	Document Number	Document Version	Document Classification				
Envicool		A/7					
Protocol Name	EMW75HDNC1A Modbus Protocol						

EMW75HDNC1A Modbus Protocol

Revision Record

Date	Revision Version	Software Version	Change Description	Author
2020-10-9	A/0		Initial version	Guan Jianhe
2020-10-30	A/1		Update setting for pump and Gua	
2020-12-24	A/2		Add 50%, 60% compressor gear selection	Guan Jianhe
2021-1-8	A/3		Add compressor speed setting	Guan Jianhe
2021-1-13	A/4		Add software version	Guan Jianhe
2021-2-4	A/5		Add pressure data	Guan Jianhe
2021-2-26	A/6		Add heating info	Guan Jianhe
2021-6-16	A/7		Add appendix. Correct translation	Guan Jianhe

Contents

1 Description	1
2 Terminology	1
3 Physical interface	2
3.1 Serial communication interface electrical standard	2
3.2 Information transmission method	2
3.3 Data transfer rate	2
4 Physical layer communication	3
4.1 Basic process	3
5 Application layer command types and formats	3
5.1 Information frame format	3
5.2 CMD	3
5.3 Read command format	4
5.4 Write single register command format	5
5.5 Write multiple register command format	5
5.6 Error code definition	6
5.7 Interval time	7
6 CRC verify algorithm	8
6.1 CRC algorithm	8
7 Register list	9
8 Appendix	16

Air conditioner and Host Computer Modbus Protocol

Description

This protocol describes the protocol for command control and data exchange between the air conditioner and its

dedicated upper computer monitoring module.

The functions stipulated in the protocol mainly include:

1) The host computer obtains the relevant information of the air conditioner by sending read commands.

2) The host computer sets relevant parameters and action control by sending write commands.

During the communication process, the host computer is the master node and exchanges information through a

question and answer method, various information and parameters in the slave nodes use the target register as

the storage address, and the master node completes the read and write commands by accessing the registers.

This protocol supports the networking of one master node and multiple slave nodes. The slave nodes are

distinguished by addresses. The address setting range is 1-127. Different slave nodes correspond to different

addresses. Slave nodes with the same address cannot hang on the same communication.

2 Terminology

Master node: background monitoring system.

Slave node: air conditioner controller.

RS485: A serial communication standard that supports half-duplex serial short-range communication.

Read command: sent from the master node to the slave node, so that the slave node returns the content of the

corresponding register.

Write command: The master node packages related parameters and sends them to the slave node to complete

the corresponding parameter settings.

Register address: Each signal and parameter of the slave node corresponds to a 2-byte address. The master

node obtains related information or sets related parameters by accessing these registers. This address is called a

register.

1

3 Physical interface

3.1 Serial communication interface electrical standard

The slave node communicates with the master node through the serial port in RS485 mode.

3.2 Information transmission method

Communication transmission adopts asynchronous mode, and the unit is byte frame (data frame). Each data frame passed between the master node and the slave node is an 11-bit serial data stream.

Data frame format:

Start bit	1 bit
Data bit	8 bits (Low position first, high position back)
Parity bit	None: This protocol does not use parity bits
Stop bit	1 bit (I.e., the actual parity bits forced high)

Reference

Timing diagram with parity bit:

Timing diagram without parity bit:

3.3 Data transfer rate

The default baud rate uses 19200bps

4 Physical layer communication

4.1 Basic process

After the slave node is powered on or reset, it can respond to the read and write commands of the master node after stable operation. After receiving the relevant command from the contact, the information required by the master node is returned under normal conditions, and the error code corresponding to the specific error type is returned under abnormal conditions.

5 Application layer command types and formats

When the communication command is sent to the instrument, the device that meets the corresponding address code receives the communication command, reads the information, and if there is no error, executes the corresponding task, and then returns the execution result to the sender. The returned information includes the address code, the function code to perform the action, the data after the action is performed, and the error check code (CRC). If an error occurs, no message is sent.

5.1 Information frame format

START	ADDR	CMD	DATA	CRC	END
Delay (>=3.5 character	1 byte	1 byte	N byte	2 byte	Delay(>=3.5
time)	8 bit	8 bit	N×8 bit	16 bit	character time)

Note 1: The maximum frame length is not greater than 255 bytes

Note2: CRC check code low byte first, high byte last

5.2 CMD

The function code (CMD) is the second data frame in the information frame transmitted with each communication. The communication ModBus protocol defines the function code as 1~127(01H~7FH). This protocol uses some of these function codes. It is sent as a master node request, and the slave node is informed by a function code what action to perform. As a slave node response, the function code sent by the slave node is the same as the function code sent by the master node, and indicates that the slave node has responded to the master node to perform the operation. If the most significant bit of the function code sent from the node is 1(CMD>127), It means that the slave is not responding or has an error.

