COM 5335 Network Security Lecture 6 Public Key Cryptography & RSA

Scott CH Huang

Outline

- **One-way Trapdoor functions**
- Basic Number Theory for RSA
- **RSA Digital Signatures**

One-Way Trapdoor Functions

One-Way Functions

- The most basic primitive for cryptosystem is a one-way function (OWF).
 - Informally, this is a function which is EASY to compute but HARD to invert.

The Factorization Problem

- Factorization is a well-known candidate for OWF.
 - Randomly select two prime numbers: p and q.
 - It is easy to compute N=pq.
 - However, conversely, given N=pq, it is assumed to be HARD to obtain p or q.

One-way Trapdoor Functions

- A one-way trapdoor function f is a one-way function with an extra property.
- There exists some secret information (called the trapdoor) that allows its possessor to EFFICIENTLY invert f.
- It is infeasible to invert f without knowledge of the trapdoor.

Basic Number Theory for RSA

Euler Totient Function

• Euler's Totient Function φ is defined by $\varphi(n) = \big| \{x | 1 \le x \le n, \gcd(x, n) = 1\} \big|$

•
$$\varphi(2) = |\{1\}| = 1$$

•
$$\varphi(3)=|\{1,2\}|=2$$

•
$$\varphi(4)=\{1,3\}=2$$

•
$$\varphi(5)=|\{1,2,3,4\}|=4$$

•
$$\varphi(6)=|\{1,5\}|=2$$

Calculation of Euler Totient Function

Properties

- (1) For any prime p, and $\alpha \geq 1 \Rightarrow \varphi(p^{\alpha}) = p^{\alpha-1}(p-1)$
- (2) $\forall m, n \in \mathbb{Z} \text{ s.t. } \gcd(m, n) = 1 \Rightarrow \varphi(mn) = \varphi(m)\varphi(n)$

Corollary: $\varphi(pq) = (p-1)(q-1)$ for p, q primes

The Group Z_n*

- $\mathbb{Z}_n^* = \{k | \gcd(k, n) = 1, 1 \le k < n\}$
- For any positive integer n, \mathbb{Z}_n^* forms a group under multiplication modulo *n*.
- Euler's Theorem:

$$\forall \alpha \in \mathbb{Z}_n^*$$
, we have $\alpha^{\varphi(n)} \equiv 1 \pmod{n}$

Examples of Z_n*

- $Z_{15} = \{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14\}$
- $Z_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$ $(\varphi(15) = 8) \ \forall \alpha \in \mathbb{Z}_{15}^*, \text{ we have } \alpha^8 \equiv 1 \pmod{15}$
- $Z_{12} = \{0,1,2,3,4,5,6,7,8,9,10,11\}$
- $Z_{12}^* = \{1,5,7,11\}$ $(\varphi(12) = 4) \ \forall \alpha \in \mathbb{Z}_{12}^*, \text{ we have } \alpha^4 \equiv 1 \pmod{12}$

RSA

- In 1977 Rivest, Shamir and Adelman proposed the first candidate trapdoor function,
 - Now called the RSA. The story of modern cryptography followed.
 - The best known & widely used public-key scheme
- It is based on exponentiation in a finite group \mathbb{Z}_n^* over integers modulo a number
 - exponentiation takes $O(\log^3 n)$ operations (easy)
- It uses large integers (eg. 1024 bits)
- The security relies on difficulty of factoring large numbers
 - factorization takes $O\left(e^{\sqrt{\log n \log \log n}}\right)$ operations (hard)

RSA Key Setup

- Each user generates a public/private key pair by:
 - Selecting two large primes at random: p, q
 - Computing their system modulus N=pq
 - note $\varphi(N) = (p-1)(q-1)$
 - Selecting at random the encryption key e
 - where $1 < e < \varphi(N)$, $\gcd(e, \varphi(N)) = 1$
 - Solve following equation to find decryption key d
 - $ed \equiv 1 \pmod{\varphi(N)}$, and $0 \le d \le N$
 - Fast to do it using Euclid's Algorithm.
 - publish their public encryption key: $P_u = \{e, N\}$
 - keep secret private decryption key: $S_u = \{d,p,q\}$

