Data Mining Fall, 2023

基於身體數值之 抽煙喝酒習慣預測

Team 19

Report Date: 12/27

Background

在一個追求幸福與長壽的世界中,理解影響公共健康的行為細節是至關重要的。吸煙和飲酒是兩種這樣的行為,深深地紮根於文化、社交和個人生活的各個方面。它們不僅影響個體在身體、心理和社交上,而且還對經濟產生深遠的影響,給全球的醫療系統帶來巨大的壓力。

我們希望透過data mining的方式,針對於揭示隱藏的模式和關聯,為公共健康干預提供信息以及增強個性化的健康建議幫助預測,對data做分析跟預測。

Problem Description

Input:

Dataset包括人的各種身體指數,例如(身高,體重,視力,血壓,膽固醇指數等),以及這個人的喝酒指數跟是否抽烟。

Output:

此人是否有烟癮跟他的喝酒指數,並分析與這兩個預測目標相關的指數。 (訓練兩個模型,分別預測煙癮以及喝酒,再進一步分析兩者相關性)

Target Performance

- 藉由身體檢查數值預測一個人是否有煙廳及喝酒習慣
 - Baseline(Both drink & smoke):
 - Accuracy >= 0.70
 - F1 score >= 0.70
 - Expectation(Both drink & smoke):
 - Accuracy >= 0.75
 - F1 score >= 0.75
- 分析吸菸對身體造成的影響
- 分析各項數值的相關性
- reference1: 74% Accuracy Prediction EDA | Kaggle
- reference2: Prediction with 72 % accuracy for both smoke/drink | Kaggle

Data Description

Name(EN)	Name(CH)	ime(CH) TYPE RANGI		MISSING	ADDITION	
sex	性別	binary x N		None	男、女	
age	年紀	categorical	20-85	None	各類間相差5歲	
height	身高	categorical	130-190	None	各類間相差5公分	
weight	體重	categorical	25-140	None	各類間相差5kg	
waistline	腰圍	numerical	47-126	None	無	
sight_left	左眼視力	numerical	0.1-2.06	None	無	

Name(EN)	Name(CH)	ТҮРЕ	RANGE	MISSING	ADDITION	
sight_right	右眼視力	numerical	0.1-2.06	None	無無	
hear_left	左耳聽力	binary	х	None	1為正常、2為異常	
hear_right	右耳聽力	binary	х	None	1為正常、2為異常	
SBP	收縮壓	numerical	67-273	None	正常範圍 <120mmHg	
DBP	舒張壓	numerical	32-185 None		正常範圍 <80mmHg	
BLDS	血糖	numerical	25-852	None	正常範圍 70~100mg/dL	

Name(EN)	Name(CH)	ТҮРЕ	RANGE	MISSING	ADDITION	
tot_chole	總膽固醇	numerical	30-354	None	正常範圍 130~200mg/dL	
HDL_chole	高密度膽固醇	numerical	1-163	None	無	
LDL_chole	低密度膽固醇	numerical	1-308	None	無	
triglyceride	三酸甘油脂	numerical	1-760	None	無	
hemoglobin	血紅素	numerical	1-25	None	無	
urine_protein	尿蛋白	categorical	1-6	None	數字越小越正常	

Name(EN)	Name(CH)	ТҮРЕ	RANGE	MISSING	ADDITION
serum_creatinine	血清肌酸酐	numerical	0.1-2.06	None	無
SGOT_AST	麩胺酸轉氨酶 (AST)	in I numerical I 1-201 I None		None	無
SGOT_ALT	麩胺酸轉氨酶 (ALT)	numerical	1-145	None	無
gamma_GTP	谷氨酸轉肽酶	numerical	1-240	None	無
SMK_stat_type_cd	抽菸指數	categorical	1-3	None	1:從不 2:曾經但已戒菸 3: 成癮
DRK_YN	喝酒有無	binary	х	None	Y為有、N為無

