

Вадим Пузаренко

Понатиа

Нормализа-

Лекция L3 Типизированное λ -исчисление, Π

Вадим Пузаренко

17 октября 2021 г.

Лекция L3
Типизированное $\lambda -$ исчисление, II

Вадим Пузаренк

Понятия

Нормализа-

Напомним основные определения предыдущей лекции.

Лекция L3 Типизированное λ исчисление, Π

Пузарени

Понятия

Нормализа.

Напомним основные определения предыдущей лекции.

Определение

Определим понятие типа индукцией по построению.

Лекция L3 Типизированное λ исчисление, Π

Пузарени

Понятия

Нормализа. ция Напомним основные определения предыдущей лекции.

Определение

Определим понятие типа индукцией по построению.

• Каждый простейший тип является типом.

Лекция L3
Типизированное $\lambda -$ исчисление, Π

Вадим Пузарени

Понятия

Нормализа

Напомним основные определения предыдущей лекции.

Определение

Определим понятие типа индукцией по построению.

- Каждый простейший тип является типом.
- $oldsymbol{Q}$ Если π и au типы, то $(\pi o au)$ также является типом.

Лекция L3
Типизированное λ исчисление, Π

Вадим Пузаренко

Понятия

Нормализа ция Напомним основные определения предыдущей лекции.

Определение

Определим понятие типа индукцией по построению.

- Каждый простейший тип является типом.
- $oldsymbol{lack}$ Если π и au типы, то $(\pi o au)$ также является типом.
- Других типов нет.

Лекция L3
Типизированное $\lambda -$ исчисление, Π

Вадим Пузаренко

Понятия

Нормализа ция Напомним основные определения предыдущей лекции.

Определение

Определим понятие типа индукцией по построению.

- Каждый простейший тип является типом.
- $oldsymbol{oldsymbol{eta}}$ Если π и au типы, то $(\pi o au)$ также является типом.
- Других типов нет.

Предполагается, что типы, имеющие различные записи, различны. Другими словами, нетривиальной пары синонимов нет.

Вадим Пузарени

Понятия

Нормализа ция

Определение

Любое отображение γ , сопоставляющее каждой переменной некоторый тип, называется **типизацией** переменных. При этом будем говорить, что переменная x имеет тип $\gamma(x)$.

Упорядоченную пару, состоящую из переменной и её типа, будем называть **типизированной переменной** (будем записывать как $x: \tau$ или x^{τ}).

Лекция L3 Типизированное λ исчисление, Π

> Вадим Пузаренк

Понятия

Нормализа ция

Определение

Любое отображение γ , сопоставляющее каждой переменной некоторый тип, называется **типизацией** переменных. При этом будем говорить, что переменная x имеет тип $\gamma(x)$.

Упорядоченную пару, состоящую из переменной и её типа, будем называть **типизированной переменной** (будем записывать как $x: \tau$ или x^{τ}).

Если каждой переменной приписан некоторый тип, то мы также можем приписать типы и некоторым λ -термам.

Лекция L3 Типизированное λ исчисление, Π

> Вадим Пузаренк

Понятия

Нормализа ция

Определение

Любое отображение γ , сопоставляющее каждой переменной некоторый тип, называется **типизацией** переменных. При этом будем говорить, что переменная x имеет тип $\gamma(x)$.

Упорядоченную пару, состоящую из переменной и её типа, будем называть **типизированной переменной** (будем записывать как $x: \tau$ или x^{τ}).

Если каждой переменной приписан некоторый тип, то мы также можем приписать типы и некоторым λ -термам.

Замечание.

Всегда будем считать, что типизация γ переменных обязательно удовлетворяет следующему условию: каждый тип приписывается бесконечному количеству переменных.

T ипизация λ $\mathsf{-}$ термов

Лекция L3 Типизированное λ исчисление, Π

> Вадим Пузаренк

Понятия

Нормализация Полагаем, что сигнатура σ также типизирована, т.е. каждой константе ${\bf c}$ заранее приписывается тип $t({\bf c})$. Далее, пусть задана типизация γ переменных.

Лекция L3 Типизированное λ исчисление, Π

> Вадим Пузаренк

Понятия

Нормализа ция Полагаем, что сигнатура σ также типизирована, т.е. каждой константе ${\bf c}$ заранее приписывается тип $t({\bf c})$. Далее, пусть задана типизация γ переменных.

Определение

Лекция L3 Типизированное λ исчисление, Π

Вадим Пузаренко

Понятия

Нормализа ция Полагаем, что сигнатура σ также типизирована, т.е. каждой константе ${\bf c}$ заранее приписывается тип $t({\bf c})$. Далее, пусть задана типизация γ переменных.

Определение

Индукцией по построению λ -термов зададим приписывание типа следующим образом:

lacktriangle всякая переменная x получает тип $au=\gamma(x)$;

Лекция L3
Типизированное $\lambda -$ исчисление, Π

Вадим Пузаренко

Понятия

Нормализа ция Полагаем, что сигнатура σ также типизирована, т.е. каждой константе ${\bf c}$ заранее приписывается тип $t({\bf c})$. Далее, пусть задана типизация γ переменных.

Определение

- lacktriangle всякая переменная x получает тип $au=\gamma(x)$;
- $oldsymbol{2}$ всякая константа $oldsymbol{c}$ получает некоторый тип $t(oldsymbol{c})$, независимо от типизации γ ;

Лекция L3 Типизированное λ исчисление, Π

Вадим Пузаренко

Понятия

Нормализа ция Полагаем, что сигнатура σ также типизирована, т.е. каждой константе ${\bf c}$ заранее приписывается тип $t({\bf c})$. Далее, пусть задана типизация γ переменных.

