Спецкурс 2020/2021: "Геометрические и комбинаторные свойства матриц и аппроксимация" Блок лекций "Сложность матриц и аппроксимация" Лекция 8: "Сложность булевых функций, матриц и графов"

5 декабря 2020 г.

Напомним обозначение $[n] := \{1, 2, \dots, n\}$.

ullet Функция $f\colon [M] imes [N] o \{0,1\}.$

Напомним обозначение $[n] := \{1, 2, \dots, n\}.$

- Функция $f: [M] \times [N] \to \{0,1\}.$
- ullet Матрица $M_f \in \{0,1\}^{M imes N}$, где $M_f(x,y) = f(x,y)$.

Напомним обозначение $[n] := \{1, 2, \dots, n\}.$

- ullet Функция $f\colon [M] imes [N] o \{0,1\}.$
- ullet Матрица $M_f \in \{0,1\}^{M imes N}$, где $M_f(x,y) = f(x,y)$.

Нижние оценки rank M_f , rank $_\pm$ M_f , rank $_\varepsilon$ M_f дают оценки снизу для различных вариантов коммуникационной сложности f. Используются методы линейной алгебры: нормы (Шаттена, операторные, γ_2), SVD, умножение Шура и Кронекера.

Напомним обозначение $[n] := \{1, 2, \dots, n\}.$

- ullet Функция $f\colon [M] imes [N] o \{0,1\}.$
- ullet Матрица $M_f \in \{0,1\}^{M imes N}$, где $M_f(x,y) = f(x,y)$.

Нижние оценки rank M_f , rank $_{\pm}$ M_f , rank $_{\varepsilon}$ M_f дают оценки снизу для различных вариантов коммуникационной сложности f. Используются методы линейной алгебры: нормы (Шаттена, операторные, γ_2), SVD, умножение Шура и Кронекера.

ullet Двудольный граф G_f с долями $X=[M],\ Y=[N]$ и ребрами x o y для f(x,y)=1.

Напомним обозначение $[n] := \{1, 2, \dots, n\}.$

- ullet Функция $f\colon [M] imes [N] o \{0,1\}.$
- ullet Матрица $M_f \in \{0,1\}^{M imes N}$, где $M_f(x,y) = f(x,y)$.

Нижние оценки rank M_f , rank $_{\pm}$ M_f , rank $_{\varepsilon}$ M_f дают оценки снизу для различных вариантов коммуникационной сложности f. Используются методы линейной алгебры: нормы (Шаттена, операторные, γ_2), SVD, умножение Шура и Кронекера.

ullet Двудольный граф G_f с долями $X = [M], \ Y = [N]$ и ребрами x o y для f(x,y) = 1.

Применим методы теории графов для получения оценок сложности G_f и ассоциированных с ним объектов f, M_f .

Вначале поговорим о связи между графами и матрицами. Пусть G=(V,E) — произвольный неориентированный граф. Пронумеруем вершины: $V=\{v_1,\ldots,v_n\}$.

Вначале поговорим о связи между графами и матрицами. Пусть G=(V,E) — произвольный неориентированный граф. Пронумеруем вершины: $V=\{v_1,\ldots,v_n\}$.

Матрицей инцидентности графа G называется матрица A=A(G) размера $n\times n$, такая что $A_{i,j}=1$ тогда и только тогда, когда в графе есть ребро v_i-v_j .

Вначале поговорим о связи между графами и матрицами. Пусть G=(V,E) — произвольный неориентированный граф. Пронумеруем вершины: $V=\{v_1,\ldots,v_n\}$.

Матрицей инцидентности графа G называется матрица A=A(G) размера $n\times n$, такая что $A_{i,j}=1$ тогда и только тогда, когда в графе есть ребро v_i-v_j .

Рассмотрим свойства матрицы инцидентности. Во-первых, A(G) по определению симметрична и обладает вещественным спектром $\{\lambda_i(A)\}$. Отметим, что спектр не зависит от способа нумерации вершин; можно говорить о спектре графа: $\lambda_i(G)$.

Вначале поговорим о связи между графами и матрицами. Пусть G=(V,E) — произвольный неориентированный граф. Пронумеруем вершины: $V=\{v_1,\ldots,v_n\}$.

Матрицей инцидентности графа G называется матрица A=A(G) размера $n\times n$, такая что $A_{i,j}=1$ тогда и только тогда, когда в графе есть ребро v_i-v_j .

Рассмотрим свойства матрицы инцидентности. Во-первых, A(G) по определению симметрична и обладает вещественным спектром $\{\lambda_i(A)\}$. Отметим, что спектр не зависит от способа нумерации вершин; можно говорить о спектре графа: $\lambda_i(G)$.

Напомним, что степенью вершины в графе называется количество рёбер, которые из неё выходят: $\deg(v) = |\{e \in E : v \in e\}|$.

