Final Project Report

Design and Implementation of Predictive Analytics on Credit Card dataset using SAS Enterprise Miner

Predictive Analytics					
Professor	Uzair Ahmad				
Name	Jinalben Patel				
Student ID	135354215				
Date	15th April 2022				

Introduction

The goal of this project is to develop and build the necessary components of a data pipeline for predictive modelling on the credit card dataset. The dataset concerns credit card applications. All attribute names and values have been changed to meaningless symbols to protect confidentiality of the data. This dataset is interesting because there is a good mix of attributes -- continuous, nominal with small numbers of values, and nominal with larger numbers of values. There are also a few missing values.

SAS Enterprise Miner has been used to perform all the operations.

Dataset description:

Variable	Attribute Information
A1	b, a
A2	continuous
A3	continuous
A4	u, y, l, t
A5	g, p, gg
A6	c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff
A7	v, h, bb, j, n, z, dd, ff, o
A8	continuous
A9	t, f
A10	t, f
A11	continuous
A12	t, f

A13	g, p, s
A14	continuous
A15	continuous
A16	+,- (class attribute)

Diagram:

File Import:

It helps to import data from your local computer. The File Import node allows you to customize the data conversion process by selecting the file to import and setting the metadata (such as table and variable roles) that Enterprise Miner needs to perform data mining activities.

Exploring the dataset variables:

A1: This is a discrete variable with the presence of missing values

A2: This is a discrete variable with the presence of missing values

A3: This is a continuous variable with the presence of missing values

A4: This is a discrete variable with the presence of missing values

A5: This is a discrete variable with the presence of missing values

A6: This is a discrete variable with the presence of missing values

A7: This is a discrete variable with the presence of missing values

A8: This is a continuous variable.

A9: This is a discrete variable.

A10: This is a discrete variable.

A11: This is a continuous variable.

A12: This is a discrete variable.

A13: This is a discrete variable.

A14: This is a discrete variable with the presence of missing values

A15: This is a continuous variable.

A16: This is the target binary class variable.

Stat Explore:

The StatExplore node generates summarization statistics.

Note: The Internal Variables property in the Properties Panel has been set to yes. When calculating the Chi-squared statistics for interval variables, Enterprise Miner distributes the internal variables into five bins, then determines the Chi-squared values for the binned variables when you run the node.

The variable worth plots order the input variables by their worth in predicting the target variable.

A9 variable has the highest worth in predicting the target variable.

Data Partition:

This node is used to divide the data into train, validation, and test set.

Training data is reserved for preliminary model fitting

Validation data is reserved to empirically test the model without overfitting the model.

Test data is reserved for an optional final assessment of the model.

Property	Value
General	
Node ID	Part
Imported Data	
Exported Data	
Notes	
Train	
Variables	
Output Type	Data
Partitioning Method	Default
Random Seed	12345
Data Set Allocations	
Training	70.0
Validation	15.0
Test	15.0
Report	
Interval Targets	Yes
Class Targets	Yes
Status	
Create Time	4/14/22 7:22 PM
Run ID	52aec388-d5f8-e841-8637-d086204fdfe1
Last Error	
Last Status	Complete
Last Run Time	4/15/22 7:26 PM
Run Duration	0 Hr. 0 Min. 3.02 Sec.
Grid Host	
User-Added Node	No

Note:

Training set = 70%

Validation set = 15%

Test set = 15%

Replacement:

The Replacement node belongs to the Modify category of the SAS SEMMA (Sample, Explore, Modify, Model, and Assess) data mining process.

Property	Value
General	
Node ID	Repl
Imported Data	
Exported Data	
Notes	
Train ⊒Interval Variables	
Replacement Editor	
Default Limits Method	None
Cutoff Values	
Class Variables	
Replacement Editor	
^{L.} Unknown Levels	Ignore
Score	
Replacement Values	Computed
Hide	No
Report	
Replacement Report	Yes
Status	
Create Time	4/15/22 12:48 AM
Run ID	de195ae7-68be-0943-9d12-e51b15
Last Error	
Last Status	Complete
Last Run Time	4/15/22 7:26 PM
Run Duration	0 Hr. 0 Min. 4.73 Sec.
Grid Host	
User-Added Node	No

Select the Default Limits Method to none for the interval variables. None indicates that no interval variable values should be replaced. The default setting of Standard Deviations from the Mean would enforce a range of values for each interval variable, which is not suitable for this example.

