

Olimpiada Națională de Matematică

Etapa Județeană/a Sectoarelor Municipiului București, 2025

CLASA a XI-a – soluții

Problema 1. Fie şirul $(a_n)_{n\geq 1}$ cu $a_1=1$ şi $a_{n+1}=\frac{a_n}{1+\sqrt{1+a_n}}$, pentru orice $n\in\mathbb{N}^*$. Arătați că $\lim_{n\to\infty}\frac{a_n}{a_{n+1}}=\lim_{n\to\infty}\sum_{k=1}^n\log_2(1+a_k)=2$.

Gazeta Matematică

Problema 2. Fie $n \in \mathbb{N}$, $n \geq 3$. Spunem că o matrice $A \in \mathcal{M}_n(\mathbb{C})$ are proprietatea (\mathcal{P}) dacă $\det(A + X_{ij}) = \det(A + X_{ji})$, oricare ar fi $i, j \in \{1, 2, ..., n\}$, unde $X_{ij} \in \mathcal{M}_n(\mathbb{C})$ este matricea care are 1 pe poziția (i, j) și 0 în rest.

- a) Arătați că dacă $A \in \mathcal{M}_n(\mathbb{C})$ are proprietatea (\mathcal{P}) și $\det(A) \neq 0$, atunci $A = A^T$.
- b) Daţi un exemplu de matrice $A \in \mathcal{M}_n(\mathbb{C})$ care are proprietatea (\mathcal{P}) , dar $A \neq A^T$. Soluţie.
- b) Considerăm $A \in \mathcal{M}_n(\mathbb{C})$, matricea care are 1 pe pozițiile (1,1) și (1,2) și 0 în rest. Cum $n \geq 3$, matricea $A + X_{ij}$ are cel puțin o linie nulă, deci $\det(A + X_{ij}) = 0$, oricare ar fi $i, j \in \{1, 2, ..., n\}$. Rezultă că A are proprietatea (\mathcal{P}) , $\det A \neq A^T ... 2\mathbf{p}$

Problema 3. Fie $f:[0,\infty)\to[0,\infty)$ o funcție continuă și bijectivă, astfel ca

$$\lim_{x \to \infty} \frac{f^{-1}(f(x)/x)}{x} = 1.$$

- a) Arătați că $\lim_{x\to\infty}\frac{f(x)}{x}=\infty$ și $\lim_{x\to\infty}\frac{f^{-1}(ax)}{f^{-1}(x)}=1$, pentru oricare a>0.
- b) Dați un exemplu de funcție f care satisface condițiile din enunț. Solutie.

Limita din ipoteză asigură existența unui număr u > 0 astfel încât $\frac{f^{-1}(f(x)/x)}{f(x)} > \frac{1}{2}, \ \forall x > u.$

Rezultă
$$\frac{f(x)}{x} > f\left(\frac{x}{2}\right)$$
, $\forall x > u$. Cum $\lim_{x \to \infty} f\left(\frac{x}{2}\right) = \infty$, obținem $\lim_{x \to \infty} \frac{f(x)}{x} = \infty$ 2p

Fie a > 0, arbitrat, fixat.

 $Cazul\ a = 1$ este clar.

Cazul $a \in (0,1)$. Există t > 0 astfel ca $f^{-1}(x) > \frac{1}{a}, \ \forall x > t$. Rezultă

$$f^{-1}(x) > f^{-1}(ax) = f^{-1}(af(f^{-1}(x))) > f^{-1}\left(\frac{f(f^{-1}(x))}{f^{-1}(x)}\right), \ \forall x > t.$$

Obţinem

$$\frac{f^{-1}\left(f(f^{-1}(x))/f^{-1}(x)\right)}{f^{-1}(x)}<\frac{f^{-1}(ax)}{f^{-1}(x)}<1,\ \forall\, x>t.$$

Pe baza ipotezei și condiției $\lim_{x\to\infty} f^{-1}(x) = \infty$, obținem

$$\lim_{x \to \infty} \frac{f^{-1}\left(f(f^{-1}(x))/f^{-1}(x)\right)}{f^{-1}(x)} \stackrel{y=f^{-1}(x)}{=} \lim_{y \to \infty} \frac{f^{-1}(f(y)/y)}{y} = 1.$$

Atunci, conform criteriului cleşte, rezultă $\lim_{x\to\infty} \frac{f^{-1}(ax)}{f^{-1}(x)} = 1.$

