- **1.** Which of the following would show that $p \to q$ is true?
 - $\overline{\mathbf{A}}$ Assume p is not true and show q is not true.
 - B Show p is always true.
 - C Show p is always false.
 - D Assume q is true and show p is not true.
- **2.** $p \to (q \land r)$ is equivalent to what other compound proposition:
 - $A (p \rightarrow q) \land r$
 - $\boxed{\mathrm{B}} (p \to q) \land (p \to r)$
 - $\boxed{\mathbf{C}}(p \wedge q) \to r$
 - $D p \lor (q \land r)$
- 3. Which reasoning is correct in the deductions below?
 - A If it rains, then Kilam brings an umbrella. It did not rain. Therefore, Kilam did not bring an umbrella.
 - B Everyone who eats apples is healthy. Malik is not healthy. Therefore, Malik does not eat apples.
 - C At the party you can have cake or ice-cream. You had cake. Therefore, you did not have ice-cream.
 - D Lights are turned on in the evenings. It is daytime. Therefore, the lights are turned off.
- **4.** P(n) is a predicate (n is an integer). P(2) is true; and, $P(n) \to (P(n^2) \land P(n-2))$ is true for $n \ge 2$. For which n can we be **sure** P(n) is true?
 - All $n \geq 2$.
 - B All even $n \ge 0$.
 - $\boxed{\mathbf{C}}$ All odd $n \geq 0$.
 - $\overline{\mathbf{D}}$ All n which are perfect squares.
- 5. You may take as known facts: 0 = 0 and the standard operations of algebra from high-school math. Which of the following is a valid proof that 7 = 7.

(I)
$$\begin{array}{ccc} & & & & & \\ 1. & & 7=7 \\ 2. & 7-7=7-7 \\ 3. & & 0=0 & \checkmark \\ \end{array}$$

1.
$$7 \neq 7$$

2. $7 - 7 \neq 7 - 7$
3. $0 \neq 0$!FISHY

1.
$$0 = 0$$

2. $0 + 7 = 0 + 7$
3. $7 = 7$ \checkmark
 $7 = 7$

(III)

- A I & II & III.
- B I & II
- C II & III.
- DI&III.

- $A \cap B \cap C$
- $B A \cap (B \cup C)$

6. Which expression represents the shaded region in the Venn diagram:

- $C A \cup (B \cap C)$
- $D A \cup B \cup C$

- 7. The domain of x, y is \mathbb{R} . True or false, $\exists x : (\forall y : xy = y)$?
 - A True.
 - B False.
 - $\overline{\mathbf{C}}$ Can't say because it depends on x.
 - \overline{D} Can't say because it depends on y.
- **8.** T_n satisfies a recurrence $T_0 = 3$; $T_n = 2T_{n-1}$ for $n \ge 1$. Give a formula for T_n .

$$A$$
 $T_n = 3(n+1) + \frac{3}{2}n(n-1)$

$$\boxed{\mathbf{B}} T_n = 3 \cdot 2^{n+1} - 3(n+1)$$

$$C$$
 $T_n = 3 \cdot 2^n$

$$D T_n = 2^n$$

9. The set \mathcal{A} of arithmetic strings using characters in the set $\Sigma = \{1, +, \times, (,)\}$ has a recursive definition:

Which string is in A

$$\boxed{A} (1+1+1) \times (1+1)$$

$$B(1+1+1)\times((1+1+1)+1+1)$$

$$\boxed{\mathbf{C}} ((1+1+1) \times ((1+1+1)+1+1))$$

$$D$$
 $((1 \times 1) + 1 + 1 + 1)$

- 10. There are 5 rooted binary trees with 3 nodes. How many are there with 4 nodes?
 - A 7
 - B 12
- C 14
- D 16

