

Evaluation Metrics for Classification 1

Logistic Regression I

Learning Objectives

- 1 Interpret confusion matrix.
- 2 Understand metrics used to evaluate classification models: accuracy, sensitivity, specificity, precision and F1 score.

Making Predictions

• Logistic Regression model estimates the probability of default, given a predictor X given by p(X) = Pr(Y|X)

```
probs <- fitted(model2)
pp <- train %>% mutate(y_prob = probs)
head(pp)
```

```
balance
            income student default p_default
                                                   y_prob
                                               0.41734312
1 1521.4949 18018.90
                                  No
                         Yes
2 1191.4803 30040.57
                          No
                                  No
                                             0 0.14333612
                                               0.97261392
3 2110.5569 19345.10
                         Yes
                             Yes
4 1360.8656 22310.93
                                             0 0.19810811
                         Yes
                                  No
5 1112.3490 33468.82
                          No
                                             0 0.09011374
                                  No
  773.5937 29661.46
                          No
                                  No
                                             0 0.01038311
```

Making Predictions

Select a cut-off threshold of 0.5 on predicted probability

```
pp <- pp %>% mutate(y_pred = ifelse(y_prob > 0.5, "Yes", "No"))
head(pp)
```

	balance	income	student	${\tt default}$	<pre>p_default</pre>	y_prob	y_pred
1	1521.4949	18018.90	Yes	No	0	0.41734312	No
2	1191.4803	30040.57	No	No	0	0.14333612	No
3	2110.5569	19345.10	Yes	Yes	1	0.97261392	Yes
4	1360.8656	22310.93	Yes	No	0	0.19810811	No
5	1112.3490	33468.82	No	No	0	0.09011374	No
6	773.5937	29661.46	No	No	0	0.01038311	No

Evaluating Logistic Regression Models

How does a classification model fail?

- Logistic regression model to predict default makes errors when it assigns an individual to the wrong category:
 - ► Individual does not default, but model assigns them to default = Yes category (Type 1 error)
 - ► Individual defaults, but model assigns them to default = No category (Type 2 error)
- Which error should we reduce? Ideally both, but in reality, its a trade-off and it depends on the application.

Confusion Matrix

Counting Errors

- Confusion matrix is a summary of prediction results for a classification problem.
 - ► Positive: event of interest (e.g. *default = Yes*).
 - ► Negative: negative (or usual) event (e.g. default = No).

Predicted Value

		Positive	Negative	
Value	Positive	True Positive, TP	False Negative, FN (Type 2 Error)	
Actual Value	Negative	False Positive, FP (Type 1 Error)	True Negative, TN	

Confusion Matrix

Code

```
pp$default <- factor(pp$default, levels = c("Yes", "No"))
pp$y_pred <- factor(pp$y_pred, levels = c("Yes", "No"))

conf_mat <- table(pp$default, pp$y_pred, deparse.level = 0)

colnames(conf_mat) <- c("y_pred=Yes", "y_pred=No")
rownames(conf_mat) <- c("default=Yes", "default=No")

conf_mat</pre>
```

```
y_pred=Yes y_pred=No
default=Yes 2397 567
default=No 512 7188
```

Confusion Matrix

Credit default data

Accuracy

Overall, how often is the model correct?

Positive Negative TP = 2397 FN = 567 # Actual Positives = 2964 TN = 7188 # Actual Negatives = 7700

Predicted Value

Predicted Positives

= 2909

$$Accuracy = \frac{\text{No. of correct predictions}}{\text{Total no. of predictions}} = \frac{\text{TP+TN}}{\text{TP+FN+FP+TN}} = \frac{2397 + 7188}{10664} = \frac{9585}{10664} = 0.899 \quad (1)$$

Predicted Negatives

= 7755

Total # = 10664

Sensitivity

When the actual value is yes, how often does the model predict it as yes?

Predicted Value Positive Negative Positive # Actual Positives = TP = 2397FN = 567Actual Value 2964 Negative # Actual Negatives = FP = 512TN = 71887700 # Predicted Positives # Predicted Negatives Total # = 10664= 7755 = 2909

Sensitivity =
$$\frac{\text{No. of true positives}}{\text{No. of actual positives}} = \frac{\text{TP}}{\text{TP+FN}} = \frac{2397}{2964} = 0.809$$
 (2)

Sensitivity is also called recall or true positive rate (TPR) in literature

Specificity

When the actual value is no, how often does the model predict it as no?

Predicted Value Positive Negative Positive # Actual Positives = TP = 2397FN = 567Actual Value 2964 Negative # Actual Negatives = FP = 512TN = 71887700 # Predicted Positives | # Predicted Negatives Total # = 10664= 2909 = 7755

Specificity =
$$\frac{\text{No. of true negatives}}{\text{No. of actual negatives}} = \frac{\text{TN}}{\text{TN+FP}} = \frac{7188}{7700} = 0.934$$
 (3)

- An associated metric is the false positive rate, FPR = 1 Specificity. Here, FPR = 0.067
- Good classification model maximises both sensitivity and specificity

Precision

When the model predicts a yes, how often is it correct?

		Predicte		
		Positive	Negative	
Actual Value	Negative Positive	TP = 2397	FN = 567	# Actual Positives = 2964
		FP = 512	TN = 7188	# Actual Negatives = 7700
		# Predicted Positives = 2909	# Predicted Negatives = 7755	Total # = 10664

$$Precision = \frac{No. \text{ of true positives}}{No. \text{ of predicted positives}} = \frac{TP}{TP+FP} = \frac{2397}{2909} = 0.824 \tag{4}$$

- Precision is also known as positive predictive value (PPV) in literature.
- Higher precision is better.

F1-Score

Combined Precision and Recall

Predicted Value Positive Negative Positive # Actual Positives = TP = 2397FN = 567Actual Value 2964 Negative # Actual Negatives = FP = 512TN = 71887700 # Predicted Negatives # Predicted Positives Total # = 10664= 7755 = 2909

$$F1 = 2.\frac{\text{precision.recall}}{\text{precision} + \text{recall}} = \frac{\text{TP}}{\text{TP} + \frac{1}{2}(\text{FP} + \text{FN})} = \frac{2397}{2397 + \frac{1}{2}.(512 + 567)} = 0.816 \tag{5}$$

Higher F1 score is better.

Evaluation Metrics

Code

```
TP <- conf_mat[1,1]
TN \leftarrow conf_mat[2,2]
FP <- conf_mat[2,1]
FN <- conf_mat[1,2]
Total <- nrow(pp)</pre>
acc <- (TP+TN)/nrow(pp)</pre>
sens <- TP/(TP+FN)
spec <- TN/(TN+FP)</pre>
prec <- TP/(TP+FP)</pre>
f1s \leftarrow TP/(TP+0.5*(FP+FN))
evalnames <- c("accuracy", "sensitivity", "specificity", "precision",
    "F1_score")
evaldata <- c(acc, sens, spec, prec, f1s)
evalmetrics <- data.frame(Metric = evalnames, Value = evaldata)
evalmetrics
```

Evaluation Metrics

```
Metric Value
accuracy 0.8988185
sensitivity 0.8087045
specificity 0.9335065
precision 0.8239945
F1_score 0.8162779
```

References I

Bruce, P., Bruce, A. G., and Gedeck, P. (2020). Practical statistics for data scientists: 50 essential concepts using R and Python. OReilly.