Bab IV – AHN- ε

BAB IV

AHN-EPSILON (AHN-ε)

TUJUAN PRAKTIKUM

- 1) Mengetahui dan memahami apa yang dimaksud dengan Ekspresi Regular
- 2) Mengetahui dan memahami tentang ekuivalensi AHN Epsilon dengan ER

TEORI PENUNJANG

4.1 Ekspresi Regular

Bahasa regular dapat dinyatakan sebagai ekspresi regular dengan menggunakan 3 operator : *concate*, *alternate*, dan *closure*. Dua buah ekspresi regular adalah ekuivalen jika keduanya menyatakan bahasa yang sama

Contoh:

$$L_1 = \{a^n ba^m \mid n \ge 1, m \ge 1\} \Leftrightarrow er_1 = a^+ b a^+$$

$$L_2 = \{a^n ba^m \mid n \ge 0, m \ge 0\} \Leftrightarrow er_2 = a^* b a^*$$

Perhatikan bahwa kita tidak bisa membuat ekspresi regular dari bahasa

 $L_3 = \{a^n ba^n \mid n \ge 1\}$ atau $L_4 = \{a^n ba^n \mid n \ge 0\}$, karena keduanya tidak dihasilkan dari grammar regular.

4.1.1 Kesamaan 2 Ekspresi Regular :

$$(a b)^* a = a (b a)^*$$

Bukti:

$$(a \ b)^* \ a = (\varepsilon | (ab) | (abab) | \dots) \ a = (\varepsilon | (aba) | (ababa) | \dots) = (a | (aba) | (ababa) | \dots)$$

= $a \ (\varepsilon | (ba) | (baba) | \dots) = a \ (b \ a)^*$

Bab $IV - AHN - \varepsilon$ 23

Latihan 2. Buktikan kesamaan ekspresi regular berikut :

1.
$$(a*|b)* = (a|b)*$$

2.
$$(a|b^*)^* = (a|b)^*$$

3.
$$(a*b)*a* = a*(b a*)*$$

4.
$$(a a^*)(\varepsilon | a) = a^*$$

$$a(b \ a | a)^* b = a \ a^* b(a \ a^* b)^*$$

4.2 Ekuivalensi Ahn-ε Dengan ER (Ekspresi Regular)

Tabel 4.1 Tabel Ekuivalensi Ahn-ε Dengan ER (Ekspresi Regular)

Jenis ER	Simbol ER	AHN
Simbol hampa	ε	→ (0)
ER hampa	φ atau {}	→ (q ₀)
ER umum	r	→(q ₀) r ———————————————————————————————————
Alternation	$\mathbf{r}_1 \mathbf{r}_2$	ϵ r_1 ϵ q_1 r_2
Concatenation	r ₁ r ₂	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Kleene Clossure	r*	ϵ ϵ ϵ ϵ ϵ ϵ

Bab $IV - AHN - \varepsilon$ 24

<u>Contoh</u>:

Tentukan AHN untuk ekspresi regular $r = 0(1 \mid 23)^*$

<u>Jawab:</u>

$$r_1 = 0 \iff - \bullet \boxed{q_0} \qquad 0$$

$$r_2 = 1 \Leftrightarrow q_3$$

$$r_3 = 23 \Leftrightarrow q_5 \xrightarrow{2} q_6 \xrightarrow{3} q_7$$

Bab IV – AHN- ε 25

LAPORAN PENDAHULUAN

1. Tentukan AHN untuk ekspresi regular $r = 0(1 \mid 23)$ *

LAPORAN AKHIR

Berikut ini gambar AHN F:

- a. Buat Tuple-tuple beserta Tabel transisi dari Automata Hingga Non deterministik diatas!
- b. Telusuri string berikut diterima atau ditolak oleh AHN diatas
 - i. abb
 - ii. ababb
- Buat Automata Hingga Deterministik yang ekuivalen dengan Automata Hingga Non deterministik diatas! Dan buat graph nya