CSC343 A3 Ahad Syed and William Chu

1. a)

2.a)

- KOQ^+ = KOQPSR, so KOQ not a superkey and $KOQ \rightarrow PS$ violates BCNF
- L^+ = LKN , so L not a superkey and L \rightarrow KN violates BCNF
- KQ^+ = KQRS, so KQ not a superkey and $KQ \rightarrow RS$ violates BCNF

b)

- Decompose F using FD KOQ → PS KOQ⁺ = KOQPSR
 R1 = KOPQRS
 R2 = KOLMNQ
- Project FDs onto R1

	Closure	FD
К	K+ = K	nothing
0	O+ = O	nothing
Р	P+ = P	nothing
Q	$Q^+ = Q$	nothing
R	R+ = R	nothing
S	S+ = S	nothing

КО	KO ⁺ = KO	nothing
KP	KP⁺ = KP	nothing
KQ		KQ → RS : violates BCNF, abort projection

• Decompose R1 further using FD $KQ \rightarrow RS$ into R3 = KQRS R4 = KOPQ

• Project FDs onto R3 = KQRS

	Closure	FD	
K	K+ = K	nothing	
Q	$Q^+ = Q$	nothing	
R	R⁺ = R	nothing	
S	S+ = S	nothing	
KQ	KQ⁺ = KQRS	$KQ \rightarrow RS$	
KR	KR⁺ = KR	nothing	
KS	KS+ = KS	nothing	
QR	QR+ = QR	nothing	
QS	QS ⁺ = QS	nothing	
RS	RS⁺ = RS	nothing	
KRS	KRS⁺ = KRS	nothing	
QRS	QRS⁺ = QRS	nothing	

Therefore R3 satisfies BCNF

• Project FDs onto R4 = KOPQ

	Closure	FD
K	K+ = K	nothing

0	O+ = O	nothing
Р	P+ = P	nothing
Q	$Q^+ = Q$	nothing
КО	KO⁺ = KO	nothing
KP	KP⁺ = KP	nothing
KQ	KQ⁺ = KQRS	nothing
ОР	OP+ = OP	nothing
OQ	$OQ^+ = OQ$	nothing
PQ	PQ⁺ = PQ	nothing
КОР	KOP⁺ = KOP	nothing
KOQ	KOQ⁺ = KOQPSR	$KOQ \rightarrow P$
KPQ	KPQ⁺ = KPQRS	nothing
OPQ	OPQ⁺ = OPQ	nothing

Therefore R4 satisfies BCNF

• Now return to R2 = KOLMNQ and project FDs onto it

	Closure	FD
K	K+ = K	nothing
0	O+ = O	nothing
L	L ⁺ = LKN	L → KN : violates BCNF, abort projection

• Need to further decompose R2 using FD $L \rightarrow KN$ R5 = KLN R6 = LMOQ

• Project FDs onto R5 = KLN

	Closure	FD
К	K+ = K	nothing
L	L ⁺ = LKN	$L \rightarrow KN$
N	N* = N	nothing
Supersets of L	irrelevant	can only generate weaker FDs than what we already have
KN	KN⁺ = KN	nothing

Therefore R5 satisfies BCNF

• Project FDs onto R6 = LMOQ

	Closure	FD
L	L ⁺ = LKN	nothing
М	$M^+ = M$	nothing
0	O+ = O	nothing
Q	$Q^+ = Q$	nothing
LM	LM ⁺ = LMKN	nothing
LO	LO+ = LOKN	nothing
LQ	LQ⁺ = LQKNRS	nothing
МО	MO ⁺ = MO	nothing
MQ	$MQ^+ = MQ$	nothing
OQ	OQ+ = OQ	nothing
LMO	LMO⁺ = LMOKN	nothing
LMQ	LMQ⁺ = LMQKNRS	nothing
LOQ	LOQ⁺ = LOQKNRSP	nothing
MOQ	MOQ ⁺ = MOQ	nothing

Therefore relation R6 satisfies BCNF

FINAL DECOMPOSITION:

- a) R3 = KQRS with FD KQ \rightarrow RS
- b) R4 = KOPQ with FD KOQ \rightarrow P
- c) R5 = KLN with FD $L \rightarrow KN$
- d) R6 = LMOQ with no FDs
- c) The original FDs from set G seem to be preserved except for KOQ \rightarrow PS. However, if we split the FD into KOQ \rightarrow P and KOQ \rightarrow S we notice that KOQ \rightarrow P is preserved in the final schema and so is KOQ \rightarrow S since we have a stronger FD KQ \rightarrow S that holds in our final schema (got by splitting KQ \rightarrow RS). Therefore, the final schema preserves dependencies.

