Chapitre 3

Suites numériques

I. Comportement d'une suite

Monotonie 1)

Définitions:

- Une suite (u_n) est **strictement croissante** à partir du rang p si, pour tout entier $n \ge p$: $u_{n+1} > u_n$
- Une suite (u_n) est **strictement décroissante** à partir du rang p si, pour tout entier $n \ge p$: $u_{n+1} < u_n$
- Une suite (u_n) est **croissante** à partir du rang p si, pour tout entier $n \ge p$:

$$u_{n+1} \ge u_n$$

Une suite (u_n) est **décroissante** à partir du rang p si, pour tout entier $n \ge p$:

$$u_{n+1} \le u_n$$

Une suite (u_n) est **stationnaire** ou constante à partir du rang p si, pour tout entier $n \ge p$:

Remarques:

Si une suite (u_n) est définie de manière explicite telle que $u_n = f(n)$ pour tout $n \in \mathbb{N}$, les variations de (u_n) suivent celles de f.

 $u_{n+1} = u_n$

- On peut étudier le signe de $u_{n+1}-u_n$: si $u_{n+1} - u_n \le 0$ pour tout n, c'est-à-dire $u_{n+1} \le u_n$, la suite (u_n) est décroissante.
- Si $u_n > 0$ pour tout n, on peut comparer $\frac{u_{n+1}}{u}$ à 1:

Si pour tout n, $\frac{u_{n+1}}{u_n} \ge 1$ avec $u_n > 0$, alors $u_{n+1} \ge u_n$ et la suite (u_n) est croissante.

Exemples:

Soit la suite (u_n) définie sur IN par $u_n = 2n^2 + n + 5$.

On a:

$$u_{n+1} - u_n = 2(n+1)^2 + (n+1) + 5 - (2n^2 + n + 5)$$

$$u_{n+1} - u_n = 2n^2 + 4n + 2 + n + 1 + 5 - 2n^2 - n - 5$$

$$u_{n+1} - u_n = 4n + 3$$

 $u_{n+1}-u_n>0$ car $n\ge 0$, d'où $u_{n+1}>u_n$ pour tout $n\in\mathbb{N}$.

Donc (u_n) est strictement croissante (comme la fonction f définie par $f(x)=2x^2+x+5$ sur IR+).

• Soit la suite
$$(v_n)$$
 définie sur $\mathbb N$ par $\left\{ egin{array}{l} v_0=-1 \\ v_{n+1}=v_n-2 \end{array}
ight.$

On a
$$v_{n+1} - v_n = v_n - 2 - v_n = -2$$
.

D'où
$$v_{n+1}-v_n<0$$
 pour tout $n\in\mathbb{N}$.

Donc (v_n) est strictement décroissante (contrairement à la fonction f définie par :

 $x \mapsto x-2$ qui est croissante sur \mathbb{R}).

2) Suites bornées

Définitions:

Soit M et m deux nombres réels. On dit que la suite (u_n) est :

- majorée par M si, pour tout $n \in \mathbb{N}$, $u_n \leq M$.
- **minorée** par m si, pour tout $n \in \mathbb{N}$, $u_n \ge m$.
- **bornée** si, pour tout $n \in \mathbb{N}$, $m \le u_n \le M$.

Remarque:

On dit aussi que M est un **majorant** et m un **minorant** de la suite (u_n) . m et M sont des nombres réels indépendants de n.

Exemples:

• Soit la suite $\left(\frac{1}{n}\right)_{n\geq 1} = \left\{\frac{1}{1}; \frac{1}{2}; \frac{1}{3}; \dots\right\}$. Pour tout $n \in \mathbb{N}^*$, $\frac{1}{n} > 0$.

Cette suite est donc minorée par 0, mais aussi par tout réel négatif.

• Soit la suite $(n^2)_{n\geq 0} = \{0;1;4;...\}$. Pour tout $n \in \mathbb{N}$, $n^2 \geq 0$. Cette suite est aussi minorée par 0, qui est,en plus, le **minimum** de la suite car il est atteint au rang 0.

Remarques:

- Une suite à termes tous positifs est minorée par 0.
- Une suite croissante est minorée par son premier terme : $u_0 \le u_1 \le u_2 \le ... \le u_n$ et une suite décroissante est majorée par son premier terme : $u_n \le ... \le u_1 \le u_0$.
- Si une suite est majorée par M, elle a une infinité de majorants. En particulier tout nombre supérieur à M est aussi un majorant de la suite.

