

Indice

1	Intr	oduzione all'approccio termodinamico	3
		1.0.1 Approccio microscopico	3
	1.1	Approccio macroscopico: la termodinamica classica	5
		1.1.1 Equilibrio termodinamico	5
		1.1.2 Gradi di libertà termodinamici	
2	Pri	ncipio Zero e Temperatura	7
	2.1	Termometria	8
		2.1.1 Cella di punto triplo dell'acqua	9
		2.1.2 Scala Kelvin	9
		2.1.3 Relazione temperatura - c.t. e sostanza	9
		2.1.4 Termometro a GP	
		2.1.5 Scala internazionale delle Temperature (ITS)	
3	Sist	emi Termodinamici	11
		3.0.1 Isoterme	11
	3.1	Trasformazioni termodinamiche	
	3.2	Gas Reali	
	0.2	3.2.1 Sviluppo del viriale	
		3.2.2 Equazione di Van der Waals	
		3.2.3 Diagrammi di fase di sostanze pure	
		5.2.5 Diagrammi di fase di sostanze pure	14
4	Teo		15
	4.1	Interpretazione microscopica: uno schema	
	4.2	Modello cinetico	15
		4.2.1 Pressione	
	4.3	Distribuzione delle velocità molecolari (di Maxwell)	17
		4.3.1 Ebollizione ed evaporazione	20
		4.3.2 Il libero cammino medio	21
5	Pri	no principio e calore	23
	5.1	Lavoro pV	23
		5.1.1 Lavoro pV in quasistatiche	
		5.1.2 Piano di Clapeyron	
		5.1.3 Cicli	
		5.1.4 Lavoro non meccanico	
		5.1.5 Calcolo esplicito lavoro pV	
	5.2	Energia interna	
	5.3		$\frac{20}{27}$
	5.4		$\frac{21}{27}$
	5.5		$\frac{29}{20}$
			30
		•	30
	5.6	•	31
		5.6.1 Casi particolari	
	5.7	Calorimetria	31

INDICE 2

8	Pote	enziali termodinamici	46
7	•		45
	6.3	Irraggiamento	44
	6.2	Convezione	
		6.1.3 Geometria sferica	
		6.1.2 Geometria cilindrica	
		6.1.1 Geometria planare	
	6.1	Conduzione: la legge di Fourier	
6		smissione del calore	41
	5.17	Velocità del suono	40
		Esperienza di Ruchart e misura di γ	
		Dipendenza della temperatura dalla quota	
		Espansione adiabatica dell'universo	
		5.13.1 Lavoro in adiabatiche quasistatiche	
	5.13	Adiabatiche per GP	
		Relazione di Meyer	
		Calori molari e gradi di libertà negli stati condensati	
		5.10.2 Gas poliatomici	
		5.10.1 Gas biatomici	
	5.10	Teorema di equipartizione dell'energia	35
		5.9.2 U per GR	
		5.9.1 L'esperienza di Joule	
	5.9	Energia interna dei gas	
	5.8	Calore molare per sistemi idrostatici	
		5.7.2 Calorimetro di Regnault (o delle mescolanze)	
		5.7.1 Calorimetro di Bunsen (o a ghiaccio)	31

Introduzione all'approccio termodinamico

La termodinamica classica si occupa degli scambi energetici tra un sistema fisico e l'ambiente circostante.

Sistema porzione di spazio e/o di materia limitata.

Ambiente tutto ciò che è esterno al sistema ma può influenzarne il comportamento

Completa e generalizza la trattazione della meccanica classica a qualunque tipo di sistema o fenomeno fisico. É caratterizzata da:

Generalità

Immortalità le sue leggi sono rimaste pressoché immutate nel progresso storico della scienza moderna (è valida infatti anche in ambito quantistico!). Si veda la citazione di Einstein:

Una teoria è tanto più convincente quanto più semplici sono le sue premesse, quanto più varie sono le cose che essa collega, quanto più esteso è il suo campo di applicazione. Per questo la termodinamica classica mi fece un'impressione così profonda. È la sola teoria fisica di contenuto universale che sono certo non sarà mai sovvertita, entro i limiti in cui i suoi concetti fondamentali sono applicabili (dedicato alla speciale attenzione di quelli che sono scettici per principio).

Nasce dalla necessità dello studio di modalità di conversione del calore in lavoro (e quindi energia meccanica). Lo studio della relazione tra sistema e ambiente (ovvero altri sistemi) si traduce nella descrizione quantitativa del comportamento del sistema e delle sue interazioni. Esistono due approcci: uno macroscopico, proprio della termodinamica *classica*, che prescinde dalla descrizione dei costituenti elementari, e uno microscopico.

1.0.1 Approccio microscopico

Per un sistema di N punti materiali, si definisce il **microstato** (o stato microscopico) secondo:

Microstato insieme di quantità vettoriali che definiscono la descrizione dinamica di tutti i costituenti elementari (le particelle).

Si rappresenta come

$$\{\vec{x}_i, \vec{p}_i\}_{i=1,...,N}$$

Con i vettori posizione e i momenti. Ogni quantità vettoriale corrisponde, nello spazio tridimensionale, a tre scalari. Dunque in totale il microstato è un insieme di 6N quantità $\in \mathbb{R}$.

Noto lo stato del sistema ad un dato istante nel tempo e il campo di forze cui è sottoposto, è possibile studiarne l'evoluzione dinamica nel tempo, impostando un sistema di 3N equazioni differenziali del II ordine scalari (applicando Newton). Si nota che poiché nella II Legge della dinamica compare la derivata seconda della posizione, le leggi della dinamica classica sono **invarianti per inversione temporale**: si può studiare l'evoluzione sia nel futuro che nel passato.

$$\begin{cases} m_1 \ddot{\vec{x}}_1 = \vec{f}_1 = \vec{f}_1^{(e)} + \sum_{i=2}^{N} \vec{f}_{1i} \\ \vdots \\ m_N \ddot{\vec{x}}_N = \vec{f}_N = \vec{f}_N^{(e)} + \sum_{i=1}^{N-1} \vec{f}_{Ni} \end{cases}$$

considerando forze interne ed esterne. La risoluzione richiede $2 \cdot 3N = 6N$ condizioni al contorno scalari, e conduce all'equazione oraria del moto delle particelle.

Essa può essere rappresentata come una curva nello Spazio delle fasi (o degli stati)

Spazio delle fasi Spazio matematico astratto 6N-dimensionale i cui punti rappresentano ogni possibile microstato del sistema.

Esiste un vincolo sulla grandezza di N? In linea di principio, secondo il determinismo assoluto (classico) incarnato dal **Demone di Laplace** il problema del moto è sempre risolvibile per qualsiasi numero di particelle: un'intelligenza in grado di conoscere perfettamente lo stato ed il campo di forze può anche conoscere esattamente lo sviluppo passato e futuro.

In pratica, tuttavia, $N\tilde{N}_A = 6\cdot 10^{23}$ per sistemi normalmente studiati e $N\tilde{1}0^{80}$ per l'universo osservabile: risulta di fatto impossibile, anche solo con metodi numerici che consentano un margine d'errore accettabile, risolvere il sistema di differenziali.

Crisi del determinismo laplaciano nel '900 il determinismo classico è stato poi minato da

Teoria del caos una minima (ma inevitabile) incertezza sperimentale di misura sulle condizioni al contorno tende a propagarsi, generando un cono di incertezza con crescita esponenziale, tramite dispersione e amplificazione. Dopo un certo tempo si ha una perdita di informazione sul microstato tanto importante da rendere inutili le previsioni

Principio di indeterminazione di Heisenberg la descrizione meccanica delle singole particelle è probabilistica: è impossibile conoscere con eguale precisione posizione e momento secondo

$$\Delta x \Delta p \ge \hbar$$

La Dinamica dei sistemi rappresenta un possibile approccio risolutivo: con le equazioni cardinali si sacrifica la conoscenza esatta del microstato per inglobare l'informazione in pochi parametri rappresentativi dell'intero sistema

$$\begin{cases} \sum \vec{f_i}^{(e)} = \dot{\vec{P}} = M \dot{\vec{v}}_{CM} \\ \sum \vec{m_i}^{(e)} = \dot{\vec{L}}_{\Omega} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\vec{L}_{CM} + \vec{r}_{CM} \times \vec{P} \right) \end{cases}$$

Per N < 3 il sistema impostato è risolvibile analiticamente (le due equazioni cardinali vettoriali, e quindi corrispondenti 6 scalari, del I ordine sono sufficienti fino a 3N = 6, ovvero N = 2 d.o.f.): per ordini di grandezza maggiori è necessaria l'imposizione di vincoli che contengano il numero di gradi di libertà. Si ha il corpo rigido

Corpo rigido un sistema di punti materiali le cui distanze reciproche sono fisse.

Si noti che esso è un costrutto puramente matematico, non esiste nella realtà (l'azione istantanea a distanza per mantenere la perfetta rigidità viola la località relativistica). Il numero dei suoi gradi di libertà è mantenuto costante a 6, corrispondenti a

3 per la posizione del centro di massa +

3 per gli angoli di Eulero. Questi descrivono l'orientazione relativa di una terna ortogonale propria del corpo, definita fissando 3 punti ed il CM, rispetto a una terna fissa in un SdR inerziale.

Un altro possibile approccio è quello di uno dei due rami della trattazione termodinamica.

La termodinamica statistica si basa sulla conoscenza di opportuni valori medi di grandezze microscopiche reinterpretabili in termini macroscopici, ovvero in termini di fenomeni e proprietà emergenti. Poiché le forze in gioco nella trattazione sono tendenzialmente la gravità e l'elettromagnetismo, essa è applicabile fino a energie $\tilde{10}^9$ eV.

Essa è efficace sotto l'assunto di fluttuazioni contenute. Ipotizzando un regime poissoniano per l'incertezza, si ha

$$\frac{\delta N}{N} = \frac{1}{\sqrt{N}} \xrightarrow[N \to +\infty]{} 0$$

dunque la trattazione è valida per N elevati. In genere il limite del campo di applicabilità dipende dal modello specifico.

1.1 Approccio macroscopico: la termodinamica classica

La termodinamica classica descrive un **sistema termodinamico** tramite il suo **macrostato**, caratterizzato da **coordinate termodinamiche macroscopiche** (pressione, volume, densità, composizione chimica, etc.) indipendenti dal tempo.

Sistema termodinamico un sistema fisico descrivibile attraverso coordinate termodinamiche.

Le c.t. possono essere

Estensive ovvero avere proprietà di additività (variano con la quantità di materia nel sistema)

Intensive ovvero non essere additive

Tra i due tipi vi sono relazioni peculiari: si possono infatti determinare **coppie di variabili coniugate** (int, est)

Il prototipo di sistema studiato nel corso è un sistema idrostatico costituito da un gas in un cilindro con un pistone.

Sistema idrostatico sistema termodinamico che esercita una pressione uniforme nei confronti dell'ambiente

All'equilibrio esso è un esempio di sistema semplice.

Sistema semplice un sistema termodinamico completamente descrivibile a livello macroscopico tramite 3 c.t., di cui due indipendenti. Definito 'sistema XYZ' da Zemansky.

1.1.1 Equilibrio termodinamico

Si definisce secondo

Equilibrio termodinamico stato di un sistema termodinamico tale per cui le coordinate termodinamiche rimangono immutate nel tempo (a meno di fluttuazioni statistiche)

Si osserva che fuori dall'equilibrio in realtà le c.t. non hanno valori uniformi all'interno del sistema (vi sono forti disomogeneità): esse infatti caratterizzano un sistema solo all'equilibrio!

L'oggetto di studio del corso è infatti la termodinamica assiomatica dei sistemi all'equilibrio (vecchio nome), in quanto oltre a quanto detto si basa su assiomi di derivazione sperimentale. La termodinamica classica è quindi in qualche modo una 'termostatica'.

Si ha l'equilibrio termodinamico quando sono verificati contemporaneamente:

Equilibrio meccanico ovvero uno stato in cui non si hanno parti meccaniche in moto (considerando il sistema nel complesso, a livello macroscopico)

Equilibrio chimico ovvero le concentrazioni e la composizione non variano nel tempo

Eq. termico ovvero la temperatura del sistema si mantiene costante

Si definiscono quindi

Universo termodinamico l'insieme del sistema e dell'ambiente circostante

$$U = S + A$$

	Scambia	
	Materia	Energia
Aperto	sì	sì
Chiuso	no	sì
Isolato	no	no

Si nota che la definizione del confine tra S e A per casi specifici presenta un qualche grado di arbitrarietà e può variare a seconda delle esigenze della trattazione.

1.1.2 Gradi di libertà termodinamici

Non tutte le c.t. sono necessarie per caratterizzare completamente lo stato di un sistema termodinamico all'equilibrio: sono sufficienti quelle indipendenti.

Grandezze indipendenti possono assumere valori arbitrari

Grandezze dipendenti date due gr. x, y indipendenti, una terza z è dipendente se $\exists f'(x,y) = z$ o, alternativamente

$$\exists f : f(x, y, z) = 0$$

ovvero è possibile definire un'equazione di stato

Equazione di stato funzione delle c.t. di un sistema che ha valore costante (0) e dunque esprime un vincolo tra valori di queste.

Gradi di libertà termodinamici numero di c.t. intensive indipendenti di un sistema

Il numero di d.o.f. termodinamici è dato dalla

REGOLA DELLE FASI DI GIBBS

 $\nu = C + 2 - F$

ove C sono le componenti e F le fasi.

Fase regione di spazio (o di un sistema termodinamico) con proprietà uniformi della materia. Corrispondono agli stati di aggregazione di una sostanza.

 ν può variare con l'energia (ovvero con la temperatura), in quanto a seconda del superamento di date soglie possono manifestarsi, oltre alla fase solida, in ordine: la fase liquida, quella aeriforme (le uniche altre trattate nel corso), il plasma, il QGP, plasma di quark e gluoni. Le leggi della termodinamica classica sono universalmente applicabili a tutti gli stati di aggregazione (!).

Capitolo 2

Principio Zero e Temperatura

Si dimostra come il concetto di temperatura emerga spontaneamente da quello di equilibrio termico, tramite il **Principio Zero della Termodinamica**.

Siano dati due sistemi semplici A, B con c.t. indipendenti (x, y) e (x', y') rispettivamente. Siano essi posti a contatto attraverso una **parete**.

Parete superficie (reale o figurata) che delimita il sistema nello spazio metrico completo

Si definiscano quindi due tipi di pareti:

Adiabatica se mantiene inalterate le coppie di c.t. dei due sistemi che la determinano

Conduttrice (o diatermica) se $\exists f(x, y; x', y') = 0$

ovvero le coppie di c.t. si modificano in modo non indipendente

Si enuncia una prima definizione di equilibrio termico

Due sistemi a contatto attraverso una parete conduttrice sono all'equilibrio termico.

Equivalentemente, due sistemi si dicono all'equilibrio termico se sono in stati tali per cui se posti a contatto tramite una parete diatermica si avrebbe un sistema complessivo in equilibrio termico.

Siano A, B separati da parete adiabatica ma a contatto termico con un medesimo terzo sistema C, descritto da (x'', y''). Si osserva un fondamentale fatto sperimentale, elevato al rango di principio:

PRINCIPIO ZERO due sistemi in equilibrio termico con un terzo sono in equilibrio termico fra loro.

Ovvero A e B sono in equilibrio termico fra loro. Si dimostra ora la derivazione del concetto di temperatura:

Dimostrazione. Per quanto visto, le ipotesi comportano

$$\exists f(x, y; x'', y'') = 0 \quad \exists f(x', y'; x'', y'') = 0$$

supponendo sia possibile isolare una variabile in funzione delle altre (ovvero sia soddisfatto il Teorema di Dini) si ha

$$\begin{cases} y'' = g_{AC}(x, y; x'') \\ y'' = g_{BC}(x', y'; x'') \end{cases} \implies g_{AC}(x, y; x'') = g_{BC}(x', y'; x'')$$

Invocando ora il Principio Zero, $\exists f_{AB}(x,y;x',y') = 0$ in quanto all'eq. fra loro. Tale equazione dev'essere riconducibile a quella ottenuta sopra, in quanto descrivono il medesimo sistema. Ciò implica inoltre che la dipendenza da x'' dev'essere la medesima, in modo da essere fattorizzabile. Sia quindi

$$\begin{cases} g_{AC}(x,y;x'') = h_A(x,y) \cdot \psi_C(x'') \\ g_{BC}(x',y';x'') = h_B(x',y') \cdot \psi_C(x'') \end{cases} \implies h_A(x,y) = h_B(x',y')$$

Applicando analogamente ad A e C all'equilibrio con B si ottiene

$$h_A(x,y) = h_B(x',y') = h_C(x'',y'')$$

8 2.1. TERMOMETRIA

Ovvero esiste una funzione delle coordinate termodinamiche indipendenti che assume il medesimo valore in sistemi all'equilibrio termico fra loro.

Si definisce dunque la **temperatura empirica** $\equiv h = h_A(x,y) = h_B(x',y') = h_C(x'',y'')$ (il suo valore corrisponde al valore assunto dalla funzione h_i di ogni sistema all'eq., mentre non necessariamente le espressioni analitiche sono uguali!)

Ponendo $h_A(x,y) = t$ costante e analogamente per B si ottengono una curva nel piano x - y e una nel piano x'-y' tali per cui qualsiasi coppia di un punto della prima e uno della seconda descrive stati di A e B all'equilibrio termico fra loro. Si definisce

Isoterma Fissato lo stato di un sistema, l'isoterma di un altro sistema è il luogo dei punti nello spazio delle n-ple di coordinate indipendenti corrispondenti a stati in equilibrio termico con tale stato fissato

Le curve ottenute sono dette anche isoterme corrispondenti.

