This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(30) Priority Data:

09/170,496

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: (11) International Publication Number: **WO 00/22129** C12N 15/12, C07K 14/72, G01N 33/50, A1 33/566 (43) International Publication Date: 20 April 2000 (20.04.00)

(21) International Application Number: (74) Agents: MILLER, Suzanne, E. et al.: Woodcock Washburn PCT/US99/23938 Kurtz Mackiewicz & Norris LLP, 46th floor, One Liberty (22) International Filing Date: 12 October 1999 (12.10.99) Place, Philadelphia, PA 19103 (US).

13 October 1998 (13.10.98)

ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, (63) Related by Continuation (CON) or Continuation-in-Part MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, (CIP) to Earlier Application SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, 09/170,496 (CIP)

US

US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, Filed on 13 October 1998 (13.10.98) LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,

(71) Applicant (for all designated States except US): ARENA MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, PHARMACEUTICALS, INC. [US/US]; 6166 Nancy Ridge GA, GN, GW, ML, MR, NE, SN, TD, TG).

Drive, San Diego, CA 92121 (US).

(72) Inventors; and (75) Inventors/Applicants (for US only): BEHAN, Dominic, P. [GB/US]; 11472 Roxboro Court, San Diego, CA 92131

(US). CHALMERS, Derek, T. [GB/US]; 347 Longden Lane, Solana Beach, CA 92075 (US). LIAW, Chen, W. [US/US]; 7668 Salix Place, San Diego, CA 92129 (US).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG.

BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,

(54) Title: NON-ENDOGENOUS, CONSTITUTIVELY ACTIVATED HUMAN G PROTEIN-COUPLED RECEPTORS

(57) Abstract

Disclosed herein are constitutively activated, non-endogenous versions of endogenous human G protein-coupled receptors comprising (a) the following amino acid sequence region (C-terminus to N-terminus orientation) and/or (b) the following nucleic acid sequence region (3' to 5' orientation) transversing the transmembrane-6 (TM6) and intracellular loop-3 (IC3) regions of the GPCR: (a) P¹ AA₁₅ X and/or (b) Pcodon (AA-codon)₁₅ X_{codon}, respectively. In a most preferred embodiment, P¹ and Pcodon are endogenous proline and an endogenous nucleic acid encoding region encoding proline, respectively, located within TM6 of the non-endogenous GPCR; AA15 and (AA-codon)15 are 15 endogenous amino acid residues and 15 codons encoding endogenous amino acid residues, respectively; and X and X_{codon} are non-endogenous lysine and a non-endogenous nucleic acid encoding region encoding lysine, respectively, located within IC3 of the non-endogenous GPCR. Because it is most preferred that the non-endogenous human GPCRs which incorporate these mutations are incorporated into mammalian cells and utilized for the screening of the candidate compounds, the non-endogenous human GPCR incorporating the mutation need not be purified and isolated per se (i.e., these are incorporated within the cellular membrane of a mammalian cell), although such purified and isolated non-endogenous human GPCRs are well within the purview of this disclosure.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Santa .	• •			•
AM	Amenia	ES FI	Spain ·	LS	Lesotho	SI	Slovenia
AT	Austria	FR FR	Finland	LT	Lithuania	SK	Słovakia
AU	Australia		France	LU	Luxembourg	SN	Senegal
AZ		GA	Gabon	LV	Latvia	SZ	Swaziland
BA	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	31	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	uz	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KC	Kyrgyzstan	NO	Norway	ZW	Tugosiavia Zimbahwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	LW	Lundadwe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
C7.	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE			
EE	Estonia	LR	Liberia	SG SG	Sweden		
		LIK	LAUCHA	SG	Singapore		

NON-ENDOGENOUS, CONSTITUTIVELY ACTIVATED HUMAN G PROTEIN-COUPLED RECEPTORS

The benefits of commonly owned U.S. Serial Number 09/170,496, filed October 13, 1998, U.S. Serial Number 08/839, 449 filed April 14, 1997 (now abandoned),

5 U.S. Serial Number 09/060,188, filed April 14, 1998; U.S. Provisional Number 60/090,783, filed June 26, 1998; and U.S. Provisional Number 60/095,677, filed on August 7, 1998, are hereby claimed. Each of the foregoing applications are incorporated by reference herein in their entirety.

FIELD OF THE INVENTION

The invention disclosed in this patent document relates to transmembrane receptors, and more particularly to human G protein-coupled receptors (GPCRs) which have been altered such that altered GPCRs are constitutively activated. Most preferably, the altered human GPCRs are used for the screening of therapeutic compounds.

-2-

BACKGROUND OF THE INVENTION

Although a number of receptor classes exist in humans, by far the most abundant and therapeutically relevant is represented by the G protein-coupled receptor (GPCR or GPCRs) class. It is estimated that there are some 100,000 genes within the human genome, and of these, approximately 2% or 2,000 genes, are estimated to code for GPCRs. Of these, there are approximately 100 GPCRs for which the endogenous ligand that binds to the GPCR has been identified. Because of the significant time-lag that exists between the discovery of an endogenous GPCR and its endogenous ligand, it can be presumed that the remaining 1,900 GPCRs will be identified and characterized long before the endogenous ligands for these receptors are identified.

Indeed, the rapidity by which the Human Genome Project is sequencing the 100,000 human genes indicates that the remaining human GPCRs will be fully sequenced within the next few years. Nevertheless, and despite the efforts to sequence the human genome, it is still very unclear as to how scientists will be able to rapidly, effectively and efficiently exploit this information to improve and enhance the human condition. The present invention is geared towards this important objective.

Receptors, including GPCRs, for which the endogenous ligand has been identified are referred to as "known" receptors, while receptors for which the endogenous ligand has not been identified are referred to as "orphan" receptors. This distinction is not merely semantic, particularly in the case of GPCRs. GPCRs represent an important area for the development of pharmaceutical products: from approximately 20 of the 100 known GPCRs, 60% of all prescription pharmaceuticals have been developed. Thus, the orphan GPCRs are to the pharmaceutical industry what gold was to California in the late 19th century – an opportunity to drive growth, expansion, enhancement and development. A serious drawback exists, however,

- 3 -

5

with orphan receptors relative to the discovery of novel therapeutics. This is because the traditional approach to the discovery and development of pharmaceuticals has required access to both the receptor and its endogenous ligand. Thus, heretofore, orphan GPCRs have presented the art with a tantalizing and undeveloped resource for the discovery of pharmaceuticals.

Under the traditional approach to the discovery of potential therapeutics, it is generally the case that the receptor is first identified. Before drug discovery efforts can be initiated, elaborate, time consuming and expensive procedures are typically put into place in order to identify, isolate and generate the receptor's endogenous ligand - this process can require from between 3 and ten years per receptor, at a cost of about \$5million (U.S.) per receptor. These time and financial 10 resources must be expended before the traditional approach to drug discovery can commence. This is because traditional drug discovery techniques rely upon so-called "competitive binding assays" whereby putative therapeutic agents are "screened" against the receptor in an effort to discover compounds that either block the endogenous ligand from binding to the receptor ("antagonists"), or enhance or mimic the effects of the ligand binding to the receptor ("agonists"). 15 The overall objective is to identify compounds that prevent cellular activation when the ligand binds to the receptor (the antagonists), or that enhance or increase cellular activity that would otherwise occur if the ligand was properly binding with the receptor (the agonists). Because the endogenous ligands for orphan GPCRs are by definition not identified, the ability to discover novel and unique therapeutics to these receptors using traditional drug discovery techniques is not 20 possible. The present invention, as will be set forth in greater detail below, overcomes these and other severe limitations created by such traditional drug discovery techniques.

GPCRs share a common structural motif. All these receptors have seven sequences of between 22 to 24 hydrophobic amino acids that form seven alpha helices, each of which spans the

-4-

membrane (each span is identified by number, *i.e.*, transmembrane-1 (TM-1), transmebrane-2 (TM-2), etc.). The transmembrane helices are joined by strands of amino acids between transmembrane-2 and transmembrane-3, transmembrane-4 and transmembrane-5, and transmembrane-6 and transmembrane-7 on the exterior, or "extracellular" side, of the cell membrane (these are referred to as "extracellular" regions 1, 2 and 3 (EC-1, EC-2 and EC-3), respectively). The transmembrane helices are also joined by strands of amino acids between transmembrane-1 and transmembrane-2, transmembrane-3 and transmembrane-4, and transmembrane-5 and transmembrane-6 on the interior, or "intracellular" side, of the cell membrane (these are referred to as "intracellular" regions 1, 2 and 3 (IC-1, IC-2 and IC-3), respectively). The "carboxy" ("C") terminus of the receptor lies in the intracellular space within the cell, and the "amino" ("N") terminus of the receptor lies in the extracellular space outside of the cell. The general structure of G protein-coupled receptors is depicted in Figure 1.

Generally, when an endogenous ligand binds with the receptor (often referred to as "activation" of the receptor), there is a change in the conformation of the intracellular region that allows for coupling between the intracellular region and an intracellular "G-protein." Although other G proteins exist, currently, Gq, Gs, Gi, and Go are G proteins that have been identified. Endogenous ligand-activated GPCR coupling with the G-protein begins a signaling cascade process (referred to as "signal transduction"). Under normal conditions, signal transduction ultimately results in cellular activation or cellular inhibition. It is thought that the IC-3 loop as well as the carboxy terminus of the receptor interact with the G protein. A principal focus of this invention is directed to the transmembrane-6 (TM6) region and the intracellular-3 (IC3) region of the GPCR.

Under physiological conditions, GPCRs exist in the cell membrane in equilibrium between

5

10

two different conformations: an "inactive" state and an "active" state. As shown schematically in Figure 2, a receptor in an inactive state is unable to link to the intracellular signaling transduction pathway to produce a biological response. Changing the receptor conformation to the active state allows linkage to the transduction pathway (via the G-protein) and produces a biological response.

A receptor may be stabilized in an active state by an endogenous ligand or a compound such as a drug. Recent discoveries, including but not exclusively limited to modifications to the amino acid sequence of the receptor, provide means other than endogenous ligands or drugs to promote and stabilize the receptor in the active state conformation. These means effectively stabilize the receptor in an active state by simulating the effect of an endogenous ligand binding to the receptor. Stabilization by such ligand-independent means is termed "constitutive receptor activation."

As noted above, the use of an orphan receptor for screening purposes has not been possible. This is because the traditional "dogma" regarding screening of compounds mandates that the ligand for the receptor be known. By definition, then, this approach has no applicability with respect to orphan receptors. Thus, by adhering to this dogmatic approach to the discovery of therapeutics, the art, in essence, has taught and has been taught to forsake the use of orphan receptors unless and until the endogenous ligand for the receptor is discovered. Given that there are an estimated 2,000 G protein coupled receptors, the majority of which are orphan receptors, such dogma castigates a creative, unique and distinct approach to the discovery of therapeutics.

Information regarding the nucleic acid and/or amino acid sequences of a variety of GPCRs is summarized below in Table A. Because an important focus of the invention disclosed herein is directed towards orphan GPCRs, many of the below-cited references are related to orphan GPCRs. However, this list is not intended to imply, nor is this list to be construed, legally or

otherwise, that the invention disclosed herein is only applicable to orphan GPCRs or the specific GPCRs listed below. Additionally, certain receptors that have been isolated are not the subject of publications per se; for example, reference is made to a G Protein-Coupled Receptor database on the "world-wide web" (neither the named inventors nor the assignee have any affiliation with this site) that lists GPCRs. Other GPCRs are the subject of patent applications owned by the present assignee and these are not listed below (including GPR3, GPR6 and GPR12; see U.S. Provisional Number 60/094879):

Table A

Receptor Name	Publication Reference
GPR1	23 Genomics 609 (1994)
GPR4	14 DNA and Cell Biology 25 (1995)
GPR5	14 DNA and Cell Biology 25 (1995)
GPR7	28 Genomics 84 (1995)
GPR8	28 Genomics 84 (1995)
GPR9	184 J. Exp. Med. 963 (1996)
GPR10	29 Genomics 335 (1995)
GPR15	32 Genomics 462 (1996)
GPR17	70 J Neurochem. 1357 (1998)
GPR18	42 Genomics 462 (1997)
GPR20	187 Gene 75 (1997)
GPR21	187 Gene 75 (1997)
GPR22	187 Gene 75 (1997)
GPR24	398 FEBS Lett. 253 (1996)
GPR30	45 Genomics 607 (1997)
GPR31	42 Genomics 519 (1997)
GPR32	50 Genomics 281 (1997)
GPR40	239 Biochem. Biophys.
	Res. Commun. 543 (1997)
GPR41	239 Biochem. Biophys.
	Res. Commun. 543 (1997)
GPR43	239 Biochem. Biophys.
	Res. Commun. 543 (1997)
APJ	136 Gene 355 (1993)
BLR1	22 Eur. J. Immunol. 2759 (1992)
CEPR	231 Biochem. Biophys.
	Res. Commun. 651 (1997)
EBI1	23 Genomics 643 (1994)
EBI2	67 J. Virol. 2209 (1993)
ETBR-LP2	424 FEBS Lett. 193 (1998)
GPCR-CNS	54 Brain Res. Mol. Brain Res. 152 (1998)
	45 Genomics 68 (1997)
GPR-NGA	394 FEBS Lett. 325 (1996)
Н9	386 FEBS Lett 219 (1996)

25 30

10

15

20

35

WO 00/22129

-7-

HBA954	1261 Biochim. Biophys. Acta 121 (1995)		
HG38	247 Biochem. Biophys.		
HM74	Res. Commun. 266 (1998)		
OGR1	5 Int. Immunol. 1239 (1993) 35 Genomics 397 (1996)		
V28	163 Gene 295 (1995)		

5

As will be set forth and disclosed in greater detail below, utilization of a mutational cassette to modify the endogenous sequence of a human GPCR leads to a constitutively activated version of the human GPCR. These non-endogenous, constitutively activated versions of human GPCRs can be utilized, *inter alia*, for the screening of candidate compounds to directly identify compounds of, e.g., therapeutic relevance.

SUMMARY OF THE INVENTION

Disclosed herein is a non-endogenous, human G protein-coupled receptor comprising

(a) as a most preferred amino acid sequence region (C-terminus to N-terminus orientation)

and/or (b) as a most preferred nucleic acid sequence region (3' to 5' orientation) transversing

the transmembrane-6 (TM6) and intracellular loop-3 (IC3) regions of the GPCR:

wherein:

20

- (1) P¹ is an amino acid residue located within the TM6 region of the GPCR, where P¹ is selected from the group consisting of (i) the endogenous GPCR's proline residue, and (ii) a non-endogenous amino acid residue other than proline;
- (2) AA₁₅ are 15 amino acids selected from the group consisting of

WO 00/22129

-8-

(a) the endogenous GPCR's amino acids (b) non-endogenous amino acid residues, and (c) a combination of the endogenous GPCR's amino acids and non-endogenous amino acids, excepting that none of the 15 endogenous amino acid residues that are positioned within the TM6 region of the GPCR is proline; and

PCT/US99/23938

(3) X is a non-endogenous amino acid residue located within the IC3 region of said GPCR, preferably selected from the group consisting of lysine, hisitidine and arginine, and most preferably lysine, excepting that when the endogenous amino acid at position X is lysine, then X is an amino acid other than lysine, preferably alanine;

and/or

5

10

(b) Pcodon (AA-codon) X Codon

(1)

15 wherein:

P^{codon} is a nucleic acid sequence within the TM6 region of the GPCR, where P^{codon} encodes an amino acid selected from the group consisting of (i) the endogenous GPCR's proline residue, and (ii) a non-endogenous amino acid residue other than proline;

20

(2) (AA-codon)₁₅ are 15 codons encoding 15 amino acids selected from the group consisting of (a) the endogenous GPCR's amino acids (b) non-endogenous amino acid residues and (c) a combination of the endogenous GPCR's amino acids and non-

-9-

5

10

20

endogenous amino acids, excepting that none of the 15 endogenous codons within the TM6 region of the GPCR encodes a proline amino acid residue; and

(3) X_{codon} is a nucleic acid encoding region residue located within the IC3 region of said GPCR, where X_{codon} encodes a non-endogenous amino acid, preferably selected from the group consisting of lysine, histidine and arginine, and most preferably lysine, excepting that when the endogenous encoding region at position X_{codon} encodes the amino acid lysine, then X_{codon} encodes an amino acid other than lysine, preferably alanine.

The terms endogenous and non-endogenous in reference to these sequence cassettes are relative to the endogenous GPCR. For example, once the endogenous proline residue is located within the TM6 region of a particular GPCR, and the 16th amino acid therefrom is identified for mutation to constitutively activate the receptor, it is also possible to mutate the endogenous proline residue (*i.e.*, once the marker is located and the 16th amino acid to be mutated is identified, one may mutate the marker itself), although it is most preferred that the proline residue not be mutated. Similarly, and while it is most preferred that AA₁₅ be maintained in their endogenous forms, these amino acids may also be mutated. The only amino acid that must be mutated in the non-endogenous version of the human GPCR is X *i.e.*, the endogenous amino acid that is 16 residues from P¹ cannot be maintained in its endogenous form and must be mutated, as further disclosed herein. Stated again, while it is preferred that in the non-endogenous version of the human GPCR, P¹ and AA₁₅ remain in their endogenous forms (*i.e.*, identical to their wild-type forms), once X is

identified and mutated, any and/or all of P1 and AA15 can be mutated. This applies to the nucleic

- 10 -

acid sequences as well. In those cases where the endogenous amino acid at position X is lysine, then in the non-endogenous version of such GPCR, X is an amino acid other than lysine, preferably alanine.

Accordingly, and as a hypothetical example, if the endogenous GPCR has the following endogenous amino acid sequence at the above-noted positions:

P-AACCTTGGRRRDDDE -O

then any of the following exemplary and hypothetical cassettes would fall within the scope of the disclosure (non-endogenous amino acids are set forth in bold):

P-AACCTTGGRRRDDDE -K

10

P-AACCTTHIGRRDDDE -K

P-ADEETTGGRRRDDDE -A

P-LLKFMSTWZLVAAPQ -K

A-LLKFMSTWZLVAAPO -K

It is also possible to add amino acid residues within AA₁₅, but such an approach is not particularly advanced. Indeed, in the most preferred embodiments, the only amino acid that differs in the non-endogenous version of the human GPCR as compared with the endogenous version of that GPCR is the amino acid in position X; mutation of this amino acid itself leads to constitutive activation of the receptor.

Thus, in particularly preferred embodiments, P¹ and P^{codon} are endogenous proline and an endogenous nucleic acid encoding region encoding proline, respectively; and X and X_{codon} are non-endogenous lysine or alanine and a non-endogenous nucleic acid encoding region encoding lysine or alanine, respectively, with lysine being most preferred. Because it is most preferred that the non-endogenous versions of the human GPCRs which incorporate these mutations are

incorporated into mammalian cells and utilized for the screening of candidate compounds, the non-endogenous human GPCR incorporating the mutation need not be purified and isolated *per se* (i.e., these are incorporated within the cellular membrane of a mammalian cell), although such purified and isolated non-endogenous human GPCRs are well within the purview of this disclosure. Genetargeted and transgenic non-human mammals (preferably rats and mice) incorporating the non-endogenous human GPCRs are also within the purview of this invention; in particular, genetargeted mammals are most preferred in that these animals will incorporate the non-endogenous versions of the human GPCRs in place of the non-human mammal's endogenous GPCR-encoding region (techniques for generating such non-human mammals to replace the non-human mammal's protein encoding region with a human encoding region are well known; see, for example, U.S. Patent No. 5,777,194.)

It has been discovered that these changes to an endogenous human GPCR render the GPCR constitutively active such that, as will be further disclosed herein, the non-endogenous, constitutively activated version of the human GPCR can be utilized for, *inter alia*, the direct screening of candidate compounds without the need for the endogenous ligand. Thus, methods for using these materials, and products identified by these methods are also within the purview of the following disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a generalized structure of a G protein-coupled receptor with the numbers

assigned to the transmembrane helixes, the intracellular loops, and the extracellular loops.

Figure 2 schematically shows the two states, active and inactive, for a typical G protein coupled receptor and the linkage of the active state to the second messenger transduction pathway.

Figure 3 is a sequence diagram of the preferred vector pCMV, including restriction enzymen site locations.

Figure 4 is a diagrammatic representation of the signal measured comparing pCMV, non-endogenous, constitutively active GPR30 inhibition of GPR6-mediated activation of CRE-Luc reporter with endogenous GPR30 inhibition of GPR6-mediated activation of CRE-Luc reporter.

Figure 5 is a diagrammatic representation of the signal measured comparing pCMV, non-endogenous, constitutively activated GPR17 inhibition of GPR3-mediated activation of CRE-Luc reporter with endogenous GPR17 inhibition of GPR3-mediated activation of CRE-Luc reporter.

Figure 6 provides diagrammatic results of the signal measured comparing control pCMV, endogenous APJ and non-endogenous APJ.

Figure 7 provides an illustration of IP_3 production from non-endogenous human 5-HT_{2A} receptor as compared to the endogenous version of this receptor.

Figure 8 are dot-blot format results for GPR1 (8A), GPR30 (8B) and APJ (8C).

DETAILED DESCRIPTION

The scientific literature that has evolved around receptors has adopted a number of terms to refer to ligands having various effects on receptors. For clarity and consistency, the following definitions will be used throughout this patent document. To the extent that these definitions conflict with other definitions for these terms, the following definitions shall control:

AGONISTS shall mean compounds that activate the intracellular response when they bind to the receptor, or enhance GTP binding to membranes.

- 13
AMINO ACID ABBREVIATIONS used herein are set below:

	ALANINE	ALA	A
	ARGININE	ARG	R
	ASPARAGINE	ASN	N
5	ASPARTIC ACID	ASP	D
	CYSTEINE	CYS	С
	GLUTAMIC ACID	GLU	E
	GLUTAMINE	GLN	Q
	GLYCINE	GLY	G
10	HISTIDINE	HIS	Н
	ISOLEUCINE .	ILE	Ι .
	LEUCINE	LEU	L
	LYSINE	LYS	K
	METHIONINE	MET	М
15	PHENYLALANINE	PHE	F
	PROLINE	PRO	P
	SERINE	SER	S
	THREONINE	THR	Т
	TRYPTOPHAN	TRP	w
20	TYROSINE	TYR	Y
	VALINE	VAL	V

25

PARTIAL AGONISTS shall mean compounds which activate the intracellular response when they bind to the receptor to a lesser degree/extent than do agonists, or enhance GTP binding to membranes to a lesser degree/extent than do agonists

ANTAGONIST shall mean compounds that competitively bind to the receptor at the same site as the agonists but which do not activate the intracellular response initiated by the active form of the receptor, and can thereby inhibit the intracellular responses by agonists or partial agonists. ANTAGONISTS do not diminish the baseline intracellular response in the absence of an agonist or partial agonist.

30 CANDIDATE COMPOUND shall mean a molecule (for example, and not limitation, a chemical compound) which is amenable to a screening technique. Preferably, the phrase

"candidate compound" does not include compounds which were publicly known to be compounds selected from the group consisting of inverse agonist, agonist or antagonist to a receptor, as previously determined by an indirect identification process ("indirectly identified compound"); more preferably, not including an indirectly identified compound which has previously been determined to have therapeutic efficacy in at least one mammal; and, most preferably, not including an indirectly identified compound which has previously been determined to have therapeutic utility in humans.

CODON shall mean a grouping of three nucleotides (or equivalents to nucleotides) which generally comprise a nucleoside (adenosine (A), guanosine (G), cytidine (C), uridine (U) and thymidine (T)) coupled to a phosphate group and which, when translated, encodes an amino acid.

10

15

COMPOUND EFFICACY shall mean a measurement of the ability of a compound to inhibit or stimulate receptor functionality, as opposed to receptor binding affinity. A preferred means of detecting compound efficacy is via measurement of, e.g., [35S]GTPγS binding, as further disclosed in the Example section of this patent document.

CONSTITUTIVELY ACTIVATED RECEPTOR shall mean a receptor subject to constitutive receptor activation. In accordance with the invention disclosed herein, a non-endogenous, human constitutively activated G protein-coupled receptor is one that has been mutated to include the amino acid cassette P¹AA₁₅X, as set forth in greater detail below.

in the active state by means other than binding of the receptor with its endogenous ligand or a chemical equivalent thereof. Preferably, a G protein-coupled receptor subjected to constitutive receptor activation in accordance with the invention disclosed herein evidences at least a 10% difference in response (increase or decrease, as the case may be) to the signal measured for

- 15 -

constitutive activation as compared with the endogenous form of that GPCR, more preferably, about a 25% difference in such comparative response, and most preferably about a 50% difference in such comparative response. When used for the purposes of directly identifying candidate compounds, it is most preferred that the signal difference be at least about 50% such that there is a sufficient difference between the endogenous signal and the non-endogenous signal to differentiate between selected candidate compounds. In most instances, the "difference" will be an increase in signal; however, with respect to Gs-coupled GPCRS, the "difference" measured is preferably a decrease, as will be set forth in greater detail below.

CONTACT or CONTACTING shall mean bringing at least two moieties together, whether in an in vitro system or an in vivo system.

DIRECTLY IDENTIFYING or DIRECTLY IDENTIFIED, in relationship to the phrase "candidate compound", shall mean the screening of a candidate compound against a constitutively activated G protein-coupled receptor, and assessing the compound efficacy of such compound. This phrase is, under no circumstances, to be interpreted or understood to be encompassed by or to encompass the phrase "indirectly identifying" or "indirectly identified."

15

ENDOGENOUS shall mean a material that is naturally produced by the genome of the species. ENDOGENOUS in reference to, for example and not limitation, GPCR, shall mean that which is naturally produced by a human, an insect, a plant, a bacterium, or a virus. By contrast, the term NON-ENDOGENOUS in this context shall mean that which is not naturally produced by the genome of a species. For example, and not limitation, a receptor which is not constitutively active in its endogenous form, but when mutated by using the cassettes disclosed herein and thereafter becomes constitutively active, is most preferably referred to herein as a "non-endogenous, constitutively activated receptor." Both terms can be utilized to describe both "in

vivo" and "in vitro" systems. For example, and not limitation, in a screening approach, the endogenous or non-endogenous receptor may be in reference to an in vitro screening system whereby the receptor is expressed on the cell-surface of a mammalian cell. As a further example and not limitation, where the genome of a mammal has been manipulated to include a non-endogenous constitutively activated receptor, screening of a candidate compound by means of an in vivo system is viable.

therein. In the case of a prokaryotic Host Cell, a Plasmid is typically replicated as an autonomous molecule as the Host Cell replicates (generally, the Plasmid is thereafter isolated for introduction into a eukaryotic Host Cell); in the case of a eukaryotic Host Cell, a Plasmid is integrated into the cellular DNA of the Host Cell such that when the eukaryotic Host Cell replicates, the Plasmid replicates. Preferably, for the purposes of the invention disclosed herein, the Host Cell is eukaryotic, more preferably, mammalian, and most preferably selected from the group consisting of 293, 293T and COS-7 cells.

INDIRECTLY IDENTIFYING or INDIRECTLY IDENTIFIED means the traditional approach to the drug discovery process involving identification of an endogenous ligand specific for an endogenous receptor, screening of candidate compounds against the receptor for determination of those which interfere and/or compete with the ligand-receptor interaction, and assessing the efficacy of the compound for affecting at least one second messenger pathway associated with the activated receptor.

15

INHIBIT or **INHIBITING**, in relationship to the term "response" shall mean that a response is decreased or prevented in the presence of a compound as opposed to in the absence of the compound.

INVERSE AGONISTS shall mean compounds which bind to either the endogenous form of the receptor or to the constitutively activated form of the receptor, and which inhibit the baseline intracellular response initiated by the active form of the receptor below the normal base level of activity which is observed in the absence of agonists or partial agonists, or decrease GTP binding to membranes. Preferably, the baseline intracellular response is inhibited in the presence of the inverse agonist by at least 30%, more preferably by at least 50%, and most preferably by at least 75%, as compared with the baseline response in the absence of the inverse agonist.

KNOWN RECEPTOR shall mean an endogenous receptor for which the endogenous ligand specific for that receptor has been identified.

LIGAND shall mean an endogenous, naturally occurring molecule specific for an endogenous, naturally occurring receptor.

amino acid sequence shall mean a specified change or changes to such endogenous sequences such that a mutated form of an endogenous, non-constitutively activated receptor evidences constitutive activation of the receptor. In terms of equivalents to specific sequences, a subsequent mutated form of a human receptor is considered to be equivalent to a first mutation of the human receptor if (a) the level of constitutive activation of the subsequent mutated form of the receptor is substantially the same as that evidenced by the first mutation of the receptor, and (b) the percent sequence (amino acid and/or nucleic acid) homology between the subsequent mutated form of the receptor and the first mutation of the receptor is at least about 80%, more preferably at least about 90% and most preferably at least 95%. Ideally, and owing to the fact that the most preferred cassettes disclosed herein for achieving constitutive activation includes a single amino acid and/or codon change between the endogenous and the non-endogenous forms of the GPCR (i.e. X or

X_{coden}), the percent sequence homology should be at least 98%.

15

20

ORPHAN RECEPTOR shall mean an endogenous receptor for which the endogenous ligand specific for that receptor has not been identified or is not known.

PHARMACEUTICAL COMPOSITION shall mean a composition comprising at least one active ingredient, whereby the composition is amenable to investigation for a specified, efficacious outcome in a mammal (for example, and not limitation, a human). Those of ordinary skill in the art will understand and appreciate the techniques appropriate for determining whether an active ingredient has a desired efficacious outcome based upon the needs of the artisan.

PLASMID shall mean the combination of a Vector and cDNA. Generally, a Plasmid is introduced into a Host Cell for the purpose of replication and/or expression of the cDNA as a protein.

STIMULATE or STIMULATING, in relationship to the term "response" shall mean that a response is increased in the presence of a compound as opposed to in the absence of the compound.

TRANSVERSE or TRANSVERSING, in reference to either a defined nucleic acid sequence or a defined amino acid sequence, shall mean that the sequence is located within at least two different and defined regions. For example, in an amino acid sequence that is 10 amino acid moieties in length, where 3 of the 10 moieties are in the TM6 region of a GPCR and the remaining 7 moieties are in the IC3 region of the GPCR, the 10 amino acid moiety can be described as transversing the TM6 and IC3 regions of the GPCR.

VECTOR in reference to cDNA shall mean a circular DNA capable of incorporating at least one cDNA and capable of incorporation into a Host Cell.

The order of the following sections is set forth for presentational efficiency and is not

- 19 -

intended, nor should be construed, as a limitation on the disclosure or the claims to follow.

A. Introduction

The traditional study of receptors has always proceeded from the a priori assumption (historically based) that the endogenous ligand must first be identified before discovery could proceed to find antagonists and other molecules that could affect the receptor. Even in cases where an antagonist might have been known first, the search immediately extended to looking for the endogenous ligand. This mode of thinking has persisted in receptor research even after the discovery of constitutively activated receptors. What has not been heretofore recognized is that it is the active state of the receptor that is most useful for discovering agonists, partial agonists, and inverse agonists of the receptor. For those diseases which result from an overly active receptor or an under-active receptor, what is desired in a therapeutic drug is a compound which acts to diminish the active state of a receptor or enhance the activity of the receptor, respectively, not necessarily a drug which is an antagonist to the endogenous ligand. This is because a compound that reduces or enhances the activity of the active receptor state need not bind at the same site as the endogenous ligand. Thus, as taught by a method of this invention, any search for therapeutic compounds should start by screening compounds against the ligand-independent active state.

Screening candidate compounds against non-endogenous, constitutively activated GPCRs allows for the direct identification of candidate compounds which act at these cell surface receptors, without requiring any prior knowledge or use of the receptor's endogenous ligand. By determining areas within the body where the endogenous version of such GPCRs are expressed and/or over-expressed, it is possible to determine related disease/disorder states which are associated with the expression and/or over-expression of these receptors; such an approach is disclosed in this patent document.

Most preferably, inverse agonists to the non-endogenous, constitutively activated GPCRs

B. Disease/Disorder Identification and/or Selection

can be identified using the materials of this invention. Such inverse agonists are ideal candidates as lead compounds in drug discovery programs for treating diseases related to these receptors. Because of the ability to directly identify inverse agonists, partial agonists or agonists to these receptors, thereby allowing for the development of pharmaceutical compositions, a search, for diseases and disorders associated with these receptors is possible. For example, scanning both diseased and normal tissue samples for the presence of these receptor now becomes more than an academic exercise or one which might be pursued along the path of identifying, in the case of an orphan receptor, an endogenous ligand. Tissue scans can be conducted across a broad range of healthy and diseased tissues. Such tissue scans provide a preferred first step in associating a specific receptor with a disease and/or disorder.

Preferably, the DNA sequence of the endogenous GPCR is used to make a probe for either radiolabeled cDNA or RT-PCR identification of the expression of the GPCR in tissue samples.

The presence of a receptor in a diseased tissue, or the presence of the receptor at elevated or decreased concentrations in diseased tissue compared to a normal tissue, can be preferably utilized to identify a correlation with that disease. Receptors can equally well be localized to regions of organs by this technique. Based on the known functions of the specific tissues to which the receptor is localized, the putative functional role of the receptor can be deduced.

20 C. A "Human GPCR Proline Marker" Algorithm and the Creation of Non-Endogenous, Constitutively-Active Human GPCRs

Among the many challenges facing the biotechnology arts is the unpredictability in gleaning genetic information from one species and correlating that information to another species

- 21 -

- nowhere in this art does this problem evidence more annoying exacerbation than in the genetic sequences that encode nucleic acids and proteins. Thus, for consistency and because of the highly unpredictable nature of this art, the following invention is limited, in terms of mammals, to human GPCRs - applicability of this invention to other mammalian species, while a potential possibility, is considered beyond mere rote application.

In general, when attempting to apply common "rules" from one related protein sequence to another or from one species to another, the art has typically resorted to sequence alignment, i.e., sequences are linearized and attempts are then made to find regions of commonality between two or more sequences. While useful, this approach does not always prove to result in meaningful information. In the case of GPCRs, while the general structural motif is identical for all GPCRs, the variations in lengths of the TMs, ECs and ICs make such alignment approaches from one GPCR to another difficult at best. Thus, while it may be desirable to apply a consistent approach to, e.g., constitutive activation from one GPCR to another, because of the great diversity in sequence length, fidelity, etc from one GPCR to the next, a generally applicable, and readily 15 successful mutational alignment approach is in essence not possible. In an analogy, such an approach is akin to having a traveler start a journey at point A by giving the traveler dozens of different maps to point B, without any scale or distance markers on any of the maps, and then asking the traveler to find the shortest and most efficient route to destination B only by using the maps. In such a situation, the task can be readily simplified by having (a) a common "place-20 marker" on each map, and (b) the ability to measure the distance from the place-marker to destination B - this, then, will allow the traveler to select the most efficient from starting-point A to destination B.

10

In essence, a feature of the invention is to provide such coordinates within human GPCRs

- 22 -

that readily allows for creation of a constitutively active form of the human GPCRs.

As those in the art appreciate, the transmembrane region of a cell is highly hydrophobic; thus, using standard hydrophobicity plotting techniques, those in the art are readily able to determine the TM regions of a GPCR, and specifically TM6 (this same approach is also applicable to determining the EC and IC regions of the GPCR). It has been discovered that within the TM6 region of human GPCRs, a common proline residue (generally near the middle of TM6), acts as a constitutive activation "marker." By counting 15 amino acids from the proline marker, the 16th amino acid (which is located in the IC3 loop), when mutated from its endogenous form to a non-endogenous form, leads to constitutive activation of the receptor. For convenience, we refer to this as the "Human GPCR Proline Marker" Algorithm. Although the non-endogenous amino acid at this position can be any of the amino acids, most preferably, the non-endogenous amino acid is lysine. While not wishing to be bound by any theory, we believe that this position itself is unique and that the mutation at this location impacts the receptor to allow for constitutive activation.

We note that, for example, when the endogenous amino acid at the 16th position is already lysine (as is the case with GPR4 and GPR32), then in order for X to be a non-endogenous amino acid, it must be other than lysine; thus, in those situations where the endogenous GPCR has an endogenous lysine residue at the 16th position, the non-endogenous version of that GPCR preferably incorporates an amino acid other than lysine, preferably alanine, histidine and arginine, at this position. Of further note, it has been determined that GPR4 appears to be linked to Gs and active in its endogenous form (data not shown).

15

Because there are only 20 naturally occurring amino acids (although the use of nonnaturally occurring amino acids is also viable), selection of a particular non-endogenous amino acid for substitution at this 16th position is viable and allows for efficient selection of a non-endogenous amino acid that fits the needs of the investigator. However, as noted, the more preferred non-endogenous amino acids at the 16th position are lysine, histidine, arginine and alanine, with lysine being most preferred. Those of ordinary skill in the art are credited with the ability to readily determine proficient methods for changing the sequence of a codon to achieve a desired mutation.

It has also been discovered that occasionally, but not always, the proline residue marker will be preceded in TM6 by W2 (i.e., W2P¹AA₁₅X) where W is tryptophan and 2 is any amino acid residue.

Our discovery, amongst other things, negates the need for unpredictable and complicated sequence alignment approaches commonly used by the art. Indeed, the strength of our discovery, while an algorithm in nature, is that it can be applied in a facile manner to human GPCRs, with dexterous simplicity by those in the art, to achieve a unique and highly useful end-product, *i.e.*, a constitutively activated version of a human GPCR. Because many years and significant amounts of money will be required to determine the endogenous ligands for the human GPCRs that the Human Genome project is uncovering, the disclosed invention not only reduces the time necessary to positively exploit this sequence information, but at significant cost-savings. This approach truly validates the importance of the Human Genome Project because it allows for the utilization of genetic information to not only understand the role of the GPCRs in, *e.g.*, diseases, but also provides the opportunity to improve the human condition.

D. Screening of Candidate Compounds

1. Generic GPCR screening assay techniques

When a G protein receptor becomes constitutively active, it couples to a G protein (e.g.,

Gq, Gs, Gi, Go) and stimulates release and subsequent binding of GTP to the G protein. The G protein then acts as a GTPase and slowly hydrolyzes the GTP to GDP, whereby the receptor, under normal conditions, becomes deactivated. However, constitutively activated receptors, including the non-endogenous, human constitutively active GPCRs of the present invention, continue to exchange GDP for GTP. A non-hydrolyzable analog of GTP, [35S]GTPyS, can be used to monitor enhanced binding to G proteins present on membranes which express constitutively activated receptors. It is reported that [35S]GTPyS can be used to monitor G protein coupling to membranes in the absence and presence of ligand. An example of this monitoring, among other examples well-known and available to those in the art, was reported by Traynor and Nahorski in 1995. The preferred use of this assay system is for initial screening of candidate compounds because the system is generically applicable to all G protein-coupled receptors regardless of the particular G protein that interacts with the intracellular domain of the receptor.

B 2. Specific GPCR screening assay techniques

C Once candidate compounds are identified using the "generic" G protein-coupled receptor assay (i.e., an assay to select compounds that are agonists, partial agonists, or inverse agonists), further screening to confirm that the compounds have interacted at the receptor site is preferred. For example, a compound identified by the "generic" assay may not bind to the receptor, but may instead merely "uncouple" the G protein from the intracellular domain.

a. Gs and Gi.

15

Gs stimulates the enzyme adenylyl cyclase. Gi (and Go), on the other hand, inhibit this enzyme. Adenylyl cyclase catalyzes the conversion of ATP to cAMP; thus,

- 25 -

constitutively activated GPCRs that couple the Gs protein are associated with increased cellular levels of cAMP. On the other hand, constitutively activated GPCRs that couple the Gi (or Go) protein are associated with decreased cellular levels of cAMP. See, generally, "Indirect Mechanisms of Synaptic Transmission," Chpt. 8, From Neuron To Brain (3rd Ed.) Nichols, J.G. et al eds. Sinauer Associates, Inc. (1992). Thus, assays that detect cAMP can be utilized to determine if a candidate compound is, e.g., an inverse agonist to the receptor (i.e., such a compound would decrease the levels of cAMP). A variety of approaches known in the art for measuring cAMP can be utilized; a most preferred approach relies upon the use of anti-cAMP antibodies in an ELISA-based format. Another type of assay that can be utilized is a whole cell second messenger reporter system assay. Promoters on genes drive the expression of the proteins that a particular gene encodes. Cyclic AMP drives gene expression by promoting the binding of a cAMP-responsive DNA binding protein or transcription factor (CREB) which then binds to the promoter at specific sites called cAMP response elements and drives the expression of the gene. Reporter systems can be constructed which have a promoter containing 15 multiple cAMP response elements before the reporter gene, e.g., β-galactosidase or luciferase. Thus, a constitutively activated Gs-linked receptor causes the accumulation of cAMP that then activates the gene and expression of the reporter protein. The reporter protein such as βgalactosidase or luciferase can then be detected using standard biochemical assays (Chen et al. 1995). With respect to GPCRs that link to Gi (or Go), and thus decrease levels of cAMP, an approach to the screening of, e.g., inverse agonists, based upon utilization of receptors that link to Gs (and thus increase levels of cAMP) is disclosed in the Example section with respect to GPR17 and GPR30.

b. Go and Gq.

Gq and Go are associated with activation of the enzyme phospholipase C, which in turn hydrolyzes the phospholipid PIP₂, releasing two intracellular messengers: diacycloglycerol (DAG) and inistol 1,4,5-triphoisphate (IP₃). Increased accumulation of IP₃ is associated with activation of Gq- and Go-associated receptors. See, generally, "Indirect Mechanisms of Synaptic Transmission," Chpt. 8, From Neuron To Brain (3rd Ed.) Nichols, J.G. et al eds. Sinauer Associates, Inc. (1992). Assays that detect IP₃ accumulation can be utilized to determine if a candidate compound is, e.g., an inverse agonist to a Gq- or Go-associated receptor (i.e., such a compound would decrease the levels of IP₃). Gq-associated receptors can also been examined using an AP1 reporter assay in that Gq-dependent phospholipase C causes activation of genes containing AP1 elements; thus, activated Gq-associated receptors will evidence an increase in the expression of such genes, whereby inverse agonists thereto will evidence a decrease in such expression, and agonists will evidence an increase in such expression, and agonists will evidence an increase in such expression. Commercially available assays for such detection are available.

E. Medicinal Chemistry

15

Generally, but not always, direct identification of candidate compounds is preferably conducted in conjunction with compounds generated via combinatorial chemistry techniques, whereby thousands of compounds are randomly prepared for such analysis. Generally, the results of such screening will be compounds having unique core structures; thereafter, these compounds are preferably subjected to additional chemical modification around a preferred core structure(s) to further enhance the medicinal properties thereof. Such techniques are

- 27 -

known to those in the art and will not be addressed in detail in this patent document.

F. Pharmaceutical Compositions

Candidate compounds selected for further development can be formulated into pharmaceutical compositions using techniques well known to those in the art. Suitable pharmaceutically-acceptable carriers are available to those in the art; for example, see Remington's Pharmaceutical Sciences, 16th Edition, 1980, Mack Publishing Co., (Oslo et al., eds.)

G. Other Utility

Although a preferred use of the non-endogenous versions of the disclosed human GPCRs is for the direct identification of candidate compounds as inverse agonists, agonists or partial agonists (preferably for use as pharmaceutical agents), these receptors can also be utilized in research settings. For example, in vitro and in vivo systems incorporating these receptors can be utilized to further elucidate and understand the roles of the receptors in the human condition, both normal and diseased, as well understanding the role of constitutive activation as it applies to understanding the signaling cascade. A value in these non-endogenous receptors is that their utility as a research tool is enhanced in that, because of their unique features, the disclosed receptors can be used to understand the role of a particular receptor in the human body before the endogenous ligand therefor is identified. Other uses of the disclosed receptors will become apparent to those in the art based upon, *inter alia*, a review of this patent document.

EXAMPLES

The following examples are presented for purposes of elucidation, and not limitation, of the present invention. Following the teaching of this patent document that a mutational cassette may be utilized in the IC3 loop of human GPCRs based upon a position relative to a proline residue in TM6 to constitutively activate the receptor, and while specific nucleic acid

and amino acid sequences are disclosed herein, those of ordinary skill in the art are credited with the ability to make minor modifications to these sequences while achieving the same or substantially similar results reported below. Particular approaches to sequence mutations are within the purview of the artisan based upon the particular needs of the artisan.

5 Example 1 Preparation of Endogenous Human GPCRs

10

20

A variety of GPCRs were utilized in the Examples to follow. Some endogenous human GPCRs were graciously provided in expression vectors (as acknowledged below) and other endogenous human GPCRs were synthesized *de novo* using publicly-available sequence information.

1. GPR1 (GenBank Accession Number: U13666)

The human cDNA sequence for GPR1 was provided in pRcCMV by Brian O'Dowd (University of Toronto). GPR1 cDNA (1.4kB fragment) was excised from the pRcCMV vector as a NdeI-XbaI fragment and was subcloned into the NdeI-XbaI site of pCMV vector (see Figure 3). Nucleic acid (SEQ.ID.NO.: 1) and amino acid (SEQ.ID.NO.: 2) sequences for human GPR1 were thereafter determined and verified.

2. GPR4 (GenBank Accession Numbers: L36148, U35399, U21051)

The human cDNA sequence for GPR4 was provided in pRcCMV by Brian O'Dowd (University of Toronto). GPR1 cDNA (1.4kB fragment) was excised from the pRcCMV vector as an ApaI(blunted)-XbaI fragment and was subcloned (with most of the 5' untranslated region removed) into HindIII(blunted)-XbaI site of pCMV vector. Nucleic acid (SEQ.ID.NO.: 3) and amino acid (SEQ.ID.NO.: 4) sequences for human GPR4 were thereafter determined and verified.

3. GPR5 (GenBank Accession Number: L36149)

The cDNA for human GPR5 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 64°C for 1 min; and 72°C for 1.5 min. The 5' PCR primer contained an EcoRI site with the sequence: 5'-TATGAATTCAGATGCTCTAAACGTCCCTGC-3' (SEQ.ID.NO.: 5) and the 3' primer contained BamHI site with the sequence: 5'-TCCGGATCCACCTGCACCTGCGCCTGCACC-3' (SEQ.ID.NO.: 6).

The 1.1 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI

site of PCMV expression vector. Nucleic acid (SEQ.ID.NO.: 7) and amino acid (SEQ.ID.NO.:

8) sequences for human GPR5 were thereafter determined and verified.

4. GPR7 (GenBank Accession Number: U22491)

The cDNA for human GPR7 was generated and cloned into pCMV expression vector as follows: PCR condition-PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C for 1 min; and 72°C for 1 min and 20 sec. The 5' PCR primer contained a HindIII site with the sequence:

- 5'-GCAAGCTTGGGGGACGCCAGGTCGCCGGCT-3' (SEQ.ID.NO.: 9)
- 20 and the 3' primer contained a BamHI site with the sequence:
 - 5'-GCGGATCCGGACGCTGGGGGAGTCAGGCTGC-3' (SEQ.ID.NO.: 10).
 - The 1.1 kb PCR fragment was digested with HindIII and BamHI and cloned into HindIII-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 11) and amino acid (SEQ.ID.NO.:

12) sequences for human GPR7 were thereafter determined and verified.

5. GPR8 (GenBank Accession Number: U22492)

The cDNA for human GPR8 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase

(Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and
0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C for 1 min; and 72 °C for 1 min and 20 sec. The 5' PCR primer contained an EcoRI site with the sequence:

- 5'-CGGAATTCGTCAACGGTCCCAGCTACAATG-3' (SEQ.ID.NO.: 13).
- and the 3' primer contained a BamHI site with the sequence:
 - 5'-ATGGATCCCAGGCCCTTCAGCACCGCAATAT-3'(SEQ.ID.NO.: 14).

The 1.1 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI site of PCMV expression vector. All 4 cDNA clones sequenced contained a possible polymorphism involving a change of amino acid 206 from Arg to Gln. Aside from this difference, nucleic acid (SEQ.ID.NO.: 15) and amino acid (SEQ.ID.NO.: 16) sequences for human GPR8 were thereafter determined and verified.

6. GPR9 (GenBank Accession Number: X95876)

The cDNA for human GPR9 was generated and cloned into pCMV expression vector as follows: PCR was performed using a clone (provided by Brian O'Dowd) as template and pfu polymerase (Stratagene) with the buffer system provided by the manufacturer supplemented with 10% DMSO, 0.25 µM of each primer, and 0.5 mM of each of the 4 nucleotides. The cycle condition was 25 cycles of: 94°C for 1 min; 56°C for 1 min; and 72 °C for 2.5 min. The 5' PCR primer contained an EcoRI site with the sequence:

- 31 -

5'-ACGAATTCAGCCATGGTCCTTGAGGTGAGTGACCACCAAGTGCTAAAT-3' (SEQ.ID.NO.: 17)

and the 3' primer contained a BamHI site with the sequence:

- 5'-GAGGATCCTGGAATGCGGGGAAGTCAG-3' (SEQ.ID.NO.: 18).
- The 1.2 kb PCR fragment was digested with EcoRI and cloned into EcoRI-SmaI site of PCMV expression vector. Nucleic acid (SEQ.ID.NO.: 19) and amino acid (SEQ.ID.NO.: 20) sequences for human GPR9 were thereafter determined and verified.

7. GPR9-6 (GenBank Accession Number: U45982)

The cDNA for human GPR9-6 was generated and cloned into pCMV expression

vector as follows: PCR was performed using genomic DNA as template and rTth polymerase

(Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and

0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C for 1 min; and 72°C for 1 min and 20 sec. The 5' PCR primer was kinased with the sequence:

5'-TTAAGCTTGACCTAATGCCATCTTGTGTCC-3' (SEQ.ID.NO.: 21)

15 and the 3' primer contained a BamHI site with the sequence:

20

5'-TTGGATCCAAAAGAACCATGCACCTCAGAG-3' (SEQ.ID.NO.: 22).

The 1.2 kb PCR fragment was digested with BamHI and cloned into EcoRV-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 23) and amino acid (SEQ.ID.NO.: 24) sequences for human GPR9-6 were thereafter determined and verified.

8. GPR10 (GenBank Accession Number: U32672)

The human cDNA sequence for GPR10 was provided in pRcCMV by Brian O'Dowd (University of Toronto). GPR10 cDNA (1.3kB fragment) was excised from the pRcCMV vector as an EcoRI-XbaI fragment and was subcloned into EcoRI-XbaI site of pCMV

vector. Nucleic acid (SEQ.ID.NO.: 25) and amino acid (SEQ.ID.NO.: 26) sequences for human GPR10 were thereafter determined and verified.

9. GPR15 (GenBank Accession Number: U34806)

The human cDNA sequence for GPR15 was provided in pCDNA3 by Brian

O'Dowd (University of Toronto). GPR15 cDNA (1.5kB fragment) was excised from the
pCDNA3 vector as a HindIII-Barn fragment and was subcloned into HindIII-Barn site of pCMV
vector. Nucleic acid (SEQ.ID.NO.: 27) and amino acid (SEQ.ID.NO.: 28) sequences for human
GPR15 were thereafter determined and verified.

10. GPR17 (GenBank Accession Number: Z94154)

- The cDNA for human GPR17 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 56°C for 1 min and 72 °C for 1 min and 20 sec. The 5' PCR primer contained an EcoRI site with the sequence:
 - 5'-CTAGAATTCTGACTCCAGCCAAAGCATGAAT-3' (SEQ.ID.NO.: 29) and the 3' primer contained a BarnHI site with the sequence:
 - 5'-GCTGGATCCTAAACAGTCTGCGCTCGGCCT-3' (SEQ.ID.NO.: 30).
- The 1.1 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI
 site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 31) and amino acid (SEQ.ID.NO.: 32) sequences for human GPR17 were thereafter determined and verified.

11. GPR18 (GenBank Accession Number: L42324)

The cDNA for human GPR18 was generated and cloned into pCMV expression

vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 54°C for 1 min; and 72°C for 1 min and 20 sec. The 5' PCR primer was kinased with the sequence:

- 5 5'-ATAAGATGATCACCCTGAACAATCAAGAT -3' (SEQ.ID.NO.: 33) and the 3' primer contained an EcoRI site with the sequence:
 - 5'-TCCGAATTCATAACATTTCACTGTTTATATTGC-3' (SEQ.ID.NO.: 34).

The 1.0 kb PCR fragment was digested with EcoRI and cloned into blunt-EcoRI site of pCMV expression vector. All 8 cDNA clones sequenced contained 4 possible polymorphisms involving changes of amino acid 12 from Thr to Pro, amino acid 86 from Ala to Glu, amino acid 97 from Ile to Leu and amino acid 310 from Leu to Met. Aside from these changes, nucleic acid (SEQ.ID.NO.: 35) and amino acid (SEQ.ID.NO.: 36) sequences for human GPR18 were thereafter determined and verified.

12. GPR20 (GenBank Accession Number: U66579)

- The cDNA for human GPR20 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C for 1 min; and 72°C for 1 min and 20 sec. The 5' PCR primer was kinased with the sequence:
- 20 5'-CCAAGCTTCCAGGCCTGGGGTGTGCTGG-3' (SEQ.ID.NO.: 37)
 - and the 3' primer contained a BamHI site with the sequence:
 - 5'-ATGGATCCTGACCTTCGGCCCCTGGCAGA-3' (SEQ.ID.NO.: 38).
 - The 1.2 kb PCR fragment was digested with BamHI and cloned into EcoRV-BamHI site of

15

PCMV expression vector. Nucleic acid (SEQ.ID.NO.: 39) and amino acid (SEQ.ID.NO.: 40) sequences for human GPR20 were thereafter determined and verified.

13. GPR21 (GenBank Accession Number: U66580)

The cDNA for human GPR21 was generated and cloned into pCMV expression

vector as follows: PCR was performed using genomic DNA as template and rTth polymerase

(Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and

0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C

for 1 min; and 72 °C for 1 min and 20 sec. The 5' PCR primer was kinased with the sequence:

5'-GAGAATTCACTCCTGAGCTCAAGATGAACT-3' (SEQ.ID.NO.: 41)

10 and the 3' primer contained a BamHI site with the sequence:

5'-CGGGATCCCCGTAACTGAGCCACTTCAGAT-3' (SEQ.ID.NO.: 42).

The 1.1 kb PCR fragment was digested with BamHI and cloned into EcoRV-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 43) and amino acid (SEQ.ID.NO.: 44) sequences for human GPR21 were thereafter determined and verified.

14. GPR22 (GenBank Accession Number: U66581)

The cDNA for human GPR22 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μ M of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 50°C

for 1min; and 72 °C for 1.5 min. The 5' PCR primer was kinased with the sequence:

5'-TCCCCCGGGAAAAAAACCAACTGCTCCAAA-3' (SEQ.ID.NO.: 45)

and the 3' primer contained a BamHI site with the sequence:

5'-TAGGATCCATTTGAATGTGGATTTGGTGAAA-3' (SEQ.ID.NO.: 46).

The 1.38 kb PCR fragment was digested with BamHI and cloned into EcoRV-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 47) and amino acid (SEQ.ID.NO.: 48) sequences for human GPR22 were thereafter determined and verified.

15. GPR24 (GenBank Accession Number: U71092)

- The cDNA for human GPR24 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 56°C for 1 min; and 72 °C for 1 min and 20 sec. The 5' PCR primer contains a HindIII site with the sequence:
 - 5'-GTGAAGCTTGCCTCTGGTGCCTGCAGGAGG-3' (SEQ.ID.NO.: 49) and the 3' primer contains an EcoRI site with the sequence:
 - 5'-GCAGAATTCCCGGTGGCGTGTTGTGGTGCCC-3' (SEQ.ID.NO.: 50).

The 1.3 kb PCR fragment was digested with HindIII and EcoRI and cloned into HindIII-EcoRI

site of pCMV expression vector. The nucleic acid (SEQ.ID.NO.: 51) and amino acid sequence

(SEQ.ID.NO.: 52) for human GPR24 were thereafter determined and verified.

16. GPR30 (GenBank Accession Number: U63917)

The cDNA for human GPR30 was generated and cloned as follows: the coding sequence of GPR30 (1128bp in length) was amplified from genomic DNA using the primers:

- 20 5'-GGCGGATCCATGGATGTGACTTCCCAA-3' (SEQ.ID.NO.: 53) and
 - 5'-GGCGGATCCCTACACGGCACTGCTGAA-3' (SEQ.ID.NO.: 54).

The amplified product was then cloned into a commercially available vector, pCR2.1 (Invitrogen),

- 36 -

using a "TOPO-TA Cloning Kit" (Invitrogen, #K4500-01), following manufacturer instructions.

The full-length GPR30 insert was liberated by digestion with BamH1, separated from the vector by agarose gel electrophoresis, and purified using a Sephaglas Bandprep™ Kit (Pharmacia, #27-9285-01) following manufacturer instructions. The nucleic acid (SEQ.ID.NO.: 55) and amino acid sequence (SEQ.ID.NO.: 56) for human GPR30 were thereafter determined and verified.

17. GPR31 (GenBank Accession Number: U65402)

The cDNA for human GPR31 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 58°C for 1 min; and 72°C for 2 min. The 5' PCR primer contained an EcoRI site with the sequence: 5'-AAGGAATTCACGGCCGGGTGATGCCATTCCC-3' (SEQ.ID.NO.: 57) and the 3' primer contained a BamHI site with the sequence: 5'-GGTGGATCCATAAACACGGGCGTTGAGGAC -3' (SEQ.ID.NO.: 58).

The 1.0 kb PCR fragment was digested with EcoRI and BarnHI and cloned into EcoRI-BarnHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 59) and amino acid (SEQ.ID.NO.: 60) sequences for human GPR31 were thereafter determined and verified.

18. GPR32 (GenBank Accession Number: AF045764)

The cDNA for human GPR32 was generated and cloned into pCMV expression
vector as follows: PCR was performed using genomic DNA as template and rTth polymerase
(Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and
0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 56°C for
1 min; and 72 °C for 1 min and 20 sec. The 5' PCR primer contained an EcoRI site with the

- 37 -

sequence:

5'-TAAGAATTCCATAAAAATTATGGAATGG-3' (SEQ.ID.NO.:243)

and the 3' primer contained a BamHI site with the sequence:

- 5'-CCAGGATCCAGCTGAAGTCTTCCATCATTC-3' (SEQ.ID.NO.: 244).
- The 1.1 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 245) and amino acid (SEQ.ID.NO.: 246) sequences for human GPR32 were thereafter determined and verified.

19. GPR40 (GenBank Accession Number: AF024687)

The cDNA for human GPR40 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min, 65°C for 1 min and 72 °C for 1 min and 10 sec. The 5' PCR primer contained an EcoRI site with the sequence

- 5'-GCAGAATTCGGCGGCCCCATGGACCTGCCCCC-3' (SEQ.ID.NO.: 247) and the 3' primer contained a BamHI site with the sequence
 5'-GCTGGATCCCCCGAGCAGTGGCGTTACTTC-3' (SEQ.ID.NO.: 248).
 - The 1 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 249) and amino acid (SEQ.ID.NO.: 250)
- 20 sequences for human GPR40 were thereafter determined and verified.

20. GPR41 (GenBank Accession Number AF024688)

The cDNA for human GPR41 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase

(Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 65°C for 1 min and 72 °C for 1 min and 10 sec. The 5' PCR primer contained an HindIII site with the sequence:

5 5'-CTCAAGCTTACTCTCTCACCAGTGGCCAC-3' (SEQ.ID.NO.: 251) and the 3' primer was kinased with the sequence 5'-CCCTCCTCCCCGGAGGACCTAGC-3' (SEQ.ID.NO.: 252).

10

The 1 kb PCR fragment was digested with HindIII and cloned into HindIII-blunt site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 253) and amino acid (SEQ.ID.NO.: 254) sequences for human GPR41 were thereafter determined and verified.

21. GPR43 (GenBank Accession Number AF024690)

The cDNA for human GPR43 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1 min; and 72 °C for 1 min and 10 sec. The 5' PCR primer contains an HindIII site with the sequence:

- 5'-TTTAAGCTTCCCCTCCAGGATGCTGCCGGAC-3' (SEQ.ID.NO.: 255) and the 3' primer contained an EcoRI site with the sequence:
- 5'-GGCGAATTCTGAAGGTCCAGGGAAACTGCTA-3' (SEQ.ID.NO. 256).
 The 1 kb PCR fragment was digested with HindIII and EcoRI and cloned into HindIII-EcoRI site
 of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 257) and amino acid (SEQ.ID.NO.: 258)
 sequences for human GPR43 were thereafter determined and verified.

- 39 -

22. APJ (GenBank Accession Number: U03642)

Human APJ cDNA (in pRcCMV vector) was provided by Brian O'Dowd

(University of Toronto). The human APJ cDNA was excised from the pRcCMV vector as an

EcoRI-XbaI (blunted) fragment and was subcloned into EcoRI-SmaI site of pCMV vector.

5 Nucleic acid (SEQ.ID.NO.: 61) and amino acid (SEQ.ID.NO.: 62) sequences for human APJ were thereafter determined and verified.

23. BLR1 (GenBank Accession Number: X68149)

The cDNA for human BLR1 was generated and cloned into pCMV expression vector as follows: PCR was performed using thymus cDNA as template and rTth polymerase

(Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and
0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C for 1 min; and 72 °C for 1 min and 20 sec. The 5' PCR primer contained an EcoRI site with the sequence:

- 5'-TGAGAATTCTGGTGACTCACAGCCGGCACAG-3' (SEQ.ID.NO.: 63):
- and the 3' primer contained a BamHI site with the sequence:
 - 5'-GCCGGATCCAAGGAAAAGCAGCAATAAAAGG-3' (SEQ.ID.NO.: 64). The 1.2 kb PCR fragment was digested with EcoRI and BarnHI and cloned into EcoRI-BarnHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 65) and amino acid (SEQ.ID.NO.: 66) sequences for human BLR1 were thereafter determined and verified.

20 24. CEPR (GenBank Accession Number: U77827)

The cDNA for human CEPR was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μ M of each primer, and

0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1 min; and 72°C for 1 min and 20 sec. The 5' PCR primer was kinased with the sequence: 5'-CAAAGCTTGAAAGCTGCACGGTGCAGAGAC-3' (SEQ.ID.NO.:67) and the 3' primer contained a BamHI site with the sequence:

5 5'-GCGGATCCCGAGTCACACCCTGGCTGGGCC-3' (SEQ.ID.NO.: 68).

The 1.2 kb PCR fragment was digested with BamHI and cloned into EcoRV-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 69) and amino acid (SEQ.ID.NO.: 70) sequences for human CEPR were thereafter determined and verified.

25. EBI1 (GenBank Accession Number: L31581)

The cDNA for human EBI1 was generated and cloned into pCMV expression vector as follows: PCR was performed using thymus cDNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C for 1 min; and 72 °C for 1 min and 20 sec. The 5' PCR primer contained an EcoRI site with the sequence:

5'-ACAGAATTCCTGTGTGTGTTTTACCGCCCAG-3' (SEQ.ID.NO.: 71) and the 3' primer contained a BamHI site with the sequence:

5'-CTCGGATCCAGGCAGAAGAGTCGCCTATGG-3' (SEQ.ID.NO.: 72).

The 1.2 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI

20 site of PCMV expression vector. Nucleic acid (SEQ.ID.NO.: 73) and amino acid (SEQ.ID.NO.:

74) sequences for human EBI1 were thereafter determined and verified.

26. EBI2 (GenBank Accession Number: L08177)

The cDNA for human EBI2 was generated and cloned into pCMV expression

vector as follows: PCR was performed using cDNA clone (graciously provided by Kevin Lynch, University of Virginia Health Sciences Center; the vector utilized was not identified by the source) as template and pfu polymerase (Stratagene) with the buffer system provided by the manufacturer supplemented with 10% DMSO, 0.25 μM of each primer, and 0.5 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 60°C for 1 min; and 72°C for 1 min and 20 sec. The 5' PCR primer contained an EcoRI site with the sequence: 5'-CTGGAATTCACCTGGACCACCACCAATGGATA-3' (SEQ.ID.NO.: 75) and the 3' primer contained a BamHI site with the sequence

The 1.2 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 77) and amino acid (SEQ.ID.NO.: 78) sequences for human EBI2 were thereafter determined and verified.

27. ETBR-LP2 (GenBank Accession Number: D38449)

The cDNA for human ETBR-LP2 was generated and cloned into pCMV expression vector as follows: PCR was performed using brain cDNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1 min; and 72 °C for 1.5 min. The 5' PCR contained an EcoRI site with the sequence:

- 5'-CTGGAATTCTCCTGCTCATCCAGCCATGCGG -3' (SEQ.ID.NO.: 79) and the 3' primer contained a BamHI site with the sequence:
 5'-CCTGGATCCCCACCCCTACTGGGGCCTCAG -3' (SEQ.ID.NO.: 80).
 - The 1.5 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI

- 42 -

site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 81) and amino acid (SEQ.ID.NO.: 82) sequences for human ETBR-LP2 were thereafter determined and verified.

28. GHSR (GenBank Accession Number: U60179)

The cDNA for human GHSR was generated and cloned into pCMV expression

vector as follows: PCR was performed using hippocampus cDNA as template and TaqPlus

Precision polymerase (Stratagene) with the buffer system provided by the manufacturer, 0.25 μM

of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of:

94°C for 1 min; 68°C for 1 min; and 72 °C for 1 min and 10 sec. For first round PCR, the 5' PCR

primer sequence was:

10 5'-ATGTGGAACGCGACGCCCAGCG-3' (SEQ.ID.NO.: 83)

and the 3' primer sequence was:

5'-TCATGTATTAATACTAGATTCT-3' (SEQ.ID.NO.: 84).

Two microliters of the first round PCR was used as template for the second round PCR where the 5' primer was kinased with sequence:

- 15 5'-TACCATGTGGAACGCGACGCCCAGCGAAGAGCCGGGGT-3'(SEQ.ID.NO.:85) and the 3' primer contained an EcoRI site with the sequence:
 - 5'-CGGAATTCATGTATTAATACTAGATTCTGTCCAGGCCCG-3'(SEQ.ID.NO.:86).

The 1.1 kb PCR fragment was digested with EcoRI and cloned into blunt-EcoRI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 87) and amino acid (SEQ.ID.NO.: 88) sequences

20 for human GHSR were thereafter determined and verified.

29. GPCR-CNS (GenBank Accession Number: AFO17262)

The cDNA for human GPCR-CNS was generated and cloned into pCMV expression vector as follows: PCR was performed using brain cDNA as template and rTth

polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, $0.25 \,\mu\text{M}$ of each primer, and $0.2 \,\text{mM}$ of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1 min; and 72°C for 2 min. The 5' PCR primer contained a HindIII site with the sequence:

- 5'-GCAAGCTTGTGCCCTCACCAAGCCATGCGAGCC-3' (SEQ.ID.NO.: 89)
 and the 3' primer contained an EcoRI site with the sequence:
 5'-CGGAATTCAGCAATGAGTTCCGACAGAAGC-3' (SEQ.ID.NO.: 90).
- The 1.9 kb PCR fragment was digested with HindIII and EcoRI and cloned into HindIII-EcoRI site of pCMV expression vector. All nine clones sequenced contained a potential polymorphism involving a S284C change. Aside from this difference, nucleic acid (SEQ.ID.NO.: 91) and amino acid (SEQ.ID.NO.: 92) sequences for human GPCR-CNS were thereafter determined and verified.

30. GPR-NGA (GenBank Accession Number: U55312)

The cDNA for human GPR-NGA was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 56°C for 1 min and 72 °C for 1.5 min. The 5' PCR primer contained an EcoRI site with the sequence:

- 5'-CAGAATTCAGAGAAAAAAGTGAATATGGTTTTT-3' (SEQ.ID.NO.: 93)
- and the 3' primer contained a BamHI site with the sequence:
 - 5'-TTGGATCCCTGGTGCATAACAATTGAAAGAAT-3' (SEQ.ID.NO.: 94).
 - The 1.3 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 95) and amino acid (SEQ.ID.NO.:

- 44 -

96) sequences for human GPR-NGA were thereafter determined and verified.

31. H9 (GenBank Accession Number: U52219)

The cDNA for human HB954 was generated and cloned into pCMV expression vector as follows: PCR was performed using pituitary cDNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min, 62°C for 1 min and 72°C for 2 min. The 5' PCR primer contains a HindIII site with the sequence: 5'-GGAAAGCTTAACGATCCCCAGGAGCAACAT-3' (SEQ.ID.NO.: 97) and the 3' primer contains a BamHI site with the sequence:

10 5'-CTGGGATCCTACGAGAGCATTTTTCACACAG-3' (SEQ.ID.NO.: 98).

The 1.9 kb PCR fragment was digested with HindIII and BamHI and cloned into HindIII-BamHI site of pCMV expression vector. When compared to the published sequences, a different isoform with 12 bp in frame insertion in the cytoplasmic tail was also identified and designated "H9b." Both isoforms contain two potential polymorphisms involving changes of amino acid P320S and amino acid G448A. Isoform H9a contained another potential polymorphism of amino acid S493N, while isoform H9b contained two additional potential polymorphisms involving changes of amino acid I502T and amino acid A532T (corresponding to amino acid 528 of isoform H9a). Nucleic acid (SEQ.ID.NO.: 99) and amino acid (SEQ.ID.NO.: 100) sequences for human H9 were thereafter determined and verified (in the section below, both isoforms were mutated in accordance with the Human GPCR Proline Marker Algorithm).

32. HB954 (GenBank Accession Number: D38449)

20

The cDNA for human HB954 was generated and cloned into pCMV expression

vector as follows: PCR was performed using brain cDNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μ M of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 58°C for 1 min . and 72 °C for 2 min. The 5' PCR contained a HindIII site with the sequence:

- 5 5'-TCCAAGCTTCGCCATGGGACATAACGGGAGCT -3' (SEQ.ID.NO.: 101) and the 3' primer contained an EcoRI site with the sequence:
 5'-CGTGAATTCCAAGAATTTACAATCCTTGCT -3' (SEQ.ID.NO.: 102).
- The 1.6 kb PCR fragment was digested with HindIII and EcoRI and cloned into HindIII-EcoRI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 103) and amino acid (SEQ.ID.NO.: 104) sequences for human HB954 were thereafter determined and verified.

33. HG38 (GenBank Accession Number: AF062006)

The cDNA for human HG38 was generated and cloned into pCMV expression vector as follows: PCR was performed using brain cDNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 56°C for 1 min and 72 °C for 1 min and 30 sec. Two PCR reactions were performed to separately obtain the 5' and 3' fragment. For the 5' fragment, the 5' PCR primer contained an HindIII site with the sequence: 5'-CCCAAGCTTCGGGCACCATGGACACCTCCC-3' (SEQ.ID.NO.: 259) and the 3' primer contained a BamHIsite with the sequence:

5'-ACAGGATCCAAATGCACAGCACTGGTAAGC-3' (SEQ.ID.NO.: 260).

This 5' 1.5 kb PCR fragment was digested with HindIII and BamHI and cloned into an HindIII-BamHI site of pCMV. For the 3' fragment, the 5' PCR primer was kinased with the sequence:

5'-CTATAACTGGGTTACATGGTTTAAC-3' (SEQ.ID.NO. 261)

and the 3' primer contained an EcoRI site with the sequence:

5'-TTTGAATTCACATATTAATTAGAGACATGG-3' (SEQ.ID.NO.: 262).

The 1.4 kb 3' PCR fragment was digested with EcoRI and subcloned into a blunt-EcoRI site of pCMV vector. The 5' and 3' fragments were then ligated together through a common EcoRV site to generate the full length cDNA clone. Nucleic acid (SEQ.ID.NO.: 263) and amino acid (SEQ.ID.NO.: 264) sequences for human HG38 were thereafter determined and verified.

34. HM74 (GenBank Accession Number: D10923)

The cDNA for human HM74 was generated and cloned into pCMV expression vector as follows: PCR was performed using either genomic DNA or thymus cDNA (pooled) as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1 min; and 72 °C for 1 min and 20 sec. The 5' PCR primer contained an EcoRI site with the sequence:

- 5'-GGAGAATTCACTAGGCGAGGCGCTCCATC-3' (SEQ.ID.NO.: 105)
- 15 and the 3' primer was kinased with the sequence:
 - 5'-GGAGGATCCAGGAAACCTTAGGCCGAGTCC-3' (SEQ.ID.NO.:106).
- The 1.3 kb PCR fragment was digested with EcoRI and cloned into EcoRI-SmaI site of pCMV expression vector. Clones sequenced revealed a potential polymorphism involving a N94K change. Aside from this difference, nucleic acid (SEQ.ID.NO.: 107) and amino acid (SEQ.ID.NO.: 108) sequences for human HM74 were thereafter determined and verified.

35. MIG (GenBank Accession Numbers: AFO44600 and AFO44601)

The cDNA for human MIG was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and TaqPlus Precision

polymerase (Stratagene) for first round PCR or pfu polymerase (Stratagene) for second round PCR with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM (TaqPlus Precision) or 0.5 mM (pfu) of each of the 4 nucleotides. When pfu was used, 10% DMSO was included in the buffer. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1 min; and 72°C for (a) 1 min for first round BCP, and (b) 2 min for the page.

- for 1min; and 72 °C for: (a) 1 min for first round PCR; and (b) 2 min for second round PCR.

 Because there is an intron in the coding region, two sets of primers were separately used to generate overlapping 5' and 3' fragments. The 5' fragment PCR primers were:
 - 5'-ACCATGGCTTGCAATGGCAGTGCGGCCAGGGGGCACT-3' (external sense) (SEQ.ID.NO.: 109)
- 10 and

20

- 5'-CGACCAGGACAACAGCATCTTGGTCACTTGTCTCCGGC-3'(internal antisense)
 (SEQ.ID.NO.: 110).
- The 3' fragment PCR primers were:
- 5'-GACCAAGATGCTGTTTGTCCTGGTCGTGGTGTTTTGGCAT-3' (internal sense)
- 15 (SEQ.ID.NO.: 111) and
 - 5'-CGGAATTCAGGATCGGTCTCTTGCTGCGCCT-3' (external antisense with an EcoRI site) (SEQ.ID.NO.: 112).
 - The 5' and 3' fragments were ligated together by using the first round PCR as template and the kinased external sense primer and external antisense primer to perform second round PCR. The 1.2 kb PCR fragment was digested with EcoRI and cloned into the blunt-EcoRI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 113) and amino acid (SEQ.ID.NO.: 114)
 - 36. OGR1 (GenBank Accession Number: U48405)

sequences for human MIG were thereafter determined and verified.

- 48 -

The cDNA for human OGR1 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1 min; and 72 °C for 1 min and 20 sec. The 5' PCR primer was kinased with the sequence: 5'-GGAAGCTTCAGGCCCAAAGATGGGGAACAT-3' (SEQ.ID.NO.: 115): and the 3' primer contained a BamHI site with the sequence: 5'-GTGGATCCACCCGGGAGGACCCAGGCTAG -3' (SEQ.ID.NO.: 116).

The 1.1 kb PCR fragment was digested with BamHI and cloned into the EcoRV-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 117) and amino acid (SEQ.ID.NO.:

37. Serotonin 5HT_{2A}

15

The cDNA encoding endogenous human 5HT_{2A} receptor was obtained by RT-PCR using human brain poly-A⁺ RNA; a 5' primer from the 5' untranslated region with an Xho I restriction site:

5'-GACCTCGAGTCCTTCTACACCTCATC-3' (SEQ.ID.NO: 119)
and a 3' primer from the 3' untranslated region containing an Xba I site:
5'-TGCTCTAGATTCCAGATAGGTGAAAACTTG-3' (SEQ.ID.NO: 120)

118) sequences for human OGR1 were thereafter determined and verified.

PCR was performed using either TaqPlus[™] precision polymerase (Stratagene) or rTth[™] polymerase (Perkin Elmer) with the buffer system provided by the manufacturers, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 57°C for 1 min; and 72°C for 2 min. The 1.5 kb PCR fragment was digested with Xba I and subcloned into Eco RV-Xba I site of pBluescript. The resulting cDNA clones were fully

sequenced and found to encode two amino acid changes from the published sequences. The first one was a T25N mutation in the N-terminal extracellular domain; the second is an H452Y mutation. Because cDNA clones derived from two independent PCR reactions using Taq polymerase from two different commercial sources (TaqPlusTM from Stratagene and rTthTM Perkin Elmer) contained the same two mutations, these mutations are likely to represent sequence polymorphisms rather than PCR errors. With these exceptions, the nucleic acid (SEQ.ID.NO.: 121) and amino acid (SEQ.ID.NO.: 122) sequences for human 5HT_{2A} were thereafter determined and verified.

38. Serotonin 5HT_{2C}

- The cDNA encoding endogenous human 5HT_{2C} receptor was obtained from human brain poly-A⁺ RNA by RT-PCR. The 5' and 3' primers were derived from the 5' and 3' untranslated regions and contained the following sequences:
 - 5'-GACCTCGAGGTTGCTTAAGACTGAAGC-3' (SEQ.ID.NO.: 123)
 - 5'-ATTTCTAGACATATGTAGCTTGTACCG-3' (SEQ.ID.NO.: 124)
- Nucleic acid (SEQ.ID.NO.: 125) and amino acid (SEQ.ID.NO.: 126) sequences for human 5HT_{2C} were thereafter determined and verified.

39. V28 (GenBank Accession Number: U20350)

The cDNA for human V28 was generated and cloned into pCMV expression vector as follows: PCR was performed using brain cDNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1 min; and 72°C for 1 min and 20 sec. The 5' PCR primer contained a HindIII site with the sequence: 5'-GGTAAGCTTGGCAGTCCACGCCAGGCCTTC-3' (SEQ.ID.NO.: 127)

and the 3' primer contained an EcoRI site with the sequence:

5'-TCCGAATTCTCTGTAGACACAAGGCTTTGG-3' (SEQ.ID.NO.: 128)

The 1.1 kb PCR fragment was digested with HindIII and EcoRI and cloned into HindIII-EcoRI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 129) and amino acid (SEQ.ID.NO.:

5 130) sequences for human V28 were thereafter determined and verified.

Example 2
PREPARATION OF NON-ENDOGENOUS HUMAN GPCRS

1. Site-Directed Mutagenesis

form:

Mutagenesis based upon the Human GPCR Proline Marker approach disclosed herein was

10 performed on the foregoing endogenous human GPCRs using Transformer Site-Directed

Mutagenesis Kit (Clontech) according to the manufacturer instructions. For this mutagenesis

approach, a Mutation Probe and a Selection Marker Probe (unless otherwise indicated, the probe

of SEQ.ID.NO.: 132 was the same throughout) were utilized, and the sequences of these for the

specified sequences are listed below in Table B (the parenthetical number is the SEQ. ID.NO.).

15 For convenience, the codon mutation incorporated into the human GPCR is also noted, in standard

Table B

	Receptor Identifier (Codon Mutation)	Mutation Probe Sequence (5'-3') (SEQ.ID.NO.)	Selection Marker Probe Sequence (5'-3') (SEQ.ID.NO.)
20	GPR1 (F245K)	GATCTCCAGTAGGCAT <u>AAG</u> T GGACAATTCTGG (131)	CTCCTTCGGTCCTCCTATCGT TGTCAGAAG (132)
	GPR4 (K223A)	AGAAGGCCAAGATC <u>GCG</u> CGG CTGGCCCTCA (133)	CTCCTTCGGTCCTCCTATCGT TGTCAGAAGT
25	GPR5 (V224K)	CGGCGCCACCGCACGAAAAA GCTCATCTTC	CTCCTTCGGTCCTCCTATCGT TGTCAGAAGT

	<u> </u>	(134)	
	GPR7	GCCAAGAAGCGGGTG <u>AAG</u> TT	CTCCTTCGGTCCTCCTATCGT
	(T250K)	CCTGGTGGTGGCA	TGTCAGAAGT
		(135)	
	Cana		
	GPR8	CAGGCGGAAGGTGAAAGTCC	CTCCTTCGGTCCTCCTATCGT
	(T259K)	TGGTCCTCGT	TGTCAGAAGT
_		(136)	
3	Ø GPR9	CGGCGCCTGCGGGCCAAGCG	CTCCTTCGGTCCTCCTATCGT
	(M254K)	GCTGGTGGTG	TGTCAGAAGT
		(137)	
	GPR9-6	CCAAGCACAAAGCCAAGAAA	CTCCTTCGGTCCTCCTATCGT
	(L241K)	GTGACCATCAC	TGTCAGAAGT
		(138)	<u> </u>
	GPR10	GCGCCGGCGCACCAAATGCT	CTCCTTCGGTCCTCCTATCGT
3:	(F276K)	TGCTGGTGGT	TGTCAGAAGT
		(139)	
	CDD+6	Louisiane	
	GPR15	CAAAAAGCTGAAGAAATCTA	CTCCTTCGGTCCTCCTATCGT
	(1240K)	AGAAGATCATCTTTATTGTCG	TGTCAGAAGT
	CORDA	(140)	
	GPR17	CAAGACCAAGGCA <u>AAA</u> CGCA	CTCCTTCGGTCCTCCTATCGT
	(V234K)	TGATCGCCAT	TGTCAGAAGT
	CDD 4	(141)	
4(GPR18	GTCAAGGAGAAGTCC <u>AAA</u> AG	CTCCTTCGGTCCTCCTATCGT
	(I231K)	GATCATCATC	TGTCAGAAGT
	CDD20	(142)	
	GPR20	CGCCGCGTGCGGGCCAAGCA	CTCCTTCGGTCCTCCTATCGT
	(M240K)	GCTCCTGCTC	TGTCAGAAGT
	GPR21	(143) CCTGATAAGCGCTATAAAAT	CTCCTTCCCTCCTCCTCCTCCTCCTCCTCCTCCTCCTCC
		GGTCCTGTTTCGA	CTCCTTCGGTCCTCCTATCGT
4:	(A251K)	(144)	TGTCAGAAGT
		(144)	
	GPR22	GAAAGACAAAAGAGAGTC <u>A</u>	CTCCTTCGGTCCTCCTATCGT
	_	AGAGGATGTCTTTATTG	TGTCAGAAGT
	(F312K)	(145)	IGICAGAAGI
	GPR24	CGGAGAAAGAGGGTGAAAC	CTCCTTCGGTCCTCCTATCGT
ı	(T304K)	GCACAGCCATCGCC	TGTCAGAAGT
	(15071)	(146)	
50	GPR30	alternate approach; see below	alternate approach; see below
-1	(L258K)	anomiaco approacii, see 0610w	ancinate approach, see below
	· · · · · · · · · · · · · · · · · · ·	AAGCTTCAGCGGGCCAACCC	CICCITCCCTCCTCATA
	GPR31	AAGCTTCAGCGGGCC <u>AAG</u> GC ACTGGTCACC	CTCCTTCGGTCCTCCTATCGT
	(Q221K)	(147)	TGTCAGAAGT
ŀ	GPR32	CATGCCAACCGGCCCGCGAG	ACCAGCAGCAGCCTCGCGGG
5		GCTGCTGCTGGT	CCGGTTGGCATG
77	(K255A)	(279)	(280)
ł	GPR40	CGGAAGCTGCGGGCCAAATG	
		GGTGGCCGGC	CTCCTTCGGTCCTCCTATCGT
	(A223K)	(265)	TGTCAGAAGT
-	CPD41	, , , , , , , , , , , , , , , , , , , ,	CTCCTTCCTCCTCCTC
١	GPR41	CAGAGGAGGGTG <u>AAG</u> GGGCT	CTCCTTCGGTCCTCCTATCGT
ı	ļ	GTTGGCG	TGTCAGAAGT

(A223K)	(266)	
GPR43 (V221K)	GGCGGCGCGAGCC <u>AAG</u> GGG CTGGCTGTGG (267)	CTCCTTCGGTCCTCCTATCGT TGTCAGAAGT
APJ 5 (L247K)	alternate approach; see below	alternate approach; see below
BLR1 (V258K)	CAGCGGCAGAAGGCA <u>AAA</u> A GGGTGGCCATC (148)	CTCCTTCGGTCCTCCTATCGT TGTCAGAAGT
CEPR (L258K)	CGGCAGAAGCGCAT GATCCTCGCG (149)	CTCCTTCGGTCCTCCTATCGT TGTCAGAAGT
10 EBI1 (I262K)	GAGCGCAACAAGGCC <u>AAA</u> A AGGTGATCATC (150)	CTCCTTCGGTCCTCCTATCGT TGTCAGAAGT
EBI2 (L243K)	GGTGTAAACAAAAAGGCT <u>AA</u> <u>A</u> AACACAATTATTCTTATT (151)	CTCCTTCGGTCCTCCTATCGT TGTCAGAAGT
ETBR-LP2 15 (N358K)	GAGAGCCAGCTC <u>AAG</u> AGCAC CGTGGTG (152)	CTCCTTCGGTCCTCCTATCGT TGTCAGAAGT
GHSR (V262K)	CCACAAGCAAACC <u>AAG</u> AAAA TGCTGGCTGT (153)	CTCCTTCGGTCCTCCTATCGT TGTCAGAAGT
GPCR-CNS (N491K)	CTAGAGAGTCAGATGAAGTG TACAGTAGTGGCAC (155)	CTCCTTCGGTCCTCCTATCGT TGTCAGAAGT
20 GPR-NGA (1275K)	CGGACAAAAGTGAAAACT <u>AA</u> <u>A</u> AAGATGTTCCTCATT (156)	CTCCTTCGGTCCTCCTATCGT TGTCAGAAGT
H9a and H9b (F236K)	GCTGAGGTTCGCAAT <u>AAA</u> CT AACCATGTTTGTG (157)	CTCCTTCGGTCCTCCTATCGT TGTCAGAAGT
HB954 25 (H265K)	GGGAGGCCGAGCTG <u>AAA</u> GCC ACCCTGCTC (158)	CTCCTTCGGTCCTCCTATCGT TGTCAGAAGT
HG38 (V765K)	GGGACTGCTCTATGAAAAAA CACATTGCCCTG (268)	CATCAAGTGTATCATGTGCC AAGTACGCCC (154)
HM74 (1230K)	CAAGATCAAGAGAGCC <u>AAA</u> A CCTTCATCATG (159)	CTCCTTCGGTCCTCCTATCGT TGTCAGAAGT
00 MIG (T273K)	CCGGAGACAAGTG <u>AAG</u> AAG ATGCTGTTTGTC (160)	CTCCTTCGGTCCTCCTATCGT TGTCAGAAGT
OGR1 (Q227K)	GCAAGGACCAGATC <u>AAG</u> CGG CTGGTGCTCA (161)	CTCCTTCGGTCCTCCTATCGT TGTCAGAAGT
Serotonin 5HT _{2A} 5 (C322K)	alternate approach; see below	alternate approach; see below
Serotonin 5HT _{2C} (S310K)	alternate approach; see below	alternate approach; see below

V28	CAAGAAAGCCAAAGCC <u>AAG</u>	CICCTICGGTCCTCCTATCGT
(I230K)	AAACTGATCCTTCTG	TGTCAGAAGT
(======================================	(162)	

The non-endogenous human GPCRs were then sequenced and the derived and verified nucleic acid and amino acid sequences are listed in the accompanying "Sequence Listing" appendix

5 to this patent document, as summarized in Table C below:

Table C

	Mutated GPCR	Nucleic Acid Sequence	Amino Acid Sequence
		Listing	Listing
	GPR1	SEQ.ID.NO.: 163	SEQ.ID.NO.: 164
	(F245K)		
10	GPR4	SEQ.ID.NO.: 165	SEQ.ID.NO.: 166
٠,	(K223A)		
	GPR5	SEQ.ID.NO.: 167	SEQ.ID.NO.: 168
	(V224K)		
	GPR7	SEQ.ID.NO.: 169	SEQ.ID.NO.: 170
15	(T250K)		
	GPR8	SEQ.ID.NO.: 171	SEQ.ID.NO.: 172
	(T259K)		
	GPR9	SEQ.ID.NO.: 173	SEQ.ID.NO.: 174
	(M254K)		
20	GPR9-6	SEQ.ID.NO.: 175	SEQ.ID.NO.: 176
	(L241K)		
	GPR10	SEQ.ID.NO.: 177	SEQ.ID.NO.: 178
	(F276K)		
	GPR15	SEQ.ID.NO.: 179	SEQ.ID.NO.: 180
25	(I240K)		
	GPR17	SEQ.ID.NO.: 181	SEQ.ID.NO.: 182
	(V234K)		
	GPR18	SEQ.ID.NO.: 183	SEQ.ID.NO.: 184
ļ	(I231K)		
30	GPR20	SEQ.ID.NO.: 185	SEQ.ID.NO.: 186
ļ	(M240K)		
-	GPR21	SEQ.ID.NO.: 187	SEQ.ID.NO.: 188
	(A251K)		
	GPR22	SEQ.ID.NO.: 189	SEQ.ID.NO.: 190
3\$	(F312K)		
	GPR24	SEQ.ID.NO.: 191	SEQ.ID.NO.: 192
	(T304K))		
- 1	GPR30	SEQ.ID.NO.: 193	SEQ.ID.NO.: 194

	(L258K)		1
	GPR31	SEQ.ID.NO.: 195	SEO ID NO. 100
	(Q221K)	3EQ.ID.NO.: 193	SEQ.ID.NO.: 196
,	GPR32	SEQ.ID.NO.: 269	SEQ.ID.NO.: 270
2	(K255A)	<u> </u>	
	GPR40	SEQ.ID.NO.: 271	SEQ.ID.NO.: 272
	(A223K)	<u> </u>	
	GPR41	SEQ.ID.NO.: 273	SEQ.ID.NO.: 274
10	(A223K) GPR43	07077310 000	
10	(V221K)	SEQ.ID.NO.: 275	SEQ.ID.NO.: 276
	APJ	SEO ID NO - 107	SEQ.ID.NO.: 198
	(L247K)	SEQ.ID.NO.: 197	2EQ.ID.NO.: 198
	BLR1	SEQ.ID.NO.: 199	SEQ.ID.NO.: 200
15	(V258K)	3EQ.ID.NO 199	SEQ.ID.NO.: 200
	CEPR	SEQ.ID.NO.: 201	SEQ.ID.NO.: 202
j	(L258K)	522.12.110 201	
	EBI1	SEQ.ID.NO.: 203	SEQ.ID.NO.: 204
	(I262K)		
20	EBI2	SEQ.ID.NO.: 205	SEQ.ID.NO.: 206
. [(L243K)		
ļ	ETBR-LP2	SEQ.ID.NO.: 207	SEQ.ID.NO.: 208
ļ	(N358K)		
	GHSR	SEQ.ID.NO.: 209	SEQ.ID.NO.: 210
23	(V262K)		
	GPCR-CNS	SEQ.ID.NO.: 211	SEQ.ID.NO.: 212
ŀ	(N491K) GPR-NGA	GEO ID NO. 212	GEO ID VIO. 014
	(I275K)	SEQ.ID.NO.: 213	SEQ.ID.NO.: 214
30	H9a	SEQ.ID.NO.: 215	SEQ.ID.NO.: 216
٦	(F236K)	3EQ.ID.NO 213	SEQ.ID.140 216
ı	Н9ь	SEQ.ID.NO.: 217	SEQ.ID.NO.: 218
	(F236K)	522.20.10217	5LQ.ID.110 218
	HB954	SEQ.ID.NO.: 219	SEQ.ID.NO.: 220
3\$	(H265K)		
Ì	HG38	SEQ.ID.NO.: 277	SEQ.ID.NO.: 278
- 1	(V765K)		
ſ	HM74	SEQ.ID.NO.: 221	SEQ.ID.NO.: 222
L	(I230K)	·	
40	MIG	SEQ.ID.NO.: 223	SEQ.ID.NO.: 224
L	(T273K)		
	OGR1	SEQ.ID.NO.: 225	SEQ.ID.NO.: 226
ŀ	(Q227K)		
	Serotonin 5HT _{2A}	SEQ.ID.NO.: 227	SEQ.ID.NO.: 228
45	(C322K)		
Γ	Serotonin 5HT _{2C}	SEQ.ID.NO.: 229	SEQ.ID.NO.: 230
	(S310K)	`	
Γ	V28	SEQ.ID.NO.: 231	SEQ.ID.NO.: 232
	(12202)	`	
L	(IZ30K) :	<u> </u>	

 Alternate Mutation Approaches for Employment of the Proline Marker Algorithm: APJ; Serotonin 5HT_{2A}; Serotonin 5HT_{2C}; and GPR30

Although the above site-directed mutagenesis approach is particularly preferred, other approaches can be utilized to create such mutations; those skilled in the art are readily credited with selecting approaches to mutating a GPCR that fits within the particular needs of the artisan.

a. APJ

Preparation of the non-endogenous, human APJ receptor was accomplished by mutating L247K. Two oligonucleotides containing this mutation were synthesized:

5'- GGCTTAAGAGCATCATCGTGGTGCTGGTG-3' (SEQ.ID.NO.: 233)

10 5'-GTCACCACCAGCACCACGATGATGCTCTTAAGCC-3' (SEQ.ID.NO.: 234)

The two oligonucleotides were annealed and used to replace the NaeI-BstEII fragment of human, endogenous APJ to generate the non-endogenous, version of human APJ.

b. Serotonin 5HT24

cDNA containing the point mutation C322K was constructed by utilizing the restriction

enzyme site Sph I which encompasses amino acid 322. A primer containing the C322K mutation:

5'-CAAAGAAAGTACTGGGCATCGTCTTCTTCCT-3' (SEQ.ID.NO: 235)

was used along with the primer from the 3' untranslated region of the receptor:

5'-TGCTCTAGATTCCAGATAGGTGAAAA CTTG-3' (SEQ.ID.NO.: 236)

to perform PCR (under the conditions described above). The resulting PCR fragment was then

used to replace the 3' end of endogenous 5HT_{2A} cDNA through the T4 polymerase blunted Sph

I site.

c. Serotonin 5HT_{2C}

The cDNA containing a S310K mutation was constructed by replacing the Sty I restriction fragment containing amino acid 310 with synthetic double stranded oligonucleotides that encode

PCT/US99/23938

the desired mutation. The sense strand sequence utilized had the following sequence:

5'-CTAGGGGCACCATGCAGGCTATCAACAATGAAAGAAAGCTAAGAAAGTC-3' (SEQ. ID.NO.: 237)

and the antisense strand sequence utilized had the following sequence:

5 5'-CAAGGACTTTCTTAGCTTTTCTTTCATTGTTGATAGCCTGCATGGTGCCC-3' (SEQ. ID. NO.: 238)

d. GPR30

Prior to generating non-endogenous GPR30, several independent pCR2.1/GPR30 isolates were sequenced in their entirety in order to identify clones with no PCR-generated mutations. A clone having no mutations was digested with EcoR1 and the endogenous GPR30 cDNA fragment was transferred into the CMV-driven expression plasmid pCI-neo (Promega), by digesting pCI-Neo with EcoRI and subcloning the EcoRI-liberated GPR30 fragment from pCR2.1/GPR30, to generate pCI/GPR30. Thereafter, the leucine at codon 258 was mutated to a lysine using a Quick-Change™ Site-Directed Mutagenesis Kit (Stratagene, #200518), according to manufacturer's instructions, and the following primers:

5'-CGGCGGCAGAAGGCGAAACGCATGATCCTCGCGGT-3' (SEQ.ID.NO.: 239) and 5'-ACCGCGAGGATCATGCGTTTCGCCTTCTGC CGCCG-3' (SEQ.ID.NO.: 240)

Example 3

Receptor (Endogenous and Mutated) Expression

20

Although a variety of cells are available to the art for the expression of proteins, it is most preferred that mammalian cells be utilized. The primary reason for this is predicated upon practicalities, i.e., utilization of, e.g., yeast cells for the expression of a GPCR, while possible,

introduces into the protocol a non-mammalian cell which may not (indeed, in the case of yeast, does not) include the receptor-coupling, genetic-mechanism and secretary pathways that have evolved for mammalian systems – thus, results obtained in non-mammalian cells, while of potential use, are not as preferred as that obtained from mammalian cells. Of the mammalian cells, COS-7, 293 and 293T cells are particularly preferred, although the specific mammalian cell utilized can be predicated upon the particular needs of the artisan.

Unless otherwise noted herein, the following protocol was utilized for the expression of the endogenous and non-endogenous human GPCRs. Table D lists the mammalian cell and number utilized (per 150mm plate) for GPCR expression.

