Convolution and Pooling

Convolution and Pooling

- Convolution
- Channel
- Stride
- Padding
- Pooling

Operation	Kernel	Image result
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	

Gaussian blur 3 × 3 (approximation)		$\frac{1}{1}$	$\frac{1}{6} \begin{bmatrix} 1\\2\\1 \end{bmatrix}$	2 1 4 2 2 1			
Gaussian blur 5 × 5 (approximation)	$\frac{1}{256}$	$\begin{bmatrix} 1\\4\\6\\4\\1 \end{bmatrix}$	24	36	4 16 24 16 4	1 4 6 4 1	
Unsharp masking 5 × 5 Based on Gaussian blur with amount as 1 and threshold as 0 (with no image mask)	$\frac{-1}{256}$	$\begin{bmatrix} 1 \\ 4 \\ 6 \\ 4 \\ 1 \end{bmatrix}$	4 16 24 16 4	$6\\24\\-476\\24\\6$	4 16 24 16 4	6	

1	2	3
4	5	6
7	8	9

kernel

 \otimes

Α	В	С
D	Е	F
G	Н	I

$$(1 * A) + (2 * B) + (3 * C) + (4 * D) + ... + (9 * I)$$

•				
- 1	n	\mathbf{r}	\sim	\sim
- 1	11	าล	u	\boldsymbol{T}
•			~,	_

1	2	3
4	5	6
7	8	9

А	В	С
D	Е	F
G	Н	I

$$(1 * I) + (2 * H) + (3 * G) + (4 * F) + ... + (9 * A)$$

Convolution

 $\chi * W$

Cross-Correlation

$$x \otimes w$$

합성곱

위키백과, 우리 모두의 백과사전.

합성곱(合成-, convolution, 콘벌루션)은 하나의 함수와 또 다른 함수를 반전 이동한 값을 곱한 다음, 구간에 대해 적분하여 새로운 함수를 구하는 수학 연산자이다.

$$y(t) = (x * w)(t)$$

$$= \int_{-\infty}^{\infty} x(a)w(t-a)da$$

$$y[n] = \sum_{a=-\infty}^{\infty} x[a]w[n-a]$$

$$y(i,j) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} image[m,n] kernel[i-m,j-n]$$

*

image

1	2	3
4	5	6
7	8	9

Α	В	С
D	Е	F
G	Н	I

$$(1 * I) + (2 * H) + (3 * G) + (4 * F) + ... + (9 * A)$$

$$y(i,j) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} image[m,n] kernel[i-m,j-n]$$

1	2	3
4	5	6
7	8	9

*

kernel

Α	В	C
D	Е	F
G	Н	Ι

-1,-1	0,-1	1,-1
-1,0	0,0	1,0
-1,1	0,1	1,1

*

i-1,	i,	i+1,
j-1	j-1	j-1
i-1,	i,	i+1,
j	j	j
i-1,	i,	i+1,
j	j+1	j+1

Ex)
$$m = -1$$
, $n = -1$

-1,-1	0,-1	1,-1
-1,0	0,0	1,0
-1,1	0,1	1,1

-1,-1	0,-1	1,-1
-1,0	0,0	1,0
-1,1	0,1	1,1

Ex)
$$m = 1$$
, $n = -1$

i-1,	i,	i+1,
j-1	j-1	j-1
i-1,	i,	i+1,
j	j	j
i-1,	i,	(i+1,
j	j+1	j+1)

i-1,	i,	i+1,
j-1	j-1	j-1
i-1,	i,	i+1,
j	j	j
(i-1,	i, j+1	i+1, j+1

$$y(i,j) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} image[m,n] kernel[i+m,j+n]$$

1	2	3
4	5	6
7	8	9

 \otimes

$$(1 * A) + (2 * B) + (3 * C) + (4 * D) + ... + (9 * I)$$

$$y(i,j) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} image[m,n] kernel[i+m,j+n]$$

1	2	3
4	5	6
7	8	9

Α	В	C
D	Е	F
G	Η	I

-1,-1	0,-1	1,-1
-1,0	0,0	1,0
-1,1	0,1	1,1

i-1,	i,	i+1,
j-1	j-1	j-1
i-1, j	i, j	i+1, j
i-1,	i,	i+1,
j	j+1	j+1

Ex)
$$m = -1$$
, $n = -1$

-1,-1	0,-1	1,-1
-1,0	0,0	1,0
-1,1	0,1	1,1

-1,-1	0,-1	1,-1
-1,0	0,0	1,0
-1,1	0,1	1,1

Ex)
$$m = 1$$
, $n = -1$

(i-1,	i,	i+1,
j-1	j-1	j-1
i-1, j	i, j	i+1, j
i-1,	i,	i+1,
j	j+1	j+1

i-1,	i,	(i+1,
j-1	j-1	j-1)
i-1, j	i, j	i+1, j
i-1,	i,	i+1,
j	j+1	j+1

RED Channel

Green Channel Blue Channel

RGB image -> 3 channels Gray image -> 1 channel

n filters in conv. layer -> n channels output

: image : filter

Stride: Convolution을 진행할 때, 필터의 이동 간격.

Padding: image의 모서리 부분 정보 손실 방지

Zero Padding = X

$$7*7 \xrightarrow{\text{conv}} 5*5$$

Zero Padding = O

$$7*7 \xrightarrow{\text{conv}} 7*7$$

Dilated Convolutions

dilation rate : 커널 사이의 간격 ex) dilation rate = 2

넓은 시야가 필요할 때 용이 필터 내부에 zero padding을 추가 연산의 효율 좋다

Sampling (Pooling)

- 이동 불변성.
- 이미지의 크기를 줄이기 때문에 학습할 노드의 수가 줄어들어 **학습속도를 높**이는 효과.
- 하지만 <mark>정보 손실</mark>이 일어남.

Appendix.

