Topic 10: NEURAL NETWORKS

STAT 37710/CAAM 37710/CMSC 35400 Machine Learning Risi Kondor, The University of Chicago

• The human brain has $\sim\!10^{11}$ neurons, each connected to $\sim\!10^4$ others.

- The human brain has $\sim\!10^{11}$ neurons, each connected to $\sim\!10^4$ others.
- Inputs come from the dendrites, are aggregated in the soma, if the neuron starts firing impulses propagated to other neurons via axons.

- The human brain has $\sim\!10^{11}$ neurons, each connected to $\sim\!10^4$ others.
- Inputs come from the dendrites, are aggregated in the soma, if the neuron starts firing impulses propagated to other neurons via axons.
- Neurons learn by changing the connection strengths of their synapses.

- The human brain has $\sim 10^{11}$ neurons, each connected to $\sim 10^4$ others.
- Inputs come from the dendrites, are aggregated in the soma, if the neuron starts firing impulses propagated to other neurons via axons.
- Neurons learn by changing the connection strengths of their synapses.
- Information storage is the nervous system is "distributed".

- The human brain has $\sim \! 10^{11}$ neurons, each connected to $\sim \! 10^4$ others.
- Inputs come from the dendrites, are aggregated in the soma, if the neuron starts firing impulses propagated to other neurons via axons.
- Neurons learn by changing the connection strengths of their synapses.
- Information storage is the nervous system is "distributed".
- The response time of the brain is quite fast, so the "depth" of the network can't be very great. (clear layer by layer organization in the visual system).

- The human brain has $\sim 10^{11}$ neurons, each connected to $\sim 10^4$ others.
- Inputs come from the dendrites, are aggregated in the soma, if the neuron starts firing impulses propagated to other neurons via axons.
- Neurons learn by changing the connection strengths of their synapses.
- Information storage is the nervous system is "distributed".
- The response time of the brain is quite fast, so the "depth" of the network can't be very great. (clear layer by layer organization in the visual system).

IDEA: Humans seem to be okay at learning, so why not try to replicate this in a computer?

- The human brain has $\sim\!10^{11}$ neurons, each connected to $\sim\!10^4$ others.
- Inputs come from the dendrites, are aggregated in the soma, if the neuron starts firing impulses propagated to other neurons via axons.
- Neurons learn by changing the connection strengths of their synapses.
- Information storage is the nervous system is "distributed".
- The response time of the brain is quite fast, so the "depth" of the network can't be very great. (clear layer by layer organization in the visual system).

IDEA: Humans seem to be okay at learning, so why not try to replicate this in a computer? Goes back to the early days of AI, many successes and failures.

Multilayer artificial neural net

Question: But what should the individual neurons do and how should they learn?

A success: ALVINN [Pomerleau '95]

Drove unassisted from Pittsburgh to NYC on the highway.

Notation:

• x_i : the i'th input

weights

Notation:

- x_i : the i'th input
- w_i : the corresponding synaptic weight

Notation:

- x_i : the i 'th input
- w_i : the corresponding synaptic weight
- θ : the bias (can be eliminated as in the perceptron)

Notation:

- x_i : the i'th input
- w_i : the corresponding synaptic weight
- θ : the bias (can be eliminated as in the perceptron)
- *o*: the output

Learning rule: Define a loss function $\ell(y, \widehat{y})$ for the entire network, and change the weights so as to reduce it. For example, for regression one can use

$$\ell(y,\widehat{y}) = (y - \widehat{y})^2.$$

Notation:

- x_i : the i'th input
- w_i : the corresponding synaptic weight
- θ : the bias (can be eliminated as in the perceptron)
- *o*: the output

Learning rule: Define a loss function $\ell(y, \widehat{y})$ for the entire network, and change the weights so as to reduce it. For example, for regression one can use

$$\ell(y,\widehat{y}) = (y - \widehat{y})^2.$$

The behavior of the network is determined by

Notation:

- x_i : the i'th input
- w_i : the corresponding synaptic weight
- θ : the bias (can be eliminated as in the perceptron)
- *o*: the output

