

UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERÍA CENTRO DE DOCENCIA DE CIENCIAS BÁSICAS PARA INGENIERÍA

TRABAJO GRUPAL EXTERNO

Métodos Numéricos para Ingeniería

1 Introducción

El Trabajo Grupal Externo (TGE) de la asignatura Métodos Numéricos para Ingeniería, tiene como objetivo evaluar la puesta en práctica de algunos métodos numéricos a través de la resolución de un problema que incluya la implementación computacional de éstos. Además, la resolución de este trabajo contribuirá a desarrollar competencias genéricas relacionadas con la responsabilidad, el trabajo en equipo y la comunicación oral y escrita.

2 Organización

El TGE debe realizarse en grupos de 4 a 5 personas, **NO SE HARÁN EXCEPCIONES** al respecto. El grupo que no cumpla con este requisito, será evaluado con nota 1.0 en el TGE.

3 Evaluación

3.1 Informe del trabajo

En este informe, se debe evidenciar comprensión del problema a resolver incluyendo el modelamiento, los métodos que se utilizarán para su resolución y la implementación del problema concreto, así como también los resultados y conclusiones obtenidas. Las conclusiones tendrán que incorporar una reflexión por parte de los integrantes del grupo acerca del proceso de la resolución del problema y finalmente, se debe citar la bibliografía consultada. Éste debe estar bien presentado, ajustándose al formato entregado.

3.2 Programación de los métodos numéricos

En la programación, se debe implementar las rutinas que se utilizarán en el desarrollo del trabajo.

3.3 Póster del trabajo

En este póster, cada grupo debe adecuar las ideas centrales de su trabajo. Éste debe estar bien presentado, ajustándose al formato entregado.

3.4 Exposición del trabajo

En esta exposición, utilizando el póster, cada grupo dispondrá de a lo más 20 minutos para exponer las ideas principales que desarrollaron en su trabajo. Una vez finalizada la exposición, los profesores de la asignatura tendrán a lo más 10 minutos para formular preguntas relacionadas con el trabajo.

Observación: Los estudiantes que falten a la exposición serán evaluados con nota 1.0 en ella.

3.5 Calificación del trabajo

Este TGE aporta un 25% al promedio semestral y su calificación se obtendrá a partir del informe final, la programación de los métodos, el póster y la presentación del trabajo:

Informe del trabajo	40%
Programación de los métodos numéricos	20%
Póster del trabajo	20%
Presentación del trabajo	20%

Se les proporcionará una escala de apreciación para el informe, la programación de los métodos, el póster y la exposición del trabajo, a partir de la cuál se generará la calificación final.

4 Forma de entrega del Trabajo Grupal Externo

4.1 Forma de entrega del trabajo

En la carpeta Tareas de SIVEDUC deberán subir los documentos relacionados con el informe, la programación implementada y el póster del trabajo. Cada grupo debe escoger un **representante de grupo**, cuyo nombre y apellido irán en los documentos que suban a la plataforma. La forma y fecha de entrega se indica a continuación:

• Trabajo final: Debe ser una carpeta comprimida que contenga los archivos del informe, programación de los métodos y póster.

TGE_Nombre_Apellido.rar o .zip

Plazo máximo de entrega: Lunes 27 de noviembre de 2017, 12:00 hrs.

4.2 Presentación del trabajo

La fecha de presentación del trabajo será informada oportunamente al representante de cada grupo.

5 Problema

En este trabajo, consideraremos la deflexión de una placa cuadrada. El fenómeno y las actividades a realizar se presentan a continuación.

5.1 Deflexión de una placa

Una placa cuadrada, apoyada simplemente en sus extremos está sujeta a una carga por unidad de área q (figura 1). La deflexión en la dimensión z = z(x, y) se determina resolviendo la EDP elíptica

$$\frac{\partial^4 z}{\partial x^4} + 2 \frac{\partial^4 z}{\partial x^2 \partial y^2} + \frac{\partial^4 z}{\partial y^4} = \frac{q}{D}$$
 (1)

sujeta a condiciones de frontera en los extremos, donde la deflexión y la pendiente normal a la frontera son cero. El parámetro D es la rigidez de flexión,

$$D = \frac{E\Delta z^3}{12\left(1 - \sigma^2\right)} \tag{2}$$

donde E es el módulo de elasticidad, Δz es el espesor de la placa y σ es la razón de Poisson.

