Charakterystyki Statyczne

Kacper Szczepanowski Wiktor Springer

22 października 2019

1 Cel ćwiczenia:

Rozwiązanie problemu układu "Domu z grzejnikiem" ze względu na wartości współczynników przenikalności ciepła, a następnie ze względu na wartości temperatur w budynku.

2 Wstęp

2.1 Rysunek układu

Rysunek 1: Dom z Grzejnikiem

Oznaczenia:

 T_{zew} -Temperatura zewnętrzna; T_{wew} -Temperatura wewnętrzna; T_p -temperatura na poddaszu; q_g -wartość ciepła dostarczanego przez grzejnik; K_{cp} -współczynnik ciepła oddawanego przez dach; K_{cwp} -współczynnik ciepła oddawanego przez ściany boczne.

2.2 Wstęp teoretyczny

Statyczny model układu jest uproszczeniem modelu dynamicznego, to uproszczenie może być dokonane na etapie konstruowania modelu lub jako uproszczenie równań modelu.

Charakterystyka statyczna jest to przedstawienie w sposób graficzny zależności między danymi wejściowymi i wyjściowymi w modelu statycznym. Interpretacja modelu fizycznego prowadzi do ustalenia, które zmienne traktować jako wejście, a które jako wyjście. Wejście jest niezależne od stanu obiektu, natomiast wyjście jest efektem pracy układu.

3 Rozwiązywanie układu równań metodą algebraiczną

3.1 Ze względu współczynniki K

$$1 \begin{cases} 0 = q_g - K_{cw}(T_{wew} - T_{zew}) - K_{cwp}(T_{wew} - T_p) \\ 0 = K_{cwp}(T_{wew} - T_p) - K_{cp}(T_p - T_{zew}) \\ \text{Oraz:} \end{cases}$$

I)
$$R_{cwp} = 0.25K_{cp}$$

$$q_g = K_{cw}(T_{wew} - T_{zew}) + 0.25K_{cw}(T_{wew} - T_p)$$

$$q_g = K_{cw}(1.25T_{wew} - T_{zew} - 0.25T_p)$$

$$K_{cw} = \frac{q_g}{1.25T_{wew} - T_{zew} - 0.25T_p}$$

$$II)$$

$$0 = K_{cwp}(T_{wew} - T_p) - K_{cp}(T_p - T_{zew})$$

$$K_{cp} = K_{cwp} \frac{(T_{wew} - T_p)}{(T_p - T_{zew})}$$

$$K_{cp} = 0.25K_{cw} \frac{(T_{wew} - T_p)}{(T_p - T_{zew})}$$

 $K_{cwp} = 0.25K_{cw}$

Dla stałych wartości: $q_g=1000W;\ T_{wew}=20^\circ C;\ T_{zew}=-20^\circ C;\ T_p=10^\circ C$ wyliczone współczynniki mają wartość:

$$K_{cw} = 23.529$$

 $K_{cp} = 1,96$
 $K_{cwp} = 5,88$

3.2 Ze względu na T_{wew} i T_p

$$2 \begin{cases} 0 = q_g - K_{cw}(T_{wew} - T_{zew}) - K_{cwp}(T_{wew} - T_p) \\ 0 = K_{cwp}(T_{wew} - T_p) - K_{cp}(T_p - T_{zew}) \\ \text{Oraz:} \end{cases}$$

$$T_{zew} = -20^{\circ}C$$
I)
$$0 = q_g - K_{cw}(T_{wew} - T_{zew}) - K_{cwp}(T_{wew} - T_p)$$

$$0 = q_g - K_{cw}T_{wew} + K_{cw}T_{zew} - K_{cwp}T_{wew} + K_{cwp}T_p$$

$$q_g + K_{cw}T_{zew} + K_{cwp}T_p = T_{wew}(K_{cw} + K_{cwp}T_p)$$

$$T_{wew} = \frac{q_g + K_{cw}T_{zew} + K_{cwp}T_p}{K_{cw} + K_{cwp}}$$
II)
$$0 = K_{cwp}(T_{wew} - T_p) - K_{cp}(T_p - T_{zew})$$

$$0 = K_{cwp}T_{wew} - K_{cwp}T_p - K_{cp}T_p + K_{cp}T_{zew}$$

$$T_p(K_{cp} + K_{cwp}) = K_{cp}T_{zew} + K_{cwp}T_{wew}$$

$$T_p = \frac{K_{cp}T_{zew} + K_{cwp}T_{wew}}{K_{cp} + K_{cwp}}$$

Po podstawienie T_{wew} z poprzedniego równania mamy

$$T_{p} = \frac{K_{cp}T_{zew} + K_{cwp}\frac{q_{g} + K_{cw}T_{zew} + K_{cwp}T_{p}}{K_{cw} + K_{cwp}}}{K_{cp} + K_{cwp}}$$

Po przekształceniach i wyznaczeniu z równia II T_p otrzymujemy:

$$T_p = \frac{K_{cp}T_{zew}(K_{cw}K_{cwp}) + K_{cwp}(q_g + K_{cw}T_{zew})}{(K_{cp} + K_{cwp}(K_{cw+K_{cwp}}) - K_{cwp}^2)}$$

