Decomposition-Invariant Conditional Gradient Method in Boscia Framework

Your Name

Month Year

Abstract

Your abstract goes here.

Acknowledgments

Your acknowledgments go here.

Contents

1	Introduction1.1 Background	
2	Preliminaries2.1 Assumptions from Boscia Paper2.2 Problem Setting	2
3	Framwork 3.1 Boscia Framework	90 90
4	Results	3
5	Discussion	3

6 Conclusion 3

A Appendix A 3

List of Figures

List of Tables

1 Introduction

1.1 Background

Provide background information on convex optimization and the Frank-Wolfe algorithm.

1.2 Thesis Structure

Provide an overview of the structure of your thesis.

2 Preliminaries

This section covers the preliminary concepts and assumptions used in this thesis, based on the DICG and Boscia papers.

Definition 1 (Strongly convex function). A differentiable function $f: \mathcal{X} \to \mathbb{R}$ is μ -strongly convex if

$$f(y) - f(x) \ge \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2 \quad \text{for all } x, y \in \mathcal{X}.$$

Definition 2 (Smooth function). A differentiable function $f: \mathcal{X} \to \mathbb{R}$ is L-smooth convex if

$$f(y) - f(x) \ge \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2 \quad \text{for all } x, y \in \mathcal{X}.$$

2.1 Assumptions from Boscia Paper

The Boscia framework makes the following assumptions:

2.2 Problem Setting

Throughout this paper, we use $\|\cdot\|$ to denote the Euclidean norm and we consider the optimization problem

$$\min_{x \in \mathcal{P}} f(x),$$

where we have following assumptions:

- 1. f(x) is α -strong and β -smooth convex function with respect to the Euclidean norm.
- 2. \mathcal{P} is a polytope with all vertices lying on the hypercube $\{0,1\}^n$.
- 3. \mathcal{P} can be algebraically described as $P = \{x \in \mathbb{R}^n \mid x \geq 0, Ax = b\}$.

3 Framwork

In this section, we outline the workflow for decomposition-invariant based mixed integer convex optimization over structured polytopes. We begin by introducing the Boscia Framework and the decomposition-invariant Frank-Wolfe algorithm, and then provide a detailed description of how these two methods are integrated.

- 3.1 Boscia Framework
- 3.2 Decomposition-invariant Frank-Wolfe(DICG)
- 4 Experiment
- 5 Discussion
- 6 Conclusion

References

A Appendix A