Jogo da Vida

Paulo Gabriel Teixeira

Configurações iniciais do jogo

 Primeiro é necessário uma matriz (vetor de vetor) que armazena 2 valores (0 morto e 1 - vivo) com X linhas e Y colunas;

Depois é necessário trabalhar o Lexicon, ou seja, como o jogo será iniciado.
Podemos trabalhar de duas formas: aleatoriamente ou através da escolha do usuário. Ambas coincidem em determinar o valor 1 (vivo) para as células escolhidas e 0 para as restantes.

 Então o jogo está pronto para começar, partindo então para como verificar se uma célula está viva ou morta na próxima geração.

Início do jogo

 Será criado um laço de repetição infinito (While), e cada iteração resulta em uma nova geração.

- Como a geração é calculada para todas as células de uma vez, não podemos alterar uma célula e essa alteração impactar a geração anterior. Portanto, precisamos realizar uma cópia do vetor inicial para um vetor temporário, onde serão armazenados os novos estados das células.
 - Vetor inicial (Lexicon inicial);
 - Vetor temporário (1º geração após verificar se cada célula está viva ou morta segundo as regras do jogo);
 - Vetor inicial = Vetor Temporário (O Vetor inicial é substituído pelo vetor temporário e então tudo se repete).

Determinar se uma célula está viva ou não

- O vetor será percorrido da esquerda para a direita e de cima para baixo, e para cada célula serão realizados 3 passos:
 - contar os vizinhos vivos;
 - o caso esteja morta, se de acordo com as regras ela se torna viva ou permanece morta;
 - o caso esteja viva, se de acordo com as regras ela morre ou permanece viva.

Obs: Nessa abordagem o vetor é finito, logo caso alguma célula esteja em alguma borda, as células vizinhas fora do escopo do vetor serão consideradas mortas.

- Portanto, a matriz criada terá todas as posições limites com o valor 0 atribuído, e o jogo acontecerá apenas dentro desse limite. Por exemplo:
 - Se a matriz é 100 x 100, todas as posições com linha 0, coluna 0, linha 99 e coluna 99 estão mortas -> valor 0 atribuído.

Contar vizinhos vivos

- Para contar os vizinhos precisamos primeiro entender onde eles estão dentro das matrizes, logo temos a seguinte imagem:
- Linhas serão representadas pela letra i, colunas serão representadas pela letra j.

Vizinho noroeste vetor[i-1][j-1]	Vizinho norte vetor[i-1][j]	Vizinho nordeste vetor[i-1][j+1]
Vizinho oeste vetor[i][j-1]	Célula ativa vetor [i][j]	Vizinho leste vetor[i][j+1]
Vizinho sudoeste vetor[i+1][j-1]	Vizinho norte vetor[i+1][j]	Vizinho sudeste vetor[i+1][j+1]

Determinar o estado da célula na próx. Geração

 Agora basta verificar se o valor contido em cada um dos vizinhos é 0 ou 1. E caso seja 1 uma variável "soma_vizinhos" é incrementada (+1).

- Então podemos realizar as verificações:
 - Após 4 vizinhos se "soma_vizinhos" for maior que 3, a célula já está morta por superpopulação, e podemos encerrar a verificação por outros vizinhos;
 - Caso contrário, continuamos a verificação, e ao final, caso a contagem seja < 2 vizinhos vivos, a célula está morta por solidão;
 - Caso tenhamos 3 vizinhos vivos a célula estava morta, ela se torna viva na próxima geração;
 - Caso tenhamos 3 ou 2 vizinhos e a célula estava viva, ela permanece viva na próxima geração.
- Após percorrer toda a matriz e verificar cada célula, basta realizar a transferência dos dados da matriz temporária para a matriz inicial, e repetir todo o ciclo novamente.

Paulo Gabriel Teixeira paulogabriel.teixeira@gmail.com