Fonctions logarithmes

Pr. Latrach Abdelkbir

Exercice ©: extrait de rattrapage 2022

Soit f la fonction numérique définie sur $[0; +\infty[$ par $\{f(x) = x^4(lnx - 1)^2; x > 0\}$ et (C) sa courbe

représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$ (unité : 1cm).

- **1.**Calculer $\lim_{x \to +\infty} f(x)$ puis déterminer la branche infinie de (C) au voisinage de $+\infty$.
- **2. 4.** Montrer que f est continue à droite en 0.
 - **b.** Etudier la dérivabilité de f à droite en 0 puis interpréter le résultat géométriquement.
- **3. a.** Montrer que $f'(x) = 2x^3(lnx 1)(2lnx 1)$ pour tout x de l'intervalle]0; $+\infty[$.
 - **b.** Dresser le tableau de variations de f.
- **4. G.** Sachant que $f''(x) = 2x^2(6lnx 5)lnx$ pour tout x de l'intervalle]0; $+\infty[$, étudier le signe de f''(x) sur]0; $+\infty[$.
 - **b.** Déduire que la courbe (*C*) admet deux points d'inflexion dont on déterminera les abscisses.
- **5. a.** Construire (C) dans le repère $(0; \vec{i}, \vec{j})$ (on prend : $\sqrt{e} \approx 1.6$ et $e^2 \approx 7.2$).
- **b.** En utilisant la courbe (C), déterminer le nombre de solutions de l'équation $x^2(lnx-1)=-1$.
- **6.** Soit la fonction g définie sur IR par g(x) = f(|x|).
 - \mathbf{q} . Montrer que la fonction g est paire.
 - **b.** Construire (C_g) la courbe représentative de g dans le même repère $(0; \vec{\imath}, \vec{\jmath})$.

Exercice 2: extrait de session normale 2021

Soit f la fonction numérique définie sur $[0; +\infty[$ par $\{f(x) = 2xlnx - 2x; x > 0\}$ et (C) sa courbe

représentative dans un repère orthonormé $(0; \vec{\imath}, \vec{j})$ (unité : 1cm).

- **1.** Montrer que f est continue à droite au point 0.
- **2. a.** Calculer $\lim_{x \to +\infty} f(x)$.
 - **b.** Calculer $\lim_{x \to +\infty} \frac{f(x)}{x}$ puis interpréter géométriquement le résultat.
- **3. a.** Calculer $\lim_{x\to 0^+} \frac{f(x)}{x}$ et interpréter géométriquement le résultat.
 - **b.** Calculer f'(x) pour tout x de $]0; +\infty[$.
 - **c.** Dresser le tableau de variations de la fonction f sur $[0; +\infty[$.
- **4. a.** Résoudre dans l'intervalle $]0; +\infty[$ les équations f(x) = 0 et f(x) = x.
- **b.** Construire la courbe (C) dans le repère $(0; \vec{i}, \vec{j})$ (on prend : $e^{\frac{3}{2}} \approx 4.5$).
- **5. a.** Déterminer le minimum de f sur $]0; +\infty[$.

- **b.** En déduire que pour tout x de $]0; +\infty[$, $\ln x \ge \frac{x-1}{x}$.
- **6.** Soit g la restriction de la fonction f à l'intervalle $[1; +\infty[$.
- **G.** Montrer que la fonction g admet une fonction réciproque g^{-1} définie sur un intervalle J qu'on déterminera.
- **b.** Construire dans le même repère $(0; \vec{i}, \vec{j})$ la courbe représentative de la fonction g^{-1} .
- **7.** On considère h la fonction numérique définie sur IR par $\begin{cases} h(x) = x^3 + 3x; \ x \le 0 \\ h(x) = 2xlnx 2x; x > 0 \end{cases}$
- **G.** Etudier la continuité de *h* au point 0.
- **b.** Etudier la dérivabilité de la fonction h à gauche au point 0 puis interpréter graphiquement le résultat.
- \bullet La fonction h est -elle dérivable au point 0? justifier.

Exercice 3: extrait de session normale 2020

On considère la fonction g définie sur]0, + ∞ [par : $g(x) = 2\sqrt{x} - 2 - \ln x$.

- **1. G.** Montrer pour tout x de $]0, +\infty[$, que $g'(x) = \frac{\sqrt{x}-1}{x}$.
 - **b.** Montrer que g est strictement croissante sur $[1, +\infty[$.
 - **c.** En déduire pour tout x de [1, +∞[que $0 \le lnx \le 2\sqrt{x}$. (Remarquer que $2\sqrt{x} 2 \le 2\sqrt{x}$)
- **d.** Montrer pour tout x de $[1, +\infty[$ que $0 \le \frac{(\ln x)^3}{x^2} \le \frac{8}{\sqrt{x}}$.

Puis déduire $\lim_{x \to +\infty} \frac{(\ln x)^3}{x^2}$.

2. Montrer que la fonction $G: x \mapsto x \left(-1 + \frac{4}{3}\sqrt{x} - \ln x\right)$ est une fonction primitive de g sur $]0, +\infty[$.

Exercice @: extrait de session normale 2019

Première partie :

Soit f la fonction numérique définie sur]0; $+\infty[$ par : $f(x) = x + \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^2$ et (C) sa courbe représentative dans un repère orthonormé $(O; \vec{\imath}, \vec{j})$ (unité : 1cm).

- **1.** Calculer $\lim_{x\to 0^+} f(x)$ et interpréter géométriquement le résultat.
- **2. a.** Vérifier que pour tout x de]0; $+\infty[$, $f(x) = x + \frac{1}{2} + \left(\frac{1}{2}lnx 1\right)lnx$.
- **b.** En déduire que $\lim_{x \to +\infty} f(x) = +\infty$.
- **c.** Montrer que pour tout x de]0; $+\infty[$,

 $\frac{(\ln x)^2}{x} = 4\left(\frac{\ln\sqrt{x}}{\sqrt{x}}\right)^2$ puis en déduire que $\lim_{x \to +\infty} \frac{(\ln x)^2}{x} = 0$.

- **d.** Montrer que (C) admet au voisinage de $+\infty$ une branche parabolique de direction asymptotique la droite (Δ) d'équation y = x.
- **3. a.** Vérifier que pour tout x de $]0;1]:(x-1)+lnx \le 0$ et que pour tout x de $[1;+\infty[:(x-1)+lnx \ge 0.$
- **b.** Montrer que pour tout x de $]0; +\infty[$,

$$f'(x) = \frac{x - 1 + \ln x}{x}$$

- \bullet . Dresser le tableau de variations de la fonction f.
- **4. a.** Montrer que $f''(x) = \frac{2 \ln x}{x^2}$ pour tout x de $[0; +\infty[$.
- **b.** En déduire que (*C*) admet un point d'inflexion dont on déterminera les coordonnées.
- **5. a.** Montrer que pour tout x de $]0; +\infty[$, $f(x) x = \frac{1}{2}(\ln x 1)^2$ et déduire la position relative de (C) et (Δ) .
- **b.** Construire (Δ) et (C) et dans le même repère ($O; \vec{i}, \vec{j}$).

Deuxième partie:

Soit (u_n) la suite numérique définie par : $u_0 = 1$ et $u_{n+1} = f(u_n)$ pour tout entier naturel n.

- **1. a.** Montrer par recurrence que $1 \le u_n \le e$ pour tout n de \mathbb{N} .
- **b.** Montrer que la suite (u_n) est croissante.
- **c.** En déduire que la suite (u_n) est convergente.
- **2.** Calculer la limite de la suite (u_n) .

Exercice ©: extrait de session normale 2017

- I. Soit g la fonction définie sur l'intervalle]0; $+\infty$ [par : $g(x) = x^2 + x 2 + 2lnx$.
- **1.** Vérifier que : g(1) = 0.
- **2.** A partire du tableau de variations de la fonctions de la fonction *g* cicontre :

Montrer que $g(x) \le 0$ pour tout x appartenant à l'intervalle]0; 1] et que $g(x) \ge 0$ pour tout x appartenant à l'intervalle $[1; +\infty[$.

II. On considère f la fonction définie sur l'intervalle $]0; +\infty[$ par $: g(x) = x + \left(1 - \frac{2}{x}\right) lnx.$

Soit (C) la courbe représentative de la fonction f dans un repère orthonormé ($O; \vec{\imath}, \vec{\jmath}$) (unité : 1cm).