2.1Termometria

Il Principio Zero permette la realizzazione del termoscopio, che permette di determinare se un sistema è all'equilibrio termico (ha la stessa temperatura empirica) con lo strumento. Per costruire una scala è necessario associare in modo univoco l'isoterma di appartenenza (ovvero il valore di t) ad un dato stato (x,y). Si deve dunque costruire una curva che intercetti le isoterme nel piano x-y.

Il procedimento più semplice consiste nel fissare (congelare) una variabile, ad esempio y, ed utilizzare x come variabile termometrica. Si definisce quindi una funzione termometrica $\theta(x)$: la scelta più semplice è quella di una funzione lineare $\theta(x) = ax + b$. La determinazione dei parametri corrisponde quindi alla taratura della scala.

Per 2 parametri sono necessari altrettanti punti fissi, il che implica la necessità di determinare due sistemi facilmente riproducibili cui assegnare valori arbitrari di t:

$$\begin{cases} \theta(x_1) = ax_1 + b \\ \theta(x_2) = ax_2 + b \end{cases} \implies \begin{cases} a = \frac{\theta(x_1) - \theta(x_2)}{x_1 - x_2} \\ b = \frac{\theta(x_2)x_1 - \theta(x_1)x_2}{x_1 - x_2} \end{cases}$$

Scala Celsius si pone

- $\theta_1 = 100$ con $S_1 \equiv$ acqua bollente a p_{atm}
- $\theta_2 = 0$ con $S_2 \equiv$ acqua che congela a p_{atm}

da cui si ottiene $\theta(x)=100\frac{x-x_0}{x_100-x_0}C$ (ad esempio x=V) Tale scala, prima della ridefinizione (vd dopo), era nota anche come s. centigrada.

Problemi dell'approccio con interpolazione di due punti sono

- la necessità di uno strumento di misura che abbia capacità termica (vd. dopo) molto minore del sistema in esame
- La difficoltà do riprodurre con assoluta precisione i sistemi presi a riferimento a scala minima, a causa della sensibilità alla minima variazione di pressione.

Per risolvere il secondo problema si utilizza alternativamente una scala con un solo punto fisso: il punto triplo dell'acqua.

Punto triplo particolare stato di una sostanza in cui è contemporaneamente presente in fase solida, liquida e aeriforme

La minima variazione di pressione, infatti, impedisce la formazione o il mantenimento dello stato di punto triplo (che è appunto un punto nel diagramma di fase, ovvero richiede una specifica combinazione di valori delle c.t.).

2.1. TERMOMETRIA 9

2.1.1 Cella di punto triplo dell'acqua

2.1.2 Scala Kelvin

Si ha quindi la scala $\theta(x) = \frac{\theta(x_3)}{x_3}x$. Si osserva che $\theta_{^{\circ}C}(x_3) = 0.01\,^{\circ}C$ e che l'intercetta all'origine della $\theta_{^{\circ}C}$ è $-273.15\,^{\circ}C$. Dunque fissata $\theta(x_3) = 273.16$ si ottiene una scala con gradi di medesima ampiezza di quelli Celsius, ovvero medesimo coefficiente angolare. Tale scala è la scala Kelvin:

$$\theta_{\rm K}(x) = 273.16 \frac{x}{x_3} \,\rm K$$

La conversione è dunque $\theta_{\rm C} = \theta_{\rm K} - 273.15$

Dopo il 1954 la scala Celsius è stata ridefinita (ottenendo la scala C. propriamente detta) ponendo come punti fissi (0, -273.15) e $(x_3, 0.01)$, di modo da fissare la conversione per semplice offset con la Kelvin.

2.1.3 Relazione temperatura - c.t. e sostanza

La funzione termometrica **non è** indipendente dalla variabile e dalla sostanza scelta; la relazione è stata infatti imposta e non necessariamente è verificata per ogni sostanza. Si considera ad esempio il caso del volume

Digressione matematica

Sia dato un sistema descritto da 3 c.t. V, p, θ . θ dipende dal volume, dunque non è indipendente: esiste una funzione di stato $f(p, V, \theta) = 0$. Si espliciti $V = V(p, \theta)$ e, per studiare il comportamento per variazioni infinitesime, si differenzi (avendolo in tal modo ridefinito come funzione di stato, il volume ammette differenziale esatto). Si ottiene la forma differenziale

$$dV = \left(\frac{\partial V}{\partial \theta}\right)_p d\theta + \left(\frac{\partial V}{\partial p}\right)_\theta dp$$

In termini fisici il differenziale è da intendersi come una variazione di volume:

- 1. Sufficientemente ridotta rispetto a V
- 2. Sufficientemente grande per contenere un numero statisticamente elevato di costituenti elementari, e dunque non risentire in modo significativo di fluttuazioni

Il procedimento che si sta seguendo è denominato passaggio al continuo.

Il coefficiente di dilatazione volumetrico $\alpha \equiv \frac{1}{V} \left(\frac{\partial V}{\partial \theta} \right)_p$ caratterizza l'inerzia termica di un corpo. Per corpi con dilatazione lungo due direzioni trascurabile, o in genere considerando esclusivamente una direzione, si ha il coeff. di dilatazione lineare $\alpha_L \equiv \frac{1}{L} \left(\frac{\partial L}{\partial \theta} \right)_n$

Si dimostra ora che $\alpha \approx 3\alpha_L$ per piccole variazioni di temperatura

Dimostrazione. Linearizzando in intorno infinitesimo $\left(\frac{\partial V}{\partial \theta}\right)_p \approx \frac{\Delta V}{\Delta \theta}$, dunque $\alpha \approx \frac{1}{V} \frac{\Delta V}{\Delta \theta}$. Si procede analogamente per α_L . Considerando una porzione cubica di volume, si ha $V=L^3$ e $V'=V+\Delta V=(L')^3=(L+\Delta L)^3$. Dunque $V(1+\alpha\Delta\theta)=L^3(1+\alpha_L\Delta\theta)^3$. Si semplifica; per $\Delta\theta\to 0$ è poi possibile sviluppare il secondo membro in serie di Taylor al primo ordine, ottenendo

$$1 + \alpha \Delta \theta = (1 + \alpha_L \Delta \theta)^3 \approx 1 + 3\alpha_L \Delta \theta \implies \alpha \approx 3\alpha_L$$

Il coefficiente di comprimibilità isoterma $\frac{1}{k} \equiv -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_{\theta}$ ove il segno è negativo in quanto aumentando la pressione a temperatura costante si ha una diminuzione del volume. Si nota inoltre che i coefficienti non sono costanti e indipendenti dalle c.t. Infatti $\alpha = \alpha(\theta)$ e k = k(p).

2.1. TERMOMETRIA 10

Dilatazione termica: POV microscopico

In presenza di molecole asimmetriche si ha la formazione di dipoli, che danno luogo a forze intermolecolari (presenti anche più debolmente in molecole apolari, ove si hanno Forze di London). Un modello che descrive il potenziale d'interazione intermolecolare è quello di Lennard-Jones:

$$U(r) = \varepsilon \left[\left(\frac{r_{min}}{r} \right)^{12} - 2 \left(\frac{r_{min}}{r} \right)^{6} \right]$$

ove r è la distanza tra le molecole. La forza (corrispondente alle ff. di Van der Waals) è data secondo $F=-\frac{\mathrm{d}U}{\mathrm{d}r}$ (opposto del gradiente): essa è dunque repulsiva a distanze inferiori a r_{min} e attrattiva per superiori.

Nel grafico si nota la presenza di un punto di equilibrio in r_{min} , in fondo alla buca di potenziale. Intercettando orizzontalmente con il valore dell'energia meccanica delle particelle, dall'equazione della conservazione dell'energia E = U + K = cost si determina l'andamento dell'energia cinetica e le caratteristiche del moto molecolare. Per E < 0 il grafico è intercettato in due punti: sono la distanza minima e massima, si ha dunque uno **stato legato**. Per E > 0 le molecole sono invece libere.

Si osserva che la curva è asimmetrica: aumentando l'energia meccanica la distanza molecolare media aumenta, tendendo a infinito per $E \to 0$: dunque aumentando l'energia cinetica, che si vedrà essere in valor medio proporzionale alla temperatura, si ha aumento della distanza media tra le molecole, e quindi del volume occupato a pressione costante.

2.1.4 Termometro a GP

Procedura operativa

- 1. Taratura in cella di punto triplo (immersione) \rightarrow determinazione p_3
- 2. Misura secondo $\theta(p) = 273.16 \frac{p}{p_3}$

Si osserva che variando il numero di moli si hanno valori differenti di pressione in corrispondenza del punto triplo. Graficando l'andamento per le varie sostanze si osserva che la relazione $\theta(p_3(n))$ è lineare con coefficienti angolari differenti. Tuttavia, per $p_3 \to 0$ tutte le rette convergono a $\theta = 373.15$.

Rimuovendo progressivamente il gas dal bulbo, e dunque aumentandone la rarefazione (ovvero la distanza intermolecolare) si va a 'spegnere' il potenziale di LJ (specifico delle varie sostanze), lasciando come unico contributo energetico l'energia cinetica, che si può già evincere corrisponda alla temperatura: dunque **tutti** i gas hanno il medesimo comportamento nel limite $p \to 0$, ovvero a volume costante $r \to \infty$.

Il Gas Perfetto

É quindi possibile definire un modello fisico (approssimazione teorica ma estremamente efficace) denominato **Gas Perfetto**, che descrive il comportamento di qualunque gas nel limite di elevata rarefazione (unica condizione necessaria!), permettendo la definizione e l'utilizzo della θ misurata con il termometro a gas. Il limite fisico di utilizzo di tale strumento è dato dalla più bassa temperatura di liquefazione di un gas, ovvero i 0.5 K dell' ³He. Per coprire l'intervallo [0, 0.5[sarà necessario svincolare completamente il concetto di temperatura dalla sostanza termometrica.

2.1.5 Scala internazionale delle Temperature (ITS)

É definita una scala con una serie di punti fissi misurati con grande precisione tramite termometri a GP. Per misure di valori intermedi essi sono poi utilizzati per tarare altri tipi di termometri (pirometri, ovvero misuratori di radiazione emessa, t. a resistenza di platino, termocoppie platino-rodio o PRT e altri). Essa non sostituisce le scale di riferimento ma ha uno scopo pratico. Definita la prima volta come IPTS (P = Practical) nel 1968, secondo lo standard ITS 90 ha come estremi il punto triplo dell'Idrogeno a 13.8 K e il punto di solidificazione del Rame a 1357.77 K.

Capitolo 3

Sistemi Termodinamici

Una lunga serie di esperienze ha permesso di determinare le relazioni tra le c.t. dei gas nel limite di GP, fino all'ottenimento dell'equazione di stato dei gas perfetti.

LEGGI DEI GAS PERFETTI		
I Legge di Gay-Lussac	a p cost	$V = V_0 \beta \theta \ (V \propto \theta)$
II Legge di Gay-Lussac	a V cost	$p = p_0 \beta \theta \ (p \propto \theta)$
Legge di Boyle	a n, θ cost	$V = \frac{cost}{p} \ (V \propto \frac{1}{p})$
Legge di Avogadro	a p, θ cost	$V = cost' \cdot n \ (V \propto n)$
Equazione di stato dei GP		$\boxed{pV = nR\theta}$

Dove i valori con pedice 0 indicano le c.t. alla temperatura di $0\,^{\circ}$ C, la temperatura è espressa in K e R è la costante dei gas.

Si osserva che consegue dall'equazione che in condizioni normali tutti i gas hanno il medesimo volume molare, corrispondente a $22.4\,\mathrm{L\,mol^{-1}}$

Si ricava inoltre in modo immediato:

$$\alpha = \frac{1}{V} \frac{\partial}{\partial \theta} \left(\frac{nR\theta}{p} \right) = \frac{nR}{pV} = \frac{1}{\theta}$$
$$\frac{1}{k} = -\frac{1}{V} \frac{\partial}{\partial p} \left(\frac{nR\theta}{p} \right) = \frac{nR\theta}{Vp^2} = \frac{1}{p}$$

3.0.1 Isoterme

Dall'equazione di stato si ottengono le equazioni delle isoterme nel piano p-V, secondo

$$p(V;\theta) = \frac{nR\theta}{V}$$

esse sono dunque delle iperboli.

3.1 Trasformazioni termodinamiche

Trasformazione termodinamica processo in cui variano le proprietà (e dunque le c.t.) di un sistema termodinamico

Tramite trasformazioni cambia lo stato del sistema, ovvero la sua configurazione. Tuttavia, durante la trasformazione è impossibile rappresentare stati intermedi sui grafici: per quanto notato anche in precedenza, non si tratta di stati all'equilibrio, e dunque le c.t. non hanno valori uniformi.

Tuttavia è possibile costruire un modello, quello delle trasformazioni quasistatiche.

3.2. GAS REALI 12

Trasformazione quasistatica (q.s.) una trasf. termodinamica che procede attraverso una successione di infiniti stati all'equilibrio differenti di infinitesimi.

Si hanno quindi curvi corrispondenti a trasformazioni isoterme (le curve già viste), isobare (a pressione costante) e isocore (a volume costante).

A livello pratico, tali trasformazioni sarebbero realizzabili secondo le seguenti procedure:

- Isobara per ogni variazione infinitesima di volume del sistema idrostatico, ottenuta diminuendo il peso posto sul pistone, lo si pone a contatto con un termostato con temperatura maggiore di un infinitesimo del precedente, iterando fino al raggiungimento del volume finale
- **Isocora** per ogni variazione infinitesima di temperatura, ottenuta sostituendo il termostato come in precedenza, si incrementa la pressione sul pistone aggiungendo masse infinitesime ulteriori.

3.2 Gas Reali

Lontano dal limite di G.P., è necessario apportare delle correzioni all'equazione di stato per tenere conto delle proprietà specifiche dei vari gas. Sono possibili due approcci.

3.2.1 Sviluppo del viriale

Si definisce il **fattore di compressione** $z \equiv \frac{pV}{nR\theta}$, che quantifica l'allontanamento dal modello ideale. Quindi si sviluppa in serie in p per $p \to 0$:

$$z(p) = 1 + Ap + Bp^2 + Cp^3 + \dots$$

con i coefficienti da determinarsi tramite fit sui dati sperimentali (dipendono dalla temperatura). Alternativamente si sviluppa nel volume molare $v = \frac{V}{n} \propto \frac{1}{\rho}$:

$$z(\frac{1}{v}) = 1 + \frac{A'}{v} + \frac{B'}{v^2} + \dots$$

3.2.2 Equazione di Van der Waals

Alternativamente si adotta un approccio *empirico*, valutando modifiche all'equazione sulla base dello studio dell'andamento del potenziale di L-J.

Per distanze inferiori a r_{min} domina il termine repulsivo $\propto r^{-12}$, fino ad un **muro di potenziale** per $r \to 0$: ciò corrisponde all'impenetrabilità (e quindi non compenetrabilità) delle molecole, che non possono essere quindi assunte puntiformi. Esse occupano un volume minimo costante proporzionale al loro numero, e quindi alle moli. Esso è denominato covolume

$$V_{reale} = V_{ideale} + \underbrace{b \cdot n}_{cov.}$$

Si osserva poi che la pressione (come sarà poi visto approfonditamente) è la manifestazione macroscopica degli urti delle molecole sulle pareti che delimitano il sistema idrostatico. La presenza di interazioni intermolecolari attrattive per distanze maggiori a r_{min} , ove domina il termine $\propto -r^{-6}$, diminuisce l'impulso scambiato con le pareti, riducendo la quantità di moto delle molecole ¹; invece un maggior numero di molecole implica un numero maggiore di impatti. Dunque la diminuzione del contributo della singola molecola dp è proporzionale a ρ per ¹, mentre la diminuzione complessiva è data da $N \cdot dp$. Dunque d $p_{tot} \propto \rho^2$, ovvero d $p_{tot} \propto \frac{n^2}{V^2} = \frac{1}{V^2}$. Indicando la costante di proporzionalità con a si ha

$$p_{reale} = p_{ideale} - \underbrace{a \frac{n^2}{V^2}}_{dn}$$

Sostituendo nell'eq. di stato si ottiene

EQ. DI STATO DI VAN DER WAALS
$$\left(p + a \frac{n^2}{V^2} \right) (V - bn) = nR\theta \quad \bigg| \quad \bigg(p + \frac{a}{v^2} \bigg) (v - b) = R\theta$$

3.2. GAS REALI 13

ove a, b sono dette costanti di Van der Waals specifiche di ogni gas. Si osserva che in condizioni standard le correzioni relative sul volume e sulla pressione sono nell'ordine dello 0.1%.

