Package 'ChaoEntropy'

October 21, 2013

Type Package
Title Statistical package 'ChaoEntropy'
Version 1.0
Date 2013-10-20
Author Y.T. Wang; Y.H. Lee; K.S. Tseng; Anne Chao
Maintainer Anne Chao <chao@stat.nthu.edu.tw></chao@stat.nthu.edu.tw>
Description The purpose of this R package ChaoEntropy is mainly to provide a new Shannon entropy estimator proposed by Chao et al. (2013) for both individual-based (abundance) data and sample-based (incidence) data.
License GPL-3
<pre>URL http://chao.stat.nthu.edu.tw/blog/</pre>
LazyLoad yes
R topics documented:
ChaoEntropy-package Ant_data Ant_data.count ChaoEntropy Count2Abun Count2Inci Insects_data Matrix2Inci Seed_data Spider_data
Index 1

2 Ant_data

ChaoEntropy-package

Statistical package "ChaoEntropy"

Description

The purpose of this R package **ChaoEntropy** is mainly to provide a new Shannon entropy estimator proposed by Chao et al. (2013) for both individual-based (abundance) data and sample-based (incidence) data.

Details

Package: ChaoEntropy
Type: Package
Version: 1.0
Date: 2013-10-20

License: 2013-10-

URL: http://chao.stat.nthu.edu.tw/blog/

functions : ChaoEntropy, Count2Abun, Count2Inci, Martix2Inci

Author(s)

Y.T. Wang; Y.H. Lee; K.S. Tseng; Anne Chao Maintainer: Anne Chao <chao@stat.nthu.edu.tw>

Ant_data

Ant data

Description

Species "incidence frequency" for ant data provided by Longino et al. (2002). The ant data which used malaise traps method is collected in a tropical rain forest of Costa Rica. In the ant data set presented 455 species occurrences are distributed among 62 samples with 103 species observed.

Usage

```
data(Ant_data)
```

Format

The first entry is the total number of sampling units, and followed by the incidences frequency. The format is:

```
c(62,\,1,\,1,\,1,\,1,\,...,\,19,\,19,\,20,\,29)
```

Source

Longino, J.T., Coddington, J. & Colwell, R.K. (2002) The ant fauna of a tropical rain forest: estimating species richness three different ways. *Ecology*, **83**, 689-702.

ChaoEntropy 3

Examples

```
data(Ant_data)
```

Ant_data.count

Ant data with incidence counts

Description

Species "incidence counts" for ant data provided by Longino et al. (2002). The ant data which used malaise traps method is collected in a tropical rain forest of Costa Rica. In the ant data set presented 455 species occurrences are distributed among 62 samples with 103 species observed.

Usage

```
data(Ant_data.count)
```

Format

a numerical matrix or a data frame of two columns. The first column is the frequency j=1, 2...; and the second column is incidence counts (Qj).

The ant data is

Source

Longino, J.T., Coddington, J. & Colwell, R.K. (2002) The ant fauna of a tropical rain forest: estimating species richness three different ways. *Ecology*, **83**, 689-702.

Examples

```
data(Ant_data.count)
```

ChaoEntropy

Estimation of Shannon entropy

Description

ChaoEntropy is a function to provide a new Shannon entropy estimator proposed by Chao et al. (2013).

4 ChaoEntropy

For individual-based (abundance) data, there are five other estimators which are Chao and Shen (2003) estimator; Grassberger (2003) estimator; Zhal (1977) jackknife estimator; Zhang (2012) Hz* estimator; and the observed provided in comparison.

For sample-based (incidence) data, new Shannon entropy estimator is in comparison with the observed entropy.

Usage

Arguments

data a vector of species abundance or incidence frequency. If datatype = "incidence",

then the input format of first entry should be total number of sampling units, and

followed by species incidence frequency.

datatype the data type of input data. That is individual-based abundance data (datatype = "abundance")

or sample-based incidence data (datatype = "incidence").

method the method constructed to estimate entropy (see Details)

se calculate bootstrap standard error and show confidence interval; default is TRUE.

nboot the number of bootstrap resampling times, default is 200.

conf a positive number ≤ 1 . "conf" specifies the confidence level for confidence

interval. The default is 0.95.

Details

1. If datatype = "abundance":

• method = "all": all estimators below involved. The default is "all"

• method = "Chao" estimator, see Chao et al. (2013)

• method = "ChaoShen" estimator, see Chao and Shen (2003)

• method = "Grassberger" estimator, see Grassberger (2003)

• method = "Jackknife" estimator, see Zhal (1977)

• method = "Zhang" estimator, see Zhang (2012)

• method = "Observed" estimator, the observed entropy estimator

2. If datatype = "incidence":

• method = "all": all estimators below involved. The default is "all"

• method = "Chao" estimator, see Chao et al. (2013) in Appendix S6

• method = "Observed" estimator, the observed entropy estimator

Value

ChaoEntropy returns a table of various entropy estimators, their standard error and 95% confidence interval which the method you choose.

Author(s)

```
Y.T. Wang; Y.H. Lee; K.S. Tseng; Anne Chao
Maintainer: Anne Chao <chao@stat.nthu.edu.tw>
```

Count2Abun 5

References

Chao, A., Wang, Y.T. & Jost, L. (2013) Entropy and the species accumulation curve: a novel entropy estimator via discovery rates of new species. To appear in Methods in Ecology and Evolution.

Chao, A. & Jost, L. (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. *Ecology*, **93**, 2533-2547.

Chao, A. & Shen, T.J. (2003) Nonparametric estimation of Shannon's index of diversity when there are unseen species. *Environmental and Ecological Statistics*, **10**, 429-443.

Grassberger, P. (2003) Entropy estimates from insufficient samplings. URL www.arxiv.org. arXiv:physics/0307138v2. Updated 2008.

Zahl, S. (1977) Jackknifing an index of diversity. *Ecology*, **58**, 907-913.

Zhang, Z. (2012) Entropy estimation in Turing's perspective. Neural Computation, 24, 1368-1389.

Chao, A. (1984) Nonparametric estimation of the number of classes in a population. *Scandinavian Journal of Statistics*, **11**, 265-270.

Chao, A. (1987) Estimating the population size for capture-recapture data with unequal catchability. *Biometrics*, **43**, 783-791.

See Also

Count2Abun, Count2Inci, Matrix2Inci

Examples

```
# load the individual-base (abundacne) data
data(Spider_data)

# Estimation of Shannon entropy
ChaoEntropy(Spider_data, datatype="abundance", method="all", se=TRUE, nboot=200, conf=0.95)

# load the sample-base (incidence) data
data(Ant_data)

# Estimation of Shannon entropy
ChaoEntropy(Ant_data, datatype="incidence", method="all", se=TRUE, nboot=200, conf=0.95)
```

Count2Abun

Frequency counts data transform into abundance data

Description

Transfer frequency counts data into abundance data.

Usage

```
Count2Abun(count.data)
```

6 Count2Inci

Arguments

count.data

input species frequency counts data: a numerical matrix or a data frame of two columns. The first column is the frequency j=1, 2...; and the second column is frequency counts (fj).

Example: there are 59 singletons, 9 doubletons and so on in Insects_data:

```
[1,]
           59
           9
[2,]
[3,]
     3
           3
[4,]
     4
           2
           2
[5,]
     5
           2
[6,]
     6
[7,]
     11
```

Value

a numeric vector of species abundance data.

Author(s)

```
Y.T. Wang; Y.H. Lee; K.S. Tseng; Anne Chao
Maintainer: Anne Chao <chao@stat.nthu.edu.tw>
```

See Also

ChaoEntropy

Examples

Count2Inci

Incidence counts data transform into incidence frequency data

Description

Transfer incidence counts data into incidence frequency data.

Usage

```
Count2Inci(count.data, t)
```

Insects_data 7

Arguments

count.data

input species incidence counts data: a numerical matrix or a data frame of two columns. The first column is the frequency j=1, 2...; and the second column is incidence counts (Qj).

Example: there are 39 singletons, 18 doubletons and so on in Ant_data.count:

```
[1,]
             39
 [2,]
       2
             18
 [3,]
             13
 [..,]
[16,]
       19
             2
[17,]
       20
            1
[18,]
       29
             1
```

t the total number of sampling units. e.g. See Ant_data: t = 62

Value

a numeric vector which first entry is total number of sampling units, and followed by species incidence frequency.

Author(s)

```
Y.T. Wang; Y.H. Lee; K.S. Tseng; Anne Chao
Maintainer: Anne Chao <chao@stat.nthu.edu.tw>
```

See Also

ChaoEntropy

Examples

Insects_data

Frequency Counts for Insects Data: Day-Time

Description

To illustrate our method, we selected the data sets from Janzen (1973a, b) when he collected tropical foliage insects. The following table gives the frequencies for beetles collected respectively in day-time from the site referred to as "Osa primary-hill, dry season, 1967" in Janzen's paper (1973a).

8 Matrix2Inci

Usage

```
data(Insects_data)
```

Format

a numerical matrix or a data frame of two columns.

[i]	[fi]
1	59
2	9
3	3
4	2
5	2
6	2
11	1

Examples

```
data(Insects_data)
```

Matrix2Inci

Presence/Absence data transform into incidence frequency data

Description

Transfer prensence/absence data into incidence frequency data.

Usage

```
Matrix2Inci(mat.data)
```

Arguments

mat.data

a numerical matrix or a data frame, the presence/absence of each species is recorded in the matrix. If the species is presence, it is record 1. On the contrary, it is record 0. See Seed_data

Value

a numeric vector which first entry is total number of sampling units, and followed by species incidence frequency.

Author(s)

```
Y.T. Wang; Y.H. Lee; K.S. Tseng; Anne Chao Maintainer: Anne Chao <chao@stat.nthu.edu.tw>
```

See Also

ChaoEntropy

Seed_data 9

Examples

Seed_data

Seed data

Description

The seed-bank data proposed by Colwell and Coddington (1994) which contains 121 standardized soil samples with 34 species observed collected from one-hundred 10 m x 10 m grids in a Costa Rican forest.

Usage

```
data(Seed_data)
```

Format

Only the presence/absence of each species is recorded in the matrix. If the species is presence, it is record 1. On the contrary, it is record 0.

Source

Colwell, R.K. & Coddington, J. A. (1994) Estimating terrestrial biodiversity through extrapolation. *Philosophical Transactions of the Royal Society of London B - Biological Sciences*, **345**, 101-118.

Examples

data(Seed_data)

Spider_data

Spider data

Description

Sackett et al. (2011) provided species abundance data for samples of spiders from four 5 experimental forest canopy-manipulation treatments at the Harvard Forest.

Data from one treatments is used here for illustration: the 9 Hemlock Girdled treatment, in which bark and cambium of hemlock trees were cut and the trees 10 left in place to die to mimic tree mortality by adelgid infestation.

Usage

```
data(Spider_data)
```

Spider_data

Format

The format is: c(0, 15, 46, 2, 0, 0, 0, 1, 6, 1, ...)

Source

Sackett, T. E., S. Record, S. Bewick, B. Baiser, N. J. Sanders, & A. M. Ellison. 2011. Response of 5 macroarthropod assemblages to the loss of hemlock (Tsuga canadensis), a foundation species.

Examples

data(Spider_data)

Index

```
*Topic Diversity
    ChaoEntropy, 3
    ChaoEntropy-package, 2
*Topic datasets
    Ant_data, 2
    Insects_data, 7
    Seed_data, 9
    Spider_data, 9
*Topic entropy
    ChaoEntropy, 3
    ChaoEntropy-package, 2
Ant_data, 2, 7
Ant_data.count, 3
ChaoEntropy, 3, 6-8
ChaoEntropy-package, 2
Count 2 Abun, 5, 5
Count2Inci, 5, 6
Insects_data, 7
Matrix2Inci, 5, 8
Seed_data, 8, 9
Spider_data, 9
```