Syntactic Substitution

CS 536: Science of Programming, Fall 2019

9/24

A. Why

 Syntactic substitution is used in the assignment rules to calculate weakest preconditions (and later, strongest postcondition).

B. Objectives

At the end of today you should

- Know what syntactic substitution is and how to do it.
- Be able to carry out substitution on an expression or predicate.

C. Syntactic Substitution

- Recall that $wp(v := e, P(v)) \equiv P(e)$
- The operation of going from P(v) to P(e) is called **syntactic substitution**.
- A common notation is p[e/v]. The advantage of this notation is that it's easier to do multiple ("iterated") substitutions. There are other notations people use, such as p[v := e], $p[v \mapsto e]$, and p_v^e .

D. Substitution Into An Expression

- As part of substitution into a predicate, we need to be able to **substitute into an expression**; the idea is to take an expression e and replace its occurrences of variable v with expression e'.
- **Notation**: We write e[e'/v], pronounced "e with e' (substituted) for v". We'll treat the substitution brackets as having very high precedence, so we'll need parentheses around e for complex expressions.
- Example 1: $x + y[5/x] \equiv x + (y[5/x]) \equiv x + y \text{ but } (x+y)[5/x] \equiv 5+y.$
- To carry out e[e'/v], go through e, and everywhere we see an occurrence of v, replace it by (e'). If the parentheses are redundant, we can omit them.
 - If e has no occurrence of v (there's no v to replace), then $e[e'/v] \equiv e$. Another way to say this is that if e only uses variables $\not\equiv v$, then $e[e'/v] \equiv e$.
- Note: Substitution is a textual operation. For example, $(x+x)[2/x] \equiv 2+2$, which = 4 in any state, but $(x+x)[2/x] \not\equiv 4$.
- Example 2: $(a x)[2/x] \equiv a (2) \equiv a 2$ (the parentheses are redundant)
- Example 3: $(x * (x+1))[b-c/x] \equiv (b-c) * (b-c+1)$ (the parentheses are required).
- Example 4: $(b[x*y])[x+3/x] \equiv b[(x+3)*y]$
- Example 5: $(y + b[x])[x*3/x] \equiv y + b[x*3]$
- Example 6: (if x > 0 then -x else 0 fi)[z+2/x] \equiv if z+2 > 0 then -(z+2) else 0 fi
- Example 7: $(b[x*(x+1)/2])[y+4/x] \equiv b[(y+4)*((y+4)+1)/2] \equiv b[(y+4)*(y+4+1)/2]$.

• The technical definition of e[e'/v] is done by cases on the structure of e. Briefly, we have constants and variables as base cases and expressions with subexpressions as recursive cases.

Definition of e[e'/v], by Structural Induction

- Case 1 (base cases)
 - $c[e'/v] \equiv c$ if c is a constant
 - $v[e'/v] \equiv (e')$
 - If $v \not\equiv w$, then $w[e'/v] \equiv w$
- Case 2 (recursive cases): Consider the expressions that have subexpressions: function calls f(e₁, e₂, ...), array indexing expressions b[e₁, e₂, ...], parenthesized expressions (e₁), unary operations ⊕ e₁, binary operations e₁ ⊕ e₂ and ternary operations e₁ ? e₂: e₃ (or if e₁ then e₂ else e₃ fi), we recursively process each subexpression.
 - Let $e_1' \equiv (e_1)[e'/v], e_2' \equiv (e_2)[e'/v]$, etc.
 - Then $(f(e_1, e_2, ...))[e'/v] \equiv f(e_1', e_2', ...)$
 - And $(b[e_1, e_2, ...])[e'/v] \equiv b[e_1', e_2', ...]$
 - And $(e_1 \oplus e_2)[e'/v] \equiv e_1' \oplus e_2'$
 - And so on.

E. Substitution Into A Predicate

- Notation: p[e/v] is pronounced "p with e (substituted) for v" and stands for the result of substituting e for each (free) occurrence of v in p. (Don't worry about free and bound occurrences of a variable until we get to quantified predicates.)
- Substitution into expressions and predicates is a syntactic operation. For example, $(x > 0)[1/x] \equiv 1 > 0$, which \Leftrightarrow true, but $(x > 0)[1/x] \not\equiv T$.
- Note: If p contains no occurrences at all of v, then $p[e/v] \equiv p$.

