This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PAT-NO:

JP405021789A

DOCUMENT-IDENTIFIER: JP 05021789 A

TITLE:

FIELD EFFECT TYPE TRANSISTOR AND ITS

MANUFACTURE

PUBN-DATE:

January 29, 1993

INVENTOR-INFORMATION:

NAME

TANIGUCHI, KOJI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

MITSUBISHI ELECTRIC CORP

N/A

APPL-NO: JP03170882

APPL-DATE: July 11, 1991

INT-CL (IPC): H01L029/784

US-CL-CURRENT: 257/330

ABSTRACT:

PURPOSE: To provide a MOS transistor with an improved reliability by

05/10/2003, EAST Version: 1.03.0002

controlling a short-channel phenomenon even if dimensions of the transistor become small.

CONSTITUTION: A groove 17 for channel is dug on a silicon substrate 11 and a

gate electrode 13 is formed on the groove 17 through a ground gate oxide film

12. Then, impurity diffusion regions 15 and 16 which become source/drain are

formed in self-alignment manner with this gate electrode 13 as a mask, thus enabling a MOS transistor with a longer channel than mask dimensions when patterning the gate to be formed and enabling a short-channel effect to be suppressed.

COPYRIGHT: (C)1993, JPO& Japio

05/10/2003, EAST Version: 1.03.0002

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-21789

(43)公開日 平成5年(1993)1月29日

(51)Int.C1.5

識別記号

庁内整理番号

FΙ

技術表示箇所

H01L 29/784

8225-4M

H01L 29/78

301 V

審査請求 未請求 請求項の数2(全 4 頁)

(21)出願番号

特願平3-170882

(71)出願人 000006013

三菱電機株式会社

(22)出願日

平成3年(1991)7月11日

東京都千代田区丸の内二丁目2番3号

(72)発明者 谷口 浩二

兵庫県伊丹市瑞原 4丁目 1番地 三菱電機

株式会社北伊丹製作所内

(74)代理人 弁理士 高田 守 (外1名)

(54) 【発明の名称】 電界効果型トランジスタ及びその製造方法

(57)【要約】

【目的】 トランジスタの寸法が小さくなっても、短チ ャネル現象を抑制して信頼性を向上させたMOSトラン ジスタを提供する。

【構成】 シリコン基板11上にチャネル用の溝17を 堀り、その溝17上に下地のゲート酸化膜12を介して ゲート電極13を形成する。そしてこのゲート電極13 をマスクにして自己整合的にソース・ドレインとなる不 純物拡散領域15,16を形成する。これにより、ゲー トをパターニングするときのマスク寸法より長いチャネ ルをもつMOSトランジスタを形成できるので、短チャ ネル効果を抑制できる。

11:シリコン基林

12:ケート 飲化 庚

13:ケート電極

14:上载碳化膜

15:低骤度不化物领域

16:高康皮不紅物領域

17:シリコン芸放上の溝

1

【特許請求の範囲】

【請求項1】 一導電型の半導体基板上に写真製版技術 を用いて形成されたチャネル用の溝と、この溝にその溝 を埋めるようにゲート絶縁膜を介して形成されたゲート 電極と、このゲート電極をマスクとして半導体基板上に 自己整合的に形成されたソース・ドレイン領域とを備え たこを特徴とする電界効果型トランジスタ。

【請求項2】 一導電型の半導体基板上に写真製版技術 によってトランジスタのチャネルとなるべき溝を形成す る工程と、この溝の形成された半導体基板上に絶縁膜、 ゲート用ポリシリコン膜を順次堆積してパターニングし たうえ、該半導体基板上の溝の上部にのみゲート絶縁膜 を介してゲート電極を形成する工程と、このゲート電極 をマスクとして半導体基板上に自己整合的にソース・ド レイン領域を形成する工程とを含むことを特徴とする電 界効果型トランジスタの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、短チャネル現象を抑制 できる電界効果型トランジスタ及びその製造方法に関す 20 るものである。

