

Data Booklet

Cambridge International Advanced Subsidiary and Advanced Level in Chemistry (9701)

For use from 2016 in all papers for the above syllabus, except practical examinations.

CSTxxx

Contents: Tables of Chemical Data

		Page no.
1	Important values, constants and standards	3
2	Ionisation energies (1 st , 2 nd , 3 rd and 4 th) of selected elements in kJ mol ⁻¹	4
3	Bond energies	5
4	Standard electrode potential and redox potentials, E^{\ominus} at 298K (25 °C)	7
5	Atomic and ionic radii	10
6	Typical proton (1 H) chemical shift values (δ) relative to TMS = 0	12
7	Typical carbon (13 C) chemical shift values (δ) relative to TMS = 0	13
8	Characteristic infra-red absorption frequencies for some selected bonds	14
9	The orientating effect of groups in aromatic substitution reactions	15
10	Names, structures and abbreviations of some amino acids	16
11	The Periodic Table of Elements	17

1 Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
the Faraday constant	$F = 9.65 \times 10^4 \mathrm{C} \mathrm{mol}^{-1}$
the Avogadro constant	$L = 6.02 \times 10^{23} \text{mol}^{-1}$
the Planck constant	$h = 6.63 \times 10^{-34} \text{Js}$
speed of light in a vacuum	$c = 3.00 \times 10^8 \mathrm{m s^{-1}}$
rest mass of proton, ¹ ₁ H	$m_{\rm p} = 1.67 \times 10^{-27} \mathrm{kg}$
rest mass of neutron, ¹ ₀ n	$m_{\rm n} = 1.67 \times 10^{-27} \mathrm{kg}$
rest mass of electron, ⁰ ₋₁ e	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
electronic charge	$e = -1.60 \times 10^{-19} C$
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. $V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ under room conditions (where s.t.p. is expressed as 101 kPa, approximately, and 273 K [0 °C])
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6}$ (at 298 K [25 °C])
specific heat capacity of water	= $4.18 \text{ kJ kg}^{-1} \text{ K}^{-1}$ (= $4.18 \text{ J g}^{-1} \text{ K}^{-1}$)

2 Ionisation energies (1st, 2nd, 3rd and 4th) of selected elements, in ${\rm kJ}\,{\rm mol}^{-1}$

	Proton number	First	Second	Third	Fourth
Н	1	1310	_	_	_
He	2	2370	5250 –		_
Li	3	519	7300	7300 11800	
Be	4	900	1760	14800	21000
В	5	799	2420	3660	25000
С	6	1090	2350	4610	6220
N	7	1400	2860	4590	7480
0	8	1310	3390	5320	7450
F	9	1680	3370	6040	8410
Ne	10	2080	3950	6150	9290
Na	11	494	4560	6940	9540
Mg	12	736	1450	7740	10500
Al	13	577	1820	2740	11600
Si	14	786	1580	3230	4360
Р	15	1060	1900	2920	4960
S	16	1000	2260	3390	4540
Cl	17	1260	2300 3850		5150
Ar	18	1520	2660 3950		5770
K	19	418	3070	3070 4600	
Ca	20	590	1150	4940	6480
Sc	21	632	1240 2390		7110
Ti	22	661	1310 2720		4170
V	23	648	1370	2870	4600
Cr	24	653	1590	2990	4770
Mn	25	716	1510	3250	5190
Fe	26	762	1560	2960	5400
Со	27	757	1640	3230	5100
Ni	28	736	1750	3390	5400
Cu	29	745	1960	3350	5690
Zn	30	908	1730	3828	5980
Ga	31	577	1980	2960	6190
Br	35	1140	2080	3460	4850
Rb	37	403	2632 3900		5080
Sr	38	548	1060	4120	5440
Ag	47	731	2074 3361		5000
1	53	1010	1840 3000		4030
Cs	55	376	2420	3300	4400
Ва	56	502	966	3390	4700

3 Bond Energies

3(a) Bond energies in diatomic molecules (these are exact values)