10 Table D

Receptor Name Mammalian Cell (Endogenous or Non-(Number Utilized) Endogenous) GPR17 293 (2 x 104) GPR30 293 (4 x 10⁴) APJ COS-7 (5X106) ETBR-LP2 293 (1 x 10⁷) 293T (1 x 10⁷) **GHSR** 293 (1 x 10⁷) 293T (1 x 10⁷) MIG 293 (1 x 10⁷) Serotonin 5HT_{2A} 293T (1 x 10⁷) Serotonin 5HT_{2c} 293T (1 x 10⁷)

20

15

On day one, mammalian cells were plated out. On day two, two reaction tubes were prepared (the proportions to follow for each tube are per plate): tube A was prepared by mixing 20µg DNA (e.g., pCMV vector; pCMV vector with endogenous receptor cDNA, and pCMV vector with non-endogenous receptor cDNA.) in 1.2ml serum free DMEM (Irvine Scientific,

- 58 -

Irvine, CA); tube B was prepared by mixing 120µl lipofectamine (Gibco BRL) in 1.2ml serum free DMEM. Tubes A and B were then admixed by inversions (several times), followed by incubation at room temperature for 30-45min. The admixture is referred to as the "transfection mixture". Plated cells were washed with 1XPBS, followed by addition of 10ml serum free DMEM. 2.4ml of the transfection mixture was then added to the cells, followed by incubation for 4hrs at 37°C/5% CO₂. The transfection mixture was then removed by aspiration, followed by the addition of 25ml of DMEM/10% Fetal Bovine Serum. Cells were then incubated at 37°C/5% CO₂. After 72hr incubation, cells were then harvested and utilized for analysis.

1. Gi-Coupled Receptors: Co-Transfection with Gs-Coupled Receptors

In the case of GPR30, it has been determined that this receptor couples the G protein Gi. 10 Gi is known to inhibit the enzyme adenylyl cyclase, which is necessary for catalyzing the conversion of ATP to cAMP. Thus, a non-endogenous, constitutively activated form of GPR30 would be expected to be associated with decreased levels of cAMP. Assay confirmation of a nonendogenous, constitutively activated form of GPR30 directly via measurement of decreasing levels of cAMP, while viable, can be preferably measured by cooperative use of a Gs-coupled receptor. For example, a receptor that is Gs-coupled will stimulate adenylyl cyclase, and thus will be associated with an increase in cAMP. The assignee of the present application has discovered that the orphan receptor GPR6 is an endogenous, constitutively activated GPCR. GPR6 couples to the Gs protein. Thus when co-transfected, one can readily verify that a putative GPR30-mutation 20 leads to constitutive activation thereof: i.e., an endogenous, constitutively activated GPR6/endogenous, non-constitutively activated GPR30 cell will evidence an elevated level of cAMP when compared with an endogenous, constitutively active GPR6/non-endogenous, constitutively activated GPR30 (the latter evidencing a comparatively lower level of cAMP).

Assays that detect cAMP can be utilized to determine if a candidate compound is e.g., an inverse agonist to a Gs-associated receptor (i.e., such a compound would decrease the levels of cAMP) or a Gi-associated receptor (or a Go-associated receptor) (i.e., such a candidate compound would increase the levels of cAMP). A variety of approaches known in the art for measuring cAMP can be utilized; a preferred approach relies upon the use of anti-cAMP antibodies. Another approach, and most preferred, utilizes a whole cell second messenger reporter system assay. Promoters on genes drive the expression of the proteins that a particular gene encodes. Cyclic AMP drives gene expression by promoting the binding of a cAMP-responsive DNA binding protein or transcription factor (CREB) which then binds to the promoter at specific sites called cAMP response elements and drives the expression of the gene. Reporter systems can be constructed which have a promoter containing multiple cAMP response elements before the reporter gene, e.g., \(\beta\)-galactosidase or luciferase. Thus, an activated receptor such as GPR6 causes the accumulation of cAMP which then activates the gene and expression of the reporter protein. Most preferably, 293 cells are cotransfected with GPR6 (or another Gs-linked receptor) and GPR30 (or another Gi-linked receptor) plasmids, preferably in a 1:1 ratio, most preferably in a 1:4 ratio. Because GPR6 is an endogenous, constitutively active receptor that stimulates the production of cAMP, GPR6 strongly activates the reporter gene and its expression. The reporter protein such as β -galactosidase or luciferase can then be detected using standard biochemical assays (Chen et al. 1995). Cotransfection of endogenous, constitutively active GPR6 with endogenous, non-constitutively active GPR30 evidences an increase in the luciferase reporter protein. Conversely, co-transfection of endogenous, constitutively active GPR6 with non-endogenous, constitutively active GPR30 evidences a drastic decrease in expression of luciferase. Several reporter plasmids are known and available in the art for measuring a second messenger assay. It is considered well within the

- 60 -

skilled artisan to determine an appropriate reporter plasmid for a particular gene expression based primarily upon the particular need of the artisan. Although a variety of cells are available for expression, mammalian cells are most preferred, and of these types, 293 cells are most preferred. 293 cells were transfected with the reporter plasmid pCRE-Luc/GPR6 and non-endogenous, constitutively activated GPR30 using a Mammalian TransfectionTM Kit (Stratagene, #200285) CaPO₄ precipitation protocol according to the manufacturer's instructions (*see*, 28 Genomics 347 (1995) for the published endogenous GPR6 sequence). The precipitate contained 400ng reporter, 80ng CMV-expression plasmid (having a 1:4 GPR6 to endogenous GPR30 or non-endogenous GPR30 ratio) and 20ng CMV-SEAP (a transfection control plasmid encoding secreted alkaline phosphatase). 50% of the precipitate was split into 3 wells of a 96-well tissue culture dish (containing 4X10⁴ cells/well); the remaining 50% was discarded. The following morning, the media was changed. 48 hr after the start of the transfection, cells were lysed and examined for luciferase activity using a LucliteTM Kit (Packard, Cat. # 6016911) and Trilux 1450 MicrobetaTM liquid scintillation and luminescence counter (Wallac) as per the vendor's instructions. The data were analyzed using GraphPad Prism 2.0a (GraphPad Software Inc.).

With respect to GPR17, which has also been determined to be Gi-linked, a modification of the foregoing approach was utilized, based upon, *inter alia*, use of another Gs-linked endogenous receptor, GPR3 (*see* 23 Genomics 609 (1994) and 24 Genomics 391 (1994)). Most preferably, 293 cells are utilized. These cells were plated-out on 96 well plates at a density of 2 x 10⁴ cells per well and were transfected using Lipofectamine Reagent (BRL) the following day according to manufacturer instructions. A DNA/lipid mixture was prepared for each 6-well transfection as follows: 260ng of plasmid DNA in 100µl of DMEM were gently mixed with 2µl of lipid in 100µl of DMEM (the 260ng of plasmid DNA consisted of 200ng of a 8xCRE-Luc

reporter plasmid (see below), 50ng of pCMV comprising endogenous receptor or non-endogenous receptor or pCMV alone, and 10ng of a GPRS expression plasmid (GPRS in pcDNA3 (Invitrogen)). The 8XCRE-Luc reporter plasmid was prepared as follows: vector SRIF-β-gal was obtained by cloning the rat somatostatin promoter (-71/+51) at BgIV-HindIII site in the pßgal-Basic Vector (Clontech). Eight (8) copies of cAMP response element were obtained by PCR from an adenovirus template AdpCF126CCRE8 (see 7 Human Gene Therapy 1883 (1996)) and cloned into the SRIF-β-gal vector at the Kpn-BglV site, resulting in the 8xCRE-β-gal reporter vector. The 8xCRE-Luc reporter plasmid was generated by replacing the beta-galactosidase gene in the 8xCRE-β-gal reporter vector with the luciferase gene obtained from the pGL3-basic vector (Promega) at the HindIII-BamHI site. Following 30min. incubation at room temperature, the DNA/lipid mixture was diluted with 400 µl of DMEM and 100µl of the diluted mixture was added to each well. 100 µl of DMEM with 10% FCS were added to each well after a 4hr incubation in a cell culture incubator. The next morning the transfected cells were changed with 200 µl/well of DMEM with 10% FCS. Eight (8) hours later, the wells were changed to 100 µl /well of DMEM without phenol red, after one wash with PBS. Luciferase activity were measured the next day using the LucLite™ reporter gene assay kit (Packard) following manufacturer instructions and read on a 1450 MicroBeta™ scintillation and luminescence counter (Wallac).

Figure 4 evidences that constitutively active GPR30 inhibits GPR6-mediated activation of CRE-Luc reporter in 293 cells. Luciferase was measured at about 4.1 relative light units in the expression vector pCMV. Endogenous GPR30 expressed luciferase at about 8.5 relative light units, whereas the non-endogenous, constitutively active GPR30 (L258K), expressed luciferase at about 3.8 and 3.1 relative light units, respectively. Co-transfection of endogenous GPR6 with endogenous GPR30, at a 1:4 ratio, drastically increased luciferase

expression to about 104.1 relative light units. Co-transfection of endogenous GPR6 with nonendogenous GPR30 (L258K), at the same ratio, drastically decreased the expression, which is evident at about 18.2 and 29.5 relative light units, respectively. Similar results were observed with respect to GPR17 with respect to co-transfection with GPR3, as set forth in

5 Figure 5. Example 3

10

ASSAYS FOR DETERMINATION OF CONSTITUTIVE ACTIVITY OF NON-ENDOGENOUS GPCRS

A. Membrane Binding Assays

1. [35S]GTPγS Assay

When a G protein-coupled receptor is in its active state, either as a result of ligand binding or constitutive activation, the receptor couples to a G protein and stimulates the release of GDP and subsequent binding of GTP to the G protein. The alpha subunit of the G protein-receptor complex acts as a GTPase and slowly hydrolyzes the GTP to GDP, at which point the receptor normally is deactivated. Constitutively activated receptors continue to exchange GDP for GTP. The non-hydrolyzable GTP analog, [35S]GTPγS, can be utilized to demonstrate enhanced binding of [35S]GTPγS to membranes expressing constitutively activated receptors. The advantage of using [35S]GTPγS binding to measure constitutive activation is that: (a) it is generically applicable to all G protein-coupled receptors; (b) it is proximal at the membrane surface making it less likely to pick-up molecules which affect the intracellular cascade.

The assay utilizes the ability of G protein coupled receptors to stimulate [35S]GTPγS binding to membranes expressing the relevant receptors. The assay can, therefore, be used in the direct identification method to screen candidate compounds to known, orphan and constitutively activated G protein-coupled receptors. The assay is generic and has application

to drug discovery at all G protein-coupled receptors.

The [35 S]GTP γ S assay was incubated in 20 mM HEPES and between 1 and about 20mM MgCl $_2$ (this amount can be adjusted for optimization of results, although 20mM is preferred) pH 7.4, binding buffer with between about 0.3 and about 1.2 nM [35 S]GTP γ S (this amount can be adjusted for optimization of results, although 1.2 is preferred) and 12.5 to 75 μ g membrane protein (e.g. COS-7 cells expressing the receptor; this amount can be adjusted for optimization, although 75 μ g is preferred) and 1 μ M GDP (this amount can be changed for optimization) for 1 hour. Wheatgerm agglutinin beads (25 μ l; Amersham) were then added and the mixture was incubated for another 30 minutes at room temperature. The tubes were then centrifuged at 1500 x g for 5 minutes at room temperature and then counted in a scintillation counter.

A less costly but equally applicable alternative has been identified which also meets the needs of large scale screening. Flash platesTM and WallacTM scintistrips may be utilized to format a high throughput [35S]GTPγS binding assay. Furthermore, using this technique, the assay can be utilized for known GPCRs to simultaneously monitor tritiated ligand binding to the receptor at the same time as monitoring the efficacy via [35S]GTPγS binding. This is possible because the Wallac beta counter can switch energy windows to look at both tritium and 35S-labeled probes. This assay may also be used to detect other types of membrane activation events resulting in receptor activation. For example, the assay may be used to monitor 32P phosphorylation of a variety of receptors (both G protein coupled and tyrosine kinase receptors). When the membranes are centrifuged to the bottom of the well, the bound [35S]GTPγS or the 32P-phosphorylated receptor will activate the scintillant which is coated of the wells. Scinti® strips (Wallac) have been used to demonstrate this principle. In addition, the assay also has utility for measuring ligand binding to receptors using radioactively labeled ligands. In a similar manner, when the radiolabeled bound

5

ligand is centrifuged to the bottom of the well, the scintistrip label comes into proximity with the radiolabeled ligand resulting in activation and detection.

Representative results of graph comparing Control (pCMV), Endogenous APJ and Non-Endogenous APJ, based upon the foregoing protocol, are set forth in Figure 6.

2. Adenylyl Cyclase

A Flash Plate™ Adenylyl Cyclase kit (New England Nuclear; Cat. No. SMP004A) designed for cell-based assays was modified for use with crude plasma membranes. The Flash Plate wells contain a scintillant coating which also contains a specific antibody recognizing cAMP. The cAMP generated in the wells was quantitated by a direct competition for binding of radioactive cAMP tracer to the cAMP antibody. The following serves as a brief protocol for the measurement of changes in cAMP levels in membranes that express the receptors.

Transfected cells were harvested approximately three days after transfection. Membranes were prepared by homogenization of suspended cells in buffer containing 20mM HEPES, pH 7.4 and 10mM MgCl₂. Homogenization was performed on ice using a Brinkman Polytron™ for approximately 10 seconds. The resulting homogenate was centrifuged at 49,000 X g for 15 minutes at 4°C. The resulting pellet was then resuspended in buffer containing 20mM HEPES, pH 7.4 and 0.1 mM EDTA, homogenized for 10 seconds, followed by centrifugation at 49,000 X g for 15 minutes at 4°C. The resulting pellet can be stored at -80°C until utilized. On the day of measurement, the membrane pellet was slowly thawed at room temperature, resuspended in buffer containing 20mM HEPES, pH 7.4 and 10mM MgCL₂ (these amounts can be optimized, although the values listed herein are prefereed), to yield a final protein concentration of 0.60mg/ml (the resuspended membranes were placed on ice until use).

cAMP standards and Detection Buffer (comprising 2 µCi of tracer [125] cAMP (100 µl) to

11 ml Detection Buffer) were prepared and maintained in accordance with the manufacturer's instructions. Assay Buffer was prepared fresh for screening and contained 20mM HEPES, pH 7.4, 10mM MgCl₂, 20mM (Sigma), 0.1 units/ml creatine phosphokinase (Sigma), 50 µM GTP (Sigma), and 0.2 mM ATP (Sigma); Assay Buffer can be stored on ice until utilized. The assay was initiated by addition of 50ul of assay buffer followed by addition of 50ul of membrane suspension to the NEN Flash Plate. The resultant assay mixture is incubated for 60 minutes at room temperature followed by addition of 100ul of detection buffer. Plates are then incubated an additional 2-4 hours followed by counting in a Wallac MicroBeta scintillation counter. Values of cAMP/well are extrapolated from a standard cAMP curve which is contained within each assay plate. The foregoing assay was utilized with respect to analysis of MIG.

B. Reporter-Based Assays

1. CREB Reporter Assay (Gs-associated receptors)

A method to detect Gs stimulation depends on the known property of the transcription factor CREB, which is activated in a cAMP-dependent manner. A PathDetect CREB trans-Reporting System (Stratagene, Catalogue # 219010) was utilized to assay for Gs coupled activity in 293 or 293T cells. Cells were transfected with the plasmids components of this above system and the indicated expression plasmid encoding endogenous or mutant receptor using a Mammalian Transfection Kit (Stratagene, Catalogue #200285) according to the manufacurer's instructions. Briefly, 400 ng pFR-Luc (luciferase reporter plasmid containing Gal4 recognition sequences), 40 ng pFA2-CREB (Gal4-CREB fusion protein containing the Gal4 DNA-binding domain), 80 ng CMV-receptor expression plasmid (comprising the receptor) and 20 ng CMV-SEAP (secreted alkaline phosphatase expression plasmid; alkaline phosphatase activity is measured in the media of transfected cells to control for variations in

transfection efficiency between samples) were combined in a calcium phosphate precipitate as per the Kit's instructions. Half of the precipitate was equally distributed over 3 wells in a 96-well plate, kept on the cells overnight, and replaced with fresh medium the following morning. Forty-eight (48) hr after the start of the transfection, cells were treated and assayed for luciferase activity as set forth with resepct to the GPR30 system, above. This assay was used with respect to GHSR.

2. AP1 reporter assay (Gq-associated receptors)

Ae method to detect Gq stimulation depends on the known property of Gq-dependent phospholipase C to cause the activation of genes containing AP1 elements in their promoter.

A Pathdetect AP-1 cis-Reporting System (Stratagene, Catalogue # 219073) was utilized following the protocl set forth above with respect to the CREB reporter assay, except that the components of the calcium phosphate precipitate were 410 ng pAP1-Luc, 80 ng receptor expression plasmid, and 20 ng CMV-SEAP. This assay was used with respect to ETBR-LP2

C. Intracellular IP3 Accumulation Assay

15

On day 1, cells comprising the serotonin receptors (endogenous and mutated) were plated onto 24 well plates, usually 1x10⁵ cells/well. On day 2 cells were transfected by firstly mixing 0.25 ug DNA in 50 ul serumfree DMEM/well and 2 ul lipofectamine in 50 µl serumfree DMEM/well. The solutions were gently mixed and incubated for 15-30 min at room temperature. Cells were washed with 0.5 ml PBS and 400 µl of serum free media was mixed with the transfection media and added to the cells. The cells were then incubated for 3-4 hrs at 37°C/5%CO₂ and then the transfection media was removed and replaced with 1ml/well of regular growth media. On day 3 the cells were labeled with ³H-myo-inositol. Briefly, the media was removed the cells were washed with 0.5 ml PBS. Then 0.5 ml inositol-free/serumfree media (GIBCO BRL) was added/well with 0.25 µCi of ³H-myo-inositol/well

- 67 -

and the cells were incubated for 16-18 hrs o/n at 37°C/5%CO2. On Day 4 the cells were washed with 0.5 ml PBS and 0.45 ml of assay medium was added containing inositolfree/serum free media 10 µM pargyline 10 mM lithium chloride or 0.4 ml of assay medium and 50 ul of 10x ketanserin (ket) to final concentration of 10 µM. The cells were then incubated for 30 min at 37°C. The cells were then washed with 0.5 ml PBSand 200 ul of fresh/icecold stop solution (1M KOH; 18 mM Na-borate; 3.8 mM EDTA) was added/well. The solution was kept on ice for 5-10 min or until cells were lysed and then neutralized by 200 µl of fresh/ice cold neutralization sol. (7.5 % HCL). The lysate was then transferred into 1.5 ml eppendorf tubes and 1 ml of chloroform/methanol (1:2) was added/tube. The solution 10 was vortexed for 15 sec and the upper phase was applied to a Biorad AG1-X8 anion exchange resin (100-200 mesh). Firstly, the resin was washed with water at 1:1.25 W/V and 0.9 ml of upper phase was loaded onto the column. The column was washed with 10 mls of 5 mM myo-inositol and 10 ml of 5 mM Na-borate/60mM Na-formate. The inositol tris phosphates were eluted into scintillation vials containing 10 ml of scintillation cocktail with 2 ml of 0.1 M formic acid/ 1 M ammonium formate. The columns were regenerated by washing with 10 ml of 0.1 M formic acid/3M ammonium formate and rinsed twice with dd H₂O and stored at 4°C in water.

Figure 7 provides an illustration of IP3 production from the human 5-HT_{2A} receptor that incorporates the C322K mutation. While these results evidence that the Proline Mutation Algorithm approach constitutively activates this receptor, for purposes of using such a receptor for screening for identification of potential therapeutics, a more robust difference would be preferred. However, because the activated receptor can be utilized for understanding and elucidating the role of constitutive activation and for the identification of compounds that

can be further examined, we believe that this difference is itself useful in differentiating between the endogenous and non-endogenous versions of the human $5HT_{2A}$ receptor.

D. Result Summary

The results for the GPCRs tested are set forth in Table E where the Per-Cent Increase indicates the percentage difference in results observed for the non-endogenous GPCR as compared to the endogenous GPCR; these values are followed by parenthetical indications as to the type of assay utilized. Additionally, the assay sytem utilized is parenthetically listed (and, in cases where different Host Cells were used, both are listed). As these results indicate, a variety of assays can be utilized to determine constitutive activity of the non-endogenous versions of the human GPCRs.

Those skilled in the art, based upon the foregoing and with reference to information available to the art, are creditied with theability to selelect and/ot maximize a particular assay approach that suites the particular needs of theinvestigator.

Table E

Per-Cent Difference

61.1(AP1-Luc - 293T)

1	

	GPR17	74.5
	(V234K)	(CRE-Luc)
	GPR30	71.6
	(L258K)	(CREB)
0	АРЈ	49.0
	(L247K)	(GTP _Y S)
	ETBR-LP2	48.4(AP1-Luc - 293)

Receptor Identifier

(Codon Mutation)

(N358K)

20

25

GHSR	58.9(CREB - 293)
(V262K)	35.6(CREB - 293T)

- 69 -

MIG	39 (cAMP)
(I230K)	
Serotonin 5HT _{2A}	33.2 (IP ₃)
(C322K)	
Serotonin 5HT _{2C}	39.1(IP ₃)
(S310K)	

Example 6

Tissue Distribution of Endogenous Orphan GPCRs

Using a commercially available human-tissue dot-blot format, endogenous orphan GPCRs

were probed for a determination of the areas where such receptors are localized. Except as indicate
below, the entire receptor cDNA (radiolabelled) was used as the probe: radiolabeled probe was
generated using the complete receptor cDNA (excised from the vector) using a Prime-It IITM

Random Primer Labeling Kit (Stratagene, #300385), according to manufacturer's instructions.

A human RNA Master BlotTM (Clontech, #7770-1) was hybridized with the GPCR

radiolabeled probe and washed under stringent conditions according manufacturer's instructions. The blot was exposed to Kodak BioMax Autoradiography film overnight at -80°C.

Representative dot-blot format results are presented in Figure 8 for GPR1 (8A), GPR30 (8B), and APJ (8C), with results being summarized for all receptors in Table F

Table F

GPCR	Tissue Distribution
	(highest levels, relative to other tissues in
	the dot-blot)
GPR1	Placenta, Ovary, Adrenal

5

20

GPR4	Broad; highest in Heart, Lung, Adrenal,								
	Thyroid, Spinal Cord								
GPR5	Placenta, Thymus, Fetal Thymus								
O. I.O	Lesser levels in spleen, fetal spleen								
GPR7	Liver, Spleen, Spinal Cord, Placenta								
GPR8	No expression detected								
GPR9-6	Thymus, Fetal Thymus								
	Lesser levels in Small Intestine								
GPR18	Spleen, Lymph Node, Fetal Spleen, Testis								
GPR20	Broad								
GPR21	Broad; very low abundance								
GPR22	Heart, Fetal Heart								
	Lesser levels in Brain								
GPR30	Stomach								
GPR31	Broad								
BLR1	Spleen								
CEPR	Stomach, Liver, Thyroid, Putamen								
EBI1	Pancreas								
	Lesser levels in Lymphoid Tissues								
EBI2	Lymphoid Tissues, Aorta, Lung, Spinal Cord								
ETBR-LP2	Broad; Brain Tissue								
GPCR-CNS	Brain								
•	Lesser levels in Testis, Placenta								
GPR-NGA	Pituitary								
	Lesser levels in Brain								
H9	Pituitary								
HB954	Aorta, Cerebeilum								
	Lesser levels in most other tissues								
HM74	Spleen, Leukocytes, Bone marrow, Mammary								
•	Glands, Lung, Trachea								
MIG	Low levels in Kidney, Liver, Pancreas, Lung,								
	Spleen								
ORG1	Pituitary, Stomach, Placenta								

Based upon the foregoing information, it is noted that human GPCRs can also be assessed for distribution in diseased tissue; comparative assessments between "normal" and diseased tissue can then be utilized to determine the potential for over-expression or under-expression of a particular receptor in a diseased state. In those circumstances where it is desirable to utilize the non-endogenous versions of the human GPCRs for the purpose of screening to directly identify

5

10

15

20

--

5

15

candidate compounds of potential therapeutic relevance, it is noted that inverse agonists are useful in the treatment of diseases and disorders where a particular human GPCR is over-expressed, whereas agonists or partial agonists are useful in the treatment of diseases and disorders where a particular human GPCR is under-expressed.

As desired, more detailed, cellular localization of the recepotrs, using techniques well-known to those in the art (e.g., in-situ hybridization) can be utilized to identify particular cells within these tissues where the receptor of interest is expressed.

It is intended that each of the patents, applications, and printed publications mentioned in this patent document be hereby incorporated by reference in their entirety.

As those skilled in the art will appreciate, numerous changes and modifications may be made to the preferred embodiments of the invention without departing from the spirit of the invention. It is intended that all such variations fall within the scope of the invention.

Although a variety of expression vectors are available to those in the art, for purposes of utilization for both the endogenous and non-endogenous human GPCRs, it is most preferred that the vector utilized be pCMV. This vector has been deposited with the American Type Culture Collection (ATCC) on October 13, 1998 (10801 University Blvd., Manassas, VA 20110-2209 USA) under the provsions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purpose of patent Procedure. The vector was tested by the ATCC on _______, 1998 and determined to be viable on _______, 1998. The ATCC has assigned the following deposit number to pCMV: _______.

- 72 -

CLAIMS

What is claimed is:

A constitutively active, non-endogenous version of an endogenous human orphan G protein-coupled receptor (GPCR) comprising the following amino acid residues (carboxy-terminus to amino-terminus orientation) transversing the transmembrane-6 (TM6) and intracellular loop-3 (IC3) regions of the non-endogenous GPCR:

PI AA_{IS} X

wherein:

15

- (1) P¹ is an amino acid residue located within the TM6 region of the nonendogenous GPCR, where P¹ is selected from the group consisting of (i) the endogenous orphan GPCR proline residue, and (ii) a nonendogenous amino acid residue other than proline;
- of (a) the 15 endogenous amino acid residues of the endogenous orphan GPCR, (b) 15 non-endogenous amino acid residues, and (c) a combination of 15 amino acid residues, the combination comprising at least one endogenous amino acid residue of the endogenous orphan GPCR and at least one non-endogenous amino acid residue, excepting that none of the 15 endogenous amino acid residues that are positioned within the TM6 region of the GPCR is proline; and
- (2) X is a non-endogenous amino acid residue located within the IC3 region of said non-endogenous GPCR.
- 2. The non-endogenous human GPCR of claim 1 wherein P1 is the endogenous proline

5

15

residue.

- The non-endogenous human GPCR of claim1 wherein P¹ is a non-endogenous amino acid residue other than a proline residue.
- 4. The non-endogenous human GPCR of claim 1 wherein AA₁₅ are the 15 endogenous amino acid residues of the endogenous GPCR.
- 5. The non-endogenous human GPCR of claim 1 wherein X is selected from the group consisting of lysine, hisitidine, arganine and alanine residues, excepting that when the endogenous amino acid in position X of said endogenous human GPCR is lysine, X is selected from the group consisting of histidine, arginine and alanine.
- The non-endogenous human GPCR of claim 1 wherein X is a lysine residue, excepting that when the endogenous amino acid in position X of said endogenous human GPCR is lysine, X is an amino acid other than lysine.
 - 7. The non-endogenous human GPCR of claim 4 wherein X is a lysine residue, excepting that when the endogenous amino acid in position X of said endogenous human GPCR is lysine, X is an amino acid other than lysine.
 - 8. The non-endogenous, human GPCR of claim 1 wherein P¹ is a proline residue and X is a lysine residue, excepting that when the endogenous amino acid in position X of said endogenous human GPCR is lysine, X is an amino acid other than lysine.
 - 9. A host cell comprising the non-endogenous human GPCR of claim 1.
 - 20 10. The material of claim 9 wherein said host cell is of mammalian origin.
 - 11. The non-endogenous human GPCR of claim 1 in a purified and isolated form.
 - 12. A nucleic acid sequence encoding a constitutively active, non-endogenous version of an endogenous human orphan G protein-coupled receptor (GPCR) comprising the following

- 74 -

nucleic acid sequence region transversing the transmembrane-6 (TM6) and intracellular loop-3 (IC3) regions of the orphan GPCR:

3'-Pcodon (AA-codon)15 Xcodon-5'

wherein:

10

15

20

5 (1) P^{codon} is a nucleic acid encoding region within the TM6 region of the non-endogenous GPCR, where P^{codon} encodes an amino acid selected from the group consisting of (i) the endogenous GPCR proline residue,

and (ii) a non-endogenous amino acid residue other than proline;

(2) (AA-codon)₁₅ are 15 codons encoding 15 amino acid residues selected from the group consisting of (a) the 15 endogenous amino acid residues of the endogenous orphan GPCR, (b) 15 non-endogenous amino acid residues, and (c) a combination of 15 amino acid residues, the combination comprising at least one endogenous amino acid residue of the endogenous orphan GPCR and at least one non-endogenous amino acid residue, excepting that none of the 15 endogenous amino acid residues that are positioned within the TM6

- (3) X_{codon} is a nucleic acid encoding region residue located within the IC3 region of said non-endogenous human GPCR, where X_{codon} encodes a non-endogenous amino acid.
- 13. The nucleic acid sequence of claim 12 wherein P^{codon} encodes an endogenous proline residue.

region of the orphan GPCR is proline; and

14. The nucleic acid sequence of claim 12 wherein Peodon encodes a non-endogenous

amino acid residue other than a proline residue.

5

- 15. The nucleic acid sequence of claim 12 wherein X_{codon} encodes a non-endogenous amino acid selected from the group consisting of lysine, histidine, arginine and alanine, excepting that when the endogenous amino acid in position X of said endogenous human GPCR is lysine, X_{codon} encodes an amino acid selected from the group consisiting of histidine, arginine and alanine.
- 16. The nucleic acid sequence of claim 13 wherein X_{codon} encodes a non-endogenous lysine amino acid excepting that when the endogenous amino acid in position X of said endogenous human GPCR is lysine, X_{codon} encodes an amino acid selected from the group consisiting of histidine, arginine and alanine.
- The nucleic acid sequence of claim 12 wherein X_{codon} is selected from the group consisting of AAA, AAG, GCA, GCG, GCC and GCU.
- The nucleic acid sequence of claim 12 wherein X_{codon} is selected from the group consisting of AAA and AAG.
- 15 19. The nucleic acid sequence of claim 12 wherein P^{codon} is selected from the group consisting of CCA, CCC, CCG and CCU, and X_{codon} is selected from the group consisting of AAA and AAG.
 - 20. A vector comprising the nucleic acid sequence of claim 12.
 - 21. A plasmid comprising the nucleic acid sequence of claim 12.
- 20 22. A host cell comprising the nucleic acid sequence of claim 21.
 - 23. The nucleic acid sequence of claim 12 in a purified and isolated form.
 - 24. A method for selecting for alteration an endogenous amino acid residue within the third intracellular loop of a human G protein-coupled receptor ("GPCR"), said receptor

comprising a transmembrane 6 region and an intracellular loop 3 region, which endogenous amino acid, when altered to a non-endogenous amino acid, constitutively activates said human GPCR, comprising the following steps:

- identifying an endogenous proline residue within the transmembrane 6 region
 of a human GPCR;
 - (b) identifying, by moving in a direction of the carboxy-terminus region of said GPCR towards the amino-terminus region of said GPCR, the endogenous, 16th amino acid residue from said proline residue;
- (c) altering the endogenous residue of step (b) to a non-endogenous amino acid
 residue to create a non-endogenous version of an endogenous human GPCR;
 and
 - (d) determining whether the non-endogenous human GPCR of step (c) is constitutively active.
- The method of claim 24 wherein the amino acid residue that is two residues from said
 proline residue in the transmembrane 6 region, in a carboxy-terminus to aminoterminus direction, is tryptophan.
 - A constitutively active, non-endogenous human GPCR produced by the process of claim 24.
- A constitutively active, non-endogenous human GPCR produced by the process ofclaim 25.
 - 28. An algorithmic approach for creating a non-endogenous, constitutively active version of an endogenous human G protein coupled receptor (GPCR), said endogenous GPCR comprising a transmembrane 6 region and an intracellular loop 3 region, the

algorithmic approach comprising the steps of:

- (a) selecting an endogenous human GPCR comprising a proline residue in the transmembrane-6 region;
- (b) identifying, by counting 16 amino acid residues from the proline residue of step (a), in a carboxy-terminus to amino-terminus direction, an endogenous amino acid residue;
- (c) altering the identified amino acid residue of step (b) to a non-endogenous amino acid residue to create a non-endogenous version of the endogenous human GPCR; and
- determining if the non-endogenous version of the endogenous human GPCR of step (c) is constitutively active.
 - 29. The algorithmic approach of claim 28 wherein the amino acid residue that is two residues from said proline residue in the transmembrane 6 region, in a carboxy-terminus to amino-terminus direction, is tryptophan.
- 15 30. A constitutively active, non-endogenous human GPCR produced by the algorithmic approach of claim 28.
 - A constitutively active, non-endogenous human GPCR produced by the algorithmic approach of claim 29.
- 32. A method for directly identifying a compound selected from the group consisting of

 inverse agonists, agonists and partial agonists to a non-endogenous, constitutively

 activated human G protein coupled receptor, said receptor comprising a

 transmembrane-6 region and an intracellular loop-3 region, comprising the steps of:
 - (a) selecting an endogenous human GPCR;

WO 00/22129

- (b) identifying a proline residue within the transmembrane-6 region of the GPCR of step (a);
- (c) identifying, in a carboxy-terminus to amino-terminus direction, the endogenous, 16th amino acid residue from the proline residue of step (b);
- 5 (d) altering the endogenous amino acid of step (c) to a non-endogenous amino acid;
 - (e) confirming that the non-endogenous GPCR of step (d) is constitutively active;
 - (f) contacting a candidate compound with the non-endogenous, constitutivelyactivated GPCR of step (e); and
- determining, by measurement of the compound efficacy at said contacted receptor, whether said compound is an inverse agonist, agonist or partial agonist of said receptor.
 - 33. The method of claim 32 wherein the non-endogenous amino acid of step (d) is lysine.
 - 34. A compound directly identified by the method of claim 32.
- 15 35. The method of claim 32 wherein the directly identified compound is an inverse agonist.
 - 36. The method of claim 32 wherein the directly identified compound is an agonist.--
 - 37. The method of claim 32 wherein the directly identified compound is a partial agonist.
 - 38. A composition comprising the inverse agonist of claim 35.
- 20 39. A composition comprising the agonist of claim 36.
 - 40. A composition comprising the partial agonist of claim 37.
 - 41. A method for directly identifying an inverse agonist to a non-endogenous,

5

constitutively activated human G protein coupled receptor ("GPCR"), said GPCR comprising a transmembrane-6 region and an intracellular loop-3 region, comprising the steps of:

- (a) selecting an endogenous human GPCR;
- (b) identifying a proline residue within the transmembrane-6 region of the GPCR of step (a);
- (c) identifying, in a carboxy-terminus to amino-terminus direction, the endogenous, 16th amino acid residue from the proline residue of step (b);
- (d) altering the endogenous amino acid of step (c) to a non-endogenous lysine residue;
- (e) confirming that the non-endogenous GPCR of step (d) is constitutively active;
- (f) contacting a candidate compound with the non-endogenous, constitutively-activated GPCR of step (e); and
 - (g) determining, by measurement of the compound efficacy at said contacted receptor, whether said compound is an inverse agonist of said receptor.
 - 42. An inverse agonist directly identified by the method of claim 37.
- 15 43. A composition comprising an inverse agonist of claim 38.

SUBSTITUTE SHEET (RULE 26)

FIG. 3A

FIG. 3B

FIG. 3C

FIG. 3D

FIG. 3E

192

8/17

FIG. 3F

<u>}:</u>:

FIG. 3G

FIG. 3H

FIG. 31

FIG. 3J

FIG. 3K

17/17

FIG. 8A

FIG. 8C

SUBSTITUTE SHEET (RULE 26)

1

SEQUENCE LISTING

(1) GENERAL INFORMATION: (i) APPLICANT: Behan, Dominic P. Chalmers, Derek T. 5 Liaw, Chen W. (ii) TITLE OF INVENTION: Non-Endogenous, Constitutively Activated Human G Protein-Coupled Orphan Receptors (iii) NUMBER OF SEQUENCES: 280 10 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Arena Pharmaceuticals, Inc. (B) STREET: 6166 Nancy Ridge Drive (C) CITY: San Diego 15 (D) STATE: ·CA (E) COUNTRY: USA (F) ZIP: 92122 (v) COMPUTER READABLE FORM: ٠. (A) MEDIUM TYPE: Floppy disk 20 (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: US 25 (B) FILING DATE: (C) CLASSIFICATION: (viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Burgoon, Richard P. (B) REGISTRATION NUMBER: 34,787 30 (ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (619)453-7200 (B) TELEFAX: (619) 453-7210 (2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: 35 (A) LENGTH: 1068 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

				_			
	TATTACTCTC	TGGAGTCTGA	TTTGGAGGAG	AAAGTCCAGC	TGGGAGTTGT	TCACTGGGTC	120
	TCCCTGGTGT	TATATTGTTT	GGCTTTTGTT	CTGGGAATTC	CAGGAAATGC	CATCGTCATT	180
	TGGTTCACGG	GGCTCAAGTG	GAAGAAGACA	GTCACCACTC	TGTGGTTCCT	CAATCTAGCC	240
	ATTGCGGATT	TCATTTTCT	TCTCTTTCTG	CCCCTGTACA	TCTCCTATGT	GGCCATGAAT	300
5	TTCCACTGGC	CCTTTGGCAT	CTGGCTGTGC	AAAGCCAATT	CCTTCACTGC	CCAGTTGAAC	360
	ATGTTTGCCA	GTGTTTTTT	CCTGACAGTG	ATCAGCCTGG	ACCACTATAT	CCACTTGATC	420
	CATCCTGTCT	TATCTCATCG	GCATCGAACC	CTCAAGAACT	CTCTGATTGT	CATTATATTC	480
	ATCTGGCTTT	TGGCTTCTCT	AATTGGCGGT	CCTGCCCTGT	ACTTCCGGGA	CACTGTGGAG	540
	TTCAATAATC	ATACTCTTTG	CTATAACAAT	TTTCAGAAGC	ATGATCCTGA	CCTCACTTTG	600
10	ATCAGGCACC	ATGTTCTGAC	TTGGGTGAAA	TTTATCATTG	GCTATCTCTT	CCCTTTGCTA	660
	ACAATGAGTA	TTTGCTACTT	GTGTCTCATC	TTCAAGGTGA	AGAAGCGAAC	AGTCCTGATC	720
	TCCAGTAGGC	ATTTCTGGAC	AATTCTGGTT	GTGGTTGTGG	CCTTTGTGGT	TTGCTGGACT	780
	CCTTATCACC	TGTTTAGCAT	TTGGGAGCTC	ACCATTCACC	ACAATAGCTA	TTCCCACCAT	840
	GTGATGCAGG	CTGGAATCCC	CCTCTCCACT	GGTTTGGCAT	TCCTCAATAG	TTGCTTGAAC	900
15	CCCATCCTTT	ATGTCCTAAT	TAGTAAGAAG	TTCCAAGCTC	GCTTCCGGTC	CTCAGTTGCT	960
	GAGATACTCA	AGTACACACT	GTGGGAAGTC	AGCTGTTCTG	GCACAGTGAG	TGAACAGCTC	1020
	AGGAACTCAG	AAACCAAGAA	TCTGTGTCTC	CTGGAAACAG	CTCAATAA		1068
	(3) INFORMA	TION FOR SE	Q ID NO:2:				
20	((EQUENCE CHA A) LENGTH: B) TYPE: am C) STRANDED D) TOPOLOGY	355 amino a ino acid NESS:	cids			
	(ii)	MOLECULE TY	PE: protein				
25	(xi)	SEQUENCE DE	SCRIPTION.	SEO ID NO 2			

25

Met Glu Asp Leu Glu Glu Thr Leu Phe Glu Glu Phe Glu Asn Tyr Ser 1 5

Tyr Asp Leu Asp Tyr Tyr Ser Leu Glu Ser Asp Leu Glu Glu Lys Val

30 Gln Leu Gly Val Val His Trp Val Ser Leu Val Leu Tyr Cys Leu Ala 40 45

	Phe	Val 50	Leu	Gly	Ile	Pro	Gly 55	Asn	Ala	Ile	Val	Ile 60	Trp	Phe	Thr	Gly
	Leu 65	Lys	Trp	Lys	Lys	Thr 70	Val	Thr	Thr	Leu	Trp 75	Phe	Leu	Asn	Leu	Ala 80
5	Ile	Ala	Asp	Phe	Ile 85	Phe	Leu	Leu	Phe	Leu 90	Pro	Leu	Tyr	Ile	Ser 95	Tyr
	Val	Ala	Met	Asn 100	Phe	His	Trp	Pro	Phe 105		Ile	Trp	Leu	Cys 110	-	Ala
10	Asn	Ser	Phe 115	Thr	Ala	Gln	Leu	Asn 120		Phe	Ala	Ser	Val 125	Phe	Phe	Leu
	Thr	Val 130	Ile	Ser	Leu	Asp	His 135	Tyr	Ile	His	Leu	Ile 140	His	Pro	Val	Leu
	Ser 145	His	Arg	His	Arg	Thr 150	Leu	Lys	Asn	Ser	Leu 155	Ile	Val	Ile	Ile	Phe 160
15	Ile	Trp	Leu	Leu	Ala 165	Ser	Leu	Ile	Gly	Gly 170	Pro	Ala	Leu	Tyr	Phe 175	Arg
	Asp	Thr	Val	Glu 180	Phe	Asn	Asn	His	Thr 185	Leu	Cys	Tyr	Asn	Asn 190	Phe	Gln
20	Lys	His	Asp 195	Pro	Asp	Leu	Thr	Leu 200	Ile	Arg	His	His	Val 205	Leu	Thr	Trp
	Val	Lys 210	Phe	Ile	Ile	Gly	Tyr 215	Leu	Phe	Pro	Leu	Leu 220	Thr	Met	Ser	Ile
	Cys 225	Tyr	Leu	Cys	Leu	Ile 230	Phe	Lys	Val	Lys	Lys 235	Arg	Thr	Val	Leu	Ile 240
25	Ser	Ser	Arg	His	Phe 245	Trp	Thr ·	Ile	Leu	Val 250	Val	Val	Val	Ala	Phe 255	Val
	Val	Cys	Trp	Thr 260	Pro	Tyr	His	Leu	Phe 265	Ser	Ile	Trp	Glu	Leu 270	Thr	Ile
30	His	His	Asn 275	Ser	Tyr	Ser	His	His 280	Val	Met	Gln	Ala	Gly 285	Ile	Pro	Leu
	Ser	Thr 290	Gly	Leu	Ala	Phe	Leu 295	Asn	Ser	Cys	Leu	Asn 300	Pro	Ile	Leu	Tyr
	Val 305	Leu	Ile	Ser	Lys	Lys 310	Phe	Gln	Ala	Arg	Phe 315	Arg	Ser	Ser	Val	Ala 320
35	Glu	Ile	Leu	Lys	Tyr 325	Thr	Leu	Trp	Glu	Val 330	Ser	Сув	Ser	Gly	Thr 335	Val
	Ser	Glu	Gln	Leu	Arg	Asn	Ser	Glu	Thr	Lys	Asn	Leu	Сув	Leu	Leu	Glu

340 345 350

Thr Ala Gln 355

(4) INFORMATION FOR SEQ ID NO:3:

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1089 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATGGGCAACC ACACGTGGGA GGGCTGCCAC GTGGACTCGC GCGTGGACCA CCTCTTTCCG 60 CCATCCCTCT ACATCTTTGT CATCGGCGTG GGGCTGCCCA CCAACTGCCT GGCTCTGTGG 120 GCGGCCTACC GCCAGGTGCA ACAGCGCAAC GAGCTGGGCG TCTACCTGAT GAACCTCAGC 180 15 ATCGCCGACC TGCTGTACAT CTGCACGCTG CCGCTGTGGG TGGACTACTT CCTGCACCAC 240 GACAACTGGA TCCACGGCCC CGGGTCCTGC AAGCTCTTTG GGTTCATCTT CTACACCAAT 300 ATCTACATCA GCATCGCCTT CCTGTGCTGC ATCTCGGTGG ACCGCTACCT GGCTGTGGCC 360 CACCCACTCC GCTTCGCCCG CCTGCGCCGC GTCAAGACCG CCGTGGCCGT GAGCTCCGTG 420 GTCTGGGCCA CGGAGCTGGG CGCCAACTCG GCGCCCCTGT TCCATGACGA GCTCTTCCGA 480 20 GACCGCTACA ACCACACCTT CTGCTTTGAG AAGTTCCCCA TGGAAGGCTG GGTGGCCTGG 540 ATGAACCTCT ATCGGGTGTT CGTGGGCTTC CTCTTCCCGT GGGCGCTCAT GCTGCTGTCG 600 TACCGGGGCA TCCTGCGGGC CGTGCGGGGC AGCGTGTCCA CCGAGCGCCA GGAGAAGGCC AAGATCAAGC GGCTGGCCCT CAGCCTCATC GCCATCGTGC TGGTCTGCTT TGCGCCCTAT CACGTGCTCT TGCTGTCCCG CAGCGCCATC TACCTGGGCC GCCCCTGGGA CTGCGGCTTC 25 GAGGAGCGCG TCTTTTCTGC ATACCACAGC TCACTGGCTT TCACCAGCCT CAACTGTGTG GCGGACCCCA TCCTCTACTG CCTGGTCAAC GAGGGCGCCC GCAGCGATGT GGCCAAGGCC 900 CTGCACAACC TGCTCCGCTT TCTGGCCAGC GACAAGCCCC AGGAGATGGC CAATGCCTCG 960 CTCACCCTGG AGACCCCACT CACCTCCAAG AGGAACAGCA CAGCCAAAGC CATGACTGGC 1020 AGCTGGGCGG CCACTCCGCC TTCCCAGGGG GACCAGGTGC AGCTGAAGAT GCTGCCGCCA 1080 30 GCACAATGA 1089

5

(5) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 362 amino acids
 - (B) TYPE: amino acid
- (C) STRANDEDNESS:

- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
- Arg Asn Glu Leu Gly Val Tyr Leu Met Asn Leu Ser Ile Ala Asp Leu 50 55 60
 - Leu Tyr Ile Cys Thr Leu Pro Leu Trp Val Asp Tyr Phe Leu His His 65 70 75 80
- Asp Asn Trp Ile His Gly Pro Gly Ser Cys Lys Leu Phe Gly Phe Ile 20 85 90 95
 - Phe Tyr Thr Asn Ile Tyr Ile Ser Ile Ala Phe Leu Cys Cys Ile Ser 100 105 110
 - Val Asp Arg Tyr Leu Ala Val Ala His Pro Leu Arg Phe Ala Arg Leu 115 120 125
- 25 Arg Arg Val Lys Thr Ala Val Ala Val Ser Ser Val Val Trp Ala Thr 130 135 140
 - Glu Leu Gly Ala Asn Ser Ala Pro Leu Phe His Asp Glu Leu Phe Arg 145 150 150 155 160
- Asp Arg Tyr Asn His Thr Phe Cys Phe Glu Lys Phe Pro Met Glu Gly 30 165 170 175
 - Trp Val Ala Trp Met Asn Leu Tyr Arg Val Phe Val Gly Phe Leu Phe 180 185 190
 - Pro Trp Ala Leu Met Leu Leu Ser Tyr Arg Gly Ile Leu Arg Ala Val 195 200 205
- Arg Gly Ser Val Ser Thr Glu Arg Gln Glu Lys Ala Lys Ile Lys Arg 210 215 220
 - Leu Ala Leu Ser Leu Ile Ala Ile Val Leu Val Cys Phe Ala Pro Tyr

	225					230					235					240	
	His	Val	Leu	Leu	Leu 245	Ser	Arg	Ser	Ala	Ile 250	Tyr	Leu	Gly	Arg	Pro 255	Trp	
5	Asp	Суз	Gly	Phe 260	Glu	Glu	Arg	Val	Phe 265	Ser	Ala	Tyr	His	Ser 270	Ser	Leu	
	Ala	Phe	Thr 275	Ser	Leu	Asn	Cys	Val 280	Ala	Asp	Pro	Ile	Leu 285	Tyr	Cys	Leu	
	Val	Asn 290	Glu	Gly	Ala	Arg	Ser 295	Asp	Val	Ala	Lys	Ala 300	Leu	His	Asn	Leu	
10	Leu 305	Arg	Phe	Leu	Ala	Ser 310	Asp	Lys	Pro	Gln	Glu 315	Met	Ala	Asn	Ala	Ser 320	
	Leu	Thr	Leu	Glu	Thr 325	Pro	Leu	Thr	Ser	330 TÀa	Arg	Asn	Ser	Thr	Ala 335	Lys	
15	Ala	Met	Thr	Gly 340	Ser	Trp	Ala	Ala	Thr 345	Pro	Pro	Ser	Gln	Gly 350	Asp	Gln	
	Val	Gln	Leu 355	Lys	Met	Leu	Pro	Pro 360	Ala	Gln							
	(6) INFO	RMATI	ION I	FOR S	SEQ I	D NO	0:5:										
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear																
	(ii	i) MC	OLECT	LE 1	TYPE:	: DNZ	4 (ge	enomi	ic)								
25	(xi	i) SE	EQUEN	ICE I	DESC	RIPT	ON:	SEQ	ID 1	IO:5:	:						
	TATGAATTO	CA GA	ATGCT	CTA	ACC	STCC	CTGC										30
	(7) INFOR	TAMS	ON E	FOR S	SEQ I	D NO	0:6:		,								
30	(i)	(B) (C)	QUENC LEN TYP STF	IGTH: PE: 1 RANDE	: 30 nucle EDNES	base eic a SS: s	e pai cid singl	rs									
	(ii	L) MC	OLECU	TLE T	YPE:	: DNA	4 (ge	enomi	ic)								
	(xi	i) SE	EQUEN	ICE I	DESCI	RIPTI	ON:	SEQ	ID 1	10 : 6 :	:						
35	TCCGGATC	CA CO	TGC#	CCT	G CGC	CCTGC	CACC										30
	(8) INFORMATION FOR SEQ ID NO: 7:																

7

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1002 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

5

30

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ATGGAGTCCT CAGGCAACCC AGAGAGCACC ACCTTTTTT ACTATGACCT TCAGAGCCAG 60 CCGTGTGAGA ACCAGGCCTG GGTCTTTGCT ACCCTCGCCA CCACTGTCCT GTACTGCCTG 10 GTGTTTCTCC TCAGCCTAGT GGGCAACAGC CTGGTCCTGT GGGTCCTGGT GAAGTATGAG AGCCTGGAGT CCCTCACCAA CATCTTCATC CTCAACCTGT GCCTCTCAGA CCTGGTGTTC 240 GCCTGCTTGT TGCCTGTGTG GATCTCCCCA TACCACTGGG GCTGGGTGCT GGGAGACTTC 300 CTCTGCAAAC TCCTCAATAT GATCTTCTCC ATCAGCCTCT ACAGCAGCAT CTTCTTCCTG 360 ACCATCATGA CCATCCACCG CTACCTGTCG GTAGTGAGCC CCCTCTCCAC CCTGCGCGTC 420 15 CCCACCCTCC GCTGCCGGGT GCTGGTGACC ATGGCTGTGT GGGTAGCCAG CATCCTGTCC 480 TCCATCCTCG ACACCATCTT CCACAAGGTG CTTTCTTCGG GCTGTGATTA TTCCGAACTC 540 ACGTGGTACC TCACCTCCGT CTACCAGCAC AACCTCTTCT TCCTGCTGTC CCTGGGGATT 600 ATCCTGTTCT GCTACGTGGA GATCCTCAGG ACCCTGTTCC GCTCACGCTC CAAGCGGCGC 660 CACCGCACGG TCAAGCTCAT CTTCGCCATC GTGGTGGCCT ACTTCCTCAG CTGGGGTCCC 20 TACAACTTCA CCCTGTTTCT GCAGACGCTG TTTCGGACCC AGATCATCCG GAGCTGCGAG GCCAAACAGC AGCTAGAATA CGCCCTGCTC ATCTGCCGCA ACCTCGCCTT CTCCCACTGC TGCTTTAACC CGGTGCTCTA TGTCTTCGTG GGGGTCAAGT TCCGCACACA CCTGAAACAT 900 GTTCTCCGGC AGTTCTGGTT CTGCCGGCTG CAGGCACCCA GCCCAGCCTC GATCCCCCAC 960 1002 TCCCCTGGTG CCTTCGCCTA TGAGGGCGCC TCCTTCTACT GA

- 25 (9) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 333 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

	Met 1	Glu	Ser	Ser	Gly 5	Asn	Pro	Glu	Ser	Thr 10	Thr	Phe	Phe	Tyr	Tyr 15	Asp
	Leu	Gln	Ser	Gln 20	Pro	Cys	Glu	Asn	Gln 25	Ala	Trp	Val	Phe	Ala 30	Thr	Lat
5	Ala	Thr	Thr 35	Val	Leu	Tyr	Cys	Leu 40	Val	Phe	Leu	Leu	Ser 45	Leu	Val	Gly
	Asn	Ser 50	Leu	Val	Leu	Trp	Val 55	Leu	Val	Lys	Tyr	Glu 60	Ser	Leu	Glu	Ser
10	Leu 65	Thr	Asn	Ile	Phe	Ile 70	Leu	Asn	Leu	Сув	Leu 75	Ser	Asp	Leu	Val	Phe 80
	Ala	Cys	Leu	Leu	Pro 85	Val	Trp	Ile	Ser	Pro 90	Tyr	His	Trp	Gly	Trp 95	Val
	Leu	Gly	Asp	Phe 100	Leu	Суз	Lys	Leu	Leu 105	Asn	Met	Ile	Phe	Ser 110	Ile	Ser
15	Leu	Tyr	Ser 115	Ser	Ile	Phe	Phe	Leu 120	Thr	Ile	Met	Thr	Ile 125	His	Arg	Tyr
	Leu	Ser 130	Val	Val	Ser	Pro	Leu 135	Ser	Thr	Leu	Arg	Val 140	Pro	Thr	Leu	Arg
20	Cys 145	Arg	Val	Leu	Val	Thr 150	Met	Ala	Val	Trp	Val 155	Ala	Ser	Ile	Leu	Ser 160
	Ser	Ile	Leu	Asp	Thr 165	Ile	Phe	His	Lys	Val 170	Leu	Ser	Ser	Gly	Cys 175	Asp
	Tyr	Ser	Glu	Leu 180	Thr	Trp	Tyr	Leu	Thr 185	Ser	Val	Tyr	Gln	His 190	Asn	Leu
25	Phe	Phe	Leu 195	Leu	Ser	Leu	Gly	Ile 200	Ile	Leu	Phe	Суз	Tyr 205	Val	Glu	Ile
	Leu	Arg 210	Thr	Leu	Phe	Arg	Ser 215	Arg	Ser	Lys	Arg	Arg 220	His	Arg	Thr	Val
30	Lys 225	Leu	Ile	Phe	Ala	Ile 230	Val	Val	Ala	Tyr	Phe 235	Leu	Ser	Trp	Gly	Pro 240
	Tyr	Asn	Phe	Thr	Leu 245	Phe	Leu	Gln	Thr	Leu 250	Phe	Arg	Thr	Gln	Ile 255	Ile
	Arg	Ser	Cys	Glu 260	Ala	Lys	Gln	Gln	Leu 265	Glu	Tyr	Ala	Leu	Leu 270	Ile	Сув
35	Arg	Asn	Leu 275	Ala	Phe	Ser		Сув 280	Cys	Phe	Asn	Pro.	Val 285	Leu	Tyr	Val

	Phe Val Gly Val Lys Phe Arg Thr His Leu Lys His Val Leu Arg Gln 290 295 300	. •										
	Phe Trp Phe Cys Arg Leu Gln Ala Pro Ser Pro Ala Ser Ile Pro His 305 310 315 320											
5	Ser Pro Gly Ala Phe Ala Tyr Glu Gly Ala Ser Phe Tyr 325 330											
	(10) INFORMATION FOR SEQ ID NO:9:											
10	(C) STRANDEDNESS: single (D) TOPOLOGY: linear											
	(ii) MOLECULE TYPE: DNA (genomic)											
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:											
15	GCAAGCTTGG GGGACGCCAG GTCGCCGGCT	30										
	(11) INFORMATION FOR SEQ ID NO:10:											
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear											
	(ii) MOLECULE TYPE: DNA (genomic)											
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:											
	GCGGATCCGG ACGCTGGGGG AGTCAGGCTG C	31										
25	(12) INFORMATION FOR SEQ ID NO:11:											
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 987 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear											
	(ii) MOLECULE TYPE: DNA (genomic)											
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:											
	ATGGACAACG CCTCGTTCTC GGAGCCCTGG CCCGCCAACG CATCGGGCCC GGACCCGGCG	60										
25		120										
35	CCAGTTGTCT ACGCGGTGAT CTGCGCCGTG GGTCTGGCGG GCAACTCCGC CGTGCTGTAC	100										

PCT/US99/23938 WO 00/22129

10

	GTGTTGCTGC GGGCGCCCCG CATGAAGACC GTCACCAACC TGTTCATCCT CAACCTGGCC	240
	ATCGCCGACG AGCTCTTCAC GCTGGTGCTG CCCATCAACA TCGCCGACTT CCTGCTGCGG	300
	CAGTGGCCCT TCGGGGMGCT CATGTGCAAG CTCATCGTGG CTATCGACCA GTACAACACC	360
	TTCTCCAGCC TCTACTTCCT CACCGTCATG AGCGCCGACC GCTACCTGGT GGTGTTGGCC	420
5 .	ACTGCGGAGT CGCGCCGGGT GGCCGGCCGC ACCTACAGCG CCGCGCGCGC GGTGAGCCTG	480
	GCCGTGTGGG GGATCGTCAC ACTCGTCGTG CTGCCCTTCG CAGTCTTCGC CCGGCTAGAC	540
	GACGAGCAGG GCCGGCGCA GTGCGTGCTA GTCTTTCCGC AGCCCGAGGC CTTCTGGTGG	600
	CGCGCGAGCC GCCTCTACAC GCTCGTGCTG GGCTTCGCCA TCCCCGTGTC CACCATCTGT	660
	GTCCTCTATA CCACCCTGCT GTGCCGGCTG CATGCCATGC	720
10	GCCCTGGAGC GCGCCAAGAA GCGGGTGACC TTCCTGGTGG TGGCAATCCT GGCGGTGTGC	780
	CTCCTCTGCT GGACGCCCTA CCACCTGAGC ACCGTGGTGG CGCTCACCAC CGACCTCCCG	840
	CAGACGCCGC TGGTCATCGC TATCTCCTAC TTCATCACCA GCCTGACGTA CGCCAACAGC	900
	TGCCTCAACC CCTTCCTCTA CGCCTTCCTG GACGCCAGCT TCCGCAGGAA CCTCCGCCAG	960
	CTGATAACTT GCCGCGCGC AGCCTGA	987
15	(13) INFORMATION FOR SEQ ID NO:12:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 328 amino acids(B) TYPE: amino acid(C) STRANDEDNESS:(D) TOPOLOGY: not relevant	
	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
	Met Asp Asn Ala Ser Phe Ser Glu Pro Trp Pro Ala Asn Ala Ser Glu 1 5 10 15	У
25	Pro Asp Pro Ala Leu Ser Cys Ser Asn Ala Ser Thr Leu Ala Pro Le 20 25 30	u
	Pro Ala Pro Leu Ala Val Ala Val Pro Val Val Tyr Ala Val Ile Cy 35 40 45	's
30	Ala Val Gly Leu Ala Gly Asn Ser Ala Val Leu Tyr Val Leu Leu An 50 55 60	g

Ala Pro Arg Met Lys Thr Val Thr Asn Leu Phe Ile Leu Asn Leu Ala 65 70 75 80

		Ile	Ala	Asp	Glu	Leu 85	Phe	Thr	Leu	Val		Pro	Ile	Asn	Ile		Asp
,		Phe	Leu	Leu	Arg		Tro	Pro	Phe	Glv	90 Glu	I.e.u	Met	'Cve	Lys	95 Lev	Tle
					100					105		Deu	Mec	Cys	110		116
5		Val	Ala	Ile 115	Asp	Gln	Tyr	Asn	Thr 120		Ser	Ser	Leu	Tyr 125	Phe	Leu	Thr
		Val	Met 130	Ser	Ala	Asp	Arg	Tyr 135	Leu	Val	Val	Leu	Ala 140	Thr	Ala	Glu	Ser
10		Arg 145	Arg	Val	Ala	Gly	Arg 150	Thr	Tyr	Ser	Ala	Ala 155	Arg	Ala	Val	Ser	Leu 160
		Ala	Val	Trp	Gly	Ile 165	Val	Thr	Leu	Val	Val 170	Leu	Pro	Phe	Ala	Val 175	Phe
		Ala	Arg	Leu	Asp 180	Asp	Glu	Gln	Gly	Arg 185	Arg	Gln	Cys	Val	Leu 190	Val	Phe
15		Pro	Gln	Pro 195	Glu	Ala	Phe	Trp	Trp 200	Arg	Ala	Ser	Arg	Leu 205	Tyr	Thr	Leu
		Val	Leu 210	Gly	Phe	Ala	Ile	Pro 215	Val	Ser	Thr	Ile	Cys 220	Val	Leu	Tyr	Thr
20		Thr 225	Leu	Leu	Суз	Arg	Leu 230	His	Ala	Met	Arg	Leu 235	Asp	Ser	His	Ala	Lys 240
		Ala	Leu	Glu	Arg	Ala 245	Lys	Lys	Arg	Val	Thr 250	Phe	Leu	Val	Val	Ala 255	Ile
		Leu	Ala	Val	Cys 260	Leu	Leu	Cys	Trp	Thr 265	Pro	Tyr	His	Leu	Ser 270	Thr	Val
25		Val	Ala	Leu 275	Thr	Thr	Asp	Leu	Pro 280	Gln	Thr	Pro	Leu	Val 285	Ile	Ala	Ile
		Ser	Tyr 290	Phe	Ile	Thr	Ser	Leu 295	Thr	Tyr	Ala	Asn	Ser 300	Cys	Leu	Asn	Pro
30		Phe 305	Leu	Tyr	Ala		Leu 310	Asp	Ala	Ser	Phe	Arg 315	Arg	Asn	Leu		Gln 320
		Leu	Ile	Thr	Cys	Arg 325	Ala	Ala	Ala								
	(14)	INFO	RMAT	NOI	FOR	SEQ	ID N	O:13	:								
35		(i)	(A) (B) (C)	LEN TYP STR	E CH GTH: E: n ANDE OLOG	30 ucle DNES	base ic a S: s	pai cid ingl	rs								

	(ii) MOLECULE TYPE: DNA (genomic)	
•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
	CGGAATTCGT CAACGGTCCC AGCTACAATG	30
	(15) INFORMATION FOR SEQ ID NO:14:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
	ATGGATCCCA GGCCCTTCAG CACCGCAATA T	31
	(16) INFORMATION FOR SEQ ID NO:15:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1002 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
	ATGCAGGCCG CTGGGCACCC AGAGCCCCTT GACAGCAGGG GCTCCTTCTC CCTCCCCACG	60
	ATGGGTGCCA ACGTCTCTCA GGACAATGGC ACTGGCCACA ATGCCACCTT CTCCGAGCCA	120
	CTGCCGTTCC TCTATGTGCT CCTGCCCGCC GTGTACTCCG GGATCTGTGC TGTGGGGCTG	180
	ACTGGCAACA CGGCCGTCAT CCTTGTAATC CTAAGGGCGC CCAAGATGAA GACGGTGACC	240
25	AACGTGTTCA TCCTGAACCT GGCCGTCGCC GACGGGCTCT TCACGCTGGT ACTGCCCGTC	300
	AACATCGCGG AGCACCTGCT GCAGTACTGG CCCTTCGGGG AGCTGCTCTG CAAGCTGGTG	360
	CTGGCCGTCG ACCACTACAA CATCTTCTCC AGCATCTACT TCCTAGCCGT GATGAGCGTG	420
	GACCGATACC TGGTGGTGCT GGCCACCGTG AGGTCCCGCC ACATGCCCTG GCGCACCTAC	480
	CGGGGGGCGA AGGTCGCCAG CCTGTGTGTC TGGCTGGGCG TCACGGTCCT GGTTCTGCCC	540
30	TTCTTCTCTT TCGCTGGCGT CTACAGCAAC GAGCTGCAGG TCCCAAGCTG TGGGCTGAGC	600
	TTCCCGTGGC CCGAGCGGGT CTGGTTCAAG GCCAGCCGTG TCTACACTTT GGTCCTGGGC	660
	TTCCTCCTCC CCGTGTGCAC CATCTGTGTG CTCTACACAG ACCTCCTGCG CAGGCTGCGG	720

	GCCGTGCGGC TCCGCTCTGG AGCCAAGGCT CTAGGCAAGG CCAGGCGGAA GGTGACCGTC 780
	CTGGTCCTCG TCGTGCTGGC CGTGTGCCTC CTCTGCTGGA CGCCCTTCCA CCTGGCCTCT 840
	GTCGTGGCCC TGACCACGGA CCTGCCCCAG ACCCCACTGG TCATCAGTAT GTCCTACGTC 900
	ATCACCAGCC TCACGTACGC CAACTCGTGC CTGAACCCCT TCCTCTACGC CTTTCTAGAT 960
5	GACAACTTCC GGAAGAACTT CCGCAGCATA TTGCGGTGCT GA 1002
	(17) INFORMATION FOR SEQ ID NO:16:
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 333 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
15	Met Gln Ala Ala Gly His Pro Glu Pro Leu Asp Ser Arg Gly Ser Phe 1 5 10 15
	Ser Leu Pro Thr Met Gly Ala Asn Val Ser Gln Asp Asn Gly Thr Gly 20 25 30
	His Asn Ala Thr Phe Ser Glu Pro Leu Pro Phe Leu Tyr Val Leu Leu 35 40 45
20	Pro Ala Val Tyr Ser Gly Ile Cys Ala Val Gly Leu Thr Gly Asn Thr 50 55 60
	Ala Val Ile Leu Val Ile Leu Arg Ala Pro Lys Met Lys Thr Val Thr 65 70 75 80
25	Asn Val Phe Ile Leu Asn Leu Ala Val Ala Asp Gly Leu Phe Thr Leu 85 90 95
	Val Leu Pro Val Asn Ile Ala Glu His Leu Leu Gln Tyr Trp Pro Phe 100 105 110
	Gly Glu Leu Leu Cys Lys Leu Val Leu Ala Val Asp His Tyr Asn Ile 115 120 125
30	Phe Ser Ser Ile Tyr Phe Leu Ala Val Met Ser Val Asp Arg Tyr Leu 130 135 140
	Val Val Leu Ala Thr Val Arg Ser Arg His Met Pro Trp Arg Thr Tyr 145 150 155 160
35	Arg Gly Ala Lys Val Ala Ser Leu Cys Val Trp Leu Gly Val Thr Val 165 170 175

		Leu	Val	Leu	Pro 180	Phe	Phe	Ser	Phe	Ala 185	Gly	Val	Tyr	Ser	Asn 190	Glu	Leu	
		Gln	Val	Pro		Cys	Gly	Leu	Ser		Pro	Trp	Pro	Glu		Val	Trp	
				195					200					205				
5		Phe	Lys 210	Ala	Ser	Arg	Val	Tyr 215	Thr	Leu	Val	Leu	Gly 220	Phe	Val	Leu	Pro	
		Val 225	Cys	Thr	Ile	Cys	Val 230	Leu	Tyr	Thr	Asp	Leu 235	Leu	Arg	Arg	Leu	Arg 240	
10		Ala	Val	Arg	Leu	Arg 245	Ser	Gly	Ala	Lys	Ala 250	Leu	Gly	Lys	Ala	Arg 255	Arg	
		Lys	Val	Thr	Val 260	Leu	Val	Leu	Val	Val 265	Leu	Ala	Val	Cys	Leu 270	Leu	Сув	
		Trp	Thr	Pro 275	Phe	His	Leu	Ala	Ser 280	Val	Val	Ala	Leu	Thr 285	Thr	Asp	Leu	
15		Pro	Gln 290	Thr	Pro	Leu	Val	Ile 295	Ser	Met	Ser	Tyr	Val 300	Ile	Thr	Ser	Leu	
		Thr 305	Tyr	Ala	Asn	Ser	Cys 310	Leu	Asn	Pro	Phe	Leu 315	Tyr	Ala	Phe	Leu	Asp 320	
20		Asp	Asn	Phe	Arg	Lys 325	Asn	Phe	Arg	Ser	Ile 330	Leu	Arg	Суз			•	
	(18)	INF	ORMA'	TION	FOR	SEQ	ID 1	NO:1	7:									
		(i		QUEN														
25			•	TY!					le									
			(D) TO:	POLO	GY:	line	ar										
		(i:	i) M	OLEC	ULE	TYPE	: DN	A (g	enom	ic)								
		(x	i) S	EQUE	NCE :	DESC	RIPT	ION:	SEQ	ID I	NO:1	7:						
	ACGA	ATTC	AG C	CATG	GTCC	T TG.	AGGT	gagt	GAC	CACC	AAG	TGCT.	TAAA					48
30	(19)	INF	ORMA	TION	FOR	SEQ	ID	NO:1	8:									
		(i	•	QUEN														
			(B) TY) ST	PE:	nucl	eic	acid										
35) TO					16									
		(i	i) M	OLEC	ULE	TYPE	: DN	A (g	enom	ic)								

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

15

GAGGATCCTG GAATGCGGGG AAGTCAG 27

(20) INFORMATION FOR SEQ ID NO:19:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1107 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

10 ATGGTCCTTG AGGTGAGTGA CCACCAAGTG CTAAATGACG CCGAGGTTGC CGCCCTCCTG 60 GAGAACTTCA GCTCTTCCTA TGACTATGGA GAAAACGAGA GTGACTCGTG CTGTACCTCC CCGCCCTGCC CACAGGACTT CAGCCTGAAC TTCGACCGGG CCTTCCTGCC AGCCCTCTAC AGCCTCCTCT TTCTGCTGGG GCTGCTGGGC AACGGCGCGG TGGCAGCCGT GCTGCTGAGC 240 CGGCGGACAG CCCTGAGCAG CACCGACACC TTCCTGCTCC ACCTAGCTGT AGCAGACACG 300 15 CTGCTGGTGC TGACACTGCC GCTCTGGGCA GTGGACGCTG CCGTCCAGTG GGTCTTTGGC 360 TCTGGCCTCT GCAAAGTGGC AGGTGCCCTC TTCAACATCA ACTTCTACGC AGGAGCCCTC 420 CTGCTGGCCT GCATCAGCTT TGACCGCTAC CTGAACATAG TTCATGCCAC CCAGCTCTAC 480 CGCCGGGGGC CCCCGGCCCG CGTGACCCTC ACCTGCCTGG CTGTCTGGGG GCTCTGCCTG 540 CTTTTCGCCC TCCCAGACTT CATCTTCCTG TCGGCCCACC ACGACGAGGG CCTCAACGCC 600 20 ACCCACTGCC AATACAACTT CCCACAGGTG GGCCGCACGG CTCTGCGGGT GCTGCAGCTG 660 GTGGCTGGCT TTCTGCTGCC CCTGCTGGTC ATGGCCTACT GCTATGCCCA CATCCTGGCC 720 GTGCTGCTGG TTTCCAGGGG CCAGCGGCGC CTGCGGGCCA TGCGGCTGGT GGTGGTGGTC 780 GTGGTGGCCT TTGCCCTCTG CTGGACCCCC TATCACCTGG TGGTGCTGGT GGACATCCTC 840 ATGGACCTGG GCGCTTTGGC CCGCAACTGT GGCCGAGAAA GCAGGGTAGA CGTGGCCAAG 900 TCGGTCACCT CAGGCCTGGG CTACATGCAC TGCTGCCTCA ACCCGCTGCT CTATGCCTTT 960 GTAGGGGTCA AGTTCCGGGA GCGGATGTGG ATGCTGCTCT TGCGCCTGGG CTGCCCCAAC 1020 CAGAGAGGGC TCCAGAGGCA GCCATCGTCT TCCCGCCGGG ATTCATCCTG GTCTGAGACC 1080 TCAGAGGCCT CCTACTCGGG CTTGTGA 1107

(21) INFORMATION FOR SEQ ID NO:20:

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 368 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein															
	· (ii) MO	LECU	LE I	YPE:	pro	tein	l								
	(xi) SE	QUEN	CE I	ESCR	IPTI	ON:	SEQ	ID N	10:20):					
	Met 1	Val	Leu	Glu	Val 5	Ser	Asp	His	Gln	Val 10	Leu	Asn	Asp	Ala	Glu 15	Val
10	Ala	Ala	Leu	Leu 20	Glu	Asn	Phe	Ser	Ser 25	Ser	Tyr	Asp	Tyr	Gly 30	Glu	Asn
	Glu	Ser	Asp 35	Ser	Cys	Cys	Thr	Ser 40	Pro	Pro	Сув	Pro	Gln 45	Asp	Phe	Ser
15	Leu	Asn 50	Phe	Asp	Arg	Ala	Phe 55	Leu	Pro	Ala	Leu	Tyr 60	Ser	Leu	Leu	Phe
	Leu 65	Leu	Gly	Leu	Leu	Gly 70	Asn	Gly	Ala	Val	Ala 75	Ala	Val	Leu	Leu	Ser 80
	Arg	Arg	Thr	Ala	Leu 85	Ser	Ser	Thr	Asp	Thr 90	Phe	Leu	Leu	His	Leu 95	Ala
20	Val	Ala	Asp	Thr 100	Leu	Leu	Val	Leu	Thr 105	Leu	Pro	Leu	Trp	Ala 110	Val	Asp
	Ala	Ala	Val 115	Gln	Trp	Val	Phe	Gly 120	Ser	Gly	Leu	Cys	Lys 125	Val	Ala	Gly
25	Ala	Leu 130	Phe	Asn	Ile	Asn	Phe 135	Tyr	Ala	Gly	Ala	Leu 140	Leu	Leu	Ala	Cys
	Ile 145	Ser	Phe	Asp	Arg	Tyr 150	Leu	Asn	Ile	Val	His 155	Ala	Thr	Gln	Leu	Туг 160
	Arg	Arg	Gly	Pro	Pro 165	Ala	Arg	Val	Thr	Leu 170		Суз	Leu	Ala	Val 175	Trp
30	Gly	Leu	Сув	Leu 180		Phe	Ala	Leu	Pro 185		Phe	Ile	Phe	Leu 190		Ala
	His	His	Asp 195		Arg	Leu	Asn	Ala 200		His	Cys	Gln	Tyr 205		Phe	Pro
35	Gln	Val 210	Gly	Arg	Thr	Ala	Leu 215		Val	Leu	Gln	Leu 220		Ala	Gly	Phe
	Leu 225		Pro	Leu	Leu	Val 230		Ala	Туг	Cys	Tyr 235		His	Ile	Leu	Ala 240

17

	Val	Leu	Leu	Val	Ser 245	Arg	Gly	Gln	Arg	Arg 250	Leu	Arg	Ala	Met	Arg 255	Leu	
	Val	Val	Val	Val 260	Val	Val	Ala	Phe	Ala 265	Leu	Сла	Trp	Thr	Pro 270	Tyr	His	
5	Leu	Val	Val 275	Leu	Val	Asp	Ile	Leu 280	Met	Asp	Leu	Gly	Ala 285	Leu	Ala	Arg	
	Asn	Cys 290	Gly	Arg	Glu	Ser	Arg 295	Val	Asp	Val	Ala	Lys 300	Ser	Val	Thr	Ser	
10	Gly 305	Leu	Gly	Tyr	Met	His 310	Cys	Cys	Leu	Asn	Pro 315	Leu	Leu	Tyr	Ala	Phe 320	
	Val	Gly	Val	Lys	Phe 325	Arg	Glu	Arg	Met	Trp 330	Met	Leu	Leu	Leu	Arg 335	Leu	
	Gly	Cys	Pro	Asn 340	Gln	Arg	Gly	Leu	Gln 345		Gln	Pro	Ser	Ser 350	Ser	Arg	
15	Arg	Asp	Ser 355	Ser	Trp	Ser	Glu	Thr 360		Glu	Ala	Ser	Tyr 365		Gly	Leu	
•	(22) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	21:									
	(22) INFORMATION FOR SEQ ID NO:21:																
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear																
	(i	.i) M	OLEC	ULE '	TYPE	: DN	A (g	enom	ic)								
	(x	:i) S	EOUE	NCE :	DESC	RIPT	'ION:	SEQ	ID	NO:2	1:						
25	TTAAGCTT																30
23						•											
	(23) INF																
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 																
	(i)	ii) M	OLEC	ULE	TYPE	: DN	IA (g	enon	nic)								
	()	ki) S	EQUE	NCE	DESC	RIPT	OI:	SEÇ) ID	NO:2	22:						
	TTGGATC	CAA A	AGAJ	CCAT	G CA	CCT	CAGAC	3									30
35	(24) IN	FORMA	TION	I FOR	SEÇ) ID	NO:2	23:									

(i) SEQUENCE CHARACTERISTICS:

18

(A)	LENGTH: 1074 base pairs
(B)	TYPE: nucleic acid
(C)	STRANDEDNESS: single
(D)	TOPOLOGY: linear

5 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

ATGGCTGATG ACTATGGCTC TGAATCCACA TCTTCCATGG AAGACTACGT TAACTTCAAC 60 TTCACTGACT TCTACTGTGA GAAAAACAAT GTCAGGCAGT TTGCGAGCCA TTTCCTCCCA 120 CCCTTGTACT GGCTCGTGTT CATCGTGGGT GCCTTGGGCA ACAGTCTTGT TATCCTTGTC 180 10 TACTGGTACT GCACAAGAGT GAAGACCATG ACCGACATGT TCCTTTTGAA TTTGGCAATT 240 GCTGACCTCC TCTTTCTTGT CACTCTTCCC TTCTGGGCCA TTGCTGCTGC TGACCAGTGG 300 AAGTTCCAGA CCTTCATGTG CAAGGTGGTC AACAGCATGT ACAAGATGAA CTTCTACAGC 360 TGTGTGTTGC TGATCATGTG CATCAGCGTG GACAGGTACA TTGCCATTGC CCAGGCCATG 420 AGAGCACATA CTTGGAGGGA GAAAAGGCTT TTGTACAGCA AAATGGTTTG CTTTACCATC 480 15 TGGGTATTGG CAGCTGCTCT CTGCATCCCA GAAATCTTAT ACAGCCAAAT CAAGGAGGAA 540 TCCGGCATTG CTATCTGCAC CATGGTTTAC CCTAGCGATG AGAGCACCAA ACTGAAGTCA 600 GCTGTCTTGA CCCTGAAGGT CATTCTGGGG TTCTTCCTTC CCTTCGTGGT CATGGCTTGC 660 TGCTATACCA TCATCATTCA CACCCTGATA CAAGCCAAGA AGTCTTCCAA GCACAAAGCC 720 CTAAAAGTGA CCATCACTGT CCTGACCGTC TTTGTCTTGT CTCAGTTTCC CTACAACTGC 780 20 ATTTTGTTGG TGCAGACCAT TGACGCCTAT GCCATGTTCA TCTCCAACTG TGCCGTTTCC ACCAACATTG ACATCTGCTT CCAGGTCACC CAGACCATCG CCTTCTTCCA CAGTTGCCTG AACCCTGTTC TCTATGTTTT TGTGGGTGAG AGATTCCGCC GGGATCTCGT GAAAACCCTG 960 AAGAACTTGG GTTGCATCAG CCAGGCCCAG TGGGTTTCAT TTACAAGGAG AGAGGGAAGC 1020 TTGAAGCTGT CGTCTATGTT GCTGGAGACA ACCTCAGGAG CACTCTCCCT CTGA 1074

25 (25) INFORMATION FOR SEQ ID NO:24:

30

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 357 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

19

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Met Ala Asp Asp Tyr Gly Ser Glu Ser Thr Ser Ser Met Glu Asp Tyr Val Asn Phe Asn Phe Thr Asp Phe Tyr Cys Glu Lys Asn Asn Val Arg 5 Gln Phe Ala Ser His Phe Leu Pro Pro Leu Tyr Trp Leu Val Phe Ile Val Gly Ala Leu Gly Asn Ser Leu Val Ile Leu Val Tyr Trp Tyr Cys 10 Thr Arg Val Lys Thr Met Thr Asp Met Phe Leu Leu Asn Leu Ala Ile Ala Asp Leu Leu Phe Leu Val Thr Leu Pro Phe Trp Ala Ile Ala Ala 90 Ala Asp Gln Trp Lys Phe Gln Thr Phe Met Cys Lys Val Val Asn Ser 15 100 105 Met Tyr Lys Met Asn Phe Tyr Ser Cys Val Leu Leu Ile Met Cys Ile 120 Ser Val Asp Arg Tyr Ile Ala Ile Ala Gln Ala Met Arg Ala His Thr 20 Trp Arg Glu Lys Arg Leu Leu Tyr Ser Lys Met Val Cys Phe Thr Ile Trp Val Leu Ala Ala Ala Leu Cys Ile Pro Glu Ile Leu Tyr Ser Gln Ile Lys Glu Glu Ser Gly Ile Ala Ile Cys Thr Met Val Tyr Pro Ser 25 185 Asp Glu Ser Thr Lys Leu Lys Ser Ala Val Leu Thr Leu Lys Val Ile Leu Gly Phe Phe Leu Pro Phe Val Val Met Ala Cys Cys Tyr Thr Ile 215 30 Ile Ile His Thr Leu Ile Gln Ala Lys Lys Ser Ser Lys His Lys Ala 225 Leu Lys Val Thr Ile Thr Val Leu Thr Val Phe Val Leu Ser Gln Phe Pro Tyr Asn Cys Ile Leu Leu Val Gln Thr Ile Asp Ala Tyr Ala Met 35 Phe Ile Ser Asn Cys Ala Val Ser Thr Asn Ile Asp Ile Cys Phe Gln 275 280

20

Val	Thr	Gln	Thr -	Ile	Ala	Phe	Phe	His	Ser	Cys	Leu	Asn	Pro	Val	Leu
	290					295					300				
				_	_										

Tyr Val Phe Val Gly Glu Arg Phe Arg Arg Asp Leu Val Lys Thr Leu 305 310 315 320

5 Lys Asn Leu Gly Cys Ile Ser Gln Ala Gln Trp Val Ser Phe Thr Arg 325 330 335

Arg Glu Gly Ser Leu Lys Leu Ser Ser Met Leu Leu Glu Thr Thr Ser 340 345 350

Gly Ala Leu Ser Leu 10 355

15

(26) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1110 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

ATGGCCTCAT CGACCACTCG GGGCCCCAGG GTTTCTGACT TATTTTCTGG GCTGCCGCCG 60 20 GCGGTCACAA CTCCCGCCAA CCAGAGCGCA GAGGCCTCGG CGGGCAACGG GTCGGTGGCT 120 GGCGCGGACG CTCCAGCCGT CACGCCCTTC CAGAGCCTGC AGCTGGTGCA TCAGCTGAAG GGGCTGATCG TGCTGCTCTA CAGCGTCGTG GTGGTCGTGG GGCTGGTGGG CAACTGCCTG CTGGTGCTGG TGATCGCGCG GGTGCCGCGG CTGCACAACG TGACGAACTT CCTCATCGGC AACCTGGCCT TGTCCGACGT GCTCATGTGC ACCGCCTGCG TGCCGCTCAC GCTGGCCTAT 25 GCCTTCGAGC CACGCGGCTG GGTGTTCGGC GGCGGCCTGT GCCACCTGGT CTTCTTCCTG 420 CAGCCGGTCA CCGTCTATGT GTCGGTGTTC ACGCTCACCA CCATCGCAGT GGACCGCTAC 480 GTCGTGCTGG TGCACCCGCT GAGGCGCGCA TCTCGCTGCG CCTCAGCCTA CGCTGTGCTG 540 GCCATCTGGG CGCTGTCCGC GGTGCTGGCG CTGCCGCCCG CCGTGCACAC CTATCACGTG 600 GAGCTCAAGC CGCACGACGT GCGCCTCTGC GAGGAGTTCT GGGGCTCCCA GGAGCGCCAG 660 30 CGCCAGCTCT ACGCCTGGGG GCTGCTGCTG GTCACCTACC TGCTCCCTCT GCTGGTCATC 720 CTCCTGTCTT ACGTCCGGGT GTCAGTGAAG CTCCGCAACC GCGTGGTGCC GGGCTGCGTG ACCCAGAGCC AGGCCGACTG GGACCGCGCT CGGCGCCGGC GCACCTTCTG CTTGCTGGTG

PCT/US99/23938 WO 00/22129

21

	GTGGTCGTGG	TGGTGTTC	GC CGTCTC	CTGG CTG	CCGCTGC	ACGTCTTCA	A CCTGCT	GCGG	900
	GACCTCGACC	CCCACGCC	AT CGACCO	TTAC GCC	TTTGGGC	TGGTGCAGC	T GCTCTG	CCAC	960
	TGGCTCGCCA	TGAGTTCG	GC CTGCTA	CAAC CCC	TTCATCT	ACCCCTGGC	T GCACGA	CAGO	1020
	TTCCGCGAGG	AGCTGCGC	AA ACTGTT	GGTC GCT	TGGCCCC	GCAAGATAG	C CCCCA	TGGC	1080
5	CAGAATATGA	CCGTCAGC	GT GGTCAT	CTGA					1110
	(27) INFOR	MATION FO	R SEQ ID	NO:26:					
10		SEQUENCE (A) LENGT (B) TYPE: (C) STRAN (D) TOPOL	H: 369 am amino ac DEDNESS: OGY: not	nino acid eid relevant	s				
		MOLECULE							
		SEQUENCE						_,	_
15	Met A	la Ser Se	r Thr Thr 5	Arg Gly	Pro Arg	Val Ser	Asp Leu	Phe 15	Ser
	Gly L	eu Pro Pr 20		. Thr Thr	Pro Ala 25	Asn Gln	Ser Ala 30	Glu	Ala
	Ser A	la Gly As 35	n Gly Ser	Val Ala	Gly Ala	Asp Ala	Pro Ala 45	Val	Thr
20		he Gln Se	r Leu Glr	Leu Val	His Gln	Leu Lys 60	Gly Leu	Ile	Val
	Leu L 65	eu Tyr Se	r Val Val 70	. Val Val	Val Gly	Leu Val	Gly Asn	Cys	Leu 80
25	Leu V	al Leu Va	l Ile Ala 85	Arg Val	Pro Arg	Leu His	Asn Val	Thr 95	Asn
	Phe L	eu Ile Gl 10	-	ı Ala Leu	Ser Asp 105	Val Leu	Met Cys 110	Thr	Ala
	Cys V	al Pro Le 115	u Thr Leu	Ala Tyr 120		e Glu Pro	Arg Gly 125	Trp	Val
30		sly Gly Gl .30	y Leu Cys	His Leu 135	Val Phe	Phe Leu 140	Gln Pro	Val	Thr
	Val T 145	yr Val Se	r Val Phe		Thr Thr	Ile Ala 155	Val Asp	Arg	Tyr 160
35	Val V	al Leu Va	l His Pro 165	Leu Arg	Arg Ala	a Ser Arg	Cys Ala	Ser 175	Ala

	•	Tyr	Ala	Val	Leu 180	Ala	Ile	Trp	Ala	Leu 185	Ser	Ala	Val	Leu	Ala 190	Leu	Pro	
	Ċ	Pro	Ala	Val 195	His	Thr	Tyr	His	Val 200	Glu	Leu	Lys	Pro	His 205	Asp	Val	Arg	
5	;	Leu	Cys 210	Glu	Glu	Phe	Trp	Gly 215	Ser	Gln	Glu	Arg	Gln 220	Arg	Gln	Leu	Tyr	
		Ala 225	Trp	Gly	Leu	Leu	Leu 230	Val	Thr	Tyr	Leu	Leu 235	Pro	Leu	Leu	Val	Ile 240	
10	:	Leu	Leu	Ser	Tyr	Val 245	Arg	Val	Ser	Val	Lys 250	Leu	Arg	Asn	Arg	Val 255	Val	
		Pro	Gly	Суѕ	Val 260	Thr	Gln	Ser	Gln	Ala 265	Asp	Trp	Asp	Arg	Ala 270	Arg	Arg	
		Àrg	Arg	Thr 275	Phe	Cys	Leu	Leu	Val 280	Val	Val	Val	Val	Val 285	Phe	Ala	Val	
15		Сув	Trp 290	Leu	Pro	Leu	His	Val 295	Phe	Asn	Leu	Leu	Arg 300	Asp	Leu	Asp	Pro	
		His 305	Ala	Ile	Asp	Pro	Tyr 310	Ala	Phe	Gly	Leu	Val 315	Gln	Leu	Leu	Cys	His 320	
20		Trp	Leu	Ala	Met	Ser 325	Ser	Ala	Cys	Tyr	Asn 330	Pro	Phe	Ile	Tyr	Ala 335	Trp	
		Leu	His	Asp	Ser 340	Phe	Arg	Glu	Glu	Leu 345		Lys	Leu	Leu	Val 350	Ala	Trp	
		Pro	Arg	Lys 355	Ile	Ala	Pro	His	Gly 360	Gln	Asn	Met	Thr	Val 365	Ser	Val	Val	
25		Ile					•											
	(28)	INF	ORMA	TION	FOR	SEQ	ID	NO:2	7:									
30		(i	(A (B (C) LE) TY) ST	CE C NGTH PE: RAND POLO	: 10 nucl EDNE	83 b eic SS:	ase acid sing	pair	s								
		(i	i) M	OLEC	ULE	TYPE	: DN	A (g	enom	ic)								
		(х	i) S	EQUE	NCE	DESC	RIPT	ON:	SEÇ	ID	NO: 2	7:						
35	ATGG																	60
	GACAT	CAG	GG A	GACC	CACT	c cc	ATGT	TCCT	TAC	ACCI	CTG	TCTT	CCTT	CC A	GTCT	TTTA	.c :	120

23

	ACAGCTGTGT	TCCTGACTGG	AGTGCTGGGG	AACCTTGTTC	TCATGGGAGC	GTTGCATTTC	180
•	AAACCCGGCA	GCCGAAGACT	GATCGACATC	TTTATCATCA	ATCTGGCTGC	CTCTGACTTC	240
	ATTTTTCTTG	TCACATTGCC	TCTCTGGGTG	GATAAAGAAG	CATCTCTAGG	ACTGTGGAGG	300
	ACGGGCTCCT	TCCTGTGCAA	AGGGAGCTCC	TACATGATCT	CCGTCAATAT	GCACTGCAGT	360
5	GTCCTCCTGC	TCACTTGCAT	GAGTGTTGAC	CGCTACCTGG	CCATTGTGTG	GCCAGTCGTA	420
	TCCAGGAAAT	TCAGAAGGAC	AGACTGTGCA	TATGTAGTCT	GTGCCAGCAT	CTGGTTTATC	480
	TCCTGCCTGC	TGGGGTTGCC	TACTCTTCTG	TCCAGGGAGC	TCACGCTGAT	TGATGATAAG	540
	CCATACTGTG	CAGAGAAAAA	GGCAACTCCA	ATTAAACTCA	TATGGTCCCT	GGTGGCCTTA	600
	ATTTTCACCT	TTTTTGTCCC	TTTGTTGAGC	ATTGTGACCT	GCTACTGTTG	CATTGCAAGG	660
10	AAGCTGTGTG	CCCATTACCA	GCAATCAGGA	AAGCACAACA	AAAAGCTGAA	GAAATCTATA	720
	AAGATCATCT	TTATTGTCGT	GGCAGCCTTT	CTTGTCTCCT	GGCTGCCCTT	CAATACTTTC	780
	AAGTTCCTGG	CCATTGTCTC	TGGGTTGCGG	CAAGAACACT	ATTTACCCTC	AGCTATTCTT	840
	CAGCTTGGTA	TGGAGGTGAG	TGGACCCTTG	GCATTTGCCA	ACAGCTGTGT	CAACCCTTTC	900
	ATTTACTATA	TCTTCGACAG	CTACATCCGC	CGGGCCATTG	TCCACTGCTT	GTGCCCTTGC	960
15	CTGAAAAACT	ATGACTTTGG	GAGTAGCACT	GAGACATCAG	ATAGTCACCT	CACTAAGGCT	1020
	CTCTCCACCT	TCATTCATGC	AGAAGATTTT	GCCAGGAGGA	GGAAGAGGTC	TGTGTCACTC	1080
	TAA						1083

(29) INFORMATION FOR SEQ ID NO:28:

(i) SEQUENCE CHARACTERISTICS:

20 (A) LENGTH: 360 amino acids

(B) TYPE: amino acid

- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

Met Asp Pro Glu Glu Thr Ser Val Tyr Leu Asp Tyr Tyr Tyr Ala Thr 1 5 10 15

Ser Pro Asn Ser Asp Ile Arg Glu Thr His Ser His Val Pro Tyr Thr

30 Ser Val Phe Leu Pro Val Phe Tyr Thr Ala Val Phe Leu Thr Gly Val 35 40 45

	Leu	Gly 50	Asn	Leu	Val	Leu	Met 55	Gly	Ala	Leu	His	Phe 60	Lys	Pro	Gly	Ser
	Arg 65	Arg	Leu	Ile	Asp	Ile 70	Phe	Ile	Ile	Asn	Leu 75	Ala	Ala	Ser	Asp	Phe 80
5	Ile	Phe	Leu	Val	Thr 85	Leu	Pro	Leu	Trp	Val 90	Asp	Lys	Glu	Ala	Ser 95	Leu
	Gly	Leu	Trp	Arg 100	Thr	Gly	Ser	Phe	Leu 105	Сув	Lys	Gly	Ser	Ser 110	Tyr	Met
10	Ile	Ser	Val 115	Asn	Met	His	Суз	Ser 120	Val	Leu	Leu	Leu	Thr 125	Сув	Met	Ser
	Val	Asp 130	Arg	Tyr	Leu	Ala	Ile 135	Val	Trp	Pro	Val	Val 140	Ser	Arg	Lys	Phe
	Arg 145	Arg	Thr	Asp	Сув	Ala 150	Tyr	Val	Val	Cys	Ala 155	Ser	Ile	Trp	Phe	Ile 160
15	Ser	Cys	Leu	Leu	Gly 165	Leu	Pro	Thr	Leu	Leu 170	Ser	Arg	Glu	Leu	Thr 175	Leu
	Ile	Asp	Asp	Lys 180	Pro	Tyr	Cys	Ala	Glu 185	Lys	Lys	Ala	Thr	Pro 190	Ile	Lys
20	Leu	Ile	Trp 195	Ser	Leu	Val	Ala	Leu 200	Ile	Phe	Thr	Phe	Phe 205	Val	Pro	Leu
	Leu	Ser 210	Ile	Val	Thr	Cys	Tyr 215	Суз	Cys	Ile	Ala	Arg 220	Lys	Leu	Cys	Ala
	His 225	Tyr	Gln	Gln	Ser	Gly 230	Lys	His	Asn	Lys	Lys 235		Lys	Lys	Ser	Ile 240
25	Lys	Ile	Ile	Phe	Ile 245	Val	Val	Ala	Ala	Phe 250	Leu	Val	Ser	Trp	Leu 255	Pro
	Phe	Asn	Thr	Phe 260	Lys	Phe	Leu	Ala	Ile 265	Val	Ser	Gly	Leu	Arg 270	Gln	Glu
30	His	Tyr	Leu 275	Pro	Ser	Ala		Leu 280	Gln	Leu	Gly	Met	Glu 285	Val	Ser	Gly
	Pro	Leu 290	Ala	Phe	Ala	Asn	Ser 295	Cys	Val	Asn	Pro	Phe 300	Ile	Tyr	Tyr	Ile
	Phe 305	Asp	Ser	Tyr	Ile	Arg 310	Arg	Ala	Ile	Val	His 315	Cys	Leu	Cys	Pro	Cys 320
35	Leu	Lys	Asn		Asp 325	Phe	Gly	Ser	Ser	Thr 330	Glu	Thr	Ser	Asp	Ser 335	His
	T.e.11	Thr	Tage	בומ	T.011	Sor	Thr	Dho	T10	uia	210	C1	N	Db.	33 -	3

