

Master in Innovation and Research in Informatics (MIRI) Computer Networks and Distributed Systems

Stochastic Network Modeling (SNM)

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

Transient Solution

Classification of States

Steady State

Reversed Chain

Reversible Chains

Research Example: Aloha

Finite Absorbing

Stochastic Network Modeling (SNM)

Llorenç Cerdà-Alabern Universitat Politècnica de Catalunya Departament d'Arquitectura de Computadors llorenc@ac.upc.edu

Parts

- Introduction
- ① Discrete Time Markov Chains (DTMC)
- Continuous Time Markov Chains (CTMC)
- Queuing Theory

Master in Innovation and Research in Informatics (MIRI) Computer Networks and Distributed Systems

Stochastic Network Modeling (SNM)

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

Transient Solution

Classification

Steady State

Reversed Chair

Reversible Chains

Research Example: Aloha

Finite Absorbing

Part II

Discrete Time Markov Chains (DTMC)

Outline

- Definition of a DTMC
- Transient Solution
- Classification of States
- Steady State

- Reversed Chain
- Reversible Chains
- Research Example: Aloha
- Finite Absorbing Chains

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

State Transition Diagram

State Transition Diagram

- We are interested in a process that evolve in stages.
- For the model to be tractable, it is convenient to represent the SP by giving all possible states (there may be ∞), and the possible transitions between them:

For the model to be consistent:

$$\sum_{\forall j} p_{ij} = 1$$

Mathematically:

$$p_{ij} = P(X(n) = j \mid X(n-1) = i)$$

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Properties of a DTMC

Properties of a DTMC

• The event X(n) = i (at step n the system is in state i) must satisfy (memoryless property):

$$P(X(n) = j \mid X(n-1) = i, X(n-2) = k, \dots) =$$

 $P(X(n) = j \mid X(n-1) = i)$

- If $P(X(n) = j \mid X(n-1) = i) = P(X(1) = j \mid X(0) = i)$ for any nwe have an homogeneous DTMC. We shall only consider homogeneous DTMC.
- We call one-step transition probabilities to:

$$p_{ij} = P(X(n) = j \mid X(n-1) = i)$$

 The SP is called a Markov Process (MP) or Markov Chain (MC) depending on the state being continuous or discrete.

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Transition Matrix

Transition Matrix

Transition probabilities:

$$p_{ij} = P(X(n) = j \mid X(n-1) = i)$$

In matrix form:

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \cdots \\ p_{21} & p_{22} & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix}$$

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Transition Matrix

Transition Matrix

We have

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \cdots \\ p_{21} & p_{22} & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix}, \text{ where } p_{ij} = P(X(n) = j \mid X(n-1) = i)$$

 For the model to be consistent, the probability to move from *i* to any state must be 1. Mathematically:

$$\sum_{\forall j} p_{ij} = \sum_{\forall j} P(X(n) = j \mid X(n-1) = i) =$$

$$\sum_{\forall j} \frac{P\big(X(n-1)=i \bigm| X(n)=j\big) P\big(X(n)=j\big)}{P(X(n-1)=i)} = \frac{P(X(n-1)=i)}{P(X(n-1)=i)} = \boxed{1}$$

• P is a stochastic matrix, i.e. a matrix which rows sum 1.

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Definition of DTMC

Diagram

Properties of a DT

Transition Matrix

Absorbing Chai

State Probabilities

Chapman-Kolmogoro Equations

Transier

Classificat

Steady Sta

Reversed Chair

Reversib

Example

- Assume a terminal can be in 3 states:
 - State 1: Idle.
 - State 2: Active without sending data.
 - State 3: Active and sending data at a rate v bps.

$$\mathbf{P} = \begin{bmatrix} \mathbf{to} \text{ state} \\ 1 & 2 & 3 \\ 0.8 & 0.2 & 0 \\ 0 & 0.2 & 0.8 \\ 0.2 & 0.3 & 0.5 \end{bmatrix} \begin{bmatrix} 1 & \text{from} \\ 2 & \text{state} \\ 3 \end{bmatrix}$$

• The average transmission rate (throughput), v_a , is:

 $v_a = P$ (the terminal is in state 3) × v

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Definition of DTMC

Diagram

Properties of a DTM

Transition Matrix

Absorbing Chains

State Probabilities
Chapman-Kolmogorov
Equations

Sojourn or Holding Time

Solution Classificati

Steady Stat

Reversed Chai

Revers

Absorbing Chains

- It is possible to have chains with absorbing states.
- A state *i* is absorbing if $p_{ii} = 1$.
- Example: State 1 is absorbing.

