In [1]:	Creado por: Isabel Maniega Logistic Regression import warnings
In [3]: In [4]:	warnings.filterwarnings("ignore") from sklearn import datasets
Out[4]:	<pre>dataset = datasets.load_breast_cancer() dataset {'data': array([[1.799e+01, 1.038e+01, 1.228e+02,, 2.654e-01, 4.601e-01,</pre>
	8.758e-02],, [1.660e+01, 2.808e+01, 1.083e+02,, 1.418e-01, 2.218e-01, 7.820e-02], [2.060e+01, 2.933e+01, 1.401e+02,, 2.650e-01, 4.087e-01, 1.240e-01], [7.760e+00, 2.454e+01, 4.792e+01,, 0.000e+00, 2.871e-01, 7.039e-02]]),
	'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
	1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	\n - perimeter\n - area\n - smoothness (local variation in radius lengths)\n - comp actness (perimeter^2 / area - 1.0)\n - concavity (severity of concave portions of the contour)\n - concave points (number of concave portions of the contour)\n - symmetry\n - fractal dimension ("coastline approximation" - 1)\n\n The mean, standard error, and "worst" or largest (mean of the three \n worst/largest values) of these features were computed for each image,\n resulting in 30 features. For instance, field 0 is Mean Radius, field\n 10 is Radius SE, field 20 is Worst Radius.\n\n - class:\n - WDBC-Malignant\n - WDBC-Benign\n\n :Summary Statistics:\n\n = Min Max\n =
	======================================
	31\n compactness (standard error): 0.002 0.135\n concavity (standard error): 0.0 0.396\n concavity (standard error): 0.0 0.008 0.079\n fractal dimension (standard error): 0.001 0.03\n radius (worst): 7.93 36.04\n texture (worst): 12.02 49.54\n perimeter (worst): 50.41 251.2\n area (worst): 185.2 4254.0\n smoothness (worst): 0.071 0.223\n compactness (worst): 0.027 1.058\n concavity (worst): 0.0 1.252\n concave points (worst): 0.0 0.291\n symmetry (worst): 0.1 56 0.664\n fractal dimension (worst): 0.055 0.208\n ====================================
	==== ====\n\n :Missing Attribute Values: None\n\n :Class Distribution: 212 - Malignant, 357 - Benign\n\n :Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian\n\n :Donor: Nick Street\n\n:Date: November, 1995\n\nThis is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets.\nhttps://goo.gl/U2Uwz2\n\nFeatures are computed from a digitized image of a fine needle\naspirate (FNA) of a breast mass. They describe\ncharacteristics of the cell nuclei present in the image.\n\nSeparating plane described above was obtained using\nMultisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree\nConstruction Via Linear Program ming." Proceedings of the 4th\nMidwest Artificial Intelligence and Cognitive Science Society,\npp. 97-101, 199 2], a classification method which uses linear\nprogramming to construct a decision tree. Relevant features\nwe
	re selected using an exhaustive search in the space of 1-4\nfeatures and 1-3 separating planes.\n\nThe actual l inear program used to obtain the separating plane\nin the 3-dimensional space is that described in:\n[K. P. Ben nett and O. L. Mangasarian: "Robust Linear\nProgramming Discrimination of Two Linearly Inseparable Sets",\nOpti mization Methods and Software 1, 1992, 23-34].\n\nThis database is also available through the UW CS ftp serve r:\n\nftp ftp.cs.wisc.edu\ncd math-prog/cpo-dataset/machine-learn/WDBC/\n\n topic:: References\n\n - W.N. S treet, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction \n for breast tumor diagnosis. IS&T/SP IE 1993 International Symposium on \n Electronic Imaging: Science and Technology, volume 1905, pages 861-87 O,\n San Jose, CA, 1993.\n - O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and