Représentation graphique d'une suite bornée :

• Sur la droite numérique : tous les nombres u_n sont compris entre m et M.

• Dans le plan : tous les points de coordonnées $(n; u_n)$ sont situés entre les droites d'équations y=m et y=M.

II. Limite d'une suite

1) Limite infinie

Définition:

Soit une suite u et un réel A.

On dit que u_n tend vers $+\infty$ quand n tend vers $+\infty$ si tout intervalle de la forme A; $+\infty$ contient tous les termes u_n à partir d'un certain rang N.

Pour tout entier $n \ge N$, $u_n > A$.

On le note $\lim_{n\to+\infty} u_n = +\infty$.

Remarques:

- Lorsque $\lim_{n \to +\infty} u_n = +\infty$ on dit que la suite (u_n) diverge vers $+\infty$.
- Concrètement, les termes deviennent aussi grand qu'on le souhaite à partir d'un certain rang.
- De la même façon :

 u_n tend vers $-\infty$ quand n tend vers $+\infty$ si tout intervalle de la forme $]-\infty$; A[contient tous les termes u_n à partir d'un certain rang N.

Pour tout entier $n \ge N$, $u_n < A$.

On le note $\lim_{n\to+\infty} u_n = -\infty$.

Exemples:

• La suite (u_n) définie sur \mathbb{N} par $u_n = n^2$ a pour limite $+\infty$.

Soit A un réel négatif, l'intervalle A; + ∞ [contient tous les termes de la suite puisque $n^2 \ge 0$.

Soit A un réel strictement positif, l'intervalle A;+ ∞ [contient tous les termes de la suite (u_n) à partir du rang $E(\sqrt{A})+1$ où E désigne la fonction partie entière.

En effet, si $n \ge E(\sqrt{A}) + 1$ alors $n > \sqrt{A}$, puis $n^2 > A$ et donc $u_n > A$.

Graph1 Graph2 Graph3	<u>u</u> =n² /	n	u(n)
nMin=0 Nu(n)≣ກ²	1 /	0	0
u(ηMin)Β	1 /	200	10000 <u>1</u> 0000
∴∪(n)=		300 400	90000 160000
υ(nMin)=		100 200 300 400 500	250000 360000
∵ພ(ກ)= ພ(ກMin)=	77=46 X=46		287777
ີ້ພໍໃກ່Min)=	X=46Y=2116	n=600	•

• La suite (v_n) définie sur \mathbb{N} par $v_n = -\sqrt{n}$ a pour limite $-\infty$. Soit B un réel positif, l'intervalle $]-\infty$; B[contient tous les termes de la suite (v_n) . Soit B un réel négatif, l'intervalle $]-\infty$; B[contient tous les termes de la suite (v_n) à partir du rang $E(B^2)+1$.

En effet, si $n \ge E(B^2) + 1$ alors $n > B^2$ puis $\sqrt{n} > -B$ et donc $v_n < B$.

Limites des suites usuelles

Propriété:

Les suites (\sqrt{n}) , (n^2) , (n^3) , ..., (n^p) , où $p \in \mathbb{N}^*$ ont pour limite $+\infty$.

Démonstration :

Soit A un réel. Comme A est destiné à être aussi grand que l'on veut, on suppose A>0.

Alors dès que $n > A^2$, on a $A < \sqrt{n} \le n \le n^2 \le ... \le n^p$.

Donc \sqrt{n} , n, n^2 , ..., n^p appartiement à A; + ∞ dès que $n > A^2$. Ils ont donc pour limite + ∞ quand n tend vers + ∞ .

Propriété :

Les suites géométriques (q^n) où q>1 divergent vers $+\infty$.

pour q réel tel que
$$q > 1$$
, $\lim_{n \to +\infty} q^n = +\infty$

Démonstration:

Soit q>1. Posons q=1+a où a>0.

Préliminaire: montrons par récurrence que pour tout $n \ge 0$, $(1+a)^n \ge 1+na$.

• Initialisation:

Pour n=0, $(1+a)^n=1$ et 1+na=1 donc l'inégalité est vérifiée pour n=0.

