Project Status Report 3

Project Name: PCB Pick and Place

Team Name: JFL

Project Manager: Robin Pottathuparambil

Team Members: Jailine Contreras Marquez, Fernando Zavala-Ortiz, Lap Nguyen

Report Date: 11/09/2023

Reporting Period: 10/12/23 to 11/09/2023

Management Summary

Defined milestones completed: 7 of 7 (100%)

Defined tasks completed: 0 of 18 (0%) of child tasks in work breakdown structure

Total estimated project hours used:

Ahead of (or Behind) schedule by:

Known defects:

Staff members on project

Contingency hours remaining:

120 of 960 (12.5%)

10 labor-hours, 0 days

0 open of 0 found

0 of 0 planned

100% of 3 hours

Schedule

Initial estimated completion date: May 10th, 2023
Previous estimated completion date: May 10th, 2023
Current estimated completion date: May 10th, 2023
May 10th, 2023

Key Milestones Table

ID	Title	Planned Completion Date	Previous Forecast Completion Date	Current Forecast Completion Date	Actual Completion Date
1	requirements draft	9/12/23	9/14/23	9/14/23	9/14/23
	due/status report				
2	specification draft due/	9/20/23	9/22/23	9/22/23	9/22/23
	requirements due				
3	specifications due	9/27/23	9/29/23	9/29/23	9/29/23
4	preliminary design due	10/04/23	10/06/23	10/06/23	10/06/23
5	parts order due	10/11/23	10/13/23	10/13/23	10/13/23
6	detailed design due	10/18/23	10/20/23	10/20/23	10/20/23
7	status report	11/8/23	11/10/23	11/10/3	11/10/23

Product Size

For project, we plan to use Minisforum UM790 Pro mini-PC with dimensions of 130mm*126mm*52.3mm

Effort

Life Cycle Activity	This Reporting Per	riod (labor-hours)	Project to Date (labor-hours)		
Life Cycle Activity	Planned Effort	Actual Effort	Planned Effort	Actual Effort	
detailed design due	10	10	10	10	
parts order	10	10	10	10	
project completion	40	40	40	40	

Cost

Camera will stay the same on the system. Cables have not been needed since we decided to get a router for connectivity.

Life Cycle Activity	This Reporting Period		Project to Date	
Life Cycle Activity	Planned Cost	Actual Cost	Planned Cost	Actual Cost
Parts and supplies	\$1000	\$166.36	\$1000	\$166.36

Requirements Status

ID	Functional Requirements	Team Member Responsible	Effort (%)	Verification	Completed (%)
F R1	A machine learning model will use the camera to find the location of the PCB.	Fernando Zavala	35%	Test	50%
F R2	A fiducial will be created for the PCB and test tray.	Fernando Zavala	5%	Inspection	2%
F R3	Images of the fiducial and PCB should be created and used to train the model.	Fernando Zavala	10%	Test	50%
F R4	A web interface will allow the user to login and start/stop the system.	Jailine Contreras Marquez	20%	Demonstratio n	5%
F R5	User should have access to camera feed on the interface.	Jailine Contreras Marquez	30%	Demonstratio n	5%
F R6	Web interface should have a manual override feature where the user should have control of the arm.	Jailine Contreras Marquez	30%	Demonstratio n	5%
F R7	System should find the PCB by jogging the camera back and forth over a XY axis	Lap Nguyen	20%	Demonstratio n	50%

F R8	When the PCB location is identified, the system should lower the arm and pick up the PCB using vacuum	Lap Nguyen	10%	Inspection	5%
F R9	When the test tray location is identified, the system should lower the arm and place the PCB in the test tray.	Lap Nguyen	10%	Inspection	5%
F R1 0	The mini-PC should control the pick-up arm manually to a precise location.	Lap Nguyen	20%	Test	70%
F R1 1	The camera should be mounted high enough to have a clear and large image.	Fernando Zavala	15%	Inspection	10%
F R1 2	A machine learning model will use the camera to find the location of the fiducial on the test tray.	Fernando Zavala	30%	Test	2%

I D	Non-Functional Requirements	Team Member Responsible	Effort (%)	Verification	Completed (%)
N	The speed for moving the PCB	Lap Nguyen	20%	Test	40%
F R	should be 10mm/s.				
1					
N	The system must handle PCBs of	Lap Nguyen	20%	Inspection	20%
F R	size 300 mm wide by 500 mm long.				
2					
N	The PCB lifting mechanism	Fernando Zavala	5%	Inspection	0%
F R	should be capable of lifting up to 200 g				
3	10 200 8				
N	The system should pick and	Jailine Contreras	10%	Test	0%
F R	place the PCB in 8 seconds.	Marquez			
4					
N	The system should use the	Jailine Contreras	5%	Inspection	1%
F	ethernet standard for most communications.	Marquez			
R 5	communications.				
N	The mini-PC should be mounted	Jailine Contreras	5%	Inspection	0%
F	onto the system.	Marquez			
R 6					
6					

Top Five Risks

- 1. System might have an error from last time it was used
- 2. Getting a defective mini PC
- 3. Software could work in surplus PC but might have to be changed on mini PC

Open Issues

• Time constraints on team members

Action Items

- Keep finishing the requirements for the project.
- Update the part orders
- Detail design submitted

Defects

Not applicable