

G1: MODULE MSI-MI MODELISATION DES SYSTÈMES D'INFORMATION-

MICRO INFORMATIQUE

ANNÉE SCOLAIRE 2015-2016 SÉANCE 4 : COURS

DIDIER CORBEEL & JEAN-PIERRE BOUREY, ECOLE CENTRALE DE LILLE

Cette œuvre est mise à disposition selon les termes de la Licence Creative Commons Attribution – Pas d'Utilisation Commerciale – Partage dans les Mêmes Conditions 3.0 France disponible en ligne http://creativecommons.org/licenses/by-nc-sa/3.0/fr/o up ar courrier postal à CreativeCommons, 171 Second Street, Suite 300, San Francisco, California94105, USA

31/05/2016

- Cette œuvre est mise à disposition selon les termes de la Licence Creative Commons
 Attribution − Pas d'Utilisation Commerciale − Partage dans les Mêmes Conditions 3.0 France disponible en ligne
- This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 3.0 available online at

http://creativecommons.org/licenses/by-nc-sa/3.0/

http://creativecommons.org/licenses/by-nc-sa/3.0/fr/

or by regular mail at

CreativeCommons, 171 Second Street, Suite 300, San Francisco, California94105, USA.

GO O O O O

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

LE MODÈLE RELATIONNEL ...

- Hypothèse : Chaque occurrence de phénomène du monde réel peut être décrit par une relation.
- ▶ 1. Le concept de relation.

```
Soient n ensembles D_1, D_2, ..., D_n
```

```
Une relation R sur ces ensembles : R(D_1, D_2, ..., D_n) \subset D_1 \times D_2 \times ... \times D_n
```

R est un ensemble de n-uplets (ou tuples) de la forme

```
\langle d_1, d_2, \ldots, d_n \rangle tels que d_1 \in D_1, d_2 \in D_2, \ldots, d_n \in D_n
```


EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

... LE MODÈLE RELATIONNEL ...

- Transposition au domaine des données.
 - D_i : domaines de valeur des propriétés

DOMAINE: ensemble de valeurs.

- Exemple 1
 - •D₁: ensemble des chaînes de caractères de longueur au plus 20.
 - D₃: ensemble des entiers
 - •D₄: ensemble des réels.

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

... LE MODÈLE RELATIONNEL ...

centralelille

ATTRIBUT: variable prenant ses valeurs dans un domaine.

- Exemple 2
 - "l'attribut nom prend ses valeurs dans D1 (ensemble des chaînes de caract. de longueur max 20)
 - l'attribut ville prend ses valeurs dans $D_2 = D_1$
 - "I'attribut num prend ses valeurs dans D3 (ensemble des entiers)
 - l'attribut salaire prend ses valeurs dans D4 (ensemble des réels)

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

9

... LE MODÈLE RELATIONNEL ...

▶ Relation

Une **RELATION** sur les attributs A_1, A_2, \ldots, A_n de domaines respectifs D_1, D_2, \ldots, D_n est tout sousensemble du produit cartésien de $D_1 \times D_2 \times \ldots \times D_n$

- Exemple 3
 - une relation R sur NOM, VILLE, NUM, SALAIRE peut être décrite comme un ensemble de quadruplets

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

... LE MODÈLE RELATIONNEL ...

- Une relation peut être représentée sous forme de tableaux dont les noms de colonnes sont ceux des attributs correspondants.
- Exemple 4:
 - La relation R peut être écrite sous la forme :

NOM	VILLE	NUM	SALAIRE
Dupont	Paris	2140	1200.50
Durand	Orsay	1128	2000.50
Dubois	Orsay	3213	1500.99

31/05/2016

11

... LE MODÈLE RELATIONNEL ...

- Remarques :
 - Un tableau ne peut représenter une relation que s'il ne contient pas deux lignes identiques.
 - L'ordre des lignes n'a pas d'importance.
 - L'ordre des colonnes n'a pas d'importance à partir du moment où chacune possède un nom.
 - Chaque case du tableau ne contient qu'une seule valeur.

31/05/2016

... LE MODÈLE RELATIONNEL ... Schéma de relation R Un SCHÉMA DE RELATION R est la liste des attributs de la relation R avec leur DOMAINE Exemple 5: **La relation R de l'exemple 3 a pour schéma : R = [NOM:D1, VILLE:D1, NUM:D3, SALAIRE:D4] **EC-IIIIe, Didier Corbeel & Jean-Pierre BOUSO **EC-IIIIe, Didier Corbeel & Jean-Pierre BOUSO 31/05/2016 31/05/2016

... LE MODÈLE RELATIONNEL ...

