

Normalization methods for analytical variance reduction

Goals: Evaluate batch effects in replicated measurements and overview normalization methods

Topics:

- 1. Batch effects
- 2. Sample normalization
- 3. Variable transformation
- 4. Variable normalization

Identify the effects of sample drying

Use DATA: Normalization Data.csv

Visualize:

- 1. Batch effects in replicated measurements
- 2. The effect of normalization on samples and variables

Questions:

1. How can batch and outlier effects be mitigated?

Question:

Are there any batch effects in this data?

	Acquisition.order	Batch	Sample	z.C30.FAME
1	1	B1	train	14085
2	2	B1	test	17560
3	3	B1	train	15042
4	4	B2	test	12533
5	5	B2	train	18879
6	6	B2	test	19099
7	7	B2	train	18535
8	8	ВЗ	test	17768
9	9	В3	train	20127
10	10	В3	test	21715

\$dim	ensio	ns		
ro	ws co	lumn	ıs	
1 152		1	.2	
\$fac	tors			
Batch			Sar	mple
B15	:	5	test	:76
B24	:	5	train	n:76
B26	:	5		
B11	:	4		
B12	:	4		
B13	:	4		

Biology Chemistry Informatics

Statistics

Answer:

Are there any batch effects in this data? (Yes!)

Statistics

Answer:

Not all metabolites are similarly affected

4	10.00	I de la constante	(E.O.)
ъm	et	no	ds

	methods
sample.normalization	none
variable.transformation	none
variable.centering	none
variable.normalization	none

\$performance

\$performance\$batch

median.RSD range 13 5.9, 24

\$performance\$batch.summary

cumulative.percent	percent	count	RSD	
25	25	10	0-10	1
87	62	25	10-20	2
99	12	5	20-30	3

\$performance\$variable median.RSD range

1 12 8.4, 19

\$performance\$variable.summary

	RSD	count	percent	cumulative.percent
1	0-10	3	33	33
2	10-20	6	67	100

Question:

Can sample and variable normalizations reduce analytical variance and batch effects?

Answer:

Sample and variable normalizations can <u>reduce</u> or <u>increase</u> analytical variance and batch effects.

Sum normalization

Statistics

Answer:

Sample and variable normalizations can <u>reduce</u> analytical variance and batch effects.

raw

Sum normalization

\$performance \$performance\$batch median.RSD range 13 5.9, 24 \$performance\$batch.summary RSD count percent cumulative.percent 1 0-10 2 10-20 62 3 20-30 \$performance\$variable median.RSD range 12 8.4, 19 \$performance\$variable.summary RSD count percent cumulative.percent 1 0-10 33 2 10-20 6 67 100

\$performance \$performance\$batch median.RSD range 12 5.9, 23 \$performance\$batch.summary RSD count percent cumulative.percent 1 0-10 25 2 10-20 70 28 95 3 20-30 2 100 \$performance\$variable median.RSD range 12 8.2, 19 \$performance\$variable.summary RSD count percent cumulative.percent 1 0-10 44 2 10-20 5 56 100

QC sample based normalizations

Can be useful for estimating and removing analytical variance

Example: qcLOESS workflow

- 1. Analysis of correlations between QC and sample trends
- 2. QC based variance model optimization
- 3. QC model based adjustment of sample variance
- Normalization performance validation

Overview of Normalizations (PCA)

