BHanu Phakash Naredla COEN 240 00001630571 HW6 $L(w) = y \log(\sigma(w^Tx)) + (1-y) \log(1-\sigma(w^Tx))$ $\nabla_{W_{j}} l(w) = \nabla_{W_{j}} \left(y \log \left(\sigma(w^{T}x) \right) + \nabla_{W_{j}} \left((-y) \log \left(1 - \sigma(w^{T}x) \right) \right) \right)$ Tw: (ylag(o-(wTx))) \Rightarrow y. $\frac{1}{1-\sigma(w^Tx)}$. $(1-\sigma(w^Tx))$. X_j \Rightarrow y. $(1-\sigma(w^Tx))$. x_j \Rightarrow $x_j \left(y - y \sigma(w^T x) \right) - \cdots$ Vw; ((1-y) log (1- σ (wTx))) $\Rightarrow (1-9) \cdot 1 - (\sigma(w^Tx) \cdot (1-\sigma(w^Tx))).$ \Rightarrow $(1-y). - \sigma(w^Tx). Xj$ $\Rightarrow x_j \left(y \sigma(w^T x) - \sigma(w^T x) \right) -$

add (1), (2)
$$\nabla_{W_{j}} I(W) = X_{j} (y - y \sigma(W^{T}x))$$

$$X_{j} (y \sigma(W^{T}x) - \sigma(W^{T}x))$$

$$\Rightarrow X_{j} (y - y \sigma(W^{T}x) + y \sigma(W^{T}x) - \sigma(W^{T}x))$$

$$\Rightarrow (y - \sigma(W^{T}x)) \cdot X_{j}$$
NOTE: We directly took $\nabla_{W_{j}} (W^{T}x) = X_{j}$

NOTE: We directly took
$$\nabla_{W_j}(W^Tx) = X_j$$
 $W^Tx = W_1x_1 + W_2x_2 + \dots + W_jX_j + \dots + W_kx_k$
 $W^Tx = W_1x_1 + W_2x_2 + \dots + W_jX_j + \dots + W_kx_k$
 $W^Tx = W_1x_1 + W_2x_2 + \dots + W_jX_j + \dots + W_kx_k$
 $W^Tx = W_1x_1 + W_2x_2 + \dots + W_jX_j + \dots + W_kx_k$