Business Category Inference from Yelp data

Bhakti Khude CMS 1406

Internal Guides
Dr. V. K. Jayaraman
Dr. Mihir Arjunwadkar
CMS. SPPU. Pune

Dr. External Guide Yogesh Badhe

Persistent Systems, Pune

June 17, 2016

Bhakti Khude (SPPU)

Outline

- Introduction
- 2 Data Extraction
- Multi Label Classification
 - Dimensionality Reduction
- Evaluation Measures
- Data Preprocessing, Modeling and Results
- Ensemble Classifier
- Conclusions & Future Work

Bhakti Khude (SPPU)

Outline

- Introduction
 - About Yelp
 - Inferences from the Dataset
 - Problem Statement: Category Inference
 - The Dataset
 - Business dataset
 - Review & Checkin dataset
 - User & Tip dataset
 - Photo dataset

About Yelp

Yelp.com a crowd-sourced local business review and social networking site

Best of Yelp: San Jose

Bhakti Khude (SPPU)

4 / 73

About Yelp

Yelp Dataset Challenge

- 2.2M reviews and 591K tips by 552K users for 77K businesses
- 566K business attributes, e.g. hours, parking availability, ambience
- Social network of 552K users for a total of 3.5M social edges
- Aggregated check-ins over time for each of the 77K businesses
- 2,00,000 pictures from the included businesses

Inferences from the Dataset

Cultural Trends

Yes, people do really use the word "posh" in London. Image: Yelp

Bhakti Khude (SPPU)

Inferences from the Dataset

Seasonal Trends

Inferences from the Dataset

Review Sentiment Analysis

of great five hands down best if could give me feel fixeh ands service great food steet in just but not too, service great food steet in just but not too, service great food great great

by far worst if could give did not even will not returnded not like do not know food came out could get got our food worst service ever will not go asked if could an off day

will never go never go back

atten say will not returning and day but off our bill will not back do not eat over an hour all can eat would not recommend to result on the say go somewhere else got up left not go here our drink order do not go do not wand ont know what not eat here

8 / 73

Bhakti Khude (SPPU) June 17, 2016

Problem Statement: Category Inference

Prior Work

Bhakti Khude (SPPU)

9 / 73

Problem Statement: Category Inference

This Work

Automatically classify new business into relevant categories given the business attributes, reviews, tips and images.

```
'type': 'business',
'business_id': (encrypted business id),
'name': (business name).
'neighborhoods': [(hood names)],
'full_address': (localized address),
'city': (city).
'state': (state).
'latitude': latitude,
'longitude': longitude,
'stars': (star rating, rounded to half-stars),
'review_count': review count.
'categories': [(localized category names)]
'open': True / False (corresponds to closed, not
   business hours).
'hours': {
   (dav_of_week): {
        'open': (HH:MM),
        'close': (HH:MM) }.
'attributes': {
   (attribute_name): (attribute_value), },
```

```
'type': 'review'.
'business_id': (encrypted business id),
'user_id': (encrypted user id),
'stars': (star rating, rounded to half-stars).
'text': (review text).
'date': (date, formatted like '2012-03-14').
'votes': {(vote type): (count)}.
'type': 'checkin'.
'business_id': (encrypted business id),
'checkin_info': {
    '0-0': (number of checkins from 00:00 to 01:00 on
       all Sundays),
    '1-0': (number of checkins from 01:00 to 02:00 on
       all Sundays).
    '14-4': (number of checkins from 14:00 to 15:00 on
       all Thursdays),
    '23-6': (number of checkins from 23:00 to 00:00 on
       all Saturdays)
}, # if there was no checkin for a hour-day block it
   will not be in the dict
```

User & Tip dataset

```
'type': 'user'.
'user_id': (encrypted user id),
'name': (first name).
'review_count': (review count).
'average_stars': (floating point average, like 4.31),
'votes': {(vote type): (count)},
'friends': [(friend user_ids)],
'elite': [(years_elite)],
'yelping_since': (date, formatted like '2012-03'),
'compliments': {
    (compliment_type): (num_compliments_of_this_type),
    . . .
'fans': (num_fans),
'type': 'tip',
'text': (tip text).
'business_id': (encrypted business id),
'user_id': (encrypted user id),
'date': (date, formatted like '2012-03-14'),
'likes': (count).
```

Photo dataset

```
"photo_id": (encrypted photo id),
"business_id" : (encrypted business id),
"caption": (the photo caption, if any),
"label": (the category the photo belongs to, if any
```

Photo-to-Business linking

```
"photo_id": "-2G-S95e-6Q510XgRxqaZA".
"business_id": "UUD-BLty8HGzqj5cROo34g",
"caption": "10 toppings few classic yogurt flavors.",
"label": "food"
```


-2G-S95e-6Q5IOXqRxqaZA.jpq

Outline

- 2 Data Extraction
 - Exploratory Analysis
 - Final Dataset Preparation

Bhakti Khude (SPPU)

- 5 text files containing information about Business, User Reviews, User Information, Tip and Checkins.
- Implementation initially in R and then in Python
- Extracted the data from JSON in a CSV format for processing it in R via the jsonlite package.
- Stored the data in MySQL database and accessing it in R using RMySQL package.
- Total 77,445 businesses

- 5 text files containing information about Business, User Reviews, User Information, Tip and Checkins.
- Implementation initially in R and then in Python
- Extracted the data from JSON in a CSV format for processing it in R via the jsonlite package.
- Stored the data in MySQL database and accessing it in R using RMySQL package.
- Total 77,445 businesses
- 22,25,231 reviews & 5,91,864 tips

- 5 text files containing information about Business, User Reviews, User Information, Tip and Checkins.
- Implementation initially in R and then in Python
- Extracted the data from JSON in a CSV format for processing it in R via the jsonlite package.
- Stored the data in MySQL database and accessing it in R using RMySQL package.
- Total 77,445 businesses
- 22,25,231 reviews & 5,91,864 tips
- **3** 55,569 check-ins & 2,00,000 images

- 5 text files containing information about Business, User Reviews, User Information, Tip and Checkins.
- Implementation initially in R and then in Python
- Extracted the data from JSON in a CSV format for processing it in R via the jsonlite package.
- Stored the data in MySQL database and accessing it in R using RMySQL package.
- Total 77,445 businesses
- 22,25,231 reviews & 5,91,864 tips
- **3** 55,569 check-ins & 2,00,000 images
- by 5,52,339 users

Business Name	Business Category
Mr Hoagie	Fast Food, Restaurants
Clancy's Pub	Nightlife
Joe Cislo's Auto	Auto Repair, Automotive
Cool Springs Golf	Active Life, Mini Golf, Golf
Center	
Verizon	Shopping, Home Services, Internet Service
	Providers, Mobile Phones, Professional Ser-
	vices, Electronics
Greentree Animal	Veterinarians, Pets
Clinic	
Kings Family Restau-	Burgers, Breakfast & Brunch, American
rant	(Traditional), Restaurants

Business category inference based on Supervised learning approach.

