	$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{2i}{kr_1+2k^3r_1}$	$\frac{i\sqrt{2}(3k^2r_1-2t_3)}{k(1+2k^2)^2r_1t_3}$	0	$\frac{6k^2r_{1}-4t_3}{(1+2k^2)^2r_1t_3}$
	$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\int_{\alpha}^{\alpha} \alpha \partial_{\theta} \omega_{\alpha\beta}^{k} - \frac{1}{\alpha} \alpha \partial_{\kappa} \omega^{\theta \alpha\beta} - \frac{1}{\alpha} \alpha \partial_{\kappa} \omega^{\theta \kappa\lambda} + \frac{1}{\alpha} \alpha \partial_{\kappa} \psi^{\theta \kappa\lambda} + \frac{1}{\alpha} \alpha \partial_{\kappa} \psi^{\theta \kappa} + \frac{1}{\alpha} \alpha \partial_{\kappa} \omega_{\alpha\beta} + \frac{1}{\alpha} \omega^{\alpha} \omega^{\beta} + \frac{1}{\alpha} \omega^{\beta} \omega^{\beta} + \frac{1}{\alpha} \omega^{\beta} \omega^{\beta} + \frac{1}{\alpha} \omega^{\beta} \omega^{\beta} + \frac{1}{\alpha} \omega^{\beta} \omega^{\beta} \omega^{\beta} + \frac{1}{\alpha} \omega^{\beta} \omega^{\beta} \omega^{\beta} + \frac{1}{\alpha} \omega^{\beta} \omega$	$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$-\frac{\sqrt{2}}{k^2 r_1 + 2 k^4 r_1}$	$\frac{3k^2r_{1-2}t_3}{(k+2k^3)^2r_1t_3}$	0	$-\frac{i\sqrt{2}(3k^2r_1-2t_3)}{k(1+2k^2)^2r_1t_3}$
	$\sigma_{1^-}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{1}{k^2 r_1}$	$-\frac{\sqrt{2}}{k^2 r_1 + 2 k^4 r_1}$	0	$\frac{2i}{kr_1+2k^3r_1}$
$ \frac{1}{\lambda} + \frac{1}{3}t_2 \omega $ $ \frac{1}{\lambda} + \frac{1}{3}t_2 \omega $ $ \frac{1}{\lambda} + \frac{1}{\lambda}t_2 \omega $ $ \frac{1}{\lambda} + $	$\tau_1^{\#1}{}_+\alpha\beta$	$\frac{3 i \sqrt{2} k}{(3+k^2)^2 t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
In density $ u_{\kappa}^{\kappa} + \frac{2}{3}t_{2} \omega_{\kappa}^{\kappa \lambda} \omega_{\kappa \lambda}^{\prime} + \frac{1}{3}t_{2} \omega_{\kappa \lambda}^{\prime} \alpha_{\kappa}^{\prime} $ $ \partial^{\prime} \omega_{\lambda}^{\alpha} - \frac{2}{3}r_{1} \partial^{\beta} \omega^{\theta \alpha} \partial_{\theta} \omega_{\alpha \beta}^{\kappa} + \frac{1}{3}r_{2} $ $ (\partial^{\prime} \omega_{\lambda}^{\alpha} - \frac{2}{3}r_{1} \partial^{\beta} \omega^{\theta \alpha} \partial_{\kappa} \omega^{\kappa} + \frac{2}{3}r_{2} $ $ (\partial^{\prime} \omega_{\lambda}^{\alpha} - \frac{2}{3}r_{1} \partial^{\beta} \omega^{\theta \alpha} \partial_{\kappa} \omega^{\kappa} + \frac{2}{3}r_{2} $ $ (\partial^{\prime} \omega_{\lambda}^{\alpha} - \frac{2}{3}r_{2} \partial_{\theta} \omega_{\alpha \beta}^{\kappa} \partial_{\kappa} \omega^{\kappa} + \frac{2}{3}r_{2} $ $ (\partial^{\prime} \omega_{\lambda}^{\alpha} + \frac{1}{3}r_{2} \partial_{\theta} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\kappa} + \frac{1}{6}t_{2} $ $ (\partial^{\prime} \kappa_{\lambda}^{\beta} + \frac{1}{3}t_{2} \partial^{\alpha} f^{\lambda} \partial^{\kappa} f^{\lambda} + \frac{2}{3}t_{3} \partial_{\kappa} f^{\lambda} \partial^{\lambda} $ $ (\partial^{\prime} f^{\prime} - \frac{1}{3}t_{2} \partial^{\alpha} f^{\lambda} \partial^{\kappa} f^{\prime} + \frac{2}{3}t_{3} \partial_{\kappa} f^{\lambda} \partial^{\lambda} $ $ (\partial^{\prime} f^{\prime} - \frac{1}{3}t_{2} \partial^{\alpha} f^{\lambda} \partial^{\kappa} f^{\lambda} + \frac{2}{3}t_{2} \omega_{\beta} f^{\lambda} \partial^{\lambda} $ $ (\partial^{\prime} f^{\prime} - \frac{1}{3}t_{2} \partial^{\alpha} f^{\lambda} \partial^{\kappa} f^{\lambda} + \frac{2}{3}t_{2} \partial^{\kappa} f^{\lambda} \partial^{\lambda} $ $ (\partial^{\prime} f^{\prime} - \frac{1}{3}t_{2} \partial^{\alpha} f^{\lambda} \partial^{\kappa} f^{\lambda} + \frac{2}{3}t_{2} \partial^{\kappa} f^{\lambda} \partial^{\lambda} $ $ (\partial^{\prime} f^{\prime} - \frac{1}{3}t_{2} \partial^{\alpha} f^{\lambda} \partial^{\kappa} f^{\lambda} + \frac{2}{3}t_{2} \partial^{\kappa} f^{\lambda} \partial^{\lambda} $ $ (\partial^{\prime} f^{\prime} - \frac{1}{3}t_{2} \partial^{\alpha} f^{\lambda} \partial^{\kappa} f^{\lambda} + \frac{2}{3}t_{2} \partial^{\kappa} f^{\lambda} \partial^{\lambda} $ $ (\partial^{\prime} f^{\prime} - \frac{1}{3}t_{2} \partial^{\alpha} f^{\lambda} \partial^{\kappa} f^{\lambda} + \frac{2}{3}t_{2} \partial^{\kappa} f^{\lambda} \partial^{\lambda} $ $ (\partial^{\prime} f^{\prime} - \frac{1}{3}t_{2} \partial^{\alpha} f^{\lambda} \partial^{\kappa} f^{\lambda} + \frac{2}{3}t_{2} \partial^{\kappa} f^{\lambda} \partial^{\kappa} $ $ (\partial^{\prime} f^{\prime} - \frac{1}{3}t_{2} \partial^{\alpha} f^{\lambda} \partial^{\kappa} f^{\lambda} + \frac{2}{3}t_{2} \partial^{\kappa} f^{\lambda} \partial^{\kappa} $ $ (\partial^{\prime} f^{\prime} - \frac{1}{3}t_{2} \partial^{\alpha} f^{\lambda} \partial^{\kappa} f^{\lambda} + \frac{2}{3}t_{2} \partial^{\kappa} f^{\lambda} \partial^{\kappa} $ $ (\partial^{\prime} f^{\prime} - \frac{1}{3}t_{2} \partial^{\alpha} f^{\lambda} \partial^{\kappa} f^{\lambda} + \frac{2}{3}t_{2} \partial^{\kappa} f^{\lambda} \partial^{\kappa} $ $ (\partial^{\prime} f^{\prime} - \frac{1}{3}t_{2} \partial^{\alpha} f^{\lambda} \partial^{\kappa} f^{\lambda} + \frac{2}{3}t_{2} \partial^{\kappa} f^{\lambda} \partial^{\kappa} $ $ (\partial^{\prime} f^{\prime} - \frac{1}{3}t_{2} \partial^{\alpha} f^{\lambda} \partial^{\kappa} f^{\lambda} \partial^{\kappa} f^{\lambda} + \frac{2}{3}t_{2} \partial^{\kappa} f^{\lambda} \partial^{\kappa} $ $ (\partial^{\prime} f^{\prime} - \frac{1}{3}t_{2} \partial^{\alpha} f^{\lambda} \partial^{\kappa} f^{\lambda} \partial^{\kappa$	$\sigma_1^{\#2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
Lagrangian density $\frac{2}{3}t_3 \omega_{\kappa'}^{\alpha l} \omega_{\kappa}^{\kappa l} + \frac{2}{3}t_2 \omega_{\kappa'}^{\kappa l} \omega_{\kappa'}^{\lambda l} + \frac{1}{3}t_2 \omega_{\kappa'}^{\lambda l} \omega_{\kappa'}^{\kappa l} + \frac{2}{3}t_2 \omega_{\kappa'}^{\kappa l} \omega_{\kappa'}^{\kappa l} + \frac{1}{3}t_2 \omega_{\kappa'}^{\lambda l} \omega_{\kappa'}^{\kappa l} + \frac{1}{3}t_2 \omega_{\kappa'}^{\kappa l} \omega_{\kappa'}^{\kappa l} + \frac{1}{3}t_2 \omega_{\kappa'}^{\kappa l} \omega_{\kappa'}^{\kappa l} + \frac{1}{3}t_2 \omega_{\kappa'}^{\kappa l} + \frac{1}{3}t_2 \omega_{\kappa'}^{\kappa l} + \frac{1}{6}t_2 \partial^2 f_{\kappa}^{\kappa} \partial^2 f_{\kappa}^{\kappa l} + \frac{1}{6}t_2 \partial^2 f_{\kappa}^{\kappa l} \partial^2 f_{\kappa}^{\kappa l} + \frac{1}{6}t_2 \partial^2 f_{\kappa}^{\kappa l} \partial^2 f_{\kappa}^{\kappa l} + \frac{1}{6}t_2 \partial^2 f_{\kappa}^{\kappa l} \partial^2 f_{\kappa}^{\kappa l} + \frac{1}{3}t_2 \omega_{\kappa'}^{\kappa l} + \frac{1}{6}t_2 \partial^2 f_{\kappa}^{\kappa l} + \frac{1}{3}t_2 \omega_{\kappa'}^{\kappa l} \partial^2 f_{\kappa}^{\kappa l} + $	$\sigma_1^{\#1}{}_+\alpha\beta$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
Lagrangia $\frac{2}{3}t_3 \omega_{\kappa^{\lambda}}^{\alpha'} c$ $2 r_1 \partial_{\nu} \omega_{\kappa^{\lambda}}^{\kappa^{\lambda}}$ $\frac{2}{3} r_2 \partial_{\nu} \omega_{\alpha^{\beta}}^{\alpha\beta}$ $\frac{2}{3} r_2 \partial_{\nu} \omega_{\alpha^{\beta}}^{\alpha\beta}$ $\frac{1}{3} t_2 \partial_{\sigma} f_{\kappa^{\beta}}^{\alpha\beta}$ $\frac{1}{3} t_2 \omega_{\kappa^{\lambda}}^{\lambda} d$ $\frac{2}{3} t_3 \omega_{\kappa^{\lambda}}^{\lambda} d$ $\frac{2}{3} t_3 \omega_{\kappa^{\lambda}}^{\lambda} d$ $\frac{2}{3} t_3 \omega_{\kappa^{\lambda}}^{\lambda} d$ $\frac{2}{3} t_2 \omega_{\kappa^{\beta}}^{\beta} d$ $\frac{1}{3} t_2 \partial_{\kappa} f^{\lambda}_{\beta}^{\beta} d$ $\frac{1}{3} t_2 \partial_{\kappa} f^{\lambda}_{\beta}^{\beta} d$ $\frac{1}{3} t_2 \partial_{\kappa} \psi_{\alpha^{\beta}}^{\beta}$ $\frac{1}{3} t_3 \partial_{\kappa} \psi_{\alpha^{\beta}}^{\beta}$		$\sigma_{1}^{\#1} + \alpha^{\beta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$ au_1^{\#1} + \alpha eta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_1^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

$f_{1^-}^{\#2} \alpha$	0	0	0	$-\frac{2}{3}$ ikt ₃	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	2 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$-k^2 r_1 + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_{1}^{\#1}$	$\frac{1}{3}$ i $\sqrt{2}$ kt_2	<u>ikt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta} \qquad f_{1}^{\#1}{}_{\alpha\beta}$	Ī		$-\frac{1}{3}ikt_2$	0 0	0 0	0 0	0 0
	$\frac{1}{3}$ \vec{l}		$+^{\alpha\beta} \left -\frac{1}{3} \bar{i} \sqrt{2} kt_2 \right -\frac{1}{3} \bar{i} kt_2 \left \frac{k^2 t_2}{3} \right $	0 0 0	0 0 0		0 0 0

	$\sigma_0^{\sharp 1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$ au_{0}^{\#1}$ †	$\frac{i \sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$ au_{0^{+}}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

Source constraints		
SO(3) irreps	#	
$\tau_{0^{+}}^{\#2} == 0$	1	댇
$\tau_{0^{+}}^{\#1} - 2 \bar{\imath} k \sigma_{0^{+}}^{\#1} == 0$	1	$\omega_0^{\#1}$
$\tau_1^{\#2\alpha} + 2 i k \sigma_1^{\#2\alpha} == 0$	3	6#2 0+
$\tau_{1}^{\#1\alpha} == 0$	3	
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#1}{}^{\alpha\beta} == 0$	3	$f_{0}^{\#1}$
$\sigma_{1+}^{\#1\alpha\beta} == \sigma_{1+}^{\#2\alpha\beta}$	3	-
$\tau_{2+}^{\#1}{}^{\alpha\beta} == 0$	5	$\omega_0^{\#1}$
$\sigma_{2^{+}}^{\#1\alpha\beta} == 0$	5	L
Total #:	24	

 $\omega_{2^{-}}^{\#1}\alpha\beta\chi$

 $\omega_{2}^{\#1}_{+\alpha\beta} \ f_{2}^{\#1}_{\alpha\beta}$

 $\omega_2^{\#1} \, {\dagger}^{\alpha\beta}$

 $f_2^{#1} + \alpha \beta$

 $k^2 r_1$

	Massive particle		
? $J^{P} = 0^{-}$? ? ?	Pole residue:	$-\frac{1}{r_2} > 0$	
	Polarisations:	1	
	Square mass:	$-\frac{t_2}{r_2} > 0$	
	Spin:	0	
	Parity:	Odd	

e particle				
sidue:	$-\frac{1}{r_2} > 0$			
ations:	1			
mass:	$-\frac{t_2}{r_2} > 0$			
	0			
	Odd			

$r_2 < 0 \&\& t_2 > 0$	Unitarity conditions	(No massless particles
		.07

No