Summit Semiconductor LLC

Summit FS848 Master Module (Wheeler)

Report No. FOCU0081.3

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2010 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: July 21, 2010 Summit Semiconductor LLC

Model: Summit FS848 Master Module (Wheeler)

Emissions				
Test Description	Specification	Test Method	Pass/Fail	
Emission Bandwidth	FCC 15.407:2010	ANSI C63.10:2009	Pass	
Peak Power Spectral Density	FCC 15.407:2010	ANSI C63.10:2009	Pass	
Peak Excursion	FCC 15.407:2010	ANSI C63.10:2009	Pass	
Peak Transmit Power	FCC 15.407:2010	ANSI C63.10:2009	Pass	
Frequency Stability	FCC 15.407:2010	ANSI C63.10:2009	Pass	
AC Powerline Conducted Emissions	FCC 15.207:2010	ANSI C63.10:2009	Pass	
Spurious Radiated Emissions	FCC 15.407:2010	ANSI C63.10:2009	Pass	
Spurious Radiated Emissions	FCC 15.209:2010	ANSI C63.10:2009	Pass	

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-1).

Approved By:

Don Facteau, IS Manager

NVLAP

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 06/29/09

Revision Description		Date	Page Number
00	None		

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

NVLAP LAB CODE 200629-0 NVLAP LAB CODE 200630-0 NVLAP LAB CODE 200676-0 NVLAP LAB CODE 200761-0 NVLAP LAB CODE 200881-0

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NEMKO

Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Accreditations and Authorizations

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-1784, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Northwest EMC Locations

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Rev 11/17/06

Party Requesting the Test

Company Name:	Summit Semiconductor LLC
Address:	22867 NW Bennett St, Suite 200
City, State, Zip:	Hillsboro, OR 97124
Test Requested By:	Alex Macdonald
Model:	Summit FS848 Master Module (Wheeler)
First Date of Test:	July 14, 2010
Last Date of Test:	July 21, 2010
Receipt Date of Samples:	July 14, 2010
Equipment Design Stage:	Preproduction
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

I	Functional Description of the EUT (Equipment Under Test):
	UNII radio module

Testing Objective:

Seeking limited modular approval of the master under FCC 15.407 for operation in the 5.2, 5.3, and 5.6 GHz bands

CONFIGURATION 1 FOCU0081

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Summit FS848 Master Module (Wheeler)	Summit Semiconductor LLC	444-2203	0265		
Antenna	Aeon Technologies	C6276-510004A	None		

Peripherals in test setup boundary						
Description Manufacturer Model/Part Number Serial Nur						
Power Supply - I/O Board Summit Semiconductor LLC		Redmond	Linear			
AC Adapter	Cincon Electronics	TR20B120X 01E03	20120-0007356			

Remote Equipment Outside of Test Setup Boundary				
Description Manufacturer Model/Part Number Serial Number				
Remote PC	Compaq	NX9500	CNF4520HP6	

Cables	Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
DC Lead	PA	1.8m	PA	AC Adapter	Power Supply - I/O Board	
AC Power	No	1.8m	No	AC Mains	AC Adapter	
USB - Serial	Yes	1.9m	No	Summit FS848 Master Module (Wheeler)	Remote PC	
Antenna Cable	Yes	0.1m	No	Summit FS848 Master Module (Wheeler)	Antenna	
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.						

CONFIGURATION 2 FOCU0081

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Summit FS848 Master Module (Wheeler)	Summit Semiconductor LLC	444-2203	A146		

Peripherals in test setup boundary						
Description Manufacturer Model/Part Number Serial Number						
Power Supply - I/O Board Summit Semiconductor LLC		Redmond	18			
AC Adapter	PHIHONG	PSS45W-120	0706			

Remote Equipment Outside of Test Setup Boundary				
Description Manufacturer Model/Part Number Serial Number				
Remote PC	Dell	Inspiron 6000	IS386	

Cables	Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
DC Lead	PA	1.8m	PA	AC Adapter	Power Supply - I/O Board	
AC Power	No	1.8m	No	AC Mains	AC Adapter	
USB - Serial	Yes	1.9m	No	Summit FS848 Master Module (Wheeler)	Remote PC	
Audio	Yes	1.8m	No	Remote PC	Summit FS848 Master Module (Wheeler)	
Trigger	Yes	1.1m	No	Summit FS848 Master Module (Wheeler)	Measurement analyzer	
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.						

CONFIGURATION 3 FOCU0081

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
Summit FS848 Master Module (Wheeler)	Summit Semiconductor LLC	444-2203	A146	

Peripherals in test setup boundary						
Description Manufacturer Model/Part Number Serial Number						
Power Supply - I/O Board	Summit Semiconductor LLC	Redmond	AC			

Remote Equipment Outside of Test Setup Boundary					
Description Manufacturer Model/Part Number Serial Number					
DC Power Supply (Test Equipment) Tektronix PS280 TPM					

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Lead (4x)	No	2.0m	No	DC Power Supply (Test Equipment)	Power Supply - I/O Board
AC Power	No	1.8m	No	AC Mains	DC Power Supply
USB - Serial	Yes	1.9m	No	Summit FS848 Master Module (Wheeler)	Remote PC
PA = 1	Cable is per	manently attac	hed to the	device. Shielding and/or presence of ferrite	e may be unknown.

CONFIGURATION 4 FOCU0081

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Summit FS848 Master Module	Summit	444-2203	0265			
(Wheeler) Antenna	Semiconductor LLC Aeon Technologies	C6276-510004A	None			

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
Power Supply - I/O Board	Summit Semiconductor LLC	Redmond	AC		

Remote Equipment Outside of Test Setup Boundary						
Description Manufacturer Model/Part Number Serial Number						
DC Power Supply (Test Equipment)	Tektronix	PS280	TPM			

Cables	Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
DC Lead (4x)	No	1.0m	No	DC Power Supply (Test Equipment)	Power Supply - I/O Board	
AC Power	No	1.8m	No	AC Mains	DC Power Supply	
USB - Serial	Yes	1.9m	No	Summit FS848 Master Module (Wheeler)	Remote PC	
Antenna Cable	Yes	0.1m	No	Summit FS848 Master Module (Wheeler)	Antenna	
PA = Ca	ble is pern	nanently attach	ed to the de	evice. Shielding and/or presence of ferrite	may be unknown.	

Revision 4/28/03

	Equipment modifications						
Item	Date	Test	Modification	Note	Disposition of EUT		
1	7/14/2010	Peak Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
2	7/14/2010	Emission Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
3	7/14/2010	Peak Transmit Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
4	7/15/2010	Peak Excursion	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
5	7/20/2010	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
6	7/20/2010	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
7	7/21/2010	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.		

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
Attenuator, 6 dB, 'SMA'	N/A	93459 3330A-6	AUF	4/1/2010	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
Pre-Amplifier (FOR REFERENCE ONLY)	Hewlett-Packard	83017A	APL	NCR	0
Signal Generator	Agilent	E8257D	TGX	12/10/2008	24

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

ANSI C63.10 was followed. The transmit frequency was set to the lowest, a medium, and the highest channels in each band. The transmit power was set to its default maximum. The lowest, a medium, and the highest data rates were measured if available. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

The spectrum analyzer settings were as follows:

- > Span = approximately 1.5 to 2 times the emission bandwidth, centered on the transmit channel.
- > RBW = Approx. 1% of the emission bandwidth (B). This was an iterative process where an exact match of 1% may not be achieved. The largest value of RBW that came close to 1% of the emission bandwidth was used.
- > A peak detector was used.

The marker-delta function was then used to measure 26 dB emission bandwidth

NORTHWEST					XMit 2010.01
EMC		EMISSION BAND	WIDTH		
	: Summit FS848 Master Module (Whee	ler)		Work Order: FOCU0	081
Serial Number	: A146			Date: 07/14/1	0
Customer	: Summit Semiconductor LLC			Temperature: 23°C	
	: Alex Macdonald			Humidity: 45%	
Project				Barometric Pres.: 30.16 in	1
	Rod Peloquin	Powe	er: 120VAC/60Hz	Job Site: EV06	
EST SPECIFICAT	FIONS		Test Method		
CC 15.407:2010			ANSI C63.10:2009		
OMMENTS					
ith External trigg	ger from EUT for 6 Mbps measurement	s.			
EVIATIONS EDO	M TECT CTANDARD				
	M TEST STANDARD				
o Deviations					
onfiguration #	2	Rolly be Feling			
omiguration #	2	Signature			
		Signature			
			Valu	e Limit	Result
02.11(a) 6 Mbps			Valu	Linit	Result
02.11(a) 0 Mbp3	5150 - 5250 MHz Band				
	Channel 36, Low Channel		17.850	MHz N/A	N/A
	Channel 48, High Channe		17.620		N/A
	5250 - 5350 MHz Band				
	Channel 52, Low Channel		18.260	MHz N/A	N/A
	Channel 64, High Channe	I	18.200 l	MHz N/A	N/A
	5470 - 5725 MHz Band				
	01 1400 1 01				
	Channel 100, Low Channel	el	18.717	ИНz N/A	N/A
	Channel 100, Low Channel Channel 116, Mid Channel		18.717 I 18.020 I		N/A N/A
		el		ИHz N/A	
02.11(a) 36 Mbps	Channel 116, Mid Channe Channel 140, High Chann	el	18.020 I	ИHz N/A	N/A
02.11(a) 36 Mbps	Channel 116, Mid Channe Channel 140, High Chann 5150 - 5250 MHz Band	al el	18.200 l 18.200 l	ЛНZ N/A ЛНZ N/A	N/A N/A
02.11(a) 36 Mbps	Channel 116, Mid Channe Channel 140, High Chann 5150 - 5250 MHz Band Channel 36, Low Channel	el	18.200 l 18.200 l 18.490 l	MHz N/A MHz N/A MHz N/A	N/A N/A
02.11(a) 36 Mbps	Channel 116, Mid Channe Channel 140, High Channel 5150 - 5250 MHz Band Channel 36, Low Channel Channel 48, High Channel	el	18.200 l 18.200 l	MHz N/A MHz N/A MHz N/A	N/A N/A
02.11(a) 36 Mbps	Channel 116, Mid Channe Channel 140, High Channel 5150 - 5250 MHz Band Channel 36, Low Channel Channel 48, High Channel 5250 - 5350 MHz Band	el I	18.200 l 18.200 l 18.490 l 18.200 l	MHz N/A MHz N/A MHz N/A MHz N/A	N/A N/A N/A N/A
02.11(a) 36 Mbps	Channel 116, Mid Channe Channel 140, High Channel 5150 - 5250 MHz Band Channel 36, Low Channel Channel 48, High Channel 5250 - 5350 MHz Band Channel 52, Low Channel	el el	18.200 l 18.200 l 18.490 l 18.200 l	MHz N/A MHz N/A MHz N/A MHz N/A MHz N/A MHz N/A	N/A N/A N/A N/A
02.11(a) 36 Mbps	Channel 116, Mid Channe Channel 140, High Channel 5150 - 5250 MHz Band Channel 36, Low Channel Channel 48, High Channel 5250 - 5350 MHz Band Channel 52, Low Channel Channel 64, High Channel	el el	18.200 l 18.200 l 18.490 l 18.200 l	MHz N/A MHz N/A MHz N/A MHz N/A MHz N/A MHz N/A	N/A N/A N/A N/A
02.11(a) 36 Mbps	Channel 116, Mid Channe Channel 140, High Channel 5150 - 5250 MHz Band Channel 36, Low Channel Channel 48, High Channel 5250 - 5350 MHz Band Channel 52, Low Channel Channel 64, High Channel 5470 - 5725 MHz Band	el 	18.200 l 18.200 l 18.490 l 18.200 l 18.670 l 18.020 l	MHz N/A	N/A N/A N/A N/A N/A
02.11(a) 36 Mbps	Channel 116, Mid Channe Channel 140, High Channel 5150 - 5250 MHz Band Channel 36, Low Channel Channel 48, High Channel 5250 - 5350 MHz Band Channel 52, Low Channel Channel 64, High Channel 5470 - 5725 MHz Band Channel 100, Low Channel	el 	18.200 l 18.200 l 18.490 l 18.200 l 18.670 l 18.020 l	MHz N/A MHz N/A MHz N/A MHz N/A MHz N/A MHz N/A MHz N/A MHz N/A	N/A N/A N/A N/A N/A N/A
02.11(a) 36 Mbps	Channel 116, Mid Channe Channel 140, High Channel 5150 - 5250 MHz Band Channel 36, Low Channel Channel 48, High Channel 5250 - 5350 MHz Band Channel 52, Low Channel Channel 64, High Channel 5470 - 5725 MHz Band	el el i i	18.200 l 18.200 l 18.490 l 18.200 l 18.670 l 18.020 l	MHz N/A MHz N/A MHz N/A MHz N/A MHz N/A MHz N/A MHz N/A MHz N/A MHz N/A	N/A N/A N/A N/A N/A