- > Prédicats associés à une relation.
 - Une relation $R(D_1, D_2, \ldots, D_n)$ est une partie du produit cartésien $D_1 \times D_2 \times \ldots \times D_n$.
 - Toutes les valeurs possibles de l'un quelconque des domaines D_i ne figurent pas dans l'ensemble des n-uplets de la relation.
 - Pour des raisons de cohérence de données, on associe un ou n prédicats qui précisent quand les valeurs d'un n-uplet sont acceptables.
- CONTRAINTES D'INTÉGRITÉ

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

15

... LE MODÈLE RELATIONNEL ...

- Exemple 6 : relation EMPLOYÉ
 - Prédicat 1 : tout employé a un salaire supérieur à 1000 euros
 - Prédicat 2 : le numéro de matricule d'un employé est OBLIGATOIRE et UNIQUE
 - Prédicat 3 : tout employé a un nom
 - Prédicat 4 : la ville doit être donnée pour chaque employé

 $\Theta \Theta \Theta \Theta$

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

```
centralelille
 ... LE MODÈLE RELATIONNEL ...
  Transcription des prédicats dans le modèle Physique (cf. séance 5)
                                                   Prédicat 3
   create table EMPLOYE (
     NOM
                varchar2(20)
                                not null,
                                                   Prédicat 4
                                                                               Prédicat 2
                varchar2(20)
                                not null,
     VILLE
                                 constraint PK EMPLOYE primary key,
     NUM
                integer
                                 constraint CK EMPLOYE SALAIRE check (salaire > 1000)
     SALAIRE
                number(5,2)
   );
                                                                               Prédicat 1
@@@
EC-Lille, Didier Corbeel & Jean-Pierre
                                                                                     31/05/2016
                                                                                                 17
Bourey, Module MSI-MI G1
```


Clé primaire

- Identifiant d'un n-uplet.
- Il ne peut y avoir deux n-uplets ayant la même valeur de clé primaire (unicité)
- Elle doit être obligatoirement renseignée (pas de valeur NULL).
- Peut être définie par une combinaison des valeurs de plusieurs attributs d'un n-uplet.

Clé étrangère

- identifie une colonne ou un ensemble de colonnes d'une table (de départ) comme référençant une colonne ou un ensemble de colonnes d'une table référencée (autre table ou la même)
- Référence à une clé primaire (le plus souvent) ou clé unique
- Sert pour l'intégrité référentielle
- •Une valeur de la table référencée ne peut être supprimée que s'il n'existe plus de n-uplets dans la table de départ la référençant
- Par défaut, elle autorise les valeurs non renseignées (NULL) mais on peut les interdire en ajoutant une contrainte NOT NULL

Type de clé	Caractéristiques des valeurs	Pour quoi faire ?	Combien par relation?	Conseil
Primaire	Pas de doublonObligatoires	 Identifiant d'un n- uplet Peut être référencée par une clé étrangère 	1 1	Choisir une clé primaire n'ayant pas de sens métier
Jnique	Pas de doublonPeuvent être non définies	 Peut être référencée par une clé étrangère 	0 *	
Métier (clé secondaire, alternative)	Pas de doublonObligatoiresOnt un sens pour le métier	 Identifiant d'un n- uplet Peut être référencée par une clé étrangère 	1 *	Éviter de prendre une clé métier pour clé primaire pour faciliter les modifications (cf. exemple diapo suivante)
Etrangère	 Référencent une clé primaire, secondaire ou unique Peuvent être non définies 	 Intégrité référentielle 	0 *	Choisir comme référence une clé n'ayant pas de sens métier pour faciliter les modifications

OPÉRATEURS DE L'ALGÈBRE RELATIONNELLE (4)

centralelille

Tous ces opérateurs s'appliquent à l'ensemble des tuples des relations.

Le résultat d'une opération est une nouvelle relation sur laquelle d'autres opérations vont pouvoir être réalisées.

© ® ®

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

29

OPÉRATEURS DE L'ALGÈBRE RELATIONNELLE (5)

- Les trois opérateurs principaux de l'algèbre relationnelle sont :
 - La projection
- La restriction
- •La jointure (ou composition)
- Pour information, un opérateur de l'algèbre relationnelle a été oublié dans le standard du langage SQL
- La division

© ① ③ ②

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

OPÉRATEURS DE L'ALGÈBRE RELATIONNELLE (6)

centralelille

Soit la relation EMPLOYE (NUM, NOM, VILLE, SALAIRE)

NUM	NOM	VILLE	SALAIRE
123	Martin	Lille	1200.00
345	Dupond	Roubaix	1500.00
567	Racine	Lille	1400.00
782	Moliere	Lille	1750.00

- Exemple de PROIECTION:
 - Quelles sont les villes dans lesquelles habitent les employés ?