1.	We know that p is false. We do not know the truth value of q . Which of the following \underline{must} be true? $(I) \neg p \lor \neg q (II) \neg p \land \neg q (III) \neg (p \land q) (IV) \ p \rightarrow q$
	A I, II, III
	B I, II, IV
	C I, III, IV
	D II, III, IV
2.	For a set of horses \mathcal{H} , determine whether the following claim is true or false: IF every subset of 10 horses has the same color, THEN every subset of 11 horses has the same color.
	\fbox{A} Always true no matter what $\mathcal H$ is.
	$oxed{B}$ Always false no matter what ${\mathcal H}$ is.
	C Not enough information to determine whether it is true or false.
	$\boxed{\mathbb{D}}$ False if \mathcal{H} has fewer than 11 horses but true otherwise.
3.	Which reasoning is correct in the deductions below?
	A If it rains, then Kilam brings an umbrella. It did not rain. Therefore, Kilam did not bring an umbrella.
	B Everyone who eats apples is healthy. Malik is healthy. Therefore, Malik eats apples.
	C At the party you can have cake or ice-cream. You had cake. Therefore, you did not have ice-cream.
	D Lights are turned on in the night. Lights are off. Therefore, it is day.
4.	$P(n)$ is a predicate (n is an integer). $P(2)$ is true; and, $P(n) \rightarrow P(n+2)$ is true for $n \ge 0$. For which n
	can we be <u>sure</u> $P(n)$ is true?
	$\boxed{\mathbf{A}}$ All $n \geq 2$.
	B All even $n \geq 0$.
	$\boxed{\mathrm{C}}$ All even $n \geq 2$.
	\boxed{D} All n which are perfect squares.
5.	Which of the following, if any, is a valid way to prove $P(n) \to P(n+1)$.
	(I) Let's see what happens if $P(n+1)$ is T. (II) Let's see what happens if $P(n+1)$ is F.
	(valid derivations) (valid derivations)
	Look! $P(n)$ is T. \checkmark Look! $P(n)$ is F. \checkmark
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

6. Which expression represents the shaded region in the Venn diagram:

 $A \cap B \cap C$ $B A \cap (B \cup C)$ $C A \cap \overline{B} \cap \overline{C}$

 $\overline{\mathbf{D}} \ \overline{A} \cap B \cap C$

7. What is the more formal way to say: "There's a soul-mate for everyone"?

- $\exists x \in \text{PEOPLE} : (\exists y \in \text{PEOPLE} : x \text{ is a soul-mate for } y)$
- $\exists x \in PEOPLE : (\exists y \in PEOPLE : y \text{ is a soul-mate for } x)$
- C $\forall x \in PEOPLE : (\forall y \in PEOPLE : y \text{ is a soul-mate for } x)$
- \square $\forall x \in \text{PEOPLE} : (\exists y \in \text{PEOPLE} : y \text{ is a soul-mate for } x)$
- **8.** T_n satisfies a recurrence $T_0 = 2$; $T_n = T_{n-1} + 3n$ for $n \ge 1$. Compute T_{100} .
 - A 10,002
 - B 10,102
 - C 15,152
 - D 14,002
- 9. Determine the set \mathcal{A} defined recursively by:
 - $1 \in A$.

[basis]

[constructors]

 $2 x, y \in A \rightarrow x + y \in A$ $x, y \in \mathcal{A} \rightarrow x - y \in \mathcal{A}.$

(3) Nothing else is in A. [minimality]

- $\boxed{A} \, \mathcal{A} = \{1, 2, 3, \ldots\}$
- $\boxed{B} \, \mathcal{A} = \{0, 1, 2, 3, \ldots\}$
- $C \mathcal{A} = \{\pm 1, \pm 2, \pm 3, \ldots\}$
- $\boxed{D} \, \mathcal{A} = \{0, \pm 1, \pm 2, \pm 3, \ldots\}$
- **10.** (1) $1 \in S$. [basis] (2) $x \in S \to x + 1 \in S$. [constructor]

This is a recursive definition of a set \mathcal{S} <u>without</u> the minimality clause "Nothing else is $\overline{\text{in } \mathcal{S}.}$ "

Which of the following \underline{cannot} be the set $\mathcal S$

- $A \mathbb{N}$
- \mathbb{B} \mathbb{Z}
- $\boxed{\mathbb{C}} \, \mathbb{N} \cup \left\{ x \mid x = n + \frac{1}{2}, n \in \mathbb{N} \right\}$
- $\mathbb{D} \mathbb{N} \cup \{\frac{1}{2}\}$

1.	$\sqrt{2}$ is what kind of number?
	A A natural number.
	B An integer.
	C A rational number.
	\square A member of the set \mathbb{Q} .
	E None of the above.
_	W
2.	What is the set $\mathbb{Z} \cap \overline{\mathbb{N}} \cap \mathcal{S}$, where \mathcal{S} is the set of perfect square numbers. The universal set is \mathbb{R} .
	A Ø, the empty set.
	B {0}.
	D The non-positive integers.
	E The set is not well defined.
3.	$A = \{2, 5\}$ and $B = \{3, 7\}$. What is the Cartesian Product $A \times B$?
	A {6, 14, 15, 35}.
	B {2, 3, 5, 7}.
	$\overline{\mathbb{C}}$ {(2,3),(2,7),(5,3),(5,7)}.
	$\overline{\mathbb{D}} \{(2,3), (3,2), (2,7), (7,2)(5,3), (3,5), (5,7), (7,5)\}.$
	E None of the above.
4.	How many rows in the truth table of $(p \to q) \lor p$ are T?
	A 0.
	B 1.
	C 2.
	D 3.
	E 4.
5	IF (you ace the final OR the quiz), THEN you get an A. You did get an A. Did you ace the final?
	A Yes, for sure.
	B No, for sure.
	C Yes, if and only if you did not ace the quiz.
	D Yes if you did not ace the quiz; otherwise we don't know.
	E None of the above.