Learning rule: Define a loss function $\ell(y, \widehat{y})$ for the entire network, and change the weights so as to reduce it. For example, for regression one can use

$$\ell(y,\widehat{y}) = (y - \widehat{y})^2.$$

The behavior of the network is determined by

Multilayer Perceptron

Multilayer perceptron was thought of as universal model of the brain

Multilayer Perceptron

- Multilayer perceptron was thought of as universal model of the brain
- Mark I: 400 pixel image, 2020 photocells

Multilayer Perceptron

- Multilayer perceptron was thought of as universal model of the brain
- Mark I: 400 pixel image, 2020 photocells
- Problem: hard to train, multilayer perceptron plagued with local minima

Linear: $\sigma(t) = t$

Question: What is the problem with this?

Linear: $\sigma(t) = t$

Question: What is the problem with this? Linear functions composed with each other are still linear, so no point in having a multilayer network.

Question: What is the problem with this? Linear functions composed with each other are still linear, so no point in having a multilayer network.

Hard threshold: $\sigma(t) = \operatorname{sgn}(t)$

"Threshold Logic Unit" [McCulloch & Pitts, 1943]

ightarrow Perceptron [Rosenblatt, 1958]

Question: What is the problem with this?

Question: What is the problem with this? Linear functions composed with each other are still linear, so no point in having a multilayer network.

Hard threshold: $\sigma(t) = \operatorname{sgn}(t)$

"Threshold Logic Unit" [McCulloch & Pitts, 1943]

ightarrow Perceptron [Rosenblatt, 1958]

Question: What is the problem with this?

Not differentiable.

Linear:
$$\sigma(t) = t$$

Question: What is the problem with this? Linear functions composed with each other are still linear, so no point in having a multilayer network.

Hard threshold:
$$\sigma(t) = \operatorname{sgn}(t)$$

"Threshold Logic Unit" [McCulloch & Pitts, 1943]

ightarrow Perceptron [Rosenblatt, 1958]

Question: What is the problem with this?

Not differentiable.

(log-)sigmoid:
$$\sigma(t)=1/(1+e^{-t})$$

Also called the logistic function.

Linear:
$$\sigma(t) = t$$

Question: What is the problem with this? Linear functions composed with each other are still linear, so no point in having a multilayer network.

Hard threshold:
$$\sigma(t) = \operatorname{sgn}(t)$$

"Threshold Logic Unit" [McCulloch & Pitts, 1943]

ightarrow Perceptron [Rosenblatt, 1958]

Question: What is the problem with this?

Not differentiable.

(log-)sigmoid:
$$\sigma(t)=1/(1+e^{-t})$$

Also called the logistic function.

This is what we will use.

tanh:
$$\sigma(x) = \tanh(x) = (e^x - e^{-x})/(e^x + e^{-x})$$

tanh: $\sigma(x) = \tanh(x) = (e^x - e^{-x})/(e^x + e^{-x})$

Rectified linear unit (ReLU): $\sigma(x) = \max(0,x)$

tanh: $\sigma(x) = \tanh(x) = (e^x - e^{-x})/(e^x + e^{-x})$

Rectified linear unit (ReLU): $\sigma(x) = \max(0,x)$

 Theoretical result: 2-layer net with linear output can approximate any continuous function over compact domain to arbitrary accuracy (given enough hidden units!) [Cybenko 1989]

- Theoretical result: 2-layer net with linear output can approximate any continuous function over compact domain to arbitrary accuracy (given enough hidden units!) [Cybenko 1989]
- But: there are functions with poly-size logic gate circuit of depth k that require exponential size when restricted to depth O(k) [Hastad, 1986]

- Theoretical result: 2-layer net with linear output can approximate any continuous function over compact domain to arbitrary accuracy (given enough hidden units!) [Cybenko 1989]
- But: there are functions with poly-size logic gate circuit of depth $\,k\,$ that require exponential size when restricted to depth $\,O(k)\,$ [Hastad, 1986]
- In principle, the more layers the better.

- Theoretical result: 2-layer net with linear output can approximate any continuous function over compact domain to arbitrary accuracy (given enough hidden units!) [Cybenko 1989]
- But: there are functions with poly-size logic gate circuit of depth $\,k\,$ that require exponential size when restricted to depth $\,O(k)\,$ [Hastad, 1986]
- In principle, the more layers the better. But training deep nets is hard

 → went out of fashion 1990-2006.