Утверждение

Пусть G = (V, E) — неориентированный граф из n вершин, A — его матрица инцидентности. Выполнены свойства:

Утверждение

Пусть G = (V, E) — неориентированный граф из п вершин, A — его матрица инцидентности. Выполнены свойства:

• $|\lambda_i(G)| \leq \max \deg(v)$;

Утверждение

Пусть G = (V, E) — неориентированный граф из п вершин, A — его матрица инцидентности. Выполнены свойства:

- $|\lambda_i(G)| \leq \max \deg(v)$;
- если G двудольный граф и λ собственное значение G, то $(-\lambda)$ тоже собственное значение, той же кратности;

Утверждение

Пусть G = (V, E) — неориентированный граф из n вершин, A — его матрица инцидентности. Выполнены свойства:

- $|\lambda_i(G)| \leq \max \deg(v)$;
- если G двудольный граф и λ собственное значение G, то $(-\lambda)$ тоже собственное значение, той же кратности;
- $\min \deg(v) \leqslant \lambda_{\max} \leqslant \max \deg(v)$;

Утверждение

Пусть G = (V, E) — неориентированный граф из n вершин, A — его матрица инцидентности. Выполнены свойства:

- $|\lambda_i(G)| \leq \max \deg(v)$;
- если G двудольный граф и λ собственное значение G, то $(-\lambda)$ тоже собственное значение, той же кратности;
- $\min \deg(v) \leqslant \lambda_{\max} \leqslant \max \deg(v)$;
- для индуцированного подграфа Н имеем

$$\lambda_{\min}(G) \leqslant \lambda_{\min}(H) \leqslant \lambda_{\max}(H) \leqslant \lambda_{\max}(G).$$

Докажем, что $|\lambda| \leqslant \max \deg(v)$ для всех собственных значений. Пусть x — собственный вектор с этим собственным значением. Считаем, что координата $|x_p|$ максимальна по модулю.

Докажем, что $|\lambda| \leqslant \max \deg(v)$ для всех собственных значений. Пусть x — собственный вектор с этим собственным значением. Считаем, что координата $|x_p|$ максимальна по модулю.

$$|(Ax)_p| = |\lambda| \cdot |x_p|,$$

$$|(Ax)_{\rho}| = |\sum_{j} A_{\rho,j} x_j| \leqslant \sum_{j} A_{\rho,j} |x_j| \leqslant \deg(v_{\rho}) |x_{\rho}| \leqslant \max \deg(v) \cdot |x_{\rho}|.$$

Докажем, что $|\lambda|\leqslant \max \deg(v)$ для всех собственных значений. Пусть x — собственный вектор с этим собственным значением. Считаем, что координата $|x_p|$ максимальна по модулю.

$$|(Ax)_p| = |\lambda| \cdot |x_p|,$$

$$|(Ax)_p| = |\sum_j A_{p,j} x_j| \leqslant \sum_j A_{p,j} |x_j| \leqslant \deg(v_p) |x_p| \leqslant \max \deg(v) \cdot |x_p|.$$

Докажем теперь симметричность спектра двудольного графа с долями V_1 и V_2 . Пусть $b_i=1$ для $v_i\in V_1$ и $b_i=-1$ для $v_i\in V_1$. Рассмотрим изоморфизм $x\mapsto bx$. Пусть $Ax=\lambda x$, вычислим A(bx).

Докажем, что $|\lambda| \leqslant \max \deg(v)$ для всех собственных значений. Пусть x — собственный вектор с этим собственным значением. Считаем, что координата $|x_p|$ максимальна по модулю.

$$|(Ax)_p| = |\lambda| \cdot |x_p|,$$

$$|(Ax)_p| = |\sum_j A_{p,j} x_j| \leqslant \sum_j A_{p,j} |x_j| \leqslant \deg(v_p) |x_p| \leqslant \max \deg(v) \cdot |x_p|.$$

Докажем теперь симметричность спектра двудольного графа с долями V_1 и V_2 . Пусть $b_i=1$ для $v_i\in V_1$ и $b_i=-1$ для $v_i\in V_1$. Рассмотрим изоморфизм $x\mapsto bx$. Пусть $Ax=\lambda x$, вычислим A(bx).

Для i: $v_i \in V_1$ имеем

$$(A(bx))_{i} = \sum A_{i,j}b_{j}x_{j} = \sum_{v_{j} \in V_{1}} A_{i,j}x_{j} - \sum_{v_{j} \in V_{2}} A_{i,j}x_{j} = -\sum_{v_{j} \in V_{2}} A_{i,j}x_{j} = -\sum_{v_{j} \in V_{2}} A_{i,j}x_{j} = -\lambda x_{i} = -\lambda (bx)_{i}.$$

Докажем, что $\min \deg(v) \leqslant \lambda_{\max} \leqslant \max \deg(v)$. Оценка сверху уже была доказана. Для оценки снизу заметим, что $\langle Ax, x \rangle \leqslant \lambda_{\max}$ для любого единичного x. Подставим $x = n^{-1/2}(1, 1, \dots, 1)$:

Докажем, что $\min \deg(v) \leqslant \lambda_{\max} \leqslant \max \deg(v)$. Оценка сверху уже была доказана. Для оценки снизу заметим, что $\langle Ax, x \rangle \leqslant \lambda_{\max}$ для любого единичного x. Подставим $x = n^{-1/2}(1, 1, \dots, 1)$:

$$\frac{1}{n}\langle A\mathbf{1},\mathbf{1}\rangle = \frac{1}{n}\sum_{k,l=1}^n A_{k,l} = \frac{1}{n}\sum_{k=1}^n \deg(v_k) \geqslant \min\deg(v).$$

