Tableau périodique des éléments

Tableau de Mendeleïev

1 2.20 1s H Hydrogène 1.00784-1.00811	l F	1s He Hélium 1.002602(2)
3 0.98 2s 4 1.57 2s Be Lithium 6.938-6.997 Béryllium 9.0121831(5)	Sy: symbole Nom Nom por de l'élément Bore Carbone Azote Oxygène Fluor	2p Ne Néon _{20.1797(6)}
11 0.93 35 12 1.31 35 Mg Sodium 22.98976928(2) Magnésium 24.304-24.307	Aluminium Silicium Phosphore Soufre Chlore	3p Ar Argon 39.948(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ti V Cr Mn Fe Co Ni Cu Zn Ga Germanium Germanium Arsenic Sélénium Brome K	3.00 4p Kr Krypton 83.798(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I I Indium Etain Antimoine Technétium Ruthénium Rhodium Palladium Argent Cadmium Indium Étain Antimoine Tellure	2.60 5p Xe Xénon 131.293(6)
55 0.79 6s	Hafnium Tantale Tungstène Rhénium Osmium Iridium Platine Or Mercure Thallium Plomb Bismuth Polonium Astate I	2.2 6p Rn Radon (222)
87 0.7 7s 88 0.9 7s Ra ** Francium (223) Radium (226) Actinides	ıtherfordium Dubnium Seaborgium Bohrium Hassium Meitnérium Darmstadtium Roentgenium Copernicium Nihonium Flérovium Moscovium Livermorium Tennesse Og	$ \begin{array}{c} \mathbf{Og} \\ \mathbf{Og} \\ \mathbf{Oganesson} \\ \mathbf{Oganesson} \end{array} $
*	La Ce Pr Nd Praséodyme Néodyme Prométhium Samarium Europium Gadolinium Terbium Dy Dysprosium Holmium Erbium Thulium Ytterbium Lu	1.27 4f Lu Lutécium 174.9668(1)
**	Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Nobelium Protactinium Protactinium Protactinium Protactinium Plutonium Plutonium Américium Curium Berkélium Californium Einsteinium Fernium Mendélévium Nobélium Law	$\frac{1.3}{\mathrm{Lr}}$

Les poids atomiques standards sont issus de la Commission on Isotopic Abundances and Atomic Weights (ciaaw.org/atomic-weights.htm). Une astérisque (*) apposée à une sous-couche électronique indique une exception (au principe d'Aufbau) dans la configuration des électrons à l'état fondamental.