- Theoretical result: 2-layer net with linear output can approximate any continuous function over compact domain to arbitrary accuracy (given enough hidden units!) [Cybenko 1989]
- But: there are functions with poly-size logic gate circuit of depth $\,k\,$ that require exponential size when restricted to depth $\,O(k)\,$ [Hastad, 1986]
- In principle, the more layers the better. But training deep nets is hard

 → went out of fashion 1990-2006.
- Reasons for resurgence of deep learning:
 - Efficient greedy pretraining idea [Hinton et al., 2006]

Multilayer Neural Nets

- Theoretical result: 2-layer net with linear output can approximate any continuous function over compact domain to arbitrary accuracy (given enough hidden units!) [Cybenko 1989]
- But: there are functions with poly-size logic gate circuit of depth $\,k\,$ that require exponential size when restricted to depth $\,O(k)\,$ [Hastad, 1986]
- In principle, the more layers the better. But training deep nets is hard

 → went out of fashion 1990-2006.
- · Reasons for resurgence of deep learning:
 - Efficient greedy pretraining idea [Hinton et al., 2006]
 - Explosion in amount of training data.

Multilayer Neural Nets

- Theoretical result: 2-layer net with linear output can approximate any continuous function over compact domain to arbitrary accuracy (given enough hidden units!) [Cybenko 1989]
- But: there are functions with poly-size logic gate circuit of depth $\,k\,$ that require exponential size when restricted to depth $\,O(k)\,$ [Hastad, 1986]
- In principle, the more layers the better. But training deep nets is hard

 → went out of fashion 1990-2006.
- · Reasons for resurgence of deep learning:
 - Efficient greedy pretraining idea [Hinton et al., 2006]
 - Explosion in amount of training data.
 - o Modern GPU architectures make training much faster.

Multilayer Representations

For vision tasks in particular, representing complex scenes in terms of a hierarchy of features makes sense.

Multilayer Representations

For regression $f: \mathbb{R}^n \to \mathbb{R}^m$:

• n neurons in input layer (layer 0)

```
For regression f: \mathbb{R}^n \to \mathbb{R}^m:
```

- *n* neurons in input layer (layer 0)
- m neurons in output layer (layer L)

For regression $f: \mathbb{R}^n \to \mathbb{R}^m$:

- n neurons in input layer (layer 0)
- m neurons in output layer (layer L)
- Some number of neurons of your choice in the intermediate (hidden) layers

For regression $f \colon \mathbb{R}^n \to \mathbb{R}^m$:

- n neurons in input layer (layer 0)
- m neurons in output layer (layer L)
- Some number of neurons of your choice in the intermediate (hidden) layers
- Use a loss function like

$$\mathcal{E}(\hat{\mathbf{y}}, \mathbf{y}) = \frac{1}{2} \sum_{i=1}^{d} (a_{\tau(i)} - y_i)^2,$$

where $a_{\tau(i)}$ is the output of the i'th neuron in the output layer.

Laver L

Layer 2

Layer 1

Laver 0

For regression $f: \mathbb{R}^n \to \mathbb{R}^m$:

- n neurons in input layer (layer 0)
- m neurons in output layer (layer L)
- Some number of neurons of your choice in the intermediate (hidden) layers
- Use a loss function like

$$\mathcal{E}(\hat{\mathbf{y}}, \mathbf{y}) = \frac{1}{2} \sum_{i=1}^{d} (a_{\tau(i)} - y_i)^2,$$

where $a_{\tau(i)}$ is the output of the i'th neuron in the output layer.

 Each neuron may be connected to all the neurons in the previous layer or just a subset of them.

