Maths/LA/Tutorial/Ch7 (Least Squares) (Rev 24 July 2021)

Q1 Lay5e/Ch6.5/pg364/Ex1

EXAMPLE 1 Find a least-squares solution of the inconsistent system $A\mathbf{x} = \mathbf{b}$ for

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$$

Q2) Lay5e/Ch6.5/pg366/Ex4

EXAMPLE 4 Find a least-squares solution of Ax = b for

$$A = \begin{bmatrix} 1 & -6 \\ 1 & -2 \\ 1 & 1 \\ 1 & 7 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 6 \end{bmatrix}$$

Q3) Lay5e/ch6.5/pg 362/Ex2,

what is the difference of this solution to Example 1 (Q1)

EXAMPLE 2 Find a least-squares solution of $A\mathbf{x} = \mathbf{b}$ for

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -3 \\ -1 \\ 0 \\ 2 \\ 5 \\ 1 \end{bmatrix}$$

Q4) Lay4e/ch6.5/pg 368/Ex14/

14. Let
$$A = \begin{bmatrix} 2 & 1 \\ -3 & -4 \\ 3 & 2 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 5 \\ 4 \\ 4 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 4 \\ -5 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} 4 \\ -5 \end{bmatrix}$

 $\begin{bmatrix} 6 \\ -5 \end{bmatrix}$. Compute A**u** and A**v**, and compare them with **b**. Is

it possible that at least one of \mathbf{u} or \mathbf{v} could be a least-squares solution of $A\mathbf{x} = \mathbf{b}$? (Answer this without computing a least-squares solution.)

Q5) Lay5e/ch6.5/pg368/Ex17+18

In Exercises 17 and 18, A is an $m \times n$ matrix and b is in \mathbb{R}^m . Mark each statement True or False. Justify each answer.

- a. The general least-squares problem is to find an x that makes Ax as close as possible to b.
 - b. A least-squares solution of Ax = b is a vector x̂ that satisfies Ax̂ = b̂, where b̂ is the orthogonal projection of b onto Col A.
 - c. A least-squares solution of $A\mathbf{x} = \mathbf{b}$ is a vector $\hat{\mathbf{x}}$ such that $\|\mathbf{b} A\mathbf{x}\| \le \|\mathbf{b} A\hat{\mathbf{x}}\|$ for all \mathbf{x} in \mathbb{R}^n .
 - d. Any solution of $A^T A \mathbf{x} = A^T \mathbf{b}$ is a least-squares solution of $A \mathbf{x} = \mathbf{b}$.
 - e. If the columns of A are linearly independent, then the equation $A\mathbf{x} = \mathbf{b}$ has exactly one least-squares solution.

- 18. a. If **b** is in the column space of A, then every solution of $A\mathbf{x} = \mathbf{b}$ is a least-squares solution.
 - b. The least-squares solution of $A\mathbf{x} = \mathbf{b}$ is the point in the column space of A closest to \mathbf{b} .
 - c. A least-squares solution of Ax = b is a list of weights that, when applied to the columns of A, produces the orthogonal projection of b onto Col A.
 - d. If $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$, then $\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$.
 - e. The normal equations always provide a reliable method for computing least-squares solutions.
 - f. If A has a QR factorization, say A = QR, then the best way to find the least-squares solution of $A\mathbf{x} = \mathbf{b}$ is to compute $\hat{\mathbf{x}} = R^{-1}Q^T\mathbf{b}$.

Q6) Lay5e/ch6.5/pg369/Ex19+20+21

Given the following Theorem 14, answer Q6 (Ex19-21)

THEOREM 14

Let A be an $m \times n$ matrix. The following statements are logically equivalent:

- a. The equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution for each \mathbf{b} in \mathbb{R}^m .
- b. The columns of A are linearly indpendent.
- c. The matrix $A^{T}A$ is invertible.

When these statements are true, the least-squares solution $\hat{\mathbf{x}}$ is given by

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b} \tag{4}$$

- 19. Let A be an $m \times n$ matrix. Use the steps below to show that a vector \mathbf{x} in \mathbb{R}^n satisfies $A\mathbf{x} = \mathbf{0}$ if and only if $A^T A \mathbf{x} = \mathbf{0}$. This will show that Nul $A = \text{Nul } A^T A$.
 - a. Show that if $A\mathbf{x} = \mathbf{0}$, then $A^T A\mathbf{x} = \mathbf{0}$.
 - b. Suppose $A^T A \mathbf{x} = \mathbf{0}$. Explain why $\mathbf{x}^T A^T A \mathbf{x} = \mathbf{0}$, and use this to show that $A \mathbf{x} = \mathbf{0}$.
- 20. Let A be an m × n matrix such that A^TA is invertible. Show that the columns of A are linearly independent. [Careful: You may not assume that A is invertible; it may not even be square.]
- Let A be an m × n matrix whose columns are linearly independent. [Careful: A need not be square.]
 - a. Use Exercise 19 to show that $A^{T}A$ is an invertible matrix.
 - Explain why A must have at least as many rows as columns.
 - c. Determine the rank of A.