PROJECT OVERVIEW AND KEY LEARNING OUTCOMES

PROJECT OVERVIEW

- We will analyze human resources information using Pandas in AWS SageMaker Studio.
- We will learn how to:
 - Perform statistical analysis on real world datasets.
 - 2. Deal with missing data using pandas
 - 3. Change pandas DataFrame datatypes
 - 4. Define a function and apply it to a Pandas DataFrame column
 - 5. Pandas Operations and filtering
 - 6. Calculate and display correlation matrix
 - 7. Use seaborn library to show heatmap

3	Age	Attrition	Business Travel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumber	Relat
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	1.0	
1	45	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	2.0	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	4.0	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	5.0	
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	7.0	
1465	36	No	Travel_Frequently	884	Research & Development	23	2	Medical	1	2061.0	
1466	39	No	Travel_Rarely	613	Research & Development	6	1	Medical	1	2062 0	
1467	27	No	Travel_Rarely	155	Research & Development	4	3	Life Sciences	1	2064.0	
1468	49	No	Travel_Frequently	1023	Sales	2	3	Medical	1	2085.0	
1469	34	No	Travel_Rarely	628	Research & Development	8	3	Medical	1	2068.0	

PROJECT DEMO

PROJECT DEMO

FINAL CAPSTONE END-OF-DAY PROJECT

FINAL PROJECT

- In this project, we will perform basic Exploratory Data Analysis (EDA) on the Kyphosis disease Dataset.
- Kyphosis is an abnormally excessive convex curvature of the spine.
- Dataset contains 81 rows and 4 columns representing data on children who have had corrective spinal surgery.
- **INPUTS:** 1. Age: in months, 2. Number: the number of vertebrae involved, 3. Start: the number of the first (topmost) vertebra operated on.
- **OUTPUTS:** Kyphosis which represents a factor with levels absent present indicating if a kyphosis (a type of deformation) was present after the operation.
- Using the "kyphosis.csv" included in the course package, write a python script to perform the following tasks:
 - 1. Import the "kyphosis.csv" file using Pandas
 - 2. Perform basic Exploratory Data Analysis (EDA) on the data
 - 3. List the average, minimum and maximum age (in years) considered in this study using 2 methods
 - 4. Plot the correlation matrix
 - 5. Convert the age column datatype from int64 to float64
 - 6. Define a function that converts age from months to years
 - 7. Apply the function to the "Age" column and add the results into a new column entitled "Age in Years"
 - 8. What are the features of the oldest and youngest child in this study?