25

345

350

340 ·

	Arg Arg Lys Arg Ser Val Ser Leu 355 360	
	(30) INFORMATION FOR SEQ ID NO:29:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
	CTAGAATTCT GACTCCAGCC AAAGCATGAA T	31
	(31) INFORMATION FOR SEQ ID NO:30:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	•
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
	GCTGGATCCT AAACAGTCTG CGCTCGGCCT	30
	(32) INFORMATION FOR SEQ ID NO:31:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1020 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
30	ATGAATGGCC TTGAAGTGGC TCCCCCAGGT CTGATCACCA ACTTCTCCCT GGCCACGGCA	60
	GAGCAATGTG GCCAGGAGAC GCCACTGGAG AACATGCTGT TCGCCTCCTT CTACCTTCTG	120
	GATTTTATCC TGGCTTTAGT TGGCAATACC CTGGCTCTGT GGCTTTTCAT CCGAGACCAC	180
	AAGTCCGGGA CCCCGGCCAA CGTGTTCCTG ATGCATCTGG CCGTGGCCGA CTTGTCGTGC	240
	GTGCTGGTCC TGCCCACCCG CCTGGTCTAC CACTTCTCTG GGAACCACTG GCCATTTGGG	300

26

	GAAATCGCAT GCCGTCTCAC CGGCTTCCTC TTCTACCTCA ACATGTACGC CAGCATCTAC	360
	TTCCTCACCT GCATCAGCGC CGACCGTTTC CTGGCCATTG TGCACCCGGT CAAGTCCCTC	420
	AAGCTCCGCA GGCCCCTCTA CGCACACCTG GCCTGTGCCT TCCTGTGGGT GGTGGTGGCT	480
	GTGGCCATGG CCCCGCTGCT GGTGAGCCCA CAGACCGTGC AGACCAACCA CACGGTGGTC	540
5	TGCCTGCAGC TGTACCGGGA GAAGGCCTCC CACCATGCCC TGGTGTCCCT GGCAGTGGCC	600
	TTCACCTTCC CGTTCATCAC CACGGTCACC TGCTACCTGC TGATCATCCG CAGCCTGCGG	660
	CAGGGCCTGC GTGTGGAGAA GCGCCTCAAG ACCAAGGCAG TGCGCATGAT CGCCATAGTG	720
	CTGGCCATCT TCCTGGTCTG CTTCGTGCCC TACCACGTCA ACCGCTCCGT CTACGTGCTG	780
	CACTACCGCA GCCATGGGGC CTCCTGCGCC ACCCAGCGCA TCCTGGCCCT GGCAAACCGC	840
10	ATCACCTCCT GCCTCACCAG CCTCAACGGG GCACTCGACC CCATCATGTA TTTCTTCGTG	.900
	GCTGAGAAGT TCCGCCACGC CCTGTGCAAC TTGCTCTGTG GCAAAAGGCT CAAGGGCCCG	960
	CCCCCCAGCT TCGAAGGGAA AACCAACGAG AGCTCGCTGA GTGCCAAGTC AGAGCTGTGA	1020
	(33) INFORMATION FOR SEQ ID NO:32:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 339 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant 	
	(ii) MOLECULE TYPE: protein	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
	Met Asn Gly Leu Glu Val Ala Pro Pro Gly Leu Ile Thr Asn Phe Ser 1 5 . 10 15	;
	Leu Ala Thr Ala Glu Gln Cys Gly Gln Glu Thr Pro Leu Glu Asn Met 20 25 30	:
25	Leu Phe Ala Ser Phe Tyr Leu Leu Asp Phe Ile Leu Ala Leu Val Gly 35 40 45	•
	Asn Thr Leu Ala Leu Trp Leu Phe Ile Arg Asp His Lys Ser Gly Thi	
30	Pro Ala Asn Val Phe Leu Met His Leu Ala Val Ala Asp Leu Ser Cys 65 70 75 80	ŀ
	Val Leu Val Leu Pro Thr Arg Leu Val Tyr His Phe Ser Gly Asn His	j

Trp Pro Phe Gly Glu Ile Ala Cys Arg Leu Thr Gly Phe Leu Phe Tyr

27

	•				100					105					110		
		Leu	Asn	Met 115	Tyr	Ala	Ser	Ile	Tyr 120	Phe	Leu	Thr	Cys	Ile 125	Ser	Ala	Asp
5		Arg	Phe 130	Leu	Ala	Ile	Val	His 135	Pro	Val	Lys	Ser	Leu 140	Lys	Leu	Arg	Arg
		Pro 145	Leu	Tyr	Ala	His	Leu 150	Ala	Суз	Ala	Phe	Leu 155	Trp	Val	Val	Val	Ala 160
		Val	Ala	Met	Ala	Pro 165	Leu	Leu	Val	Ser	Pro 170	Gln	Thr	Val	Gln	Thr 175	Asr
10		His	Thr	Val	Val 180	Cys	Leu	Gln	Leu	Tyr 185	Arg	Glu	Lys	Ala	Ser 190	His	His
		Ala	Leu	Val 195	Ser	Leu	Ala	Val	Ala 200	Phe	Thr	Phe	Pro	Phe 205	Ile	Thr	Thr
15		Val	Thr 210	Cys	Tyr	Leu	Leu	Ile 215	Ile	Arg	Ser	Leu	Arg 220	Gln	Gly	Leu	Arg
		Val 225	Glu	Lys	Arg	Leu	Lys 230	Thr	Lys	Ala	Val	Arg 235	Met	Ile	Ala	Ile	Val 240
		Leu	Ala	Ile	Phe	Leu 245	Val	Сув	Phe	Val	Pro 250	Tyr	His	Val	Asn	Arg 255	Ser
20		Val	Tyr	<u>V</u> al	Leu 260	His	Tyr	Arg	Ser	His 265	Gly	Ala	Ser	Cys	Ala 270	Thr	Gln
		Arg	Ile	Leu 275	Ala	Leu	Ala	Asn	Arg 280	Ile	Thr	Ser	Cys	Leu 285	Thr	Ser	Leu
25		Asn	Gly 290	Ala	Leu	Asp	Pro	Ile 295	Met	Tyr	Phe	Phe	Val 300	Ala	Glu	Lys	Phe
		Arg 305	His	Ala	Leu	Cys	Asn 310	Leu	Leu	Cys	Gly	Lys 315	Arg	Leu	Lys	Gly	Pro 320
		Pro	Pro	Ser	Phe	Glu 325	Gly	Lys	Thr	Asn	Glu 330	Ser	Ser	Leu	Ser	Ala 335	Lys
30		Ser	Glu	Leu													
	(34)	INFO	ORMAT	rion	FOR	SEQ	ID 1	VO:33	3:								
35		(i)	(B)	LEN TYI	NGTH: PE: r RANDE	HARAC : 29 nucle EDNES SY: 1	base eic a SS: 8	e pai acid singl	irs								

(ii) MOLECULE TYPE: DNA (genomic)

28

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
	ATAAGATGAT CACCCTGAAC AATCAAGAT	29
	(35) INFORMATION FOR SEQ ID NO:34:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
	TCCGAATTCA TAACATTTCA CTGTTTATAT TGC	33
	(36) INFORMATION FOR SEQ ID NO:35:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 996 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	•
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
20	ATGATCACCC TGAACAATCA AGATCAACCT GTCACTTTTA ACAGCTCACA TCCAGATGAA	6
	TACAAAATTG CAGCCCTTGT CTTCTATAGC TGTATCTTCA TAATTGGATT ATTTGTTAAC	120
	ATCACTGCAT TATGGGTTTT CAGTTGTACC ACCAAGAAGA GAACCACGGT AACCATCTAT	186
	ATGATGAATG TGGCATTAGT GGACTTGATA TTTATAATGA CTTTACCCTT TCGAATGTTT	24
	TATTATGCAA AAGATGCATG GCCATTTGGA GAGTACTTCT GCCAGATTAT TGGAGCTCTC	300
25	ACAGTGTTTT ACCCAAGCAT TGCTTTATGG CTTCTTGCCT TTATTAGTGC TGACAGATAC	360
	ATGGCCATTG TACAGCCGAA GTACGCCAAA GAACTTAAAA ACACGTGCAA AGCCGTGCTG	420
	GCGTGTGTGG GAGTCTGGAT AATGACCCTG ACCACGACCA CCCCTCTGCT ACTGCTCTAT	486
	AAAGACCCAG ATAAAGACTC CACTCCCGCC ACCTGCCTCA AGATTTCTGA CATCATCTAT	540
	CTAAAAGCTG TGAACGTGCT GAACCTCACT CGACTGACAT TTTTTTCTT GATTCCTTTG	600
30	TTCATCATGA TTGGGTGCTA CTTGGTCATT ATTCATAATC TCCTTCACGG CAGGACGTCT	660

AAGCTGAAAC CCAAAGTCAA GGAGAAGTCC ATAAGGATCA TCATCACGCT GCTGGTGCAG

	GTGCTCGT	CT G	CTTI	ATGC	C CI	TCCA	CATO	TGT	TTCG	CTT	TCCI	GATG	CT G	GGAA	.CGGG	G	780
	GAGAACAG	STT A	CAAT	CCCT	G GG	GAGC	сттт	ACC	ACCT	TCC	TCAT	GAAC	CT C	AGCA	CGTG	т	840
	CTGGATGT	GA T	TCTC	TACT	A CA	TCGT	TTCA	. AAA	CAAT	TTC	AGGC	TCGA	GT C	ATTA	GTGT	С	900
	ATGCTATA	CC G	TAAT	TACC	т тс	GAAG	CCTG	CGC	AGAA	AAA	GTTT	CCGA	тс т	GGTA	GTCT	A	960
5	AGGTCACT	'AA G	CAAT	'ATAA	A CA	GTGA	AATG	TTA	TGA								996
	(37) INF	ORMA	TION	FOR	SEQ	ID	NO:3	6 :									
10		(B) LE) TY) ST) TO	NGTH PE: RAND POLO	: 33 amin EDNE GY:	1 am o ac SS: not	ino id rele	acid vant	s								
		i) S							ID :	NO:3	6:						
15												Thr 	Phe	Asn	Ser 15	Ser	
	His	Pro	Asp	Glu 20	Tyr	Lys	Ile	Ala	Ala 25	Leu	Val	Phe	Tyr	Ser 30	Cys	Ile	
	Phe	Ile	Ile 35	Gly	Leu	Phe	Val	Asn 40	Ile	Thr	Ala	Leu	Trp 45	Val	Phe	Ser	
20	Сув	Thr 50	Thr	Lys	Lys	Arg	Thr 55	Thr	Val	Thr	Ile	Tyr 60	Met	Met	Asn	Val	
	Ala 65	Leu	Val	Asp	Leu	Ile 70	Phe	Ile	Met	Thr	Leu 75	Pro	Phe	Arg	Met	Phe 80	
25	Tyr	Tyr	Ala	Lys	Asp 85	Ala	Trp	Pro	Phe	Gly 90	Glu	Tyr	Phe	Сув	Gln 95	Ile	
	Ile	Gly	Ala	Leu 100	Thr	Val	Phe	Tyr	Pro 105	Ser	Ile	Ala	Leu	Trp 110	Leu	Leu	
	Ala	Phe	Ile 115	Ser	Ala	Asp	Arg	Tyr 120	Met	Ala	Ile	Val	Gln 125	Pro	Lys	Tyr	
30	Ala	Lys 130	Glu	Leu	Lys	Asn	Thr 135	Cys	Lys	Ala	Val	Leu 140	Ala	Суз	Val	Gly	
	Val 145	Trp	Ile	Met	Thr	Leu 150	Thr	Thr	Thr	Thr	Pro 155	Leu	Leu	Leu	Leu	Tyr 160	
35	Lys	Asp	Pro	Asp	Lys 165	Asp	Ser	Thr	Pro	Ala 170	Thr	Сув	Leu	Гўз	Ile 175	Ser	

		Asp	Ile	Ile	Tyr 180	Leu	Lys	Ala	Val	Asn 185	Val	Leu	Asn	Leu	Thr 190	Arg	Leu
		Thr	Phe	Phe 195	Phe	Leu	Ile	Pro	Leu 200	Phe	Ile	Met	Ile	Gly 205	Суз	Tyr	Leu
5		Val	Ile 210	Ile	His	Asn	Leu	Leu 215	His	Gly	Arg	Thr	Ser 220	Lys	Leu	Lys	Pro
		Lys 225	Val	Lys	Glu	Lys	Ser 230	Ile	Arg	Ile	Ile	Ile 235	Thr	Leu	Leu	Val	Gln 240
10		Val	Leu	Val	Суз	Phe 245	Met	Pro	Phe	His	Ile 250	Cys	Phe	Ala	Phe	Leu 255	Met
		Leu	Gly	Thr	Gly 260	Glu	Asn	Ser	Tyr	Asn 265	Pro	Trp	Gly	Ala	Phe 270	Thr	Thr
		Phe	Leu	Met 275	Asn	Leu	Ser	Thr	Cys 280	Leu	Asp	Val	Ile	Leu 285	Tyr	Tyr	Ile
15		Val	Ser 290	Lys	Gln	Phe	Gln	Ala 295	Arg	Val	Ile	Şer	Val 300	Met	Leu	Tyr	Arg
		Asn 305	Tyr	Leu	Arg	Ser	Leu 310	Arg	Arg	Lys	Ser	Phe 315	Arg	Ser	Gly	Ser	Leu 320
20		Arg	Ser	Leu	Ser	Asn 325	Ile	Asn	Ser	Glu	Met 330	Leu					•
	(38)	INFO	ORMA?	rion	FOR	SEQ	ID N	10:37	' :								
25		(i)	(A) (B) (C)	LEN TYP STR	GTH: PE: n	28 nucle DNES	base ic a SS: s	e pai scid singl	rs								
		(ii	L) MC	LECU	LE I	YPE:	DNZ	(ge	nomi	ic)							
		(xi	L) SE	EQUEN	ICE D	ESCF	RIPTI	ON:	SEQ	IĎ N	10:37	7:					
	CCAA	GCTTC	C AC	GCCI	GGGG	; TGI	GCTG	G									28
30	(39)	INFO	RMAT	NOI	FOR	SEQ	ID N	10:38):								
35		(i)	(A) (B) (C)	LEN TYP STR	GTH: E: n ANDE	29 ucle DNES	base ic a S: s	pai cid ingl	rs.								
		(ii	.) MC	LECU	LE I	YPE:	DNA	(ge	nomi	.c)							
		ix)	.) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	iO:38) :					

31

	ATGGATCCTG	ACCTTCGGCC	CCTGGCAGA				29
	(40) INFOR	MATION FOR	SEQ ID NO:3	9:			
5	(i)	SEQUENCE CH (A) LENGTH: (B) TYPE: n (C) STRANDE (D) TOPOLOG	1077 base pucleic acid DNESS: sing	pairs			
	(ii)	MOLECULE T	YPE: DNA (g	enomic)			
	(xi)	SEQUENCE D	ESCRIPTION:	SEQ ID NO:	39:		
10	ATGCCCTCTG	TGTCTCCAGC	GGGGCCCTCG	GCCGGGGCAG	TCCCCAATGC	CACCGCAGTG	60
	ACAACAGTGC	GGACCAATGC	CAGCGGGCTG	GAGGTGCCCC	TGTTCCACCT	GTTTGCCCGG	120
	CTGGACGAGG	AGCTGCATGG	CACCTTCCCA	GGCCTGTGCG	TGGCGCTGAT	GGCGGTGCAC	180
	GGAGCCATCT	TCCTGGCAGG	GCTGGTGCTC	AACGGGCTGG	CGCTGTACGT	CTTCTGCTGC	240
	CGCACCCGGG	CCAAGACACC	CTCAGTCATC	TACACCATCA	ACCTGGTGGT	GACCGATCTA	300
15	CTGGTAGGGC	TGTCCCTGCC	CACGCGCTTC	GCTGTGTACT	ACGGCGCCAG	GGGCTGCCTG	360
	CGCTGTGCCT	TCCCGCACGT	CCTCGGTTAC	TTCCTCAACA	TGCACTGCTC	CATCCTCTTC	420
	CTCACCTGCA	TCTGCGTGGA	CCGCTACCTG	GCCATCGTGC	GGCCCGAAGG	CTCCCGCCGC	480
	TGCCGCCAGC	CTGCCTGTGC	CAGGGCCGTG	TGCGCCTTCG	TGTGGCTGGC	CGCCGGTGCC	540
	GTCACCCTGT	CGGTGCTGGG	CGTGACAGGC	AGCCGGCCCT	GCTGCCGTGT	CTTTGCGCTG	600
20	ACTGTCCTGG	AGTTCCTGCT	GCCCTGCTG	GTCATCAGCG	TGTTTACCGG	CCGCATCATG	660
	TGTGCACTGT	cgcggccggg	TCTGCTCCAC	CAGGGTCGCC	AGCGCCGCGT	GCGGGCCATG	720
	CAGCTCCTGC	TCACGGTGCT	CATCATCTTT	CTCGTCTGCT	TCACGCCCTT	CCACGCCCGC	780
	CAAGTGGCCG	TGGCGCTGTG	GCCCGACATG	CCACACCACA	CGAGCCTCGT	GGTCTACCAC	840
	GTGGCCGTGA	CCCTCAGCAG	CCTCAACAGC	TGCATGGACC	CCATCGTCTA	CTGCTTCGTC	900
25	ACCAGTGGCT	TCCAGGCCAC	CGTCCGAGGC	CTCTTCGGCC	AGCACGGAGA	GCGTGAGCCC	960

AGCAGCGGTG ACGTGGTCAG CATGCACAGG AGCTCCAAGG GCTCAGGCCG TCATCACATC 1020

1077

CTCAGTGCCG GCCCTCACGC CCTCACCCAG GCCCTGGCTA ATGGGCCCGA GGCTTAG

(41) INFORMATION FOR SEQ ID NO:40:

30

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 358 amino acids

32

(B) TYPE: amino acid(C) STRANDEDNESS:

(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

Met Pro Ser Val Ser Pro Ala Gly Pro Ser Ala Gly Ala Val Pro Asn

Ala Thr Ala Val Thr Thr Val Arg Thr Asn Ala Ser Gly Leu Glu Val 20 25 30

Pro Leu Phe His Leu Phe Ala Arg Leu Asp Glu Glu Leu His Gly Thr

Phe Pro Gly Leu Cys Val Ala Leu Met Ala Val His Gly Ala Ile Phe 50 55 60

Leu Ala Gly Leu Val Leu Asn Gly Leu Ala Leu Tyr Val Phe Cys Cys 65 70 75 80

Arg Thr Arg Ala Lys Thr Pro Ser Val Ile Tyr Thr Ile Asn Leu Val 85 90 95

Val Thr Asp Leu Leu Val Gly Leu Ser Leu Pro Thr Arg Phe Ala Val

Tyr Tyr Gly Ala Arg Gly Cys Leu Arg Cys Ala Phe Pro His Val Leu 115 120 125

> Gly Tyr Phe Leu Asn Met His Cys Ser Ile Leu Phe Leu Thr Cys Ile 130 135 140

Cys Val Asp Arg Tyr Leu Ala Ile Val Arg Pro Glu Ala Pro Ala Ala 25 145 150 155 160

> Cys Arg Gln Pro Ala Cys Ala Arg Ala Val Cys Ala Phe Val Trp Leu 165 170 175

> Ala Ala Gly Ala Val Thr Leu Ser Val Leu Gly Val Thr Gly Ser Arg

Pro Cys Cys Arg Val Phe Ala Leu Thr Val Leu Glu Phe Leu Leu Pro 195 200 205

Leu Leu Val Ile Ser Val Phe Thr Gly Arg Ile Met Cys Ala Leu Ser 210 220

Arg Pro Gly Leu Leu His Gln Gly Arg Gln Arg Arg Val Arg Ala Met
225 230 235 240

Gln Leu Leu Thr Val Leu Ile Ile Phe Leu Val Cys Phe Thr Pro 245 250 255

	-
-4	4
	- 2

	Phe	e His	Ala	Arg. 260	Gln	Val	Ala	Val	Ala 265	Leu	Trp	Pro	Asp	Met 270	Pro	His
	His	s Thr	Ser 275	Leu	Val	Val	Tyr	His 280	Val	Ala	Val	Thr	Leu 285	Ser	Ser	Leu
5	Asr	9 Ser	Cys	Met	Asp	Pro	Ile 295	Val	Tyr	Суз	Phe	Val 300	Thr	Ser	Gly	Phe
	Glr 305	a Ala	Thr	Val	Arg	Gly 310	Leu	Phe	Gly	Gln	His 315	Gly	Glu	Arg	Glu	Pro 320
10	Ser	Ser	Gly	Asp	Val 325	Val	Ser	Met	His	Arg 330	Ser	Ser	Lys	Gly	Ser 335	Gly
	Arg	His	His	Ile 340	Leu	Ser	Ala	Gly	Pro 345	His	Ala	Leu	Thr	Gln 350	Ala	Leu
	Ala	Asn	Gly 355	Pro	Glu	Ala										
15	(42) INF	ORMA	MOI	FOR	SEQ	ID N	iO:41	. :								
20	(i	(B) (C)	LEN TYF STR TOF	IGTH: PE: DE PANDE POLOG	30 ucle DNES Y: 1 YPE:	base ic a S: s inea	e pai cid ingl r	rs e nomi		0:41						·
	GAGAATTC	AC TO	CTGA	GCTC	AAG	ATGA	ACT									30
	(43) INF	ORMAT	NOI	FOR .	SEQ	ID N	0:42	:								
25	(i)	(B) (C)	LEN TYP STR	E CHI GTH: E: no ANDEI OLOGI	30 : ucle DNES	base ic a S: s	pai cid ingl	rs								
30	(i :	i) Mo	LECU:	LE T	YPE:	DNA	(ge	nomi	c)							
	(xi	i) SE	QUEN	CE DI	ESCR:	IPTI(ON:	SEQ :	ID NO	0:42	:					
	CGGGATCC	CC GT	AACT	GAGC	CAC'	rtca(GAT									30
	(44) INFORMATION FOR SEQ ID NO:43:															
35	(i)	(B)	LENO TYPI	E CHI STH: E: nu ANDEI	1050 cle	bai	se pa	airs								

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRITTION: SEQ ID NO:43:

	ATGAACTCCA	CCTTGGATGG	TAATCAGAGC	AGCCACCCTT	TTTGCCTCTT	GGCATTTGGC	60
5	TATTTGGAAA	CTGTCAATTT	TTGCCTTTTG	GAAGTATTGA	TTATTGTCTT	TCTAACTGTA	120
	TTGATTATTT	CTGGCAACAT	CATTGTGATT	TTTGTATTTC	ACTGTGCACC	TTTGTTGAAC	180
	CATCACACTA	CAAGTTATTT	TATCCAGACT	ATGGCATATG	CTGACCTTTT	TGTTGGGGTG	240
	AGCTGCGTGG	TCCCTTCTTT	ATCACTCCTC	CATCACCCCC	TTCCAGTAGA	GGAGTCCTTG	300
	ACTTGCCAGA	TATTTGGTTT	TGTAGTATCA	GTTCTGAAGA	GCGTCTCCAT	GGCTTCTCTG	360
10 -	GCCTGTATCA	GCATTGATAG	ATACATTGCC	ATTACTAAAC	CTTTAACCTA	TAATACTCTG	420
	GTTACACCCT	GGAGACTACG	CCTGTGTATT	TTCCTGATTT	GGCTATACTC	GACCCTGGTC	480
	TTCCTGCCTT	CCTTTTTCCA	CTGGGGCAAA	CCTGGATATC	ATGGAGATGT	GTTTCAGTGG	540
	TGTGCGGAGT	CCTGGCACAC	CGACTCCTAC	TTCACCCTGT	TCATCGTGAT	GATGTTATAT	600
	GCCCCAGCAG	CCCTTATTGT	CTGCTTCACC	TATTTCAACA	TCTTCCGCAT	CTGCCAACAG	660
15	CACACAAAGG	ATATCAGCGA	AAGGCAAGCC	CGCTTCAGCA	GCCAGAGTGG	GGAGACTGGG	720
	GAAGTGCAGG	CCTGTCCTGA	TAAGCGCTAT	GCCATGGTCC	TGTTTCGAAT	CACTAGTGTA	780
	TTTTACATCC	TCTGGTTGCC	ATATATCATC	TACTTCTTGT	TGGAAAGCTC	CACTGGCCAC	840
	AGCAACCGCT	TCGCATCCTT	CTTGACCACC	TGGCTTGCTA	TTAGTAACAG	TTTCTGCAAC	900
	TGTGTAATTT	ATAGTCTCTC	CAACAGTGTA	TTCCAAAGAG	GACTAAAGCG	CCTCTCAGGG	960
20	GCTATGTGTA	CTTCTTGTGC	AAGTCAGACT	ACAGCCAACG	ACCCTTACAC	AGTTAGAAGC	1020
	AAAGGCCCTC	TTAATGGATG	TCATATCTGA				1050

(45) INFORMATION FOR SEQ ID NO:44:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 349 amino acids .
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:
- 30 Met Asn Ser Thr Leu Asp Gly Asn Gln Ser Ser His Pro Phe Cys Leu

	1				5					10					15	
·	Leu	Ala	Phe	Gly 20	Tyr	Leu	Glu	Thr	Val 25	Asn	Phe	Суз	Leu	Leu 30	Glu	Va]
5	Leu	Ile	Ile 35	Val	Phe	Leu	Thr	Val 40	Leu	Ile	Ile	Ser	Gly 45	Asn	Ile	Ile
	Val	Ile 50	Phe	Val	Phe	His	Cys 55	Ala	Pro	Leu	Leu	Asn 60	His	His	Thr	Thr
	Ser 65	Tyr	Phe	Ile	Gln	Thr 70	Met	Ala	Tyr	Ala	Asp 75	Leu	Phe	Val	Gly	Val 80
10	Ser	Суз	Val	Val	Pro 85	Ser	Leu	Ser	Leu	Leu 90	His	His	Pro	Leu	Pro 95	Val
	Glu	Glu	Ser	Leu 100	Thr	Cys	Gln	Ile	Phe 105	Gly	Phe	Val	Val	Ser 110	Val	Leu
15	Lys	Ser	Val 115	Ser	Met	Ala	Ser	Leu 120	Ala	Cys	Ile	Ser	Ile 125	Asp	Arg	Tyr
	Ile	Ala 130	Ile	Thr	Lys	Pro	Leu 135	Thr	Tyr	Asn	Thr	Leu 140	Val	Thr	Pro	Trp
	Arg 145	Leu	Arg	Leu	Сув	Ile 150	Phe	Leu	Ile	Trp	Leu 155	Tyr	Ser	Thr	Leu	Val 160
20	Phe	Leu	Pro	Ser	Phe 165	Phe	His	Trp	Gly	Lys 170	Pro	Gly	Tyr	His	Gly 175	Asp
	Val	Phe	Gln	Trp 180	Сув	Ala	Glu	Ser	Trp 185	His	Thr	Asp	Ser	Tyr 190	Phe	Thr
25	Leu	Phe	Ile 195	Val	Met	Met	Leu	Tyr 200	Ala	Pro	Ala	Ala	Leu 205	Ile	Val	Cys
	Phe	Thr 210	Tyr	Phe	Asn	Ile	Phe 215	Arg	Ile	Cys	Gln	Gln 220	His	Thr	Lys	Asp
	Ile 225	Ser	Glu	Arg	Gln	Ala 230	Arg	Phe	Ser	Ser	Gln 235	Ser	Gly	Glu	Thr	Gly 240
30	Glu	Val	Gln	Ala	Cys 245	Pro	Asp	Lys	Arg	Tyr 250	Ala	Met	Val	Leu	Phe 255	Arg
	Ile	Thr	Ser	Val 260	Phe	Tyr	Ile	Leu	Trp 265	Leu	Pro	Tyr	Ile	Ile 270	Tyr	Phe
35	Leu	Leu	Glu 275	Ser	Ser	Thr	Gly	His 280	Ser	Asn	Arg	Phe	Ala 285	Ser	Phe	Leu
∞ •	Thr	Thr 290	Trp	Leu	Ala	Ile	Ser 295	Asn	Ser	Phe	Сув	Asn 300	Сув	Val	Ile	Tyr

	Ser Leu Ser Asn Ser Val Phe Gln Arg Gly Leu Lys Arg Leu Ser G 305 310 315 3	ly 20
	Ala Met Cys Thr Ser Cys Ala Ser Gln Thr Thr Ala Asn Asp Pro T 325 330 335	yr
5	Thr Val Arg Ser Lys Gly Pro Leu Asn Gly Cys His Ile 340 345	
	(46) INFORMATION FOR SEQ ID NO:45:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:	
15	TCCCCCGGGA AAAAAACCAA CTGCTCCAAA	30
	(47) INFORMATION FOR SEQ ID NO:46:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:	
	TAGGATCCAT TTGAATGTGG ATTTGGTGAA A	31
25	(48) INFORMATION FOR SEQ ID NO:47:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1302 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:	
	ATGTGTTTTT CTCCCATTCT GGAAATCAAC ATGCAGTCTG AATCTAACAT TACAGTGCGA	60
	GATGACATTG ATGACATCAA, CACCAATATG TACCAACCAC TATCATATCC GTTAAGCTTT	120
35	CAAGTGTCTC TCACCGGATT TCTTATGTTA GAAATTGTGT TGGGACTTGG CAGCAACCTC	180

37

	ACTGTATTGG	TACTTTACTG	CATGAAATCC	AACTTAATCA	ACTCTGTCAG	TAACATTATT	240
	ACAATGAATC	TTCATGTACT	TGATGTAATA	ATTTGTGTGG	GATGTATTCC	TCTAACTATA	300
	GTTATCCTTC	TGCTTTCACT	GGAGAGTAAC	ACTGCTCTCA	TTTGCTGTTT	CCATGAGGCT	360
	TGTGTATCTT	TTGCAAGTGT	CTCAACAGCA	ATCAACGTTT	TTGCTATCAC	TTTGGACAGA	420
5	TATGACATCT	CTGTAAAACC	TGCAAACCGA	ATTCTGACAA	TGGGCAGAGC	TGTAATGTTA	480
	ATGATATCCA	TTTGGATTTT	TTCTTTTTTC	TCTTTCCTGA	TTCCTTTTAT	TGAGGTAAAT	540
	TTTTTCAGTC	TTCAAAGTGG	AAATACCTGG	GAAAACAAGA	CACTTTTATG	TGTCAGTACA	600
	AATGAATACT	ACACTGAACT	GGGAATGTAT	TATCACCTGT	TAGTACAGAT	CCCAATATTC	660
	TTTTTCACTG	TTGTAGTAAT	GTTAATCACA	TACACCAAAA	TACTTCAGGC	TCTTAATATT	720
10	CGAATAGGCA	CAAGATTTTC	AACAGGGCAG	AAGAAGAAAG	CAAGAAAGAA	AAAGACAATT	780
	TCTCTAACCA	CACAACATGA	GGCTACAGAC	ATGTCACAAA	GCAGTGGTGG	GAGAAATGTA	840
	GTCTTTGGTG	TAAGAACTTC	AGTTTCTGTA	ATAATTGCCC	TCCGGCGAGC	TGTGAAACGA	900
	CACCGTGAAC	GACGAGAAAG	ACAAAAGAGA	GTCTTCAGGA	TGTCTTTATT	GATTATTTCT	960
	ACATTTCTTC	TCTGCTGGAC	ACCAATTTCT	GTTTTAAATA	CCACCATTT	ATGTTTAGGC	1020
15	CCAAGTGACC	TTTTAGTAAA	ATTAAGATTG	TGTTTTTAĠ	TCATGGCTTA	TGGAACAACT	1080
	ATATTTCACC	CTCTATTATA	TGCATTCACT	AGACAAAAAT	TTCAAAAGGT	CTTGAAAAGT	1140
	AAAATGAAAA	AGCGAGTTGT	TTCTATAGTA	GAAGCTGATC	CCCTGCCTAA	TAATGCTGTA	1200
	ATACACAACT	CTTGGATAGA	TCCCAAAAGA	ААСАААААА	TTACCTTTGA	AGATAGTGAA	1260
	ATAAGAGAAA	AACGTTTAGT	GCCTCAGGTT	GTCACAGACT	AG		1302
			•				

- 20 (49) INFORMATION FOR SEQ ID NO:48:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 433 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
- 25 (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

Met Cys Phe Ser Pro Ile Leu Glu Ile Asn Met Gln Ser Glu Ser Asn 1 5 10 15

30 Ile Thr Val Arg Asp Asp Ile Asp Asp Ile Asn Thr Asn Met Tyr Gln

	Pro	Leu	Ser 35	Tyr	Pro	Leu	Ser	Phe 40	Gln	Val	Ser	Leu	Thr 45	Gly	Phe	Leu
	Met	Le <u>u</u> 50	Glu	Ile	Val	Leu	Gly 55	Leu	Gly	Ser	Asn	Leu 60	Thr	Val	Leu	Val
5	Leu 65	Tyr	Суз	Met	Lys	Ser 70	Asn	Leu	Ile	Asn	Ser 75	Val	Ser	Asn	Ile	Ile 80
	Thr	Met	Asn	Leu	His 85	Val	Leu	Asp	Val	Ile 90	Ile	ayD	Val	Gly	Суз 95	Ile
10	Pro	Leu	Thr	Ile 100	Val	Ile	Leu	Leu	Leu 105	Ser	Leu	Glu	Ser	Asn 110	Thr	Ala
	Leu	Ile	Cys 115	Суз	Phe	His	Glu	Ala 120	Cys	Val	Ser	Phe	Ala 125	Ser	Val	Ser
	Thr	Ala 130	Ile	Asn	Val	Phe	Ala 135	Ile	Thr	Leu	Asp	Arg 140	Tyr	Asp	Ile	Ser
15	Val 145	Lys	Pro	Ala	Asn	Arg 150	Ile	Leu	Thr	Met _.	Gly 155	Arg	Ala	Val	Met	Leu 160
	Met	Ile	Ser	Ile	Trp 165	Ile	Phe	Ser	Phe	Phe 170	Ser	Phe	Leu	Ile	Pro 175	Phe
20	Ile	Glu	Val	Asn 180	Phe	Phe	Ser	Leu	Gln 185	Ser	Gly	Asn	Thr	Trp 190	Glu	Asn
	Lys	Thr	Leu 195	Leu	Сув	Val	Ser	Thr 200	Asn	Glu	Tyr	Tyr	Thr 205	Glu	Leu	Gly
	Met	Tyr 210	Tyr	His	Leu	Leu	Val 215	Gln	Ile	Pro	Ile	Phe 220	Phe	Phe	Thr	Val
25	Val 225	Val	Met	Leu	Ile	Thr 230	Tyr	Thr	Lys	Ile	Leu 235	Gln	Ala	Leu	Asn	Ile 240
	Arg	Ile	Gly	Thr	Arg 245	Phe	Ser	Thr	Gly	Gln 250	Lys	Lys	Lys	Ala	Arg 255	Lys
30	Lys	Lys	Thr	Ile 260	Ser	Leu	Thr	Thr	Gln 265	His	Glu	Ala	Thr	Asp 270	Met	Ser
	Gln	Ser	Ser 275	Gly	Gly	Arg	Asn	Val 280	Val	Phe	Gly	Val	Arg 285	Thr	Ser	Val
	Ser	Val 290	Ile	Ile	Ala	Leu	Arg 295	Arg	Ala	Val	Lys	Arg 300	His	Arg	Glu	Arg
35	Arg 305	Glu	Arg	Gln	Lys	Arg 310	Val	Phe	Arg	Met	Ser 315	Leu	Leu	Ile	Ile	Ser 320
	Thr	Phe	Leu	Leu	Сув	Trp	Thr	Pro	Ile	Ser	Val	Leu	Asn	Thr	Thr	Ile

									13	39								
						325					330					335		
٠		Leu	Cys	Leu	Gly 340	Pro	Ser	Asp	Leu	Leu 345	Val	Lys	Leu	Arg	Leu 350	Cys	Phe	
5		Leu	Val	Met 355	Ala	Tyr	Gly	Thr	Thr 360	Ile	Phe	His	Pro	Leu 365	Leu	Tyr	Ala	
		Phe	Thr 370	Arg	Gln	Lys	Phe	Gln 375	Lys	Val	Leu	Lys	Ser 380	Lys	Met	Lys	Lys	
		Arg 385	Val	Val	Ser	Ile	Val 390	Glu	Ala	Asp	Pro	Leu 395	Pro	Asn	Asn	Ala	Val 400	
10		Ile	His	Asn	Ser	Trp 405	Iļe	Asp	Pro	Lys	Arg 410	Asn	Lys	Lys	Ile	Thr 415	Phe	
		Glu	Asp	Ser	Glu 420	Ile	Arg	Glu	Lys	Arg 425	Leu	Val	Pro	Gln	Val 430	Val	Thr	
15		Asp			•													
	(50)	INFO																
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear																	
		(ii) мо	LECU	LE T	YPE:	DNA	(ge	nomi	.c}								
		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:49	:						
	GTGAA	GCTT	G CC	TCTG	GTGC	CTG	CAGG	AGG										30
25	(51)	INFO	RMAT	ION	FOR	SEQ	ID N	0:50	:									
30		(i)	(A) (B) (C)	LEN TYP STR	E CH. GTH: E: n: ANDE OLOG:	31 : ucle DNES	base ic a S: s	pai cid ingl	rs									
•		(ii) MO:	LECU	LE T	YPE:	DNA	(ge	nomi	c)								
		(xi)) SE	QUEN	CE DI	escr:	IPTI	ON:	SEQ	ID N	0:50	:						
	GCAGA	ATTC	C CG	GTGG(CGTG	TTG	IGGT	GCC (C								:	31

(52) INFORMATION FOR SEQ ID NO:51:

35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1209 base pairs

40

- (B) TYPE: nucleic acid(C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

ATGTTGTGTC CTTCCAAGAC AGATGGCTCA GGGCACTCTG GTAGGATTCA CCAGGAAACT 60 CATGGAGAAG GGAAAAGGGA CAAGATTAGC AACAGTGAAG GGAGGGAGAA TGGTGGGAGA 120 GGATTCCAGA TGAACGGTGG GTCGCTGGAG GCTGAGCATG CCAGCAGGAT GTCAGTTCTC 180 AGAGCAAAGC CCATGTCAAA CAGCCAACGC TTGCTCCTTC TGTCCCCAGG ATCACCTCCT 10 CGCACGGGGA GCATCTCCTA CATCAACATC ATCATGCCTT CGGTGTTCGG CACCATCTGC CTCCTGGGCA TCATCGGGAA CTCCACGGTC ATCTTCGCGG TCGTGAAGAA GTCCAAGCTG CACTGGTGCA ACAACGTCCC CGACATCTTC ATCATCAACC TCTCGGTAGT AGATCTCCTC TTTCTCCTGG GCATGCCCTT CATGATCCAC CAGCTCATGG GCAATGGGGT GTGGCACTTT 480 GGGGAGACCA TGTGCACCCT CATCACGGCC ATGGATGCCA ATAGTCAGTT CACCAGCACC 540 15 TACATCCTGA CCGCCATGGC CATTGACCGC TACCTGGCCA CTGTCCACCC CATCTCTTCC 600 ACGAAGTTCC GGAAGCCCTC TGTGGCCACC CTGGTGATCT GCCTCCTGTG GGCCCTCTCC 660 TTCATCAGCA TCACCCCTGT GTGGCTGTAT GCCAGACTCA TCCCCTTCCC AGGAGGTGCA 720 GTGGGCTGCG GCATACGCCT GCCCAACCCA GACACTGACC TCTACTGGTT CACCCTGTAC CAGTTTTCC TGGCCTTTGC CCTGCCTTTT GTGGTCATCA CAGCCGCATA CGTGAGGATC 20 CTGCAGCGCA TGACGTCCTC AGTGGCCCCC GCCTCCCAGC GCAGCATCCG GCTGCGGACA 900 AAGAGGGTGA CCCGCACAGC CATCGCCATC TGTCTGGTCT TCTTTGTGTG CTGGGCACCC 960 TACTATGTGC TACAGCTGAC CCAGTTGTCC ATCAGCCGCC CGACCCTCAC CTTTGTCTAC 1020 TTATACAATG CGGCCATCAG CTTGGGCTAT GCCAACAGCT GCCTCAACCC CTTTGTGTAC 1080 ATCGTGCTCT GTGAGACGTT CCGCAAACGC TTGGTCCTGT CGGTGAAGCC TGCAGCCCAG 1140 25 GGGCAGCTTC GCGCTGTCAG CAACGCTCAG ACGGCTGACG AGGAGAGGAC AGAAAGCAAA 1200 GGCACCTGA 1209

- (53) INFORMATION FOR SEQ ID NO:52:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 402 amino acids
- 30 (B) TYPE: amino acid

41

(C) STRANDEDNESS: (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

5 Met Leu Cys Pro Ser Lys Thr Asp Gly Ser Gly His Ser Gly Arg Ile His Gln Glu Thr His Gly Glu Gly Lys Arg Asp Lys Ile Ser Asn Ser Glu Gly Arg Glu Asn Gly Gly Arg Gly Phe Gln Met Asn Gly Gly Ser 10 Leu Glu Ala Glu His Ala Ser Arg Met Ser Val Leu Arg Ala Lys Pro Met Ser Asn Ser Gln Arg Leu Leu Leu Ser Pro Gly Ser Pro Pro 15 . Arg Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile Met Pro Ser Val Phe Gly Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser Thr Val Ile Phe Ala Val Val Lys Lys Ser Lys Leu His Trp Cys Asn Asn Val Pro Asp 20 Ile Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu Phe Leu Leu Gly Met Pro Phe Met Ile His Gln Leu Met Gly Asn Gly Val Trp His Phe 145 150 155 25 Gly Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp Ala Asn Ser Gln Phe Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile Asp Arg Tyr Leu 180 185 Ala Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Val 30 . 200 Ala Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser Phe Ile Ser Ile 210 215 Thr Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala 230 35 Val Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp

42

		Phe	Thr	Leu	Tyr 260	Gln	Phe	Phe	Leu	Ala 265	Phe	Ala	Leu	Pro	Phe 270	Val	Val	
		Ile	Thr	Ala 275	Ala	Tyr	Val	Arg	Ile 280	Leu	Gln	Arg	Met	Thr 285	Ser	Ser	Val	
5		Ala	Pro 290	Ala	Ser	Gln	Arg	Ser 295	Ile	Arg	Leu	Arg	Thr 300	Lys	Arg	Val	Thr	
		Arg 305	Thr	Ala	Ile	Ala	11e 310		Leu	Val	Phe	Phe	Val	Cys	Trp	Ala	Pro 320	
10		Tyr	Tyr	Val	Leu	Gln 325	Leu	Thr	Gln	Leu	Ser 330	Ile	Ser	Arg	Pro	Thr 335	Leu	
		Thr	Phe	Val	Tyr 340	Leu	Tyr	Asn	Ala	Ala 345	Ile	Ser	Leu	Gly	Tyr 350	Ala	Asn	
		Ser	Суз	Leu 355	Asn	Pro	Phe	Val	Tyr 360	Ile	Val	Leu	Сув	Glu 365	Thr	Phe	Arg	
. 15		Lys	Arg 370		Val	Leu	Ser	Val 375	Lys	Pro	Ala	Ala	Gln 380	Gly	Gln	Leu	Arg	
		Ala 385	Val	Ser	Asn	Ala	Gln 390		Ala	Asp	Glu	Glu 395	Arg	Thr	Glu	Ser	Lys 400	
20	/54\	-	Thr	TTON	 FOD	SEO	מז ו	NO · S	٦.									
25	(54) INFORMATION FOR SEQ ID NO:53: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear																	
		(i	i) M	OLEC	OLE '	TYPE	: DN	A (g	enom	ic)								
		(x	i) S	EQUE	NCE :	DESC	RIPT	ION:	SEQ	ID :	NO:5	3:						
	GGCG	GATC	CA T	GGAT	GTGA	C TT	CCCA	A										27
30	(55)	INF	ORMA	TION	FOR	SEQ	ID	NO:5	4 :									
		(i	(A (B) LE) TY	NGTH PE:	HARA : 27 nucl	bas eic	e pa acid	irs									
35			• -			EDNE GY :		_	те									
		(i	i) M	OLEC	ULE	TYPE	: DN	A (g	enom	ic)								

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

43

GGCGGATCCC TACACGGCAC TGCTGAA

27

(56) INFORMATION FOR SEQ ID NO:55:

5

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1128 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

10	ATGGATGTGA.	CTTCCCAAGC	CCGGGGCGTG	GGCCTGGAGA	TGTACCCAGG	CACCGCGCAC	60
	GCTGCGGCCC	CCAACACCAC	CTCCCCGAG	CTCAACCTGT	CCCACCCGCT	CCTGGGCACC	120
	GCCCTGGCCA	ATGGGACAGG	TGAGCTCTCG	GAGCACCAGC	AGTACGTGAT	CGGCCTGTTC	180
	CTCTCGTGCC	TCTACACCAT	CTTCCTCTTC	CCCATCGGCT	TTGTGGGCAA	CATCCTGATC	240
	CTGGTGGTGA	ACATCAGCTT	CCGCGAGAAĢ	ATGACCATCC	CCGACCTGTA	CTTCATCAAC	300
15	CTGGCGGTGG	CGGACCTCAT	CCTGGTGGCC	GACTCCCTCA	TTGAGGTGTT	CAACCTGCAC	360
	GAGCGGTACT	ACGACATCGC	CGTCCTGTGC	ACCTTCATGT	CGCTCTTCCT	GCAGGTCAAC	420
	ATGTACAGCA	GCGTCTTCTT	CCTCACCTGG	ATGAGCTTCG	ACCGCTACAT	CGCCCTGGCC	480
	AGGGCCATGC	GCTGCAGCCT	GTTCCGCACC	AAGCACCACG	CCCGGCTGAG	CTGTGGCCTC	540
	ATCTGGATGG	CATCCGTGTC	AGCCACGCTG	GTGCCCTTCA	CCGCCGTGCA	CCTGCAGCAC	600
20	ACCGACGAGG	CCTGCTTCTG	TTTCGCGGAT	GTCCGGGAGG	TGCAGTGGCT	CGAGGTCACG	660
	CTGGGCTTCA	TCGTGCCCTT	CGCCATCATC	GGCCTGTGCT	ACTCCCTCAT	TGTCCGGGTG	720
	CTGGTCAGGG	CGCACCGGCA	CCGTGGGCTG	CGGCCCCGGC	GGCAGAAGGC	GCTCCGCATG	780
	ATCCTCGCGG	TGGTGCTGGT	CTTCTTCGTC	TGCTGGCTGC	CGGAGAACGT	CTTCATCAGC	840
	GTGCACCTCC	TGCAGCGGAC	GCAGCCTGGG	GCCGCTCCCT	GCAAGCAGTC	TTTCCGCCAT	900
25	GCCCACCCC	TCACGGGCCA	CATTGTCAAC	CTCGCCGCCT	TCTCCAACAG	CTGCCTAAAC	960
	CCCCTCATCT	ACAGCTTTCT	CGGGGAGACC	TTCAGGGACA	AGCTGAGGCT	GTACATTGAG	1020
	CAGAAAACAA	ATTTGCCGGC	CCTGAACCGC	TTCTGTCACG	CTGCCCTGAA	GGCCGTCATT	1080
	CCAGACAGCA	CCGAGCAGTC	GGATGTGAGG	TTCAGCAGTG	CCGTGTGA		1128

(57) INFORMATION FOR SEQ ID NO:56:

30 (i) SEQUENCE CHARACTERISTICS:

		(B)	LEI TYI STI	PE: 6	amino EDNES	o ac: SS:	id		3							
5	(i:	i) MO	OLECT	ULE :	rype:	: pro	oteir	n								
	(x:	i) SI	EQUE	OCE I	DESCI	RIPT	ION:	SEQ	ID I	NO:5	5 :					
	Met 1	Asp	Val	Thr	Ser 5	Gln	Ala	Arg	Gly	Val 10	Gly	Leu	Glu	Met	Tyr 15	Pro
10	Gly	Thr	Ala	His 20	Ala	Ala	Ala	Pro	Asn 25	Thr	Thr	Ser	Pro	Glu 30	Leu	Asn
	Leu	Ser	His 35	Pro	Leu	Leu	Gly	Thr 40	Ala	Leu	Ala	Asn	Gly 45	Thr	Gly	Glu
·	Leu	Ser 50	Glu	His	Gln	Gln	Tyr 55	Val	Ile	Gly	Leu	Phe 60	Leu	Ser	Cys	Leu
15	Tyr 65	Thr	Ile	Phe	Leu	Phe 70	Pro	Ile	Gly	Phe	Val 75	Gly	Asn	Ile	Leu	Ile 80
	Leu	Val	Val	Asn	Ile 85	Ser	Phe	Arg	Glu	Lys 90	Met	Thr	Ile	Pro	Asp 95	Leu
20	Tyr	Phe	Ile	Asn 100	Leu	Ala	Val	Ala	Asp 105	Leu	Ile	Leu	Val	Ala 110	Asp	Ser
	Leu	Ile	Glu 115	Val	Phe	Asn	Leu	His 120	Glu	Arg	Tyr	Tyr	Asp 125	Ile	Ala	Val
	Leu	Cys 130	Thr	Phe	Met	Ser	Leu 135	Phe	Leu	Gln	Val	Asn 140	Met	Tyr	Ser	Sex
25	Val 145	Phe	Phe	Leu	Thr	Trp 150	Met	Ser	Phe	Asp	Arg 155	Tyr	Ile	Ala	Leu	Ala 160
	Arg	Ala	Met	Arg	Сув 165	Ser	Leu	Phe	Arg	Thr 170	Lys	His	His	Ala	Arg 175	Leu
30	Ser	Суз	Gly	Leu 180	Ile	Trp	Met	Ala	Ser 185	Val	Ser	Ala	Thr	Leu 190	Val	Pro
	Phe	Thr	Ala 195	Val	His	Leu	Gln	His 200	Thr	Asp	Glu	Ala	Cys 205	Phe	Суз	Phe
	Ala	Asp 210	Val	Arg	Glu	Val	Gln 215	Trp	Leu	Glu	Val	Thr 220	Leu	Gly	Phe	Ile
35	Val 225	Pro	Phe	Ala	Ile	Ile 230	Gly	Leu	Суз	Tyr	Ser 235	Leu	Ile	Val	Arg	Val 240
	Leu	Val	Arg	Ala	His	Arg	His	Arg	Gly	Leu	Arg	Pro	Arg	Arg	Gln	Lys

					245					250					255		
	Ala	Leu	Arg	Met 260	Ile	Leu	Ala	Val	Val 265	Leu	Val	Phe	Phe	Val 270	Cys	Trp	
5	Leu	Pro	Glu 275	Asn	Val	Phe	Ile	Ser 280	Val	His	Leu	Leu	Gln 285	Arg	Thr	Gln	
	Pro	Gly 290	Ala	Ala	Pro	Суз	Lys 295	Gln	Ser	Phe	Arg	His 300	Ala	His	Pro	Leu	
	Thr 305	Gly	His	Ile	Val	Asn 310	Leu	Ala	Ala	Phe	Ser 315	Asn	Ser	Суз	Leu	Asn 320	
10	Pro	Leu	Ile	Tyr	Ser 325	Phe	Leu	Gly	Glu	Thr 330	Phe	Arg	Asp	Lys	Leu 335	Arg	
	Leu	Tyr	Ile	Glu 340	Gln	Lys	Thr	Asn	Leu 345	Pro	Ala	Leu	Asn	Arg 350	Phe	Суз	
15	His	Ala	Ala 355	Leu	Lys	Ala	Val	Ile 360	Pro	Asp	Ser	Thr	Glu 365	Gln	Ser	Asp	
	Val	Arg 370	Phe	Ser	Ser	Àla	Val 375		٠								
	(58) INFORMATION FOR SEQ ID NO:57:															·	
20	(i) SEQUENCE CHARACTERISTICS:																
	(i	i) M(DLECU	TE 1	YPE:	DNA	4 (ge	enomi	ic)								
25	(x	i) SI	EQUE	ICE I	ESCR	IPT:	ON:	SEQ	ID 1	IO:57	' :						
	AAGGAATT	CA C	GCCG	GGTC	ATC	CCAT	TCC	C									3:
	(59) /INF	ORMA:	rion	FOR	SEQ	ID N	IO:58	3:									
30	(i	(B)	QUENC LEN TYPE STR	IGTH: PE: n RANDE	30 ucle DNES	base ic a S: s	pai cid ingl	rs									
	(i	i) MO	DLECU	TE I	YPE:	DNA	(ge	enomi	ic)								
	(x	i) SI	QUEN	ICE D	ESCR	IPTI	ON:	SEQ	ID N	10:58	B:						
35	5 GGTGGATCCA TAAACACGGG CGTTGAGGAC 30																
	(60) INF	ORMAT	rion	FOR	SEQ	ID N	10:59):									

46

WO 00/22129 PCT/US99/23938

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 960 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

5 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

ATGCCATTCC CAAACTGCTC AGCCCCCAGC ACTGTGGTGG CCACAGCTGT GGGTGTCTTG CTGGGGCTGG AGTGTGGGCT GGGTCTGCTG GGCAACGCGG TGGCGCTGTG GACCTTCCTG 10 TTCCGGGTCA GGGTGTGGAA GCCGTACGCT GTCTACCTGC TCAACCTGGC CCTGGCTGAC CTGCTGTTGG CTGCGTGCCT GCCTTTCCTG GCCGCCTTCT ACCTGAGCCT CCAGGCTTGG CATCTGGGCC GTGTGGGCCTG CTGGGCCCTG CGCTTCCTGC TGGACCTCAG CCGCAGCGTG GGGATGGCCT TCCTGGCCGC CGTGGCTTTG GACCGGTACC TCCGTGTGGT CCACCCTCGG 360 CTTAAGGTCA ACCTGCTGTC TCCTCAGGCG GCCCTGGGGG TCTCGGGCCT CGTCTGGCTC 420 15 CTGATGGTCG CCCTCACCTG CCCGGGCTTG CTCATCTCTG AGGCCGCCCA GAACTCCACC AGGTGCCACA GTTTCTACTC CAGGGCAGAC GGCTCCTTCA GCATCATCTG GCAGGAAGCA 540 CTCTCCTGCC TTCAGTTTGT CCTCCCCTTT GGCCTCATCG TGTTCTGCAA TGCAGGCATC 600 ATCAGGGCTC TCCAGAAAAG ACTCCGGGAG CCTGAGAAAC AGCCCAAGCT TCAGCGGGCC 660 CAGGCACTGG TCACCTTGGT GGTGGTGCTG TTTGCTCTGT GCTTTCTGCC CTGCTTCCTG 20 GCCAGAGTCC TGATGCACAT CTTCCAGAAT CTGGGGAGCT GCAGGGCCCT TTGTGCAGTG GCTCATACCT CGGATGTCAC GGGCAGCCTC ACCTACCTGC ACAGTGTCGT CAACCCCGTG GTATACTGCT TCTCCAGCCC CACCTTCAGG AGCTCCTATC GGAGGGTCTT CCACACCCTC CGAGGCAAAG GGCAGGCAGC AGAGCCCCCA GATTTCAACC CCAGAGACTC CTATTCCTGA (61) INFORMATION FOR SEQ ID NO:60:

- 25 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 319 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- 30 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

Met Pro Phe Pro Asn Cys Ser Ala Pro Ser Thr Val Val Ala Thr Ala

		1				5					10					15	
		Val	Gly	Val	Leu 20	Leu	Gly	Leu	Glu	Cys 25	Gly	Leu	Gly	Leu	Leu 30	Gly	Asn
	S	Ala	Val	Ala 35	Leu	Trp	Thr	Phe	Leu 40	Phe	Arg	Val	Arg	Val 45	Trp	Lys	Pro
		Tyr	Ala 50	Val	Tyr	Leu	Leu	Asn 55	Leu	Ala	Leu	Ala	Asp 60	Leu	Leu	Leu	Ala
		Ala 65	Сув	Leu	Pro	Phe	Leu 70	Ala	Ala	Phe	Tyr	Leu 75	Ser	Leu	Gln	Ala	Trp 80
10	0	His	Leu	Gly	Arg	Val 85	Gly	Cys	Trp	Ala	Leu 90	Arg	Phe	Leu	Leu	Asp 95	Leu
		Ser	Arg	Ser	Val	Gly	Met	Ala	Phe	Leu 105	Ala	Ala	Val	Ala	Leu 110	Asp	Arg
13	5	Tyr	Leu	Arg 115	Val	Val	His	Pro	Arg 120	Leu	Lys	Val	Asn	Leu 125	Leu	Ser	Pro
		Gln	Ala 130	Ala	Leu	Gly	Val	Ser 135	Gly	Leu	Val	Trp	Leu 140	Leu	Met	Val	Ala
		Leu 145		Cys	Pro	Gly	Leu 150	Leu	Ile	Ser	Glu	Ala 155	Ala	Gln	Asn	Ser	Thr 160
20	0	Arg	Суѕ	His ,	Ser	Phe 165	Tyr	Ser	Arg	Ala	Asp 170	Gly	Ser	Phe	Ser	Ile 175	Ile
		Ţrp	Gln	Glu	Ala 180	Leu	Ser	Cys	Leu	Gln 185	Phe	Val	Leu	Pro	Phe 190	Gly	Leu
2:	5	Ile	Val	Phe 195	Cys	Asn	Ala	Gly	Ile 200	Ile	Arg	Ala	Leu	Gln 205	Lys	Arg	Leu
		Arg	Glu 210	Pro	Glu	Lys	Gln	Pro 215	Lys	Leu	Gln	Arg	Ala 220	Gln	Ala	Leu	Val
		Thr 225	Leu	Val	Val	Val	Leu 230	Phe	Ala	Leu	Суз	Phe 235	Leu	Pro	Сув	Phe	Leu 240
3	0	Ala	Arg	Val	Leu	Met 245	His	Ile	Phe	Gln	Asn 250	Leu	Gly	Ser	Cys	Arg 255	Ala
		Leu	Суз	Ala	Val 260	Ala	His	Thr	Ser	Asp 265	Val	Thr	Gly	Ser	Leu 270	Thr	Tyr
3	5	Leu	His	Ser 275	Val	Val	Asn	Pro	Val 280	Val	Tyr	Cys	Phe	Ser 285	Ser	Pro	Thr
		Phe	Arg 290	Ser	Ser	Tyr	Arg	Arg 295	Val	Phe	His	Thr	Leu 300	Arg	Gly	Lys	Gly

48

Gln Ala Ala Glu Pro Pro Asp Phe Asn Pro Arg Asp Ser Tyr Ser 305 310 315

(62) INFORMATION FOR SEQ ID NO:61:

5

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1143 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

ATGGAGGAAG GTGGTGATTT TGACAACTAC TATGGGGCAG ACAACCAGTC TGAGTGTGAG 60 TACACAGACT GGAAATCCTC GGGGGCCCTC ATCCCTGCCA TCTACATGTT GGTCTTCCTC CTGGGCACCA CGGGAAACGG TCTGGTGCTC TGGACCGTGT TTCGGAGCAG CCGGGAGAAG 15 ACGCTGCCCC TGTGGGCTAC CTACACGTAC CGGGACTATG ACTGGCCCTT TGGGACCTTC TTCTGCAAGC TCAGCAGCTA CCTCATCTTC GTCAACATGT ACGCCAGCGT CTTCTGCCTC ACCGGCCTCA GCTTCGACCG CTACCTGGCC ATCGTGAGGC CAGTGGCCAA TGCTCGGCTG 420 AGGCTGCGGG TCAGCGGGCC CGTGGCCACG GCAGTTCTTT GGGTGCTGGC CGCCCTCCTG 480 GCCATGCCTG TCATGGTGTT ACGCACCACC GGGGACTTGG AGAACACCAC TAAGGTGCAG 540 20 TGCTACATGG ACTACTCCAT GGTGGCCACT GTGAGCTCAG AGTGGGCCTG GGAGGTGGGC 600 CTTGGGGTCT CGTCCACCAC CGTGGGCTTT GTGGTGCCCT TCACCATCAT GCTGACCTGT 660 TACTTCTTCA TCGCCCAAAC CATCGCTGGC CACTTCCGCA AGGAACGCAT CGAGGGCCTG 720 CGGAAGCGGC GCCGGCTGCT CAGCATCATC GTGGTGCTGG TGGTGACCTT TGCCCTGTGC 780 TGGATGCCCT ACCACCTGGT GAAGACGCTG TACATGCTGG GCAGCCTGCT GCACTGGCCC 25 TGTGACTTTG ACCTCTTCCT CATGAACATC TTCCCCTACT GCACCTGCAT CAGCTACGTC AACAGCTGCC TCAACCCCTT CCTCTATGCC TTTTTCGACC CCCGCTTCCG CCAGGCCTGC ACCTCCATGC TCTGCTGTGG CCAGAGCAGG TGCGCAGGCA CCTCCCACAG CAGCAGTGGG 1020 GAGAAGTCAG CCAGCTACTC TTCGGGGCAC AGCCAGGGGC CCGGCCCCAA CATGGGCAAG 1080 GGTGGAGAAC AGATGCACGA GAAATCCATC CCCTACAGCC AGGAGACCCT TGTGGTTGAC 1140 30 TAG 1143

49

	(63) IN	FORM	ATION	FOR	SEQ	ID	NO:6	2:								
5	((C	EQUEN A) LE B) TY C) ST O) TO	ngth Pe : Rand	: 38 amin EDNE	0 am o ac SS:	ino id	acid								
	(ii) M	OLEC	ULE	TYPE	: pr	otei	n								
	(xi) S	EQUE	NCE :	DESC	RIPT	ION:	SEQ	ID :	NO : 6	2:					
10	Me 1	t Glu	Glu	Gly	Gly 5	Asp	Phe	Asp	Asn	Tyr 10	Tyr	Gly	Ala	Asp	Asn 15	Glr
	Se	r Glu	Cys	Glu 20	Tyr	Thr	Asp	Trp	Lys 25	Ser	Ser	Gly	Ala	Leu 30	Ile	Pro
	. Al	a Ile	Tyr 35	Met	Leu	·Val	Phe	Leu 40	Leu	Gly	Thr	Thr	Gly 45	Asn	Gly	Let
15	Va	l Leu 50	Trp	Thr	Val	Phe	Arg 55	Ser	Ser	Arg	Glu	Lys 60	Arg	Arg	Ser	Ala
	As; 65	p Ile	Phe	Ile	Ala	Ser 70	Leu	Ala	Val	Ala	Asp 75	Leu	Thr	Phe	Val	Val 80
20	Th	r Leu	Pro	Leu	Trp 85	Ala	Thr	Ţyr	Thr	Tyr 90	Arg	Asp	Tyr	Asp	Trp 95	Pro
	Pho	e Gly	Thr	Phe 100	Phe	Cys	Lys	Leu	Ser 105	Ser	Tyr	Leu	Ile	Phe 110	Val	Asn
	Me	t Tyr	Ala 115	Ser	Val	Phe	Cys	Leu 120	Thr	Gly	Leu	Ser	Phe 125	Asp	Arg	Tyr
25	Let	1 Ala 130		Val	Arg		Val 135	Ala	Asn	Ala	Arg	Leu 140	Arg	Leu	Arg	Val
	Se:	Gly	Ala	Val	Ala	Thr 150	Ala	Val	Leu	Trp	Val 155	Leu	Ala	Ala	Leu	Leu 160
30	Ala	a Met	Pro	Val	Met 165	Val	Leu	Arg	Thr	Thr 170	Gly	Asp	Leu	Glu	Asn 175	Thr
	Thi	. Lys	Val	Gln 180	Cys	Tyr	Met	Asp	Tyr 185	Ser	Met	Val	Ala	Thr 190	Val	Ser
	Sei	Glu	Trp 195	Ala	Trp	Glu	Val	Gly 200	Leu	Gly	Val	Ser	Ser 205	Thr	Thr	Val
35	Gly	/ Phe 210		Val	Pro	Phe	Thr	Ile	Met	Leu	Thr	Cys	Tyr	Phe	Phe	Ile

Ala Gln Thr Ile Ala Gly His Phe Arg Lys Glu Arg Ile Glu Gly Leu

		225					230					235					240	
		Arg	Lys	Arg	Arg	Arg 245	Leu	Leu	Ser	Ile	Ile 250	Val	Val	Leu	Val	Val 255	Thr	
5		Phe	Ala	Leu	Cys 260	Trp	Met	Pro	Tyr	His 265	Leu	Val	Lys	Thr	Leu 270	Tyr	Met	
		Leu	Gly	Ser 275	Leu	Leu	His	Trp	Pro 280	Cys	Asp	Phe	Asp	Leu 285	Phe	Leu	Met	
		Asn	Ile 290	Phe	Pro	Tyr	Суѕ	Thr 295	Суз	Ile	Ser	Tyr	Val 300	Asn	Ser	Сув	Leu	
10		Asn 305.		Phe	Leu	Tyr	Ala 310	Phe	Phe	Asp	Pro	Arg 315	Phe	Arg	Gln	Ala	Суз 320	
		Thr	Ser	Met	Leu	Cys 325	Cys	Gly	Glņ	Ser	Arg 330	Cys	Ala	Gly	Thr	Ser 335	His	
15		Ser	Ser	Ser	Gly 340	Glu _.	Lys	Ser	Ala	Ser 345	Tyr	Ser	Ser	Gly	His 350	Ser	Gln	
•		Gly	Pro	Gly 355	Pro	Asn	Met	Gly	Lys 360	Gly	Gly	Glu	Gln	Met 365	His	Glu	Lys	
		Ser	Ile 370	Pro	Tyr	Ser	Gln	Glu 375	Thr	Leu	Val	Val	Asp 3,80				٠	
20	(64)	INFO	RMAT	MOI	FOR	SEQ	ID N	10:63	:									
		(i)	(A) (B)	LEN TYP	IGTH: PE: r	31 ucle	base	pai	rs									
25				STR				_	.e				•					
		(ii	.) MC	LECU	ILE I	YPE:	DNA	(ge	nomi	.c).			•					
		(xi	.) SE	QUEN	ICE I	ESCR	IPTI	ON:	SEQ	ID N	iO: 63	:						
	TGAG	AATTC	T GG	TGAC	TCAC	AGC	CGGC	'ACA	G									31
	(65)	INFO	RMAT	ON	FOR	SEQ	ID N	iO:64	:									
30		(i)	(A) (B) (C)	UENC LEN TYP STR	GTH: E: n ANDE	31 ucle DNES	base ic a S: s	pai cid ingl	rs									
35		(ii) MC	LECU	LE T	YPE:	DNA	(ge	nomi	c)								
		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	O:64	:						

51

GCCGGATCCA AGGAAAAGCA GCAATAAAAG G

31

(66) INFORMATION FOR SEQ ID NO:65:

5

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1119 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

10	ATGAACTACC	CGCTAACGCT	GGAAATGGAC	CTCGAGAACC	TGGAGGACCT	GTTCTGGGAA	60
	CTGGACAGAT	TGGACAACTA	TAACGACACC	TCCCTGGTGG	AAAATCATCT	CTGCCCTGCC	120
	ACAGAGGGTC	CCCTCATGGC	CTCCTTCAAG	GCCGTGTTCG	TGCCCGTGGC	CTACAGCCTC	180
	ATCTTCCTCC	TGGGCGTGAT	CGGCAACGTC	CTGGTGCTGG	TGATCCTGGA	GCGGCACCGG	240
	CAGACACGCA	GTTCCACGGA	GACCTTCCTG	TTCCACCTGG	CCGTGGCCGA	CCTCCTGCTG	300
15	GTCTTCATCT	TGCCCTTTGC	CGTGGCCGAG	GGCTCTGTGG	GCTGGGTCCT	GGGGACCTTC	360
	CTCTGCAAAA	CTGTGATTGC	CCTGCACAAA	GTCAACTTCT	ACTGCAGCAG	CCTGCTCCTG	420
• 10	GCCTGCATCG	CCGTGGACCG	CTACCTGGCC	ATTGTCCACG	CCGTCCATGC	CTACCGCCAC	480
	CGCCGCCTCC	TCTCCATCCA	CATCACCTGT	GGGACCATCT	GGCTGGTGGG	CTTCCTCCTT	540
	GCCTTGCCAG	AGATTCTCTT	CGCCAAAGTC	AGCCAAGGCC	ATCACAACAA	CTCCCTGCCA	600
20	CGTTGCACCT	TCTCCCAAGA	GAACCAAGCA	GAAACGCATG	CCTGGTTCAC	CTCCCGATTC	660
	CTCTACCATG	TGGCGGGATT	CCTGCTGCCC	ATGCTGGTGA	TGGGCTGGTG	CTACGTGGGG	720
	GTAGTGCACA	GGTTGCGCCA	GGCCCAGCGG	CGCCCTCAGC	GGCAGAAGGC	AGTCAGGGTG	780
	GCCATCCTGG	TGACAAGCAT	CTTCTTCCTC	TGCTGGTCAC	CCTACCACAT	CGTCATCTTC	840
	CTGGACACCC	TGGCGAGGCT	GAAGGCCGTG	GACAATACCT	GCAAGCTGAA	TGGCTCTCTC	900
25	CCCGTGGCCA	TCACCATGTG	TGAGTTCCTG	GGCCTGGCCC	ACTGCTGCCT	CAACCCCATG	960
	CTCTACACTT	TCGCCGGCGT	GAAGTTCCGC	AGTGACCTGT	CGCGGCTCCT	GACCAAGCTG	1020
	GGCTGTACCG	GCCCTGCCTC	CCTGTGCCAG	CTCTTCCCTA	GCTGGCGCAG	GAGCAGTCTC	1080
	TCTGAGTCAG	AGAATGCCAC	CTCTCTCACC	ACGTTCTAG			1119

(67) INFORMATION FOR SEQ ID NO:66:

30 (i) SEQUENCE CHARACTERISTICS:

		(B (C) LE) TY) ST) TO	PE: RAND	amin EDNE	o ac SS:	id					,				
5	(i	i) M	OLEC	ULE	TYPE	: pr	otei	n .							•	
	(x	i) S	EQUE	NCE :	DESC	RIPT	ION:	SEQ	ID :	NO : 6	6 :					
	Met 1	Asn	Tyr	Pro	Leu 5	Thr	Leu	Glu	Met	Asp 10	Leu	Glu	Asn	Leu	Glu 15	As
10	Leu	Phe	Trp	Glu 20	Leu	Asp	Arg	Leu	Asp 25	Asn	Tyr	Asn	Asp	Thr 30	Ser	Le
	Val	Glu	Asn 35	His	Leu	Cys	Pro	Ala 40	Thr	Glu	Gly	Pro	Leu 45	Met	Ala	Se
	Phe	Lys 50	Ala	Val	Phe	Val	Pro 55	Val	Ala	Tyr	Ser	Leu 60	Ile	Phe	Leu	Let
15	Gly 65	Val	Ile	Gly	Asn	Val 70	Leu	Val	Leu	Val	.Ile 75	Leu	Glu	Arg	His	Arg 80
	Gln	Thr	Arg	Ser	Ser 85	Thr	Glu	Thr	Phe	Leu 90	Phe	His	Leu	Ala	Val 95	
20	Asp	Leu	Leu	Leu 100	Val	Phe	Ile	Leu	Pro 105	Phe	Ala	Val	Ala	Glu 110	Gly	Sei
	Val	Gly	Trp 115	Val	Leu	Gly	Thr	Phe 120	Leu	Cys	Lys	Thr	Val 125	Ile	Ala	Let
	His	Lys 130	Val	Asn	Phe	Tyr	Cys 135	Ser	Ser	Leu	Leu	Leu 140	Ala	Суз	Ile	Ala
25	Val 145	Asp	Arg	Tyr	Leu	Ala 150	Ile	Val	His	Ala	Val 155	His	Ala	Tyr	Arg	His
	Arg	Arg	Leu	Leu	Ser 165	Ile	His	Ile	Thr	Cys 170	Gly	Thr	Ile	Trp	Leu 175	Va]
30	Gly	Phe	Leu	Leu 180	Ala	Leu	Pro	Glu	Ile 185	Leu	Phe	Ala	Lys	Val 190	Ser	Glr
	Gly	His	His 195	Asn	Asn	Ser	Leu	Pro 200	Arg	Cys	Thr	Phe	Ser 205	Gln	Glu	Asr
	Gln	Ala 210	Glu	Thr	His	Ala	Trp 215	Phe	Thr	Ser	Arg	Phe 220	Leu	Tyr	His	Val
35	Ala 225	Gly	Phe	Leu	Leu	Pro 230	Met	Leu	Val	Met	Gly 235	Trp	Сув	Tyr	Val	Gl _y 240
	Val	Val	His	Arg	Leu	Arg	Gln	Ala	Gln	Arg	Arg	Pro	Gln	Arg	Gln	Lys

						245					250					255		
		Ala	Val	Arg	Val 260	Ala	Ile	Leu	Val	Thr 265	Ser	Ile	Phe	Phe	Leu 270	Cys	Trp	
5		Ser	Pro	Tyr 275	His	Ile	Val	Ile	Phe 280	Leu	Asp	Thr	Leu	Ala 285	Arg	Leu	Lys	
		Ala	Val 290	Asp	Asn	Thr	Cys	Lys 295	Leu	Asn	Gly	Ser	Leu 300	Pro	Val	Ala	Ile	
	•	Thr 305	Met	Cys	Glu	Phe	Leu 310	Gly	Leù	Ala	His	Cys 315	Cys	Leu	Asn	Pro	Met 320	
10		Leu	Tyr	Thr	Phe	Ala. 325	Gly	Val	Lys	Phe	Arg 330	Ser	Asp	Leu	Ser	Arg 335	Leu	
		Leu	Thr	Lys	Leu 340	Gly	Суѕ	Thr	Gly	Pro 345	Ala	Ser	Leu	Cys	Gln 350	Leu	Phe	
15		Pro	Ser	Trp 355	Arg	Arg	Ser	Ser	Leu 360	Ser	Glų	Ser	Glu	Asn 365	Ala	Thr	Ser	
	٠	Leu	Thr 370	Thr	Phe	,			•	٠								
	(68) INFORMATION FOR SEQ ID NO:67:																	
20		(i)	(A) (B) (C)	QUENC LEN TYI STI	IGTH : PE : I	: 30 nucle EDNES	base eic a SS: s	e pai acid sing]	irs									
		(ii	i) Mo	DLECT	JLE T	TYPE:	: DN	A (ge	nomi	ic)								
25		(xi	i) si	EQUE	ICE I	DESCI	RIPT	ON:	SEQ	ID N	IO:67	7 :						
	CAAA	SCTTC	SA AZ	AGCTO	CACC	GTO	CAG	AGAC										30
	(69)	INFO	ORMAT	MOIT	FOR	SEQ	ID 1	10:68	B:									
30		(i)	(A) (B) (C)	JENCE LEN TYI STE	NGTH: PE: r RANDE	: 30 nucle EDNES	base eic a SS: 8	e pai acid singl	rs									
		(ii	L) MC	LECU	TE 1	YPE:	DNA	A (ge	nomi	.c)								
		(xi	i) SE	EQUEN	ICE I	ESCF	RIPT	ON:	SEQ	ID N	10:68	3:						
35	GCGG	ATCCC	CG AC	TCAC	CACCO	TGG	CTG	GCC										30
	(70)	INFO	RMAT	MOI	FOR	SEQ	ID N	10:69) :									

54

15	I CECTIENTED	CHARACTERISTICS:
۱.	/ SECUENCE	CHARACIERISIICS

(A) LENGTH: 1128 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

5

30

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

ATGGATGTGA CTTCCCAAGC CCGGGGCGTG GGCCTGGAGA TGTACCCAGG CACCGCGCAG 60 CCTGCGGCCC CCAACACCAC CTCCCCCGAG CTCAACCTGT CCCACCCGCT CCTGGGCACC 10 GCCCTGGCCA ATGGGACAGG TGAGCTCTCG GAGCACCAGC AGTACGTGAT CGGCCTGTTC CTCTCGTGCC TCTACACCAT CTTCCTCTTC CCCATCGGCT TTGTGGGCAA CATCCTGATC 240 CTGGTGGTGA ACATCAGCTT CCGCGAGAAG ATGACCATCC CCGACCTGTA CTTCATCAAC 300 CTGGCGGTGG CGGACCTCAT CCTGGTGGCC GACTCCCTCA TTGAGGTGTT CAACCTGCAC 360 GAGCGGTACT ACGACATCGC CGTCCTGTGC ACCTTCATGT CGCTCTTCCT GCAGGTCAAC 15 ATGTACAGCA GCGTCTTCTT CCTCACCTGG ATGAGCTTCG ACCGCTACAT CGCCCTGGCC 480 AGGGCCATGC GCTGCAGCCT GTTCCGCACC AAGCACCACG CCCGGCTGAG CTGTGGCCTC 540 ATCTGGATGG CATCCGTGTC AGCCACGCTG GTGCCCTTCA CCGCCGTGCA CCTGCAGCAC ACCGACGAGG CCTGCTTCTG TTTCGCGGAT GTCCGGGAGG TGCAGTGGCT CGAGGTCACG CTGGGCTTCA TCGTGCCCTT CGCCATCATC GGCCTGTGCT ACTCCCTCAT TGTCCGGGTG 20 CTGGTCAGGG CGCACCGGCA CCGTGGGCTG CGGCCCCGGC GGCAGAAGGC GCTCCGCATG 780 840 GTGCACCTCC TGCAGCGGAC GCAGCCTGGG GCCGCTCCCT GCAAGCAGTC TTTCCGCCAT 900 GCCCACCCC TCACGGGCCA CATTGTCAAC CTCACCGCCT TCTCCAACAG CTGCCTAAAC 960 CCCCTCATCT ACAGCTTTCT CGGGGAGACC TTCAGGGACA AGCTGAGGCT GTACATTGAG 1020 25 CAGAAAACAA ATTTGCCGGC CCTGAACCGC TTCTGTCACG CTGCCCTGAA GGCCGTCATT 1080 CCAGACAGCA CCGAGCAGTC GGATGTGAGG TTCAGCAGTG CCGTGTAG 1128

(71) INFORMATION FOR SEQ ID NO:70:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 375 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant

	(ii)	MOLI	ECULE 3	YPE:	pro	tein	l								
	(xi)	SEQ	JENCE I	DESCR	IPTI	ON:	SEQ	ID N	0:70):					
	Met 1	Asp Va	al Thr	Ser 5	Gln	Ala	Arg	Gly	Val 10	Gly	Leu	Glu	Met	Tyr 15	Pro
5	Gly 7	Thr A	la Gln 20	Pro	Ala	Ala	Pro	Asn 25	Thr	Thr	Ser	Pro	Glu 30	Leu	Asn
	Leu S	Ser H	is Pro 5	Leu	Leu	Gly	Thr 40	Ala	Leu	Ala	Asn	Gly 45	Thr	Gly	Glu
10		Ser G	lu Kis	Gln	Gln	Tyr 55	Val	Ile	Gly	Leu	Phe 60	Leu	Ser	Cys	Leu
	Tyr :	Thr I	le Phe	Leu	Phẹ 70	Pro	Ile	Gly	Phe	Val 75	Gly	Asn	Ile	Leu	Ile 80
	Leu \	Val V	al Asn	Ile 85	Ser	Phe	Arg	Glu	Lys 90	Met	Thr	Ile	Pro	Asp 95	Leu
15	Tyr 1	Phe I	le Asn 100	Leu	Ala	Val	Ala	Asp 105	Leu	Ile	Leu	Val	Ala 110	Asp	Ser.
	Leu		lu Val 15	Phe	Asn	Leu	His 120	Glu	Arg	Tyr	Tyr	Asp 125	Ile	Ala	Val
20		Суз Т 130	hr Phe	Met	Ser	Leu 135	Phe	Leu	Gln	Val	Asn 140	Met	Tyr	Ser	Ser
	Val :	Phe P	he Leu	Thr	Trp 150	Met	Ser	Phe	Asp	Arg 155	Tyr	Ile	Ala	Leu	Ala 160
	Arg :	Ala M	et Arg	Сув 165	Ser	Leu	Phe	Arg	Thr 170	Lys	His	His	Ala	Arg 175	Leu
25	Ser	Cys G	ly Leu 180	Ile	Trp	Met	Ala	Ser 185	Val	Ser	Ala	Thr	Leu 190	Val	Pro
	Phe		la Val 95	His	Leu	Gln						Сув 205		Cys	Phe
30		Asp V 210	al Arg	Glu	Val	Gln 215	Trp	Leu	Glu	Val	Thr 220	Leu	Gly	Phe	Ile
	Val 225	Pro P	he Ala	Ile	Ile 230	Gly	Leu	Сув	Tyr	Ser 235	Leu	Ile	Val	Arg	Val 240
	Leu	Val A	rg Ala	His 245	Arg	His	Arg	Gly	Leu 250	Arg	Pro	Arg	Arg	Gln 255	Lys
. 35	Ala	Leu A	rg Met 260		Leu	Ala	Val	Val. 265	Leu	Val	Phe	Phe	Val 270	Cys	Trp

	-
•	h
	w

	Pro Leu Ile Tyr Ser Phe Leu Gly Glu Thr Phe Arg Asp Lys Leu Arg 325 Leu Tyr Ile Glu Gln Lys Thr Asn Leu Pro Ala Leu Asn Arg Phe Cys 340 His Ala Ala Leu Lys Ala Val Ile Pro Asp Ser Thr Glu Gln Ser Asp 355 Val Arg Phe Ser Ser Ala Val 375 (72) INFORMATION FOR SEQ ID NO:71: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TypE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71: ACAGGAATTCC TGTGTGGTTT TACCGCCCAG 30 (73) INFORMATION FOR SEQ ID NO:72:																	
		Pro		Ala	Ala	Pro	Cys		Gln	Ser	Phe	Arg		Ala	His	Pro	Leu	
5			Gly	His	Ile	Val		Leu	Thr	Ala	Phe		Asn	Ser	Сув	Leu		
		Pro	Leu	Ile	Tyr		Phe	Leu	Gly	Glu		Phe	Arg	Asp	Lys		Arg	
10		Leu	Tyr	Ile		Gln	Lys	Thr	Asn		Pro	Ala	Leu	Asn	_	Phe	Суз	
		His	Ala		Leu	Lys	Ala	Val		Pro	Asp	Ser	Thr		Gln	Ser	Asp	
÷ .	٠.	Val	-	Phe	Ser	Ser	Ala			.:3								
15	(72)	INFO	RMAT	иои	FOR	SEQ	ID 1	10:71	L:			•						
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:																	
	ACAGA	ATTC	C TG	TGTG	GTTI	TAC	CGCC	CAG										30
	(73)	INFO	RMAT	CION	FOR	SEQ	ID N	10:72	::				•					
25		(i)	(A) (B) (C)	LEN TYP STR	GTH: E: n	30 ucle	base ic a S: s	pai cid ingl	.rs									
30		(ii) MO	LECU	LE I	YPE:	DNA	(ge	nomi	c)								
		(xi) · SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:72	:				•		
	CTCGG	ATCC	A GG	CAGA	AGAG	TCG	CCTA	TGG										30
	(74)	INFO	RMAT	'ION	FOR	SEQ	ID N	10:73	:									
35		(i)	(B)	LEN TYP	GTH: E: n	113 ucle	7 ba	se p	airs									

57

(D) TOPOLOGY: linear

WO 00/22129

- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

	ATGGACCTGG	GGAAACCAAT	GAAAAGCGTG	CTGGTGGTGG	CTCTCCTTGT	CATTTTCCAG	60
5	GTATGCCTGT	GTCAAGATGA	GGTCACGGAC	GATTACATCG	GAGACAACAC	CACAGTGGAC	120
	TACACTTTGT	TCGAGTCTTT	GTGCTCCAAG	AAGGACGTGC	GGAACTTTAA	AGCCTGGTTC	180
	CTCCCTATCA	TGTACTCCAT	CATTTGTTTC	GTGGGCCTAC	TGGGCAATGG	GCTGGTCGTG	240
	TTGACCTATA	TCTATTTCAA	GAGGCTCAAG	ACCATGACCG	ATACCTACCT	GCTCAACCTG	300
	GCGGTGGCAG	ACATCCTCTT	CCTCCTGACC	CTTCCCTTCT	GGGCCTACAG	CGCGGCCAAG	360
10	TCCTGGGTCT	TCGGTGTCCA	CTTTTGCAAG	CTCATCTTTG	CCATCTACAA	GATGAGCTTC	420
	TTCAGTGGCA	TGCTCCTACT	TCTTTGCATC	AGCATTGACC	GCTACGTGGC	CATCGTCCAG	480
	GCTGTCTCAG	CTCACCGCCA	CCGTGCCCGC	GTCCTTCTCA	TCAGCAAGCT	GTCCTGTGTG	540
	GGCATCTGGA	TACTAGCCAC	AGTGCTCTCC	ATCCCAGAGC	TCCTGTACAG	TGACCTCCAG	600
	AGGAGCAGCA	GTGAGCAAGC	GATGCGATGC	TCTCTCATCA	CAGAGCATGT	GGAGGCCTTT	660
15	ATCACCATCC	AGGTGGCCCA	GATGGTGATC	GGCTTTCTGG	TCCCCTGCT	GGCCATGAGC	720
	TTCTGTTACC	TTGTCATCAT	CCGCACCCTG	CTCCAGGCAC	GCAACTTTGA	GCGCAACAAG	780
	GCCATCAAGG	TGATCATCGC	TGTGGTCGTG	GTCTTCATAG	TCTTCCAGCT	GCCCTACAAT	840
	GGGGTGGTCC	TGGCCCAGAC	GGTGGCCAAC	TTCAACATCA	CCAGTAGCAC	CTGTGAGCTC	900
	AGTAAGCAAC	TCAACATCGC	CTACGACGTC	ACCTACAGCC	TGGCCTGCGT	CCGCTGCTGC	960
20	GTCAACCCTT	TCTTGTACGC	CTTCATCGGC	GTCAAGTTCC	GCAACGATCT	CTTCAAGCTC	1020
	TTCAAGGACC	TGGGCTGCCT	CAGCCAGGAG	CAGCTCCGGC	AGTGGTCTTC	CTGTCGGCAC	1080
	ATCCGGCGCT	CCTCCATGAG	TGTGGAGGCC	GAGACCACCA	CCACCTTCTC	CCCATAG	1137

(75) INFORMATION FOR SEQ ID NO:74:

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 378 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

	Me 1	t Asp	Leu	Gly	Lys 5	Pro	Met	Lys	Ser	Val 10	Leu	Val	Val	Ala	Leu 15	Let
	Va	l Ile	Phe	Gln 20	Val	Cys	Leu	Суз	Cln 25	Asp	Glu	Val	Thr	Asp 30	Asp	Туз
5	Il	e Gly	Asp 35	Asn	Thr	Thr	Val	Asp 40	Tyr	Thr	Leu	Phe	Glu 45	Ser	Leu	Суя
	Se	r Lys 50	Lys	Asp	Val	Arg	Asn 55	Phe	Lys	Ala	Trp	Phe 60	Leu	Pro	Ile	Met
10	Ту: 65	r Ser	Ile	Ile	Суз	Phe 70	Val	Gly.	Leu	Leu	Gly 75	Asn	Gly	Leu	Val	Va] 80
	Le	ı Thr	Tyr	Ile	Tyr 85	Phe	Lys	Arg	Leu	Lys 90	Thr	Met	Thr	Asp	Thr 95	Туз
.,	. Le	Leu	Asn	Leu 100	Ala	Val	Ala	Àsp	Ile 105	Leu	Phe	Leu	Leu	Thr 110	Leu	Pro
15	Ph	e Trp	Ala 115	Tyr	Ser	Ala	Ala	Lys 120	Ser	Trp	Val	Phe	Gly 125	Val	His	Phe
÷	Cy	130		Ile	Phe	Äla	Ile 135	Tyr	Lys	Met	Ser	Phe 140	Phe	Ser	Gly	Met
20	Le:	ı Leu 5	Leu	Leu	Сув	Ile 150	Ser	Ile	Asp	Arg	Tyr 155	Val	Ala	Ile	Val	Glr 160
	Ala	a Val	Ser	Ala	His 165	Arg	His	Arg	Ala	Arg 170	Val	Leu	Leu	Ile	Ser 175	Lys
	Le	ı Ser	Суз	Val 180	Gly	Ile	Trp	Ile	Leu 185	Ala	Thr	Val	Leu	Ser 190	Ile	Pro
25	Gl	ı Leu	Leu 195	Tyr	Ser	Asp	Leu	Gln 200	Arg	Ser	Ser	Ser	Glu 205	Gln	Ala	Met
	Arg	7 Cys 210		Leu	Ile	Thr	Glu 215	His	Val	Glu	Ala	Phe 220	Ile	Thr	Ile	Glr
30	Va. 22	l Ala	Gln	Met	Val	Ile 230	Gly	Phe	Leu	Val	Pro 235	Leu	Leu	Ala	Met	Ser 240
	Pho	e Cys	Tyr	Leu	Val 245	Ile	Ile	Arg	Thr	Leu 250	Leu	Gln	Ala	Arg	Asn 255	Phe
	Gli	ı Arg	Asn	Lys 260	Ala	Ile	Lys	Val	Ile 265	Ile	Ala	Val	Val	Val 270	Val	Phe
35	Ile	e Val	Phe 275	Gln	Leu	Pro	Tyr	Asn 280	Gly	Val	Val	Leu	Ala 285	Gln	Thr	Val

	Ala Asn Phe Asn Ile Thr Ser Ser Thr Cys Glu Leu Ser Lys Gln Leu 290 295 300	
	Asn Ile Ala Tyr Asp Val Thr Tyr Ser Leu Ala Cys Val Arg Cys Cys 305 310 315 320	
5	Val Asn Pro Phe Leu Tyr Ala Phe Ile Gly Val Lys Phe Arg Asn Asp 325 330 335	
	Leu Phe Lys Leu Phe Lys Asp Leu Gly Cys Leu Ser Gln Glu Gln Leu 340 345 350	
10	Arg Gln Trp Ser Ser Cys Arg His Ile Arg Arg Ser Ser Met Ser Val	
	Glu Ala Glu Thr Thr Thr Phe Ser Pro 370 375	
	(76) INFORMATION FOR SEQ ID NO:75:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
••	(ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:	
	CTGGAATTCA CCTGGACCAC CACCAATGGA TA	32
	(77) INFORMATION FOR SEQ ID NO:76:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:	
30	CTCGGATCCT GCAAAGTTTG TCATACAGTT	0
	(78) INFORMATION FOR SEQ ID NO:77:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1085 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	

(xi) SEQUENCE DESCRIPTION: SEO ID NO: 7	(xi)	SEQUENCE	DESCRIPTION:	SEO	TD	NO - 77
---	------	----------	--------------	-----	----	---------

	ATGGATATAC	AAATGGCAAA	CAATTTTACT	CCGCCCTCTG	CAACTCCTCA	GGGAAATGAC	60
	TGTGACCTCT	ATGCACATCA	CAGCACGGCC	AGGATAGTAA	TGCCTCTGCA	TTACAGCCTC	120
	GTCTTCATCA	TTGGGCTCGT	GGGAAACTTA	CTAGCCTTGG	TCGTCATTGT	TCAAAACAGG	180
5	AAAAAAATCA	ACTCTACCAC	CCTCTATTCA	ACAAATTTGG	TGATTTCTGA	TATACTTTTT	240
	ACCACGGCTT	TĠCCTACACG	AATAGCCTAC	TATGCAATGG	GCTTTGACTG	GAGAATCGGA	300
	GATGCCTTGT	GTAGGATAAC	TGCGCTAGTG	TTTTACATCA	ACACATATGC	AGGTGTGAAC	360
	TTTATGACCT	GCCTGAGTAT	TGACCGCTTC	ATTGCTGTGG	TGCACCCTCT	ACGCTACAAC	420
	AAGATAAAAA	GGATTGAACA	TGCAAAAGGC	GTGTGCATAT	TTGTCTGGAT	TCTAGTATTT	480
10	GCTCAGACAC	TCCCACTCCT	CATCAACCCT	ATGTCAAAGC	AGGAGGCTGA	AAGGATTACA	540
	TGCATGGAGT	ATCCAAACTT	TGAAGAAACT	AAAŤĊTCTTC	CCTGGATTCT	GCTTGGGGCA	600
	TGTTTCATAG	GATATGTACT	TCCACTTATA	ATCATTCTCA	TCTGCTATTC	TCAGATCTGC	660
··· .	TGCAAACTCT	TCAGAACTGC	CAAACAAAAC	CCACTCACTG	AGAAATCTGG	 TGTAAACAAA	720
. 1	AAGGCTCTCA	ACACAATTAT	TCTTATTATT	GTTGTGTTTG	TTCTCTGTTT	CACACCTTAC	780
15	CATGTTGCAA	TTATTCAACA	TATGATTAAG	AAGCTTCGTT	TCTCTAATTT	CCTGGAATGT	840
	AGCCAAAGAC	ATTCGTTCCA	GATTTCTCTG	CACTTTACAG	TATGCCTGAT	GAACTTCAAT	900
	TGCTGCATGG	ACCCTTTTAT	CTACTTCTTT	GCATGTAAAG	GGTATAAGAG	AAAGGTTATG	960
	AGGATGCTGA	AACGGCAAGT	CAGTGTATCG	ATTTCTAGTG	CTGTGAAGTC	AGCCCCTGAA	1020
	GAAAATTCAC	GTGAAATGAC	AGAAACGCAG	ATGATGATAC	ATTCCAAGTC	TTCAAATGGA	1080
20	AAGTGA						1086

(79) INFORMATION FOR SEQ ID NO:78:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 361 amino acids
 - (B) TYPE: amino acid
- 25 (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:
- Met Asp Ile Gln Met Ala Asn Asn Phe Thr Pro Pro Ser Ala Thr Pro 30 1 5 10 15

PCT/US99/23938

		Gln	Gly	Asn	Asp 20	Cys	Asp	Leu	Tyr	Ala 25	His	His	Ser	Thr	Ala 30	Arg	Ile
		Val	Met	Pro 35	Leu	His	Tyr	Ser	Leu 40	Val	Phe	Ile	Ile	Gly 45	Leu	Val	Gly
	5	Asn	Leu 50	Leu	Ala	Leu	Val	Val 55	Ile	Val	Gln	Asn	Arg 60	Lys	Lys	Ile	Asn
		Ser 65	Thr	Thr	Leu	Tyr	Ser 70	Thr	Asn	Leu	Val	Ile 75	Ser	Asp	Ile	Leu	Phe 80
	10	Thr	Thr	Ala	Leu	Pro 85	Thr	Arg	Ile	Ala	Tyr 90	Tyr	Ala	Met	Gly	Phe 95	Asp
		Trp	Arg	Ile	Gly 100	Asp	Ala	Leu	Cys	Arg 105	Ile	Thr	Ala	Leu	Val 110	Phe	Tyr
•	•••	Ile	Asn	Thr 115	Tyr	Ala	Gly	Val	Asn 120	Phe	Met	Thr	Сув	Leu 125	Ser	Ile	Asp
	15	Arg	Phe 130	Ile	Ala	Val	Val	His 135	Pro	Leu	Arg	Tyr	Asn 140	Lys	Ile	Lys	Arg
	٠	.Ile 145	Glu	His	Ala	Lys	Gly 150	Vaļ	Сўз	Įle	Phe	Val 155	Trp	Ilė	Leu	Val	Phe 160
	20	Ala	Gln	Thr	Leu	Pro 165	Leu	Leu	Ile	Àsn	Pro 170	Meţ	Ser	Lys	Gln	Glu 175	Ala
		Glu	Arg	Ile	Thr 180	Cys	Met	Glu	Tyr	Pro 185	Asn	Phe	Głu	Glu	Thr 190	Lys	Ser
,		Leu	Pro	Trp 195	Ile	Leu	Leu	Gly	Ala 200	Cys	Phe	Ile	Gly	Tyr 205	Val	Leu	Pro
	25		Ile 210					215					220				
		225	Thr				230					235					240
	30	_	Ala			245					250					255	
		Phe	Thr	Pro	Tyr 260	His	Val	Ala	Ile	11e 265		His	Met	Ile	Lys 270	Lys	Leu
			Phe	275					280					285			
	35		Leu 290					295					300				
		Pro	Phe	Ile	Tyr	Phe	Phe	Ala	Cys	Lys	Gly	Tyr	Lys	Arg	Lys	Val	Met