• Hérédité :

Soit $n \in \mathbb{N}$ tel que $(1+a)^n \ge 1+na$. Montrons que $(1+a)^{n+1} \ge 1+(n+1)a$. $(1+a)^n \ge 1+na$ et $(1+a) \ge 0$ donc $(1+a)(1+a)^n \ge (1+a)(1+na)$. Soit $(1+a)^{n+1} \ge 1+na+a+na^2$, d'où $(1+a)^{n+1} \ge 1+(n+1)a+na^2$.

Comme $n \ge 0$ et $a^2 > 0$, $1 + (n+1)a + na^2 \ge 1 + (n+1)a$.

Ainsi $(1+a)^{n+1} \ge 1 + (n+1)a$.

• Conclusion:

Pour tout $n \ge 0$, $(1+a)^n \ge 1+na$.

Soit A un réel. Dès que $n \ge \frac{A-1}{a}$ on aura $1+na \ge A$ et donc $(1+a)^n \ge A$.

La suite $((1+a)^n)$ c'est-à-dire la suite (q^n) a donc pour limite $+\infty$.

2) Limite finie

Définition:

Soit une suite u et un réel ℓ .

On dit que u_n tend vers ℓ quand n tend vers $+\infty = 1$ si tout intervalle ouvert I contenant ℓ (aussi « petit » soit-il) contient tous les termes u_n à partir d'un certain rang N.

5

Pour tout entier $n \ge N$, $u_n \in I$.

Propriété :

Si une suite (u_n) a une limite finie ℓ quand n tend vers $+\infty$, cette limite est **unique**.

On la note $\lim_{n \to +\infty} u_n = \emptyset$.

Démonstration :

Supposons que (u_n) admette deux limites l et l ' avec l < l ':

• $\left| l-1; \frac{l+l'}{2} \right|$ contient tous les termes u_n à partir du rang n_0 .

• $\left| \frac{l+l'}{2}; l'+1 \right|$ contient tous les termes u_n à partir du rang n_1 .

Pour n plus grand que n_0 et n_1 , u_n appartiendrait à la fois aux deux intervalles qui sont disjoints. C'est impossible donc (u_n) ne peut pas admettre deux limites finies distinctes.

Remarques:

- Lorsque $\lim_{n \to +\infty} u_n = l$ on dit que la suite (u_n) converge vers l.
- Concrètement, les termes u_n deviennent aussi proche de l qu'on le souhaite à partir d'un certain rang.

On peut restreindre l'intervalle l à tout intervalle de la forme] l - ϵ ; l + ϵ [, où ϵ >0.

- Quand n tend vers $+\infty$, « u_n tend vers l » équivaut à « u_n l tend vers 0 » $u_n \in]l \epsilon$; $l + \epsilon[s'$ écrit $|u_n l| < \epsilon$.
- Si (u_n) converge vers l, les suites (u_{n+1}) , (u_{2n}) , (u_{2n+1}) convergent aussi vers l.
- Une suite convergente est bornée.

Exemple:

La suite (u_n) définie sur \mathbb{N}^* par $u_n = 1 + \frac{1}{n^2}$ est convergente et sa limite est 1.

Considérons un intervalle ouvert contenant 1 et symétrique par rapport à 1.

Il est donc de la forme]1- ϵ ; 1+ ϵ [avec ϵ >0 .

Tous les termes de la suite sont dans cet intervalle à partir du rang $E\left(\frac{1}{\sqrt{\epsilon}}\right)+1$.

En effet, si $n \ge E\left(\frac{1}{\sqrt{\varepsilon}}\right) + 1$, on a $n^2 > \frac{1}{\varepsilon}$ puis $\frac{1}{n^2} < \varepsilon$. Comme $\frac{1}{n^2} > 0$ et $\varepsilon > 0$, on a aussi $-\varepsilon < \frac{1}{n^2}$. D'où $-\varepsilon < \frac{1}{n^2} < \varepsilon$, puis $1 - \varepsilon < 1 + \frac{1}{n^2} < 1 + \varepsilon$. Donc $1 - \varepsilon < u_n < 1 + \varepsilon$.

