Agenda

Basics

- 5 Local Search Algorithms

Hill-Climbing

Basics

Hill-Climbing

```
\begin{split} \sigma &:= \mathsf{make\text{-}root\text{-}node}(\mathsf{init}()) \\ \textbf{forever} &: \\ & \quad \textbf{if is\text{-}goal}(\mathsf{state}(\sigma)) \text{:} \\ & \quad \textbf{return } \mathsf{extract\text{-}solution}(\sigma) \\ & \quad \Sigma' := \big\{ \, \mathsf{make\text{-}node}(\sigma, a, s') \mid (a, s') \in \mathsf{succ}(\mathsf{state}(\sigma)) \, \big\} \\ & \quad \sigma := \mathsf{an } \mathsf{element } \mathsf{of } \Sigma' \mathsf{ minimizing } h \, /\!^* \, (\mathsf{random } \mathsf{tie } \mathsf{breaking}) \, /\!/ \, . \end{split}
```

Hill-Climbing

Basics

```
Hill-Climbing
\sigma := \mathsf{make}\text{-root-node}(\mathsf{init}())
forever:

If is-goal(state(\sigma)):
    return extract-solution(\sigma)
\Sigma' := \{ \mathsf{make}\text{-node}(\sigma, a, s') \mid (a, s') \in \mathsf{succ}(\mathsf{state}(\sigma)) \}
\sigma := \mathsf{an element of } \Sigma' \mathsf{minimizing } h \not \text{" (random tie breaking) */}
```

Remarks:

- Makes sense only if h(s) > 0 for $s \notin S^G$.
- Is this complete or optimal?

Conclusion

Hill-Climbing

Basics

Hill-Climbing

```
\begin{split} \sigma &:= \mathsf{make\text{-}root\text{-}node}(\mathsf{init}()) \\ \textbf{forever} &: \\ & \quad \textbf{if is\text{-}goal}(\mathsf{state}(\sigma)) \colon \\ & \quad \textbf{return} \ \mathsf{extract\text{-}solution}(\sigma) \\ & \quad \Sigma' := \{ \ \mathsf{make\text{-}node}(\sigma, a, s') \mid (a, s') \in \mathsf{succ}(\mathsf{state}(\sigma)) \, \} \\ & \quad \sigma := \mathsf{an element of } \Sigma' \ \mathsf{minimizing} \ h \ /^* \ (\mathsf{random tie breaking}) \ ^*/ \end{split}
```

Remarks:

- Makes sense only if h(s) > 0 for $s \notin S^G$.
- Is this complete or optimal? No.
- Can easily get stuck in local minima where immediate improvements of $h(\sigma)$ are not possible.
- Many variations: tie-breaking strategies, restarts, . . .

Conclusion

Basics

Enforced Hill-Climbing: Procedure improve

```
\begin{array}{l} \operatorname{def} \mathit{improve}(\sigma_0) \colon \\ \mathit{queue} \coloneqq \operatorname{new} \ \mathsf{fifo} \ \mathsf{queue} \\ \mathit{queue.push-back}(\sigma_0) \\ \mathit{closed} \coloneqq \emptyset \\ \mathsf{while} \ \mathsf{not} \ \mathit{queue.empty}() \colon \\ \sigma = \mathit{queue.pop-front}() \\ \mathsf{if} \ \mathit{state}(\sigma) \notin \mathit{closed} \colon \\ \mathit{closed} \coloneqq \mathit{closed} \cup \{\mathit{state}(\sigma)\} \\ \mathsf{if} \ \mathit{h}(\mathit{state}(\sigma)) < \mathit{h}(\mathit{state}(\sigma_0)) \colon \mathsf{return} \ \sigma \\ \mathsf{for} \ \mathsf{each} \ (\mathit{a}, \mathit{s'}) \in \mathsf{succ}(\mathit{state}(\sigma)) \colon \\ \sigma' \coloneqq \mathsf{make-node}(\sigma, \mathit{a}, \mathit{s'}) \\ \mathit{queue.push-back}(\sigma') \\ \mathsf{fail} \end{array}
```

 \rightarrow Breadth-first search for state with strictly smaller h-value.

Enforced Hill-Climbing

 $\sigma := \mathsf{make}\mathsf{-root}\mathsf{-node}(\mathsf{init}())$

while not is-goal(state(σ)):

 $\sigma := \mathsf{improve}(\sigma)$

return extract-solution(σ)

Enforced Hill-Climbing

```
\begin{split} \sigma := \mathsf{make\text{-}root\text{-}node}(\mathsf{init}()) \\ \mathbf{while} \ \ \mathbf{not} \ \ \mathsf{is\text{-}goal}(\mathsf{state}(\sigma)) \\ \sigma := \mathsf{improve}(\sigma) \\ \mathbf{return} \ \ \mathsf{extract\text{-}solution}(\sigma) \end{split}
```

Remarks:

Basics

- Makes sense only if h(s) > 0 for $s \notin S^G$.
- Is this optimal?

Enforced Hill-Climbing

```
\begin{split} \sigma := \mathsf{make\text{-}root\text{-}node}(\mathsf{init}()) \\ \mathbf{while} \ \ \mathbf{not} \ \ \mathsf{is\text{-}goal}(\mathsf{state}(\sigma)) \\ \sigma := \mathsf{improve}(\sigma) \\ \mathbf{return} \ \ \mathsf{extract\text{-}solution}(\sigma) \end{split}
```

Remarks:

- Makes sense only if h(s) > 0 for $s \notin S^G$.
- Is this optimal? No.

Enforced Hill-Climbing

```
\begin{split} \sigma := \mathsf{make\text{-}root\text{-}node}(\mathsf{init}()) \\ \mathbf{while} \ \ \mathbf{not} \ \ \mathsf{is\text{-}goal}(\mathsf{state}(\sigma)) \\ \sigma := \mathsf{improve}(\sigma) \\ \mathbf{return} \ \ \mathsf{extract\text{-}solution}(\sigma) \end{split}
```

Remarks:

- Makes sense only if h(s) > 0 for $s \notin S^G$.
- Is this optimal? No.
- Is this complete?

Enforced Hill-Climbing

```
\sigma := \mathsf{make}\mathsf{-root}\mathsf{-node}(\mathsf{init}())
while not is-goal(state(\sigma)):
          \sigma := \mathsf{improve}(\sigma)
return extract-solution(\sigma)
```

Remarks:

Basics

- Makes sense only if h(s) > 0 for $s \notin S^G$.
- Is this optimal? No.
- Is this complete? In general, no. Under particular circumstances, yes. Assume that h is goal-aware.

Enforced Hill-Climbing

```
\begin{split} \sigma := \mathsf{make\text{-}root\text{-}node}(\mathsf{init}()) \\ \mathbf{while} \ \ \mathbf{not} \ \ \mathsf{is\text{-}goal}(\mathsf{state}(\sigma)) \colon \\ \sigma := \mathsf{improve}(\sigma) \\ \mathbf{return} \ \ \mathsf{extract\text{-}solution}(\sigma) \end{split}
```

Remarks:

- Makes sense only if h(s) > 0 for $s \notin S^G$.
- Is this optimal? No.
- Is this complete? In general, no. Under particular circumstances, yes. Assume that h is goal-aware.
 - \rightarrow Procedure *improve* fails: no state with strictly smaller h-value reachable from s, thus (with assumption) goal not reachable from s.

Enforced Hill-Climbing

```
\begin{split} \sigma := \mathsf{make\text{-}root\text{-}node}(\mathsf{init}()) \\ \mathbf{while} \ \ \mathbf{not} \ \ \mathsf{is\text{-}goal}(\mathsf{state}(\sigma)) \colon \\ \sigma := \mathsf{improve}(\sigma) \\ \mathbf{return} \ \ \mathsf{extract\text{-}solution}(\sigma) \end{split}
```

Remarks:

- Makes sense only if h(s) > 0 for $s \notin S^G$.
- Is this optimal? No.
- Is this complete? In general, no. Under particular circumstances, yes. Assume that h is goal-aware.
 - \rightarrow Procedure *improve* fails: no state with strictly smaller *h*-value reachable from s, thus (with assumption) goal not reachable from s.
 - \to This can, for example, not happen if the state space is undirected, i.e., if for all transitions $s \to s'$ in Θ_Π there is a transition $s' \to s$.

Properties of Search Algorithms

	DFS	BrFS	ID	A*	HC	IDA*
Complete	No	Yes	Yes	Yes	No	Yes
Optimal	No	Yes*	Yes	Yes	No	Yes
Time	∞	b^d	b^d	b^d	∞	b^d
Space	$b \cdot d$	b^d	$b \cdot d$	b^d	b	$b \cdot d$

- Parameters: *d* is solution depth; *b* is branching factor
- Breadth First Search (BrFS) optimal when costs are uniform
- A*/IDA* optimal when h is **admissible**; $h \le h^*$

Agenda

Models

- Models
- 2 Languages
- 3 Complexity
- 4 Computational Approaches
- 5 IPC
- Conclusion

Conclusion

Models, Languages, and Solvers

Models

A planner is a solver over a class of models; it takes a model description, and computes the corresponding controller

$$Model \Longrightarrow \boxed{Planner} \Longrightarrow Controller$$

- Many models, many solution forms: uncertainty, feedback, costs, ...
- Models described in suitable planning languages (Strips, PDDL, PPDDL, ...) where states represent interpretations over the language.

Models

A Basic Language for Classical Planning: Strips

- A **problem** in STRIPS is a tuple $P = \langle F, O, I, G \rangle$:
 - F stands for set of all atoms (boolean vars)
 - O stands for set of all operators (actions)
 - $I \subseteq F$ stands for initial situation
 - $G \subseteq F$ stands for goal situation
- lacktriangle Operators $o \in O$ represented by
 - the Add list $Add(o) \subseteq F$
 - the Delete list $Del(o) \subseteq F$
 - the Precondition list $Pre(o) \subseteq F$

From Language to Models (STRIPS Semantics)

A STRIPS problem $P = \langle F, O, I, G \rangle$ determines **state model** S(P) where

- the states $s \in S$ are collections of atoms from F. $S = 2^F$
- \blacksquare the initial state s_0 is I
- the goal states s are such that $G \subseteq s$
- the actions a in A(s) are ops in O s.t. $Prec(a) \subseteq s$
- the next state is s' = s Del(a) + Add(a)
- **action costs** c(a, s) are all 1
- \rightarrow (Optimal) **Solution** of P is (optimal) **solution** of $\mathcal{S}(P)$
- → Slight language extensions often convenient: negation, conditional effects, **non-boolean variables**; some required for describing richer models (costs. probabilities, ...).

- **Propositions:** on(x, y), onTable(x), clear(x), holding(x), armEmpty().
- Initial state: $\{onTable(E), clear(E), \dots, onTable(C), on(D, C), clear(D), armEmpty()\}.$
- Goal: $\{on(E, C), on(C, A), on(B, D)\}.$
- **Actions**: stack(x, y), unstack(x, y), putdown(x), pickup(x).
- \blacksquare stack(x, y)?

- **Propositions:** on(x, y), onTable(x), clear(x), holding(x), armEmpty().
- Initial state: $\{onTable(E), clear(E), \dots, onTable(C), on(D, C), clear(D), armEmpty()\}.$
- Goal: $\{on(E, C), on(C, A), on(B, D)\}.$
- **Actions**: stack(x, y), unstack(x, y), putdown(x), pickup(x).
- **stack**(x, y)? pre : $\{holding(x), clear(y)\}$

- **Propositions:** on(x, y), onTable(x), clear(x), holding(x), armEmpty().
- Initial state: $\{onTable(E), clear(E), \dots, onTable(C), on(D, C), clear(D), armEmpty()\}.$
- Goal: $\{on(E, C), on(C, A), on(B, D)\}.$
- **Actions**: stack(x, y), unstack(x, y), putdown(x), pickup(x).
- stack(x, y)? $pre : \{holding(x), clear(y)\}$ $add : \{on(x, y), armEmpty(), clear(x)\}\}$

Models

Goal State

Propositions: on(x, y), onTable(x), clear(x), holding(x), armEmpty().

- Initial state: $\{onTable(E), clear(E), \dots, onTable(C), on(D, C), clear(D), armEmpty()\}.$
- Goal: $\{on(E,C), on(C,A), on(B,D)\}.$
- **Actions**: stack(x, y), unstack(x, y), putdown(x), pickup(x).
- stack(x, y)? pre : {holding(x), clear(y)}
 add : {on(x, y), armEmpty(), clear(x)}}
 del : {holding(x), clear(y)}.

PDDL Quick Facts

Models

PDDL is not a propositional language:

- Representation is lifted, using object variables to be instantiated from a finite set of objects. (Similar to predicate logic)
- Action schemas parameterized by objects.
- Predicates to be instantiated with objects.

Conclusion

Languages

000000000

PDDL Quick Facts

Models

PDDL is not a propositional language:

- Representation is lifted, using object variables to be instantiated from a finite set of objects. (Similar to predicate logic)
- Action schemas parameterized by objects.
- Predicates to be instantiated with objects.

A PDDL planning task comes in two pieces:

- The domain file and the problem file.
- The problem file gives the objects, the initial state, and the goal state.
- The domain file gives the predicates and the operators; each benchmark domain has one domain file.

Goal State

The Blocksworld in PDDL: Problem File

Models

Conclusion

Example: Logistics in Strips PDDL

Languages

00000000

Models

```
(define (domain logistics)
 (:requirements :strips :tvping :equality)
  (:types airport - location truck airplane - vehicle vehicle packet -
  (:predicates (loc-at ?x - location ?v - city) (at ?x - thing ?v - locat
  (:action load
   :parameters (?x - packet ?y - vehicle ?z - location)
   :precondition (and (at ?x ?z) (at ?v ?z))
   :effect (and (not (at ?x ?z)) (in ?x ?v)))
 (:action unload ..)
 (:action drive
   :parameters (?x - truck ?y - location ?z - location ?c - city)
   :precondition (and (loc-at ?z ?c) (loc-at ?y ?c) (not (= ?z ?y)) (at
   :effect (and (not (at ?x ?z)) (at ?x ?v)))
(define (problem log3_2)
 (:domain logistics)
 (:objects packet1 packet2 - packet truck1 truck2 truck3 - truck airpl
 (:init (at packet1 office1) (at packet2 office3) ...)
```

(:goal (and (at packet1 office2) (at packet2 office2))))