• 896 unique business categories

Business Name	Business Category
Mr Hoagie	Fast Food, Restaurants
Clancy's Pub	Nightlife
Joe Cislo's Auto	Auto Repair, Automotive
Cool Springs Golf	Active Life, Mini Golf, Golf
Center	
Verizon	Shopping, Home Services, Internet Service
	Providers, Mobile Phones, Professional Ser-
	vices, Electronics
Greentree Animal	Veterinarians, Pets
Clinic	
Kings Family Restau-	Burgers, Breakfast & Brunch, American
rant	(Traditional), Restaurants

Business category inference based on Supervised learning approach.

- 896 unique business categories
- Each business belongs to min. 1 and max. 11 categories.

• Each business belonged to multiple categories from these 22 categories

イロト (個) (重) (重) (型) のQの

- Each business belonged to multiple categories from these 22 categories
- Multi Label Classification Problem

Bhakti Khude (SPPU)

- Each business belonged to multiple categories from these 22 categories
- Multi Label Classification Problem
- "Food" & "Shopping" chosen

Exploratory Analysis

Bhakti Khude (SPPU)

19 / 73

Final Dataset Preparation

- Chosen categories Food and Shopping
- 19,774 businesses in total
 - 10,524 Shopping
 - 8,541 Food
 - 709 Both
- On removal of closed businesses 16,864 businesses in total
 - 9,238 Shopping
 - 6,978 Food
 - 648 Both
 - Review count: 3,40,062

Max 5 reviews per business: 73,576

• Tip count: 1,08,910

Max 5 tips per business: 36,517

	Shopping	Food
Business	9,886	7,626
Review	42,274	34,225
Tip	16,561	21,811
Check-in	7,403	6,774

Outline

- Multi Label Classification
 - Problem Transformation Methods
 - Algorithm Adaptation Methods

Multi Label Classification

Instance	Label Set
1	$\{\lambda_2,\lambda_3\}$
2	$\{\lambda_1\}$
3	$\{\lambda_1,\lambda_2,\lambda_3\}$
4	$\{\lambda_2,\lambda_4\}$

Table: Example Multi-label dataset

 In multi-label classification each instance will be associated to a set of labels instead of a single label.

Applications : text categorization, medical diagnosis, music categorization

Multi Label Classification

Instance	Label Set
1	$\{\lambda_2,\lambda_3\}$
2	$\{\lambda_1\}$
3	$\{\lambda_1,\lambda_2,\lambda_3\}$
4	$\{\lambda_2,\lambda_4\}$

Table: Example Multi-label dataset

- In multi-label classification each instance will be associated to a set of labels instead of a single label.
 - Applications: text categorization, medical diagnosis, music categorization
- · Organized in three main families:
 - 1. Problem transformation: Transform the multi-label learning problem into one or several single-label classification problems
 - 2. Algorithm adaptation : Extend single-label learning algorithms for the multi-label data
 - 3. Ensemble methods: Use ensembles of classifiers

22 / 73

Problem Transformation

Instance	Label Set
1	$\{\lambda_2,\lambda_3\}$
2	$\{\lambda_1\}$
3	$\{\lambda_1,\lambda_2,\lambda_3\}$
4	$\{\lambda_2,\lambda_4\}$

Table: Example Multi-label dataset

Ex.	Label
1a	λ_2
1b	λ_3
2	λ_1
3a	λ_1
3b	λ_2
3c	λ_3
4a	λ_2
4b	λ_4

Ex.	Label
1	λ_3
2	λ_1
3	λ_2
4	λ_4
(b)	

Ex.	Label
2	λ_1
(c)	

Ex.	Label Set
1	$\lambda_{2,3}$
2	λ_1
3	$\lambda_{1,2,3}$
4	$\lambda_{2,4}$
(d)	

(a)

(a) copy (b) select-random (c) ignore (d) Label Power Set

Problem Transformation

Ranking by Pairwise Comparison (RPC)

Instance	Label Set
1	$\{\lambda_2,\lambda_3\}$
2	$\{\lambda_1\}$
3	$\{\lambda_1,\lambda_2,\lambda_3\}$
4	$\{\lambda_2,\lambda_4\}$

Table: Example Multi-label dataset

Ex.	Label
1	$\lambda_{\lnot 1,2}$
2	$\lambda_{1, eg 2}$
4	$\lambda_{\lnot 1,2}$
	 (a)

Ex.	Label
1	$\lambda_{\neg 1,3}$
2	$\lambda_{1,\neg 3}$
4	$\lambda_{\neg 1, \neg 3}$
(b)	

Ex.	Label
2	$\lambda_{1,\neg 4}$
3	$\lambda_{1,\neg 4}$
4	$\lambda_{\neg 1,4}$
(c)	

Ex.	Label
4	$\lambda_{2,\neg 3}$
(d)	

Table: Datasets transformed by RPC method

Problem Transformation

Binary Relevance

Instance	Label Set
1	$\{\lambda_2,\lambda_3\}$
2	$\{\lambda_1\}$
3	$\{\lambda_1,\lambda_2,\lambda_3\}$
4	$\{\lambda_2,\lambda_4\}$

Table : Example Multi-label dataset

Ex.	Label
1	$\neg \lambda_1$
2	λ_1
3	λ_1
4	$\neg \lambda_1$
	(a)

Ex.	Label
1	λ_2
2	$\neg \lambda_2$
3	λ_2
4	λ_2
	(b)

Ex.	Label
1	λ_3
2	$ eg \lambda_3$
3	λ_3
4	$\neg \lambda_3$
	(c)

Ex.	Label
1	$\neg \lambda_4$
2	$ eg \lambda_4$
3	$ eg \lambda_4$
4	λ_4
(d)	

Table: Transformed data sets produced by Binary Relevance (BR) method

Algorithm Adaptation

Neural Networks:

Activation Functions

Algorithm Adaptation

Neural Networks: Backpropagation for Multi-Label Learning (BP-MLL)

The 4 main steps of the BP algorithm are:

- Forward propagate error signals to output
- Calculate output error E, and backpropagate error signal
- Use forward signal and backward signals to calculate parameter gradients
- Update network parameters

Parameters

zi : input to node j for layer l

 g_i : activation function for node j in layer I (applied to z_i)

 $a_i = g_i(z_i)$: ouput/activation of node j in layer I

wii: weights connecting node i in layer (I-1) to node j in layer I

b; : bias for unit j in layer l

ti, : target value for node k in the output layer

II. Back-propagate Error Signals

III. Calculate Parameter Gradients

IV. Update Parameters

 $w_{ii} = w_{ii} - \eta(\partial E/\partial w_{ii})$ $w_{ik} = w_{ik} - \eta(\partial E/\partial w_{ik})$ for learning rate n

Decision Tree Algorithm

C5.0 and Random Forest algorithms are based on Decision Tree learning.

