```
In [ ]: | ###necessary libaries###
        import numpy as np
        import pandas as pd
        from seglearn.transform import FeatureRep, SegmentXYForecast, last
        from subprocess import check output
        from keras.layers import Dense, Activation, Dropout, Input, LSTM, Flatten
        from keras.models import Model
        from sklearn.metrics import r2_score
        from sklearn.model selection import train test split
        from sklearn.preprocessing import MinMaxScaler
        import matplotlib.pyplot as plt
        from numpy import newaxis
        import glob
        import os
        from datetime import datetime
        import math
        from numpy.random import seed
        import tensorflow as tf
        import warnings
        from sklearn.exceptions import DataConversionWarning
        model seed = 100
        # ensure same output results
        seed (101)
        tf.random.set seed(model seed)
        # file where csv files lies
        path = r'C:\Users\victo\Master Thesis\merging data\ferrari\minutely\merged files'
        all_files = glob.glob(os.path.join(path, "*.csv"))
        # read files to pandas frame
        list of files = []
        for filename in all files:
            list of files.append(pd.read csv(filename,
                                              sep=',',
                                              )
                                  )
        # Concatenate all content of files into one DataFrames
        concatenate dataframe = pd.concat(list of files,
                                           ignore index=True,
                                           axis=0,
        # print(concatenate_dataframe)
        ### analysis with flair sentiment content
        new df flair content = concatenate dataframe[['Date',
                                                        'OPEN',
                                                        'HIGH',
                                                        'LOW',
                                                        'CLOSE'
                                                        'VOLUME',
                                                        'flair_sentiment_content_score']]
        new df flair content = new df flair content.fillna(0)
        # new df flair content[['Date',
                                 'OPEN',
        #
                                 'HIGH',
        #
                                 'LOW',
                                 'CLOSE',
```

```
'VOLUME',
#
#
                         'flair sentiment content score']].astype(np.float64)
new df flair content['Year'] = pd.DatetimeIndex(new df flair content['Date']).year
new df flair content['Month'] = pd.DatetimeIndex(new df flair content['Date']).mont
new df flair content['Day'] = pd.DatetimeIndex(new df flair content['Date']).day
new df flair content['Hour'] = pd.DatetimeIndex(new df flair content['Date']).hour
new df flair content['Minute'] = pd.DatetimeIndex(new df flair content['Date']).min
new df flair content['Second'] = pd.DatetimeIndex(new df flair content['Date']).sec
ond
new df flair content = new df flair content.drop(['Date'], axis=1)
# train, valid, test split
valid test size split flair content = 0.1
X train flair content, \
X_else_flair_content,\
y train flair content, \
y else flair content = train test split(new df flair content,
                                         new df flair content['OPEN'],
                                         test size=valid test size split flair conte
nt*2,
                                         shuffle=False)
X valid flair content, \
X test flair content, \
y valid flair content, \
y test flair content = train test split(X else flair content,
                                         y else flair content,
                                         test size=0.5,
                                         shuffle=False)
warnings.filterwarnings(action='ignore', category=DataConversionWarning)
# normalize data
def minmax scale flair content(df x, series y, normalizers flair content = None):
    features_to_minmax = ['Year',
                          'Month',
                          'Day',
                          'Hour',
                          'Minute'
                          'Second',
                          'OPEN',
                          'HIGH',
                          'LOW',
                          'CLOSE',
                          'VOLUME',
                          'flair sentiment content score']
    if not normalizers_flair_content:
        normalizers flair content = {}
    for feat in features_to_minmax:
        if feat not in normalizers_flair_content:
            normalizers flair content[feat] = MinMaxScaler()
            normalizers flair content[feat].fit(df x[feat].values.reshape(-1, 1))
        df x[feat] = normalizers flair content[feat].transform(df x[feat].values.re
shape(-1, 1))
```

```
series y = normalizers flair content['OPEN'].transform(series y.values.reshape
(-1, 1)
    return df x, series y, normalizers flair content
X train norm flair content, \
y train norm flair content, \
normalizers_flair_content = minmax_scale_flair_content(X_train_flair_content,
                                                       y_train_flair_content
X_valid_norm_flair_content, \
y_valid_norm_flair_content, \
_ = minmax_scale_flair_content(X_valid_flair_content,
                               y valid flair content,
                               normalizers_flair_content=normalizers_flair_content
X_test_norm_flair_content, \
y_test_norm_flair_content, \
= minmax_scale_flair_content(X_test_flair content,
                               y test flair content,
                               normalizers flair content=normalizers flair content
def encode cyclicals flair content(df x):
    # "month", "day", "hour", "cdbw", "dayofweek"
    #DIRECTIONS = {"N": 1.0, "NE": 2.0, "E": 3.0, "SE": 4.0, "S": 5.0, "SW": 6.0, "
W": 7.0, "NW": 8.0, "cv": np.nan}
    df x['month sin'] = np.sin(2 * np.pi * df x.Month / 12)
    df_x['month_cos'] = np.cos(2 * np.pi * df_x.Month / 12)
    df_x.drop('Month', axis=1, inplace=True)
    df x['day sin'] = np.sin(2 * np.pi * df x.Day / 31)
    df_x['day_cos'] = np.cos(2 * np.pi * df_x.Day / 31)
    df x.drop('Day', axis=1, inplace=True)
   df x['hour sin'] = np.sin(2 * np.pi * df x.Hour / 24)
   df x['hour cos'] = np.cos(2 * np.pi * df x.Hour / 24)
   df_x.drop('Hour', axis=1, inplace=True)
    df_x['min_sin'] = np.sin(2 * np.pi * df_x.Minute / 60)
   df_x['min_cos'] = np.cos(2 * np.pi * df_x.Minute / 60)
   df_x.drop('Minute', axis=1, inplace=True)
    df x['sec sin'] = np.sin(2 * np.pi * df x.Second / 60)
    df x['sec cos'] = np.cos(2 * np.pi * df x.Second / 60)
    df x.drop('Second', axis=1, inplace=True)
    return df x
X train norm flair content = encode cyclicals flair content(X train norm flair cont
X valid norm flair content = encode cyclicals flair content(X valid norm flair cont
X test norm flair content = encode cyclicals flair content(X test norm flair conten
t)
# Creating target (y) and "windows" (X) for modeling
TIME WINDOW flair content = 60
FORECAST DISTANCE flair content = 30
```

```
segmenter flair content = SegmentXYForecast(width=TIME WINDOW flair content,
                                            step=1,
                                            y func=last,
                                            forecast=FORECAST_DISTANCE_flair_conten
X train rolled flair content, \
y train rolled flair content, \
_ = segmenter_flair_content.fit_transform([X_train_norm_flair_content.values],
                                           [y_train_norm_flair_content.flatten()]
                                           )
X valid rolled flair content, \
y_valid_rolled_flair_content, \
= segmenter flair content.fit transform([X valid norm flair content.values],
                                           [y_valid_norm_flair_content.flatten()]
X test rolled flair content, \
y test rolled flair content, \
= segmenter_flair_content.fit transform([X test norm flair content.values],
                                           [y test norm flair content.flatten()]
# LSTM Model
first lstm size flair content = 75
second 1stm size flair content = 40
dropout flair content = 0.1
EPOCHS flair content = 10
BATCH SIZE flair content = 32
column_count_flair_content = len(X_train_norm_flair_content.columns)
# model with use of Funcational API of Keras
# input layer
input layer flair content = Input(shape=(TIME WINDOW flair content, column count fl
air content))
# first LSTM layer
first 1stm flair content = LSTM(first 1stm size flair content,
                                return sequences=True,
                                dropout=dropout flair content) (input layer flair co
ntent)
# second LTSM layer
second 1stm flair content = LSTM(second 1stm size flair content,
                                 return_sequences=False,
                                 dropout=dropout_flair_content) (first_lstm_flair_co
ntent)
# output layer
output layer flair content = Dense(1) (second lstm flair content)
# creating Model
model flair content = Model(inputs=input layer flair content, outputs=output layer
flair content)
# compile model
model flair content.compile(optimizer='adam', loss='mean absolute error')
# model summary
model flair content.summary()
print(' ')
print("---
print(' ')
# fitting model
hist flair content = model flair content.fit(x=X train rolled flair content,
                                             y=y_train_rolled_flair_content,
                                             batch size=BATCH SIZE flair content,
                                             validation_data=(X_valid_rolled_flair_
```

```
minutely ferrari prediction 1
```

```
content,
                                                           y valid rolled flair
content
                                                           ),
                                          epochs=EPOCHS_flair_content,
                                          verbose=1,
                                          shuffle=False
print(' ')
print("----
print(' ')
plt.plot(hist flair content.history['loss'], label='train flair content')
plt.plot(hist flair content.history['val loss'], label='test flair content')
plt.legend()
plt.show()
print(' ')
print("----
print(' ')
rms LSTM flair content = math.sqrt(min(hist flair content.history['val loss']))
print(' ')
print("----
print(' ')
# predicting stock prices
predicted stock price flair content = model flair content.predict(X test rolled fla
ir content)
predicted stock price flair content = normalizers flair content['OPEN']\
                                   .inverse transform(predicted stock price flai
r content).reshape(-1, 1)
print(' ')
print("Root mean squared error on valid:", rms LSTM flair content)
print(' ')
print("----")
print(' ')
print("Root mean squared error on valid inverse transformed from normalization:",
     normalizers flair content["OPEN"].inverse transform(np.array([rms LSTM flair
content]).reshape(1, -1)))
print(' ')
print("----")
print(' ')
print(predicted_stock_price_flair_content)
### analysis with flair header
new_df_flair_header = concatenate_dataframe[['Date',
                                           'OPEN',
                                           'HIGH',
                                          'LOW',
                                           'CLOSE',
                                           'VOLUME',
                                           'flair_sentiment_header_score']]
new df flair header = new df flair header.fillna(0)
# new df flair header[['Date',
                      'OPEN',
                      'HIGH',
                      'LOW',
                      'CLOSE'.
