图像压缩与编码习题

1.设某一幅图像共有8个灰度级,各灰度级出现的概率分别为

P1=0.50 P2=0.01 P3=0.03 P4=0.05

P5=0.05 P6=0.07 P7=0.19 P8=0.10

试对此图像进行 Huffman 编码和费诺编码。并比较两种编码方式的效率

解: 1) Huffman 编码

灰度级	概率	第一步	第二步	第三步	第四步	第五步	第六步	;
P1	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0
P7	0.19	0.19	0.19	0.19	0.19	_0.310	-0.50	1
P8	0.10	0.10	0.10	0.12	0.19	0.19 1		
P6	0.07	0.07	0.09	0.10	0.12 1			
P4	0.05	0.05	ן 0.07 0					
P5	0.05	0.05 0	0.05 1					
P3	0.03	0.04 1						
P2	0.01	1						

P1=0

P7=11

P8=1000

P6=1010

P4=1011

P5=10010

P3=100110

P2=100111

2) 费诺编码

输入	概率						
P1	0.50	0					
P7	0.19		0	0			
P8	0.10		0	1			
P6	0.07	1	1 1		0	0	
P4	0.05			1	0	1	
P5	0.05				0		
P3	0.03				1	1	0
P2	0.01				1	1	

P1=0 P7=100 P8=101 P6=1100 P4=1101 P5=1110 P3=11110 P2=11111

3) 比较编码效率

P	Huffman 编码	码长	费曼编码	码长	
0.50	0	1	0	1	
0.01	100111	6	11111	5	
0.03	100110	6	11110	5	
0.05	10011	5	1101	4	
0.05	10010	5	1110	4	
0.07	1010	4	1100	4	
0.19	11	2	100	3	
0.10	1000	4	101	3	
平均码长	2	.3	2.25		

费曼编码的效率更高

2.设有一幅 8×8 图像, 其灰度分布级如图

- 1) 对该图像进行 Huffman 编码,并计算编码效率和压缩比
- 2) 对该图像的差分图像进行 Huffman 编码,并计算编码效率和压缩比
- 3) 比较(1),(2) 的结果

解: 1) 原始图像 Huffman 编码

S	0	4	5	6	7
P	1/8	31/64	1/4	7/64	1/32

$$H(s) = -\left(\frac{1}{8} \times \log_2 \frac{1}{8} + \frac{31}{64} \times \log_2 \frac{31}{64} + \frac{1}{4} \log_2 \frac{1}{4} + \frac{7}{64} \times \log_2 \frac{7}{64} + \frac{1}{32} \log_2 \frac{1}{32}\right)$$

H(s) = 1.887

S P 第一步 第二步 第三步 编码 4 31/64 31/64 31/64 31/64 31/64 0 1 5 16/64 16/64 16/64 16/64 1 01 001 0 8/64 0 8/64 1 0001
$$\overline{L} = 1 \times \frac{31}{64} + 2 \times \frac{16}{64} + 3 \times \frac{8}{64} + 4 \times \left(\frac{7}{64} + \frac{2}{64}\right) = 113/64 = 1.922 \text{bit}$$
 编码效率 $\eta = \frac{H(s)}{\overline{L}} = \frac{1.887}{1.922} = 0.982$ 压缩比 $C = \frac{8}{1.922} = 4.162$

2) 差分图像 Huffman 编码 差分图像像素级分布

$$H(s) = -\left(\frac{26}{64}\log_2\frac{26}{64} + \frac{13}{64}\log_2\frac{13}{64} + \frac{9}{64}\log_2\frac{9}{64} + \frac{8}{64}\log_2\frac{8}{64} + \frac{8}{64}\log_2\frac{8}{64}\right) = 2.143$$
S P 第二步 第三步 编码 0 26/64 26/64 26/64 38/64 0 1 1 13/64 13/64 13/64 1 26/64 1 01 -1 9/64 16/64 0 9/64 1 0000 0000 1 $\bar{L} = 1 \times \frac{26}{64} + 2 \times \frac{13}{64} + 3 \times \frac{9}{64} + 4 \times \left(\frac{8}{64} + \frac{8}{64}\right) = 2.234$ bit 编码 $\hat{\Delta}$ $\hat{\Delta$

压缩比C'=
$$\frac{8}{2.234}$$
=3.581

3) 比较结果

编码效率: $\eta > \eta'$

压缩比: C > C'