Projeto de algoritmos recursivos.
Divisão e conquista

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br MO417 - Complexidade de Algoritmos I

"Divide et impera"

Júlio César.

Projeto de algoritmos recursivos

Uma estratégia é:

- 1. Encontrar e definir um SUBPROBLEMA adequado.
- 2. Supor que sabemos resolver instâncias menores.
- 3. Construir um algoritmo recursivo para o subproblema.

Este processo é análogo a **DEMONSTRAÇÕES POR INDUCÃO**:

- Caso básico: instâncias pequenas.
- Caso geral: instâncias grandes:
 - A chamada recursiva corresponde à HIPÓTESE DE INDUÇÃO.
 - A construção da solução corresponde ao PASSO DA INDUCÃO.

Celebridades

Definição

Em um conjunto S de n pessoas, uma **celebridade** é alguém que é conhecido por todas as pessoas de S mas que não conhece ninguém.

- Nem sempre existe uma celebridade.
- Só pode existir uma celebridade em S.
- Queremos saber se existe uma celebridade em S.

O problema da celebridade

Formalizando o problema:

- Queremos descrever o conhecimento entre n pessoas.
- Representamos isso com uma matriz binária $n \times n$.
- M[i,j] = 1 se i conhece j, e M[i,j] = 0 caso contrário.

Problema

Entrada: Um conjunto de n pessoas e a matriz associada M.

Saída: Uma celebridade, se existir.

Observações:

- Para uma celebridade k, vale M[i, k] = 1 para todo i.
- Analogamente, vale M[k, i] = 0 para todo i.
- Um algoritmo simples verifica se cada pessoa é celebridade, usando 2n(n-1) operações.

Argumento indutivo

Um argumento indutivo pode ser:

Teorema (Hipótese de indução)

Sabemos encontrar uma celebridade em um conjunto de n-1 pessoas ou decidir que não existe.

- Se n = 1, a única pessoa no conjunto é uma celebridade.
- ▶ Se $n \ge 2$:
 - Represente o conjunto de pessoas como $S = \{1, 2, ..., n\}$.
 - Podemos encontrar celebridade em $S' = \{1, 2, ..., n-1\}.$
 - Como isso ajuda na instância original?

Passo indutivo

Dois casos:

- 1. Existe celebridade k em S':
 - Se M[n, k] = 1 e M[k, n] = 0, então k é celebridade em S.
 - ► Senão, *n* ainda poderia ser celebridade.
- 2. NÃO existe celebridade em S':
 - Nesse caso, apenas n poderia ser celebridade.
- Em qualquer caso, precisamos verificar se *n* é celebridade.
- ▶ Temos que verificar se M[n,j] = 0 e M[j,n] = 1 para j < n.
- Também obtemos um algoritmo quadrático.

Segunda tentativa

Suponha que s não é celebridade

- ▶ Podemos fazer a chamada recursiva para $S' = S \setminus \{s\}$.
- Não precisaríamos verificar s depois.

Como encontrar alguém que NÃO é celebridade?

- Considere duas pessoas *i* e *j*.
- ▶ Se M[i,j] = 1, então i não é celebridade.
- ▶ Se M[i,j] = 0, então j não é celebridade.

Vamos usar a mesma hipótese anterior:

- Consideramos o mesmo subproblema.
- Escolhemos a subinstância mais cuidadosamente!

Encontrando uma celebridade

O algoritmo devolve NIL se não houver celebridade.

Algoritmo: Celebridade(S, M)

```
1 se |S| = 1
 seja k a única pessoa em S
   senão
         sejam i, j duas pessoas em S
         se M[i, j] = 1
               s \leftarrow i
         senão
           s \leftarrow j
 8
         S' \leftarrow S \setminus \{s\}
 9
         k \leftarrow \text{CELEBRIDADE}(S', M)
10
         se k \neq NIL \ e \ (M[s, k] = 0 \ ou \ M[k, s] = 1)
11
               k \leftarrow \mathsf{NIL}
12
```

13 devolva k

Exemplo 4 - Complexidade

Seja T(n) o número de operações executadas:

$$T(n) = \begin{cases} \Theta(1), & n = 1 \\ T(n-1) + \Theta(1), & n > 1. \end{cases}$$

A solução da recorrência é:

$$\sum_{1}^{n} \Theta(1) = n\Theta(1) = \Theta(n).$$

Subsequência consecutiva máxima (SCM)

Problema

Entrada: Uma sequência $X = x_1, x_2, \dots, x_n$ de números reais.

