INVERSE & COMPOSITIONS OF FUNCTIONS

EQUALITY OF FUNCTIONS

Suppose f and g are functions from X to Y. Then f equals g, written f = g, if, and only if,

$$f(x) = g(x)$$
 for all $x \in X$

i.e.

image of x under f = image of x under <math>g

Note:

For functions to be equal, their **domain** and **co-domain** must be the **same**. If domain and co-domain are not equal then their functions equality is not possible.

EXAMPLE

▶ Define **f**: $\mathbb{R} \to \mathbb{R}$ and **g**: $\mathbb{R} \to \mathbb{R}$ by formulas:

$$f(x) = |x|$$
 for all $x \in R$
 $g(x) = \sqrt{x^2}$ for all $x \in R$

Since the absolute value of a real number equals to square root of its square.

i.e.,
$$|x| = \sqrt{x^2}$$
 for all $x \in R$
Therefore $f(x) = g(x)$ for all $x \in R$

EXERCISE

▶ Define functions f and g from R to R by formulas:

$$f(x) = 2x$$
 and $g(x) = \frac{2x^3 + 2x}{x^2 + 1}$

for all $x \in R$.

Show that

$$f = g$$

SOLUTION

INVERSE OF A FUNCTION

FUNCTION

INVERSE

Inverse of a function may not be a function.

INVERSE OF INJECTIVE FUNCTION

INJECTIVE FUNCTION

INVERSE

▶ Inverse of Injective function may not be a function.

INVERSE OF SURJECTIVE FUNCTION

SURJECTIVE FUNCTION

INVERSE

▶ Inverse of Surjective function may not be a function.

INVERSE OF BIJECTIVE FUNCTION

BIJECTIVE FUNCTION

INVERSE

Note: Inverse of a Bijective function will always be a function.

INVERSE FUNCTION

▶ Suppose **f**: $X \rightarrow Y$ is a Bijective function. Then the inverse function $f^{-1}:Y \rightarrow X$ is defined as:

$$f^{-1}(y) = x \Leftrightarrow y = f(x) \quad \forall y \in Y$$

That is, f⁻¹ sends each element of Y back to the element of X that it came from under f.

ARROW DIAGRAM

REMARK

A function whose inverse function exists is called an invertible function.

Only Bijective functions are invertible functions.

INVERSE FUNCTION FROM AN ARROW DIAGRAM

Let the bijection $f:X \rightarrow Y$ be defined by the arrow diagram.

▶ The inverse function $f^{-1}:Y \to X$ is represented below by the arrow diagram.

INVERSE FUNCTION FROM A FORMULA

▶ Let $\mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}$ be defined by the formula

$$f(x) = 4x-1 \quad \forall x \in R$$

f-I exists ???

We have to prove that f is bijective.

We have already proved that this function is bijective.

By definition of f⁻¹,

$$f^{-1}(y) = x \Leftrightarrow f(x) = y$$
Now solving $f(x) = y$ for x
 $\Leftrightarrow 4x-1 = y$ (by definition of f)
 $\Leftrightarrow 4x = y + 1$
 $\Leftrightarrow x = \frac{y+1}{4}$

► Hence, $f^{-1}(y) = \frac{y+1}{4}$ is the inverse of f(x)=4x-1 which defines $f^{-1}: R \rightarrow R$.

WORKING RULE TO FIND INVERSE FUNCTION

- First we write the function f(x) and solve f(x) = y for x (after putting the value of f(x)).
- Then we write f⁻¹ (y) = Right hand side of our equation.

EXAMPLE

Let a function f be defined on a set of real numbers as

$$f(x) = \frac{x+1}{x-1}$$
 for all real numbers $x \ne 1$.

- I. Show that f is a bijective function on $R \{I\}$.
- 2. Find the inverse function f-1

SOLUTION

a) f is injective

SOLUTION

b) f is surjective

Let $y \in R - \{I\}$. We look for an $x \in R - \{I\}$ such that

$$f(x) = y$$

$$\Rightarrow x + 1 = y(x-1)$$

$$\Rightarrow x+1 = yx-y$$

$$\Rightarrow 1 + y = xy - x$$

$$\Rightarrow 1 + y = x(y-1)$$

$$\Rightarrow x = \frac{y+1}{y-1}$$

Thus for each $y \in \mathbb{R} - \{I\}$, there exists $x = \frac{y+1}{y-1} \in \mathbb{R} - \{I\}$ such that $f(x) = f\left(\frac{y+1}{y-1}\right) = y$ Hence **f** is **surjective**.

inverse function of f

The given function f is defined by the rule

$$f(x) = \frac{x+1}{x-1} = y \qquad \text{(say)}$$

$$\Rightarrow \quad x + 1 = y \quad (x-1)$$

$$\Rightarrow \quad x + 1 = yx-y$$

$$\Rightarrow \quad y + 1 = yx-x$$

$$\Rightarrow \quad y + 1 = x(y-1)$$

$$\Rightarrow \quad x = \frac{y+1}{y-1}$$
Hence $\mathbf{f}^{-1}(\mathbf{y}) = \frac{y+1}{y-1}$; $y \neq 1$

EXERCISE

▶ Let $\mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}$ be defined by

$$f(x) = x^3 + 5$$

Show that **f** is **one-to-one** and **onto**.

Find a formula that defines the inverse function f⁻¹.

SOLUTION

f is one-to-one

Let
$$f(x_1) = f(x_2)$$
 for $x_1, x_2 \in R$

$$\Rightarrow x_1^3 + 5 = x_2^3 + 5$$
 (by definition of f)

$$\Rightarrow x_1^3 = x_2^3$$
 (subtracting 5 on both sides)

$$\Rightarrow x_1 = x_2$$
Hence f is one-to-one.

f is onto

Let $y \in R$. We search for an $x \in R$ such that f(x) = y.

$$\Rightarrow x^3 + 5 = y$$
 (by definition of f)
\Rightarrow x^3 = y - 5

$$\Rightarrow$$
 x = $\sqrt[3]{y-5}$

Thus for each $y \in \mathbb{R}$, there exists $x = \sqrt[3]{y-5} \in \mathbb{R}$ such that $f(x) = f(\sqrt[3]{y-5})$

$$= \left(\sqrt[3]{y-5}\right)^3 + 5$$
 (by definition of f)
$$= (y-5) + 5 = y$$

Hence f is onto.

▶ formula for f⁻¹

f is defined by
$$y = f(x) = x^3 + 5$$

 $\Rightarrow y-5 = x^3$
or $x = \sqrt[3]{y-5}$

Hence $f^{-1}(y) = \sqrt[3]{y-5}$ which defines the inverse function.

COMPOSITION OF FUNCTIONS

Note:

- a) Composition of function is always a function.
- The condition to apply composition of function is 1st function range is 2nd function domain's subset.

COMPOSITION OF FUNCTIONS

- Let $f: X \to Y'$ and $g: Y \to Z$ be functions with the property that the range of f is a subset of the domain of g i.e. $f(X) \subseteq Y$.
- ▶ Define a new function **gof**: $X \rightarrow Z$ as follows:

$$(gof)(x) = g(f(x))$$
 for all $x \in X$

The function gof is called the composition of f and g.

COMPOSITION OF FUNCTIONS DEFINED BY ARROW DIAGRAMS

Let

$$X = \{1, 2, 3\}$$
 and $Y' = \{a, b, c, d\}$
 $Y = \{a, b, c, d, e\}$ and $Z = \{x, y, z\}$.

Define functions

f:
$$X \rightarrow Y'$$
 and g: $Y \rightarrow Z$

by the arrow diagrams:

Then gof f: $X \rightarrow Z$ is represented by the arrow diagram.

gof

EXERCISE

Let $A = \{1, 2, 3, 4, 5\}$ and we define functions $f: A \rightarrow A$ and then $g: A \rightarrow A$:

$$f(1)=3$$
, $f(2)=5$, $f(3)=3$, $f(4)=1$, $f(5)=2$
 $g(1)=4$, $g(2)=1$, $g(3)=1$, $g(4)=2$, $g(5)=3$

Find the composition functions fog and gof.

SOLUTION

We have the definition of the composition of functions and compute:

$$f(1)=3$$
, $f(2)=5$, $f(3)=3$, $f(4)=1$, $f(5)=2$
 $g(1)=4$, $g(2)=1$, $g(3)=1$, $g(4)=2$, $g(5)=3$

(fog) (1) =
$$f(g(1))$$
 = $f(4)$ = 1
(fog) (2) = $f(g(2))$ = $f(1)$ = 3
(fog) (3) = $f(g(3))$ = $f(1)$ = 3
(fog) (4) = $f(g(4))$ = $f(2)$ = 5
(fog) (5) = $f(g(5))$ = $f(3)$ = 3

Also

(gof) (1) =
$$g(f(1))$$
 = $g(3)$ = 1
(gof) (2) = $g(f(2))$ = $g(5)$ = 3
(gof) (3) = $g(f(3))$ = $g(3)$ = 1
(gof) (4) = $g(f(4))$ = $g(1)$ = 4
(gof) (5) = $g(f(5))$ = $g(2)$ = 1

REMARK: The functions fog and gof are not equal.

COMPOSITION OF FUNCTIONS DEFINED BY FORMULAS

▶ Let $f: Z \rightarrow Z$ and $g: Z \rightarrow Z$ be defined by

and
$$f(n) = n+1$$
 for $n \in \mathbb{Z}$
 $g(n) = n^2$ for $n \in \mathbb{Z}$

- a. Find the compositions gof and fog.
- b. Is gof = fog?

SOLUTION

a. By definition of the composition of functions

(gof) (n) = g(f(n))
= g(n+1) (Since f(n) = n+1)
= (n+1)² (Since g(n) = n²)
(gof) (n) = (n+1)² for all
$$n \in \mathbb{Z}$$
 and

```
(fog) (n) = f(g(n))

(By definition of composition of function)

= f(n^2) (Since g(n) = n^2)

= n^2+1 (Since f(n) = n+1)

(fog) (n) = n^2+1 for all n \in \mathbb{Z}
```

```
b. Is gof = fog?
    In this case,
    For n = 1
              (gof)(I) = g(f(I))
                       = g(I + I) (Since f(n) = n+I)
                       = (I + I)^{2} (Since g(n) = n^{2})
                       = 4 where as
              (fog)(1) = f(g(1))=1^2 + 1 = 2
              Thus fog \neq gof
```

REMARK

▶ The **composition** of functions is **not** a **commutative** operation.

OPERATIONS ON FUNCTIONS

- SUM OF FUNCTIONS
- DIFFERENCE OF FUNCTIONS
- PRODUCT OF FUNCTIONS
- QUOTIENT OF FUNCTIONS

SUM OF FUNCTIONS

Let f and g be real valued functions with the same domain X.

That is $f: X \to R$ and $g: X \to R$.

The sum of f and g denoted f + g is a real valued function with the same domain X

i.e.
$$f+g: X \to R$$
 defined by
$$(f+g)(x) = f(x) + g(x) \qquad \forall x \in X$$

EXAMPLE

Let $f(x) = x^2 + I$ and g(x) = x + 2 defines functions f and g from R to R.

Then

$$(f+g) (x) = f(x) + g(x)$$

= $(x^2 + 1) + (x + 2)$
= $x^2 + x + 3$ $\forall x \in R$

which defines the sum functions $f+g: X \rightarrow R$

DIFFERENCE OF FUNCTIONS

Let f: X →R and g:X →R be real valued functions. The difference of f and g denoted by f-g which is a function from X to R defined by:

$$(f-g)(x) = f(x) - g(x) \quad \forall \quad x \in X$$

EXAMPLE

Let $f(x) = x^2 + I$ and g(x) = x + 2 define functions f and g from R to R.

Then

(f-g) (x) = f(x) - g(x)
=
$$(x^2 + 1) - (x + 2)$$

= $x^2 - x - 1 \quad \forall \quad x \in R$

which defines the difference function f-g: $X \rightarrow R$

PRODUCT OF FUNCTIONS

Let $f: X \to R$ and $g: X \to R$ be real valued functions. The product of f and g denoted f.g or simply fg is a function from X to R defined by:

$$(f \cdot g)(x) = f(x) \cdot g(x) \quad \forall \quad x \in X$$

EXAMPLE

Let $f(x) = x^2 + I$ and g(x) = x + 2 define functions f and g from R to R.

Then

(f.g) (x) = f(x).g(x)
=
$$(x^2 + 1).(x + 2)$$

= $x^3 + 2x^2 + x + 2$ $\forall x \in R$

which defines the product function f \cdot g: X \rightarrow R

QUOTIENT OF FUNCTIONS

► Let $f: X \rightarrow R$ and $g: X \rightarrow R$ be real valued functions. The quotient of f by g denoted $\frac{f}{g}$ is a function from X to R defined by:

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
 $g(x)$ is not equal to 0

EXAMPLE

Let $f(x) = x^2 + I$ and g(x) = x + 2 defines functions f and g from R to R.

Then

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \qquad \forall x \in X \& g(x) \neq 0$$

$$=\frac{x^2+1}{x+2}$$

which defines the quotient function $\frac{f}{g}: X \to R$.

SCALAR MULTIPLICATION OF FUNCTIONS

- Let $f: X \rightarrow R$ be a real valued function and c is a non-zero number.
- ▶ Then the scalar multiplication of f is a function c.f: $R \rightarrow R$ defined by

$$(c.f)(x) = c.f(x) \quad \forall x \in X$$

EXAMPLE

Let $f(x) = x^2 + I$ and g(x) = x + 2 define functions f and g from R to R.

Then

$$(3f-2g) (x) = (3f)(x) - (2g)(x)$$

$$= 3. f(x) - 2. g(x)$$

$$= 3(x^2 + 1) - 2(x + 2)$$

$$= 3x^2 - 2x - 1 \quad \forall \quad x \in X$$