                      'VOLUME',
#
                      'flair_sentiment_header_score']].astype(np.float64)
new_df_flair_header['Year'] = pd.DatetimeIndex(new_df_flair_header['Date']).year
new df flair header['Month'] = pd.DatetimeIndex(new df flair header['Date']).month
new_df_flair_header['Day'] = pd.DatetimeIndex(new_df_flair_header['Date']).day
```

```
new df flair header['Hour'] = pd.DatetimeIndex(new df flair header['Date']).hour
new_df_flair_header['Minute'] = pd.DatetimeIndex(new df flair header['Date']).minut
new df flair header['Second'] = pd.DatetimeIndex(new df flair header['Date']).secon
new df flair header = new df flair header.drop(['Date'], axis=1)
# train, valid, test split
valid test size split flair header = 0.1
X_train_flair_header, \
X else flair header, \
y train flair header, \
y_else_flair_header = train_test_split(new_df_flair_header,
                                       new_df_flair_header['OPEN'],
                                        test size=valid test size split flair header
*2,
                                        shuffle=False)
X valid flair header, \
X test flair header, \
y valid flair header, \
y_test_flair_header = train_test_split(X_else_flair_header,
                                       y else flair header,
                                       test size=0.5,
                                       shuffle=False)
warnings.filterwarnings(action='ignore', category=DataConversionWarning)
# normalize data
def minmax_scale_flair_header(df_x, series_y, normalizers_flair_header = None):
    features_to_minmax = ['Year',
                          'Month',
                          'Day',
                          'Hour',
                          'Minute',
                          'Second',
                          'OPEN',
                          'HIGH',
                          'LOW',
                          'CLOSE'
                          'VOLUME',
                          'flair_sentiment_header_score']
    if not normalizers_flair_header:
        normalizers flair header = {}
    for feat in features to minmax:
        if feat not in normalizers flair header:
            normalizers flair header[feat] = MinMaxScaler()
            normalizers flair header[feat].fit(df x[feat].values.reshape(-1, 1))
        df x[feat] = normalizers flair header[feat].transform(df x[feat].values.res
hape (-1, 1)
    series y = normalizers flair header['OPEN'].transform(series y.values.reshape(-
1, 1))
    return df x, series y, normalizers flair header
X train norm flair header, \
y_train_norm_flair_header, \
```

```
normalizers flair header = minmax scale flair header(X train flair header,
                                                     y train flair header
X valid norm flair header, \
y valid norm flair header, \
= minmax_scale_flair_header(X_valid_flair_header,
                              y_valid_flair_header,
                              normalizers flair header=normalizers flair header
X_test_norm_flair_header, \
y test norm flair header, \
_ = minmax_scale_flair_header(X_test_flair_header,
                              y_test_flair_header,
                              normalizers_flair_header=normalizers_flair_header
def encode cyclicals flair header(df x):
    # "month", "day", "hour", "cdbw", "dayofweek"
    #DIRECTIONS = {"N": 1.0, "NE": 2.0, "E": 3.0, "SE": 4.0, "S": 5.0, "SW": 6.0, "
W": 7.0, "NW": 8.0, "cv": np.nan}
    df x['month sin'] = np.sin(2 * np.pi * df x.Month / 12)
    df_x['month_cos'] = np.cos(2 * np.pi * df_x.Month / 12)
   df x.drop('Month', axis=1, inplace=True)
   df x['day sin'] = np.sin(2 * np.pi * df x.Day / 31)
    df_x['day_cos'] = np.cos(2 * np.pi * df x.Day / 31)
    df x.drop('Day', axis=1, inplace=True)
    df_x['hour_sin'] = np.sin(2 * np.pi * df_x.Hour / 24)
    df_x['hour_cos'] = np.cos(2 * np.pi * df_x.Hour / 24)
    df_x.drop('Hour', axis=1, inplace=True)
   df_x['min_sin'] = np.sin(2 * np.pi * df_x.Minute / 60)
    df x['min cos'] = np.cos(2 * np.pi * df x.Minute / 60)
    df x.drop('Minute', axis=1, inplace=True)
   df x['sec sin'] = np.sin(2 * np.pi * df x.Second / 60)
   df_x['sec_cos'] = np.cos(2 * np.pi * df_x.Second / 60)
    df_x.drop('Second', axis=1, inplace=True)
    return df_x
X train norm flair header = encode cyclicals flair header(X train norm flair heade
X valid norm flair header = encode cyclicals flair header(X valid norm flair heade
X test norm flair header = encode cyclicals flair header(X test norm flair header)
# Creating target (y) and "windows" (X) for modeling
TIME WINDOW flair header = 60
FORECAST DISTANCE flair header = 30
segmenter flair header = SegmentXYForecast(width=TIME WINDOW flair header,
                                           step=1,
                                           y func=last,
                                           forecast=FORECAST DISTANCE flair header
                                           )
```

```
X train rolled flair header, \
y train rolled flair header, \
_ = segmenter_flair_header.fit_transform([X_train_norm_flair_header.values],
                                         [y train norm flair header.flatten()]
X valid rolled flair header, \
y_valid_rolled_flair_header, \
= segmenter_flair_header.fit_transform([X_valid_norm_flair_header.values],
                             [y_valid_norm_flair_header.flatten()]
X test rolled flair header, \
y test rolled flair header, \
= segmenter_flair_header.fit_transform([X_test_norm_flair_header.values],
                                          [y test norm flair header.flatten()]
# LSTM Model
first_lstm_size_flair_header = 75
second 1stm size flair header = 40
dropout flair header = 0.1
EPOCHS flair header = 10
BATCH SIZE flair header = 32
column count flair header = len(X train norm flair header.columns)
# model with use of Funcational API of Keras
# input layer
input layer flair header = Input(shape=(TIME WINDOW flair header, column count flai
r header))
# first LSTM layer
first 1stm flair header = LSTM(first 1stm size flair header,
                               return sequences=True,
                               dropout=dropout_flair_header) (input_layer_flair_head
er)
# second LTSM layer
second 1stm flair header = LSTM(second 1stm size flair header,
                                 return sequences=False,
                                 dropout=dropout flair header) (first 1stm flair hea
der)
# output layer
output layer flair header = Dense(1) (second 1stm flair header)
# creating Model
model flair header = Model(inputs=input layer flair header, outputs=output layer fl
air header)
# compile model
model_flair_header.compile(optimizer='adam', loss='mean_absolute error')
# model summary
model flair header.summary()
print(' ')
print("----
print(' ')
# fitting model
hist flair header = model flair header.fit(x=X train rolled flair header,
                                            y=y_train_rolled_flair_header,
                                            batch size=BATCH SIZE flair header,
                                            validation data=(X valid rolled flair he
ader,
                                                             y valid rolled flair he
ader
                                                             ),
                                            epochs=EPOCHS flair header,
                                            verbose=1,
                                            shuffle=False
```

```
print(' ')
print("-----")
print(' ')
plt.plot(hist flair header.history['loss'], label='train flair header')
plt.plot(hist flair header.history['val loss'], label='test flair header')
plt.legend()
plt.show()
print(' ')
print("---
print(' ')
rms_LSTM_flair_header = math.sqrt(min(hist_flair_header.history['val_loss']))
print("-----")
print(' ')
# predicting stock prices
predicted stock price flair header = model flair header.predict(X test rolled flair
header)
predicted stock price flair header = normalizers flair header['OPEN']\
                                 .inverse transform(predicted stock price flai
r header).reshape(-1, 1)
print(' ')
print("Root mean squared error on valid:", rms LSTM flair header)
print(' ')
print("----")
print(' ')
print ("Root mean squared error on valid inverse transformed from normalization:",
     normalizers flair header["OPEN"].inverse transform(np.array([rms LSTM flair h
eader]).reshape(1, -1))
print(' ')
print("----")
print(' ')
print(predicted_stock_price_flair_header)
### analysis with textblob sentiment content
new_df_textblob_content = concatenate_dataframe[['Date',
                                            'OPEN',
                                            'HIGH',
                                            'LOW',
                                            'CLOSE',
                                            'VOLUME',
                                            'polarity_textblob_sentiment_conte
nt']]
new_df_textblob_content = new_df_textblob_content.fillna(0)
# new_df_textblob_content[['Date',
                        'OPEN',
                        'HIGH',
                        'LOW',
                        'CLOSE'
                        'VOLUME',
                        'polarity textblob sentiment content']].astype(np.float6
4)
new df textblob content['Year'] = pd.DatetimeIndex(new df textblob content['Date
new df textblob content['Month'] = pd.DatetimeIndex(new df textblob content['Date
']).month
new df textblob content['Day'] = pd.DatetimeIndex(new df textblob content['Date']).
day
new df textblob content['Hour'] = pd.DatetimeIndex(new df textblob content['Date
new_df_textblob_content['Minute'] = pd.DatetimeIndex(new_df_textblob_content['Date
```

```
']).minute
new df textblob content['Second'] = pd.DatetimeIndex(new df textblob content['Date
']).second
new df textblob content = new df textblob content.drop(['Date'], axis=1)
# train, valid, test split
valid_test_size_split_textblob_content = 0.1
X train textblob content, \
X_else_textblob_content, \
y_train_textblob_content, \
y_else_textblob_content = train_test_split(new_df_textblob_content,
                                            new df textblob content['OPEN'],
                                            test_size=valid_test_size_split_textblob
content*2,
                                            shuffle=False)
X_valid_textblob_content, \
X_test_textblob_content, \
y valid textblob content, \
y test textblob content = train test split(X else textblob content,
                                            y else textblob content,
                                            test size=0.5,
                                            shuffle=False)
warnings.filterwarnings(action='ignore', category=DataConversionWarning)
