Let E be a directed graph, and $\alpha \in E^*$ such that $|r^{-1}\{s(\alpha)\}| = \infty$. Let $X, Y \subseteq_{\text{fin}} E(S(E))$, and Z be a finite cover of $E^{X,Y}$. If $\xi_{\alpha} \in \mathcal{U}(X,Y)$, then $\xi_{\alpha} \cap Z \neq \emptyset$. Proof:

First note:

$$E^{X,Y} = \{ e \in E(S(E)) \colon e \le x \ \forall x \in x \text{ and } ey = 0 \ \forall y \in Y \}$$
$$= \{ e \in E(S(E)) \colon e \le \min(X) \text{ and } ey = 0 \ \forall y \in Y \}$$
$$= E^{\{\min(X)\},Y}$$

Letting $\min(X) = (x, x)$,

$$E^{X,Y} = \{(xx', xx'): x' \in E^*, r(x') = s(x) \text{ and } (xx', xx')y = 0 \ \forall y \in Y\}$$

Consider the set $C:=\{(\alpha b,\alpha b)\colon b\in E^1,\ s(\alpha)=r(b)\}$. By the assumption that $s(\alpha)$ is an infinite receiver, C is infinite. Given $y\in Y$, let ν be the path corresponding to y. Since $\xi_\alpha\in \mathcal{U}(X,Y),\ \nu$ is not a prefix of α , and thus not a proper prefix of αb for any b. Thus, if $(\alpha b,\alpha b)y\neq 0$, αb is a prefix of ν . Then for $\beta\neq b,\ \alpha\beta$ cannot be a prefix of ν . So there is at most one element of C such that $(\alpha b,\alpha b)y\neq 0$. By the assumption that Y is finite, all but finitely many elements of C are inside $E^{\{(x,x)\},Y}$. Therefore, if Z is a cover of $E^{X,Y}$, Z is an outer cover of the infinite set $E^{X,Y}\cap C$. Because Z is finite, $\exists z\in Z$ with $(\alpha b,\alpha b)z\neq 0$ for infinitely many $(\alpha b,\alpha b)\in E^{X,Y}\cap C$. If ν is the path corresponding to ν , then for every ν , either ν is a prefix of ν , or ν is a prefix of ν . All the ν is a prefix of ν , no other can be a prefix of ν . So ν is a prefix of ν for infinitely many ν . Thus $|\nu|\leq |\alpha|+1$. If $|\nu|=|\alpha|+1$, we have a contradiction: ν 0 for all ν 1 is a prefix of ν 2. Thus ν 3 is a prefix of ν 4. Therefore ν 5 is a prefix of ν 6. Thus ν 5 is a prefix of ν 7. Therefore ν 8 for all ν 8 is a ν 9 is a prefix of ν 9. Therefore ν 9 is a prefix of ν 9. Therefore ν 9 is a prefix of ν 9. Therefore ν 9 is a prefix of ν 9. Therefore ν 9 is a prefix of ν 9 is a prefix of ν 9. Therefore ν 9 is a prefix of ν 9 is a prefix of ν 9. Therefore ν 9 is a prefix of ν 9 is a prefix of ν 9. Therefore