Homonuclear

Bond	Energy / kJ mol ⁻¹
н—н	436
D—D	442
N≡N	944
0=0	496
P≣P	485
S=S	425
F—F	158
Cl—Cl	242
Br—Br	193
I—I	151

Heteronuclear

Bond	Energy / kJ mol ⁻¹
H—F	562
H—C1	431
H—Br	366
H—I	299
C≡O	1077

3(b) Bond energies in polyatomic molecules (these are average values)

Homonuclear

Bond	Energy / kJ mol ⁻¹
с—с	350
C=C	610
C≡C	840
C····C (benzene)	520
N—N	160
N=N	410
0—0	150
Si—Si	225
P—P	200
S_S	265

Heteronuclear

Bond	Energy / kJ mol ⁻¹
С—Н	410
C—C1	340
C—Br	280
C—I	240
C—N	305
C=N	610
C≡N	890
c_o	360
C=O	740
C=O in CO ₂	805
N—H	390
N—C1	310
О—Н	460
Si—C1	360
Si—H	320
Si—O (in SiO ₂ (s))	460
Si=O (in SiO ₂ (g))	640
P—H	320
P—C1	330
P—O	340
P=O	540
S—H	340
S—Cl	250
S-0	360
S=0	500

4 Standard electrode potential and redox potentials, E^{\oplus} at 298 K (25 °C)

For ease of reference, two tables are given:

- (a) an extended list in alphabetical order;(b) a shorter list in decreasing order of magnitude, i.e. a redox series.

(a) \boldsymbol{E}^{\ominus} in alphabetical order

Electrode	reaction		E [⊕] /V
Ag ⁺ + e ⁻	\rightleftharpoons	Ag	+0.80
$Al^{3+} + 3e^{-}$	\rightleftharpoons	Al	-1.66
Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ва	-2.90
Br ₂ + 2e ⁻	\rightleftharpoons	2Br ⁻	+1.07
Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	-2.87
Cl ₂ + 2e ⁻	# # # #	2C1 ⁻	+1.36
2HOC <i>l</i> + 2H ⁺ + 2e ⁻	\rightleftharpoons	$Cl_2 + 2H_2O$	+1.64
ClO ⁻ + H ₂ O + 2e ⁻	\rightleftharpoons	C1- + 2OH-	+0.89
Co ²⁺ + 2e ⁻	 	Co	-0.28
Co ³⁺ + e ⁻	=	Co ²⁺	+1.82
$[Co(NH_3)_6]^{2+} + 2e^-$	\rightleftharpoons	Co + 6NH ₃	-0.43
Cr ²⁺ + 2e ⁻	\	Cr	-0.91
Cr ³⁺ + 3e ⁻	=	Cr	-0.74
Cr ³⁺ + e ⁻	=	Cr ²⁺	-0.41
$\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6\text{e}^-$	=	2Cr ³⁺ + 7H ₂ O	+1.33
Cu ⁺ + e ⁻	\rightleftharpoons	Cu	+0.52
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+0.34
Cu ²⁺ + e ⁻	\rightleftharpoons	Cu⁺	+0.15
[Cu(NH ₃) ₄] ²⁺ + 2e ⁻	=	Cu + 4NH ₃	-0.05
F ₂ + 2e ⁻	1111111	2F ⁻	+2.87
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	-0.44
Fe ³⁺ + 3e ⁻		Fe	-0.04
Fe ³⁺ + e ⁻	 	Fe ²⁺	+0.77
[Fe(CN) ₆] ³⁻ + e ⁻	\rightleftharpoons	[Fe(CN) ₆] ⁴⁻	+0.36
Fe(OH) ₃ + e ⁻	\rightleftharpoons	Fe(OH) ₂ + OH ⁻	-0.56
2H ⁺ + 2e ⁻	\rightleftharpoons	H ₂	0.00
2H ₂ O + 2e ⁻	\rightleftharpoons	H ₂ + 2OH ⁻	-0.83
I ₂ + 2e ⁻	=	2I ⁻	+0.54
K ⁺ + e ⁻	\rightleftharpoons	K	-2.92
Li ⁺ + e ⁻	\rightleftharpoons	Li	-3.04
Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	-2.38
Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	-1.18
Mn ³⁺ + e ⁻	è	Mn ²⁺	+1.49
MnO ₂ + 4H ⁺ + 2e ⁻	÷	$Mn^{2+} + 2H_2O$	+1.23
MnO ₄ ⁻ + e ⁻	\rightleftharpoons	MnO ₄ ²⁻	+0.56
MnO ₄ ⁻ + 4H ⁺ + 3e ⁻	+ + +	$MnO_2 + 2H_2O$	+1.67
MnO ₄ ⁻ + 8H ⁺ + 5e ⁻		$Mn^{2+} + 4H_2O$	+1.52
NO ₃ ⁻ + 2H ⁺ + e ⁻		NO ₂ + H ₂ O	+0.81
NO ₃ ⁻ + 3H ⁺ + 2e ⁻	\rightleftharpoons	HNO ₂ + H ₂ O	+0.94
NO ₃ ⁻ + 10H ⁺ + 8e ⁻	\rightleftharpoons	$NH_4^+ + 3H_2O$	+0.87

