

Variables

- Variables are placeholders for numbers that are unknown and which may have no fixed value.
- All math operations that can be performed on numbers can also be performed on variables.

Example:

```
Evaluate 3x^2 - 4x when x = 2.
```

Substitute 2 for each instance of *x*:

Apply PEMDAS to solve:

Example:

Express
$$\frac{a}{b-a}$$
 in terms of x and y if $a=2x$ and $b=3y$.

Substitute 2x for *a*:

Substitute 3*y* for *b*:

Simplify expression:

(Answers on page 82.)

Simplify the following expressions:

1.
$$2x + 4y + 7x - 6y =$$

2.
$$4x\left(3+\frac{3}{2}\right)=$$

3.
$$(3a + 6b) - (7a + 4b) =$$

4.
$$\frac{x}{4} + \frac{4y}{5} - \frac{3y}{4} + \frac{2x}{5} =$$

5.
$$x^2 + y - 3x^2 + 4y =$$

For the following expressions, evaluate for x = 2 and y = 5:

6.
$$(y^2 + 1)(x^2 + 1) =$$

7.
$$\frac{x + y}{x - y} =$$

8.
$$9x - 4y + \frac{x}{2} =$$

9.
$$(2x - y)^2 =$$

10.
$$x^2 + 7x + 10 =$$

Test Question:

11. What is the value of the expression $x^2 + xy + y^2$ when x = -2 and y = 2?

- (A) 24
- (B) -4
- (C) 2
- (D) 4
- (E) 6

27

Linear Equations—Isolating a Variable

The steps for isolating a variable are:

- 1. Eliminate any **fractions** by multiplying both sides.
- 2. Put all terms with the variable you're solving for on one **side** by adding or subtracting on both sides.
- 3. **Combine** like terms.
- 4. **Factor** out the desired variable.
- 5. **Divide** to leave the desired variable by itself.

Example:

If
$$4x - 7 = 2x + 5$$
, what is x?

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Example:

Solve the equation
$$\frac{x-2}{3} + \frac{x-4}{10} = \frac{x}{2}$$
.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Exercises

(Answers on page 84.)

Solve for the variable in each of the following equations:

1.
$$2x + 5 = 10$$

$$2. 3(a - 2) = 6a$$

3.
$$14 - z + 24 = 5z - 3$$

4.
$$(4)(15y)(3) = 2y$$

$$5.8s + 6 = 12s + 7$$

6.
$$\frac{3}{2}x - \frac{1}{2}x = 6$$

7.
$$\frac{12+b}{3} = \frac{b+10}{6}$$

8. 9(3 + y) =
$$\frac{18}{5}$$

9.
$$4x - 8 = 12(4 + 3x)$$

10.
$$\frac{3a-2}{7} - \frac{3+2a}{35} = 6$$

Test Question

11. If
$$5 - 2x = 15$$
, then $5x =$

$$(A) - 25$$

(B)
$$-10$$

Systems of Linear Equations

- To solve for all of the variables in a system of equations, we must have at least as many distinct linear equations n as we have distinct variables n.
- There are two ways to solve linear equations:
 - · Substitution: Solve one equation for one of the variables, and substitute that variable into the other equation.
 - · Combination: Add or subtract one equation from another to cancel out one of the variables.

Example:

(Answers on page 86.)

Solve for each variable:

1.
$$x + y = 2$$

$$x - y = 4$$

$$2. 2x + y = 3$$

$$2x + 3y = 6$$

$$3. 2x + 3y = 0$$

$$22x + 3y = 6$$

4.
$$21x + 7y = 3$$

$$21x + 10y = 3$$

5.
$$x + 2y = 9$$

$$2x-3y=4$$

Test Question

6. If 2x + y = -8 and -4x + 2y = 16, what is the value of y?

- (A) 4
- (B) 2
- (C) 0
- (D) 2
- (E) 4

Quadratic Equations

A quadratic equation has a squared variable (Ex., x^2). Quadratic equations appear in two forms:

Expanded:
$$a^2 + 5a + 6 = 0$$

Factored: $(a + 2)(a + 3) = 0$

To convert from a factored form to the expanded form:

To solve a quadratic equation:

Step 1: Move all terms to one side of the equation, leaving zero on the other side.

Step 2: Factor the expanded equation.

Step 3: Set each expression equal to 0 and solve for the possible values of the variable.

Example:

Expand the expression (2x + 1)(x - 8).

First:

Outer:

Inner:

Last:

Combine like terms:

Example:

If $x^2 - 3x + 5 = 3$, what are the possible values of x?

Step 1:

Step 2:

Step 3:

Exercises

(Answers on page 88.)

