Koji od navedenih izraza definira izraz za vremenski kontinuiranu Fourierovu transformaciju (CTFT)?

Select one:

$$\int_{-\infty}^{\infty} x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$

$$_{\odot}$$
 b. $X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt$

$$\sum_{n=0}^{N-1} x(n) W_N^{nk}$$

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j\Omega n}$$

o e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-j2\pi k/T_0} dt$$

The correct answer is:
$$X(j\omega)=\int_{-\infty}^{+\infty}x(t)e^{-j\omega t}\,dt$$
 .

Spektar vremenski kontinuiranog signala konačne energije za CTFT transformaciju jest:	
Select one:	
o a. aperiodička frekvencijski diskretna funkcija	
o b. aperiodička frekvencijski kontinuirana funkcija	
c. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)	
\odot d. periodička frekvencijski kontinuirana funkcija s periodom 2π 🗶	
Spektar je kontinuirana aperiodička funkcija.	
\odot e. periodička frekvencijski diskretna funkcija s periodom N	
of. periodička frekvencijski kontinuirana funkcija proizvoljnog perioda	
The correct answer is: aperiodička frekvencijski kontinuirana funkcija.	

Singal f(t) možemo predstaviti kao linearnu kombinaciju odabranih signala pomoću izraza $f(t) pprox \hat{f}(t) = \sum_k c_k \psi_k(t)$, što predstavlja $\psi_k(t)$?

Select one:

- A. baznu ili osnovnu funkciju

 √
- B. vrijeme
- C. signal
- D. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- E. kružnu frekvenciju
- F. spektar

The correct answer is: baznu ili osnovnu funkciju.

Koju od slijedećih funkcija NE možemo prikazati uz pomoć vremenski diskretne Fourierove transformacije (DTFT)?

Select one:

- $_{\odot}$ A. $\sin(\pi n)$
- \odot B. $e^{-|n|}$
- C. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- $_{\odot}$ D. e^{2n}
- E. 2

$$_{\odot}$$
 F. $\frac{1}{|n|+1}\sin(n)$

Funkcija ima konačnu energiju! 🙈

The correct answer is: e^{2n} .

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt$$

Vremenski kontinuirani Fourierov transformacijski par je

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} \, d\omega$$
 . Sto predstavlja t ?

Select one:

- A. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- B. signal
- C. frekvenciju
- D. kružnu frekvenciju
- E. spektar
- F. vrijeme √Bravo! <

Vremenski diskretan Fourierov red (DTFS) koristimo samo za prikaz vremenski diskretnih periodičnih signala!
Select one:
⊙ A. točno √
Bravo! 😝
○ B. netočno
C. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
The correct answer is: točno.

Za prikaz kojih signala se koristi vremenski diskretna Fourierova transformacija (DTFT)? Odaberite najopćenitiji odgovor od ponuđenih!	
Select one:	
oa. vremenski diskretnih signala beskonačnog trajanja i konačne energije	
 b. vremenski diskretnih signala beskonačne energije i beskonačnog trajanja 	
c. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)	
od. vremenski kontinuiranih amplitudno kvantiziranih signala konačne energije	
⊙ e. vremenski kontinuiranih signala beskonačne energije 🗶	
of. vremenski diskretnih signala konačnog trajanja i konačne energije	

The correct answer is: vremenski diskretnih signala beskonačnog trajanja i konačne energije.

Vremenski kontinuirani Fourierov red (CTFS) koristimo samo za prikaz vremenski diskretnih periodičnih signala!
Select one:
A. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
⊙ B. točno 🗶
Biti će bolje slijedeći put.
○ C. netočno
The correct answer is: netočno.

Jedan od nužnih, ali ne i dovoljnih uvjeta za postojanje Fourierovog reda za periodični signal x(t) glasi:

Signal x(t) ima konačan broj konačnih diskontinuiteta u bilo kojoj periodi.

Select one:

- A. netočno
- B. točno √Bravo!
- C. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Za prikaz kojih signala se koristi vremenski diskretan Fourierov red (DTFS)? Odaberite najopćenitiji odgovor od ponuđenih!				
Select one:				
a. aperiodičkih vremenski kontinuiranih signala konačnog trajanja i konačne energije				
⊙ b. periodičkih vremenski kontinuiranih signala beskonačnog trajanja i konačne snage X				
o. aperiodičkih vremenski kontinuiranih signala beskonačnog trajanja i konačne energije				
od. aperiodičkih vremenski diskretnih signala beskonačnog trajanja i konačne energije				
e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)				
○ f. periodičkih vremenski diskretnih signala beskonačnog trajanja i konačne snage				
The correct answer is: periodičkih vremenski diskretnih signala beskonačnog trajanja i konačne snage.				