Substitution Into A Non-Quantified Predicate

- If p contains no quantifiers, then p[e/v] is straightforward to calculate.
- Case 1 (Non-quantified predicates):
 - For p[e/v], go through the predicate p and replace each occurrence of v with (e); if the parentheses are redundant, we can omit them. Note for tests like $e_1 < e_2$, we substitute into the expressions e_1 and e_2 : $(e_1 < e_2) [e/v] \equiv e_1[e/v] < e_2[e/v]$.
- Example 8: $(x > 0 \rightarrow y \ge x/2)[z+1/x]$

$$\equiv (x > 0)[z+1/x] \rightarrow (y \ge x/2)[z+1/x]$$

 \equiv (z+1 > 0 \rightarrow y \geq (z+1)/2). (The parentheses around z+1 are necessary)

Free and Bound Variables and Occurrences of Variables

- **Notation**: Q stands for a quantifier (\forall or \exists).
- For the definition of $(Qx \cdot q)[e/v]$, our natural instinct is to think that $(Qx \cdot q)[e/v] \equiv (Qx \cdot (q[e/v]))$, but in fact this isn't always true because of a distinction between "free" and "bound" occurrences of variables.

- **Definition**: If an occurrence of a variable v in a predicate is within the scope of a quantifier over v, then it is a **bound occurrence**, else it is a **free occurrence**. A variable v **is free in** (= **occurs free in**) p iff it has a free occurrence in p. Similarly, v **is bound in** (= **occurs bound in**) p iff it has a bound occurrence in p.
- For any variable v and predicate p, there are four possibilities:
 - v is neither free nor bound in p: v doesn't occur at all in p.
 - v is free but not bound in p: v occurs at least once in p, and all the occurrences of v are free.
 - v is not free but is bound in p: v occurs at least once in p, and all the occurrences of v are bound.
 - v is free and bound in p: v occurs at least twice in p with at least one occurrence being free and at least one occurrence being bound.
- Example 9: If $p \equiv x > z \land \exists x . \exists y . y \le f(x, y)$, then
 - x is free and bound in p. (Its first occurrence is free; its second is bound.)
 - y is bound in p but not free in p.
 - z is free in p but not bound in p.
 - w is neither free nor bound in p.
- The reason we're interested in occurrences of variables being free or bound in a predicate is that we only substitute for free occurrences of a variable. In computer science terms, we're looking for non-local variables, not local variables.
- Taking polynomials as an example, $p(x) = x^2 + ax + y$. If we want to substitute 17 for y, that's fine: $p(x) = x^2 + ax + 17$; substituting expressions with variables that aren't bound in the definition is okay too: substituting $(z^3 + 1)$ for y gives us $p(x) = x^2 + ax + (z^3 + 1)$. But if we want to substitute something like (x+3) for y (note: x is the defined parameter variable), we **don't** want $p(x) = x^2 + ax + (x+3)$. But if we had defined $p(w) = w^2 + aw + y$, then substituting (x+3) for y gives us $p(w) = w^2 + aw + (x+3)$.

Substitution Into A Quantified Predicate, part 1

- If p has no quantifiers over v, then every occurrence of every variable in p is free, so for p[e/v], we can just scan p looking for occurrences of v and replace them by e. This was case 1 of our definition of substitution.
- In the remaining cases, we substitute into a quantified predicate: $(Qx \cdot q)[e/v]$.
- Case 2: $(Q v \cdot q)[e/v]$: The quantified variable matches the variable we're substituting for. Then $(Q v \cdot q)$ has no free occurrences of v because all the free occurrences of v in q are bound by the quantifier. Since there aren't any free occurrences of v, there's nothing to replace, and $(Q v \cdot q)[e/v] \equiv (Q v \cdot q)$.
 - Example 10: $(x > 0 \land \exists x \cdot x \le f(y))[17/x] \equiv 17 > 0 \land \exists x \cdot x \le f(y)$. Here, the first occurrence of x (in x > 0) is free, so we replace it with 17, but the second occurrence of x is bound, so we don't do any replacement.
- Case 3: If $x \neq v$ and x does not occur in e, then $(Qx \cdot q)[e/v] \equiv (Qx \cdot (q[e/v]))$. Here, we go through q and replace its free occurrences of v with e.
 - Example 11: $(y \ge 0 \to \forall x . x > y \to x*x > y \land \exists y . f(y) > x))[17/y]$ $\equiv 17 \ge 0 \to \forall x . (x > y \to x*x > y \land \exists y . f(y) > x)[17/y]$ $\equiv 17 \ge 0 \to \forall x . x > 17 \to x*x > 17 \land \exists y . f(y) > x (y in f(y) is bound, so no substituting for it)$

