Random Variables: Joint, Conditional, and Marginal Distributions

The latest series of collectible Lego Minifigures contains 3 different Minifigure prizes (labeled 1, 2, 3). Each package contains a single unknown prize. Suppose we only buy 3 packages and we consider as our sample space outcome the results of just these 3 packages (prize in package 1, prize in package 2, prize in package 3). For example, 323 (or (3,2,3)) represents prize 3 in the first package, prize 2 in the second package, prize 3 in the third package. Let X be the number of distinct prizes obtained in these 3 packages. Let Y be the number of these 3 packages that contain prize 1. Suppose that each package is equally likely to contain any of the 3 prizes, regardless of the contents of other packages; let Y denote the corresponding probability measure.

It can be shown that the joint distribution of X and Y can be represented by the following table.

P(X =	x,	Y	=	y)
-------	----	---	---	----

	y			
x	0	1	2	3
1	2/27	0	0	1/27
2	6/27	6/27	6/27	0
3	0	6/27	0	0

- 1. Briefly explain why there are 27 possible outcomes.
- 2. Show that P(X = 1, Y = 0) = 2/27 by listing the outcomes that comprise the event $\{X = 1, Y = 0\}$.
- 3. Show that P(X=1,Y=3)=1/27 by listing the outcomes that comprise the event $\{X=1,Y=3\}$.
- 4. Show that P(X=2,Y=0)=6/27 by listing the outcomes that comprise the event $\{X=2,Y=0\}$.
- 5. Make a table representing the marginal distribution of X and compute $\mathrm{E}(X)$.
- 6. Make a table representing the marginal distribution of Y and compute $\mathrm{E}(Y)$.
- 7. Find the conditional distribution of Y given X = x for each possible value of x.
- 8. Make a table representing the distribution of $\mathrm{E}(Y|X)$.
- 9. Find the conditional distribution of X given Y = y for each possible value of y.
- 10. Make a table representing the distribution of $\mathrm{E}(X|Y)$.
- 11. Describe three methods for how you could use physical objects (e.g., cards, dice, spinners) to simulate an (X,Y) pair with the joint distribution given by the table above.
 - a. Method 1: simulate outcomes from the probability space (i.e., prizes in the packages)
 - b. Method 2: simulate an (X,Y) pair directly from the joint distribution (without simulating outcomes from the probability space)
 - c. Method 3: simulate an (X,Y) pair by first simulating X from directly from its marginal distribution (without simulating outcomes from the probability space).

>

- 12. Suppose you have simulated many (X,Y) pairs. Explain how you could use the simulation results to approximate each of the following. You should not do any of the calculations; rather, explain in words how you would use the simulation results and simple operations like counting and averaging.
 - a. P(X = 3)
 - b. the marginal distribution of \boldsymbol{X}
 - $\mathsf{c.E}(X)$
 - $d. \operatorname{Var}(X)$
 - e. P(X = 2, Y = 1)
 - f. E(XY)
 - g. $\operatorname{Cov}(X,Y)$
 - h. P(X = 1|Y = 0)
 - i. the conditional distribution of X given Y=0
 - j. E(X|Y=0)
 - k. P(Y = 0|X = 1)
 - l. the conditional distribution of Y given X=1
 - m. E(Y|X=1)