Apuntes de Álgebra Lineal

Leonardo H. Añez Vladimirovna¹

Universidad Autónoma Gabriél René Moreno, Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones, Santa Cruz de la Sierra, Bolivia

19 de julio de 2018

 $^{^{1}}$ Correo Electrónico: toborochi98@outlook.com

Notas del Autor

Estos apuntes fueron realizados durante mis clases en la materia MAT103 (Álgebra Lineal), acompañados de referencias de libros, fuentes y código que use a lo largo del curso, en el período I-2018 en la Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones.

Para cualquier cambio, observación y/o sugerencia pueden enviarme un mensaje al siguiente correo:

toborochi98@outlook.com

Índice general

1.	Mat	trices	5
	1.1.	Conceptos	5
		1.1.1. Matriz	5
	1.2.	Operaciones con Matrices	5
		1.2.1. Propiedades de las Operaciones con Matrices	5
		1.2.2. Operaciones Elementales	5
	1.3.	Matrices Cuadradas	6
		1.3.1. Matriz Identidad	6
		1.3.2. Matriz Simétrica	6
		1.3.3. Matriz Antisimétrica	6
		1.3.4. Matriz Triangular Superior	6
		1.3.5. Matriz Triangular Inferior	6
		1.3.6. Matriz Diagonal	6
		1.3.7. Matriz Elemental	6
		1.3.8. Matriz no Singular	6
2.	Sist	gemas de Ecuaciones Lineales	7
3.	Fun	ación Determinante	9
4.	Vec	tores	11
5.	Espa	pacios Vectoriales	13

ÍNDICE GENERAL

Matrices

1.1. Conceptos

1.1.1. Matriz

Es un arreglo de números. Los números en el arreglo se denominan elementos de la matriz. Para denotarlas se utilizan letras mayúsculas.

- Tamaño u Orden: Se describe en términos como el número de filas y columnas de la matriz.
- Identificación de Elementos: Se los identifica indicando la fila y la columna.

1.2. Operaciones con Matrices

1.2.1. Propiedades de las Operaciones con Matrices

- A + B = B + A
- A + (B + C) = (A + B) + C
- \bullet A(BC) = (AB)C
- \bullet $A(B \pm C) = AB \pm AC$
- $(B \pm A)C = BA \pm AC$
- $a(B \pm C) = aB \pm aC$ a es un escalar.
- $(a \pm b)C = aC \pm bC$ b es un escalar.
- (ab)C = a(bC) = b(aC)
- a(BC) = (aB)C = B(aC)
- $(A^t)^t = A$
- $\quad \blacksquare \ (A\pm B)^t = A^t \pm B^t$
- $(kA)^t = kA^t$
- $(AB)^t = B^t A^t$

1.2.2. Operaciones Elementales

- Permutaciones: de una fila (o columna) con otra P_{ij} o P_{ij}^c
- Multiplicación: de una fila (o columna) por un escalar: $k \neq 0$. Cuya notación será: $M_{i(k)}$ o $M_{i(k)}^c$

1.3. Matrices Cuadradas

1.3.1. Matriz Identidad

$$I_{(n)}/[I]_{ij} = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ si } i \neq j \end{cases}$$

Propiedades

Actúa como el elemento neutro en el Producto de Matrices.

Si
$$A_{(m \times n)} \Rightarrow \begin{cases} AI_{(n)} = A \\ I_{(n)}A = A \end{cases}$$

- 1.3.2. Matriz Simétrica
- 1.3.3. Matriz Antisimétrica
- 1.3.4. Matriz Triangular Superior
- 1.3.5. Matriz Triangular Inferior
- 1.3.6. Matriz Diagonal

Matriz Escalar

Es una matriz diagonal donde $[A]_{ij}=k,$ siendo k un escalar cualquiera.

1.3.7. Matriz Elemental

Es una Matriz que proviene de la Identidad, al aplicarle una única operación elemental.

1.3.8. Matriz no Singular

Una matriz $A_{(n)}$ es no singular si existe una matriz B(n) tal que:

$$AB = BA = I$$

B es la Inversa de A y se representa por A^{-1} :

$$AA^{-1} = A^{-1}A = I$$

Si A no tiene inversa se la denomina Singular.

Sistemas de Ecuaciones Lineales

Función Determinante

Vectores

Espacios Vectoriales