- In case 3, the restriction that the quantified variable not appear in e keeps us from having a "capture" problem, where occurrences of x in e are free, but when we we replace an occurrence of v by e in $Q \times q[e/v]$, the occurrences of x in e become bound, which changes their meaning.
 - Example 11: $(\exists y \cdot y = v^2)[x+1/v] \equiv (\exists y \cdot y = (x+1)^2)$. If we were to let $(\exists x \cdot x = v^2)[x+1/v]$ be $(\exists x \cdot x = (x+1)^2)$, then the x in x+1 would become bound to the x in $\exists x$ (= the x is "captured").
- The way out of this problem is to **rename the quantified variable** from x to something not in e; that way the quantifier can't capture occurrences of x.
- Case 4: (The painful case) If $x \not\equiv v$ and x occurs in e, then $(Qx \cdot q)[e/v] \equiv (Qz \cdot (q[z/x][e/v]))$ where z is a fresh variable (one not used in e or q).
- Example 12: Using z as a fresh variable, we have

```
\begin{split} (g(x,v) &< 0 \land (\exists \, x \boldsymbol{.} \, x = v^2) \land h(x,v) > 0) [\, x+1 \, \big/ v \,] \\ &\equiv g(x,x+1) < 0 \land (\exists \, z \boldsymbol{.} ((x = v^2)[\, z \, \big/ x \,]) [\, x+1 \, \big/ v \,]) \land h(x,x+1) > 0 \\ & \text{ // Pick fresh variable, quantify over it and then substitute for it in the body} \\ &\equiv g(x,x+1) < 0 \land (\exists \, z \boldsymbol{.} \, z = v^2) [\, x+1 \, \big/ v \,] \\ &\equiv g(x,x+1) < 0 \land \exists \, z \boldsymbol{.} \, z = (x+1)^2 \end{split}
```

• Note there's some ambiguity in the definition: Which "fresh" variable should we choose?

Syntactic Substitution

CS 536: Science of Programming

A. Why

 Syntactic substitution is used in the assignment rules to calculate the weakest precondition (and as we'll see, the strongest postcondition).

B. Objectives

At the end of this activity you should

• Be able to calculate a syntactic substitution on an expression or predicate.

C. Questions

- 1. Calculate (x+i*b+c=0)[i+1/i][b+c/c].
- 2. Let p be $\exists x \cdot x < y \land x^2 \ge y + k$
 - a. What is p[5/x]?
 - b. What is p[5/y]?
 - c. What is p[5/z]?
 - d. What is p[y*2/y]?
 - e. What is p[y*k/y]?
 - f. What is $p[(x + y) \div 2/y]$?
- 3. Give an example where (v * w)[e/v][e'/w] and (v * w)[e'/w][e/v] are
 - a. Syntactically equal (\equiv)
 - b. Syntactically unequal $(\not\equiv)$.
- 4. In the predicate $(\exists x . x < y \land x^2 \ge y+k)$, x is bound, but in $(x < y \land x^2 \ge y+k)$, x is free is this a contradiction?
- 5. For substitution into a quantified predicate $(Qx \cdot p)[e/v]$, we could just say "always rename x to something fresh." Why do you think we didn't do that?
- 6. Let $p \equiv (\forall x.\exists y.R(x,y,z)) \land (\exists z.R(x,y,z))$ where R is a boolean function over three arguments.
 - a. What is p[17/w]?
 - b. What is p[17/x]?
 - c. What is p[y*2/y]?
 - d. What is p[y*2/z]?
 - e. What is p[a*z/y][a+b/z]?

