

UM6264 Series

8K×8 CMOS SRAM

Features

Single +5 volt power supply

Access times: 70/100/120 ns (max.)

■ Current:

Standard version: Operating: 90 mA (max.)

Standby: 2 mA (max.)

Low power version: Operating: 90 mA (max.)

Standby: 100 μ A (max.)

■ Fully static operation, no clock or refreshing required

General Description

The UM6264 is a high-speed, low-power 65,536-bit static random access memory organized as 8,192 words by 8 bits and operates on a single 5-volt power supply. It is built using UMC's high performance CMOS process.

Inputs and three-state outputs are TTL compatible and allow for direct interfacing with common system bus structures.

- Directly TTL compatible: All inputs and outputs
- Common I/O using three-state output
- Output enable and two chip select inputs for easy application
- Data retention voltage: 2V (min.) for low power version
- Available in 28 pin DIP, SOP, or Skinny DIP packages (See ordering information)

Two chip select inputs are provided for power down and device select, and an output enable input is included for easy interface.

Data retention is guaranteed at a power supply voltage as low as 2V for the low power version.

Pin Configuration

Block Diagram

Pin Description

Designation	Description
$A_0 \sim A_{12}$	Address Input
WE	Write Enable
ŌĒ	Output Enable
CS ₁	Chip Select
CS ₂	Chip Select
NC	No Connection
1/O ₁ ~ 1/O ₈	Data Input/Output
V _{cc}	Power Supply (+5V)
GND	Ground

Absolute Maximum Ratings *

V _{CC} to GND	-0.5V to +7.0V
IN, IN/OUT Volt to GND0.5V	to $V_{CC} + 0.5V$
Operating Temperature, T_{opr}	0°C to +70°C
Storage Temperature, T _{stg}	5°C to +125°C
Temperature Under Bias, T _{bias}	10°C to +85°C
Power Dissipation, P _T 1	.0W/SOP 0.7W
Soldering temp. & time	260°C, 10 sec

Recommended DC Operating Conditions

 $(T_{\Delta} = 0^{\circ}C \text{ to } 70^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{cc}	Supply Voltage	4.5	5.0	5.5	٧
GND	Ground	0	0	0	V
V _{iH}	Input High Voltage	2.2	3.5	V _{CC} + 0.5V	٧
VIL	Input Low Voltage	-0.3	0	+0.8	٧
CL	Output Load		-	100	рF
TTL	Output Load]	_	1	

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics $(T_A = 0^{\circ}C \text{ to } +70^{\circ}C, V_{CC} = 5V \pm 10\%, GND = 0V)$

Symbol	Parameter	10/		10L	64-70L/ /12L	Unit	Test Conditions
,		Min.	Max.	Min.	Max.	·	
րել	Input Leakage Current	_	2	_	2	μΑ	V _{IN} = GND to V _{CC}
ll _{LO} I	Output Leakage Current	_	2		2	μΑ	$\overline{\text{CS}}_1 = \text{V}_{\text{IH}} \text{ or } \text{CS}_2 = \text{V}_{\text{IL}}$ or $\overline{\text{OE}} = \text{V}_{\text{IH}} \text{ or } \overline{\text{WE}} = \text{V}_{\text{IL}}$ $\text{V}_{\text{I/O}} = \text{GND to V}_{\text{CC}}$
¹ cc	Active Power Supply Current	_	90	_	90	mA	$\overline{CS}_1 = V_{IL}, CS_2 = V_{IH}$ $I_{I/O} = 0 \text{ mA}$
I _{CC1}	Dynamic Operating Current	_	90	-	90	mA	Min. Cycle, Duty = 100% $\overline{CS}_1 = V_{1L}$, $CS_2 = V_{1H}$ $V_{1/O} = 0 \text{ mA}$
I _{SB}		_	5	_	3	mA	$\overline{\text{CS}}_1 = V_{\text{IH}} \text{ or } \text{CS}_2 = V_{\text{IL}}$
I _{SB1}	Standby Power Supply Current	_	2	-	0.1	mA	$\begin{array}{c c} \overline{\text{CS}}_1 \geqslant \text{V}_{\text{CC}} - 0.2\text{V}, \\ \text{CS}_2 \geqslant \text{V}_{\text{CC}} - 0.2\text{V}, \\ \text{V}_{\text{IN}} \geqslant \text{V}_{\text{CC}} - 0.2\text{V} \text{ or } \\ \text{V}_{\text{IN}} \leqslant 0.2\text{V} \end{array}$
I _{SB2}		_	2	_	0.1	mA	$\overline{\text{CS}_1} \le 0.2 \text{V}, \text{CS}_2 \le 0.2 \text{V}$ $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2 \text{V} \text{ or}$ $\text{V}_{\text{IN}} \le 0.2 \text{V}$
V _{OL}	Output Low Voltage	_	0.4	_	0.4	٧	I _{OL} = 4 mA
V _{OH}	Output High Voltage	2.4	_	2.4	_	V	I _{OH} = -1.0 mA

