KSU Quals — Analysis

 $2015~\mathrm{June}{-2021}~\mathrm{August}$

Contents

1	2021	August	3
2	2020	August	4
3	2020 .	June	5
4	2019	August	6
5	2019 .	June	7
6	2018	August	8
7	2018 .	June	9
8	2017	August	11
9	2017 .	June	12
10	2016	August	13
11	2016 .	June	14
12	2016 .	January	15
13	2015	August	17
14	2015 .	June	19
15	Sampl	le	20

1 2021 August

1. Let a < b be two points on the real line and let f(x) be a function, thrice differentiable on the interval [a, b]. Prove that there is a point c between a and b, such that

$$\frac{f(b) - f(a)}{b - a} = \frac{f'(a) + f'(b)}{2} - f'''(c)\frac{(b - a)^2}{12}.$$

Hint: Consider the auxiliary function

$$g(x) = f(x) - f(a) - (x - a)\frac{f'(a) + f'(x)}{2} - k(x - a)^3,$$

where k is a suitable constant.

2. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x,y) = x^4 + x^2y^2 + xy^3 + y^4.$$

Let $S \subset \mathbb{R}^2$ be the set of solutions of the equation f(x,y) = 1. Prove that every point in S has a neighborhood, where the equation can be solved for x in terms of y or vice versa.

3. Let (X, d) be a compact metric space, and let \mathcal{F} be a family of real-valued functions on X. Assume that the family \mathcal{F} is *pointwise* equicontinuous: for every $x \in X$ and for every $\epsilon > 0$ there is $\delta > 0$, such that for every function f from the family \mathcal{F} it holds that

$$|f(x) - f(y)| < \epsilon$$

whenever $y \in X$ is such that $d(x, y) < \delta$.

Prove that the family \mathcal{F} is uniformly equicontinuous: for every $\epsilon > 0$ there is $\delta > 0$, such that for every function f from the family \mathcal{F} it holds that

$$|f(x) - f(y)| < \epsilon,$$

whenever $x, y \in X$ are such that $d(x, y) < \delta$.

- 4. Consider the open unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and let $f : \mathbb{D} \to \mathbb{D}$ be a holomorphic function satisfying $f(0) = \frac{1}{2}$ and $f(\frac{1}{2}) = 0$. Prove that $f(z) = \frac{2z 1}{z 2}$, $\forall z \in \mathbb{D}$.
- 5. Suppose $f: \mathbb{C} \to \mathbb{C}$ is holomorphic, and for every positive integer n, there exists a positive constant C_n and a neighborhood V_n of 0, such that

$$|f(z)| \le C_n |z|^n, \quad \forall z \in V_n.$$

Prove that f is the constant zero function.

6. Let Γ be the circle of radius 2 centered at i, parametrized counterclockwise. Compute the complex line integral

$$\oint_{\Gamma} \frac{\sin(\pi z)}{z^4 + 3z^3 + 2z^2} \, \mathrm{d}z.$$

2 2020 August

1. Show that both series

$$\sum_{n=1}^{\infty} x^{n} (1-x) \text{ and } \sum_{n=1}^{\infty} (-1)^{n} x^{n} (1-x)$$

are convergent on [0,1], but only one converges uniformly. Which one? Why?

- 2. Let $f: \mathbb{R} \to \mathbb{R}$. Show that each of the following conditions implies that f is Borel measurable:
 - a) f is increasing
 - b) f is lower semi-continuous, i.e., $f(x) \leq \liminf_{y \to x} f(y)$, for all $x \in \mathbb{R}$.
- 3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a continuously differentiable function. Show that f is not injective.
- 4. Let f(z) and g(z) be two entire functions, such that

$$|f(z)| \le |g(z)|, \quad z \in \mathbb{C}.$$

Prove that there exists a constant $c \in \mathbb{C}$, such that

$$f(z) = cg(z), \quad z \in \mathbb{C}.$$

5. How many distinct roots does the polynomial

$$p(z) = z^7 + 10z^4 + 7$$

have in the disk $|z| \leq 1$?

