The theory of Delta measures

Stefan Evert 6 March 2015

Contents

1	Data sets	1
2	Notation	1
3	Quadratic Delta	2
4	Rotated Delta	2
5	Problematic assumptions	6
R	eferences	6

1 Data sets

Load relative frequencies and z-scores for the German, English and French data set. For technical reasons, the data structures store the transposed document-term matrices \mathbf{F}^T and \mathbf{Z}^T

```
load("data/delta_corpus.rda")
## FreqDE, FreqEN, FreqFR ... text-word matrix with absolute and relative frequencies
## zDE, zEN, zFR ... standardized (z-transformed) relative frequencies
## goldDE, goldEN, goldFR ... gold standard labels (= author names)
```

- \mathbf{Z}^T is available under the names zDE, zEN and zFR
- absolute frequencies $n_{D_j} \cdot f_i(D_j)$ can be found in FreqDE\$M, FreqEN\$M, FreqFR\$M

2 Notation

Our notation follows Argamon (2008) and Jannidis et al. (2015):

- given a collection of text documents $D \in \mathcal{D}$
 - $-n_{\mathcal{D}} = |\mathcal{D}|$ is the number of texts in the collection
 - $-n_D$ is the token count of text D
- the relative frequency of word w_i in text D is denoted by $f_i(D)$
 - not entirely clear that Argamon (2008) really means relative frequency, but everything else doesn't make much sense
 - the number of words taken into consideration as features is denoted by n_w

- $-f_i(D)$ may also be used more generally for the relative frequency of other features such as lemmas, n-grams, POS tags, ...
- following Burrows (2002), word frequencies are usually standardized to z-scores

$$z_i(D) = \frac{f_i(D) - \mu_i}{\sigma_i}$$

where μ_i is the mean of f_i and σ_i its sample standard deviation (s.d.) across \mathcal{D}

- note that the features f_i are standardized *individually*, i.e. based on their respective μ_i and σ_i only
- we will sometimes also use $z_i(D)$ to refer more generally to any scaled relative frequencies
- each text is thus represented by a frequency profile $\mathbf{f}(D) \in \mathbb{R}^{n_w}$ or a vector of z-scores $\mathbf{z}(D) \in \mathbb{R}^{n_w}$
- Burrows Delta corresponds to Manhattan distance between z-score vectors:

$$\Delta_B(D, D') = \|\mathbf{z}(D) - \mathbf{z}(D')\|_1$$

- this is Argamon's simplified version, which omits the factor $1/n_w$ from the original formula
- Quadratic Delta corresponds to squared Euclidean distance:

$$\Delta_Q(D, D') = \|\mathbf{z}(D) - \mathbf{z}(D')\|_2^2$$

- we will often use the equivalent Euclidean distance $\sqrt{\Delta_Q}$ instead
- Cosine Delta corresponds to angular distance, which can be computed from cosine similarity

$$\cos \Delta_{\angle}(D, D') = \frac{\mathbf{z}(D)^T \mathbf{z}(D')}{\|\mathbf{z}(D)\|_2 \|\mathbf{z}(D')\|_2}$$

- for normalized vectors $\|\mathbf{z}(D)\|_2 = 1$, angular distance corresponds to spherical distance between points on the unit sphere and is equivalent to the Euclidean distance between those points
- in other words, Cosine Delta is equivalent to Quadratic Delta with an implicit vector normalization
- computation of Cosine Delta simplifies to $\Delta_{\angle}(D, D') = \cos^{-1} \mathbf{z}(D)^T \mathbf{z}(D')$ in this case
- these vectors form the columns of a $n_w \times n_D$ term-document matrix denoted by
 - $\mathbf{F} = (f_{ij})$ where $f_{ij} = f_i(D_j)$ is the relative frequency of w_i in the j-th text, and
 - $-\mathbf{Z}=(z_{ij})$ where $z_{ij}=z_i(D_j)$ is the corresponding standardized z-score
- some measures suggested by Argamon (2008) make use of the covariance matrix $\mathbf{S} = (\sigma_{ij}) = \text{Cov}(\mathbf{F}^T)$ of the variables f_i
 - **S** can be computed from the centered matrix $\bar{\mathbf{F}} = (f_{ij} \mu_i)$ as a cross-product $\mathbf{S} = \frac{1}{n_D 1} \bar{\mathbf{F}} \bar{\mathbf{F}}^T$
 - the diagonal elements of S correspond to the variances of the individual variables: $\sigma_{ii} = (\sigma_i)^2$
 - note that Argamon (p. 140) specifies equations for population covariances (with denominator $n_{\mathcal{D}}$) rather than the more appropriate sample covariances (with denominator $n_{\mathcal{D}} 1$)
 - the corresponding cross-product of **Z** yields the correlation matrix $\operatorname{Cor}(\mathbf{F}^T) = \frac{1}{n_{\mathcal{D}}-1} \mathbf{Z} \mathbf{Z}^T$ with elements $\sigma_{ij}/\sqrt{\sigma_i \sigma_j}$; all diagonal elements are equal to 1, i.e. $\operatorname{diag}(\operatorname{Cor}(\mathbf{F}^T)) = \mathbf{1}_{n_w}$

