

UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE CIÊNCIAS MATEMÁTICAS E COMPUTACIONAIS - ICMC

Notas de Aula de Álgebra

Renan Wenzel - 11169472

Roberto Carlos - alvarago@icmc.usp.br

14 de março de 2023

Conteúdo

1 Aula 01 - 14/03/2023		3	
	1.1	Motivações	3
	1.2	Introdução ao Curso	3
	1.3	Grupos e Operações	3

1 Aula 01 - 14/03/2023

1.1 Motivações

• Compreender o que será estudado ao longo do curso;

1.2 Introdução ao Curso

Este curso é sobre teoria de grupos, a qual possui origem no estudo de simetrias, sejam elas de figuras ou de objetos algébricos. Um exemplo de grupo seria o seguinte:

Considere um triângulo equilátero. Existem algumas formas de olharmos para as simetrias do triângulo, como rotacionando-o, refletindo-o com relação a um ponto médio e um vértice fixo. Contabilizando todas as possíveis formas delas acontecerem, há seis simetrias deste retângulo. Ademais, compondo simetrias resulta em outra, i.e., rotacionar e refletir um certo vértice continuará sendo uma simetria do triângulo. Além disto, é um fato (futuramente visto) que essas seis simetrias totalizam todas as possíveis simetrias de um triângulo equilátero. De fato, dado um polígono regular de n lados, ele possui n! simetrias.

1.3 Grupos e Operações

Definição. Seja S um conjunto não-vazio. Uma operação em S é um mapa

$$\mu: S \times S \to S$$
$$(a,b) \mapsto \mu(a,b)$$

Exemplo 1. A operação soma em \mathbb{Z} , $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, $(a,b) \mapsto a+b$ é uma operação.

Exemplo 2. Uma operação em \mathbb{R} é a multiplicação $: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, (a, b) \mapsto ab.$

Exemplo 3. Um exemplo do que não é operação seria a subtração dos naturais, $-: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, $(a, b) \mapsto a - b$. (Consegue responder por que não é?)

Exemplo 4. Se S é o conjunto de simetrias de um triângulo equilátero, então a composição

$$\circ : S \times S \to S$$
$$(\sigma, \tau) \mapsto \sigma \circ \tau$$

é uma operação binária.

Faremos a convenção de denotar $\mu(a,b)$ por a.b ou a+b, com base no contexto.

<u>Definição</u>. Uma operação μ em S não-vazio, denotada pelo produto, \acute{e} dita associativa se, para todos a, b, c em S,

$$(a.b).c = a.(b.c), \quad \Big(\mu(a, \mu(b, c)) = \mu(\mu(a, b), c)\Big).$$

Por outro lado, será dita comutativa se

$$a.b = b.a, \quad \Big(\mu(a,b) = \mu(b,a)\Big).$$

Diremos, também, que ela tem elemento neutro (ou identidade) se existe um elemento e em S tal que

$$a.e = e.a = a, \forall a \in S.$$

Neste caso, diremos que e é o elemento neutro, ou a identidade, para μ .

Utilizaremos a notação 1 para a identidade no caso em que μ é denotada por um produto e 0 pro caso em que é denotada por adição.

Exemplo 5. A multiplicação de matrizes é associativa, não é comutativa e possui identidade.

Exemplo 6. A soma de números inteiros é associativa, comutativa e possui identidade.

Exemplo 7. A potência nos números reais é não associativa, nem comutativa, mas possui identidade: $a^{(b^c)} \neq (a^b)^c = a^{bc}$

Proposição. Seja S um conjunto não-vazio e μ uma operação em S denotada pelo produto. Então, existe um único jeito de definir o produto (denotado temporariamente por $[a_1, \dots, a_n]$) de n elementos em S tal que

- (i) $[a_1] = a_1;$
- (ii) $[a_1, a_2] = \mu(a_1, a_2) = a_1 a_2;$
- (iii) $\forall 1 \le i < n, [a_1, \dots, a_n] = [a_1, \dots, a_i][a_{i+1}, \dots, a_n].$

<u>Prova.</u> (iii) \Rightarrow Para o caso $n \leq 2$ é ok. Agora, suponha o produto bem-definido de r elementos em S, $r \leq n = 1$. Então, defina $[a_1, \dots, a_n] := [a_1, \dots, a_{n-1}][a_n]$. Como a definição acima satisfaz a condição (iii) para i=n-1, se ela estiver bem-definida, ela será única. Com efeito, seja $1 \leq i < n-1$, tal que

$$[a_1, \dots, a_n] = [a_1, \dots, a_{n-1}][a_n] = [a_1, \dots, a_i][a_{i+1}, \dots, a_{n-1}][a_n]$$

$$= \left([a_1, \dots, a_i] \right) \left([a_{i+1}, \dots, a_{n-1}][a_n] \right)$$

$$= [a_1, \dots, a_i][a_{i+1}, \dots, a_n]. \blacksquare$$

<u>Definição.</u> Seja S não-vazio e μ uma operação em S com identidade 1. Um elemento a de S \acute{e} dito inversível se existe b em S tal que ab = ba = 1. Neste caso, b \acute{e} o inverso de a, denotado por $b := a^{-1}$.

Note que tanto o elemento inverso quanto o elemento neutro, se existirem, são únicos (c.f. Lema abaixo). Além disso, o inverso da adição é denotad por -a.

Lema. Seja S não-vazio, μ uma operação associativa denotada pelo produto. Então,

- i) Existe no máximo um elemento neutro para S e μ;
- ii) Se o elemento neutro existe, então para cada elemento de S, existe no máximo um inverso;
- iii) Se um elemento a de S tem inverso à esquerda l e à direita r, i.e. l.a = 1 e a.r = 1, então a é inversível com inverso l = r.
- iv) Se a, b em S são inversíveis, então o produto ab é inversível, com inverso $b^{-1}a^{-1}$.

Antes de provar, observe que a existência de um elemento inverso à esquerda ou à direita não garante que um elemento seja inversível (exercício), eles devem coincidir.

<u>Prova.</u> $(i) \Rightarrow$) Suponha que existem 1, 1' em S como seus elementos neutros. Basta mostramos que eles coincidem. Com efeito,

$$1 = 1.1' = 1'.1 = 1'.$$

Portanto, o elemento neutro é único. $(ii) \Rightarrow$) Assuma a existência de dois elementos inversos em S para um elemento a, denotados por b, b'. Então, como ab = ba = 1, temos

$$b = b1 = b(ab') = (ba)b' = 1b' = b'.$$

Portanto, o elemento inverso é único. Os itens (iii) e (iv) são exercícios.

<u>Definição</u>. Um monoide é um par (G, μ) , em que G é um conjunto não-vazio e μ uma operação associativa e com elemento neutro em G. Se, ainda por cima, μ for associativa, (G, μ) é um monoide abeliano (ou comutativo).

<u>Definição.</u> Um grupo é um par (G, μ) é um monoide (G, μ) com a condição extra que todo elemento de G possui inverso. Caso μ seja comutativa, chamamos G de grupo abeliano.

Exemplo 8. Os inteiros com a soma, $(\mathbb{Z},+)$, é um grupo comutativo, enquanto $(\mathbb{Z},.)$ não é um grupo, mas sim um monoide.

Exemplo 9. O grupo das matrizes com entradas reais e sua multiplicação, $(\mathbb{M}_n(\mathbb{R},.), \text{ \'e um grupo não-abeliano.})$