Имуногенетика, наследствени имунодефицитни състояния

ДОЦ. Д-Р ТРИФОН ЧЕРВЕНКОВ КАТЕДРА ПО МЕДИЦИНСКА ГЕНЕТИКА

Имуногенетика

Дял на медицинската генетика, разглеждащ взаимовръзката между имунната система и генетиката.

Главен комплекс за тъканна съвместимост

- Антигенно представяне
 - Ендогенни пептиди
 - ► MHCI::TCR + CD8
 - Екзогенни пептиди
 - ► MHC II :: TCR + CD4
 - Костимулация

Главен комплекс за тъканна съвместимост

Главен комплекс за тъканна съвместимост

HLA MHC KOMINEKC

HLA MHC комплекс

HLA locus	Number of Class I alleles	HLA locus	Number of Class II alleles
HLA-A	1601	HLA-DRB	1027
HLA-B	2125	HLA-DQA1	44
HLA-C	1102	HLA-DQB1	153
		HLA-DPA1	32
		HLA-DPB1	149

HLA номенклатура

SGE Marsh 04/10

Имунна система: клонална теория

Организация на имуноглобулиновите гени в зародишната линия

Имунна система: клонална теория

gene in B cell

Имунна система: клонална теория

TABLE 7-4 Combinatorial antibody diversity in humans

Nature of segment	Number of heavy-chain segments (estimated)	Number of κ-chain segments (estimated)	Number of λ-chain segments (estimated)	
V	41	41	33	
D	23			
J	6	5	5	
Possible number of combinations	$41 \times 23 \times 6 = 5658$	$41 \times 5 = 205$	$30 \times 5 = 165$	
Possible number of heavy-light chain combinations in the human $= 5658 \times (205 + 165) = 2.09 \times 10^6$				

Първични имунодефицити

Генетични

>120 заболявания

>300 гена

Класификация на ПИД – начало 1973 г.

J Clin Immunol (2015) 35:696–726 DOI 10.1007/s10875-015-0201-1

ORIGINAL RESEARCH

Primary Immunodeficiency Diseases: an Update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015

Capucine Picard ^{1,2} · Waleed Al-Herz ^{3,4} · Aziz Bousfiha ⁵ · Jean-Laurent Casanova ^{1,6,7,8,9} · Talal Chatila ¹⁰ · Mary Ellen Conley ⁶ · Charlotte Cunningham-Rundles ¹¹ · Amos Etzioni ¹² · Steven M. Holland ¹³ · Christoph Klein ¹⁴ · Shigeaki Nonoyama ¹⁵ · Hans D. Ochs ¹⁶ · Eric Oksenhendler ^{17,18} · Jennifer M. Puck ¹⁹ · Kathleen E. Sullivan ²⁰ · Mimi L K. Tang ^{21,22,23} · Jose Luis Franco ²⁴ · H. Bobby Gaspar ²⁵

Фенотипна класификация на ПИД

Класификация на ПИД

- 1. Комбинирани имунодефицити
- 2. Комбинирани имунодефицити с асоциирани други симптоми или синдроми
- 3. Предимно антитялови дефицити
- 4. Заболявания с имунна дисрегулация
- 5. Вродени дефекти на фагоцитния брой, функция или и двете
- 6. Дефекти във вродения имунитет
- 7. Автоинфламаторни заболявания
- 8. Дефицити на комплемента
- 9. Фенокопия на ПИД

Първични имунодефицити – общи прояви

- Рекурентни инфекции
 - **Тежки**
 - ▶ С УС∧ОЖНЕНИЯ
 - с множество локализации
 - резистентни на лечение
 - причинени от необичайни организми
 - срещат се в членовете на фамилията
- Асоциация с автоимунитет
- Асоциация с неоплазми
- ▶ По-често срещани от очакваното/леки прояви

Първични имунодефицити – общи прояви

- Начало на изявите
 - < 6 мес. предполага Т-клетъчен дефект (майчини антитела 6-9 мес.)</p>
 - между 6-12 мес. предполага комбиниран В- и Т-клетъчен дефект или Вклетъчен дефект
 - ▶ > 12 мес. предполага В-клетъчен дефект или вторичен имунодефицит

Комбинирани имунодефицити (1)

