Ridge Regression

- High complexity model -> Low Bias and High Variance and vice-versa.
- Bias-Variance trade-off required to achieve good predictive performance.
- Ridge Regression automatically balance between Bias and Variance.

Overfit:

- When a model is highly specific to the training data and does not generalize well then it is Overfit.
- Training error of model w' > training error of another model w1
- True error of model w' < True error of another model w1

Polynomial -> features are power of an input.

Flexibility of high-order polynomials

$$y_{i} = w_{0} + w_{1}x_{i} + w_{2}x_{i}^{2} + ... + w_{p}x_{i}^{p} + \varepsilon_{i}$$

$$y_{0}$$

When models become overfit the estimated parameters (w-hat) become very large in magnitude.

Overfiting is generic issue with complex models

- · It occurs with polynomial regression.
- · Occurs in complex models
 - lots of inputs (d large).
 - lots of features(D large).y(j) = Σ(j=0--D) w(j)h(j) + ε(i)

How does # of observations influence overfitting?

- Few observations (N small) -> rapidly overfit as model complexity increases. With few points, as
 the order of the polynomial increases, it becomes easy to hit all the datapoints hence overfit the
 dataset.
- Many observations (N is large) -> harder to overfit.
- It doesn't overfit easily since there are dense observations to overfit the input. It's not able to hit all the
 datapoints in the observations.

How does # of inputs influence overfitting?

- 1 input (e.g., sqft):
- The dataset must be very dense must include representative examples of all possible (sqft, 'dollars') pairs to avoid overfitting.
- This is hard, to have all possible (sqft, 'dollars') pairs values.
- d inputs (e.g., sqft, #bath, #bed, lot size, year,...):
- The data must include examples of all possible (sqft, #bath, #bed, lot size, year,...,'\$') combos to avoid
 overfitting.
- This is even harder to cover all possible scenarios.

Balancing the fit and magnitude of coefficients

· Overfitting increases the magnitude of the coefficient.

Quality Metrics -> Adding term to cost-of-fit to prefer small coefficients.

- Thus far -> quality metrics depended on the actual sales price / actual output and the predicted sales price / predicted output - RSS - was used to measure of fit.
- Now The Quality Metrics is also gonna incorporate the complexity of the model.

Desired total cost format

Want to balance:

- 1. How well the function fits the data.
- 2. The complexity of the model through 'Magniude of the estimated coefficients'.

Previous cost = RSS = (Actual - Predicted)^2.-> measure of fit

New Cost = Total cost = measure of fit + measure of magnitude of coefficients

- Measure of fit -> (small # = good fit to training data).
- Measure of magnitude of coefficients -> (small # = not overfit).

I. Measure of fit

II. Measure of magnitude of the coeffients

What summary # is indicative of size of regression coefficients?

- Sum?
$$W_0 = 1,527,30$$
\ $W_1 = -1,605,253$ \ $W_0 + W_1 = small +$

- Sum of absolute value?
$$|w_0| + |w_1| + \dots + |w_p| = \sum_{j=0}^{p} |w_j| \triangleq ||w||_1 \quad L_1 \text{ norm } \dots \text{ discuss more in next module}$$

Total Cost

Resulting Objective

- Find the estimated parameters (w-hat) that minimizes the total cost.
- A tuning parameter λ is introduced inorder to balance of fit and magnitude.

RSS(w) +
$$\lambda ||w||_2^2$$
tuning parameter = balance of fit and magnitude

If $\lambda = 0$:
reduces to minimizing RSS(w), as before (old solution) $\rightarrow \hat{w}^{LS}$ theast squares

If $\lambda = \infty$:
For solutions where $\hat{w} \neq 0$, then total cost is ∞
If $\hat{w} = 0$, then total cost = RSS(0) \rightarrow solution is $\hat{w} = 0$

