Section 1.7

3. Suppose u = u(x, y, z) is a solution of the Nuemann problem,

$$-K\Delta u = f, (x, y, z) \in \Omega$$
$$-K\nabla u \cdot \mathbf{n} = g(x, y, z), (x, y, z) \in \partial \Omega$$

where f and g are functions of x, y, z. Show that f and g must satisfy the relation

$$\int_{\Omega} f dV = \int_{\partial \Omega} g dA$$

In terms of heat flow, what is the physical meaning of this relation?

Solution. Let f and g be described as above. To show that $\int_{\Omega} f dV = \int_{\partial\Omega} g dA$, we observe,

$$\int_{\Omega} f dV = \int_{\Omega} -K \Delta u dV$$

$$= \int_{\Omega} -K \nabla^2 u dV$$

$$= \int_{\Omega} -K (\nabla \cdot \nabla u) dV$$

$$= \int_{\Omega} -K (div \nabla u) dV$$

$$= \int_{\partial \Omega} -K \nabla u \cdot \mathbf{n} dA$$

$$= \int_{\partial \Omega} g dA$$

The interpretation of these equations is that for a system to achieve a steady state, then f, the heat generated or lost within the region, must equal the heat gained or lost through the boundary of the region.

 \Diamond

4. Let w be a scalar field and ϕ a vector filed. Verify the vector identity

$$\operatorname{div}(w\phi) = \phi \cdot \nabla w + w \operatorname{div} \phi.$$

Integrate this equation over Ω and take $\phi = \nabla u$, where u is a scalar fielf, to prove Green's identity

$$\int_{\Omega} w \Delta u dV = -\int_{\Omega} \nabla u \cdot \nabla w dV + \int_{\partial \Omega} w \nabla u \cdot \mathbf{n} dA$$

Solution. First, to verify the vector identity,

$$\operatorname{div}(w\phi) = \nabla \cdot (w\phi_1, w\phi_2, w\phi_3)$$

$$= (\frac{\partial}{\partial x} w\phi_1 + \frac{\partial}{\partial y} w\phi_2 + \frac{\partial}{\partial z} w\phi_3)$$

$$= w_x \phi_1 + w\phi_{1x} + w_y \phi_1 + w\phi_{1y} + w_z \phi_1 + w\phi_{1z}$$

$$= \phi \cdot \nabla w + w(\phi_{1x} + \phi_{2y} + \phi_{3z})$$

$$= \phi \cdot \nabla w + w \operatorname{div} \phi$$

To prove Green's identity, we will use the previous result starting with a slight rearrangement and substituting $\phi = \nabla u$, and by using Gauss's Theorem (aka divergence theorem).

$$\begin{split} w &\operatorname{div} \nabla u = -\nabla u \cdot \nabla w + \operatorname{div} (w \nabla u) \\ w(\nabla \cdot \nabla u) = -\nabla u \cdot \nabla w + \operatorname{div} (w \nabla u) \\ w \Delta u = -\nabla u \cdot \nabla w + \operatorname{div} (w \nabla u) \\ \int_{\Omega} w \Delta u dV = \int_{\Omega} -\nabla u \cdot \nabla w + \operatorname{div} (w \nabla u) dV \\ \int_{\Omega} w \Delta u dV = -\int_{\Omega} \nabla u \cdot \nabla w dV + \int_{\partial \Omega} w \nabla u \cdot \mathbf{n} dA \end{split}$$

5. Show that if the Dirishlet problem

$$\Delta u = \lambda u, (x, y, x) \in \Omega$$

 $u = 0, (x, y, z) \in \partial \Omega$

has a nontrivial solution u = u(x, y, z), the λ must be negative.

