Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики

Розширення мови SIPL: з випадковим вибором

> Виконав: магістр групи ШІ-1 Андрющенко Олексій

Синтаксис БНФ

Таблиця 1.

Ліва частина правила — метазмінна	Права частина правила	Ім'я правила
<програма> ::=	begin <oператор> end</oператор>	NP1
	<змінна> := <вираз>	NS1
	<оператор>; <оператор>	NS2
	if <умова> then <оператор> else <оператор>	NS3
<оператор> ::=	while <умова> do <оператор>	NS4
	begin <oператор> end </oператор>	NS5
	skip	NS6
	Random (<оператор> <оператор>)	NS7
	<число>	NA1
	<змінна>	NA2
(D11900)	<вираз> + <вираз>	NA3
<вираз> ::=	<вираз> – <вираз>	NA4
	<вираз> * <вираз>	NA5
	(<вираз>)	NA6
	<вираз> = <вираз>	NB1
	<вираз> > <вираз>	NB2
	<ymoba> V <ymoba> </ymoba></ymoba>	NB3
<умова> ::=	<умова> ∧ <умова>	NB4
	¬ <умова>	NB5
	(<умова>)	NB6
<змінна> ::=	M N	NV
<число> ::=	-1 0 1	NN

Таблиця 2.

Метазмінна	Синтаксична категорія	Нова метазмінна
<программа>	Prog	P
<оператор>	Stm	S
<вираз>	Aexp	a
<умова>	Bexp	b
<змінна>	Var	X
<число>	Num	n

Синтаксис (метазмінні)

Таблиця 3.

Ліва частина правилі - метазмінна	Права частина правила	Ім'я правила
P ::=	begin S end	NP1
S ::=	x ::= n S1; S2 if b then S1 else S2 while b do S begin S end skip Random (S1 S2)	NS1 NS2 NS3 NS4 NS5 NS6 NS7
a ::=	n x a1 + a2 a1 - a2 a1 * a2 (a)	NA1 NA2 NA3 NA4 NA5 NA6
b ::=	$a1 = a2 \mid$ $a1 > a2 \mid$ $b1 \lor b2 \mid$ $b1 \land b2 \mid$ $\neg b \mid$ (b)	NB1 NB2 NB3 NB4 NB5 NB6
x ::=	M N	NV
n ::=	-1 0 1	NN

Отримали багатоосновну алгебру даних мои SIPL_R:

 $A_Int_Bool_State = < Int, Bool, State; add, sub, mult, or, and, neg, eq, gr, \Rightarrow x, x \Rightarrow , \overline{n}, id, \nabla >$

Композиційна семантика

Визначимо тепер класи функцій, які будуть задіяні при визначені семантики SIPL R:

- 1. п-арні операції над базовими типами:
 - $FNA = Int^n \rightarrow Int$ n-арні арифметичні функції (операції);
 - $FNB = Bool^n \rightarrow Bool$ n-арні булеві функції (операції);
 - $FNAB = Int^n -> Bool$ n-арні функції (операції) порівняння над булевими типами даних;
- 2. Функції над станами змінних:
 - $FA = State \rightarrow Int$ номінативні арифметичні функції;
 - $FB = State \rightarrow Bool$ номінативні предикати;
 - $FA = State \rightarrow State$ біномативні функції-перетворювачі (трансформатори)

Отримали алгебру функцій (програмну алгебру):

 $A_Prog_R = \langle FNA, FNB, FNAB, FA, FB, FS; S^n, AS^x, \bullet, IF, WH, RAND, x \Rightarrow, id \rangle$

Формули для обчилення композицій і функцій алгебри A_Prog_R (fc — номінативна функція):

Таблиця 4.

Композиція	Формула обчислення	Ім'я формули
Суперпозиція	$(S^n(f,g_1,\ldots,g_n))(st) = f(g_1(st),\ldots,g_n(st))$	AF_S
Присвоювання	$AS^{x}(fa)(st) = st \ \nabla \left[x \mapsto fa(st) \right]$	AF_AS
Послідовне виконання	$fs_1 \bullet fs_2(st) = fs_2(fs_1(st))$	AF_SEQ
Випадковий вибір	$RAND(fs_1,fs_2) = egin{cases} fs_1(st) \\ fs_2(st) \end{pmatrix}$ — вибирається випадковим чином	AF_RAND
Умовний оператор	$IF(fb,fs_1,fs_2) = \begin{cases} fs_1(st), \text{якщо } fb(st) = true, \\ fs_2(st), \text{якщо } fb(st) = false. \end{cases}$	AF_IF
Цикл	$WH(fb,fs)(st) = st_n$, де $st_0 = st, st_1 = fs(st_0), st_2 = fs(st_1), st_n = fs(st_{n-1}),$ причому $fb(st_0) = true, fb(st_1) = true, \ldots,$ $fb(st_{n-1}) = true, fb(st_n) = false$	AF_WH
Функція розіменування	$x \Rightarrow (st) = st(x)$	AF_DNM
Тотожна функція	id(st) = st	AF_ID

Програма мови SIPL може бути перетворена на семантичний терм (терм програмної алгебри), який задає її семантику (семантичну функцію), перетвореннями такого типу:

• $sem_P : Prog \rightarrow TFS$

• $sem_S : Stm \rightarrow TFS$

• $sem_A : Aexp \rightarrow TFA$

• $sem_B : Bexp \rightarrow TFB$

де TFS, TFA, TFB, TF заддають відповідні множини термів.

Правила перетворення програми на семантичний терм:

Таблиця 5.

Правило заміни	Ім'я правила	
$sem_P: Prog \rightarrow TFS$ задається правилами:		
$sem_P(begin\ S\ end) = sem_S(S)$	NS_Prog	
$sem_S: Stm \to TFS$ задається правилами:		
$sem_S (x ::= a) = AS^X(sem_A(a))$	NS_Stm_AS	
$sem_S(S_1; S_2) = sem_S(S_1) \cdot sem_S(S_2)$	NS_Stm_Seq	
$sem_S (Random(S_1 S_2)) = RAND(sem_S(S_1), sem_S(S_2))$	NS_Stm_Rand	
$sem_S(if \ b \ then \ S_1 \ else \ S_2) =$ = $IF(sem_B(b), sem_S(S_1), sem_S(S_2))$	NS_Stm_If	
sem_S (while b do S) = WH($sem_B(b)$, $sem_S(S)$)	NS_Stm_Wh	
$sem_S(begin\ S\ end) = sem_S(S)$	NS_Stm_Be	
$sem_S(skip) = id$	NS_Stm_Skip	
$sem_S: Aexp \rightarrow TFA$ задається правилами:		
$sem_{-}A(n) = \overline{n}$	NS_A_Num	
$sem_A(x) = x \Rightarrow$	NS_A_Var	
$sem_A(a_1 + a_2) = S^2(add, sem_A(a_1), sem_A(a_2))$	NS_A_Add	
$sem_A(a_1 - a_2) = S^2(sub, sem_A(a_1), sem_A(a_2))$	NS_A_Sub	

$sem_A(a_1 * a_2) = S^2(mult, sem_A(a_1), sem_A(a_2))$	NS_A_Mult	
$sem_A((a)) = sem_A(a)$	NS_A_Par	
$sem_B: Bexp o TFB$ задається правилами:		
$sem_B(a_1 = a_2) = S^2(eq, sem_A(a_1), sem_A(a_2))$	NS_B_eq	
$sem_B(a_1 > a_2) = S^2(gr, sem_A(a_1), sem_A(a_2))$	NS_B_gr	
$sem_B(b_1 \lor b_2) = S^2(or, sem_B(b_1), sem_B(b_2))$	NS_B_or	
$sem_B(\neg b) = S^1(neg, sem_B(b))$	NS_B_neg	
$sem_B((b)) = sem_B(b)$	NS_B_Par	

Побудуємо семантичний терм програми COUNT COINS(C, H, T):

```
(C — count, H — heads, T — tails)
sem_P(COUNT_COINS) = sem_P(
                                    begin
                                                                        H := 0
                                                                       T := 0
                                                                        N := 0
                                                                        while \neg N = C do
                                                                                                            Random(
                                                                                                                                               H := H + 1
                                                                                                                                               T := T + 1
                                                                                                           N := N + 1
                                    end
)
sem S(H := 0; T := 0; N := 0; while \neg N = C do Random(H := H + 1 | T := T + 1); n := N + 1;)
sem S(H := 0) \cdot \text{sem } S(T := 0) \cdot \text{sem } S(N := 0) \cdot \text{sem } S(\text{while } \neg N = C \text{ do Random}(H := H + 1 \mid C \mid C) \cdot \text{sem } S(H := 0) \cdot \text{se
T := T + 1; n := N + 1;)
AS^{H}(0) \cdot AS^{T}(0) \cdot AS^{N}(0) \cdot WH(sem\_B(\neg N = C), sem\_S(Random(H := H + 1 | T := T + 1); n := N)
+1;))
AS^{H}(0) \cdot AS^{T}(0) \cdot AS^{N}(0) \cdot WH(S^{1}(\text{neg, sem } B(N=C)), \text{ sem } S(\text{Random}(H:=H+1 \mid T:=T+1))
• sem S(n := N + 1))
AS^{H}(0) \cdot AS^{T}(0) \cdot AS^{N}(0) \cdot WH(S^{1}(\text{neg}, S^{2}(\text{eq, sem A(N), sem A(C)}), RAND(\text{sem S(H} := H + 1),
sem S(T := T + 1)) \cdot sem S(n := N + 1)
```

```
AS^{H}(0) \cdot AS^{T}(0) \cdot AS^{N}(0) \cdot WH(S^{1}(\text{neg}, S^{2}(\text{eq}, N \Rightarrow, C \Rightarrow), RAND(AS^{H}(\text{sem } A(H+1)), AS^{T})
(\text{sem A}(T+1)) \cdot AS^{N}(\text{sem A}(N+1)))
AS^{H}(0) \cdot AS^{T}(0) \cdot AS^{N}(0) \cdot WH(S^{1}(\text{neg}, S^{2}(\text{eq}, N \Rightarrow, C \Rightarrow), RAND(AS^{H}(S^{2}(\text{add}, \text{sem A(H)}, S^{2}(\text{add}, \text{sem A(H)}, S^{2}(\text{add
sem A(1)), AS^T(S^2(\text{add}, \text{sem A}(T), \text{sem A}(1))) \cdot AS^N(S^2(\text{add}, \text{sem A}(N), \text{sem A}(1))))
AS^{H}(0) \cdot AS^{T}(0) \cdot AS^{N}(0) \cdot WH(S^{1}(\text{neg}, S^{2}(\text{eg}, N \Rightarrow, C \Rightarrow), RAND(AS^{H}(S^{2}(\text{add}, H \Rightarrow, 1)), AS^{T}(S^{2}))
(add, T \Rightarrow, 1)) \cdot AS^{N}(S^{2}(add, N \Rightarrow, 1))).
Отже, результуючий терм має наступний вигляд:
AS^{H}(0) \bullet
AS^{T}(0) \bullet
AS^N(0) •
WH(
                                        S^1(\text{neg}, S^2(\text{eq}, N \Rightarrow, C \Rightarrow),
                                         RAND(
                                                                                AS^{H}(S^{2}(\text{add}, H\Rightarrow, 1)),
                                                                                 AS^T(S^2(\text{add}, T \Rightarrow, 1))
                                         • (
                                           AS^{N}(S^{2}(add, N \Rightarrow, 1))
```

)

Операційна семантика

Таблиця 6.

Назва Правила	Правило операційної семантики	
	Правила для програи та операторів	
PR	$\langle S, st \rangle \mapsto st'$	
	$< begin \ S \ end, st > \mapsto st'$	
AS	$\langle a, st \rangle \mapsto n$	
	$\langle x := a, st \rangle \mapsto st \nabla [x \mapsto n]$	
SEQ	$\langle S_1, st \rangle \mapsto st_1, \langle S_2, st_1 \rangle \mapsto st_2$	
	$\langle S_1; S_2, st \rangle \mapsto st_2$	
RAND1	$\langle S_1, st \rangle \mapsto st_1,$	
	$< Rand(S_1 S_2), st > \mapsto st_1$	
RAND2	$\langle S_2, st \rangle \mapsto st_2,$	
	$< Rand(S_1 S_2), st > \mapsto st_2$	
IFtrue	$\langle b, st \rangle \mapsto true \langle S_1, st \rangle \mapsto st'$	
	$< if b then S_1 else S_2, st > \mapsto st'$	
IFfalse	$\langle b, st \rangle \mapsto false \langle S_2, st \rangle \mapsto st'$	
	$< if b then S_1 else S_2, st > \mapsto st'$	
WHfalse	$\langle b, st \rangle \mapsto false$	
	$< while \ b \ do \ S, st > \mapsto st$	
WHtrue	$\langle b, st \rangle \mapsto true \mid \langle S, st \rangle \mapsto st'' \mid \langle while \ b \ do \ S, st'' \rangle \mapsto st'$	
$< while \ b \ do \ S, st > \mapsto st$		
BEG	$\langle S, st \rangle \mapsto st'$	
	$< begin \ S \ end, st > \mapsto st'$	
skip	$\langle skip, st \rangle \mapsto st$	
Правила для виразів		
Num	$\langle n, st \rangle \mapsto n$	
Var	$\langle x, st \rangle \mapsto st(x)$	
A+	$\langle a_1, st \rangle \mapsto n_1 \langle a_2, st \rangle \mapsto n_2$	
	$\langle a_1 + a_2, st \rangle \mapsto add(n_1, n_2)$	

A-	$\langle a_1, st \rangle \mapsto n_1 \langle a_2, st \rangle \mapsto n_2$	
	$ = \langle a_1 - a_2, st \rangle \mapsto sub(n_1, n_2) $	
A*	$\langle a_1, st \rangle \mapsto n_1 \langle a_2, st \rangle \mapsto n_2$	
	$\langle a_1 * a_2, st \rangle \mapsto mult(n_1, n_2)$	
A()	$\langle a, st \rangle \mapsto n$	
	$\langle (a), st \rangle \mapsto n$	
Правила для умов		
B=	$\langle a_1, st \rangle \mapsto r_1 \langle a_2, st \rangle \mapsto r_2$	
	$ = a_1 = a_2, st > \mapsto eq(r_1, r_2) $	
B>	$\langle a_1, st \rangle \mapsto r_1 \langle a_2, st \rangle \mapsto r_2$	
BV	$\langle a_1, st \rangle \mapsto r_1 \langle a_2, st \rangle \mapsto r_2$	
	$\langle a_1 \lor a_2, st \rangle \mapsto or(r_1, r_2)$	
BA	$\langle a_1, st \rangle \mapsto r_1 \langle a_2, st \rangle \mapsto r_2$	
	$\langle a_1 \wedge a_2, st \rangle \mapsto and(r_1, r_2)$	

Операційну семантику для даного розширення мови SIPL позначатимемо $Sem_P_R_{OP}$.

Побудуємо в операційній семантиці дерево обчислення програми COUNT_COINS на стані $st = [H \mapsto 0, T \mapsto 0, N \mapsto 2].$

```
(C - count, H - heads, T - tails)
sem_P(COUNT_COINS) = sem_P(begin N := 0 while \neg N = C do Random(H := H + 1 | T := T + 1)
N := N + 1
end
```

Нам потрібно побудувати виведення для формули $< COUNT_COINS, st > \mapsto st'$

де стан $st = [H \mapsto 0, T \mapsto 0, N \mapsto 2]$ відомий, а st'— ні.

Позначимо:

$$Body = N := 0; while \neg N = C do Random(H := H + 1 | T := T + 1); N := N + 1$$

$$Cond = \neg N = C$$

$$Wbody = Random(H := H + 1 | T := T + 1); N := N + 1$$

$$\frac{\langle Body, st \rangle \mapsto st'}{\langle begin Body end, st \rangle \mapsto st'}$$

$$< N := 0 > \mapsto st_1, \quad < while \ Cond \ do \ Wbody, st_1 > \mapsto st'$$
 $< Body, st > \mapsto st'$
 $< begin \ Body \ end, st > \mapsto st'$

$$st_1 = [H \mapsto 0, T \mapsto 0, N \mapsto 0, C \mapsto 0]$$

Розглянемо $< while Cond do Wbody, st_1 > \mapsto st'$:

1) Умова
$$Cond: \neg N=C$$
 дає true:
$$\frac{< N=C, st_1> \mapsto false}{\neg N=C, st_1> \mapsto true}$$

Виконаємо тіло:

$$< Random(H := H + 1 | T := T + 1), st_1 > \mapsto st_{1.1} < N := N + 1, st_{1.1} > \mapsto st_2$$

 $< Random(H := H + 1 | T := T + 1); N := N + 1, st_1 > \mapsto st_2$

Виберемо перший варіант:

$$< H := H + 1, st_1 > \mapsto st_{1.1}$$

 $< Random(H := H + 1 | T := T + 1), st_1 > \mapsto st_{1.1}$

Тому:

$$st_{1.1} = [H \rightarrow 1, T \rightarrow 0, N \rightarrow 2, C \rightarrow 0]$$

$$st_2 = [H \rightarrow 1, T \rightarrow 0, N \rightarrow 2, C \rightarrow 1]$$

2) Умова
$$Cond: \neg N = C$$
 дає true: $\frac{\langle N = C, st_2 \rangle \mapsto false}{\neg N = C, st_2 \rangle \mapsto true}$

Виконаємо тіло:

$$< Random(H := H + 1 | T := T + 1), st_2 > \mapsto st_{2.1} < N := N + 1, st_{2.1} > \mapsto st_3$$

 $< Random(H := H + 1 | T := T + 1); N := N + 1, st_2 > \mapsto st_3$

Виберемо другий варіант:

$$< H := H + 1, st_2 > \mapsto st_{2.1}$$

 $< Random(H := H + 1 | T := T + 1), st_2 > \mapsto st_3$

Тому:

$$st_{2,1} = [H \to 1, T \to 1, N \to 2, C \to 1]$$

$$st_3 = [H \rightarrow 1, T \rightarrow 1, N \rightarrow 2, C \rightarrow 2]$$

3) Умова
$$Cond: \neg N = C$$
 дає false: $\frac{\langle N = C, st_3 \rangle \mapsto true}{\neg N = C, st_3 \rangle \mapsto false}$

Тому,
$$st' = st_3 = [H \to 1, T \to 1, N \to 2, C \to 2].$$

Отже, в цій программі монету було підкинуто два рази, один раз випав орел, один раз решка.

(повне представлення задачі не було зроблене, оскільки воно виходило надто громіздким).

Доведення еквівалентності композиційної та операційної семантик

Теорема (про еківалентність композиційної та операційної семантик. Для довільної програми Р мови $SIPL_R$ її композиційна семантика збігається з її операційною семантикою, тобто $sem_P(P) = Sem_P_R_{OP}(P)$.

Доведення. Спочатку доведемо, що для довільного аріфметичного виразу a та довільної умови b маємо, що $sem_A(a) = Sem_P_R_{OP}(a)$ та $sem_A(b) = Sem_P_R_{OP}(b)$. Використовуємо індукцію за структурою a та b. Це твердження випливає з таблиці 5 та 6, які задають однакові значення для складових a та b. Далі доводимо, що $sem_P(P) = Sem_P_R_{OP}(P)$ індукцією за структурою оператора S. Таблиці 5 та 6 задають однакові значення (крім циклу) для складових S. Що стосується циклу, то тут ϵ два випадки:

- 1. Якщо тіло циклу не виконується жодного разу (умова хибна), то жодна функція не виконається і стани залишуться незмінними.
- **2.** Якщо тіло цикло виконується, то треба застосувати індукцію. Якщо на кроці n + 1 стани програм є рівні, то на кроці n + 1 стани залишуться рівними, оскільки інші функції та оператори еквівалентні.

Отже, для довільної програми Р мови $SIPL_R$ її композиційна семантика збігається з її операційною семантикою.

Аксіоматична семантика

Таблиця 7.

Правило виведення	Позначення правила
$\{P[x \mapsto a]\} \ x := a \ \{P\}$	AS
$\{P\}$ skip $\{P\}$	skip
$\frac{\{P\}\ S_1\ \{Q\}\ \{Q\}\ S_2\ \{R\}}{\{P\}\ S_1; S_2\ \{R\}}$	S
$\frac{\{P\} S_1 \{R\} \mid \{P\} S_2 \{R\}}{\{P\} Rand(S_1 \mid S_2) \{R\}}$	R
	IF
{P} if b then S_1 else S_2 {Q} $\frac{\{b \land P\} S \{P\}}{\{P\} \text{ while b do } S \{Q\}}$	WH
$\frac{\{P'\}S\{Q'\}}{\{P\}S\{Q\}}$, якщо $P\Rightarrow P',Q'\Rightarrow Q$	С
$\frac{\{P\}S\{Q\}}{\{P\}begin\ S\ end\{Q\}}$	BE

Доведемо в логіці Флойда-Хоара часткову коректність програми COUNT_COINS рахування кількості підкидань монет.

```
(C - count, H - heads, T - tails)
sem_P(COUNT_COINS) = sem_P(
begin
C := 0
while \neg N = C do
Random(
H := H + 1
|
T := T + 1
)
C := C + 1
end
```

Спочатку сформулюємо асерцію, яка задає коректнісь програми COUNT COINS.

Передумовою є предикат $N \geq 0 \land N = n$, пісялумовою H + T = n . Отже, треба побудувати виведення асерції:

$$\{N \ge 0 \land N = n\} \ COUNT_COINS \{H + T = n\}$$

Доведемо, що предикат $H + T = C \epsilon$ інваріантом циклу.

Використаємо зворотний метод для поюудови передумов. Спочатку будуємо асерцію для оператора присвоювання C := C + 1:

$$\{(H+T=C)[C \mapsto C+1]\}C := C+1\{H+T=C\}.$$

Обчислюємо (H+T=C)[C:=C+1]. Отримуємо передумову H+T=C+1.

Тепер розглянемо цю передумову як післяумову оператора рандома $RAND(H := H + 1 \mid T := T + 1)$. За правилом R випливає:

$$\frac{\{H+T=C+1\}\ H: H+1\ \{H+T=C+1\}\ |\ \{H+T=C+1\}\ T:=T+1\ \{H+T=C+1\}\}}{\{H+T=C+1\}\ Rand(H:=H+1\ |\ T:=T+1)\ \{H+T=C+1\}}$$

Розглянемо, перший випадок:

$$\{(H+T=C+1)[H\mapsto H+1]\}H:=H+1\{H+T=C+1\}\;.$$

Обчислюємо (H+T=C+1)[H:=H+1]. Отримуємо передумову H+1+T=C+1. Одержуємо предикат, який дорівнює H+T=C.

Розглянемо, другий випадок:

$$\{(H+T=C+1)T\mapsto T+1]\}T:=T+1\{H+T=C+1\}\;.$$

Обчислюємо (H+T=C+1)[T:=T+1]. Отримуємо передумову H+T+1=C+1. Одержуємо предикат, який дорівнює H+T=C.

Застосувавши правило для оператора послідовного виконання, отримуємо асерцію

$${H + T = C}RAND(H := H + 1 | T : + T + 1); C := C + 1{H + T = C}.$$

Щоб застосувати правило для циклу, посилимо передумову до $N>0 \land H+T=C$ і за правилом наслідку виводимо таку асерцію:

$${N > 0 \land H + T = C}RAND(H := H + 1 | T : + T + 1); C := C + 1{H + T = C}$$

Звідси випливає, що предикат H + T = C дійсно є інваріантом циклу.

Застосувавши правило циклу маємо

$$\{H + T = C\}$$

while
$$\neg N = C$$
 do $RAND(H : H + 1 | T : + T + 1); $C := C + 1$$

$$\{\neg(\neg N = C) \land H + T = C\}$$

Ця формула еквівалентна такій формулі

$$N = C \wedge H + T = C \Rightarrow H + T = N.$$

Отже, $\{N \ge 0 \land N = n\}$ COUNT_COINS $\{H + T = n\}$.