For regression $f: \mathbb{R}^n \to \{1, 2, \dots, k\}$:

n neurons in input layer (layer 0)

For regression $f: \mathbb{R}^n \to \{1, 2, \dots, k\}$:

- *n* neurons in input layer (layer 0)
- k neurons in output layer (layer L)

For regression $f : \mathbb{R}^n \to \{1, 2, \dots, k\}$:

- n neurons in input layer (layer 0)
- k neurons in output layer (layer L)
- Some number of neurons of your choice in the intermediate (hidden) layers

For regression $f: \mathbb{R}^n \to \{1, 2, \dots, k\}$:

- *n* neurons in input layer (layer 0)
- *k* neurons in output layer (layer *L*)
- Some number of neurons of your choice in the intermediate (hidden) layers
- Use a loss function like the log-softmax

$$\mathcal{E}(\hat{\mathbf{y}}, \mathbf{y}) = -\log\left(\frac{e^{a_{\tau(i)}}}{\sum_{i=1}^{k} e^{a_{\tau(i)}}}\right),$$

where $a_{\tau(i)}$ is the output of the i 'th neuron in the output layer.

Layer L

Laver 1

Laver 0

For regression $f: \mathbb{R}^n \to \{1, 2, \dots, k\}$:

- *n* neurons in input layer (layer 0)
- k neurons in output layer (layer L)
- Some number of neurons of your choice in the intermediate (hidden) layers
- Use a loss function like the log-softmax

$$\mathcal{E}(\hat{\mathbf{y}}, \mathbf{y}) = -\log\left(\frac{e^{a_{\tau(i)}}}{\sum_{i=1}^{k} e^{a_{\tau(i)}}}\right),$$

where $a_{\tau(i)}$ is the output of the i 'th neuron in the output layer.

 Each neuron may be connected to all the neurons in the previous layer or just a subset of them.

Training NNs with backpropagation

Training NNs

• Present training examples one by one (online learning).

Training NNs

- Present training examples one by one (online learning).
- \bullet The error on an example (x,y) is some function of the difference between the desired and actual output of the last layer, e.g., for a multivariate regression task

$$\mathcal{E}(\hat{\mathbf{y}}, \mathbf{y}) = \frac{1}{2} \sum_{i=1}^{d} (a_{\tau(i)} - y_i)^2,$$

where $\tau(i)$ is the index of the output neuron that is supposed to predict y_i .

Training NNs

- Present training examples one by one (online learning).
- \bullet The error on an example (\mathbf{x},\mathbf{y}) is some function of the difference between the desired and actual output of the last layer, e.g., for a multivariate regression task

$$\mathcal{E}(\hat{\mathbf{y}}, \mathbf{y}) = \frac{1}{2} \sum_{i=1}^{d} (a_{\tau(i)} - y_i)^2,$$

where $\, au(i) \,$ is the index of the output neuron that is supposed to predict y_i .

· Adjust each weight of each neuron in each layer by gradient descent

$$w_{s \to t} \leftarrow w_{s \to t} - \eta \, \frac{\partial \mathcal{E}}{\partial w_{s \to t}},$$

where η is a parameter called the **learning rate**.

Consider a feed-forward architecture with $\,L\,$ layers:

• Set of neurons in layer $\ell\colon\thinspace \mathcal{N}_\ell$

Consider a feed-forward architecture with L layers:

- Set of neurons in layer ℓ : \mathcal{N}_{ℓ}
- Weight of connection from neuron s to neuron t: $w_{s \to t}$
- Output (**activation**) of any neuron t in layer ℓ :

$$a_t = \sigma\left(\underbrace{\sum_{s \in \mathcal{I}(t)} w_{s \to t} a_s + b_t}\right) = \sigma(z_t),$$

where $\mathcal{I}_t \subseteq \mathcal{N}_{\ell-1}$ is the set of neurons feeding into t (in a fully connected feed-foward network $\mathcal{I}_t = \mathcal{N}_{\ell-1}$).

Consider a feed-forward architecture with L layers:

- Set of neurons in layer ℓ : \mathcal{N}_{ℓ}
- Weight of connection from neuron s to neuron t: $w_{s o t}$
- Output (**activation**) of any neuron t in layer ℓ :

$$a_t = \sigma\left(\underbrace{\sum_{s \in \mathcal{I}(t)} w_{s \to t} a_s + b_t}\right) = \sigma(z_t),$$

where $\mathcal{I}_t \subseteq \mathcal{N}_{\ell-1}$ is the set of neurons feeding into t (in a fully connected feed-foward network $\mathcal{I}_t = \mathcal{N}_{\ell-1}$).