Si definimos una nueva variable como sigue

$$u(x,y) = \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}$$

la ecuación (1) queda como

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{q}{D} \tag{3}$$

Por lo tanto, el problema se reduce a resolver de manera sucesiva dos ecuaciones de Poisson. Primero, de la ecuación (3) de donde se obtiene u sujeta a la condición de frontera u=0 en los extremos, y luego los resultados se emplean junto con

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = u \tag{4}$$

para obtener z sujeta a la condición de que z=0 en los extremos.

Figura 1: Placa cuadrada apoyada en forma simple, sujeta a una carga por unidad de área.

5.2 Actividades

1. Utilizando el método de diferencias finitas progresivas

$$\begin{array}{ll} \frac{\partial^2 f(x,y)}{\partial x^2} & \approx & \frac{f(x+\Delta x,y)-2f(x,y)+f(x-\Delta x,y)}{\Delta x^2} \\ \\ \frac{\partial^2 f(x,y)}{\partial y^2} & \approx & \frac{f(x,y+\Delta y)-2f(x,y)+f(x,y-\Delta y)}{\Delta y^2} \end{array}$$

Determine los sistemas de ecuaciones lineales que permiten encontrar $u(x_i, y_j)$ y $z(x_i, y_j)$, donde $x_i = x_{i-1} + \Delta x$ e $y_j = y_{j-1} + \Delta y$ con i = 1, ..., n y j = 1, ..., m.

- 2. Para resolver mediante el método de Cholesky los sistemas definidos en el item anterior, implemente una rutina que debe contener como parámetros de entrada los valores: Largo de la Placa $L, q, \sigma, \Delta z, E$, además de los incrementos Δx y Δy . [2, 3, 4]
- 3. Determine la solución para el problema de deflexión de la placa usando el programa generado en el item anterior, considerando una placa cuadrada de 2 [m] de lado, $q=33.6 [kN/m^2]$, $\sigma=0.3, \Delta z=10^{-2} [m], E=2\times 10^{11} [Pa], m=100$ y n=100. Justifique porqué el método de Cholesky es factible de utilizar.
- 4. Para resolver mediante el método de Gauss-Seidel los sistemas definidos en el item anterior, implemente una rutina que debe contener como parámetros de entrada los valores: Largo de la Placa L, q, σ , Δz , E, además de los incrementos Δx y Δy , la tolerancia de error (Tol) y el número máximo de iteraciones (MaxIter). [2, 3, 4]
- 5. Determine una aproximación numérica de z usando el programa generado en el item anterior, considerando una placa cuadrada de 2 [m] de lado, $q = 33.6 [kN/m^2]$, $\sigma = 0.3$, $\Delta z = 10^{-2} [m]$, $E = 2 \times 10^{11} [Pa]$, m = 100 y n = 100. Justifique porqué el método de Gauss-Seidel es factible de utilizar.
- 6. Compare la solución obtenida por el método de Cholesky con la aproximación numérica entregada por el método de Gauss-Seidel.

Observación: Para el desarrollo de estas actividades (y por ende, del trabajo en su totalidad), solo podrán utilizar como textos guías las referencias entregadas en este documento u otros libros, artículos, trabajos de título, etc. que sean correctamente referenciados.

References

- [1] Dennis G. Zill, Michael R. Cullen, Ecuaciones Diferenciales con Problemas con Valores en la Frontera.
- [2] RICHARD L. BURDEN, J. DOUGLAS FAIRES, Análisis Numérico.
- [3] STEVEN C. CHAPRA, RAYMOND P. CANALE, Métodos Numéricos para Ingenieros.
- [4] JOHN H. MATHEWS, KURTIS D. FINK, Métodos Numéricos con MATLAB.