Московский Государственный Университет им. М.В. Ломоносова Физический факультет

Курсовая работа

Статистический анализ спектра акустического сигнала электромеханического устройства

Выполнил студент 212 группы Будакян Я.С.

Научный руководитель к.т.н. доц. Грачев Е. А.

Содержание

1	Введение	2
2	Постановка задачи	2
3	Алгоритм сегментации на основе метода динамического программирования	3
4	Алгоритм CUSUM	5
5	Результаты	7
	5.1 Модельный сигнал	7
	5.2 Сигнал с вентилятора	9
6	Выводы	11
Л	итература	12

1 Введение

Различные акустические сигналы несут в себе огромное множество разнообразной информации. Задачи анализа акустических сигналов возникают не только при проведении большого количества разных физических экспериментов, но и в сугубо прикладных целях.

Одной из таких задач является задача о разладке (или, как обобщение, "переключения состояний" — сегментации) сигнала. Например, мы снимаем некоторый сигнал с какого-либо объекта. В какой-то момент с объектом что-то происходит, и свойства сигнала некоторым образом меняются. Задача состоит в том, чтобы автоматически отслеживать такие моменты, и принимать в зависимости от этого какие-либо решения. Практические приложения этой задачи довольно разнообразны. Они возникают в различных областях:

- Обнаружение неисправностей и диагностика
- Техническое обслуживание промышленности
- Безопасность сложных систем(самолетов, лодок, ракет, АЭС, и т.д.)
- Контроль качества
- Прогнозирование природных катастроф(землетрясения, цунами, и т.д.)
- Мониторинг в биомедицине

В качестве математической модели таких акустических сигналов будет использоваться авторегрессионный процесс. Такой подход часто применяется при моделировании различных случайных сигналов, от человеческой речи и шума от устройств [1, 2] до биологических сигналов [3].

2 Постановка задачи

Дан авторегрессионный процесс

$$x_t = \phi_0(h_t) + \sum_{i=1}^n \phi_i(h_t) x_{t-i} + B(h_t) \xi_t$$

где ξ_t - стандартный белый шум.

Параметры процесса могут скачкообразно изменяться, принимая в каждый момент времени $t \geq 0$ один из m известных наборов значений

 $\phi_0(h_t), \ldots, \phi_n(h_t), B(h_t), ; h_t \in \{1, \ldots, m\}$. Также задана матрица Q вероятностей переходов между наборами параметров(классами):

$$P(h_t|h_{t-1}) = q(h_{t-1}, h_t)$$

Под задачей сегментации понимается задача отношения каждого отсчета процесса x_t некоторому классу h_t , т.е. восстановление ненаблюдаемой последовательности "переключений" состояний $h_i \longrightarrow h_i$.

Одним из алгоритмов, решающим задачу сегментации является алгоритм на основе метода динамического программирования [4].

3 Алгоритм сегментации на основе метода динамического программирования

При данном подходе оптимальной считается сегментация H_1^N (набор чисел h_t , соответствующих отсчетам x_t), доставляющая минимум критерию

$$J(H_0^N) = d_0(h_0) + \sum_{t=1}^N \beta_t(h_{t-1}, h_t)$$
(1)

$$\beta_t(h_{t-1}, h_t) = \frac{1}{2B(h_t)} [x_t - \phi_0(h_t) - \sum_{i=1}^n \phi_i(h_t) x_{t-i}]^2 - \ln q(h_{t-1}, h_t)$$

В критерии (1) величина $\beta_t(h_{t-1},h_t)$ имеет смысл несогласованности формы кривой в точке t при данной предыстории X_{t-n}^{t-1} с предполагаемыми значениями параметров авторегрессии с учетом априорной предпочтительности данных значений, учитываемой членом $\ln q(h_{t-1},h_t)$; $d_0(h_0)$ - член, выражающий априорную нежелательность отнесения нулевого отсчета классу $h_0=1,\ldots,m$. Определим последовательность векторов

$$d_t(h_t) = \min_{H_0^{t-1}} [d_0(h_0) + \sum_{s=1}^{t-1} \beta_s(h_{s-1}, h_s) + \beta_t(h_{t_1}, h_t)], \ h_t = 1, \dots, m; \ t = 1, \dots, N$$

Компоненты этого вектора показывают, какое минимальное значение критерия (1) можно получить за счет различной классификации отсчетов до (t-1)-го включительно, если принять класс последнего отсчета равным h_t . Поскольку минимальная компонента вектора $d_N(h_N)$ совпадает с минимальным значением критерия (1), то

$$\hat{h}_N = \arg\min[d_N(h_N)] \tag{2}$$

является последним элементом оптимальной сегментации \hat{H}_0^N . Векторы $d_t(h_t)$ вычисляются рекуррентно по правилу

$$d_t(h_t) = \min[d_{t-1}(h_{t-1}) + \beta_t(h_{t-1}, h_t)],$$

начиная с начальных значений $d_0(h_0) = -\ln p(h_0)$. При этом в процессе вычисления векторов $d_t(h_t)$ величины

$$k_t(h_t) = \arg\min[d_{t-1}(h_{t-1}) + \beta_t(h_{t-1}, h_t)]$$

записываются в матрицу $K_1^N[m\times N]$. Эта матрица позволяет найти оптимальную последовательность \hat{H}_0^{N-1} по рекуррентной формуле

$$\hat{h}_{s-1} = k_s(\hat{h}_s), \ s = N, N-1, \dots, 1$$
 (3)

с начальным условием (2).

Описанный алгоритм позволяет найти оптимальную сегментацию, но он работает в "оффлайн" режиме, т.е. анализ проводится уже после того, как весь сигнал получен. Однако, этот подход можно обобщить и на случай "онлайн" сегментации, т.е. анализа сразу во время считывания сигнала.

Возьмем от построенной матрицы K_1^N часть K_1^t для некоторого момента времени t. Она позволяет найти оптимальную сегментацию \tilde{H}_0^{t-1} , при начальном условии

$$\tilde{h}_t^i = i, \ i = 1, \dots, m. \tag{4}$$

Можно ожидать, что при достаточно больших t найдется момент времени $u_t < t$ такой, что на интервале $0 \le s \le u_t$ выполнится условие

$$\tilde{h}_s^1 = \dots = \tilde{h}_s^m. \tag{5}$$

Выполнение этого условия означает, что совпадут все построенные сегментации \tilde{H}_0^{ut} при различных выборах \tilde{h}_t . В таком случае, этот кусок сегментации будет содержаться в оптимальной сегментации всего сигнала как составная часть и может быть построен, не дожидаясь последнего отсчета.

Назовем u_t правой границей принятия решения — это номер последнего отсчета сигнала, для которого уже принято решение о его принадлежности некоторому классу. Для нулевого отсчета полагается $u_0 = -1$. Также, назовем особыми моментами времени t^* моменты, в которые меняется граница принятия решения, первый особый момент $t^* = 0$.

Таким образом, работа алгоритма будет заключаться в проверке, является ли текущий момент времени особым, на каждом шаге вычислений, и, в случае особого момента, построении куска оптимальной сегментации.

Пусть t^* последний зафиксированный особый момент времени, с соответствующей границей u_{t^*} . Начиная с $t=t^*+1$ на каждом шаге вычисляется новый столбец $k_t(i),\ i=1,\ldots,m$ по правилу

$$k_t(i) = \arg\min[d_{t-1}(j) + \beta_t(j, i)],$$

добавляемый к матрице $K_{u_t+2}^{t-1}$. Для обнаружения особого момента рекуррентно пересчитывается вектор $g_t(i), i=1,\ldots,m$ по правилу

$$g_t(i) = g_{t-1}[k_t(i)]$$

с начальным условием

$$g_{t^*}(i) = \tilde{h}^i_{u_{t^*}+1}$$

Компоненты этого вектора показывают, к какому классу будет отнесен отсчет с номером u_t+1 , если зафиксировать принадлежность отсчета $\tilde{h}_t=i$.