Analysis Workflow

利用Apriori演算法找出相關性高的 attribute, 再利用decision tree進行分 群。

用各種evaluation metrics來衡量各種演算法,來達成我們的target performance。

Data Processing & Transformation

Feature Enigeering

Modelling

Evaluation

Knowledge

原始資料已經處理的相對乾淨,沒 有缺失資料,只需對資料進行屬性 的篩選和轉換。 嘗試其他演算法,如

- 1. Random forest
- 2. KNN
- 3. Naive Bayes 等等來比較結果。

透過模型的各種結果,希望可以找出一些有意義的pattern。

Encoding

將類別型資料用 one hot encoding表示

Outlier

對於連續型資料用平均以及表準差判斷outlier,並移除outlier

Feature Enigeering

Modelling

Evaluation

Knowledge

Apriori

將連續型資料分區 以利於進行mining 演算法

sex	age	height	weight	waistline	sight_left	sight_right	hear_left	hear_right	SBP		LDL_chole	triglyceride	hemoglobin
0 Male	AGE: 20- 35	Height: 161- 170	Weight: 71-140	Waistline: >88	Sight left: 0.71-1.0	Sight right: 0.71-1.0	hear left1.0	hear right1.0	SBP: 68- 120		HDL: 112- 135	Tri: 74-106	hemo: >15.5
1 Male	AGE: 20- 35	Height: 171- 190	Weight: 71-140	Waistline: >88	Sight left: 0.71-1.0	Sight right: 1.1-1.2	hear left1.0	hear right1.0	SBP: 121- 131	•••	HDL: >136	Tri: 107-159	hemo: >15.5
2 Male	AGE: 36- 45	Height: 161- 170	Weight: 71-140	Waistline: >88	Sight left: 1.1-1.2	Sight right: >1.2	hear left1.0	hear right1.0	SBP: 68- 120		HDL: 1-89	Tri: 74-106	hemo: >15.5
3 Male	AGE: 46- 60	Height: 171- 190	Weight: 71-140	Waistline: >88	Sight left: >1.2	Sight right: 1.1-1.2	hear left1.0	hear right1.0	SBP: >132		HDL: 90- 111	Tri: 74-106	hemo: >15.5
4 Male	AGE: 46- 60	Height: 161- 170	Weight: 56-60	Waistline: 76-81	Sight left: 0.71-1.0	Sight right: 1.1-1.2	hear left1.0	hear right1.0	SBP: >132		HDL: 112- 135	Tri: 74-106	hemo: 13.3- 14.3

Apriori

利用Apriori演算法, 嘗試找出重要的規則

```
('Rule: drkY', 0.49981338503408496)
('Rule: drkY -> Male', 0.3574100263681903)
('Rule: drkY -> Height: 161-170', 0.22380581552757564)
('Rule: smk3.0', 0.2158217211750489)
('Rule: drkY -> smk1.0', 0.21529415562275936)
('Rule: Sight right: 0.71-1.0 -> drkY', 0.205316811688351)
('Rule: drkY -> Sight left: 0.71-1.0', 0.20425663693604454)
('Rule: drkY -> Height: 161-170 -> Male', 0.19957512311544104)
('Rule: Male -> smk3.0', 0.19943188351998192)
('Rule: drkY -> Serum: 0.81-1.0', 0.19092022361516564)
('Rule: drkY -> Gamma: >40', 0.17998559534209044)
('Rule: drkY -> Serum: 0.81-1.0 -> Male', 0.17089694213725581)
('Rule: drkY -> hemo: >15.5', 0.16682470096212623)
('Rule: drkY -> AGE: 20-35', 0.16636371155983884)
('Rule: hemo: >15.5 -> drkY -> Male', 0.1654165145166269)
('Rule: drkY -> Male -> Gamma: >40', 0.16422823111204363)
('Rule: drkY -> smk3.0', 0.16298749377109506)
('Rule: drkY -> Weight: 61-70', 0.15338539722760772)
('Rule: drkY -> Male -> smk3.0', 0.15280134282077096)
('Rule: Weight: 71-140 -> drkY', 0.1520942234093848)
('Rule: drkY -> AGE: 46-60', 0.15175024663437386)
('Rule: drkY -> DBP: 32-70', 0.15018974202750604)
```

