

Contents

- 1 Spac and Time Trade-offs
- Sorting by Counting
- 3 Input Enhancement in String Matching
- 4 Hashing

Spac and Time Trade-offs

Space and Time Trade-Offs

Johann Wolfgang von Goethe

Things which matter most must never be at the mercy of things which matter less.

- Space and time trade-offs are crucial considerations in algorithm design, impacting both theoreticians and practitioners.
- Example: Computing values of a function at many points. Precomputing these values and storing them in tables saves time at the cost of additional space.

Key Techniques

- Input Enhancement: Preprocessing input to speed up problem-solving.
- **Prestructuring**: Using extra space for faster data access.
- Dynamic Programming: Storing solutions to overlapping subproblems.

Input Enhancement Technique

Definition

Preprocessing or preconditioning the input to store additional information, which accelerates solving the problem later.

Examples of Algorithms Using Input Enhancement:

- Counting methods for sorting.
- Boyer-Moore algorithm for string matching.
- Horspool's simplified string matching algorithm.

Prestructuring Technique

Definition

Using extra space to facilitate faster or more flexible access to data.

Note: Structuring data before solving the problem for quicker access.

Examples of Algorithms Using Prestructuring:

- Hashing for efficient data retrieval.
- Indexing with B-trees for managing large sets of data.

Dynamic Programming and Time-Space Optimization

- Recording solutions to overlapping subproblems in a table (dynamic programming).
- **Example**: Optimizing both time and space, such as graph traversal using adjacency lists over matrices in sparse graphs.

Sorting by Counting

Sorting by Counting

- An approach to sorting that relies on counting occurrences and positions of elements rather than comparing them.
- It is especially efficient for lists of integers with a limited range of values.

Input-Enhancement Technique:

This technique preprocesses the input data by counting occurrences or comparisons, then uses this information to speed up the sorting process.

Comparison-Counting Sort Algorithm

- For each element in the array, count how many elements are smaller than it.
- This count determines the position of the element in the final sorted array.

Comparison-Counting Sort Algorithm

Example: Given the	e array {62, :	31, 84,	96, 19,	47}				
Array A[05]		62	31	84	96	19	47	
Initially	Count[]							
After pass $i = 0$	Count[]							
After pass $i = 1$	Count[]							
After pass $i = 2$	Count[]							
After pass $i = 3$	Count[]							
After pass $i = 4$	Count[]							
Final state	Count[]							
Array A[05]								

Comparison-Counting Sort Algorithm

Time Efficiency:

The basic operation:

The number of basic operation:

• If the elements to be sorted are drawn from a small set of possible values, counting can be used to optimize the sorting process.

Distribution Counting

- A more general counting-based approach where the exact positions of elements in the sorted array are determined using their frequencies.
 - 1) Frequency Calculation: First, count how many times each element appears in the array.
 - 2 **Distribution Array**: Calculate the cumulative sum of frequencies, which tells us where the elements should be placed in the sorted array.

Distribution Counting Sort Algorithm

- lacktriangle Initialize frequency array D.
- 2 Compute the frequency of each element.
- 3 Accumulate frequencies to create the distribution array.
- 4 Use the distribution array to place elements into their correct sorted positions.

Distribution Counting Sort Algorithm

D[0..2]

A[5]	=	12

$$A[4] = 12$$

$$A[3] = 13$$

$$A[2] = 12$$

$$A[1] = 11$$

$$A[0] = 13$$

S	[05]	
$\overline{}$	[

Advantages of Sorting by Counting

- **Time Efficiency**: Sorting by counting can achieve linear time complexity O(n) when the range of values is limited.
- **No Comparisons Needed**: It does not rely on element comparisons, making it ideal for specific scenarios (e.g., sorting integer keys).
- Direct Placement: Each element is placed directly in its final position, reducing the number of key moves.

Input Enhancement in String

Matching

String Matching

- String matching involves finding a pattern (P) of length m within a larger text (T) of length n.
- Basic approach: Brute-force matching compares characters from left to right and shifts the pattern by one position after a mismatch.
 - Worst-case time complexity: $O(n \cdot m)$ On average, brute-force string matching has time complexity O(n+m).

Input Enhancement Technique for String Matching

- Preprocess the pattern to extract useful information that accelerates the string matching process.
- The **Boyer-Moore algorithm** compares the pattern characters right-to-left during each trial.
- We will explore a simplified version: Horspool's Algorithm, which is easier to implement.