- Classify instances by sorting them down the tree
- Node in the tree specifies a test of some attribute of the instance
- Attribute selection: Based on Information Gain and Entropy

$$Entropy = \sum_{j} -p_{j} \log_{2} p_{j}, \quad p_{j} \text{ is the probability of class } j$$

$$\mathit{InfoGain}(S,A) \equiv \mathit{Entropy}(S) - \sum_{v \in \mathit{Values}(A)} rac{|S_v|}{|S|} \mathit{Entropy}(S_v)$$

where Values(A) is the set of all possible values for attribute A, and S_v is the subset of S for which attribute A has value v.

28 / 73

Decision Tree Algorithm

- C4.5 works with continuous attributes, handles missing values, supports pruning
- C5.0 supports boosting, pre-filter attributes, improved scalability

C5.0 was used in Problem Transformation

Clare et. al uses C4.5 algorithm for multi-label data with the modified entropy definition:

$$extit{Entropy} = -\sum_{j=1}^k \{(P(\lambda_j) \log P(\lambda_j) + (1-P(\lambda_j)) \log (1-P(\lambda_j))\}$$

where, $P(\lambda_j)=$ probability of class λ_j . This allows to estimate the uncertainty in terms of number of bits in multi-label setting. This modified method also allows multiple labels at the leaves.

Random Forests

- Ensemble of decision trees
- Random subset of features are selected to generate a forest
- Every example passes through all trees, get the class having highest votes

4 D > 4 A > 4 B > 4 B > B = 400 C

29 / 73

Bhakti Khude (SPPU) June 17, 2016

Outline

Dimensionality Reduction

Singular Value Decomposition

The SVD of matrix A having dimensions $m \times n$:

$$A = UWV^T$$

where,

U =The columns of U are the eigenvectors of AA^T . Dimension: $m \times min(m, n)$

W = Vector having singular values of A. They are the square root of the eigenvalues of both AA^T and A^TA . Dimension: min(m, n)

V =The columns of V are the eigenvectors of A^TA . Dimension: $n \times min(m, n)$

- A matrix of dimension $m(documents) \times n(terms)$
- Keep first k (k < n)number of terms
- ullet Drop all the columns in V beyond k
- V matrix is truncated to $n \times k$

Data projection:

$$A^{'} = A_{[m \times n]} \times V_{[n \times k]}^{'}$$
$$A^{'} = A_{[m \times k]}$$

Outline

Evaluation Measures

Evaluation Measures

D being the Multi Label Dataset (MLD), L the full set of labels used in D, Y_i the subset of predicted labels for the ith instance. and Z_i the true subset of labels.

Hamming Loss (HLoss):

$$HammingLoss = \frac{1}{\mid D \mid} \sum_{i=1}^{\mid D \mid} \frac{\mid Y_i \Delta Z_i \mid}{\mid L \mid}$$

Accuracy (Acc):

$$Accuracy = \frac{1}{\mid D \mid} \sum_{i=1}^{\mid D \mid} \frac{\mid Y_i \cap Z_i \mid}{\mid Y_i \cup Z_i \mid}$$

Subset Accuracy (subAcc):

$$SubsetAccuracy = \frac{1}{\mid D \mid} \sum_{i=1}^{\mid D \mid} \llbracket Y_i = Z_i \rrbracket$$

4□ > 4□ > 4≣ > 4≣ > ∃ 90

June 17, 2016

33 / 73

Evaluation Measures

Precision (Prec):

$$Precision = \frac{1}{\mid D \mid} \sum_{i=1}^{\mid D \mid} \frac{\mid Y_i \cap Z_i \mid}{\mid Y_i \mid}$$

Recall (Rec):

$$Precision = \frac{1}{\mid D \mid} \sum_{i=1}^{\mid D \mid} \frac{\mid Y_i \cap Z_i \mid}{\mid Z_i \mid}$$

§ F1-measure (**F1**):

$$F1 - measure = 2 * \frac{Precision \cdot Recall}{Precision + Recall}$$

 Area Under the Curve (AUC): This metric calculates the area under the curve ROC (Receiver Operating Charateristic) by trapezoidal rule of integration.

$$\textit{MicroAUC} = \frac{1}{\mid L \mid} \frac{\mid x', x".y', y" : \textit{rank}(x', y') \geq \textit{rank}(x", y"), (x', y') \in S^+, (x", y") \in S^- \mid S^+ \mid S^- \mid S^-$$

where, $rank(x_i, y)$ returns the position of y, a certain label, in the x_i instance.

$$S^+ = (x_i, y) : y \in Y_i, \quad S^- = (x_i, y) : y \notin Y_i$$

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Bhakti Khude (SPPU)

Evaluation Measures

ROC curve is a graphical representation that measures performance of a binary classifier system as its discrimination threshold is varied. The curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings, where,

$$TPR = \frac{TP}{TP + FN}$$

and

$$FPR = \frac{FP}{FP + TN}$$

		Predicted Condition					
		Predicted Condition positive	Predicted Condition negative				
True	condition positive	True Positive (TP)	False Negative (FN)				
condition	condition negative	False Positve (FP)	True Negative (TN)				

Outline

- 6 Data Preprocessing, Modeling and Results
 - Business Dataset
 - Text features
 - Time features
 - Check-in features
 - Review Dataset
 - User features
 - Word2vec features
 - Tip Dataset
 - Image Dataset

Data cleaning was performed in R and Python Using ${\bf R}$

- tm package.
- Conversion to lowercase, removal of numbers, removal of punctuations, removal of common English "stopwords" (the, is, was etc.)
- "Stemming" was performed which truncates words to their specific stems(e.g., "compute", "computes" and "computing" all become "comput")
- SnowballC package performs stemming by Porter stemmer algorithm

Using Python

• NLTK package used.

- NLTK package used.
- Foreign accents removed: café was converted to cafe

- NLTK package used.
- Foreign accents removed: café was converted to cafe
- Text converted to lowercase, numbers, punctuation and English stopwords removed as before.

- NLTK package used.
- Foreign accents removed: café was converted to cafe
- Text converted to lowercase, numbers, punctuation and English stopwords removed as before.
- Custom stopwords ('http', 'www', 'net', 'com', 'jpg', 'etc', 'like', 'likes', 'still', 'definitely', 'always', 'feel', 'feels', 'difficult', 'different', 'usual', 'usually') were added to the existing list.

- NLTK package used.
- Foreign accents removed: café was converted to cafe
- Text converted to lowercase, numbers, punctuation and English stopwords removed as before.
- Custom stopwords ('http', 'www', 'net', 'com', 'jpg', 'etc', 'like', 'likes', 'still', 'definitely', 'always', 'feel', 'feels', 'difficult', 'different', 'usual', 'usually') were added to the existing list.
- Spelling correction using pyEnchant package

- NLTK package used.
- Foreign accents removed: café was converted to cafe
- Text converted to lowercase, numbers, punctuation and English stopwords removed as before.
- Custom stopwords ('http', 'www', 'net', 'com', 'jpg', 'etc', 'like', 'likes', 'still', 'definitely', 'always', 'feel', 'feels', 'difficult', 'different', 'usual', 'usually') were added to the existing list.
- Spelling correction using pyEnchant package
- Lemmatisation was done to get the correct stem of the word. It gives a real word rather than just stemming. Consider the following examples
 - eg 1: The word "better" has "good" as its lemma. This link is missed by stemming, as it requires a dictionary look-up.
 - eg 2: The word "walk" is the base form for word "walking", and hence this is matched in both stemming and lemmatisation.

