t-Stochastic Neighbor Embedding

Complete 80-Slide Presentation

Prof.Asc. Endri Raco

Polytechnic University of Tirane

October 2025

What is Dimensionality Reduction?

Definition

Transforming high-dimensional data into lower-dimensional representations while preserving meaningful structure

Why We Need It:

- Visualization: Human perception limited to 3D
- Curse of dimensionality: Distance becomes meaningless in high-D
- Computational efficiency: Reduce processing requirements
- Feature extraction: Identify essential patterns

The Central Challenge:

How do we decide what to preserve when we must lose information?

Traditional answer: Preserve distances

t-SNE answer: Preserve neighborhoods

The Fundamental Challenge of Dimensionality Reduction

784 DimensionsMNIST digit

2 Dimensions
Your screen

The Crowding Problem: Why Linear Methods Fail

Definition

Crowding Problem: The geometric impossibility of preserving moderate-range distances when projecting from high to low dimensions, causing distinct distance scales to collapse.

High-D Space (10D)

After Linear Projection to 2D

Ratio: 1 : 1.1 : 1.2

The Paradigm Shift: From Geometry to Information

Traditional Methods

Preserve distances or variance

t-SNE

5/18

The Paradigm Shift: Concrete Example

Traditional: Preserve Distances

Problem: All distances treated equally

No context about local density

t-SNE: Preserve Probabilities

Solution: Likelihood encodes context Adapts to local density automatically

Key Insight: Same distance \rightarrow different probabilities based on neighborhood density

Building Intuition: From Distances to Neighborhoods

The Problem with Raw Distances:

- Point A: 1 unit from B, 10 units from C
- But what if A is in dense region?
- And C is in sparse region?
- Raw distance loses context!

The Solution - Relative Similarity:

- Convert distances to probabilities
- "How likely is B to be A's neighbor?"
- Adapt to local density automatically
- Use Gaussian decay (smooth, differentiable)

Key Idea: Each point gets its own "neighborhood size" (σ_i) based on local density

From Distances to Probabilities

Key Transformation:

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)}$$

Insight: σ_i adapts to local density automatic

Why Gaussian? The Natural Choice for Neighborhoods

What We're Building

Our Goal:

- Convert distances to probabilities
- "How likely is j to be i's neighbor?"
- Must adapt to local density

Three Key Requirements:

- Smooth decay no sudden cutoffs
- 2 Local focus neighbors matter most
- Unbiased don't assume patterns

The Winner: Gaussian $p_{i|i} \propto e^{-d_{ij}^2/2\sigma_i^2}$

Visual Comparison

Analogy: Friendship strength strongest nearby, fading smoothly

The Mathematics Behind Gaussian: Maximum Entropy Principle

The Core Principle

The Question:

Which distribution makes the *fewest assumptions* while matching our constraints?

Answer: Maximum Entropy

The distribution with highest uncertainty (entropy) given the constraints

Why This Matters:

- Most "honest" no hidden bias
- Adds no assumptions
- Principled approach

Entropy Comparison

Gaussian = Maximum Entropy
Most uncertain = Least biased

differtalli — Least blased

The Mathematical Derivation: Problem Setup

Optimization Problem

Maximize Entropy:

$$H(P_i) = -\sum_j p_{j|i} \log p_{j|i}$$

Subject to Constraints:

1 Normalization: $\sum_{i} p_{j|i} = 1$

2 Fixed Variance: $\sum_{j} p_{j|i} d_{ij}^2 = \sigma_i^2$

The goal is to find the most unbiased probability distribution $(p_{j|i})$ that meets our constraints.

