

Overview

1. Results

Metric aggregation

User query
$$m = (m_1, ... m_n) \\ \text{Inference metric} \\ \delta = \sum_{i=1}^n \alpha_i m_i$$

- Use only one metric ⇒ Not whole phenomenon captured
- Hence why, aggregated metric
 - Weighted average?
 - Ranking?

Pipeline in inference

• C confidence metric, C=0 if there is an hallucination.

Pipeline: training

- C confidence metric, C=0 if there is an hallucination.
 - On what data?
 - $(m_i, C_i)_{i=1}^N$? \Longrightarrow MC Sample of m_i on $(x_i)_{i=1}^N \Longrightarrow$ Logistic regression.
 - Few-shot learning or use dataset for hallucination detection RAGTruth [arxiv.org:2401.00396] and the learned coefficients $(\alpha_i^{RAGTruth})_{i=1}^n \approx (\alpha_i^{data})_{i=1}^n$ (OOD generalization).

Causal perspectives

E: External context or knowledge, P: parametric knowledge, H: hallucination

MixPE
which combines both
P and E directly using
uncertainty or sampling
techniques

P confounded by E: which relies on the LLM's hidden states for hallucination detection

Eigenscore ReDeEP

E confounded by P: by leveraging external context and model responses

RAGAS metrics LMvLM...

Challenges faced

- Find annotated dataset
- Better incorporate lingo terminology
 - LoRA on a fine-tuning dataset
- Better define « hallucination »
 - Number-based in particular...
- Topological structure of metrics
- Find insightful benchmarks as methods are recent