Examen Master 2 UM 2022/2023 Module Contraintes

10 janvier 2023 Durée : 3 heures Tous documents manuscrits et support de cours autorisés

Exercice 1

Dans la suite la contrainte $X_i \leq X_j$ est notée c_{ij}^{\leq} , la contrainte $X_i = X_j$ est notée c_{ij}^{\equiv} et la contrainte $(X_i \cdot X_j) \mod 4 = 0$ est notée c_{ij}^{mod4} .

Soient l'ensemble de variables $X = \{X_1, \dots, X_4\}$, leurs domaines $D(X_1) = \{1, 2, 3, 4, 5, 6\}$, $D(X_2) = \{1, 2, 4, 5, 6, 7\}$, $D(X_3) = \{1, 2, 3, 4, 5, 6, 7\}$, $D(X_4) = \{1, 2, 3, 5, 6, 7\}$ et les ensembles de contraintes $C_1 = \{c_{12}^{\leq}, c_{23}^{\leq}, c_{34}^{\leq}, c_{24}^{\leq}, c_{24}^{mod4}\}$ et $C_2 = \{c_{12}^{=}, c_{23}^{=}, c_{34}^{=}, c_{41}^{mod4}\}$. On définit les deux réseaux de contraintes $N_1 = (X, D, C_1)$ et $N_2 = (X, D, C_2)$.

Question 1 • Calculez la fermeture $BC(N_1)$ de N_1 par BC.

Question 2 • Calculez la fermeture $AC(N_1)$ de N_1 par AC.

Question 3 • SAC supprime-t-il plus de valeurs que AC sur N_1 ? Justifiez.

Question 4 • Comparez $sol(N_2)$ à $sol(N_1)$: sont-ils l'un inclus dans l'autre / égaux?

Question 5 • Que pouvez-vous en déduire sur $AC(N_2)$ par rapport à $AC(N_1)$? Expliquez.

Question 6 • Discutez la différence entre résoudre N_1 ou résoudre N_2 pour un algorithme de type backtrack (par exemple BT, FC, MAC).

Exercice 2

On ne considère que les réseaux de contraintes binaires. Et ant donné un réseau de contraintes binaires N=(X,D,C), on note $E(X_i)$ l'ensemble composé de X_i et des variables X_j telles qu'il existe une contrainte $c \in C$ avec X_i et X_j dans scope(c). On note $C[E(X_i)]$ l'ensemble des contraintes portant uniquement sur des variables de $E(X_i)$. Un réseau binaire N=(X,D,C) est Costaud cohérent (CC)si et seulement si pour tout $X_i \in X$, pour tout $v \in D(X_i)$, le réseau $(E(X_i),D,C[E(X_i)])$ admet une solution s telle que $s[X_i]=v$. On définit la fermeture CC de N, notée CC(N), comme d'habitude.

Question 7 • Comparez CC et SAC selon la relation "(strictement) plus fort que" donnée en cours.

Question 8 Calculer la fermeture CC est NP-difficile. (On ne vous en demande pas la preuve.) • Etant donné un réseau binaire N, BT est-il sans retour arrière sur CC(N)? Les exercices 3 et 4 doivent être rédigés sur copie séparée des exercices 1 et 2

Exercice 3

Pour tous entiers $k>l\geq 0,$ on définit la fonction booléenne

$$c_l^k = \{t \in \{0,1\}^k \mid \forall i,j, \ t[i] = t[j] = 1 \Rightarrow |i-j| \le l\}$$

Par exemple, on a

$$c_0^2(x,y) = \begin{bmatrix} x & y \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad c_1^3(x,y,z) = \begin{bmatrix} x & y & z \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

On définit également

$$c_1(x,y) = \{0,1\}^2 \setminus \{(0,0)\}$$
 $c_2(x,y,z) = \{0,1\}^3 \setminus \{(0,0,0)\}$

Question 9 • Déterminez la complexité (P vs. NP-complet) de $CSP(\{c_0^2, c_1^3\})$. Justifiez.

Question 10 • Déterminez la complexité (P vs NP-complet) de $CSP(\{c_1^3, c_2\})$. Justifiez.

Question 11 • Démontrez que pour tous entiers $k > l \ge 0$, $CSP(\{c_l^k, c_1\})$ est polynomial.

Exercice 4

Soit un entier $n \geq 2$. On considère un hypergraphe H_n dont l'ensemble des sommets est $\{X_1, \ldots, X_n, Y_1, \ldots, Y_n\}$ et l'ensemble des arêtes est $\{\{X_i, X_{i+1}, Y_{i+1}\} \mid 1 \leq i \leq n-1\} \cup \{\{X_i, Y_i, Y_{i+1}\} \mid 1 \leq i \leq n-1\}$.

Question 12 • Démontrez que l'hypertreewidth de H_n est égale à 1.

Question 13 • Existe-t-il un réseau de contraintes N dont l'hypergraphe est H_n , qui n'a pas de solution, et tel qu'appliquer la 3-cohérence forte sur N ne vide aucun domaine? Justifiez.