Under the Paterwork Reduction Section 1995. TRANSMITTER TRANSMITTER (to be used for all correspondence after initial for the pater initial for the pate	no persons are required to respond to a concept Application Number Filing Date First Named Inventor Art Unit Examiner Name	Patent and Tollection of info 08/849, Septem Loher e	ber 5, 1997 t al. Staicovici
Total Number of Pages in This Submission	ENCLOSURES (Check al.	HALIFE	1001
Fee Transmittal Form Fee Attached Amendment/Reply After Final Affidavits/declaration(s) Extension of Time Request Express Abandonment Request Information Disclosure Statement Certified Copy of Priority Document(s) Reply to Missing Parts/ Incomplete Application	Drawing(s) Licensing-related Papers Petition Petition to Convert to a Provisional Application Power of Attorney, Revocation Change of Correspondence of Terminal Disclaimer Request for Refund CD, Number of CD(s) Landscape Table on Cl	Address	After Allowance Communication to TC Appeal Communication to Board of Appeals and Interferences Appeal Communication to TC (Appeal Notice, Brief, Reply Brief) Proprietary Information Status Letter Other Enclosure(s) (please Identify below):
Reply to Missing Parts under 37 CFR 1.52 or 1.53 SIGNAT	TURE OF APPLICANT, ATTO	RNEY, O	PR AGENT
VOLPE AND KOENIG		Reg. No.	
	ERTIFICATE OF TRANSMISS	ION/MAI	· · · · · · · · · · · · · · · · · · ·
1450 on the date shown below:	ed to: Mail Stop Appeal Brief-Patents, Co	posited with tommissioner	the United States Postal Service with sufficient for Patents, P.O. Box 1450, Alexandria, VA 22313-

This collection of information is required by 37 CFR 1.5. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In the **PATENT APPLICATION** of:

Loher et al.

Application No.:

08/849,746

Confirmation No: 4225

Filed:

September 5, 1997

For: PROCESS FOR MANUFACTURING

COMPONENTS MADE OF FIBER-REINFORCED THERMO-PLASTIC

MATERIALS

Group:

1732

Examiner:

S. Staicovici

Our File: HAH-PT001

June 19, 2006 Date:

SUBSTITUTE APPEAL BRIEF PURSUANT TO 37 C.F.R. 41.37(c)

Mail Stop Appeal Brief-Patents Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

This Response to the May 17, 2006 Non-Compliant Appeal Brief, reorganizes the original June 6, 2005 Appeal Brief and only adds headings and descriptions to comply with the Notice.

TABLE OF CONTENTS

I.	REAL PARTY IN INTEREST	3 -
II.	RELATED APPEALS AND INTERFERENCES	3 -
III.	STATUS OF CLAIMS	3 -
IV.	STATUS OF AMENDMENTS	3 -
V.	SUMMARY OF THE CLAIMED SUBJECT MATTER	4 -
VI.	GROUNDS OF REJECTION TO BE REVIEWED ON APPEAL	5 -
VII.	ARGUMENT	6 -
VIII.	CLAIMS APPENDIX	- 10 -
IX.	EVIDENCE APPENDIX	- 15 -
X.	RELATED PROCEEDINGS APPENDIX	- 15 -

I. Real Party in Interest

The real party at interest is Sepitec Foundation, an entity organized and

existing under the laws of Liechtenstein and having its principal place of business

at Kirchstrasse 12, Postfach 818, FL-9490 Vaduz, Fürstentum Liechtenstein.

II. Related Appeals and Interferences

There are no appeals or interferences related to this application that will be

directly affected by the Board's decision.

III. Status of Claims

Claims 1-14, 16 and 27-31 are pending and all of these claims are appealed.

These claims currently stand rejected from an October 4, 2004 non-Final Office

Action, which was issued after two rejections and the filing of a Request for

Continued Examination. Claims 15 and 17-26 were previously cancelled. The

pending claims are listed in Section VIII, the Claims Appendix.

IV. Status of Amendments

A September 14, 2004 Amendment was the latest amendment entered in this

application.

