

8位元等電流 LED 驅動器

特色

- 8 個等電流輸出通道
- 等電流輸出値不受輸出端負載電壓影響
- 極爲精確的電流輸出値,

通道間最大差異值:<±3%;

晶片間最大差異值:<±6%。

- 利用一個外接電阻,可調整電流輸出值
- 等電流輸出節圍值:5-120 mA
- 快速的輸出電流響應,

OE (最小値): 200 ns @Iout < 60mA

OE (最小値): 400 ns @I_{out} = 60~100mA

- 高達 25MHz 輸入脈衝頻率
- 具 Schmitt trigger 輸入裝置
- 操作電壓:5V

精確的	條件	
通道間		
< ±3%	< ±6%	I _{OUT} = 10~100 mA, V _{DS} = 0.8V

產品概述

MBI5168 與 MBI5001 的腳位完全一致,然而在電氣規格的表現上大幅提升,主要是因爲 MBI5168 採用 PrecisionDrive™ 技術以改進電氣特性。

MBI5168 是利用最新矽半導體技術,專為 LED 顯示面版設計的驅動 IC,它內建的 CMOS 位移暫存器與栓鎖器,可以將串列的輸入資料轉換成平行輸出資料格式。MBI5168 的 8 個電流源,可以在每個輸出級提供 5-120 mA 定電流量以驅動 LED。

在應用 MBI5168 於 LED 面板系統設計之時,MBI5168 可提供系統設計人員極大的彈性與極佳的元件效能。MBI5168 的使用者可以經由選用不同阻值的外接電阻器來調整 MBI5168 各輸出級的電流大小,藉此機制,使用者可輕鬆地控制 LED 的發光亮度。

MBI5168 的設計保證其輸出級可耐壓 17 伏特以上,因此可以在每個輸出端串接多個 LED。此外,MBI5168 亦可工作在 25MHz 的高時鐘頻率以滿足系統對大量資料傳輸上的需求。

電話: +886-3-579-0068, 傳真: +886-3-579-7534 E-mail: info@mblock.com.tw

腳位說明

腳位編號	腳位名稱	功能
1	GND	控制邏輯及驅動電流之接地端。
2	SDI	輸入至位移暫存器之串列資料輸入端。
3	CLK	時鐘訊號之輸入端;資料位移會發生在 時鐘上升緣。
		資料閃控(data strobe)輸入端。
4	LE	當 LE 是高電位時, 串列資料會被傳入至輸出栓鎖器;當 LE 是低電位時,資料會被栓鎖住。
5-12	OUT0∼OUT7	等電流輸出端。
13	ŌĒ	輸出致能訊號端。 當OE 是低電位時,即會啟動 OUTO~OUT7輸出;當OE 是高電位時,OUTO~OUT7輸出會被關閉(不驅動電流)。
14	SDO	串列資料輸出端;可接至下一個驅動器 之 SDI 端。
15	R-EXT	連接外接電阻之輸入端;此外接電阻可設定所有輸出通道之輸出電流。
16	VDD	5V 電源供應端。

腳位圖

功能方塊圖

輸入及輸出等效電路

OE 輸入端

LE 輸入端

CLK, SDI 輸入端

SDO 輸出端

時序圖

真值表

CLK	LE	ŌĒ	SDI	SDI OUTO OUT 5 OUT 7 SDC	
_	Н	L	D _n	$\overline{D_n} \dots \overline{D_{n-5}} \dots \overline{D_{n-7}}$	D _{n-7}
	L	L	D _{n+1}	不變	D _{n-6}
<u>_</u>	Н	L	D _{n+2}	$\overline{D_{n+2}} \dots \overline{D_{n-3}} \dots \overline{D_{n-5}}$	D _{n-5}
—	Х	L	D _{n+3}	Dn + 2 Dn - 3 Dn - 5	D _{n-5}
—	Х	Н	D _{n+3}	使LED不亮	D _{n-5}

最大工作範圍

特性		代表符號	最大工作範圍	單位
電源電壓		V_{DD}	0 ~ 7.0	V
輸入端電壓		V _{IN}	-0.4 ~ V _{DD} +0.4	V
輸出端電流		I _{OUT}	+120	mA
輸出端電壓		V_{DS}	-0.5 ~ +20.0	V
時鐘頻率		F_CLK	25	MHz
接地端電流		I_{GND}	1000	mA
	CN – type		2.03	
 消耗功率(在印刷電路板上, 25°C 時)	CD – type	P _D	1.46	W
相科切率(任印刷电路恢上, 25 G时)	CDW – type		2.03	VV
	CP – type		1.32	
	CN – type		61.65	
】 熱阻値(在印刷電路板上, 25°C 時)	CD – type	D	85.82	°C/W
然归但(任中利电路似上, 23 G时)	CDW – type	$R_{\text{th(j-a)}}$	61.63	C/VV
	CP – type		94.91	
IC工作時的環境溫度	T_{opr}	-40 ~ +85	°C	
IC 儲存時的環境溫度	T_{stg}	-55 ~ +150	°C	