Electrode reaction			E [⊕] /V
Na ⁺ + e ⁻		Na	-2.71
Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	-0.25
$[Ni(NH_3)_6]^{2+} + 2e^-$	\rightleftharpoons	Ni + 6NH ₃	-0.51
$H_2O_2 + 2H^+ + 2e^-$	\rightleftharpoons	2H ₂ O	+1.77
$HO_2^- + H_2O + 2e^-$	\rightleftharpoons	3OH⁻	+0.88
$O_2 + 4H^+ + 4e^-$	\rightleftharpoons	2H ₂ O	+1.23
$O_2 + 2H_2O + 4e^-$	\rightleftharpoons	4OH⁻	+0.40
$O_2 + 2H^+ + 2e^-$		H_2O_2	+0.68
$O_2 + H_2O + 2e^-$	=	HO ₂ ⁻ + OH ⁻	-0.08
Pb ²⁺ + 2e ⁻		Pb	-0.13
Pb ⁴⁺ + 2e ⁻	=	Pb ²⁺	+1.69
PbO ₂ + 4H ⁺ + 2e ⁻	\rightleftharpoons	Pb ²⁺ + 2H ₂ O	+1.47
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	=	$SO_2 + 2H_2O$	+0.17
S ₂ O ₈ ²⁻ + 2e ⁻		2SO ₄ ²⁻	+2.01
S ₄ O ₆ ²⁻ + 2e ⁻	\rightleftharpoons	2S ₂ O ₃ ²⁻	+0.09
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	-0.14
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0.15
V ²⁺ + 2e ⁻	\rightleftharpoons	V	-1.20
V ³⁺ + e ⁻	\rightleftharpoons	V ²⁺	-0.26
VO ²⁺ + 2H ⁺ + e ⁻		$V^{3+} + H_2O$	+0.34
VO ₂ ⁺ + 2H ⁺ + e ⁻	\rightleftharpoons	$VO^{2+} + H_2O$	+1.00
VO ₃ ⁻ + 4H ⁺ + e ⁻	\rightleftharpoons	VO ²⁺ + 2H ₂ O	+1.00
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	-0.76

All ionic states refer to aqueous ions but other state symbols have been omitted.

(b) $\boldsymbol{\mathit{E}}^{\ominus}$ in decreasing order of oxidising power

(a selection only – see also the extended alphabetical list on the previous pages)

