Understanding Political Risk Data

COMPSS 224B: Quantitative Political Risk

Iris Malone, PhD and Mark Rosenberg, PhD

April 18, 2025

Announcements

Short response feedback PS1 due next week Final assignment released soon

Where We've Been:

Where We've Been:

• Quant political risk analysis leans on prediction over inference

Where We've Been:

- · Quant political risk analysis leans on prediction over inference
- 2 classes ML applications: supervised and unsupervised

Where We've Been:

- Quant political risk analysis leans on prediction over inference
- · 2 classes ML applications: supervised and unsupervised
- "Good" model performance aims to minimize cost function $\sum_{i=1}^n (y_i \hat{y}_i)$

Where We've Been:

- Quant political risk analysis leans on prediction over inference
- 2 classes ML applications: supervised and unsupervised
- "Good" model performance aims to minimize cost function $\sum_{i=1}^n (y_i \hat{y}_i)$

New Terminology:

- Prediction Problem
- Loss function (single); cost function (ensemble)
- MLOps

Agenda

- 1. Common Data Challenges
- 2. Data Wrangling and Preparation
- EDA and Data Mining
 Principal Component Analysis
 Clustering
- 4. Special Topic: Missing Data

Common Data Challenges

Data engineering is often the most time-intensive part of the pipeline because you have to become an expert on the data.

Data engineering is often the most time-intensive part of the pipeline because you have to become an expert on the data.

- Data Wrangling: What's in the data?
- Data Preparation: Is the data any "good"?
- Exploratory Data Analysis: What does the data describe?
- Data Mining: What does the data signal?

Figure 1: Be an expert on your data.
Source: skillup

Data engineering is often the most time-intensive part of the pipeline because you have to become an expert on the data.

- **Data Wrangling:** What's in the data?
- Data Preparation: Is the data any "good"?

Figure 2: Be an expert on your data.

Common Data Challenges

Quantitative political risk requires large-n data, but...

- Selection bias: Hard to measure many political concepts (e.g. culture, human rights, corruption)
- · Different DGPs: observational, survey, experimental
- Backward-Looking: Historical and/or rarely updated
- Missingness: Non-standardized coverage
- **Quality concerns:** n = 1 dataset

Example Quantitative Political Datasets

Example	World Bank Governance Indicators	Social Conflict Analysis Database	Ethnic Power Relations	Eurobarometer
Measure	Governance	Social Conflict	Ethno-religious inequality	Public opinion (varied
Coverage	Global (204 economies)	Africa and Latin America (minimum 1mn pop.)	Global (minimum 250k pop.)	Europe
Time Series	1996-2023	1990-2011	1946-2021	1974-2023
Updates	Annual (September)	No	Every 5 years (hopefully)	Annual
DGP	Survey	Observational	Observational	Survey
Forecasts	No	No	No	No

Data Wrangling and Preparation

Data Wrangling and Cleaning

• **Quality:** Is the data trustworthy? Representative?

- · Quality: Is the data trustworthy? Representative?
- Missingness: How much of the data is missing?

- · Quality: Is the data trustworthy? Representative?
- Missingness: How much of the data is missing?
- Outliers: Are there any outliers in the data?

- Quality: Is the data trustworthy? Representative?
- Missingness: How much of the data is missing?
- Outliers: Are there any outliers in the data?
- Distributions: Is a variable normal, uniform, exponential, etc. distributed?

- Quality: Is the data trustworthy? Representative?
- Missingness: How much of the data is missing?
- Outliers: Are there any outliers in the data?
- Distributions: Is a variable normal, uniform, exponential, etc. distributed?
- **Stability:** Is the data stable over time or does it change? Do the measurements look consistent across units?

- Quality: Is the data trustworthy? Representative?
- Missingness: How much of the data is missing?
- Outliers: Are there any outliers in the data?
- Distributions: Is a variable normal, uniform, exponential, etc. distributed?
- **Stability:** Is the data stable over time or does it change? Do the measurements look consistent across units?
- Structure: How is the data organized? How do different indicators relate to each other?

