Module: Analyse numériques

Chapitre 3 : Intégration Numérique

Exercice 1

Énoncé

On s'intéresse dans cet exercice à approcher l'intégrale

$$I = \int_1^2 \cos(x^2) dx$$

- Onner une approximation de I en appliquant la méthode du rectangle à gauche en considérant 8 intervalles
- Majorer l'erreur commise. On rappelle que l'erreur d'intégration $E_{Rg}^c(f)$ relative à la méthode composite des rectangles à gauche, pour le calcul approché de l'intégrale $I = \int_a^b f(t)dt$, où f est une fonction de classe \mathcal{C}^1 sur $[a;b] \subset R$, est majorée par :

$$|E_{Rg}^c(f)| \leq \frac{(b-a)^2}{2n} \max_{x \in [a,b]} |f'(x)|.$$

② Quel pas de discrétisation maximal h^* faut-il choisir pour avoir une erreur d'intégration de I(f), par la méthode composite des rectangles à gauche composites, inférieure à 10^{-4} ?

La formule composite des rectangles à gauche est

$$\int_a^b f(x)dx \simeq h \sum_{k=0}^{n-1} f(a+kh) \qquad \text{où } h = \frac{b-a}{n}$$

La formule composite des rectangles à gauche est

$$\int_a^b f(x)dx \simeq h \sum_{k=0}^{n-1} f(a+kh) \qquad \text{où } h = \frac{b-a}{n}$$

① Pour a = 1, b = 2 et n = 8 on a $h = \frac{1}{8}$. On obtient donc:

$$\int_{1}^{2} f(x)dx \simeq \frac{1}{8} \left(f(1) + f(1 + \frac{1}{8}) + f(1 + \frac{2}{8}) + f(1 + \frac{3}{8}) + f(1 + \frac{4}{8}) + f(1 + \frac{5}{8}) + f(1 + \frac{6}{8}) + f(1 + \frac{7}{8}) \right)$$

La formule composite des rectangles à gauche est

$$\int_{a}^{b} f(x)dx \simeq h \sum_{k=0}^{n-1} f(a+kh) \qquad \text{où } h = \frac{b-a}{n}$$

① Pour a = 1, b = 2 et n = 8 on a $h = \frac{1}{8}$. On obtient donc:

$$\int_{1}^{2} f(x)dx \simeq \frac{1}{8} \left(f(1) + f(1 + \frac{1}{8}) + f(1 + \frac{2}{8}) + f(1 + \frac{3}{8}) + f(1 + \frac{4}{8}) + f(1 + \frac{5}{8}) + f(1 + \frac{5}{8}) + f(1 + \frac{6}{8}) + f(1 + \frac{7}{8}) \right)$$

$$\simeq \frac{1}{8} \left(\cos(1) + \cos((\frac{9}{8})^{2}) + \cos((\frac{5}{4})^{2}) + \cos((\frac{11}{8})^{2}) + \cos((\frac{3}{2})^{2}) + \cos((\frac{13}{8})^{2}) + \cos((\frac{7}{4})^{2}) + \cos((\frac{15}{8})^{2}) \right)$$

La formule composite des rectangles à gauche est

$$\int_{a}^{b} f(x)dx \simeq h \sum_{k=0}^{n-1} f(a+kh) \qquad \text{où } h = \frac{b-a}{n}$$

O Pour a = 1, b = 2 et n = 8 on a $h = \frac{1}{8}$. On obtient donc:

$$\int_{1}^{2} f(x)dx \simeq \frac{1}{8} \left(f(1) + f(1 + \frac{1}{8}) + f(1 + \frac{2}{8}) + f(1 + \frac{3}{8}) + f(1 + \frac{4}{8}) \right)$$

$$+ f(1 + \frac{5}{8}) + f(1 + \frac{6}{8}) + f(1 + \frac{7}{8})$$

$$\simeq \frac{1}{8} \left(\cos(1) + \cos((\frac{9}{8})^{2}) + \cos((\frac{5}{4})^{2}) + \cos((\frac{11}{8})^{2}) + \cos((\frac{3}{2})^{2}) + \cos((\frac{13}{8})^{2}) + \cos((\frac{7}{4})^{2}) + \cos((\frac{15}{8})^{2}) \right)$$

$$\simeq -0.3622$$

Correction (suite)

② On a $f(x) = \cos(x^2)$ est de classe C^2 sur [1,2] donc $f'(x) = -2x\sin(x^2)$.

$$|f'(x)| \le 2x \le 4$$
 $\forall x \in [1, 2]$

Correction (suite)

On a $f(x) = \cos(x^2)$ est de classe C^2 sur [1,2] donc $f'(x) = -2x\sin(x^2)$.

$$|f'(x)| \le 2x \le 4$$
 $\forall x \in [1,2]$

L'erreur commise est majorée par

$$|E_{Rg}^c| \le \frac{(b-a)^2}{2n} \max_{x \in]1,2[} |f'(x)| = \frac{1}{2 \times 8} \max_{x \in]1,2[} |f'(x)|$$

 $\le \frac{1}{2 \times 8} 4 = 0.25$

Correction (suite)

On a a = 1, b = 2, l'erreur est donnée par :

$$E_{Rg}^c \le \frac{1}{2n} \max_{x \in]1,2[} |f'(x)|$$

Comme $|f'(x)| \le 2x \le 4$, $\forall x \in [1, 2]$. Donc

$$E_{Rg}^c \leq \frac{2}{n}$$

On retrouve n puis on déduire la valeur de h^* . D'après l'enoncé $E_{\rm Rg}^c \leq 10^{-4}$, la question sera trouver n tel que

$$\frac{2}{n} \le 10^{-4}$$

ou encore $n \ge 2 \cdot 10^4$. Finalement,

$$h^* = \frac{b-a}{n} = \frac{1}{n} = \frac{10^{-4}}{2}$$