Ville Lille Roubaix

Notation : $R1 = \prod_{A1, A2} (R)$

Exemple : LesVilles = Π_{Ville} (Employe)

@00

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

31

centralelille

OPÉRATEURS DE L'ALGÈBRE RELATIONNELLE (7)

NUM	NOM	VILLE	SALAIRE
123	Martin	Lille	1200.00
345	Dupond	Roubaix	1500.00
567	Racine	Lille	1400.00
782	Moliere	Lille	1750.00

- Exemple de RESTRICTION :
 - Quels sont les employés qui gagnent entre 1300 et 1600 euros ?

NUM	NOM	VILLE	SALAIRE
345	Dupond	Roubaix	1500.00
567	Racine	Lille	1400.00

- ▶ Notation : $R1 = \sigma_{condition}$ (R)
- \triangleright Exemple: EmployesSalairesIntermediaires = $\sigma_{\text{salaire}} > 1300 \text{ et salaire} < 1600 \text{ (Employe)}$

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

MISES À JOUR ET COHÉRENCE

- But d'un modèle relationnel : décrire une base de données qui va être effectivement utilisée
 Chargée, consultée, mise à jour (maj)
- Les maj (insertions, suppressions, modifications) doivent conserver la cohérence de la base de données
 - Intégrité référentielle
 - Toute contrainte d'intégrité
 - •En particulier les dépendances entre attributs
- Selon le modèle relationnel c'est plus ou moins facile
 - Plus la base de données contient de dépendances, plus les maj avec maintien de la cohérence sont difficiles

31/05/2016

EXEMPLE D'ANOMALIES DE MISE À JOUR

centralelille

▶ Relation : Livraison

Livraison	NFourn	adrFour	NProd	Prix	Qté
	3	Paris	4	40	2
	7	Lille	1	25	1
	5	Ascq	4	40	3
	3	Paris	2	30	7
	3	Lille	8	70	8

- Si un fournisseur change d'adresse et qu'un seul n-uplet est mis à jour => incohérence
- Si un nouveau n-uplet est inséré pour un fournisseur connu, avec une adresse différente
 incohérence
- Si un fournisseur n'a pas de livraison en cours, son adresse est perdue ...

31/05/2016

37

Qu'est-ce qu'une BD relationnelle "incorrecte"?

- Une relation n'est pas correcte si:
- Elle implique des répétitions au niveau de sa population : redondances
- Elle pose des problèmes lors des maj (insertions, modifications et suppressions)
- Les conditions pour qu'une relation soit correcte peuvent être définies formellement :
 - => règles de normalisation

31/05/2016

EXEMPLE (SUITE)

ecoue centrale lille

▶ Relation : Livraison

Livraison	NFourn	adrFour	NProd	Prix	Qté
	3	Paris	4	40	2
	7	Lille	1	25	1
	5	Ascq	4	40	3
	3	Paris	2	30	7
	3	Lille	8	70	8

- L'adresse du fournisseur ne dépend que du fournisseur et pas du produit
- Le prix du produit ne dépend que du produit et pas du fournisseur
 - => Redondances
 - => Anomalie de mise à jour
- Cette relation n'est pas correcte. Il faut la normaliser

31/05/2016

39

NORMALISATION D'UN SCHÉMA

- Processus de transformation d'un schéma S1 pour obtenir un schéma S2:
- Qui est **équivalent** (même contenu)
- Dont les mises à jour sont simples
- Mise à jour simple :
 - 1 changement élémentaire dans le monde réel se traduit par UNE mise à jour d'UN n-uplet
- Exemples de changements élémentaires
 - Un fournisseur change d'adresse
 - Un produit change de prix
 - Dans l'exemple de la relation LIVRAISON, les mises à jour sont complexes

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

NORMALISATION D' UNE RELATION Processus de décomposition d'une relation à maj complexes en plusieurs relations à maj simples Exemple: La relation LIVRAISON (n fourn, adrF, n prod, prix, qté) sera décomposée en : FOURNISSEUR (n fourn, adrF) PRODUIT (n prod, prix) LIVRAISON (n fourn, n prod, qté)