d) Chase Test:

let t = (k, l, m, n, o, p, q, r, s)

К	L	М	N	0	Р	Q	R	S
k	I ₁	m ₁	n ₁	O ₁	p ₁	q	r	s
k		m ₂	n ₂	0	р	q	r ₂	S ₂
k	1	m_3	n	O ₃	p_3	q_3	r ₃	S ₃
k4	I	m	n ₄	0	p ₄	q	r ₄	S ₄

K	L	M	N	0	Р	Q	R	S
k	I ₁	m ₁	n ₁	O ₁	p ₁	q	r	s
k		m_2	n ₂	0	р	q	r ₂	S ₂
k	I	m_3	n	O ₃	p_3	q_3	r ₃	S ₃
k	I	m	n	0	p ₄	q	r ₄	S ₄

K	L	М	N	0	Р	Q	R	S
k	I ₁	m_1	n_1	0 ₁	p ₁	q	r	S
k		m ₂	n ₂	0	р	q	r	s
k	I	m ₃	n	O ₃	p ₃	q_3	r ₃	S ₃
k	I	m	n	0	p ₄	q	r	S

K	L	М	N	0	Р	Q	R	S
k	I ₁	m_1	n_1	0 ₁	p ₁	q	r	S
k		m_2	n	0	р	q	r	S
k	I	m_3	n	O ₃	p_3	q_3	r_3	S ₃
k	I	m	<mark>n</mark>	O	p	q	r	S

Thus $T \in \mathsf{F}$ and the decomposition is lossless.

3. a)

Original FDs

- 1. ACDE→B
- 2. B→C
- 3. B→F
- 4. CD→A
- 5. CD→F
- 6. BCF→A
- 7. BCF→D
- 8. ABF→H

Reducing LHS

- 1. CDE→B (CDE+=CDEAFBH)
- 2. B→C
- 3. B→F
- $4. \quad CD{\rightarrow} A$
- 5. CD→F
- 6. $B \rightarrow A$ (B⁺=BCFADH)
- 7. $B\rightarrow D$ (Same reason as 6)
- 8. $B \rightarrow H$ (Same reason as 6)

Removing redundant FDs

FD	Exclude	Closure	Decision
1	1	CDE+=CDEAF	Keep
2	2	B+=BFADH	Keep
3	3	B+=BCADHF	Discard
4	3,4	CD⁺=CDF	Keep
5	3,5	CD⁺=CDA	Keep
6	3,6	B+=BCDHAF	Discard
7	3,6,7	B ⁺ =BCH	Keep
8	3,6,8	B+=BCDAF	Keep

Minimal basis is:

 $CDE \rightarrow B$

 $B{\rightarrow}C$

 $CD \rightarrow A$

 $CD \rightarrow F$

 $B \rightarrow D$

b)

G is in every key (it doesn't appear in any of the FDs)
E is in every key (it only appears on the LHS of the FDs)
H isn't in any key (it only appears on the RHS of the FDs)
A,B,C,D,F must be checked

EGA+=EGA

EGB⁺=EGBCDHAF so EGB is a key

EGC+=EGC EGD+=EGD EGF+=EGF EGAC+=EGAC

EGAC =EGAC EGAD*=EGAD

EGAF*=EGAF

EGCD*=EGCDAFBH so EGCD is a key

EGCF⁺=EGCF EHDF⁺=EGDF EGACF⁺=EGACF EGADF⁺=EGADF

All other possibilities contain either EGB or EGCD, so there are two keys. EGB and EGCD.

c) Merge the RHS of the FDs CDE \rightarrow B B \rightarrow CDH CD \rightarrow AF

R1(C,D,E,B), R2(B,C,D,H), R3(C,D,A,F)

No relation is a superkey. Add R4(E,G,C,D), a relation whose schema is the key .

d) R1, R2, and R3, are relations that are formed by CDE \rightarrow B, B \rightarrow CDH, and CD \rightarrow AF respectively, and so the LHS of these FDs are superkeys for their respective relations. This is not necessarily the case for other relations. Consider B \rightarrow CDH. From this FD we can get B \rightarrow CD which can project onto relation R1. The closure of B is B $^+$ =BCDHAF, and the FD generated is B \rightarrow CD. So B is not a super key of relation R1(C,D,E,B) and B \rightarrow CDH violates BCNF. Therefore this schema allows redundancies.