Segundo Parcial 17/11/21

Ejercicio 1

Dada $f: (-1, 2] \rightarrow R/f(x) = x^3 e^{-2x}$, entonces:

- a) f es estrictamente creciente en $\left(-1,\frac{3}{2}\right)$, estrictamente decreciente en $\left(\frac{3}{2},2\right)$. f(-1) es mínimo absoluto y f(3/2) es máximo local y absoluto.
- b) f es estrictamente creciente en (-1,0) y en $(\frac{3}{2},2)$ y estrictamente decreciente en $(0,\frac{3}{2})$. f(0) es máximo local y f(3/2) es mínimo local y absoluto.
- c) f es estrictamente decreciente en $\left(-1, \frac{3}{2}\right)$ y es estrictamente creciente en $\left(\frac{3}{2}, 2\right)$. f(3/2) es mínimo local y f(2) es máximo local y absoluto.
- d) f es estrictamente creciente en $\left(-1, \frac{3}{2}\right)$, estrictamente decreciente en $\left(\frac{3}{2}, 2\right)$. f(3/2) es máximo local y absoluto y no alcanza mínimo local ni absoluto.
- e) f es estrictamente creciente en $\left(-1, \frac{3}{2}\right)$, estrictamente decreciente en $\left(\frac{3}{2}, 2\right)$. f(2) es mínimo absoluto y f(3/2) es máximo local y absoluto.

Ejercicio 2

Hallar el valor de $a \in R$ que verifique la siguiente igualdad:

$$\int_{-1}^{+\infty} x \, e^{ax} \, dx = -\frac{1}{4} \, e^{-a}.$$

- a) a = 0
- b) a = -2
- c) a = 1
- d) $a = -\frac{1}{2}$
- e) a = 3

Ejercicio 3 Hallar todas las funciones y = f(x), indicando su dominio, tales que $dy/dx = (x+1) \ln(x+4)$.

Ejercicio 4

La ecuación $q_A q_B C + 3(q_B)^3 (q_A)^2 = ln(C^3)$ define implícitamente una función de Costos C= C(q_A , q_B) con derivadas parciales continuas, siendo q_A y q_B cantidades a producir de dos artículos A y B respectivamente

- a) Definir la función que permite calcular el incremento aproximado del Costo cuando la cantidad q_B se incrementa en una unidad a partir de un determinado valor manteniendo q_A constante.
- b) Qué cantidad debe producirse del artículo B para que, al producir una unidad más del artículo A a partir de 0, el incremento aproximado del Costo sea de 100 unidades monetarias.

Ejercicio 5

a) Hallar, si existen, extremos locales para la función F definida mediante:

$$F(x,y) = \ln(x y^2) + y x^2 + 6y.$$

b) Teniendo en cuenta el Método de Lagrange analizar si F alcanza valor máximo y/o mínimo bajo la condición yx = 1.