- 3 -

V. Summary of the Claimed Subject Matter

The application has two independent claims 1 and 2. These claims read as follows:

Claim 1. A process for manufacturing medical components made of fiber-reinforced thermoplastic materials, where a blank formed of fibers and thermoplastic materials is first prefinished, and said blank is brought into a final form of a component in a negative mold, under pressure, in a hot-forming process, comprising the steps of:

heating the entire blank to a forming temperature with plastic flow consistency in a heating stage located outside the negative mold,

pressing said heated blank into the negative mold using a pressing head that travels at a speed of 2mm/sec to 80 mm/sec, and

shaping the blank in the negative mold by virtue of the entire blank flowing from the heating stage into and filling up the negative mold.

Claim 2. A process for manufacturing medical components which are under stress, made of fiber-reinforced thermoplastic materials, where a blank formed with a fiber proportion of more than 50 % volume and with at least predominant use of endless fibers and said fiber-reinforced thermoplastic material is first pre-finished, and said blank is brought into a final form of a component in a negative mold, under pressure, in a hot-forming process, comprising the steps of:

heating the entire blank to a forming temperature with plastic flow consistency in a heating stage located outside the negative mold,

pressing said heated blank into the negative mold using a pressing head that travels at a speed of 2mm/sec to 80 mm/sec, and

shaping the blank in the negative mold by virtue of the entire blank flowing from the heating stage into and filling up the negative mold.

The application discusses these claim elements in detail. These processes involve forming a blank 7 from fibers and thermoplastic materials that are first prefinished, and then formed in a negative mold 13, under pressure, in a hot-forming process. See Figure 4, and the accompanying description in the paragraph starting at page 14, line 23. In some embodiments, a fiber proportion of more than 50 % volume is used. See page 14, line 16

The steps of forming the blank are as follows. First, the blank is heated to a forming temperature with plastic flow consistency in a heating stage located outside the negative mold 13. Second, a pressing head presses the heated blank into the negative mold using a pressing head that travels at a speed of 2mm/sec to 80 mm/sec (see page 14, lines 29-32). Finally, the blank is shaped in the negative mold 13 by virtue of the entire blank flowing from the heating stage into and filling up the negative mold.

VI. Grounds of Rejection to be Reviewed on Appeal

The October 4, 2004 Action rejects all of the claims as obvious over different combinations of references. The Action rejects independent claims 1 and 2 as obvious over two sets of references: (1) over EP 0 373 294 in view of U.S. Patent Nos. 4,356,228 to Kobayashi et al. further in view of U.S. Patent No. 4,662,887 to Turner et al.; and (2) JP 02-145327 in view of Kobayashi and further in view of U.S. Patent No. 5,156,588 to Marcune et al.

The issue with respect to claims 1 and 2 is whether the combined prior art suggests all of the claimed elements, but in particular, the step of "pressing said heated blank into the negative mold using a pressing head that travels at a speed of 2mm/sec to 80 mm/sec."

The Action rejected the remaining dependent claims as obvious over combinations of EP 0 373 294, JP 02-145327, Kobayashi, Turner, Marcune, WO 91/02906 to Gapp et al., U.S. Patent No. 5,223,526 to Gotoh et al., DE 37 39 294, U.S. Patent No. 5,244,747 to Lee, and JP 01-258918.

In claim 7, the issue is whether EP 0 373 294 and JP 02-145327 show that "the shaping of the blank is accomplished by a push-pull extrusion process," as claimed.

VII. Argument

A. The Obviousness Combination

A combination of references is only proper when there is a suggestion to combine the references and a reasonable expectation of success in combining them. Neither criterion is met here. There is no suggestion within the references themselves for their combination.

The Action combined two groups of references to reject claims 1 and 2. For claim 1, the Action combined EP 0 373 294 in view of U.S. Patent Nos. 4,356,228 to Kobayashi et al. further in view of U.S. Patent No. 4,662,887 to Turner et al. For

claim 2, the Action combined JP 02-145327 in view of Kobayashi and further in view of U.S. Patent No. 5,156,588 to Marcune et al.