Koja od sljedećih relacija JEST Parsevalova relacija za vremenski kontinurani Fourierov red (CTFS)?

Select one:

$$\int_{-\infty}^{+\infty} x(t)x^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega)X^*(j\omega) d\omega$$

$$\sum_{n=0}^{N-1} x(n)x^*(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k)X^*(k)$$

C. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\sum_{n=0}^{N-1} \sum_{n=0}^{N-1} x(n) x^*(n) = \sum_{k=0}^{N-1} X_k X_k^*$$

$$\sum_{n=-\infty}^{+\infty} x(n) x^*(n) = \frac{1}{2\pi} \int_{-pi}^{\pi} X(e^{j\Omega}) X^*(e^{j\Omega}) d\Omega$$

$$\int_{T_0} \frac{1}{T_0} \int_{T_0} x(t) x^*(t) dt = \sum_{k=-\infty}^{+\infty} X_k X_k^*$$

The correct answer is:
$$\frac{1}{T_0}\int_{T_0}x(t)x^*(t)\,dt=\sum_{k=-\infty}^{+\infty}X_kX_k^*$$
 .

Za prikaz kojih signala se koristi vremenski diskretan Fourierov red (DTFS)? Odaberite najopćenitiji odgovor od ponuđenih!
Select one:
o a. periodičkih vremenski kontinuiranih signala beskonačnog trajanja i konačne snage
ob. periodičkih vremenski diskretnih signala beskonačnog trajanja i konačne snage
o. aperiodičkih vremenski diskretnih signala beskonačnog trajanja i konačne energije
od. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
e. aperiodičkih vremenski kontinuiranih signala beskonačnog trajanja i konačne energije
of. aperiodičkih vremenski kontinuiranih signala konačnog trajanja i konačne energije
The correct answer is: periodičkih vremenski diskretnih signala beskonačnog trajanja i konačne snage.

Vremenski kontinuirana Fourierova transformacija (CTFT) kontinuiranog aperiodičkog signala postoji ako i samo ako je signal

 $x(t)_{\rm konačne\ energije} \int_{-\infty}^{\infty} |x(t)|^2\,dt < \infty_{\rm i\ ako\ ima\ neprebrojivo\ mnogo\ konačnih\ diskontinuiteta.\ To\ su}$ Dirichletovi uvjeti!

Select one:

- A. netočno
- B. točno
- C. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Koju od slijedećih funkcija možemo prikazati uz pomoć vremenski kontinuiranog Fourierovog reda (CTFS)?

Select one:

- $_{\odot}$ A. $\sin(t^2)$
- B. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- \circ c. $\frac{1}{t}\sin(t)$
- \circ D. $e^{\sin(t)}$
- $_{\odot}$ E. $e^t \sin(t)$ $_{\odot}$ F. $\ln(t-3)$

The correct answer is: $e^{\sin(t)}$.

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt$$

Vremenski kontinuirani Fourierov transformacijski par je

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} \, d\omega$$
 . Sto predstavlja $X(j\omega)$?

Select one:

- A. frekvenciju
- B. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- C. vrijeme
- D. kružnu frekvenciju
- E. signal
- F. spektar

The correct answer is: spektar.

Koji od navedenih izraza definira izraz za vremenski diskretan Fourierov red (DTFS)?

Select one:

$$X_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-j2\pi k/T_0} dt$$

$$\sum_{n=0}^{N-1} X(k) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pi nk/N}$$

$$_{\odot}$$
 c. $x(n) = \sum_{k=0}^{N-1} X(k) e^{j2\pi nk/N}$

od. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\text{e. } X(k) = \sum_{n=0}^{N-1} x(n) W_N^{\frac{\text{X_k = \{1\backslash \text{over T_0}\}\backslash \text{int}_{T_0}} \times (t) \text{e-}\{-j2\backslash \text{pi k/T_0}\}\backslash, \text{dt}}{N} }$$

$$\int_{0}^{\infty} K(e^{j\Omega}) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j\Omega n}$$

The correct answer is:
$$X(k) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pi nk/N}$$
 .

