1.State and prove de Morgan's laws of Boolean algebra .also simplify the Boolean expression $[(X.Y^*).(z+y.w)+x^*.y^*).z]$.

De Morgan's Laws:

De Morgan's Laws in Boolean algebra describe the relationships between negation of a conjunction (AND) and disjunction (OR), and vice versa. There are two laws:

1. **First Law (De Morgan's Law for Negation of Conjunction):**

 $[\nabla A \subset B] = \nabla A + \nabla B$

2. **Second Law (De Morgan's Law for Negation of Disjunction):**

Proof of De Morgan's Laws:

1. **First Law Proof:**

 $[\nabla A \cdot B] = 1 - (A \cdot B) = (1 - A) + (1 - B) = \nabla A + \nabla B$

2. **Second Law Proof:**

 $[\nabla A + B] = 1 - (A + B) = (1 - A) \cdot (1 - B) = \nabla A \cdot (1 - B)$

Simplification of the Boolean Expression:

 $[(X \cdot (Z + Y \cdot W) + \operatorname{X} \cdot Y) \cdot (Z + Y \cdot W) + \operatorname{X} \cdot Y]$

Apply distributive law:

Simplify terms:

 $[(X \cdot V) \cdot Z + 0 + V \cdot X] \cdot X]$

Combine terms:

 $[X \cdot V] \cdot Z + \operatorname{Z} \cdot$

The simplified Boolean expression is $(X \cdot Z + \text{V} \cdot$