Command encoding	Meaning	Mark
0x03	Read command	Supports single/multiple register continuous reads
0x10	Write multiple register commands	Support multiple registers to write continuously
0x06	Write single register command	Support single registers to write continuously

5.3 Read command format

Note 3: MSB means high byte, LSB means low byte

Note 4: Each register stores two bytes. for register data of one byte, it is required to be stored in the low byte (LSB).

Master node sends frame format:

No.	0	1	2	3	4	5	6	7
Definition	ADDR	CMD	MSB	LSB	MSB	LSB	LSB	MSB
Explanation	Controller	Command	Register start		Number of			
Explanation	address	type	add	ress	regist	ers n	(CRC verify

Normal response frame format from the slave node:

No.	0	1	2	3	4	5	6	 . L+1	L+2	L+3	L+4
Definition	ADDR	CMD	Length	M SB	LS B	M S B	L S B	 MSB	LSB	LSB	MSB
Explanation	Controller address	Command type	Number of sent bytes L = n * 2	First			ond ster		ue of the ter	CRC ve	erify

Slave node abnormal response format:

No.	0	0 1		3	4
Definition	ADDR	CMD + 128	ErrCode	LSB	MSB
Explanation	Controller address	Command type +128	Error Code	CRC verify	

5.4 Write single register command format

Master node sends frame format:

No.	0	1	2	3	4	5	6	7
Definition	ADDR	CMD	MSB	LSB	MSB	LSB	LSB	MSB
Explanation	Controller	Command	Regi	Register				
Explanation	address	type	addr	ess		ATA	С	RC verify

Normal response frame format from the slave node:

No.	1	2	3	4	5	6	7
Definition	CMD	MSB	LSB	MSB	LSB	LSB	MSB
Explanation	Controller address	Comm	and type	Register address		CRC v	verify

Slave node abnormal response format:

No.	0	1	2	3	4
Definition	ADDR	CMD +128	ErrCode	LSB	MSB
Explanation	Controller address	Command type +128	Error Code	CRC	verify

5.5 Write multiple register command format

Master node sends frame format:

No.	0	1	2	3	4	5	6	7	8	9	10	 L+ 5	L+6	L+ 7	L+ 8
Definiti	ADD	СМ	M S	LS	MS	LS		M S	LS	MS	LS	MS	LS	LS	M S
on	R	D	В	В	В	В	Length	В	В	В	В	 В	В	В	В
Explan ation	Contr oller addre	Co mm and	Star regi		Num of regis		Number of sent bytes L =	Firs	it ister	Seco		 The value		CRC verif	
	ss	type	auu	1633	n		n * 2					regis	ter		

Normal response frame format from the slave node:

No.	0	1	2	3	4	5	6	7
Definition	ADDR	CMD	MSB	LSB	MSB	LSB	LSB	MSB
Explanatio n	Controller address	Command type		egister ress	Number of	registers	CRC ver	ify

Slave node abnormal response format:

No.	0	1	2	3	4
Definition	ADDR	CMD +128	ErrCode	LSB	MSB
Explanation	Controller address	Command type +128	Error Code	CRC verify	

Note: The CRC check range is the check of all bytes before the CRC field.

5.6 Error code definition

When the slave device sends a request to the master node device, the slave node expects a normal response.

One of the following four possible events occurs in the query from the master node:

- 1) If the slave device receives a request without communication errors and can process the query normally, the slave device will return a normal response.
- 2) If the slave node does not receive the request due to a communication error, the response cannot be returned. The master node program will eventually process the timeout status of the request.
- 3) If the slave receives the request, but detects a communication error (parity, LRC, CRC, ...), then the response cannot be returned. The master node program will eventually process the timeout status of the request.
- 4) If the slave receives a request without communication errors, but cannot process the request (for example, if the request reads a non-existent output or register), the slave will return an exception response to notify the user of the nature of the error.

The abnormal response message has two fields that are different from the normal response:

Function code field: In normal response, the slave node uses the response function code field to respond to the originally requested function code. The most significant bit (MSB) of all function codes is 0 (their values are all lower than 128). In the abnormal response in the slave node, the MSB of the function code is set to 1. This makes the function code value in the abnormal response higher than the function code value in the normal response by 128.

By setting the MSB of the function code, the application of the master node can identify the abnormal response and can detect the data field of the abnormal code.

Data domain: In the normal response, the slave node can return data or statistics table (any message required in the request) in the data domain. In the exception response, the slave node returns the exception code in the data domain. This defines the occurrence of an exception Status of the slave node.

MODBUS Error code:

Error code name	Description
01 Illegal Function Code	For the slave node, the function code received in the query is an inadmissible operation. This may be because the function code is only applicable to new equipment and is not achievable in the selected unit. It also indicates that the slave node is in an error state. This kind of request is handled in, for example, because it is unconfigured and requires the return of register values.
02 Illegal data address	For slave nodes, the data address received in the query is an unallowable address. In particular, the combination of the reference number and the transmission length is invalid. For a controller with 100 registers, it has an offset Requests with 96 and length 4 will succeed, and requests with offset 96 and length 5 will generate exception code 02.
03 Illegal data value	For slave nodes, the value included in the query is an unallowable value. This value indicates a fault in the remaining structure of the combined request, for example: the implicit length is incorrect. It does not mean that because the MODBUS protocol does not know anything The significance of any special value of a special register. The data item in the register that is submitted for storage has a value that is not expected by the application.

5.7 Interval time

After sending data and receiving data, the pins may not switch when sending the next frame, so the unified sending and receiving interval is greater than 10ms and the timeout is greater than 500ms.

6 CRC verify algorithm

6.1 CRC algorithm

```
unsigned short count_CRC (unsigned char *addr, int num)
{
    unsigned short CRC = 0xFFFF.
    int i.
    while (num--)
    {
        CRC ^= *addr++.
        for (i = 0. i < 8. i++)
        {
            CRC = (CRC & 0x0001) ? ((CRC >> 1)^0xa001) : (CRC >> 1).
        }
    }
    return CRC.
}
```

7 Register list

Convention:

- 1. Each register holds two bytes.
- 2. Data transmission mode: high byte first, low byte last.
- 3. If the register content is about temperature, the relationship between the register value and the actual

temperature is 10 times. For example, if the register value is 200, the actual temperature is 20.0°C. If the register

value is 236, the actual temperature is 23.6°C.

- 4. If the register content is pressure, the relationship between the register value and the actual pressure is 100 times. For example, if the register value is 200, the actual pressure is 2Bar. If the register value is 236, the actual pressure is 2.36Bar.
- 5. Before setting the modified parameters, you must enter the password (1) to modify the setting successfully, the password address is 0x8100, the register type (function code 0x06)

NO.	Item	uni t	Register Address	Attribute	Ratio	Remark	Alarm action
On/of							
1	System ON/OFF		0x0400	Read/Write	x1	0 OFF	
	System GN, GT		ONO TOO	neddy Trine	X 2	1 ON	
Settin	g status						
1	Mode selection		0x0401	Read/Write	x1	0 OFF, 1 Inner loop, 2 cooling, 3 heating, 4 automatic 5 water supply	
2	Cooling Set Point (T1, See section 8 Appendix)	°C	0x8B0C	Read/Write	x 10	Keep one decimal place, if you want to	

						set 23.5°C, write 235	
						in this register	
						Keep one decimal	
						place, if you want to	
3	Heating Set Point	°C	0x8B0D	Read/Write	x 10	set 23.5°C, write 235	
						in this register	
						Retain a decimal, if	
						you want to set	
4	Cooling Hysteresis setting	°C	0x8B0E	Read/Write	x 10	1.5 °C, write 15 in	
						this register	
						Retain a decimal, if	
						you want to set	
5	Heating Hysteresis setting	°C	0x8B0F	Read/Write	x 10	1.5 °C, write 15 in	
						this register	
Tempe	erature Sensor Status						
						If the value read is	
1	Supply water temperature	°C	0xA000	Read Only	x 10	235, it means 23.5°C,	
						keep one decimal	
						place	
						If the value read is	
2	Return water temperature	°C	0xA002	Read Only	x 10	235, it means 23.5°C,	
		<u> </u>	L	1		l	

