ACH2011 - Cálculo I (2025.1)

Terceira Prova – Junho/2025

Nome:	Nº USP:	

Explicitar os passos importantes na resolução; a mera apresentação das respostas não é digna de pontuação positiva

- 0) Frequência (em %):
- 97
- 93
- 90 87
- 83
- 80

77

- 73
 - 3 70
- 1) [2.0 pontos] Seja $f:[a,b] \to \mathbb{R}$ contínua no domínio dado e derivável em (a,b). Provar o teorema do valor médio <u>sem</u> usar o resto de Lagrange da expansão de Taylor. No teorema do valor médio, existe um $\xi \in (a,b)$ tal que $f(b) f(a) = f'(\xi)$ (b-a). **Hint:** Montar uma função adequada $F:[a,b] \to \mathbb{R}$ tal que F(a) = F(b).
- 2) [8.0 pontos] Escolher <u>UMA</u> (e <u>SOMENTE UMA</u>) das seguintes quantidades para estimar com um desvio (do valor verdadeiro) de, no máximo, $\epsilon = 10^{-8}$. Utlizar o menor número n de termos possível na soma da estimativa, mostrando também que este n é ótimo. Nota: $x \frac{x^3}{3!} \le \sin x \le x$ ($x \ge 0$), $1 \frac{x^2}{2!} \le \cos x \le 1 \frac{x^2}{2!} + \frac{x^4}{4!}$ ($x \in \mathbb{R}$), $\frac{23}{5} = 4.6$ e $-4.606 < \ln \frac{1}{100} < -4.605$.
 - (A) $\cos 44^{\circ}$ (B) $e^{-23/5}$

Escolha:

Escolha

1) A função em questão pode ser

$$F(x) := f(x) - f(a) - \frac{f(b) - f(a)}{b - a} (x - a)$$
, cuja derivada é $F'(x) := f'(x) - \frac{f(b) - f(a)}{b - a}$.

Notar que F(a) = F(b) = 0. Pelo teorema de Rolle, existe um $\xi \in (a,b)$ tal que $F'(\xi) = 0$, id est,

$$f'(\xi) = \frac{f(b) - f(a)}{b - a},$$

provando o teorema.

2A) Defina $f: \mathbb{R} \to [-1,1]$ tal que $f(x) = \cos x$. O objetivo é estimar $f(x = \frac{44\pi}{180})$. Tomando-se como ponto de referência $x_0 = \frac{45\pi}{180}$ (45°), a expansão de Taylor (ao redor de x_0) conduz a

$$f(x) = P_n(x) + R_{n+1}$$

onde

$$P_n(x) = \sum_{m=0}^n \frac{f^{(m)}(x_0)}{m!} (x - x_0)^m \quad \text{e} \quad R_{n+1} := \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

para algum ξ entre x_0 e x. Notar que

$$f^{(0)}(x_0) = f^{(4)}(x_0) = \cdots = \cos x_0 = \frac{1}{\sqrt{2}}$$

$$f^{(1)}(x_0) = f^{(5)}(x_0) = \cdots = -\sin x_0 = -\frac{1}{\sqrt{2}}$$

$$f^{(2)}(x_0) = f^{(6)}(x_0) = \cdots = -\cos x_0 = -\frac{1}{\sqrt{2}}$$

$$f^{(3)}(x_0) = f^{(7)}(x_0) = \cdots = \sin x_0 = \frac{1}{\sqrt{2}}$$

ou

$$f^{(n)}(x_0) = (-1)^{\omega(n)} \frac{1}{\sqrt{2}}, \quad (-1)^{\omega(n)} = (-1)^{\frac{n(3-n)}{2}} = \begin{cases} 1 & , & n = 4m \text{ ou } n = 4m-1 & (m \in \mathbb{Z}) \\ -1 & , & n = 4m+1 \text{ ou } n = 4m+2 & (m \in \mathbb{Z}) \end{cases}$$

Logo,

$$P_n(x) = \sum_{m=0}^n \frac{f^{(m)}(x_0)}{m!} (x - x_0)^m = \sum_{m=0}^n \frac{(-1)^{\omega(m)}}{m!} \frac{1}{\sqrt{2}} \left(x - \frac{45\pi}{180} \right)^m.$$

No ponto $x = \frac{44\pi}{180}$,

$$P_n\left(\frac{44\pi}{180}\right) = \sum_{m=0}^n \frac{(-1)^{\omega(m)}}{m!} \frac{1}{\sqrt{2}} \left(-\frac{\pi}{180}\right)^m,$$

e o resto de Lagrange é dado por

$$R_{n+1} = \frac{f^{(n+1)}(\xi)}{(n+1)!} \left(-\frac{\pi}{180}\right)^{n+1}$$

para $\xi \in \left(\frac{44\pi}{180}, \frac{45\pi}{180}\right)$.

