RECOMMENDER SYSTEMS

 A recommender system (RS) helps users that have no sufficient competence or time to evaluate the, potentially overwhelming, number of alternatives offered by a web site.

In their simplest form, RSs recommend to their users

personalized and ranked lis

The Impact of RecSys

- 35% of the purchases on Amazon are the result of their recommender system, according to McKinsey.
- During the Chinese global shopping festival of November 11, 2016, Alibaba achieved growth of up to 20% of their conversion rate using personalized landing pages, according to Alizila.
- Recommendations are responsible for 70% of the time people spend watching videos on YouTube.
- 75% of what people are watching on Netflix comes from recommendations, according to McKinsey

The Rise of the Recommender System # Papers in Microsoft Academic

*2018-Estimated

A Common Challenge:

- Assume you're a company selling **items** of some sort: movies, songs, products, etc.
- Company collects millions of ratings from users of their items
- To maximize profit / user happiness, you want to recommend items that users are likely to want

Recommended for you, Matt

Setup:

- Items: movies, songs, products, etc. (often many thousands)
- Users:
 watchers, listeners, purchasers, etc.
 (often many millions)
- Feedback:
 5-star ratings, not-clicking 'next',
 purchases, etc.

Key Assumptions:

- Can represent ratings numerically as a user/item matrix
- Users only rate a small number of items (the matrix is sparse)

	Doctor Strange	Star Trek: Beyond	Zootopia
Alice	1		5
Bob	3	4	
Charlie	3	5	2

Two Types of Recommender Systems

Content Filtering

- Example: Pandora.com music recommendations (Music Genome Project)
- Con: Assumes access to side information about items (e.g. properties of a song)
- Pro: Got a new item to add? No problem, just be sure to include the side information

Collaborative Filtering

- Example: Netflix movie recommendations
- Pro: Does not assume access to side information about items (e.g. does not need to know about movie genres)
- Con: Does not work on new items that have no ratings

Collaborative Filtering

Everyday Examples of Collaborative Filtering...

- Bestseller lists
- Top 40 music lists
- The "recent returns" shelf at the library
- Unmarked but well-used paths thru the woods
- The printer room at work
- "Read any good books lately?"
- **–** ...
- Common insight: personal tastes are correlated
 - If Alice and Bob both like X and Alice likes Y then Bob is more likely to like Y
 - especially (perhaps) if Bob knows Alice

Two Types of Collaborative Filtering

1. Neighborhood Methods

2. Latent Factor Methods

Two Types of Collaborative Filtering

1. Neighborhood Methods

In the figure, assume that a green line indicates the movie was **watched**

Algorithm:

- Find neighbors based on similarity of movie preferences
- 2. Recommend movies that those neighbors watched

Two Types of Collaborative Filtering

2. Latent Factor Methods

- Assume that both movies and users live in some lowdimensional space describing their properties
- Recommend a movie based on its proximity to the user in the latent space

MATRIX FACTORIZATION

Matrix Factorization (with matrices)

User vectors:

$$(W_{u*})^T \in \mathbb{R}^r$$

Item vectors:

$$H_{*i} \in \mathbb{R}^r$$

Rating prediction:

$$V_{ui} = W_{u*}H_{*i}$$
$$= [WH]_{ui}$$

Figures from Koren et al. (2009)

Figures from Gemulla et al. $(2011)_{19}$

User vectors:

$$\mathbf{w}_u \in \mathbb{R}^r$$

• Item vectors:

$$\mathbf{h}_i \in \mathbb{R}^r$$

Rating prediction:

$$v_{ui} = \mathbf{w}_u^T \mathbf{h}_i$$

Figures from Koren et al. (2009)

Set of non-zero entries:

$$\mathcal{Z} = \{(u, i) : v_{ui} \neq 0\}$$

Objective:

$$\underset{\mathbf{w},\mathbf{h}}{\operatorname{argmin}} \sum_{(u,i)\in\mathcal{Z}} (v_{ui} - \mathbf{w}_u^T \mathbf{h}_i)^2$$

Figures from Koren et al. (2009)

Regularized Objective:

$$\underset{\mathbf{w},\mathbf{h}}{\operatorname{argmin}} \sum_{(u,i)\in\mathcal{Z}} (v_{ui} - \mathbf{w}_{u}^{T} \mathbf{h}_{i})^{2} + \lambda (\sum_{i} ||\mathbf{w}_{i}||^{2} + \sum_{u} ||\mathbf{h}_{u}||^{2})$$

Figures from Koren et al. (2009)

Regularized Objective:

$$\underset{\mathbf{w},\mathbf{h}}{\operatorname{argmin}} \sum_{(u,i)\in\mathcal{Z}} (v_{ui} - \mathbf{w}_{u}^{T} \mathbf{h}_{i})^{2} + \lambda (\sum_{i} ||\mathbf{w}_{i}||^{2} + \sum_{u} ||\mathbf{h}_{u}||^{2})$$

SGD update for random (u,i):

$$e_{ui} \leftarrow v_{ui} - \mathbf{w}_u^T \mathbf{h}_i$$

$$\mathbf{w}_u \leftarrow \mathbf{w}_u + \gamma (e_{ui} \mathbf{h}_i - \lambda \mathbf{w}_u)$$

$$\mathbf{h}_i \leftarrow \mathbf{h}_i + \gamma (e_{ui} \mathbf{w}_u - \lambda \mathbf{h}_i)$$

Figures from Koren et al. (2009)

Matrix Factorization (with matrices)

User vectors:

$$(W_{u*})^T \in \mathbb{R}^r$$

Item vectors:

$$H_{*i} \in \mathbb{R}^r$$

Rating prediction:

$$V_{ui} = W_{u*}H_{*i}$$
$$= [WH]_{ui}$$

Figures from Koren et al. (2009)

Figures from Gemulla et al. $(2011)_{24}$

Matrix Factorization (with matrices)

SGD

require that the loss can be written as

$$L = \sum_{(i,j) \in Z} l(\boldsymbol{V}_{ij}, \boldsymbol{W}_{i*}, \boldsymbol{H}_{*j})$$

Algorithm 1 SGD for Matrix Factorization

Require: A training set Z, initial values W_0 and H_0 while not converged do {step}

Select a training point $(i, j) \in Z$ uniformly at random.

$$\boldsymbol{W}'_{i*} \leftarrow \boldsymbol{W}_{i*} - \epsilon_n N \frac{\partial}{\partial \boldsymbol{W}_{i*}} l(\boldsymbol{V}_{ij}, \boldsymbol{W}_{i*}, \boldsymbol{H}_{*j})$$

$$oldsymbol{H}_{*j} \leftarrow oldsymbol{H}_{*j} - \epsilon_n N \frac{\partial}{\partial oldsymbol{H}_{*j}} l(oldsymbol{V}_{ij}, oldsymbol{W}_{i*}, oldsymbol{H}_{*j})$$

$$oldsymbol{W}_{i*} \leftarrow oldsymbol{W}_{i*}'$$

end while

step size

Figure from Gemulla et al. (2011)

Figures from Koren et al. (2009)

Figure from Gemulla et al. (2011)₂₅

Matrix Factorization

movies with strong female leads, fraternity humor, and quirky independent films.

Matrix Factorization

Comparison of Optimization Algorithms

MATRIX MULTIPLICATION IN MACHINE LEARNING

V[i,j] = user i's rating of movie j

... vs autoencoders & nonlinear PCA

- Assume we would like to learn the following (trivial?) output function:
- Using the following network:
- With linear hidden units, how do the weights match up to W and H?

Input	Output
0000001	00000001
00000010	00000010
00000101	00000100
00001000	00001000
00010000	00010000
00100000	00100000
01000000	01000000
10000000	10000000

Summary

- Recommender systems solve many realworld (*large-scale) problems
- Collaborative filtering by Matrix
 Factorization (MF) is an efficient and effective approach
- MF is just another example of a common recipe:
 - define a model
 - define an objective function
 - 3. optimize with SGD