Expand each of the binomials:

1.
$$(x + 2)(x + 5) =$$

2.
$$(a + 4)(a - 2) =$$

3.
$$(2y + 7)(y + 2) =$$

4.
$$(b-8)(3b+2) =$$

5.
$$x(x + 1) =$$

Solve for the possible values of the variable:

6.
$$x^2 + 7x + 12 = 0$$

7.
$$b^2 + 3b - 10 = 0$$

8.
$$2y(y-4)=0$$

9.
$$2a^2 + 7a + 3 = 0$$

$$10. z^2 - 11z + 45 = 15$$

Test Question

11. What is the set of all values of x for which $x^2 - 3x - 18 = 0$?

- (A) $\{-6\}$
- (B) $\{-3\}$
- (C) $\{-3, 6\}$
- (D) {3, 6}
- (E) $\{2, 6\}$

33

Greater than: >
Less than: <
Greater than or
equal: ≥
Less than or equal: ≤

Inequalities

Inequalities should be treated exactly like equations, with two exceptions:

- 1. When we multiply or divide an inequality by a negative number, we must reverse the direction of the inequality sign.
- 2. Single-variable equations are usually solved for a specific value, whereas inequalities can only be solved for a range of values.

Example:

If
$$3 - \frac{x}{4} \ge 2$$
, solve for x .

Eliminate fractions:

Isolate *x* on one side of the inequality:

(Answers on page 89.)

Solve for *x*:

- 1. 3x + 4 > 64
- 2. 2x + 1 < 21
- 3. $-x + 1 \le 63 + x$
- 4. $21x 42 \le 14x$
- 5. 6 > x + 4 > 4
- 6. 2x > x + 10 > -x
- 7. 4x + 3 < 24 6x
- 8. 35 7x + 12 > 4(x 2)
- 9. $3x(12) \ge 24$
- 10. 9 $12x \le \frac{1}{3}x$

Test Question

- 11. The inequality 3x 16 > 4x + 12 is true if and only if which of the following is true?
 - (A) x < -28
 - (B) x < -7
 - (C) x > -7
 - (D) x > -16
 - (E) x > -28

Symbolism

- Symbolism questions give test takers a definition of a symbol and then ask test takers to apply the definition.
- The definitions given in symbolism questions apply only to the particular question at hand.

Example:

Let x^* be defined by the equation $x^* = \frac{x^2}{1 - x^2}$. Evaluate $(\frac{1}{2})^*$.

Plug in $\frac{1}{2}$ anywhere you see x:

Solve the expression:

(Answers on page 90.)

- 1. For all x, the operation # is defined by #x = 3x + 4. Evaluate #7.
- 2. For all positive x, the operation Δ is defined by $\Delta x = \frac{x}{x+1}$. Evaluate $\Delta \left(\frac{7}{16}\right)$.
- 3. For all positive x, the operation \uparrow is defined by $\uparrow x = \frac{5x+6}{4x+27}$. Evaluate $\uparrow \left(\frac{7}{4}\right)$.
- 4. For all x and y, the operation λ is defined by $x \lambda y = 5x 7y$. Evaluate 8 λ 14.
- 5. For all x and y, the operation \square is defined by $x \square y = x^y + x + y$. Evaluate $5 \square 3$.
- 6. The operation \Leftrightarrow is defined for all numbers x, y, and z by the equation $x \Leftrightarrow y \Leftrightarrow z = xy + xz + yz$. Evaluate $\frac{1}{3} \Leftrightarrow \frac{1}{4} \Leftrightarrow \frac{4}{7}$.
- 7. For all x, the operation Δ is defined by $\Delta x = 7x + 5$. For what value of y is $\Delta y = 173$?
- 8. For all x and y, the operation \downarrow is defined by $x \downarrow y = xy + 5x + y$. Write an expression for $(d + 4) \downarrow d$ in terms of d and express in simplest form.
- 9. For all x and y, the operation Φ is defined by $x \Phi y = 12x 8y$. If $(c + 4) \Phi (2c + 5) = 196$, then what is the value of c?
- 10. For all x and y, the operation Ω is defined for all x and y by x Ω $y = x^2 xy + 25$. If a Ω θ θ θ 10, then what is the sum of the squares of all the possible values of θ ?

Test Question

- 11. If $m \triangle n$ is defined by the equation $m \triangle n = \frac{m^2 n + 1}{mn}$ for all nonzero m and n, then $3 \triangle 1 =$
 - (A) $\frac{9}{4}$
 - (B) 3
 - (C) $\frac{11}{3}$
 - (D) 6
 - (E) 9