# normalize data
def minmax scale textblob content (df x, series y, normalizers textblob content = No
    features_to_minmax = ['Year',
                          'Month',
                          'Day',
                          'Hour',
                          'Minute',
                          'Second',
                          'OPEN',
                          'HIGH',
                          'LOW',
                          'CLOSE',
                           'VOLUME',
                          'polarity textblob sentiment content']
    if not normalizers_textblob_content:
        normalizers_textblob_content = {}
    for feat in features to minmax:
        if feat not in normalizers textblob content:
            normalizers textblob content[feat] = MinMaxScaler()
            normalizers textblob content[feat].fit(df x[feat].values.reshape(-1,
1))
        df x[feat] = normalizers textblob content[feat].transform(df x[feat].value)
s.reshape(-1, 1))
    series y = normalizers textblob content['OPEN'].transform(series y.values.resha
pe(-1, 1)
    return df x, series y, normalizers textblob content
X_train_norm_textblob_content, \
y_train_norm_textblob_content, \
```

```
normalizers textblob content = minmax scale textblob content(X train textblob conte
                                                             y train textblob conte
nt.
X valid norm textblob content, \
y_valid_norm_textblob_content, \
= minmax_scale_textblob_content(X_valid_textblob_content,
                                  y valid textblob content,
                                  normalizers_textblob_content=normalizers_textblob
content
                                  )
X test norm textblob content, \
y test norm textblob content, \
= minmax scale textblob content(X test textblob content,
                                  y_test_textblob_content,
                                  normalizers_textblob_content=normalizers_textblob
_content
def encode cyclicals textblob content(df x):
    # "month", "day", "hour", "cdbw", "dayofweek"
    #DIRECTIONS = {"N": 1.0, "NE": 2.0, "E": 3.0, "SE": 4.0, "S": 5.0, "SW": 6.0, "
W": 7.0, "NW": 8.0, "cv": np.nan}
    df x['month sin'] = np.sin(2 * np.pi * df x.Month / 12)
    df x['month cos'] = np.cos(2 * np.pi * df x.Month / 12)
    df x.drop('Month', axis=1, inplace=True)
    df_x['day_sin'] = np.sin(2 * np.pi * df_x.Day / 31)
    df x['day cos'] = np.cos(2 * np.pi * df x.Day / 31)
    df x.drop('Day', axis=1, inplace=True)
    df_x['hour_sin'] = np.sin(2 * np.pi * df_x.Hour / 24)
    df x['hour cos'] = np.cos(2 * np.pi * df x.Hour / 24)
    df x.drop('Hour', axis=1, inplace=True)
   df x['min sin'] = np.sin(2 * np.pi * df x.Minute / 60)
   df_x['min_cos'] = np.cos(2 * np.pi * df_x.Minute / 60)
    df_x.drop('Minute', axis=1, inplace=True)
   df_x['sec_sin'] = np.sin(2 * np.pi * df_x.Second / 60)
    df_x['sec_cos'] = np.cos(2 * np.pi * df_x.Second / 60)
    df_x.drop('Second', axis=1, inplace=True)
    return df x
X train norm textblob content = encode cyclicals textblob content(X train norm text
blob content)
X valid norm textblob content = encode cyclicals textblob content(X valid norm text
blob content)
X test norm textblob content = encode cyclicals textblob content(X test norm textbl
ob content)
# Creating target (y) and "windows" (X) for modeling
TIME WINDOW textblob content = 60
FORECAST DISTANCE textblob content = 30
segmenter textblob content = SegmentXYForecast(width=TIME WINDOW textblob content,
                                               step=1,
```

```
y func=last,
                                              forecast=FORECAST DISTANCE textblob
content
                                              )
X train rolled textblob content, \
y train rolled textblob content, \
 = segmenter_textblob_content.fit_transform([X_train_norm_textblob_content.value
s],
                                             [y train norm textblob content.flatten
()]
X valid rolled textblob content, \
y valid rolled textblob content, \
_ = segmenter_textblob_content.fit_transform([X_valid_norm_textblob_content.value
                                             [y_valid_norm_textblob_content.flatten
()]
X test rolled textblob content, \
y test rolled textblob content, \
= segmenter_textblob_content.fit_transform([X_test_norm_textblob_content.values],
                                             [y test norm textblob content.flatten
()]
# LSTM Model
first lstm size textblob content = 75
second 1stm size textblob content = 40
dropout textblob content = 0.1
EPOCHS_textblob_content = 10
BATCH_SIZE_textblob_content = 32
column count textblob content = len(X train norm textblob content.columns)
# model with use of Funcational API of Keras
# input layer
input layer textblob content = Input(shape=(TIME WINDOW textblob content, column co
unt textblob content))
# first LSTM layer
first lstm textblob content = LSTM(first lstm size textblob content,
                                  return sequences=True,
                                  dropout=dropout_textblob_content) (input_layer_te
xtblob content)
# second LTSM layer
second lstm textblob_content = LSTM(second_lstm_size_textblob_content,
                                   return sequences=False,
                                   dropout=dropout textblob content) (first lstm te
xtblob content)
# output layer
output layer textblob content = Dense(1)(second lstm textblob content)
# creating Model
model textblob content = Model(inputs=input layer textblob content, outputs=output
layer_textblob_content)
# compile model
model textblob content.compile(optimizer='adam', loss='mean absolute error')
# model summary
model textblob content.summary()
print(' ')
            ______")
print("----
print(' ')
# fitting model
hist textblob content = model textblob content.fit(x=X train rolled textblob conten
```

```
minutely ferrari prediction 1
```

```
y=y train rolled textblob conten
t,
                                             batch size=BATCH SIZE textblob c
ontent,
                                             validation data=(X valid rolled
textblob content,
                                                            y valid rolled
textblob_content
                                             epochs=EPOCHS textblob content,
                                             verbose=1,
                                             shuffle=False
                                             )
print(' ')
print("----")
print(' ')
plt.plot(hist_textblob_content.history['loss'], label='train_textblob_content')
plt.plot(hist textblob content.history['val loss'], label='test textblob content')
plt.legend()
plt.show()
print(' ')
               -----")
print("-----
print(' ')
rms LSTM textblob content = math.sqrt(min(hist textblob content.history['val loss
']))
print(' ')
print("-----")
print(' ')
# predicting stock prices
predicted stock price textblob content = model textblob content.predict(X test roll
ed textblob content)
predicted_stock_price_textblob_content = normalizers_textblob_content['OPEN']\
                                 .inverse transform(predicted stock price text
blob content).reshape(-1, 1)
print(' ')
print("Root mean squared error on valid:", rms LSTM textblob content)
print(' ')
print("----")
print(' ')
print("Root mean squared error on valid inverse transformed from normalization:",
    normalizers textblob content["OPEN"].inverse transform(np.array([rms LSTM tex
tblob content]).reshape(1, -1)))
print(' ')
print("----
print(' ')
print(predicted stock price textblob content)
### analysis with textblob header
new_df_textblob_header = concatenate dataframe[['Date',
                                           'OPEN',
                                           'HIGH',
                                           'LOW',
                                           'CLOSE',
                                           'VOLUME',
                                           'polarity textblob sentiment header
111
new df textblob header = new df textblob header.fillna(0)
# new df textblob header[['Date',
                       'OPEN',
#
                       'HIGH',
                       'LOW',
```

```
#
                           'CLOSE',
#
                           'VOLUME'
#
                           'polarity textblob sentiment header']].astype(np.float64)
new df textblob header['Year'] = pd.DatetimeIndex(new df textblob header['Date']).y
new df textblob header['Month'] = pd.DatetimeIndex(new df textblob header['Date']).
month
new df textblob header['Day'] = pd.DatetimeIndex(new df textblob header['Date']).da
У
new df textblob header['Hour'] = pd.DatetimeIndex(new df textblob header['Date']).h
our
new df textblob header['Minute'] = pd.DatetimeIndex(new df textblob header['Date
new df textblob header['Second'] = pd.DatetimeIndex(new df textblob header['Date
']).second
new_df_textblob header = new_df_textblob header.drop(['Date'], axis=1)
# train, valid, test split
valid test size split textblob header = 0.1
X train textblob header, \
X else textblob header,\
y train textblob header, \
y else textblob header = train test split(new df textblob header,
                                           new df textblob header['OPEN'],
                                           test size=valid test size split textblob
header*2,
                                           shuffle=False)
X valid textblob header, \
X_test_textblob_header, \
y valid textblob header, \
y test textblob header = train test split(X else textblob header,
                                           y else textblob header,
                                           test size=0.5,
                                           shuffle=False)
warnings.filterwarnings(action='ignore', category=DataConversionWarning)
# normalize data
def minmax scale textblob header(df x, series y, normalizers textblob header = Non
e):
    features_to_minmax = ['Year',
                          'Month',
                          'Day',
                          'Hour',
                          'Minute',
                          'Second',
                          'OPEN',
                          'HIGH',
                           'LOW',
                          'CLOSE',
                           'VOLUME',
                          'polarity textblob sentiment header']
    if not normalizers_textblob_header:
        normalizers textblob header = {}
    for feat in features_to_minmax:
        if feat not in normalizers textblob header:
            normalizers_textblob_header[feat] = MinMaxScaler()
```

```
normalizers textblob header[feat].fit(df x[feat].values.reshape(-1, 1))
        df x[feat] = normalizers textblob header[feat].transform(df x[feat].values.