Spektar vremenski kontinuiranog signala konačne energije za CTFT transformaciju jest:
Select one:
a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
b. aperiodička frekvencijski diskretna funkcija
\odot c. periodička frekvencijski kontinuirana funkcija s periodom 2π
\odot d. periodička frekvencijski diskretna funkcija s periodom N
 ● e. aperiodička frekvencijski kontinuirana funkcija √
Bravo!
Of. periodička frekvencijski kontinuirana funkcija proizvoljnog perioda Of. periodička frekvencijski kontinuirana funkcija proizvoljnog perioda Of. periodička frekvencijski kontinuirana funkcija proizvoljnog perioda

The correct answer is: aperiodička frekvencijski kontinuirana funkcija.

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt \ x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega)e^{j\omega t} d\omega$$

Fourierov transformacijski par je

. Što predstavlja x(t)?

Select one:

- A. kružnu frekvenciju
- B. signal ✓Izvrsno! ⊙
- C. vrijeme
- D. spektar
- E. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- F. frekvenciju

The correct answer is: signal.

Koji od navedenih izraza definira izraz za inverznu vremenski diskretnu Fourierovu transformaciju (IDTFT)?

Select one:

$$_{\odot}$$
 a. $x(n) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(\omega) e^{j\omega n} d\omega$

$$\sum_{k=0}^{N-1} X(k) W_N^{-nk}$$

$$_{\odot}$$
 c. $X(e^{j\Omega}) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j\Omega n}$

$$\int_{-\infty}^{\infty} x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$

e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\int_{0}^{\infty} f(t) = \sum_{k=-\infty}^{+\infty} X_k e^{j2\pi k/T_0} dt$$

The correct answer is:
$$x(n)=\frac{1}{2\pi}\int_{-\pi}^{+\pi}X(\omega)e^{j\omega n}\,d\omega$$

Singal f(t) možemo predstaviti kao linearnu kombinaciju odabranih signala pomoću izraza $f(t) pprox \hat{f}(t) = \sum_k c_k \psi_k(t)$, što predstavlja c_k ?

Select one:

- A. vrijeme
- B. baznu ili osnovnu funkciju X
- C. spektar
- D. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- E. kružnu frekvenciju
- F. signal

The correct answer is: spektar.

Signal $x(t) = \sin(t) + \sin(\sqrt{2}t) + \sin(\sqrt{3}t)$ može se razviti u vremenski kontinuirani Fourierov red (CTFS).

Select one:

- A. netočno
- B. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- C. točno X

Pazi, u Fourierov red možemo razviti samo periodične signale! Zbroj zadana tri harmonijska signala nije periodičan. 🙈

Za prikaz kojih signala se koristi vremenski diskretan Fourierov red (DTFS)? Odaberite najopćenitiji odgovor od ponuđenih!
Select one:
o a. periodičkih vremenski kontinuiranih signala beskonačnog trajanja i konačne snage
 b. aperiodičkih vremenski kontinuiranih signala konačnog trajanja i konačne energije
oc. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
od. aperiodičkih vremenski diskretnih signala beskonačnog trajanja i konačne energije
e. aperiodičkih vremenski kontinuiranih signala beskonačnog trajanja i konačne energije
⊙ f. periodičkih vremenski diskretnih signala beskonačnog trajanja i konačne snage √

The correct answer is: periodičkih vremenski diskretnih signala beskonačnog trajanja i konačne snage.

Spektar vremenski diskretnog signala konačne energije za DTFT transformaciju jest:
Select one: a. aperiodička frekvencijski diskretna funkcija b. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova) c. periodička frekvencijski diskretna funkcija s periodom N
Spektar je kontinuiran po frekvenciji fiksnog perioda 2π .
\bigcirc d. periodička frekvencijski kontinuirana funkcija s periodom 2π \bigcirc e. aperiodička frekvencijski kontinuirana funkcija \bigcirc f. periodička frekvencijski kontinuirana funkcija proizvoljnog perioda
The correct answer is: periodička frekvencijski kontinuirana funkcija s periodom 2π .