• Similarly, \mathcal{O}_t is the set of neurons in the next layer that t feeds into.

Consider a feed-forward architecture with L layers:

- Set of neurons in layer ℓ : \mathcal{N}_{ℓ}
- Weight of connection from neuron s to neuron t: $w_{s o t}$
- Output (**activation**) of any neuron t in layer ℓ :

$$a_t = \sigma\left(\underbrace{\sum_{s \in \mathcal{I}(t)} w_{s \to t} a_s + b_t}\right) = \sigma(z_t),$$

where $\mathcal{I}_t \subseteq \mathcal{N}_{\ell-1}$ is the set of neurons feeding into t (in a fully connected feed-foward network $\mathcal{I}_t = \mathcal{N}_{\ell-1}$).

- Similarly, \mathcal{O}_t is the set of neurons in the next layer that t feeds into.
- ullet The "pre-activation" z_t plays an important role in the following.

Neurons that tfeeds into in next layer a_t a_t a_t a_{s} Neurons in previous layer

that feed into \boldsymbol{t}

Problem: how to compute the $\frac{\partial \mathcal{E}}{\partial w_{s \to t}}$ derivatives efficiently for all the weights in the neural network?

• Define the **error** (slight misnomer)

$$\delta_t = \frac{\partial \mathcal{E}}{\partial z_t}.$$

Problem: how to compute the $\frac{\partial \mathcal{E}}{\partial w_{s \to t}}$ derivatives efficiently for all the weights in the neural network?

• Define the error (slight misnomer)

$$\delta_t = \frac{\partial \mathcal{E}}{\partial z_t}.$$

Using the chain rule, we then have the very simple relations

$$\frac{\partial \mathcal{E}}{\partial w_{s \to t}} = \frac{\partial \mathcal{E}}{\partial z_t} \frac{\partial z_t}{\partial w_{s \to t}} = \delta_t \cdot a_s, \qquad \qquad \frac{\partial \mathcal{E}}{\partial b_t} = \delta_t.$$

Problem: how to compute the $\frac{\partial \mathcal{E}}{\partial w_{s o t}}$ derivatives efficiently for all the weights in the neural network?

• Define the error (slight misnomer)

$$\delta_t = \frac{\partial \mathcal{E}}{\partial z_t}.$$

Using the chain rule, we then have the very simple relations

$$\frac{\partial \mathcal{E}}{\partial w_{s \to t}} = \frac{\partial \mathcal{E}}{\partial z_t} \frac{\partial z_t}{\partial w_{s \to t}} = \delta_t \cdot a_s, \qquad \frac{\partial \mathcal{E}}{\partial b_t} = \delta_t.$$

So now the question becomes: how do we compute $\,\delta_t\,$ for all neurons in the network simultaneously?

Assume that $\,\delta_u\,$ errrors have been computed for for all neurons in layer $\ell+1$. Then for any neuron $\,t\,$ in layer $\,\ell\,$,

$$\delta_t = \frac{\partial \mathcal{E}}{\partial z_t} = \sum_{u \in \mathcal{O}_t} \underbrace{\frac{\partial \mathcal{E}}{\partial z_u}}_{\delta_t} \underbrace{\frac{\partial z_u}{\partial z_t}}_{\delta_t}.$$

Assume that $\,\delta_u\,$ errrors have been computed for for all neurons in layer $\ell+1$. Then for any neuron $\,t\,$ in layer $\,\ell\,$,

$$\delta_t = \frac{\partial \mathcal{E}}{\partial z_t} = \sum_{u \in \mathcal{O}_t} \underbrace{\frac{\partial \mathcal{E}}{\partial z_u}}_{\delta_t} \underbrace{\frac{\partial z_u}{\partial z_t}}_{\delta_t}.$$

and

$$\frac{\partial z_u}{\partial z_t} = \frac{\partial z_u}{\partial a_t} \frac{\partial a_t}{\partial z_t} = w_{t \to u} \, \sigma'(z_t).$$

