# Introduction to Industrial Organization

**Demand Estimation** 

Jian-Da Zhu

National Taiwan University

October 24, 2019

#### Outline

- General Idea of demand estimation
- Logit model
- Nested Logit model
- Hedonic model

#### Introduction

- The recent empirical literature use the market data to estimate the demand.
- Why is it so important?
  - In the monopoly market, we know:

$$\frac{P^* - MC(q(P^*))}{P^*} = -\frac{1}{\epsilon(P^*)},$$

where  $\epsilon$  is the elasticity of the demand.

- MC can not be observed, but we can obtain  $\epsilon(P^*)$  by estimation.
- Therefore, MC could be recovered after estimation.
- We can do the similar work in the oligopoly case.

#### Introduction

- After the demand estimation, we can further do the following analysis:
  - Estimating market power, markup, and marginal cost.
  - Simulate the merger
  - Welfare gains from new products
  - ► Policy evaluation
  - ▶ Estimating the supply side issue, including the dynamic game model.

General Idea of Demand Estimation

#### **Demand Estimation**

- Let's start from a homogeneous product. Assume that we can observe the time series data  $\{P_t,Q_t\}_{t=1}^T$ .
- It seems that we can estimate the following equation:

$$\log(Q_t) = \beta_0 + \beta_1 \log(P_t) + \epsilon_t.$$

• The coefficient can be interpreted as the elasticity.

$$\beta_1 = \frac{\Delta \log(Q_t)}{\Delta \log(P_t)} = \frac{\frac{\Delta Q_t}{Q_t}}{\frac{\Delta P_t}{P_t}}$$

• However, is this the demand function or the supply function?









#### **Demand Estimation**

• First, we should control the demand:

$$\log(Q_t) = \beta_0 + \beta_1 \log(P_t) + \beta_2 X_t + \epsilon_t,$$

where  $X_t$  should be some factors which can affect the demand, and  $\epsilon_t$  is called as an unobserved demand shock.

- ullet Second, we should rely on the instrumental variable  $Z_t$ , which can shift the supply curve.
- In Econometrics, the instrumental variable should
  - $Cov(Z_t, \epsilon_t) = 0.$
  - $Cov(Z_t, log(P_t)) \neq 0.$
- For instance, some cost shifters to affect the production costs.

# Two-Stage Least Squares (2SLS) Method

• In the first stage:

$$\log(P_t) = \gamma_0 + \gamma_1 Z_t + \gamma_2 X_t + v_t,$$

where  $Z_t$  is the instrumental variable, which can provide the exogenous price variation. We predict the predicted price based on  $\widehat{\log(P_t)} = \hat{\gamma}_0 + \hat{\gamma}_1 Z_t + \hat{\gamma}_2 X_t$ .

In the second stage, run the regression as

$$\log(Q_t) = \beta_0 + \beta_1 \widehat{\log(P_t)} + \beta_2 X_t + \epsilon_t.$$

• Then  $\hat{\beta}_1$  is called a two-stage least squares estimator, which is consistent and unbiased.

# Example: Hard Disk Drive Industry

- This example is from Igami and Uetake (2019).
- They consider units of data storage (measured in bytes) as undifferentiated products.
- They specify a log-linear demand for raw data-storage functionality of HDDs,

$$\log(Q_t) = \alpha_0 + \alpha_1 \log(P_t) + \alpha_2 \log(X_t) + \epsilon_t,$$

#### where

- $Q_t$ : the worlds total HDD shipments in exabytes (EB = 1 billion GB)
- $P_t$ : the average HDD price per gigabytes (\$/GB).
- $X_t$ : the PC shipments (in million units) as a demand shifter.

#### Example: Hard Disk Drive Industry

- Two instruments in this example:
  - the average disk price per gigabyte (\$/GB): Disks are one of the main components of HDDs, and hence their price is an important cost shifter for HDDs.
  - a dummy variable indicating a major supply disruption caused by flood in Thailand in the fourth quarter of 2011.