RSA Encryption/Decryption

- Encrypt a message M by the sender:
 - obtains public key of recipient P_u={e,N}
 - computes: C=M^e mod N, where 0≤M<N
- Decrypt the ciphertext C by the owner u:
 - use its private key S_u={d,p,q}
 - compute: M=C^d mod N
- note that the message M must be smaller than the modulus N (block if needed)

Why RSA Works

- By Euler's Theorem:
 - $-\alpha^{\varphi(N)} \equiv 1 \pmod{N}$
 - where $gcd(\alpha, N) = 1$
- In RSA, we have:
 - N=pq
 - $\varphi(N) = (p-1)(q-1)$
 - carefully chosen e & d to be inverses mod $\varphi(N)$
 - hence $ed=1+k\varphi(N)$ for some k
- Hence (if M is relatively prime to N):

$$C^d = (M^e)^d = M^{1+k\varphi(N)} = M(M^{\varphi(N)})^k = M^1(1)^k \equiv M \pmod{N}$$

Corollary of Euler's theorem

 Given two prime numbers p and q, and integers n = pq and m, with 0<m<n, the following relationship holds:

$$m^{\varphi(n)+1} \equiv m \pmod{n}$$
 (Eq. 8.5)

- Proof: When gcd(m,n)≠1, and m is a multiply of p
 - \rightarrow m = cp, gcd(m,q) = 1 since m < pq
 - \rightarrow m^{ϕ (q)} \equiv 1 (mod q)
 - \rightarrow [m^{ϕ (q)}] ϕ (p) \equiv 1 (mod q)
 - \rightarrow m^{ϕ (n)} \equiv 1 (mod q) implies that m^{ϕ (n)} = 1 + kq
 - \rightarrow m $^{\phi(n)+1}$ = m + kcpq = m + kcn (multiply m = cp in both side)
 - \rightarrow m $^{\phi(n)+1}$ = m (mod n)

Exponentiation

- A useful operation for PKC:
 - Given a, n, m, where $a \in Z_n$ and m is an integer,
 - computes $a^m \mod n$.
- By repeated squaring, a^m mod n can be computed in O(log m) multiplications in mod n, hence O(log³n) time, if m<n.

RSA Example

- 1. Select primes: p=17 & q=11
- 2. Compute $n = pq = 17 \times 11 = 187$
- 3. Compute $\varphi(n)=(p-1)(q-1)=16\times 10=160$
- 4. Select e : gcd(e,160)=1; choose e=7
- 5. Determine d: $de=1 \mod 160$ and d < 160 Value is $d=23 \sin 20$ since $23 \times 7 = 161 = 10 \times 160 + 1$
- 6. Publish public key P={7,187}
- 7. Keep secret private key S={23,17,11}

RSA Example cont.

- sample RSA encryption/decryption is:
- given message M = 88
- Encryption (using public key):

$$C = 88^7 \mod 187 = 11$$

Decryption (using private key):

$$M = 11^{23} \mod 187 = 88$$

Exponentiation

- Use the Square and Multiply Algorithm
 - a fast, efficient algorithm for exponentiation
- Concept is based on repeatedly squaring base
- and multiplying in the ones that are needed to compute the result
- look at binary representation of exponent
- only takes O(log₂ n) multiples for number n
 - eg. $7^5 = 7^4.7^1 = 3.7 = 10 \mod 11$
 - eg. $3^{129} = 3^{128}.3^1 = 5.3 = 4 \mod 11$

Exponentiation

return d

$$c \leftarrow 0$$
; $d \leftarrow 1$
for $i \leftarrow k$ downto 0
do $c \leftarrow 2 \times c$
 $d \leftarrow (d \times d) \mod n$
if $b_i = 1$
then $c \leftarrow c + 1$
 $d \leftarrow (d \times a) \mod n$

Equivalently, the algorithm looks at binary expansion of m. What we did is collect all the powers of two corresponding to the ones and multiply them.

