

Machine Learning in The Chapel Programming Language

lain Moncrief August 6, 2023

Background

Extends NumPy to support ML needs (backpropogation, CUDA implementation)

Fully featured ML tools (uses TensorFlow)

Chapel

- High performance computing
- Sophisticated array programming
- Automatically utilize maximal resources
- Easily program parallel computations

My Project

- Implement ML programs in Chapel
- See what aspects of Chapel make it easier/harder to implement ML programs
- Performance comparison

My Chapel ML Implementation

- Tensor Library
 - Attempts to replicate much of NumPy's functionality
 - Arithmetic and linear algebra operations
 - Supporting helper functions
- Machine Learning Library
 - Implements various layer types: Dense, Conv2d, MaxPool, SoftMax, ReLU, TanH, Sigmoid, Flatten, ...
 - Offers similar user interface as PyTorch or Keras

```
model = Sequential(
    Dense(4),
    Sigmoid(),
    Dense(3),
    Sigmoid(),
)
```

```
O PyTorch
```

```
var model = new Sequential(
   new Dense(4),
   new Sigmoid(),
   new Dense(3),
   new Sigmoid()
);
```


Speed Comparison (Simple Classification)

Input: N samples from $[0,2] \times [0,2]$

Output: 3 different categories

Utilizing Chapel's Parallelism Constructs

Speed Comparison (MNIST Classification)

Output: 0,1,2,3,...,9

Convolution

Convolution

MaxPool

Thank you