6. Use residues to compute

$$\int_0^\infty \frac{x \sin(2x)}{4 + x^2} \, \mathrm{d}x.$$

3 2020 June

1. Let $f: \mathbb{R}^n \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}$$

- a) Is f differentiable at (0,0)?
- b) Are the partial derivatives $D_i f$, i = 1, 2 continuous at (0, 0)?
- 2. Let the sequence of functions be defined by $f_n(x) = nxe^{-nx}$ on $[0, +\infty)$. Determine the pointwise limit on the given interval (if it exists) and an interval on which the convergence is uniform (if any).

Does the sequence of derivatives (f'_n) converge uniformly on $[0, +\infty)$?

- 3. Let $f: D \to \mathbb{R}$, where $D \subset \mathbb{R}$ is measurable. Show that f is measurable if and only if the function $g: \mathbb{R} \to \mathbb{R}$ is measurable, where g(x) = f(x) for $x \in D$ and g(x) = 0 otherwise.
- 4. Let $f: \mathbb{C} \to \mathbb{C}$ be given by

$$f(z) = z|z|.$$

Where is f'(z) defined? Where is f(z) analytic?

5. Construct a map that maps the half-strip

$$S = \{z : |\Re \mathfrak{e}(z)| < 1, \Im \mathfrak{m}(z) > 0\}$$

conformally onto the open unit disk

$$\mathbb{D} = \{z : |z| < 1\}.$$

6. Let f(z) be analytic in the punctured disk

$$D = \{z : |z| < 1, \ z \neq 1/2\}.$$

Suppose that f(z) has a simple pole at z = 1/2 and that

$$\operatorname{Res}_{z=1/2} f(z) = 1.$$

Determine the coefficient a_{-2} in the Laurent expansion

$$f(z) = \sum_{n=-\infty}^{\infty} a_n z^n, \quad 1/2 < |z| < 1.$$

4 2019 August

1. Prove the L^1 Chebyshev inequality: for any real s > 0,

$$|\{x: |f(x)| > s\}| \le \frac{1}{s} \int |f|.$$

- 2. What is the Lebesgue measure of the set of rationals in the line? Give a proof of your assertion.
- 3. Suppose $\{f_n, n \geq 1\}$ is a family of real-valued functions on a compact interval I that are Hölder continuous with exponent α and constant M: i.e., for all $n \geq 1$ and all $x, y \in I$,

$$|f_n(x) - f_n(y)| \le M|x - y|^{\alpha}.$$

Suppose also that the set $\{f_n(x_0) \mid n \geq 1\}$ is bounded for some fixed $x_0 \in I$. Prove that $(f_n)_{n=1}^{\infty}$ has a subsequence converging uniformly to a function f that is Hölder continuous with the same exponent α and constant M.

- 4. Let $U \in \mathbb{R}^n$ be an open set, $a \in U$, and $f: U \to \mathbb{R}^m$. Prove that the following statements are equivalent:
 - a) The mapping f is differentiable at a.
 - b) Every component function $f_i: U \to \mathbb{R}$ of $f, 1 \leq i \leq m$, is differentiable at a.
- 5. Let f be an entire function such that $f(z) = f(z+2\pi)$ and $f(z) = f(z+2\pi i)$ for all $z \in \mathbb{C}$. Prove that f is constant.
- 6. Assume a and b are complex with $|a| \neq 1$. Evaluate, distinguishing cases

$$\int_{\gamma} \left(\frac{z-b}{z-a} \right)^2 \mathrm{d}z,$$

where $\gamma(t) = e^{it}$, $t \in [0, 2\pi]$

5 2019 June

- 1. Assume a function $f: \mathbb{R}^n \to \mathbb{R}$ is homogeneous of degree 1, in the sense that f(tx) = tf(x) for all $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$.
 - a) Show that f has directional derivatives at 0 in all directions.
 - b) Prove that f is differentiable at 0 if and only if f is linear.
- 2. Find all functions f that are holomorphic in the disk D(0;1) and such that

$$f(1/n) = n^2 f(1/n)^3$$
, for $n = 2, 3, 4, ...$

- 3. Let f be an entire function. Prove that if f(z) is real for all z with |z| = 1, then f is constant.
- 4. Prove that the family of all polynomials P(x) of degree $\leq N$ with coefficients in [-1,1] is uniformly bounded and uniformly equicontinuous on any compact interval.
- 5. What is the Lebesgue measure of the Cantor set?
- 6. Prove that a non-negative measurable function has integral equal to zero if and only if it is zero almost everywhere.