The correct answer is: periodičkih vremenski diskretnih signala beskonačnog trajanja i konačne snage.

	prikaz kojih signala se koristi vremenski kontinuirana Fourierova transformacija (CTFT)? Odaberite najopćenitiji odgovor od nuđenih!
Sel	ect one:
0	a. vremenski diskretnih signala beskonačnog trajanja i konačne energije 🗶
0	b. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
0	c. vremenski kontinuiranih amplitudno kvantiziranih signala konačne energije
0	d. vremenski kontinuiranih signala beskonačnog trajanja i konačne energije
0	e. vremenski kontinuiranih signala konačnog trajanja i konačne energije

The correct answer is: vremenski kontinuiranih signala beskonačnog trajanja i konačne energije.

of. vremenski diskretnih signala konačnog trajanja i konačne energije

Ako signal f(t) želimo predstaviti kao linearnu kombinaciju NEPREBROJIVO mnogo odabranih osnovnih ili baznih signala $\psi_k(t)_{\mathrm{tada\ koristimo\ izraz}}f(t)=\sum_k c_k\psi_k(t)$

Select one:

- A. netočno √
- B. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- C. točno

Signal $x(n) = \sin(\pi n) + \sin(\sqrt{2}n) + \sin(\sqrt{3}\pi n)$ može se razviti u vremenski diskretan Fourierov red (DTFS).

Select one:

A. točno X

Pazi, u vremenski diskretan Fourierov red možemo razviti samo periodične signale! Zbroj zadana tri signala nije periodičan.

- B. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- C. netočno

Vremenski kontinuirani Fourierov red (CTFS) koristimo samo za prikaz vremenski diskretnih periodičnih signala!
Select one:
⊙ A. točno 🗶
Biti će bolje slijedeći put.
B. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
○ C. netočno
The correct answer is: netočno.

Za prikaz kojih signala se koristi vremenski kontinuiran Fourierov red (CTFS)? Odaberite najopćenitiji odgovor od ponuđenih!
Select one: a. aperiodičkih vremenski kontinuiranih signala beskonačnog trajanja i konačne energije
⊙ b. periodičkih vremenski diskretnih signala beskonačnog trajanja i konačne snage 🗶
c. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
ot. aperiodičkih vremenski kontinuiranih signala konačnog trajanja i konačne energije
o e. aperiodičkih vremenski diskretnih signala beskonačnog trajanja i konačne energije
of. periodičkih vremenski kontinuiranih signala beskonačnog trajanja i konačne snage
The correct answer is: periodičkih vremenski kontinuiranih signala beskonačnog trajanja i konačne snage.

The correct answer is: periodička frekvencijski kontinuirana funkcija s periodom 2π .

Ako signal f(t) želimo predstaviti kao linearnu kombinaciju PREBROJIVO mnogo odabranih osnovnih ili baznih signala $\psi(k,t)_{ ext{tada koristimo izraz}} f(t) = \int c_k \psi(k,t) \, dk$.

Select one:

- A. netočno
- B. točno X
- C. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Vremenski diskretan Fourierov red (DTFS) koristimo samo za prikaz vremenski diskretnih periodičnih signala!
Select one:
 ● A. točno ✓
Bravo! 😁
○ B. netočno
C. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
The correct answer is: točno.

Za prikaz kojih signala se koristi vremenski diskretna Fourierova transformacija (DTFT)? Odaberite najopćenitiji odgovor od ponuđenih!
Select one:
a. vremenski kontinuiranih amplitudno kvantiziranih signala konačne energije
o b. vremenski kontinuiranih signala beskonačne energije
⊙ c. vremenski diskretnih signala beskonačnog trajanja i konačne energije ✓
od. vremenski diskretnih signala konačnog trajanja i konačne energije
e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
of. vremenski diskretnih signala beskonačne energije i beskonačnog trajanja
The correct answer is: vremenski diskretnih signala beskonačnog trajanja i konačne energije.

Koju od slijedećih funkcija NE možemo prikazati uz pomoć vremenski diskretne Fourierove transformacije (DTFT)?

Select one:

- $_{\odot}$ A. $\sin(\pi n)$
- \odot B. 2
- $_{\odot}$ c. e^{2n} ✓

Bravo! Eksponencijala ima realni pozitivan eksponent te funkcija ima beskonačnu i energiju i snagu!

- $oldsymbol{0} = \frac{1}{|n|+1}\sin(n)$
- E. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- \odot F. $e^{-|n|}$

The correct answer is: e^{2n} .

Spektar vremenski kontinuiranog signala konačne energije za CTFT transformaciju jest:
Select one: oulogo a. periodička frekvencijski kontinuirana funkcija proizvoljnog perioda
 b. periodička frekvencijski kontinuirana funkcija s periodom 2π c. aperiodička frekvencijski diskretna funkcija d. aperiodička frekvencijski kontinuirana funkcija √ Bravo!
\odot e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova) \odot f. periodička frekvencijski diskretna funkcija s periodom N

The correct answer is: aperiodička frekvencijski kontinuirana funkcija.

