

Trabalho Final INF1608

Pêndulo via Runge-Kutta-Fehlberg

Gustavo B. H. de Azevedo - 1321442

Problema

$$\ddot{\theta} + \frac{g}{l}\sin\theta = 0$$

$$\ddot{\theta} + \frac{g}{l}\theta = 0$$

$$T=2\pi\sqrt{rac{l}{g}}$$

Primeiros passos

$$w_{i+1} = w_i + \frac{h}{6}(s_1 + 2s_2 + 2s_3 + s_4)$$

Passo = 0.0001

$$s_1 = f(t_i, w_i)$$

$$s_2 = f\left(t_i + \frac{h}{2}, w_i + \frac{h}{2}s_1\right)$$

$$s_3 = f\left(t_i + \frac{h}{2}, w_i + \frac{h}{2}s_2\right)$$

$$s_4 = f(t_i + h, w_i + hs_3).$$

$$heta(t) = heta_0 \cos\left(\sqrt{rac{g}{l}}t
ight)$$

Segunda ordem

$$y^{(n)} = f(t, y, y', y'', ..., y^{(n-1)})$$

$$y_1 = y$$

$$y_2 = y'$$

$$y_3 = y''$$

$$\vdots$$

$$y_n = y^{(n-1)},$$

RK4 - Resultados

Avançando

$$s_{1} = f(t_{i}, w_{i})$$

$$s_{2} = f\left(t_{i} + \frac{1}{4}h, w_{i} + \frac{1}{4}hs_{1}\right)$$

$$s_{3} = f\left(t_{i} + \frac{3}{8}h, w_{i} + \frac{3}{32}hs_{1} + \frac{9}{32}hs_{2}\right)$$

$$s_{4} = f\left(t_{i} + \frac{12}{13}h, w_{i} + \frac{1932}{2197}hs_{1} - \frac{7200}{2197}hs_{2} + \frac{7296}{2197}hs_{3}\right)$$

$$s_{5} = f\left(t_{i} + h, w_{i} + \frac{439}{216}hs_{1} - 8hs_{2} + \frac{3680}{513}hs_{3} - \frac{845}{4104}hs_{4}\right)$$

$$s_{6} = f\left(t_{i} + \frac{1}{2}h, w_{i} - \frac{8}{27}hs_{1} + 2hs_{2} - \frac{3544}{2565}hs_{3} + \frac{1859}{4104}hs_{4} - \frac{11}{40}hs_{5}\right)$$

$$w_{i+1} = w_{i} + h\left(\frac{25}{216}s_{1} + \frac{1408}{2565}s_{3} + \frac{2197}{4104}s_{4} - \frac{1}{5}s_{5}\right)$$

$$z_{i+1} = w_{i} + h\left(\frac{16}{135}s_{1} + \frac{6656}{12825}s_{3} + \frac{28561}{56430}s_{4} - \frac{9}{50}s_{5} + \frac{2}{55}s_{6}\right).$$

Tolerância

$$w_{i+1} = w_i + h \left(\frac{25}{216} s_1 + \frac{1408}{2565} s_3 + \frac{2197}{4104} s_4 - \frac{1}{5} s_5 \right)$$

$$z_{i+1} = w_i + h \left(\frac{16}{135} s_1 + \frac{6656}{12825} s_3 + \frac{28561}{56430} s_4 - \frac{9}{50} s_5 + \frac{2}{55} s_6 \right).$$

$$e_{i+1} = |z_{i+1} - w_{i+1}| = h \left| \frac{1}{360} s_1 - \frac{128}{4275} s_3 - \frac{2197}{75240} s_4 + \frac{1}{50} s_5 + \frac{2}{55} s_6 \right|. \qquad \frac{e_i}{|w_i|} < T$$

hMin hMax **h**Anterior eMax eMin

Variação dos passos

Passo Var			
t	Theta Calc	Theta Analítico	Passo
0.00100	0.20000	0.20000	0.00100
0.00300	0.19999	0.19999	0.00200
0.00700	0.19995	0.19995	0.00400
0.01500	0.19978	0.19978	0.00800
0.02500	0.19939	0.19939	0.01000
0.03500	0.19880	0.19880	0.01000
0.04500	0.19802	0.19802	0.01000
0.05500	0.19704	0.19704	0.01000
0.06500	0.19587	0.19587	0.01000
0.07500	0.19451	0.19451	0.01000
0.08500	0.19295	0.19295	0.01000
0.09500	0.19121	0.19121	0.01000
0.10500	0.18928	0.18928	0.01000
0.11500	0.18717	0.18717	0.01000
0.12500	0.18487	0.18487	0.01000
0.13500	0.18239	0.18239	0.01000
0.14500	0.17973	0.17973	0.01000
0.15500	0.17689	0.17689	0.01000
0.16500	0.17388	0.17388	0.01000
0.17500	0.17070	0.17070	0.01000
0.18500	0.16735	0.16735	0.01000
0.19500	0.16384	0.16384	0.01000
0.20500	0.16017	0.16017	0.01000
0.21500	0.15634	0.15634	0.01000
0.22500	0.15236	0.15236	0.01000
0.23500	0.14823	0.14823	0.01000
0.24500	0.14395	0.14395	0.01000
0.25500	0.13953	0.13953	0.01000
0.26500	0.13498	0.13498	0.01000