- NLTK package used.
- Foreign accents removed: café was converted to cafe
- Text converted to lowercase, numbers, punctuation and English stopwords removed as before.
- Custom stopwords ('http', 'www', 'net', 'com', 'jpg', 'etc', 'like', 'likes', 'still', 'definitely', 'always', 'feel', 'feels', 'difficult', 'different', 'usual', 'usually') were added to the existing list.
- Spelling correction using pyEnchant package
- Lemmatisation was done to get the correct stem of the word. It gives a real word rather than just stemming. Consider the following examples
 - eg 1: The word "better" has "good" as its lemma. This link is missed by stemming, as it requires a dictionary look-up.
 - eg 2: The word "walk" is the base form for word "walking", and hence this is matched in both stemming and lemmatisation.
- Parts-of-Speech (POS) Tagging using nltk.pos_tag() using the default maxent_treebank_pos_tagger tagger. It is a Maximum Entropy tagger which has been trained on Penn Treebank tagset. Only the noun, adjective and verb tags were retained.

Using Python

- NLTK package used.
- Foreign accents removed: café was converted to cafe
- Text converted to lowercase, numbers, punctuation and English stopwords removed as before.
- Custom stopwords ('http', 'www', 'net', 'com', 'jpg', 'etc', 'like', 'likes', 'still', 'definitely', 'always', 'feel', 'feels', 'difficult', 'different', 'usual', 'usually') were added to the existing list.
- Spelling correction using pyEnchant package
- Lemmatisation was done to get the correct stem of the word. It gives a real word rather than just stemming. Consider the following examples
 - eg 1: The word "better" has "good" as its lemma. This link is missed by stemming, as it requires a dictionary look-up.
 - eg 2: The word "walk" is the base form for word "walking", and hence this is matched in both stemming and lemmatisation.
- Parts-of-Speech (POS) Tagging using nltk.pos_tag() using the default
 maxent_treebank_pos_tagger tagger. It is a Maximum Entropy tagger which has
 been trained on Penn Treebank tagset. Only the noun, adjective and verb tags were
 retained.
- Stemming was performed like before.

Bhakti Khude (SPPU) June 17, 2016

4日 > 4回 > 4 厘 > 4 厘 >

38 / 73

Vector Space Model

N-gram is a continuous sequence of N items that co-occur together from a given text sequence.

E.g.: "a man is walking"

Unigrams from this sentence:

- a
- man
- is
- walking

Bigrams from this sentence:

- a man
- man is
- is walking

Vector Space Model

TF-IDF weighting Score the importance of words (or "terms") in a document **Term Frequency:** TF(t, d): No. of times term t occurs in document d

 $\mathsf{TF}(t,d) = 1$ if t occurs in d and 0 otherwise

Inverse Document Frequency: $\mathsf{IDF}(t,d)$: Whether the term t is common or rare across all documents

$$\mathsf{IDF}(t,d) = \log_2 \frac{N}{|\{d \in D: t \in d\}|}$$

where

 $\mathsf{N} = |D|$ total no. of documents $|\{d \in D : t \in d\}|$ is no. of documents where term t appears

A high IDF score implies it is a rare term.

TF-IDF score is simply the product of TF and IDF. Ideally, a term is important to a document if it has high TF and high IDF scores.

Bhakti Khude (SPPU)

40 / 73

Vector Space Model

```
Text = c( "Hello world!!", "Hello 123", "The man is walking!!" )

Terms

Docs hello man walk world

1 0.2924813 0.0000000 0.0000000 0.7924813

2 0.5849625 0.0000000 0.0000000 0.0000000

3 0.0000000 0.7924813 0.7924813 0.0000000
```

k Fold Cross Validation

Business Dataset

Vector Space Model was built from business names.

Time feature generation

"Starbucks"

Day	Open	Close
Monday	06:00	21:30
Tuesday	06:00	21:30
Wednesday	06:00	21:30
Thursday	06:00	22:30
Friday	07:00	22:30
Saturday	07:00	21:00
Sunday	06:00	21:30

"Minerva Bakery"

Day	Open	Close
Monday	NA	NA
Tuesday	07:00	16:30
Wednesday	07:00	16:30
Thursday	07:00	16:30
Friday	07:00	16:30
Saturday	07:00	15:30
Sunday	NA	NA

<ロト <部ト < 注 ト < 注 ト

43 / 73

Time slots created: Morning: 05:00 - 12:00, Afternoon: 12:00 - 17:00, Evening:

17:00 - 21:00, Night: 21:00 - 05:00

Business	Mor	Aft	Eve	Nit	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Starbucks	1	1	1	1	1	1	1	1	1	1	1
Minerva Bakery	1	1	0	0	0	1	1	1	1	1	0

Time feature generation

Business Dataset

Check-in feature generation

Check-in given for every hour for every day of the week. These account for a total of 168 features ($24 \times 7 = 168$).

Generated 24 features (1 feature for every hour of the day)

Day	"9-10"	"10-11"	"11-12"
Monday	1	2	3
Tuesday	1	1	1
Wednesday	4	1	3
Thursday	4	2	1
Friday	4	4	4
Saturday	NA	2	3
Sunday	2	2	7

Check-in feature generation

Check-in given for every hour for every day of the week. These account for a total of 168 features ($24 \times 7 = 168$).

Generated 24 features (1 feature for every hour of the day)

Day	"9-10"	"10-11"	"11-12"
Monday	1	2	3
Tuesday	1	1	1
Wednesday	4	1	3
Thursday	4	2	1
Friday	4	4	4
Saturday	NA	2	3
Sunday	2	2	7

	"9"	"10"	"11"
"Starbucks"	16	14	22

Business Dataset: Results-I

Data cleaned by R

Model: C5.0 Problem Transformation

Model	HLoss	Acc	AUC	F1	Prec	Rec
1	0.200	0.800	0.800	0.807	0.812	0.801
2	0.185	0.815	0.815	0.820	0.825	0.816
3	0.150	0.850	0.850	0.855	0.856	0.855
4	0.143	0.857	0.857	0.861	0.865	0.858
5	0.143	0.857	0.857	0.862	0.864	0.859
6	0.140	0.860	0.859	0.864	0.868	0.861
7	0.141	0.859	0.859	0.864	0.865	0.862

Table: C5.0 results on business dataset (I)

Missing values did carry valuable information to category inference indicated by decrease in the HLoss value.

