Année 2016-2017

e.g.,	pue			
Eviter au maximum les boucles, e.g.,	>> for k=1 : N, x(k)=k;	est équivalent à	>> x=1 : N;	Autre exemple :

>> r=1 : 10; A=[]; % init. de A à vide >> for k=1 : 5, A=[A; r]; end

>> r=1 : 10; A=ones(5,1)*r; peut être écrit

>> r=1 : 10; A=r([1 1 1 1 1], :); >> r=1 : 10; A= r(ones(1,5), :); no

et même

Attention à ne pas utiliser 1 ou j comme indice de boucle car i et j prédéfinis à √-1.

Signal et image 9

6.1 Matrices particulières

>> c=[1 2 3]; 1=[1.5 2.5 3.5 4.5 5.5]; ans = 1.0 2.5 3.5 4.5 5.5 2.0 1.0 2.5 3.5 4.5 >> toeplitz(c,1) Matrices de Tœplitz

Matrices de Hankel, Hadamard, Hilbert, etc... 3.0 2.0 1.0 2.5 3.5

6.2 Filtrage et convolution

Fonction filter (2D : filter2) : filtrage rationnel par un filtre de coefficients dans A et B: >> Y = filter(B,A,X);

Convolution conv (2D : conv2) : >> Z = conv(X,Y);

La fonction roots : racines (zéros, pôles). Calcul des racines d'un polynôme donné par ses coefficients (ici P(z) = $z^3 - 6z^2 - 72z - 27$:

>> p = [1 -6 -72 -27]; r=roots(p)

La fonction polyval calcule la valeur d'un polynôme en certains points:

>> polyval(p,[1, exp(j*pi/4)]) -1.0400 -0.7862-0.5620i ans = 1.0e+002 *

La fonction poly inverse la fonction roots.

p = 1.000 -6.000 -72.000 -27.000 >> p=poly(r)

Transformation de Fourier

fft, ifft, Calcul de la FFT du signal x, sur 1024 points régulièrement distribués dans [0,1]

Pour [-0.5, +0.5] utiliser fftshift. En dimension 2: fft2 >> TF=fft(x,1024);

Hervé Carfantan

Un peu d'aléa

rand : génération pseudo-alétoire uniforme sur [0,1] génération gaussienne N(0, 1) xcorr : corrélation empirique moyenne empirique std: écart-type empirique cov : covariance empirique

6.5 Fonctions mathématiques spéciales

6.6 Exemple de fichier de commande besselj, bessely, gamma, erf, erfinv, etc.

<u>Problème</u>: On possède N mesures (x_n, y_n) bruitées censées correspondre à des points d'une droite. On va estimer la pente a et la valeur à l'origine b de cette droite par moindres carrés, c'est-à-dire minimisant :

$$J(a,b) = \sum_{k=0}^{N} (y_k - ax_k - b)^2$$

Solution : En annulant les dérivées partielles par rapport à a et b on trouve (un seul minimum) :

$$a = \frac{\sum_{k=1}^{N} x_k y_k - \frac{1}{N} (\sum_{k=1}^{N} x_k) (\sum_{k=1}^{N} y_k)}{\sum_{k=1}^{N} x_k^2 - \frac{1}{N} (\sum_{k=1}^{N} x_k)^2}$$

$$b = \frac{1}{N} (\sum_{k=1}^{N} y_k - a \sum_{k=1}^{N} x_k)$$
Matlab.

Script Matlab:

% Simulation

% Tirage d'un ensemble de mesures N = 20; x = 1:N;a = pi; b = 1/3;

aest = (sum(x,*y) - sum(x)*sum(y)/N)/...bruit = 10*randn(1,N); y = a*x+b+bruit; best = (sum(y) - aest*sum(x))/N; $(sum(x.^2) - sum(x)^2/N)$; % Estimation

plot(x,y,'*',x,aest*x+best) % Affichage

Estimation a = 3.1107 b = 0.65773

Matlab en bref

Table des matières

_	Gér	Généralités			
	1.1	Introduction	- 3	-	e ed
	1.2	Démarrer			-
	1.3	Aide en ligne	1		-
	1.4	Langage interprété			-
	1.5	Variables	1		-
	1.6	Variables complexes	:		-
	1.7	Vecteurs, matrices et manipulations			-
	1.8	L'opérateur d'énumération «:»			~
	1.9	Chaînes de caractères			23
0	Opé	Opérations matricielles			2

```
3.4 Affichage de plusieurs courbes . . . . . . .
                                           Graphiques 1D: plot ....

 Affichage alpha-numérique . . .

                                                                 Graphiques 2D: mesh
Affichages
es
```

