Triple integrals in Spherical Coordinates

The relationship between rectangular and spherical coordinates can be seen from Figure 5. From triangles *OPQ* and *OPP'* we have

$$z = \rho \cos \phi$$
 $r = \rho \sin \phi$

But $x = r \cos \theta$ and $y = r \sin \theta$, so to convert from spherical to rectangular coordinates, we use the equations

1
$$x = \rho \sin \phi \cos \theta$$
 $y = \rho \sin \phi \sin \theta$ $z = \rho \cos \phi$

2

$$\rho^2 = x^2 + y^2 + z^2$$

FIGURE 3 $\theta = c$, a half-plane

FIGURE 4 $\phi = c$, a half-cone

In the spherical coordinate system the counterpart of a rectangular box is a spherical wedge

$$E = \{ (\rho, \, \theta, \, \phi) \mid a \le \rho \le b, \, \alpha \le \theta \le \beta, \, c \le \phi \le d \}$$

where $a \ge 0$ and $\beta - \alpha \le 2\pi$, and $d - c \le \pi$.

 $\rho \sin \phi d\theta d\rho$ $\rho d\phi$ $d\theta y$

FIGURE 8

Volume element in spherical coordinates: $dV = \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi$

$$\begin{split} \iint\limits_{E} f(x, y, z) \, dV &= \lim_{l, m, n \to \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(x_{ijk}^{*}, y_{ijk}^{*}, z_{ijk}^{*}) \, \Delta V_{ijk} \\ &= \lim_{l, m, n \to \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(\tilde{\rho}_{i} \sin \tilde{\phi}_{k} \cos \tilde{\theta}_{j}, \, \tilde{\rho}_{i} \sin \tilde{\phi}_{k} \sin \tilde{\theta}_{j}, \, \tilde{\rho}_{i} \cos \tilde{\phi}_{k}) \, \tilde{\rho}_{i}^{2} \sin \tilde{\phi}_{k} \, \Delta \rho \, \Delta \theta \, \Delta \phi \end{split}$$

But this sum is a Riemann sum for the function

$$F(\rho, \theta, \phi) = f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi$$

Consequently, we have arrived at the following **formula for triple integration in spherical coordinates**.

$$\iiint_E f(x, y, z) \, dV$$

$$= \int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d\rho d\theta d\phi$$

where E is a spherical wedge given by

$$E = \{ (\rho, \theta, \phi) \mid a \le \rho \le b, \ \alpha \le \theta \le \beta, \ c \le \phi \le d \}$$

Example

Evaluate
$$\iiint_B e^{(x^2+y^2+z^2)^{3/2}} dV$$
, where *B* is the unit ball:

$$B = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$$

 $\frac{4}{3}\pi(e-1)$

EXAMPLE 4 Use spherical coordinates to find the volume of the solid that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = z$. (See Figure 9.)

 ρ varies from 0 to cos ϕ while ϕ and θ are constant.

 ϕ varies from 0 to $\pi/4$ while θ is constant.

 θ varies from 0 to 2π .

Change of Variables in Multiple Integrals

In one-dimensional calculus we often use a change of variable (a substitution) to simplify an integral. By reversing the roles of x and u, we can write the Substitution Rule (4.5.5) as

$$\int_a^b f(x) \ dx = \int_c^d f(g(u)) g'(u) \ du$$

where x = g(u) and a = g(c), b = g(d). Another way of writing Formula 1 is as follows:

$$\int_a^b f(x) \, dx = \int_c^d f(x(u)) \, \frac{dx}{du} \, du$$

More generally, we consider a change of variables that is given by a **transformation** T from the uv-plane to the xy-plane:

$$T(u, v) = (x, y)$$

where x and y are related to u and v by the equations

$$x = g(u, v)$$
 $y = h(u, v)$

or, as we sometimes write,

$$x = x(u, v)$$
 $y = y(u, v)$

We usually assume that T is a C^1 transformation, which means that g and h have continuous first-order partial derivatives.

FIGURE 1

A transformation T is really just a function whose domain and range are both subsets of \mathbb{R}^2 . If $T(u_1, v_1) = (x_1, y_1)$, then the point (x_1, y_1) is called the **image** of the point (u_1, v_1) . If no two points have the same image, T is called **one-to-one**. Figure 1 shows the effect of a transformation T on a region S in the uv-plane. T transforms S into a region R in the xy-plane called the **image of** S, consisting of the images of all points in S.

If T is a one-to-one transformation, then it has an **inverse transformation** T^{-1} from the xy-plane to the uv-plane and it may be possible to solve Equations 3 for u and v in terms of x and y:

$$u = G(x, y)$$
 $v = H(x, y)$

EXAMPLE 1 A transformation is defined by the equations

$$x = u^2 - v^2 \qquad y = 2uv$$

$$y = 2uv$$

Find the image of the square $S = \{(u, v) \mid 0 \le u \le 1, 0 \le v \le 1\}$.

Now let's see how a change of variables affects a double integral. We start with a small rectangle S in the uv-plane whose lower left corner is the point (u_0, v_0) and whose dimensions are Δu and Δv . (See Figure 3.)