Singal f(t) možemo predstaviti kao linearnu kombinaciju odabranih signala pomoću izraza $f(t) pprox \hat{f}(t) = \sum_k c_k \psi_k(t)$. Što predstavlja c_k ?

Select one:

- A. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- B. kružnu frekvenciju
- C. baznu ili osnovnu funkciju
- D. spektar √
- E. signal
- F. vrijeme

The correct answer is: spektar.

Koju od slijedećih funkcija možemo prikazati uz pomoć vremenski kontinuiranog Fourierovog reda (CTFS)?

Select one:

- A. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

- $_{\odot}$ E. $\frac{1}{t}$ sin(t)
- \odot F. $e^{\sin(t)}$

Bravo! Ova funkcija je periodična te postoji Fourierov red. 😁

The correct answer is: $e^{\sin(t)}$

Koji od navedenih izraza definira izraz za vremenski kontinuiranu Fourierovu transformaciju (CTFT)?

Select one:

$$\sum_{n=0}^{N-1} x(n) W_N^{nk}$$

$$\int_{-\infty}^{\infty} x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$

$$\sum_{n=-\infty}^{+\infty} X(e^{j\Omega}) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j\Omega n}$$

d. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-j2\pi k/T_0} dt$$

$$_{\odot}$$
 f. $X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt$

The correct answer is:
$$X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} \, dt$$

Koja od sljedećih relacija JEST Parsevalova relacija za vremenski kontinurani Fourierov red (CTFS)?

Select one:

$$\sum_{n=0}^{N-1} x(n) x^*(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) X^*(k)$$

$$\sum_{n=-\infty}^{+\infty} x(n) x^*(n) = \frac{1}{2\pi} \int_{-pi}^{\pi} X(e^{j\Omega}) X^*(e^{j\Omega}) d\Omega$$

$$\int_{0}^{\infty} \int_{0}^{N-1} \sum_{n=0}^{N-1} x(n) x^{*}(n) = \sum_{k=0}^{N-1} X_{k} X_{k}^{*}$$

D. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\int_{0}^{1} \int_{T_0}^{1} x(t) x^*(t) dt = \sum_{k=-\infty}^{+\infty} X_k X_k^*$$

$$\int_{-\infty}^{+\infty} x(t)x^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega)X^*(j\omega) d\omega$$

The correct answer is:
$$\frac{1}{T_0}\int_{T_0}x(t)x^*(t)\,dt=\sum_{k=-\infty}^{+\infty}X_kX_k^*$$

Koji od navedenih izraza definira izraz za vremenski diskretnu Fourierovu transformaciju (DTFT)?

Select one:

$$_{\odot}$$
 a. $X(j\omega)=\int_{-\infty}^{+\infty}x(t)e^{-j\omega t}\,dt$

$$_{\odot}$$
 b. $x(n)=\frac{1}{2\pi}\int_{-\pi}^{+\pi}X(e^{j\Omega})e^{j\Omega n}\,d\Omega$ X

$$X_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-j2\pi k/T_0} dt$$

d. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$_{\odot}$$
 e. $X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}$

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j\Omega n}$$

The correct answer is:
$$X(e^{j\Omega}) = \sum_{n=-\infty}^{+\infty} x(n) e^{-j\Omega n}$$
 .

Koja od sljedećih relacija JEST Parsevalova relacija za vremenski diskretnu Fourierovu transformaciju (DTFT)?

Select one:

A. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\sum_{n=0}^{N-1} x(n)x^*(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k)X^*(k)$$

$$\int_{-\infty}^{+\infty} x(t)x^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega)X^*(j\omega) d\omega$$

$$\sum_{n=-\infty}^{+\infty} x(n) x^*(n) = \frac{1}{2\pi} \int_{-pi}^{\pi} X(e^{j\Omega}) X^*(e^{j\Omega}) d\Omega$$

$$\sum_{n=0}^{N-1} \sum_{n=0}^{N-1} x(n) x^*(n) = \sum_{k=0}^{N-1} X_k X_k^* \chi$$

$$\int_{T_0} \frac{1}{T_0} \int_{T_0} x(t) x^*(t) dt = \sum_{k=-\infty}^{+\infty} X_k X_k^*$$

The correct answer is:
$$\sum_{n=-\infty}^{+\infty} x(n) x^*(n) = \frac{1}{2\pi} \int_{-pi}^{\pi} X(e^{j\Omega}) X^*(e^{j\Omega}) \, d\Omega$$

Koja od sljedećih relacija JEST Parsevalova relacija za vremenski diskretan Fourierov red (DTFS)?