Data Processing & Transformation

Feature Enigeering

Modelling

Evaluation

Knowledge

Correlation

000

利用Pearson相關係數 ,找到可能和label相 關的feature。

Training set: 80% / Testing set: 20%

Data Processing & Transformation Feature Enigeering

Modelling

Evaluation

Knowledge

將模型結果交給專業人員, 進一步找出專業或更深層的相關的pattern

Evaluation Metrics

- Accuracy
- F1 score
- Precision score
- Recall score
- ROC curve

$$Accuracy = rac{TP + TN}{TP + TN + FP + FN}$$
 $F1 \, Score = rac{2 imes Precision imes Recall}{Precision + Recall}$
 $Precision = rac{TP}{TP + FP}$
 $Recall = rac{TP}{TP + FN}$

Result Analysis

• Case: Drink

	Accuracy	F1 score	Precision	Recall
Random Forest	0.7355	0.7354	0.7358	0.7355
LGBM	0.7323	0.7296	0.7227	0.7366
XGboost	0.7281	0.7282	0.7245	0.7320
Catboost	0.7369	0.7317	0.7267	0.7368

Result Analysis

• Case: Smoke

	Accuracy	F1 score	Precision	Recall
Random Forest	0.7906	0.7597	0.6996	0.8311
LGBM	0.8132	0.7603	0.7065	0.8232
XGboost	0.8134	0.7595	0.7077	0.8209
Catboost	0.8143	0.7615	0.7088	0.8233

Result Analysis - Important Features

- Case: **Drink**
 - gamma_GPT (谷氨酸轉肽酶)
 - SGOT_ALT (麩胺酸轉氨酶(ALT))
 - HDL_chole
 - SGOT_AST (麩胺酸轉氨酶(AST))
 - age
 - triglyceride (三酸甘油脂)
 - waistline
 - LDL_chole
 - BLDS (血糖)
 - tot_chole

Discussion

• Case: **Drink**

- o gamma_GPT, SGOT_ALT, SGOT_AST 皆為肝臟相關之酵素, 可以用來評估肝臟 的健康指標
- 過度喝酒極有可能進而導致肥胖,便與 HDL_chole, LDL_chole, tot_chole (分別為膽固醇的指標)、三酸甘油脂、血糖以及腰圍都皆有相關

Result Analysis - Important Features

- Case : Smoke
 - Sex
 - Height
 - Hemoglobin (血紅素)
 - Gamma GTP (谷氨酸轉肽酶)
 - Serum creatinine (血清肌酸酐)
 - Weight
 - Triglyceride (三酸甘油酯)
 - Waistline (腰圍)
 - Age
 - SGOT ALT (麩胺酸轉氨酶)

Discussion

• Case: Smoke

- 抽菸跟性別有非常大的相關性 (男性吸煙者 > 女性吸菸者)
- 抽菸會使血液中一氧化碳濃度增加,含氧量減少,進而影響血紅素水平
- 長期抽菸可能與肝臟損傷相關,進而影響肝臟相關 酶的水平,包括 Gamma GTP
- 抽菸可能對腎臟功能產生影響,這可能會體現在 Serum creatinine (血清肌酸酐) 水平的變化上

Conclusion

- 我們的方法成功達到我們預設的 Baseline, 而在expectation的部分, 雖然 Drink的部分 並沒有成功達到原先預設的 值, 但在Smoke的部分卻有達標
- 藉此project,我們探討了身體指數與抽菸喝酒的相關性,分析了抽菸以及喝酒可能帶來的影響,希望可以幫助到需要戒菸或戒酒的人

Data Mining Fall, 2023

Thank you for your attention!

312554018 曾昱仁 312553046 何承原 312554011 謝翊庭 0812212 丁祐承