Diagnostic	Solution	

	Diagnostic	Solution
Quality	Case Study	Social Science Expertise

	Diagnostic	Solution
Quality	Case Study	Social Science Expertise
Missingness	Matrix plots Frequency tables	Delete Ignore Impute Improve

	Diagnostic	Solution
Quality	Case Study	Social Science Expertise
Missingness	Matrix plots Frequency tables	Delete Ignore Impute Improve
Outliers	Box/violin plot IQR Z-Score Anomaly detection	Investigate Retain Scope

	Diagnostic	Solution
Quality	Case Study	Social Science Expertise
Missingness	Matrix plots Frequency tables	Delete Ignore Impute Improve
Outliers	Box/violin plot IQR Z-Score Anomaly detection	Investigate Retain Scope
Distribution	Histogram Shapiro-Wilk Kolmogorov-Smirnov	Transform Modeling Choices: Non-Linear Non-Parametric

	Diagnostic	Solution
Quality	Case Study	Social Science Expertise
Missingness	Matrix plots Frequency tables	Delete Ignore Impute Improve
Outliers	Box/violin plot IQR Z-Score Anomaly detection	Investigate Retain Scope
Distribution	Histogram Shapiro-Wilk Kolmogorov-Smirnov	Transform Modeling Choices: Non-Linear Non-Parametric
Stability	Correlation Heatmap Line Plots ACF	Detrend Difference Modeling Choices: AR, ETS, MA

EDA and Data Mining

The fun stuff: EDA and Data Mining

Data Engineering Modeling Deployment Analytics

- **Data Wrangling:** What's in the data?
- Data Preparation: Is the data any "good"?
 - Exploratory Data Analysis: What does the data describe?
 - Data Mining: What does the data signal?

Figure 3: Be an expert on your data.
Source: skillup

Unsupervised Learning for Data Mining

Unsupervised learning is common approach for exploratory analysis, data mining, and index creation.

- Principal Component Analysis (PCA)
 - New risk indices
 - · Alpha generation input for predictive modeling
 - Anomaly detection tools (product and analytics)
- Clustering
 - Early warning system (e.g., Political Instability Task Force)
 - · Market and country segmentation (e.g., fragility dashboard)
- Text Analysis
 - · New risk indices
 - New data series
 - Early warning models

EDA Toolkit

	Univariate	Multivariate
Qualitative	Case Study	Case Study
Descriptive	Five number summary Frequency table	Correlations Dimensionality Reduction Factor Analysis Clustering
Visual	Histogram Violin or box plot Matrix plot Aggregation plot	Scatter Plot Heatmaps Spider chart

Unsupervised Learning Methods

- Principal Component Analysis (PCA)
- Clustering
- Text Analysis

Why PCA? Explosion of Big Data

- p >> n is pretty common due to experimental advances, cheaper computers, explosion unstructured data
- But high-p creates curse of dimensionality problems (high noise, risk overfitting, false positives)
- Need method to summarize high-dimensional data

Figure 4: Source: Patrick Chessman

Principal Component Analysis

- This is the most popular unsupervised procedure ever
- First theorized by Karl Pearson (1901)
- Developed by Harold Hotelling (1933)
- Provides a way to visualize and summarize information about high-dimensional data

Principal Component Analysis

Main Idea: Define a small set of M dimensions which summarize the information in all p predictors.

Figure 5: Example Dimensionality Reduction

Principal Components

- Each of the n observations live in p-dimensional space, but not all dimensions equally interesting.
- PCA seeks to find the most interesting dimensions, meaning the dimensions with the largest amount of variation among observations

Figure 6: Can't. Look. Away. (Source: Pixar Post)

Principal Components Procedure

Procedure:

Pre-process the dataIdentify similarities between groups of predictors X_1, X_2, \ldots, X_p Transform groups of predictors into M linear combination known as **principal component** Z

$$Z_m = \sum_{i=1}^p \phi_{jm} X_j$$

Pre-Processing the Data: Centering and Scaling

 Centering is key to ensure dimensions look at variance and not mean of predictors

Pre-Processing the Data: Centering and Scaling

- Centering is key to ensure dimensions look at variance and not mean of predictors
- Scale the variance to have mean zero and look for the linear combination with the largest sample variance

Pre-Processing the Data: Centering and Scaling

- Centering is key to ensure dimensions look at variance and not mean of predictors
- Scale the variance to have mean zero and look for the linear combination with the largest sample variance
- · Why?
 - Interpretability: Scaling is key to good interpretation
 - Skewness: Unscaled data means the PCA loading vector will have a very large loading for the variable with the highest variance

Transform Groups Predictors

Procedure:

- · Pre-process the data
- Identify similarities between groups of predictors X_1, X_2, \dots, X_n
- Transform groups of predictors into M linear combination known as **principal component** ${\bf Z}$

$$Z_m = \sum_{i=1}^p \phi_{jm} X_j$$

Transform Groups Predictors

Procedure:

- · Pre-process the data
- Identify similarities between groups of predictors X_1, X_2, \dots, X_p
- ullet Transform groups of predictors into M linear combination known as principal component Z

$$Z_m = \sum_{i=1}^p \phi_{jm} X_j$$

Principal Component Characteristics

- Solution to an optimization problem where the first two principal components span a plane which is closest to the data
- First and second principal components must be orthogonal (i.e., they don't explain the same types of variation)

PCA Cost Function

Let X be the data matrix with n samples and p variables. From each variable, we subtract the mean of the column (i.e. we center the variables).

