$12n_{0648} \ (K12n_{0648})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -6.95358 \times 10^{37} u^{23} - 4.07407 \times 10^{36} u^{22} + \dots + 1.61095 \times 10^{39} b - 9.52256 \times 10^{39}, \\ &- 7.06431 \times 10^{39} u^{23} + 8.51893 \times 10^{38} u^{22} + \dots + 2.30366 \times 10^{41} a - 7.64291 \times 10^{41}, \\ &u^{24} + u^{23} + \dots + 289 u + 143 \rangle \\ I_2^u &= \langle -u^{18} - u^{17} + \dots + b - 1, \ -2u^{16} - u^{15} + \dots + a - 1, \ u^{19} - 12u^{17} + \dots + 4u - 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 43 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -6.95 \times 10^{37} u^{23} - 4.07 \times 10^{36} u^{22} + \dots + 1.61 \times 10^{39} b - 9.52 \times 10^{39}, \ -7.06 \times 10^{39} u^{23} + 8.52 \times 10^{38} u^{22} + \dots + 2.30 \times 10^{41} a - 7.64 \times 10^{41}, \ u^{24} + u^{23} + \dots + 289 u + 143 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.0306656u^{23} - 0.00369799u^{22} + \dots + 2.32158u + 3.31772 \\ 0.0431644u^{23} + 0.00252898u^{22} + \dots + 7.19118u + 5.91114 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.0142787u^{23} - 0.00544253u^{22} + \dots + 2.94433u + 2.42345 \\ 0.0139246u^{23} - 0.0131718u^{22} + \dots + 1.01894u + 0.464061 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.0251613u^{23} - 0.000730907u^{22} + \dots + 1.76692u + 2.55543 \\ -0.0181599u^{23} + 0.00533470u^{22} + \dots - 1.56432u - 1.98558 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0497304u^{23} + 0.00323432u^{22} + \dots - 6.95114u - 7.14443 \\ -0.0419268u^{23} - 0.00473941u^{22} + \dots - 4.93122u - 6.22408 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.0497304u^{23} + 0.00323432u^{22} + \dots - 6.95114u - 7.14443 \\ 0.0148906u^{23} - 0.00607853u^{22} + \dots + 3.26414u + 1.34988 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.0265932u^{23} - 0.00297561u^{22} + \dots - 2.70453u - 3.73203 \\ 0.00559528u^{23} - 0.00695287u^{22} + \dots + 0.504854u + 0.119250 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.0348398u^{23} - 0.00284421u^{22} + \dots - 3.68700u - 5.79455 \\ 0.0148906u^{23} - 0.00607853u^{22} + \dots + 3.26414u + 1.34988 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.0449908u^{23} + 0.00298260u^{22} + \cdots 19.5117u 16.1952$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{24} + 60u^{23} + \dots + 3708160u + 295936$
c_2, c_7	$u^{24} - 10u^{23} + \dots + 16u + 544$
c_3, c_9, c_{10}	$u^{24} - u^{23} + \dots - 289u + 143$
c_4	$u^{24} + 3u^{23} + \dots - 327u - 41$
c_5, c_8	$u^{24} + 2u^{23} + \dots + 13u - 1$
c_6, c_{11}	$u^{24} - u^{23} + \dots - 288u - 69$
c_{12}	$u^{24} - 36u^{22} + \dots - 47638u - 14543$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{24} - 296y^{23} + \dots - 4939910283264y + 87578116096$
c_2, c_7	$y^{24} - 60y^{23} + \dots - 3708160y + 295936$
c_3, c_9, c_{10}	$y^{24} - 45y^{23} + \dots - 70079y + 20449$
c_4	$y^{24} - 11y^{23} + \dots - 33785y + 1681$
c_5, c_8	$y^{24} + 26y^{23} + \dots - 575y + 1$
