Applied Statistical Analysis I/
Quantitative Methods I
POP77003/77051
Fall 2024

Week 4

Yao (Sara) HAN hany3@tcd.ie

Department of Political Science
Trinity College Dublin
2 October, 2024

Today's Agenda

- (1) Lecture recap
- (2) Tutorial exercises

Importance of measurement scales

(Kellstedt and Whitten 2018, Chap. 5)

<u>Discrete:</u> finite set of possible values (Contingency tables, chi-square test) <u>Continuous:</u> infinite set of possible values (t-test for mean and difference in means, correlation, scatter plot, dependent variable in linear regression)

What is correlation? How can we measure correlation?

What is correlation?

- "The *correlation* between two features of the world is the extent to which they tend to occur together" (Bueno de Mesquita and Fowler 2021, 13).
- "If two features of the world tend to occur together, they are positively correlated" (Bueno de Mesquita and Fowler 2021, 13).
- "If the occurrence of another feature of the world is unrelated to the occurrence of another feature of the world, they are uncorrelated" (Bueno de Mesquita and Fowler 2021, 13).
- "And if when one feature of the world occurs the other tends not to occur, they are *negatively correlated*" (Bueno de Mesquita and Fowler 2021, 13).

How can we measure correlation?

- <u>Correlation</u>: (correlation coefficient, Pearson correlation coefficient, Pearson's r, r) standardized average of the product of deviations of two variables from the mean (=standardized covariance) $r = \frac{1}{n-1} \sum \left(\frac{x_i \bar{x}}{s_x} \right) \left(\frac{y_i \bar{y}}{s_y} \right)$
- ranges between -1 and 1, with 0=no association, the larger the absolute value, the stronger the association

What is correlation?

How can we test the statistical significance of correlation?

- Null and alternative hypotheses:
 - there is no association between X and Y, $\rho_{xy} = 0$ (H_0)
 - there is an association between X and Y, $\rho_{xy} \neq 0$ (H_a)
- Test statistic: $t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$ (in R) $t = \frac{r}{\sqrt{(1-r^2)/(n-2)}}$

How can we test the statistical significance of correlation?

• Is there an association between house selling price and size (Agresti 2018, 278–283)? r = 0.83378

$$t = \frac{r}{\sqrt{(1-r^2)/(n-2)}} = \frac{0.834}{\sqrt{(1-0.695)/98}} = 14.95$$

• How to interpret this value? How likely are we to observe data in sample (this test statistics), under the assumption that H_0 is true? \rightarrow Probability distribution

How can we test the statistical significance of correlation?

What is the conclusion? P-value < 0.05, We can reject H_0 with an error probability (p-value) of essentially 0% (p=0.0001). \rightarrow There is an association between house selling price and size

Shortcomings of correlation analysis

- no indication on the "substantive importance or size of the relationship between X and Y" (Bueno de Mesquita and Fowler 2021, 29).
- Slope: "tells us, descriptively, how much Y changes, on average, as X increases by one unit" (Bueno de Mesquita and Fowler 2021, 29).

Linear regression model

What is a linear regression model? What interpretations can we make?

So far, correlation analysis

Now, just by looking at the plot, can you identify the straight line which best describes the joint variation between X and Y?

^{*}This is fictional data.

What is a linear regression model?

• Find linear line of best fit, $Y_i = \alpha + \beta X_i + \epsilon_i$

What is a linear regression model?

- Find linear line of best fit, $Y_i = \alpha + \beta X_i + \epsilon_i$
- α (intercept): expected value of Y when X=0
- β (slope): expected change in Y when X increases by one unit
- \hat{Y} (expected value): predicted outcome based on the regression model, $\hat{Y}_i = \hat{\alpha} + \hat{\beta} X_i$
- ϵ (error/residual): difference between actual and predicted outcome, $\epsilon_i = Y_i \hat{Y}_i$

What interpretations can we make?

 $income = \alpha + \beta * education$ income = 1072.5490 + 221.5686 * education

What interpretations can we make? (intercept)

If an individual has a university education of 0 years, what income would we expect for that person?

income = 1072.5490 + 221.5686 * 0 = 1072.5490

What interpretations can we make? (slope)

If the university education increases by one year, how much more Euros would we expect an individual to earn? income=1072.5490+221.5686*1=1294.1176

ightarrow With every additional year of university education, the expected income increases by 221.5686 Euros.

Varieties of linear relationships

What interpretations can we make? (expected value)

If an individual has 3 university education years, what income would we expect for that person?

$$income = 1072.5490 + 221.5686 * 3 = 1737.2548$$

What interpretations can we make? (residual)

income = 1072.5490 + 221.5686 * 5 = 2180.392

Residual = Actual - Predicted

Residual = 1700 - 2180.392 = -480.392

What interpretations can we make? (residuals)

- How do we find the line which best fits the data?
- Apply the OLS (Ordinary Least Squares) method, which minimizes the sum of squared errors (SSE).
- Sum of squared errors = the sum of squared differences between actual and predicted values of Y.

$$SSE = \sum_{i=1}^{n} (\hat{\epsilon}_i)^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - (\hat{\alpha} + \hat{\beta}X_i))^2$$

$$\rightarrow \text{minimize this!}$$

How are intercept and slope estimated?

 $612,800 > 490,588 \longrightarrow SSE_{(RED)} > SSE_{(ORANGE)} \longrightarrow$ Orange regression line has better fit.

OLS assumptions

What are the assumptions of linear regression?

Assumptions of linear regression

Assumptions about the error (ϵ_i) :

$$\epsilon_i \sim N(0, \sigma^2)$$

- * ϵ_i is normally distributed
- * $E(\epsilon_i) = 0$, no bias
- * ϵ_i has constant variance σ^2 (Homoscedasticity)
- * No autocorrelation
- * X values are measured without error

(Kellstedt and Whitten 2018, 190-194)

Assumptions of linear regression

Assumptions about the model specification:

- * No causal variables left out and no noncausal variables included
- * Parametric linearity

(Kellstedt and Whitten 2018, 190–194)

Assumptions of linear regression

Minimal mathematical requirements:

- * X must vary
- * Number of observations must be larger than the number of predictors
- * In multiple regression: No perfect multicollinearity

(Kellstedt and Whitten 2018, 190–194)

What is the t-test for the slope of a regression line?

What is the t-test for the slope of a regression line?

- Null and alternative hypotheses:
 - there is no association between X and Y, $\beta = 0$ (H_0)
 - there is an association between X and Y, $\beta \neq 0$ (H_a)
- Test statistic: "measures the number of standard errors between the estimate and the H_0 value" (Agresti 2018, 192).

$$t = \frac{\textit{Estimate of parameter} - \textit{Null hypothesis value of parameter}}{\textit{Standard error of estimate}}$$

$$t=rac{\hat{eta}-eta_{H_0}}{se_{\hat{eta}}}=rac{\hat{eta}}{se_{\hat{eta}}}$$
, H_0 assumes $eta=0$

What is the t-test for the slope of a regression line?

- Is there an association between house selling price and size (Agresti 2018, 278-280)? Price = 50,926.2 + 126.6 * Size
- $t = \frac{\hat{\beta}}{\hat{\sigma}_{\hat{\beta}}} = \frac{126.6}{8.47} = 14.95$
- How to interpret this value? How likely are we to observe data in sample (this test statistics), under the assumption that H_0 is true? \rightarrow Probability distribution

What is the t-test for the slope of a regression line?

What is the conclusion? P-value < 0.05, We can reject H_0 with an error probability (p-value) of essentially 0% (< 0.0001). \rightarrow There is an association between house selling price and size

Software check

How to update your local repository? How to git pull?

Software check

- 1. Synchronize fork
- 2. Fetch origin

References I

- Agresti, Alan. 2018. Statistical methods for the social sciences.

 Harlow: Pearson.
- Bueno de Mesquita, Ethan, and Anthony Fowler. 2021. Thinking clearly with data: A guide to quantitative reasoning and analysis.

 Princeton: Princeton University Press.
- Kellstedt, Paul M., and Guy D. Whitten. 2018. The fundamentals of political science research. Cambridge: Cambridge University Press.