Solution to Activity 12 (Syntactic Substitution)

- 1. $(x+i*b+c=0)[i+1/i][b+c/c] \equiv (x+(i+1)*b+c=0)[b+c/c]$ $\equiv x+(i+1)*b+(b+c)=0$
- 2. Let $p \equiv \exists x . x < y \land x^2 \ge y + k$
 - 2a. $p[5/x] \equiv p$ unchanged
 - 2b. $p[5/y] \equiv (\exists x. x < y \land x^2 \ge y+k)[5/y] \equiv \exists x. x < 5 \land x^2 \ge 5+k$
 - 2c. $p[5/z] \equiv p$ unchanged because z doesn't occur in p
 - 2d. $p[y*2/y] \equiv (\exists x. x < y \land x^2 \ge y+k)[y*2/y] \equiv \exists x. x < y*2 \land x^2 \ge y*2+k$
 - 2e. $p[y*k/y] \equiv (\exists x. x < y \land x^2 \ge y+k)[y*k/y]$ $\equiv \exists x. x < y*k \land x^2 \ge y*k+k$
 - 2f. $p[(x+y) \div 2/y] \equiv (\exists x . x < y \land x^2 \ge y+k)[(x+y) \div 2/y]$ $\equiv \exists v . (x < y \land x^2 \ge y+k)[v/x][(x+y) \div 2/y]$ (note renaming of x to v) $\equiv \exists v . (v < y \land v^2 \ge y+k)[(x+y) \div 2/y]$ $\equiv \exists v . v < (x+y) \div 2 \land v^2 \ge (x+y) \div 2 + k$
- 3. (Cases where (v * w)[e/v][e'/w] and (v * w)[e'/w][e/v] are \equiv and $\not\equiv$.)
 - 3a. One case is when v doesn't occur in e' and w doesn't occur in e.

Example:
$$(v * w)[v*2/v][a*w/w] \equiv (v*2*w)[a*w/w]$$

 $\equiv v*2*(a*w) \equiv (v*(a*w))[v*2/v]$
 $\equiv (v*w)[a*w/w][v*2/v]$

3b. One case is when w appears in e and v appears in e' (at least, for certain e and e').

Example:
$$(v * w)[w-3/v][a*v/w] \equiv ((w-3) * w)[a*v/w] \equiv (w-3) * (a * v)$$

but $(v * w)[a*v/w][w-3/v] \equiv (v * (a*v))[w-3/v] \equiv (w-3) * (a* (w-3))$

- 4. No, this is exactly what a quantifier does: It captures the x's that are free in its body and makes them bound with respect to any context that includes the quantified predicate.
- 5. Because it's confusing / annoying to have to come up with fresh variables if we don't really need them.
- 6. (Substitutions with $p \equiv (\forall x \cdot \exists y \cdot R(x, y, z)) \land \exists z \cdot R(x, y, z)$)
 - 6a. $p[17/w] \equiv p$ (because w doesn't occur in p)
 - 6b. $p[17/x] \equiv (\forall x \cdot \exists y \cdot R(x, y, z)) \land \exists z \cdot R(17, y, z))$
 - 6c. $p[y*2/y] \equiv (\forall x.\exists y.R(x,y,z)) \land \exists z.R(x,y*2,z))$
 - 6d. $p[y*2/z] \equiv (\forall x.\exists v.R(x,y,z)[v/y][y*2/z]) \land \exists z.R(x,y,z))$ (using v as a fresh variable) $\equiv (\forall x.\exists v.R(x,v,y*2)) \land \exists z.R(x,y,z))$

```
6e. p[a*z/y][a+b/z]

\equiv (\forall x \cdot \exists y \cdot R(x, y, z)) \land \exists v \cdot R(x, y, z)[v/z][a*z/y])[a+b/z]

(using v as a fresh variable)

\equiv ((\forall x \cdot \exists y \cdot R(x, y, z)) \land \exists v \cdot R(x, y, v)[a*z/y])[a+b/z]

\equiv ((\forall x \cdot \exists y \cdot R(x, y, z)) \land \exists v \cdot R(x, a*z, v))[a+b/z]

\equiv ((\forall x \cdot \exists y \cdot R(x, y, a+b)) \land \exists v \cdot R(x, a*(a+b), v))

(Note the parens around a+b are required)
```