FGI-1 – Formale Grundlagen der Informatik I

Logik, Automaten und Formale Sprachen

Musterlösung 11: — Resolution, Turingmaschinen

Präsenzaufgabe 11.1 Es sei P ein zweistelliges Prädikatensymbol und x, y, z Variablen. Weiterhin seien folgende Formeln definiert:

$$\begin{array}{lll} F_1 & = & \forall x \ \forall y \ (P(x,y) \Rightarrow \neg P(y,x)) \\ F_2 & = & \forall x \ \neg P(x,x) \\ F_3 & = & \forall x \ \forall y \ \forall z \ ((P(x,y) \land P(y,z)) \Rightarrow P(x,z)) \end{array}$$

Zeigen Sie unter Verwendung des prädikatenlogischen Resolutionsverfahrens die folgenden Behauptungen:

1. $F_1 \models F_2$

Hilfestellung: Die Mengendarstellung einer Klauselnormalform von $(F_1 \land \neg F_2)$ ist $\{\{\neg P(x_1,y_1), \neg P(y_1,x_1)\}, \{P(a,a)\}\}.$

Erläutern Sie, warum Ihnen diese Information nützlich ist.

Lösung $F_1 \models F_2$ genau dann, wenn $(F_1 \land \neg F_2)$ unerfüllbar ist.

Der Vollständigkeit halber:

Umforming von $(F_1 \land \neg F_2)$ in Klauselnormalform:

$$(F_1 \land \neg F_2) = (\forall x \forall y (P(x,y) \Rightarrow \neg P(y,x)) \land \neg \forall x \neg P(x,x))$$

Elimination von \Rightarrow (Äquivalenzumformung):

$$\equiv (\forall x \ \forall y \ (\neg P(x,y) \lor \neg P(y,x)) \land \neg \forall x \ \neg P(x,x))$$

Bereinigung (gebundene Umbenennung der Variablen) (Äquivalenzumformung):

$$\equiv (\forall x_1 \ \forall y_1 \ (\neg P(x_1, y_1) \lor \neg P(y_1, x_1)) \land \neg \forall x_2 \ \neg P(x_2, x_2))$$

Pränexform (Skopuserweiterung) (Äquivalenzumformung):

$$\equiv \exists \mathsf{x}_2 \ \forall \mathsf{x}_1 \ \forall \mathsf{y}_1 \ ((\neg \mathsf{P}(\mathsf{x}_1,\mathsf{y}_1) \lor \neg \mathsf{P}(\mathsf{y}_1,\mathsf{x}_1)) \land \neg \neg \mathsf{P}(\mathsf{x}_2,\mathsf{x}_2))$$

Skolemisierung (Erfüllbarkeitsäquivalenz): x2: Skolemkonstante a;

$$\forall x_1 \ \forall y_1 \ ((\neg P(x_1,y_1) \lor \neg P(y_1,x_1)) \land \neg \neg P(a,a))$$

Konjunktive Normalform der Matrix (Äquivalenzumformung):

$$\equiv \forall \mathsf{x}_1 \ \forall \mathsf{y}_1 \ ((\neg \mathsf{P}(\mathsf{x}_1,\mathsf{y}_1) \lor \neg \mathsf{P}(\mathsf{y}_1,\mathsf{x}_1)) \land \mathsf{P}(\mathsf{a},\mathsf{a}))$$

Klauselnormalform in Mengendarstellung:

$$\{\{\neg P(x_1, y_1), \neg P(y_1, x_1)\}, \{P(a, a)\}\}$$

Resolution:

