7층 이창건 이재환 이하영 정영서

 이 1

 개발 동기

프로젝트 소개 이 2 학심 기능 | 시연

 사용 기술

 기능 흐름도 | 알고리즘·기술

창의성 04 Trouble Shooting | 차별성

핵심 기능 · 시연

7 음을 그리다, 첫 번째 핵심 기능

테이 만으로 자수을!

테미,만으로 개선을!

03 | ^{사용 기술} 악보 생성 - 음·박자 추출 알고리즘

03 | ^{사용 기술} 음악 검색 - 기능 흐름도

03 | ^{사용 기술} 음악 검색 - 딥러닝 모델 (CNN)

학습 모델

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)		2 0 8
max_pooling2d_1 (MaxPooling2	(None, 107, 251, 16)	
c o n v 2 d _ 2 (C o n v 2 D)	(None, 107, 251, 32)	2048
batch_normalization_1 (Batch	(None, 107, 251, 32)	1 2 8
activation_1 (Activation)	(None, 107, 251, 32)	0
max_pooling2d_2 (MaxPooling2	(None, 53, 125, 32)	0
c o n v 2 d _ 3 (C o n v 2 D)	(None, 53, 125, 64)	8192
batch_normalization_2 (Batch	(None, 53, 125, 64)	256
activation_2 (Activation)	 (None, 53, 125, 64)	
max_pooling2d_3 (MaxPooling2	(None, 27, 63, 64)	0
c o n v 2 d _ 4 (C o n v 2 D)	(None, 27, 63, 128)	32768
batch_normalization_3 (Batch	 (None, 27, 63, 128)	5 1 2
activation_3 (Activation)	(None, 27, 63, 128)	0
max_pooling2d_4 (MaxPooling2	(None, 14, 32, 128)	
c o n v 2 d _ 5 (C o n v 2 D)	(None, 14, 32, 256)	131072
batch_normalization_4 (Batch	(None, 14, 32, 256)	1024
activation_4 (Activation)	(None, 14, 32, 256)	
max_pooling2d_5 (MaxPooling2	(None, 7, 16, 256)	
flatten_1 (Flatten)	(None, 28672)	
dense_1 (Dense)	(None, 10)	286730
======================================		=======
Trainable params: 461,978 Non-trainable params: 960		
	·	

Train Data Set: 음원 보컬 추출 데이터, 허밍 데이터

Input: 216 X 504 X 3 (Mel Spectro Graph Image)

Hidden Layer: 13

Drop Out: 0.2

Kernel Size: 2 X 2

Optimizer: Adam

Learning Rate: 0.00005

Loss Function: Categorical Cross-Entropy

Epochs: 30

Batch Size: 20

04 | ^{창의성} Trouble Shooting

기존 주파수-음계 매칭 표 문제점

(단위 : Hz)

옥타브 음계	1	2	3	4	5	6	7	8
C(도)	32.7032	65.4064	130.8128	261.6256	523.2511	1046.502	2093.005	4186.009
C#	34.6478	69.2957	138.5913	277.1826	554.3653	1108.731	2217.461	4434.922
D(레)	36.7081	73.4162	146.8324	293.6648	587.3295	1174.659	2349.318	4698.636
D#	38.8909	77.7817	155.5635	311.1270	622.2540	1244.508	2489.016	4978.032
E(n])	41.2034	82.4069	164.8138	329.6276	659.2551	1318.510	2637.020	5274.041
F(과)	43.6535	87.3071	174.6141	349.2282	698.4565	1396.913	2793.826	5587.652
F#	46.2493	92.4986	184.9972	369.9944	739.9888	1479.978	2959.955	5919.911
G(솔)	48.9994	97.9989	195.9977	391.9954	783.9909	1567.982	3135.963	6271.927
G#	51.9130	103.8262	207.6523	415.3047	830.6094	1661.219	3322.438	6644.875
A(라)	55.0000	110.0000	220.0000	440.0000	880.0000	1760.000	3520.000	7040.000
A#	58.2705	116.5409	233.0819	466.1638	932.3275	1864.655	3729.310	7458.620
B(시)	61.7354	123.4708	246.9417	493.8833	987.7666	1975.533	3951.066	7902.133

- 1. 음이 인식되는 주파수의 범위를 찾기 힘듦
- 2. 사람 목소리의 특성을 고려하지 않음

매칭 표 자체 제작

직접 목소리로 테스트하여 매칭 테이블 전면 수정

> 음 인식 정확도

Trouble Shooting

초기 모델 문제점

```
model.fit(x_train, y_train,
   batch size=40,
   epochs=50,
   verbose=1,
   validation_split = 0.2)
Train on 889 samples, validate on 223 samples
Epoch 1/50
1 accuracy: 0.1435
Epoch 2/50
uracy: 0.1704
Epoch 3/50
uracy: 0.1704
Epoch 4/50
889/889 [========================== ] - 8s 9ms/step - loss: 2.2429 - accuracy: 0.1890 - val loss: 2.2497 - val acc
uracy: 0.1704
Epoch 5/50
uracy: 0.1704
Epoch 6/50
uracy: 0.1704
Epoch 7/50
uracv: 0.1704
Epoch 8/50
uracy: 0.1704
Epoch 9/50
uracy: 0.1704
                               Loss
```

Accuracy

- 1. Accuracy 17%로 일정
- 2. Loss 증가

모델 개선

1. Hidden layer 추가

Batch Normalization 추가

3. Dropout 추가

04 창의성 차별성

작곡의 진입 장벽 🕠 🕂 저작권 확보로 인한 수익 창출

감사합니다