Universidad de San Buenaventura

Facultad ingeniería de sistemas

Parcial corte 1 Análisis de algoritmos

Presenta:

Juan Felipe Hurtado Villani Cristian Apraez Samuel Martínez

Profesor

Carlos Andrés Delgado

1. ANALISIS DE ALGORITMOS:

Punto 1:

Algoritmo 1:

C#	ALGORITMO	OPERACIÓN	
CO	def algoritmo1(n):		
C1	i=2*n+1		1
C2	res=0		1
C3	while i>0:	(2n+1)+1	
C4	j=i*i	(2n+1)+1	
C5	res+=j	(2n+1)+1	
C6	i-=1	(2n+1)+1	
C7	return res		1

Complejidad:

8n+11

Forma de estado:

(i, res)

Estado inicial:

(2n+1, 0)

Transformaciones:

 $n \rightarrow 1$

$$(3,0) \rightarrow (2,9) \rightarrow (1,13)$$

$$(i, res) \rightarrow (i-1, res + i*i)$$

Estado final:

$$(0,\!\sum_{i=1}^{2n+1}i^2\,)$$

Invariante:

$$res = \sum_{i=1}^{2n+1} i^2$$

Algoritmo 2:

C#	ALGORITMO	OPERACIÓN	
CO	def algortimo2(n):		
C1	i = 0		1
C2	j = 0		1
C3	res=0		1
C4	while i < 3*n:	3n+1	
C5	j = 2*1	3n	
C6	res -= j	3n	
C7	1+ = 1	3n	
C8	return res	1	

Complejidad:

12n+5

Forma de estado:

(i, res)

Estado inicial:

(0, 0)

Transformaciones:

 $(i, res) \rightarrow (i+1, res -2 *1)$

Estado final:

i = 3n+1

Invariante: res =
$$\sum_{i=1}^{3n+1} 2 * 1$$

Algoritmo 3:

C#	ALGORITMO	OPERACIÓN
CO	def algoritmo3(n)	
C1	i = 4*n+2	1
C2	j = 0	1
C3	res = 0	1
C4	while i > 0:	4n+3→ 4n+1
C5	while j <= 3*n + 4:	3n+6
C6	res+=4	3n+5
C7	j+=1	3n+5
C8	i-=1	4n+2
C9	return res	1

Complejidad:

17n + 25

17n + 23

Forma de estado:

(i, res)

Estado inicial:

(4n+2, 0)

Transformaciones:

$$(i, res) \to (i-1, res 4+1)$$

Estado final:

$$(0,\sum_{i=1}^{4n+2}i+1)$$

Invariante:

$$res = \sum_{i=1}^{4n+2} i + 1$$

2. DISEÑO DE ALGORITMOS:

Sabemos que,

$$(k + 1)^3 = k^3 + 3 * k^2 + 3 * k + 1$$

Podemos escribir la identidad anterior para k de 1 hasta n:

$$2^3 = 1^3 + 3 * 1^2 + 3 * 1 + 1 \dots (1)$$

$$3^3 = 2^3 + 3 * 2^2 + 3 * 2 + 1 \dots (2)$$

$$4^3 = 3^3 + 3 * 3^2 + 3 * 3 + 1 \dots (3)$$

$$5^3 = 4^3 + 3 * 4^2 + 3 * 4 + 1 \dots (4)$$

...

$$n^3 = (n-1)^3 + 3 * (n-1)^2 + 3 * (n-1) + 1 \dots (n-1)$$

 $(n+1)^3 = n^3 + 3 * n^2 + 3 * n + 1 \dots (n)$

Ponemos la ecuación (n - 1) en la ecuación n,

$$(n+1)^3 = (n-1)^3 + 3 * (n-1)^2 + 3 * (n-1) + 1 + 3 * n^2 + 3 * n + 1$$

= $(n-1)^3 + 3 * (n^2 + (n-1)^2) + 3 * (n + (n-1)) + 1 + 1$

Al poner toda la ecuación, obtenemos

$$(n + 1)^3 = 1^3 + 3 * \Sigma k^2 + 3 * \Sigma k + \Sigma 1$$

$$n^3 + 3 * n^2 + 3 * n + 1 = 1 + 3 * \Sigma k^2 + 3 * (n * (n + 1)) / 2 + n$$

$$n^3 + 3 * n^2 + 3 * n = 3 * \Sigma k^2 + 3 * (n * (n + 1)) / 2 + n$$

$$n^3 + 3 * n^2 + 2 * n - 3 * (n * (n + 1)) / 2 = 3 * \Sigma k^2$$

$$n$$
 * (n^2 + 3 * n + 2) - 3 * (n * (n + 1)) /2 = 3 * Σ k^2

$$n * (n + 1) * (n + 2) - 3 * (n * (n + 1)) /2 = 3 * \Sigma k^{2}$$

$$n * (n + 1) * (n + 2 - 3/2) = 3 * \Sigma k^{2}$$

$$n * (n + 1) * (2 * n + 1) / 2 = 3 * \Sigma k^{2}$$

$$n * (n + 1) * (2 * n + 1) / 6 = \sum k^2$$

Forma de estado:

(n, sum)

Estado inicial:

(4, 0)

Transformaciones:

 $(n, sum) \rightarrow (n+1, sum + i*i)$

Estado final:

$$(4,\textstyle\sum_{n=4}^{sum+i*i}i*i\;)$$

Invariante:

$$sum = \sum_{n=4}^{sum+i*i} i * i$$