$$\left\{ \neg P(x_1, y_1), \neg P(y_1, x_1) \right\}$$

$$\left\{ P(a, a) \right\}$$

```
2. \{F_2, F_3\} \models F_1
     Hilfestellung: Die Mengendarstellung einer Klauselnormalform von ((F_2 \wedge F_3) \wedge \neg F_1)
     ist \{\{\neg P(x_1,y_1), \neg P(y_1,z_1), P(x_1,z_1)\}, \{\neg P(x_2,x_2)\}, \{P(a,b)\}, \{P(b,a)\}\}.
     Erläutern Sie, warum Ihnen diese Information nützlich ist.
     Lösung \{F_2, F_3\} \models F_1 genau dann, wenn ((F_2 \land F_3) \land \neg F_1) unerfüllbar ist.
     Der Vollständigkeit halber:
      Umforming von ((F_3 \land F_2) \land \neg F_1) in Klauselnormalform:
      ((\mathsf{F}_3 \wedge \mathsf{F}_2) \wedge \neg \mathsf{F}_1) =
      ((\forall x \ \forall y \ \forall z \ ((P(x,y) \land P(y,z)) \Rightarrow P(x,z)) \land \forall x \ \neg P(x,x)) \land \neg \forall x \ \forall y \ (P(x,y) \Rightarrow \neg P(y,x)))
     Elimination von \Rightarrow (Äquivalenzumformung):
      \equiv ((\forall x \ \forall y \ \forall z \ (\neg(P(x,y) \land P(y,z)) \lor P(x,z)) \land \forall x \ \neg P(x,x)) \land \neg \forall x \ \forall y \ (\neg P(x,y) \lor \neg P(y,x)))
      Bereinigung (gebundene Umbenennung der Variablen) (Äquivalenzumformung):
      \equiv ((\forall \mathsf{x}_1 \ \forall \mathsf{y}_1 \ \forall \mathsf{z}_1 \ (\neg(\mathsf{P}(\mathsf{x}_1,\mathsf{y}_1) \land \mathsf{P}(\mathsf{y}_1,\mathsf{z}_1)) \lor \mathsf{P}(\mathsf{x}_1,\mathsf{z}_1)) \land \forall \mathsf{x}_2 \ \neg \mathsf{P}(\mathsf{x}_2,\mathsf{x}_2)) \land \\
     \neg \forall x_3 \ \forall y_2 \ (\neg P(x_3, y_2) \lor \neg P(y_2, x_3)))
     Pränexform (Skopuserweiterung) (Äquivalenzumformung):
      \equiv \exists \mathsf{x}_3 \; \exists \mathsf{y}_2 \; \forall \mathsf{x}_1 \; \forall \mathsf{y}_1 \; \forall \mathsf{z}_1 \; \forall \mathsf{x}_2 \; (((\neg(\mathsf{P}(\mathsf{x}_1,\mathsf{y}_1) \land \mathsf{P}(\mathsf{y}_1,\mathsf{z}_1)) \lor \mathsf{P}(\mathsf{x}_1,\mathsf{z}_1)) \land \neg \mathsf{P}(\mathsf{x}_2,\mathsf{x}_2)) \land \\
      \neg(\neg P(x_3, y_2) \lor \neg P(y_2, x_3)))
     Skolemisierung (Erfüllbarkeitsäquivalenz): x3: Skolemkonstante a; y2: Skolemkonstan-
     te b;
     \forall x_1 \ \forall y_1 \ \forall z_1 \ \forall x_2 \ (((\neg(P(x_1,y_1) \land P(y_1,z_1)) \lor P(x_1,z_1)) \land \neg P(x_2,x_2)) \land \neg(\neg P(a,b) \lor \neg P(b,a)))
      Konjunktive Normalform der Matrix (Äquivalenzumformung):
     \equiv \forall \mathsf{x}_1 \ \forall \mathsf{y}_1 \ \forall \mathsf{z}_1 \ \forall \mathsf{x}_2 \ ((((\neg \mathsf{P}(\mathsf{x}_1,\mathsf{y}_1) \lor \neg \mathsf{P}(\mathsf{y}_1,\mathsf{z}_1)) \lor \mathsf{P}(\mathsf{x}_1,\mathsf{z}_1)) \land \neg \mathsf{P}(\mathsf{x}_2,\mathsf{x}_2)) \land (\mathsf{P}(\mathsf{a},\mathsf{b}) \land \mathsf{P}(\mathsf{b},\mathsf{a})))
     Klammerersparnis, um die Struktur deutlicher zu machen:
     \equiv \forall x_1 \ \forall y_1 \ \forall z_1 \ \forall x_2 \ ((\neg P(x_1,y_1) \lor \neg P(y_1,z_1) \lor P(x_1,z_1)) \land \neg P(x_2,x_2) \land P(a,b) \land P(b,a))
     Klauselnormalform in Mengendarstellung:
      \{ \{ \neg P(x_1, y_1), \neg P(y_1, z_1), P(x_1, z_1) \}, \{ \neg P(x_2, x_2) \}, \{ P(a, b) \}, \{ P(b, a) \} \}
     N-Resolution:
       \left\{ \neg P(x_1, y_1), \neg P(y_1, z_1), P(x_1, z_1) \right\} 
 \left\{ \neg P(x_2, z_1/x_2) \middle| \left\{ \neg P(x_2, y_1), \neg P(y_1, x_2) \right\} \right. 
 \left\{ \neg P(b, a) \right\}
```

Präsenzaufgabe 11.2 Betrachten Sie folgende Turingmaschine A mit $\Sigma = \{a, b\}$ und $\Gamma = \Sigma \cup \{A, B, \#\}.$

1. Geben Sie eine maximale Rechnung von A auf der Eingabe w = aabb an.

Lösung

$$q_0aabb$$
 $\vdash Aq_1abb$
 $\vdash Aq_1abb$
 $\vdash Aq_2aBb$
 $\vdash q_2AaBb$
 $\vdash Aq_0aBb$
 $\vdash AAq_1Bb$
 $\vdash AAq_2BB$
 $\vdash AAq_2BB$
 $\vdash AAq_2BB$
 $\vdash Aq_2ABB$
 $\vdash AAq_0BB$
 $\vdash AABq_3B$
 $\vdash AABq_3B$
 $\vdash AABq_3B$
 $\vdash AABq_3B$

Dies ist eine Erfolgsrechnung.

2. Geben Sie eine maximale Rechnung von A auf der Eingabe w = abb an.

Lösung

$$q_0abb \vdash Aq_1bb \vdash q_2ABb \vdash Aq_0Bb \vdash ABq_3b$$

Keine Erfolgsrechnung, aber Termination.

3. Geben Sie zu jedem Zustand eine inhaltliche Beschreibung an, was dieser leistet.

Lösung

- q_0 : Kopf ist soweit nach links zurückgefahren, dass er jetzt rechts neben einem A steht (oder initial ganz links neben dem #).
- q_1 : Wir haben ein a gelesen und überspringen jetzt alles a nach rechts, bis wir auf ein b oder ein B stoßen.
- q_5 : Wenn wir ein B gelesen haben, dann überspringen wir jetzt alle B, bis wir auf ein b stoßen.
- q_2 : Nachdem wir ein b markiert haben, überspringen wir alle markierten B's und unmarkierten a's nach links, bis wir auf ein markiertes A stoßen.