Определение

- lacktriangle всякая переменная x получает тип $au=\gamma(x)$;
- $oldsymbol{2}$ всякая константа $oldsymbol{c}$ получает некоторый тип $t(oldsymbol{c})$, независимо от типизации γ ;
- ullet если M и $N-\lambda$ -термы, уже получившие типы $(\pi o au)$ и π , то λ -терм (MN) получает тип au;

Лекция L3 Типизированное λ исчисление, Π

Вадим Пузаренко

Понятия

Нормализа ция Полагаем, что сигнатура σ также типизирована, т.е. каждой константе ${\bf c}$ заранее приписывается тип $t({\bf c})$. Далее, пусть задана типизация γ переменных.

Определение

- lacktriangle всякая переменная x получает тип $au=\gamma(x)$;
- $oldsymbol{2}$ всякая константа $oldsymbol{c}$ получает некоторый тип $t(oldsymbol{c})$, независимо от типизации γ ;
- ullet если M и $N-\lambda$ -термы, уже получившие типы $(\pi o au)$ и π , то λ -терм (MN) получает тип au;
- ullet если $M-\lambda$ -терм, уже получивший тип π , а переменная $x-\tau$ тип τ , то λ -терм $\lambda x.M$ получает тип $\tau \to \pi$;

Лекция L3 Типизированное λ исчисление, Π

Вадим Пузаренко

Понятия

Нормализа ция Полагаем, что сигнатура σ также типизирована, т.е. каждой константе ${\bf c}$ заранее приписывается тип $t({\bf c})$. Далее, пусть задана типизация γ переменных.

Определение

- lacktriangle всякая переменная x получает тип $au=\gamma(x)$;
- $oldsymbol{2}$ всякая константа $oldsymbol{c}$ получает некоторый тип $t(oldsymbol{c})$, независимо от типизации γ ;
- ullet если M и $N-\lambda$ -термы, уже получившие типы $(\pi o au)$ и π , то λ -терм (MN) получает тип au;
- ullet если $M-\lambda$ -терм, уже получивший тип π , а переменная $x-\tau$ тип τ , то λ -терм $\lambda x.M$ получает тип $\tau \to \pi$;
- ullet всякий λ -терм получает тип только согласно пп. 1-4.

Лекция L3 Типизированное $\lambda-$

исчисление, II

Вадим Пузаренко

Понятия

Нормализа ция

Определение

Упорядоченную пару, состоящую из λ -терма и его типа, будем называть **типизированным** λ -**термом**. Для типизированных λ -термов используется та же запись, что и для переменных: $A: \tau$ обозначает λ -терм A типа τ .

Лекция L3 Типизированное λ исчисление,

> Вадим Пузаренк

Понятия

Нормализа ция

Определение

Упорядоченную пару, состоящую из λ -терма и его типа, будем называть **типизированным** λ -**термом**. Для типизированных λ -термов используется та же запись, что и для переменных: $A: \tau$ обозначает λ -терм A типа τ .

Определение

Пусть задана типизация γ переменных. λ –Терм t назовем типизируемым при типизации переменных γ , если в результате этой типизации он получает некоторый тип. λ –Терм назовем типизируемым, если его переменным можно приписать типы так, что сам этот λ –терм получит некоторый тип.

Лекция L3 Типизированное λ исчисление, Π

> Вадим Пузаренк

Понятия

понятия

Нормализация

Исчисление приписывания типов

Зафиксируем типизацию Г переменных.

Лекция L3 Типизированное λ исчисление,

> Вадим узаренк

Тонятия

Нормализация

Обозначение

Пусть M_1 и $M_2 - \lambda$ -термы. Будем обозначать $M_1 \Rightarrow^1_\beta M_2$, если существует λ -терм с дырой T такой, что $M_1 = T[R_1]$, $M_2 = T[R_2]$, где λ -термы R_1 и R_2 таковы, что $R_1 \to R_2$ является β -конверсией.

Лекция L3 Типизированное λ исчисление,

> Вадим Пузаренко

Тонятия

Нормализа-

Обозначение

Пусть M_1 и $M_2 - \lambda$ -термы. Будем обозначать $M_1 \Rightarrow_{\beta}^1 M_2$, если существует λ -терм с дырой T такой, что $M_1 = T[R_1]$, $M_2 = T[R_2]$, где λ -термы R_1 и R_2 таковы, что $R_1 \to R_2$ является β -конверсией.

Замечание

Заметим, что $M_1 \Rightarrow^1_{eta} M_2$ влечёт $M_1 \Rightarrow M_2$.

Вадим Пузаренко

Понятия

Нормализация

<u>Об</u>означение

Пусть M_1 и $M_2 - \lambda$ -термы. Будем обозначать $M_1 \Rightarrow_{\beta}^1 M_2$, если существует λ -терм с дырой T такой, что $M_1 = T[R_1]$, $M_2 = T[R_2]$, где λ -термы R_1 и R_2 таковы, что $R_1 \to R_2$ является β -конверсией.

Замечание

Заметим, что $M_1 \Rightarrow^1_\beta M_2$ влечёт $M_1 \Rightarrow M_2$.

<u>Об</u>означение

Пусть M_1 и $M_2 - \lambda$ -термы, а $n \geqslant 1$ — натуральное число. Будем обозначать $M_1 \Rightarrow_{\beta}^n M_2$, если существует последовательность λ -термов $M_1 = N_0, \, N_1, \, \ldots, \, N_n = M_2$, для которой выполняется условие $N_i \Rightarrow_{\beta}^1 N_{i+1}$ для всех $i, \, 0 \leqslant i < n$.

Лекция L3 Типизированное

 λ исчисление, II

Вадим Пузаренк

.

