Which of the following algorithm doesn't uses learning Rate as of one of 1/1 its hyperparameter?
Extra Trees
Random Forest
AdaBoost
Gradient Boosting
✓ Which of the following algorithm are not an example of ensemble 1/1 learning algorithm?
Random Forest
Gradient Boosting
Adaboost
Decision Trees
✓ We can use gradient decent method for minimize the loss function. True 1/1 or False
or False
or False True
or False True
or False True ✓ False ✓ Which should be preferred among Gini impurity and Entropy while 1/1
or False True ✓ False ✓ Which should be preferred among Gini impurity and Entropy while implementing in sklearn and why?
or False True False Which should be preferred among Gini impurity and Entropy while implementing in sklearn and why? Gini impurity because it gives a more balanced Tree

✓	Which of the following types of node is not in Decision Trees?	1/1
0	Decision node	
•	Atomic node	✓
0	Root node	
0	Leaf node	
×	How does a Decision Tree decide the threshold value to handle numeric features?	:al0/1
0	Entropy	
0	Information Gain	
0	Gini impurity	
•	All of the above	×
Corr	ect answer	
•	Information Gain	
×	How feature importance is calculated in random forest?	0/1
0	In Random Forest package by passing parameter "type = prob" then instead of gi us the predicted class of the data point we get the probability.	ving
•	All of the above	×
0	Optimize a tuning parameter that governs the number of features that are random chosen to grow each tree from the bootstrapped data.	nly
0	Feature importance is calculated as the decrease in node impurity weighted by the probability of reaching that node	ne .
Corre		ne

	All of the above	/
\bigcirc	XGBoost is flexible compared to AdaBoost.	
0	Unlike XGBoost, AdaBoost can be implemented without the reference to gradients	S.
✓	Choose the NOT correct option	1/1
\circ	CatBoost is easy to implement and very powerful.	
\circ	CatBoost is based on gradient boosting.	
•	XGBoost and LightGBM outperforms CatBoost	~
0	CatBoost provides excellent results in its very first run.	
✓	Which algorithm can NOT handle categorical features on its own?	1/1
0	None	
	XGBoost	✓
0	CatBoost	
0	LightGBM	
	If the random state is not specified before, you will get a different result each time you iterate. True or False.	1/1
		1/1
	each time you iterate. True or False.	1/1
	each time you iterate. True or False. True	1/1
•	each time you iterate. True or False. True False	✓
•	each time you iterate. True or False. True	✓
Ques	each time you iterate. True or False. True False	✓
Ques	rue False Stions Based on Graded Assignment 10 of 13 p We plotted the Correlation Matrix. Now find out the most correlated	ooints
Ques	rue False Stions Based on Graded Assignment 10 of 13 p We plotted the Correlation Matrix. Now find out the most correlated features.	ooints
Ques	rolloff_mean and spectral_centroid_mean	ooints

Now find out the least correlated features. Remember, we consider the absolute values while talking about correlation.	1/1
harmony_mean and chroma_stft_mean	✓
mfcc11_mean and rms_mean	
rms_mean and chroma_stft_mean	
harmony_mean and rms_mean	
✓ Which class has the highest frequency?	1/1
Blues	
All of these	✓
O Jazz	
Reggae	
✓ Features with the most outliers ∠ zero_crossing_rate_var	1/1
harmony_mean	✓
harmony_mean perceptr_mean	✓
harmony_mean	✓
harmony_mean perceptr_mean	✓
harmony_mean perceptr_mean	0/1
 harmony_mean perceptr_mean rms_var Score for AdaBoost with hyperparameters: n_estimators=1000 & 	0/1
 harmony_mean perceptr_mean rms_var Score for AdaBoost with hyperparameters: n_estimators=1000 & random_state=0 	0/1 ×
 harmony_mean perceptr_mean rms_var X Score for AdaBoost with hyperparameters: n_estimators=1000 & random_state=0 0.32 	
 harmony_mean perceptr_mean rms_var Score for AdaBoost with hyperparameters: n_estimators=1000 & random_state=0 0.32 0.31 	

1

/	Score for Random Forest with hyperparameters: n_estimators=1000, max_depth=10, random_state=0	2/2
0	0.90	
0	0.87	
0	0.81	
•	0.84	/
/	Score for XGBClassifier with hyperparameters: n_estimators=1000 & learning_rate = 0.05	2/2
0	0.90	
0	1.00	
0	0.83	
•	0.87	/
×	You found the classification matrix. Now find out the class which had the highest Precision.	0/1
0	Рор	
0	Classical	
0	Reggae	
O	Metal	X
orr	Metal ect answer	X
		×
	ect answer	
•	Pop Now find out the class which had the highest Recall. Hint for both these	

Google Forms