Business Dataset: Results-I

Data cleaned by R

Model: C5.0 Problem Transformation

Model	HLoss	Acc	AUC	F1	Prec	Rec
1	0.200	0.800	0.800	0.807	0.812	0.801
2	0.185	0.815	0.815	0.820	0.825	0.816
3	0.150	0.850	0.850	0.855	0.856	0.855
4	0.143	0.857	0.857	0.861	0.865	0.858
5	0.143	0.857	0.857	0.862	0.864	0.859
6	0.140	0.860	0.859	0.864	0.868	0.861
7	0.141	0.859	0.859	0.864	0.865	0.862

Table: C5.0 results on business dataset (I)

Missing values did carry valuable information to category inference indicated by decrease in the HLoss value.

Business Dataset: Results-II

Data cleaned by R

Model: DNN Algorithm Adaptation

Model	Neurons	Epoch	vd	hd	HLoss	Acc	AUC	F1	Prec	Rec
1	200,250	100	-	-	0.145	0.855	0.854	0.863	0.847	0.880
2	200,80	100	-	-	0.142	0.858	0.858	0.864	0.862	0.866
3	100,50	100	-	-	0.146	0.854	0.853	0.860	0.853	0.867
4	100,50	100	0.1	-	0.145	0.855	0.855	0.860	0.861	0.867
5	100,50	100	0.2	-	0.153	0.847	0.847	0.852	0.855	0.850
6	100,50	100	0.3	-	0.148	0.852	0.852	0.859	0.853	0.865
7	100,50	100	0.1	0.1	0.150	0.850	0.849	0.858	0.844	0.873
8	100,50	100	0.2	0.1	0.149	0.851	0.850	0.858	0.848	0.871

Table: DNN results on business dataset (I)

Model-3 was selected for further development because it had optimum results and a good Recall value.

47 / 73

Business Dataset: Results-II

Data cleaned by R

Model: DNN Algorithm Adaptation

Model	Neurons	Epoch	vd	hd	HLoss	Acc	AUC	F1	Prec	Rec
1	200,250	100	-	-	0.145	0.855	0.854	0.863	0.847	0.880
2	200.80	100			0 142	በ ጸ5ጸ	በ ጸ5ጸ	0.864	0.862	0.866
3	100,50	100	-	-	0.146	0.854	0.853	0.860	0.853	0.867
4	100,50	100	0.1	-	0.145	0.855	0.855	0.860	0.861	0.867
5	100,50	100	0.2	-	0.153	0.847	0.847	0.852	0.855	0.850
6	100,50	100	0.3	-	0.148	0.852	0.852	0.859	0.853	0.865
7	100,50	100	0.1	0.1	0.150	0.850	0.849	0.858	0.844	0.873
8	100,50	100	0.2	0.1	0.149	0.851	0.850	0.858	0.848	0.871

Table: DNN results on business dataset (I)

Model-3 was selected for further development because it had optimum results and a good Recall value.

Business Dataset: Missing Value Imputation

Missing Value Imputation

Special attribute imputation

Attribute	Missing Information
	(%)
Accepts Credit Cards	06.469
Price Range	06.908
Parking Garage	12.885
Parking Valet	12.945
Parking Street	12.951
Parking Lot	12.951
Parking Validated	13.722
Wheelchair Accessible	62.951

Table: Special attribute missing information

63 features having missing content $\geq 70\%$ were ignored and removed Time feature imputation Check-in feature imputation

Business Dataset: Missing Value Imputation

Missing value imputation by machine learning procedure:

- One attributed is imputed each time.
- Obtaset is divided in two sections training and testing. Training set includes the examples without the missing value attribute. Testing set includes examples with the missing value attribute.
- Classifier is trained on the training set with output as the attribute that needs imputation.
- Missing value is predicted for the testing set.
- Predicted value is imputed to the missing field in the original data.
- Process is repeated for all the attributes having missing values.

Business Dataset: Results-III

Data cleaned by R

Model: DNN Algorithm Adaptation

Model	Neurons	Epoch	vd	hd	HLoss	Acc	AUC	F1	Prec	Rec
9	100,50	100	-	-	0.116	0.884	0.884	0.889	0.885	0.894
10	100,50	100	-	-	0.100	0.900	0.900	0.903	0.905	0.902
11	180,150,100	100	-	-	0.106	0.894	0.894	0.898	0.897	0.900
12	150,70,150	100	-	-	0.103	0.897	0.897	0.901	0.904	0.898
13	100,50	100	-	-	0.188	0.812	0.812	0.820	0.817	0.822
14	100,50	100	-	-	0.107	0.893	0.893	0.896	0.899	0.894

Table: DNN results on business dataset (I)

Business Dataset: Results-III

Data cleaned by ${\sf R}$

Model: DNN Algorithm Adaptation

1	Model	Neurons	Epoch	vd	hd	HLoss	Acc	AUC	F1	Prec	Rec
	9	100 50	100	_	_	0 116	0 884	0.884	0.889	0 885	0.894
	10	100,50	100	-	-	0.100	0.900	0.900	0.903	0.905	0.902
	11	180,150,100	100	-	-	0.106	0.894	0.894	0.898	0.897	0.900
	12	150,70,150	100	-	-	0.103	0.897	0.897	0.901	0.904	0.898
	13	100,50	100	-	-	0.188	0.812	0.812	0.820	0.817	0.822
	14	100,50	100	-	-	0.107	0.893	0.893	0.896	0.899	0.894

Table: DNN results on business dataset (I)

Business Dataset: Results-IV

Data cleaned by Python Model: C5.0 & DNN

Model	Neurons	Epoch	HLoss	Acc	AUC	F1	Prec	Rec
1	-	-	0.145	0.855	0.855	0.861	0.858	0.864
2	W	-	0.158	0.842	0.841	0.847	0.847	0.848
3	100,50	300	0.082	0.918	0.918	0.921	0.923	0.919
4	100,50	300	0.081	0.919	0.919	0.922	0.924	0.920

Table: C5.0 and DNN results on business dataset (II)

Business Dataset: Results-IV

Data cleaned by Python Model: C5.0 & DNN

M	lodel	Neurons	Epoch	HLoss	Acc	AUC	F1	Prec	Rec
	1	-	-	0.145	0.855	0.855	0.861	0.858	0.864
	2	W	-	0.158	0.842	0.841	0.847	0.847	0.848
	3	100,50	300	0.082	0.918	0.918	0.921	0.923	0.919
	4	100,50	300	0.081	0.919	0.919	0.922	0.924	0.920

Table: C5.0 and DNN results on business dataset (II)

Review Dataset- Results I

Vector Space model from unigrams and bigrams built from review text In addition 3 more attributes. No missing data.

Non-Elite Dataset: Data cleaned by R

Model	Neurons	Epoch	vd	hd	HLoss	Acc	AUC	F1	Prec	Rec
1	-	-	-	-	0.105	0.895	0.896	0.899	0.904	0.894
2	100,50	100	-	-	0.101	0.899	0.899	0.902	0.909	0.896
3	100,50	100	0.2	-	0.100	0.900	0.901	0.903	0.914	0.892
4	100,50	300	-	-	0.084	0.916	0.916	0.918	0.924	0.913
5	100,50	300	0.2	-	0.098	0.902	0.902	0.905	0.909	0.902
6	100,50	300	-	0.2	0.100	0.900	0.900	0.903	0.911	0.896
7	100,50	300	-	-	0.089	0.911	0.911	0.914	0.919	0.909

Table: C5.0 and DNN results on review dataset (I)

Review Dataset- Results I

Vector Space model from unigrams and bigrams built from review text In addition 3 more attributes. No missing data.