Пока не выполняется равенство

$$q_t(1) = \dots = q_t(m) \tag{6}$$

особый момент еще не наступил, положение границы принятия решения не изменяется и происходит накопление матрицы K. Момент выполнения условия (6) регистрируется как очередной особый момент t^* . Для того, чтобы найти новую границу принятия решения u_{t^*} нужно, приняв в качестве начального условия вектор (4), вычислять в обратном порядке $s=t-1,t-2,\ldots$ векторы $\tilde{h}^i_s,\ i=1,\ldots,m,$ пока на некотором шаге s^* выполнится условие (5). Тогда $u_{t^*}=s^*,$ и можно строить отрезок оптимальной сегментации между предыдущим и новыми положениями границы принятия решений по рекуррентному правилу (3). Фрагмент матрицы $K^{u_{t^*}+1}_{u_{t^*}-1+2}$ более не нужен и может быть сброшен.

4 Алгоритм CUSUM

Другой алгоритм для решения той же задачи — это алгоритм на основе статистики кумулятивных сумм.

Рассмотрим последовательность распределений случайных величин x_t

при условии фиксированной предыстории x_{t-1},\ldots,x_1 . Поскольку распределение до и после момента переключения отличается только коэффициентами авторегрессии $\phi_k(h_t)$, то условное распределение величин x_t $p(x_t|x_{t-1},\ldots,x_1)$ до и после момента переключения отличается математическим ожиданием; отличием дисперсии шума можно пренебречь. Будем также считать, что распределение x_t является нормальным. Зафиксируем некоторый переход $h_i \longrightarrow h_j$ и вычислим плотности распределения $p_i(x_t|x_{t-1},\ldots,x_1)$ и $p_j(x_t|x_{t-1},\ldots,x_1)$ в каждой точке исходного ряда x_t . Найдем логарифм отношения правдоподобия

$$L_t = \ln \frac{p_j(x_t|x_{t-1},\dots,x_1)}{p_i(x_t|x_{t-1},\dots,x_1)}$$

Если $L_t > 1$, то вероятность, что отсчет x_t был получен из распределения, соответствующего классу h_j , выше, чем обратного. Найдем L_t в явном виде:

$$p_i(x_t|x_{t-1},\dots,x_1) = \frac{1}{\sqrt{2\pi\sigma^2(h_i)}} \exp\left\{-\frac{1}{2\sigma^2(h_i)}(x_t - \phi_0(h_i) - \sum_{k=1}^n \phi_k(h_i)x_{t-k})^2\right\},\,$$

$$p_j(x_t|x_{t-1},\dots,x_1) = \frac{1}{\sqrt{2\pi\sigma^2(h_j)}} \exp\left\{-\frac{1}{2\sigma^2(h_j)}(x_t - \phi_0(h_j) - \sum_{k=1}^n \phi_k(h_j)x_{t-k})^2\right\}$$

Поскольку мы считаем, что дисперсия при переключении не меняется, т.е. $\sigma^2(h_i) = \sigma^2(h_i)$, то:

$$L_{t} = \ln \frac{p_{j}(x_{t}|x_{t-1}, \dots, x_{1})}{p_{i}(x_{t}|x_{t-1}, \dots, x_{1})} =$$

$$= \ln \frac{\frac{1}{\sqrt{2\pi\sigma^{2}(h_{j})}} \exp\left\{-\frac{1}{2\sigma^{2}(h_{j})}(x_{t} - \phi_{0}(h_{j}) - \sum_{k=1}^{n} \phi_{k}(h_{j})x_{t-k})^{2}\right\}}{\frac{1}{\sqrt{2\pi\sigma^{2}(h_{i})}} \exp\left\{-\frac{1}{2\sigma^{2}(h_{i})}(x_{t} - \phi_{0}(h_{i}) - \sum_{k=1}^{n} \phi_{k}(h_{i})x_{t-k})^{2}\right\}} =$$

