No homework this week. Week 1 homework is due no later than Thursday 27.09.2018 23:55.

Exercise 2.1 Convexity Properties of Sets

- (a) Let $\{S_i\}_{i\in M}$ be a collection of $M=\{1,\ldots,m\}$ convex sets in \mathbf{R}^n . Show that their intersection $S=\cap_{i\in M}S_i$ is also convex.
- (b) Let S_1 and S_2 be closed convex sets in \mathbb{R}^n . Show that their Minkowski sum

$$S = S_1 + S_2 = \{x + y : x \in S_1, y \in S_2\}$$

is also convex. Also, show by an example that $S_1 + S_2$ is not necessarily closed.

Exercise 2.2 Weierstrass' Theorem

Consider the following nonlinear optimization problem P:

- (a) Show that P has a solution by applying Weierstrass' theorem.
- (b) Model the problem P with JuMP and try to find the global maximum.

Exercise 2.3 Portfolio Optimization

For this problem, use the data file prices.csv which contains daily prices of $N = \{1, ..., n\}$ stocks over a time period of $T = \{1, ..., m\}$ days. Let $x_i \ge 0$ denote the (long) position of stock $i \in N$ in a portfolio throughout the time period. The positions $x = (x_1, ..., x_n)$ in the portfolio are scaled to represent fractions of the total investment, that is,

$$\sum_{i \in N} x_i = 1$$

Let p_i^t denote the daily price of stock $i \in N$ for all $t \in T$, and let r_i^t be the relative daily return of stock $i \in N$ for all $t \in T \setminus \{m\}$. These are computed as

$$r_i^t = \frac{p_i^{t+1} - p_i^t}{p_i^t}, \quad \forall i \in N, \forall t \in T \setminus \{m\}$$

Let $\mu = (\mu_1, \dots, \mu_n)$ denote the expected relative returns of the stocks N, and let $\Sigma \in \mathbf{R}^{n \times n}$ be the corresponding covariance matrix. Thus, the expected average return and variance of a portfolio $x = (x_1, \dots, x_n)$ are $\mu^\top x$ and $x^\top \Sigma x$, respectively. Moreover, let $\sigma \in \mathbf{R}^n$ be the standard deviation vector and $\rho \in \mathbf{R}^{n \times n}$ the correlation matrix of the relative stock returns.

- (a) Read the data and plot the price curves of each stock for the whole time period.
- (b) Compute the expected average returns μ , the covariance matrix Σ , the correlation matrix ρ , and the standard deviation vector σ using Julia's built-in functions.
- (c) Sort the stocks in increasing order with respect to their expected returns. Using this order, plot the standard deviations σ and the expected returns μ of each stock in two different plots but in the same figure by using subplot.

- (d) Using the same order as in (c), visualize the correlation matrix ρ with imshow, and plot the expected returns μ of each stock as a function of their standard deviations σ .
- Consider the following portfolio optimization problem (e)

minimize
$$x^{\top} \Sigma x$$
 (1)
subject to $\mu^{\top} x \ge \mu_{min}$ (2)

$$\sum_{i \in N} x_i = 1$$
 (3)

subject to
$$\mu^{\top} x \ge \mu_{min}$$
 (2)

$$\sum_{i \in N} x_i = 1 \tag{3}$$

$$x \ge 0 \tag{4}$$

where the objective is to minimize the portfolio variance (i.e., risk) $x^{\top}\Sigma x$ by satisfying a minimum expected return constraint (2). Model the problem (1) - (4) using JuMP and solve the problem with different values of μ_{min} . Use PyPlot's bar to plot fractions of capital invested in each stock in the resulting portfolio. You can try values of μ_{min} between

$$0 \le \mu_{min} \le 0.000869.$$

Compute the optimal portfolio with 50 different values of μ_{min} between [0, 0.000869] and plot (f) the optimal trade-off curve, i.e., the expected returns or each portfolio as a function of their standard deviations. Plot also the expected values vs standard deviations of each individual stock in the same figure for comparison.