[0002]

【従来の技術】従来から一般に周知のLDD(Lightly Doped Drain) 構造の電界効果型トランジスタ (以下、 MOSトランジスタという)においては図3の断面図で 示されるように構成され、トランジスタのゲート酸化 膜、及びゲート電極は平坦なシリコン基板上に形成され ている。この図3における符号1はシリコン基板、2は ゲート酸化膜、3はゲート電極、4は上敷酸化膜、5は サイドウォール、6はシリコン基板1と逆導電型の低濃 30 度の不純物拡散領域、7は同じくシリコン基板1と逆導 電型の高濃度の不純物拡散領域であり、そのトランジス タの製造方法を図4を用いて説明する。

【0003】図4において、まず、一導電型として例え ばP型のシリコン基板1を用意し、このシリコン基板1 を全面的に覆う酸化膜を堆積させる。そして、この酸化 膜上にシリコン基板1とは逆導電型、すなわちN型の不 純物であるリンなどを含むポリシリコン膜を堆積させ、 かつこのポリシリコン膜上に酸化膜を堆積させた後、図 4(a)で示すように、これらをパターニングすることに よってトランジスタのゲート酸化膜2,ゲート電極3、 上敷酸化膜4を形成する。さらに、これらをマスクとし てリンなどの不純物をシリコン基板1中にイオン注入す ることにより、トランジスタのソース・ドレイン(以 下、S/D略称する) 領域となる濃度の低い不純物拡散 領域6を形成する(図4(b))。

【0004】その後、図4(c)で示すように、シリコン 基板全面にわたって酸化膜を堆積させたうえ、異方性エ ッチングによって選択的にパターニングしてサイドウォ ール5を形成した後、シリコン基板1中にイオン注入す 50 は、例えばP型のシリコン基板11上に、通常の写真製

ることにより、トランジスタのS/D領域となる濃度の 濃い不純物拡散領域7を形成する。その結果、図3で示 したようなLDD構造をもつMOSトランジスタが完成 することになる。

[0005]

【発明が解決しようとする課題】しかし、このような従 来例のMOSトランジスタにおいては、高集積化の要求 からトランジスタのゲート長を短くした場合、MOSト ランジスタの短チャネル化現象と呼ばれるしきい値電圧 10 Vthの低下、S/D間耐圧の低下を引き起こし、MOS トランジスタとして正常な動作が行えなくなるという問 題点があった。

【0006】本発明は上記のような問題点を解消するた めになされたもので、トランジスタの寸法が小さくなっ ても、短チャネル現象を抑制して信頼性を向上させたM OSトランジスタとその製造方法を提供することを目的 としている。

[0007]

【課題を解決するための手段】上記の目的を達成するた めに、本発明にかかるMOSトランジスタは、一導電型 の半導体基板上に写真製版技術を用いてチャネル用の溝 を堀り、その溝上にゲート絶縁膜を介してゲート電極を 形成して、このゲート電極をマスクとして自己整合的に ソース・ドレイン領域を形成することにより、ゲートの マスク寸法より長いチャネル長をもつトランジスタを形 成することを特徴とする。

【0008】また、本発明にかかるMOSトランジスタ の製造方法は、一導電型の半導体基板上に写真製版技術 によってチャネル用の溝を掘り、その溝上に下地のゲー ト絶縁膜を介してゲート電極を形成したのち、このゲー ト電極をマスクとして自己整合的にソース・ドレイン領 域をを形成する工程を含むことを特徴としている。

[0009]

【作用】本発明においては、MOSトランジスタのチャ ネルは半導体基板上の溝に沿って形成されるために、S /D拡散層間の距離よりも長いチャネル長を有するMO Sトランジスタを形成することが可能となり、短チャネ ル現象を抑制することができる。

[0010]

