AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently Amended) A method of buffering InfiniBand queue
2	pairs in a single memory structure, comprising:
3	receiving an InfiniBand packet comprising a portion of a communication
4	to be transmitted on a non-InfiniBand communication link;
5	identifying a first queue pair to which the InfiniBand packet belongs;
6	identifying a first virtual lane to which said first queue pair belongs;
7	storing said portion of the communication in a first-bucket of a single
8	contiguous memory structure, wherein said single contiguous memory structure is
9	configured to dynamically store contents of InfiniBand packets received from
10	multiple queue pairs and virtual lanes; and
11	for each of the multiple queue pairs, including said first queue pair,
12	maintaining an associated linked list of buckets in said single contiguous memory
13	structure in which contents of InfiniBand packets belonging to the queue pair are
14	stored.
1	2. (Original) The method of claim 1, further comprising:
2	for each of the multiple queue pairs, maintaining:
3	a first pointer configured to identify the beginning of the associated
4	linked list; and
5	a second pointer configured to identify the end of the associated
6	linked list

1	3.	(Original) The method of claim 1, further comprising:
2	main	taining a control structure comprising an entry corresponding to each
3	bucket of sai	d single memory structure;
4	wher	ein each entry in said control structure that is a member of a linked
5	list associate	d with a queue pair is configured to identify a next control structure
6	entry and a r	ext single memory structure bucket in said linked list.
1	4.	(Original) The method of claim 3, further comprising:
2	upda	ting a first entry in said control structure to reflect said storage of said
3	portion of th	e communication.
1	5.	(Original) The method of claim 1, further comprising:
2	upda	ting an indicator configured to indicate a level of InfiniBand packets
3	stored in said	d single memory structure for said first queue pair.
1	6.	(Original) The method of claim 1, further comprising:
2	upda	ting an indicator configured to indicate a level of InfiniBand packets
3	stored in said	d single memory structure for said first virtual lane.
1	7.	(Original) The method of claim 1, further comprising, prior to said
2	storing:	
3	deter	mining whether sufficient space is available in said single memory
4	structure to s	store said portion of the communication.
1	8.	(Original) The method of claim 7, wherein said determining
2	whether suff	icient space is available comprises:
3	deter	mining an amount of space in said single memory structure used to
4	store portion	s of communications received via each queue pair belonging to said

5	first virtual lane, including said first queue pair; and	
6	comparing a sum of said determined amounts of space to an amount of	
7	space in said single memory structure allocated to said first virtual lane.	
1	9. (Original) The method of claim 7, wherein said determining	
2	whether sufficient space is available comprises:	
3	determining an amount of space in said single memory structure used to	
4	store portions of communications received via said first queue pair; and	
5	comparing said determined amount of space to an amount of space in said	
6	single memory structure dedicated to said first queue pair.	
1	10. (Original) The method of claim 9, wherein said determining	
2	whether sufficient space is available further comprises:	
3	if said determined amount of space exceeds said dedicated amount of	
4	space, determining whether a portion of said single memory structure used to store	
5	portions of communications received via multiple queue pairs has space available	
6	for storing said portion of the communication.	
1	11. (Original) The method of claim 7, wherein said determining	
2	whether sufficient space is available comprises:	
3	determining a number of buckets in said single memory structure used to	
4	store portions of communications received via said first queue pair; and	
5	comparing said number of buckets to a threshold number of buckets	
6	allocatable to said first queue pair.	

(Original) The method of claim 1, wherein said single memory

structure is a multi-port random access memory component.

1

2

12.

1	13. (Original) The method of claim 1, wherein said control structure is	
2	a multi-port random access memory component.	
1	14. (Currently Amended) A computer readable medium storing	
2	instructions that, when executed by a computer, cause the computer to perform a	
3	method of buffering InfiniBand queue pairs in a single memory structure, the	
4	method comprising:	
5	receiving an InfiniBand packet comprising a portion of a communication	
6	to be transmitted on a non-InfiniBand communication link;	
7	identifying a first queue pair to which the InfiniBand packet belongs;	
8	identifying a-first virtual lane to which said first queue pair belongs;	
9	storing said portion of the communication in a first bucket of a single	
10	contiguous memory structure, wherein said single contiguous memory structure is	
11	configured to store contents of InfiniBand packets received from multiple queue	
12	pairs and virtual lanes; and	
13	for each of the multiple queue pairs, including said first queue pair,	
14	maintaining an associated linked list of buckets in said single contiguous memory	
15	structure in which contents of InfiniBand packets belonging to the queue pair are	
16	stored.	
1	15. (Original) The computer readable medium of claim 14, the method	
2	further comprising:	

list associated with a queue pair is configured to identify the next control structure

maintaining a control structure comprising an entry corresponding to each

wherein each entry in said control structure that is a member of a linked

entry and next single memory structure bucket in said linked list.