The proposed combination of axially-pressure formed screw references (EP 0 373 294 and JP 02-145327) with a process of forming sheet material (Kobayashi) for use in medical devices (Turner and Marcune) is unwarranted. At best, the combination of all of these references is a tenuous weave of unrelated references; at worst, the references were cobbled together only after studying the pending claims, and using these claims as a blueprint for the rejections. In either case, the combination is improper.

EP 0 373 294 discloses processes for forming airplane screws (Col. 1, lines 8-16.), which ignores the sterility and precision required in medical applications. JP 02-145327 describes a nylon resin and braided yarn reinforced screw that is formed in a mold and axially compressed by a punch. Kobayashi, in contrast, discloses several processes for extruding composite sheets for use in "press molding, compression molding, stamping molding," although Kobayashi admits that "method of molding the preheated sheet is not particularly critical in the present invention." Col. 5, lines 3-4 and 12-13. The mere inclusion of the medical device patents (Turner and Marcune) does not somehow knit together the disparate aircraft, screw, and sheet references into a proper combination.

Why? Because there is no suggestion to combine the aircraft, sheet-forming and medical arts, especially as one of ordinary skill in the art would recognize the shortcomings of using a sheet-forming process in forming precision medical screws.

Sheet-forming, using an extrusion or press, would not be practical for use in forming a screw, with its fine threads and engagement surface, and thus would never be consulted to look up a suggested injection molding pressing head speed, as has been done in the Action. Action at page 7.

Further, one of ordinary skill in the art would be hard-pressed to look to the process of forming sheet material (Kobayashi) to yield any expectation of success in the art of screw and screw-thread formation. Since there is no suggestion to combine the references and no reasonable expectation of success in combining them, the combination is unwarranted and should be withdrawn, together with the accompanying rejections based thereon.

1. Claims 1-6, 8-14, 16, and 27-31 are patentable.

None of the references, alone or in combination, teach "pressing said heated blank into the negative mold using a pressing head that travels at a speed of 2mm/sec to 80 mm/sec." The Action relies on Kobayashi for this teaching, but Kobayashi teaches "closing molds" at 4 mm/see, which has nothing whatsoever to do with the claimed "pressing head" of the present invention that is used in an injection molding type process to inject the pre-heated blank that is at a plastic flow consistency into a mold cavity. Kobayashi is directed to the compression molding

art, would not be proper to consult for an injection molded part because compression

molding and injection molding are so different.1

Therefore, the rejection of claims 1-6, 8-14, 16, and 27-31 is unwarranted.

2. Claim 7 is patentable.

The Action rejected claim 7, arguing that EP 0 373 294 and JP 02-145327

teach the claimed push-pull process. Neither reference, in fact, teaches this process.

A push-pull process is one in which a thermoplastic is pushed into the mold from a

first injection unit, while a second such unit runs in reverse to "pull" the

thermoplastic into and through the mold. Then the units both reverse, and the

second unit pushes while the first pulls. This yields an extremely uniform part with

little or no weld line.²

Although the Action argues that EP 0 373 294 and JP 02-145327 show a

push-pull process, they do not. EP 0 373 294 shows axially pressing a heated rod

into a mold, but it does not teach the "pulling" required in a push-pull process.

Similarly JP 02-145327 fails to disclose a "pulling" operation.

Therefore, the rejection of claim 7 is unwarranted.

¹ Compare the descriptions of compression and injection molding in the Modern Plastics Encyclopedia, 1994,

² See, for example, the descriptions of push-pull injection molding enclosed herewith. These are printouts from The Designer's Guide to Manufacturing, visited at http://www.designinsite.dk/htmsider/p2007.htm (last visited May 31, 2005).

