L. Dacă |Q|=n este numărul stărilor din N, fie k=|Q|=n, se arată că are loc proprietatea enunţată: Fie w=a_1a_2\dots a_m,\ m\geq k=n Fie q_0=\delta(q_0,\epsilon),\ q_1=\delta(q_0,a_1),\dots q_n=\delta(q_0,a_1\dots a_n)
```

Există două stări egale: $q_i = \delta(q_0, a_1 \dots a_n)$ 0 < i < j < n.

Demonstraţie

$$w = a_1 a_2 \dots a_m, m \geq k = n$$

Fie
$$x = a_1 a_2 ... a_l$$
, $y = a_{l+1} ... a_j$ şi $z = a_{j+1} ... a_{m-1} a_m$
 $w = xyz$, cu $0 < |y| \le k$.

•
$$q_l = \delta(q_0, a_1 \dots a_l) = q_j = \delta(q_0, a_1 \dots a_l a_{l+1} \dots a_j) \Rightarrow$$

$$\delta(q_0,x)=\delta(q_0,xy)$$

$xy^iz \in L(A), \forall i \geq 0$:

- i = 0: $\delta(q_0, xz) = \delta(\delta(q_0, x), z) = \delta(\delta(q_0, xy), z) = \delta(q_0, xyz) \in F$ $(w = xyz \in L = L(A))$
- Presupunem că $xy^iz \in L$, pentru orice $i \le r$ și demonstrăm pentru i = r + 1

Curs 5

- Expresii regulate
- 2 Automatul echivalent cu o expresie regulată
 - Algoritm
- Lema Bar-Hille
- Gramatici şi limbaje independente de context
- 5 Eliminarea regulilor de ştergere şi a redenumirilor

Gramatici independente de context

- Gramatici de tip 2 (independente de context): G = (N, T, S, P)
 - N şi T sunt mulţimi nevide, finite, disjuncte de neterminali (variabile), respectiv terminali
 - S ∈ N este simbolul de start
 - $P = \{x \to u | x \in N, u \in (N \cup T)^*\}$ este mulţimea regulilor (producţiilor).
- Un limbaj L este de tip 2 (independent de context: $L \in \mathcal{L}_2$) dacă există o gramatică G de tip 2 astfel încât L(G) = L

Derivări extrem stângi/drepte

Fie
$$G = (N, T, S, P)$$
 si $w \in L(G)$

- derivare extrem stângă pentru w: derivarea în care, la orice pas se înlocuieşte cel mai din stânga neterminal din cuvântul obţinut
- derivare extrem dreaptă pentru w: derivarea în care, la orice pas se înlocuieşte cel mai din dreapta neterminal din cuvântul obţinut

Exemplu

$$G = (\{E\}, \{a, b, +, *), (\}, E, P)$$
 unde:

$$P: E \rightarrow E + E|E*E|(E)|a|b$$

Fie
$$a + (b * a)$$

Derivare extrem stângă:

$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + (E) \Rightarrow a + (E*E) \Rightarrow a + (b*E) \Rightarrow a + (b*a)$$

Derivare extrem dreaptă:

$$E \Rightarrow E + E \Rightarrow E + (E) \Rightarrow E + (E * E) \Rightarrow E + (E * a) \Rightarrow E + (b * a) \Rightarrow a + (b * a)$$

Există derivări care nu sunt nici extrem drepte nici extrem stângi!

Arbori sintactici

Definiție 1

Un arbore sintactic (arbore de derivare, arbore de parsare) în gramatica G este un arbore ordonat, etichetat, cu următoarele proprietăți:

- rădăcina arborelui este etichetată cu S ;
- fiecare frunză este etichetată cu un simbol din T sau cu ϵ ;
- fiecare nod interior este etichetat cu un neterminal;
- dacă A etichetează un nod interior care are n succesori etichetaţi
 de la stânga la dreapta respectiv cu X₁, X₂,..., X_n, atunci
 A → X₁X₂...X_n este o regulă.
 Dacă A are un succesor etichetat cu ϵ (pentru regula A → ϵ),
 nodul etichetat cu A nu mai are alţi succesori.

Arbori sintactici

Definiție 2

- Frontiera unui arbore de derivare este cuvântul w = a₁a₂ ... an unde a_i, 1 ≤ i ≤ n sunt etichetele nodurilor frunză în ordinea de la stânga la dreapta.
- Arbore de derivare pentru un cuvânt w: arbore de derivare cu frontiera w.

Exemplu

$$G = (\{E\}, \{a, b, +, *\}, (\}, E, P)$$
 unde:
 $P : E \to E + E | E * E | (E) | a | b$

$$a + (b * a)$$

Derivare extrem stângă:

$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + (E) \Rightarrow$$

 $a + (E * E) \Rightarrow a + (b * E) \Rightarrow a + (b * a)$

Derivare extrem dreaptă:

$$E \Rightarrow E + E \Rightarrow E + (E) \Rightarrow E + (E * E) \Rightarrow E + (E * a) \Rightarrow E + (b * a) \Rightarrow a + (b * a)$$

Arbore de derivare pentru a + (b * a):

Ambiguitate

Definiție 3

O gramatică G este ambiguă dacă există un cuvânt w în L(G) care are 2 arbori de derivare distincți.

• Echivalent: w are 2 derivări extrem stângi(drepte) distincte.

Ambiguitate

Definiție 3

O gramatică G este ambiguă dacă există un cuvânt w în L(G) care are 2 arbori de derivare distincți.

• Echivalent: w are 2 derivări extrem stângi(drepte) distincte.

Gramatica precedentă este ambiguă: cuvântul a + b * a are 2 arbori de derivare:

Ambiguitate

Definiție 3

O gramatică G este ambiguă dacă există un cuvânt w în L(G) care are 2 arbori de derivare distincți.

- Echivalent: w are 2 derivări extrem stângi(drepte) distincte.
- Problema ambiguității gramaticilor de tip 2 este nedecidabilă: nu există un algoritm care pentru o gramatică oarecare G să testeze dacă G este sau nu ambiguă

Exemplu: o gramatică echivalentă neambiguă

 $G = (\{E, T, F\}, \{a, b, +, *\}, (\}, E, P) \text{ unde } P$:

- \bullet $E \rightarrow E + T$
- \bullet $E \rightarrow T$
- \bullet $T \rightarrow T * F$
- \bullet $T \rightarrow F$
- \bullet $F \rightarrow (E)$
- lacktriangledown F o a | b

Arbore de derivare pentru a + b * a:

Curs 5

- Expresii regulate
- 2 Automatul echivalent cu o expresie regulată
 - Algoritm
- Lema Bar-Hillel
- Gramatici şi limbaje independente de context
- Eliminarea regulilor de ştergere şi a redenumirilor

Eliminarea regulilor de ştergere

- Intrare: G = (N, T, S, P)
- leşire: G' = (N, T, S, P'), L(G') = L(G), P' nu conţine reguli de ştergere (reguli de forma $A \to \epsilon$)

```
\label{eq:N0} \begin{split} N_0 &= \{A | A \in N, \ A \rightarrow \epsilon \in P\}; \ i = 0; \\ \text{do } \{ \\ &\quad i = i+1; \\ N_i &= N_{i-1} \cup \{X | X \in N, \ \exists X \rightarrow \alpha \in P, \alpha \in N_{i-1}^*\}; \\ \} \text{ while } N_i \neq N_{i-1}; \\ N_\epsilon &= N_i; \end{split}
```

Eliminarea regulilor de ştergere

- Intrare: G = (N, T, S, P)
- leşire: G' = (N, T, S, P'), L(G') = L(G), P' nu conţine reguli de ştergere (reguli de forma $A \to \epsilon$)

```
\label{eq:N0} \begin{split} N_0 &= \{A | A \in N, \ A \rightarrow \epsilon \in P\}; \ i = 0; \\ \text{do } \{ \\ i &= i+1; \\ N_i &= N_{i-1} \cup \{X | X \in N, \ \exists X \rightarrow \alpha \in P, \alpha \in N_{i-1}^*\}; \\ \} \text{ while } N_i \neq N_{i-1}; \\ N_\epsilon &= N_i; \end{split}
```

Are loc:

- $\bullet \ \ N_0 \subseteq N_1 \ldots \subseteq N_i \subseteq N_{i+1} \subseteq \ldots N_{\epsilon} \subseteq N$
- \bullet $A \in N_{\epsilon} \iff A \Rightarrow^{+} \epsilon$

Eliminarea regulilor de ştergere

P' se obţine din P astfel:

• în fiecare regulă $A \to \alpha \in P$ se pun în evidență simbolurile din N_{ϵ} ce apar în α :

$$\alpha = \alpha_1 X_1 \alpha_2 X_2 \dots \alpha_n X_n \alpha_{n+1}, X_i \in N_{\epsilon}$$

 se înlocuieşte fiecare regulă de acest fel cu mulţimea de reguli de forma

$$A \rightarrow \alpha_1 Y_1 \alpha_2 Y_2 \dots \alpha_n Y_n \alpha_{n+1}$$
 unde $Y_i = X_i$ sau $Y_i = \epsilon$

în toate modurile posibile (2^n)

- se elimină toate regulile de ştergere
- pentru a obţine cuvântul nul (dacă S este în N_{ϵ}) se adaugă S' simbol de start nou şi regulile $S' \to S$, $S' \to \epsilon$

Exemplu

$$G = (\{S, A, B, C\}, \{a, b, c\}, S, P), \text{ unde P:}$$

- S → aAbC|BC
- A → aA|aB
- lacksquare B o bB|C
- $C \rightarrow cC|\epsilon$

$$G' = (\{S', S, A, B, C\}, \{a, b, c\}, S', P')$$
 unde P' :

- \circ $S' \rightarrow S|\epsilon$
- \bullet $S \rightarrow aAbC|aAb|B|C$
- A → aA|aB|a
- lacksquare B o bB|b|C
- lacksquare $C \rightarrow cC|c$