The Mathematical Derivation: Solution

Solution via Lagrange Multipliers

1. The Lagrangian:

$$\mathcal{L} = \mathcal{H}(P_i) + \lambda \left(\sum p_{j|i} - 1 \right) \ + \mu \left(\sum p_{j|i} d_{ij}^2 - \sigma_i^2 \right)$$

- 2. Taking derivatives and solving for $\frac{\partial \mathcal{L}}{\partial p_{\text{BH}}} = 0$ yields the result.
- 3. Result (The Gaussian Distribution):

$$p_{j|i} = rac{e^{-rac{d_{ij}^2}{2\sigma_i^2}}}{\sum_k e^{-rac{d_{ik}^2}{2\sigma_i^2}}}$$

Perplexity: Setting the Neighborhood Size

The Problem We're Solving

Question: How many neighbors should each point consider?

Challenge: Different regions have different densities!

- ullet Dense areas: Small σ needed
- ullet Sparse areas: Large σ needed

Solution: Perplexity - a user parameter that sets "effective" number of neighbors

Adaptive Neighborhoods

Dense: $\sigma = 0.1$ Sparse: $\sigma = 0.5$

Both have same perplexity = 5 Different σ values!

Key Insight: Perplexity is constant across all points, but σ_i adapts to achieve it

Perplexity: The Mathematics and Algorithm

Mathematical Definition

From Shannon Entropy:

$$H(P_i) = -\sum_j p_{j|i} \log_2 p_{j|i}$$

Perplexity:

$$Perp(P_i) = 2^{H(P_i)}$$

Interpretation:

- ullet Perp = 5 ightarrow "acts like" 5 neighbors
- Perp = $30 \rightarrow$ "acts like" 30 neighbors

Finding σ_i : Binary Search

Why Binary Search?

Perplexity increases with σ monotonically

Algorithm:

- **1** Start with $\sigma = 1$
- 2 Compute current perplexity
- **3** Too high? \rightarrow Decrease σ

Measuring Information Loss: KL Divergence

What is KL Divergence?

$$\mathsf{KL}(P||Q) = \sum_{j} p_{j} \log rac{p_{j}}{q_{j}}$$

Extra bits needed when using Q instead of true P

Critical Asymmetry Example

Consider point B with true probability 0.3:

Missing a true neighbor:

True: p = 0.3, Embedded: q = 0.01Penalty: $0.3 \times \log(30) \approx 1.02$ bits

Creating a false neighbor:

True: p=0.01, Embedded: q=0.3Penalty: $0.01 \times \log(0.033) \approx$ **-0.035 bits**

Visual Example

Original SNE: The Precursor to t-SNE

A Brief History of Dimension Reduction

SNE's Innovation SNE's Fatal Flaw • First to use probabilities • Used Gaussian in low-D space • Adaptive neighborhoods (σ_i) • Cannot represent moderate distances • Information-theoretic approach • Led to "crowding problem" • KL divergence for optimization • All points collapse together Prof.Asc. Endri Raco (Polytechnic University of Tirane) t-Stochastic Neighbor Embedding

SNE's Mathematics: Where It Went Wrong

The Formulation

• **High-D Similarity** (P):
Gaussian with adaptive variance σ_i

$$p_{j|i} = \frac{\exp(-d_{ij}^2/2\sigma_i^2)}{\sum_k \exp(-d_{ik}^2/2\sigma_i^2)}$$

• Low-D Similarity (Q):

Gaussian with fixed variance

$$q_{j|i} = \frac{\exp(-d_{ij}^2)}{\sum_k \exp(-d_{ik}^2)}$$

• Cost Function: $C = \sum_i \text{KL}(P_i || Q_i)$

Why Gaussian Fails in 2D

Problem: Moderate distances in high-D get exponentially tiny similarities in low-D, causing crowding.

The Curse: Why High-D Breaks Our Intuition

The Volume Problem

Question: In a D-dimensional sphere, what fraction of volume is in the outer shell (radius 0.9 to 1.0)?

Your intuition (2D):

$$\frac{\pi \cdot 1^2 - \pi \cdot 0.9^2}{\pi \cdot 1^2} = 19\%$$

Reality in high-D:

• 5D: 41%

• 10D: 65%

• 50D: 99.5%

• 100D: 99.997%

Volume Distribution by Dimension

