Data Mining - Unsupervised Machine Learning

Data Clustering

Prof. Yannis Velegrakis

University of Trento & Utrecht University

https://velgias.github.io

Use Cases

- Tourism: Understanding Points of Interest
 - Transportation
 - Shops / Services
 - Security / Safety
- Security: Understanding High Risk Areas
- Population Understanding: Types of citizens and Needs
- Health: High Risk Areas (The old story of London City)
- Software Usage in the Offices:
 - Identify best needed software packages
- Home Services (Gas, Water, Electricity) Consumption
- Social Media: What the citizens want/think
- Telecommunication Data: Identify Families

- Other types of Data:
 - Segments: Transportation Routes, Tourism Paths, Super Market Shopping Plans
 - Graphs: Communities
 - Streams: City Sensors

High Dimensional Data

 Given a cloud of data points we want to understand its structure

The Problem of Clustering

- Given a set of points, with a notion of distance between points, group the points into some number of clusters, so that
 - Members of a cluster are close/similar to each other
 - Members of different clusters are dissimilar

• Usually:

- Points are in a high-dimensional space
- Similarity is defined using a distance measure
 - ◆Euclidean, Cosine, Jaccard, edit distance, ...

Example: Clusters & Outliers

Clustering is a hard problem!

Why is it hard?

- Clustering in two dimensions looks easy
- Clustering small amounts of data looks easy
- And in most cases, looks are not deceiving
- Many applications involve not 2, but 10 or 10,000 dimensions
- High-dimensional spaces look different: Almost all pairs of points are at about the same distance

Clustering Problem: Galaxies

- A catalog of 2 billion "sky objects" represents objects by their radiation in 7 dimensions (frequency bands)
- Problem: Cluster into similar objects, e.g., galaxies, nearby stars, quasars, moons, belts, clouds, etc.
- Sloan Digital Sky Survey

Clustering Problem: Music CDs

- Intuitively: Music divides into categories, and customers prefer a few categories
 - But what are categories really?
- Represent a CD by a set of customers who bought it:

 Similar CDs have similar sets of customers, and viceversa

Clustering Problem: Music CDs

Space of all CDs:

- Think of a space with one dim. for each customer
 - Values in a dimension may be 0 or 1 only
 - A CD is a point in this space $(x_1, x_2,..., x_k)$, where $x_i = 1$ iff the i th customer bought the CD
- For Amazon, the dimension is tens of millions
- Task: Find clusters of similar CDs

Clustering Problem: Documents

Finding topics:

- Represent a document by a vector $(x_1, x_2,..., x_k)$, where $x_i = 1$ iff the i^{th} word (in some order) appears in the document
 - It actually doesn't matter if *k* is infinite; i.e., we don't limit the set of words
- Documents with similar sets of words may be about the same topic

Clustering Problem: Topics (Dual)

Finding topics:

- Represent a document by a vector $(x_1, x_2,..., x_k)$, where $x_i = 1$ iff the i^{th} word (in some order) appears in the document
 - It actually doesn't matter if *k* is infinite; i.e., we don't limit the set of words
- Topic is a set of similar documents

Cosine, Jaccard, and Euclidean

- As with CDs we have a choice when we think of documents as sets of words:
 - Sets as vectors: Measure similarity by the cosine distance
 - Sets as sets: Measure similarity by the Jaccard distance
 - Sets as points: Measure similarity by Euclidean distance

Overview: Methods of Clustering

• Hierarchical:

- **Agglomerative** (bottom up):
 - ◆Initially, each point is a cluster
 - ◆ Repeatedly combine the two "nearest" clusters into one
- **Divisive** (top down):
 - ◆Start with one cluster and recursiv_{0.2}

Point assignment:

- Maintain a set of clusters
- Points belong to "nearest" cluster

Hierarchical Clustering

Key operation:
 Repeatedly combine
 two nearest clusters

- Three important questions:
 - 1) How do you represent a cluster of more than one point?
 - 2) How do you determine the "nearness" of clusters?
 - 3) When to stop combining clusters?

Hierarchical Clustering

- Key operation: Repeatedly combine two nearest clusters
- (1) How to represent a cluster of many points?
 - **Key problem:** As you merge clusters, how do you represent the "location" of each cluster, to tell which pair of clusters is closest?
- Euclidean case: each cluster has a centroid = average of its (data)points
- (2) How to determine "nearness" of clusters?
 - Measure cluster distances by distances of centroids

Example: Hierarchical clustering

Data:

o ... data point

x ... centroid

Dendrogram

And in the Non-Euclidean Case?

What about the Non-Euclidean case?

- The only "locations" we can talk about are the points themselves
 - i.e., there is no "average" of two points

Approach 1:

- (1) How to represent a cluster of many points? clustroid = (data)point "closest" to other points
- (2) How do you determine the "nearness" of clusters? Treat clustroid as if it were centroid, when computing inter-cluster distances

"Closest" Point?

