

Example

Derivation

Poisson distribution

The Poisson Distribution

Significance

Approximates $B_{p,n}$ for large n and small p so that $np = \lambda$ is moderate

We are Poisson

 P_{λ} approximates $B_{p,n}$ for small p, large n

\$450M

Numerous applications

People clicking ad

Responses to spam

Rare-disease infections

Daily 911 calls

Daily store customers

Gallery purchasing customers

Flight no shows

Typos in a page

Smallk

k

λ	$P_{\lambda}(k)$	0	1	2	3
General	$e^{-\lambda} \frac{\lambda^k}{k!}$	$\frac{1}{e^{\lambda}}$	$\frac{\lambda}{e^{\lambda}}$	$rac{\lambda^2}{2e^{\lambda}}$	$\frac{\lambda^3}{6e^{\lambda}}$
1	$\frac{1}{ek!}$	$\frac{1}{e}$	$\frac{1}{e}$	$\frac{1}{2e}$	$\frac{1}{6e}$
2	$\frac{2^k}{e^2k!}$	$\frac{1}{e^2}$	$\frac{2}{e^2}$	$\frac{2}{e^2}$	$rac{4}{3e^2}$
0	$\frac{0^k}{k!}$	1	0	0	0

Binomial Approximation

 P_{λ} approximates $B_{p,n}$ for $\lambda = pn$, when $n \gg 1 \gg p$

$$B_{p,n}(k) = \binom{n}{k} p^k q^{n-k} \qquad q = 1 - p$$

$$p = \frac{\lambda}{n}$$

$$= \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{n^k}{k!} \cdot \frac{\lambda^k}{n^k} \cdot \frac{\left(1 - \frac{\lambda}{n}\right)^n}{\left(1 - \frac{\lambda}{n}\right)^k}$$

Fix k and λ , let n \nearrow and p

Derive Poisson

Limit of Binomial

$$B_{p,n}(k) = \frac{\lambda^k}{k!} \cdot \frac{n^k}{n^k} \cdot \frac{(1-\frac{\lambda}{n})^n}{(1-\frac{\lambda}{n})^k} \stackrel{e^{-\lambda}}{\underset{1}{\longrightarrow}} e^{-\lambda} \stackrel{\lambda^k}{\underset{k!}{\longrightarrow}} e^{-\lambda} \stackrel{\lambda^k}{\underset{k!}{\longrightarrow}} \lambda = p \cdot n$$

$$\lambda \text{ and k fixed, } n \to \infty$$

①
$$\frac{n^k}{n^k} = n$$
 \vdots $\frac{(n-1)}{n}$ \vdots \cdots $\frac{(n-k+1)}{n}$ \vdots \vdots fixed # (k) terms, each \rightarrow 1

- ② $(1 \frac{\lambda}{n})^k \to 1$ fixed # (k) terms, each \to 1

$$P_{\lambda}(k) = e^{-\lambda} \frac{\lambda^k}{k!} \qquad k \ge 0$$

Taylor expansion
$$e^{\lambda} = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}$$

$$\sum_{k=0}^{\infty} P_{\lambda}(k) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^{k}}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} = e^{-\lambda} e^{\lambda} = 1$$
YES IT ADDS!

Mean and Variance

 P_{λ} approximates $B_{p,n}$ for $\lambda = np$ when $n \gg 1 \gg p$

Calculate next

Observation

$$\frac{d}{d\lambda}\lambda^k = k\lambda^{k-1} = \frac{k}{\lambda}\lambda^k$$

$$\frac{d^2}{d\lambda^2}\lambda^k = k^2\lambda^{k-2} = \frac{k^2}{\lambda^2}\lambda^k$$

$$\frac{d^r}{d\lambda^r}\lambda^k = k^r \lambda^{k-r} = \frac{k^r}{\lambda^r}\lambda^k$$

$$k^{\underline{r}}\lambda^k = \lambda^r \frac{d^r}{d\lambda^r}\lambda^k$$

Falling Moments

$$X \sim P_{\lambda}$$

$$k^{\underline{r}}\lambda^k = \lambda^r \frac{d^r}{d\lambda^r}\lambda^k$$

$$E(X^{\underline{r}}) = \sum_{k=0}^{\infty} k^{\underline{r}} P_{\lambda}(k) = \sum_{k} k^{\underline{r}} e^{-\lambda} \frac{\lambda^{k}}{k!}$$

$$= e^{-\lambda} \sum_{k} k^{\underline{r}} \frac{\lambda^{k}}{k!} = e^{-\lambda} \sum_{k} \frac{\lambda^{r}}{k!} \frac{d^{r}}{d\lambda^{r}} \lambda^{k}$$

$$= e^{-\lambda} \lambda^{r} \frac{d^{r}}{d\lambda^{r}} \sum_{k} \frac{\lambda^{k}}{k!} = e^{-\lambda} \lambda^{r} \frac{d^{r}}{d\lambda^{r}} e^{\lambda}$$

$$=e^{-\lambda}\lambda^r e^{\lambda}=\lambda^r$$

$$EX = EX^{1} = \lambda$$

$$EX(X-1) = EX^2 = \lambda^2$$

Mean and Variance

$$EX = EX^{1} = \lambda$$

$$EX(X-1) = EX^2 = \lambda^2$$

$$E(X^2) = E(X(X - 1) + X) = E(X(X - 1)) + E(X) = \lambda^2 + \lambda$$

$$V(X) = E(X^2) - (EX)^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$$

$$\sigma = \sqrt{\lambda}$$
 Small relative to the mean

Approximation Example

Factory produces 200 items, each defective with probability 1%

P(3 defective)?

Binomial (precise)

$$B_{0.01,200}(3) = {200 \choose 3} (0.01)^3 (0.99)^{197} \approx 0.181$$

Poisson (approximation) $\lambda = 200 \cdot 0.01 = 2$

$$\lambda = 200 \cdot 0.01 = 2$$

$$P_2(3) = e^{-2} \frac{2^3}{3!} \approx 0.18$$

P(some defective)?

B_{0.01,200}(0) =
$$\binom{200}{0}(0.99)^{200} \approx 0.134$$

$$P_2(0) = e^{-2} \frac{2^0}{0!} = e^{-2} \approx 0.135$$

$$B_{0.01,200}(\ge 1) = 1 - 0.134 \approx 0.866$$

$$P_2(\ge 1) = 1 - 0.135 \approx 0.865$$

Approximates $B_{p,n}$ for $\lambda = np$, when $n \gg 1 \gg p$

of ad clicks, rare diseases, production defects

$$\mu = \lambda$$
 $\nu = \lambda$

$$\sigma = \sqrt{\lambda}$$

Poisson distribution