Ottenendo l'espressione di p(V) si rappresentano quindi le curve nel piano p-v), considerando in particolare le isoterme.

$$p(V) = \frac{nR\theta}{v - h} - \frac{a}{v^2}$$

- \square Per θ elevato il primo termine risulta dominante, dunque per b ridotto la curva tende all'iperbole equilatera dei GP, con asintoto a sinistra a v = b (incomprimibilità!)
- \square Per un particolare valore di temperatura, definito θ_C (critico) si ha un flesso orizzontale. Imponendo l'annullamento della derivata prima e seconda della pressione rispetto al volume si ottiene:

$$v_C = 3b$$
 $\theta_C = \frac{8a}{27Rb}$ $z_C = \frac{p_C v_C}{R\theta_C} = \frac{3}{8} = 0.375$

Dimostrazione.

$$\begin{cases} \frac{\partial p}{\partial \mathbf{v}} = 0 \\ \frac{\partial^2 p}{\partial \mathbf{v}^2} = 0 \end{cases} \implies \begin{cases} \frac{2a}{\mathbf{v}^3} = \frac{R\theta}{(\mathbf{v} - b)^2} \\ \frac{2R\theta}{(\mathbf{v} - b)^3} = \frac{6a}{\mathbf{v}^4} \end{cases} \implies \begin{cases} \mathbf{v} = 3b \\ 2a(2b)^2 = R\theta(3b)^3 \end{cases} \implies \begin{cases} \theta_C = \frac{2a(4b^2)}{R(27b^3)} = \frac{8a}{27b} \\ \mathbf{v}_C = 3b \end{cases} \implies p_C = \frac{R\theta_C}{2b} - \frac{a}{9b} = \frac{a}{27b^2} \implies z_C = \frac{p_C \mathbf{v}_C}{R\theta_C} = \frac{3}{8}0.375 \end{cases}$$

Che si osserva essere indipendente dalla sostanza (come verificato sperimentalmente). Viceversa è anche possibile ricavare le costanti di Van der Waals dalla **curva critica** secondo:

$$a = \frac{9}{8}R\theta_C \mathbf{v}_C b = \frac{\mathbf{v}_C}{3}$$

 \square Per $\theta < \theta_C$ la curva ha un andamento simil-sinuisoidale con massimi e minimi. Tuttavia per determinati intervalli ciò non corrisponde a quanto osservato sperimentalmente: raggiunto un certo valore V_G del volume (o v_G corrispondente) la diminuzione del volume non comporta alcuna variazione della pressione. Si osserva invece la formazione di condensa: si sta infatti verificando una transizione di fase (verso la f. liquida). Una volta completata la transizione, ovvero raggiunto il V_L , la curva diviene pressoché verticale, a causa dell'incomprimibilità dei liquidi.

Diminuendo ulteriormente la temperatura, si osserva che i valori di V_L e V_G si allontanano. Effettuando un inviluppo sui segmenti orizzontali per le varie temperature subcritiche, ovvero determinando una curva tangente ai punti estremi, si ottiene una parabola con vertice in θ_C , dove è tangente all'isoterma.

Ciò permette di realizzare il **Diagramma di Fase** della sostanza, in cui varie porzioni del piano rappresentano le varie fasi, delimitate dalle curve di saturazione.

Per stati nella zona sottesa dalla parabola determinata, il vapore si trova in uno stato definito **vapore** saturo. Per ogni valore di V (o v) compreso tra gli estremi del segmento, e per una data temperatura (o equivalentemente una data pressione) il VS raggiunge l'equilibrio quando il processo di liquefazione di molecole del vapore (a causa degli urti anelastici con la superficie) e quello di evaporazione ('liberazione' per agitazione termica delle molecole superficiali) sono bilanciati. In tal caso il numero di moli di molecole nelle due fasi (n_L, n_G) resta costante, con il rapporto $\frac{n_L}{n_G} = \frac{\mathbf{v}_G - \mathbf{v}}{\mathbf{v} - \mathbf{v}_L}$ con $\mathbf{v}_i = V_i/n_i$.

Dimostrazione.

$$V_L + V_G = n_L \mathbf{v}_L + n_G \mathbf{v}_G = n \mathbf{v}$$
 $\frac{n_L}{n_G} = \frac{V_L/\mathbf{v}_L}{V_G/\mathbf{v}_G}$

Imponendo $n_L + n_G = n$ (sistema chiuso) si ha

$$n_G \mathbf{v}_G + n_L \mathbf{v}_G = (n_L + n_G) \mathbf{v} \implies n_G (\mathbf{v}_G - \mathbf{v}) = n_L (\mathbf{v} - \mathbf{v}_L)$$

3.2. GAS REALI 14

Diminuendo il volume resta costante il numero di molecole che passano da una fase all'altra (pelo del liquido resta il medesimo) in quanto dipende esclusivamente dall'agitazione termica, ovvero dalla temperatura. Tuttavia anche la densità si mantiene costante, a spese di n_G .

Per temperature supercritiche l'energia cinetica delle molecole è troppo elevata perché possa avvenire l'aggregazione e dunque la transizione di fase. Si osserva inoltre che per sistemi aperti l'evaporazione (non l'ebollizione!) si verifica a qualsiasi temperatura, lungo un tempo determinato dalla probabilità di rottura dei legami ad idrogeno, ovvero alla distribuzione delle energie cinetiche (vd Teoria Cinetica).

Costruzione di Maxwell

É possibile determinare i valori di V_L e V_G dalla curva prevista dal modello di Van der Waals per temperature subcritiche, tramite un procedimento analitico.

Il metodo della costruzione di Maxwell prevede di tagliare orizzontalmente la curva, di modo da ottenere due aree sottese (una sopra e una sotto la retta orizzontali) uguali. I volumi estremi intercettati sono quelli cercati.

Si osserva che per volumi compresi tra V_L e il minimo locale e tra il massimo locale e V_G la derivata della curva è negativa, ovvero si tratta di stati di equilibrio stabile e quindi realizzabili sperimentalmente; per la porzione intermedia invece la derivata positiva implica si tratti di equilibri instabili, e quindi irrealizzabili.

3.2.3 Diagrammi di fase di sostanze pure

Si tratta di diagrammi tridimensionali nello spazio θ , V, p, in cui le curve di saturazione e transizione generano una superficie **pVT** $(pV\theta)$.

Le proiezioni della stessa sul piano (p,V) e (p,θ) danno poi i diagrammi di fase bidimensionali.

Piano (p,T)

Sono rappresentate le curve di transizione, descritte dalle equazioni di Clausius-Clapeyron (vd più avanti). Per Temperature e pressioni supercritiche, si ha lo stato di **fluido supercritico**, che presenta proprietà macroscopiche miste di liquidi (densità) e aeriformi (viscosità). Esso è presente, ad esempio, nei vulcani sottomarini (approssimando un andamento con la profondità $p(h) = \frac{h}{10\text{m}}$ atm si ha p(2km) = 200 atm!) Si osserva inoltre che la temperatura di ebollizione varia con la pressione (o viceversa) e che è possibile transire di da liquido ad aeriforme diminuendo la pressione a temperatura costante: si ha il processo di **cavitazione**.

Si applichi Gibbs per sistema monocomponente:

- Nelle regioni piene F=1, dunque N=2: il sistema può trovarsi in qualsiasi punto della regione, in quanto le due c.t. sono indipendenti
- Lungo le curve F=2, dunque N=1: gli stati possibili giacciono sulla specifica curva $p(\theta)$
- Nel punto triplo F = 3, dunque N = 0: si realizza solo in condizioni specifiche, da cui la variazione di una qualsiasi c.t. intensiva farebbe allontanare il sistema.

Si osservi che è possibile applicare la Regola solo per quanto riguarda la proiezione (p, θ) in quanto si tratta di variabili intensive.

Teoria cinetica dei gas

4.1 Interpretazione microscopica: uno schema

Il seguente schema concettuale generale descrive il processo scientifico:

* schema *

La teoria di base della TCG è la meccanica newtoniana. Il modello sviluppato è invece il:

4.2 Modello cinetico

Esso è costituito da N molecole moventi di moto rettilineo uniforme all'interno di una scatola cubica, di cui occupano tutto il volume. Le assunzioni di base del modello sono:

- 1. N è sufficientemente grande
- 2. Il covolume è trascurabile, ovvero le molecole possono essere considerate puntiformi
- 3. Le interazioni a lungo range sono trascurabili (no L-J) e quelle a corto raggio (urti tra molecole e con le pareti) sono completamente elastiche
- 4. Si ha il **caos molecolare**, ovvero **omogeneità** (la densità è considerabile uniforme) e **isotropia** (non vi sono direzioni privilegiate per il moto delle particelle, ovvero il gas è macroscopicamente fermo)

Gli assunti 2. e 3. implicano ci si stia ponendo nel campo di applicabilità del modello di Gas Perfetto.

Aria in condizioni standard soddisfa requisiti?

- Si considera un volumetto $V=1\,\mathrm{cm}^3$. Si ha $N=\frac{pV}{R\theta}N_A\approx 10^{19}$ molecole, un numero sufficientemente grande per consentire l'approccio statistico (anche su scala locale!)
- Il 99% delle molecole è rappresentato da N_2 e O_2 , che presentano una forma a 'fagiolo' con lunghezza maggiore d=1.7 Å. Approssimando a sfere di raggio d/2 si ottiene un covolume = $N\frac{4}{3}\pi \left(\frac{d}{2}\right)^3 \approx 6 \times 10^{-11} \,\mathrm{m3}$ e dunque un rapporto $r \equiv \frac{V_{mol}}{V} \approx 6 \times 10^{-5}$
- Approssimando la disposizione omogenea con una griglia (un reticolo) con molecole nei vertici si determina il passo:

$$N = \frac{V}{\lambda^3} \implies \lambda = \left(\frac{V}{N}\right)^{\frac{1}{3}} \approx 34 \,\text{Å} \implies r \equiv \frac{\lambda}{d} \approx 20$$

Poiché $d\tilde{r}_{min}$, a distanze tanto superiori le interazioni sono trascurabili

• L'omogeneità è già stata assunta nel punto precedente. Se tutte le molecole hanno approssimativamente uguale massa, la condizione di isotropia $\vec{P}=0$ si traduce in $\sum_i \vec{v}_i = 0$, ovvero per ogni molecola che si muove in una direzione ve ne è una che si muove sulla medesima ma in verso opposto.

4.2.1 Pressione

Si considerano gli urti elastici su una delle pareti della scatola (l'assunzione di isotropia permette di sceglierne una qualsiasi). Sia essa quella di destra, orientata perpendicolarmente all'asse x e indicata in figura con S_x . Per un urto elastico con $M_{parete} \gg m_{mol}$ si ha:

$$\begin{cases} v'_{ix} = -v_{ix} \\ v'_{iy} = v_{iy} \implies \Delta q_{iy} = 0 \implies \Delta q_{ix} = \Delta q_i = -2mv_{ix} \\ v'_{iz} = v_{iz} \implies \Delta q_{iz} = 0 \end{cases}$$

In un dato Δt , il numero di urti sulla parete della *i*-esima particella dipende dal solo moto su x (in quanto il modulo delle altre componenti rimane invariato e i tre moti sono indipendenti). La variazione totale della quantità di moto su x è quindi calcolata moltiplicando la variazione per ogni particella per il numero di urti corrispondenti e sommando sulle particelle

$$n_{urti}(i) = \frac{|v_{ix}|\Delta t}{2L} \implies |\Delta Q_x| = \sum_{i=1}^N |\Delta q_{ix}| \cdot n_{urti}(i) = \sum_{i=1}^N \frac{2m|v_{ix}| \cdot |v_{ix}|\Delta t}{2L} = \frac{m\Delta t}{L} \sum_{i=1}^N v_{ix}^2 + \frac{1}{2L} \sum_{i=1}^N v_{ix}^$$

assunta la massa uniforme. La forza media è data dalla variazione di quantità di moto complessiva, ovvero l'impulso esercitato, sull'intervallo di tempo. La pressione si ottiene quindi dividendo tale forza per la superficie su cui è applicata:

$$|F_x| = \frac{|\Delta Q_x|}{\Delta t} = \frac{m}{L} \sum_{i=1}^N v_{ix}^2 \implies p_x = \frac{|F_x|}{S_x} = \frac{m}{S_x \cdot L} \sum_{i=1}^N v_{ix}^2 = \frac{m}{V} \sum_{i=1}^N v_{ix}^2$$

Si ricava analogamente l'espressione per pareti ortogonali alle altre due direzioni, ovvero S_y e S_z . Per N grande si applica la condizione di isotropia, ovvero si assume che i valori di v_{ij} siano equamente distribuiti sulle tre direzioni j=x,y,z. Ciò implica

$$p_x = p_y = p_z \equiv p$$

ovvero si ha pressione idrostatica: si è di fatto ricavato il **Principio di Pascal**, secondo cui la pressione è una grandezza scalare indipendente dall'orientamento della superficie su cui è applicata. Dunque

$$p = \frac{1}{3}(p_x + p_y + p_z) = \frac{m}{3V} \sum_{i=1}^{N} [v_{ix}^2 + v_{iy}^2 + v_{iz}^2] = \frac{m}{3V} \sum_{i=1}^{N} v_i^2 \implies pV = \frac{m}{3} \sum_{i=1}^{N} v_i^2$$

Si introduce quindi la **velocità quadratica media** $\langle v^2 \rangle$, definita come valore di aspettazione del quadrato del modulo delle velocità molecolari, e successivamente l'**energia cinetica molecolare media** $\langle \varepsilon \rangle$:

$$\langle v^2 \rangle \equiv \mathbb{E}[v^2] = \frac{\sum_i v_i^2}{N} \implies pV = \frac{m}{3} N \langle v^2 \rangle = \frac{2}{3} N \left(\frac{1}{2} m \langle v^2 \rangle \right) = \frac{2}{3} N \left\langle \frac{1}{2} m v^2 \right\rangle = \frac{2}{3} N \langle \varepsilon \rangle$$

in quanto la massa è assunta uniforme. Invocando l'equazione di stato dei gas perfetti:

$$nR\theta = \frac{2}{3}N\langle \varepsilon \rangle \implies \varepsilon = \frac{3}{2}\frac{n}{N}R\theta = \frac{3}{2}\frac{R}{N_a}\theta = \frac{3}{2}k_B\theta$$

Si è così stabilito un ponte macro-micro tramite l'introduzione di quantità medie che permettono di considerare una caratterizzazione globale del sistema prescindendo dalla conoscenza esatta del microstato. La temperatura è così caratterizzata come grandezza **emergente** proporzionale al valor medio delle energie cinetiche molecolari, dunque ad esse collegata per via statistica. Tali d.o.f. interni del sistema, variabili nascoste microscopiche, producono una quantità misurabile macroscopicamente.

Si ha quindi la giustificazione del comportamento dei gas nel limite del GP: se per il potenziale $U \to 0$, si ha $E \to \varepsilon$ con $\langle \varepsilon \rangle \propto \theta$.

Osservazioni

- La costante di Boltzmann è misurabile sperimentalmente, ad esempio attraverso l'esperimento di Perrin sul moto browniano
- Dal 2019 k_B è stata assunta come costante fondamentale senza incertezza per la ridefinizione del K da parte del BIPM. In tal modo la precisione della scala non è più vincolata a quella della riproduzione delle specifiche condizioni di S_3 , è può anzi in futuro divenire arbitrariamente elevata con la possibilità di ridefinizione dei punti fissi.

La costante di Boltzmann rappresenta un vero e proprio fattore di conversione tramite cui la temperatura è ridefinita come una grandezza energetica.

Difatti la ridefinizione della scala Kelvin è la seguente:

1 K corrisponde alla temperatura di una sostanza che ha $\frac{k_B}{2}$ J di energia cinetica media per grado di libertà cinetico.

Per il numero di d.o.f. si fa ricorso al Teorema di equipartizione dell'energia (vd più avanti)

TEOREMA DI EQUIPARTIZIONE DELL'ENERGIA A ogni d.o.f. che si presenta in forma di termine quadratico (quadraticamente) nel calcolo dell'energia cinetica corrisponde un termine $\frac{1}{2}k_B\theta$

Dunque

$$\langle \varepsilon \rangle = \frac{\nu}{2} k_B \theta \implies \theta = \frac{2 \langle \varepsilon \rangle}{k_B \cdot \nu}$$

RELATIVITÁ SPECIALE

Il limite superiore alla velocità determinato dalla SR implica un limite ad ε e dunque a θ ? No, in quanto l'espressione classica per l'energia cinetica non vale fuori dal limite classico! Per velocità prossime a c, la differenza di energia necessaria ad imprimere un'ulteriore accelerazione diverge; dunque $\theta \to \infty$.

Legge di Dalton

Siano dati due (o più) GP occupano insieme un dato volume, e noti il rispettivi numeri di moli e le pressioni parziali, ovvero le pressioni esercitate da ognuno occupando interamente il volume in assenza degli altri. Si ha: $p_i = \frac{n_i R \theta_i}{V}$ e $n = \sum n_i$. Si osserva che $\langle \varepsilon_i \rangle = \frac{3}{2} k \theta_i$ e che per la media complessiva si ha:

$$\langle \varepsilon \rangle = \frac{\sum n_i \langle \varepsilon_i \rangle}{\sum n_i} \implies \theta = \frac{2 \langle \varepsilon \rangle}{3k} = \frac{2 \sum n_i \langle \varepsilon_i \rangle}{3k \sum n_i} \implies pV = \left(\sum n_i\right) R \frac{2 \sum n_i \langle \varepsilon_i \rangle}{3k \left(\sum n_i\right)} = R \sum \frac{2}{3k} n_i \langle \varepsilon_i \rangle = R \sum n_i \theta_i = \sum R n_i \theta_i = \sum p_i V \implies p = \sum p_i$$

4.3 Distribuzione delle velocità molecolari (di Maxwell)

Si intende determinare la PDF della variabile continua v, corrispondente al modulo della velocità molecolare

$$\rho : [0, +\infty[\to [0, 1[t.c. P(v < v' < v + dv) = \rho(v) dv]]$$

Si assume che il sistema in esame sia all'equilibrio termodinamico, e dunque quello termico (θ è uniforme e costante) e isolato. Qualsiasi sistema che soddisfi tali assunti tenderà a presentare una configurazione di velocità molecolari descritta dalla Maxwelliana; anche partendo da una distribuzione differente in un certo lasso di tempo urti anelastici condurranno alla distribuzione qui derivata.

Per ottenere ρ è in primo luogo necessario determinare le distribuzioni delle singole componenti, $f(v_x)$, $f(v_y)$, $f(v_z)$. Si determina quindi la **PDF congiunta** definita secondo

$$P(v_x < v_x' < v_x + dv_x, v_y < v_y' < v_y + dv_y, v_z < v_z' < v_z + dv_z) = F(v_x, v_y, v_z) dv_x dv_y dv_z$$

ovvero la funzione che quantifica la probabilità che la terna di velocità di una molecola qualsiasi si trovi nel cubetto infinitesimo dello spazio delle velocità.