Po podstawieniu danych: $T_{zew} = -20^{\circ}C; q_g = 1000W; K_{cw} = 23.529; K_{cp} = 1,96; K_{cwp} = 5,88$ wyniki wynoszą:

 $T_{wew} = 20^{\circ}C$ $T_p = 10^{\circ}C$

```
%algebraiczne rozwiązanie Modelu Domu z grzejnikiem
%ze względu na współczynniki K
qg=1000;
Tzew=-20;
Twew=20;
Tp=10;
%ze względu na współczynniki K
Kcw=qg/(1.25*Twew-Tzew-0.25*Tp)
Kcp=(0.25*Kcw*(Twew-Tp))/(Tp-Tzew)
Kcwp=0.25*Kcw
%ze wzgledu na Twew i Tp

Tp=(Kcp*Tzew*(Kcw+Kcwp)+Kcwp*(qg+Kcw*Tzew))/((Kcp+Kcwp)*(Kcw+Kcwp)-Kcwp^2)
```

Rysunek 2: Kod programu, punkt 3

4 Rozwiązanie układu metodą macierzową

4.1 Ze względu na współczynniki K

Aby wyznaczyć współczynniki charakteryzujące szybkość oddawania ciepła przez ścianę, trzeba na samym początku uporządkować równanie:

$$1 \begin{cases} 0 = q_g - K_{cw}(T_{wew} - T_{zew}) - K_{cwp}(T_{wew} - T_p) \\ 0 = K_{cwp}(T_{wew} - T_p) - K_{cp}(T_p - T_{zew}) \end{cases}$$

Ponieważ $K_{cwp} = 0,25K_{cw}$

$$2 \begin{cases} q_g = K_{cw}(T_{wew} - T_{zew}) + 0,25K_{cw}(T_{wew} - T_p) \\ 0 = 0,25K_{cw}(T_{wew} - T_p) - K_{cp}(T_p - T_{zew}) \end{cases}$$

$$3 \begin{cases} q_g = K_{cw}(1, 25T_{wew} - T_{zew} - 0, 25T_p) \\ 0 = 0, 25K_{cw}(T_{wew} - T_p) - K_{cp}(T_p - T_{zew}) \end{cases}$$

kolejnym krokiem jest zbudowanie odpowiednich macierzy i zależności między nimi

W = kolumna wyrazów wolnych

C = macierz współczynników

X = kolumna niewiadomych

$$\begin{aligned} \mathbf{W} &= \begin{pmatrix} q_p \\ 0 \end{pmatrix} \\ \mathbf{C} &= \begin{pmatrix} 1,25T_{wew} - T_{zew} - 0,25T_p & 0 \\ T_{wew} - T_p & T_p - T_{zew} \end{pmatrix} \\ \mathbf{X} &= \begin{pmatrix} K_{cw} \\ K_{cp} \end{pmatrix} \end{aligned}$$

Zależność macierzowa:

$$W = CX$$

$$X = C^{-1}W$$

Operacja zrealizowana w programie MATLAB:

Wynik działania kodu:

```
clear
        Qp=1000
        Tzew = -20
        Twew=20
        Tp=10
        %Obliczanie macierzowo wspołczynikow Kcw Kcwp Kcp
        [0 ; qQ] = W
        C = [1.25 \times Twew - Tzew - 0.25 \times Tp, 0; 0.25 \times Twew - 0.25 \times Tp, -Tp + Tzew]
10 -
        X=inv(C)*W
11
12
        %Przypisanie wartosci kolumny niewiadomych do odpowiednich wielkosci
13
14 -
        Kcw = X(1,1)
        Kcp=X(2,1)
15 -
        Kcwp=0.25*Kcw
16 -
```


4.2 Ze względu na temperature

Kolejnym celem jest wyznaczenie temperatury sposobem macierzowym. Proces realizacji tego etapu wygląda analogicznie jak w przypadku wyznaczania stałych K. T_{wew} oraz T_p są zmiennymi wejściowymi.

$$1 \begin{cases} 0 = q_g - K_{cw}(T_{wew} - T_{zew}) - K_{cwp}(T_{wew} - T_p) \\ 0 = K_{cwp}(T_{wew} - T_p) - K_{cp}(T_p - T_{zew}) \end{cases}$$

$$2 \begin{cases} q_g = K_{cw}T_{wew} - K_{cw}T_{zew} + 0,25K_{cw}T_{wew} - 0,25K_{cw}T_p \\ 0 = 0,25K_{cw}T_{wew} - 0,25K_{cw}T_p - K_{cp}T_p + K_{cp}T_{zew} \end{cases}$$

$$3 \begin{cases} q_g + K_{cw}T_{zew} = T_{wew}(1,25K_{cw}) + T_p(-0,25K_{cw}) \\ -K_{cp}T_{zew} = T_{wew}(0,25K_{cw}) + T_p(-0,25K_{cw} - K_{cp}) \end{cases}$$

Na podstawie powyższego układu równań w łatwy sposób możemy zbudować macirz i kolumny potrzebne do wyliczenia temperatur.