### Example: Hard Disk Drive Industry

TABLE 3
Demand estimates

|                                        | (1)<br>OLS        | (2)<br>OLS        | (3)<br>IV                   | (4)<br>IV                   |  |
|----------------------------------------|-------------------|-------------------|-----------------------------|-----------------------------|--|
| Log HDD price per GB (α <sub>1</sub> ) | -1.112<br>(0.035) | -1.046<br>(0.046) | -1.054<br>(0.032)           | -1.043<br>(0.038)           |  |
| Log PC shipment $(\alpha_2)$           | (-)               | 0.271 (0.095)     | (-)                         | 0.276<br>(0.086)            |  |
| Number of observations Adjusted $R^2$  | 83<br>0.942       | 83<br>0.948       | 83                          | 83                          |  |
| First-stage regression                 |                   |                   |                             |                             |  |
| Log disk price per GB                  | -                 | -                 | 0.813                       | 0.567                       |  |
| Thai flood dummy                       | (-)<br>-<br>(-)   | (-)<br>-<br>(-)   | (0.026)<br>0.263<br>(0.079) | (0.032)<br>0.548<br>(0.070) |  |
| F-value                                | _                 | _                 | 585.49                      | 732.12                      |  |
| Adjusted R <sup>2</sup>                | _                 | _                 | 0.874                       | 0.946                       |  |

*Notes:* Dependent variable is log total HDD (in EB) shipped. We use detrended quantities and prices of HDD to address nonstationarity in the original time series of these variables. Huber–White heteroskedasticity-robust standard errors are in parentheses.

 There are J products in the market. the utility of consumer i purchasing product j:

$$u_{ij} = \delta_j + \epsilon_{ij},$$

where  $\delta_j$  is the mean utility for product j, and  $\epsilon_{ij}$  is the idiosyncratic term.

• We assume that  $\epsilon_{ij}$  are i.i.d. distributed Type I extreme value across consumers:

$$F(\epsilon) = e^{-e^{-\epsilon}}.$$

• Consumer i decides to buy product j if  $u_{ij} > u_{ik}, \ \forall k \neq j$ 

• The probability of consumer *i* purchasing product *j*:

$$\begin{aligned} &\operatorname{Prob}(u_{ij} > u_{ik}, \ \forall k \neq j) \\ &= \operatorname{Prob}(\delta_j + \epsilon_{ij} > \delta_k + \epsilon_{ik}, \ \forall k \neq j) \\ &= \operatorname{Prob}(\epsilon_{ij} > \epsilon_{ik} + (\delta_k - \delta_j), \ \forall k \neq j) \\ &= \dots \\ &= \frac{\exp(\delta_j)}{\sum_{k=0}^J \exp(\delta_k)} \end{aligned}$$

• We usually normalize the mean utility of outside good (j = 0) as zero, so the probability of consumer i purchasing product j:

$$\frac{\exp(\delta_j)}{1 + \sum_{k=1}^{J} \exp(\delta_k)} \equiv s_j,$$

as the market share of product j. Details

Further assume that

$$\delta_j = X_j \beta - \alpha p_j + \xi_j,$$

where  $X_j$  are characteristics of product j,  $p_j$  is the price of product j, and  $\xi_j$  is the unobserved effect for product j.

• The share of outside good:

$$s_0 = \frac{1}{1 + \sum_{k=1}^{J} \exp(\delta_k)}.$$

Therefore, we can have a linear equation:

$$\ln(s_j) - \ln(s_0) = X_j \beta - \alpha p_j + \xi_j.$$

- Because price is endogeneous in this linear equation, we need to use instrumental variables to run 2SLS (Two stage least squares) to obtain the unbiased coefficients.
- We usually use some cost shifters as IVs.
- Note that

$$\frac{\partial s_j}{\partial p_j} = -\alpha s_j (1 - s_j);$$
$$\frac{\partial s_j}{\partial p_k} = \alpha s_j s_k, \ \forall k \neq j.$$

• The cross-price elasticities depends only on market shares and prices:

$$\eta_{jk} = \frac{\partial s_j}{\partial p_k} \frac{p_k}{s_j} = \alpha p_k s_k.$$

# Nested Logit Model

### Nested Logit Model

- To further improve the logit model, we can use the nested logit model to estimate the demand.
- In the nested logit model, we modify the random term to create the substitution pattern among those products which are similar.
- The choice structure:
  - Choice A:
    - Choice A1
    - Choice A2
    - Choice B:
      - Choice B1
      - Choice B2
      - Choice b2
      - Choice B3

#### Example: Aircraft Market

- Irwin and Pavcnik (2004) study the competition between Airbus and Boeing.
- The choice structure for consumers in the market:
  - Narrow-body aircraft: Boeing 737, Boeing 757, Airbus A320.
  - Wide-body aircraft:
    - medium-range: Boeing 767, Airbus A300, Airbus A310.
    - long-range: Boeing 747, Boeing 777, Airbus A330, Airbus A340.

