MA3701 Optimización Profesor: Alejandro Jofré Auxiliar: Benjamín Vera Vera

Auxiliar 2

Optimización sin restricciones 13 de agosto de 2025

- **P1.** Sea $A \in \mathbb{R}^{m \times n}$. Pruebe que $A^{\top}A \in \mathbb{R}^{n \times n}$ es semidefinida positiva. Entregue condiciones para que sea definida positiva.
- **P2.** (Regresión de mínimos cuadrados lineal) Suponga que se cuenta con N datos $(x_i, y_i)_{i=1}^N$ en que $x_i \in \mathbb{R}^d$ representa *características* o *atributos* de un objeto que se piensa que predicen la *respuesta* y_i . A modo de ejemplo, se puede pensar que x_i representa diferentes datos asociados a un terreno i –tales como tamaño, distancia a la estación de metro más cercana, etc– que se buscan relacionar con el precio y_i del mismo. Se busca entonces modelar esta relación como una función lineal afín de tipo

$$y = a^{\top}x + b$$

con $a \in \mathbb{R}^d, b \in \mathbb{R}$ escogidos adecuadamente. Estudiaremos el problema de encontrar a,b bajo el criterio de minimizar el *error cuadrático medio* tomado sobre los datos x_i,y_i que se tiene. Es decir, se busca encontrar a,b que minimicen la función

$$f(a,b) = \sum_{i=1}^{N} (y_i - (a^{\top}x + b))^2.$$

A modo de simplificación, dado $x_i \in \mathbb{R}^d$, se puede añadir una coordenada adicional definida como $x_{i,d+1} = 1$ y definir también $\theta = (a,b)$ de modo que tenemos

$$f(\theta) = \sum_{i=1}^{N} (y_i - \theta^{\top} x_i)^2.$$

- a) Pruebe que la función $f(\theta)$ es convexa.
- b) Asumiendo que la matriz $X=(x_{i,j})_{i=1,j=1}^{N,d+1}$ tiene columnas linealmente independientes, encuentre el único minimizador θ^* para el problema de mínimos cuadrados.
- c) Deduzca la fórmula explícita para (a, b) en el caso particular d = 1.