Non-Elite Dataset: Data cleaned by R

Model	Neurons	Epoch	vd	hd	HLoss	Acc	AUC	F1	Prec	Rec
1	-	-	-	-	0.105	0.895	0.896	0.899	0.904	0.894
2	100,50	100	-	-	0.101	0.899	0.899	0.902	0.909	0.896
3	100 50	100	0.2	_	0.100	റ മററ	0 901	U 0U3	0.014	ი გევ
4	100,50	300	-	-	0.084	0.916	0.916	0.918	0.924	0.913
5	100,50	300	0.2	-	0.098	0.902	0.902	0.905	0.909	0.902
6	100,50	300	-	0.2	0.100	0.900	0.900	0.903	0.911	0.896
7	100,50	300	-	-	0.089	0.911	0.911	0.914	0.919	0.909

Table: C5.0 and DNN results on review dataset (I)

Review Dataset - Results II

Non-Elite Dataset: Data cleaned by Python

Model	Neurons	Epoch	vd	hd	HLoss	Acc	AUC	F1	Prec	Rec
1	-	-	-	-	0.105	0.895	0.895	0.898	0.905	0.891
2	100,50	300	-	-	0.083	0.917	0.918	0.919	0.930	0.909
3	100,50	300	-	-	0.101	0.899	0.900	0.902	0.911	0.894

Table: C5.0 and DNN results on review dataset (II)

Review Dataset - Results II

Non-Elite Dataset: Data cleaned by Python

Model	Neurons	Epoch	vd	hd	HLoss	Acc	AUC	F1	Prec	Rec
1	_	_	_	_	0 105	ი გ95	0.895	0 898	0 905	0.891
2	100,50	300	-	-	0.083	0.917	0.918	0.919	0.930	0.909
3	100,50	300	-	-	0.101	0.899	0.900	0.902	0.911	0.894

Table: C5.0 and DNN results on review dataset (II)

Review Dataset - Results III

User features

An "Elite" user serves as a local expert. More the number of years he is Elite more trusted Yelper

User	Elite years	nElite					
1	2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015	11					
2	-						
3	2005, 2006, 2007, 2008, 2010, 2011, 2012	7					

Table: User dataset example

Elite Dataset: Data cleaned by Python

Model	Neurons	Epoch	vd	hd	HLoss	Acc	AUC	F1	Prec	Rec
1	-	-	-	-	0.098	0.902	0.902	0.905	0.910	0.901
2	W	-	-	-	0.105	0.895	0.895	0.899	0.903	0.896
3	100,50	300	-	-	0.075	0.925	0.925	0.927	0.931	0.924
4	100,50	300	0.2	-	0.081	0.919	0.919	0.922	0.928	0.916

Table: C5.0 and DNN results on review dataset (III)

June 17, 2016

54 / 73

Review Dataset - Results III

User features

An "Elite" user serves as a local expert. More the number of years he is Elite more trusted Yelper

User	Elite years	nElite
1	2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015	11
2	-	0
3	2005, 2006, 2007, 2008, 2010, 2011, 2012	7

Table: User dataset example

Elite Dataset: Data cleaned by Python

Model	Neurons	Epoch	vd	hd	HLoss	Acc	AUC	F1	Prec	Rec
1	-	-	-	-	0.098	0.902	0.902	0.905	0.910	0.901
2	W				0 105	0.895	0.895	0 899	0.903	0.896
3	100,50	300	-	-	0.075	0.925	0.925	0.927	0.931	0.924
4	100,50	300	0.2	-	0.081	0.919	0.919	0.922	0.928	0.916

Table: C5.0 and DNN results on review dataset (III)

54 / 73

Word2vec algorithm

Input is one hot encoded vector Output at the Hidden layer $H^t = X^t W$ Output at the output layer $= H^t W'$ Probabilities for words in the output layer using the softmax function:

$$P(word_k \mid word_{context}) = \frac{\exp(activation(k))}{\sum_{n=1}^{V} \exp(activation(k))}$$

Errors calculated and the weights W and W^\prime updated using BP

Word2vec results on review data model.most_similar("food")

Out[118]:

[(u'produce', 0.6981618404388428),

(u'meat', 0.6864877343177795),

(u'restaurant', 0.637712836265564),

(u'groceries', 0.6293750405311584),

(u'coffee', 0.615966260433197),

(u'foods', 0.6132826805114746),

(u'yogurt', 0.6127834320068359),

(u'seafood', 0.6104639768600464),

(<u>u'sushi</u>', 0.5950002670288086),

(u'pizza', 0.5932236313819885)]

4 D > 4 D > 4 E > 4 E > E 990

Bhakti Khude (SPPU)

Word2vec algorithm

Continuous Bag of Words (CBOW)

continuous bag-of-word (CBOW)

input context
output target

Word2vec algorithm

Skip Grams (SG)

skip-gram (SG)
eat an apple every day

input output

Review Dataset - Results IV

Word2Vec features

Model	NEst	Neurons	Epoch	HLoss	Acc	AUC	F1	Prec	Rec
1	500	-	-	0.051	0.949	0.948	0.949	0.948	0.951
2	-	100,50	100	0.053	0.947	0.947	0.948	0.951	0.945
3	-	100,50	300	0.053	0.948	0.948	0.948	0.949	0.947
4	500	-	-	0.052	0.948	0.948	0.949	0.945	0.955

Table: Word2vec results on review dataset (III)

Review Dataset - Results IV

Word2Vec features

Mode	l NEst	Neurons	Epoch	HLoss	Acc	AUC	F1	Prec	Rec
1	500	-	-	0.051	0.949	0.948	0.949	0.948	0.951
2	-	100,50	100	0.053	0.947	0.947	0.948	0.951	0.945
3	-	100,50	300	0.053	0.948	0.948	0.948	0.949	0.947
4	500	-	-	0.052	0.948	0.948	0.949	0.945	0.955

Table: Word2vec results on review dataset (III)

Tip Dataset - Results I

Vector Space model from unigrams and bigrams built from tip text In addition 3 more attributes. No missing data.

Non-Elite Dataset: Data cleaned by R

Model	Neurons	Epoch	vd	hd	HLoss	Acc	AUC	F1	Prec	Rec
1	-	-	-	-	0.246	0.754	0.730	0.738	0.751	0.726
2	100,50	100	-	-	0.265	0.735	0.734	0.748	0.747	0.750
3	100,50	300	-	-	0.262	0.738	0.736	0.755	0.741	0.771
4	100,50	300	0.15	-	0.268	0.732	0.731	0.749	0.738	0.762
5	100,50	300	-	0.1	0.268	0.732	0.731	0.749	0.738	0.762
6	100,100,50	100	-	-	0.312	0.688	0.688	0.700	0.708	0.691
7	200,100	100	-	-	0.287	0.713	0.681	0.728	0.724	0.731
8	220,150	100	-	-	0.283	0.717	0.716	0.729	0.732	0.726
9	100,50,20	100	-	-	0.314	0.686	0.686	0.702	0.702	0.701
10	100,50	300	-	-	0.255	0.745	0.743	0.764	0.743	0.788

Table: C5.0 and DNN results on tip dataset (I)

Tip Dataset - Results I

Vector Space model from unigrams and bigrams built from tip text In addition 3 more attributes. No missing data.

