Física II Termodinámica

Ejemplo de dilatación térmica

Definición de calor, capacidad calorífica, calor específico.

Ejemplo 5: Un anillo de acero ($\alpha = 11 \times 10^{-6} \, ^{\circ}C^{-1}$) tiene un diámetro interior de 4.000 cm a 20.00 $^{\circ}$ C. El anillo tiene que encajar en un eje de cobre cuyo diámetro es de 4.003 cm a 20.00 $^{\circ}$ C. ¿A qué temperatura deberá ser calentado el anillo?

 $T_f = 88.2 \, ^{\circ}\text{C}$

Transferencia de calor

Expansión térmica

Cambio de temperatura

Cambio de fase

¿Cómo se le transfiere energía?

Sistema

Trabajo mecánico

Fuerza

Sistema

$$T_{S} < T_{E}$$

$$T_S > T_E$$

Energía que fluye entre un sistema y su Calor entorno en virtud de una diferencia de temperatura entre ellos.

Calor y trabajo no son propiedades de un cuerpo, sino energía en transito.

1 cal = 4.186 J 1 kcal = 1000 cal = 4186 J 1 Btu = 778 ft · lb = 252 cal = 1055 J

Btu: unidad térmica británica

Preguntas de análisis

Capacidad calorífica

$$C = \frac{Q}{\Delta T}$$

$$\Delta T \propto Q$$

$$\Delta T \propto \frac{1}{m}$$

$$\Delta T \propto \frac{Q}{m}$$

$$\Delta T = \frac{Q}{mc}$$

$$C = mc$$

Significado

Energía necesaria para aumentar la temperatura de una determinada sustancia en una unidad de temperatura (J/K)

Propiedad de un cuerpo específico (propiedad extensiva) C = m.C

¿Cómo hacerla una propiedad intensiva?

$$c = C/m$$

CUIDADO La definición de calor Recuerde que dQ no representa un cambio en la cantidad de calor *contenida* en un cuerpo; tal concepto carece de sentido. El calor siempre es *transferencia* de energía a causa de una diferencia de temperatura. No existe "la cantidad de calor de un cuerpo".

Calor específico

Propiedad de una sustancia (propiedad intensiva)

 $\frac{1}{m} \frac{dQ}{dT}$

Sustancia	Calor específico, c (J/kg • K)
Aluminio	910
Berilio	1970
Cobre	390
Etanol	2428
Etilenglicol	2386
Hielo (cerca de 0°C)	2100
Hierro	470
Plomo	130
Mármol (CaCO ₃)	879
Mercurio	138
Sal (NaCl)	879
Plata	234
Agua (líquida)	4190

$$m = 70.0 \text{ kg}$$

Bajar temperatura de 39.0 °C a 37.0 °C

Asume que es de agua

$$Q = mc\Delta T$$

$$Q = (70.0 \text{ kg}) \left(4190 \frac{\text{J}}{\text{kg} \cdot \text{K}}\right) (2.0 \text{ C}^{\circ})$$

$$Q = 5.9 \times 10^5 \text{ J}$$

Paredes adiabáticas

Equilibrio térmico

En condiciones adiabáticas, el calor perdido (o ganado) por el sistema A es igual al calor ganado (o perdido) por el sistema B.

$$\sum Q = 0$$

$$Q_A + Q_B = 0$$

Ejemplo: Transferencia de calor

Trozo de metal m = 0.050 kgTemperatura 200 °C

Encuentre el calor especifico del metal.

Calorímetro agua m = 0.400 kgTemperatura 20 °C

Temperatura de ¿Cuál es el sistema? ¿Qué tipo de sistema es? equilibrio c = 453 J/kg K22.4 °C

GRACIAS Realiza el "Ponte a prueba_semana 10"