CHAPTER 9 (16)

Polymers

What are they?

Materials consisting of very large(long) molecules with a molecular weight that varies between 10,000 to over 1'000,000

Concepts

- Monomers: Simple molecules used as the starting compounds in the production of polymers.
- Oligomers: A few units of monomers.
- Polymerization: Process of formation of polymers.

Classification due to Structure

1. Linear

- a solid three-dimensional model
- a three-dimensional "space" model
- a simple two-dimensional model.

$$\begin{array}{cccc} CH_3 & CH_3 \\ & | & | \\ CH_2 & CH_2 \\ & | & | \\ CH_3 - CH_2 - C - CH_2 - C - CH_2 - CH_3 \\ & | & | \\ CH_3 & CH_2 \\ & | & | \\ CH_2 & | & | \\ & | & | \\ CH_2 & | & | \\ \end{array}$$

 CH_2

CH₃

$$\begin{array}{c|cccc} CH_3 & CH_3 \\ \hline & & & | \\ CH_3 - C & -CH_2 - C & -CH_3 \\ \hline & & | & | \\ CH_2 & CH_2 \\ \hline & | & | \\ CH_3 - C - CH_2 - C - CH_3 \\ \hline & | & | \\ CH_2 & CH_3 \\ \hline & | & | \\ CH_2 & CH_3 \\ \hline & | & | \\ CH_3 & | & | \\ \end{array}$$

Cross-linked Polymer

Tacticity

Isotactic

Syndiotactic

Atactic

Copolymers

Commercial polymers are composed of different types of unit attached together by chemical covalent bonds.

Copolymer with random units

Copolymer with block units

Copolymer with alternating units

Graft copolymers

Classification due to Molecular forces

1. Thermoplastic Polymers- Intermediate forces of attraction. At elevated temperatures they soften and melt. Example: polyvinyl chloride

2. Thermosetting Polymers- These polymers greatly improve the material's mechanical properties. At elevated temperatures they cross-link. Further heating leads to their decomposition. For example: phenolics, epoxies, and silicones.

3. Elastomers-These are rubber-like solids weak interaction forces are present. For example: Rubber.

4. Fibres- Strong, tough, high tensile strength and strong forces of interaction are present. For example, nylon -6, 6.

Polymerization: Addition

Addition- The two carbon atoms are joined by a double covalent bond. It can only
occur because of double covalent bond between the carbon atoms in the monomer.
Example, polyethylene (PE) from ethylene molecules.

Polymerization: Condensation

Condensation- Besides the polymer formation, a relatively small molecule (such as water, ethanol, methanol, etc.) is formed as a result of the polymerization reaction. Example, Nylon.

Polymeric Math

Concepts:

Molecular weight of repeated unit: C+O+H (S-N)

Average Molecular weight of polymer: Weight of the long chain

Degree of polymerization- Average length of a linear polymer. Is also known as

Number of units in chain.

$$DP = \frac{Average\ Molecular\ Weight\ of\ Polymer}{Molecular\ weight\ of\ repeated\ unit}$$

Crystallinity of polymers- Order in the structure of the polymer

$$\%Cr = \frac{\rho_a(\rho - \rho_a)}{\rho(\rho_C - \rho_a)} \times 100\%$$

 ρ_a : Density of amorphous polymer

 ρ_C : Density of crystalline polymer

ho : Density of actual polymer

Important concepts Recap

Addition	Condensation
No byproduct	Byproducts (H2O, C-OH, C-NH)
Double bond	Functional groups (COOH, CONH2, CNH2)
No need for heat or additional catalysts	Need energy

$$DP = \frac{Average\ Molecular\ Weight\ of\ Polymer}{Molecular\ weight\ of\ repeated\ unit}$$

$$\%Cr = \frac{\rho_a(\rho - \rho_a)}{\rho(\rho_C - \rho_a)} \times 100\%$$

Example

 Calculate the degree of polymerization of 6,6- Nylon if the molecular weight is 120,000. What type of polymerization is it? How many monomeric chains are in 1g of polymer?

- M1=C6H16N2

 $-M_2=C_6H_{10}O_4$

Average molecular

Weight=120000

C=12

H=1

0=16

N=14

- M1=C6H16N2

 $-M_2=C_6H_{10}O_4$

C=12

H=1

0=16

N=14

Thermoplastic Polymers

 Linear or branched polymers in which chains of molecules are not connected to one another

Typical Thermoplastics

Polyamide (nylon) (PA)

Polyvinyl chloride (PVC)

Polyester (PET)

Thermosetting Polymers

- Highly cross-linked polymers that form 3D network structures
- Crosslinking requires heat or an additional agent
- Crosslinking is not reversible. Not Environmentally friendly

Phenolics

Amines

Polyesters

Epoxies

Urethanes

Elastomers (Rubbers)

 Natural and synthetic polymers which display elastic deformation when a force field is applied.

Natural:

Synthetic:

MIDTERM!