$$= \ln \frac{\exp\left\{-(x_{t} - \phi_{0}(h_{j}) - \sum_{k=1}^{n} \phi_{k}(h_{j})x_{t-k})^{2}\right\}}{\exp\left\{-(x_{t} - \phi_{0}(h_{i}) - \sum_{k=1}^{n} \phi_{k}(h_{i})x_{t-k})^{2}\right\}} =$$

$$= (x_{t} - \phi_{0}(h_{i}) - \sum_{k=1}^{n} \phi_{k}(h_{i})x_{t-k})^{2} - (x_{t} - \phi_{0}(h_{j}) - \sum_{k=1}^{n} \phi_{k}(h_{j})x_{t-k})^{2}$$

Кумулятивные суммы рассчитываются с помощью рекуррентных соотношений:

$$\begin{cases} z_1 = 0, \\ z_t = \max(0, z_{t-1} + L_t), \ t = 2, 3, \dots \end{cases}$$

Теперь необходимо задать некоторый порог T_{ij} . Если на некотором шаге вычислений t значение z_t превысило T_{ij} , то считается, что произошло переключение $h_i \longrightarrow h_j$.

Таким образом, работа алгоритма представляет собой вычисление m(m-1) кумулятивных сумм до обнаружения первого момента переключения и m-1 на каждом последующем шаге (так как переключения происходят последовательно).

5 Результаты

Оба описанных выше алгоритма были реализованы в программном коде на языке Python. Было проведено экспериментальное исследование алгоритмов на модельном сигнале и на реальных данных с электромеханического устройства - вентилятора.

5.1 Модельный сигнал

Ниже приведены графики(1, 2, 3, 4), на которых изображены сегментации модельного сигнала, построенные обеими программами, наложенные на оригинальную сегментацию.

Рис. 1: Сигнал 1, t = 1000, алгоритм[4]

Было проведено исследование качества обоих алгоритмов. В качестве меры точности алгоритма было взято среднее время совпадения постро-

Рис. 2: Сигнал 1, t = 1000, алгоритм CUSUM

Рис. 3: Сигнал 2, t = 2000, алгоритм[4]

енной сегментации с оригинальной, усредненное по всем запускам:

$$Q_{A} = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{1}{T} \sum_{t=1}^{T} \delta_{i}(h_{t}^{A}, h_{t}^{0}) \right],$$

где

$$\delta_i(h_t^A, h_t^0) = \begin{cases} 0, & \text{если } h_t^A \neq h_t^0 \\ 1, & \text{если } h_t^A = h_t^0 \end{cases}$$

в i-том запуске, а h_t^A и h_t^0 есть классификации отсчета x_t по версии алгоритма A и истинное значение соответственно.

Для экспериментов использовался генератор модельного сигнала с n=2, m=5. Параметры модельного сигнала указаны в таблице 1.

Рис. 4: Сигнал 2, t = 2000, алгоритм CUSUM

Таблица 1: Параметры модельного сигнала

h	ϕ_0	ϕ_0 ϕ_1 ϕ_2						
0	0	1.36	-0.49	1				
1	0	1.02	-0.40	1				
2	0	0.82	-0.49	1				
3	0	0	-0.49	1				
4	0	-0.82	-0.49	1				
$q_{ii} = 0.99$								
$q_{ij} = 0.0025, i \neq j$								

Усреднение проводилось по N=20000 запусков. Были получены следующие результаты:

$$t = 1000, Q_B = 0.86795, Q_{CUSUM} = 0.76240$$

$$t = 2000, Q_B = 0.86408, Q_{CUSUM} = 0.75599$$

$$t = 3000, \ Q_B = 0.86235, \ Q_{CUSUM} = 0.75323$$

5.2 Сигнал с вентилятора

Были произведены записи шума вентилятора в нормальном режиме работы и с разладкой - в работающий вентилятор засовывалась бумажка. Формат записи - 20 секунд нормального режима, 20 секунд - разладка, последние 20 секунд - опять нормальный режим. Частота дискретизации записи - 44100 Гц. Всего было сделано 3 записи по 1 минуте. После

было составлено 3 обрезанных до 3-х секунд сигналов для анализа (по одной вырезанной секунде из каждого 20-секундного отрезка). Общее количество отсчетов в каждом сигнале составило $3c \cdot 44100\Gamma_{\rm H} = 132300$.

