Общая информация.

Видеолекции курса доступны по ссылке: GO TO HYDRAULIC FRACTURING.

Содержание

I	Лекция 16.02.2021.		2
	1.1	Из чего состоит любая модель ГРП? Основные компоненты	2
	1.2	Модель утечки по Картеру	2
2	Лекция 02.03.2021.		
	2.1	Уравнение упругости, ЗСМ. Задача для полубесконечной трещины	3
3	Лекция 09.03.2021.		
	3.1	Задача для полубесконечной трещины, плоская трещина	4
4	Лекция 16.03.2021.		5
	4.1	Модель радиальной трещины и модель PKN	5
5	Лекция 23.03.2021.		
	5.1	Модель EP3D	6
6	Лекция 02.04.2021.		7
	6.1	Модель Planar3D ILSA: основные уравнения, классификация элементов	7
7	Лекция 08.04.2021.		8
	7.1	Модель Planar3D ILSA: дискретизация, поиск фронта, алгоритм	8
8	Лекция 13.04.2021.		9
	8.1	Модель Planar3D Biot: постановка задачи, перенос граничных условий	9
9	Лекция 20.04.2021.		
	9.1	Модель Planar3D Biot: слабая постановка, штраф, пороупругие эффекты	10
10	Лекция 27.04.2021.		11
	10.1	Перенос проппанта: постановка задачи, обезразмеривание, оседание	11
11	Лекция 30.04.2021.		
	11 1	Перенос пропланта: осреднение численный алгоритм бриджинг	12

Гидроразрыв пласта Конспект лекций и семинаров

Муравцев А.А.1

24 января 2023 г.

1 Лекция 16.02.2021.

1.1 Из чего состоит любая модель ГРП? Основные компоненты

Основные компоненты любой модели гидроразрыва пласта:

- 1) закон сохранения жидкости; в 99% случаев предполагается, что жидкость несжимаема, тогда выполняется закон сохранения объёма; но бывают случаи сжимаемых жидкостей (например, когда ГРП делают газом или делают пенный ГРП), тогда выполняется закон сохранения массы, т.е. закачиваемый объём жидкости равен объёму жидкости в трещине плюс утечки (трещину ГРП делаем в пористом резервуаре, поэтому есть утечки из трещины в резервуар в зависимости от пористости и других параметров утечки могут либо доминировать, либо нет);
- 2) уравнение течения жидкости в трещине;
- 3) равновесие (упругость) горной породы;
- 4) условие распространения трещины;
- 5) транспорт проппанта

1.2 Модель утечки по Картеру

¹конспектирует; email: almuravcev@yandex.ru

- 2 Лекция 02.03.2021.
- 2.1 Уравнение упругости, ЗСМ. Задача для полубесконечной трещины

- 3 Лекция 09.03.2021.
- 3.1 Задача для полубесконечной трещины, плоская трещина

- 4 Лекция 16.03.2021.
- 4.1 Модель радиальной трещины и модель РКN

- 5 Лекция 23.03.2021.
- 5.1 Модель **EP3D**

- 6 Лекция 02.04.2021.
- 6.1 Модель Planar3D ILSA: основные уравнения, классификация элементов

- 7 Лекция 08.04.2021.
- 7.1 Модель Planar3D ILSA: дискретизация, поиск фронта, алгоритм

- 8 Лекция 13.04.2021.
- 8.1 Модель Planar3D Biot: постановка задачи, перенос граничных условий

- 9 Лекция 20.04.2021.
- 9.1 Модель Planar3D Biot: слабая постановка, штраф, пороупругие эффекты

- 10 Лекция 27.04.2021.
- 10.1 Перенос проппанта: постановка задачи, обезразмеривание, оседание

- 11 Лекция 30.04.2021.
- 11.1 Перенос проппанта: осреднение, численный алгоритм, бриджинг