IRIS Flower Prediction - LogisticRegresssion : ML (MultiClass Classification)

In [536]: # Designed By : ALTAF HUSAIN DATA ANALYST

Iris setosa Iris versicolor Iris virginica Petal Sepal Sepal Petal Petal Petal Petal Petal Petal Petal Petal Petal

Step 1: load important modules

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix,classification_report
from sklearn.datasets import load_iris
import warnings
```

```
warnings.filterwarnings('ignore')
print("All modules loaded succesfully")
```

All modules loaded succesfully

Step 2 : load data

```
In [538]: iris = load_iris()
           df = pd.DataFrame(iris.data,columns=iris.feature_names)
In [539]:
           df['target'] = iris.target
           df['target_name'] = df['target'].map(dict(zip(range(0,3),iris.target_names)))
Out[539]:
                 sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target target_name
              0
                                                                                       0.2
                                                                                                0
                               5.1
                                                  3.5
                                                                     1.4
                                                                                                         setosa
              1
                               4.9
                                                  3.0
                                                                     1.4
                                                                                       0.2
                                                                                                0
                                                                                                         setosa
              2
                               4.7
                                                  3.2
                                                                     1.3
                                                                                       0.2
                                                                                                0
                                                                                                         setosa
              3
                               4.6
                                                  3.1
                                                                     1.5
                                                                                       0.2
                                                                                                0
                                                                                                         setosa
                                                  3.6
                                                                     1.4
                                                                                                0
              4
                               5.0
                                                                                       0.2
                                                                                                         setosa
                               6.7
                                                                                                        virginica
            145
                                                  3.0
                                                                     5.2
                                                                                       2.3
                                                                                                2
            146
                               6.3
                                                  2.5
                                                                     5.0
                                                                                       1.9
                                                                                                2
                                                                                                        virginica
           147
                                                                                                        virginica
                               6.5
                                                  3.0
                                                                     5.2
                                                                                       2.0
                                                                                                2
                                                                                                        virginica
            148
                               6.2
                                                  3.4
                                                                     5.4
                                                                                       2.3
                                                                                                2
            149
                                                                                       1.8
                                                                                                        virginica
                               5.9
                                                  3.0
                                                                     5.1
                                                                                                2
```

150 rows × 6 columns

```
In [540]: X = df.iloc[:,:-2]
```

```
In [541]: y = df['target']

In [542]: X.shape

Out[542]: (150, 4)

In [543]: y.shape

Out[543]: (150,)

In [544]: df.sample(150)

Out[544]: sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target target_name
```

•	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	target_name
58	6.6	2.9	4.6	1.3	1	versicolor
44	5.1	3.8	1.9	0.4	0	setosa
132	6.4	2.8	5.6	2.2	2	virginica
130	7.4	2.8	6.1	1.9	2	virginica
122	7.7	2.8	6.7	2.0	2	virginica
••						
93	5.0	2.3	3.3	1.0	1	versicolor
40	5.1	3.8	1.6	0.2	0	setosa
68	6.2	2.2	4.5	1.5	1	versicolor
28	5.2	3.4	1.4	0.2	0	setosa
8	6.0	3.4	4.5	1.6	1	versicolor

150 rows × 6 columns

```
In [545]: print(iris.target_names)
```

['setosa' 'versicolor' 'virginica']

Step 3:EDA

In [547]: sns.scatterplot(df,x = 'sepal length (cm)',y = 'sepal width (cm)',hue = 'target_name',palette=sns.color_palette('hot',3
plt.show()

In [548]: df.columns[:-2]


```
4
                                                                                    8 0
                                                                                                               3
                                           3
           sepal length (cm)
                                      sepal width (cm)
                                                                                            petal width (cm)
                                                                 petal length (cm)
 ax = sns.countplot(df , x = 'target',hue = 'target_name',hatch = '.')
 for i in ax.containers:
   plt.bar_label(i)
 plt.yticks(range(0,100,20))
 plt.show()
   80
                                                                  target_name
                                                                      setosa
                                                                       versicolor
                                                                      virginica
   60
                  50
                                                                     50
                                           50
count
   20
    0
                                          target
```

Step 4 :Train-Test-Split