Один из сигналов был использован для подбора параметров для алгоритмов. С помощью МНК были определены коэффициенты авторегрессии с глубиной модели P=10. На рисунке 5 показаны зависимости коэффициентов авторегрессии для этого сигнала а) до разладки, б) во время разладки от количества отсчетов, анализируемых МНК. Оценки

Рис. 5: Значения коэффициентов авторегрессии до и во время разладки параметров авторегрессий приведены в таблице 2.

Таблица 2: Оценки коэффициентов авторегрессий, полученные МНК

h	ϕ_0	ϕ_1	ϕ_2	ϕ_3	ϕ_4	ϕ_5	ϕ_6	ϕ_7	ϕ_8	ϕ_9	ϕ_{10}
0	0	0.78	0	0.23	-0.19	0.11	-0.17	0.06	-0.1	0.1	0
1	0	1.58	-1.94	1.88	-1.53	1.16	-0.93	0.58	-0.47	0.14	-0.11

В таблице 2 h_0 соответствует нормальной работе вентилятора, а h_1 - разладке. Подобранные параметры для алгоритма[4] и CUSUM составили $B(h_i)=10^5,\ q_{ii}=0.99999,\ T_{ij}=4\cdot 10^6.$ Полученные обоими алгоритмами сегментации изображены на рисунке 6(вариант а) соответствует алгоритму[4], б) - CUSUM)

Потом, не изменяя найденных параметров, алгоритмы были применены к другим двум оставшимся сигналам. Результаты изображены на графиках 7 и 8.

Рис. 6: Сегментация первого сигнала с вентилятора обоими алгоритмами

Рис. 7: Сегментация второго сигнала с вентилятора обоими алгоритмами

Рис. 8: Сегментация сигнала 3 с вентилятора обоими алгоритмами

6 Выводы

Результаты, полученные из экспериментов с модельным сигналом показывают, что алгоритм[4] имеет в среднем на 10~% большую точность. Это логично, поскольку он учитывает больше данных о входном сигнале, чем CUSUM(а именно вероятности переходов, заданные в матрице Q). Алгоритм CUSUM является более легким в реализации и работает

быстрее, однако его точность сильно зависит от выбора пороговых значений T_{ij} для каждой пары переходов, что само по себе является довольно неочевидной задачей.

Эксперименты на реальном сигнале с электромеханического устройства (вентилятора) показали, что рассматриваемый подход применим к реальным сигналам, однако требует некоторой доработки.

Список литературы

- [1] Chukiet Sodsri, "Time-varying autoregressive modelling for nonstationary acoustic signal and its frequency analysis", 2003
- [2] Kie B. Eom, "Analysis of Acoustic Signatures from Moving Vehicles Using Time-Varying Autoregressive Models", Multidimensional Systems and Signal Processing 10, pp. 357-378, 1999
- [3] Akay, Y.M., "Noninvasive acoustical detection of coronary artery disease: a comparative study of signal processing methods", Biomedical Engineering 40, pp. 571-578, 1993
- [4] Николай Буробин, Вадим Моттль, Илья Мучник, "Алгоритм определения моментов многократного изменения свойств случайного процесса на основе метода динамического программирования", Статистические проблемы управления 65, стр. 49-57, 1984.
- [5] Michèle Basseville, Igor V. Nikiforov, "Detection of Abrupt Changes: Theory and Application", pp. 35-43, 1998