For example: compute 2²¹ mod 22.

4	3	2	1	0
a ¹⁶	a ⁸	a ⁴	a ²	a ¹
1	0	1	0	1

$$2^{1}=2 \pmod{22}$$
 $2^{2}=4 \pmod{22}$ $2^{4}=16 \pmod{22}$

Therefore,

 $=20*10 \pmod{22}=200 \pmod{22}=22*9+2=2 \pmod{22}$.

Some Remarks on RSA

The Hardness to Invert RSA

- Thus far, the best way known to invert RSA is to first factor n.
- The best running time for a fully proved algorithm is Dixon's random squares algorithms which runs in time: $O\left(e^{\sqrt{\log n \log \log n}}\right)$
- But, in practice we may consider others.

•Let I=|p| where p is the smallest prime divisor of n. The Elliptic Curve algorithm takes expected time

$$O\left(e^{\sqrt{2\log l \log \log l}}\right)$$

•The Quadratic Sieve algorithm runs in expected time:

$$O\left(e^{\sqrt{\log n \log \log n}}\right)$$

•The recommended size for *n* these days is 1024 bits.

Knowledge of $\varphi(n)$ is equivalent to knowledge of the factorization

 $\varphi(n)$ factorization To compute $\varphi(n)$ from p and q: $\Phi(n) = (p-1)(q-1) = n+1-(p+q).$

 $\varphi(n)$ factorization

To compute out p and q from $\varphi(n)$. Since pq=n and $p+q=n+1-\varphi(n)$. Define $2b = n+1-\varphi(n)$ since $\varphi(n)$ is even. p and q must be the root of equation $b+\sqrt{b^2-n}$ x^2 -2bx+n=0. Thus p and q equal to

RSA Key Generation Remarks

- Users of RSA must:
 - determine two primes at random p, q
 - select either e or d and compute the other
- Primes p,q must not be easily derived from modulus N=p.q
 - means must be sufficiently large
 - typically guess and use probabilistic test
- Exponents e, d are inverses, so use Inverse algorithm to compute the other

RSA Security

- three approaches to attacking RSA:
 - brute force key search (infeasible given size of numbers)
 - mathematical attacks (based on difficulty of computing $\phi(N)$, by factoring modulus N)
 - timing attacks (on running of decryption)

Factoring Problem

- To attack RSA, we can do either of the followings.
 - 1. factor N=p.q, hence find $\varphi(N)$ and then d
 - 2. determine $\varphi(N)$ directly and find d
 - 3. find d directly
- If we can crack factoring => we can crack RSA, but not vice versa (i.e. if we crack RSA we may not be able to do factoring).
- Currently we believed RSA is equivalent to factoring
 - have seen slow improvements over the years
 - as of Aug-99 best is 130 decimal digits (512) bit with GNFS
 - biggest improvement comes from improved algorithm
 - cf "Quadratic Sieve" to "Generalized Number Field Sieve"
 - barring dramatic breakthrough 1024+ bit RSA secure
 - ensure p, q of similar size and matching other constraints

How to choose p and q

(1). The two primes should not be too close to each other (e.g. one should be a few decimal digits longer than the other). Also, any one of p and q should not be too small due to the

Elliptic Curve algorithm Reason: $n = pq \Rightarrow n = ((p+q)/2)^2 - ((p-q)/2)^2 = t^2 - s^2$

Since p and q are close together we get: s is small and t is an integer only slightly larger than \sqrt{n} . If you test the successive integers $t > \sqrt{n}$ you will **soon** find one such that $n = t^2 - s^2$, at which point you have p=t+s and q=t-s.

- (2). p-1 and q-1 should have a fairly small g.c.d. and both have at least one large prime factor.
- (3). Of course, if someone discovers a factorization method that works quickly under certain other conditions on p and q, then further users of RSA would have to take care to avoid those conditions as well.

Summary

We have covered:

- The principles of public-key cryptography
- RSA algorithm, implementation, security