Nell'ipotesi del caos molecolare, le distribuzioni delle tre componenti sono indipendenti, ovvero l'informazione su ciascuna non influisce su quella delle altre. Segue che F sia data secondo:

$$F(v_x, v_y, v_z) = f(v_x) f(v_y) f(v_z)^{-1}$$

Inoltre per l'isotropia (che costituisce un **fatto fisico**) F non può presentare una dipendenza dal verso e/o dalla direzione di v: deve essere funzione del solo modulo, ovvero della distanza del punto (v_x, v_y, v_z) dall'origine dello spazio delle velocità².

Da 1 e 2 si ottiene:

$$F(v_x^2 + v_y^2 + v_z^2) = f(v_x)f(v_y)f(v_z)$$

L'unica funzione in grado di soddisfare entrambe le formulazioni di F è l'**esponenziale**. Infatti $e^{\sum a_i} = \prod e^{a_i}$. Si assume quindi un'**ipotesi di lavoro** sulla forma di f:

$$f(v_i) = \eta e^{\pm \xi v_i^2} \implies F(v_x, v_y, v_z) = \eta^3 e^{\pm \xi (v_x^2 + v_y^2 + v_z^2)} = \eta^3 e^{\pm \xi v^2}$$

É quindi necessario determinare i due parametri ed il segno dell'esponente (assunto xi>0). Poiché il sistema ha un'energia finita, quest'ultimo dev'essere negativo, di modo da avere probabilità tendenti a 0 per moduli delle velocità tendenti a ∞ : $F \xrightarrow[n \to +\infty]{} 0$

Si impone quindi la normalizzazione, considerando il valore noto per l'integrale errore:

$$\int_{-\infty}^{+\infty} f(v_i) dv_i = \eta \int_{-\infty}^{+\infty} e^{-\xi v_i^2} dv_i = \eta \frac{1}{\sqrt{\xi}} \int_{-\infty}^{+\infty} e^{-\xi v_i^2} \sqrt{\xi} dv_i \implies t = \sqrt{\xi} v_i \implies \eta \frac{1}{\sqrt{\xi}} \int_{-\infty}^{+\infty} e^{-t^2} dt = \eta \frac{\sqrt{\pi}}{\sqrt{\xi}} = 1 \implies \eta = \sqrt{\frac{\xi}{\pi}}$$

Si impone ora la relazione determinata in precedenza per l'energia cinetica media e dunque la velocità quadratica media, sotto l'assunzione di massa molecolare uniforme:

$$\langle \varepsilon \rangle = \frac{3}{2} k \theta \implies \langle v^2 \rangle = \frac{3k\theta}{m}$$

VALORE DI ASPETTAZIONE

Data una variabile continua x distribuita secondo la PDF $\phi(x)$ su tutta la retta il valore di aspettazione di una qualsiasi funzione a(x) è dato da

$$\mathbb{E}[a(x)] = \langle a \rangle = \int_{-\infty}^{+\infty} a(x)\phi(x) \, \mathrm{d}x$$

(intuitivamente corrisponde ad una 'media pesata' dei valori di a). Se x assume valori su un qualsiasi intervallo, si sostituiscano nell'espressione precedente gli estremi dello stesso come estremi di integrazione.

$$\langle v_i^2 \rangle = \int_{-\infty}^{+\infty} v_i^2 f(v_i) \, dv_i = \eta \int_{-\infty}^{+\infty} v_i^2 e^{-\xi v_i^2} \, dv_i$$

Integrando per parti:

$$\eta \int_{-\infty}^{+\infty} v_i \cdot v_i e^{-\xi v_i^2} \, dv_i = -\eta \frac{1}{2\xi} v_i e^{-\xi v_i^2} \Big|_{-\infty}^{+\infty} + \frac{\eta}{2\xi} \int_{-\infty}^{+\infty} e^{-\xi v_i^2} \, dv_i$$

Ora.

$$\lim_{v_i \to +\infty} e^{-\xi v_i^2} v_i = \frac{v_i}{\rho \xi v_i^2} = 0 \quad \lim_{v_i \to -\infty} \frac{v_i}{\rho \xi v_i^2} = 0$$

in quanto la divergenza esponenziale è di ordine superiore a quella lineare. Il secondo termine ottenuto procedendo per parti si integra come in precedenza:

$$\langle v_i^2 \rangle = \eta \sqrt{\frac{\pi}{\xi}} \left(\frac{1}{2\xi} \right) = \frac{1}{2\xi}$$

in quanto i primi due fattori sono uno il reciproco dell'altro.

Distribuendo ora la somma nel calcolo del valore di aspettazione, considerata l'indipendenza delle tre componenti:

$$\langle v^2 \rangle = \langle v_x^2 + v_y^2 + v_z^2 \rangle = \langle v_x^2 \rangle + \langle v_y^2 \rangle + \langle v_z^2 \rangle = \frac{3}{2\xi} \implies \frac{3}{2\xi} = \frac{3k\theta}{m} \implies \xi = \frac{m}{2k\theta} \implies \eta = \sqrt{\frac{m}{2\pi k\theta}}$$

Da cui

$$f(v_i; \theta, m) = \sqrt{\frac{m}{2k\theta}} e^{-\frac{mv_i^2}{2k\theta}}$$

si tratta di una distribuzione normale centrata in 0 (come ragionevole attendersi sotto l'assunzione di isotropia) con varianza $\sigma_i^2 = \frac{k\theta}{m}$ e SD $\sigma_i = \sqrt{\frac{k\theta}{m}}$.

Dunque un aumento della temperatura comporta l'abbassamento del picco (diminuzione della probabilità di trovare molecole 'ferme') e il popolamento delle code (aumento probabilità di trovare molecole con velocità, ovvero energie cinetiche, elevate). F diviene

$$F(v;\theta,m) = \left(\frac{m}{2\pi k\theta}\right)^{\frac{3}{2}} e^{-\frac{mv^2}{2k\theta}}$$

Per ottenere quindi la $\rho(v)$ è necessario integrare, per ogni valore del modulo v, sul guscio sferico nello spazio delle velocità di raggio v e spessore infinitesimo dv. Per isotropia, infatti, la probabilità di ognuno dei punti del guscio è uguale.

$$V_{sfera} = \frac{4}{3}\pi v^3 \implies dV = 4\pi v^2 dv = V_{guscio} \implies \rho(v) dv = F(v_x, v_y, v_z) 4\pi v^2 dv$$

da cui la distribuzione di Maxwell (o delle velocità molecolari)

$$\rho(v;\theta) = \frac{4}{\sqrt{\pi}} \left(\frac{m}{2k\theta}\right)^{\frac{3}{2}} v^2 e^{-\frac{mv^2}{2k\theta}}$$

si nota la presenza del termine di risonanza v^2 , che causa l'asimmetria della distribuzione. Si osserva inoltre che $\rho \xrightarrow[v \to 0]{} 0$, in quanto la velocità ha modulo nullo se e solo se si annullano tutte e tre le componenti, ovvero il guscio sferico considerato si riduce ad un punto.

- Per θ crescente il picco si sposta verso destra (aumenta l'energia media) e la curva tende alla simmetria
- Viceversa per θ decrescente il picco si sposta verso sinistra; al limite la funzione tende alla **delta di Dirac**, che ha un picco divergente in 0 ed è nulla su tutto il resto della retta, risultando tuttavia normalizzata.

Si calcolano dunque alcuni valori rilevanti che descrivono la posizione del 'centro' della distribuzione.

1. La moda v_p , corrispondente al punto di massimo della distribuzione, si ottiene imponendo l'annullamento della derivata prima

$$\frac{\mathrm{d}\rho}{\mathrm{d}v} = \frac{4}{\sqrt{\pi}} \left(\frac{m}{2k\theta} \right)^{\frac{3}{2}} e^{-\frac{mv^2}{2k\theta}} \left(2v - \frac{2mv^3}{2k\theta} \right) \Big|_{v_n} = 0$$

Assunto $v_p \neq 0$ in quanto in 0 si ha un minimo locale, si ha

$$\frac{mv_p^2}{k\theta} = 2 \implies v_p = \sqrt{\frac{2k\theta}{m}} = \sqrt{\frac{2R\theta}{m}}$$

ove \mathcal{M} è la massa molare.

2. Velocità quadratica media il calcolo verifica semplicemente la condizione imposta per la determinazione dei parametri:

$$\langle v^2 \rangle = \frac{3k\theta}{m} = \frac{3R\theta}{m}$$

3. Velocità media

$$\langle v \rangle = \int_0^{+\infty} v^3 \frac{4}{\sqrt{\pi}} \left(\frac{m}{2k\theta} \right)^{\frac{3}{2}} e^{-\frac{mv^2}{2k\theta}} \, \mathrm{d}v = \frac{4}{\sqrt{\pi}} \int_0^{+\infty} \left(\frac{m}{2k\theta} \right)^{\frac{1}{2}} e^{-\frac{mv^2}{2k\theta}} \frac{mv}{2k\theta} \, \mathrm{d}v$$
Si pone $x = -\frac{mv^2}{2k\theta}$, da cui $\mathrm{d}x = -\frac{mv}{k\theta} \, \mathrm{d}v$ e $v = \sqrt{-\frac{2k\theta}{m}}x$.
$$\langle v \rangle = \frac{4}{\sqrt{\pi}} \left(\frac{m}{2k\theta} \right)^{\frac{1}{2}} \int_0^{-\infty} \left(-\frac{2k\theta x}{m} \right) e^x \left(-\frac{1}{2} \right) \, \mathrm{d}x = \frac{2\sqrt{2}}{\sqrt{\pi}} \left(\frac{k\theta}{m} \right)^{\frac{1}{2}} \int_0^{-\infty} x e^x \, \mathrm{d}x = \frac{2\sqrt{2}}{\sqrt{\pi}} \left(\frac{k\theta}{m} \right)^{\frac{1}{2}} \left[x e^x - e^x \right]_0^{+\infty} = \frac{\sqrt{8k\theta}}{\pi m} (0 - (-1)) = \sqrt{\frac{8k\theta}{\pi m}}$$

Si osserva che $\pi > 3$, dunque $\frac{8}{\pi} < \frac{9}{\pi} < \frac{9}{3} = 3$, il che implica $\langle v \rangle < \sqrt{\langle v^2 \rangle}$.

Il selettore di velocità

4.3.1 Ebollizione ed evaporazione

Come si evince dalla forma della Maxwelliana, indipendentemente dalla temperatura del sistema vi è un numero non nullo di molecole con energie sufficientemente elevata da rompere i legami intermolecolari che realizzano gli stati condensati, e dunque passare alla fase di vapore (aeriforme). In modo formalmente più corretto, tali considerazioni andrebbero effettuate sulla distribuzione dei livelli energetici, ovvero la d. di Boltzmann $\rho(\varepsilon)$.

Definita l'energia limite ε_{leg} , si determina la corrispondente v_{leg} . Il numero di molecole con energia sufficiente è dato da

$$N_{evap} = \int_{v_{lea}}^{+\infty} \rho(v) \, \mathrm{d}v$$

L'aumento di θ comporta solo un maggiore popolamento di tale porzione della distribuzione, il che accelera il processo.

Se il liquido si trova a contatto con un termostato, una volta perse le molecole evaporate gradualmente tende a ritornare all'equilibrio termico: dunque nuove molecole vanno a ripopolare la coda e quindi ad evaporare.

Per l'acqua

L'energia del legame ad H è $\approx 0.2\,\mathrm{eV}$, mentre l'energia cinetica media in condizioni standard è $0.04\,\mathrm{eV}$: può esistere acqua liquida (gran parte della Maxwelliana è sotto la velocità limite, e di conseguenza il processo di evaporazione è estremamente lento)

Atmosfere planetarie

Poiché l'aria è composta al 99% da N_2 e O_2 si approssima $\mathcal{M} = 32\,\mathrm{g}\,\mathrm{mol}^{-1}$. Ponendo l'energia meccanica, somma della cinetica e della potenziale gravitazionale, uguale a 0 si ha:

$$\frac{1}{2}mv^2 - \frac{GMm}{r} = 0 \implies v^2 = \sqrt{\frac{2GM}{r}}$$

Approssimando il pianeta con una sfera di densità media ρ

$$v^2 = \frac{8\pi G\rho r^3}{3r} = \frac{8}{3}\pi Gr^2$$

sostituendo a v^2 la velocità quadratica media e prendendo la radice:

$$\sqrt{\langle v^2 \rangle} = \sqrt{\frac{3R\theta}{m}} = r\sqrt{\frac{8}{3}\pi G} \implies r = \sqrt{\frac{9R\theta}{8G\pi m\rho}}$$

La formula trovata giustifica l'assenza di atmosfera, ad esempio, della Luna. Si osserva inoltre che il pianeta è assimilabile ad un termostato; dunque secondo quanto detto prima dopo la perdita di molecole la coda della Maxwelliana è ripopolata nel ritorno all'equilibrio termico, in un processo continuo.

Ebollizione

Il fenomeno dell'ebollizione si basa di principio sull'evaporazione, ma a differenza di questa coinvolge l'intero volume di liquido e non solo la superficie; sono dunque necessarie particolari condizioni perché si verifichi. Si abbia ad esempio una pentola. Se le sue pareti presentano delle minime asperità, hanno luogo dei microvortici convettivi che portano alla formazione di centri di enucleazione, ovvero microbolle in cui temporaneamente alcune molecole allo stato di vapore si trovano separate da quelle allo stato liquido (tramite evaporazione).

Il destino delle microbolle, che possono andare incontro a implosione o eventuale crescita, è determinato dalle pressioni agenti sulle stesse. La pressione esercitata dal vapore all'interno della bolla è quella di vapore saturo, p_{vap} , mentre la pressione esterna è quella idrostatica, che secondo Stevino vale $p_e = p_{atm} + \rho gh$. Per h ridotto il secondo termine è trascurabile (si nota che per h = 10cm si ha $\Delta p \approx 10^4$ Pa, ovvero un o.d.g. inferiore alla pressione atmosferica!).

La condizione di espansione è dunque

$$p_{vap} \ge p_{atm}$$

Se la bolla cresce, per Archimede sale fino a giungere alla superficie e liberare le molecole nell'aria. Intercettando la curva di Clapeyron sul piano (p, θ) si ottiene $\theta_{min} = 100\,^{\circ}$ C, che è effettivamente la temperatura cui bolle l'acqua a pressione atmosferica.

4.3.2 Il libero cammino medio

Mean free path distanza media percorsa da una molecola prima di urtarne un'altra

Si tratta di una grandezza che caratterizza gli urti tra costituenti elementari.

Le molecole sono approssimate a corpi sferici di diametro d con velocità media \overline{v} .

Per determinare il numero di urti in un dato intervallo di tempo dt, si considera un cilindro di raggio d e dunque diametro 2d, e lunghezza pari allo spazio percorso dalla molecola nell'intervallo di tempo, ovvero $l = \overline{v} dt$. La molecola andrà ad urtare tutte quelle il cui centro giace all'interno del cilindro descritto (come si coince in modeli intervallo). A contra que densità configurate di attimo N

si evince in modo intuitivo). Assunta una densità uniforme, si ottiene $N_{cil} = \frac{N}{V}V_{cil}$.

Si considera quindi la sezione d'urto delle molecole (cross section), in questo caso corrispondente alla sezione trasversa del cilindro, il cui raggio è dato dalla distanza tra i centri delle molecole al momento dell'impatto, ovvero a d:

$$\sigma = \pi d^2$$

Si determina la frequenza di collisione

$$f = \frac{n_{urti}}{\mathrm{d}t} = \frac{V_{cil}\frac{N}{V}}{\mathrm{d}t} = \frac{\sigma\overline{v}\,\mathrm{d}t\,\frac{N}{V}}{\mathrm{d}t} = \sigma\overline{v}\frac{N}{V}$$

Il libero cammino medio è definito come la distanza percorsa tra due urti; essendo la differenza temporale tra due eventi $\tau=\frac{1}{f},\,\lambda=\overline{v}\tau=\frac{\overline{v}}{f}$ da cui

$$\lambda = \frac{\overline{v}}{\sigma \overline{v} \frac{N}{V}} = \frac{V}{\sigma N}$$

Supponendo di operare nel limite di GP (che segue dagli assunti della TCG) si applica l'equazione di stato:

$$\lambda = \frac{V}{\sigma N} = \frac{nR\theta}{\sigma pN} = \frac{k\theta}{\sigma p}$$

Si osserva ora che si è assunto che le altre molecole fossero ferme: è necessaria una correzione (anche il 'bersaglio' si muove nell'unità di tempo!).

Poiché le probabilità delle velocità delle singole molecole sono indipendenti, date due di esse la probabilità $m(v^2 + v^2)$

che abbiano una specifica coppia di moduli è data da $P(v_1,v_2)=P(v_1)P(v_2)\propto e^{-\dfrac{m(v_1^2+v_2^2)}{2k\theta}}$. Riscrivendo in termini della velocità del centro di massa e della velocità relativa, indicate con v_c e v_r e definite secondo

$$v_c = \frac{v_1 + v_2}{2} \quad v_r = v_1 - v_2$$

$$v_1 = 2v_c - v_2 = v_c + \frac{v_1 - v_2}{2} = v_c + \frac{v_r}{2}$$
 $v_2 = 2v_c - v_1 = v_c - \frac{v_r}{2}$

Sostituendo si ottiene

$$P(v_c, v_r) \propto e^{-\frac{mv_c^2}{k\theta}} \cdot -\frac{mv_r^2}{4k\theta}$$

La velocità del centro di massa non è da considerarsi per quanto concerne le collisioni, che sono assunte elastiche. La distribuzione della velocità relativa è quindi ottenuta da quella delle velocità molecolari secondo la sostituzione $m \to \frac{m}{2}$ o $v \to \frac{v_r}{\sqrt{2}}$.

