September 2, 2014

Chapter 3: Nonlinear equations in One Variable

Uri M. Ascher and Chen Greif Department of Computer Science The University of British Columbia {ascher,greif}@cs.ubc.ca

Slides for the book A First Course in Numerical Methods (published by SIAM, 2011) http://bookstore.siam.org/cs07/

Goals of this chapter

- To develop useful methods for a basic, simply stated problem, including such favourites as fixed point iteration and Newton's method;
- to develop and assess several algorithmic concepts that are prevalent throughout the field of numerical computing;
- to study basic algorithms for minimizing a function in one variable.

Outline

- Bisection method
- Fixed point iteration
- Newton's method and variants
- Minimizing a function in one variable

Roots of continuous functions

• For a given continuous function f = f(x), consider the problem

$$f(x) = 0,$$

where x is the independent variable in [a, b].

- If x^* is value of x where f vanishes then x^* is a **root** or **zero** of f.
- How many roots? This depends not only on the function but also on the interval.

Example: $f(x) = \sin(x)$ has one root in $[-\pi/2, \pi/2]$, two roots in $[-\pi/4, 5\pi/4]$, and no roots in $[\pi/4, 3\pi/4]$.

- Why study a nonlinear problem before addressing linear ones?!
 - One linear equation, e.g. ax = b, is too simple (solution: x = b/a, duh!), whereas a system of linear equations (Chapter 5 and 7) can have many complications.
 - Several important general methods can be described in a simple context.
 - Several important algorithm properties can be defined and used in a simple context.

Desirable algorithm properties

Generally for a nonlinear problem, must consider an iterative method: starting with initial iterate (guess) x_0 , generate sequence of iterates $x_1, x_2, \ldots, x_k, \ldots$ that hopefully converge to a root x^* .

Desirable properties of a contemplated iterative method are:

- Efficient: requires a small number of function evaluations.
- Robust: fails rarely, if ever. Announces failure if it does fail.
- Requires a minimal amount of additional information such as the derivative of f.
- Requires f to satisfy only minimal smoothness properties.
- Generalizes easily and naturally to many equations in many unknowns.

Like many other wish-lists, this one is hard to fully satisfy...

Outline

- Bisection method
- Fixed point iteration
- Newton's method and variants
- Minimizing a function in one variable

Bisection method

- Simple
- Safe, robust
- ullet Requires only that f be continuous
- Slow
- Hard to generalize to systems

Bisection method development

- Given a < b such that $f(a) \cdot f(b) < 0$, there must be a root in [a, b]. Refer to [a, b] as the uncertainty interval.
- So, at each iteration, evaluate f(p) at p = a+b/2 and check the sign of f(a) · f(p).
 If positive, set a ← p, if negative set b ← p.
 Note: only one evaluation of the function f per iteration.
- This reduces the length of the uncertainty interval by factor 0.5 at each iteration. So, setting $x_n = p$, the error after n iterations satisfies $|x^* x_n| \leq \frac{b-a}{2} \cdot 2^{-n}$.
- Stopping criterion: given (absolute) tolerance atol, require $\frac{b-a}{2} \cdot 2^{-n} \le \text{atol}$.
- This allows a priori determination of the number of iterations n: unusual in algorithms for nonlinear problems.

bisect function

```
function [p,n] = bisect(func,a,b,fa,fb,atol)
if (a >= b) | (fa*fb >= 0) | (atol <= 0)
   disp('something wrong with the input: quitting');
   p = NaN; n=NaN;
   return
end
n = ceil (log2 (b-a) - log2 (2*atol));
for k=1:n
   p = (a+b)/2;
   fp = feval(func,p);
   if fa * fp < 0
     b = p;
     fb = fp;
   else
     a = p;
     fa = fp;
   end
end
```

Outline

- Bisection method
- Fixed point iteration
- Newton's method and variants
- Minimizing a function in one variable

Fixed point iteration

This is an intuitively appealing approach which often leads to simple algorithms for complicated problems.

Write given problem

$$f(x) = 0$$

as

$$g(x) = x$$

so that
$$f(x^*) = 0$$
 iff $g(x^*) = x^*$.

Iterate:

$$x_{k+1} = g(x_k), \quad k = 0, 1, \dots,$$

starting with guess x_0 .

It's all in the choice of the function g.

Choosing the function g

- Note: there are many possible choices g for the given f: this is a family of methods.
- Examples:

```
g(x) = x - f(x),

g(x) = x + 2f(x),

g(x) = x - f(x)/f'(x) (assuming f' exists and f'(x) \neq 0).
```

The first two choices are simple, the last one has potential to yield fast convergence (we'll see later).