- **6.** Which mathematical claims are T. Note, $(a,b,c)\in\mathbb{R}^3$ stands for triples of real numbers (a,b,c). (I) If $\Big(\forall (a,b,c)\in\mathbb{R}^3: ax^2+bx+c=0\Big)$, then x=0 (II) $\forall (a,b,c)\in\mathbb{R}^3: \Big(\text{If }ax^2+bx+c=0, \text{ THEN }x=0\Big)$
 - A I only.
 - B II only.
 - C Both I and II.
 - D Neither I nor II.
- **7.** For a natural number n, consider the implication: If $n \ge n+1$, then $n+1 \ge n+2$ Determine whether the *implication* is T or F?
 - $\overline{\mathbf{A}}$ Always T no matter what n is.

 - $\overline{\mathbb{C}}$ T only for positive n.
 - $\boxed{\mathrm{D}}$ T only for negative n.
 - E None of the above.
- **8.** What method of proof is used to prove that $\sqrt{2}$ is irrational?
 - A Direct proof.
 - B Contraposition proof.
 - C Proof by contradiction.
 - D Induction.
 - E Strong induction.
- **9.** Which gives a valid proof of the implication $(p \lor q) \to r$.
 - $\overline{\mathbf{A}}$ Assume p is T and show that r must be T.
- $\boxed{\mathrm{B}}$ Assume q is T and show that r must be T.
- $\overline{\mathbb{C}}$ Assume r is F and show that p must be F.
- $\overline{\mathbf{D}}$ Assume r is \mathbf{F} and show that q must be \mathbf{F} .
- E None of the above.
- **10.** P(n) = "n is even" and Q(n) = "n is a sum of two primes". Translate " $\forall n \in \mathbb{N} : P(n) \to Q(n)$."
 - \overline{A} If n is a natural number then n is a sum of two primes.
 - B Every prime number is a natural number.
 - C There is a natural number which is a prime number.
- D Every positive even number is a sum of two primes.
- E Some positive even number is a sum of two primes.

	e (n is an integer). $P(1)$ is to all n for which we can be support $P(1)$		$1) \wedge P(2n)$ is true for $n \geq 1$.					
$\boxed{\mathbf{A}}$ All $n \geq 1$.				1. $\sqrt{2}$ is what kind of number?				
$\boxed{\mathrm{B}}$ All $n \geq 2$.				A natural number.				
$\boxed{\mathbf{C}}$ All even $n \geq 1$.				B A rational number.				
$\boxed{\mathrm{D}}$ All even $n \geq 2$.				C An irrational number.				
E None of the above	ve.			D An integer.				
				E None of the above.				
12. Which of the follow	ving, if any, is a valid way to	prove $P(n) \to P(n+1)$ in	an induction proof.					
(I) Let's see what l	happens if $P(n)$ is T.	(II) Let's see what	happens if $P(n+1)$ is F.	2. The set $S = \{n \mid n = (k-1)(-1)^k$, where $k \in \mathbb{N}\}$. Which of these sets could be S ?				
(valid deri	<i>,</i>	(valid der	·	$\boxed{\mathbf{A}}$ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,}				
Look! $P(n+1)$	is T. ✓	Look! $P(n)$ is	F.	$\boxed{\mathbf{B}} \left\{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \dots \right\}$				
A None.	B I only.	C II only.	D Both I and II	$\boxed{\mathbb{C}}$ {0, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10,}				
_	_	_	_	$\boxed{D} \{1, -2, 3, -4, 5, -6, 7, -8, 9, -10, \dots\}$				
				$\boxed{\mathbf{E}} \left\{ 0, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, \dots \right\}$				
	a group of n students into pro-	eject-teams of 4 or 7 stude	ents.					
A if $n \ge 7$, then if				3. A and B are sets. Which answer is another way to represent $\overline{A \cap B}$.				
B If $n \ge 11$, then				$lacksquare$ $A \cup B$.				
C if $n \ge 14$, then				$oxed{B}A\cap B$.				
$\boxed{\mathrm{D}}$ if $n \geq 19$, then	it can be done.			$\overline{\mathbb{C}} \ \overline{A} \cup \overline{B}$.				
E None of the above	ve are T.			$\overline{\mathbb{D}} \ \overline{A} \cap \overline{B}$.				
		4 570		E None of the above.				
	$+21n$, for $m, n \in \mathbb{Z}$. T or F:	$A = \mathbb{Z}$?		4. An integer $n \in \mathbb{Z}$ has an even square, that is n^2 is even. Which claim is true?				
А т.				$\overline{\mathbf{A}}$ n is odd.				
В ғ.				$\boxed{\mathbf{B}}$ n is positive.				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				$C \mid n^2$ is divisible by 4.				
D Depends on n .				$\boxed{\mathbb{D}}$ n is divisible by 4.				
E None of the above	ve.			E None of the above claims are true.				
15. What is the function	on defined recursively on the	right for integer $n \ge 0$.						
$\boxed{\mathbf{A}} f(n) = n!.$		0 0 -		5. How many rows are there in the truth table of the compound proposition $((p \to q) \lor (p \to r)) \to (q \to r)$?				
$\boxed{\mathbf{B}} f(n) = 2^n.$				<u>A</u> 2.				
$\boxed{C} f(n) = 2^n \times n^n.$		f($n) = \begin{cases} 1 & n = 0; \\ 2nf(n-1) & n \ge 1. \end{cases}$	B 4.				
$\boxed{D} f(n) = 2^n \times n!.$			•	<u>C</u> 8.				
E None of the abov	ro.			D 12.				
E None of the abov	ve.			E 16.				

