Supervised learning capstone Bank telemarketing analysis

BY: NUSAIR IMAM

MENTOR: ILYAS USTUN

PROGRAM MANAGER: JOSEPHINE PIKE

Presentation Outline

- Understanding the data
- 2. Data analysis, cleaning and preparation
- 3. Initial application of selected models
- 4. Feature engineering and parameter tuning
- 5. Conclusion and Future Considerations

The data - variables

Categorical (dtype = object)	Continuous (dtype = numerical)
Job	Age
Marital	Duration
Education	Campaign
Default	Pdays
Housing	Previous
Loan	Emp.var.rate
Contact	cons.price.idx
Month	Cons.conf.idx
Day_of_week	Euribor3m
Poutcome	Nr.employed

Object Variables

- Job : Occupational information
- Marital: Marital status
- ▶ Education: Education level
- Housing: Housing loan (Yes/No)
- Default : Credit default (Yes/No)
- ▶ Loan: Personal loan (Yes/No)
- Contact : Method of contact (telephone/cellular)
- Month: Month of the year (last contact)
- Day_of_week: Day (last contact)
- Poutcome: Outcome of previous campaign

Object Variables

Key Takeaways

- Students and retired people have a greater chance of making a deposit
- People who identified as illiterate have a higher chance of making a deposit; large error bar indicates presence of outliers
- Certain months have a higher success rate (March, April, Sept, Oct, Dec)
- Class imbalance; only 11% of participants made a deposit

Numerical variables

- Age : Age of client
- Duration : Contact duration (seconds)
- Campaign : Number of calls made to client
- Pdays: Number of days since last contact (previous campaign)
- Previous: Number of calls in previous campaign
- Emp.var.rate : Employment variation rate (quarterly)
- cons.price.idx : Consumer price index (monthly)
- Cons.conf.idx: Consumer condfidence index (monthly)
- Euribor3m : Euro interbank interest rate (daily)
- Nr.employed : Number of employees (quarterly)

Numerical variables - heatmap

- High correlations between the output and the following variables:
 - ▶ Nr.employed
 - ▶ Euribor3m
 - Duration
 - ▶ Emp.var.rate
 - Pdays
 - ► Previous (outcome)

Numerical variables

Key Takeaways

- Rememeber the variable 'campaign' is the number of calls rendered per client during the campaign
 - No person who was contacted more than 20 times subscribed to a fixed term deposit
- People at the ends of the age spectrum are more likely to subscribe
- High Correlations between fixed term deposits and

Data Cleaning

- No NaN values, missing data
- Converted output from Yes/No to numerical 1/0
- Creating dummy variables for object variables in order to have a numerical dataset with all the variables.
- Dealt with class imbalance (data skewed towards the negative outcome)
 - Oversampling via Sklearn's SMOTE

```
#checking for null values
df.isnull().sum()
age
iob
marital
education
default
housing
loan
contact
month
day of week
duration
campaign
pdays
previous
poutcome
emp.var.rate
cons.price.idx
cons.conf.idx
euribor3m
nr.employed
dtype: int64
```

Test, train methodology

- Data split on an 80:20 basis using Sklearn's train_test_split function
- Models trained on train dataset and tested on both train and dataset
- Initial modelling on Oversampled train dataset with 63 features
- Final modelling on reduced set of features based on feature importance from RFC, LogR and feature engineering

Terms and definitions – in context of what it means in this application

- ► Type 1 error: FP
 - ► Incorrectly identifying non-subscibers as subscribers
- ▶ Type 2 error: FN
 - Not identifying those that are predicted to subscribe
- Precision: TP/(TP+FP)
 - Out of those that we think will subscribe, what percentage actually did?
- Recall: TP/(TP+FN)
 - Out of those that did subscribe, what percentage did we predict would?

Terms and definitions – in context of what it means in this application

- Precision: TP/(TP+FP)
 - Out of those that we think will subscribe, what percentage actually did?
 - Example Scenario: sending coupons to those that think are likely to subscribe
 you do not want to waste coupons on those that will not subscribe!
- Recall: TP/(TP+FN)
 - Out of those that did subscribe, what percentage did we predict would?
 - ▶ Bank telemarketing this is the primary KPI for this application we do not want to misclassify people who end up subscribing

Models

- Random Forest Classifier
- ▶ K-nearest Classifier
- ► Logistic Regression
- ► SVM
 - ► SVC
 - ▶ Linear SVC

	RFC	LogR	KNN	SVC	ISVC
Accuracy (%)	99.3	91.0	93.1	95.9	88.4
Type 1 (%)	0.04	3.26	2.46	-	0.16
Type 2 (%)	0.63	6.65	4.41	-	10.99
Precision (%)	99.7	66.46	73.7	-	67.08
Recall (%)	94.45	41.23	61.0	-	2.90