$$\mathbf{P} = \begin{bmatrix} \mathbf{to} \ \mathbf{state} \\ 1 & 2 & 3 \\ 1 & 0 & 0 \\ 0,1 & 0,1 & 0,8 \\ 0,2 & 0,3 & 0,5 \end{bmatrix} \begin{bmatrix} 1 & \text{from} \\ 2 & \text{state} \\ 3 \end{bmatrix}$$

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Definition of

State Transition

Diagram

Properties of a DTM

Transition Matrix

n-step transition

State Probabilities

Equations

Transient

Classification of States

teady Stat

Reversed Chair

n-step transition probabilities

- Transition probabilities: $p_{ij} = P(X(n) = j \mid X(n-1) = i)$
- In matrix form:

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \cdots \\ p_{21} & p_{22} & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix}$$

• We define the **n-step** transition probabilities:

$$p_{ij}(n) = P(X(n) = j \mid X(0) = i)$$

$$\mathbf{P}(n) = \begin{bmatrix} p_{11}(n) & p_{12}(n) & \cdots \\ p_{21}(n) & p_{22}(n) & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix}$$

• **P** and P(n) are stochastic matrices: Their rows sum 1.

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

State Transition
Diagram
Properties of a DT

Absorbing Chains n-step transition

State Probabilities

Equations
Sojourn or Holding
Time

Transient Solution

Classificatio of States

Reversed Chai

Reversed Chai

Revers

State Probabilities

• Define the probability of being in state *i* at step *n*:

$$\pi_i(n) = P(X(n) = i)$$

In vector form (row vector)

$$\boldsymbol{\pi}(n) = (\pi_1(n), \pi_2(n), \cdots) = (P(X(n) = 1), P(X(n) = 2), \cdots).$$

• Thus, the vector $\pi(n)$ is the distribution of the random variable X(n), and it is called the state probability at step n.

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

State Probabilities

State Probabilities

State probability:

$$\boldsymbol{\pi}(n) = (\pi_1(n), \pi_2(n), \cdots) = (P(X(n) = 1), P(X(n) = 2), \cdots).$$

• Law of total prob. $P(A) = \sum_{n} P(A \cap B_n) = \sum_{n} P(A|B_n)P(B_n)$:

$$\pi_i(n) = \sum_k P(X(n-1) = k) \ P\big(X(n) = i \ \big| \ X(n-1) = k\big) = \sum_k \pi_k(n-1) \ p_{ki}$$

$$\pi_i(n) = \sum_k P(X(0) = k) \ P\big(X(n) = i \ \big| \ X(0) = k\big) = \sum_k \pi_k(0) \ p_{ki}(n)$$

In matrix form:

$$\boldsymbol{\pi}(n) = \boldsymbol{\pi}(n-1)\,\mathbf{P}$$

$$\boldsymbol{\pi}(n) = \boldsymbol{\pi}(0) \, \mathbf{P}(n)$$

where $\pi(0)$ is the initial distribution.

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

State Probabilities

State Probabilities

$$\boldsymbol{\pi}(n) = \boldsymbol{\pi}(n-1) \mathbf{P}$$
$$\boldsymbol{\pi}(n) = \boldsymbol{\pi}(0) \mathbf{P}(n)$$

Iterating

$$\pi(n) = \pi(n-1) \mathbf{P} = \pi(n-2) \mathbf{P} \mathbf{P} = \pi(n-3) \mathbf{P} \mathbf{P} \mathbf{P} = \dots = \pi(0) \mathbf{P}^n$$

Thus:

$$\boldsymbol{\pi}(n) = \boldsymbol{\pi}(0) \, \mathbf{P}(n) = \boldsymbol{\pi}(0) \, \mathbf{P}^n$$