Limites des suites usuelles

Propriétés :

- $\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$
- Pour tout $p \in \mathbb{N}^*$ les suites $\left(\frac{1}{n^p}\right)$ convergent vers 0.

$$\lim_{n\to+\infty}\frac{1}{n^p}=0$$

• Pour tout réel q tel que -1 < q < 1, la suite géométrique (q^n) converge vers 0.

Pour q réel tel que
$$|q|<1$$
, $\lim_{n\to+\infty} q^n=0$

Algorithme:

Déterminer le rang à partir duquel $|q^n| < \varepsilon$ pour |q| < 1

$$n \leftarrow 0$$

Tant que $|q^n| \ge \varepsilon$ faire $n \leftarrow n+1$
Fin Tant que

Calculatrice:

3) Suites sans limite

Une suite n'a pas forcément de limite. On dit également qu'elle diverge.

Exemples:

• La suite (u_n) définie sur \mathbb{N} par $u_n = (-1)^n$ est divergente. En effet, un intervalle contenant 1 mais pas -1 ne contiendrait qu'un terme sur deux de la suite et ne répondrait donc pas à la définition de la limite d'une suite.

• La suite (v_n) définie sur \mathbb{N} par $v_n = \sin n$ est divergente. En effet les termes de la suite se répartissent uniformément dans l'intervalle [-1;1]. La suite (v_n) n'a donc pas de limite.

Limites des suites usuelles

Propriété:

Pour tout réel q tel que $q \le -1$, la suite géométrique (q^n) diverge. Pour q réel tel que $q \le -1$, q^n n'admet pas de limite.

III. Opérations sur les limites

Soit (u_n) et (v_n) deux suites. Soit l et l' deux réels.

1) Somme de deux suites

$\operatorname{Si} \lim_{n \to +\infty} u_n =$	l	l	l	+∞	-∞	+∞
et $\lim_{n\to+\infty} v_n =$	l'	+∞	-∞	+∞	-8	-∞
alors $\lim_{n \to +\infty} (u_n + v_n) =$	<i>l</i> + <i>l</i> '	+∞	-∞	+∞		On ne peut pas conclure directement

Remarque:

Dans le cas où l'on ne peut pas conclure, on dit que l'on a une forme indéterminée.

2) Produit de deux suites

Si $\lim_{n\to+\infty} u_n =$	l	l > 0 ou $+\infty$	$l < 0$ ou $-\infty$	l > 0 ou $+\infty$	<i>l</i> < 0 ou −∞	0
et $\lim_{n \to +\infty} v_n =$	l'	+∞	+∞	-∞	-∞	+∞ ou -∞
alors $\lim_{n\to+\infty} (u_n \times v_n) =$	1 × 1 ′	+∞	∞	∞	+∞	On ne peut pas conclure directement

3) Quotient de deux suites

On suppose que pour tout entier n, $v_n \neq 0$.

Cas où la suite *u* est positive à partir d'un certain rang.

$\operatorname{Si} \lim_{n \to +\infty} u_n =$	l	l	0	l > 0 ou $+\infty$	$l > 0$ ou $+\infty$	+∞	+∞
et $\lim_{n\to+\infty} v_n =$	<i>l</i> '≠0	+∞ ou -∞	0	0 avec $v_n > 0$	0 avec $v_n < 0$	<i>l '≠</i> 0	+∞ ou −∞
alors $\lim_{n\to+\infty} \frac{u_n}{v_n} =$	<u>l</u>	0	On ne peut pas conclure directement	+∞	∞	$ \begin{array}{c} +\infty \\ \text{si } l' > 0 \\ -\infty \\ \text{si } l' < 0 \end{array} $	On ne peut pas conclure directement

Dans le cas ou la suite u est négative à partir d'un certain rang, on construit un tableau analogue en utilisant la règle des signes.

Exemples:

Soit les suites (u_n) et (v_n) définies sur IN par :

$$u_n = \frac{2}{3n+5} \text{ et } v_n = n - \sqrt{n}$$

• Pour la suite (u_n) , on a $\lim_{n \to +\infty} 2=2$ et par produit et somme $\lim_{n \to +\infty} (3n+5)=+\infty$. Par quotient, on obtient $\lim_{n \to +\infty} u_n=0$.