- **1.** Montrer que : $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty$ et interpréter géométriquement le résultat.
- **2. 6.** Montrer que $\lim_{x \to +\infty} f(x) = +\infty$.
 - **b.** Montrer que la courbe (C) admet au voisinage de $+\infty$ une branche parabolique de direction asymptotique celle de la droite (D) d'équation y = x.
- **3. a.** Montrer: $f'(x) = \frac{g(x)}{x^2}$ pour tout x appartenant à l'intervalle $]0; +\infty[$.
 - **b.** Monter que f est décroissante sur l'intervalle [0; 1] et coissante sur l'intervalle $[1; +\infty[$.
 - **c.** Dresser la tableau de variations de la fonction f sur l'intervalle $[0; +\infty[$.
- **4. a.** Résoudre dans lintervalle]0; $+\infty$ [l'équation : $\left(1 \frac{2}{x}\right) lnx = 0$.
 - **b.** En déduire que la courbe (*C*) coupe la droite (*D*) en deux points dont on déterminera les coordonnées.
 - C. Montrer que $f(x) \le x$ pour tout x appartenant à l'intervalle [1; 2] et on déduire la position relative de la courbe (C) et la droite (D) sur l'intervalle [1; 2].

- **5.** Construire, dans le meme repère $(0; \vec{\imath}, \vec{\jmath})$, la droite (D) et la courbe (c) (on admettera que la courbe (C) possède un seul point d'inlexion dont l'abscisse est comprise entre 2.4 et 2.5).
- III. On considère la suite numérique (u_n) définie par $u_0 = \sqrt{3}$ et $u_{n+1} = f(u_n)$ pour tout entier naturel n.
- **1.** Montrer par recurrence que : $1 \le u_n \le 2$ pour tout entier naturel n.
- **2.** Montrer que la suite (u_n) est décroissante (on poura utiliser le résultat de la question II.4.c.).
- **3.** En déduire que la suite (u_n) est convergente et déterminer sa limite.

Exercice ©: extrait de rattrapage 2018

Première partie :

On considère la fonction g définie sur $]0, +\infty[$ par : $g(x) = x^3 - 1 - 2(\ln x)^2 + 2\ln x.$

- 1. Vérifier que g(1) = 0.
- **2.** Ci-contre le tableau de variations de g:
 Déterminer le signe de g(x) sur]0,1] et $[1, +\infty[$.

x	O	+-00	
g'(x)	=	+	
g(x)		∞ <i>></i>	+∞

Deuxième partie :

Soit la fonction f définie sur $]0, +\infty[$ par :

$$f(x) = x - \frac{1}{2} + \frac{1}{2x^2} + \left(\frac{\ln x}{x}\right)^2$$
 et soit (C_f) sa représentation graphique sur le repère $(0, \vec{i}, \vec{j})$.

- **1.** Calculer $\lim_{x \to +\infty} f(x)$.
- **2.** Montrer que la droite d'équation (D): $y = x \frac{1}{2}$ est une asymptote oblique de (C_f) au voisinage de $+\infty$.
- **3.** Étudier la position relative de (C_f) et (D).
- **4.** Montrer que $(\forall x \in]0, +\infty[)$: $f'(x) = \frac{g(x)}{x^3}$, puis donner le tableau des variations de f sur $]0, +\infty[$.
- **5.** Représenter (C_f) sur le repère $(0, \vec{1}, \vec{j})$.

Troisième partie :

On considère la fonction h qui définie sur]0, $+\infty$ [par : h(x) = f(x) - x.

- **1.** Vérifier que h(1) = 0.
- 2. Ci-contre la courbe représentative de la fonction h.Déterminer le signe de h puis déduire que :

 $(\forall x \in [1, +\infty[), f(x) \le x.$

- **3.** Soit (u_n) la suite numérique définie sur \mathbb{N} par : $u_0 = e$ et $u_{n+1} = f(u_n)$ pour tout entier naturel n.
- **a.** Montrer que $(\forall n \in \mathbb{N})$; $1 \le u_n \le e$.
- **b.** Montrer que (u_n) est décroissante .(utiliser la question 2 troisième partie)
- **4.** En déduire que la suite (u_n) est convergente et déterminer sa limite.