Докажем, что $\min \deg(v) \leqslant \lambda_{\max} \leqslant \max \deg(v)$. Оценка сверху уже была доказана. Для оценки снизу заметим, что $\langle Ax, x \rangle \leqslant \lambda_{\max}$ для любого единичного x. Подставим $x = n^{-1/2}(1, 1, \dots, 1)$:

$$\frac{1}{n}\langle A\mathbf{1},\mathbf{1}\rangle = \frac{1}{n}\sum_{k,l=1}^n A_{k,l} = \frac{1}{n}\sum_{k=1}^n \deg(v_k) \geqslant \min\deg(v).$$

Для доказательства $\lambda_{\max}(H) \leqslant \lambda_{\max}(G)$ нужно взять вектор, максимизирующий $\langle A_H x, x \rangle$.

Хроматическое число

Из доказанных свойств вытекает следствие.

Утверждение

Хроматическое число графа G оценивается величиной $\chi(G) \leqslant \lambda_{\sf max}(G) + 1$.

Хроматическое число

Из доказанных свойств вытекает следствие.

Утверждение

Хроматическое число графа G оценивается величиной $\chi(G)\leqslant \lambda_{\sf max}(G)+1.$

Действительно, для любого индуцированного подграфа H имеем $\min_{v\in V_H} \deg(v) \leqslant \lambda_{\max}(H) \leqslant \lambda_{\max}(G)$. Докажем, что если всегда $\min \deg \leqslant K$, то граф можно покрасить в K+1 цвет.

Хроматическое число

Из доказанных свойств вытекает следствие.

Утверждение

Хроматическое число графа G оценивается величиной $\chi(G)\leqslant \lambda_{\sf max}(G)+1.$

Действительно, для любого индуцированного подграфа H имеем $\min_{v \in V_H} \deg(v) \leqslant \lambda_{\max}(H) \leqslant \lambda_{\max}(G)$. Докажем, что если всегда $\min \deg \leqslant K$, то граф можно покрасить в K+1 цвет.

Пусть x_n — вершина G степени не выше K. Положим $H_{n-1}=G-\{x_n\}$ и возьмём в нём вершину x_{n-1} , и т.д. В последовательности x_1,x_2,\ldots,x_n каждый x_j соединяется не более чем с K вершинами перед ним. Значит, можно красить их жадным образом.

Сложность формул

Пусть $f: \{0,1\}^n \to \{0,1\}$ — булева функция от n переменных. Схемой, реализующей функцию f, называется ацикличный ориентированный граф с n входными узлами (соответствующими переменным x_i), вычислительными узлами $(y_i \& y_j, \ y_i \lor y_j, \ \neg y_i)$ и выходом, в котором должно вычисляться значение f.

Сложность формул

Пусть $f: \{0,1\}^n \to \{0,1\}$ — булева функция от n переменных. Схемой, реализующей функцию f, называется ацикличный ориентированный граф с n входными узлами (соответствующими переменным x_i), вычислительными узлами ($y_i \& y_j, \ y_i \lor y_j, \ \neg y_i$) и выходом, в котором должно вычисляться значение f.

Схема называется ϕ ормулой, если промежуточные узлы нельзя переиспользовать — из каждого идёт только одно выходное ребро.

Сложность формул

Пусть $f: \{0,1\}^n \to \{0,1\}$ — булева функция от n переменных. Схемой, реализующей функцию f, называется ацикличный ориентированный граф с n входными узлами (соответствующими переменным x_i), вычислительными узлами ($y_i \& y_j, \ y_i \lor y_j, \ \neg y_i$) и выходом, в котором должно вычисляться значение f.

Схема называется формулой, если промежуточные узлы нельзя переиспользовать — из каждого идёт только одно выходное ребро.

Сложностью L(f) реализации f в виде формулы назовём минимальный размер формулы, вычисляющей f.

Рассматриваем двудольные графы с фиксированными долями X и Y. Граф отождествим со множеством его рёбер: $G\subset X\times Y$.

Рассматриваем двудольные графы с фиксированными долями X и Y. Граф отождествим со множеством его рёбер: $G \subset X \times Y$.

При определении сложности графа нужно задать "начальные" элементы, из которых он собирается, и элементарные операции (которые происходят в вычислительных узлах).

Рассматриваем двудольные графы с фиксированными долями X и Y. Граф отождествим со множеством его рёбер: $G\subset X imes Y$.

При определении сложности графа нужно задать "начальные" элементы, из которых он собирается, и элементарные операции (которые происходят в вычислительных узлах).

- ullet операции: объединение и пересечение множества рёбер, т.е. для G_1 и G_2 можно вычислить $G_1 \cap G_2$ и $G_1 \cup G_2$;
- ullet начальные элементы: графы вида $A \times Y$ и $X \times B$, множество таких графов обозначим \mathcal{B} ;

Рассматриваем двудольные графы с фиксированными долями X и Y. Граф отождествим со множеством его рёбер: $G\subset X\times Y$.