- q_3 : Wir gelangen nach q_3 , wenn wir alle a markiert haben, da dann das erste Zeichen rechts neben einem A ein B ist. Mindestens ein b muss also bereits markiert worden sein. Wir überspringen jetzt alle B nach rechts, um zu überprüfen, ob rechts von den B's noch etwas steht.
- q_4 : Wir gelangen nach q_4 , wenn wir nach den B's nichts mehr haben, also nur das #. In diesem Fall akzeptieren wir.
- 4. Welche Sprache akzeptiert die obige TM?

Lösung Es werden alle Worte der Form $a^n b^n$ akzeptiert.

Ausführliche Begründung: Wir betrachten ein akzeptiertes Wort w, d.h. es gibt u und v, so dass $q_0w \vdash^* uq_4v$ gilt.

In der Schleife von q_0 nach q_0 wird ein a und ein b markiert. Hat die Konfiguration nach k Schleifendurchläufen von q_0 nach q_0 die Form:

$$A^k q_0 \alpha B^k \beta$$
 mit $\alpha, \beta \in \{a, b\}^*$,

dann gilt sogar:

$$\alpha \in \{a\}^* \land \beta \in \{b\}^* \land |\alpha| = |\beta|$$

Induktion über $|\alpha|$:

- Ind.Anfang: Wenn $\alpha = \epsilon$, dann muss auch $\beta = \epsilon$ gelten, denn um in q_4 zu terminieren darf nach den B^k nur noch das # folgen.
- Ind.Schritt: Wenn $\alpha \neq \epsilon$, dann muss es mit a beginnen, da wir q_0 nur mit a oder B verlassen können. Wenn wir ein a markieren, dann müssen wir auch beim Übergang nach q_2 ein b markieren. Es ist dann $\alpha = a\alpha'$ und $\beta = b\beta'$. Wir erreichen dann die Konfiguration:

$$A^{k+1}q_0\alpha'B^{k+1}\beta'$$

Da α' jetzt kürzer als α ist, gilt die Induktionsannahme, dass α' nur aus a's besteht und β nur aus b's. Dies gilt dann auch für $\alpha = a\alpha'$ und $\beta = b\beta'$. Längengleichheit ist auch offensichtlich.

Da jedes A ein a war und jedes B ein b, hatten wir initial (k = 0) also die Konfiguration $q_0 a^n b^n$. Also:

$$L(A) = \{a^n b^n \mid n \ge 1\}$$

5. Was würde sich ändern, wenn auch q_3 Endzustand wäre?

Lösung Dann würde die neue TM A' schon akzeptieren, sobald ein Wort einen Präfix der Form a^nb^n besitzt: $L(A') = L(A)\{a,b\}^*$, denn eine TM akzeptiert ihre Eingabe, sobald sie einen Endzustand durchläuft. Es ist hierbei nicht notwendig (anders als bei NFA oder PDA), dass sie die ganze Eingabe gelesen hätte.

Präsenzaufgabe 11.3 Geben Sie jeweils die Funktionsweise einer DTM an, die folgende Funktionen berechnet:

$$f_1: \{a\}^* \to \{a\}^*, \quad f_1(a^n) := a^{n+1}, n > 0$$

und

$$f_2: \{a\}^* \to \{b\}^*, \quad f_2(a^n) := b^{2n}, n > 0$$

Lösung f_1 : Wir kopieren vor die Eingabe ein weiteres a. Imperative Formulierung der Funktionsweise:

- 1. q_0 : Lese irgendein Zeichen, schreibe es wieder zurück und gehe nach links. Wechsle nach q_1 .
- 2. q_1 : Lese ein #, schreibe ein a und gehe nach links. Wechsle in den Endzustand q_2 .
- 3. q_2 : Keine Übergänge.

 f_2 : Zu jedem a der Eingabe kopieren wir genausoviele b's ans Ende an wie die Eingabe lang ist.

Imperative Formulierung der Funktionsweise:

- 1. Überlaufe ggf. alle A nach rechts. (Wir suchen das erste noch unmarkierte a.)
- 2. Fallunterscheidung bzgl. des ersten Zeichens $x \neq A$:
 - (a) Wenn x = #, dann war die Eingabe $w = a^0 = \epsilon$. Terminiere im Endzustand.
 - (b) Wenn x = a, dann markiere es als A.
 - (c) Erweitere folgendermaßen am rechten Ende um ein b:
 - i. Laufe nach rechts bis zum ersten #.
 - ii. Überschreibe # mit einem b.
 - iii. Laufe nach links bis zum ersten #.
 - iv. Starte erneut in Schritt 3.
 - (d) Wenn x = b, dann überschreibe nach links laufend jedes A mit einem b. Terminiere beim ersten # im Endzustand. Der LSK steht dann vor der Ausgabe.

