# Genome-scale modeling

Isabel Rocha irocha@deb.uminho.pt

September 12, 2017 DSM, Delft, The Netherlands







### University of Minho - RESEARCH GROUP

# BIOINFORMATICS AND SYSTEMS BIOLOGY TEAM CENTRE OF BIOLOGICAL ENGINEERING



Collaboration between two departments since 2004:

Computer Science

Biological Engineering

#### Team:

6 PhD - faculty / post docs
Around 20 PhD students
~ 10 MSc students w/grants

#### **Funding**:

Portuguese national agency (FCT)

European Comission
Companies

#### Main areas:

Constraint based modeling:
Metabolic Engineering and health
applications

Metabolic/ regulatory network reconstruction

**Biomedical Text Mining** 

http://www.ceb.uminho.pt/biosystems/Labs?lab=1

### **OUTLINE**

- Metabolic models
  - Stoichiometric vs dynamic models
  - GSMM reconstruction
- Simulation Methods
  - Flux Balance Analysis
  - MOMA
- Strain design in Metabolic engineering
  - Metaheuristic Methods (OptGene)
  - MultiObjective Optimization





### **METABOLIC MODELS**







### MASS BALANCES

### Framework for both dynamic and stoichiometric models:

Mass balance over intra-cellular metabolites

$$\frac{d[Tyr]}{dt} = V_1 - V_2 - V_3 - \mu[Tyr]$$

If, for example, all enzymes can be described by a Michaelis-Menten kinetics

$$\begin{split} \frac{\textit{d[Tyr]}}{\textit{dt}} &= \textit{V}_{\max 1} \frac{\left[\textit{Phe}\right]}{\textit{K}_{M1} + \left[\textit{Phe}\right]} - \textit{V}_{\max 2} \frac{\left[\textit{Tyr}\right]}{\textit{K}_{M2} + \left[\textit{Tyr}\right]} \\ - \textit{V}_{\max 3} \frac{\left[\textit{Tyr}\right]}{\textit{K}_{M3} + \left[\textit{Tyr}\right]} - \mu[\textit{Tyr}] \end{split}$$

If a steady state can be assumed:

$$V_1 - V_2 - V_3 = 0$$





### METABOLIC MODELS - DYNAMIC MODELS VS CBM

#### For all considered internal metabolites

1. Mass balance over intracellular metabolites

$$\frac{dx}{dt} = S \cdot v$$



**Dynamic or kinetic** 

Models

2. Assumption of (pseudo) steady state

$$\mathbf{S} \cdot \mathbf{v} = \mathbf{0}$$

$$\mathbf{S} \cdot \mathbf{v} = \mathbf{0}$$
  $\beta_j \leq v_j \leq \alpha_j$ 



**Stoichiometric** 

**Models** 

#### **Result:**

<u>Linear equation system</u> described by stoichiometric matrix S.





# METABOLIC MODELS

### Stoichiometric models

- Represent only structure: reactions, compounds, stoichiometry, reversibility
- Easier to use in simulation; algebraic methods; constraint-based modeling

# Dynamic models

- Represent the concentrations of metabolites and reaction fluxes as a function of time
- Use differential equations
- Harder to simulate
- Require knowledge on enyme kinetics and parameters





### METABOLIC MODELS — ASSUMPTIONS FOR CBM

### **Pseudo steady state:**

For all intracellular metabolites the fluxes leading to a given metabolite are balanced with the fluxes leading away from the metabolite.

Therefore, there is no net accumulation of metabolites





### METABOLIC MODELS - STOICHIOMETRIC MODELS & CBM



# GENOME SCALE METABOLIC MODELS (GSMMS)

This representation is scalable and it is possible to build up these matrices to represent metabolic pathways at a genome-scale level

These GSMMs can account for thousands of genes, reactions and metabolites representing the metabolic capabilities of an organism in a single knowledgebase structure



# GENOME SCALE METABOLIC MODELS (GSMMS)

#### HOW CAN WE BUILD THE MODELS IN AN AUTOMATED WAY?

- Ideally, it should be possible to extract most knowledge necessary to construct cellular models from the information obtained during genome sequencing
- However, the knowledge extracted is still limited mainly regarding data needed for dynamic models



The methodology for semiautomatically obtaining stoichiometric models from genome annotation is quite developed.