Тонятия

Нормализация

Определение

Пусть $n\in\omega+1$ и $M-\lambda$ -терм. Определим $m{eta}$ -ранг ${
m rk}_{m{eta}}(m{M})$ λ -терма M следующим образом. Будем считать, что ${
m rk}_{m{eta}}(M)\geqslant n$, если

Лекция L3 Типизированное

ное $\lambda-$ исчисление,

Вадим Іузаренка

Тонятия

Нормализация

Определение

Пусть $n\in\omega+1$ и $M-\lambda$ -терм. Определим $m{eta}$ -ранг $\mathbf{rk}_{m{eta}}(m{M})$ λ -терма M следующим образом. Будем считать, что $\mathrm{rk}_{m{eta}}(M)\geqslant n$, если

$$n=0$$
. M — любой λ -терм;

Лекция L3 Типизированное

 λ исчисление, П

Вадим

Пузарен

Тонятия

Нормализация

Определение

Пусть $n\in\omega+1$ и $M-\lambda$ -терм. Определим $m{eta}$ -ранг $\mathrm{rk}_{m{eta}}(\pmb{M})$ λ -терма M следующим образом. Будем считать, что $\mathrm{rk}_{m{eta}}(\pmb{M})\geqslant n$, если

 $\emph{n}=$ 0. $\emph{M}-$ любой λ -терм;

 $0 < n < \omega$. существует λ -терм M', для которого выполняется условие $M \Rightarrow_{\beta}^n M'$;

Лекция L3 Типизированное λ -

исчисление, II

Вадим Пузаренко

Тонятия

Нормализация

Определение

Пусть $n\in\omega+1$ и $M-\lambda$ -терм. Определим $m{eta}$ -ранг $\mathrm{rk}_{m{eta}}(M)$ λ -терма M следующим образом. Будем считать, что $\mathrm{rk}_{m{eta}}(M)\geqslant n$, если

n=0. M- любой $\lambda-$ терм;

 $0 < n < \omega$. существует λ -терм M', для которого выполняется условие $M \Rightarrow_{\beta}^n M'$;

 $n=\omega$. существует последовательность $\{M_n|n\in\omega\}$ λ -термов, для которой выполняется условие $M_i\Rightarrow^1_\beta M_{i+1}$ для всех $i\in\omega$.

При необходимости выше используется преобразование lpha-конверсии.

Лекция L3 Типизированное λисчисление.

исчисление II

Вадим Пузаренко

Понятия

Нормализация

Определение

Пусть $n\in\omega+1$ и $M-\lambda$ -терм. Определим $m{eta}$ -ранг $\mathbf{rk}_{m{eta}}(m{M})$ λ -терма M следующим образом. Будем считать, что $\mathrm{rk}_{m{eta}}(M)\geqslant n$, если

$$n=0$$
. M — любой λ -терм;

 $0 < n < \omega$. существует λ -терм M', для которого выполняется условие $M \Rightarrow_{\beta}^n M'$;

 $n=\omega$. существует последовательность $\{M_n|n\in\omega\}$ λ -термов, для которой выполняется условие $M_i\Rightarrow^1_\beta M_{i+1}$ для всех $i\in\omega$.

При необходимости выше используется преобразование lpha-конверсии. Для $n<\omega$ определим

$$\operatorname{rk}_{\beta}(M) = n \stackrel{\operatorname{def}}{\Longleftrightarrow} [(\operatorname{rk}_{\beta}(M) \geqslant n) \& (\operatorname{rk}_{\beta}(M) \not\geqslant n+1)].$$

Лекция L3
Типизированное $\lambda -$ исчисление,

Вадим Пузаренко

Тонятия

Нормализация

Определение

Пусть $n\in\omega+1$ и $M-\lambda$ -терм. Определим eta-ранг ${
m rk}_{eta}(M)$ λ -терма M следующим образом. Будем считать, что ${
m rk}_{eta}(M)\geqslant n$, если

$$n=0$$
. $M-$ любой $\lambda-$ терм;

 $0 < n < \omega$. существует λ -терм M', для которого выполняется условие $M \Rightarrow_{\beta}^n M'$;

 $n=\omega$. существует последовательность $\{M_n|n\in\omega\}$ λ -термов, для которой выполняется условие $M_i\Rightarrow^1_\beta M_{i+1}$ для всех $i\in\omega$.

При необходимости выше используется преобразование lpha—конверсии. Для $n<\omega$ определим

$$\operatorname{rk}_{\beta}(M) = n \stackrel{\operatorname{def}}{\Longleftrightarrow} [(\operatorname{rk}_{\beta}(M) \geqslant n) \& (\operatorname{rk}_{\beta}(M) \not\geqslant n+1)].$$

Замечание

 λ -Терм M нормальный $\Leftrightarrow \operatorname{rk}_{\beta}(M) = 0$.

Лекция L3 Типизированное

ное $\lambda-$ исчисление, Π

Вадим Пузаренк

Нормализация

Предложение L3

 $\operatorname{rk}_{\beta}(M) = \omega \Leftrightarrow \operatorname{rk}_{\beta}(M) \geqslant n$ для всех $n \in \omega$.

Лекция L3 Типизированное

исчисление, II

пузаренк

Тонятия

Нормализация

Предложение L3

 $\operatorname{rk}_{\beta}(M) = \omega \Leftrightarrow \operatorname{rk}_{\beta}(M) \geqslant n$ для всех $n \in \omega$.

Доказательство.

(⇒) Непосредственно следует из определения.

Лекция L3
Типизированное $\lambda-$ исчисление, Π

Вадим Пузаренко

Нормализация

Предложение L3

 $\operatorname{rk}_{\beta}(M) = \omega \Leftrightarrow \operatorname{rk}_{\beta}(M) \geqslant n$ для всех $n \in \omega$.

Доказательство.

