

King Saud University

College of Computer and Information Sciences

Computer Science Department

CSC 339: Theory of Computation			Quiz 3: Second Semester 2020			
Duration: 72 Hours (3 Days)			Due Date: April 10, 2020 at 8:00 AM			
Name:			ID:		Section:	

Question 1 [3 pts]	Question 2 [3 pts]	Question 3 [2.5 pts]	Question 4 [3 pts]	Question 5 [3.5 pts]
Total [15 pts]				

Instructions

- This is a take-home and open-book quiz that **should** be solved **individually**.
- All questions **should** be answered on this examination paper.
- Write your **full information** (name, ID, and section) on the specified above table.
- You **should** follow these **submission instructions**:
 - o Late submission is **NOT** acceptable.
 - Save your examination paper as (.pdf) file and name it [Your Section]_[Your ID]_[Your Full Name in Arabic].
 - o Through LMS, go to **\Quizzes\Quiz 3** and submit your paper.

Good Luck ©

Question 1 [3 pts]

Answer with TRUE or FALSE next to each of the following statements:

1.	There is -at least- one equivalent PDA for every finite automaton.		
2.	All context-free language can be generated by a regular expression.		
	Take a counter example: let $L=\{a^nb^n\in\{a,b\}^*\ n\geq 0\}$ be the context-free	False	
	language, there is no regular expression can generate the language $\it L$.		
3.	To proof that a given language ${\it L}$ belongs to the context-free family; it is sufficient	Truo	
	to build PDA for that L .	True	
4.	If a language L fails to satisfy pumping lemma; then L is a context-free language.	False	
	If a language L fails to satisfy pumping lemma; then L is a non-regular language.		
5.	All regular languages satisfy pumping lemma theorem.	True	
6.	If $L1$ is a regular language, $L2$ is a context-free language, and $L3 = L1 \circ L2$; then		
	L3 will not satisfy the pumping lemma theorem.		
	Take a counter example: let $L1 = \{a^m \in \{a,b\}^* \mid m \ge 1\}$ and $L2 = \{a^nb^n \in A\}$	False	
	$\{a,b\}^* \mid n \ge 0\}$; then $L3 = L1 \circ L2 = \{a^{n+m}b^n \in \{a,b\}^* \mid n \ge 0, m \ge 1\}$ which is a		
	regular language that satisfies pumping lemma.		

Question 2 [3 pts]

Choose the most correct answer:

- 1. Which of the following context-free grammar productions generates the language of all palindromes over $\{0,1\}$?
 - a. $P = \{S \rightarrow 0S0, S \rightarrow 1S1, S \rightarrow \lambda\}$
 - b. $P = \{S \to 0S0, S \to 1S1, S \to 0, S \to 1\}$
 - c. $P = \{S \to 0S0, S \to 1S1, S \to 0, S \to 1, S \to \lambda\}$
 - d. None
- 2. The context-free language that generated by the production $P = \{S \to AB \mid C, A \to xAy, A \to \lambda, B \to zB, B \to \lambda, C \to xCz, C \to D, D \to yD, D \to \lambda\}$ is:
 - a. $L = \{x^i y^i z^i \in \{x, y, z\}^* \mid i \ge 0\}$
 - b. $L = \{x^i y^j z^k \in \{x, y, z\}^* \mid i \ge 0 \land (i = j \lor i = k)\}$
 - c. $L = \{x^i y^j z^k \in \{x, y, z\}^* \mid i \ge 0 \land j \ge 0 \land k \ge 0\}$
 - $\mathrm{d.} \ L = \left\{ x^i y^j z^k \in \{x,y,z\}^* \;\middle|\; i \geq 0 \; \wedge \left((i=j \wedge i \neq k) \vee (i \neq j \wedge i = k) \right) \right\}$
- 3. Which of the following PDAs transitions Δ accepts $L = \{u \# v \mid u \land v \in \{a,b\}^* \land |u| = |v|\}$? Note: each transition is written as:

(current state, read char, poped char) (new state, pushed char)

a. $\Delta = (q0, a, \lambda)(q0, X), (q0, b, \lambda)(q0, X), (q0, \#, \lambda)(q1, \lambda), (q1, a, X)(q1, \lambda), (q1, b, X)(q1, \lambda), (q1, \lambda, \$)(q2, \$)$

- b. $\Delta = (q0, a, \lambda)(q0, X), (q0, b, \lambda)(q0, \lambda), (q0, \#, \lambda)(q1, \lambda), (q1, a, X)(q1, \lambda), (q1, b, \lambda)(q1, \lambda), (q1, \lambda, \$)(q2, \$)$
- c. $\Delta = (q0, a, \lambda)(q0, X), (q0, b, \lambda)(q0, Y), (q0, \#, \lambda)(q1, \lambda), (q1, a, X)(q1, \lambda), (q1, b, Y)(q1, \lambda), (q1, \lambda, \$)(q2, \$)$
- d. None
- 4. The language $L = \{1^*0\}$ is:
 - a. Regular language
 - b. Context-free language
 - c. Regular and context-free language
 - d. None
- 5. Consider the language $L = \{1^i 0^j 1^k \in \{0,1\}^* \mid i > 0 \land j > 0 \land k = i * j\}$; to show that L is not a regular language using pumping lemma, the correct choice for the word is:
 - a. 10011
 - b. $1^p 0^p 1^p$
 - c. $1^{2p}0^{p^3}1^{2p^4}$ This choice is the most correct one.
 - d. $10^p1^p \implies$ Both of c and d are correct choices.
- 6. Which of the following context-free grammar productions generates words of balanced brackets?
 - a. $P = \{S \rightarrow \lambda, S \rightarrow TS, T \rightarrow (T)\}$
 - b. $P = \{S \rightarrow \lambda, S \rightarrow (S)S\}$
 - c. $P = \{S \rightarrow \lambda, S \rightarrow SS, S \rightarrow ()\}$
 - d. $P = \{S \rightarrow \lambda, S \rightarrow (T)S, T \rightarrow ()\}$

Question 3 [2.5 pts]

Consider the language $L = \{a^{3n} \# b^n \in \{a, b, \#\}^* \mid n \ge 1\}$; answer the following question to show that the language L is not regular using pumping lemma:

- 1. Pick a word $w \in L$ that satisfies the condition $|w| \ge p$, where p is the critical length. $w = a^{3p} \# b^p$
- 2. Complete the proof steps using the picked word in point 1.
 - From the pumping lemma, we can write $w=a^{3p}\#b^p=xyz$ with length $|xy|\leq p$ and $|y|\geq 1$:
 - $w = xyz = a^{3p} \# b^p = \underbrace{a \dots a}_{x} \underbrace{a \dots a}_{y} \underbrace{a \dots a\#b \dots b}_{z} \text{ which have the following length}$ details $\underbrace{a \dots aa \dots a}_{x} \underbrace{a \dots a}_{x} \underbrace{a \dots b}_{y} ... \underbrace{b}_{x} ... \underbrace{b}_{$
 - From the pumping lemma, $xy^iz \in L$ where i = 0,1,2,3,... Thus $xy^2z \in L$:

$$xy^2z = \underbrace{a \dots a}_{x} \underbrace{a \dots a}_{y} \underbrace{a \dots a}_{y} \underbrace{a \dots a\#b \dots b}_{x} \text{ which have the following length details}$$

$$\underbrace{a \dots aa \dots aa \dots a}_{p+k} \underbrace{a \dots a}_{p+k} \underbrace{$$

- After pumping, the resulted word is $w'' = a^{3p+k} \# b^p \notin L$
- Contradiction and the language *L* is not regular.

Question 4 [3 pts]

Construct a PDA for the non-regular language $L = \{a^{3n} \# b^n \in \{a, b, \#\}^* \mid n \ge 1\}$. The PDA **should** satisfy the following characteristics:

- Except the last transition which is λ , \$ \rightarrow \$, another Lambda transition is **NOT** allowed. Note that, Lambda transition has this form λ , $symbol \rightarrow symbol$
- Multiple transitions for the same symbol from the same state is **NOT** allowed.

Question 5 [3.5 pts]

Consider the grammar $G = (\{S, T\}, \{x, y\}, S, \{S \rightarrow TS, S \rightarrow \lambda, T \rightarrow Ty, T \rightarrow xTy, T \rightarrow xy\})$:

1. Give the **mathematical** definition of the language L(G).

$$L = \left\{ \left(x^i y^j \right)^* \mid 1 \ge i \ge j \right\}$$

2. Give two left-most derivations for the terminal string xxyyy.

$$S \Rightarrow TS \Rightarrow xTyS \Rightarrow xTyyS \Rightarrow xxyyyS \Rightarrow xxyyy$$

 $S \Rightarrow TS \Rightarrow TyS \Rightarrow xTyyS \Rightarrow xxyyyS \Rightarrow xxyyy$

3. Is the grammar ambiguous? If so, change the grammar to remove the ambiguity.

Yes, the grammar is ambiguous. The un-ambiguous grammar is:

$$P = \{S \to TS, S \to \lambda, T \to xTy, T \to M, M \to My, M \to xy\}$$

Or:

$$P = \{S \rightarrow TS, S \rightarrow \lambda, T \rightarrow Ty, T \rightarrow M, M \rightarrow xMy, M \rightarrow xy\}$$