	<pre>\n prognosis via linear programming. Operations Research, 43(4), pages 570-577, \n July-August 1995.\n - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques\n to diagnose breast cance r from fine-needle aspirates. Cancer Letters 77 (1994) \n 163-171.', 'feature_names': array(['mean radius', 'mean texture', 'mean perimeter', 'mean area',</pre>
	<pre>'concave points error', 'symmetry error', 'fractal dimension error', 'worst radius', 'worst texture', 'worst perimeter', 'worst area', 'worst smoothness', 'worst compactness', 'worst concavity', 'worst concave points', 'worst symmetry', 'worst fractal dimension'], dtype='<u23'), 'breast_cancer.csv',="" 'data_module':="" 'filename':="" 'sklearn.datasets.data'}<="" pre=""></u23'),></pre>
In [5]:	<pre>print("Características del dataset:") print(dataset.DESCR) Características del dataset:breast_cancer_dataset: Breast cancer wisconsin (diagnostic) dataset</pre>
	Data Set Characteristics: :Number of Instances: 569 :Number of Attributes: 30 numeric, predictive attributes and the class
	:Attribute Information: - radius (mean of distances from center to points on the perimeter) - texture (standard deviation of gray-scale values) - perimeter - area - smoothness (local variation in radius lengths) - compactness (perimeter^2 / area - 1.0) - concavity (severity of concave portions of the contour)
	 concave points (number of concave portions of the contour) symmetry fractal dimension ("coastline approximation" - 1) The mean, standard error, and "worst" or largest (mean of the three worst/largest values) of these features were computed for each image, resulting in 30 features. For instance, field 0 is Mean Radius, field 10 is Radius SE, field 20 is Worst Radius.
	- class: - WDBC-Malignant - WDBC-Benign :Summary Statistics:
	Min Max ====================================
	concavity (mean): 0.0 0.427 concave points (mean): 0.0 0.201 symmetry (mean): 0.106 0.304 fractal dimension (mean): 0.05 0.097 radius (standard error): 0.112 2.873 texture (standard error): 0.36 4.885 perimeter (standard error): 0.757 21.98 area (standard error): 6.802 542.2
	smoothness (standard error): compactness (standard error): concavity (standard error): concave points (standard error): symmetry (standard error): fractal dimension (standard error): concave points (stand
	perimeter (worst): 50.41 251.2 area (worst): 185.2 4254.0 smoothness (worst): 0.071 0.223 compactness (worst): 0.027 1.058 concavity (worst): 0.0 1.252 concave points (worst): 0.0 0.291 symmetry (worst): 0.156 0.664 fractal dimension (worst): 0.055 0.208
	:Missing Attribute Values: None :Class Distribution: 212 - Malignant, 357 - Benign :Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian
	<pre>:Donor: Nick Street :Date: November, 1995 This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets. https://goo.gl/U2Uwz2 Features are computed from a digitized image of a fine needle</pre>
	aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992], a classification method which uses linear
	programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes. The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets",
	Optimization Methods and Software 1, 1992, 23-34]. This database is also available through the UW CS ftp server: ftp ftp.cs.wisc.edu cd math-prog/cpo-dataset/machine-learn/WDBC/ topic:: References
	 W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages 861-870, San Jose, CA, 1993. O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43(4), pages 570-577, July-August 1995.
