EE5111: Estimation TheoryHeavy-Tailed Distributions

Observations of CVaR for the Cauchy Distribution

Jay Shah (EE18B158) Aravint Annamalai (EE18B125) Sayan Mitra (EE18B156) Rohith D (EE18B148) Siddharth D P (EE18B072)

The Cauchy Distribution

- Distribution of the ratio of two independent normally distributed random variables with mean zero.
- Both its expected value and its variance are undefined.
- Does not have finite moments of order
 ≥ 1; only fractional absolute moments
 exist.
- Has no moment generating function.
- CVaR = $\int_{VAR}^{\infty} x. \frac{1}{\pi \gamma} \left[\frac{\gamma^2}{(x-x_0)^2 + \gamma^2} \right] dx$ where $x_0 = 0$ and $\gamma = 1$

Simulation Results - Cauchy Distribution

Simulation Results - Cauchy Distribution

Inference -

- With increasing samples, the estimator worsens (counterintuitive) as the number of extreme samples increases
- Cauchy (I have simulated using standard Cauchy) is a pathological distribution having an undefined mean and variance.
- Extreme values are prone to occur and this totally distorts the graph.

Simulation Results

Inference:

- Biased estimator (Mean)
- Not consistent (Variance)

Simulation Results

Inference:

- The Mean Squared Error does not decrease with increasing sample size (with increasing samples, extreme values tend to increase further).
- Infact, there are spikes in between, at around 10⁵ samples
- The estimator variance is in the order of 10⁷ as seen in the previous slide.
- The mean absolute error is high with random spikes as seen from the graph here.

THANK YOU!