Electrode r	eaction		E [⊕] /V
F ₂ + 2e ⁻	\rightleftharpoons	2F ⁻	+2.87
S ₂ O ₈ ²⁻ + 2e ⁻	\rightleftharpoons	2SO ₄ ²⁻	+2.01
$H_2O_2 + 2H^+ + 2e^-$		2H₂O	+1.77
MnO ₄ ⁻ + 8H ⁺ + 5e ⁻	\rightleftharpoons	Mn ²⁺ + 4H ₂ O	+1.52
PbO ₂ + 4H ⁺ + 2e ⁻	\rightleftharpoons	Pb ²⁺ + 2H ₂ O	+1.47
$Cl_2 + 2e^-$	\rightleftharpoons	2C1 ⁻	+1.36
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	\rightleftharpoons	2Cr ³⁺ + 7H ₂ O	+1.33
$O_2 + 4H^+ + 4e^-$	\rightleftharpoons	2H₂O	+1.23
Br ₂ + 2e ⁻	\rightleftharpoons	2Br ⁻	+1.07
C1O + H2O + 2e	\rightleftharpoons	C <i>l</i> ⁻ + 2OH ⁻	+0.89
NO ₃ ⁻ + 10H ⁺ + 8e ⁻	\rightleftharpoons	$NH_4^+ + 3H_2O$	+0.87
NO ₃ ⁻ + 2H ⁺ + e ⁻	\rightleftharpoons	$NO_2 + H_2O$	+0.81
$Ag^{+} + e^{-}$ $Fe^{3+} + e^{-}$	\rightleftharpoons	Ag	+0.80
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+0.77
I ₂ + 2e ⁻	\rightleftharpoons	2I ⁻	+0.54
$O_2 + 2H_2O + 4e^-$	\rightleftharpoons	40H [−]	+0.40
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+0.34
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	\rightleftharpoons	SO ₂ + 2H ₂ O	+0.17
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0.15
S ₄ O ₆ ²⁻ + 2e ⁻	\rightleftharpoons	2S ₂ O ₃ ²⁻	+0.09
2H ⁺ + 2e ⁻	\rightleftharpoons	H ₂	0.00
Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	-0.13
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	-0.14
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	-0.44
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	-0.76
2H ₂ O + 2e ⁻		$H_2 + 2OH^-$	-0.83
V ²⁺ + 2e ⁻	\rightleftharpoons	V	-1.20
Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	-2.38
Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	-2.87
K ⁺ + e ⁻	\rightleftharpoons	K	-2.92

5 Atomic and ionic radii

(a)	Period 1	atomic/nm	ionic/nm
	single covalent	H 0.037	H⁻ 0.208
	van der Waals	He 0.140	
(b)	Period 2	atomic/nm	ionic/nm
	metallic	Li 0.152	Li ⁺ 0.060
		Be 0.112	Be ²⁺ 0.031
	single covalent	В 0.080	B ³⁺ 0.020
		C 0.077	C ⁴⁺ 0.015 C ⁴⁻ 0.260
		N 0.074	N ³⁻ 0.171
		O 0.073	O ²⁻ 0.140
		F 0.072	F 0.136
	van der Waals	Ne 0.160	
(c)	Period 3	atomic/nm	ionic/nm
	metallic	Na 0.186	Na ⁺ 0.095
		Mg 0.160	Mg ²⁺ 0.065
		A <i>l</i> 0.143	Al ³⁺ 0.050
	single covalent	Si 0.117	Si ⁴⁺ 0.041 Si ⁴⁻ 0.271
		P 0.110	P ³⁻ 0.212
		S 0.104	S ²⁻ 0.184
		C1 0.099	C <i>l</i> ⁻ 0.181
	van der Waals	Ar 0.190	
(d)	Group 2	atomic/nm	ionic/nm
	metallic	Be 0.112	Be ²⁺ 0.031
		Mg 0.160	Mg ²⁺ 0.065
		Ca 0.197	Ca ²⁺ 0.099
		Sr 0.215	Sr ²⁺ 0.113
		Ba 0.217	Ba ²⁺ 0.135
		Ra 0.220	Ra ²⁺ 0.140