We will specify the replacement values for the class variables in the dataset.

Variable	Formatted Value	Replacement Value	Frequency Count	Туре	Character Unformatted Value	Numeric Value
1	ь		182C		b	
1	a		90 C		a	
1	?		3C		?	
1	_UNKNOWN_	_DEFAULT_	. с			
10	f		158 C		f	
10	t		117C		t	
10	_UNKNOWN_	_DEFAULT_	. с			
12	f		144C		f	
12	t		131C		t	
12	_UNKNOWN_	_DEFAULT_	. с			
13	9	_ ·-	250C		g	
13	s		23C		s	
13	p		2C		p	
13	UNKNOWN_	_DEFAULT_	. c			
14	0	_DLI AULI_	. C 54C		0	
14	120		18C		120	
						<u>'</u>
14	100		16C		100	•
14	200		16C		200	•
14	160		14C		160	
14	80		13C		80	
14	280		9C		280	•
14	240		8 C		240	
14	140		6 C		140	
14	180		6C		180	
14	300		6C		300	
14	260		5C		260	
14	340		5C		340	
14	60		4C		60	
14	220		3C		220	
14	320		3C		320	
14	360		3 C		360	
14	?		3C		?	
14	110		2 C		110	
14	112		2C		112	
14	129		2C		129	
14	144		2C		144	
14	164		2C		164	
14	176		2C		176	
14	216		2C		216	
14	290		2C		290	
14	352		2C		352	

For the variables with? level represent observations that have missing values. In the Replacement value column, we have entered _MISSING_ for those values as shown below:

Replacement Editor-WORK.OUTCLASS

Variable	Formatted Value	Replacement Value	Frequency Count		Character Unformatted Value	Numeric Value	
A1	b		182	С	b		
A1	a		90	С	a		
A1	?	_MISSING_	3	С	?		

The following class variables have been replaced and their count has been mentioned in the output below:

29	Replacemen	t Values for	Class Va	riables			
30							
31				Character			
32		Formatted		Unformatted	Numeric	Replacement	
33	Variable	Value	Туре	Value	Value	Value	Label
34							
35	Al	?	С	?	•	_blank_	
36	A14	?	С	?	•	_blank_	
37	A2	?	С	?	•	_blank_	
38	A4	?	С	?	•	_blank_	
39	A5	?	С	?		_blank_	
40	A6	?	С	?		_blank_	
41	A7	?	С	?	•	_blank_	
42							

51	Repla	Replacement Counts					
52							
53	0bs	Variable	Role	Label	Train	Validation	Test
54							
55	1	Al	INPUT		7	5	0
56	2	A14	INPUT		9	1	3
57	3	A2	INPUT		7	4	1
58	4	A4	INPUT		4	0	2
59	5	A5	INPUT		4	0	2
60	6	A6	INPUT		5	2	2
61	7	A7	INPUT		5	2	2
62							

The replaced new variables are prefixed with REP.

Control Point:

A control point makes it easier to distribute connections amongst several interconnected nodes in a process flow step. It has the potential to lessen the number of connections formed.

Models:

- 1. Logistic Regression:
 - Impute –

Impute values to use as replacement for missing values in the input data. We replace missing data because Regression and Neural Network models ignore observations that contain missing values. This reduces the size of the training dataset, which can weaken the predictive power of those types of models. However missing values are not problematic for decision trees.

In the Class Variables section of the Impute node Train properties, select Tree Surrogate from the list as the default input method

In the Interval Variables section of the Impute node Train properties, click Default Input Method, and select Median from the list.

The values of missing interval variables are replaced by median of the non-missing values. The median statistic is less sensitive to extreme values than mean or midrange statistics.

