

Model Question Paper for CAT Exam

Programme	:	B.Tech	Semester :	:	Fall 2022-2023
Course	:	Data Structures and Algo-	Code :	:	BCSE202L
		rithms			
Time	:	90 minutes	Max.Marks :	:	50

ANSWER ALL QUESTIONS

		<u> </u>				
Q.No	sub Q.No	Question Description	Marks			
1		Given 'N' objects, which are coloured as red, white and blue. Sort these	10			
		objects so that objects of the same colour are adjacent, with the colours				
		in the order red, white and blue. Design an algorithm with a time com-				
		plexity of O(nlog n).				
2		Given a sorted list L, design an efficient iterative/recursive algorithm	10			
		that searches all pairs of elements whose sum is exactly equal to the				
		given number X. Analyse the time complexity of the algorithm.				
3		Can the master method be applied to the recurrence $T(n) = 4T(n/2) + n^2$	10			
		log n? Why or why not? Give an asymptotic upper bound for this				
		recurrence.				
4		Assume Two-Dimensional Sorted Array (TDSA) is a two-dimensional	10			
		matrix of size $n \times n$ such as the elements in the matrix are sorted				
		row-wise and column-wise. For example, the following matrix is a TDSA.				
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
		7 8 9				
		Write an algorithm that should convert the given matrix of a dimension				
		$n \times n$ into TDSA. Analyse the running time of the algorithm.				

```
 \begin{array}{|c|c|c|c|} \hline S & & Compute the running time of a call RKU(a,1,k) of the following algorithm & ALGORITHM RKU(a,k,n) & //Input: a is an array of n element and k is a value & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & &
```