МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования

«УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Т. А. Новикова

ФИЗИКА НАЧАЛЬНЫЙ ЭТАП ЧАСТЬ І

Учебное пособие

для иностранных слушателей по курсу довузовской подготовки

Ульяновск УлГТУ 2023 УДК 534: 535(075) ББК 22.3я7 Н73

Рецензенты:

Ульяновский филиал ИРЭ им. В. А. Котельникова РАН (директор, д-р техн. наук, доцент В. А. Сергеев);

канд. физ.-мат. наук, старший научный сотрудник НИТИ им С.П. Капицы, доцент кафедры теоретической физики УлГУ В. В. Саенко.

Утверждено редакционно-издательским советом университета в качестве учебного пособия

Новикова, Татьяна Анатольевна

Н 73 Физика. Начальный этап. В 2 частях / Т. А. Новикова. — Ульяновск : УлГТУ, 2023. —

ISBN 978-5-9795-2346-0

Часть I : Учебное пособие для иностранных слушателей по курсу довузовской подготовки. -2023.-54 с.

ISBN 978-5-9795-2347-7

Материал учебного пособия предназначен для изучения дисциплины «Физика» на дополнительных общеобразовательных программах по довузовской подготовке иностранных слушателей. Пособие содержит две главы и знакомит слушателей с основами механики, электричества и магнетизма на русском языке.

Учебное пособие подготовлено на кафедре «Естественно-научные дисциплины» Инженерного факультета Международного института УлГТУ. Печатается в авторской редакции.

УДК 534: 535(075) ББК 22.3я7

ISBN 978-5-9795-2347-7 (ч. I) ISBN 978-5-9795-2346-0 © Новикова Т. А., 2023

© Оформление. УлГТУ, 2023

ОГЛАВЛЕНИЕ

E	ВВЕДЕНИЕ	5
Ι	ГЛАВА 1. МЕХАНИКА	7
	1.1. Словарь. Кинематика	7
	1.2. Основные величины кинематики	8
	1.3. Равномерное движение	9
	1.4. Кинематика неравномерного движения	. 11
	1.5. Линейные величины кинематики движения по окружности	. 13
	1.6. Центростремительное ускорение	. 14
	1.7. Угловые величины кинематики движения по окружности	. 16
	1.8. Период и частота	. 17
	1.9. Примеры решения задач по кинематике вращения	. 18
	1.10. Задачи, вопросы и задания для самостоятельной подготовки	
	по кинематике	. 19
	1.11. Словарь. Динамика	. 21
	1.12. Основные величины динамики	. 22
	1.13. Множители числа и десятичные приставки	. 23
	1.14. Основные понятия динамики	. 24
	1.15. Силы в механике	. 28
	1.16. Работа, энергия, мощность	. 30
	1.17. Примеры решения задач по динамике	. 32
	1.18. Задачи, вопросы и задания для самостоятельной подготовки	
	по динамике	. 34
Ι	ГЛАВА 2. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ	. 35
	2.1. Словарь. Электричество	. 35

	2.2. Величины электричества	. 36
	2.3. Электрические заряды	. 37
	2.4. Взаимодействия зарядов	. 39
	2.5. Примеры решения задач по нахождению величины заряда	. 40
	2.6. Задачи, вопросы и задания для самостоятельной подготовки	
	по нахождению величины заряда	. 41
	2.7. Электрическое сопротивление. Соединения резисторов	. 42
	2.8. Напряжение на участке цепи. Работа и мощность тока	. 43
	2.9. Примеры решения задач по электричеству	. 44
	2.10. Задачи, вопросы и задания для самостоятельной подготовки	
	по электричеству	. 46
	2.11. Словарь. Магнетизм	. 47
	2.12. Основные величины магнетизма	. 48
	2.13. Источники магнитного поля	. 48
	2.14. Линии индукции и напряжённости	. 50
	2.15. Задачи, вопросы и задания для самостоятельной подготовки	
	по магнетизму	. 52
3	АКЛЮЧЕНИЕ	. 53
Б	БИБЛИОГРАФИЧЕСКИЙ СПИСОК	. 54

ВВЕДЕНИЕ

Учебное пособие «Физика. Начальный этап. Часть I» предназначено для обучения на русском языке иностранных слушателей, проходящих подготовку к поступлению в высшие учебные заведения на основные образовательные программы.

Данное пособие соответствует продвинутому элементарному уровню владения русским языком и предназначено для использования со второй трети базового уровня изучения русского языка. На данном этапе иностранные слушатели показывают следующие умения и навыки:

- 1. Речь слушателя понятна носителям русского языка, имеющим опыт общения с иностранными гражданами. Слушатель говорит на русском языке короткими фразами.
- 2. На слух слушатель воспринимает физические определения, понимает короткие предложения по изучаемой теме, произносимые в медленном темпе.
- 3. Слушатель читает знакомые слова и определения по изучаемой теме. При чтении понимает общее содержание учебного текста, имея предметные знания по физике на родном языке.
- 4. Слушатель может написать слова и словосочетания на русском языке по изученной теме физики.
- 5. Слушатель произносит, воспринимает на слух основные физические величины и может написать обозначения, числовые значения и единицы величин с использованием принятых сокращений на русском языке.

Пособие «Физика. Начальный этап. Часть I» содержит методический материал в соответствие с начальными требованиями

к подготовке иностранных слушателей по физике на русском языке по двум разделам: «Механика» и «Электричество и магнетизм».

Глава 1 «Механика» включает минимально необходимый материал по кинематике и динамике, Глава 2 «Электричество и магнетизм» – по электричеству и магнетизму.

Главы пособия состоят из параграфов, учебный материал которых последовательно содержит словари терминов, учебные тексты, примеры решения задач, вопросы, задания и задачи для самостоятельной подготовки.

Словарь физических терминов на русском языке содержит необходимую лексику для эффективного освоения учебного материала, изложенного в текстах пособия.

Примеры решения физических задач служат для развития навыков расчёта, устной и письменной речи.

Вопросы, задания и задачи для самостоятельной подготовки предназначены для организации самостоятельной работы в целях устойчивого усвоения разделов физики на начальном этапе обучения слушателей на русском языке.

Слушателям, которые используют данное пособие, необходимо:

- 1. Письменно пополнять свой рабочий словарь с физической лексикой и словосочетаниями из пособия.
- 2. Читать вслух и учить наизусть названия, обозначения, единицы измерения физических величин.
- 3. Примеры из текста пособия заносить в рабочую тетрадь.
- 4. Подробно разбирать примеры решения физических задач.
- 5. Заносить примеры решения задач в рабочую тетрадь.
- 6. Решать задачи, выполнять задания и отвечать на вопросы, которые даны в пособии для самостоятельной подготовки.

ГЛАВА 1. МЕХАНИКА

1.1. Словарь. Кинематика

 Таблица 1.1

 Словарь по кинематике равномерного и неравномерного движения

время	двигаться, движение	единица измерения		
интервал	измерять, измерение	интервал времени		
момент	отсчитывать, отсчёт	любой момент времени		
положение	перемещаться, перемещение	начальная скорость		
пространство	проходить, прохождение	начальный путь		
путь	тормозить, торможение	неравномерное движение		
расстояние	увеличиваться, увеличение	положение тела		
скорость	уменьшаться, уменьшение	равномерное движение		
точка		тормозной путь		
ускорение		физическая величина		

Таблица 1.2 Словарь по кинематике движения по окружности

вектор	вращаться, вращение	векторная величина
окружность	оборачиваться, оборот	линейная скорость
период	поворачивать, поворот	период вращения
радиус		средняя скорость
угол		угловая скорость
центр		угол поворота
частота		центростремительное ускорение
		число оборотов

1.2. Основные величины кинематики

Таблица 1.3

Основные величины кинематики

		Единица измерения			
Название величины	Обозна- чение	Название единицы	Обозна- чение единицы	Пример	
Высота, расстояние, путь	h, l, S	1 метр	1 м	S = 40 м	
Время, интервал времени	t , Δt 1 секунда		1 c	$\Delta t = 25 \text{ c}$	
Скорость	Скорость		1 M c	$v = 4\frac{M}{c}$	
Ускорение	a, g	1 метр на секунду в квадрате	$1 \frac{M}{c^2}$	$a = 3 \frac{M}{c^2}$	

Вспомним единицы измерения пути:

$$1 \text{ KM} = 1000 \text{ M}, \quad 1 \text{ M} = 100 \text{ cM}, \quad 1 \text{ cM} = 10 \text{ MM};$$
 $1 \text{ KM} = 1 \cdot 10^3 \text{ M}, \quad 1 \text{ cM} = 1 \cdot 10^{-2} \text{M}, \quad 1 \text{ MM} = 1 \cdot 10^{-3} \text{M}.$

Вспомним единицы измерения времени:

$$1 \text{ ч} = 60 \text{ мин}, \qquad 1 \text{ мин} = 60 \text{ c},$$
 $1 \text{ с} = 1000 \text{ мс}; \qquad 1 \text{ мс} = 1 \cdot 10^{-3} \text{c}.$

Вспомним единицы измерения скорости:

$$v = 72 \frac{KM}{4} = 72 \cdot 10^3 \frac{M}{60 \cdot 60 c} = 72 \cdot 10^3 \frac{M}{36 \cdot 10^2 c} = 20 \frac{M}{c}.$$

1.3. Равномерное движение

Кинематика — это часть механики, в которой изучают геометрические свойства и законы движения.