6. On your car's back bumper is a sticker that says "Honk if you love FOCS." Joe was behind you and honked. Later, Sue was behind you and didn't honk. What would be a valid inference?
A Joe loves FOCS. We don't know about Sue.
B Sue loves FOCS. We don't know about Joe
C Joe does not love FOCS. We don't know about Sue.
D Sue does not love FOCS. We don't know about Joe
E Joe loves FOCS and Sue does not love FOCS.
7. For $x, y \in \mathbb{N} = \{1, 2, 3, \ldots\}$, determine T or F for the proposition $\forall y : (\exists x : x^2 = y)$.
$\overline{\mathbf{A}}$ Can't be done because p is not a valid proposition which is either T or F.
B It depends on x .
$\boxed{\mathbf{C}}$ It depends on y .
D F.
E T.
8. What method of proof did we use to prove that $\sqrt{2} \notin \mathbb{Q}$?
A Direct proof
B Contraposition proof.
C Proof by induction.
D Proof by contradiction.
E None of the above.
0 117 - 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9. What method would you use to <i>prove</i> that $1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = (\frac{1}{2}n(n+1))^2$ for all $n \ge 1$?
A Direct proof
B Contraposition proof.
C Show that the formula is true for $n = 1$ up to $n = 1000$.
D Proof by induction.
E Proof by contradiction.
10. You must prove $P(n)$ for $n \geq 3$. You proved $P(n) \rightarrow P(n+3)$ for $n \geq 3$. What base cases do you need?
A P(1)
B P(3)
© P(1), P(2) and P(3)
D P(3), P(4) and P(5)
E None of the above.

11. For <i>x</i>	$y \in \mathbb{N}$,	which	statement	is a	contradiction	(cannot	possibly	be true)?
-------------------------	----------------------	-------	-----------	------	---------------	---------	----------	---------	----

$$A x^2 < y$$
.

$$\boxed{\mathbf{B}} \; x^2 = y/2$$

$$\boxed{\mathbf{C}} \ x^2 - y^2 \le 1$$

$$\boxed{\mathbf{D}} \ x^2 + y^2 \le 1$$

[E] None of the above. That is, each statement above can be true for specific choices of x, y.

12. Which gives a valid way to prove the implication $p \to q$.

- A Assume p is F and show that q must be F.
- B Assume q is T and show that p must be T.
- $\overline{\mathbf{C}}$ Assume p is T and show that q must be F.
- \square Assume p is T and q is F and derive a contradiction.
- E None of the above.
- 13. What is the difference between using Induction versus Strong Induction to prove P(n) for $n \ge 1$?
 - A The base cases are different.
 - B Induction is usually easier than Strong Induction.
 - $\overline{\mathbb{C}}$ In Induction you prove P(n+1). In Strong Induction you prove P(n+2).
 - $\boxed{\mathsf{D}}$ In Induction you assume P(n). In Strong Induction you assume $P(1) \wedge P(2) \wedge \cdots \wedge P(n)$.
 - E There is no difference between the two methods.
- **14.** Compute the value of $(1-\frac{1}{2}) \times (1-\frac{1}{3}) \times (1-\frac{1}{4}) \times (1-\frac{1}{5}) \times \cdots \times (1-\frac{1}{100})$.
 - A 1/5
 - B 1/10
 - C 1/50
 - D 1/100
 - E None of the above.
- 15. We wish to break a group of n students into project-teams. Each team must have either 4 or 6 students.
 - A IF $n \geq 4$, then it can be done.
 - B if $n \ge 6$, then it can be done.
 - C If $n \ge 10$, then it can be done.
 - $\boxed{\mathrm{D}}$ If $n \geq 4$ and n is even, then it can be done.
 - E None of the above.

