Plant Disease Detection and Diagnosis System

Team members:

- 1. George Bebawy
- 2. Ahmed Hamdy
- 3. Youssef Ahmed

Table of contents

O1 Intro & objectives

Goals of the Project

Dataset Overview

O4 Data
Preprocessing

Model
Architecture
& Summary

Deployment & Results

Intro & objectives

Introduction

- Our project, **Plant Disease Detection and Diagnosis System**, is designed to assist farmers, gardeners, and plant enthusiasts by leveraging AI to analyze images of plants and provide crucial insights about their health. The system functions in three key steps:
- 1. Identifying the Plant Type: Using image recognition, the system determines the species of the plant and provides a confidence percentage. For instance, it might predict with 90% certainty that the plant is an apple tree.
- 2. Assessing Plant Health: Once the plant type is identified, the system analyzes whether the plant is healthy or displaying symptoms of disease.
- 3. Diagnosing the Disease: If the plant is sick, the system identifies the specific disease and provides a detailed description of it.
- By making plant health analysis quick and accessible, our goal is to help protect crops, reduce plant loss, and ensure healthier harvests.

Objective

The primary objective of this project is to develop a system capable of:

- 1. Identifying Plant Types: Determine plant species from images with high confidence.
- 2. Detecting Plant Health: Quickly assess if a plant is healthy or sick.
- Diagnosing Plant Diseases: Identify specific diseases and provide detailed information for timely treatment.
- **4. Displaying Confidence Levels**: Offer percentage-based confidence in predictions to enhance accuracy and decision-making.

This solution aims to provide valuable insights, improve agricultural productivity, and contribute to sustainable farming practices.

Goals of the Project

Goals

User-Friendly Experience:

Ensure that the platform is easy to use, providing farmers, gardeners, and plant lovers with a simple yet powerful tool for managing plant health.

Facilitate Real-Time Disease Detection:

Enable the system to provide real-time analysis so that users can receive instant feedback on plant health and potential diseases, allowing for quicker responses.

Market Ma

03

Dataset Overview

For the **Plant Disease Detection and Diagnosis System**, we have utilized the <u>New Plant Diseases</u>

<u>Dataset</u> from Kaggle. This dataset plays a crucial role in training and testing the model's ability to accurately identify plant types and diagnose diseases.

Key features of the dataset include:

- Total Images: The dataset consists of over 87,000 images of healthy and diseased plant leaves.
- **Plant Categories**: It covers **38 distinct classes**, representing both healthy and diseased plants from various species such as apple, cherry, corn, and grape.
- **Disease Types**: The dataset includes images of plants affected by various diseases like **Apple Scab**, **Black Rot**, **and Late Blight**, among others.
- **High-Quality Images**: All images are in **RGB format** and are of high resolution, which ensures that the model can extract fine details for better classification.
- **Diverse Conditions**: The dataset includes images captured in different conditions, adding variability in lighting, angles, and environmental factors, which helps the model generalize well across realworld scenarios.

Dataset Diseases

Data Preprocessing

Data Preprocessing

Effective data preprocessing is a critical step in ensuring that the model can accurately classify plant types and detect diseases.

Dataset Splitting

The entire dataset is divided into three main subsets to ensure the model is trained, validated, and tested effectively

Training -- Valid -- Test

Dataset Splitting

```
import os
import shutil
from sklearn.model_selection import train_test_split
base_dir = '/kaggle/input/plantvillage-dataset/color'
train_dir = 'path_to_save/train'
valid_dir = 'path_to_save/valid'
test_dir = 'path_to_save/test'
os.makedirs(train_dir, exist_ok=True)
os.makedirs(valid_dir, exist_ok=True)
os.makedirs(test_dir, exist_ok=True)
classes = os.listdir(base_dir)
test_size_ratio = 33 / len(classes)
train_valid_classes, test_classes = train_test_split(classes, test_size=test_size_ratio, random_state=42)
valid_size_ratio = 0.2
train_classes, valid_classes = train_test_split(train_valid_classes, test_size=valid_size_ratio, random_state=42)
def copy_files(class_list, source_dir, dest_dir):
   for class name in class list:
       class_dir = os.path.join(source_dir, class_name)
       dest_class_dir = os.path.join(dest_dir, class_name)
       shutil.copytree(class_dir, dest_class_dir)
copy_files(train_classes, base_dir, train_dir)
copy_files(valid_classes, base_dir, valid_dir)
copy_files(test_classes, base_dir, test_dir)
```

- /kaggle/working
 - path_to_save
 - □ test
 - ▶ Г¬ train
 - valid

38 different classes "Training data set"

