# **Interpretable Machine Learning**

## **Conditional Feature Importance (CFI)**



Figure: Bike Sharing Dataset

#### Learning goals

- Extrapolation and Conditional Sampling
- Conditional Feature Importance (CFI)
- Interpretation of CFI and difference to PFI



# **Interpretable Machine Learning**

# Feature Importances 1 Conditional Feature Importance (CFI)





Figure: Bike Sharing Dataset

#### Learning goals

- Extrapolation and Conditional Sampling
- Conditional Feature Importance (CFI)
- Interpretation of CFI and difference to PFI

• **PFI Idea:** Replace feature(s)  $X_S$  with perturbed  $\tilde{X}_S$  to preserve marginal distibution  $\mathbb{P}(X_S)$  so that  $\tilde{X}_S \perp \!\!\! \perp Y$  (independent), e.g., by random permutations



## **CFI MOTIVATION**

• **PFI Idea:** Replace feature(s)  $X_S$  with perturbed  $\tilde{X}_S$  to preserve marginal distib.  $\mathbb{P}(X_S)$  so that  $\tilde{X}_S \perp \!\!\! \perp Y$  (indep.), e.g., by random permutations



- **PFI Idea:** Replace feature(s)  $X_S$  with perturbed  $\tilde{X}_S$  to preserve marginal distibution  $\mathbb{P}(X_S)$  so that  $\tilde{X}_S \perp \!\!\! \perp Y$  (independent), e.g., by random permutations
- **Problem:** Breaks not only association between  $X_S$  and Y (what we want) but also between  $X_S$  and  $X_{-S} \Rightarrow \mathbb{P}(X_S, X_{-S}) \neq \mathbb{P}(\tilde{X}_S, X_{-S})$  (extrapolation)



## **CFI MOTIVATION**

- **PFI Idea:** Replace feature(s)  $X_S$  with perturbed  $\tilde{X}_S$  to preserve marginal distib.  $\mathbb{P}(X_S)$  so that  $\tilde{X}_S \perp \!\!\! \perp Y$  (indep.), e.g., by random permutations
- **Problem:** Breaks not only association between  $X_S$  and Y (what we want) but also between  $X_S$ ,  $X_{-S} \Rightarrow \mathbb{P}(X_S, X_{-S}) \neq \mathbb{P}(\tilde{X}_S, X_{-S})$  (extrapolation)



Interpretable Machine Learning - 1/6 © Interpretable Machine Learning - 1/6

- **PFI Idea:** Replace feature(s)  $X_S$  with perturbed  $\tilde{X}_S$  to preserve marginal distibution  $\mathbb{P}(X_S)$  so that  $\tilde{X}_S \perp \!\!\! \perp Y$  (independent), e.g., by random permutations
- **Problem:** Breaks not only association between  $X_S$  and Y (what we want) but also between  $X_S$  and  $X_{-S} \Rightarrow \mathbb{P}(X_S, X_{-S}) \neq \mathbb{P}(\tilde{X}_S, X_{-S})$  (extrapolation)
- **CFI Idea:** Replace feature(s)  $X_S$  with perturbed  $\tilde{X}_S$  to preserve joint distibution so that  $\mathbb{P}(X_S, X_{-S}) = \mathbb{P}(\tilde{X}_S, X_{-S})$  (no extrapolation) while still  $\tilde{X}_S \perp \!\!\! \perp Y$



#### **CFI MOTIVATION**

- **PFI Idea:** Replace feature(s)  $X_S$  with perturbed  $\tilde{X}_S$  to preserve marginal distib.  $\mathbb{P}(X_S)$  so that  $\tilde{X}_S \perp \!\!\! \perp Y$  (indep.), e.g., by random permutations
- **Problem:** Breaks not only association between  $X_S$  and Y (what we want) but also between  $X_S$ ,  $X_{-S} \Rightarrow \mathbb{P}(X_S, X_{-S}) \neq \mathbb{P}(\tilde{X}_S, X_{-S})$  (extrapolation)
- **CFI Idea:** Replace feature(s)  $X_S$  with perturbed  $\tilde{X}_S$  to preserve joint distib. so that  $\mathbb{P}(X_S, X_{-S}) = \mathbb{P}(\tilde{X}_S, X_{-S})$  (no extrapolation) while still  $\tilde{X}_S \perp \!\!\! \perp Y$