При определении сложности графа нужно задать "начальные" элементы, из которых он собирается, и элементарные операции (которые происходят в вычислительных узлах).

- операции: объединение и пересечение множества рёбер, т.е. для G_1 и G_2 можно вычислить $G_1 \cap G_2$ и $G_1 \cup G_2$;
- ullet начальные элементы: графы вида $A \times Y$ и $X \times B$, множество таких графов обозначим \mathcal{B} ;

Аналогично булевым функциям, определяются схемы и формулы, вычисляющие данный граф. Будем обозначать $L_{\mathcal{B}}(G)$ сложность реализации графа в виде формулы с начальными элементами из \mathcal{B} .

Пусть f — булева функция от 2n переменных. Запишем её в виде $f\colon\{0,1\}^n imes\{0,1\}^n o\{0,1\}$ и рассмотрим соответствующий граф G_f .

Пусть f — булева функция от 2n переменных. Запишем её в виде $f\colon\{0,1\}^n imes\{0,1\}^n o\{0,1\}$ и рассмотрим соответствующий граф G_f .

Сравните функции и графы:

• Какие графы соответствуют функциям $f_1 \& f_2$, $f_1 \lor f_2$?

Пусть f — булева функция от 2n переменных. Запишем её в виде $f\colon\{0,1\}^n imes\{0,1\}^n o\{0,1\}$ и рассмотрим соответствующий граф G_f .

Сравните функции и графы:

• Какие графы соответствуют функциям $f_1\&f_2$, $f_1\lor f_2$? Графы $G_{f_1}\cap G_{f_2}$ и $G_{f_1}\cup G_{f_2}$, соответственно.

Пусть f — булева функция от 2n переменных. Запишем её в виде $f\colon\{0,1\}^n imes\{0,1\}^n o\{0,1\}$ и рассмотрим соответствующий граф G_f .

Сравните функции и графы:

- Какие графы соответствуют функциям $f_1\&f_2$, $f_1\lor f_2$? Графы $G_{f_1}\cap G_{f_2}$ и $G_{f_1}\cup G_{f_2}$, соответственно.
- ullet Какой граф у функции $f(x_1,\ldots,x_n,y_1,\ldots,y_n)=x_i$? А у функции y_j ?

Пусть f — булева функция от 2n переменных. Запишем её в виде $f\colon\{0,1\}^n imes\{0,1\}^n o\{0,1\}$ и рассмотрим соответствующий граф G_f .

Сравните функции и графы:

- Какие графы соответствуют функциям $f_1\&f_2$, $f_1\lor f_2$? Графы $G_{f_1}\cap G_{f_2}$ и $G_{f_1}\cup G_{f_2}$, соответственно.
- Какой граф у функции $f(x_1,\ldots,x_n,y_1,\ldots,y_n)=x_i$? А у функции y_j ? В первом случае это полный двудольный подграф вида $K_{N/2,N},\ N=2^N.$

Пусть f — булева функция от 2n переменных. Запишем её в виде $f\colon\{0,1\}^n imes\{0,1\}^n o\{0,1\}$ и рассмотрим соответствующий граф G_f .

Сравните функции и графы:

- Какие графы соответствуют функциям $f_1\&f_2$, $f_1\lor f_2$? Графы $G_{f_1}\cap G_{f_2}$ и $G_{f_1}\cup G_{f_2}$, соответственно.
- Какой граф у функции $f(x_1,\ldots,x_n,y_1,\ldots,y_n)=x_i$? А у функции y_j ? В первом случае это полный двудольный подграф вида $K_{N/2,N},\ N=2^N.$
- ullet Как соотносятся сложности функции L(f) и графа $L_{\mathcal{B}}(G_f)$?

Пусть f — булева функция от 2n переменных. Запишем её в виде $f\colon\{0,1\}^n imes\{0,1\}^n o\{0,1\}$ и рассмотрим соответствующий граф G_f .

Сравните функции и графы:

- Какие графы соответствуют функциям $f_1\&f_2$, $f_1\lor f_2$? Графы $G_{f_1}\cap G_{f_2}$ и $G_{f_1}\cup G_{f_2}$, соответственно.
- Какой граф у функции $f(x_1,\ldots,x_n,y_1,\ldots,y_n)=x_i$? А у функции y_j ? В первом случае это полный двудольный подграф вида $K_{N/2,N},\ N=2^N.$
- ullet Как соотносятся сложности функции L(f) и графа $L_{\mathcal{B}}(G_f)$?

$$L_{\mathcal{B}}(G_f) \leqslant L(f).$$

Что делать с отрицаниями?

Пусть f — булева функция от 2n переменных. Запишем её в виде $f\colon\{0,1\}^n imes\{0,1\}^n o\{0,1\}$ и рассмотрим соответствующий граф G_f .

