Тригонометрический ряд Фурье d2 1000

Махова Анастасия, 409

Ноябрь 2023

1 Вход и выход

Дано:

- квадрат $[0;1] \times [0;1]$ и функция $u(x,y) \in C^{\infty}[0;1] \times C^{\infty}[0;1],$
- Краевые условия (10):

$$u_x(0,y) = u(1,y) = u_y(x,0) = u(y,1) = 0$$

• Сетка (00):

$$x_0 = 0, x_N = 1, h_x = h = \frac{1}{N}$$

 $y_0 = 0, y_N = 1, h_y = h = \frac{1}{N}$

Вход:

ullet число узлов $N\ (>=2)$

Выход:

 \bullet файл '1.txt' со столбцами: $x_i,y_j,u(x_i,y_j),F(x_i,y_j),|u(x_i,y_j)-F(x_i,y_j)|$

2 Функции и формулы

 \mathbf{u} – функция u(x,y)

Generate \mathbf{x} – создаем узлы сетки (x_i) по формуле:

$$X_i = \frac{1}{N}$$

fourier – получаем значение ряда фурье в точке (x, y)

$$F(x,y) = \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} c_{nm} \cos(\pi(n+0.5)x) \cos(\pi(m+0.5)y)$$

базисная функция $\psi_{ij}^{(n,m)} = \phi_i^n \phi_j^m = \cos(\pi(n+0.5)ih)\cos(\pi(m+0.5)jh)$ она на $[0;1] \times [0;1]$ удовлетворяет граничным условиям.

$$(\psi_{ij},\psi_{kl})=egin{cases} rac{1}{2}, & i=k,j=l \ 0, & ext{иначе} \end{cases}$$

 $\mathbf{Get}_{-}\mathbf{Coef}$ – Находим коэффициенты c_{ij} ряда Фурье

$$c_{ij} = \frac{(u, \psi_{ij})_h h}{\psi_{ij}, \psi_{ij})_h h} = 2(\phi_j, (u, \phi_i)_h)_h = 2(\phi_j, \hat{c})_h$$

где
$$(f,g)_h = f(0)g(0)\frac{h}{2} + \sum_{i=1}^{N-1} f_i g_i h$$

 $\mathbf{dot}_{\mathbf{f}}\mathbf{phi}$ — возвращает скалярное произведение $(u\cdot\phi_j)_h$, чтобы получть \hat{c}_{ij}

 $\mathbf{dot}_{\mathbf{c}}$ _ \mathbf{phi} — возвращает скалярное произведение $(\hat{c}_{ij}\cdot\phi_j)_h$

Write – в '1.txt' выводим $x_i, y_j, u(x_i, y_j), F(x_i, y_j), |u(x_i, y_j) - F(x_i, y_j)|$

find р находит константу р

3 Тесты

Правильность работы:

Рис. 1: $(-x^2+1)(-y^2+1)$, 20 узлов

Рис. 2: индикатор $(0.5 - \epsilon, 0.5 + \epsilon)$, 10 узлов

Рис. 3: $\cos \pi x (1+0.5) \cos \pi y (1+0.5)$, 20 узлов

Рис. 4: $\cos \frac{5\pi x}{2} \cos \frac{5\pi y}{2}$, 20 узлов

4 Найдем р

Построим график $(\ln N; \ln \frac{1}{err})$

 $err pprox Ch^p$, тогда $p=tg(\ldots)$ посчитаем этот тангенс по 2-м точкам.

получаем, что p=