• Pour la suite (v_n) , on est dans un cas où on ne peut pas conclure directement. En effet, on ajoute une suite qui tend vers $+\infty$ ($w_n=n$) à une suite qui tend vers $-\infty$ ($u_n=-\sqrt{n}$).

En factorisant par n et en simplifiant, on a :

$$v_n = n \times \left(1 - \frac{\sqrt{n}}{n}\right) = n \times \left(1 - \frac{1}{\sqrt{n}}\right)$$

Or $\lim_{n \to +\infty} n = +\infty$ et par quotient puis somme $\lim_{n \to +\infty} \left(1 - \frac{1}{\sqrt{n}}\right) = 1$.

Par produit, on obtient $\lim_{n \to +\infty} v_n = +\infty$.

IV. Propriétés sur les limites

1) <u>Détermination de limites par comparaison</u>

<u>Propriétés :</u>

Soit deux suites (u_n) et (v_n) et un entier naturel N tels que pour tout entier $n \ge N$, $u_n \le v_n$.

Théorème de minoration :

Si
$$\lim_{n \to +\infty} u_n = +\infty$$
 alors $\lim_{n \to +\infty} v_n = +\infty$

Théorème de majoration :

Si
$$\lim_{n \to +\infty} v_n = -\infty$$
 alors $\lim_{n \to +\infty} u_n = -\infty$

Démonstration :

On suppose que $\lim_{n \to +\infty} u_n = +\infty$.

On cherche à démontrer que tout intervalle de la forme $]A;+\infty[$ contient toutes les valeurs de (v_n) à partir d'un certain rang.

Soit A un réel. Comme $\lim_{n\to+\infty} u_n = +\infty$, l'intervalle A; $+\infty$ [contient tous les A a partir d'un rang A : pour tout $A \ge B$, A].

Alors pour tout entier $n \ge max(p; N)$, on a $v_n \ge u_n > A$, c'est-à-dire $v_n \in A$;+ ∞ .

On en déduit : $\lim_{n \to +\infty} v_n = +\infty$

La démonstration du théorème de majoration est analogue.

Exemple:

Soit la suite (u_n) définie sur \mathbb{N} par $u_n = n + \sin(n)$.

Pour tout entier n, $\sin(n) \ge -1$, donc $u_n \ge n-1$.

Or $\lim_{n\to+\infty} (n-1) = +\infty$, donc d'après le théorème de minoration :

$$\lim_{n \to +\infty} u_n = +\infty$$

Théorème des gendarmes :

On considère trois suites (u_n) , (v_n) et (w_n) .

Soit un entier N et un réel ℓ .

On suppose que pour tout entier $n \ge N$: $u_n \le v_n \le w_n$.

Si les suites (u_n) et (w_n) convergent vers la même limite ℓ alors la suite (v_n) **converge** également vers ℓ .

Démonstration :

Soit I un intervalle contenant l. On veut démontrer que cet intervalle contient tous les termes de la suite (v_n) à partir d'un certain rang n_0 .

On utilise les hypothèses:

- (u_n) tend vers l, donc I contient tous les termes de la suite (u_n) à partir d'un certain rang n_1 .
- (w_n) tend vers l,donc I contient tous les termes de la suite (w_n) à partir d'un certain rang n_2 .
- $u_n \le v_n \le w_n$ à, partir d'un certain rang N.

Soit $n_0 = max(n_1; n_2; N)$.

I contient donc tous les termes des suites (u_n) et (w_n) à partir du rang n_0 .

Et $u_n \le v_n \le w_n$ pour tout $n \ge n_0$.

Ce raisonnement s'applique pour n'importe quel intervalle ouvert I contenant l, la suite (v_n) tend donc vers l.

Remarques:

- Ce théorème permet de montrer que la suite (v_n) a une limite et de connaître cette limite.
- On en déduit que si $|u_n l| \le v_n$ à partir d'un certain rang avec $\lim_{n \to +\infty} v_n = 0$ alors $\lim_{n \to +\infty} u_n = l$.

2) Convergence monotone

Propriété :

Soit une suite (u_n) convergent vers un réel ℓ .

Si la suite (u_n) est **croissante**, alors la suite (u_n) est **majorée** par ℓ

Pour tout entier $n, u_n \leq \ell$.

Démonstration :

On raisonne par l'absurde : on suppose qu'il existe un entier n_0 tel que $u_{n_0} > l$.

