AUA CS108, Statistics, Fall 2020 Lecture 16

Michael Poghosyan

02 Oct 2020

Contents

► Sample Covariance and Correlation Coefficient

Reminder

Recall the definitions of the Sample Covariance and Correlation Coefficient between Datasets x and y of the same size (with denominator n):

$$cov(x, y) = s_{xy} = \frac{\sum_{k=1}^{n} (x_k - \overline{x}) \cdot (y_k - \overline{y})}{n}$$

and

$$cor(x,y) = \rho_{xy} = \frac{cov(x,y)}{\sqrt{Var(x) \cdot Var(y)}} = \frac{cov(x,y)}{sd(x) \cdot sd(y)} = \frac{s_{xy}}{s_x \cdot s_y},$$

Some simulations:

```
x <- rnorm(100); y <- rnorm(100);
plot(x,y, pch=16)</pre>
```



```
c(cor(x,y), cov(x,y))
```

```
## [1] -0.01712577 -0.01878710
```

Some simulations:

```
x <- rnorm(100); y <- -2.4*x + rnorm(100);
plot(x,y, pch=16)</pre>
```



```
c(cor(x,y), cov(x,y))
## [1] -0.9106775 -2.0742413
```

Let us now use the state.x77 Dataset from R:

head(state.x77)

##		Population	Income	Illiteracy	Life Exp	Murder	HS G	r
##	Alabama	3615	3624	2.1	69.05	15.1	4	1
##	Alaska	365	6315	1.5	69.31	11.3	6	6
##	Arizona	2212	4530	1.8	70.55	7.8	5	8
##	Arkansas	2110	3378	1.9	70.66	10.1	3	9
##	${\tt California}$	21198	5114	1.1	71.71	10.3	6	2
##	Colorado	2541	4884	0.7	72.06	6.8	6	3

Let us now use the state.x77 Dataset from R:

```
head(state.x77)
```

##		Population	Income	Illiteracy	Life Exp	Murder	HS	Gr
##	Alabama	3615	3624	2.1	69.05	15.1		41
##	Alaska	365	6315	1.5	69.31	11.3		66
##	Arizona	2212	4530	1.8	70.55	7.8		58
##	Arkansas	2110	3378	1.9	70.66	10.1		39
##	${\tt California}$	21198	5114	1.1	71.71	10.3		62
##	Colorado	2541	4884	0.7	72.06	6.8		63

It is not of the DataFrame format, so we change it to DataFrame:

```
state <- as.data.frame(state.x77)</pre>
```

```
plot(Murder~Illiteracy, data = state, pch=16)
```



```
cor(state$Illiteracy, state$Murder)
```

```
## [1] 0.7029752
```

Question: How to generate samples x, y with some given Correlation Coefficient?

Question: How to generate samples x, y with some given Correlation Coefficient?

Answer: Say, we want to have Datasets x, y of size n with $cor(x, y) = \rho \in (-1, 1)$.

Question: How to generate samples x, y with some given Correlation Coefficient?

Answer: Say, we want to have Datasets x, y of size n with $cor(x, y) = \rho \in (-1, 1)$.

One of the possible methods: take a Matrix

$$\Sigma = \left[egin{array}{cc} 1 &
ho \
ho & 1 \end{array}
ight],$$

which is **Positive Definite**, take any 2D vector, say $\mu = [0,0]^T$, and generate a Sample of size n from the Bivariate Normal Distribution $\mathcal{N}(\mu, \Sigma)$.

Question: How to generate samples x, y with some given Correlation Coefficient?

Answer: Say, we want to have Datasets x, y of size n with $cor(x, y) = \rho \in (-1, 1)$.

One of the possible methods: take a Matrix

$$\Sigma = \left[egin{array}{cc} 1 &
ho \
ho & 1 \end{array}
ight],$$

which is **Positive Definite**, take any 2D vector, say $\mu = [0,0]^T$, and generate a Sample of size n from the Bivariate Normal Distribution $\mathcal{N}(\mu, \Sigma)$.

Then, the cor(x,y) will be approximately ρ (and it will approach ρ as $n \to +\infty$).

Example

```
rho <- 0.35
covmatrix <- matrix(c(1,rho, rho, 1), nrow = 2)
mu <- c(0,0)
x <- mvtnorm::rmvnorm(100, mean = mu, sigma = covmatrix)
plot(x, pch = 16)</pre>
```


cor(x)

```
## [,1] [,2]
## [1,] 1.0000000 0.3965342
## [2,] 0.3965342 1.0000000
```

Properties of the Sample Covariance

$$\triangleright cov(x,y) = cov(y,x);$$

Properties of the Sample Covariance

- ightharpoonup cov(x,y) = cov(y,x);
- ▶ For any Datasets x, y, z and real numbers α , β ,

$$cov(\alpha \cdot x + \beta \cdot y, z) = \alpha \cdot cov(x, z) + \beta \cdot cov(y, z);$$

Properties of the Sample Covariance

- ightharpoonup cov(x,y) = cov(y,x);
- ▶ For any Datasets x, y, z and real numbers α , β ,

$$cov(\alpha \cdot x + \beta \cdot y, z) = \alpha \cdot cov(x, z) + \beta \cdot cov(y, z);$$

For any Dataset x,

$$cov(x,x) = var(x)$$

¹Or $x_i = a \cdot y_i + b$ for any i = 1, ..., n (maybe for another a and b). ²Or $x_i = a \cdot y_i + b$ for any i = 1, ..., n (maybe for another a and b).

- ightharpoonup cor(x,y) = cor(y,x);
- ▶ If $\alpha > 0$ and $\beta \in \mathbb{R}$, then $cor(\alpha \cdot x + \beta, y) = cor(x, y)$

¹Or $x_i = a \cdot y_i + b$ for any i = 1, ..., n (maybe for another a and b).

²Or $x_i = a \cdot y_i + b$ for any i = 1, ..., n (maybe for another a and b).

- ightharpoonup cor(x,y) = cor(y,x);
- ▶ If $\alpha > 0$ and $\beta \in \mathbb{R}$, then $cor(\alpha \cdot x + \beta, y) = cor(x, y)$
- ▶ If α < 0 and $\beta \in \mathbb{R}$, then $cor(\alpha \cdot x + \beta, y) = -cor(x, y)$

¹Or $x_i = a \cdot y_i + b$ for any i = 1, ..., n (maybe for another a and b).

²Or $x_i = a \cdot y_i + b$ for any i = 1, ..., n (maybe for another a and b).

- ightharpoonup cor(x,y) = cor(y,x);
- ▶ If $\alpha > 0$ and $\beta \in \mathbb{R}$, then $cor(\alpha \cdot x + \beta, y) = cor(x, y)$
- ▶ If α < 0 and $\beta \in \mathbb{R}$, then $cor(\alpha \cdot x + \beta, y) = -cor(x, y)$
- \triangleright For any Datasets x, y,

$$-1 \le \rho_{xy} \le 1$$
;

¹Or $x_i = a \cdot y_i + b$ for any i = 1, ..., n (maybe for another a and b).

²Or $x_i = a \cdot y_i + b$ for any i = 1, ..., n (maybe for another a and b).

- ightharpoonup cor(x,y) = cor(y,x);
- ▶ If $\alpha > 0$ and $\beta \in \mathbb{R}$, then $cor(\alpha \cdot x + \beta, y) = cor(x, y)$
- ▶ If α < 0 and $\beta \in \mathbb{R}$, then $cor(\alpha \cdot x + \beta, y) = -cor(x, y)$
- \triangleright For any Datasets x, y,

$$-1 \le \rho_{xy} \le 1$$
;

▶ $\rho_{xy} = 1$ iff there exists a constant a > 0 and $b \in \mathbb{R}$ such that $y_i = a \cdot x_i + b$ for any i = 1, ..., n.

¹Or $x_i = a \cdot y_i + b$ for any i = 1, ..., n (maybe for another a and b).

²Or $x_i = a \cdot y_i + b$ for any i = 1, ..., n (maybe for another a and b).

- ightharpoonup cor(x,y) = cor(y,x);
- ▶ If $\alpha > 0$ and $\beta \in \mathbb{R}$, then $cor(\alpha \cdot x + \beta, y) = cor(x, y)$
- ▶ If α < 0 and $\beta \in \mathbb{R}$, then $cor(\alpha \cdot x + \beta, y) = -cor(x, y)$
- \triangleright For any Datasets x, y,

$$-1 \le \rho_{xy} \le 1$$
;

- $ho_{xy} = 1$ iff there exists a constant a > 0 and $b \in \mathbb{R}$ such that $y_i = a \cdot x_i + b$ for any i = 1, ..., n.
- ▶ $\rho_{xy} = -1$ iff there exists a constant a < 0 and $b \in \mathbb{R}$ such that $v_i = a \cdot x_i + b$ for any i = 1, ..., n.

²Or $x_i = a \cdot y_i + b$ for any i = 1, ..., n (maybe for another a and b).

Covariance is *linear*, correlation is not

- Covariance is linear, correlation is not
- Correlation is scale-invariant: if we will change the scale of one or both Datasets, then the Correlation Coefficient will not be changed (but the Covariance will be).

- Covariance is *linear*, correlation is not
- Correlation is scale-invariant: if we will change the scale of one or both Datasets, then the Correlation Coefficient will not be changed (but the Covariance will be).

Say, if x is a Dataset of heights of some persons, in centimeters, y their weights in grams, and if x' will be the same heights Dataset using meters as units, and y' will be the weights in Kg-s, then cov(x,y) and cov(x',y') will not be the same, but cor(x,y) = cor(x',y').

- Covariance is *linear*, correlation is not
- Correlation is scale-invariant: if we will change the scale of one or both Datasets, then the Correlation Coefficient will not be changed (but the Covariance will be).

Say, if x is a Dataset of heights of some persons, in centimeters, y their weights in grams, and if x' will be the same heights Dataset using meters as units, and y' will be the weights in Kg-s, then cov(x,y) and cov(x',y') will not be the same, but cor(x,y) = cor(x',y').

If |cov(x, y)| > |cov(z, t)|, we cannot state that the relationship between x and y is stronger than the relationship between z and t.

- Covariance is *linear*, correlation is not
- Correlation is scale-invariant: if we will change the scale of one or both Datasets, then the Correlation Coefficient will not be changed (but the Covariance will be).

Say, if x is a Dataset of heights of some persons, in centimeters, y their weights in grams, and if x' will be the same heights Dataset using meters as units, and y' will be the weights in Kg-s, then cov(x,y) and cov(x',y') will not be the same, but cor(x,y) = cor(x',y').

▶ If |cov(x, y)| > |cov(z, t)|, we cannot state that the relationship between x and y is stronger than the relationship between z and t. But if |cor(x, y)| > |cor(z, t)|, we can.

- Covariance is *linear*, correlation is not
- Correlation is scale-invariant: if we will change the scale of one or both Datasets, then the Correlation Coefficient will not be changed (but the Covariance will be).

Say, if x is a Dataset of heights of some persons, in centimeters, y their weights in grams, and if x' will be the same heights Dataset using meters as units, and y' will be the weights in Kg-s, then cov(x,y) and cov(x',y') will not be the same, but cor(x,y) = cor(x',y').

▶ If |cov(x,y)| > |cov(z,t)|, we cannot state that the relationship between x and y is stronger than the relationship between z and t. But if |cor(x,y)| > |cor(z,t)|, we can.

So it is not easy to interpret the magnitude of the covariance, but the magnitude of the correlation coefficient is the strength of the linear relationship.

► An important drawback of the Sample Correlation Coefficient is that it is sensitive to outliers.

So what are showing Covariance and Correlation Coefficient:

So what are showing Covariance and Correlation Coefficient:

► The sign of Covariance and Corelation Coefficient shows the direction of the relationship: if

$$cov(x, y) > 0$$
, equivalently, if $cor(x, y) > 0$,

then if x is increasing, then y also tends to be larger.

So what are showing Covariance and Correlation Coefficient:

► The sign of Covariance and Corelation Coefficient shows the direction of the relationship: if

$$cov(x,y)>0$$
, equivalently, if $cor(x,y)>0$, then if x is increasing, then y also tends to be larger. And if $cov(x,y)<0$, equivalently, if $cor(x,y)<0$, then if x is increasing, then y tends to be smaller.