【実施例】以下、本発明の実施例を図面に基づいて説明 する。図1は本発明によるMOSトランジスタの一実施 例を示す構造断面図であり、図2はその製造方法の手順 を示す工程断面図である。図1における符号11はシリ コン基板、12はゲート酸化膜、13はゲート電極、1 4は上敷酸化膜、15,16はそれぞれシリコン基板1 1と逆導電型の低濃度の不純物拡散領域、高濃度の不純 物拡散領域、17はシリコン基板11上のチャネル用溝 である。

【0011】すなわち、本実施例のMOSトランジスタ

版技術を用いてトランジスタのチャネルとなるべき凹型 溝17を形成し、この溝17内にそれを埋め込むように ゲート酸化膜12とゲート電極13および上敷酸化膜1 4を順次積層して形成する。そして、この上敷酸化膜1 4を含むゲート電極13をマスクとして自己整合的にN 型の不純物をイオン注入してS/Dとなる濃度の低い不 純物拡散領域15と高濃度の不純物拡散領域16を順次 積層形成して、図1に示すような2重拡散構造もつMO Sトランジスタを形成したものである。

【0012】次に、本実施例のMOSトランジスタの製 10 造方法を図2に基づいて説明する。まず、P型のリコン 基板11を用意し、通常の写真製版技術を用いてMOS トランジスタのチャネルとなる部分に凹型の溝17を掘 る (図2(a))。 そしてこの溝17を含むシリコン基板 11上の全面にわたって第1の酸化膜, N型のポリシリ コン、第2の酸化膜を順次堆積させたうえ、それらをパ ターニングすることにより、凹型溝17上にゲート酸化 膜12、ゲート電極13、上敷酸化膜14を形成する (図2(b))。

【0013】さらに、これらをマスクとしてリンなどの 20 N型不純物をシリコン基板11中にイオン注入して濃度 の低い不純物拡散領域15を形成し、続いてヒ素などの 不純物を注入して高濃度の不純物拡散領域16を形成す ることにより(図2(c))、図1に示すような2重拡散 構造のS/DをもつMOSトランジスタが完成する。

【0014】このように上記実施例のMOSトランジス タによると、シリコン基板11上にチャネル用の凹型溝 17を設け、その溝17にゲート酸化膜12とゲート電 極13および上敷酸化膜14を形成することにより、ゲ ートのパターニング時の寸法より長いチャネルのMOS 30 16 高濃度の不純物拡散領域 トランジスタを得ることができる。そのため、短チャネ

ル効果を抑制できる。また、S/D拡散層が低濃度の不 純物拡散領域15と高濃度の不純物拡散領域16との2 重拡散構造を有しているので、そのドレイン付近の電界 強度をさらに緩和することができる。

[0015]

【発明の効果】以上説明したように本発明によれば、シ リコンなどの半導体基板上にチャネル用の溝を掘り、そ の溝の上部にゲート絶縁膜を介してゲート電極を形成し て、MOSトランジスタのチャネル領域を平面的なもの から立体的なものになるようにしたので、ゲート電極を パターニングする時のマスクの寸法よりも長いチャネル を持ったMOSトランジスタを形成することが可能とな り、MOSトランジスタの短チャネル現象を抑制するこ とができる。そのため、Vth劣化を防止できるととも に、S/D間耐圧の向上がはかれ、MOSデバイスの信 頼性向上に優れた効果がある。

【図面の簡単な説明】

【図1】本発明によるMOSトランジスタの一実施例を 示す断面図である。

【図2】その製造方法の手順を示す工程断面図である。 【図3】 従来例によるMOSトランジスタの構造を示す 断面図である。

【図4】その製造方法の手順を示す工程断面図である。 【符号の説明】

- 11 シリコン基板
- 12 ゲート酸化膜
- 13 ゲート電極
- 14 上敷酸化膜
- 15 低濃度の不純物拡散領域
- 17 シリコン基板上のチャネル用溝

【図1】

11:シリコン乗ん

15:低寝食不化物假成

18:高康良不托物領域

17:シリコン落放上*森

【図3】

