Giải đề QG 2007

Nguyễn Tấn Phát

Bài 1: Dãy con không giảm dài nhất (MAXISEQ)

• Tóm tắt đề

- Cho n và dãy A gồm n số: a₁,...,a_n;
- Dãy u_k được định nghĩa: u₁=1;
 u_k=u_{k-1}+k;
- Tìm dãy con không giảm của dãy A mà các phần tử thuộc dãy u_k;

• Ràng buộc

- n<10⁴
- $a_i < 10^8$

MAXISEQ.INP	MAXISEQ.OUT
8	3
2	
2007	
6	
6	
15	
16	
3	
21	

Giải thích: 6 6 15 là dãy cần tìm

Ví dụ dãy $u_k = u_{k-1} + k$

```
• u<sub>1</sub>=1;
```

•
$$u_2=u_1+2=3$$
;

•
$$u_3=u_2+3=6$$
;

•
$$u_4 = u_3 + 4 = 10$$
;

•
$$u_5=u_4+5=15$$
;

•
$$u_6 = u_5 + 6 = 21$$

•

$$=>u_n=1+2+3+..+n=n(n+1)/2$$

Phân tích

- Vấn đề của bài toán là nếu kiểm tra được một số có thuộc u_k hay không? =>Bài được giải quyết duyệt tuyến tính để tìm dãy dài nhất là dãy đơn điệu dài nhất;
- Kiểm tra một số có thuộc u_k có nhiều cách
- Cách 1: Đánh dấu (u:array[0..maxn] of Boolean)

```
fillchar(u,sizeof(u),false);
u[1]:=true;
i:=1; k:=1;
while k<maxn do begin
      inc(i); k := k+i;
      if k<maxn then u[k]:=true;
end;
```

Phân tích

- Kiểm tra một số có thuộc u_k có nhiều cách
- Cách 2: (nếu u_k>10⁸)
 - Sinh dãy u_k;
 - chặt nhị phân để kiểm tra một số có thuộc hay không
- Cách 3: Sử dụng công thức

```
=>u<sub>n</sub>=1+2+3+..+n=n(n+1)/2
Để tìm a[i] có thuộc dãy u hay không?
Chặt nhị phân có tồn tại giá trị k để a[i]=k(k+1)/2;->exit(true)
ngược lại exit(false);
```

Bài 2: Siêu thị may mắn (SMARKET)

• Tóm tắt đề

Cho n mặt hàng; mỗi mặt hàng có giá trị c_i và có số lượng m_i; Có số tiền S. Hỏi số cách có thể mua hàng sao cho tổng giá trị bằng S; đưa ra một cách mua;

SMARKET.INP	SMARKET.OUT		
12 3 4 1 6 2 2 1	2 0 2 0		

Ràng buộc dữ liệu

 $1 \le n \le 500$; $1 \le s \le 10^5$; $1 \le c_i \le 10^4$; $1 \le m_i \le 100$

Phân tích

- Subtask1: Duyệt vét cạn như sau
- Mỗi món hàng có các khả năng: j=0...m_i; nghĩa là 0 chọn hoặc chọn 1 hoặc... hoặc chọn m_i;
- Duyệt đệ qui cho tới khi T=S thì đếm số cấu hình thỏa ĐK; (T là tổng hiện tại)
- Đặt cận để giảm các nhánh thừa

Xét bài toán con

• Cho dãy A: a₁,a₂,...,a_n và S. Đếm số cách chọn các phần tử trong A để tổng bằng S.

· Hướng dẫn

- Gọi f[i,j] là tổng số cách khi xét tới i và tổng bằng S
- CSQHĐ: f[0,0]=1; f[0,i]=0 với mọi i
- Xét 2 TH:
 - Không chọn i: t1=f[i-1,j];
 - Chọn i: t2=f[i-1,j-a[i]];
 - =>F[i,j]=t1+t2;

Ví dụ: S=6; n=5: 4 6 2 1 5

i	1	2	3	4	5	6
1	0	0	0	1	0	0
2	0	0	0	1	0	<u>†</u> 1
3	0	1	0	1	0	2
4	1	1	1	1	1	2
5	1	1	1	1	2	3

Mở rộng bài toán xét mỗi vật có m[i]

- Xét vật i có các TH:
 - Không chọn i: t1=f[i-1,j];
 - Chọn 1: t2=f[i-1,j-a[i]];
 - Chọn 2: t2 = f[i-1, j-2*a[i]];
 - •
 - Chọn m[i]: $t_k = f[i-1,j-m[i]*a[i]];$
 - => $F[i,j]=t1+t2+...+t_k$;
 - Độ phức tạp: O(n*s*m[i])

• Subtask2: QHĐ https://vietcodes.github.io/code/55/index.html

Gọi f_i là số cách mua cho tổng số tiền là i, ban đầu $f_0=1$. Ta duyệt qua mỗi mặt hàng, cập nhật lại f như sau:

$$f_i' = f_i + f_{i-c} + f_{i-2c} + f_{i-3c} + \ldots + f_{i-mc}$$

Với c, m là giá và số lượng của mặt hàng đang xét.

Đặt

$$\Delta_i = f_i' - f_i = f_{i-c} + f_{i-2c} + f_{i-3c} + \ldots + f_{i-mc}$$

Ta thấy rằng $\Delta_i=f_{i-c}+\Delta_{i-c}-f_{i-(m+1)c}$, vì vậy ở mỗi bước ta có thể tính Δ trong O(s) rồi cập nhật lại f trong O(s).

Độ phức tạp thuật toán: O(ns).

Cần chú ý là kết quả có thể vượt giới hạn số 64-bit. Bản cài đặt ở dưới sử dụng số 128-bit để tính toán.

QBROBOT - VOI07 Robot cứu hỏa

• Tóm tắt

QBROBOT.INP	QBROBOT.OUT
4	3
0110	
5	
1 2 5 4	
1 3 4 3	
1 4 9 4	
2 4 4 1	
3 4 5 2	

QBROBOT - VOI07 Robot cứu hỏa

- Tóm tắt
- Cho n nút giao thông. m là số đường đi. Trên mỗi đường đi (i,j) mất thời gian t[i,j] và chi phí xăng c[i,j]. Ban đầu robot chứa đầy xăng(w). Ở mỗi nút có thể có trạm đỗ xăng robot có thể đỗ đầy bình. Tìm w nhỏ nhất thỏa ĐK:
- 1. Đường đi từ s đến t thời gian nhỏ nhất
- 2. Robot đủ năng lượng để đi.

Thuật toán

- dijkstra(1, d1); //Xuất phát từ 1
- dijkstra(n, dn);//Xuất phát từ n
- Chặt nhị phân w;
- Với mỗi w -> kt(w) có thể đi được với đường đi ngắn nhất?
- Viết hàm kt(w) bằng BFS
 - Với mỗi u xác định v là kề với u khi thỏa ĐK:
 (d1[u]+t[u,v]+dn[v]=d1[n]) and (w>=c[u,v])