PCA Cost Function

Let X be the data matrix with n samples and p variables. From each variable, we subtract the mean of the column (i.e. we center the variables).

To find the first principal component we minimize variance of the n samples projected onto ϕ_1 :

$$max_{\phi_{11}...\phi_{p1}} \frac{1}{n} \sum_{i=1}^{n} (\sum_{j=1}^{p} \phi_{j1} x_{ij})^2$$
 subject to $\sum_{j=1}^{p} \phi_{j1}^2 = 1$

PCA Cost Function

Let X be the data matrix with n samples and p variables. From each variable, we subtract the mean of the column (i.e. we center the variables).

To find the first principal component we minimize variance of the n samples projected onto ϕ_1 :

$$max_{\phi_{11}...\phi_{p1}} \frac{1}{n} \sum_{i=1}^{n} (\sum_{j=1}^{p} \phi_{j1} x_{ij})^2$$
 subject to $\sum_{j=1}^{p} \phi_{j1}^2 = 1$

Projection of the i^{th} sample onto ϕ_1 is the score Z_{i1}

Finding the second principal component

Let X be the data matrix with n samples and p variables. From each variable, we subtract the mean of the column (i.e. we center the variables).

To find the second principal component we solve:

$$max_{\phi_{11}...\phi_{p2}} \frac{1}{n} \sum_{i=1}^{n} (\sum_{j=1}^{p} \phi_{j2} x_{ij})^2$$
 subject to $\sum_{j=1}^{p} \phi_{j2}^2 = 1 \& \sum_{j=1}^{p} \phi_{j1} \phi_{j2} = 1$

Loadings

 Loadings: Aspects of the vector which passes the closest to a cloud of observations in terms of squared Euclidean distance

Loadings

- Loadings: Aspects of the vector which passes the closest to a cloud of observations in terms of squared Euclidean distance
- The loading make up an element of the principal component loading vector $(\phi_1 = (\phi_{11}, \phi_{21}, \dots))$

$$Z_m = \sum_{i=1}^p \phi_{jm} X_j$$

Loadings

- Loadings: Aspects of the vector which passes the closest to a cloud of observations in terms of squared Euclidean distance
- The loading make up an element of the principal component loading vector $(\phi_1 = (\phi_{11}, \phi_{21}, \dots))$

$$Z_m = \sum_{i=1}^p \phi_{jm} X_j$$

- Loadings:
 - <u>Size</u> describes how much a variable contributes to a particular principal component
 - Sign explains correlation between elements

What is the first principal component?

The first principal component (the most interesting dimension) is the vector which passes the closest to a cloud of samples in terms of squared **Euclidean distance**.

$$d(x_{i'j}, x_{ij}) = \sqrt{\sum_{i=1}^{n} (x_{ij} - x_{i'j})^2}$$

Interpretation:

- We expect some observations to be 'closer' (more similar) to each other
- When distance is small, observation pairs are more similar
- When distance is larger, observation pairs are more dissimilar

Example Euclidean Distance

Vector which passes the closest to a cloud of samples in terms of squared **Euclidean distance**, i.e. the green line minimizing the average squared length of the dotted lines

What does this look like with 3 variables?

Figure 7: PC spans the plane that best fits the data (like SVM hyperplane)

What is PCA Good For?

Example: US Arrests data contains info on 3 crime statistics (assault, murder, rape) and population (p = 4) for 50 states (n = 50).

Potential Research Questions:

- · Do crimes correlate with each other?
- Do states with larger urban populations see more crime?

What is PCA Good For?

US Arrests data contains info on 3 crime statistics (assault, murder, rape) and population (p = 3) for 50 states (n = 50).

Example Euclidean Distance

- Compare how similar states are based on crime statistics
- When distance is small, observation pairs are more similar (red)
- When distance is larger, observation pairs are more dissimilar (blue)

Interp: PC pairs states with similar crime rates

Figure 8: A **biplot** of the first two principal component scores and loading vectors.