reshape(-1, 1))
    series y = normalizers textblob header['OPEN'].transform(series y.values.reshap
e(-1, 1)
    return df_x, series_y, normalizers_textblob_header
X_train_norm_textblob_header, \
y_train_norm_textblob_header, \
normalizers_textblob_header = minmax_scale_textblob_header(X_train_textblob_header,
                                                           y train textblob header
X valid norm textblob header, \
y_valid_norm_textblob_header, \
= minmax_scale_textblob_header(X_valid_textblob header,
                                 y_valid_textblob_header,
                                 normalizers textblob header=normalizers textblob h
eader
X test norm textblob header, \
y test norm textblob header, \
_ = minmax_scale_textblob_header(X_test_textblob_header,
                                 y_test_textblob_header,
                                 normalizers textblob header=normalizers textblob h
eader
def encode_cyclicals_textblob_header(df_x):
    # "month", "day", "hour", "cdbw", "dayofweek"
    #DIRECTIONS = {"N": 1.0, "NE": 2.0, "E": 3.0, "SE": 4.0, "S": 5.0, "SW": 6.0, "
W": 7.0, "NW": 8.0, "cv": np.nan}
    df x['month sin'] = np.sin(2 * np.pi * df x.Month / 12)
    df x['month cos'] = np.cos(2 * np.pi * df x.Month / 12)
   df_x.drop('Month', axis=1, inplace=True)
   df_x['day_sin'] = np.sin(2 * np.pi * df_x.Day / 31)
    df_x['day_cos'] = np.cos(2 * np.pi * df x.Day / 31)
    df_x.drop('Day', axis=1, inplace=True)
    df_x['hour_sin'] = np.sin(2 * np.pi * df_x.Hour / 24)
    df x['hour cos'] = np.cos(2 * np.pi * df x.Hour / 24)
    df x.drop('Hour', axis=1, inplace=True)
    df x['min sin'] = np.sin(2 * np.pi * df x.Minute / 60)
    df_x['min_cos'] = np.cos(2 * np.pi * df_x.Minute / 60)
    df x.drop('Minute', axis=1, inplace=True)
    df x['sec sin'] = np.sin(2 * np.pi * df x.Second / 60)
    df x['sec cos'] = np.cos(2 * np.pi * df x.Second / 60)
    df x.drop('Second', axis=1, inplace=True)
    return df x
X_train_norm_textblob_header = encode_cyclicals_textblob_header(X_train_norm_textbl
ob header)
X_valid_norm_textblob_header = encode_cyclicals_textblob_header(X_valid_norm_textbl
```

```
ob header)
X test norm textblob header = encode cyclicals textblob header(X test norm textblob
header)
# Creating target (y) and "windows" (X) for modeling
TIME WINDOW textblob header = 60
FORECAST_DISTANCE_textblob_header = 30
segmenter textblob header = SegmentXYForecast(width=TIME WINDOW textblob header,
                                               step=1,
                                               y func=last,
                                               forecast=FORECAST DISTANCE textblob h
eader
X train rolled textblob header, \
y_train_rolled_textblob_header,
= segmenter textblob header.fit transform([X train norm textblob header.values],
                                             [y train norm textblob header.flatten
()]
                                             )
X valid rolled textblob header, \
y valid rolled textblob header, \
_ = segmenter_textblob_header.fit_transform([X_valid_norm_textblob_header.values],
                                             [y valid norm textblob header.flatten
()]
                                             )
X test rolled textblob header, \
y test rolled textblob header, \
= segmenter_textblob_header.fit_transform([X_test_norm_textblob_header.values],
                                             [y_test_norm_textblob_header.flatten()]
# LSTM Model
first_lstm_size_textblob_header = 75
second 1stm size textblob header = 40
dropout textblob header = 0.1
EPOCHS_textblob_header = 10
BATCH_SIZE_textblob_header = 32
column_count_textblob_header = len(X_train_norm_textblob_header.columns)
# model with use of Funcational API of Keras
# input layer
input layer_textblob_header = Input(shape=(TIME_WINDOW_textblob_header, column_coun
t textblob header))
# first LSTM layer
first lstm textblob header = LSTM(first lstm size textblob header,
                                  return sequences=True,
                                  dropout=dropout textblob header) (input layer text
blob header)
# second LTSM layer
second lstm_textblob_header = LSTM(second_lstm_size_textblob_header,
                                   return sequences=False,
                                   dropout=dropout textblob header) (first lstm text
blob header)
# output layer
output layer textblob header = Dense(1)(second lstm textblob header)
# creating Model
model textblob header = Model(inputs=input layer textblob header, outputs=output la
yer textblob header)
# compile model
model_textblob_header.compile(optimizer='adam', loss='mean_absolute_error')
```

```
# model summary
model textblob header.summary()
print(' ')
print("----")
print(' ')
# fitting model
hist textblob header = model textblob header.fit(x=X train rolled textblob header,
                                          y=y_train_rolled_textblob_header,
                                          batch size=BATCH SIZE textblob hea
der,
                                          validation_data=(X_valid_rolled_te
xtblob header,
                                                        y valid rolled te
xtblob header
                                                        ),
                                          epochs=EPOCHS_textblob_header,
                                          verbose=1,
                                          shuffle=False
print(' ')
print("-----
print(' ')
plt.plot(hist textblob header.history['loss'], label='train textblob header')
plt.plot(hist textblob header.history['val loss'], label='test textblob header')
plt.legend()
plt.show()
print(' ')
print("----")
print(' ')
rms LSTM textblob header = math.sqrt(min(hist textblob header.history['val loss']))
print("----")
print(' ')
# predicting stock prices
predicted stock price textblob header = model textblob header.predict(X test rolled
_textblob_header)
predicted stock price textblob header = normalizers textblob header['OPEN']\
                                .inverse transform(predicted stock price text