```
In [552]: X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.2,random_state = 42,)
```

```
In [553]: X_train.shape
Out[553]: (120, 4)

In [554]: X_test.shape
Out[554]: (30, 4)

In [555]: y_train.shape
Out[555]: (120,)

In [556]: y_test.shape
Out[556]: (30,)
```

step 4: Model building

```
Out[561]: 73
                 1
           18
                 0
          118
                 2
           78
                 1
           76
                 1
           31
                 0
           64
                 1
           141
                 2
           68
                 1
           82
                 1
           110
                 2
           12
                  0
           36
                 0
                 0
           19
                 0
           56
                 1
           104
                  2
           69
                 1
           55
                 1
           132
                 2
           29
                  0
           127
                  2
           26
                 0
           128
                 2
                 2
           131
           145
                  2
           108
                 2
                 2
           143
           45
                 0
           30
                  0
          Name: target, dtype: int64
          compare_df = pd.DataFrame({'Actual_y': y_test,'Model_pred_y': y_pred})
In [562]:
          compare_df['Actual_flower_name'] = compare_df['Actual_y'].map(dict(zip(range(0,3),iris.target_names)))
          compare_df['Predicted_flower_name'] = compare_df['Model_pred_y'].map(dict(zip(range(0,3),iris.target_names)))
          compare_df
```

Out[562]:		Actual_y	Model_pred_y	Actual_flower_name	Predicted_flower_name
	73	1	1	versicolor	versicolor
	18	0	0	setosa	setosa
	118	2	2	virginica	virginica
	78	1	1	versicolor	versicolor
	76	1	1	versicolor	versicolor
	31	0	0	setosa	setosa
	64	1	1	versicolor	versicolor
	141	2	2	virginica	virginica
	68	1	1	versicolor	versicolor
	82	1	1	versicolor	versicolor
	110	2	2	virginica	virginica
	12	0	0	setosa	setosa
	36	0	0	setosa	setosa
	9	0	0	setosa	setosa
	19	0	0	setosa	setosa
	56	1	1	versicolor	versicolor
	104	2	2	virginica	virginica
	69	1	1	versicolor	versicolor
	55	1	1	versicolor	versicolor
	132	2	2	virginica	virginica
	29	0	0	setosa	setosa
	127	2	2	virginica	virginica

	Actual_y	Model_pred_y	Actual_flower_name	Predicted_flower_name
26	0	0	setosa	setosa
128	2	2	virginica	virginica
131	2	2	virginica	virginica
145	2	2	virginica	virginica
108	2	2	virginica	virginica
143	2	2	virginica	virginica
45	0	0	setosa	setosa
30	0	0	setosa	setosa

step 5 : Confusion Matrix


```
In [565]: score = round(model_lr.score(X_test,y_test)*100,2)
    print('Model score is :',score)

Model score is : 100.0
```

In [566]: print(classification_report(y_test,y_pred))

```
recall f1-score
                        precision
                                                         support
                     0
                             1.00
                                        1.00
                                                  1.00
                                                               10
                     1
                             1.00
                                        1.00
                                                  1.00
                                                                9
                     2
                             1.00
                                        1.00
                                                  1.00
                                                               11
              accuracy
                                                  1.00
                                                               30
             macro avg
                             1.00
                                        1.00
                                                  1.00
                                                               30
         weighted avg
                             1.00
                                        1.00
                                                  1.00
                                                               30
           df.sample()
In [567]:
Out[567]:
                sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target target_name
           120
                              6.9
                                               3.2
                                                                 5.7
                                                                                  2.3
                                                                                           2
                                                                                                  virginica
```

Step 6: Predicting the Flower

```
In [568]: sepal_length = 3
    sepal_width = 4.5
    petal_length = 4
    petal_width = 5.3
    sample_data = [[sepal_length,sepal_width,petal_length,petal_width]]
    ans = model_lr.predict(sample_data)[0]
    print('Predicted Flower is : ',iris.target_names[ans])

Predicted Flower is : virginica
In [569]: # Designed By : ALTAF HUSAIN DATA ANALYST
```