-Probability and Statistics

* Lecture 3*

* Expectation «E(x)»:

$$\Rightarrow E(\alpha) = \left[\sum \alpha \rho(\alpha) \right], \quad \alpha \Rightarrow \text{ discrete r.v}$$

$$\int_{-\infty}^{\infty} x f(\alpha) d\alpha \quad , \quad \alpha \Rightarrow \text{ continueous r.v}$$

Example: A box contains to transistors, 2 of them are defective. A man selected at random one transistor from the box until he obtains anon defective one. Find the expected number of transistors to be chosen.

It I be a random variable showing the number of chasen transistors.

L		2	3	G	$\stackrel{2}{D} \rightarrow G$
P(A)	p(G) = 8	p(D, nG)=p(D,).p(G2 D)	P(D10020G2)	. 9	0
1	10	$p(D_1 \cap G_2) = p(D_1) \cdot p(G_2 D_1)$ $= \frac{2}{10} \times \frac{8}{9}$	= p(D,) p(D, 1D,) p(G310,002)	0/10/19
			$=\frac{2}{10} \times \frac{1}{9} \times \frac{8}{8}$		
Apla)	8 10	90	90		The state of the s

*: p(A/B) = P(A/B)
P(B)
:: p(A/B) = p(A/B).
P(B)

*Example 2: A man wants to match 3 names with their professional names.

He obesn't know the names and he tries to match by guess.

Find the expected number of Greet matches.

-> Let a be a random variable showing the number of Great matches.

$$\alpha = 0$$
 $\alpha = 1$
 $\alpha = 3$

where is no true matches.» " There is one true match and two false." for illustration." " All matches are true.

* Notice that: We Ill not suppose that a = 2 because if 2 matches are true, the third

L	0	19	3
pa)	26	3 6	1 6
αρα)	0	3 6	1/2

$$E(\alpha) = \sum d\rho(\alpha)$$

$$= 0 + \frac{3}{6} + \frac{1}{2} = 1$$

Λ
ord
A
B
D

> S= {(aD,bA,dB), (aB,bD,dA), (aA,bD,dB), (aD,bB,dA), (aB,bA,dD), (aA,bB,dD)?

, we have 2 probabilities that there is no true matches. "2", we have 3 probabilities that there is only one trae match. "3", we have only one probability that all matches are trae. "6".

* Chapter 3: "Some important distributions."
1) Binomial distribution: "Important."
There are 3 Conditions must be satisfied to use Binomial dist.:-
1) Random Experiment
P[Success]=p Only 2 states, P[fail]=1-p
x Success means achieving the required at the experiment.
2) The R.E is repeated n independent trials.
3) The probability of Success is constant in each trial. , E(x)= np
$\rightarrow Law: P(\alpha) = n C_{\alpha} p^{\alpha} (1-p)^{n-\alpha}$
Example: Jossing a Gin lo times. Find the prob. of appearing head 4 times. P(x) = 10 C4. (1) ". (1-1) 10-4
Example 2: The percentage of defective items in the production of a certain factor) is oil. A man selected at random to items of the production. Find the probability of getting 2 defective items. " " " " " 8 good items. " " " B good items.
Let & be evandom variable showing (D) = 0.1 (G) - 0.9
Let α be evandom variable. Showing β bumber of defective items. β

$$\therefore p(\alpha=2) = {}^{10}C_2(0.1)^2(0.9)^8$$
 " 1" rg."

2)
$$p(\alpha \ge 2) = p(\alpha = 2) + p(\alpha = 3) + \cdots + p(\alpha = 10)$$

or $p(\alpha \ge 2) = 1 - p(\alpha)$
= $1 - (p(\alpha = 0) + p(\alpha = 1))$

3)
$$P(8 \text{ Good}) = P(2 \text{ def.}) = P(x=2)$$

The expected number of defective items: E(x) = np= 0.1x10=1

a men's whereof the required of the experiment.

dealth Emped Conditions of a-los prote

Les the percentitle of defective tems in the production of a cortain

and Action Schedict of lapstom lasterns of the production

and percentition to the production of the production

and least to defective tems

and least to defective temps

and lea