A MODEL AND PARAMETER DETAILS

A.1 Preferential Attachment Preference (IBP)

The IBP model with parameters $\alpha > 0$, $\sigma \in [0, 1)$, and $c > -\sigma$ is defined as follows [21]:

- (1) The first user likes $Poisson(\alpha)$ items.
- (2) User (n+1) likes previously-known item i with probability $\frac{m_i-\sigma}{n+c}$ (where m_i is the number of users who like item i) and likes Poisson($\alpha \frac{\Gamma(1+c)\Gamma(n+c+\sigma)}{\Gamma(n+1+c)\Gamma(c+\sigma)}$) new items.

c controls how likely the user is to rate new vs. old items. σ governs the power0law behavior of the generated preference matrix; $\sigma=0$ yields a traditional IBP, with larger values yielding stronger power-law distributions of item popularity. α controls the density of the generated preference matrix. When $\sigma>0$, the process generates on average $\alpha|U|^{\sigma}$ items; when $\sigma=0$ and c=1, it generates approximately $\alpha(\log|U|+\gamma)$ items on average [21], where γ is Euler's constant [12].

A.2 Correlated Preference (LDA)

The LDA generation process [4] with K latent features operates as follows:

- (1) Draw *K* feature-item vectors $\vec{\phi}_k \in [0, 1]^{|I|}$ from Dirichlet(β).
- (2) For each user:
 - (a) Draw a latent feature vector $\vec{\theta}_u \in [0, 1]^K$ from Dirichlet(α).
- (b) Draw n_u (the number of items) from Poisson(λ).
- (c) Draw items i_1, \ldots, i_{n_u} liked by user u by drawing feature $k_x \sim \text{Multinomial}(\vec{\theta}_u)$ and i_x from Multinomial $(\vec{\phi}_{k_x})$.
- (3) De-duplicate user-item pairs to produce implicit user preference samples.

To reduce the number of parameters for fitting efficiency, we use symmetric LDA, where α is a constant vector with all values equal to a>0, and likewise β is constant b>0. These parameters a and b control the breadth of user preferences; when a<1, the values of $\vec{\theta}_u$ concentrate on a few of the K dimensions, making the userâ $\check{A}\check{Z}$ s preferences concentrate on a few items if b<1. The parameter λ controls the average number of items each user likes. The parameter K controls the size of the latent feature space, affecting the diversity of user-item preference patterns in the whole true preference data.