- ▶ Имунодефицити, засягащи клетъчния (T-Ly) и хуморалния (B-Ly) имунитет
- Пример RAG1/RAG2 дефицит (T-B-NK+ SCID; ОМІМ 601457)
 - ▶ Унаследяване: AR (RAG1/RAG2; 11р12)
 - ▶ Т-лимфоцити: значително понижени
 - В-лимфоцити: значително понижени
 - ▶ Серумни Ід: понижени
 - Клиника: тежки инфекции, ранно начало
 - ▶ Лечение: алогенна трансплантация на хемопоетични стволови клетки

Комбинирани имунодефицити с асоциир<mark>ан</mark>и други симптоми или синдроми (2)

- Имунодефицити, засягащи клетъчния (T-Ly) и хуморалния (B-Ly) имунитет и наличие на допълнителни симптоми или синдроми
- ▶ Пример: Синдом на Wiscott-Aldrich (ОМІМ 301000)
 - ▶ Унаследяване: XLR (WASP; Xp11.23); WASP: регулатор на актин, имунологичен синапс, експресия в хемопоетични кл.
 - ▶ Т-лимфоцити: прогресивно понижение, абнормен отговор на анти-CD3
 - В-лимфоцити: нормален брой
 - ► Серумни Ig: понижени IgM, често увеличени IgA и IgE
 - Клиника: тромбоцитопения с малки тромбоцити; екзема; лимфоми; автоимунни заболявания; бактериални/вирусни инф.
 - Лечение: алогенна трансплантация на хемопоетични стволови клетки

Синдом на Wiscott-Aldrich

Eczematous lesions in Wiskott-Aldrich syndrome

Eczema and petechiae in WAS

History: subdural hematoma for which trauma was denied; platelet count reduced; a missense mutation (Phe 128 Ser) detected in WASP gene.

Клетъчни или комбинирани дефицити

- Потенциално по-ранно начало
- Изглеждат болни
- Забавен растеж (теглото е по-важно от ръста)
- Тежки "обриви от пелените" или орална кандидиаза (млечница)
- Кожни вирусни инфекции
- Хронична упорита диария
- Упорити вирусни инфекции от респираторен синцитиален вирус, параинфлуенца, цитомегаловирус (CMV), Epstein Barr вирус (EBV), аденовирус
- Обикновено инфекциите са без лимфаденопатия, с малки изключения
- Необходимо е да се изключи HIV с директен тест (PCR) а не серология!

Клетъчни или комбинирани дефицити

- ДКК: лимфопения?
- Скрининг: T-cell receptor excision circles (TRECs)
- Педиатрична спешност!!!
- Ваксини: както при антитялови дефицити
- Лечение: HSCT; прогнозата зависи от броя и тежестта на прекараните инфекции

Предимно антитялови дефицити (3)

- Антитялови дефицити: засягане на функцията на В-лимфоцитите
- ▶ Пример: Агамаглобулнемия тип Bruton (ОМІМ 300755), първият идентифициран ПИД!
 - ▶ Унаследяване: XLR (ВТК; Хq22.1); ВТК: сигнализация на ВСР
 - ▶ Серумни Ig: понижени всички класове
 - Клиника: предимно бактериални инфекции, начало след 10-12 м. възраст
 - ▶ Лечение: заместително лечение с IVIG/SCIG; алогенна трансплантация на хемопоетични стволови клетки

Предимно антитялови дефицити (3)

Полезни физикални находки

- Намален размер на тонзилите и лимфните възли (агамаглобулинемия)
- ► Лимфаденомегалия и спленомегалия (CVID, AR Hyper-IgM)
- Цикатрикси върху тъпанчевите мембрани
- Белодробна находка, барабанни пръсти

Предимно антитялови дефицити (3)

Клинична изява

- Рекурентни синопулмонални инфекции
- Пневмония с фебрилитет
- Синуити документирани чрез X-гау или СТ
- Otitis media (може да е нормално!!!). Продължителни епизоди.
- Менингит и/или сепсис
- Гастроинтестинални инфекции, хронична диария или малабсорбция
- Кожни инфекции

Антитялови дефицити

- ▶ Ig нива (IgG, IgA, IgM and IgE), забележка: възраст
- ▶ IgA дефицит: чувствителност на лабораторните тестове
- Хипер IgM може да е резултат от HIV
- ▶ IgG подкласове/селективен Ig дефицит
- Специфични Ig към ваксини
 - Белтъчни (тетанус, дифтерия)
 - Полизахариди (23-валентна пневмококова)
 - Изохемаглутинини (след 2 г. възраст, анти-А ≥ 1:8, анти-В ≥ 1:4, без АВ!!!)

