Covity Kadiation $\lambda = \frac{2}{3}L$ $\lambda = L$ Light is a combination of these standing weres with different complitudes -> different energies state of light is given by list of amplitudes (1,3,2.4, 9,6, -...) these #s are degrees of freedom (d.o.f.) 3 particles in a gas a d.o.f. is a coordinate required to specify state of the $\vec{\chi}_1$ $\vec{\chi}_2$ $\vec{\chi}_3$ $\vec{V}_1 \vec{V}_2 \vec{V}_3$ systemin 20 (x, y, x2, y2, x3, y3, Vx1, Vy1, Vx2, Vy2, Vx3, Vy3) Equiportition Theorem In a system in equilibrium, every degree of freedom which contributes to the total energy quadratically $k_{\rm m} = 1.38 \times 10^{-23}$ carries an average energy of $\frac{1}{2} k_{\rm m} T$ Boltzmannig constant Ka=1.38×10 3/K

F= = mv, 2 + = mv, 2 + = mv, 2
$= \frac{1}{2} m \left(V_{1x}^{2} + V_{1y}^{2} \right) + \frac{1}{2} m \left(V_{2x}^{2} + V_{2y}^{2} \right) + \frac{1}{2} m \left(V_{3x}^{2} + V_{2y}^{2} \right)$
average $\left(\frac{1}{2} \text{mV}_{ix}^{2}\right) = \frac{1}{2} k_{B}T = \left(\frac{1}{2} \text{mV}_{3y}^{2}\right)$
total E = = kT x Hof d.o.f.
Black body again Each standing ware mode
is a diof.
Light reaches equilibrium,
total energy = \$ KT × 00
= 00! Uh oh-
Ultraviolet catastraphe W/c too many low-l, high-f modes,
Max Planck in 1900
suppose energy in each mode can't take only valve, but
only an integer multiple of hf f: frequency of mode hi constant
Eg = nhf n=0,1,2,
Each mode could contain large amounts of energy
but high Suguency modes can only increase
in emergy in large chunks hf.
Horder for evergy to flow low f - shiph f
than vice versa.

energy per frequency transport of energy stored in 9 ting longe of Spectrum Classical de - KT × 8TTV p2 # of waves with frequency f $U = \int \frac{dV}{df} df = 0$ du ehf/kt-1 x 8HV 2. perfect fit h=6.636×10 343/ Planck's constant

To kick an electron free requires a certain minimum amount of energy ϕ : work function surplus energy ques into giving e kinetic energy,

Studied how rate of electrons depended on light

- · Weak light at 500nm ejects electrons from wholever with no time lag
- · stronger light at 600 nm no electrons

Wave Model:

- energy proportional to intensity, not 2 on f
 high intensity of light of any ador should
 kick out electrons
 low intensity light will kick out e w/ a
 time lag as energy builds up
- Einstein:

Light of frequency f is packaged in chunks (quanta) of energy hf, (particles!)

If one particle hits an electron

and if hf > \$\phi\$
then electron is kindled finee
regardless of intensity.

Don't have multiple particles hitting some electron (or very rare)

photons

For KEmax = hf - p