直流特性

特性		代表符號	量測條件		最小値	一般值	最大値	單位
電源電壓		V_{DD}	-	-	4.5	5.0	5.5	V
輸出端電壓		V _{DS}	OUTO ~ OUT7	;	-	-	17.0	V
		I _{OUT}	用直流特性量測電	直路	5	-	120	mA
輸出端電流		I _{OH}	SDO		-	-	-1.0	mA
		I _{OL}	SDO		-	-	1.0	mA
輸入端電壓	高電位位準	V_{IH}	Ta = -40~85°C		$0.8V_{DD}$	-	V_{DD}	V
期八 师 电座	低電位位準	V_{IL}	Ta = -40~85°C		GND	-	0.3V _{DD}	V
輸出端漏電流			V _{DS} =17.0V且輸出	出通道關閉	ı	-	0.5	μA
輸出端電壓	SDO	V_{OL}	I_{OL} = +1.0mA		1	-	0.4	V
荆口州电座	300	V_{OH}	I _{OH} = -1.0mA		4.6	-	-	V
輸出電流1		I _{OUT1}	$V_{DS} = 0.5V$ $R_{ext} = 744 \Omega$		-	25.26	-	mA
電流偏移量(通过	道間)	dl _{OUT1}	$I_{OUT} = 25.26 \text{mA}$ $V_{DS} \ge 0.5 \text{V}$ $R_{ext} = 744 \Omega$		-	±1	±3	%
輸出電流 2			-	50.52	-	mA		
電流偏移量(通过	道間)	dI_{OUT2} $I_{OUT} = 50.52mA$ $V_{DS} \ge 0.6V$ $R_{ext} = 372 Ω$		-	±1	±3	%	
輸出電流 3		I _{OUT3}	$V_{DS} = 0.8V$ $R_{ext} = 186 \Omega$		-	101.0	-	mA
電流偏移量(通过	道間)	dl _{OUT3}	$I_{OUT} = 101.0 \text{mA}$ $V_{DS} \ge 0.8 \text{V}$	R _{ext} = 186 Ω	-	±1	±3	%
電流偏移量 vs.	輸出電壓	$\%/dV_{DS}$	輸出電壓 = 1.0 ~	- 3.0V	-	±0.1	-	% / V
電流偏移量 vs.	電源電壓	$\%/dV_{DD}$	電源電壓 = 4.5~	- 5.5V	-	±1	-	% / V
Pull-up電阻		R _{IN} (up)	ŌĒ		250	500	800	ΚΩ
Pull-down電阻		R _{IN} (down)	LE		250	500	800	ΚΩ
		I _{DD} (off) 1	R _{ext} = 未接,		-	3.25	-	
電壓源輸出電流		I _{DD} (off) 2	$R_{\text{ext}} = 744 \ \Omega, \ \overline{\text{OUT0}} \sim \overline{\text{OUT7}} = \text{Off}$		ı	5	-]
	"OFF"	I _{DD} (off) 3	$R_{\text{ext}} = 372 \Omega, \overline{\text{OU}}$	TT0 ~ OUT7 = Off	-	6.8	-	
	Ĺ	I _{DD} (off) 4	$R_{\text{ext}} = 186 \Omega, \overline{\text{OU}}$	ıтo∼ouт7 = Off	-	10.5	-	mA
		I _{DD} (on) 1	$R_{\text{ext}} = 744 \Omega, \overline{\text{OU}}$	ıтo∼out7 = On	-	5	-	
	"ON"	I _{DD} (on) 2	$R_{\text{ext}} = 372 \Omega, \overline{\text{OU}}$	ıтo∼out7 = On	-	6.8	-	
_		I _{DD} (on) 3	$R_{\text{ext}} = 186 \Omega, \overline{\text{OUT0}} \sim \overline{\text{OUT7}} = \text{On}$		-	10.5	-	

