#### A Project Report on

### **AWS Cloud and Network Security**

Submitted in partial fulfillment of the requirements for the award of the degree of

#### **BACHELOR OF TECHNOLOGY**

IN

#### **ELECTRONICS & COMMUNICATION ENGINEERING**

By

| Yeluri Kranthi Babu | 16A95A0436 |
|---------------------|------------|
| Nersu Sudha Sai Sri | 15A91A04G1 |
| Gorrela Indrani     | 16A95A0429 |
| Amit Raj Dev        | 15A91A04C3 |

*Under the Esteemed guidance of* 

P. BALA SRINIVAS, M.Tech Assistant Professor



# DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# ADITYA ENGINEERING COLLEGE

An Autonomous Institution
(Approved by AICTE, New Delhi & Affiliated to JNTU, Kakinada)
ADITYA NAGAR, ADB ROAD, SURAMPALEM
2015-2019

# ADITYA ENGINEERING COLLEGE

An Autonomous Institution
(Approved by AICTE, New Delhi & Affiliated to JNTU, Kakinada)
ADITYA NAGAR, ADB ROAD, SURAMPALEM

# DEPARTMENT OF ELECTRONICS AND COMMUNICATION

**ENGINEERING** 



#### **CERTIFICATE**

This is to certify that the project report entitled "AWS Cloud And Network Security" is a bonafide record of the project work done by

| Yeluri Kranthi Babu | 16A95A0436 |  |
|---------------------|------------|--|
| Nersu Sudha Sai Sri | 15A91A04G1 |  |
| Gorrela Indrani     | 16A95A0429 |  |
| Amit Raj Dev        | 15A91A04C3 |  |

under my supervision and guidance, for the partial fulfillment of the requirements for the award of the degree of **Bachelor of Technology** in the Department of Electronics & Communication Engineering of Aditya Engineering College (A) from Jawaharlal Nehru Technological University, Kakinada for the year 2015-19.

Project Guide Head of the Department

P.BALA SRINIVAS V.SATYANARAYANA

**External Examiner** 

#### **ACKNOWLEDGEMENT**

We take this opportunity as a privilege to thank all individuals without whose support and guidance we could not have completed our project in this stipulated period of time.

We express our deep sense of gratitude to our guide **Mr. P. Bala Srinivas** for his valued suggestions and inputs during the course of the project work, readiness for consultation at all times, his educative comments and inputs, his concern and assistance even with practical things have been extremely helpful.

We highly indebted to our Head of the Department Mr. V. Satyanarayana for his motivational guidance and the vision in providing the necessary resources and timely inputs.

We are also thankful to **Dr. M. Sreenivasa Reddy,** Principal, Aditya Engineering College for providing appropriate environment required for this project and thankful to Faculty of Electronics and Communication Engineering Department for the encouragement and cooperation for this successful completion of the project.

Yeluri Kranthi Babu 16A95A0436 Nersu Sudha Sai Sri 15A91A04G1 Gorrela Indrani 16A95A0429 Amit Raj Dev 15A91A04C3

#### **ABSTRACT**

AWS Cloud is used to handle thousands of requests (traffic load) on a web portal when millions of users want to access the same webpage. When the user hits on a certain URL and if the requests are more on that URL the traffic load will be more. There will be lagging of the site and can't be accessed by all the users at a time, to avoid this problem we are going to change the existing policies in AWS Cloud, and create virtual instance servers by using AWS.

This is to maintain auto-scaling and load balancing on a certain web portal. In Load Balancers, Elastic Load Balancing automatically distributes your incoming traffic across multiple targets, such as EC2 instances. Auto-scaling monitors your applications and automatically adjusts capacity to maintain steady and better performance at the lowest cost. Monitoring the atmosphere information of the area, In that temperature, humidity, raining status of the details. These are achieved by IoT Technology. Network security consists of the policies and practices to prevent and monitor unauthorized access, misuse, modification, or denial of a computer network and network-accessible resources.

Network security consists of the policies and practices to prevent and monitor unauthorized access, misuse, modification, or denial of a computer network and network-accessible resources. To connect different branches with security, we are implementing SITE TO SITE VPN. To overcome the network attacks, these network security infrastructure are implementing in On-premises, not in a cloud.

### **CONTENTS**

|                                                | Page No |
|------------------------------------------------|---------|
| List of Figures                                | i       |
| List of Tables                                 | iii     |
| Nomenclature                                   | iv      |
| 1. INTRODUCTION                                | 01-05   |
| 1.1 Requirements                               | 01      |
| 1.2 Hardware Requirements                      | 02      |
| 1.3 Software Requirements                      | 02      |
| 1.4 Services and Platforms                     | 02      |
| 1.5 Existing System                            | 02      |
| 1.6 Proposed System                            | 02      |
| 1.7 Use Case                                   | 03      |
| 1.8 Activity Diagram                           | 04      |
| 1.9 Sequence Diagram                           | 05      |
| 2. LITERATURE SURVEY                           | 06-08   |
| 2.1 Introduction                               | 06      |
| 2.1.1 Life Before Cloud Computing              | 06      |
| 2.2 Why Cloud Computing?                       | 07      |
| 2.3 Research Papers                            | 07      |
| 3. AWS CLOUD                                   | 09-13   |
| 3.1 Why AWS?                                   | 09      |
| 3.2 What is Cloud Computing?                   | 09      |
| 3.3 Cloud Computing Types                      | 10      |
| 3.3.1 Infrastructure as a Service (IAAS)       | 10      |
| 3.3.2 Platform as a Service (PAAS)             | 12      |
| 3.3.3 Software as a Service (SAAS)             | 12      |
| 3.4 Advantages and Benefits of Cloud Computing | 13      |
| 4. INTERNET OF THINGS                          | 15-37   |
| 4.1 DHT11-Humidity and Temperature Sensor      | 15      |
| 4.2 Specifications                             | 16      |
| 4.3 DHT11 Temperature and Humidity Sensor      | 19      |
| 4.4 Node MCU                                   | 20      |

| 4.4.1 DHT11 Sensor Connection with NodeMCU                | 31    |
|-----------------------------------------------------------|-------|
| 4.5 Raindrop Sensor                                       | 21    |
| 4.6 Installation of Libraries                             | 25    |
| 4.7 MQTT Protocol                                         | 25    |
| 4.7.1 Sending Sensor Data to Client through MQTT Protocol | 27    |
| 4.7.2 Configure MQTT                                      | 28    |
| 5. AWS SERVICES                                           | 31-47 |
| 5.1 Introduction                                          | 31    |
| 5.1.1 Features of Amazon EC2                              | 31    |
| 5.1.2 How to launch an EC2 instance on AWS?               | 32    |
| 5.1.3 Execute the Following Commands on Gitbash Console   | 34    |
| 5.1.4 Procedure for Running Scripts on Server             | 35    |
| 5.1.5 Installing the Node Source Node.js 10               | 36    |
| 5.2 Elastic Load Balancer                                 | 36    |
| 5.2.1 Introduction                                        | 36    |
| 5.2.2 Advantages                                          | 37    |
| 5.2.3 How to add Load Balancer in AWS?                    | 37    |
| 5.3 AUTO SCALING                                          | 42    |
| 5.3.1 Introduction                                        | 42    |
| 5.3.2 Create a Launch Template                            | 42    |
| 5.3.3 Create Auto-Scaling groups                          | 45    |
| 6. NETWORK SECURITY                                       | 48-59 |
| 6.1 Introduction                                          | 48    |
| 6.2 DHCP Snooping                                         | 49    |
| 6.3 Port Security                                         | 50    |
| 6.4 Secured IOS and Configuration File                    | 52    |
| 6.5 ARP Dynamic Inspection                                | 53    |
| 6.4 Site to Site VPN                                      | 55    |
| 7. RESULTS                                                | 59-65 |
| 8. CONCLUSION AND FUTURE SCOPE                            | 66    |
| 8.1 Conclusion                                            | 66    |
| 8.2 Future Scope                                          | 66    |
| REFERENCES                                                | 67    |
| APPENDIX                                                  |       |

## LIST OF FIGURES

| Figure No | Name of Figure                          | Page No |
|-----------|-----------------------------------------|---------|
| 1.1       | Use Case Instances                      | 03      |
| 1.2       | Scale In and Out Instances              | 04      |
| 1.3       | AWS working                             | 05      |
| 4.1       | 3-D View of DHT11 Sensor                | 19      |
| 4.2       | DHT11 Sensor                            | 20      |
| 4.3       | Node MCU                                | 20      |
| 4.4       | Pin Diagram of Node MCU                 | 21      |
| 4.5       | Rain Drop Sensor                        | 22      |
| 4.6       | Schematic Diagram                       | 23      |
| 4.7       | Connecting of Rain Sensor with Node MCU | 23      |
| 4.8       | Rain Drop Sensor                        | 24      |
| 4.9       | Vaisala YL-83 Rain Detector             | 25      |
| 4.10      | MQTT Protocol                           | 26      |
| 4.11      | MQTT Broker                             | 27      |
| 4.12      | MQTT Schematic Data Flow                | 27      |
| 4.13      | MQTT Display INFO                       | 28      |
| 5.1       | Git Bash Console                        | 34      |
| 5.2       | Load Balancers                          | 38      |
| 6.1       | Network Topology                        | 48      |
| 6.2       | DHCP Snooping Output                    | 50      |

| 6.3  | Port Security Output         | 52 |
|------|------------------------------|----|
| 6.4  | Secured IOS Output           | 53 |
| 6.5  | Site to Site VPN             | 55 |
| 7.1  | Main Website Page            | 60 |
| 7.2  | EC2 Output                   | 61 |
| 7.3  | IOT Web Page                 | 61 |
| 7.4  | Load Balancer URL of website | 62 |
| 7.5  | Auto Scale in Output         | 62 |
| 7.6  | Auto Scale Output            | 63 |
| 7.7  | Auto Scale Final Output      | 64 |
| 7.8  | DHCP Snooping Output         | 64 |
| 7.9  | Port Security Output         | 65 |
| 7.10 | Secured IOS Output           | 65 |
| 7.11 | VPN Output                   | 65 |

### LIST OF TABLES

| Table No | Name of Table          | Page No |
|----------|------------------------|---------|
| 4.1      | Ranges of DHT11 Sensor | 16      |

#### **NOMENCLATURE**

**SAAS** - Software as a Service

**IAAS** - Infrastructure as a Service

**PAAS** - Platform as a Service

**AWS** - Amazon Web Services

**ARP** - Address Resolution Protocol

**DHCP** - Dynamic Host Configuration Protocol

**MQTT** - Message Queuing Telemetry Transport

**URL** - Uniform Resource Locator

**EC2** - Elastic Cloud Compute

**LB** - Load Balencer

**AS** - Auto Scale

IOS - Internetwork Operating System

**VPN** - Virtual Private Network

**DB** - Database