B.TECH.

Computer Science and Engineering (Data Science) FIFTH SEMESTER (DETAILED SYLLABUS)

KCS 501	DATABASE MANAGEMENT SYSTEM	
	Course Outcome (CO) Bloom's Knowledge Lev	el (KL)
	At the end of course, the student will be able to understand	
CO 1	Apply knowledge of database for real life applications.	K_3
CO 2	Apply query processing techniques to automate the real time problems of databases.	K ₃ , K ₄
CO 3	Identify and solve the redundancy problem in database tables using normalization.	K_2, K_3
CO 4	Understand the concepts of transactions, their processing so they will familiar with broad range	K_2, K_4
	of database management issues including data integrity, security and recovery.	
CO 5	Design, develop and implement a small database project using database tools.	K ₃ , K ₆
	DETAILED SYLLABUS	3-1-0
Unit	Topic	Proposed
		Lecture
I	ntroduction: Overview, Database System vs File System, Database System Concept and	08
A	Architecture, Data Model Schema and Instances, Data Independence and Database Language and	
\mathbf{I}	nterfaces, Data Definitions Language, DML, Overall Database Structure. Data Modeling Using the	
· E	Entity Relationship Model: ER Model Concepts, Notation for ER Diagram, Mapping Constraints,	
K	Keys, Concepts of Super Key, Candidate Key, Primary Key, Generalization, Aggregation,	
F	Reduction of an ER Diagrams to Tables, Extended ER Model, Relationship of Higher Degree.	
F	Relational data Model and Language: Relational Data Model Concepts, Integrity Constraints,	08
E	Entity Integrity, Referential Integrity, Keys Constraints, Domain Constraints, Relational Algebra,	
F	Relational Calculus, Tuple and Domain Calculus. Introduction on SQL: Characteristics of SQL,	
II A	Advantage of SQL. SQl Data Type and Literals. Types of SQL Commands. SQL Operators and	
Γ	Their Procedure. Tables, Views and Indexes. Queries and Sub Queries. Aggregate Functions.	
I	nsert, Update and Delete Operations, Joins, Unions, Intersection, Minus, Cursors, Triggers,	
	Procedures in SQL/PL SQL	
	Data Base Design & Normalization: Functional dependencies, normal forms, first, second, 8 third	08
	ormal forms, BCNF, inclusion dependence, loss less join decompositions, normalization using	
	D, MVD, and JDs, alternative approaches to database design	
	Transaction Processing Concept: Transaction System, Testing of Serializability, Serializability of	08
IV I	chedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction	
1	ailures, Log Based Recovery, Checkpoints, Deadlock Handling. Distributed Database: Distributed	
	Data Storage, Concurrency Control, Directory System.	
	Concurrency Control Techniques: Concurrency Control, Locking Techniques for Concurrency	08
	Control, Time Stamping Protocols for Concurrency Control, Validation Based Protocol, Multiple	
(Granularity, Multi Version Schemes, Recovery with Concurrent Transaction, Case Study of Oracle.	

Text books

- 1. Korth, Silbertz, Sudarshan," Database Concepts", McGraw Hill
- 2. Date C J, "An Introduction to Database Systems", Addision Wesley
- 3. Elmasri, Navathe, "Fundamentals of Database Systems", Addision Wesley
- 4. O'Neil, Databases, Elsevier Pub.
- 5. RAMAKRISHNAN"Database Management Systems", McGraw Hill
- 6. Leon & Leon,"Database Management Systems", Vikas Publishing House
- 7. Bipin C. Desai, "An Introduction to Database Systems", Gagotia Publications
- 8. Majumdar & Bhattacharya, "Database Management System", TMH