CHAPTER-7 COORDINATE GEOMETRY

1. Which of the following is not a criterion for congruence of triangles?

EXERCISE - 7.1

(a) SAS

PQ is

In each of the following, write the correct answer:

(b) ASA			
(c) SSA			
(d) SSS			
2. If AB=QR,BC=PR and CA=PQ,then			
(a) $\triangle ABC \cong \triangle PQR$			
(b) $\triangle CBA \cong \triangle PRQ$			
(c) $\triangle BAC \cong \triangle RPQ$			
(d) $\triangle PQR \cong \triangle BCA$			
3. In $\triangle ABC,AB=AC$ and $\angle B=50^{\circ}.Then\ \angle C$ equal to			
(a) 40°			
(b) 50°			
(c) 80°			
(d) 130°			
4. In $\triangle ABC,BC=AB$ and $\angle B=80^{\circ}.Then$ $\angle A$ is equal to			
(a) 80°			
(b) 40°			
(c) 50°			
(d) 100°			

5. In $\triangle PQR, \angle R = \angle P$ and QR = 4 cm and PR = 5 cm. Then the length of

((a)	4	cm

- (b) 5 cm
- (c) 2 cm
- (d) 2.5 cm
- 6. D is a point on the side BC of a \triangle ABC such that AD bisects \angle BAC. Then
 - (a) BD = CD
 - (b) BA > BD
 - (c) BD > BA
 - (d) CD > CA
- 7. It is given that $\triangle ABC \cong \triangle FDE$ and AB=5 cm, $\angle B=40^{\circ}$ and $\angle A=80^{\circ}$. Then which of the following is true?
 - (a) DF=5 cm, \angle F=60°
 - (b) DF=5 cm, \angle E=60°
 - (c) DE=5 cm, \angle E=60°
 - (d) DE=5 cm, \angle D=40°
- 8. Two sides of a triangle are of lengths $5~\mathrm{cm}$ and $1.5~\mathrm{cm}$. The length of the third side of the triangle cannot be
 - (a) 3.6 cm
 - (b) 4.1 cm
 - (c) 3.8 cm
 - (d) 3.4 cm
- 9. In $\triangle PQR$, if $\angle R > \angle Q$, then
 - (a) QR>PR
 - (b) PQ>PR
 - (c) PQ<PR
 - (d) QR < PR

- 10. In triangles ABC and PQR , AB=AC, ∠C=∠P and ∠B=∠Q. The two triangles are
 - (a) isosceles but not congruent
 - (b) isosceles and congruent
 - (c) congruent but not isosceles
 - (d) neither congruent nor isosceles
- 11. In triangles ABC and DEF, AB=FD and $\angle A=\angle D.$ The two triangles will be congruent by SAS axiom if
 - (a) BC = EF
 - (b) AC = DE
 - (c) AC = EF
 - (d) BC = DE