Solution. We will use Green's identity as shown above and substitute in u in place of w. We take note that the reason we are able to make this substitution is because u and w are both scalar fields. Making the substitution, we get,

$$\begin{split} u\Delta u &= \lambda u^2 \\ \int_{\Omega} u\Delta u &= \int_{\Omega} \lambda u^2 = -\int_{\Omega} \nabla u \cdot \nabla u dV + \int_{\partial\Omega} u\nabla u \cdot \mathbf{n} dA \\ \lambda \int_{\Omega} u^2 &= -\int_{\Omega} \nabla u \cdot \nabla u dV + \int_{\partial\Omega} u\nabla u \cdot \mathbf{n} dA \\ \lambda \int_{\Omega} u^2 &= -\int_{\Omega} (u_x^2 + u_y^2 + u_z^2) dV + \int_{\partial\Omega} u\nabla u \cdot \mathbf{n} dA \end{split}$$

Now, we make a few observations before continuing here. First, we notice that the boundary condition $u=0, (x,y,z)\in\partial\Omega$ implies that the integra $\int_{\partial\Omega}u\nabla u\cdot\mathbf{n}dA=0$ since u is zero everywhere on the boundary. Next, we also notice that since $(u_x^2+u_y^2+u_z^2)\geq 0$ and the problem stated that there is a nontrivial solution, then we have $(u_x^2+u_y^2+u_z^2)>0$ and $u^2>0$. So let $k=\int_{\Omega}u^2dV$ and $j=\int_{\Omega}(u_x^2+u_y^2+u_z^2)dV$ Then k,j>0. So finishing our calculation, we have,

$$\lambda \int_{\Omega} u^2 = -\int_{\Omega} (u_x^2 + u_y^2 + u_z^2) dV + \int_{\partial \Omega} u \nabla u \cdot \mathbf{n} dA$$
$$\lambda k = -j + 0$$
$$\lambda = -\frac{j}{k}$$
$$\lambda < 0$$

 $\therefore \lambda$ must be negative.

Section 1.8

1. In two dimensions suppose $u = u(r, \theta)$ satisfies Laplace's equation $\Delta u = 0$ in the disk $0 \le r < 2$, and on the boundary it satisfies $u(2, \theta) = 3\sin 2\theta + 1$, $(0 \le \theta < 2)$. What is the value of u at the origin? Where do the maximum and minimum of u occur in the closed domain $0 \le r \le 2$?

Solution. Using the method described in the text, we will take an average of all temperatures on the boundary to do this. Using the equation for line integrals, we have

$$\int_C f(r,\theta)ds = \frac{1}{2\pi r} \int_0^{2\pi} (3\sin 2\theta + 1) \sqrt{\left(\frac{\partial r \cos \theta}{\partial \theta}\right)^2 + \left(\frac{\partial r \sin \theta}{\partial \theta}\right)^2} d\theta$$

$$= \frac{1}{2\pi r} \int_0^{2\pi} (3\sin 2\theta + 1) \cdot r \sqrt{\sin^2 \theta + \cos^2 \theta}$$

$$= \frac{r}{2\pi r} \int_0^{2\pi} (3\sin 2\theta + 1) \cdot 1$$

$$= \frac{1}{2\pi} [3/2\cos 2\theta + \theta]_0^{2\pi}$$

$$= \frac{1}{2\pi} [3/2 + 2\pi - (3/2 + 0)]$$

$$= \frac{2\pi}{2\pi}$$

$$= 1$$

To find where the maximums and minimums occur, we use Theorem 1.23 (the maximum principal), which says if u satisfies Laplace's equation on an open, bounded, connected region, and if u is not a constant function, then the max and min of u are attained on the boundary of Ω . Thus, since a have a function for the values of u on the boundary, we take its derivative and set it to zero: $\frac{\partial}{\partial \theta} 3 \sin 2\theta + 1 = 6 \cos 2\theta = 0$. If we sketch the graph, we easily see that the zeros are found at $\pi/4$, $3\pi/4$, $5\pi/4$, $7\pi/4$. We also can tell by the sign of the graph around these points that the max are found at $\pi/4$ and $5\pi/4$ and the mins are found at $3\pi/4$, $7\pi/4$.

4. Find all radial solutions to the two-dimensional Laplace's equation. That is, find all solutions of the form u=u(r), where $r=\sqrt{x^2+y^2}$. Find the steady=state temperature distribution in the annular domain $1 \le r \le 2$ if the inner circle r=1 is held at 0 degrees and the outer circle r=2 is held at 10 degrees.

Solution. To find the general solution to the 2D Laplace equation, we first need to find u_{xx} and u_{yy} . As stated above, let u=u(r), with $r=\sqrt{x^2+y^2}$. Then $u_x=u'(r)\frac{x}{(x^2+y^2)\cdot 5}$ Thus, $u_{xx}=u''(r)\frac{x}{(x^2+y^2)\cdot 5}\cdot \frac{x}{(x^2+y^2)\cdot 5}+\frac{y^3}{(x^2+y^2)\cdot 5}$. Using the symmetry of the functions u and r, we know that $u_{yy}=u''(r)\frac{y}{(x^2+y^2)\cdot 5}\cdot \frac{y}{(x^2+y^2)\cdot 5}+\frac{x^3}{(x^2+y^2)^{-1.5}}$. Thus, since $r=\sqrt{x^2+y^2}$, we substitute back in to get,

$$u_{xx} = \frac{x^2}{r^2}u''(r) + \frac{y^2}{r^3}, u_{yy} = \frac{y^2}{r^2}u''(r) + \frac{x^2}{r^3}$$

Thus, the Laplace equation $u_{xx} + u_{yy} = 0$ becomes

 $\Delta u = u'' + \frac{1}{r}u' = 0$ (from cylindrical coordinate in polar part of chapter)

We then notice that that this equation is an expansion of the product rule for $\frac{d}{du}(ru')=0$. Thus

$$\int \frac{d}{dr}(ru')dr = \int 0dr$$

$$ru' = c$$

$$u' = \frac{c}{r}$$

$$\int u'dr = \int \frac{c}{r}dr$$

$$u(r) = c_1 \ln r + c_2$$

Thus, we have found our general form of u(r). Now using the conditions, we get $u(1) = 0 = c_2$. And $u(2) = 10 = c_1 \ln 2 \Rightarrow c_1 = \frac{10}{\ln 2}$

$$\therefore u(r) = \frac{10}{\ln 2} \cdot \ln r$$

Section 1.9

1. Classify the PDE

$$u_{xx} + 2ku_{xt} + k^2 u_{tt} = 0, k \neq 0$$

Then find a transformation $\xi = x + bt$, $\tau = x + dt$ of the independent variables that transforms the equation into a simpler equation of the form $U_{\xi\xi} = 0$. Find the solution to the given equation in terms of two arbitrary functions.

Solution. To classify this PDE, we take the A,B,C coefficients and find $B^2-4AC=4k^2=0$. Thus, this PDE has a parabolic form. As suggested in the problem, we let $\xi=x+bt, \tau=x+dt$ and solve for b,d. Our original PDE, $u_{xx}+2ku_{xt}+k^2u_{tt}=0$ becomes,

$$Au_{xx} + Bu + xt + Cu_{tt} = (Aa^2 + Bab + Cb^2)U_{\xi\xi} + (2acA + B(ad + bc) + 2Cbd)U_{\xi\tau} + (Ac^2 + Bcd + Cd^2)U_{\tau\tau}$$

From our notes in class, we know to let a=b=c=1 and $d=-\frac{B}{2C}$. This will make our coefficients for $U_{\tau\tau}$ and $U_{\xi\tau}$ disappear. Thus, we are left with $U_{\xi\xi}=0$. We integrate to find, $U_{\xi}=\phi(\tau)$. And integrate again to find $U=\xi\phi(\tau)+\psi$. So transforming back to our x and t variables find our solution, $u=x\cdot\phi(x+dt)+\psi(x+dt)$. And since $d=-\frac{B}{2C}=\frac{1}{k}$,

$$\therefore u = x \cdot \phi(x - \frac{t}{k}) + \psi(x - \frac{t}{k})$$