Задача кинематики — найти положение материальной точки в пространстве в любой момент времени t.

Средняя скорость. Равномерное движение

Средней скоростью тела v называют отношение пути S ко времени движения t:

$$v = \frac{S}{t} \,. \tag{1.1}$$

Скорость \vec{v} – векторная величина.

При **равномерном** движении за одинаковые интервалы времени $\Delta t_{21} = \Delta t_{32}$ материальная точка проходит одинаковые пути ($\Delta S_{21} = \Delta S_{32}$). Скорость при равномерном движении в разные интервалы времени одинакова: $v_{21} = v_{32}$, т.е. скорость v – постоянная величина (v = const).

Рассмотрим пример решения задачи.

Задача 1.1. На рисунке 1.1 дана схема движения тела. Найти скорость тела на отрезках пути 1-2 и 2-3. Поясните, какой тип движения соответствует схеме.

$$t_1 = 0$$
 $t_2 = 10 \text{ c}$ $t_3 = 20 \text{ c}$
 $\Delta S_{21} = 20 \text{ M}$ $\Delta S_{32} = 20 \text{ M}$

Рис. 1.1. Схема равномерного движения

Найти:
$$v_{21}$$
—? v_{32} —? равномерным.

Решение. Посчитаем интервалы времени между положениями тела 1 - 2 и 2 - 3:

$$\Delta t_{21} = t_2 - t_1 = 10 \text{ c}, \quad \Delta t_{32} = t_3 - t_2 = 10 \text{ c}.$$

Так как за равные интервалы времени $\Delta S_{21} = \Delta S_{32} = 20$ м $\Delta t_{21} = \Delta t_{32}$ тело прошло одинаковый путь $\Delta S_{21} = \Delta S_{32}$, то движение тела является

Для скоростей получаем:

$$v_{21} = \frac{\Delta S_{21}}{\Delta t_{21}} = \frac{20}{10} = 2 \frac{M}{c}, v_{32} = \frac{\Delta S_{32}}{\Delta t_{32}} = \frac{20}{10} = 2 \frac{M}{c}; \Rightarrow v_{21} = v_{32}.$$

Ответ:
$$v_{21} = v_{32} = 2 \frac{M}{c}$$
.

Начальный путь S_0 — это путь, который тело прошло до начала отсчёта времени движения. Весь путь S в момент времени t можно посчитать по формуле:

$$S = S_0 + vt. (1.2)$$

Рассмотрим пример решения задачи.

Задача 1.2. Скорость тела равна $50 \frac{\text{см}}{\text{c}}$. Найти весь путь тела за 20 с наблюдения, если до начала отсчёта времени тело прошло 25 м.

Дано:

$$S_0 = 25 \text{ м}$$
 $t = 20 \text{ c}$
 $v = 50 \frac{\text{см}}{\text{c}} = 0,5 \frac{\text{м}}{\text{c}}$

Найти: *S*-?

Известен начальный Решение. ПУТЬ тела $S_0 = 25 \text{ м}.$ начала отсчета времени до Посчитаем весь путь по формуле (1.2):

$$v = 50 \frac{\text{CM}}{\text{c}} = 0.5 \frac{\text{M}}{\text{c}}$$
 $S = S_0 + \text{vt},$ $S = 25 + 0.5 \cdot 20 = 25 + 10 = 35 \text{ m}.$

Ответ: S = 35 м.

1.4. Кинематика неравномерного движения

При **неравномерном движении** за одинаковые интервалы времени $\Delta t_{21} = \Delta t_{32}$ тело проходит разные пути ($\Delta S_{21} \neq \Delta S_{32}$). Скорость тела при неравномерном движении изменяется: $\mathbf{v}_{21} \neq \mathbf{v}_{32}$.

Средним ускорением a называют отношение скорости тела v ко времени движения t:

$$a = \frac{\mathbf{v}}{t} \,. \tag{1.3}$$

При **ускоренном** движении с течением времени ($\Delta t_{21} = \Delta t_{32}$) скорость тела увеличивается ($v_{32} > v_{21}$) и путь становится больше ($\Delta S_{32} > \Delta S_{21}$).

Рис. 1.2. Схема неравномерного движения

Начальная скорость v_0 — это скорость тела до начала отсчета времени при t=0. Скорость v при неравномерном ускоренном движении тела находят по формуле:

$$v = v_0 + at. (1.4)$$

Весь путь тела S при неравномерном движении с учётом начального пути S_0 равен:

$$S = S_0 + \mathbf{v}_0 t + \frac{at^2}{2}. ag{1.5}$$

Рассмотрим пример решения задачи.

Задача 1.3. Найти скорость и путь материальной точки за 10 с движения с ускорением $4\frac{cM}{c^2}$, если начальная скорость точки была равна $6\frac{cM}{c}$.

 Дано:
 Решение. В

 t = 10 c V

 $a = 4 \frac{\text{см}}{\text{c}^2}$ Посчитаем

 $v_0 = 6 \frac{\text{см}}{\text{c}}$ $S = S_0$
 $S_0 = 0$ $S = S_0$

Решение. Найдём скорость по формуле (1.4):

$$v = v_0 + at = 6 + 4 \cdot 10 = 46 \frac{CM}{C}$$
.

Посчитаем путь по формуле (1.5):

$$S = S_0 + v_0 t + \frac{at^2}{2} = 0 + 6 \cdot 10 + \frac{4 \cdot 100}{2} =$$

= 260 cm.

Найти: v−? *S*−?

Ответ:
$$v = 46 \frac{cM}{c}$$
, $S = 260$ см.

Торможение

Если при движении скорость тела уменьшается ($v_{32} < v_{21}$), то такое движение называется **торможением**.

При торможении путь тела за одинаковые интервалы времени $\Delta t_{21} = \Delta t_{32} \text{ также становится меньше } (\Delta S_{32} < \Delta S_{21}).$

Рис. 1.3. Схема торможения

Движение тела с торможением — это движение с отрицательным ускорением. Скорость тела при торможении находят по формуле:

$$v = v_0 - at. (1.6)$$

Путь S при торможении с учётом начального пути S_0 равен:

$$S = S_0 + v_0 t - \frac{at^2}{2}. ag{1.7}$$

При торможении тело может **остановиться**, тогда его **конечная скорость будет равна нулю \mathbf{v} = \mathbf{0}.** Расстояние, которое тело прошло за время торможения до остановки, называется **тормозным путём**.

Рассмотрим пример решения задачи.

Задача 1.4. Тело двигалось со скоростью $10 \frac{M}{c}$. Через 20 с после начала торможения оно остановилось (v = 0). Найти ускорение, с которым тело тормозилось, и его тормозной путь.

Дано:Решение.Выразим ускорение, с которым тело
$$v_0 = 10 \frac{M}{c}$$
тормозилось, из формулы (1.6): $t = 20 c$ $v = v_0 - at = 0 \Rightarrow v_0 = at \Rightarrow a = \frac{v_0}{t} = 0.5 \frac{M}{c^2}$.Ивайти:Посчитаем тормозной путь по формуле (1.7): $S = v_0 t - \frac{at^2}{2} = 10 \cdot 20 - \frac{0.5 \cdot 400}{2} = 100 \text{ м}$.Ответ: $a = 0.5 \frac{M}{c^2}$, $S = 100 \text{ м}$.

1.5. Линейные величины кинематики движения по окружности

Для описания вращения — движения по окружности радиуса R с центом в точке O — принято использовать линейные и угловые

величины. Линейные величины связаны с траекторией движения (линией движения) – окружностью.