Saída: Uma subsequência consecutiva $Y = x_i, x_{i+1}, \dots, x_j$, onde $1 \le i, j \le n$, cuja soma seja máxima.

Exemplos:

$$X = [4, 2, -7, 3, 0, -2, 1, 5, -2]$$
 Resp: $Y = [3, 0, -2, 1, 5]$

$$X = [-1, -2, 0]$$
 Resp: $Y = [0]$ ou $Y = []$

$$X = [-3, -1]$$
 Resp: $Y = []$

Hipótese

Teorema (Hipótese de indução)

Sabemos calcular a SCM de sequências de comprimento n-1.

- Considere uma sequência $X = x_1, x_2, \dots, x_n$.
- \triangleright Removendo x_n , obtemos uma sequência menor X'.
- Vsando a h.i., obtemos uma SCM $Y' = x_i, x_{i+1}, \dots, x_j$ de X'.

Passo indutivo

Há três casos a analisar

- 1. $Y' = \emptyset$: se $x_n \ge 0$, faça $Y = x_n$, senão faça $Y = \emptyset$.
- 2. j = n 1: se $x_n \ge 0$, faça $Y = Y' || x_n$, senão faça Y = Y'.
- 3. j < n-1: consideramos dois sub-casos:
 - ▶ Se Y' for uma SCM de X, então basta fazer Y = Y'.
 - Caso contrário, x_n faz parte de uma SCM de X e fazemos $Y = x_k, x_{k+1}, \dots, x_n$, para algum $k \le n 1$.

Refletindo

- Podemos executar os dois primeiros casos rapidamente.
- Para o último caso, a h.i. não fornece o valor de k.
- ► Nesse caso, sabemos que uma SCM é

$$Y=x_k,x_{k+1},\ldots,x_{n-1},x_n,$$

- ▶ ou seja, Y é um sufixo de X.
- Basta conhecer também o sufixo de maior soma de X'.

Hipótese de indução reforçada

Teorema (Hipótese de indução reforçada)

Sabemos calcular a SCM e o sufixo de maior soma de sequências de comprimento n-1.

- Consideramos também sequência de tamanho n = 0.
- ▶ Nesse caso, o sufixo de maior soma e a SCM são vazias.

Entrada e saída do subproblema

Problema (Subproblema)

Entrada: Um inteiro n e n números reais $X = x_1, x_2, \dots, x_n$.

Saída:

- ► Inteiros i, j, k tais que:
 - $Y = x_i, x_{i+1}, \dots, x_i$ é uma SCM de X.
 - $\gt S = x_k, x_{k+1}, \dots, x_n$ é um sufixo de soma máxima de X.
- Números reais MaxSeq, MaxSuf tais que:
 - ► A soma de Y é MaxSeq.
 - A soma de S é MaxSuf.

1 se n = 0

Algoritmo

Algoritmo: SCM(X, n)

10 **devolva** *i*, *j*, *k*, *MaxSeq*, *MaxSuf*

Complexidade

O tempo de execução T(n) de SCM é:

$$T(n) = \begin{cases} \Theta(1), & n = 1 \\ T(n-1) + \Theta(1), & n > 1. \end{cases}$$

A solução desta recorrência é:

$$\sum_{1}^{n} \Theta(1) = n\Theta(1) = \Theta(n).$$

Divisão e conquista

Projeto de algoritmos por divisão e conquista

Relembre que um algoritmo de divisão e conquista:

- Divide uma instância do problema considerado em partes.
- Combina as várias soluções parciais.

Algumas características:

- Normalmente criamos pelo menos duas subinstâncias.
- Elas podem ser muito menores que a instância original.

5

6

8

Algoritmo genérico

```
Algoritmo: DIVISAO-CONQUISTA(x)
1 se a instância x é suficientemente pequena
    devolva SOLUCAO(x)
3 senão
     decomponha x em instâncias menores x_1, x_2, \dots, x_k
     para i de 1 até k
        y_i \leftarrow \text{DIVISAO-CONQUISTA}(x_i)
     combine as soluções y; para obter uma solução y
     devolva y
```


Exponenciação

Problema

Entrada: Um número real a e um inteiro $n \ge 0$.

Saída: Potência aⁿ.

Um estratégia recursiva simples:

- Se n = 0:
 - ightharpoonup Devolva $a^0 = 1$.
- ► Se n > 0:
 - Suponha que sabemos calcular a^{n-1} .
 - Calculamos $a^n = a^{n-1} \cdot a$.