Übungsaufgabe 11.4 Es seien P und O zweistellige Prädikatensymbole und x, y, z Variablen. Weiterhin seien folgende Formeln definiert:

von 6

$$\begin{array}{lll} F_1 &=& \forall x \; \forall y \; (O(x,y) \Leftrightarrow \exists z \; (P(z,x) \wedge P(z,y))) \\ F_2 &=& \forall x \; P(x,x) \\ F_3 &=& \forall x \; O(x,x) \\ F_4 &=& \forall x \; \forall y \; (P(x,y) \Rightarrow O(x,y)) \\ F_5 &=& \forall x \; \forall y \; (O(x,y) \Rightarrow O(y,x)) \end{array}$$

Zeigen Sie unter Verwendung des prädikatenlogischen Resolutionsverfahrens:

```
1. F_1 \wedge F_2 \models F_3
```

Hilfestellung: Die Mengendarstellung einer Klauselnormalform von $(F_1 \wedge F_2 \wedge \neg F_3)$ ist

$$\{\{\neg O(x_1, y_1), P(f(x_1, y_1), y_1)\}, \{\neg O(x_1, y_1), P(f(x_1, y_1), x_1)\}, \{O(x_1, y_1), \neg P(z_2, x_1), \neg P(z_2, y_1)\}, \{P(x_2, x_2)\}, \{\neg O(a, a))\}\}$$

Lösung $F_1 \wedge F_2 \models F_3$ genau dann, wenn $(F_1 \wedge F_2 \wedge \neg F_3)$ unerfüllbar ist.

Der Vollständigkeit halber: Umformung von $(F_1 \wedge F_2 \wedge \neg F_3)$ in Klauselnormalform:

$$(\mathsf{F}_1 \land \mathsf{F}_2 \land \neg \mathsf{F}_3) = \forall \mathsf{x} \ \forall \mathsf{y} \ (\mathsf{O}(\mathsf{x},\mathsf{y}) \Leftrightarrow \exists \mathsf{z} \ (\mathsf{P}(\mathsf{z},\mathsf{x}) \land \mathsf{P}(\mathsf{z},\mathsf{y}))) \land \forall \mathsf{x} \ \mathsf{P}(\mathsf{x},\mathsf{x}) \land \neg \forall \mathsf{x} \ \mathsf{O}(\mathsf{x},\mathsf{x})$$

Elimination von \Rightarrow und \Leftrightarrow , Negation an die atomaren Formeln bringen (Äquivalenzumformung):

$$\equiv \forall x \ \forall y \ ((\neg O(x,y) \lor \exists z \ (P(z,x) \land P(z,y))) \land (O(x,y) \lor \forall z \ (\neg P(z,x) \lor \neg P(z,y)))) \land \forall x \ P(x,x) \land \exists x \ \neg O(x,x)$$

Bereinigung (gebundene Umbenennung der Variablen) (Äquivalenzumformung):

$$\equiv \forall x_1 \ \forall y_1 \ ((\neg O(x_1, y_1) \lor \exists z_1 \ (P(z_1, x_1) \land P(z_1, y_1))) \land (O(x_1, y_1) \lor \forall z_2 \ (\neg P(z_2, x_1) \lor \neg P(z_2, y_1)))) \land \forall x_2 \ P(x_2, x_2) \land \exists x_3 \ \neg O(x_3, x_3)$$

Pränexform (Skopuserweiterung) (Äquivalenzumformung):

$$\equiv \exists x_3 \ \forall x_1 \ \forall y_1 \ \exists z_1 \ \forall z_2 \ \forall x_2 \ (((\neg O(x_1,y_1) \lor (P(z_1,y_1) \land P(z_1,x_1))) \\ \land (O(x_1,y_1) \lor (\neg P(z_2,x_1) \lor \neg P(z_2,y_1)))) \land P(x_2,x_2) \land \neg O(x_3,x_3))$$

Skolemisierung (Erfüllbarkeitsäquivalenz): x_3 : Skolemkonstante a; z_1 : zweistellige Skolemfunktion f, es wird der Term $f(x_1, y_1)$ eingesetzt;

$$\forall x_1 \ \forall y_1 \ \forall z_2 \ \forall x_2 \ (((\neg O(x_1,y_1) \lor (P(f(x_1,y_1),y_1) \land P(f(x_1,y_1),x_1))) \\ \land (O(x_1,y_1) \lor (\neg P(z_2,x_1) \lor \neg P(z_2,y_1)))) \land P(x_2,x_2) \land \neg O(a,a))$$

Konjunktive Normalform der Matrix (Äquivalenzumformung), Klammerersparnis, um die Struktur deutlicher zu machen::

$$\equiv \forall x_1 \ \forall y_1 \ \forall z_2 \ \forall x_2 \ ((\neg O(x_1,y_1) \lor P(f(x_1,y_1),y_1)) \land (\neg O(x_1,y_1) \lor P(f(x_1,y_1),x_1)) \land (O(x_1,y_1) \lor \neg P(z_2,x_1) \lor \neg P(z_2,y_1)) \land P(x_2,x_2) \land \neg O(a,a))$$

Klauselnormalform in Mengendarstellung:

$$\begin{split} & \{ \{ \neg O(x_1, y_1), P(f(x_1, y_1), y_1) \}, \{ \neg O(x_1, y_1), P(f(x_1, y_1), x_1) \}, \\ & \{ O(x_1, y_1), \neg P(z_2, x_1), \neg P(z_2, y_1) \}, \{ P(x_2, x_2) \}, \{ \neg O(a, a) \} \} \end{split}$$

N-Resolution:

2. $F_1 \wedge F_2 \models F_4$

Hilfestellung: Die Mengendarstellung einer Klauselnormalform von $(F_1 \wedge F_2 \wedge \neg F_4)$ ist $\{\{\neg O(x_1,y_1), P(f(x_1,y_1),y_1)\}, \{\neg O(x_1,y_1), P(f(x_1,y_1),x_1)\}, \{O(x_1,y_1), \neg P(z_2,x_1), \neg P(z_2,y_1)\}, \{P(x_2,x_2)\}, \{P(a,b)\}, \{\neg O(a,b)\}\}$

Lösung $F_1 \wedge F_2 \models F_4$ genau dann, wenn $(F_1 \wedge F_2 \wedge \neg F_4)$ unerfüllbar ist.

