CS69011: Computing Lab Task: Linear Programming and Integer Programming

September 4, 2023

======================================																		
1.	. In the	case	of u	ser	input,	assum	e only v	alid	value	s w	ill be	pas	sec	d as	inp	ut.		
_	_										-							

Regarding submission: Create a separate Python file for each task: <RollNo>_T1.py
 RollNo>_T2.py <RollNo>_T3.py

T3: Find a solution for the n-queens problem using Python OR-Tools (pywraplp).

N-Queens problem - Place n number of queens in a nXn chessboard (or grid) such that no two queens attack each other.

Sample Input-

4

Sample Output-

Hint-

1. Take variables subject to the position of queens wrt each square in the chessboard to see if a queen can occupy that square.

$$0 \le c_{ij} \le 1$$
, where $0 \le i, j \le n-1$

- 2. Define Constraints for the same queens placed in each row and column.
 - a. Row Constraint:-

$$0 \le \sum_{0 \le j \le n-1} c_{kj} \le 1$$
, where $0 \le k \le n-1$

b. Column Constraint:-

$$0 \le \sum_{0 \le i \le n-1} c_{ik} \le 1$$
, where $0 \le k \le n-1$

- 3. Define Constraints for the same queens placed along the right and left diagonals.
 - a. Left Diagonal Constraint:-

$$0 \le \sum_{i-j=k} c_{ij} \le 1$$
, where $-(n-1) \le k \le n-1$

b. Right Diagonal Constraint:-

$$0 \le \sum_{i+j=k} c_{ij} \le 1$$
, where $0 \le k \le 2n-2$

4. Maximize

$$\sum_{0 \le i, j \le n-1} c_{ij}$$