Component	Equation	Description
Continuity equation	$\frac{\partial \rho}{\partial t} + \nabla(\rho \vec{v}) = 0$ where ρ = water density, v = velocity vector, ∇ =gradient operator	Account for the flux of mass going into a defined area and the flux of mass leaving the defined area
The momentum equations	$\frac{\partial \vec{v}}{\partial t} = \vec{g} - \frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} - 2\vec{\Omega} \times \vec{v} + \vec{F}$ where g=gravitational force, p=water pressure, $\nabla^2 = \text{Laplacian operator, } \Omega = \text{angular velocity of the earth, } F = \text{external forces, } \nu = \text{kinematic viscosity}$	Navier-Stokes equation, valid for incompressible Newtonian flows
The advection equation	$J_a = C\vec{v}$ where J_a =advective flux density, C=pollutant concentration	Provide information for the horizontal transport by flows of pollutants; this is a primary transport process in the longitudinal direction in the rivers and estuaries
The dispersion equation	$J = -D \frac{dC}{dx}$ where J=dispersive mass flux density, D=diffusion coefficient, x=the distance	Provide information for the horizontal spreading by reducing the gradient of material concentration
Tidal equation	$\eta(t) = a_0 + \sum_{k=1}^{N} \left[a_k \cos \left(\frac{2\pi}{T_k} t \right) \right. \\ \left. + b_k \sin \left(\frac{2\pi}{T_k} t \right) \right] + \eta_0(t)$ where $\eta(t)$ = tidal elevation, t= time, a0=mean value of $\eta(t)$, a_k and b_k =constant, T_k = the tidal period of k_{th} tidal constituent, N=number of tidal constituents, $\eta_0(t)$ = residual signal other than the periodic components	Provide information of water level over the tidal cycle in the tidal estuaries