

APPLICATIONS OF SOFT ROBOTS IN SPACE

Nisa Keshwani Sneha Narayan Leo Dai Aayush Talluri

OVERVIEW

- Abstract
- **2.** Introduction
- 3. Robot Mechanics
- **4.** Modeling systems
- **5.** Control algorithms
- **6.** Results
- **7.** Conclusions
- **8.** Future Research
- **9.** References

ABSTRACT

VS

- Soft Robot Mechanics
 - Flexible materials and infinite degree of freedom
- Control System
 - Challenges with accuracy and modeling
- Conclusion
 - Current tech
 - Future research

INTRODUCTION

Benefits

- Minimize risk of damage / injuries
- Versatile
- Wide range of motion

Uses

- Perform inspections
- Check conditions
- Third hand

CHALLENGES

SPACE BASED

- Zero-gravity
- Vacuum
- High radiation
- Temperature swings
- Lack of air resistance

CONTROL BASED

- Unlimited movement
- ullet Materials behave nonlinearl λ
- Relative internal position changes
- Vulnerable to noise

ACTUATION

Motors

- Reliable
- Large & Rigid '
- Depressurized
- Many variants

Fluid Actuation

- Pneumatics
 - Prone to leaking
 - Flexible & Large
- Hydraulics
 - Reliable
 - Flexible & Large

ACTUATION PT.2

- Shape MetalAlloys(SMAs)
 - Flexible
 - Sensitive
 - Small

- Reactive Gels
 - Unreliable
 - Flexible
 - Small
 - Sensitive

GRIP

Constraints:

- Zero-gravity
- Vacuum
- Tiny margin of error

Options:

- Anchoring
- Rockets
- Adhesive pads

ROBOT BODY

Requirements:

- Flexible
- Resistant to impact
- Resistant to extreme temperature

Options discussed:

- Silicone based polymers
- Inflatable tubes

ARTIFICIAL MATERIALS

Silicon Polymers:

- Flexible
- Polymers' varying flexibilities
- Resilient to puncture/impact
- Stretches linearly
- Compresses nonlinearly

Inflatable Tubes

- Cheap and very compact
- Fairly simple to model due to pseudo-rigidity
- Must be sealed
- Highly susceptible to puncture

MODELING SYSTEMS

Issues:

- Infinite State Space
 - Can move to any point in any way
- Can't use classical rigid robot modeling system

PIECEWISE CONSTANT CURVATURE

Solves Infinite Dimensionality

- Divides the robot into segments (like a rigid robot)
- 2 reference points placed on each segment
 Finds relative

rotation/angle

- Angles form dynamic rigid model giving us the state space
- Rigid model state space then used to find soft robot state space

FINITE ELEMENT METHOD

Splits robot into similar nodes

- Can be any shape
- Uses Mathematical relationships to model the relationship between nodes in order to model robot
- Physical and mathematical assumptions made to reduce the Degrees of Freedom (DOF)
- Heavy Computational burden

ANALYTICAL MODELS

- Case-By-Case Scenario
- Analyzes Physics
- Fast computation speed
- But limited in uses because only specific to a particular form of robot

OPEN-LOOP CONTROL

- No feedback or sensors
 - No real time calculation or adjustment
- Requires total knowledge of robot and its environment
- In soft robotics actuators have 2 states: initial and final actuator state
- Add up to various deformation states
- Cannot account for a dynamic deforming body

CLOSED-LOOP CONTROL

- Uses sensors for feedback on the states of the robot and environment
- Involves 2 levels
 - First level: deals with individual actuator states
 - Second level: uses first level output and amodel to get state of whole robot
 - Static model
 - Dynamic Model
- Can only really be used for one robot/task

AUTONOMOUS CONTROL

- Controller is a "brain"
- Offline control uses machine learning to get parameters of robot
- Uses parameters to make kinematic and dynamic models
- Online control uses both Model Predictive Control(MPC) and model-free control
 - MPC repeatedly optimizes input for each timestep
 - Model-free control uses machine learning algorithms for decision making
- These methods dramatically increase robot adaptability

FURTHER CONTROL STRATEGIES

- Curvature Dynamic control (Closed-Loop)
 - Implement trajectory tracking in soft robots state space
 - Follows the curves in free space
- Preliminary robustness analysis (Closed-Loop)
- Cartesian Stiffness Control (Closed-Loop)
- Contact Planning (Closed-Loop)
- Above control methods performed at a higher accuracy than the PID (Proportional Integral Derivative) Controller on the Soft Robots
- Non-model On/Off Switch Control (Open-Loop)

RESULTS

Robotic Arm System

- Ability to deflate to fit into small spaces
- Optimal formation tested
 - inflatable links
 - torque motors + pressurized tank
 - adhesive pads vs silicon rubber

Control System Trials

- Used to balance movement
- Combination of algorithms to improve accuracy
- Addressing non-rigid movement

CONCLUSION

- Soft Robots' unlimited range of motion
- Improving soft robot control
- New ways to combat zero-gravity
 - Adhesive pads, anchoring robot, occupied compressed gas
- Candidate for space exploration
 - Landing

FUTURE RESEARCH

- Novel Field
- Control strategies
 - Currently using ones meant for rigid robots
- Design
 - New materials
- 2-D \rightarrow 3-D testing

REFERENCES

[1] B. A. Trimmer, G. G. Leisk, and H. T. Lin, "Soft Robotics in Space: A Perspective for Soft Robotics" Acta Futura, vol. 6, 2013. Available: ResearchGate,

https://www.researchgate.net/publication/255709006 Soft Robots in Space A Perspective for Soft Robotics [Accessed July 26, 2022]

- [2] Y. Zhang, et. al, "Progress, Challenges, and Prospects of Soft Robotics for Space Applications" Advanced Intelligent Systems, June 2022. Available: Wiley Online Library, https://onlinelibrary.wiley.com/doi/full/10.1002/aisy.202200071 [Accessed July 28, 2022]
- [3] C. D. Santina, et.al, "Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment" The International Journal of Robotics Research, January 2020. Available: https://journals.saqepub.com/doi/full/10.1177/0278364919897292 [Accessed July 25, 2022].
- [4] J. Wang, and A, Chortos, "Control Strategies for Soft Robot Systems" Advanced Intelligent Systems, February 2022. Available: Wiley Online Library, https://onlinelibrary.wiley.com/doi/10.1002/aisy.202100165 [Accessed July 26, 2022]
- [5] M. Troise, et.al, "Preliminary Analysis of a Lightweight and Deployable Soft Robot for Space Applications" MDPI, March 2021. Available: MDPI, https://www.mdpi.com/2076-3417/11/6/2558/htm