31/05/2016

43

DÉPENDANCES FONCTIONNELLES ... Notion de dépendance fonctionnelle Un attribut B est en DÉPENDANCE FONCTIONNELLE d'un sous ensemble d'attributs A dans un schéma de relation R (A, B, C, D) SSI à toute valeur de a ∈ A n'est associée qu'une seule valeur b ∈ B

@**@**@

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

RELATION ENTRE DF ET OPÉRATEUR ALGÉBRIQUE

- Soit R(A, B, X, Y, Z)
- Soient t1 et t2 2 n-uplet quelconques de R
- $\flat X \rightarrow Y \quad Si \quad (\prod_{\mathbf{x}} (\sigma_{\pm 1}(\mathbf{R})) = (\prod_{\mathbf{x}} (\sigma_{\pm 2}(\mathbf{R})) \Rightarrow (\prod_{\mathbf{y}} (\sigma_{\pm 1}(\mathbf{R})) = (\prod_{\mathbf{y}} (\sigma_{\pm 2}(\mathbf{R})))$
-) (Y est en dépendance fonctionnelle de X si la projection de t1 sur X est égale à la projection de t2 sur X implique que la projection de t1 sur Y doit être égale à la projection de t2 sur Y)

GO O O O

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

45

... DÉPENDANCES FONCTIONNELLES .

Exemple 10:

COMMANDE (Produit, Client, AdresseClient, Quantité, Montant, Date)

- Si, dans notre système, on sait que :
 - A un instant donné, un client n'a qu'une seule adresse.
 - Un produit commandé par un Client un jour donné correspond à un montant déterminé et unique.
 - Un produit commandé par un Client un jour donné correspond à une quantité déterminée et unique.
- ... Dépendances fonctionnelles sont alors :

```
Client → AdresseClient

(Date, Produit, Client) → Montant

(Date, Produit, Client) → Quantité
```

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

Dépendance fonctionnelle élémentaire ...

centralelille

Un attribut **B** est en

DÉPENDANCE FONCTIONNELLE ELEMENTAIRE

d'un sous-ensemble d'attributs A

- s'il est fonctionnellement dépendant de A,
- s'il n'est pas fonctionnellement dépendant d'une partie de A.

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

49

... DÉPENDANCE FONCTIONNELLE ÉLÉMENTAIRE

Exemple 11:

FOURNISSEUR (NumFournisseur, NumProduit, Date, Quantité, VilleFourn, CodePostal, Département)

- Dépendances fonctionnelles élémentaires :
 - NumFournisseur, NumProduit, Date → Quantité
 - ■NumFournisseur → VilleFourn
- Dépendance fonctionnelle NON élémentaire :

 - ■(Car Département, BureauDistrib → Département)

© © © Ø

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

FORME DES RELATIONS ...

- Forme quelconque (0-FN) (C'est la forme la plus générale)
- ▶ Première forme normale (1-FN)
- Une relation est 1-FN si
- chacun des attributs appartient à un domaine élémentaire
- •toutes les données sont atomiques
- sont constants dans le temps (age vs dateDeNaissance)
- Exemple13:
 - PRODUIT(CodeProduit, Libellé, PrixUnit) est en 1-FN
- Intérêt
 - Pas de mises à jour régulières
 - Recherches plus rapides : pas d'analyse des contenus d'attributs

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

53

... FORMES DES RELATIONS ...

- Deuxième forme normale (2-FN)
- Une relation est 2-FN si et seulement si
 - elle est en 1-FN
 - •les attributs qui ne font pas partie de l'identifiant sont en dépendance fonctionnelle élémentaire de l'identifiant.
- Exemple 14:

```
COMMANDE (Produit, Client, Date, Quantité, Montant) est en 2-FN
```

COM (Produit, LibelléProduit, Client, Date, Quantité, Montant, AdrClient)

n'est pas 2-FN car Produit → LibelléProduit et Client → AdrClient

- Intérêt
 - Limite la redondance des données

 $\Theta \Theta \Theta \Theta$

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

SYSTÈME À MODÉLISER

- Exemple "Cinéma"
 - Un film est caractérisé par son titre, son réalisateur, son budget, son année de sortie et le salaire du réalisateur
 - Un acteur est caractérisé par son nom, son prénom, sa nationalité, sa date de naissance
 - Un acteur est rémunéré pour sa participation à un film
 - Les films, acteurs et réalisateurs seront identifiés par un numéro (nfilm, ...)

