Replication还可以这样玩

利用replication实现字段数据类型快速变更

2015中国数据库技术大会

DATABASE TECHNOLOGY CONFERENCE CHINA 2015 大数据技术探索和价值发现

HELLO. I AM 大菠萝.

个需求引发的血案

变更字段类型; int → bigint

直接在原表上修改

创建新表,导数据,交换表名

直接新表写入,旧表数据归档方式处理

方案对比

停写时间受数据量影响大

方案	优点	缺点	适用范围
A(直接修改)	操作最简单	执行时间、风险不可控	数据量较小的表
B(建表 导 数据)	不影响读取	受数据量影响较大	接受短时停写
C(建表不导数据)	执行时间短	应用需要变更逻辑	日志类型场景

需求升级

一次,全搞定!

前期概述 成果输出 方案形成

应对方案

MISSION IMPOSSIBLE

变通思路

关键点:数据量与执行时间的关系

前期概述 方案形成 成果输出

变通思路

有没有更好的方案可以控制停机后的影响数据量?

方案A(直接修改) 方案B(建表导数据)

Sch-M锁(被动停写)

数据初始化(主动停写)

影响数据量为当前快照的数据量

影响数据在停写后伴随结构变动的整个过程

方案形成

成果输出

变通思路

问题转化

如何捕获变更,持续应用到TB_A_new中,在停写后较短 的时间内达到TB A和TB A new数据一致

Transaction Replication

问题转化

利用Transaction Replication实现TB_A到TB_A_new的 "准实时同步"

优点:

- 1、将数据初始化的动作前置
- 2、有效降低"影响数据量"

实现方法

- 创建"同库异构"的复制链路
- 2、其他对象的一致性(索引、权限.....)
- 3、停写、删除复制关系、交换表名、重建复制关系

复制环路

目的:

- 实现TB_A到TB_A_new的数据同步关系
- 每个库均有TB_A、TB_A_new两个"同库异构"数据表

复制环路

复制环路

方案形成

成果输出

几点注意

维护阶段

- 停写, 检测复制延迟状态
- 删除复制链路,交换表名后重建(不初始化订阅)
- 检测新复制链路,清理旧表

人•工时

变更 数据 关联 10~100G 数据量大 Bigint 20

复制关系 Level 3

更改类型

前期概述 成果输出 方案形成

实验成果

NOTESION IMPOSSIBLE

方案形成

成果输出

实验成果

Innoll

