ANDESITE

Boston University CDH Subsystem Internal Review

August 1st **2016**

CDH requirements

Requirement	Description			
CDH-1 Tests: 1.0-1.6, 4.0, 5.0, 6.0	The mule and sensor node C&DH subsystem shall handle the collection and transmission of magnetometer, GPS, and gyroscope data.			
CDH-1.1 Test: 3.0	The sensor node C&DH subsystem shall collect magnetometer data at a minimum rate of 30 hertz.			
CDH-1.2 Test: 3.0	The sensor node C&DH subsystem shall process GPS and gyroscope readings at a minimum rate of 10 hertz.			
CDH-2 Test: 2.0	Each sensor node shall transmit data to the mule at a minimum rate of 1,212 bits per second.			
CDH-3 Test: 8.0	The sensor nodes shall enter low power mode if power drops beneath a pre- determined threshold.			
CDH-3.1 Test: 8.1	The sensor node C&DH subsystem shall exit low power mode once the batteries have been charged to 3.7v.			
CDH-4 Test: 1.5	The C&DH mule shall be operable throughout all powered modes of the spacecraft.			
CDH-5	The C&DH mule shall have bi -directional communication with the sensor nodes and the GlobalStar network.			
CDH-8 Test: 1.5	The mule C&DH shall temporarily store all data for at least 2 days while communication with an authorized ground station is not possible.			

CDH Dataflow Design

WSN Flowchart Design

(EPS Integration missing)

Mule Overview - Threading Design

Executive Thread – Maintaining state machine of Satellite and routing messages for thread communications

Worker Threads:

GPS Thread - Constant monitoring of the GPS location of the satellite, making the information available to all threads

EPS Thread - Monitoring and maintaining health status of batteries and performing low power mode operations

ADC Thread - Performing detumbling and pointing routines when required (determined based on a "orientation" mutex lock)

Deployment Thread - Performing deployment when required (determined based on a "deployment" mutex lock)

GlobalStar Thread - Transmitting messages stored in a buffer received from the RFM22B thread

RFM22B Thread - Receiving messages from the sensor nodes and placing parsed messages in GlobalStar transmission buffer

Worker Thread Design

- Worker Threads are initialized in the beginning of the Executive Thread state machine
- Once initialized Worker Threads are designed to follow and "Init" and "Loop" program design.
 - o "Init" function is made to be re-run to reconfigure hardware
 - "Loop" function is made to run periodically with a configurable timing scheme.
- 5 Worker Threads
 - Globalstar, Power, and RFM22B threads are run constantly
 - ADCS and Deployment threads are run only when required

Executive Thread State Machine

*Connections between all states and Low Power Mode based on "LowPowerMode" command and WSN deployment mode based on "DeployNow" command

Thread Communication

- Each thread routes messages to the executive thread
- Priority Queue data structure
 - o FIFO first in first out
 - o Each message has a priority higher priority messages such as low power mode and node deployment make it to the front of the queue
- Process scheduling techniques to avoid starvation of processes to be implemented priority increases with time?

Deployment Thread

Data Flow on Mule

- GlobalStar Thread (transmission) & RFM22B Thread (reception)
- RFM22B Thread
 - o RFM22B radio driver (Arduino)
 - Setup network initialization
 - Loop network management and message receiving and processing.
 - Processed messages are relayed to the transmission buffer for the GlobalStar Thread to transmit
- GlobalStar Thread
 - o GlobalStar radio driver (class on BeagleBone)
 - o Setup initialization of connection
 - Loop constant checking for received messages or messages in transmission buffer

Network Management (Arduino radio driver)

*Implement tx power rate, retry scheme, and data rate determined from the communication tests

Communication Tests

- Long Range and Mesh Network Tests being scheduled
- Uses for information retrieved from these tests
 - Updated link budget
 - O Determine best TX power for radio transmissions
 - Radio transmission and reception timeout and retry scheme
 - Most reliable data rate
 - Expected range of RF mesh network
- Globalstar driver acceptance test
 - Interfacing with NearSpace Launch to get Globalstar radio activated

^{*} Projected deadline of Sept. 2016

Integration with Other Subsystems

- ADCS integration Projected End Date: Jan. 2017
 - Communication scheme with microcontroller sampling IMU, GPS and sunsensor
 - Magnetorquer board interface
 - o Interface with ADCS algorithm
- EPS integration: Projected End Date: Dec 2016
 - o Mule
 - Testing EPS driver
 - Implement hardware restart schemes
 - Implement Low Power Mode
 - o WSN
 - Reading current from solar panels
 - Monitoring voltages from batteries
 - Implementing Low Power Mode
- Communication Integration: Projected End Date:

Oct. 2016

- o Globalstar
 - Health beacons
 - Packetizing data for transmission
- o RFM22B
 - Tx power rates, data rate, retry/timeout scheme
 - Update network management

Current Status Summation

OARD	STATUS							
DASHBOARD	Software	Requirements	Flow Diagram	Ability to Program Device	Demonstrate Core Functionality	Subsystem-C&DH Interface Test	Flatsat (DITL)	
Sensor Node								
	Software	Requirements	Flow Diagram	Ability to Program Device	Demonstrate Core Functionality	Subsystem-C&DH Interface Test	Flatsat (DITL)	
Mule				J.	I			