UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE TECNOLOGIA CIÊNCIA DA COMPUTAÇÃO

ELC 408 – Compiladores
Prof. Giovani Rubert Librelotto – 1º Bimestre – Peso 8.0

(80)

Prova de Compiladores

Nome: Caroline Chagos

Data: 08/05/19

1. (1,0 ponto) (ENADE 2014 – 15) Considere as seguintes expressões regulares.

ER1 = a (aUb)*

ER2 = b (aUb)*

Se L(ER) é uma linguagem associada a uma ER, é correto afirmar que:

- (a) L(ER2) = (w | w termina com b)
- (b) $L(ER^1) = L(ER^2)$
- (c) Se ER³ é uma expressão regular igual a intersecção entre L(ER¹) e L(ER²), então L(ER³) é uma linguagem livre do contexto
- (d) Um autômato finito não determinístico que reconhece L(ER1) U L(ER2) tem, pelo menos, quatro estados.
- (e) Existe um autômato finito determinístico cuja linguagem é L(ER1) U L(ER2)
- (1,0 ponto) (POSCOMP 2017 68) A tarefa principal de um analisador léxico consiste em ler os caracteres da entrada do programa-fonte, agrupá-los em lexemas e gerar uma sequência de tokens que será enviada ao analisador sintático. Sobre o analisador léxico, analise as assertivas abaixo, marcando V ou F, justificando as falsas.
 - I. (V) Além da identificação de lexemas, outras tarefas podem ser realizadas por esse analisador, tais como: remoção de comentários e espaços em branco e a associação de mensagens de erros às linhas do programa-fonte.
 - II. (F) Token é a unidade básica do texto-fonte. Sempre é representado por três informações: a classe do token, que representa o tipo do token reconhecido, o valor do token, que é o texto do lexema reconhecido e a posição que indica o local do texto-fonte (linha e coluna) onde ocorreu o token.
 - III. (>) Expressões regulares e geradores de analisadores léxicos são notações utilizadas para especificar os padrões de lexemas.
 - IV. (F) Na análise léxica, uma representação intermediária do tipo árvore é criada. Esta apresenta a estrutura gramatical da sequência de tokens.

 (3,0 ponto) Dada a gramática E e o método intuitivo para a construção da tabela de precedência abaixo, apresente a tabela de análise de precedência de operadores e os passos deste analisador para a seguinte palavra: (id - id * id ^ (id)) \$

Método intuitivo:

Este método obtém as relações de precedência a partir do conhecimento da associatividade e a precedência dos operadores da gramática. Considere dois operadores θ_1 e θ_2 .

- se o operador θ₁ tem maior precedência que o operador θ₂, então θ₁ (na pilha) > θ₂ (na entrada) e θ₂ (pilha) < θ₁ (entrada).
- se θ₁ e θ₂ tem igual precedência (ou são iguais) e são associativos à esquerda, então θ₁ > θ₂ e θ₂ > θ₁; se são associativos à direita, então θ₁ < θ₂ e θ₂ < θ₁.
- para todos os operadores θ, tem-se:

- (3,0 pontos) Dada a tabela LR abaixo, apresente os passos de um analisador ascendente para reconhecer as palavras a seguir:
 - a) ccccccdd
 - b) cdccccdc
 - e) Por fim, descreva a linguagem reconhecida por esta gramática, listando as suas 10 menores palavras.

	С	d	\$	S	С
0	e3	e4		1	2
10	-		AC		
1	еб	e7			5
2	e3	e4	r4		8
4	r3	r3			
5			r1		
6	e6	e7			9
7	-)	r3		
8	12	r2			
9			r2		

Caroline Chagas								
3)	id	1-			()	\$	
id			7			7	13	
-	4	5	1				13	
	4		3	1	4			San supplie
٨	6				4			> - e redug
(4			4			
)							>	
Pilla Embraha Again								
to the desired and the second								
50 id-adis-de (id) 5 mp								
& Cid -id Cid Cid () & moday Foreid								ordery Eroid
\$(E -1d+1a ^ (id)) \$ ar-p.							ar for	
\$15-			di					30-pa-
A (E-id rid" (id)) 3 miday E-old								reduce 10 - 1 id
\$(E-	E			dr ()				smp.
\$(E-E+ jd,^(jd))\$							Jamps -	
\$ (E-	E = id			160				many Eoid
\$(E-E+E ^(id))\$ 100pm								
\$(E-E*E^ (id))\$								
4.(E-E-E)(id))\$								
\$(E-E+E^(id)))\$								
\$(E-E*E^(E) 1)\$ E*(E)								suduy E+(E)
\$(E-E×E^(E) /)\$							miding E + E ^ E	
\$(E-E×E^E)							Juday E+E*E	
DIE-E-E								Juding E-E-E
\$(E	13					nading E o(E)		
\$ (5)								ACEITA !
\$ E							17-2-17	

4)2)

Pilha	Entrada	Ação
0	cccccdds	emp. 3
063	ccccdd\$	"
06363	coccdd \$	a
0030303	cccdd\$	11
063-36363		71
0-3-3-3-3-3		11
0030303030303	1.14	smp. 4
0 63 63 63 63 63 63	d4 d5	redug 3
0030303030301	(02) 25	suduy 2
Oc3636363C8	1 15	11
0030303(3/08)	d.5	
00303(3(08)	1.2	(1)
0030308	3.5	1
00308	d.\$	
002	2.5	emp. 7
00227	5	suday 3
00205	5	neding 1
0.51	\$	ACA

b) Pilla Entrada Ação edecede ! acep. 3 decede \$ 063 emp 4 ccccde \$ Oc3d4 riding 3 coordas 0=3C8 002 coccde & ump. 6 coode \$ 00266 emp 6 cdos des C emp. 7 ERRO OC20606060607 c) Edd, edd, ded, ed ed, godd, deed, cdeed, deed, E una linguagem com recursividade a direita que continha pulo menos duas considercion de d. 1)E. 2) I.V II. E, mem sempre i sepsementado por 3 informações, o toben. Pela informação de danse, pode-se mão utilizar a informação de valor, podendo utilizar nomente valoren de informação de valor, podendo utilizar nomente valoren de darre e porição para representar. III. Et para inpecigicar i gerar tohem pode-se utilizar IV. Na avalise léxica são apenas gerados tohems, ma avalise sintática é que são gerados as ássocios pla estrutura gramatical. E