						keep one decimal	
						place	
	Environment					Optional	
3	temperature	°C	0xA00D	Read Only	x 10	temperature and	
	temperature					humidity sensor	
						If the value read is	
4	Inlet water pressure	Bar	0xA00E	Read Only	x	235, it represents	
	met water pressure	Bai	OXAGGE	incua Omy	100	2.35 Bar, with two	
						decimal places	
						If the value read is	
5	Outlet water pressure	Bar	0xA00F	Read Only	x	235, it represents	
	Cattlet trates pressure		G/4 1001	,	100	2.35 Bar, with two	
						decimal places	
Alarm	status						
						0 normal, 1 alarm	Electric heater will
						If outlet water temp.	stop
1	Outlet high water		0xB100	Read Only		$>$ 30 $^{\circ}$ C, alarm will be	
1	temperature		OXBIOO	Read Offig		generated; if <	
						28 $^{\circ}\mathrm{C}$, the alarm will	
						be released	
				Read Only		0 normal, 1 alarm	Compressor will
						When outlet water	stop
	Outlet low water					temp $<$ - 5 $^{\circ}$ C ,	
2	temperature		0xB101			alarm will be	
	35					generated, when it is	
						$>$ 0 $^{\circ}$ C , alarm will be	
						released	
	Outlet water			Read Only		0 normal, 1 fault	Only alarm, does not
3	temperature sensor		0xB102			This alarm is	act. If the water inlet
	failure		_			generated when the	temperature sensor
						outlet water temp.	also fails, chiller will

				sensor is faulty	shut down
			Read Only	0 normal, 1 fault	Only alarm does not
	Return water			The alarm is	act. If the outlet
4	temperature sensor	0xB104		generated when the	water temperature
	failure			return water temp.	sensor also fails,
				sensor is faulty	chiller will shut down
			Read Only	0 normal, 1 fault	No this warning
5	Pump failure	0xB111		This alarm is	
	rump famure	OXBIII		generated when the	
				water pump is faulty	
			Read Only	0 normal, 1 fault	Stop the compressor
				This alarm is	
	Inverter communication			generated when the	
6	failure	0xB115		communication	
	lunare			board and the	
				control board are	
				faulty	
			Read Only	0 normal, 1 locked	Stop the compressor
				If the high pressure is	
	System high pressure			too high for several	
7	lock	0xB137		consecutive times in	
	lock			a certain period time,	
				the lock alarm is	
				triggered	
			Read Only	0 normal, 1 locked	Stop the compressor
				If the low pressure is	
	System low pressure			too low for several	
8	lock	0xB138		consecutive times	
				within a certain	
				period time, the	
				locking alarm is	

					triggered	
				Read Only	0 normal, 1 locked	Stop the compressor
					If the exhaust	
					temperature is too	
	Exhaust gas high				high for several	
9	temperature lock		0xB139		consecutive times	
					within a certain	
					period time, the lock	
					alarm is triggered	
				Read Only	0 normal, 1 locked	Stop the compressor
					The lock alarm is	
					triggered when the	
	Inverter overcurrent				frequency converter	
10	lock	0>	0xB13A		current is too high	
					for several	
					consecutive times	
					within a certain	
					period time	
				Read Only	0 normal, 1 locked	Stop the compressor
					The locking alarm is	
					triggered when the	
	Inverter over				temp. of the	
11	temperature lock		0xB13B		converter is too high	
	·				for several	
					consecutive times	
					within a certain	
					period time	
				Read Only	0 normal, 1 locked	Stop the compressor
12	Inverter overvoltage		0xB13C		The lock alarm is	
	lock				triggered when the	
					inverter voltage is	

					too high for several	
					consecutive times	
					within a certain	
					period time	
			Read Only		0 normal, 1 locked	Stop the compressor
					If the voltage of the	
					converter is too low	
	Inverter undervoltage	0.5405			for several	
13	lock	0xB13D			consecutive times	
					within a certain	
					period time, the lock	
					alarm is triggered	
			Read Only		0 normal, 1 locked	Stop the compressor
					The locking alarm	
					will be triggered if	
14	Inverter phase loss lock	0xB13E			the frequency	
					converter is out of	
					phase for many times	
					in a certain time	
			Read Only		0 normal, 1 locked	Stop the compressor
					The locking alarm	
					will be triggered by	
15	Other inverter fault lock	0xB13F			other faults of the	
					frequency converter	
					for many times in a	
					certain time	
			Read Only		0 normal, 1 fault	No this warning
16	Heating failure	0xB10B			Heating fault alarm	
			Read Only		0 normal, 1 locked	No this warning
17	Heating fault lock	0xB142			The locking alarm	
					will be triggered if	
		I	l	l	I	