- Comme la suite (u_n) est croissante, pour tout $n \ge n_0$, $l < u_{n_0} \le u_n$.
- L'intervalle] l-1; u_{n_0} [est un intervalle ouvert qui contient l. Comme la suite (u_n) converge vers l, il existe un rang N tel que pour tout $n \ge N$, $u_n \in]l-1$; u_{n_0} [.

Ainsi pour tout entier $n \ge N$, $u_n < u_{n_0}$.

Alors, pour tout entier $n \ge max(N; n_0)$, on a $u_{n_0} \le u_n$ et $u_n < u_{n_0}$.

On aboutit à une contradiction, et l'hypothèse initiale est donc fausse.

On en déduit que pour tout entier n, $u_n \le l$.

Propriété:

Une suite qui converge est bornée.

Démonstration :

Soit la suite (u_n) et sa limite l.

Tout intervalle ouvert contenant l contient donc tous les termes de la suite à partir d'un certain rang. L'intervalle l-1; l+1 contient tous les termes de la suite l-10 à partir d'un certain rang l-10. On raisonne par disjonction de cas.

- Si $n \ge n_0$, nous venons de voir que u_n est bornée par l-1 et l+1.
- Si n<n₀, nous avons un nombre fini de termes.
 Il s'agit des termes de l'ensemble {u₀, u₁, u₂,..., u_{n₀-1}}. Comme il y a un nombre fini de termes, il y a un plus grand et un plus petit élément parmi eux.
 Notre ensemble est donc borné.

La suite (u_n) est donc bornée dans les deux cas, c'est-à-dire pour les rangs inférieurs à n_0 et à partir du rang n_0 , donc la suite (u_n) est bornée.

Exemple:

La suite (u_n) définie sur \mathbb{N} par $u_n = -5 + \frac{3}{2 + n^2}$ converge vers -5 et est bornée par -5 et -3,5.

Remarques:

- La réciproque du théorème est fausse. Par exemple, la suite (v_n) définie sur \mathbb{N} par $v_n = (-1)^n$ est bornée mais elle diverge.
- Une suite non bornée est divergente.
 Par exemple, la suite (u_n) définie sur N par u_n=(-1)ⁿ×n n'est pas bornée, donc elle diverge.

Théorème de convergence monotone (admis) :

- Si une suite est **croissante** et **majorée**, alors elle **converge**.
- Si une suite est **décroissante** et **minorée**, alors elle **converge**.

Remarque:

Ce théorème ne donne pas la valeur de la limite de la suite, mais seulement son existence et un majorant (ou minorant) de la limite.

Exemple:

La suite (u_n) définie sur \mathbb{N} par $u_n = 5 + \frac{1}{n+1}$ est positive, donc minorée par 0, et décroissante. Par conséquent (u_n) est une suite convergente.

Propriétés:

- Si une suite est **croissante** et **non majorée**, alors elle tend vers $+\infty$.
- Si une suite est **décroissante** et **non minorée**, alors elle tend vers $-\infty$.

Démonstration :

Soit (u_n) une suite non majorée, donc pour tout $M \in \mathbb{R}$, il existe un rang $n_0 \in \mathbb{N}$ tel que $u_{n_0} > M$. Comme (u_n) est croissante, pour tout entier $n \ge n_0$, on a $u_n \ge u_{n_0}$ et donc $u_n > M$. Ce qui signifie que, pour tout $M \in \mathbb{R}$, tous les termes de la suite sont dans l'intervalle $]M; +\infty[$ à partir d'un certain rang. Donc, par définition, $\lim_{n \to +\infty} u_n = +\infty$.

La deuxième proposition se démontre de la même façon.

Remarque:

Une suite croissante est:

- soit majorée et convergente
- soit non majorée et divergente vers $+\infty$.

Annexe 1 : Approximation de Π

Au IIIe siècle avant J. C., Archimède établit la proposition :

« Le périmètre de tout cercle est égal au triple du diamètre augmenté d'un segment compris entre les 10 soixante et onzièmes et le septième de son diamètre »,

d'où
$$3 + \frac{10}{71} < \pi < 3 + \frac{1}{7}$$
.

Pour trouver ce résultat, Archimède considère un cercle $\mathscr C$ et des polygones réguliers inscrits et circonscrits au cercle, à 3×2^n côtés.