Таблица 1.4 Основные линейные величины

		Единица изм		
Название величины	Обозна- чение	Название единицы	Обозна- чение единицы	Пример
Путь	l	1 метр	1 м	l = 2 м
Скорость	v	1 метр в секунду	$1\frac{M}{c}$	$v = 3 \frac{M}{c}$
Центростремительное ускорение	a_n	1 метр на секунду в квадрате	$1\frac{M}{c^2}$	$a_n = 4\frac{M}{c^2}$

1.6. Центростремительное ускорение

При равномерном движении по окружности со скоростью v тело за интервал времени t проходит между точками 1 и 2 **путь** l, который равен длине дуги окружности:

$$l = vt.$$

$$(1.8)$$

$$R \overrightarrow{a}_{n} \qquad l$$

$$O \overrightarrow{a}_{n} \qquad v$$

Рис. 1.4. Направления скорости и центростремительного ускорения при движении по окружности

При движении по окружности в каждой точке скорость тела \vec{v} меняет направление и перпендикулярна радиусу R.

Движение по окружности проходит с центростремительным ускорением a_n . Центростремительное ускорение \vec{a}_n всегда направлено к центру окружности — точке О. Центростремительное ускорение находят по формуле:

$$a_n = \frac{\mathbf{v}^2}{R}.\tag{1.9}$$

Именно центростремительное ускорение \vec{a}_n отвечает за поворот тела — изменение направления скорости \vec{v} . Скорость тела перпендикулярна центростремительному ускорению $\vec{v} \perp \vec{a}_n$ в каждой точке окружности.

Рассмотрим примеры решения задач.

Задача 1.5. Материальная точка движется равномерно по окружности радиуса 20 см. Точка прошла половину окружности за 4 с движения. Найдите скорость движения материальной точки.

<u>Дано:</u>	Решение. По условию задачи путь точки равен					
R = 20 cm	половине длины окружности:					
$l = \frac{1}{2} \cdot l_{\odot}$ $l = \frac{1}{2} \cdot 2\pi R = \frac{1}{2} \cdot l_{\odot} = \pi R.$						
$l_{\odot} = 2\pi R$	Найдём скорость материальной точки:					
$l_{\odot} = 2\pi R$ $t = 4 c$	$l = vt \implies v = \frac{l}{t} = \frac{\pi R}{t} = \frac{3,14 \cdot 20}{4} = 15,7 \frac{cM}{c}.$					
<u>Найти:</u> v-?	$\underline{\text{Otbet:}} \text{ v} = 15,7\frac{\text{cm}}{\text{c}}.$					

Задача 1.6. Найти центростремительное ускорение поезда, который движется по закруглённой части дороги радиуса 800 м со скоростью 20 м/с.

Дано:
$$R = 800 \text{ м}$$

 $v = 20 \frac{M}{c}$ Решение.
поезда по формуле (1.9):
 $a_n = \frac{v^2}{R} = \frac{20^2}{800} = \frac{400}{800} = 0,5 \frac{M}{c^2}$ Найти:
 $a_n = \frac{V}{R} = \frac{20^2}{800} = \frac{400}{800} = 0,5 \frac{M}{c^2}$

1.7. Угловые величины кинематики движения по окружности

Таблица 1.5 Основные угловые величины кинематики

		Единица измерения		
Название величины	Обозна- чение	Название единицы	Обозна- чение единицы	Пример
Угол поворота	φ	1 радиан	1 рад	$arphi=8\pi$ рад
Число оборотов	N	-	_	N = 10
Период	T	1 секунда	1 c	T = 2 c
Частота	ν	1 герц	1 Гц	ν = 5 Гц
Угловая скорость	ω	1 радиан в секунду	1 рад с	$\omega = 0,1 \frac{\text{рад}}{\text{c}}$

1.8. Период и частота

Пусть за время t тело при движении по окружности сместилось из точки 1 в точку 2. Угол поворота φ — это угол сектора 102 окружности с центром в точке 0.

Рис. 1.5. Движение по окружности

Пройти одну окружность — это значит **сделать один оборот** вокруг точки O, или **повернуться на угол 2\pi** рад.

Угол поворота тела φ за N оборотов равен

$$\varphi = 2\pi N. \tag{1.10}$$

Средняя угловая скорость ω – это отношение угла φ ко времени t:

$$\omega = \frac{\varphi}{t} \,. \tag{1.11}$$

Период T — это время одного поворота вокруг точки О на угол 2π рад:

$$T = \frac{2\pi}{\omega} \,. \tag{1.12}$$

Частотой вращения ν называют величину, обратную периоду:

$$\nu = \frac{1}{T} \,. \tag{1.13}$$

При частоте ν число оборотов N за время вращения t равно:

$$N = \nu \cdot t = \frac{t}{T} \,. \tag{1.14}$$

Угловую скорость выразим через частоту вращения:

$$\omega = 2\pi \nu . \tag{1.15}$$

Пусть известен начальный угол φ_0 — угол, на который тело повернулось до начала отсчета времени. Весь угол поворота тела φ при равномерном движении равен:

$$\varphi = \varphi_0 + \omega t \,. \tag{1.16}$$

1.9. Примеры решения задач по кинематике вращения

Задача 1.7. Ротор двигателя вращается с частотой 1200 оборотов в минуту. Найти период вращения и число оборотов ротора за 3,5 минуты.

Дано:

$$u = 1200 \frac{\text{об}}{\text{мин}}$$
 $t = 3,5 \text{ мин} = 3,5 \cdot 60$
 $= 210 \text{ c}$

Найти:

$$T-?$$
 $N-?$

Решение. Посчитаем частоту в герцах:

$$u = 1200 \frac{\text{об}}{\text{мин}} = 1200 \frac{\text{об}}{60 \text{ c}} = 20 \frac{\text{об}}{\text{c}} = 20 \Gamma$$
ц.

Тогда период вращения равен:

$$T = \frac{1}{\nu} = \frac{1}{20} = 0.05 \text{ c.}$$

Число оборотов ротора за 3,5 минуты найдём двумя способами:

1)
$$N = \nu t = 1200 \frac{\text{об}}{\text{мин}} \cdot 3,5 \text{ мин} = 4200,$$

2) $N = \frac{t}{T} = \frac{210 \text{ c}}{0.05 \text{ c}} = 4200.$

Other:
$$T = 0.05 \text{ c}$$
, $N = 4200$.

Задача 1.8. Металлическая рамка вращается в магнитном поле с частотой $1800 \frac{\text{об}}{\text{муг}}$. Найти угловую скорость, угол поворота за 10 cвращения и число оборотов рамки за этот интервал времени.

Дано:

$$u = 1800 \frac{\text{об}}{\text{мин}}$$
 $t = 10 \text{ c}$

Решение. Посчитаем частоту в герцах:

$$\nu = 1800 \frac{\text{об}}{\text{мин}}$$
 $\nu = 1800 \frac{\text{об}}{\text{мин}} = 1800 \frac{\text{об}}{60 \text{ c}} = 30 \frac{\text{об}}{\text{c}} = 30 \Gamma \text{ц}.$

Тогда угловая скорость вращения рамки равна:

$$\omega = 2\pi \nu = 188,4 \frac{\text{рад}}{\text{c}}.$$

$$\omega$$
-? φ -? N -?

 <u>Найти:</u>
 ω —? φ —? N—?
 За 10 с вращения рамка повернулась на угол φ

 и сделала N оборотов:

$$arphi = \omega t = 1884$$
 рад, $N = \nu t = 30 \cdot 10 = 300$ или $N = \frac{arphi}{2\pi} = \frac{1884}{2 \cdot 3.14} = 300.$

Ответ:
$$\varphi = 1884$$
 рад, $N = 300$.

1.10. Задачи, вопросы и задания для самостоятельной подготовки по кинематике

Решить задачи.

- **М-1.** Тело движется равномерно вдоль прямой со скоростью $2\frac{cM}{c}$ Какой путь прошла точка за 4 минуты? Ответ представить в метрах.
- **М-2.** Тело движется равномерно вдоль прямой со скоростью $5\frac{\text{см}}{c}$. Какой путь прошла точка за 2 минуты? Ответ представить в метрах.

- М-3. За 25 мс тело прошло путь 4 см. Найти скорость тела в м/с.
- М-4. За 40 мс тело прошло путь 20 см. Найти скорость тела в м/с.
- **М-5.** При торможении автомобиль, движущийся со скоростью 72 $\frac{\kappa_M}{q}$, остановился через 5 с. Найти тормозной путь автомобиля.
- **М-6.** При торможении автомобиль, движущийся со скоростью $36 \frac{\kappa_M}{4}$, остановился через 2 с. Найти тормозной путь автомобиля.
- **М-7.** Угловая скорость лопастей вентилятора равна $20\pi \frac{\text{рад}}{\text{c}}$. Найдите число оборотов вентилятора за 30 минут.
- **М-8.** За какое время колесо, имеющее угловую скорость $8\pi \frac{\text{рад}}{\text{c}}$, сделает 120 оборотов?

Выполнить задания и ответить на вопросы.

- М-9. Какое движение называют равномерным?
- М-10. Какое движение называют неравномерным?
- **М-11.** Что означает «торможение»?
- **М-12.** Нарисуйте окружность. Покажите направление скорости точки, которая движется по окружности вправо.
- **М-13.** Как найти период, если известно число циклов и время движения по окружности?
- **M-14.** Напишите формулу для угла поворота.
- М-15. Как зависти угловая скорость от частоты?

1.11. Словарь. Динамика

Таблица 1.6

Словарь по динамике

векторная сумма
вертикальный, вертикально
взаимодействовать, взаимодействие
горизонтальный, горизонтально
деформировать, деформация
инерциальная система отсчета
компенсировать, компенсация
коэффициент трения
натягивать, натяжение
оси координат
остановиться, остановка
падать, падение
покоиться, покой
препятствовать, препятствие
притягивать, притяжение
противоположные силы
прямолинейно, прямолинейный
равнодействующая сил
равномерно, равномерный
растягивать, растяжение
сжимать, сжатие
смещаться, смещение

1.12. Основные величины динамики

Таблица 1.7 Основные величины динамики

		Единица измеј	Единица измерения		
Название величины	Обозна- чение	Название единицы	Обозна- чение единицы	Пример	
Macca	m	1 килограмм	1 кг	m=12 кг	
Импульс	p	р 1килограмм-метр в секунду		$p = 3\frac{\mathrm{K}\Gamma \cdot \mathrm{M}}{\mathrm{c}}$	
Сила	F	1 ньютон	1 H	F = 50 H	
Работа	A	1 джоуль	1 Дж	А = 800 Дж	
Кинетическая энергия	E_{κ} 1 джоуль		1 Дж	$E_{\kappa}=200$ Дж	
Потенциальная энергия	E_{π} 1 джоулн		1 Дж	$E_{\rm n} = 600$ Дж	
Мощность	P	1 ватт	1 Вт	<i>P</i> = 300 Вт	

Таблица 1.8 Дополнительные величины динамики

		Единица измо			
Название величины	Обозна- чение	Название единицы	Обозна- чение единицы	Пример	
Плотность	ρ	1 килограмм на метр в кубе	$1\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	$\rho = 1000 \; \frac{\text{K}\Gamma}{\text{M}^3}$	
Давление	p	1 паскаль	1 Па	p = 700 Па	

1.13. Множители числа и десятичные приставки

Таблица 1.9 Множители числа и десятичные приставки

Множитель числа <i>b</i>	Название	Обозна- чение приставки	Множитель числа <i>b</i>	Название	Обозна- чение приставки
10 ⁹	гига	Γ	10^{-2}	санти	c
10^{6}	мега	M	10^{-3}	милли	M
10 ³	кило	к	10^{-6}	микро	мк
10 ⁻¹	деци	Д	10 ⁻⁹	нано	Н

Пример 1.1. Дан путь:

$$l = 1250$$
 cm.

1250 — это число, которое определяет величину пути, см — единица измерения пути в сантиметрах, с — приставка к метру (м). Переведём десятичные приставки в множители числа, получим:

$$l = 1250 \text{ cm} = 1250 \cdot 10^{-2} \text{ m} = 1.25 \cdot 10^{3} \cdot 10^{-2} \text{ m} = 12.5 \text{ m}.$$

Пример 1.2. Дан объём:

$$V = 800 \text{ cm}^3$$
.

800 — это число, определяющее величину объёма, см³ — единица измерения объёма в сантиметрах кубических. Переведём десятичные приставки в множители числа

$$V = 800 \text{ cm}^3 = 800(\text{cm})^3 = 800(10^{-2}\text{m})^3 = 800 \cdot 10^{-6}\text{m}^3 =$$

= $0.8 \cdot 10^3 \cdot 10^{-6}\text{m}^3 = 0.8 \cdot 10^{-3}\text{m}^3$.

Пример 1.3. Переведём десятичные приставки в множители числа:

$$S = 20 \text{ cm} = 20 \cdot 10^{-2} \text{m};$$

 $F = 40 \text{ mH} = 40 \cdot 10^{-3} \text{ H};$

$$A = 12 \text{ кДж} = 12 \cdot 10^3 \text{Дж};$$

$$P = 9 \text{ MBT} = 9 \cdot 10^6 \text{ BT};$$

$$\rho = 2.7 \frac{\Gamma}{\text{см}^3} = 2.7 \cdot 10^{-3} \frac{\text{к}\Gamma}{1 \cdot 10^{-6} \text{m}^3} = 2.7 \cdot 10^3 \frac{\text{к}\Gamma}{\text{m}^3}.$$

1.14. Основные понятия динамики

Вспомним основные понятия динамики:

- инерция или инертность,
- инерциальная система отсчёта,
- количество движения или импульс,
- сила,
- работа,
- энергия,
- мощность.

Инерция или **инертность тела** – это способность тела сохранять скорость без изменения.

Инерциальной системой отсчета (ИСО) называют систему отсчета, которая покоится (v=0) или движется вдоль прямой линии с постоянной скоростью относительно других тел $(\vec{v}=\text{const})$.

Macca m – это мера инертности тела. [m] = 1 кг.

В одном килограмме одна тысяча грамм: $1 \, \text{кr} = 1 \, 000 \, \text{г}$. Одна тонна равна одной тысяче килограммам: $1 \, \text{т} = 1 \, 000 \, \text{кr}$.

Произведение плотности вещества ρ и объёма тела V равно массе тела m:

$$m = \rho V. \tag{1.17}$$

Рассмотрим пример решения задачи.

Задача 1.9. Две одинаковые бочки цилиндрической формы наполнены разными жидкостями. Первая бочка содержит нефть, вторая бочка — воду. Дно каждой бочки имеет диаметр 60 см, высота бочки 80 см. Найти массы жидкостей в бочках.

Дано:
$$\rho_{\rm H} = 860 \; \frac{{\rm K}\Gamma}{{\rm M}^3}$$

$$\rho_{\rm B} = 1000 \; \frac{{\rm K}\Gamma}{{\rm M}^3}$$

$$r = \frac{d}{2} = \frac{0.6 \; {\rm M}}{2} = 0.3 \; {\rm M}$$

$$h = 0.8 \; {\rm M}$$

Найти: $m_{\rm H} - ? m_{\rm B} - ?$

<u>Решение</u>. Бочка имеет форму цилиндра. Посчитаем её объём:

$$V=\pi r^2 h=3,14\cdot 0,3^2\cdot 0,8\approx 0,23\ {
m M}^3.$$
 Масса нефти в одной бочке равна $m_{
m H}=
ho_{
m H}V=860\cdot 0,23\approx 198\ {
m K}\Gamma;$ Масса воды в другой бочке равна $m_{
m B}=
ho_{
m B}V=1000\cdot 0,23=230\ {
m K}\Gamma.$

 $<u>Ответ</u>: <math>m_{\rm H} = 198 \text{ кг}, \ m_{\rm B} = 230 \text{ кг}.$

Количество движения (импульс) — это мера движения тела массы m со скоростью $\vec{\mathbf{v}}$:

$$\vec{p} = m\vec{\mathbf{v}} \,. \tag{1.18}$$

Импульс тела — векторная величина. Количество движения есть у всех движущихся тел. Чем больше скорость $\vec{\mathbf{v}}$ данного тела массой m, тем больше его количество движения или импульс \vec{p} .

Единица измерения импульса: 1 килограмм-метр в секунду: $[p] = \frac{\kappa \Gamma \cdot M}{c}$.

Импульс системы равен векторной сумме импульсов всех тел системы:

$$\vec{p} = \vec{p}_1 + \vec{p}_2 + \vec{p}_3 + \cdots. \tag{1.19}$$

Рассмотрим пример решения задачи.

