Machine Learning Spring 2025

Project 1 - Temperature PredictionTeam: ST_ML2025_2

```
[80]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
  import re
  import math
[81]: # Load the given datasets(located in the input folder)
```

```
[81]: # Load the given datasets(located in the input folder)
    train_df = pd.read_csv("./input/train_dataset.csv")
    test_df = pd.read_csv("./input/test_dataset.csv")
    station_info_df = pd.read_csv("./input/station_info.csv")
    sample_submission_df = pd.read_csv("./input/submission_sample.csv")
```

Dataset 분석

주어진 데이터셋의 구성은 다음과 같다.

- train_dataset.csv: 동두천, 서울, 강화, 인천, 이천, 양평 관측소의 2019-2024년 데이터셋
- test_dataset.csv: 파주, 수원 관측소 데이터셋
- station_info.csv: 기상 관측소별 정보

```
[82]: train_df.sample(10)
```

[82]:		id	station	station_name d	ate cloud_cove	r_0 cloud_cover	_1 \
	8159	12538	201	강화	05-13	0.0	0.0
	2465	4653	108	서울	10-06	1.0	1.0
	631	631	98	동두천	09-23	1.0	0.0
	175	175	98	동두천	06-25	0.0	0.0
	1017	1017	98	동두천	10-14	5.0	5.0
	12687	17066	203	이천	10-13	3.0	2.0
	2858	5046	108	서울	11-02	0.0	1.0
	3250	5438	108	서울	11-29	0.0	9.0
	1265	1265	98	동두천	06-19	7.0	7.0
	9810	14189	202	양평	11-22	2.0	5.0
		cloud	cover_10	cloud_cover_11	cloud_cover_12	cloud_cover_13	\
			_				
	8159		0.0	0.0	0.0	4.0	•••
	8159 2465		_	0.0	0.0 4.0		•••
			0.0			1.0	
	2465		0.0	0.0	4.0	1.0 7.0	
	2465 631	<u>-</u>	0.0 0.0 6.0	0.0 1.0	4.0 2.0	1.0 7.0 0.0	•••
	2465 631 175	_	0.0 0.0 6.0 0.0	0.0 1.0 0.0	4.0 2.0 0.0	1.0 7.0 0.0 4.0	
	2465 631 175 1017	_	0.0 0.0 6.0 0.0 3.0	0.0 1.0 0.0 6.0	4.0 2.0 0.0 6.0	1.0 7.0 0.0 4.0 0.0	
	2465 631 175 1017 12687	_	0.0 0.0 6.0 0.0 3.0 0.0	0.0 1.0 0.0 6.0 0.0	4.0 2.0 0.0 6.0 0.0	1.0 7.0 0.0 4.0 0.0	
	2465 631 175 1017 12687 2858	_	0.0 0.0 6.0 0.0 3.0 0.0	0.0 1.0 0.0 6.0 0.0	4.0 2.0 0.0 6.0 0.0	1.0 7.0 0.0 4.0 0.0 0.0	

wind_speed_23 wind_speed_4 wind_speed_5 wind_speed_6 \

8159	0.2	0.9	1.8	1.5	0.7
2465	1.7	3.8	2.7	3.4	3.8
631	1.6	0.8	1.7	1.5	1.4
175	0.9	0.8	0.2	0.1	0.1
1017	0.4	0.0	0.5	0.0	0.0
12687	0.8	0.4	0.2	0.2	0.0
2858	3.1	1.6	1.1	1.4	1.1
3250	2.1	2.1	1.4	1.6	1.7
1265	0.1	0.3	0.0	0.0	0.5
9810	3.4	2.6	2.5	3.7	2.6
3010	0.4	2.0	2.0	0.1	2.0
	wind_speed_7 v	wind_speed_8 win	nd_speed_9 cli	matology_temp	target
8159	0.0	0.4	1.1	17.689286 -3	•
2465	3.1	4.2	4.5	15.475000 -0	
2403 331	1.9	2.2	1.0	18.755357	
L75	0.4	0.4	0.4		0.456364 0.360714
1017	0.1	0.0	1.5		2.360714
12687	0.0	0.0	0.5	14.733929 -2	
2858	2.5	1.7	1.8	11.596429 -6	
3250	2.1	1.7	1.3		5.517857
1265	0.0	0.0	0.0		.575000
9810	2.3	1.5	1.9	5.185714 -4	.385714
	ows x 342 columns _df.describe()	3]			
_	- · · · · · · · · · · · · · · · · · · ·				
	id			loud_cover_1 \	
count	13132.000000	13132.000000 13	2945.000000 1	12920.000000	
mean	9484.110493	153.980658	2.915798	3.022291	
std	5311.954253	48.183220	3.646779	3.652165	
nin	0.000000	98.000000	0.000000	0.000000	
25%	5470.750000	108.000000	0.00000	0.00000	
50%	8753.500000	112.000000	0.000000	1.000000	
75%	14227.250000	202.000000	6.000000	6.000000	
nax	17510.000000	203.000000	10.000000	10.000000	
	cloud_cover_10	cloud_cover_11	cloud_cover_1	2 cloud_cover_1	.3 \
count	12916.000000	12926.000000	12931.00000	12926.00000	0
nean	3.126742	3.092063	3.04640	3.03504	:6
std	3.659422	3.589739	3.51206		
nin	0.000000	0.000000	0.00000		
25%	0.000000	0.000000	0.00000		
50%	1.000000	1.000000	1.00000		
75%	7.000000	7.000000	6.00000		
max	10.000000	10.000000	10.00000		
шал	10.000000	10.00000	10.00000	10.00000	···
	cloud cover 14	cloud cover 15	··· wind spee	ed 23 wind speed	13 \
count	cloud_cover_14	cloud_cover_15	wind_spec	_	
count	12919.000000	12938.000000	13122.00	00000 13120.0000	000
count mean std			_	00000 13120.0000 32754 -2.4918	000 814

