

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) An e	ectro-optical device, comprising:
a plurality of scanning lines	
a plurality of data lines;	
a plurality of electro-optical	elements; and
a plurality of pixel circuits t	o drive the plurality of electro-optical elements,
each of the plurality of pixel circuits having	g a first transistor and a storage capacitor to store a
data signal supplied via a data line among t	he plurality of data lines and the first transistor,
a plurality of pixels, each of	the plurality of pixels having an electro-optical
element, brightness of each of the electro-o	ptical elements being set for each of a plurality of
sub-frames based on the data signal stored	in the storage capacitor, which constitute one
frame of a period and each have a predeter	mined period, so that at least two levels of
brightness can be set for one frame; and	
a sub-frame having a longes	t period among the plurality of sub-frames being
divided into at least two allocated sub-fram	es, and at least a sub-frame among the plurality of
sub-frames having a period shorter than the	allocated sub-frames being disposed between the
at least two allocated sub-frames	
the plurality of sub-frames,	which are set for a series of electro-optical
elements among the plurality of electro-opt	ical elements, the series of electro-optical elements
being connected to at least two scanning lin	nes, end substantially simultaneously.

(Currently Amended) The electro-optical device according to Claim 1,
 a sum of the period of the at least two allocated sub-frames being set to 2ⁿ
 times as long as a sub-frame having a shortest period among n (n denotes a natural number)

sub-frames of the plurality of sub-frames, wherein n is a number of sub-frames excluding the at least two allocated sub-frames.

- 3. (Previously Presented) The electro-optical device according to Claim 2, a sub-frame having a longest period among the plurality of sub-frames, excluding the at least two allocated sub-frames, being half as long as the sub-frame having the longest period among the plurality of sub-frames.
- 4. (Previously Presented) The electro-optical device according to Claim 1, the two allocated sub-frames not being arranged consecutively in one frame of a period.

5.	(Currently Amended) An electro-optical device, comprising:
	a plurality of scanning lines;
	a plurality of data lines;
	a plurality of electro-optical elements; and
	a plurality of pixel circuits to drive the plurality of electro-optical elements,
each of the	plurality of pixel circuits having a first transistor and a storage capacitor to store a
data signal s	supplied via a data line among the plurality of data lines and the first transistor,
	a plurality of pixels, each of the plurality of pixels having an electro-optical
element, bri	ghtness of the electro-optical element being set for each of a plurality of sub-
frames base	d on the data signal stored in the storage capacitor, which constitute one frame of
a period and	l each have a predetermined period, so that at least two levels of brightness can be
set for one f	frame, and lengths of the plurality of sub-frames excluding a sub-frame having a

the sub-frame having the longest period among the plurality of sub-frames being divided into at least two allocated sub-frames, and at least a sub-frame among the

longest period being set to a period in binary weighted; and

plurality of su	ib frames having a period shorter than the allocated sub-frames being disposed
between the a	at least two allocated sub-frames
	the plurality of sub-frames, which are set for a series of electro-optical
elements amo	ong the plurality of electro-optical elements, the series of electro-optical elements
being connect	ted to at least two scanning lines, end substantially simultaneously.
6.	(Previously Presented) The electro-optical device according to Claim 5,
	the two allocated sub-frames not being arranged consecutively in one frame of
a period.	
7.	(Currently Amended) An electro-optical device, comprising:
	a plurality of scanning lines;
	a plurality of data lines;
	a plurality of electro-optical elements; and
	a plurality of pixel circuits to drive the plurality of electro-optical elements,
each of the pl	urality of pixel circuits having a first transistor and a storage capacitor to store a
<u>data signal su</u>	pplied via a data line among the plurality of data lines and the first transistor,
	a plurality of pixels, each of the plurality of pixels having an electro-optical
element, brigl	htness of the electro-optical element being set for each of a plurality of sub-
frames, which	n constitute one frame of a period and each have a predetermined period,
	a sub-frame having a longest period among the plurality of sub-frames being
divided into a	it least two allocated sub-frames, and at least a sub-frame among the plurality of
sub-frames ha	aving a period-shorter than the allocated sub-frames, being disposed between the
at least two al	llocated sub-frames, and
	a sub-frame having a longest period among n (n denotes a natural number)

