Transformers and BERT

A quick, semi-supervised tour

Before Transformers...

Recurrent Neural Networks

- Consider input in order → good idea for NLP
- Maintain some memory that gets updated at every time step
- Commonly encoder-decoder architectures

Static Word Embeddings

- Produce numerical representations of words that are meaningful
- Can be pre-trained, used for many tasks
- Word2vec, GLoVE

Weaknesses of Static Word Embeddings

Insurmountable weakness:

- Word meanings are the same in every context
 - We need a bat and ball to play.
 - The bat returned to its cave for the day
 - "Bat" has same representation!!!

Weaknesses of RNN's

- Slow to train → have to perform back-propagation through time
- Memory cell is constantly overwritten, makes it hard to learn long-term dependencies
 - "Sita asked Rukmini to make her some tea because <u>she</u> was cold."
 - Who does "she" refer to?

- Vanishing and exploding gradients make it very hard to train RNN's over many time-steps!!!
 - o 0.9**50 = 0.005153
 - 1.1**50 = 117.4

Attention

Main Idea: Word should be represented based on context

Mechanism: At every position, be able to directly access every position

Is Attention All You Need?

- We would like our model to have access to the other words in a sentence when building the representation of some word
- Previously we achieved this by having the recurrent connections.
- This meant we had to backprop through <u>time</u>
 - Typical sequence length = 128, 512, 1024, etc.

Attention Is All You Need

hiddens 1 hiddens 2 hiddens 3 hiddens 4 hiddens 3 hiddens 4

Backprop happens in opposite direction from arrows

RNN

word 3

word 2

word 1

Transformer

Transformer removes connections within a layer, gets context information from previous layer

word 4

- Makes training much easier, because we backprop through <u>layers</u> <u>instead of time</u>
 - Typical # of layers: 5-50 (compared to sequence length >= 512)

Transformers

- Original paper: "Attention Is All You Need"
 - Main idea: we can throw out recurrent connections and just use attention
- Overcome RNN Weaknesses:
 - Train faster: no more recurrent connections
 - Train more easily: skip connections
- Overcome word2vec Weaknesses:
 - Words embeddings are now contextual!!!!

Attention in Transformers

Transformer

Encoder Cross Attention

Decoder Self Attention

Contextual Word Embeddings

- Transformers build a representation of a word that is sensitive to surrounding context!!!!
- E.g. "You need a bat and ball to play" → meaning of bat should be closer to ball than cave

BERT Is A Transformer Encoder Only!

- Original Transformer: Encoder-Decoder (RIGHT)
 - Separate networks for building representations and generating response
- BERT: Encoder only (LEFT)
 - Single network for building representations
 - Bi-directional!

Masked Language Modeling

- Original Transformer was trained to predict next word → could not capture left AND right context
- BERT's training task was masked language modeling → predicting the missing word in a sentence

Residual Connections

- Residual (or skip) connections are extremely popular in deep neural networks today
- Each layer adds information to input instead of generating from scratch
 - Stabilizes training
 - Allows gradients to flow more easily
- Input size = Output size!
 - Enables modularity and deep stacking

Pre-trained Language Models

- BERT is an example of transfer learning → train model on GIANT dataset, TRANSFER knowledge to many tasks
- Most useful representation of a word might be different based on your task, but pre-trained models are a great starting point for many, many tasks!!!

What Can I Use BERT For??

- Short answer = everything
 - But better at some things than others
- Best at:
 - Question Answering
 - Sentiment Analysis
 - Natural Language Understanding
 - Natural Language Inference
- Also good at:
 - o Translation, Generation
- Why? Bi-directional vs. Left-to-right
- But wait for GPT if you want to generate text!
 - o BERT specializes in <u>representing input</u>
- Where to start?
 - Pretrained models on Huggingface!!!

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Huggingface Demo!

HUGGING FACE

Possible Use Case

- Use semantic similarity and sentiment analysis to predict Apple stock price
- Step 1: Scrape web for each day's news as well as Apple's stock price
- Step 2: Use semantic similarity scores between prompts and articles to pick out news relevant to Apple
 - e.g. seed with phrases like "cell phone purchases", "holiday shopping numbers", etc.
- Step 3: Compute sentiment score
 - average, median, min, max?
- Create machine learning model to predict stock movement based on recent sentiment about company
 - Previous day, but maybe better as a moving average?

BERT4Rec

- BERT is a good architecture for modeling all kinds of sequences!
 - What will the next frame in a video be based on previous frames?
 - What will the next item purchased by a user be based on previous purchases?
- BERT4Rec → Instead of inputting a sequence of words, input a sequence of items
 - Discover complex patterns in the ordering of how users consume content, purchase goods, etc.
- What other types of sequences could be modelled in this way?

Thank you!

Tom Zollo

tpz2105@columbia.edu