# GSMMs | RECONSTRUCTION - METHODOLOGY



Rocha et al (2008) Methods in Molecular Biology, Vol. 416, Ch. 29, 409

| Database                                                                 | Web address                                        | Description                                                                                                                                                                                                            |
|--------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GOLD – Genomes Online<br>Database                                        | http://www.genomesonline.org/                      | Monitoring of genome sequencing projects, including complete and ongoing projects around the world                                                                                                                     |
| NCBI — National Centre<br>for Biotechnology<br>Information — databases   | http://www.ncbi.nlm.nih.gov/<br>Genomes/index.html | Contains diverse information related with both microbial and higher organisms genomes, like sequence data, and homology information                                                                                    |
| KEGG – Kyoto<br>Encyclopedia of Genes<br>and Genomes                     | http://www.genome.ad.jp/ke<br>gg/                  | Database that includes all microorganisms with publicly available genome sequence. Stores both genomic and metabolic information                                                                                       |
| BioCyc Database<br>Collection                                            | http://biocyc.org/                                 | Contains several databases (like EcoCyc) that comprise genome and metabolic pathways of single organisms, and also a reference database (MetaCyc) on metabolic pathways from many organisms                            |
| ExPASy - Expert Protein<br>Analysis System -<br>Molecular Biology Server | http://www.expasy.org/                             | The Swiss-Prot and TrEMBL available though ExPASy are protein sequence databases that provide organism specific annotation information. ENZYME is another functionality where enzyme-specific information can be found |
| BRENDA enzyme database                                                   | http://www.brenda-<br>enzymes.org/                 | Contains information about enzymes. It covers organism related information for most sequenced organisms                                                                                                                |
| TCDB – Transport<br>Classification database                              | http://tcdb.ucsd.edu/                              | Classification system for membrane transport proteins known as the Transporter Classification (TC) system (analogous to the Enzyme Commission system for classification of enzymes). Allows similarity searches        |





#### **KEGG** (http://www.genome.jp/kegg/)

- Several multi-organism databases
- PATHWAY database knowledge on molecular interaction networks
- GENES database genes and proteins generated by genome sequencing projects
- LIGAND database information about chemical compounds and chemical reactions relevant to cellular processes







### **BRaunschweig ENzyme DAtabase (BRENDA)**

#### (http://www.brenda-enzymes.info/)

- Manually curated and literature-based resource for organism-specific enzymatic data such as kinetics, substrates/products, inhibitors/activators and cofactors.
- Reactions are classified according to the EC system





### **Chemical Entities of Biological Interest (ChEBI)**

http://www.ebi.ac.uk/chebi/

- EBI's freely available dictionary of molecular entities focused on chemical compounds
- Includes an ontological classification and employs nomenclature and terminology recommended by the IUPAC and NC-IUBMB



### Universal Protein Resource (UniProt) (<a href="http://www.uniprot.org/">http://www.uniprot.org/</a>)

- UniProt Knowledgebase (UniProtKB/Swiss-Prot) fully classified, richly and accurately annotated protein sequence knowledgebase and fully curated entries
- UniProt Reference Clusters (UniRef)
- UniProt Archive (UniParc)

| Protein names        | Recommended name:  Phosphoenolpyruvate synthase Short name=PEP synthase EC=2.7.9.2  Alternative name(s): Pyruvate, water dikinase |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Gene names           | Name: ppsA Synonyms: pps Ordered Locus Names: b1702, JW1692                                                                       |
| Organism             | Escherichia coli (strain K12) [Complete proteome] [HAMAP]                                                                         |
| Taxonomic identifier | 83333 [NCBI]                                                                                                                      |
| Taxonomic lineage    | Bacteria > Proteobacteria > Gammaproteobacteria > Enterobacteriales > Enterobacteriaceae > Escherichia                            |
| Protein attributes   |                                                                                                                                   |
| Sequence length      | 792 AA.                                                                                                                           |
| Sequence status      | Complete.                                                                                                                         |
| Sequence processing  | The displayed sequence is further processed into a mature form.                                                                   |
| Protein existence    | Evidence at protein level.                                                                                                        |





**BioCyc** (<a href="http://biocyc.org/">http://biocyc.org/</a>) is a collection of 505 Pathway/Genome Databases. Each database in the BioCyc collection describes the genome and metabolic pathways of a single organism. Has 3 tiers, depending on the level of curation.