		1	I	T			l l
						the electric heating	
						fails for many times	
						in a certain period of	
						time	
				Read Only		0 normal, 1 lack of	Chiller Shut down
	Coolant					coolant	
18	replenishment alarm		0xB132			System coolant	
						shortage alarm	
	6					0 normal, 1 fault	
19	System high pressure		0xB11C	Read Only		High system pressure	Stop the compressor
	alarm					alarm	
						0 normal, 1 fault	
						When the outlet	
						pressure is > 2.2 bar,	
	High outlet pressure					alarm will be	Only alarm, does not
20	alarm		0xB130	Read Only		generated, and when	act.
						it is $<$ 1.9 bar, the	
						alarm will be	
						released	
Pump	information						
						If the value read is	
						300, it means that	
						the pump is	
1	Pump command speed	%	0xA201	Read Only	x 10	commanded to work	
						at 30% speed, range	
						[0,1000]	
						Range [0,3]	
						0:60L/min@100Kpa	
2	Flow rate selection		0x9809	Read/Writ e		1:80L/min@60Kpa	
						2:50L/min@75Kpa	
						3:50L/min@30Kpa	
	1		1				1

Heartl	peat information										
1	Heartbeat		0x8004	Read Only	Range [0,65535], when it reaches 65535, it starts from 0 and increases by 1 every second						
Comm	Communicate Information										
1	ID		0x9000	Read/Writ	[1,247]						
2	Baudrate		0x8A09	Read/Writ	[4800,57600]						
Passw	ord information				·						
1	Password		0x8100	Read/Writ	Password is 1, valid time is 180s						
Comp	ressor				1						
1	Compressor gear selection	%	0x8928	Read/Writ e	[0,3] 0: 100% 1: 75% 2: 60% 3: 50%						
2	Compressor speed setting	Hz	0x890A	Read/Writ e	{249,189,150,126} 249:100% 189:75% 150:60% 126:50%						
Softwa	are Information	1		,							
1	Software part number		0xFE51	Read/Writ	It can be written, but DO NEVER USE THIS. Frozen the "write" function on host computer						
2	Software version number		0xFE52	Read/Writ e	It can be written, but DO NEVER USE THIS. Frozen the "write"						

				function on host	
				computer	
For example:					

1 Read the value of a single register - data:

Send command:01 03 00 01 00 01 D5 CA Return instruction:01 03 02 40 11 49 88

Parsing instructions:

01 ADDR 03 CMD 02 Length 40 11 Data 49 88 CRC

2) Read the value of multiple registers-1#-2#-3# return air temperature:

Send command:01 03 01 00 00 03 04 37

Return instruction:01 03 06 01 08 01 20 00 FE 40 D3

Parsing instructions:

01 ADDR 03 CMD 06 Length

01 08 Data:1# return air temperature, Decimal 264→26.4°C

01 20 Data:2# return air temperature, Decimal 288→28.8°C

00 FE Data:3# return air temperature, Decimal 254→25.4°C

40 D3 CRC

3 Write Single Register-Temp set point 30°C:

Send command:01 06 03 00 01 2C 89 C3 Return instruction:01 06 03 00 01 2C 89 C3 Parsing instructions:

01 ADDR

06 CMD

03 00 Register address

01 2C Data: Decimal 300→30°C

89 C3 CRC

(4) Write the value of multiple registers-High Temp set point40°C-Low Temp set point1°C

Send command:01 10 03 04 00 02 04 01 90 00 96 67 13

Return instruction:01 10 03 04 00 02 00 4D

Parsing instructions:

01 ADDR

10 CMD

03 04 Start register address

00 02 Register number

00 4D CRC

Note: Although the 0x10 Write multiple registers, the instruction can be sent and return success, but only to modify the address of the first register, other modifications unsuccessful, does not return an exception.

8. Appendix

Cooling set point explanation:

- T1 is the set point that can be set and read at the Modbus register 0x8B0C, and corresponds to the fluid temperature below which the chiller controller will turn the compressor OFF
- T2 is 1.5° C (if hysteresis set at 3° C) above T1 and corresponds to the cooling fluid temperature above which the chiller controller will turn the compressor ON
- Between T1 and T2 the compressor operating load is 21%
- T3 is 3° C (if hysteresis set at 3° C) above T1 and corresponds to the fluid temperature where the compressor reaches 100% of its capacity
- T4 is any other temperature of the cooling fluid above T3, and helps to indicate that the compressor will not continue to increase its capacity beyond T3