

INNOVATION. AUTOMATION. ANALYTICS

SQL PROJECT ON

ENERGY CONSUMPTION ANALYSIS

INTRODUCTION

- Energy is a key factor that drives Economic growth, Industrialization, and Human lifestyle.
- We have collected the data of World Wide Energy Consumption which is provided by the U.S. Energy Information Administration (EIA) which elaborates about worldwide data on energy consumption, production, emissions, and renewable energy usage.

OBJECTIVES

- ➤ Through MYSQL we have created new data base which include tables of Country, Production, Consumption, Emission, GDP and Population.
- > In this project we have stored, managed, and analyzed global energy data.
- > To derive global insights and patterns connecting economy, energy, and environment we have done some queries.

TABLES

Country Table

```
-- 1. country table

CREATE TABLE country (

    CID VARCHAR(10) PRIMARY KEY,

    Country VARCHAR(100) UNIQUE

);

DESC country;
```

	Field	Type	Null	Key	Default	Extra
þ	CID varchar(10)		NO	PRI	NULL	
	Country	varchar(100)	YES	UNI	NULL	

Consumption Table

```
CREATE TABLE consumption (
    country VARCHAR(100),
    energy VARCHAR(50),
    year INT,
    consumption INT,
    FOREIGN KEY (country) REFERENCES country(Country)
);

DESC consumption;
```

	Field	Туре	Null	Key	Default	Extra	
١	country	varchar(100)	YES	MUL	NULL		-
	energy	varchar(50)	YES		NULL		
	year	int	YES		NULL		08721
	consumption	int	YES		NULL		

GDP Table

```
CREATE TABLE gdp_3 (
    Country VARCHAR(100),
    year INT,
    Value DOUBLE,
    FOREIGN KEY (Country) REFERENCES country(Country)
);
DESC gdp_3;
```

	Field	Type	Null	Key	Default	Extra
•	Country	varchar(100)	YES	MUL	NULL	
	year	int	YES		NULL	
	Value	double	YES		NULL	

Population Table

```
CREATE TABLE population (
    countries VARCHAR(100),
    year INT,
    Value DOUBLE,
    FOREIGN KEY (countries) REFERENCES country(Country)
);
DESC population;
```


Production Table

	Field	Type	Null	Key	Default	Extra
•	country	varchar(100)	YES	MUL	HULL	
	energy	varchar(50)	YES		HULL	
	year	int	YES		NULL	
	production	int	YES		NULL	

Emission Table

```
CREATE TABLE emission_3 (
    country VARCHAR(100),
    energy_type VARCHAR(50),
    year INT,
    emission INT,
    per_capita_emission DOUBLE,
    FOREIGN KEY (country) REFERENCES country(Country)
);

DESC emission_3;

Field Type Null Key Default Extra
```

DE	SC emission_3;					
	Field	Туре	Null	Key	Default	Extra
•	country	varchar(100)	YES	MUL	NULL	
	energy_type	varchar(50)	YES		NULL	
	year	int	YES		NULL	
	emission	int	YES		NULL	
	per_capita_emission	double	YES		NULL	

ER DIAGRAM

1. What is the total emission per country for the most recent year available?

```
select country,
max(year) max_year,
sum(per_capita_emission) as tot
from emission_3
group by country
order by max_year desc;
```

	country	max_year	tot
•	Afghanistan	2023	0.092639248
	Albania	2023	0.11401753599999999
	Algeria	2023	0.11401753599999999
	American Samoa	2023	0.11401753599999999
	Angola	2023	0.11401753599999999
	Antarctica	2023	0.11401753599999999
	Antigua and Barbuda	2023	0.11401753599999999
	Argentina	2023	0.11401753599999999
	Armenia	2023	0.11401753599999999
	Aruba	2023	0.11401753599999999
	Australia	2023	0.11401753599999999
	Austria	2023	0.11401753599999999
	Azerbaijan	2023	0.11401753599999999
	Bahrain	2023	0.1140175359999999

2. What are the top 5 countries by GDP in the most recent year?

value as gdp from gdp_3
where year =(select max(year) from gdp_3)

order by gdp desc limit 5;

	country	gdp
•	China	28673.24
	United States	22679.47
	India	11660.21
	Japan	5179.704
	Germany	4463.949

3. Compare energy production and consumption by country and year.

select a.country, a.year, a.production, b.consumption

from production as a

inner join consumption as b

on a.country=b.country and a.year= b.year;

	country	year	production	consumption
•	Afghanistan	2020	0	0
	Afghanistan	2020	0	0
	Afghanistan	2020	0	0
	Afghanistan	2020	0	0
	Afghanistan	2020	0	0
	Afghanistan	2020	0	0
	Albania	2020	0	0
	Albania	2020	0	0
	Albania	2020	0	0
	Albania	2020	0	0
	Albania	2020	0	0
	Albania	2020	0	0
	Algeria	2020	0	0

4. Which energy types contribute most to emissions across all countries?

select energy_type,
sum(per_capita_emission) as tot_emission
from emission_3
group by energy_type
order by tot_emission desc;

	energy_type	tot_emission
١	Coal and coke (MMtonnes CO2)	6.349351536000086
	CO2 emissions (MMtonnes CO2)	6.349351536000086
	Consumed natural gas (MMtonnes CO2)	6.192577424000078
	Petroleum and other liquids (MMtonnes CO2)	6.156946944000076


```
select year,
sum(per_capita_emission) as tot_emission
from emission_3
group by year
order by tot_emission;
```

	year	tot_emission
•	2023	6.249586192000081
	2021	6.263838384000081
	2022	6.263838384000081
	2020	6.270964480000082

select country, year,
sum(value) as tot_gdp
from gdp_3
group by country, year
order by country, year;

	country	year	tot_gdp
-	Afghanistan	2020	83.21645
	Afghanistan	2021	65.95827
	Afghanistan	2022	61.84236
	Afghanistan	2023	58.90645
	Afghanistan	2024	57.83112
	Albania	2020	36.78752
	Albania	2021	40.04762
	Albania	2022	41.99279
	Albania	2023	43.63172
	Albania	2024	45.2091
	Algeria	2020	531.9749
	Algeria	2021	552.5308
	Algeria	2022	572.6695
	Algeria	2023	596.0418
	Algeria	2024	615.7547

select a.countries, a.year, a.value, b.per_capita_emission,
(a.value * b.per_capita_emission) as tot_emission
from population as a
inner join emission_3 as b
on a.countries=b.country and a.year= b.year
order by a.countries, a.year;

	countries	year	value	per_capita_emission	tot_emission
•	Afghanistan	2020	39068.98	0.007126096	278.40930210208
	Afghanistan	2020	39068.98	0.007126096	278.40930210208
	Afghanistan	2020	39068.98	0.007126096	278.40930210208
	Afghanistan	2020	39068.98	0.007126096	278.40930210208
	Afghanistan	2021	40000.41	0.007126096	285.0467616993600
	Afghanistan	2021	40000.41	0.007126096	285.0467616993600
	Afghanistan	2021	40000.41	0.007126096	285.0467616993600
	Afghanistan	2022	40578.84	0.007126096	289.16870940864
	Afghanistan	2022	40578.84	0.007126096	289.16870940864
	Afghanistan	2022	40578.84	0.007126096	289.16870940864
	Afghanistan	2023	41454.76	0.007126096	295.41059941696
	Afghanistan	2023	41454.76	0.007126096	295.41059941696
	Afghanistan	2023	41454.76	0.007126096	295.41059941696
	Albania	2020	2871.954	0.007126096	20.46581991158400
	Albania	2020	2871.954	0.007126096	20.46581991158400

select a.country, a.year,
sum(a.consumption) as tot_consumption
from consumption as a
inner join
gdp_3 as b
on a.country= b.country and a.year = b.year
group by a.country, a.year
order by tot_consumption desc;

	country	year	tot_consumption
•	China	2023	177
	China	2022	168
	China	2021	165
	China	2020	156
	United States	2021	112
	United States	2022	112
	United States	2023	111
	United States	2020	106
	India	2023	38
	Russia	2021	36
	India	2022	36
	Russia	2022	36
	Russia	2023	35
	Russia	2020	33
		100	

9. What is the emission-to-GDP ratio for each country by year?

select a.country, a.year, (a.per_capita_emission/ b.value) as gdp_ratio
from emission_3 as a
inner join gdp_3 as b
on a.country = b.country and a.year = b.year
order by a.country, b.country;

	country	year	gdp_ratio
-	Afghanistan	2020	0.00008563326121217621
	Afghanistan	2021	0.00010803946192039301
	Afghanistan	2021	0.00010803946192039301
	Afghanistan	2023	0.00012097310226639019
	Afghanistan	2021	0.00010803946192039301
	Afghanistan	2023	0.00012097310226639019
	Afghanistan	2023	0.00012097310226639019
	Afghanistan	2022	0.00011523001386104929
	Afghanistan	2022	0.00011523001386104929
	Afghanistan	2022	0.00011523001386104929
	Albania	2020	0.00019370960586633727

10. What is the energy consumption per capita for each country over the last decade?

```
select a.country, a.year,
(a.consumption/b.value) as consump_pp
from consumption as a
inner join population as b
on a.country=b.countries and a.year=b.year
where a.year >=(select max(year) from consumption) -9
order by consump_pp desc;
```

	country	year	consump_pp
-	Qatar	2020	0.0007134257814241762
	Qatar	2021	0.0007104841167723275
	Qatar	2022	0.0006914541453540332
	Bahrain	2020	0.0006792536903852999
	Trinidad and Tobago	2020	0.0006752085043861545
	Trinidad and Tobago	2021	0.0006721708496978928
	Qatar	2023	0.0006713477507500633
	Trinidad and Tobago	2022	0.0006684844988471985
	Trinidad and Tobago	2023	0.0006653660977342954
	Bahrain	2021	0.0006647322956862198
	Bahrain	2022	0.0006421856918459114
	Bahrain	2023	0.0006273726449215125
	Singapore	2021	0.0005452088049768114
	Singapore	2020	0.0005315970664347485
	Singapore	2022	0.0005283388638671517
	Singapore	2023	0.0005065461807177793
	Qatar	2023	0.0003356738753750316

11. How does energy production per capita vary across countries?

```
select a.country, a.year,
(a.production/b.value) as prod_pc
from production as a
inner join
gdp_3 as b
on a.country=b.country and a.year=b.year
order by prod_pc desc;
```

	country	year	prod_pc
▶	Congo-Brazzaville	2020	0.055598366297604715
	Congo-Brazzaville	2021	0.05477489162787691
	Congo-Brazzaville	2022	0.053832844710546175
	Congo-Brazzaville	2023	0.05275522052473508
	Mongolia	2023	0.04711173277659828
	Libya	2023	0.04273104354763379
	Libya	2021	0.04137519565295644
	Turkmenistan	2020	0.03197500322148158
	Kuwait	2020	0.031865248238250085
	Libya	2022	0.0313805036696361
	Kuwait	2021	0.03116076983720575
	Trinidad and Tob	2021	0.031130662550778003
	Trinidad and Tob	2020	0.030807716716883243
	Trinidad and Tob	2022	0.030675985212948086
	Turkmenistan	2021	0.030563100679539983
	Kuwait	2023	0.030548171666468952
	Turkmenistan	2022	0.030074666374207245

12. Which countries have the highest energy consumption relative to GDP?

```
select a.country, a.year,
  (a.consumption/ b.value) as energy_consump
from consumption as a
inner join
gdp_3 as b
on a.country=b.country and a.year = b.year
order by energy_consump desc limit 10;
```

	country	year	energy consump
•	Trinidad and Tobago	2021	0.031130662550778003
	Trinidad and Tobago	2020	0.030807716716883243
	Trinidad and Tobago	2022	0.030675985212948086
	Trinidad and Tobago	2023	0.029815403889896484
	North Korea	2022	0.027212009857278452
	North Korea	2021	0.027170679141993424
	North Korea	2020	0.02715563464483281
	North Korea	2023	0.02640516400511415
	Turkmenistan	2020	0.02131666881432105
	Turkmenistan	2021	0.020375400453026656

0000

0000

13. What is the correlation between GDP growth and energy production growth?

```
with gdp_growth AS (
    select country, year, value AS gdp,
    (value - lag(value, 1) over (partition BY country order by year)) /
    lag(value, 1) over (partition BY country order by year) as gdp_growth_rate
    from gdp_3

Production_Growth as (
    select country, year, production,
    (production - lag(production, 1) over (partition by country order by year)) /
    lag(production, 1) over (partition by country order by year) as production_growth_rate
    from production
)
```

select g.country, g.year, g.gdp_growth_rate, p.production_growth_rate
from gdp_growth as g
inner join
Production_Growth as p on g.country = p.country and g.year = p.year
where
g.gdp_growth_rate is not null and p.production_growth_rate is not null
order by g.country, g.year;

14. What is the global share (%) of emissions by country?

```
with CountryEmissions AS (
    select country,
    sum(per_capita_emission) AS country_total_emissions
    from emission 3
    group by country
GlobalEmissions as (
    select
    sum(country_total_emissions) AS global_total
    from CountryEmissions
                        000
             0000
```

```
select c.country,
(c.country_total_emissions / g.global_total) * 100 as global_share_percentage
from CountryEmissions as c
cross JOIN
GlobalEmissions as g
order by global_share_percentage desc;
```

country	global_share_percentage		
Albania	0.4551920341394036		
Algeria	0.4551920341394036		
American Samoa	0.4551920341394036		
Angola	0.4551920341394036		
Antarctica	0.4551920341394036		
Antigua and Barbuda	0.4551920341394036		
Argentina	0.4551920341394036		
Armenia	0.4551920341394036		
Aruba	0.4551920341394036		
Australia	0.4551920341394036		
Austria	0.4551920341394036		
Azerbaijan	0.4551920341394036		
Bahrain	0.4551920341394036		
	Albania Algeria American Samoa Angola Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan		

15. What is the global average GDP, emission, and population by year?

```
avg(p.value) as avg_population,
avg(e.per_capita_emission) as avg_emissions,
avg(g.value) as avg_gdp
from population AS p
inner join
emission_3 AS e ON p.year = e.year
inner join
gdp_3 AS g ON p.year = g.year
group by p.year
order by p.year;
```

	year	avg_population	avg_emissions	avg_gdp
)	2020	39362.84443532973	0.007126095997222052	624.4008417825881
	2021	39690.73796844026	0.007126095997223701	665.3489843333841
	2022	40047.518264728205	0.007126095997223701	688.6989718061757
	2023	40411.240621449775	0.00712609599722701	711.8175613685221

INSIGHTS

➤ Here we have executed and compared the data as per the client requirements as shown in the slides.

CONCLUSION

- > Our project shows that energy use, economy, and environment are deeply connected.
- > This highlights the need for sustainable energy solutions for a balanced future.