#### Mus musculus Pathway: isoleucine biosynthesis from threonine



If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.





# GSMMs | RECONSTRUCTION - METHODOLOGY



Rocha et al (2008) Methods in Molecular Biology, Vol. 416, Ch. 29, 409

# **GSMMs** | RECONSTRUCTION — BIOINFORMATICS TOOLS

- A number of Bioinformatics tools are used towards the identification of the set of reactions that make the portfolio of a given organism's metabolism
- Homology searching tools, such as BLAST or HMMER can be used to provide a metabolic (re)-annotation comprising sets of homologous genes for each gene (or CDS) of the target organism
- These results, together with databases as UniProt or KEGG are used to identify putative enzymatic functions for those genes/ CDSs in a semi-automatic way (manual curation is still needed for some cases)
- The annotation of transporters is typically challenging requiring other tools and data sources (as TCDB)





# GSMMs | RECONSTRUCTION - COMPARTMENTS

- Compartmentalization is important, particularly for metabolites for which there are no specific transporters and diffusion is unlikely to occur
- For prokaryotic organisms:
  - Cytosol
  - Intermembrane compartment (in some cases)
- For eukaryotic microorganisms:
  - Mitochondrion, endoplasmic reticulum, lysosome, glyoxisome, Golgi apparatus, etc.
- For complex organisms, it is also necessary to differentiate between different tissues
- This task might be aided by Bioinformatics tools for protein localization





# **GSMMs** | RECONSTRUCTION — BIOMASS FORMATION

• For *p* biomass constituents, this reaction can be represented as:

$$\sum_{k=1}^{p} c_k X_k \longrightarrow \text{Biomass}$$

- The values of  $c_k$  are given by the biomass composition on each metabolite, building block or macromolecule  $X_k$ .
- The ATP, NADH and NADPH requirements have to be determined/known (found in the literature or estimated by fitting the model results to experimental data)
- Growth association requirements related to polymerization of aminoacids, nucleotides, ...
- Need to determine energy requirements for maintenance
  - Maintenance of gradients and electrical potential (most important)
  - Turnover of macromolecules





# **GSMMs** | RECONSTRUCTION — OTHER CONSTRAINTS

- Reversibility/irreversibility of the reactions: determined from thermodynamics information regarding the reaction:
  - Setting the minimum of a given reaction flux to zero for irreversible reactions
  - Setting to minus infinity for reversible reactions
  - Information can be collected from databases or inferred with Bioinformatics tools, but not always possible to do it accurately
- When maximal fluxes through a given reaction are known, this can also be added to the model as a constraint.

• The transport flux for nutrients present in the medium can also be constrained.