# Nested Logit Model

- The market is segmented into several groups g = 0, 1, 2, ... G.
- The utility of consumer i purchasing product j:

$$u_{ij} = \delta_j + \sigma \zeta_{ig} + (1 - \sigma)\epsilon_{ij},$$

#### where

- $\epsilon_{ij}$  are i.i.d distributed Type I extreme value
- $\zeta_{ig}$  are common to all products in group g
- $\sigma \in [0,1)$  measures the magnitude of market segmentation. If  $\sigma = 0$ , we go back to the Logit model.
- Define the market share of product j in group g as  $s_{j|g}$ .
- We do the similar work as that in Logit model, and we can get a nice linear equation

$$\ln(s_j) - \ln(s_0) = X_j \beta - \alpha p_j + \sigma \ln(s_{j|g}) + \xi_j.$$

#### More Extensions: BLP Model

- The other way to capture the flexible substitution pattern is based on Berry, Levinsohn, and Pakes (1995), which is called BLP model.
- They consider the following utility function:

$$u_{ij} = X_j \beta_i - \alpha_i p_j + \xi_j + \epsilon_{ij},$$

where  $\beta_i$ , and  $\alpha_i$  are random coefficients to capture the heterogeneous tastes across individuals.

- Some good reference:
  - Nevo (2000), "A Practitioners Guide to Estimation of Random-Coefficients Logit Models of Demand"
  - Nevo (2001), "Measuring Market Power in the Read-to-Eat Cereal Industry"

Hedonic Model

#### Hedonic Model

- A regression of prices on product characteristics is called a "hedonic regression".
- For instance, in the housing market, we can run the regression of housing prices on housing characteristics:

$$P_{it} = X_{it}\beta + \epsilon_{it},$$

where  $X_{it}$  includes all the housing characteristics, such as with a parking lot or not, housing age, number of bedrooms, ...

- The regression equation treats these characteristics separately, and it estimates the prices based on those characteristics.
- However, prices are equilibrium prices, so the hedonic coefficients combine the effects of demand and supply side.

# Example: Housing Market in Taipei

- Data: housing transaction data from January 1, 2016 to July 31, 2016 in Taipei city.
- To study housing prices in Taipei, we can consider the following model:

$$\begin{split} \textit{price}_i &= \beta_0 + \beta_1 \textit{age}_i + \beta_2 \textit{age}_i^2 + \beta_3 \textit{elevator}_i + \beta_4 \textit{floor}_i \\ &+ \beta_5 \textit{bedroom}_i + \beta_6 \textit{livingroom}_i + \beta_7 \textit{bathroom}_i + u_i, \end{split}$$

#### where

- price is the transaction price per unit in 10 thousand dollars.
- age housing age in years.
- elevator is a dummy for elevators
- floor is the transaction floor
- bedroom, livingroom, and bathroom are the number of bedrooms, living rooms, and bathrooms.

#### **Estimation Results**

| VARIABLES    | (1)<br>price | (2)<br>price | (3)<br>price | (4)<br>price | (5)<br>price | (6)<br>log(price) |
|--------------|--------------|--------------|--------------|--------------|--------------|-------------------|
|              | •            | •            |              | •            |              |                   |
| age          | -0.356***    | -0.178***    | -0.147***    | -0.140***    | -0.964***    | -0.00216***       |
|              | [0.0171]     | [0.0221]     | [0.0225]     | [0.0223]     | [0.0632]     | [0.000367]        |
| $age^2$      |              |              |              |              | 0.0219***    |                   |
|              |              |              |              |              | [0.00157]    |                   |
| elevator     |              | 9.344***     | 8.305***     | 7.581***     | 11.20***     | 0.146***          |
|              |              | [0.756]      | [0.769]      | [0.766]      | [0.794]      | [0.0126]          |
| floor        |              |              | 0.427***     | 0.474***     | 0.384***     | 0.00821***        |
|              |              |              | [0.0638]     | [0.0635]     | [0.0626]     | [0.00104]         |
| bedroom      |              |              |              | -1.996***    | -1.859***    | -0.0325***        |
|              |              |              |              | [0.347]      | [0.340]      | [0.00570]         |
| livingroom   |              |              |              | -1.918***    | -1.717***    | -0.0232***        |
|              |              |              |              | [0.500]      | [0.490]      | [0.00821]         |
| bathroom     |              |              |              | 1.697***     | 2.008***     | 0.0259***         |
|              |              |              |              | [0.469]      | [0.460]      | [0.00770]         |
| Constant     | 66.28***     | 55.90***     | 53.54***     | 59.45***     | 58.97***     | 4.008***          |
|              | [0.416]      | [0.934]      | [0.995]      | [1.255]      | [1.230]      | [0.0206]          |
| Observations | 4,616        | 4,616        | 4,616        | 4,616        | 4,616        | 4,616             |
| R-squared    | 0.086        | 0.115        | 0.124        | 0.140        | 0.175        | 0.154             |
|              |              |              |              |              |              |                   |