6 2018 August

- 1. Let (M,d) be a metric space. Show that $\rho(x,y) = \sqrt{d(x,y)}$ also defines a metric. Is the identity map $i:(M,d)\to (M,\rho), i(x)=x$ continuous?
- 2. The function $f: M \to \mathbb{R}$ is called lower semicontinuous if for all $\alpha \in \mathbb{R}$ the set $\{x: f(x) > \alpha\}$ is open. Show that if f is lower semicontinuous and M is compact then
 - a) f is bounded below, and
 - b) f attains a minimum value.
- 3. Let $f_n(x) = \sum_{j=1}^n \frac{1}{n} f(x + \frac{j}{n})$, where f is a continuous function on \mathbb{R} . Show that the sequence of functions $(f_n)_{n \in \mathbb{N}}$ converges pointwise to a continuous function.
- 4. Suppose $f, g : \mathbb{R}^n \to \mathbb{R}^p$ are continuous functions.
 - a) Show that the set $B = \{x \in \mathbb{R}^n : f(x) = g(x)\}$ is closed in \mathbb{R}^n
 - b) Let p = 1. Prove that the set $C = \{x \in \mathbb{R}^n : f(x) > g(x)\}$ is open in \mathbb{R}^n .
- 5. Let the function $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by the formula

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$

- a) Is f continuous at (0,0)?
- b) Show that partial derivatives $D_1 f(0,0)$ and $D_2 f(0,0)$ exist and are equal to 0.
- c) Is f differentiable at (0,0)?
- 6. Consider the following equation for $x \in \mathbb{R}$ with $y = (y_1, y_2) \in \mathbb{R}^2$ as a parameter:

$$x^3y_1 + x^2y_1y_2 + x + y_1^2y_2 = 0.$$

- a) Prove that there are neighborhoods V of (-1,1) and U of 1 such that for every $y \in V$, the above equation has a unique solution $x = \psi(y)$ in U.
- b) Find $D_1\psi(-1,1)$ and $D_2\psi(-1,1)$.
- c) Prove that there do not exist neighborhoods V of (-1,1) and U' of -1 such that for every $y \in V$ the equation has a unique solution $x = x(y) \in U'$. Hint: Explicitly determine the three solutions for x in the special case where $y_1 = -1$.
- 7. Find the number of zeroes of the function $f(z) = z^7 8z^2 + 2$ in the annulus 1 < |z| < 2.
- 8. Does there exist an entire function f such that $f(\frac{1}{n}) = \frac{n}{n+1}$? *Hint:* Use the Identity Theorem.

8

9. Use the contour integral to compute $\int_0^\infty \frac{x^2}{x^4 + 5x^2 + 4} \, \mathrm{d}x.$

7 2018 June

1. Let (X,d) be a metric space. Let $f:X\to X$ be a continuous map. Assume that for all $x,y\in X$,

$$d(f(x), f(y)) < d(x, y).$$

- a) Show that f has at most one fixed point.
- b) Show that if X is compact, f has exactly one fixed point.
- 2. Let K > 0. The function $f: [a, b] \to \mathbb{R}$ is K-Lipschitz if for all $x, y \in [a, b]$:

$$|f(x) - f(y)| \le K|x - y|$$

- a) Assume that f has a bounded derivative on (a,b). Show that there exists K such that f is K-Lipschitz.
- b) For every K, give an example of the function that is K-Lipschitz, but not differentiable.
- 3. Prove or disprove:
 - a) The product of two uniformly continuous functions on \mathbb{R} is also uniformly continuous.
 - b) The product of two uniformly continuous functions on [0,1] is also uniformly continuous.
- 4. Let I be a rectangle in \mathbb{R}^2 and suppose f is continuous on I. Prove that there exists a point $x_0 \in I$ such that

$$\int_{I} f(x) \, \mathrm{d}x = f(x_0) \, \mathrm{vol}(I),$$

where vol(I) is the *n*-dimensional volume of the rectangle.

5. Let function $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by the formula

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

- (a) Is f continuous at (0,0)?
- (b) Show that both partial derivatives $D_1 f(0,0)$ and $D_2 f(0,0)$ exist and compute them.
- (c) Is f differentiable at (0,0)?
- 6. Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by the formula

$$F(x_1, x_2) = e^{x_1} \left(\cos(x_2), \sin(x_2) \right).$$

(a) Find the image of F.

