群化函手とイコライザは交換しない

Q-rad.heart

2021年1月9日

以下モノイドはすべて可換であるとする。

定義 1

モノイド M に対して、 M^2 上の二項関係 R を以下で定める。

• $(a,b),(c,d)\in M^2$ に対して $(a,b)R(c,d)\Leftrightarrow \exists x\in M,\ a+d+x=b+c+x$

このとき、モノイド M^2 を関係 R で割った商集合はまたモノイドとなる。このモノイドを M^{gp} と表記し、M の群化という。また (a,b) の同値類を a-b と表記する。

補題 2

モノイド M の群化 M^{gp} は群である。

 $Proof.\ M^{gp}$ の任意の元は M の元 a,b によって a-b と表せる。このとき、b-a は a-b の逆元となって いる。

定義 3

モノイド M,N について、集合の射 $f\colon M\to N$ がモノイド準同型であるとは、以下の条件が成り立つことをいう。

- $a, b \in M$ について f(ab) = f(a)f(b)
- f(0) = 0

定義 4

モノイド M,N とモノイド準同型 $f,g:M\to N$ について、f と g とのイコライザとは、f(m)=g(m) が成り立つ $m\in M$ 全体のなす M の部分モノイドから M への包含射 $\operatorname{Eq}(f,g)$ のことをいう。

定義 5

モノイド M,N とモノイド準同型 $f:M\to N$ について、 $f^{gp}:M^{gp}\to N^{gp}$ が f の群化であるとは、以下の条件が成り立つことをいう。

• $m \in M$ について、 $f^{gp}(m-0) = n-0$

補題 6

モノイド M, N とモノイド準同型 $f: M \to N$ について、f の群化は存在してモノイド準同型となる。

 $Proof.\ a-b\in M^{gp}$ に対して f(a)-f(b) を充てる対応は well-defined であり、これは f の群化となり、モ

ノイド準同型となる。

ここで、「群化函手とイコライザが交換する」とは「任意のモノイド M,N とモノイド準同型 $f,g:M\to N$ について $\mathrm{Eq}(f,g)^{gp}\cong\mathrm{Eq}(f^{gp},g^{gp})$ 」という主張のことを指すものとする。

大定理

群化函手とイコライザは交換しない。

Proof. 整数全体に演算として加法を入れたモノイドを $\mathbb Z$ とおく。また、集合 $\{0,1\}$ 上に以下で定まる演算を定めたモノイドを $\mathbb B_+$ とよぶ。

- 0 + 0 = 0
- 0+1=1
- 1 + 0 = 1
- 1 + 1 = 1

整数 m と \mathbb{B}_+ の元 b の組 (m,b) 全体のなす集合上に以下で演算を入れたモノイドを $\mathbb{Z} \times \mathbb{B}_+$ とよぶ。

• (m,b) + (m',b') = (m+m',b+b')

ここで、集合の射 $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{B}_+$ を以下のように定める。

• 整数 m について f(m) = (m,0)

また、集合の射 $g: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z} \times \mathbb{B}_+$ を以下のように定める。

• 整数 m について f(m) = (m, 1)

このとき、 $\mathrm{Eq}(f,g)$ の定義域は $\{0\}$ であるため、 $\mathrm{Eq}(f,g)^{gp}$ の定義域も $\{0\}$ と同型である。

ここで、(m,1) は $(\mathbb{Z} \times \mathbb{B}_+)^{gp}$ においては (m,0) と等しい。実際、(m,1)+(0,1)=(m,0)+(0,1) が成り立つ。

従って $f^{gp}=g^{gp}$ が成り立つため、 $\operatorname{Eq}(f^{gp},g^{gp})$ の定義域は $\mathbb Z$ 全体となる。よって $\operatorname{Eq}(f,g)^{gp}\cong \operatorname{Eq}(f^{gp},g^{gp})$ は成り立たない。