Select one:

$$\sum_{n=0}^{N-1} x(n)x^*(n) = \sum_{k=0}^{N-1} X_k X_k^*$$

$$\sum_{n=0}^{N-1} x(n) x^*(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) X^*(k) X^*(k)$$

$$\int_{T_0} \int_{T_0} x(t)x^*(t) dt = \sum_{k=-\infty}^{+\infty} X_k X_k^*$$

$$\int_{-\infty}^{+\infty} x(t)x^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega)X^*(j\omega) d\omega$$

E. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\sum_{n=-\infty}^{+\infty} x(n) x^*(n) = \frac{1}{2\pi} \int_{-pi}^{\pi} X(e^{j\Omega}) X^*(e^{j\Omega}) d\Omega$$

The correct answer is:
$$\frac{1}{N} \sum_{n=0}^{N-1} x(n) x^*(n) = \sum_{k=0}^{N-1} X_k X_k^*$$
 .

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt$$

Vremenski kontinuirani Fourierov transformacijski par je

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} \, d\omega$$
 . Što predstavlja ω ?

Select one:

A. spektar

B. frekvenciju X

Pazi! F je frekvencija, dok je ω kružna frekvencija.

- C. vrijeme
- D. kružnu frekvenciju
- E. signal
- F. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

The correct answer is: kružnu frekvenciju.

Vremenski diskretan Fourierov red (DTFS) koristimo samo za prikaz vremenski diskretnih periodičnih signala!
Select one:
A. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
⊕ B. točno
Bravo! 😁
○ C. netočno
The correct answer is: točno.

Vremenski kontinuirani periodični signali imaju diskretan spektar (CTFS) i razmak između dviju spektralnih linija jednak je vrijednosti osnovnog perioda $2\pi/T_0$.

Select one:

- A. točno √Super!
- B. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- C. netočno

The correct answer is: točno.

Vremenski kontinuiranim Fourierovim redom (CTFS) možemo prikazati vremenski kontinuirani periodični niz pravokutnih impulsa jedinične amplitude i konačnog trajanja.

Select one:

A. točno
Bravo!
Bravo!
C. netočno

The correct answer is: točno.

Parsevalova relacija za aperiodičke vremenski kontinuirane signale konačne energije izražava princip očuvanja energije u vremenskoj i frekvencijskoj domeni.
Select one:
A. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
⊕ B. točno
Odlično! 😀
○ C. netočno
The correct answer is: točno.

Vremenski diskretan Fourierov red (DTFS) koristimo samo za prikaz vremenski kontinuiranih periodičnih signala!
Select one:
B. netočno Bravo! Br
C. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
The correct answer is: netočno.

The correct answer is: aperiodička frekvencijski kontinuirana funkcija.

Koji od navedenih izraza definira izraz za inverznu vremenski diskretnu Fourierovu transformaciju (IDTFT)?

Select one:

$$_{\odot}$$
 a. $X(e^{j\Omega})=\sum_{n=-\infty}^{+\infty}x(n)e^{-j\Omega n}$

$$_{\odot}$$
 b. $x(n) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(\omega) e^{j\omega n} d\omega$

c. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\int_{-\infty}^{\infty} x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$

$$\sum_{k=-\infty}^{+\infty} X_k e^{j2\pi k/T_0} dt$$

$$\int_{0}^{\infty} f(t) = \sum_{k=0}^{N-1} X(k) W_N^{-nk}$$

The correct answer is:
$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(\omega) e^{j\omega n} \, d\omega$$

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt$$

Vremenski kontinuirani Fourierov transformacijski par je

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} \, d\omega \, \text{Sto predstavlja} \, X(j\omega) \text{, Sto predstavlja} \, X(j\omega) \text{,} \label{eq:xtop}$$

Select one:

- A. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- B. frekvenciju
- C. kružnu frekvenciju
- D. vrijeme
- E. spektar ✓Super!
- F. signal

The correct answer is: spektar.

Koji od navedenih izraza definira izraz za vremenski kontinuiran Fourierov red (CTFS)?