Prenons $\mathscr C$ de centre O et de rayon 1. Son demi périmètre est π .

Si p_n et q_n sont les demi-périmètres respectifs des polygones P_n inscrits et Q_n circonscrits à \mathscr{C} à 3×2^n côtés, on lit géométriquement (et on admet pour la suite) que pour tout $n \in \mathbb{N}$, $p_n < \pi < q_n$.

On a donc:

$$p_n = 3 \times 2^n \times \sin \alpha_n$$
 et $q_n = 3 \times 2^n \times \tan \alpha_n$.
De plus $\alpha_n = \frac{\pi}{3 \times 2^n}$.

On montre que, pour tout $n \in \mathbb{N}$:

$$\alpha_{n+1} = \frac{1}{2} \alpha_n$$
 puis :

$$\sqrt{p_n q_{n+1}} = p_{n+1}$$
 et $\frac{2 p_n q_n}{p_n + q_n} = q_{n+1}$.

Ainsi (q_n) est décroissante et (p_n) est croissante. Donc (p_n) et (q_n) convergent.

On vérifie ensuite que la limite commune de ses suites est π .

Remarque:

L'encadrement d'Archimède a été obtenu pour n=5 soit des polygones à 96 côtés.

Approximation:

On détermine facilement p_0 et q_o .

En effet, dans un triangle équilatéral de côté c, on a la relation

$$h = \frac{\sqrt{3}}{2}c$$
 et donc $c = \frac{2}{\sqrt{3}}h$.

Or dans P_0 , $h=\frac{3}{2}$ et dans Q_0 , h'=3.

Donc
$$p_0 = \frac{1}{2} \times 3 \times \frac{2}{\sqrt{3}} \times \frac{3}{2} = \frac{3}{2} \sqrt{3}$$
 et $q_0 = \frac{1}{2} \times 3 \times \frac{2}{\sqrt{3}} \times 3 = 3\sqrt{3}$.

On peut ainsi approcher π à partir des suites (p_n) et (q_n) définies par :

$$p_0 = \frac{3}{2}\sqrt{3}$$
, $q_0 = 3\sqrt{3}$ et $p_{n+1} = \sqrt{p_n q_{n+1}}$, $q_{n+1} = \frac{2p_n q_n}{p_n + q_n}$

Calculatrice:

Annexe 2: Le nombre d'or

« Une droite est dite coupée en extrême et moyenne raison quand, comme elle est toute entière relativement au plus grand segment, ainsi le plus grand relativement au plus petit »

Euclide

Pour Euclide, « droite » signifie « segment ».

Soit trois points A, B et C.

On pose AB = x.

Si le point C partage le segment [AB] en moyenne et extrême raison, on a alors :

$$\frac{AB}{AC} = \frac{AC}{BC}$$
 soit $\frac{x}{1} = \frac{1}{x-1}$ et donc x vérifie $x^2 - x - 1 = 0$.

La solution positive, notée φ, est appelé le **nombre d'or**.

$$\phi = \frac{1 + \sqrt{5}}{2}$$

On vérifie que ϕ vérifie $\phi = 1 + \frac{1}{\phi}$.

Suite de Fibonacci

Les nombres de Fibonacci sont définis par :

$$a_0 = 1$$
, $a_1 = 1$ et $a_{n+2} = a_{n+1} + a_n$

On s'intéresse alors à la suite $u_n = \frac{a_{n+1}}{a_n}$.

On vérifie que $u_0=1$ et pour tout $n \in \mathbb{N}$, $u_{n+1}=1+\frac{1}{u_n}$.

Donc, si la suite converge, elle converge vers ϕ .

On montre ensuite, par récurrence, que $|u_n-\phi|\leqslant \left(\frac{1}{\Phi}\right)^n|1-\phi|$ et donc que (u_n) converge effectivement vers $\phi:\lim_{n\to+\infty}u_n=\phi$.

Annexe 3: Loi des grands nombres

Inégalité de Markov:

Soit X une variable aléatoire suivant une loi de probabilité P et ne prenant que des valeurs positives :

 $\forall \epsilon > 0, \ P(X \ge \epsilon) \le \frac{E(X)}{\epsilon}.$

Démonstration :

Dans le cas d'une variable aléatoire discrète ne prenant qu'un nombre fini de valeurs positives.