Задача 1.10. Найти импульс системы двух тел. Тела с одинаковыми массами 100 г движутся перпендикулярно друг другу со скоростями $8 \frac{M}{6}$ и $6 \frac{M}{6}$.

Hайти: *p*−?

<u>Решение.</u> Так как скорости тел взаимно перпендикулярны, то и импульсы тел также перпендикулярны.

Импульс системы двух тел \vec{p} равен векторной сумме импульсов \vec{p}_1 и \vec{p}_2 :

$$\vec{p} = \vec{p}_1 + \vec{p}_2.$$

Найдём сумму векторов \vec{p}_1 и \vec{p}_2 по правилу параллелограмма. Для вектора \vec{p} получим:

Посчитаем импульсы каждого тела:

$$p_1 = m_1 v_1 = 0.1 \cdot 8 = 0.8 \frac{\kappa \Gamma \cdot M}{c}, \quad p_2 = m_2 v_2 = 0.1 \cdot 6 = 0.6 \frac{\kappa \Gamma \cdot M}{c}.$$

Величина p равна гипотенузе прямоугольного треугольника. По теореме Пифагора для p получаем:

$$p = \sqrt{p_1^2 + p_2^2} = \sqrt{0.64 + 0.36} = 1 \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}.$$

Otbet:
$$p = 1 \frac{\text{K} \cdot \text{M}}{c}$$
.

Сила — это мера механического действия одного тела на другое тело. **Единица измерения силы** 1 ньютон: [F] = 1 H.

Равнодействующая сил \vec{F} — это векторная сумма N сил, которые действуют на тело:

$$\vec{F} = \sum_{i=1}^{N} \vec{F_i} = \vec{F_1} + \vec{F_2} + \cdots \vec{F_N}. \tag{1.20}$$

Рассмотрим пример решения задачи.

Задача 1.11. Найти равнодействующую сил, действующую на тело. Направления сил показано на рисунке 1.6. Величины сил известны: $F_1 = 45 \text{ H}, F_2 = 5 \text{ H}, F_3 = 38 \text{ H}, F_4 = 8 \text{ H}.$

Рис. 1.6. Рисунок к задаче 1.11

Дано:

$$F_1 = 45 \text{ H}$$

$$F_2 = 5 \text{ H}$$

$$F_3 = 38 \text{ H}$$

$$F_4 = 8 \text{ H}$$

Решение. Равнодействующая сил \vec{F} равна векторной сумме сил, действующих на тело. Сложим попарно коллинеарные силы $\vec{F}_1 + \vec{F}_2$ и $\vec{F}_3 + \vec{F}_4$, а потом найдём направление вектора \vec{F} по правилу параллелограмма:

Для величин векторов получим:

$$|\vec{F}_1 + \vec{F}_2| = F_1 - F_2 = 45 - 5 = 40 \text{ H},$$

$$|\vec{F}_3 + \vec{F}_4| = F_3 - F_4 = 38 - 8 = 30 \text{ H}.$$

Равнодействующая сила F равна гипотенузе прямоугольного треугольника. Для F по теореме Пифагора получаем:

$$F = \sqrt{(F_1 - F_2)^2 + (F_3 - F_4)^2} = \sqrt{40^2 + 30^2} = 50 \text{ H.}$$

Otbet: $F = 50 \text{ H.}$

1.15. Силы в механике

Сила тяжести $m\vec{g}$ — это сила, с которой тело притягивается к поверхности Земли.

Весом \vec{P} называют силу давления тела на опору или подвес из-за его притяжения к Земле. Вес тела приводит к деформациям: сжимает опору или растягивает подвес.

Силой реакции опоры \vec{N} (**силой натяжения нити** \vec{T}) называют упругие силы опоры или подвеса.

На рисунке 1.7 даны тела, опора, нить (подвес) и показаны направления сил $m\vec{g}$, \vec{P} , \vec{N} и \vec{T} .

Рис. 1.7. Направления действия сил тяжести, веса, силы реакции опоры, силы натяжения нити

Силы деформации. Это силы, которые меняют форму и размер тела. Тело можно деформировать — сжать или растянуть, значит изменить форму и размер тела.

Рис. 1.8. Сжатие и растяжение пружины

Сила упругости $\vec{F}_{\text{упр}}$ возникает в упругом теле и мешает деформации, действует против силы деформации \vec{F} . Сила $\vec{F}_{\text{упр}}$ возвращает телу первоначальную форму и размер.

Сила упругости при малых смещениях по закону Гука равна:

$$\vec{F}_{ynp} = -k\vec{x} . ag{1.21}$$

Силы сопротивления. При движении твёрдого тела в газе, жидкости или по поверхности твёрдой опоры всегда возникают силы сопротивления движению. Они мешают телу двигаться.

Сила трения $\vec{F}_{\rm Tp}$ — это сила, которая действует на тело при движении по поверхности опоры. Сила трения направлена против скорости груза $\vec{\rm v}$. Из-за силы трения тело может остановиться.

Рис. 1.9. Сила трения

Напомним, что сила трения пропорциональна коэффициенту трения μ и силе реакции опоры N:

$$F_{\rm Tp} = \mu N . \tag{1.22}$$

1.16. Работа, энергия, мощность

Механическая работа — это результат действия на тело других тел, при котором тело изменяет своё положение в пространстве.

Единица работы равна 1 джоулю: [A] = 1 Дж. Один джоуль – это один ньютон, умноженный на один метр: 1 Дж = 1 H · 1 м.

Один джоуль равен одной тысяче миллиджоулей:

$$1 \, \text{Дж} = 1 \, 000 \, \text{мДж}.$$

Один килоджоуль равен одной тысяче джоулей:

$$1 кДж = 1 000 Дж.$$

Кинетическая энергия – это **энергия движения** тела массой m, которое движется со скоростью $\vec{\mathbf{v}}$:

$$E_{\rm K} = \frac{m{\rm v}^2}{2}.\tag{1.23}$$

Потенциальная энергия — это **энергия положения** тела. Она связана с местом в пространстве, где на тело действует потенциальная сила.

Сила тяжести $m\vec{g}$ — это потенциальная сила воздействия планеты Земля на окружающие предметы. Из-за действия этой силы все тела свободно движутся вниз к поверхности Земли до тех пор, пока не окажутся на твёрдой опоре.

На рисунке 1.10 показано действие сил $m\vec{g}$ и \vec{N} на тело, которое двигалось вниз и которое достигло поверхности Земли.

Рис. 1.10. Направление действия сил на тело в поле тяготения Земли

Потенциальная энергия тела в поле тяготения Земли равна:

$$E_{\Pi} = mgh. \tag{1.24}$$

Здесь h— высота тела над поверхностью Земли.

Другой **пример потенциальной силы** — это сила Гука (1.21). Потенциальная упругая сила появляется при малых деформациях тела. Эти сила быстро возвращает телу начальную форму после того, как внешнее действие на тело прекращается.

Потенциальная энергия пружины жёсткости k при малом смещении x от положения равновесия равна:

$$E_{\Pi} = \frac{kx^2}{2} \,. \tag{1.25}$$

Мощность – это скорость совершения механической работы или механическая работа за интервал времени.

Мощность измеряется в ваттах: [P] = 1 Вт. Один ватт — это отношение одного джоуля к одной секунде: 1 Вт $= \frac{1 \text{ Дж}}{1 \text{ c}}$.

Один ватт равен одной тысяче милливаттам: $1 \, \mathrm{BT} = 1 \, 000 \, \mathrm{mBt}$. Один киловатт равен одной тысяче ваттам: $1 \, \mathrm{kBt} = 1 \, 000 \, \mathrm{Bt}$. Один мегаватт равен одной тысяче киловаттам: $1 \, \mathrm{MBt} = 1 \, 000 \, \mathrm{kBt}$.

1.17. Примеры решения задач по динамике

Задача 1.12. С каким ускорением двигался при разбеге реактивный самолёт массой 60 т, если сила тяги его двигателей равна 90 кН?

Дано:

$$m = 60 \text{ т} =$$

= $60 \cdot 10^3 \text{ кг}$
 $F = 90 \text{ кH} =$
= $90 \cdot 10^3 \text{H}$

Найти: *а*−?

Решение. Будем полагать, что трение отсутствует. Поэтому равнодействующая сил \vec{F} , действующих на самолёт, равна силе тяги его двигателей.

По второму закону Ньютона самолёт из-за действия силы тяги движется относительно ИСО неравномерно с ускорением ($\vec{a} \neq 0$):

$$\vec{a} = \frac{\vec{F}}{m} \implies a = \frac{F}{m} = \frac{90 \cdot 10^3}{60 \cdot 10^3} = 1,5 \frac{M}{c^2}.$$

$$\underline{\text{Otbet:}}\ a = 1.5\ \tfrac{\text{M}}{\text{c}^2}.$$

Задача 1.13. Квадроцикл массой 400 кг движется по пересеченной местности со скоростью $36\frac{\kappa_M}{4}$. Найдите его кинетическую энергию.

Дано:

$$m = 400 \text{ кг}$$
$$v = 36 \frac{\text{км}}{\text{ч}} = 10 \frac{\text{м}}{\text{c}}$$

<u>Найти</u>: *E*_к-?

Решение. Кинетическая энергия квадроцикла по формуле (1.23) равна:

$$m=400$$
 кг $v=36rac{ ext{KM}}{ ext{q}}=10rac{ ext{M}}{ ext{c}}$ $E_{ ext{K}}=rac{m ext{v}^2}{2}=rac{400\cdot 10^2}{2}=20\ 000\ ext{Дж}=20\ ext{кДж}.$

Задача 1.14. На рисунке 1.11 показано движение мяча массой 100 г в гравитационном поле Земли. Найти потенциальную энергию мяча на высоте 5 м от поверхности Земли.

Рис. 1.11. Движение мяча к поверхности Земли

Дано:

$$m=100$$
 г = 0,1 кг $h=5$ м $g=10$ $\frac{\mathrm{M}}{\mathrm{c}^2}$

Найти: E_{Π} —?

Решение. Потенциальная энергия мяча в поле тяготения Земли равна:

$$E_{\Pi}=mgh$$
.

Сделаем расчёты:

$$E_{\Pi}=0.1\cdot 10\cdot 5=5$$
 Дж.

Задача 1.15. Найти потенциальную энергию пружины жёсткости $40\frac{\kappa H}{M}$, если она растянута на 0,5 см.

Дано:

<u>Найти:</u> E_{Π} —?

Решение. Потенциальная энергия пружины

$$k = 40 \cdot 10^3 \frac{\text{H}}{\text{M}}$$
 по формуле (1.25) равна:
$$E_{\Pi} = \frac{kx^2}{2} = 40 \cdot 10^3 \cdot \frac{0.25 \cdot 10^{-4}}{2} = 2 \cdot 0.25 = 0.5 \text{ Дж}.$$

<u>Ответ</u>: $E_{\Pi} = 0,5$ Дж.

1.18. Задачи, вопросы и задания для самостоятельной подготовки по динамике

Решить задачи.

- **М-16.** Найти объём тела массой 400 г и плотности $800 \frac{\kappa \Gamma}{M^3}$.
- М-17. Шар массой 2 кг движется со скоростью 3 м/с. Найти импульс.
- **М-18.** Груз массой 40 кг движется под действием силы 20 Н. Найти ускорение груза. При решении задачи вспомните II закон Ньютона.
- **М-19.** Тело массой 5 кг движется со скоростью 2 м/с. Найти кинетическую энергию тела.
- **М-20.** Груз движется под действием силы 100 Н горизонтально. Сила образует угол 30° с направлением движения тела. Найти работу силы по перемещению груза на расстояние 50 м. При решении задачи вспомните формулу для механической работы.
- **М-21.** Мощность силы равна 1,2 кВт. Найти работу силы за 20 с. При решении задачи вспомните формулу для механической мощности.

Выполнить задания и ответить на вопросы.

- М-22. Напишите формулу для импульса.
- **М-23.** В какую сторону направлена сила трения при движении тела по поверхности?
- М-24. Напишите формулу для кинетической энергии.
- **M-25.** Чему равна потенциальная энергия тела в поле тяготения Земли? Напишите формулу для потенциальной энергии пружины.

ГЛАВА 2. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

2.1. Словарь. Электричество

Таблица 2.1

Словарь по электричеству

батарея	внешний участок цепи		
бумага	внутренний участок цепи		
выделяться	замкнутая система		
лист, листочки	замкнутая цепь		
Mex	заряжать, заряд		
напряжение	заряженное тело		
отрицательный	изолированная система		
отталкивать, отталкивание	источник тока		
палка, палочка	напряжение цепи		
параллельный	одноимённые заряды		
положительный	отрицательный заряд		
последовательный	отталкивать заряд		
притягивать, притяжение	параллельное соединение		
распределяться	положительный заряд		
резистор	последовательное соединение		
соединять, соединение	постоянный ток		
сообщать	притягивать заряд		
сопротивляться, сопротивление	разноимённые заряды		
стекло, стеклянный	сообщать электрический заряд		
ток	сопротивление цепи		
цепь	стеклянная палочка, янтарная палочка		
шёлк, шерсть, эбонит	электризация трением		
электризоваться	электрическая цепь		
электричество	электрический заряд		
янтарь, янтарный	электродвижущая сила		

2.2. Величины электричества

Таблица 2.2 Основные величины электричества

		Единица измерения		
Название величины	Обозна- чение	Название единицы	Обозна- чение единицы	Пример
Электрический заряд	q,Q	1 кулон	1 Кл	q = 32 мкКл
Напряженность электрического поля	E	1 вольт на метр	$1\frac{B}{M}$	$E = 0.8 \frac{B}{M}$
Потенциал электрического поля	φ	1 вольт	1 B	$arphi=10~\mathrm{B}$
Напряжение	U	1 вольт	1 B	U = 90 B
Электрическая ёмкость	С	1 фарад	1Ф	<i>C</i> = 12 мкФ
Сила тока (ток)	I	1 ампер	1 A	I = 1 A
Электродвижущая сила	ε	1 вольт	1 B	$\mathcal{E} = 6 \mathrm{B}$
Электрическое сопротивление	r,R	1 ом	1 Ом	R = 100 Ом
Удельное сопротивление	ρ	1 ом-метр	1 Ом·м	$ ho = 1,1 \cdot 10^{-6} \mathrm{Om} \cdot \mathrm{m}$

2.3. Электрические заряды

Электричество изучает электрические явления: взаимодействие электрических зарядов и заряженных тел.

В природе существуют два вида электрических зарядов:

- со знаком «+» или положительные заряды;
- со знаком «—» или отрицательные заряды.

Получить электрический заряд можно при электризации.

Электризация трением – это выделение электрических зарядов на поверхности тела при трении о поверхность другого тела.

Потрём стеклянную палочку о лист бумаги. На палочке появятся электрические заряды. Заряженная стеклянная палочка притягивает листочки бумаги – рис.2.1.

Рис.2.1. Электризация стекла трением о бумагу

Потрём янтарную палочку о шерсть. Янтарная палочка наэлектризовалась — на ней появились электрические заряды. Заряженная янтарная палочка притягивает кусочки меха — рис.2.2.

Рис.2.2. Электризация янтаря трением о мех

Положительный электрический заряд со знаком «+» получают на стекле при электризации трением о бумагу. **Отрицательный** электрический заряд со знаком «-» получают на янтаре при электризации трением о мех.

Рис.2.3. Знаки зарядов, которые выделились на стекле и янтаре

Электрически замкнутой (изолированной) системой называют набор электрических зарядов или заряженных тел в пространстве, через границу которого не проникают электрические заряды.

Рис. 2.4. Электрически замкнутая система

Например, при взаимном трении первоначально нейтральных тел, заряды распределяются между ними так: на одном теле выделяется положительный заряд, а на другом теле — такой же отрицательный заряд.

Закон сохранения электрического заряда

При любых взаимодействиях тел электрически замкнутой системы её заряд не изменяется: Q = const. Величина Q определяется

как алгебраическая сумма электрических зарядов всех тел системы с учётом знаков заряда:

$$Q = q_1 + q_2 + q_3 + \dots + q_n = const$$
 (2.1)

2.4. Взаимодействия зарядов

Одноименные заряды – заряды одного знака (положительные или отрицательные). Одноименные заряды отталкиваются друг от друга.

Разноименные заряды – заряды разного знака: положительный и отрицательный заряды. Разноименные заряды притягиваются друг к другу.

Рис. 2.5. Взаимодействие зарядов

Элементарный электрический заряд — это постоянная физическая величина, которая равна заряду электрона:

$$e = 1.6 \cdot 10^{-19} \, \text{Kл}$$
.

Электрический заряд электрона отрицателен и равен:

$$q_e = -e = -1$$
,6 · 10^{-19} Кл .

Положительный или отрицательный электрический заряд равен целому числу элементарных зарядов e:

$$Q = \pm Ne. (2.2)$$

2.5. Примеры решения задач по нахождению величины заряда

Задача 2.1. При трении о шерсть янтарной палочке сообщили электрический заряд $-4.8 \cdot 10^{-13}$ Кл. Какое число электронов перешло с шерсти на янтарь?

Дано:

$$Q = -4.8 \cdot 10^{-13}$$
 Кл $e = 1.6 \cdot 10^{-19}$ Кл $q_e = -e$

<u>Найти:</u> *N*—?

<u>Решение.</u> Отрицательный заряд, который получила янтарная палочка, равен целому числу элементарных зарядов электрона:

$$Q = -Ne = Nq_e$$

Тогда число электронов N, которое выделилось на янтарной палочке равно:

$$N = \frac{Q}{q_e} = \frac{-4.8 \cdot 10^{-13}}{-1.6 \cdot 10^{-19}} = 3 \cdot 10^6.$$

Ответ: $N = 3 \cdot 10^6$.

Задача 2.2. Стекло, натёртое о шёлк, получило заряд $+8 \cdot 10^{-12}$ Кл. Сколько электронов осталось на шёлке?

Дано:

$$q_1 = +8 \cdot 10^{-12}$$
 Кл $e = 1.6 \cdot 10^{-19}$ Кл $q_e = -e$

<u>Найти:</u> *N* –?

Решение. Стекло и шёлк — это тела электрически замкнутой системы. Первоначально система была нейтральна, её заряд равен нулю Q=0.

При электризации на стекло перешёл положительный заряд q_1 , отрицательный заряд q_2 остался на шёлке:

$$Q = q_1 + q_2 = 0$$
, $q_2 = -q_1 = -8 \cdot 10^{-12}$ Кл.

Отрицательный заряд шёлка равен $q_2 = -Ne = Nq_e$. Посчитаем число электронов, которое выделилось на шёлке после электризации:

$$N = \frac{q_2}{q_e} = \frac{-8 \cdot 10^{-12}}{-1.6 \cdot 10^{-19}} = 5 \cdot 10^7.$$
Other: $N = 5 \cdot 10^7$.

2.6. Задачи, вопросы и задания для самостоятельной подготовки по нахождению величины заряда

Решить задачи.

ЭМ-1. Посчитать электрический заряд +2e; -3e; +10e; -20e.

ЭМ-2. Система состоит из двух зарядов +4e и -2e. Найти электрический заряд системы.

ЭМ-3. Система состоит из трех зарядов +3e, -3e и +5e. Найти электрический заряд системы.

ЭМ-4. При трении о шерсть эбонитовой палочке сообщили электрический заряд $-9.6 \cdot 10^{-14}$ Кл. Какое число электронов перешло с шерсти на эбонит?

ЭМ-5. Стекло, натёртое о шёлк, получило заряд $+16 \cdot 10^{-13}$ Кл. Сколько электронов осталось на шёлке?

Выполнить задания и ответить на вопросы.

ЭМ-6. Какие заряды называют одноимёнными и разноимёнными?

ЭМ-7. Покажите на рисунке взаимодействия одноимённых зарядов.

ЭМ-8. Покажите на рисунке взаимодействия разноимённых зарядов.

ЭМ-9. Напишите, чему равен элементарный электрический заряд.

2.7. Электрическое сопротивление. Соединения резисторов

Электрическим током называют упорядоченное движение заряженных частиц.

Электрическим сопротивлением называют способность вещества не пропускать электрический ток.

 R_1 , R_2 — электрические сопротивления двух резисторов.

При **параллельном соединении резисторов** обратная величина от общего сопротивления R схемы равна сумме обратных сопротивлений:

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \,. \tag{2.3}$$

Рис. 2.6. Параллельное соединение резисторов

Если в цепь соединены параллельно n резисторов с одинаковым сопротивлением R_1 , то общее сопротивление цепи равно:

$$R = \frac{R_1}{n}. (2.4)$$

При последовательном соединении резисторов общее сопротивление R схемы равно сумме сопротивлений:

$$R = R_1 + R_2. (2.5)$$

$$R = R_1 + R_2$$

$$+ \stackrel{A}{\circ} + \stackrel{R_1}{\circ} \stackrel{I}{\longrightarrow} \stackrel{R_2}{\longrightarrow} \stackrel{B}{\circ} -$$

Рис. 2.7. Последовательное соединение резисторов

Если в цепь соединены последовательно n резисторов с одинаковым сопротивлением R_1 , то общее сопротивление цепи равно:

$$R = nR_1. (2.6)$$

2.8. Напряжение на участке цепи. Работа и мощность тока

Рассмотрим замкнутую цепь постоянного тока. Она имеет:

- внутренний участок цепи источник тока (батарея) с малым электрическим сопротивлением r и ЭДС \mathcal{E} (ЭДС электродвижущая сила);
- **внешний участок** цепи резистор (нагрузка) с электрическим сопротивлением *R*.

Рис. 2.8. Замкнутая цепь постоянного тока

Напряжение на внешнем участке цепи равно:

$$U = IR. (2.7)$$

Работа тока A на участке цепи за интервал времени Δt равна:

$$A = I \cdot \Delta t \cdot U \,. \tag{2.8}$$

Мощность тока на участке цепи равна:

$$P = \frac{A}{t} = I \cdot U \,. \tag{2.9}$$

2.9. Примеры решения задач по электричеству

Задача 2.3. Найти сопротивление цепи на рисунке, если $R_1 = 12$ Ом, $R_2 = 20$ Ом, $R_3 = 30$ Ом.

Дано:

<u>Решение.</u> На рис. 2.9 резисторы с сопротивлениями R_2 и R_3 соединены параллельно между точками C и D:

$$R_1 = 12 \text{ OM}$$

 $R_2 = 20 \text{ OM}$
 $R_3 = 30 \text{ OM}$

Найти:

 R_{AB} -?

Сопротивление параллельного соединения R_{CD} равно:

$$\frac{1}{R_{CD}} = \frac{1}{R_2} + \frac{1}{R_3} \quad \Rightarrow \quad R_{CD} = \frac{R_2 R_3}{R_2 + R_3} = \frac{20 \cdot 30}{20 + 30} = 12 \text{ Om.}$$

В схеме на рис. 2.10 резисторы с сопротивлениями R_1 и R_{CD}

соединены последовательно:

$$R_1$$
 C R_{CD} D O Puc. 2.10

Поэтому общее сопротивление цепи R_{AB} равно:

$$R_{AB} = R_1 + R_{CD} = 12 + 12 = 24 \text{ Om}.$$

<u>Ответ:</u> $R_{AB} = 24 \text{ Ом.}$

Задача 2.4. Найти сопротивление цепи на рисунке, если $R_1=12~\mathrm{Om},$ $R_2=18~\mathrm{Om},$ $R_3=5~\mathrm{Om},$ $R_4=10~\mathrm{Om}.$

Дано:

$$R_1 = 12 \text{ Om}$$

$$R_2 = 18 \ {\rm Om}$$

$$R_3 = 5 \text{ Om}$$

$$R_4 = 10 \; \text{Om}$$

Найти:

$$R_{AB}-?$$

Решение. На рис. 2.11 резисторы с сопротивлениями R_1 и R_2 соединены последовательно между точками C и D. Резисторы с сопротивлениями R_3 и R_4 также соединены последовательно.

 $R_I = R_1 + R_2 = 30 \text{ Om}, \ R_{II} = R_3 + R_4 = 15 \text{ Om}.$

На рис. 2.12 резисторы R_I и R_{II} соединены параллельно,

1 MC. 2.12

Поэтому общее сопротивление цепи R_{AB} равно:

$$\frac{1}{R_{AB}} = \frac{1}{R_I} + \frac{1}{R_{II}}$$
 \Rightarrow $R_{AB} = \frac{R_I R_{II}}{R_I + R_{II}} = \frac{30 \cdot 15}{30 + 15} = 10$ Ом.
Ответ: $R_{AB} = 10$ Ом.

2.10. Задачи, вопросы и задания для самостоятельной подготовки по электричеству

Решить задачи.

ЭМ-10. Цепь имеет два резистора с сопротивлениями 4 Ом и 5 Ом. Найти сопротивление последовательного и параллельного соединения этих резисторов.

ЭМ-11. Электрическая цепь содержит 5 резисторов с одинаковыми сопротивлениями 20 Ом. Найти сопротивление последовательного и параллельного соединения этих резисторов.

ЭМ-12. Через резистор с сопротивлением 50 Ом идёт ток 2,5 А. Найти напряжение на резисторе.

ЭМ-13. Два резистора с сопротивлением 15 Ом и 25 Ом соединены последовательно. Через цепь идёт ток 1,5 А. Найти напряжение цепи.

ЭМ-14. Электрический двигатель находится 50 с под напряжением 220 В при силе тока 2 А. Найти работу, которую совершает ток.

ЭМ-15. Через резистор с сопротивлением 70 Ом идёт ток 0,5 А. Найти: 1) напряжение на резисторе; 2) мощность тока.

Выполнить задания и ответить на вопросы.

ЭМ-16. Чему равно сопротивление последовательного соединения резисторов?

ЭМ-17. Чему равно сопротивление параллельного соединения резисторов?

ЭМ-18. Нарисуйте замкнутую цепь.

ЭМ-19. Напишите, чему равно напряжение на участке цепи.

ЭМ-20. Чему равна работа тока и мощность тока на участке цепи?

2.11. Словарь. Магнетизм

Таблица 2.3

Словарь по магнетизму

естественный	изгибаться	естественный магнит	
магнит	катушка	магнитная ось	
ОСЬ	магнитное поле	магнитные полюса	
поле	провод	направлять, направление	
полюс	проводник	полосовой магнит	
порода	северный	постоянный магнит	
постоянный	трансформатор	северный полюс	
противоположный	южный	южный полюс	

2.12. Основные величины магнетизма

Таблица 2.4 Основные величины магнетизма

Название величины	Обозна- чение	Единица измерения		
		Название единицы	Обозна- чение единицы	Пример
Напряжённость магнитного поля	Н	ампер на метр	$1\frac{A}{M}$	$H = 0.25 \frac{A}{M}$
Индукция магнитного поля	В	тесла	1 Тл	B = 0,3 Тл
Поток индукции магнитного поля	Φ	вебер	1 Вб	Ф = 1,5 мВб
Потокосцепление	Ψ	вебер	1 Вб	Ψ = 10 Вб
Индуктивность	L	генри	1 Гн	L=0,1 Гн

Магнитная проницаемость вакуума:

$$\mu_0 = 4\pi \cdot 10^{-7} \frac{\Gamma_{\rm H}}{\rm m}$$

2.13. Источники магнитного поля

К **источникам** магнитного поля относятся физические тела, которые создают магнитное поле в пространстве вокруг себя:

• естественные магниты – природные ископаемые: магнитный железняк (железная руда), породы с такими металлами, как никель и кобальт;

- планета Земля как космический объект;
- постоянные магниты физические тела правильной формы из сплавов железа, никеля и кобальта;
- проводники с токами: провода, катушки, трансформаторы и т.п.

Магнитное поле — это особый вид материи, который создают в окружающем пространстве движущиеся заряды, электрические токи, постоянные магниты и электромагниты (катушки и соленоиды).

Каждый естественный и постоянный магнит имеет два полюса – северный **N** и южный **S**. Магнитные полюса расположены вдоль прямой линии – магнитной оси. На полюсах действие магнитного поля наиболее максимально.

Естественные и постоянные магниты, а также электрические токи оказывают магнитные действие на другие магниты и токи. В их магнитных полях другие магниты испытывают силы притяжения или отталкивания, а также подвергаются механическим деформациям.

Рассмотрим на рис. 2.13 примеры магнитных взаимодействий.

Пример 2.1. Магнитные стрелки притягиваются полюсами N и S.

Пример 2.2. Магнитная стрелка устанавливается перпендикулярно направлению тока в проводе.

Рис. 2.13. Магнитные взаимодействия

Пример 2.3. На рис. 2.14 два прямых провода с противоположными токами деформируются — изгибаются друг от друга в противоположные стороны; два прямых провода с одинаково направленными токами изгибаются друг к другу навстречу.

Рис. 2.14. Магнитные взаимодействия токов

2.14. Линии индукции и напряжённости

Магнитное поле характеризуют два вектора: **вектор индукции** магнитного поля \vec{B} и **вектор напряженности** магнитного поля \vec{H} .

Напряжённость магнитного поля \vec{H} используется для описания магнитных полей электрических токов в вакууме.

Линии напряжённости \vec{H} провода с током — это концентрические окружности. Вектор напряжённости циркулирует по окружности вокруг провода с током в зависимости от направления тока: по часовой стрелке или против часовой стрелки.

Рис. 2.15. Линии напряжённости магнитных полей прямых проводов с токами

Вектор индукции магнитного поля \vec{B} показывает направление силы действия магнитного поля. Линии индукции вектора \vec{B} выходят из северного магнитного полюса N и входят в южный магнитный полюс S.

Рис. 2.16. Линии индукции магнитного поля полосового магнита

2.15. Задачи, вопросы и задания для самостоятельной подготовки по магнетизму

- **ЭМ-21.** Нарисуйте, как устанавливаются две магнитные стрелки, если их поместить близко друг к другу.
- ЭМ-22. Нарисуйте, как взаимодействуют два параллельных провода с противоположными токами и токами одинакового направления.
- ЭМ-23. Нарисуйте линии напряжённости магнитного поля прямого провода с током.
- ЭМ-24. Нарисуйте линии индукции магнитного поля полосового магнита.
- ЭМ-25. Какие источники магнитного поля вы знаете?
- ЭМ-26. Как называются два полюса магнита?
- ЭМ-27. Нарисуйте стрелку компаса. Покажите магнитные полюса.
- ЭМ-28. Каковы единицы измерения напряжённости и индукции магнитного поля?
- **ЭМ-29.** Какое имеет обозначение индуктивность? Какова единица измерения индуктивности?
- ЭМ-30. Напишите, чему равна магнитная проницаемость вакуума.
- ЭМ-31. Каковы единицы измерения потока и потокосцепления?

ЗАКЛЮЧЕНИЕ

Цель данного пособия — овладение минимальными сведениями по двум разделам физики, развитие навыков работы с простыми текстами и решения элементарных физических задач на начальном этапе изучения физики иностранными слушателями на русском языке.

Материалы пособия — тематические тексты, условия задач, примеры, вопросы и задания для самостоятельной подготовки — составлены из грамматических конструкций, которые соответствуют элементарному уровню владения русским языком на продвинутом этапе, когда слушатели уже приступили к изучению русского языка как иностранного на базовом уровне.

При работе с учебным пособием следует ориентировать слушателей на использование словарей родного языка для понимания смысла физических величин и терминов.

Рекомендуется следующий план занятия по физике с использованием данного пособия:

- 1) отработка активной лексики по изучаемой теме;
- 2) заучивание названий, обозначений и единиц измерения физических величин;
- 3) чтение, перевод и анализ текста и примеров из текста;
- 4) отработка решения задач;
- 5) отработка ответов на вопросы по теме занятия.

На занятии важно развивать навыки расчётов, устную и письменную русскую речь слушателей, а также организовывать внеаудиторную учебную деятельность, ориентируя слушателей на ритмичность самостоятельной работы с материалами данного пособия

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- **1.** Аросева, Т. Е. Пособие по научному стилю речи. Основной курс. (Технический профиль) / Аросева Т. Е., Рогова Л. Г., Сафьянова Н. Ф. Москва: Рус. яз., 2023. 8-е издание. 312 с.
- **2.** Ефремова, О.Н. Физика. Вводный курс для иностранных слушателей подготовительных отделений. Рабочая тетрадь: учебное пособие / Ефремова О.Н., Глазырина Е.Д. Томск: Изд-во Томского политехнического университета, 2021. 77 с.
- **3.** Зыкова, А.П. Физика: учебное пособие. В 2 частях. Часть 1 / Зыкова А.П., Черкасова Т.В., Королькова Я.В. Томск: Изд-во Томского политехнического университета, 2020. 179 с.

Учебное издание

НОВИКОВА Татьяна Анатольевна

ФИЗИКА. НАЧАЛЬНЫЙ ЭТАП. ЧАСТЬ І

Учебное пособие

ЛР № 020640 от 22.10.97

Подписано в печать 24.12.2023. Формат 60×84/8. Усл. печ. л. 6,51. Тираж 80 экз. Заказ 577. ЭИ № 1898. Ульяновский государственный технический университет 432027, Ульяновская область, г. Ульяновск, ул. Сев. Венец, 32. ИПК «Венец» УлГТУ, 432027, Ульяновская область, г. Ульяновск, ул. Сев. Венец, 32.