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Chapman-Kolmogorov

Equations

Chapman-Kolmogorov Equations

$$p_{ij}(n) = \sum_{k} p_{ik}(r) \ p_{kj}(n-r)$$

Proof:

$$p_{ij}(n) = P(X(n) = j \mid X(0) = i) = \sum_{k} P(X(n) = j, X(r) = k \mid X(0) = i)$$

$$= \sum_{k} \frac{P(X(n) = j, X(r) = k, X(0) = i)}{P(X(0) = i)} \times \frac{P(X(r) = k, X(0) = i)}{P(X(r) = k, X(0) = i)}$$

$$= \sum_{k} P(X(n) = j \mid X(r) = k, X(0) = i) P(X(r) = k \mid X(0) = i)$$

$$= \sum_{k} P(X(n) = j \mid X(r) = k) P(X(r) = k \mid X(0) = i)$$

$$= \sum_{k} P(X(n) = j \mid X(r) = k) P(X(r) = k \mid X(0) = i)$$

$$= \sum_{k} P(X(n) = j \mid X(r) = k) P(X(r) = k \mid X(0) = i)$$

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

State Transition

Diagram

Properties of a

..

n-step transiti

State Probabilities

Chapman-Kolmogorov

Equations
Sojourn or Holding

Transient Solution

of States

Steady Stat

Reversed Chair

Revers

Chapman-Kolmogorov Equations

$$p_{ij}(n) = \sum_{k} p_{ik}(r) \ p_{kj}(n-r)$$

Graphical interpretation:

In matrix form:

$$\mathbf{P}(n) = \mathbf{P}(r)\,\mathbf{P}(n-r)$$

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

State Transition

Diagram

Transition Mat

Absorbing Cha

n-step transitio

probabilities

State Probabilities

Chapman-Kolmogorov

Equations Sojourn or Holding

Sojourn or Holding Time

Classification

Classification of States

Reversed Chai

Chains

Chapman-Kolmogorov Equations

$$\mathbf{P}(n) = \mathbf{P}(r)\,\mathbf{P}(n-r)$$

• Particularly:

$$P(n) = P(1)P(n-1) = PP(n-1) = P(n-1)P$$

Iterating:

$$\mathbf{P}(n) = \mathbf{P}^n$$

• Thus:

$$\boldsymbol{\pi}(n) = \boldsymbol{\pi}(0) \, \mathbf{P}(n) = \boldsymbol{\pi}(0) \, \mathbf{P}^n$$

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Sojourn or Holding

Sojourn or Holding Time

• Sojourn or holding time in state k: Is the RV H_k equal to the number of steps that the chain remains in state *k* before leaving to a different state:

The Markov property implies:

$$H_i(n) = P(H_i = n) = p_{ii}^{n-1} (1 - p_{ii}), n \ge 1$$

• Which is a geometric distribution with mean:

$$E[H_i] = \sum_{n=1}^{\infty} nP(H_i = n) = \frac{1}{1 - p_{ii}}.$$

Definition of a DTMC

Sojourn or Holding Time NOTE: We allow that:

Discrete Time Markov Chains (DTMC)

Sojourn or Holding

 $p_{ii} = 0 \Rightarrow H_i(n) = I(n = 1) = \begin{cases} 1, & n = 1, \\ 0, & \text{otherwise.} \end{cases}$, and

 $p_{ii} = 1 \Rightarrow E[H_i] = \infty$ (absorbing state).

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Sojourn or Holding

Theorem

A stochastic process is a DTMC if and only if the sojourn times are geometrically distributed.

Proof.

We have seen that a DTMC has a sojourn time

$$H_i(n) = P(H_i = n) = p_{ii}^{n-1} (1 - p_{ii}), n \ge 1$$

- Which is geometrically distributed.
- We need to prove that the geometric distribution satisfies the memoryless property (aka Markov property).

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

State Transition

Diagram

Properties of a

11411311101111111

Thospioling Citi

n-step transitio

State Probabilities

Sojourn or Holding

Transient Solution

Classification of States

of States

Reversed Chai

Reversit

The geometric distribution satisfies the Markov property (1)

Proof

Markov property:

$$P\big(X(n_2) = i \mid X(n_1) = i, X(n_0) = i\big) = P\big(X(n_2) = i \mid X(n_1) = i\big)$$

 Thus, the Markov property in terms of the sojourn time can be written as:

$$P(H_i > n_2 - n_0 \mid H_i > n_1 - n_0) = P(H_i > n_2 - n_1)$$

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

State Transitio

Diagram

Properties of a

Transition Mai

Absorbing Cha

probabilities

State Probabilities

Equations

Sojourn or Holding Time

Transient Solution

Classification of States

Reversed Cha

Reversed Cha

Chains

The geometric distribution satisfies the Markov property (2)

$$P(H_i > n_2 - n_0 \mid H_i > n_1 - n_0) = P(H_i > n_2 - n_1)$$

Since

$$P(H_i > k) = 1 - P(H_i \le k) = 1 - \sum_{n=1}^k p^{n-1} (1-p) = 1 - (1-p) \frac{1-p^k}{1-p} = p^k$$

