CSE4203: Computer Graphics Chapter – 8 (part - C) Graphics Pipeline

Mohammad Imrul Jubair

Outline

- Barycentric Interpolation
- Rasterizing a triangle

Credit

CS4620: Introduction to Computer Graphics

Cornell University

Instructor: Steve Marschner

http://www.cs.cornell.edu/courses/cs46

20/2019fa/

Triangle Rasterization

Use Midpoint Algorithm for edges and fill in?

Triangle Rasterization

Triangle Rasterization

$$P(x,y) = \mathbf{0} + x\mathbf{X} + y\mathbf{Y}$$

$$P(\beta, \gamma) = a + \beta ? + \gamma ?$$

$$P(x,y) = \mathbf{0} + x\mathbf{X} + y\mathbf{Y}$$

$$P(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}) = \alpha \boldsymbol{a} + \beta \boldsymbol{b} + \gamma \boldsymbol{c}$$

$$\alpha + \beta + \gamma = 1$$

$$0 < \alpha < 1$$
,

$$0 < \beta < 1$$
,

$$0 < \gamma < 1$$
.

 $Cartesian \rightarrow Barycentric$

$$P(x,y) \to P(\alpha,\beta,\gamma)$$

$$C = (y_a - y_c)x + (x_c - x_a)y$$

$$= (y_a - y_c)x_a + (x_c - x_a)y_a$$

$$= x_c y_a - x_a y_c$$

$$\beta = \frac{f_{ac}(x, y)}{f_{ac}(x_b, y_b)}$$

$$\beta = \frac{f_{ac}(x, y)}{f_{ac}(x_b, y_b)}$$

$$= \frac{(y_a - y_c)x + (x_c - x_a)y + x_ay_c - x_cy_a}{(y_a - y_c)x_b + (x_c - x_a)y_b + x_ay_c - x_cy_a},$$

Question – 1: In which case β becomes 1?

Question – 2: What will happen when (x,y) lies on $f_{ab}(x,y)$

$$\beta = \frac{f_{ac}(x, y)}{f_{ac}(x_b, y_b)}$$

$$\gamma = \frac{f_{ac}(x, y)}{f_{ac}(x_b, y_b)}$$

$$\beta = \frac{f_{ac}(x, y)}{f_{ac}(x_b, y_b)}$$

$$\gamma = \frac{f_{ac}(x, y)}{f_{ac}(x_b, y_b)}$$

$$\alpha = 1 - \beta - \gamma$$

$$P(x,y) \to P(\alpha,\beta,\gamma)$$

$$\beta = \frac{f_{ac}(x, y)}{f_{ac}(x_b, y_b)}$$

$$\gamma = \frac{f_{ac}(x, y)}{f_{ac}(x_b, y_b)}$$

$$\alpha = 1 - \beta - \gamma$$

Another approach:

Triangle Rasterization (1/7)

Use Midpoint Algorithm for edges and fill in?

Use an approach based on barycentric coordinates

Triangle Rasterization (2/7)

• If the vertices have colors c_0 , c_1 , and c_2 , the color at a point in the triangle with *Barycentric coordinates* (α, β, γ) is:

$$\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$$

This type of interpolation of color is known in graphics as Gouraud interpolation

Triangle Rasterization (3/7)

```
for all x do for all y do compute (\alpha, \beta, \gamma) for (x, y) if (\alpha \in [0, 1] and \beta \in [0, 1] and \gamma \in [0, 1]) then \mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2 drawpixel (x, y) with color \mathbf{c}
```


Triangle Rasterization (4/7)

for
$$y = y_{\min}$$
 to y_{\max} do
for $x = x_{\min}$ to x_{\max} do

compute
$$(\alpha, \beta, \gamma)$$
 for (x, y)

if
$$(\alpha > 0 \text{ and } \beta > 0 \text{ and } \gamma > 0)$$
 then $\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$ drawpixel (x, y) with color \mathbf{c}

Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner | http://www.cs.cornell.edu/courses/cs4620/2019fa/

Triangle Rasterization (5/7)

$$\begin{aligned} & \textbf{for } y = y_{\min} \text{ to } y_{\max} \, \textbf{do} \\ & \boldsymbol{\alpha} = x_{\min} \text{ to } x_{\max} \, \textbf{do} \\ & \boldsymbol{\alpha} = f_{12}(x,y)/f_{12}(x_0,y_0) \\ & \boldsymbol{\beta} = f_{20}(x,y)/f_{20}(x_1,y_1) \\ & \boldsymbol{\gamma} = f_{01}(x,y)/f_{01}(x_2,y_2) \\ & \textbf{if } (\boldsymbol{\alpha} > 0 \text{ and } \boldsymbol{\beta} > 0 \text{ and } \boldsymbol{\gamma} > 0) \textbf{ then} \\ & \mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2 \\ & \text{drawpixel } (x,y) \text{ with color } \mathbf{c} \end{aligned}$$

Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner | http://www.cs.cornell.edu/courses/cs4620/2019fa/

Triangle Rasterization (6/7)

for
$$y=y_{\min}$$
 to y_{\max} do

for $x=x_{\min}$ to x_{\max} do

$$\begin{array}{l}
\alpha = f_{12}(x,y) / f_{12}(x_0,y_0) \\
\beta = f_{20}(x,y) / f_{20}(x_1,y_1) \\
\gamma = f_{01}(x,y) / f_{01}(x_2,y_2)
\end{array}$$
if $(\alpha > 0$ and $\beta > 0$ and $\gamma > 0$) then
$$\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2 \\
\text{drawpixel } (x,y) \text{ with color } \mathbf{c}$$

$$f_{01}(x,y) = (y_0 - y_1)x + (x_1 - x_0)y + x_0y_1 - x_1y_0,$$

$$f_{12}(x,y) = (y_1 - y_2)x + (x_2 - x_1)y + x_1y_2 - x_2y_1,$$

$$f_{20}(x,y) = (y_2 - y_0)x + (x_0 - x_2)y + x_2y_0 - x_0y_2.$$

 c_0 c c_2 c_1

Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner | http://www.cs.cornell.edu/courses/cs4620/2019fa/

Triangle Rasterization (7/7)

Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner | http://www.cs.cornell.edu/courses/cs4620/2019fa/

Practice Problem

- Take three vertices of a triangle, choose two points, P and Q, such that they stay inside and outside the triangle respectively.
 - Apply barycentric interpolation and verify that P lies inside and Q lies outside the triangle.