PROJECT PROPOSAL

Predicting the cheapest day to buy a flight ticket using Machine Learning

Boyan Apostolov

20.02.2025

TABLE OF CONTENTS:

1. Introduction	
2. Domain Unde	erstanding
2.1 Overview	2
2.2 Research Questio	n3
2.3 Research Method	s (DOT Framework)3
2.3 Domain findings	3
3. Analytic app	roach
3. 1 Target variable	3
3.2 Defining success	4
3.3 Feature Selection	: Finding Good Indicators 4
3.4 Data Preparation	4
3.5 Model selection	5
3.6 Model Evaluation	Metrics 5
4. Data require	ments
4.1 Objectives	5
4.2 Data requiremen	ts5
4.3 Data Sources	6
4.4 Data Legality and	d Ethics6
4.5 Data Diversity	6
	6
	6
5. Planning	7

1. Introduction

This proposal outlines the research and development of an **AI model** that **predicts** the **optimal time to purchase airline tickets at the <u>lowest</u> price**. The goal is to create a data-driven approach that helps travelers, optimize their booking strategies.

The model will be developed using machine learning techniques and trained on datasets containing ticket **prices**, departure **dates**, and other relevant factors.

Key Stakeholders:

- Kalina Bacheva fellow student with a passion of finding cheap tickets
- Tanya Apostolova a mother who wants to buy cheap tickets for her children

The development of this project will start with data **collection** and data **analysis**, followed by model **training**, **optimization**, and **deployment**.

The **end product** will consist of a page that allows input of a **desired date**, **departure and arrival airports** and the AI model will output the **predicted date** which will have the **best price option**

2. Domain Understanding

2.1 Overview

The airline ticket pricing industry is influenced by multiple factors, including:

- Booking Timeframe Prices vary depending on <u>how far in advance</u> a ticket is purchased.
- **Departure Date Trends** Holidays, weekends, and **peak seasons** affect pricing.
- Route-Specific Trends Some routes exhibit more price fluctuations than others.
- Market Demand Airlines adjust prices based on supply and demand.

2.2 Research Question

When is the best time to book a flight to get the cheapest price for a one-way ticket?

2.3 Research Methods (DOT Framework)

Exploratory Data Analysis:

- To analyze historical flight pricing data and identify trends.
- To detect **correlations** between booking time, departure dates, and pricing.

Model Evaluation:

- To test **different machine learning algorithms** and measure their **accuracy**.
- To **fine-tune** the model and ensure it **generalizes** well.

Prototyping:

- To create an **initial version** of the tool for **testing** (e.g., a simple app or API).
- To refine usability based on feedback.

2.3 Domain findings

Preliminary research highlights that:

- Flight prices tend to be **lower** when booked **several weeks in advance** but **rise** as **departure nears**.
- Holidays and peak seasons significantly impact ticket costs.
- Different routes exhibit distinct pricing patterns.

3. Analytic approach

3.1 Target variable

The **target variable** in this project is the **number of days before departure when the ticket is the cheapest**.

3.2 Defining success

Success in this project will be defined by:

- Prediction Accuracy The model correctly identifying the best booking window for a significant percentage of cases..
- Generalization Across Routes The model should perform well on various routes and travel periods, when the necessary data for the route is provided
- Stakeholder Satisfaction Positive feedback from the stakeholders usability and effectiveness

3.3 Feature Selection: Finding Good Indicators

Potentially relevant features include:

- Days Before Departure How far in advance the ticket was booked.
- Departure Date The actual date of the flight.
- Departure Airport & Arrival Airport Route-specific influences.
- Is the period Holiday? indicating whether the flight date falls on a holiday.

3.4 Data Preparation

As I could **not find a suitable dataset for Europe** on the Internet, a **scraper** will be created so I can **gather** the necessary data from **Google Flights,** where we can see the **historical values** for **all flights** for the **last 60 days**.

Then, the categorical values (e.g. departure and arrival airports) will be converted into numerical values for easier work with the ML algorhitms.

3.5 Model selection

The current use case requires a regression algorhitm as concrete numerical data is required.

As one of the teachers said, **multiple models** should **be used** and their **results** should **be compared**.

For now, I will evaluate and compare three machine learning models:

- KNN easies to implement in the first iterations
- Linear Regression Selected because it was demonstrated during previous presentations and provides a simple, interpretable baseline for predicting the optimal booking window.
- Decision Trees

3.6 Model Evaluation Metrics

- Mean Absolute Error (MAE) Measures average prediction error.
- Root Mean Square Error (RMSE) Evaluates model accuracy by penalizing larger errors.
- **R-Squared Score** Determines how well the model explains price variance.

4. Data requirements

4.1 Objectives

To predict the best time to book a flight at the lowest price.

4.2 Data requirements

 Structured Data: Historical flight booking records containing flight details and prices.

4.3 Data Sources

• Scraping: Scraping data historical flight data from Google Flights

4.4 Data Legality and Ethics

- Using only legally available and publicly accessible flight pricing data.
- Avoiding scraping personal or sensitive customer data

4.5 Data Diversity

- **Routes**: Ensuring the dataset includes **multiple departure** and arrival airports.
- Seasonal Variations: Including flight prices across different seasons, holidays, and weekdays vs. weekends.
- **Geographical Coverage**: Gathering data from flights **across various** regions for a well-rounded prediction model.

4.6 Version Control

Github will be used for dataset/code versioning at the following repositoy: https://github.com/Boyan-Apostolov/Flight-Prices-Predicitons

4.7 Iterative Process

- Continuously evaluating the model's performance and refine data sourcing.
- If model accuracy is low, assess and expand data collection to improve coverage.
- Monitor price trends over time, updating the dataset periodically to reflect recent market conditions.

5. Planning

Week	Iteration	Details
Week 2	Iteration 0	Choosing an idea and data gathering
Week 3	Iteration 0	Proposal and iteration zero creation (K-Nearest-Neighbour)
Week 4	Iteration 1	Feedback for iteration zero , implementing changes.
Week 5- Week 7	Iteration 1	Implementing Linear regression
Week 8	Iteration 2	Feedback for iteration one , implementing changes.
Week 9 - Week 12	Iteration 2	Implementing Decision Trees
Week 13	Iteration 3	Feedback for iteration Two , implementing changes.
Week 14 - Week 16	Iteration 3	Implementing (third and final algorhitm)