Assume that $\,\delta_u\,$ errrors have been computed for for all neurons in layer $\ell+1$. Then for any neuron $\,t\,$ in layer $\,\ell\,$,

$$\delta_t = \frac{\partial \mathcal{E}}{\partial z_t} = \sum_{u \in \mathcal{O}_t} \underbrace{\frac{\partial \mathcal{E}}{\partial z_u}}_{\delta_t} \underbrace{\frac{\partial z_u}{\partial z_t}}_{\delta_t}.$$

and

$$\frac{\partial z_u}{\partial z_t} = \frac{\partial z_u}{\partial a_t} \frac{\partial a_t}{\partial z_t} = w_{t \to u} \, \sigma'(z_t).$$

So we have the simple backpropagation formula

$$\delta_t = \sum_{u \in \mathcal{O}_t} w_{t \to u} \, \sigma'(z_t) \, \delta_u.$$

In the last layer, δ_t is computed directly from the loss.

Forward pass

ullet Initialize the activations of the neurons in layer 0 based on the input ${f x}$.

Forward pass

- Initialize the activations of the neurons in layer 0 based on the input \mathbf{x} .
- \bullet For layers $1,2,\dots L$ compute the activations from the activations of the previous layer by

$$a_t = \sigma \Big(\sum_{s \in \mathcal{I}(t)} w_{s \to t} a_s + b_t \Big) = \sigma(z_t).$$

Forward pass

- Initialize the activations of the neurons in layer 0 based on the input \mathbf{x} .
- \bullet For layers $1,2,\dots L$ compute the activations from the activations of the previous layer by

$$a_t = \sigma \Big(\sum_{s \in \mathcal{I}(t)} w_{s \to t} a_s + b_t \Big) = \sigma(z_t).$$

• Read off \widehat{y} from the last layer, and compute the loss $\mathcal{E}(\widehat{y},y)$.

• Initialize the errors in the last layer by directly computing $\,\delta_t=rac{\partial \mathcal{E}}{\partial z_*}\,.\,$

- Initialize the errors in the last layer by directly computing $\delta_t = \frac{\partial \mathcal{E}}{\partial z_t}$.
- ullet For layers $L-1,L-2,\ldots,1$ compute the errors from layer above by

$$\delta_t = \sum_{u \in \mathcal{O}_t} w_{t \to u} \, \sigma'(z_t) \, \delta_u.$$

- Initialize the errors in the last layer by directly computing $\delta_t = rac{\partial \mathcal{E}}{\partial z_t}$.
- $\bullet\,$ For layers $\,L-1,L-2,\ldots,1\,$ compute the errors from layer above by

$$\delta_t = \sum_{u \in \mathcal{O}_t} w_{t \to u} \, \sigma'(z_t) \, \delta_u.$$

 For each neuron in each layer compute the partial derivatives that we ultimately need

$$\frac{\partial \mathcal{E}}{\partial w_{s \to t}} = \delta_t \cdot a_s, \qquad \qquad \frac{\partial \mathcal{E}}{\partial b_t} = \delta_t.$$

- Initialize the errors in the last layer by directly computing $\delta_t = rac{\partial \mathcal{E}}{\partial z_t}$.
- $\bullet \;$ For layers $L-1,L-2,\ldots,1\;$ compute the errors from layer above by

$$\delta_t = \sum_{u \in \mathcal{O}_t} w_{t \to u} \, \sigma'(z_t) \, \delta_u.$$

 For each neuron in each layer compute the partial derivatives that we ultimately need

$$\frac{\partial \mathcal{E}}{\partial w_{s \to t}} = \delta_t \cdot a_s, \qquad \qquad \frac{\partial \mathcal{E}}{\partial b_t} = \delta_t.$$

Update the weights and biases by the SGD rule.

The multi-layer perceptron

A feed-forward network where is layer is fully connected is called a multi-layer perceptron.

Forward pass

For a MLP, the forward iteration can be expressed as

$$a_{\ell} = \sigma(\underbrace{W_{\ell} a_{\ell-1}}_{z_{\ell}} + b_{\ell}),$$

where

- a_ℓ is the vector activations in layer ℓ ,
- ullet $oldsymbol{b}_\ell$ is the vector of biases in layer ℓ ,
- W_{ℓ} is the matrix of weights from layer $\ell-1$ to layer ℓ .