Output:

34	Imputation	Summary							
35	Number Of	Observations	;						
36									
37									Number of
38	Variable	Impute	Imputed	Impute		Measurement			Missing
39	Name	Method	Variable	Value	Role	Level	Label		for TRAIN
40									
41	REP_A1	TREESURR	IMP_REP_A1		INPUT	NOMINAL	Replacement:	Al	7
42	REP_A14	TREESURR	IMP_REP_A14		INPUT	NOMINAL	Replacement:	A14	9
43	REP_A2	TREESURR	IMP_REP_A2		INPUT	NOMINAL	Replacement:	A2	7
44	REP_A4	TREESURR	IMP_REP_A4		INPUT	NOMINAL	Replacement:	A4	4
45	REP_A5	TREESURR	IMP_REP_A5		INPUT	NOMINAL	Replacement:	A5	4
46	REP_A6	TREESURR	IMP_REP_A6		INPUT	NOMINAL	Replacement:	A6	5
47	REP_A7	TREESURR	IMP_REP_A7		INPUT	NOMINAL	Replacement:	A7	5
48									
49									
50									

52	Variab	ole Distributi	on Training D	ata
53				
54		Number of		
55		Missing	Number of	Percent of
56	0bs	for TRAIN	Variables	Variables
57				
58	1	9	1	14.2857
59	2	7	2	28.5714
60	3	5	2	28.5714
61	4	4	2	28.5714
62				

The Imputed variables in SAS results are identified by the prefix IMP_

• Transform -

Transforming the data can improve model response. Transforming the data tends to stabilize variance, remove nonlinearity, improve additivity, and counter non-normality.

Note: All the original variables are rejected, and imputed variables are carried forward for the analysis.

Based on the histogram of the variables, following transformations have been applied.

Log10 transformations have been applied to selected interval variables as they have skewed distribution.

Regression –

Regression node is used to fit both linear and logistic regression. This is the problem of Logistic regression. Input coding property used to specify the coding method that you want to use with class variables. Generalized linear model (GLM) specifying how to interpret coefficients for categorical variables.

Property Selection

The score rankings overlay plot displays both train and validate statistics on the same axis.

Table of the fit statistics from the model

Effects plot displays a bar graph of the absolute values of the coefficients in the final model

Event Classification Table:

1219	Event Classification Table							
1220								
1221	Data Role=TRAIN Target=Al6 Target Label=' '							
1222								
1223	False	True	False	True				
1224	Negative	Negative	Positive	Positive				
1225								
1226		214		267				
1227								
1228								
1229	Data Role=	VALIDATE Tar	get=Al6 Targ	et Label=' '				
1230								
1231	False	True	False	True				
1232	Negative	Negative	Positive	Positive				
1233								
1234	4	15	31	53				
1235								
1236								

2. **Decision Tree:**

Properties selected:

Tree created from the algorithm:

Fit Statistics:

88	Fit				
89	Statistics	Statistics Label	Train	Validation	Test
90					
91	_NOBS_	Sum of Frequencies	481.000	103.000	106.000
92	_MISC_	Misclassification Rate	0.150	0.146	0.123
93	_MAX_	Maximum Absolute Error	0.915	0.915	0.915
94	_sse_	Sum of Squared Errors	118.612	23.732	21.747
95	_ASE_	Average Squared Error	0.123	0.115	0.103
96	_RASE_	Root Average Squared Error	0.351	0.339	0.320
97	_DIA_	Divisor for ASE	962.000	206.000	212.000
98	_DFT_	Total Degrees of Freedom	481.000		
99					

Event Classification Table:

129	Event Classification Table			
130				
131	Data Role=7	TRAIN Target	=Al6 Target 1	Label=' '
132				
133	False	True	False	True
134	Negative	Negative	Positive	Positive
135				
136	52	194	20	215
137				
138				
139	Data Role=	VALIDATE Tar	get=Al6 Targ	et Label=' '
140				
141	False	True	False	True
142	Negative	Negative	Positive	Positive
143				
144	14	45	1	43
145				
146				

3. Random Forest:

Note: Random Forest algorithm has been implemented using the HP Forest node

Properties selected:

Output window:

The misclassification rate plots begin to flatten after more than 20 trees are added to the forest. That is, once the forest contains 20 trees, adding more trees does not have a significant effect on the misclassification rate of the model. Using this information to specify a reasonable value for the Maximum Number of Trees property.

