HadoopTS

HadoopTS

- Use HBase as the underlying data store
- TSBucket: time-series bucket saves the times series data of equal resolution and length
- TSProcessor: Controls the analysis flow for all individual opeations on all records within TSBucket.
- UDF: Integrate HadoopTS with other systems, such as Hive, Pig.
- Time series analysis:
 - Auto correlation
 - Detrended fluctuation analysis (DFS)
 - Return Interval statistics
 - Cross correlation
 - Event synchronization (ES)

OpenTSDB

Hbase Tables

- tsdb Data point table. Massive
- tsdb-uid Name to UID and UID to name mappings
- tsdb-meta Time series index and meta-data (new in 2.0)
- tsdb-tree Config and index for heirarchical naming schema

HBase Tables

- Integer UIDs assigned to each value per type (metric, tagk, tagv) in tsdb-uid table
- 64 bit integers in row \(x00 \) reflect last used UID

CF:Qualifier	Row Key	UID
id:metric	sys.cpu.user	1
id:tagk	host	1
id:tagv	web01	1
id:tagk	сри	2
id:tagv	0	2

Data table schema

- Row key is a concatenation of UIDs and time:
 - metric + timestamp + tagk1 + tagv1... + tagkN + tagvN
- Timestamp normalized on 1 hour boundaries
- All data points for an hour are stored in one row
- Enables fast scans of all time series for a metric
- ...or pass a row key regex filter for specific time series with particular tags