Performance Analysis

A. Optimal Solutions

The optimal planning solution for each of the 3 problems are described below:

• Problem 1

Plan length: 6

- 1. Load(C1, P1, SFO)
- 2. Fly(P1, SFO, JFK)
- 3. Load(C2, P2, JFK)
- 4. Fly(P2, JFK, SFO)
- 5. Unload(C1, P1, JFK)
- 6. Unload(C2, P2, SFO)

Problem 2

Plan length: 9

- 1. Load(C1, P1, SFO)
- 2. Fly(P1, SFO, JFK)
- 3. Load(C2, P2, JFK)
- 4. Fly(P2, JFK, SFO)
- 5. Load(C3, P3, ATL)
- 6. Fly(P3, ATL, SFO)
- 7. Unload(C1, P1, JFK)
- 8. Unload(C2, P2, SFO)
- 9. Unload(C3, P3, SFO)

• Problem 3

Plan length: 12

- 1. Load(C2, P2, JFK)
- 2. Fly(P2, JFK, ORD)
- 3. Load(C4, P2, ORD)
- 4. Fly(P2, ORD, SFO)
- 5. Load(C1, P1, SFO)
- 6. Fly(P1, SFO, ATL)
- 7. Load(C3, P1, ATL)
- 8. Fly(P1, ATL, JFK)
- 9. Unload(C1, P1, JFK)
- 10. Unload(C2, P2, SFO)
- 11. Unload(C3, P1, JFK)
- 12. Unload(C4, P2, SFO)

B. Non – Heuristic search methods comparison:

The Performance analysis of few search methods are displayed below in their respective tables.

	Breadth First Search										
Т	Problem	Plan	Expansions	Goal	New Nodes	Time in					
		length	ZAPANOIONO	Tests		seconds					
	1	6	43	56	180	0.029					
	2	9	3343	4609	30509	13.11					
	3	12	14663	18098	129631	97.73					
	Depth First Graph Search										
\mid	Problem	Plan	Expansions	Goal	New Nodes	Time in					
		length	1	Tests		seconds					
	1	20	21	22	84	0.013					
	2	619	624	625	5602	3.42					
	3	392	408	409	3364	1.71					
	Depth Limited Search										
ļ.,			T								
	Problem	Plan	Expansions	Goal	New Nodes	Time in					
	1	length 50	101	Tests 271	414	seconds					
	т					0.084					
	2	50	222719	205374		884.45					
	3	timeout	Timeout	Timeou	it Timeout	timeout					
					. .						
	Uniform Cost Search										
H	Problem	Plan	Expansions	Goal	New Nodes	Time in					
		length		Tests		seconds					
	1	6	55	57	224	0.037					
	2	9	4780	4782	43381	40.88					
	3	12	17882	17884	156769	379.98					

Conclusion:

Among the non-heuristic search functions, breadth first search and uniform cost search algorithms are the most optimal. Though Depth first graph search is faster, it doesn't give an optimal solution. Similarly, we can see that depth limited search is not optimal because many nodes are visited multiple times as it doesn't keep track of the visited paths/nodes.

C. Automatic Heuristics Comparison:

The Planning problem is solved with A* search using 2 automatic heuristics - **Ignore Preconditions and Level sum heuristics**. The comparison table is laid out below. It is very clear that though both give plan-length of equal size, Level Sum (planning graph) heuristic is better in terms of node expansions and goal tests.

Ignore Preconditions										
	Problem	Plan	Expansions	Goal	New Nodes	Time in				
		length		Tests		seconds				
	1	6	41	43	170	0.043				
	2	9	1506	1508	13820	12.81				
	3	12	5114	5116	45610	81.23				
Level sum with Planning Graph										
	Problem	Plan	Expansions	Goal	New Nodes	Time in				
		length		Tests		seconds				
	1	6	11	13	50	3.280				
	2	9	86	88	841	902.39				
	3	12	404	406	3718	5230.89				

Conclusion:

The most optimal solution in terms of node expansions is found using A-star search with planning graph and Level Sum heuristic. As we can see it is taking more time than the ignore preconditions heuristics, which can be rectified by using a better implementation for planning graph using non-dynamic languages like C++ or even Cython.

Overall Summary:

It is evident that; heuristic approach gives optimal solution with minimum node expansions when compared to non-heuristic search algorithms. In larger problems decreasing the node expansions will be much more beneficial.