- (b) Prove that for every $x \in \mathbb{R}^2$ there exists a neighborhood U in \mathbb{R}^2 such that $F: U \to F(U)$ is a diffeomorphism, but that F is not injective on all of \mathbb{R}^2 .
- (c) Let $x = (0, \frac{\pi}{3})$, y = F(x) and let H be the continuous inverse of F, defined in a neighborhood of y, such that H(y) = x. Give an explicit formula for H.
- 7. Calculate the integral $\int_C \frac{\cos z}{z^3+4z} \, dz$, where C is counterclockwise oriented circle of radius 2 with center at the point z=i.
- 8. Let $\mathbb{D} = \{|z| < 1\}$. Consider the set of holomorphic functions $f : \mathbb{D} \to \mathbb{D}$ such that $f(\frac{3}{4}) = 0$. What are the possible values of $f'(\frac{3}{4})$?
- 9. Let f(z) be an entire function that does not take negative real values. Show that f is constant. (Hint. consider \sqrt{f}).

8 2017 August

- 1. Let $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ be Cauchy sequences in a metric space (X, d). Show that $(d(x_n, y_n))_{n=1}^{\infty}$ is a convergent sequence in \mathbb{R} .
- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f(0) = 0 and f(x) < f'(x) for all $x \ge 0$. Prove that f(x) > 0 for all x > 0.
- 3. Let f(x) be continuous real-valued function on [a,b] such that $\int_a^b (f(x))^2 dx = 0$. Show that $f \equiv 0$.
- 4. For $n \in \mathbb{N}$, define $f_n : [1, \infty) \to \mathbb{R}$ by $f_n(x) = \frac{n+1}{n}e^{-nx}$. Show that the series $\sum_{n=1}^{\infty} f_n$ converges uniformly to a continuous function.
- 5. Let

$$f(x,y) = \begin{cases} \frac{xy^3}{x^3 + y^6} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Show that for every unit vector \mathbf{u} , the directional derivative of f in the direction \mathbf{u} at the point (0,0) exists.
- (b) Is f continuous at (0,0)?
- (c) Is f differentiable at (0,0)?
- 6. Consider the system of equations

$$x^2 + y^2 + z^2 = 2$$
$$\sin(xyz) = 0.$$

- (a) Show that there is a neighborhood of (1,0,1) on which the solution to the system of equations can be written as (x,y) = f(z), where f is a vector-valued function.
- (b) Is there an $S \subset \mathbb{R}$ and a vector-valued function $f: S \to \mathbb{R}^2$ such that for all $x, y, z \in \mathbb{R}$, (x, y) = f(z) iff x, y, z satisfy the system?
- (c) Does the system define x and z uniquely from y in some neighborhood of (1,0,1)?
- 7. Let $f: \mathbb{D} \to \mathbb{C}$ be a holomorphic (\mathbb{D} is a unit disk). Is the function $\Re f(\bar{z})$ harmonic? Prove or give counterexample.
- 8. Let f be an entire function such that $\Re f > -1$. Show that f is constant. (Recall that function is entire if it is holomorphic in \mathbb{C}).
- 9. Use residues to calculate the integral

$$\int_0^\infty \frac{1}{1+x^4} \, \mathrm{d}x.$$

9 2017 June

- 1. Let (a_n) be a Cauchy sequence in a metric space (M, d). Show that if (a_n) has a convergent subsequence, then it actually converges.
- 2. Let $a_n \ge 0$ and $\sum_{n=1}^{\infty} a_n < \infty$.
 - (a) Show that $\liminf_{n\to\infty} na_n = 0$
 - (b) Give an example showing that $\limsup_{n\to\infty} na_n > 0$ is possible.
- 3. Let $f:[a,b]\to\mathbb{R}$ be continuous, and suppose that f takes on no value more than twice. Show that f takes on some value exactly once.
- 4. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \left(1 - \cos\frac{x^2}{y}\right)\sqrt{x^2 + y^2} & \text{if } y \neq 0\\ 0 & \text{otherwise.} \end{cases}$$

