Important: This homework tests basic mathematical skills required for the course. Use it as a self-test of your background knowledge and try to do it without looking anything up. If you are having to look things up a lot, or if more than 20% of concepts are unfamiliar to you, you will struggle in the course. Note that the order/points of questions do not always imply difficulty.

Grading: The homework assignments in this course are self-graded. Please complete the homework and submit a PDF file (the only accepted file format). Typed or scanned handwritten solutions are fine. Once the solutions are available, please use them to assign points to your own submitted solution and submit the points. Refer to the course website for due dates and submission links. A subset of the assignments will be chosen at random and double checked by the course staff. It is in your best interest to complete the assignments as they will prepare you for the exams.

Total: 50 points.

x=0 5s a maximum

Basic Calculus [10 pts] 1

The following questions test your basic skills in computing the derivatives of univariate functions, as well as applying the concept of *convexity* to determine the properties of the functions.

(a) (3 pts) Find all extrema of the function $f(x) = \ln(2 - x^2)$. For each extremum, state if it is a maximum or a minimum. $\forall x \in \mathcal{R}$, $e^{x} > 0$ $\therefore 2-x^2 > 0$

$$f'(x) = \frac{-2x}{2-x^2}$$
 $f'(x) = 0 \Rightarrow x = 0$

: f(0-)>0&f(0+)<0 X=0 is a local maximum. & in range of \$. Ju

when 2x'so, ->x>-2-15-to x=0.75 a max at x around 1,12, f(x) will shoot to negative infinity

(b) (3 pts) Show that $f(x) = \ln \frac{1}{1+e^{-x}}$ is concave. $f(x) = \frac{e^{-x}}{1+e^{-x}}$ is concave.

of '.' p"(x) <0 . P'(x) is monotonicalling deveasing . . f(x) is concave.

(c) (4 pts) Show that $f(x) = e^{-x^2}$ is neither convex nor concave.

\$(x)=-1xe-x2

 $f''(x) = 2(2x^2-1)e^{-x^2}$

if "(x) = 0 exist & f"(x) has opposit sign around two & the zero point io

i. P(x) is neither concave onor convex

2 Continuous Random Variables [10 pts]

(a) (2 pts) Given a continuous random variable X with probability density function f(X), what are the expressions for the mean and variance of this variable?

$$F(x) = \int xf(x) dx$$

$$Var(x) = \overline{F(x-F(x))^2} F(x-F(x))^T F(x-F(x))$$

$$= F(x^2-2F(x)^2+F(x)^2)$$

$$= F(x^2-2F(x)^2+F(x)^2)$$

$$= F(x^2-2F(x)^2+F(x)^2)$$

(b) (2 pts) Can the value of the probability density function (PDF) f(X) exceed 1? Why or why

(c) (2 pts) Consider a random variable X that follows the uniform distribution between a and b, i.e. its PDF is equal to a constant c on this interval, and 0 otherwise. Derive c in terms of aand b.

if
$$b>a$$
 the $c=b-a$.

$$\int_{a}^{b} c dx = 1$$

$$c \times |b-a|$$

$$c = b-a$$

(d) (2 pts) Derive the expected value of X in terms of a and b. Show all your steps.

$$f(x) = \frac{1}{ba}.$$

$$E(x) = \int_{a}^{b} \frac{1}{ba} dx = \frac{1}{2}(b^{2}-a^{2})$$

$$= \frac{1}{ba}(b^{2}-a^{2})$$

$$= \frac{1}{2}(b^{2}-a^{2})$$

(e) (2 pts) Derive the cumulative distribution function F(X) on the interval $a \leq X \leq b$.

$$F(x) = \int_{a}^{x} \frac{1}{a \cdot b \cdot a} dx$$

$$= \frac{x - a}{b - a}$$

3 Discrete Random Variables [10 pts]

CS.542 Fall 2019

(a) (2 pts) Two students taking a Machine Learning class became project partners. They are trying to decide what operating system to use for the project. Suppose each student has a laptop, which could be one of three types: Mac OS, Windows, or Linux. If the distribution of laptops among students follows the PDF shown below, what is the probability that the two teammates have different laptops?

Mac OS Windows Linux	į.	1-(0.6+0.32+0.12)
		=1-(0.36+0.09+0.01)
		= 1-0.46
		= 0.54.

Suppose we have three discrete random variables x, y and z that take values 0 or 1 according to the distribution below.

		z = 0	z=1			z = 0	z = 1
x = 0	y = 0	0	$\frac{1}{12}$	x = 1	y = 0	$\frac{1}{12}$	$\frac{1}{12}$
	y = 1	<u>1</u> 4	$\frac{1}{4}$		y = 1	0	$\frac{1}{4}$

(b) (2 pts) Find the joint distribution of y and z

(c) (2 pts) Find the marginal distributions of y and z

$$f(y) = \begin{cases} 4 & y=0 \\ \frac{3}{4} & y=1 \end{cases}$$

$$f(z) = \begin{cases} 3 & z=0 \\ \frac{2}{3} & z=1 \end{cases}$$
(d) (2 pts) Find the conditional distribution of x given that $y=0$.

$$P(y=0) = 6 + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} = \frac{1}{12}$$

$$P(y=0) = \frac{1}{12} = \frac{1}{12}$$

(e) (2 pts) Are y and z independent? Explain.

4 Basic Linear Algebra [10 pts]

(a) (3 pts) Let A be a 3x4 matrix, B be a 4x5 matrix, and C be a 4x4 matrix. Determine which of the following products are defined and find the size of those that are defined. Note, X^T refers to the transpose of X.

(b) (3 pts) Suppose we would like to predict the profits of "Sunny Coffee", a bakery chain with locations in three different cities. Given the price of flour x, price of sugar y and price of oil z, the profit can be modelled as a linear function of these variables. That is, for each of the locations i = 1, ..., 3, the profit is $p_i = a_i + b_i x + c_i y + d_i z$.

Write down the matrix-vector product that produces the 3-dimensional vector of profits for the three locations.

(c) (4 pts) Let A and B be two $\mathbb{R}^{D\times D}$ symmetric matrices. Suppose A and B have the exact same set of eigenvectors u_1, u_2, \cdots, u_D with the corresponding eigenvalues $\alpha_1, \alpha_2, \cdots, \alpha_D$ for A, and $\beta_1, \beta_2, \cdots, \beta_D$ for B. Write down the eigenvectors and their corresponding eigenvalues for the following matrices. (*Hint*. Represent A, B using the eigenvectors, e.g., $A = \sum_d \alpha_d u_d u_d^T$.)

$$C = A + B$$

$$\bullet D = A - B$$

- = [U][A, AB][U] [U][B, AB][U] = [U][A, B] = [U][A,
- $F = A^{-1}B$ (assume A is invertible)

5 Vector Calculus [10 pts]

Consider the quadratic function $f(x) = x^T A x$ where x is a column vector and A is an nxn constant matrix.

(a) (1 pts) Express
$$f(x)$$
 as a sum of terms (hint: use Σ).

Cosume $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} = a_{11} = a_{12}$

$$f(x) = \begin{bmatrix} a_{11} \\ x_2 \end{bmatrix} = \begin{bmatrix} a_{11} \\ x_3 \end{bmatrix} = \begin{bmatrix} a_{11} \\ x_4 \end{bmatrix} = \begin{bmatrix} a_{1$$

(b) (4 pts) Compute the partial derivative of the function with respect to the kth element of x, i.e. $\frac{\partial f(x)}{\partial x_k}$, using the expression from (a). Express your answer as a sum of terms.

$$\frac{\partial f(x)}{\partial x_{R}} = \sum_{j=1}^{N} x_{j} x_{j} x_{j} + \sum_{j=1}^{N} x_{j} x_{j} x_{k}$$

$$= \sum_{j=1}^{N} \alpha_{R_{j}} x_{j} + \sum_{j=1}^{N} \alpha_{j} x_{k}$$

$$= \sum_{j=1}^{N} (\alpha_{j} x_{j} + \alpha_{R_{j}}) x_{j}$$

$$= \sum_{j=1}^{N} (\alpha_{j} x_{j} + \alpha_{R_{j}}) x_{j}$$

(c) (2 pts) Now write down the gradient vector $\nabla_x f(x)$ in matrix/vector notation, using the answer from (b). What is its dimension and meaning?

$$\sqrt{x} f(x) = \left(\sum_{i=1}^{n} (a_{ii} + a_{ni}) x_{ni} \right)$$

(d) (3 pts) Compute the second derivative of f(x), $\nabla_x^2 f(x)$, in matrix form.

$$\int_{X}^{2} f(x) = \begin{cases}
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{n}}
\end{cases}$$

$$= \begin{cases}
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{n}}
\end{cases}$$

$$= \begin{cases}
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}}
\end{cases}$$

$$= \begin{cases}
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}}
\end{cases}$$

$$= \begin{cases}
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}}
\end{cases}$$

$$= \begin{cases}
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}}
\end{cases}$$

$$= \begin{cases}
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}}
\end{cases}$$

$$= \begin{cases}
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}}
\end{cases}$$

$$= \begin{cases}
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}}
\end{cases}$$

$$= \begin{cases}
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}}
\end{cases}$$

$$= \begin{cases}
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}}
\end{cases}$$

$$= \begin{cases}
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}}
\end{cases}$$

$$= \begin{cases}
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1}} \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1}}
\end{cases}$$

$$= \begin{cases}
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1}}
\end{cases}$$

$$= \begin{cases}
\frac{\partial^{2} f(x)}{\partial x_{1}$$