Fichiers, scripts, fonctions

	-		+
		÷	-
100		141	000
-			
			÷
	43		
	en		
1	ne		
-	e		14.0
- =	50	1	
5	a		- 86
travail	t charge	******	
+	-	- 0	
e de 1			
70	rde e	73	71
9	Ď		m
ertoire	=		ã
7	50	00	0
1	5	to	+3
Ď,	auve	Ξ	H
3	8	0	0
-	00	02	-
_	2	~	**
7	1.2	-	4
4	4	4	4

80000

Boucles et contrôles 10

	-	0.00
	- 1	7 AV
		200
		8 (9)
	- 0	100
		1
	- 6	9.00
	1	
	- 0	2 200
	- 0	8 M
	į	8 39
		4.0
		5 10
	- 0	1 50
		1
	*	
	. 1	41
4		
	7	
Ξ.	9 6	
2		24
4		t.
3	100	
3	-	
5	657	444
٠.	94	1
•	-	-
		164
7	×	-
u		C
4	*	me.
ō.	- 92	5
U	-01	2
3	\vdash	TL)
	7.	
3		
3	100	0.1
=	_	5
3		100

6.1 Matrices particulières Signal et image

9

Filtrage et convolution Transformation de Fourier Un peu d'aléa Fonctions mathématiques spéciales	:		:	
Hitrage et convolution Transformation de Fourier Un peu d'aléa Fonctions mathématiques spéciales Fonctions mathématiques		0.7	1	11.5
C. Filtrage et convolution Transformation de Fourier Un peu d'aléa Fonctions mathématiques spéciales				
Fritrage et convolution Transformation de Fourier Transformation de Fourier Transformation de August Spéciales Fonctions mathématiques spéciales				
S. Tiltrage et convolution Transformation de Fourier Transformation de Tourier Un peu d'aléa Fonctions mathématiques spéciale Fonctions mathématiques spéciale				20
C.2 Filtrage et convolution C.3 Transformation de Fourier C.4 Un peu d'aléa Fonctions mathématiques spécia				e
S. Tiltrage et convolution Transformation de Fourier O. Un peu d'aléa Fonctions mathématiques spéc				13
5.2 Filtrage et convolution 5.3 Transformation de Fourier 6.4 Un peu d'aléa 5.5 Fonctions mathématiques sp				ė,
6.2 Filtrage et convolution 6.3 Transformation de Fourier 6.4 Un peu d'aléa 6.5 Fonctions mathématiques s				D
 6.3 Transformation de Fourie 6.4 Un peu d'aléa 6.5 Fonctions mathématique 	e.	50	0.07	10
 6.2 Fulrage et convolution 6.3 Transformation de Fou 6.4 Un peu d'aléa 6.5 Fonctions mathématiqu 		č		ě,
 6.2 Filtrage et convolutio 6.3 Transformation de Fo 6.4 Un peu d'aléa 6.5 Fonctions mathémati 		2		2
 6.2 Fultrage et convolut 6.3 Transformation de l 6.4 Un peu d'aléa 6.5 Fonctions mathéma 	2	8		Ť.
 6.3 Transformation de 6.4 Un peu d'aléa 6.5 Fonctions mathén 	Ħ	- 01		ci.
Filtrage et conve Transformation Un peu d'aléa . Fonctions mathé	7	Ť	4	
6.3 Transformatio 6.4 Un peu d'aléa 6.5 Fonctions mat	ž	F		H.
6.3 Transf 6.4 Un per 6.5 Fonction	e et con	ormatio	ı d'aléa	ons mat
6.3 6.4 6.5	Filtrag	Transf	Un per	Foncti
	2.0	6.3	6.4	6.5

Généralités

6.6 Exemple de fichier de commande

1.1 Introduction

Environnement de calcul matriciel, adapté à l'automatique et au traitement du signal et de l'image : facilité d'emploi, possibilités graphiques, boites à outils : signal processing, Matlab pour « Matrix Laboratory » : tout est matrice image processing, optimization, etc....

1.2 Démarrer

Cliquez sur l'icône Matlab ou tapez matlab dans un shell.

Tapez les commandes Matlab ou le nom d'un fichier de commandes à la suite des chevrons >> .

1.3 Aide en ligne

Commande help : help NomFct. Également lookfor. Avant d'écrire une fonction, assurez-vous qu'une fonction similaire n'existe pas déjà. De même, avant d'utiliser une fonction, vérifiez qu'elle réalise bien l'opération souhaitée.

sage d'erreur que Matlab a la gentillesse de vous indiquer. Vérifiez également sa syntaxe. En cas d'erreur, lisez le mes-

1.4 Langage interprété

Pas de compilation, ni de déclaration de variable, ni de réservation mémoire. Résultat affiché et stocké dans la variable ans.

```
ans = 1.4142
                       >> 2*sin(pi/4)
             ans = 4
>> 2+2
```

Fonctions usuelles : sin, cos, exp, log, etc..

1.5 Variables

200000

Les noms de variable commencent par une lettre. Attention, Matlab fait la différence entre X et x. >> x = pi/4

```
x = 0.7854
```

Point virgule «; » évite l'affichage du résultat. Plusieurs commandes par ligne : séparées par «; » ou « , » :

```
>> x = pi/2; y = sin(x);
```

1.6 Variables complexes

Matlab gère réels et complexes. i et j initialisés à √−1. >> z = 3 + 2*i

```
z = 3.0000 + 2.0000i
```

Fonctions prédéfinies : real, imag, abs, angle, etc...

```
>> y = r*exp(i*theta);
                   >> theta = angle(z);
>> r = abs(z);
```

1.7 Vecteurs, matrices et manipulations

Matrice sous forme d'un tableau :

```
>> A = [ 123; 456]
              A = 123
```

Expressions à évaluer possible :

```
>> x = [-1.3 sqrt(3) (1+2+3)*4/5]
                                      x = -1.3000 \ 1.7321 \ 4.8000
```

Éléments référencés par leurs indices :

>> x(5) = abs(x(1))ans = 1.7321 >> x(2)

 $x = -1.300 \ 1.732 \ 4.800 \ 0.000 \ 1.300$

>> r = [7 8 9]; A = [A; r] Ajout de lignes à une matrice : A = 123 Ajout de colonnes : « , » à la place de « ; »

456 789

Hervé Carfantan

Année 2016-2017

Fonctions zeros, ones, et eye :

>> eye(2) % eye comme I : Identity ans = 10 ans = 1 1 1 1 1>> x = ones(1,5)

Taille d'une matrice : size, length

>> size(x)

Transposée, conjuguée, retournement, rotation: ans = 15

>> A' % Transposée conjuguée de A >> fliplr(A) % Left - Right >> flipud(A) % Up - Down >> A., % Transposée de A

>> rot90(A) % Rotation de 90°

1.8 L'opérateur d'énumération « : »

Pas à pas, incrément :

x = 0.5000 0.6000 0.7000 0.8000 >> x = 0.5 : 0.1 : 0.85

Incrémentation par défaut : 1 (voir aussi linspace) :

x = 12345>> x = 1 : 5

Sélection d'éléments :

>> A(1,3); A(1,1:3); A(:,3) Si on a:

>> A = [1,2,3; 4,5,6; 7,8,9];

alors, extraction lignes 1 à 2 et toutes les colonnes :

>> A(1:2,:) ans = 123 4 5 6

1.9 Chaînes de caractères

Variables contenant des chaînes de caractères :

Manipulations de même type que pour les vecteurs : >> mess = 'Bienvenue sur Matlab';

mess = Bienvenue sur Matlab v 5 >> mess = [mess ' v 5']

Conversion de nombres en chaînes de caractères : num2str, int2str, sprintf:

>> mess = ['pi vaut', num2str(pi)] mess = pi vaut 3.142

Évaluation d'une chaîne : eval et feval :

>> eval([nomvar '1 = sqrt(-1)']) x1 = 0.0000 + 1.00001>> feval(NomFct,pi) >> NomFct = 'sin'; >> nomvar = 'x';

ans = 1.2246e-16 % sin(pi) 0!