• We have:

$$P(H_i > n_2 - n_0 \mid H_i > n_1 - n_0) = \frac{P(H_i > n_2 - n_0, H_i > n_1 - n_0)}{P(H_i > n_1 - n_0)} =$$

$$\frac{P(H_i > n_2 - n_0)}{P(H_i > n_1 - n_0)} = \frac{p^{n_2 - n_0}}{p^{n_1 - n_0}} = p^{n_2 - n_1} = P(H_i > n_2 - n_1) \quad \Box$$

Master in Innovation and Research in Informatics (MIRI) Computer Networks and Distributed Systems

Stochastic Network Modeling (SNM)

Discrete Time Markov Chains (DTMC)

Transient Solution

Part II

Discrete Time Markov Chains (DTMC)

Outline

- Transient Solution

Transient Solution

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

Solution

Transient Solution

Eigenvalues of a Stochastic Matrix Chain with a Defecti

Chain with a Defecti Matrix Example

Classification of States

Steady State

Reversed Chai

Research

Research Example: Aloh

Transient Solution

- If we are interested in the transient evolution we shall study $\pi(n) = \pi(0) \mathbf{P}^n$.
- If we can diagonalize **P**, we can obtain the transient evolution in close form.
- **P** can be diagonalized if **P** can be decomposed as:

$$\mathbf{P} = \mathbf{L}^{-1} \Lambda \mathbf{L}$$

where ${\bf L}$ is some invertible matrix and ${\boldsymbol \Lambda}$ is the diagonal matrix

$$\Lambda = \operatorname{diag}(\lambda_1, \dots \lambda_N) = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_N \end{bmatrix}$$

with λ_l , $l = 1, \dots N$ the eigenvalues of **P**.

Transient Solution

Discrete Time Markov Chains (DTMC)

Transient Solution

Eigenvalues

• The eigenvalues λ_l of a matrix **A** are scalars that satisfy: $l\mathbf{A} = \lambda_l \mathbf{l}$ (or $\mathbf{A}\mathbf{r} = \lambda_l \mathbf{r}$) for some row vectors \mathbf{l} (column vectors *r*), referred to as *left* and *right* eigenvectors, respectively.

$$l\mathbf{A} = \lambda_l \, l \Rightarrow l(\mathbf{A} - \mathbf{I}\lambda_l) = 0 \Rightarrow \det(\lambda_l \mathbf{I} - \mathbf{A}) = 0$$

 $\mathbf{A} \, \mathbf{r} = \lambda_l \, \mathbf{r} \Rightarrow (\mathbf{A} - \mathbf{I}\lambda_l) \, \mathbf{r} = 0 \Rightarrow \det(\lambda_l \mathbf{I} - \mathbf{A}) = 0$

$$\mathbf{A}I = \lambda_l I \Rightarrow (\mathbf{A} - \mathbf{I}\lambda_l)I = 0 \Rightarrow \det(\lambda_l \mathbf{I} - \mathbf{A}) = 0$$

- Thus, λ_I solve the characteristic polynomial $\det(\lambda \mathbf{I} \mathbf{A}) = 0$.
- Note that, in general, left and right eigenvectors are different, but eigenvalues are the same (they solve the same characteristic polynomial).
- A matrix can be diagonalized if all eigenvalues are single (multiplicity = 1). If a matrix cannot be diagonalized it is called defective.

Transient Solution

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

Transien Solution

Transient Solution

Eigenvalues of a Stochastic Matri:

Chain with a Defectiv Matrix Example

Classification of States

Steady State

Reversed Chair

Research

Research Example: Aloha

Determinants

$$\det\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11} a_{22} - a_{12} a_{21}$$

$$\det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{pmatrix} +a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{21} a_{32} a_{13} \\ -a_{31} a_{22} a_{13} - a_{12} a_{21} a_{33} - a_{23} a_{32} a_{11} \end{bmatrix}$$

Cofactor Formula: expanding along a row i:

$$\det \mathbf{A} = \sum_{j=1}^{N} a_{ij} (-1)^{i+j} \det M_{ij},$$

where the minor matrices M_{ij} are obtained removing the row i and column j from \mathbf{A} . $(-1)^{i+j} \det M_{ij}$ is called the cofactor of a_{ij} .

