

Секвенирование методом Сэнгера

ДНК: ААААААААА РНК:

Подготовили:

Воробьёв Д. Прохоров М. Зеленковский В. Жидович М. Гопоняко Н.

Источники

Секвенирование ДНК

Биополимеры — белки, ДНК и РНК и др.

Секвенирование — определение их аминокислотной или нуклеотидной последовательности.

Метод Сэнгера позволяет секвенировать ДНК.

Нуклеотиды

Нуклеотидная цепь

Нуклеотидная последовательность

Symbol	Description	Bases represented					Complement
Α	Adenine	Α				1	Т
С	Cytosine		С				G
G	Guanine			G			С
Т	Thymine				Т		Α
U	Uracil				U		Α
W	Weak	Α			Т	2	W
s	Strong		С	G			S
М	a M ino	Α	С				K
K	Keto			G	Т		М
R	pu R ine	Α		G			Y
Υ	p Y rimidine		С		Т		R
В	not A (B comes after A)		С	G	Т	3	V
D	not C (D comes after C)	Α		G	Т		Н
Н	not G (H comes after G)	Α	С		Т		D
V	not T (V comes after T and U)	Α	С	G			В
N	any N ucleotide (not a gap)	Α	С	G	Т	4	N
Z	Zero					0	Z

» Метод ТЕРМИНАТОРОВ

Терминатор — дидезоксинуклеотид, который прерывает синтез цепи ДНК (например ddA).

Сделай множество копий нужного фрагмента Денатурируй ДНК

образца

Комплементарные цепи растут, пока в них не встраивается дидезоксинуклеотид

Присоедини праймер

Добавь в четыре разные пробирки с полимеразами

Денатурируй выросшую цепь

» Метод ТЕРМИНАТОРОВ

четыре реакции:

ddATP

ddTTP ddCTP

ddGTP

GAATTGGCGCG GAATTGGCGC GAATTGGCG GAATTGGC GAATTGG GAATTG GAATT GAAT GAA

Современный Метод ТЕРМИНАТОРОВ

GAT AAAT CT G G T CT T ATT T C C

ПРЕИМУЩЕСТВА

НЕДОСТАТКИ

ТОЧНОСТЬ

достигается 99, 99%

АНАЛИЗ ОТДЕЛЬНЫХ ГЕНОВ лучший метор

при исследовании небольших фрагментов ДНК

только короткие последовательности ДНК

ВРЕМЯ

исследование длится долго

ДОРОГОВИЗНА

при большом объеме данных

Области применения

Спасибо за внимание!