If λ in between: Then $0 \in \|\hat{w}\|_2^2 = \|\hat{w}^{LS}\|_2^2$

Ridge Regression - a.k.a L(2) regularization = RSS(w) + $\lambda ||w||(2)$ ^2

Bias-variance tradeoff

Large λ : low complex model

high bias, low variance

(e.g., $\hat{\mathbf{w}} = 0$ for $\lambda = \infty$)

In essence, λ controls model

Small \(\lambda\): high complex model complexity

low bias, high variance

(e.g., standard least squares (RSS) fit of high-order polynomial for $\lambda=0$)

The ridge coefficient path:

- In general when λ is small, the coefficient magnitude is large.
- When λ is large -> infinity, the coefficient magnitude is small -> 0;

ML Algorithm -> ML Block Diagram

Computing the gradient of the Ridge Objective

Step 1: Rewrite total cost in matrix notation

• Model for all N observations together. Y = H * w + ε

Recall matrix form of RSS

Model for all N observations together

RSS(
$$\mathbf{w}$$
) = $\sum_{i=1}^{N} (\mathbf{y}_i - \mathbf{h}(\mathbf{x}_i)^T \mathbf{w})^2$
= $(\mathbf{y} - \mathbf{H} \mathbf{w})^T (\mathbf{y} - \mathbf{H} \mathbf{w})$

Rewrite magnitude of coefficients in vector notation

$$||\mathbf{w}||_{2}^{2} = w_{0}^{2} + w_{1}^{2} + w_{2}^{2} + ... + w_{D}^{2}$$

$$= \underbrace{w_{0}}_{w_{1}} \underbrace{w_{2}}_{w_{2}} + ... + w_{D}^{2}$$

Putting it all together

In matrix form, ridge regression cost is:

RSS(w) +
$$\lambda ||\mathbf{w}||_2^2$$

= $(\mathbf{y} - \mathbf{H} \mathbf{w})^{\mathsf{T}} (\mathbf{y} - \mathbf{H} \mathbf{w}) + \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w}$

Step 2: Compute the gradient

Gradient of ridge regression cost

$$|\nabla [RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_{2}^{2}] = |\nabla [(\mathbf{y} - \mathbf{H} \mathbf{w})^{T} (\mathbf{y} - \mathbf{H} \mathbf{w}) + \lambda \mathbf{w}^{T} \mathbf{w}]$$

$$= |\nabla \mathbf{y} - \mathbf{H} \mathbf{w}|^{T} (\mathbf{y} - \mathbf{H} \mathbf{w}) + \lambda |\nabla \mathbf{w}^{T} \mathbf{w}|^{T}$$

$$= 2\mathbf{H}^{T} (\mathbf{y} - \mathbf{H} \mathbf{w}) + \lambda |\nabla \mathbf{w}^{T} \mathbf{w}|^{T}$$

$$= 2\mathbf{W}^{T} (\mathbf{y} - \mathbf{H} \mathbf{w}) + \lambda |\nabla \mathbf{w}^{T} \mathbf{w}|^{T}$$

Why? By analogy to 1d case...

 $\mathbf{w}^{\mathsf{T}}\mathbf{w}$ analogous to \mathbf{w}^2 and derivative of $\mathbf{w}^2=2\mathbf{w}$

Step 3: Approach 1 : Set the gradient = 0 | Closed-form solution

Ridge closed-form solution

$$\nabla cost(\mathbf{w}) = -2\mathbf{H}^{\mathsf{T}}(\mathbf{y} - \mathbf{H}\mathbf{w}) + 2\lambda \mathbf{I}\mathbf{w}$$

$$= -2\mathbf{H}^{\mathsf{T}}(\mathbf{y} - \mathbf{H}\mathbf{w}) + 2\lambda \mathbf{I}\mathbf{w}$$

$$\nabla \cot(\mathbf{w}) = -2\mathbf{H}^{\mathsf{T}}(\mathbf{y} - \mathbf{H}\mathbf{w}) + 2\lambda \mathbf{I}\mathbf{w} = 0$$
Solve for $\mathbf{w}_{\mathsf{M}}^{\mathsf{T}} + \mathbf{H}^{\mathsf{T}} \mathbf{H} \hat{\mathbf{w}} + \lambda \mathbf{I} \hat{\mathbf{w}} = 0$