	305	310	3	315		320
	Arg Met Leu Lys Arg	Gln Val Ser	Val Ser I 330	le Ser Se	r Ala Val 335	
5	Ser Ala Pro Glu Glu . 340	Asn Ser Arg	Glu Met T 345	Thr Glu Th	r Gln Met 350	Met
	Ile His Ser Lys Ser 355	Ser Asn Gly 360	Lys			
	(80) INFORMATION FOR SEQ	ID NO:79:				
10	(i) SEQUENCE CHARAC (A) LENGTH: 31 (B) TYPE: nucle (C) STRANDEDNES (D) TOPOLOGY: 1	base pairs ic acid S: single			•	
	(ii) MOLECULE TYPE:		 (c)	• •		
15	(xi) SEQUENCE DESCR					
	CTGGAATTCT CCTGCTCATC CAG					31
	(81) INFORMATION FOR SEQ		estar a e en m			•• • • •
20	(i) SEQUENCE CHARAC (A) LENGTH: 30 (B) TYPE: nucle (C) STRANDEDNES (D) TOPOLOGY: 1	TERISTICS: base pairs ic acid S: single				
	(ii) MOLECULE TYPE:	DNA (genom:	ic)			
	(xi) SEQUENCE DESCR	RIPTION: SEQ	ID NO:80:	:		
25	CCTGGATCCC CACCCCTACT GGG	GCCTCAG				30
	(82) INFORMATION FOR SEQ	ID NO:81:				
30	(i) SEQUENCE CHARAC (A) LENGTH: 144 (B) TYPE: nucle (C) STRANDEDNES (D) TOPOLOGY: 1	6 base pair eic acid SS: single	3			
	(ii) MOLECULE TYPE:	: DNA (genom	ic)			
	(xi) SEQUENCE DESCR	RIPTION: SEQ	ID NO:81	:		
	ATGCGGTGGC TGTGGCCCCT GGC	CTGTCTCT CTT	GCTGTGA T	TTTGGCTGT	GGGGCTAAG	C 60
35	AGGGTCTCTG GGGGTGCCCC CCT	rgcacctg ggc	AGGCACA GI	AGCCGAGAC	CCAGGAGCA	AG 120

	CAGAGCCGAT	CCAAGAGGGG	CACCGAGGAT	GAGGAGGCCA	AGGGCGTGCA	GCAGTATGTG	180
	CCTGAGGAGT	GGGCGGAGTA	CCCCCGGCCC	ATTCACCCTG	CTGGCCTGCA	GCCAACCAAG	240
	CCCTTGGTGG	CCACCAGCCC	TAACCCCGAC	AAGGATGGGG	GCACCCCAGA	CAGTGGGCAG	300
	GAACTGAGGG	GCAATCTGAC	AGGGGCACCA	GGGCAGAGGC	TACAGATCCA	GAACCCCCTG	360
5	TATCCGGTGA	CCGAGAGCTC	CTACAGTGCC	TATGCCATCA	TGCTTCTGGC	GCTGGTGGTG	420
	TTTGCGGTGG	GCATTGTGGG	CAACCTGTCG	GTCATGTGCA	TCGTGTGGCA	CAGCTACTAC	480
	CTGAAGAGCG	CCTGGAACTC	CATCCTTGCC	AGCCTGGCCC	TCTGGGATTT	TCTGGTCCTC	540
	TTTTTCTGCC	TCCCTATTGT	CATCTTCAAC	GAGATCACCA	AGCAGAGGCT	ACTGGGTGAC	600
	GTTTCTTGTC	GTGCCGTGCC	CTTCATGGAG	GTCTCCTCTC	TGGGAGTCAC	GACTTTCAGC	660
10	CTCTGTGCCC	TGGGCATTGA	CCGCTTCCAC	GTGGCCACCA	GCÁCCCTGCC	CAAGGŢĢAGG	720
	CCCATCGAGC	GGTGCCAATC	CATCCTGGCC	AAGTTGGCTG	TCATCTGGGT	GGGCTCCATG	780
	ACGCTGGCTG	TGCCTGAGCT	CCTGCTGTGG	CAGCTGGCAC	AGGAGCCTGC	CCCCACCATG	840
are er se	GGCACCCTGG	ACTCATGCAT	CATGAAACCC	TCAGCCAGCC	TGCCCGAGTC	CCTGTATTCA	900
	CTGGTGATGA	CCTACCAGAA	CGCCCGCATG	TGGTGGTACT	TTGGCTGCTA	CTTCTGCCTG	960
15	CCCATCCTCT	TCACAGTCAC	CTGCCAGCTG	GTGACATGGC	GGGTGCGAGG	CCCTCCAGGG	1020
	AGGAAGTCAG	AGTGCAGGGC	CAGCAAGCAC	GAGCAGTGTG	AGAGCCAGCT	CAACAGCACC	1080
	GTGGTGGGCC	TGACCGTGGT	CTACGCCTTC	TGCACCCTCC	CAGAGAACGT	CTGCAACATC	1140
	GTGGTGGCCT	ACCTCTCCAC	CGAGCTGACC	CGCCAGACCC	TGGACCTCCT	GGGCCTCATC	1200
	AACCAGTTCT	CCACCTTCTT	CAAGGGCGCC	ATCACCCCAG	TGCTGCTCCT	TTGCATCTGC	1260
20	AGGCCGCTGG	GCCAGGCCTT	CCTGGACTGC	TGCTGCTGCT	GCTGCTGTGA	GGAGTGCGGC	1320
	GGGGCTTCGG	AGGCCTCTGC	TGCCAATGGG	TCGGACAACA	AGCTCAAGAC	CGAGGTGTCC	1380
	TCTTCCATCT	ACTTCCACAA	GCCCAGGGAG	TCACCCCCAC	TCCTGCCCCT	GGGCACACCT	1440
	TGCTGA		•				1446

(83) INFORMATION FOR SEQ ID NO:82:

25 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 481 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

30 (ii) MOLECULE TYPE: protein

	(x	i) s	EQUE	NCE	DESC	RIPT	ION:	SEQ	ID	NO : 8	2:					
	Met 1	Arg	Trp	Leu	Trp 5	Pro	Leu	Ala	Val	Ser 10	Leu	Ala	Val	Ile	Leu 15	Ala
5	Val	Gly	Leu	Ser 20	Arg	Val	Ser	Gly	Gly 25	Ala	Pro	Leu	His	Leu 30	Gly	Arg
	His	Arg	Ala 35	Glu	Thr	Gln	Glu	Gln 40	Gln	Ser	Arg	Ser	Lys 45	Arg	Gly	Thr
	Glu	Asp 50	Glu	Glu	Ala	Lys	Gly 55	Val	Gln	Gln	Tyr	Val 60	Pro	Glu	Glu	Trp
10	Ala 65	Glu	Tyr	Pro	Arg	Pro 70	Ile	His	Pro	Ala	Gly 75	Leu	Gln	Pro	Thr	Lys 80
	Pro	Leu	Val	Ala	Thr 85	Ser	Pro	Asn	Pro	Asp 90	ГÀЗ	Asp	Gly	Gly	Thr 95	Pro
15	Asp	Ser	Gly	100	Glu	Leu	Arg	Gly	Asn 105	Гей	Thr	Gly	Ala	Pro 110	Gly	Gln
and a special term in the special spec	Arg	Leu	Gln 115	Ile	Gln	Asn	Pro		Tyr	Pro	Val	Thr		Ser.	Ser	Tyr
	Co	21-		21-	71 -		•	120					125			
	Ser	130	TYL	Alạ	116	Met	135	reu	ATA	Leu	val	Val. 140	Phe	Ala.	Val	Gly
20	Ile 145	Val	Gly	Asn	Leu	Ser 150	Val	Met	Cys	Ile	Val 155	Trp	His	Ser	Tyr	Tyr 160
	Leu	Lys	Ser	Ala	Trp 165	Asn	Ser	Ile	Leu	Ala 170	Ser	Leu	Ala	Leu	Trp 175	Asp
25	Phe	Leu	Val	Leu 180	Phe	Phe	Cys	Leu	Pro 185	Ile	Val	Ile	Phe	Asn 190	Glu	Ile
	Thr	Lys	Gln 195	Arg	Leu	Leu	Gly	Asp 200	Val	Ser	Cys	Arg	Ala 205	Val	Pro	Phe
	Met	Glu 210	Val	Ser	Ser	Leu	Gly 215	Val	Thr	Thr	Phe	Ser 220	Leu	Сув	Ala	Leu
30	Gly 225	Ile	Asp	Arg	Phe	His 230	Val	Ala	Thr	Ser	Thr 235	Leu	Pro	Lys	Val	Arg 240
	Pro	Ile	Glu	Arg	Cys 245	Gln	Ser	Ile	Leu	Ala 250	Lys	Leu	Ala	Val	Ile 255	Trp
. 35	Val	Gly	Ser	Met 260	Thr	Leu	Ala		Pro 265	Glu	Leu	Leu	Leu	Trp 270	Gln	Leu
	Ala	Gln	Glu	Pro	Ala	Pro	Thr	Met	Gly	Thr	Leu	Asp	Ser	Cys	Ile	Met

65

•

				275					280					285			
•		Lys	Pro 290	Ser	Ala	Ser	Leu	Pro 295	Glu	Ser	Leu	Tyr	Ser 300	Leu	Val	Met	Thr
5		Tyr 305	Gln	Asn	Ala	Arg	Met 310	Trp	Trp	Туг	Phe	Gly 315	Cys	Tyr ·	Phe	Cys	Leu 320
		Pro	Ile	Leu	Phe	Thr 325	Val	Thr	Cys	Gln	Leu 330	Val	Thr	Trp	Arg	Val 335	Arg
		Gly	Pro	Pro	Gly 340	Arg	Ŀys	Ser	Glu	Cys 345	Arg	Ala	Ser	Lys	His 350	Glu	Gln
10		Cys	Glu	Ser 355	Gln	Leu	Asn	Ser	Thr 360	Val	Val	Gly	Leu	Thr 365	Val	Val	Tyr
•	•		Phe 370		Thr	Leu	Pro	Glu 375			Cys		Ile 380	Val	Val	Ala	Tyr
15		Leu 385	Ser	Thr	Glu	Leu	Thr 390		Gln	Thr	Leu	Asp 395	Leu	Leu	Gly	Leu	Ile 400
Am - Mile - Le - Tipole	ay kantavino						Phe		•	-							Leu
							Pro		Gly								
20		Cys	Сув	Cys 435	Cys	Glu	Glu	Cys	Gly 440	Gly	Ala	Ser	Glu	Ala 445	Ser	Ala	Ala
		Asn	Gly 450	Ser	Asp	Asn	Lys	Leu 455	Lys	Thr	Glu	Val	Ser 460	Ser	Ser	Ile	Tyr
25		Phe 465	His	Lys	Pro	Arg	Glu 470	Ser	Pro	Pro	Leu	Leu 475	Pro	Leu	Gly	Thr	Pro 480
		Cys															
	(84)	INFO	ORMAT	MOI	FOR	SEQ	ID N	10:83	3:								
30		(i)	(A) (B)	LE	IGTH:	: 22 nucle	TERI base eic a	e pai	irs								
							SS: s linea	_	le				•				
		(i:	L) MO	OLECT	ILE T	TYPE	: DNA	A (ge	enomi	ic)							
35		(xi	i) SI	QUE	ICE I	DESCI	RIPTI	ON:	SEQ	ID 1	10:83	3:				•	

	(85) INFORMATION FOR SEQ ID NO:84:		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid		
5	(C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii) MOLECULE TYPE: DNA (genomic)		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:		
	TCATGTATTA ATACTAGATT CT	22	
10	(86) INFORMATION FOR SEQ ID NO:85:		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single		
15			
	(ii) MOLECULE TYPE: DNA (genomic)		
is amou	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:	netricker i gje i nedpri der i griet sich, meg vog stadstantilisele	という、はない高級であることである。 はいかりくを変わ
	TACCATGTGG AACGCGACGC CCAGCGAAGA GCCGGGGT	. 38	:
• •	(87) INFORMATION FOR SEQ ID NO:86:		
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 		
25	(ii) MOLECULE TYPE: DNA (genomic)		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:		
	CGGAATTCAT GTATTAATAC TAGATTCTGT CCAGGCCCG	39	
	(88) INFORMATION FOR SEQ ID NO:87:		
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1101 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 		
	(ii) MOLECULE TYPE: DNA (genomic)		
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:		

	ATGTGGAACG	CGACGCCCAG	CGAAGAGCCG	GGGTTCAACC	TCACACTGGC	CGACCTGGAC	60
•	TGGGATGCTT	CCCCCGGCAA	CGACTCGCTG	GGCGACGAGC	TGCTGCAGCT	CTTCCCCGCG	120
	CCGCTGCTGG	CGGGCGTCAC	AGCCACCTGC	GTGGCACTCT	TCGTGGTGGG	TATCGCTGGC	180
	AACCTGCTCA	CCATGCTGGT	GGTGTCGCGC	TTCCGCGAGC	TGCGCACCAC	CACCAACCTC	240
5	TACCTGTCCA	GCATGGCCTT	CTCCGATCTG	CTCATCTTCC	TCTGCATGCC	CCTGGACCTC	300
	GTTCGCCTCT	GGCAGTACCG	GCCCTGGAAC	TTCGGCGACC	TCCTCTGCAA	ACTCTTCCAA	360
	TTCGTCAGTG	AGAGCTGCAC	CTACGCCACG	GTGCTCACCA	TCACAGCGCT	GAGCGTCGAG	420
	CGCTACTTCG	CCATCTGCTT	CCCACTCCGG	GCCAAGGTGG	TGGTCACCAA	GGGGCGGGTG	480
	AAGCTGGTCA	TCTTCGTCAT	CTGGGCCGTG	GCCTTCTGCA	GCGCCGGGCC	CATCTTCGTG	540
10	CTAGTCGGGG	TGGAGCACGA	GAACGGCACC	GACCCTTGGG	AÇAÇCAACGA	GTGCCGCCCC	. 600
	ACCGAGTTTG	CGGTGCGCTC	TGGACTGCTC	ACGGTCATGG	TGTGGGTGTC	CAGCATCTTC	660
	TTCTTCCTTC	CTGTCTTCTG	TCTCACGGTC	CTCTACAGTC	TCATCGGCAG	GAAGCTGTGG	720
, Alterian 1	CGGAGGAGGC	GCGGCGATGC	TGTCGTGGGT	GCCTCGCTCA	<u>GGGACCAGA</u> A	<u>CCACAAGCAA</u>	780 .
	ACCGTGAAAA	TGCTGGCTGT	AGTGGTGTTT	GCCTTCATCC	TCTGCTGGCT	CCCCTTCCAC	.840
15	GTAGGGCGAT	ATTTÁTTTTC	CAAATCCTTT	GAGCCTGGCT	CCTTGGAGAT	TGCTCAGATC	900
	AGCCAGTACT	GCAACCTCGT	GTCCTTTGTC	CTCTTCTACC	TCAGTGCTGC	CATCAACCCC	960
	ATTCTGTACA	ACATCATGTC	CAAGAAGTAC	CGGGTGGCAG	TGTTCAGACT	TCTGGGATTC	1020
	GAACCCTTCT	CCCAGAGAAA	GCTCTCCACT	CTGAAAGATG	AAAGTTCTCG	GGCCTGGACA	1080
	GAATCTAGTA	TTAATACATG	A .				1101

20 (89) INFORMATION FOR SEQ ID NO:88:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 366 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
- 25 (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

Met Trp Asn Ala Thr Pro Ser Glu Glu Pro Gly Phe Asn Leu Thr Leu 1 5 10 10 15

Ala Asp Leu Asp Trp Asp Ala Ser Pro Gly Asn Asp Ser Leu Gly Asp

	Glu	Leu	Leu 35	Gln	Leu	Phe	Pro	Ala 40	Pro	Leu	Leu	Ala	Gly 45	Val	Thr	Ala
	Thr	Cys 50	Val	Ala	Leu	Phe	Val 55	Val	Gly	Ile	Ala	Gly 60	Asn	Leu	Leu	Thr
5	Met 65	Leu	Val	Val	Ser	Arg 70	Phe	Arg	Glu	Leu	Arg 75	Thr	Thr	Thr	Asn	Leu 80
	Tyr	Leu	Ser	Ser	Met 85	Ala	Phe	Ser	Asp	Leu 90	Leu	Ile	Phe	Leu	Cys 95	Met
10	Pro	Leu	Asp	Leu 100	Val	Arg	Leu	Trp	Gln 105	Tyr	Arg	Pro	Trp	Asn 110	Phe	Gly
	Asp	Leu	Leu 115	Cys	Lys	Leu	Phe	Gln 120	Phe	Val	Ser	Glu	Ser 125	Cys	Thr	Tyr
. • • •	Ala	Thr 130	Val	Ļeu	Thr	Ile	Thr 135	Ala	Leu	Ser	Val	Glu 140	Arg	Tyr	Phe	Ala
15	Ile 145		Phe		Leu			Lys	Val	Val		Thr	Lys	Gly 	Arg	Val 160
yar e sweet .	Lys.	Leu,	Val.	,Ile	100	Val	Ile	Trp	Ala	Val 170	Ala	Phe	Cys	Ser	Ala 175	Gly
20	Pro	Ile	Phe	Val 180	Leu	Val	Gly	Val	Glu 185	His	Glu	Asn	Gly	Thr 190	Asp	Pro
	Trp	Asp	Thr 195	Asn	Glu	Суз	Arg	Pro 200	Thr	Glu	Phe	Ala	Val 205	Arg	Ser	Gly
	Leu	Leu 210	Thr	Val	Met	Val	Trp 215	Val	Ser	Ser	Ile	Phe 220	Phe	Phe	Leu	Pro
25	Val 225	Phe	Сув	Leu	Thr	Val 230	Leu	Tyr	Ser	Leu	Ile 235	Gly	Arg	Lys	Leu	Trp 240
	Arg	Arg	Arg	Arg	Gly 245	Asp	Ala	Val	Val	Gly 250	Ala	Ser	Leu	Arg	Asp 255	Gln
30	Asn	His	Lys	Gln 260	Thr	Val	Lys	Met	Leu 265	Ala	Val	Val	Val	Phe 270	Ala	Phe
	Ile	Leu	Cys 275	Trp	Leu	Pro	Phe	His 280	Val	Gly	Arg	Tyr	Leu 285	Phe	Ser	Lys
	Ser	Phe 290	Glu	Pro	Gly	Ser	Leu 295	Glu	Ile	Ala	Gln	Ile 300	Ser	Gln	Tyr	Cys
35	Asn 305	Leu	Val	Ser	Phe	Val 310	Leu	Phe	Tyr	Leu	Ser 315	Ala	Ala	Ile	Asn	Pro 320
	Ile	Leu	Tyr	Asn	Ile	Met	Ser	Lys	Lys	Tyr	Arg	Val	Ala	Val	Phe	Arg

						325					330					335		
•		Leu I	eu G	-	Phe 340	Glu	Pro	Phe		Gln 345	Arg	Lys	Leu	Ser	Thr 350	Leu	Lys	
5		Asp G		er 55	Ser	Arg	Ala	Trp	Thr 360	Glu	Ser	Ser	Ile	Asn 365	Thr			
	(90)	INFOR	ITAMS	ON	FOR	SEQ	ID 1	NO: 8	9:									
10		(i)	(B)	LEN TYP STR	GTH: E: r ANDE	33 nucle DNES	base eic a SS: 4	e pa: acid sing:	irs				•					
,	•	(ii)	MOL	ECU	LE 1	YPE	: DN	A (ge	enomi	ic)								
		(xi)	SEC	UEN	CE [ESÇI	RIPT	ION:	SEQ	iD 1	10:8	9:					٠.	
•••	GCAA	CTTGT	GCC	CTC	ACC	AGC	CAT	GCGA	GCC			•	•					33
15	(91)	INFOR	ITAMS	ON	FOR	ŞĘQ	ĬD 1	NO:9	0: .	•	····							·
e to militare a	en transfer	, (i),	(A) (B)	TYP	GTH: E: r	: 30 nucle	base eic a	e pa: acid	irs				te filozófia		• •	4 1	i de la s	<i>₩</i> • • •
20			(D)						le _.			• •						٠
		(ii)	MOI	ECU	TLE T	YPE	: DN	A (g	enom	ic)								
		(xi)	SEC	UEN	ICE I	ESCI	RIPT	ION:	SEQ	ID 1	10:9	0:						
	CGGA	ATTCAC	CAA	TGA	GTT	CG/	ACAG	AAGC										30
	(92)	INFO	LTAMS	Ю	FOR	SEQ	ID I	NO: 9	1:									
25		(i)	(B) (C)	LEN TYP STR	IGTH : PE: 1	184 nucle EDNES	12 back eic a SS: a	ase pacid	pairs	5								
30		(ii)	MOI	ECU	TLE T	YPE	: DN	A (g	enom:	ic)								
		(x:	i) se	QUE	NCE	DES	CRIP	TION	: SE	Q ID	NO:	91:						
	ATGC	GAGCC	C CGC	GCG	GCGC	TC:	rcgc	CCGC	ATG'	rcgc	GGC '	TACT	GCTT	CT G	CTAC'	rgct(С	60
	AAGG'	TGTCT	G CCI	CTI	CTG	c cc	rcgg	GGTC	GCC	CCTG	CGT	CCAG	AAAC	BA A	ACTT	GTCT	з :	120
	GGGG	AGAGC'	r GTG	CAC	CTA	AG'	rgat	CCAG	CGC	CGCG	GCA (GGGA	CGCC:	rg g	GGAC	CGGG	A :	180
35	AATT	CTGCA	A GAG	ACG	TTC	r GC	GAGC	CCGA	GCA	CCCA	GGG :	AGGA	GCAG	G G	GCAG	CGTT	r :	240

(93) INFORMATION FOR SEQ ID NO:92:

WO 00/22129 PCT/US99/23938

70

CTTGCGGGAC CCTCCTGGGA CCTGCCGGCG GCCCCGGGCC GTGACCCGGC TGCAGGCAGA 300 GGGGCGGAGG CGTCGGCAGC CGGACCCCCG GGACCTCCAA CCAGGCCACC TGGCCCCTGG AGGTGGAAAG GTGCTCGGGG TCAGGAGCCT TCTGAAACTT TGGGGAGAGG GAACCCCACG 420 GCCCTCCAGC TCTTCCTTCA GATCTCAGAG GAGGAAGAGA AGGGTCCCAG AGGCGCTGGC 480 5 ATTTCCGGGC GTAGCCAGGA GCAGAGTGTG AAGACAGTCC CCGGAGCCAG CGATCTTTTT 540 TACTGGCCAA GGAGAGCCGG GAAACTCCAG GGTTCCCACC ACAAGCCCCT GTCCAAGACG 600 GCCAATGGAC TGGCGGGCA CGAAGGGTGG ACAATTGCAC TCCCGGGCCG GGCGCTGGCC 660 CAGAATGGAT CCTTGGGTGA AGGAATCCAT GAGCCTGGGG GTCCCCGCCG GGGAAACAGC 720 ACGAACCGGC GTGTGAGACT GAAGAACCCC TTCTACCCGC TGACCCAGGA GTCCTATGGA 780 10 GCCTACGCGG TCATGTGTCT GTCCGTGGTG ATCTTCGGGA CCGGCATCAT TGGCAACCTG GCGGTGATGA GCATCGTGTG CCACAACTAC TACATGCGGA GCATCTCCAA CTCCCTCTTG GCCAACCTGG CCTTCTGGGA CTTTCTCATC ATCTTCTTCT GCCTTCCGCT GGTCATCTTC CACGAGCTGA CCAAGAAGTG GCTGCTGGAG GACTTCTCCT GCAAGATCGT GCCCTATATA 1020 GAGGTCGCTT CTCTGGGAGT CACCACTTTC ACCTTATGTG CTCTGTGCAT AGACCGCTTC 1080 15 CGTGCTGCCA CCAACGTACA GATGTACTAC GAAATGATCG AAAACTGTTC CTCAACAACT 1140 GCCAAACTTG CTGTTATATG GGTGGGAGCT CTATTGTTAG CACTTCCAGA AGTTGTTCTC 1200 CGCCAGCTGA GCAAGGAGGA TTTGGGGTTT AGTGGCCGAG CTCCGGCAGA AAGGTGCATT 1260 ATTAAGATCT CTCCTGATTT ACCAGACACC ATCTATGTTC TAGCCCTCAC CTACGACAGT 1320 GCGAGACTGT GGTGGTATTT TGGCTGTTAC TTTTGTTTGC CCACGCTTTT CACCATCACC 1380 20 TGCTCTCTAG TGACTGCGAG GAAAATCCGC AAAGCAGAGA AAGCCTGTAC CCGAGGGAAT AAACGGCAGA TTCAACTAGA GAGTCAGATG AACTGTACAG TAGTGGCACT GACCATTTTA 1500 TATGGATTTT GCATTATTCC TGAAAATATC TGCAACATTG TTACTGCCTA CATGGCTACA 1560 GGGGTTTCAC AGCAGACAAT GGACCTCCTT AATATCATCA GCCAGTTCCT TTTGTTCTTT AAGTCCTGTG TCACCCCAGT CCTCCTTTTC TGTCTCTGCA AACCCTTCAG TCGGGCCTTC 25 ATGGAGTGCT GCTGCTGTTG CTGTGAGGAA TGCATTCAGA AGTCTTCAAC GGTGACCAGT GATGACAATG ACAACGAGTA CACCACGGAA CTCGAACTCT CGCCTTTCAG TACCATACGC 1800 CGTGAAATGT CCACTTTTGC TTCTGTCGGA ACTCATTGCT GA 1842

5			(B) (C) (D)	LEI TYI STI TOI	NGTH: PE: 6 RANDI PCLOC	: 613 amino EDNES GY: 1	ami aci aci aci	ino a id relev	cids vant	3							
			i) MC i) Si				_			ID R	NO : 92	2:					
		Met 1	Arg	Ala	Pro	Gly 5	Ala	Leu	Leu	Ala	Arg 10	Met	Ser	Arg	Leu	Leu 15	Leu
10		Leu	Leu	Leu	Leu 20	Lys	Val	Ser	Ala	Ser 25	Ser	Ala	Leu	Gly	Val 30	Ala	Pro
		Ala	Ser	Arg 35	Asn	Glu	Thr	Суз	Leu 40	Gly	Glu	Ser	Cys	Ala 45	Pro	Thr	Val
15	• •	Ile	Gln 50	Arg	Arġ	Gly	Arg	Asp 55	Ala	Trp	Gly	Pro	Gly 60	Asn	Ser	Ala	Arg
•	,	Asp 65	Val.	Leu	Arg	<u>A</u> la	Arg 70	Ala	Pro	Arg	Glu	Glu 75	Gln	Gly	Ala	Ala	Phe 80
3 %	a ⁽¹ *av. gg	Leu	Ala	Gly	Pro	Ser 85	Trp	Asp	Leu	Pro	Ala 90	Ala	Pro	Gly	Arg		Pro
20 ·		Ala	Ala	Gly	Arg 100	Gly	Ala	Glu	Ala	Ser 105	Ala	Ala	Gly	Pro	Pro 110	Gly	Pro
		Pro	Thr	Arg 115	Pro	Pro	Gly	Pro	Trp 120	Arg	Trp	Lys	Gly	Ala 125	Arg	Gly	Gln
25		Glu	Pro 130	Ser	Glu	Thr	Leu	Gly 135	Arg	Gly	Asn	Pro	Thr 140	Ala	Leu	Gln	Leu
		Phe 145	Leu	Gln	Ile	Ser	Glu 150	Glu	Glu	Glu	ГÀв	Gly 155	Pro	Arg	Gly	Ala	Gly 160
		Ile	Ser	Gly	Arg	Ser 165	Gln	Glu	Gln	Ser	Val 170	ГÀЗ	Thr	Val	Pro	Gly 175	Ala
30		Ser	Asp	Leu	Phe 180	Tyr	Trp	Pro	Arg	Arg 185	Ala	Gly	Lys	Leu	Gln 190	Gly	Ser
		His	His	Lys 195	Pro	Leu	Ser	Lys	Thr 200	Ala	Asn	Gly	Leu	Ala 205	Gly	His	Glu
35		Gly	Trp 210	Thr	Ile	Ala	Leu	Pro 215	Gly	Arg	Ala	Leu	Ala 220	Gln	Asn	Gly	Ser
		Leu 225	Gly	Glu	Gly	Ile	His 230	Glu	Pro	Gly	Gly	Pro 235	Arg	Arg	Gly	Asn	Ser 240

		Thr	Asn	Arg	Arg	Val 245	Arg	Leu	Lys	Asn	Pro 250	Phe	Tyr	Pro	Leu	Thr 255	Gln
		Glu	Ser	Tyr	Gly 260	Ala	Tyr	Ala	Val	Met 265	Cys	Leu	Ser	Val	Val 270	Ile	Phe
	5	Gly	Thr	Gly 275	Ile	Ile	Gly	Asn	Leu 280	Ala	Val	Met	Ser	Ile 285	Val	Cys	His
		Asn	Tyr 290	Tyr	Met	Arg	Ser	Ile 295	Ser	Asn	Ser	Leu	Leu 300	Ala	Asn	Leu	Ala
	10	Phe 305	Trp	Asp	Phe	Leu	Ile 310	Ile	Phe	Phe	Cys	Leu 315	Pro	Leu	Val	Ile	Phe 320
	٠.	His	Glu	Leu	Thr	Lys 325	rys'	Trp	Leu	Leu	Glu 330	Asp	Phe	Ser	Cys	Lys 335	Ile
		Val	Pro	Tyr	Ile 340	Glu	Val	Ala	Ser	Leu 345	ĠŀŸ	.Val	Thr	Thr	Phe 350	Thr	Leu
	15	Суs 	Ala	Leu 355	Cys		Asp	_		Arg				Asn 365	Val	Gln	Met
.,		Tyr	250	., .	Met	Ile	Glu	Asn 375	Суз	Ser	Ser	Thr	Thr 380	Ala	Lys	Leu _.	Ala
		Val	Ile	Trp	Val	Gly	Ala	Leu	Leu	Leu	Ala	Leu	Pro	Glu	Val	Val_	Leu
	20	385					390					395			. •		400
		Arg	Gln	Leu	Ser	Lys 405	Glu	Asp	Leu	Gly	Phe 410	Ser	Gly	Arg	Ala	Pro 415	Ala
		Glu	Arg	Cys	Ile 420	Ile	Lys	Ile	Ser	Pro 425	Asp	Leu	Pro	Asp	Thr 430	Ile	Tyr
	25	Val	Leu	Ala 435	Leu	Thr	Tyr	Asp	Ser 440	Ala	Arg	Leu	Trp	Trp 445	Tyr	Phe	Gly
		Cys	Tyr 450	Phe	Cys	Leu	Pro	Thr 455	Leu	Phe	Thr	Ile	Thr 460	Cys	Ser	Leu	Val
	30	Thr 465	Ala	Arg	Lys	Ile	Arg 470	Lys	Ala	Glu	Lys	Ala 475	Cys	Thr	Arg	Gly	Asn 480
		Lys	Arg	Gln	Ile	Gln 485	Leu	Glu	Ser	Gln	Met 490	Asn	Cys	Thr	Val	Val 495	Ala
		Leu	Thr	Ile	Leu 500	Tyr	Gly	Phe	Суз	Ile 505	Ile	Pro	Glu	Asn	Ile 510	Суѕ	Asn
	35	Ile	Val	Thr 515	Ala	Tyr	Met	Ala	Thr 520	Gly	Val	Ser	Gln	Gln 525	Thr	Met	Asp
				313					320					323			

WO 00/22129

			530					535					540					
•		Thr 545	Pro	Val	Leu	Leu	Phe 550	Суз	Leu	Cys	Lys	Pro 555	Phe	Ser	Arg	Ala	Phe 560	0
5		Met	Glu	Cys	Сув	Cys 565	Cys	Суз	Cys	Glu	Glu 570	Сув	Ile	Gln	Lys	Ser 575	Ser	
		Thr	Val	Thr	Ser 580	Asp	Asp	Asn	Asp	Asn 585	Glu	Tyr	Thr	Thr	Glu 590	Leu	Glu	
		Leu	Ser	Pro 595	Phe	Ser	Thr	Ile	Arg 600	Arg	Glu	Met	Ser	Thr 605	Phe	Ala	Ser	
10		Val	Gly 610	Thr	His	Cys												
	(94)	INFO	RMAT	MOIT	FOR	SEQ	ID N	10:93	3:									
15		(i)	(A) (B)	LEN	CE CH IGTH: PE: r	34 ucle	base	pai	rs				• •					,
- ·· -					ANDE POLO				.e		. .						-	
	.	(ii) MC	LECU	TE 'I	YPE:	DÑA	(ge	nomi	.c)	. F e	٠						
																	معنه ژیفد	
20	CAGA			·							Mary Cire	<u> </u>	k untratt	responding the	a wara wa yi	east expande and		34
		INFO																J 4
					E CH													
			(A)	LEN	GTH:	32	base	pai										
25					E: n				e					•				
			(D)	TOP	OLOG	Y: 1	inea	r										
		(ii) MO	LECU	LE T	YPE:	DNA	(ge	nomi	c)								
		(x	i) S	EQUE	NCE	DESC	RIPT	ION:	SEQ	ID	NO: 9	4:						
	TTGG	ATCCC	T GG	TGCA	TAAC	AAT	TGAA	AGA	AT									32
30	(96)	INFO	RMAT	ION	FOR	SEQ	ID N	0:95	:									
		(i)			E CH													
					GTH: E: n				airs									
26			(C)	STR	ANDE	DNES	S: ន	ingl	e									
35			(D)	TOP	OLOG	Y: 1	inea	r										
		(ii) MO	LECU	LE T	YPE:	DNA	(ge	nomi	c)				-				

	(xi)	SEOUENCE	DESCRIPTION:	SEO	ID	NO:95:
--	------	----------	--------------	-----	----	--------

	ATGGTTTTTG	CTCACAGAAT	GGATAACAGC	AAGCCACATT	TGATTATTCC	TACACTTCTG	60
	GTGCCCCTCC	AAAACCGCAG	CTGCACTGAA	ACAGCCACAC	CTCTGCCAAG	CCAATACCTG	120
	ATGGAATTAA	GTGAGGAGCA	CAGTTGGATG	AGCAACCAAA	CAGACCTTCA	CTATGTGCTG	180
5	AAACCCGGGG	AAGTGGCCAC	AGCCAGCATC	TTCTTTGGGA	TTCTGTGGTT	GTTTTCTATC	240
	TTCGGCAATT	CCCTGGTTTG	TTTGGTCATC	CATAGGAGTA	GGAGGACTCA	GTCTACCACC	300
	AACTACTTTG	TGGTCTCCAT	GGCATGTGCT	GACCTTCTCA	TCAGCGTTGC	CAGCACGCCT	360
	TTCGTCCTGC	TCCAGTTCAC	CACTGGAAGG	TGGACGCTGG	GTAGTGCAAC	GTGCAAGGTT	420
	GTGCGATATT	TTCAATATCT	CACTCCAGGT	GTCCAGATCT	ACGTTCTCCT	CTCCATCTGC	480
10.	ATAGACCGGT	TCTACACCAT	CGTCTATCCT	CTGAGCTTCA	AGGTGTCCAG	AGAAAAAGCC	540
	AAGAAAATGA	TTGCGGCATC	GTGGATCTTT	GATGCAGGCT	TTGTGACCCC	TGTGCTCTTT	600
	_TTCTATGGCT	CCAACTGGGA	CAGTCATTGT	AĄCTĄŢŢTCĊ	TCCCCTCCTC	ŢTGGGAAGGC	660
	ACTGCCTACA	CTGTCATCCA	CTTCTTGGTG	GGCTTTGTGA	TTCCATCTGT	CCTCATAATT	720
	TTATTTTACC	AAAAGGTCAT	AAAATATATT	TGGAGAATAG	GCACAGATGG	CCGAACGGTG	. 780
15	AGGAGGACAA	TGAACATTGT	CCCTCGGACA		CTATCAAGAT	GTTCCTCATT	840
	TTAAATCTGT	TGTTTTTGCT	CTCCTGGCTG	CCTTTTCATG	TAGCTCAGCT	ATGGCACCCC	900
	CATGAACAAG	ACTATAAGAA	AAGTTCCCTT	GTTTTCACAG	CTATCACATG	GATATCCTTT	960
	AGTTCTTCAG	CCTCTAAACC	TACTCTGTAT	TCAATTTATA	ATGCCAATTT	TCGGAGAGGG	1020
	ATGAAAGAGA	CTTTTTGCAT	GTCCTCTATG	AAATGTTACC	GAAGCAATGC	CTATACTATC	1080
20	ACAACAAGTT	CAAGGATGGC	СААААААААС	TACGTTGGCA	TTTCAGAAAT	CCCTTCCATG	1140
	GCCAAAACTA	TTACCAAAGA	CTCGATCTAT	GACTCATTTG	ACAGAGAAGC	CAAGGAAAAA	1200
	AAGCTTGCTT	GGCCCATTAA	CTCAAATCCA	CCAAATACTT	TTGTCTAA		1248

(97) INFORMATION FOR SEQ ID NO:96:

(i) SEQUENCE CHARACTERISTICS: 25

(A) LENGTH: 415 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

		Met 1	Val	Pne	Ala	His 5	Arg	Met	Asp	Asn	Ser 10	Lys	Pro	His	Leu	Ile 15	Il
		Pro	Thr	Leu	Leu 20	Val	Pro	Leu	Gln	Asn 25	Arg	Ser	Cys	Thr	Glu 30	Thr	Ala
	5	Thr	Pro	Leu 35	Pro	Ser	Gln	Tyr	Leu 40	Met	Glu	Leu	Ser	Glu 45	Glu	His	Se
		Trp	Met 50	Ser	Asn	Gln	Thr	Д ар 55	Leu	His	Tyr	Val	Leu 60	Lys	Pro	Gly	Gl
	10	Val 65	Ala	Thr	Ala	Ser	Ile 70	Phe	Phe	Gly	Ile	Leu 75	Trp	Leu	Phe	Ser	80
		Phe	Gly	Asn	Ser	Leu 85	Val	Сув	Leu	Val	Ile 90	His	Arg	Ser	Arg	Arg 95	Th
		Gln	Ser	Thr	Thr 100	Asn	Tyr	Phe	Val	Val 105	Ser	Met	Ala	Cys	Ala 110	Asp	Let
and the second of the second o	.15	Leu	٠	115					120					125			,
阿里特阿尔山松 主要加速不过度* 445人可能加拿入1224人	CLASS SCRIPT SECTIONS		130					135		Thr			140				
	20	Gln 145	Tyr	Leu	Thr	Pro	Gly 150	Val	Gln	Ile	Tyr	Val 155	Leu	Leu	Ser	Ile	Су: 16
						165				Tyr	170				-	175	٠
					180					Ala 185					190		
	25	Gly	Phe	Val 195	Thr	Pro	Val	Leu	Phe 200	Phe	Tyr	Gly	Ser	Asn 205	Trp	Asp	Se
		His	210					215					220				
	30	225					230			Val		235					240
						245				Tyr	250					255	
	25	Gly			260					265					270		
	35	Lys	Thr	11e 275	ГÀ8	Met	Phe	Leu	Ile 280	Leu	Asn	Leu	Leu	Phe 285	Leu	Leu	Se

WO 00/22129

76

PCT/US99/23938

		Trp	Leu 290	Pro	Phe	His	Val	Ala 295	Gln	Leu	Trp	His	Pro 300	His	Glu	Gln	Asp	
		Tyr 305	Lys	Lys	Ser	Ser	Leu 310	Val	Phe	Thr	Ala	Ile 315	Thr	Trp	Ile	Ser	Phe 320	
5		Ser	Ser	Ser	Ala	Ser 325	Lys	Pro	Thr	Leu	Tyr 330	Ser	Ile	Tyr	Asn	Ala 335	Asn	
		Phe	Arg	Arg	Gly 340	Met	Lys	Glu	Thr	Phe 345	Суз	Met	Ser	Ser	Met 350	Lys	Cys	
10		Tyr	Arg	Ser 355	Asn	Ala	Tyr	Thr	Ile 360	Thr	Thr	Ser	Ser	Arg 365	Met	Ala	Lys	
	•	Lys	Asn 370	Tyr	Val	Gly	Ile	Ser 375	Glu	Ile	Pro	Ser	Met 380	Ala	Lys	Thr	Ile	
		Thr 385	Lys	Asp	Ser	Ile	Tyr 390	Asp	Ser	Phe	Asp	Arg 395	Glu	Ala	Lys	Glu	Lys 400	
15		Lys	Leu	Ala	Trp	Pro	Ile	Asn	Ser			Pro		Thr		Val 415.		
	(98)	INFO	RMAT	ON	FOR	SEQ	ID N	IO:97	·:						•			
		 (i)	SEC	UENC	е сн	ARAC	TRRT	בדר	· c ·		• •	.• • .	• • • •	·		•		
~20·	#1-27###################################		(2)	T.EW	CTU.	20	h		rs 	ಾ. ಪ ರಾ	180 Fe. 0	espagna:	N-JUDIN	rg to a t	e spora i min	te marri	sanerer	عائندا\$
20	,		(C)	STR	ANDE OLOG	DNES	S: s	ingl				•						
		(ii) мо	LECU	LE T	YPE:	DNA	. (ge	nomi	c)								
		(x	i) S	EQUE	NCE	DESC	RIPT	ON:	SEQ	ID	NO : 9	7:			•			
25	GGAAA	GCTT.	A AC	GATC	CCCA	GGA	GCAA	CAT										30
	(99)	INFO	RMAT	, ION	FOR	SEO	ID N	O • 98										30
	,																	
			(A)	LEN	E CH GTH:	31	base	pai										
30			(C)	STR	E: n' ANDE	DNES	S: s	ingl	e									
			(D)	TOP	OLOG	Y: 1	inea	r										
		(ii)) MO	LECU	LE T	YPE:	DNA	(ge	nomi	c)								
		(xi)) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ :	ID N	D:98	:						
	CTGGG	ATCC:	r ac	GAGA	GCAT	TTT	rcac:	ACA (3									31
35	(100)	INFO	ORMĄ!	rion	FOR	SEQ	ID I	NO:9	9:									
		(i)	SEQ	JENC	Е СН	ARAC'	reri:	STIC	S :									

77

(A) LENGTH: 1842 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

5 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

ATGGGGCCCA CCCTAGCGGT TCCCACCCC TATGGCTGTA TTGGCTGTAA GCTACCCCAG 60 CCAGAATACC CACCGGCTCT AATCATCTTT ATGTTCTGCG CGATGGTTAT CACCATCGTT GTAGACCTAA TCGGCAACTC CATGGTCATT TTGGCTGTGA CGAAGAACAA GAAGCTCCGG 10 AATTCTGGCA ACATCTTCGT GGTCAGTCTC TCTGTGGCCG ATATGCTGGT GGCCATCTAC CCATACCCTT TGATGCTGCA TGCCATGTCC ATTGGGGGCT GGGATCTGAG CCAGTTACAG 300 TGCCAGATGG TCGGGTTCAT CACAGGGCTG AGTGTGGTCG GCTCCATCTT CAACATCGTG GCAATCGCTA TCAACCGTTA CTGCTACATC TGCCACAGCC TCCAGTACGA ACGGATCTTC AGTGTGCGCA ATACCTGCAT CTACCTGGTC ATCACCTGGA TCATGACCGT CCTGGCTGTC 15 CTGCCCAACA TGTACATTGG CACCATCGAG TACGATCTTC GCACCTACAC CTGCATCTTC AACTATCTGA ACAACCCTGT CTTCACTGTT ACCATCGTCT GCATCCACTT CGTCCTCCCT 600 CTCCTCATCG TGGGTTTCTG CTACGTGAGG ATCTGGACCA AAGTGCTGGC GGCCCGTGAC 660 CCTGCAGGGC AGAATCCTGA CAACCAACTT GCTGAGGTTC GCAATTTTCT AACCATGTTT GTGATCTTCC TCCTCTTTGC AGTGTGCTGG TGCCCTATCA ACGTGCTCAC TGTCTTGGTG 20 GCTGTCAGTC CGAAGGAGAT GGCAGGCAAG ATCCCCAACT GGCTTTATCT TGCAGCCTAC TTCATAGCCT ACTTCAACAG CTGCCTCAAC GCTGTGATCT ACGGGCTCCT CAATGAGAAT TTCCGAAGAG AATACTGGAC CATCTTCCAT GCTATGCGGC ACCCTATCAT ATTCTTCCCT GGCCTCATCA GTGATATTCG TGAGATGCAG GAGGCCCGTA CCCTGGCCCG CGCCCGTGCC 1020 CATGCTCGCG ACCAAGCTCG TGAACAAGAC CGTGCCCATG CCTGTCCTGC TGTGGAGGAA 1080 25 ACCCCGATGA ATGTCCGGAA TGTTCCATTA CCTGGTGATG CTGCAGCTGG CCACCCCGAC 1140 CGTGCCTCTG GCCACCCTAA GCCCCATTCC AGATCCTCCT CTGCCTATCG CAAATCTGCC 1200 TCTACCCACC ACAAGTCTGT CTTTAGCCAC TCCAAGGCTG CCTCTGGTCA CCTCAAGCCT 1260 GTCTCTGGCC ACTCCAAGCC TGCCTCTGGT CACCCCAAGT CTGCCACTGT CTACCCTAAG 1320 CCTGCCTCTG TCCATTTCAA GGGTGACTCT GTCCATTTCA AGGGTGACTC TGTCCATTTC 1380

e dige de repuese de la la

	AAGCCTGACT CTGTTCATTT CAAGCCTGCT TCCAGCAACC CCAAGCCCAT CACTGGCCAC 14	40
	CATGTCTCTG CTGGCAGCCA CTCCAAGTCT GCCTTCAGTG CTGCCACCAG CCACCCTAAA 15	00
	CCCATCAAGC CAGCTACCAG CCATGCTGAG CCCACCACTG CTGACTATCC CAAGCCTGCC 15	so
	ACTACCAGCC ACCCTAAGCC CGCTGCTGCT GACAACCCTG AGCTCTCTGC CTCCCATTGC 16	20
5	CCCGAGATCC CTGCCATTGC CCACCCTGTG TCTGACGACA GTGACCTCCC TGAGTCGGCC 16	30
	TCTAGCCCTG CCGCTGGGCC CACCAAGCCT GCTGCCAGCC AGCTGGAGTC TGACACCATC 174	10
	GCTGACCTTC CTGACCCTAC TGTAGTCACT ACCAGTACCA ATGATTACCA TGATGTCGTG 180	0(
	GTTGTTGATG TTGAAGATGA TCCTGATGAA ATGGCTGTGT GA	12
•	(101) INFORMATION FOR SEQ ID NO:100:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 613 amino acids	
	(B) TYPE: amino acid (C) STRANDEDNESS:	
•	(D) TOPOLOGY: not relevant	
15	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:	
strumer.	Met Gly Pro Thr Leu Ala Val Pro Thr Pro Tyr Gly Cys Ile Gly Cys 1 5 10 15	esi.'i
20	Lys Leu Pro Gln Pro Glu Tyr Pro Pro Ala Leu Ile Ile Phe Met Phe 20 25 30	
	Cys Ala Met Val Ile Thr Ile Val Val Asp Leu Ile Gly Asn Ser Met 35 40 45	
	Val Ile Leu Ala Val Thr Lys Asn Lys Lys Leu Arg Asn Ser Gly Asn 50 55 60	
25	Ile Phe Val Val Ser Leu Ser Val Ala Asp Met Leu Val Ala Ile Tyr 65 70 75 80	
	Pro Tyr Pro Leu Met Leu His Ala Met Ser Ile Gly Gly Trp Asp Leu 85 90 95	
30	Ser Gln Leu Gln Cys Gln Met Val Gly Phe Ile Thr Gly Leu Ser Val 100 105 110	
	Val Gly Ser Ile Phe Asn Ile Val Ala Ile Ala Ile Asn Arg Tyr Cys 115 120 125	
	Tyr Ile Cys His Ser Leu Gln Tyr Glu Arg Ile Phe Ser Val Arg Asn 130 135 140	

WO 00/22129

	Thr 145	Суѕ	Ile	Туг	Leu	Val 150	Ile	Thr	Trp	Ile	Met 155	Thr	Val	Leu	Ala	Val 160
	Leu	Pro	Asn	Met	Tyr 165	Ile	Gly	Thr	Ile	Glu 170	Tyr	Asp	Pro	Arg	Thr 175	Tyr
5	Thr	Сув	Ile	Phe 180	Asn	Tyr	Leu	Asn	Asn 185	Pro	Val	Phe	Thr	Val 190	Thr	Ile
	Val	Сув	Ile 195	His	Phe	Val	Leu	Pro 200	Leu	Leu	Ile	·Val	Gly 205	Phe	Cys	Tyr
10	Val	Arg 210	Ile	Trp	Thr	Lys	Val 215	Leu	Ala	Ala	Arg	Asp 220	Pro	Ala	Gly	Gln
	Asn 225	Pro	Asp	Asn	Gln	Leu 230	Ala	Glu	Val	Arg	Asn 235	Phe	Leu	Thr	Met	Phe 240
	Val	Ile	Phe	Leu	Leu 245	Phe	Ala	Val	Суз	Trp 250	_Сув	Pro	Ile	Asn	Val 255	Leu
15	Thr	Val	Leu	Val 260			Ser	Pro	Lys 265	Glu	Met	Ala	Gly	Lys 270	Ile	Pro
	Asn	Trp	Leu 275		Leu	Ala	Ala	Tyr 280	Phe	Ile	Ala	Tyr	Phe 285	Așn	Ser _.	Cys
resulting two terms of the 20°	Leu	Asn 290	Ala	Val	Ile	Ţyŗ.	Gly 295	Leu	Ļeu	Asņ	Glu.	Asn 300	Phe	Arg	Arg	Glu
	Tyr 305	Trp	Thr	Ile	Phe	His 310	Ala	Met	Arg	His	Pro 315	Ile	Ile	Phe	Phe	Pro 320
	Gly	Leu	Ile	Ser	Asp 325	Ile	Arg	Glu	Met	Gln 330	Glu	Ala	Arg	Thr	Leu 335	Ala
25	Arg	Ala	Arg	Ala 340	His	Ala	Arg	Asp	Gln 345	Ala	Arg	Glu	Gln	Asp 350	Arg	Ala
	His	Ala	Суs 355	Pro	Ala	Val	Glu	Glu 360	Thr	Pro	Met	Asn	Val 365	Arg	Asn	Val
30	Pro	Leu 370	Pro	Gly	Asp	Ala	Ala 375	Ala	Gly	His	Pro	Asp 380	Arg	Ala	Ser	Gly
	His 385	Pro	Lys	Pro	His	Ser 390	Arg	Ser	Ser	Ser	Ala 395	Tyr	Arg	Lys	Ser	Ala 400
	Ser	Thr	His	His	Lys 405	Ser	Val	Phe	Ser	His 410	Ser	Lys	Ala	Ala	Ser 415	Gly
35	His	Leu	Lys	Pro 420	Val	Ser	Gly	His	Ser 425	Lys	Pro	Ala	Ser	Gly 430	His	Pro
	Lys	Ser	Ala	Thr	Val	Tyr	Pro	Lys	Pro	Ala	Ser	Val	His	Phe	Lys	Gly

				435	٠				440					445				
٠		Asp	Ser 450	Val	His	Phe	Lys	Gly 455	Asp	Ser	Val	His	Phe 460	Lys	Pro	Asp	Ser	
5		Val 465	His	Phe	Lys	Pro	Ala 470	Ser	Ser	Asn	Pro	Lys 475	Pro	Ile	Thr	Gly	His 480	
		His	Val	Ser	Ala	Gly 485	Ser	His	Ser	Lys	Ser 490	Ala	Phe	Ser	Ala	Ala 495	Thr	
		Ser	His	Pro	Lys 500	Pro	Ile	Lys	Pro	Ala 505	Thr	Ser	His	Ala	Glu 510	Pro	Thr	
10		Thr	Ala	Asp 515		Pro	Lys	Pro	Ala 520	Thr	Thr	Ser	His	Pro 525	Lys	Pro	Ala	
	•	Ala 	Ala 530	Asp	Asn	Pro	Glu	Leu 535	Ser	Ala	Ser	His	Cys 540	Pro	Glu	Ile	Pro	
15		Ala 545	Ile	Ala	His	Pro	Val 550	Ser	Asp	Asp	Ser	Asp 555	Leu	Pro	Glu	Ser	Ala 560	
	• • • • • •	Ser	Ser	Pro	Àla	Ala 565	Gly	Pro	Thr	Lys	Pro 570	Ala	Ala	Ser	Gln	Leu 575	Glu	
1	·		Asp														Ser	
20	Thr Asn Asp Tyr His Asp Val Val Val Asp Val Glu Asp Asp Pro															Pro		
		Asp	Glu 610	Met	Ala	Val												
	(102)	INF	ORMA	TION	FOR	SEC	ID	NO:1	.01:									
25		(i)	(B)	LEN TYP STR	GTH: E: n ANDE	32 ucle	base ic a S: s	pai cid ingl	.rs									
30		(ii	.) MO	LECU	LE T	YPE:	DNA	(ge	nomi	.c)								
		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:10	1:						
	TCCAA	GCTT	C GC	CATG	GGAC	ATA	ACGG	GAG	CT									32
	(103)	INF	ORMA	TION	FOR	SEQ	ID	NO:1	02:									
35		(i)	(B)	UENC LEN TYP STR	GTH: E: n	30 ucle	base ic a	pai cid	rs									

81

	(D) TOPOLOGY: linear	
•	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:	
	CGTGAATTCC AAGAATTTAC AATCCTTGCT	30
5	(104) INFORMATION FOR SEQ ID NO:103:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1548 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:	
•	ATGGGACATA ACGGGAGCTG GATCTCTCCA AATGCCAGCG AGCCGCACAA CGCGTC	CGGC 60
••	GCCGAGGCTG CGGGTGTGAA CCGCAGCGCG CTCGGGGAGT TCGGCGAGGC GCAGCT	GTAC 120
15	CGCCAGTTCA CCACCACCGT GCAGGTCGTC ATCTTCATAG GCTCGCTGCT CGGAAA	CTTC 180
	ATGGTGTTAT GGTCAACTTG CCGCACAACC GTGTTCAAAT CTGTCACCAA CAGGTT	CATT 240
÷ .	AAAAACCTGG CCTGCTCGGG GATTTGTGCC AGCCTGGTCT GTGTGCCCTT CGACAT	CATC 300
	CTCAGCACCA GTCCTCACTG TTGCTGGTGG ATCTACACCA TGCTCTTCTG CAAGGT	CGTC 360
	AAATTTTTGC ACAAAGTATT CTGCTCTGTG ACCATCCTCA GCTTCCCTGC TATTGC	TTTG 420
20	GACAGGTACT ACTCAGTCCT CTATCCACTG GAGAGGAAAA TATCTGATGC CAAGTC	CCGT 480
	GAACTGGTGA TGTACATCTG GGCCCATGCA GTGGTGGCCA GTGTCCCTGT GTTTGC	AGTA 540
	ACCAATGTGG CTGACATCTA TGCCACGTCC ACCTGCACGG AAGTCTGGAG CAACTC	CTTG 600
	GGCCACCTGG TGTACGTTCT GGTGTATAAC ATCACCACGG TCATTGTGCC TGTGGT	GGTG 660
	GTGTTCCTCT TCTTGATACT GATCCGACGG GCCCTGAGTG CCAGCCAGAA GAAGAAG	GGTC 720
25	ATCATAGCAG CGCTCCGGAC CCCACAGAAC ACCATCTCTA TTCCCTATGC CTCCCAC	GCGG 780
	GAGGCCGAGC TGCACGCCAC CCTGCTCTCC ATGGTGATGG TCTTCATCTT GTGTAG	CGTG 840
	CCCTATGCCA CCCTGGTCGT CTACCAGACT GTGCTCAATG TCCCTGACAC TTCCGTC	CTTC 900
	TTGCTGCTCA CTGCTGTTTG GCTGCCCAAA GTCTCCCTGC TGGCAAACCC TGTTCTC	CTTT 960
	CTTACTGTGA ACAAATCTGT CCGCAAGTGC TTGATAGGGA CCCTGGTGCA ACTACAC	CCAC 1020

30 CGGTACAGTC GCCGTAATGT GGTCAGTACA GGGAGTGGCA TGGCTGAGGC CAGCCTGGAA 1080

	CCCAGCAT	AC GC	TCGGGT.	AG C	CAGC	TCCT	G GA	GATG'	TTCC	ACA	TTGG	GCA	GCAG	CAGA'	TC	1140
	TTTAAGCC	CA CA	GAGGAT	GA G	GAAG	AGAG:	r ga	GGCC	AAGT	ACA	TTGG	CTC .	AGCT	GACT"	TC	1200
	CAGGCCAA	GG AG	ATATTT	AG C	ACCT	GCCT	GA(GGGA	GAGC	AGG	GCC.	ACA (GTTT	GCGC	CC	1260
	TCTGCCCC	AC CC	CTGAGC	AC A	GTGG/	ACTCI	r GT	ATCC	CAGG	TGG	CACC	GGC 2	AGCC	CCTG	rg	1320
5	GAACCTGA	AA CA'	TTCCCT	GA TZ	AAGT	ATTC	CTC	GCAG	TTG	GCT	rtgg	GCC !	TTTT(GAGT	rg	1380
	CCTCCTCA	GT GG	CTCTCA	SA G	ACCC	DAAAE	AG(CAAGA	LAGC	GGC.	rgct:	rcc (CCCC	TTGGC	3C	1440
	AACACCCC	AG AA	SAGCTG/	AT CO	CAGAC	CAAAC	GTO	SCCCA	AGG	TAG	CAGO	GT (GAGO	GGA	\G	1500
	ATGAGCAG	AA AC	ATAAAC	T GA	GCAT	rttt	CCZ	AAGG	TGG	ATT	CTAC	5			;	1548
	(105) IN	VFORM	ATION E	OR S	EQ I	D NC	:104	ł:		•			-			
10	(i)		JENCE C													
		(B)	LENGTH TYPE:	amin	o ac		acid	ls								
•			STRAND TOPOLO			rele	vant									
15	(ii	.) MOI	ECULE	TYPE	: pr	otei	n.	. *	•	-	••	•			•	* 1
٠	(xi	.) SEQ	UENCE	DESC	 RIPT	ION:	SEQ	ID	NO:1	04:		••	•			
	Met	Glv H	is Asn	Glv	Ser	Trin	" T12		·				- m3	. <u>.</u> .	:	
	1	 ,	LO ADI	5	DET	пр	116	ser	10	Asn	Ala	ser	GIu	Pro 15	His	ı
20	Asn	Ala S	er Gly 20	Ala	Glu	Ala	Ala	Gly 25	Val	Asn	Arg	Ser	Ala 30	Leu	Gly	
	Glu	Phe G 3	ly Glu 5	Ala	Gln	Leu	Tyr 40	Arg	Gln	Phe	Thr	Thr 45	Thr	Val	Gln	ı
	Val	Val I 50	le Phe	Ile	Gly	Ser 55	Leu	Leu	Gly	Asn	Phe 60	Met	Val	Leu	Trp	
25	Ser (Thr C	ys Arg	Thr	Thr 70	Val	Phe	Lys	Ser	Val 75	Thr	Asn	Arg	Phe	Ile 80	
	Lys i	Asn L	eu Ala	Cys 85	Ser	Gly	Ile	Cys	Ala 90	Ser	Leu	Val	Cys	Val 95	Pro	
30	Phe 1	Asp I	le Ile 100	Leu	Ser	Thr	Ser	Pro 105	His	Cys	Cys	Trp	Trp 110	Ile	туг	
	Thr F	Met Le	eu Phe 15	Cys	Lys	Val	Val 120	Lys	Phe	Leu	His	Lys 125	Val	Phe	ayD	
	Ser V	Val Ti 130	r Ile	Leu	Ser	Phe 135	Pro	Ala	Ile	Ala	Leu 140	Asp	Arg	туг	Tyr	

	Ser 145	Val	. Leu	Tyr	· Pro	Leu 150	Glu	Arg	Lys	Ile	Ser 155		Ala	Lys	Ser	Arg
	Glu	Leu	. Val	Met	Tyr 165	Ile	Trp	Ala	His	Ala 170		Val	Ala	Ser	Val 175	Pro
5	Val	Phe	Ala	Val 180	Thr	Asn	Val	Ala	Asp 185		Tyr	Ala	Thr	Ser 190		Сув
	Thr	Glu	Val 195	Trp	Ser	Asn	Ser	Leu 200		His	Leu	Val	Tyr 205		Leu	Val
10	Tyr	Asn 210	Ile	Thr	Thr	Val	Ile 215	Val	Pro	Val	Val	Val 220		Phe	Leu	Phe
	Leu 225	Ile	Leu	Ile	Arg	Arg 230	Ala	Leu	Ser	Ala	Ser 235	Gln	Lys	Lys	Lys	Val 240
	Ile	Ile	Ala	Ala	Leu 245	Arg	Thṛ	Pro	Gln	Asn 250	Thr	Ile	Ser	Ile	Pro 255	Tyr
15	Ala	Ser	Gln	Arg 260	Glu	Ala	Glu	Leu	His 265		Thr	Leu 		Ser 270	Met	Val
	Met	Val	Phe 275	Ile	Leu	Cys	Ser	Val 280	Pro	Tyr	Ala	Thr	Leu 285	Val	Val	Tyr.
20	Gln	Thr 290	Val	Leu	Asn	Val	Pro 295	Asp	Thr	Ser	Val	Phe 300	Ļeu	Leu	Leu	Thr
	Ala 305	Val	Trp	Leu	Pro	Lys 310	Val	Ser	Leu	Leu	Ala 315	Asn	Pro	Val	Leu	Phe 320
	Leu	Thr	Val	Asn	Lys 325	Ser	Val	Arg	Lys	Сув 330	Leu	Ile	Gly	Thr	Leu 335	Val
25	Gln	Leu	His	His 340	Arg	Tyr	Ser	Arg	Arg 345	Asn	Val	Val	Ser	Thr 350	Gly	Ser
	Gly	Met	Ala 355	Glu	Ala	Ser	Leu	Glu 360	Pro	Ser	Ile	Arg	Ser 365	Gly	Ser	Gln
30	Leu	Leu 370	Glu	Met	Phe	His	Ile 375	Gly	Gln	Gln	Gln	Ile 380	Phe	Lys	Pro	Thr
	Glu 385	Asp	Glu	Glu	Glu	Ser 390	Glu	Ala	Lys	Tyr	Ile 395	Gly	Ser	Ala	Asp	Phe 400
	Gln	Ala	Lys	Glu	Ile 405	Phe	Ser	Thr	Cys	Leu 410	Glu	Gly	Glu	Gln	Gly 415	Pro
35				Pro 420					425					430		
	Gln	Val	Ala	Pro	Ala	Ala	Pro	Val	Glu	Pro	Glu	Thr	Phe	Pro	Asp	Lys

				435					440					445				
•		Tyr	Ser 450	Leu	Gln	Phe	Gly	Phe 455	Gly	Pro	Phe	Glu	Leu 460	Pro	Pro	Gln	Trp	
5		Leu 465	Ser	Glu	Thr	Arg	Asn 470	Ser	Lys	Lys	Arg	Leu 475	Leu	Pro	Pro	Leu	Gly 480	
		Asn	Thr	Pro	Glu	Glu 485	Leu	Ile	Gln	Thr	Lys 490	Val	Pro	Lys	Val	Gly 495	Arg	
		Val	Glu	Arg	Lys 500	Met	Ser	Arg	Asn	Asn 505	Lys	Val	Ser	Ile	Phe 510	Pro	Lys	
10		Val	Asp	Ser 515														
	(106)	INF	ORMA	TION	1 FOI	SEÇ	DI	1:ОИ	105:									
15		(i)	(A) (B)	LEN	IGTH: PE: 1	IARAC 29 nucle	base	e pai	irs	••	,							
4 .						Ý: 1			,	••	• •		•			1.		
	- *	(ii) MC	LECU	ILE T	YPE:	DNA	(ge	nomi	c)			• •		•		• +	
		(xi) SE	QUEN	ICE I	ESCR	IPTI	ON:	SEQ	ID N	0:10	5:						
20	GGAGA	ATTC	A CT	AGGC	GAGG	CGC	TCCA	TC	•					. •			•	29
	(107)	INF	ORMA	TION	FOR	SEO	ID	NO:1	.06 :									
						ARAC												
		_/	(A)	LEN	GTH:	30	base	pai										
25			(C)	STR	ANDE	ucle DNES	S: s	ingl	e									
						Y: 1								•				
		(ii) MO	LECU	LE I	YPE:	DNA	(ge	nomi	c)								
		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:10	6 :						
	GGAGG	ATCC	A GG	AAAC	CTTA	GGC	CGAG	TCC										30
30	(108)	INF	ORMA	TION	FOR	SEQ	ID	NO:1	07:									
		(i)				ARAC												
						116 ucle			airs									
35			(C)	STR	ANDE	DNES Y: 1	S: s	ingl	е									
		(ii)				YPE:			nomi	c)								

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

	•	ATGAATCGGC	ACCATCTGCA	GGATCACTTT	CTGGAAATAG	ACAAGAAGAA	CTGCTGTGTG	60
		TTCCGAGATG	ACTTCATTGC	CAAGGTGTTG	CCGCCGGTGT	TGGGGCTGGA	GTTTATCTTT	120
		GGGCTTCTGG	GCAATGGCCT	TGCCCTGTGG	ATTTTCTGTT	TCCACCTCAA	GTCCTGGAAA	180
	5	TCCAGCCGGA	TTTTCCTGTT	CAACCTGGCA	GTAGCTGACT	TTCTACTGAT	CATCTGCCTG	240
		CCGTTCGTGA	TGGACTACTA	TGTGCGGCGT	TCAGACTGGA	ACTTTGGGGA	CATCCCTTGC	300
		CGGCTGGTGC	TCTTCATGTT	TGCCATGAAC	CGCCAGGGCA	GCATCATCTT	CCTCACGGTG	360
•		GTGGCGGTAG	ACAGGTATTT	CCGGGTGGTC	. CATCCCCACC	ACGCCCTGAA	CAAGATCTCC	420
		AATTGGACAG	CAGCCATCAT	CTCTTGCCTT	CTGTGGGGCA	TCACTGTTGG	CCTAACAGTC	480
	10	CACCTCCTGA	AGAAGAAGTT	GCTGATCCAG	AATGGCCCTG	CAAATGTGTG	CATCAGCTTC	540
		AGCATCTGCC	ATACCTTCCG	GTGGCACGAA	GCTATGTTCC	TCCTGGAGTT	CCTCCTGCCC	600
		CTGGGCATCA	TCCTGTTCTG	CTCAGCCAGA	ATTATCTGGA	GCCTGCGGCA	GAGACAAATG	660
		GACCGGCATG	CCAAGATCAA	GAGAGCCATC	ACCTTCATCA	TGGTGGTGGC	CATCGTCTTT	.720
		GTCATCTGCT	TCCTTCCCAG	CGTGGTTGTG	CGGATCCGCA	TCTTCTGGCT	CCTGCACACT	780
******	"15 […]	TÖGĞGCACGC	AGAATTGTGA	AGTGTACCGC	TCGGTGGACC	TGGCGTTCTT	TATCACTCTC	840
		AGCTTCACCT	ACATGAACAG	CATGCTGGAC	CCCGTGGTGT	ACTACTTCTC	CAGCCCATCC	900
		TTTCCCAACT	TCTTCTCCAC	TTTGATCAAC	CGCTGCCTCC	AGAGGAAGAT	GACAGGTGAG	960
		CCAGATAATA	ACCGCAGCAC	GAGCGTCGAG	CTCACAGGGG	ACCCCAACAA	AACCAGAGGC	1020
		GCTCCAGAGG	CGTTAATGGC	CAACTCCGGT	GAGCCATGGA	GCCCCTCTTA	TCTGGGCCCA	1080
	20	ACCTCAAATA	ACCATTCCAA	GAAGGGACAT	TGTCACCAAG	AACCAGCATC	TCTGGAGAAA	1140
		CAGTTGGGCT	GTTGCATCGA	GTAA				1164

(109) INFORMATION FOR SEQ ID NO:108:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 387 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:

- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:
- 30 Met Asn Arg His His Leu Gln Asp His Phe Leu Glu Ile Asp Lys Lys

	1			•	5					10					15	
	Ası	n Cys	s Cys	Val 20	Phe	Arg	J Asp	Asp	Phe 25	e Ile	: Ala	Lys	s Val	Leu 30	Pro	Pro
5	Va:	l Lei	ı Gly 35	/ Leu	Glu	Phe	: Ile	Phe 40	Gly	Leu	Leu	Gly	Asn 45	Gly	Leu	Ala
	Lei	Trp 50) Ile	Phe	Cys	Phe	His 55	Leu	Lys	Ser	Trp	Lys 60	Ser	Ser	Arg	Ile
	Phe 65	e Leu	Phe	. Asn	Leu	Ala 70	Val	Ala	Asp	Phe	Leu 75	Lev	ı Ile	Ile	Cys	Leu 80
10	Pro	Phe	val	Met	Asp 85	Tyr	Tyr	Val	. Arg	Arg 90	Ser	Asp	Trp	Asn	Phe 95	Gly
	Asp) Ile	Pro	Cys 100		Leu	Val	Leu	Phe 105		Phe	Ala	Met	Asn 110	Arg	Gln
15	Gly	Ser	Ile 115	Ile	Phe	Leu	Thr	Val 120		Ala	Val	Asp	Arg 125		Phe	Arg
• • ,	Val	Val 130	His	Pro	His	His	Ala 135	Leu	Asn	Lys		Ser 140	Asn	Trp	Thr	Ala
	145		Ile	Ser	Сув	Leu 150	Leu	Trp	Gly	Ilė	Thr 155	Val	Gly	Leu	Thr	Val 160
20	His	Leu	Leu	Lys	Lys 165	Lys	Leu	Leu	Ile	Gln 170	Asn	Gly	Pro	Ala	Asn 175	Val
	Сув	Ile	Ser	Phe 180	Ser	Ile	Суѕ	His	Thr 185	Phe	Arg	Trp	His	Glu 190	Ala	Met
25	Phe	Leu	Leu 195	Glu	Phe	Leu	Leu	Pro 200	Leu	Gly	Ile	Ile	Leu 205	Phe	Сув	Ser
	Ala	Arg 210	Ile	Ile	Trp	Ser	Leu 215	Arg	Gln	Arg	Gln	Met 220	Asp	Arg	His	Ala
	Lys 225	Ile	Lys	Arg	Ala	Ile 230	Thr	Phe	Ile	Met	Val 235	Val	Ala	Ile	Val	Phe 240
30	Val	Ile	Cys	Phe	Leu 245	Pro	Ser	Val	Val	Val 250	Arg	Ile	Arg	Ile	Phe 255	Trp
	Leu	Leu	His	Thr 260	Ser	Gly	Thr	Gln	Asn 265	Cys	Glu	Val	Tyr	Arg 270	Ser	Val
35	Asp	Leu	Ala 275	Phe	Phe	Ile	Thr	Leu 280	Ser	Phe	Thr	Tyr	Met 285	neA	Ser	Met
	Leu	Asp 290	Pro	Val	Val	Tyr	Tyr 295	Phe	Ser	Ser		Ser 300	Phe	Pro	Asn	Phe

	Ph:	e Ser 5	Thr	Leu	Ile	Asn 310	Arg	Cys	Leu	Gln	Arg 315	Lys	Met	Thr	Gly	Glu 320	
	Pro	o Asp	Asn	Asn	Arg 325	Ser	Thr	Ser	Val	Glu 330	Leu	Thr	Gly	Asp	Pro 335	Asn	
5	Ly	s Thr	Arg	Gly 340	Ala	Pro	Glu	Ala	Leu 345	Met	Ala	Asn	Ser	Gly 350	Glu	Pro	
	Tr	p Ser	Pro 355	Ser	Tyr	Leu	Gly	Pro 360	Thr	Ser	Asn	Asn	His 365	Ser	Lys	Lys	
10	GJ.	у Ніs 370		His	Gln	Glu	Pro 375	Ala	Ser	Leu	Glu	Lys 380	Gln	Leu	Gly	Суѕ	
	Су 38	s Ile 5	Glu					i.					·				
	(110) I	nform	ATIO	N FO	R SE	δiD	NO:	109:									
15	(QUEN) LE	NGTH	: 37	bas	e pa	irs									
		(C) ST	RAND	EDNE	SS:	sing	le									
	,	ii) M					-		ic)			• •	• •				
20		iv) A											•••	• •			-
20	·	xi) S					ION:	SEO	ID	NO:1	09:						
	ACCATGG																37
	(111) I																
25	((E	QUEN LE L) LE L) TY L) ST L) TO	NGTH PE: RAND	: 39 nucl EDNE	bas eic SS:	e pa acid sing	irs		,							
	((ii) M	OLEC	ULE	TYPE	: DN	A (g	enom	ic)								
30	((iv) A	NTI-	SENS	E: Y	ES											
	((xi) S	SEQUE	NCE	DESC	RIPI	'ION:	SEQ	ID	NO:1	10:						
	CGACCAG	GAC A	AAACA	GCAT	C TI	GGTC	ACTI	GTC	TCCG	GC							39
	(112)	INFORM	ATIC	N FC	R SE	Q II	NO:	111:									
35	1		EQUEN A) LE B) TY	NGTH	1: 39	bas	se pa	irs									

	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
5	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:	
	GACCAAGATG CTGTTTGTCC TGGTCGTGGT GTTTGGCAT	39
	(113) INFORMATION FOR SEQ ID NO:112:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	•
15	(iv) ANTI-SENSE: YES	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:	
	CGGAATTCAG GATGGATCGG TCTCTTGCTG CGCCT	35
	(114) INFORMATION FOR SEQ ID NO:113:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1212 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
25	(xi) SEQUENCE DESCRİPTION: SEQ ID NO:113:	
	ATGGCTTGCA ATGGCAGTGC GGCCAGGGGG CACTTTGACC CTGAGGACTT GAACCTGACT	60
	GACGAGGCAC TGAGACTCAA GTACCTGGGG CCCCAGCAGA CAGAGCTGTT CATGCCCATC	120
	TGTGCCACAT ACCTGCTGAT CTTCGTGGTG GGCGCTGTGG GCAATGGGCT GACCTGTCTG	180
	GTCATCCTGC GCCACAAGGC CATGCGCACG CCTACCAACT ACTACCTCTT CAGCCTGGCC	240
30	GTGTCGGACC TGCTGGTGCT GCTGGTGGGC CTGCCCCTGG AGCTCTATGA GATGTGGCAC	300
	AACTACCCCT TCCTGCTGGG CGTTGGTGGC TGCTATTTCC GCACGCTACT GTTTGAGATG	360
	GTCTGCCTGG CCTCAGTGCT CAACGTCACT GCCCTGAGCG TGGAACGCTA TGTGGCCGTG	420
	GTGCACCCAC TCCAGGCCAG GTCCATGGTG ACGCGGGCCC ATGTGCGCCG AGTGCTTGGG	480

	GCCGTCTGGG GTCTTGCCAT GCTCTGCTCC CTGCCCAACA CCAGCCTGCA CGGCATCCGG	540
•	CAGCTGCACG TGCCCTGCCG GGGCCCAGTG CCAGACTCAG CTGTTTGCAT GCTGGTCCGC	600
	CCACGGGCCC TCTACAACAT GGTAGTGCAG ACCACCGCGC TGCTCTTCTT CTGCCTGCCC	660
	ATGGCCATCA TGAGCGTGCT CTACCTGCTC ATTGGGCTGC GACTGCGGCG GGAGAGGCTG	720
5	CTGCTCATGC AGGAGGCCAA GGGCAGGGGC TCTGCAGCAG CCAGGTCCAG ATACACCTGC	780
	AGGCTCCAGC AGCACGATCG GGGCCGGAGA CAAGTGACCA AGATGCTGTT TGTCCTGGTC	840
	GTGGTGTTTG GCATCTGCTG GGCCCCGTTC CACGCCGACC GCGTCATGTG GAGCGTCGTG	900
	TCACAGTGGA CAGATGGCCT GCACCTGGCC TTCCAGCACG TGCACGTCAT CTCCGGCATC	960
	TTCTTCTACC TGGGCTCGGC GGCCAACCCC GTGCTCTATA GCCTCATGTC CAGCCGCTTC	L020
10	CGAGAGACCT TCCAGGAGGC CCTGTGCCTC GGGGCCTGCT GCCATCGCCT CAGACCCCGC	1080
	CACAGCTCCC ACAGCCTCAG CAGGATGACC ACAGGCAGCA CCCTGTGTGA TGTGGGCTCC 1	140
	CTGGGCAGCT GGGTCCACCC CCTGGCTGGG AACGATGGCC CAGAGGCGCA GCAAGAGACC	200
	GATCCATCCT GA	1212
•	(115) INFORMATION FOR SEQ ID NO:114:	
15 ~	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 403 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant	•
20	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:	
	Met Ala Cys Asn Gly Ser Ala Ala Arg Gly His Phe Asp Pro Glu Asp 1 5 10 15)
25	Leu Asn Leu Thr Asp Glu Ala Leu Arg Leu Lys Tyr Leu Gly Pro Gln 20 25 30	ı
	Gln Thr Glu Leu Phe Met Pro Ile Cys Ala Thr Tyr Leu Leu Ile Phe 35 40 45	!
	Val Val Gly Ala Val Gly Asn Gly Leu Thr Cys Leu Val Ile Leu Arg 50 55 60	ľ
30	His Lys Ala Met Arg Thr Pro Thr Asn Tyr Tyr Leu Phe Ser Leu Ala 65 70 75 80	ı
	Val Ser Asp Leu Leu Val Leu Leu Val Gly Leu Pro Leu Glu Leu Tyr 85 90 95	•

	Glu	Met	Trp	His 100	Asn	Tyr	Pro	Phe	Leu 105	Leu	Gly	Val	Gly	Gly 110	Суз	Tyr
	Phe	Arg	Thr 115	Leu	Leu	Phe	Glu	Met 120	Val	Cys	Leu	Ala	Ser 125	Val	Leu	Asn
5	Val	Thr 130	Ala	Leu	Ser	Val	Glu 135	Arg	Tyr	Val	Ala	Val 140	Val	His	Pro	Leu
	Gln 145	Ala	Arg	Ser	Met	Val 150	Thr	Arg	Ala	His	Val 155	Arg	Arg	Val	Leu	Gly 160
10	Ala	Val	Trp	Gly	Leu 165	Ala	Met	Leu	Суз	Ser 170	Leu	Pro	Asn	Thr	Ser 175	Leu
	His _.	Gly	Ile	Arg 180	Gln	Leu	His	Val	Pro 185	Cys	Arg	Gly	Pro	Val 190	Pro	Asp
	Ser	Ala	Val 195	Cys	Met	Leu	Val	Arg 200	Pro	,Arg	Ala	Leu	Tyr 205	Asn	Met	Val
15	Val	Gln 210	Thr	Thr	Ala	Leu	Leu 215	Phe		Cys		Pro 220	Met	Ala	Ile	Met
	225			,		230					235				Arg	240
20	Leu	Leu	Met	Gln	Glu 245	Ala	Lys	Gly	Arg	Gly 250	Ser	Ala	Ala	Ala _.	Arg 255	Ser
	Arg	Tyr	Thr	Суs 260	Arg	Leu	Gln	Gln	His 265	Asp	Arg	Gly	Arg	Arg 270	Gl'n	Val
	Thr	Lys	Met 275	Leu	Phe	Val	Leu	Val 280	Val	Val	Phe	Gly	Ile 285	Cys	Trp	Ala
25	Pro	Phe 290	His	Ala	Asp	Arg	Val 295	Met	Trp	Ser	Val	Val 300	Ser	Gln	Trp	Thr
	Asp 305	Gly	Leu	His	Leu	Ala 310	Phe	Gln	His	Val	His 315	Val	Ile	Ser	Gly	Ile 320
30	Phe	Phe	Tyr	Leu	Gly 325	Ser	Ala	Ala	Asn	Pro 330	Val	Leu	Tyr	Ser	Leu 335	Met
	Ser	Ser	Arg	Phe 340	Arg	Glu	Thr	Phe	Gln 345	Glu	Ala	Leu	Cys	Leu 350	Gly	Ala
	Cys	Суз	His 355	Arg	Leu	Arg	Pro	Arg 360	His	Ser	Ser	His	Ser 365	Leu	Ser	Arg
35	Met	Thr 370	Thr	Gly	Ser	Thr	Leu 375	Cys	Asp	Val	Gly	Ser 380	Leu	Gly	Ser	Trp
	Val	His	Pro	Leu	Ala	Gly	Asn	Asp	Gly	Pro	Glu	Ala	Gln	Gln	Glu	Thr

91

385 390 395 400 Asp Pro Ser (116) INFORMATION FOR SEQ ID NO:115: 5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 10 (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:115: GGAAGCTTCA GGCCCAAAGA TGGGGAACAT 30 (117) INFORMATION FOR SEQ ID NO:116: (i) SEQUENCE CHARACTERISTICS: 15 (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:116: GTGGATCCAC CCGCGGAGGA CCCAGGCTAG 30 (118) INFORMATION FOR SEQ ID NO:117: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1098 base pairs 25. (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:117: 30 ATGGGGAACA TCACTGCAGA CAACTCCTCG ATGAGCTGTA CCATCGACCA TACCATCCAC CAGACGCTGG CCCCGGTGGT CTATGTTACC GTGCTGGTGG TGGGCTTCCC GGCCAACTGC 120 CTGTCCCTCT ACTTCGGCTA CCTGCAGATC AAGGCCCGGA ACGAGCTGGG CGTGTACCTG 180 TGCAACCTGA CGGTGGCCGA CCTCTTCTAC ATCTGCTCGC TGCCCTTCTG GCTGCAGTAC 240 GTGCTGCAGC ACGACAACTG GTCTCACGGC GACCTGTCCT GCCAGGTGTG CGGCATCCTC 300 35 CTGTACGAGA ACATCTACAT CAGCGTGGGC TTCCTCTGCT GCATCTCCGT GGACCGCTAC 360

				92			
	CTGGCTGTGG	CCCATCCCTT	CCGCTTCCAC	CAGTTCCGGA	CCCTGAAGGC	GGCCGTCGGC	420
	GTCAGCGTGG	TCATCTGGGC	CAAGGAGCTG	CTGACCAGCA	TCTACTTCCT	GATGCACGAG	480
	GAGGTCATCG	AGGACGAGAA	CCAGCACCGC	GTGTGCTTTG	AGCACTACCC	CATCCAGGCA	540
	TGGCAGCGCG	CCATCAACTA	CTACCGCTTC	CTGGTGGGCT	TCCTCTTCCC	CATCTGCCTG	600
5	CTGCTGGCGT	CCTACCAGGG	CATCCTGCGC	GCCGTGCGCC	GGAGCCACGG	CACCCAGAAG	660
	AGCCGCAAGG	ACCAGATCCA	GCGGCTGGTG	CTCAGCACCG	TGGTCATCTT	CCTGGCCTGC	720
	TTCCTGCCCT	ACCACGTGTT	GCTGCTGGTG	CGCAGCGTCT	GGGAGGCCAG	CTGCGACTTC	780
	GCCAAGGGCG	TTTTCAACGC	CTACCACTTC	TCCCTCCTGC	TCACCAGCTT	CAACTGCGTC	840
	GCCGACCCCG	TGCTCTACTG	CTTCGTCAGC	GAGACCACCC	ACCGGGACCT	GGCCCGCCTC	900
0	CGCGGGGCCT	GCCTGGCCTT	CCTCACCTGC	TCCAGGACCG	GCCGGGCCAG	GGAGGCCTAC .	960
	CCGCTGGGTG	CCCCGAGGC	CTCCGGGAAA	AGCGGGGCCC	AGGGTGAGGA	GCCCGAGCTG	1020
	TTGACCAAGC	TCCACCCGGC	CTTCCAGACC	CCTAACTCGC	CAGGGTCGGG	CGGGTTCCCC	1080
	ACGGGCAGGT	TGGCCTAG	• .		*	•	1098
	(119) INFO	RMATION FOR	SEQ ID NO:	118:			
5		SEQUENCE CHA (A) LENGTH: (B) TYPE: and (C) STRANDEL (D) TOPOLOGY	365 amino a nino acid DNESS:	acids	er e seiter de		

- 20 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:

Met Gly Asn Ile Thr Ala Asp Asn Ser Ser Met Ser Cys Thr Ile Asp

His Thr Ile His Gln Thr Leu Ala Pro Val Val Tyr Val Thr Val Leu 25

Val Val Gly Phe Pro Ala Asn Cys Leu Ser Leu Tyr Phe Gly Tyr Leu

Gln Ile Lys Ala Arg Asn Glu Leu Gly Val Tyr Leu Cys Asn Leu Thr

30 Val Ala Asp Leu Phe Tyr Ile Cys Ser Leu Pro Phe Trp Leu Gln Tyr

> Val Leu Gln His Asp Asn Trp Ser His Gly Asp Leu Ser Cys Gln Val 90

•	Cys	Gly	/ Ile	Leu 100	Leu	туг	Glu	Asr	105		r Ile	e Sei	val	Gly 110		. Let
	Cys	Cys	115	Ser	Val	Asp	Arg	120		ı Ala	a Va]	Ala	His 125	Pro	Phe	Arg
5	Phe	His	Gln	Phe	Arg	Thr	Leu 135		Ala	Ala	val	. Gly		. Ser	· Val	Val
•	Ile 145	Trp	Ala	Lys	Glu	Leu 150	Leu	Thr	Ser	Ile	155		Leu	Met	His	Glu 160
10	Glu	Val	Ile	Glu	Asp 165		Asn	Gln	His	Arg 170		Cys	Phe	Glu	His 175	
	Pro	Ile	Gln	Ala 180	Trp	Gln	Arg	Ala	Ile 185		Tyr	Tyr	Arg	Phe 190	Leu	Val
	Gly	Phe	Leu 195	Phe	Pro	Ile	Cys	Leu 200		Leu	Ala	Ser	Tyr 205	Gln	Gly	Ile
15	Leu	Arg 210	Ala	Val	Arg	Arg	Ser 215	His	Gly	Thr	Gln	Lys 220	Ser	Arg	Lys	Asp
	Gln 225	Ile	Gln	Arg	Leu	Val 230	Leu	Ser	Thr	Val	Val 235	Ile	Phe	Leu	Ala	Cys 240
20 	Phe	Leu	Pro	Tyr	His 245	Val	Leu	Leu	Leu	Val 250		Ser	Val	Trp	Glu 255	Ala
	Ser	Суз	Asp	Phe 260	Ala	Lys	Gly	Val	Phe 265	Asn	Ala	Tyr	His	Phe 270	Ser	Leu
	Leu	Leu	Thr 275	Ser	Phe	Asn	Сув	Val 280	Ala	Asp	Pro	Val	Leu 285	Tyr	Сув	Phe
25	Val	Ser 290	Glu	Thr	Thr	His	Arg 295	Asp	Leu	Ala	Arg	Leu 300	Arg	Gly	Ala	Cys
	Leu 305	Ala	Phe	Leu	Thr	Cys 310	Ser	Arg	Thr	Gly	Arg 315	Ala	Arg	Glu	Ala	Tyr 320
30	Pro	Leu	Gly	Ala	Pro 325	Glu	Ala	Ser	Gly	Lys 330	Ser	Gly	Ala	Gln	Gly 335	Glu
	Glu	Pro	Glu	Leu 340	Leu	Thr	Lys	Leu	His 345	Pro	Ala	Phe	Gln	Thr 350	Pro	Asn
	Ser		Gly 355	Ser	Gly	Gly		Pro 360	Thr	Gly	Arg	Leu	Ala 365			
35 (120)	INF	ORMA	TION	FOR	SEQ	ID	NO:1	19:								

- - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs

	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:	
,		
	GACCTCGAGT CCTTCTACAC CTCATC	26
	(121) INFORMATION FOR SEQ ID NO:120:	
	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 30 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:	
15	TGCTCTAGAT TCCAGATAGG TGAAAACTTG	30
	(122) INFORMATION FOR SEQ ID NO:121:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1416 base pairs (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:	
	ATGGATATTC TTTGTGAAGA AAATACTTCT TTGAGCTCAA CTACGAACTC CCTAATGCAA	60
25	TTAAATGATG ACAACAGGCT CTACAGTAAT GACTTTAACT CCGGAGAAGC TAACACTTCT	120
	GATGCATTTA ACTGGACAGT CGACTCTGAA AATCGAACCA ACCTTTCCTG TGAAGGGTGC	180
	CTCTCACCGT CGTGTCTCTC CTTACTTCAT CTCCAGGAAA AAAACTGGTC TGCTTTACTG	240
	ACAGCCGTAG TGATTATTCT AACTATTGCT GGAAACATAC TCGTCATCAT GGCAGTGTCC	300
	CTAGAGAAAA AGCTGCAGAA TGCCACCAAC TATTTCCTGA TGTCACTTGC CATAGCTGAT	360
30	ATGCTGCTGG GTTTCCTTGT CATGCCCGTG TCCATGTTAA CCATCCTGTA TGGGTACCGG	420
	TGGCCTCTGC CGAGCAAGCT TTGTGCAGTC TGGATTTACC TGGACGTGCT CTTCTCCACG	480
	GCCTCCATCA TGCACCTCTG CGCCATCTCG CTGGACCGCT ACGTCGCCAT CCAGAATCCC	540
	ATCCACACA GCCGCTTCAA CTCCAGAACT AACCCATTTTO TO AAAAAAAA TAACAA TAACAA	

	ACCATATCAG TAGGTATATC CATGCCAATA CCAGTCTTTG GGCTACAGGA CGATTCGAAG 66	0
	GTCTTTAAGG AGGGGAGTTG CTTACTCGCC GATGATAACT TTGTCCTGAT CGGCTCTTTT 72	0
	GTGTCATTTT TCATTCCCTT AACCATCATG GTGATCACCT ACTTTCTAAC TATCAAGTCA 780	0
	CTCCAGAAAG AAGCTACTTT GTGTGTAAGT GATCTTGGCA CACGGGCCAA ATTAGCTTCT 84	D
5	TTCAGCTTCC TCCCTCAGAG TTCTTTGTCT TCAGAAAAGC TCTTCCAGCG GTCGATCCAT 900)
	AGGGAGCCAG GGTCCTACAC AGGCAGGAGG ACTATGCAGT CCATCAGCAA TGAGCAAAAG 960	כ
	GCATGCAAGG TGCTGGGCAT CGTCTTCTTC CTGTTTGTGG TGATGTGGTG CCCTTTCTTC 1020	כ
	ATCACAAACA TCATGGCCGT CATCTGCAAA GAGTCCTGCA ATGAGGATGT CATTGGGGCC 1080)
	CTGCTCAATG TGTTTGTTTG GATCGGTTAT CTCTCTTCAG CAGTCAACCC ACTAGTCTAC 1140)
10	ACACTGTTCA ACAAGACCTA TAGGTCAGCC TTTTCACGGT ATATTCAGTG TCAGTACAAG 1200)
	GAAAACAAAA AACCATTGCA GTTAATTTTA GTGAACACAA TACCGGCTTT GGCCTACAAG 1260)
	TCTAGCCAAC TTCAAATGGG ACAAAAAAA AATTCAAAGC AAGATGCCAA GACAACAGAT 1320	,
	AATGACTGCT CAATGGTTGC TCTAGGAAAG CAGTATTCTG AAGAGGCTTC TAAAGACAAT 1380	i
	AGCGACGGAG TGAATGAAAA GGTGAGCTGT GTGTGA	
15	(123) INFORMATION FOR SEQ ID NO:122:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 471 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant 	
	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:	
	Met Asp Ile Leu Cys Glu Glu Asn Thr Ser Leu Ser Ser Thr Thr Asn 1 5 10 15	
25	Ser Leu Met Gln Leu Asn Asp Asp Asn Arg Leu Tyr Ser Asn Asp Phe 20 25 30	
	Asn Ser Gly Glu Ala Asn Thr Ser Asp Ala Phe Asn Trp Thr Val Asp 35 40 45	
30	Ser Glu Asn Arg Thr Asn Leu Ser Cys Glu Gly Cys Leu Ser Pro Ser 50 55 60	
	Cys Leu Ser Leu Leu His Leu Gln Glu Lys Asn Trp Ser Ala Leu Leu 65 70 75 80	

	Thi	Ala	a Vai	l Val	85	lle	Leu	Thr	: Ile	90	Gly	Ası	ı Ile	e Lei	u Val 95	l Ile
	Met	: Ala	a Val	100		Glu	Lys	Lys	Lev 105		Asn	Ala	Thi	Ası 110	_	: Phe
5	Leu	Met	Ser 115	Lev	Ala	Ile	Ala	Asp 120		Lev	Leu	Gly	Phe 125		ı Val	. Met
	Pro	Va]	Ser	. Met	Leu	Thr	Ile 135		Тут	Gly	Tyr	Arg		Pro	Leu	Pro
10	Ser 145	Lys	Leu	Cys	Ala	Val 150		Ile	Туг	Leu	Asp 155		Leu	Phe	e Ser	Thr 160
	Ala	Ser	lle	. Met	His 165	Leu	Суз	Ala	Ile	Ser 170		Asp	Arg	Tyr	Val	
	Ile	Gln	Asn	Pro 180	Ile	His	His	Ser	Arg 185		Asn	Ser	Arg	Thr 190		Ala
15	Phe	Leu	Lys 195		Ile	Ala	Val	Trp 200	Thr	İle	Ser	Val	Gly 205		Ser	Met
	Pro	Ile 210	Pro	Val	Phe	Gly	Leu 215		Asp	Asp	Ser	Lys 220		Phe	Lys	Glu
-20	Gly 225	Ser	Cys	Leu 	Leu	Ala 230	Asp	Asp	Asn	Phe	Val 235	Leu	Ile	Gly	Ser	Phe 240
	Val	Ser	Phe	Phe	Ile 245	Pro	Leu	Thr	Ile	Met 250	Val	Ile	Thr	Tyr	Phe 255	Leu
	Thr	Ile	Lys	Ser 260	Leu	Gln	Lys	Glu	Ala 265	Thr	Leu	Суз	Val	Ser 270		Leu
25			275	Ala		٠		280					285			
	•	290		Glu			295					300				
30	305			Gly		310					315					320
	Ala	Суз	Lys	Val	Leu 325	Gly	Ile	Val	Phe	Phe 330	Leu	Phe	Val	Val	Met 335	Trp
				Phe 340					345					350		
35			355	Asp				360					365			
	Gly	Tyr	Leu	Ser	Ser	Ala	Val	Asn	Pro	Leu	Val	Tyr	Thr	Leu	Phe	Asn

	370		375		380	
	Lys Thr Ty: 385	r Arg Ser A	Ala Phe Ser 390	Arg Tyr Ile 395	Gln Cys Gln	Tyr Lys 400
5	Glu Asn Ly:	Lys Pro I 405	Leu Gln Leu	Ile Leu Val 410	Asn Thr Ile	Pro Ala 415
	Leu Ala Tyn	Lys Ser S 420		Gln Met Gly 425	Gln Lys Lys 430	Asn Ser
	Lys Gln Asp 435	Ala Lys T	Thr Thr Asp	Asn Asp Cys	Ser Met Val 445	Ala Leu
10	Gly Lys Glr 450	Tyr Ser G	Glu Glu Ala 455	Ser Lys Asp	Asn Ser Asp 460	Gly Val
	Asn Glu Lys 465		Cys Val			
(124)	INFORMATIO	N FOR SEQ	ID NO:123:			
15		CE CHARACT NGTH: 27 b PE: nuclei	ase pairs			
	(C) ST	RANDEDNESS POLOGY: li	: single			
	(ii) MOLEC	ULE TYPE:	DNA (genomic	z) · · · · ·		
	(xi) SEQUE	NCE DESCRI	PTION: SEQ]	ID NO:123:		
GACCTO	CGAGG TTGCT	TAAGA CTGA	AGC			27
(125)	INFORMATIO	N FOR SEQ	ID NO:124:			
25	(A) LE (B) TY (C) ST	CE CHARACTI NGTH: 27 ba PE: nucleic RANDEDNESS: POLOGY: lin	c acid : single			
	(ii) MOLEC	JLE TYPE: I	DNA (genomic	:)		
30	(xi) SEQUE	NCE DESCRIE	PTION: SEQ I	D NO:124:		
ATTTCT	'AGAC ATATG	PAGCT TGTAC	CCG			27
(126)	INFORMATION	FOR SEQ 1	ID NO:125:			
35	(B) TYI (C) STI		base pairs cacid single			

- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

	ATGGTGAACC	TGAGGAATGC	GGTGCATTCA	TTCCTTGTGC	ACCTAATTGG	CCTATTGGTT	6
	TGGCAATGTG	ATATTTCTGT	GAGCCCAGTA	GCAGCTATAG	TAACTGACAT	TTTCAATACC	12
5	TCCGATGGTG	GACGCTTCAA	ATTCCCAGAC	GGGGTACAAA	ACTGGCCAGC	ACTTTCAATC	18
	GTCATCATAA	TAATCATGAC	AATAGGTGGC	AACATCCTTG	TGATCATGGC	AGTAAGCATG	24
	GAAAAGAAAC	TGCACAATGC	CACCAATTAC	TTCTTAATGT	CCCTAGCCAT	TGCTGATATG	30
	CTAGTGGGAC	TACTTGTCAT	GCCCCTGTCT	CTCCTGGCAA	TCCTTTATGA	TTATGTCTGG	360
	CCACTACCTA	GATATTTGTG	CCCCGTCTGG	ATTTCTTTAG	ATGTTTTATT	TTCAACAGCG	420
10	TCCATCATGC	ACCTCTGCGC	TATATCGCTG	GATCGGTATG	TAGCAATACG	TAATCCTATT	480
	GAGCATAGCC	GTTTCAATTC	GCGGACTAAG	GCCATCATGA	AGATTGCTAT	TGTTTGGGCA	540
	ATTTCTATAG	GTGTATCAGT	TCCTATCCCT	GTGATTGGAC	TGAGGGACGA	AGAAAAGGTG	600
	TTCGTGAACA	ACACGACGTG	CGTGCTCAAC	GACCCAAATT	TCGTTCTTAT	TGGGTCCTTC	660
	GTAGCTTTCT	TCATACCGCT	GACGATTATG	GTGATTACGT	ATTGCCTGAC	CATCTACGTT	720
·-1·5·	CTGCGCCGAC	AAGCTTTGAT	GTTACTGCAC	GGCCACACCG	AGGAACCGCC	TGGACTAAGT	780
	CTGGATTTCC	TGAAGTGCTG	CAAGAGGAAT	ACGGCCGAGG	AAGAGAACTC	TGCAAACCCT	840
	AACCAAGACC	AGAACGCACG	CCGAAGAAAG	AAGAAGGAGA	GACGTCCTAG	GGGCACCATG	900
	CAGGCTATCA	ACAATGAAAG	AAAAGCTTCG	AAAGTCCTTG	GGATTGTTTT	CTTTGTGTTT	960
	CTGATCATGT	GGTGCCCATT	TTTCATTACC	AATATTCTGT	CTGTTCTTTG	TGAGAAGTCC	1020
20	TGTAACCAAA	AGCTCATGGA	AAAGCTTCTG	AATGTGTTTG	TTTGGATTGG	CTATGTTTGT	1080
	TCAGGAATCA	ATCCTCTGGT	GTATACTCTG	TTCAACAAAA	TTTACCGAAG	GGCATTCTCC	1140
	AACTATTTGC	GTTGCAATTA	TAAGGTAGAG	AAAAAGCCTC	CTGTCAGGCA	GATTCCAAGA	1200
	GTTGCCGCCA	CTGCTTTGTC	TGGGAGGGAG	CTTAATGTTA	ACATTTATCG	GCATACCAAT	1260
	GAACCGGTGA	TCGAGAAAGC	CAGTGACAAT	GAGCCCGGTA	TAGAGATGCA	AGTTGAGAAT	,1320
25	TTAGAGTTAC	CAGTAAATCC	CTCCAGTGTG	GTTAGCGAAA	GGATTAGCAG	TGTGTGA	1377
	(127) INFOR	MATION FOR	SEQ ID NO:1	.26 :			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 458 amino acids
 - (B) TYPE: amino acid

(C)	STRANDEDNESS:
-----	---------------

- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:

	(X1) :	SEQUE	INCE	DESC	RIPT	'ION:	SEÇ	D	NO:1	26 :					
5	Me 1	t Va	l Asn	Leu	Arg 5	Asn	Ala	Val	His	Ser 10	Phe	Leu	Val	His	Leu 15	Ile
	G1	y Let	ı Leu	Val 20	Trp	Gln	Cys	Asp	Ile 25	Ser	Val	Ser	Pro	Val 30	Ala	Ala
10	11	e Val	Thr 35	Asp	Ile	Phe	Asn	Thr 40	Ser	Asp	Gly	Gly	Arg 45	Phe	Lys	Phe
	Pre	Asp 50	Gly	Val	Gln	Asn	Trp 55	Pro	Ala	Leu	Ser	Ile 60	Val	Ile	Ile	Ile
	Ile 65	e Met	Thr	Ile	Gly	Gly 70	Asn	Ile	Leu	Val	Ile 75	Met	Ala	Val	Ser	Met 80
15	Gli	ı Lys	Lys	Leu	His 85	Asn 	Ala	Thr	Asn	Tyr 90	Phe	Leu	Met	Ser	Leu 95	Ala
	· Ile	a Ala	Asp	Met 100	Leu	Val	Gly	Leu	Leu 105	Väl	Met	Pro	Leu	Ser 110	Leu	Leu
20	··· Ala	lle	Leu 115	Tyr	Asp	Tyr	Val	Trp 120	Pro	Leu	Pro	Arg	Tyr 125	Leu	Cys	Pro
	Val	130	Ile	Ser	Leu	Asp	Val 135	Leu	Phe	Ser	Thr	Ala 140	Ser	Ile	Met	His
	Le: 145	Cys	Ala	Ile	Ser	Leu 150	Asp	Arg	Tyr	Val	Ala 155	Ile	Arg	Asn	Pro	Ile 160
25	Glu	His	Ser	Arg	Phe 165	Asn	.Ser	Arg	Thr	Lys 170	Ala	Ile	Met	Lys	Ile 175	Ala
	Ile	· Val	Trp	Ala 180	Ile	Ser	Ile	Gly	Val 185	Ser	Val	Pro	Ile	Pro 190	Val	Ile
30 .	Gly	Leu	Arg 195	Asp	Glu	Glu	Lys	Val 200	Phe	Val	Asn	Asn	Thr 205	Thr	Суз	Val
	Leu	Asn 210	Asp	Pro	Asn	Phe	Val 215	Leu	Ile	Gly	Ser	Phe 220	Val	Ala	Phe	Phe
	Ile 225	Pro	Leu	Thr	Ile	Met 230	Val	Ile	Thr	Tyr	Cys 235	Leu	Thr	Ile	Tyr	Val 240
35	Leu	Arg	Arg	Gln	Ala 245	Leu	Met	Leu	Leu	His 250	Gly	His	Thr	Glu	Glu 255	Pro

100

		Pro	Gly	Leu	Ser 260	Leu	Asp	Phe	Leu	Lys 265		Cys	Lys	Arg	Asn 270		Ala	
		Glu	Glu	Glu 275	Asn	Ser	Ala	Asn	Pro 280		Gln	Asp	Gln	Asn 285	Ala	Arg	Arg	
	5	Arg	Lys 290	Lys •	Lys	Glu	Arg	Arg 295	Pro	Arg	Gly	Thr	Met 300	Gln	Ala	Ile	Asn	
		Asn 305	Glu	Arg	Lys	Ala	Ser 310	Lys	Val	Leu	Gly	Ile 315	Val	Phe	Phe	Val	Phe 320	
1	10	Leu	Ile	Met	Trp	Cys 325	Pro	Phe	Phe	Ile	Thr 330	Asn	Ile	Leu	Ser	Val 335	Leu	
		Cys	Glu	Lys	Ser 340	Cys	Asn	Gln	Lys	Leu 345	Met	Glu	Lys	Leu	Leu 350	Asn	Val	
		Phe	Val	Trp 355	Ile	Gly	Tyr	Val	Суs 360	Ser	Gly	Ile	Asn	Pro 365	Leu	Val	Tyr	
1	.5		Leu 370	Phe	Asn	ГЛа	Ile	Tyr 375	Arg	Arg	Ala	Phe	Ser 380	Asn	Tyr	Leu	Arg	
		Cys 385	Asn ·	Tyr	Lys	Val	Glu 390	Lys	Lys	Pro	Pro	Val 395	Arg	Gln	Ile	Pro	Arg 400	
-·························2	.0	Val	Ala	Ala	Thr	Ala 405		Ser	Gly	Arg	Glu 410	Leu	Asn	Val	Asn	Ile 415	Tyr	
		Arg	His	Thr	Asn 420	Glu	Pro	Val	Ile	Glu 425	Lys	Ala	Ser	Asp	Asn 430	Glu	Pro	
		Gly	Ile	Glu 435	Met	Gln	Val	Glu	Asn 440	Leu	Glu	Leu	Pro	Val 445	Asn	Pro	Ser	
2	5	Ser	Val 450	Val	Ser	Glu	Arg	Ile 455	Ser	Ser	Val							
	(128)) INF	ORMA	TION	FOR	SEQ	ID	NO:1	27:									
30	0	(i)	(B)	LEN TYP	GTH: E: n ANDE	30 ucle DNES	base ic a S: s	pai cid ingl	rs									
		(ii) MO	LECU	LE T	YPE:	DNA	(ge	nomi	c)								
		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:12	7:						
33	5 GGTA	AGCTT	G GC	AGTC	CACG	CCA	GGCC	TTC									30)

(129) INFORMATION FOR SEQ ID NO:128:

101

5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:	
	TCCGAATTCT CTGTAGACAC AAGGCTTTGG	. 30
	(130) INFORMATION FOR SEQ ID NO:129:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1068 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:	
٠.	ATGGATCAGT TCCCTGAATC AGTGACAGAA AACTTTGAGT ACGATGATTT GGCTGAGGCC	60
	TGTTATATTG GGGACATCGT GGTCTTTGGG ACTGTGTTCC TGTCCATATT CTACTCCGTC	120
	-ATCTTTGCCA TTGGCCTGGT GGGAAATTTG TTGGTAGTGT TTGCCCTCAC CAACAGCAAG	180
	AAGCCCAAGA GTGTCACCGA CATTTACCTC CTGAACCTGG CCTTGTCTGA TCTGCTGTTT	240
	GTAGCCACTT TGCCCTTCTG GACTCACTAT TTGATAAATG AAAAGGGCCT CCACAATGCC	300
	ATGTGCAAAT TCACTACCGC CTTCTTCTTC ATCGGCTTTT TTGGAAGCAT ATTCTTCATC	
	ACCGTCATCA GCATTGATAG GTACCTGGCC ATCGTCCTGG CCGCCAACTC CATGAACAAC	360
		420
25	CGGACCGTGC AGCATGGCGT CACCATCAGC CTAGGCGTCT GGGCAGCAGC CATTTTGGTG	480
23	GCAGCACCCC AGTTCATGTT CACAAAGCAG AAAGAAAATG AATGCCTTGG TGACTACCCC	540
	GAGGTCCTCC AGGAAATCTG GCCCGTGCTC CGCAATGTGG AAACAAATTT TCTTGGCTTC	600
	CTACTCCCCC TGCTCATTAT GAGTTATTGC TACTTCAGAA TCATCCAGAC GCTGTTTTCC	660
	TGCAAGAACC ACAAGAAAGC CAAAGCCATT AAACTGATCC TTCTGGTGGT CATCGTGTTT	720
	TTCCTCTTCT GGACACCCTA CAACGTTATG ATTTTCCTGG AGACGCTTAA GCTCTATGAC	780
30	TTCTTTCCCA GTTGTGACAT GAGGAAGGAT CTGAGGCTGG CCCTCAGTGT GACTGAGACG	840
	GTTGCATTTA GCCATTGTTG CCTGAATCCT CTCATCTATG CATTTGCTGG GGAGAAGTTC	900

AGAAGATACC TTTACCACCT GTATGGGAAA TGCCTGGCTG TCCTGTGTGG GCGCTCAGTC

102

5

10

15

20

25

30

35

CACGTTGATT TCTCCTCATC TGAATCACAA AGGAGCAGGC ATGGAAGTGT TCTGAGCAGC 1020 AATTTTACTT ACCACACGAG TGATGGAGAT GCATTGCTCC TTCTCTGA 1068 (131) INFORMATION FOR SEQ ID NO:130: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 355 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:130: Met Asp Gln Phe Pro Glu Ser Val Thr Glu Asn Phe Glu Tyr Asp Asp Leu Ala Glu Ala Cys Tyr Ile Gly Asp Ile Val Val Phe Gly Thr Val Phe Leu Ser Ile Phe Tyr Ser Val Ile Phe Ala Ile Gly Leu Val Gly Asn Leu Leu Val Val Phe Ala Leu Thr Asn Ser Lys Lys Pro Lys Ser Val Thr Asp Ile Tyr Leu Leu Asn Leu Ala Leu Ser Asp Leu Leu Phe 75 Val Ala Thr Leu Pro Phe Trp Thr His Tyr Leu Ile Asn Glu Lys Gly 90 Leu His Asn Ala Met Cys Lys Phe Thr Thr Ala Phe Phe Ile Gly 105 Phe Phe Gly Ser Ile Phe Phe Ile Thr Val Ile Ser Ile Asp Arg Tyr 120 Leu Ala Ile Val Leu Ala Ala Asn Ser Met Asn Asn Arg Thr Val Gln 130 135 His Gly Val Thr Ile Ser Leu Gly Val Trp Ala Ala Ala Ile Leu Val Ala Ala Pro Gln Phe Met Phe Thr Lys Gln Lys Glu Asn Glu Cys Leu Gly Asp Tyr Pro Glu Val Leu Gln Glu Ile Trp Pro Val Leu Arg Asn

Val Glu Thr Asn Phe Leu Gly Phe Leu Leu Pro Leu Leu Ile Met Ser 195 200 205

	•	ys Tyr 10	Phe	Arg	Ile	Ile 215	Gln	Thr	Leu	Phe	Ser 220	Cys	Lys	Asn	His	
	Lys Ly 225	ys Ala	Lys	Ala	Ile 230	Lys	Leu	Ile	Leu	Leu 235	Val	Val	Ile	Val	Phe 240	
5	Phe L	eu Phe	Trp	Thr 245	Pro	Tyr	Asn	Val	Met 250	Ile	Phe	Leu	Glu	Thr 255	Leu	
	Lys L	eu Tyr	Asp 260	Phe	Phe	Pro	Ser	Cys 265	Asp	Met	Arg	Lys	Asp 270	Leu	Arg	
10	Leu A	la Leu 275	Ser	Val	Thr	Glu	Thr 280	Val	Ala	Phe	Ser	His 285	Cys	Cys	Leu	
		ro Leu 90	Ile	Tyr	Ala	Phe 295	Ala	Gly	Glu	Lys	Phe 300	Arg	Arg	Tyr	Leu	
	Tyr H: 305	is Leu	Tyr	Gly	Lys 310	Cys	Leu	Ala	Val	Leu 315	Cys	ĠĮÀ	Arg _.	Ser	Val 320	
15	His Va	al Asp		Ser 325	Ser	Ser	Glu		Gln 330	_	Ser	Arg		Gly 335	Ser	
	Val Le	eu Ser	Ser 340	Asn	Phe	Thr	Tyr	His 345	Thr	Ser	Asp	Gly	Asp 350	Ala	Leu	
20	Leu Le	eu Leu 355														
	(132) INFO	RMATION	FOR	SEC) ID	NO:1	31:									
25		SEQUENC (A) LEN (B) TYF (C) STF (D) TOF	GTH: E: n ANDE	32 ucle DNES	base ic a S: s	e pai cid singl	rs ·									
	(ii)	MOLECU	ILE T	YPE:	DNA	. (ge	nomi	.c)								
	(xi)	SEQUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	iO:13	1:						
••	GATCTCCAGT															32
30	(133) INFO															
35		SEQUENC (A) LEN (B) TYF (C) STR (D) TOF	GTH: E: n ANDE	30 ucle DNES	base ic a S: s	pai cid ingl	rs									
	(ii)	MOLECU	LE T	YPE:	DNA	(ge	nomi	.c)								
	(xi)	SEQUEN	ICE D	ESCR	IPTI	ON:	SEQ	ID N	O:13	2:						

	CTCCTTCGGT CCTCCTATCG TTGTCAGAAG	30
	(134) INFORMATION FOR SEQ ID NO:133:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:	
10	AGAAGGCCAA GATCGCGCGG CTGGCCCTCA	30
	(135) INFORMATION FOR SEQ ID NO:134:	
15	(C) DIGHODDHESS. SINGIE	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:	
	CGGCGCCACC GCACGAAAAA GCTCATCTTC	30
20	(136) INFORMATION FOR SEQ ID NO:135:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:	
	GCCAAGAAGC GGGTGAAGTT CCTGGTGGTG GCA	33
	(137) INFORMATION FOR SEQ ID NO:136:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
35	(ii) MOLECULE TYPE: DNA (genomic)	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1	36:
	CAGGCGGAAG GTGAAAGTCC TGGTCCTCGT	30
	(138) INFORMATION FOR SEQ ID NO:137:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1	37:
	CGGCGCCTGC GGGCCAAGCG GCTGGTGGTG GTG	. 33
•	(139) INFORMATION FOR SEQ ID NO:138:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13	8:
20	CCAAGCACAA AGCCAAGAAA GTGACCATCA C	31
	(140) INFORMATION FOR SEQ ID NO:139:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13	9:
	GCGCCGGCGC ACCAAATGCT TGCTGGTGGT	30
30	(141) INFORMATION FOR SEQ ID NO:140:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:	
	CAAAAAGCTG AAGAAATCTA AGAAGATCAT CTTTATTGTC G	41
	(142) INFORMATION FOR SEQ ID NO:141:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:	
	CAAGACCAAG GCAAAACGCA TGATCGCCAT	30
	(143) INFORMATION FOR SEQ ID NO:142:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 30 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:	
	GTCAAGGAGA AGTCCAAAAG GATCATCATC	30
	(144) INFORMATION FOR SEQ ID NO:143:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:	
30	CGCCGCGTGC GGGCCAAGCA GCTCCTGCTC	30
	(145) INFORMATION FOR SEQ ID NO:144:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

	(ii) MOLECULE TYPE: DNA (genomic)	
-	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:	
	CCTGATAAGC GCTATAAAAT GGTCCTGTTT CGA	33
	(146) INFORMATION FOR SEQ ID NO:145:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:	
	GAAAGACAAA AGAGAGTCAA GAGGATGTCT TTATTG	36
	(147) INFORMATION FOR SEQ ID NO:146:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:	
	CGGAGAAAGA GGGTGAAACG CACAGCCATC GCC	33
	(148) INFORMATION FOR SEQ ID NO:147:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:	
30	AAGCTTCAGC GGGCCAAGGC ACTGGTCACC	30
	(149) INFORMATION FOR SEQ ID NO:148:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

	(ii) MOLECULE TYPE: DNA (genomic)	
٠	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:	
	CAGCGGCAGA AGGCAAAAAG GGTGGCCATC	30
	(150) INFORMATION FOR SEQ ID NO:149:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:	
	CGGCAGAAGG CGAAGCGCAT GATCCTCGCG	30
	(151) INFORMATION FOR SEQ ID NO:150:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 30 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:	
	GAGCGCAACA AGGCCAAAAA GGTGATCATC	30
	(152) INFORMATION FOR SEQ ID NO:151:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:	
30	GGTGTAAACA AAAAGGCTAA AAACACAATT ATTCTTATT	39
	(153) INFORMATION FOR SEQ ID NO:152:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

	(ii) MOLECULE TYPE: DNA (genomic)	
٠	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:	
	GAGAGCCAGC TCAAGAGCAC CGTGGTG	27
	(154) INFORMATION FOR SEQ ID NO:153:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:	
	CCACAAGCAA ACCAAGAAAA TGCTGGCTGT	30
	(155) INFORMATION FOR SEQ ID NO:154:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:	
•	CATCAAGTGT ATCATGTGCC AAGTACGCCC	30
	(156) INFORMATION FOR SEQ ID NO:155:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:	
30	CTAGAGAGTC AGATGAAGTG TACAGTAGTG GCAC	34
	(157) INFORMATION FOR SEQ ID NO:156:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:	
	CGGACAAAAG TGAAAACTAA AAAGATGTTC CTCATT	3
	(158) INFORMATION FOR SEQ ID NO:157:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:	
	GCTGAGGTTC GCAATAAACT AACCATGTTT GTG	33
	(159) INFORMATION FOR SEQ ID NO:158:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	•
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:	
	GGGAGGCCGA GCTGAAAGCC ACCCTGCTC	29
	(160) INFORMATION FOR SEQ ID NO:159:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:	
30	CAAGATCAAG AGAGCCAAAA CCTTCATCAT G	31
	(161) INFORMATION FOR SEQ ID NO:160:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

	(ii) MOLECULE TYPE: DNA (genomic)	
٠	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:160:	
	CCGGAGACAA GTGAAGAAGA TGCTGTTTGT C	31
	(162) INFORMATION FOR SEQ ID NO:161:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:161:	
	GCAAGGACCA GATCAAGCGG CTGGTGCTCA	30
	(163) INFORMATION FOR SEQ ID NO:162:	•
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	•
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:	•
	CAAGAAAGCC AAAGCCAAGA AACTGATCCT TCTG	34
25	(164) INFORMATION FOR SEQ ID NO:163: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1068 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:	
30	ATGGAAGATT TGGAGGAAAC ATTATTTGAA GAATTTGAAA ACTATTCCTA TGACCTAGAC	60
	TATTACTCTC TGGAGTCTGA TTTGGAGGAG AAAGTCCAGC TGGGAGTTGT TCACTGGGTC	120
	TCCCTGGTGT TATATTGTTT GGCTTTTGTT CTGGGAATTC CAGGAAATGC CATCGTCATT	180
	TGGTTCACGG GGCTCAAGTG GAAGAAGACA GTCACCACTC TGTGGTTCCT CAATCTAGCC	240
	ATTGCGGATT TCATTTTCT TCTCTTTCTG CCCCTGTACA TCTCCTATGT GGCCATGAAT	300

	TTCCACTGGC C	CTTTGGCAT.	CTGGCTGTGC	AAAGCCAATT	CCTTCACTGC	CCAGTTGAA	C 360
•	ATGTTTGCCA G	TGTTTTTTT (CCTGACAGTG	ATCAGCCTGG	ACCACTATAT	CCACTTGAT	C 420
	CATCCTGTCT T	ATCTCATCG (CATCGAACC	CTCAAGAACT	CTCTGATTGT	CATTATATT	C 480
	ATCTGGCTTT T	GGCTTCTCT A	ATTGGCGGT	CCTGCCCTGT	ACTTCCGGGA	CACTGTGGA	G 540
5	TTCAATAATC A	TACTCTTTG (TATAACAAT	TTTCAGAAGC	ATGATCCTGA	CCTCACTTT	G 600
	ATCAGGCACC A	TGTTCTGAC T	TGGGTGAAA	TTTATCATTG	GCTATCTCTT	CCCTTTGCT	A 660
	ACAATGAGTA T	TTGCTACTT G	TGTCTCATC	TTCAAGGTGA	AGAAGCGAAC	AGTCCTGAT	C 720
	TCCAGTAGGC A	TAAGTGGAC A	ATTCTGGTT	GTGGTTGTGG	CCTTTGTGGT	TTGCTGGAC	T 780
	CCTTATCACC TO	GTTTAGCAT I	TGGGAGCTC	ACCATTCACC	ACAATAGCTA	TTCCCACCA'	r 840
10	GTGATGCAGG C	TGGAATCCC C	CTCTCCACT	GGTTTGGCAT	TCCTCAATAG	TTGCTTGAA	900
	CCCATCCTTT A	TGTCCTAAT T	'AGTAAGAAG	TTCCAAGCTC	GCTTCCGGTC	CTCAGTTGC	r 960
	GAGATACTCA A	GTACACACT G	TGGGAAGTC	AGCTGTTCTG	GCACAGTGAG	TGAACAGCT	1020
	AGGAACTCAG A	AACCAAGAA T	CTGTGTCTC	CTGGAAACAG	СТСААТАА		1068
· · · · · · · · · · · · · · · · · · ·	(165) INFORM	ATION FOR S	EQ ID NO:	164:			
15	(A) (B) (C)	QUENCE CHAR LENGTH: 3 TYPE: ami STRANDEDN TOPOLOGY:	55 amino a no acid ESS:	acids			
20	(ii) MO	OLECULE TYP	E: protein	1			
	(xi) SI	EQUENCE DES	CRIPTION:	SEQ ID NO:1	.64:		
	Met Glu 1	Asp Leu Gl 5	u Glu Thr	Leu Phe Glu 10	Glu Phe Gl	u Asn Tyr 15	Ser
25	Tyr Asp	Leu Asp Ty 20	r Tyr Ser	Leu Glu Ser 25	Asp Leu Gl	u Glu Lys 30	Val
	Gln Leu	Gly Val Va 35	k His Trp	Val Ser Leu 40	Val Leu Ty 45		Ala
•	Phe Val 50	Leu Gly Il	e Pro Gly 55	Asn Ala Ile	Val Ile Tr	p Phe Thr	Gly
30	Leu Lys 65	Trp Lys Ly	s Thr Val	Thr Thr Leu	Trp Phe Le	u Asn Leu	Ala 80
	Ile Ala	Asp Phe Ile	e Phe Leu	Leu Phe Leu	Pro Leu Ty	r Ile Ser	Tyr

	Val	Ala	Met	Asn 100	Phe	His	Trp	Pro	Phe 105	Gly	Ile	Trp	Leu	Cys 110	Lys	Ala
	Asn	Ser	Phe 115	Thr	Ala	Gln	Leu	Asn 120	Met	Phe	Ala	Ser	Val 125	Phe	Phe	Leu
5	Thr	Val 130	Ile	Ser	Leu	Asp	His 135	Tyr	Ile	His	Leu	Ile 140	His	Pro	Val	Leu
	Ser 145	His	Arg	His	Arg	Thr 150	Leu	Lys	Asn	Ser	Leu 155	Ile	Val	Ile	Ile	Phe 160
10	Ile	Trp	Leu	Leu.	Ala 165	Ser	Leu	Ile	Gly	Gly 170	Pro	Ala	Leu	Tyr	Phe 175	Arg
•	Asp	Thr	Val	Glu 180	Phe	Asn	Asn	His	Thr 185	Leu	Cys	Tyr	Asn	Asn 190	Phe	Gln
	Lys	His	Asp 195	Pro	Asp	Leu	Thr	Leu 200	Ile	Arg	His	His	Val 205	Leu	Thr	Trp
15	Val	Lys 210	Phe	Ile	Ile	Gly	Tyr 215	Leu	Phe	Pro	Leu	Leu 220	Thr	Met	Ser	Ile
- . •	Cys 225	_	Leu	Cys 	Leu	Ile 230	Phe	Lys		Lys	Lys 235	Arg	Thr	Val	Leu	11e 240
20	Ser	Ser	Arg	His	Lys 245	Trp	Thr	Ile	Leu	Val 250	Val	Val	Val	Ala	Phe 255	Val
	Val	Cys	Trp	Thr 260	Pro	Tyr	His	Leu	Phe 265	Ser	Ile	Trp	Glu	Leu 270	Thr	Ile
	His	His	Asn 275	Ser	Tyr	Ser	His	His 280	Val	Met	Gln	Ala	Gly 285	Ile	Pro	Leu
25	Ser	Thr 290	Gly	Leu	Ala		Leu 295	Asn	Ser	Cys	Leu	Asn 300	Pro	Ile	Leu	Tyr
	Val 305	Leu	Ile	Ser	Lys	Lys 310	Phe	Gln	Ala	Arg	Phe 315	Arg	Ser	Ser	Val	Ala 320
30	Glu	Ile	Leu	Lys	Tyr 325	Thr	Leu	Trp	Glu	Val 330	Ser	Cys	Ser	Gly	Thr 335	Val
	Ser	Glu	Gln	Leu 340	Arg	Asn	Ser	Glu	Thr 345	Lys	Asn	Leu	Cys	Leu 350	Leu	Glu
	Thr	Ala	Gln 355													

- 35 (166) INFORMATION FOR SEQ ID NO:165:
 - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1089 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:

	ATGGGCAACC	ACACGTGGGA	GGGCTGCCAC	GTGGACTCGC	GCGTGGACCA	CCTCTTTCCG	60
	CCATCCCTCT	ACATCTTTGT	CATCGGCGTG	GGGCTGCCCA	CCAACTGCCT	GGCTCTGTGG	120
	GCGGCCTACC	GCCAGGTGCA	ACAGCGCAAC	GAGCTGGGCG	TCTACCTGAT	GAACCTCAGC	180
	ATCGCCGACC	TGCTGTACAT	CTGCACGCTG	CCGCTGTGGG	TGGACTACTT	CCTGCACCAC	240
10	GACAACTGGA	TCCACGCCC	CGGGTCCTGC	AAGCTCTTTG	GGTTCATCTT	CTACACCAAT	300
	ATCTACATCA	GCATCGCCTT	CCTGTGCTGC	ATCTCGGTGG	ACCGCTACCT	GGCTGTGGCC	360
	CACCCACTCC	CCTTCCCCC	CCTGCGCCGC	GTCAAGACCG	CCGTGGCCGT	GAGCTCCGTG	420
	GTCTGGGCCA	CGGAGCTGGG	CGCCAACTCG	GCGCCCTGT	TCCATGACGA	GCTCTTCCGA	480
	GACCGCTACA	ACCACACCTT	CTGCTTTGAG	AAGTTCCCCA	TGGAAGGCTG	GGTGGCCTGG	540
15	ATGAACCTCT	ATCGGGTGTT	CGTGGGCTTC	CTCTTCCCGT	GGGCGCTCAT	GCTGCTGTCG	600
-	TACCGGGGCA	TCCTGCGGGC	CGTGCGGGGC	AGCGTGTCCA	CCGAGCGCCA	GGAGAAGGCC	660
	AAGATCGCGC	GGCTGGCCCT	CAGCCTCATC	GCCATCGTGC	TGGTCTGCTT	TGCGCCCTAT	720
	CACGTGCTCT	TGCTGTCCCG	CAGCGCCATC	TACCTGGGCC	GCCCCTGGGA	CTGCGGCTTC	780
	GAGGAGCGCG	TCTTTTCTGC	ATACCACAGC	TCACTGGCTT	TCACCAGCCT	CAACTGTGTG	840
20	GCGGACCCCA	TCCTCTACTG	CCTGGTCAAC	GAGGGCGCCC	GCAGCGATGT	GGCCAAGGCC	900
	CTGCACAACC	TGCTCCGCTT	TCTGGCCAGC	GACAAGCCCC	AGGAGATGGC	CAATGCCTCG	960
	CTCACCCTGG	AGACCCCACT	CACCTCCAAG	AGGAACAGCA	CAGCCAAAGC	CATGACTGGC	1020
	AGCTGGGCGG	CCACTCCGCC	TTCCCAGGGG	GACCAGGTGC	AGCTGAAGAT	GCTGCCGCCA	1080
	GCACAATGA						1089

- 25 (167) INFORMATION FOR SEQ ID NO:166:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 362 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
- 30 (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein

		(xi) SE	QUEN	ICE D	ESCR	IPTI	ON:	SEQ	ID N	10:16	6:					
		Met 1	Gly-	Asn	His	Thr 5	Trp	Glu	Gly	Cys	His 10	Val	Asp	Ser	Arg	Val 15	Asp
	5	His	Leu	Phe	Pro 20	Pro	Ser	Leu	Tyr	Ile, 25	Phe	Val	Ile	Gly	Val 30	Gly	Leu
		Pro	Thr	Asn 35	Суз	Leu	Ala	Leu	Trp 40	Ala	Ala	Tyr	Arg	Gln 45	Val	Gln	Gln
		Arg	Asn 50	Glu	Leu	Gly	Val	Tyr 55	Leu	Met	Asn	Leu	Ser 60	Ile	Ala	Asp	Leu
	10	Leu 65	Tyr	Ile	Сув	Thr	Leu 70	Pro	Leu	Ţŗp	Val	Asp 75	Tyr	Phe	Leu	His	His 80
•		Asp	Asn	Trp	Ile	His 85	Gly	Pro	Gly	Ser	Cys 90	Lys	Leu	Phe	Gly	Phe 95	Ile
	15	Phe	Tyr	Thr	Asn 100	Ile	Tyr	Ile	Ser	11e 105	Ala	Phe	Leu	Cys	Cys 110	Ile	Ser
· · · · · · · · · · · · · · · · · · ·					Tyr								Arg	Phe 125	Ala	Arg	Leu
		Arg	Arg 130	•	Lys	Thr	Ala	Val 135	Ala	Val	Ser	Ser	Val 140	Val	Trp	Ala	Thr
	20	Glu 145		Gly	Ala	Asn	Ser 150		Pro	Leu	Phe	His 155		Glu	Leu	Phe	Arg 160
		Asp	Arg	Tyr	Asn	His 165		Phe	Суя	Phe	Glu 170		Phe	Pro	Met	Glu 175	Gly
	25	Trp	Val	Ala	Trp 180		Asn	Leu	Tyr	Arg 185		Phe	Val	Gly	Phe 190	Leu	Phe
		Pro	Trp	Ala 195		Met	Leu	Leu	200		Arg	Gly	Ile	Leu 205		Ala	Val
		Arg	Gly 210		Val	Ser	Thr	Glu 215		g Gln	Glu	Lys	220		Ile	Ala	Arg
	30	Let 225		Leu	. Ser	Leu	11e 230		ıle	e Val	. Leu	val 235		Phe	Ala	Pro	Tyr 240
		His	s Val	L Lev	ı Leu	Leu 245		c Arg	g Sei	c Ala	11e 250		Leu	ı Gly	Arg	255	Trp
	35	Asj	р Суя	Gl)	260		ı Glı	ı Arç	y Val	265		Ala	а Туг	His	270		Leu
		Ala	a Phe	e Thi	. Sex	Let	ı Ası	n Cy	s Vai	l Ala	a Asp	Pro	ıle	e Lei	туз	c Cys	Leu

					1	16								
		275			280					285				
	Val .	Asn Glu 290	Gly Ala	Arg Se	r Asp 5	Val	Ala	Lys	Ala 300	Leu	His	Asn	Leu	
5	Leu <i>1</i> 305	Arg Phe	Leu Ala	Ser As 310	p Lys	Pro	Gln	Glu 315	Met	Ala	Asn	Ala	Ser 320	
	Leu :	Thr Leu (Glu Thr 325	Pro Le	u Thr	Ser	Lys 330	Arg	Asn	Ser	Thr	Ala 335	Lys	
	Ala M	Met Thr	Gly Ser 340	Trp Al	a Ala	Thr 345	Pro	Pro	Ser	Gln	Gly 350	Asp	Gln	
10	Val (Gln Leu 1 355	Lys Met	Leu Pro	9 Pro 360	Ala	Gln							
	(168) INFO	ORMATION	FOR SEC	ID NO	:167:									
15	· (i)	SEQUENCE (A) LENG (B) TYPE (C) STRA	STH: 100 E: nucle	2 base ic acid	pairs 1									
	•	(D) TOPO	LOGY: 1	inear										
	(ii)	MOLECUL	E TYPE:	DNA (c	genomi	.c)		* ** - '** - *	· •				· ·	
	(xi)	SEQUENC	E DESCR	IPTION:	SEQ	ID N	0:16	7:						
20	ATGGAGTCCT	CAGGCAA	CCC AGA	GAGCACO	ACCT	TTTT	TT A	CTAT	GACC	т тс	AGAG	CCAG	6	(
	CCGTGTGAGA	ACCAGGC	CTG GGT	CTTTGC1	, VCCC	TCGC	CA C	CACT	GTCC	T GT	ACŢG	CCTG	12	(
	GTGTTTCTCC	TCAGCCT	AGT GGG	CAACAGO	CTGG	TCCT	GT G	GGTC	CTGG	T GA	AGTA	TGAG	18	C
	AGCCTGGAGT	CCCTCAC	CAA CAT	CTTCATO	CTCA	ACCT	GT G	CCTC'	TCAG.	A CC	TGGT	GTTC	24	
	GCCTGCTTGT	TGCCTGT	GTG GAT	CTCCCCA	TACC	ACTG	GG G	CTGG	GTGC'	T GG	GAGA	CTTC	300	
25	CTCTGCAAAC	TCCTCAA	TAT GAT	CTTCTCC	ATCA	GCCT	CT A	CAGC	AGCA'	r cr	rctt(CCTG	360	
	ACCATCATGA	CCATCCA	CCG CTA	CCTGTCG	GTAG	TGAG	cc co	CCTC'	rcca(c cc	rgcg	CGTC	420	;
	CCCACCCTCC	GCTGCCG	GGT GCT	GTGACC	ATGG	CTGT	GT GO	GTA	GCCA	G CA	rccr	GTCC	480	י
	TCCATCCTCG	ACACCAT	CTT CCAC	CAAGGTG	CTTT	CTTCC	G G	TGT	SATT	A TTC	CCGA	A CTC	540	

ACGTGGTACC TCACCTCCGT CTACCAGCAC AACCTCTTCT TCCTGCTGTC CCTGGGGATT

CACCGCACGA AAAAGCTCAT CTTCGCCATC GTGGTGGCCT ACTTCCTCAG CTGGGGTCCC

TACAACTTCA CCCTGTTTCT GCAGACGCTG TTTCGGACCC AGATCATCCG GAGCTGCGAG

30 ATCCTGTTCT GCTACGTGGA GATCCTCAGG ACCCTGTTCC GCTCACGCTC CAAGCGGCGC

600

660

720

	GCCAA	ACAG	C AG	CTAC	SAATA	CGC	ссте	CTC	ATCI	rgcce	CA A	ACCTO	GCCI	T CI	rcccz	\CTG(. 8	40
	TGCTT	TAAC	c co	GTG	TCT	TGI	CTTC	GTG	GGGG	TCAF	GT 7	rccgo	CACAC	CA CO	TGA	AACAT	. 9	00
	GTTCT	CCGG	C AG	TTCT	rggti	CTO	CCGG	CTG	CAGO	CACC	CA C	SCCCI	AGCCI	rc ga	ATCCC	CCAC	. 9	60
	TCCCC'	rggi	G CC	TTCC	CCTA	TG#	\GGG(CGCC	TCCI	TCT	CT C	SA.					10	02
5	(169)	INF	ORMA	MIOITA	FOF	SEÇ	DI	NO:1	.68:									
10		(i)	(B)	LEN TYI STI	CE CH IGTH: PE: 6 RANDE	333 mino EDNES	ami aci SS:	ino a id	cids	3								
		(ii	.) MC	LECT	ILE I	YPE:	pro	oteir	1									
		•	.) SE	~					-	•		•						
		Met 1	Glu	Ser	Ser	Gly 5	Asn	Pro	Glu	Ser	Thr 10	Thr	Phe	Phe	Tyr	Tyr 15	Asp	
15	1	Leu	Gln	Ser	Gln 20	Pro	Cys	Glu	Asn	Gln 25	Ala	Trp	Val	Phe	Ala 30	Thr	Leu	
		Ala	Thr	Thr 35	Val	Leu	Tyr	Cys	Leu 40	Val	Phe	Leu	Leu	Ser 45	Leu	Val	Gly	. 1941-abs - 1845
20	i	Asn	Ser 50	Leu	Val	Leu	Trp	Val 55	Leu	Val	Lys	Tyr	Gļu 60	Ser	Leu	Glu	Ser	•
		Leu 65	Thr	Asn	Ile	Phe	Ile 70	Leu	Asn	Leu	Cys	Leu 75	Ser	Asp	Leu	Val	Phe 80	
	i	Ala	Cys	Leu	Leu	Pro 85	Val	Trp	Ile	Ser	Pro 90	Tyr	His	Trp	Gly	Trp 95	Val	
25	;	Leu	Gly	Asp	Phe 100	Leu	Cys	Lys	Leu	Leu 105	Asn	Met	Ile	Phe	Ser 110	Ile	Ser	
	(Leu	Tyr	Ser 115	Ser	Ile	Phe	Phe	Leu 120	Thr	Ile	Met	Thr	Ile 125	His	Arg	Tyr	
30	Ċ	Leu	Ser 130	Val	Val	Ser	Pro	Leu 135	Ser	Thr	Leu	Arg	Val 140	Pro	Thr	Leu	Arg	
		Cys 145	Arg	Val	Leu	Val	Thr 150	Met	Ala	Val	Trp	Val 155	Ala	Ser	Ile	Leu	Ser 160	
	,	Ser	Ile	Leu	Asp	Thr 165	Ile	Phe	His	Lys	Val 170	Leu	Ser	Ser	Gly	Cys 175	Asp	
35	,	Tyr	Ser	Glu	Leu 180	Thr	Trp	Tyr	Leu	Thr 185	Ser	Val	Tyr	Gln	His 190	Asn	Leu	

	Phe I		eu Leu .95	Ser	Leu	Gly	Ile 200	Ile	Leu	Phe	Cys	Tyr 205	Val	Glu	Ile	
		Arg T 210	hr Leu	Phe	Arg	Ser 215	Arg	Ser	Lys	Arg	Arg 220	His	Arg	Thr	Lys	
5	Lys 1 225	Leu I	le Phe	Ala	Ile 230	Val	Val	Ala	Tyr	Phe 235	Leu	Ser	Trp	Gly	Pro 240	
	Tyr 1	Asn P	he Thr	Leu 245	Phe	Leu	Gln	Thr	Leu 250	Phe	Arg	Thr	Gln	Ile 255	Ile	
10	Arg S	Ser C	ys Glu 260		Lys	Gln	Gln	Leu 265	Glu	Tyr	Ala	Leu	Leu 270	Ile	Cys	
	Arg i		eu Ala 175	Phe	Ser	His	Cys 280	Суѕ	Phe	Asn	Pro	Val 285	Leu	Tyr	Val	
	•	Val G 290	ly Val	Lys	Phe	Arg 295	Thr	His	Leu	Lys	His 300	Val	Leu	Arg	Gln	
15	. Phe 1	Trp.P	he Cys	Arg	Leu 310	Gln	Ala	Pro	Ser	Pro 315		Ser	Ile	Pro	His 320	
	Ser 1		ly Ala										 س . مدر ه	D		****
	(170) INF	ORMĄT	CION FO	R SE	Q ID	NO:	169:								:	
20	(i)	(A) (B) (C)	JENCE C LENGTH TYPE: STRAND TOPOLO	: 98 nucl EDNE	7 ba: eic : SS: :	se pa acid sing:	airs									
25	(ii) MOL	LECULE	TYPE	: DN	A (g	enom	ic)								
	(xi) SEÇ	QUENCE	DESC	RIPT	ION:	SEQ	ID 1	NO:1	69:						
	ATGGACAAC	G CCI	CGTTCT	C GG	AGCC	CTGG	CCC	GCCA	ACG (CATC	GGGC	CC G	GACC	CGGC	3	60
	CTGAGCTGC	T CCA	\ACGCGT	C GA	CTCT	GGCG	CCG	CTGC	CGG (CGCC	GCTG(GC G	GTGG	CTGT	Α. :	120
	CCAGTTGTC	T ACC	GCGGTGA	т ст	GCGC	CGTG	GGT	CTGG	CGG	GCAA	CTCC	GC C	GTGC'	TGTA	2	180
30	GTGTTGCTG	C GGG	GCGCCCC	G CA	TGAA	GACC	GTC	ACCA	ACC '	TGTT	CATC	CT C	AACC	TGGC	c :	240
	ATCGCCGAC	G AGO	CTCTTCA	.C GC	TGGT	GCTG	CCC	ATCA	ACA	TCGC	CGAC	TT C	CTGC	TGCG	3	300
	CAGTGGCCC	т тс	EGGGAGC	T CA	TGTG	CAAG	CTC	ATCG	TGG	CTAT	CGAC	CA G	TACA	ACAC	C	360
	TTCTCCAGC	C TCI	racttcc	T CA	CCGT	CATG	AGC	GCCG	ACC	GCTA	CCTG	GT G	GTGT	TGGC	C ·	420
	ACTGCGGAG	T CGC	CGCCGGG	T GG	CCGG	CCGC	ACC	TACA	GCG	CCGC	GCGC	GC G	GTGA	GCCT	G	480

	GCCGTGTGGG	GGATCGTCAC	ACTCGTCGTG	CTGCCCTTCG	CAGTCTTCGC	CCGGCTAGAC	540
•	GACGAGCAGG	GCCGGCGCCA	GTGCGTGCTA	GTCTTTCCGC	AGCCCGAGGC	CTTCTGGTGG	600
	CGCGCGAGCC	GCCTCTACAC	GCTCGTGCTG	GGCTTCGCCA	TCCCCGTGTC	CACCATCTGT	660
	GTCCTCTATA	CCACCCTGCT	GTGCCGGCTG	CATGCCATGC	GGCTGGACAG	CCACGCCAAG	720
5	GCCCTGGAGC	GCGCCAAGAA	GCGGGTGAAG	TTCCTGGTGG	TGGCAATCCT	GGCGGTGTGC	780
	CTCCTCTGCT	GGACGCCCTA	CCACCTGAGC	ACCGTGGTGG	CGCTCACCAC	CGACCTCCCG	840
	CAGACGCCGC	TGGTCATCGC	TATCTCCTAC	TTCATCACCA	GCCTGACGTA	CGCCAACAGC	900
	TGCCTCAACC	CCTTCCTCTA	СССТТССТС	GACGCCAGCT	TCCGCAGGAA	CCTCCGCCAG	960
	CTGATAACTT	GCCGCGCGGC	AGCCTGA				987

- 10 (171) INFORMATION FOR SEQ ID NO:170:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 328 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:

Met Asp Asn Ala Ser Phe Ser Glu Pro Trp Pro Ala Asn Ala Ser Gly
1 5 10 15

20 Pro Asp Pro Ala Leu Ser Cys Ser Asn Ala Ser Thr Leu Ala Pro Leu 20 25 30

Pro Ala Pro Leu Ala Val Ala Val Pro Val Val Tyr Ala Val Ile Cys 35 40 45

Ala Val Gly Leu Ala Gly Asn Ser Ala Val Leu Tyr Val Leu Leu Arg
50 55 60

Ala Pro Arg Met Lys Thr Val Thr Asn Leu Phe Ile Leu Asn Leu Ala 70 75 80

Ile Ala Asp Glu Leu Phe Thr Leu Val Leu Pro Ile Asn Ile Ala Asp 85 90 95

Phe Leu Leu Arg Gln Trp Pro Phe Gly Glu Leu Met Cys Lys Leu Ile
100 105 110

Val Ala Ile Asp Gln Tyr Asn Thr Phe Ser Ser Leu Tyr Phe Leu Thr 115 120 125

Val Met Ser Ala Asp Arg Tyr Leu Val Val Leu Ala Thr Ala Glu Ser

		130)				135					140					
	Arg 145	Arg	Val	Ala	Gly	Arg 150		Tyr	Ser	Ala	Ala 155		Ala	Val	Ser	Leu 160	
5	Ala	Val	Trp	Gly	Ile 165		Thr	Leu	Val	Val 170		Pro	Phe	Ala	Val 175	Phe	
	Ala	Arg	Leu	Asp 180	Asp	Glu	Gln	Gly	Arg 185	Arg	Gln	Cys	Val	Leu 190	Val	Phe	
	Pro	Gln	Pro 195	Glu	Ala	Phe	Trp	Trp 200	Arg	Ala	Ser	Arg	Leu 205	Tyr	Thr	Leu	
10	Val	Leu 210	Gly	Phe	Ala	Ile	Pro 215	Val	Ser	Thr	Ile	Cys 220	Val	Leu	Tyr	Thr	
	Thr 225	Leu	Leu	Cys	Arg	Leu 230	His	Ala	Met	Arg.	Leu 235	Asp	Ser	His	Ala	Lys 240	
15	Ala	Leu	Glu	Arg	Ala 245		Lys	Arg	Val	Lys 250	Phe	Leu	Val	Val	Ala 255	Ile	
	Leu	Ala	Val	Cys 260	Leu	Leu	Суз	Trp	Thr 265	Pro	Tyr	His	Leu	Ser 270	Thr	Val	
	Val	Ālā	Leu 275	Thr	Thr	Asp	Leu	Pro 280	Gln		Pro	Leu	Val 285	Île	Ala	Ile	
20	Ser	Tyr 290	Phe	Ile	Thr	Ser	Leu 295	Thr	Tyr	Ala	Asn	Ser 300	Cys	Leu	Asn	Pro	
	Phe 305	Leu	Tyr	Ala	Phe	Leu 310	Asp	Ala	Ser	Phe	Arg 315	Arg	Asn	Leu	Arg	Gln 320	
25	Leu	Ile	Thr	Cys	Arg 325	Ala	Ala	Ala									
	(172) INE	FORMA	TION	FOR	SEQ	ID	NO:1	71:									•
30	(i)	(B)	LENC TYP STR	GTH: E: n ANDE	100 ucle DNES	2 ba ic a S: s	se p cid ingl	airs									
	(ii	.) MO	LECU	LE T	YPE:	DNA	(ge	nomi	c)								
	(xi	.) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:17	1:						
	ATGCAGGCC	G CT	'GGGC	ACCC	AGA	GCCC	CTT	GACA	GCAG	GG G	CTCC	TTCT	c cc	TCCC	CACG	. 6	0
35	ATGGGTGCC	'A AC	GTCT	CTCA	GGA	CAAT	GGC	ACTG	GCCA	CA A	TGCC	ACCT	т ст	CCGA	GCCA	12	0
	CTGCCGTTC	C TC	TATG	TGCT	CCT	הכרר	מכר	ርጥርጥ	እርጥሮ	ca c	ሮስጥጣ	TOTAL	C TC	maaa	a ama		_

	ACTGGCAACA CGGCCGTCAT CCTTGTAATC CTAAGGGCGC CCAAGATGAA GACGGTGACC 240
•	AACGTGTTCA TCCTGAACCT GGCCGTCGCC GACGGGCTCT TCACGCTGGT ACTGCCTGTC 300
	AACATCGCGG AGCACCTGCT GCAGTACTGG CCCTTCGGGG AGCTGCTCTG CAAGCTGGTG 360
	CTGGCCGTCG ACCACTACAA CATCTTCTCC AGCATCTACT TCCTAGCCGT GATGAGCGTG 420
5	GACCGATACC TGGTGGTGCT GGCCACCGTG AGGTCCCGCC ACATGCCCTG GCGCACCTAC 480
	CGGGGGGCGA AGGTCGCCAG CCTGTGTGTC TGGCTGGGCG TCACGGTCCT GGTTCTGCCC 540
	TTCTTCTCTT TCGCTGGCGT CTACAGCAAC GAGCTGCAGG TCCCAAGCTG TGGGCTGAGC 600
	TTCCCGTGGC CCGAGCAGGT CTGGTTCAAG GCCAGCCGTG TCTACACGTT GGTCCTGGGC 660
	TTCGTGCTGC CCGTGTGCAC CATCTGTGTG CTCTACACAG ACCTCCTGCG CAGGCTGCGG 720
. 10	GCCGTGCGGC TCCGCTCTGG AGCCAAGGCT CTAGGCAAGG CCAGGCGGAA GGTGAAAGTC 780
	CTGGTCCTCG TCGTGCTGGC CGTGTGCCTC CTCTGCTGGA CGCCCTTCCA CCTGGCCTCT 840
	GTCGTGGCCC TGACCACGGA CCTGCCCCAG ACCCCACTGG TCATCAGTAT GTCCTACGTC 900
	ATCACCAGCC TCACGTACGC CAACTCGTGC CTGAACCCCT TCCTCTACGC CTTTCTAGAT 960
والدر الكليان الداري والكاليات المهيد المواليات المال المؤكلة المالية	GACAACTTCC GGAAGAACTT CCGCAGCATA TTGCGGTGCT GA 1002
· · · · · · 15	(173) INFORMATION FOR SEQ ID NO:172:
. 20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 333 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant
	(ii) MOLECULE TYPE: protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:
	Met Gln Ala Ala Gly His Pro Glu Pro Leu Asp Ser Arg Gly Ser Phe 1 5 10 15
25	Ser Leu Pro Thr Met Gly Ala Asn Val Ser Gln Asp Asn Gly Thr Gly 20 25 30
	His Asn Ala Thr Phe Ser Glu Pro Leu Pro Phe Leu Tyr Val Leu Leu

Pro Ala Val Tyr Ser Gly Ile Cys Ala Val Gly Leu Thr Gly Asn Thr

Ala Val Ile Leu Val Ile Leu Arg Ala Pro Lys Met Lys Thr Val Thr

70

		Asn	Val	Phe	Ile	· Leu 85	Asn	Leu	Ala	Val	Ala 90	Asp	Gly	Leu	Phe	Thr 95	Leu
		Val	Leu	Pro	Val 100	Asn	Ile	Ala	Glu	His 105	Leu	Leu	Gln	Tyr	Trp 110	Pro	Phe
	5	Gly	Glu	Leu 115	Leu	Сув	Lys	Leu	Val 120	Leu	Ala	Val	Asp	His 125	Tyr	Asn	Ile
		Phe	Ser 130	Ser	Ile	Tyr	Phe	Leu 135	Ala	Val	Met	Ser	Val 140	Asp	Arg	Tyr	Leu
	10	Val 145	Val	Leu	Ala	Thr	Val 150	Arg	Ser	Arg	His	Met 155	Pro	Trp	Arg	Thr	Tyr 160
		Arg	Gly	Ala	Lys	Val 165	Ala	Ser	Leu	Суз	Val 170	Trp	Leu	Gly	Val	Thr 175	Val
		Leu	Val	Leu	Pro 180	Phe	Phe	Ser	Phe	Ala 185	Gly	Val	Tyr	Ser	Asn 190	Glu	Leu
	15	Ġln	Val	Pro 195	Ser	Cys	Gly	Leu	Ser 200	Phe	Pro	Trp	Pro	Glu 205	Glņ	Val	Trp
Fig. 10 / 28th to bridge "Fig. 8			Lys 210	Ala										Phe			
	20	Val 225	Cys	Thr -		Cys											
		Ala	Val	Arg	Leu	Arg 245	Ser	Glý	Ala	Lys	Ala 250	Leu	Gly	Lys	Ala	Arg 255	Arg
		Lys	Val	Lys	Val 260	Leu	Val	Leu	Val	Val 265	Leu	Ala	Val	Cys	Leu 270	Leu	Cys
	25	Trp	Thr	Pro 275	Phe	His	Leu	Ala	Ser 280	Val	Val	Ala	Leu	Thr 285	Thr	Asp	Leu
		Pro	Gln 290	Thr	Pro	Leu	Val	Ile 295	Ser	Met	Ser		Val 300	Ile	Thr	Ser	Leu
	30	Thr 305	Tyr	Ala	Asn	Ser	Cys 310	Leu	Asn	Pro	Phe	Leu 315	Tyr	Ala	Phe		Asp 320
		Asp	Asn	Phe		Lys 325	Asn	Phe	Arg	Ser	Ile 330	Leu	Arg	Cys			

(174) INFORMATION FOR SEQ ID NO:173:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1107 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii)	MOLECULE	TYPE:	DNA	(genomic)
------	----------	-------	-----	----------	---

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:173: ATGGTCCTTG AGGTGAGTGA CCACCAAGTG CTAAATGACG CCGAGGTTGC CGCCCTCCTG 60 GAGAACTTCA GCTCTTCCTA TGACTATGGA GAAAACGAGA GTGACTCGTG CTGTACCTCC 120 5 CCGCCCTGCC CACAGGACTT CAGCCTGAAC TTCGACCGGG CCTTCCTGCC AGCCCTCTAC AGCCTCCTCT TTCTGCTGGG GCTGCTGGGC AACGGCGCGG TGGCAGCCGT GCTGCTGAGC CGGCGGACAG CCCTGAGCAG CACCGACACC TTCCTGCTCC ACCTAGCTGT AGCAGACACG CTGCTGGTGC TGACACTGCC GCTCTGGGCA GTGGACGCTG CCGTCCAGTG GGTCTTTGGC TCTGGCCTCT GCAAAGTGGC AGGTGCCCTC TTCAACATCA ACTTCTACGC AGGAGCCCTC 10 CTGCTGGCCT GCATCAGCTT TGACCGCTAC CTGAACATAG TTCATGCCAC CCAGCTCTAC 480 CGCCGGGGGC CCCCGGCCCG CGTGACCCTC ACCTGCCTGG CTGTCTGGGG GCTCTGCCTG 540 CTTTTCGCCC TCCCAGACTT CATCTTCCTG TCGGCCCACC ACGACGAGCG CCTCAACGCC 600 ACCCACTGCC AATACAACTT CCCACAGGTG GGCCGCACGG CTCTGCGGGT GCTGCAGCTG. 660 GTGGCTGGCT TTCTGCTGCC CCTGCTGGTC ATGGCCTACT GCTATGCCCA CATCCTGGCC 720 15 GTGCTGCTGG TTTCCAGGGG CCAGCGGCGC CTGCGGGCCA AGCGGCTGGT GGTGGTGGTC GTGGTGGCCT TTGCCCTCTG CTGGACCCCC TATCACCTGG TGGTGCTGGT GGACATCCTC 840 ATGGACCTGG GCGCTTTGGC CCGCAACTGT GGCCGAGAAA GCAGGGTAGA CGTGGCCAAG 900 TCGGTCACCT CAGGCCTGGG CTACATGCAC TGCTGCCTCA ACCCGCTGCT CTATGCCTTT 960 GTAGGGGTCA AGTTCCGGGA GCGGATGTGG ATGCTGCTCT TGCGCCTGGG CTGCCCCAAC 1020 20 CAGAGAGGC TCCAGAGGCA GCCATCGTCT TCCCGCCGGG ATTCATCCTG GTCTGAGACC 1080 TCAGAGGCCT CCTACTCGGG CTTGTGA

(175) INFORMATION FOR SEQ ID NO:174:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 368 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:

- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:174:

	Met 1	Val	Leu	Glu	Val 5	Ser	Asp	His	Gln	Val	Leu	Asn	Asp	Ala	Glu 15	Val
	Ala	Ala	Leu	Leu 20	Glu	Asn	Phe	Ser	Ser 25	Ser	Tyr	Asp	Tyr	Gly 30	Glu	Ası
5	Glu	Ser	Asp 35	Ser	Cys	Cys	Thr	Ser 40	Pro	Pro	Cys	Pro	Gln 45	Asp	Phe	Ser
	Leu	Asn 50	Phe	Asp	Arg	Ala	Phe 55	Leu	Pro	Ala	Leu	Tyr 60	Ser	Leu	Leu	Phe
10	Leu 65	Leu	Gly	Leu	Leu	Gly 70	Asn	Gly	Ala	Val	Ala 75	Ala	Val	Leu	Leu	Ser 80
	Arg	Arg	Thr	Ala	Leu 85	Ser	Ser	Thr	Asp	Thr 90	Phe	Leu	Leu	His	Leu 95	Ala
	Val	Ala	Asp	Thr 100	Leu	Leu	.Val	Leu	Thr 105	Leu	Pro	Leu	Trp	Ala 110	Val	Asp
15	Ala	Ala	Val 115	Gln	Trp	Val	Phe	Gly 120	Ser	Gly	Leu	Суѕ	Lys 125	Val	Ala	Gly
	 Ala	Leu 130	Phe						Ala							
20	 Ile 145	Ser	Phe	Asp	Arg	Tyr 150	Leu	Asn	Ile	Val	His 155	Ala	Thr	Gln _.	Leu	Tyr 160
	Arg	Arg	Gly	Pro	Pro 165	Ala	Arg	Val	Thr	Leu 170	Thr	Cys	Leu	Ala	Val 175	Trp
	Gly	Leu	Cys	Leu 180	Leu	Phe	Ala	Leu	Pro 185	Asp	Phe	Ile	Phe	Leu 190	Ser	Ala
25	His	His	Asp 195	Glu	Arg	Leu	Asn	Ala 200	Thr	His	Cys	Gln	Tyr 205	Asn	Phe	Pro
	Gln	Val 210	Gly	Arg	Thr	Ala	Leu 215	Arg	Val	Leu	Gln	Leu 220	Val	Ala	Gly	Phe
30	Leu 225	Leu	Pro	Leu	Leu	Val 230	Met	Ala	Tyr	Суз	Tyr 235	Ala	His	Ile	Leu	Ala 240
	Val	Leu	Leu	Val	Ser 245	Arg	Gly	Gln	Arg	Arg 250	Leu	Arg	Ala	Lys	Arg 255	Leu
	Val	Val	Val	Val 260	Val	Val	Ala	Phe	Ala 265	Leu	Cys	Trp	Thr	Pro 270	Tyr	His
35	Leu	Val	Val 275	Leu	Val	Asp	Ile	Leu 280	Met	Asp	Leu	Gly	Ala 285	Leu	Ala	Arg
	Asn	Cys	Gly	Arg	Glu	Ser	Arg	Val	Asp	Val	Ala	Lvs	Ser	Val	Thr	Ser

125

	2	290	295		300	
•	Gly I 305	Leu Gly Tyr N	Met His Cys 310	Cys Leu Asn	Pro Leu Leu 315	Tyr Ala Phe 320
5	Val G		Phe Arg Glu 325	Arg Met Trp	Met Leu Leu	Leu Arg Leu 335
	Gly C	Cys Pro Asn 0	Gln Arg Gly	Leu Gln Arg 345	Gln Pro Ser	Ser Ser Arg 350
	Arg A	Asp Ser Ser 1 355	Erp Ser Glu	Thr Ser Glu 360	Ala Ser Tyr 365	Ser Gly Leu
10	(176) INFO	ORMATION FOR	SEQ ID NO:1	L 75 :		
15		SEQUENCE CHA (A) LENGTH: (B) TYPE: nu (C) STRANDED (D) TOPOLOGY	1074 base p ncleic acid DNESS: singl	pairs		
	(ii)	MOLECULE TY	PE: DNA (ge	eriomic)		
	(xi)	SEQUENCE DE	SCRIPTION:	SEQ ID NO:1	75:	
	ATGGCTGATG	ACTATGGCTC	TGAATCCACA	TCTTCCATGG A	AAGACTACGT T	AACTTCAAC 6
••	TTCACTGACT	TCTACTGTGA	GAAAAACAAT	GTCAGGCAGT	TTGCGAGCCA T	TTCCTCCCA 12
20	CCCTTGTACT	GGCTCGTGTT	CATCGTGGGT	GCCTTGGGCA	ACAGTCTTGT T	ATCCTTGTC 18
	TACTGGTACT	GCACAAGAGT	GAAGACCATG	ACCGACATGT	CCTTTTGAA T	TTGGCAATT 24
	GCTGACCTCC	C TCTTTCTTGT	CACTCTTCCC	TTCTGGGCCA :	FTGCTGCTGC T	GACCAGTGG 30
	AAGTTCCAGA	CCTTCATGTG	CAAGGTGGTC	AACAGCATGT A	ACAAGATGAA C	TTCTACAGC 36
	TGTGTGTTGC	TGATCATGTG	CATCAGCGTG	GACAGGTACA	TTGCCATTGC C	CAGGCCATG 42
25	AGAGCACATA	CTTGGAGGGA	GAAAAGGCTT	TTGTACAGCA	AAATGGTTTG C	TTTACCATC 48
	TGGGTATTGG	CAGCTGCTCT	CTGCATCCCA	GAAATCTTAT 1	ACAGCCAAAT C	AAGGAGGAA 54
	TCCGGCATTG	CTATCTGCAC	CATGGTTTAC	CCTAGCGATG A	AGAGCACCAA A	CTGAAGTCA 60
	GCTGTCTTGA	CCCTGAAGGT	CATTCTGGGG	TTCTTCCTTC (CCTTCGTGGT C	ATGGCTTGC 66
	TGCTATACCA	TCATCATTCA	CACCCTGATA	CAAGCCAAGA 1	AGTCTTCCAA G	CACAAAGCC 72
30	AAGAAAGTGA	CCATCACTGT	CCTGACCGTC	TTTGTCTTGT (CTCAGTTTCC C	TACAACTGC 78

ATTTTGTTGG TGCAGACCAT TGACGCCTAT GCCATGTTCA TCTCCAACTG TGCCGTTTCC

	ACCAACA:	rtg <i>i</i>	CATO	CTGCT	rr co	CAGGI	CAC	CAC	SACC!	ATCG	CCTT	CTT	CA C	AGTT	GCCI	G	900
•	AACCCTG	rtc 1	CTAT	GTT:	T TO	TGGG	STGAG	G AGA	TTC	GCC	GGG	TCT	GT (BAAA	CCCI	r G	960
	AAGAACTT	rgg d	TTGC	ATC	AG CC	NGGC	CCAG	TGG	GTTI	CAT	TTAC	AAGG	AG A	GAGG	GAAG	C 1	020
	TTGAAGCT	rgt c	GTCI	ATGI	T GC	TGGA	GACA	ACC	TCAC	GAG	CACI	CTCC	CT C	TGA		1	074
5	(177) IN	1FORM	ATIC	N FC	R SE	Q II	> ио:	176:									
10	i)	(B) LE ;) TY ;) SI	ngth Pe : Rand	: 35 amin EDNE	7 am o ac	ino id	acid									
	,,							vant									
		.i) M			•												
	•	i) S								•	•						
٠.	Met 1	Ala	Asp	Asp	Tyr 5	Gly	Ser	Glu	Ser	Thr 10	Ser	Ser	Met	Glu	Asp 15	Tyr	
· 15	Val	Asn	Phe	Asn 20	Phe	Thr	Asp	Phe	Tyr 25	Сув	Glu	Lys	Asn	Asn 30	Val	Arg	
	Gln	Phe	Ala 35	Ser	His	Phe	Leu	Pro 40	Pro	Leu	Tyr	Trp	Leu 45	Val	Phe	Ile	٠
	Val	Gly	Ala	Leu	 Gly	Asn	Ser	Leu	Val	Ile	Leu	Val	Tyr	Trp	Tyr	Cys	
20		50					55					60					
	Thr 65	Arg	Val	Lys	Thr	Met 70	Thr	Asp	Met	Phe	Leu 75	Leu	Asn	Leu	Ala	Ile 80	
	Ala	Asp	Leu	Leu	Phe 85	Leu	Val	Thr	Leu	Pro 90	Phe	Trp	Ala	Ile	Ala 95	Ala	
25	Ala	Asp	Gln	Trp 100	Lys	Phe	Gln	Thr	Phe 105	Met	Суз	Lys	Val	Val 110	Asn	Ser	
	Met	Tyr	Lys 115	Met	Asn	Phe	Tyr	Ser 120	Cys	Val	Leu	Leu	Ile 125	Met	Cys	Ile	
30	Ser	Val 130	Asp	Arg	Tyr	Ile	Ala 135	Ile	Ala	Gln	Ala	Met 140	Arg	Ala	His	Thr	
	Trp 145	Arg	Glu	Lys	Arg	Leu 150	Leu	Tyr	Ser	Lys	Met 155	Val	Cys	Phe	Thr	Ile 160	
	Trp	Val	Leu	Ala	Ala 165	Ala	Leu	Cys	Ile	Pro 170	Glu	Ile	Leu	Tyr	Ser 175	Gln	
35	Ile	Lys	Glu	Glu 180	Ser	Gly	Ile	Ala	Ile 185	Суз	Thr	Met	Val	Tyr 190	Pro	Ser	

		Asp	Glu	Ser 195	Thr	Lys	Leu	Lys	Ser 200	Ala	Val	Leu	Thr	Leu 205	Lys	Val	Ile	
		Leu	Gly 210	Phe	Phe	Leu	Pro	Phe 215	Val	Val	Met	Ala	Cys 220	Cys	Tyr	Thr	Ile	
5		Ile 225	Ile	His	Thr	Leu	Ile 230	Gln	Ala	Lys	Lys	Ser 235	Ser	Lys	His	Lys	Ala 240	
		Lys	Lys	Val	Thr	Ile 245	Thr	Val	Leu	Thr	Val 250	Phe	Val	Leu	Ser	Gln 255	Phe	
10		Pro	Tyr	Asn	Cys 260	Ile	Leu	Leu	Val	Gln 265	Thr	Ile	Asp	Ala	Tyr 270	Ala	Met	
		Phe	Ile	Ser 275	Asn	Cys	Ala	Val	Ser 280	Thr	Asn	Ile	Asp	Ile 285	Cys	Phe	Gln	
		Val	Thr 290	Gln	Thr	Ile	Ala	Phe 295	Phe	His	Ser	Cys	Leu 300	Asn	Pro	Vạl	Leu	
15	•	Tyr 305	Val	Phe	Val	Gly	Glu 310	Arg	Phe	Arg	Arg	Asp 315	Leu	Val	Lys	Thr	Leu 320	•
•	:	Lys 	Asn	Leu	Gly	Cys 325	Ile		Gln	Ala	Gln 330	Trp	Val	Ser	Phe	Thr 335		
20		Arg	Glu	Gly	Ser 340	Leu	Lys	Leu		Ser 345	Met	Leu	Leu	Glu	Thr 350	Thr	Ser	
		Gly	Ala	Leu 355	Ser	Leu												
	(178)	INF	ORMA	TION	FOR	SEQ	ID	NO:1	77:									
25		(i)	(A) (B) (C)	LEN TYP STR	E CH IGTH: PE: n PANDE POLOG	111 ucle DNES	0 ba ic a S: s	se p cid ingl	airs									
20					LE T													
30					CE D													
	ATGGC																	60
	GCGGT												•					20
	GGCGC																	80
	GGGCT																	40
35	CTGGT	GCTG	G TG	ATCG	CGCG	GGT	GCCG	CGG	CTGC.	ACAA	CG T	GACG	AACT	T CC	TCAT	CGGC	3	იი

128

	AACCTGGCCT	TGTCCGACGT	GCTCATGTGC	ACCGCCTGCG	TGCCGCTCAC	GCTGGCCTAT	360
•	GCCTTCGAGC	CACGCGGCTG	GGTGTTCGGC	GGCGGCCTGT	GCCACCTGGT	CTTCTTCCTG	420
	CAGCCGGTCA	CCGTCTATGT	GTCGGTGTTC	ACGCTCACCA	CCATCGCAGT	GGACCGCTAC	480
	GTCGTGCTGG	TGCACCCGCT	GAGGCGCGCA	TCTCGCTGCG	CCTCAGCCTA	CGCTGTGCTG	540
5	GCCATCTGGG	CGCTGTCCGC	GGTGCTGGCG	CTGCCGCCCG	CCGTGCACAC	CTATCACGTG	600
	GAGCTCAAGC	CGCACGACGT	GCGCCTCTGC	GAGGAGTTCT	GGGGCTCCCA	GGAGCGCCAG	660
	CGCCAGCTCT	ACGCCTGGGG	GCTGCTGCTG	GTCACCTACC	TGCTCCCTCT	GCTGGTCATC	720
	CTCCTGTCTT	ACGTCCGGGT	GTCAGTGAAG	CTCCGCAACC	GCGTGGTGCC	GGGCTGCGTG	780
	ACCCAGAGCC	AGGCCGACTG	GGACCGCGCT	CGGCGCCGGC	GCACCAAATG	CTTGCTGGTG	840
10	GTGGTCGTGG	TGGTGTTCGC	CGTCTGCTGG	CTGCCGCTGC	ACGTCTTCAA	CCTGCTGCGG	900
	GACCTCGACC	CCCACGCCAT	CGACCCTTAC	GCCTTTGGGC	TGGTGCAGCT	GCTCTGCCAC	960
	TGGCTCGCCA	TGAGTTCGGC	CTGCTACAAC	CCCTTCATCT	ACGCCTGGCT	GCACGACAGC	1020
	TTCCGCGAGG	AGCTGCGCAA	ACTGTTGGTC	GCTTGGCCCC	GCAAGATAGC	CCCCCATGGC	1080
	CAGAATATGA	CCGTCAGCGT	GGTCATCTGA	, audition and a tree.	· · · · ·	••••	1110

15 (179) INFORMATION FOR SEQ ID NO:178:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 369 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
- 20 (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:

Met Ala Ser Ser Thr Thr Arg Gly Pro Arg Val Ser Asp Leu Phe Ser 1 10 15

25 Gly Leu Pro Pro Ala Val Thr Thr Pro Ala Asn Gln Ser Ala Glu Ala 20 25 30

Ser Ala Gly Asn Gly Ser Val Ala Gly Ala Asp Ala Pro Ala Val Thr 35 40 45

Pro Phe Gln Ser Leu Gln Leu Val His Gln Leu Lys Gly Leu Ile Val 30 50 55 60 .

Leu Leu Tyr Ser Val Val Val Val Gly Leu Val Gly Asn Cys Leu 65 70 75 80

		Let	ı Va	l Leu	val	·Ile 85	: Ala	Arg	Val	. Pro	Arg	, Let	His	s Asr	ı Val	Thr 95	: Asn
		Phe	e Lei	ı Ile	Gly 100	Asn	Leu	Ala	Leu	Ser 105		Val	. Lev	Met	Cys		Ala
5		Cys	val	l Pro 115	Leu	Thr	Leu	Ala	Tyr 120		Phe	Gl _u	Pro	Arg 125		Trp	Val
		Phe	: Gly	Gly	Gly	Leu	Суз	His 135		Val	Phe	Phe	Leu 140		Pro	Val	Thr
10		Val 145	Туг	. Val	Ser	Val	Phe 150		Leu	Thr	Thr	Ile 155		Val	Asp	Arg	Tyr 160
	٠	Val	Val	Leu	Val	His 165	Pro	Leu	Arg	Arg	Ala 170		Arg	Cys	Ala	Ser 175	
		Tyr	Ala	Val	Leu 180	Ala	Ile	Trp	Ala	Leu 185	Ser	Ala	Val	Leu	Ala 190		Pro
15		Pro	Ala	Val 195	His	Thr	Tyr	His	Val 200	Glu	Leu	Lys	Pro	His 205	Asp	Val	Arg
		Leu	Cys 210	Glu	Glu	Phe	Trp	Gly 215	Ser	Gln	Glu		Gln 220	Arg	Gln	Leu	Tyr
20		Ala 225	Trp	Gly	Leu		Leu 230	Val	Thr	Tyr	Leu	Leu 235	Pro	Leu	Leu	Val	Ile 240
•		Leu	Leu	Ser	Tyr	Val 245	Arg	Val	Ser	Val	Lys 250	Leu	Arg	Asn	Arg	Val 255	Val
		Pro	Gly	Cys	Val 260	Thr	Gln	Ser	Gln	Ala 265	Asp	Trp	Asp	Arg	Ala 270	Arg	Arg
25		Arg	Arg	Thr 275	Lys	Суз	Leu	Leu	Val 280	Val	Val	Val	Val	Val 285	Phe	Ala	Val
		Cys	Trp 290	Leu	Pro	Leu	His	Val 295	Phe	Asn	Leu	Leu	Arg 300	Asp	Leu	Asp	Pro
30		His 305	Ala	Ile	Asp		Tyr 310	Ala	Phe	Gly	Leu	Val 315	Gln	Leu	Leu	Cys	His 320
		Trp	Leu	Ala	Met	Ser 325	Ser	Ala	Cys	Tyr	Asn 330	Pro	Phe	Ile	Tyr	Ala 335	Trp
		Leu	His	Asp	Ser 340	Phe .	Arg	Glu	Glu	Leu 345	Arg	Lys	Leu	Leu	Val 350	Ala	Trp
35		Pro	Arg	Lys 355	Ile	Ala	Pro		Gly 360	Gln	Asn	Met	Thr	Val 365	Ser	Val	Val

Ile

(180) INFORMATION FOR SEQ ID NO:179:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1083 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:179:

10	ATGGACCCAG	AAGAAACTTC	AGTTTATTTG	GATTATTACT	' ATGCTACGAG	CCCAAACTCT	60
	GACATCAGGG	AGACCCACTC	CCATGTTCCT	TACACCTCTG	TCTTCCTTCC	AGTCTTTTAC	120
	ACAGCTGTGT	TCCTGACTGG	AGTGCTGGGG	AACCTTGTTC	TCATGGGAGC	GTTGCATTTC	180
	AAACCCGGCA	GCCGAAGACT	GATCGACATC	TTTATCATCA	ATCTGGCTGC	CTCTGACTTC	240
	ATTTTTCTTG	TCACATTGCC	TCTCTGGGTG	GATAAAGAAG	CATCTCTAGG	ACTGTGGAGG	300
15	ACGGGCTCCT	TCCTGTGCAA	AGGGAGCTCC	TACATGATCT	CCGTCAATAT	GCACTGCAGT	360
	GTCCTCCTGC	TCACTTGCAT	GAGTGTTGAC	CGCTACCTGG	CCATTGTGTG	GCCAGTCGTA	. 420
	TCCAGGAAAT	TCAGAAGGAC	AGACTGTGCA	TATGTAGTCT	GTGCCAGCAT	CTGGTTTATC	480
	TCCTGCCTGC	TGGGGTTGCC	TACTCTTCTG	TCCAGGGAGC	TCACGCTGAT	TGATGATAAG	540
	CCATACTGTG	CAGAGAAAA	GGCAACTCCA	ATTAAACTCA	TATGGTCCCT	GGTGGCCTTA	600
20	ATTTTCACCT	TTTTTGTCCC	TTTGTTGAGC	ATTGTGACCT	GCTACTGTTG	CATTGCAAGG	660
	AAGCTGTGTG	CCCATTACCA	GCAATCAGGA	AAGCACAACA	AAAAGCTGAA	GAAATCTAAG	720
	AAGATCATCT	TTATTGTCGT	GGCAGCCTTT	CTTGTCTCCT	GGCTGCCCTT	CAATACTTTC	780
	AAGTTCCTGG	CCATTGTCTC	TGGGTTGCGG	CAAGAACACT	ATTTACCCTC	AGCTATTCTT	840
	CAGCTTGGTA	TGGAGGTGAG	TGGACCCTTG	GCATTTGCCA	ACAGCTGTGT	CAACCCTTTC	900
25	ATTTACTATA	TCTTCGACAG	CTACATCCGC	CGGGCCATTG	TCCACTGCTT	GTGCCCTTGC	960
	CTGAAAAACT	ATGACTTTGG	GAGTAGCACT	GAGACATCAG	ATAGTCACCT	CACTAAGGCT	1020
	CTCTCCACCT	TCATTCATGC	AGAAGATTTT	GCCAGGAGGA	GGAAGAGGTC	TGTGTCACTC	1080
	TAA						1083

(181) INFORMATION FOR SEQ ID NO:180:

30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 360 amino acids

131

(B) TYPE: amino acid (C) STRANDEDNESS:

(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

	(i:	i) M	OLEC	ULE '	TYPE	: pr	otei	n								
5	(x:	i) s	EQUE	NCE I	DESC	RIPT	ION:	SEQ	ID :	NO:1	80:					
	Met 1	Asp	Pro	Glu	Glu 5	Thr	Ser	Val	Tyr	Leu 10	Asp	Tyr	Tyr	Tyr	Ala 15	Thr
	Ser	Pro	Asn	Ser 20	Asp	Ile	Arg	Glu	Thr 25	His	Ser	His	Val	Pro 30	Tyr	Thr
10	Ser	Val	Phe 35	Leu	Pro	.Val	Phe	Tyr 40	Thr	Ala	Val	Phe	Leu 45	Thr	Gly	Val
	Leu•	Gly 50	Asn	Leu	Val	Leu	Met 55	Gly	Ala	Leu	His	Phe 60	Lys	Pro	Gly	Ser
15	Arg 65	Arg	Leu	Ile	Asp	Ile 70	Phe	Ile	Ile	Asn	Leu 75	Ala	Ala	Ser	Asp	Phe 80
	Ile	Phe	Leu	Val	Thr 85	Leu	Pro	Leu	Trp	Val 90	Asp	Lys	Glu	Ala	Ser 95	Leu
	Gly	Lėu		Arg 100	Thr	Gly	Ser	Phe	Leu 105	Cys	Lys	Gly	Ser	Ser 110	Tyr	Met
20	Ile	Ser	Val 115	Asn	Met	His	Cys	Ser 120	Val	Leu	Leu	Leu	Thr 125	Суз	Met	Ser
	Val	Asp 130	Arg	Tyr	Leu	Ala	Ile 135	Val	Trp	Pro	Val	Val 140	Ser	Arg	Lys	Phe
25	145					150	•				155					Ile 160
	Ser	Суз	Leu	Leu	Gly 165	Leu	Pro	Thr	Leu	Leu 170	Ser	Arg	Glu	Leu	Thr 175	Leu
	Ile	Asp	Asp	Lys 180	Pro	Tyr	Сув	Ala	Glu 185	Lys	Lys	Ala	Thr	Pro 190	Ile	Lys
30	Leu	Ile	Trp 195	Ser	Leu	Val	Ala	Leu 200	Ile	Phe	Thr	Phe	Phe 205	Val	Pro	Leu
	Leu	Ser 210	Ile	Val	Thr	Cys	Tyr 215	Cys	Cys	Ile	Ala	Arg 220	Lys	Leu	Cys	Ala
35	His 225	Tyr	Gln	Gln	Ser	Gly 230	Lys	His	Asn	Lys	Lys 235	Leu	Lys	Lys	Ser	Lys 240
	Lys	Ile	Ile	Phe	Ile 245	Val	Val	Ala	Ala	Phe 250	Leu	Val	Ser	Trp	Leu 255	Pro

132

									_								
	Phe .	Asn	Thr	Phe 260	Lys	Phe	Leu	Ala	Ile 265	Val	Ser	Gly	Leu	Arg 270	Gln	Glu	
	His	Tyŗ	Leu 275	Pro	Ser	Ala	Ile	Leu 280	Gln	Leu	Gly	Met	Glu 285	Val	Ser	Gly	
5	Pro	Leu 290	Ala	Phe	Ala	Asn	Ser 295	Cys	Val	Asn	Pro	Phe 300	Ile	Tyr	Tyr	Ile	
	Phe 305	Asp	Ser	Tyr	Ile	Arg 310	Arg	Ala	Ile	Val	His 315	Cys	Leu	Cys	Pro	Cys 320	
10	Leu	Lys	Asn	Tyr	Asp 325	Phe	Gly	Ser	Ser	Thr 330	Glu	Thr	Ser	Asp	Ser 335	His	
	Leu	Thr	Lys	Ala 340	Leu	Ser	Thr	Phe	Ile 345	His	Ala	Glu	Asp	Phe 350	Ala	Arg	
	Arg	Arg	Lys 355	Arg	Ser	Val	Ser	Leu 360									
15	(182) IN	FORM	ATION	N FOF	SEÇ) ID	NO:1	L81:									
20	(i)	(A) (B) (C)	QUENC LEN TYI STI	NGTH: PE: r RANDE	102 ucle	20 ba eic a SŠ: s	ase pacid	pairs									
	(11	i) Mo	DLECT	JLE I	YPE:	DNA	4 (ge	enomi	ic)								
	(xi	i) si	EQUE1	ICE I	ESCF	RIPTI	ON:	SEQ	ID N	10:18	31:						
	ATGAATGG	C T	rgaac	STGGC	TCC	CCCZ	AGGT	CTG	ATCAC	CA A	CTTC	TCCC	T GO	CCAC	GGCA	.	60
	GAGCAATGT	rg go	CCAGO	SAGAC	GCC	CACTO	GAG	AAC	ATGCI	rgt :	rcgcc	TCCT	T CI	ACCI	TCTC	; 1	L20
25	GATTTTATO	CC TO	GCTI	TAGI	TGG	CAAT	TACC	CTG	CTCT	GT (GCTI	TTCA	T CC	:GAG	CCAC	: 1	180
	AAGTCCGGC	SA CO	CCCGG	CCAA	CGI	GTT	CTG	ATGO	ATC1	rgg (CCGT	GCCG	A CI	TGT	GTGC	: 2	240
	GTGCTGGT	C TO	GCCZ	ACCC6	CCI	GGT	CTAC	CACT	TCTC	CTG (GAAC	CACI	'G GC	CATT	TGGG	; 3	300
	GAAATCGC	AT GO	CCGTC	TCAC	CGG	CTT	CTC	TTCT	racci	CA I	CATO	TACG	ic cz	GCAT	CTAC	: 3	360
	TTCCTCAC	T GO	CATC	AGCGC	CGF	CCGI	TTC	CTGC	CCAT	TG 1	GCAC	CCGG	T C	AGTO	CCTC	: 4	20
30	AAGCTCCGC	CA GO	3CCC	CTCTA	CGC	CACAC	CTG	GCCI	rgtgo	CT 1	CCT	TGGG	T GO	TGGT	GGCI	. 4	180
	GTGGCCATO	G C	CCGC	CTGCI	GG1	GAGO	CCA	CAG	ACCG7	rgc 1	AGACO	AACC	A CA	CGG1	GGTC	: 5	540

TGCCTGCAGC TGTACCGGGA GAAGGCCTCC CACCATGCCC TGGTGTCCCT GGCAGTGGCC

TTCACCTTCC CGTTCATCAC CACGGTCACC TGCTACCTGC TGATCATCCG CAGCCTGCGG

PCT/US99/23938 WO 00/22129

	133														
	CAGGGCCTGC GTGTGGAGAA GCGCCTCAAG ACCAAGGCAA AACGCATGAT CGCCATAGTG	720													
	CTGGCCATCT TCCTGGTCTG CTTCGTGCCC TACCACGTCA ACCGCTCCGT CTACGTGCTG	780													
	CACTACCGCA GCCATGGGGC CTCCTGCGCC ACCCAGCGCA TCCTGGCCCT GGCAAACCGC	840													
	ATCACCTCCT GCCTCACCAG CCTCAACGGG GCACTCGACC CCATCATGTA TTTCTTCGTG	900													
5	GCTGAGAAGT TCCGCCACGC CCTGTGCAAC TTGCTCTGTG GCAAAAGGCT CAAGGGCCCG	960													
	CCCCCCAGCT TCGAAGGGAA AACCAACGAG AGCTCGCTGA GTGCCAAGTC AGAGCTGTGA 1	020													
	(183) INFORMATION FOR SEQ ID NO:182:														
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 339 amino acids														
15	Met Asn Gly Leu Glu Val Ala Pro Pro Gly Leu Ile Thr Asn Phe Ser														
• .*	1 5 10 15														
	Leu Ala Thr Ala Glu Gln Cys Gly Gln Glu Thr Pro Leu Glu Asn Met 20 25 30														
20	Leu Phe Ala Ser Phe Tyr Leu Leu Asp Phe Ile Leu Ala Leu Val Gly 35 40 45														
	Asn Thr Leu Ala Leu Trp Leu Phe Ile Arg Asp His Lys Ser Gly Thr 50 55 60														
	Pro Ala Asn Val Phe Leu Met His Leu Ala Val Ala Asp Leu Ser Cys 65 70 75 80														

Val Leu Val Leu Pro Thr Arg Leu Val Tyr His Phe Ser Gly Asn His

Trp Pro Phe Gly Glu Ile Ala Cys Arg Leu Thr Gly Phe Leu Phe Tyr 105

Leu Asn Met Tyr Ala Ser Ile Tyr Phe Leu Thr Cys Ile Ser Ala Asp

Arg Phe Leu Ala Ile Val His Pro Val Lys Ser Leu Lys Leu Arg Arg

Pro Leu Tyr Ala His Leu Ala Cys Ala Phe Leu Trp Val Val Val Ala

Val Ala Met Ala Pro Leu Leu Val Ser Pro Gln Thr Val Gln Thr Asn

135

90

85

25

30

					165					170					175		
•	His	Thr	Val	Val 180	Cys	Leu	Gln	Leu	Tyr 185	Arg	Glu	Lys	Ala	Ser 190		His	
5	Ala	Leu	Val 195	Ser	Leu	Ala	Val	Ala 200	Phe	Thr	Phe	Pro	Phe 205	Ile	Thr	Thr	
	Val	Thr 210	Суз	Tyr	Leu	Leu	Ile 215	Ile	Arg	Ser	Leu	Arg 220		Gly	Leu	Arg	
	Val 225	Glu	Lys	Arg	Leu	Lys 230	Thr	Lys	Ala	Lys	Arg 235	Met	Ile	Ala	Ile	Val 240	
10	Leu	Ala	Ile	Phe	Leu 245	Val	Суз	Phe	Val	Pro 250	Tyr	His	Val	Asn	Arg 255	Ser	
	Val	Tyr	Val	Leu 260	His	Tyr	Arg	Ser	His 265	Gly	Ala	Ser	Суз	Ala 270	Thr	Gln	
15	Arg	Ile	Leu 275	Ala	Leu	Ala	Asn	Arg 280	Ile	Thr	Ser	Cys	Leu 285	Thr	Ser	Leu	
	Asn	Gly 290	Ala	Leu	Asp	Pro	Ile 295	Met	Tyr	Phe	Phe	Val 300	Ala	Glu	Lys	Phe	
	Arg 305	His	Ala -	Leu	Сув	Asn 310	Leu	Leu	Cys	Gly	Lys 315	Arg	Leu	Lys	Gly	Pro 320	
20	Pro	Pro	Ser	Phe	Glu 325	Gly	Lys	Thr		Glu 330	Ser	Ser	Leu	Ser	Ala 335	Lys	
	Ser	Glu	Leu														
	(183) INE	FORMA	TION	FOR	SEQ	ID	NO:1	83:									
25	(i)	(B) (C)	LEN TYP STR	GTH: E: n ANDE	ARAC 996 ucle DNES Y: 1	bas ic a S: s	e pa cid ingl	irs					ô				
30	(ii) мо	LECU	LE T	YPE:	DNA	(ge	nomi	c)								
	(xi) SE	QUEN	CE D	ESCR:	IPTI	ON:	SEQ :	ID N	0:18	3:						
	ATGATCACC	C TG	AACA	ATCA	AGA:	TCAA:	CCT	GTCC	CTTT	TA A	CAGC'	TCAC.	A TC	CAGA	TGAA	(60
	TACAAAATT	G CA	GCCC	TTGT	CTT	CTAT	AGC '	TGTA'	rctt(CA T	AATT	GGAT'	T AT	TTGT	TAAC	1:	20
	ATCACTGCA	T TA	TGGG'	PTTT	CAG	TTGT	ACC I	ACCAI	AGAA	GA G	AACC	ACGG'	T AA	CCAT	CTAT	18	во
35	ATGATGAAT	G TG	GCAT	ragt	GGA	CTTG	ATA :	TTTA:	raat(GA C'	TTA	CCCT'	r TC	GAAT(GTTT	24	40

	TATTATGCAA AAGATGAATG GCCATTTGGA GAGTACTTCT GCCAGATTCT TGGAGCTCTC	300
٠	ACAGTGTTTT ACCCAAGCAT TGCTTTATGG CTTCTTGCCT TTATTAGTGC TGACAGATAC	360
	ATGGCCATTG TACAGCCGAA GTACGCCAAA GAACTTAAAA ACACGTGCAA AGCCGTGCTG	420
	GCGTGTGTGG GAGTCTGGAT AATGACCCTG ACCACGACCA CCCCTCTGCT ACTGCTCTAT	480
5	AAAGACCCAG ATAAAGACTC CACTCCCGCC ACCTGCCTCA AGATTTCTGA CATCATCTAT	540
	CTAAAAGCTG TGAACGTGCT GAACCTCACT CGACTGACAT TTTTTTTCTT GATTCCTTTG	600
	TTCATCATGA TTGGGTGCTA CTTGGTCATT ATTCATAATC TCCTTCACGG CAGGACGTCT	660
	AAGCTGAAAC CCAAAGTCAA GGAGAAGTCC AAAAGGATCA TCATCACGCT GCTGGTGCAG	720
	GTGCTCGTCT GCTTTATGCC CTTCCACATC TGTTTCGCTT TCCTGATGCT GGGAACGGGG	780
10	GAGAATAGTT ACAATCCCTG GGGAGCCTTT ACCACCTTCC TCATGAACCT CAGCACGTGT	840
	CTGGATGTGA TTCTCTACTA CATCGTTTCA AAACAATTTC AGGCTCGAGT CATTAGTGTC	900
	ATGCTATACC GTAATTACCT TCGAAGCATG CGCAGAAAAA GTTTCCGATC TGGTAGTCTA	960
	AGGTCACTAA GCAATATAAA CAGTGAAATG TTATGA	996
	(185) INFORMATION FOR SEQ ID NO:184:	
	(i) SEQUENCE CHARACTERISTICS:	
	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 331 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant	
20	(A) LENGTH: 331 amino acids(B) TYPE: amino acid(C) STRANDEDNESS:(D) TOPOLOGY: not relevant	
	(A) LENGTH: 331 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant	
	(A) LENGTH: 331 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein	
	(A) LENGTH: 331 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:184: Met Ile Thr Leu Asn Asn Gln Asp Gln Pro Val Pro Phe Asn Ser Ser	
20	(A) LENGTH: 331 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:184: Met Ile Thr Leu Asn Asn Gln Asp Gln Pro Val Pro Phe Asn Ser Ser 1 15 His Pro Asp Glu Tyr Lys Ile Ala Ala Leu Val Phe Tyr Ser Cys Ile	
20	(A) LENGTH: 331 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:184: Met Ile Thr Leu Asn Asn Gln Asp Gln Pro Val Pro Phe Asn Ser Ser 1 5 10 15 His Pro Asp Glu Tyr Lys Ile Ala Ala Leu Val Phe Tyr Ser Cys Ile 20 25 30 Phe Ile Ile Gly Leu Phe Val Asn Ile Thr Ala Leu Trp Val Phe Ser	
20	(A) LENGTH: 331 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:184: Met Ile Thr Leu Asn Asn Gln Asp Gln Pro Val Pro Phe Asn Ser Ser 1 5 10 15 His Pro Asp Glu Tyr Lys Ile Ala Ala Leu Val Phe Tyr Ser Cys Ile 20 25 30 Phe Ile Ile Gly Leu Phe Val Asn Ile Thr Ala Leu Trp Val Phe Ser 35 40 45 Cys Thr Thr Lys Lys Arg Thr Thr Val Thr Ile Tyr Met Met Asn Val 50 55	

		Leu	Gly	Ala	Leu 100	Thr	Val	Phe	Tyr	Pro 105	Ser	Ile	Ala	Leu	Trp	Leu	Leu
		Ala	Phe.	Ile 115	Ser	Ala	Asp	Arg	Tyr 120	Met	Ala	Ile	Val	Gln 125	Pro	Lys	Tyr
5		Ala	Lys 130	Glu	Leu	Lys	Asn	Thr 135	Cys	Lys	Ala	Val	Leu 140	Ala	Сув	Val	Gly
		Val 145	Trp	Ile	Met	Thr	Leu 150	Thr	Thr	Thr	Thr	Pro 155	Leu	Leu	Leu	Leu	Tyr 160
10		Lys	Asp	Pro	Asp	Lys 165	Asp	Ser	Thr	Pro	Ala 170	Thr	Cys	Leu	Lys	Ile 175	Ser
		Asp	Ile	Ile	Tyr 180	Leu	Lys	Ala	Val	Asn 185	Val	Leu	Asn	Leu	Thr 190	Arg	Leu
		Thr	Phe	Phe 195	Phe	Leu	Ile	Pro	Leu 200	Phe	Ile	Met	Ile	Gly 205	Cys	Tyr	Leu
15 .		Val	Ile 210	Ile	His	Asn	Leu	Leu 215	His	Gly	Arg	Thr	Ser 220	Lys	Leu	Lys	Pro
		Lys 225	Val	Lys	Glu	Lys	Ser 230	Lys	Arg	Ile	Ile	Ile 235	Thr	Leu	Leu	Val	Gln 240
20		Val	Leu	Val	Cys	Phe 245	Met	Pro	Phe	His	Ile 250	Cys	Phe	Ala	Phe	Leu 25 ⁵	Met
		Leu	Gly	Thr	Gly 260	Glu	Asn	Ser	Туг	Asn 265	Pro	Trp	Gly	Ala	Phe 270	Thr	Thr
		Phe	Leu	Met 275	Asn	Leu	Ser	Thr	Cys 280	Leu	Asp	Val	Ile	Leu 285	Tyr	Tyr	Ile
25		Val	Ser 290	Lys	Gln	Phe		Ala 295	Arg	Val	Ile	Ser	Val 300	Met	Leu	Tyr	Arg
		Asn 305	Tyr	Leu	Arg	Ser	Met 310	Arg	Arg	Lys	Ser	Phe 315	Arg	Ser	Gly	Ser	Leu 320
30		Arg	Ser	Leu	Ser	Asn 325	Ile	Asn	Ser	Glu	Met 330	Leu					
	(186)	INF	FORM	MIOITA	FOF	SEÇ) ID	NO:1	185:								
35		(i)	(B)	UENC LEN TYI STI	IGTH: PE: r	107 ucle	77 ba	ase p acid	pairs	3							
				TOE				_	_								

(ii) MOLECULE TYPE: DNA (genomic)

(xi)	SEQUENCE D	ESCRIPTION:	SEQ ID NO	D:185:		
ATGCCCTCTG	TGTCTCCAGC	GGGGCCCTCG	GCCGGGGC	AG TCCCCAATGC	CACCGCAGTG	60
ACAACAGTGC	GGACCAATGC	CAGCGGGCTG	GAGGTGCC	CC TGTTCCACCT	GTTTGCCCGG	120
CTGGACGAGG	AGCTGCATGG	CACCTTCCCA	GGCCTGTG	CG TGGCGCTGAT	GGCGGTGCAC	180
GGAGCCATCT	TCCTGGCAGG	GCTGGTGCTC	AACGGGCT	GG CGCTGTACGT	CTTCTGCTGC	240
CGCACCCGGG	CCAAGACACC	CTCAGTCATC	TACACCATO	CA ACCTGGTGGT	GACCGATCTA	300
CTGGTAGGGC	TGTCCCTGCC	CACGCGCTTC	GCTGTGTAC	T ACGGCGCCAG	GGGCTGCCTG	360
CGCTGTGCCT	TCCCGCACGT	CCTCGGTTAC	TTCCTCAAC	CA TGCACTGCTC	CATCCTCTTC	420
CTCACCTGCA	TCTGCGTGGA	CCGCTACCTG	GCCATCGTG	C GGCCCGAAGG	CTCCCGCCGC	480

10 TGCCGCCAGC CTGCCTGTGC CAGGGCCGTG TGCGCCTTCG TGTGGCTGGC CGCCGGTGCC 540

GTCACCCTGT CGGTGCTGGG CGTGACAGGC AGCCGGCCCT GCTGCCGTGT CTTTGCGCTG 600

ACTGTCCTGG AGTTCCTGCT GCCCCTGCTG GTCATCAGCG TGTTTACCGG CCGCATCATG 660

TGTGCACTGT CGCGGCCGGG TCTGCTCCAC CAGGGTCGCC AGCGCCGCGT GCGGGCCAAG 720

CAGCTCCTGC TCACGGTGCT CATCATCTTT CTCGTCTGCT TCACGCCCTT CCACGCCCGC 780

GTGGCCGTGA CCCTCAGCAG CCTCAACAGC TGCATGGACC CCATCGTCTA CTGCTTCGTC 900

ACCAGTGGCT TCCAGGCCAC CGTCCGAGGC CTCTTCGGCC AGCACGGAGA GCGTGAGCCC 960

AGCAGCGGTG ACGTGGTCAG CATGCACAGG AGCTCCAAGG GCTCAGGCCG TCATCACATC 1020

CTCAGTGCCG GCCCTCACGC CCTCACCCAG GCCCTGGCTA ATGGGCCCGA GGCTTAG 1077

- 20 (187) INFORMATION FOR SEQ ID NO:186:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 358 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
- 25 (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:

Met Pro Ser Val Ser Pro Ala Gly Pro Ser Ala Gly Ala Val Pro Asn 1 5 10 15

Ala Thr Ala Val Thr Thr Val Arg Thr Asn Ala Ser Gly Leu Glu Val

	Pro	Leu	Phe 35	His	Leu	Phe	Ala	Arg 40	Leu	Asp	Glu	Glu	Leu 45	His	Gly	Thr
	Phe	Pro 50	Gly	Leu	Суз	Val	Ala 55	Leu	Met	Ala	Val	His 60	Gly	Ala	Ile	Phe
5	Leu 65	Ala	Gly	Leu	Val	Leu 70	Asn	Gly	Leu	Ala	Leu 75	Tyr	Val	Phe	Суз	Cys 80
	Arg	Thr	Arg	Ala	Lys 85	Thr	Pro	Ser	Val	Ile 90	Tyr	Thr	Ile	Asn	Leu 95	Val
10	Val	Thr	Asp	Leu 100	Leu	Val	Gly	Leu	Ser 105	Leu	Pro	Thr	Arg	Phe 110	Ala	Val
	Tyr	Tyr	Gly 115	Ala	Àrg	Gly	Cys	Leu 120	Arg	Cys	Ala	Phe	Pro 125	His	Val	Leu
	Gly	Tyr 130	Phe	Leu	Asn	Met	His 135	Суз	Ser	Ile	Leu	Phe 140	Leu	Thr	Cys	Ile
15	Cys 145	Val	Asp	Arg	Tyr	Leu 150	Ala	Ile	Val	Arg	Pro 155	Glu	Gly	Ser	Arg	Ala 160
	Сув	Arg	Gln	Pro	Ala 165	Cys	Ala	Arg	Ala	Val 170	Cys	Ala	Phe	Val	Trp 175	Leu
20	Ala	Ala	Gly	Ala 180	Val	Thr	Leu	Ser	Val 185		Gly	Val	Thr	Gly 190	Ser	Arg
	Pro	Cys	Cys 195	Arg	Val	Phe	Ala	Leu 200	Thr	Val	Leu	Glu	Phe 205	Leu	Leu	Pro
		Leu 210	Val	Ile	Ser	Val	Phe 215	Thr	Gly	Arg	Ile	Met 220	Cys	Ala	Leu	Ser
25	Arg 225	Pro	Gly	Leu	Leu	His 230		Gly	Arg	Gln	Arg 235	Arg	Val	Arg	Ala	Lys 240
	Gln	Leu	Leu	Leu _.	Thr 245	Val	Leu	Ile	Ile	Phe 250	Leu	Val	Cys	Phe	Thr 255	Pro
30	Phe	His	Ala	Arg 260	Gln	Val	Ala	Val	Ala 265	Leu	Trp	Pro	Asp	Met 270	Pro	His
	His	Thr	Ser 275	Leu	Val	Val	Tyr	His 280	Val	Ala	Val	Thr	Leu 285	Ser	Ser	Leu
	Asn	Ser 290	Сув	Met	Asp	Pro	Ile 295	Val	Tyr	Суз	Phe	Val 300	Thr	Ser	Gly	Phe
35	Gln 305	Ala	Thr	Val	Arg	Gly 310	Leu	Phe	Gly	Gln	His 315	Gly	Glu	Arg	Glu	Pro 320
	Ser	Ser	Glv	Asp	Val	Val	Ser	Met	His	Ara	Ser	Ser	Lvs	Glv	Ser	Glv

139

.325

330

335

Arg His His Ile Leu Ser Ala Gly Pro His Ala Leu Thr Gln Ala Leu 340 345 350

Ala Asn Gly Pro Glu Ala 355

5

10

(188) INFORMATION FOR SEQ ID NO:187:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1050 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:187:

	ATGAACTCCA	CCTTGGATGG	TAATCAGAGC	AGCCACCCTT	TTTGCCTCTT	GGCATTTGGC	. 60
15	TATTTGGAAA	CTGTCAATTT	TTGCCTTTTG	GAAGTATTGA	TTATTGTCTT	TCTAACTGTA	120
	TTGATTATTT	CTGGCAACAT	CATTGTGATT	TTTGTATTTC	ACTGTGCACC	TTTGTTGAAC	180
	CATCACACTA	CAAGTTATTT	TATCCAGACT	ATGGCATATG	CTGACCTTTT	TGTTGGGGTG	240
	AGCTGCGTGG	TCCCTTCTTT	ATCACTCCTC	CATCACCCCC	TTCCAGTAGA	GGAGTCCTTG	300
•	ACTTGCCAGA	TATTTGGTTT	TGTAGTATCA	GTTCTGAAGA	GCGTCTCCAT	GGCTTCTCTG	360
20	GCCTGTATCA	GCATTGATAG	ATACATTGCC	ATTACTAAAC	CTTTAACCTA	TAATACTCTG	420
	GTTACACCCT	GGAGACTACG	CCTGTGTATT	TTCCTGATTT	GGCTATACTC	GACCCTGGTC	480
	TTCCTGCCTT	CCTTTTTCCA	CTGGGGCAAA	CCTGGATATC	ATGGAGATGT	GTTTCAGTGG	540
	TGTGCGGAGT	CCTGGCACAC	CGACTCCTAC	TTCACCCTGT	TCATCGTGAT	GATGTTATAT	600
	GCCCCAGCAG	CCCTTATTGT	CTGCTTCACC	TATTTCAACA	TCTTCCGCAT	CTGCCAACAG	660
25	CACACAAAGG	ATATCAGCGA	AAGGCAAGCC	CGCTTCAGCA	GCCAGAGTGG	GGAGACTGGG	720
	GAAGTGCAGG	CCTGTCCTGA	TAAGCGCTAT	AAAATGGTCC	TGTTTCGAAT	CACTAGTGTA	780
	TTTTACATCC	TCTGGTTGCC	ATATATCATC	TACTTCTTGT	TGGAAAGCTC	CACTGGCCAC	840
	AGCAACCGCT	TCGCATCCTT	CTTGACCACC	TGGCTTGCTA	TTAGTAACAG	TTTCTGCAAC	900
	TGTGTAATTT	ATAGTCTCTC	CAACAGTGTA	TTCCAAAGAG	GACTAAAGCG	CCTCTCAGGG	960
30	GCTATGTGTA	CTTCTTGTGC	AAGTCAGACT	ACAGCCAACG	ACCCTTACAC	AGTTAGAAGC	1020
	AAAGGCCCTC	TTAATGGATG	TCATATCTGA				1050

	(189) I	NFORI	OITAN	ON FO	OR SE	Q II	NO:	188:								
5		() ()	A) LE B) TY C) SI O) TO	ENGTH (PE: (RANE (POLC	I: 34 amin EDNE GY:	9 am lo ac ISS: not	nino cid rele	ació								
		xi) 9							ID	NO:1	88:					
10	Met	t Asr	Ser	Thr	Leu 5	Asp	Gly	Asn	Gln	Ser 10	Ser	His	Pro	Phe	Cys 15	Leu
	Let	ı Ala	Phe	Gly 20	Tyr	Leu	Glu	Thr	Val 25	Asn	Phe	Cys	Leu	Leu 30	Glu	Val
	Let	ı Ile	Ile 35	Val	Phe	Leu	Thr	Val 40	Leu	Ile	Ile	Ser	Gly 45	Asn	Ile	Ile
15	Va]	Ile 50	Phe	Val	Phe	His	Cys 55	Ala	Pro	Leu	Leu	Asn 60	His	His	Thr	Thr
	Ser 65	Tyr	Phe	.Ile	Gln	Thr 70	Met	Ala	Tyr	Ala	Asp 75	Leu	Phe	Val	Gjy	Val
20	Ser	Сув	Val	Val	Pro 85	Ser	Leu	Ser	Leu	Leu 90	His	Hïs	Pro	Leu	Pro 95	Val
	Glu	Glu	Ser	Leu 100	Thr	Cys	Gln	Ile	Phe 105	Gly	Phe	Val	Val	Ser 110	Val	Leu
	Lys	Ser	Val 115	Ser	Met	Ala	Ser	Leu 120	Ala	Суз	Ile	Ser	Ile 125	Asp	Arg	Tyr
25	Ile	Ala 130	Ile	Thr	Lys	Pro	Leu 135	Thr	Tyr	Asn	Thr	Leu 140	Val	Thr	Pro	Trp
	Arg 145	Leu	Arg	Leu	Cys	Ile 150	Phe	Leu	Ile	Trp	Leu 155	Tyr	Ser	Thr	Leu	Val 160
30	Phe	Leu	Pro	Ser	Phe 165	Phe	His	Trp	Gly	Lys 170	Pro	Gly	Tyr	His	Gly 175	Asp
	Val	Phe	Gln	Trp 180	Суз	Ala	Glu	Ser	Trp 185	His	Thr	Asp	Ser	Tyr 190	Phe	Thr
	Leu	Phe	Ile 195	Val	Met	Met	Leu	Tyr 200	Ala	Pro	Ala	Ala	Leu 205	Ile	Val	Cys
35	Phe	Thr 210	Tyr	Phe	Asn	Ile	Phe 215	Arg	Ile	Cys	Gln	Gln 220	His	Thr	Lys	Asp

141

·	Ile 225	Ser	Glu	Arg	Gln	Ala 230	Arg	Phe	Ser	Ser	Gln 235	Ser	Gly	Glu	Thr	Gly 240	
	Glu	Val	Gln	Ala	Суз 245	Pro	Asp	Lys	Arg	Tyr 250	Lys	Met	Val	Leu	Phe 255	Arg	
5	Ile	Thr	Ser	Val 260	Phe	Tyr	Ile	Leu	Trp 265	Leu	Pro	Tyr	Ile	Ile 270	Tyr	Phe	
	Leu	Leu	Glu 275	Ser	Ser	Thr	Gly	His 280	Ser	Asn	Arg	Phe	Ala 285	Ser	Phe	Leu	
10	Thr	Thr 290	Trp	Leu	Ala	Ile	Ser 295	Asn	Ser	Phe	Cys	Asn 300	Cys	Val	Ile	Tyr	
	Ser 305	Leu	Ser	Asn	Ser	Val 310	Phe	Gln	Arg	Gly	Leu 315	Lys	Arg	Leu	Ser	Gly 320	
	Ala	Met	Cys	Thr	Ser 325	Cys	Ala	Ser	Gln	Thr 330	Thr	Ala	Asn	Asp	Pro 335	Tyr	
15	Thr	Val	Arg	Ser 340	Lys	Gly	Pro	Leu	Asn 345	Gly	Сув	His	Ile				
	(190) INI	FORMA	TION	FOF	SEÇ] ID	NO: 3	189:									
,	· (3)	SEC	NI TENIC	ייבי ריני	INDAĆ	न्तरंग	cmT/							٠,			
20	(1)	(A) (B) (C)	LEN TYP STR	GTH: PE: II PANDE	130 ucle DNES	2 ba ic a S: s	se p cid singl	pairs	:								
	(ii	(D)						enomi	.c)								
	(xi) SE	QUEN	ICE D	ESCR	IPTI	ON:	SEQ	ID N	10:18	19:						
25	ATGTGTTT	T CT	CCCA	TTCI	GGA	AATC	AAC	ATGC	AGTO	TG A	ATCT	'AACA	T TA	CAGI	GCGA		60
	GATGACATT	G AT	GACA	TCAA	CAC	CAAT	ATG	TACC	AACC	AC I	ATCA	TATO	C GI	TAAG	CTTT	1	20
	CAAGTGTCT	C TC	ACCG	GATT	TCI	TATG	ATT	GAAA	TTGT	GT I	GGGA	.CTTG	G CA	GCAA	CCTC	: 1	80
	ACTGTATTO	G TA	CTTT	ACTG	CAT	'GAAA	TCC	AACI	TAAT	CA A	CTCT	GTCA	G TA	ACAI	TATT	. 2	40
	ACAATGAAT	C TT	CATG	TACT	TGA	TGTA	ATA	ATTI	GTGT	'GG G	ATGT	ATTC	C TC	TAAC	TATA	. 3	00
30	GTTATCCTT	C TG	CTTT	'CACT	GGA	.GAGT	AAC	ACTG	CTCT	CA I	TTGC	TGTT	T CC	'ATGA	GGCT	· 3	60
	TGTGTATCT	T TT	GCAA	GTGT	CTC	AACA	GCA	ATCA	ACGT	TT I	TGCT	ATCA	C TI	TGGA	CAGA	. 4	20
	TATGACATO	T CT	GTAA	AACC	TGC	AAAC	CGA	ATTC	TGAC	'AA I	'GGGC	AGAG	C TG	TAAT	GTTA	. 4	80
	ATGATATCO	A TT	TGGA	TTTT	TTC	TTTT	TTC	TCTT	TCCT	GA I	TCCT	TTTA	T TG	AGGT	TAAA'	' 5	40

TTTTTCAGTC TTCAAAGTGG AAATACCTGG GAAAACAAGA CACTTTTATG TGTCAGTACA 600

	AATGAATACT ACACTGAACT GGGAATGTAT TATCACCTGT TAGTACAGAT CCCAATATTC 660
	TTTTTCACTG TTGTAGTAAT GTTAATCACA TACACCAAAA TACTTCAGGC TCTTAATATT 720
	CGAATAGGCA CAAGATTTTC AACAGGGCAG AAGAAGAAG CAAGAAAGAA AAAGACAATT 780
	TCTCTAACCA CACAACATGA GGCTACAGAC ATGTCACAAA GCAGTGGTGG GAGAAATGTA 840
5	GTCTTTGGTG TAAGAACTTC AGTTTCTGTA ATAATTGCCC TCCGGCGAGC TGTGAAACGA 900
	CACCGTGAAC GACGAGAAG ACAAAAGAGA GTCAAGAGGA TGTCTTTATT GATTATTTCT 960
	ACATTTCTTC TCTGCTGGAC ACCAATTTCT GTTTTAAATA CCACCATTTT ATGTTTAGGC 1020
	CCAAGTGACC TTTTAGTAAA ATTAAGATTG TGTTTTTTAG TCATGGCTTA TGGAACAACT 1080
	ATATTTCACC CTCTATTATA TGCATTCACT AGACAAAAAT TTCAAAAGGT CTTGAAAAGT 1140
10	AAAATGAAAA AGCGAGTTGT TTCTATAGTA GAAGCTGATC CCCTGCCTAA TAATGCTGTA 1200
	ATACACAACT CTTGGATAGA TCCCAAAAGA AACAAAAAA TTACCTTTGA AGATAGTGAA 1260
	ATAAGAGAAA AACGTTTAGT GCCTCAGGTT GTCACAGACT AG 1302
	(191) INFORMATION FOR SEQ ID NO:190:
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 433 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant
	(ii) MOLECULE TYPE: protein
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:190:
	Met Cys Phe Ser Pro Ile Leu Glu Ile Asn Met Gln Ser Glu Ser Asn 1 5 10 15
	Ile Thr Val Arg Asp Asp Ile Asp Asp Ile Asn Thr Asn Met Tyr Gln 20 25 30
25	Pro Leu Ser Tyr Pro Leu Ser Phe Gln Val Ser Leu Thr Gly Phe Leu 35 40 45
	Met Leu Glu Ile Val Leu Gly Leu Gly Ser Asn Leu Thr Val Leu Val 50 55 60
30	Leu Tyr Cys Met Lys Ser Asn Leu Ile Asn Ser Val Ser Asn Ile Ile 65 70 75 80

Thr Met Asn Leu His Val Leu Asp Val Ile Ile Cys Val Gly Cys Ile

Pro Leu Thr Ile Val Ile Leu Leu Ser Leu Glu Ser Asn Thr Ala

				100					105					110		
	Leu	Ile	Cys 115	Cys	Phe	His	Glu	Ala 120	Суѕ	Val	Ser	Phe	Ala 125	Ser	Val	Ser
5	Thr	Ala 130	Ile	Asn	Val	Phe	Ala 135	Ile	Thr	Leu	Asp	Arg 140	Tyr	Asp	Ile	Ser
	Val 145	Lys	Pro	Ala	Asn	Arg 150	Ile	Leu	Thr	Met	Gly 155	Arg	Ala	Val	Met	Leu 160
	Met	Ile	Ser	Ile	Trp 165	Ile	Phe	Ser	Phe	Phe 170	Ser	Phe	Leu	Ile	Pro 175	Phe
10	Ile	Glu	Val	Asn 180	Phe	Phe	Ser	Leu	Gln 185	Ser	Gly	Asn	Thr	Trp 190	Glu	Asn
	Lys	Thr	Leu 195	Leu	Cys	Val	Ser	Thr 200	Asn	Glu	Tyr	Tyr	Thr 205	Glu	Leu	Gly
15	Met	Tyr 210	Tyr	His	Leu	Leu	Val 215	Gln	Ile	Pro	Ile	Phe 220	Phe	Phe	Thr	Val
	Val 225	Val	Met	Leu	Ile	Thr 230	Tyr	Thr	Lys	Ile	Leu 235	Gln	Ala	Leu	Asn	lle 240
•	 Arg	Ile	Gly	Thr	Arg 245	Phe	Ser	Thr	Gly	Gln 250	Lys	Lys	Lys	Ala	Arg 255	Lys
20	Lys	ГЛа	Thr	Ile 260	Ser	Leu	Thr	Thr	Gln 265	His	Glu	Ala	Thr	Asp 270	Met	Ser
	Gln	Ser	Ser 275	Gly	Gly	Arg	Asn	Val 280	Val	Phe	Gly	Val	Arg 285	Thr	Ser	Val
25	Ser	Val 290	Ile	Ile	Ala	Leu	Arg 295	Arg	Ala	Val	Lys	Arg 300	His	Arg	Glu	Arg
	Arg 305	Glu	Arg	Gln	Lys	Arg 310	Val	Lys	Arg	Met	Ser 315	Leu	Leu	Ile	Ile	Ser 320
	Thr	Phe	Leu	Leu	Cys 325	Trp	Thr	Pro	Ile	Ser 330	Val	Leu	Asn	Thr	Thr 335	Ile
30	Leu	Cys	Leu	Gly 340	Pro	Ser	Asp	Leu	Leu 345	Val	Lys	Leu	Arg	Leu 350	Суз	Phe
	Leu	Val	Met 355	Ala	Tyr	Gly	Thr	Thr 360	Ile	Phe	His	Pro	Leu 365	Leu	Tyr	Ala
35	Phe	Thr 370	Arg	Gln	Lys	Phe	Gln 375	Lys	Val	Leu	Lys	Ser 380	Lys	Met	Lys	Lys
	Arg 385	Val	Val	Ser	Ile	Val 390	Glu	Ala	Asp	Pro	Leu 395	Pro	Asn	Asn	Ala	Val

144

Ile His Asn Ser Trp Ile Asp Pro Lys Arg Asn Lys Lys Ile Thr Phe
405 410 415

Glu Asp Ser Glu Ile Arg Glu Lys Arg Leu Val Pro Gln Val Val Thr 420 425 430

5 Asp

(192) INFORMATION FOR SEQ ID NO:191:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1209 base pairs
- 10 (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:191:
- ATGTTGTGTC CTTCCAAGAC AGATGGCTCA GGGCACTCTG GTAGGATTCA CCAGGAAACT 60 CATGGAGAAG GGAAAAGGGA CAAGATTAGC AACAGTGAAG GGAGGGAGAA TGGTGGGAGA GGATTCCAGA TGAACGGTGG GTCGCTGGAG GCTGAGCATG CCAGCAGGAT GTCAGTTCTC AGAGCAAAGC CCATGTCAAA CAGCCAACGC TTGCTCCTTC TGTCCCCAGG ATCACCTCCT 240 CGCACGGGA GCATCTCCTA CATCAACATC ATCATGCCTT CGGTGTTCGG CACCATCTGC 300 CTCCTGGGCA TCATCGGGAA CTCCACGGTC ATCTTCGCGG TCGTGAAGAA GTCCAAGCTG 360 CACTGGTGCA ACAACGTCCC CGACATCTTC ATCATCAACC TCTCGGTAGT AGATCTCCTC 420 TTTCTCCTGG GCATGCCCTT CATGATCCAC CAGCTCATGG GCAATGGGGT GTGGCACTTT 480 GGGGAGACCA TGTGCACCCT CATCACGGCC ATGGATGCCA ATAGTCAGTT CACCAGCACC TACATCCTGA CCGCCATGGC CATTGACCGC TACCTGGCCA CTGTCCACCC CATCTCTTCC 600 25 ACGAAGTTCC GGAAGCCCTC TGTGGCCACC CTGGTGATCT GCCTCCTGTG GGCCCTCTCC 660 TTCATCAGCA TCACCCCTGT GTGGCTGTAT GCCAGACTCA TCCCCTTCCC AGGAGGTGCA 720 GTGGGCTGCG GCATACGCCT GCCCAACCCA GACACTGACC TCTACTGGTT CACCCTGTAC 780 CAGTTTTTCC TGGCCTTTGC CCTGCCTTTT GTGGTCATCA CAGCCGCATA CGTGAGGATC 840 CTGCAGCGCA TGACGTCCTC AGTGGCCCCC GCCTCCCAGC GCAGCATCCG GCTGCGGACA 900 30 AAGAGGGTGA AACGCACAGC CATCGCCATC TGTCTGGTCT TCTTTGTGTG CTGGGCACCC 960 TACTATGTGC TACAGCTGAC CCAGTTGTCC ATCAGCCGCC CGACCCTCAC CTTTGTCTAC 1020 TTATACAATG CGGCCATCAG CTTGGGCTAT GCCAACAGCT GCCTCAACCC CTTTGTGTAC 1080

	ATCGTGCTCT GTGAGACGTT CCGCAAACGC TTGGTCCTGT CGGTGAAGCC TGCAGCCCAG 1:	140
٠	GGGCAGCTTC GCGCTGTCAG CAACGCTCAG ACGGCTGACG AGGAGAGGAC AGAAAGCAAA 12	200
	GGCACCTCA	209
	(193) INFORMATION FOR SEQ ID NO:192:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 402 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant 	
10	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:	
	Met Leu Cys Pro Ser Lys Thr Asp Gly Ser Gly His Ser Gly Arg Ile 1 10 15	
15	His Gln Glu Thr His Gly Glu Gly Lys Arg Asp Lys Ile Ser Asn Ser 20 25 30	
	Glu Gly Arg Glu Asn Gly Gly Arg Gly Phe Gln Met Asn Gly Gly Ser 35 40 45	
_0	Leu Glu Ala Glu His Ala Ser Arg Met Ser Val Leu Arg Ala Lys Pro 50 55 60	
20	Met Ser Asn Ser Gln Arg Leu Leu Leu Leu Ser Pro Gly Ser Pro Pro 65 70 75 80	
	Arg Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile Met Pro Ser Val Phe 85 90 95	
25	Gly Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser Thr Val Ile Phe 100 . 105 110	
	Ala Val Val Lys Lys Ser Lys Leu His Trp Cys Asn Asn Val Pro Asp 115 120 125	
20	Ile Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu Phe Leu Leu Gly 130 135 140	
30	Met Pro Phe Met Ile His Gln Leu Met Gly Asn Gly Val Trp His Phe 145 150 155 160	
	Gly Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp Ala Asn Ser Gln 165 170 175	
35	Phe Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile Asp Arg Tyr Leu 180 185 190	
	Ala Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Val	

				195					200					205				
	F		Thr 210	Leu	Val	Ile	Суз	Leu 215	Leu	Trp	Ala	Leu	Ser 220	Phe	Ile	Ser	Ile	
5		Thr 225	Pro	Val	Trp	Leu	Tyr 230	Ala	Arg	Leu	Ile	Pro 235	Phe	Pro	Gly	Gly	Ala 240	
	V	/al	Gly	Cys	Gly	Ile 245	Arg	Leu	Pro	Asn	Pro 250	Asp	Thr	Asp	Leu	Tyr 255	Trp	
		Phe	Thr	Leu	Tyr 260	Gln	Phe	Phe	Leu	Ala 265	Phe	Ala	Leu	Pro	Phe 270	Val	Val	
0	1	Ile	Thr	Ala 275	Ala	Tyr	Val	Arg	Ile 280	Leu	Gln	Arg	Met	Thr 285	Ser	Ser	Vał	
	I		Pro 290		Ser	Gln	Arg	Ser 295	Ile	Arg	Leu		Thr 300	Lys	Arg	Val	Lys	
15		Arg 305	Thr	Ala	Ile	Ala	Ile 310	Cys	Leu	Val	Phe	Phe 315	Val	Cys	Trp	Ala	Pro 320	
	. 1	ſyr	Tyr	Val	Leu	Gln 325	Leu	Thr	Gln	Leu	Ser 330	Ile	Ser	Arg	Pro	Thr 335	Leu	
	ייי ייי	Fhr	Phe	Val	Tyr 340	Leu	Tyr	Asn	Ala	Ala 345	Ile	Ser	Leu	Gly	Tyr 350	Ala	Asn	
20	5	Ser	Суз	Leu 355	Asn	Pro	Phe	Val	Tyr 360	Ile	Val	Leu	Cys	Glu 365	Thr	Phe	Arg	
	1	Lys	Arg 370	Leu	Val	Leu	Ser	Val 375	Lys	Pro	Ala	Ala	Gln 380	Gly	Gln	Leu	Arg	
25		Ala 385	Val	Ser	Asn	Ala	Gln 390	Thr	Ala	Asp	Glu	Glu 395	Arg	Thr	Glu	Ser	Lys 400	
	C	Gly	Thr															
	(194)	INE	FORM	ATIO	N FOI	R SE	Q ID	NO:	193:									
30		(i)	(A) (B) (C)	LEI TYI	CE CI NGTH PE: 1 RANDI POLO	: 11: nucle EDNE:	28 ba eic a SS: a	ase pacid	pair	3								
		(ii	L) M	OLEC	OLE :	TYPE	: DN	A (g	enom	ic)								
35		(xi	i) si	EQUE	NCE 1	DESC	RIPT	ION:	SEQ	ID I	NO:1	93 :						
	ATGGA'	TGTC	GA C'	rtcc(CAAG	c cc	GGGG	CGTG	GGC	CTGG	AGA '	TGTA	CCCA	GG C	ACCG	CGCA	e	60
	GCTGC	GGC	cc c	CAAC	ACCA	CT	CCCC	CGAG	CTC	AACC	TGT (CCCA	CCCG	CT C	CTGG	GCAC	c :	120

	GECETGGECA ATGGGACAGG TGAGCTCTCG GAGCACCAGC AGTACGTGAT CGGCCTGTTC	18
	CTCTCGTGCC TCTACACCAT CTTCCTCTTC CCCATCGGCT TTGTGGGCAA CATCCTGATC	24
	CTGGTGGTGA ACATCAGCTT CCGCGAGAAG ATGACCATCC CCGACCTGTA CTTCATCAAC	30
	CTGGCGGTGG CGGACCTCAT CCTGGTGGCC GACTCCCTCA TTGAGGTGTT CAACCTGCAC	360
5	GAGCGGTACT ACGACATCGC CGTCCTGTGC ACCTTCATGT CGCTCTTCCT GCAGGTCAAC	420
	ATGTACAGCA GCGTCTTCTT CCTCACCTGG ATGAGCTTCG ACCGCTACAT CGCCCTGGCC	480
	AGGGCCATGC GCTGCAGCCT GTTCCGCACC AAGCACCACG CCCGGCTGAG CTGTGGCCTC	540
	ATCTGGATGG CATCCGTGTC AGCCACGCTG GTGCCCTTCA CCGCCGTGCA CCTGCAGCAC	600
	ACCGACGAGG CCTGCTTCTG TTTCGCGGAT GTCCGGGAGG TGCAGTGGCT CGAGGTCACG	660
10	CTGGGCTTCA TCGTGCCCTT CGCCATCATC GGCCTGTGCT ACTCCCTCAT TGTCCGGGTG	720
	CTGGTCAGGG CGCACCGGCA CCGTGGGCTG CGGCCCCGGC GGCAGAAGGC GAAACGCATG	780
	ATCCTCGCGG TGGTGCTGGT CTTCTTCGTC TGCTGGCTG	840
	GTGCACCTCC TGCAGCGGAC GCAGCCTGGG GCCGCTCCCT GCAAGCAGTC TTTCCGCCAT	900
	GCCCACCCC TCACGGGCCA CATTGTCAAC CTCGCCGCCT TCTCCAACAG CTGCCTAAAC	960
15	CCCCTCATCT ACAGCTTTCT CGGGGAGACC TTCAGGGACA AGCTGAGGCT GTACATTGAG 1	020
	CAGAAAACAA ATTTGCCGGC CCTGAACCGC TTCTGTCACG CTGCCCTGAA GGCCGTCATT 1	080
	CCAGACAGCA CCGAGCAGTC GGATGTGAGG TTCAGCAGTG CCGTGTGA	128
	(195) INFORMATION FOR SEQ ID NO:194:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 375 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant	
	(ii) MOLECULE TYPE: protein	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:194:	
	Met Asp Val Thr Ser Gln Ala Arg Gly Val Gly Leu Glu Met Tyr Pro	

Gly Thr Ala His Ala Ala Ala Pro Asn Thr Thr Ser Pro Glu Leu Asn 20 25 30

Leu Ser His Pro Leu Leu Gly Thr Ala Leu Ala Asn Gly Thr Gly Glu
35 40 45

	Leu	Ser 50	Glu	His	Gln	Gln	Tyr 55	Val	Ile	Gly	Leu	Phe 60	Leu	Ser	Cys ·	Leu
	Tyr 65	Thr	Ile	Phe	Leu	Phe 70	Pro	Ile	Gly	Phe	Val 75	Gly	Asn	Ile	Leu	Ile 80
5	Leu	Val	Val	Asn	Ile 85	Ser	Phe	Arg	Glu	Lys 90	Met	Thr	Ile	Pro	Asp 95	Leu
	Tyr	Phe	Ile	Asn 100	Leu	Ala	Val	Ala	Asp 105	Leu	Ile	Leu	Val	Ala 110	Asp	Ser
10	Leu	Ile	Glu 115	Val	Phe	Asn	Leu	His 120	Glu	Arg	Tyr	Tyr	Asp 125	Ile	Ala	Val
	Leu	Cys 130	Thr	Phe	Met	Ser	Leu 135	Phe	Leu	Gln	Val	Asn 140	Met	Tyr	Ser	Ser
	Val 145	Phe	Phe	Leu	Thr	Trp 150	Met	Ser	Phe	Asp	Arg 155		Ile	Ala	Leu	Ala 160
1,5	Arg	Ala	Met	Arg	Суз 165	Ser	Leu	Phe	Arg	Thr 170	Lys	His	His	Ala	Arg 175	Leu
	Ser	Cys	Gly 	Leu 180		Trp	Met	Ala	Ser 185	Val	Ser	Ala	Thr	Leu 190	Val	Pro
20	Phe	Thr	Ala 195	Val	His	Leu	Gln	His 200	Thr	Asp	Glu	Ala	Cys 205	Phe	Сув	Phe
	Ala	Asp 210	Val	Arg	Glu	Val	Gln 215	Trp	Leu	Glu	Val	Thr 220	Leu	Gly	Phe	Ile
	Val 225	Pro	Phe	Ala	Ile	Ile 230	Gly	Leu	Cys	Tyr	Ser 235	Leu	Ile	Val	Arg	Val 240
25	Leu	Val	Arg	Ala	His 245	Arg	His	Arg	Gly	Leu 250	Arg	Pro	Arg	Arg	Gln 255	Lys
	Ala	Lys	Arg	Met 260	Ile	Leu	Ala	Val	Val 265	Leu	Val	Phe	Phe	Val 270	Сув	Trp
30	Leu	Pro	Glu 275	Asn	Val	Phe	Ile	Ser 280	Val	His	Leu	Leu	Gln 285	Arg	Thr	Gln
	Pro	Gly 290	Ala	Ala	Pro	Cys	Lys 295	Gln	Ser	Phe	Arg	His 300	Ala	His	Pro	Leu
	Thr 305	Gly	His	Ile	Val	Asn 310	Leu	Ala	Ala	Phe	Ser 315	Asn	Ser	Cys	Leu	Asn 320
35	Pro	Leu	Ile	Tyr	Ser 325	Phe	Leu	Gly	Glu	Thr 330	Phe	Arg	Asp	Lys	Leu 335	Arg
	Leu	Tyr	Ile	Glu	Gln	Lys	Thr	Asn	Leu	Pro	Ala	Leu	Asn	Arg	Phe	Cys

340 345 350

His Ala Ala Leu Lys Ala Val Ile Pro Asp Ser Thr Glu Gln Ser Asp 355 360 365

149

Val Arg Phe Ser Ser Ala Val 370 375

5

10

(196) INFORMATION FOR SEQ ID NO:195:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 960 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:195:

ATGCCATTCC CAAACTGCTC AGCCCCCAGC ACTGTGGTGG CCACAGCTGT GGGTGTCTTG 15 CTGGGGCTGG AGTGTGGGCT GGGTCTGCTG GGCAACGCGG TGGCGCTGTG GACCTTCCTG 120 TTCCGGGTCA GGGTGTGGAA GCCGTACGCT GTCTACCTGC TCAACCTGGC CCTGGCTGAC 180 CTGCTGTTGG CTGCGTGCCT GCCTTTCCTG GCCGCCTTCT ACCTGAGCCT CCAGGCTTGG 240 CATCTGGGCC GTGTGGGCTG CTGGGCCCTG CGCTTCCTGC TGGACCTCAG CCGCAGCGTG 300 GGGATGGCCT TCCTGGCCGC CGTGGCTTTG GACCGGTACC TCCGTGTGGT CCACCCTCGG 360 20 CTTAAGGTCA ACCTGCTGTC TCCTCAGGCG GCCCTGGGGG TCTCGGGCCT CGTCTGGCTC 420 CTGATGGTCG CCCTCACCTG CCCGGGCTTG CTCATCTCTG AGGCCGCCCA GAACTCCACC 480 AGGTGCCACA GTTTCTACTC CAGGGCAGAC GGCTCCTTCA GCATCATCTG GCAGGAAGCA 540 CTCTCCTGCC TTCAGTTTGT CCTCCCCTTT GGCCTCATCG TGTTCTGCAA TGCAGGCATC 600 ATCAGGGCTC TCCAGAAAAG ACTCCGGGAG CCTGAGAAAC AGCCCAAGCT TCAGCGGGCC 25 AAGGCACTGG TCACCTTGGT GGTGGTGCTG TTTGCTCTGT GCTTTCTGCC CTGCTTCCTG GCCAGAGTCC TGATGCACAT CTTCCAGAAT CTGGGGAGCT GCAGGGCCCT TTGTGCAGTG 780 GCTCATACCT CGGATGTCAC GGGCAGCCTC ACCTACCTGC ACAGTGTCGT CAACCCCGTG 840 GTATACTGCT TCTCCAGCCC CACCTTCAGG AGCTCCTATC GGAGGGTCTT CCACACCCTC 900 CGAGGCAAAG GGCAGGCAGC AGAGCCCCCA GATTTCAACC CCAGAGACTC CTATTCCTGA

30 (197) INFORMATION FOR SEQ ID NO:196:

(i) SEQUENCE CHARACTERISTICS:

		(E		PE:	amir EDNE		id									
5	(i	.i) M	OLEC	ULE	TYPE	: pr	otei	.n								
	(х	i) S	EQUE	NCE	DESC	RIPT	'ION:	SEC	D	NO:1	.96 :					
	Met 1	Pro	Phe	Pro	Asn 5	Cys	Ser	Ala	Pro	Ser 10	Thr	Val	. Val	. Ala	Thr 15	Ala
10	Val	Gly	Val	Leu 20	Leu	Gly	Leu	Glu	Cys 25	Gly	Leu	Gly	Leu	Leu 30	Gly	' Ası
	Ala	Val	Ala 35	Leu	Trp	Thr	Phe	Leu 40	Phe	Arg	Val	Arg	Val 45	Trp	Lys	Pro
	Tyr	Ala 50	Val	Tyr	Leu	Leu	Asn 55	Leu	Ala	Leu	Ala	Asp 60	Leu	Leu	Leu	Ala
15	Ala 65	Cys	Leu	Pro	Phe	Leu 70	Ala	Ala	Phe	Tyr	Leu 75	Ser	Leu	Gln	Ala	Trp 80
	His	Leu	Gly	Arg	Val 85	Gly	Сув	Trp		Leu 90	Arg	Phe		Leu	Asp 95	Leu
20	Ser	Arg	Ser	Val 100	Gly	Met	Ala	Phe	Leu 105	Ala	Ala	Val	Ala	Leu 110	Asp	Arg
	Tyr	Leu	Arg 115	Val	Val	His	Pro	Arg 120	Leu	Lys	Val	Asn	Leu 125	Leu	Ser	Pro
	Gln	Ala 130	Ala	Leu	Gly	Val	Ser 135	Gly	Leu	Val	Trp	Leu 140	Leu	Met	Val	Ala
25	Leu 145	Thr	Сув	Pro	Gly	Leu 150		Ile	Ser	Glu	Ala 155	Ala	Gln	Asn	Ser	Thr 160
	Arg	Cys	His	Ser	Phe 165	Tyr	Ser	Arg	Ala	Asp 170	Gly	Ser	Phe	Ser	Ile 175	Ile
30	Trp	Gln	Glu	Ala 180	Leu	Ser	Сув	Leu	Gln 185	Phe	Val	Leu	Pro	Phe 190	Gly	Leu
	Ile	Val	Phe 195	Сув	Asn	Ala	Gly	Ile 200	Ile	Arg	Ala	Leu	Gln 205	Lys	Arg	Leu
	Arg	Glu 210	Pro	Glu	Lys	Gln	Pro 215	Lys	Leu	Gln	Arg	Ala 220	Lys	Ala	Leu	Val
35	Thr 225	Leu	Val	Val	Val	Leu 230	Phe	Ala	Leu	Суз	Phe 235	Leu	Pro	Cys	Phe	Leu 240
	Ala	Arg	Val	Leu	Met	His	Ile	Phe	Gln	Asn	Leu	Glv	Ser	Ċve	Δτα	פומ

151

	. 245 250 255	
	Leu Cys Ala Val Ala His Thr Ser Asp Val Thr Gly Ser Leu Thr 7	lyr
5	Leu His Ser Val Val Asn Pro Val Val Tyr Cys Phe Ser Ser Pro 1 275 280 285	Thr
	Phe Arg Ser Ser Tyr Arg Arg Val Phe His Thr Leu Arg Gly Lys 0 290 295 300	Bly
	Gln Ala Ala Glu Pro Pro Asp Phe Asn Pro Arg Asp Ser Tyr Ser 305 310 315	
10	(198) INFORMATION FOR SEQ ID NO:197:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1143 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:197:	
	ATGGAGGAAG GTGGTGATTT TGACAACTAC TATGGGGCAG ACAACCAGTC TGAGTGTGAG	
	TACACAGACT GGAAATCCTC GGGGGCCCTC ATCCCTGCCA TCTACATGTT GGTCTTCCTC	
20	CTGGGCACCA CGGGAAACGG TCTGGTGCTC TGGACCGTGT TTCGGAGCAG CCGGGAGAAG	18
	AGGCGCTCAG CTGATATCTT CATTGCTAGC CTGGCGGTGG CTGACCTGAC	24
	ACGCTGCCCC TGTGGGCTAC CTACACGTAC CGGGACTATG ACTGGCCCTT TGGGACCTTC	30
	TTCTGCAAGC TCAGCAGCTA CCTCATCTTC GTCAACATGT ACGCCAGCGT CTTCTGCCTC	36
	ACCGGCCTCA GCTTCGACCG CTACCTGGCC ATCGTGAGGC CAGTGGCCAA TGCTCGGCTG	42
25	AGGCTGCGGG TCAGCGGGGC CGTGGCCACG GCAGTTCTTT GGGTGCTGGC CGCCCTCCTG	48
	GCCATGCCTG TCATGGTGTT ACGCACCACC GGGGACTTGG AGAACACCAC TAAGGTGCAG	54
	TGCTACATGG ACTACTCCAT GGTGGCCACT GTGAGCTCAG AGTGGGCCTG GGAGGTGGGC	60
	CTTGGGGTCT CGTCCACCAC CGTGGGCTTT GTGGTGCCCT TCACCATCAT GCTGACCTGT	66
	TACTTCTTCA TCGCCCAAAC CATCGCTGGC CACTTCCGCA AGGAACGCAT CGAGGGCCTG	72
10	CGGAAGCGGC GCCGGCTTAA GAGCATCATC GTGGTGCTGG TGGTGACCTT TGCCCTGTGC	78
	. TGGATGCCCT ACCACCTGGT GAAGACGCTG TACATGCTGG GCAGCCTGCT GCACTGGCCC	84
		5-2

TGTGACTTTG ACCTCTTCCT CATGAACATC TTCCCCTACT GCACCTGCAT CAGCTACGTC

	AACAGCTGCC TCAACCCCTT CCTCTATGCC TTTTTCGACC CCCGCTTCCG CCAGGCCTGC 960
	ACCTCCATGC TCTGCTGTGG CCAGAGCAGG TGCGCAGGCA CCTCCCACAG CAGCAGTGGG 1020
	GAGAAGTCAG CCAGCTACTC TTCGGGGCAC AGCCAGGGGC CCGGCCCCAA CATCGGCAAG 1080
	GGTGGAGAAC AGATGCACGA GAAATCCATC CCCTACAGCC AGGAGACCCT TGTGGTTGAC 1140
5	TAG 1143
	(199) INFORMATION FOR SEQ ID NO:198:
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 380 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant
	(ii) MOLECULE TYPE: protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:198:
15	Met Glu Glu Gly Asp Phe Asp Asn Tyr Tyr Gly Ala Asp Asn Gln 1 5 10 15
	Ser Glu Cys Glu Tyr Thr Asp Trp Lys Ser Ser Gly Ala Leu Ile Pro 20 25 30
	Ala Ile Tyr Met Leu Val Phe Leu Leu Gly Thr Thr Gly Asn Gly Leu 35 40 45
20	Val Leu Trp Thr Val Phe Arg Ser Ser Arg Glu Lys Arg Arg Ser Ala 50 55 60
	Asp Ile Phe Ile Ala Ser Leu Ala Val Ala Asp Leu Thr Phe Val Val 65 70 75 80
25	Thr Leu Pro Leu Trp Ala Thr Tyr Thr Tyr Arg Asp Tyr Asp Trp Pro
	Phe Gly Thr Phe Phe Cys Lys Leu Ser Ser Tyr Leu Ile Phe Val Asn 100 105 110
•	Met Tyr Ala Ser Val Phe Cys Leu Thr Gly Leu Ser Phe Asp Arg Tyr 115 120 125
30	Leu Ala Ile Val Arg Pro Val Ala Asn Ala Arg Leu Arg Leu Arg Val 130 135 140
	Ser Gly Ala Val Ala Thr Ala Val Leu Trp Val Leu Ala Ala Leu Leu 145 150 155 160
35	Ala Met Pro Val Met Val Leu Arg Thr Thr Gly Asp Leu Glu Asn Thr 165 170 175

	Thr	: Lys	Val	Gln 180	Cys	Tyr	Met	Asp	Tyr 185		Met	Val	Ala	Thr 190		Ser
	Ser	Glu	Trp 195	Ala	Trp	Glu	Val	Gly 200	Leu	Gly	Val	Ser	Ser 205	Thr	Thr	Val
5	Gly	Phe 210		Val	Pro	Phe	Thr 215	Ile	Met	Leu	Thr	Cys 220	Tyr	Phe	Phe	Ile
	Ala 225	Gln	Thr	Ile	Ala	Gly 230	His	Phe	Arg	Lys	Glu 235	Arg	Ile	Glu	Gly	Leu 240
10	Arg	Lys	Arg	Arg	Arg 245	Leu	Lys	Ser	Ile	Ile 250	Val	Val	Leu	Val	Val 255	Thr
	Phe	Ala	Leu	Суs 260	Trp	Met	Pro	Tyr	His 265	Leu	Val	Lys	Thr	Leu 270	Tyr	Met
	Leu	Gly	Ser '275	Leu	Leu	His	Trp	Pro 280	Суз	Asp	Phe	Asp	Leu 285	Phe	Leu	Met
15	Asn	Ile 290	Phe	Pro	Tyr	Cys	Thr 295	Cÿs	Ile	Ser	Tyr	Val 300	Asn	Ser	Cys	Leu
	Asn 305	Pro	Phe	Leu	Tyr	Ala 310	Phe	Phe	Asp	Pro	Arg 315	Phe	Arg	Gln	Ala	Cys 320
20	Thr	Ser	Met	Leu	Cys 325	Cys	Gly	Gln	Ser	Arg 330	Cys	Ala	Gly	Thr	Ser 335	His
	Ser	Ser	Ser	Gly 340	Glu	Lys	Ser	Ala	Ser 345	Tyr	Ser	Ser	Gly	His 350	Ser	Gln
	Gly	Pro	Gly 355	Pro	Asn	Met	Gly	Lys 360	Gly	Gly	Glu	Gln	Met 365	His	Glu	Lys
25	Ser	Ile 370	Pro	Tyr	Ser		Glu 375	Thr	Leu	Val		Asp 380				
	(200) IN	FORMA	TION	FOR	SEQ	ID	NO:1	.99:								
30	(i)	(B) (C)	UENC LEN TYP STR TOP	GTH: E: n ANDE	111 ucle DNES	9 ba ic a S: s	se p cid ingl	airs								
	(ii	i) MC	LECU	LE T	YPE:	DNA	(ge	nomi	c)							
	(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:19	9:					
35	ATGAACTAC	CC CG	CTAA	CGCT	GGA	AATG	GAC	CTCG	AGAA	CC T	GGAG	GACC	T GT	TCTG	GGAA	60
	CTGGACAGA	T TG	GACA	ACTA	TAA	CGAC	ACC	TCCC	TGGT	GG A	AAAT	CATC	т ст	GCCC	TGCC	120

	ACAGAGGGTC	CCCTCATGGC	CTCCTTCAAG	GCCGTGTTCG	TGCCCGTGGC	CTACAGCCTC	180
	ATCTTCCTCC	TGGGCGTGAT	CGGCAACGTC	CTGGTGCTGG	TGATCCTGGA	GCGGCACCGG	240
	CAGACACGCA	GTTCCACGGA	GACCTTCCTG	TTCCACCTGG	CCGTGGCCGA	CCTCCTGCTG	300
	GTCTTCATCT	TGCCCTTTGC	CGTGGCCGAG	GGCTCTGTGG	GCTGGGTCCT	GGGGACCTTC	360
5	CTCTGCAAAA	CTGTGATTGC	CCTGCACAAA	GTCAACTTCT	ACTGCAGCAG	CCTGCTCCTG	420
	GCCTGCATCG	CCGTGGACCG	CTACCTGGCC	ATTGTCCACG	CCGTCCATGC	CTACCGCCAC	480
	CGCCGCCTCC	TCTCCATCCA	CATCACCTGT	GGGACCATCT	GGCTGGTGGG	CTTCCTCCTT	540
	GCCTTGCCAG	AGATTCTCTT	CGCCAAAGTC	AGCCAAGGCC	ATCACAACAA	CTCCCTGCCA	600
	CGTTGCACCT	TCTCCCAAGA	GAACCAAGCA	GAAACGCATG	CCTGGTTCAC	CTCCCGATTC	660
10	CTCTACCATG	TGGCGGGATT	CCTGCTGCCC	ATGCTGGTGA	TGGGCTGGTG	CTACGTGGGG	720
	GTAGTGCACA	GGTTGCGCCA	GGCCCAGCGG	CGCCCTCAGC	GGCAGAAGGC	AAAAAGGGTG	780
	GCCATCCTGG	TGACAAGCAT	CTTCTTCCTC	TGCTGGTCAC	CCTACCACAT	CGTCATCTTC	840
	CTGGACACCC	TGGCGAGGCT	GAAGGCCGTG	GACAATACCT	GCAAGCTGAA	TGGCTCTCTC	900
	CCCGTGGCCA	TCACCATGTG	TGAGTTCCTG	GGCCTGGCCC	ACTGCTGCCT	CAACCCCATG	960
15	CTCTACACTT	TCGCCGGCGT	GAAGTTCCGC	AGTGACCTGT	CGCGGCTCCT	GACCAAGCTG	1020
	GGCTGTACCG	GCCCTGCCTC	CCTGTGCCAG	CTCTTCCCTA	GCTGGCGCAG	GAGCAGTCTC	1080
	TCTGAGTCAG	AGAATGCCAC	CTCTCTCACC	ACGTTCTAG			1119
	(201) INFOR	MATION FOR	SEQ ID NO:2	:00:			

(i) SEQUENCE CHARACTERISTICS: 20

(A) LENGTH: 372 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:200:

Met Asn Tyr Pro Leu Thr Leu Glu Met Asp Leu Glu Asn Leu Glu Asp 10

Leu Phe Trp Glu Leu Asp Arg Leu Asp Asn Tyr Asn Asp Thr Ser Leu 25

30 Val Glu Asn His Leu Cys Pro Ala Thr Glu Gly Pro Leu Met Ala Ser

. Phe Lys Ala Val Phe Val Pro Val Ala Tyr Ser Leu Ile Phe Leu Leu

		50					55					60				
	Gly 65	Val	Ile	Gly	Asn	Val 70	Leu	Val	Leu	Val	Ile 75	Leu	Glu	Arg	His	Arg 80
5	Gln	Thr	Arg	Ser	Ser 85	Thr	Glu	Thr	Phe	Leu 90	Phe	His	Leu	Ala	Val 95	Ala
	Asp	Leu	Leu	Leu 100	Val	Phe	Ile	Leu	Pro 105	Phe	Ala	Val	Ala	Glu 110	Gly	Ser
	Val	Gly	Trp 115	Val	Leu	Gly	Thr	Phe 120	Leu	Cys	Lys	Thr	Val 125	Ile	Ala	Lev
10	His	Lys 130	Val	Asn	Phe	Tyr	Cys 135	Ser	Ser	Leu	Leu	Leu 140	Ala	Сув	Ile	Ala
	Val 145	_	Arg	Tyr	Leu	Ala 150	Ile	Val	His	Ala	Val 155	His	Ala	Tyr	Arg	His 160
15	Arg	Arg	Leu	Leu	Ser 165	Ile	His	Ile	Thr	Cys 170	Gly	Thr	Ile	Trp	Leu 175	Val
	Gly	Phe	Leu	Leu 180	Ala	Leu	Pro	Glu	Ile 185	Leu	Phe	Ala	Lys	Val 190	Ser	Gln
	Gly	His	His 195	Asn	Asn	Ser	Leu	Pro 200	Arg	Суз	Thr	Phe	Ser 205	Gln	Glu	Asn
20	Gln	Ala 210	Glu	Thr	His	Ala	Trp 215	Phe	Thr	Ser	Arg	Phe 220	Leu	Tyr	His	Val
	Ala 225	Gly	Phe	Leu	Leu	Pro 230	Met	Leu	Val	Met	Gly 235	Trp	Cys	Tyr	Val	Gly 240
25	Val	Val	His	Arg	Leu 245	Arg	Gln	Ala	Gln	Arg 250	Arg	Pro	Gln	Arg	Gln 255	Lys
	Ala	Lys	Arg	Val 260	Ala	Ile	Leu	Val	Thr 265	Ser	Ile	Phe	Phe	Leu 270	Cys	Trp
	Ser	Pro	Tyr 275	His	Ile	Val	Ile	Phe 280	Leu	Asp	Thr	Leu	Ala 285	Arg	Leu	Lys
30	Ala	Val 290	Asp	Asn	Thr	Сув	Lys 295	Leu	Asn	Gly	Ser	Leu 300	Pro	Val	Ala	Ile
	Thr 305	Met	Суѕ	Glu	Phe	Leu 310	Gly	Leu	Ala	His	Cys 315	Суз	Leu	Asn	Pro	Met 320
35	Leu	Tyr	Thr	Phe	Ala 325	Gly	Val	Lys	Phe	Arg 330	Ser	Asp	Leu	Ser	Arg 335	Leu
	Leu	Thr	Lys	Leu 340	Gly	Cys	Thr	Gly	Pro 345	Ala	Ser	Leu	Cys	Gln 350	Leu	Phe

156

Pro Ser Trp Arg Arg Ser Ser Leu Ser Glu Ser Glu Asn Ala Thr Ser 355 360 365

Leu Thr Thr Phe

- 5 (202) INFORMATION FOR SEQ ID NO:201:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1128 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- 10 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:

ATGGATGTGA CTTCCCAAGC CCGGGGCGTG GGCCTGGAGA TGTACCCAGG CACCGCGCAG 60 CCTGCGGCCC CCAACACCAC CTCCCCCGAG CTCAACCTGT CCCACCCGCT CCTGGGCACC 120 15 GCCCTGGCCA ATGGGACAGG TGAGCTCTCG GAGCACCAGC AGTACGTGAT CGGCCTGTTC 180 CTCTCGTGCC TCTACACCAT CTTCCTCTTC CCCATCGGCT TTGTGGGCAA CATCCTGATC 240 CTGGTGGTGA ACATCAGCTT CCGCGAGAAG ATGACCATCC CCGACCTGTA CTTCATCAAC 300 CTGGCGGTGG CGGACCTCAT CCTGGTGGCC GACTCCCTCA TTGAGGTGTT CAACCTGCAC GAGCGGTACT ACGACATCGC CGTCCTGTGC ACCTTCATGT CGCTCTTCCT GCAGGTCAAC 420 ATGTACAGCA GCGTCTTCTT CCTCACCTGG ATGAGCTTCG ACCGCTACAT CGCCCTGGCC 480 AGGGCCATGC GCTGCAGCCT GTTCCGCACC AAGCACCACG CCCGGCTGAG CTGTGGCCTC 540 ATCTGGATGG CATCCGTGTC AGCCACGCTG GTGCCCTTCA CCGCCGTGCA CCTGCAGCAC 600 ACCGACGAGG CCTGCTTCTG TTTCGCGGAT GTCCGGGAGG TGCAGTGGCT CGAGGTCACG 660 CTGGGCTTCA TCGTGCCCTT CGCCATCATC GGCCTGTGCT ACTCCCTCAT TGTCCGGGTG 720 25 CTGGTCAGGG CGCACCGGCA CCGTGGGCTG CGGCCCCGGC GGCAGAAGGC GAAGCGCATG 780 GTGCACCTCC TGCAGCGGAC GCAGCCTGGG GCCGCTCCCT GCAAGCAGTC TTTCCGCCAT GCCCACCCC TCACGGCCA CATTGTCAAC CTCACCGCCT TCTCCAACAG CTGCCTAAAC 960 CCCCTCATCT ACAGCTTTCT CGGGGAGACC TTCAGGGACA AGCTGAGGCT GTACATTGAG 1020 30 CAGAAAACAA ATTTGCCGGC CCTGAACCGC TTCTGTCACG CTGCCCTGAA GGCCGTCATT 1080 CCAGACAGCA CCGAGCAGTC GGATGTGAGG TTCAGCAGTG CCGTGTAG 1128

	(203) 11	IFORM	ATIO	N FO	R SE	Q ID	NO:	202:								
5	(i	(B	QUEN ; TY ; ST ;) TO	ngth Pe: Rand	: 37 amin EDNE	5 am o ac SS:	ino id	acid								
	(i	i) M	OLEC	ULE	TYPE	: pr	otei	n								
	(x	i) S	EQUE	NCE	DESC	RIPT	ION:	SEQ	ID	NO:2	02:					
10	Met 1	Asp	Val	Thr	Ser 5	Gln	Ala	Arg	Gly	Val	Gly	Leu	Glu	Met	Tyr 15	Pro
	Gly	Thr	Ala	Gln 20	Pro	Ala	Ala	Pro	Asn 25	Thr	Thr	Ser	Pro	Glu 30	Leu	Ası
	Leu	Ser	His 35	Pro	Leu	Leu	Gly	Thr 40	Ala	Leu	Ala	Asn	Gly 45	Thr	Gly	Gli
15	Leu	Ser 50	Glu	His	Gln	Gln	Tyr 55	Val	Ile	Gly		Phe 60	Leu	Ser	Cys	Lev
	Tyr 65	Thr	Ile	Phe	Leu	Phe	Pro	Ile	Gly	Phe	Val 75	Gly	Asn	Ile	Leu	Ile 80
20°	Leu	Val	Val	Asn	Ile 85	Ser	Phe	Arg	Glu	Lys 90	Met	Thr	Ile	Pro	Asp 95	Leu
	Tyr	Phe	Ile	Asn 100	Leu	Ala	Val	Ala	Asp 105	Leu	Ile	Leu	Val	Ala 110	Asp	Ser
	Leu	Ile	Glu 115	Val	Phe	Asn	Leu	His 120	Glu	Arg	Tyr	Tyr	Asp 125	Ile	Ala	Val
25	Leu	Cys 130	Thr	Phe	Met		Leu 135	Phe	Leu	Gln	Val	Asn 140	Met	Tyr	Ser	Ser
	Val 145	Phe	Phe	Leu	Thr	Trp 150	Met	Ser	Phe	Asp	Arg 155	Tyr	Ile	Ala	Leu	Ala 160
30	Arg	Ala	Met	Arg	Cys 165	Ser	Leu	Phe	Arg	Thr 170	Lys	His	His	Ala	Arg 175	Leu
	Ser	Суз	Gly	Leu 180	Ile	Trp	Met	Ala	Ser 185	Val	Ser	Ala	Thr	Leu 190	Val	Pro
	Phe	Thr	Ala 195	Val	His	Leu	Gln	His 200	Thr	qaA	Glu	Ala	Cys 205	Phe	Суз	Phe
35	Ala	Asp 210	Val	Arg	Glu	Val	Gln 215	Trp	Leu	Glu	Val	Thr 220	Leu	Gly	Phe	Ile
	Val	Pro	Phe	Ala	Ile	Ile	Gly	Leu	Cys	Tyr	Ser	Leu	Ile	Val	Arq	Val

	225					230					235					240	
•	Leu	Val	Arg	Ala	His 245	Arg	His	Arg	Gly	Leu 250	Arg	Pro	Arg	Arg	Gln 255	Lys	
5	Ala	Lys	Arg	Met 260	Ile	Leu	Ala	Val	Val 265	Leu	Val	Phe	Phe	Val 270	Cys	Trp	
	Leu	Pro	Glu 275	Asn	Val	Phe	Ile	Ser 280	Val	His	Leu	Leu	Gln 285	Arg	Thr	Gln	
	Pro	Gly 290	Ala	Ala	Pro	Cys	Lys 295	Gln	Ser	Phe	Arg	His 300	Ala	His	Pro	Leu	
0	Thr 305	Gly	His	Ile	Val	Asn 310	Leu	Thr	Ala	Phe	Ser 315	Asn	Ser	Cys	Leu	Asn 320	
	Pro	Leu	Ile	Tyr	Ser 325	Phe	Leu	Gly	Glu	Thr 330	Phe	Arg	Asp	Lys	Leu 335	Arg	
.5	Leu	Tyr	Ile	Glu 340	Gln	Lys	Thr	Asn	Leu 345	Pro	Ala	Leu	Asn	Arg 350	Phe	Cys	
	His	Ala	Ala 355	Leu	Lys	Ala	Val	Ïle 360	Pro	Asp	Ser	Thr	Glu 365	Gln	Ser	Asp	
	Val	Arg 370	Phe	Ser	Ser	Ala	Val 375								•	٠	
20	(204) IN	FORM	ATIO	1 FOI	R SE	D ID	NO:2	203:									
25	(i)	(A) (B) (C)	LEI TYI	CE CI NGTH: PE: 1 RANDI POLO	: 113 nucle EDNES	37 ba eic a SS: 4	ase pacid	pairs	3								
	(i:	i) M(OLECT	JLE :	TYPE.	: DN	A (ge	enom	ic)								
	(x:	i) SI	EQUE	NCE 1	DESCI	RIPT	ION:	SEQ	ID 1	NO:2	03:						
	ATGGACCT	GG G(GAAA)	CCAA!	r gai	AAAG	CGTG	CTG	GTGG:	rgg (CTCT	CCTT	ST C	ATTT.	rcca(3	60
	GTATGCCT	GT G	rcaa(GATG	A GG	rcac(GGAC	GAT.	raca:	rcg (GAGA	CAAC	AC C	ACAG'	rgga(: :	120
30	TACACTTT	GT T	CGAG!	rctt'	r GT	GCTC	CAAG	AAG	GACG'	rgc (GGAA	CTTT	AA A	GCCT	GGTT	: :	180
	CTCCCTAT	CA TO	GTAC'	rcca:	r ca	rttgʻ	TTTC	GTG	GCC.	TAC '	TGGG	CAAT	G G	CTGG'	rcgr	3 :	240
	TTGACCTA'	TA T	CTAT	PTCA	A GA	GGCT	CAAG	ACC	ATGA	CCG 2	ATAC(CTAC	CT G	CTCA	ACCT	3	300
	GCGGTGGC	AG A	CATC	CTCT	r cc	rcct	GACC	CTT	CCT	TCT (GGGC	CTAC	AG C	GCGG	CCAA	3 :	360
	TCCTGGGT	CT T	CGGT	STCC	A CT	TTTG	CAAG	CTC	ATCT	TTG (CCAT	CTAC	AA G	ATGA	GCTT	2 .	420

	TTCAGTGGCA TGCTCCTACT TCTTTGCATC AGCATTGACC GCTACGTGGC CATCGTCCAG 480
	GCTGTCTCAG CTCACCGCCA CCGTGCCCGC GTCCTTCTCA TCAGCAAGCT GTCCTGTGTG 540
	GGCATCTGGA TACTAGCCAC AGTGCTCTCC ATCCCAGAGC TCCTGTACAG TGACCTCCAG 600
	AGGAGCAGCA GTGAGCAAGC GATGCGATGC TCTCTCATCA CAGAGCATGT GGAGGCCTTT 660
5	ATCACCATCC AGGTGGCCCA GATGGTGATC GGCTTTCTGG TCCCCCTGCT GGCCATGAGC 720
	TTCTGTTACC TTGTCATCAT CCGCACCCTG CTCCAGGCAC GCAACTTTGA GCGCAACAAG 780
	GCCAAAAAGG TGATCATCGC TGTGGTCGTG GTCTTCATAG TCTTCCAGCT GCCCTACAAT 840
	GGGGTGGTCC TGGCCCAGAC GGTGGCCAAC TTCAACATCA CCAGTAGCAC CTGTGAGCTC 900
	AGTAAGCAAC TCAACATCGC CTACGACGTC ACCTACAGCC TGGCCTGCGT CCGCTGCTGC 960
10	GTCAACCCTT TCTTGTACGC CTTCATCGGC GTCAAGTTCC GCAACGATCT CTTCAAGCTC 1020
	TTCAAGGACC TGGGCTGCCT CAGCCAGGAG CAGCTCCGGC AGTGGTCTTC CTGTCGGCAC 1080
	ATCCGGCGCT CCTCCATGAG TGTGGAGGCC GAGACCACCA CCACCTTCTC CCCATAG 1137
	(205) INFORMATION FOR SEQ ID NO:204:
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 378 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant
	(ii) MOLECULE TYPE: protein
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:204:
	Met Asp Leu Gly Lys Pro Met Lys Ser Val Leu Val Val Ala Leu Leu 1 5 10 15
	Val Ile Phe Gln Val Cys Leu Cys Gln Asp Glu Val Thr Asp Asp Tyr 20 25 30
25	Ile Gly Asp Asn Thr Thr Val Asp Tyr Thr Leu Phe Glu Ser Leu Cys 35 40 45
	Ser Lýs Lys Asp Val Arg Asn Phe Lys Ala Trp Phe Leu Pro Ile Met 50 55 60
30	Tyr Ser Ile Ile Cys Phe Val Gly Leu Leu Gly Asn Gly Leu Val Val 65 70 75 80
	Leu Thr Tyr Ile Tyr Phe Lys Arg Leu Lys Thr Met Thr Asp Thr Tyr

Leu Leu Asn Leu Ala Val Ala Asp Ile Leu Phe Leu Leu Thr Leu Pro

160

					100					105					110		
•		Phe	Trp	Ala 115	Tyr	Ser	Ala	Ala	Lys 120	Ser	Trp	Val	Phe	Gly 125	Val	His	Phe
5		Суз	Lys 130	Leu	Ile	Phe	Ala	Ile 135	Tyr	Lys	Met	Ser	Phe 140	Phe	Ser	Gly	Met
		Leu 145	Leu	Leu	Leu	Суз	Ile 150	Ser	Ile	Asp	Arg	Tyr 155	Val	Ala	Ile	Val	Gln 160
		Ala	Val	Ser	Ala	His 165	Arg	His	Arg	Ala	Arg 170	Val	Leu	Leu	Ile	Ser 175	Lys
10		Leu	Ser	Сув	Val 180	Gly	Ile	Trp	Iļe	Leu 185	Ala	Thr	Val	Leu	Ser 190	Ile	Pro
		Glu	Leu	Leu 195	Tyr	Ser	Asp	Leu	Gln 200	Arg	Ser	Ser	Ser	Glu 205	Gln	Ala	Met
15		Arg	Cys 210	Ser	Leu	Ile	Thr	Glu 215	His	Val	Glu	Ala	Phe 220	Ile	Thr	Ile _.	Gln
		Val 225	Ala	Gln	Met	Val	Ile 230	Gly	Phe	Lėu	'Val	Pro 235	Leu	Leu	Ala	Met	Ser 240
	ž.	Phe	Сув	Tyr	Leu	Val 245	Ile	Ile	Arg	Thr	Leu 250	Leu	Gln	Ala	Arg	Asn 255	Phe
20		Glu	Arg	Asn	Lys 260	Ala	Lys	Lys	Val	Ile 265	Ile	Ala	Val	Val	Val 270	Val	Phe
		Ile	Val	Phe 275	Gln	Leu	Pro	Tyr	Asn 280	Gly	Val	Val	Leu	Ala 285	Gln	Thr	Val
25		Ala	Asn 290	Phe	Asn	Ile	Thr	Ser 295	Ser	Thr	Суз	Glu	Leu 300	Ser	Lys	Gln	Leu
		Asn 305	Ile	Ala	Tyr	Asp	Val 310	Thr	Tyr	Ser	Leu	Ala 315	Cys	Val	Arg	Cys	Суз 320
		Val	Asn	Pro	Phe	Leu 325	Tyr	Ala	Phe	Ile	Gly 330	Val	Lys	Phe	Arg	Asn 335	Asp
30		Leu	Phe	Lys	Leu 340	Phe	Lys	Asp	Leu	Gly 345	Cys	Leu	Ser	Gln	Glu 350	Gln	Leu
		Arg	Gln	Trp 355	Ser	Ser	Cys	Arg	His 360	Ile	Arg	Arg	Ser	Ser 365	Met	Ser	Val
35		Glu	Ala 370	Glu	Thr	Thr	Thr	Thr 375	Phe	Ser	Pro						

(206) INFORMATION FOR SEQ ID NO:205:

161

(i)	SEQ	UENCE	CHA	ARACTI	ERIST	ICS:
	(A)	LENGT	H:	1086	base	pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

5 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:205:

ATGGATATAC AAATGGCAAA CAATTTTACT CCGCCCTCTG CAACTCCTCA GGGAAATGAC 60 TGTGACCTCT ATGCACATCA CAGCACGGCC AGGATAGTAA TGCCTCTGCA TTACAGCCTC 120 10 GTCTTCATCA TTGGGCTCGT GGGAAACTTA CTAGCCTTGG TCGTCATTGT TCAAAACAGG 180 AAAAAAATCA ACTCTACCAC CCTCTATTCA ACAAATTTGG TGATTTCTGA TATACTTTTT 240 ACCACGGCTT TGCCTACACG AATAGCCTAC TATGCAATGG GCTTTGACTG GAGAATCGGA 300 GATGCCTTGT GTAGGATAAC TGCGCTAGTG TTTTACATCA ACACATATGC AGGTGTGAAC TTTATGACCT GCCTGAGTAT TGACCGCTTC ATTGCTGTGG TGCACCCTCT ACGCTACAAC 420 15 AAGATAAAAA GGATTGAACA TGCAAAAGGC GTGTGCATAT TTGTCTGGAT TCTAGTATTT GCTCAGACAC TCCCACTCCT CATCAACCCT ATGTCAAAGC AGGAGGCTGA AAGGATTACA TGCATGGAGT ATCCAAACTT TGAAGAAACT AAATCTCTTC CCTGGATTCT GCTTGGGGCA TGTTTCATAG GATATGTACT TCCACTTATA ATCATTCTCA TCTGCTATTC TCAGATCTGC TGCAAACTCT TCAGAACTGC CAAACAAAAC CCACTCACTG AGAAATCTGG TGTAAACAAA 720 20 AAGGCTAAAA ACACAATTAT TCTTATTATT GTTGTGTTTG TTCTCTGTTT CACACCTTAC 780 CATGTTGCAA TTATTCAACA TATGATTAAG AAGCTTCGTT TCTCTAATTT CCTGGAATGT 840 AGCCAAAGAC ATTCGTTCCA GATTTCTCTG CACTTTACAG TATGCCTGAT GAACTTCAAT 900 TGCTGCATGG ACCCTTTTAT CTACTTCTTT GCATGTAAAG GGTATAAGAG AAAGGTTATG 960 AGGATGCTGA AACGGCAAGT CAGTGTATCG ATTTCTAGTG CTGTGAAGTC AGCCCCTGAA 1020 25 GAAAATTCAC GTGAAATGAC AGAAACGCAG ATGATGATAC ATTCCAAGTC TTCAAATGGA 1080 **AAGTGA** 1086

(207) INFORMATION FOR SEQ ID NO: 206:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 361 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:

30

(D) TOPOLOGY: not relevant

	(i	.i) M	OLEC	ULE	TYPE	: pr	otei	n								
	(x	i) s	EQUE	NCE	DESC	RIPT	ION:	SEQ	ID	NO : 2	06:					
	Met 1	Asp	Ile	Gln	Met 5	Ala	Asn	Asn	Pho	Thr 10	Pro	Pro	Ser	Ala	Thr 15	Pro
5	Gln	Gly	Asn	Asp 20	Cys	Asp	Leu	Tyr	Ala 25	His	His	Ser	Thr	Ala 30	Arg	Ile
	Val	Met	Pro 35	Leu	His	Tyr	Ser	Leu 40	Val	Phe	Ile	Ile	Gly 45	Leu	Val	Gly
10	Asn	Leu 50	Leu	Ala	Leu	Val	Val 55	Ile	Val	Gln	Asn	Arg 60	Lys	Lys	Ile	Asr
	Ser 65	Thr	Thr	Leu	Tyr	Ser 70	Thr	Asn	Leu	Val	Ile 75	Ser	Asp	Ile	Leu	Phe 80
. • .	Thr	Thr	Ala	Lèu	Pro 85	Thr	Arg	Ile	Ala	Tyr 90	Tyr	Ala	Met	Gly	Phe 95	Asp
15	Trp	Arg	Ile	Gly 100		Ala 	Leu	Cys	Arg 105		Thr	Ala	Leu	Val 110	Phe	Тут
	Ile	Asn	Thr 115	Tyr	Ala	Gly	Val	Asn 120	Phe	Met	Thr	Суз	Leu 125	Ser	Ile	Asp
20	Arg	Phe 130	Ile	Ala	Val	Val	His 135	Pro	Leu	Arg	Tyr	Asn 140	Lys	Ile	Lys	Arg
	Ile 145	Glju	His	Ala	Lys	Gly 150	Val	Сув	Ile	Phe	Val 155	Trp	Ile	Leu	Val	Phe 160
	Ala	Gln	Thr	Leu	Pro 165	Leu	Leu	Ile	Asn	Pro 170	Met	Ser	Lys	Gln	Glu 175	Ala
25	Glu	Arg	Ile	Thr 180	Суз	Met	Glu	Tyr	Pro 185	Asn	Phe	Glu	Glu	Thr 190	Lys	Ser
	Leu	Pro	Trp 195	Ile	Leu	Leu	Gly	Ala 200	Суз	Phe	Ile	Gly	Tyr 205	Val	Leu	Pro
30	Leu	Ile 210	Ile	Ile	Leu	Ile	Cys 215	Tyr	Ser	Gln	Ile	Cys 220	Суз	Lys	Leu	Phe
	Arg 225	Thr	Ala	Lys	Gln	Asn 230	Pro	Leu	Thr	Glu	Lys 235	Ser	Gly	Val	Asn	Lys 240
	Lys	Ala	Lys	Asn	Thr 245	Ile	Ile	Leu	Ile	Ile 250	Val	Val	Phe	Val	Leu 255	Суз
35	Phe	Thr	Pro	Tyr 260	His	Val	Ala	Ile	Ile 265	Gln	His	Met	Ile	Lys 270	Lys	Leu

	Arg	Phe	Ser 275	Asn	Phe	Leu	Glu	Cys 280	Ser	Gln	Arg	His	Ser 285	Phe	Gln	Ile	
	Ser	Leu 290	His	Phe	Thr	Val	Cys 295	Leu	Met	Asn	Phe	Asn 300	Cys	Cys	Met	Asp	
5	Pro 305	Phe	Ile	Tyr	Phe	Phe 310	Ala	Суѕ	Lys	Gly	Tyr 315	Lys	Arg	Lys	Val	Met 320	
	Arg	Met	Leu	Lys	Arg 325	Gln	Val	Ser	Val	Ser 330	Ile	Ser	Ser	Ala	Val 335	Lys	
10	Ser	Ala	Pro	Glu 340	Glu	Asn	Ser	Arg	Glu 345	Met	Thr	Glu	Thr	Gln 350	Met	Met	
	Ile	His	Ser 355	Lys	Ser	Ser	Asn	Gly 360	Lys								
	(208) INF	ORMA	MOIT	FOR	SEC) ID	NO:2	207:	٠.		.•						
15	(i)		LEN LEN						, ·								
		(B)	TYP	E: n	ucle	ic a	cid	•	•								
			" STR					.e									
	. (ii) MC	LECU	LE T	YPE:	DNA	i (ge	nomi	.c)		- 8 -	-					
20	(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	O:20	7:					•	
	ATGCGGTGG	C TG	TGGC	CCCT	GGC	TGTC	TCT	CTTG	CTGT	'GA T	TTTG	GCTG	T GG	GGC7	AAGC	:	60
	AGGGTCTCT	G GG	GGTG	cccc	CCT	GCAC	CTG	GGCA	.GGCA	CA G	AGCC	GAGA	c cc	AGGA	GCAG	1	.20
	CAGAGCCGA	T CC	AAGA	.GGGG	CAC	CGAG	GAT	GAGG	AGGC	CA A	.GGGC	GTGC	A GC	AGTA	TGTG	1	180
	CCTGAGGAG	T GG	GCGG	AGTA	ccc	CCGG	ccc	ATTC	ACCC	TG C	TGGC	CTGC	A GC	CAAC	CAAG	. 2	40
25	CCCTTGGTG	G CC	ACCA	GCCC	TAA	.cccc	GAC	AAGG	ATGG	GG G	CACC	CCAG	A CA	.GTGG	GCAG	3	00
	GAACTGAGG	G GC	AATC	TGAC	AGG	GGCA	.CCA	GGGC	AGAG	GC T	ACAG	ATCC	A GA	ACCC	CCTG	÷ 3	60
	TATCCGGTG	A CC	GAGA	GCTC	CTA	CAGT	GCC	TATG	CCAT	CA T	GCTT	CTGG	C GC	TGGT	GGTG	4	20
	TTTGCGGTG	G GC	ATTG	TGGG	CAA	CCTG	TCG	GTCA	TGTG	CA T	CGTG	TGGC	A CA	.GCTA	.CTAC	4	80
	CTGAAGAGC	G CC	TGGA	ACTC	CAT	CCTT	GCC	AGCC	TGGC	CC T	CTGG	GATT	T TC	TGGT	CCTC	5	40
30	TTTTTCTGC	с тс	CCTA'	TTGT	CAT	CTTC	AAC	GAGA	TCAC	CA A	GCAG	AGGC	T AC	TGGG	TGAC	6	00
	GTTTCTTGT	C GT	GCCG	TGCC	CTT	CATG	GAG	GTCT	CCTC	тс т	GGGA	GTCA	C GA	CTTT	CAGC	6	60
	CTCTGTGCC	C TG	GGCA'	TTGA	CCG	CTTC	CAC	GTGG	CCAC	CA G	CACC	CTGC	C CA	AGGT	GAGG	7	20
	CCCATCGAG	C GG	TGCC	AATC	CAT	CCTG	GCC .	aagt	TGGC	TG T	CATC	TGGG	T GG	GCTC	CATG	7	80

	ACCCIOCO.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>a</i>	•					<i></i>							
•	GGCACCCT	GG AC	TCAT	rgcat	CAT	rgaaj	ACCC	TCAC	CCAG	SCC T	rgcco	GAGT	ec co	CTGT	ATTC	A 9	00
	CTGGTGAT	GA CO	CTAC	CAGAA	CGC	CCG	CATG	TGGT	rggta	ACT :	rtgg	CTGCT	A CI	TCTO	CCT	9	60
	CCCATCCT	T TO	CACAC	STCAC	CTC	CCAC	CTG	GTG#	CATO	GC (GGTC	CGAC	G C	CTC	CAGGG	10	20
5	AGGAAGTC	AG AG	GTGC#	AGGGC	CAC	GCAAG	CAC	GAG	CAGTO	TG 1	AGAGO	CAGO	T C	AAGAC	CACC	2 10	80
	GTGGTGGG	CC TO	GACCO	TGGT	CT	ACGC	CTTC	TGC	CCCI	rcc (CAGAC	AACO	T C	rgca <i>i</i>	ACATO	: 11	40
	GTGGTGGC	CT AC	CTC	CCAC	CGZ	AGCT	BACC	CGC	CAGAC	CC :	rggao	CTC	T GO	GCC	CATO	12	00
	AACCAGTTO	CT C	CACCI	TCTT	CAZ	AGGG	CGCC	ATC	ACCCC	AG :	rgcto	CTCC	T T	rgca:	rctgo	12	60
	AGGCCGCTC	GG GC	CCAGO	CCTT	CCI	rggao	CTGC	TGCT	GCT	CT (CTG	CTGTC	A GO	AGT	GCGG	2 13	20
10	GGGGCTTC	GG A	GCC1	CTGC	TGC	CAA	rggg	TCGC	ACA/	CA I	AGCT	PAAGA	7G . CC	SAGGT	rgtco	13	80
	TCTTCCAT	T A	CTTCC	CACAA	GC	CAG	GAG	TCAC	cccc	CAC :	CCT	CCCC	T GO	GCA	CACCI	14	40
	TGCTGA						٠.٠									14	46
	(209) IN	FORM	ATION	1 FOR	SEÇ	Q ID	NO:2	208:			•						
15		(A) (B) (C) (D)	LEN TYI STI	CE CH NGTH: PE: a RANDE POLOG	481 mino DNES Y: 1	L ami o aci SS: not 1	ino a id celev	cids vant	5			•••		-			
20	(x:	i) SI	EQUE1	ICE D	ESCI	RIPT	ION:	SEQ	ID N	10:2	08:						
	Met 1	Arg	Trp	Leu	Trp 5	Pro	Leu	Ala	Val	Ser 10	Leu	Ala	Val	Ile	Leu 15	Ala	
	Val	Gly	Leu	Ser 20	Arg	Val	Ser	Gly	Gly 25	Ala	Pro	Leu	His	Leu 30	Gly	Arg	
25	His	Arg	Ala 35	Glu	Thr	Gln	Glu	Gln 40	Gln	Ser	Arg	Ser	Lys 45	Arg	Gly	Thr	
	Glu	Asp 50	Glu	Glu	Ala	Lys	Gly 55	Val	Gln	Gln	Tyr	Val 60	Pro	Glu	Glu	Trp	
30	Ala 65	Glu	Tyr	Pro	Arg	Pro 70	Ile	His	Pro	Ala	Gly 75	Leu	Gln	Pro	Thr	80	
	Pro	Leu	Val	Ala	Thr 85	Ser	Pro	Asn	Pro	Asp 90	Lys	Asp	Gly	Gly	Thr 95	Pro	
	Asp	Ser	Gly	Gln	Glu	Leu	Arg	Gly	Asn	Leu	Thr	Gly	Ala	Pro	Gly	Gln	

					100					105					110		
		Arg	Leu	Gln 115	Ile	Gln	Asn	Pro	Leu 120	Tyr	Pro	Val	Thr	Glu 125	Ser	Ser	Tyr
5		Ser	Ala 130	Tyr	Ala	Ile	Met	Leu 135	Leu	Ala	Leu	Val	Val 140	Phe	Ala	Val	Gly
		Ile 145	Val	Gly	Asn	Leu	Ser 150	Val	Met	Суз	Ile	Val 155	Trp	His	Ser	Tyr	Tyr 160
		Leu	Lys	Ser	Ala	Trp 165	Asn	Ser	Ile	Leu	Ala 170	Ser	Leu	Ala	Leu	Trp 175	qeA
. 10		Phe	Leu	Val	Leu 180	Phe	Phe	Cys	Leu	Pro 185	Ile	Val	Ile	Phe	Asn 190	Glu	Ile
		Thr	Lys	Gln 195	Arg	Leu	Leu	Gly	Asp 200	Val	Ser	Cys	Arg	Ala 205	Val	Pro	Phe
15		Met	Glu 210	Val	Ser	Ser	Leu	Gly 215	Val	Thr	Thr	Phe	Ser 220	Leu	Cys	Ala	Leu
		Gly 225	Ile	Asp	Arg	Phe	Ніs 230	Val	Ala	Thr	Ser	Thr 235	Leu	Pro	Lys	Val	Arg 240
••	• • • •	Pro	Ïle	Glu	Arg	Cys 245	Gln	Ser	Ile	Leu	Ala 250	Lys	Leu	Ala	Val	Ile 255	Trp
20		Val	Gly	Ser	Met 260	Thr	Leu	Ala	Val	Pro 265	Glu	Leu	Leu	Leu	Trp 270	Gln	Leu
		Ala	Gln	Glu 275	Pro	Ala	Pro	Thr	Met 280	Gly	Thr	Leu	Asp	Ser 285	Cys	Ile	Met
25		Lys	Pro 290	Ser	Ala	Ser	Leu	Pro 295	Glu	Ser	Leu	Tyr	Ser 300	Leu	Val	Met	Thr
		Tyr 305	Gln	Asn	Ala	Arg	Met 310	Trp	Trp	Tyr	Phe	Gly 315	Суз	Tyr	Phe	Суз	Leu 320
		Pro	Ile	Leu	Phe	Thr 325	Val	Thr	Cys	Gln	Leu 330	Val	Thr	Trp	Arg	Val 335	Arg.
30		Gly	Pro	Pro	Gly 340	Arg	Lys	Ser	Glu	Cys 345	Arg	Ala	Ser	Lys	His 350	Glu	Gln
		Суз	Glu	Ser 355	Gln	Leu	Lys	Ser	Thr 360	Val	Val	Gly	Leu	Thr 365	Val	Val	Tyr
35		Ala	Phe 370	Cys	Thr	Leu	Pro	Glu 375	Asn	Val	Сув	Asn	Ile 380	Val	Val	Ala	Tyr
		Leu 385	Ser	Thr	Glu	Leu	Thr 390	Arg	Gln	Thr	Leu	Asp 395	Leu	Leu	Gly	Leu	Ile 400

•	-	
-1	66	
	111	

	Asn	Gln	Phe	Ser	Thr 405	Phe	Phe	Lys	Gly	Ala 410	Ile	Thr	Pro	Val	Leu 415	Leu
	Leu	Cys	Ile	Cys 420	Arg	Pro	Leu	Gly	Gln 425	Ala	Phe	Leu	Asp	Cys 430	Cys	Cys
5	Cys	Cya	Cys 435	Cys	Glu	Glu	Cys	Gly 440	Gly	Ala	Ser	Glu	Ala 445	Ser	Ala	Ala
	Asn	Gly 450	Ser	Asp	Asn	Lys	Leu 455	Lys	Thr	Glu	Val	Ser 460	Ser	Ser	Ile	Tyr
0	Phe 465	His	Lys	Pro	Arg	Glu 470	Ser	Pro	Pro	Leu	Leu 475	Pro	Leu	Gly	Thr	Pro 480
	Cys															

(210) INFORMATION FOR SEQ ID NO:209:

1

15

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1101 base pairs (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:209:

ATGTGGAACG CGACGCCCAG CGAAGAGCCG GGGTTCAACC TCACACTGGC CGACCTGGAC 60 TGGGATGCTT CCCCCGGCAA CGACTCGCTG GGCGACGAGC TGCTGCAGCT CTTCCCCGCG CCGCTGCTGG CGGGCGTCAC AGCCACCTGC GTGGCACTCT TCGTGGTGGG TATCGCTGGC AACCTGCTCA CCATGCTGGT GGTGTCGCGC TTCCGCGAGC TGCGCACCAC CACCAACCTC 25 TACCTGTCCA GCATGGCCTT CTCCGATCTG CTCATCTTCC TCTGCATGCC CCTGGACCTC 300 GTTCGCCTCT GGCAGTACCG GCCCTGGAAC TTCGGCGACC TCCTCTGCAA ACTCTTCCAA 360 TTCGTCAGTG AGAGCTGCAC CTACGCCACG GTGCTCACCA TCACAGCGCT GAGCGTCGAG 420 CGCTACTTCG CCATCTGCTT CCCACTCCGG GCCAAGGTGG TGGTCACCAA GGGGCGGGTG 480 AAGCTGGTCA TCTTCGTCAT CTGGGCCGTG GCCTTCTGCA GCGCCGGGCC CATCTTCGTG 540 30 CTAGTCGGGG TGGAGCACGA GAACGGCACC GACCCTTGGG ACACCAACGA GTGCCGCCCC 600 ACCGAGTTTG CGGTGCGCTC TGGACTGCTC ACGGTCATGG TGTGGGTGTC CAGCATCTTC 660 TTCTTCCTTC CTGTCTTCTG TCTCACGGTC CTCTACAGTC TCATCGGCAG GAAGCTGTGG 720 CGGAGGAGGC GCGGCGATGC TGTCGTGGGT GCCTCGCTCA GGGACCAGAA CCACAAGCAA

	ACCAAGAA	LAA I	GCTG	GCTG	T AG	TGGT	GTTT	. GCC	TTCA	TCC	TCTG	CTGG	CT C	CCCI	TCCA	C	840
•	GTAGGGCG	AT A	TTTA	TTTT	C CA	AATC	CTTT	GAG	CCTG	GCT	CCTI	'GGAG	T TA	GCTC	'AGAT	'C	900
	AGCCAGTA	CT G	CAAC	CTCG	T GI	CCTI	TGTC	CTC	TTCT	ACC	TCAG	TGCT	GC C	'ATCA	ACCC	C:	960
	ATTCTGTA	.CA A	CATC	ATGT	C CA	AGAA	GTAC	CGG	GTGG	CAG	TGTT	CAGA	CT T	CTGG	GATT	'C 1	020
5	GAACCCTT	CT C	CCAG	AGAA	A GC	TCTC	CACT	CTG	AAAG	ATG	AAAG	TTCT	CG G	GCCT	GGAC	'A 1	080
	GAATCTAG	TA T	TAAT	ACAT	G A											1:	101
	(211) IN	FORM	OITA	n fo	R SE	Q ID	NO:	210:									
10	(i	(A (B (C	QUEN) LE) TY) ST) TO	ngth Pe : Rand	: 36 amin EDNE	6 am o ac SS:	ino id	acid									
	(i	i) M	OLEC	ULE '		: pr	otei	n			•					٠	
	(x	i) S	EQUE	NCE 1	DESC	RIPT	ION:	SEQ	ID !	NO:2	10:						
. 15 	Met 1	Trp	Asn	Ala	Thr 5	Pro	Ser	Glu	Glu 	Pro 10	Gly	Phe	Asn	Leu	Thr 15	Leu	
	Ala	Asp	Leu	Asp 20	Trp	Asp	Ala	Ser	Pro 25	Gly	Asn	Asp	Ser	Leu 30	Gly	Asp	
20	Glu	Leu	Leu 35	Gln	Leu	Phe	Pro	Ala 40	Pro	Leu	Leu	Ala	Gly 45	Val	Thr	Ala	
	Thr	Cys 50	Val	Ala	Leu	Phe	Val 55	Val	Gly	Ile	Ala	Gly 60	Asn	Leu	Leu	Thr	
	Met 65	Leu	Val	Val	Ser	Arg 70 .		Arg	Glu	Leu	Arg 75	Thr	Thr	Thr	Asn	Leu 80	
25	Tyr	Leu	Ser	Ser	Met 85	Ala	Phe	Ser	Asp	Leu 90	Leu	Ile	Phe	Leu	Cys 95	Met	
	Pro	Leu	Asp	Leu 100	Val	Arg	Leu	Trp	Gln 105	Tyr	Arg	Pro	Trp	Asn 110	Phe	Gly	
30	Asp	Leu	Leu 115	Cys	Lys	Leu	Phe	Gln 120	Phe	Val	Ser	Glu	Ser 125	Cys	Thr	Tyr	
	Ala	Thr 130	Val	Leu	Thr	Ile	Thr 135	Ala	Leu	Ser	Val	Glu 140	Arg	Tyr	Phe	Ala	
	Ile 145	Суз	Phe	Pro	Leu	Arg 150	Ala	Lys	Val	Val	Val 155	Thr	Lys	Gly	Arg	Val 160	
35	Lys	Leu	Val	Ile	Phe	Val	Ile	Trp	Ala	Val	Ala	Phe	Cys	Ser	Ala	Gly	

					165	;				170)				175	
	Pro) Ile	Phe	Val	Leu	Val	Gly	Val	Glu 185		Glu	Asn	Gly	Thr 190		Pro
5	Trp	Asp	Thr 195	Asn	Glu	Cys	Arg	Pro 200	Thr	Glu	Phe	Ala	Val 205		Ser	Gly
	Leu	Leu 210	Thr	Val	Met	Val	Trp 215	Val	Ser	Ser	Ile	Phe 220	Phe	Phe	Leu	Pro
	Val 225	Phe	Суз	Leu	Thr	Val 230	Leu	Tyr	Ser	Leu	Ile 235	Gly	Arg	Lys	Leu	Trp 240
10	Arg	Arg	Arg	Arg	Gly 245	Asp	Ala	Val	Val	Gly 250	Ala	Ser	Leu	Arg	Asp 255	Gln
	Asn	His	Lys	Gln 260	Thr	Lys	Lys	Met	Leu 265	Ala	Val	Val	Val	Phe 270	Ala	Phe
15	Ile	Leu	Cys 275	Trp	Leu	Pro	Phe	His 280	Val	Gly	Arg	Tyr	Leu 285	Phe	Ser	Lys
	· ····Ser	Phe 290	Glu	Pro	Gly	Ser	Leu 295	Glu	Ile _.	Äla	Gl'n	Ile 300	Ser	Gln	Tyr	Cys
	305	Leu	Val	Ser	'Phe'	Val 310	Leu	Phe	Tyr	Leu	Ser 315	Ala	Āla	Ile	Asn	 Pro 320
20	Ile	Leu	Tyr	Asn	Ile 325	Met	Ser	Lys	Lys	Tyr 330	Arg	Val	Ala	Val	Phe 335	Arg
	Leu	Leu	Gly	Phe 340	Glu	Pro	Phe		Gln 345	Arg	Lys	Leu	Ser	Thr 350	Leu	Lys
25	Asp	Glu	Ser 355	Ser	Arg	Ala		Thr 360	Glu	Ser	Ser		Asn 365	Thr		
	(212) INE	FORMA	TION	FOR	SEQ	ID	NO:2	11:								
30	(i)	(A) (B) (C)	LEN TYP STR	E CH GTH: E: n ANDE OLOG	184 ucle DNES	2 ba ic a S: s	se p cid ingl	airs								
	(ii	.) MO	LECU	LE T	YPE:	DNA	(ge	nomi	c)							
	(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ :	ID N	0:21	1:					
	ATGCGAGCC	C CG	GGCG	CGCT	TCT	CGCC	CGC 2	ATGT	CGCG	GC T.	ACTG	CTTC'	r gc	TACT	GCTC	60
35	AAGGTGTCT	G CC	TCTT	CTGC	CCT	CGGG	GTC (GCCC	CTGC	GT C	CAGA	AACG	A AA	CTTG:	rctg	120
	GGGGAGAGC	T GT	GCAC	CTAC	AGT	GATC	CAG (CGCC	GCGG	CA G	GGAC	CCT	G GG(GACCO	GGA	180

AATTCTGCAA GAGACGTTCT GCGAGCCCGA GCACCCAGGG AGGAGCAGGG GGCAGCGTTT 240 CTTGCGGGAC CCTCCTGGGA CCTGCCGGCG GCCCCGGGCC GTGACCCGGC TGCAGGCAGA 300 GGGGCGGAGG CGTCGGCAGC CGGACCCCCG GGACCTCCAA CCAGGCCACC TGGCCCCTGG 360 AGGTGGAAAG GTGCTCGGGG TCAGGAGCCT TCTGAAACTT TGGGGAGAGG GAACCCCACG GCCCTCCAGC TCTTCCTTCA GATCTCAGAG GAGGAAGAGA AGGGTCCCAG AGGCGCTGGC ATTTCCGGGC GTAGCCAGGA GCAGAGTGTG AAGACAGTCC CCGGAGCCAG CGATCTTTTT 540 TACTGGCCAA GGAGAGCCGG GAAACTCCAG GGTTCCCACC ACAAGCCCCT GTCCAAGACG 600 GCCAATGGAC TGGCGGGGCA CGAAGGGTGG ACAATTGCAC TCCCGGGCCG GGCGCTGGCC 660 CAGAATGGAT CCTTGGGTGA AGGAATCCAT GAGCCTGGGG GTCCCCGCCG GGGAAACAGC 720 ACGAACCGGC GTGTGAGACT GAAGAACCCC TTCTACCCGC TGACCCAGGA GTCCTATGGA 780 GCCTACGCGG TCATGTGTCT GTCCGTGGTG ATCTTCGGGA CCGGCATCAT TGGCAACCTG 840 GCGGTGATGT GCATCGTGTG CCACAACTAC TACATGCGGA GCATCTCCAA CTCCCTCTTG 900 GCCAACCTGG CCTTCTGGGA CTTTCTCATC ATCTTCTTCT GCCTTCCGCT GGTCATCTTC 960 CACGAGCTGA CCAAGAAGTG GCTGCTGGAG GACTTCTCCT GCAAGATCGT GCCCTATATA 1020 15 GAGGTCGCCT CTCTGGGAGT CACCACTTTC ACCTTATGTG CTCTGTGCAT AGACCGCTTC CGTGCTGCCA CCAACGTACA GATGTACTAC GAAATGATCG AAAATTGTTC CTCAACAACT GCCAAACTTG CTGTTATATG GGTGGGAGCT CTATTGTTAG CACTTCCAGA AGTTGTTCTC 1200 CGCCAGCTGA GCAAGGAGGA TTTGGGGTTT AGTGGCCGAG CTCCGGCAGA AAGGTGCATT ATTAAGATCT CTCCTGATTT ACCAGACACC ATCTATGTTC TAGCCCTCAC CTACGACAGT 1320 GCGAGACTGT GGTGGTATTT TGGCTGTTAC TTTTGTTTGC CCACGCTTTT CACCATCACC 1380 TGCTCTCTAG TGACTGCGAG GAAAATCCGC AAAGCAGAGA AAGCCTGTAC CCGAGGGAAT 1440 AAACGGCAGA TTCAACTAGA GAGTCAGATG AAGTGTACAG TAGTGGCACT GACCATTTTA 1500 TATGGATTTT GCATTATTCC TGAAAATATC TGCAACATTG TTACTGCCTA CATGGCTACA 1560 GGGGTTTCAC AGCAGACAAT GGACCTCCTT AATATCATCA GCCAGTTCCT TTTGTTCTTT 25 AAGTCCTGTG TCACCCCAGT CCTCCTTTTC TGTCTCTGCA AACCCTTCAG TCGGGCCTTC ATGGAGTGCT GCTGCTGTTG CTGTGAGGAA TGCATTCAGA AGTCTTCAAC GGTGACCAGT GATGACAATG ACAACGAGTA CACCACGGAA CTCGAACTCT CGCCTTTCAG TACCATACGC 1800 CGTGAAATGT CCACTTTTGC TTCTGTCGGA ACTCATTGCT GA 1842

	(213) INF	FORMA'	TION	FOR SI	Q ID	NO:	212:								
5		(A) (B) (C) (D)	LENG TYPE STRA TOPO	CHARA TH: 6: camin NDEDNI LOGY:	3 am no ac SS: not	ino a id rele	acid: vant	3							
	(xi	.) SE	QUENC	E DESC	RIPT	ION:	SEQ	ID 1	NO:21	L2:					
10	Met 1	Arg i	Ala P	ro Gly	/ Ala	Leu	Leu	Ala	Arg 10	Met	Ser	Arg	Leu	Leu 15	Leu
•	Leu	Leu 1		eu Lys 0	val	Ser	Ala	Ser 25	Ser	Ala	Leu	Gly	Val 30	Ala	Pro
	Ala	1.65	Arg A	sn Gli	Thr	Cya	Leu 40	Gly	Glu	Ser	Cys	Ala 45	Pro	Thr	Val
15		Gln i	Arg A	rg Gly		Asp 55		Trp	_		Gly 60	Asn	Ser	Ala	Arg
			Leu A	rg Ala	Arg			Arg				-			Phe 80
20	Leu	Ala (Gly P	ro Sei 85	Trp	Asp	Leu	Pro	Ala 90	Ala	Pro	Gly	Arg	Asp 95	Pro
•	Ala	Ala (_	rg Gly 00	Ala	Glu	Ala	Ser 105	Ala	Ala	Gly	Pro	Pro 110	Gly	Pro
	Pro		Arg P 115	ro Pro	Gly	Pro	Trp 120	Arg	Trp	Lys	Gly	Ala 125	Arg	Gly	Gln
25	Glu	Pro 8	Ser G	lu Thi	Leu	Gly 135	Arg	Gly	Asn	Pro	Thr 140	Ala	Leu	Gln	Leu
	Phe 145	Leu (Gln I	le Sei	Glu 150	Glu	Glu	Glu	Lys	Gly 155	Pro	Arg	Gly	Ala	Gly 160
30	Ile	Ser (Gly A	rg Sei 169		Glu	Gln	Ser	Val 170	Lys	Thr	Val	Pro	Gly 175	Ala
	Ser	Asp 1		he Tyi 80	Trp	Pro	Arg	Arg 185	Ala	Gly	Lys	Leu	Gln 190	Gly	Ser
	His		Lys P 195	ro Le	ser	Lys	Thr 200	Ala	Asn	Gly	Leu	Ala 205	Gly	His	Glu
35	Gly	Trp ?	Thr I	le Ala	Leu	Pro 215	Gly	Arg	Ala	Leu	Ala 220	Gln	Asn	Gly	Ser
	Leu	Gly (Glu G	ly Ile	His	Glu	Pro	Gly	Gly	Pro	Arg	Arg	Gly	Asn	Ser

	.225					230					235					240
	Thr	Asn	Arg	Arg	Val 245		Leu	Lys	Asn	Pro 250		Tyr	Pro	Leu	Thr 255	
5	Glu	Ser	Tyr	Gly 260		Tyr	Ala	Val	Met 265		Leu	Ser	Val	Val 270		Phe
	Gly	Thr	Gly 275		Ile	Gly	Asn	Leu 280		Val	Met	Cys	Ile 285		Cys	His
	Asn	Tyr 290	Tyr	Met	Arg	Ser	Ile 295	Ser	Asn	Ser	Leu	Leu 300		Asn	Leu	Ala
10	Phe 305		Asp	Phe	Leu	Ile 310	Ile	Phe	Phe	Cys	Leu 315	Pro	Leu	Val	Ile	Phe 320
	His	Glu	Leu	Thr	Lys 325	Lys	Trp	Leu	Leu	Glu 330	Asp	Phe	Ser	Cys	Lys 335	Ile
15	Val	Pro	Tyr	11e 340	Glu	Val	Ala	Ser	Leu 345	Gly	Val	Thr	Thr	Phe 350	Thr	Leu
	· Cys	Ala	Leu 355	'Cys	Ile	Asp	Arg	Phe 360	Arg	Ala	Alá	Thr	Asn 365	Val	Gln	Met
	Tyr	Tyr 370	Glu	Met	Ile	Glu	Asn 375	Cys	Sēr	Ser	Thr	Thr 380	Ala	Lys	Leu	Ala
20	Val 385	Ile	Trp	Val	Gly	Ala 390	Leu	Leu	Leu	Ala	Leu 395	Pro	Glu	Val	Val	Leu 400
	Arg	Gln	Leu	Ser	Lys 405	Glu	Asp	Leu	Gly	Phe 410	Ser	Gly	Arg	Ala	Pro 415	Ala
25	Glu	Arg	Cys	Ile 420	Ile	Lys	Ile	Ser	Pro 425	Asp	Leu	Pro	Asp	Thr 430	Ile	Tyr
	Val	Leu	Ala 435	Leu	Thr	Tyr	Asp	Ser 440	Ala	Arg	Leu	Trp	Trp 445	Tyr	Phe	Gly
	Cys	Tyr 450	Phe	Cys	Leu	Pro	Thr 455	Leu	Phe	Thr	Ile	Thr 460	Cys	Ser	Leu	Val
30	Thr 465	Ala	Arg	Lys	Ile	Arg 470	Lys	Ala	Glu	Lys	Ala 475	Cys	Thr	Arg	Gly	Asn 480
	Lys	Arg	Gln	Ile	Gln 485	Leu	Glu	Ser	Gln	Met 490	Lys	Cys	Thr	Val	Val 495	Ala
35	Leu	Thr	Ile	Leu 500	Tyr	Gly	Phe	Cys	Ile 505	Ile	Pro	Glu	Asn	Ile 510	Cys	Asn
	Ile	Val	Thr 515	Ala	Tyr	Met	Ala	Thr 520	Gly	Val	Ser	Gln	Gln 525	Thr	Met	qeA

172

		Leu Asn 330	Ile Il	e Ser	Gln 535	Phe	Leu	Leu	Phe	Phe 540	Lys	Ser	Cys	Val	
	Thr P 545	ro Val	Leu Le	u Phe 550	Cys	Leu	Cys	Lys	Pro 555	Phe	Ser	Arg	Ala	Phe 560	
5	Met G	lu Cys	Cys Cy 56		Cys	Cys	Glu	Glu 570	Cys	Ile	Gln	Lys	Ser 575	Ser	
	Thr V	al Thr	Ser As _] 580	Asp	Asn	Asp	Asn 585	Glu	Tyr	Thr	Thr	Glu 590	Leu	Glu	
10	Leu S	er Pro 595	Phe Se	Thr	Ile	Arg 600	Arg	Glu	Met	Ser	Thr 605	Phe	Ala	Ser	
		ly Thr	His Cy	3											
	(214) INFO	RMATION	FOR SI	Q ID	NO:2	213:					٠.				
15		SEQUENC (A) LEN (B) TYP (C) STR (D) TOP	GTH: 12 E: nucl ANDEDNI	:48 ba .eic a :SS: s	se p cid ingl	airs			·. •						
	(ii)	MOLECU	LE TYPI	: DNÁ	. (ge	nomi	c)	: .			-				
20	(xi)	SEQUEN	CE DESC	RIPTI	ON:	SEQ	ID N	0:21	3:						
	ATGGTTTTTG	CTCACA	GAAT GO	ATAAC	AGC	AAGC	CACA	TT T	'GATT	ATTC	C TA	CACI	TCTG		6(
	GTGCCCCTCC	AAAACC	GCAG CT	GCACT	GAA	ACAG	CCAC	AC C	TCTG	CCAA	G CC	'AATA	.CCTG	1:	20
	ATGGAATTAA	GTGAGG	AGCA CA	GTTGG	ATG	AGCA	ACCA	AA C	AGAC	CTTC	A CT	ATGT	GCTG	1.5	В
	AAACCCGGGG	AAGTGG	CCAC AG	CCAGC	ATC	TTCT	TTGG	GA T	TCTG	TGGT	T GT	TTTC	TATC	24	4 (
25	TTCGGCAATT	CCCTGGT	TTTG TI	TGGTC	ATC	CATA	GGAG	TA G	GAGG	ACTC	A GT	CTAC	CACC	31	00
	AACTACTTTG	TGGTCT	CCAT GG	CATGT	GCT	GACC	TTCT	CA T	CAGC	GTTG	C CA	GCAC	GCCT	36	5 C
	TTCGTCCTGC	TCCAGT	CAC CA	CTGGA	AGG	TGGA	CGCT	GG G	TAGT	GCAA	C GT	GCAA	GGTT	42	5 (
	GTGCGATATT	TTCAATA	ATCT CA	CTCCA	GGT	GTCC.	AGAT	CT A	CGTT	CTCC	т ст	CCAT	CTGC	48	30
	ATAGACCGGT	TCTACAC	CCAT CG	TCTAT	CCT	CTGA	GCTT	CA A	GGTG'	TCCA	G AG	AAAA	AGCC	54	1 C
30	AAGAAAATGA	TTGCGGC	CATC GI	GGATC'	TTT	GATG(CAGG	СТ Т	TGTG	ACCC	C TG	TGCT	CTTT	60)(
	TTCTATGGCT	CCAACTO	GGA CA	GTCAT	TGT I	AACT	ATTT(сс т	CCCC'	rcct(C TT	GGGA	AGGC	66	5 C
	ACTGCCTACA	CTGTCAT	CCA CI	TCTTG	GTG (GGCT	TTGT	GA T	TCCA'	rctg'	r cc	TCAT.	AATT	72	20

TTATTTTACC AAAAGGTCAT AAAATATATT TGGAGAATAG GCACAGATGG CCGAACGGTG

	AGGAGGACAA TGAACATTGT CCCTCGGACA AAAGTGAAAA CTAAAAAGAT GTTCCTCATT 84	10
	TTAAATCTGT TGTTTTTGCT CTCCTGGCTG CCTTTTCATG TAGCTCAGCT ATGGCACCCC 90	00
	CATGAACAAG ACTATAAGAA AAGTTCCCTT GTTTTCACAG CTATCACATG GATATCCTTT 98	50
	AGTTCTTCAG CCTCTAAACC TACTCTGTAT TCAATTTATA ATGCCAATTT TCGGAGAGGG 102	0:
5	ATGAAAGAGA CTTTTTGCAT GTCCTCTATG AAATGTTACC GAAGCAATGC CTATACTATC 108	10
	ACAACAAGTT CAAGGATGGC CAAAAAAAAC TACGTTGGCA TTTCAGAAAT CCCTTCCATG 114	0
	GCCAAAACTA TTACCAAAGA CTCGATCTAT GACTCATTTG ACAGAGAAGC CAAGGAAAA 120	0
	AAGCTTGCTT GGCCCATTAA CTCAAATCCA CCAAATACTT TTGTCTAA 124	8
	(215) INFORMATION FOR SEQ ID NO:214:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 415 amino acids	
	(B) TYPE: amino acid (C) STRANDEDNESS:	
.•	(D) TOPOLOGY: not relevant	
15	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:214:	
	Met Val Phe Ala His Arg Met Asp Asn Ser Lys Pro His Leu Ile Ile 1 5 10 15	
20	Pro Thr Leu Leu Val Pro Leu Gln Asn Arg Ser Cys Thr Glu Thr Ala 20 25 30	
	Thr Pro Leu Pro Ser Gln Tyr Leu Met Glu Leu Ser Glu Glu His Ser 35 40 45	
	Trp Met Ser Asn Gln Thr Asp Leu His Tyr Val Leu Lys Pro Gly Glu 50 55 60	
25	Val Ala Thr Ala Ser Ile Phe Phe Gly Ile Leu Trp Leu Phe Ser Ile 65 70 75 80	
	Phe Gly Asn Ser Leu Val Cys Leu Val Ile His Arg Ser Arg Arg Thr 85 90 95	
30	Gln Ser Thr Thr Asn Tyr Phe Val Val Ser Met Ala Cys Ala Asp Leu 100 105 110	
	Leu Ile Ser Val Ala Ser Thr Pro Phe Val Leu Leu Gln Phe Thr Thr 115 120 125	
	Gly Arg Trp Thr Leu Gly Ser Ala Thr Cys Lys Val Val Arg Tyr Phe 130 135 140	

	Gln 145	Tyr	Leu	Thr	Pro	Gly 150	Val	Gln	Ile	Tyr	Val 155	Leu	Leu	Ser	Ile	Cys 160
	Ile	Asp	Arg	Phe	Tyr 165	Thr	Ile	Val	Tyr	Pro 170	Leu	Ser	Phe	Lys	Val 175	Ser
5	Arg	Glu	Lys	Ala 180	Lys	Lys	Met	Ile	Alá 185	Ala	Ser	Trp	Ile	Phe 190	Asp	Ala
	Gly	Phe	Val 195	Thr	Pro	Val	Leu	Phe 200	Phe	Tyr	Gly	Ser	Asn 205	Trp	Asp	Ser
10	His	Cys 210	Asn	Tyr	Phe	Leu	Pro 215	Ser	Ser	Trp	Glu	Gly 220	Thr	Ala	Tyr	Thr
	Val 225	Ile	His	Phe	Leu	Val 230	Gly	Phe	Val	Ile	Pro 235	Ser	Val	Leu	Ile	Ile 240
	Leu	Phe	Tyr	Gln	Lys 245	Val	Ile	Lys	Tyr	11e 250	Trp	Arg	Ile	Gly	Thr 255	Asp
15	Gly	Arg	Thr	Val 260	Arg	Arg	Thr	Met	Asn 265	Ile	Val	Pro	Arg	Thr 270	Lys	Val
	Lys 	Thr	Lys 275	Lys	Met	Phe	Leu	Ile 280	Leu	Asn 	Leu	Leu	Phe 285	Leu	Leu	Ser
20	Trp	Leu 290	Pro	Phe	His	Val	Ala 295	Gln	Leu	Trp	His	Pro 300	His	Glu	Gln	Asp
	Tyr 305	Lys	Lys	Ser	Ser	Leu 310	Val	Phe	Thr	Ala	Ile 315	Thr	Trp	Ile	Ser	Phe 320
	Ser	Ser	Ser	Ala	Ser 325	Lys	Pro	Thr	Leu	Tyr 330	Ser	Ile	Tyr	Asn	Ala 335	Asn
25	Phe	Arg	Arg	Gly 340	Met	Lys	Glu	Thr	Phe 345	Cys	Met	Ser	Ser	Met 350	Lys	Cys
	Tyr	Arg	Ser 355	Asn	Ala	Tyr	Thr	Ile 360	Thr	Thr	Ser	Ser	Arg 365	Met	Ala	Lys
30	Lys	Asn 370	Tyr	Val	Gly	Ile	Ser 375	Glu	Ile	Pro	Ser	Met 380	Ala	Lys	Thr	Ile
	Thr 385	Lys	Asp	Ser	Ile	Tyr 390	Asp	Ser	Phe	Asp	Arg 395	Glu	Ala	Lys	Glu	Lys 400
	Lys	Leu	Ala	Trp	Pro 405	Ile	Asn	Ser	Asn	Pro 410	Pro	Asn	Thr	Phe	Val 415	

- 35 (216) INFORMATION FOR SEQ ID NO:215:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1842 base pairs

- (B) TYPE: nucleic acid (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:215:

		,,		COCKII I ION .	SEQ ID NO:	215:		
		ATGGGGCCC	A CCCTAGCGGT	TCCCACCCCC	TATGGCTGTA	TTGGCTGTA	GCTACCCCAG	60
		CCAGAATACC	CACCGGCTCT	AATCATCTTT	ATGTTCTGCG	CGATGGTTAT	CACCATCGTT	120
		GTAGACCTAA	TCGGCAACTC	CATGGTCATT	TTGGCTGTGA	CGAAGAACAA	GAAGCTCCGG	180
		AATTCTGGCA	ACATCTTCGT	GGTCAGTCTC	TCTGTGGCCG	ATATGCTGGT	GGCCATCTAC	240
	10	CCATACCCTT	TGATGCTGCA	TGCCATGTCC	ATTGGGGGCT	GGGATCTGAG	CCAGTTACAG	300
		TGCCAGATGG	TCGGGTTCAT	CACAGGGCTG	AGTGTGGTCG	GCTCCATCTT	CAACATCGTG	360
		GCAATCGCTA	TCAACCGTTA	CTGCTACATC	TGCCACAGCC	TCCAGTACGA	ACGGATCTTC	420
		AGTGTGCGCA	ATACCTGCAT	CTACCTGGTC	ATCACCTGGA	TCATGACCGT	CCTGGCTGTC	480
		CTGCCCAACA	TGTACATTGG	CACCATCGAG	TACGATCCTC	GCACCTACAC	CTGCATCTTC	540
	15	AACTATCTGA	ACAACCCTGT	CTTCACTGTT	ACCATCGTCT	GCATCCACTT	CGTCCTCCCT	.600
c		CTCCTCATCG	TGGGTTTCTG	CTACGTGAGG	ATCTGGACCA	AAGTGCTGGC	GGCCCGTGAC	660
		CCTGCAGGGC	AGAATCCTGA	CAACCAACTT	GCTGAGGTTC	GCAATAAACT	AACCATGTTT	720
		GTGATCTTCC	TCCTCTTTGC	AGTGTGCTGG	TGCCCTATCA	ACGTGCTCAC	TGTCTTGGTG	780
		GCTGTCAGTC	CGAAGGAGAT	GGCAGGCAAG	ATCCCCAACT	GGCTTTATCT	TGCAGCCTAC	840
	20	TTCATAGCCT	ACTTCAACAG	CTGCCTCAAC	GCTGTGATCT	ACGGGCTCCT	CAATGAGAAT	900
		TTCCGAAGAG	AATACTGGAC	CATCTTCCAT	GCTATGCGGC	ACCCTATCAT	ATTCTTCTCT	960
		GGCCTCATCA	GTGATATTCG	TGAGATGCAG	GAGGCCCGTA	CCCTGGCCCG	CGCCCGTGCC	1020
		CATGCTCGCG	ACCAAGCTCG	TGAACAAGAC	CGTGCCCATG	CCTGTCCTGC	TGTGGAGGAA	1080
		ACCCCGATGA	ATGTCCGGAA	TGTTCCATTA	CCTGGTGATG	CTGCAGCTGG	CCACCCGAC	1140
	25	CGTGCCTCTG	GCCACCCTAA	GCCCCATTCC	AGATCCTCCT	CTGCCTATCG	CAAATCTGCC	1200
		TCTACCCACC	ACAAGTCTGT	CTTTAGCCAC	TCCAAGGCTG	CCTCTGGTCA	CCTCAAGCCT	1260
		GTCTCTGGCC	ACTCCAAGCC	TGCCTCTGGT	CACCCCAAGT	CTGCCACTGT	CTACCCTAAG	1320
		CCTGCCTCTG	TCCATTTCAA	GGCTGACTCT	GTCCATTTCA	AGGGTGACTC	TGTCCATTTC	1380
		AAGCCTGACT	CTGTTCATTT	CAAGCCTGCT	TCCAGCAACC	CCAAGCCCAT	CACTGGCCAC	1440

176

	CATGTCTCTG	CTGGCAGCCA	CTCCAAGTCT	GCCTTCAATG	CTGCCACCAG	CCACCCTAAA	1500
	CCCATCAAGC	CAGCTACCAG	CCATGCTGAG	CCCACCACTG	CTGACTATCC	CAAGCCTGCC	1560
	ACTACCAGCC	ACCCTAAGCC	CGCTGCTGCT	GACAACCCTG	AGCTCTCTGC	CTCCCATTGC	1620
	CCCGAGATCC	CTGCCATTGC	CCACCCTGTG	TCTGACGACA	GTGACCTCCC	TGAGTCGGCC	1680
5	TCTAGCCCTG	CCGCTGGGCC	CACCAAGCCT	GCTGCCAGCC	AGCTGGAGTC	TGACACCATC	1740
	GCTGACCTTC	CTGACCCTAC	TGTAGTCACT	ACCAGTACCA	ATGATTACCA	TGATGTCGTG	1800
	GTTGTTGATG	TTGAAGATGA	TCCTGATGAA	ATGGCTGTGT	GA		1842

(217) INFORMATION FOR SEQ ID NO:216:

(i) SEQUENCE CHARACTERISTICS:

10

- (A) LENGTH: 613 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:216:

Met Gly Pro Thr Leu Ala Val Pro Thr Pro Tyr Gly Cys Ile Gly Cys 1 5 10 15

Lys Leu Pro Gln Pro Glu Tyr Pro Pro Ala Leu Ile Ile Phe Met Phe 20 25 30

Cys Ala Met Val Ile Thr Ile Val Val Asp Leu Ile Gly Asn Ser Met 35 40 45

Val Ile Leu Ala Val Thr Lys Asn Lys Lys Leu Arg Asn Ser Gly Asn 50 55 60

Ile Phe Val Val Ser Leu Ser Val Ala Asp Met Leu Val Ala Ile Tyr 65 70 75 80

Pro Tyr Pro Leu Met Leu His Ala Met Ser Ile Gly Gly Trp Asp Leu 85 90 95

Ser Gln Leu Gln Cys Gln Met Val Gly Phe Ile Thr Gly Leu Ser Val

Val Gly Ser Ile Phe Asn Ile Val Ala Ile Ala Ile Asn Arg Tyr Cys
115 120 125

Tyr Ile Cys His Ser Leu Gln Tyr Glu Arg Ile Phe Ser Val Arg Asn 130 135 140

Thr Cys Ile Tyr Leu Val Ile Thr Trp Ile Met Thr Val Leu Ala Val
35 145 150 155 160

	Leu	Pro	Asn	Met	Tyr 165	Ile	Gly	Thr	Ile	Glu 170	Tyr	Asp	Pro	Arg	Thr 175	Tyr
	Thr	Cys	Ile	Phe 180	Asn	Tyr	Leu	Asn	Asn 185	Pro	Val	Phe	Thr	Val 190	Thr	Ile
5	Val	Cys	Ile 195	His	Phe	Val	Leu	Pro 200	Leu	Leu	Ile	Val	Gly 205	Phe	Cys	Tyr
	Val	Arg 210	Ile	Trp	Thr	Lys	Val 215	Leu.	Ala	Ala	Arg	Asp 220	Pro	Ala	Gly	Gln
10	Asn 225	Pro	Asp	Asn	Gln	Leu 230	Ala	Glu	Val	Arg	Asn 235	Lys	Leu	Thr	Met	Phe 240
	Val	Ile	Phe	Leu	Leu 245	Phe	Ala	Val	Суз	Trp 250	СЛа	Pro	Ile	Asn	Val 255	Leu
÷	Thr	Val	Leu	Val 260	Ala	Val	Ser	Pro	Lys 265	Glu	Met	Ala	Gly	Lys 270	Ile	Pro
15	Asn	Trp	Leu 275	Tyr	Leu	Ala	Ala	Tyr 280	Phe	Ile	Ala	Tyr	Phe 285	Asn	Ser	Cys
	Leu	Asn 290	Ala	Val	Ile	Tyr 	Gly 295		Leu			Asn 300	Phe	Arg	Arg	Glu
20	Tyr 305	Trp	Thr	Ile	Phe	His 310	Ala	Met	Arg	His	Pro 315	Ile	Ile	Phe	Phe	Ser 320
	Gly	Leu	Ile	Ser	Asp 325	Ile	Arg	Glu	Met	Gln 330	Glu	Ala	Arg	Thr	Leu 335	Ala
	Arg	Ala	Arg	Ala 340	His	Ala	Arg	Asp	Gln 345	Ala	Arg	Glu	Gln	Asp 350	Arg	Ala
25	His	Ala	Cys 355,		Ala	Val	Glu	Glu 360	Thr	Pro	Met	Asn	Val 365	Arg	Asn	Val
	Pro	Leu 370	Pro	Gly	Asp	Ala	Ala 375	Ala	Gly	His	Pro	Asp 380	Arg	Ala	Ser	Gly
30	His 385	Pro	Lys	Pro	His	Ser 390	Arg	Ser	Ser	Ser	Ala 395	Tyr	Arg	Lys	Ser	Ala 400
	Ser	Thr	His	His	Lys 405	Ser	Val	Phe	Ser	His 410	Ser	Lys	Ala	Ala	Ser 415	Gly
	His	Leu	Lys	Pro 420	Val	Ser	Gly	His	Ser 425	Lys	Pro	Ala	Ser	Gly 430	His	Pro
35	Lys	Ser	Ala 435	Thr	Val	Tyr	Pro	Lys 440	Pro	Ala	Ser	Val	His 445	Phe	Lys	Ala
	Asp	Ser	Val	His	Phe	Lvs	Glv	Asp	Ser	Val	His	Phe	Lvs	Pro	Asp	Ser

		450		٠			455					460					
	Val 465	His	Phe	Lys	Pro	Ala 470	Ser	Ser	Asn	Pro	Lys 475	Pro	Ile	Thr	Gly	His 480	
5	His	Val	Ser	Ala	Gly 485	Ser	His	Ser	Lys	Ser 490	Ala	Phe	Asn	Ala	Ala 495	Thr	
	Ser	His	Pro	Lys 500	Pro	Ile	Lys	Pro	Ala 505	Thr	Ser	His	Ala	Glu 510	Pro	Thr	
	Thr	Ala	Asp 515	Tyr	Pro	Lys	Pro	Ala 520	Thr	Thr	Ser	His	Pro 525	Lys	Pro	Ala	
10	Ala	Ala 530	Asp	Asn	Pro	Glu	Leu 535	Ser	Ala	Ser	His	Cys 540	Pro	Glu	Ile	Pro	
	Ala 545	Ile	Ala	His		Val 550	Ser	Asp	Asp	Ser	Asp 555	Leu	Pro	Glu	Ser	Ala 560	
15	Ser	Ser	Pro	Ala	Ala 565	Gly	Pro	Thr	Lys	Pro 570	Ala	Ala	Ser	Gln	Leu 575	Glu	
	Ser	Asp	Thr	Ile 580	Ala	. Asp	Leu	Pro	Asp 585	Pro	Thr	Val	Val	Thr 590	Thr	Ser	
• •	Thr	 Asn	Asp 595	Tyr	His	Asp	Val	Val 600	Val	Val	Asp	Val	Glu 605	Asp	Asp	Pro	
20	Asp	Glu 610	Met	Ala	Val												
	(218) IN	FORM	OITA	N FO	R SE	Q ID	NO:	217:			٠						
25	(i	(B (C) LE) TY) ST	CE CINGTH PE: : RAND	: 18 nucl EDNE	54 b eic SS:	ase acid sing	pair	s								
	(i	i) M	OLEC	ULE '	TYPE	: DN	A (g	enom	ic)								
	(x	i) S	EQUE	NCE :	DESC	RIPT	ION:	SEQ	ID	NO : 2	17:						
30	ATGGGGCC	CA C	CCTA	GCGG	т тс	CCAC	cccc	TAT	GGCT	GTA	TTGG	CTGT	AA G	CTAC	CCCA	G	60
	CCAGAATA	.cc c	ACCG	GCTC	T AA	TCAT	CTTT	ATG	TTCT	GCG	CGAT	GGTT	AT C	ACCA	TCGT	T	120
	GTAGACCT	AA T	CGGC	AACT	C CA	TGGT	CATT	TTG	GCTG	TGA	CGAA	GAAC	AA G	AAGC	TCCG	G .	180
	AATTCTGG	CA A	CATC	TTCG	T GG	TCAG	TCTC	TCT	GTGG	CCG	TATA	GCTG	GT G	GCCA	TCTA	C :	240
	CCATACCC	TT T	GATG	CTGC	A TG	CCAT	GTCC	ATT	GGGG	GCT	GGGA	TCTG	AG C	CAGI	TACA	.G	300
35	TGCCAGAT	GG T	CGGG	TTCA	т са	CAGG	GCTG	AGT	GTGG	TCG	GCTC	CATC	TT C	AACA	TCGT	G	360

	GCAATCGCTA	TCAACCGTTA	CTGCTACATO	TGCCACAGC	TCCAGTACGA	A ACGGATCTTC	420
	AGTGTGCGCA	ATACCTGCAT	CTACCTGGT	ATCACCTGG#	TCATGACCGT	CCTGGCTGTC	480
	CTGCCCAACA	TGTACATTGG	CACCATCGAG	TACGATCCTC	GCACCTACAC	CTGCATCTTC	540
	AACTATCTGA	ACAACCCTGT	CTTCACTGTT	ACCATCGTCT	GCATCCACTI	CGTCCTCCCT	600
5	CTCCTCATCG	TGGGTTTCTG	CTACGTGAGG	ATCTGGACCA	AAGTGCTGGC	GGCCCGTGAC	660
						AACCATGTTT	720
	GTGATCTTCC	TCCTCTTTGC	AGTGTGCTGG	TGCCCTATCA	ACGTGCTCAC	TGTCTTGGTG	780
						TGCAGCCTAC	840
						CAATGAGAAT	900
10			•	GCTATGCGGC			960
			•	GAGGCCCGTA			1020
		•		CGTGCCCATG			1080
				CCTGGTGATG	•		1140
				AGATCCTCCT			1200
15				TCCAAGGCTG			1260
	•			CACCCCAAGT			1320
				GTCCATTTCA			1380
				TCCAGCAACC			1440
			•	GCCTTCAGTG			1500
20				AGCCATGCTG			1560
	CCCAAGCCTG	CCACTACCAG	CCACCCTAAG	CCCACTGCTG	CTGACAACCC	TGAGCTCTCT	1620
	GCCTCCCATT	GCCCCGAGAT	CCCTGCCATT	GCCCACCCTG	TGTCTGACGA	CAGTGACCTC	1680
	CCTGAGTCGG	CCTCTAGCCC	TGCCGCTGGG	CCCACCAAGC	CTGCTGCCAG	CCAGCTGGAG	1740
						CAATGATTAC	1800
25	CATGATGTCG	TGGTTGTTGA	TGTTGAAGAT	GATCCTGATG	AAATGGCTGT	GTGA	1854
	(219) INFOR	MATION FOR	SEQ ID NO:2	18:			

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 617 amino acids (B) TYPE: amino acid

180

(C) STRANDEDNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:218: 5 Met Gly Pro Thr Leu Ala Val Pro Thr Pro Tyr Gly Cys Ile Gly Cys Lys Leu Pro Gln Pro Glu Tyr Pro Pro Ala Leu Ile Ile Phe Met Phe 25 Cys Ala Met Val Ile Thr Ile Val Val Asp Leu Ile Gly Asn Ser Met 10 Val Ile Leu Ala Val Thr Lys Asn Lys Lys Leu Arg Asn Ser Gly Asn 55 60 Ile Phe Val Val Ser Leu Ser Val Ala Asp Met Leu Val Ala Ile Tyr 15 Pro Tyr Pro Leu Met Leu His Ala Met Ser Ile Gly Gly Trp Asp Leu Ser Gln Leu Gln Cys Gln Met Val Gly Phe Ile Thr Gly Leu Ser Val 105 100 Val Gly Ser Ile Phe Asn Ile Val Ala Ile Ala Ile Asn Arg Tyr Cys 20 Tyr Ile Cys His Ser Leu Gln Tyr Glu Arg Ile Phe Ser Val Arg Asn Thr Cys Ile Tyr Leu Val Ile Thr Trp Ile Met Thr Val Leu Ala Val 25 Leu Pro Asn Met Tyr Ile Gly Thr Ile Glu Tyr Asp Pro Arg Thr Tyr Thr Cys Ile Phe Asn Tyr Leu Asn Asn Pro Val Phe Thr Val Thr Ile Val Cys Ile His Phe Val Leu Pro Leu Leu Ile Val Gly Phe Cys Tyr 30 Val Arg Ile Trp Thr Lys Val Leu Ala Ala Arg Asp Pro Ala Gly Gln 215 Asn Pro Asp Asn Gln Leu Ala Glu Val Arg Asn Lys Leu Thr Met Phe 235

Val Ile Phe Leu Leu Phe Ala Val Cys Trp Cys Pro Ile Asn Val Leu

250

245

	Thr	Val	Leu	Val 260	Ala	Val	Ser	Pro	Lys 265	Glu	Met	Ala	Gly	Lys 270	Ile	Pro
	Asn	Trp	Leu 275	Tyr	Leu	Ala	Ala	Tyr 280	Phe	Ile	Ala	Tyr	Phe 285	Asn	Ser	Cys
5	Leu	Asn 290	Ala	Val	Ile	Tyr	Gly 295	Leu	Leu	Asn	Glu	Asn 300	Phe	Arg	Arg	Glu
	Tyr 305	Trp	Thr	Ile	Phe	His 310	Ala	Met	Arg	His	Pro 315	Ile	Ile	Phe	Phe	Ser 320
10	Gly	Leu	Ile	Ser	Asp 325	Ile	Arg	Ģlu	Met	Gln 330	Glu	Ala	Arg	Thr	Leu 335	Ala
	Arg	Ala	Arg	Ala 340	His	Ala	Arg	Asp	Gln 345	Ala	Arg	Glu	Gln	Asp 350	Arg	Ala
· •	His	Ala	Cys 355	Pro	Ala	Val	Glu	Glu 360	Thr	Pro	Met	Asn	Val 365	Arg	Asn	Val
15	Pro	Leu 370	Pro	Gly	Ąap	Ala	Ala 375	Ala	Gly	His	Pro	Asp 380	Arg	Ala	Ser	Gly
	His 385	Pro	Lys 	Pro	His	Ser 390	Arg	Ser	Ser	Ser	Ala 395	Tyr	Arg 	Lys	Ser	Ala 400
20 ··	Ser	Thr	His	His	Lys 405	Ser	Val	Phe	Ser	His 410	Ser	Lys	Ala	Ala	Ser 415	Gly
•	His	Leu	Lys	Pro 420	Val	Ser	Gly	His	Ser 425	Lys	Pro	Ala	Ser	Gly 430	His	Pro
	Lys	Ser	Ala 435	Thr	Val	Tyr	Pro	Lys 440	Pro	Ala	Ser	Val	His 445	Phe	Lys	Ala
25	Asp	Ser 450	Val	His	Phe		Gly 455	Asp	Ser	Val	His	Phe 460	Lys	Pro	Asp	Ser
	Val 465	His	Phe	Lys	Pro	Ala 470	Ser	Ser	Asn	Pro	Lys 475	Pro	Ile	Thr	Gly	His 480
30	His	Val	Ser	Ala	Gly 485	Ser	His	Ser	Lys	Ser 490	Ala	Phe	Ser	Ala	Ala 495	Thr
	Ser	His	Pro	Lys 500	Pro	Thr	Thr	Gly	His 505	Ile	Lys	Pro	Ala	Thr 510	Ser	His
	Ala	Glu	Pro 515	Thr	Thr	Ala	Asp	Tyr 520	Pro	Lys	Pro	Ala	Thr 525	Thr	Ser	His
35	Pro	Lys 530	Pro	Thr	Ala	Ala	Asp 535	Asn	Pro	Glu	Leu	Ser 540	Ala	Ser	His	Cys
	Pro	Glu	Ile	Pro	Ala	Ile	Ala	His	Pro	Val	Ser	Asp	Asp	Ser	Asp	Len

	545		550			555			560
•	Pro (Glu Ser Ala	Ser Ser 565	Pro Ala	Ala Gly 570		Lys Pro	Ala 575	Ala
5	Ser (Gln Leu Glu 580	Ser Asp	Thr Ile	Ala Asp 585	Leu Pro	Asp Pro	Thr	Val
	Val 7	Thr Thr Ser	Thr Asn	Asp Tyr 600	His Asp	Val Val	Val Val 605	Asp	Val
		Asp Asp Pro	Asp Glu	Met Ala 615	Val				
10	(220) INFO	RMATION FO	R SEQ ID	NO:219:					
15		SEQUENCE (A) LENGTH (B) TYPE: (C) STRAND (D) TOPOLO	: 1548 ba nucleic a EDNESS: s GY: linea	se pairs cid single r					
	(xi)	SEQUENCE	DESCRIPTI	ON: SEQ	ID NO:23	19:			
	ATGGGACATA	ACGGGAGCT	G GATCTCT	CCA AATG	CCAGCG 2	AGCCGCACA	A CGCGTC	:CGGC	: 60
	GCCGAGGCTG	CGGGTGTGA	A CCGCAGC	GCG CTCG	GGGAGT 1	rcggcgagg	C GCAGCT	GTAC	120
20	CGCCAGTTCA	CCACCACCG	T GCAGGTC	GTC ATCT	TCATAG (SCTCGCTGC	T CGGAAA	CTTC	180
	ATGGTGTTAT	GGTCAACTT	G CCGCACA	ACC GTGT	TCAAAT (TGTCACCA	A CAGGTT	CATT	240
	AAAAACCTGG	CCTGCTCGG	G GATTTGT	GCC AGCC	TGGTCT (STGTGCCCT	T CGACAT	CATC	300
	CTCAGCACCA	GTCCTCACT	3 TTGCTGG	TGG ATCT	ACACCA 1	GCTCTTCT	G CAAGGT	CGTC	360
	AAATTTTTGC	ACAAAGTAT	r ctgctct(GTG ACCA	TCCTCA G	CTTCCCTG	C TATTGC	TTTG	420
25	GACAGGTACT	ACTCAGTCC	CTATCCA	CTG GAGA	GGAAAA 1	CATCTGATG	C CAAGTC	CCGT	480
	GAACTGGTGA	TGTACATCT	GGCCCAT	GCA GTGG	TGGCCA G	TGTCCCTG	T GTTTGC	agta	540
	ACCAATGTGG	CTGACATCT	A TGCCACG	TCC ACCT	GCACGG A	agtctgga	G CAACTC	CTTG	600
	GGCCACCTGG	TGTACGTTC	GGTGTAT	AAC ATCA	CCACGG T	CATTGTGC	C TGTGGT	GGTG	660
	GTGTTCCTCT	TCTTGATAC	GATCCGAC	CGG GCCC	rgagtg c	CAGCCAGA	A GAAGAA	GGTC	720
30	ATCATAGCAG	CGCTCCGGA	CCCACAG	AAC ACCA	гстста т	TCCCTATG	C CTCCCA	GCGG	780
	GAGGCCGAGC	TGAAAGCCA	CCTGCTCT	rcc atgg	TGATGG T	CTTCATCT	r gtgtag	CGTG	840
	CCCTATGCCA	СССТССТССТ	י כיימרכימני	מייר מיירטי	פרא איזירי ייי	CCCTC 3 C 3	- mmaac	amm c	

	TTGCTGC	CA C	CTGCT	GTTT	'G GC	TGCC	СААА	GTC	TCCC	CTGC	TGGC	'AAAC	CC 1	rgttc	TCTT	T	960
٠	CTTACTG	rga <i>i</i>	CAAA	TCTG	T CC	GCAA	GTGC	TTG	ATAC	GGA	CCCI	GGTG	CA A	ACTAC	ACCA	C 1	020
	CGGTACAC	TC G	CCGI	AATG	T GG	TCAG	TACA	GGG	AGTG	GCA	TGGC	TGAG	GC (CAGCC	TGGA	A 1	080
	CCCAGCAT	TAC G	CTCG	GGTA	.G CC	AGCI	CCTG	GAG	ATGT	TCC	ACAT	TGGG	CA C	CAGO	AGAT	C 1	140
5	TTTAAGC	CCA C	AGAG	GATG	A GG	AAGA	GAGT	GAG	GCCA	AGT	ACAT	TGGC	TC A	AGCTG	ACTT	C 1	200
	CAGGCCAA	AGG A	GATA	TTTA	G CA	CCTG	CCTG	GAG	GGAG	AGC	AGGG	GCCA	.CA G	STTTG	CGCC	C 1:	260
	TCTGCCCC	AC C	CCTG	AGCA	C AG	TGGA	CTCT	GTA	TCCC	AGG	TGGC	ACCG	GC A	reccc	CTGT	G 1:	320
	GAACCTGA	AA C	ATTC	CCTG	А ТА	AGTA	TTCC	CTG	CAGT	TTG	GCTT	TGGG	CC I	TTTG	AGTT	G 1:	380
	CCTCCTCA	GT G	GCTC	TCAG	A GA	CCCG	AAAC	AGC	AAGA	AGC	GGCT	GCTT	cc c	ссст	TGGG	C 14	440
10	AACACCCC	AG A	AGAG	CTGA'	T CC	AGAC	AAAG	GTG	CCCA	AGG	TAGG	CAGG	GT G	GAGC	GGAA	G 1	500
	ATGAGCAG	AA A	CAAT	AAAG'	T GA	GCAT	TTTT	CCA	AAGG	TGG	ATTC	CTAG				15	548
	(221) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	220:									
	(i			CE CI													
15		(B) T Y	PE: a	amin	o ac		acru	5						,		
				POLO			rele	vant									
	(i	i) M	OLEC	ULE :	TYPE	: pr	otei	n									
	(x	i) s	EQUE	NCE I	DESC	RIPT	ION:	SEQ	ID 1	NO:2	20:						
20	Met 1	Gly	His	Asn	Gly 5	Ser	Trp	Ile	Ser	Pro	Asn	Ala	Ser	Glu		His	
		Ala	Ser	Gly		Glu	בומ	Δla	Glv		Acn	7~~	Com	71-	15	0 1	
				20				7124	25	Val	non	ALG	per	30	Deu	GIY	
25	Glu	Phe	Gly 35	Glu		Gln				Gln	Phe	Thr	Thr	Thr	Val	Gln	
	Val	Val		Phe						Glv) an	Dhe	Mat	Val	Ton	T	
		50				,	55	204	Dou	01,	7.011	60	Mec	vai	Deu	Пр	
	Ser 65	Thr	Суз	Arg	Thr	Thr 70	Val	Phe	Lys	Ser	Val 75	Thr	Asn	Arg	Phe		
30		Asn	Leu	Δla	Cvs		Glv	Tle	Cve	212		Len	บรา			80	
20							,		-,-	انا شده		445			1/2 I		
50	-7-				85		·		-	90				Сув	95	PLO	

	Thr	Met	Leu 115	Phe	Cys	Lys	Val	Val 120	Lys	Phe	Leu	His	Lys 125	Val	Phe	Cys
	Ser	Val 130	Thr	Ile	Leu	Ser	Phe 135	Pro	Ala	Ile	Ala	Leu 140	Asp	Arg	Tyr	Tyr
5	Ser 145	Val	Leu	Tyr	Pro	Leu 150	Glu	Arg	Lys	Ile	Ser 155	Asp	Ala	Lys	Ser	Arg 160
	Glu	Leu	Val	Met	Tyr 165	Ile	Trp	Ala	His	Ala 170	Val	Val	Ala	Ser	Val 175	Pro
10	Val	Phe	Ala	Val 180	Thr	Asn	Val	Ala	Asp 185	Ile	Tyr	Ala	Thr	Ser 190	Thr	Cys
	Thr	Glu	Val 195	Trp	Ser	Asn	Ser	Leu 200	Gly	His	Leu	Val	Tyr 205	Val	Leu	Val
	Tyr	Asn 210	Ile	Thr	Thr	Val	11e 215	Val	Pro	Val	Val	Val 220	Val	Phe	Leu	Phe
15	Leu 225	Ile	Leu	Ile	Arg	Arg 230	Ala	Leu	Ser	Ala	Ser 235	Gln	Lys	Lys	Lys	Val 240
	Ile	Ile	Ala ·	Ala	Leu 245	Arg	Thr	Pro	Gln	Asn 250	Thr	Ile	Ser	Ile	Pro 255	Tyr
20	Ala	Ser	Gln	Arg 260	Glu	Ala	Glu	Leu	Lys 265	Ala	Thr	Leu	Leu	Ser 270	Met	Val
	Met	Val	Phe 275	Ile	Leu	Cys	Ser	Val 280	Pro	Tyr	Ala	Thr	Leu 285	Val	Val	Tyr
	Gln	Thr 290	Val	Leu	Asn	Val	Pro 295	Asp	Thr	Ser	Val	Phe 300	Leu	Leu	Leu	Thr
25	Ala 305	Val	Trp	Leu	Pro	Lys 310	Val	Ser	Leu	Leu	Ala 315	Asn	Pro	Val	Leu	Phe 320
	Leu	Thr	Val	Asn	Lys 325	Ser	Val	Arg	Lys	Cys 330	Leu	Ile	Gly	Thr	Leu 335	Val
30	Gln	Leu	His	His 340	Arg	Tyr	Ser	Arg	Arg 345	Asn	Val	Val	Ser	Thr 350	Gly	Ser
	Gly	Met	Ala 355	Glu	Ala	Ser	Leu	Glu 360	Pro	Ser	Ile	Arg	Ser 365	Gly	Ser	Gln
	Leu	Leu 370	Glu	Met	Phe	His	Ile 375	Gly	Gln	Gln	Gln	Ile 380	Phe	Lys	Pro	Thr
35	Glu 385	Asp	Glu	Glu	Glu	Ser 390	Glu	Ala	Lys	Tyr	Ile 395	Gly	Ser	Ala	Asp	Phe 400
	Gln	Ala	Lys	Glu	Ile	Phe	Ser	Thr	Cys	Leu	Glu	Gly	Glu	Gln	Gly	Pro

PCT/US99/23938 WO 00/22129

185

405 410 415 Gln Phe Ala Pro Ser Ala Pro Pro Leu Ser Thr Val Asp Ser Val Ser 425 Gln Val Ala Pro Ala Ala Pro Val Glu Pro Glu Thr Phe Pro Asp Lys 5 440 Tyr Ser Leu Gln Phe Gly Phe Gly Pro Phe Glu Leu Pro Pro Gln Trp 455 Leu Ser Glu Thr Arg Asn Ser Lys Lys Arg Leu Leu Pro Pro Leu Gly 10 Asn Thr Pro Glu Glu Leu Ile Gln Thr Lys Val Pro Lys Val Gly Arg 485 490 Val Glu Arg Lys Met Ser Arg Asn Asn Lys Val Ser Ile Phe Pro Lys 505 Val Asp Ser 15 515 (222) INFORMATION FOR SEQ ID NO:221: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1164 base pairs (B) TYPE: nucleic acid 20 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:221: ATGAATCGGC ACCATCTGCA GGATCACTTT CTGGAAATAG ACAAGAAGAA CTGCTGTGTG 60 25 TTCCGAGATG ACTTCATTGC CAAGGTGTTG CCGCCGGTGT TGGGGCTGGA GTTTATCTTT 120 GGGCTTCTGG GCAATGGCCT TGCCCTGTGG ATTTTCTGTT TCCACCTCAA GTCCTGGAAA TCCAGCCGGA TTTTCCTGTT CAACCTGGCA GTAGCTGACT TTCTACTGAT CATCTGCCTG CCGTTCGTGA TGGACTACTA TGTGCGGCGT TCAGACTGGA AGTTTGGGGA CATCCCTTGC CGGCTGGTGC TCTTCATGTT TGCCATGAAC CGCCAGGGCA GCATCATCTT CCTCACGGTG 30 GTGGCGGTAG ACAGGTATTT CCGGGTGGTC CATCCCCACC ACGCCCTGAA CAAGATCTCC 420 AATTGGACAG CAGCCATCAT CTCTTGCCTT CTGTGGGGCA TCACTGTTGG CCTAACAGTC 480 CACCTCCTGA AGAAGAAGTT GCTGATCCAG AATGGCCCTG CAAATGTGTG CATCAGCTTC 540 AGCATCTGCC ATACCTTCCG GTGGCACGAA GCTATGTTCC TCCTGGAGTT CCTCCTGCCC

	CTGGGCATCA TCCTGTTCTG CTCAGCCAGA ATTATCTGGA GCCTGCGGCA GAGACAAATG 660
	GACCGGCATG CCAAGATCAA GAGAGCCAAA ACCTTCATCA TGGTGGTGGC CATCGTCTTT 720
	GTCATCTGCT TCCTTCCCAG CGTGGTTGTG CGGATCCGCA TCTTCTGGCT CCTGCACACT 780
	TCGGGCACGC AGAATTGTGA AGTGTACCGC TCGGTGGACC TGGCGTTCTT TATCACTCTC 840
5	AGCTTCACCT ACATGAACAG CATGCTGGAC CCCGTGGTGT ACTACTTCTC CAGCCCATCC 900
	TTTCCCAACT TCTTCTCCAC TTTGATCAAC CGCTGCCTCC AGAGGAAGAT GACAGGTGAG 960
	CCAGATAATA ACCGCAGCAC GAGCGTCGAG CTCACAGGGG ACCCCAACAA AACCAGAGGC 1020
	GCTCCAGAGG CGTTAATGGC CAACTCCGGT GAGCCATGGA GCCCCTCTTA TCTGGGCCCA 1080
	ACCTCAAATA ACCATTCCAA GAAGGGACAT TGTCACCAAG AACCAGCATC TCTGGAGAAA 1140
10	CAGTTGGGCT GTTGCATCGA GTAA 1164
	(223) INFORMATION FOR SEQ ID NO:222:
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 387 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant
	(ii) MOLECULE TYPE: protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:222:
20	Met Asn Arg His His Leu Gln Asp His Phe Leu Glu Ile Asp Lys Lys 1 5 10 15
	Asn Cys Cys Val Phe Arg Asp Asp Phe Ile Ala Lys Val Leu Pro Pro 20 25 30
	Val Leu Gly Leu Glu Phe Ile Phe Gly Leu Leu Gly Asn Gly Leu Ala 35 40 45
25	Leu Trp Ile Phe Cys Phe His Leu Lys Ser Trp Lys Ser Ser Arg Ile 50 55 60
	Phe Leu Phe Asn Leu Ala Val Ala Asp Phe Leu Leu Ile Ile Cys Leu 65 70 75 80
30	Pro Phe Val Met Asp Tyr Tyr Val Arg Arg Ser Asp Trp Lys Phe Gly 85 90 95
	Asp Ile Pro Cys Arg Leu Val Leu Phe Met Phe Ala Met Asn Arg Gln 100 105 110
	Gly Ser Ile Ile Phe Leu Thr Val Val Ala Val Asp Arg Tyr Phe Arg 115 120 125

10		Val	Val 130	His	Pro	His	His	Ala 135	Leu	Asn	Lys	Ile	Ser 140	Asn	Trp	Thr	Ala
Cys Ile Ser Phe Ser Ile Cys His Thr Phe Arg Trp His Glu Ala I 180 Phe Leu Leu Glu Phe Leu Leu Pro Leu Gly Ile Ile Leu Phe Cys S 200 Ala Arg Ile Ile Trp Ser Leu Arg Gln Arg Gln Met Asp Arg His J 210 Lys Ile Lys Arg Ala Lys Thr Phe Ile Met Val Val Ala Ile Val I 225 Lys Ile Cys Phe Leu Pro Ser Val Val Val Arg Ile Arg Ile Phe 245 Leu Leu His Thr Ser Gly Thr Gln Asn Cys Glu Val Tyr Arg Ser V 260 Asp Leu Ala Phe Phe Ile Thr Leu Ser Phe Thr Tyr Met Asn Ser M 290 Asp Pro Val Val Tyr Tyr Phe Ser Ser Pro Ser Phe Pro Asn E 290 Phe Ser Thr Leu Ile Asn Arg Cys Leu Gln Arg Lys Met Thr Gly G 305 Lys Thr Arg Gly Ala Pro Glu Ala Leu Met Ala Asn Ser Gly Glu Fro Ser Pro Ser Tyr Leu Gly Pro Thr Ser Asn Asn His Ser Lys I 370 Trp Ser Pro Ser Tyr Leu Gly Pro Ala Ser Leu Glu Lys Gln Leu Gly G 370 Cys Ile Glu 385 Cys Ile Glu 385			Ile	Ile	Ser	Cys		Leu	Trp	Gly	Ile		Val	Glγ	Leu	Thr	Val 160
180	5	His	Leu	Leu	Lys		Lys	Leu	Leu	Ile		Asn	Gly	Pro	Ala		Val
10		Суѕ	Ile	Ser		Ser	Ile	Сув	His		Phe	Arg	Trp	His		Ala	Met
Lys Ile Lys Arg Ala Lys Thr Phe Ile Met Val Val Ala Ile Val I 225 15 Val Ile Cys Phe Leu Pro Ser Val Val Val Arg Ile Arg Ile Phe 7 255 Leu Leu His Thr Ser Gly Thr Gln Asn Cys Glu Val Tyr Arg Ser Val 260 Asp Leu Ala Phe Phe Ile Thr Leu Ser Phe Thr Tyr Met Asn Ser May 290 Leu Asp Pro Val Val Tyr Tyr Phe Ser Ser Pro Ser Phe Pro Asn I 300 Phe Ser Thr Leu Ile Asn Arg Cys Leu Gln Arg Lys Met Thr Gly Gamma 315 Lys Thr Arg Gly Ala Pro Glu Ala Leu Met Ala Asn Ser Gly Glu I 335 Trp Ser Pro Ser Tyr Leu Gly Pro Thr Ser Asn Asn His Ser Lys I 355 Gly His Cys His Gln Glu Pro Ala Ser Leu Glu Lys Gln Leu Gly Gamma 385 Cys Ile Glu 385	10	Phe	Leu		Glu	Phe	Leu	Leu		Leu	Gly	Ile	Ile		Phe	Суѕ	Ser
225 230 235 235 236 235 235 246 245 245 245 245 250 250 250 250 250 250 250 250 250 25		Ala		Ile	Ile	Trp	Ser		Arg	Gln	Arg	Ģln		Asp	Arg	His	Ala
Leu Leu His Thr Ser Gly Thr Gln Asn Cys Glu Val Tyr Arg Ser Val Cys Phe Thr Tyr Met Asn Ser Marg Ser Val Cys Phe Thr Tyr Met Asn Ser Marg Ser Tyr Leu Gly Pro Thr Ser Asn Asn His Ser Lys In Ser Marg Cys Ile Glu Ser Pro Ser Leu Glu Leu Glu Leu Glu Cys Ile Glu Ser Ser Dys Glu Val Tyr Tyr Phe Ser Ser Pro Ser Pro Ser Pro Ser Pro Asp Asn Asn Arg Ser Thr Ser Val Glu Leu Thr Gly Asp Pro Asp Asn Asn Arg Ser Thr Ser Val Glu Leu Thr Gly Asp Pro Asp Asn Asn Arg Ser Thr Ser Val Glu Leu Thr Gly Asp Pro Asp Asn Asn Arg Ser Thr Ser Val Glu Leu Thr Gly Asp Pro Asp Asn Asn Arg Ser Tyr Leu Gly Pro Thr Ser Asn Asn His Ser Lys In Ser Ser Pro Ser Tyr Leu Gly Pro Thr Ser Asn Asn His Ser Lys In Ser Ser Ile Glu Ser Il		225		•			230				•	235					240
260 265 270 Asp Leu Ala Phe Phe Ile Thr Leu Ser Phe Thr Tyr Met Asn Ser M 280 Leu Asp Pro Val Val Tyr Tyr Phe Ser Ser Pro Ser Phe Pro Asn E 290 Phe Ser Thr Leu Ile Asn Arg Cys Leu Gln Arg Lys Met Thr Gly G 305 Pro Asp Asn Asn Arg Ser Thr Ser Val Glu Leu Thr Gly Asp Pro A 325 Lys Thr Arg Gly Ala Pro Glu Ala Leu Met Ala Asn Ser Gly Glu E 345 Trp Ser Pro Ser Tyr Leu Gly Pro Thr Ser Asn Asn His Ser Lys I 360 Gly His Cys His Gln Glu Pro Ala Ser Leu Glu Lys Gln Leu Gly G 370 Cys Ile Glu 385	15	•				245					250					255	-
Leu Asp Pro Val Val Tyr Tyr Phe Ser Ser Pro Ser Phe Pro Asn F 290 Phe Ser Thr Leu Ile Asn Arg Cys Leu Gln Arg Lys Met Thr Gly G 305 Pro Asp Asn Asn Arg Ser Thr Ser Val Glu Leu Thr Gly Asp Pro A 325 Lys Thr Arg Gly Ala Pro Glu Ala Leu Met Ala Asn Ser Gly Glu F 340 Trp Ser Pro Ser Tyr Leu Gly Pro Thr Ser Asn Asn His Ser Lys I 365 Gly His Cys His Gln Glu Pro Ala Ser Leu Glu Lys Gln Leu Gly C 370 Cys Ile Glu 385					260					265				_	270		
290 295 300 Phe Ser Thr Leu Ile Asn Arg Cys Leu Gln Arg Lys Met Thr Gly G 305 Pro Asp Asn Asn Arg Ser Thr Ser Val Glu Leu Thr Gly Asp Pro A 335 Lys Thr Arg Gly Ala Pro Glu Ala Leu Met Ala Asn Ser Gly Glu F 345 Trp Ser Pro Ser Tyr Leu Gly Pro Thr Ser Asn Asn His Ser Lys I 365 Gly His Cys His Gln Glu Pro Ala Ser Leu Glu Lys Gln Leu Gly C 370 Cys Ile Glu 385	20			275					280					285			
Pro Asp Asn Asn Arg Ser Thr Ser Val Glu Leu Thr Gly Asp Pro Asp Thr Arg Gly Ala Pro Glu Ala Leu Met Ala Asn Ser Gly Glu F 340 Trp Ser Pro Ser Tyr Leu Gly Pro Thr Ser Asn Asn His Ser Lys I 355 Gly His Cys His Gln Glu Pro Ala Ser Leu Glu Lys Gln Leu Gly 370 Cys Ile Glu 385			290					295					300				
Lys Thr Arg Gly Ala Pro Glu Ala Leu Met Ala Asn Ser Gly Glu F 340 345 350 Trp Ser Pro Ser Tyr Leu Gly Pro Thr Ser Asn Asn His Ser Lys I 360 365 Gly His Cys His Gln Glu Pro Ala Ser Leu Glu Lys Gln Leu Gly 370 375 380 Cys Ile Glu 385		305					310					315					320
Trp Ser Pro Ser Tyr Leu Gly Pro Thr Ser Asn Asn His Ser Lys I 350 Gly His Cys His Gln Glu Pro Ala Ser Leu Glu Lys Gln Leu Gly C 370 Cys Ile Glu 385	25					325	•				330					335	
Gly His Cys His Gln Glu Pro Ala Ser Leu Glu Lys Gln Leu Gly C 370 375 380 Cys Ile Glu 385		Lys	Thr	Arg		Ala	Pro	Glu	Ala		Met	Ala	Asn	Ser		Glu	Pro
370 375 380 Cys Ile Glu 385	30	Trp	Ser		Ser	Tyr	Leu	Gly		Thr	Ser	Asn	Asn		Ser	Lys	Lys
385		Gly		Cys	His	Gln	Glu		Ala	Ser	Leu	Glu		Gln	Leu	Gly	Cys
25 (22.)		-	Ile	Glu													

- 35 (224) Information for SEQ ID NO:223:
 - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1212 base pairs

- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: DNA (genomic)

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:223:

ATGGCTTGCA ATGGCAGTGC GGCCAGGGGG CACTTTGACC CTGAGGACTT GAACCTGACT 60 GACGAGGCAC TGAGACTCAA GTACCTGGGG CCCCAGCAGA CAGAGCTGTT CATGCCCATC 120 TGTGCCACAT ACCTGCTGAT CTTCGTGGTG GGCGCTGTGG GCAATGGGCT GACCTGTCTG 180 GTCATCCTGC GCCACAAGGC CATGCGCACG CCTACCAACT ACTACCTCTT CAGCCTGGCC 240 10 GTGTCGGACC TGCTGGTGCT GCTGGTGGGC CTGCCCCTGG AGCTCTATGA GATGTGGCAC 300 AACTACCCCT TCCTGCTGGG CGTTGGTGGC TGCTATTTCC GCACGCTACT GTTTGAGATG GTCTGCCTGG CCTCAGTGCT CAACGTCACT GCCCTGAGCG TGGAACGCTA TGTGGCCGTG .420 GTGCACCCAC TCCAGGCCAG GTCCATGGTG ACGCGGGCCC ATGTGCGCCG AGTGCTTGGG 480 GCCGTCTGGG GTCTTGCCAT GCTCTGCTCC CTGCCCAACA CCAGCCTGCA CGGCATCCGG 540 15 CAGCTGCACG TGCCCTGCCG GGGCCCAGTG CCAGACTCAG CTGTTTGCAT GCTGGTCCGC 600 CCACGGGCCC TCTACAACAT GGTAGTGCAG ACCACCGCGC TGCTCTTCTT CTGCCTGCCC 660 ATGGCCATCA TGAGCGTGCT CTACCTGCTC ATTGGGCTGC GACTGCGGCG GGAGAGGCTG 720 CTGCTCATGC AGGAGGCCAA GGGCAGGGGC TCTGCAGCAG CCAGGTCCAG ATACACCTGC 780 AGGCTCCAGC AGCACGATCG GGGCCGGAGA CAAGTGAAGA AGATGCTGTT TGTCCTGGTC 840 20 GTGGTGTTTG GCATCTGCTG GGCCCCGTTC CACGCCGACC GCGTCATGTG GAGCGTCGTG 900 TCACAGTGGA CAGATGGCCT GCACCTGGCC TTCCAGCACG TGCACGTCAT CTCCGGCATC 960 TTCTTCTACC TGGGCTCGGC GGCCAACCCC GTGCTCTATA GCCTCATGTC CAGCCGCTTC 1020 CGAGAGACCT TCCAGGAGGC CCTGTGCCTC GGGGCCTGCT GCCATCGCCT CAGACCCCGC 1080 CACAGCTCCC ACAGCCTCAG CAGGATGACC ACAGGCAGCA CCCTGTGTGA TGTGGGCTCC 1140 25 CTGGGCAGCT GGGTCCACCC CCTGGCTGGG AACGATGGCC CAGAGGCGCA GCAAGAGACC 1200 GATCCATCCT GA 1212

(225) INFORMATION FOR SEQ ID NO: 224:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 403 amino acids
- 30 (B) TYPE: amino acid

189

(C) STRANDEDNESS:

(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:224: 5 Met Ala Cys Asn Gly Ser Ala Ala Arg Gly His Phe Asp Pro Glu Asp Leu Asn Leu Thr Asp Glu Ala Leu Arg Leu Lys Tyr Leu Gly Pro Gln Gln Thr Glu Leu Phe Met Pro Ile Cys Ala Thr Tyr Leu Leu Ile Phe 10 Val Val Gly Ala Val Gly Asn Gly Leu Thr Cys Leu Val Ile Leu Arg 55 His Lys Ala Met Arg Thr Pro Thr Asn Tyr Tyr Leu Phe Ser Leu Ala 15 Val Ser Asp Leu Leu Val Leu Leu Val Gly Leu Pro Leu Glu Leu Tyr 90 Glu Met Trp His Asn Tyr Pro Phe Leu Leu Gly Val Gly Gly Cys Tyr Phe Arg Thr Leu Leu Phe Glu Met Val Cys Leu Ala Ser Val Leu Asn 20 Val Thr Ala Leu Ser Val Glu Arg Tyr Val Ala Val Val His Pro Leu Gln Ala Arg Ser Met Val Thr Arg Ala His Val Arg Arg Val Leu Gly 25 Ala Val Trp Gly Leu Ala Met Leu Cys Ser Leu Pro Asn Thr Ser Leu 170 His Gly Ile Arg Gln Leu His Val Pro Cys Arg Gly Pro Val Pro Asp Ser Ala Val Cys Met Leu Val Arg Pro Arg Ala Leu Tyr Asn Met Val 30 Val Gln Thr Thr Ala Leu Leu Phe Phe Cys Leu Pro Met Ala Ile Met Ser Val Leu Tyr Leu Leu Ile Gly Leu Arg Leu Arg Arg Glu Arg Leu 225 35 Leu Leu Met Gln Glu Ala Lys Gly Arg Gly Ser Ala Ala Ala Arg Ser

245

	Arg	Tyr	Thr	Cys 260	Arg	Leu	Gln	Gln	His 265	Asp	Arg	Gly	Arg	Arg 270	Gln	Val
	Lys	Lys	Met 275	Leu	Phe	Val	Leu	Val 280	Val	Val	Phe	Gly	Ile 285	Cys	Trp	Ala
5	Pro	Phe 290		Ala	Asp	Arg	Val 295	Met	Trp	Ser	Val	Val 300	Ser	Gln	Trp	Thr
	Asp 305	Gly	Leu	His	Leu	Ala 310	Phe	Gln	His	Val	His 315	Val	Ile	Ser	Gly	Ile 320
10	Phe	Phe	Tyr	Leu	Gly 325	Ser	Ala	Ala	Asn	Pro 330	Val	Leu	Tyr	Ser	Leu 335	Met
	Ser	Ser	Arg	Phe 340	Arg	Glu	Thr	Phe	Gln 345	Glu	Ala	Leu	Cys	Leu 350	Gly	Ala
	Суз	Cys	His 355	Arg	Leu	Arg	Pro	Arg 360	His	Ser	Ser	His	Ser 365	Leu	Ser	Arg
15	Met	Thr 370	Thr	Gly	Ser	Thr	Leu 375	Cys	Asp	Val	Gly	Ser 380	Leu	Gly	Ser	Trp
	Val 385	His	Pro	Leu	Ala	Gly 390	Asn	Asp	Gly	Pro	Glu 395	Ala	Gln	Gln	Glu	Thr 400
20	Asp	Pro	Ser													
	(226) IN	FORM	ATION	FOR	SEÇ	D	NO:2	25:								
25	(i)	(B)	QUENC LEN TYPE STR	IGTH: PE: II RANDE	109 ucle DNES	8 ba ic a S: s	se p cid ingl	airs	i							
		i) MC														
	(xi	i) SE	EQUEN	ICE D	ESCR	IPTI	ON:	SEQ	ID N	0:22	5 :					
	ATGGGGAA	CA TO	CACTG	CAGA	CAA	CTCC	TCG	ATGA	GCTG	TA C	CATC	GACC	A TA	CCAT	CCAC	60
30	CAGACGCT	G CC	CCGG	TGGT	CTA	TGTT	'ACC	GTGC	TGGT	GG T	GGGC	TTCC	C GG	CCAA	CTGC	120
	CTGTCCCTC	T AC	TTCG	GCTA	CCT	GCAG	ATC	AAGG	CCCG	ga a	CGAG	CTGG	G CG	TGTA	CCTG	180
	TGCAACCTC	SA CG	GTGG	CCGA	CCT	CTTC	TAC	ATCT	GCTC	GC T	GCCC	TTCT	G GC	TGCA	GTAC	240
	GTGCTGCAC	C AC	GACA	ACTG	GTC	TCAC	GGC	GACC	TGTC	CT G	CCAG	GTGT	G CG	GCAT	CCTC	300
	CTGTACGAC	SA AC	ATCT	'ACAT	CAG	CGTG	GĠC	TTCC	TCTG	CT G	CATC	TCCG	T GG	ACCG	CTAC	360
35	CTGGCTGTG	G CC	CATC	CCTT	CCG	CTTC	CAC	CAGT	TCCG	GA C	CCTG	AAGG	C GG	CCGT	CGGC	420

	GTCAGCGT	G TC	ATCI	GGGC	CAA	GGAG	CTG	CTGA	.CCAG	CA 1	CTAC	TTCC	T GA	TGCA	CGAG	480
	GAGGTCAT	G AG	GACG	AGAA	CCA	GCAC	:CGC	GTGT	GCTT	TG A	AGCAC	TACC	C C	ACCA	.GGCA	540
	TGGCAGCG	CG CC	ATCA	ACTA	CTA	CCGC	TTC	CTGG	TGGG	CT '	TCCTC	TTCC	C C	TCTG	CCTG	600
	CTGCTGGC	T CC	TACC	AGGG	CAT	CCTG	CGC	GCCG	TGCG	cc (GGAGC	CACG	G CA	CCCA	GAAG	660
5	AGCCGCAAG	G AC	CAGA	TCAA	GCG	GCTG	GTG	CTCA	GCAC	CG '	TGGTC	ATCT	T CC	TGGC	CTGC	720
	TTCCTGCC	T AC	CACG	TGTT	GCT	GCTG	GTG	CGCA	GCGT	CT (GGGAG	GCCA	.G C1	GCGA	CTTC	780
	GCCAAGGG	G TI	TTCA	ACGC	CTA	CCAC	TTC	TCCC	TCCT	GC '	TCACC	AGCT	T CA	ACTG	CGTC	840
	GCCGACCC	CG TO	CTCI	ACTG	CTI	CGTC	CAGC	GAGA	CCAC	cc i	ACCGG	GACC	T G	CCCG	CCTC	900
	CGCGGGGC	CT GO	CTGG	CCTT	CCI	CACC	TGC	TCCA	GGAC	CG (GCCGG	GCCA	G GG	BAGGC	CTAC	960
10	CCGCTGGG	rg co	ccc	SAGGC	CTC	:CGGG	SAAA	AGCG	GGGC	cc i	AGGGT	GAGG	A GO	CCGA	GCTG	1020
	TTGACCAA	GC TO	CACC	CGGC	CTI	CCAG	ACC	CCTA	ACTO	GC	CAGGG	TCGG	G C	GGTI	cccc	1080
	ACGGGCAG	ST T	GCCI	rag												1098
	(227) IN	FORM	ATION	1 FOR	SEC) ID	NO:2	226 :								
15		(A) (B) (C) (D)	LEN TYI STI TOI	CE CH NGTH: PE: a RANDE POLOG	365 mino DNES Y: r	ami aci SS: not 1	ino a id celev	acids vant	3							
••	·	-		JLE T		-										
20			-	ICE D												
	Met 1	Gly	Asn		Thr 5	Ala	Asp	Asn	Ser	Ser 10	Met	Ser	Cys	Thr	Ile 15	Asp
	His	Thr	Ile	His 20	Gln	Thr	Leu	Ala	Pro 25	Val	Val	Tyr	Val	Thr 30	Val	Leu
25	Val	Val	Gly 35	Phe	Pro	Ala	Asn	Cys 40	Leu	Ser	Leu	Tyr	Phe 45	Gly	Tyr	Leu
	Gln	Ile 50	Lys	Ala	Arg	Asn	Glu 55	Leu	Gly	Val	Tyr	Leu 60	Cys	Asn	Leu	Thr
30	Val 65	Ala	Asp	Leu	Phe	Tyr 70	Ile	Cys	Ser	Leu	Pro 75	Phe	Trp	Leu	Gln	Tyr 80
	Val	Leu	Gln	His	Asp 85	Asn	Trp	Ser	His	Gly 90	Asp	Leu	Ser	Cys	Gln 95	Val

Cys Gly Ile Leu Leu Tyr Glu Asn Ile Tyr Ile Ser Val Gly Phe Leu

				100					105					110		
	Cys	Cys	Ile 115	Ser	Val	Asp	Arg	Tyr 120	Leu	Ala	Val	Ala	His 125	Pro	Phe	Arg
5	Phe	His 130	Gln	Phe	Arg	Thr	Leu 135	Lys	Ala	Ala	Val	Gly 140	Val	Ser	Val	Val
	Ile 145	Trp	Ala	Lys	Glu	Leu 150	Leu	Thr	Ser	Ile	Tyr 155	Phe	Leu	Met	His	Glu 160
	Glu	Val	Ile	Glu	Asp 165	Glu	Asn	Gln	His	Arg 170	Val	Cys	Phe	Glu	His 175	Tyr
10	Pro	Ile	Gln	Ala 180	Trp	Gln	Arg	Ala	Ile 185	Asn	Tyr	Tyr	Arg	Phe 190	Leu	Val
	Gly	Phe	Leu 195	Phe	Pro	Ile	Ċys	Leu 200	Leu	Leu	Ala	Ser	Tyr 205	Gln	Gly	Ile
15	Leu	Arg 210	Ala	Val	Arg	Arg	Ser 215	His	Gly	Thr	Gln	Lys 220	Ser	Arg	Lys	Asp
	Gln 225	Ile	Lys	Arg	Leu	Val 230	Leu	Ser	Thr	Val	Val 235	Ile	Phe	Leu	Ala	Cys 240
	Phe	Leu	Pro	Tyr	His 245	Val	Leu	Leu	Leu	Val 250	Arg	Ser	Val	Trp	Glu 255	Ala
20	Ser	Cys	Asp	Phe 260	Ala	Lys	Gly	Val	Phe 265	Asn	Ala	Tyr	His	Phe 270	Ser	Leu
٠	Leu	Leu	Thr 275	Ser	Phe	Asn	Сув	Val 280	Ala	Asp	Pro	Val	Leu 285	Tyr	Сув	Phe
25	Val	Ser 290	Glu	Thr	Thr	His	Arg 295	qsA	Leu	Ala	Arg	Leu 300	Arg	Gly	Ala	Cys
	Leu 305	Ala	Phe	Leu	Thr	Cys 310	Ser	Arg	Thr	Gly	Arg 315	Ala	Arg	Glu	Ala	Tyr 320
	Pro	Leu	Gly	Ala	Pro 325	Glu	Ala	Ser	Gly	Lys 330	Ser	Gly	Ala	Gln	Gly 335	Glu
30	Glu	Pro	Glu	Leu 340	Leu	Thr	Lys	Leu	His 345		Ala	Phe	Gln	Thr 350	Pro	Asn
	Ser	Pro	Gly 355	Ser	Gly	Gly	Phe	Pro 360	Thr	Gly	Arg	Leu	Ala 365			
	(228) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	227:								
35	(i) SE	QUEN	CE C	HARA	CTER	ISTI	CS:								

(A) LENGTH: 1416 base pairs(B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:227:

5	ATGGATATTO	TTTGTGAAGA	AAATACTTCT	TTGAGCTCAA	CTACGAACTO	CCTAATGCAA	60
	TTAAATGATG	ACAACAGGCT	' CTACAGTAAI	GACTTTAACT	CCGGAGAAGC	TAACACTTCT	120
	GATGCATTTA	ACTGGACAGT	CGACTCTGAA	AATCGAACCA	ACCTTTCCTG	TGAAGGGTGC	180
	CTCTCACCGT	CGTGTCTCTC	CTTACTTCAT	' CTCCAGGAAA	AAAACTGGTC	TGCTTTACTG	240
	ACAGCCGTAG	TGATTATTCT	AACTATTGCT	GGAAACATAC	TCGTCATCAT	GGCAGTGTCC	300
10	CTAGAGAAAA	AGCTGCAGAA	TGCCACCAAC	TATTTCCTGA	TGTCACTTGC	CATAGCTGAT	360
	ATGCTGCTGG	GTTTCCTTGT	CATGCCCGTG	TCCATGTTAA	CCATCCTGTA	TGGGTACCGG	420
	TGGCCTCTGC	CGAGCAAGCT	TTGTGCAGTC	TGGATTTACC	TGGACGTGCT	CTTCTCCACG	480
	GCCTCCATCA	TGCACCTCTG	CGCCATCTCG	CTGGACCGCT	ACGTCGCCAT	CCAGAATCCC	540
	ATCCACCACA	GCCGCTTCAA	CTCCAGAACT	AAGGCATTTC	TGAAAATCAT	TGCTGTTTGG	600
15	ACCATATCAG	TAGGTATATC	CATGCCAATA	CCAGTCTTTG	GGCTACAGGA	CGATTCGAAG	660
	GTCTTTAAGG	AGGGGAGTTG	CTTACTCGCC	GATGATAACT	TTGTCCTGAT	CGGCTCTTTT	720
	GTGTCATTTT	TCATTCCCTT	AACCATCATG	GTGATCACCT	ACTTTCTAAC	TATCAAGTCA	780
	CTCCAGAAAG	AAGCTACTTT	GTGTGTAAGT	GATCTTGGCA	CACGGGCCAA	ATTAGCTTCT	840
	TTCAGCTTCC	TCCCTCAGAG	TTCTTTGTCT	TCAGAAAAGC	TCTTCCAGCG	GTCGATCCAT	900
20	AGGGAGCCAG	GGTCCTACAC	AGGCAGGAGG	ACTATGCAGT	CCATCAGCAA	TGAGCAAAAG	960
	GCAAAGAAGG	TGCTGGGCAT	CGTCTTCTTC	CTGTTTGTGG	TGATGTGGTG	CCCTTTCTTC	1020
	ATCACAAACA	TCATGGCCGT	CATCTGCAAA	GAGTCCTGCA	ATGAGGATGT	CATTGGGGCC	1080
	CTGCTCAATG	TGTTTGTTTG	GATCGGTTAT	CTCTCTTCAG	CAGTCAACCC	ACTAGTCTAC	1140
	ACACTGTTCA	ACAAGACCTA	TAGGTCAGCC	TTTTCACGGT	ATATTCAGTG	TCAGTACAAG	1200
25	GAAAACAAAA	AACCATTGCA	GTTAATTTTA	GTGAACACAA	TACCGGCTTT	GGCCTACAAG	1260
	TCTAGCCAAC	TTCAAATGGG	ACAAAAAAAG	AATTCAAAGC	AAGATGCCAA	GACAACAGAT	1320
	AATGACTGCT	CAATGGTTGC	TCTAGGAAAG	CAGTATTCTG	AAGAGGCTTC	TAAAGACAAT	1380
	AGCGACGGAG	TGAATGAAAA	GGTGAGCTGT	GTGTGA			1416

(229) INFORMATION FOR SEQ ID NO:228:

5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 470 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:228: 															
10	1	Met A	sp Ile	Leu 5	Cys	Glu	Glu Asp	Asn	Thr 10	Ser	Leu	Tyr		15		
		Asn S	er Gly 35	Glu	Ala	Asn	Thr	Ser 40	Asp	Ala	Phe	Asn	Trp 45	Thr	Val	Asp
15		Ser G 5	lu Asn O	Arg	Thr	Asn	Leu 55	Ser	Cys	Glu	Gly	60	Leu	Ser	Pro	Ser
		Cys L 65	eu Ser	Leu	Leu	His 70	Leu	Gln	Glu	Lys	Asn 75	Trp	Ser	Ala	Leu	Leu 80
20		Thr A	la Val	Val	Ile 85	Ile	Lėu	Thr	Ilė	Ala 90	Gly	Asn	Ile	Leu	Val 95	Ile
		Met A	la Val	Ser 100	Leu	Glu	Lys	Lys	Leu 105	Gln	Asn	Ala	Thr	Asn 110	Tyr	Phe
		Leu M	et Ser 115	Leu	Ala	Ile	Ala	Asp 120	Met	Leu	Leu	Gly	Phe 125	Leu	Val	Met
25			al Ser 30	Met	Leu	Thr	Ile 135	Leu	Tyr	Gly	Tyr	Arg 140	Trp	Pro	Leu	Pro
		Ser L; 145	ys Leu	Суѕ	Ala	Val 150	Trp	Ile	Tyr	Leu	Asp 155	Val	Leu	Phe	Ser	Thr 160
30		Ala S	er Ile	Met	His 165	Leu	Сув	Ala	Ile	Ser 170	Leu	Asp	Arg	Tyr	Val 175	Ala
		Ile G	ln Asn	Pro 180	Ile	His	His	Ser	Arg 185	Phe	Asn	Ser	Arg	Thr 190	Lys	Ala
		Phe L	eu Lys 195	Ile	Ile	Ala	Val	Trp 200	Thr	Ile	Ser	Val	Gly 205	Ile	Ser	Met
35			le Pro 10	Val	Phe	Gly	Leu 215	Gln	Asp	Asp	Ser	Lys 220	Val	Phe	Lys	Glu
		Gly Se 225	er Cys	Leu	Leu	Ala 230	Asp	Asp	Asn	Phe	Val 235	Leu	Ile	Gly	Ser	Phe 240

		Val	Ser	Phe	Phe	Ile 245	Pro	Leu	Thr	Ile	Met 250	Val	Ile	Thr	Tyr	Phe 255	Leu
	,	Thr	Ile	Lys	Ser 260	Leu	Gln	Lys	Glu	Ala 265	Thr	Leu	Cys	Val	Ser 270	Asp	Leu
5	,	Gly	Thr	Arg 275	Ala	Lys	Leu	Ala	Ser 280		Ser	Phe	Leu	Pro 285	Gln	Ser	Ser
	:	Leu	Ser 290	Ser	Glu	Lys	Leu	Phe 295	Gln	Arg	Ser	Ile	His 300	Arg	Glu	Pro	Gly
10		Ser 305	Tyr	.Thr	Gly	Arg	Arg 310	Thr	Met	Gln	Ser	Ile 315	Ser	Asn	Glu	Gln	Lys 320
		Ala	Lys	Lys	Val	Leu 325	Gly	Ile	Val	Phe	Phe 330	Leu	Phe	Val	Val	Met 335	Trp
	. (Cys	Pro	Phe	Phe 340	Ile	Thr	Asn	Ilė	Met 345	Ala	Val	Ile	Cys	Lys 350	Glu	Ser
15	(Cys	Asn	Glu 355	Asp	Val	Ile	Gly	Ala 360	Leu	Leu	Asn	Val	Phe 365	Val	Trp	Ile
	(Gly _.	Tyr 370	Leu	Ser	Ser	Ala	Val 375	Asn	Pro	Leu	Val	Tyr 380	Thr	Leu	Phe	Asn
20		Lys 385	Thr	Tyr	Arg	Ser	Ala 390	Phe	Ser	Arg	Tyr	Ile 395	Gln	Cys	Gln	Tyr	Lys 400
	(Glu	Asn	Lys	Lys	Pro 405	Leu	Gln	Leu	Ile	Leu 410	Val	Asn	Thr	Ile	Pro 415	Ala
	1	Leu	Ala	Tyr	Lys 420	Ser	Ser	Gln	Leu	Gln 425	Met	Gly	Gln	Lys	Lys 430	Asn	Ser
25	1	Lys	Gln	Asp 435	Ala	Lys	Thr	Thr	Asp 440	Asn	Asp	Суз	Ser	Met 445	Val	Ala	Leu
	(Gly	Lys 450	Gln	Tyr	Ser	Glu	Glu 455	Ala	Ser	Lys	Asp	Asn 460	Ser	Asp	Gly	Val
30		Asn 465	Glu	Lys	Val	Ser	Cys 470	Val									
	(230)	INF	ORMA	MOITA	FOF	SEC) ID	NO:2	229:								
35		(i)	(A) (B) (C)	LEN TYI STF	IGTH: PE: I	137 nucle	TERI 77 ba eic a SS: s	se p cid ingl	airs	3							
		(ii	.) MC	LECU	LE 1	YPE:	DNA	(ge	nomi	.c)							

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:229:

	ATGGTGAACC	TGAGGAATGC	GGTGCATTCA	TTCCTTGTGC	ACCTAATTGG	CCTATTGGTT	60
	TGGCAATGTG	ATATTTCTGT	GAGCCCAGTA	GCAGCTATAG	TAACTGACAT	TTTCAATACC	120
	TCCGATGGTG	GACGCTTCAA	ATTCCCAGAC	GGGGTACAAA	ACTGGCCAGC	ACTTTCAATC	180
5	GTCATCATAA	TAATCATGAC	AATAGGTGGC	AACATCCTTG	TGATCATGGC	AGTAAGCATG	240
	GAAAAGAAAC	TGCACAATGC	CACCAATTAC	TTCTTAATGT	CCCTAGCCAT	TGCTGATATG	300
	CTAGTGGGAC	TACTTGTCAT	GCCCTGTCT	CTCCTGGCAA	TCCTTTATGA	TTATGTCTGG	360
	CCACTACCTA	GATATTTGTG	CCCCGTCTGG	ATTTCTTTAG	ATGTTTTATT	TTCAACAGCG	420
	TCCATCATGC	ACCTCTGCGC	TATATCGCTG	GATCGGTATG	TAGCAATACG	TAATCCTATT	480
10	GAGCATAGCC	GTTTCAATTC	GCGGACTAAG	GCCATCATGA	AGATTGCTAT	TGTTTGGGCA	540
	ATTTCTATAG	GTGTATCAGT	TCCTATCCCT	GTGATTGGAC	TGAGGGACGA	AGAAAAGGTG	600
	TTCGTGAACA	ACACGACGTG	CGTGCTCAAC	GACCCAAATT	TCGTTCTTAT	TGGGTCCTTC	660
	GTAGCTTTCT	TCATACCGCT	GACGATTATG	GTGATTACGT	ATTGCCTGAC	CATCTACGTT	720
	CTGCGCCGAC	AAGCTTTGAT	GTTACTGCAC	GGCCACACCG	AGGAACCGCC	TGGACTAAGT	780
15	CTGGATTTCC	TGAAGTGCTG	CAAGAGGAAT	ACGGCCGAGG	AAGAGAACTC	TGCAAACCCT	840
	AACCAAGACC	AGAACGCACG	CCGAAGAAAG	AAGAAGGAGA	GACGTCCTAG	GGGCACCATG	900
	CAGGCTATCA	ACAATGAAAG	AAAAGCTAAG	AAAGTCÇTTG	GGATTGTTTT	CTTTGTGTTT	960
	CTGATCATGT	GGTGCCCATT	TTTCATTACC	AATATTCTGT	CTGTTCTTTG	TGAGAAGTCC	1020
	TGTAACCAAA	AGCTCATGGA	AAAGCTTCTG	AATGTGTTTG	TTTGGATTGG	CTATGTTTGT	1080
20	TCAGGAATCA	ATCCTCTGGT	GTATACTCTG	TTCAACAAAA	TTTACCGAAG	GGCATTCTCC	1140
	AACTATTTGC	GTTGCAATTA	TAAGGTAGAG	AAAAAGCCTC	CTGTCAGGCA	GATTCCAAGA	1200
	GTTGCCGCCA	CTGCTTTGTC	TGGGAGGGAG	CTTAATGTTA	ACATTTATCG	GCATACCAAT	1260
	GAACCGGTGA	TCGAGAAAGC	CAGTGACAAT	GAGCCCGGTA	TAGAGATGCA	AGTTGAGAAT	1320
	TTAGAGTTAC	CAGTAAATCC	CTCCAGTGTG	GTTAGCGAAA	GGATTAGCAG	TGTGTGA	1377

- 25 (231) INFORMATION FOR SEQ ID NO:230:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 458 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:

(D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:230: Met Val Asn Leu Arg Asn Ala Val His Ser Phe Leu Val His Leu Ile 5 Gly Leu Leu Val Trp Gln Cys Asp Ile Ser Val Ser Pro Val Ala Ala Ile Val Thr Asp Ile Phe Asn Thr Ser Asp Gly Gly Arg Phe Lys Phe 40 Pro Asp Gly Val Gln Asn Trp Pro Ala Leu Ser Ile Val Ile Ile Ile 10 Ile Met Thr Ile Gly Gly Asn Ile Leu Val Ile Met Ala Val Ser Met 70 75 Glu Lys Lys Leu His Asn Ala Thr Asn Tyr Phe Leu Met Ser Leu Ala .. 15 Ile Ala Asp Met Leu Val Gly Leu Leu Val Met Pro Leu Ser Leu Leu Ala Ile Leu Tyr Asp Tyr Val Trp Pro Leu Pro Arg Tyr Leu Cys Pro Val Trp Ile Ser Leu Asp Val Leu Phe Ser Thr Ala Ser Ile Met His 20 135 Leu Cys Ala Ile Ser Leu Asp Arg Tyr Val Ala Ile Arg Asn Pro Ile Glu His Ser Arg Phe Asn Ser Arg Thr Lys Ala Ile Met Lys Ile Ala 25 170 Ile Val Trp Ala Ile Ser Ile Gly Val Ser Val Pro Ile Pro Val Ile Gly Leu Arg Asp Glu Glu Lys Val Phe Val Asn Asn Thr Thr Cys Val Leu Asn Asp Pro Asn Phe Val Leu Ile Gly Ser Phe Val Ala Phe Phe 30 215 210 Ile Pro Leu Thr Ile Met Val Ile Thr Tyr Cys Leu Thr Ile Tyr Val 235 230 Leu Arg Arg Gln Ala Leu Met Leu Leu His Gly His Thr Glu Glu Pro 35 250 245

Pro Gly Leu Ser Leu Asp Phe Leu Lys Cys Cys Lys Arg Asn Thr Ala

				260					265					270			
•	Glu	Glu	Glu 275	Asn	Ser	Ala	Asn	Pro 280	Asn	Gln	Asp	Gln	Asn 285	Ala	Arg	Arg	
5	Arg	Lys 290	Lys	Lys	Glu	Arg	Arg 295	Pro	Arg	Gly	Thr	Met 300	Gln	Ala	Ile	Asn	
	Asn 305	Glu	Arg	Lys	Ala	Lys 310	Lys	Val	Leu	Gly	Ile 315	Val	Phe	Phe	Val	Phe 320	
	Leu	Ile	Met	Trp	Cys 325	Pro	Phe	Phe	Ile	Thr 330	Asn	Ile	Leu	Ser	Val 335	Leu	
10	Суз	Glu	Lys	Ser 340	Суз	Asn	Gln	Lys	Leu 345	Met	Glu	Lys	Leu	Leu 350	Asn	Val	
	Phe	Val	Trp 355	Ile	Gly	Tyr	Val	Cys 360	Ser	Gly	Ile	Asn	Pro 365	Leu	Val	Tyr	
15	Thr	Leu 370	Phe	Asn	Lys	Ile	Tyr 375	Arg	Arg	Ala	Phe	Ser 380	Asn	Tyr	Leu	Arg	
-	Cys 385	Asn	Tyr	Lys	Val	Glu 390	Lys	Lys	Pro	Pro	Val 395	Arg	Gln	Ile	Pro	Arg 400	
	Val	Ala	Ala	Thr	Ala 405	Leu	Ser	Gly	Arg	Glu 410	Leu	Asn	Val:	Asn	Ile 415	Tyr	
20	Arg	His	Thr	Asn 420	Glu	Pro	Val	Ile	Glu 425	Lys	Ala	Ser	Asp	Asn 430	Glu	Pro	
	Gly	Ile	Glu 435	Met	Gln	Val	Glu	Asn 440	Leu	Glu	Leu	Pro	Val 445	Asn	Pro	Ser	
25	Ser	Val 450	Val	Ser	Glu	Arg	Ile 455	Ser	Ser	Val							
	(232) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	231:									
30	(i	(B	QUENC) LEI) TY:) ST:	NGTH PE: 1 RAND	: 100 nucle EDNE	68 ba eic a SS:	ase pacid	pair	S								
	(i	i) M	OLEC	ULE '	TYPE	: DN	A (g	enom	ic)								
	(x	i) S	EQUE	NCE I	DESC	RIPT	ION:	SEQ	ID 1	NO:2	31:						
	ATGGATCA	GT T	CCCT	GAAT	C AG	TGAC.	AGAA	AAC	TTTG.	AGT .	ACGA	TGAT	TT G	GCTG.	AGGC	С	60
35	TGTTATAT	TG G	GGAC	ATCG'	T GG	TCTT	TGGG	ACT	GTGT	TCC	TGTC	CATA	TT C	TACT	CCGT	c :	120
	ATCTTTGC	CA T	TGGC	CTGG	T GG	GAAA	TTTG	TTG	GTAG	TGT	TTGC	CCTC	AC C	AACA	GCAA	G :	180

	AAGCCCAAGA GTGTCACCGA CATTTACCTC CTGAACCTGG CCTTGTCTGA TCTGCTGTTT 2	40
	GTAGCCACTT TGCCCTTCTG GACTCACTAT TTGATAAATG AAAAGGGCCT CCACAATGCC 3	00
	ATGTGCAAAT TCACTACCGC CTTCTTCTTC ATCGGCTTTT TTGGAAGCAT ATTCTTCATC 3	60
	ACCGTCATCA GCATTGATAG GTACCTGGCC ATCGTCCTGG CCGCCAACTC CATGAACAAC 4	20
5	CGGACCGTGC AGCATGGCGT CACCATCAGC CTAGGCGTCT GGGCAGCAGC CATTTTGGTG 4	80
	GCAGCACCCC AGTTCATGTT CACAAAGCAG AAAGAAAATG AATGCCTTGG TGACTACCCC 5.	40
	GAGGTCCTCC AGGAAATCTG GCCCGTGCTC CGCAATGTGG AAACAAATTT TCTTGGCTTC 6	00
	CTACTCCCCC TGCTCATTAT GAGTTATTGC TACTTCAGAA TCATCCAGAC GCTGTTTTCC 6	60
	TGCAAGAACC ACAAGAAAGC CAAAGCCAAG AAACTGATCC TTCTGGTGGT CATCGTGTTT 72	20
10	TTCCTCTTCT GGACACCCTA CAACGTTATG ATTTTCCTGG AGACGCTTAA GCTCTATGAC 78	30
	TTCTTTCCCA GTTGTGACAT GAGGAAGGAT CTGAGGCTGG CCCTCAGTGT GACTGAGACG 84	10
	GTTGCATTTA GCCATTGTTG CCTGAATCCT CTCATCTATG CATTTGCTGG GGAGAAGTTC 90	00
	AGAAGATACC TTTACCACCT GTATGGGAAA TGCCTGGCTG TCCTGTGTGG GCGCTCAGTC 96	50
	CACGTTGATT TCTCCTCATC TGAATCACAA AGGAGCAGGC ATGGAAGTGT TCTGAGCAGC 102	20
15	AATTTACTT ACCACACGAG TGATGGAGAT GCATTGCTCC TTCTCTGA 106	8
	(233) INFORMATION FOR SEQ ID NO:232:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 355 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:232:	
25	Met Asp Gln Phe Pro Glu Ser Val Thr Glu Asn Phe Glu Tyr Asp Asp 1 5 10 15	
•	Leu Ala Glu Ala Cys Tyr Ile Gly Asp Ile Val Val Phe Gly Thr Val 20 25 30	
	Phe Leu Ser Ile Phe Tyr Ser Val Ile Phe Ala Ile Gly Leu Val Gly 35 40 45	
30	Asn Leu Leu Val Val Phe Ala Leu Thr Asn Ser Lys Lys Pro Lys Ser 50 60 .	
	Val Thr Asp Ile Tyr Leu Leu Asn Leu Ala Leu Ser Asp Leu Leu Phe	

	65					70					75					80
	Val	Ala	Thr	Leu	Pro 85	Phe	Trp	Thr	His	Tyr 90	Leu	Ile	Asn	Glu	Lys 95	Gly
5	Leu	His	Asn	Ala 100	Met	Сув	Lys	Phe	Thr 105	Thr	Ala	Phe	Phe	Phe 110		Gly
	Phe	Phe	Gly 115	Ser	Ile	Phe	Phe	Ile 120		Val	Ile	Ser	Ile 125	Asp	Arg	Tyr
	Leu	Ala 130	Ile	Val	Leu	Ala	Ala 135	Asn	Ser	Met	Asn	Asn 140	Arg	Thr	Val	Gln
10	His 145	Gly	Val	Thr	Ile	Ser 150	Leu	Gly	Val	Trp	Ala 155	Ala	Ala	Ile	Leu	Val 160
	Ala	Ala	Pro	Gln	Phe 165	Met	Phe	Thr	Lys	Gln 170	Lys	Glu	Asn	Glu	Cys 175	Leu
15	Gly	Asp	Tyr	Pro 180	Glu	Val	Leu	Gln	Glu 185	Ile	Trp	Pro	Val	Leu 190	Arg	Asn
	Val	Glu	Thr 195	Asn	Phe	Leu	Gly	Phe 200	Leu	Leu	Pro	Leu	Leu 205	Ile	Met	Ser
	Tyr	Cys 210	Tyr	Phe	Arg	Ile	Ile 215	GÌn	Thr	Leu	Phe	Ser 220	Cys	Lys	Asn	His
20	Lys 225	Lys	Ala	Lys	Ala	Lys 230	Lys	Leu	Ile	Leu	Leu 235	Val	Val	Ile	Val	Phe 240
	Phe	Leu	Phe	Trp	Thr 245	Pro	Tyr	Asn	Val	Met 250	Ile	Phe	Leu	Glu	Thr 255	Leu
25	Lys	Leu	Tyr	Asp 260	Phe	Phe	Pro	Ser	Cys 265	Asp	Met	Arg	Lys	Asp 270	Leu	Arg
	Leu	Ala	Leu 275	Ser	Val	Thr	Glu	Thr 280	Val	Ala	Phe	Ser	His 285	Cys	Суз	Leu
	Asn	Pro 290	Leu	Ile	Tyr	Ala	Phe 295	Ala	Gly	Glu	Lys	Phe 300	Arg	Arg	Tyr	Leu
30	Tyr 305	His	Leu	Tyr	Gly	Lys 310	Cys	Leu	Ala	Val	Leu 315	Cys	Gly	Arg	Ser	Val 320
	His	Val	Asp	Phe	Ser 325	Ser	Ser	Glu	Ser	Gln 330	Arg	Ser	Arg	His	Gly 335	Ser
35	Val	Leu	Ser	Ser 340	Asn	Phe	Thr	Tyr	His 345	Thr	Ser	Asp	Gly	Asp 350	Ala	Leu
	Leu	Leu	Leu 355	•												

	(234) INFORMATION FOR SEQ ID NO:233:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:233:	
10	GGCTTAAGAG CATCATCGTG GTGCTGGTG	29
	(235) INFORMATION FOR SEQ ID NO:234:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iv) ANTI-SENSE: YES	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:234:	
20	GTCACCACCA GCACCACGAT GATGCTCTTA AGCC	34
	(236) INFORMATION FOR SEQ ID NO:235:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:235:	
	CAAAGAAAGT ACTGGGCATC GTCTTCTTCC T	31
30	(237) INFORMATION FOR SEQ ID NO:236:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 30 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
35	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:236:	
•	TGCTCTAGAT TCCAGATAGG TGAAAACTTG	30
	(238) INFORMATION FOR SEQ ID NO.237:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 50 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:237:	
	CTAGGGGCAC CATGCAGGCT ATCAACAATG AAAGAAAAGC TAAGAAAGTC	50
	(239) INFORMATION FOR SEQ ID NO:238:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 50 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(iv) ANTI-SENSE: YES	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:238:	
	CAAGGACTTT CTTAGCTTTT CTTTCATTGT TGATAGCCTG CATGGTGCCC	50
	(240) INFORMATION FOR SEQ ID NO:239:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:239:	
	CGGCGGCAGA AGGCGAAACG CATGATCCTC GCGGT	35
	(241) INFORMATION FOR SEQ ID NO:240:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid	

WO 00/22129

		(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA (genomic)	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:240:	
5	ACCGC	GAGGA TCATGCGTTT CGCCTTCTGC CGCCG	35
	(242)	INFORMATION FOR SEQ ID NO:241:	
10		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA (genomic)	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:241:	
	GAGAC.	ATATT ATCTGCCACG GAGG	24
15	(243)	INFORMATION FOR SEQ ID NO:242:	٠
20		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA (genomic)	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:242:	
	TTGGC	ATAGA AACCGGACCC AAGG	24
	(244)	INFORMATION FOR SEQ ID NO:243:	
25		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
30		(ii) MOLECULE TYPE: DNA (genomic)	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:243:	
	TAAGA	ATTCC ATAAAAATTA TGGAATGG	28
	(245)	INFORMATION FOR SEQ ID NO:244:	
		(i) SEQUENCE CHARACTERISTICS:	

204

(A)	LENGTH: 30 base pairs
(B)	TYPE: nucleic acid
(C)	STRANDEDNESS: single
(D)	TOPOLOGY: linear

- 5 (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:244:

CCAGGATCCA GCTGAAGTCT TCCATCATTC

10

30

960

(246) INFORMATION FOR SEQ ID NO:245:

(D) TOPOLOGY: linear

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1071 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(ii) MOLECULE TYPE: DNA (genomic)

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:245:

ATGAATGGGG TCTCGGAGGG GACCAGAGGC TGCAGTGACA GGCAACCTGG GGTCCTGACA 60 CGTGATCGCT CTTGTTCCAG GAAGATGAAC TCTTCCGGAT GCCTGTCTGA GGAGGTGGGG 120 TCCCTCCGCC CACTGACTGT GGTTATCCTG TCTGCGTCCA TTGTCGTCGG AGTGCTGGGC 180 AATGGCTGG TGCTGTGGAT GACTGTCTTC CGTATGGCAC GCACGGTCTC CACCGTCTGC 240 20 TTCTTCCACC TGGCCCTTGC CGATTTCATG CTCTCACTGT CTCTGCCCAT TGCCATGTAC 300 TATATTGTCT CCAGGCAGTG GCTCCTCGGA GAGTGGGCCT GCAAACTCTA CATCACCTTT 360 GTGTTCCTCA GCTACTTTGC CAGTAACTGC CTCCTTGTCT TCATCTCTGT GGACCGTTGC 420 ATCTCTGTCC TCTACCCCGT CTGGGCCCTG AACCACCGCA CTGTGCAGCG GGCGAGCTGG 480 CTGGCCTTTG GGGTGTGGCT CCTGGCCGCC GCCTTGTGCT CTGCGCACCT GAAATTCCGG 540 25 ACAACCAGAA AATGGAATGG CTGTACGCAC TGCTACTTGG CGTTCAACTC TGACAATGAG 600 ACTGCCCAGA TTTGGATTGA AGGGGTCGTG GAGGGACACA TTATAGGGAC CATTGGCCAC 660 TTCCTGCTGG GCTTCCTGGG GCCCTTAGCA ATCATAGGCA CCTGCGCCCA CCTCATCCGG 720 GCCAAGCTCT TGCGGGAGGG CTGGGTCCAT GCCAACCGGC CCGCGAGGCT GCTGCTGGTG 780 CTGGTGAGCG CTTTCTTTAT CTTCTGGTCC CCGTTTAACG TGGTGCTGTT GGTCCATCTG 30 TGGCGACGGG TGATGCTCAA GGAAATCTAC CACCCCGGA TGCTGCTCAT CCTCCAGGCT 900

AGCTTTGCCT TGGGCTGTGT CAACAGCAGC CTCAACCCCT TCCTCTACGT CTTCGTTGGC

AGAGATTTCC AAGAAAAGTT TTTCCAGTCT TTGACTTCTG CCCTGGCGAG GGCGTTTGGA 1020

GAGGAGGAGT TTCTGTCATC CTGTCCCCGT GGCAACGCCC CCCGGGAATG A 1071 (247) INFORMATION FOR SEQ ID NO:246: (i) SEQUENCE CHARACTERISTICS: 5 (A) LENGTH: 356 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:246: Met Asn Gly Val Ser Glu Gly Thr Arg Gly Cys Ser Asp Arg Gln Pro 10 Gly Val Leu Thr Arg Asp Arg Ser Cys Ser Arg Lys Met Asn Ser Ser 25 Gly Cys Leu Ser Glu Glu Val Gly Ser Leu Arg Pro Leu Thr Val Val 15 Ile Leu Ser Ala Ser Ile Val Val Gly Val Leu Gly Asn Gly Leu Val Leu Trp Met Thr Val Phe Arg Met Ala Arg Thr Val Ser Thr Val Cys 20 Phe Phe His Leu Ala Leu Ala Asp Phe Met Leu Ser Leu Ser Leu Pro Ile Ala Met Tyr Tyr Ile Val Ser Arg Gln Trp Leu Leu Gly Glu Trp 105 Ala Cys Lys Leu Tyr Ile Thr Phe Val Phe Leu Ser Tyr Phe Ala Ser 25 Asn Cys Leu Leu Val Phe Ile Ser Val Asp Arg Cys Ile Ser Val Leu 135 Tyr Pro Val Trp Ala Leu Asn His Arg Thr Val Gln Arg Ala Ser Trp 30 150 145 Leu Ala Phe Gly Val Trp Leu Leu Ala Ala Ala Leu Cys Ser Ala His 170 Leu Lys Phe Arg Thr Thr Arg Lys Trp Asn Gly Cys Thr His Cys Tyr 185 180 Leu Ala Phe Asn Ser Asp Asn Glu Thr Ala Gln Ile Trp Ile Glu Gly 35 200

		Val	Val 210	Glu	Gly	His	Ile	Ile 215	Gly	Thr	Ile	Gly	His 220	Phe	Leu	Leu	Gly	<i>r</i>
		Phe 225	Leu	Gly	Pro	Leu	Ala 230	Ile	Ile	Gly	Thr	Cys 235	Ala	His	Leu	Ile	Arc 240	
5		Ala	Lys	Leu	Leu	Arg 245	Glu	Gly	Trp	Val	His 250	Ala	Asn	Arg	Pro	Ala 255	Arg	ī
		Leu	Leu	Leu	Val 260	Leu	Val	Ser	Ala	Phe 265	Phe	Ile	Phe	Trp	Ser 270	Pro	Phe	!
10		Asn	Val	Val 275	Leu	Leu	Val	His	Leu 280	Trp	Arg	Arg	Val	Met 285	Leu	Lys	Glu	ı
		Ile	Tyr 290	His	Pro	Arg	Met	Leu 295	Leu	Ile	Leu	Gln	Ala 300	Ser	Phe	Ala	Leu	
		Gly 305	Cys	Val	Asn	Ser	Ser 310	Leu	Asn	Pro	Phe	Leu 315	Tyr	Val	Phe		Gly 320	
15		Arg	Asp	Phe	Gln	Glu 325	Lys	Phe	Phe	Gln	Ser 330	Leu	Thr	Ser	Ala	Leu 335	Ala	
		Arg	Ala	Phe	Gly 340	Glu	Glu	Glu	Phe	Leu 345	Ser	Ser	Суз	Pro	Arg 350	Gly	Asn	
20		Ala	Pro	Arg 355	Glu						٠							
	(248)	INF	ORMA	TION	FOR	SEQ	ID	NO:2	47:									
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear																	
	•	(ii) MO	LECU	LE T	YPE:	DNA	(ge	nomi	c)								
		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:24	7:						
	GCAGA	ATTC	G GC	GGCC	CCAT	GGA	CCTG	ccc (CC									32
30	(249)	INF	ORMA	TION	FOR	SEQ	ID 1	NO:2	48:									
35		(i)	(A) (B) (C)	UENC LEN TYP STR TOP	GTH: E: n: ANDE	30 l ucle: DNES	base ic a S: s:	pai: cid ingle	rs									
		(ii) MO	LECU	LE T	YPE:	DNA	(ger	nomi	=)								
		(xi) SE	OURN	ות אב	ESCP:	ו דידים ז	י אר	EFO :	יז חז	2.249	١.						