(e)	Group 14	atom	ic/nm	ionic	/nm		
	single covalent	С	0.077				
		Si	0.117	Si ⁴⁺	0.041		
		Ge	0.122	Ge ²⁺	0.093		
	metallic	Sn	0.162	Sn ²⁺	0.112		
		Pb	0.175	Pb ²⁺	0.120		
(f)	Group 17	atom	ic/nm	ionic	/nm		
	single covalent	F	0.072	F ⁻	0.136		
		Cl	0.099	Cl ⁻	0.181		
		Br	0.114	Br ⁻	0.195		
		I	0.133	1-	0.216		
		At	0.140				
(g)	First row transition elements	atomi	ic/nm	ionic	/nm		
	metallic	Sc	0.164			Sc ³⁺	0.081
		Ti	0.146	Ti ²⁺	0.090	Ti ³⁺	0.067
		V	0.135	V ²⁺	0.079	V ³⁺	0.064
		Cr	0.129	Cr ²⁺	0.073	Cr ³⁺	0.062
		Mn	0.132	Mn ²⁺	0.067	Mn ³⁺	0.062
		Fe	0.126	Fe ²⁺	0.061	Fe ³⁺	0.055
		Со	0.125	Co ²⁺	0.078	Co ²⁺	0.053
		Ni	0.124	Ni ²⁺	0.070	Ni ³⁺	0.056
		Cu	0.128	Cu ²⁺	0.073		
		Zn	0.135	Zn ²⁺	0.075		

6 Typical proton (1 H) chemical shift values (δ) relative to TMS = 0

type of proton	environment of proton	example structures	chemical shift range (δ)	
	alkane	-CH ₃ , -CH ₂ -, >CH-	0.9–1.7	
	alkyl next to C=O	CH ₃ -C=O, -CH ₂ -C=O, >CH-C=O	2.2–3.0	
	alkyl next to aromatic ring	CH ₃ –Ar, –CH ₂ –Ar, >CH–Ar	2.3–3.0	
	alkyl next to electronegative atom	CH ₃ –O, –CH ₂ –O, –CH ₂ –C <i>l</i> , >CH–Br	3.2–4.0	
C–H	attached to alkyne	≡C–H	1.8–3.1	
С - П	attached to alkene	=CH ₂ , =CH-	4.5–6.0	
	attached to aromatic ring	Н	6.0–9.0	
	aldehyde	R—C H	9.3–10.5	
	alcohol	RO-H	0.5–6.0	
O-H (see	phenol	ОН	4.5–7.0	
note below)	carboxylic acid	R—C O—H	9.0–13.0	
	alkyl amine	R-NH-	1.0–5.0	
N-H (see	aryl amine	NH_2	3.0-6.0	
note below)	amide	R—C N—H	5.0–12.0	

Note: δ values for –O-H and –N-H protons can vary depending on solvent and concentration

7 Typical carbon (13 C) chemical shift values (δ) relative to TMS = 0

hybridisation of the carbon atom	environment of carbon atom	example structures	chemical shift range (δ)
sp ³	alkyl	CH ₃ -, -CH ₂ -, -CH<, >C<	0–50
sp ³	next to alkene/arene	$-\mathbf{c}$ -c=c, $-\mathbf{c}$	10–40
sp ³	next to carbonyl/carboxyl	$-\mathbf{c}$ -COR, $-\mathbf{c}$ -CO ₂ R,	25–50
sp ³	next to nitrogen	$-\mathbf{\overset{ }{c}}-NH_{2}, -\mathbf{\overset{ }{c}}-NR_{2}, -\mathbf{\overset{ }{c}}-NHCO$	30–65
sp ³	next to chlorine (-CH ₂ -Br and -CH ₂ -I are in the same range as alkyl)	- c -c <i>l</i>	30–60
sp ³	next to oxygen	$-\mathbf{c}$ -OH, $-\mathbf{c}$ -O-CO-	50–70
sp²	alkene or arene	>C=C<, C C C	110–160
sp ²	carboxyl	R- C O ₂ H, R- C O ₂ R	160–185
sp ²	carbonyl	R-CHO, R-CO-R	190–220
sp	alkyne	R- C ≡ C -	65–85
sp	nitrile	R- C ≡N	100–125

