פתרון תרגיל מספר 1־ לינארית 2

שם: מיכאל גרינבאום, **ת"ז:** 211747639

2019 במרץ 17

ו. פתרון:

(א) צ"ל: A הפיכה

הוכחה:

$$0_n = 0_n \cdot (A - I_n) = \left(A^2 + A + I_n\right) \cdot (A - I_n) = A^3 + A^2 + A - A^2 - A - I_n = A^3 - I_n$$

$$\Rightarrow A^3 \stackrel{(1)}{=} I_n$$

$$\Rightarrow (\det(A))^3 = \det(A^3) = \det(I_n) = 1$$

$$\Rightarrow \det(A) \stackrel{(2)}{=} 1 \neq 0$$

הפיכה $\det\left(A\right)=1
eq 0$ והראנו כי $\det\left(A\right)\neq0$ הפיכה אם"ם לכן $\det\left(A\right)\neq0$ הפיכה אם לכן לכן ראינו כי לינארית ו

מ.ש.ל.א.☺

 $A^3 = I_n$ (ב) צ"ל:

:הוכחה:

 $A^3=I_n$ בסעיף א' הראנו במשוואה (1) כי מתקיים

מ.ש.ל.ב.☺

 $\det(A)$ (ג) צ"ל:

זוכחה:

 $\det\left(A\right)=1$ בסעיף א' הראנו במשוואה (2) כי מתקיים

מ.ש.ל.ג.©

2. פתרון:

(א) צ"ל: A+B הפיכה

הוכחה:

תחילה נשים לב כי

$$(A + B) \cdot (A - B) = A^2 + BA - AB - B^2 = A^2 + AB - AB - B^2 = A^2 - B^2$$

עתה נניח בשלילה כי A+B איננה הפיכה, לכן $\det\left(A+B\right)=0$,

$$\det(A^2 - B^2) = \det((A - B) \cdot (A + B)) = \det(A + B) \cdot \det(A - B) = 0 \cdot \det(A - B) = 0$$

. כלומר לנתון, לכן לכן $\det\left(A^2-B^2\right)=0$ לנתון, $\det\left(A^2-B^2\right)=0$

לכן A+B הפיכה, כנדרש

מ.ש.ל.א.©

(ב) צ"ל:
$$A, B$$
 כך ש $A + B$ לא הפיכה $A^2 - B^2$ הפיכה $A^2 - B^2$ (שים לב כי $B^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ נבחר $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ (שים לב כי $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 + 1 \cdot 0 & 1 \cdot 0 + 0 \cdot 1 \\ 0 & 0 \cdot 1 + 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0_2$
$$A^2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 0 \cdot 1 & 1 \cdot 0 + 0 \cdot 1 \\ 1 \cdot 1 + 1 \cdot 1 & 0 \cdot 1 + 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$A^2 - B^2 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} - 0_2 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$
 לכן $A^2 - B^2 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$, $A^2 - B^2 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$, $A^2 - B^2 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$, $A^2 - B^2 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$

, $A+B=\left[egin{array}{cc} 0&1\\0&0\end{array}
ight]+\left[egin{array}{cc} 1&0\\1&1\end{array}
ight]=\left[egin{array}{cc} 1&1\\1&1\end{array}
ight]$ וגם נשים לב כי $A+B=\left[egin{array}{cc} 1&1\\1&1\end{array}
ight]=\left[egin{array}{cc} 1&1\\1&1\end{array}
ight]$ לא הפיך כנדרש לכן $A+B=\left[egin{array}{cc} 1&1&1\\1&1\end{array}
ight]$ מ.ש.ל.ב.☺

$$U \oplus W = V$$
 (א) צ"ל:

 $v=\left[egin{array}{cc} a & b \\ c & d \end{array}
ight]$ נסמן $v\in V$ יהי יU+W=V, נחילה נראה כי

$$v = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = \left[\begin{array}{cc} a+c & b \\ 0 & 0 \end{array} \right] + \left[\begin{array}{cc} -c & 0 \\ c & d \end{array} \right]$$

 $,V\subseteq U+W$ געם מתקיים איי לכן א $[-c \quad 0 \quad 0 \quad]\in U$ ו וגם מתקיים איי לכן איי כו ברור בי עו $[-c \quad 0 \quad d \quad]\in W$ כי הם תתי מרחבים ולכן איי עוב ברור בי עוב איי שור מרחבים ולכן איי מרחבים ווגם ברור בי עוב איי שור בי עוב איי מרחבים ווגם ברור בי עוב בר $v=\left[egin{array}{cc} a & b \\ c & d \end{array}
ight]$ נסמן $v\in U\cap W$ יהי $U\cap W=\{0_V\}$ עתה נראה כי $v=\left[egin{array}{ccc} a&b\\0&0\end{array}
ight]$ מהיות $v\in U$, נוכל להסיק כי c=d=0, כלומר c=d=0, כלומר $v\in U$ מהיות $v\in U$, נוכל להסיק כי v=0 (כי v=0) (v=0), כלומר v=0

. $U\cap W=\{0_V\}$ ולכן $\{0_V\}\subseteq U\cap W$ וגם $U\cap W\subseteq\{0_V\}$ ולכן לכך $U\oplus W=V$ נובע כי U+W=U ו וואינו כי $U\cap W=\{0_V\}$

@.ש.ל.א.©

$$P_{U,W}\left(\left[egin{array}{cc} x & y \\ z & t \end{array}
ight]
ight)=\left[egin{array}{cc} x' & y' \\ z' & t' \end{array}
ight]$$
 הוכחה: $v=\left[egin{array}{cc} x & y \\ z & t \end{array}
ight]$, נסמן $v\in V$ יהי

, $\left[\begin{array}{cc} x & y \\ z & t \end{array}\right] = \left[\begin{array}{cc} x+z & y \\ 0 & 0 \end{array}\right] + \left[\begin{array}{cc} -z & 0 \\ z & t \end{array}\right]$ תחילה נשים לב שמסעיף א אנחנו יודעים כי

$$P_{U,W}\left(\left[\begin{array}{cc} x & y \\ z & t \end{array}\right]\right) = P_{U,W}\left(\left[\begin{array}{cc} x+z & y \\ 0 & 0 \end{array}\right] + \left[\begin{array}{cc} -z & 0 \\ z & t \end{array}\right]\right) = P_{U,W}\left(\left[\begin{array}{cc} x+z & y \\ 0 & 0 \end{array}\right]\right) + P_{U,W}\left(\left[\begin{array}{cc} -z & 0 \\ z & t \end{array}\right]\right) = \left[\begin{array}{cc} x+z & y \\ 0 & 0 \end{array}\right]$$
 כלומר

מ.ש.ל.ב.©

4. פתרון:

(א) **צ"ל:** T הטלה

הוכחה:

 A_1,V הינם בסיס של $\{b_1-b_3,b_1-b_2,b_1+2b_2+3b_3\}$ הינם בסיס של תחילה נראה כי $\{a_1,a_2,a_3\in\mathbb{F}\}$ יהיו

$$0=a_1\cdot(b_1-b_3)+a_2\cdot(b_1-b_2)+a_3\,(b_1+2\cdot b_2+3\cdot b_3)$$

$$\Rightarrow 0=(a_1+a_2+a_3)\cdot b_1+(2a_3-a_2)\cdot b_2+(3a_3-a_1)\cdot b_3$$

$$\Rightarrow a_1+a_2+a_3=0, 2a_3-a_2=0, 3a_3-a_1=0$$

$$\Rightarrow 2a_3=a_2, 3a_3=a_1$$

$$\Rightarrow 0=a_1+a_2+a_3=3a_3+2a_3+a_3=6a_3\Rightarrow a_3=0$$

$$\Rightarrow \boxed{a_3=0\Rightarrow a_1, a_2=0}$$

כלומר $a_1=a_2=a_3=0$ בת"ל, לכן $\{b_1-b_3,b_1-b_2,b_1+2b_2+3b_3\}$ בת"ל, אזי הוקטורים הם בסיס. בלינארית 1 הוכחנו שאם יש n וקטורים בת"ל במרחב ממימד הוקטורים הם בסיס.

 $(V=\mathrm{span}\left\{b_1-b_3,b_1-b_2
ight\},W=\mathrm{span}\left\{b_1+2b_2+3b_3
ight\}$ (ברור שהינם תתי מרחבים של $V=\mathrm{span}\left\{b_1-b_3,b_1-b_2,b_1+2b_2+3b_3
ight\}$ אזי מהיות עמדית $V=\mathrm{span}\left\{b_1-b_3,b_1-b_2,b_1+2b_2+3b_3\right\}$

$$V = \operatorname{span} \{b_1 - b_3, b_1 - b_2, b_1 + 2b_2 + 3b_3\} = \operatorname{span} \{b_1 - b_3, b_1 - b_2\} + \operatorname{span} \{b_1 + 2b_2 + 3b_3\} = U + W$$

$$\Rightarrow V = U + W$$

עתה נראה כי $\exists a_1, a_2, a_3 \in \mathbb{F}$ אזי $v \in U \cap W$ יהי $U \cap W = \{0_V\}$ כך ש

$$a_1 \cdot (b_1 - b_3) + a_2 \cdot (b_1 - b_2) = v = a_3 (b_1 + 2 \cdot b_2 + 3 \cdot b_3)$$
$$0 = a_1 \cdot (b_1 - b_3) + a_2 \cdot (b_1 - b_2) - a_3 (b_1 + 2 \cdot b_2 + 3 \cdot b_3)$$

 $v=0\cdot(b_1+2\cdot b_2+3\cdot b_3)=$ גציב ונקבל, געיב אם"ם אם"ם אם"ם אם"ם אם"ל בת"ל בת"ל בת"ל ולכן השוויון מתקיים אם ה $a_1=a_2=a_3=0$

 $\{U\cap W=\{0_V\}$ מרחבים וקטורים אזי מתקיים $\{U\cap W\subseteq\{0_V\}$, כלומר מרחבים U,W ומהיות ומהיות לכן $\{U\cap W\subseteq\{0_V\}$

לכן, $T=P_{U,W}$ כי לכך, עתה נרצה להראות גיי, עתה $\overline{U\oplus W=V}$ לכן, יהי ע $a=a_1\cdot(b_1-b_3)+a_2\cdot(b_1-b_2)$ כך של $\exists a_1,a_2\in\mathbb{F}$ אזי $u\in U$

$$\begin{split} T\left(u\right) &= T\left(a_{1}\cdot\left(b_{1}-b_{3}\right)+a_{2}\cdot\left(b_{1}-b_{2}\right)\right) = a_{1}\cdot\left(T\left(b_{1}\right)-T\left(b_{3}\right)\right) + a_{2}\left(T\left(b_{1}\right)-T\left(b_{2}\right)\right) \\ &= a_{1}\cdot\left(\left(\frac{5}{6}b_{1}-\frac{1}{3}b_{2}-\frac{1}{2}b_{3}\right)-\left(-\frac{1}{6}b_{1}-\frac{1}{3}b_{2}+\frac{1}{2}b_{3}\right)\right) + a_{2}\left(\left(\frac{5}{6}b_{1}-\frac{1}{3}b_{2}-\frac{1}{2}b_{3}\right)-\left(-\frac{1}{6}b_{1}+\frac{2}{3}b_{2}-\frac{1}{2}b_{3}\right)\right) \\ &= a_{1}\cdot\left(b_{1}-b_{3}\right) + a_{2}\left(b_{1}-b_{2}\right) = u = P_{U,W}\left(u\right) \end{split}$$