- (a) Show that f is continuous at (0,0).
- (b) Calculate all the directional derivatives of f at (0,0).
- (c) State the definition of differentiability for a function $f: \mathbb{R}^2 \to \mathbb{R}$.
- (d) Show that f is not differentiable at (0,0). Hint: violate the definition.
- 5. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(u, v) = (u + v, u^2 + v^2)$.
 - (a) Find all points where the map is locally one-to-one. Let S be the set of these points.
 - (b) Is T one-to-one on S?
 - (c) Determine the range of T.
- 6. Let $U = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$. Suppose that $f: U \to \mathbb{R}$ is such that both partial derivatives of f are zero at every point in U. Must f be constant? Justify your answer.
- 7. Let a, b be given complex numbers, |a| < |b|. Let |a| < r < |b|. Calculate

$$\int_{C_r} \frac{1}{(z-a)(z-b)} \, \mathrm{d}z,$$

where C_r is the circle of radius r with center 0.

- 8. Assume that a function f is holomorphic in an open subset $U \subset \mathbb{C}$. Is the function $g = (\Re f)(\Im f)$ always harmonic in U? Prove the statement or give a counterexample.
- 9. Let $\mathbb{D} = \{|z| < 1\}$. Does there exist a holomorphic function $f : \mathbb{D} \to \mathbb{D}$ such that $f(\frac{1}{2}) = \frac{3}{4}$, $f'(\frac{1}{2}) = \frac{2}{3}$? (Hint: use Schwarz's Lemma)

12

10 2016 August

- 1. Let $K \subset \mathbb{R}$ be a set with the following property: every continuous function $f: K \to \mathbb{R}$ is bounded. Prove that K is closed and bounded (hence compact).
- 2. Let a_n be a sequence of positive real numbers, such that

$$\sum_{n=1}^{\infty} a_n$$

diverges. Prove that

$$\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$$

also diverges.

3. Recall that the Dirichlet function $f:[0,1]\to\mathbb{R}$ is defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in [0, 1] \setminus \mathbb{Q}. \end{cases}$$

Show that the Dirichlet function is not Riemann integrable.

4. Let function $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by the formula

$$f(x,y) = \begin{cases} \frac{\sin(xy^2)}{x^2 + y^6}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

Prove that f is not continuous.

- 5. Let $E \subset \mathbb{R}^n$ be an open set and $f: E \to \mathbb{R}$ a function. Suppose that all partial derivatives $D_1 f, \ldots, D_n f$ are bounded in E. Prove that f is continuous in E.
- 6. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x_1, x_2) = (x_1^2 x_2)(3x_1^2 x_2)$. Prove that f has (0,0) as a critical point but not as a local extremum.

Hint: consider f(0,t) and $f(t,2t^2)$ for t near 0.

- 7. Let $\mu(z)$ denote the Möbius transformation which maps 1 to 0, i to 1, and -1 to ∞ . What is the μ -image of the half-disk $\{z: |z| < 1, \ \Im(z) > 0\}$?
- 8. Let f(z) be an entire function such that $|f(z)| \le |z|$ for all $z \in \mathbb{C}$. Prove that f(z) is of the form f(z) = cz, where c is a complex constant.
- 9. Find the Laurent series of the function

$$f(z) = \frac{z}{z^2 - 1}$$

13

in the annulus $\{z : 0 < |z - 1| < 2\}$ and in the annulus $\{z : |z - 1| > 2\}$.

11 2016 June

Note: The uploaded pdf only has 2 problems for this exam. This is probably a mistake in what file was uploaded.

1. Suppose that $(a_n)_{n=1}^{\infty}$ is a convergent sequence of real numbers. Let $b \in \mathbb{R}$ be such that

$$\forall n \ge 1, \ a_n \ne b$$
 and $\lim_{n \to \infty} a_n \ne b$

Show that there must be a d > 0 such that $\forall n \geq 1, |a_n - b| > d$.

- 2. Let $(x_n)_{n=1}^{\infty}$ be a sequence of real numbers such that $\sum_{n=1}^{\infty} x_n$ converges, but $\sum_{n=1}^{\infty} x_n^2$ diverges. Prove that $\sum_{n=1}^{\infty} x_n$ must converge conditionally.
 - Let (x_j) and (y_j) be sequences of real numbers such that $\sum_{j=1}^{\infty} x_j$ and $\sum_{j=1}^{\infty} y_j$ are both convergent. Prove that the series $\sum_{j=1}^{\infty} \sqrt{|x_j y_j|}$ is also absolutely convergent. Hint: a possible solution uses the Limit Comparison Test.

