Communicating with Data – Mental Models & Data-Visual Mapping

Dr. Ab Mosca (they/them)

Plan for Today

- A quick history lesson
- Mental models: how we process information
- Visualization building blocks
- Takeaways

Checking in

- Are you on Slack?
 - All communication will be through Slack (see syllabus for details)
- Did you join Gradescope?
- Did you submit labo1 (or Using Gradescope)?

Looking forward

- Hwo1 is released today!
- Find instructions on the course website under the "Homework" tab
- Submit on Gradescope
- Consider working with a partner! Collaboration is encouraged ©

Looking

- Tableau is a drag-and-drop visualization tool suite
- Tableau for Teaching has donated license keys (good for one year) for everyone enrolled in this course
- Instructions for downloading are on the next slide. Download before class on Tuesday 02/11
- Need help? Ping me on Slack, or come to office hours

Preparing Tableau

- Download the latest version of Tableau Desktop and Tableau Prep Builder: https://www.tableau.com/tft/activation
- 2. Click on the link above and select "Download Tableau Desktop" and "Download Tableau Prep Builder". On the form, enter your school email address for Business E-mail and enter the name of your school for Organization.
- 3. Activate with product key: TCR8-EF41-95B0-0D5E-FFAE
- 4. Already have a copy of Tableau Desktop installed? Update your license in the application: Help menu → Manage Product Keys

(Incomplete)
History of
Visualization:
15,000BC

(Incomplete)
History of
Visualization:
9005

- Oldest known attempt to show changing values graphically
- Inclinations of the planetary orbits over time

(Incomplete) History of Visualization: mid-1800s

- Florence Nightingale
- Statistician, early adopter of visualization, founder of modern nursing
- Used this visualization to argue for better sanitary practices

(Incomplete)
History of
Visualization:
mid-1800s

- W.E.B. Du Bois
- Sociologist
- "Data Portraits" were displayed at the Paris Exposition in 1900 to challenge norms and show how Black folks fit into American progress

(Incomplete)
History of
Visualization:
1970s

- CAD/CAM, building cars, planes, chips
- Starting to think about: 3D, animation, edu, medicine

(Incomplete)
History of
Visualization:
1980s

- Scientific visualization, physical phenomena
- Starting to think about: photorealism, entertainment

(Incomplete)
History of
Visualization:
1990s

- Information visualization, storytelling
- Starting to think about: human cognition, interaction

(Incomplete)
History of
Visualization:
2000s

- Coordination across multiple views, interaction
- Starting to think about: sensemaking, provenance

Discussion:
what are they
all trying to do?

Visualization helps shape mental models

Information overload

Task 1: Connect all 9 dots using only straight lines

Task 2: Connect all 9 dots using 4 straight lines

Task 3: Connect all 9 dots using 3 straight lines

Task 4: Connect all 9 dots using 1 straight line

Mental Models: a Sketch

1. We tend to see what we expect to see

- Mental models are built from prior experience
- We expect new input to "fit" the existing model
- Updates are expensive: given input that almost fits, we'll distort information to avoid re-fitting the model
- Expectation is at least as strong as perception

2. Mental models form quickly, & update slowly

- "First impressions matter"
- Early information can have the highest impact
- The order in which we present pieces of information can shape how a person understands the whole
- Once a mental model is formed, it takes effort to alter it

- 3. New information gets incorporated into the existing model
- Integrating competing perspectives is challenging
- Switching between multiple perspectives is also difficult (visually or mentally)
- Tricky part: real-world problem often require such perspective switching.

4. Initial exposure interferes with accurate perception

Mental Models

Blur size

128px 64px 32px 16px 8px None

4. Initial exposure interferes with accurate perception

- Longer exposure to ambiguous data makes people more confident in their initial model
- This is true even if new data presents strong evidence that their model is **wrong**!
- Important: need to be intentional when we design, because incremental information can be **misleading**

The good:

- Well-tuned mental models let us process information quickly
- Frees up more processing power to synthesize information

The bad:

- People (esp. experts) tend not to notice information that contradicts their mental model
- A "fresh pair of eyes" can be beneficial

The ugly:

- Mental models are unavoidable: everyone has them, and they're all different
- Key: be aware of how mental models form, how they shape perception, and how to support (or challenge) them

So what do we have to work with?

