目 录

1. 总体介绍	1
2. 产品特性:	1
3. 应用领域	2
4. 典型电路	2
6. 引脚排布	3
7. 引脚描述	3
8. 额定参数	4
9. 工作参数	4
10. 功能描述	5
10.1 选择解调滤波器带宽	9

1. 总体介绍

218R是法国OXO公司推出最新的单片300-450MHz无线ASK/OOK(ON-OFF Keyed) 接收芯片,主要应用于无线射频遥控领域。与上一代产品450R相比,218R不仅具有更高的 灵敏度(在433MHz应用环境下,灵敏度可以达到-109dBm),而且在芯片内部进一步集成 了镜像抑制功能,从而具有更强的抗干扰能力。这两点都使218R可以实现更远的接收距离。 同时,218R继承了450R "天线高频AM信号输入,数字信号输出"的特点,依然具有450R 同样的高集成度,高频信号接收功能全部集成于片内,以达到用最少的外围器件和最低的成 本获得最可靠的接收效果。同时,218R片内自动完成所有的RF及IF调谐、这样在开发和生 产中就省略了手工调节的工艺过程,自然也降低了成本,增强了产品的竞争力。

219R和218R均为16脚封装,219R为SSOP16,218R为SOP16。

作为ASK/OOK 超外差接收器,SYN500R可以实现最大10Kbps的数据传输率,输入信 号的解调及滤波都集成在219R片内,用户可以在芯片外部选择四个带宽滤波器中的任何一 个,从而实现1.25KHz-10KHz的数据率。同时,用户还可以通过简单设置,来选择编码调 131.501 制格式和占空比。

2. 产品特性:

- 完全的单片UHF接收器件
- 频率范围300—450 MHz
- 接收灵敏度-109dBm, 1Kbps, 误码率10E-02
- 工作电压3V-5.5V
- 集成镜像抑制功能,数据率最大10Kbps
- 无需中频滤波器
- 低功耗:
 - 6.0mA, 3.3V @ 433.92MHz
 - 3.9mA, 3.3V @315MHz 2.5mA

- 0.9µA (关闭模式, shutdown mode)
- 250μA(315MHz,10: 1占空比)
- 带模拟RSSI输出
- 极佳的灵敏度和噪声抑制能力
- 标准的CMOS接口控制及解码数据输出
- 最经济的外围器件设计方案

3. 应用领域

- 遥控键盘
- 远距离 RFID, RKE
- 遥控扇/灯
- 遥控门

4. 典型电路

433.92MHz 1K Baud Rate

315MHz 1K Baud Rate

6. 引脚排布

218R SOP16和219R SSOP16封装引脚图

7. 引脚描述

引脚编号	引脚名	引脚功能
60	RO1	参考谐振器输入,连接Colpitts振荡器。或由外部参考信号驱动,最大幅度1.5V峰峰值
2	GNDRF	负电源连接与天线RF输入
3	ANT	天线RF信号输入,内部AC耦合。建议使用带电感的匹配网络到RF 地,以增强ESD保护
4	GNDRF	负电源连接与天线RF输入
5	VDD	全芯片正电源输入
6	NC	未使用的引脚 (浮空)

^{*}This specification is subject to change without notification.

7	SEL0	逻辑控制输入,此引脚由内部上拉。与SEL1配合使用,控制解调低通滤波器的带宽。	
8	SHDN	Shutdown逻辑控制输入,此引脚由内部上拉.	
9	GND	全芯片负电源连接(除RF输入)	
10	DO	解调数据输出	
11	SEL1	逻辑控制输入,此引脚由内部上拉。与SELO配合使用,控制解调低通滤波器的带宽。	
12	СТН	解调门限电压积分电容连接,获取调制波的平均值,用于内部数据比较器的参考信号。使用外部电容连接CTH脚与地,建议使用InF以上电容,需根据数据率进行优化	
13	CAGC	AGC(Automatic Gain Control) 电容,推荐使用0.47uF或更大的电容可以得到最好的效果。由该pin连接到地	
14	RSSI	输出接收信号强度指示。由典型值为200 Ω阻抗的输出缓冲区输出	
15	NC	未使用的引脚(接地)	
16	RO2	参考谐振器输入,连接Colpitts振荡器。该引脚与地之间使用18pF 电容	