Transient Solution

Discrete Time Markov Chains (DTMC)

Definition of DTMC

Transien Solution

Transient Solution

Evamula

Eigenvalues of a Stochastic Matrix

Chain with a Defe

Example

of States

Steady State

Reversed Cha

Reversible Chains

Research Example: Aloh

Properties of the determinants

 $\det \mathbf{A} = \prod \text{eigenvalues of } \mathbf{A}$

trace $\mathbf{A} = \sum \text{eigenvalues of } \mathbf{A}$

where trace $A = \sum$ elements of the diagonal of A.

Transient Solution

Discrete Time Markov Chains (DTMC)

Definition of DTMC

Transien Solution

Transient Solution

Eigenvalues of a Stochastic Matrix Chain with a Defectiv

Chain with a Defectiv Matrix Example

Classification of States

Steady State

Reversed Chair

Research Example: Aloh

Transient Solution

- Assume a finite DTMC with N states. Then $P = P^{N \times N}$.
- Assume that **P** can be diagonalized: $\mathbf{P} = \mathbf{L}^{-1} \Lambda \mathbf{L}$, where Λ is the diagonal matrix $\Lambda = \text{diag}(\lambda_1, \dots \lambda_N)$, with λ_l , $l = 1, \dots N$ the eigenvalues of **P**.
- Since $\Lambda^n = \operatorname{diag}(\lambda_1^n, \dots, \lambda_N^n)$, we have that

$$\boldsymbol{\pi}(n) = \boldsymbol{\pi}(0) \mathbf{P}(n) = \boldsymbol{\pi}(0) \mathbf{P}^n = \boldsymbol{\pi}(0) (\mathbf{L}^{-1} \Lambda^n \mathbf{L}) = \boldsymbol{\pi}(0) (\mathbf{L}^{-1} \operatorname{diag}(\lambda_1^n, \dots \lambda_N^n) \mathbf{L})$$

Transient Solution

Discrete Time Markov Chains (DTMC)

Transient Solution

Transient Solution

• But L^{-1} diag($\lambda_1^n, \dots \lambda_N^n$) L are linear combinations of $\lambda_1^n, \dots, \lambda_N^n$. Thus, the probability of being in state *i* is given bv:

$$\pi_i(n) = (\boldsymbol{\pi}(n))_i = \sum_{l=1}^N a_i^{(l)} \lambda_l^n$$

where the unknown coefficients $a_i^{(l)}$ can be obtained solving the system of equations:

$$\sum_{l=1}^{N} a_{i}^{(l)} \lambda_{l}^{n} = (\boldsymbol{\pi}(n))_{i} = (\boldsymbol{\pi}(0) \mathbf{P}^{n})_{i}, n = 0, \dots N - 1$$

Transient Solution

Discrete Time Markov Chains (DTMC)

Example

Example

Assume a DTMC with

$$\mathbf{P} = \begin{bmatrix} 4/5 & 1/5 \\ 2/5 & 3/5 \end{bmatrix}$$

• We want the probability of being in state 2 in n steps starting from state 1: $\pi_2(n)$ with $\pi(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}$.

Transient Solution

Discrete Time Markov Chains (DTMC)

Solution

• It can be easily found that the eigenvalues of **P** are $\lambda_1 = 1$ and $\lambda_2 = 2/5$.

$$\pi_2(n) = \lambda_1^n a + b \lambda_2^n = a + b(2/5)^n$$

• Imposing the boundary conditions $\pi_i(n) = (\pi(0) \mathbf{P}^n)_i$:

$$\pi_2(0) = a + b = (\begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{P}^0)_2 = (\mathbf{P}^0)_{12} = 0$$

$$\pi_2(1) = a + b(2/5) = (\begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{P}^1)_2 = (\mathbf{P})_{12} = 1/5$$

we have that a = 1/3, b = -1/3, thus:

$$\pi_2(n) = 1/3 - 1/3 (2/5)^n, \quad n \ge 0$$

 $\pi_1(n) = 1 - \pi_2(n) = 2/3 + 1/3 (2/5)^n, \quad n \ge 0$

Transient Solution

Discrete Time Markov Chains (DTMC)

Eigenvalues of a

Eigenvalues of a Stochastic Matrix

- P has an eigenvalue equal to 1 ($Px = \lambda x$, for $\lambda = 1$). **Proof:** $\mathbf{Pe} = \mathbf{e}$, where $\mathbf{e} = \begin{bmatrix} 1 & 1 & \cdots \end{bmatrix}^{\mathrm{T}}$ is a column vector of 1 (all rows of **P** add to 1).
- All eigenvalues of **P** are $|\lambda_l| \leq 1$. **Proof:** Using Gerschgorin's theorem *The* eigenvalues of a matrix $\mathbf{P}_{n \times n}$ lie within the union of the n circular disks with center p_{ii} and radius $\sum_{i\neq i} |p_{ij}|$ in \mathbb{C} . Since $\sum_{i} p_{ij} = 1$, the property is proved.

