Universidad Tecnológica Nacional Facultad Regional Buenos Aires Robótica R6055 Robot Hexápodo

Emiliano J. Borghi Orué

10/08/2015

oducción Modelo Cinemático Modelo Dinámico Compilador Simulaciones Posibles mejora

Índice

- 1 Introducción
- 2 Modelo Cinemático
- 3 Modelo Dinámico
- 4 Compilador
- 5 Simulaciones
- 6 Posibles mejoras

Estructura de un Hexápodo

Robot móvil de 6 patas

Figura: PhantomX Hexapod Mark II - Trossen Robotics

Introducción

Cada pata posee 3 articulaciones de revolución:

- Coxis
- Fémur
- Tibia

Figura: Distancia de enlaces [mm]

Parámetros de Denavit-Hartenberg

i	α_i	a _i	θ_i	θ_i^{off}	di
	(rad)	(mm)	(rad)	(rad)	(mm)
Coxis	$\pi/2$	52	θ_C	$\pi/2$	0
Fémur	0	66	θ_F	-0,22	0
Tibia	0	130	θ_{τ}	-0.59	0

Cuadro: Pata izquierda

Espacio de trabajo

Espacio de trabajo (cont...)

$$\gamma = -\operatorname{atan2}(x_1, y_1)$$
$$\gamma_{Coxa} = 150^{\circ} + \gamma$$

$$\begin{split} \gamma_{Tibia} &= 150 - \arccos\left(\frac{L_{Tibia}^2 + L_{Femur}^2 - L_2^2}{2 \cdot L_{Tibia} \cdot L_{Femur}}\right) + \text{offset}_{Tibia} \\ \gamma_{Femur} &= 150 - \left(\alpha_2 - \alpha + \text{offset}_{Femur}\right) \end{split}$$

Marcha (Gait)

- Trípode (3+3)
- Cuadrúpedo (4+2)
- Metacrónico (5+1)

Figura: Marcha tipo Trípode

Marcha (cont...)

Trayectoria de la pata

La pata sigue una trayectoria del tipo Cicloide.

Modelo Cinemático completo

Sistemas de referencias

Figura: Referencia respecto al sistema de coordenadas principal

Figura: Sistema de referencia global

roducción Modelo Cinemático **Modelo Dinámico** Compilador Simulaciones Posibles mejora

Modelo 3D

Modelo 3D en SolidWorks

Modelado en SolidWorks

Simulación en SimMechanics

Compilador

troducción Modelo Cinemático Modelo Dinámico **Compilador** Simulaciones Posibles mejora

Árbol Sintáctico

Output File

```
% HEXAPOD OUTPUT FILE
% Cargando valores por defecto
   3.9
   6.5
  14.2
half length 14
half width1 4.45
half width2 7.2
legdist 12.5
h 2
X
Y 0
Z 10.0
dt 10
tick 1
stepCount 5
gait 1
% END OF HEXAPOD OUTPUT FILE
```


Modelo Cinemático Modelo Dinámico Compilador Simulaciones Posibles mejoras

MATLAB

Figura: Hexápodo con marcha tipo trípode

Simplificaciones durante la simulación

- Análisis cinemático (no dinámico)
- Altura constante
- Velocidad constante
- Caminata recta
- Terreno plano

SimMechanics ←→ SolidWorks

- Implementar simulación en SimMechanics
- Mejorar modelado en 3D compartiendo con SolidWorks

Sistema de control complejo para los servomotores

Complejizar el modelo cinemático

¡Muchas Gracias!