Algoritmo com recursão simples

Algoritmo: EXPONENCIACAO(a, n)

1 se
$$n = 0$$

2
$$an \leftarrow 1$$

3 senão

4
$$an' \leftarrow \text{EXPONENCIACAO}(a, n-1)$$

5 $an \leftarrow an' * a$

an van va

6 devolva an

Complexidade da recursão simples

Seja T(n) o número de operações executadas:

$$T(n) = \begin{cases} \Theta(1), & n = 0 \\ T(n-1) + \Theta(1), & n > 0, \end{cases}$$

A solução da recorrência é:

$$T(n) = \Theta(1) + \sum_{i=1}^{n} \Theta(1) = \Theta(n).$$

Pergunta: o algoritmo é linear no tamanho da entrada?

- ▶ O número de bits para representar $n \in m = |\log_2 n| + 1$.
- Então o tempo do algoritmo é $\Theta(2^m)$.
- Que é EXPONENCIAL no tamanho da entrada.

Usando divisão e conquista

Utilizamos a mesma hipótese

Teorema (Hipótese de indução)

Suponha que, para qualquer inteiro n>0 e real a, sei calcular a^k , para todo k< n.

Mas agora dividimos a potência em várias partes:

- Se n = 0:
 - ightharpoonup Devolva $a^0 = 1$.
- ► Se n > 0:
 - ightharpoonup Calculamos recursivamente $a^{\left\lfloor \frac{n}{2} \right\rfloor}$.
 - Podemos calcular a potência da seguinte forma:

$$a^{n} = \begin{cases} \left(a^{\left\lfloor \frac{n}{2} \right\rfloor}\right)^{2}, & \text{se } n \text{ \'e par} \\ a \cdot \left(a^{\left\lfloor \frac{n}{2} \right\rfloor}\right)^{2}, & \text{se } n \text{ \'e impar} \end{cases}$$

Exponenciação com divisão e conquista

Algoritmo: EXPONENCIACAO-DC(a, n)

```
1 se n = 0

2 \[ \] an \leftarrow 1

3 senão

4 \[ \] an' \leftarrow EXPONENCIACAO-DC\left(a, \left\lfloor \frac{n}{2} \right\rfloor\right)

5 \[ \] an \leftarrow an' \cdot an'

6 \[ \] se n \in impar

7 \[ \] \[ \] an \leftarrow an \cdot a
```

8 devolva an

Complexidade

O tempo de execução é dado por:

$$T(n) = \begin{cases} c_1, & n = 0 \\ T(\lfloor \frac{n}{2} \rfloor) + c_2, & n > 0, \end{cases}$$

A solução da recorrência é $T(n) = \Theta(\log n)$.

Esse algoritmo é linear no número de bits da entrada!

Busca binária

Problema

Entrada: Um vetor de números ordenado A com n elementos e um número x.

Saída: Algum índice i tal que A[i] = x se x estiver no vetor, ou NIL se x não estiver no vetor.

- Se utilizássemos uma recursão simples, teríamos um algoritmo linear. (qual seria a hipótese de indução?)
- Vamos decompor o vetor em duas partes com cerca de metade dos elementos.

Entrada e saída

Como representar subvetores?

Problema (Problema generalizado)

Entrada:

- Vetor A com n números.
- Indice e do elemento mais à esquerda do subvetor.
- Índice d do elemento mais à direita do subvetor.
- Número x.

Saída: Algum índice i tal que A[i] = x se x estiver no vetor, ou NIL se x não estiver no vetor.

Algoritmo

Algoritmo: Busca-Binaria(A, e, d, x)

```
1 se e > d

2 \downarrow i \leftarrow \text{NIL}

3 senão

4 \downarrow i \leftarrow \lfloor \frac{e+d}{2} \rfloor

5 se A[i] > x

6 \downarrow i \leftarrow \text{Busca-Binaria}(A, e, i - 1, x)

7 se A[i] < x

\downarrow i \leftarrow \text{Busca-Binaria}(A, i + 1, d, x)
```

9 devolva i

Complexidade

O tempo de execução é:

$$T(n) = egin{cases} c_1, & n = 1 \ T(\lceil rac{n}{2}
ceil) + c_2, & n > 1, \end{cases}$$

Resolvendo a recorrência, temos:

$$T(n) = \Theta(\log n)$$

- Esse algoritmo é melhor que a busca linear.
- ► Se o vetor NÃO estivesse ordenado, qual seria melhor?

Projeto de algoritmos recursivos.
Divisão e conquista

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br MO417 - Complexidade de Algoritmos I

