COIS 4470H: Modelling and Simulation Winter 2017

Assignment 2

Due: Thursday, Mar. 2, 2017

- 1. **Inventory system:** An automobile dealership uses a weekly periodic inventory review policy. Assume the maximum space for cars is S=80 and the minimum inventory level is s=20. Operation costs are assumed as:
 - Holding cost (C_holding) \$25 per car per week
 - Shortage cost (C_Shortage) \$700 per car per week
 - Set up cost (C SetUp) \$1000 per order
 - Unit cost (C_Unit) \$8000 each car ordered
- (a) Modify the program **sis1.c** to compute all four components of the total average cost per week.
- (b) Use your program to compute and complete the following table (S=80):

S	0	5	10	15	20	25	30	35	40
Average holding cost/week									
Average shortage cost/week									
Average setup cost /week									
Sum of the three costs/week									

- (c) What could be the optimum value for s? Explain.
- (d) Redo (a)-(c). Instead of reading the demands from the input file (sis1.dat), using random-variate generation techniques. Assume demands are uniformly distributed in the same range as the data in file sis.dat.
- (e) Redo (a)-(c). Instead of reading the demands from the input file (sis1.dat), using random-variate generation techniques. Assume demands follow Geometric Distribution with the same mean as the data in file sis.dat.
- (f) Compare results obtained for different demand distributions.
- 2. A random number generator can be developed by combining **two** Linear Congruential Generators using the following algorithm:

The first generator has multiplier a_1 and modulus m_1 , The second generator has multiplier a_2 and modulus m_2 .

Step 1: Select seed $X_{1,0}$ in the range of $[1, m_1-1]$ for the first generator and seed $X_{2,0}$ in the range of $[1, m_2-1]$ for the second generator. Set j=0.

Step 2: Evaluate each individual generator:

$$X_{1,j+1} = a_1 X_{1,j} \mod m_1$$

 $X_{2,j+1} = a_2 X_{2,j} \mod m_2$

Step 3:

$$X_{j+1} = (X_{1,j+1} - X_{2j+1}) \mod m_1$$

Step 4:

Return
$$R_{j+1} = \begin{cases} \frac{X_{j+1}}{m_1}, & \text{if } X_{j+1} > 0, \\ \frac{m_1 - 1}{m_1}, & \text{if } X_{j+1} = 0. \end{cases}$$

Step 5:

Set j = j+1 and go to Step 2.

- (a) Following this algorithm, develop a Combined Linear Congruential Generator. The seed $X_{1,0}$ and $X_{2,0}$, parameters a_1, m_1, a_2, m_2 , and number of random numbers generated should be given by the user at run time.
- (b) Run your program using the input $X_{1,0} = 7, X_{2,0} = 8, a_1 = 11, m_1 = 16, a_2 = 3, m_2 = 32,$ to generate 100 random variates between 0 and 1.
- (c) Apply the Gap Test with the interval (0.2, 0.5) to determine if the random variates generated are independent ($\alpha = 5\%$.).
- 3. Apply the formulas discussed in class to develop a random variate generator for exponential distribution. Run the program using $\mu = 7$ and $\mu = 170$ to generate 1000 random variate respectively. Plot histograms for the obtained random variates.
- 4. Applying the Frequency Test to test the following sequence of numbers for uniformity, using s = 10 subintervals and $\alpha = 5\%$.

Note:

Give all your answers and discussions in a pdf file named: yourLastName-A2. Submit both the answer file and all programs on Blackboard by 11:59pm on the due date.