

Sea B la matriz obtenida sumando c veces el renglón i de A al renglón j de A. Entonces

$$\det B = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{j1} + ca_{i1} & a_{j2} + ca_{i2} & \cdots & a_{jn} + ca_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$(\text{por la propiedad 3.2.3}) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} + \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

 $= \det A + 0 = \det A$ (el cero viene de la propiedad 3.2.6)

EJEMPLO 3.2.13 Illustración de la propiedad 3.2.7

Sea $A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 1 & 4 \\ 0 & -2 & 5 \end{pmatrix}$. Entonces det A = 16. Si se multiplica el tercer renglón por 4 y se suma al

segundo renglón, se obtiene una nueva matriz B dada por

$$B = \begin{pmatrix} 1 & -1 & 2 \\ 3+4(0) & 1+4(-2) & 4+5(4) \\ 0 & -2 & 5 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 2 \\ 3 & -7 & 24 \\ 0 & -2 & 5 \end{pmatrix}$$

y det $B = 16 = \det A$.

Las propiedades que se acaban de presentar simplifican la evaluación de determinantes de alto orden. Se "reduce por renglones" el determinante, usando la propiedad 3.2.7, hasta que tenga una forma en la que se pueda evaluar con facilidad. La meta más común será utilizando la propiedad 3.2.7 de manera repetida hasta que 1) el nuevo determinante tenga un renglón (columna) de ceros o un renglón (columna) que sea múltiplo de otro —en cuyo caso el determinante es cero—, o 2) que la nueva matriz sea triangular, con lo que su determinante será el producto de sus elementos en la diagonal.