Belief Propagation Network for Hard Inductive Semi-Supervised Learning

Jaemin Yoo Seoul National Univ. jaeminyoo@snu.ac.kr Hyunsik Jeon Seoul National Univ. jeon185@snu.ac.kr U Kang Seoul National Univ. ukang@snu.ac.kr

Summary

- Given: Graph-structured data with partially observed labels
- **Problem:** Train a robust classifier in a semi-supervised setting that works independently for each node without neighbors
- *Main idea:* Propose a *belief propagation network (BPN)*, which uses a classifier to compute the priors of nodes and then diffuse them through the graph, independently from the priors
- Homepage (+ source codes): https://datalab.snu.ac.kr/bpn

Problem Definition

- *Given:* a graph $G = (\mathcal{V}, \mathcal{E})$
- *Given:* feature vector \mathbf{x}_i for every node $i \in V$
- *Given:* label $y_i \in \mathcal{S}$ of node $i \in V_o$ where $V_o \subset V$
- *Train:* a classifier $f: \mathbf{x} \to y$
- Semi-supervised learning: $|V_o| \ll |V|$
- Inductive learning: f should work with data unseen at training
- Hard inductive learning: f should work well without a graph

Belief Propagation Network (BPN)

- *Idea 1:* Separate the classification of each node and diffusion of the predictions (or priors) over the graph
- Idea 2: Model the diffusion as a parameter-free operation
- *Idea 3:* Use an *induction loss* to make the classifier mimic the diffusion by its own structure, without an actual graph
- Overview: BPN is an algorithm to train a given classifier f by diffusing its predictions over the given graph

Forward Propagation

1. Prior Computation

Use a classifier f to compute the prior ϕ_i of node i

$$\phi_i = f(\mathbf{x}_i; \theta)$$

- $-\mathbf{x}_i$ is the feature vector of node i
- $-\theta$ is the set of parameters of the classifier f
- $-\phi_i$ is a probability vector that sums to one

2. Diffusion by Loopy Belief Propagation

Diffuse the predicted priors by loopy belief propagation

$$\mathbf{m}_{ij}^{t} = \left[\psi(\mathbf{b}_{i}^{t-1} \oslash \mathbf{m}_{ji}^{t-1}) \right]$$
$$\mathbf{b}_{j}^{t} = \operatorname{softmax} \left(\log \phi_{j} + \sum_{i \in \mathcal{N}_{i}} \log \mathbf{m}_{ij}^{t} \right)$$

- $-\psi$ is an edge potential matrix that imposes adjacent nodes to have the same label (correlation by the graph structure)
- \mathbf{m}_{ii}^t is a message from node i to node j at iteration t
- b_i^t is a belief (diffused prediction) of node j at iteration t

Backward Propagation

1. Classification Loss

How well the observed labels are predicted by the beliefs

$$l_c(\theta) = -\sum_{i \in \mathcal{V}_o} \log b_i^*(y_i)$$

2. Induction Loss

How well the diffused beliefs are predicted by the priors

$$l_d(\theta) = -\sum_{i \notin \mathcal{V}_o} \sum_{s \in \mathcal{S}} b_i^*(s) (\log \phi_i(s) - \log b_i^*(s))$$

3. Overall Loss Function

Combine the two losses by a hyperparameter β

$$l(\theta) = (1 - \beta)l_c(\theta) + \beta l_d(\theta) + \lambda \|\theta\|_2^2$$

- β is set to a value between 0 and 1 (0.5 in experiments)
- $-\lambda$ is an L2 regularization parameter for the training

Experiments

Classification accuracy (vs. competitors)

- Planetoid (Yang et al., 2016)
- GCN (Graph convolutional networks, Kipf et al., 2017)
- SEANO (Liang et al., 2018)
- GAT (Graph attention networks, Velickovic et al.,, 2018)

Method	Pubmed	Cora	Citeseer	Amazon
Planetoid	$ 74.6 \pm 0.5 $	66.2 ± 0.9	66.8 ± 1.0	70.1 ± 1.9
GCN-I	74.1 ± 0.2	67.8 ± 0.6	63.6 ± 0.5	76.5 ± 0.3
SEANO	75.7 ± 0.4	64.5 ± 1.2	66.3 ± 0.8	78.6 ± 0.6
GAT	76.5 ± 0.4	70.1 ± 1.0	66.7 ± 1.0	77.5 ± 0.4
BPN (ours)	$\boxed{\textbf{78.3} \pm \textbf{0.3}}$	$\textbf{72.2} \pm \textbf{0.5}$	$\textbf{70.1} \pm \textbf{0.9}$	81.5 ± 1.3

• Training process (loss values)

- Classification loss decreases continuously
- Induction loss increases at first then decreases

This is because f's updates change the beliefs of nodes!