[83]:

[83]:

```
0.000000
                                   0.000000
                                                   -9999.000000
                                                                 -9999.000000
     min
     25%
                   0.000000
                                   0.000000
                                                       0.600000
                                                                     0.400000
     50%
                   1.000000
                                   1.000000
                                                       1.200000
                                                                     1.000000
     75%
                   6.000000
                                   6.000000
                                             • • •
                                                       2.100000
                                                                     1.900000
                  10.000000
                                  10.000000
                                             • • •
                                                      10.700000
                                                                    11.300000
     max
             wind_speed_4 wind_speed_5 wind_speed_6
                                                       wind_speed_7
                                                                      wind_speed_8
                                                        13120.000000
             13116.000000
                           13112.000000
                                         13119.000000
                                                                      13125.000000
     count
     mean
                -0.234637
                              -1.011882
                                             -4.068389
                                                           -7.119787
                                                                        -10.073272
     std
               123.489868
                             151.258218
                                           230.949420
                                                          289.453706
                                                                        337.895538
     min
             -9999.000000
                          -9999.000000
                                         -9999.000000
                                                        -9999.000000
                                                                      -9999.000000
     25%
                 0.400000
                               0.400000
                                             0.400000
                                                            0.400000
                                                                          0.500000
     50%
                 0.900000
                               0.900000
                                             0.900000
                                                            0.900000
                                                                          1.000000
     75%
                 1.900000
                               1.800000
                                             1.800000
                                                            1.800000
                                                                          2.000000
                                                                         11.300000
     max
                 9.500000
                              10.600000
                                             12.400000
                                                           11.100000
             wind_speed_9
                           climatology_temp
                                                    target
             13127.000000
                               13132.000000
                                             13132.000000
     count
                -9.119029
                                  12.658557
                                                  0.221979
     mean
     std
               326.432094
                                  10.023504
                                                  2.960544
             -9999.000000
                                  -4.487500
                                               -12.864286
     min
     25%
                 0.700000
                                   3.292857
                                                -1.643052
     50%
                 1.300000
                                  12.842857
                                                  0.157143
     75%
                 2.200000
                                  22.271429
                                                  2.045536
     max
                 9.400000
                                  28.455357
                                                 11.778571
      [8 rows x 340 columns]
[84]: train_df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 13132 entries, 0 to 13131
     Columns: 342 entries, id to target
     dtypes: float64(338), int64(2), object(2)
     memory usage: 34.3+ MB
     Feature 분석
     Feature 분류 및 설명
[85]: def search_time_based_feature_names(df):
          "각 시간별로 구성된 feature들(e.g. 'cloud_cover_0', 'cloud_cover_1' ...)에 대해니
       ⊶각각의 고유한 이름(e.g. 'cloud_cover')을 찾는다."
          time_based_features_pattern = re.compile(r"^(.*)_(\d{1,2}))")
          searched_time_based_feature_names = set()
          for column in df.columns:
              match = time_based_features_pattern.match(column)
```

feature_name, hour = match.groups()

if match:

hour = int(hour)

```
searched_time_based_feature_names.add(feature_name)

return searched_time_based_feature_names

time_based_feature_names = search_time_based_feature_names(train_df)

print(len(time_based_feature_names))
print(time_based_feature_names)
```

14

{'wind_direction', 'humidity', 'vapor_pressure', 'sea_level_pressure', 'snow_depth',
'cloud_cover', 'precipitation', 'sunshine_duration', 'dew_point', 'surface_temp',
'min_cloud_height', 'wind_speed', 'visibility', 'local_pressure'}

train dataset에 있는 feature를 특성에 따라 다음과 같은 카테고리별로 정리하였다.