- **16.** What are the first four terms A_0, A_1, A_2, A_3 in the the recurrence $A_n = \begin{cases} 1 & n = 0; \\ 2A_{n-1} + 1 & n \ge 1. \end{cases}$ A 1, 2, 3, 4.
 - B 1, 2, 4, 8.
- C 1, 3, 6, 12. D 1, 3, 7, 15.
- E None of the above.
- 17. For $n \ge 0$, what is a formula for A_n , where A_n satisfies the recurrence $A_n = \begin{cases} 1 & n = 0; \\ 2A_{n-1} + 1 & n \ge 1. \end{cases}$
 - $\boxed{\mathbf{A}} \ A_n = 1 + 2n \text{ for } n \ge 0.$
 - B $A_n = 1 + n + n^2$ for $n \ge 0$.
 - C $A_n = 1 + \frac{1}{2}(5n + n^3)$ for $n \ge 0$.
 - $D A_n = 2^{n+1} 1 \text{ for } n \ge 0.$
 - E None of the above.
- **18.** String x is a palindrome, that is $x = x^{R}$ where x^{R} is the reversal of x. Which statement about x is **false**?
 - A x could be the string 1001.
 - $\boxed{\mathrm{B}}$ The reversal of x must be a palindrome, that is x^{R} is a palindrome.
 - $\overline{\mathbb{C}}$ The concatenation of x with itself is a palindrome, that is $x \cdot x$ is a palindrome.
 - D x must have even length.
 - E The concatenation of x with its reversal is a palindrome, that is $x \cdot x^R$ is a palindrome.
- 19. Rooted binary trees (RBTs) are recursively defined below. How many RBTs have 3 vertices?
 - A 2
 - Recursive Definition of RBT B 3
 - The empty tree ε is an RBT.
 If T₁, T₂ are disjoint RBTs with roots r₁ and r₂, then linking r₁ and r₂ to a new root r gives a new RBT with root r.
 Nothing else is an RBT. C 4
 - D 5
 - E 6
- 20. A rooted binary tree (RBT) has 8 vertices. How many links (edges) does the RBT have?
- A There is not enough information to determine the number of links.
- B 5
- C 6
- E 8

- 1. Jodie asks John to solve $x^2 a = 0$ and find x as a rational number. Which is true?
 - $A \forall a \in \mathbb{N} : John can find a rational solution x.$
 - $B \forall a \in \mathbb{N} : John cannot find a rational solution x.$
 - $C \forall a \in \mathbb{Z}$: John can find a rational solution x.
 - $D \forall a \in \mathbb{Z}$: John cannot find a rational solution x.
 - E None of the above.
- **2.** The set $S = \{4, 16, 64, 256, 1024, \ldots\}$. Which of these definitions using a variable could be S?
 - $A S = \{n | n = 2^k, \text{ for } k \in \mathbb{N}\}.$
 - B $S = \{n | n = 4^{1+k(k-1)/2}, \text{ for } k \in \mathbb{N}\}\$
 - $C S = \{n | n = 2 \times 2^k, \text{ for } k \in \mathbb{N}\}.$
 - $D S = \{x | x = 2^{2k}, \text{ for } k \in \mathbb{N}\}$
 - E None of the above.
- **3.** $A = \{\text{positive multiples of 2}\}\$ and $B = \{\text{positive multiples of 3}\}\$. Which element is not in $\overline{A \cap B}$?
 - A 4.
 - B 8.
 - C 12.
 - D 16.
 - E None of the above.
- **4.** An integer $n \in \mathbb{Z}$ has a square that is divisible by 3, that is 3 divides n^2 . Which claim must be true?
 - A n is odd.
 - B n is even.
 - C n is positive.
 - D n is divisible by 3.
 - E None of the above claims must be true.
- 5. If it rains on a day, then it rains the next day. Today it didn't rain. Which is true?
 - A It will rain tomorrow.
 - B It will not rain tomorrow.
 - C It did rain yesterday.
 - D It did not rain yesterday.
 - E None of the above.