c_6,c_{11}	$y^{24} - 9y^{23} + \dots - 35058y + 4761$
c_{12}	$y^{24} - 72y^{23} + \dots - 2969653580y + 211498849$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.998180 + 0.182421I		
a = -0.371865 + 0.963824I	-2.89773 - 4.47411I	-11.26620 + 4.32225I
b = -0.46248 + 1.36040I		
u = -0.998180 - 0.182421I		
a = -0.371865 - 0.963824I	-2.89773 + 4.47411I	-11.26620 - 4.32225I
b = -0.46248 - 1.36040I		
u = -1.08785		
a = 0.370138	-5.81657	-15.7030
b = 0.466022		
u = -0.908883 + 0.696346I		
a = 0.819047 - 0.748643I	2.29616 + 2.53148I	-13.0553 - 13.0894I
b = -1.50457 - 0.48587I		
u = -0.908883 - 0.696346I		
a = 0.819047 + 0.748643I	2.29616 - 2.53148I	-13.0553 + 13.0894I
b = -1.50457 + 0.48587I		
u = -0.369638 + 0.655856I		
a = 0.163913 + 0.088570I	-1.35028 - 2.85129I	-8.82275 - 0.17568I
b = -0.483150 + 1.254690I		
u = -0.369638 - 0.655856I		
a = 0.163913 - 0.088570I	-1.35028 + 2.85129I	-8.82275 + 0.17568I
b = -0.483150 - 1.254690I		
u = 0.351833 + 0.653611I		
a = -1.42495 - 0.28417I	-3.72902 - 2.23669I	-11.06844 + 3.08943I
b = 0.440762 - 1.267520I		
u = 0.351833 - 0.653611I		
a = -1.42495 + 0.28417I	-3.72902 + 2.23669I	-11.06844 - 3.08943I
b = 0.440762 + 1.267520I		
u = 1.312160 + 0.113933I		
a = -0.648596 + 1.219050I	-2.00982 - 3.68666I	-7.35603 + 5.27682I
b = 0.265262 + 0.114333I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.312160 - 0.113933I		
a = -0.648596 - 1.219050I	-2.00982 + 3.68666I	-7.35603 - 5.27682I
b = 0.265262 - 0.114333I		
u = -1.42954 + 0.07398I		
a = -0.35156 - 1.37276I	-9.16253 - 3.52152I	-17.4723 + 4.9311I
b = 0.443663 - 1.115380I		
u = -1.42954 - 0.07398I		
a = -0.35156 + 1.37276I	-9.16253 + 3.52152I	-17.4723 - 4.9311I
b = 0.443663 + 1.115380I		
u = -0.172334 + 0.521929I		
a = 0.57148 - 1.66997I	2.32011 + 1.43982I	-3.19830 - 4.08238I
b = -0.572916 + 0.049432I		
u = -0.172334 - 0.521929I		
a = 0.57148 + 1.66997I	2.32011 - 1.43982I	-3.19830 + 4.08238I
b = -0.572916 - 0.049432I		
u = 0.406773		
a = -0.663948	-0.603529	-16.4560
b = 0.198801		
u = 1.77917		
a = 0.251024	-16.2026	-29.6210
b = -0.0435926		
u = -2.04114 + 0.56230I		
a = -0.502493 + 0.953370I	14.2564 + 11.7505I	-11.51618 - 4.21495I
b = 1.10365 + 1.70631I		
u = -2.04114 - 0.56230I		
a = -0.502493 - 0.953370I	14.2564 - 11.7505I	-11.51618 + 4.21495I
b = 1.10365 - 1.70631I		
u = 2.37547 + 0.30331I		
a = 0.174548 + 1.000270I	14.5489 - 0.5683I	-8.00000 + 0.I
b = -0.11023 + 2.21127I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 2.37547 - 0.30331I		
a = 0.174548 - 1.000270I	14.5489 + 0.5683I	-8.00000 + 0.I
b = -0.11023 - 2.21127I		
u = 2.14046 + 1.17450I		
a = -0.469141 - 0.647096I	-13.27670 - 2.35671I	0
b = 0.27079 - 2.64157I		
u = 2.14046 - 1.17450I		
a = -0.469141 + 0.647096I	-13.27670 + 2.35671I	0
b = 0.27079 + 2.64157I		
u = -2.61851		
a = 0.128998	18.9868	-8.00000
b = 2.59719		

