WHAT IS CLAIMED IS:

I	1. A method comprising:
2	selecting a first allocated memory block from a plurality of allocated memory
3	blocks, wherein the first allocated memory block includes a first
4	allocated memory block address;
5	searching other allocated memory blocks of the plurality of allocated memory
6	blocks for a reference to the first allocated memory block;
7	verifying that the first allocated memory block is a memory leak when the
8	reference to the first allocated memory block is not found in the other
9	allocated memory blocks of the plurality of allocated memory blocks;
10	and
11	reporting the first allocated memory block as a memory leak.
1	2. The method of claim 1 wherein the selecting the first allocated memory
2	block from the plurality of allocated memory blocks further comprises:
3	selecting the first allocated memory block address from operating system
4	memory management information.
1	3. The method of claim 1 wherein each of the plurality of allocated memory
2	blocks includes a header portion, and wherein the searching other allocated memory
3	blocks of the plurality of allocated memory blocks further comprises:
4	searching the header portions of the other allocated memory blocks of the
5	plurality of allocated memory blocks for a reference to the first
6	allocated memory block.
1	4. The method of claim 1 wherein the searching other allocated memory
2	blocks of the plurality of allocated memory blocks further comprises:
3	searching for an occurrence of the first allocated memory block address in the
4	other allocated memory blocks of the plurality of allocated memory
5	blocks.
1	5. The method of claim 1 further comprising:
2	examining a reference counter corresponding to the first allocated memory
3	block.

I	6. The method of claim I wherein the verifying that the first allocated
2	memory block is a memory leak further comprises:
3	determining whether the first allocated memory block has been deallocated.
1	7. The method of claim 1 wherein the first allocated memory block includes a
2	header portion, and wherein the verifying that the first allocated memory block is a
3	memory leak further comprises:
4	examining the header portion of the first allocated memory block.
1	8. The method of claim 1 wherein the verifying that the first allocated
2	memory block is a memory leak further comprises:
3 4	examining free block memory management information maintained by an operating system.
1	9. The method of claim 1 wherein the reporting the first allocated memory
2	block as a memory leak further comprises:
3	displaying to a user at least one of: a program counter value, a process
4	identification value, a process name, an initial block count, a previous
5	block count, a current block count, a linearity value, the first allocated
6	memory block address, and contents of the first allocated memory
7	block.
1	10. The method of claim 1 wherein the reporting the first allocated memory
2	block as a memory leak further comprises:
3	storing in a data structure at least one of: a program counter value, a process
4	identification value, a process name, an initial block count, a previous
5	block count, a current block count, a linearity value, the first allocated
6	memory block address, and contents of the first allocated memory
7	block.
1	11. The method of claim 1 further comprising:
2	searching the first allocated memory block for a reference to at least one of the
3	plurality allocated memory blocks; and
4	storing the first allocated memory block address in a contingency chain
5	corresponding to the at least one of the plurality allocated memory

O	blocks when a reference to the at least one of the plurality affocated
7	memory blocks is found in the first allocated memory block.
1	12. The method of claim 1 further comprising:
2	examining a contingency chain corresponding to one of the plurality of
3	allocated memory blocks to determine whether any of the plurality of
4	allocated memory blocks references the one of the plurality of
5	allocated memory.
1	13. The method of claim 1 further comprising:
2	forming a contingency chain for each of the plurality of allocated memory
3	blocks, wherein each contingency chain is indexed by an allocated
4	memory block address of the corresponding each of the plurality of
5	allocated memory blocks.
1	14. A system comprising:
2	a memory;
3 /	a processor coupled to the memory; and
4	a memory leak detection system (MLDS) engine, wherein at least a portion of
5	the MLDS engine is encoded as instructions stored in the memory and
6	executable on the processor, and wherein the MLDS engine is
7	configured to:
8	select a first allocated memory block from a plurality of allocated
9	memory blocks stored in the memory, wherein the first
10	allocated memory block includes a first allocated memory
11	block address;
12	search other allocated memory blocks of the plurality of allocated
13	memory blocks for a reference to the first allocated memory
14	block;
15	verify that the first allocated memory block is a memory leak when the
16	reference to the first allocated memory block is not found in the
17	other allocated memory blocks of the plurality of allocated
18	memory blocks; and
19	report the first allocated memory block as a memory leak.

I	15. The system of claim 14 further comprising at least of an MLDS data
2	structure application programming interface (API), an MLDS command API, an
3	MLDS data structure, and a command line interface (CLI) parser stored in at least one
4	of the memory and a storage device accessible by the processor.
1	16. The system of claim 14 wherein the MLDS engine is further configured
2	to:
3	select the first allocated memory block address from operating system memory
4	management information.
1	17. The system of claim 14 wherein each of the plurality of allocated memory
2	blocks includes a header portion, and wherein the MLDS engine is further configured
3	to:
4	search the header portions of the other allocated memory blocks of the
5	plurality of allocated memory blocks for a reference to the first
6	allocated memory block.
1	18. The system of claim 14 wherein the MLDS engine is further configured
2	to:
3	search for an occurrence of the first allocated memory block address in the
4	other allocated memory blocks of the plurality of allocated memory
5	blocks.
1	19. The system of claim 14 wherein the MLDS engine is further configured
2	to:
3	examine a reference counter corresponding to the first allocated memory
4	block.
1	20. The system of claim 14 wherein the MLDS engine is further configured to
2	determine whether the first allocated memory block has been deallocated.
1	21. The system of claim 14 wherein the first allocated memory block includes
2	a header portion, and wherein the MLDS engine is further configured to:
3	examine the header portion of the first allocated memory block.

ı		22. The system of claim 14 wherein the MLD3 engine is further configured
2	to:	
3		examine free block memory management information maintained by an
4		operating system.
1		23. The system of claim 14 wherein the MLDS engine is further configured
2	to:	
3		display at least one of: a program counter value, a process identification value,
4		a process name, an initial block count, a previous block count, a
5		current block count, a linearity value, the first allocated memory block
6		address, and contents of the first allocated memory block.
1		24. The system of claim 14 wherein the MLDS engine is further configured
2	to:	
3		store in a data structure at least one of: a program counter value, a process
4		identification value, a process name, an initial block count, a previous
5		block count, a current block count, a linearity value, the first allocated
6	\	memory block address, and contents of the first allocated memory
7		block.
1		25. The system of claim 14 wherein the MLDS engine is further configured
2	to:	
3		search the first allocated memory block for a reference to at least one of the
4		plurality allocated memory blocks; and
5		store the first allocated memory block address in a contingency chain
6		corresponding to the at least one of the plurality allocated memory
7		blocks when a reference to the at least one of the plurality allocated
8		memory blocks is found in the first allocated memory block.
1		26. The system of claim 14 wherein the MLDS engine is further configured
2	to:	
3		examine a contingency chain corresponding to one of the plurality of allocated
4		memory blocks to determine whether any of the plurality of allocated

5	memory blocks references the one of the plurality of allocated
6	memory.
1	27. The system of claim 14 wherein the MLDS engine is further configured
2	to:
3	form a contingency chain for each of the plurality of allocated memory blocks,
4	wherein each contingency chain is indexed by an allocated memory
5	block address of the corresponding each of the plurality of allocated
6	memory blocks.
1	28. A computer readable medium comprising program instructions executable
2	on a processor, the computer readable medium being at least one of an electronic
3	storage medium, a magnetic storage medium, an optical storage medium, and a
4	communications medium conveying signals encoding the instructions, wherein the
5	program instructions are operable to implement each of:
6	selecting a first allocated memory block from a plurality of allocated memory
7	blocks, wherein the first allocated memory block includes a first
8	allocated memory block address;
9	searching other allocated memory blocks of the plurality of allocated memory
10	blocks for a reference to the first allocated memory block;
11	verifying that the first allocated memory block is a memory leak when the
12	reference to the first allocated memory block is not found in the other
13	allocated memory blocks of the plurality of allocated memory blocks;
14	and
15	reporting the first allocated memory block as a memory leak.
1	29. The computer readable medium of claim 28 wherein the selecting the first
2	allocated memory block from the plurality of allocated memory blocks further
3	comprises:
4	selecting the first allocated memory block address from operating system
5	memory management information.
1	30. The computer readable medium of claim 28 wherein each of the plurality
2	of allocated memory blocks includes a header portion, and wherein the searching

3	other anocated memory blocks of the pluranty of anocated memory blocks further
4	comprises:
5	searching the header portions of the other allocated memory blocks of the
6	plurality of allocated memory blocks for a reference to the first
7	allocated memory block.
1	31. The computer readable medium of claim 28 wherein the searching other
2	allocated memory blocks of the plurality of allocated memory blocks further
3	comprises:
4	searching for an occurrence of the first allocated memory block address in the
5	other allocated memory blocks of the plurality of allocated memory
6	blocks.
1	32. The computer readable medium of claim 28 further comprising program
2	instructions are operable to implement:
3	examining a reference counter corresponding to the first allocated memory
4	block.
1	33. The computer readable medium of claim 28 wherein the verifying that the
2	first allocated memory block is a memory leak further comprises:
3	determining whether the first allocated memory block has been deallocated.
1	34. The computer readable medium of claim 28 wherein the first allocated
2	memory block includes a header portion, and wherein the verifying that the first
3	allocated memory block is a memory leak further comprises:
4	examining the header portion of the first allocated memory block.
1	35. The computer readable medium of claim 28 wherein the verifying that the
2	first allocated memory block is a memory leak further comprises:
3	examining free block memory management information maintained by an
4	operating system.
1	36. The computer readable medium of claim 28 wherein the reporting the first
2	allocated memory block as a memory leak further comprises:
3	displaying to a user at least one of: a program counter value, a process
4	identification value, a process name, an initial block count, a previous

5	block count, a current block count, a linearity value, the first allocated
6	memory block address, and contents of the first allocated memory
7	block.
1	37. The computer readable medium of claim 28 wherein the reporting the first
2	allocated memory block as a memory leak further comprises:
3	storing in a data structure at least one of: a program counter value, a process
4	identification value, a process name, an initial block count, a previous
5	block count, a current block count, a linearity value, the first allocated
6	memory block address, and contents of the first allocated memory
7	block.
1	38. The computer readable medium of claim 28 further comprising program
2	instructions are operable to implement each of:
3	searching the first allocated memory block for a reference to at least one of the
4	plurality allocated memory blocks; and
5	storing the first allocated memory block address in a contingency chain
6	corresponding to the at least one of the plurality allocated memory
7	blocks when a reference to the at least one of the plurality allocated
8	memory blocks is found in the first allocated memory block.
1	39. The computer readable medium of claim 28 further comprising program
2	instructions are operable to implement each of:
3	examining a contingency chain corresponding to one of the plurality of
4	allocated memory blocks to determine whether any of the plurality of
5	allocated memory blocks references the one of the plurality of
6	allocated memory.
1	40. The computer readable medium of claim 28 further comprising program
2	instructions are operable to implement:
3	forming a contingency chain for each of the plurality of allocated memory
4	blocks, wherein each contingency chain is indexed by an allocated
5	memory block address of the corresponding each of the plurality of
6	allocated memory blocks.

l	41. An apparatus comprising:
2	a means for selecting a first allocated memory block from a plurality of
3	allocated memory blocks, wherein the first allocated memory block
4	includes a first allocated memory block address;
5	a means for searching other allocated memory blocks of the plurality of
6	allocated memory blocks for a reference to the first allocated memory
7	block;
8	a means for verifying that the first allocated memory block is a memory leak
9	when the reference to the first allocated memory block is not found in
10	the other allocated memory blocks of the plurality of allocated memory
11	blocks; and
12	a means for reporting the first allocated memory block as a memory leak.
1	42. The apparatus of claim 41 wherein each of the plurality of allocated
2	memory blocks includes a header portion, and wherein the apparatus further
3	comprises:
4	a means for searching the header portions of the other allocated memory
5	blocks of the plurality of allocated memory blocks for a reference to
6	the first allocated memory block.
1	43. The apparatus of claim 41 further comprising:
2	a means for searching for an occurrence of the first allocated memory block
3	address in the other allocated memory blocks of the plurality of
4	allocated memory blocks.
1	44. The apparatus of claim 41 further comprising:
2	a means for displaying to a user at least one of: a program counter value, a
3	process identification value, a process name, an initial block count, a
4	previous block count, a current block count, a linearity value, the first
5	allocated memory block address, and contents of the first allocated
6	memory block.

1	45. The apparatus of claim 41 further comprising:
2	a means for searching the first allocated memory block for a reference to at
3	least one of the plurality allocated memory blocks; and
4	a means for storing the first allocated memory block address in a contingency
5	chain corresponding to the at least one of the plurality allocated
6	memory blocks when a reference to the at least one of the plurality
7	allocated memory blocks is found in the first allocated memory block.
1	46. The apparatus of claim 41 further comprising:
2	a means for examining a contingency chain corresponding to one of the
3	plurality of allocated memory blocks to determine whether any of the
4	plurality of allocated memory blocks references the one of the plurality
5	of allocated memory.
1	47. The apparatus of claim 41 further comprising:
2	a means for forming a contingency chain for each of the plurality of allocated
3	memory blocks, wherein each contingency chain is indexed by an
4	allocated memory block address of the corresponding each of the
5	plurality of allocated memory blocks.