Сравните функции и графы:

- Какие графы соответствуют функциям $f_1\&f_2$, $f_1\lor f_2$? Графы $G_{f_1}\cap G_{f_2}$ и $G_{f_1}\cup G_{f_2}$, соответственно.
- Какой граф у функции $f(x_1,\ldots,x_n,y_1,\ldots,y_n)=x_i$? А у функции y_j ? В первом случае это полный двудольный подграф вида $K_{N/2,N},\ N=2^N.$
- ullet Как соотносятся сложности функции L(f) и графа $L_{\mathcal{B}}(G_f)$?

$$L_{\mathcal{B}}(G_f) \leqslant L(f).$$

Что делать с отрицаниями? Поскольку это формула, то можно их загнать в переменные.

Итак, сложность двудольного графа даёт нижнюю оценку обычной сложности булевых функций.

Пример: функция чётности

Рассмотрим

$$f(x_1,\ldots,x_n,y_1,\ldots,y_n)=x_1\oplus x_2\oplus\cdots\oplus x_n\oplus y_1\oplus\cdots\oplus y_n.$$

Известно, что эту функцию нельзя вычислить схемой константной глубины, используя полиномиальное число узлов вида & и \vee (даже с произвольным кол-вом входов). Используя обычный базис, можно сделать формулу глубины $\approx \log n$.

Пример: функция чётности

Рассмотрим

$$f(x_1,\ldots,x_n,y_1,\ldots,y_n)=x_1\oplus x_2\oplus\cdots\oplus x_n\oplus y_1\oplus\cdots\oplus y_n.$$

Известно, что эту функцию нельзя вычислить схемой константной глубины, используя полиномиальное число узлов вида & и \vee (даже с произвольным кол-вом входов). Используя обычный базис, можно сделать формулу глубины $\approx \log n$.

Какой вид имеет граф G_f ? Оцените его сложность.

Пример: функция чётности

Рассмотрим

$$f(x_1,\ldots,x_n,y_1,\ldots,y_n)=x_1\oplus x_2\oplus\cdots\oplus x_n\oplus y_1\oplus\cdots\oplus y_n.$$

Известно, что эту функцию нельзя вычислить схемой константной глубины, используя полиномиальное число узлов вида & и \vee (даже с произвольным кол-вом входов). Используя обычный базис, можно сделать формулу глубины $\approx \log n$.

Какой вид имеет граф G_f ? Оцените его сложность. $G_f = (A \times \overline{A}) \cup (\overline{A} \times A)$, где A это множество векторов $\{0,1\}^n$ с чётным числом единиц.

Пусть H_n — матрица Уолша—Адамара размера $N \times N$, $N=2^n$. Пусть G — соответствующий граф (проводим ребро x-y, если $H_n(x,y)=1$).

Пусть H_n — матрица Уолша—Адамара размера $N \times N$, $N=2^n$. Пусть G — соответствующий граф (проводим ребро x-y, если $H_n(x,y)=1$).

Матрица Адамара сложные с точки зрения коммуникационной сложности (Forster: rank $_{\pm} H \geqslant \sqrt{N}$). Что можно сказать про граф?

Пусть H_n — матрица Уолша—Адамара размера $N \times N$, $N=2^n$. Пусть G — соответствующий граф (проводим ребро x-y, если $H_n(x,y)=1$).

Матрица Адамара сложные с точки зрения коммуникационной сложности (Forster: rank $_{\pm}H\geqslant\sqrt{N}$). Что можно сказать про граф?

Соответствующая булевая функция имеет вид

$$f(x_1,\ldots,x_n,y_1,\ldots,y_n)=x_1y_1\oplus x_2y_2\oplus\cdots\oplus x_ny_n.$$

Она вычисляется формулой с O(n) элементами глубины $O(\log n)$.

Пусть H_n — матрица Уолша—Адамара размера $N \times N$, $N=2^n$. Пусть G — соответствующий граф (проводим ребро x-y, если $H_n(x,y)=1$).

Матрица Адамара сложные с точки зрения коммуникационной сложности (Forster: rank $_{\pm}$ $H \geqslant \sqrt{N}$). Что можно сказать про граф? Соответствующая булевая функция имеет вид

$$f(x_1,\ldots,x_n,y_1,\ldots,y_n)=x_1y_1\oplus x_2y_2\oplus\cdots\oplus x_ny_n.$$

Она вычисляется формулой с O(n) элементами глубины $O(\log n)$.

Упражение: придумайте схему константной глубины для вычисления графа.

Дадим различные оценки сложности графов. Пусть G = (V, E) — произвольный неориентированный граф.

Дадим различные оценки сложности графов. Пусть G = (V, E) — произвольный неориентированный граф.

Говорят, что задана проективная реализация графа G=(V,E) в линейном пространстве U над полем \mathbb{F} , если для каждой вершины $v\in V$ задано линейное пространство $U_v\subset U$, так что

$$(v, w) \in E \iff U_v \cap U_w \neq \{0\}.$$

Дадим различные оценки сложности графов. Пусть G = (V, E) — произвольный неориентированный граф.

Говорят, что задана проективная реализация графа G=(V,E) в линейном пространстве U над полем \mathbb{F} , если для каждой вершины $v\in V$ задано линейное пространство $U_v\subset U$, так что

$$(v,w) \in E \iff U_v \cap U_w \neq \{0\}.$$

Проективной размерностью графа $\operatorname{pdim}_{\mathbb{F}}(G)$ назовём минимальную размерность пространства U, в котором существует его проективная реализация.