38 different classes "Validation data set"

Testing Images


```
Import library
import tensorflow as tf
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import tensorflow as tf
from tensorflow.keras import layers, models
Data Preprocessing
# first We Load training dataset #
training_set = tf.keras.utils.image_dataset_from_directory(
    'train',
   labels="inferred",
    label mode="categorical",
    class names=None,
    color_mode="rgb",
    batch size=32,
    image_size=(128, 128),
    shuffle=True.
    seed=None,
    validation_split=None,
    subset=None,
    interpolation="bilinear",
    follow links=False.
   crop to aspect ratio=False
print(f'Found {training_set.cardinality().numpy()} batches of training data')
Found 70295 files belonging to 38 classes.
Found 2197 batches of training data
```

```
# secound We Load validation dataset #
validation set = tf.keras.utils.image dataset from directory(
    'valid',
   labels="inferred",
   label mode="categorical".
   class names=None.
   color mode="rgb",
   batch size=32,
   image size=(128, 128),
   shuffle=True,
   seed=None,
   validation split=None,
   subset=None,
   interpolation="bilinear",
   follow links=False.
   crop_to_aspect_ratio=False
print(f'Found {validation_set.cardinality().numpy()} batches of validation data')
Found 17572 files belonging to 38 classes.
Found 550 batches of validation data
Attention Mechanism
# Squeeze-and-Excitation block definition #
# Squeeze-and-Excitation block definition
def se block(input tensor, ratio=16):
   filters = input_tensor.shape[-1] # Number of filters in the input tensor
    se_shape = (1, 1, filters)
   se = layers.GlobalAveragePooling2D()(input_tensor)
   se = layers.Reshape(se shape)(se)
    se = layers.Dense(filters // ratio, activation='relu', use bias=False)(se)
    se = layers.Dense(filters, activation='sigmoid', use bias=False)(se)
   x = layers.multiply([input_tensor, se])
    return x
```

CNN

```
CNN Architecture
# Input Laver
inputs = layers.Input(shape=(128, 128, 3))
# First Convolutional Laver Block
x = layers.Conv2D(filters=32, kernel size=3, padding='same', activation='relu')(inputs)
x = layers.Conv2D(filters=32, kernel_size=3, activation='relu')(x)
x = lavers.MaxPooling2D(pool size=2, strides=2)(x)
# Attention block after the first convolutional layer
x = se block(x)
# Second Convolutional Layer Block
x = layers.Conv2D(filters=64, kernel_size=3, padding='same', activation='relu')(x)
x = layers.Conv2D(filters=64, kernel_size=3, activation='relu')(x)
x = layers.MaxPooling2D(pool_size=2, strides=2)(x)
# Attention block after the second convolutional layer
x = se block(x)
# Third Convolutional Layer Block
x = layers.Conv2D(filters=128, kernel size=3, padding='same', activation='relu')(x)
x = layers.Conv2D(filters=128, kernel size=3, activation='relu')(x)
x = layers.MaxPooling2D(pool_size=2, strides=2)(x)
# Fourth Convolutional Layer Block
x = layers.Conv2D(filters=256, kernel size=3, padding='same', activation='relu')(x)
x = layers.Conv2D(filters=256, kernel size=3, activation='relu')(x)
x = layers.MaxPooling2D(pool size=2, strides=2)(x)
# Fifth Convolutional Layer Block
x = layers.Conv2D(filters=512, kernel size=3, padding='same', activation='relu')(x)
x = layers.Conv2D(filters=512, kernel size=3, activation='relu')(x)
x = layers.MaxPooling2D(pool_size=2, strides=2)(x)
```

DNN

```
DNN Block
# Flattenina
x = layers.Dropout(0.25)(x)
x = layers.Flatten()(x)
# DNN Block (Dense Layer)
x = layers.Dense(units=1500, activation='relu')(x)
x = layers.Dropout(0.4)(x)
# Output Layer
outputs = layers.Dense(units=38, activation='softmax')(x)
Model Compilation and Summary
# Compiling the model with the current Adam optimizer
model.compile(optimizer=tf.keras.optimizers.Adam(learning rate=0.0001),
             loss='categorical_crossentropy',
             metrics=['accuracy'])
# Model summary
model.summary()
```