Update the maximum number of trees to 20

. Property	Value
General	
Node ID	HPDMForest
Imported Data	
Exported Data	
Notes	
Train	
Variables	
Tree Options	
Maximum Number of Trees	20
Seed	12345
Type of Sample	Proportion
Proportion of Obs in Each Sample	0.6
Number of Obs in Each Sample	
Splitting Rule Options	
Maximum Depth	50
Missing Values	Use In Search
Minimum Use In Search	1
Number of Variables to Consider in Split	t S€.
Significance Level	0.05
Max Categories in Split Search	30
Minimum Category Size	5
Exhaustive	5000
Node Options	
Method for Leaf Size	Default
Smallest Percentage of Obs in Node	1.0E-5
Smallest Number of Obs in Node	1
Split Size	
Use as Modeling Node	Yes

Misclassification rate on selected Trees

Fit Statistics table displays statistics for the training, validation, and test data sets

Tet Statistics				- G X		
Target	Target Label	Fit Statistics	Statistics Label	Train	Validation	Test
A16		ASE	Average Squared Error	0.12444	0.121507	0.101762
A16		DIV	Divisor for ASE	962	206	212
A16		MAX	Maximum Absolute Error	0.84125	0.870512	0.854221
A16		NOBS	Sum of Frequencies	481	103	106
A16		RASE	Root Average Squared Error	0.35276	0.348579	0.319002
A16		SSE	Sum of Squared Errors	119.7109	25.03052	21.57358
A16		DISF	Frequency of Classified Cases	481	103	106
A16		MISC	Misclassification Rate	0.162162	0.165049	0.113208
A16		WRONG	Number of Wrong Classifications	78	17	12

Leaf plot displays the total number of leaves in the forest plotted against the number of trees in the forest

Variable importance is a table with information about each variable's worth to the model

Leaf Statistics is a histogram that displays the distribution for the number of leaves in each tree.

Statistics history on each iteration image

The score rankings overlay plot displays both train and validate statistics on the same axis

Event Classification Table:

Į	Event Classification Table:					
	370	Event Classification Table				
	371					
	372	Data Role=TRAIN Target=Al6 Target Label='			label=' '	
	373					
	374	False	True	False	True	
	375	Negative	Negative	Positive	Positive	
	376					
	377	22	158	56	245	
	378					
	379					
	380	Data Role=V	ALIDATE Targ	get=Al6 Targe	et Label=' '	
	381					
	382	False	True	False	True	
	383	Negative	Negative	Positive	Positive	
	384					
	385	7	36	10	50	
	386					
я						

Conclusion

The project has been successfully completed all the Predictive modelling steps on the Credit Card dataset. This includes

- File Import
- Stats Explore
- Data partition
- Replacement and Imputation (required for regression)
- Control Point
- Models: Decision tree, Random Forest, Logistic Regression

Let's find the classification parameters like Precision, Recall and F1 score calculated for all the three above models below (Validation set):

Precision is the ratio between the True Positives and all the Positives.

For our problem statement, that would be the measure of tweets that we correctly identify as positive out of all the examples.

The **recall** is the measure of our model correctly identifying True Positives. Thus, for all the examples that are actually positive, recall tells us how many we correctly identified as having as positive.

For our dataset we need to have correct identification of both positive and negative examples hence both precision and recall are equally important. In such cases, we use something called F1-score. F1-score is the Harmonic mean of the Precision and Recall:

```
Note: Precision = True Positives / (True Positives + False Positives)

= TP / (TP+FP)

Recall = True Positives / (True Positives + False Negatives)

= TP / (TP+FN)

F-Measure = (2 * Precision * Recall) / (Precision + Recall)
```

Parameters	Regression	Decision Tree	Random Forest
Precision	0.630	0.977	0.833
Recall	0.929	0.754	0.877
F1 score	0.750	0.851	0.854
Misclassification rate	0.340	0.146	0.165
Average squared error	0.212	0.115	0.122

A classification technique with the highest accuracy and precision with the lowest misclassification rate and average squared error is the most intelligent classifier for prediction purposes. Please find the observations below:

- Decision tree has highest Precision and its average square error is also lowest amongst all the three models.
- Regression has high Recall and its Misclassification rate and Average squared error is also high compared to other model.
- Random Forest model has the highest model score, but its misclassification and average squared error is higher than Decision Tree model.

Based on the comparison of all the above parameters, I conclude that Decision Tree is the best model for the Credit Card dataset.

References:

https://documentation.sas.com

https://www.youtube.com/watch?v=IVHdZwf1nlw

https://www.youtube.com/watch?v=fJDuKQVVj50

https://www.youtube.com/watch?v=kmrpr8LmMz4

Declaration

I, **Jinalben Patel** declare that the attached assignment is my own work in accordance with the Seneca Academic Policy. I have not copied any part of this assignment, manually or electronically, from any other source including web sites, unless specified as references. I have not distributed my work to other students.