-9-

VIII. Claims Appendix

1. (Rejected) A process for manufacturing medical components made of fiber-reinforced thermoplastic materials, where a blank formed of fibers and thermoplastic materials is first pre-finished, and said blank is brought into a final form of a component in a negative mold, under pressure, in a hot-forming process, comprising the steps of:

heating the entire blank to a forming temperature with plastic flow consistency in a heating stage located outside the negative mold,

pressing said heated blank into the negative mold using a pressing head that travels at a speed of 2mm/sec to 80 mm/sec, and

shaping the blank in the negative mold by virtue of the entire blank flowing from the heating stage into and filling up the negative mold.

2. (Rejected) A process for manufacturing medical components which are under stress, made of fiber-reinforced thermoplastic materials, where a blank formed with a fiber proportion of more than 50 volume-% and with at least predominant use of endless fibers and said fiber-reinforced thermoplastic material is first pre-finished, and said blank is brought into a final form of a component in a negative mold, under pressure, in a hot-forming process, comprising the steps of:

heating the entire blank to a forming temperature with plastic flow consistency in a heating stage located outside the negative mold,

pressing said heated blank into the negative mold using a pressing head that travels at a speed of 2mm/sec to 80 mm/sec, and

shaping the blank in the negative mold by virtue of the entire blank flowing from the heating stage into and filling up the negative mold.

- 3. (Rejected) The process according to Claim 1, wherein the blank is further pre-finished as rod material and is cut to a plurality of lengths required for a final component before the hot-forming process.
- 4. (Rejected) The process according to Claim 1, further comprising fibers that are endless and have a length that corresponds at least to a length of the blank for a final component.
- 5. (Rejected) The process according to Claim 1, wherein said blank is composed of layers with different fiber orientation in a lengthwise direction.
- 6. (Rejected) The process according to Claim 1, wherein the blank is formed from more than one polymer laminate.
- 7. (Rejected) The process according to Claim 1, wherein the shaping of the blank is accomplished by a push-pull extrusion process.

8. (Rejected) The process according to Claim 1, further comprising the step of:

heating the blank to a forming temperature of 350-450 °C, and then after pressing said blank into the negative mold and shaping thereby,

cooling said shaped blank below the glass transition temperature of the thermoplastic material in a post-pressure phase.

- 9. (Rejected) The process according to Claim 1, further comprising the step of using carbon or graphite as a release agent for releasing the shaped blank from the negative mold.
- 10. (Rejected) The process according to Claim 1, wherein the blank is made of PAEK (polyaryl ether ketones) reinforced with carbon fibers.
- 11. (Rejected) The process according to Claim 1, wherein said blank is formed from endless fibers and at least part of the endless fibers run parallel to an axis of the blank.
- 12. (Rejected) The process according to Claim 1, wherein at least a portion of the fibers has an orientation from 0 to 90° in the blank.

13. (Rejected) The process according to Claim 1, wherein the fibers have a length of more than 3 mm.

14. (Rejected) The process according to Claim 1, wherein the fibers are surrounded by said thermoplastic material, covering a surface of the blank during said shaping of said blank.

15. (Cancelled)

16. (Rejected) The process according to Claim l, wherein the components receive an additional surface seal during the hot-forming process.

17-26. (Cancelled)

- 27. (Rejected) The process according to Claim 7, wherein the reciprocating process is performed more than one time.
 - 28. (Rejected) The process of claim 1, wherein the blank is rod-shaped.
- 29. (Rejected) The process of claim 28, wherein the rod-shaped blank is circular in cross-section.

30. (Rejected) The process of claim 2, wherein the blank is rod-shaped.

31. (Rejected) The process of claim 30, wherein the rod-shaped blank is circular in cross-section.

IX. Evidence Appendix

The undersigned submits two additional pieces of evidence, neither of which have been previously submitted in these proceedings: (1) a short article on compression molding from Modern Plastics; and (2) a website printout discussion push-pull injection molding. The relevance of these has been previously discussed, but in short, these articles describe known techniques and definitions.

X. Related Proceedings Appendix

As previously mentioned in Section II, there are no related proceedings, and thus no appendix is attached.

Conclusion

For the above reasons, Applicants submit that the pending claims are patentable over the prior art. Reconsideration and allowance of the claims is respectfully requested.³

Respectfully submitted,

Loher et al.