12 2016 January

1. Let $f: \mathbb{R} \to \mathbb{R}$ be such that

$$|f(x) - f(y)| \le |x - y|^{\alpha}$$

for some $\alpha > 0$.

- (i) Show that f is uniformly continuous.
- (ii) Show that if $\alpha > 1$ then f must be constant. Hint: is f differentiable?
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that $\lim_{x\to\infty} f(x) = 1$ and $\lim_{x\to-\infty} f(x) = 1$. Prove that f is bounded.
- 3. Show that the characteristic function of the rationals

$$\chi(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

is not Riemann integrable over any interval [a, b] in \mathbb{R} .

4. Let (f_n) be a sequence of functions $f_n:A\to\mathbb{R}$, where $A\subseteq\mathbb{R}$, and suppose that there exist constants $M_n\geq 0$ such that

$$|f_n(x)| \le M_n$$
 for all $x \in A$, and $\sum_{n=1}^{\infty} M_n < \infty$.

Prove that the series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on A.

5. Describe the set of points at which the Implicit Function Theorem guarantees that the curve $x^4 + xy^6 - 3y^4 = c$ is locally the graph of a function.

6. Let
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

- a) Do the first partial derivatives exist at the origin?
- b) Is the function differentiable at the origin?
- 7. Let

$$f(z) = \frac{z}{z^2 + 6z + 8}.$$

Write the power series expansion of f(z) centered at $z_0 = 0$ in the annulus 2 < |z| < 4.

8. Calculuate using residues

$$\int_0^\infty \frac{x^3 \sin(x)}{(1+x^2)^2} \, \mathrm{d}x.$$

Hint: Consider $f(z) = \frac{z^3 e^{iz}}{(1+z^2)^2}$.

9. Find the number of roots (counting multiplicities) of the polynomial $p(z)=3z^4-z^3+8z^2-2z+1$ in the annulus $\{z:1<|z|<2\}$. Hint: Use Rouché's theorem twice.

13 2015 August

Instructions: Attempt at most six problems.

Section I

- 1. Assume that (a_n) is a convergent sequence in a metric space (X, d). Show that there is a subsequence (a_{n_k}) such that the series $\sum_{k=1}^{\infty} d(a_{n_k}, a_{n_{k+1}})$ converges.
- 2. Using the definition of uniform continuity, show that any uniformly continuous function $f:(0,1)\to\mathbb{R}$ is bounded.
- 3. Let r_1, r_2, \ldots, r_n be real numbers in [0,1] where $n \in \mathbb{N}^+$. Let $f : [0,1] \to \mathbb{R}$ be the characteristic function of $\{r_1, r_2, \ldots, r_n\}$; i.e.,

$$f(x) = \begin{cases} 1 & \text{if } x \in \{r_1, r_2, \dots, r_n\} \\ 0 & \text{otherwise.} \end{cases}$$

Using the definition of the Riemann integral, prove that f is Riemann integrable.

Section II

4. Suppose $f:[0,1]\to\mathbb{R}$ is continuous and

$$\int_{9}^{1} f(x)x^{n} dx = 0 \quad (n = 0, 1, 2, \ldots).$$

Prove that f is identically zero on [0,1]. Hint: prove that $\int_0^1 f^2(x) dx = 0$.

- 5. Consider the set of points (x, y) in the real plane that satisfy $x + \sin(xy) = 0$.
 - (a) Is there a neighborhood of the origin on which this set is the graph of a function y = f(x)?
 - (b) Is there a neighborhood of the origin on which this set is the graph of a function x = f(y)?
- 6. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

- (a) Show that f is continuous at (0,0).
- (b) Show that the directional derivatives $D_u f$ exist at (0,0) (u a unit vector) and compute them
- (c) Show that f is not differentiable at (0,0).

Section III

7. Given two Laurent Series expansions in powers of z for the function

$$f(z) = \frac{1}{z^2(1-z)}$$

and specify the regions in which those expansions are valid.