- (1) How to represent a cluster of many points?
 clustroid = point "closest" to other points
- Possible meanings of "closest":
 - Smallest maximum distance to other points
 - Smallest average distance to other points
 - Smallest sum of squares of distances to other points
 - ◆For distance metric **d** clustroid **c** of cluster **C** is:

$$\min_{c} \sum_{x \in C} d(x, c)^2$$

Centroid is the avg. of all (data)points in the cluster. This means centroid is an "artificial" point.

Clustroid is an existing (data)point that is "closest" to all other points in the cluster.

Defining "Nearness" of Clusters

- (2) How do you determine the "nearness" of clusters?
 - Approach 2: Intercluster distance = minimum of the distances between any two points, one from each cluster
 - Approach 3: Pick a notion of "cohesion" of clusters, e.g., maximum distance from the clustroid
 - ◆Merge clusters whose *union* is most cohesive

Cohesion

- Approach 3.1: Use the diameter of the merged cluster = maximum distance between points in the cluster
- Approach 3.2: Use the average distance between points in the cluster
- Approach 3.3: Use a density-based approach
 - Take the diameter or avg. distance, e.g., and divide by the number of points in the cluster

Termination Conditions

- When do you stop combining clusters?
- Approach 1: Pick k up front and stop when you have k
 - makes sense if we know that the data falls into k categories
- Approach 2: Stop when the next merge will create a cluster with low cohersion
 - i.e. bad cluster

Implementation

- Naïve implementation of hierarchical clustering:
 - At each step, compute pairwise distances between all pairs of clusters, then merge
 - $\bigcirc (N^3)$
- Careful implementation using priority queue can reduce time to O(N² log N)
 - Still too expensive for really big datasets that do not fit in memory

k-means clustering

k–means Algorithm(s)

- Assumes Euclidean space/distance
- Start by picking k, the number of clusters
- Initialize clusters by picking one point per cluster
 - **Example:** Pick one point at random, then **k-1** other points, each as far away as possible from the previous points

Populating Clusters

- 1) For each point, place it in the cluster whose current centroid it is nearest
- 2) After all points are assigned, update the locations of centroids of the k clusters
- 3) Reassign all points to their closest centroid
 - Sometimes moves points between clusters
- Repeat 2 and 3 until convergence
 - Convergence: Points don't move between clusters and centroids stabilize

Example: Assigning Clusters

x ... data point ... centroid

Clusters after round 1

Example: Assigning Clusters

x ... data point ... centroid

Clusters after round 2

Example: Assigning Clusters

x ... data point ... centroid

Clusters at the end

Example: Picking k

Too few; many long distances to centroid.

Example: Picking k

Just right; distances rather short.

Example: Picking k

Too many; little improvement in average distance.

Getting the k right

How to select *k*?

- Try different k, looking at the change in the average distance to centroid as k increases
- Average falls rapidly until right k, then changes little

Picking the initial k points

Approach 1: Sampling

- Cluster a sample of the data using hierarchical clustering, to obtain k clusters
- Pick a point from each cluster (e.g. point closest to centroid)
- Sample fits in main memory

Approach 2: Pick "dispersed" set of points

- Pick first point at random
- Pick the next point to be the one whose minimum distance from the selected points is as large as possible
- Repeat until we have k points

The BFR Algorithm

Extension of k-means to larger data

BFR Algorithm

- BFR [Bradley-Fayyad-Reina] is a variant of kmeans for very large (disk-resident) data sets
- Assumes each cluster is normally distributed around a centroid in Euclidean space

Normal Distribution

- Can quantify the likelihood of finding a point in the cluster at a given distance from the centroid along each dimension
- Standard deviations in different dimenions may vary

BFR Algorithm

- BFR [Bradley-Fayyad-Reina] is a variant of k-means designed to handle very large (disk-resident) data sets
- Assumes that clusters are normally distributed around a centroid in a Euclidean space
 - Standard deviations in different dimensions may vary
 - ◆ Clusters are axis-aligned ellipses
- Efficient way to summarize clusters
 (memory required: O(clusters) and not O(data))

BFR Algorithm

- Points are read from disk one main-memory-full at a time
- Most points from previous memory loads are summarized by simple statistics
- To begin, from the initial load we select the initial k
 centroids by some sensible approach:
 - Take **k** random points
 - Take a small random sample and cluster optimally
 - Take a sample; pick a random point, and then k-1 more points, each as far from the previously selected points as possible

Three Classes of Points

3 sets of points which we keep track of:

- Discard set (DS):
 - Points close enough to a centroid to be summarized
- Compression set (CS):
 - Groups of points that are close together but not close to any existing centroid
 - These points are summarized, but not assigned to a cluster
- Retained set (RS):
 - Isolated points waiting to be assigned to a compression set

BFR: "Galaxies" Picture

Discard set (DS): Close enough to a centroid to be summarized Compression set (CS): Summarized, but not assigned to a cluster Retained set (RS): Isolated points

43

Summarizing Sets of Points

For each cluster, the discard set (DS) is <u>summarized</u> by:

- The number of points, N
- The vector *SUM*, whose *I*th component is the sum of the coordinates of the points in the *I*th dimension
- The vector **SUMSQ**: t^h component = sum of squares of coordinates in t^h dimension

Summarizing Sets of Points

- 2d + 1 values represent any size cluster
 - d = number of dimensions
- Average in each dimension (the centroid)
 can be calculated as SUM; / N
 - SUM_i = ith component of SUM
- Variance of a cluster's discard set in dimension i is: (SUMSQ_i / N) – (SUM_i / N)²
 - And standard deviation is the square root of that
- Next step: Actual clustering

BFR Overview

BFR: "Galaxies" Picture

Discard set (DS): Close enough to a centroid to be summarized Compression set (CS): Summarized, but not assigned to a cluster Retained set (RS): Isolated points

47

A Few Details...

- Q1) How do we decide if a point is "close enough" to a cluster that we will add the point to that cluster?
- Q2) How do we decide whether two compressed sets (CS) deserve to be combined into one?
 - Compute the variance of the combined subcluster

How Close is Close Enough?

- Q1) We need a way to decide whether to put a new point into a cluster (and discard)
- BFR suggests two ways:
 - The Mahalanobis distance is less than a threshold
 - High likelihood of the point belonging to currently nearest centroid

Mahalanobis Distance

Normalized Euclidean distance from centroid

- For point $(x_1, ..., x_d)$ and centroid $(c_1, ..., c_d)$
 - 1. Normalize in each dimension: $y_i = (x_i c_i) / \sigma_i$
 - 2. Take sum of the squares of the y_i
 - 3. Take the square root

$$d(x,c) = \sqrt{\sum_{i=1}^{d} \left(\frac{x_i - c_i}{\sigma_i}\right)^2}$$

measures the # of standard deviations from centroid across a dimension

 σ_i ... standard deviation of points in the cluster in the i^{th} dimension

Mahalanobis Acceptance Criterion

- Suppose point P is one standard deviation away from centroid in each dimension
 - Each $y_i = 1$ and so the MD of P is \sqrt{d}

Accept point P into cluster C if its MD from cluster centroid is less than a threshold e.g., $3\sqrt{d}$

Should 2 Compressed Set be Combined?

Q2) Should 2 CS subclusters be combined?

- Compute the variance of the combined subcluster
 - N, SUM, and SUMSQ allow us to make that calculation quickly
- Combine if the combined variance is below some threshold

Variance = Square of Standard Deviation

The CURE Algorithm

Extension of *k*-means to clusters of arbitrary shapes

The CURE Algorithm

Problem with BFR/k-means:

- Assumes clusters are normally distributed in each dimension
- And axes are fixed ellipses at an angle are *not OK*

CURE (Clustering Using REpresentatives):

- Assumes a Euclidean distance
- Allows clusters to assume any shape
- Uses a collection of representative points to represent clusters

Example: Professor's Salaries

Starting CURE

2 Pass algorithm. Pass 1:

- 0) Pick a random sample of points that fit in main memory
- 1) Initial clusters:
 - Cluster these points hierarchically group nearest points/clusters
- 2) Pick representative points:
 - For each cluster, pick a sample of points, as dispersed as possible
 - From the sample, pick representatives by moving them (say) 20% toward the centroid of the cluster

Example: Initial Clusters

Example: Pick Dispersed Points

Example: Pick Dispersed Points

Finishing CURE

Pass 2:

- Now, rescan the whole dataset and visit each point p in the data set
- Place it in the "closest cluster"
 - Normal definition of "closest": Find the closest representative to **p** and assign it to representative's cluster

p

Summary

- Clustering: Given a set of points, with a notion of distance between points, group the points into some number of clusters
- Algorithms:
 - Agglomerative hierarchical clustering:
 - ◆Centroid and clustroid
 - *k*-means:
 - lacktriangle Initialization, picking k
 - BFR
 - CURE

DBSCAN

<u>Density-based Clustering</u> locates regions of high density that are separated from one another by regions of low density.

- Density = number of points within a specified radius (Eps)
- DBSCAN is a density-based algorithm.
 - A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - ◆These are points that are at the interior of a cluster
 - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point

DBSCAN

- A noise point is any point that is not a core point or a border point.
- Any two core points are close enough— within a distance Eps of one another – are put in the same cluster
- Any border point that is close enough to a core point is put in the same cluster as the core point
- Noise points are discarded

DBSCAN: The Algorithm

- select a point p
- Retrieve all points density-reachable from p wrt ϵ and MinPts.
- If p is a core point, a cluster is formed.
- If **p** is a border point, no points are density-reachable from **p** and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

Result is independent of the order of processing the points

An example

DB Scan Clusters

DBSCAN Disadvantage: Irregular Density