Layer (type)	Output Shape	Param #	Connected to
input_layer_1 (InputLayer)	(None, 128, 128, 3)	0	-
conv2d_2 (Conv2D)	(None, 128, 128, 32)	896	input_layer_1[0]
conv2d_3 (Conv2D)	(None, 126, 126, 32)	9,248	conv2d_2[0][0]
max_pooling2d_1 (MaxPooling2D)	(None, 63, 63, 32)	0	conv2d_3[0][0]
global_average_poo (GlobalAveragePool	(None, 32)	0	max_pooling2d_1[
reshape_1 (Reshape)	(None, 1, 1, 32)	0	global_average_p
dense_2 (Dense)	(None, 1, 1, 2)	64	reshape_1[0][0]
dense_3 (Dense)	(None, 1, 1, 32)	64	dense_2[0][0]
multiply_1 (Multiply)	(None, 63, 63, 32)	0	max_pooling2d_1[dense_3[0][0]
conv2d_4 (Conv2D)	(None, 63, 63, 64)	18,496	multiply_1[0][0]
conv2d_5 (Conv2D)	(None, 61, 61, 64)	36,928	conv2d_4[0][0]
max_pooling2d_2 (MaxPooling2D)	(None, 30, 30, 64)	0	conv2d_5[0][0]
global_average_poo (GlobalAveragePool	(None, 64)	0	max_pooling2d_2[
reshape_2 (Reshape)	(None, 1, 1, 64)	0	global_average_p
dense_4 (Dense)	(None, 1, 1, 4)	256	reshape_2[0][0]
dense_5 (Dense)	(None, 1, 1, 64)	256	dense_4[0][0]
multiply_2 (Multiply)	(None, 30, 30, 64)	0	max_pooling2d_2[dense_5[0][0]

(None, 30, 30, 128)	73,856	multiply_2[0][0]
(None, 28, 28, 128)	147,584	conv2d_6[0][0]
(None, 14, 14, 128)	0	conv2d_7[0][0]
(None, 14, 14, 256)	295,168	max_pooling2d_3[
(None, 12, 12, 256)	590,080	conv2d_8[0][0]
(None, 6, 6, 256)	0	conv2d_9[0][0]
(None, 6, 6, 512)	1,180,160	max_pooling2d_4[
(None, 4, 4, 512)	2,359,808	conv2d_10[0][0]
(None, 2, 2, 512)	0	conv2d_11[0][0]
(None, 2, 2, 512)	0	max_pooling2d_5[
(None, 2048)	0	dropout[0][0]
(None, 1500)	3,073,500	flatten[0][0]
(None, 1500)	0	dense_6[0][0]
(None, 38)	57,038	dropout_1[0][0]
	128) (None, 28, 28, 128) (None, 14, 14, 128) (None, 14, 14, 1256) (None, 6, 6, 256) (None, 6, 6, 512) (None, 2, 2, 512) (None, 2, 2, 512) (None, 2, 248) (None, 1500) (None, 1500)	128) (None, 28, 28, 147,584) (None, 14, 14, 6) (None, 14, 14, 295,168) (Sone, 12, 12, 590,680) (None, 6, 6, 256) (None, 6, 6, 512) (None, 4, 4, 512) (None, 2, 2, 512) (None, 2, 2, 512) (None, 2048) (None, 1500)

Total params: 7,843,402 (29.92 MB)

Trainable params: 7,843,402 (29.92 MB)

Non-trainable params: 0 (0.00 B)

```
# Training the model
training history - model.fit(x-training set,
                             validation_data=validation_set,
                             epochs=10)
Epoch 1/10
2197/2197
                              960s 436ms/step - accuracy: 0.3804 - loss: 2.1861 - val accuracy: 0.8352 - val loss: 0.5128
Epoch 2/10
2197/2197
                              929s 423ms/step - accuracy: 0.8321 - loss: 0.5318 - val accuracy: 0.9066 - val loss: 0.2836
Epoch 3/10
2197/2197
                              929s 423ms/step - accuracy: 0.9004 - loss: 0.3047 - val accuracy: 0.9190 - val loss: 0.2482
Epoch 4/10
2197/2197
                              9405 428ms/step - accuracy: 0.9306 - loss: 0.2078 - val accuracy: 0.9495 - val loss: 0.1617
Epoch 5/10
2197/2197
                              936s 426ms/step - accuracy: 0.9491 - loss: 0.1535 - val accuracy: 0.9544 - val loss: 0.1416
Epoch 6/10
2197/2197
                              933s 425ms/step - accuracy: 0.9621 - loss: 0.1162 - val accuracy: 0.9556 - val loss: 0.1332
Epoch 7/10
2197/2197
                              928s 422ms/step - accuracy: 0.9673 - loss: 0.0983 - val accuracy: 0.9374 - val loss: 0.2075
Epoch 8/10
2197/2197
                              9275 422ms/step - accuracy: 0.9720 - loss: 0.0842 - val_accuracy: 0.9657 - val_loss: 0.1117
Epoch 9/10
2197/2197
                              9265 421ms/step - accuracy: 0.9788 - loss: 0.0670 - val accuracy: 0.9548 - val loss: 0.1558
Epoch 10/10
2197/2197
                              946s 431ms/step - accuracy: 0.9804 - loss: 0.0615 - val accuracy: 0.9627 - val loss: 0.1187
Cheak The accuracy
# Evaluate Training Set Accuracy
train_loss, train_acc = model.evaluate(training_set)
print('Training accuracy:', train_acc)
 Evaluate Validation Set Accuracy
val loss, val acc = model.evaluate(validation_set)
print('Validation accuracy:', val acc)
                              2285 10 ms/step - accuracy: 0.9880 - loss: 0.0335
Training accuracy 0.9892311096191406
550/550 -
                            - 57s 103ms/stel - accuracy: 0.9629 - loss: 0.1235
Validation accuracy. 9.9626678824424744
```

