Lab 4 - Combinational Circuits and Code Converters

Exp.1: Design, construct, and test two combinational logic circuits. The circuits are to be constructed with NAND gates.

- 1.1 Design a combinational circuit with four inputs— A, B, C, and D —and one output, F. F is to be equal to 1 when A = 1, provided that B = 0, or when B = 1, provided that either C or D (not both) is also equal to 1. Otherwise, the output is to be equal to 0.
 - a) Fill in the truth table.
 - b) Simplify the output function.
 - c) Draw the logic diagram of the circuit, using NAND gates.
 - d) Construct the circuit and test it in Proteus program for proper operation by verifying the given conditions. Show the simulation result circuit to the TA.

AB\CD	00	01	11	10	_
00	C	O	G	0	= AB + BCD + BCD
01	6	1	6	1	= (AB) (BCD) (BCD)
11	0	1	G	1	
10	1	1	1	1	

•			_	
A	В	С	D	F
0	0	0	0	G
0	0	0	1	G
0	0	1	0	0
0	0	1	1	0
0	1	0	0	O
0	1	0	1	1
0	1	1	0	1
0	1	1	1	G
1	0	0	0	1
1	0	0	1	
1	0	1	0	1
1	0	1	1	1
1	1	0	0	Ó
1	1	0	1	1
1	1	1	0	1
1	1	1	1	G

62070501056 ลิจีลณี อั๋มใจ 62070501064 อรวิกา ดูเจริญไพศาล 1.2 A majority logic is a digital circuit whose output is equal to 1 if the majority of the inputs are 1's. The output is 0 otherwise. Design and test a three-input majority circuit using NAND gates. Construct the circuit and test it in Proteus program for proper operation by verifying the given conditions. Show the simulation result to the TA.

A	В	С	F
0	0	0	O
0	0	1	0
0	1	0	6
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	Ì

Exp.2: Design and construct seven-segment display

2.1 Consider the BCD to 7-segment converter truth table. Determine the Boolean functions for each segment. Simplify the functions using *Karnaugh* maps. Construct the simplified circuit and simulate it. Show the result to the TA.

Bi	nary	Inpu	ıts	Decoder Outputs					7-Segment Display Outputs		
D	С	В	Α	а	b	С	d	е	f	g	
0	0	0	0	1	1	1	1	1	1	0	0
0	0	0	1	0	1	1	0	0	0	0	1
0	0	1	0	1	1	0	1	1	0	1	2
0	0	1	1	1	1	1	1	0	0	1	3
0	1	0	0	0	1	1	0	0	1	1	4
0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	1	0	1	1	1	1	1	6
0	1	1	1	1	1	1	0	0	0	0	7
1	0	0	0	1	1	1	1	1	1	1	8
1	0	0	1	1	1	1	1	0	1	1	9

C + BA + BA

DC\BA	00	01	11	10
ōđ 00	l	0		
^o c 01	0	1	0	1
e 11				
oč 10)		
		F_d		

 $\bar{\mathcal{B}} + A + C$

ĀC + CBA + BC + BA + D

DC\BA	00	01	11	10
ōē 00	1	0	0	1
oc 01	0	0	0	1
e 11				
ot 10	١	0		
		F_e		

AC + BA

DC\BA	00	01	11	10
ōđ OO)	C	0	C
õc 01		1	0	1
≈ 11				
ot 10				
		F_f		

BA + BC + D + A DC

	6 ñ	ĜΑ	вА	6 Ā
DC\BA	00	01	11	10
ōē 00	O	O	1	1
õc 01	1	1	0	1
_α 11				
_{oč} 10	1	1		

$$F_g$$
 _ \hat{B} C + $B\hat{C}$ + $B\hat{A}$ + D

2.2 Figure 1 shows the connections necessary between the decoder and the display. The 7447 IC is a BCD-to-seven-segment decoder/driver that has four inputs for the BCD digit. Input D is the most significant and input A the least significant. The four-bit BCD digit is converted to a seven-segment code with outputs a through g . The outputs of the 7447 are applied to the inputs of the 7-segment common anode display.

Construct the circuit shown in Fig. 1. Apply the four-bit BCD digits through four switches, and observe the decimal display from 0 to 9. Inputs 1010 through 1111 have no meaning in BCD. These values may cause a meaningless pattern to be displayed. Observe and record the output patterns of the six unused input combinations.

Figure 1

Exp.3: An 8-to-3 bit **priority encoder** basically converts a one-hot encoding into a binary representation. If input n is active, all lower inputs (n-1 .. 0) are ignored.

Design an 8-to-3 bit priority encoder to convert a thermometer code of 8-level flash conversion to 3-bit binary. Test your design in Proteus. Show the result to the TAs.

(Hint: Notice that Q_2 is "0" when D_7 - D_4 are all "0s", otherwise Q_2 is "1". For Q_0 and Q_1 , look for significant inputs D_7 - D_0 .)