Forward pass

For a MLP, the forward iteration can be expressed as

$$a_{\ell} = \sigma(\underbrace{W_{\ell} a_{\ell-1}}_{\mathbf{z}_{\ell}} + \mathbf{b}_{\ell}),$$

where

- a_ℓ is the vector activations in layer ℓ ,
- $oldsymbol{b}_\ell$ is the vector of biases in layer ℓ ,
- W_ℓ is the matrix of weights from layer $\ell-1$ to layer ℓ .

The forward pass consists of just computing $\mathbf{x}\mapsto a_1\mapsto a_2\mapsto \dots\mapsto a_L\mapsto \widehat{y}\mapsto \mathcal{E}$.

Backward pass

Setting $oldsymbol{\delta}_\ell$ as the vector of errors in layer ℓ , the backward iteration is

$$\boldsymbol{\delta}_{\ell} = \sigma'(\boldsymbol{z}_t) \odot (W_{\ell}^{\top} \boldsymbol{\delta}_{\ell+1}),$$

where \odot is the elementwise product of two vectors.

Backward pass

Setting $oldsymbol{\delta}_\ell$ as the vector of errors in layer ℓ , the backward iteration is

$$\boldsymbol{\delta}_{\ell} = \sigma'(\boldsymbol{z}_t) \odot (W_{\ell}^{\top} \boldsymbol{\delta}_{\ell+1}),$$

where \odot is the elementwise product of two vectors.

The backward pass consists of computing $\,\mathcal{E}\mapsto oldsymbol{\delta}_L\mapsto oldsymbol{\delta}_{L-1}\mapsto \dots\,\mapsto oldsymbol{\delta}_1\,.$

Backward pass

Setting $oldsymbol{\delta}_\ell$ as the vector of errors in layer ℓ , the backward iteration is

$$\boldsymbol{\delta}_{\ell} = \sigma'(\boldsymbol{z}_t) \odot (W_{\ell}^{\top} \boldsymbol{\delta}_{\ell+1}),$$

where \odot is the elementwise product of two vectors.

The backward pass consists of computing $\,\mathcal{E}\mapsto oldsymbol{\delta}_L\mapsto oldsymbol{\delta}_{L-1}\mapsto \dots\,\mapsto oldsymbol{\delta}_1\,.$

The individual $\partial \mathcal{E}/\partial w_{s \to t}$ and $\partial \mathcal{E}/\partial b_t$ derivatives are computed as before.

Differentiable computing

It is an old idea in compilers to use a directed acyclic graph (DAG) as an intermediate representation (IR).

$$X = \frac{(a + (b*c))/(a - (b*c))}{(a - (b*c))}$$
Operator Root

$$X = \frac{(a + (b*c))/(a - (b*c))}{(a - (b*c))}$$
Operator Root

$$X = \frac{(a + (b*c))/(a - (b*c))}{(a - (b*c))}$$

Similarly, in high performance computing (HPC) large DAGs are used to depict the interdependencies between parts of a massive compute job.

The DAG can be used to

Optimize the order in which computations are performed.

The DAG can be used to

- Optimize the order in which computations are performed.
- Optimize the way in which parts of the computation are allocated to processors/nodes.

The DAG can be used to

- Optimize the order in which computations are performed.
- Optimize the way in which parts of the computation are allocated to processors/nodes.

All this can be done statically (ahead of time) or dynamically (at runtime).

Automatic differentation

Another interesting field deals with writing compilers that can compute the derivative of any user defined (differentiable) function.

Automatic differentiation

Automatic differentiation

Modern deep learning frameworks combine this idea with DAG-based runtimes.

