Deep Learning for Computer Vision

Pruning and Model Compression

Vineeth N Balasubramanian

Department of Computer Science and Engineering Indian Institute of Technology, Hyderabad

Motivation

- Deep Neural Networks (DNNs) generally optimized for performance in terms of predictive accuracy
- As a result, DNNs are huge and have parameters in the order of millions
- The popular AlexNet has around 61M parameters!
 A trained AlexNet takes around 200MB of space

Credit: Xu et al, 2019

Motivation

 While it's acceptable for DNNs to utilize high-end GPUs for training, requiring such powerful processors for inference, is highly limiting

- Applications to various new and battery constrained technologies necessitate low-compute environments:
 - Mobile Phones
 - Unmanned Aerial Vehicles (UAVs)
 - IoT devices

Drones

Self Driving Cars

Credit: Song Han, 2016

Motivation

 On mobile devices, crucial to reduce memory consumption for apps, as well as reduce energy consumption

Operation	Energy [pJ]	Relative Cost
32 bit int ADD	0.1	1
32 bit float ADD	0.9	9
32 bit Register File	1	10
32 bit int MULT	3.1	31
32 bit float MULT	3.7	37
32 bit SRAM Cache	5	50
32 bit DRAM Memory	640	6400

- DRAM accesses cost more energy, which drains battery
- If deep models were compact enough to fit on SRAM, that would reduce energy consumption drastically

Credit: Song Han, 2016

Categorization of Methods for Model Compression

Category Name	Description
Parameter pruning and quantization	Reducing redundant parameters which are not sensitive to the performance
Low-rank factorization	Using matrix/tensor decomposition to estimate the informative parameters
Transferred/compact convolutional filters	Designing special structural convolutional filters to save parameters
Knowledge distillation	Training a compact neural network with distilled knowledge of a large model

We'll see a few sample methods: Pruning-based, Knowledge Distllation-based, and the "Lottery Ticket Hypothesis"

Credit: Cheng et al, A Survey of Model Compression and Acceleration for Deep Neural Networks, 2017

Deep Compression¹

- One of the most popular, game-changing methods in this space
- A three-stage pipeline to reduce the storage requirement of neural nets

• Showed a $35 \times$ decrease in size of AlexNet from 240MB to 6.9MB!

¹Han et al, Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding, ICLR 2016

Deep Compression: Pruning

A three-step procedure:

- Train Connectivity: Model weights are learned using standard neural network training
- Prune Connections: Weights (connections) below a certain threshold are removed from network
- 3 Train Weights: Remaining sparse network is retrained

Deep Compression: Pruning²

Network	Top-1 Error	Top-5 Error	Parameters	Compression Rate
LeNet-300-100 Ref	1.64%	-	267K	
LeNet-300-100 Pruned	1.59%	-	22K	$12\times$
LeNet-5 Ref	0.80%	-	431K	
LeNet-5 Pruned	0.77%	-	36K	$12\times$
AlexNet Ref	42.78%	19.73%	61M	
AlexNet Pruned	42.77%	19.67%	6.7M	9×
VGG-16 Ref	31.50%	11.32%	138M	
VGG-16 Pruned	31.34%	10.88%	10.3M	13 imes

As seen in table, pruning shown to compress networks by $9-13\times$

 $^{^2}$ Han et al, Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding, ICLR 2016

Deep Compression: Weight Sharing

 \bullet In each layer, weights are partitioned into k clusters using simple K-means clustering

 Weights (and gradients) with same color (cluster) are grouped together; all weights of same color are represented by corresponding centroid

Deep Model Compression: Weight Sharing

Gradients of same color are added, sum is used to update corresponding centroid

Deep Model Compression: Quantization and Huffman Coding³

 Instead of using 32-bit floating point values for weights, experiments showed no loss of accuracy when weights were quantized upto 8 bits

Vineeth N B (IIT-H)

³Han et al, Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding, ICLR 2016

Deep Model Compression: Quantization and Huffman Coding³

- Instead of using 32-bit floating point values for weights, experiments showed no loss of accuracy when weights were quantized upto 8 bits
- Pruned and quantized network encoded using Huffman coding; frequently observed values stored with less number of bits, and rare values stored with more bits

Vineeth N B (IIT-H)

³Han et al, Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding, ICLR 2016

Deep Model Compression: Quantization and Huffman Coding³

- Instead of using 32-bit floating point values for weights, experiments showed no loss of accuracy when weights were quantized upto 8 bits
- Pruned and quantized network encoded using Huffman coding; frequently observed values stored with less number of bits, and rare values stored with more bits
- Deep compression method compressed various networks from $35\times$ to $49\times$ less than original size with minimal loss of accuracy!

Network	Top-1 Error	Top-5 Error	Parameters	Compress Rate
LeNet-300-100 Ref	1.64%	_	1070 KB	
LeNet-300-100 Compressed	1.58%	-	27 KB	40×
LeNet-5 Ref	0.80%	-	1720 KB	
LeNet-5 Compressed	0.74%	-	44 KB	39 ×
AlexNet Ref	42.78%	19.73%	240 MB	
AlexNet Compressed	42.78%	19.70%	6.9 MB	35×
VGG-16 Ref	31.50%	11.32%	552 MB	
VGG-16 Compressed	31.17%	10.91%	11.3 MB	49×

³Han et al, Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding, ICLR 2016

Knowledge Distillation

Key Idea

Transfer "knowledge" from a cumbersome large model (teacher) to a small model (student), whose size is more optimized for deployment

NPTEL

Knowledge Distillation

Key Idea

Transfer "knowledge" from a cumbersome large model (teacher) to a small model (student), whose size is more optimized for deployment; but how? What is "knowledge" in a DNN model?