Truth Table

Mode	CS ₁	CS ₂	ŌE	WE	I/O Operation	V _{CC} Current
Standby	Н	×	X	×	High Z	I _{SB} , I _{SB1}
Standby	X	L	×	×	High Z	SB, SB2
Output Disabled	L	н	Н	Н	High Z	cc, cc1
Read	L	Н	L	. н	D _{OUT}	lcc, lcc1
Write	L	Н	×	L	D _{IN}	I _{CC} , I _{CC1}

Note: X:H or L

Capacitance $(T_A = 25^{\circ}C, f = 1.0 \text{ MHz})$

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
C _{IN} *	Input Capacitance		6	pF	V _{IN} = 0V
C _{I/O} *	Input/Output Capacitance		8	ρF	V _{I/O} = 0V

^{*} This parameter is sampled and not 100% tested

A C Characteristics $(V_{CC} = 5V \pm 10\%, T_A = 0^{\circ}C \text{ to } +70^{\circ}C)$

Symbol	Parameter		UM6264 Min.	I-70/70L Max.	UM6264 Min.	I-10/10L Max.	UM6264 Min.	1-12/12L Max.	Unit
Read Cycle	е							,	·
t _{RC}	Read Cycle Time		70	_	100		120		ns
t _{AA}	Address Access Time		_	70	_	100		120	ns
t _{ACS1}	Chip Select Access	CS ₁	_	70	_	100		120	ns
t _{ACS2}	Time	CS ₂	_	70	_	100	_	120	ns
^t OE	Output Enable to Outp	out Valid	_	35	-	50	_	60	ns
^t CLZ1	Chip Selection to	CS ₁	10	_	10	_	10		ns
^t CLZ2	Output in Low Z	CS ₂	10		10	_	10	_	ns
t _{OLZ}	Output Enable to Outp	out in Low Z	5	_	- 5		5	_	ns
^t CHZ1	Chip Deselection to	CS ₁	0	35	0	35	0	40	ns
t _{CHZ2}	Output in High Z	CS ₂	0	35	0	35	0	40	ns
^t onz	Output Disable to Out	put in High Z	0	30	0	35	0	40	ns
t _{OH}	Output Hold from Address Change		10	_	10	_	10		ns
Write Cycle	e					•			
twc	Write Cycle Time		70	-	100	-	120	_	ns
t _{CW}	Chip Selection to End	of Write	60		80		85	_	ns
t _{AS}	Address Set-up Time		0	-	0	_	0	_	ns
t _{AW}	Address Valid to End of	of Write	60	_	80	_	85		ns
t _{WP}	Write Pulse Width		50	_	60		70		ns
twR	Write Recovery Time		0	_	0		0	_	ns
^t wHZ	Write to Output in High Z		0	30	0	35	0	40	ns
t _{DW}	Data to Write Time Overlap		30		40		50		ns
t _{DH}	Data Hold from Write	Time	0		0		0	_	ns
tonz	Output Disable to Out	put in High Z	0	30	0	35	0	40	ns
t _{OW}	Output Active from Er	nd of Write	5		10		10		ns

Notes: t_{CHZ} , t_{OHZ} and t_{WHZ} are defined as the time at which the outputs achieve the open circuit condition and are not referred to output voltage levels.

Timing Waveforms (Continued)

Read Cycle 1 (1,2,4)

Read Cycle 2 (1,3,4,6)

Read Cycle 3 (1,4,7,8)

Read Cycle 4 (1)

- Notes: 1. WE is high for READ cycle.
 - 2. Device is continuously selected $\overline{CS_1} = V_{1L}$ and $CS_2 = V_{1H}$.
 - 3. Address valid prior to or coincident with $\overline{CS_1}$ transition low.
 - 4. $\overline{OE} = V_{1L}$.
 - 5. Transition is measured ± 500mV from steady state. This parameter is sampled and not 100% tested.
 - 6. CS₂ is high.
 - 7. $\overline{CS_1}$ is low.
 - 8. Address valid prior to or coincident with CS₂ transition high.