blob header).reshape(-1, 1)
print(' ')
print("Root mean squared error on valid:", rms_LSTM_textblob_header)
print(' ')
print("-----")
print(' ')
print("Root mean squared error on valid inverse transformed from normalization:",
    normalizers textblob header["OPEN"].inverse transform(np.array([rms LSTM text
blob header]).reshape(1, -1)))
print(' ')
print("----")
print(' ')
print(predicted stock price textblob header)
### analysis with vader sentiment content
new df vader content = concatenate dataframe[['Date',
                                       'HIGH',
                                       'LOW',
                                       'CLOSE'
                                       'VOLUME',
                                       'compound vader_articel_content']]
new_df_vader_content = new_df_vader_content.fillna(0)
```

```
minutely ferrari prediction 1
```

```
# new df vader content[['Date',
#
                        'OPEN',
#
                        'HIGH',
#
                        'LOW',
#
                        'CLOSE',
                        'VOLUME',
                         'compound vader articel content']].astype(np.float64)
new df vader content['Year'] = pd.DatetimeIndex(new df vader content['Date']).year
new df vader content['Month'] = pd.DatetimeIndex(new df vader content['Date']).mont
new_df_vader_content['Day'] = pd.DatetimeIndex(new_df_vader_content['Date']).day
new_df_vader_content['Hour'] = pd.DatetimeIndex(new_df_vader_content['Date']).hour
new df vader content['Minute'] = pd.DatetimeIndex(new df vader content['Date']).min
new_df_vader_content['Second'] = pd.DatetimeIndex(new_df_vader_content['Date']).sec
ond
new df vader content = new df vader content.drop(['Date'], axis=1)
# train, valid, test split
valid test size split vader content = 0.1
X train vader content, \
X else vader content, \
y train vader content, \
y else vader content = train test split (new df vader content,
                                         new df vader content['OPEN'],
                                         test size=valid test size split vader conte
nt*2,
                                         shuffle=False)
X_valid_vader_content, \
X_test_vader_content, \
y valid vader content, \
y test vader content = train test split(X else vader content,
                                         y_else_vader_content,
                                         test_size=0.5,
                                         shuffle=False)
warnings.filterwarnings(action='ignore', category=DataConversionWarning)
# normalize data
def minmax_scale_vader_content(df_x, series_y, normalizers_vader_content = None):
    features_to_minmax = ['Year',
                          'Month',
                          'Day',
                          'Hour',
                          'Minute',
                          'Second',
                          'OPEN',
                          'HIGH',
                          'LOW',
                          'CLOSE',
                          'VOLUME',
                          'compound vader articel content']
    if not normalizers vader content:
        normalizers vader content = {}
    for feat in features_to_minmax:
        if feat not in normalizers vader content:
            normalizers_vader_content[feat] = MinMaxScaler()
```

```
normalizers vader content[feat].fit(df x[feat].values.reshape(-1, 1))
        df x[feat] = normalizers vader content[feat].transform(df x[feat].values.re
shape(-1, 1)
   series y = normalizers vader content['OPEN'].transform(series y.values.reshape
(-1, 1)
   return df_x, series_y, normalizers_vader_content
X_train_norm_vader_content, \
y_train_norm_vader_content, \
normalizers_vader_content = minmax_scale_vader_content(X_train_vader_content,
                                                       y train vader content
X valid norm vader content, \
y_valid_norm_vader_content, \
_ = minmax_scale_vader_content(X_valid_vader_content,
                               y_valid_vader_content,
                               normalizers vader content=normalizers vader content
X_test_norm_vader_content, \
y test norm vader content, \
= minmax scale vader content(X test vader content,
                               y test vader content,
                               normalizers_vader_content=normalizers_vader_content
def encode cyclicals vader content(df x):
    # "month", "day", "hour", "cdbw", "dayofweek"
    #DIRECTIONS = {"N": 1.0, "NE": 2.0, "E": 3.0, "SE": 4.0, "S": 5.0, "SW": 6.0, "
W": 7.0, "NW": 8.0, "cv": np.nan}
   df_x['month_sin'] = np.sin(2 * np.pi * df_x.Month / 12)
   df x['month cos'] = np.cos(2 * np.pi * df x.Month / 12)
   df x.drop('Month', axis=1, inplace=True)
   df x['day sin'] = np.sin(2 * np.pi * df x.Day / 31)
   df_x['day_cos'] = np.cos(2 * np.pi * df_x.Day / 31)
   df_x.drop('Day', axis=1, inplace=True)
   df_x['hour_sin'] = np.sin(2 * np.pi * df_x.Hour / 24)
   df_x['hour_cos'] = np.cos(2 * np.pi * df_x.Hour / 24)
   df_x.drop('Hour', axis=1, inplace=True)
   df x['min sin'] = np.sin(2 * np.pi * df x.Minute / 60)
   df x['min cos'] = np.cos(2 * np.pi * df x.Minute / 60)
   df x.drop('Minute', axis=1, inplace=True)
   df_x['sec_sin'] = np.sin(2 * np.pi * df_x.Second / 60)
   df_x['sec_cos'] = np.cos(2 * np.pi * df_x.Second / 60)
   df x.drop('Second', axis=1, inplace=True)
   return df x
X train norm vader content = encode cyclicals vader content(X train norm vader cont
X valid norm vader content = encode cyclicals vader content(X valid norm vader cont
ent)
X_test_norm_vader_content = encode_cyclicals_vader_content(X_test_norm_vader_conten
```

```
t)
# Creating target (y) and "windows" (X) for modeling
TIME WINDOW vader content = 60
FORECAST DISTANCE vader content = 30
segmenter_vader_content = SegmentXYForecast(width=TIME_WINDOW_vader_content,
                                            step=1,
                                            y func=last,
                                            forecast=FORECAST_DISTANCE_vader_conten
t.
                                            )
X train rolled vader content, \
y_train_rolled_vader_content, \
= segmenter vader content.fit transform([X train norm vader content.values],
                                          [y_train_norm_vader_content.flatten()]
X valid rolled vader content, \
y valid rolled vader content, \
= segmenter_vader_content.fit transform([X valid norm vader content.values],
                                          [y_valid_norm_vader_content.flatten()]
X test rolled vader content, \
y_test_rolled_vader_content, \
_ = segmenter_vader_content.fit_transform([X_test_norm_vader_content.values],
                                          [y_test_norm_vader_content.flatten()]
# LSTM Model
first_lstm_size_vader_content = 75
second_lstm_size_vader_content = 40
dropout_vader_content = 0.1
EPOCHS_vader_content = 10
BATCH SIZE vader content = 32
column count vader content = len(X train norm vader content.columns)
# model with use of Funcational API of Keras
# input layer
input_layer_vader_content = Input(shape=(TIME_WINDOW_vader_content, column_count_va
der content))
# first LSTM layer
first_lstm_vader_content = LSTM(first_lstm_size_vader_content,
                               return_sequences=True,
                               dropout=dropout_vader_content) (input_layer_vader_co
# second LTSM layer
second 1stm vader content = LSTM(second 1stm size vader content,
                                return sequences=False,
                                 dropout=dropout vader content) (first lstm vader co
ntent)
# output layer
output layer vader content = Dense(1) (second 1stm vader content)
# creating Model
model vader content = Model(inputs=input layer vader content, outputs=output layer
vader content)
# compile model
model vader content.compile(optimizer='adam', loss='mean absolute error')
# model summary
model_vader_content.summary()
print(' ')
print("----
                   ______")
```

```
minutely ferrari prediction 1
```

```
print(' ')
# fitting model
hist_vader_content = model_vader_content.fit(x=X_train_rolled_vader_content,
                                        y=y train rolled vader content,
                                        batch size=BATCH SIZE vader content,
                                        validation data=(X valid rolled vader
content,
                                                       y valid rolled vader
content
                                        epochs=EPOCHS_vader_content,
                                        verbose=1,
                                        shuffle=False
print(' ')
print("----")
print(' ')
plt.plot(hist vader content.history['loss'], label='train vader content')
plt.plot(hist vader content.history['val loss'], label='test vader content')
plt.legend()
plt.show()
print(' ')
print("----
          -----")
rms LSTM vader content = math.sqrt(min(hist vader content.history['val loss']))
print(' ')
print("-----")
print(' ')
# predicting stock prices
predicted stock price vader content = model vader content.predict(X test rolled vad
er content)
predicted_stock_price_vader_content = normalizers_vader_content['OPEN']\
                                .inverse transform(predicted stock price vade
r content).reshape(-1, 1)
print(' ')
print("Root mean squared error on valid:", rms LSTM vader content)
print(' ')
print("----")
print(' ')
print("Root mean squared error on valid inverse transformed from normalization:",
     normalizers vader content["OPEN"].inverse transform(np.array([rms LSTM vader
content]).reshape(1, -1)))
print(' ')
print("-----
print(' ')
print(predicted stock price vader content)
### analysis with vader header
new df vader header = concatenate dataframe[['Date',
                                        'OPEN',
                                        'HIGH',
                                        'LOW',
                                        'CLOSE',
                                        'VOLUME',
                                        'compound vader header']]
new df vader header = new df vader header.fillna(0)
# new df vader header[['Date',
                    'OPEN',
#
                    'HIGH',
#
                    'LOW',
                    'CLOSE',
```

```
'VOLUME',
#
                        'compound vader header']].astype(np.float64)
new df vader header['Year'] = pd.DatetimeIndex(new df vader header['Date']).year
new df vader header['Month'] = pd.DatetimeIndex(new df vader header['Date']).month
new df vader header['Day'] = pd.DatetimeIndex(new df vader header['Date']).day
new_df_vader_header['Hour'] = pd.DatetimeIndex(new_df_vader_header['Date']).hour
new_df_vader_header['Minute'] = pd.DatetimeIndex(new_df_vader_header['Date']).minut
new df vader header['Second'] = pd.DatetimeIndex(new df vader header['Date']).secon
new df vader header = new df vader header.drop(['Date'], axis=1)
# train, valid, test split
valid_test_size_split_vader_header = 0.1
X_train_vader_header, \
X_else_vader_header,\
y_train_vader_header, \
y else vader header = train test split(new df vader header,
                                       new_df_vader_header['OPEN'],
                                        test size=valid test size split vader header
*2,
                                       shuffle=False)
X valid vader header, \
X test vader header, \
y valid vader header, \
y_test_vader_header = train_test_split(X_else_vader_header,
                                       y else vader header,
                                       test size=0.5,
                                       shuffle=False)
warnings.filterwarnings(action='ignore', category=DataConversionWarning)
# normalize data
def minmax scale vader header(df x, series y, normalizers vader header = None):
    features to minmax = ['Year',
                          'Month',
                          'Day',
                          'Hour',
                          'Minute',
                          'Second'
                          'OPEN',
                          'HIGH',
                          'LOW',
                          'CLOSE',
                          'VOLUME',
                          'compound vader header']
    if not normalizers vader header:
        normalizers_vader_header = {}
    for feat in features to minmax:
        if feat not in normalizers vader header:
            normalizers vader header[feat] = MinMaxScaler()
            normalizers vader header[feat].fit(df x[feat].values.reshape(-1, 1))
        df x[feat] = normalizers vader header[feat].transform(df x[feat].values.res
hape (-1, 1)
    series y = normalizers vader header['OPEN'].transform(series y.values.reshape(-
```

```
1, 1))
    return df_x, series_y, normalizers_vader_header
X train norm vader header, \
y train norm vader header, \
normalizers_vader_header = minmax_scale_vader_header(X_train_vader header,
                                                      y_train_vader_header
X_valid_norm_vader_header, \
y_valid_norm_vader_header, \
_ = minmax_scale_vader_header(X_valid_vader_header,
                              y valid vader header,
                              normalizers_vader_header=normalizers_vader_header
X_test_norm_vader_header, \
y_test_norm_vader_header, \
= minmax_scale_vader_header(X_test_vader_header,
                              y test vader header,
                              normalizers vader header=normalizers vader header
def encode cyclicals vader header(df x):
    # "month", "day", "hour", "cdbw", "dayofweek"
    #DIRECTIONS = {"N": 1.0, "NE": 2.0, "E": 3.0, "SE": 4.0, "S": 5.0, "SW": 6.0, "
W": 7.0, "NW": 8.0, "cv": np.nan}
    df x['month sin'] = np.sin(2 * np.pi * df x.Month / 12)
    df x['month cos'] = np.cos(2 * np.pi * df x.Month / 12)
    df_x.drop('Month', axis=1, inplace=True)
    df x['day sin'] = np.sin(2 * np.pi * df x.Day / 31)
    df_x['day_cos'] = np.cos(2 * np.pi * df_x.Day / 31)
    df_x.drop('Day', axis=1, inplace=True)
    df x['hour sin'] = np.sin(2 * np.pi * df x.Hour / 24)
    df x['hour cos'] = np.cos(2 * np.pi * df x.Hour / 24)
    df_x.drop('Hour', axis=1, inplace=True)
    df_x['min_sin'] = np.sin(2 * np.pi * df_x.Minute / 60)
    df_x['min_cos'] = np.cos(2 * np.pi * df_x.Minute / 60)
    df_x.drop('Minute', axis=1, inplace=True)
    df_x['sec_sin'] = np.sin(2 * np.pi * df_x.Second / 60)
    df x['sec cos'] = np.cos(2 * np.pi * df x.Second / 60)
    df_x.drop('Second', axis=1, inplace=True)
    return df x
X train norm vader header = encode cyclicals vader header(X train norm vader heade
r)
X_valid_norm_vader_header = encode_cyclicals_vader_header(X_valid_norm_vader_heade
X_test_norm_vader_header = encode_cyclicals_vader_header(X_test_norm_vader_header)
# Creating target (y) and "windows" (X) for modeling
TIME WINDOW vader header = 60
FORECAST DISTANCE vader header = 30
segmenter vader header = SegmentXYForecast (width=TIME WINDOW vader header,
```

```
step=1,
                                            y func=last,
                                            forecast=FORECAST DISTANCE vader header
X train rolled vader header, \
y_train_rolled_vader_header, \
= segmenter_vader_header.fit_transform([X_train_norm_vader_header.values],
                                          [y_train_norm_vader_header.flatten()]
X_valid_rolled_vader_header, \
y valid rolled vader header, \
_ = segmenter_vader_header.fit_transform([X_valid_norm_vader_header.values],
                                          [y_valid_norm_vader_header.flatten()]
X_test_rolled_vader_header, \
y_test_rolled_vader_header, \
= segmenter_vader_header.fit_transform([X_test_norm_vader_header.values],
                                         [y test norm vader header.flatten()]
# LSTM Model
first 1stm size vader header = 75
second 1stm size vader header = 40
dropout vader header = 0.1
EPOCHS vader header = 10
BATCH SIZE vader header = 32
column count vader header = len(X train norm vader header.columns)
# model with use of Funcational API of Keras
# input layer
input layer_vader_header = Input(shape=(TIME_WINDOW_vader_header, column_count_vade
r header))
# first LSTM layer
first lstm vader header = LSTM(first lstm size vader header,
                               return_sequences=True,
                               dropout=dropout_vader_header) (input_layer_vader_head
er)
# second LTSM layer
second lstm vader_header = LSTM(second_lstm_size_vader_header,
                                return sequences=False,
                                dropout=dropout_vader_header) (first_lstm_vader_head
er)
# output layer
output_layer_vader_header = Dense(1)(second_lstm_vader_header)
# creating Model
model vader header = Model(inputs=input layer vader header, outputs=output layer va
der header)
# compile model
model_vader_header.compile(optimizer='adam', loss='mean absolute error')
# model summary
model_vader header.summary()
print(' ')
print("----
print(' ')
# fitting model
hist vader header = model vader header.fit(x=X train rolled vader header,
                                            y=y train rolled vader header,
                                            batch size=BATCH SIZE vader header,
                                            validation data=(X valid rolled vader he
ader.
                                                             y valid rolled vader he
ader
```

```
),
                                        epochs=EPOCHS vader header,
                                        verbose=1,
                                        shuffle=False
print(' ')
print("-----
                    -----")
print(' ')
plt.plot(hist vader header.history['loss'], label='train vader header')
plt.plot(hist_vader_header.history['val_loss'], label='test_vader_header')
plt.legend()
plt.show()
print(' ')
print("----")
print(' ')
rms LSTM vader header = math.sqrt(min(hist vader header.history['val loss']))
print(' ')
print("----
print(' ')
# predicting stock prices
predicted stock price vader header = model vader header.predict(X test rolled vader
predicted stock price vader header = normalizers vader header['OPEN']\
                                  .inverse transform(predicted stock price vade
r header).reshape(-1, 1)
print(' ')
print("Root mean squared error on valid:", rms LSTM vader header)
print("-----")
print(' ')
print("Root mean squared error on valid inverse transformed from normalization:",
     normalizers vader header["OPEN"].inverse transform(np.array([rms LSTM vader h
eader]).reshape(1, -1))
print(' ')
print("----
print(' ')
print (predicted stock price vader header)
### analysis with without semantics
new_df_without_semantics = concatenate_dataframe[['Date',
                                              'OPEN',
                                              'HIGH',
                                              'LOW',
                                              'CLOSE'
                                              'VOLUME']]
new df without semantics = new df without semantics.fillna(0)
# new df without semantics[['Date',
                          'OPEN',
                          'HIGH',
                          'LOW',
#
                          'CLOSE',
                          'VOLUME']].astype(np.float64)
new df without semantics['Year'] = pd.DatetimeIndex(new df without semantics['Date
']).year
new df without semantics['Month'] = pd.DatetimeIndex(new df without semantics['Date
new df without semantics['Day'] = pd.DatetimeIndex(new df without semantics['Date
']).day
new df without semantics['Hour'] = pd.DatetimeIndex(new df without semantics['Date
']).hour
```

```
new df without semantics['Minute'] = pd.DatetimeIndex(new df without semantics['Dat
e']).minute
new df without semantics['Second'] = pd.DatetimeIndex(new df without semantics['Dat
e']).second
new df without semantics = new df without semantics.drop(['Date'], axis=1)
# train, valid, test split
valid test size split without semantics = 0.1
X_train_without_semantics, \
X_else_without_semantics,\
y train without semantics, \
y else without semantics = train test split(new df without semantics,
                                            new df without semantics['OPEN'],
                                            test_size=valid_test_size_split_without
semantics*2,
                                             shuffle=False)
X valid without semantics, \
X test without semantics, \
y valid without semantics, \
y test without semantics = train test split(X else without semantics,
                                             y else without semantics,
                                            test size=0.5,
                                            shuffle=False)
warnings.filterwarnings(action='ignore', category=DataConversionWarning)
# normalize data
def minmax scale without semantics(df x, series y, normalizers without semantics =
None):
    features_to_minmax = ['Year',
                          'Month',
                          'Day',
                          'Hour',
                          'Minute',
                          'Second',
                          'OPEN',
                          'HIGH',
                          'LOW',
                          'CLOSE'
                          'VOLUME']
    if not normalizers_without_semantics:
        normalizers_without_semantics = {}
    for feat in features_to_minmax:
        if feat not in normalizers without semantics:
            normalizers without semantics[feat] = MinMaxScaler()
            normalizers without semantics[feat].fit(df x[feat].values.reshape(-1,
1))
        df x[feat] = normalizers without semantics[feat].transform(df x[feat].value)
s.reshape(-1, 1))
    series y = normalizers without semantics['OPEN'].transform(series y.values.resh
ape(-1, 1)
    return of x, series y, normalizers without semantics
X train norm without semantics, \
y_train_norm_without_semantics, \
```

```
normalizers without semantics = minmax scale without semantics(X train without sema
                                                               y train without sema
ntics
X valid norm without semantics, \
y_valid_norm_without_semantics, \
= minmax_scale_without_semantics(X_valid_without_semantics,
                                   y_valid_without_semantics,
                                   normalizers_without_semantics=normalizers_withou
t semantics
                                   )
X test norm without semantics, \
y test norm without semantics, \
= minmax scale without semantics(X test without semantics,
                                   y_test_without_semantics,
                                   normalizers_without_semantics=normalizers_withou
t semantics
def encode cyclicals without semantics (df x):
    # "month", "day", "hour", "cdbw", "dayofweek"
    #DIRECTIONS = {"N": 1.0, "NE": 2.0, "E": 3.0, "SE": 4.0, "S": 5.0, "SW": 6.0, "
W": 7.0, "NW": 8.0, "cv": np.nan}
    df x['month sin'] = np.sin(2 * np.pi * df x.Month / 12)
    df x['month cos'] = np.cos(2 * np.pi * df x.Month / 12)
    df x.drop('Month', axis=1, inplace=True)
    df_x['day_sin'] = np.sin(2 * np.pi * df_x.Day / 31)
    df x['day cos'] = np.cos(2 * np.pi * df x.Day / 31)
    df x.drop('Day', axis=1, inplace=True)
   df_x['hour_sin'] = np.sin(2 * np.pi * df_x.Hour / 24)
    df x['hour cos'] = np.cos(2 * np.pi * df x.Hour / 24)
    df x.drop('Hour', axis=1, inplace=True)
   df x['min sin'] = np.sin(2 * np.pi * df x.Minute / 60)
   df_x['min_cos'] = np.cos(2 * np.pi * df_x.Minute / 60)
   df_x.drop('Minute', axis=1, inplace=True)
   df_x['sec_sin'] = np.sin(2 * np.pi * df_x.Second / 60)
    df_x['sec_cos'] = np.cos(2 * np.pi * df_x.Second / 60)
    df_x.drop('Second', axis=1, inplace=True)
    return df x
X train norm without semantics = encode cyclicals without semantics(X train norm wi
thout semantics)
X valid norm without semantics = encode cyclicals without semantics(X valid norm wi
thout semantics)
X test norm without semantics = encode cyclicals without semantics(X test norm with
out semantics)
# Creating target (y) and "windows" (X) for modeling
TIME WINDOW without semantics = 60
FORECAST DISTANCE without semantics = 30
segmenter without semantics = SegmentXYForecast(width=TIME WINDOW without semantic
```

```
minutely ferrari prediction 1
```

```
s,
                                                 step=1,
                                                 y func=last,
                                                 forecast=FORECAST DISTANCE without
semantics
X train rolled without semantics, \
y train rolled without semantics, \
= segmenter without semantics.fit transform([X train norm without semantics.value
s],
                                               [y train norm without semantics.flatt
en()]
X_valid_rolled_without_semantics, \
y valid rolled without semantics, \
  = segmenter_without_semantics.fit_transform([X_valid_norm_without_semantics.value
                                               [y valid norm without semantics.flatt
en()]
                                               )
X test rolled without semantics, \
y test rolled without semantics, \
= segmenter without semantics.fit transform([X test norm without semantics.value
                                               [y test norm without semantics.flatte
n()]
                                               )
# LSTM Model
first_lstm_size_without_semantics = 75
second_lstm_size_without_semantics = 40
dropout without semantics = 0.1
EPOCHS without semantics = 10
BATCH_SIZE_without_semantics = 32
column count without semantics = len(X train norm without semantics.columns)
# model with use of Funcational API of Keras
# input layer
input layer without semantics = Input(shape=(TIME WINDOW without semantics, column
count_without_semantics))
# first LSTM layer
first lstm without semantics = LSTM(first lstm size without semantics,
                                    return sequences=True,
                                    dropout=dropout_without_semantics) (input_layer_
without semantics)
# second LTSM layer
second 1stm without semantics = LSTM(second 1stm size without semantics,
                                     return_sequences=False,
                                     dropout=dropout without semantics) (first lstm
without semantics)
# output layer
output layer without semantics = Dense(1)(second lstm without semantics)
# creating Model
model without semantics = Model(inputs=input layer without semantics, outputs=outpu
t layer without semantics)
# compile model
model without semantics.compile(optimizer='adam', loss='mean absolute error')
# model summary
model without semantics.summary()
print(' ')
print("----
print(' ')
```

```
# fitting model
hist without semantics = model without semantics.fit(x=X train rolled without seman
tics,
                                                y=y train rolled without seman
tics,
                                                batch size=BATCH SIZE without
semantics,
                                                validation data=(X valid rolle
d without semantics,
                                                               y valid rolle
d without semantics
                                                epochs=EPOCHS without semantic
                                                verbose=1,
                                                shuffle=False
print(' ')
print("----
print(' ')
plt.plot(hist without semantics.history['loss'], label='train without semantics')
plt.plot(hist without semantics.history['val loss'], label='test without semantics
')
plt.legend()
plt.show()
print(' ')
print("----")
print(' ')
rms LSTM without semantics = math.sqrt(min(hist without semantics.history['val loss
print(' ')
print("-----")
print(' ')
# predicting stock prices
predicted stock price without semantics = model without semantics.predict(X test ro
lled without semantics)
predicted stock price without semantics = normalizers without semantics['OPEN']
                                 .inverse transform(predicted stock price with
out semantics).reshape(-1, 1)
print(' ')
print("Root mean squared error on valid:", rms LSTM without semantics)
print(' ')
print("-----")
print(' ')
print("Root mean squared error on valid inverse transformed from normalization:",
    normalizers without semantics["OPEN"].inverse transform(np.array([rms LSTM wi
thout semantics]).reshape(1, -1)))
print(' ')
print("----")
print(predicted stock price without semantics)
plt.figure(figsize=(10,5))
#plt.plot(X test, color='black', label='ferrari Stock Price')
plt.plot(predicted stock price flair content, color='green', label='Predicted Ferra
ri Stock Price with flair content analysis')
plt.plot(predicted stock price flair header, color='red', label='Predicted Ferrari
Stock Price with flair header analysis')
plt.plot(predicted stock price textblob header, color='yellow', label='Predicted Fe
rrari Stock Price with textblob header analysis')
plt.plot(predicted_stock_price_textblob_content, color='blue', label='Predicted Fer
rari Stock Price with textblob content analysis')
```

```
plt.plot(predicted stock price vader content, color='cyan', label='Predicted Ferrar
i Stock Price with vader content analysis')
plt.plot(predicted_stock_price_vader_header, color='magenta', label='Predicted Ferr
ari Stock Price with vader header analysis')
plt.plot(predicted stock price without semantics, color='orange', label='Predicted
Ferrari Stock Price without semantics analysis')
#plt.rcParams['figure.facecolor'] = 'salmon'
plt.title('Ferrari Stock Price Prediction')
plt.xlabel('Time')
plt.ylabel('Ferrari Stock Price')
plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.005), borderaxespad=8)
date_today = str(datetime.now().strftime("%Y%m%d"))
\verb|plt.savefig(r'C:\Users\victo\Master\_Thesis\stockprice\_prediction\LSTM\ferrari\minut|
ely\prediction ferrari ' + date today + '.png',
            bbox inches="tight",
            dpi=100,
            pad_inches=1.5)
plt.show()
print('Run is finished and plot is saved!')
```