Fonctions composées

1- Composée de deux fonctions

1) Exemple : On considère la fonction f définie par $f(x) = \sqrt{x-3}$. La fonction f est la composée de deux fonctions u et v telles que :

$$u(x)=x-3$$
 et $v(x)=\sqrt{x}$

On dit que la fonction f est la composée de u par v et on note : $f(x)=v\circ u(x)=v(u(x))=\sqrt{x-3}$

- **2) Définition :** On appelle fonction composée de u par v la fonction notée $v \circ u$ définie par : $v \circ u(x) = v(u(x))$
- 3) Méthode:
- a) Identifier la composée de deux fonctions

On considère la fonction f définie par $f(x) = \frac{1}{x^2}$.

Identifier la composée de deux fonctions dans la fonction f.

Dans la fonction f, on reconnaît la fonction inverse et la fonction carré.

Si on pose
$$u(x)=x^2$$
 et $v(x)=\frac{1}{x}$

alors
$$f(x) = \frac{1}{x^2} = \frac{1}{u(x)} = v(u(x)) = v \circ u(x)$$

La fonction f est la composée de la fonction carré par la fonction inverse.

b) Composer deux fonctions

Les fonctions u et v sont définies par : $u(x) = x^2 + x$ et $v(x) = \frac{x}{x+1}$

Exprimer la fonction $v \circ u$ et $u \circ v$ en fonction de x

$$v \circ u(x) = v(u(x)) = \frac{(x^2 + x)}{(x^2 + x) + 1} = \frac{x^2 + x}{x^2 + x + 1} \qquad u \circ v(x) = u(v(x)) = \left(\frac{x}{x + 1}\right)^2 + \left(\frac{x}{x + 1}\right)^2$$

II- Formule de dérivation d'une fonction composée

1) Cas particuliers de fonctions composées.

carrers at remetating composition	
Fonction	Dérivée
u^n avec $n \in \mathbb{Z}^*$	nu'u ⁿ⁻¹
e ^u	u'e ^u
cos u	-u'sinu
sin u	u'cosu

Déterminer les dérivées des fonctions définies par :

- a) $f(x)=(2x^2+3x-3)^4$
- b) $g(x) = 2e^{\frac{1}{x}}$

Fonctions composées

2) Cas général de fonctions composées.

$$v(u(x))'=u'(x)\times v'(u(x))$$
 ou encore $(v\circ u)'=u'\times (v'\circ u)$
Déterminer la dérivée de la fonction f , définie sur \mathbb{R} par $f(x)=\sqrt{x^2+1}$

III- Asymptote horizontale

$$\lim_{x \to \pm \infty} f(x) = a \text{ avec } a \in \mathbb{R}$$

La droite d'équation y = a est une asymptote horizontale au voisinage de $\pm \infty$

IV- Asymptote verticale

$$\lim_{x \to a} f(x) = \pm \infty \text{ avec } a \in \mathbb{R}$$

La droite d'équation x=a est une asymptote verticale à la courbe C_f , représentative de f .

V- Théorème de comparaison

1) Théorème d'encadrement (ou théorème des gendarmes)

I est l'intervalle dont la borne de droite est $+\infty$.

f,g,h sont trois fonctions définies sur I telles que $\forall x \in I$ $f(x) \le g(x) \le h(x)$.

Si
$$\lim_{n \to +\infty} f(x) = \lim_{n \to +\infty} h(x) = I \ (I \in \mathbb{R})$$
, alors $\lim_{n \to +\infty} g(x) = I$

Ce théorème est admis sans démonstration et reste vrai si x tend vers $-\infty$

ou x tend vers a avec $(a \in \mathbb{R})$

2) S'il existe un réel A tel que pour tout $x \ge A$, on a $f(x) \ge g(x)$ et si $\lim_{n \to +\infty} g(x) = +\infty$,

alors $\lim_{n\to+\infty} f(x) = +\infty$

3) S'il existe un réel A tel que pour tout $x \le A$, on a $f(x) \le g(x)$ et si $\lim_{n \to -\infty} g(x) = -\infty$,

alors $\lim_{n \to -\infty} f(x) = -\infty$

VI- Étude d'une fonctions

- a) Domaine de définition (recherche de valeurs interdites)
 - Division par zéro
 - Racine carré de nombre négatif
 - ln d'un nombre négatif (à voir plus tard)
- b) Limites aux bornes du domaine de définition.
- c) Dérivabilité
- d) Variation (dérivée , ...)
- e) Les asymptotes
- f) Représentation graphique d'une fonction.