 $W_T = \text{kolumna wyrazów wolnych}$

 $C_T = \text{macierz współczynników}$

 $X_T = \text{kolumna niewiadomych}$

$$\mathbf{W_T} = \left(\begin{array}{c} q_g + K_{cw} T_{zew} \\ -K_{cp} T_{zew} \end{array}\right)$$

$$\mathbf{C_T} = \begin{pmatrix} 1,25K_{cw} & -0,25K_{cw} \\ 0,25K_{cw} & -0.25K_{cw} - K_{cp} \end{pmatrix}$$

$$\mathbf{X_T} = \left(\begin{array}{c} T_{wew} \\ T_p \end{array}\right)$$

Relacja Macierzowa:

$$W_T = C_T X_T$$

$$X_T = C_T^{-1} W_T$$

Operacja zrealizowana w programie MATLAB:

Command Window

5 Charakterystyki statyczne

Charakterystyki statyczne zostały wykonane w programie MATLAB przy użyciu funkcji plot. Efekt został pokazany na obrazkach na ostatnich stronach

6 Wnioski

Charakterystyka statyczna jest podstawowym działaniem przy opisie modelu matematycznego, który charakteryzuje jakieś zjawisko fizyczne, obiekt lub proces. Termin ten jest związany z statycznym modelem. Układ, który jest w rzeczywistości obiektem zmieniającym się w dynamiczny sposób można uprościć do obiektu statycznego. Celem takiego zabiegu jest zrozumienie podstawowych własności obiektu i powierzchniowa analiza jego zachowania, pomijamy sposób dojścia do określonego stanu. Charakterystyka statyczna pozwala nam określić jaki będzie efekt końcowy (wyjście) na zadaną wielkość (wejście).


```
1 -
        clear
 2 -
        Qp = 1000
 3 -
       Tzew = -20
       Twew=20
       Tp=10
 5 -
        %Obliczanie macierzowo wspolczynikow Kcw Kcwp Kcp
 7
 8 -
        W1 = [Qp ; 0]
        C1 = [1.25 \times Twew - Tzew - 0.25 \times Tp, 0; 0.25 \times Twew - 0.25 \times Tp, -Tp + Tzew]
10 -
       K=inv(C1)*W1
11
12
        %Przypisanie wartosci kolumny niewiadomych do odpowiednich wielkosci
13
       Kcw=K(1,1)
14 -
15 -
       Kcp=K(2,1)
       Kcwp=0.25*Kcw
16 -
17
18
19
        %Obliczanie temperatur macierzowo
        W2=[Qp+Kcw*Tzew ;-Tzew*Kcp]
       C2 = [1.25 * Kcw, -0.25 * Kcw; 0.25 * Kcw, -0.25 * Kcw - Kcp]
21 -
22 -
       T=inv(C2)*W2
23
25
        %Charakterystyka statyczna
       Op=1000:10:3000
26 -
       hold on
27 -
28
29 -
     for i=1:1:length(Qp)
30
31 -
        W2 = [Qp(i) + Kcw * Tzew ; - Tzew * Kcp]
32 -
       C2=[1.25*Kcw, -0.25*Kcw; 0.25*Kcw, -0.25*Kcw-Kcp]
       T=inv(C2)*W2
33 -
34 -
       Twew(i) = T(1,1)
35 -
       Tp(i) = T(2,1)
      <sup>∟</sup>end
36 -
37 -
        figure(1);
38
39
40 -
       plot(Qp, Twew);
       ylabel('Twew [^{\circ}C]');
41 -
42 -
       xlabel('Qg [W]');
43 -
       grid on
44
45
        figure(2);
46 -
```

```
49 - ylabel('Tp [^{\circ}C]');
50 - xlabel('Qg [W]');
51 - grid on
52
53
54
     Qp = 1000
55 -
      Tzew = -40:1:5
56 -
57 - Twew=0
58 -
       0 = qT
59 - for i=1:1:length(Tzew)
60
       W2=[Qp+Kcw*Tzew(i) ;-Tzew(i)*Kcp]
61 -
62 -
      C2 = [1.25 * Kcw, -0.25 * Kcw; 0.25 * Kcw, -0.25 * Kcw - Kcp]
63 -
      T=inv(C2)*W2
     Twew(i) = T(1,1)
64 -
65 - Tp(i) = T(2,1)
66 - end
67
      figure(3)
68 -
69
70 - plot (Tzew, Twew)
71 - ylabel('Twew [^{\circ}C]');
72 - xlabel('Tzew [^{\circ}C]');
73 -
     grid on
74
       figure (4)
75 -
76
77 - plot(Tzew, Tp)
78 - ylabel('Tp [^{\circ}C]');
79 - xlabel('Tzew [^{\circ}C]');
     grid on
80 -
81
82 -
      hold off
83
84
                             11
```