Дадим различные оценки сложности графов. Пусть G = (V, E) — произвольный неориентированный граф.

Говорят, что задана проективная реализация графа G=(V,E) в линейном пространстве U над полем \mathbb{F} , если для каждой вершины $v\in V$ задано линейное пространство $U_v\subset U$, так что

$$(v, w) \in E \iff U_v \cap U_w \neq \{0\}.$$

Проективной размерностью графа $\operatorname{pdim}_{\mathbb{F}}(G)$ назовём минимальную размерность пространства U, в котором существует его проективная реализация.

Аналогично определяется аффинная размерность, только линейные пространства U_v заменяются на аффинные, а требование $U_v \cap U_w \neq \{0\}$ заменяется на $U_v \cap U_w \neq \emptyset$.

Утверждение

- ullet Для произвольного поля имеем $\operatorname{adim}_{\mathbb{F}}(G)\leqslant\operatorname{pdim}_{\mathbb{F}}(G)^2.$
- ullet Над полем $\mathbb R$ имеем $\operatorname{adim}_{\mathbb R}(G)\leqslant\operatorname{pdim}_{\mathbb R}(G)-1.$

Известные оценки в обратную сторону намного слабее.

Утверждение

- ullet Для произвольного поля имеем $\operatorname{adim}_{\mathbb{F}}(G)\leqslant\operatorname{pdim}_{\mathbb{F}}(G)^2.$
- ullet Над полем $\mathbb R$ имеем $\operatorname{adim}_{\mathbb R}(G)\leqslant\operatorname{pdim}_{\mathbb R}(G)-1.$

Известные оценки в обратную сторону намного слабее.

Пусть $\{U_v\}$, $U_v \subset \mathbb{F}^d$ — проективная реализация. Построим аффинную реализацию в пространстве матриц $\mathbb{F}^{d \times d}$.

Утверждение

- ullet Для произвольного поля имеем $\operatorname{adim}_{\mathbb{F}}(G)\leqslant\operatorname{pdim}_{\mathbb{F}}(G)^2.$
- ullet Над полем $\mathbb R$ имеем $\operatorname{adim}_{\mathbb R}(G)\leqslant\operatorname{pdim}_{\mathbb R}(G)-1.$

Известные оценки в обратную сторону намного слабее.

Пусть $\{U_v\}$, $U_v \subset \mathbb{F}^d$ — проективная реализация. Построим аффинную реализацию в пространстве матриц $\mathbb{F}^{d \times d}$.

Полагаем

$$W_{\mathsf{v}} := \{A \in \mathbb{F}^{d imes d} \colon \mathsf{строки} \ A \ \mathsf{лежат} \ \mathsf{B} \ U_{\mathsf{v}} \ \mathsf{u} \ \mathrm{tr}(A) = 1\}.$$

Утверждение

- ullet Для произвольного поля имеем $\operatorname{adim}_{\mathbb{F}}(G)\leqslant\operatorname{pdim}_{\mathbb{F}}(G)^2.$
- ullet Над полем $\mathbb R$ имеем $\operatorname{adim}_{\mathbb R}(G)\leqslant\operatorname{pdim}_{\mathbb R}(G)-1.$

Известные оценки в обратную сторону намного слабее.

Пусть $\{U_v\}$, $U_v \subset \mathbb{F}^d$ — проективная реализация. Построим аффинную реализацию в пространстве матриц $\mathbb{F}^{d \times d}$.

Полагаем

$$W_{\mathsf{v}} := \{A \in \mathbb{F}^{d imes d} \colon \mathsf{строки} \ A \ \mathsf{лежат} \ \mathsf{B} \ U_{\mathsf{v}} \ \mathsf{u} \ \mathrm{tr}(A) = 1\}.$$

Если $x\in U_{v_1}\cap U_{v_2}$, то можно взять матрицу с одной строкой, пропорциональной x, и остальными нулевыми. Если $A\in W_{v_1}\cap W_{v_2}$, то в A найдётся ненулевая строка, она принадлежит U_{v_1} и U_{v_2} .

Утверждение

- ullet Для произвольного поля имеем $\operatorname{adim}_{\mathbb{F}}(G)\leqslant\operatorname{pdim}_{\mathbb{F}}(G)^2.$
- ullet Над полем ${\mathbb R}$ имеем ${
 m adim}_{\mathbb R}(G)\leqslant {
 m pdim}_{\mathbb R}(G)-1.$

Известные оценки в обратную сторону намного слабее.

Пусть $\{U_v\}$, $U_v \subset \mathbb{F}^d$ — проективная реализация. Построим аффинную реализацию в пространстве матриц $\mathbb{F}^{d \times d}$.

Полагаем

$$W_{\mathsf{v}} := \{A \in \mathbb{F}^{d imes d} \colon \mathsf{строки} \ A \ \mathsf{лежат} \ \mathsf{B} \ U_{\mathsf{v}} \ \mathsf{u} \ \mathrm{tr}(A) = 1\}.$$

Если $x\in U_{v_1}\cap U_{v_2}$, то можно взять матрицу с одной строкой, пропорциональной x, и остальными нулевыми. Если $A\in W_{v_1}\cap W_{v_2}$, то в A найдётся ненулевая строка, она принадлежит U_{v_1} и U_{v_2} .