# GSMMs | RECONSTRUCTION - METHODOLOGY



Rocha et al (2008) Methods in Molecular Biology, Vol. 416, Ch. 29, 409

# METABOLIC MODELS - FORMATS

| Cut          | Arial - 10 - A A                    | ▼ ■ Wrap Text Ge                                                                                | neral 🔻                 |               |                               |                         | Σ Αι      |
|--------------|-------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------|---------------|-------------------------------|-------------------------|-----------|
| Copy         |                                     | = Wiap lext                                                                                     |                         | ≦₹            |                               |                         | 🖁 🖟 Fil   |
| Paste        | ainter BIU - A                      | 🔻 🗏 🗏 揮 📴 Merge & Center 🔻 🕎                                                                    | - % • .00 .00<br>00 ÷.0 | Conditional   |                               | Insert Delete Form      | at 2 CI   |
| Clipboard    |                                     | □ Alignment □                                                                                   | Number 5                | _             | as Table ▼ Styles ▼<br>Styles | Cells                   | 02.0      |
| B6           |                                     | nthase (glutamine-hydrolysing)                                                                  |                         |               |                               |                         |           |
| A            | B asparagine syn                    | C C                                                                                             |                         | D             |                               | E F                     | G         |
| Abbreviation | _                                   | Equation (note [c] and [e] at the beginning refe                                                | r to the cor Subsy      |               |                               | sDescription Ref. (lis  |           |
| ALATA L      |                                     | [c]akg + ala-L <==> glu-L + pvr                                                                 |                         |               | te n EC-2.6.1.2               | subescription Ref. (iii | steu beio |
| ALAR         |                                     | [c]ala-L <==> ala-D                                                                             |                         |               | te n EC-5.1.1.1               |                         |           |
| ASNN         |                                     | [c]asn-L + h2o> asp-L + nh4                                                                     |                         |               | te n EC-3.5.1.1               |                         |           |
| ASNS2        |                                     | [c]asp-L + atp + nh4> amp + asn-L + h + ppi                                                     |                         |               | te n EC-6.3.1.1               |                         |           |
| ASNS1        |                                     | [c]asp-L + atp + fln+> amp + asn-L + n + ppi<br>[c]asp-L + atp + qln-L + h2o> amp + asn-L + qlu |                         |               |                               |                         |           |
| ASPT         |                                     | [c]asp-L + atp + giri-L + rizo> amp + asri-L + giu<br>[c]asp-L> fum + nh4                       |                         |               | te n EC-4.3.1.1               |                         |           |
| ASPTA        |                                     | [c]asp-L> lum + lm4<br>[c]akg + asp-L <==> glu-L + oaa                                          |                         |               |                               |                         |           |
| VPAMT        |                                     |                                                                                                 |                         |               | te n EC-2.6.1.1               |                         |           |
| DAAD         |                                     | [c]3mob + ala-L> pyr + val-L<br>[c]ala-D + fad + h2o> fadh2 + nh4 + pyr                         |                         |               | te n EC-2.6.1.66              |                         |           |
|              | , ,                                 |                                                                                                 |                         |               | te n EC-1.4.99.1              |                         |           |
| ALARi        | ` '                                 | [c]ala-L> ala-D                                                                                 |                         |               | te n EC-5.1.1.1               |                         |           |
| FFSD         |                                     | [c]h2o + suc6p> fru + g6p                                                                       |                         |               | etab EC-3.2.1.26              |                         |           |
| A5PISO       |                                     | [c]ru5p-D <==> ara5p                                                                            |                         |               | etab EC-5.3.1.13              |                         |           |
| MME          |                                     | [c]mmcoa-R <==> mmcoa-S                                                                         |                         |               | etab EC-5.1.99.1              |                         |           |
| MICITD       | , ,                                 | [c]2mcacn + h2o> micit                                                                          |                         |               | etab EC-4.2.1.99              | 11                      |           |
| ALCD19       |                                     | [c]glyald + h + nadh <==> glyc + nad                                                            |                         |               | etab EC-1.1.1.1               |                         |           |
| 7 LCADi      |                                     | [c]h2o + lald-L + nad> (2) h + lac-L + nadh                                                     |                         |               | etab EC-1.2.1.22              |                         |           |
| TGBPA        |                                     | [c]tagdp-D <==> dhap + g3p                                                                      |                         |               | etab EC-4.1.2.40              |                         |           |
| LCAD         |                                     | [c]h2o + lald-L + nad <==> (2) h + lac-L + nadh                                                 | Alterna                 | ite Carbon Me | etab EC-1.2.1.22              |                         |           |
| ALDD2x       | aldehyde dehydrogenase (acetaldehy  | [c]acald + h2o + nad> ac + (2) h + nadh                                                         | Alterna                 | ite Carbon Me | etab EC-1.2.1.3               |                         |           |
| ARAI         | L-arabinose isomerase               | [c]arab-L <==> rbl-L                                                                            | Alterna                 | ite Carbon Me | etab EC-5.3.1.4               |                         |           |
| RBK_L1       | L-ribulokinase (L-ribulose)         | [c]atp + rbl-L> adp + h + ru5p-L                                                                | Alterna                 | ite Carbon Me | etab EC-2.7.1.16              |                         |           |
| RBP4E        | L-ribulose-phosphate 4-epimerase    | [c]ru5p-L <==> xu5p-D                                                                           | Alterna                 | ite Carbon Me | etab EC-5.1.3.4               | 120                     |           |
| ACACCT       | acetyl-CoA:acetoacetyl-CoA transfer | [c]acac + accoa> aacoa + ac                                                                     | Alterna                 | ite Carbon Me | etabolism                     | 129                     |           |
| BUTCT        | Acetyl-CoA:butyrate-CoA transferase | [c]accoa + but> ac + btcoa                                                                      | Alterna                 | te Carbon Me  | etab EC-2.8.3.8               | 129                     |           |
| AB6PGH       | Arbutin 6-phosphate glucohydrolase  | [c]arbt6p + h2o> q6p + hqn                                                                      | Alterna                 | te Carbon Me  | etab EC-3.2.1.86              | 88                      |           |
| PMANM        |                                     | [c]man1p <==> man6p                                                                             | Alterna                 | te Carbon Me  | etab EC-5.4.2.8               |                         |           |
| PPM2         | phosphopentomutase 2 (deoxyribose   |                                                                                                 | Alterna                 | te Carbon Me  | etab EC-5.4.2.7               |                         |           |
| PPM          |                                     | [c]r1p <==> r5p                                                                                 |                         |               | etab EC-5.4.2.7               |                         |           |
| DRPA         |                                     | [c]2dr5p> acald + g3p                                                                           |                         |               | etab EC-4.1.2.4               |                         |           |
| GALCTND      |                                     | [c]galctn-D> 2dh3dgal + h2o                                                                     |                         |               | etab EC-4.2.1.6               | 132                     |           |
| DDPGALA      | 2-dehydro-3-deoxy-6-phosphogalacto  |                                                                                                 |                         |               | etab EC-4.1.2.21              | 132                     |           |
| DDGALK       |                                     | [c]2dh3dgal + atp> 2dh3dgal6p + adp + h                                                         |                         |               | etab EC-2.7.1.58              | 132                     |           |
| DHAPT        | Dihydroxyacetone phosphotransferas  |                                                                                                 |                         | ite Carbon Me |                               | 42.81                   |           |
| FAO4         |                                     | [c]btcoa + fad + h2o + nad> aacoa + fadh2 + h +                                                 |                         | ite Carbon Me |                               | 129                     |           |
| ALDD19x      |                                     | [c]h2o + nad + pacald> (2) h + nadh + pac                                                       |                         |               | etab EC-1.2.1.39              | 25.33                   |           |
| FRUK         |                                     | [c]atp + f1p> adp + fdp + h                                                                     |                         |               | etab EC-2.7.1.56              | 23,33                   |           |
| FCLPA        |                                     | [c]fc1p <==> dhap + lald-L                                                                      |                         |               | etab EC-2.7.1.56              |                         |           |
| FCLPA        |                                     | [c]fuc-L <==> dnap + iaid-L<br>[c]fuc-L <==> fcl-L                                              |                         |               | etab EC-4.1.2.17              |                         |           |
| FCLK         |                                     | [c]tuc-L <==> tci-L<br>[c]atp + fcl-L> adp + fc1p + h                                           |                         |               | etab EC-5.3.1.25              |                         |           |
|              | ns Metab Abbr Exchange Fluxes       | Dead End Metab RemovedRxns Gene Ann                                                             |                         | ite Carbon Me | tau EC-2.1.1.51               |                         |           |

### METABOLIC MODELS – SBML FORMAT

```
<reaction id="R PYK" name="R pyruvate kinase" reversible="false">
                  <notes>
                      <html:p>GENE_ASSOCIATION: ( b1854 or b1676 )</html:p>
                      <html:p>PROTEIN_ASSOCIATION: ( Pyka ) or ( Pykf )</html:p>
      Notes
                      <html:p>SUBSYSTEM: S_GlycolysisGluconeogenesis</html:p>
                      <html:p>PROTEIN CLASS: 2.7.1.40</html:p>
                   </notes>
                   <speciesReference species="M_adp_c" stoichiometry="1.000000"/>
 Reactants
                      <speciesReference species="M h c" stoichiometry="1.000000"/>
                      <speciesReference species="M pep c" stoichiometry="1.000000"/>
                   <speciesReference species="M atp c" stoichiometry="1.000000"/>
  Products
                      <speciesReference species="M_pyr_c" stoichiometry="1.000000"/>
                   <kineticLaw>
                      <math xmlns="http://www.w3.org/1998/Math/MathML">
                          <apply>
                             <ci>LOWER BOUND </ci>
                             <ci> UPPER BOUND </ci>
                             <ci>OBJECTIVE COEFFICIENT </ci>
                             <ci> FLUX VALUE </ci>
                             <ci> REDUCED_COST </ci>
                          </apply>
Kinetic Law
                      <parameter id="LOWER_BOUND" value="0.000000" units="mmol_per_qDW_per_hr"/>
                          <parameter id="UPPER BOUND" value="999999.000000" units="mmol_per_qDW_per_hr"/>
                          <parameter id="OBJECTIVE COEFFICIENT" value="0.000000"/>
                          <parameter id="FLUX VALUE" value="0.000000" units="mmol per qDW per hr"/>
                          <parameter id="REDUCED_COST" value="0.000000"/>
                      </kineticLaw>
               </reaction>
```