A second interpretation

Another way to explain the first principal component is that it is the dimension with the highest variance between variables

Interp: PC explains variation in crime levels

Example: USArrests Interpretation

- States with high levels of rape also have high levels of assault and murder
- Urban population is orthogonal (unrelated) to crime rates
- Different types of states have different crime rates

How many principal components are enough?

Rule of Thumb: 2 Principal Components capture most of the relevant information.

How many principal components are enough?

Rule of Thumb: 2 Principal Components capture most of the relevant information.

More Precise Answer:

- Proportion of Variance Explained (PVE): tells us sum of the variance explained by the m-th principal component over the total variance
- Can assess how much variation in data: low PVE = noisy data;
 high PVE = highly separable data

• First principal component explains the direction in space in which the data vary the most

- First principal component explains the direction in space in which the data vary the most
- Second principal component explains the direction in space in which the data vary the second most, etc.

- First principal component explains the direction in space in which the data vary the most
- Second principal component explains the direction in space in which the data vary the second most, etc.
- Total variance of the score vectors is the same as the total variance of the original variables:

$$\sum_{i=1}^{p} \frac{1}{n} \sum_{j=1}^{n} z_{ji}^{2} = \sum_{k=1}^{p} Var(x_{k})$$

The variance of the m^{th} score variable is:

$$\frac{1}{n}\sum_{i=1}^{n}z_{im}^{2}=\frac{1}{n}\sum_{i=1}^{n}(\sum_{j=1}^{p}\phi_{jm}x_{ij})^{2}$$

Figure 10: Scree plot showing proportion variance explained by each principal component

Advantages and Disadvantages to PCA

Advantages

Disadvantages

Advantages and Disadvantages to PCA

Advantages

- · Fast and easy
- Makes no assumptions about the underlying structure → no human bias
- Makes no assumption about latent unobserved variables (alternative to factor analysis)

Disadvantages

Advantages and Disadvantages to PCA

Advantages

- · Fast and easy
- Makes no assumptions about the underlying structure → no human bias
- Makes no assumption about latent unobserved variables (alternative to factor analysis)

Disadvantages

- Simplification → loss of relevant information
- · Hard to interpret
- Different (human-chosen) inputs → different PC

Unsupervised Learning Methods

- Principal Component Analysis (PCA)
- Clustering
- Text Analysis

Clustering

Main Idea: Partition the data into distinct groups based on intra-group similarities (or inter-group differences)

PCA vs Clustering

- **PCA:** Simplify multiple predictors into small number of principal components to explain variance
- Clustering: Find subgroups among observations based on individual or combination of predictors

Types of Clustering

 K-Means Clustering: Partition observations into pre-set number of clusters

Types of Clustering

- K-Means Clustering: Partition observations into pre-set number of clusters
- 2. **Hierarchical Clustering:** Partition observations, but with no pre-set number of clusters

Main Idea: Partition observations into pre-set number of clusters

Main Idea: Partition observations into pre-set number of clusters

- · Goal:
 - · Maximize the similarity of samples within each cluster
 - · Minimize within-cluster variation
- Cost Function:

$$min_{C_1,...,C_k} \sum_{l=1}^K W(C_l)$$

• $\mathit{W}(\mathit{C}_l)$ is measure of similarity between pairs of observations

$$W(C_l) = \frac{1}{|C_l|} \sum_{i,j \in C_l} \mathsf{Distance}^2(x_i, x_j)$$

- K is the number of clusters and must be fixed in advance
- Distance (x_i, x_j) is Euclidean distance between observations

K-Means Procedure

- Assign each sample to a cluster from 1 to K arbitrarily, e.g. at random
- · Assign obs. to closest centroid
 - Find the centroid of each cluster , i.e. the average \bar{x} of all the samples in the cluster

$$x_{l,j} = \frac{1}{|C_l|} \sum_{i,j \in C_l} x_{i,j}$$
for $j = 1, \dots, p$

- · Reassign each sample to the nearest centroid
- · Reposition centroids to new center
- Iterate until centroid position becomes static and local optimum is reached

Advantages and Disadvantages to K-Means Clustering

Advantages

Disadvantages

Advantages and Disadvantages to K-Means Clustering

Advantages

- Guaranteed convergence
- · Good scalability for large-p multi-dimensional data
- If large p, then faster than hierarchical clustering

Disadvantages

Advantages and Disadvantages to K-Means Clustering

Advantages

- · Guaranteed convergence
- · Good scalability for large-p multi-dimensional data
- If large p, then faster than hierarchical clustering

Disadvantages

- Need to make assumption about number of clusters
- What if a sample can belong to more than one cluster?
- Algorithm focuses on minimizing local differences rather than global ones (greedy!)
- Different initializations → different results

Correlation Distance

Rule of Thumb: Cluster using Euclidean Distance to measure similarities and dissimilarities

Alternative Approach: Correlation Distance

 Considers 2 observations similar if their features are highly correlated

Correlation Distance

Example: Suppose that we want to cluster countries in the UN for (investing) market segmentation.

- Samples are countries
- Each variable corresponds to a specific country development indicator and measures the amount of economic growth over time

Approaches:

- Euclidean distance would cluster all countries who have the highest growth (quantity)
- But we might want to cluster countries by the type of economic growth (e.g. capital vs labor)to distinguish Developed vs Emerging Markets (category)
- Here, correlation distance may be more appropriate dissimilarity between samples

Correlation Distance

Figure 11: Observations 1 and 3 have similar values so there is small Euclidean distance, but large correlation; observations 1 and have different values so large Euclidean distance, but highly correlated

Special Topic: Missing Data

- What is your household income in the year 2025?
- · Have you committed a crime before?
- What was the CO2 amount of every country in 1990?

- What is your household income in the year 2025?
 Extremely rich people may refuse to answer
- · Have you committed a crime before?
- What was the CO2 amount of every country in 1990?

- What is your household income in the year 2025?
 Extremely rich people may refuse to answer
- Have you committed a crime before?
 There will be consequence if yes.
- What was the CO2 amount of every country in 1990?

- What is your household income in the year 2025?
 Extremely rich people may refuse to answer
- Have you committed a crime before?
 There will be consequence if yes.
- What was the CO2 amount of every country in 1990?
 Governments did not report the data (documentation, choice, error).

- What is your household income in the year 2025?
- · Have you committed a crime before?
- What was the CO2 amount emitted by every country in 1990?

- What is your household income in the year 2025?
 We lose the richest group in our analysis.
- · Have you committed a crime before?
- What was the CO2 amount emitted by every country in 1990?

- What is your household income in the year 2025?
 We lose the richest group in our analysis.
- Have you committed a crime before?
 We can't catch criminals!
- What was the CO2 amount emitted by every country in 1990?

- What is your household income in the year 2025?
 We lose the richest group in our analysis.
- Have you committed a crime before?
 We can't catch criminals!
- What was the CO2 amount emitted by every country in 1990?
 We want to be able to study all types of countries.

Types of Missing Data

1. **Missing Completely at Random (MCAR):** No systematic pattern in which observations are missing

Types of Missing Data

- 1. **Missing Completely at Random (MCAR):** No systematic pattern in which observations are missing
- Missing at Random (MAR): Observations are missing for some values, but not due to a specific attribute (censored, truncation, survival bias, etc.)

Types of Missing Data

- 1. **Missing Completely at Random (MCAR):** No systematic pattern in which observations are missing
- Missing at Random (MAR): Observations are missing for some values, but not due to a specific attribute (censored, truncation, survival bias, etc.)
- Missing Not at Random (MNAR): Observations are missing for some values as a function of a particular attribute/mechanism

- What is your household income in the year 2025?
- · Have you committed a crime before?
- What was the CO2 amount emitted by every country in 1990?

- What is your household income in the year 2025?
 Missing at random (conditional on being in rich group)
- · Have you committed a crime before?
- What was the CO2 amount emitted by every country in 1990?

- What is your household income in the year 2025?
 Missing at random (conditional on being in rich group)
- Have you committed a crime before?
 Missing not at random (consequence for doing crime)
- What was the CO2 amount emitted by every country in 1990?

- What is your household income in the year 2025?
 Missing at random (conditional on being in rich group)
- Have you committed a crime before?
 Missing not at random (consequence for doing crime)
- What was the CO2 amount emitted by every country in 1990?
 Optimist: Missing completely at random
 Pessimist: Missing not at random (hide bad information)

Missing Completely at Random

Missing (Conditionally) at Random

Missing Not at Random

Consequences of Missing Data

- Less learning power (fewer n)
- Selection bias (less representative)
- Omitted variable bias (biased estimates)

Main Takeaway: <u>Never</u> omit missing missing observations without understanding what type of missing data you have.

