3-4 Additional Practice

Dividing Polynomials

Divide using long division.

1.
$$(x^2 - 13x - 48)$$

 $\div (x + 3)$

2.
$$(x^3 + 5x^2 - 3x - 1)$$
 3. $(3x^3 - x^2 - 7x + 6)$ $\div (x + 2)$

3.
$$(3x^3 - x^2 - 7x + 6)$$

 $\div (x + 2)$

Divide using synthetic division.

4.
$$(x^3 - 8x^2 + 17x - 10)$$
 5. $(x^3 + 5x^2 - x - 9)$ **6.** $(2x^4 + 7x^3 - 11x^2 + 21x + 5) \div (x + 5)$

5.
$$(x^3 + 5x^2 - x - 9)$$

 $\div (x + 2)$

6.
$$(2x^4 + 7x^3 - 11x^2 + 21x + 5) \div (x + 5)$$

7. Verify the Remainder Theorem if $P(x) = x^3 - 5x^2 - 7x + 25$ is divided by (x - 5). Explain.

Determine whether each binomial is a factor of $x^3 + 3x^2 - 10x - 24$.

8.
$$x + 4$$

10.
$$x + 6$$

- 11. The volume, in cubic inches, of a rectangular box can be expressed as the product of its three dimensions: $V(x) = x^3 - 16x^2 + 79x - 120$. The length is x - 8. Find linear expressions with integer coefficients for the width and height. The width is greater than the height.
- 12. What does it mean if P(-4) for the polynomial function $P(x) = x^3 + 11x^2$ +34x + 24 equals zero?