- (⇒) Непосредственно следует из определения.
- (\Leftarrow) Воспользуемся здесь фактически леммой Кёнига. Построим по шагам последовательность λ -термов из определения.

Положим $M_0=M$. Предположим, что $M_0,\ M_1,\ \ldots,\ M_k$ уже найдены (при этом они удовлетворяют условиям $\mathrm{rk}_\beta(M_i)\geqslant n$ для всех $n\in\omega$ и $0\leqslant i\leqslant k$, а также $M_i\Rightarrow_\beta^1M_{i+1},\ 0\leqslant i\leqslant k$). Зададим теперь M_{k+1} : так как каждый λ -терм имеет лишь конечное число подтермов, множество $\{N|M_k\Rightarrow_\beta^1N\}$ конечно (содержит, скажем, m элементов $N_1,\ N_2,\ \ldots,\ N_m$). Если бы каждый λ -терм из этого списка имел конечный β -ранг $(\mathrm{rk}_\beta(N_j)=n_j$ для всех $1\leqslant j\leqslant m$), то и M_k имел бы конечный β -ранг $(\mathrm{rk}_\beta(M_k)=\max\{n_i|1\leqslant j\leqslant m\}+1)$.

Лекция L3
Типизированное λ исчисление,

Вадим узаренк

Понятия

Нормализация

Доказательство (продолжение)

Следовательно, существует λ -терм N такой, что $M_k \Rightarrow_{\beta}^1 N$ и $\mathrm{rk}_{\beta}(N) \geqslant n$ для всех $n \in \omega$. Положим $M_{k+1} = N$.

Лекция L3
Типизированное
λисчисление.

Вадим узаренк

Понятия

Нормализа-

ция

Доказательство (продолжение)

Следовательно, существует λ -терм N такой, что $M_k \Rightarrow_{\beta}^1 N$ и $\mathrm{rk}_{\beta}(N) \geqslant n$ для всех $n \in \omega$. Положим $M_{k+1} = N$.

Определение

Будем говорить, что λ -терм **сильно нормализуем**, если $\mathrm{rk}_{\beta}(M) < \omega$.

Лекция L3
Типизированное $\lambda-$ исчисление,

Вадим Пузаренко

Понятия

Нормализация

Доказательство (продолжение)

Следовательно, существует λ —терм N такой, что $M_k \Rightarrow_{\beta}^1 N$ и $\mathrm{rk}_{\beta}(N) \geqslant n$ для всех $n \in \omega$. Положим $M_{k+1} = N$.

Определение

Будем говорить, что λ -терм **сильно нормализуем**, если $\mathrm{rk}_{\beta}(M)<\omega.$

Замечание

Из предложения L3 вытекает, что λ -терм M сильно нормализуем, если и только если существует $n_0 \in \omega$ такое, что $\mathrm{rk}_\beta(M) = n_0$.

Вадим

Пузаренк

Іонятия

Нормализация

Предложение L4

Любой сильно нормализуемый λ -терм нормализуем.

Лекция L3 Типизированное λ исчисление, Π

> Вадим Пузаренко

Поняти

Нормализация

Предложение L4

Любой сильно нормализуемый λ -терм нормализуем.

Доказательство.

Пусть M — сильно нормализуемый λ —терм. Докажем методом от противного, что он нормализуем. Для этого, в предположении, что λ —терм M не нормализуем, построим соответствующую бесконечную последовательность. Положим $M_0=M$. Предположим, что λ —термы M_0, M_1, \ldots, M_k таковы, что $M_i \Rightarrow_{\beta}^1 M_{i+1}$ для всех $0 \leqslant i < k$. В частности, $M_0 \Rightarrow M_k$ и M_k также не нормализуем (иначе M был бы нормализуем). Следовательно, существует λ —терм N такой, что $M_k \Rightarrow_{\beta}^1 N$; положим $M_{k+1}=N$.

> Вадим Пузаренк

Понятия

Нормализация

Замечание

Поскольку для сильно нормализуемого λ —терма M отсутствуют бесконечные цепочки β —конверсий, любая максимальная по включению цепь завершается на (единственном для M!) нормальном λ —терме.

> Вадим Пузаренко

Понятия

Нормализация

Замечание

Поскольку для сильно нормализуемого λ —терма M отсутствуют бесконечные цепочки β —конверсий, любая максимальная по включению цепь завершается на (единственном для M!) нормальном λ —терме.

Теорема L6

Любой типизируемый λ -терм сильно нормализуем.

Лекция L3
Типизированное λ исчисление,

Вадим Пузаренко

Понятия

Нормализация

Замечание

Поскольку для сильно нормализуемого λ —терма M отсутствуют бесконечные цепочки β —конверсий, любая максимальная по включению цепь завершается на (единственном для M!) нормальном λ —терме.

Теорема L6

Любой типизируемый λ -терм сильно нормализуем.

Доказательство.

Пусть \mathcal{N} — множество всех сильно нормализуемых λ -термов. Отметим некоторые свойства данного множества. Пусть $k\in\omega$, x — переменная и M, M_1 , ..., M_n — λ -термы.

Вадим Пузаренко

.

Нормализация

Доказательство (продолжение)

- ullet Если M нормальный λ —терм, то $M \in \mathcal{N}$; в частности, $x \in \mathcal{N}$ для каждой переменной x;
- ② $M \in \mathcal{N} \Leftrightarrow \lambda x. M \in \mathcal{N}$ (вытекает из того, что каждая β -конверсия в $\lambda x. M$ применяется к подтерму λ -терма M);
- ullet если $M\in\mathcal{N}$ и $M\Rightarrow_{eta}^k M'$, то $M'\in\mathcal{N}$ (действительно, если бы $\mathrm{rk}_{eta}(M')=\omega$, то и $\mathrm{rk}_{eta}(M)=\omega$);
- $M \in \mathcal{N} \Leftrightarrow [M' \in \mathcal{N}$ для каждого λ -терма M' с условием $M \Rightarrow_{\beta}^{1} M']$ ((\Rightarrow) следует из предыдущего пункта; (\Leftarrow) фактически повторяет доказательство предложения L3);
- если $M_1, M_2, \ldots, M_n \in \mathcal{N}$, то $((\ldots ((xM_1)M_2)\ldots)M_n) \in \mathcal{N}$ (вытекает из того, что β -конверсия должна применяться к M_i для некоторого $1 \leqslant i \leqslant n$).