# **GSMMs** | RECONSTRUCTION - SOFTWARE







www.merlin-sysbio.org

Main features

- Supports the main tasks in metabolic genome re-annotation and reaction assignment
- Supports compartmentalization and transporters identification
- Allows manual curation of the model through a user friendly environment

Dias, O., Rocha, M., Ferreira, E.C. and Rocha, I. (2015) Reconstructing genome-scale metabolic models with merlin. Nucleic Acids Res.

http://nar.oxfordjournals.org/content/early/2015/04/06/nar.gkv294

# GSMMs | MODEL INFORMATION



| c)                    |    |                |                |                 |                |                |                               |
|-----------------------|----|----------------|----------------|-----------------|----------------|----------------|-------------------------------|
| Transcription factors |    |                |                | TF <sub>2</sub> |                |                | TF <sub>1</sub>               |
| Genes                 | Gı | G <sub>2</sub> | G <sub>3</sub> | G <sub>4</sub>  | G <sub>5</sub> | G <sub>6</sub> | G <sub>7</sub> G <sub>8</sub> |
| Enzymes               | E  | E <sub>2</sub> | E <sub>3</sub> | E <sub>4</sub>  | E <sub>5</sub> | E <sub>6</sub> | E <sub>7</sub>                |
| Reactions             | ı  | R <sub>5</sub> | R <sub>6</sub> | R <sub>7</sub>  | R <sub>8</sub> | R <sub>9</sub> | R <sub>10</sub>               |

| Reaction        | GPR             |
|-----------------|-----------------|
| R <sub>5</sub>  | $G_1$ or $G_2$  |
| $R_6$           | $G_3$           |
| R <sub>7</sub>  | $G_4$           |
| R <sub>8</sub>  | $G_5$           |
| $R_9$           | $G_6$           |
| R <sub>10</sub> | $G_7$ and $G_8$ |

| G <sub>4</sub> not TF <sub>2</sub> | not TF <sub>2</sub> | Gene F         |
|------------------------------------|---------------------|----------------|
|                                    |                     | $G_4$          |
| G <sub>8</sub> TF <sub>I</sub>     | ΓF <sub>I</sub>     | G <sub>8</sub> |

0(m)



# GSMMs | GENE PROTEIN REACTION RULES







#### **Gene-reaction rules:**

**SUCD1i** = b0721 AND b0722 AND b0723 AND b0724

**SUCD4** = b0721 AND b0722 AND

b0723 AND b0724





### METABOLIC MODELS — STOICHIOMETRIC MODELS & CBM

- Stoichiometric models typically have more fluxes than balanced metabolites.
- The equation system S v = 0 thus has more variables than equations. This is a so-called <u>under-determined equation system</u> with infinitely many solutions:

Under-determined system  $a_{11}x_1+a_{12}x_2=b_1$ 

Determined system  $a_{21}x_1+a_{22}x_2=b_2$ 

Over-determined system  $a_{31}x_1+a_{32}x_2=b_3$ 





### HOW DO WE DEAL WITH UNDERDETERMINATION?

### **Experimental approaches**

Generation of additional constraints from:

- measurement of exchange fluxes (MFA)
- experiments with labeled substrates (MNA)

### Computational or in silico approaches

- adding assumptions, e.g. objective function (FBA)
- Enumeration of all possible solutions (Elementary modes)





### METABOLIC MODELS - MFA EXAMPLE

### **Metabolic Flux Analysis**

Example

#### Before:

$$F = \#fluxes - \#metabolites \Leftrightarrow F = 6 - 3 = 3$$

#### **Under-determined!**



#### If we measure 3 exchange fluxes

$$v3 = 1$$

$$v5 = 1$$

$$v6 = 1$$

$$r_2 = 1$$

$$V_3$$

$$V_4$$

$$V_5$$

$$V_4$$

$$V_5$$

$$V_6$$

$$Metabolite 2 Metabolite 3$$

A: 
$$v1 - v2 = 0$$
  $v1 - v2 = 0$ 

B: 
$$v2 - v3 - v4 = 0 \Leftrightarrow v2 - 1 - v4 = 0 \Leftrightarrow$$
  
C:  $v4 - v5 - v6 = 0 \qquad v4 - 1 - 1 = 0$ 

C: 
$$v4 - v5 - v6 = 0$$
  $v4 - 1 - 1 = 0$ 

$$v1 = v2$$

$$v2 = v4 + 1$$

$$v4 = 2$$

$$v1 = 3$$

$$v4 = 2$$

#### **Solution:**



### STEADY STATE PHENOTYPE SIMULATION

# Optimization problem

- The system is undetermined one solution is to transform into an optimization problem
- Flux Balance Analysis: assumes organisms have evolved "perfectly" to maximize a given objective function with a biological rationale
- Objective function: most common to maximize biomass flux – artificial flux determined experimentally including all biomass precursors
- Linear OF; linear constraints Linear Programming problem
- Easy to solve (e.g. simplex algorithm)
- Methods for mutant simulation adopt different objective function: MOMA, ROOM



# PHENOTYPE PREDICTION — FBA PROBLEM

#### Maximize:

$$z = c^T v = v_{prod}$$

**Subject to:** 

$$Sv=0$$

$$\beta_j \leq v_j \leq \alpha_j$$

A. Admissible flux space



c = row vector containing weights specifying what combination of fluxes to optimize

 $\alpha$ ,  $\beta$  = lower and upper limits for fluxes. Use

- to model irreversible reactions
- to limit uptake and secretion rates
- to specify measured fluxes

B. Optimal flux distribution



C. Further constraints to redirect the flux



### PHENOTYPE PREDICTION — PARSIMONIOUS FBA

 FBA has an important limitation, since it provides a solution with a unique optimal value for the objective function, while a large number of flux distributions may exist that lead to this value, i.e. multiple optima may exist.

 One way to address this issue was proposed by the Parsimonious enzyme usage FBA (pFBA) method that chooses a particular flux distribution (or a smaller set of flux distributions) from these multiple optima, by performing a second LP optimization that minimizes the sum of the flux values, while keeping biomass flux at an optimum level.





### PHENOTYPE PREDICTION — OBJECTIVE FUNCTIONS

- Studies in several organisms demonstrated that their metabolic network has evolved for optimization of the specific growth rate under several carbon source limiting conditions.
- Thus, for simulating cellular behavior the most common objective function is the <u>maximization of biomass production</u>.
- However, it has been shown that for <u>mutants and wild-type</u> organisms grown on some unusual carbon sources the hypothesis of optimal growth is not always real.
- Growth of these microorganisms is better explained through the hypothesis that such strains undergo minimal redistribution of fluxes with respect to the wild-type strains.