Stephen B Schot

Registration No. 51,294

(215) 568-6400

Volpe and Koenig, P.C. United Plaza, Suite 1600 30 South 17th Street Philadelphia, PA 19103

SBS/tab

Enclosures:
Evidence Appendix
Modern Plastics Article
Website printout describing push-pull injection moulding

³ As an aside, Applicant's corresponding European patent EP 0 799 124 B 1 has issued both in Europe and several other countries, over art similar to that cited in this Action.

Evidence Appendix

MODERN PLASTICS

SPECIAL BUYERS' GUIDE ISSUE &

MID-NOVEMBER 1993 ISSUE VOLUME 70 NUMBER 12

Metering and feeding	
equipment (Supplier	
descriptions) 500	
Mold temperature)
controllers and chillers588	
Mold temperature	
controllers and chillers	
(Supplier descriptions)	
(Supplier descriptions)589 Pipe and profile, downstream	
equipment (Supplier	
descriptions)	
descriptions)	
equipment	
equipment593 Process monitoring	
equipment (Supplier	ı
descriptions)594	İ
Quick-mold-change	ı
Additionant (Out of	
equipment (Supplier	
descriptions)597	
Raw materials handling	
and storage598	
Raw materials handling	
and storage (Supplier	
descriptions)600	
Recycling equipment	
and systems (Supplier	
descriptions)	
Liobots and Other Darte	
handling equipment606	
Robots and other parts handling	
(Supplier descriptions)607 Testing equipment	
and instrumentation	
and instrumentation610 Testing equipment and	
instrumentation (Supplier	
descriptions)	
descriptions)612	
Total system controls	
(Supplier description)	
(Supplier descriptions)621 Web takeoff and handling	
equipment (Supplier	
descriptions)	
descriptions)624	
Fabricating and	
finishing and	
finishing 625	
· ·	
Adhesives (Supplier	
descriptions)627	
Door attitle and printing	
Decorating and printing	
equipment (Supplier	
descriptions)	
······································	
TOWING ALLU SHAIING AGUIDMANT	
(Supplier descriptions)641	
* I	

North American Buyers' Guide

	Classified products index		_
	Classified products listing	648	3
	Ancillary materials and	651	ļ
	reinforcements		
ı	reinforcements Auxiliary equipment	665	į
J	and systems		
1	and systems	689	,
l	' ''''ally processing		
l	machinery	682	
l	i icomo and componings	~	
l	Ochin-ili lished materials	677	
ı	OCI AICE2	700	
	Ouppiles		
	Advertiser literature	/16	
	Supplier listing: index of	/31	
	companies and addresses	_	
	Trade name director	738	
	Trade name directory	785	
	Custom processor locator	810	
•	CACHOELS HIGHX	~~-	
•	Reader service cards	869	

Editor Gordon Graff

Manager, Buyers' Guides iris N. Topel

Art Director Bob Barravecchia

Group art & production Maureen R. Gleason

Database Editor Steven J. Schultz

Electronic system support Anna Marie Rutkowski

Directory Editor, MPI Suzanne Bosshard

Editorial Assistants Tara A. Collins Maria Varvaro

Electronic page production Cassandra L. Johnson Mauro M. Saccà

Production Editor Deborah David

Technical Illustrator James B. Stone

Editor-in-Chief Keith R. Kreisher

Editorial Director

Richard J. Zanetti

Vice President - Publisher Thomas J. Britton

Executive Vice President, Publication Services Norbert Schumacher

Officers of McGraw-Hill, Inc.: Joseph L. Dionne, chairman, president and chief executive officer; Robert N. Landes, executive vice president, general counsel and secretary; Frank D. Penglase, senior vice president, Treasury Operations; Robert J. Bahash, executive vice president and chief financial officer; Thomas J. Sullivan, executive vice president, Administration; Elisabeth K. Allison, senior vice president, Planning and Development; Edward J. Heresniak, senior vice president, Information Management; Barbara A. Munder, senior vice president, executive assistant to the chairman.

Management: Barbara A. Munder, senior vice president, executive assistant to the chairman.