8 Characteristic infra-red absorption frequencies for some selected bonds

bond	functional groups containing the bond	absorption range (in wavenumbers) /cm ⁻¹	appearance of peak (s = strong, w = weak)		
C-O	alcohols, ethers, esters	1040–1300	s		
C=C	aromatic compounds, alkenes	1500–1680	w unless conjugated		
C=O	amides, ketones and aldehydes, carboxylic acids, esters	1640–1690 1670–1740 1680–1730 1710–1750	8 8 8		
C≡C	alkynes	2150–2250	w unless conjugated		
C≡N	nitriles	2200–2250	w		
C–H	alkanes, CH ₂ –H alkenes/arenes, =C–H	2850–2950 3000–3100	s w		
N–H	amines, amides	3300–3500	w		
O–H	carboxylic acids, RCO ₂ –H H–bonded alcohol, RO–H free alcohol, RO–H	2500–3000 3200–3600 3580–3650	s and very broad s s and sharp		

9 The orientating effect of groups in aromatic substitution reactions.

The position of the incoming group, \mathbf{Y} , is determined by the nature of the group, \mathbf{X} , already bonded to the ring, and not by the nature of the incoming group \mathbf{Y} .

X- groups that direct the incoming Y group to the 2- or 4- positions	X- groups that direct the incoming Y group to the 3- position
-NH ₂ , -NHR or -NR ₂	-NO ₂
–OH or –OR	$-NH_3^+$
-NHCOR	-CN
–CH ₃ , –alkyl	-CHO, -COR
-Cl	−CO ₂ H, −CO ₂ R

10 Names, structures and abbreviations of some amino acids

name	3-letter abbreviation	1-letter symbol	structure of side chain R- in $\begin{array}{c} \text{NH}_2 \\ \text{RCH} \\ \text{CO}_2\text{H} \end{array}$		
alanine	Ala	А	CH ₃		
aspartic acid	Asp	D	HO ₂ CCH ₂ -		
cysteine	Cys	С	HSCH₂-		
glutamic acid	Glu	Е	HO ₂ CCH ₂ CH ₂ -		
glycine	Gly	G	H–		
lysine	Lys	К	H ₂ NCH ₂ CH ₂ CH ₂ CH ₂ -		
phenylalanine	Phe	F	-CH ₂ -		
serine	Ser	S	HOCH ₂ -		
tyrosine	Tyr	Y	HO-CH ₂ -		
valine	Val	V	CH ₃ CH- CH ₃		

Group																	
1	2	13 14 15 16 17										18					
																	2
							Н										He
Vari							hydrogen										helium
Key 3 4 atomic number							1.0				İ	5	6	7	8	9	4.0 10
Li	Be	atomic symbol									B	Č	N	Ö	F	Ne	
lithium	beryllium		name									boron	carbon	nitrogen	oxygen	fluorine	neon
6.9	9.0		relative atomic mass								10.8	12.0	14.0	16.0	19.0	20.2	
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
sodium 23.0	magnesium 24.3	3	4	5	6	7	8	9	10	11	12	aluminium 27.0	silicon 28.1	phosphorus 31.0	sulfur 32.1	chlorine 35.5	argon 39.9
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35.5	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	79.9	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
rubidium 85.5	strontium 87.6	yttrium 88.9	zirconium 91.2	niobium 92.9	molybdenum 95.9	technetium —	ruthenium 101.1	rhodium 102.9	palladium 106.4	silver 107.9	cadmium 112.4	indium 114.8	tin 118.7	antimony 121.8	tellurium 127.6	iodine 126.9	xenon 131.3
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	T <i>l</i>	Pb	Bi	Po	At	Rn
caesium	barium		hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
132.9	137.3		178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	_	_	_
87	88	89–103	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		Fl		Lv		
francium —	radium —		rutherfordium —	dubnium —	seaborgium	bohrium —	hassium —	meitnerium —	darmstadtium –	roentgenium	copernicium		flerovium —		livermorium —		
	<u> </u>							_					<u>–</u>				
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71]
lanthan	nide	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
iaiilliali	uius	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
		138.9	140.1	140.9	144.4	_	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.1	175.0	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
actinoid	S	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium	
		_	232.0	231.0	238.0	_	_	_	_	_	_	_	_	_	_	_	

1

BLANK PAGE

BLANK PAGE

BLANK PAGE