

CLAIMS

1. A conductive brush,

which comprises a base fabric and a mixed fiber of a
5 polyethylene terephthalate fiber and a nylon-66 fiber
being raised on the base fabric by pile-flocking and,
said polyethylene terephthalate fiber and/or said
nylon-66 fiber having a volume resistivity of 10^0 to 10^6
 $\Omega \cdot \text{cm}$.

10

2. The conductive brush according to claim 1,

wherein the base fabric comprises a multifilament of
40 to 130 dtex as a weft (T) and a warp (Y) and,
the polyethylene terephthalate fiber and the nylon-66
15 fiber constituting the mixed fiber are each a
multifilament of 40 to 130 dtex comprising monofilaments
of 0.5 to 20 dtex.

20

3. The conductive brush according to claim 1 or 2,

wherein a part or all of the weft (T) and/or the warp
(Y) in the base fabric comprises a thermoplastic resin
having a melting point of 20 to 100°C lower than those of
the polyethylene terephthalate fiber and the nylon-66
fiber.

25

4. The conductive brush according to claim 1, 2 or 3,

wherein the polyethylene terephthalate fiber has a
conjugate structure congregated a conductive carbon black
in a central portion and a volume resistivity of 10^0 to
30 $10^6 \Omega \cdot \text{cm}$ and, the nylon-66 fiber has a volume resistivity
of not less than $10^{13} \Omega \cdot \text{cm}$.

35

5. An electrophotographic copying device,

which comprises the conductive brush according to

claim 1, 2, 3 or 4 installed as a cleaning brush.