Si ha quindi un fattore correttivo $\sqrt{2}$, che emerge nel calcolo della velocità relativa media secondo il valore di aspettazione $\langle v_r \rangle$:

$$\langle v_r \rangle = \sqrt{\frac{16k\theta}{pim}} = \sqrt{2} \langle v \rangle$$

La velocità relativa media è da sostituirsi alla velocità media nella determinazione della lunghezza del cilindro costruito, mentre per l'espressione del libero cammino medio la velocità media da considerarsi è sempre quella assoluta delle molecole rispetto ad un SdR statico. Si ha quindi:

$$\lambda = \frac{\overline{v}V}{\sigma \overline{v_r} N} = \frac{k\theta}{\sigma p \sqrt{2}}$$

Esempi

Il MFP delle molecole di aria a 300 K e pressione atmosferica è $\lambda \approx 320\,\mathrm{m^n}$, ovvero 100 volte la distanza intermolecolare.

Primo principio e calore

Il lavoro termodinamico costituisce una generalizzazione del lavoro meccanico e corrisponde ad una delle due modalità di scambio energetico tra un sistema termodinamico ed il suo ambiente (l'altra è il calore). É generalmente espresso, in forma integrale, come

$$L_{term} = F_{gen} \cdot s_{gen}$$

ovvero prodotto di una forza generalizzata (grandezza intensiva) per uno spostamento generalizzato (estensiva). Esso **non** comprende il lavoro interno compiuto dalle forze molecolari (che sarà considerato nell'energia interna), bensì solo quello

- compiuto dal sistema * nei confronti dell'ambiente, per convenzione L > 0
- subito dal sistema * (e dunque compiuto dall'ambiente), per convenzione L < 0

* nel suo insieme

Il lavoro termodinamico può essere classificato secondo varie tipologie:

Lavoro meccanico

Comporta lo spostamento macroscopico del sistema o di sue porzioni. Può essere

- di espansione, o lavoro pV per sistemi idrostatici
- torcente, come quello delle forze di attrito per un rotore in un fluido

Lavoro non meccanico

- Elettrico
- Magnetico
- Gravitazionale
- Chimico (in ultima analisi riconducibile all'elettrico)

Si osserva tuttavia che in genere è possibile ricondurre qualsiasi tipo di lavoro a spostamento meccanico di oggetti.

5.1 Lavoro pV

Si considera il prototipo di sistema idrostatico, questa volta ponendo una massa sul pistone. Inizialmente si ha equilibrio termodinamico e dunque meccanico, con pressione esterna

$$p_e = p_{atm} + \frac{Mg}{S}$$
 ove S è la superficie del pistone

Si supponga di rimuovere il peso: si ha un cambiamento brusco della pressione, con conseguente espansione del gas in modo **non quasistatico**. La pressione interna del gas non è più definita, mentre quella esterna, sotto l'assunzione di massa del pistone trascurabile, corrisponde a quella atmosferica.

La nuova configurazione di equilibrio è raggiunta quando la pressione interna bilancia tale pressione esterna. Il lavoro fatto dal sistema contro la pressione esterna è quindi

$$L = p_e \Delta V = p_{atm} S \Delta h$$

5.1. LAVORO PV 24

5.1.1 Lavoro pV in quasistatiche

Per trasformazioni quasistatiche, la pressione esterna differisce da quella del gas di un infinitesimo: $p_e = p \pm dp$.

Il lavoro elementare, ovvero quello compiuto nel passaggio infinitesimo tra stati all'equilibrio, è dato da

$$\delta L = (p \pm dp) dV = p dV + dp dV \approx p dV$$

in quanto l'infinitesimo di second'ordine è trascurabile. Si noti che si è indicato il lavoro locale con δL anziché dL in quanto non si tratta (in generale) di un differenziale esatto.

Il lavoro complessivo compiuto o subito dal sistema in una trasformazione quasistatica da uno stato iniziale ad uno finale è quindi espresso secondo:

$$L = \int_{i}^{f} \delta L = \int_{i}^{f} p \, \mathrm{d}V$$

Dunque se si ottiene l'espressione esplicita di p (c.t. intensiva del sistema) come funzione di V è possibile calcolare analiticamente il lavoro. Per un sistema idrostatico semplice, è necessario un vincolo ulteriore all'equazione di stato per ottenere una sola variabile indipendente $(\theta(V) \Longrightarrow p(\theta, V) \mapsto p(V))$

OSSERVAZIONE IMPORTANTE

Il lavoro pV è **definito** attraverso la pressione esterna, in quanto è opposto a quello compiuto dall'ambiente sul sistema. Solo per le quasistatiche è possibile sostituire la pressione interna a quella esterna.

In generale per un qualunque sistema che si espanda contro una pressione esterna:

$$\delta L = \int_{S} \vec{F} \cdot d\vec{h} = \int_{S} p \, dS \, \hat{n} \cdot dh = p \int_{S} dS \, dh = p \, dV$$

Si osserva in ultimo che il lavoro compiuto dal sistema *contro* le forze di attrito è opposto a quello compiuto da queste e dunque positivo, sia nel caso di espansione che di compressione (gli attriti si oppongono allo spostamento).

5.1.2 Piano di Clapeyron

Il piano (p, V) permette di rappresentare le curve delle trasformazioni quasistatiche. Il lavoro complessivo durante una trasformazione risulta dunque essere corrispondenta all'area sottesa dalla curva corrispondente, considerando il verso di integrazione per il segno.

5.1.3 Cicli

Ciclo termodinamico una trasformazione termodinamica (o successione di t.t.) in cui stato iniziale e finale del sistema coincidono

Il lavoro di un ciclo risulta dunque essere corrispondente all'area del piano di Clapeyron circoscritta dalla curva corrispondente.

Se essa non è nulla, significa evidentemente che le forze generalizzate in gioco non sono (tutte) conservative. Infatti considerando il processo d'andata e quello di ritorno tra due stati del ciclo come due trasformazioni con medesimi stati iniziali e finali, il lavoro compiuto risulta dipendente dal percorso. Dunque il lavoro **NON SEMPRE**

ammette differenziale esatto — ammette potenziale (funzione di stato) — è integrabile analiticamente

In caso negativo, il lavoro è definito come funzione di trasferimento.

5.1.4 Lavoro non meccanico

Analoghe considerazioni a quelle effettuate per il pV sono estendibili al lavoro di qualsiasi coppia di forzaspostamento generalizzati. Si osserva che queste corrispondono alle coppie coniugate di c.t.

$$L = \int_{i}^{f} p dV + \int_{i}^{f} T dl + \int_{i}^{f} \tau dS + \int_{i}^{f} \varepsilon dq + \int_{i}^{f} \mu_{i} dn_{i}$$

5.1. LAVORO PV 25

5.1.5 Calcolo esplicito lavoro pV

Per quasistatiche notevoli per cui è possibile un calcolo esplicito immediato:

Isocora L=0

Isobara $L = p(V_f - V_i) = p\Delta V$

Isoterma per Gas Perfetti

$$L = \int_{i}^{f} \frac{nR\theta}{V} dV = nR\theta \int_{i}^{f} \frac{dV}{V} = nR\theta \ln \left(\frac{V_{f}}{V_{i}} \right)$$

per Gas Reali

$$L = nR\theta \int_{i}^{f} \frac{\mathrm{d}V}{V - bn} - an^{2} \int_{i}^{f} \frac{\mathrm{d}V}{V^{2}} = nR\theta \ln \left(\frac{V_{f} - nb}{V_{i} - nb} \right) + an^{2} \left(\frac{1}{V_{f}} - \frac{1}{V_{i}} \right)$$

Per l'ultima espressione si osserva che il primo termine apporta un contributo maggiore del corrispondente nell'espressione per GP, in quanto la variazione relativa è maggiore per la presenza del covolume. Il secondo termine invece è negativo in caso di espansione, in quanto le interazioni intermolecolari apportano un'ulteriore riduzione della pressione.

Espansione libera

Si considera una scatola adiabatica divisa da un setto in due sottovolumi uguali. A sinistra si trova il gas, a destra il vuoto pneumatico. Quando viene praticato un foro nel setto, il gas si espande in modo non quasistatico (pressione indefinita) senza incontrare alcuna pressione: il lavoro è nullo.

Pressione su se stesso?

Per GP le particelle sono puntiformi; per GR invece va considerato che il libero cammino medio $\grave{e} \gg le$ distanze intermolecolari medie, dunque il contributo delle molecole che precedono su quelle che seguono \grave{e} completamente trascurabile; in genere la pressione che si considera \grave{e} comunque quella sulle pareti.

Lavoro per stati condensati

Non è nota l'espressione di p(V), ma dall'equazione di stato (qualunque ne sia l'espressione) è ricavabile $V(\theta, p)$, che conduce a

$$dV = V\left(\alpha d\theta - \frac{1}{k} dp\right)$$

Per variazioni di temperatura ridotte il primo contributo (dilatazione volumetrica) è trascurabile e quindi il lavoro in compressione quasistatica:

$$\mathrm{d}V \approx -\frac{V}{k}\,\mathrm{d}p \implies L = \int_i^f p\,\mathrm{d}V = -\int_i^f p\frac{V}{k}\,\mathrm{d}p = -\frac{V}{k}\int_i^f p\,\mathrm{d}p = \frac{V}{k}[p_i^2 - p_f^2]$$

Si osserva che un aumento di pressione corrisponde (come ragionevole) ad un lavoro subito dal sistema. A livello fisico tale trasformazione è realizzabile, ad esempio, incrementando infinitesimalmente la massa posta sopra il sistema (aggiungendo granelli).

In caso di trasformazione brusca, invece si ha

$$L = p_f \Delta V = -\frac{V}{k} p_f (p_f - p_i)$$

Osservando ora che $|p_f^2 - p_i^2| = |p_f - p_i||p_f + p_i| > |p_f||p_f - p_i|$, dunque il lavoro brusco è **minore** del corrispondente lavoro quasistatico (si giustificherà questo fatto con il II Principio).

Tensione superficiale della Bolla

In condizioni di equilibrio il lavoro di espansione compiuto dalla pressione interna è compensato dal lavoro di compressione compiuto dalla pressione estera e da quello della tensione superficiale per diminuire la superficie esterna:

$$p_{int} dV = \tau dS_{tot} + p_{est} dV \implies (p_{int} - p_{est}) dV = \tau dS_{tot}$$

La bolla presenta due superfici, una interna ed una esterna, di estensione pressoché identica. Dunque si sostituisce $dS_{tot} = 2 dS$. La tensione superficiale mira a ridurre entrambe, dunque data la forma convessa per ogni molecola di ambo le superfici è indirizzata verso il centro della bolla. Inoltre assunta la bolla come sferica

$$V = \frac{4}{3}\pi r^3 \implies dV = 4\pi r^2 dr \quad S = 4\pi r^2 \implies dS = 8\pi r dr$$

Da cui

$$\Delta p \cdot 4\pi r^2 \, \mathrm{d}r = \tau \cdot 16\pi r \, \mathrm{d}r \implies \boxed{\Delta p = \frac{4\tau}{\pi}}$$

Si osserva che la differenza tra le pressioni, a tensione superficiale costante, è inversamente proporzionale al raggio.

L'assunto sulla forma sferica è poi giustificato in quanto a parità di volume permette di minimizzare la superficie (vd liquidi sulla stazione spaziale internazionale, in cui è assente l'influenza della gravità).

5.2 Energia interna

Si definisce innanzitutto il lavoro adiabatico

Lavoro adiabatico lavoro compiuto da/su un sistema racchiuso da pareti adiabatiche

Si illustrano vari esempi, per cui generalmente si può osservare come sia sempre possibile misurare il lavoro termodinamico dissipato all'interno del sistema tramite lavoro meccanico (ad esempio quello della forza peso).

Si considera ora il consueto sistema idrostatico, supponendo le pareti siano adiabatiche e sia presente un mulinello collegato ad una massa appesa, di modo da poter compiere lavoro sul sistema e misurarne la magnitudine.

Sia i lo stato iniziale del sistema e f uno stato finale a volume e temperatura maggiore che si intende raggiungere. Si procede da i a f attraverso due procedimenti differenti:

- 1. Una compressione fino ad uno stato 1 con medesima temperatura θ_f > Un'espansione a temperatura costante, mantenuta agendo con il mulinello, da 1 a f
- 2. Un'espansione da i ad uno stato 2 con medesimo volume finale V_f , mantenendo la temperatura costante tramite il mulinello \blacktriangleright un aumento della temperatura da 2 a f mantenendo il volume fissato e agendo con il mulinello.

Si procede dunque a confrontare il lavoro compiuto sul sistema nei due processi:

$$L_{tot}^1 = \int_i^1 p \, \mathrm{d}V + \left[\int_1^f p \, \mathrm{d}V + mgh \right] \quad L_{tot}^2 = \left[\int_i^2 p \, \mathrm{d}V + mgh' \right] + mgh''$$

Si osserva **sperimentalmente**, anche seguendo altri percorsi:

$$L_{tot}^i = L_{tot}^j$$

Dunque il lavoro condotto in una trasformazione adiabatica dipende esclusivamente dagli stati iniziale e finale: $L^{(ad)} = L^{(ad)}(i, f)$. Si tratta di un postulato fondamentale della termodinamica.

É quindi possibile definire una funzione di stato, detta **ENERGIA INTERNA** secondo

Energia interna funzione delle c.t. di un sistema t. la cui variazione tra lo stato iniziale e finale di una trasformazione adiabatica, cambiata di segno, corrisponde al lavoro adiabatico scambiato

$$U(\vec{x}) : L_{i \to f}^{(ad)} = -\Delta U = U(i) - U(f)$$

ove $\vec{x} = (x_1, ..., x_n)$ sono le c.t.

Dunque per

• L > 0 il sistema spende energia interna

5.3. CALORE 27

• L < 0 il sistema acquista energia interna

Si tratta di una nuova variabile di stato estensiva, e può dunque essere utilizzata per porre un vincolo e calcolare una c.t. dipendente note le altre.

Ammette differenziale esatto

$$\mathrm{d}U = \frac{\partial U}{\partial \theta} \, \mathrm{d}\theta + \frac{\partial U}{\partial V} \, \mathrm{d}V$$

(per sistemi semplici). Passando alla forma integrale, risulta definita a meno di una costante additiva. É necessario dunque fissare, in assenza di un'espressione analitica esplicita, uno stato $\mathbf{0}$ t.c. $U(\mathbf{0}) = 0$. In tal modo l'energia interna di un qualsiasi stato A è data da $-L_{\mathbf{0} \to A}^{(ad)}$

5.3 Calore

Si suppone invece che le pareti non siano adiabatiche (e dunque il lavoro compiuto non è lavoro adiabatico), e si porti il sistema da un differente stato i a uno stato f a volume inferiore e temperatura maggiore tramite la seguente procedura:

- 1. Si pone a contatto termico con un termostato a temperatura θ_i e si comprime fino a uno stato 2 a V_f .
- 2. Si sostituiscono termostati a contatto termico con differenza di temperatura infinitesima d θ fino al raggiungimento di θ_f , mantenendo il volume costante e non compiendo dunque alcun lavoro termodinamico

Si considera poi una trasformazione adiabatica tra i medesimi stati, e si confronta il lavoro complessivo di ognuno dei due procedimenti

$$L^{(ad)} = \int_{i}^{f} p \, dV \quad L^{(non-ad)} = \int_{i}^{2} p \, dV$$

e si osserva

$$L^{(ad)} \neq L^{(non-ad)}$$

Si definisce quindi il calore Q secondo

$$Q = L - L^{(ad)} = L + \Delta U$$

ovvero

Calore (formale) grandezza che ristabilisce il bilancio energetico in trasformazioni non adiabatiche

Calore (da osservazioni) modalità di trasferimento di energia tramite mezzi non meccanici tra corpi a temperature differenti posti a contatto termico

5.4 Primo principio della termodinamica

Si è quindi ottenuta la formalizzazione del **Primo principio della termodinamica**, che estende (generalizza) il principio di conservazione dell'energia:

PRIMO PRINCIPIO DELLA TERMODINAMICA

 $Q = \Delta U + L$

Tale relazione ha validità sia per trasformazioni quasistatiche che non. Per le prime può anche essere riscritto in forma locale

Primo principio (locale)

$$\delta Q = dU + \delta L$$

Si osserva che anche il calore è una funzione di trasferimento, ovvero generalmente non ammette differenziale esatto. Tuttavia il differenziale dell'energia interna, ottenuto dalla differenza di due differenziali non esatti secondo d $U = \delta Q - \delta L$ è esatto (!).

Per sistemi idrostatici l'espressione diviene

$$\delta Q = p \, \mathrm{d}V + \mathrm{d}U$$

o se non semplici, ovvero composti di più sottosistemi idrostatici accoppiati:

$$\delta Q = \sum_{i} p_i \, \mathrm{d}V_i + \mathrm{d}U$$

(l'energia interna è estensiva, dunque gode di additività).

Nel caso ulteriore in cui il sistema nella sua totalità:

- non sia in quiete: si aggiunge a destra un termine ΔK (in forma locale δK)
- sia sottoposto ad campi di forze / potenziali conservativi: si aggiunge un termine ΔV (in locale $\mathrm{d} V$)

Si danno quindi due definizioni, di cui la seconda maggiormente generale, di macchina termica (heat engine):

Macchina termica (1) sistema termodinamico che opera attraverso cicli termodinamici (trasformazioni chiuse)

Macchina termica (2) qualsiasi dispositivo che assorbe energia sotto forma di calore e lo converte (in parte) in lavoro

Moto perpetuo di I specie _

Il primo principio sancisce l'impossibilità di realizzare il moto perpetuo, ovvero una macchina termica che produca lavoro non nullo in un ciclo con calore scambiato netto nullo. Infatti in un ciclo la variazione di energia interna è nulla:

$$\Delta U_{i \to i} = U(i) - U(i) = 0$$

e dunque

$$Q = L$$

ovvero l'energia convertita in lavoro va fornita come calore.

Tuttavia parrebbe seguire da tale espressione che da un termostato quasi ideale (come l'atmosfera) si potrebbe estrarre lavoro infinito: si avrebbe il moto perpetuo di **II specie**, che sarà però proibito dal II principio.

Una delle esperienze più celebri che hanno validato il I Principio è quella di Joule, che ha permesso di definire l'equivalente meccanico della caloria, ovvero il fattore di conversione tra l'unità di misura del calore precedentemente adottata (ideata addirittura all'interno della teoria del calorico), la cal e il J: $1cal = 4.186 \, J$.

Caloria quantità di calore necessaria per innalzare di 1 °C la temperatura di 1 g di acqua alla temperatura iniziale di 14.5 °C e pressione atmosferica.

Si osserva in ultimo che anche la definizione delle quantità scambiate come calore e lavoro in un processo dipende dalla definizione del sistema e dell'ambiente. Ad esempio nel caso del blocco (B) che scende lungo la rampa (R):

- se $S \equiv B + R$ il sistema è isolato termicamente e $L^{(ad)} = L_{fg} = -\Delta U$ (1) (forza gravitazionale esterna)
- se $S \equiv B L = L_{fq} + L_{fa} = -\Delta U_B + Q_B$ (2)
- se $S \equiv R \ L = 0 = -\Delta U_R + Q_R$ (3)

calcolando (2) + (3) - (1) si ottiene

$$-L_{fg} + L_{fg} + L_{fa} = -\Delta U_B + Q_B + (-\Delta U_R + Q_R) + \Delta U \implies L_{fa} = Q_B + Q_R$$

ovvero il lavoro della forza di attrito è utilizzato per trasferire calore dal blocco alla rampa, aumentando l'energia interna di quest'ultima.

A livello microscopico si osserva che le superfici scabre di blocco e rampa possono essere schematizzate come composte di lamelle in sequenza, che tramite contatto trasferiscono energia cinetica.

Una differenza fondamentale

Per quanto visto sopra, ed anche osservabile per corpi a contatto termico a temperature diverse, il trasferimento di calore comporta una variazione di temperatura, ovvero di energia cinetica molecolare. Ma per il teorema delle forze vive anche il lavoro comporta una variazione di energia cinetica.

La differenza risiede nel fatto che il moto di agitazione termica delle particelle è casuale, mentre quello legato al lavoro compiuto (o subito) è orientato verso una medesima direzione: si ha infatti variazione dell'energia cinetica del sistema nel suo complesso.

5.5 Capacità termica

Si è compreso che il trasferimento di calore determina una variazione di temperatura: ma in che modo è possibile quantificare l'**inerzia termica** di un corpo?

Inerzia termica misura della resistenza di un corpo a variare la propria temperatura in risposta ad un trasferimento di calore da o a esso.

Si definisce la **capacità termica media** di un corpo che varia la propria temperatura da θ_i a θ_f dopo aver scambiato Q secondo

$$\overline{C} = \frac{Q}{\Delta \theta} = \frac{Q}{\theta_f - \theta_i}$$

Essa risulta avere una dipendenza di consueto non trascurabile dalla temperatura: è dunque maggiormente opportuno definire la **capacità termica locale** (o capacità termica propriamente detta), per quantità infinitesime:

$$C(\theta) = \lim_{\theta_f \to \theta} \frac{Q}{\theta_f - \theta} = \frac{\delta Q}{\mathrm{d}\theta}$$

É poi opportuno e funzionale alle applicazioni pratiche definire le capacità specifiche per unità di massa o di quantità di sostanza, ovvero il calore specifico (si sottintende per unità di massa) ed il calore specifico molare, corrispondenti di fatto a misure della densità di inerzia termica.

$$c_m = \frac{C}{m} = \frac{1}{m} \frac{\delta Q}{\mathrm{d}\theta}$$
 $c_n = c = \frac{C}{n}$

Risultano tuttavia necessarie per un'appropriata definizione di tali quantità due specificazioni:

Dipendenza dalla temperatura

Modalità di somministrazione del calore , o meglio trasformazione eseguita durante la quale avviene lo scambio termico. Convenzionalmente si stabiliscono come riferimento trasformazioni isobare ed isocore, ottenendo il calore molare a pressione costante ed quello a volume costante:

$$c_p = \frac{1}{n} \left(\frac{\delta Q}{\mathrm{d}\theta} \right)_p = f(p,\theta) \qquad c_V = \frac{1}{n} \left(\frac{\delta Q}{\mathrm{d}\theta} \right)_V = f(V,\theta)$$

è evidenziata la dipendenza dalle c.t.

Si osserva che il calore molare a temperatura costante è infinito (denominatore nullo) e quello adiabatico è nullo (numeratore nullo).

Calore specifico dell'acqua

Plottando si osserva che fuori dall'intervallo $0-100\,^{\circ}\text{C}$ c_m ha valore costante $2\,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{g}^{-1}$, mentre all'interno ha forma convessa con un minimo a $30\,^{\circ}\mathrm{C}$ e uguale valore agli estremi di $4.228\,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{g}^{-1}$. Si osserva dunque che la caloria è definita ad una specifica temperatura in quanto questa corrisponde ad un valore intermedio del calore specifico. Il differente comportamento in fase liquida è dovuto ai forti legami ad idrogeno.

5.5.1 Calore latente e transizioni di fase

Rappresentando il grafico $\theta(Q)$ per una sostanza, ad esempio l'acqua, si osserva che in corrispondenza delle transizioni di fase la temperatura segue un plateau nonostante aumenti il calore fornito, per poi riprendere l'andamento (circa) lineare con slope $\frac{1}{c_m}$ negli intervalli intermedi (maggiore per vapore e solido rispetto al liquido, per quanto visto). Ciò è dovuto al fatto che il calore fornito nella transizione non va ad innalzare l'energia cinetica, bensì a rompere i legami intermolecolari.

Si definisce quindi il **calore latente** della sostanza per ogni specifica transizione, che definisce la quantità di calore necessaria per far transire un'unità di massa (o di quantità di sostanza, se calore latente molare). Si osserva che il calore latente per la transizione inversa si ottiene semplicemente cambiando di segno (in quanto se una transizione è esotermica l'inversa risulta endotermica, e viceversa).

$$\lambda = \frac{Q}{\Delta m} \quad \lambda_n = \frac{Q}{\Delta n}$$

Poiché le transizioni di fase avvengono a pressione costante (vd diagramma di fase), il lavoro compiuto nella transizione da liquido a gas è $L = p(v_G - v_L)$.

5.5.2 Risultati sperimentali e modelli

Solidi

Per i solidi sopra una certa soglia il calore molare assume un valore pressoché costante, pari a $3R \approx 25 \,\mathrm{J\,K^{-1}\,mol^{-1}}$; un'osservazione elevata a legge, con il nome di **L. di Dulong-Petit**. Tale soglia è definita **temperatura di Debye** θ_D ed è specifica per ogni sostanza. Si osserva che non è specificato se si tratti di calore molare a pressione o volume costante in quanto per i solidi gli effetti di dilatazione termica sono solitamente trascurabili.

Più generalmente, l'andamento è descritto dalla funzione ottenuta dal modello di Debye, che ha la forma:

$$c \approx c_V(\theta) = 3R\left(\frac{\theta}{\theta_D}\right)^3 \int_0^{\theta_D/\theta} \frac{x^4 e^x}{(e^x - 1)^2} dx$$

Nel limite di $\theta \to 0$ l'andamento tende ad una dipendenza cubica:

$$c \propto \left(\frac{\theta}{\theta_D}\right)^3$$

Tale previsione, ottimamente riscontrata nei dati sperimentali, ha rappresentato un passo importante nello sviluppo della meccanica quantistica; infatti il modello di Debye, tramite l'utilizzo dei fononi (oscillatori quantistici) sostituì quello classico di Einstein, che proprio nel limite di temperature prossime allo zero divergeva in modo significativo dalle osservazioni.

Calori molari per gas

Per i gas si osserva in genere $c_V = f(\theta)$, $c_p = f'(\theta)$ e $c_p > c_V$. Dunque definendo il coefficiente γ si ha

$$\gamma \equiv \frac{c_p}{c_V} > 1$$

Perché?

Si pensi al prototipo di sistema idrostatico. Per aumentare la temperatura a pressione costante (con pistone libero) parte del calore viene convertita in lavoro di espansione. A volume costante non vi è lavoro di volume.

Nel limite di GP si osserva:

• per gas monoatomici
$$c_V = \frac{3}{2}R$$
 $c_p = \frac{5}{2}R$ $\gamma = \frac{5}{2}R$

• per gas biatomici
$$c_V = \frac{5}{2}R$$
 $c_p = \frac{7}{2}R$ $\gamma = \frac{7}{5}$

• per gaspoliatomici si riscontrano differenze a seconda della tipologia di molecola: lineare o angolare

5.6 Equilibrio termico

Si considerino due sistemi S_1 , S_2 a contatto termico, con temperature diverse e capacità termiche note C_1 , C_2 . Si supponga $\theta_1 > \theta_2$.

Si applica in primo luogo il Primo Principio al sistema $S \equiv S_1 + S_2$. Esso è isolato e non scambia lavoro con l'esterno, dunque $Q = 0 \land L = 0 \implies \Delta U = 0$.

Applicando a S_1 e S_2 si ottiene invece $\Delta U_1 = Q_1$ e $\Delta U_2 = Q_2$ in quanto entrambi non compiono o subiscono lavoro.

Per l'additività dell'energia interna, si ottiene quindi

$$\Delta U = \Delta U_1 + \Delta U_2 = Q_1 + Q_2 = 0 \implies Q_1 = -Q_2$$

Si osserva che non si è ottenuto in vincolo sul verso in cui procede il trasferimento di calore, in quanto il primo principio è **reversibile**. Sarà necessario introdurre il secondo principio.

Applicando il principio Zero si assume l'esistenza (e l'unicità, date le condizioni iniziali) di una **temperatura** di equilibrio θ_e . Esplicitando ora la relazione trovata:

$$C_1(\theta_e - \theta_1) = C_2(\theta_2 - \theta_e) \implies \theta_e = \frac{C_1\theta_1 + C_2\theta_2}{C_1 + C_2}$$

ovvero una sorta di media pesata sulle inerzie termiche delle temperature iniziali. Si osserva che segue $\theta_e \in [\theta_1, \theta_2]$

5.6.1 Casi particolari

Per $C_1 = C_2$ si ha

$$\theta_e = \frac{\theta_1 + \theta_2}{2}$$

$$\mathbf{Per}\ C_1\gg C_2\quad\text{ovvero}\ r\equiv\frac{C_2}{C_1}\to 0$$

$$\theta_e = \frac{\mathcal{C}_{\mathsf{L}}(\theta_1 + r \cdot \theta_2)}{\mathcal{C}_{\mathsf{L}}(1+r)} \to \theta_1$$

Il sistema S_1 si comporta come un termostato (o serbatoio termico).

5.7 Calorimetria

Calorimetria la disciplina che si occupa dello studio degli scambi di calore (e delle proprietà termiche dei corpi)

Lo strumento fondamentale della calorimetria è il calorimetro. Si illustra il principio di funzionamento di due calorimetri.

5.7.1 Calorimetro di Bunsen (o a ghiaccio)

Lo strumento si basa sull'utilizzo del calore latente dell'acqua.

Per prima cosa si inserisce acqua distillata nel bulbo. Successivamente, vi si soffia etere di modo da ottenervi la formazione di ghiaccio; il bulbo è quindi posto nel bagno termico e collegato al tubo contenente mercurio liquido (la temperatura di solidificazione a p_{atm} è $-39\,^{\circ}$ C). Dopo un certo tempo, è raggiunto l'equilibrio termico a $0\,^{\circ}$ C. Si segna sulla scala graduata la posizione corrispondente del mercurio. Si procede quindi a porre la provetta all'interno del bulbo; dopo un certo tempo si ha un nuovo equilibrio tra corpo e apparato. Si presentano allora i seguenti casi:

- se θ_0 della provetta era maggiore di 0 °C, allora questa cede calore e si ha lo scioglimento di ghiaccio, con conseguente diminuzione di volume dell'acqua nel bulbo (per il migliore impaccamento) e quindi spostamento a sinistra della superficie della colonna di mercurio.
- viceversa se $\theta_0 < 0$ °C la provetta acquista calore e si forma ghiaccio ulteriore, il che comporta un aumento di volume nel bulbo e spostamento a destra della colonna.

Assunto che l'intero apparato sia termicamente isolato, si ha:

$$Q_{provetta} + Q_{bulbo} = 0 \implies c_m m \Delta \theta = \lambda_F m_G$$

alla temperatura di 0 °C per ogni grammo di ghiaccio sciolto il volume diminuisce di $\Delta V_{LS}=0.0907\,\mathrm{3m^c}$ (viceversa per la solidificazione). Si osserva che il vincolo sulla temperatura realizzato tramite il bagno termico è necessario perché si possa considerare tale valore, che è così noto a priori. Dunque $m_G=\frac{\Delta V}{\Delta V_{LS}}=S\Delta x$

 $\frac{S\Delta x}{\Delta V_{LS}}$ con Ssezione del tubo e xlunghezza della colonna. Segue

$$c_m = m_G \frac{\lambda_F}{m\Delta\theta} = \frac{S\Delta x}{\Delta V_{LS}} \frac{\lambda_F}{m(\theta_0 - 0 \, ^{\circ}\text{C})} =$$

5.7.2 Calorimetro di Regnault (o delle mescolanze)

Il principio è quello dell'equilibrio termico.

Si immerge il corpo di cui si intende misurare il calore specifico in una massa di acqua (o altra sostanza calorimetrica), di massa e calore specifico noti e temperatura differente; il tutto è posto all'interno di un recipiente adiabatico. Si utilizza poi un agitatore per velocizzare il raggiungimento dell'equilibrio, catalizzando i moti convettivi del liquido in modo da portare tutte le sue parti a contatto con il corpo. Sono note le temperature iniziali; con un termometro è quindi misurata quella finale.

Il sistema acqua + corpo è isolato, dunque dai calori scambiati:

$$m_x c_x (\theta_e - \theta_x) + m_a c_a (\theta_e - \theta_a) = 0 \implies c_x = \frac{m_a}{m_x} \left(\frac{\theta_e - \theta_a}{\theta_x - \theta_e} \right)$$

Nel caso reale è poi da calcolarsi il cosiddetto **equivalente in acqua** (o massa equivalente), che permette di compensare per la non perfetta adiabaticità del recipiente. Per determinarla si inserisce una massa di acqua m'_a nel calorimetro, inizialmente ad una temperatura θ'_a differente da quella (θ_a) della massa presente (m_a) . Si impone condizione sullo scambio termico, ponendo come incognita m^*_a

$$c_a [m_a(\theta_e - \theta_a) + m'_a(\theta_e - \theta'_a) + m^*_a(\theta_e - \theta_a)] = 0 \implies m^*_a = m'_a \frac{\theta'_a - \theta_e}{\theta_e - \theta_a} - m_a$$

quindi si sostituisce nella formula precedente $m_a^{eff} = m_a^{id} + m_a^*$.

5.8 Calore molare per sistemi idrostatici

La seguente trattazione è necessaria per ottenere un'interpretazione microscopica dell'energia interna (grandezza non misurabile direttamente) e una verifica sperimentale della TCG.

L'energia interna, come visto, ammette differenziale esatto, in particolare nella forma:

$$dU = \frac{\partial U}{\partial \theta} d\theta + \frac{\partial U}{\partial V} dV$$

sostituendo nell'espressione del Primo Principio

$$\delta Q = \left(\frac{\partial U}{\partial \theta}\right)_{V} d\theta + \left[\left(\frac{\partial U}{\partial V}\right)_{\theta} + p\right] dV$$

In condizioni di volume costante (dV = 0) si ha

$$\delta Q = \left(\frac{\partial U}{\partial \theta}\right)_V d\theta \implies c_V = \frac{1}{n} \left(\frac{\partial U}{\partial \theta}\right)_V$$

In condizioni di pressione costante, espresso il differenziale esatto del volume (è funzione di stato):

$$dV = \left(\frac{\partial V}{\partial \theta}\right)_p d\theta + \left(\frac{\partial V}{\partial p}\right)_\theta dp \implies \delta Q = \left[\left(\frac{\partial U}{\partial \theta}\right)_p + \left(\frac{\partial V}{\partial \theta}\right)_p\right] d\theta + \left[\left(\frac{\partial U}{\partial p}\right)_\theta + \left(\frac{\partial V}{\partial p}\right)_\theta\right] dp$$

Dunque a pressione costante (dp = 0)

$$\delta Q = \left[\left(\frac{\partial U}{\partial \theta} \right)_p + \left(\frac{\partial V}{\partial \theta} \right)_p \right] d\theta \implies c_p = \frac{1}{n} \left[\left(\frac{\partial U}{\partial \theta} \right)_p + \left(\frac{\partial V}{\partial \theta} \right)_p \right]$$

Si introduce ora una nuova funzione di stato, l'entalpia:

ENTALPIA $H \equiv U + pV$

Essendo la somma di una grandezza estensiva e del prodotto tra una intensiva ed una estensiva (dunque un'altra estensiva), l'entalpia è estensiva. Differenziando

$$dH = \left(\frac{\partial H}{\partial U}\right)_{n,V} dU + \left(\frac{\partial H}{\partial V}\right)_{n,U} dV + \left(\frac{\partial H}{\partial p}\right)_{V,U} dp = (1) dU + p dV + V dp$$

A p costante $dH = dU + p dV = \delta Q$: è possibile calcolare il calore scambiato da una funzione di stato, ovvero a pressione costante il calore ammette differenziale esatto. Si ha quindi

$$c_p = \frac{1}{n} \left(\frac{\partial H}{\partial \theta} \right)_V$$

5.9 Energia interna dei gas

5.9.1 L'esperienza di Joule

Si hanno due recipienti collegati da un tubo, immersi in un bagno di acqua all'interno di pareti adiabatiche. Un termometro è immerso nel liquido.

All'interno di uno dei due recipienti è presente del gas estremamente rarefatto (nel limite di GP), mentre l'altro e vuoto. Inizialmente il tubo di collegamento è ostruito da una barriera.

Ad un certo istante viene rimossa la barriera ed il gas effettua un'**espansione libera**. Non essendovi pressione esterna, il lavoro è nullo. Si osserva inoltre che non vi sono variazioni di temperatura: dunque anche il calore scambiato è nullo. Si ha

$$L = 0 \land Q = 0 \implies \Delta U = 0$$

Poiché $U(V_i, \theta_i) = U(V_f, \theta_f)$ con $\theta_i = \theta_f$ ma $V_i \neq V_f$, risulta che U non ha dipendenza dal volume. Analogamente, $p_f \neq p_i$ e dunque U non ha dipendenza dalla pressione.

Dalle due condizioni si deduce che l'energia interna del gas perfetto sia funzione della sola temperatura, dunque

$$\frac{\partial U}{\partial \theta} = \frac{\mathrm{d}U}{\mathrm{d}\theta} \implies c_V = \frac{1}{n} \frac{\mathrm{d}U}{\mathrm{d}\theta} \implies \mathrm{d}\theta = nc_V \, \mathrm{d}\theta$$

Integrando

$$U(\theta) = nc_V \theta + U_0$$

Si osserva che la dipendenza è lineare: in assenza di contributi dalle interazioni intermolecolari, l'unico proviene dall'energia cinetica delle molecole, che per la TCG è proporzionale a θ . Infatti

$$U = \sum_{i=1}^{N} \varepsilon_i = N \langle \varepsilon \rangle = N \frac{3}{2} k \theta = \frac{3}{2} N \frac{R}{N_A} \theta = \frac{3}{2} n R \theta$$

Da cui $c_V = \frac{1}{n} \frac{dU}{d\theta} = \frac{3}{2} R$ in accordo con le misure sperimentali riportate in precedenza. Sostituendo nell'espressione precedente per $U(\theta)$ segue che cost = 0. Dunque si ha

Energia interna GP
$$U(\theta) = nc_V \theta$$

ovvero allo zero assoluto le molecole non hanno alcuna energia cinetica e dunque l'energia interna del sistema è nulla.

5.9.2 U per GR

Da una prima analisi qualitativa sul grafico del potenziale di Lennard-Jones si osserva che all'aumentare della distanza intermolecolare $V(d) \to 0^-$. In un sistema isolato si può quindi imporre il vincolo di conservazione dell'energia meccanica $E = \varepsilon + V = cost$, da cui si ottiene che

$$V \to 0^- \implies \varepsilon \to 0^+ \implies \theta \to 0^+$$

Con i differenziali _

$$dE = d\varepsilon + dV = 0 \land dV > 0 \implies d\varepsilon < 0 \Leftrightarrow d\theta < 0$$

Dunque un gas non eccessivamente rarefatto tenderà a raffreddarsi in un'espansione libera adiabatica: si tratta del cosiddetto **Effetto Joule-Thomson** (o Joule-Kelvin,con il nome da Lord del secondo), uno dei principi delle tecniche criogeniche.

Il coefficiente che quantifica la capacità di raffreddamento di un gas nell'espansione libera adiabatica (o **espansione di Joule**) è definito

Coefficiente di Joule $\left(\frac{\partial heta}{\partial V}\right)_U$

Si procede con considerazioni maggiormente quantitative ed analitiche.

Assunto per semplicità n=1, i calcoli il differenziale dell'energia interna del gas:

$$dU = c_V d\theta + \left(\frac{\partial U}{\partial V}\right)_{\theta} dV$$

Si introduce la

II Equazione dell'energia

$$\left(\frac{\partial U}{\partial V}\right)_{\theta} = \theta \bigg(\frac{\partial p}{\partial \theta}\bigg)_{V} - p$$

da cui, sostituendo l'espressione della pressione per GR

$$p(\theta, V) = \frac{R\theta}{V - b} - \frac{a}{V^2} \implies \left(\frac{\partial p}{\partial \theta}\right)_V = \frac{R}{V - b}$$

si ottiene

$$dU = c_V d\theta + \left[\theta\left(\frac{R}{V-b}\right) - \left(\frac{R\theta}{V-b} - \frac{a}{V^2}\right)\right] dV = c_V d\theta + \frac{a}{V^2} dV$$

Si osserva che la derivata parziale rispetto al volume, corrispondente al termine correttivo per la non idealità del gas, è maggiore di 0, come anche il calore molare a volume costante. Dunque

$$dU = 0 \wedge dV > 0 \implies d\theta < 0$$

come atteso. Ovviamente si ha l'inverso per compressioni a energia costante. Integrando e riportando il numero di moli si ottiene

U per GR
$$U(\theta,V) = nc_V\theta - \frac{an^2}{V^2} + cost$$

Si osserva che 'spegnendo' il potenziale di interazione intermolecolare, ovvero annullando il coefficiente a, ci si riconduce al GP. Per la costante arbitraria ci si rifà sempre alla TCG, che permetterà analogamente al caso di GP di determinare che cost = 0.

5.10 Teorema di equipartizione dell'energia

Si intende estendere il modello cinetico sviluppato per molecole monoatomiche al caso generale, considerando dunque gradi di libertà cinetici ulteriori non traslazionali. Si mantiene l'assunzione del GP; infatti il modello non impone alcun vincolo sul numero di atomi per molecola: è possibile considerare masse puntiformi vincolate a muoversi intorno ad un centro di massa comune, al cui moto traslazionale corrispondono i d.o.f. identificati finora.

Si osserva che

$$\langle \varepsilon \rangle = \frac{3}{2} m \langle v^2 \rangle = \underbrace{\frac{1}{2} m \langle v_x^2 \rangle}_{\text{inetes i cass malars large}}^{(1)} + \underbrace{\frac{1}{2} m \langle v_y^2 \rangle}_{\text{inetes i cass malars large}}^{(2)} = \frac{3}{2} k \theta = \underbrace{\frac{1}{2} k \theta}_{\text{1}} + \underbrace{\frac{1}{2} k \theta}_{\text{2}} + \underbrace{\frac{$$

come evidenziato, si nota una corrispondenza tra ogni termine quadratico nel bilancio dell'energia molecolare (ovvero ognuno dei 3 d.o.f. cinetici) e i contributi $\frac{1}{2}k\theta$. Estrapolando ad un risultato più generale, che sarà dimostrato più avanti:

Teorema di equipartizione dell'energia

A ogni d.o.f. indipendente che compare come termine quadratico (quadraticamente) nell'espressione dell'energia molecolare si associa un contributo energetico $\frac{1}{2}k\theta$

$$\langle \varepsilon \rangle = \frac{f}{2} k \theta$$

dunque

$$c_V = \frac{f}{2}R$$

5.10.1 Gas biatomici

Gli atomi sono legati da un potenziale che determina una distanza di equilibrio intorno alla quale possono oscillare. Dal **Teorema di König**:

$$\varepsilon = \underbrace{\varepsilon_{trasl}}_{\text{del CM}} + \underbrace{\varepsilon_{rot}}_{\text{risp etto al CM}} + \underbrace{\varepsilon_{vibr}}_{\text{risp pos di eq (*)}}$$

(*) nel SdR non inerziale fissato in uno dei due atomi (moto relativo).

Il modello adottato approssima le molecole biatomiche a due sfere rigide di raggio R collegati da una molla di lunghezza d e massa trascurabile.

Si considerano ora da un punto di vista puramente meccanico d.o.f. rotazionali e vibrazionali.

Rotazionali

Si considerano in primo luogo separatamente dai vibrazionali, sostituendo la molla con un asta di massa trascurabile e ottenendo così un **rotore rigido**.

Da König $K = K_{CM} + K'$ con K' energia cinetica rotazionale rispetto al SdR inerziale nel centro di massa. Essa può essere espressa secondo

$$K' = \frac{1}{2}\vec{\omega} \cdot I \cdot \vec{\omega} = \sum_{\mu,\nu=1}^{3} \frac{1}{2} I_{\mu\nu} \omega_{\mu} \omega_{\nu} \sum$$

ove I indica il **tensore d'inerzia**, una matrice quadrata 3×3 . Esso è simmetrico, dunque per il Teorema Spettrale è diagonalizzabile per similitudine: determinati i tre assi principali d'inerzia A, B, C ed espressa la velocità angolare nel corrispettivo sistema di riferimento si ha:

$$K' = \frac{1}{2}I_A\omega_A^2 + \frac{1}{2}I_B\omega_B^2 + \frac{1}{2}I_C\omega_C^2$$

Per il rotore, essendo uguali le due masse agli estremi, il punto d'intersezione dei tre assi è il centro geometrico, ovvero il punto medio dell'asta.

Calcolando l'espressione delle componenti del tensore diagonalizzato:

$$I_A = I_B = 2m\left(\frac{d}{2}\right)^2 = \frac{md^2}{2}$$
 $I_C = 2\left(\frac{2}{5}mR^2\right) = \frac{4}{5}mR^2$

(masse puntiformi per asse esterno e sfera per asse passante per il CM)

Si procede quindi a valutare l'entità relativa dei momenti d'inerzia. Si considera, ad esempio, la molecola di H_2 , per cui:

- $d \approx 0.75 \,\text{Å} = 0.75 \times 10^{-10} \,\text{m}$ (distanza tra nuclei)
- $r \approx 2 \text{ Å} = 2 \times 10^{-10} \text{ m}$ (raggio nuvola elettronica)
- $r_p = r_{nucleo} \approx 1.7 \,\text{fm} = 10^{-15} \,\text{m} \,\left(\text{in } fermi\right)$
- $m_p \approx 2000 m_e$

Si osserva quindi che il contributo della nuvola elettronica al momento d'inerzia rispetto a C è trascurabile, e si ha $\frac{I_C}{I_A} \approx 4\%$

Dunque i d.o.f. rotazionali addizionali sono 2, il che dà $f = 5 \implies c_V = \frac{5}{2}R$

Nota

La nuvola elettronica è da considerare nel calcolo del covolume, che resta comunque un fattore di correzione spesso trascurabile.

Vibrazionali

L'energia meccanica di un sistema a due corpi con molla ideale è data da:

$$E = K + V = \frac{1}{2}\mu v_{\xi}^2 + \frac{1}{2}k\xi^2$$

con ξ spostamento rispetto alla posizione di equilibrio, v_{ξ} velocità relativa e μ massa ridotta (per il rotore $\mu = m/2$). Si tratta di due termini indipendenti, in quanto quello potenziale è determinato dalle caratteristiche della molecola e quello cinetico dal valore dell'energia meccanica della singola molecola. Dunque f = 7.

Osservazioni sperimentali

Graficando l'andamento del calore molare dell'idrogeno molecolare contro la temperatura, si osserva l'alternarsi di plateau e discontinuità (o variazioni repentine) in corrispondenza di soglie specifiche:

- Fino ai $100 \,\mathrm{K}$ si ha $c_V = \frac{3}{2} R$
- Si ha la prima discontinuità. Fino ai 1000 K si ha $c_V = \frac{5}{2} R$
- Si ha la seconda discontinuità. Per temperature sopra i 1000 K $c_V=\frac{7}{2}R$

La presenza di discontinuità è giustificata dalla quantizzazione dell'energia delle molecole. Infatti l'energia rotazionale e quella vibrazionale presentano dei livelli discreti, con un valore minimo non nullo:

$$\{\varepsilon_{rot}^{(0)},\varepsilon_{rot}^{(1)},\ldots\}\quad\ll\quad\{\varepsilon_{vibr}^{(0)},\varepsilon_{rot}^{(1)},\ldots\}$$

Gli ulteriori d.o.f. rimangono dunque *congelati* fintanto che l'energia (e dunque la temperatura) non è sufficiente perché sia accessibile il livello fondamentale.

5.10.2 Gas poliatomici

Per $N \geq 3$ atomi si considera analogamente il modello di sfere rigide collegate da molle. Permangono invariati i d.o.f. traslazionali del CM. Per rotazionali e vibrazionali si hanno differenze a seconda della tipologia di molecole. Si riporta in merito la definizione:

Molecola lineare una molecola in cui i centri atomici giacciono sulla medesima retta.

M. angolare una molecola non lineare

Rotazionali

- Angolari: il contributo del terzo asse principale d'inerzia non è trascurabile, dunque $f_{rot}^{ang}=3$
- Lineari: il contributo dell'asse d'inerzia passante per i centri è trascurabile, dunque $f_{rot}^{lin}=2$

Vibrazionali I d.o.f. dipendono dal numero di modi vibrazionali (di deformazione) indipendenti, secondo

$$f_{vibr} = 2 \cdot n_{modi}$$

• Angolari:

$$n_{modi} = 3N - 6 \implies f_{vibr}^{ang} = 2(3N - 6)$$

• Lineari:

$$n_{modi} = 3N - 5 \implies f_{vibr}^{lin} = 2(3N - 5)$$

Dunque globalmente

$$c_V^{ang} = \frac{6N - 6}{2}R = 3R(N - 1) \quad c_V^{lin} = \frac{6N - 5}{2}R$$

Digressione sui modi __

Per ogni struttura soggetta a moti oscillatori, è possibile determinare un insieme di k modi fondamentali tali da:

- essere indipendenti
- poter esprimere qualsiasi possibile moto oscillatorio della struttura attraverso una loro combinazione

Ad ognuno corrisponde un'energia $\varepsilon_{\alpha} = \frac{1}{2} \{ p_{q,\alpha} + \omega_{q,\alpha}^2 q_{\alpha}^2 \}$ per $\alpha = 1,...,k$, con q coordinata normale di oscillazione (corrispondente alla distanza per 2 atomi), $p_q = \dot{q}$ momento generalizzato corrispondente e ω_q frequenza di oscillazione rispetto alla coordinata q. Il contributo energetico totale è quindi

$$\varepsilon_{vib} = \sum_{\alpha} \varepsilon_{\alpha}$$

Si osserva che i modi specifici non sono univocamente determinati, ma k sì in quanto definisce il numero di d.o.f. vibrazionali.

Per determinare la configurazione spaziale di N punti sono necessari 3N parametri: sia per angolari che lineari si sottraggono i 3 corrispondenti al CM; per le prime sono poi 3 le coordinate angolari (che descrivono sistema 'quasi-rigido') da sottrarre, per le seconde solo 2. Si ottiene così il numero di modi.

Si osserva in ultimo che sono 2 le possibili tipologie di modi:

- 1. Elongazione/compressione (*stretching*): varia la lunghezza dei legami. Può essere simmetrico o asimmetrico
- 2. Piegamento (bending): variano gli angoli. Può avvenire indipendentemente lungo due direzioni ortogonali

Calori molari e gradi di libertà negli stati condensati 5.11

Per solidi isolanti che l'energia cinetica molecolare corrisponda a quella vibrazionale intorno alla posizione di equilibrio; il modello è dunque quello do un reticolo cristallino ove ogni molecola è un oscillatore (molla) con il centro di oscillazione nel sito corrispondente. Per i conduttori andrebbe invece considerata anche l'energia delle cariche in movimento.

Per tre direzioni di oscillazione indipendenti si hanno $3 \cdot 2 = 6$ d.o.f. vibrazionali, secondo

$$\varepsilon = \frac{1}{2}kx^2 + \frac{1}{2}ky^2 + \frac{1}{2}kx^2 + \frac{1}{2}mv_x^2 + \frac{1}{2}mv_y^2 + \frac{1}{2}mv_z^2 = \frac{1}{2}k|\vec{x}|^2 + \frac{1}{2}m|\vec{v}|^2$$

Dunque $c_V = c = 3R$ (si rimuove il pedice trattandosi di solidi): si è ritrovata la Legge di Dulong-Petit.

5.12 Relazione di Meyer

Si intende determinare l'espressione di c_p per GP. Differenziando l'equazione di stato

$$p dV + V dp = nR d\theta \implies p dV = nR d\theta - V dp$$

sostituendo nel'espressione in forma locale del I Principio:

$$\delta Q = dU + nR d\theta - V dp = (c_V + R)n d\theta - V dp$$

Dunque a p costante

$$\delta Q = (c_V + R)n \,\mathrm{d}\theta \implies c_p = \frac{1}{n} \left(\frac{\delta Q}{\mathrm{d}\theta}\right)_p = c_V + R$$

ovvero si ha la

Relazione di Meyer

 $c_p = c_V + R$

Da cui

$$c_p = \frac{f+2}{2}R$$

Per temperature non eccessivamente elevate, i gradi di libertà vibrazionali risultano 'spenti', dunque si ha:

- per monoatomici e biatomici: vedi in precedenza
- per poliatomici

- Lineari
$$c_p = \frac{6N-3}{2}R$$
 $\gamma = 1 + \frac{2}{6N-5}$

- Angolari
$$c_p = (3N - 2)R$$
 $\gamma = 1 + \frac{1}{3N - 3}$

Tuttavia quanto ottenuto per le poliatomiche non si riscontra nelle osservazioni sperimentali: infatti per $N \to \infty$ si osserva $\gamma \nrightarrow \infty$, $\gamma \to \frac{4}{3}$ a causa di correzioni quantistiche non trascurabili. Per gas monoatomici e biatomici, invece, la misura di γ costituisce l'input sperimentale più importante per

la verifica della TCG e del TEE.

5.13 Adiabatiche per GP

Per determinare le relazioni analitiche per le adiabatiche quasistatiche di gas perfetti si considera la formulazione differenziale del I Principio

$$\begin{cases} \delta Q = nc_V \, \mathrm{d}\theta + \mathrm{d}U = 0 \\ \delta Q = n(c_V + R) \, \mathrm{d}\theta - V \, \mathrm{d}p \end{cases} \implies \begin{cases} nc_V \, \mathrm{d}\theta = -p \, \mathrm{d}V \\ nc_p \, \mathrm{d}\theta = V \, \mathrm{d}p \end{cases}$$

Dividendo membro a membro la seconda equazione per la prima:

$$\frac{c_p}{c_V} = -\frac{V}{p} \frac{\mathrm{d}p}{\mathrm{d}V} \implies \boxed{\gamma \frac{\mathrm{d}V}{V} = \frac{\mathrm{d}p}{p}}$$

Poiché γ è assumibile costante per un ampio intervallo di temperature, integrando in modo indefinito si ha:

$$\gamma \ln(V) = -\ln(p) + cost \implies \gamma \ln(V) + \ln(p) = coste^{\gamma \ln(V) + \ln(p)} = pV^{\gamma} = coste^{\gamma \ln(V) + \ln(p)}$$

Lo studio curva sul piano di Clapeyron comporta in primo luogo un confronto con le curve delle isoterme quasistatiche.

$$p(V) = cost \cdot V^{-\gamma} \implies \frac{\partial p}{\partial V} = -\gamma cost \cdot V^{-\gamma - 1} = -\gamma \frac{p}{V}$$

Per le isoterme si ha invece

$$p(V) = cost \cdot V^{-1} \implies \frac{\partial p}{\partial V} = -\frac{p}{V}$$

Poiché $\gamma > 1$ si ha

$$\underbrace{\left(\frac{\partial p}{\partial V}\right)_{(ad)} = -\gamma \frac{p}{V} < -\frac{p}{V} = \left(\frac{\partial p}{\partial V}\right)_{\theta}}_{\text{slope minore algebricamente}} \qquad \underbrace{\left|\frac{\partial p}{\partial V}\right|_{(ad)} = \left|-\gamma \frac{p}{V}\right| = \gamma \frac{p}{V} > \frac{p}{V} = \left|-\frac{p}{V}\right| = \left|\frac{\partial p}{\partial V}\right|_{\theta}}_{\text{ma maggiore in valore assoluto}}$$

Sostituendo le espressioni delle varie c.t. in funzione delle altre tramite l'equazione di stato, si ottengono le varie relazioni:

$$\begin{split} pV^{\gamma} &= cost \implies \left(\frac{nR\theta}{V}\right)V^{\gamma} = cost \implies \boxed{\theta V^{\gamma-1} = cost} \\ pV^{\gamma} &= cost \implies p \bigg(\frac{nR\theta}{p}\bigg)^{\gamma} = cost \implies \theta^{\gamma} p^{1-\gamma} = cost \implies \boxed{\theta p^{\frac{1-\gamma}{\gamma}} = cost} \end{split}$$

La seconda relazione illustra come sia possibile raffreddare un gas in assenza di serbatoi o sorgenti termiche, semplicemente facendolo espandere (non liberamente). In generale le tre relazioni trovate sono valide **per qualsiasi sistema idrostaticp** (ovviamente varia il valore del coefficiente γ).

Adiabatiche in natura

Le trasformazioni adiabatiche sono molto comuni. Ad esempio sono spesso presenti in processi che coinvolgono l'aria, che a causa della sua scarsa conducibilità termica spesso non trasferisce calore in modo significativo in tempi brevi.

5.13.1 Lavoro in adiabatiche quasistatiche

É possibile, ricavando dalle relazioni l'espressione esplicita della pressione in funzione del volume, determinare l'espressione analitica del lavoro per adiabatiche q.s. Ci si attende il risultato sia riconducibile al primo principio, in quanto l'energia interna è stata proprio definita partendo dal lavoro in adiabatiche generiche.

$$L = \int_{i}^{f} p \, dV = \int_{i}^{f} \frac{\cos t}{V^{\gamma}} \, dV = \cot \int_{i}^{f} V^{-\gamma} \, dV = \frac{\cos t}{-\gamma + 1} [V^{-\gamma + 1}]_{i}^{f} = \frac{\cos t}{\gamma - 1} (V_{i}^{1 - \gamma} - V_{f}^{1 - \gamma})$$

noto $cost = p_i V_i^{\gamma} = p_f V_f^{\gamma}$

$$\frac{p_i V_i^{\gamma} \cdot V_i^{1-\gamma}}{\gamma-1} - \frac{p_f V_f^{\gamma} \cdot V_f^{1-\gamma}}{\gamma-1} = \boxed{\frac{p_i V_i - p_f V_f}{\gamma-1}}$$

Sostituendo $pV = nR\theta$ e moltiplicando per $\frac{c_V}{c_V}$:

$$\frac{nR\,c_V}{c_V(\gamma-1)}(\theta_i-\theta_f) = \frac{nR\,c_V}{c_p-c_V}(\theta_i-\theta_f) = \frac{nR\,c_V}{R}(\theta_i-\theta_f) = nc_V(\theta_i-\theta_f) = U_i - U_f = -\Delta U$$

applicando la relazione di Meyer ci si è così ricondotti al I Principio in forma integrale. Risulta dunque chiaro che per le varie adiabatiche:

40

- L > 0 (espansione) $\theta_i > \theta_f$: il gas si raffredda
- L < 0 (compressione) $\theta_i < \theta_f$: il gas si scalda
- L=0 (espansione libera) $\theta_i=\theta_f$: il gas non varia la propria temperatura

Raffreddamento nell'espansione adiabatica q.s: spiegazione da TCG

$$r \equiv \frac{m}{M} \quad V = \vec{V} \cdot \hat{y} \quad v = \vec{v} \cdot \hat{y}$$

Considerando la variazione di energia cinetica della molecola:

$$\Delta \varepsilon = \frac{1}{2} m ((v')^2 - v^2) = \frac{1}{2} m (4V^2 - 4Vv) = 2V m (V - v)$$

Si considerano i vari casi:

- V > 0 (espansione) e v > V : $\Delta \varepsilon < 0 \rightarrow \Delta \theta < 0$
- V < 0 (compressione) e v > V : $\Delta \varepsilon > 0 \rightarrow \Delta \theta > 0$
- $V \to \infty 0$ (espansione libera) e $v \ll V$: non si hanno urti, $\Delta \varepsilon = \Delta \theta = 0$

5.14 Espansione adiabatica dell'universo

tbd

5.15 Dipendenza della temperatura dalla quota

 tbd

5.16 Esperienza di Ruchart e misura di γ

 tbd

5.17 Velocità del suono

tbd

Trasmissione del calore

Dal punto di vista macroscopico, il calore rappresenta una modalità di trasmissione di energia e conseguente variazione dell'energia interna di un sistema (e quindi della sua temperatura) alternativa al lavoro termodinamico. Dal punto di vista microscopico, la trasmissione di energia cinetica tra i costituenti elementari dei sistemi può avvenire secondo diverse modalità.

Si osserva che la trasmissione di calore conduce all'equilibrio termico (e quindi termodinamico), ma si tratta di un processo transitorio che si svolge fuori dall'equilibrio: è infatti considerata nelle equazioni anche la **variabile temporale** t. Difatti la **teoria del trasporto** tratta fenomeni differenti dalla termodinamica dei sistemi all'equilibrio.

6.1 Conduzione: la legge di Fourier

La conduzione si verifica quando si ha trasferimento di energia in assenza di movimenti macroscopici di materia. Per i solidi, questo avviene attraverso movimenti elastici del reticolo; nei conduttori o semicond. anche attraverso il movimento degli elettroni di conduzione.

Si nota in merito che tendenzialmente ottimi conduttori elettrici sono anche ottimi conduttori termici. La legge empirica che descrive il fenomeno è la

$$\frac{\delta Q}{\mathrm{d}t} = -l\,\mathrm{d}A\,\frac{\mathrm{d}\theta}{\mathrm{d}x}$$

che esprime la potenza termica (calore trasferito su unità di tempo) in termini dell'area infinitesima della porzione di sistema attraverso cui transita il calore, del corrispondente **gradiente termico** e della **conducibilità termica** specifica della sostanza. Il segno negativo indica che il calore è trasferito nel verso opposto alla differenza di temperatura (dal più caldo al più freddo).

Un materiale ad alta conducibilità si dice **conduttore termico**, uno a bassa **isolante t.**. Si osserva che k dipende, oltre che dal materiale, anche dalla temperatura: nei gas, ad esempio, $k = k(\sqrt{\theta})$. Può comunque essere assunta localmente costante.

Trattazione generale _

Si generalizza con l'equazione del trasporto:

$$\frac{\partial u}{\partial t} + \mathbf{b} \cdot \nabla u = f$$

 $con u : \mathbb{R}^n \times \mathbb{R}^+ \to \mathbb{R}, \mathbf{b} \in \mathbb{R}^n$

La riformulazione in più dimensioni di Fourier è invece

$$\underbrace{\vec{\Phi}_Q}_{\text{used di } Q} = -k\vec{\nabla}\theta$$

L'applicazione a sistemi estesi conduce spesso a calcoli complessi. Si considerano di seguito tre casi semplici.

6.1.1 Geometria planare

Si consideri una piastra a contatto termico, su due facce opposte, con altrettanti termostati a temperature differenti. Il flusso di calore è perpendicolare alle facce della piastra.

Poiché i termostati non variano la propria temperatura cedendo od acquistando calore, la piastra non raggiungerà mai l'equilibrio termico e quindi termodinamico. Si trova tuttavia in uno stato definito, in quanto il flusso di calore è costante e dunque il gradiente termico è definito e costante. Si definisce tale condizione **stato stazionario**, in cui $\theta(x)$ non ha alcuna dipendenza temporale. Dunque $\Delta U = 0$. In assenza di spostamento di materia L = 0, dunque Q = 0: il calore acquistato dal termostato caldo è uguale in valore assoluto e opposto in segno a quello ceduto al termostato freddo.

Supposto $\theta_1 > \theta_2$, integrando sull'area delle facce esposte (gli altri fattori sono costanti):

$$P = \frac{\delta Q}{\mathrm{d}t} = kA \frac{\theta_1 - \theta_2}{d}$$

definendo la **conduttanza** $H \equiv \frac{k}{d}$ si ottiene $P = HA(\theta_1 - \theta_2)$

Conduttanza per conduttori in serie

Per corpi conduttori in serie, si ha:

$$\frac{1}{H_{tot}} = \sum_{i} \frac{1}{H_{i}}$$

Dimostrazione. La potenza termica condotta da ogni corpo è $\frac{\delta Q}{\mathrm{d}t} = -AH_i\Delta\theta_i$, dunque $-A\Delta\theta_i = \frac{\delta Q}{\mathrm{d}t}\frac{1}{H_i}$. Poiché l'area delle facce attraverso cui è trasmesso il calore è costante, si ha:

$$-A\Delta\theta_{tot} = -A\sum_{i}\Delta\theta_{i} = -\sum_{i}A\Delta\theta_{i} = -\sum_{i}\frac{\delta Q}{\mathrm{d}t}\frac{1}{H_{i}}$$

Tutti i conduttori si trovano in stato stazionario: dunque nell'intervallo infinitesimo di tempo la quantità di calore che transita per ognuno deve essere uguale. É quindi possibile portare fuori la potenza termica dalla sommatoria. Considerando il sistema complessivo comprendente i vari conduttori, è possibile analogamente applicare l'equazione di Fourier

$$\frac{\delta Q}{\mathrm{d}t} = -AH_{tot}\Delta\theta_{tot} \implies -A\Delta\theta_{tot} = \frac{\delta Q}{\mathrm{d}t}\frac{1}{H_{tot}}$$

Eguagliando le espressioni ottenute:

$$\frac{\delta Q}{\mathrm{d}t} \frac{1}{H_{tot}} = \frac{\delta Q}{\mathrm{d}t} \sum_{i} \frac{1}{H_{i}}$$

Si osserva l'analogia formale con le resistenze in parallelo in un circuito elettrico.

6.1.2 Geometria cilindrica

Si considera un corpo conduttore cavo delimitato da due cilindri coassiali di eguale lunghezza L e raggi $r_1 < r_2$, con la parete interna ed esterna esposte a temperature differenti. Si ha dunque un flusso radiale. Si considerano cilindri infinitesimi di raggio r e spessore dr e se ne sviluppa la superficie come una lastra piana, di modo da ricondursi al caso precedente.

$$A = 2\pi rL \implies \frac{\delta Q}{\mathrm{d}t} = -2\pi k r \frac{\mathrm{d}\theta}{\mathrm{d}r}$$

Si isola il d θ e si integra tra le temperature estreme

$$d\theta = -\frac{\delta Q}{dt} \frac{dr}{r} \frac{1}{2\pi kL} \implies \int_{\theta_1}^{\theta_2} d\theta = \theta_2 - \theta_1 = \ln\left(\frac{r_1}{r_2}\right) \left(\frac{\delta Q}{dt}\right) \frac{1}{2\pi kL}$$

da cui

$$\frac{\delta Q}{\mathrm{d}t} = 2\pi k L \frac{\theta_2 - \theta_1}{\ln(r_1/r_2)}$$

6.2. CONVEZIONE 43

6.1.3 Geometria sferica

Si ha un corpo delimitato da due superfici sferiche concentriche di raggi $r_1 < r_2$, con temperature differenti all'interno ed all'esterno.

Si considera un guscio di raggio r e spessore infinitesimo dr:

$$\frac{\delta Q}{\mathrm{d}t} = -k(4\pi r^2)\frac{\mathrm{d}\theta}{\mathrm{d}r} \implies \mathrm{d}\theta = -\left(\frac{\delta Q}{\mathrm{d}t}\right)\frac{1}{4\pi k}\frac{\mathrm{d}r}{r}$$

Integrando tra le due temperature estreme

$$\theta_2 - \theta_1 = \left(\frac{\delta Q}{\mathrm{d}t}\right) \frac{1}{4\pi k} \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

da cui

$$\delta Q \over \mathrm{d}t = 4\pi k \left(\frac{r_1 r_2}{r_1 - r_2}\right) (\theta_1 - \theta_2)$$

Caso non stazionario _

Nel caso non stazionario, ovvero con dipendenza temporale della temperatura (e del gradiente termico) è necessario fare ricorso alla più generale e complessa equazione del calore:

$$\nabla^2 \theta = \frac{\rho c}{k} \frac{\partial \theta}{\partial t}$$

che si riconduce al caso stazionario se il secondo fattore a destra è nullo (dunque la divergenza della temperatura è nulla) e sono assunte opportune condizioni al contorno.

Il coefficiente specifico $\alpha \equiv \frac{\rho c}{k}$ è definito **diffusività termica**. Se ad esempio la temperatura del termostato varia in modo sinusoidale, l'equazione dà luogo alla propagazione di onde di temperatura (onde termiche) nel corpo conduttore nella forma $\theta(t) = \theta_0 \sin(\omega t)$

6.2 Convezione

Nella convezione, che riguarda i fluidi, si ha trasferimento di calore tramite movimento macroscopico di materia, ovvero di porzioni dei sistemi. Si hanno le correnti di convezione, ed la c. può essere:

- naturale se lo spostamento di materia consegue per Archimede da differenze di densità tra porzioni del fluido
- forzata se è ottenuta tramite, ad esempio, l'utilizzo di una pompa.

la legge empirica che descrive il fenomeno è la:

Legge (empirica) di Newton
$$\frac{\delta Q}{\mathrm{d}t} = h\,\mathrm{d}A\,(\theta_0-\theta_\infty)$$

ove θ_{∞} è la temperatura dell'ambiente, assumibile come termostato (formalmente, la temperatura di un punto infinitamente distante dalla sorgente) e h è il coefficiente di trasferimento termico ed è dipende

- forma della parete
- orientazione della p.
- natura del fluido (gas o liquido)
- densità, viscosità, calore specifico
- velocità del fluido
- eventuale presenza di incrostazioni (precipitati) o processi di evaporazione

6.3. IRRAGGIAMENTO 44

Raffreddamento del tè

La temperatura finale corrisponde alla θ_{∞} dell'ambiente, che si comporta come un termostato. Assunta una capacità termica costante del tè C e indicando con θ_0 la sua temperatura iniziale si ha

$$\delta Q = C \, \mathrm{d}\theta \implies \frac{\delta Q}{\mathrm{d}t} = C \frac{\mathrm{d}\theta}{\mathrm{d}t} = C \frac{\mathrm{d}\theta}{\mathrm{d}t} + \overbrace{C \frac{\mathrm{d}\theta_{\infty}}{\mathrm{d}t}}^{=0} = C \frac{\mathrm{d}(\theta - \theta_{\infty})}{\mathrm{d}t} = h \, \mathrm{d}A \, (\theta_0 - \theta_{\infty})$$

integrando sulla superficie (assumendo le altre variabili indipendenti dai punti della stessa) e successivamente integrando separando le variabili:

$$\theta - \theta_{\infty} = e^{-\frac{hA}{C}t}(\theta_0 - \theta_{\infty}) \implies \theta(t) = (\theta_0 - \theta_{\infty})e^{-\frac{hA}{C}t} + \theta_{\infty}$$

si osserva che la temperatura del tè tende asintoticamente a quella dell'ambiente.

6.3 Irraggiamento

tbd

Secondo Principio

Potenziali termodinamici

P.t. funzioni di stato caratteristiche di un sistema termodinamico con una proprietà: se espresse in termini di opportune variabili termodinamiche (le *v. naturali* di ognuna), tutte le proprietà termodinamiche del sistema possono essere calcolate tramite differenziazione.