ALGTOP2: Homework

						3	
						4	
						Σ	
	Vn	isn	a št	evi	lka		•

Ime in priimek

1. naloga

Let

$$\sigma_1 = [012]$$
 $\sigma_2 = [0'1'2']$ $\sigma_3 = [ABC]$ $\sigma_4 = [A'B'C']$

be four standard 2-simplices and let X be the quotient space of the disjoint union of σ_i , where we identify the faces of the simplices in the following way:

$$[01] \sim [1'2'] \sim [AB] \sim [B'C']$$

$$[12] \sim [0'1'] \sim [BC] \sim [A'B']$$

$$[02] \sim [0'2'] \sim [AC] \sim [A'C']$$

(Here [01] \sim [1'2'] means that [01] and [1'2'] are identified by an affine map that maps $0\mapsto 1'$ and $1\mapsto 2'$.)

- a) Describe the Δ -complex structure of X.
- **b)** Compute the homology of X (with \mathbb{Z} coefficients).
- c) Compute the cohomology of X (with \mathbb{Z} coefficients).
- d) Compute the cup and the cap product.

Let G be a topological group and $\pi: E \to B$ a principal G-bundle.

a) Let $f:(S^n,x_0)\to (B,b_0)$ be a continuous map and

$$f^*E$$

$$\downarrow$$

$$S^n$$

the pullback principal G-bundle. Suppose f^*E has transition function

$$c: S^{n-1} \to G$$
.

Let

...
$$\rightarrow \pi_n(G,1) \rightarrow \pi_n(E,e_0) \rightarrow \pi_n(B,b_0) \xrightarrow{\partial} \pi_{n-1}(G,1) \rightarrow ...$$

be the long exact sequence for the bundle E. Show that

$$\partial: [f] \mapsto [c]$$
.

b) Let $p:U(2)\to S^3$, where

$$p\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a \\ c \end{bmatrix}$$

be the principal U(1)-bundle. Calculate $\pi_k(U(2), \mathrm{Id})$ in terms of $\pi_k(U(1), \mathrm{Id})$ and $\pi_k(S^3, (1, 0))$. Is the transition map $c: S^2 \to U(1)$ of this bundle nullhomotopic?

c) Use U(2)-principal bundle $p:U(3)\to S^5$ to calculate

$$\pi_1(U(3))$$
 $\pi_2(U(3))$ $\pi_3(U(3))$.

d) Show that the principal SO(3)-bundle

$$p:SO(4)\to S^3$$

is a trivial bundle and calculate $\pi_n(SO(4))$ in terms of $\pi_n(SO(3))$ and $\pi_n(S^3)$.

Let X be a compact orientable n-manifold, $Y = \partial X$, and R a ring. Suppose that X is an R-homology ball, i. e., $H_*(X;R) \cong H_*(B^n;R)$.

- (a) Compute $H_*(Y;R)$.
- (b) Suppose n=4 and $R=\mathbb{Q}$. Show that the order of $H_1(Y;\mathbb{Z})$ is a square, a^2 . Describe the number a in terms of homology of X.

Let X be a closed, connected, orientable smooth n-manifold and let $Y \subset X$ be a smooth closed m-submanifold.

- (a) Express homology of the complement $H_*(X \setminus Y; \mathbb{Z})$ in terms of (co)homology of the pair (X, Y).
 - Hint: Use that fact that Y has a closed tubular neighborhood N in X which is diffeomorphic to the unit disk bundle of the normal bundle of Y in X.
- (b) Compute $H_0(X \setminus Y; \mathbb{Z})$ when m = n 1.
- (c) Suppose X has the integral homology of a sphere. Express $H_*(X \setminus Y; \mathbb{Z})$ in terms of (co)homology of Y.
- (d) Let $K \subset S^3$ be a knot, i. e., the image of an embedding $f: S^1 \to S^3$. Compute $H_1(S^3 \setminus K; \mathbb{Z})$ using (c). How good is this invariant at distinguishing knots?

Let $X=T\vee \mathbb{C}P^2,$ where T denotes the 2-dimensional torus.

- (a) Compute $\pi_2(X)$.
- (b) Describe the action of $\pi_1(X)$ on $\pi_2(X)$.