- 1. Data 식별
 - id: 순서(identical)
 - station: 지상관측소 번호(98: "동두천", 201: "강화" 등)
 - station_name: 지상관측소 이름("동두천", "서울", "강화" 등)
 - date: 날짜(월-일 형식, 1월 29일은 "01-29"로 표기)
- 2. 구름 관련 feature
 - cloud_cover_[0-23]: 증하층운량(10분위, 0~10)
 - min_cloud_height_[0-23]: 시간별 최저운고(100m 단위)
- 3. 온도 관련 feature
 - dew_point_[0-23]: 시간별 이슬점 온도(°C)
 - surface_temp_[0-23]: 시간별 지면온도(°C)
 - climatology_temp: 해당 날짜의 평균 기온(°C) (7년 동안 평균)
- 4. 습도 관련 feature
 - humidity_[0-23]: 시간별습도(%)
 - vapor_pressure_[0-23]: 시간별 증기압(hPa)
 - percipitation_[0-23]: 시간별 강수량(mm)
 - snow_depth_[0-23]: 시간별 적설(cm)
- 5. 기압 관련 feature
 - local_pressure_[0-23]: 시간별 현지기압(hPa)
 - sea_level_pressure_[0-23]: 시간별 해면기압(hPa)
- 6. 가시성 관련 feature
 - visibility [0-23]: 시간별 시정(10m 단위)
 - sunshine_duration_[0-23]: 시간별 일조(hr)
- 7. 바람 관련 feature
 - wind_speed_[0-23]: 시간별 풍속(m/s)
 - wind_direction_[0-23]: 시간별 풍향(도 단위)
- 8. target feature
 - target: 시간별 기온(°C, 다음날 평균 기온(°C)에서 climatology_temp를 뺀 값)

결측치 패턴

- 1. -9999: 관측소 기계에서 감지한 결측치 또는 이상치
- 2. NaN:
 - sunshine_duration: 야간 시간대(0, 1, 2, 3, 4, 5, 22, 23시), 즉 해가 없는 시간대
 - snow_depth: 눈이 오지 않은 경우
 - precipitation: 비가 오지 않은 경우

결측치 식별

Time-based feature에 대한 결측치

시간대별 결측률 분석

```
[86]: def analyze time based features missing by hour(ax, df, base name):
          hour_missing = {}
          cols = [col for col in df.columns if col.startswith(base_name + "_")]
         for col in cols:
              try:
                  hour = int(col.split("_")[-1])
                  missing ratio = df[col].isnull().mean()
                  hour_missing[hour] = missing_ratio
              except ValueError:
                  continue
         hours = sorted(hour_missing.keys())
         missing_values = [hour_missing[h] for h in hours]
          sns.lineplot(x=hours, y=missing_values, marker="o", ax=ax, color="steelblue")
         ax.set_title(f"{base_name}")
         ax.set_xlabel("Hour")
         ax.set_ylabel("Missing Ratio")
         ax.set_xticks(hours)
         ax.set_ylim(0, max(missing_values) + 0.0025)
          ax.grid(True, linestyle="--", alpha=0.5)
```

```
[87]: num_features = len(time_based_feature_names)
    n_cols = 3
    n_rows = math.ceil(num_features / n_cols)

fig, axes = plt.subplots(n_rows, n_cols, figsize=(n_cols * 6, n_rows * 4))
    axes = axes.flatten()

for i, feature in enumerate(sorted(time_based_feature_names)):
        analyze_time_based_features_missing_by_hour(axes[i], train_df, feature)

for j in range(i + 1, len(axes)):
    fig.delaxes(axes[j])

plt.tight_layout()
    plt.show()
```