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

61

DICTIONNAIRE DE DONNÉES

- Un dictionnaire de données
- Regroupe les caractéristiques essentielles des données du SI
- Pour chaque donnée pertinente sont définis
 - Le nom
 - Le domaine (numérique, texte ou date/heure)
 - Les règles de validations
 - Les synonymes

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

EXEMPLE DE DICT. DE DONNÉES (SI CINÉMA)

Nom	Domaine	Règles de validation	Synonymes
Nfilm	Numérique	Identifie un film	
Titre	Texte	De longueur <= 80	
Budget	Numérique	Positif ou nul	
Sortie	Numérique	> 1900	
Réalisateur	Numérique	Identifie une personne	npersonne
Salaire_réalisateur	Numérique	Positif ou nul	
Nacteur	Numérique	Identifie un acteur	npersonne
Nom	Texte	De longueur <=30	
Prénom	Texte	De longueur <=16	
Nationalité	Texte	De longueur <=20	
Naissance	Date	>=1/1/1900	_
Salaire_Acteur	Numérique	Positif ou nul	

© O © O

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

63

GRAPHE DE DÉPENDANCE FONCTIONNELLE ÉLÉMENTAIRES ET DIRECTES COMMUNICIENTES

- > Un sommet représente un ensemble de données du dictionnaire :
 - ■<nacteur, nfilm>
 - "<nom> OU nom
- > Un arc est orienté et représente un DFED entre deux ensembles de données :
 - "<nfilm> → <titre>

BY NC SA

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

ETAPE 1 : DÉNOMBRER LES RELATIONS ...

- Dénombrer les relations en 3FN
 - Chaque relation 3FN nécessite la connaissance de son identifiant ou clé primaire
 - Le graphe permet de trouver les identifiants
 - · Ce sont les SOURCES (sommet dont partent des arcs) de dféd

Exemple pour le SI Cinéma

- .<nfilm>
- .<npersonne>
- •<npersonne, nfilm>
- · L'algorithme aura TROIS itérations

31/05/2016

ETAPE 2: CHOISIR LA PROCHAINE RELATION À CONSTRUIRE

- L'étape 1 permet de dénombrer les relations, il nous reste à CHOISIR la relation à définir
- Méthode : Critère de choix ou PONDERATION
- Pondérer chaque source de dféd (trouvée étape 1) par la cardinalité de cette source
- Choisir le poids maximum (ou l'un des poids maximum)
- Exemple du SI Cinéma
 - "<nfilm>
 →
 1

 "<npersonne>
 →
 1

 "<npersonne, nfilm>
 →
 2

GO O O O

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

69

ETAPE 3: CONSTRUIRE UNE RELATION EN 3-FN

- Rappel: Une relation en 3-FN pour un identifiant, est une relation dont les attributs
- qui ne font pas partie de l'identifiant
- sont en Dépendance Fonctionnelle Élémentaire et Directe de cet identifiant
- L'étape 2 nous donne un identifiant, en regroupant les sommets directement accessibles de cet identifiant nous obtenons par construction, une relation 3-FN
- Exemple : SI Cinéma
 - R1(npersonne, nfilm, salaire_acteur)

Sources de la DFED

© © © Ø

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016

/lodèle	Avantages	Inconvénients
JML 2.x	. Communication aisée (car graphique) . Quelques règles de gestion (multiplicité des associations)	Redondances d'information si on y prend pas garde
elationnel	 Détection et élimination des redondances d'information (alg. de normalisation) Modèle orienté "informatique" (bien adapté aux BD relationnelles) 	Communication difficile (illisible ©)

COMPARAISON DES DEUX MODÈLES

Les deux modèles ne sont pas équivalents mais

COMPLEMENTAIRES

- Le premier modèle à utiliser est le modèle UML 2.x car il est proche des "clients"
- Le second modèle est utilisé essentiellement par les informaticiens devant mettre en place le modèle physique de données (cf. séance 5)
 - Bases de données
 - Applications
 - ...

CE QUE L'ON A ABORDÉ DURANT CETTE SÉANCE

- Le modèle relationnel (*pour définir les bases*)
 - Relation, domaine, attributs, identifiant
- Les dépendances fonctionnelles (pour caractériser les dépendances entre attributs)
 - Dépendance fonctionnelle
- Dépendance fonctionnelle élémentaire
- Dépendance fonctionnelle élémentaire directe
- Les formes normales (*pour caractériser des relations réduisant les redondances et facilitant les mises à jour*)
- Première, deuxièmes et troisième forme normales
- Une méthode de normalisation (pour passer à un ensemble de relations en 3-FN)
- Basée sur le graphe des dépendances fonctionnelles

EC-Lille, Didier Corbeel & Jean-Pierre Bourey, Module MSI-MI G1

31/05/2016