БЕЗУСЛОВНАЯ МНОГОМЕРНАЯ ОПТИМИЗАЦИЯ

Рассматривается следующая многомерная задача безусловной оптимизации (точнее говоря, задача многомерной локальной безусловной оптимизации): найти минимум функции $\Phi(X)$, определенной в п-мерном евклидовом пространстве R^n Найти $\min \Phi(\overline{X})$, $\overline{X} \in R^n$, дано начальное приближение решения \overline{X}^0 и точность ерѕ.

Примеры для иллюстрации методов

1. Функция Химмельблау

$$f(x, y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2$$

2. Функция Розенброка

$$f(x, y) = (1-x)^2 + 100(y+x^2)^2$$

1 Метод Гаусса-Зейделя (покоординатного спуска или цикличного покоорднатного спуска)

Общая итерационная схема метода покоординатного спуска:

$$\begin{split} \overline{X}_1^{r+1} &= \overline{X}^{r+1} + \lambda_1^r \overline{L}_1 \\ \overline{X}_2^{r+1} &= \overline{X}_1^{r+1} + \lambda_2^r \overline{L}_2 \\ \cdots \\ \overline{X}_n^{r+1} &= \overline{X}_{n-1}^{r+1} + \lambda_n^r \overline{L}_n = \overline{X}^{r+1} \end{split}$$

где n-размерность задачи, направление \overline{L}_i выбирается вдоль i-ой координатной оси, т.е.

$$egin{aligned} \overline{L}_i &= \left(l_{i1}, \ldots, l_{in}
ight) \ l_{ij} &= egin{cases} 1 \ e c \pi u \ j = i \ 0 \ u h \ a u e \end{cases} \end{aligned}$$

Величина шага λ_i^r вдоль направления на каждом шаге i выбирается таким образом, чтобы минимизировать $\Phi(X)$ в этом направлении.

Т.е., например, на первом шаге (i=1)

$$\min_{\lambda \in (-\infty; +\infty)} \Phi(\overline{X}^r + \lambda \overline{L}_1) = \overline{X}^{r+1} + \lambda_1^r \overline{L}_1 = \Phi(\overline{X}_1^{r+1})$$

Каждая итерация состоит из n шагов, следующая итерация начинается в точке, полученной на последнем шаге предыдущей итерации.

Определение величины шага – задача одномерной оптимизации.

Итерационный процесс завершается при выполнении одного из условий

$$\left\| \overline{X}^{r+1} - \overline{X}^r \right\| \le epsx$$

$$\left| \Phi(\overline{X}^{r+1}) - \Phi(\overline{X}^r) \right| \le eps\Phi$$

Траектория поиска минимума **неовражной** функции Химмельблау методом Гаусса-Зейделя

Метод Гаусса-Зейделя медленно сходится на овражных функциях, в которых овраг не ориентирован в направлении какой-либо из координатных осей.

Траектория поиска минимума овражной функции Розенброка методом Гаусса-Зейделя.

2 Метод Хука-Дживса (метод конфигураций, метод пробных шагов)

Итерационные формулы аналогичны формулам, используемым в методе Гаусса-Зейделя

Общая идея – производится последовательность «пробных» шагов в выбранном направлении до тех пор, пока за удачей не последует неуспех.

Общая итерационная схема:

 $\overline{X}_0^{r+1} = \overline{X}^r$ - начальное приближение экстремума для і-ой итерации

$$\overline{X}_i^{r+1} = \overline{X}_{i-1}^{r+1} + \lambda_1^r \overline{L}_i$$

 $\overline{X}_n^{r+1} = \overline{X}^{r+1}$ - начальное приближение для следующей итерации (последняя точка текущей)

где направление \overline{L}_{i} выбирается вдоль і-ой координатной оси, т.е.

$$\overline{L}_{i} = \begin{pmatrix} l_{i1}, ..., l_{in} \end{pmatrix}$$

$$l_{ij} = \begin{cases} 1 \ e c \pi u \ j = i \\ 0 \ u \mu \ a u e \end{cases}$$

Величина шага λ_i^r вдоль координатной оси определяется из условий

$$\lambda_{i}^{r} = \begin{cases} \Delta_{i}^{r} \ ecnu \ \Phi(\overline{X}_{i-1}^{r+1} + \Delta_{i}^{r} \overline{L}_{i}) < \Phi(\overline{X}_{i-1}^{r+1}), & \textit{m.e. пробный шаг привел к уменьшению} \Phi \\ -\Delta_{i}^{r} \ ecnu \ \Phi(\overline{X}_{i-1}^{r+1} - \Delta_{i}^{r} \overline{L}_{i}) < \Phi(\overline{X}_{i-1}^{r+1}) < \Phi(\overline{X}_{i-1}^{r+1} + \Delta_{i}^{r} \overline{L}_{i}), & \textit{m.e. пробный шаг в обратном направлени привел к уменьшению} \Phi \\ 0, \textit{ecnu } \min(\Phi(\overline{X}_{i-1}^{r+1} - \Delta_{i}^{r} \overline{L}_{i}), \Phi(\overline{X}_{i-1}^{r+1} + \Delta_{i}^{r} \overline{L}_{i})) > \Phi(\overline{X}_{i-1}^{r+1}) \end{cases}$$

После завершения n шагов выполняется спуск в направлении $(\overline{X}^{r+1} - \overline{X}^r)$:

$$\overline{X}^{r+1} = \overline{X}^r + \alpha^r (\overline{X}^{r+1} - \overline{X}^r)$$
, где α^r - т.н. ускоряющий множитель

