1 Manifold with boundary

Exercise: is the unit square $S := I \times I \subseteq \mathbb{R}^2$ a smooth manifold with ∂ ?

Take v_1, v_2 at the corner p along the edges, they are in the tangent space of p. Then $d\phi_p(v_1), d\phi_p(v_2) \subseteq T_{\phi(p)}\partial H \subseteq \mathbb{R}$ so $d\phi_p(v_1)$ and $d\phi_p(v_2)$ are linearly dependent. So are v_1, v_2 as ϕ is a diffeomorphism, $d\phi_p$ is full rank, a contradiction.

Proposition 1.1

Let $p \in \partial M$ be a regular point of a $f: M^n \to N^n$. Then p is a regular point of ∂f .

Proof. rank $df_p = \dim N = \dim M$ so df_p preserves linear independence. Notice $T_p \partial M \subseteq T_p M$. TODO

Theorem 1.2 (Sard's)

 $f: M \to N$ where N doesn't have ∂ . Almost every $q \in N$ is a regular value of both f and ∂f .

Proof. By regular Sard's Theorem, $\mu(\partial f(\{\text{critical points of}\,\partial f\})) = 0$. $\mu(f(\{\text{critical points of}\,f \in \text{int}\,M\})) = 0$. $\mu(f(\{\text{critical points of}\,f \in \partial M\}))$.

Prove by contrapositive: let p be a regular point of ∂f , then rank $d\partial f_p = \dim N$, but rank $df_p \geq d\partial f_p$, so p is a regular point of f. So $\{$ critical point of $\partial f\} \subseteq \{$ critical points of f on $\partial M\}$.