-4-

sub-frames of the plurality of sub-frames, excluding the at least two allocated sub-frames,

being set to 2	"times as long as a sub-frame having a shortest period among the n sub-
frames, and	
	brightness for the one frame can be set to 2 ⁿ⁺¹ levels, and
	the plurality of sub-frames, which are set for a series of electro-optical
elements amo	ong the plurality of electro-optical elements, the series of electro-optical elements
being connect	ted to at least two scanning lines, end substantially simultaneously.
8.	(Previously Presented) The electro-optical device according to Claim 7,
	the two allocated sub-frames not being arranged consecutively in one frame of
a period.	
9-10.	(Canceled)
11.	(Currently Amended) An electro-optical device, comprising:
	a plurality of scanning lines;
	a plurality of data lines;
	a plurality of electro-optical elements; and
	a plurality of pixel circuits to drive the plurality of electro-optical elements,
each of the pl	urality of pixel circuits having a first transistor and a storage capacitor to store a
data signal su	pplied via a data line among the plurality of data lines and the first transistor,
	a plurality of pixels, each of the plurality of pixels having an electro-optical
element, brigl	ntness of the electro-optical element being set for each of a plurality of sub-
frames, which	n constitute one frame of a period and each have a predetermined period, so that
at least 2 ⁿ (n	denotes a natural number) levels of brightness can be set for one frame,
	a number of the plurality of sub-frames being $n + 1$ or more, and
	a sub-frame having a longest period among the plurality of sub-frames being
divided into a	at least two allocated sub-frames, and at least a sub-frame among the plurality of

sub-frames having a period shorter than the allocated sub-frames being disposed between the		
at least two allocated sub-frames		
the plurality of sub-frames, which are set for a series of electro-optical		
elements among the plurality of electro-optical elements, the series of electro-optical elements		
being connected to at least two scanning lines, end substantially simultaneously.		
12. (Previously Presented) The electro-optical device according to Claim 11, a		
sub-frame having a longest period among the plurality of sub-frames, excluding the at least		
two allocated sub-frames, being 2 ⁿ⁻¹ times as long as a sub-frame having a shortest period.		
13. (Currently Amended) An electro-optical device, which is capable of setting at		
least two levels of brightness for one frame, the electro-optical device comprising:		
a plurality of scanning lines;		
a plurality of data lines;		
a plurality of electro-optical elements; and		
a plurality of pixel circuits to drive the plurality of electro-optical elements,		
each of the plurality of pixel circuits having a first transistor and a storage capacitor to store a		
data signal supplied via a data line among the plurality of data lines and the first transistor,		
electro-optical elements that are controlled to take either an ON state or an		
OFF state based on gray scale data for each of a plurality of sub-frames, which constitute one		
frame of a period and each have a predetermined period, and at least two of the plurality of		
sub-frames being controlled to always concurrently take either the ON state or the OFF state;		
and and		
a sub-frame having a longest period among the plurality of sub-frames being		
divided into at least two allocated sub-frames, and at least a sub-frame among the plurality of		
sub-frames having a period shorter than the allocated sub-frames being disposed between the		
at least two allocated sub-frames		

the plurality of sub-frames, which are set for a series of electro-optical elements among the plurality of electro-optical elements, the series of electro-optical elements being connected to at least two scanning lines, end substantially simultaneously.

- 14. (Previously Presented) The electro-optical device according to Claim 13, the at least two allocated sub-frames having the same period of length.
- 15. (Previously Presented) The electro-optical device according to Claim 13, the at least two allocated sub-frames not being arranged consecutively in one frame of a period.
 - 16-19. (Canceled)
- 20. (Currently Amended) The electro-optical device according to <u>Claim 19 Claim</u>

 1, the <u>current driven element electro-optical elements</u> being an EL element.
- 21. (Original) The electro-optical device according to Claim 20, the EL element having a light-emitting layer formed of an organic material.
- 22. (Currently Amended) A method of driving an electro-optical device that includes a plurality of scanning lines; a plurality of data lines; a plurality of electro-optical elements; and a plurality of pixel circuits to drive the plurality of electro-optical elements, each of the plurality of pixel circuits having a first transistor and a storage capacitor to store a data signal supplied via a data line among the plurality of data lines and the first transistor—a plurality of pixels, each of the plurality of pixels having an electro-optical element, the method comprising:

setting brightness of the electro-optical element for each of a plurality of subframes based on the data signal stored in the storage capacitor, which constitute one frame of period and each have a predetermined period, so that at least two levels of brightness can be set for one frame, frames into at least two allocated sub-frames, and

disposing at least a sub-frame among the plurality of sub-frames having a

period shorter than the allocated sub-frames between the at least two allocated sub-frames

setting a plurality of sub-frames, which are set for a series of electro-optical

elements among the plurality of electro-optical elements, the series of electro-optical elements

being connected to at least two scanning lines, end substantially simultaneously.

23. (Currently Amended) A method of driving an electro-optical device that includes a plurality of scanning lines; a plurality of data lines; a plurality of electro-optical elements; and a plurality of pixel circuits to drive the plurality of electro-optical elements, each of the plurality of pixel circuits having a first transistor and a storage capacitor to store a data signal supplied via a data line among the plurality of data lines and the first transistor-a plurality of pixels, each of the plurality of pixels having an electro-optical element, the method comprising:

setting brightness of the electro-optical elements for each of a plurality of sub-frames based on the data signal stored in the storage capacitor, which constitute one frame of period and each have a predetermined period, so that at least two levels of brightness can be set for one frame, lengths of the plurality of sub-frames excluding a sub-frame having a longest period being set in binary load,

dividing the sub-frame having the longest period among the plurality of subframes into at least two allocated sub-frames, and

disposing at least a sub-frame among the plurality of sub-frames having a period shorter than the allocated sub-frames between the at least two allocated sub-frames

setting a plurality of sub-frames, which are set for a series of electro-optical elements among the plurality of electro-optical elements, the series of electro-optical elements being connected to at least two scanning lines ending substantially simultaneously.

24. (Currently Amended) A method of driving an electro-optical device that includes a plurality of scanning lines; a plurality of data lines; a plurality of electro-optical elements; and a plurality of pixel circuits to drive the plurality of electro-optical elements, each of the plurality of pixel circuits having a first transistor and a storage capacitor to store a data signal supplied via a data line among the plurality of data lines and the first transistor—a plurality of pixels, each of the plurality of pixels having an electro-optical element, the method comprising:

setting brightness of the electro-optical elements for each of a plurality of subframes based on the data signal stored in the storage capacitor, which constitute one frame of period and each have a predetermined period,

dividing a sub-frame having a longest period among the plurality of sub-frames into at least two allocated sub-frames,

disposing at least a sub-frame among the plurality of sub-frames having a period shorter than the allocated sub-frames between the at least two allocated sub-frames,

setting a sub-frame having a longest period among n (n denotes a natural number) sub-frames of the plurality of sub-frames, excluding the at least two allocated sub-frames, to 2^{n-1} times as long as a sub-frame having a shortest period of the n sub-frames, and setting brightness for one frame to 2^{n+1} levels, and

setting a plurality of sub-frames, which are set for a series of electro-optical elements among the plurality of electro-optical elements, the series of electro-optical elements being connected to at least two scanning lines, end substantially simultaneously.

25. (Canceled)

26. (Currently Amended) A method of driving an electro-optical device that includes a plurality of scanning lines; a plurality of data lines; a plurality of electro-optical elements; and a plurality of pixel circuits to drive the plurality of electro-optical elements, each of the plurality of pixel circuits having a first transistor and a storage capacitor to store a data signal supplied via a data line among the plurality of data lines and the first transistor-a plurality of pixels, each of the plurality of pixels having an electro-optical element, the method comprising:

setting brightness of the electro-optical element for each of a plurality of sub-frames based on the data signal stored in the storage capacitor, which constitute one frame of a period and each have a predetermined period, so that at least 2^n (n denotes a natural number) levels of brightness are set for one frame with the number of the plurality of sub-frames being n+1 or more,

dividing a sub-frame having a longest period among the plurality of sub-frames into at least two allocated sub-frames,

— disposing at least a sub-frame among the plurality of sub-frames having a period shorter than the allocated sub-frames between the at least two allocated sub-frames,

always concurrently putting the at least two allocated sub-frames into a set state or a non-set state, and

setting brightness for one frame to 2ⁿ levels, and

setting a plurality of sub-frames, which are set for a series of electro-optical elements among the plurality of electro-optical elements, the series of electro-optical elements being connected to at least two scanning lines, end substantially simultaneously.

27-29. (Canceled)

30. (Original) An electronic apparatus, comprising: the electro-optical device according to Claim 1.