$$II. \\ I_2^u = \langle -u^{18} - u^{17} + \dots + b - 1, \ -2u^{16} - u^{15} + \dots + a - 1, \ u^{19} - 12u^{17} + \dots + 4u - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2u^{16} + u^{15} + \dots + 6u + 1 \\ u^{18} + u^{17} + \dots - u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{18} - u^{17} + \dots + 17u^{3} - 7u^{2} \\ u^{17} + u^{16} + \dots + u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{17} + 2u^{16} + \dots - 10u^{2} + 2u \\ u^{16} - 10u^{14} + \dots + u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{18} - 12u^{16} + \dots - 8u + 2 \\ u^{18} + 2u^{17} + \dots - 7u + 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{18} - 12u^{16} + \dots - 8u + 2 \\ u^{18} + 2u^{17} + \dots - 8u + 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{18} + 12u^{16} + \dots + 5u - 1 \\ u^{18} + u^{17} + \dots + 2u^{2} - 2u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2u^{18} + 2u^{17} + \dots - 16u + 4 \\ u^{18} + 2u^{17} + \dots - 8u + 2 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-u^{18} - 7u^{17} + 4u^{16} + 70u^{15} + 15u^{14} - 288u^{13} - 116u^{12} + 648u^{11} + 286u^{10} - 880u^9 - 387u^8 + 725u^7 + 321u^6 - 320u^5 - 125u^4 + 53u^3 - 15u^2 - 11u - 7$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{19} - 16u^{18} + \dots + 9u - 1$
c_2	$u^{19} - 8u^{17} + \dots + u + 1$
c_3	$u^{19} - 12u^{17} + \dots + 4u + 1$
C4	$u^{19} - 2u^{18} + \dots + 5u^2 + 1$
<i>C</i> 5	$u^{19} + 3u^{18} + \dots - 6u^2 - 1$
c_6	$u^{19} + 2u^{17} + \dots - u - 1$
<i>c</i> ₇	$u^{19} - 8u^{17} + \dots + u - 1$
c ₈	$u^{19} - 3u^{18} + \dots + 6u^2 + 1$
c_9, c_{10}	$u^{19} - 12u^{17} + \dots + 4u - 1$
c_{11}	$u^{19} + 2u^{17} + \dots - u + 1$
c_{12}	$u^{19} - u^{18} + \dots - 39u - 169$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{19} - 32y^{18} + \dots - 19y - 1$
c_2, c_7	$y^{19} - 16y^{18} + \dots + 9y - 1$
c_3, c_9, c_{10}	$y^{19} - 24y^{18} + \dots - 4y^2 - 1$
c_4	$y^{19} + 6y^{18} + \dots - 10y - 1$
c_5, c_8	$y^{19} + 7y^{18} + \dots - 12y - 1$
c_6, c_{11}	$y^{19} + 4y^{18} + \dots - 13y - 1$
c_{12}	$y^{19} - 7y^{18} + \dots - 20111y - 28561$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.980950 + 0.604076I		
a = -0.798772 - 0.755373I	2.48141 - 2.27470I	1.66056 - 6.57716I
b = 1.49647 - 0.52355I		
u = 0.980950 - 0.604076I		
a = -0.798772 + 0.755373I	2.48141 + 2.27470I	1.66056 + 6.57716I
b = 1.49647 + 0.52355I		
u = -0.737628 + 0.359811I		
a = 0.067452 - 0.920420I	-5.41374 - 1.59276I	-15.0492 + 2.8168I
b = -0.762089 + 0.832433I		
u = -0.737628 - 0.359811I		
a = 0.067452 + 0.920420I	-5.41374 + 1.59276I	-15.0492 - 2.8168I
b = -0.762089 - 0.832433I		
u = -1.179440 + 0.170240I		
a = 0.90264 - 1.49402I	-7.08654 + 3.52788I	-12.56931 - 3.15212I
b = -0.490604 - 1.115980I		
u = -1.179440 - 0.170240I		
a = 0.90264 + 1.49402I	-7.08654 - 3.52788I	-12.56931 + 3.15212I
b = -0.490604 + 1.115980I		
u = 1.277010 + 0.114842I		
a = -0.193294 - 0.314119I	-4.51476 - 5.17759I	-14.4043 + 6.7554I
b = 0.305041 - 1.145700I		
u = 1.277010 - 0.114842I		
a = -0.193294 + 0.314119I	-4.51476 + 5.17759I	-14.4043 - 6.7554I
b = 0.305041 + 1.145700I		
u = 1.340980 + 0.147089I		
