Higher Linear Algebra MATH2601 UNSW

Jeremy Le (Based of Hussain Nawaz's Notes)

2023T2

Contents

	Group and Fields			
	1.1	Groups	2	
		1.1.1 Permutation Groups	2	
	1.2	Fields	3	

1 Group and Fields

1.1 Groups

Definition A group G is a non-empty set with a binary operation defined on it. That is

- 1. Closure: for all a, b in G a composition a * b is defined and in G,
- 2. Associativity: (a * b) * c = a * (b * c) for all $a, b, c \in G$,
- 3. **Identity:** there is an element $e \in G$ such that a * e = e * a for all $a \in G$,
- 4. **Inverse:** for each $a \in G$ there is an a' in G such that a * a' = a' * a = e,

If G is a finite set then the order of G is |G|, the number of elements in G. Groups are defined as (G, *). We say this as "the group G under the operation *".

Abelian Groups A group G is abelian if the operation satisfies the commutative law

$$a * b = b * a$$
 for all $a, b \in G$

Notation

- We use power notation for repeated applications: $a * a \cdots * a = a^n$ and $a^{-n} = (a^{-1})^n$.
- For group operation, \times we use 1 for the identity and a^{-1} for inverse of a.
- For group operation, + we use 0 for the identity and -a for the inverse of a.
- We would then write na for $a + a + \cdots a$ (repeated addition, not multiplying by n).

Trivial Groups The trivial group is the group consisting of exactly one element, $\{e\}$. It is the smallest possible group, since there has to be at least one element in a group.

More Properties of Groups

- There is only one identity element in G.
- ullet Each element of G only has one inverse.
- For each $a \in G, (a^{-1})^{-1} = a$
- For every, $a, b \in G$, $(a * b)^{-1} = b^{-1} * a^{-1}$.
- Let $a, b, c \in G$. Then if a * b = a * c, b = c.

1.1.1 Permutation Groups

Let $\Omega_n = \{1, 2, ..., n\}$. As an ordered set $\Omega_n = (1, 2, ..., n)$ has n! rearrangements. We may think of these permutations as being functions $f: \Omega_n \to \Omega_n$. These are bijections.

Observe that the set S_n of all permutations of n objects forms a group under composition of order n!.

Small Finite Groups Small groups can be pictured using a multiplication table, where the row element is multiplied on the left of the column element.

In a multiplication table of finite group each row must be a permutation of the elements of the group, because:

- If we had repetition in a row (or column), so that xa = xb, then the cancellation rule will give a = b. Hence each element occurs no more than once in a row (or column).
- If $a^2 = a$ then multiplying by a^{-1} gives a = e, so the identity is the only element that can be fixed.

1.2 Fields

A field $(\mathbb{F}, +, \times)$ is a set \mathbb{F} with two binary operations on it, addition (+) and multiplication (\times) , where

- 1. $(\mathbb{F}, +)$ is an abelian group,
- 2. $\mathbb{F}^* = \mathbb{F} \setminus \{0\}$ is an abelian group under multiplication,
- 3. The distributive laws $a \times (b+c) = a \times b + a \times c$ and $(a+b) \times c = a \times c + b \times c$ hold.

Additional Notes

- Our definition is equivalent to saying \mathbb{F} satisfies the 12 = 5 + 5 + 2 number laws.
- We use juxtaposition for the multiplication in fields and 1 for the identity under multiplication.
- The smallest possible field has two elements, and is written $\{0,1\}$ with 1+1=0.

Finite Fields The only finite fields are those of size p^k for some prime p (referred to as the characteristic of the field) and positive integer k. These fields are called Galois fields of size p^k , $GF(p^k)$. Note that $GF(p^k) \neq \mathbb{Z}_{p^k}$ unless k = 1.

Properties of Fields Let \mathbb{F} be a field and $a, b, c \in \mathbb{F}$. Then

- a0 = 0
- $\bullet \ a(-b) = -(ab)$
- \bullet a(b-c) = ab ac
- if ab = 0 then either a = 0 or b = 0.