Solutions to Missing Data

- 1. Delete Missing Observations
- 2. Ignore Missing Observations
- 3. Impute Missing Observations
- 4. Improve Missing Observations

Missing Data Type Governs Solution

Visualizing Missing Data

Step 1: Inspect the data!

Step 2: Classify the type of missingness

Step 3: Solve based on type

Python: missingno (msno)

- 1. Delete Missing Observations
- 2. Ignore Missing Observations
- 3. Impute Missing Observations
- 4. Improve Missing Observations

If data is MCAR ...

• **Listwise Deletion:** Delete all rows where one or more values are missing.

If data is MCAR ...

- Listwise Deletion: Delete all rows where one or more values are missing.
- Pairwise Deletion: Delete only the rows that have missing values in the columns used for the analysis.

If data is MCAR ...

- Listwise Deletion: Delete all rows where one or more values are missing.
- Pairwise Deletion: Delete only the rows that have missing values in the columns used for the analysis.
- **Dropping Features:** Drop entire columns with more missing values than a given threshold, e.g. 60

- 1. Delete Missing Observations
- 2. Ignore Missing Observations
- 3. Impute Missing Observations
- 4. Improve Missing Observations

Ignore Methods

If data is MCAR for only some observations, then you may alternatively ignore by passing through the data (dropna())

- 1. Delete Missing Observations
- 2. Ignore Missing Observations
- 3. Impute Missing Observations
- 4. Improve Missing Observations

Imputation Methods

If data is MAR (and it often is), then you may impute using:

- · Zero/Constant Values
- · Mean or Median Values
- KNN Values
- Multivariate Imputed Chained Equations (MCMC)
- Deep Learning Imputation

Zero/Constant Imputation

Method: replaces the missing values with either zero or any constant value you specify (often mode)

		col1	col2	col3	col4	col5			col1	col2	col3	col4	col5
	0	2	5.0	3.0	6	NaN	df.fillna(0)	0	2	5.0	3.0	6	0.0
2 19 17.0 NaN 9 NaN 2 19 17.0 0.0 9 0.0	1	9	NaN	9.0	0	7.0		1	9	0.0	9.0	0	7.0
	2	19	17.0	NaN	9	NaN		2	19	17.0	0.0	9	0.0

Problem: Can skew results depending on input value.

Mean or Median Imputation

Method: Calculate the mean/median of the non-missing values in a column and then replacing the missing values within each column separately and independently from the others

	col1	col2	col3	col4	col5	_		col1	col2	col3	col4
0	2	5.0	3.0	6	NaN	mean()	0	2.0	5.0	3.0	6.0
1	9	NaN	9.0	0	7.0	\longrightarrow	1	9.0	11.0	9.0	0.0
2	19	17.0	NaN	9	NaN		2	19.0	17.0	6.0	9.0

Advantages and Disadvantages to Mean Imputation

Advantages:

Advantages and Disadvantages to Mean Imputation

Advantages:

- · Easy and fast.
- · Works well with small numerical datasets.

Advantages and Disadvantages to Mean Imputation

Advantages:

- · Easy and fast.
- · Works well with small numerical datasets.

- Doesn't factor the correlations between features. It only works on the column level.
- Will give poor results on encoded categorical features
- Not very accurate.
- Doesn't account for uncertainty in the imputations

KNN Imputation

Method: Finding the k's closest neighbours to the observation with missing data and then imputing those values based on the non-missing values in the neighborhood.

Imputation Example

Advantages and Disadvantages to KNN Imputation

Advantages:

Advantages and Disadvantages to KNN Imputation

Advantages:

- Can be much more accurate than the mean, median or most frequent imputation methods
- Requires very few assumptions

Advantages and Disadvantages to KNN Imputation

Advantages:

- Can be much more accurate than the mean, median or most frequent imputation methods
- Requires very few assumptions

- Computationally expensive. Requires storing the whole training dataset in memory.
- · Sensitive to outliers in the data

- 1. Delete Missing Observations
- 2. Ignore Missing Observations
- 3. Impute Missing Observations
- 4. Improve Missing Observations

- 1. Delete Missing Observations
- 2. Ignore Missing Observations
- 3. Impute Missing Observations
- 4. Improve Missing Observations → Collect more data!

Conclusion

- Data engineering requires understanding your data, not deleting "bad" observations
- PCA good at exploring trends across multi-dimensional data
- Clustering good at identifying similarities between groups of observations
- · Missing data common but resolvable challenge