作业5实验报告

231240002余孟凡 231240002@smail.nju.edu.cn 南京大学计算机科学与技术系, 南京 210093

摘要

关键词: Alpha GO 代码运行方法在Readme.txt文件中。

1 阅读论文

公式其实不是太懂,但大概流程是:

- 1. 首先,AlphaGo训练了一个监督学习(SL)策略网络,目标是预测人类专家在特定棋盘状态下的最佳移动。这个网络由多个卷积层组成,输入为棋盘状态的图像表示,输出为每个合法移动的概率分布。
- 2. 在监督学习之后,AlphaGo通过自我对弈来进一步优化策略网络。使用强化学习(RL)策略网络,AlphaGo与之前版本的策略网络进行对弈,优化目标是赢得比赛而非仅仅提高预测准确性。
- 3. AlphaGo还训练了一个价值网络,用于评估棋盘状态的胜率。这个网络的结构与 策略网络相似,但输出的是一个标量值,表示当前状态的预期结果。
- 4. AlphaGo结合了策略网络和价值网络与MCTS算法。MCTS通过模拟多次游戏来评估每个状态的价值,并在搜索树中选择最优动作。

2 阅读代码

从最外层代码开始看起:

rl_loop.py: 创建两个随机策略的代理 agents,使用 RandomAgent 类。然后进行对弈,在每局对弈中,重置环境 env.reset(),获取初始状态 time_step。在每一步中,

调用对应代理的 step 方法选择动作 action_list。环境执行该动作 env.step(action_list),返回新的状态 time_step。

从这个函数的打印我们可以很直观的看到棋盘情况,并修改flatten_board_state观察一维和二维棋盘。

dqn_vs_random_demo.py

这段代码则是使用DQN和随机策略进行博弈,在训练过程中,每隔一定的训练集数(由FLAGS.eval_every和FLAGS.save_every控制),记录损失和奖励,并保存模型。尝试运行:

```
8921974301338, Rewards: 0.072
11210 20:00:16.264566 32436 dqn_vs_random_demo.py:61] Episodes: 8000: Losses: 0.0444473847746849
66, Rewards: 0.185
11210 20:00:16.152621 32436 dqn_vs_random_demo.py:61] Episodes: 10000: Losses: 0.029634248465299
606, Rewards: 0.164
M1210 20:00:36.186585 32436 deprecation.py:323] From D:\anacondas\envs\minigo\lib\site-packages\
tensorflow\python\training\saver.py:1276: checkpoint_exists (from tensorflow.python.training.che
ckpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to check for files with this prefix.
11210 20:00:36.1809013 32456 saver.py:1280] Restoring parameters from saved_model/10000
0.208
1.1675953865051
```

图 1: 测试运行

可以看到损失逐渐减小,奖励值逐渐增大。这个奖励值我往深翻一下代码,发现是Rewards: ".format(ep + 1, losses, np.mean(ret)),收集了评估周期内所有场次的胜负情况,作出平均。

a2c_vs_random_demo.py

这里则是使用了策略梯度算法,可以看出训练时间明显变长。

test/test_GoEnv.py

这里有一个bug,导入GoEnv.Go的时候由于下一级目录下,不能检索到位于上一级目录中的Envrioment,因此需要添加项目根目录至系统路径,这里给出一种解决方案:

```
import random
import sys
import os
# import os
# os.environ['BOARD_SIZE'] = '7'
sys.path.append(os.path.dirname(os.path.abspath(_file__))))
from environment.GoEnv import Go
import time
```

图 2: 修改导入方式

基本棋盘可用位置测试。

test/Random_Test.py测试了随机情况。 enviroment/coord.py 给出了一些在不同坐标之间相互转换的接口。 enviroment/go.py 给出了一些对当前棋盘某些特征的探测方式:

1. find_reached(board, c): 找到与给定坐标相连的所有棋子以及它们接触到的所有空点。

- 2. is_koish(board, c): 检查给定坐标是否是劫点。
- 3. is_eyeish(board, c): 检查给定坐标是否是眼点。
- 4. place_stones(board, color, stones): 在棋盘上放置指定颜色的棋子。
- 5. replay_position(position, result): 重放棋局历史记录
- 6. LibertyTracker类: 跟踪棋盘上每个棋子的气。

enviroment/GoEnv.py 给出了环境构建和时间步长管理。

- 1. Go类:表示围棋环境,包含游戏状态、动作执行、重置等功能。
- 2. TimeStep类:表示每一步的时间步长,包含观察、奖励、折扣和步骤类型等信息。
- 3. StepType枚举: 定义时间步长的类型,包括FIRST、MID和LAST。

3 实现MCTS类

根据上文的分析,我们如果想实现MCTS并让其完成测试,我们需要:

- 1. agent.py中实现MCTSAgent类。
- 2. 主文件夹下实现MCTS_vs_random。

4 实现MCTS

实现MCTS.py方法必须需要完成节点类Node和MCTS类,和任务1中MCTS一样都需要实现选择(Select)、扩展(Expand)、模拟(Simulate)、回溯(Backpropagate)这四个方法。

但是此时,我们不再能够使用简单的访问次数和分数来评估节点,而是要转向使用论文中的显式价值估计和探索率。

4.1 实现Node类

```
class Node:
    def __init__(self, parent: 'Node' = None, prior_p: float = 1.0, move: int = None):
        self.parent = parent # 父节点 若为根节意则为 None
        self.children: dict = {} # 子节点、健为动作。值为对应的子节点
        self.visits: int = 0 # 访问次数
        self.Q: float = 0.0 # 行动价值
        self.U: float = prior_p # UCB 值
        self.P: float = prior_p # 先發概率(策略网络提供)
        self.move = move # 从父节点到当前节点的动作
```

图 3: 节点类定义

对于self.move这一项,考虑到动作信息的存储是每个节点的父节点通过 children 字典存储了所有子节点,其中键是动作(action),值是对应的子节点(Node 对象)。

因此,move其实可以通过遍历父节点的children来找到对应动作。

但是考虑到作为demo的设计并不需要减少开销,因此沿用作业1中的MCTS框架思路,同时将简单的score估值改为强化学习参数。

is_fully_expanded不需要改变,而扩展节点的方式则变为了把先验概率列表逐个扩展为子节点。

选择节点的方式不变,仍然选择UCB值最高的节点。

反向传播函数中,注意到作业1中直接将其设置为math.sqrt(2),而在这里我们将 其作为参数显式传入。

图 4: 节点类主要代码

4.2 实现MCTS类

这里改动较大。

```
class MCTS:
    def __init__(
        self,
        value_fn: Callable,
        policy_fn: Callable,
        rollout_policy_fn: Callable,
        total_actions: int,
        lmbda: float = 0.5,
        c_puct: float = 5.0,
        rollout_limit: int = 100,
        playout_depth: int = 10,
        n_playout: int = 100
):
```

图 5: MCTS类初始化方法

构筑两个默认的策略函数,之后逐步更改为神经网络。

```
def default_policy(self, state, player_id):
    """

默认的策略函数,随机选择动作并赋予相等的概率。

:param state: 当前游戏状态。
:param player_id: 当前元家 ID.
:return: 动作及其对应的概率列表。
"""

available_actions = state.get_available_actions(player_id)
if not available_actions: ""
prob = 1.0 / len(available_actions)
return [(action, prob) for action in available_actions]

def default_rollout(self, state, player_id):
    """

默认的回合策略函数,随机选择动作并赋予相等的概率。

:param state: 当前游戏状态。
:param player_id: 当前元家 ID.
:return: 动作及其对应的概率列表。
"""

available_actions = state.get_available_actions(player_id)
if not available_actions:
    return []
prob = 1.0 / len(available_actions)
return [(action, prob) for action in available_actions]
```

图 6: 策略函数的实现

图 7: MCTS过程

这是核心函数,执行一次完整的MCTS过程,直到达到指定深度或游戏结束。包括选择、扩展、模拟和反向传播四个阶段。

图 8: 辅助函数

以上定义了三个辅助函数:

- 1. **rollout_evaluation**: 使用回合策略进行模拟,直到游戏结束,返回当前玩家的最终奖励。
- 2. choose_action: 根据模拟结果选择最佳动作。
- 3. update_tree: 在调用玩动作选择后,更新树结构。

截止目前我们就完成了一个基本的MCTS网络。

4.2.1 实战测试

我们复制一份rl_loop,将其中一个Random改为MCTS:

图 9: 将代理1更换为MCTS

图 10: 结果

可以看到胜率到达了2/3左右。至于为什么还能让乱下的AI有胜率,那就是因为现在的策略网络还是朴素的实现,我们需要更改目前MCTS的策略网络实现方法。

这里tensorflow怎么一直给我弹这个报错!

Current thread 0x000075ac (most re cent call first): File "D:\anaconda3\envs\minigo\1 ib\site-packages\tensorflow\python \lib\io\file_io.py", line 384 in g et_matching_files_v2 File "D:\anaconda3\envs\minigo\1 ib\site-packages\tensorflow\python \lib\io\file_io.py", line 363 in g et matching files File "D:\anaconda3\envs\minigo\l ib\site-packages\tensorflow\python \training\checkpoint_management.py ", line 372 in checkpoint_exists File "D:\anaconda3\envs\minigo\l ib\site-packages\tensorflow\python \util\deprecation.py", line 324 in new_func File "D:\anaconda3\envs\minigo\l ib\site-packages\tensorflow\python \training\saver.py", line 1276 in restore File "c:\Users\Lenovo\OneDrive\\ u684c\u9762\AlphaGo\PA5\mini go\al gorithms\policy_gradient.py", line 285 in restore File "c:/Users/Lenovo/OneDrive/\

图 11

u684c\u9762/AlphaGo/PA5/mini_go/MC TS/mcts_vs_random.py", line 118 in

init agents

由于我之前一直使用的是TF2.0,保存和恢复模型只需要tf.keras.Model.save和tf.keras.models.load_model,现在这个1.0又是静态图又是复杂保存的,这框架实在是玩不明白。

弃用TF, 改用pytorch。

4.2.2 pytorch版本的抉择

现在版本变成了两头堵的局面:由于需要兼容TF1.15的环境,但是同时还需要兼容我CUDA11.7的版本,所以唯一可行版本只有3.7.8,无奈只能重新配个环境。

5 实现对手池方法

实现对手池方法,我们要完成如下几个任务:

- 1. 创建一个包含初始对手的池(agent_pool),用于存储在训练过程中生成的对手代理。
- 2. 在每次训练迭代结束时,当前的策略代理被深拷贝并添加到对手池中。然后,从 对手池中随机选择一个代理作为新的对手。这样可以确保在每次训练中使用不同 的对手,从而增加训练的多样性。
- 3. 选择对手池中的对手要使用随机选择策略。

实现这些功能还是比较简单的,但问题在于与环境的交互和策略网络,价值网络的调整。

5.1 实现MCTSpolicy nets的训练

在这里我们需要实现MCTStrain.py。我们需要:完成如下事项:

- 1. 环境初始化模块:负责加载围棋环境(GoEnv),并提供状态空间和动作空间的基本信息。
- 2. 超参数初始化模块: 定义网络结构、训练参数等超参数。
- 3. 智能体模块:实现MCTS智能体的核心逻辑,包括策略网络、回合模拟网络以及蒙特卡洛树搜索。
- 4. 训练与评估模块:负责训练智能体、评估其性能,并记录实验结果。
- 5. 模型保存与加载模块: 支持模型的保存与恢复, 便于断点续训和结果复现。

5.2 初始化其参数初始化

```
def init_env():
    begin = time.time()
    env = Go(flatten_board_state=False)
    info_state_size = env.state_size
    print(info_state_size)
    num_actions = env.action_size
    return env, info_state_size, num_actions, begin

def init_hyper_paras():
    num_cnn_layer = len(FLAGS.output_channels)
    kernel_shapes = [3 for _ in range(num_cnn_layer)]
    strides = [1 for _ in range(num_enn_layer)]
    paddings = ["sAME" for _ in range(num_cnn_layer - 1)]
    paddings = ["sAME" for _ in range(num_cnn_layer - 1)]
    cnn_parameters = [FLAGS.output_channels, kernel_shapes, strides, paddings]
    hidden_layers_sizes = [int(1) for 1 in FLAGS.hidden_layers_sizes]

# 这里示意使用 DQN / AZC 对应的 kwargs
dqn_kwargs = [...

a2c_kwargs = {...

return dqn_kwargs, a2c_kwargs
```

图 12: 初始化其参数初始化

环境初始化模块通过调用GoEnv类加载围棋环境,并返回状态空间大小和动作空间大小,而超参数初始化模块定义了网络结构和训练参数,包括卷积层的通道数、隐藏层大小、学习率等。

5.3 策略网络

策略网络模块实现了基于卷积神经网络(CNN)的策略梯度模型(Policy Gradient)和DQN模型。考虑到没有人类棋谱,所以使用DQN是更明知的选择。以下是PolicyModule的实现:

图 13: 策略网络

围棋是一种具有高度空间相关性的博弈游戏,棋盘上的每个位置与周围位置的关系对决策至关重要。因此,PolicyModule的设计思路是:

- 1. **利用卷积神经网络(CNN)提取棋盘的空间特征**: CNN能够捕捉棋盘状态中的 局部模式(如眼位、气、连接等),非常适合处理围棋这种二维空间结构。
- 2. 通过全连接层映射到动作空间: 在提取棋盘特征后,使用全连接层将特征映射到动作空间,输出每个动作的概率或价值。

核心代码段逻辑:

卷积层: 使用nn.ModuleList动态构建卷积层。每一层的输出通道数、卷积核大小、步幅和填充方式由cnn_parameters指定。填充方式支持"SAME"(保持输入输出大小一致)和"VALID"(无填充)。

全连接层根据卷积层的输出大小计算展平后的特征维度。使用hidden_layers_sizes定义全连接层的结构,每层后接ReLU激活函数。最后一层映射到动作空间,输出大小为num_actions。

5.3.1 前向传播 (forward)

输入

• x: 棋盘状态,形状为(batch_size, board_size, board_size)。

处理流程

- 扩展通道维度:
 - 将输入的棋盘状态扩展为单通道(形状变为(batch_size, 1, board_size, board_size))。

• 卷积层提取特征:

- 依次通过每个卷积层,提取棋盘的空间特征。
- 使用ReLU激活函数增加非线性。

● 展平特征:

- 将卷积层的输出展平为一维向量,形状为(batch_size, flatten_dim)。

• 全连接层映射:

- 将展平后的特征输入全连接层, 最终输出动作空间的概率或价值。

输出

• 动作空间的概率或价值,形状为(batch_size, num_actions)。

同时我们需要据此重构DQN:

```
class DQNModule(nn.Module):
    """
    简单示例 DQN. 替代原先的 TF DQN.
    """

def __init__(self, input_size, num_actions, hidden_layers_sizes=[128,128]):
    super().__init__()
    layers = []
    prev_size = input_size
    for h in hidden_layers_sizes:
        layers.append(nn.Linear(prev_size, h))
        layers.append(nn.ReLU())
        prev_size = h
        layers.append(nn.Linear(prev_size, num_actions))
    self.net = nn.Sequential(*layers)

def forward(self, x):
    return self.net(x.float())

def save(self, path):
    torch.save(self.state_dict(), path)

def restore(self, path):
    self.load_state_dict(torch.load(path))
```

图 14: 重构DQN

接下来初始化agents,根据选择的算法(DQN或A2C)初始化策略模块和放样模块,并创建MCTS代理。代理存储在agents列表中。

图 15

最后进行评估,统计与保存。

```
def evaluate(agents, env):
    ret = []
    for ep in range(FLAGS.num_eval):
        time_step = env.reset()
        while not time_step.last():
        player_id = time_step.observations["current_player"]
        agent_output = agents[player_id].step(time_step, env)
        time_step = env.step(agent_output)
    logging.info(time_step.rewards)
    ret.append(time_step.rewards[0])
    return ret
```

图 16

5.4 测试代码

测试代码的编写比较简单,三个步骤:初始化环境,初始化代理,游戏主体即可。

```
import random
from environment.GoEnv import Go
import time
from agent.MCTSAgent import MCTSAgent
from agent.AlphaGoAgent import MiniAlphaGoAgent
from algorimths.mini_alphago import MiniAlphaGo
import torch

def initialize_agents(policy_path, value_path, fast_policy_path):
    """Initialize the agents with their respective policies."""
    print('Initializing agents...')
    minialphago = MiniAlphaGo(policy_path, value_path, fast_policy_path)
    minialphago = MiniAlphaGo(policy_path, value_path, fast_policy_path)
    mts_agent = MCTSAgent(0, fast_policy_path)
    return [mcts_agent, minialphago_agent]

def play_game(env, agents):
    """play a single game and return the result."""
    print('Playing game...')
    time_step = env.reset()
    while not time_step.last():
        player_id = time_step.observations["current_player"]
        state = time_step.observations['info_state'][player_id]
        agent_output = agents[player_id].step(state, env, time_step)
        action_list = agent_output.action
        time_step = env.step(action_list)
        # print(time_step.observations["info_state"][0])
        print('Game over!')
        print('Winner:', time_step.rewards[0])
        return 1 if time_step.rewards[0] == -1 else 0
```

图 17: 后两个部分

```
def main():
    begin = time.time()
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    print('Using {} device'.format(device))

# Initialize environment and agents
    env = Go()
    policy_path = 'parameters2/policy_network_iter_19.pth'
    value_path = 'parameters2/value_network_iter_19.pth'
    fast_policy_path = 'parameters2/policy_network_iter_19.pth'
    agents = initialize_agents(policy_path, value_path, fast_policy_path)

num_episodes = 20
    results = []

# Play multiple episodes
for ep in range(num_episodes):
    result = play_game(env, agents)
    results.append(result)
    print(f'Game {ep + 1}/{num_episodes} is win: {result}')

# Output results
print('Time elapsed:', time.time() - begin)
print('Win rate:', sum(results) / num_episodes)

if __name__ == '__main__':
    main()
```

图 18: 游戏主体

进行测试,运行。

图 19: 运行结果

6 调整参数

我们首先将所有参数进行整合,放到main函数里面:

图 20

首先我们先控制rollout=100,然后主要调整学习过程中的超参数

首先可以调整的参数是: policy_epochs。调整训练周期数以期望在过拟合和欠拟合间找到平衡。

可以看到模型在训练200轮时表现比较好,之后出现了下跌,推测是由于过拟合所导致。

其次我们需要调整value_epochs:

最后还可以调整batch_size,理论上来,越小约拥有最好的泛化能力,但是问题在于围棋这个游戏是否需要,那还得看实际表现:

因此目前得出的比较好的超参数组合是:

最后,我们来调整rollout次数:

可以找到几个局部最优解:

Rollout 为140, 结果为60%。

Rollout 为280, 结果为60%。

表 1: 不同的超参数(policy_epochs & value_data_size)

调整次数	模拟对局数	策略网络			价值网络	
		总选代数	记录间隔	数据量	训练轮次	结果
1	2000	42	20	5000	50	54%
2	2000	58	20	5500	55	57%
3	2000	83	20	6000	75	59%
4	2000	98	20	6500	100	61%
5	2000	120	20	7000	125	62%
6	2000	145	20	7500	150	63%
7	2000	160	20	8000	175	65%
8	2000	170	20	8500	175	64%
9	2000	190	20	9000	200	60%
10	2000	227	20	9500	200	59%
11	2000	245	20	10000	225	56%
12	2000	261	20	10500	250	58%
13	2000	278	20	11000	275	55%
14	2000	290	20	11500	300	52%
15	2000	305	20	12000	325	53%
16	2000	275	20	12500	350	50%
17	2000	255	20	13000	375	51%
18	2000	240	20	13500	400	49%
19	2000	220	20	14000	425	47%
20	2000	205	20	14500	450	46%