Non-Elite Dataset: Data cleaned by R

Neurons	Epoch	vd	hd	HLoss	Acc	AUC	F1	Prec	Rec
-	-	-	-	0.246	0.754	0.730	0.738	0.751	0.726
100,50	100	-	-	0.265	0.735	0.734	0.748	0.747	0.750
100,50	300	-	-	0.262	0.738	0.736	0.755	0.741	0.771
100,50	300	0.15	-	0.268	0.732	0.731	0.749	0.738	0.762
100,50	300	-	0.1	0.268	0.732	0.731	0.749	0.738	0.762
100,100,50	100	-	-	0.312	0.688	0.688	0.700	0.708	0.691
200,100	100	-	-	0.287	0.713	0.681	0.728	0.724	0.731
220,150	100	-	-	0.283	0.717	0.716	0.729	0.732	0.726
100,50	300	-	-	0.255	0.745	0.743	0.764	0.743	0.788
	100,50 100,50 100,50 100,50 100,50 100,100,50 200,100 220,150	100,50 100 100,50 300 100,50 300 100,50 300 100,50 100 200,100 100 220,150 100	100,50 100 - 100,50 300 - 100,50 300 0.15 100,50 300 0.15 100,100,50 100 - 200,100 100 - 220,150 100 -	100,50 100 100,50 300 100,50 300 0.15 - 100,50 300 - 0.1 100,100,50 100 200,100 100 220,150 100	0.246 100,50 100 0.265 100,50 300 0.262 100,50 300 0.15 - 0.268 100,50 300 - 0.1 0.268 100,100,50 100 0.312 200,100 100 0.287 220,150 100 0.283	0.246 0.754 100,50 100 0.265 0.735 100,50 300 0.262 0.738 100,50 300 0.15 - 0.268 0.732 100,50 300 - 0.1 0.268 0.732 100,100,50 100 0.312 0.688 200,100 100 0.287 0.713 220,150 100 0.283 0.717	0.246 0.754 0.730 100,50 100 0.265 0.735 0.734 100,50 300 0.265 0.738 0.736 100,50 300 0.15 - 0.268 0.732 0.731 100,50 300 - 0.1 0.268 0.732 0.731 100,100,50 100 0.312 0.688 0.688 200,100 100 0.287 0.713 0.681 220,150 100 0.283 0.717 0.716	100,50	0.246 0.754 0.730 0.738 0.751 100,50 100 0.265 0.735 0.734 0.748 0.747 100,50 300 0.262 0.738 0.736 0.755 0.741 100,50 300 0.15 - 0.268 0.732 0.731 0.749 0.738 100,50 300 - 0.1 0.268 0.732 0.731 0.749 0.738 100,100,50 300 - 0.1 0.268 0.732 0.731 0.749 0.738 100,100,50 100 0.312 0.688 0.688 0.700 0.700 200,100 100 0.287 0.713 0.681 0.728 0.724 220,150 100 0.283 0.717 0.716 0.729 0.732

Table: C5.0 and DNN results on tip dataset (I)

Tip Dataset - Results II

Non-Elite Dataset: Data cleaned by Python

Model	Neurons	Epoch	vd	hd	HLoss	Acc	AUC	F1	Prec	Rec
1	-	-	-	-	0.271	0.729	0.730	0.737	0.753	0.721
2	100,50	300	-	-	0.248	0.752	0.751	0.763	0.764	0.762
3	100,50	300	-	-	0.251	0.749	0.748	0.765	0.756	0.774

Table: C5.0 and DNN results on tip dataset (II)

Tip Dataset - Results II

Non-Elite Dataset: Data cleaned by Python

Model	Neurons	Epoch	vd	hd	HLoss	Acc	AUC	F1	Prec	Rec
1					0.271	0.729	0.730	0.737	0.753	0.721
2	100,50	300	-	-	0.248	0.752	0.751	0.763	0.764	0.762
3	100,50	300	-	-	0.251	0.749	0.748	0.765	0.756	0.774

Table: C5.0 and DNN results on tip dataset (II)

Tip Dataset - Results III

Elite Dataset: Data cleaned by Python

Model	Neurons	Epoch	vd	hd	HLoss	Acc	AUC	F1	Prec	Rec
1	-	-	-	-	0.274	0.726	0.727	0.732	0.753	0.712
2	W	-	-	-	0.275	0.725	0.725	0.734	0.747	0.721
3	100,50	300	-	-	0.261	0.739	0.738	0.756	0.744	0.769
4	100,50	300	0.2	-	0.271	0.729	0.728	0.746	0.736	0.756

Table: C5.0 and DNN results on tip dataset (III)

Tip Dataset - Results III

Elite Dataset: Data cleaned by Python

Model	Neurons	Epoch	vd	hd	HLoss	Acc	AUC	F1	Prec	Rec
1	-	-	-	-	0.274	0.726	0.727	0.732	0.753	0.712
2	W	_	_		0 275	0.725	0.725	0 734	0 747	0.721
3	100,50	300	-	-	0.261	0.739	0.738	0.756	0.744	0.769
4	100,50	300	0.2	-	0.271	0.729	0.728	0.746	0.736	0.756

Table: C5.0 and DNN results on tip dataset (III)

Image Dataset

37,921 images were filtered belonging to "Food" and "Shopping" business categories Only 1 image per unique business -> 9,026. The distribution of these images in the two categories is as follows:

- 4,642 Shopping
- 4,707 Food
- 323 Both

Image Dataset: Convolution and Pooling

Image was resized to 224 imes 224

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

image Dataset: VGG16

Input to this model is a 224 \times 224 fixed size colour image 4096 convolved features which can be passed to any classifier Classified bye 2-hidden layer DNN with 4096 and 1000 neurons in each layer resp.

4 中 × 4 御 × 4 差 × 4 差)

64 / 73

image Dataset: Results

- No normalization of RGB components
- Normalization of RGB components (123.68, 116.779, 103.939)

Model	Neurons	Epoch	HLoss	Acc	AUC	F1	Prec	Rec
1	4096,1000	100	0.247	0.753	0.753	0.763	0.745	0.781
2	4096,1000	100	0.219	0.781	0.781	0.790	0.770	0.811

Table: DNN results on image dataset

Outline

Ensemble Classifier

Ensemble Classifier

- The best models from business, review, tip and image models were used to build an Ensemble.
- Separate training set of 13,500 businesses with their respective 59,174 reviews, 30,499 tips and 6,946 images.
- A test set of 2,080 examples was constructed containing atleast business information and an image, review and tip were optional.
- The model is based on the assumption that the data belonged to either one or both the categories. In case, if a classifier gave negative results for both the categories for the testing set then, the label with highest frequency in training was directly assigned to that example.
- Ensemble model contained mandatorily business ("Bus"), review ("Rev") and image
 models. Tip ("Tip") model and word2vec review model ("w2v") was checked if it
 improved the overall performance. Image model was checked to see if Plain ("Img")
 or Normalized ("ImgN") image was giving better performance. In the end, the
 models that gained higher measures were kept and others discarded from the
 Ensemble model.