Лекция L3
Типизированное
λисчисление,
II

Вадим Пузарени

Тонатиа

Нормализация

Пример

Обращение утверждения пункта (3) не выполняется (для этого достаточно рассмотреть λ -терм ($\lambda x.z(\Omega\Omega)$)).

Лекция L3 Типизированное λ исчисление,

> Вадим Пузаренк

Понятия

Нормализация

Пример

Обращение утверждения пункта (3) не выполняется (для этого достаточно рассмотреть λ —терм ($\lambda x.z(\Omega\Omega)$)).

Лемма L6A

 $Q\in\mathcal{N}$ и $((\dots(([P]_Q^{ imes}M_1)M_2)\dots M_n)\in\mathcal{N}$ влекут $((\dots(((\lambda x.PQ)M_1)M_2)\dots)M_n)\in\mathcal{N}.$

Вадим Пузаренко

Понятия

Нормализация

Пример

Обращение утверждения пункта (3) не выполняется (для этого достаточно рассмотреть λ -терм ($\lambda x.z(\Omega\Omega)$)).

Лемма L6A

$$Q \in \mathcal{N}$$
 и $((\dots(([P]_Q^{\times}M_1)M_2)\dots M_n) \in \mathcal{N}$ влекут $((\dots(((\lambda x.PQ)M_1)M_2)\dots)M_n) \in \mathcal{N}.$

Доказательство леммы L6A.

Индукцией по сумме β -рангов λ -термов, стоящих в посылке. Применим β -конверсию к подтерму R λ -терма $M \equiv ((\dots(((\lambda x.PQ)M_1)M_2)\dots)M_n).$

Лекция L3 Типизированное

 λ исчисление, II

Вадим Пузаренк

Понятия

Нормализация Доказательство леммы L6A (продолжение)

 $oldsymbol{Q} R \equiv (\lambda x. PQ)$. Тогда $M' \equiv ((\dots (([P]_Q^{\times} M_1) M_2) \dots M_n) \in \mathcal{N}$.

Вадим Пузаренко

Понятия

Нормализация

Доказательство леммы L6A (продолжение)

- $lacksymbol{0} R \equiv (\lambda x. PQ)$. Тогда $M' \equiv ((\dots (([P]_Q^{\times} M_1) M_2) \dots M_n) \in \mathcal{N}$.
- $m{Q}$ R подтерм M_i (к примеру, M_1). Тогда $M'\equiv ((\dots (((\lambda x.PQ)M_1')M_2)\dots)M_n)$, где $M_1\Rightarrow_{eta}^1 M_1'$. Имеем

$$((\ldots(([P]_Q^{\times}M_1)M_2)\ldots M_n)) \Rightarrow_{\beta}^1 ((\ldots(([P]_Q^{\times}M_1')M_2)\ldots M_n),$$

а по свойству (3) для \mathcal{N} , $((\dots([P]_Q^{\times}M_1')M_2)\dots M_n)\in\mathcal{N}$. По индукционному предположению, $M'\in\mathcal{N}$.

Вадим Пузаренко

Понятия

Нормализация

Доказательство леммы L6A (продолжение)

- lacksquare $R \equiv (\lambda x. PQ)$. Тогда $M' \equiv ((\dots (([P]_Q^{\times} M_1) M_2) \dots M_n) \in \mathcal{N}$.
- ② R подтерм M_i (к примеру, M_1). Тогда $M' \equiv ((\dots(((\lambda x.PQ)M_1')M_2)\dots)M_n)$, где $M_1 \Rightarrow_{\beta}^1 M_1'$. Имеем

$$((\ldots(([P]_Q^{\times}M_1)M_2)\ldots M_n)\Rightarrow_{\beta}^1((\ldots(([P]_Q^{\times}M_1')M_2)\ldots M_n),$$

- а по свойству (3) для \mathcal{N} , $((\dots([P]_Q^{\times}M_1')M_2)\dots M_n)\in\mathcal{N}$. По индукционному предположению, $M'\in\mathcal{N}$.
- R подтерм Q. Тогда $M' \equiv ((\dots (((\lambda x.PQ')M_1)M_2)\dots)M_n)$, где $Q \Rightarrow_{\beta}^1 Q'$. По свойству (3) для $\mathcal{N}, \ Q' \in \mathcal{N}$. Далее, $[P]_Q^{\times} \Rightarrow [P]_{Q'}^{\times}$. Следовательно, $((\dots (([P]_{Q'}^{\times}M_1)M_2)\dots M_n) \Rightarrow ((\dots (([P]_{Q'}^{\times}M_1)M_2)\dots M_n)$. Снова по индукционному предположению, $M' \in \mathcal{N}$.

