第一章基本概念 1.6等价关系与集合的分类 概念 课后习题 第二章群 2.1群的定义和初步性质 概念 习题 ★2.2群中元素的阶 概念 定理

习题

2.3 子群

概念

习题

2.4 循环群

概念

定理

习题

2.5 变换群

概念

定理

习题

★ 2.6 置换群

概念

定理

习题

2.7 陪集、指数和Lagrange定理

概念

定理

习题

第三章 正规子群与群的同态与同构

3.1 群同态与同构的简单性质

概念

习题

3.2 正规子群和商群

概念

习题

3.3 群同态基本定理

习题

3.4 群的同构定理

习题

第四章 环与域

4.1 环的定义

概念

习题

4.2 环的零因子和特征

概念

习题

4.3 除环和域

概念

习题

4.4 模n剩余类环

习题

4.5 环与域上的多项式环

习题 4.6 理想 概念 习题 4.7 商环与环同态基本定理 概念 定理 习题

其他补充题

★ <7阶群的结构 整数环Z的所有自同态

总结一些老师上课提到的重点,以及可能要考的题。标★的章节或知识点是要重点看的。

大部分内容是由16级的赵剑辉学长所写,在此深表感谢。

知识点会有不全的地方(建议还是看一下书),有什么问题欢迎大家指出。

第一章 基本概念

1.6 等价关系与集合的分类

概念

- 等价关系: 集合M的一个关系R满足以下三个条件,这个关系是M的一个等价关系,a, b等价记 作: $a \sim b$ 。成立
 - 1. $\forall a \in M$,有 aRa; (自反性)
 - 2. 如果 aRb, 有bRa; (对称性)
 - 3. 如果 aRb, bRc, 有aRc; (传递性)

课后习题

2,3题

第二章 群

重点内容: 群的基本概念, 判断规定了运算的代数系统是否为群?

2.1 群的定义和初步性质

- 群:
- 1. 运算封闭, $\forall a,b \in G, a \circ b \in G$;
 - 2. 结合律, $\forall a, b, c \in G, (a \circ b) \circ c = a \circ (b \circ c);$
 - 3. 单位元, $\forall a \in G, a \circ b = a, b \in G$,则b称为单位元,记为e;
 - 4. 逆元, $\forall a \in G, \exists b \in G, a \circ b = e$,则b为a的逆元,记为 a^{-1} 。
- 半群:满足运算封闭与结合律;

- 幺半群:满足运算封闭和结合律,并且有单位元(幺元)。
- **交换群(Abel)**:满足群的定义,群中元素的运算满足交换律: $\forall a,b \in G, a \circ b = b \circ a$.

习题

例题: 1, 2

课后题: 1, 2, 4, 5, 6

6、证明:若群G中任意元素满足 $x^2 = e$,则G为交换群。

proof:

由
$$x^2 = e$$
, $x \circ x = e$, 得 $x^{-1} = x$;

 $\forall a,b \in G, a \circ b \in M$,

則
$$a \circ b = (a \circ b)^{-1} = b^{-1} \circ a^{-1} = b \circ a$$
,

故G为交换群。

★ 2.2 群中元素的阶

概念

• 元素的**阶**:

设a为群G的一个元素,使 $a^n = e$ 成立的最小正整数n为a的阶,记为|a|。

定理

- 1. 有限群中每个元素的阶均有限;
- 2. $\bigstar |a| = n$,则 $a^m = n \iff n \mid m$;
- 3. |a|=n,则 $|a^k|=rac{n}{(k,n)}$;
- 4. $|a|=m, |b|=n, ab=ba, (m, n)=1 \Longrightarrow |ab|=mn=|a|\cdot |b|;$
- 5. G为交换群,群中所有元素有最大阶m,则G中每个元素的阶都是m的因数,即G中每个元素都满足 $x^m=e$.

习题

课后题: 1, 2, 3, 4

1、以第一小题为例,证明: a, a^{-1}, cac^{-1} 的阶相同。

Proof:

设
$$|a|=m, |a^{-1}|=n, \ \mathbb{M}(a^{-1})^m=e^{-1}=e \Longrightarrow n \mid m,$$
 $a^n=\left[(a^{-1})^{-1}\right]^n=e^{-1}=e \Longrightarrow m \mid n, \$ 于是 $m=n.$

其他类似可证。

2.3 子群

- 1. 子群: 群G的一个非空子集H本身关于群G的乘法也做成一个群,则H称为G的一个子群,记为 $H \leq G$ 。
- 2. 平凡子群: $\{e\}$ 和G;
- 3. 非平凡子群(真子群):除平凡子群以外的**子群**,记为H < G。

★子群的判定定理(也可以拆成两部分):

群G的非空子集做成子群的充要条件是:

$$a, b \in H \implies ab^{-1} \in H.$$

习题

课后题: 7

7、证明:任何子群都不能是两个真子群的并。

反证:设群 $G = A_1 \cup A_2$,其中 A_1, A_2 为G的真子群。

则 $\exists a \in G ackslash A_1, b \in G ackslash A_2$,

又 $a \circ b \in G$, 则 $a \circ b \in A_1$ 或者 $a \circ b \in A_2$,

若 $a \circ b \in A_2$,同理;

故假设不成立,原命题成立。

2.4 循环群

概念

• 循环群: 如果群G可以由一个元素a生成,即 $G = \langle a \rangle$,则称G为由a生成的一个**循环群**,称a为G的一个**生成元**。

定理

• n阶循环群对n的每个正因数k,有且仅有一个k阶子群,这个子群是 $\langle a^{\frac{n}{k}} \rangle$;

习题

课后题: 4、

2.5 变换群

概念

变换:集合M到其自身的映射,以T(M)记M全体变换所成集合。

置换:集合M到其自身的双射变换,以S(M)记M全体置换所成集合。

Cayley定理:任何群同一个双射变换群同构。

推论:任何n阶有限群都与n元对称群 S_n 的一个子群同构。

定理

定理2:设G是集合M的一个变换群,则

G是双射变换群 \iff G含有M的单(满)射变换

推论: 设G是集合M的一个变换群,则

G是双射变换群 \iff G包含恒等变换

习题

例题: 2

2、设M={1,2,3,4}, 证明: M的以下两个变换

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 3 & 4 \end{pmatrix} \quad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 4 & 3 \end{pmatrix}$$

做成M的一个非双射变换群。

Proof: $\Diamond G = \{\alpha, \beta\}$, 计算有

	α	β
α	$\begin{pmatrix}1&2&3&4\\1&1&3&4\end{pmatrix}=\alpha$	$\begin{pmatrix}1&2&3&4\\1&1&4&3\end{pmatrix}=\beta$
β	$\begin{pmatrix}1&2&3&4\\1&1&4&3\end{pmatrix}=\beta$	$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 3 & 4 \end{pmatrix} = \alpha$

故G中关于变换的乘法封闭;

由计算结果显然 α 为单位元, α , β 的逆元均为自身,

故G为M的一个非双射变换群。

★扩充:

对于 $\{\alpha, \beta, \varepsilon\}$ 不构成M的一个群,利用定理2显然。

课后题: 1、2、3、4、5、

★ 2.6 置换群

- n元置换群: n元对称群的任意一个子群;
- n元对称群 (S_n , 全体双射变换), 阶为n!;
- n元交错群 (A_n 交错群,全体偶置换),阶为 $\frac{n!}{2}$;

定理

- 每个置换都可以表示为对换之积;
- $(i_1i_2...i_k) = (i_1i_k)(i_1i_{k-1})...(i_1i_2);$
- ★ k-轮换的阶为k, 不相连轮换乘积的阶为各因子阶的最小公倍数。
- 定理5:

$$\sigma au\sigma^{-1} = egin{pmatrix} \sigma(1) & \sigma(2) & \cdots & \sigma(n) \ \sigma(i_1) & \sigma(i_2) & \cdots & \sigma(i_n) \end{pmatrix}$$

习题

例题: 3、5、

(24)的阶为2, (24)(153)的阶为6;

相连轮换乘积的阶如(123)(345):

先用(345)作用,再用(123)

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 4 & 5 & 3 \\
2 & 3 & 4 & 5 & 1
\end{pmatrix}$$

得: (12345), 故(123)(345)的阶为5。

课后题: 3 (结果分别为4, 6, 3, 6) 、4

4、
$$\tau = (327)(26)(14)$$
, $\sigma = (134)(57)$, 求 $\sigma \tau \sigma^{-1}$, $\sigma^{-1}\tau \sigma$;
解: $\sigma^{-1} = (57)(431)$

$$\sigma \tau \sigma^{-1} = (\sigma(3)\sigma(2)\sigma(7))(\sigma(2)\sigma(6))(\sigma(1)\sigma(4))$$

$$= (425)(26)(31) = (13)(2654),$$

$$\sigma^{-1}\tau \sigma = \sigma^{-1}\tau(\sigma^{-1})^{-1}$$

$$= (\sigma^{-1}(3)\sigma^{-1}(2)\sigma^{-1}(7))(\sigma^{-1}(2)\sigma^{-1}(6))(\sigma^{-1}(1)\sigma^{-1}(4))$$

$$= (125)(26)(43) = (1265)(34).$$

2.7 陪集、指数和Lagrange定理

概念

陪集: H是群G的一个子群, $a\in G$,则称 $aH=\{ax|x\in H\}$ 为G关于H的左陪集, $Ha=\{xa|x\in H\}$ 为G关于H的右陪集。常用性质 $aH=bH\leftrightarrow a^{-1}b\in H(b^{-1}a\in H)$.

指数: 群G关于子群H互异的左(或右)陪集的个数, 即为(G:H).

定理

Lagrange定理:设H是有限群G的一个子群,则

$$|G| = |H|(G:H), (G:H) = \frac{|G|}{|H|}.$$

习题

课后题: 2、4、5

2、证明:

由于 $H \cap K \leqslant H$, $H \cap K \leqslant K$, 所以 $|H \cap K| \mid m$, $|H \cap K| \mid n$, 所以 $|H \cap K| \mid (m, n)$, 而 (m, n) = 1,所以 $|H \cap K| = 1 \Longrightarrow H \cap K = \{e\}$.

5、反证。

第三章 正规子群与群的同态与同构

3.1 群同态与同构的简单性质

概念

• 同态映射: 映射 $\varphi:G \to \overline{G}$ 满足 $\varphi(ab)=\varphi(a)\varphi(b), \, \forall \, a,\, b \in G;$

• 同构映射:上述映射为双射情形时, φ 为同构映射。

习题

★例题3

(在同构意义下, 6阶群只有两个: 6阶循环群和三元对称群 S_3)

课后题1、3

1、设H是群G的一个子群, $a \in G$.证明:

$$aHa^{-1} \leqslant G$$

Proof: $\forall h_1,h_2 \in H$,有 $ah_1a^{-1}(ah_2a^{-1})^{-1}=ah_1a^{-1}ah_2^{-1}a^{-1}=a(h_1h_2^{-1})a^{-1}$,

由于H为G的一个子群,故 $h_1h_2^{-1} \in H$,

则有 $a(h_1h_2^{-1})a^{-1} \in aHa^{-1}$,即 $aHa^{-1} \leqslant G$.

3.2 正规子群和商群

概念

正规子群: N是群G的一个子群, 有:

$$\forall a \in G, aN = Na, N = aNa^{-1},$$

则称N为G的正规子群。

商群: 群G的正规子群N的全体陪集对于陪集的乘法做成一个群,记为G/N.

- 素数阶群必为循环群(Lagrange定理)
- 若N的指数为2,则N为正规子群(非专门考证明,可直接使用)

Hamilton群:每个子群都是正规子群的非交换群。

单群: 阶大于1旦只有平凡正规子群的群。

习题

例题: 4、四元数群G是最小的Hamilton群

(每个子群都是正规子群的非交换群)

• 四元数群 $\{1, i, j, k, -1, -i, -j, -k\}$:

	1	i	j	k
1	1	i	j	k
i	i	-1	k	-j
j	j	-k	-1	i
k	k	j	-i	-1

1. ≤ 7阶群:

n=1, H={e}, 显然不是Hamilton群;

n=2,3,5,7, H为循环群,均为交换群,显然非Hamilton群;

n=4时,H同构于四阶循环群或 K_4 ,均为交换群,故非Hamilton群;

n=6时,H同构于六阶循环群或 S_3 ,循环群为交换群,非Hamilton群,

若同构于 S_3 , S_3 有子群 $\{(1),(12)\}$, 而

$$(12)(123) = (132)$$

$$(123)(12) = (123)$$

故 S_3 非Hamilton群。

2. 四元数群是Hamilton群:

对于四元数群,由Lagrange定理可知,该群中元素必为1,2,4,8阶,

该群为非交换群,故群中无8阶元素;

群中4阶元素为i, j, k, -i, -j, -k, 二阶元素为-1, 单位元为1;

则四阶子群有<i>>,<j>>,<k>,二阶子群为<-1>,无其它非平凡子群,

又四阶子群的指数为2, 故必为正规子群;

对于二阶子群 $H_2 = \{1,-1\}$,对于四元数群中的任意元素a,有a*1 = a = 1*a, a*(-1) = -a = (-1)a,故 H_2 为正规子群。

综上, 四元数群为最小的Hamilton群。

课后题: 1、2、4

2、证明: 若群G的n阶子群有且只有一个,则此子群必为G的正规子群。

(若使用3.1节课后题1结论需要证明)

Proof: 设N为G的n阶子群,则由3.1节结论知 $aNa^{-1} \leqslant G$,

且 $\forall b_1, b_2 \in N, ab_1a^{-1} \neq ab_2a^{-1}$,

故 $|N| = |aNa^{-1}| = n$

又n阶子群有且只有一个,

故 aNa^{-1} 与N为同一个群, $N=aNa^{-1}$

则有aN = Na,所以N为G的正规子群。

4、设H,K是群G的两个正规子群,且两者的交为{e}。证明: H与K中元素相乘时可换。

Proof: 由H,K为群G的两个正规子群,有

$$H = k^{-1}Hk, k \in K \subseteq G$$
$$K = hKh^{-1}, h \in H \subseteq G$$

则 $\forall k \in K, h \in H$, 讨论 $k^{-1}hkh^{-1}$:

显然, $k^{-1}hk \in H, h^{-1} \in H \to k^{-1}hkh^{-1} \in H$.

 $hkh^{-1} \in K, k^{-1} \in K \to k^{-1}hkh^{-1} \in K$

 $abla K \cap H = \{e\},$

故 $k^{-1}hkh^{-1}=e$,则有hk=kh,即H与K中元素相乘时可换。

3.3 群同态基本定理

群同态基本定理:设 φ 为群G到群G的一个同态满射, $N=\operatorname{Ker} \varphi riangleleft G$,则:

 $G/N\cong \overline{G}.$

习题

课后题: 1、2、4、5

2、证明:单群的同态像是单群或者单位元群。

Proof: 由于单群的正规子群只有 $\{e\}$ 和其本身,又 $Ker \varphi$ 为正规子群:

若 $\ker \varphi = \{e\}$,由群同态基本定理有: $G \cong G/\ker \varphi \cong \overline{G}$,即同态像同构于它自身,故为单

群;

若 $\operatorname{Ker} \varphi = G$,由群同态基本定理由: $\{e\} \cong G/\operatorname{Ker} \varphi \cong \overline{G}$,即同态像同构于单位元群。

3.4 群的同构定理

习题

课后题: 1、2

第四章 环与域

4.1 环的定义

概念

环: 非空集合R有两个代数运算,一个为加法,另一个为乘法,满足如下三个条件:

- 1. 对加法构成一个加群;
- 2. 乘法满足结合律;
- 3. 乘法对加法满足左右分配律:

$$a(b+c) = ab + ac$$
 左分配律 $(a+b)c = ac + bc$ 右分配律

交换环:满足环的定义+乘法交换律

习题

课后题: 1 (不是, 因为不满足分配律)、2、3、4、

4、环R中任一元素a满足 $a^2 = a$,证明: R为交换环,而且其中任何元素a都满足

$$a + a = 0$$

Proof:

$$\forall a \in R, a+a \in R, (a+a)^2 = a+a$$

$$(a+a)^2 = a^2 + a^2 + a^2 + a^2 = a + a + a + a = a + a$$
,

$$\text{II} a + a = 0 \rightarrow a = -a,$$

$$\forall a, b \in R, (a+b)^2 = a^2 + b^2 + ab + ba = a + b + ab + ba = a + b$$

$$\mathbb{D}ab + ba = 0 \rightarrow ab = -ba = ba$$

故R为交换群。

4.2 环的零因子和特征

概念

- 左右零因子、正则元;
- 整环: 阶大于1、有单位元且无**零因子**($\exists ab = 0, a, b \neq 0$)的交换环;
- 环的特征: 环R的元素对加法有最大阶n, n为R的特征;

习题

课后题: 1、2

4.3 除环和域

除环: 阶大于1、有单位元且每一个非零元都有逆元的环。

域:可换除环。

习题

例题: 2、

课后题: 4、

4、域F的阶为4,证明: 1) char F=2; 2) F中非0及1的两个元素均满足方程 $x^2=x+1$ 。

Proof:

1) |F|=4,char $F\Big|\,|F|$,于是char $F\in\{1,2,4\}$. 又因为F是域,域的特征为素数,所以char F=2.

2) 由1),char F=2,设F中非0及1的元素为a、b($a\neq b,\ a,b\neq 0$ 且 $a,b\neq 1$),即 $F=\{0,1,a,b\}$,

下证b = a + 1,

$$\begin{cases} \text{如果} a+1=0, \ \text{则有} a=-1, \ \text{而} \ -1=1, \ \text{所以} a+1\neq 0 \\ \text{如果} a+1=1, \ \text{则有} a=0, \ \text{与} a\neq 0 \text{矛盾, 所以} a+1\neq 1 \\ \text{如果} a+1=a, \ \text{则有} 1=0, \ \text{矛盾} \end{cases}$$

综上, b=a+1, 于是有

$$(a+1)^2 = a^2 + 2a + 1 = a^2 + 1$$

下面验证四个元素是否满足条件:

证毕。

4.4 模n剩余类环

模n的剩余类环 Z_n

- Z_n 中元素 \overline{m} 如果与n互素,则为可逆元,否则为零因子。
- Z_n 有且只有T(n)个子环。

习题

例题: 3、4、

课后题: 1、2、3、5、6、7、

1、★ Z₁₀的各种计算:

• 零因子: $2*5=\overline{0}$, $4*5=\overline{0}$, $6*5=\overline{0}$, $8*5=\overline{0}$, 故零因子为 $\overline{2}$, $\overline{4}$, $\overline{5}$, $\overline{6}$, $\overline{8}$.

- 可逆元(单位):1,3,7,9,
- 特征(char R, 对于加法的最大阶): 10.
- 子群、子环、理想:T(10)=4

1. { $\overline{0}$ }; 特征: 0 2. Z_{10} ; 特征: 10

3. {0, 5}; 特征: 2

4. {0, 2, 4, 6, 8}; 特征: 5

5、证明:有理数域的自同构只有恒等自同构。

Proof: 设 φ 为Q到其自身的同构映射,

显然 $\varphi(0)=0$,

则 $\varphi(1)(\varphi(1)-1)=0$,又Q为域,

故 $\varphi(1)=1$.

则
$$arphi(m)=arphi(m\circ 1)=marphi(1)=m,m\in Z$$

$$orall n \in Z ackslash \{0\}, arphi(rac{1}{n} \circ n) = arphi(n) arphi(rac{1}{n}) = n arphi(rac{1}{n}) = 1$$

$$\mathbb{U}\varphi(\frac{1}{n}) = \frac{1}{n}$$

故
$$orall a \in Q, a = rac{m}{n}$$
,

則
$$\varphi(a) = \varphi(\frac{m}{n}) = \varphi(m)\varphi(\frac{1}{n}) = m * \frac{1}{n} = a$$

故 $\varphi(a)=a$,则有理数域的自同构只有恒等自同构。

4.5 环与域上的多项式环

习题

例题: 1、2、

课后题: 2、3、

2、例如:在 \mathbb{Z}_4 中,两个一次多项式 $\frac{1}{2}$ x相乘,得到: $\frac{1}{4}$ x = $\frac{1}{2}$,并不是2次多项式。

4.6 理想

概念

理想:

设N是环R的一个子加群,如果:

$$r \in R, a \in N \Longrightarrow ra \in N$$

则N为R的一个左理想, 左吸收律;

设N是环R的一个子加群,如果:

则N为R的一个右理想,右吸收律;

若N既为左理想也为右理想,则N为双边理想,简称理想,记为 $N \leq R$.

主理想 < a > (包含元素a的最小理想)中元素的一般形式:

$$< a > = \{xa + ay + na + \sum_{i=1}^m x_i ay_i | x, y, x_i, y_i \in R, n \in Z, m \in N^+ \}$$

- 1. R可交换: $\langle a \rangle = \{ra + na | r \in R, n \in Z\};$
- 2. R有单位元: $< a> = \{\sum_{i=1}^m x_i a y_i | m \in N^+\};$
- 3. R既可交换也有单位元: $\langle a \rangle = \{ra | r \in R\}$.

习题

例题: 4、5

4、整数环的理想<4,6>=<2>.

Proof: 显然整数环既可交换也有单位元

故<2>={
$$2n \mid n \in \mathbb{Z}$$
}, <4,6>={ $4k_1 + 6k_2 \mid k_1, k_2 \in \mathbb{Z}$ }

$$\nabla 2 = 6 - 4 \in \langle 4, 6 \rangle, 4 = 2 * 2 \in \langle 2 \rangle, 6 = 3 * 2 \in \langle 2 \rangle$$

则<4,6>=<2>。

整数环上的多项式环Z[x]的理想<2,x>不是主理想。

反证法:

若<2,x>是Z[x]的主理想,则有<2,x>=<g(x)>,

又Z[x]既可交换也有单位元,

故有
$$< g(x) >= \{f(x)g(x)|f(x \in Z[x])\}$$

则可令

$$2 = t_1(x)g(x)$$
$$x = t_2(x)g(x)$$

上式只有当 $g(x) = \pm 1$ 时可成立,而< 2, x >中不包含 ± 1 ,故假设不成立。

课后题: 2、

2、设R为偶数环,证明:

$$N = \{4r | r \in R\} \le R$$

问: N=< 4 >是否成立? N是由哪个数生成的主理想?

(1) N是R的一个子加群

$$orall r_1, r_2 \in R, 4r_1 - 4r_2 = 4(r_1 - r_2)$$
 ,

由于R为环, $r_1 - r_2 \in R$,

故
$$4r_1-4r_2\in N$$
,

则N为R的一个子加群。

(2) 左右吸收律(循环环不需证明)

 $\forall r' \in R, r \in R, r' * (4r) = 4(r'r)$ (交換律)

由于R为环, $r'r \in R$,

故 $r'*4r \in N$,满足左吸收律。

又偶数环R可交换, 故满足右吸收律。

所以 $N \triangleleft R$.

显然, <4>中包含4, 而 $4 \notin N$, 故 $N \neq <4>$.

N = <8>,证明同上述例4.

4.7 商环与环同态基本定理

概念

商环:设N是环R的一个理想,则R/N对于陪集的加法与乘法作成一个环。

定理

环同态基本定理

设R和 \overline{R} 是两个环,且 $R \sim \overline{R}$,则:

- 1. 这个同态映射的核N, 是R的一个理想;
- 2. $R/N\cong \overline{R}$

习题

例题: 1、2、

课后题: 1、4、

1、 $\varphi:R\to\overline{R}$ 为同态满射, $N=\operatorname{Ker}\varphi$,证明: φ 同构映射 $\iff N=\{0\};$

Proof:

"⇒": 显然

"=":设 $N = \operatorname{Ker} \varphi$,且

$$\varphi(a)=\varphi(b), \quad \forall\, a,\, b\in R,$$

则有 $\varphi(a-b)=\varphi(a)-\varphi(b)=\overline{0}$,于是 $a-b\in \operatorname{Ker}\varphi=\{0\}$,所以a=b, φ 单射(相同像的原像相同)。

其他补充题

★ ≤7阶群的结构

- n = 1, H={e}
- n=2,3,5,7, n为素数, 故H为循环群

• n = 4:

由Lagrange定理, H中元素只有1, 2, 4阶

若 $\exists h, |h| = 4$,则|H| = |h|,则H可由该元素生成,必同构于循环群;

若H中非单位元均为2阶,则H中元素满足 $x^2 = e$,则有H为Abel群,

群H中元素应为{e,a,b,ab}, 下证 $ab \neq a, b, e$:

若ab=e,则a=b,产生矛盾;

若ab=a,则b=e,产生矛盾;

若ab=b,则a=e,产生矛盾;

又 $(ab)^2 = (ab)(ab) = a^2b^2 = e$,故|ab| = 2,所以H必同构于{e,a,b,ab}.

• n=6, 3.1节例3

由Lagrange定理, H中元素必为1, 2, 3, 6阶

若 $\exists h, |h| = 6$,则|H| = |h|,群H可由该元素生成,必同构于循环群;

若群中除e外均为3阶元素,则在H存在3阶子群:

$$A_1 = \{e, a, a^2\}, A_2 = \{e, b, b^2\}, b \notin A_1$$

则 $A_1 \cap A_2 = \{e\}$, 故

$$|A_1A_2| = rac{|A_1||A_2|}{|A_1 \cap A_2|} = 9$$

与|H| = 6矛盾;

若群中除e外均为2阶元素,则在群H中可取互异的二阶元素,有

 $\{e,a,b,ab\} \leqslant H$,与Lagrange定理相矛盾;

因此, H中必同时含有2、3阶元:

设
$$H = \{e, a, b, b^2, ab, ab^2\}$$
, $|a|=2, |b|=3$:

作映射

$$\varphi : e \to (1), a \to (12), b \to (123)$$

 $b^2 \to (132), ab \to (23), ab^2 \to (13)$

该映射为同构映射, 故 $H \cong S_3$ 。

整数环Z的所有自同态

设 $\varphi \mid Z \to Z$ 是同态映射

则

$$\varphi(1) = \varphi(1*1) = \varphi(1) \circ \varphi(1) = \varphi(1) \circ 1 \Longrightarrow \varphi(1) = 0 \text{ or } \varphi(1) = 1$$
$$\varphi(m) = \varphi(m*1) = m\varphi(1) \Longrightarrow \varphi(m) = 0 \text{ or } \varphi(m) = m$$

故整数环的所有自同态为:

1.
$$\varphi(m) = 0, \forall m \in Z$$

2.
$$\varphi(m)=m, \forall m\in Z$$