Rascunho: Nas condições acima,

$$|R_{n+1}| = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} \left(-\frac{\pi}{180} \right)^{n+1} \right| \approx \frac{1/\sqrt{2}}{(n+1)!} \left(\frac{3}{180} \right)^{n+1}$$

$$= \begin{cases} \frac{1/\sqrt{2}}{(2+1)!} \frac{1}{60^{2+1}} \approx \frac{1}{6} \frac{1}{6^3 10^3} = \frac{1}{1296 \cdot 10^3} \approx 10^{-6} &, n = 2\\ \frac{1/\sqrt{2}}{(3+1)!} \frac{1}{60^{3+1}} \approx \frac{1}{24} \frac{1}{6^4 10^4} \approx \frac{1}{24} \frac{1}{10^7} < 10^{-8} &, n = 3 \end{cases}$$

Estimar-se-á $|R_{3+1}|$ visando mostrar que $|R_{3+1}|<\epsilon=10^{-8}.$ De fato,

$$|R_{3+1}| = \left| \frac{f^{(3+1)}(\xi)}{(3+1)!} \left(-\frac{\pi}{180} \right)^{3+1} \right| = \frac{|\cos \xi|}{4!} \left(\frac{\pi}{180} \right)^4 < \frac{1}{4!} \left(\frac{3.6}{180} \right)^4 = \frac{1}{24} \frac{1}{50^4}$$
$$= \frac{1}{24 \cdot 625 \cdot 10^4} < \frac{1}{20 \cdot 500 \cdot 10^4} = 10^{-8},$$

onde as desigualdades $|\cos \xi| \le 1, \ \pi < 3.6, \ 24 > 20$ e 625 > 500 foram usadas (nesta ordem). Por outro lado,

$$|R_{2+1}| = \left| \frac{f^{(2+1)}(\xi)}{(2+1)!} \left(-\frac{\pi}{180} \right)^{2+1} \right| = \frac{|\sin \xi|}{3!} \left(\frac{\pi}{180} \right)^3 > \frac{\sin \frac{\pi}{6}}{3!} \left(\frac{3}{180} \right)^3 = \frac{1/2}{6} \frac{1}{60^3} = \frac{1}{12 \cdot 6^3 \cdot 10^3}$$
$$= \frac{1}{12 \cdot 216 \cdot 10^3} > \frac{1}{40 \cdot 250 \cdot 10^3} = 10^{-7},$$

onde as desigualdades $|\sin \xi| > \sin \frac{30\pi}{180} = \sin \frac{\pi}{6}$, $\pi > 3$, 12 < 40 e 216 < 250 foram invocadas (nesta ordem). Logo, para $x = \frac{44\pi}{180}$ e $x_0 = \frac{45\pi}{180}$,

$$\cos\frac{44\pi}{180} = f(x_0) + f^{(1)}(x_0) (x - x_0) + \frac{f^{(2)}(x_0)}{2!} (x - x_0)^2 + \frac{f^{(3)}(x_0)}{3!} (x - x_0)^3 + R_4$$

$$= \cos\left(\frac{45\pi}{180}\right) + \left[-\sin\left(\frac{45\pi}{180}\right)\right] \left(\frac{44\pi}{180} - \frac{45\pi}{180}\right) + \frac{\left[-\cos\left(\frac{45\pi}{180}\right)\right]}{2!} \left(\frac{44\pi}{180} - \frac{45\pi}{180}\right)^2 + \frac{\left[\sin\left(\frac{45\pi}{180}\right)\right]}{3!} \left(\frac{44\pi}{180} - \frac{45\pi}{180}\right)^3 + R_4$$

$$= \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{\pi}{180} - \frac{1}{2\sqrt{2}} \left(\frac{\pi}{180}\right)^2 - \frac{1}{6\sqrt{2}} \left(\frac{\pi}{180}\right)^3 + R_4,$$

com $|R_4| < \epsilon = 10^{-8}$.

.....