יהי $w=a\cdot(b_1+2\cdot b_2+3\cdot b_3)$ כך ש $\exists a\in\mathbb{F}$ אזי $w\in W$ יהי

$$T(w) = T(a \cdot (b_1 + 2 \cdot b_2 + 3 \cdot b_3)) = a_1 \cdot (T(b_1) + 2T(b_2) + 3T(b_3))$$

$$= a_1 \cdot \left(\left(\frac{5}{6}b_1 - \frac{1}{3}b_2 - \frac{1}{2}b_3 \right) + 2 \cdot \left(-\frac{1}{6}b_1 + \frac{2}{3}b_2 - \frac{1}{2}b_3 \right) + 3 \cdot \left(-\frac{1}{6}b_1 - \frac{1}{3}b_2 + \frac{1}{2}b_3 \right) \right)$$

$$= a_1 \cdot (0 \cdot b_1 + 0 \cdot b_2 + 0 \cdot b_3) = a_1 \cdot 0 = 0 = P_{U,W}(w)$$

יהי v=u+w כך שו $u\in U,w\in W$ וגם $v\in V$ יהי

$$T(v) = T(u + w) = T(u) + T(w) = u = P_{UW}(v)$$

, $T=P_{U,W}$ כי נובע כי תובע $T\left(v
ight)=P_{U,W}\left(v
ight)$ מתקיים לכן מהיות לע

כלומר T הטלה

מ.ש.ל.א.©

$$T=P_{U,W}$$
בן צ"ל: U,W כך ש

הוכחה

$$U=\mathrm{span}\left\{b_1-b_3,b_1-b_2
ight\},W=\mathrm{span}\left\{b_1+2b_2+3b_3
ight\}$$
 עבור עבור $T=P_{U,W}$ עבור

5. פתרון:

$$P_{U,W} \circ P_{W,U} = 0$$
 (א)

הוכחה:

יהי v=u+w כך ש $u+w\in U$ אזי או $v\in V$ יהי

$$(P_{U,W}\circ P_{W,U})\,(v)=P_{U,W}\,(P_{W,U}\,(v))=P_{U,W}\,(P_{W,U}\,(u+w))$$

$$=P_{U,W}\,(P_{W,U}\,(w)+P_{W,U}\,(u))=P_{U,W}\,(w)+0_W$$

$$=P_{U,W}\,(w)=P_{U,W}\,(w+0_U)=P_{U,W}\,(w)+P_{U,W}\,(0_U)$$

$$=0_U+0_U=0_U$$

$$P_{U,W}\circ P_{W,U}=0$$
 מתקיים $\forall v\in V$ מתקיים $\forall v\in V$ מתקיים $\forall v\in V$ מתקיים

 $P_{U,W}+P_{W,U}=Id_V$ (ב)

הוכחה:

יהי v=u+w כך ש $u+w\in U$ אזי $v\in V$ יהי

$$(P_{U,W} + P_{W,U})(v) = P_{U,W}(v) + P_{W,U}(v) = P_{U,W}(u+w) + P_{W,U}(u+w)$$

$$= P_{U,W}(u) + P_{U,W}(w) + P_{W,U}(u) + P_{W,U}(w)$$

$$= u + 0_U + 0_W + w = u + w = v$$

$$\boxed{P_{U,W}+P_{W,U}=Id_V}$$
 כלומר ($P_{U,W}+P_{W,U}$) אונים ל $v\in V$ מתקיים לכן מתקיים מ.ש.ל.ב. $orall v$

6. פתרון:

$$\mathrm{Im}T=\mathbb{R}^3$$
 , $\ker T=0$ (א)

הוכחה:
$$,v=\begin{bmatrix}x\\y\\z\end{bmatrix},$$
 נסמן $v\in\ker T$ יהי $v=0$, נסמן $v\in\ker T$ יהי ולדי $v=0$, $v\in\ker T$ יהי ולכן $v=0$, $v\in\ker T$ אזי $v=0$, $v=$

 $\dim V = \dim \operatorname{Im} T + \dim \ker T = \dim \operatorname{Im} T$

וגם מתקיים כי $\mathrm{Im}T\subseteq\mathbb{R}^3$ מההגדרה.