> Вадим Пузаренко

Понятия

Нормализация

Доказательство леммы L6A (продолжение)

- $lacksymbol{0} R \equiv (\lambda x. PQ)$. Тогда $M' \equiv ((\dots (([P]_Q^{\times} M_1) M_2) \dots M_n) \in \mathcal{N}$.
- ② R подтерм M_i (к примеру, M_1). Тогда $M' \equiv ((\dots(((\lambda x.PQ)M_1')M_2)\dots)M_n)$, где $M_1 \Rightarrow_{\beta}^1 M_1'$. Имеем

$$((\ldots(([P]_Q^{\times}M_1)M_2)\ldots M_n)\Rightarrow_{\beta}^1((\ldots(([P]_Q^{\times}M_1')M_2)\ldots M_n),$$

- а по свойству (3) для \mathcal{N} , $((\dots([P]_Q^{\times}M_1')M_2)\dots M_n)\in\mathcal{N}$. По индукционному предположению, $M'\in\mathcal{N}$.
- **②** R подтерм Q. Тогда $M' \equiv ((\dots(((\lambda x.PQ')M_1)M_2)\dots)M_n)$, где $Q \Rightarrow_{\beta}^1 Q'$. По свойству (3) для $\mathcal{N}, \ Q' \in \mathcal{N}$. Далее, $[P]_Q^{\times} \Rightarrow [P]_{Q'}^{\times}$. Следовательно, $((\dots(([P]_Q^{\times}M_1)M_2)\dots M_n) \Rightarrow ((\dots(([P]_{Q'}^{\times}M_1)M_2)\dots M_n)$. Снова по индукционному предположению, $M' \in \mathcal{N}$.
- ullet **Р**. Рассматривается аналогично п. 2.

Вадим

Пузаренк

Тонятия

Нормализация

Определение

Для подмножеств \mathcal{A} , $\mathcal{B} \subseteq \Lambda$ λ -термов определим

$$\mathcal{A} o \mathcal{B} = \{ M \in \Lambda | (MN) \in \mathcal{B}$$
 для всех $N \in \mathcal{A} \}.$

Лекция L3 Типизированное λ исчисление,

> Вадим Пузаренко

Нормализация

Определение

Для подмножеств \mathcal{A} , $\mathcal{B} \subseteq \Lambda$ λ –термов определим

$$\mathcal{A} \to \mathcal{B} = \{ M \in \Lambda | (MN) \in \mathcal{B} \text{ для всех } N \in \mathcal{A} \}.$$

Определение

Непустое множество $\mathcal{B}\subseteq \Lambda$ назовем \mathcal{N} -насыщенным, если выполняется следующее:

$$Q \in \mathcal{N}, \ ((\dots(([P]_Q^{\times}M_1)M_2)\dots M_n) \in \mathcal{B} \ \Rightarrow$$

$$\Rightarrow \ ((\dots(((\lambda x.PQ)M_1)M_2)\dots)M_n) \in \mathcal{B}.$$

Лекция L3
Типизированное λ исчисление,

Вадим Пузаренко

Тонятия

Нормализация

Определение

Для подмножеств \mathcal{A} , $\mathcal{B} \subseteq \Lambda$ λ –термов определим

$$\mathcal{A} \to \mathcal{B} = \{ M \in \Lambda | (MN) \in \mathcal{B}$$
для всех $N \in \mathcal{A} \}.$

Определение

Непустое множество $\mathcal{B}\subseteq \Lambda$ назовем \mathcal{N} -насыщенным, если выполняется следующее:

$$Q \in \mathcal{N}, \ ((\dots(([P]_Q^{\times}M_1)M_2)\dots M_n) \in \mathcal{B} \ \Rightarrow$$

$$\Rightarrow \ ((\dots(((\lambda x.PQ)M_1)M_2)\dots)M_n) \in \mathcal{B}.$$

По лемме L6A, само множество ${\mathcal N}$ является ${\mathcal N}$ -насыщенным.

Лекция L3 Типизированное

исчисление.

Нормализа-

Лемма L6B

Если \mathcal{B} является \mathcal{N} -насыщенным множеством и $\mathcal{A} \neq \emptyset$, то $\mathcal{A} o \mathcal{B}$ также \mathcal{N} -насыщенно.

Лекция L3 Типизированное λ исчисление,

> Вадим Пузаренко

Понятия

Нормализация

Лемма L6B

Если $\mathcal B$ является $\mathcal N$ -насыщенным множеством и $\mathcal A \neq \varnothing$, то $\mathcal A \to \mathcal B$ также $\mathcal N$ -насыщенно.

Доказательство.

Пусть $Q \in \mathcal{N}$ и $((\dots(([P]_Q^{\times}M_1)M_2)\dots)M_n) \in \mathcal{A} \to \mathcal{B}$; тогда имеем $(((\dots(([P]_Q^{\times}M_1)M_2)\dots)M_n)N) \in \mathcal{B}$ для всех $N \in \mathcal{A}$. Так как \mathcal{B} является \mathcal{N} —насыщенным, получаем $(((\dots(((\lambda x.PQ)M_1)M_2)\dots)M_n)N) \in \mathcal{B}$ для всех $N \in \mathcal{A}$, а следовательно, $((\dots(((\lambda x.PQ)M_1)M_2)\dots)M_n) \in \mathcal{A} \to \mathcal{B}$.

◆ロ → 4回 → 4 三 → 4 三 → 9 へのの

Вадим Пузаренко

Понятия

Нормализация

Лемма L6B

Если $\mathcal B$ является $\mathcal N$ -насыщенным множеством и $\mathcal A \neq \varnothing$, то $\mathcal A \to \mathcal B$ также $\mathcal N$ -насыщенно.

Доказательство.

Пусть $Q \in \mathcal{N}$ и $((\dots([P]_Q^{\times}M_1)M_2)\dots)M_n) \in \mathcal{A} \to \mathcal{B}$; тогда имеем $(((\dots(([P]_Q^{\times}M_1)M_2)\dots)M_n)N) \in \mathcal{B}$ для всех $N \in \mathcal{A}$. Так как \mathcal{B} является \mathcal{N} —насыщенным, получаем $(((\dots(((\lambda x.PQ)M_1)M_2)\dots)M_n)N) \in \mathcal{B}$ для всех $N \in \mathcal{A}$, а следовательно, $((\dots(((\lambda x.PQ)M_1)M_2)\dots)M_n) \in \mathcal{A} \to \mathcal{B}$.