Ensemble Classifier

Б.	Model	NEst	N	-	HLoss	Ι Δ	AUC	F1	. n	Rec	SubAcc
Data	iviodei	INEST	Neurons	Epoch		Acc	AUC	F1	Prec	Rec	SUDACC
Training											
Bus	DNN	-	100,50	300	0.085	0.915	0.915	0.918	0.922	0.914	0.902
Rev	DNN	-	100,50	300	0.074	0.926	0.927	0.929	0.937	0.927	0.905
w2v	RF	500	-	-	0.000	1.000	1.000	1.000	1.000	1.000	1.000
Tip	DNN	-	100,50	300	0.271	0.729	0.728	0.747	0.743	0.745	0.675
Img	DNN	-	4096,1000	100	0.000	1.000	1.000	1.000	1.000	1.000	1.000
ImgN	DNN	-	4096,1000	100	0.000	1.000	1.000	1.000	1.000	1.000	1.000
Testing											
Bus	DNN	-	100,50	300	0.155	0.845	0.845	0.847	0.849	0.843	0.830
Rev	DNN	-	100,50	300	0.068	0.932	0.932	0.933	0.935	0.930	0.919
w2v	RF	500	-	-	0.050	0.950	0.950	0.951	0.949	0.954	0.936
Tip	DNN	-	100,50	300	0.328	0.672	0.672	0.681	0.673	0.690	0.642
Img	DNN	-	4096,1000	100	0.247	0.753	0.753	0.763	0.745	0.781	0.710
ImgN	DNN	-	4096,1000	100	0.219	0.781	0.781	0.790	0.770	0.811	0.735
					Ensem	ble					
	1. Tips, N	lo word2v	ec, Plain Image		0.095	0.906	0.907	0.901	0.960	0.850	0.848
	2. No tips, No word2vec, Plain Image					0.928	0.928	0.929	0.925	0.934	0.908
3.	3. No tips, No word2vec, Normalized Image					0.889	0.890	0.880	0.979	0.799	0.801
			ec, Plain Image	-	0.054	0.946	0.947	0.945	0.976	0.916	0.916
į			Normalized Ima	ge	0.044	0.958	0.958	0.959	0.961	0.956	0.948
				-							

Table: Ensemble results

Ensemble Classifier

Data	Model	NEst	Neurons	Epoch	HLoss	Acc	AUC	F1	Prec	Rec	SubAcc
Data	Wiodei	IVESC	INCUIONS	Lpocii	Traini		AUC	1.1	1166	ricc	SubAcc
Bus	DNN	-	100,50	300	0.085	0.915	0.915	0.918	0.922	0.914	0.902
Rev	DNN	-	100,50	300	0.074	0.926	0.927	0.929	0.937	0.927	0.905
w2v	RF	500	-	-	0.000	1.000	1.000	1.000	1.000	1.000	1.000
Tip	DNN	-	100,50	300	0.271	0.729	0.728	0.747	0.743	0.745	0.675
Img	DNN	-	4096,1000	100	0.000	1.000	1.000	1.000	1.000	1.000	1.000
ImgN	DNN	-	4096,1000	100	0.000	1.000	1.000	1.000	1.000	1.000	1.000
Testing											
Bus	DNN	-	100,50	300	0.155	0.845	0.845	0.847	0.849	0.843	0.830
Rev	DNN	-	100,50	300	0.068	0.932	0.932	0.933	0.935	0.930	0.919
w2v	RF	500	-	-	0.050	0.950	0.950	0.951	0.949	0.954	0.936
Tip	DNN	-	100,50	300	0.328	0.672	0.672	0.681	0.673	0.690	0.642
Img	DNN	-	4096,1000	100	0.247	0.753	0.753	0.763	0.745	0.781	0.710
ImgN	DNN	-	4096,1000	100	0.219	0.781	0.781	0.790	0.770	0.811	0.735
					Ensem	ble					
	1. Tips, N	lo word2ve	c, Plain Image		0.095	0.906	0.907	0.901	0.960	0.850	0.848
	2. No tips, No word2vec, Plain Image				0.072	0.928	0.928	0.929	0.925	0.934	0.908
3.	3. No tips, No word2vec, Normalized Image					0.889	0.890	0.880	0.979	0.799	0.801
5	. No tips, \	Vord2vec,	Normalized Ima	ge	0.044	0.958	0.958	0.959	0.961	0.956	0.948

Table: Ensemble results

Outline

- Conclusions & Future Work
 - Conclusions
 - Future Work

Conclusions

- Reviews are the most indicative
- Good quality reviews by Elite users
- Data cleanup, missing value imputation prove very useful
- Given more infrastructure image model can be developed further

Future Work

- Aggregate the Tips to make a review
- Translation of foreign language reviews in English script Raw review: De las tiendas más bonitas que puedes encontrar en Edimburgo. Te quieres comprar todo lo que ves. Si te gusta el diseÃso, la ilustraciÃsnes y las cosas bonitas este es tu sitio.... Tienen ilustraciónes para decorar la casa, accesorios, bolsos, chorradas varias, etc. Es una tienda en la que curiosear y dejarse los ahorros del mes. Sin duda alguna si tienes que hacer un regalo a alguien, quieres decorar tu casa o simplemente eres una loca de estas cosas como yo pues este es tu sitio **English translation:** Of the most beautiful shops you can find in Edinburgh. You want to buy everything you see. If you like the design, artwork and beautiful things this is your place Have pictures to decorate the house, accessories, handbags, chorradas groups, etc. It is a shop where you look around and let the savings of the month. No doubt if you have to make a gift to someone, you want to decorate your home or you're just crazy about these things as I do because this is your place
- Adding more categories

References

- Reviews that mention posh in London, https://www.yelp.co.uk/wordmap/london/posh
- Crain, K., Heh, K., and Winston, J. (2014). An Analysis of the Elite Users on Yelp.com, Stanford university project report, USA
- Sorower, M. S. (2010). A literature survey on algorithms for multi-label learning. Technical report.
- Zhang, M. and Zhou, Z. (2013). A review on multi-label learning algorithms.
 Knowledge and Data Engineering, IEEE Transactions on, PP(99):1.
- Clare, A. and King, R. D. (2001). Knowledge Discovery in Multi-label Phenotype Data, pages 42–53. Springer Berlin Heidelberg, Berlin, Heidelberg.
- Rong, X. (2014). Word2vec Parameter learning explained. *CoRR*, abs/1411.2738.
- Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556.

Thank You!!

