Assignment WW-Bases

1. (1 point) Let W be the set of all vectors of the form $\begin{bmatrix} a+5b\\-a\\b \end{bmatrix}$. Find vectors \vec{u} and \vec{v} in \mathbb{R}^3 such that $W=\operatorname{span}\{\vec{u},\vec{v}\}$.

$$\vec{u} = \begin{bmatrix} ---\\ --- \end{bmatrix}, \vec{v} = \begin{bmatrix} ---\\ --- \end{bmatrix}$$

Correct Answers:

2. (1 point) The vectors

$$\vec{v}_1 = \begin{bmatrix} 6 \\ -3 \\ 0 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} -1 \\ 7 \\ -5 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 3 \\ 18 \\ k \end{bmatrix}$$

form a basis for \mathbb{R}^3 if and only if $k \neq$ _____

Correct Answers:

−15

3. (1 point)

Let
$$W_1$$
 be the set: $\begin{bmatrix} 1 \\ -3 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 9 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ -3 \\ 5 \end{bmatrix}$

Determine if W_1 is a basis for \mathbb{R}^3 and check the correct answer(s) below.

• A. W_1 is a basis.

• B. W_1 is not a basis because it is linearly dependent.

• C. W_1 is not a basis because it does not span \mathbb{R}^3 .

Let
$$W_2$$
 be the set: $\begin{bmatrix} -2 \\ 3 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 6 \\ -1 \\ 5 \end{bmatrix}$.

Determine if W_2 is a basis for \mathbb{R}^3 and check the correct answer(s) below.

• A. W_2 is not a basis because it is linearly dependent.

• B. W_2 is not a basis because it does not span \mathbb{R}^3 .

• C. W_2 is a basis.

Correct Answers:

B

B

4. (1 point)

The set

$$B = \left\{ \begin{bmatrix} -2 \\ -3 \end{bmatrix}, \begin{bmatrix} 4 \\ 11 \end{bmatrix} \right\}$$

is a basis for \mathbb{R}^2 . Find the coordinates of the vector $\vec{x} = \begin{bmatrix} -14 \\ -31 \end{bmatrix}$ relative to the basis B.

$$[\vec{x}]_B = \left[\begin{array}{c} --- \\ --- \end{array} \right]$$

1

Correct Answers:

 $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America