Cosine: Taylor Series

ค่าของฟังก์ชัน cosine ถูกนิยามได้ด้วยอนุกรมเทย์เลอร์ (Taylor's series) ข้างล่างนี้

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

เราจึงสามารถหาค่าประมาณของ $\cos(x)$ ด้วยการคำนวณอนุกรมข้างบนนี้ด้วยจำนวนพจน์ที่มีจำนวนจำกัด

$$\cos(x) \approx \sum_{n=0}^{k} \frac{(-1)^n x^{2n}}{(2n)!}$$

ให้เขียนโปรแกรมเพื่อคำนวณค่าประมาณของ $\cos(x)$ โดย**หาผลรวมไปเรื่อย ๆ และหยุดหาผลรวมเมื่อพบพจน์แรกที่มีค่า** สัมบูรณ์ (absolute) น้อยกว่า ϵ (ผลรวมที่ได้ไม่ต้องรวมพจน์ที่มีค่าสัมบูรณ์น้อยกว่า ϵ) เช่น ให้ x=1.0 และ $\epsilon=0.01$

	n = 0	n = 1	n=2	n=3	
cos(1)	$\frac{(-1)^0 1^0}{(2 \times 0)!} = 1.0$	$\frac{(-1)^1 1^2}{(2 \times 1)!} = -0.5$	$\frac{(-1)^2 1^4}{(2 \times 2)!} = 0.04167$	$\frac{(-1)^3 1^6}{(2 \times 3)!} = -0.00139$	
ดังนั้นด้วย $\epsilon=0.01$ จะได้ $\cos(1.0) \approx 1.0-0.5+0.0417~=~0.54167$				หยุดการคำนวณเมื่อพบพจน์ที่มีค่า absolute น้อยกว่า ϵ (ในตัวอย่างนี้ $\epsilon=0.01$)	

ข้อมูลนำเข้า

บรรทัดเดียวมีจำนวนจริง x และ ϵ คั่นด้วยช่องว่าง

ข้อมูลส่งออก

ค่า $\cos(x)$ ที่หาได้จากวิธีการประมาณข้างบนที่มีค่า ε ที่ได้รับ ให้แสดงค่า $\cos(x)$ ที่หาได้ที่มีเลขหลังจุดทศนิยมไม่เกิน 6 ตำแหน่ง ด้วยฟังก์ชัน **round (** cosine, **6**)

ตัวอย่าง				
input (จากแป้นพิมพ์)	output (ทางจอภาพ)			
1.0 0.02	0.541667			
1.0 le-8	0.540302			
3.14159265 0.001	-0.9999			
3.14159265 1e-10	-1.0			