[CS304] Introduction to Cryptography and Network Security

Course Instructor: Dr. Dibyendu Roy Winter 2023-2024 Scribed by: Priyansh Vaishnav (202151120) Lecture 16 (Week 11)

LECTURE 16 Date:- (16th April 2024)

.....

Discrete Logarithm Problem

Given a cyclic group G of order n, with generator α , and an element $\beta \in G$, find x such that $\alpha^x = \beta$, where $0 \le x \le (n-1)$.

To compute x from g and g^x , exhaustive search runs a loop from i = 1 to n, with complexity proportional to n.

The Baby-Step Giant-Step Algorithm solves the Discrete Log Problem in \sqrt{n} complexity.

Baby-Step Giant-Step Algorithm

First, compute $m = \lceil \sqrt{n} \rceil$, where n is the order of the cyclic group G with generator α . Since $\alpha^n = 1$, for $\beta = \alpha^x$, we can express x using the Division Algorithm as:

$$x = i \cdot m + j, \quad 0 \le i < j$$

Hence, $\alpha^x = \alpha^{i \cdot m} \cdot \alpha^j = \beta$. Taking $\alpha^{i \cdot m}$ to the right side:

$$\alpha^j = \beta(\alpha^{-m})^i$$

Now, instead of finding x, we need to find i and j. The complexity of finding i and j should not increase.

The algorithm input is α , n, and $\beta \in G$, with output $x = \log_{\alpha} \beta$. Here are the steps:

- 1. Set $m \leftarrow \lceil \sqrt{n} \rceil$.
- 2. Prepare a table T with entries $j, \alpha^j, 0 \le j < m$. Sort T by α^j values.
- 3. Compute α^{-m} and set $\gamma \leftarrow \beta$.
- 4. For i = 0 to i = (m 1):
 - Check if γ is the second component of some entry in T.
 - If $\gamma = \alpha^j$, compute $x = i \cdot m + j$.
 - Set $\gamma \leftarrow \gamma \cdot \alpha^{-m}$.

The table can be prepared offline, requiring $O(\sqrt{n})$ space. During runtime, the algorithm performs $O(\sqrt{n})$ multiplications. Sorting the table takes $O(\sqrt{n} \cdot \log n)$ time.

ElGamal Public Key Cryptosystem

ElGamal encryption, unlike RSA, relies on the Discrete Log Problem. Here's how it works:

- 1. Choose a prime p.
- 2. Define the group $(\mathbb{Z}_p^*, *_p)$:

$$\mathbb{Z}_p^* = \{1, 2, 3, \dots, (p-1)\}\$$

 $x *_p y = x \cdot y \mod p$

Ensure gcd(x, p) = 1 for $x \in \mathbb{Z}_p^*$.

- 3. Select a primitive element $\alpha \in \mathbb{Z}_p^*$.
- 4. Define plaintext and key spaces: $\{(p, \alpha, a, \beta), \beta = \alpha^a \mod p\}$.
- 5. Public key: $\{P, \alpha, \beta\}$; Secret key: $\{a\}$.
- 6. Choose a secret random number $x \in \mathbb{Z}_{p-1}$.
- 7. Encryption:

$$e_K(m, x) = (\alpha^x \mod p, m \cdot \beta^x \mod p)$$

8. Decryption:

$$d_K(y_1, y_2) = y_2 \cdot (y_1^a)^{-1} \mod p = m$$

The randomness in the ciphertext arises from the secret x.

Given the public key $\{\beta, \alpha, p\}$, finding a from β and α (the discrete log problem) is difficult. While breaking ElGamal encryption yields m from the ciphertext and $y_1 = \alpha^x$, it doesn't solve the Discrete Log Problem. This parallels the Diffie-Hellman Problem, where computing g^{ab} from g^a and g^b breaks the Diffie-Hellman Key Exchange Algorithm but doesn't solve the Discrete Log Problem.

Kerberos (Version 4)

Kerberos is a protocol for securely authenticating service requests between trusted hosts over untrusted networks like the internet. It relies on three key entities:

- Ticket Generating Server (TGS)
- Authentication Server (AS)
- Verifier (V)

Here's how the authentication process unfolds:

1. When a client logs into a server, it sends its identity (ID_c) , the TGS identity (ID_{TGS}) , and a timestamp (TS_1) to the Authentication Server.

- 2. The AS responds by encrypting a message with the client-TGS session key $(SK_{c,TGS})$, the TGS identity, a timestamp, and ticket validity information.
- 3. The client receives and decrypts the message, obtaining the session key $(SK_{c,TGS})$ and a ticket for accessing the TGS.
- 4. Using the session key, the client communicates with the TGS, providing its identity, the TGS ticket, and a freshly generated authenticator.
- 5. The TGS verifies the client's identity and authenticity, then responds with a session key for communicating with the verifier and a ticket for accessing the verifier.
- 6. The client forwards the ticket and a new authenticator to the verifier.
- 7. The verifier decrypts the received data, verifies the client's authenticity, and responds with a timestamp incremented by 1.

This process ensures secure authentication through encryption and decryption using shared keys, thus facilitating trusted communication between network entities.