Антитялови дефицити

- ▶ Ig се измерват преди терапия (IVIG, SCIG)
- ▶ Фалшиво негативни серологични тестове!!!
- Фалшиво позитивни серологични тестове след терапия!!!
- Микробиология/вирусология: директни тестове!!!

Антитялови дефицити

- ▶ Доживотна субституираща терапия с IVIG или SCIG
- ► IVIG полуживот 19-21 дни
- ▶ IVIG: основно IgG; следи от IgM и IgA; ! IgA дефицит
- Терапията е профилактична!!! При инфекция активно поведение!!!
- Ваксинации: без живи ваксини!!! Орална polio, жълта треска, жива отслабена influenza, тифоидна треска.
- ▶ Ваксинации: близките могат, без орална polio

Заболявания с имунна дисрегулация (4)

- ▶ Пример: Автоимунен лимфопролиферативен синдром (ALPS, OMIM 601859)
 - Унаследяване: AD (TNFRSF6/CD95/Fas; 10q23.31)
 - Т-лимфоцити: повишени CD4-CD8-TCRaβ двойнонегативни (DN) Т-лимфоцити
 - В-лимфоцити: нормален брой
 - Функционален дефект в апоптозата
 - Клиника: спленомегалия, аденопатии, автоимунни цитопении, повишен риск за развитие на лимфоми
 - Лечение: алогенна трансплантация на хемопоетични стволови клетки

Вродени дефекти на фагоцитния брой, функция или и двете (5)

- ▶ Пример: Х-свързана хронична грануломатозна болест (СGD, ОМІМ 306400)
 - Унаследяване: XLR (СҮВВ; Xp21.1-p11.4); cytochrome b subunit beta
 - Засегнати клетки: неутрофилни гранулоцити и макрофаги
 - Функционален дефект в респираторен взрив/генериране на супероксид
 - Клиника: хронични бактериални инфекции с формиране на грануломи
 - Лечение: интерферон гама, алогенна трансплантация на хемопоетични стволови клетки

Дефекти във вродения имунитет (6)

- Пример: Medelian Susceptibility to mycobacterial disease (MSMD)
 - Унаследяване: AR (IL-12р40; 5q33.3, ОМІМ 614890); IL-12р40 субединица на IL-12/IL-23
 - Засегнати клетки: макрофаги
 - Функционален дефект: намалена секреция на IFN gamma
 - ► Клиника: предразположение към инфекции с Mycobacteria и Salmonella
 - Лечение: интерферон гама, алогенна трансплантация на хемопоетични стволови клетки

Автоинфламаторни заболявания (7)

- Пример: фамилна средиземноморска треска (FMF)
 - ▶ Унаследяване: AR (MEFV; 16р13.3, OMIM 134610); Pyrin
 - Засегнати клетки: неутрофилни гранулоцити и макрофаги
 - ▶ Функционален дефект: свръхсекреция на IL1-beta
 - Клиника: рекурентни трески без инфекциозена причина
 - Лечение: колхицин

Дефекти на комплемента (8)

- Пример: С1q дефицит
 - ▶ Унаследяване: AR (C1QA; 1р36.12, ОМІМ 613652);
 - ▶ Клиника: СЛЕ и инфекции с капсулирани микроорганизми
 - ▶ Лечение: профилактика с ваксинации, антибиотично лечение

Фенокопия на ПИД (9)

- Пример: Автоимунен лимфопролиферативен синдром в резултат на соматични мутации!
 - Λοκус TNFRSF6/CD95/Fas; 10q23.31
 - Т-лимфоцити: повишени CD4-CD8-TCRaβ двойнонегативни (DN) Тлимфоцити
 - В-лимфоцити: нормален брой
 - Функционален дефект в апоптозата
 - Клиника: спленомегалия, аденопатии, автоимунни цитопении, повишен риск за развитие на лимфоми
 - Лечение: алогенна трансплантация на хемопоетични стволови клетки

ПИД: перспективи

- ▶ Диагноза: NGS
- ▶ Скрининг: T-cell receptor excision circles (TRECs)
- Лечение: генна терапия!

Благодаря за вниманието!