٠.	Which method would succeed in proving p \((q \ v \).
	\fbox{A} You assumed p is true and showed q is true.
	\fbox{B} You assumed q is false and showed p is false.
	\fbox{C} You showed that p is true and that q is false.
	$\boxed{\mathbb{D}}$ You showed that p is true and that both q and r are false.
	E None of the above.
_	TTT: 1
7.	Which method would succeed in disproving $p \to (q \lor r)$?
	A You assumed p is true and showed q is true.
	\fbox{B} You assumed q is false and showed p is false.
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
	$\boxed{\mathbb{D}}$ You showed that p is true and that both q and r are false.
	E None of the above.
8.	Determine true or false for the claim $\forall n \in \mathbb{Z} : (n > n+1) \to (n+1 > n+2).$
	A This is not a valid proposition which is either true or false.
	$\boxed{\mathrm{B}}$ True for $n < 0$ and false otherwise.
	$\boxed{\mathbb{C}}$ True for $n=0$ and false otherwise.
	D False.
	E True.
_	
9.	What method of proof would you use to prove that you cannot choose $a,b\in\mathbb{Z}$ so that $a^2-4b=2$?
	A Direct proof.
	B Contraposition proof.
	C Proof by induction.
	D Proof by contradiction.
	E None of the above.
10	. What method would you use to prove that $n^3 \leq 2^n$ for all $n \geq 10$?
	A Direct proof
	B Contraposition proof.
	\fbox{C} Show that the formula is true for $n=1$ up to $n=1000$.
	D Proof by induction.
	E Proof by contradiction.

6 Which method would succeed in proving $n \to (a \lor r)$?

- 11. We wish to prove P(n) for all $n \ge 10$. Which method accomplishes this?
 - A Prove base case P(1) and prove $P(n) \to P(n+2)$ for all $n \ge 10$.
 - B Prove base cases P(1), P(2) and prove $P(n) \to P(n+2)$ for all $n \ge 10$.
 - $\[C \]$ Prove base case P(10) and prove $P(n) \to P(n+2)$ for all $n \ge 10$.
 - D Prove base cases P(10), P(11) and prove $P(n) \to P(n+2)$ for all $n \ge 10$.
 - E None of the above methods works.
- 12. For $x, y \in \mathbb{Z}$, which statement is not necassarily a contradiction? (That is, which could be true?)
 - A x + 0 > x + 1.
- $B \ x \ge y \text{ and } x < y.$
- $\boxed{\mathbb{C}} x^2 \ge y^2 \text{ and } |x| < |y|.$
- $\boxed{\mathbf{D}} x^2 + y^2 \le 1.$
- E They are all contradictions.
- 13. Consider the predicate $P(n): n^2 \leq 2^n$. Which claim is true?
 - A P(n) is true for at most a finite number of $n \in \mathbb{N}$.
 - B P(n) is true for all $n \in \mathbb{N}$.
 - C P(n) is true for all even $n \in N$.
 - D P(n) is true for all odd $n \in N$.
 - E None of the above claims is true.
- **14.** Consider the predicate P(n): 8 divides $n^2 1$. Which claim is true?
 - A P(n) is true for at most a finite number of $n \in \mathbb{N}$.
 - B P(n) is true for all $n \in \mathbb{N}$.
 - C P(n) is true for all even $n \in N$.
 - D P(n) is true for all odd $n \in N$.
 - E None of the above claims is true.
- **15.** Consider the predicate $P(n): 1^2 + 2^2 + 3^2 + \cdots + n^2 > n^3/3$. Which claim is true?
 - A P(n) is true for at most a finite number of $n \in \mathbb{N}$.
 - B P(n) is true for all $n \in \mathbb{N}$.
 - C P(n) is true for all even $n \in N$.
 - D P(n) is true for all odd $n \in N$.
 - E None of the above claims is true.