Select one:

$$\int_{a.}^{+\infty} x(t) = \sum_{k=-\infty}^{+\infty} X_k e^{j2\pi k/T_0} dt$$

$$\sum_{n=0}^{N-1} x(n) W_N^{nk}$$

c. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$_{\odot} \, _{\rm d.} X_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-j2\pi k/T_0} \, dt \, _{\checkmark}$$

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j\Omega n}$$

$$\int_{-\infty}^{+\infty} X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt$$

The correct answer is: $X_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-j2\pi k/T_0} \, dt$

Koju od slijedećih funkcija možemo prikazati uz pomoć vremenski diskretnog Fourierovog reda (DTFS)?

Select one:

$$_{\odot}$$
 A. $\sin(\pi n^2)$

Bravo! Ova funkcija je periodična te postoji Fourierov red. 😁

- $_{\odot}$ B. $\frac{1}{|n|+1} \sin(n)$ $_{\odot}$ c. $\ln(n-3)$
- $_{\odot} _{D.} e^n \sin(n)$
- E. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- \odot F. $e^{\sin(n)}$

The correct answer is: $\sin(\pi n^2)$

Vremenski kontinuiranim Fourierovim redom (CTFS) NE možemo prikazati vremenski kontinuirani aperiodični pravokutni impuls jedinične amplitude i konačnog trajanja.
Select one:
○ A. netočno
⊕ B. točno ✓
Bravo!
C. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
The correct answer is: točno.

Singal f(t) možemo predstaviti kao linearnu kombinaciju odabranih signala pomoću izraza $f(t) pprox \hat{f}(t) = \sum_k c_k \psi_k(t)$. Što predstavlja c_k ?

Select one:

- A. spektar √
- B. vrijeme
- C. kružnu frekvenciju
- D. signal
- E. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- F. baznu ili osnovnu funkciju

The correct answer is: spektar.

Koji od navedenih izraza definira izraz za vremenski diskretnu Fourierovu transformaciju (DTFT)?

Select one:

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt$$

$$x(n) = \frac{x(e^{j\log a}) = \sum_{n=-\inf y}^{n=-\inf y}^{+\inf y}}{x(n) e^{-j\log a}}$$

$$X_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-j2\pi k/T_0} dt$$

d. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\sum_{n=0}^{N-1} x(n) W_N^{nk}$$

$$_{\odot}$$
 f. $X(e^{j\Omega}) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j\Omega n}$

The correct answer is:
$$X(e^{j\Omega}) = \sum_{n=-\infty}^{+\infty} x(n) e^{-j\Omega n}$$

/remenski kontinuiranim Fourierovim redom (CTFS) možemo prikazati vremenski kontinuirani periodični niz pravokutnih mpulsa jedinične amplitude i konačnog trajanja.
Select one:
A. netočno
B. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
⊙ C. točno ✓
Bravo!

The correct answer is: točno.

Vremenski kontinuiranom Fourierovom transformacijom (CTFT) NE možemo prikazati vremenski kontinuirani periodični niz pravokutnih impulsa jedinične amplitude i konačnog trajanja.	
Select one:	
○ A. točno	
B. netočno Bravo! Br	
C. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)	
The correct answer is: netočno.	

Za prikaz kojih signala se koristi vremenski kontinuirana Fourierova transformacija (CTFT)? Odaberite najopćenitiji odgovor od ponuđenih!
Select one:
a. vremenski kontinuiranih amplitudno kvantiziranih signala konačne energije
ob. vremenski kontinuiranih signala konačnog trajanja i konačne energije
⊙ c. vremenski kontinuiranih signala beskonačnog trajanja i konačne energije √
od. vremenski diskretnih signala konačnog trajanja i konačne energije
o e. vremenski diskretnih signala beskonačnog trajanja i konačne energije
of. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
The correct answer is: vremenski kontinuiranih signala beskonačnog trajanja i konačne energije.

Select one:

a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\int_{0}^{\infty} x(t) = \sum_{k=0}^{N-1} X(k) W_N^{-nk}$$

$$_{\odot}$$
 c. $x(n) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(\omega) e^{j\omega n} d\omega$

$$\int_{-\infty}^{\infty} x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$

$$\sum_{n=-\infty}^{+\infty} X(e^{j\Omega}) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j\Omega n}$$

$$\int_{0}^{+\infty} x(t) = \sum_{k=-\infty}^{+\infty} X_k e^{j2\pi k/T_0} dt$$

The correct answer is:
$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(\omega) e^{j\omega n} \, d\omega$$

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt$$

Vremenski kontinuirani Fourierov transformacijski par je

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} \, d\omega$$
 . Što predstavlja t ?

