Ex: predict house value

There are n features:

Total m rows, or m instances

用 m 筆 資料 (每筆有 n 個 feature), 來預測房價

Ex: predict house value

用 m 筆 資料 (每筆有 n 個 feature), 來預測房價

Want $X\theta \approx y$

• $\theta = (\theta_0, \theta_1, \dots, \theta_n)$ is a column vector

X has m rows, n+1 columns

7_		X_1	X_2		X_n	θ	у
	1	2.3	3.6	•••	0.6	θ_0	y_1
	1					$ heta_1$	y_2
	1						
	1						
	1						
	. 1	2.2	6.4		0.1	θ_n	y_m

dataset

Linear regression

use only one variable to predict

$$-\hat{y} = \theta_0 + \theta_j x_j \quad j = 1, 2, \cdots, n$$

- Straight line fit using each explanatory variable
- Regression with all explanatory variables

$$-\hat{y}=\theta_0+\theta_1x_1+\theta_2x_2+\cdots+\theta_nx_n$$