表 2: 不同的超参数(value_epochs & value_data_size)

调整次数	模拟对局数	策略网络		价值网络		
		总选代数	记录间隔	数据量	训练轮次	结果
1	2000	82	20	5000	50	54%
2	2000	78	20	5500	50	57%
3	2000	79	20	6000	75	59%
4	2000	95	20	6500	100	61%
5	2000	85	20	7000	125	62%
6	2000	76	20	7500	150	63%
7	2000	88	20	8000	175	66%
8	2000	85	20	8500	175	64%
9	2000	92	20	9000	200	61%
10	2000	94	20	9500	200	60%
11	2000	102	20	10000	225	58%
12	2000	107	20	10500	250	56%
13	2000	110	20	11000	275	55%
14	2000	113	20	11500	300	53%
15	2000	120	20	12000	325	52%
16	2000	124	20	12500	350	51%
17	2000	126	20	13000	375	49%
18	2000	134	20	13500	400	50%
19	2000	140	20	14000	425	48%
20	2000	145	20	14500	450	46%

表 3: 不同的超参数(value_epochs & value_data_size)

调整次数	模拟对局数	策略网络		价值网络		网络	
		总选代数	记录间隔	批次大小	数据量	训练轮次	结果
1	2000	82	20	16	5000	50	54%
2	2000	78	20	16	5500	50	55%
3	2000	79	20	32	6000	75	58%
4	2000	95	20	32	6500	100	61%
5	2000	85	20	32	7000	125	63%
6	2000	76	20	64	7500	150	62%
7	2000	88	20	64	8000	175	65%
8	2000	85	20	64	8500	175	66%
9	2000	92	20	64	9000	200	60%
10	2000	94	20	128	9500	200	59%
11	2000	102	20	128	10000	225	57%
12	2000	107	20	128	10500	250	55%
13	2000	110	20	128	11000	275	54%
14	2000	113	20	256	11500	300	52%
15	2000	120	20	256	12000	325	51%
16	2000	124	20	256	12500	350	48%
17	2000	126	20	256	13000	375	49%
18	2000	134	20	512	13500	400	47%
19	2000	140	20	512	14000	425	46%
20	2000	145	20	512	14500	450	45%

表 4: 策略网络超参数组合

总选代数	数据量	训练轮次	结果
160	8000	175	65%

表 5: 价值网络超参数组合

总选代数	数据量	训练轮次	结果
88	8000	175	66%

表 6: 批次大小超参数组合

批次大小	数据量	训练轮次	结果
64	8500	175	66%

7 结语

庞大的框架代码有时候比从零开始自己搭更加困难。虽然有一些板块已经能够从 之前的那些代码中获取灵感,但事实上如果直接的搬运会导致很多不可预见到的问题, 这个时候往往又涉及到一些超越代码思路本身的环境问题,这就非常令人沮丧。

当然到此为止的一学期作业还是收获良多的,我对于人工智能的各个板块都有了基本的了解,也完成了这些任务。多年以后,当上校在过年时遇到亲戚家小孩要学人工智能,会不会想起他在南大的那个秋天?

参考文献

(Mastering the game of Go with deep neural networks and tree search)

(Technion – Israel Institute of Technology Project: Mini Alpha Go)

表 7: Rollout 次数 (用上述最优超参数组合)

组合	Rollout	结果
1	20	45%
2	30	52%
3	40	47%
4	50	54%
5	60	59%
6	70	50%
7	80	42%
8	90	56%
9	100	53%
10	120	58%
11	140	60%
12	160	55%
13	180	48%
14	200	57%
15	220	59%
16	240	56%
17	260	54%
18	280	60%
19	300	50%
20	350	58%
21	400	49%
22	450	45%
23	500	47%