Hervé Carfantan

Opérations matricielles

Opérations usuelles définies de façon naturelle

>> A*B % Produit matriciel

>> A P

>> inv(A)

Résolution de systèmes linéaires:

>> $X = A \setminus B$ % solution de A*X = B>> $X = B \setminus A$ % solution de X*A = B

Attention :

>> X = A./B % Division terme à terme " Produit terme à terme >> A.*B

% Puissance terme à terme Autres fonctions utiles sur les matrices : >> A. P

% Polyn. caract. de A % Déterminant de A % Trace de A >> trace(A) >> poly(A) >> det(A)

Matrices creuses : gain en mémoire et en coût de calcul >> [V,D] = eig(A) % Val. et vect. propres

Pour certaines fonctions, matrice = tableau de valeurs : >> A*[1;1]; % 4 multiplications >> B*[1;1]; % 2 multiplications >> A = eye(2); B = sparse(A);

>> exp(A); log(A); sqrt(A);

>> round(A); sign(A); rem(A,2);

Pour d'autres, matrice = suite de vecteurs colonnes >> min(A); % Minima des colonnes >> max(A); % Maximum

>> cumprod(A); % Produits cumulés >> cumsum(A); % Sommes cumulés >> sort(A); % Tri des colonnes >> prod(A); % Somme >> sum(A); % Somme

Décomposition de matrices :

>> median(A); % Val. médiane des col

>> [U,S,V] = svd(X,0); % Valeurs singulières >> [q,R] = qr(X); % qR >> [L,U] = lu(X); % LU (Lower, Upper) >> R = chol(X); % Cholesky

Affichages 3

3.1 Affichage alpha-numérique

Façon Matlab ou façon C pi vaut 3.142 >> disp(mess)

>> rep=input('Valeur de lambda : '); >> fprintf('pi vaut %1.3e \n',pi) pi vaut 3.141e+000 Saisie d'une valeur :

3.2 Graphiques 1D: plot

>> x = (0 : 0.1 : 2); y = sin(x*pi); >> plot(x,y); % abscisse, ordonnée >> title('Courbe y = sinus(pi*x)') Tracé d'une fonction avec axes et titre : >> xlabel('x'); ylabel('y') http://userpages.irap.omp.eu/~hcarfantan/

Hervé Carfantan

4.2 Sauvegarde et chargement

Courbe y = sin(pi*x)

Sauvegarde

>> save NomFichier NomsVariables

>> save test.mat A x y Exemple:

Par défaut sauvegarde dans matlab.mat. Chargement

>> load NomFichier

Voir aussi les commandes who, whos, pack et clear

4.3 Scripts

1.5

0.5

-0.5

Á

« .m ». Variables de l'espace de travail visbibles dans le (nomfich.m). Exécution sous Matlab: nom du fichier, sans Script : suite de commandes dans un fichier. Commentaires par : « % ». Nom de fichier avec extension « .m » script et réciproquement.

4.4 Fonctions

>> x = 1 : 0.1 : 2; y = -1 : 0.1 : 1;

Pour une fonction de deux variables :

3.3 Graphiques 2D : mesh

Mais aussi meshc, contour, image, surf, etc ...

>> mesh(X,Y,cos(pi*X).*sin(pi*Y))

>> [X,Y] = meshgrid(x,y);

Définition :

 $z = \sin(x)$; % Variable de stockage y = z./x; % Variable de sortie function y = sinuscardinal(x)

>> sincpi = sinuscardinal(pi); Appel identique aux fonctions Matlab:

Autre exemple:

function [min, max] = minetmax(x) min = min(x); max = max(x);

0

>> [miny, maxy] = minetmax(y);

Passage par valeur seulement. Nombres d'arguments en riables de l'espace de travail invisible dans les fonctions et réciproquement. Outils de mise au point (déboggage) : plus entrée et en sortie acessibles dans nargin et nargout. Vasimple : keyboard; plus évolués : déboggeur intégré...

5 Boucles et contrôles

5.1 Test « if » :

Structure générale :

suite d'instructions 1; if (expression logique)

3.4 Affichage de plusieurs courbes

subplot divise la fenêtre graphique :

>> subplot(2,1,1) >> subplot(2,1,2)

suite d'instructions 2;

Opérateurs logiques : et (&), ou (1, xor), égal (==), différent (" =), supérieur (>, >=), inférieur (<, <=), non ("). Fonctions logiques: exist, any, find, isinf, isnan, etc...

5.2 Boucle « for » :

Expression considérée fausse si 0, et vraie sinon

La commande figure crée une nouvelle fenêtre graphique.

>> plot(x,y. 2) >> plot(x,y)

figure (2) permet d'adresser la figure n° 2.

Structure générale:

4 Fichiers, scripts, fonctions

suite d'instructions for k=1 : 10

Commandes cd et dir (idem DOS); cd et 1s (idem Unix)

4.1 Répertoire de travail