Knowledge Distillation⁴

 In the case of image classification, knowledge can be seen as the mapping between input (images) and output (softmax probabilities)

⁴Hinton et al, Distilling the Knowledge in a Neural Network, NeurIPS-W 2015

Knowledge Distillation⁴

- In the case of image classification, knowledge can be seen as the mapping between input (images) and output (softmax probabilities)
- Instead of training a student network with hard labels, they can be trained to mimic the softmax outputs of the teacher model, for each image

Credit: Yangyang, 2014

⁴Hinton et al, Distilling the Knowledge in a Neural Network, NeurIPS-W 2015

Knowledge Distillation: A Simple Example on MNIST

Models

- Cumbersome model: 2 layers, 1200 ReLU nodes, dropout regularization
- Small model: 2 layers, 800 ReLU nodes, no regularization

Number of errors on MNIST

- Cumbersome Model: 67
- Small model with standard training: 146
- Small model with distillation: 74

Lottery Ticket Hypothesis: Motivation⁵

• **Observation:** A very sparse subnetwork obtained after pruning a fully trained network produces accuracy close to the full model

^{60%} Accuracy

⁵Frankle and Carbin, The Lottery Ticket Hypothesis: Finding Sparse, Trainable NeuralNetworks, ICLR 2019

The Hypothesis

A randomly-initialized, dense neural network contains a subnetwork that is initialized such that — when trained in isolation — it can match the test accuracy of the original network after training for at most the same number of iterations

The Hypothesis

A randomly-initialized, dense neural network contains a subnetwork that is initialized such that — when trained in isolation — it can match the test accuracy of the original network after training for at most the same number of iterations

How to find the network?

The Hypothesis

A randomly-initialized, dense neural network contains a subnetwork that is initialized such that
— when trained in isolation — it can match the test accuracy of the original network after training for at most the same number of iterations

How to find the network? One shot pruning:

- Train a neural network with random initialization
- Prune p% of smallest weights
- Reset remaining weights to their previous initialization, to create the winning ticket

The Hypothesis

A randomly-initialized, dense neural network contains a subnetwork that is initialized such that
— when trained in isolation — it can match the test accuracy of the original network after training for at most the same number of iterations

How to find the network? One shot pruning:

- Train a neural network with random initialization
- Prune p% of smallest weights
- Reset remaining weights to their previous initialization, to create the winning ticket

Alternatively, repeatedly pruning the network over n rounds (iterative pruning) has shown much better results, although more computationally expensive

Lottery Ticket Hypothesis: Results

Percent of weights remaining vs early stop iterations (MNIST and CIFAR-10 datasets)

Percent of weights remaining vs accuracy (MNIST and CIFAR-10 datasets)

Dotted lines show randomly sampled sparse networks while solid lines represent winning tickets (which attain more accuracy than randomly sampled sparse nets)

Lottery Ticket Hypothesis: Limitations and Further Work

Limitations

- While iterative pruning produces better results, it requires training the network 15 times per round of pruning (5 trials, training each winning ticket 3 times and taking the average)
- Harder to study large datasets like ImageNet

Lottery Ticket Hypothesis: Limitations and Further Work

Limitations

- While iterative pruning produces better results, it requires training the network 15 times per round of pruning (5 trials, training each winning ticket 3 times and taking the average)
- Harder to study large datasets like ImageNet

Further Studies

- Can we find winning tickets early on in training? (You et al, 2020)
- Do winning tickets generalize across datasets and optimizers? (Morcos et al, 2019)
- Can this hypothesis hold in other domains like text processing/NLP? (Yu et al, 2019)

Extensions and Other Methods

Pruning and Quantization

- XNOR-Net: Using binary weights and approximating convolutions with XNOR operations
- Thi-Net: Compressing CNNs with filter pruning

Distillation

- Noisy Teachers: Perturbing teacher logits to regularize the student
- Relational Knowledge Distillation:
 Adapting metric learning for distillation

Architectures

- MobileNets: Depth-wise separable convolutions
- ShuffleNet: Group Convolutions and Channel Shuffle
- SqueezeNet: Replacing 3x3 with 1x1 convolutions
- SqueezeDet: Fully convolutional network for fast object detection
- SEP-NET: Transforming k × k convolutions into binary patterns for reducing model size

Recall: Categorization of Methods for Model Compression

Category Name	Description
Parameter pruning and quantization	Reducing redundant parameters which are not sensitive to the performance
Low-rank factorization	Using matrix/tensor decomposition to estimate the informative parameters
Transferred/compact convolutional filters	Designing special structural convolutional filters to save parameters
Knowledge distillation	Training a compact neural network with distilled knowledge of a large model

Many more methods!

Credit: Cheng et al, A Survey of Model Compression and Acceleration for Deep Neural Networks, 2017

Homework

Readings

- Robert T. Lange, Lottery Ticket Hypothesis: A Survey, 2020
- Cheng et al., A Survey of Model Compression and Acceleration for Deep Neural Networks, 2017.

References

- Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. "Distilling the Knowledge in a Neural Network". In: NIPS Deep Learning and Representation Learning Workshop. 2015.
- Song Han, Huizi Mao, and W. Dally. "Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding". In: CoRR abs/1510.00149 (2016).
- Jonathan Frankle and Michael Carbin. "The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks". In: International Conference on Learning Representations. 2019.
- Ari Morcos et al. "One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers". In: Advances in Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019, pp. 4932–4942.
- T. Xu and I. Darwazeh. "Design and Prototyping of Neural Network Compression for Non-Orthogonal IoT Signals". In: 2019 IEEE Wireless Communications and Networking Conference (WCNC). 2019, pp. 1–6.
 - Haoran You et al. "Drawing Early-Bird Tickets: Toward More Efficient Training of Deep Networks". In: International Conference on Learning Representations. 2020.