Job No.:Robbie ThompsonAddress:44 River Rd,Ohakune,New ZealandDate:18/07/2024Latitude:-39.407297Longitude:175.401267Elevation:589 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N1	Ground Snow Load	1.22 KPa	Roof Snow Load	0.68 KPa
Earthquake Zone	2	Subsoil Category	D	Exposure Zone	В
Importance Level	2	Ultimate wind & Earthquake ARI	500 Years	Max Height	4.2 m
Wind Region	NZ2	Terrain Category	2.01	Design Wind Speed	44.78 m/s
Wind Pressure	1.2 KPa	Lee Zone	NO	Ultimate Snow ARI	150 Years
Wind Category	Very High	Earthquake ARI	500		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Gable Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 5.29 m Cpe = -0.9 pe = -0.97 KPa pnet = -0.97 KPa

For roof CP,e from 5.29 m To 10.58 m Cpe = -0.54 KPa pnet = -0.54 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 12 m Cpe = 0.7 pe = 0.76 KPa pnet = 1.12 KPa

For side wall CP,e from 0 m To 5.29 m Cpe = pe = -0.70 KPa pnet = -0.70 KPa

Maximum Upward pressure used in roof member Design = 0.97 KPa

Maximum Downward pressure used in roof member Design = 0.58 KPa

Maximum Wall pressure used in Design = 1.11 KPa

Maximum Racking pressure used in Design = 1.16 KPa

Design Summary

Purlin Design

Purlin Spacing = 800 mm Purlin Span = 5850 mm Try Purlin 290x45 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.89

K8 Upward =0.39 S1 Downward =15.23 S1 Upward =27.34

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	1.16 Kn-m	Capacity	3.78 Kn-m	Passing Percentage	325.86 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	3.35 Kn-m	Capacity	5.04 Kn-m	Passing Percentage	150.45 %
$M_{0.9D\text{-W}nUp}$	-2.55 Kn-m	Capacity	-2.74 Kn-m	Passing Percentage	428.13 %
V1 35D	0.79 Kn	Capacity	12.59 Kn	Passing Percentage	1593.67 %

Second page

 $V_{1.2D+1.5L~1.2D+Sn~1.2D+WnDn}$ 2.29 Kn Capacity 16.79 Kn Passing Percentage 733.19 % $V_{0.9D-WnUp}$ -1.74 Kn Capacity -20.98 Kn Passing Percentage 1205.75 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 11.54 mm

Limit by Woolcock et al, 1999 Span/360 = 16.11 mm

Deflection under Dead and Service Wind = 15.20 mm

Limit by Woolcock et al, 1999 Span/250 = 38.67 mm

Reactions

Maximum downward = 2.29 kn Maximum upward = -1.74 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Intermediate Design Front and Back

Intermediate Spacing = 3000 mm Intermediate Span = 1866 mm Try Intermediate 2x190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =1.00 S1 Downward =12.23 S1 Upward =0.56

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mw $_{ind+Snow}$ 1.59 Kn-m Capacity 6.06 Kn-m Passing Percentage 381.13 % $V_{0.9D-WnUp}$ 3.42 Kn Capacity -27.5 Kn Passing Percentage 804.09 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 3.975 mm Limit byWoolcock et al, 1999 Span/250 = 7.46 mm

Reactions

Maximum = 3.42 kn

Girt Design Front and Back

Girt's Spacing = 1000 mm Girt's Span = 3000 mm Try Girt 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =0.56 S1 Downward =12.23 S1 Upward =22.32

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

MWind+Snow Capacity

3/6

1.25 Kn-m 1.70 Kn-m Passing Percentage 136.00 % 1.67 Kn 13.75 Kn Passing Percentage 823.35 % V_{0.9D-WnUp} Capacity

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 10.95 mm

Limit by Woolcock et al, 1999 Span/250 = 12.00 mm

Sag during installation = 6.06 mm

Reactions

Maximum = 1.67 kn

Girt Design Sides

Girt's Span = 6000 mm Girt's Spacing = 0 mmTry Girt 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =0.29 S1 Downward =12.23 S1 Upward =31.57

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	0.00 Kn-m	Capacity	0.89 Kn-m	Passing Percentage	Infinity %
$V_{0.9D\text{-W}nUp}$	0.00 Kn	Capacity	13.75 Kn	Passing Percentage	Infinity %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 0.00 mm Limit by Woolcock et al. 1999 Span/100 = 24.00 mm

Sag during installation =97.01 mm

Reactions

Maximum = 0.00 kn

Middle Pole Design

Geometry

250 SED H5 (Minimum 275 dia. at Floor Level)	Dry Use	Height	3590 mm
Area	54091 mm2	As	40568.5546875 mm2
Ix	232952248 mm4	Zx	1774874 mm3
Iy	232952248 mm4	Zx	1774874 mm3
Lateral Pastraint	3500 mm a/a		

Lateral Restraint 3590 mm c/c

Loads

Total Area over Pole = 36 m^2

Dead 9.00 Kn Live 9.00 Kn

Wind Down	20.88 Kn	Snow	24.48 Kn
Moment wind	22.96 Kn-m	Moment snow	7.67 Kn-m
Phi	0.8	K8	0.95
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNcx Wind	736.30 Kn	PhiMnx Wind	48.72 Kn-m	PhiVnx Wind	96.07 Kn
PhiNcx Dead	441.78 Kn	PhiMnx Dead	29.23 Kn-m	PhiVnx Dead	57.64 Kn
PhiNcx Snow	589.04 Kn	PhiMnx Snow	38.98 Kn-m	PhiVnx Snow	76.85 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.54 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.29 < 1 \text{ OK}$

Deflection at top under service lateral loads = 22.56 mm < 23.93 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
K0 =	$(1-\sin(30)) / (1+\sin(30))$				
Kp =	$(1+\sin(30))/(1-\sin(30))$				

Geometry For Middle Bay Pole

$D_S =$	0.6 mm	Pile Diameter
L=	1900 mm	Pile embedment length
f1 =	3150 mm	Distance at which the shear force is applied
f2 =	0 mm	Distance of ton soil at rest pressure

Loads

Moment Wind =	22.96 Kn-m	Moment Snow =	Kn-m
Shear Wind =	7.29 Kn	Shear Snow =	7.67 Kn

Pile Properties

Safety Factory	0.55	
Hu=	12.10 Kn	Ultimate Lateral Strength of the Pile, Short pile
Mu =	23.19 Kn-m	Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.99 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1900) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1900)

Skin Friction = 29.16 Kn

Weight of Pile + Pile Skin Friction = 32.97 Kn

Uplift on one Pile = 26.82 Kn

Uplift is ok