Interpretable Machine Learning - 1/6 © Interpretable Machine Learning - 1/6

- **PFI Idea:** Replace feature(s)  $X_S$  with perturbed  $\tilde{X}_S$  to preserve marginal distibution  $\mathbb{P}(X_S)$  so that  $\tilde{X}_S \perp \!\!\! \perp Y$  (independent), e.g., by random permutations
- **Problem:** Breaks not only association between  $X_S$  and Y (what we want) but also between  $X_S$  and  $X_{-S} \Rightarrow \mathbb{P}(X_S, X_{-S}) \neq \mathbb{P}(\tilde{X}_S, X_{-S})$  (extrapolation)
- **CFI Idea:** Replace feature(s)  $X_S$  with perturbed  $\tilde{X}_S$  to preserve joint distibution so that  $\mathbb{P}(X_S, X_{-S}) = \mathbb{P}(\tilde{X}_S, X_{-S})$  (no extrapolation) while still  $\tilde{X}_S \perp \!\!\!\perp Y$

**Example:** Conditional permutation scheme

**Black dots:**  $X_2 \sim \mathcal{U}(0,1)$  and  $X_1 \sim \mathcal{N}(0,1)$  (if  $X_2 < 0.5$ ) or  $\mathcal{N}(4,4)$  (if  $X_2 \ge 0.5$ )





## CFI MOTIVATION

- **PFI Idea:** Replace feature(s)  $X_S$  with perturbed  $\tilde{X}_S$  to preserve marginal distib.  $\mathbb{P}(X_S)$  so that  $\tilde{X}_S \perp \!\!\! \perp Y$  (indep.), e.g., by random permutations
- **Problem:** Breaks not only association between  $X_S$  and Y (what we want) but also between  $X_S$ ,  $X_{-S} \Rightarrow \mathbb{P}(X_S, X_{-S}) \neq \mathbb{P}(\tilde{X}_S, X_{-S})$  (extrapolation)
- **CFI Idea:** Replace feature(s)  $X_S$  with perturbed  $\tilde{X}_S$  to preserve joint distib. so that  $\mathbb{P}(X_S, X_{-S}) = \mathbb{P}(\tilde{X}_S, X_{-S})$  (no extrapolation) while still  $\tilde{X}_S \perp \!\!\! \perp Y$

**Example:** Conditional permutation scheme

**Black dots:** 
$$X_2 \sim \mathcal{U}(0,1)$$
 and  $X_1 \sim \mathcal{N}(0,1)$  (if  $X_2 < 0.5$ ) or  $\mathcal{N}(4,4)$ 

(if  $X_2 \ge 0.5$ )



**Left:** For  $X_2 < 0.5$ , permuting  $X_1$  (crosses) preserves marginal (but not joint) distrib.  $\rightarrow$  Bottom: Marginal density of  $X_1$ 

**Right:** Permuting  $X_1$  within subgroups  $X_2 < 0.5 \& X_2 \ge 0.5$  reduces extrapolation  $\rightsquigarrow$  Bottom:  $X_1$ -density cond. on groups



Interpretable Machine Learning - 1/6

## RECALL: EXTRAPOLATION IN PFI

**Recall:** Let  $y = x_3 + \epsilon_y$ , with  $\epsilon_y \sim \mathcal{N}(0, 0.1)$ .

- $x_1 := \epsilon_1, x_2 := x_1 + \epsilon_2$  are highly correlated  $(\epsilon_1 \sim \mathcal{N}(0, 1), \epsilon_2 \sim \mathcal{N}(0, 0.01))$
- $x_3 := \epsilon_3, x_4 := \epsilon_4$ , with  $\epsilon_3, \epsilon_4 \sim \mathcal{N}(0, 1)$  and all noise terms  $\epsilon_i$  are independent
- Fitting a linear model yields  $\hat{f}(\mathbf{x}) \approx 0.3x_1 0.3x_2 + x_3$



Hexbin plot of  $(x_1, x_2)$  before (left) and after (center) permuting  $x_1$ ; PFI scores (right).