8. Use residues to compute the integral

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{2 + \cos\theta}.$$

9. Find all points z where the function $f(z) = \Re(z) \cdot \Im(z)$ is complex differentiable.

14 2015 June

Instructions: Attempt at most 6 problems.

Section I

- 1. Let (X,d) be a metric space. Prove that if a Cauchy sequence in X has a convergent subsequence then the sequence converges.
- 2. Assume that $f: \mathbb{R} \to \mathbb{R}$ is continuous and is periodic with period 1, i.e.,

$$f(x+1) = f(x)$$
 for all $x \in \mathbb{R}$.

Prove that f is uniformly continuous.

3. Use the definition of the Riemann integral to prove that if a < b < c are real numbers and f is Riemann integrable on both [a, b] and on [b, c], then f is Riemann integrable on [a, c].

Section II

4. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

- a) Show that f is continuous at (0,0).
- b) Show that the directional derivatives $D_u f$ exist at (0,0), and compute them.
- c) Show that f is not differentiable at (0,0).
- 5. Can the equation $(x^2 + y^2 + 2z^2)^{1/2} = \cos z$ be solved uniquely for y from x and z in a neighborhood of (0,1,0)? For z in terms of x and y?
- 6. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous. Prove that there is a sequence p_n of polynomials such that for every R > 0, the sequence converges uniformly to f on the interval [-R, R].

Section III

- 7. Find the Laurent series for $f(x) = \frac{z^2 + 1}{z(z-3)}$ in the annulus 0 < |z| < 3.
- 8. Let G be a connected open subset of \mathbb{C} and f and g analytic functions in G such that f(z)g(z) = 0 for all $z \in G$. Prove that either $f \equiv 0$ or $g \equiv 0$.
- 9. Let u and v be real harmonic functions and suppose that v is the harmonic conjugate of u. Show that

$$\frac{u}{u^2 + v^2} \quad \text{and} \quad \frac{-v}{u^2 + v^2}$$

are both harmonic, assuming $u^2 + v^2 \neq 0$.

15 Sample

- 1. Let $(a_n)_{n=1}^{\infty}$ be a sequence of reals that converges to 0. Prove that there is a subsequence $(a_{n_k})_{n=1}^{\infty}$ such that $\sum_{k=1}^{\infty} a_{n_k}$ converges absolutely.
- 2. Show that if f is a nonnegative continuous function defined on [0,1] satisfying $\int_0^1 f(x) dx = 0$, then $f \equiv 0$ on [0,1].
- 3. (a) Let K be a compact subset of \mathbb{R} and let $f: K \to \mathbb{R}$ be continuous. Show that f attains its maximum value: i.e., there is a point $a \in K$ such that $\forall x \in K$, $f(x) \leq f(a)$.
 - (b) Suppose $f: \mathbb{R} \to (0, \infty)$ is a continuous function with limit $\lim_{x \to \pm \infty} f(x) = 0$. Show that f attains its maximum value.
- 4. Show that the system of equations (note that these are not linear)

$$3x + 7 - z + u^{2} = 0$$
$$x - y + 2z + u = 0$$
$$2x + 2y - 3z + 2u = 0$$

cannot be solved for x, y, z in terms of u but can be solved for each of the other sets of three variables in terms of the remaining one.

- 5. Consider the series $\sum_{n=0}^{\infty} \frac{x^2}{(1+x^2)^n}.$
 - Show that the series converges pointwise on $[0, \infty)$. To what function?
 - Does the series converge uniformly on [0,1]? On $[1,\infty)$?
- 6. Does there exist a continuous function $f:[0,1]\to\mathbb{R}$ such that

$$\int_{-\pi}^{\pi} x f(x) dx = 1 \quad \text{and} \quad \int_{-\pi}^{\pi} x^n f(x) dx = 0$$

for n = 0, 2, 3, 4, ...? Give an example or prove that no such f exists. Hint: calculate the Fourier coefficients of f using the power series expansion for e^x .

- 7. Compute $\int_0^\infty \frac{\sin x}{x} dx$.
- 8. Suppose that f is a complex-valued analytic function in the open unit disk \mathbb{D} such that |f| is constant. Prove that f is constant.
- 9. Find a conformal map from the strip $\{z \in \mathbb{C} : |\Re(z)| < 1\}$ onto the open disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$.

20