Please mail all circulation correspondence, subscription orders, and change of address notices to Modern Plastics (ISSN 0026-8275). Fulfillment Mgr., P.O. Box 602, Hightstown, NJ 08520. Postmaster: Sand address changes to Modern Plastics, Attention Fulfillment Manager, P.O. Box 481, Hightstown, NJ 08520. Modern Plastics, Attention Fulfillment Manager, P.O. Box 481, Hightstown, NJ 08520. Modern Plastics, Attention Fulfillment Manager, P.O. Box 481, Hightstown, NJ 08520. Modern Plastics issued monthly with an additional issue in November. Second class postage paid at New York, NY 10020. Modern Plastics issued monthly with an additional issue in November. Second class postage paid at New York, NY and additional mailing offices. Registered for GST as McGraw-Hill, Inc. GST # R123075673. Postage paid at Montreal, P.O. Canada Post International Publications Mail Product Sales Agreement No. 246530. Available only by paid subscription. Please allow 4 to 8 weeks for shipment. Modern Plastics solicits subscriptions from management, engineering, manufacturing, R&D, scientific and technical, purchasing and marketing men and woman involved in the plastics field. Publisher reserves the right to refuse any subscription. Subscription rates for manufacturing, engineering, and R&D companies; also, government and schools (incl. Modern Plastics mid-November issue): in the U.S. and its possessions, 1 yr. \$41.75, 2 yrs. \$62.70, 3 yrs. \$83.50; in Canada, 1 yr. \$CDN 53.00, 2 yrs. \$62.70, 3 yrs. \$83.50; in Canada, 1 yr. \$CDN 53.00, 2 yrs. \$62.70, 3 yrs. \$83.50; in Canada, 1 yr. \$CDN 64.00 each, \$CDN 8.00. To purchase the Encyclopedia, call: 609-426-6129. Price when sold separately is \$57.00. Subscriber service call collect 609-426-7070 in the U.S. except Alaska and Hawaii. The name "Modern Plastics" is Registered & U.S. Pat. Off. Copyright & 1992 McGraw-Hill, Inc. All rights reserved.

PERMISSIONS: Where necessary, permission is granted by the copyright owner for the libraries and others registered with the Copyright Clearance Center (CCC) to photocopy any page herein for the flat fee of \$5.00 per copy of the page. Payment should be sent directly to the CCC, 27 Congress St., Salem MA 01970. Copyring done for other than personal or Internal reference use without the express permission of McGraw-Hill is prohibited. Requests for special permission or bulk orders should be addressed to Modern Plastics Reprint Dept., 1221 Ave. of the Americas, New York, NY 10020. ISSN 0026-8275 \$5.00 MOPLAY (69) II 1-846

COMPRESSION MOLDING Low equipment costs and consistency part sizes are outstanding features

Compression molding dates back hundreds of years to the period when it was used to form objects from amber. The same basic process is used today to produce parts from plastics and elastomers.

Compression molding applies pressure to a material placed inside a heated mold for a specified curing period. Although the procedure is slow—cycle times range from under one minute to 20 min. and more—its simplicity minimizes tooling costs, nearly eliminates material waste, and reduces secondary finishing, and mold wear.

The machinery for compression molding is considerably less expensive than injection molding presses. In addition, compression-molded parts can be fashioned with minimal or zero internal stresses. Consistency of part size is good, and the absence of gate and flow marks in finished products reduces finishing costs.

By Keith A. Larson, Sales Manager, Wabash Metal Products, 1569 Morris St., Wabash, IN 46992.

bas

Liquid

Molding Presses

Consult Wabash for dependable, high performance hydraulic presses for your production requirements. Select from our wide range of models, capacities, heating systems and state-of-the-art control options.

Compression molding presses 15 to 1200 tons, using programmable logic controls for precision and repeatability. Vacuum chamber and high-temperature composite models available. Transfer molding presses from 10 to 500 tons clamp pressure, 3 to 125 tons

transfer pressure. Liquid silicone injection molding presses 15-200 ton and 1/4 to 19 oz shot capacity.

WABASH

Die cutting, trim and custom presses, also available. **Carver Laboratory** Presses and accessories

WABASH MPI

P.O. Box 298 Wabash, Indiana 46992-0298 Phone 219-563-1184 FAX 219-563-1396

Circle 79 for Reader Service

Compression molding is most cost-effective when us for short-run parts requiring close tolerances, high imp strength, and low mold shrinkage. Conversely, it is is a no selection for parts with heavy wall sections requiring lo cure times, parts with long through-holes, or any sort large runs. Typical compression-molded parts include kets, seals, elastomeric bushings, automotive exterior particular in the seals and the seals are sealed in the seals and the sealed in the sealed els, aircraft fairings, control surfaces, and interiors.

Old as the process may be, new applications continue evolve for compression molding. For example, in the deal and medical fields, compression-molded orthodontic retain ers and pacemaker casings are proliferating because of low tool costs. Injection molding tools to produce the same part would cost as much as eight times more.

Gaskets and seals are examples of products that were on inally compression molded and were later made by injection molding to take advantage of the faster cycle times. However the quality level required for these parts has been hard maintain via injection molding, and many manufacturers now switching back to compression molding.

12

.12

15-600

Like the process, compression-molding machinery is its atively simple. Most compression presses consist of two platens that close together, applying heat and pressure to material inside.

Mold temperatures typically run between 300 and 400 but can go as high as 1200° F. The molds are heated by electric strip heaters, electrical cartridges, steam, or hot-oil systems.

The use of compression molding has expanded treme dously in recent years due to the development of new maj rials, reinforced plastics in particular. Molding reinforce plastics requires two matched dies usually made of all minum, plastic, or steel. These lightweight materials inexpensive to make and are generally used on short runs

Though some thermoplastics can be compression molded, the vast majority of materials used are thermose such as phenolic, urea, melamine, DAP, epoxy or polyester in precombined composites such as вмс (bulk molding compounds), SMC (sheet molding compounds), or 👊 (thick molding compounds).

BMC is among the oldest molding systems. A combination tion of fillers—wood flour, minerals, and cellulose mixed with resin and then placed in a mold at 300 to 400° and compressed into parts at about 500 p.s.i. Typical appl cations include washtubs, trays, equipment housings, and electrical components. SMC uses a combination of proimpregnated resin fillers, catalysts, and reinforcements, into part-size sheets or charges, placed in hot molds (usual 300 to 400° F.), and then molded at 1000 to 2000 p.s.i. Ty ical products include automotive body panels, bathtubs, sq tic tanks, and outdoor electrical components.

Another relatively new improvement has been the add tion of various forms of automation to the process. Furth advances in machine and control technology will contin to make the compression molding process more efficient.

INJECTION MOLDING Wide array of designs and capabilities make equipment choices complex

The injection molding of thermoplastics is a process in which plastic is melted and then forced into a mold cavity. Once in the mold, the plastic is cooled to a shape reflecting the cavity. The resulting form is usually a finished part needing no other work before assembly or use as a finished product. Details, such as bosses, ribs, designs, and screw threads can be incorporated during the one-step process.

An injection unit and a clamp are the basic elements of all units

Injection molding machines feature two basic components: an injection unit to melt and transfer the plastic into the mold, and a clamp unit to open and close the mold.

The injection unit melts the plastic and then injects it into the mold with controlled pressure and rate. Two basic injection unit designs are used today: the screw preplasticator or two-stage unit, and the reciprocating screw.

A screw preplasticator uses a plasticating screw (first stage) to feed melted resin into a chamber (second stage). A plunger then forces the plastic melt into the mold. Advantages of the screw-preplasticator are consistent melt quality, high pressures, fast rates, and accurate shot control—benefits useful for clarity, thin-walled parts, and high production rates. Disadvantages include uneven residence time, higher equipment costs, and more maintenance.

The reciprocating screw injection unit, the far more common type, melts and injects the plastic without a plunger. Powdered or pelletized resin is melted in the machine's barrel and transferred to the nozzle end of the machine by a rotating screw. The accumulation of melted plastic at the screw tip forces the screw towards the rear of the machine until enough material is collected for a shot. The screw then is driven forward forcing the melt into the mold.

In reciprocating screw machines, a screw-tip non-return valve is used to prevent material from flowing back along the screw. In recent years, screw-tip non-return valves have been enhanced for a higher degree of part repeatability.

The advantages of reciprocating screw units include reduced residence time, self-cleaning screws, as well as accurate and responsive injection control. These advantages are key to processing heat-sensitive materials, or when making color or resin changes. In addition, reciprocating screws offer repeatable part-to-part consistency and the capability to produce increasingly complex parts with faster cycle times. In addition, closed-loop servovalve control of injection screw velocity and pressure provides repeatable plastic flow into the mold, further improving part-to-part quality. Fast-response servovalve systems also improve processing of parts with complex geometries.

Important factors in plastics processing include tempera-

By Rick Weismantel, Injection Product Specialist, Cincinnati Milacron, 4165 Half Acre Rd., Batavia, OH 45103

Variable-speed brushless d.c. motors can provide energy savings in hydraulic injection units. (Photo, Cincinnati Milacron)

ture and pressure, consistency, color dispersion, and density of the melt. In both types of machines, the polymer is melted by a combination of heated barrels and the shearing action of a rotating screw. Resins, additives, colorants, and fillers are mixed between screw flights and barrel. General purpose screws can process a wide variety of plastic materials. However, special screw designs can optimize the melting and mixing of distinct classes of plastics resulting in improved melt quality, reduced melt temperatures, faster cycle times, and higher production rates.

Toggle, hydraulic and hydromechanical clamp designs have specific functions

Clamp designs in use today include toggle, hydraulic, and hydromechanical types. Toggle clamps are popular on small-tonnage machines because they are less expensive to manufacture. Features include high mechanical advantage at lockup, inherent built-in clamp slow down, slow mold breakaway speed, and rapid clamp operation. A hydraulic cylinder moves the toggle's crosshead forward, extending the toggle links and moving the platen forward. As the clamp closes, the mechanical advantage is low, resulting in rapid platen movement. As the platen approaches the mold-close position, the toggle links change from a high speed/low mechanical advantage to low-speed and high mechanical advantage.

Low speed is critical for mold protection, while high mechanical advantage is needed to build tonnage. Once the linkage is fully extended locking the mold closed, hydraulic pressure is not needed to hold tonnage. Since the toggle linkage must be at full stroke to achieve tonnage, adjusting the clamp to different mold heights is accomplished by

Process Push-pull injection moulding

Suitable for achieving long thin parts with high stiffness in the longitudinal direction. The molecular structure of the parts is very uniform and internal welding lines are reduced.

It is a relatively new variant of injection moulding which improves strength. Unlike injection moulding, two injection units are used for injection of plastic. While one unit is pushing plastic into the mould, the other one is pulling.

First the cavity is filled by the first unit, then pressure and new molten plastic is injected from the second unit to keep the material in motion while it cools down. The process is then reversed.

Danish Name Push-pull sprøjtestøbning

Category Mass conserving processes, Shaping plastics

Materials HDPE PA ABS PC PE PP

Typical Window frame for airplane products

Competing Injection moulding

processes Air injection moulding

Extrusion Pultrusion

Additional Possible to achieve good dimensional accuracy

info and surface finish.

Photo Thomas Nissen (Computer graphics)

Copyright © 1996-2004 Torben Lenau

This page is part of Design in Site

This page is part of Design inSite

Disclaimer

Push-pull injection moulding

Return to process description

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:		
D BLACK BORDERS		
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES		
☐ FADED TEXT OR DRAWING		
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING		
☐ SKEWED/SLANTED IMAGES		
COLOR OR BLACK AND WHITE PHOTOGRAPHS		
☐ GRAY SCALE DOCUMENTS		
☐ LINES OR MARKS ON ORIGINAL DOCUMENT		
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY		

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.