Конструкция

Для каждого типа σ определим множество $\mathcal{N}_{\sigma} \subseteq \Lambda$ следующим образом:

- $\mathcal{N}_{\alpha} = \mathcal{N}$ для простейшего типа α ;
- $\mathcal{N}_{\sigma \to \tau} = \mathcal{N}_{\sigma} \to \mathcal{N}_{\tau}$.

Лекция L3 Типизированное λ исчисление, Π

> Вадим Пузаренк

Нормализация По лемме L6B, для каждого типа σ множество \mathcal{N}_{σ} будет $\mathcal{N}-$ насыщенным.

Лекция L3 Типизированное λ исчисление, Π

> Вадим Пузаренко

Понятия

Нормализация По лемме L6B, для каждого типа σ множество \mathcal{N}_{σ} будет \mathcal{N} —насыщенным.

Лемма L6C

Пусть σ — тип. Тогда выполняются следующие условия:

- ① для любых переменной x и λ -термов $M_1, M_2, \ldots, M_n \in \mathcal{N}$ имеем $((((xM_1)M_2)\ldots)M_n) \in \mathcal{N}_{\sigma}$. В частности, $x \in \mathcal{N}_{\sigma}$;
- $\mathcal{N}_{\sigma}\subseteq\mathcal{N}$

Лекция L3
Типизированное $\lambda -$ исчисление, Π

Вадим Пузаренко

Понятия

Нормализация По лемме L6B, для каждого типа σ множество \mathcal{N}_{σ} будет \mathcal{N} —насыщенным.

Лемма L6C

Пусть σ — тип. Тогда выполняются следующие условия:

- для любых переменной x и λ -термов $M_1, M_2, \ldots, M_n \in \mathcal{N}$ имеем $((((xM_1)M_2)\ldots)M_n) \in \mathcal{N}_{\sigma}$. В частности, $x \in \mathcal{N}_{\sigma}$;
- $\mathcal{N}_{\sigma}\subseteq\mathcal{N}$

Доказательство леммы L6C.

Пп. (1) и (2) будем доказывать одновременно индукцией по построению типа σ . Пусть сначала $\sigma \equiv \alpha$ — простейший тип. Тогда по определению $\mathcal{N}_{\alpha} = \mathcal{N}$ и, по свойству 5, имеем $((\ldots((xM_1)M_2)\ldots)M_n) \in \mathcal{N} = \mathcal{N}_{\alpha}$ для любых $M_1,\ M_2,\ \ldots,\ M_n \in \mathcal{N}$ и переменной x.

Вадим Пузаренко

Понятия

Нормализация

Доказательство леммы L6C (продолжение).

Предположим, что утверждения выполняются для σ и τ , и докажем их справедливость для $(\sigma \to \tau)$. Выберем любые M_1 , $M_2, \ldots, M_n \in \mathcal{N}$. Пусть $N \in \mathcal{N}_{\sigma}$; по п. (2) для σ имеем $N \in \mathcal{N}$ и, по п. (1) для τ , заключаем $(((\ldots((xM_1)M_2)\ldots)M_n)N) \in \mathcal{N}_{\tau}$. Следовательно, $((\ldots((xM_1)M_2)\ldots)M_n) \in \mathcal{N}_{\sigma} \to \mathcal{N}_{\tau} = \mathcal{N}_{\sigma \to \tau}$. Далее, если $M \in \mathcal{N}_{\sigma \to \tau}$, то $(MN) \in \mathcal{N}_{\tau} \subseteq \mathcal{N}$ для всех $N \in \mathcal{N}_{\sigma}$. Однако, сильная нормализуемость (MN) влечёт сильную нормализуемость M.

Лемма L6D (об адекватности).

Если λ -терму M может быть приписан тип τ , то $M \in \mathcal{N}_{\tau}$. Более того, какова бы ни была типизация $\{x_1:\sigma_1,x_2:\sigma_2,\ldots,x_k:\sigma_k\}\vdash M:\tau$, будет выполняться

соотношение $[M]_{M_1M_2...M_k}^{x_1}\in\mathcal{N}_{ au}$, как только $M_1\in\mathcal{N}_{\sigma_1}$, $M_2\in\mathcal{N}_{\sigma_2}$, ..., $M_k\in\mathcal{N}_{\sigma_k}$.

Лекция L3 Типизированное

 λ исчисление,

Вадим Пузаренко

Понятия

Нормализация

Доказательство леммы L6D.

Будем проводить индукцией по построению λ -терма M.

Воспользуемся сокращением $\Gamma = \{x_1 : \sigma_1, x_2 : \sigma_2, \dots, x_k : \sigma_k\}.$

Лекция L3 Типизированное

ное λисчисление, II

> Вадим Пузаренко

Іонятия

Нормализация

Доказательство леммы L6D.

Будем проводить индукцией по построению λ -терма M.

Воспользуемся сокращением $\Gamma = \{x_1 : \sigma_1, x_2 : \sigma_2, \dots, x_k : \sigma_k\}.$

 $oldsymbol{M} \equiv {\sf x}_i$. Тогда $au \equiv \sigma_i$ и $[M]_{M_1M_2...M_k}^{{\sf x}_1} \equiv M_i \in \mathcal{N}_{\sigma_i} = \mathcal{N}_{ au}$.

Лекция L3 Типизированное λ исчисление,

> Вадим Пузаренко

.

Нормализация

Доказательство леммы L6D.

Будем проводить индукцией по построению λ -терма M. Воспользуемся сокращением $\Gamma = \{x_1 : \sigma_1, x_2 : \sigma_2, \dots, x_k : \sigma_k\}$.