- $\Rightarrow x_1, x_2$  cancel in  $\hat{f}$  and should be irrelevant
- ⇒ But PFI evaluates model on unrealistic inputs (caused by permutation)
  - $\rightarrow$  *PFI* > 0 for  $x_1$ ,  $x_2$  due to extrapolation
  - $\rightarrow x_1, x_2$  are misleadingly considered relevant



## RECALL: EXTRAPOLATION IN PFI

**Recall:** Let  $y = x_3 + \epsilon_y$ , with  $\epsilon_y \sim \mathcal{N}(0, 0.1)$ .

- $x_1 := \epsilon_1, x_2 := x_1 + \epsilon_2$ ; highly correlated  $(\epsilon_1 \sim \mathcal{N}(0, 1), \epsilon_2 \sim \mathcal{N}(0, 0.01))$
- $x_3 := \epsilon_3$ ,  $x_4 := \epsilon_4$ , with  $\epsilon_3$ ,  $\epsilon_4 \sim \mathcal{N}(0,1)$ ; all noise terms  $\epsilon_i$  are indep.
- Fitting a linear model yields  $\hat{f}(\mathbf{x}) \approx 0.3x_1 0.3x_2 + x_3$



Hexbin plot of  $(x_1, x_2)$  before (left) and after (center) permuting  $x_1$ ; PFI scores (right).

- $\Rightarrow x_1, x_2$  cancel in  $\hat{f}$  and should be irrelevant
- ⇒ But PFI evaluates model on unrealistic inputs (caused by permutation)
  - $\rightarrow$  *PFI* > 0 for  $x_1, x_2$  due to extrapolation
  - $\rightarrow x_1, x_2$  are misleadingly considered relevant



## 

CFI for  $X_S$  using test data  $\mathcal{D}$ :

- Measure the error with unperturbed features  $x_S$ .
- Measure the error with perturbed feature values  $\tilde{x}_S \sim \mathbb{P}(X_S|X_{-S})$
- Repeat perturbing  $X_S$  (e.g., m times) and average difference of both errors:

$$\widehat{CFI}_{\mathcal{S}} = \frac{1}{m} \sum_{k=1}^{m} \mathcal{R}_{emp}(\hat{t}, \frac{\tilde{\mathcal{D}}_{(k)}^{\mathcal{S}|-\mathcal{S}}}{(k)}) - \mathcal{R}_{emp}(\hat{t}, \mathcal{D})$$



**Illustrative example:** Conditional permutation when  $X \in \mathbb{R}$  is categorical:

| strative example. Conditional permutation when $\lambda = g$ is categorical. |    |          |       |       |        |          |         |            |  |  |  |  |
|------------------------------------------------------------------------------|----|----------|-------|-------|--------|----------|---------|------------|--|--|--|--|
|                                                                              | Oı | iginal D | ata   | Permu | ited C | onditio  | nally o | $n X_{-S}$ |  |  |  |  |
|                                                                              | ID | $X_{-S}$ | $X_S$ |       | ID     | $X_{-S}$ | $X_S$   |            |  |  |  |  |
|                                                                              | 1  | Α        | 3.1   |       | 1      | Α        | 2.7     |            |  |  |  |  |
|                                                                              | 2  | Α        | 2.7   |       | 2      | Α        | 3.1     |            |  |  |  |  |
|                                                                              | 3  | Α        | 3.4   |       | 3      | Α        | 3.4     |            |  |  |  |  |
|                                                                              | 4  | В        | 6.0   |       | 4      | В        | 6.2     |            |  |  |  |  |
|                                                                              | 5  | В        | 5.4   |       | 5      | В        | 6.0     |            |  |  |  |  |
|                                                                              | _  | _        | ~ ~   |       | _      | _        |         |            |  |  |  |  |

Here,  $X_S$  is permuted *within* each group of  $X_{-S}$  to preserve  $\mathbb{P}(X_S, X_{-S})$ .