*Initial Results: Trained and tested on entire dataset w/o oversampling

Models – Initial training on unbalanced data

- Results biased towards dominant class (client does NOT make deposit)
 - SVC left out due to computational constraints (# feat = 63)

	RFC	LogR	KNN	SVC	ISVC
Accuracy (%)	90.9	91.2	90.5	88.9	89.1
Type 1 (%)	2.39	2.16	3.81	-	0.1
Type 2 (%)	6.69	6.62	5.66	-	10.8
Precision (%)	64.6	67.2	58.6	-	74.2
Recall (%)	39.5	40.1	48.8	-	2.53

- Tendency to predict False negative (Type 2)
 - This manifests itself in the Recall

*Initial Results: Test subset (after test/train split)

Oversampled data

- SMOTE (Synthetic Minority Oversampling Technique)
 - Potentially important information may have been simulated (risk of overfitting)

```
#dealing with class imbalance
from imblearn.over_sampling import SMOTE
smote = SMOTE(random_state = 1, ratio = 1.0)
xx = X
yy = Y

x_balanced,y_balanced = smote.fit_sample(xx,yy)

print(x_balanced.shape)
print(y_balanced.shape)

x_var = list(xx.columns)
bal_df = pd.DataFrame(data = x_balanced , columns = x_var)
bal_df.describe()
bal_df.describe()
```

Models – Initial training on oversampled data (using SMOTE)

- Linear SVC has an exceptional recall but much lower accuracy than the others
- Reduction in type 2 errors and increase in Recall

	RFC	LogR	KNN	SVC	ISVC
Accuracy (%)	87.7	86.8	84.7	-	63.0
Type 1 (%)	8.7	11.8	12.81	-	36.87
Type 2 (%)	3.56	1.40	2.50	-	0.12
Precision (%)	46.3	45.0	40.0	-	22.86
Recall (%)	67.8	87.4	77.4	-	98.9

*Initial Results: Test subset (after test/train split)

Parameter Tuning - GridSearchCV

- ► Implemented on RFC, Logistic Regression
- Other model's left out due to computational constraints

```
from sklearn import metrics
from sklearn.model_selection import GridSearchCV
from sklearn import svm
Cs = [0.001, 0.01, 0.1, 1, 10]
penalty = ['l1','l2']
param_grid = {'C': Cs, 'penalty' : penalty, 'dual' : [False]}
grid_search = GridSearchCV(svm.LinearSVC(), param_grid, return_train_score=True)
grid_search.fit(X, Y)
```

```
{'C': [0.0001, 0.001, 0.01, 0.03, 0.1, 0.3, 0.6, 1, 1.3, 1.6, 2, 5, 10, 15, 20, 50, 100]}

from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.model_selection import GridSearchCV
lr = LogisticRegression()
grid = GridSearchCV(estimator=lr, param_grid=param_grid, scoring='accuracy', verbose=3, n_jobs=-1, return_train_score=True)
```

Feature engineering

- Features shortlisted based on RFC importance diagram
- Duration feature removed since this is not known until after the call (when the outcome is known)
- Conversion rate feature added (# of calls divided by outcome)

Feature engineering)

- The reduced dataset exhibited overfitting
- Only after removal of the 'duration' column did results become more realistic
- ▶ 22 features other than 'duration' column

	RFC	LogR
Accuracy (%)	98.6	99.9
Type 1 (%)	1.36	0.02
Type 2 (%)	0.05	0.02
Precision (%)	89.0	99.78
Recall (%)	99.6	99.78

Results – without 'duration' column

- Consistent cross validation scores
- RFC is the best model despite KNN having better overall results
 - SMOTE method utilizes the same methodology (Euclidean distance) as KNN and therefore KNN is more prone to overfitting on SMOTE-oversampled dataset

	RFC	LogR	KNN	ISVC
Accuracy (%)	99.2	99.9	97.0	57.0
Type 1 (%)	0.63	0.01	2.25	42.7
Type 2 (%)	0.16	0.07	0.76	0.23
Precision (%)	94.5	99.9	82.1	20.2
Recall (%)	98.6	99.3	93.2	97.9

Final Recommendation - Observations

- Despite good CV scores and model performance, it is unlikely that these model will perform well in real world situations due to high correlations between European socio-economic features.
- Logistic Regression performed the best overall
 - No client should be called more than 20 times
 - Depending on industry standard hitrate, the number of calls should be optimized by putting a maximum limit.

Future considerations

- Data treatment can be altered
 - ▶ PCA on highly correlated columns to reduce multicollinearity
 - Undersampling via numpy's random choice function
- Unsupervised techniques should be explored (Nueral networks)
- More features should be added to model
 - Gross income
 - Registered residence location
 - Size of family

Next steps

- Improve on current model performance
 - ▶ PCA of features
 - ► More iterations of tune, feature engineer, test process
 - Undersampling using functions other than np.random.choice
 - ▶ Try other ensemble models such a Xgboost, gradient boost
 - Map a neural network