Day 2. DArray & pointers

*For 1D Array A[i] = *(A+i)

* for 20 Array we can think of

A[0] = address of row 0 = *(A+1)

A[1] = address of row 1 = *(A+1)

Ingeneral, A [i][j] = * (A [i] + j)

= * (*(A+i)+j)

* A COJEOJA = A EX

* int N[4][3]

A [0] A [1] A [2] A 20 A 21 A 22 A 30 A 31 A 2 [A [3]

A) Base address of 25 array.

address (A[i][j]) = address (A[o][o]) +

(i x n+j) x singe (int)

ALI) = + (Ari)

4 A[i][0] - f (*(A [i] +0)) = 4 * A[i]

= A[i].

Types

* & A: address of entire array

* 4 A [O] : Same as A

5 (* A) = A

* 4 A [0][0]: Address of first element

4 A (07 (0) -1(+ (A (0) + 0))

enample

4003		4013	1	4021		4029		4037
10 11	12	13	14	15	16	17	18	119
4001	4009.		4017		4025		4033	

A [5][2] -> Five 1-Darray of size 2.

A [0] - Address of oth row =
$$\#(A+b)$$

A [1] - $\#(A+b)$
A [1] - $\#(A+b)$
A [1] - $\#(A+b)$
A [1] - $\#(A+b)$

A[2] = 4017

A[2]+1 = 4021

value of AC27(1)= + (AC27+1)

= * (*(A+2)+1)

A LOTEST = & (*(A+i)+j)

A[[][]] = * (A[]]+j) = * (+(Afc)+j)