CF → STROBL\_2008 → HOOKER\_2021

CFI for  $X_S$  using test data  $\mathcal{D}$ :

- Measure the error with unperturbed features  $x_S$ .
- Measure the error with perturbed feature values  $x_S \sim \mathbb{P}(X_S | X_{-S})$
- Repeat perturbing  $X_S$  (e.g., m times) and avg. difference of both errors:

$$\widehat{CFI}_S = \frac{1}{\pi} \sum_{k=1}^{m} \mathcal{R}_{emp}(\hat{f}, \mathcal{D}S - S_{(k)}) - \mathcal{R}_{emp}(\hat{f}, \mathcal{D})$$

Here,  $\mathcal{D}S - S$  denotes data, where  $x_S$  values are conditionally resampled given  $x_{-S}$ .

**Illustrative example:** Conditional permutation when  $X_{-S}$  is categorical:

|    | -        |                |       |        |           |                |
|----|----------|----------------|-------|--------|-----------|----------------|
| Or | iginal D | ata            | Permi | uted C | Condition | nally o        |
| ID | $X_{-S}$ | X <sub>S</sub> |       | ID     | $X_{-S}$  | X <sub>S</sub> |
| 1  | Α        | 3.1            |       | 1      | Α         | 2.7            |
| 2  | Α        | 2.7            |       | 2      | Α         | 3.1            |
| 3  | Α        | 3.4            |       | 3      | Α         | 3.4            |
| 4  | В        | 6.0            | -     | 4      | В         | 6.2            |
| 5  | В        | 5.4            |       | 5      | В         | 6.0            |
| 6  | R        | 6.2            |       | 6      | D         | E 1            |

Interpretable Machine Learning - 3 / 6

Here,  $X_S$  is permuted *within* each group of  $X_{-S}$  to preserve  $\mathbb{P}(X_S, X_{-S})$ .

Interpretable Machine Learning - 3 / 6

## IMPLICATIONS OF CFI • König et al. (2020)

**Interpretation:** Due to the conditional sampling w.r.t. all other features, CFI quantifies a feature's unique contribution to the model performance.



## IMPLICATIONS OF CFI • K\_NIG\_ET\_2020

**Interpretation:** Due to the conditional sampling w.r.t. all other features, CFI quantifies a feature's unique contribution to the model performance.



## IMPLICATIONS OF CFI ( König et al. (2020)

**Interpretation:** Due to the conditional sampling w.r.t. all other features, CFI quantifies a feature's unique contribution to the model performance.

#### **Entanglement with data:**

- If feature  $x_S$  does not contribute unique information about y, i.e.,  $x_S \perp \!\!\!\!\perp y | x_{-S}$  $\Rightarrow$  CFI = 0
- Why? Under the conditional independence  $\mathbb{P}(\tilde{X}_S, X_{-S}, Y) = \mathbb{P}(X_S, X_{-S}, Y)$   $\leadsto$  no prediction-relevant information is destroyed by permutation of  $x_S$  conditional on  $x_{-S}$



## IMPLICATIONS OF CFI → K\_NIG\_ET\_2020

**Interpretation:** Due to the conditional sampling w.r.t. all other features, CFI quantifies a feature's unique contribution to the model performance.

#### **Entanglement with data:**

- If feat  $x_S$  does not contrib. unique information about y, i.e.,  $x_S \perp \!\!\!\! \perp y | x_{-S}$   $\Rightarrow$  CFI = 0
- Why? Under the conditional indep.  $\mathbb{P}(X_S, X_{-S}, Y) = \mathbb{P}(X_S, X_{-S}, Y)$   $\leadsto$  no prediction-relevant information is destroyed by permutation of  $x_S$  conditional on  $x_{-S}$



Interpretable Machine Learning - 4/6

Interpretable Machine Learning - 4 / 6 ©

## IMPLICATIONS OF CFI ( König et al. (2020)

**Interpretation:** Due to the conditional sampling w.r.t. all other features, CFI quantifies a feature's unique contribution to the model performance.