Timing Waveforms (Continued)

Write Cycle 1

Write Cycle 2 (6)

- Notes: 1. t_{AS} is measured from the address valid to the beginning of write.
 - 2. A write occurs during the overlap (t_{wp}) of a low $\overline{CS_1}$, a high CS_2 and a low \overline{WE} .
 - 3. t_{WR} is measured from the earliest of \overline{CS}_1 or \overline{WE} going high or CS_2 going low to the end of write cycle.
 - 4. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must
 - 5. If the $\overline{\text{CS}}_1$ low transition or the CS_2 high transition occur simultaneously with the $\overline{\text{WE}}$ low transition or after the WE transition, outputs remain in a high impedance state.
 - 6. OE is continuously low ($\overline{OE} = V_{II}$).
 - 7. D_{OUT} is the same phase of write data of this write cycle.
 - 8. $D_{\mbox{\scriptsize OUT}}$ is the read data of next address.
 - 9. If $\overline{CS_1}$ is low and CS_2 is high during this period, I/O pins are in the output state. The data input signals of opposite phase to the outputs must not be applied to I/O pins.
 - 10. Transition is measured ± 500mV from steady state. This parameter is sampled and not 100% tested.
 - 11. t_{cw} is measured from the later of $\overline{CS_1}$ going low or CS_2 going high to the end of write.

AC Test Conditions

For Access Time: 70ns

Input Pulse Levels	0V to 3 ନି∨
Input Rise and Fall Times	5ns
Input and Output	
Timing Reference Levels	1.5V
Output Load	See Fig. 2, 3

For Access Times: 100/120 ns

Input Pulse Levels	0.8V to 2.2V
Input Rise and Fall Times	5ns
Input and Output	
Timing Reference Levels	1.5V
Output Load	See Fig. 1, 3

Figure 1. Output Load

Figure 2. Output Load

Figure 3. Output Load for t_{CLZ} , $t_{OLZ}, t_{CHZ}, t_{OHZ}, t_{WHZ},$ and t_{OW}

Data Retention Characteristics

$$(T_A = 0^{\circ}C \text{ to } +70^{\circ}C; \text{ L version only})$$

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
V _{DR 1}	V _{CC} for Data	2.0	5.5	٧	$\overline{\text{CS}}_1 \geqslant V_{\text{CC}} - 0.2V,$ $\text{CS}_2 \geqslant V_{\text{CC}} - 0.2V \text{ or CS}_2 \leqslant 0.2V$
V _{DR2}	Retention	2.0	5.5	V	CS ₂ ≤ 0.2V
I _{CCDR} 1	Data Retention	_	50 ·	μΑ	$V_{CC} = 3.0V, \overline{CS}_1 \ge V_{CC} - 0.2V$ $CS_2 \ge V_{CC} - 0.2V$ $V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$
CCDR ₂	Current	-	50	μΑ	$V_{CC} = 3.0V, CS_2 \le 0.2V, \overline{CS}_1 \le 0.2V$ $V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$
t _{CDR}	Chip Deselect to Data Retention Time	0	•	ns	See Retention Waveform
t _R	Operation Recovery Time	t _{RC} *	_	ns	See Netention Wavelorm

^{*}t_{RC} = Read Cycle Time

Low V_{CC} Data Retention Waveform (1) ($\overline{\text{CS}_1}$ Controlled)

Low V_{CC} Data Retention Waveform (2) (CS₂ Controlled)

Characteristic Curves

Characteristic Curves (Continued)

Ordering Information

Part No.	Access Time (ns)	Operating Current Max. (mA)	Standby Current Max. (mA)	Package
UM6264-70		90	2	28L DIP
UM6264-70L		90	0.1	28L D1P
UM6264M-70	70	90	2	28L SOP
UM6264M-70L		90	0.1	28L SOP
UM6264K-70		90	2	28L Skinny
UM6264K-70L		90	0.1	28L Skinny
UM6264-10		90	2	28L DIP
UM6264-10L		90	0.1	28L DIP
UM6264M-10	100	90	2	28L SOP
UM6264M-10L	100	90	0.1	28L SOP
UM6264K-10		90	2	28L Skinny
UM6264K-10L		90	0.1	28L Skinny
UM6264-12		90	2	28L DIP
UM6264-12L		90	0.1	28L DIP
UM6264M-12	100	90	2	28L SOP
UM6264M-12L	120	90	0.1	28L SOP
UM6264K-12		90	2	28L Skinny
UM6264K-12L	_	90	0.1	28L Skinny