ST521, Assignment 2 Due Thursday, February 22

- 1. A die is rolled repeatedly. Which of the following are Markov chains? Give reasons for your answer if it is not and give the probability transition matrix if it is.
 - (a) The largest number X_n appearing up to the n^{th} role.
 - (b) The number X_n of sixes in n rolls.
 - (c) At time n, the time X_n since the most recent six.
 - (d) At time n, the time X_n until the next six.
- 2. The random variables Y_1, Y_2, \cdots are independent and have the common probability mass function

Set $X_0 = 0$ and $X_n = \max\{Y_1, \dots, Y_n\}$ be the largest Y observed up to time n. Determine the probability transition matrix for the Markov chain X_n

3. A Markov chain X_n with states $\{0,1,2\}$ has transition probability matrix

$$P = \begin{pmatrix} .7 & .2 & .1 \\ 0 & .6 & .4 \\ .5 & 0 & .5 \end{pmatrix}.$$

Determine the conditional probabilities $P({X_3 = 1 | X_0 = 0})$ and $P({X_4 = 1 | X_0 = 0})$.

- 4. Let X_n be a Markov chain with state space S and suppose that $h: S \to T$ is a one-to-one function. Show that $Y_n = h(X_n)$ defines a Markov chain with state space T. Does this necessarily work if h is not one-to-one?
- 5. Let X be a Markov chain. Which of the following are Markov chains?
 - (a) X_{m+j} for some $j \geq 0$.
 - (b) X_{2m} .
- 6. Let X_n be a Markov chain. Show that for 1 < j < n,

$$P(\{X_j = k | X_i = x_i, i = 1, 2, \dots, j - 1, j + 1, \dots, n\})$$

= $P(\{X_j = k | X_{j-1} = x_{j-1}, X_{j+1} = x_{j+1}\})$

1