.U=Wכי אזי מתקיים אזי אונ
ס $\dim U=\dim W$ וגם וום עך שU,Wמרחבים מרחבים בלינארית בלינארית בלינארית מרחבים וקטורים אזי מרחבים ו

$$\boxed{\mathrm{Im}T=\mathbb{R}^3}$$
 לכן

מ.ש.ל.א.☺

$$u\in \mathrm{span}\,\{e_3\}$$
 אם "ם $T\left(u
ight)=-u$ ו $u\in \mathrm{span}\,\{e_1,e_2\}$ אם "ם $T\left(u
ight)=u$ (ב)

$$,v=\begin{bmatrix}x\\y\\z\end{bmatrix}$$
יהי $v\in V$, נסמן, $v\in V$ אם"ם, $v\in V$ אם"ם, $v\in V$ אם"ם לב כי $v\in V$ אם"ם לב כי $v\in V$ אם"ם $v=\begin{bmatrix}x\\y\\z\end{bmatrix}$ אם"ם $v\in V$ אם"ם $v=\begin{bmatrix}x\\y\\z\end{bmatrix}$ כלומר אם"ם $v=\begin{bmatrix}x\\y\\0\end{bmatrix}$ אם"ם $v\in V$ אם"ם $v=V$ אם"ם $v\in V$ אם"ם $v\in V$

$$2x=2y=0$$
 נשים לב כי $x=-x,y=-y$ אם"ם $T(v)=\begin{bmatrix}x\\y\\-z\end{bmatrix}=-v=\begin{bmatrix}-x\\-y\\z\end{bmatrix}$ בים לב כי $v=\begin{bmatrix}0\\0\\z\end{bmatrix}$ אם"ם $v=\begin{bmatrix}0\\0\\z\end{bmatrix}$ אם"ם $v=\begin{bmatrix}0\\0\\z\end{bmatrix}$ אם"ם $v=\begin{bmatrix}0\\0\\z\end{bmatrix}$ אם"ם $v=\begin{bmatrix}0\\0\\z\end{bmatrix}$

מ.ש.ל.ב.☺

$$v=\begin{bmatrix}x\\y\\z\end{bmatrix}$$
יהי $v\in V$ מתקיים $v\in V$

7. פתרון:

אופרטור לינארי $R_{U.W}$ (א)

 $v_1=u_2+w_2$, $v_1=u_1+w_1$ יחידים כך יחידים ל $w_1,w_2\in W$, $\exists u_1,u_2\in U$ אזי יהיו $v_1,v_2\in V$ $w_1+w_2\in W$, $u_1+u_2\in U$ וגם $v_1+v_2=(u_1+u_2)+(w_1+w_2)$ נשים לב כי לכן

$$R_{U,W}(v_1 + v_2) = (u_1 + u_2) - (w_1 + w_2) = (u_1 - w_1) + (u_2 - w_2) = R_{U,W}(v_1) + R_{U,W}(v_2)$$

עתה נראה לינאריות בסלקר,

v=u+wיחידים כך יחידים מו $w\in W$, $\exists u\in U$ אזי $\alpha\in\mathbb{F}$, $v\in V$ יהיו $a\cdot w\in W$, $lpha\cdot u\in U$ וגם $lpha\cdot v=lpha\cdot u+lpha\cdot w$ נשים לב כי לכן

$$R_{U,W}(\alpha \cdot v) = \alpha \cdot u - \alpha \cdot w = \alpha \cdot (u - w) = \alpha \cdot R_{U,W}(v)$$

כלומר ההעתקה היא אופרטור לינארי כי הוא מקיים את תכונות הלינאריות

מ.ש.ל.א.©

$$R_{U,W}\left(w
ight)=-w$$
 , $R_{U,W}\left(u
ight)=u$ (ב) צ"ל:

הוכחה:

יהי נקבל מההגדרה לכן האי וגם $u=u+0_W$ לכן מההגדרה נקבל כי יהי $u=u+0_W$

$$R_{U,W}(u) = u - 0_W = u \Rightarrow R_{U,W}(u) = u$$

יהי $w \in W$ אזי נשים לב כי w = 0ע וגם w = 0ע וגם לב כי אזי נשים לב כי אזי נשים לב כי

$$R_{U,W}\left(w\right) = 0_{U} - w = -w \Rightarrow \boxed{R_{U,W}\left(w\right) = -w}$$