In [6]:	- W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) 163-171. print("Información en el Dataset:") print(dataset.keys())
In [7]: Out[7]:	
	1.189e-01], [2.057e+01, 1.777e+01, 1.329e+02,, 1.860e-01, 2.750e-01, 8.902e-02], [1.969e+01, 2.125e+01, 1.300e+02,, 2.430e-01, 3.613e-01, 8.758e-02],, [1.660e+01, 2.808e+01, 1.083e+02,, 1.418e-01, 2.218e-01, 7.820e-02],
In [8]:	[2.060e+01, 2.933e+01, 1.401e+02,, 2.650e-01, 4.087e-01, 1.240e-01], [7.760e+00, 2.454e+01, 4.792e+01,, 0.000e+00, 2.871e-01, 7.039e-02]]) dataset.feature_names
Out[8]:	array(['mean radius', 'mean texture', 'mean perimeter', 'mean area',
In [9]:	<pre>'worst compactness', 'worst concavity', 'worst concave points', 'worst symmetry', 'worst fractal dimension'], dtype='<u23') as="" columns="dataset.feature_names)" df="pd.DataFrame(dataset.data," df<="" import="" pandas="" pd="" pre=""></u23')></pre>
Out[9]:	mean radius mean texture mean area mean area mean smoothness mean concave points mean concave points mean fractal dimension worst texture worst texture worst perimete 0 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.30010 0.14710 0.2419 0.07871 25.380 17.33 184.60 1 20.57 17.77 132.90 1326.0 0.08474 0.07864 0.08690 0.07017 0.1812 0.05667 24.990 23.41 158.80
	2 19.69 21.25 130.00 1203.0 0.10960 0.15990 0.19740 0.12790 0.2069 0.05999 23.570 25.53 152.50 3 11.42 20.38 77.58 386.1 0.14250 0.28390 0.24140 0.10520 0.2597 0.09744 14.910 26.50 98.8 4 20.29 14.34 135.10 1297.0 0.10030 0.13280 0.19800 0.10430 0.1809 0.05883 22.540 16.67 152.20
	564 21.56 22.39 142.00 1479.0 0.11100 0.11590 0.24390 0.13890 0.1726 0.05623 25.450 26.40 166.10 565 20.13 28.25 131.20 1261.0 0.09780 0.10340 0.14400 0.09791 0.1752 0.05533 23.690 38.25 155.00 566 16.60 28.08 108.30 858.1 0.08455 0.10230 0.09251 0.05302 0.1590 0.05648 18.980 34.12 126.70 567 20.60 29.33 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 0.2397 0.07016 25.740 39.42 184.60 568 7.76 24.54 47.92 181.0 0.05263 0.04362 0.00000 0.00000 0.1587 0.05884 9.456 30.37 59.10
In [10]:	569 rows × 30 columns $X = dataset.data$
In [11]: In [12]:	<pre>y = dataset.target from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)</pre>
In [14]: In [15]:	<pre>from sklearn.preprocessing import StandardScaler escalar = StandardScaler()</pre>
In [17]:	<pre>X_train = escalar.fit_transform(X_train) X_test = escalar.fit_transform(X_test) from sklearn.linear_model import LogisticRegression</pre>
In [19]: Out[19]:	<pre>algoritmo = LogisticRegression() algoritmo.fit(X_train, y_train) v LogisticRegression</pre>
In [20]:	<pre>LogisticRegression() y_pred = algoritmo.predict(X_test) y_pred</pre>
	array([1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
In [21]: Out[21]:	<pre>y_test array([1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,</pre>
In [23]: In [24]:	from sklearn.metrics import confusion_matrix matriz = confusion_matrix(y_test, y_pred)
In [25]: Out[25]:	matriz array([[41, 3],
In [27]:	<pre># Calculo de precisión del modelo from sklearn.metrics import precision_score precision = precision_score(y_test, y_pred) print("Precisión del modelo:") print(precision)</pre>
In [28]:	Precisión del modelo: 0.958904109589041 # calculo para la exactitud del modelo from sklearn.metrics import accuracy_score
	<pre>exactitud = accuracy_score(y_test, y_pred) print("Exactitud del modelo:") print(exactitud) Exactitud del modelo: 0.9736842105263158</pre>
In [29]:	<pre># Calcular la sensibilidad del modelo from sklearn.metrics import recall_score sensibilidad = recall_score(y_test, y_pred) print("Sensibilidad del modelo") print(sensibilidad)</pre>
In [30]:	Sensibilidad del modelo 1.0 # Calculo el puntaje F1 del modelo from sklearn.metrics import f1_score
	<pre>puntajef1 = f1_score(y_test, y_pred) print("Puntaje F1 del modelo") print(puntajef1) Puntaje F1 del modelo 0.9790209790209791</pre>
In [31]:	<pre># Calculo la curva ROC -AUC del modelo from sklearn.metrics import roc_auc_score roc_auc = roc_auc_score(y_test, y_pred) print("Curva ROC - AUC del modelo:") print(roc_auc)</pre>
	Curva ROC - AUC del modelo: 0.96590909090909 Creado por: