Math Reasoning Notes

William Traub

Contents

1	Number Sets	1
2	Definitions	1
3	September 23, 2025 3.1 Quantification	2 2
4	9/26 4.1 The Natural Numbers	3 3

1 Number Sets

A few famous sets are:

- \varnothing : the *empty set* containing no elements;
- \mathbb{N} : the set of *natural numbers* (that is, nonnegative integers);
- \mathbb{Z} : the set of *integers*;
- \mathbb{Q} : the set of rational numbers;
- \mathbb{R} : the set of real numbers;
- \mathbb{C} : the set of *complex numbers*.

2 Definitions

- Given universal set U and proposition schema P(x)
 - $-\neg(\forall x \in U, P(x)) = \exists x \in U, \neg P(x)$
 - $-\neg(\exists x \in U, P(x)) = \forall x \in U, \neg P(x)$
- A **relation** from set X to set Y is a subset $R \subseteq X \times Y$.
- A function with domain X and codomain Y is a relation such that:
 - $\forall x \in X, \exists y \in Y$
- A Model of the second-order formulation of peano arithmetic is a 3-tuple (N, O, S) where N is a set, $O \in N$, and $S : N \to N$ which all satisfy the second-order peano axioms. All models like this are isomorphic.

3 September 23, 2025

3.1 Quantification

Notation: Given some schema P(x), U a universal set, then we universally quantify P(x) by forming the prop: "for all $x \in U$, P(x) is true" and write $\forall x \in U, P(x)$ or $\forall x \in U : P(x)$.

Similarly, we existentially quantify P(x) by forming the proposition: "there exists an $x \in U$ such that P(x) is true" and write $\exists x \in U, P(x)$ or $\exists x \in U : P(x)$.

Note 1. The name of a free variable is irrelevant. For example, $\forall x \in U, P(x)$ and $\forall y \in U, P(y)$ are the same proposition.

Proposition 1. Let U be a universal set, and let P(x) be a schema with free variable x, then:

- $\neg(\forall x \in U, P(x)) \equiv \exists x \in U, \neg P(x)$
- $\neg(\exists x \in U, P(x)) \equiv \forall x \in U, \neg P(x)$

Proof. Let us assume $(\forall x \in U, P(x))$ is true, then for any $x \in U, P(x)$ is true. Thus, there does not exist an $x \in U$ such that P(x) is false, i.e. $\neg P(x)$ is true. Thus, $\exists x \in U, \neg P(x)$ is false.

Conversely, if we assume $\exists x \in U, \neg P(x)$ is true, then there exists an $x \in U$ such that P(x) is false. Combining these two paragraphs, we have shown that $\exists x \in U, \neg P(x)$ is true if and only if $\forall x \in U, P(x)$ is false. Thus, $\neg(\forall x \in U, P(x)) \equiv \exists x \in U, \neg P(x)$.

Example 1. Negate $\forall x[(x \in A) \implies (x \in B)]$

 $\neg(\forall x[(x \in A) \implies (x \in B)]) \equiv \exists x \neg[(x \in A) \implies (x \in B)] \equiv \exists x[(x \in A) \land \neg(x \in B)] \equiv \exists x[(x \in A) \land (x \notin B)]$

In english: "There is an element of A which is not and element in B". i.e. $A \nsubseteq B$.

Example 2. $U = \mathbb{Z}$ and consider the propositions: $[\forall a \in U, \exists b \in U, a + b = 1]$ and $[\exists a \in U, \forall b \in U, a + b \neq 1]$.

The first proposition is true, since for any integer a, we can choose b = 1 - a, which is also an integer, and a + b = 1.

The second proposition is false, since for any integer a, we can choose b = 1 - a, and a + b = 1.

Note that the order of quantifiers matters!

Proposition 2. Let U be a universal set, and let P(x) and Q(x) be schemas with free variable x, then:

- $\forall x \in U, [P(x) \land Q(x)] \implies [\forall x \in U, P(x)] \land [\forall x \in U, Q(x)]$
- $\bullet \ \exists x \in U, [P(x) \vee Q(x)] \implies [\exists x \in U, P(x)] \vee [\exists x \in U, Q(x)]$
- $\bullet \ \forall x \in U, [P(x) \vee Q(x)] \implies [(\forall x \in U, P(x)) \vee (\forall x \in U, Q(x))]$
- $\exists x \in U, [P(x) \land Q(x)] \implies [(\exists x \in U, P(x)) \land (\exists x \in U, Q(x))]$

4 9/26

4.1 The Natural Numbers

Definition 1. A <u>relation</u> R from a set A to a set B is a subset of $A \times B$.

Definition 2. A <u>function</u> f with domain X and codomain Y is a relation $f \subseteq X \times Y$ such that $\forall x \in X, \exists y \in Y, (x, y) \in f$

And $((x,y) \in f) \land ((x,z) \in f) \implies (y=z)$ We write $f: A \to B$ and f(a) = b.

The Peano Axioms:

- 1. $0 \in \mathbb{N}$
- $2. \ \forall x \in \mathbb{N}, x = x$
- 3. $\forall x \in \mathbb{N}, \forall y \in \mathbb{N}, (x = y) \implies (y = x)$
- 4. $\forall x \in \mathbb{N}, \forall y \in \mathbb{N}, \forall z \in \mathbb{N}, [(x = y) \land (y = z)] \implies (x = z)$
- 5. $\forall a, \forall b, [(b \in \mathbb{N}) \land (a = b)] \implies (a \in \mathbb{N})$
- 6. $\exists S \subseteq \mathbb{N} \times \mathbb{N}$ called the successor function, such that $\forall n \in \mathbb{N}, S(n) \in \mathbb{N}$
- 7. $\forall x \in \mathbb{N}, \forall y \in \mathbb{N}, [S(x) = S(y)] \implies (x = y)$ (i.e. S is injective)
- 8. $\forall n \in \mathbb{N}, S(n) \neq 0$
- 9. (Axiom of Induction) If k is a set such that:
 - (a) $0 \in k$
 - (b) $\forall x \in \mathbb{N}, (x \in k) \Rightarrow (S(n) \in k)$

Then $\mathbb{N} \subseteq k$.

Axiom 9': If P(x) is a proposition schema with one free variable x such that:

- 1. P(0) is true
- 2. $\forall n \in \mathbb{N}, (P(n)) \Rightarrow (P(S(n)))$

Then P(n) is true for all $n \in \mathbb{N}$.

Using these axioms, we can define addition and multiplication recursively for all $a, b \in \mathbb{N}$:

- a + 0 = a
- $\bullet \ a + S(b) = S(a+b)$
- \bullet $a \cdot 0 = 0$
- \bullet $a \cdot S(b) = a \cdot b + a$

Theorem 1. Addition is associative: $\forall a, b, c \in \mathbb{N}, (a+b) + c = a + (b+c)$

Proof. Fix $a, b \in \mathbb{N}$ and let P(c) be the proposition (a + b) + c = a + (b + c). We will prove that P(c) is true for all $c \in \mathbb{N}$ using Axiom 9'.

Base Case: P(0) is true since (a + b) + 0 = a + b and a + (b + 0) = a + b.

Inductive Step: Assume P(c) is true for some $c \in \mathbb{N}$, i.e. (a+b)+c=a+(b+c). We want to show that P(S(c)) is true, i.e. (a+b)+S(c)=a+(b+S(c)).

$$(a + b) + S(c) = S((a + b) + c)$$
 (by definition of addition)
= $S(a + (b + c))$ (by inductive hypothesis)
= $a + S(b + c)$ (by definition of addition)
= $a + (b + S(c))$ (by definition of addition)

Thus, by Axiom 9', P(c) is true for all $c \in \mathbb{N}$.

Definition 3. Inequality on \mathbb{N} : For $a, b \in \mathbb{N}$, $a \leq b \iff \exists c \in \mathbb{N}, a+c=b$. We say $a < b \iff a \leq b$ and $a \neq b$.

Using \leq , we can restate Axiom 9' as follows:

Axiom 9" (the strong induction axiom): If P(x) is a proposition with one free variable and P(0) is true, for every $n \in \mathbb{N}$ if P(k) is true for all $k \in \mathbb{N}$ where $k \leq n$, P(n) is true. All axioms 1-8 are phrased in first-order logic, which is what have called predicate logic with quantification of elements of universal sets. Axioms 9, 9' and 9" all require second-order logic where we are allowed to quantify over proposition schemata.