Select one:

- A. kružnu frekvenciju
- B. vrijeme √Bravo!
- C. spektar
- D. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- E. frekvenciju
- F. signal

The correct answer is: vrijeme.

Ako signal f(t) želimo predstaviti kao linearnu kombinaciju NEPREBROJIVO mnogo odabranih osnovnih ili baznih signala $\psi(k,t)_{\mathrm{tada\ koristimo\ izraz}} f(t) = \int\limits_{f(t)=\mathrm{int\ c_k\ psi(k,t)\setminus dk}} c_k \psi(k,t) \, dk$

Select one:

- A. netočno X
- B. točno
- C. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

The correct answer is: točno.

Vremenski kontinuirani Fourierov red (CTFS) vremenski kontinuiranog periodičnog pravokutnog signala x(t) je kontinuirana funkcija frekvencije.

Select one:

- A. netočno
- B. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- C. točno X

Fourierov red periodične funkcije uvijek daje diskretne koeficijente.

The correct answer is: netočno.

Koji od navedenih izraza definira izraz za vremenski diskretnu Fourierovu transformaciju (DTFT)?

Select one:

$$_{\odot}$$
 a. $X_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-j2\pi k/T_0} dt$

b. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$_{\odot}$$
 c. $X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt$

$$\int_{-\pi}^{\pi} x(n) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(e^{j\Omega}) e^{j\Omega n} d\Omega$$

$$_{\odot}$$
 e. $X(e^{j\Omega})=\sum_{n=-\infty}^{+\infty}x(n)e^{-j\Omega n}$

$$\int_{0}^{\infty} X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}$$

The correct answer is:
$$X(e^{j\Omega}) = \sum_{n=-\infty}^{+\infty} x(n) e^{-j\Omega n}$$

Koja od sljedećih relacija JEST Parsevalova relacija za vremenski diskretan Fourierov red (DTFS)?

Select one:

- A. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- $B. \sum_{\substack{\{1 \text{ omega}}X^*(j \text{ omega}), d \text{ omega}}} \sum_{\substack{\{1 \text{ omega}}X^*(j \text{ omega}), d \text{ omega}}} X(t) \times X($
- $\sum_{n=0}^{N-1} \sum_{n=0}^{N-1} x(n) x^*(n) = \sum_{k=0}^{N-1} X_k X_k^*$
- $\sum_{n=-\infty}^{+\infty} x(n) x^*(n) = \tfrac{1}{2\pi} \int_{-pi}^\pi X(e^{j\Omega}) X^*(e^{j\Omega}) \, d\Omega$
- $\int_{T_0} \frac{1}{T_0} \int_{T_0} x(t) x^*(t) dt = \sum_{k=-\infty}^{+\infty} X_k X_k^*$

The correct answer is:
$$\frac{1}{N} \sum_{n=0}^{N-1} x(n) x^*(n) = \sum_{k=0}^{N-1} X_k X_k^*$$

Koju od slijedećih funkcija možemo prikazati uz pomoć vremenski diskretnog Fourierovog reda (DTFS)?

Select one:

- $_{\odot}$ A. $\ln(n-3)$
- $_{\odot}$ B. $e^{\sin(n)}$
- $_{\circ}$ c. $e^n \sin(n)$
- D. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- \odot E. $\frac{1}{|n|+1} \sin(n)$ \odot F. $\sin(\pi n^2)$

The correct answer is: $\sin(\pi n^2)$

Koju od slijedećih funkcija NE možemo prikazati uz pomoć vremenski kontinurane Fourierove transformacije (CTFT)?

Select one:

 \circ A. $\sin(\pi t)$

Za funkciju postoji generalizirana transformacija. 🙈

$$_{\odot}$$
 B. $\frac{1}{|t|+1}$ $\sin(t)$

- C. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

- \odot F. 2

The correct answer is: e^{2t} .

Vremenski kontinuirani Fourierov red (CTFS) koristimo samo za prikaz vremenski kontinuiranih periodičnih signala!
Select one:
⊙ A. netočno 🗶
Biti će bolje slijedeći put.
○ B. točno
C. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
The correct answer is: točno.