Training accuracy: 0.9892311096191406

Validation accuracy: 0.9626678824424744

57s 103ms/s

550/550

A MARKATAN M

	precision	recall	f1-score	support
AppleApple_scab	0.88	0.98	0.93	504
AppleBlack_rot	0.96	1.00	0.50	497
AppleCedar_apple_rust	0.95	0.99	0.97	440
Applehealthy	0.94	0.96	0.95	502
Blueberryhealthy	0.97	0.94	0.96	454
Cherry_(including_sour)Powdery_mildew	0.99	0.97	0.98	421
Cherry_(including_sour)healthy	0.98	0.99	0.98	456
orn_(maize)Cercospora_leaf_spot Gray_leaf_spot	0.95	0.92	0.94	410
Corn_(maize)Common_rust_	0.99	0.99	0.99	477
Corn_(maize)Northern_Leaf_Blight	0.94	0.97	0.95	477
Corn_(maize)healthy	1.00	0.99	1.00	465
GrapeBlack_rot GrapeEsca_(Black_Measles)	0.98	0.97	0.98	472
Grape Leaf blight (Isariopsis Leaf Spot)	0.98 0.99	0.98 1.00	0.98 0.99	480 430
GrapeLeat_Dlignt_(Isarlopsis_Leat_Spot) Grape healthy	1.00	0.99	0.99	430 423
Orange Haunglongbing (Citrus greening)	0.98	0.99	0.99	503
Peach Bacterial spot	0.98	0.99	0.99	459
Peach healthy	0.90	1.00	0.90	432
Pepper, bell Bacterial spot	0.98	0.95	0.96	478
Pepper, bell healthy	0.99	0.95	0.97	497
Potato Early blight	0.99	0.98	0.99	485
Potatotaily_blight	0.93	0.99	0.96	485
Potato healthy	0.99	0.96	0.98	456
Raspberry healthy	0.99	0.99	0.99	445
Soybean healthy	0.99	0.95	0.97	505
Squash Powdery mildew	0.99	0.98	0.99	434
Strawberry Leaf scorch	0.98	0.98	0.98	444
Strawberry healthy	0.99	0.98	0.98	456
Tomato Bacterial spot	0.98	0.92	0.95	425
Tomato Early blight	0.86	0.94	0.90	480
Tomato Late blight	0.97	0.87	0.92	463
Tomato Leaf Mold	0.99	0.86	0.92	470
Tomato Septoria leaf spot	0.84	0.95	0.89	436
Tomato Spider mites Two-spotted spider mite	0.96	0.88	0.92	435
Tomato Target Spot	0.88	0.93	0.90	457
TomatoTomato_Yellow_Leaf_Curl_Virus	1.00	0.96	0.98	490
TomatoTomato_mosaic_virus	0.95	0.99	0.97	448
Tomatohealthy	0.97	0.99	0.98	481
				47570
accuracy	0.05	0.05	0.96	17572
macro avg	0.96	0.96	0.96	17572
weighted avg	0.96	0.96	0.96	17572

•	precision	recall	f1-score	support
AppleApple_scab	0.88	0.98	0.93	504

C.M

	Predicted 0	Predicted 1	Predicted 2	Predicted 3
Actual 0	500	3	0	2
Actual 1	0	497	0	0
Actual 2	0	1	440	0
Actual 3	15	1	0	459

Streamlit

Tensor Flow

NumPy

Keras

Thanks!

Do you have any questions?