PCT/US99/23938 WO 00/22129

207

•	GCTGGATCCC CCGAGCAGTG GCGTTACTTC												
	(250) INFORMATION FOR SEQ ID NO:249:												
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 903 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear												
	(ii) MOLECULE TYPE: DNA (genomic)												
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:249:												
10	ATGGACCTGC CCCCGCAGCT CTCCTTCGGC CTCTATGTGG CCGCCTTTGC GCTGGGCTTC	60											
	CCGCTCAACG TCCTGGCCAT CCGAGGCGCG ACGGCCCACG CCCGGCTCCG TCTCACCCCT	120											
	AGCCTGGTCT ACGCCCTGAA CCTGGGCTGC TCCGACCTGC TGCTGACAGT CTCTCTGCCC	180											
	CTGAAGGCGG TGGAGGCGCT AGCCTCCGGG GCCTGGCCTC TGCCGGCCTC GCTGTGCCCC	240											
	GTCTTCGCGG TGGCCCACTT CTTCCCACTC TATGCCGGCG GGGGCTTCCT GGCCGCCCTG	300											
15	AGTGCAGGCC GCTACCTGGG AGCAGCCTTC CCCTTGGGCT ACCAAGCCTT CCGGAGGCCG	360											
	TGCTATTCCT GGGGGGTGTG CGCGGCCATC TGGGCCCTCG TCCTGTGTCA CCTGGGTCTG	420											
	GTCTTTGGGT TGGAGGCTCC AGGAGGCTGG CTGGACCACA GCAACACCTC CCTGGGCATC	480											
	AACACACCGG TCAACGGCTC TCCGGTCTGC CTGGAGGCCT GGGACCCGGC CTCTGCCGGC	540											
	CCGGCCCGCT TCAGCCTCTC TCTCCTGCTC TTTTTTCTGC CCTTGGCCAT CACAGCCTTC	600											
20	TGCTACGTGG GCTGCCTCCG GGCACTGGCC CGCTCCGGCC TGACGCACAG GCGGAAGCTG	660											
	CGGGCCGCCT GGGTGGCCGG CGGGGCCCTC CTCACGCTGC TGCTCTGCGT AGGACCCTAC	720											
	AACGCCTCCA ACGTGGCCAG CTTCCTGTAC CCCAATCTAG GAGGCTCCTG GCGGAAGCTG	780											
	GGGCTCATCA CGGGTGCCTG GAGTGTGGTG CTTAATCCGC TGGTGACCGG TTACTTGGGA	840											
	AGGGGTCCTG GCCTGAAGAC AGTGTGTGCG GCAAGAACGC AAGGGGGCAA GTCCCAGAAG	900											
25	TAA	903											
	(251) INFORMATION FOR SEQ ID NO:250:												
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 300 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant												

	0:			
	Met Asp Leu 1	Pro Pro Gln L	eu Ser Phe Gly 10	Leu Tyr Val Ala Ala Phe 15
5	Ala Leu Gly	Phe Pro Leu A 20	Asn Val Leu Ala 25	Ile Arg Gly Ala Thr Ala 30
	His Ala Arg 35	Leu Arg Leu T	Thr Pro Ser Leu	Val Tyr Ala Leu Asn Leu 45
10	Gly Cys Ser 50	-	eu Thr Val Ser	Leu Pro Leu Lys Ala Val 60
	Glu Ala Leu 65	Ala Ser Gly A		Pro Ala Ser Leu Cys Pro 75 80
	Val Phe Ala	Val Ala His P	Phe Phe Pro Leu 90	Tyr Ala Gly Gly Gly Phe 95
15	Leu Ala Ala	Leu Ser Ala G	Sly Arg Tyr Leu 105	Gly Ala Ala Phe Pro Leu 110
-	Gly Tyr Gln		Arg Pro Cys Tyr 120	Ser Trp Gly Val Cys Ala 125
20	Ala Ile Trp 130		Leu Cys His Leu	Gly Leu Val Phe Gly Leu 140
	Glu Ala Pro 145	Gly Gly Trp L	-	Asn Thr Ser Leu Gly Ile 155 160
	Asn Thr Pro	Val Asn Gly S	Ser Pro Val Cys 170	Leu Glu Ala Trp Asp Pro 175
25	Ala Ser Ala	Gly Pro Ala A 180	arg Phe Ser Leu 185	Ser Leu Leu Phe Phe 190
	195		200.	Val Gly Cys Leu Arg Ala 205
30	210	2	215	Lys Leu Arg Ala Ala Trp 220
	225	230		Leu Cys Val Gly Pro Tyr 235 240
Ω.		245	250	Pro Asn Leu Gly Gly Ser 255
35		260	265	Trp Ser Val Val Leu Asn 270
	Pro Leu Val	Thr Gly Tyr L	Leu Gly Arg Gly	Pro Gly Leu Lys Thr Val

280

209

			275				280					285	
			Ala Ala 290	Arg	Thr Gln	Gly 295		Lys	Ser	Gln	Lys 300		
	(252)	INFO	ORMATIO	N FOF	SEQ ID	NO:	251:						
5		(i)	(A) LEI (B) TYI (C) STI	NGTH: PE: r RANDE	IARACTER 31 base ucleic a DNESS: a Y: linea	e pa acid sing	irs						
10		(ii)	MOLECT	LE I	YPE: DNA	4 (g	enomi	.c)					
		(xi)	SEQUEN	ICE D	ESCRIPTI	ON:	SEQ	ID N	0:25	51:			
	CTCAAG	GCTTA	CTCTC1	CTCA	CCAGTGG	CCA	С			•			31
	(253)	INFO	RMATION	FOR	SEQ ID	NO:	252:						
15		(i)	(A) LEN (B) TYP (C) STR	GTH: E: n ANDE	ARACTERI 24 base ucleic a DNESS: s Y: linea	pa: cid ing!	irs						
		(ii)	MOLECU	LE T	YPE: DNA	(ge	enomi	c)					
20		(xi)	SEQUEN	CE D	ESCRIPTI	ON:	SEQ	ID N	0:25	2:		٠	
	CCCTCC	CTCCC	CCGGAG	GACC	TAGC								24
	(254)	INFO	RMATION	FOR	SEQ ID	NO : 2	253 :						
25			(A) LEN (B) TYP (C) STR	GTH: E: ni ANDEI	ARACTERI 1041 ba ucleic a DNESS: s Y: linea	se p cid ingl	airs						
		(ii)	MOLECU	LE T	YPE: DNA	(ge	nomi	2)					
		(xi)	SEQUEN	CE DI	ESCRIPTI (ON:	SEQ :	ID NO	0:25	3:			
30	ATGGAT.	ACAG	GCCCCG	ACCA	GTCCTAC	TTC	TCCG	CAAT	rc a	CTGG:	rtcgi	CTTCTCGGT	G 60
	TACCTT	CTCA	CTTTCC	TGGT	GGGGCTC	ccc	CTCA	ACCTO	C T	GGCC	CTGGI	GGTCTTCGT	G 120
	GGCAAG	CTGC	AGCGCC	GCCC	GGTGGCC	GTG	GACG	GCT	CC TO	GCTC/	ACCI	GACCGCCTC	G 180
	GACCTG	CTCC	TGCTGC	rgtt	CCTGCCT	TTC	CGCAT	GGTG	G A	GCA	CCAA	TGGCATGCA	C 240
	TGGCCC	CTGC	CCTTCA	rcct	CTGCCCA	CTC	TCTGG	ATTO	A TO	CTTCT	TCAC	CACCATCTA	г 300

	CTCACCGCCC TCTTCCTGGC AGCTGTGAGC ATTGAACGCT TCCTGAGTGT GGCCCACCCA	360
	CTGTGGTACA AGACCCGGCC GAGGCTGGGG CAGGCAGGTC TGGTGAGTGT GGCCTGCTGG	420
	CTGTTGGCCT CTGCTCACTG CAGCGTGGTC TACGTCATAG AATTCTCAGG GGACATCTCC	480
	CACAGCCAGG GCACCAATGG GACCTGCTAC CTGGAGTTCC GGAAGGACCA GCTAGCCATC	540
5	CTCCTGCCCG TGCGGCTGGA GATGGCTGTG GTCCTCTTTG TGGTCCCGCT GATCATCACC	600
:	AGCTACTGCT ACAGCCGCCT GGTGTGGATC CTCGGCAGAG GGGGCAGCCA CCGCCGGCAG	660
	AGGAGGGTGG CGGGGCTGTT GGCGGCCACG CTGCTCAACT TCCTTGTCTG CTTTGGGCCC	720
	TACAACGTGT CCCATGTCGT GGGCTATATC TGCGGTGAAA GCCCGGCATG GAGGATCTAC	780
	GTGACGCTTC TCAGCACCCT GAACTCCTGT GTCGACCCCT TTGTCTACTA CTTCTCCTCC	840
10	TCCGGGTTCC AAGCCGACTT TCATGAGCTG CTGAGGAGGT TGTGTGGGCT CTGGGGCCAG	900
	TGGCAGCAGG AGAGCAGCAT GGAGCTGAAG GAGCAGAAGG GAGGGGAGGA GCAGAGAGCG	960
	GACCGACCAG CTGAAAGAAA GACCAGTGAA CACTCACAGG GCTGTGGAAC TGGTGGCCAG 1	020
	GTGGCCTGTG CTGAAAGCTA G	041
	(255) INFORMATION FOR SEQ ID NO:254:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 346 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant	
20	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:254:	
	Met Asp Thr Gly Pro Asp Gln Ser Tyr Phe Ser Gly Asn His Trp Phe 1 5 10 15	
25	Val Phe Ser Val Tyr Leu Leu Thr Phe Leu Val Gly Leu Pro Leu Asn 20 25 30	
	Leu Leu Ala Leu Val Val Phe Val Gly Lys Leu Gln Arg Arg Pro Val 35 40 45	
	Ala Val Asp Val Leu Leu Leu Asn Leu Thr Ala Ser Asp Leu Leu Leu 50 55 60	

Leu Leu Phe Leu Pro Phe Arg Met Val Glu Ala Ala Asn Gly Met His

Trp Pro Leu Pro Phe Ile Leu Cys Pro Leu Ser Gly Phe Ile Phe Phe

		Thr	Thr	Ile	Tyr 100	Leu	Thr	Ala	Leu	Phe 105		Ala	Ala	Val	Ser 110		Glu
		Arg	Phe	Leu 115	Ser	Val	Ala	His	Pro 120		Trp	Tyr	Lys	Thr 125		Pro	Arg
5		Leu	Gly 130	Gln	Ala	Gly	Leu	Val 135	Ser	Val	Ala	Суз	Trp	Leu	Leu	Ala	Ser
		Ala 145	His	Суз	Ser	Val	Val 150		Val	Ile	Glu	Phe 155	Ser	Gly	Asp	Ile	Ser 160
10		His	Ser	Gln	Gly	Thr 165	Asn	Gly	Thr	Суз	Tyr 170	Leu	Glu	Phe	Arg	Lys 175	Asp
		Gln	Leu	Ala	Ile 180	Leu	Leu	Pro	Val	Arg 185	Leu	Glu	Met	Ala	Val 190	Val	Leu
		Phe	Val	Val 195	Pro	Leu	Ile	Ile	Thr 200	Ser	Tyr	Cys	Tyr	Ser 205	Arg	Leu	Val
15		Trp	Ile 210	Leu	Gly	Arg	Gly	Gly 215	Ser	His	Arg	Arg	Gln 220	Arg	Arg	Val	Ala
		Gly 225	Leu	Leu	Ala	Ala	Thr 230	Leu	Leu	Asn	Phe	Leu 235	Val	Сув	Phe	Gly	Pro 240
20		Tyr	Asn	Val	Ser	His 245	Val	Val	Gly	Tyr	Ile 250	Cys	Gly	Glu	Ser	Pro 255	Ala
		Trp	Arg	Ile	Tyr 260	Val	Thr	Leu	Leu	Ser 265	Thr	Leu	Asn	Ser	Cys 270	Val	Asp
		Pro	Phe	Val 275	Tyr	Tyr	Phe	Ser	Ser 280	Ser	Gly	Phe	Gln	Ala 285	Asp	Phe	His
25			Leu 290	Leu	Arg	Arg	Leu	Суs 295	Gly	Leu	Trp	Gly	Gln 300	Trp	Gln	Gln	Glu
	i	Ser 305	Ser	Met	Glu	Leu	Lys 310	Glu	Gln	Lys		Gly 315	Glu	Glu	Gln	Arg	Ala 320
30	i	Asp	Arg	Pro	Ala	Glu 325	Arg	Lys	Thr	Ser	Glu 330	His	Ser	Gln		Cys 335	Gly
	,	Thr	Gly		Gln 340	Val	Ala	Cys	Ala	Glu 345	Ser						
	(256)	INF	ORMA	TION	FOR	SEQ	ID	NO:2	55:								
35		(i)	(A) (B) (C)	LEN TYP STR	GTH: E: n ANDE	ARAC 31 ucle DNES Y: 1	base ic a S: s	pai cid ingl	rs								
			10/	LOP	Ang	4 . 4	TITES	_									

	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:255:	
	TTTAAGCTTC CCCTCCAGGA TGCTGCCGGA C	3
	(257) INFORMATION FOR SEQ ID NO:256:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: not relevant 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:256:	
	GGCGAATTCT GAAGGTCCAG GGAAACTGCT A	31
	(258) INFORMATION FOR SEQ ID NO:257:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 993 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:257:	
	ATGCTGCCGG ACTGGAAGAG CTCCTTGATC CTCATGGCTT ACATCATCAT CTTCCTCACT	60
	GGCCTCCCTG CCAACCTCCT GGCCCTGCGG GCCTTTGTGG GGCGGATCCG CCAGCCCCAG	120
	CCTGCACCTG TGCACATCCT CCTGCTGAGC CTGACGCTGG CCGACCTCCT CCTGCTGCTG	180
	CTGCTGCCCT TCAAGATCAT CGAGGCTGCG TCGAACTTCC GCTGGTACCT GCCCAAGGTC	240
25	GTCTGCGCCC TCACGAGTTT TGGCTTCTAC AGCAGCATCT ACTGCAGCAC GTGGCTCCTG	300
	GCGGGCATCA GCATCGAGCG CTACCTGGGA GTGGCTTTCC CCGTGCAGTA CAAGCTCTCC	360
	CGCCGGCCTC TGTATGGAGT GATTGCAGCT CTGGTGGCCT GGGTTATGTC CTTTGGTCAC	420
	TGCACCATCG TGATCATCGT TCAATACTTG AACACGACTG AGCAGGTCAG AAGTGGCAAT	480
	GAAATTACCT GCTACGAGAA CTTCACCGAT AACCAGTTGG ACGTGGTGCT GCCCGTGCGG	540
30	CTGGAGCTGT GCCTGGTGCT CTTCTTCATC CCCATGGCAG TCACCATCTT CTGCTACTGG	600
	CGTTTTGTGT GGATCATGCT CTCCCAGCCC CTTGTGGGGG CCCAGAGGCG GCGCCGAGCC	660
	GTGGGGCTGG CTGTGGTGAC GCTGCTCAAT TTCCTGGTGT GCTTCGGACC TTACAACGTG	720

	TCCCACCTGG TGGGGTATCA CCAGAGAAAA AGCCCCTGGT GGCGGTCAAT AGCCGTGGTG 78	30
	TTCAGTTCAC TCAACGCCAG TCTGGACCCC CTGCTCTTCT ATTTCTCTTC TTCAGTGGTG 84	10
	CGCAGGGCAT TTGGGAGAGG GCTGCAGGTG CTGCGGAATC AGGGCTCCTC CCTGTTGGGA 90	00
	CGCAGAGGCA AAGACACAGC AGAGGGGACA AATGAGGACA GGGGTGTGGG TCAAGGAGAA 96	50
5	GGGATGCCAA GTTCGGACTT CACTACAGAG TAG	93
	(259) INFORMATION FOR SEQ ID NO:258:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 362 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant	
	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:258:	
15	Met Leu Pro Asp Trp Lys Ser Ser Leu Ile Leu Met Ala Tyr Ile Ile 1 5 10 15	
	Ile Phe Leu Thr Gly Leu Pro Ala Asn Leu Leu Ala Leu Arg Ala Phe 20 25 30	
	Val Gly Arg Ile Arg Gln Pro Gln Pro Ala Pro Val His Ile Leu Leu 35 40 45	
20	Leu Ser Leu Thr Leu Ala Asp Leu Leu Leu Leu Leu Leu Pro Phe 50 55 60	
	Lys Ile Ile Glu Ala Ala Ser Asn Phe Arg Trp Tyr Leu Pro Lys Val 65 70 75 80	
25	Val Cys Ala Leu Thr Ser Phe Gly Phe Tyr Ser Ser Ile Tyr Cys Ser 85 90 95	
	Thr Trp Leu Leu Ala Gly Ile Ser Ile Glu Arg Tyr Leu Gly Val Ala 100 105 110	
	Phe Pro Val Gln Tyr Lys Leu Ser Arg Arg Pro Leu Tyr Gly Val Ile 115 120 125	
30	Ala Ala Leu Val Ala Trp Val Met Ser Phe Gly His Cys Thr Ile Val 130 135 140	
	Ile Ile Val Gln Tyr Leu Asn Thr Thr Glu Gln Val Arg Ser Gly Asn 145 150 155 160	
35	Glu Ile Thr Cys Tyr Glu Asn Phe Thr Asp Asn Gln Leu Asp Val Val	

	Leu	Pro	Val	Arg 180	Leu	Glu	Leu	Суз	Leu 185	Val	Leu	Phe	Phe	Ile 190	Pro	Met	
	Ala	Val	Thr 195	Ile	Phe	Суз	Tyr	Trp 200	Arg	Phe	Val	Trp	Ile 205	Met	Leu	Ser	•
5	Gln	Pro 210	Leu	Val	Gly	Ala	Gln 215	Arg	Arg	Arg	Arg	Ala 220	Val	Gly	Leu	Ala	
	Val 225	Val	Thr	Leu	Leu	Asn 230	Phe	Leu	Val	Cys	Phe 235	Gly	Pro	Tyr	Asn	Val 240	
10	Ser	His	Leu	Val	Gly 245	Tyr	His	Gln	Arg	Lys 250	Ser	Pro	Trp	Trp	Arg 255	Ser	
	Ile	Ala	Val	Val 260	Phe	Ser	Ser	Leu	Asn 265	Ala	Ser	Leu	Asp	Pro 270	Leu	Leu	
	Phe	Tyr	Phe 275		Ser	Ser	Val	Val 280	Arg	Arg	Ala	Phe	Gly 285	Arg	Gly	Leu	
15	Gln	Val 290	Leu	Arg	Asn	Gln	Gly 295	Ser	Ser	Leu	Leu	Gly 300	Arg	Arg	Gly	Lys	
	Asp 305	Thr	Ala 	Glu	Gly	Thr 310	Asn	Glu	Asp		Gly 315	Val	Gly	Gln	Gly	Glu 320	
20	Gly	Met	Pro		Ser 325	Asp	Phe	Thr	Thr	Glu 330				«·			ų · ·
	(260) INF	ORMA	TION	FOR	SEQ	ID	NO: 2	59:									
25	(i)	(A) (B) (C)	LEN TYP STR	E CH IGTH: E: n ANDE OLOG	30 ucle DNES	base ic a S: s	pai cid ingl	rs									
	(ii) MO	LECU	LE T	YPE:	DNA	. (ge	nomi	c)								
	(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:25	9:						
	CCCAAGCTT	C GG	GCAC	CATG	GAC	ACCT	ccc										30
30	(261) INF	ORMA	TION	FOR	SEQ	ID	NO:2	60:									
35	(i)	(A) (B) (C)	LEN TYP STR	E CH GTH: E: n ANDE	30 ucle DNES	base ic a S: s	pai cid ingl	rs									
	(ii)			OLOG LE T			_	nomi	c)								
				CE D						0:26	0:						

WO 00/22129

PCT/US99/23938

	ACAGGATCCA AATGCACAGC ACTGGTAAGC	30
	(262) INFORMATION FOR SEQ ID NO:261:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:261:	
10	CTATAACTGG GTTACATGGT TTAAC	25
	(263) INFORMATION FOR SEQ ID NO:262:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:262:	
v	TTTGAATTCA CATATTAATT AGAGACATGG	3.0
20	(264) INFORMATION FOR SEQ ID NO:263:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2724 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:263:	
	ATGGACACCT CCCGGCTCGG TGTGCTCCTG TCCTTGCCTG TGCTGCTGCA GCTGGCGACC	60
	GGGGGCAGCT CTCCCAGGTC TGGTGTTTG CTGAGGGGCT GCCCCACACA CTGTCATTGC	120
30	GAGCCCGACG GCAGGATGTT GCTCAGGGTG GACTGCTCCG ACCTGGGGCT CTCGGAGCTG	180
	CCTTCCAACC TCAGCGTCTT CACCTCCTAC CTAGACCTCA GTATGAACAA CATCAGTCAG	240
	CTGCTCCCGA ATCCCCTGCC CAGTCTCCGC TTCCTGGAGG AGTTACGTCT TGCGGGAAAC	300
	GCTCTGACAT ACATTCCCAA GGGAGCATTC ACTGGCCCTTT ACACTGTTAA ACTTCTTTAA	

	CIOCHGAMIA	· ATCAGCTAAG	ACACGIACCC	ACAGAAGCTC	TGCAGAATT	GCGAAGCCTT	42
	CAATCCCTGC	GTCTGGATGC	TAACCACATO	AGCTATGTGC	CCCCAAGCTC	TTTCAGTGGC	48
	CTGCATTCCC	TGAGGCACCT	GTGGCTGGAT	GACAATGCGT	TAACAGAAAT	CCCCGTCCAG	540
	GCTTTTAGAA	GTTTATCGGC	ATTGCAAGCC	: ATGACCTTGG	CCCTGAACAA	AATACACCAC	600
5	ATACCAGACT	ATGCCTTTGG	AAACCTCTCC	AGCTTGGTAG	TTCTACATCT	CCATAACAAT	660
	AGAATCCACT	CCCTGGGAAA	GAAATGCTTT	GATGGGCTCC	ACAGCCTAGA	GACTTTAGAT	720
	TTAAATTACA	ATAACCTTGA	TGAATTCCCC	ACTGCAATTA	GGACACTCTC	CAACCTTAAA	780
	GAACTAGGAT	TTCATAGCAA	CAATATCAGG	TCGATACCTG	AGAAAGCATT	TGTAGGCAAC	840
	CCTTCTCTTA	TTACAATACA	TTTCTATGAC	AATCCCATCC	AATTTGTTGG	GAGATCTGCT	900
10	TTTCAACATT	TACCTGAACT	AAGAACACTG	ACTCTGAATG	GTGCCTCACA	AATAACTGAA	960
	TTTCCTGATT	TAACTGGAAC	TGCAAACCTG	GAGAGTCTGA	CTTTAACTGG	AGCACAGATC	1020
	TCATCTCTTC	CTCAAACCGT	CTGCAATCAG	TTACCTAATC	TCCAAGTGCT	AGATCTGTCT	1080
	TACAACCTAT	TAGAAGATTT	ACCCAGTTTT	TCAGTCTGCC	AAAAGCTTCA	GAAAATTGAC	1140
	CTAAGACATA	ATGAAATCTA	CGAAATTAAA	GTTGACACTT	TCCAGCAGTT	GCTTAGCCTC	1200
15	CGATCGCTGA	ATTTGGCTTG		GCTATTATTC		ATTTTCCACT	1260
	TTGCCATCCC	TAATAAAGCT	GGACCTATCG	TCCAACCTCC	TGTCGTCTTT	TCCTATAACT	1320
	GGGTTACATG	GTTTAACTCA	CTTAAAATTA	ACAGGAAATC	ATGCCTTACA	GAGCTTGATA	1380
	TCATCTGAAA	ACTTTCCAGA	ACTCAAGGTT	ATAGAAATGC	CTTATGCTTA	CCAGTGCTGT	1440
	GCATTTGGAG	TGTGTGAGAA	TGCCTATAAG	ATTTCTAATC	AATGGAATAA	AGGTGACAAC	1500
20	AGCAGTATGG	ACGACCTTCA	TAAGAAAGAT	GCTGGAATGT	TTCAGGCTCA	AGATGAACGT	1560
	GACCTTGAAG	ATTTCCTGCT	TGACTTTGAG	GAAGACCTGA	AAGCCCTTCA	TTCAGTGCAG	1620
	TGTTCACCTT	CCCCAGGCCC	CTTCAAACCC	TGTGAACACC	TGCTTGATGG	CTGGCTGATC	1680
	AGAATTGGAG	TGTGGACCAT	AGCAGTTCTG	GCACTTACTT	GTAATGCTTT	GGTGACTTCA	1740
	ACAGTTTTCA	GATCCCCTCT	GTACATTTCC	CCCATTAAAC	TGTTAATTGG	GGTCATCGCA	1800
25	GCAGTGAACA	TGCTCACGGG	AGTCTCCAGT	GCCGTGCTGG	CTGGTGTGGA	TGCGTTCACT	1860
	TTTGGCAGCT	TTGCACGACA	TGGTGCCTGG	TGGGAGAATG	GGGTTGGTTG	CCATGTCATT	1920
	GGTTTTTTGT	CCATTTTTGC	TTCAGAATCA	TCTGTTTTCC	TGCTTACTCT	GGCAGCCCTG	1980
	GAGCGTGGGT	TCTCTGTGAA .	ATATTCTGCA	Aaatttgaaa	CGAAAGCTCC	ATTTTCTAGC	2040

	CTG	\AAG'	raa :	rcat'	TTG	CT C	rgtg	CCCT	G CT	GCC.	rtga	CCA'	rggc	CGC 2	AGTT	cccc:	rg	2100
•	CTG	GTG	SCA (GCAA	STATO	G C	GCCT	cccc	CTO	CTGC	CTGC	CTT	TGCC'	rrr '	TGGG	GAGC	CC	2160
	AGCA	CCAT	rgg (CTA	CATGO	T C	CTC:	CAT	TTC	ectc:	TTA	CCC	rttg(CTT (CCTC	ATGAT	rg	2220
	ACCA	TTG	CT A	ACAC	CAAGO	T C	FACT	GCAAT	TTC	GAC	LA GG	GAG	ACCT	GA (JAAT!	ATTT	G	2280
5	GACT	GCTC	TA T	rggti)AAA/	CA C	\TTG(CCTG	TTC	CTCT	TCA	CCA	ACTG	CAT	CTA	AACTO	SC.	2340
	CCTG	TGGC	TT 1	CTT	TCCI	T CI	CCT	TTTA	ATA	AACC	TTA	CATT	TATO	CAG 1	CCTO	BAAGI	'A	2400
	ATTA	AGTI	TA 1	CCTI	CTGG	T GO	TAGI	CCCA	CTI	CCTG	CAT	GTCT	CAAT	cc c	CTT	CTCTA	C	2460
	ATCT	TGTI	CA A	TCCT	CACT	T T	AGGA	AGGAT	CTG	GTGA	GCC	TGAG	BAAAG	CA A	VACCI	ACGI	C :	2520
٠	TGGA	CAAG	AT C	'AAAA	CACC	C AA	GCTT	GATG	TCA	ATTA	ACT	CTGF	TGAT	GT (GAAA	AACA	.G	2580
10	TCCT	GTGA	CT C	AACT	'CAAG	C CI	TGGI	AACC	TTT	ACCA	GCT.	CCAG	CATO	AC I	TATG	ACCT	G :	2640
	CCTC	CCAG	TT C	CGTG	CCAT	C AC	CAGC	TATE	CCA	GTGA	CTG	AGAG	CTGC	CA I	CTTT	CCTC	T :	2700
	GTGG	CATT	TG T	CCCA	TGTC	T CI	'AA										:	2724
	(265) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	264:									
15	••	(i	(A		ngth	: 90	7 am	ISTI ino			• 8			,		•	•	
· 41 ******** #			~ (C) · · st	RAND	EDNE	SS:	·			****				anne e pri es	••	-	
								rele										
20								otei										
20								ION:										
		Met 1	Asp	Thr	Ser	Arg 5	Leu	Gly	Val	Leu	Leu 10	Ser	Leu	Pro	Val	Leu 15	Leu	ı
		Gln	Leu	Ala	Thr 20	Gly	Gly	Ser	Ser	Pro 25	Arg	Ser	Gly	Val	Leu 30	Leu	Arg	ī
25		Gly	Сув	Pro 35	Thr	His	Сув	His	Суз 40	Glu	Pro	Asp	Gly	Arg 45	Met	Leu	Leu	ı
		Arg	Val 50	Asp	Cys	Ser	Asp	Leu 55	Gly	Leu	Ser	Glu	Leu 60	Pro	Ser	Asn	Leu	
30		Ser 65	Val	Phe	Thr	Ser	Tyr 70	Leu	Asp	Leu	Ser	Met 75	Asn	Asn	Ile	Ser	Gln 80	
		Leu	Leu	Pro	Asn	Pro 85	Leu	Pro	Ser	Leu	Arg 90	Phe	Leu	Glu	Glu	Leu 95	Arg	
		Leu	Ala	Gly	Asn	Ala	Leu	Thr	Tyr	Ile	Pro	Lys	Gly	Ala	Phe	Thr	Gly	

					100					109	5				110)	
	Le	u T	yr	Ser 115	Leu	Lys	Val	Lev	1 Met 120	: Let	ı Glr	Asr	Asr	Glr 125		ı Arg	, Hi
5	Va	1 P	ro 30	Thr	Glu	Ala	Lev	135	Asr	Let	a Arg	Ser	Leu 140		Sei	Leu	Arg
	Le 14	u A 5	sp i	Ala	Asn	His	11e 150	Ser	Tyr	' Val	. Pro	Pro 155		Cys	Phe	e Ser	Gl ₃
	Le	u H	is :	Ser	Leu	Arg 165	His	Leu	Trp	Leu	Asp 170		Asn	Ala	Lev	Thr 175	
10	11	e P	ro T	Val	Gln 180	Ala	Phe	Arg	Ser	Leu 185	Ser	Ala	Leu	Gln	Ala 190		Thr
	Le	u A	la I	Leu 195	Asn	Lys	Ile	His	His 200		Pro	Asp	Tyr	Ala 205		Gly	Asn
15	Le	u Se 21	er S	Ser	Leu	Val	Val	Leu 215	His	Leu	His	Asn	Asn 220	Arg	Ile	His	Ser
	Le ²	u G] 5	ly I	Lys	Lys	Cys	Phe 230	Asp	Gly	Leu	His	Ser 235	Leu	Glu	Thr	Leu	Asp 240
	Le	ı 'As	n I	ſyr	Asn	Asn 245	Leu	Asp	'Glu	Phe	Pro 250	Thir	Ala	Ile	Arg	Thr 255	Leu
20	·········· Se:	c~As	m~L	eu ·	Lys` 260	Gľu"	Leu	Gly	Phe	His 265	"Sér"	Asn	Asn	ÎÎe	Arg 270	Ser	Île
	Pro	Gl	u L 2	ys :75	Ala	Phe	Val	Gly	Asn 280	Pro	Ser	Leu	Ile	Thr 285	Ile	His	Phe
25	Туз	29	р А 0	sn	Pro	Ile	Gln	Phe 295	Val	Gly	Arg	Ser	Ala 300	Phe	Gln	His	Leu
	Pro 305	Gl	u L	eu .	Arg	Thr	Leu 310	Thr	Leu	Asn	Gły	Ala 315	Ser	Gln	Ile	Thr	Glu 320
	Phe	Pr	o A	sp :	Leu	Thr 325	Gly	Thr	Ala	Asn	Leu 330	Glu	Ser	Leu	Thr	Leu 335	Thr
30	Gly	Al	a G	ln :	Ile 340	Ser	Ser	Leu	Pro	Gln 345	Thr	Val	Сув	Asn	Gln 350	Leu	Pro
	Asn	Le	u G:	ln ' 55	Val :	Leu	Asp	Leu	Ser 360	Tyr	Asn	Leu	Leu	Glu 365	Asp	Leu	Pro
35	Ser	Ph 37	e Se O	er 1	Val (Cys	Gln	Lys 375	Leu	Gln	Lys		Asp 380	Leu	Arg	His	Asn
	Glu 385	Ile	е Ту	yr (3lu :	Ile	Lys 390	Val	Asp	Thr	Phe	Gln 395	Gln	Leu	Leu		Leu 400

		Arg	, Ser	Lev	a Asn	Leu 405		Trp) Asn	Lys	11e 410		Ile	: Ile	His	9 Pro	
		Ala	Phe	e Ser	Thr 420	Leu	Pro	Ser	Leu	1le 425		Leu	Asp	Leu	Ser 430	Ser	Asn
	5	Leu	Leu	Ser 435	Ser	Phe	Pro	Ile	Thr 440		Leu	His	Gly	Leu 445		His	Leu
		Lys	Leu 450	Thr	Gly	Asn	His	Ala 455	Leu	Gln	Ser	Leu	1le 460		Ser	Glu	Asn
	10	Phe 465	Pro	Glu	Leu	Lys	Val 470	Ile	Glu	Met	Pro	Tyr 475		Tyr	Gln	Суз	Cys 480
		Ala	Phe	Gly	Val	Cys 485	Glu	Asn	Ala	Tyr	Lys 490		Ser	Asn	Gln	Trp 495	Asn
		Lys	Gly	Asp	Asn 500	Ser	Ser	Met	Asp	Asp 505	Leu	His	Lys	Lys	Asp 510	Ala	Gly
	15	Met	Phe	Gln 515		Gln	Asp	Glu	Arg 520	Asp	Leu	Glu	Asp	Phe 525	Leu	Leu	Asp
		Phe	Glu 530	Glu	Asp	Leu	Lys	Ala 535	Leu	His	Ser	Val	Gln 540	Сув	Ser	Pro	Ser
••	20	Pro 545	Gly	Pro	Phe	Lys	Pro 550	Сув	Glu	His	Leu	555		Gly		Leu	Ile 560
		Arg	Ile	Gly	Val	Trp 565	Thr	Ile	Ala	Val	Leu 570	Ala	Leu	Thr	Суз	Asn 575	Ala
		Leu	Val	Thr	Ser 580	Thr	Val	Phe	Arg	Ser 585	Pro	Leu	Tyr	Ile	Ser 590	Pro	Ile
	25	Lys	Leu	Leu 595	Ile	Gly	Val	Ile	Ala 600	Ala	Val	Asn	Met	Leu 605	Thr	Gly	Val
		Ser	Ser 610	Ala	Val	Leu	Ala	Gly 615	Val	Asp	Ala	Phe	Thr 620	Phe	Gly	Ser	Phe
	30	Ala 625	Arg	His	Gly	Ala	Trp 630	Trp	Glu	Asn	Gly	Val 635	Gly	Cys	His	Val	Ile 640
		Gly	Phe	Leu	Ser	Ile 645	Phe	Ala	Ser	Glu	Ser 650	Ser	Val	Phe	Leu	Leu 655	Thr
		Leu	Ala	Ala	Leu 660	Glu	Arg	Gly	Phe	Ser 665	Val	Lys	Tyr	Ser	Ala 670	Lys	Phe
	35	Glu	Thr	Lys 675	Ala	Pro	Phe	Ser	Ser 680	Leu	Lys	Val	Ile	Ile 685	Leu	Leu	Сув
		Ala	Leu	Leu	Ala	Leu	Thr	Met	Ala	Ala	Val	Pro	Leu	Leu	Gly	Gly	Ser

		690					695					700				
	Lys 705		Gly	Ala	Ser	Pro 710	Leu	Cys	Leu	Pro	Leu 715	Pro	Phe	Gly	Glu	Pro 720
5	Ser	Thr	Met	Gly	Tyr 725	Met	Val	Ala	Leu	Ile 730	Leu	Leu	Asn	Ser	Leu 735	Cys
	Phe	Leu	Met	Met 740	Thr	Ile	Ala	Tyr	Thr 745	Lys	Leu	Tyr	Сув	Asn 750	Leu	Asp
	Lys	Gly	Asp 755	Leu	Glu	Asn	Ile	Trp 760	Asp	Суз	Ser	Met	Val 765	Lys	His	Ile
10	Ala	Leu 770	Leu	Leu	Phe	Thr	Asn 775	Суз	Ile	Leu	Asn	Cys 780	Pro	Val	Ala	Phe
	Leu 785	Ser	Phe	Ser	Ser	Leu 790	Ile	Asn	Leu	Thr	Phe 795	Ile	Ser	Pro	Glu	Val 800
15	Ile	Lys	Phe	Ile	Leu 805	Leu	Val	Val	Val	Pro 810	Leu	Pro	Ala	Суз	Leu 815	Asn
	Pro	Leu	Leu	Tyr 820	Ile	Leu	Phe	Asn	Pro 825	His	Phe	Lys	Glu	Asp 830	Leu	Val
	Ser	Leu	Arg 835	Lys	Gln	Thr	Tyr	Val 840	Trp	Thr	Arg	Ser	Lys 845	His	Pro	Ser
20	Leu	Met 850	Ser	'Ile	Asn	'Ser	Asp 855	Âsp	'Va1'	Ğlu	Ĺÿs	Gln 860	"Ser	Cys	Asp	Ser
	Thr 865	Gln	Ala	Leu	Val	Thr 870	Phe	Thr	Ser	Ser	Ser 875	Ile	Thr	Tyr	Asp	Leu 880
25	Pro	Pro	Ser	Ser	Val 885	Pro	Ser	Pro	Ala	Tyr 890	Pro	Val	Thr	Glu	Ser 895	Cys
	His	Leu	Ser	Ser 900	Val	Ala	Phe	Val	Pro 905	Сув	Leu					
	(266) INF	ORMA	TION	FOR	SEC) ID	NO:2	:65 :								
30	(i)		LEN	IGTH :	30	base	pai									
		(C)	TYP STR TOP	ANDE	DNES	S: s	ingl	.e								
	(ii	.) MC	LECU	LE I	YPE:	DNA	(ge	nomi	.c)							
35	(xi	.) SE	QUEN	ICE D	ESCR	IPTI	ON:	SEQ	ID N	iO:26	5:					

	(267) INFORMATION FOR SEQ ID NO:266:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:266:	
	CAGAGGAGGG TGAAGGGGCT GTTGGCG	27
10	(268) INFORMATION FOR SEQ ID NO:267:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:267:	
	GGCGGCGCCG AGCCAAGGGG CTGGCTGTGG	30
	(269) INFORMATION FOR SEQ ID NO:268:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	Albertonis v. S
25	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:268:	
	GGGACTGCTC TATGAAAAAA CACATTGCCC TG	32
	(270) INFORMATION FOR SEQ ID NO:269:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1071 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:269:	
	ATGAATGGGG TCTCGGAGGG GACCAGAGGC TGCAGTGACA GGCAACCTGG GGTCCTGACA	60

222

	CGTGATCGCT	CTTGTTCCAG	GAAGATGAAC	TCTTCCGGAT	GCCTGTCTGA	GGAGGTGGGG	120
	TCCCTCCGCC	CACTGACTGT	GGTTATCCTG	TCTGCGTCCA	TTGTCGTCGG	AGTGCTGGGC	180
	AATGGGCTGĠ	TGCTGTGGAT	GACTGTCTTC	CGTATGGCAC	GCACGGTCTC	CACCGTCTGC	240
	TTCTTCCACC	TGGCCCTTGC	CGATTTCATG	CTCTCACTGT	CTCTGCCCAT	TGCCATGTAC	300
5	TATATTGTCT	CCAGGCAGTG	GCTCCTCGGA	GAGTGGGCCT	GCAAACTCTA	CATCACCTTT	360
	GTGTTCCTCA	GCTACTTTGC	CAGTAACTGC	CTCCTTGTCT	TCATCTCTGT	GGACCGTTGC	420
	ATCTCTGTCC	TCTACCCCGT	CTGGGCCCTG	AACCACCGCA	CTGTGCAGCG	GGCGAGCTGG	480
	CTGGCCTTTG	GGGTGTGGCT	CCTGGCCGCC	GCCTTGTGCT	CTGCGCACCT	GAAATTCCGG	540
•	ACAACCAGAA	AATGGAATGG	CTGTACGCAC	TGCTACTTGG	CGTTCAACTC	TGACAATGAG	600
10	ACTGCCCAGA	TTTGGATTGA	AGGGGTCGTG	GAGGGACACA	TTATAGGGAC	CATTGGCCAC	660
	TTCCTGCTGG	GCTTCCTGGG	GCCCTTAGCA	ATCATAGGCA	CCTGCGCCCA	CCTCATCCGG	720
	GCCAAGCTCT	TGCGGGAGGG	CTGGGTCCAT	GCCAACCGGC	CCAAGAGGCT	GCTGCTGGTG	780
	CTGGTGAGCG	CTTTCTTTAT	CTTCTGGTCC	CCGTTTAACG	TGGTGCTGTT	GGTCCATCTG	840
	TGGCGACGGG	TGATGCTCAA	GGAAATCTAC	CACCCCCGGA	TGCTGCTCAT	CCTCCAGGCT	900
15	AGCTTTGCCT	TGGGCTGTGT	CAACAGCAGC	CTCAACCCCT	TCCTCTACGT	CTTCGTTGGC	960
	AGAGATTTCC	AAGAAAAGTT	TTTCCAGTCT	TTGACTTCTG	CCCTGGCGAG	GGCGTTTGGA	1020
	GAGGAGGAGT	TTCTGTCATC	CTGTCCCCGT	GGCAACGCCC	CCCGGGAATG	A	1071
	(271) INFOR	MATION FOR	SEQ ID NO:2	70:			

(i) SEQUENCE CHARACTERISTICS:

20 (A) LENGTH: 356 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:

Met Asn Gly Val Ser Glu Gly Thr Arg Gly Cys Ser Asp Arg Gln Pro 1 5 10 15

Gly Val Leu Thr Arg Asp Arg Ser Cys Ser Arg Lys Met Asn Ser Ser 20 25 30

30 Gly Cys Leu Ser Glu Glu Val Gly Ser Leu Arg Pro Leu Thr Val Val 35 40 45

	Ile	Leu 50	Ser	Ala	Ser	: Ile	2 Val	Va]	Gly	/ Val	Leu	Gl ₃ 60	/ Asr	Gl	/ Let	val
	Leu 65	Ттр	Met	Thr	· Val	. Ph∈	Arg	Met	: Ala	Arg	Thr 75	· Val	. Ser	Thr	· Va]	. Cys 80
5	Phe	Phe	His	Leu	Ala 85	Leu	Ala	aA .	Phe	Met 90	Leu	Ser	Leu	Ser	Leu 95	Pro
	Ile	Ala	Met	Tyr 100		Ile	· Val	Ser	105		Trp	Leu	Leu	Gly 110		Trp
10	Ala	Cys	Lys 115		Тут	Ile	Thr	Phe 120		Phe	Leu	Ser	Tyr 125		Ala	Ser
		130					135					140				Leu
	145					150				•	155				-	Trp 160
15					165					170					175	His
				180					185					190		Tyr
20	لام ۱۹۰ میمود.		195				شه هم	200 ~•.			ب بحامد ـ الد		205			Gly
		210					215					220				Gly
	225					230					235		His			240
25					245	-				250			Arg		255	
				260					265				Trp	270		
30	Asn		275					280					285		-	
		290					295					300	Ser			
25	Gly 305					310					315					320
35	Arg				325					330					335	
	Arg	Ala	Phe	Gly	Glu	Glu	Glu	Phe	Leu	Ser	Ser	Cys	Pro	Arg	Gly	Asn

224

340 345 350

Ala Pro Arg Glu 355

(272) INFORMATION FOR SEQ ID NO:271:

5 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 903 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

10

- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:271:

ATGGACCTGC CCCCGCAGCT CTCCTTCGGC CTCTATGTGG CCGCCTTTGC GCTGGGCTTC 60 CCGCTCAACG TCCTGGCCAT CCGAGGCGCG ACGGCCCACG CCCGGCTCCG TCTCACCCCT 120 15 AGCCTGGTCT ACGCCCTGAA CCTGGGCTGC TCCGACCTGC TGCTGACAGT CTCTCTGCCC 180 CTGAAGGCGG TGGAGGCGCT AGCCTCCGGG GCCTGGCCTC TGCCGGCCTC GCTGTGCCCC GTCTTCGCGG TGGCCCACTT CTTCCCACTC TATGCCGGCG GGGGCTTCCT GGCCGCCCTG AGTGCAGGCC GCTACCTGGG AGCAGCCTTC CCCTTGGGCT ACCAAGCCTT CCGGAGGCCG 360 TGCTATTCCT GGGGGGTGTG CGCGGCCATC TGGGCCCTCG TCCTGTGTCA CCTGGGTCTG 420 20 GTCTTTGGGT TGGAGGCTCC AGGAGGCTGG CTGGACCACA GCAACACCTC CCTGGGCATC AACACACCGG TCAACGGCTC TCCGGTCTGC CTGGAGGCCT GGGACCCGGC CTCTGCCGGC CCGGCCCGCT TCAGCCTCTC TCTCCTGCTC TTTTTTCTGC CCTTGGCCAT CACAGCCTTC TGCTACGTGG GCTGCCTCCG GGCACTGGCC CGCTCCGGCC TGACGCACAG GCGGAAGCTG CGGGCCAAAT GGGTGGCCGG CGGGGCCCTC CTCACGCTGC TGCTCTGCGT AGGACCCTAC 720 25 AACGCCTCCA ACGTGGCCAG CTTCCTGTAC CCCAATCTAG GAGGCTCCTG GCGGAAGCTG GGGCTCATCA CGGGTGCCTG GAGTGTGGTG CTTAATCCGC TGGTGACCGG TTACTTGGGA AGGGGTCCTG GCCTGAAGAC AGTGTGTGCG GCAAGAACGC AAGGGGGCCAA GTCCCAGAAG TAA 903

(273) INFORMATION FOR SEQ ID NO:272:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 300 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:

225

(D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:272: Met Asp Leu Pro Pro Gln Leu Ser Phe Gly Leu Tyr Val Ala Ala Phe 5 Ala Leu Gly Phe Pro Leu Asn Val Leu Ala Ile Arg Gly Ala Thr Ala His Ala Arg Leu Arg Leu Thr Pro Ser Leu Val Tyr Ala Leu Asn Leu 10 Gly Cys Ser Asp Leu Leu Thr Val Ser Leu Pro Leu Lys Ala Val Glu Ala Leu Ala Ser Gly Ala Trp Pro Leu Pro Ala Ser Leu Cys Pro Val Phe Ala Val Ala His Phe Phe Pro Leu Tyr Ala Gly Gly Phe 15 90 Leu Ala Ala Leu Ser Ala Gly Arg Tyr Leu Gly Ala Ala Phe Pro Leu 100 105 Gly Tyr Gln Ala Phe Arg Arg Pro Cys Tyr Ser Trp Gly Val Cys Ala 120 20 Ala Ile Trp Ala Leu Val Leu Cys His Leu Gly Leu Val Phe Gly Leu 130 135 Glu Ala Pro Gly Gly Trp Leu Asp His Ser Asn Thr Ser Leu Gly Ile Asn Thr Pro Val Asn Gly Ser Pro Val Cys Leu Glu Ala Trp Asp Pro 25 165 . 170 Ala Ser Ala Gly Pro Ala Arg Phe Ser Leu Ser Leu Leu Leu Phe Phe 185 Leu Pro Leu Ala Ile Thr Ala Phe Cys Tyr Val Gly Cys Leu Arg Ala 195 200 30 Leu Ala Arg Ser Gly Leu Thr His Arg Arg Lys Leu Arg Ala Lys Trp 215 Val Ala Gly Gly Ala Leu Leu Thr Leu Leu Leu Cys Val Gly Pro Tyr 225 230 Asn Ala Ser Asn Val Ala Ser Phe Leu Tyr Pro Asn Leu Gly Gly Ser 35 245 Trp Arg Lys Leu Gly Leu Ile Thr Gly Ala Trp Ser Val Val Leu Asn

226

260 265 270 Pro Leu Val Thr Gly Tyr Leu Gly Arg Gly Pro Gly Leu Lys Thr Val Cys Ala Ala Arg Thr Gln Gly Gly Lys Ser Gln Lys 5 295 (274) INFORMATION FOR SEQ ID NO:273: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1041 base pairs (B) TYPE: nucleic acid 10 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:273: ATGGATACAG GCCCCGACCA GTCCTACTTC TCCGGCAATC ACTGGTTCGT CTTCTCGGTG 60 15 TACCTTCTCA CTTTCCTGGT GGGGCTCCCC CTCAACCTGC TGGCCCTGGT GGTCTTCGTG GGCAAGCTGC AGCGCCGCCC GGTGGCCGTG GACGTGCTCC TGCTCAACCT GACCGCCTCG GACCTGCTCC TGCTGCTGTT CCTGCCTTTC CGCATGGTGG AGGCAGCCAA TGGCATGCAC TGGCCCCTGC CCTTCATCCT CTGCCCACTC TCTGGATTCA TCTTCTTCAC CACCATCTAT 300 CTCACCGCCC TCTTCCTGGC AGCTGTGAGC ATTGAACGCT TCCTGAGTGT GGCCCACCCA 360 20 CTGTGGTACA AGACCCGGCC GAGGCTGGGG CAGGCAGGTC TGGTGAGTGT GGCCTGCTGG 420 CTGTTGGCCT CTGCTCACTG CAGCGTGGTC TACGTCATAG AATTCTCAGG GGACATCTCC 480 CACAGCCAGG GCACCAATGG GACCTGCTAC CTGGAGTTCC GGAAGGACCA GCTAGCCATC CTCCTGCCCG TGCGGCTGGA GATGGCTGTG GTCCTCTTTG TGGTCCCGCT GATCATCACC 600 AGCTACTGCT ACAGCCGCCT GGTGTGGATC CTCGGCAGAG GGGGCAGCCA CCGCCGGCAG 25 AGGAGGGTGA AGGGGCTGTT GGCGGCCACG CTGCTCAACT TCCTTGTCTG CTTTGGGCCC TACAACGTGT CCCATGTCGT GGGCTATATC TGCGGTGAAA GCCCGGCATG GAGGATCTAC GTGACGCTTC TCAGCACCCT GAACTCCTGT GTCGACCCCT TTGTCTACTA CTTCTCCTCC

TGGCAGCAGG AGAGCAGCAT GGAGCTGAAG GAGCAGAAGG GAGGGGAGGA GCAGAGAGCG 960

30 GACCGACCAG CTGAAAGAAA GACCAGTGAA CACTCACAGG GCTGTGGAAC TGGTGGCCAG 1020

GTGGCCTGTG CTGAAAGCTA G 1041

TCCGGGTTCC AAGCCGACTT TCATGAGCTG CTGAGGAGGT TGTGTGGGCT CTGGGGCCAG

	(275) IN	IFORI	ATIC	ON FO	OR SE	II QE	NO:	274 :	:							
5			(E (C (D	A) LE B) TY C) SI D) TO	ENGTH PE: TRANI POLC	CHARI I: 34 amir DEDNE OGY:	6 am 10 ac 188: not	nino :id rele	acid				•				
		(x	i) s	EQUE	NCE	DESC	RIPT	'ION:	SEQ	ID	NO : 2	74:					
10	•	Met 1	Asp	Thr	Gly	Pro	Asp	Gln	Ser	Туг	Phe 10	. Ser	Gly	Asn	His	Trp 15	Phe
		Val	Phe	Ser	Val 20	Tyr	Leu	Leu	Thr	Phe 25	Leu	Val	Gly	Leu	Pro	Leu	Asn
		Leu	Leu	Ala 35	Leu	Val	Val	Phe	Val 40		Lys	Leu	Gln	Arg 45	Arg	Pro	Val
15		Ala	Val 50	Asp	Val	Leu	Leu	Leu 55	Asn	Leu	Thr	Ala	Ser 60	Asp	Leu	Leu	Leu
		Leu 65	Leu	Phe	Leu	Pro	Phe 70	Arg	Met	Val	Glu	Ala 75	Ala	Asn	Gly	Met	His 80
20		Trp	Pro	Leu	Pro	Phe 85			Cys	Pro	Leu 90	Ser	Gly	Phe	Ile	Phe 95	Phe
					100					105		Ala			110		
25				115					120			Tyr		125			
25			130				٠	135				Cys	140				
		145					150					Phe 155					160
30						165					170	Leu				175	
					180					185		Glu			190		
35				195					200			Cys		205			
<i>JJ</i>			210					215				Arg	220				_
	(ıΙλ	∟eu	ren	ALA	АТа	Thr	Leu	Leu	Asn	Phe	Leu	Val	Cys	Phe	Gly	Pro

	225					230					235					240
٠	Tyr	Asn	Val	Ser	His 245	Val	Val	Gly	Tyr	Ile 250	Cys	Gly	Glu	Ser	Pro 255	Ala
5	Trp	Arg	Ile	Tyr 260	Val	Thr	Leu	Leu	Ser 265	Thr	Leu	Asn	Ser	Cys 270	Val	Asp
	Pro	Phe	Val 275.	Tyr	Tyr	Phe	Ser	Ser 280	Ser	Gly	Phe	Gln	Ala 285	Asp	Phe	His
	Glu	Leu 290	Leu	Arg	Arg	Leu	Cys 295	Gly	Leu	Trp	Gly	Gln 300	Trp	Gln	Gln	Glu
10	Ser 305	Ser	Met	Glu	Leu	Lys 310	Glu	Gln	Lys	Gly	Gly 315	Glu	Glu	Gln	Arg	Ala 320
	Asp	Arg	Pro	Ala	Glu 325	Arg	Lys	Thr	Ser	Glu 330	His	Ser	Gln		Cys 335	Gly
15	Thr	Gly	Gly	Gln 340	Val	Ala	Cys	Ala	Glu 345	Ser						
	(276) INF	ORMA	TION	FOR	SEQ	ID	NO:2	75:								
20		(A) (B) (C)	LEN TYP STR	GTH: E: n ANDE	ARAC 993 ucle DNES Y: 1	bas ic a S: s	e pa cid ingl	irs	- 44				• 0	 10 -		
					YPE:			nomi	c)							
	(xi)	SE	QUEN	CE D	ESCR	IPTI:	ON:	SEQ	ID N	0:27	5 :		•			
	ATGCTGCCG	G AC	TGGA	AGAG	CTC	CTTG	ATC ·	CTCA	TGGC'	TT A	CATC	ATCA'	r ct	rcct	CACT	60
25	GGCCTCCCTC	CC	AACC	TCCT	GGC	CCTG	CGG (GCCT	TTGT	GG G	GCGG	ATCC	G CC	AGCC	CCAG	120
	CCTGCACCTC	TG	CACA	TCCT	CCT	GCTG:	AGC (CTGA	CGCT	GG C	CGAC	CTCC'	r cc	rgcto	GCTG	180
	CTGCTGCCCT	TC	AAGA'	TCAT	CGA	GCT(GCG :	rcga:	ACTT	CC G	CTGG:	PACC'	r GC	CCAA	GTC	240
	GTCTGCGCCC	TC	ACGA	GTTT	TGG	CTTC:	rac i	AGCA	GCAT	CT AC	CTGC	AGCA	C GTO	GCT	CCTG	300
	GCGGGCATCA	GCZ	ATCG	AGCG	CTAC	CCTG	GA (GTGG	CTTT	cc co	CGTG	CAGT	A CAZ	AGCT(CTCC	360
30	CGCCGGCCTC	TGI	ratg(GAGT	GATT	rgca	SCT (CTGG:	rggco	CT GO	GTT	TGT	CTT	TGGT	CAC	420
	TGCACCATCG	TGA	ATCA:	rcgt	TCA	TACT	rtg <i>i</i>	AACA	GACI	rg ac	CAGG	TCAC	AAC	TGG	CAAT	480
	GAAATTACCT	GCI	racg)	AGAA	CTTC	CACCO	SAT A	AACC	GTT	G AC	GTGG	TGCI	GCC	CGT	SCGG	540
	CTGGAGCTGT	GCC	TGG	GCT	CTTC	TTC	ATC (CCAT	rggcz	AG TO	ACCA	TCTI	CTC	CTAC	TGG	600

	CGTTTTGTGT GGATCATGCT CTCCCAGCCC CTTGTGGGGG CCCAGAGGCG GCGCCGAGCC	660
	AAGGGGCTGG CTGTGGTGAC GCTGCTCAAT TTCCTGGTGT GCTTCGGACC TTACAACGTG	720
	TCCCACCTGG TGGGGTATCA CCAGAGAAAA AGCCCCTGGT GGCGGTCAAT AGCCGTGGTG	780
	TTCAGTTCAC TCAACGCCAG TCTGGACCCC CTGCTCTTCT ATTTCTCTTC TTCAGTGGTG	840
5	CGCAGGGCAT TTGGGAGAGG GCTGCAGGTG CTGCGGAATC AGGGCTCCTC CCTGTTGGGA	900
	CGCAGAGGCA AAGACACAGC AGAGGGGACA AATGAGGACA GGGGTGTGGG TCAAGGAGAA	960
	GGGATGCCAA GTTCGGACTT CACTACAGAG TAG	993
	(277) INFORMATION FOR SEQ ID NO:276:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 330 amino acids	
	(B) TYPE: amino acid (C) STRANDEDNESS:	
	(D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:276:	
	Met Leu Pro Asp Trp Lys Ser Ser Leu Ile Leu Met Ala Tyr Ile Ile	
	1 5 10 15	
-	Ile Phe Leu Thr Gly Leu Pro Ala Asn Leu Leu Ala Leu Arg Ala Phe	
20	Val Gly Arg Ile Arg Gln Pro Gln Pro Ala Pro Val His Ile Leu Leu	
	35 40 45	
	Leu Ser Leu Thr Leu Ala Asp Leu Leu Leu Leu Leu Leu Leu Pro Phe 50 55 60	
25	Lys Ile Ile Glu Ala Ala Ser Asn Phe Arg Trp Tyr Leu Pro Lys Val	
	Val Cys Ala Leu Thr Ser Phe Gly Phe Tyr Ser Ser Ile Tyr Cys Ser	
	85 90 95	
	Thr Trp Leu Leu Ala Gly Ile Ser Ile Glu Arg Tyr Leu Gly Val Ala 100 105 110	
30	Phe Pro Val Gln Tyr Lys Leu Ser Arg Arg Pro Leu Tyr Gly Val Ile 115 120 125	
	Ala Ala Leu Val Ala Trp Val Met Ser Phe Gly His Cys Thr Ile Val	
35	Ile Ile Val Gln Tyr Leu Asn Thr Thr Glu Gln Val Arg Ser Gly Asn 145 150 155 160	

	•	Glu	Ile	Thr	Cys	Tyr 165	Glu	Asn	Phe	Thr	Asp 170	Asn	Gln	Leu	Asp	Val 175	Val
	1	Leu	Pro	Val	Arg 180	Leu	Glu	Leu	Cys	Leu 185	Val	Leu	Phe	Phe	Ile 190		Met
5	1	Ala	Val	Thr 195	Ile	Phe	Cys	Tyr	Trp 200	Arg	Phe	Val	Trp	Ile 205	Met	Leu	Ser
	C	Iln	Pro 210	Leu	Val	Gly	Ala	Gln 215	Arg	Arg	Arg	Arg	Ala 220	Lys	Gly	Leu	Ala
10	\ 2	/al 225	Val	Thr	Leu	Leu	Asn 230	Phe	Leu	Val	Суз	Phe 235	Gly	Pro	Tyr	Asn	Val 240
		Ser	His	Leu	Val	Gly 245	Tyr	His	Gln	Arg	Lys 250	Ser	Pro	Trp	Trp	Arg 255	Ser
	I	le.	Ala	Val	Val 260	Phe	Ser	Ser	Leu	Asn 265	Ala	Ser	Leu	Asp	Pro 270	Leu	Leu
15	· p	he '	Tyr	Phe 275	Ser	Ser	Ser	Val	Val 280	Arg	Arg	Ala	Phe	Gly 285	Arg	Gly	Leu
	G	ln '	Val 290	Leu	Arg	Asn	Gln	Gly 295	Ser	Ser	Leu		Gly 300	Arg	Arg	Gly	Lys
20	A	sp :	Thr	Ala	Glu	Gly	Thr 310	Asn	Glu	Asp		Gly 315	Val	Gly	Gln -		Glu 320
	G	ly N	Met	Pro	Ser	Ser 325	Asp	Phe	Thr		Glu 330						
	(278)	INFO	ORMA	TION	FOR	SEQ	ID :	NO:2	77:								
25		(i)	(A) (B) (C)	LEN TYP: STR	E CH GTH: E: IN ANDER	272 ucle ONES	4 basic ac S: s:	se pa cid ingla	airs								
		(ii)	MOI	LECU	LE T	YPE:	DNA	(ger	nomi	c)							
30		(xi)	SEÇ	QUEN	CE DI	ESCR:	PTIC	ON: S	SEQ :	ID NO	D: 27	7:					
	ATGGACA	ACCT	. cc	ZGGC:	rcgg	TGT	CTC	CTG :	rcct:	rgcc	rg to	CTGC	TGC	A GCT	rggc	GACC	60
	GGGGGCA	AGCT	CTC	CCAC	GTC	TGGT	GTGT	TG (CTGAC	3GGG(T GO	CCCA	CAC	A CTO	TCAT	TGC	120
	GAGCCCG	ACG	GCZ	AGGAT	GTT	GCT	AGG	STG (SACTO	CTC	G AC	CTGG	GGC1	CTC	GGAC	CTG	180
	CCTTCCA	ACC	TCA	AGCG1	CTT	CACC	TCC1	CAC C	TAG	CCT	A GI	TATGA	ACAZ	CAI	CAGI	CAG	240
35	CTGCTCC	CGA	ATC	CCCI	GCC	CAGI	CTCC	GC 1	TCCI	CCAC	ים אם	:ጥጥል	יכיתרייו	י ייימר	acar		200

	GCTCTGACAI	ACATTCCCAA	GGGAGCATTC	ACTGGCCTTT	ACAGTCTTA	A AGTTCTTATG	360
	CTGCAGAATA	ATCAGCTAAG	ACACGTACCC	ACAGAAGCTC	TGCAGAATT	C GCGAAGCCTT	420
	CAATCCCTGC	GTCTGGATGC	TAACCACATO	AGCTATGTGC	CCCCAAGCTC	TTTCAGTGGC	430
	CTGCATTCCC	TGAGGCACCT	GTGGCTGGAT	GACAATGCGT	TAACAGAAA1	CCCCGTCCAG	540
5	GCTTTTAGAA	GTTTATCGGC	ATTGCAAGCC	ATGACCTTGG	CCCTGAACAA	AATACACCAC	600
	ATACCAGACT	ATGCCTTTGG	AAACCTCTCC	AGCTTGGTAG	TTCTACATCT	CCATAACAAT	660
	AGAATCCACT	CCCTGGGAAA	GAAATGCTTT	GATGGGCTCC	ACAGCCTAGA	GACTTTAGAT	720
	TTAAATTACA	ATAACCTTGA	TGAATTCCCC	ACTGCAATTA	GGACACTCTC	CAACCTTAAA	780
	GAACTAGGAT	TTCATAGCAA	CAATATCAGG	TCGATACCTG	AGAAAGCATT	TGTAGGCAAC	840
10	CCTTCTCTTA	TTACAATACA	TTTCTATGAC	AATCCCATCC	AATTTGTTGG	GAGATCTGCT	900
	TTTCAACATT	TACCTGAACT	AAGAACACTG	ACTCTGAATG	GTGCCTCACA	AATAACTGAA	960
	TTTCCTGATT	TAACTGGAAC	TGCAAACCTG	GAGAGTCTGA	CTTTAACTGG	AGCACAGATC	1020
	TCATCTCTTC	CTCAAACCGT	CTGCAATCAG	TTACCTAATC	TCCAAGTGCT	AGATCTGTCT	1080
	TACAACCTAT	TAGAAGATTT	ACCCAGTTTT	TCAGTCTGCC	AAAAGCTTCA	GAAAATTGAC	1140
15	CTAAGACATA	ATGAAATCTA	CGAAATTAAA	GTTGACACTT	TCCAGCAGTT	GCTTAGCCTC	1200
	CGATCGCTGA	ATTTGGCTTG	GAACAAAATT	GCTATTATTC	ACCCCAATGC	ATTTTCCACT	1260
	TTGCCATCCC	TAATAAAGCT	GGACCTATCG	TCCAACCTCC	TGTCGTCTTT	TCCTATAACT	1320
	GGGTTACATG	GTTTAACTCA	CTTAAAATTA	ACAGGAAATC	ATGCCTTACA	GAGCTTGATA	1380
	TCATCTGAAA	ACTTTCCAGA	ACTCAAGGTT	ATAGAAATGC	CTTATGCTTA	CCAGTGCTGT	1440
20	GCATTTGGAG	TGTGTGAGAA	TGCCTATAAG	ATTTCTAATC	AATGGAATAA	AGGTGACAAC	1500
	AGCAGTATGG	ACGACCTTCA	TAAGAAAGAT	GCTGGAATGT	TTCAGGCTCA	AGATGAACGT	1560
	GACCTTGAAG	ATTTCCTGCT	TGACTTTGAG	GAAGACCTGA	AAGCCCTTCA	TTCAGTGCAG	1620
	TGTTCACCTT	CCCCAGGCCC	CTTCAAACCC	TGTGAACACC	TGCTTGATGG	CTGGCTGATC	1680
	AGAATTGGAG	TGTGGACCAT	AGCAGTTCTG	GCACTTACTT	GTAATGCTTT	GGTGACTTCA	1740
25	ACAGTTTTCA	GATCCCCTCT	GTACATTTCC	CCCATTAAAC	TGTTAATTGG	GGTCATCGCA	1800
	GCAGTGAACA	TGCTCACGGG	AGTCTCCAGT	GCCGTGCTGG	CTGGTGTGGA	TGCGTTCACT	1860
	TTTGGCAGCT	TTGCACGACA	TGGTGCCTGG	TGGGAGAATG	GGGTTGGTTG	CCATGTCATT	1920
	GGTTTTTTGT	CCATTTTTGC	TTCAGAATCA	TCTGTTTTCC	TGCTTACTCT	GGCAGCCCTG	1980

	GAGCGTG	GT :	rctc:	rgtga	A A'	TATT(CTGC	AA A	ATTT(SAAA	CGA	AAGC:	rcc i	ATTT.	rcta(3C	2040
	CTGAAAGT	raa :	ICAT:	TTGC	T C	rgtg	CCTC	CTO	GCC	rtga	CCA	rggc	CGC I	AGTT	CCCI	rg	2100
	CTGGGTG	SCA C	GCAAC	STATG	G C	CCT	CCCT	CTC	CTGC	CTGC	CTT	rgcc:	TTT :	rggg	GAGCO	CC	2160
	AGCACCAT	rgg (CTAC	ATGG	T C	GCTC1	CATO	TTC	CTC	TTA	ccc	TTG	CTT (CTC	ATGAT	rG	2220
5	ACCATTGO	CT A	ACACO	AAGC	T C	FACTO	CAAT	TTC	GAC	AGG	GAG	CCT	GA (TAAT	TTTG	:G	2280
	GACTGCTC	TA T	GAAZ	AAAC	A CZ	ATTGO	CCTG	TTG	CTCI	TCA	CCAP	CTGC	AT (CTA	ACTG	C	2340
	CCTGTGGC	TT T	CTTC	TCCT	T CI	CCTC	TTTA	ATA	AACC	TTA	CATI	TATO	AG 1	CCTC	AAGT	'A	2400
	ATTAAGTT	TA I	CCTI	CTGG	T GO	TAGT	CCCA	CTI	'CCTG	CAT	GTCT	'CAAT	cc c	CTTC	TCTA	C	2460
	ATCTTGTT	CA A	TCCT	'CACT'	T TA	LAGGA	GGAT	CTG	GTGA	GCC	TGAG	AAAG	CA A	ACCI	ACGT	'C	2520
10	TGGACAAG	AT C	'AAAA	CACC	C AA	GCTI	GATG	TCA	ATTA	ACT	CTGA	TGAT	GT C	GAAA	AACA	.G :	2580
	TCCTGTGA	CT C	'AACT	CAAG	CI	TGGT	'AACC	TTT	ACCA	ĢCT	CCAG	CATC	AC T	TATG	ACCT	G :	2640
	CCTCCCAG	TT C	CGTG	CCAT	CAC	CAGC	TTAT	CCA	GTGA	.CTG	AGAG	CTGC	CA I	CTTT	CCTC	т :	2700
	GTGGCATT	TG T	CCCA	TGTC	r ct	'AA					•					:	2724
	(279) IN	FORM	ATIO	n foi	R SE	Q ID	NO:	278:									
15		· · (A (B (C) LE) TY) ST	CE CE NGTH: PE: & RANDE POLOC	: 90 min EDNE	7 am o ac SS:	ino a	acid	s ·	. į. .		****					
20	(i	i) M	OLEC	ULE 7	YPE	: pr	otei	n									
	(x:	i) s	EQUE	NCE I	ESC	RIPT	ION:	SEQ	ID 1	NO:2	78:						
	Met 1	Asp	Thr	Ser	Arg 5	Leu	Gly	Val	Leu	Leu 10	Ser	Leu	Pro	Val	Leu 15	Lev	1
25	Gln	Leu	Ala	Thr 20	Gly	Gly	Ser	Ser	Pro 25	Arg	Ser	Gly	Val	Leu 30	Leu	Arg	ı
	Gly	Суз	Pro 35	Thr	His	Суз	His	Сув 40	Glu	Pro	Asp	Gly	Arg 45	Met	Leu	Lev	ı
	Arg	Val 50	Asp	Сув	Ser	Asp	Leu 55	Gly	Leu	Ser	Glu	Leu 60	Pro	Ser	Asn	Leu	ı
30	Ser 65	Val	Phe	Thr	Ser	Tyr 70	Leu	Asp	Leu	Ser	Met 75	Asn	Asn	Ile	Ser	Gln 80	l
	Leu	Leu	Pro	Asn	Pro 85	Leu	Pro	Ser	Leu	Arg 90	Phe	Leu	Glu	Glu	Leu 95	Arg	•

	Leu	Ala	Gly	Asn 100	Ala	Leu	Thr	Туг	105		Lys	Gly	Ala	Phe 110		Gl
	Leu	Tyr	Ser 115		Lys	Val	Leu	Met 120		Gln	Asn	. Asn	Glr 125		Arg	His
5	Val	Pro 130		Glu	Ala	Leu	Gln 135		Leu	Arg	Ser	Leu 140		Ser	Leu	Arg
	Leu 145	Asp	Ala	Asn	His	11e 150	Ser	Tyr	Val	Pro	Pro 155		Cys	Phe	Ser	Gly 160
10	Leu	His	Ser	Leu	Arg 165	His	Leu	Trp	Leu	Asp 170		Asn	Ala	Leu	Thr 175	
	Ile	Pro	Val	Gln 180		Phe	Arg	Ser	Leu 185		Ala	Leu	Gln	Ala 190		Thr
	Leu	Ala	Leu 195	Asn	Lys	Ile	His	His 200	Ile	Pro	Asp	Tyr	Ala 205		Gly	Asn
15	Leu	Ser 210	Ser	Leu	Val	Val	Leu 215	His	Leu	His	Asn	Asn 220	Arg	Ile	His	Ser
	Leu 225	Gly	Lys	Lys	Суз	Phe 230	Asp	Gly	Leu	His	Ser 235	Leu	Glu	Thr	Leu	Asp 240
20	Leu	Asn	Tyr	Asn	Asn 245	Leu	Asp	Glu	Phe	Pro 250	Thr	Ala	Ile	Arg	Thr 255	Leu
	Ser	Asn	Leu	Lys 260	Glu	Leu	Gly	Phe	His 265	Ser	Asn	Asn	Ile	Arg 270	Ser	Ile
	Pro	Glu	Lys 275	Ala	Phe	Val	Gly	Asn 280	Pro	Ser	Leu	Ile	Thr 285	Ile	His	Phe
25	Tyr	Asp 290	Asn	Pro	Ile	Gln	Phe 295	Val	Gly	Arg	Ser	Ala 300	Phe	Gln	His	Leu
	Pro 305	Glu	Leu	Arg	Thr	Leu 310	Thr	Leu	Asn	Gly	Ala 315	Ser	Gln	Ile	Thr	Glu 320
30	Phe	Pro	Asp	Leu	Thr 325	Gly	Thr	Ala	Asn	Leu 330	Glu	Ser	Leu	Thr	Leu 335	Thr
	Gly	Ala	Gln	Ile 340	Ser	Ser	Leu	Pro	Gln 345	Thr	Val	Суз	Asn	Gln 350	Leu	Pro
	Asn	Leu	Gln 355	Val	Leu	Asp	Leu	Ser 360	Tyr	Asn	Leu	Leu	Glu 365	Asp	Leu	Pro
35	Ser	Phe 370	Ser	Val	Cys	Gln	Lув 375	Leu	Gln	Lys	Ile	Asp 380	Leu	Arg	His	Asn
	Glu	Ile	Tyr	Glu	Ile	Lys	Val	Asp	Thr	Phe	Gln	Gln	Leu	Leu	Ser	Leu

	385	5				390)				395	;				400
	Arg	sei	Leu	ı Asn	Leu 405	Ala	Trp	neA o	Lys	11e 410		Ile	: Ile	His	Pro	Asn
5	Ala	Phe	e Ser	Thr 420		Pro	Ser	Leu	1le 425		Leu	Asp	Leu	Ser 430		Asn
	Leu	Lev	Ser 435	Ser	Phe	Pro	Ile	Thr 440		Leu	His	Gly	Leu 445		His	Leu
	Lys	Leu 450	Thr	Gly	Asn	His	Ala 455		Gln	Ser	Leu	Ile 460		Ser	Glu	Asn
10	Phe 465	Pro	Glu	Leu	Lys	Val 470		Glu	Met	Pro	Tyr 475		Tyr	Gln	Cys	Cys 480
	Ala	Phe	Gly	Val	Cys 485	Glu	Asn	Ala	Tyr	Lys 490	Ile	Ser	Asn		Trp 495	Asn
15	Lys	Gly	Asp	Asn 500	Ser	Ser	Met	Asp	Asp 505	Leu	His	Lys	Lys	Asp 510	Ala	Gly
	Met	Phe	Gln 515	Ala	Gln	Asp	Glu	Arg 520	Asp	Leu	Glu	Asp	Phe 525	Leu	Leu	Asp
	Phe	Glu 530	Glu	Asp	Leu	Lys	Ala 535	Leu	His	Ser	Val	Gln 540	Суз	Ser	Pro	Ser
-20	 Pro 545	Gly	Pro	Phe	Lys	Pro 550	Суз	Glu	His	Leu	Lëu 555	Asp	Gly	Trp	Leu	Ile 560
	Arg	Ile	Gly	Val	Trp 565	Thr	Ile	Ala	Val	Leu 570	Ala	Leu	Thr	Сув	Asn 575	Ala
25	Leu	Val	Thr	Ser 580	Thr	Val	Phe	Arg	Ser 585	Pro	Leu	Туг	Ile	Ser 590	Pro	Ile
	Lys	Leu	Leu 595	Ile	Gly	Val	Ile	Ala 600	Ala	Val	Asn	Met	Leu 605	Thr	Gly	Val
	Ser	Ser 610	Ala	Val	Leu	Ala	Gly 615	Val	Asp	Ala	Phe	Thr 620	Phe	Gly	Ser	Phe
30	Ala 625	Arg	His	Gly	Ala	Trp 630	Trp	Glu	Asn	Gly	Val 635	Gly	Cys	His		Ile 640
	Gly	Phe	Leu	Ser	Ile 645	Phe	Ala	Ser	Glu	Ser 650	Ser	Val	Phe	Leu	Leu 655	Thr
35	Leu	Ala	Ala	Leu 660	Glu	Arg	Gly	Phe	Ser 665	Val	Lys	Tyr	Ser	Ala 670	Lys	Phe
	Glu	Thr	Lys 675	Ala	Pro	Phe		Ser 680	Leu	Lys	Val		Ile 685	Leu	Leu	Cys

235

	Ala	Leu 690		Ala	Leu	Thr	Met 695		Ala	Val	Pro	Leu 700		Gly	Gly	Ser
	Lys 705		Gly	Ala	Ser	Pro 710	Leu	Cys	Leu	Pro	Leu 715	Pro	Phe	Gly	Glu	Pro 720
5	Ser	Thr	Met	Gly	Tyr 725	Met	Val	Ala	Leu	Ile 730	Leu	Leu	Asn		Leu · 735	Cys
	Phe	Leu	Met	Met 740	Thr	Ile	Ala	Tyr	Thr 745	Lys	Leu	Tyr	Cys	Asn 750	Leu	qaA
10	Lys	Gly	Asp 755	Leu	Glu	Asn	Ile	Trp 760	Asp	Суз	Ser	Met	Lys 765	Lys	His	Ile
	Ala	Leu 770	Leu	Leu	Phe	Thr	Asn 775	Суз	Ile	Leu	Asn	Cys 780	Pro	Val	Ala	Phe
	Leu 785	Ser	Phe.	Ser	Ser	Leu 790	Ile	Asn	Leu	Thr	Phe 795	Ile	Ser	Pro	Glu	Val 800
15	Ile	Lys	Phe	Ile	Leu 805	Leu	Val	Val	Val	Pro 810	Leu	Pro	Ala	Суз	Leu 815	Asn
	Pro	Leu	Leu	Tyr 820	Ile	Leu	Phe	Asn	Pro 825	His	Phe	Lys	Glu	Asp 830	Leu	Val
20	Ser	Leu	Arg 835	Lys	Gln	Thr	Tyr	Val 840	Trp	Thr	Arg	Ser	Lys 845	His	Pro	Ser
	Leu	Met 850	Ser	Ile	Asn	Ser	Asp 855	qaA	Val	Glu	Lys	Gln 860	Ser	Cys	Asp	Ser
	Thr 865	Gln	Ala	Leu	Val	Thr 870	Phe	Thr	Ser	Ser	Ser 875	Ile	Thr	Tyr	Asp	Leu 880
25	Pro	Pro	Ser	Ser	Val 885	Pro	Ser	Pro	Ala	Tyr 890	Pro	Val	Thr	Glu	Ser 895	Сув
			Ser	900					Pro 905	Cys	Leu					
	(280) INF	ORMA	TION	FOR	SEQ	ID	NO:2	79:								
30	(i)		UENC LEN													
		(B)	TYP STR	E: n	ucle	ic a	cid									
			TOP					-								
35	(ii) мо	LECU	LE T	YPE:	DNA	(ge	nomi	c)							
	(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:27	9:					

32

CATGCCAACC GGCCCGCGAG GCTGCTGCTG GT

236

(281) INFORMATION FOR SEQ ID NO:280:

5

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 32 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:280:

ACCAGCAGCA GCCTCGCGGG CCGGTTGGCA TG

Int. Honal Application No PCT/US 99/23938

A CLASS			.,, 20300
IPC 7	SFICATION OF SUBJECT MATTER C12N15/12 C07K14/72 G01N3	3/50 G01N33/566	
According	to International Patent Classification (IPC) or to both national date	seification and ISC	
1	SEARCHED	CONTRACTOR BY I.P.C.	
IPC /			
	ation searched other than minimum documentation to the extent t data base consulted during the international search (name of dat		
		The state of the s	·
	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
X	KJELSBERG M. A. ET AL.: "CONSTACTIVATION OF THE ALPHA1B-ADREN RECEPTOR BY ALL AMINO ACID SUBSTAT A SINGLE SITE" JOURNAL OF BIOLOGICAL CHEMISTRY VOl. 267, no. 3, 25 January 1992 (1992-01-25), p. 1430-1433, XP002911764 ISSN: 0021-9258 the whole document	ERGIC TITUTIONS	1,2, 4-13, 15-33, 35-37,41
	er documents are listed in the continuation of box C.	X Patent family member	rs are listed in annex.
"A" documen	egories of cited documents : at defining the general state of the art which is not red to be of particular relevance	"T" later document published a or priority date and not in cited to understand the pri	fter the international filing date conflict with the application but neight or theory underlying the
"E" earlier do filing da	ocument but published on or after the international	invention "X" document of particular relev	
"L" document	t which may throw doubts on priority claim(s) or	cannot be considered nov	el or cannot be considered to when the document is taken alone
citation	cited to establish the publication date of another or other special reason (as specified) at referring to an oral disclosure, use, exhibition or	"Y" document of particular relevence to in	vance; the claimed invention to the claimed invention to the claimed invention the
otnerm P° documen	eans t published prior to the international filling date but	occument is combined with ments, such combination to in the art.	h one or more other such docu- peing obvious to a person skilled
iater tria	n the priority date claimed tue completion of the international search	"&" document member of the sa Date of mailing of the Inten	
	March 2000	09/03/2000	manner outsider reports
Name and ma	illing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Mandl, B	

Int. ional Application No PCT/US 99/23938

C.(Continue	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
X	SCHEER A. ET AL.: "CONSTITUTIVELY ACTIVE G PROTEIN-COUPLED RECEPTORS: POTENTIAL MECHANISMS OF RECEPTOR ACTIVATION" JOURNAL OF RECEPTOR AND SIGNAL TRANSDUCTION RESEARCH, vol. 17, no. 1/03, 1997, pages 57-73, XP000867531 ISSN: 1079-9893 the whole document	1,2, 4-13, 15-33, 35-37,41
x	WO 97 21731 A (NEW ENGLAND MEDICAL CENTER INC) 19 June 1997 (1997-06-19)	1,2,4, 9-13, 20-32, 35-37,41
x	the whole document, especially Fig. 2-3 WO 98 38217 A (HERRICK DAVIS KATHARINE ;TEITLER MILT (US); EGAN CHRISTINA C (US)) 3 September 1998 (1998-09-03)	1,2, 4-13, 15-33, 35-37,41
	the whole document, especially page 7, lines 24-27, and figure 4	33 37,41
P,X	PAUWELS P. J. ET AL.: "REVIEW: AMINO ACID DOMAINS INVOLVED IN CONSTITUTIVE ACTIVATION OF G-PROTEIN-COUPLED RECEPTORS" MOLECULAR NEUROBIOLOGY, vol. 17, no. 1/03, 1998, pages 109-135, XP000866477 ISSN: 0893-7648 the whole document	1,2, 4-13, 15-33, 35-37,41
	·	
1		l

. _mational application No.

PCT/US 99/23938

Box t Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: 34,38-40,42,43 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically: See FURTHER INFORMATION sheet PCT/ISA/210
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International Application No. PCT/US 99 &3938

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 34,38-40,42,43

Claims 34, 38-40, 42 and 43 refer to compounds with an agonistic effect on a GPCR without giving a true technical characterization. Moreover, no such specific compounds are defined in the application. In consequence, the scope of said claims is ambiguous and vague, and their subject-matter is not sufficiently disclosed and supported (Art. 5 and 6 PCT). No search can be carried out for such purely speculative claims whose wording is, in fact, a mere recitation of the results to be achieved.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

information on patent family members

Int. Ional Application No PCT/US 99/23938

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9721731	A .	19-06-1997	US AU CA EP	5750353 A 1334397 A 2239293 A 0869975 A	12-05-1998 03-07-1997 19-06-1997 14-10-1998
WO 9838217	Α	03-09-1998	AU	6343998 A	18-09-1998

Form PCT/ISA/210 (potent family annex) (July 1992)

International Application No. PCT/US 99 /23938

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 34,38-40,42,43

Claims 34, 38-40, 42 and 43 refer to compounds with an agonistic effect on a GPCR without giving a true technical characterization. Moreover, no such specific compounds are defined in the application. In consequence, the scope of said claims is ambiguous and vague, and their subject-matter is not sufficiently disclosed and supported (Art. 5 and 6 PCT). No search can be carried out for such purely speculative claims whose wording is, in fact, a mere recitation of the results to be achieved.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

Information on patent family members

Inta Ional Application No PCT/US 99/23938

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9721731	A	19-06-1997	US AU	5750353 A 1334397 A	12-05-1998 03-07-1997
			CA	2239293 A	19-06-1997
			EP	0869975 A	14-10-1998
WO 9838217	Α	03-09-1998	AU	6343998 A	18-09-1998

Form PCT/ISA/210 (patent family entrex) (July 1992)