import pandas as pd

```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import pearsonr
from scipy.stats import ttest_ind
import statsmodels.api as sm
#load data set
df_co2 = pd.read_csv('/content/carbon_emmission.csv')
<del>_</del>
            ObjectId Country
                                   Date
                                        Value
       0
                        World
                               1958M03 315.70
                   2
                        World
                               1958M04 317.45
       2
                   3
                        World 1958M05 317.51
       3
                   4
                        World
                              1958M06 317.24
       4
                   5
                        World
                               1958M07 315.86
      1565
                1566
                        World 2023M11
                                           0.72
                        World 2023M12 421.86
      1566
                1567
      1567
                1568
                        World 2023M12
                                           0.68
      1568
                1569
                        World 2024M01
                                           0.68
      1569
                1570
                        World 2024M01
                                           0.68
     1570 rows × 4 columns
 Next steps: (  View recommended plots )
                                          New interactive sheet
df_co2.isnull().sum()
\overline{z}
              0
      ObjectId 0
      Country 0
       Date
              0
       Value
              0
     dtype: int64
df_temp = pd.read_csv('/content/temperature.csv')
df_temp
```

$\overline{\Rightarrow}$		ObjectId	Country	ISO2	ISO3	F1961	F1962	F1963	F1964	F1965	F1966	 F2013	F2014	F2015	F2016	F2017	F2018	F2019	F2(
_	0	1	Afghanistan, Islamic Rep. of	AF	AFG	-0.113	-0.164	0.847	-0.764	-0.244	0.226	 1.281	0.456	1.093	1.555	1.540	1.544	0.910	0.4
	1	2	Albania	AL	ALB	0.627	0.326	0.075	-0.166	-0.388	0.559	 1.333	1.198	1.569	1.464	1.121	2.028	1.675	1.4
	2	3	Algeria	DZ	DZA	0.164	0.114	0.077	0.250	-0.100	0.433	 1.192	1.690	1.121	1.757	1.512	1.210	1.115	1.9
	3	4	American Samoa	AS	ASM	0.079	-0.042	0.169	-0.140	-0.562	0.181	 1.257	1.170	1.009	1.539	1.435	1.189	1.539	1.4
	4	5	Andorra, Principality of	AD	AND	0.736	0.112	-0.752	0.308	-0.490	0.415	 0.831	1.946	1.690	1.990	1.925	1.919	1.964	2.5
	•••											 							
	220	221	Western Sahara	EH	ESH	0.632	0.576	0.333	0.819	-0.337	0.284	 1.423	1.401	1.510	1.732	2.204	0.942	1.477	2.(
	221	222	World	NaN	WLD	0.211	0.038	0.168	-0.246	-0.223	0.201	 1.016	1.053	1.412	1.660	1.429	1.290	1.444	1.7
			Yemen Ren																

df_temp.isnull().sum()

dtype: int64

#check info
df_co2.describe().T

df_temp.describe().T

7		count	mean	std	min	25%	50%	75%	max	
	ObjectId	225.0	113.000000	65.096083	1.000	57.00000	113.0000	169.00000	225.000	11.
	F1961	188.0	0.163053	0.405080	-0.694	-0.09700	0.0645	0.31850	1.892	
	F1962	189.0	-0.013476	0.341812	-0.908	-0.16400	-0.0560	0.11400	0.998	
	F1963	188.0	-0.006043	0.387348	-1.270	-0.20550	-0.0030	0.23050	1.202	
	F1964	188.0	-0.070059	0.309305	-0.877	-0.23650	-0.0560	0.13250	1.097	

	F2018	213.0	1.302113	0.596786	0.238	0.86500	1.1250	1.83400	2.772	
	F2019	213.0	1.443061	0.467510	0.050	1.16900	1.4120	1.69800	2.689	
	F2020	212.0	1.552038	0.621930	0.229	1.16175	1.4770	1.82625	3.691	
	F2021	213.0	1.343531	0.484692	-0.425	1.01900	1.3270	1.62900	2.676	
	F2022	213.0	1.382113	0.669279	-1.305	0.87800	1.3150	1.91800	3.243	
	63 rows × 8	3 column	ıs							

Clean data

```
# Melt the dataframe from wide to long
df_temp_melted = df_temp.melt(
    id_vars=['Country', 'ISO2', 'ISO3'],
    value_vars=[col for col in df_temp.columns if col.startswith('F')],
    var_name='Year',
    value_name='Temperature'
)
```

df_temp_melted

$\overline{\Rightarrow}$		Country	ISO2	ISO3	Year	Temperature
	0	Afghanistan, Islamic Rep. of	AF	AFG	F1961	-0.113
	1	Albania	AL	ALB	F1961	0.627
	2	Algeria	DZ	DZA	F1961	0.164
	3	American Samoa	AS	ASM	F1961	0.079
	4	Andorra, Principality of	AD	AND	F1961	0.736
	•••					
	13945	Western Sahara	EH	ESH	F2022	1.970
	13946	World	NaN	WLD	F2022	1.394
	13947	Yemen, Rep. of	ΥE	YEM	F2022	NaN
	13948	Zambia	ZM	ZMB	F2022	0.686
	13949	Zimbabwe	ZW	ZWE	F2022	-0.490

13950 rows × 5 columns

df_temp_melted

```
# Remove 'F' from Year and convert to integer
df_temp_melted['Year'] = df_temp_melted['Year'].str.replace('F', '').astype(int)
#check df_temp
```

```
Country ISO2 ISO3 Year Temperature
        Afghanistan, Islamic Rep. of
   0
                                  AF
                                       AFG
                                            1961
                                                         -0.113
                         Albania
                                  ΑL
                                       ALB 1961
                                                         0.627
   2
                         Algeria
                                  DΖ
                                       DZA
                                             1961
                                                         0.164
   3
                 American Samoa
                                  AS
                                       ASM
                                            1961
                                                         0.079
   4
            Andorra, Principality of
                                       AND 1961
13945
                  Western Sahara
                                  EΗ
                                       ESH 2022
                                                         1.970
13946
                                 NaN
                                       WLD 2022
                                                         1.394
                          World
13947
                  Yemen, Rep. of
                                                          NaN
                                  YΕ
                                       YEM 2022
                        Zambia
13948
                                  ZM
                                       ZMB 2022
                                                         0.686
13949
                                      ZWE 2022
                                                         -0.490
                      Zimbabwe
                                  ZW
13950 rows × 5 columns
```

#we have remove F from Year

```
# Filter only 'World' for global trend
df_temp_world = df_temp_melted[df_temp_melted['Country'] == 'World'].copy()
```

df_co2

→ ▼		ObjectId	Country	Date	Value
	0	1	World	1958M03	315.70
	1	2	World	1958M04	317.45
	2	3	World	1958M05	317.51
	3	4	World	1958M06	317.24
	4	5	World	1958M07	315.86
	•••				
	1565	1566	World	2023M11	0.72
	1566	1567	World	2023M12	421.86
	1567	1568	World	2023M12	0.68
	1568	1569	World	2024M01	0.68
	1569	1570	World	2024M01	0.68

1570 rows × 4 columns

```
#Clean & Transform df_co2
# Convert 'Date' to datetime format (YYYY-MM)
df_co2['Date'] = pd.to_datetime(df_co2['Date'].str.replace('M', '-'), format='%Y-%m')
```

df_co2

```
ObjectId Country
                               Date
                                     Value
 0
                   World
                         1958-03-01 315.70
 1
             2
                   World
                         1958-04-01 317.45
 2
             3
                   World
                         1958-05-01 317.51
             4
 3
                   World
                         1958-06-01 317.24
 4
             5
                   World
                         1958-07-01 315.86
1565
          1566
                   World 2023-11-01
                                       0.72
                   World 2023-12-01 421.86
1566
          1567
                                       0.68
1567
          1568
                  World 2023-12-01
1568
          1569
                  World 2024-01-01
                                       0.68
                  World 2024-01-01
1569
          1570
                                       0.68
```

1570 rows × 4 columns

```
# Extract year
df_co2['Year'] = df_co2['Date'].dt.year
```

```
# Group by year and calculate average CO2 (ppm)
df_co2_yearly = df_co2.groupby('Year')['Value'].mean().reset_index()
df_co2_yearly.rename(columns={'Value': 'Avg_CO2_ppm'}, inplace=True)
```

df_temp_melted

₹		Country	ISO2	ISO3	Year	Temperature
	0	Afghanistan, Islamic Rep. of	AF	AFG	1961	-0.113
	1	Albania	AL	ALB	1961	0.627
	2	Algeria	DZ	DZA	1961	0.164
	3	American Samoa	AS	ASM	1961	0.079
	4	Andorra, Principality of	AD	AND	1961	0.736
	•••					
	13945	Western Sahara	EH	ESH	2022	1.970
	13946	World	NaN	WLD	2022	1.394
	13947	Yemen, Rep. of	YE	YEM	2022	NaN
	13948	Zambia	ZM	ZMB	2022	0.686
	13949	Zimbabwe	ZW	ZWE	2022	-0.490

13950 rows × 5 columns

df_temp_melted.isnull().sum()

```
Country 0
ISO2 124
ISO3 0
Year 0
Temperature 1490
```

dtype: int64

```
df_temp_melted.drop(columns=['ISO2'], inplace=True)
```

```
\label{lem:def_melted} $$ df_{emp_melted}('Country')('Temperature').transform(lambda x: x.fillna(x.mean())) $$ df_{emp_melted}('Temperature').transform(lambda x: x.fillna(x.mean())) $$ df_{emp_m
```

df_temp_melted.isnull().sum()

dtype: int64

df_temp_world

₹		Country	ISO2	ISO3	Year	Temperature
	221	World	NaN	WLD	1961	0.211
	446	World	NaN	WLD	1962	0.038
	671	World	NaN	WLD	1963	0.168
	896	World	NaN	WLD	1964	-0.246
	1121	World	NaN	WLD	1965	-0.223
	•••					
	13046	World	NaN	WLD	2018	1.290
	13271	World	NaN	WLD	2019	1.444
	13496	World	NaN	WLD	2020	1.711
	13721	World	NaN	WLD	2021	1.447
	13946	World	NaN	WLD	2022	1.394
	62 rows	× 5 column	S			

df_temp_world.drop(columns=['ISO2','ISO3'], inplace=True)

df_co2_yearly

<u>→</u>		Year	Avg_CO2_ppm				
	0	1958	315.232000				
	1	1959	172.460455				
	2	1960	158.601667				
	3	1961	158.938333				
	4	1962	159.355000				
	62	2020	207.416667				
	63	2021	208.472083				
	64	2022	209.518333				
	65	2023	210.844167				
	66	2024	0.680000				
67 rows × 2 columns							

#cehck for null in df_co2_yearly
df_co2_yearly.isnull().sum()

dtype: int64

```
#cehck for null in df_temp_world
df_temp_world.isnull().sum()

df_temp_world.columns

Index(['Country', 'Year', 'Temperature', 'Period'], dtype='object')

#downlaod df_co2_yearly final data as csv
df_co2_yearly.to_csv('df_co2_yearly.csv', index=False)
df_co2_yearly.columns

Index(['Year', 'Avg_CO2_ppm'], dtype='object')

#download data as csv
df_temp_melted.to_csv('df_temp_melted.csv', index=False)
df_temp_world.to_csv('df_temp_world.csv', index=False)
```

Exploratory Data Analysis (EDA)

1. Global CO₂ Emission Trend (1958–2023)

```
plt.figure(figsize=(12,6))
sns.lineplot(data=df_co2_yearly, x='Year', y = 'Avg_CO2_ppm', color='green', linewidth=2)
plt.title("Global CO2 emission over time", fontsize=14)
plt.xlabel('Year')
plt.ylabel('CO2 Concentration')
plt.grid(True)
plt.show()
```


Global CO2 emission over time

The green line shows that CO_2 levels have gone up steadily from 1960 to 2023. There was a small dip around 2020–2021, likely because of COVID-19 lockdowns, but emissions went back up afterward.

2. Global Temperature Trend (1961–2022)

```
plt.figure(figsize=(12,6))
sns.lineplot(data=df_temp_world, x='Year', y='Temperature', color = 'orange', linewidth=2)
plt.title('Global Average Temperature Trend', fontsize=14)
```

```
plt.xlabel('Year')
plt.ylabel('Temperature Anomly')
plt.grid(True)
plt.show()
```


The orange line shows that the Earth is getting hotter over time. Even though there are ups and downs in some years, the overall trend is clearly rising, especially after the year 2000.

3. Combined CO₂ and Temperature Line Plot (Dual Axis)

```
fig, ax1 = plt.subplots(figsize=(14, 6))
# CO2
ax1.set_xlabel('Year')
ax1.set_ylabel('CO2 (ppm)', color='green')
ax1.plot(df_co2_yearly['Year'], df_co2_yearly['Avg_CO2_ppm'], color='green', label='CO2 (ppm)')
ax1.tick_params(axis='y', labelcolor='green')

# Temperature
ax2 = ax1.twinx()
ax2.set_ylabel('Temperature (°C)', color='orange')
ax2.plot(df_temp_world['Year'], df_temp_world['Temperature'], color='orange', label='Temp (°C)')
ax2.tick_params(axis='y', labelcolor='orange')

plt.title(' Global CO2 vs Temperature Over Time')
fig.tight_layout()
plt.show()
```

🛨 /tmp/ipython-input-27-1690362908.py:16: UserWarning: Glyph 128200 (\N{CHART WITH UPWARDS TREND}) missing from font(s) DejaVu Sans. fig.tight_layout() /usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning: Glyph 128200 (\N{CHART WITH UPWARDS TREND}) missing

fig.canvas.print_figure(bytes_io, **kw)

This combined chart shows both CO₂ and temperature rising together. It suggests that when CO₂ increases, the temperature also increases meaning there may be a connection between them.

4. Heatmap of Temperature Change by Country

```
# Create pivot table for heatmap
temp_heatmap = df_temp_melted.pivot_table(index='Country', columns='Year', values='Temperature')
plt.figure(figsize=(16, 10))
sns.heatmap(temp_heatmap, cmap='coolwarm', cbar_kws={'label': 'Temperature Anomaly (°C)'})
plt.title('   Temperature Change by Country (Heatmap)', fontsize=14)
plt.xlabel('Year')
plt.ylabel('Country')
plt.tight_layout()
plt.show()
```

plt.tight_layout() /usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning: Glyph 128293 (\N{FIRE}) missing from font(s) Deja

tmp/ipython-input-28-3201790925.py:9: UserWarning: Glyph 128293 (\N{FIRE}) missing from font(s) DejaVu Sans.

fig.canvas.print_figure(bytes_io, **kw)

This heatmap shows how temperatures have changed in different countries from 1961 to 2022.

Blue means cooler years

Red means hotter years Most countries are turning red over time, showing that global warming is affecting many parts of the world.

5. Top 10 Countries with Highest Temp Rise (1961 vs 2022)

```
# Pivot for start-end comparison
pivot_temp = df_temp_melted[df_temp_melted['Year'].isin([1961, 2022])]
pivot_diff = pivot_temp.pivot(index='Country', columns='Year', values='Temperature').dropna()
pivot_diff['Change'] = pivot_diff[2022] - pivot_diff[1961]
top10_countries = pivot_diff['Change'].sort_values(ascending=False).head(10)

top10_countries.plot(kind='bar', figsize=(12, 6), color='red')
plt.title('Top 10 Countries with Highest Temp Rise (1961-2022)')
plt.ylabel('Temperature Change (°C)')

plt.grid(True)
plt.show()
```


This heatmap shows how temperatures have changed in different countries from 1961 to 2022.

Blue means cooler years

Red means hotter years Most countries are turning red over time, showing that global warming is affecting many parts of the world.

- CO₂ is going up, temperatures are rising, and many countries are seeing real changes.
- · The data shows clear signs of global warming, and understanding this can help make better climate decisions.

Statistical Analysis

∨ Is CO₂ significantly correlated with Global Temperature?

We'll use the Pearson correlation coefficient to check the strength of the linear relationship.

Pearson Correlation

```
# Pearson Correlation
corr, p_value = pearsonr(df_merged['Avg_CO2_ppm'], df_merged['Temperature'])
print(f"Pearson Correlation: {corr:.4f}, P-value: {p_value:.4e}")

Pearson Correlation: 0.9430, P-value: 2.2883e-30
```

Pearson correlation coefficient between global CO₂ concentration and average temperature anomaly is 0.943, with a p-value < 0.001, indicating a strong and statistically significant positive relationship between CO₂ emissions and global warming.

Has warming accelerated after 1990?

```
# Split temp data pre and post 1990
pre_1990 = df_temp_world[df_temp_world['Year'] < 1990]['Temperature']
post_1990 = df_temp_world[df_temp_world['Year'] >= 1990]['Temperature']

# Perform t-test
t_stat, p_val = ttest_ind(post_1990, pre_1990, equal_var=False)
print(f"T-Statistic: {t_stat:.4f}, P-value: {p_val:.4e}")

T-Statistic: 11.1855, P-value: 9.8266e-16

import seaborn as sns
import matplotlib.pyplot as plt

df_temp_world['Period'] = df_temp_world['Year'].apply(lambda x: 'Pre-1990' if x < 1990 else 'Post-1990')
sns.boxplot(x='Period', y='Temperature', data=df_temp_world)
plt.title('Temperature Distribution: Pre vs Post 1990')
plt.show()</pre>
```


A two-sample t-test was conducted to compare global temperatures before and after 1990.

T-Statistic: 11.1855P-Value: 9.8266e-16

These results indicate a highly significant difference between the two periods. The extremely low p-value (much less than 0.05) strongly suggests that the observed increase in temperature after 1990 is not due to random chance, but reflects a real shift—likely due to climate change.

The boxplot visualization supports this finding, showing that:

Temperatures before 1990 were centered around 0 with low variation.

Post-1990 temperatures are consistently higher, with a clear upward shift in both the median and range.

✓ Linear Regression: Temperature ~ CO₂

```
# Regression: Temperature ~ CO2
X = df_merged['Avg_CO2_ppm']
y = df_merged['Temperature']
X = sm.add_constant(X) # add intercept
model = sm.OLS(y, X).fit()
print(model.summary())
                           OLS Regression Results
    Dep. Variable: Temperature R-squared:
                                                        0.889
    Model: OLS Adj. R-squared:
Method: Least Squares F-statistic:
Date: Fri, 25 Jul 2025 Prob (F-statistic):
                                                                     0.887
                                                                     482.0
                                                                 2.29e-30
                        17:07:58
    Time:
                                       Log-Likelihood:
                                                                    18,609
    No. Observations:
                                  62
                                       AIC:
                                                                     -33.22
    Df Residuals:
                                                                     -28.96
    Df Model:
    Covariance Type:
                           nonrobust
                   coef std err
                                              P>|t| [0.025 0.975]
    const -5.5339 0.279 -19.834 0.000 -6.092 -4.976
    Avg_C02_ppm 0.0339
                           0.002
                                    21.955
                                               0.000
                                                          0.031
                                                                     0.037
    Omnibus:
                                                                     1.937
                               1.683 Durbin-Watson:
                                        Jarque-Bera (JB):
    Prob(Omnibus):
                                 0.431
                                                                     1.221
                               -0.065
                                        Prob(JB):
                                                                     0.543
    Skew:
                                                                   2.18e+03
    Kurtosis:
                                2.325
                                        Cond. No.
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Carbon emissions analysis - Colab

[2] The condition number is large, 2.18e+03. This might indicate that there are strong multicollinearity or other numerical problems.

There is a very strong, statistically significant positive relationship between atmospheric CO_2 levels and global temperature. The model explains nearly 89% of the variation in temperature, and the probability of this result being due to chance is practically zero (P < 0.0001).

- This linear regression model analyzes the relationship between atmospheric CO₂ levels and global temperature. The model's R-squared value of 0.889 indicates that approximately 88.9% of the variation in global temperature can be explained by CO₂ concentration alone reflecting a very strong relationship.
- The P-value for CO₂ is 0.000, confirming that the relationship is highly statistically significant and not due to random chance.
- The T-statistic of 21.955 for the CO₂ coefficient further supports the strong impact of CO₂ on temperature.
- · Additionally, the model has a high F-statistic of 482.0, indicating that the regression as a whole is highly significant.
- The Durbin-Watson statistic is 1.937, suggesting that there is no autocorrelation in the residuals, which validates the model's reliability.
- The AIC (-33.22) and BIC (-28.96) scores show that this model performs well compared to alternative models.

What-If Simulation