工程矩阵理论考卷(01-02学年)

一. (12%) 在 $C^{2\times 2}$ 中,已知

$$V_{1} = \left\{ \begin{pmatrix} x & -2x \\ y & -2y \end{pmatrix} | \forall x, y \in C \right\}, \quad V_{2} = \left\{ \begin{pmatrix} -x & -y \\ 2x & 2y \end{pmatrix} | \forall x, y \in C \right\}$$

分别求 V_1 , V_2 , $V_1 \cap V_2$ 及 $V_1 + V_2$ 的基.

- 二. (8%)设f,g 为线性空间V上的线性变换,且fg=f. 试证:
 - 1. V = K(f) + R(g);
 - 2. 若 $\dim V = n$, 则 $V = K(f) \oplus R(g)$ 的充要条件是 $\dim R(f) = \dim R(g)$.
- 三. (16%)
 - 1. 在 $C^{2\times 2}$ 上已知线性变换

$$f(X) = \begin{pmatrix} d & c \\ 0 & a \end{pmatrix}, \quad \forall X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in C^{2\times 2}$$

求f在基 $\{E_{11},E_{12},E_{21},E_{22}\}$ 下的矩阵A; 并求A的 Jordan 标准形.

- 2. 已知 A 的特征多项式与最小多项式都是 λ^5 ,分别求 A 及 A^2 的 Jordan 标准形.
- 四. (8%) 设 α, β 为欧氏空间V (未必是有限维的)上两正交的单位向量,作线性变换: $f(\xi) = \xi a < \xi, \alpha > \alpha b < \xi, \beta > \beta, \quad \forall \xi \in V$ 求使 f 为正交变换的实数a 与b 之一切值.
- 五. (8%) 已知n阶方阵A满足 $A^2 = 2A + 8I$, 且A + 2I的秩是r, 求 det(A + I).
- 六. (10%) 设A,B 为方阵,作 $M = \begin{pmatrix} A & O \\ O & B \end{pmatrix}$,设t 是参数.
 - 1. 试证: $e^{Mt} = \begin{pmatrix} e^{At} & O \\ O & e^{Bt} \end{pmatrix}$;
 - 2. 已知 $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, 求 e^{Mt} .
- 七. (10%) 设 α 为 $n \times l$ 矩阵, β 为 $s \times l$ 矩阵,作 $A = \alpha \beta^H$.
 - 1. 求 A^+ (用 α , β 表示);
 - 2. 试证: $\|A\|_F = \|\alpha\|_2 \|\beta\|_2$.

八. (10%) 试证: 若A为n阶正规矩阵,则

$$\max_{\boldsymbol{\theta} \neq \boldsymbol{x} \in C^n} \frac{\left| \boldsymbol{x}^H \boldsymbol{A} \boldsymbol{x} \right|}{\boldsymbol{x}^H \boldsymbol{x}} = \boldsymbol{\rho}(\boldsymbol{A}) = \left\| \boldsymbol{A} \right\|_2$$

- 九. (18%)证明下列命题:
 - 1. 若方阵 A 的特征值全为零,则必存在正整数 k ,使 $A^k = 0$.
 - 2. 设 A 是 n 阶 正 定 矩 阵, $\alpha_1, \alpha_2, \dots, \alpha_n$ 是 n 维 非 零 列 向 量. 若 当 $i \neq j$ 时, 总 有 $\alpha_i^H A \alpha_j = 0$,则 $\alpha_1, \alpha_2, \dots, \alpha_n$ 必 线性 无 关.
 - 3. 若n阶方阵A与G满足:

①.
$$A^2=A$$
; ②. $GAG=G$; ③. $R(G)\subseteq R(A)$ 则 $G^2=G$ (证明时请注明每一步的理由).