Der Vollständigkeit halber:

Umforming von $(F_1 \wedge F_2 \wedge \neg F_4)$ in Klauselnormalform:

$$\begin{aligned} (F_1 \wedge F_2 \wedge \neg F_4) &= \forall x \ \forall y \ (O(x,y) \Leftrightarrow \exists z \ (P(z,x) \wedge P(z,y))) \\ \wedge \forall x \ P(x,x) \wedge \neg \forall x \ \forall y \ (P(x,y) \Rightarrow O(x,y)) \end{aligned}$$

Elimination von \Rightarrow und \Leftrightarrow , Negation an die atomaren Formeln bringen (Äquivalenzumformung):

$$\equiv \forall x \ \forall y \ ((\neg O(x,y) \lor \exists z \ (P(z,x) \land P(z,y))) \land (O(x,y) \lor \forall z \ (\neg P(z,x) \lor \neg P(z,y)))) \land \forall x \ P(x,x) \land \exists x \ \exists y \ (P(x,y) \land \neg O(x,y))$$

Bereinigung (gebundene Umbenennung der Variablen) (Äquivalenzumformung):

$$\equiv \forall x_1 \ \forall y_1 \ ((\neg O(x_1,y_1) \lor \exists z_1 \ (P(z_1,x_1) \land P(z_1,y_1))) \land (O(x_1,y_1) \lor \forall z_2 \ (\neg P(z_2,x_1) \lor \neg P(z_2,y_1)))) \land \forall x_2 \ P(x_2,x_2) \land \exists x_3 \ \exists y_2 \ (P(x_3,y_2) \land \neg O(x_3,y_2))$$

Pränexform (Skopuserweiterung) (Äquivalenzumformung):

$$\equiv \exists x_3 \ \exists y_2 \ \forall x_1 \ \forall y_1 \ \exists z_1 \ \forall z_2 \ \forall x_2 \ (((\neg O(x_1,y_1) \lor (P(z_1,y_1) \land P(z_1,x_1))) \land (O(x_1,y_1) \lor (\neg P(z_2,x_1) \lor \neg P(z_2,y_1)))) \land P(x_2,x_2) \land (P(x_3,y_2) \land \neg O(x_3,y_2)))$$

Skolemisierung (Erfüllbarkeitsäquivalenz): x_3 : Skolemkonstante a; y_2 : Skolemkonstante b; z_1 : zweistellige Skolemfunktion f, es wird der Term $f(x_1, y_1)$ eingesetzt;

$$\forall x_1 \ \forall y_1 \ \forall z_2 \ \forall x_2 \ (((\neg O(x_1,y_1) \lor (P(f(x_1,y_1),y_1) \land P(f(x_1,y_1),x_1))) \\ \land (O(x_1,y_1) \lor (\neg P(z_2,x_1) \lor \neg P(z_2,y_1)))) \land P(x_2,x_2) \land (P(a,b) \land \neg O(a,b)))$$

Konjunktive Normalform der Matrix (Äquivalenzumformung), Klammerersparnis, um die Struktur deutlicher zu machen::

$$\equiv \forall x_1 \ \forall y_1 \ \forall z_2 \ \forall x_2 \ ((\neg O(x_1,y_1) \lor P(f(x_1,y_1),y_1)) \land (\neg O(x_1,y_1) \lor P(f(x_1,y_1),x_1)) \land (O(x_1,y_1) \lor \neg P(z_2,x_1) \lor \neg P(z_2,y_1)) \land P(x_2,x_2) \land P(a,b) \land \neg O(a,b))$$

Klauselnormalform in Mengendarstellung:

$$\begin{split} & \{ \{ \neg O(x_1, y_1), P(f(x_1, y_1), y_1) \}, \{ \neg O(x_1, y_1), P(f(x_1, y_1), x_1) \}, \\ & \{ O(x_1, y_1), \neg P(z_2, x_1), \neg P(z_2, y_1) \}, \{ P(x_2, x_2) \}, \{ P(a, b) \}, \{ \neg O(a, b) \} \} \end{split}$$

N-Resolution:

3. $F_1 \models F_5$

Hilfestellung: Die Mengendarstellung einer Klauselnormalform von $(F_1 \land \neg F_5)$ ist $\{\{\neg O(x_1,y_1),P(f(x_1,y_1),x_1)\},\{\neg O(x_1,y_1),P(f(x_1,y_1),y_1)\},\{O(x_1,y_1),\neg P(z_2,x_1),\neg P(z_2,y_1)\},\{O(a,b)\},\{\neg O(b,a)\}\}$

```
Lösung F_1 \models F_5 genau dann, wenn (F_1 \land \neg F_5) unerfüllbar ist.
```

Der Vollständigkeit halber:

Umforming von $F_1 \land \neg F_5$ in Klauselnormalform:

$$\mathsf{F}_1 \land \neg \mathsf{F}_5 = \forall x \ \forall y \ (\mathsf{O}(x,y) \Leftrightarrow \exists z \ (\mathsf{P}(z,x) \land \mathsf{P}(z,y))) \land \neg \forall x \ \forall y \ (\mathsf{O}(x,y) \Rightarrow \mathsf{O}(y,x))$$