802.11(a) 6 Mbps, 5150 - 5250 MHz Band, Channel 36, Low Channel **Result:** N/A **Value:** 17.850 MHz **Limit:** N/A

802.11(a) 6 Mbps, 5150 - 5250 MHz Band, Channel 48, High Channel

Result: N/A

Value: 17.620 MHz

Limit: N/A

802.11(a) 6 Mbps, 5250 - 5350 MHz Band, Channel 52, Low Channel

Result: N/A

Value: 18.260 MHz

Limit: N/A

802.11(a) 6 Mbps, 5250 - 5350 MHz Band, Channel 64, High Channel

Result: N/A

Value: 18.200 MHz

Limit: N/A

802.11(a) 6 Mbps, 5470 - 5725 MHz Band, Channel 100, Low Channel

Result: N/A

Value: 18.717 MHz

Limit: N/A

802.11(a) 6 Mbps, 5470 - 5725 MHz Band, Channel 116, Mid Channel **Result:** N/A **Value:** 18.020 MHz **Limit:** N/A

802.11(a) 6 Mbps, 5470 - 5725 MHz Band, Channel 140, High Channel **Result:** N/A **Value:** 18.200 MHz **Limit:** N/A

802.11(a) 36 Mbps, 5150 - 5250 MHz Band, Channel 36, Low Channel

Result: N/A Value: 18.490 MHz Limit: N/A

802.11(a) 36 Mbps, 5150 - 5250 MHz Band, Channel 48, High Channel

Result: N/A

Value: 18.200 MHz

Limit: N/A

802.11(a) 36 Mbps, 5250 - 5350 MHz Band, Channel 52, Low Channel

Result: N/A Value: 18.670 MHz Limit: N/A

802.11(a) 36 Mbps, 5250 - 5350 MHz Band, Channel 64, High Channel Result: N/A Value: 18.020 MHz Limit: N/A

802.11(a) 36 Mbps, 5470 - 5725 MHz Band, Channel 100, Low Channel

Result: N/A

Value: 18.020 MHz

Limit: N/A

802.11(a) 36 Mbps, 5470 - 5725 MHz Band, Channel 116, Mid Channel

Result: N/A Value: 17.730 MHz Limit: N/A

802.11(a) 36 Mbps, 5470 - 5725 MHz Band, Channel 140, High Channel **Result:** N/A **Value:** 17.910 MHz **Limit:** N/A

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator, 6 dB, 'SMA'	N/A	93459 3330A-6	AUF	4/1/2010	13
Power Meter	Gigatronics	8651A	SPM	1/7/2010	13
Power Sensor	Gigatronics	80701A	SPL	1/7/2010	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	24

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

ANSI C63.10 was followed. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. The lowest data rate was measured as it provided the highest output power. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input. The amplitude accuracy of the spectrum analyzer was further enhanced by calibrating the setup using the power meter and synthesized signal generator.

Prior to measuring peak power spectral density, the transmission pulse duration (T) were measured. The transmission pulse duration and the associated data are found elsewhere in this test report.

Method #2 was used because while the pulse duration was short, an external trigger from the EUT was available for the 6 Mbps mode, which was the only mode tested due to having the highest output power of all modes.

The spectrum analyzer settings were as follows:

- The span was set to encompass entire emission bandwidth (B), centered on the transmit channel.
- > RBW = 1 MHz, VBW >= 3 MHz because the emission bandwidth (B) is greater than 1 MHz
- > Sample detector mode because the bin width (span / number of spectral points) < 0.5 RBW.
- Trace average 100 traces in power averaging mode (not video averaging).

The peak power spectral density (PPSD) was determined to be the highest level found across the emission in any 1 MHz band after 100 sweeps of power averaging (not video averaging).

NORTHWEST		EAK POWER S	DECTRALD	ENGITY		XMit 2010.0
EMC	Pi	EAR FOWER 3	PECINALD	ENSITI		
EUT	: Summit FS848 Master Module	(Wheeler)			Work Order: FOCU008	:1
Serial Number	r: A146	,			Date: 07/14/10	
Custome	: Summit Semiconductor LLC				Temperature: 23°C	
Attendees	: Alex Macdonald				Humidity: 45%	
	t: None				arometric Pres.: 30.16 in	
	/: Rod Peloquin		Power: 120VAC		Job Site: EV06	
EST SPECIFICA	TIONS		Test Me	thod		
CC 15.407:2010			ANSI C	63.10:2009		
OMMENTS						
xternal trigger fr	om EUT. 6 Mbps operation					
EVIATIONS FRO	OM TEST STANDARD					
	OM TEST STANDARD					
lo Deviations		201	Pl			
	OM TEST STANDARD	Roly le	Reling			
lo Deviations		Roley le Signature	- Roley			
o Deviations		Roby le Signature	- Polings	Value	Limit	Result
o Deviations onfiguration #		Roby le Signature	- Robert	Value	Limit	Result
o Deviations onfiguration #		Roby le Signature	- Relays	Value	Limit	Result
o Deviations	2	Signature	- Roley	Value 3.4 dBm	Limit 4 dBm	Result
o Deviations onfiguration #	2 5150 - 5250 MHz Band	Signature	- Roley			
o Deviations onfiguration #	2 5150 - 5250 MHz Band Channel 36, Low 0	Signature	- Roleys	3.4 dBm	4 dBm	Pass
o Deviations onfiguration #	2 5150 - 5250 MHz Band Channel 36, Low (Channel 48, High	Signature Channel Channel	- Roley S	3.4 dBm	4 dBm	Pass
Deviations	2 5150 - 5250 MHz Band Channel 36, Low 0 Channel 48, High 5250 - 5350 MHz Band	Signature Channel Channel Channel	- Roley	3.4 dBm 3.2 dBm	4 dBm 4 dBm	Pass Pass Pass
o Deviations onfiguration #	2 5150 - 5250 MHz Band Channel 36, Low 0 Channel 48, High 5250 - 5350 MHz Band Channel 52, Low 0	Signature Channel Channel Channel	- Roleys	3.4 dBm 3.2 dBm 3.1 dBm	4 dBm 4 dBm 11 dBm	Pass Pass
o Deviations onfiguration #	2 5150 - 5250 MHz Band Channel 36, Low 0 Channel 48, High 5250 - 5350 MHz Band Channel 52, Low 0 Channel 64, High	Signature Channel Channel Channel Channel	- Roley	3.4 dBm 3.2 dBm 3.1 dBm	4 dBm 4 dBm 11 dBm	Pass Pass Pass

6.0 dBm

11 dBm

Pass

Channel 140, High Channel

802.11(a) 6 Mbps, 5150 - 5250 MHz Band, Channel 36, Low Channel

Result: Pass Value: 3.4 dBm Limit: 4 dBm

802.11(a) 6 Mbps, 5150 - 5250 MHz Band, Channel 48, High Channel

Result: Pass Value: 3.2 dBm Limit: 4 dBm

802.11(a) 6 Mbps, 5250 - 5350 MHz Band, Channel 52, Low Channel

Result: Pass Value: 3.1 dBm Limit: 11 dBm

802.11(a) 6 Mbps, 5250 - 5350 MHz Band, Channel 64, High Channel

Result: Pass Value: 3.3 dBm Limit: 11 dBm

802.11(a) 6 Mbps, 5470 - 5725 MHz Band, Channel 100, Low Channel

Result: Pass Value: 3.5 dBm Limit: 11 dBm

802.11(a) 6 Mbps, 5470 - 5725 MHz Band, Channel 116, Mid Channel

Result: Pass Value: 5.1 dBm Limit: 11 dBm

802.11(a) 6 Mbps, 5470 - 5725 MHz Band, Channel 140, High Channel

Result: Pass Value: 6.0 dBm Limit: 11 dBm

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
Attenuator, 6 dB, 'SMA'	N/A	93459 3330A-6	AUF	4/1/2010	13
Power Meter	Gigatronics	8651A	SPM	1/7/2010	13
Power Sensor	Gigatronics	80701A	SPL	1/7/2010	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	24

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. The lowest, a medium, and the highest data rates were measured. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

The spectrum analyzer settings were as follows:

- > Span set to encompass the entire emission bandwidth (B), centered on the transmit channel.
- Using the marker delta function, the largest difference between the following two traces was measured:
 - o 1st Trace: RBW = 1 MHz, VBW >= 3 MHz with peak detector and max-hold settings.
 - o 2nd Trace: Use same settings as were used for peak conducted transmit power. The sample detector was used as well as the VBW being matched to that used on the peak conducted transmit power.

NORTHWEST EMC		PEAK EXCUR	RSION			XMit 2010.01.14
EUT: S	ummit FS848 Master Module (Whee	er)		Wor	k Order: FOCU008	1
Serial Number: A				Date: 07/15/10		
Customer: S	ummit Semiconductor LLC			Temp	perature: 23°C	
Attendees: A	lex Macdonald			H	lumidity: 45%	
Project: N	lone			Barometi	ric Pres.: 30.16 in	
Tested by: R		Po	wer: 120VAC/60Hz	•	Job Site: EV06	
TEST SPECIFICATION	NS		Test Method			
FCC 15.407:2010			ANSI C63.10:2009			
COMMENTS						
External trigger from	EUT.					
DEVIATIONS FROM 1	TEST STANDARD					
No Deviations						
Configuration #	2	Rolly le Rolly				
		Signature				
			Va	lue	Limit	Results
802.11(a) 6 Mbps			¥a	iuc	Liiiit	Results
5	150 - 5250 MHz Band					
	Channel 36, Low Channel		-0.9	0 dB	≤ 13 dB	Pass
	Channel 48, High Channel		-1.0	3 dB	≤ 13 dB	Pass
5	250 - 5350 MHz Band					
	Channel 52, Low Channel		-1.1	1 dB	≤ 13 dB	Pass
	Channel 64, High Channe		-1.0	9 db	≤ 13 dB	Pass
54	470 - 5725 MHz Band					
	Channel 100, Low Channel		-0.7	3 dB	≤ 13 dB	Pass
	Channel 116, Mid Channe		-0.7	1 dB	≤ 13 dB	Pass
	Channel 140, High Chann	el	-0.5	5 dB	≤ 13 dB	Pass
802.11(a) 36 Mbps						
5	150 - 5250 MHz Band					
	Channel 36, Low Channel			4 dB	≤ 13 dB	Pass
	Channel 48, High Channel		-0.6	4 dB	≤ 13 dB	Pass
5	250 - 5350 MHz Band					
	Channel 52, Low Channel			3 dB	≤ 13 dB	Pass
_	Channel 64, High Channel		-1.5	0 dB	≤ 13 dB	Pass
5	470 - 5725 MHz Band					
	Channel 100, Low Channel			6 dB	≤ 13 dB	Pass
	Channel 116, Mid Channe			0 dB	≤ 13 dB	Pass
	Channel 140, High Chann	el	-0.8	2 dB	≤ 13 dB	Pass