X est à valeurs dans $\{x_1, x_2, \dots, x_n\}$, les x_i sont rangés dans l'ordre croissant.

Soit ϵ un nombre strictement positif fixé.

On a ainsi, par exemple, $x_1 \le x_2 \le ... \le x_{k-1} < \epsilon \le x_k \le x_n$.

Par définition, $E(X) = \sum_{i=1}^{n} x_i P(X = x_i)$.

Ainsi, on obtient, $E(X) = \sum_{i=1}^{k-1} x_i P(X = x_i) + \sum_{i=k}^{n} x_i P(X = x_i)$.

Comme X est à valeurs positives $\sum_{i=1}^{k-1} x_i P(X=x_i) \ge 0$ et donc $E(X) \ge \sum_{i=k}^{n} x_i P(X=x_i)$.

Ainsi, on a $E(X) \ge \sum_{i=k}^{n} \epsilon P(X = x_i)$ soit $E(X) \ge \epsilon \sum_{i=k}^{n} P(X = x_i)$.

Or $\epsilon > 0$, et par conséquent, $\frac{E(X)}{\epsilon} \ge \sum_{i=k}^{n} P(X = x_i)$ et $\sum_{i=k}^{n} P(X = x_i) = P(X \ge \epsilon)$.

D'où le résultat $\frac{E(X)}{\epsilon} \geqslant P(X \geqslant \epsilon)$.

Inégalité de Bienaymé-Tchebychev :

Soit X une variable aléatoire suivant une loi de probabilité P, ne prenant que des valeurs positives et possédant une variance V(X):

$$\forall \epsilon > 0$$
, $P(|X - E(X)| \ge \epsilon) \le \frac{V(X)}{\epsilon^2}$.

Démonstration:

Par définition, $V(X) = E((X - E(X))^2)$.

Soit ϵ un nombre strictement positif fixé : $|X - E(X)| \ge \epsilon \Leftrightarrow |X - E(X)|^2 \ge \epsilon^2$

On applique donc l'inégalité de Markov à la variable aléatoire $|X-E(X)|^2$:

$$P(|X-E(X)|^2 \ge \epsilon^2) \le \frac{E(|X-E(X)|^2)}{\epsilon^2} \text{ et donc } P(|X-E(X)| \ge \epsilon) \le \frac{V(X)}{\epsilon^2}.$$

Théorème de Bernoulli :

On considère une variable aléatoire X_n suivant une loi binomiale $\mathcal{B}(n;p)$. On pose $F_n = \frac{X_n}{n}$.

$$\forall \epsilon > 0$$
, $P(|F_n - p| \ge \epsilon) \le \frac{p(1-p)}{n\epsilon^2}$.

Démonstration :

 X_n suit la loi binomiale $\mathcal{B}(n;p)$ donc $E(X_n) = np$ et $V(X_n) = np(1-p)$.

En appliquant l'inégalité de Bienaymé-Tchebychev à la variable aléatoire $F_n = \frac{X_n}{n}$, on a donc :

$$\forall \, \varepsilon \! > \! 0 \text{ , } P(|F_n \! - \! E(F_n)| \! \geqslant \! \varepsilon) \! \leqslant \! \frac{V(F_n)}{\varepsilon^2} \text{ soit } P(|F_n \! - \! E(F_n)| \! \geqslant \! \varepsilon) \! \leqslant \! \frac{V(F_n)}{\varepsilon^2} \text{ et donc,}$$

$$\forall \epsilon > 0 , P\left(\left|\frac{X_{n}}{n} - E\left(\frac{X_{n}}{n}\right)\right| \ge \epsilon\right) \le \frac{V\left(\frac{X_{n}}{n}\right)}{\epsilon^{2}} d'où P\left(\left|\frac{X_{n}}{n} - \frac{E\left(X_{n}\right)}{n}\right| \ge \epsilon\right) \le \frac{V\left(X_{n}\right)}{\epsilon^{2}}.$$

D'où le résultat,

$$\forall \epsilon > 0, \ P\left(\left|\frac{X_n}{n} - p\right| \ge \epsilon\right) \le \frac{p(1-p)}{n\epsilon^2}.$$