So what are showing Covariance and Correlation Coefficient:

► The sign of Covariance and Corelation Coefficient shows the direction of the relationship: if

$$cov(x, y) > 0$$
, equivalently, if $cor(x, y) > 0$,

then if x is increasing, then y also tends to be larger. And if

$$cov(x,y) < 0$$
, equivalently, if $cor(x,y) < 0$,

then if x is increasing, then y tends to be smaller.

► The magnitude of the Correlation Coefficient shows the strength of the Linear Relationship.

Here is a Bivariate Dataset (x, y) with cov(x, y) > 0:

Now we add a vertical line through \bar{x} and a horizontal line through \bar{y}

We color the points in the first and third quadrants:

The points in the 1st quadrant (of the dotted coordinate system, with the center at (\bar{x}, \bar{y})), green points, satisfy

$$x_k > \bar{x}$$
 and $y_k > \bar{y}$,

SO

$$(x_k-\bar{x})\cdot(y_k-\bar{y})>0,$$

so green points contribute positive terms to

$$cov(x,y) = \frac{1}{n} \cdot \sum_{k=1}^{n} (x_k - \bar{x}) \cdot (y_k - \bar{y}).$$

The points in the 1st quadrant (of the dotted coordinate system, with the center at (\bar{x}, \bar{y})), green points, satisfy

$$x_k > \bar{x}$$
 and $y_k > \bar{y}$,

SO

$$(x_k - \bar{x}) \cdot (y_k - \bar{y}) > 0,$$

so green points contribute positive terms to

$$cov(x,y) = \frac{1}{n} \cdot \sum_{k=1}^{n} (x_k - \bar{x}) \cdot (y_k - \bar{y}).$$

Similarly, Points in the 3rd quadrant, yellow points, again contribute positive terms to cov(x, y), since in this case

$$x_k < \bar{x}$$
 and $y_k < \bar{y}$, hence, $(x_k - \bar{x}) \cdot (y_k - \bar{y}) > 0$.

The points in the 1st quadrant (of the dotted coordinate system, with the center at (\bar{x}, \bar{y})), green points, satisfy

$$x_k > \bar{x}$$
 and $y_k > \bar{y}$,

so

$$(x_k - \bar{x}) \cdot (y_k - \bar{y}) > 0,$$

so green points contribute positive terms to

$$cov(x,y) = \frac{1}{n} \cdot \sum_{k=1}^{n} (x_k - \bar{x}) \cdot (y_k - \bar{y}).$$

Similarly, Points in the 3rd quadrant, yellow points, again contribute positive terms to cov(x, y), since in this case

$$x_k < \bar{x}$$
 and $y_k < \bar{y}$, hence, $(x_k - \bar{x}) \cdot (y_k - \bar{y}) > 0$.

In the same way, the points in the 2nd and 4th quadrants give negative terms to cov(x,y), as in this case $(x_k - \bar{x}) \cdot (y_k - \bar{y}) < 0$.

The points in the 1st quadrant (of the dotted coordinate system, with the center at (\bar{x}, \bar{y})), green points, satisfy

$$x_k > \bar{x}$$
 and $y_k > \bar{y}$,

SO

$$(x_k-\bar{x})\cdot(y_k-\bar{y})>0,$$

so green points contribute positive terms to

$$cov(x,y) = \frac{1}{n} \cdot \sum_{k=1}^{n} (x_k - \bar{x}) \cdot (y_k - \bar{y}).$$

Similarly, Points in the 3rd quadrant, yellow points, again contribute positive terms to cov(x, y), since in this case

$$x_k < \bar{x}$$
 and $y_k < \bar{y}$, hence, $(x_k - \bar{x}) \cdot (y_k - \bar{y}) > 0$.

In the same way, the points in the 2nd and 4th quadrants give negative terms to cov(x,y), as in this case $(x_k-\bar{x})\cdot(y_k-\bar{y})<0$. And positive covariance means that the terms for points in the 1st and 3rd quadrants dominate to the ones from 2nd and fourth ones.

Note: Of course, we can have a	negative trend and just one strong

outlier in the 1st quadrant resulting in a positive covariance.