Section 1.2 – Quadratic Functions

Basic Complex Number

$$i^2 = -1$$

$$i^2 = -1$$
 $\Rightarrow i = \sqrt{-1}$ $\Rightarrow \sqrt{-1} = i$

$$\Rightarrow \sqrt{-1} = i$$

The number i is called the *imaginary unit*.

Example

$$\sqrt{-8} = 2i \sqrt{2}$$

$$\sqrt{-7}\sqrt{-7} = i\sqrt{7} \ i\sqrt{7}$$
$$= i^2 \left(\sqrt{7}\right)^2$$
$$= -7$$

Complex number is written in a form: z = a + ib

a is the real part

b is the imaginary part

Conjugate of a complex number a + bi is a - bi

A *quadratic equation* in x is an equation that can be written in the general form:

$$ax^2 + bx + c = 0$$

 $ax^2 + bx + c = 0$ where a, b, and c are real numbers,

$$4x^2 - 3x + 2 = 0$$

$$4x^2 - 3x + 2 = 0$$
 $a = 4$ $b = -3$ $c = 2$

Solving Quadratic Equations by Factoring

The Zero-Product Principle

If
$$AB = 0$$
 then $A = 0$ or $B = 0$.

Example

Solve
$$6x^2 + 7x - 3 = 0$$

$$(3x-1)(2x+3) = 0$$

$$3x - 1 = 0 2x + 3 = 0$$

$$2x + 3 = 0$$

$$x = \frac{1}{3}$$

$$x = -\frac{3}{2}$$

The Square Root Property

If u is an algebraic expression and d is a nonzero real number, then $u^2 = d$ has exactly two solutions:

If
$$u^2 = d$$
, then $u = \sqrt{d}$ or $u = -\sqrt{d}$

Equivalently,

If
$$u^2 = d \implies u = \pm \sqrt{d}$$
.

Example

Solve $3x^2 - 21 = 0$

Solution

$$3x^2 = 21$$

$$x^2 = 7$$

$$x = \pm \sqrt{7}$$

Example

Solve $5x^2 + 45 = 0$

Solution

$$5x^2 = -45$$

$$x^2 = -9$$

$$x = \pm \sqrt{-9}$$

$$x = \pm 3i$$

Example

Solve $(x+5)^2 = 11$

$$x + 5 = \pm \sqrt{11}$$

$$x = -5 \pm \sqrt{11}$$

Completing the Square

If $x^2 + bx$ is a binomial, then by **adding** $\left(\frac{b}{2}\right)^2$ which is the square of half the coefficient of x. a perfect square trinomial will result. That is.

$$x^{2} + bx + \left(\frac{b}{2}\right)^{2} = \left(x + \frac{b}{2}\right)^{2}$$
 $x^{2} + bx + \left(\frac{1}{2}b\right)^{2} = \left(x + \frac{b}{2}\right)^{2}$

Example

Solve:
$$x^2 + 4x - 1 = 0$$

$$x^{2} + 4x = 1$$

$$x^{2} + 4x + \left(\frac{4}{2}\right)^{2} = 1 + \left(\frac{4}{2}\right)^{2}$$

$$x^{2} + 4x + (2)^{2} = 1 + 4$$

$$(x+2)^{2} = 5$$

$$x + 2 = \pm\sqrt{5}$$

$$x = -2 \pm \sqrt{5}$$

Quadratic Formula

(Using Completing the Square)

$$ax^{2} + bx + c = 0$$

$$ax^{2} + bx = -c$$

$$x^{2} + \frac{b}{a}x = -\frac{c}{a}$$

$$x^{2} + \frac{b}{a}x + \left(\frac{1}{2}\frac{b}{a}\right)^{2} = -\frac{c}{a} + \left(\frac{1}{2}\frac{b}{a}\right)^{2}$$

$$\left(x + \frac{b}{2a}\right)^{2} = -\frac{c}{a} + \frac{b^{2}}{4a^{2}}$$

$$= \frac{b^{2}}{4a^{2}} - \frac{c}{a}$$

$$= \frac{b^{2} - 4ac}{4a^{2}}$$

$$x + \frac{b}{2a} = \pm \frac{\sqrt{b^{2} - 4ac}}{\sqrt{4a^{2}}}$$

$$x = -\frac{b}{2a} \pm \frac{\sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$ax^2 + bx + c = 0$$
 $\Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$\begin{cases} b^2 - 4ac > 0 \rightarrow 2 \text{ Real numbers} \\ b^2 - 4ac < 0 \rightarrow 2 \text{ Complex numbers} \\ b^2 - 4ac = 0 \rightarrow \text{One solution (repeated)} \end{cases}$$

Example

Solve:
$$2x^2 + 2x - 1 = 0$$

Solution

$$\Rightarrow a = 2 \quad b = 2 \quad c = -1$$

$$x = \frac{-2 \pm \sqrt{2^2 - 4(2)(-1)}}{2(2)}$$

$$= \frac{-2 \pm \sqrt{4 + 8}}{4}$$

$$= -\frac{2}{4} \pm \frac{\sqrt{12}}{4}$$

$$= -\frac{1}{2} \pm \frac{2\sqrt{3}}{4}$$

$$= -\frac{1}{2} \pm \frac{\sqrt{3}}{2}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

or

$$= \frac{-2 \pm \sqrt{12}}{4}$$

$$= \frac{-2 \pm 2\sqrt{3}}{4}$$

$$= \frac{2\left(-1 \pm \sqrt{3}\right)}{4}$$

$$= \frac{-1 \pm \sqrt{3}}{2}$$

Example

Solve
$$x^2 - 4x = -2$$

$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(2)}}{2(1)}$$

$$= \frac{4 \pm \sqrt{16 - 8}}{2}$$

$$= \frac{4 \pm \sqrt{8}}{2}$$

$$= \frac{4 \pm 2\sqrt{2}}{2}$$

$$= \frac{2(2 \pm \sqrt{2})}{2}$$

$$= 2 \pm \sqrt{2}$$

$$\Rightarrow a = 1 \quad b = -4 \quad c = 2 \qquad \qquad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example

Solve:
$$x^2 - 2x + 2 = 0$$

Solution

$$\Rightarrow a = 1$$
 $b = -2$ $c = 2$

$$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(2)}}{2(1)}$$

$$= \frac{2 \pm \sqrt{4 - 8}}{2}$$

$$= \frac{2}{2} \pm \frac{\sqrt{-4}}{2}$$

$$=1\pm\frac{2i}{2}$$

$$=1\pm i$$

$$=\frac{2\pm\sqrt{-4}}{2}$$

$$=\frac{2\pm 2i}{2}$$

$$=\frac{2(1\pm i)}{2}$$

$$=1\pm i$$

$$ax^2+bx+c=0$$

If
$$a + b + c = 0$$
 $\Rightarrow x = 1$, $\frac{c}{a}$

Example

$$2x^2 + x - 3 = 0$$
$$2 + 1 - 3 = 0$$

$$2+1-3=0 \qquad \Rightarrow x=1, -\frac{3}{2}$$

If
$$a - b + c = 0$$
 $\Rightarrow x = -1, -\frac{c}{a}$

Example

$$2x^2 - x - 3 = 0$$

$$2-(-1)-3=0$$

$$2 - \left(-1\right) - 3 = 0 \qquad \Rightarrow \underbrace{x = -1, \quad \frac{3}{2}}$$

Exercises Section 1.2 – Quadratic Functions

(1-48) Solve

1.
$$x^2 = -25$$

2.
$$x^2 = 49$$

3.
$$9x^2 = 100$$

4.
$$4x^2 + 25 = 0$$

5.
$$5x^2 + 35 = 0$$

6.
$$5x^2 - 45 = 0$$

7.
$$(x-4)^2 = 12$$

8.
$$(x+3)^2 = -16$$

9.
$$(x-2)^2 = -20$$

10.
$$(4x+1)^2 = 20$$

11.
$$x^2 - 6x = -7$$

12.
$$-6x^2 = 3x + 2$$

13.
$$3x^2 + 2x = 7$$

14.
$$3x^2 + 6 = 10x$$

15.
$$5x^2 + 2 = x$$

16.
$$5x^2 = 2x - 3$$

17.
$$x^2 + 8x + 15 = 0$$

18.
$$x^2 + 5x + 2 = 0$$

19.
$$x^2 + x - 12 = 0$$

20.
$$x^2 - 2x - 15 = 0$$

21.
$$x^2 - 4x - 45 = 0$$

22.
$$x^2 - 6x - 10 = 0$$

23.
$$2x^2 + 3x - 4 = 0$$

24.
$$x^2 - x + 8 = 0$$

25.
$$2x^2 - 13x = 1$$

26.
$$r^2 + 3r - 3 = 0$$

27.
$$x^3 + 8 = 0$$

28.
$$4x^2 - 12x + 9 = 0$$

29.
$$9x^2 - 30x + 25 = 0$$

30.
$$x^2 - 14x + 49 = 0$$

31.
$$x^2 - 8x + 16 = 0$$

32.
$$x^2 + 6x + 13 = 0$$

33.
$$2x^2 - 2x + 13 = 0$$

34.
$$x^2 + 2x + 29 = 0$$

35.
$$4x^2 + 4x + 13 = 0$$

36.
$$x^2 - 2x + 26 = 0$$

$$37. \quad 9x^2 - 4x + 20 = 0$$

38.
$$x^2 + 6x + 21 = 0$$

$$39. \quad 9x^2 - 12x - 49 = 0$$

40.
$$x(x-3)=18$$

41.
$$x(x-4)-21=0$$

42.
$$(x-1)(x+4)=14$$

43.
$$(x-3)(x+8) = -30$$

44.
$$x(x+8) = 16(x-1)$$

45.
$$x(x+9) = 4(2x+5)$$

46.
$$(x+1)^2 = 2(x+3)$$

47.
$$(x+1)^2 - 5(x+2) = 3x + 7$$

48.
$$x(8x+1) = 3x^2 - 2x + 2$$

(49-60) Solve using formula

49.
$$x^2 + 6x - 7 = 0$$

50.
$$x^2 - 6x - 7 = 0$$

51.
$$3x^2 + 4x - 7 = 0$$

52.
$$3x^2 - 4x - 7 = 0$$

53.
$$3x^2 - x - 2 = 0$$

54.
$$3x^2 + x - 2 = 0$$

55.
$$2x^2 + 3x - 5 = 0$$

56.
$$2x^2 - 3x - 5 = 0$$

57.
$$x^2 - 3x - 4 = 0$$

58.
$$x^2 + 3x - 4 = 0$$

59.
$$x^2 + 2x + 1 = 0$$

60.
$$4x^2 - x - 5 = 0$$

61. Solve for the specified variable $A = \frac{\pi d^2}{4}$, for d

62. Solve for the specified variable $rt^2 - st - k = 0$ $(r \neq 0)$, for t