Как получить из проективной реализации аффинную?

Утверждение

- ullet Для произвольного поля имеем $\operatorname{adim}_{\mathbb{F}}(G)\leqslant\operatorname{pdim}_{\mathbb{F}}(G)^2.$
- ullet Над полем ${\mathbb R}$ имеем ${
 m adim}_{\mathbb R}({\mathcal G})\leqslant {
 m pdim}_{\mathbb R}({\mathcal G})-1.$

Известные оценки в обратную сторону намного слабее.

Пусть $\{U_v\}$, $U_v \subset \mathbb{F}^d$ — проективная реализация. Построим аффинную реализацию в пространстве матриц $\mathbb{F}^{d \times d}$.

Полагаем

Если $x\in U_{v_1}\cap U_{v_2}$, то можно взять матрицу с одной строкой, пропорциональной x, и остальными нулевыми. Если $A\in W_{v_1}\cap W_{v_2}$, то в A найдётся ненулевая строка, она принадлежит U_{v_1} и U_{v_2} .

Как получить из проективной реализации аффинную? Нужно пересечь всё с гиперплоскостью общего положения.

Если булева функция f от 2n переменных вычислима программой c ветвлением размера S, то $\operatorname{pdim}_{\mathbb{F}}(G_f) \leqslant S + 2$.

Если булева функция f от 2n переменных вычислима программой с ветвлением размера S, то $\operatorname{pdim}_{\mathbb{F}}(G_f) \leqslant S + 2$.

Прогаммы с ветвлением (рисуем картинку!) по силе между булевыми формулами и булевыми схемами.

Если булева функция f от 2n переменных вычислима программой c ветвлением размера S, то $\mathrm{pdim}_{\mathbb{F}}(G_f)\leqslant S+2.$

Прогаммы с ветвлением (рисуем картинку!) по силе между булевыми формулами и булевыми схемами.

Theorem (Разборов, 1990)

Для любого двудольного графа имеем $L_{\mathcal{B}}(G) \geqslant \mathrm{adim}_{\mathbb{F}}(G)$.

Если булева функция f от 2n переменных вычислима программой c ветвлением размера S, то $\mathrm{pdim}_{\mathbb{F}}(G_f)\leqslant S+2.$

Прогаммы с ветвлением (рисуем картинку!) по силе между булевыми формулами и булевыми схемами.

Theorem (Разборов, 1990)

Для любого двудольного графа имеем $L_{\mathcal{B}}(G)\geqslant \operatorname{adim}_{\mathbb{F}}(G).$

Используя оценку Warren-а (см. лекцию 2), можно показать, что существуют графы с $\mathrm{pdim}_{\mathbb{R}}(G)\geqslant c\sqrt{n/\log n}$.

Связь сложность графа и аппроксимативного ранга

В ряде случаев можно показать, что матрица инцидентности двудольного графа малой сложности имеет низкий аппроксимативный ранг. Рассмотрим пример.

Связь сложность графа и аппроксимативного ранга

В ряде случаев можно показать, что матрица инцидентности двудольного графа малой сложности имеет низкий аппроксимативный ранг. Рассмотрим пример.

Утверждение

Предположим, двудольный N imes N граф G имеет вид

$$G = \bigcup_{i=1}^n A_i \times B_i, \quad A_i \subset X, \ B_i \subset Y.$$

Тогда для любого $arepsilon \in (0,1/2)$ найдётся матрица $M \in \mathbb{R}^{ extsf{N} imes extsf{N}}$, такая что

- ullet для всех $(x,y)\in X imes Y$ имеем $|G(x,y)-M(x,y)|\leqslant arepsilon,$
- rank $M \leq \exp(C\sqrt{n}\log(2/\varepsilon)\log n)$.

Связь сложность графа и аппроксимативного ранга

В ряде случаев можно показать, что матрица инцидентности двудольного графа малой сложности имеет низкий аппроксимативный ранг. Рассмотрим пример.

Утверждение

Предположим, двудольный N imes N граф G имеет вид

$$G = \bigcup_{i=1}^n A_i \times B_i, \quad A_i \subset X, \ B_i \subset Y.$$

Тогда для любого $arepsilon \in (0,1/2)$ найдётся матрица $M \in \mathbb{R}^{ extsf{N} imes extsf{N}}$, такая что

- ullet для всех $(x,y)\in X imes Y$ имеем $|G(x,y)-M(x,y)|\leqslant arepsilon$,
- rank $M \leqslant \exp(C\sqrt{n}\log(2/\varepsilon)\log n)$.

Мы отождествляем граф G с его матрицей. Пусть $G_i=A_i\times B_i$. Ясно, что $G=G_1\cup G_2\cup\ldots\cup G_n$ и rank $G_i=1$. Для получения из G матрицы M нужно аппроксимировать функцию $y_1\vee y_2\vee\ldots\vee y_n$.