Standard errors in brackets, \*\*\* p<0.01, \*\* p<0.05, \* p<0.1

# Other Applications

- Besides the housing characteristics, we can also use the hedonic model to quantify
  - quality of environment: air pollution, water pollution, noise
  - amenities: parks, schools, metro
  - risk: earthquake risk map
- You also can combine the difference-in-differences method or regression discontinuity method with the hedonic model.
  - School district effect (regression discontinuity)
  - Earthquake risk (difference-in-differences)

#### Price Index

- We can use hedonic model to calculate the price index.
- First, in period t, the following equation is estimated:

$$P_{it} = X_{it}\beta_t + \epsilon_{it},$$

• In period t+1, we use last year's estimated coefficients to predict the prices:

$$\hat{P}_{it+1} = X_{it+1}\hat{\beta}_t.$$

- Calculate the price change percentage.
- Alternatively, put year dummies in regression and use the dummy coefficients to observe the price change.

#### Homework 5

- Pick up a market, and find a dataset of product information, including prices and some important characteristics.
- Run the hedonic model and interpret the coefficients. Does the result make sense to you?
- Reference for the datasets:
  - https://www.kaggle.com/datasets
  - If you can read Mandarin, you can check the real estate dataset in Taiwan: https://plvr.land.moi.gov.tw/DownloadOpenData

# Appendix: Normalization I

- Here is an example to illustrate why we need to normalize one product as the outside good (j = 0).
- Assume that the mean utility:

$$\delta_j = \beta_0 + \beta_1 x_{j1} + \beta_2 x_{j2},$$

where  $x_{j1}$ , and  $x_{j2}$  are two characteristics for product j.

• The market share for product j:

$$s_j = \frac{\exp(\beta_0 + \beta_1 x_{j1} + \beta_2 x_{j2})}{\sum_{k=0}^{J} \exp(\beta_0 + \beta_1 x_{k1} + \beta_2 x_{k2})}$$

• Consider another set of parameters:  $\{\tilde{\beta}_0,\beta_1,\beta_2\}$ , where  $\tilde{\beta}_0=\beta_0+c$ , and c is a constant.

# Appendix: Normalization II

• The market share for product j, based on the other set of parameters  $\{\tilde{\beta}_0, \beta_1, \beta_2\}$ :

$$\tilde{s}_{j} = \frac{\exp(\tilde{\beta}_{0} + \beta_{1}x_{j1} + \beta_{2}x_{j2})}{\sum_{k=0}^{J} \exp(\tilde{\beta}_{0} + \beta_{1}x_{k1} + \beta_{2}x_{k2})}$$

$$= \frac{\exp(c + \beta_{0} + \beta_{1}x_{j1} + \beta_{2}x_{j2})}{\sum_{k=0}^{J} \exp(c + \beta_{0} + \beta_{1}x_{k1} + \beta_{2}x_{k2})}$$

$$= \frac{\exp(c) \exp(\beta_{0} + \beta_{1}x_{j1} + \beta_{2}x_{j2})}{\exp(c) \sum_{k=0}^{J} \exp(\beta_{0} + \beta_{1}x_{k1} + \beta_{2}x_{k2})} = s_{j}$$

• Two sets of parameters can predict the same market share for product j, so the coefficient are not identified in this model. Back