מ.ש.ל.ב.©

 $\operatorname{Im} R_{U,W} = V$, $\ker R_{U,W} = 0$ (ג)

הוכחה:

יהי $v \in \ker R_{U,W}$, אזי מההנחה מתקיים כי $\exists u \in U, w \in W$, אזי מההנחה מתקיים כי

$$0_V = R_{U,W}(v) = u - w \Rightarrow u = w$$

 $u=w=0_V$ נשים לב כי $U\cap W=\{0_V\}$ ולכן w=u מתקיים אם "ם ,ker $R_{U,W}\subseteq\{0_V\}$ לכן $v=0_V+0_V=0_V$ נציב ונקבל אופרטור לינארי מתקיים $\{0_V\}=\ker R_{U,W}$ לכן $\{0_V\}=\ker R_{U,W}$ לכן עתה נשים לב שממשפט המימדים מתקיים

 $\dim V = \dim \operatorname{Im} R_{U,W} + \dim \ker R_{U,W} = \dim \operatorname{Im} R_{U,W}$

וגם מתקיים כי $\operatorname{Im} R_{U,W} \subseteq V$ מההגדרה.

U=W אזי מתקיים כי אזי מתקיים וגם $U=\dim W$ וגם ערכות מרחבים וקטורים כי ער מרחבים וקטורים כי וגם בלינארית הוכחנו שעבור ער מרחבים וקטורים כך ש

מ.ש.ל.ג.©

 $R_{U,W} + R_{W,U} = 0$ (ד) צ"ל:

הוכחה:

יהי v=u+w כך שu+w אזי מתקיים $\exists u\in U, w\in W$ יהי יהי

$$(R_{U,W} + R_{W,U})(v) = R_{U,W}(v) + R_{W,U}(v) = (u - w) + (w - u) = 0_V$$

$$\left(R_{U,W}+R_{W,U}
ight)(v)=0_{V}$$
 מתקיים ל $v\in V$ כי $R_{U,W}+R_{W,U}=0$ לכן

מ.ש.ל.ד☺

 $R_{U,W}\circ R_{U,W}=Id_V$ (ה) צ"ל:

הוכחה:

,v=u+wכך פך כך אזי איזי איזי איזי א פון כך כך אזי כך אזי איזי א יהי עבור $u-w\in W$, $u\in U$ כי מתקיים כי עבור איז לכן מתקיים

$$(R_{U,W} \circ R_{U,W})(v) = R_{U,W}(R_{U,W}(v)) = R_{U,W}(u-w) = u - (-w) = u + w = v$$

$$\left(R_{U,W}\circ R_{U,W}
ight)(v)=v$$
 מתקיים לכך $\left[R_{U,W}+R_{W,U}=Id_{V}
ight]$ לכך

מ.ש.ל.ה©

$$R_{U,W}\circ R_{W,U}=-Id_V$$
 (1)

הוכחה:

v=u+wכך של בד $\exists u\in U, w\in W$ יהי $v\in V$ $w \in W$, $-u \in U$ מתקיים כי -u + w נשים לב כי עבור

$$(R_{U,W} \circ R_{W,U})(v) = R_{U,W}(R_{W,U}(v)) = R_{U,W}(w-u) = -u - w = -(u+w) = -v$$

$$\left(R_{U,W}\circ R_{W,U}
ight)(v)=-v$$
 מתקיים לכך $R_{U,W}+R_{W,U}=-Id_{V}$ לכך

מ.ש.ל.ו©

8. פתרון:

V אנ"ל: U,W מרחבים של

 $T(0_V)=0$ ע ולכן $T(0_V)=0$ ע, וגם $T(0_V)=0$ ע ולכן $T(0_V)=0$ ע, ולכן $T(0_V)=0$ ע ולכן איים לב כי עתה נראה לינאריות:

יהי
$$lpha,eta\in\mathbb{F}$$
 יהי $T\left(v
ight)=v$ אזי יהי $v_{1},v_{2}\in U$ יהי

$$T\left(\alpha \cdot v_1 + \beta \cdot v_2\right) = \alpha \cdot T\left(v_1\right) + \beta \cdot T\left(v_2\right) = \alpha \cdot v_1 + \beta \cdot v_2 \Rightarrow \alpha \cdot v_1 + \beta \cdot v_2 \in U$$

יהי $\alpha, \beta \in \mathbb{F}$ יהי T(v) = v אזי $v_1, v_2 \in W$ יהי

$$T\left(\alpha \cdot v_{1} + \beta \cdot v_{2}\right) = \alpha \cdot T\left(v_{1}\right) + \beta \cdot T\left(v_{2}\right) = \alpha \cdot -v_{1} + \beta \cdot -v_{2} = -\left(\alpha \cdot v_{1} + \beta \cdot v_{2}\right) \Rightarrow \alpha \cdot v_{1} + \beta \cdot v_{2} \in W$$

U,W הם תתי קבוצות של מרחב וקטורי שסגורים לחיבור וקטורים, למכפלה בסקלר ומכילים את וקטור הU,WU,W לכן U,W הינם תתי מרחבים של

@מ.ש.ל.א

 $U \oplus W = V$ (ב)

הוכחה:

 $v \in U \cap W$, יהי יהי ' $U \cap W = \{0_V\}$, יהי עחילה נראה כי

 $T\left(v
ight)=v$ מתקיים כי $v\in U$ מהיות

, $-v=T\left(v\right)=v$ לכן לכן , $T\left(v\right)=-v$ כי מתקיים מתקיים ע $\in W$ מהיות מהיות מתקיים כי מני מתקיים כי לכן $v=0_V$ נבע כי כי $v=0_V$ ומהיות לכן $v=0_V$ ומהיות לכן מני מובע כי עובר לכן און מריים לכן מתקיים לכן מתקיים לכי מתקיים לייט

 $U \cap W \subseteq \{0_V\}$ לכן

 $\overline{U\cap W=\{0_V\}}$, כלומר ק $\{0_V\}\subseteq U\cap W$, לכן $\{0_V\}\subseteq U\cap W$, כלומר ולכן א' ראינו כי $0_V\in U\cap W$ ולכן ולכן v=u+w נסתכל על $w=rac{v-T(v)}{2}$, $u=rac{v+T(v)}{2}$ על על יהי $v\in V$ יהי

$$T\left(u\right) = T\left(\frac{v + T\left(v\right)}{2}\right) = \frac{T\left(v\right) + T\left(T\left(v\right)\right)}{2} = \frac{T\left(v\right) + v}{2} = u \Rightarrow u \in U$$

$$T\left(w\right) = T\left(\frac{v - T\left(v\right)}{2}\right) = \frac{T\left(v\right) - T\left(T\left(v\right)\right)}{2} = \frac{T\left(v\right) - v}{2} = -w \Rightarrow w \in W$$

(חיבור תתי מרחבים מוכל במרחב), ע א וברור כי ע וברור כי ע וברור לכן א וברור לכן אי $v \in U + \underline{W}$ כלומר הראנו כי עלומר הראנו איז איז ווברור ע וברור על איז ווברור איז $\boxed{U \oplus W = V}$ לכן , $\boxed{U + W = V}$

מ.ש.ל.ב⊚

 $T = R_{U.W}$ (ג) צ"ל:

הוכחה:

לכו $T\left(u
ight)=u,T\left(w
ight)=-w$, וגם מתקיים v=u+w כך ש $u+u,w\in U,w\in W$, אזי יהי

$$T(v) = T(u + w) = T(u) + T(w) = u - w = R_{U,W}(u + w) = R_{U,W}(v)$$

 $T=R_{U,W}$ כלומר , $R_{U,W}\left(v
ight)=T\left(v
ight)$ מתקיים לכן לכן

מ.ש.ל.ג©