FIGURE 4

$$\mathbf{r}(u, v) = g(u, v)\mathbf{i} + h(u, v)\mathbf{j}$$

is the position vector of the image of the point (u, v). The equation of the lower side of S is $v = v_0$, whose image curve is given by the vector function $\mathbf{r}(u, v_0)$. The tangent vector at (x_0, y_0) to this image curve is

$$\mathbf{r}_{u} = g_{u}(u_{0}, v_{0})\mathbf{i} + h_{u}(u_{0}, v_{0})\mathbf{j} = \frac{\partial X}{\partial u}\mathbf{i} + \frac{\partial Y}{\partial u}\mathbf{j}$$

Similarly, the tangent vector at (x_0, y_0) to the image curve of the left side of S (namely, $u = u_0$) is

$$\mathbf{r}_{v} = g_{v}(u_{0}, v_{0})\mathbf{i} + h_{v}(u_{0}, v_{0})\mathbf{j} = \frac{\partial x}{\partial v}\mathbf{i} + \frac{\partial y}{\partial v}\mathbf{j}$$

We can approximate the image region R = T(S) by a parallelogram determined by the secant vectors

$$\mathbf{a} = \mathbf{r}(u_0 + \Delta u, v_0) - \mathbf{r}(u_0, v_0)$$
 $\mathbf{b} = \mathbf{r}(u_0, v_0 + \Delta v) - \mathbf{r}(u_0, v_0)$

shown in Figure 4. But

$$\mathbf{r}_{u} = \lim_{\Delta u \to 0} \frac{\mathbf{r}(u_0 + \Delta u, v_0) - \mathbf{r}(u_0, v_0)}{\Delta u}$$

$$\mathbf{r}(u_0 + \Delta u, v_0) - \mathbf{r}(u_0, v_0) \approx \Delta u \mathbf{r}_u$$

$$\mathbf{r}(u_0, v_0 + \Delta v) - \mathbf{r}(u_0, v_0) \approx \Delta v \mathbf{r}_v$$

This means that we can approximate R by a parallelogram determined by the vectors $\Delta u \mathbf{r}_u$ and $\Delta v \mathbf{r}_v$. (See Figure 5.) Therefore we can approximate the area of R by the area of this parallelogram, which, from Section 12.4, is

$$|(\Delta u \mathbf{r}_u) \times (\Delta v \mathbf{r}_v)| = |\mathbf{r}_u \times \mathbf{r}_v| \Delta u \Delta v$$

Computing the cross product, we obtain

$$\mathbf{r}_{u} \times \mathbf{r}_{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & 0 \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & 0 \end{vmatrix} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{vmatrix} \mathbf{k} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} \mathbf{k}$$

The determinant that arises in this calculation is called the *Jacobian* of the transformation and is given a special notation.

7 Definition The **Jacobian** of the transformation T given by x = g(u, v) and y = h(u, v) is

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

FIGURE 6

With this notation we can use Equation 6 to give an approximation to the area ΔA of R:

$$\Delta A \approx \left| \frac{\partial(x, y)}{\partial(u, v)} \right| \Delta u \, \Delta v$$

where the Jacobian is evaluated at (u_0, v_0) .

Next we divide a region S in the uv-plane into rectangles S_{ij} and call their images in the xy-plane R_{ij} . (See Figure 6.)

Applying the approximation (8) to each R_{ij} , we approximate the double integral of f over R as follows:

$$\iint_{R} f(x, y) dA \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{i}, y_{j}) \Delta A$$

$$\approx \sum_{i=1}^{m} \sum_{j=1}^{n} f(g(u_{i}, v_{j}), h(u_{i}, v_{j})) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| \Delta u \Delta v$$
November 5, 2019

where the Jacobian is evaluated at (u_i, v_j) . Notice that this double sum is a Riemann sum for the integral

$$\iint_{S} f(g(u, v), h(u, v)) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| du dv$$

The foregoing argument suggests that the following theorem is true. (A full proof is given in books on advanced calculus.)

Ghange of Variables in a Double Integral Suppose that T is a C^1 transformation whose Jacobian is nonzero and that maps a region S in the uv-plane onto a region R in the xy-plane. Suppose that f is continuous on R and that R and S are type I or type II plane regions. Suppose also that T is one-to-one, except perhaps on the boundary of S. Then

$$\iint\limits_R f(x,y) \ dA = \iint\limits_S f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \ du \ dv$$

An Example

FIGURE 7
The polar coordinate transformation

$$x = g(r, \theta) = r \cos \theta$$
 $y = h(r, \theta) = r \sin \theta$

and the geometry of the transformation is shown in Figure 7. T maps an ordinary rectangle in the $r\theta$ -plane to a polar rectangle in the xy-plane. The Jacobian of T is

$$\frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} = r\cos^2\theta + r\sin^2\theta = r > 0$$

Thus Theorem 9 gives

$$\iint_{R} f(x, y) dx dy = \iint_{S} f(r\cos\theta, r\sin\theta) \left| \frac{\partial(x, y)}{\partial(r, \theta)} \right| dr d\theta$$
$$= \int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos\theta, r\sin\theta) r dr d\theta$$

$$\frac{3}{4}(e - e^{-1})$$

Triple Integrals

There is a similar change of variables formula for triple integrals. Let T be a transformation that maps a region S in uvw-space onto a region R in xyz-space by means of the equations

$$x = g(u, v, w) \qquad y = h(u, v, w) \qquad z = k(u, v, w)$$

The **Jacobian** of T is the following 3×3 determinant:

$$\frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{vmatrix}$$

Under hypotheses similar to those in Theorem 9, we have the following formula for triple integrals:

$$\iiint\limits_R f(x,y,z) \ dV = \iiint\limits_S f\big(x(u,v,w),y(u,v,w),z(u,v,w)\big) \left|\frac{\partial(x,y,z)}{\partial(u,v,w)}\right| \ du \ dv \ dw$$

V EXAMPLE 4 Use Formula 13 to derive the formula for triple integration in spherical coordinates.