16. You wish to make postage n cents with 5-cent and 6-cent stamps. For which $n \in \mathbb{N}$ can you do it?	1. Which set below is the set $S = \{2k \mid k \in \mathbb{N}\}$?
$\boxed{\mathbf{A}}$ All postages $n \geq 5$ cents.	A All even numbers.
B All postages $n \ge 10$ cents.	B All odd numbers.
C All postages $n \ge 15$ cents.	C All non-negative even numbers.
$\boxed{\mathrm{D}}$ All postages $n \geq 20$ cents.	D All non-negative odd numbers.
E None of the above.	E None of the above.
17. $A_0 = 0$ and for $n > 0$, $A_n = n^2 + A_{n-2}$. What is A_6 ?	2. Define sets $A=\{2k\mid k\in\mathbb{Z}\},$ $B=\{9k\mid k\in\mathbb{Z}\}$ and $C=\{6k\mid k\in\mathbb{Z}\}$. Which is true?
A It cannot be computed because this recurrence has only one base case.	$\boxed{\mathbf{A}} \ A \cap B = C.$
$\boxed{\mathrm{B}} A_6 = 12.$	$\boxed{\mathrm{B}} \ A \cap B \subseteq C.$
$\boxed{\mathrm{C}} A_6 = 52.$	$\boxed{\mathrm{C}} \ A \cap B = \overline{C}.$
$\boxed{\mathrm{D}}A_6 = 56.$	$\boxed{\mathrm{D}} A \cap B \subseteq \overline{C}.$
E None of the above.	E None of the above.
18. $f(1) = 1$; $f(2) = 1$ and for $n > 2$, $f(n) = n + f(n - 3)$. For which $n \in \mathbb{N}$ can $f(n)$ be computed?	3. How many rows are in the truth table of $p \to (p \lor q)$?
$\boxed{\mathbf{A}} \ All \ n \in \mathbb{N}.$	lacksquare A 2.
B $All \ n \in \mathbb{N}$ which are even.	B 4.
$\boxed{\mathbf{C}}$ All $n \in \mathbb{N}$ which are multiples of 3.	[C] 6.
$\boxed{\mathbb{D}}$ All $n \in \mathbb{N}$ which are not multiples of 3.	D 8.
E None of the above.	E None of the above.
19. Rooted binary trees (RBTs) are recursively defined below. How many RBTs have 4 vertices and 2 links?	4. True or false, $p \to (p \lor q)$?
<u>A</u> 0.	$oxed{A}$ Can be true or false, depending on p .
Recursive Definition of RBT	f B Can be true or false, depending on q .
$\bigcirc \text{ The empty tree } \varepsilon \text{ is an KBI.}$	C Always true.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	D Always false.
(3) Nothing else is an RBT.	E None of the above.
20. T_1 and T_2 are disjoint RBTs. RBT T_1 has 8 vertices and 7 links. RBT T_2 has 4 vertices and 3 links.	5. If you majored CS then you took FOCS. Joe took FOCS and Barb majored CS. What else do w
Using the constructor for RBT, you get a child RBT T . How many vertices and links does T have?	A Joe majored CS. We don't know anything more about Barb.
A 12 vertices and 10 links.	B We don't know anything more about Joe. Barb took FOCS.
	C Joe majored CS. And, Barb took FOCS.
B 12 vertices and 11 links.	
B 12 vertices and 11 links. C 13 vertices and 11 links.	D Joe did not major CS. And, Barb took FOCS.

6.	What is the negation of the claim $\forall m, n \in \mathbb{N} : 3m + 6n \neq 10$?
	$\boxed{\mathbf{A}} \ \forall m,n \in \mathbb{N} : 3m+6n=10.$
	$\boxed{\mathbf{B}} \ \forall m,n \in \mathbb{N} : 3m+6n \neq 10.$
	$\boxed{\textbf{C}} \ \exists m,n \in \mathbb{N} : 3m+6n=10.$
	$\boxed{\mathbb{D}} \ \exists m,n \in \mathbb{N} : 3m+6n \neq 10.$
	E None of the above.
7.	Which proof-method is acceptable to prove the claim p ?
	A Assume p is true and derive something known to be true, for example $0 = 0$.
	B Assume $\neg p$ is true and derive something known to be true, for example $0 = 0$.
	$oxed{\mathbb{C}}$ Assume p is true and derive something known to be false, for example $1>2.$
	\square Assume $\neg p$ is true and derive something known to be false, for example $1 > 2$.
	E None of the above.
R	Consider the claim $\exists m, n \in \mathbb{Z} : 9m + 21n = 7$. Is the claim true or false?
٠.	Consider the claim $\exists m, n \in \mathbb{Z}$. $\exists m+21n=1$. Is the claim true of raise: A True.
	B False.
	C It depends on m.
	$\overline{\mathbb{D}}$ It depends on n .
	E None of the above.
9.	How do you disprove the claim $\forall n \in \mathbb{N} : \neg P(n) \to Q(n)$.
	$\boxed{\mathbf{A}}$ Show that for all $n \in \mathbb{N}, P(n)$ is true and $Q(n)$ is false.
	B Show that for all $n \in \mathbb{N}$, $P(n)$ is false and $Q(n)$ is false.
	\fbox{C} Show that for some $n\in \mathbb{N},$ $P(n)$ is true and $Q(n)$ is false.
	\fbox{D} Show that for some $n\in \Bbb{N},$ $P(n)$ is false and $Q(n)$ is false.
	E None of the above.
	What is a contract of the cont
10	. What is the first step in a proof by contradiction of the claim $\forall m, n \in \mathbb{N} : 3m + 6n \neq 10$.
	A Define the predicate $P(m,n): 3m+6n \neq 10$ and prove the base case $P(1,1)$.
	B Assume $3m + 6n = 10$ for all $m, n \in \mathbb{N}$.
	C Assume $3m + 6n \neq 10$ for some $m, n \in \mathbb{N}$.
	D Assume $3m + 6n = 10$ for some $m, n \in \mathbb{N}$.
	E None of the above.

