

Linear Versus Nonlinear

- There is an important distinction between a linear relationship and a linear statistical model
 - Linear or curved relationships describe how two variables might be visualized together on a graph
 - Linear models take the form Y = mX + b or $Y = X\beta + \varepsilon$
- Curved relationships can be fit with either linear or nonlinear statistical models
 - Polynomial regression is linear in its parameters
 - Sigmoidal dose-response models are not linear

Bioinformatics for you...

Simple Linear Regression

weight = $-433.7 + 9.03 \cdot \text{height} + \text{error}$

- Linear relationship between a predictor, height, and a response variable, weight, is modeled by a straight line
 - Model: $Y = \beta_0 + \beta_1 X + \varepsilon$
 - Definition of a line: Y = mx + b
- The model is linear, so we can estimate slope and y-int using calculus, or ordinary least squares (OLS)

Bioinformatics for you... binding = β₀ + β₁ · (ligand) + β₂ · (ligand²) + ... + ε Fits a curved relationship using a linear model Degree of polynomial indicates the number of curves Quadratic (1 curve) Cubic (2 curves) High degree polynomials are best fit by ANOVA models

Nonlinear Regression

 Describes a nonlinear relationship between predictor and response using nonlinear equations

- E.g.
$$Response = Bottom - \frac{Top - Bottom}{1 + 10^{(log EC50 - log X) \cdot Hillslope}}$$

- Least squares equations do not have a closed form solution (i.e. cannot use calculus to find estimates)
- Estimates are found using iterative methods
 - Pick initial values and converge to solution step-by-step

Bioinformatics for you...

Iterative Methods

- Linear descent method starts with an initial value, then "steps" away to minimize sums of squares (SS)
 - If first positive step increases SS, step backwards
 - If nth step increases SS, take smaller steps
 - Linear descent is best for first steps from initial value
- Gauss-Newton uses matrix algebra to minimize SS, as if it were a change in "slope" from the initial value
 - Gauss-Newton is best for the last steps of minimization
- Levenberg-Marquardt method starts with linear descent and switches to Gauss-Newton

Iterative Methods (continued)

- · Strength of the iterative methods
 - Can be used to fit any model
- Weaknesses of the iterative method
 - Computationally slower than calculus method
 - May find the local min, instead of global min
 - May get "stuck" if model choice is poor

- Equations are grouped by experiment types
 - E.g. dose-response, binding, ...
- Click the details button to view the actual equation and a sample graph of the model

Compare Groups or Models?

- Compare the fit of two different equations on the same data set(s)
 - Compare dose-response models with and without a variable slope parameter
 - Compare different sets of constraints, etc.
- Compare best fit parameters between two or more groups in your experiment
 - E.g. Compare EC50 between 2 or more groups

Bioinformatics for you...

F-test or AIC?

- Use extra sums of squares F-test whenever the two equations are nested:
 - Dose-response vs Dose-Response (variable slope) is nested, because one equation is a simplification of the other equation
 - Dose-response versus binding equations is not nested, because the equations are unrelated
 - Comparing 2 or more groups is always nested
- Use AIC if you are unsure about nesting

- PRISM provides you the null and alternative hypotheses, p-values and conclusions
- Interpretation of the results is often spelled out for you in plain language

Bioinformatics for you...
b: denum calls y according at an items

Model Diagnostics

- Goodness-of-fit tests are used to compare two equally valid models
- Normality tests evaluate the model assumption of normal errors
- Runs tests determine if errors are random
- Residual plots identify non-constant variance, correlated errors, etc.

Goodness of Fit Tests

- Coefficient of determination (R²) is the percent of variation explained by the model
 - Remember R² is only meaningful if the model assumptions have been met
 - Typically used to compare valid models
- Sums of squares (SS) and standard deviation of the residuals (s_{v,x}) are more descriptive
 - Bigger SS implies model is more informative
 - Smaller s_{v.x} implies model has smaller errors

Bioinformatics for you...

Normality Tests

- D'Agostino-Pearson Omnibus test
 - Tests the magnitude of skewness and kurtosis statistics to determine if errors are normal
- Shapiro-Wilk test
 - Uses ranks to compare errors to normal distribution
- Kolmogorov-Smirnov test (historical use only)
 - Tests the magnitude of the largest difference between two empirical cdf plots

Bioinformatics for you... B: derrace cultive according at the last to the las

- Use replicates test for replicated curve-fit data
 - Compare error between points and curve to error among reps
- Use runs test for non-replicated curve-fit data
 - Tests the largest "run" of points above or below the curve

Notice the largest run of 3 points above the curve suggests model is incorrect

Improving Model Fit

- Change the initial values to aid convergence
- Limit the range of X or Y to eliminate outliers
- Add constraints to force the model to meet certain criteria that improve model fit
 - E.g. Bottom = 0%, Top = 100%, ...
- Use a weighting scheme to combat non-constant variance or emphasize parts of the curve

Bioinformatics for you...

Initial Values and Range

- Change the initial values of the parameters, if the model does not converge
 - Try the "Don't Fit Curve" option on the diagnostics tab to find better initial values
- Select the range of X values used curve-fit to eliminate outliers or invalid data points
- Select the range of the fitted curve to complete the graphs and figures, if necessary

Model Constraints

- Add hard or soft constraints to a model parameter
 - -Bottom = 0

Bioinformatics for you...

- Top ≤ 100 %
- Improve model fit if doses are poorly chosen, etc.
 - Not enough low doses
 - Doses too low for saturation

BCBB

Weights

- Use 1 / SD² weights for non-constant variance
 - Requires many replicates per X
- Use other weight schemes to apply unequal weights to one part of the curve
 - Use 1 / Y^2 for larger errors at the highest responses
 - Use 1 / X to emphasize values on the left of the graph

Summary

- Remember these same basic techniques can be applied to any nonlinear regression
- Contact <u>ScienceApps@niaid.nih.gov</u> for additional help if needed
- Additional PRISM training is available
 - Statistical Applications in Prism April 8th, 1-3 pm

