NCAA Basketball Presentation

M4AI

By the Nonchalant Hoopers (Adeev, Oren, Omar, Akshay, and Kai)

TABLE OF CONTENTS

01 Recap

New Data Analysis

Game Prediction Model

04. Conclusion

Of Data Visualisation Presentation

Correlation between Adjusted Offensive Efficiency and Number of Games Won

Mean Squared Error:

20.41

Intercept (β0):

Slope coefficient (β1):

-53.17

Total Squared Error:

14386.87

0.670

Mean Squared Error:

23.34

Total Squared Error:

16454.08

Intercept (β0):

84.26

Slope coefficient (β1):

-0.662

Correlation between Power Rating (BARTHAG) and Number of Games Won Normal Data Outliers 35 Line of Best Fit 30 Number of Games Won (W) 25 20 15 -10 5 0 -0.2 0.0 0.4 0.6 0.8 1.0 Power Rating (BARTHAG)

Mean Squared Error:

15.57

Total Squared Error:

10979.96

Intercept (β0):

5.891

Slope coefficient (β1):

20.44

New Data 02 Analysis

More Data Visualization relevant to the topic

https://colab.research.google.com/drive/1pfh3K ttG4dh_9LMIZcuHaxAjpZq6cDRD?usp=sharing#sc rollTo=tHZsAxxwxpVv

Game Prediction Model

Our Al game prediction model

All college basketball teams

List of all teams

Test Sample Input Tree 2 Tree 600 Tree 1 Random Forest Regression **Prediction 1 Prediction 2 Prediction 600 Average All Predictions Random Forest** Prediction

Why can't we incorporate Std.Dev?

Different performance metrics have different scales

Does not account for differences in the average performance levels between teams

Focuses on individual metrics

Conditional Probability

Applying Conditional Probability in Our Model

Context: Adjust the win probability of a team based on whether the game is played at home ('H') or away ('A').
Rationale: Teams often perform better at home due to familiar surroundings, crowd support, etc.

Model Adjustment

Home Advantage:
Increase the probability of the home team winning by a small factor.
Example: If the base probability is P, then home probability = P + Δ (where Δ is a small adjustment factor that's different for every team).

Prediction VS Reality Part I

```
Enter the name of the first team: Wisconsin Enter the name of the second team: Michigan Prediction for Wisconsin vs Michigan: Probability of Wisconsin winning: 0.57 Stats for Wisconsin: {'G': 40.0, 'W': 36.0, 'ADJOE': 129.1, 'ADJDE': 93.6, 'BARTHAG': 0.9758, 'EFG_O': 54.8, 'EFG_D': 47.7, 'TOR': 12.4} Probability of Michigan winning: 0.43 Stats for Michigan: {'G': 40.0, 'W': 33.0, 'ADJOE': 114.4, 'ADJDE': 90.4, 'BARTHAG': 0.9375, 'EFG_O': 53.9, 'EFG_D': 47.7, 'TOR': 14.0} Wisconsin is more likely to win Wisconsin is playing at home
```


59

_

64

Michigan Wolverines

(14 - 12)

Wisconsin Badgers

(15 - 10)

Prediction VS Reality Part II

```
Enter the name of the first team: Duke
Enter the name of the second team: Virginia
Prediction for Duke vs Virginia:
Probability of Duke winning: 0.55
Stats for Duke: {'G': 39.0, 'W': 35.0, 'ADJOE': 125.2, 'ADJDE': 90.6, 'BARTHAG': 0.9764, 'EFG_O': 56.6, 'EFG_D': 46.5, 'TOR': 16.3}
Probability of Virginia winning: 0.45
Stats for Virginia: {'G': 38.0, 'W': 35.0, 'ADJOE': 123.0, 'ADJDE': 89.9, 'BARTHAG': 0.9736, 'EFG_O': 55.2, 'EFG_D': 44.7, 'TOR': 14.7}
Duke is more likely to win
Duke is playing at home
```


59

_

49

4 Duke Blue Devils

2 Virginia Cavaliers

(26 - 8)

(25 - 7)

Prediction VS Reality Part III

```
Enter the name of the first team: Louisville
Enter the name of the second team: Notre Dame
Prediction for Louisville vs Notre Dame:
Probability of Louisville winning: 0.67
Stats for Louisville: {'G': 40.0, 'W': 35.0, 'ADJOE': 115.9, 'ADJDE': 84.5, 'BARTHAG': 0.9743, 'EFG_O': 50.6, 'EFG_D': 44.8, 'TOR': 18.3}
Probability of Notre Dame winning: 0.33
Stats for Notre Dame: {'G': 38.0, 'W': 32.0, 'ADJOE': 125.3, 'ADJDE': 98.6, 'BARTHAG': 0.9401, 'EFG_O': 58.3, 'EFG_D': 47.9, 'TOR': 14.5}
Louisville is more likely to win
Louisville is playing at home
```


62

-

76

Louisville Cardinals

Notre Dame Fighting Irish

(2 - 19)

(10 - 12)

Model Limitations

Model Assumptions

Injured Key Players

Psychological Factors

Team Formations and Strategies

Randomness and Unpredictability

Historical and Old Data

04 Conclusion

Who would use our AI model and why?

- Coaches and Team Managers: optimize player rotations
- Sports Analysts and Commentators: Predictions for pre-game and post-game shows
- Sports Enthusiasts and Fans: understanding important variables to make accurate bets.
- **Sports Journalists:** To enrich their articles with data-backed predictions and analyses.
- Betting Companies: To set more accurate odds and manage risks

Comprehensive Overview

Project Objectives

- Develop an Al model to predict game outcomes for NCAA basketball teams and helping in betting.
- Utilize various machine learning techniques and statistical methods.
- Incorporate additional factors such as home court advantage using conditional probabilities.

Concepts we Utilized:

- Random Forest Regressor
- Conditional Probability
- Interquartile Range (IQR)
- Matplotlib
- Correlations
- Sklearn
- Linear regression
- Squared errors
- Slope coefficient & intercept
- Plotly For plotting 3 dimensional graphs
- Tkinter For GUI

THANK YOU