Модификации метода Хука-Дживса в зависимости от способа выбора α^r :

- 1. $\alpha^r = const$ (например, $\alpha^r = 2$)
- 2. α^r выбирается из условия $\Phi(\overline{X}^{r+1}) < \Phi(\overline{X}^r)$
- 3. α^r находится в результате решения одномерной задачи оптимизации Φ в направлении $(\overline{X}^{r+1} \overline{X}^r)$

Итерационный процесс завершается при выполнении одного из условий

$$\left\| \overline{X}^{r+1} - \overline{X}^r \right\| \le epsx$$

$$\left| \Phi(\overline{X}^{r+1}) - \Phi(\overline{X}^r) \right| \le eps\Phi$$

Схема метода Хука-Дживса

- 1. Задаем начальную точку \overline{X}^0 и вектор пробных шагов $\overline{\Delta}^0 = (\Delta^0_1, \Delta^0_2...\Delta^0_n)$. Полагаем r=0.
- 2. Последовательно находим точки $\overline{X}_1^{r+1}, \overline{X}_2^{r+1}, ..., \overline{X}_3^{r+1} = \overline{X}^{r+1}$
- 3. Если $\overline{X}^{r+1} \neq \overline{X}^r$ переходим к п.4 Иначе уменьшаем длины пробных шагов и переходим к п.2
- 4. Если одно из условий окончание поиска выполнено $\overline{X}^* \approx \overline{X}^{r+1}$, конец. Иначе спуск в направлении $(\overline{X}^{r+1} \overline{X}^r)$:

$$\overline{X}^{r+1} = \overline{X}^r + \alpha^r \left(\overline{X}^{r+1} - \overline{X}^r \right)$$

r=r+1, переход на п.2

Траектория поиска минимума не овражной функции Химмельблау методом Хука-Дживса

Траектория поиска минимума овражной функции Химмельблау методом Хука-Дживса. Ускоряющий множитель α =const=2

3 Метод Розенброка (метод вращающихся координат)

При решении задачи методом Розенброка на каждой итерации используется преобразование системы координат таким образом, чтобы в новой системе координат одна из осей совпадала с направлением предыдущего шага.

Остальные оси новой системы координат обычно находят с помощью процедуры ортогонализации (Грамма-Шмидта).

Ортогонализация Грамма-Шмидта

Опр. Набор векторов e_1 , e_2 ... e_n называется ортогональным, если для любых двух векторов из этого набора выполняется

$$(e_1,e_2)$$
 = $\begin{cases} 0,\,e$ сли $i\neq j \\$ не $0,\,e$ сли $i=j \end{cases}$

Набор векторов ортонормирован, если они ортогональны и скалярное произведение любых двух равно 1:

$$(e_1, e_2) =$$

$$\begin{cases} 0, ecnu \ i \neq j \\ 1, ecnu \ i = j \end{cases}$$

Рассмотрим произвольный набор линейно-независимых векторов p_1 , $p_2...p_n$ Построим на основе этих векторов ортогональный набор векторов.

$$e_1 = \frac{p_1}{\|p_1\|} = \frac{p_1}{\sqrt{(p_1, p_1)}}$$

Остальные e_k найдем по формулам:

$$y_k = p_k - \sum_{j=1}^{k-1} \frac{(p_k, y_j)}{(y_j, y_j)} y_j \ k = 2,...,n$$

$$e_k = \frac{y_k}{\|y_k\|}$$
 $k = 2,...,n$

Каждая итерация метода Розенброка состоит из двух этапов.

Первый этап.

Выполняется поиск по направлениям, совпадающим с ортами координатных осей. В зависимости от модификации метода первый этап может выполняться с использованием различных методов (например, Гаусса-Зейделя).

Второй этап.

Система векторов с использованием ортогонализации Грамма-Шмидта заменяется новой системой линейно независимых векторов

Схема метода Розенброка

- 1. Задаем начальную точку \overline{X}^0 , полагаем r=0, i=1, и орты исходной системы координат обозначаем $e^{0}_{1}, e^{0}_{2}...e^{0}_{n}$
- 2. Исходя из точки \overline{X}^r выполняем одну итерацию по методу Гаусса-Зейделя получаем точку \overline{X}^{r+1} и совокупность векторов $q^0_1, q^0_2...q^0_n$.
- 3. Если одно из стандартных условий окончания итераций

$$\|\overline{X}^{r+1} - \overline{X}^r\| \le epsx$$

$$|\Phi(\overline{X}^{r+1}) - \Phi(\overline{X}^r)| \le eps\Phi$$

выполнено, то полагаем $\overline{X}^* \approx \overline{X}^{r+1}$ и заканчиваем вычисления, иначе переходим к п.4. 4. На основе векторов $q^0_1, q^0_2...q^0_n$ находим векторы $p^r_1, p^r_2...p^r_n$:

$$p_i^r = \sum_{j=i}^n q_{i, i=1,2,...,n}^r$$

5. С помощью процедуры ортогонализации Грамма-Шмидта выполняем переход от системы векторов p^{r_1} , $p^{r_2}...p^{r_n}$ к системе векторов e^{r+1} , e^{r+1} , e^{r+1} , полагаем r=r+1 и переходим к п. 2.

Заметим, что $p_n^r = q_n^r$

По сравнению с методом Гаусса-Зейделя и методом Хука-Дживса метод Розенброка имеет, как правило, более высокую эффективность на овражных функциях с непрямолинейным оврагом.

Траектория поиска минимума функции Химмельблау методом Розенброка (n=2)