a = -0.55132 + 2.05499I	-2.81013 - 3.35015I	-16.3799 + 1.5970I
b = 0.135134 + 0.767547I		
u = 1.340980 - 0.147089I		
a = -0.55132 - 2.05499I	-2.81013 + 3.35015I	-16.3799 - 1.5970I
b = 0.135134 - 0.767547I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.42878 + 0.22236I		
a = 0.635513 + 0.360503I	-3.93872 + 0.69346I	-13.16284 + 0.10930I
b = -0.044798 + 0.642597I		
u = -1.42878 - 0.22236I		
a = 0.635513 - 0.360503I	-3.93872 - 0.69346I	-13.16284 - 0.10930I
b = -0.044798 - 0.642597I		
u = 0.353961 + 0.248880I		
a = 0.60428 + 1.70616I	-1.30454 + 3.85459I	-7.72386 - 6.55740I
b = 0.444558 + 1.167630I		
u = 0.353961 - 0.248880I		
a = 0.60428 - 1.70616I	-1.30454 - 3.85459I	-7.72386 + 6.55740I
b = 0.444558 - 1.167630I		
u = 0.112509 + 0.356697I		
a = 3.67512 - 2.27930I	1.35323 + 1.56259I	-12.20805 - 3.14313I
b = 0.086415 - 0.687232I		
u = 0.112509 - 0.356697I		
a = 3.67512 + 2.27930I	1.35323 - 1.56259I	-12.20805 + 3.14313I
b = 0.086415 + 0.687232I		
u = -1.62694 + 0.05058I		
a = -0.334359 - 0.989140I	-8.63988 - 2.65005I	-12.70208 - 1.23601I
b = 0.609573 - 1.022040I		
u = -1.62694 - 0.05058I		
a = -0.334359 + 0.989140I	-8.63988 + 2.65005I	-12.70208 + 1.23601I
b = 0.609573 + 1.022040I		
u = 1.81475		
a = -0.0145195	-15.9196	-0.921900
b = -0.559404		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u^{19} - 16u^{18} + \dots + 9u - 1)(u^{24} + 60u^{23} + \dots + 3708160u + 295936) $
c_2	$(u^{19} - 8u^{17} + \dots + u + 1)(u^{24} - 10u^{23} + \dots + 16u + 544)$
c_3	$(u^{19} - 12u^{17} + \dots + 4u + 1)(u^{24} - u^{23} + \dots - 289u + 143)$
c_4	$(u^{19} - 2u^{18} + \dots + 5u^2 + 1)(u^{24} + 3u^{23} + \dots - 327u - 41)$
<i>C</i> ₅	$(u^{19} + 3u^{18} + \dots - 6u^2 - 1)(u^{24} + 2u^{23} + \dots + 13u - 1)$
<i>C</i> ₆	$(u^{19} + 2u^{17} + \dots - u - 1)(u^{24} - u^{23} + \dots - 288u - 69)$
c ₇	$(u^{19} - 8u^{17} + \dots + u - 1)(u^{24} - 10u^{23} + \dots + 16u + 544)$
c_8	$(u^{19} - 3u^{18} + \dots + 6u^2 + 1)(u^{24} + 2u^{23} + \dots + 13u - 1)$
c_9, c_{10}	$(u^{19} - 12u^{17} + \dots + 4u - 1)(u^{24} - u^{23} + \dots - 289u + 143)$
c_{11}	$(u^{19} + 2u^{17} + \dots - u + 1)(u^{24} - u^{23} + \dots - 288u - 69)$
c_{12}	$(u^{19} - u^{18} + \dots - 39u - 169)(u^{24} - 36u^{22} + \dots - 47638u - 14543)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^{19} - 32y^{18} + \dots - 19y - 1)$ $\cdot (y^{24} - 296y^{23} + \dots - 4939910283264y + 87578116096)$
c_2, c_7	$(y^{19} - 16y^{18} + \dots + 9y - 1)(y^{24} - 60y^{23} + \dots - 3708160y + 295936)$
c_3, c_9, c_{10}	$(y^{19} - 24y^{18} + \dots - 4y^2 - 1)(y^{24} - 45y^{23} + \dots - 70079y + 20449)$
c_4	$(y^{19} + 6y^{18} + \dots - 10y - 1)(y^{24} - 11y^{23} + \dots - 33785y + 1681)$
c_5, c_8	$(y^{19} + 7y^{18} + \dots - 12y - 1)(y^{24} + 26y^{23} + \dots - 575y + 1)$
c_6, c_{11}	$(y^{19} + 4y^{18} + \dots - 13y - 1)(y^{24} - 9y^{23} + \dots - 35058y + 4761)$
c_{12}	$(y^{19} - 7y^{18} + \dots - 20111y - 28561)$ $\cdot (y^{24} - 72y^{23} + \dots - 2969653580y + 211498849)$