- Want resulting method to
 - be simple;
 - converge; and
 - do it rapidly.

Graphical illustration, $x = e^{-x}$, starting from $x_0 = 1$

Fixed Point Theorem

If $g \in C[a, b]$, $g(a) \ge a$ and $g(b) \le b$, then there is a fixed point x^* in the interval [a, b].

If, in addition, the derivative g' exists and there is a constant $\rho < 1$ such that the derivative satisfies

$$|g'(x)| \le \rho \quad \forall \ x \in (a, b),$$

then the fixed point x^* is unique in this interval.

Convergence of fixed point iteration

• Assuming ho < 1 as for the fixed point theorem, obtain

$$|x_{k+1} - x^*| = |g(x_k) - g(x^*)| \le \rho |x_k - x^*|.$$

- This is a contraction by factor ρ.
- So

$$|x_{k+1} - x^*| \le \rho |x_k - x^*| \le \rho^2 |x_{k-1} - x^*| \le \dots \le \rho^{k+1} |x_0 - x^*| \to 0.$$

• The smaller ρ the faster convergence is.

Example: cosh with two roots

$$f(x) = g(x) - x$$
, $g(x) = 2\cosh(x/4)$

Fixed point iteration with g

For tolerance 1.e-8:

- Starting at $x_0 = 2$ converge to x_1^* in 16 iterations.
- Starting at $x_0 = 4$ converge to x_1^* in 18 iterations.
- Starting at $x_0 = 8$ converge to x_1^* (even though x_2^* is closer to x_0).
- Starting at $x_0 = 10$ obtain **overflow** in 3 iterations.

Note: bisection yields both roots in 27 iterations.

Rate of convergence

- Suppose we want $|x_k x^*| \approx 0.1|x_0 x^*|$.
- Since $|x_k x^*| \le \rho^k |x_0 x^*|$, want

$$\rho^k \approx 0.1,$$

i.e.,
$$k \log_{10} \rho \approx -1$$
.

• Define the rate of convergence as

$$rate = -\log_{10} \rho.$$

• Then it takes about $k = \lceil 1/rate \rceil$ iterations to reduce the error by more than an order of magnitude.

Return to cosh example

- Bisection: $rate = -\log_{10} 0.5 \approx .3 \implies k = 4$.
- For the root x_1^* of fixed point example, $ho \approx 0.31$ so

$$rate = -\log_{10} 0.31 \approx .5, \quad \Rightarrow \quad k = 2.$$

• For the root x_2^* of fixed point example, $\rho > 1$ so

$$rate = -\log_{10}(\rho) < 0, \Rightarrow \text{no convergence.}$$

Outline

- Bisection method
- Fixed point iteration
- Newton's method and variants
- Minimizing a function in one variable

Newton's method

This fundamentally important method is everything that bisection is not, and vice versa:

- Not so simple
- Not very safe or robust
- ullet Requires more than continuity on f
- Fast
- Automatically generalizes to systems

Derivation

By Taylor series,

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + f''(\xi(x))(x - x_k)^2 / 2.$$

• So, for $x=x^*$

$$0 = f(x_k) + f'(x_k)(x^* - x_k) + \mathcal{O}\left((x^* - x_k)^2\right).$$

 The method is obtained by neglecting nonlinear term, defining $0 = f(x_k) + f'(x_k)(x_{k+1} - x_k)$, which gives the iteration step

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots$$

A geometric interpretation

Next iterate is x-intercept of the tangent line to f at current iterate.

Example: cosh with two roots

The function

$$f(x) = 2\cosh(x/4) - x$$

has two solutions in the interval [2, 10].

Newton's iteration is

$$x_{k+1} = x_k - \frac{2\cosh(x_k/4) - x_k}{0.5\sinh(x_k/4) - 1}.$$

- For absolute tolerance 1.e-8:
 - Starting from $x_0 = 2$ requires 4 iterations to reach x_1^* .
 - Starting from $x_0 = 4$ requires 5 iterations to reach x_1^* .
 - Starting from $x_0 = 8$ requires 5 iterations to reach x_2^* .
 - Starting from $x_0 = 10$ requires 6 iterations to reach x_2^* .
- Tracing the iteration's progress:

• Note that the number of significant digits essentially doubles at each iteration (until the 5th, when roundoff error takes over).

Speed of convergence

A given method is said to be

• **linearly convergent** if there is a constant $\rho < 1$ such that

$$|x_{k+1} - x^*| \le \rho |x_k - x^*| ,$$

for all k sufficiently large;

quadratically convergent if there is a constant M such that

$$|x_{k+1} - x^*| \le M|x_k - x^*|^2$$
,

for all k sufficiently large;

• superlinearly convergent if there is a sequence of constants $ho_k
ightarrow 0$ such that

$$|x_{k+1} - x^*| \le \rho_k |x_k - x^*|,$$

for all k sufficiently large.

Convergence theorem for Newton's method

If $f \in C^2[a,b]$ and there is a root x^* in [a,b] such that $f(x^*) = 0$, $f'(x^*) \neq 0$, then there is a number δ such that, starting with x_0 from anywhere in the neighborhood $[x^* - \delta, x^* + \delta]$, Newton's method converges quadratically.

Idea of proof:

- Expand $f(x^*)$ in terms of a Taylor series about x_k ;
- divide by $f'(x_k)$, rearrange, and replace $x_k \frac{f(x)}{f'(x_k)}$ by x_{k+1} ;
- find the relation between $e_{k+1} = x_{k+1} x^*$ and $e_k = x_k x^*$.

Secant method

- One potential disadvantage of Newton's method is the need to know and evaluate the derivative of f.
- The secant method circumvents the need for explicitly evaluating this derivative.
- Observe that near the root (assuming convergence)

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}.$$

So, define Secant iteration

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}, \quad k = 0, 1, 2, \dots$$

• Note the need for two initial starting iterates x_0 and x_1 : a two-step method.

Example: cosh with two roots

$$f(x) = 2\cosh(x/4) - x.$$

Same absolute tolerance 1.e-8 and initial iterates as before:

- Starting from $x_0 = 2$ and $x_1 = 4$ requires 7 iterations to reach x_1^* .
- Starting from $x_0 = 10$ and $x_1 = 8$ requires 7 iterations to reach x_2^* .

\overline{k}	0	1	2	3	4	5	6
$f(x_k)$	2.26	-4.76e-1	-1.64e-1	2.45e-2	-9.93e-4	-5.62e-6	1.30e-9

Observe superlinear convergence: much faster than bisection and simple fixed point iteration, yet not quite as fast as Newton's iteration.

Newton's method as a fixed point iteration

- If $g'(x^*) \neq 0$ then fixed point iteration converges linearly, as discussed before, as $\rho > 0$.
- Newton's method can be written as a fixed point iteration with

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

From this we get $g'(x^*) = 0$.

 In such a situation the fixed point iteration may converge faster than linearly: indeed, Newton's method converges quadratically under appropriate conditions.

Outline

- Bisection method
- Fixed point iteration
- · Newton's method and variants
- Minimizing a function in one variable

Minimizing a function in one variable

- Optimization is a vast subject, only some of which is covered in Chapter 9.
 Here, we just consider the simplest situation of minimizing a smooth function in one variable.
- **Example**: find $x = x^*$ that minimizes

$$\phi(x) = 10\cosh(x/4) - x.$$

• From the figure below, this function has no zeros but does appear to have one minimizer around x = 1.6.

Conditions for optimum and algorithm

• Necessary condition for an optimum: Suppose $\phi \in C^2$ and denote $f(x) = \phi'(x)$. Then a zero of f is a critical point of ϕ , i.e., where

$$\phi'(x^*) = 0.$$

To be a minimizer or a maximizer, it is necessary for x^* to be a critical point.

- Sufficient condition for an optimum: A critical point x^* is a minimizer if also $\phi''(x^*) > 0$.
- Hence, an algorithm for finding a minimizer is obtained by using one of the methods of this chapter for finding the roots of $\phi'(x)$, then checking for each such root x^* if also $\phi''(x^*) > 0$.
- Note: rather than finding all roots of ϕ' first and checking for minimum condition later, can do things more carefully and wisely, e.g. by sticking to steps that decrease $\phi(x)$.

Example

To find a minimizer for

$$\phi(x) = 10\cosh(x/4) - x,$$

Calculate gradient

$$f(x) = \phi'(x) = 2.5 \sinh(x/4) - 1$$

② Find root of $\phi'(x) = 0$ using any of our methods, obtaining

$$x^* \approx 1.56014.$$

Second derivative

$$\phi''(x) = 2.5/4 \cosh(x/4) > 0$$
 for all x,

so x^* is a minimizer.