ALIF HILMI AKBAR - G64160074

i.) Bisection
$$\rightarrow$$

$$a = -2.4$$

$$b = -1.6$$

$$c = \frac{b+2}{2}$$

ii.) Posici palsu
$$2 = -2.4$$

$$b = -1.6$$

$$C = b - \frac{f(b)(b-a)}{f(b) - f(a)}$$

iii.) Newton
$$p_{e} = -2$$

$$P_{n} = p_{0} - \frac{f(p_{0})}{f'(p_{0})}$$

354	flation)	F	1
1 90	f(pc)	Pn	Pn-Po
-2	1,353.10-1	-1,843	1,565.10-1
-1,843	1,748-10-3	-1,841	2,076.10-3
-1,841	3,414.10-7	-1,841	4,057.10-7

iv.) secont	N	Pr	f(pn)	selisih
Po=-2	D	-2	0,1383	6,515.10-1
p1=-5'2	1	-2,5	0,582	6,787.10-3
(10)(0-0)	2	-1,849	0,006	3,409.10-4
141 = Pn - f(Pn)(Pn-Pn-1) f(Pn) - f(Pn)	3	-1,842	0,0003	2,284.10-7

2.)
$$x_1 + x_2$$
 = 5
 $2x_1 - x_2 + 5x_3^{\circ}$ = -9
 $3x_1 - 4x_3 + 2x_4 + 19$

$$2x_2 + 6x_4 = 2$$

$$A : \begin{pmatrix} 1 & 1 & 0 & 0 \\ 2 & -1 & 5 & 0 \\ 0 & 3 & -4 & 2 \\ 0 & 0 & 2 & 6 \end{pmatrix}$$

$$B : \begin{pmatrix} 6 \\ -9 \\ 19 \\ 2 \end{pmatrix}$$

2.) bouss

$$\begin{pmatrix}
1 & 1 & 0 & 0 & | & 5 \\
2 & -1 & 5 & 0 & | & -9 \\
0 & 3 & -4 & 2 & | & 19 \\
0 & 0 & 2 & 6 & | & 2
\end{pmatrix}
\xrightarrow{E_{21}(2)}
\begin{pmatrix}
1 & 1 & 0 & 0 & | & 5 \\
0 & -3 & 5 & 0 & | & -19 \\
0 & 3 & -4 & 2 & | & 9 \\
0 & 0 & 2 & 6 & | & 2
\end{pmatrix}
\xrightarrow{E_{32}(1)}
\begin{pmatrix}
1 & 1 & 0 & 0 & | & 5 \\
0 & -3 & 5 & 0 & | & -19 \\
0 & 0 & 1 & 2 & | & 0 \\
0 & 0 & 2 & 6 & | & 2
\end{pmatrix}$$

1.
$$x_1 = 2$$

 $x_1 = 3$
 $x_2 = -2$
 $x_4 = 1$
 $x_1 = 3$
 $x_1 = 2$
 $x_1 = 3$
 $x_2 = -2$
 $x_1 = 3$
 $x_2 = 3$
 $x_3 = -2$
 $x_4 = 3$
 $x_1 = 3$
 $x_2 = 3$
 $x_3 = 3$
 $x_4 = 3$
 $x_4 = 3$
 $x_4 = 3$
 $x_5 = 3$
 x_5

b.) Coanss - Jordan

C.) Faltorisasi LU

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 & 0 \\
2 & -1 & 5 & 0 \\
0 & 3 & -4 & 2 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 0 & 3 & -4 & 2 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 0 & 3 & -4 & 2 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 0 & 3 & -4 & 2 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 0 & 3 & -4 & 2 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -3 & 5 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 5 \\ -9 \\ 19 \\ 2 \end{pmatrix} \xrightarrow{9} \begin{array}{c} y_1 = 5 \\ 2y_1 + y_2 = -9 \\ y_2 = -19 \end{array}$$

$$\begin{array}{c} y_2 = 0 \\ 2y_2 + y_4 = 2 \\ y_4 = 2 \end{array}$$

$$\begin{array}{c} A = LU \\ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 2 \\ \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & -3 & 5 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 3 & 5 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_A \end{pmatrix} = \begin{pmatrix} 5 \\ -KJ \\ 0 \\ 7 \end{pmatrix} \implies 2\chi_A = 1$$