Elimination von \Rightarrow und \Leftrightarrow , Negation an die atomaren Formeln bringen (Äquivalenzumformung):

$$\equiv \forall x \ \forall y \ (\neg O(x,y) \lor \exists z \ (P(z,x) \land P(z,y))) \land (O(x,y) \lor \forall z \ (\neg P(z,x) \lor \neg P(z,y))) \land \exists x \ \exists y \ (O(x,y) \land \neg O(y,x))$$

Bereinigung (gebundene Umbenennung der Variablen) (Äquivalenzumformung):

$$\equiv \forall x_1 \ \forall y_1 \ (\neg O(x_1,y_1) \lor \exists z_1 \ (P(z_1,x_1) \land P(z_1,y_1))) \land (O(x_1,y_1) \lor \forall z_2 \ (\neg P(z_2,x_1) \lor \neg P(z_2,y_1))) \land \exists x_2 \ \exists y_2 \ (O(x_2,y_2) \land \neg O(y_2,x_2))$$

Pränexform (Skopuserweiterung) (Äquivalenzumformung):

```
 \equiv \exists x_2 \; \exists y_2 \; \forall x_1 \; \forall y_1 \; \exists z_1 \; \forall z_2 \; ((\neg O(x_1,y_1) \vee (P(z_1,x_1) \wedge P(z_1,y_1))) \\ \wedge \; (O(x_1,y_1) \vee (\neg P(z_2,x_1) \vee \neg P(z_2,y_1))) \\ \wedge \; (O(x_2,y_2) \wedge \neg O(y_2,x_2)))
```

Skolemisierung (Erfüllbarkeitsäquivalenz): x_2 : Skolemkonstante a; y_2 : Skolemkonstante b; z_1 : zweistellige Skolemfunktion f, es wird der Term $f(x_1, y_1)$ eingesetzt;

```
 \begin{array}{l} \forall x_1 \ \forall y_1 \ \forall z_2 \ ((\neg O(x_1,y_1) \lor (P(f(x_1,y_1),x_1) \land P(f(x_1,y_1),y_1))) \\ \land (O(x_1,y_1) \lor (\neg P(z_2,x_1) \lor \neg P(z_2,y_1))) \\ \land (O(a,b) \land \neg O(b,a))) \end{array}
```

Konjunktive Normalform der Matrix (Äquivalenzumformung):

```
 \equiv \forall x_1 \ \forall y_1 \ \forall z_2 \ (((\neg O(x_1,y_1) \lor P(f(x_1,y_1),x_1)) \land (\neg O(x_1,y_1) \lor P(f(x_1,y_1),y_1))) \\ \land (O(x_1,y_1) \lor (\neg P(z_2,x_1) \lor \neg P(z_2,y_1))) \\ \land (O(a,b) \land \neg O(b,a)))
```

Klammerersparnis, um die Struktur deutlicher zu machen:

```
 \equiv \forall x_1 \ \forall y_1 \ \forall z_2 \ ((\neg O(x_1,y_1) \lor P(f(x_1,y_1),x_1)) \land (\neg O(x_1,y_1) \lor P(f(x_1,y_1),y_1)) \land (O(x_1,y_1) \lor \neg P(z_2,x_1) \lor \neg P(z_2,y_1)) \land O(a,b) \land \neg O(b,a))
```

Klauselnormalform in Mengendarstellung:

```
 \{ \{ \neg O(x_1, y_1), P(f(x_1, y_1), x_1) \}, \{ \neg O(x_1, y_1), P(f(x_1, y_1), y_1) \}, \{ O(x_1, y_1), \neg P(z_2, x_1), \neg P(z_2, y_1) \}, \{ O(a, b) \}, \{ \neg O(b, a) \} \}
```

N-Resolution:

$4. \mathsf{F_1} \not\models \mathsf{F_2}$

Hilfestellung: Sie dürfen verwenden, dass auch in der Prädikatenlogik N- und P-Resolution widerlegungsvollständig sind.

Die Mengendarstellung einer Klauselnormalform von $(F_1 \land \neg F_2)$ ist

$$\begin{split} & \{ \{ \neg O(x_1,y_1), P(f(x_1,y_1),y_1) \}, \{ \neg O(x_1,y_1), P(f(x_1,y_1),x_1) \}, \\ & \{ O(x_1,y_1), \neg P(z_2,x_1), \neg P(z_2,y_1) \}, \{ \neg P(a,a) \} \} \end{split}$$

Lösung $F_1 \models F_2$ genau dann, wenn $(F_1 \land \neg F_2)$ unerfüllbar ist.

