Mächtigkeiten, Kardinalzahlen und die Kontinuumshypothese

Niklas Bühler

17.12.2019

Im Folgenden seien x und y Mengen, $\omega = \{0, 1, 2, \dots\}, i \in \omega, \alpha$ und β Ordinalzahlen, δ eine Limeszahl und κ eine Kardinalzahl.

1 Mächtigkeiten

1.1 Definition Mächtigkeitsrelationen

- (i) x ist gleichmächtig mit y (kurz $x \sim y$) : $\iff \exists f \ f : x \xrightarrow{bij} y$,
- (ii) x ist höchstens so mächtig wie y (kurz $x \leq y$) : $\iff \exists f \ f : x \xrightarrow{inj} y$,
- (iii) x ist schmächtiger als y oder y ist mächtiger als x (kurz $x \prec y$) : $\iff x \leq y \land \neg x \sim y$.

1.6 Satz von Cantor Für alle x gilt $x \prec Pot(x)$.

Beweis. Die auf x definierte Funktion g mit $u \mapsto \{u\}$ ist eine Injektion von x in Pot(x). Also ist $x \leq Pot(x)$.

Wir zeigen, dass es keine surjektive (und damit keine bijektive) Funktion von x auf Pot(x) geben kann. Dann ist $\neg x \sim Pot(x)$, also $x \prec Pot(x)$.

Annahme: $\exists f : x \xrightarrow{surj} \text{Pot}(x)$.

Sei $z:=\{u\in x\mid u\notin f(u)\}\in \operatorname{Pot}(x)=\operatorname{Bild}(f).$ Für geeignetes $v\in x$ ist z=f(v), da f surjektiv ist. Dann ist aber $v\in f(v)\iff v\notin f(v)$ ein Widerspruch.

Somit gibt es keine Surjektion (und damit keine Bijektion) von x nach Pot(x) und es gilt $\neg x \sim Pot(x)$, also $x \prec Pot(x)$.

1.7 Satz $\forall \alpha \; \exists \beta \; \alpha \prec \beta$.

Beweis. Sei α gegeben. Wähle β so, dass $\neg \beta \leq \alpha$ (Satz von Hartogs). Dann ist $\alpha \leq \beta$ (Konnexität von \subseteq) und $\neg \alpha \sim \beta$, also $\alpha \prec \beta$.

1.8 Definition Die Alephfunktion

- (i) $\aleph_x := \emptyset$, falls $\neg Oz x$,
- (ii) $\aleph_0 := \omega$,

- (iii) $\aleph_{\alpha+1} := \text{das kleinste } \beta \text{ mit } \aleph_{\alpha} \prec \beta$,
- (iv) $\aleph_{\delta} := \bigcup \{\aleph_{\beta} \mid \beta < \delta\}.$

Jedes \aleph_{α} ist eine Limeszahl.

Anschauliche Anordnung $0 \prec 1 \prec 2 \prec \cdots \prec \omega = \aleph_0 \sim \omega + 1 \sim \cdots \sim \omega \oplus \omega \sim \cdots \prec \aleph_1 \sim \aleph_1 + 1 \sim \cdots \prec \aleph_2 \sim \aleph_2 + 1 \sim \cdots \prec \aleph_\omega \sim \aleph_\omega + 1 \ldots$ Alle Kardinalzahlen ab \aleph_1 sind unbekannt (und werden es bleiben).

2 Kardinalzahlen

Kardinalzahlen sind die kleinsten Vertreter der Äquivalenzklassen der Mächtigkeiten von Ordinalzahlen. Ab hier argumentieren wir in **ZFC**.

2.1 Definition Kardinalzahlen

$$x \text{ ist } Kardinalzahl : \iff x \in \omega \vee \exists \alpha \ x = \aleph_{\alpha}.$$

2.3 Satz Rolle der Kardinalzahlen als Mächtigkeitsmaßstäbe

$$\forall x \; \exists ! \kappa \; x \sim \kappa.$$

2.4 Definition Mächtigkeit einer Menge

$$|x| := \text{das } \kappa \text{ mit } x \sim \kappa, \text{ also } |x| := \begin{cases} i \in \omega \text{ mit } x \sim i, \text{ falls } x \text{ endlich,} \\ \aleph_{\alpha} \text{ mit } x \sim \aleph_{\alpha}, \text{ falls } x \text{ unendlich.} \end{cases}$$

2.6 Definition Abzählbarkeit, Unendlichkeit, Überabzählbarkeit

$$x \text{ heißt } \begin{cases} abz\ddot{a}hlbar : \iff |x| \leq \aleph_0, \\ abz\ddot{a}hlbar \ unendlich : \iff |x| = \aleph_0, \\ \ddot{u}berabz\ddot{a}hlbar : \iff |x| \geq \aleph_1, \end{cases}$$

Beispiele

- (i) $\omega \times \omega$ ist abzählbar unendlich,
- (ii) $Pot(\omega)$ ist überabzählbar,
- **2.7 Satz** Die Vereinigung von höchstens \aleph_{α} vielen Mengen einer Mächtigkeit $< \aleph_{\alpha}$ hat eine Mächtigkeit $< \aleph_{\alpha}$, d.h.

$$|X| \leq \aleph_{\alpha} \wedge \forall y (y \in X \to |y| \leq \aleph_{\alpha}) \to |\bigcup X| \leq \aleph_{\alpha}.$$

Beweis. Sei $|X| \leq \aleph_{\alpha}$ und $g: X \xrightarrow{inj} \aleph_{\alpha}$. Für alle $y \in X$ sei $|y| \leq \aleph_{\alpha}$, also $\{f \mid f: y \xrightarrow{inj} \aleph_{\alpha}\} \neq \emptyset$. Zu jedem $y \in X$ wählen wir eine Injektion von y in \aleph_{α} , indem wir von einer Auswahlfunktion h auf

$$\{\{f \in {}^{y}\aleph_{\alpha} \mid f \text{ Injektion}\} \mid y \in X\}$$

ausgehen. Für $h(\{f \in {}^{y}\aleph_{\alpha} \mid f \text{ Injektion}\})$, also die zu y gewählte Injektion von y in \aleph_{α} , schreiben wir kurz h_{y} . Wir definieren eine Injektion f von $\bigcup X$ in $\aleph_{\alpha} \times \aleph_{\alpha}$ dadurch, dass wir für $z \in \bigcup X$

$$f(z) = (\gamma_0, \gamma_1)$$

setzen; hierbei sei γ_0 die kleinste Ordinalzahl γ mit $z \in g^{-1}(\gamma)$ und es sei $\gamma_1 = h_{g^{-1}(\gamma_0)}(z)$. Damit ist $\bigcup X \leq \aleph_\alpha \times \aleph_\alpha \sim \aleph_\alpha$, also $|\bigcup X| \leq \aleph_\alpha$.

2.14 Satz Mächtigkeiten von \mathbb{Z} und \mathbb{Q}

- (i) $|\mathbb{Z}| = \aleph_0$,
- (ii) $|\mathbb{Q}| = \aleph_0$.

Beweis. Zu (i): Ohne \mathbb{Z} formal einzuführen ist

$$f: \mathbb{Z} \to \omega \text{ mit } n \mapsto \begin{cases} 2n-1, & \text{falls } n > \mathbf{0}, \\ -2n, & \text{falls } n \leq \mathbf{0}. \end{cases}$$

eine Bijektion.

Zu (ii) argumentiert man ähnlich.

2.15 Satz Mächtigkeit von \mathbb{R}

$$|\mathbb{R}| = \mathbf{2}^{\aleph_0} (= |^{\aleph_0} \mathbf{2}|).$$

 $Beweis.\ f,g:\mathbb{R}\to\mathbb{R}$ seien definiert durch

$$f(r) := \begin{cases} \mathbf{0}, & \text{falls } r = \mathbf{0}, \\ \frac{1}{r+1}, & \text{falls } r > \mathbf{0}, \\ \frac{1}{r-1}, & \text{falls } r < \mathbf{0}. \end{cases}$$

$$g(r) := \frac{r+1}{2}.$$

Dann ist $g \circ f$ eine Bijektion von \mathbb{R} auf das Intervall (0,1). Daher ist

$$\mathbb{R} \sim (\mathbf{0}, \mathbf{1}). \tag{1}$$

Indem wir einer reellen Zahl aus $(\mathbf{0},\mathbf{1})$ ihre nicht-abbrechende Dualdarstellung zuordnen und dieser die Folge ihrer Dualziffern, erkennen wir, dass $(\mathbf{0},\mathbf{1}) \preceq {}^{\aleph_0}\mathbf{2}$, also, mit (1), dass $|\mathbb{R}| \leq \mathbf{2}^{\aleph_0}$. Umgekehrt ergibt sich $\mathbf{2}^{\aleph_0} \leq |\mathbb{R}|$ dadurch, dass wir einem $f \in {}^{\aleph_0}\mathbf{2}$ die reelle Zahl $\sum_{i=0}^{\infty} \frac{f(i)}{\mathbf{2}^{2i+1}}$ zuordnen.

3 Die Kontinuumshypothese

Für endliche i gilt: $\mathbf{2}^{i+1} > i+1$. Cantors Vermutung 1878 war $\mathbf{2}^{\aleph_0} = \aleph_1$. Diese Hypothese ist jedoch in **ZFC** nicht entscheidbar.

Für offene und abgeschlossene Teilmengen gibt es Sätze, die Aussagen über deren Mächtigkeiten treffen.

Interessante Beispiele ohne offene Teilmengen

$$N := \{\frac{1}{n} | n \in \mathbb{N}\}$$

ist nicht abgeschlossen (Häufungspunk 0 nicht enthalten) und enthält keine offenen Teilmengen. Sie ist offensichtlich abzählbar unendlich: $f: \mathbb{N} \to N, \ n \mapsto \frac{1}{n}$.

Die rationalen Zahlen $\mathbb{Q} \subset \mathbb{R}$ sind ebenfalls nicht abgeschlossen (jede irrationale Zahl lässt sich durch Brüche approximieren) und enthält auch keine offenen Teilmengen. \mathbb{Q} ist auch abzählbar unendlich (Satz 2.14 oder Cantors Diagonalargument).

Die Cantor-Menge ist ebenfalls abgeschlossene Teilmenge von $\mathbb R$ und enthält keine offenen Teilmengen. Sie ist jedoch überabzählbar.

Definition CH ("Continuum Hypothesis")

$$\mathbf{2}^{\aleph_0} = \aleph_1$$
.

wobei $\mathbf{2}^{\aleph_0}$ die Mächtigkeit der reelen Zahlen, also des Kontinuums, ist.

Definition CH*

$$\forall X \ (X \subseteq \mathbb{R} \land X \text{ unendlich } \Rightarrow X \sim \aleph_0 \lor X \sim \mathbb{R}).$$

CH ist in **ZFC** äquivalent zu CH*.

Definition GCH ("General Continuum Hypothesis")

$$\forall \alpha \ \mathbf{2}^{\aleph_{\alpha}} = \aleph_{\alpha+1}.$$

Definition GCH*

$$\forall X \ (X \ \text{unendlich} \ \Rightarrow \neg \exists Y \ (X \prec Y \land Y \prec \text{Pot}(X))).$$

GCH ist in **ZFC** äquivalent zu GCH*.

4.8 Satz Mächtigkeit offener Teilmengen von \mathbb{R}

X offene Teilmenge von
$$\mathbb{R} \Rightarrow (X = \emptyset \lor |X| = |\mathbb{R}|).$$

Beweis. Ist X eine nicht leere offene Teilmenge von \mathbb{R} , so umfasst X ein nicht leeres offenes Intervall I. Im Beweis von Satz 2.15 (i) (Mächtigkeit der reellen Zahlen) haben wir gesehen, dass das offene Einheitsintervall $(\mathbf{0},\mathbf{1})$ die gleiche Mächtigkeit wie \mathbb{R} hat. Da offenbar $|(\mathbf{0},\mathbf{1})|=|I|$, ist $|\mathbb{R}|=|I|\leq |X|\leq |\mathbb{R}|$, also $|X|=|\mathbb{R}|$.

Satz 4.8 gilt gleichermaßen für Mengen reeller Zahlen, die eine nicht leere offene Menge umfassen.

4.9 Satz Mächtigkeit abgeschlossener Teilmengen von \mathbb{R}

X abgeschlossene Teilmenge von $\mathbb{R} \Rightarrow (|X| \leq \aleph_0 \vee |X| = |\mathbb{R}|).$

Ohne Beweis.