Summary for Modern Algebra I

SEUNGWOO HAN

CONTENTS

CHAPTER	GROUPS	PAGE 2
1.1	Definitions and Examples of Groups	2
1.2	Group Homomorphisms	4

Chapter 1

Groups

1.1 Definitions and Examples of Groups

Definition 1.1.1: Abelian Group

An *abelian group* is a nonempty set G equipped with a binary operation + on G that satisfies the following.

- (i) (associative) $\forall a, b, c \in G$, a + (b + c) = (a + b) + c.
- (ii) (commutative) $\forall a, b \in G, a + b = b + a$.
- (iii) (identity) $\exists 0 \in G, \ \forall a \in G, \ a + 0 = 0 + a = a$.
- (iv) (inverse) $\forall a \in G, \exists b \in G, a+b=b+a=0.$

Note:-

One may easily show that the identity is unique, and for each $a \in G$, an inverse of a is unique.

Notation 1.1.2

- We define $-: G \times G \to G$ by a b = a + (-b).
- We write, for each positive integer n, and for each $a \in G$,

$$na \triangleq \underbrace{a + a + \dots + a}_{n \text{ times}}, \qquad 0a \triangleq 0_G, \qquad (-n)a \triangleq \underbrace{(-a) + (-a) + \dots + (-a)}_{n \text{ times}}.$$

• Hence, $\forall m, n \in \mathbb{Z}$, $\forall a \in G$, $(m+n)a = ma + na \land m(na) = (mn)a$.

Example 1.1.3

- (i) \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} , equipped with their ordinary additions, are abelian groups, while $(\mathbb{N}, +)$ is not.
- (ii) $\mathbb{Q} \setminus \{0\}$, $\mathbb{R} \setminus \{0\}$, and $\mathbb{C} \setminus \{0\}$, equipped with their ordinary multiplications, are abelian groups.
- (iii) If $G = \{1, -1, i, -i\} \subseteq \mathbb{C}$, then (G, \cdot) is an abelian group. One may explicitly write the *group table* for this.
- (iv) $GL_n(\mathbb{C}) = \{n \times n \text{ invertible matrices over } \mathbb{C} \}$ (general linear group) equipped with \cdot is not an abelian group but is a group. (See Definition 1.1.4.)

Definition 1.1.4: Group

An *group* is a nonempty set G equipped with a binary operation \cdot on G that satisfies the following.

- (i) (associative) $\forall a, b, c \in G, a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- (ii) (identity) $\exists 1 \in G$, $\forall a \in G$, $a \cdot 1 = 1 \cdot a = a$.
- (iii) (inverse) $\forall a \in G, \exists b \in G, a \cdot b = b \cdot a = 1.$

Theorem 1.1.5

Let (G, \cdot) be a group. Let $a, b, c \in G$.

- (i) $ab = ac \implies b = c$
- (ii) $(a^{-1})^{-1} = a$
- (iii) $(ab)^{-1} = b^{-1}a^{-1}$

Proof. Trivial.

Notation 1.1.6

• We write, for each positive integer n, and for each $a \in G$,

$$a^n \triangleq \underbrace{a \cdot a \cdot \cdots \cdot a}_{n \text{ times}}, \qquad a^0 \triangleq 1_G, \qquad a^{-n} \triangleq \underbrace{a^{-1} \cdot a^{-1} \cdot \cdots \cdot a^{-1}}_{n \text{ times}}.$$

• Hence, $\forall m, n \in \mathbb{Z}$, $\forall a \in G$, $a^m a^n = a^{m+n} \wedge (a^m)^n = a^{mn}$.

Note:-

We don't generally have $(ab)^n = a^n b^n$.

Definition 1.1.7: Order

We write |G| to denote the number of elements in G and call it *order* of G.

Example 1.1.8 Dihedral Groups

$$D_n \triangleq \{ r_i : [n] \hookrightarrow [n] \mid \forall j \in [n], r_i(j) = i +_n j \} \cup \{ \text{reflections???} \}$$

= $\{ \text{all "rigid motions" for regular } n \text{ polygon} \}$

Then, (D_n, \circ) is a group where \circ is ordinary function composition operator. We claim that $|D_n| = 2n$ and D_n is not abelian.

Proof. If $r \in D_n$ is a rotation, then

Example 1.1.9 Symmetric Group

Let *T* be a nonempty set. Then, the set $S(T) \triangleq \{f : f : T \hookrightarrow T\}$ with the function composition operator \circ is a group.

We write

$$S_n \triangleq S(\{1, 2, \cdots, n\})$$

and call it *symmetric group*. S_1 and S_2 are abelian, but S_n with $n \ge 3$ is not abelian. $((123) \circ (12) \ne (12) \circ (123))$

Definition 1.1.10: Group Action

Let *G* be a group and *A* be a set. A group action *G* on *A* is a map $f: G \times A \rightarrow A$ such that:

- (i) $\forall g_1, g_2 \in G$, $\forall a \in A$, $f(g_1, f(g_2, a)) = f(g_1g_2, a)$.
- (ii) $\forall a \in A, f(1, a) = a$.

We write $G \cap A$ to write G acts on A.

Example 1.1.11 Quaternion Group

 $Q_8 \triangleq \{\pm 1, \pm i, \pm j, \pm k\}$ as usual.

Example 1.1.12 General Linear Group

 $\operatorname{GL}_n(R)$ is a group of all $n \times n$ invertible matrices over R.

Definition 1.1.13: Direct Product

If $(G, *_G)$ and $(H, *_H)$ are groups, then the binary operation * on $G \times H$ defined by $(g,h) \times (g',h') \triangleq (g *_G g',h *_H h')$ forms a group $(G \times H,*)$.

1.2 Group Homomorphisms

Definition 1.2.1: Group Homomorphism

Let *G* and *H* be groups. A *group homomorphism* between *G* and *H* is a function $f: G \to H$ such that $\forall a, b \in G$, f(ab) = f(a)f(b).

Definition 1.2.2: Group Isomorphism

Let G and H be groups. A *group isomorphism* is a bijective group homomorphism between G and H. (This means that G and H have the same group structure.) We write $G \cong H$.

Theorem 1.2.3

Let $f: G \to H$ be a group homomorphism.

- (i) $f(1_G) = 1_H$.
- (ii) $\forall a \in G, f(a^{-1}) = f(a)^{-1}$.
- (iii) Im f is a group under the group operation under H.
- (iv) If f is injective, then $G \cong \operatorname{Im} f$.

Proof.

(i) $f(1_G)f(1_G) = f(1_G1_G) = f(1_G) = f(1_G)1_H$. Hence, we have $f(1_G) = 1_H$ from Theorem 1.1.5 (i).

- (ii) $f(a^{-1})f(a) = f(a^{-1}a) = f(1_G) = 1_H$ by (i). Hence, $f(a^{-1}) = f(a)^{-1}$.
- (iii) Direct from definition.
- (iv) Direct from definition.

Note:-

There is only one way—the direct product—to give a group structure on $G \times H$ such that both projections are group homomorphisms.

Definition 1.2.4: Group Automorphism

An *automorphism* of G is an isomorphism $G \hookrightarrow G$ between G and itself. Then, the collection of all automorphisms of G, $Aut(G) \triangleq \{automorphisms of <math>G\}$, equipped with \circ , is a group. Moreover, $Aut(G) \curvearrowright G$ in the natural way $((\sigma, g) \mapsto \sigma(g))$.

Example 1.2.5

Fix any $c \in G$ and define $i_C : G \to G$ by $g \mapsto cgc^{-1}$. Then, $i_C \in Aut(G)$.