

Algèbre linéaire et analyse 1

(HLMA101 - Année universitaire 2020-2021)

Feuille d'exercices Nº9

1. ÉCHAUFFEMENT (AVANT LES TD)

Question 1. On énonce le théorème des valeurs intermédiaires : « si $f:[a,b] \to \mathbb{R}$ est continue, alors...

- (a) ... $f([a,b]) \subset [f(a), f(b)] \gg$.
- (b) ... $[f(a), f(b)] \subset f([a, b]) \gg$.

Compléter avec la bonne conclusion (justifier).

Question 2. Vrai ou faux?

- (a) Une fonction continue est dérivable.
- (b) Une fonction dérivable est continue.
- (c) Si f n'est pas dérivable en a, alors f n'est pas continue en a.

2. Travaux dirigés

Exercice 1. Justifier que l'équation $e^x + x^3 = 5$ a une et une seule solution sur \mathbb{R} . Déterminer cette solution à 10^{-2} près par une méthode de dichotomie (à l'aide d'une calculatrice).

Exercice 2. Montrer que l'application $f:]-1, +\infty [\to \mathbb{R}$ définie par $f(x) = \frac{x}{1+x}$ est strictement croissante (sans utiliser de dérivée) puis que pour tout $y \in]-1, 1[$ il existe un unique $x \in]-1, +\infty[$ tel que f(x) = y.

Exercice 3. Soit $f:[0,1] \to [0,1]$ une fonction continue. Montrer qu'il existe un point fixe, c'est-à-dire un réel x de [0,1] tel que f(x) = x.

Exercice 4. Soient I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ continue, telle que pour chaque $x \in I$, $f(x)^2 = 1$. Montrer que f est constante égale à 1 ou constante égale à -1.

Exercice 5. La fonction $x \mapsto \frac{x}{1+|x|}$ est-elle dérivable en 0?

Exercice 6. La fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x \sin(\frac{1}{x})$ pour $x \neq 0$ et f(0) = 0 est-elle dérivable en 0? Même question pour la fonction $g: \mathbb{R} \to \mathbb{R}$ définie par $g(x) = x^2 \sin(\frac{1}{x})$ pour $x \neq 0$ et g(0) = 0.

Exercice 7. Démontrer que les courbes d'équations $y = x^2$ et $y = \frac{1}{x}$ admettent une unique tangente commune.

3. Révisions et approfondissement

Exercice 8. Soit $f: \mathbb{R} \to \mathbb{R}$ continue et périodique de période 1, c'est-à-dire que f(x+1) = f(x) pour tout x réel. Montrer qu'il existe $x_0 \in \mathbb{R}$ tel que $f(x_0 + \frac{1}{2}) = f(x_0)$ (indication : essayer d'utiliser la fonction définie par $g(t) = f(t + \frac{1}{2}) - f(t)$ pour tout t réel).

Exercice 9. Montrer que si $f:[a,b] \to \mathbb{R}$ est injective et continue avec f(a) < f(b), alors f est strictement croissante.

Exercice 10. Soit f une fonction dérivable en un point $a \in \mathbb{R}$. Montrer que

$$\frac{xf(a) - af(x)}{x - a}$$

admet une limite lorsque x tend vers a.

Exercice 11. Essayer de prolonger par continuité les fonctions suivantes :

- (a) en 0 la fonction f définie pour tout $x \neq 0$ par $f(x) = x^2 \arctan\left(\frac{1}{x}\right)$;
- (b) en $\frac{\pi}{2}$ la fonction g définie pour tout $x \neq \frac{\pi}{2}$ par $g(x) = \sin(x)/\ln\left(\left|x \frac{\pi}{2}\right|\right)$.
- (c) en 0 la fonction définie pour tout $x \neq 0$ par $h(x) = \sin(x)\sin(1/x)$.

Défi. On suppose que la température varie continûment à la surface du globe. Montrer qu'il existe deux points diamétralement opposés où la température est identique.