#### **Entanglement with data:**

- If feature  $x_S$  does not contribute unique information about y, i.e.,  $x_S \perp \!\!\!\!\perp y | x_{-S}$  $\Rightarrow$  CFI = 0
- Why? Under the conditional independence  $\mathbb{P}(\tilde{X}_S, X_{-S}, Y) = \mathbb{P}(X_S, X_{-S}, Y)$   $\leadsto$  no prediction-relevant information is destroyed by permutation of  $x_S$  conditional on  $x_{-S}$

## **Entanglement with model:**

- If the model does not use a feature  $\Rightarrow$  CFI = 0
- Why? Then the prediction is not affected by any perturbation of the feature
   → model performance does not change after conditional permutation



## IMPLICATIONS OF CFI • K\_NIG\_ET\_2020

**Interpretation:** Due to the conditional sampling w.r.t. all other features, CFI quantifies a feature's unique contribution to the model performance.

#### **Entanglement with data:**

- If feat  $x_S$  does not contrib. unique information about y, i.e.,  $x_S \perp \!\!\!\! \perp y | x_{-S}$   $\Rightarrow$  CFI = 0
- Why? Under the conditional indep.  $\mathbb{P}(X_S, X_{-S}, Y) = \mathbb{P}(X_S, X_{-S}, Y)$   $\leadsto$  no prediction-relevant information is destroyed by permutation of  $x_S$  conditional on  $x_{-S}$

## **Entanglement with model:**

- If the model does not use a feature  $\Rightarrow$  CFI = 0
- Why? Then the prediction is not affected by any perturbation of the feat
   → model performance does not change after conditional permutation



Interpretable Machine Learning - 4 / 6

Interpretable Machine Learning - 4 / 6

## **IMPLICATIONS OF CFI**

Can we gain insight into whether ...

- the feature  $x_j$  is causal for the prediction?
  - $CFI_j \neq 0 \Rightarrow$  model relies on  $x_j$  (converse does not hold, see next slide)



## IMPLICATIONS OF CFI

Can we gain insight into whether ...

- the feature  $x_i$  is causal for the prediction?
  - $CFI_j \neq 0 \Rightarrow$  model relies on  $x_j$  (converse does not hold, see next slide)



## **IMPLICATIONS OF CFI**

Can we gain insight into whether ...

- the feature  $x_j$  is causal for the prediction?
  - $CFI_j \neq 0 \Rightarrow$  model relies on  $x_j$  (converse does not hold, see next slide)
- $\bullet$  the variable  $x_i$  contains prediction-relevant information?
  - If  $x_i \not\perp \!\!\! \perp y$  but  $x_i \perp \!\!\! \perp y | x_{-i}$  (e.g.,  $x_i$  and  $x_{-i}$  share information)  $\Rightarrow CFI_i = 0$
  - x<sub>j</sub> is not exploited by model (regardless of whether it is useful for y or not)
     ⇒ CFI<sub>i</sub> = 0



## IMPLICATIONS OF CFI

Can we gain insight into whether ...

- the feature  $x_i$  is causal for the prediction?
  - $CFI_j \neq 0 \Rightarrow$  model relies on  $x_j$  (converse does not hold, see next slide)
- $\bullet$  the variable  $x_i$  contains prediction-relevant information?
  - If  $x_j \not\perp \!\!\! \perp y$  but  $x_j \perp \!\!\! \perp y | x_{-j}$  (e.g.,  $x_j$  and  $x_{-j}$  share information)  $\Rightarrow CFI_i = 0$
  - $x_j$  is not exploited by model (regardless of its usefulness for y)  $\Rightarrow CFI_i = 0$



Interpretable Machine Learning - 5 / 6

Interpretable Machine Learning - 5 / 6

## **IMPLICATIONS OF CFI**

Can we gain insight into whether  $\dots$ 

- the feature  $x_j$  is causal for the prediction?
  - $CFI_i \neq 0 \Rightarrow$  model relies on  $x_i$  (converse does not hold, see next slide)
- $\bullet$  the variable  $x_i$  contains prediction-relevant information?
  - If  $x_i \not\perp \!\!\! \perp y$  but  $x_i \perp \!\!\! \perp y | x_{-i}$  (e.g.,  $x_i$  and  $x_{-i}$  share information)  $\Rightarrow CFI_i = 0$
  - x<sub>j</sub> is not exploited by model (regardless of whether it is useful for y or not)
     ⇒ CFI<sub>i</sub> = 0
- **3** Does the model require access to  $x_i$  to achieve its prediction performance?
  - $CFI_i \neq 0 \Rightarrow x_i$  contributes unique information (meaning  $x_i \not\perp \!\!\! \perp y | x_{-i}$ )
  - Only uncovers the relationships that were exploited by the model



## IMPLICATIONS OF CFI

Can we gain insight into whether ...

- the feature  $x_i$  is causal for the prediction?
  - $CFI_j \neq 0 \Rightarrow$  model relies on  $x_j$  (converse does not hold, see next slide)
- $\bullet$  the variable  $x_i$  contains prediction-relevant information?
  - If  $x_j \not\perp \!\!\! \perp y$  but  $x_j \perp \!\!\! \perp y | x_{-j}$  (e.g.,  $x_j$  and  $x_{-j}$  share information)  $\Rightarrow CFI_i = 0$
  - $x_j$  is not exploited by model (regardless of its usefulness for y)  $\Rightarrow CFI_j = 0$
- $\bullet$  Does the model need access to  $x_i$  to achieve its prediction performance?
  - $CFI_i \neq 0 \Rightarrow x_i$  contributes unique information (meaning  $x_i \not\perp \!\!\! \perp y|x_{-i}$ )

Interpretable Machine Learning - 5 / 6

Only uncovers the relationships that were exploited by the model



## EXTRAPOLATION: COMPARE PFI AND CFI

**Recall:** Let  $y = x_3 + \epsilon_y$ , with  $\epsilon_y \sim \mathcal{N}(0, 0.1)$ .

- $x_1 := \epsilon_1, x_2 := x_1 + \epsilon_2$  are highly correlated  $(\epsilon_1 \sim \mathcal{N}(0, 1), \epsilon_2 \sim \mathcal{N}(0, 0.01))$
- $x_3 := \epsilon_3$ ,  $x_4 := \epsilon_4$ , with  $\epsilon_3$ ,  $\epsilon_4 \sim \mathcal{N}(0,1)$  and all noise terms  $\epsilon_j$  are independent
- Fitting a linear model yields  $\hat{f}(\mathbf{x}) \approx 0.3x_1 0.3x_2 + x_3$



**Figure:** Density plot for  $x_1$ ,  $x_2$  before permuting  $x_1$  (left). PFI and CFI (right).

- $x_1$  and  $x_2$  cancel in  $\hat{f}(\mathbf{x})$  and should be irrelevant for the prediction
- PFI evaluates model on unrealistic obs.  $\rightsquigarrow x_1, x_2$  appear relevant (PFI > 0)
- CFI evaluates model on realistic obs. (due to conditional sampling)  $\rightsquigarrow x_1, x_2$  appear irrelevant (CFI = 0)



#### EXTRAPOLATION: COMPARE PFI AND CFI

**Recall:** Let  $y = x_3 + \epsilon_y$ , with  $\epsilon_y \sim \mathcal{N}(0, 0.1)$ .

- $x_1 := \epsilon_1, x_2 := x_1 + \epsilon_2$ ; highly correlated  $(\epsilon_1 \sim \mathcal{N}(0, 1), \epsilon_2 \sim \mathcal{N}(0, 0.01))$
- $x_3 := \epsilon_3, x_4 := \epsilon_4$ , with  $\epsilon_3, \epsilon_4 \sim \mathcal{N}(0, 1)$ ; all noise terms  $\epsilon_j$  are indep.
- Fitting a linear model yields  $\hat{f}(\mathbf{x}) \approx 0.3x_1 0.3x_2 + x_3$



**Figure:** Density plot for  $x_1, x_2$  before permuting  $x_1$  (left). PFI and CFI (right).

- $x_1$  and  $x_2$  cancel in  $\hat{f}(\mathbf{x})$  and should be irrelevant for the prediction
- PFI evaluates model on unrealistic obs.

 $\rightsquigarrow x_1, x_2$  appear irrelevant (CFI = 0)

- ~→ x<sub>1</sub>, x<sub>2</sub> appear relevant (PFI > 0)

   CFI evaluates model on realistic obs. (due to conditional sampling)
- Interpretable Machine Learning 6/6