RKF5 - Resultados

Número de passos


```
NUM_PASSOS_RK4 NUM_PASSOS_RK5
Theta0
                             19947
    0.157080
                                                    200
                             19968
                                                    201
    0.235619
    0.314159
                             19981
                                                    201
    0.392699
                             19989
                                                    201
    0.471239
                             19995
                                                    202
    0.549779
                                                    202
                             20000
                             20004
    0.628319
                                                    202
    0.706858
                             20007
                                                    202
                             20010
                                                    202
    0.785398
    0.863938
                             20013
                                                    202
    0.942478
                             20015
                                                    202
    1.021018
                             20016
                                                    202
    1.099557
                             20018
                                                    202
    1.178097
                             20020
                                                    202
    1.256637
                             20021
                                                    202
    1.335177
                             20022
                                                    202
    1.413717
                             20023
                                                    202
    1.492257
                                                    202
                             20024
    1.570796
                                                    202
                             20025
```

Theta: 1.000000

RK4 - Esperado: 2.0061 - Encontrado: 2.0016 - Erro: 0.004467 - NumPassos: 20015

RK5 - Esperado: 2.0061 - Encontrado: 1.9950 - Erro: 0.011067 - NumPassos: 202

Theta: 4.000000

RK4 - Esperado: 2.0061 - Encontrado: 2.0039 - Erro: 0.002167 - NumPassos: 20038

RK5 - Esperado: 2.0061 - Encontrado: 2.0050 - Erro: 0.001067 - NumPassos: 203

Theta: 7.000000

RK4 - Esperado: 2.0061 - Encontrado: 2.0044 - Erro: 0.001667 - NumPassos: 20043

RK5 - Esperado: 2.0061 - Encontrado: 2.0050 - Erro: 0.001067 - NumPassos: 203

E ângulos grandes?

Considerações finais

$$T = 2\pi\sqrt{\frac{\ell}{g}}\left(1 + \frac{1}{16}\theta_0^2 + \frac{11}{3072}\theta_0^4 + \frac{173}{737280}\theta_0^6 + \frac{22931}{1321205760}\theta_0^8 + \frac{1319183}{951268147200}\theta_0^{10} + \frac{233526463}{2009078326886400}\theta_0^{12} + \ldots\right)$$

$$T=2\pi\sqrt{rac{l}{g}}$$

Theta0	PERIODO_RK4	PERIODO_RK5	PERIODO_SIMPLES	PERIODO_REAL	NUM_PASSOS_RK4	NUM_PASSOS_RK5
0.157080	1.994700	1.975000	2.006100	2.009165	19947	200
0.235619	1.996800	1.985000	2.006100	2.013050	19968	201
0.314159	1.998100	1.985000	2.006100	2.018512	19981	201
0.392699	1.998900	1.985000	2.006100	2.025574	19989	201
0.471239	1.999500	1.995000	2.006100	2.034269	19995	202
0.549779	2.000000	1.995000	2.006100	2.044633	20000	202
0.628319	2.000400	1.995000	2.006100	2.056714	20004	202
0.706858	2.000700	1.995000	2.006100	2.070566	20007	202
0.785398	2.001000	1.995000	2.006100	2.086256	20010	202
0.863938	2.001300	1.995000	2.006100	2.103857	20013	202
0.942478	2.001500	1.995000	2.006100	2.123456	20015	202
1.021018	2.001600	1.995000	2.006100	2.145152	20016	202
1.099557	2.001800	1.995000	2.006100	2.169060	20018	202
1.178097	2.002000	1.995000	2.006100	2.195307	20020	202
1.256637	2.002100	1.995000	2.006100	2.224040	20021	202
1.335177	2.002200	1.995000	2.006100	2.255426	20022	202
1.413717	2.002300	1.995000	2.006100	2.289655	20023	202
1.492257	2.002400	1.995000	2.006100	2.326938	20024	202
1.570796	2.002500	1.995000	2.006100	2.367521	20025	202