Deep Learning

Caio Corro — Michele Sebag CNRS — INRIA — LIMSI — LRI

Orsay — Oct. 2019

Credit for slides: Yoshua Bengio, Yann Le Cun, Nando de Freitas, Christian Perone, Honglak Lee, Stéphane Canu

Types of Machine Learning problems

WORLD - DATA - USER

Observations

+ Target

+ Rewards

Understand Code Predict Classification/Regression

Decide Action Policy/Strategy

Unsupervised LEARNING Supervised LEARNING

Reinforcement LEARNING

News

Good News: Neural Nets can be used for all three goals:

Unsupervised learning change of representation

► Supervised learning achieves prediction

► Reinforcement learning yields the state-action value

Bad News

▶ not so easy to learn non convex optimization

▶ not so easy to understand black-box model

▶ its extensions (to complex/higher order logic domains) require *finesse*

Resources: https://tao.lri.fr/ (Activities; Courses; Module Deep Learning)

Position

Generalities

Convolutional NN

Neural Nets

(C) David McKay - Cambridge Univ. Press

Properties

- ▶ Good: Multi-layer perceptrons are universal approximators For every decent function f (= f^2 has a finite integral on every compact of \mathbb{R}^d) for every $\epsilon > 0$, there exists some MLP/RBF g such that $||f g|| < \epsilon$.
- Bad
 - ▶ Not a constructive proof (the solution exists, so what ?)
 - ightharpoonup Everything is possible \rightarrow no guarantee (overfitting).
- Very bad
 - A non convex hard optimization problem
 - Lots of local minima
 - Low reproducibility of the results (tricks; computational cost)

History

1943 A neuron as a computable function y	$y = f(\mathbf{x})$ Pitts, McCullough			
Intelligence $ o$ Reasoning $ o$ Boolean functions				
1960 Connexionism + learning algorithms	Rosenblatt			
1969 Al Winter	Minsky-Papert			
1989 Back-propagation	Amari, Rumelhart & McClelland, LeCun			
1995 Winter again	Vapnik			
2006 Deep Learning	Bengio, Hinton			
It was hard to come back	Le Cun 2007			

- The NIPS community has suffered of an acute convexivitis epidemic
 - ML applications seem to have trouble moving beyond logistic regression, SVMs, and exponential-family graphical models.
 - ▶ For a new ML model, convexity is viewed as a virtue
 - Convexity is sometimes a virtue
 - But it is often a limitation
 - ► ML theory has essentially never moved beyond convex models • the same way control theory has not really moved beyond linear systems
 - ▶ Often, the price we pay for insisting on convexity is an unbearable increase in the size of the model, or the scaling properties of the optimization algorithm [O(n^2), O(n^3)...]

Here dragons

Model selection

- Selecting number of neurons, NN architecture
- More \Rightarrow ? Better
- Which learning criterion, how to find enough examples

Algorithmic choices

a difficult optimization problem

Enforce stability through relaxation

$$\mathbf{W}_{\textit{neo}} \leftarrow (\mathbf{1} - lpha) \mathbf{W}_{\textit{old}} + lpha \mathbf{W}_{\textit{neo}}$$

- ightharpoonup Decrease the learning rate lpha with time
- Stopping criterion ?

Tricks

- Normalize data
- ▶ Initialize **W** small ! See Glorot initialization.

Position

Generalities

Convolutional NN

Toward deeper representations

Invariances matter

- The label of an image is invariant through small translation, homothety, rotation...
- ► Invariance of labels → Invariance of model

$$y(x) = y(\sigma(x)) \rightarrow h(x) = h(\sigma(x))$$

Enforcing invariances

by augmenting the training set:

$$\mathcal{E} = \{(x_i, y_i)\} \bigcup \{(\sigma(x_i), y_i)\}$$

by structuring the hypothesis space

Hubel & Wiesel 1968

Visual cortex of the cat

- cells arranged in such a way that
- ... each cell observes a fraction of the visual field

receptive field

... their union covers the whole field

Layer *m*: detection of local patterns

(same weights)

▶ Layer m + 1: non linear aggregation of output of layer m

Ingredients of convolutional networks

1. Local receptive fields

(aka kernel or filter)

2. Sharing weights

through adapting the gradient-based update: the update is averaged over all occurrences of the weight.

Reduces the number of parameters by several orders of magnitude

Ingredients of convolutional networks, 2

3. Pooling: reduction and invariance

- Overlapping / non-overlapping regions
- ▶ Return the max / the sum of the feature map over the region
- ► Larger receptive fields (see more of input)

Convolutional networks, summary

LeCun 1998

Properties

- Invariance to small transformations (over the region)
- ► Reducing the number of weights

Convolutional networks, summary

LeCun 1998

Kryzhevsky et al. 2012

Properties

- ► Invariance to small transformations (over the region)
- ► Reducing the number of weights
- Usually many convolutional layers

ImageNet

Deng et al. 12

15 million labeled high-resolution images; 22,000 classes.

Large-Scale Visual Recognition Challenge

- ▶ 1000 categories.
- ▶ 1.2 million training images,
- ▶ 50,000 validation images,
- ▶ 150,000 testing images.

A leap in the state of the art

2012 Teams	%error	2013 Teams	%error	2014 Teams	%error
Supervision (Toronto)	15.3	Clarifai (NYU spinoff)	11.7	GoogLeNet	6.6
ISI (Tokyo)	26.1	NUS (singapore)	12.9	VGG (Oxford)	7.3
VGG (Oxford)	26.9	Zeiler-Fergus (NYU)	13.5	MSRA	8.0
XRCE/INRIA	27.0	A. Howard	13.5	A. Howard	8.1
UvA (Amsterdam)	29.6	OverFeat (NYU)	14.1	DeeperVision	9.5
INRIA/LEAR	33.4	UvA (Amsterdam)	14.2	NUS-BST	9.7
		Adobe	15.2	TTIC-ECP	10.2
		VGG (Oxford)	15.2	XYZ	11.2
		VGG (Oxford)	23.0	UvA	12.1

shallow approaches
deep learning

Y. LeCun StatLearn tutorial

Super-human performances

2012 Alex Net

2013 ZFNet

2014 VGG

2015 GoogLeNet / Inception

2016 Residual Network