$$\chi_A = 1$$

$$x_2 = 3$$

$$x_1 = 3$$

$$\begin{array}{ccc} x_1 &= 2 \\ x_1 &= 3 \\ x_3 &= -2 \end{array}$$

•
$$\chi_1 + \chi_2 = 5$$

 $\chi_1 = 2$

$$\begin{pmatrix}
1 & 1 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
2 & -1 & 5 & 0 & 0 & | & 0 & 0 & 0 \\
0 & 3 & -4 & 2 & | & 0 & 0 & | & 0 & 0 \\
0 & 0 & 2 & 6 & | & 0 & 0 & | & 0 & 0
\end{pmatrix}
\xrightarrow{\text{Entity}}
\begin{pmatrix}
1 & 1 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 3 & -4 & 2 & | & 0 & 0 & | & 0 & 0 \\
0 & 0 & 2 & 6 & | & 0 & 0 & | & 0 & 0
\end{pmatrix}
\xrightarrow{\text{Entity}}
\begin{pmatrix}
1 & 1 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 3 & -4 & 2 & | & 0 & 0 & | & 0 & 0 \\
0 & 0 & 2 & 6 & | & 0 & 0 & | & 0 & 0
\end{pmatrix}
\xrightarrow{\text{Entity}}
\begin{pmatrix}
1 & 1 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 6 & | & 0 & 0 & 0 & |
\end{pmatrix}
\xrightarrow{\text{Entity}}
\begin{pmatrix}
1 & 1 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 6 & | & 0 & 0 & 0 & |
\end{pmatrix}
\xrightarrow{\text{Entity}}
\begin{pmatrix}
1 & 1 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & | & 4 & -1 & | & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & | & 4 & -1 & -1 & |
\end{pmatrix}
\xrightarrow{\text{Entity}}
\begin{pmatrix}
1 & 1 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & | & 4 & -1 & -1 & |
\end{pmatrix}
\xrightarrow{\text{Entity}}
\begin{pmatrix}
1 & 1 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & | & 4 & -1 & -1 & |
\end{pmatrix}
\xrightarrow{\text{Entity}}$$

$$\begin{pmatrix}
1 & 1 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & | & 10 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & | & 6 & 3 & 3 & -1 \\
0 & 0 & 0 & 0 & | & 4 & 7 & 2 & 1
\end{pmatrix}
\xrightarrow{E_{A}(V_{1})}
\begin{pmatrix}
1 & 0 & 0 & 0 & | & 31/3 & -14/3 & -5 & 5/3 \\
0 & 1 & 0 & 0 & | & 14/3 & 5 & -5/3 \\
0 & 0 & 1 & 0 & | & 6 & 3 & 3 & -1 \\
0 & 0 & 0 & 1 & 0 & | & 7 & -1 & -1 & 1/2
\end{pmatrix}
= \mathbf{A}(I|A^{-1})$$

e.) Iterasi Jacobi dan Gauss-Serdel

· Lek syarat konvergen

Syarat konvergen tidak terpenuhi, Jika SPL dicaba diselesaikan dengan metode iteraxi, hasilnya akan divergen.

(balle iterasi Jacobi marpun Gauss-Seidel)

n	χ_{1n}	Krn	7C3n	Xan
0	0	0	0	0
1	5	g	-4,75	0,33
ı	-A	-475	2,16	1,92
3	9,75	11,83	-7,35	-6,389
4	-6.83	-8.27	3,93	2,79

· Hasil iterasi Gauss-Seidel

n	Xin	Xrn	X3n	xan
0	0	0	0	0
1	5	19	9,5	-2,83
2	-19	18,5	15,21	-4.74
3	-23,5	38,04	21,41	-6.8
4	-33,04	49,98	29,34	-9,45

Tentukan milai eigen dan veletor eigen.

$$\begin{vmatrix} 1-2 & 3 & -3 \\ -3 & 7-2 & -3 \\ -6 & 6 & -2-2 \end{vmatrix} = 0$$

[(1-2)(7-2)(-2-2)+108]-[18(7-2)-18(1-2)-9(-2-2)]=0

$$-\lambda^{2} + 6\lambda^{2} - 32 = 0$$

$$(-\lambda + 4)(\lambda^{2} - 2\lambda - 8) = 0$$

$$(-\lambda + 4)(\lambda - 4)(\lambda + 2) = 0$$

2,=4, 7,=4, 7,=-2

Nilai-milai eigennya adalah $\lambda_1 = 1$, $\lambda_2 = 4$, dan $\lambda_3 = -2$, sama dengan hasil di R