Cazul $a \in (1, \infty)$. Atunci $b = 1/a \in (0, 1)$. Conform cazului anterior, avem

$$\lim_{x \to \infty} \frac{f^{-1}(ax)}{f^{-1}(x)} = \lim_{x \to \infty} \left(\frac{f^{-1}(x)}{f^{-1}(ax)}\right)^{-1} = \lim_{x \to \infty} \left(\frac{f^{-1}(b(ax))}{f^{-1}(ax)}\right)^{-1} = 1^{-1} = 1.$$

Rezultă
$$\lim_{x \to \infty} \frac{f^{-1}(ax)}{f^{-1}(x)} = 1, \ \forall a > 0.$$

b) Exemplu. Funcția bijectivă $f:[0,\infty)\to [0,\infty),\ f(x)=e^x-1,\ x\in [0,\infty),$ cu inversa $f^{-1}:[0,\infty)\to [0,\infty),\ f^{-1}(x)=\ln(x+1)$ satisface condițiile din enunț......**2p**

Problema 4. Determinați toate tripletele de matrice $A, B, C \in \mathcal{M}_2(\mathbb{R})$ astfel încât

$$A = BC - CB$$

$$B = CA - AC$$

$$C = AB - BA$$

Soluția 1. Dacă una dintre matricele A, B, C este nulă, atunci $A = B = C = O_2 \dots 1p$ Presupunem că există matricele $A, B, C \in \mathcal{M}_2(\mathbb{R}) \setminus \{O_2\}$ care satisfac ecuațiile din enunț. Din $\operatorname{tr}(BC - CB) = 0$ rezultă $\operatorname{tr}(A) = 0$. Similar, $\operatorname{tr}(B) = \operatorname{tr}(C) = 0 \dots 1$ Din ecuația $A^2 - \operatorname{tr}(A)A + \operatorname{det}(A)I_2 = O_2$, rezultă $A^2 = aI_2$, unde $a = -\operatorname{det}(A)$. Similar, $B^2 = bI_2$ şi $C^2 = cI_2$, cu $b = -\det(B)$ şi $c = -\det(C)$1p Înmulțind ecuația A = BC - CB cu B la stânga și respectiv la dreapta, obținem relațiile $BA = B^2C - BCB = bC - BCB$ şi $AB = BCB - CB^2 = BCB - bC$. Atunci $AB + BA = O_2$, iar din ecuația C=AB-BA, rezultă C=2AB. Similar, A=2BC și B=2CA.................1p Atunci $A = -2CB = -2C(2CA) = -4C^2A = -4cA$. Similar, B = -4aB şi $C = -4bC \dots 1p$ Cum matricele A, B și C sunt presupuse nenule, obținem a = b = c = -1/4, deci avem $\det(A) = \det(B) = \det(C) = 1/4$. Rezultă că matricele A şi B sunt de forma $A = \begin{pmatrix} x & y \\ z & -x \end{pmatrix}$ și $B=\left(\begin{array}{cc} s & t \\ u & -s \end{array}\right),$ cu $x,y,z,s,t,u\in\mathbb{R},$ astfel încât $x^2+yz=-1/4$ și $s^2+tu=-1/4.$ Din relația $AB + BA = O_2$ rezultă 2xs = -(yu + zt). Obținem: $4x^2s^2 = (yu + zt)^2 = (yu - zt)^2 + 4yztu \ge 4(yz)(tu) = 4\left(x^2 + \frac{1}{4}\right)\left(s^2 + \frac{1}{4}\right).$ Dar $x^2s^2<\left(x^2+\frac{1}{4}\right)\left(s^2+\frac{1}{4}\right),\ \forall\,x,s\in\mathbb{R}.$ Contradicție. Prin urmare, soluția unică a sistemului din enunț este $A=B=C=O_2.....$ 2p Soluția 2. Fie trei matrice $A, B, C \in \mathcal{M}_2(\mathbb{R})$ care satisfac sistemul de ecuații din enunț. Deci $a_2 = 2(b_1c_2 - b_2c_1)$, de unde $a_2^2 = 2a_2(b_1c_2 - b_2c_1) = 2a_2b_1c_2 - 2a_2b_2c_1$. Similar, obţinem: $b_2^2 = 2b_2c_1a_2 - 2b_2c_2a_1$ şi $c_2^2 = 2c_2a_1b_2 - 2c_2a_2b_1$. Rezultă $a_2^2 + b_2^2 + c_2^2 = 0$. Cum $a_2, b_2, c_2 \in \mathbb{R}$, obţinem: $a_2 = b_2 = c_2 = 0$ 2p Analog arătăm $a_3 = b_3 = c_3 = 0$. Atunci $a_1 = b_2c_3 - b_3c_2 = 0$. Similar, $b_1 = c_1 = 0$. Prin urmare, soluția unică a sistemului din enunț este $A=B=C=O_2.....$ 2p