Data

• Remember...

Data -> Visuals

Remember...

Big idea behind visualization

- Data have dimensions
- Visualizations have dimensions, too
- To build good visualizations, we need to map data dimensions to visual dimensions in a principled way

Data \rightarrow Visuals

Remember...

Big idea behind visualization

- Data have dimensions
- Visualizations have dimensions, too
- To build good visualizations, we need to map data dimensions to visual dimensions in a principled way

Data → Visuals

Data

Visuals

- Marks
 - The "ink"

Data \rightarrow Visuals

Data

Visuals

- Marks
 - The "ink"

- Channels or dimensions
 - How the marks show up on the page

Visual Channels / Dimensions

Position

- Encode information using where mark is drawn
- Ex.

Size / Area

- Encode information using *how big* mark is drawn
- EX. HOW DIGITAL MARKETING
 INFLUENCES GLOBAL LUXURY SALES

"The Force Awakens" could produce \$9.6 billion in revenue from worldwide ticket sales, merchandise, and home entertainment in roughly the first year of release.

Length

• Encode information using *how long* mark is drawn

• Ex.

Color: Luminance

- Encode information using *how dark* mark is drawn
- Ex.

Color: Saturation

• Encode information using *how much color* mark has

• Ex.

Color: Hue

- Encode information using hue of mark
- Ex.

Orientation / Tilt / Angle

- Encode information using how mark is *rotated*
- Ex.

Shape

- Encode information using how mark is *shaped*
- Ex.

Data -> Visuals

- Remember... Big idea behind visualization
 - Map data dimensions to visual dimensions in a principled way

Data > Visuals

• Remember... Big idea behind visualization

values

Map data dimensions to visual dimensions in a principled way

Data > Visuals

- Remember... Big idea behind visualization
 - Map data dimensions to visual dimensions in a principled way

Work with your group to represent each observation in this dataset as a point (mark) styled using the visual channel you were assigned.

Be prepared to share with the class.

Data -> Visuals

Work with your group to represent each observation in this dataset as a point (mark) styled using the visual channel you were assigned.

Be prepared to share with the class.

Data \rightarrow Visuals

Work with your group to represent each observation in this dataset as a point (mark) styled using the visual channel you were assigned.

Be prepared to share with the class.

Data \rightarrow Visuals

What type of variable is Name?

Data -> Visuals

Name blueberry asparagus pumpkin

Position on common scale Position on unaligned scale Length (1D size) Tilt/angle Area (2D size) Color luminance Color saturation Color hue Shape

What type of variable is Season?

Data -> Visuals

Season summer spring fall

Position on common scale Position on unaligned scale Length (1D size) Tilt/angle Area (2D size) Color luminance Color saturation Color hue Shape

What type of variable is Price?

Data -> Visuals

- Remember... Big idea behind visualization
 - Map data dimensions to visual dimensions in a principled way
 - Insight 1: Not all visual dimensions can represent all data types

Categorical

Ordinal

Quantitative

Position on common scale Position on unaligned scale Data -> Visuals Length (1D size) //_ Tilt/angle Area (2D size) Color luminance Color saturation Color hue

Shape

Remember... Big idea behind visualization

Magnitude Channels: Ordered Attributes

- Map data dimensions to visual dimensions in a principled way
- Insight 1: Not all visual dimensions can represent all data types

Curvature

Volume (3D size)

Try it out!

- Work with 2 other people. Be prepared to share your work with the class.
- Find a data visualization you think is interesting
 - Some ideas for where to look: New sites, government sites, Tableau Viz Gallery, massvis.mit.edu
- Identify the following:
 - What is the data that's being visualized?
 - Is the data source included?
 - What marks and channels are used in the visualization?
 - What data do each mark and channel represent?
 - What do you learn from looking at the visualization?
 - What additional questions do you have?