bucket of said single memory structure;

3

4

5

6

1	16. (Original) The computer readable medium of claim 14, the method		
2	further comprising:		
3	updating an indicator configured to indicate a level of InfiniBand packets		
4	stored in said single memory structure for said first queue pair; and		
5	updating an indicator configured to indicate a level of InfiniBand packets		
6	stored in said single memory structure for said first virtual lane.		
1	17. (Currently Amended) In a communication device coupled to an		
2	InfiniBand network, a method of sharing one memory structure among multiple		
3	queue pairs and virtual lanes, the method comprising:		
4	receiving packets for each of multiple queue pairs terminating at the		
5	communication device; and		
6	for each of said queue pairs:		
7	reassembling in a shared single contiguous memory contents of		
8	said packets into communications to be transmitted to an external		
9	communication system, wherein said single contiguous memory is shared		
10	by multiple queue pairs and virtual lanes;		
11	maintaining an associated linked list identifying locations in said		
12	shared memory in which said communications are reassembled; and		
13	tracking the amount of said shared memory being used to store contents of		
14	packets received via said queue pair.		
1	18. (Original) The method of claim 17, further comprising:		
2	for each of one or more virtual lanes, tracking the amount of said shared		
3	memory being used to store contents of packets received via said virtual lane.		
1	19. (Original) The method of claim 17, wherein said reassembling		
2	comprises:		

3	as said packets are received from the InfiniBand network, queuing said	
4	contents directly into said shared memory;	
5	wherein said shared memory serves as receive queues for each of said	
6	multiple queue pairs.	
7		
1	20. (Original) The method of claim 17, wherein said received packets	
2	comprise portions of encapsulated Ethernet packets.	
1	21. (Original) The method of claim 17, wherein said maintaining an	
2	associated linked list for a first queue pair comprises:	
3	maintaining a head pointer configured to identify:	
4	a first location in said shared memory in which contents of a first	
5	packet are stored; and	
6	a first entry in a shared control structure, said first entry	
7	corresponding to said first location in said shared memory; and	
8	maintaining a tail pointer configured to identify:	
9	a final location in said shared memory in which contents of a final	
10	packet are stored; and	
11	a final entry in said shared control structure;	
12	wherein each entry in said shared control structure that is part of said first	
13	linked list, except for said final entry, identifies a subsequent entry in said shared	
14	control structure and identifies a location in said shared memory corresponding	
15	said subsequent entry.	
1	22. (Original) The method of claim 17, further comprising:	
2	managing said linked lists for said queue pairs with a shared control;	
3	wherein each said location in said shared memory corresponds to an entry	
4	in said shared control; and	

3	wherein each entry in said shared control is configured to identify:
6	a subsequent entry within the same linked list as said entry; and
7	a location in said shared memory corresponding to said subsequent entry.
1	23. (Currently Amended) A computer readable medium storing
2	instructions that, when executed by a computer, cause the computer to
3	perform a method of sharing one memory structure among multiple queue
4	pairs and virtual lanes, the method comprising:
5	receiving packets for each of multiple queue pairs terminating at the
6	communication device; and
7	for each of said queue pairs:
8	reassembling in a shared single contiguous memory contents of
9	said packets into communications to be transmitted to an external
10	communication system, wherein said single contiguous memory is shared
11	by multiple queue pairs and virtual lanes;
12	maintaining an associated linked list identifying locations in said
13	shared memory in which said communications are reassembled; and
14	tracking the amount of said shared memory being used to store contents of
15	packets received via said queue pair.
1	24. (Original) The computer readable medium of claim 23, the method
2	further comprising:
3	for each of one or more virtual lanes, tracking the amount of said shared
4	memory being used to store contents of packets received via said virtual lane.
1	25. (Original) The computer readable medium of claim 23, wherein
2	said reassembling comprises:
3	as said packets are received from the InfiniBand network, queuing said

