αL1
11 1314 1617 20 22
1 A P D V Q D C P E C T L Q E N P F F S Q P G A P I L Q C M G 30

31 CCFSRAYPTPLRSKKTMLVQKNVSESTCC 60

61 VAKSYNRVTVMGGFKVENHTACHCSTCYÝYHKS 92 (SEQ ID NO: 1)

FIG. 1

1 FCIPTEYTMHIERRECAYCLTINTTICAGY 30

58
31 CMTRDINGKLFLPKYALSQDVCTYRDFIYR 60

β L3

63 69

61 TVEIPGCPLHVAPYFSYPVALSCKCGK 87

88 CNTDYSDCIHEAIKTNYCTKPQKSYLVGFSV 118 (SEQIDNO: 2)

FIG. 2

	ATG GAG ATG TTC CAG Met Glu Met Phe Gln -20	GGG CTG CTG Gly Leu Leu Leu -15	52
TTG CTG CTG CTG AGC ATG GGC G Leu Leu Leu Ser Met Gly G -10 -5	GGG ACA TGG GCA TCC Gly Thr Trp Ala Ser 1	AAG GAG CCG CTT Lys Glu Pro Leu 5	100
CGG CCA CGG TGC CGC CCC ATC A Arg Pro Arg Cys Arg Pro Ile A 10	AAT GCC ACC CTG GCT Asn Ala Thr Leu Ala 15	GTG GAG AAG GAG Val Glu Lys Glu 20 :	148
GGC TGC CCC GTG TGC ATC ACC GGly Cys Pro Val Cys Ile Thr V	GTC AAC ACC ACC ATC Val Asn Thr Thr Ile 30	TGT GCC GGC TAC Cys Ala Gly Tyr 35	196
TGC CCC ACC ATG ACC CGC GTG C Cys Pro Thr Met Thr Arg Val I 40	CTG CAG GGG GTC CTG Leu Gln Gly Val Leu 45	CCG GCC CTG CCT Pro Ala Leu Pro	244
CAG GTG GTG TGC AAC TAC CGC C Gln Val Val Cys Asn Tyr Arg 7 55 60	GAT GTG CGC TTC GAG Asp Val Arg Phe Glu 65	TCC ATC CGG CTC Ser Ile Arg Leu	292
CCT GGC TGC CCG CGC GGC GTG Pro Gly Cys Pro Arg Gly Val 70 75	AAC CCC GTG GTC TCC Asn Pro Val Val Ser 80	TAC GCC GTG GCT Tyr Ala Val Ala 85	340
CTC AGC TGT CAA TGT GCA CTC C Leu Ser Cys Gln Cys Ala Leu G	TGC CGC CGC AGC ACC Cys Arg Arg Ser Thr 95	ACT GAC TGC GGG Thr Asp Cys Gly 100	388
GGT CCC AAG GAC CAC CCC TTG : Gly Pro Lys Asp His Pro Leu 105	ACC TGT GAT GAC CCC Thr Cys Asp Asp Pro 110	CGC TTC CAG GAC Arg Phe Gln Asp 115	436
TCC TCT TCC TCA AAG GCC CCT Ser Ser Ser Lys Ala Pro 120	CCC CCC AGC CTT CCA Pro Pro Ser Leu Pro 125	AGC CCA TCC CGA Ser Pro Ser Arg 130	484
CTC CCG GGG CCC TCG GAC ACC Leu Pro Gly Pro Ser Asp Thr 135	CCG ATC CTC CCA CAA Pro Ile Leu Pro Gln 145	(SEQ ID NO: 3)	530
TCAATCCGC (SEQ ID NO: 4)			

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8a

FIG. 8b