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 29

April 12, 2018

Forward and backward computations

$$\frac{\partial f}{\partial f} = 1$$

$$f = z_2^2$$

$$\frac{\partial f}{\partial z_2} = \underbrace{\frac{\partial f}{\partial f}}_{2z_2} \underbrace{\frac{\partial f}{\partial z_2}}_{2z_2-12} = 12$$

$$z_2 = z_1 \cdot c$$

$$\frac{\partial f}{\partial z_1} = \underbrace{\frac{\partial f}{\partial z_2}}_{10} \underbrace{\frac{\partial z_2}{\partial z_1}}_{20} = 24$$

$$z_2 = z_1 \cdot c$$

$$\frac{\partial f}{\partial c} = \underbrace{\frac{\partial f}{\partial z_2}}_{12} \underbrace{\frac{\partial z_2}{\partial c}}_{z_1} = 36$$

$$z_1 = a + b$$

$$\frac{\partial f}{\partial b} = \underbrace{\frac{\partial f}{\partial z_1}}_{2} \underbrace{\frac{\partial z_1}{\partial b}}_{1} = 2$$

$$z_1 = a + b$$

$$\frac{\partial f}{\partial a} = \underbrace{\frac{\partial f}{\partial z_1}}_{24} \underbrace{\frac{\partial z_1}{\partial a}}_{1} = 2^{2}$$

Symbolic differentiation

$$g_2 = \frac{\partial f}{\partial z_2} = 2 \cdot z_2$$

$$g_1 = \frac{\partial f}{\partial z_1} = \frac{\partial f}{\partial z_2} \underbrace{\frac{\partial z_2}{\partial z_1}}_{c}$$

$$g_c = \frac{\partial f}{\partial c} = \frac{\partial f}{\partial z_2} \underbrace{\frac{\partial z_2}{\partial c}}_{z_1}$$

$$g_b = \frac{\partial f}{\partial b} = \frac{\partial f}{\partial z_1} \underbrace{\frac{\partial z_1}{\partial b}}_{1}$$

$$g_a = \frac{\partial f}{\partial a} = \frac{\partial f}{\partial z_1} \underbrace{\frac{\partial z_1}{\partial a}}_{1}$$

$$\frac{\partial g_b}{\partial g_1} = \frac{\partial g_b}{\partial g_b} = 1$$

$$\frac{\partial g_b}{\partial g_2} = \underbrace{\frac{\partial g_b}{\partial g_1}}_{1} \underbrace{\frac{\partial g_1}{\partial g_2}}_{1} = 2$$

$$\frac{\partial g_b}{\partial z_2} = \underbrace{\frac{\partial g_b}{\partial g_2}}_{2} \underbrace{\frac{\partial g_2}{\partial z_2}}_{2} = 4$$

$$\frac{\partial g_b}{\partial c} = \underbrace{\frac{\partial g_b}{\partial z_2}}_{A} \underbrace{\frac{\partial z_2}{\partial c}}_{Z_1} + \underbrace{\frac{\partial g_b}{\partial g_1}}_{Z_2} \underbrace{\frac{\partial g_1}{\partial c}}_{g_2} = 4 \cdot 3 + 1 \cdot 12 = 24$$

$$\frac{\partial g_b}{\partial z_1} = \underbrace{\frac{\partial g_b}{\partial z_2}}_{\bullet} \underbrace{\frac{\partial z_2}{\partial z_1}}_{\bullet} = 8$$

$$\frac{\partial g_b}{\partial a} = \underbrace{\frac{\partial g_b}{\partial z_1}}_{\mathbf{g}} \underbrace{\frac{\partial z_1}{\partial a}}_{\mathbf{1}} = 8$$

$$\frac{\partial g_b}{\partial b} = \underbrace{\frac{\partial g_b}{\partial z_1}}_{\circ} \underbrace{\frac{\partial z_1}{\partial b}}_{1} = 8$$

Verification

$$f = ((a+b)c)^{2}$$
$$\frac{\partial f}{\partial b} = 2(a+b)c^{2}$$

Verification

$$f = ((a+b)c)^{2}$$
$$\frac{\partial f}{\partial b} = 2(a+b)c^{2}$$
$$\frac{\partial f}{\partial a \partial b} = 2c^{2} = 8$$

Verification

$$f = ((a+b)c)^{2}$$

$$\frac{\partial f}{\partial b} = 2(a+b)c^{2}$$

$$\frac{\partial f}{\partial a\partial b} = 2c^{2} = 8$$

$$\frac{\partial f}{\partial a\partial c} = 2(a+b)c = 12$$