• The eigenvalue $\lambda = 1$ is single if **P** is irreducible (Perron-Frobenius theorem). **P** is irreducible if all states communicate: for some n, $p_{ij}(n) = (\mathbf{P}^n)_{ij} > 0$, $\forall i, j$.

Transient Solution

Discrete Time Markov Chains (DTMC)

Eigenvalues of a

Proof of Gerschgorin's theorem

Gerschgorin's theorem: The eigenvalues of a matrix $\mathbf{P}_{n \times n}$ lie within the union of the n circular disks with center p_{ii} and radius $\sum_{i\neq i} |p_{ij}|$ in C.

Proof: From $\mathbf{P} \mathbf{x} = \lambda \mathbf{x}$ we have

$$\sum_{i} p_{ij} x_j = \lambda x_i \quad \forall i \in \{1, \dots, n\}.$$

We choose *i* such that $|x_i| = \max_i |x_i|$. Thus,

$$\sum_{i\neq i} p_{ij} x_i = \lambda x_i - p_{ii} x_i$$
, and

$$|\lambda - p_{ii}| = \left| \sum_{j \neq i} p_{ij} \frac{x_j}{x_i} \right| \le \sum_{j \neq i} \left| p_{ij} \frac{x_j}{x_i} \right| \le \sum_{j \neq i} |p_{ij}|$$

and the equation $|x-c| \le r$, $x,c \in \mathbb{C}, r \in \mathbb{R}$ is a disk of center c and radius r in \mathbb{C} .

Transient Solution

Discrete Time Markov Chains (DTMC)

Chain with a Defective

Chain with a Defective Matrix

- What if P cannot be diagonalized? (defective matrix).
- Let λ_l , $l = 1, \dots L$ be the eigenvalues of $\mathbf{P}^{N \times N}$, each with multiplicity k_l ($k_l \ge 1$, $\sum_l k_l = N$), and a possible eigenvalue $\lambda_1 = 0$ with multiplicity k_1 . Then [1]:

$$\pi_{j}(n) = \sum_{m=0}^{k_{1}-1} a_{j}^{(1,m)} I(n=m) + \sum_{l=2}^{L} \lambda_{l}^{n} \sum_{m=0}^{k_{l}-1} a_{j}^{(l,m)} n^{m},$$

$$1 \le j \le N, n \ge 0$$

I(n = m) is the indicator func.: I(n) = 1 if n = m, I(n) = 0 if $n \neq m$.

[1]Llorenc Cerdà-Alabern. Transient Solution of Markov Chains Using the Uniformized Vandermonde Method. Tech. rep.

UPC-DAC-RR-XCSD-2010-2. Universitat Politècnica de Catalunya, Dec. 2010. URL: https://www.ac.upc.edu/app/researchreports/html/research_center_index-XCSD-2010, en.html.

Transient Solution

Discrete Time Markov Chains (DTMC)

Example

Example

Assume a DTMC with

$$\mathbf{P} = \begin{bmatrix} 3/4 & 1/4 & 0 \\ 0 & 3/4 & 1/4 \\ 1 & 0 & 0 \end{bmatrix}$$

- We want the probability of being in state 1 in n steps starting from state 1: $\pi_1(n)$ with $\pi_1(0) = 1$.
- It can be easily found that the eigenvalues of **P** are $\lambda_1 = 1$ and $\lambda_2 = 1/4$ with multiplicity 2. We guess:

$$\pi_1(n) = a + 1/4^n(b + cn)$$

• Imposing $\pi_1(0) = 1$, $\pi_1(1) = 3/4$, $\pi_1(2) = (3/4)^2$, we have:

$$\pi_1(n) = \frac{4}{9} + \frac{1}{4^n} \left(\frac{5}{9} + \frac{2}{3} \, n \right)$$