直流特性的測試電路

交流特性

	特性	代表符號	量測條件	最小値	一般値	最大値	單位
	CLK - OUTn	t _{pLH1}		-	50	100	ns
延遲時間	LE - OUTn	t _{pLH2}		-	50	100	ns
(低電位到高電位)	OE - OUTn	t _{pLH3}		-	20	100	ns
	CLK - SDO	t _{pLH}		15	20	-	ns
	CLK - OUTn	t _{pHL1}		-	100	150	ns
延遲時間	LE - OUTn	t _{pHL2}	用交流特性	-	100	150	ns
(高電位到低電位)	OE - OUTn	t _{pHL3}	測試電路 $V_{DD} = 5.0 \text{ V}$ $V_{DS} = 0.8 \text{ V}$ $V_{IH} = V_{DD}$ $V_{IL} = GND$ $R_{ext} = 372 \Omega$	-	50	150	ns
	CLK - SDO	t _{pHL}		15	20	-	ns
	CLK	t _{w(CLK)}		20	-	-	ns
脈波寬度	LE	t _{w(L)}		20	-	-	ns
	OE (@I _{out} < 60mA)	$t_{w(OE)}$		200	-	-	ns
LE的Hold Time		t _{h(L)}	$V_{L} = 4.0 \ V$	10	-	-	ns
LE的Setup Time		t _{su(L)}	$R_L = 64 \Omega$ $C_L = 10 pF$	5	-	ı	ns
SDI的Hold Time		t _{h(D)}		10	-	ı	ns
SDI的Setup Time		$t_{su(D)}$		5	-	ı	ns
CLK訊號的最大爬升時間		t _r **		-	-	500	ns
CLK訊號的最大下降時間		t _f **		-	-	500	ns
電流輸出埠的電位爬升時間		t _{or}		-	40	120	ns
電流輸出埠的電位下降時間		t _{of}		-	70	200	ns
時鐘訊號頻率		F _{CLK}	IC串接操作時	-	-	25.0	MHz

^{**}如果是以多顆 IC 串聯方式連接使用,若 tr 與 tf 值太大(>500 ns),可能會難以達成數據傳輸所要的時序要求。

交流特性的測試電路

時序的波形圖

應用資訊

等電流

當客戶將 MBI5168 應用於 LED 面板設計上時,其將展現通道間與通道間、甚至晶片與晶片間極小電流差異的優異特性。此源自於:

- 1) 當 I_{OUT} ≤ 100mA,通道間的最大電流差異小於 ±3%,而晶片間的最大電流差異小於 ±6%。
- 2) 具有不受負載端電壓影響的電流輸出特性,如下圖所示。輸出電流的穩定性將不受 LED 順向電壓(Vf)變化而影響。

調整輸出電流

如下圖所示,藉由外接一個電阻(Rext)調整輸出電流(lout)。

外接至 R-EXT 端的電阻值,以 Ω 為單位

套用下列公式可計算出輸出電流值,

 $V_{R-EXT} = 1.253Volt$

 $I_{ref} = V_{rext} / R_{ext}$ 若外接電阻 R_{ext} 另一端接地。

 $I_{OUT} = I_{ref} x 15 = 1.253 Volt / R_{ext} x 15$

公式中的 V_{R-EXT} 是指 R-EXT 端的電壓値, R_{ext} 是指外接至 R-EXT 端的電阻値。當電阻値是 372Ω ,套入公式可得輸出電流値是 50.52mA;當電阻値是 744Ω 時,輸出的電流則為 25.26mA。

封裝體散熱功率 (P_D)

封裝體的最大散熱功率,是由公式 $P_D(max) = (Tj - Ta) / R_{th(j-a)}$ 來決定。

當 8 個通道同時打開時,真正的功率為 $P_D(act) = (I_{DD} \times V_{DD}) + (I_{OUT} \times Duty \times V_{DS} \times 8)$ 。

爲保持 $P_D(act) \le P_D(max)$, 可輸出的最大電流與 duty cycle 間的關係爲:

 $I_{OUT} = \{ [(Tj - Ta) / R_{th(j-a)}] - (I_{DD} x V_{DD}) \} / V_{DS} / Duty / 8,$

其中 Ti = 150°C。

條件: $V_{DS} = 1.0V$, 8 輸出埠均被導通, Ta 列如下圖例 包裝型式 熱阻値(°C/W) 圖例格式 CN 61.65 **25**℃ CD 85.82 **55**℃ **CDW** 61.63 **85**℃

94.91

CP

CP 包裝

負載端供應電壓 (VLED)

爲使封裝體散熱能力達到最佳化,建議輸出端電壓 (V_{DS}) 的最佳操作範圍是 $0.4V\sim1.0V$ 。因爲 $V_{DS}=V_{LED}-Vf$,且較高的 V_{LED} (如高於 5V)時,過高的輸出端電壓(V_{DS})可能會導致 $P_D(act)>P_D(max)$;在此狀況,建議儘可能使用較低的 V_{LED} 電壓供應,也可用外串電阻或 Zener diode 當做 V_{DROP} 。此可導致 $V_{DS}=(V_{LED}-Vf)-V_{DROP}$,達到降低輸出端電壓 (V_{DS}) 之效果。外串電阻或 Zener 的應用圖可參閱下圖。

外觀輪廓圖示

MBI5168CN 輪廓圖示

MBI5168CD 輪廓圖示

MBI5168CDW 輪廓圖示

MBI5168CP 輪廓圖示

MBI5168 包裝資訊

包裝型式	產品名稱	重量(g)
CN	P-DIP16-300-2.54	1.02
CD	SOP16-150-1.27	0.13
CDW	SOP16-300-1.27	0.37
CP	SSOP16-150-0.64	0.07

附註:輪廓圖示的單位是 mm。