Higher Rank Abelian Smooth Action with Hyperbolicity (Spring 2022, Disheng Xu)

Ajorda Jiao

Contents

1 22.5.13 1 2 22.5.20 3

§1 22.5.13

For classical dynamical systems, we consider about discrete dynamics or flows. It consists of a space X and a family of maps $X \to X$,

$$\{f^{(n)}: n \in \mathbb{Z}\}$$
 or $\{f^t: t \in \mathbb{R}\},$

satisfying the group conditions.

We will consider a more general settings: an abelian group action on X. The settings are

- \bullet X a manifold.
- A family of maps $\{f^t \in \text{Homeo}(X) : t \in \mathbb{Z}^l\}$, satisfies $f^t \circ f^s = f^{t+s}$.

Or, we can rewrite the second condition as a group homomorphism

$$\alpha: \mathbb{Z}^l \to \operatorname{Homeo}(X)$$
.

Example 1.1

A non-invertible example, i.e. α is just a semi-group homomorphism

$$\alpha: \mathbb{N}^2 \to C^0(\mathbb{T}, \mathbb{T}), \quad (m, n) \mapsto (\times 2)^m (\times 3)^n.$$

Furstenberg showed that the orbit of this action is either finite or dense. This is an example of a hyperbolic setting.

1 22.5.13 Ajorda's Notes

Example 1.2

Let R_{α} be the α -rotation on \mathbb{T} . We can consider the action

$$\alpha: (m,n) \to \operatorname{Homeo}(\mathbb{T}), \quad (m,n) \to R_{\alpha}^m R_{\beta}^n.$$

This is an example of a non hyperbolic setting.

Remark 1.3 — Fayad-Kanin showed that if $f, g : \mathbb{T} \to \mathbb{T}$, $R(f) = \alpha, R(g) = \beta$ and (α, β) satisfies some number-theoretic conditions, then $\exists \varphi \in C^{\infty}(\mathbb{T}, \mathbb{T})$ such that $\varphi \circ f \circ \varphi^{-1} = R_{\alpha}$ and $\varphi \circ g \circ \varphi^{-1} = R_{\beta}$.

For a hyperbolic setting, we consider a baby case. Let $A \in \mathrm{SL}(n,\mathbb{C})$ be a diagonalizable matrix, assume

$$A \sim egin{bmatrix} \lambda_1 & & & \ & \lambda_2 & & \ & \ddots & & \ & & \lambda_n \end{bmatrix},$$

and $|\lambda_j| \neq 1$ for every j, then we call A to be a **hyperbolic matrix**. Let $\sigma_j = \log |\lambda_j|$, then "hyperbolicity" means $\sigma_j \neq 0$.

Example 1.4

 $A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \cap \mathbb{T}^2$, a classical Anosov map.

Proposition 1.5 (C^0 -Rigidity of Anosov Map)

For an Anosov map $f \in \mathrm{Diff}^\infty(X)$, if another map $g \in \mathrm{Diff}^\infty(X)$ is C^1 -closed to f, then $\exists h \in \mathrm{Homeo}(X)$ such that $h \circ g \circ h^{-1} = f$.

Remark 1.6 — In general, the regularity of h cannot be C^1 . Because a C^1 conjugacy preserves the derivates of fixed points.

Question 1.7. If we have higher rank action with at least one Anosov element, can we have the similar result?

Example 1.8

A baby case: for f_1, f_2 commutes with each other, consider the action

$$\alpha: \mathbb{Z}^2 \to \mathrm{Diff}^{\infty}(\mathbb{T}^2), \quad (m,n) \to f_1^m f_2^n.$$

Assume there exists $(m, n) \in \mathbb{Z}^2$ such that $f_1^m f_2^n$ is Anosov. Then we perturb (f_1, f_2) to $(\widetilde{f}_1, \widetilde{f}_2)$ a little bit such that $\widetilde{f}_1 \widetilde{f}_2 = \widetilde{f}_2 \widetilde{f}_1$ still holds. Then there exists h such that $h\widetilde{f}_1 h^{-1} = f_1$ and $h\widetilde{f}_2 h^{-1} = f_2$.

2

2 22.5.20 Ajorda's Notes

Question 1.9. Can the conjugate h be more regular?

It is easy to construct a counter example such that h could not be C^1 . For example, we can regard a \mathbb{Z}^1 -action as a "degenerated" \mathbb{Z}^2 -action.

Example 1.10

Let $T_A, T_B : \mathbb{T}^2 \to \mathbb{T}^2$ be two hyperbolic matrices. We consider

$$\alpha: (m,n) \to T_{A \times \mathrm{Id}}^m T_{\mathrm{Id} \times B}^n,$$

a \mathbb{Z}^2 -action on \mathbb{T}^2 . The conjugate h in general still cannot be C^1 .

This counter example is a non degenerated \mathbb{Z}^2 -action, but is somehow not "genuinely higher rank". So, we need a "genuinely higher rank assumption".

Question 1.11. Let $\alpha_0: \mathbb{Z}^2 \to \mathrm{SL}(d,\mathbb{Z}) \subset \mathrm{Diff}^{\infty}(\mathbb{T}^d)$ be an action such that there exists $(m,n), \, \alpha_0(m,n)$ is Anosov (i.e. a hyperbolic matrix). Then for a C^1 -perturbation α of α_0 , $\alpha: \mathbb{Z}^2 \to \mathrm{Diff}^{\infty}(\mathbb{T}^d)$, can we show that $\exists h \in \mathrm{Diff}^{\infty}(\mathbb{T}^d)$ such that $h \circ \alpha \circ h^{-1} = \alpha_0$?

To avoid the rank-one case, we need an additional assumption.

"Totally ergodic ergodic assumption": $\forall (m,n) \neq (0,0), \alpha_0(m,n)$ is ergodic with respect to the Lebesgue measure on \mathbb{T}^d .

§2 22.5.20

Conjecture 2.1 (\mathbb{Z}^l version of Karok-Spatzier's Conjecture)

Let $\alpha: \mathbb{Z}^l \to \mathrm{Diff}^\infty(M)$ be an action such that there exists $a \neq 0 \in \mathbb{Z}^l$, $\alpha(a)$ is Anosov. Then under some suitable "higher rank" assumption (no rank-one factor), α is C^∞ conjugate to an "algebraic-defined" model.

As a contrast, we consider a famous conjecture of Smale and Borel in the case of rank-one.

Conjecture 2.2 (Smale-Borel)

If f is Anosov, then f is C^0 -conjugate to a \mathbb{T}^d automorphism.

This conjecture in general is **False**, for Borel have constructed an Anosov diffeomorphism on a nil-manifold. Later, there has been constructed an example of Anosov diffeomorphism on an infra-nil-manifold.

Theorem 2.3 (Franks-Manning)

Suppose $f \in \text{Diff}^1(M)$ is Anosov, where M is a nil-manifold. Then f is C^0 -conjugate to an affine map on M.

2 22.5.20 Ajorda's Notes

Corollary 2.4

Assume $f, g \in \text{Diff}^1(M)$ are Anosov, where M is a nil-manifold. Then there exists $h \in \text{Homeo}(M)$ such that $hfh^{-1} = f_0, hgh^{-1} = g_0$ where f_0, g_0 are affine maps on M.

Theorem 2.5 (Hertz-Z.Wang, 2014)

Consider the action $\alpha: \mathbb{Z}^k \to \operatorname{Diff}^{\infty}(\mathbb{T}^d)$ which is homotopic to $\alpha_0: \mathbb{Z}^k \to \operatorname{GL}(d, \mathbb{Z})$, if α is Anosov (in the sense that $\exists a \in \mathbb{Z}^k \setminus \{0\}$, $\alpha(a)$ is Anosov). Assume that $\exists \mathbb{Z}^2 \subseteq \mathbb{Z}^k$ such that $\alpha_0|_{\mathbb{Z}^2}$ is totally ergodic, then α is C^{∞} -conjugate to an affine action.

Theorem 2.6 (Fisher-Kalinin-Spatzier, 2013)

The same result (as Theorem 2.5) holds under a stronger assumption that α has "many" Anosov element.

Weyl Chamber picture

The Lyapunov exponent for a matrix is $\sigma_i = \log |\lambda|_i$, where λ_i is an eigenvalue of A. Then

$$A \sim \left[egin{array}{ccccc} \Box & & & & \\ & \Box & & & \\ & & \ddots & & \\ & & & \Box \end{array}
ight],$$

where each \square is a block with all the same eigenvalues. Then we can get a coarse decomposition of \mathbb{R}^d corresponding to different Lyapunov exponents. Denotes this splitting by

$$\mathbb{R}^d = V_1 \oplus V_2 \oplus \cdots \oplus V_r,$$

then V_i is A-invariant. Moreover, for every B commutes with A, B also preserves each V_i . Hence for a \mathbb{Z}^k action of $\mathrm{GL}(d,\mathbb{Z})$, we can split \mathbb{R}^d into a direct sum of finite many subspaces $\{V_i\}$. Such that, for every $A \in \alpha(\mathbb{Z}^k)$, $A|_{V_i}$ has a constant Lyapunov exponent. Then we can define the **Lyapunov functionals** $\lambda_i : A \mapsto \sigma(A|_{V_i})$, these functionals will induce linear functionals $\mathbb{Z}^k \to \mathbb{R}$.