Time-based feature 종류별 평균 결측치 비율

```
[88]: def analyze_missing_values_by_time_groups(df, time_based_feature_names):
    group_missing_summary = []

for base_name in time_based_feature_names:
    cols = [col for col in df.columns if col.startswith(base_name + "_")]
    if not cols:
        continue
    missing_ratio = df[cols].isnull().mean().mean() # 각 시간대의 평균 결측률
    group_missing_summary.append((base_name, missing_ratio))
```

```
summary_df = pd.DataFrame(group_missing_summary, columns=["feature_group",
□
□"mean_missing_ratio"])
summary_df = summary_df.sort_values(by="mean_missing_ratio", ascending=False).
□reset_index(drop=True)
return summary_df
```


Feature Engineering

결측치 처리

결측치 처리 방법

- 1. -9999는 NaN으로 처리
- 2. snow_depth, precipitation, min_cloud_height, sunshine_duration과 같이 결측치 비율이 높은 feature 처리 논의…
- 3. sunshine_duration이 야간에 결측치 -> 0으로 처리

```
[90]: def handle_missing_values(df):
        # 1. -9999를 NaN으로 변환
        df = df.replace(-9999, np.nan)
         # 2. 시간대별 특징에 맞게 처리
        night_hours = [0, 1, 2, 3, 4, 5, 22, 23]
        day_hours = [h for h in range(6, 22) if h not in night_hours]
        # 2.1. sunshine_duration
        # 2.1.1. 밤 시간대
        for hour in night hours:
            col = f'sunshine_duration_{hour}'
            if col in df.columns:
               df[col] = df[col].fillna(0)
        # 2.1.2. 낮 시간대
        for hour in day_hours:
            col = f'sunshine_duration_{hour}'
            if col in df.columns:
                df[col] = df.groupby('station')[col].transform(lambda x: x.fillna(x.
      →mean()))
                # 낮시간대에 측정소 문제로 NaN이 있을 경우, global mean으로 대체함
                df[col] = df[col].fillna(df[col].mean())
         # 2.2. snow depth
         # 눈이 오지 않는 계절에는 0으로 대체하고, 눈이 오는 계절에는 그룹별 평균으로
       ⊶대체
        month_series = df['date'].str.split('-').str[0].astype(int)
        winter_mask = month_series.isin([12, 1, 2])
        for hour in range(24):
            col = f'snow_depth_{hour}'
            if col in df.columns:
                # 겨울철
                df.loc[winter_mask, col] = df.loc[winter_mask].groupby('station')[col].
      →transform(
                   lambda x: x.fillna(x.mean()))
                # 겨울 X -> 0으로 대체
                df.loc[~winter_mask, col] = df.loc[~winter_mask][col].fillna(0)
                # 겨울철에도 NaN이 남아있을 경우, global mean으로 대체
```

```
df[col] = df[col].fillna(df[col].mean())
          if 'month' in df.columns:
              df = df.drop('month', axis=1)
  # 2.3. percipitation
  # 지역별(측정소별) persistency가 존재할 것이므로, forward / back fill 사용(임시)
  for hour in range(24):
      col = f'precipitation_{hour}'
      if col in df.columns:
          df[col] = df.groupby('station')[col].transform(lambda x: x.ffill())
          df[col] = df.groupby('station')[col].transform(lambda x: x.bfill())
          df[col] = df[col].fillna(0) # 비 안오는 날은 0으로
  # 2.4. min_cloud_height
  # outlier 영향을 줄이기 위해 median 사용함
  for hour in range(24):
      col = f'min_cloud_height_{hour}'
      if col in df.columns:
          df[col] = df.groupby('station')[col].transform(lambda x: x.fillna(x.
→median()))
          df[col] = df[col].fillna(df[col].median())
  # 3. 나머지 feature 처리
  remaining_time_based_features = [
      'cloud_cover', 'dew_point', 'humidity', 'local_pressure',
      'sea_level_pressure', 'surface_temp', 'vapor_pressure',
      'visibility', 'wind_direction', 'wind_speed'
  ]
  for feature in remaining_time_based_features:
      for hour in range(24):
          col = f'{feature} {hour}'
          if col in df.columns and df[col].isna().any():
              # station별 평균으로 대체
              df[col] = df.groupby('station')[col].transform(lambda x: x.fillna(x.
→mean()))
              # 남은 결측치는 global mean으로
              df[col] = df[col].fillna(df[col].mean())
  return df
```

```
[91]: print("결측치 처리 전 train_df 결측치 개수")
print(train_df.isnull().sum().sum())

train_df = handle_missing_values(train_df)

print("결측치 처리 후 train_df 결측치 개수")
print(train_df.isnull().sum().sum())
```

결측치 처리 전 train_df 결측치 개수 853979 결측치 처리 후 train_df 결측치 개수 0

[]: