Growth Models

Jesse Perla

University of British Columbia

1 Quick Review from General Equilibrium

- Homogeneous Functions/CRS (Inputs x, y)
 - If a function F(x, y) has:

$$F(\gamma x, \gamma y) = \gamma \cdot F(x, y) \tag{1}$$

it is called <u>constant returns to scale</u> or homogeneous of degree 1.

• We can also get from CRS:

Also be the "competitive factor payments"

$$F(x,y) = \underbrace{\underbrace{x}_{\text{quantity } x} \underbrace{\partial_x F(x,y)}_{\text{marginal product of } x} + \underbrace{y}_{\text{quantity } y} \underbrace{\partial_y F(x,y)}_{\text{marginal product of } y}$$
(2)

$$CRS \Rightarrow \begin{cases} \boldsymbol{\partial}_x F(\gamma x, \gamma y) = \boldsymbol{\partial}_x F(x, y) \\ \boldsymbol{\partial}_y F(\gamma x, \gamma y) = \boldsymbol{\partial}_y F(x, y) \end{cases} \text{(homogeneous of degree 0)}$$
(3)

- Define $f\left(\frac{x}{y}\right) \equiv F\left(\frac{x}{y}, 1\right) \Rightarrow F(x, y) = y f\left(\frac{x}{y}\right)$, i.e. let $\gamma = \frac{1}{y}$
 - Then from (3)

$$\partial_x F = f'\left(\frac{x}{y}\right) \tag{4}$$

- And we can also show that

$$\partial_y F = f\left(\frac{x}{y}\right) - f'\left(\frac{x}{y}\right)\left(\frac{x}{y}\right) \tag{5}$$

We will use these to express everything in the capital-labor ratio with CRS.

2 Solow Growth Model

- Setup:
 - Let N_t be <u>exogenous</u>: $N_{t+1} = (1+g)N_t$, N_0 given and g a constant population growth rate.
 - Other factor of production is capital, not land.

$$\underbrace{K_{t+1}}_{\substack{\text{Next} \\ \text{periods} \\ \text{capital}}} = \underbrace{(1-\delta)}_{\substack{\text{of capital}}} K_t + \underbrace{X_t}_{\substack{\text{investment} \\ \text{in new} \\ \text{capital}}}, \delta \in (0,1)$$

$$(6)$$

- <u>Production</u>:
 - We have:

$$Y_t = zF(K_t, N_t) \text{ with C.R.S}$$
(7)

which can be used for consumption or for capital.

- And:

$$C_t + X_t = zF(K_t, N_t) (8)$$

which is the resource constraint for economy.

- Define the capital-labor ratio:

$$k_t \equiv \frac{K_t}{N_t} \tag{9}$$

- And investment per capital:

$$x_t \equiv \frac{X_t}{N_t} \tag{10}$$

- Consumption/capital:

$$c_t \equiv \frac{C_t}{N_t} \tag{11}$$

• Converting equations, divide (6) by N_t :

$$\frac{K_{t+1}}{N_t} = (1 - \delta) \frac{K_t}{N_t} + \frac{X_t}{N_t}, \text{ or:}$$
 (12)

$$\frac{N_{t+1}}{N_{t+1}} \frac{K_{t+1}}{N_t} = \left(\frac{N_{t+1}}{N_t}\right) \left(\frac{K_{t+1}}{N_{t+1}}\right) = (1-\delta) \frac{K_t}{N_t} + \frac{X_t}{N_t}, \text{ where } N_{t+1} \text{ is the growth of population}$$

$$\tag{13}$$

 $\Rightarrow \boxed{k_{t+1}(1+g) = (1-\delta)k_t + x_t}$ (14)

- Next, <u>assume</u> (not based on optimization!):
 - Agents save fraction $s \in (0,1)$ of output. i.e. by economy resource constraint.

$$C_t = (1 - s)zF(K_t, N_t) \tag{15}$$

$$\Rightarrow$$
 dividing by N_t , $c_t = (1 - s)zF(k_t)$ (16)

- Plug into equation (14):

$$k_{t+1} = \frac{(1-\delta)k_t}{1+g} + \frac{sz}{1+g}f(k_t)$$
(17)

- This is a non-linear difference equation in k_t
- Find a steady state solution:

$$\bar{k} = \frac{1-\delta}{1+q}\bar{k} + \frac{sz}{1+q}f(\bar{k}) \tag{18}$$

$$\Rightarrow \left(\frac{1+g}{1+q} - \frac{1-\delta}{1+q}\right)\bar{k} = \frac{sz}{1+q}f(\bar{k}) \tag{19}$$

$$\Rightarrow \boxed{(g+\delta)\bar{k} = szf(\bar{k})} \tag{20}$$

- Use to understand effect on \bar{k} of:
 - increase in z
 - increase in s
 - increase in q

3 Neoclassical growth

• Setup:

Figure 1: Convergence in a Solow Growth Model

- Solow took savings rate, s, as constant
- Instead, make it choice of a representative consumer
- First solve planner's problem, then competition equilibrium.

• Technology:

- -Y = F(K, N) with CRS.
- Let $k \equiv \frac{K}{N}$ then per capita like in Solow
- Let $f(k) \equiv F(k, 1)$, then Nf(k) = F(K, N) from CRS:

$$c_t + \underbrace{x_t}_{\equiv k_{t+1} - (1-\delta)k_t} = f(k_t) \tag{21}$$

or,

$$\underbrace{c_t + k_{t+1}}_{\text{consume of capital next period}} = \underbrace{f(k_t)}_{\text{production}} + \underbrace{\underbrace{(1 - \delta)k_t}}_{\text{last period's capital, depreciated}}_{\text{determinent depreciated}}$$
 i.e., the gross output per capital

(22)

$$\Leftrightarrow C_t + K_{t+1} = F(K_t, N_t) + (1 - \delta)K_t \tag{23}$$

where $c_t = \frac{C_t}{N}$, replace K_{t+1} as k_{t+1} , $f(k) = \frac{1}{N}F(K, N)$

- Note: we are leaving out a possible irreversibility constraint on capital.
 - * If you don't want the consumer to be able to "eat" their machines, then don't

let capital contract more than the depreciation rate.

$$x_t \ge 0 \tag{24}$$

or,

$$K_{t+1} \ge (1 - \delta)K_t \tag{25}$$

• Preferences:

$$u(c)$$
 (no disutility of labor) (26)

where u'(c) > 0, u''(c) < 0, $u'(0) = \infty$

Welfare:

$$\sum_{t=0}^{T} \beta^{t} u(c_{t}), \text{ where } T \leq \infty$$
(27)

• Planning Problem:

$$\max_{c_t, k_{t+1}} \sum_{t=0}^{T} \beta^t u(c_t) \tag{28}$$

s.t.
$$c_t + k_{t+1} = f(k_t) + (1 - \delta)k_t$$
, where k_0 was given (29)

Transversality or
$$k_{T+1} \ge 0$$
 (30)

- Lagrangian (without transversality):

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^t \left(u(c_t) + \lambda_t \left(f(k_t) + (1 - \delta) k_t - c_t - k_{t+1} \right) \right)$$
 (31)

- FONC:

$$[c_t]: u'(c_t) - \lambda_t = 0 \tag{32}$$

$$[k_{t+1}]: -\lambda_t + \beta \lambda_{t+1} \left[f'(k_{t+1}) + (1-\delta) \right] = 0 \text{ for } t = 0, \dots, T-1$$
 (33)

$$[k_{T+1}]: -\beta^T \lambda_T \le 0, = 0 \text{ if } k_{T+1} > 0$$
 (34)

Or if
$$T = \infty$$
, $\lim_{T \to \infty} \beta^T \lambda_T k_{T+1} = 0$ (35)

• Summary of Equations:

- Equations in c_t , λ_t , k_t given k_0 :

$$u'(c_t) = \lambda_t$$

$$\lambda_t = \beta \lambda_{t+1} \left[f'(k_{t+1}) + (1 - \delta) \right]$$

$$k_{t+1} + c_t = f(k_t) + (1 - \delta)k_t$$
(36)
(37)

$$\lambda_t = \beta \lambda_{t+1} \left[f'(k_{t+1}) + (1 - \delta) \right]$$
 (37)

$$k_{t+1} + c_t = f(k_t) + (1 - \delta)k_t \tag{38}$$

- (36) shows the interpretation of the present-value Lagrange multiplier λ_t as the marginal utility of consumption on relaxing the resource constraint
- Assume $T = \infty$, look for steady state:

$$\lambda_t = \bar{\lambda} \tag{39}$$

$$c_t = \bar{c} \tag{40}$$

$$k_t = \bar{k} \tag{41}$$

- Also:

$$1 + \underbrace{\rho}_{\text{discount}} \equiv \frac{1}{\beta} = f'(\bar{k}) + (1 - \delta) \tag{42}$$

Or:
$$f'(\bar{k}) = \rho + \delta$$
 (Modified golden rule!) (43)

- Note: \bar{k} is independent of preference except β . Then:

$$\bar{k} + \bar{c} = f(\bar{k}) + (1 - \delta)\bar{k} \Rightarrow \boxed{\bar{c} = f(\bar{k}) - \delta\bar{k}}$$
 (44)

- Dynamics: Shooting Method:
 - Finite horizon: $k_{T+1} = 0$
 - Equations:

$$u'(c_t) = \lambda_t \tag{45}$$

$$\lambda_t = \beta \lambda_{t+1} \left[f'(k_{t+1}) + (1 - \delta) \right]$$
 (46)

$$k_{t+1} + c_t = f(k_t) + (1 - \delta)k_t \tag{47}$$

- Boundaries: k_0 given, $k_{T+1} = 0$ if $T < \infty$.
- Shooting method:
 - * Guess λ_0
 - * Use (45) to get c_0

- * Use (47) to get k_1 since k_0 given
- * Use (46) to get λ_1
- * Use (45) to get c_1
- * keep repeating until k_{T+1} calculated
- * Check that $k_{T+1} \approx 0$
- * If not, change λ_0 and repeat If $k_{T+1}>0$, "eat more" by lowering λ_0

Figure 2: Shooting Method

- If infinite horizon, know that $k_t \to k_\infty$, where $f'(k_\infty) = \rho + \delta$
- Can try to "shoot" at $k_{\infty} = k_{T+1}$ for very large T
- "Turnpike" Theorem For large T, will spend more of the time near k_{∞}

Figure 3: Turnpike Theorem, with large T

4 Decentralization with a Competitive Equilibrium

4.1 Basic setup

- Take the same technology $F(K_t, N_t)$
- Add in potential for endogenous labor supply N_t
- Formulate with large number of households, firms.
- Price system: $\{q_t, \tilde{w}_t, \tilde{r}_t\}_{t=0}^{\infty}$ at date 0 (i.e. time 0 budget), where q_t is the price of good, \tilde{w}_t is wage and \tilde{r}_t is the capital rental.

4.2 Households

- Owns labor, capital. Rent both to firms.
- Purchases goods for consumption or capital investment.
- Include disutility of labor in utility: u(c, n)
- Solve problem:

$$\max_{\{c_t, n_t, k_{t+1}\}} \sum_{t=0}^{\infty} \beta^t u(c_t, n_t)$$
(48)

s.t.
$$\sum_{t=0}^{\infty} \underbrace{q_t}_{\substack{\text{Price of homogeneous good at } t \\ \text{in time } 0}} \left(c_t + \underbrace{k_{t+1} - (1-\delta)k_t}_{\equiv x_t, \text{ net saving}} \right) \leq \sum_{t=0}^{\infty} (\underbrace{\tilde{w}_t}_{\substack{\text{wages} \\ \text{on labor supplied}}}_{\substack{\text{rents} \\ \text{from capital} \\ \text{supplied}}} k_t)$$
 (49)

$$0 \le n_t \tag{50}$$

$$n_t \le 1$$
 1 unit of time endowment (51)

• Lagrangian:

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^t \left[u(c_t, n_t) + \lambda_t (1 - n_t) + \phi_t n_t \right]$$
(52)

$$+ \mu \left[\sum_{t=0}^{\infty} (\tilde{w}_t n_t + \tilde{r}_t k_t) - \sum_{t=0}^{\infty} q_t \left(c_t + k_{t+1} - (1 - \delta) k_t \right) \right]$$
 (53)

where λ_t is LM on $n_t \leq 1$, ϕ_t is LM on $n_t \geq 0$ and μ is LM on time 0 budget.

• FONC:

$$[c_t]: \beta^t \partial_c u(c_t, n_t) - \mu q_t = 0 \tag{54}$$

$$[n_t]: \beta^t \left(\partial_n u(c_t, n_t) + \phi_t - \lambda_t\right) + \mu \tilde{w}_t = 0$$
(55)

$$[k_{t+1}]: r_{t+1} + q_{t+1}(1-\delta) - q_t = 0$$
(56)

Complimentary slackness conditions:
$$\begin{cases} \lambda_t (1 - n_t) = 0 \\ \phi_t n_t = 0 \end{cases}$$
 (57)

Note: (57) can also be written as:

$$-\beta^{t} \boldsymbol{\partial}_{n} u(c_{t}, n_{t}) \begin{cases} = \mu \tilde{w}_{t} & \text{if } 0 < n_{t} < 1 \\ > \mu \tilde{w}_{t} & \text{if } n_{t} = 1 \\ < \mu \tilde{w}_{t} & \text{if } n_{t} = 0 \end{cases}$$

$$(58)$$

• Summarizing Equations for $\{c_t, k_t, n_t\}$ in terms of $\{q_t, \tilde{r}_t, \tilde{w}_t\}$:

$$q_t = q_{t+1}(1-\delta) + r_{t+1} \tag{59}$$

$$\mu q_t = \beta^t \partial_c u(c_t, n_t) \tag{60}$$

$$-\beta^{t} \boldsymbol{\partial}_{n} u(c_{t}, n_{t}) \begin{cases} = \mu \tilde{w}_{t} & \text{if } 0 < n_{t} < 1 \\ > \mu \tilde{w}_{t} & \text{if } n_{t} = 1 \\ < \mu \tilde{w}_{t} & \text{if } n_{t} = 0 \end{cases}$$

$$(61)$$

Combining (60) and (61) with interior solutions gives us the same as our labor supply decision in the static general equilibrium,

$$\frac{-\boldsymbol{\partial}_n u(c_t, n_t)}{\boldsymbol{\partial}_c u(c_t, n_t)} = \frac{\tilde{w}_t}{q_t} \equiv w_t \tag{62}$$

For now, assume that the agent gains no utility from leisure, so:

$$u(c,n) = u(c) \Rightarrow \partial_n u = 0 \Rightarrow n_t = 1$$
 (63)

i.e. Inelastic supply of all labor

4.3 Firms (Price taker)

• Face prices : $\{q_t, \tilde{w}_t, \tilde{r}_t\}$, choose inputs for production.

• Solve Problem:

$$\max_{K_t, N_t} \sum_{t=0}^{\infty} \left[\underbrace{q_t F(K_t, N_t)}_{\text{revenue}} \underbrace{-\tilde{r}_t K_t - \tilde{w}_t N_t}_{\text{input costs}} \right]$$
(64)

Use $F(K, N) = \partial_K F(K, N) K + \partial_N F(K, N) N$ with CRS:

$$= \max_{K_t, N_t} \sum_{t=0}^{\infty} \left[\left(q_t \boldsymbol{\partial}_K F(K_t, N_t) - \tilde{r}_t \right) K_t + \left(q_t \boldsymbol{\partial}_N F(K_t, N_t) - \tilde{w}_t \right) N_t \right]$$
 (65)

• Since CRS, we have a 0-profit condition as before. Necessary conditions:

$$q_t \partial_K F(K_t, N_t) = \tilde{r}_t \tag{66}$$

$$q_t \partial_N F(K_t, N_t) = \tilde{w}_t \tag{67}$$

Since CRS, use $F\left(\frac{K}{N},1\right)=f(k)$ for $k\equiv\frac{K}{N}$, and other expressions from this sections:

$$\partial_k F(K, N) = \partial_k F\left(\frac{K}{N}, 1\right) = f'(k)$$
 (68)

$$\partial_N F(K, N) = f(k) - kf'(k) \tag{69}$$

So:

$$\frac{\tilde{r}_t}{q_t} = f'(k_t) \tag{70}$$

$$\frac{\tilde{w}_t}{q_t} = f(k_t) - k_t f'(k_t) \tag{71}$$

So workers paid marginal products of inputs and firms of indeterminate size, but 0 profits.

4.4 Solve for Competitive Equilibrium

• Definition

A C.E. is a Price system $\{q_t.\tilde{w}_t, \tilde{r}_t\}_{t=0}^{\infty}$ and a Feasible allocation $\{k_{t+1}, c_t\}_{t=0}^{\infty}$, such that:

- Given price system, allocations solve firm problem.
- Given price system, allocations solve Households problem.
- Solving for the equilibrium:
 - Solve planning problems $\{c_t, k_{t+1}\}$

- Guess $\mu = 1$ (indeterminate), plug in with c_t :

$$q_t = \beta^t u'(c_t)$$
 (from consumer's problem) (72)

$$\tilde{r}_t = q_t f'(k_t) \text{ (from firm's problem)}$$
 (73)

$$\tilde{w}_t = q_t \left(f(k_t) - k_t f'(k_t) \right) \text{ (from firm's problem)}$$
 (74)

Verify that this price system and allocations fulfills all of the conditions of the
 Firm and HH problems (Budget constraints, etc).

• Conclusion:

- For this economy, the planning problem and the competitive equilibrium have the same allocations.
- The prices decentralize the planning problem.

A Malthusian Growth Model

• Setup:

$$Y_t = zF(\underbrace{L_t}, \underbrace{N_t}_{\text{Labor}})$$
 where F is CRS (e.g. food products) (A.1)

- Let $L_t = L$ be fixed, i.e. can't create land.
- Let $C_t = Y_t$, consume all productions.
- Also assume all population, N_t , works.

• Population grows:

- Based on output (i.e. food) supply.

$$N_{t+1} = N_t G\left(\frac{C_t/N_t}{c^*}\right) \tag{A.2}$$

where $G(\cdot)$ is growth function, c^* is a constant. And $c_t \equiv C_t/N_t$ is consumption per capita.

- And growth factor: G(1) = 1, G' > 0, G'' < 0
- Example Growth Factor: $G(\frac{c_t}{c^*}) = \left(\frac{c_t}{c^*}\right)^{\gamma}$ for $\gamma \in (0,1)$

Figure 4: Malthusian Growth Model

• Interpretation

$$\frac{N_{t+1}}{N_t} = \left(\frac{c_t}{c^*}\right)^{\gamma} \tag{A.3}$$

So we have:

$$\begin{cases} c_t > c^* & \Rightarrow \frac{N_{t+1}}{N_t} > 1 \quad \text{, population grows} \\ c_t < c^* & \Rightarrow \frac{N_{t+1}}{N_t} < 1 \quad \text{, population shrinks} \end{cases}$$
(A.4)

so c^* is a subsistence level of consumption

• Production:

$$C_t = zF(L, N_t) (A.5)$$

$$\Rightarrow C_t = N_t z F\left(\frac{L}{N_t}, 1\right) \text{ by CRS}$$
 (A.6)

$$\Rightarrow c_t \equiv zF(\ell_t, 1) \text{ where } \ell_t \equiv \frac{L}{N_t} \text{ (land-per-capita)}$$
 (A.7)

For example, assume

$$F(\ell_t, 1) = \ell_t^{\alpha}, \ \alpha \in (0, 1) \tag{A.8}$$

• Equations

$$c_t = z\ell_t^{\alpha} \tag{A.9}$$

$$\frac{N_{t+1}}{N_t} = \left(\frac{c_t}{c^*}\right)^{\gamma} \tag{A.10}$$

• Substitute:

$$\frac{N_{t+1}}{N_t} = \left(\frac{z(\frac{L}{N_t})^{\alpha}}{c^*}\right)^{\gamma} = \frac{z^{\gamma}(\frac{L}{N_t})^{\alpha\gamma}}{(c^*)^{\gamma}} \tag{A.11}$$

$$\Rightarrow N_{t+1} = \left(\frac{z}{c^*}\right)^{\gamma} L^{\alpha\gamma} N_t^{1-\alpha\gamma}$$
(A.12)

• Steady State:

$$\bar{N} = \left(\frac{z}{c^*}\right)^{\gamma} L^{\alpha\gamma} \bar{N}^{1-\alpha\gamma} \tag{A.13}$$

$$\Rightarrow 1 = \left(\frac{z}{c^*}\right)^{\gamma} \left(\frac{L}{\bar{N}}\right)^{\alpha\gamma} \tag{A.14}$$

$$\Rightarrow \bar{N} = \frac{L}{\left(\frac{c^*}{z}\right)^{\frac{1}{\alpha}}} \tag{A.15}$$

Substitute (A.15) into (A.9) to show that $c_t = c^*$. So only equilibrium is one of subsistence per-capita consumption for all. $\uparrow z \Rightarrow \bar{N} \uparrow$ but $c = c^*$. Pessimistic comment on technological change?

• Dynamics

- Take logs of (1):

$$\log N_{t+1} = \underbrace{\gamma \left(\log z - \log c^* + \alpha \log L\right)}_{\phi_0} + \underbrace{\left(1 - \alpha \gamma\right)}_{\phi_1} \log N_t \tag{A.16}$$

- Or of form:

$$n_{t+1} = \phi_0 + \phi_1 n_t \text{ if } n_t \equiv \log N_t \tag{A.17}$$

- Can use our old toolset of linear difference equations:

$$x_t = \begin{pmatrix} 1 \\ n_t \end{pmatrix}, A = \begin{pmatrix} 1 & 0 \\ \phi_0 & \phi_1 \end{pmatrix}, \boxed{x_t = A^t x_0}$$
(A.18)