淑芬精讲回忆版

-- 黄景娟

一、判断

- 1. 一阶导等于0, x0存在严格局部极小值当且仅当二阶导大于0 (X)
- 2. Rⁿ 任意范数等价
- 3. x∈(0,1), xⁿ不一致收敛到0
- 4. 等度连续则一致连续
- 5. a > 0, \log_a^X 不是凸函数
- 6. 紧空间存在可数稠密子集
- 7. fn连续+逐点收敛不能推f连续
- 8. 偏导数存在不能推可微
- 9. 可逆线性算子是L(Rⁿ)的开集
- 10. 还有一个不记得了??

二、积分

$$\int_0^\pi sin^3x dx \ \int_1^2 xlnx dx$$

三、

$$f$$
 连续可微, $f(1)=0,\int_{0}^{1}f^{4}(x)dx=1,$ 证明 $\int_{0}^{1}f^{'}(x)^{2}dx\int_{0}^{1}x^{2}f^{6}(x)dx>rac{1}{16}$

解:

用Cauchy不等式即

$$(\int_a^b f(x)g(x)dx)^2 \leq \int_a^b f^2(x)dx \cdot \int_a^b g^2(x)dx.$$

放缩,接着用分部积分证明不等式

四、给出 f(x, y) 和 v 和 x_0 , 求 $f'(x_0)(v)$ 要用矩阵,转为梯度算然后8分没了

五、一致收敛和一致Cauchy等价证明,改为了 $\sup |f_n - f_m|$,本质一样

7.8 **Theorem** The sequence of functions $\{f_n\}$, defined on E, converges uniformly on E if and only if for every $\varepsilon > 0$ there exists an integer N such that $m \ge N$, $n \ge N$, $x \in E$ implies

$$|f_n(x) - f_m(x)| \le \varepsilon.$$

Proof Suppose $\{f_n\}$ converges uniformly on E, and let f be the limit function. Then there is an integer N such that $n \ge N$, $x \in E$ implies

$$|f_n(x)-f(x)|\leq \frac{\varepsilon}{2},$$

so that

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| \le \varepsilon$$

if $n \ge N$, $m \ge N$, $x \in E$. Conversely, suppose the Cauchy condition holds. Then, the sequence $\{f_n(x)\}$ converges, for every x, to a limit which we may call f(x). Thus the sequence $\{f_n\}$ converges on E, to f. We have to prove that the convergence is uniform.

Let $\varepsilon > 0$ be given, and choose N such that (13) holds. Fix n, and let $m \to \infty$ in (13). Since $f_m(x) \to f(x)$ as $m \to \infty$, this gives

$$|f_n(x) - f(x)| \le \varepsilon$$

for every $n \ge N$ and every $x \in E$, which completes the proof.

9.19 Theorem Suppose f maps a convex open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m , f is differentiable in E, and there is a real number M such that

$$\|\mathbf{f}'(\mathbf{x})\| \leq M$$

for every $x \in E$. Then

$$|\mathbf{f}(\mathbf{b}) - \mathbf{f}(\mathbf{a})| \le M|\mathbf{b} - \mathbf{a}|$$
 for all $\mathbf{a} \in E$, $\mathbf{b} \in E$.

Proof Fix $a \in E$, $b \in E$. Define

$$\gamma(t) = (1 - t)\mathbf{a} + t\mathbf{b}$$

for all $t \in R^1$ such that $\gamma(t) \in E$. Since E is convex, $\gamma(t) \in E$ if $0 \le t \le 1$. Put

$$\mathbf{g}(t) = \mathbf{f}(\gamma(t)).$$

Then

$$\mathbf{g}'(t) = \mathbf{f}'(\gamma(t))\gamma'(t) = \mathbf{f}'(\gamma(t))(\mathbf{b} - \mathbf{a}),$$

so that

$$|\mathbf{g}'(t)| \leq ||\mathbf{f}'(\gamma(t))|| ||\mathbf{b} - \mathbf{a}|| \leq M ||\mathbf{b} - \mathbf{a}||$$

for all $t \in [0, 1]$. By Theorem 5.19,

$$|\mathbf{g}(1) - \mathbf{g}(0)| \le M|\mathbf{b} - \mathbf{a}|.$$

But g(0) = f(a) and g(1) = f(b). This completes the proof.

七、不动点定理证明 题干改为了d(Tx, Ty) < d(x, y),

9.23 Theorem If X is a complete metric space, and if φ is a contraction of X into X, then there exists one and only one $x \in X$ such that $\varphi(x) = x$.

Proof Pick $x_0 \in X$ arbitrarily, and define $\{x_n\}$ recursively, by setting

(44)
$$x_{n+1} = \varphi(x_n) \qquad (n = 0, 1, 2, \ldots).$$

Choose c < 1 so that (43) holds. For $n \ge 1$ we then have

$$d(x_{n+1}, x_n) = d(\varphi(x_n), \varphi(x_{n-1})) \le c \ d(x_n, x_{n-1}).$$

Hence induction gives

(45)
$$d(x_{n+1}, x_n) \le c^n d(x_1, x_0) \qquad (n = 0, 1, 2, \ldots).$$

If n < m, it follows that

$$d(x_n, x_m) \le \sum_{i=n+1}^m d(x_i, x_{i-1})$$

$$\le (c^n + c^{n+1} + \dots + c^{m-1}) d(x_1, x_0)$$

$$\le [(1 - c)^{-1} d(x_1, x_0)]c^n.$$

Thus $\{x_n\}$ is a Cauchy sequence. Since X is complete, $\lim x_n = x$ for some $x \in X$.

Since φ is a contraction, φ is continuous (in fact, uniformly continuous) on X. Hence

$$\varphi(x) = \lim_{n \to \infty} \varphi(x_n) = \lim_{n \to \infty} x_{n+1} = x.$$