ECE380 Digital Logic

Synchronous Sequential Circuits: State Diagrams, State Tables

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 27-1

Synchronous sequential circuits

- Circuits where a clock signal is used to control operation are called synchronous sequential circuits
 - The term active clock edge refers to the clock edge that causes a change in state (positive or negative)
- Realized using combinational logic and one or more flip-flops
- Two models for synchronous sequential circuits
 - Moore model: circuit outputs depend only on the present state of the circuit
 - Mealy model: circuit outputs depend on the present state of the circuit and the primary inputs
- Sequential circuits are also called *finite state* machines (FSM)

Electrical & Computer Engineering

Basic design steps

- We will introduce techniques for sequential circuit design via a simple example
- Design a circuit that meets the following specifications:
 - The circuit has one input, **w**, and one output, **z**
 - All changes in the circuit occur on the positive edge of the clock signal
 - Output z=1 if the input w was 1 during the two immediately preceding clock cycles
- From this specification it is obvious that z cannot depend solely of the value of w

Electrical & Computer Engineering

Sequences of signals

• The example input and output sequence below aides in the description of the circuit

Clock cycle	t _o	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈	t ₉	t ₁₀
W	0	1	0	1	1	0	1	1	1	0	1
Z	0	0	0	0	0	1	0	0	1	1	0

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 27-5

State diagram

- The first step in designing an FSM is determining how many states are needed and which transitions are possible from one state to another
 - No preset procedure for this
 - The designer must think about what the circuit is to accomplish
- A good beginning is to define a reset state that the circuit should enter when power is applied or when a reset signal is received

Electrical & Computer Engineering

State diagram

- For our example, assume the starting state is called A
- As long as w=0, the circuit should do nothing and z=0

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 27-7

State diagram

- When w=1, the circuit should 'remember' this by transitioning to a new state (B)
- This transition should occur at the next positive edge of the clock signal

Electrical & Computer Engineering

State diagram

 When in state B and w=1, the circuit should 'remember' this by transitioning to a new state (C)

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 27-9

Complete state diagram

Electrical & Computer Engineering

State table

- A state diagram describes circuit functionality, but does not describe circuit implementation
- Translation to a tabular form is necessary
- The state table should contain
 - All transitions from each **present state** to each **next state** for all valuations of the input signals
 - The output, **z**, is specified with respect to the present state

Present	Next	state	Output
state	w=0	w=1	Z
Α	Α	В	0
В	Α	С	0
С	Α	С	1

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 27-1

State assignment

- The states are defined in terms of variables (A, B, and C)
- Each state is represented by a particular valuation of state variables
- Each state variable is implemented with a flip-flop
- Since three states have to be realized, it is sufficient to use two state variables
 - Use y₂y₁ for the present state (present state variables)
 - Use Y_2Y_1 for the next state (next state variables)

Electrical & Computer Engineering

State-assigned table

	Present	Next	state	
	state	w=0	w=1	Output z
	y_2y_1	Y_2Y_1	Y_2Y_1	_
Α	00	00	01	0
В	01	00	10	0
С	10	00	10	1
	11	dd	dd	d

Note the addition of the $y_2y_1=11$ state. Although it is not used, it is needed for completeness.

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 27-13

Next-state and output maps

- K-maps are constructed from the state table for:
 - Circuit outputs (**z** in this case)
 - Inputs for the flip-flops (next-state K-maps)
- Constructing the next-state maps depends on the type of flip-flop (D, T, JK) used for the implementation
 - D is the most straightforward: next-state maps are constructed directly from the state table since
 - $Q(t+1)=Q^+=D$
 - T and JK implementations will be covered later

Electrical & Computer Engineering

State table and next-state maps

	Present	Next						
	state	w=0	w=1	Output				
	y_2y_1	Y_2Y_1	Y_2Y_1	_				
Α	00	00	01	0				
В	01	00	10	0				
С	10	00	10	1				
	11	dd	dd	d				

y_2	<i>y</i> ₁ 00	01	11	10		
0	0	0	d	0		
1	1	0	d	0		
$Y_1 = wy_1'y_2'$						

$$Y_2 = w(y_1 + y_2)$$

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 27-15

State table and output map

	Present	Next		
	state	w=0	w=1	Output z
y_2y_1		Y_2Y_1	Y_2Y_1	_
Α	00	00	01	0
В	01	00	10	0
С	10	00	10	1
	11	dd	dd	d

$$y_2$$
 0 1 0 0 1 1 1 d

 $z=y_2$

Electrical & Computer Engineering

