

2.2 分立元器件门电路

2.2.1 二极管与门和或门

一、二极管与门

真值表

\boldsymbol{A}	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

$$Y = AB$$

符号:

耳	 Eラ	长	《表

$u_{\rm A}/{ m V} u_{\rm B}/{ m V}$	\mathbf{D}_1	$D_2 u_Y/V$
0 0	导通 导	通 0.7
0 3	导通 截	<u></u>
3 0	截止 导	·通 0.7
3 3	导通 导	通 3.7

二、二极管或门

真值表

\boldsymbol{A}	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

$$Y = A + B$$

电压关系表

$u_{\rm A}/{ m V} u_{\rm B}/{ m V}$	$\mathbf{D_1}$	\mathbf{D}_2	$u_{\rm Y}/{ m V}$
0 0	导通	导通	- 0.7
0 3	截止	导通	2.3
3 0	导通	截止	2.3
3 3	导通	导通	2.3

符号:
$$A \longrightarrow 1 \longrightarrow Y$$
 或门 (OR gate)

正逻辑和负逻辑的对应关系:

正与门真值表

\boldsymbol{A}	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

负或门真值表

\boldsymbol{A}	B	Y
1	1	1
1	0	1
0	1	1
0	0	0

$$\begin{array}{c|c} A & \longrightarrow & & \\ \hline B & \longrightarrow & & \\ \end{array} \longrightarrow Y = AB$$

$$A \longrightarrow \geqslant 1$$

$$B \longrightarrow Y = \overline{A} + \overline{B}$$

同理:

正或门 🕶

负与门

2.2.2 三极管非门(反相器)

- 一、半导体三极管非门
- 1. $u_{\rm I} = U_{\rm IL} = 0$ V T 截止 $u_{\rm O} = U_{\rm OH} = V_{\rm CC} = 5$ V

$$i_{\rm B} = \frac{U_{\rm IH} - u_{\rm BE}}{R_{\rm b}} = \frac{5 - 0.7}{4.3} \text{mA} = 1 \text{mA}$$

$$I_{\rm BS} \approx \frac{V_{\rm CC}}{\beta R_{\rm c}} = \frac{5}{30 \times 1} \text{mA} = 0.17 \text{mA}$$

饱和导通条件: $i_{\rm B} > I_{\rm BS}$

所以 T饱和 $u_{\rm O} = U_{\rm OL} = 0.3 \, {
m V}$

因为 $i_{\rm R} > I_{\rm RS}$

三极管非门:

	<u>.</u>		_	-	1.	-	_	-
Н						2	2	共
ā	₫	1		ノ	て	刀	1	X

$u_{\rm I}/{ m V}$	$u_{\rm O}/{ m V}$
0	5
5	0.3

函数式

$$Y = \overline{A}$$

真值表

A	Y
0	1
1	0

符号

二、MOS三极管非门

1.
$$u_{\rm I} = U_{\rm IL} = 0 {\rm V}$$

$$u_{\text{GS}} = U_{\text{IL}} = 0 \text{ V} < U_{\text{TN}} = 2 \text{ V}$$

MOS管截止

$$u_{\rm O} = U_{\rm OH} = V_{\rm DD} = 10 \, {\rm V}$$

2.
$$u_{\rm I} = U_{\rm IH} = 10 \, {\rm V}$$

$$u_{\rm GS} = U_{\rm TH} = 10{\rm V} > U_{\rm TN} = 2{\rm V}$$

MOS 管导通(在可变电阻区)

$$u_{\rm O} = U_{\rm OL} \approx 0 \, \text{V}$$
 $\text{th} \quad Y = \overline{A}$

真值表

\boldsymbol{A}	Y
0	1
1	0