11. You decided to prove the claim $n^2 \leq 2^n$ for all $n \geq 4$. Which method of proof would you use?
A Find a single value $n_* \in \mathbb{N}$ for which $n_*^2 > 2^{n_*}$.
B Show that the formula $n^2 \leq 2^n$ is true for $n = 1$ up to $n = 1000$.
C Proof by induction.
D Contraposition proof.
E Direct proof.
12. You decided to disprove the claim $n^2 \leq 2^n$ for all $n \geq 1$. Which method of proof would you use?
$\boxed{\mathbf{A}}$ Find a single value $n_* \in \mathbb{N}$ for which $n_*^2 > 2^{n_*}$.
B Show that the formula $n^2 \leq 2^n$ is true for $n = 1$ up to $n = 1000$.
C Proof by induction.
D Contraposition proof.
E Direct proof.
13. How do you prove, by induction, the claim "5 divides $11^n - 6$ " for all $n \ge 5$?
$\boxed{\mathbf{A}}$ Show 5 divides $11^5 - 6$.
B Show 5 divides $11^5 - 6$, $11^6 - 6$, $11^7 - 6$ all the way up to $11^{1,000,000} - 6$.
C Show, for $n \ge 5$, if 5 divides $11^n - 6$ then 5 divides $11^{n+1} - 6$.
D Show 5 divides $11^5 - 6$. And, show, for $n \ge 5$, if 5 divides $11^n - 6$ then 5 divides $11^{n+1} - 6$.
E None of the above.
14. You wish to prove $n^4 \le 2^n$ for $n \ge 16$. You showed that $n^4 \le 2^n \to (n+3)^4 \le 2^{n+3}$ for $n \ge 16$. What base cases do you need to prove to complete the proof?
A n = 1.

15. Define the predicate $P(n): (2n-1)^2+4$ is prime. For which n is P(n) true?

 $\begin{array}{c} \boxed{\mathbf{A}} \ n \geq 1. \\ \\ \boxed{\mathbf{B}} \ n \geq 2. \\ \\ \boxed{\mathbf{C}} \ n \geq 3. \\ \\ \boxed{\mathbf{D}} \ n \geq 4. \end{array}$

E None of the above.

16. Define the sum $S(n) =$	$\frac{1}{1\times 2} + \\$	$\frac{1}{2\times 3} + \\$	$\frac{1}{3\times 4}+\cdots +$	$\frac{1}{(n-1)\times n}$	for $n \geq 2$.	What is $S(100)$?
A 0.1.						

- B 0.01.
- C 0.9.
- D 0.99.
- E None of the above.

17.
$$f(1) = 1$$
, $f(2) = 2$, and $f(n) = f(n-2) + 2$ for $n > 2$. What is $f(100)$?

- A It cannot be computed because the recursion does not have enough base cases.
- B 50.
- C 100.
- D 200.
- E None of the above.
- **18.** Define \mathcal{A} recursively: (i) $1 \in \mathcal{A}$ (ii) $x \in \mathcal{A} \to x + 4 \in \mathcal{A}$ (iii) Nothing else is in \mathcal{A} . Which is true?
- $\overline{\mathbf{A}}$ Every number in \mathcal{A} is even.
- $\overline{\mathbf{B}}$ Every even number is in \mathcal{A} .
- $\boxed{\mathbf{C}}$ Every number in \mathcal{A} is odd.
- \square Every odd number is in \mathcal{A} .
- E None of the above.
- 19. A rooted binary tree (RBT) has 8 vertices. How many links does it have?
- A 6.
- B 7.
- C 8.
- D 9.
- E None of the above.
- 20. There are 5 distinct rooted binary trees (RBT) with 3 vertices. How many have 4 vertices?
- A 12.
- B 13.
- C 14.
- D 15.
- E None of the above.