Der Vollständigkeit halber:

Umforming von $(F_1 \land \neg F_2)$ in Klauselnormalform:

$$(F_1 \land \neg F_2) = \forall x \ \forall y \ (O(x,y) \Leftrightarrow \exists z \ (P(z,x) \land P(z,y))) \land \neg \forall x \ P(x,x)$$

Elimination von \Rightarrow und \Leftrightarrow , Negation an die atomaren Formeln bringen (Äquivalenzumformung):

$$\equiv \forall x \ \forall y \ ((\neg O(x,y) \lor \exists z \ (P(z,x) \land P(z,y))) \land (O(x,y) \lor \forall z \ (\neg P(z,x) \lor \neg P(z,y)))) \land \exists x \ \neg P(x,x)$$

Bereinigung (gebundene Umbenennung der Variablen) (Äquivalenzumformung):

Pränexform (Skopuserweiterung) (Äquivalenzumformung):

$$\equiv \exists x_2 \ \forall x_1 \ \forall y_1 \ \exists z_1 \ \forall z_2 \ (((\neg O(x_1, y_1) \lor (P(z_1, y_1) \land P(z_1, x_1))) \\ \land (O(x_1, y_1) \lor (\neg P(z_2, x_1) \lor \neg P(z_2, y_1)))) \land \neg P(x_2, x_2))$$

Skolemisierung (Erfüllbarkeitsäquivalenz): x_2 : Skolemkonstante $a; z_1$: zweistellige Skolemfunktion f, es wird der Term $f(x_1, y_1)$ eingesetzt;

$$\forall x_1 \ \forall y_1 \ \forall z_2 \ (((\neg O(x_1,y_1) \lor (P(f(x_1,y_1),y_1) \land P(f(x_1,y_1),x_1))) \\ \land (O(x_1,y_1) \lor (\neg P(z_2,x_1) \lor \neg P(z_2,y_1)))) \land \neg P(a,a))$$

Konjunktive Normalform der Matrix (Äquivalenzumformung), Klammerersparnis, um die Struktur deutlicher zu machen::

$$\equiv \forall x_1 \ \forall y_1 \ \forall z_2 \ ((\neg O(x_1, y_1) \lor P(f(x_1, y_1), y_1)) \land (\neg O(x_1, y_1) \lor P(f(x_1, y_1), x_1)) \land (O(x_1, y_1) \lor \neg P(z_2, x_1) \lor \neg P(z_2, y_1)) \land \neg P(a, a))$$

Klauselnormalform in Mengendarstellung:

```
\begin{aligned} & \{ \{ \neg O(x_1, y_1), P(f(x_1, y_1), y_1) \}, \{ \neg O(x_1, y_1), P(f(x_1, y_1), x_1) \}, \\ & \{ O(x_1, y_1), \neg P(z_2, x_1), \neg P(z_2, y_1) \}, \{ \neg P(a, a) \} \} \end{aligned}
```

N-Resolution:

```
\{\neg O(x_1,y_1), P(f(x_1,y_1),y_1)\} \qquad \{\neg P(a,a)\} \qquad \{\neg O(x_1,y_1), P(f(x_1,y_1),x_1)\}
```

Die einzige Klausel, die nur negative Literale enthält, ist $\{P(a,a)\}$. Allerdings lässt sich $\neg P(a,a)$ mit keinem positiven Literal einer anderen verfügbaren Klausel unifizieren. Es kann also kein N-Resolutionsschritt ausgeführt werden. Da die leere Klausel nicht in der Klauselmenge enthalten ist, ist sie auch nicht ableitbar.

Entsprechend lässt sich über P-Resolution argumentieren: Da es in der Klauselmenge keine Klausel gibt, die nur positive Literale enthält, kann kein P-Resolutionsschritt vollzogen werden und die leere Klausel ist nicht ableitbar.

Da N- und P-Resolution auch für die Prädikatenlogik widerlegungsvollständig sind und mit beiden die leere Klausel nicht ableitbar ist, ist die Klauselmenge erfüllbar. Also folgt F_2 nicht aus F_1 .

5. Die Formelmenge $\{F_1, F_2, F_3, F_4, F_5\}$ ist erfüllbar.

Hilfestellung: Greifen Sie auf die Teilaufgaben 1 bis 4 zurück.

Lösung Die Teilaufgaben 1 bis 3 besagen, dass die Formeln $\mathsf{F}_3, \mathsf{F}_4$ und F_5 aus der Formelmenge $\{\mathsf{F}_1,\mathsf{F}_2\}$ folgen. Entsprechend reicht es, zu zeigen, dass $\{\mathsf{F}_1,\mathsf{F}_2\}$ erfüllbar ist.

Die Mengendarstellung einer Klauselnormalform von $(F_1 \wedge F_2)$ ist

```
 \begin{split} & \{ \{ \neg O(x_1,y_1), P(f(x_1,y_1),y_1) \}, \{ \neg O(x_1,y_1), P(f(x_1,y_1),x_1) \}, \\ & \{ O(x_1,y_1), \neg P(z_2,x_1), \neg P(z_2,y_1) \}, \{ P(x_2,x_2) \} \}. \end{split}
```

(Entsprechendes ist Teil der Musterlösung zu 2.)

Da es in der Klauselmenge keine Klausel gibt, die nur negative Literale enthält, kann durch N-Resolution keine weitere Klausel abgeleitet werden. Da die Klauselmenge die leere Klausel nicht enthält, ist sie also durch N-Resolution nicht ableitbar. Wir greifen nun wieder darauf zurück, dass N-Resolution widerlegungsvollständig ist, wie in der Aufgabenstellung von 4 erläurtert. Damit ergibt sich, dass die Klauselmenge erfüllbar ist und damit auch die Formelmenge $\{F_1, F_2\}$.

Übungsaufgabe 11.5 Sei $L = \{w \in \{a, b\}^* \mid w = w^{rev}\}$, d.h. die Menge aller Worte über $\{a, b\}$, die vorwärts und rückwärts gelesen gleich lauten.

von

- 1. Konstruieren Sie eine DTM A, die L akzeptiert und die auf allen Eingaben hält.
- 2. Erläutern Sie die Funktionsweise ihrer TM. **Lösung** Die TM startet in q_0 . Findet sie ein # vor, dann ist die Eingabe $w = \epsilon$ und wir akzeptieren dies in q_1 . Findet sie ein a vor, dann geht sie zu q_{11} , d.h. in den linken Teil des Zustanddia-

In q_{11} überlaufen wir alle Kleinbuchstaben der Eingabe, bis wir zum rechten Rand (der hier durch A, B oder # markiert wird) kommen.

Wir gehen zum ersten Zeichen links vom Rand, indem wir den Übergang zu q_{12} machen.

Finden wir ein A oder ein B, so war das eingelesene a das Zeichen in der Mitte von w und wir akzeptieren in q_{14} .

Finden wir dagegen das spiegelbildliche a vor, so markieren wir dies als A und gehen zu q_{13} .

In q_{13} überlesen wir alle Zeichen, um zum linken Rand (markiert durch A oder B) zu kommen

Wir gehen zum ersten Zeichen rechts vom Rand, indem wir den Übergang zu q_0 machen. Hier beginnen wir von vorne.

Analog, falls wir in q_1 ein b lesen.

3. Erläutern Sie, warum ihre TM alle Worte aus L akzeptieren kann und warum sie keine weiteren akzeptieren kann.

Lösung Sei w aus L. Jedes Wort w mit der Eigenschaft $w = w^{rev}$ kann genau wie oben beschrieben akzeptiert werden.

Umgekehrt kann die TM nur dann akzeptieren, wenn w die Eigenschaft $w = w^{rev}$ besitzt, denn es gilt folgende Invarianz: Wann immer wir in q_0 sind, haben wir UvU^{rev} als Bandinschrift, wobei $U \in \{A, B\}^*$ und $v \in \{a, b\}^*$, und die Eingabe war initial uvu^{rev} , wobei u das Wort U in Kleinbuchstaben ist.

Induktionsanfang: Dies gilt initial mit $u = \epsilon$ und v = w. Induktionsschritt: Bei einem Durchlauf markieren wir genau das erste und das letzte Zeichen von v und beide müssen gleich sein. Sei $x \in \{a,b\}$ dieses Zeichen und X der entsprechende Großbuchstabe, dann hatten wir nach IA zu Beginn des Durchlaufs die Bandinschrift $U(xv'x)U^{rev}$ und am Ende $(UX)v'(XU^{rev})$. Da $(UX)^{rev} = XU^{rev}$ ist, gilt die Invarianz auf am Ende des Durchlaufs.

Im letzten Schritt werden wir genau dann akzeptieren, wenn (i) v = a oder v = b ist (wir terminieren in q_{14} oder in q_{24}) oder (ii) wenn $v = \epsilon$ ist. Dann war w aber von der gesuchten Form und damit auch $w \in L$.

4. Geben Sie eine Erfolgsrechnung für w = ababa an.

Lösung

```
q_0ababa
\vdash Aq_{11}baba
\vdash Abq_{11}aba
\vdash Abaq_{11}ba
\vdash Ababq_{11}a
\vdash Ababaq_{11}\#
\vdash Ababq_{12}a
\vdash Abaq_{13}bA
\vdash Abq_{13}abA
\vdash Aq_{13}babA
\vdash q_{13}AbabA
\vdash Aq_0babA
                        1. Durchlauf
\vdash ABq_{21}abA
\vdash ABaq_{21}bA
\vdash
    ABabq_{21}A
\vdash ABaq_{22}bA
    ABq_{23}aBA
\vdash Aq_{23}BaBA
\vdash ABq_0aBA
                          2. Durchlauf
\vdash ABAq_{11}BA
    ABq_{12}ABA
    ABq_{14}ABA
```

Die TM terminiert im Endzustand q_{14} . Das Wort w wird also akzeptiert.

5. Geben Sie eine Rechnung für w = abaa an.

Lösung

```
q_0abaa
\vdash Aq_{11}baa
\vdash Abq_{11}aa
\vdash Abaq_{11}a
\vdash Abaq_{12}a
\vdash Abq_{13}aA
\vdash Aq_{13}baA
\vdash Aq_{13}baA
\vdash Aq_{0}baA
\vdash Aq_{0}baA
\vdash ABq_{21}aA
\vdash ABq_{22}aA
\vdash ABq_{22}aA
```

Hier blockiert die TM. Das Wort w wird also nicht akzeptiert, denn q_{22} ist kein Endzustand.

Übungsaufgabe 11.6 Sei $w \in \{0,1\}^*$, dann bezeichnet \overline{w} das Wort, das man erhält, wenn man in w alle 0 in 1 ersetzt (und umgekehrt). Beispiel: $\overline{100} = 011$.

von 2

Zeigen Sie, dass die Funktion $f: \{0,1\}^* \to \{0,1\}^*$, definiert durch $f(x) = \bar{x}$, Turingberechenbar ist, indem Sie das Zustandsdiagramm einer DTM angeben, die f berechnet. **Lösung** Wir gehen in q_0 einmal von links nach rechts und invertieren dabei jedes gelesene Zeichen. Anschließend laufen wir in q_1 zu"rück zum Anfang des Wortes. Am linken Rand angekommen, gehen wir zurück auf das erste Zeichen und terminierend im Endzustand q_2 .

Version vom 15. Juni 2012

Bisher erreichbare Punktzahl: