ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA DE TELECOMUNICACIÓ

EMISSORS I RECEPTORS

Control. Quatrimestre Primavera. Maig 2003.

Problema 1 (5 punts)

Es disposa del receptor superheterodí de conversió simple mostrat a la figura:

Els paràmetres que caracteritzen aquest receptor són:

Temperatura equivalent de soroll de l'antena: T_A= 800 °K

Amplificador de RF: $G_{RF}=10 \text{ dB}$, $NF_{RF}=3 \text{ dB}$

Punt d'intercepció a l'entrada pels productes de 3r ordre: IP_{i,RF} = 11 dBm

Filtre Passa Banda 1: Pèrdues d'inserció L₁= 4 dB, B_{filtre1}= 1 MHz

Mesclador: $G_m = -6 \text{ dB}, NF_m = 10 \text{dB}$

Punt d'intercepció a l'entrada pels productes de 3r ordre: IP_{i,m} = 15 dBm

Filtre Passa Banda 2: No té pèrdues d'inserció, B_{filtre2} = 100 kHz Amplificador de FI: G_{FI} =20 dB, NF_{FI} =8dB, B_{FI} = 100 kHz

Punt d'intercepció a l'entrada pels productes de 3r ordre: IP_{i,FI} = -42 dBm

K=1'38.10⁻²³ J/K Temperatura fisica del receptor: T_o=290 °K

Distorsió per llei cúbica

Pel demodulador de FM es compleix la següent relació: $\left(\frac{S}{N}\right)_o = 3\left(\frac{f_d}{f_m}\right)^2 \left(\frac{S}{N}\right)_i$ essent (S/N)_i i (S/N)_o les

relacions senyal-soroll a l'entrada i a la sortida del demodulador, respectivament, $f_d=5$ kHz la desviació de freqüència i $f_m=3$ kHz l'ample de banda del senyal modulador.

A l'entrada del receptor es té, a part del senyal útil, dos senyals separats 100 kHz i 200 kHz del senyal útil i amb una potència de -52 dBm.

Es demana:

- a) Determinar la selectivitat dels filtres per garantir un rebuig a l'entrada referit a la sensibilitat de 50 dB.
- b) Calcular la sensibilitat del receptor expressada en μVef .
- c) Determinar si la potència del producte d'intermodulació a la sortida de l'amplificador de FI està per sobre o per sota del nivell de soroll.
- d) Calcular la S/N a la sortida del demodulador.

Problema 2 (5 punts)

Considereu un PLL de segon ordre amb filtre passiu que s'usa com a recuperador de portadora en un receptor superheterodí tal com mostra la figura.

Es demana:

- a) Calcular la freqüència natural del PLL per tal que el jitter (en rad²) de la portadora recuperada sigui menor o igual a la dotzena part del jitter a l'entrada del PLL.
- b) Calcular ara la frequència natural del PLL per tal que, al connectar l'alimentació, el PLL enganxi en menys d'un cicle.
- c) Escollir un valor per la frequència natural del PLL per minimitzar el temps que tarda en enganxar, justificar la seva elecció i calcular la sensibilitat necessària pel VCO (K_2) .
- d) Suposeu que, amb el PLL enganxat i en seguiment, l'emissor comença a moure's a una velocitat constant v=120 km/h, el que origina un desplaçament en freqüència de valor v/λ (Hz). Calcular l'error de fase en règim permanent entre les portadores rebuda i generada.

Dades:

- Capçal de RF: Guany = 30 dB, Ample de banda de FI = 24 kHz, Freqüència intermitja f_{FI} = 5 MHz
- Oscil·lador local del receptor: $f_{OL} = f_s f_{FI}$, $\epsilon_{OL} = 10^{-6}$
- Oscil·lador en emissió: f_s de 12 MHz a 30 MHz, ε_s =10⁻⁶
- PLL: $\varepsilon_{\text{VCO}}=10^{-5}$, $\xi=0.7$, Guany del detector de fase $K_I=1.4$, Constant del filtre $\tau_1=2$ ms, considereu A.K>>1 i $\tau_1>>\tau_2$
- Potencia de senyal a l'entrada del receptor: P_s = -72 dBm