8. 额定参数

电源电压(V _{DDRF} , V _{DDBB})	+7V
I/O 端口电压 (V _{I/O})	V_{SS} -0.3 to V_{DD} +0.3
节点温度 (T ₁)	+150 ℃
储藏温度范围(Ts)	-65 ℃ to +150 ℃
焊接温度(焊接时间 10 秒)	+260 ℃

9. 工作参数

射频频率范围	300MHz to 450MHz
电源电压 (VDD)	+3.0V to +5.5V
最大输入 RF 功率	-20dBm
工作环境温度范围 (TA)	–40 °C to +85 °C

防静电 ESD 灵敏度:符合 1ESD 级(2000V)

测试要求(手工模式,HBM),依据 MIL-STD-883C 标准,采用方法: Method 3015。 要求防静电储存,防静电操作

10. 功能描述

如图所示: SYN500R 分为四个功能块:

- UHF 降频变换器
- OOK 解调器
- 参考时钟及控制
- SHUTDOWN 功能

用它组成一个完整的 UHF 接收器,只需要 2 个电容(C_{TH} , C_{AGC})和 1 个时钟器件(通常为陶瓷振荡器),当然外部还需要 1 个电源滤波电容,3 个输入控制脚(SEL0、SEL1、SHDN)用来选择芯片的工作模式和带宽,芯片内部已有上拉电阻,不再需要外加上拉电阻。

10.1 选择解调滤波器带宽

SELO、SEL1:选择解调滤波器带宽。用户应根据需要选择解调滤波器带宽

SEL0	SEL1	解调带宽 (@ 434MHz)
0	0	1625Hz
1	0	3250Hz
0	1	6500Hz
1	1	13000Hz-default

10.2 镜像抑制滤波器和带通滤波器

混频器的中频端口产生正交下变频中频信号,这些中频信号在通过镜像抑制滤波器以去除镜像频率之前,先经过了低通滤波器,以去除较高的频率。之后中频信号通过一个三阶带通滤波器,该滤波器中心频率 1.2MHz,带宽是这 330kHz @ 433.92MHz,带宽随 RF 工作频率而变化,通过以下计算得出:

$$BW_{IF} = BW_{IF@433.92 \text{ MHz}} \times \frac{\text{Operating Freq(MHz)}}{433.92}$$

以上滤波器全部集成于 SYN500R 之中。

10.3 自动增益控制 (AGC) 与 CAGC 电容

自动增益控制(AGC)能增加输入动态范围。衰落与激励时间常数之比固定为 10:1,但激励时间常数能通过选择 C_{AGC} 的值来改变。

*This specification is subject to change without notification.

为了增大系统动态范围,在控制电平达到静态值时,应尽量减低 AGC 控制波纹(最好 低于 10mv)。

10.4 参考振荡器与外部时钟

根据用户需要,可选择以下三种外部时钟:

- 陶瓷振荡器
- 晶体振荡器
- 外部时钟信号(如 MCU 输出时钟),幅度大约 0.5V_m 用户应根据发射频率来确定时钟的值(详细如下):

上图中所有电容都已集成在 SYN500R 中, R01 和 R02 的是外部引脚, 用户只需要连接 参考振荡晶体。

参考振荡器晶体频率可以如下计算:

$$F_{REF OSC} = F_{RF}/(32 + 1.1/12)$$

例如 433.92 MHz, F_{REF OSC} = 13.52127 MHz

10.5 SHUTDOWN 功能

当 SHDN 脚输入高电平,芯片进入低功耗 STANDBY 模式,消耗电流小于 1uA。

此脚内部被上拉,正常工作时必须下拉到地。

11. 典型应用

下图给出了 433.92MHz 频率下 219R 的典型应用