$$\mathbf{H}^{\mathsf{T}} \mathbf{H} \hat{\mathbf{w}} + \lambda \mathbf{I} \hat{\mathbf{w}} = \mathbf{H}^{\mathsf{T}} \mathbf{y}$$

$$(\mathbf{H}^{\mathsf{T}} \mathbf{H} + \lambda \mathbf{I}) \hat{\mathbf{w}} = \mathbf{H}^{\mathsf{T}} \mathbf{y}$$

$$\hat{\mathbf{w}}_{\mathsf{M}}^{\mathsf{M}} (\mathbf{H}^{\mathsf{T}} \mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{H}^{\mathsf{T}} \mathbf{y}$$

Interpreting ridge closed-form solution

$$\hat{\mathbf{w}} \stackrel{\text{def}}{=} (\mathbf{H}^{\mathsf{T}}\mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{H}^{\mathsf{T}}\mathbf{y}$$

If
$$\lambda = 0$$
: $\hat{\omega}^{ridge} = (H^TH)^{-1}H^Ty = \hat{\omega}^{15} \leftarrow old solution!$

If
$$\lambda = \infty$$
: $\hat{W}^{ridge} = 0$ \leftarrow because it's like dividing by ∞

Closed-form solution : w.r.t Ridge regression -> the λ term is multiplied with I (identity matrix) -> λ is a scalar -> identity matrix with λ along the diagonal and the rest are 0 is formed.

previous closed-form solution ridge closed-form solution

Invertible if:

In general,

(# linearly independent obs)

N > D

Complexity of inverse: $O(D^3)$

The closed-form solution is computatively expensive.

Step 3: Approach 2: Gradient Descent

· The new coefficient

$$w(j)(t+1) = (1-2\eta\lambda) * w(j)(t) + 2\eta\Sigma(i=1...N) hj(x) (yi - y-hati(w-hat))$$

- Step i: With every new interation -> (1-2ηλ) reduces the w(j)(t) term since η & λ are > 0.
- Step ii: At t+1 iteration, the update term for RSS is added to the previously shrink term. This is the new w(j)(t+1) - coefficient.

Previously - Just RSS

 Here the w(j)(t) term was taken and for the new w(j)(t+1) term the w(j)(t) was added with update term from RSS.

Gradient Descent - implemented w.r.t 'Multiple Regression' v/s 'Ridge Regression'

previous algorithm

init
$$\mathbf{w}^{(1)} = 0$$
 (or randomly, or smartly), $t = 1$

while $||\nabla RSS(\mathbf{w}^{(t)})|| > \epsilon$

for $j = 0,...,D$

partial[j] = -2
 $\sum_{i=1}^{N} (\mathbf{x}_i)(y_i - \hat{y}_i(\mathbf{w}^{(t)}))$
 $w_j^{(t+1)} \leftarrow w_j^{(t)} - \eta$ partial[j]

 $t \leftarrow t + 1$

ridge regression algorithm

if
$$\mathbf{w}^{(1)} = 0$$
 (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ in $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ in $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ in $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ in $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ in $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ in $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ in $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ in $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ in $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ in $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), $t = 1$ in $\mathbf{w}^{(1)} = 0$ (or randomly), $t = 1$ in $\mathbf{w}^{(1)} = 0$ in $\mathbf{w}^$

Selecting tuning parameters λ via cross validation

Case 1: Sufficient amount of data

Practical implementation

- 1. Select λ^* such that $\hat{\mathbf{w}}_{\lambda^*}$ minimizes error on validation set
- Approximate generalization error of ŵ_{λ*} using test set

Typical splits

Training set	Validation set	Test set
80%	10%	10%
50%	25%	25%

- $\hat{\mathbf{W}}_{\lambda}$ = estimate parameters on training data
- \lambda^* = tuning parameter to control te model
 complexity with lowest test error
- $\hat{\mathbf{W}}_{\lambda^*}$ = Fitted model for selected complexity λ^*
 - · For every value of that tuning parameter we can fit our model in the training data.
 - Then assess the performance of the fitted model on a validation set, and can tabulate all values of 'lambda' that we can consider and choose the specific model complexity accord to error on validation set.
- Assess the performance of the selected model on the test set.
- In the presence of sufficient data the above splitting process can be applied even to 'Ridge Regression'.

Case 1: Insufficient amount of data

- Is the validation set enough to compare performance of estimated paraters for a given tuning parameter 'lambda' (w-hat)λ across all 'lambda' λ values?
- It is not necessary to use the last data points tabulated to form the valiation set. Rather can use any subset.
- In case of insufficin=ent data. Can use the entire training dataset in subsets. Then Average the performance over all choices of the subset.

K-fold cross validation

• Step 1 : Preprocessing : Randomly assign the data to K groups.

- Take the Rest of the data (data apart from the test set) and divide into into k groups. There are N total
 observations so every block is gonna have N/K observations and are assigned randomly to each
 block.
- Step 2: For k = 1,...,K
 - i. Estimate (w-hat)λ(k) on the training blocks (except the k -subset);
 - ii. Compute the error on the validation block (K): error-k(λ)
- Step 3: Compute the average error : CV(λ) = 1/K Σ(k = 1-K) error-k(λ).
- Step 4: Repeat the above procedure for each choice of λ.
 - Choose λ* to minimize CV(λ).

What value of K?

• Formally, the best approximation occurs for validation sets of size 1 (K=N)

- This is the leave-out-one cross validation (LOO Cross Validation).
- It is computationally intensive requires computing N fits of model per λ.
- Typically, K = 5 (5-fold CV) or k = 10 (10-fold CV).

How to handle the intercept

- w0 -> first coefficient of the model is usually the intercept, i.e where x is 0. h0(x) = contant (1).
- Therefore the H matrix first column will be 1.
- Since w0 is the intercept.
- The cost of Ridge Regression -> RSS(w) + λ||w||2²;
 - where λ strength of penalty.
 - since w0 is the intercept multipled by 1, squaring it will encourage the intercept w0 to also be small.
 - This operation will not be indicative of overfitting. (Overfitting is indicated bt the magnitude of the coefficients.)

Avoid the intercept term from being squared.

Option 1: Don't penalize the intercept

- Previous Ridge Regression Cost : RSS(w) + λ||w||2²;
- New Ridge Regression Cost : RSS(w0,w-rest) + λ||w-rest||2²;

Closed-form solution

Here the Identity matrix 'λl' gets modified to 'λl(mod)' - the λl(mod) matrix has the first element as 0, and the rest of the diagonal is filled with λ and the rest of the matrix is filled with 0's.

Gradient Descent algorithm

- While performing the update, incase j = 0, w0(intercept coefficient) no shrinking operation is performed, only the fit to data *update term from RSS in added.
- For all other cases -> the previous coefficient is shrunk and then appended to form the next coefficient of the polynomial regression term.

Option 1: Don't penalize intercept – Gradient descent algorithm –

while
$$\|\nabla RSS(\mathbf{w}^{(t)})\| > \epsilon$$

for $j=0,...,D$

partial[j] = -2 $\sum_{i=1}^{N} \mathbf{x}_{i}$)($y_{i}-\hat{y}_{i}$ ($\mathbf{w}^{(t)}$))

if $j==0$
 $W_{0}^{(t+1)} \leftarrow W_{0}^{(t)} - \eta$ partial[j] \leftarrow old 1s update

 $W_{0}^{(t+1)} \leftarrow W_{0}^{(t)} - \eta$ partial[j] \leftarrow old 1s update

the for all other features

 $W_{j}^{(t+1)} \leftarrow (1-2\eta\lambda)W_{j}^{(t)} - \eta$ partial[j] \leftarrow ridge update

 $t \leftarrow t+1$

Option 2: Center the data first

- If data are first centered about 0, then favoring small intercept not so worrisome.
- Step 1 : Transform y to have 0 mean.
- Step 2: Run ridge regression as normal (closed-form or gradient descent algorithm).

Quiz

• Explaination: Take weight vector in 2D like the following one: w = = From the value of the weights, we might suspect overfitting. Now: If you consider the sum of weights, you get -200. So this is not a good measure for overfitting detection. On the other hand, if you consider range, you get 2500 - (-2700) = 5200, which seems good measure for overfitting detection.

2. In ridge regression, choosing a large penalty strength λ tends to lead to a model with (choose all that apply):

High bias

Low bias

High variance

Low variance

* When lambda is large (model complexity is low) - Bias is high and variance is low.

- The bias increases with 'lambda'.
- The variancec decreases with 'lambda'.
- The Generalization error does not portoprtionally vary with model complexity. It decrease when the bias meets the variance. Increases else where.

- Suppose, w0 + w1 x1 + w2 x2 = y.
- Let x1 = 2 and x2 = 4 for y = 7, then one set of likely values of (w0, w1, w2) will be (1,1,1).
- If x2 = 8, w2 will have to be half of previous value and will be less than other two parameters.
- Since ridge regression penalizes larger parameters more, using lambda, values of other parameters should change.
- · Hence the estimated parameters may or may not change.

5 If we only have a small number of observations, K-fold cross validation provides a

point	٥.	better estimate of the generalization error than the validation set method.
		True
		○ False
1 point	6.	10-fold cross validation is more computationally intensive than leave-one-out (LOO) cross validation.
		True
		False
1 point	7.	Assume you have a training dataset consisting of N observations and D features. You use the closed-form solution to fit a multiple linear regression model using ridge regression. To choose the penalty strength λ , you run leave-one-out (LOO) cross validation searching over L values of λ . Let $\mathrm{Cost}(N,D)$ be the computational cost of running ridge regression with N data points and D features. Assume the prediction cost is negligible compared to the computational cost of training the model. Which of the following represents the computational cost of your LOO cross validation procedure?
		\bigcirc $LN \cdot \operatorname{Cost}(N,D)$
		$\bigcirc LD \cdot \operatorname{Cost}(N-1,D)$
		$\bigcirc LD \cdot Cost(N, D)$
		$\bigcirc L \cdot \operatorname{Cost}(N-1,D)$
		$\bigcirc L \cdot \operatorname{Cost}(N, D)$
	ns are	is 1 observation wide. therefore 1 observation is a validation set , while the a part of the training set. cost = L N Cost(N-1, D)
1 point	8.	Assume you have a training dataset consisting of 1 million observations. Suppose running the closed-form solution to fit a multiple linear regression model using ridge regression on this data takes 1 second. Suppose you want to choose the penalty strength λ by searching over 100 possible values. How long will it take to run leave-one-out (LOO) cross-validation for this selection task? About 3 hours

- N = # of observation = 10^6;
- L = # of lambda = 100;
- Cost(N-1, D) operation = 1 second
- T = L N Cost(N-1, D) = 100 10^6 1 second
- T = 100 10^6 1 second / (60 60 24 * 365) ~ 3 years.

About 3 days

About 3 years

About 3 decades

point	1	
	point	

- 9. Assume you have a training dataset consisting of 1 million observations. Suppose running the closed-form solution to fit a multiple linear regression model using ridge regression on this data takes 1 second. Suppose you want to choose the penalty strength λ by searching over 100 possible values. If you only want to spend about 1 hour to select λ, what value of k should you use for k-fold cross-validation?
 - ____ k-
 - k-3
 - k=600
 - k=360
- k folds cross validaions.
- L = # lambda = 100;
- t = time to select lamba* over all lambda = 1 hour
- k = t/L = 1 hour / 100 = 60 * 60 / 100 = 36;

_	_	-	
Tn		٠.	
TII		١.	