F20T2A1

Gegeben seien zwei reelle Zahlenfolgen $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$. Weiter sei $b\in\mathbb{R}$.

- a) Sei $\lim_{n\to\infty} b_n = b$. Zeigen Sie mit Hilfe der Definition für die Konvergenz einer reellen Zahlenfolge, dass die Folge $(b_n)_{n\in\mathbb{N}}$ beschränkt ist.
- b) Es sei $(\sum_{k=1}^n a_k)_{n\in\mathbb{N}}$ absolut konvergent und $\lim_{n\to\infty} b_n = b$. Zeigen Sie, dass die Reihe $(\sum_{k=1}^n a_k b_k)_{n\in\mathbb{N}}$ ebenfalls absolut konvergiert.
- c) Sei nun $(\sum_{k=1}^n a_k)_{n\in\mathbb{N}}$ konvergent und $\lim_{n\to\infty} b_n = 0$. Beweisen oder widerlegen Sie, dass dann die Reihe $(\sum_{k=1}^n a_k b_k)_{n\in\mathbb{N}}$ ebenfalls konvergiert.

Zu a)

Ist $b=\lim_{n\to\infty}b_n$, so gibt es für alle $\varepsilon>0$ ein $N_\varepsilon\in\mathbb{N}$ $mit|b-b_n|<\varepsilon$ für alle $n>N_\varepsilon$. Da die beiden Mengen] b- ε ; b+ ε [und $\{b_1,\dots,b_{N_\varepsilon}\}$ beschränkt sind ist auch die Menge $\{b_n:n\in\mathbb{N}\}\subseteq ([b-\varepsilon;b+\varepsilon]\cup\{b_1,\dots,b_{N_\varepsilon}\})$ beschränkt.

Zub)

Ist $(\sum_{k=1}^n a_k)_{n\in\mathbb{N}}$ absolut konvergent und $\lim_{n\to\infty} b_n = b$, dann gibt es nach (a) ein $c < \infty$ mit $\sup\{|b_n|: n\in\mathbb{N}\} \le c$. Dann ist $|a_kb_k| \le |a_k|c$. Also gibt $(|a_k|c)_{k\in\mathbb{N}}$ eine Majorante zu $(a_kb_k)_{k\in\mathbb{N}}$ und da $(\sum_{k=1}^n a_k)_{n\in\mathbb{N}}$ absolut konvergiert, konvergiert auch $(\sum_{k=1}^n |a_k|c)_{n\in\mathbb{N}}$ und somit ist laut Majorantenkriterium $(\sum_{k=1}^n a_kb_k)_{n\in\mathbb{N}}$ absolut konvergent.

Zu c)

Widerlegung mit Gegenbeispiel: $(a_n)_{n\in\mathbb{N}} = \left(\frac{(-1)^n}{\sqrt{n}}\right)_{n\in\mathbb{N}} = (b_n)_{n\in\mathbb{N}}$

 $\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0 \text{ und } \left(\frac{1}{\sqrt{n}}\right)_{k\in\mathbb{N}} \text{ ist streng monoton fallend; nach dem Leibnizkriterium konvergiert somit die Reihe } \left(\sum_{k=1}^n a_k\right)_{n\in\mathbb{N}}=\left(\sum_{k=1}^n (-1)^k \frac{1}{\sqrt{n}}\right)_{n\in\mathbb{N}}$

Aber die Reihe $(\sum_{k=1}^n a_k b_k)_{n \in \mathbb{N}} = \left(\sum_{k=1}^n (-1)^k \frac{1}{\sqrt{n}} (-1)^k \frac{1}{\sqrt{n}}\right)_{n \in \mathbb{N}} = \left(\sum_{k=1}^n \frac{1}{k}\right)_{n \in \mathbb{N}}$ konvergiert nicht.

(Anm.: unter den absolut konvergenten Reihen lässt sich KEIN Gegenbeispiel finden)