802.11(a) 6 Mbps, 5150 - 5250 MHz Band, Channel 36, Low Channel

Result: Pass Value: -0.90 dB Limit: ≤ 13 dB

802.11(a) 6 Mbps, 5150 - 5250 MHz Band, Channel 48, High Channel

Result: Pass Value: -1.03 dB Limit: ≤ 13 dB

802.11(a) 6 Mbps, 5250 - 5350 MHz Band, Channel 52, Low Channel

Result: Pass Value: -1.11 dB Limit: ≤ 13 dB

802.11(a) 6 Mbps, 5250 - 5350 MHz Band, Channel 64, High Channel

Result: Pass Value: -1.09 db Limit: ≤ 13 dB

802.11(a) 6 Mbps, 5470 - 5725 MHz Band, Channel 100, Low Channel

Result: Pass Value: -0.73 dB Limit: ≤ 13 dB

802.11(a) 6 Mbps, 5470 - 5725 MHz Band, Channel 116, Mid Channel

Result: Pass Value: -0.71 dB Limit: ≤ 13 dB

802.11(a) 6 Mbps, 5470 - 5725 MHz Band, Channel 140, High Channel

Result: Pass Value: -0.55 dB Limit: ≤ 13 dB

802.11(a) 36 Mbps, 5150 - 5250 MHz Band, Channel 36, Low Channel

Result: Pass Value: -1.24 dB Limit: ≤ 13 dB

802.11(a) 36 Mbps, 5150 - 5250 MHz Band, Channel 48, High Channel

Result: Pass Value: -0.64 dB Limit: ≤ 13 dB

802.11(a) 36 Mbps, 5250 - 5350 MHz Band, Channel 52, Low Channel

Result: Pass Value: -1.13 dB Limit: ≤ 13 dB

802.11(a) 36 Mbps, 5250 - 5350 MHz Band, Channel 64, High Channel

Result: Pass

Value: -1.50 dB

Limit: ≤ 13 dB

802.11(a) 36 Mbps, 5470 - 5725 MHz Band, Channel 100, Low Channel

Result: Pass Value: -0.76 dB Limit: ≤ 13 dB

802.11(a) 36 Mbps, 5470 - 5725 MHz Band, Channel 116, Mid Channel

Result: Pass

Value: -0.40 dB

Limit: ≤ 13 dB

802.11(a) 36 Mbps, 5470 - 5725 MHz Band, Channel 140, High Channel

Result: Pass Value: -0.82 dB Limit: ≤ 13 dB

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator, 6 dB, 'SMA'	N/A	93459 3330A-6	AUF	4/1/2010	13
e-Amplifier (FOR REFERENCE ONL	Hewlett-Packard	83017A	APL	NCR	0
Signal Generator	Agilent	E8257D	TGX	12/10/2008	24

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

ANSI C63.10 was followed. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input. The amplitude accuracy of the spectrum analyzer was further enhanced by calibrating the setup using the power meter and synthesized signal generator.

Prior to measuring peak transmit power; the emission bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Peak Transmit Power. The method of measuring the emission bandwidth and the associated data are found elsewhere in this test report. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

Method #3 was used because the analyzer sweep time was greater than T for the operating mode which has the shortest transmission pulse duration and the Emission Bandwidth was greater than the largest RBW on the analyzer.

An external trigger to the analyzer was used in conjunction with the sweep gating function to ensure the measurement was made only during the high time of the pulse duration.

The spectrum analyzer settings were as follows:

- > The span was set to encompass entire emission bandwidth (B), centered on the transmit channel.
- \rightarrow The RBW = 1 MHz. VBW > / = 1/T
- Sample detector mode because the bin width (span / number of spectral points) < 0.5 RBW.</p>
- ➤ Power was integrated across "B", by using the channel power function of the analyzer.

NORTHWEST		DEAL	TO A NOMET DOME	· D		XMit 2010.01.14
EMC		PEAK	TRANSMIT POWE	:K		
EUT	: Summit FS848 Master Modul	e (Wheeler)		V	ork Order: FOCU008	1
Serial Number	: A146				Date: 07/14/10	
	: Summit Semiconductor LLC			Te	mperature: 23°C	
	: Alex Macdonald				Humidity: 45%	
Project					etric Pres.: 30.16 in	
	: Rod Peloquin		Power: 120VAC/6		Job Site: EV06	
TEST SPECIFICAT	TIONS		Test Method			
FCC 15.407:2010			ANSI C63	.10:2009		
COMMENTS						
With External trigg	ger from EUT for 6 Mbps meas	urements.				
DEVIATIONS EDO	M TEST STANDARD					
No Deviations	MI TEST STANDARD					
			10120			
Configuration #	2	Signature	Rochy la Roley			
				Value	Limit	Results
802.11(a) 6 Mbps						11001110
(1)	5150 - 5250 MHz Band					
	Channel 36, Low	Channel		14.0 dBm	17 dBm	Pass
	Channel 48, High	Channel		13.6 dBm	17 dBm	Pass
	5250 - 5350 MHz Band					
	Channel 52, Low	Channel		13.5 dBm	24 dBm	Pass
	Channel 64, High	Channel		13.6 dBm	24 dBm	Pass
	5470 - 5725 MHz Band					
	Channel 100, Lov	v Channel		14.1 dBm	24 dBm	Pass
	Channel 116, Mid	d Channel		15.6 dBm	24 dBm	Pass
	Channel 140, Hig	h Channel		16.6 dBm	24 dBm	Pass
802.11(a) 36 Mbps						
	5150 - 5250 MHz Band					
	Channel 36, Low			13.6 dBm	17 dBm	Pass
	Channel 48, High	Channel		13.3 dBm	17 dBm	Pass
	5250 - 5350 MHz Band					_
	Channel 52, Low			13.4 dBm	24 dBm	Pass
	Channel 64, High	Channel		13.1 dBm	24 dBm	Pass
	5470 - 5725 MHz Band			10.0 ID	04 15	
	Channel 100, Lov			13.6 dBm	24 dBm	Pass
	Channel 116, Mic			14.9 dBm	24 dBm	Pass
	Channel 140, Hig	n Cnannel		16.4 dBm	24 dBm	Pass

802.11(a) 6 Mbps, 5150 - 5250 MHz Band, Channel 36, Low Channel

Result: Pass Value: 14.0 dBm Limit: 17 dBm

802.11(a) 6 Mbps, 5150 - 5250 MHz Band, Channel 48, High Channel

Result: Pass

Value: 13.6 dBm

Limit: 17 dBm

Result:

PEAK TRANSMIT POWER

802.11(a) 6 Mbps, 5250 - 5350 MHz Band, Channel 52, Low Channel

Result: Pass Value: 13.5 dBm Limit: 24 dBm

802.11(a) 6 Mbps, 5250 - 5350 MHz Band, Channel 64, High Channel **Value:** 13.6 dBm **Limit:** 24 dBm

Result: Pass

PEAK TRANSMIT POWER

802.11(a) 6 Mbps, 5470 - 5725 MHz Band, Channel 100, Low Channel **Result:** Pass **Value:** 14.1 dBm **Limit:** 24 dBm

802.11(a) 6 Mbps, 5470 - 5725 MHz Band, Channel 116, Mid Channel

Value: 15.6 dBm Limit: 24 dBm

802.11(a) 6 Mbps, 5470 - 5725 MHz Band, Channel 140, High Channel **Result:** Pass **Value:** 16.6 dBm **Limit:** 24 dBm

802.11(a) 36 Mbps, 5150 - 5250 MHz Band, Channel 36, Low Channel

Result: Pass Value: 13.6 dBm Limit: 17 dBm

802.11(a) 36 Mbps, 5150 - 5250 MHz Band, Channel 48, High Channel

Result: Pass Value: 13.3 dBm Limit: 17 dBm

802.11(a) 36 Mbps, 5250 - 5350 MHz Band, Channel 52, Low Channel

Result: Pass Value: 13.4 dBm Limit: 24 dBm

802.11(a) 36 Mbps, 5250 - 5350 MHz Band, Channel 64, High Channel

Result: Pass

Value: 13.1 dBm

Limit: 24 dBm

Result: Pass Value: 13.6 dBm Limit: 24 dBm

802.11(a) 36 Mbps, 5470 - 5725 MHz Band, Channel 116, Mid Channel **Result:** Pass **Value:** 14.9 dBm **Limit:** 24 dBm

802.11(a) 36 Mbps, 5470 - 5725 MHz Band, Channel 140, High Channel **Result:** Pass **Value:** 16.4 dBm **Limit:** 24 dBm

FREQUENCY STABILITY

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
EV06 Cable Direct Connect Cable	ESM Cable Corp.	TTBJ-141 KMKM-132	ECB	NCR	0
Multimeter	Tektronix	DMM912	MMH	12/10/2008	24
DC Power Supply	Tektronix	PS280	TPM	NCR	0
Chamber, Temp./Humidity Chamber	Cincinnati Sub Zero (CSZ)	ZH-32-2-2-H/AC	TBA	7/23/2008	24
Chamber Temp. & Humidity Controller	ESZ / Eurotherm	Dimension II	ТВС	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

Variation of Supply Voltage

The primary supply voltage was varied over the range specified by the client. Per the client, the chip only works over this voltage range; it will shut off if the voltage is outside the specified range.

Variation of Ambient Temperature

Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-30 ° to +50° C) and at 10°C intervals.

A direct connect measurement was made between the EUT's antenna cable and a spectrum analyzer. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT. Measurements were made at the mid channel of each band to determine frequency stability. If the frequency variation is less than 100 ppm, the EUT will meet the requirement of 15.407(g), that the emissions are maintained within the band of operation.

NORTHWEST	EDECLIENC	V CTADII IT	v		XMit 2010.01.14
EMC	FREQUENC'	TOTABILIT	T		
EUT: Summit FS848 Master Module (Wh	neeler)			Work Order: FOCU008	1
Serial Number: A146				Date: 07/20/10	
Customer: Summit Semiconductor LLC				Temperature: 23°C	
Attendees: Alex Macdonald				Humidity: 45%	
Project: None				Barometric Pres.: 30.16 in	
Tested by: Rod Peloquin		Power: 3.3 VDC		Job Site: EV06 / EV	' 09
TEST SPECIFICATIONS		Test Meth	* *		
FCC 15.407:2010		ANSI C63	3.10:2009		
COMMENTS					
Both 3.3 VDC and 5.0 VDC were altered concurrently.					
DEVIATIONS FROM TEST STANDARD					
No Deviations					
Configuration # 3	Signature	Relug			
Mid Channel 5450 F250 MUz Dand	o.g.a.a.o		Value	Limit	Results

Frequency Stability with Variation of DC Voltage (Ambient Temperature = 20°C)

Voltage (VDC)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (ppm)	Specification (ppm)
3.6 & 5.5 (110%)	5200.000000	5199.974025	5.00	n/a
3.3 & 5.0 (100%)	5200.000000	5199.966100	6.52	n/a
3.0 & 4.5 (90%)	5200.000000	5199.960025	7.69	n/a

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 3.3 VDC & 5.0 VDC)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
50	5200.000000	5199.961145	7.47	n/a
40	5200.000000	5199.966483	6.45	n/a
30	5200.000000	5199.961600	7.38	n/a
20	5200.000000	5199.966100	6.52	n/a
10	5200.000000	5199.963749	6.97	n/a
0	5200.000000	5199.970608	5.65	n/a
-10	5200.000000	5199.975908	4.63	n/a
-20	5200.000000	5199.976967	4.43	n/a
-30	5200.000000	5199.970265	5.72	n/a

Mid Channel 5250 - 5350 MHz Band

Frequency Stability with Variation of DC Voltage (Ambient Temperature = 20°C)

Voltage (VDC)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (ppm)	Specification (ppm)
3.6 & 5.5 (110%)	5300.000000	5299.972950	5.10	n/a
3.3 & 5.0 (100%)	5300.000000	5299.964800	6.64	n/a
3.0 & 4.5 (90%)	5300.000000	5299.958825	7.77	n/a

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 3.3 VDC & 5.0 VDC)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
50	5300.000000	5299.959775	7.59	n/a
40	5300.000000	5299.965250	6.56	n/a
30	5300.000000	5299.960325	7.49	n/a
20	5300.000000	5299.964800	6.64	n/a
10	5300.000000	5299.962432	7.09	n/a
0	5300.000000	5299.969342	5.78	n/a
-10	5300.000000	5299.974873	4.74	n/a
-20	5300.000000	5299.975892	4.55	n/a
-30	5300.000000	5299.968985	5.85	n/a

Mid Channel 5470 - 5725 MHz Band

Frequency Stability with Variation of DC Voltage (Ambient Temperature = 20°C)

Voltage (VDC)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (ppm)	Specification (ppm)
3.6 & 5.5 (110%)	5600.000000	5599.971600	5.07	n/a
3.3 & 5.0 (100%)	5600.000000	5599.962825	6.64	n/a
3.0 & 4.5 (90%)	5600.000000	5599.956550	7.76	n/a

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 3.3 VDC & 5.0 VDC)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
50	5600.000000	5599.957495	7.59	n/a
40	5600.000000	5599.963345	6.55	n/a
30	5600.000000	5599.958216	7.46	n/a
20	5600.000000	5599.962825	6.64	n/a
10	5600.000000	5599.960292	7.09	n/a
0	5600.000000	5599.967592	5.79	n/a
-10	5600.000000	5599.973625	4.71	n/a
-20	5600.000000	5599.974526	4.55	n/a
-30	5600.000000	5599.967453	5.81	n/a

AC POWERLINE CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION	
Continuous Tx 5700MHz, (Ch.140)	
Continuous Tx 5580MHz, (Ch.116)	
Continuous Tx 5500MHz, (Ch.100)	
Continuous Tx 5320MHz, (Ch.64)	
Continuous Tx 5260MHz, (Ch.52)	
Continuous Tx 5240MHz, (Ch.48)	
Continuous Tx 5180MHz, (Ch.36)	

POWER SETTINGS INVESTIGATED

120VAC/60Hz

CONFIGURATIONS INVESTIGATED

FOCU0081 - 4

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Receiver	Rohde & Schwarz	ESCI	ARE	4/29/2010	12 mo
High Pass Filter	TTE	H97-100K-50-720B	HFX	2/16/2010	13 mo
Attenuator	Coaxicom	66702 2910-20	ATO	7/21/2009	13 mo
EV07 Cables	N/A	Conducted Cables	EVG	6/21/2010	13 mo
LISN	Solar	9252-50-R-24-BNC	LIN	5/27/2010	12 mo

MEASUREMEN	T BANDWIDTHS			
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0
	Measurements were made us	sing the bandwidths and dete	ctors specified. No video filte	er was used.

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm.

NORTHWEST **ACPOWERLINE CONDUCTED EMISSIONS** FOCU0081 07/21/10 Work Order: Date: Project: None Temperature: 24.4 °C Job Site: EV07 **Humidity**: 44.7 Tested by: Dan Haas Serial Number: 0265 1015.9 mb **Barometric Pres.** EUT: Summit FS848 Master Module (Wheeler) Configuration: 4 - AC powerline conducted emissions **Customer:** Summit Semiconductor LLC Attendees: None **EUT Power:** 120VAC/60Hz Continuous Tx 5180MHz, (Ch.36) **Operating Mode:** No deviations. **Deviations:** Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables Comments: with two turns. Test Specifications Test Method FCC 15.207:2010 ANSI C63.10:2009 Run# Line: High Line Ext. Attenuation: 20 Results Pass Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 100 100 90 80 80 60 60 dBuV dBuV 50 50 40 40 30 30 20 20 10 10

Quasi Peak Data - vs - Quasi Peak Limit

MHz

1.00

10.00

0.10

Average Data - vs - Average Limit

MHz

10.00

100.00

1.00

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
18.432	26.0	20.8	46.8	60.0	-13.2	•	18.432	24.0	20.8	44.8	50.0	-5.2
4.608	19.0	20.3	39.3	56.0	-16.8		24.576	16.8	21.1	37.9	50.0	-12.1
26.114	18.3	21.2	39.5	60.0	-20.5		4.608	13.1	20.3	33.4	46.0	-12.7
24.576	17.8	21.1	38.9	60.0	-21.1		29.186	15.2	21.4	36.6	50.0	-13.4
29.186	16.6	21.4	38.0	60.0	-22.0		26.114	15.2	21.2	36.4	50.0	-13.6
9.216	17.0	20.4	37.4	60.0	-22.6		9.216	13.7	20.4	34.1	50.0	-15.9

100.00

NORTHWEST **ACPOWERLINE CONDUCTED EMISSIONS** FOCU0081 07/21/10 Work Order: Date: Project: None Temperature: 24.4 °C Job Site: EV07 **Humidity**: 44.7 Tested by: Dan Haas Serial Number: 0265 1015.9 mb **Barometric Pres.** EUT: Summit FS848 Master Module (Wheeler) Configuration: 4 - AC powerline conducted emissions **Customer:** Summit Semiconductor LLC Attendees: None **EUT Power:** 120VAC/60Hz Continuous Tx 5180MHz, (Ch.36) **Operating Mode:** No deviations. **Deviations:** Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables Comments: with two turns. Test Specifications Test Method FCC 15.207:2010 ANSI C63.10:2009 Run# Line: Neutral Ext. Attenuation: 20 Results Pass Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 100 100 90 80 80 60 60 dBuV dBuV 50 50 40 40 30 30 20 20 10 10

Quasi Peak Data - vs - Quasi Peak Limit

MHz

1.00

10.00

Average Data - vs - Average Limit

MHz

10.00

100.00

1.00

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
18.434	25.9	20.8	46.7	60.0	-13.3	 18.434	24.1	20.8	44.9	50.0	-5.1
26.114	19.6	21.2	40.8	60.0	-19.2	24.576	17.7	21.1	38.8	50.0	-11.2
4.992	16.3	20.3	36.6	56.0	-19.4	26.114	16.5	21.2	37.7	50.0	-12.3
3.840	16.1	20.2	36.3	56.0	-19.7	29.186	16.2	21.4	37.6	50.0	-12.4
24.576	18.2	21.1	39.3	60.0	-20.7	27.650	15.9	21.3	37.2	50.0	-12.8
27.650	17.9	21.3	39.2	60.0	-20.8	3.840	10.1	20.2	30.3	46.0	-15.7
29.186	17.6	21.4	39.0	60.0	-21.0	4.992	8.1	20.3	28.4	46.0	-17.6

100.00

NORTHWEST **ACPOWERLINE CONDUCTED EMISSIONS** FOCU0081 07/21/10 Work Order: Date: Project: None Temperature: 24.4 °C Job Site: EV07 **Humidity**: 44.7 Tested by: Dan Haas Serial Number: 0265 1015.9 mb **Barometric Pres.** EUT: Summit FS848 Master Module (Wheeler) Configuration: 4 - AC powerline conducted emissions **Customer:** Summit Semiconductor LLC Attendees: None **EUT Power:** 120VAC/60Hz Continuous Tx 5240MHz, (Ch.48) **Operating Mode:** No deviations. **Deviations:** Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables Comments: with two turns. Test Specifications Test Method FCC 15.207:2010 ANSI C63.10:2009 Run# Line: High Line Ext. Attenuation: 20 Results Pass Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 100 100 90 80 80 60 60 dBuV dBuV 50 50 40 40 30 30 20 20 10 10 1.00 10.00 100.00 0.10 1.00 10.00 100.00

Quasi Peak Data - vs - Quasi Peak Limit

MHz

Average Data - vs - Average Limit

MHz

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
18.434	25.3	20.8	46.1	60.0	-13.9	·	18.434	23.4	20.8	44.2	50.0	-5.8
6.144	23.0	20.3	43.3	60.0	-16.7		24.576	16.9	21.1	38.0	50.0	-12.0
4.608	17.8	20.3	38.1	56.0	-18.0		4.608	12.8	20.3	33.1	46.0	-13.0
24.576	17.9	21.1	39.0	60.0	-21.0		29.186	15.2	21.4	36.6	50.0	-13.4
29.186	16.5	21.4	37.9	60.0	-22.1		27.650	14.6	21.3	35.9	50.0	-14.1
27.650	16.5	21.3	37.8	60.0	-22.2		6.144	15.0	20.3	35.3	50.0	-14.7
21.504	15.1	21.0	36.1	60.0	-23.9		21.504	11.3	21.0	32.3	50.0	-17.7

NORTHWEST ACPOWERLINE CONDUCTED EMISSIONS FOCU0081 07/21/10 Work Order: Date: Project: None Temperature: 24.4 °C Job Site EV07 . Humidity: 44.7 Serial Number: Barometric Pres. 1015.9 mb Tested by: Dan Haas 0265 EUT: Summit FS848 Master Module (Wheeler) Configuration: 4 - AC powerline conducted emissions **Customer:** Summit Semiconductor LLC Attendees: None **EUT Power:** 120VAC/60Hz Continuous Tx 5240MHz, (Ch.48) **Operating Mode:** No deviations. **Deviations:** Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables Comments: with two turns. Test Specifications Test Method FCC 15.207:2010 ANSI C63.10:2009 Run# Line: Neutral Ext. Attenuation: 20 Results Pass Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 100 100 90 80 80 60 60 dBuV dBuV 50 50 40 40 30 30 20 20 10 10 0.10 1.00 10.00 100.00 0.10 1.00 10.00 100.00 MHz MHz

Average Data - vs - Average Limit

Adjusted

(dBuV)

44.8

38.8

37.8

37.7

37.1

32.7

36.1

Spec. Limit

(dBuV)

50.0

50.0

50.0

50.0

46.0

50.0

Factor

(dB)

20.8

21.1

21.2

21.4

21.3

20.3

20.9

Compared to

Spec.

(dB)

-5.2

-11.2

-12.2

-12.3

-12.9

-13.4

-13.9

Quasi Peak Data - vs - Quasi Peak Limit

Adjusted

(dBuV)

39.2

40.8

39.4

39.1

39.0

38.1

Spec. Limit

(dBuV)

60.0

56.0

60.0

60.0

60.0

60.0

60.0

Factor

(dB)

20.3

21.2

21.1

21.3

21.4

20.9

Freq

(MHz)

18.434

4.608

26.114

24.576

27.650

29.186

18.816

Amplitude

(dBuV)

18.9

19.6

18.3

17.8

17.6

17.2

Compared to

(dB)

-13.2

-16.9

-19.2

-20.6

-20.9

-21.0

-21.9

Freq

(MHz)

18.434

24.576

26.114

29.186

27.650

4.608

18.816

Amplitude

(dBuV)

17.7

16.6

16.3

15.8

12.4

NORTHWEST **ACPOWERLINE CONDUCTED EMISSIONS** FOCU0081 07/21/10 Work Order: Date: Project: None Temperature: 24.4 °C Job Site: EV07 **Humidity**: 44.7 Tested by: Dan Haas Serial Number: 0265 1015.9 mb **Barometric Pres.** EUT: Summit FS848 Master Module (Wheeler) Configuration: 4 - AC powerline conducted emissions **Customer:** Summit Semiconductor LLC Attendees: None **EUT Power:** 120VAC/60Hz Continuous Tx 5260MHz, (Ch.52) **Operating Mode:** No deviations. **Deviations:** Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables Comments: with two turns. Test Specifications Test Method FCC 15.207:2010 ANSI C63.10:2009 Run# Line: High Line Ext. Attenuation: 20 Results Pass Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 100 100 90 80 80 60 60 dBuV dBuV 50 50 40 40 30 30 20 20 10 10

Quasi Peak Data - vs - Quasi Peak Limit

MHz

1.00

10.00

Average Data - vs - Average Limit

MHz

10.00

100.00

1.00

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
18.434	25.3	20.8	46.1	60.0	-13.9	•	18.434	23.6	20.8	44.4	50.0	-5.6
4.608	17.7	20.3	38.0	56.0	-18.1		24.576	16.9	21.1	38.0	50.0	-12.0
26.114	18.3	21.2	39.5	60.0	-20.5		4.608	12.4	20.3	32.7	46.0	-13.4
24.576	17.9	21.1	39.0	60.0	-21.0		26.114	15.2	21.2	36.4	50.0	-13.6
27.650	16.6	21.3	37.9	60.0	-22.1		27.650	14.7	21.3	36.0	50.0	-14.0
19.200	16.6	20.9	37.5	60.0	-22.5		19.200	15.1	20.9	36.0	50.0	-14.0

100.00

NORTHWEST ACPOWERLINE CONDUCTED EMISSIONS FOCU0081 07/21/10 Work Order: Date: Project: None Temperature: 24.4 °C Job Site: EV07 . Humidity: 44.7 Barometric Pres. 1015.9 mb Tested by: Dan Haas Serial Number: 0265 EUT: Summit FS848 Master Module (Wheeler) Configuration: 4 - AC powerline conducted emissions **Customer:** Summit Semiconductor LLC Attendees: None **EUT Power:** 120VAC/60Hz Continuous Tx 5260MHz, (Ch.52) **Operating Mode:** No deviations. **Deviations:** Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables Comments: with two turns. Test Specifications Test Method FCC 15.207:2010 ANSI C63.10:2009 Run# Line: Neutral Ext. Attenuation: 20 Results Pass Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 100 100 90 80 80 60 60 dBuV dBuV 50 50 40 40 30 30 20 20 10 10

0.10

Freq

(MHz)

18.434

4.608

26.114

24.576

27.650

19.200

Amplitude

(dBuV)

17.7

19.6

18.3

17.8

17.3

1.00

Quasi Peak Data - vs - Quasi Peak Limit

Factor

(dB)

20.3

21.2

21.1

21.3

20.9

10.00

Spec. Limit

(dBuV)

60.0

56.0

60.0

60.0

60.0

60.0

MHz

Adjusted

(dBuV)

38.0

40.8

39.4

39.1

38.2

100.00

Compared to

(dB)

-13.5

-18.1

-19.2

-20.6

-20.9

-21.8

0.10

Freq

(MHz)

18.434

24.576

26.114

27.650

19.200

4.608

1.00

Amplitude

(dBuV)

17.7

16.5

15.8

15.7

11.9

10.00

MHz

Average Data - vs - Average Limit

Adjusted

(dBuV)

44.7

38.8

37.7

37.1

36.6

32.2

Spec. Limit

(dBuV)

50.0

50.0

50.0

50.0

46.0

Factor

(dB)

20.8

21.1

21.2

21.3

20.9

20.3

100.00

Compared to

Spec.

(dB)

-5.3

-11.2

-12.3

-12.9

-13.4

-13.9

NORTHWEST **ACPOWERLINE CONDUCTED EMISSIONS** FOCU0081 07/21/10 Work Order: Date: Project: None Temperature: 24.4 °C Job Site: EV07 . Humidity: 44.7 Tested by: Dan Haas Barometric Pres. 1015.9 mb Serial Number: 0265 EUT: Summit FS848 Master Module (Wheeler) Configuration: 4 - AC powerline conducted emissions **Customer:** Summit Semiconductor LLC Attendees: None **EUT Power:** 120VAC/60Hz Continuous Tx 5320MHz, (Ch.64) **Operating Mode:** No deviations. **Deviations:** Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables Comments: with two turns. Test Specifications Test Method FCC 15.207:2010 ANSI C63.10:2009 Run# 10 Line: High Line Ext. Attenuation: 20 Results Pass Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 100 100 90 80 80 60 60 dBuV dBuV 50 50 40 40 30 30 20 20 10 10 0.10 1.00 10.00 100.00 0.10 1.00 10.00 100.00

MHz

Adjusted

(dBuV)

36.2

39.5

39.0

37.8

37.5

Spec. Limit

(dBuV)

60.0

56.0

60.0

60.0

60.0

60.0

Compared to

(dB)

-14.1

-19.8

-20.5

-21.0

-22.2

-22.5

Freq

(MHz)

18.434

24.576

29.186

26.114

3.840

9.216

Amplitude

(dBuV)

16.8

15.2

15.2

10.2

13.3

Quasi Peak Data - vs - Quasi Peak Limit

Factor

(dB)

20.2

21.2

21.1

21.4

20.4

Freq

(MHz)

18.434

3.840

26.114

24.576

29.186

9.216

Amplitude

(dBuV)

16.0

18.3

17.9

16.4

17.1

MHz

Average Data - vs - Average Limit

Adjusted

(dBuV)

44.2

37.9

36.6

36.4

30.4

33.7

Spec. Limit

(dBuV)

50.0

50.0

50.0

46.0

50.0

Factor

(dB)

20.8

21.1

21.4

21.2

20.2

20.4

Compared to

Spec.

(dB)

-5.8

-12.1

-13.4

-13.6

-15.6

-16.3

NORTHWEST **ACPOWERLINE CONDUCTED EMISSIONS** FOCU0081 07/21/10 Work Order: Date: Project: None Temperature: 24.4 °C Job Site: EV07 **Humidity**: 44.7 Serial Number: Tested by: Dan Haas 0265 1015.9 mb **Barometric Pres.** EUT: Summit FS848 Master Module (Wheeler) Configuration: 4 - AC powerline conducted emissions **Customer:** Summit Semiconductor LLC Attendees: None **EUT Power:** 120VAC/60Hz Continuous Tx 5320MHz, (Ch.64) **Operating Mode:** No deviations. **Deviations:** Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables Comments: with two turns. Test Specifications Test Method FCC 15.207:2010 ANSI C63.10:2009 Run# Line: Neutral Ext. Attenuation: 20 Results Pass Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 100 100 90 80 80 60 60 dBuV dBuV 50 50 40 40 30 30

Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Ave

100.00

20

10

0.10

1.00

10.00

MHz

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
18.432	26.5	20.8	47.3	60.0	-12.7	-	18.432	24.7	20.8	45.5	50.0	-4.5
6.144	21.9	20.3	42.2	60.0	-17.8		24.576	17.7	21.1	38.8	50.0	-11.2
24.576	18.3	21.1	39.4	60.0	-20.6		29.186	16.3	21.4	37.7	50.0	-12.3
27.650	17.9	21.3	39.2	60.0	-20.8		27.650	15.9	21.3	37.2	50.0	-12.8
29.186	17.7	21.4	39.1	60.0	-20.9		19.970	14.9	20.9	35.8	50.0	-14.2
19.970	17.2	20.9	38.1	60.0	-21.9		6.144	13.8	20.3	34.1	50.0	-15.9

20 10

0.10

1.00

10.00

MHz

NORTHWEST **ACPOWERLINE CONDUCTED EMISSIONS** FOCU0081 07/21/10 Work Order: Date: Project: None Temperature: 24.4 °C Job Site: EV07 **Humidity**: 44.7 Tested by: Dan Haas Serial Number: 0265 1015.9 mb **Barometric Pres.** EUT: Summit FS848 Master Module (Wheeler) Configuration: 4 - AC powerline conducted emissions **Customer:** Summit Semiconductor LLC Attendees: None **EUT Power:** 120VAC/60Hz Continuous Tx 5500MHz, (Ch.100) **Operating Mode:** No deviations. **Deviations:** Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables Comments: with two turns. Test Specifications Test Method FCC 15.207:2010 ANSI C63.10:2009 Run# Line: High Line Ext. Attenuation: 20 Results Pass Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 100 100 90 80 80 60 60 dBuV dBuV 50 50 40 40 30 30 20 20 10 10

Quasi Peak Data - vs - Quasi Peak Limit

MHz

1.00

10.00

- 1	4verage	Data	- VS	 Average 	Limi
					_

MHz

10.00

100.00

1.00

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
18.434	25.3	20.8	46.1	60.0	-13.9	•	18.434	23.6	20.8	44.4	50.0	-5.6
4.224	17.2	20.2	37.4	56.0	-18.6		29.186	15.2	21.4	36.6	50.0	-13.4
3.840	16.0	20.2	36.2	56.0	-19.8		26.114	15.1	21.2	36.3	50.0	-13.7
26.114	18.3	21.2	39.5	60.0	-20.5		27.650	14.6	21.3	35.9	50.0	-14.1
29.186	16.4	21.4	37.8	60.0	-22.2		4.224	10.6	20.2	30.8	46.0	-15.2
27.650	16.5	21.3	37.8	60.0	-22.2		3.840	10.2	20.2	30.4	46.0	-15.6

100.00

NORTHWEST **ACPOWERLINE CONDUCTED EMISSIONS** FOCU0081 07/21/10 Work Order: Date: Project: None Temperature: 24.4 °C Job Site: EV07 **Humidity**: 44.7 Tested by: Dan Haas Serial Number: 0265 1015.9 mb **Barometric Pres.** EUT: Summit FS848 Master Module (Wheeler) Configuration: 4 - AC powerline conducted emissions **Customer:** Summit Semiconductor LLC Attendees: None **EUT Power:** 120VAC/60Hz Continuous Tx 5500MHz, (Ch.100) **Operating Mode:** No deviations. **Deviations:** Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables Comments: with two turns. Test Specifications Test Method FCC 15.207:2010 ANSI C63.10:2009 Run# Line: Neutral Ext. Attenuation: 20 Results Pass Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 100 100 90 80 80 60 60 dBuV dBuV 50 50 40 40 30 30 20 20 10 10 1.00 10.00 100.00 0.10 1.00 10.00 100.00 MHz MHz

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
18.434	26.0	20.8	46.8	60.0	-13.2	18.434	24.2	20.8	45.0	50.0	-5.0
6.144	21.9	20.3	42.2	60.0	-17.8	26.114	16.5	21.2	37.7	50.0	-12.3
4.224	16.9	20.2	37.1	56.0	-18.9	29.186	16.2	21.4	37.6	50.0	-12.4
26.114	19.5	21.2	40.7	60.0	-19.3	27.650	15.8	21.3	37.1	50.0	-12.9
27.650	17.8	21.3	39.1	60.0	-20.9	4.224	10.3	20.2	30.5	46.0	-15.5
29.186	17.5	21.4	38.9	60.0	-21.1	6.144	13.8	20.3	34.1	50.0	-15.9

NORTHWEST **ACPOWERLINE CONDUCTED EMISSIONS** FOCU0081 07/21/10 Work Order: Date: Project: None Temperature: 24.4 °C Job Site: EV07 . Humidity: 44.7 Serial Number: 0265 1015.9 mb Tested by: Dan Haas **Barometric Pres.** EUT: Summit FS848 Master Module (Wheeler) Configuration: 4 - AC powerline conducted emissions **Customer:** Summit Semiconductor LLC Attendees: None **EUT Power:** 120VAC/60Hz Continuous Tx 5580MHz, (Ch.116) **Operating Mode:** No deviations. **Deviations:** Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables Comments: with two turns. Test Specifications Test Method FCC 15.207:2010 ANSI C63.10:2009 Run# Line: High Line Ext. Attenuation: 20 Results Pass Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 100 100 90 80 80 60 60 dBuV 50 50

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
18.434	25.8	20.8	46.6	60.0	-13.4	18.434	24.1	20.8	44.9	50.0	-5.1
4.224	17.2	20.2	37.4	56.0	-18.6	24.576	16.6	21.1	37.7	50.0	-12.3
4.608	17.0	20.3	37.3	56.0	-18.8	29.186	15.0	21.4	36.4	50.0	-13.6
26.114	18.1	21.2	39.3	60.0	-20.7	4.608	12.1	20.3	32.4	46.0	-13.7
24.576	17.8	21.1	38.9	60.0	-21.1	26.114	14.9	21.2	36.1	50.0	-13.9
29.186	16.3	21.4	37.7	60.0	-22.3	4.224	10.6	20.2	30.8	46.0	-15.2

NORTHWEST **ACPOWERLINE CONDUCTED EMISSIONS** FOCU0081 07/21/10 Work Order: Date: Project: None Temperature: 24.4 °C Job Site: EV07 **Humidity**: 44.7 Tested by: Dan Haas Serial Number: 0265 1015.9 mb **Barometric Pres.** EUT: Summit FS848 Master Module (Wheeler) Configuration: 4 - AC powerline conducted emissions **Customer:** Summit Semiconductor LLC Attendees: None **EUT Power:** 120VAC/60Hz Continuous Tx 5580MHz, (Ch.116) **Operating Mode:** No deviations. **Deviations:** Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables Comments: with two turns. Test Specifications Test Method FCC 15.207:2010 ANSI C63.10:2009 Run# 16 Line: Neutral Ext. Attenuation: 20 Results Pass Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 100 100 90 80 80 60 60 dBuV dBuV 50 50 40 40 30 30 20 20 10 10 0.10 1.00 10.00 100.00 0.10 1.00 10.00 100.00 MHz MHz

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
18.434	26.5	20.8	47.3	60.0	-12.7	18.434	24.6	20.8	45.4	50.0	-4.6
4.608	16.7	20.3	37.0	56.0	-19.1	24.576	17.5	21.1	38.6	50.0	-11.4
26.114	19.4	21.2	40.6	60.0	-19.4	26.114	16.4	21.2	37.6	50.0	-12.4
24.576	18.1	21.1	39.2	60.0	-20.8	29.186	16.1	21.4	37.5	50.0	-12.5
27.650	17.7	21.3	39.0	60.0	-21.0	27.650	15.6	21.3	36.9	50.0	-13.1
29.186	17.5	21.4	38.9	60.0	-21.1	4.608	11.4	20.3	31.7	46.0	-14.4

NORTHWEST **ACPOWERLINE CONDUCTED EMISSIONS** FOCU0081 07/21/10 Work Order: Date: Project: None Temperature: 24.4 °C Job Site: EV07 **Humidity**: 44.7 Tested by: Dan Haas Serial Number: 0265 1015.9 mb **Barometric Pres.** EUT: Summit FS848 Master Module (Wheeler) Configuration: 4 - AC powerline conducted emissions **Customer:** Summit Semiconductor LLC Attendees: None **EUT Power:** 120VAC/60Hz Continuous Tx 5580MHz, (Ch.116) **Operating Mode:** No deviations. **Deviations:** Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables Comments: with two turns. Test Specifications Test Method FCC 15.207:2010 ANSI C63.10:2009 Run# Line: High Line Ext. Attenuation: 20 Results Pass Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 100 100 90 80 80 60 60 dBuV dBuV 50 50 40 40 30 30 20 20

Quasi Peak Data - vs - Quasi Peak Limit

MHz

1.00

10.00

10

0.10

Average	Data	- VS	 Average 	Limit

MHz

10.00

100.00

1.00

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
18.434	25.7	20.8	46.5	60.0	-13.5	•	18.434	23.9	20.8	44.7	50.0	-5.3
3.840	16.0	20.2	36.2	56.0	-19.8		24.576	16.5	21.1	37.6	50.0	-12.4
24.576	17.7	21.1	38.8	60.0	-21.2		29.186	14.9	21.4	36.3	50.0	-13.7
27.650	16.4	21.3	37.7	60.0	-22.3		27.650	14.3	21.3	35.6	50.0	-14.4
29.186	16.2	21.4	37.6	60.0	-22.4		3.840	10.1	20.2	30.3	46.0	-15.7
9.216	17.1	20.4	37.5	60.0	-22.5		9.216	13.4	20.4	33.8	50.0	-16.2

100.00

10

NORTHWEST ACPOWERLINE CONDUCTED EMISSIONS FOCU0081 07/21/10 Work Order: Date: Project: None Temperature: 24.4 °C Job Site: EV07 . Humidity: 44.7 Barometric Pres. 1015.9 mb Tested by: Dan Haas Serial Number: 0265 EUT: Summit FS848 Master Module (Wheeler) Configuration: 4 - AC powerline conducted emissions **Customer:** Summit Semiconductor LLC Attendees: None **EUT Power:** 120VAC/60Hz Continuous Tx 5700MHz, (Ch.140) **Operating Mode:** No deviations. **Deviations:** Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables Comments: with two turns. Test Specifications Test Method FCC 15.207:2010 ANSI C63.10:2009 Run# 18 Line: Neutral Ext. Attenuation: 20 Results Pass Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 100 100 90 80 80 60 60 dBuV dBuV 50 50 40 40 30 30 20 20 10 10 0.10 1.00 10.00 100.00 0.10 1.00 10.00 100.00

MHz

Adjusted

(dBuV)

37.4

40.6

39.2

39.0

38.9

Spec. Limit

(dBuV)

60.0

56.0

60.0

60.0

60.0

60.0

Compared to

(dB)

-12.8

-18.7

-19.4

-20.8

-21.0

-21.1

Freq

(MHz)

18.434

24.576

26.114

29.186

27.650

4.608

Amplitude

(dBuV)

17.4

16.3

16.0

15.6

11.6

Quasi Peak Data - vs - Quasi Peak Limit

Factor

(dB)

20.3

21.2

21.1

21.3

21.4

Freq

(MHz)

18.434

4.608

26.114

24.576

27.650

29.186

Amplitude

(dBuV)

17.1

19.4

18.1

17.7

17.5

MHz

Average Data - vs - Average Limit

Adjusted

(dBuV)

45.2

38.5

37.5

37.4

36.9

31.9

Spec. Limit

(dBuV)

50.0

50.0

50.0

50.0

46.0

Factor

(dB)

20.8

21.1

21.2

21.4

21.3

20.3

Compared to

Spec.

(dB)

-4.8

-11.5

-12.5

-12.6

-13.1

-14.2

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION	
Transmitting at 5260 MHz	
Transmitting at 5320 MHz	
Transmitting at 5180 MHz	

POWER SETTINGS INVESTIGATED

120VAC/60Hz

FREQUENCY RANGE INV	ESTIGATED		
Start Frequency	30MHz	Stop Frequency	40GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAQ	1/6/2010	12
OC Cable	ESM Cable Corp.	KMKM-72	OCV	11/3/2009	13
Pre-Amplifier	Miteq	JSW45-26004000-40-5P	AVR	6/22/2010	13
Antenna, Horn	ETS	3160-10	AIC	NCR	0
Cable	ESM Cable Corp.	KMKM-72	EVY	11/3/2009	13
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	5/19/2009	16
Antenna, Horn	ETS Lindgren	3160-09	AIV	NCR	0
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	7/10/2009	13
Antenna, Horn	ETS	3160-08	AHV	NCR	0
EV01 Cables	N/A	Standard Gain Horns Cables	EVF	4/2/2010	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	7/10/2009	13
Antenna, Horn	ETS	3160-07	AHU	NCR	0
High Pass Filter	Micro-Tronics	HPM50112	HGA	10/1/2009	13
5.725-5.875 Notch Filter	Micro-Tronics	BRC50705	HGJ	7/31/2009	13
5.47-5.725 Notch Filter	Micro-Tronics	BRC50704	HGI	10/1/2009	13
5.25 GHz Notch Filter	K&L Microwave	8N50-5250/X200-0/0	HFK	4/2/2010	13
EV01 Cables	N/A	Double Ridge Horn Cables	EVB	7/9/2010	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	7/9/2010	13
Antenna, Horn	EMCO	3115	AHC	7/8/2010	24
EV01 Cables	N/A	Bilog Cables	EVA	7/9/2010	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	7/9/2010	13
Antenna, Biconilog	EMCO	3141	AXE	1/14/2010	13

Frequency F	Range Peak Data	Quasi-Peak Dat	a Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.	15 1.0	0.2	0.2
0.15 - 30	0.0 10.0	9.0	9.0
30.0 - 10	00 100.0	120.0	120.0
Above 10	000 1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT were tested. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. Measurements were made to satisfy the three requirements of 47 CFR 15.407: Field strength under 1GHz, Restricted Bands of 47 CFR 15.205, and EIRP of 47 CFR 15.407. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the EUT and EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10:2009). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

The amplitude and frequency of the highest emissions were noted. The EUT was then replaced with a ½ wave dipole that was successively tuned to each of the highest spurious emissions. A signal generator was connected to the dipole (horn antenna for frequencies above 1GHz), and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the cable loss to the dipole antenna (or horn) and its qain (dBi): the effective radiated power for each radiated sourious emission was determined.

NORTHWEST		PSA 2008.07.2	.07.2 [.] 08.1.9									
EMC	SPURIOUS RADIATED EMISSIONS											
EUT:	Summit FS848 Master Module (Wheeler)	Work Order:	FOCU0081									
Serial Number:	0265	Date:	07/15/10									
Customer:	Summit Semiconductor LLC	Temperature:	24.3°C									
Attendees:	Alex Macdonald		Humidity:	41%								
Project:	None		Barometric Pres.:	1020.3 mb								
Tested by:	Rod Peloquin Power: 120VAC/60Hz Job Site: EV0											
TEST SPECIFICATI	TONS Test Method											

FCC 15.407:2010

ANSI C63.10:2009

TEST PARAMETERS

Antenna Height(s) (m) 1 - 2 Test Distance (m) 1

COMMENTS

Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables with two turns:

EUT OPERATING MODES

Transmitting at 5180 MHz
DEVIATIONS FROM TEST STANDARD

No deviations.

Run #	1
Configuration #	
Dogulto	Dace

Signature

 $5000.000 \hspace{0.1cm} 5020.000 \hspace{0.1cm} 5040.000 \hspace{0.1cm} 5060.000 \hspace{0.1cm} 5080.000 \hspace{0.1cm} 5100.000 \hspace{0.1cm} 5120.000 \hspace{0.1cm} 5140.000 \hspace{0.1cm} 5160.000 \hspace{0.1cm} 5180.000 \hspace{0.1cm} 5200.000$ MHz

									Compared to
Freq	Azimu	th Height		Polarity	Detector	EIRP	EIRP	Spec. Limit	Spec.
(MHz)	(degre	es) (meters)				(Watts)	(dBm)	(dBm)	(dB)
5149.533	130.	0 1.4		V-Horn	PK	7.13E-07	-31.5	-27.0	-4.5
5149.663	-1.0	1.0		H-Horn	PK	5.28E-07	-32.8	-27.0	-5.8
5149.217	188.	0 1.3		V-Horn	PK	5.05E-07	-33.0	-27.0	-6.0
5149.213	-1.0	1.0		H-Horn	PK	4.60E-07	-33.4	-27.0	-6.4
5060.840	183.	0 1.3		V-Horn	PK	3.49E-07	-34.6	-27.0	-7.6
5059.700	360.	0 1.2		H-Horn	PK	3.41E-07	-34.7	-27.0	-7.7
5054.030	130.	0 1.4		V-Horn	PK	3.18E-07	-35.0	-27.0	-8.0
5060.960	352.	0 1.0		H-Horn	PK	3.11E-07	-35.1	-27.0	-8.1

NORTHWEST		TED ENGOLON		PSA 2008.07.21								
EMC	SPURIOUS RADIATED EMISSIONS EMI 2008.											
EUT:	Summit FS848 Master Module (Wheeler)		Work Order:	FOCU0081								
Serial Number:	0265		Date:	07/15/10								
Customer:	Summit Semiconductor LLC		Temperature:	24.3°C								
Attendees:	Alex Macdonald		Humidity:	41%								
Project:	None		Barometric Pres.:	1020.3 mb								
Tested by:	Rod Peloquin	Power: 120VAC/60Hz	Job Site:	EV06								
TEST SDECIEICATI	IONS	Toot Mothod										

FCC 15.209:2010

ANSI C63.10:2009

TEST PARAMETERS

Antenna Height(s) (m) 1 - 2 Test Distance (m) 1

COMMENTS

Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables with two turns:

EUT OPERATING MODES

Transmitting at 5180 MHz
DEVIATIONS FROM TEST STANDARD

No deviations.

Run #	1
Configuration #	1
Poculto	Page

Signature

						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
5149.907	21.0	36.6	188.0	1.3	1.0	0.0	V-Horn	AV	-9.5	48.1	54.0	-5.9
5063.570	20.7	36.5	352.0	1.0	1.0	0.0	H-Horn	AV	-9.5	47.7	54.0	-6.3
5149.947	20.4	36.6	-1.0	1.0	1.0	0.0	H-Horn	AV	-9.5	47.5	54.0	-6.5
5063.340	20.5	36.5	183.0	1.3	1.0	0.0	V-Horn	AV	-9.5	47.5	54.0	-6.5
5147.613	20.3	36.6	-1.0	1.0	1.0	0.0	H-Horn	AV	-9.5	47.4	54.0	-6.6
5063.670	20.2	36.5	360.0	1.2	1.0	0.0	H-Horn	AV	-9.5	47.2	54.0	-6.8
5149.683	20.0	36.6	134.0	1.4	1.0	0.0	V-Horn	AV	-9.5	47.1	54.0	-6.9
5063.300	20.0	36.5	130.0	1.4	1.0	0.0	V-Horn	AV	-9.5	47.0	54.0	-7.0
5149.533	36.7	36.6	130.0	1.4	1.0	0.0	V-Horn	PK	-9.5	63.8	74.0	-10.2
5149.663	35.4	36.6	-1.0	1.0	1.0	0.0	H-Horn	PK	-9.5	62.5	74.0	-11.5
5149.217	35.2	36.6	188.0	1.3	1.0	0.0	V-Horn	PK	-9.5	62.3	74.0	-11.7
5149.213	34.8	36.6	-1.0	1.0	1.0	0.0	H-Horn	PK	-9.5	61.9	74.0	-12.1
5060.840	33.7	36.5	183.0	1.3	1.0	0.0	V-Horn	PK	-9.5	60.7	74.0	-13.3
5059.700	33.6	36.5	360.0	1.2	1.0	0.0	H-Horn	PK	-9.5	60.6	74.0	-13.4
5054.030	33.3	36.5	130.0	1.4	1.0	0.0	V-Horn	PK	-9.5	60.3	74.0	-13.7
5060.960	33.2	36.5	352.0	1.0	1.0	0.0	H-Horn	PK	-9.5	60.2	74.0	-13.8

NORTHWEST		PSA 2008.07.21										
EMC	SPURIOUS RADIATED EMISSIONS EMI 2008.											
EUT:	Summit FS848 Master Module (Wheeler)	Work Order:	FOCU0081									
Serial Number:	0265	Date:	07/16/10									
Customer:	Summit Semiconductor LLC		Temperature:	24.3°C								
Attendees:	Alex Macdonald		Humidity:	41%								
Project:	None		Barometric Pres.:	1020.3 mb								
Tested by:	Dan Haas	Power: 120VAC/60Hz	Job Site:	EV06								
TEST SPECIFICATI	IONS	Test Method										

FCC 15.407:2010

ANSI C63.10:2009

TEST PARAMETERS

Antenna Height(s) (m) 1 - 2 Test Distance (m) 1

COMMENTS

Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables with two turns:

EUT OPERATING MODES

Transmitting at 5320 MHz
DEVIATIONS FROM TEST STANDARD

No deviations.

Run #	2
Configuration #	1
Paculte	Pass

 $5300.000 \quad 5320.000 \quad 5340.000 \quad 5360.000 \quad 5380.000 \quad 5400.000 \quad 5420.000 \quad 5440.000 \quad 5460.000 \quad 5480.000 \quad 5500.000 \quad 5500.0000$ MHz

									Compared to
Freq	Azimuth	Height		Polarity	Detector	EIRP	EIRP	Spec. Limit	Spec.
(MHz)	(degrees)	(meters)				(Watts)	(dBm)	(dBm)	(dB)
5351.140	171.0	1.4		V-Horn	PK	1.16E-06	-29.4	-27.0	-2.4
5350.867	348.0	1.0		H-Horn	PK	9.61E-07	-30.2	-27.0	-3.2
5350.053	181.0	1.5		V-Horn	PK	6.81E-07	-31.7	-27.0	-4.7
5351.610	338.0	1.0		H-Horn	PK	6.35E-07	-32.0	-27.0	-5.0
5440.070	178.0	1.5		V-Horn	PK	6.21E-07	-32.1	-27.0	-5.1
5440.400	341.0	1.0		H-Horn	PK	5.41E-07	-32.7	-27.0	-5.7
5447.130	344.0	1.0		H-Horn	PK	4.93E-07	-33.1	-27.0	-6.1
5441.630	177.0	1.5		V-Horn	PK	4.60E-07	-33.4	-27.0	-6.4

NORTHWEST		TED ENGOLON		PSA 2008.07.21							
EMC	SPURIOUS RADIATED EMISSIONS EMI 2008.1.9										
EUT:	Summit FS848 Master Module (Wheeler)		Work Order:	FOCU0081							
Serial Number:	0265		Date:	07/16/10							
Customer:	Summit Semiconductor LLC	Temperature:	24.3°C								
Attendees:	Alex Macdonald		Humidity:	41%							
Project:	None		Barometric Pres.:	1020.3 mb							
Tested by:	Dan Haas	Power: 120VAC/60Hz	Job Site:	EV06							
TEST SDECIEICATI	ONS	Toot Mothod									

FCC 15.209:2010

ANSI C63.10:2009

TEST PARAMETERS

Antenna Height(s) (m) 1 - 2 Test Distance (m) 1

COMMENTS

Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables with two turns:

EUT OPERATING MODES

Transmitting at 5320 MHz
DEVIATIONS FROM TEST STANDARD

No deviations.

Run#	2
Configuration #	1
Results	Pass

_						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
5439.970	23.4	37.0	177.0	1.5	1.0	0.0	V-Horn	AV	-9.5	50.9	54.0	-3.1
5440.000	22.9	37.0	341.0	1.0	1.0	0.0	H-Horn	AV	-9.5	50.4	54.0	-3.6
5439.930	22.6	37.0	178.0	1.5	1.0	0.0	V-Horn	AV	-9.5	50.1	54.0	-3.9
5439.970	22.3	37.0	344.0	1.0	1.0	0.0	H-Horn	AV	-9.5	49.8	54.0	-4.2
5350.037	21.6	36.9	181.0	1.5	1.0	0.0	V-Horn	AV	-9.5	49.0	54.0	-5.0
5350.033	21.4	36.9	171.0	1.4	1.0	0.0	V-Horn	AV	-9.5	48.8	54.0	-5.2
5351.000	21.4	36.9	338.0	1.0	1.0	0.0	H-Horn	AV	-9.5	48.8	54.0	-5.2
5350.040	21.2	36.9	348.0	1.0	1.0	0.0	H-Horn	AV	-9.5	48.6	54.0	-5.4
5351.140	38.5	36.9	171.0	1.4	1.0	0.0	V-Horn	PK	-9.5	65.9	74.0	-8.1
5350.867	37.7	36.9	348.0	1.0	1.0	0.0	H-Horn	PK	-9.5	65.1	74.0	-8.9
5350.053	36.2	36.9	181.0	1.5	1.0	0.0	V-Horn	PK	-9.5	63.6	74.0	-10.4
5351.610	35.9	36.9	338.0	1.0	1.0	0.0	H-Horn	PK	-9.5	63.3	74.0	-10.7
5440.070	35.7	37.0	178.0	1.5	1.0	0.0	V-Horn	PK	-9.5	63.2	74.0	-10.8
5440.400	35.1	37.0	341.0	1.0	1.0	0.0	H-Horn	PK	-9.5	62.6	74.0	-11.4
5447.130	34.7	37.0	344.0	1.0	1.0	0.0	H-Horn	PK	-9.5	62.2	74.0	-11.8
5441.630	34.4	37.0	177.0	1.5	1.0	0.0	V-Horn	PK	-9.5	61.9	74.0	-12.1

NORTHWEST EMC	SPURIOUS RADI	ATED	EMIS	SIONS		PSA 2008.07.21 EMI 2008.1.9
	Summit FS848 Master Module (Wheeler)		<u>"</u>		Work Order:	FOCU0081
Serial Number: (0265				Date:	07/16/10
Customer:	Summit Semiconductor LLC				Temperature:	24.3°C
Attendees:	Alex Macdonald				Humidity:	41%
Project: I	None				Barometric Pres.:	1020.3 mb
Tested by: I	Dan Haas	Power:	120VAC/60)Hz	Job Site:	EV06
TEST SPECIFICATION	DNS		Test Metho	d		
FCC 15.407:2010			ANSI C63. ²	10:2009		
TEST PARAMETERS						
Antenna Height(s) (r	m) 1 - 2	Test Dista	nce (m)	1		
COMMENTS						
Aeon C627-510004A	antennas with 4 inch antenna cables. 12 inch ribbo	n cable: sm	all donut fe	rrites on Antei	nna cables with tw	o turns:

EUT OPERATING MODES

Transmitting at 5260 MHz
DEVIATIONS FROM TEST STANDARD

No deviations.

Run #	3
Configuration #	1
Paculte	Pass

Signature

Chil gran

									Compared to
Freq	Azimuth	Height		Polarity	Detector	EIRP	EIRP	Spec. Limit	Spec.
(MHz)	(degrees)	(meters)				(Watts)	(dBm)	(dBm)	(dB)
5379.900	182.0	1.4		V-Horn	PK	6.35E-07	-32.0	-27.0	-5.0
5379.870	343.0	1.3		H-Horn	PK	5.93E-07	-32.3	-27.0	-5.3
5380.170	348.0	1.3		H-Horn	PK	5.79E-07	-32.4	-27.0	-5.4
5380.070	173.0	1.4		V-Horn	PK	5.53E-07	-32.6	-27.0	-5.6

MHz

NORTHWEST		TED ENICOION		PSA 2008.07.21						
EMC	SPURIOUS RADIATED EMISSIONS EMI 2008.1									
EUT:	Summit FS848 Master Module (Wheeler)		Work Order:	FOCU0081						
Serial Number:	0265	Date:	07/16/10							
Customer:	Summit Semiconductor LLC	Summit Semiconductor LLC Ter								
Attendees:	Alex Macdonald		Humidity:	41%						
Project:	None		Barometric Pres.:	1020.3 mb						
Tested by:	Dan Haas	Power: 120VAC/60Hz	Job Site:	EV06						
TEST SPECIFICATI	IONS	Test Method								

FCC 15.209:2010

ANSI C63.10:2009

TEST PARAMETERS

Antenna Height(s) (m) 1 - 2 Test Distance (m) 1

COMMENTS

Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables with two turns:

EUT OPERATING MODES

Transmitting at 5260 MHz
DEVIATIONS FROM TEST STANDARD

No deviations.

Run #	3
Configuration #	1
Paculte	Pass

Signature

Chil gran

						External			Distance			Compared to	
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
5380.000	23.9	36.9	182.0	1.4	1.0	0.0	V-Horn	AV	-9.5	51.3	54.0	-2.7	
5380.000	23.9	36.9	343.0	1.3	1.0	0.0	H-Horn	AV	-9.5	51.3	54.0	-2.7	
5380.000	23.3	36.9	348.0	1.3	1.0	0.0	H-Horn	AV	-9.5	50.7	54.0	-3.3	
5379.930	23.0	36.9	173.0	1.4	1.0	0.0	V-Horn	AV	-9.5	50.4	54.0	-3.6	
5379.900	35.9	36.9	182.0	1.4	1.0	0.0	V-Horn	PK	-9.5	63.3	74.0	-10.7	
5379.870	35.6	36.9	343.0	1.3	1.0	0.0	H-Horn	PK	-9.5	63.0	74.0	-11.0	
5380.170	35.5	36.9	348.0	1.3	1.0	0.0	H-Horn	PK	-9.5	62.9	74.0	-11.1	
5380.070	35.3	36.9	173.0	1.4	1.0	0.0	V-Horn	PK	-9.5	62.7	74.0	-11.3	

MHz

Freq	Azimuth	Height		Polarity	Detector	EIRP	EIRP	Spec. Limit	Spec.	
(MHz)	(degrees)	(meters)				(Watts)	(dBm)	(dBm)	(dB)	Comments
11161.000	206.0	1.4		H-Horn	PK	1.94E-07	-37.1	-27.0	-10.1	CH:116, 6Mbps, EUT Vertical.
11157.300	208.0	1.4		H-Horn	PK	1.65E-07	-37.8	-27.0	-10.8	CH:116, 36Mbps, EUT Vertical.
11400.730	208.0	1.3		H-Horn	PK	1.54E-07	-38.1	-27.0	-11.1	CH:140, 6Mbps, EUT Vertical.
10998.570	216.0	1.1		H-Horn	PK	8.26E-08	-40.8	-27.0	-13.8	CH:100, 6Mbps, EUT Vertical.
10520.670	257.0	1.1		H-Horn	PK	8.07E-08	-40.9	-27.0	-13.9	CH:52, 6Mbps, EUT Vertical.
10640.770	260.0	1.0		H-Horn	PK	8.07E-08	-40.9	-27.0	-13.9	CH:64, 6Mbps, EUT Vertical.
10480.800	260.0	1.2		H-Horn	PK	6.72E-08	-41.7	-27.0	-14.7	CH:48, 6Mbps, EUT Vertical.
11160.600	353.0	1.2		V-Horn	PK	6.13E-08	-42.1	-27.0	-15.1	CH:116, 6Mbps, EUT Horizontal.
11400.830	5.0	1.3		V-Horn	PK	5.85E-08	-42.3	-27.0	-15.3	CH:140, 6Mbps, EUT Horizontal.
11160.800	166.0	1.2		V-Horn	PK	5.09E-08	-42.9	-27.0	-15.9	CH:116, 6Mbps, EUT on side.
10356.930	226.0	1.3		H-Horn	PK	5.09E-08	-42.9	-27.0	-15.9	CH:36, 6Mbps, EUT Vertical.
11157.300	349.0	1.3		V-Horn	PK	4.34E-08	-43.6	-27.0	-16.6	CH:116, 36Mbps, EUT Horizontal.
10520.930	199.0	1.0		V-Horn	PK	4.24E-08	-43.7	-27.0	-16.7	CH:52, 6Mbps, EUT Horizontal.
11397.670	7.0	1.2		V-Horn	PK	3.95E-08	-44.0	-27.0	-17.0	CH:140, 36Mbps, EUT Horizontal.
10640.900	198.0	1.0		V-Horn	PK	3.78E-08	-44.2	-27.0	-17.2	CH:64, 6Mbps, EUT Horizontal.
11160.830	238.0	1.2		V-Horn	PK	3.44E-08	-44.6	-27.0	-17.6	CH:116, 6Mbps, EUT Vertical.
11158.800	144.0	1.0		H-Horn	PK	3.14E-08	-45.0	-27.0	-18.0	CH:116, 6Mbps, EUT on side.
11000.800	138.0	1.1		V-Horn	PK	2.93E-08	-45.3	-27.0	-18.3	CH:100, 6Mbps, EUT Horizontal.
11159.370	231.0	1.1		H-Horn	PK	2.33E-08	-46.3	-27.0	-19.3	CH:116, 6Mbps, EUT Horizontal.
10640.730	255.0	1.1		V-Horn	PK	2.17E-08	-46.6	-27.0	-19.6	CH:64, 6Mbps, EUT Horizontal.

Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	Comments
11161.470	49.4	-8.9	208.0	1.4	3.0	0.0	H-Horn	AV	0.0	40.5	54.0	-13.5	CH:116, 36Mbps, EUT Vertical.
11401.470	47.2	-7.3	208.0	1.3	3.0	0.0	H-Horn	AV	0.0	39.9	54.0	-14.1	CH:140, 36Mbps, EUT Vertical.
11161.000	67.0	-8.9	206.0	1.4	3.0	0.0	H-Horn	PK	0.0	58.1	74.0	-15.9	CH:116, 6Mbps, EUT Vertical.
10641.430	49.3	-11.5	260.0	1.0	3.0	0.0	H-Horn	AV	0.0	37.8	54.0	-16.2	CH:64, 36Mbps, EUT Vertical.
11157.300	66.3	-8.9	208.0	1.4	3.0	0.0	H-Horn	PK	0.0	57.4	74.0	-16.6	CH:116, 36Mbps, EUT Vertical.
11001.400	47.2	-10.0	216.0	1.1	3.0	0.0	H-Horn	AV	0.0	37.2	54.0	-16.8	CH:100, 36Mbps, EUT Vertical.
11400.730	64.4	-7.3	208.0	1.3	3.0	0.0	H-Horn	PK	0.0	57.1	74.0	-16.9	CH:140, 6Mbps, EUT Vertical.
11159.700	45.6	-8.9	206.0	1.4	3.0	0.0	H-Horn	AV	0.0	36.7	54.0	-17.3	CH:116, 6Mbps, EUT Vertical.
11401.430	43.7	-7.3	7.0	1.2	3.0	0.0	V-Horn	AV	0.0	36.4	54.0	-17.6	CH:140, 36Mbps, EUT Horizontal.
11161.400	45.2	-8.9	349.0	1.3	3.0	0.0	V-Horn	AV	0.0	36.3	54.0	-17.7	CH:116, 36Mbps, EUT Horizontal.
11399.700	43.5	-7.3	208.0	1.3	3.0	0.0	H-Horn	AV	0.0	36.2	54.0	-17.8	CH:140, 6Mbps, EUT Vertical.
10641.500	46.7	-11.5	198.0	1.0	3.0	0.0	V-Horn	AV	0.0	35.2	54.0	-18.8	CH:64, 36Mbps, EUT Horizontal.
10639.670	46.0	-11.5	260.0	1.0	3.0	0.0	H-Horn	AV	0.0	34.5	54.0	-19.5	CH:64, 6Mbps, EUT Vertical.
10998.570	64.4	-10.0	216.0	1.1	3.0	0.0	H-Horn	PK	0.0	54.4	74.0	-19.6	CH:100, 6Mbps, EUT Vertical.
10640.770	65.8	-11.5	260.0	1.0	3.0	0.0	H-Horn	PK	0.0	54.3	74.0	-19.7	CH:64, 6Mbps, EUT Vertical.
10999.700	43.9	-10.0	216.0	1.1	3.0	0.0	H-Horn	AV	0.0	33.9	54.0	-20.1	CH:100, 6Mbps, EUT Vertical.
11159.670	42.5	-8.9	353.0	1.2	3.0	0.0	V-Horn	AV	0.0	33.6	54.0	-20.4	CH:116, 6Mbps, EUT Horizontal.
11399.730	40.9	-7.3	5.0	1.3	3.0	0.0	V-Horn	AV	0.0	33.6	54.0	-20.4	CH:140, 6Mbps, EUT Horizontal.
11001.500	43.1	-10.0	138.0	1.1	3.0	0.0	V-Horn	AV	0.0	33.1	54.0	-20.9	CH:100, 36Mbps, EUT Horizontal.
11160.600	62.0	-8.9	353.0	1.2	3.0	0.0	V-Horn	PK	0.0	53.1	74.0	-20.9	CH:116, 6Mbps, EUT Horizontal.

NORTHWEST											PS	A 2008.07.21
EMC	S	PURI	ous	RAD	IATE	D	EMIS	SION	S			EMI 2008.1.9
	Summit FS848 Maste	er Module (Wheeler)						W	ork Order:	FOCU0081	
Serial Number:	0265									Date:	07/20/10	
	Summit Semiconduc	tor LLC							Ter	nperature:		
Attendees:										Humidity:		
Project:					Davis		4001/40/0	011-	Barome		1018.1 mb	
Tested by: TEST SPECIFICAT					Pow		120VAC/6 Test Methor			Job Site:	EVUT	
FCC 15.407:2010	10110						ANSI C63.					
1 00 10.401.2010						ľ	, 10 1 000.	.10.2000				
TEST PARAMETER	RS .											
Antenna Height(s)	(m) 1 - 4				Test Di	istar	nce (m)	3	3			
COMMENTS												
Aeon C627-510004	A antennas with 4 inc	h antenna	cables. 12	inch ribl	oon cable:	sma	all donut f	errites on A	Antenna cal	oles with tw	vo turns:	
EUT OPERATING I												
Continuous Transr	nitting. M TEST STANDARD											
No deviations.	I IESI SIANDAND											
Run #	7									2 0		
Configuration #	1								Cails	Mar		
Results	Pass							Signature	(
results	1 400	ı						Signature				
0.0												
0.0												
-10.0												
-10.0												
-20.0												
-20.0												
-30.0												
00.0												
_												
E -40.0												
Б		•		*				•				
								†				
-50.0												_
-60.0												_
-70.0												_
-80.0 ⊥												_
3600.00	0 3650.000	0	3700.000		3750.00	00	3	3800.000	38	350.000	39	00.000
					MU-							
					MHz	•						
	, ,	1	ı	1	1			1	T	1		
Freq		Azimuth	Height				Polarity	Detector	EIRP	EIRP	Spec. Limit	Compared to Spec.
(MHz)		(degrees)	(meters)	1			ı Jiailly	Detector	(Watts)	(dBm)	(dBm)	Spec. (dB)
3719.873	1	236.0	1.2	1	ı		H-Horn	PK	5.99E-08	-42.2	-27.0	-15.2
3800.070		234.0	1.0				H-Horn	PK	5.72E-08	-42.4	-27.0	-15.4
3720.013		198.0	1.0				V-Horn	PK	4.34E-08	-43.6	-27.0	-16.6
3666.670		240.0	1.2				H-Horn	PK	4.05E-08	-43.9	-27.0	-16.9
3666.617		196.0	1.0				V-Horn	PK	3.78E-08	-44.2	-27.0	-17.2
3799.920		183.0	1.1				V-Horn	PK	3.07E-08	-45.1	-27.0	-18.1

	ORTHWEST		9	PIIDI	LZIIO	SVDL	ATED	FMIS	SION	S		PS	SA 2008.07.21 EMI 2008.1.9
-	EMC					TADI	ما الم						
0			8848 Maste	er Module (Wheeler)					W		FOCU0081	
Sei	rial Number: Customer:		miconduc	tor LLC						Ter	nperature:	07/20/10 22.9 °C	
	Attendees:										Humidity:		
	Project:									Barome		1018.1 mb	
TECT	Tested by:						Power:	120VAC/60 Test Metho			Job Site:	EV01	
	5.209:2010	UNS						ANSI C63.					
	PARAMETER		1 - 4				Toot Diete	naa (m)	3				
COMM	na Height(s) (ENTS	111)	1 - 4				Test Dista	nce (m)	3				
Aeon C	C627-510004 <i>A</i>	A antennas	with 4 inc	h antenna	cables. 12 i	nch ribboı	n cable: sm	all donut fe	errites on A	ntenna cal	oles with to	vo turns:	
EUT O	DED ATING M	IODEO											
Contin	PERATING M	ODES											
DEVIA	uous Transm TIONS FROM	TEST STA	NDARD										
	riations.												
Run#		7	7							0 /	200		
Config	uration #	1		1						Cail	Mars		
Result	s	Pa	ss						Signature	C			
	80.0												\neg
	70.0												_
	60.0												
	60.0												
	50.0			•		*							
_	00.0					2			•				
dBuV/m						T			•				
	40.0												
<u>∞</u>													
8													
	30.0												
	20.0												
	20.0												
	10.0												
	0.0												_
	3600.000	1	3650.000		3700.000	(3750.000	3	800.000	38	350.000	39	00.000
							MHz						
							IVITIZ						
	Freq	Amplitude	Factor	Azimuth	Height	Distance	External Attenuation	Polarity	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.
	(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)	1 Glarity	Detector	(dB)	dBuV/m	dBuV/m	(dB)
	800.003	40.4	8.2	234.0	1.0	3.0	0.0	H-Horn	AV	0.0	48.6	54.0	-5.4
	799.990	40.2	8.2	234.0	1.0	3.0	0.0	H-Horn	AV	0.0	48.4	54.0	-5.6
3719.987		40.7	7.5	236.0	1.2	3.0	0.0	H-Horn	AV	0.0	48.2	54.0	-5.8
	719.980	40.4 39.4	7.5 7.2	236.0 240.0	1.2 1.2	3.0 3.0	0.0 0.0	H-Horn H-Horn	AV AV	0.0 0.0	47.9 46.6	54.0 54.0	-6.1 -7.4
3666.633 3720.000		39.4	7.2 7.5	198.0	1.0	3.0	0.0	V-Horn	AV	0.0	46.5	54.0	-7. 4 -7.5
3666.653		39.1	7.2	240.0	1.2	3.0	0.0	H-Horn	AV	0.0	46.3	54.0	-7.7
	720.003	38.6	7.5	198.0	1.0	3.0	0.0	V-Horn	AV	0.0	46.1	54.0	-7.9
3666.700		38.8	7.2	196.0	1.0	3.0	0.0	V-Horn	AV	0.0	46.0	54.0	-8.0
	666.700	38.4	7.2	196.0	1.0	3.0	0.0	V-Horn	AV	0.0	45.6 44.8	54.0	-8.4
	300.003 799.983	36.6 36.4	8.2 8.2	183.0 183.0	1.1 1.1	3.0 3.0	0.0 0.0	V-Horn V-Horn	AV AV	0.0 0.0	44.8 44.6	54.0 54.0	-9.2 -9.4
	719.873	45.5	7.5	236.0	1.1	3.0	0.0	H-Horn	PK	0.0	53.0	68.2	-9. 4 -15.2
	800.070	44.6	8.2	234.0	1.0	3.0	0.0	H-Horn	PK	0.0	52.8	68.2	-15.4
37	720.013	44.1	7.5	198.0	1.0	3.0	0.0	V-Horn	PK	0.0	51.6	68.2	-16.6
	666.670	44.1	7.2	240.0	1.2	3.0	0.0	H-Horn	PK	0.0	51.3	68.2	-16.9
	666.617 799.920	43.8 41.9	7.2 8.2	196.0 183.0	1.0 1.1	3.0 3.0	0.0 0.0	V-Horn V-Horn	PK PK	0.0 0.0	51.0 50.1	68.2 68.2	-17.2 -18.1
3	100.020	71.3	0.2	103.0	1.1	5.0	0.0	v -1 10111	1.17	0.0	50.1	00.2	-10.1