Apriori-like approach

- Level-wise (Apriori-like) approach:
 - Vertex growing:
 - k is the number of vertices
 - Edge growing:
 - k is the number of edges

Vertex Growing

Edge Growing

Apriori-like Algorithm

- Find frequent 1-subgraphs
- Repeat
 - Candidate generation
 - ◆ Use frequent (k-1)-subgraphs to generate candidate k-subgraph
 - Candidate pruning
 - ◆ Prune candidate subgraphs that contain infrequent (k-1)-subgraphs
 - Support counting
 - Count the support of each remaining candidate
 - Eliminate candidate k-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues

Example: Dataset

	(a,b,p)	(a,b,q)	(a,b,r)	(b,c,p)	(b,c,q)	(b,c,r)	 (d,e,r)
G1	1	0	0	0	0	1	 0
G2	1	0	0	0	0	0	 0
G3	0	0	1	1	0	0	 0
G4	0	0	0	0	0	0	 0

Example

Minimum support count = 2

k=1 Frequent Subgraphs

(a)

(b)

 $oldsymbol{\mathsf{c}}$

 (d)

 (e)

k=2

Frequent Subgraphs

(a) - (b)

(a) — (e)

(b) (d)

p

(c) ____(e)

k=3 Candidate Subgraphs

(Pruned candidate due to low support)

Candidate Generation

- In Apriori:
 - Merging two frequent k-itemsets will produce a candidate (k+1)-itemset
- In frequent subgraph mining (vertex/edge growing)
 - Merging two frequent k-subgraphs may produce more than one candidate (k+1)-subgraph

Multiplicity of Candidates (Vertex Growing)

Case 1: identical vertex labels

Case 1: identical vertex labels

Case 2: Core contains identical labels

Core: The (k-1) subgraph that is common between the joint graphs

Case 2: Core contains identical labels

Case 3: Core multiplicity

Case 3: Core multiplicity

Topological Equivalence

• Given:

Case 1: a ≠ c and b ≠ d

$$G3 = Merge(G1,G2)$$

Case 2: a = c and b ≠ d

$$G3 = Merge(G1,G2)$$

Case 3: a ≠ c and b = d

G3 = Merge(G1,G2)

Case 4: a = c and b = d

G3 = Merge(G1,G2)

G3 = Merge(G1,G2)

Adjacency Matrix Representation

A	(2)	A(1)				
В	(7)	В	(6)			
В	(5)	В	(8)			
A	(3)	A	(4)			

	A(1)	A(2)	A(3)	A(4)	B(5)	B(6)	B(7)	B(8)
A(1)	1	1	1	0	1	0	0	0
A(2)	1	1	0	1	0	1	0	0
A(3)	1	0	1	1	0	0	1	0
A(4)	0	1	1	1	0	0	0	1
B(5)	1	0	0	0	1	1	1	0
B(6)	0	1	0	0	1	1	0	1
B(7)	0	0	1	0	1	0	1	1
B(8)	0	0	0	1	0	1	1	1

	A(1)	A(2)	A(3)	A(4)	B(5)	B(6)	B(7)	B(8)
A(1)	1	1	0	1	0	1	0	0
A(2)	1	1	1	0	0	0	1	0
A(3)	0	1	1	1	1	0	0	0
A(4)	1	0	1	1	0	0	0	1
B(5)	0	0	1	0	1	0	1	1
B(6)	1	0	0	0	0	1	1	1
B(7)	0	1	0	0	1	1	1	0
B(8)	0	0	0	1	1	1	0	1

• The same graph can be represented in many ways

Graph Isomorphism

 A graph is isomorphic if it is topologically equivalent to another graph

Graph Isomorphism

- Test for graph isomorphism is needed:
 - During candidate generation step, to determine whether a candidate has been generated
 - During candidate pruning step, to check whether its (k-1)-subgraphs are frequent
 - During candidate counting, to check whether a candidate is contained within another graph

Graph Isomorphism

- Use canonical labeling to handle isomorphism
 - Map each graph into an ordered string representation (known as its code) such that two isomorphic graphs will be mapped to the same canonical encoding
 - Example:
 - Lexicographically largest adjacency matrix

String: 0010001111010110

Canonical: 0111101011001000