2B) Defina $f: \mathbb{R} \to (0, \infty)$ tal que $f(x) = e^x$. O objetivo é estimar f(x = -23/5 = -4.6). Tomando-se como ponto de referência $x_0 = \ln \frac{1}{100}$, a expansão de Taylor (ao redor de x_0) conduz a

$$f(x) = P_n(x) + R_{n+1},$$

onde

$$P_n(x) = \sum_{m=0}^n \frac{f^{(m)}(x_0)}{m!} (x - x_0)^m \quad e \quad R_{n+1} := \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

para algum ξ entre x_0 e x. Notar que

$$f^{(0)}(x_0) = f^{(1)}(x_0) = \dots = e^{x_0} = \frac{1}{100}$$

Logo,

$$P_n(x) = \sum_{m=0}^n \frac{f^{(m)}(x_0)}{m!} (x - x_0)^m = \sum_{m=0}^n \frac{1}{100 \cdot m!} \left(x - \ln \frac{1}{100} \right)^m.$$

No ponto $x = -\frac{23}{5}$

$$P_n\left(-\frac{23}{5}\right) = \sum_{m=0}^n \frac{1}{100 \cdot m!} \left(-\frac{23}{5} - \ln\frac{1}{100}\right)^m,$$

e o resto de Lagrange é dado por

$$R_{n+1} = \frac{f^{(n+1)}(\xi)}{(n+1)!} \left(-\frac{23}{5} - \ln \frac{1}{100} \right)^{n+1}$$

para $\xi \in \left(\ln \frac{1}{100}, -\frac{23}{5}\right)$, com $\ln \frac{1}{100} \in (-4.606, -4.605)$.

Rascunho: Nas condições acima,

$$|R_{n+1}| = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} \left(-\frac{23}{5} - \ln \frac{1}{100} \right)^{n+1} \right| \approx \frac{1/100}{(n+1)!} (0.005)^{n+1}$$

$$= \begin{cases} \frac{1/100}{(1+1)!} \frac{1}{200^{1+1}} = \frac{1/100}{2} \frac{1}{2^2 100^2} = \frac{1}{8} \frac{1}{10^6} > 10^{-7} &, n = 1 \\ \frac{1/100}{(2+1)!} \frac{1}{200^{2+1}} = \frac{1/100}{6} \frac{1}{2^3 100^3} = \frac{1}{48 \cdot 10^8} < 10^{-8} &, n = 2 \end{cases}$$

Estimar-se-á $|R_{2+1}|$ visando mostrar que $|R_{2+1}| < \epsilon = 10^{-8}$. De fato,

$$|R_{2+1}| = \left| \frac{f^{(2+1)}(\xi)}{(2+1)!} \left(-\frac{23}{5} - \ln \frac{1}{100} \right)^{2+1} \right| = \frac{e^{\xi}}{3!} \left(-\frac{23}{5} - \ln \frac{1}{100} \right)^{3} < \frac{2^{-4}}{6} \left[-4.6 - (-4.606) \right]^{3}$$
$$= \frac{1/16}{6} \frac{6^{3}}{1000^{3}} = \frac{36}{16} \cdot 10^{-9} < 10^{-8},$$

onde as desigualdades $e^{\xi} < e^{-4} < 2^{-4}$ (já que $\xi < -4.6$) e ln $\frac{1}{100} > -4.606$ foram usadas (nesta ordem). Por outro lado,

$$|R_{1+1}| = \left| \frac{f^{(1+1)}(\xi)}{(1+1)!} \left(-\frac{23}{5} - \ln \frac{1}{100} \right)^{1+1} \right| = \frac{e^{\xi}}{2!} \left(-\frac{23}{5} - \ln \frac{1}{100} \right)^2 > \frac{e^{\ln \frac{1}{100}}}{2} \left[-4.6 - (-4.605) \right]^2$$
$$= \frac{1/100}{2} \frac{5^2}{1000^2} = \frac{1}{8} \cdot 10^{-6} = \frac{10}{8} \cdot 10^{-7} > 10^{-8},$$

onde as desigualdades $e^{\xi} > e^{\ln \frac{1}{100}}$ (por $\xi \in (\ln \frac{1}{100}, -23/5)$), $\ln \frac{1}{100} < -4.605$ e $^{10}/8 > 1$ foram invocadas (nesta ordem).

Logo, para x = -23/5 e $x_0 = \ln \frac{1}{100}$,

$$e^{-23/5} = f(x_0) + f^{(1)}(x_0) (x - x_0) + \frac{f^{(2)}(x_0)}{2!} (x - x_0)^2 + R_3$$

$$= e^{\ln \frac{1}{100}} + e^{\ln \frac{1}{100}} \left(-\frac{23}{5} - \ln \frac{1}{100} \right) + \frac{e^{\ln \frac{1}{100}}}{2!} \left(-\frac{23}{5} - \ln \frac{1}{100} \right)^2 + R_3$$

$$= \frac{1}{100} + \frac{1}{100} \left(-\frac{23}{5} - \ln \frac{1}{100} \right) + \frac{1}{200} \left(-\frac{23}{5} - \ln \frac{1}{100} \right)^2 + R_3,$$

com $|R_3| < \epsilon = 10^{-8}$.