Horspool's Algorithm

- Compare pattern characters with text from right to left.
- Shift the pattern to the right based on mismatches to skip unnecessary comparisons.
- The size of the shift is determined by the character aligned against the last character of the pattern.
- Horspool's algorithm determines the shift size using a shift table.

$$s_0 \quad \dots \quad \qquad \qquad c \quad \dots \quad s_{n-1}$$
 BARBER

Horspool's Algorithm – Handling Mismatches

Character not in the pattern

```
s_0 ... S ... s_{n-} BARBER
```

2 Character in the pattern but not at the last position

3 Character at the last position but not found elsewhere

```
s_0 ... MER ... s_{n-1} LEADER
```

4 Character at the last position and found elsewhere

```
s_0 ... A R ... s_{n-1} H REORDER
```

The Shift Table

- Initialize all table entries to the pattern length m.
- For each character in the pattern (except the last one), compute the distance to the last character, t(c), and update the table.

```
ALGORITHM ShiftTable(P[0..m-1])

//Fills the shift table used by Horspool's and Boyer-Moore algorithms

//Input: Pattern P[0..m-1] and an alphabet of possible characters

//Output: Table[0..size-1] indexed by the alphabet's characters and

// filled with shift sizes computed by formula (7.1)

for i \leftarrow 0 to size-1 do Table[i] \leftarrow m

for j \leftarrow 0 to m-2 do Table[P[j]] \leftarrow m-1-j

return Table
```

Horspool's Algorithm - Pseudocode

- Precompute the shift table based on the pattern.
- 2 Align the pattern with the start of the text.
- 3 Compare characters from right to left:
 - If a mismatch occurs, shift the pattern based on the shift table.
 - If all characters match, return the index of the match.
- Repeat until the pattern moves beyond the text or a match is found.

```
ALGORITHM HorspoolMatching(P[0..m-1], T[0..n-1])
    //Implements Horspool's algorithm for string matching
    //Input: Pattern P[0..m-1] and text T[0..n-1]
    //Output: The index of the left end of the first matching substring
              or -1 if there are no matches
    ShiftTable(P[0..m-1])
                                 //generate Table of shifts
    i \leftarrow m-1
                                 //position of the pattern's right end
    while i < n - 1 do
        k \leftarrow 0
                                 //number of matched characters
        while k \le m - 1 and P[m - 1 - k] = T[i - k] do
            k \leftarrow k + 1
        if k = m
            return i - m + 1
        else i \leftarrow i + Table[T[i]]
    return -1
```

Horspool's Algorithm – Example

Example: Searching for the pattern BARBER in a text that comprises English letters and spaces (denoted by underscores).

character c	А	В	С	D	Е	F	 R	 Z	_
shift $t(c)$									

JIM_SAW_ME_IN_A_BARBERSHOP

Boyer-Moore Algorithm

- Boyer-Moore uses both bad-symbol and good-suffix rules to determine shifts.
- Bad-Symbol Rule: Shifts the pattern based on the character in the text that caused a mismatch.
- Good-Suffix Rule: Shifts the pattern based on a successful match of a suffix within the pattern itself.
- The Boyer-Moore algorithm can often shift the pattern by larger amounts compared to Horspool's algorithm.

Bad-Symbol Rule

- Bad Symbol Not in the Pattern:
 - Shift the pattern by $t_1(S) 2 = 6 2 = 4$

$$s_0$$
 ... SER ... s_{n-1} BARBER BARBER

- 2 Bad Symbol in the Pattern:
 - Shift the pattern by $t_1(A) 2 = 4 2 = 2$

$$s_0$$
 ... A E R ... s_{n-1} \parallel \parallel B A R B E R B A R B E R

Bad-Symbol Rule

The shift size for the bad-symbol rule is calculated as

$$d1 = \max(t1(c) - k, 1)$$

where

- t1(c) is the precomputed shift for the bad symbol.
- k is the number of matched characters before the mismatch occurred.
- $\max(t1(c) k, 1)$ ensures that the shift is at least one position to avoid overlapping comparisons.

Good-Suffix Rule

- During preprocessing, the Good-Suffix Table is constructed by analyzing the suffixes of the pattern and identifying:
 - Occurrences of the suffix within the pattern.
 - The largest prefix of the pattern that matches a suffix.
- For each suffix, the table indicates how far the pattern can be shifted when that suffix is matched in the text.

Combining Bad-Symbol and Good-Suffix Shifts

- When both the Bad-Symbol Rule and the Good-Suffix Rule apply, the algorithm shifts the pattern by the larger of the two shift values.
- The shift size is computed as:

$$d = \max(d1, d2)$$

Note: By using both rules, the Boyer-Moore algorithm can maximize the shift size, minimizing the number of comparisons and achieving optimal performance.

Boyer-Moore Algorithm – Example

Example: Searching for the pattern BAOBAB in a text.

The bad-symbol table:

С	А	В	С	D	 0	 Z	_
t(c)							

The good-suffix table:

k	pattern	d_2
1	BAOBAB	
2	BAOBAB	
3	BAOBAB	
4	BAOBAB	
5	BAOBAB	

Boyer-Moore Algorithm – Example

Example: Searching for the pattern BAOBAB in a text.

BESS_KNEW_ABOUT_BAOBABS

Efficiency Comparison

Horspool's Algorithm:

- Simpler to implement.
- Performs well for random texts, O(n).
- Worst-case time complexity: O(nm).

Boyer-Moore Algorithm:

- More complex, but can achieve faster shifts.
- Worst-case time complexity: O(n).

Hashing

Hashing

- Hashing is a technique used to implement dictionaries efficiently, allowing for operations like searching, insertion, and deletion.
- A dictionary consists of a set of elements (e.g., student records, citizen records) where each element has a key used for identification.
- Map keys to a hash table using a hash function.
- **Hash Table**: A one-dimensional array of size m, where each element is stored at an index determined by the hash function.

Hash Function

A hash funciton needs to satisfy somewhat conflict rquirements:

- A hash table's size should not be excessively large compared to the number of keys.
- A hash function needs to distribute keys among the cells of the hash table as evenly as possible.
- A hash function has to be easy to compute.

Example:

K is and integer:

$$h(K) = K \mod m$$

K is a character string $c_0c_1\dots c_{s-1}$ and ord(K) is position in the alphabet:

$$h(K) = \left(\sum_{i=0}^{s-1} ord(c_i)\right) \mod m$$

Hash Collisions

- Occurs when two or more keys are assigned the same hash value, i.e., they
 map to the same location in the hash table.
- Open Hashing (Separate Chaining):
 - Uses linked lists to store multiple keys hashed to the same table index.
- Closed Hashing (Open Addressing):
 - Stores all keys directly in the hash table, probing to find the next available spot when a collision occurs.

Open Hashing (Separate Chaining)

- Each cell in the hash table points to a linked list that contains all the keys hashed to that index.
- If a collision occurs, the key is simply added to the linked list at that table index.

Example: Given size of hash table is m:

```
\begin{array}{l} h(A) = 1 \mod 13 = 1 \\ h(FOOL) = (6 = 15 + 15 + 12) \mod 13 = 9 \\ h(ARE) = (1 + 18 + 5) \mod 13 = 11 \\ h(SOON) = (19 + 15 + 15 + 14) \mod 13 = 11 \end{array}
```

Open Hashing (Separate Chaining)

Example:a hash table construction with separate chaining.

key	/S				Α	FOOL	AND	HIS	MONEY	ARE	SOON	PARTED
has	sh ad	dres	ses		1	9	6	10	7	11	11	12
0	1	2	3	4	5	6	7	8	9	10	11	12

Efficiency of Open Hashing

- Load factor $\alpha = n/m$: Ratio of the number of keys n to the size of the table m.
- Average number of chained links:
 - Successful searches: $S \approx 1 + \frac{\alpha}{2}$.
 - Unsuccessful searches: $U = \tilde{\alpha}$.
- Performance depends on the length of the linked lists.
- O(1) in the average case if the number of keys n is about equal to the hash table's size m.

Closed Hashing (Open Addressing)

- All keys are stored within the hash table itself, without linked lists.
- **Linear Probing**: When a collision occurs, the algorithm checks the next available slot in the table, continuing until an empty cell is found.
- The table is treated as circular, meaning if the end is reached, probing wraps around to the beginning.

Closed Hashing (Open Addressing)

Example: A hash table construction with linear probing.

keys			Α	F	00L	AND	HIS	MONE	ΕY	ARE	SO	ON	PARTED
hash addr	esse	S	1		9	6	10	7	11		1	1	12
0	1	2	3	4	5	6	7	8		9	10	11	12
	Α												
	Α								FC	OL			
	Α					AND			FC	OL			
	Α					AND			FC	OL	HIS		
	Α					AND	MONEY		FC	OL	HIS		
	Α					AND	MONEY		FC	OL	HIS	ARI	E
	Α			ĺ		AND	MONEY		FC	OL.	HIS	ARI	E SOON
PARTED	Α					AND	MONEY		FC	OL	HIS	ARI	E SOON

Closed Hashing (Open Addressing)

Efficiency of Closed Hashing

- Average number of access the hash table:

 - Successful searches: $S \approx \frac{1}{2} \left(1 + \frac{1}{1-\alpha} \right)$. Unsuccessful searches: $U \approx \frac{1}{2} \left(1 + \frac{1}{(1-\alpha)^2} \right)$.

α	$\frac{1}{2}(1+\frac{1}{1-\alpha})$	$\frac{1}{2}(1+\frac{1}{(1-\alpha)^2})$
50%	1.5	2.5
75%	2.5	8.5
90%	5.5	50.5

Problems with Closed Hashing

- Clustering: Long sequences of filled cells can slow down searching, insertion, and deletion.
- Lazy Deletion: A key is marked as deleted rather than removed to avoid breaking the probing sequence.