· Untule 2 = 2 = 4,

$$\begin{pmatrix} -3 & 3 & -3 & 0 \\ -3 & 3 & -3 & 0 \\ -6 & 6 & -6 & 0 \end{pmatrix} \xrightarrow{E_{2100(-1)}} \begin{pmatrix} -3 & 3 & -3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{-3\kappa_1 + 3\kappa_2 - 3\kappa_3} = 0 \Rightarrow \begin{pmatrix} \kappa_1 \\ \kappa_2 \\ \kappa_3 \end{pmatrix} = \begin{pmatrix} -\kappa_1 + \kappa_3 \\ \kappa_1 \\ \kappa_3 \end{pmatrix} = \begin{pmatrix} \kappa_1 \\ \kappa_2 \\ \kappa_3 \end{pmatrix} = \begin{pmatrix} \kappa_1 \\ \kappa_3 \\ \kappa_3 \end{pmatrix} = \begin{pmatrix} \kappa_1 \\ \kappa_2 \\ \kappa_3 \end{pmatrix} = \begin{pmatrix} \kappa_1 \\ \kappa_3 \\ \kappa_3 \end{pmatrix} = \begin{pmatrix} \kappa_1 \\ \kappa_2 \\ \kappa_3 \end{pmatrix} = \begin{pmatrix} \kappa_1 \\ \kappa_3 \\ \kappa_3 \end{pmatrix} = \begin{pmatrix} \kappa_1 \\ \kappa_2 \\ \kappa_3 \end{pmatrix} = \begin{pmatrix} \kappa_1 \\ \kappa_3 \\ \kappa_3 \end{pmatrix} = \begin{pmatrix} \kappa_1 \\ \kappa_2 \\ \kappa_3 \end{pmatrix} = \begin{pmatrix} \kappa_1 \\ \kappa_3 \\ \kappa_3 \end{pmatrix} = \begin{pmatrix} \kappa_1 \\ \kappa_2 \\ \kappa_3 \end{pmatrix} = \begin{pmatrix} \kappa_1 \\ \kappa_3 \\$$

• Untule
$$\lambda_3 = -2$$

$$\begin{pmatrix} 3 & 3 & -3 & 0 \\ -3 & 9 & -3 & 0 \\ -6 & 6 & 0 & 0 \end{pmatrix}
\xrightarrow{E_{31(1)}}
\begin{pmatrix} 3 & 3 & -3 & 0 \\ 0 & 12 & -6 & 0 \\ 0 & 12 & -6 & 0 \end{pmatrix}
\xrightarrow{E_{31(1)}}
\begin{pmatrix} 5 & 5 & -3 & 0 \\ 0 & 12 & -6 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

•
$$3x_1 + 3x_2 - 3x_3 = 0$$
 $\longrightarrow 3x_1 + 3x_2 - 6x_2 = 0$
• $12x_2 - 6x_3 = 0$ 7 $3x_1 - 3x_2 = 0$ $= 7$ $\begin{cases} x_1 \\ x_2 \\ 2x_1 = x_3 \end{cases} = \begin{pmatrix} x_1 \\ x_1 \\ 2x_1 \end{pmatrix} = \begin{pmatrix}$

:. Velitor-velitor eigennys adalah :
$$\left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$$

3.)
$$y = \frac{4}{5}$$
 $y = A \frac{1}{5}$
 $2\frac{1}{5}A + 2\frac{1}{5}B = 2\frac{1}{5}y$
 $4.97A = 17.5$
 $1.79A = 6.4$
 $A \approx 3.58$

$$Y = \frac{8}{23}$$

$$Y = B. \frac{1}{25}$$

$$B \Rightarrow A$$

$$B = 0$$

$$\Xi(\frac{1}{2^{2}})^{2}.A + \Xi(\frac{1}{2^{3}}).B = \Xi(\frac{1}{2^{3}})$$

$$\Xi(\frac{1}{2^{3}}).A + n.B = \Xi(\frac{1}{2^{3}})$$

$$\downarrow$$

$$68,39 A = 68,11$$
 $10,89 A = 17.5$
 $57.5 A = 50.61$
 $A \approx 0.88$

X	Y	25	(23)2	1 Y
0,5	7.1	8	61	56,8
0,8	4.4	1,95	3,8	8,58
1,1	3,2	0,75	0,56	2,4
1,8	1,9	0,17	0,03	0,32
10	0,9	0,06	2,56.10-9	0,014
	17,5	10,89	68,39	68,11
	17,5	10,89	68,39	68,11

以

4

1,561

0,83

0,31

0,06

6,76

1

2

0,91

0,56

0,25

4,97

1,25

7.1

AA

3,2

1,9

0,9

17,5

0,5

0,8

1,1

1,8

4,0

8/8/2

文十

14.7

5,5

2,91

1,06

0,23

23.9