- $lack M \equiv x_i$. Тогда $au \equiv \sigma_i$ и $[M]_{M_1M_2...M_k}^{x_1} \stackrel{x_2}{=} M_i \in \mathcal{N}_{\sigma_i} = \mathcal{N}_{ au}$.
- ② $M \equiv (PQ)$. Тогда имеем $\Gamma \vdash P : (\sigma \to \tau)$ и $\Gamma \vdash Q : \sigma$ для подходящего типа σ . По предполжению индукции, $[P]_{M_1M_2...M_k}^{x_1.x_2...x_k} \in \mathcal{N}_{\sigma \to \tau}$ и $[Q]_{M_1M_2...M_k}^{x_1.x_2...x_k} \in \mathcal{N}_{\sigma}$, а по определению, $[M]_{M_1M_2...M_k}^{x_1.x_2...x_k} \equiv ([P]_{M_1M_2...M_k}^{x_1.x_2...x_k}]_{M_1M_2...M_k} \equiv ([P]_{M_1M_2...M_k}^{x_1.x_2...x_k}]_{M_1M_2...M_k} \in \mathcal{N}_{\tau}$.

Вадим Пузаренко

.

Нормализация

Доказательство леммы L6D.

Будем проводить индукцией по построению λ -терма M. Воспользуемся сокращением $\Gamma = \{x_1: \sigma_1, x_2: \sigma_2, \dots, x_k: \sigma_k\}.$

- $oldsymbol{M} \equiv x_i$. Тогда $au \equiv \sigma_i$ и $[M]_{M_1 M_2 \dots M_k}^{x_1 x_2 \dots x_k} \equiv M_i \in \mathcal{N}_{\sigma_i} = \mathcal{N}_{ au}$.
- ② $M \equiv (PQ)$. Тогда имеем $\Gamma \vdash P : (\sigma \to \tau)$ и $\Gamma \vdash Q : \sigma$ для подходящего типа σ . По предполжению индукции, $[P]_{M_1 M_2 \dots M_k}^{x_1 x_2 \dots x_k} \in \mathcal{N}_{\sigma \to \tau}$ и $[Q]_{M_1 M_2 \dots M_k}^{x_1 x_2 \dots x_k} \in \mathcal{N}_{\sigma}$, а по определению, $[M]_{M_1 M_2 \dots M_k}^{x_1 x_2 \dots x_k} \equiv ([P]_{M_1 M_2 \dots M_k}^{x_1 x_2 \dots x_k} [Q]_{M_1 M_2 \dots M_k}^{x_1 x_2 \dots x_k}) \in \mathcal{N}_{\tau}$.
- **②** $M \equiv \lambda x.P$. Можно считать, что x не входит свободно в M_1 , M_2 , ..., M_k и отличается от x_1 , x_2 , ..., x_k . Тогда должно выполняться $\tau = (\tau_1 \to \tau_2)$ и $\Gamma, x : \tau_1 \vdash P : \tau_2$. По предположению индукции, для каждого λ -терма $N \in \mathcal{N}_{\tau_1}$ справедливо соотношение $[P]_{M_1 M_2 ... M_k N}^{x_1 \times x_2 ... \times x_k} \in \mathcal{N}_{\tau_2}$. Так как x не входит свободно в M_i для каждого $1 \leqslant i \leqslant k$, имеем $[P]_{M_1 M_2 ... M_k N}^{x_1 \times x_2 ... \times x_k} = [[P]_{M_1 M_2 ... M_k}^{x_1 \times x_2 ... \times x_k}]_N^x$

Вадим Пузаренко

Понятия

Нормализация

Доказательство леммы L6D (продолжение)

Так как $N \in \mathcal{N}_{\tau_1}$ и \mathcal{N}_{τ_2} является \mathcal{N} -насыщенным множеством, заключаем, что $(\lambda x.[[P]_{M_1 M_2 \dots M_k}^{\chi_1}]N) \in \mathcal{N}_{\tau_2}$. N, наконец, так как $N \in \mathcal{N}_{\tau_1}$, имеем $\lambda x.[[P]_{M_1 M_2 \dots M_k}^{\chi_1}] \in \mathcal{N}_{\tau_1} \to \mathcal{N}_{\tau_2} = \mathcal{N}_{\tau_1 \to \tau_2} = \mathcal{N}_{\tau}$. \square

> Вадим Пузаренко

Понятия

Нормализа-

Доказательство леммы L6D (продолжение)

Так как $N \in \mathcal{N}_{\tau_1}$ и \mathcal{N}_{τ_2} является \mathcal{N} —насыщенным множеством, заключаем, что $(\lambda x.[[P]_{M_1}^{x_1} \stackrel{\chi_2}{\underset{N}{\sim} \cdots M_k}]N) \in \mathcal{N}_{\tau_2}$. N, наконец, так как $N \in \mathcal{N}_{\tau_1}$, имеем $\lambda x.[[P]_{M_1}^{\chi_1} \stackrel{\chi_2}{\underset{N}{\sim} \cdots M_k}] \in \mathcal{N}_{\tau_1} \to \mathcal{N}_{\tau_2} = \mathcal{N}_{\tau_1 \to \tau_2} = \mathcal{N}_{\tau}$. \square

Доказательство теоремы L6 (окончание)

Пусть $M-\lambda$ -терм, которому можно приписать тип au; тогда по лемме об адекватности, $M\in\mathcal{N}_{ au}$, а по лемме L6C(2), $\mathcal{N}_{ au}\subseteq\mathcal{N}$. Таким образом, $M\in\mathcal{N}$, т.е. M сильно нормализуем.

Лекция L3 Типизированное λ исчисление, Π

Нормализация Спасибо за внимание.