Problem Set 12, Math 54-Lec 3, Linear Algebra, Fall 2017

OCTOBER 9TH, 2017

Problem 1. (a.) Verify that for $\vec{x}, \vec{y} \in \mathbb{R}^n$ and c a constant, we have

$$||\vec{x} - c\vec{y}||^2 = ||\vec{x}||^2 - 2c(\vec{x} \cdot \vec{y}) + c^2||\vec{y}||^2$$

(b.) The Cauchey-Schwartz Inequality and is one of the most useful results in linear algebra. It states that for all vectors \vec{x}, \vec{y} in \mathbb{R}^n we have

$$(\vec{x} \cdot \vec{y}) \le (||\vec{x}||)(||\vec{y}||).$$

Prove this statement. [Hint: use your result from part a with $c=\frac{\vec{x}\cdot\vec{y}}{\vec{y}\cdot\vec{y}}]$

Problem Set 12, Math 54-Lec 3, Linear Algebra, Fall 2017

OCTOBER 9TH, 2017

Problem 2. Another, perhaps even more powerful result from linear algebra is the Triangle Inequality. It states that for all vectors \vec{x}, \vec{y} in \mathbb{R}^n we have:

$$||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}||.$$

Prove this statement. [Hint: use your result from problem 1]