

Recommender Systems
User-based
Collaborative Filtering

Rodrygo Santos rodrygo@dcc.ufmg.br

Acquiring feedback

U F M G

COMPUTER
SCIENCE

- · We want to know
 - What users consider relevant
- · We can observe
 - What users tell us (ratings)
 - What users do (actions)
- These are noisy measurements
 - Relevance is a user's prerogative

Non-personalized CF

UFMG

- · Problems?
 - Predicted utility of *i* will be the same for all users
 - We could compute a segmented average
 - e.g., by age, gender, income, location
 - Predicted utility of *i* ignores context
 - We could compute non-personalized associations
 - e.g., what sauce goes along with ice cream?
- · Better, but still not fully personalized
 - Prediction will be the same for all users belonging to a given a segment or in a given context

Breaking it down

U F M G

- · Selecting neighborhoods
- Aggregating ratings
- · Normalizing data
- Computing similarities
 - Algorithms
 - Tweaks
- Additional options

Selecting neighborhoods

U F M G

COMPUTER
SCIENCE

- A few options
 - All the neighbors
 - Random neighbors
 - All neighbors above a similarity threshold
 - Top-k neighbors ranked by similarity

How to find neighbors? UF MG COMPUTER SCIENCE

• Who are **u**'s nearest neighbors (who rated **i**)?

How to find neighbors?

U F M G

COMPUTER
SCIENCE

• Who are **u**'s nearest neighbors (who rated **i**)?

U F M G

COMPUTER
SCIENCE

- · A few options
 - All the neighbors
 - Random neighbors
 - All neighbors above a similarity threshold
 - Top-k neighbors ranked by similarity
 - Single set with k neighbors \rightarrow may lack coverage
 - One set per recommendable item \rightarrow may be expensive

How many neighbors?

UF MG
COMPUTER
SCIENCE

- In theory, the more the better...
- ... if you have a good similarity metric
 - Computational cost is also higher
- · In practice
 - More neighbors → more noise
 - Fewer neighbors → lower coverage
- · Common practice
 - 25-100 is often used
 - 30-50 often good for movies

Aggregating ratings

- A few options
 - Min / max / average / median rating
 - Weighted average (by similarity)
 - Supervised aggregation
- Common practice
 - Weighted average: simple and effective

How to find neighbors?

UF MG
COMPUTER
SCIENCE

• Who are **u**'s nearest neighbors (who rated **i**)?

U F M G COMPUTER SCIENCE

• How will user **u** like item **i**?

Normalizing ratings

U F M G

COMPUTER
SCIENCE

- · Users rate differently
 - Some rate high, others low
 - Some use more of the scale than others
- Averaging ignores these differences
 - Normalization compensates for them
- · Again, a few options
 - Mean-center normalization
 - Z-score normalization

$\begin{aligned} & \text{Mean-centering} & \text{UF } \underbrace{\mathcal{I}}_{\text{COMPUTER SCIENCE}} \\ & \hat{r}_{ul} = \underbrace{\sum_{v \in N} sim(\bar{u}, \bar{v}) \times r_{vl}}_{\text{SCIENCE}} \\ & \hat{r}_{ul} = \underbrace{\sum_{v \in N} sim(\bar{u}, \bar{v}) \times (r_{vl} - \overline{r_{v}})}_{\text{Science}} \\ & \hat{r}_{ul} = \underbrace{\sum_{v \in N} sim(\bar{u}, \bar{v}) \times (r_{vl} - \overline{r_{v}})}_{\text{Science}} \\ & \hat{r}_{ul} = \underbrace{\sum_{v \in N} sim(\bar{u}, \bar{v}) \times (r_{vl} - \overline{r_{v}})}_{\text{Science}} \end{aligned}$ $(subtract \ neighbor's \ mean)$ $\hat{r}_{ul} = \underbrace{\sum_{v \in N} sim(\bar{u}, \bar{v}) \times (r_{vl} - \overline{r_{v}})}_{\text{Science}}$ $(add \ target \ user's \ mean)$

Z-score normalization

- · Two steps
 - Mean-center each rating
 - Divide by standard deviation
- Normalizes for the spread across the scale
 - Slightly better than mean-centering

Computing similarities

Pearson correlation

$$sim(\vec{u}, \vec{v}) = \frac{\mathsf{cov}(u, v)}{\sigma_u \sigma_v} \approx \frac{\sum_{i \in I_{uv}} (r_{ui} - \overline{r_u}) (r_{vi} - \overline{r_v})}{\sqrt{\sum_{i \in I_{uv}} (r_{ui} - \overline{r_u})^2}} \sqrt{\sum_{i \in I_{uv}} (r_{vi} - \overline{r_v})^2}$$

- Usually only over ratings in common (I_{uv})
- Built-in user-mean normalization $(\overline{r}_{u}, \overline{r}_{u})$
- Spearman = Pearson applied to ranks
 - Hasn't been found to work as well

Significance weighing

- What about little data?
 - Two users with one common rating $\rightarrow sim = 1$
 - Are they really similar?
- Solution: weight similarity by confidence
 - Simple approach: multiply by min(c, 50) / 50(c: number of common ratings)
 - c < 50: neighbor's contribution scaled down by c / 50
 - $c \ge 50$: neighbor's contribution unscaled

Cosine similarity

UF MG
COMPUTER
SCIENCE

· Cosine of the angle between user vectors

$$sim(\vec{u}, \vec{v}) = \cos(\vec{u}, \vec{v}) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} = \frac{\sum_{i \in I} r_{ui} r_{vi}}{\sqrt{\sum_{i \in I} r_{ui}^2} \sqrt{\sum_{i \in I} r_{vi}^2}}$$

- In general: sim ∈ [-1, 1]
- With non-negative ratings: $sim \in [0, 1]$
- With user-mean norm (aka adjusted cosine)
 - Equivalent to Pearson... almost!

Self-weighting significance

U F M G
COMPUTER
SCIENCE

- · Cosine has built-in significance weighting
 - Weights proportionally to ratio

 $\frac{|R_u \cap R_v|}{|R_u||R_v|}$

– Similar effect can be obtained by using **overall** σ_u instead of just σ_u **over common ratings** in Pearson

Additional options

U F M G

- Clustering
 - Cluster users, pick user's cluster for prediction
 - Doesn't work particularly well
- · Similarity pre-computation
 - Can be expensive
 - Often unstable
 - · Users move as their ratings change

Suggested configuration

- Top-k neighbors ($k \approx 30$)
- · Weighted averaging of scores
- · User-mean normalization
- Cosine similarity

Optimal configuration is application-dependent

Implementation issues

- Given m users and n items:
 - Computation can be a bottleneck
 - Correlation between two users is O(n)
 - All correlations for a user is O(mn)
 - All pairwise user correlations is $O(m^2n)$
 - Recommendations at least O(mn)
 - Lots of ways to make more practical
 - More persistent neighborhoods $(m \rightarrow k)$
 - Cached or incremental correlations

Summary

- User-based CF is simple and effective
 - The oldest CF approach
- Lots of configuration knobs
 - Similarity functions, neighborhood selection, aggregation functions, rating normalization
- Neighborhood selection is a bottleneck
 - Expensive to compute online
 - Unstable to pre-compute offline