3 Quadratic Delta

4 Rotated Delta

• Rotated Delta Δ_R has been shown to perform very poorly, even though it has the most convincing mathematical justification of the various Delta measures (Argamon 2008)

- intuitively, it performs a standardization similar to the z-transformation, but takes correlations between the word frequencies into account; the scaling factors are $1/\lambda_i$ instead of $1/\sigma_i$
- if some of the λ_i are very small, this might give too much weight to "noise" dimensions
- we can obtain the singular values λ_i from a Principal Component Analysis and visualize them in the form of a barplot; note that the principal dimensions and the distribution of singular values depends on the number n_w of features

German

- notice that $\lambda_{75} \approx 0$ (because the 75 profile vectors span a 74-dimensional subspace); if it is naively included in the whitening, it might introduce a substantial amount of random noise
- a large part of the variance is captured by the first $d \approx 20$ principal coordinates; if only few features are used (e.g. $n_w = 500$), the remaining coordinates contribute relatively little to text distances; with a higher-dimensional feature space (e.g. $n_w = 10000$), the structure becomes more complex and variance spreads to higher singular values
- truncated PCA is often seen as a "noise reduction" technique, especially in distributional semantics
- the intuition is that the later principal coordinates with small singular values contain mostly noise, whereas the first coordinates capture the main structure of the data set
- truncating the transformed vectors to $d < n_{\mathcal{D}-1}$ dimensions should thus make distances (i.e. Rotated Delta) more meaningful and improve authorship attribution
- the evaluation plots below show that this is not the case at all: Δ_R performs very poorly, as in previous evaluations; truncation does indeed improve results, but it still remains inferior to Δ_B and Δ_{\angle}

```
n.vals <- round(10 ^ seq(1, 4, .1)) # logarithmic steps
draw.grid <- function () { # corresponding grid for plot region</pre>
  abline(h=seq(0, 100, 10), col="grey60")
  abline(v=c(10,20,50,100,200,500,1000,2000,5000,10000), col="grey60")
}
plot(1, 100, type="n", log="x", xlim=range(n.vals), ylim=c(0,100),
     xlab="# features", ylab="adjusted Rand index (%)", main="German",
     xaxs="i", yaxs="i", las=3, xaxp=c(range(n.vals), 3))
draw.grid()
lines(n.vals, evaluate(zDE, goldDE, n=n.vals, meth="manh")$adj.rand, lwd=3, col=1)
lines(n.vals, evaluate(FreqDE$S, goldDE, n=n.vals, meth="eucl", pca=74)$adj.rand, lwd=3, col=2)
lines(n.vals, evaluate(FreqDE$S, goldDE, n=n.vals, meth="eucl", pca=50)$adj.rand, lwd=3, col=3)
lines(n.vals, evaluate(FreqDE$S, goldDE, n=n.vals, meth="eucl", pca=20)$adj.rand, lwd=3, col=4)
lines(n.vals, evaluate(zDE, goldDE, n=n.vals, meth="eucl", norm="eucl")$adj.rand, lwd=3, col=5)
legend("bottomright", inset=.02, bg="white", lwd=3, col=1:5,
       legend=c("Burrows Delta", "Rotated Delta", "RD (d=50)", "RD (d=20)", "Cosine Delta"))
```

German

- TODO: some random experiments
- PCA as additional "noise reduction" on Cosine Delta could be promising, but only if you get the number d of latent dimensions exactly right

5 Problematic assumptions

TODO: compare Rotated Delta with and without whitening (the latter is similar to LSA-style approaches); screeplot of singular values; truncate small singular values before whitening, or use some form of "soft" whitening

References

Argamon, Shlomo. 2008. "Interpreting Burrows's Delta: Geometric and Probabilistic Foundations." *Literary and Linguistic Computing* 23 (2): 131–47. doi:10.1093/llc/fqn003.

Burrows, John. 2002. "'Delta': A Measure of Stylistic Difference and a Guide to Likely Authorship." *Literary and Linguistic Computing* 17 (3): 267–87. doi:10.1093/llc/17.3.267.

Jannidis, Fotis, Steffen Pielström, Christof Schöch, and Thorsten Vitt. 2015. "Improving Burrows' Delta. an Empirical Evaluation of Text Distance Measures." In *Proceedings of the Digital Humanities Conference 2015*. Sydney, Australia.