#### PHENOTYPE PREDICTION — MUTANTS: MOMA

- Minimization of Metabolic Adjustment (MOMA) is a flux-based analysis technique similar to FBA and based on the same stoichiometric constraints, but the optimal growth flux for mutants is relaxed.
- Instead, MOMA provides an approximate solution for a sub-optimal growth flux state, which is nearest in flux distribution to the unperturbed state.



Formulated as a Quadratic Programming problem:

$$\min ||\mathbf{v}_{\mathbf{w}} - \mathbf{v}_{\mathbf{d}}||^2 \qquad s.t. \quad \mathbf{S} \cdot \mathbf{v}_{\mathbf{d}} = 0$$



### MUTANT SIMULATION WITH GENE REACTION RULES







### MUTANT SIMULATION WITH GENE REACTION RULES





### **METABOLIC ENGINEERING**

To produce desired compounds (e.g. antibiotics, fuels, vitamins) from microbial cell factories it is generally necessary to retrofit the metabolism

Metabolic Engineering envisages the introduction of directed genetic modifications leading to desirable phenotypes, as opposed to traditional methods





### **METABOLIC ENGINEERING**

It is often difficult to identify which genetic manipulations will originate a given desired phenotype





# STRAIN OPTIMIZATION: WHY?



No production of desired compound in wild type strains!





### STRAIN OPTIMIZATION

### Possible aims

- Select appropriate gene/ reaction deletions
- Select genes to over/under express
- Select set of reactions to add to a metabolic model

# Objective function

- Maximizing the production of a compound
- Keeping the organism viable
- One alternative Biomass product coupled yield (BPCY): multiplies biomass and compound production fluxes and divides by substrate intake flux





### STRAIN OPTIMIZATION - GENE DELETION







### STRAIN OPTIMIZATION - HETEROLOGOUS INSERTION



# STRAIN OPTIMIZATION - GENE OVER/UNDER EXPRESSION







### STRAIN OPTIMIZATION: CO-FACTOR SWAPPING



### STRAIN OPTIMIZATION: BILEVEL OPTIMIZATION APPROACH

Aim: select the appropriate genetic modifications (e.g. gene knockout sets) to enable the production of a desired product

# Bi-level optimization problem:

### Maximize (compound) – bioengineering objective

Candidate solution evaluation

Maximize (biomass) – cellular objective

#### constraints:

- steady state
- reversibility

(...)

### STRAIN OPTIMIZATION — HEURISTIC ALGORITHMS

# Combinatorial optimization

Solutions can be represented as sets of genes or reactions

# Complexity

- Solution space is very large; problems are NP hard
- Approaches based on MILP (e.g. OptKnock) cannot handle non-linear objective functions or multiple objectives
- Solution: use of metaheuristic optimization methods such as Evolutionary Algorithms and Simulated Annealing





### STRAIN OPTIMIZATION: DECOUPLED OPTIMIZATION



### STRAIN OPTIMIZATION — ALGORITHMS

**Evolutionary Algorithms (EA)** 

Simulated Annealing (SA)





#### STRAIN OPTIMIZATION — ALGORITHMS



### STRAIN OPTIMIZATION - MULTIOBJECTIVE

Some of the aims of **strain optimization algorithms** are to find strains that, e.g. (i) produce the compound of interest; (ii) are biologically viable; (iii) have minimal changes from wild type

In **optimization** these are distinct **aims**: (i) max **compound** producing flux; (ii) max **biomass** flux; (iil) min number of deletions

It makes sense to have **multiobjective algorithms** that compute solutions that are different **trade-offs** of (all or part of) these objectives: result is a set of solutions.

### STRAIN OPTIMIZATION — HEURISTIC APPROACH



### **POINTS FOR DISCUSSION**

- ➤ CBM approaches have provided a robust framework to perform large-scale simulation and optimization of microbes
- ➤ However, CBM approaches have limitations mainly in simulating non-steady state conditions, metabolite concentrations and absolute flux values
- ➤ Large-scale dynamic models are still only available for very few organisms and require further validation
- ➤ Novel methodologies for both modeling and data collection for model inference are required





# **Genome-scale modeling**

Isabel Rocha irocha@deb.uminho.pt

September 12, 2017 DSM, Delft, The Netherlands

Credits for some slides: Paulo Maia (SilicoLife)