Аппроксимация дизъюнкции

Для $x \in \{0,1\}^n$ обозначим через $\mathrm{OR}(x)$ функцию $x_1 \vee x_2 \vee \ldots \vee x_n$.

Утверждение (в качестве упражнения)

Для любого $\varepsilon \in (0,1/2)$ найдётся вещественный многочлен p от n булевых переменных степени не выше $Cn^{1/2}\log(2/\varepsilon)$, такой что для всех $x \in \{0,1\}^n$, $|p(x) - \mathrm{OR}(x)| \leqslant \varepsilon$.

Аппроксимация булевых функций многочленами — отдельная важная тема. Для $f:\{0,1\}^n$ через $\deg_{\varepsilon}(f)$ обозначим минимальную степень полинома $p(x_1,\ldots,x_n)$, аппроксимирующего f с точностью ε : $\|p-f\|_{\infty}\leqslant \varepsilon$.

Аппроксимация дизъюнкции

Для $x \in \{0,1\}^n$ обозначим через $\mathrm{OR}(x)$ функцию $x_1 \vee x_2 \vee \ldots \vee x_n$.

Утверждение (в качестве упражнения)

Для любого $\varepsilon \in (0,1/2)$ найдётся вещественный многочлен p от n булевых переменных степени не выше $Cn^{1/2}\log(2/\varepsilon)$, такой что для всех $x \in \{0,1\}^n$, $|p(x) - \mathrm{OR}(x)| \leqslant \varepsilon$.

Аппроксимация булевых функций многочленами — отдельная важная тема. Для $f: \{0,1\}^n$ через $\deg_{\varepsilon}(f)$ обозначим минимальную степень полинома $p(x_1,\ldots,x_n)$, аппроксимирующего f с точностью ε : $\|p-f\|_{\infty} \leqslant \varepsilon$.

Определение $\deg_{\varepsilon}(f)$ вполне аналогично определению ε -ранга матрицы. Более того, есть и прямая связь. Скажем, если f — булева функция от 2n переменных, $d=\deg_{\varepsilon}(f)$, то матрица M(x,y)=f(x,y), $x,y\in\{0,1\}^n$, приближается матрицей p(x,y), $\deg p\leqslant d$. Отсюда

$$\operatorname{rank}_{\varepsilon}(M) \leqslant \sum_{k=0}^{d} \binom{2n}{k}.$$

Вернёмся к доказательству утверждения про $G = \cup A_i \times B_i$. Имеем $G = \cup G_i$, или $f_G = f_{G_1} \vee f_{G_2} \vee \ldots \vee f_{G_n}$ в терминах функций.

Вернёмся к доказательству утверждения про $G = \bigcup A_i \times B_i$. Имеем $G = \bigcup G_i$, или $f_G = f_{G_1} \vee f_{G_2} \vee \ldots \vee f_{G_n}$ в терминах функций.

Пусть полином p аппроксимирует $\mathrm{OR}(y_1,\ldots,y_n)$ с погрешностью ε , $\deg p \ll n^{1/2}\log(2/\varepsilon)$.

Вернёмся к доказательству утверждения про $G = \cup A_i \times B_i$. Имеем $G = \cup G_i$, или $f_G = f_{G_1} \vee f_{G_2} \vee \ldots \vee f_{G_n}$ в терминах функций.

Пусть полином p аппроксимирует $\mathrm{OR}(y_1,\ldots,y_n)$ с погрешностью ε , $\deg p \ll n^{1/2}\log(2/\varepsilon)$.

Подставим в p вместо y_i матрицу G_i , заменяя произведение на поэлементное умножение, т.е. y_iy_j заменяется на $G_i \circ G_j$. Если матрицы A и B имеют ранг 1, то и $\mathrm{rank}(A \circ B) = 1$. Следовательно, вместо монома $y_i \cdots y_{i_s}$ возникнет матрица $G_i \circ \cdots \circ G_{i_s}$ ранга 1.

Вернёмся к доказательству утверждения про $G=\cup A_i \times B_i$. Имеем $G=\cup G_i$, или $f_G=f_{G_1} \vee f_{G_2} \vee \ldots \vee f_{G_n}$ в терминах функций.

Пусть полином p аппроксимирует $\mathrm{OR}(y_1,\ldots,y_n)$ с погрешностью ε , $\deg p \ll n^{1/2}\log(2/\varepsilon)$.

Подставим в p вместо y_i матрицу G_i , заменяя произведение на поэлементное умножение, т.е. y_iy_j заменяется на $G_i\circ G_j$. Если матрицы A и B имеют ранг 1, то и $\mathrm{rank}(A\circ B)=1$. Следовательно, вместо монома $y_{i_1}\cdots y_{i_s}$ возникнет матрица $G_{i_1}\circ\cdots\circ G_{i_s}$ ранга 1.

Положим $M=p(G_1,\ldots,G_n)$. Из вышесказанного следует, что $\|M-G\|_{\infty}\leqslant arepsilon$ и

$$\operatorname{rank} M \leqslant \sum_{i=0}^{\deg p} \binom{n}{j} \leqslant (en/\deg p)^{\deg p}.$$

P. Pudlák, V. Rödl, "A combinatorial approach to complexity", *Combinatorica*, 1992.