4	contents directly into said shared memory;
5	wherein said shared memory serves as receive queues for each of said
6	multiple queue pairs.
1	26. (Original) The computer readable medium of claim 23, the method
2	further comprising:
3	managing said linked lists for said queue pairs with a shared control;
4	wherein each said location in said shared memory corresponds to an entry
5	in said shared control; and
6	wherein each entry in said shared control is configured to identify:
7	a subsequent entry within the same linked list as said entry; and
8	a location in said shared memory corresponding to said subsequent entry.
1	27. (Currently Amended) A method of storing a communication
2	received from an InfiniBand network, the method comprising:
3	receiving a set of InfiniBand packets from an InfiniBand network, each
4	said InfiniBand packet comprising a portion of a communication;
5	storing said communication portions in a single contiguous memory
6	shared among multiple queue pairs and virtual lanes of the InfiniBand network,
7	including a first queue pair through which said set of InfiniBand packets is
8	received; and
9	maintaining a first linked list for said first queue pair to identify locations
10	in said memory in which said communication portions are stored.

29. (Original) The method of claim 27, wherein said maintaining a first

(Original) The method of claim 27, wherein said storing comprises

reassembling said communication portions into said communication.

28.

1

2

2	linked list comprises:	
3	in a control structure, maintaining a first linked list of control entries,	
4	wherein each of said control entries except a final control entry identifies:	
5	a subsequent control entry; and	
6	corresponding to said subsequent control entry, a location in said memory	
7	in which data received through said first queue pair are stored.	
1	30. (Original) The method of claim 29, wherein said maintaining	
2	further comprises:	
3	maintaining a head pointer identifying a first control entry in said first	
4	linked list and a first location in said memory; and	
5	maintaining a tail pointer identifying said final control entry in said first	
6	linked list and a final location in said memory.	
1	31. (Currently Amended) A computer readable medium storing	
2	instructions that, when executed by a computer, cause the computer to perform a	
3	method of storing a communication received from an InfiniBand network, the	
4	method comprising:	
5	receiving a set of InfiniBand packets from an InfiniBand network, each	
6	said InfiniBand packet comprising a portion of a communication;	
7	storing said communication portions in a single contiguous memory	
8	shared among multiple queue pairs and virtual lanes of the InfiniBand network,	
9	including a first queue pair through which said set of InfiniBand packets is	
10	received; and	
11	maintaining a first linked list for said first queue pair to identify locations	
12	in said single contiguous memory in which said communication portions are	
13	stored	

1	32. (Currently Amended) The computer readable medium of claim 31	
2	wherein said maintaining a first linked list comprises:	
3	in a control structure, maintaining a first linked list of control entries,	
4	wherein each of said control entries except a final control entry identifies:	
5	a subsequent control entry; and	
6	corresponding to said subsequent control entry, a location in said memory	
7	in which data received through said first queue pair are stored.	
1	33. (Currently Amended) An apparatus for storing contents of	
2	InfiniBand packets of one or more communication streams, comprising:	
3	a receive module configured to receive InfiniBand packets from one or	
4	more communication streams;	
5	a single <u>contiguous</u> memory structure <u>shared by multiple communication</u>	
6	streams, wherein for each of the one or more communication streams, buckets of	
7	said single contiguous memory structure in which contents of packets of the	
8	communication stream are stored are linked via a linked list associated with the	
9	communication stream; and	
10	a control structure configured to facilitate management of said linked list.	
1	34. (Original) The apparatus of claim 33, wherein:	
2	said control structure comprises an entry corresponding to each bucket of	
3	said single memory structure; and	
4	each said entry in said control structure is configured to identify a next	
5	entry in said control structure and a corresponding next bucket in said single	
6	memory structure.	
1	35. (Original) The apparatus of claim 33, wherein each of said linked	

lists comprises:

4	packets of the communication stream are stored; and
5	for each said bucket in said single memory structure, a corresponding entry
6	in said control structure.
1	36. (Original) The apparatus of claim 35, further comprising:
2	for each linked list associated with a communication stream:
3	a first pointer identifying the beginning of said linked list; and
4	a second pointer identifying the end of said linked list.
1	37. (Original) The apparatus of claim 33, wherein said single memory
2	structure is a multi-port random access memory component.
3	
4	38. (Original) The apparatus of claim 33, wherein said control
5	structure is a multi-port random access memory component.
1	39. (Original) The apparatus of claim 33, wherein said control
2	structure is configured to enable the one or more communication streams to make
3	full use of said single memory structure.
1	40. (Original) The apparatus of claim 33, wherein the communication
2	streams are virtual lanes.
1	41. (Original) The apparatus of claim 33, wherein the communication
2	streams are queue pairs.

the buckets of said single memory structure in which said contents of