

计算广告的训练和平滑思想

vivo移动通讯 崔骁凯

促进软件开发领域知识与创新的传播

关注InfoQ官方信息

及时获取QCon软件开发者 大会演讲视频信息

[北京站] 2016年12月2日-3日

咨询热线: 010-89880682

[北京站] 2017年4月16日-18日

咨询热线: 010-64738142

vivo互联网业务

目录

- 1、互联网广告的历史与发展
- 2、计算广告的训练模式
- 3、计算广告的平滑模式

1、互联网广告的历史与发展**

按照付费方式的演义

CPT

✓ 按【广告展示时间】付费,通常单位是天。

CPM

✓ 按【广告曝光次数】付费。

CPC

需要计算的广告收费模式

✓ 按【广告点击次数】付费。

基于CPC的互联网广告计算

$$ECPM_i = p_i \times CTR_i \times 1000$$

Maximize $\sum_{i=0}^{n} p_i \times CTR_i \times I_i$

s.t. $I_i \in I$ 其中I为所有广告位曝光数的集合

广告位1, I₁=3000

广告位2, I₂=1500

广告位3, I₃=1000

广告位4, I₄=800

广告上架排序计算

广告1

Price₁=10, CTR₁=0.3% ECPM₁=¥30/千次曝光

广告2

Price₂=10, CTR₂=0.2% ECPM₂=¥20/千次曝光

广告3

Price₃=50, CTR₃=0.1%

ECPM₃=¥50/千次曝光

广告4

Price₄=10, CTR₄=0.1%

ECPM₄=¥10/千次曝光

广告平台收益计算

CPC具备明显优势

更精准明确的出价

广告平台

更优化的曝光收益

合作关系

更透明互信的合作

CPC的最大困难是:

我们永远无法得知100%真实的CTR......

------→ 作为新进广告——训练数据不足 --------→ 作为现有广告——CTR不断变化

我们的目标是尽可能算准CTR

CTR对计算广告收入的影响:

广告平台的曝光利用越充分

ECPM的计算就越准确

CTR越接近广告真实情况

2、计算广告的训练模式

什么是训练?

训练:通过给予新广告一定量曝光,从而估计其 CTR的过程.

新广告上架后的训练过程:

- ✓ 给予新广告一定量的曝光,来产生相应的点击数据;
- ✓ 根据点击量估算该广告的CTR;
- ✓ 训练完成后,根据CTR计算ECPM并排序。

训练产生的两种误差

• 预估CTR高于实际CTR

这样的广告ECPM会被算高,会得到比他应得的更多的曝光,从而降低平台收益。

• 预估CTR低于实际CTR

这样的广告ECPM会被算低,在极端情况下会永久沉溺。

解决CTR估低的传统方法

开辟单独训练位

新广告在训练结束前不参与ECPM排序,而在特定的位置完成设定好的曝光数;

基于UCB思想的训练

引入置信区间上界

- ➡ 估高CTR,避免广告沉溺
- →让所有的广告尽可能公平的完成训练

	Р	1-P	P * (1-P)	标准差	置信区间 上界	CTR与广告1CTR 的倍数差距	置信区间上界与广告1的 置信区间上界倍数差距
广告1	0.1	0.9	0.09	0.3162	1	1	1
广告2	0.01	0.99	0.0099	0.1	0.3084	0.1	0.308496231131986
广告3	0.001	0.999	0.000999	0.0316	0.0958	0.01	0.0958208837756747

表1:三个点击率相差极大的新广告,经过置信区间转化后的CTR差距表

如何确定置信度?

置信度与广告训练完成的程度成反比。

广告的CTR不同,完成训练所需曝光数也不同。

	Р	1-P	P* (1-P)	标准差	标准差与CTR的倍数差异
广告1	0.1	0.9	0.09	0.316227766016838	3.16227766016838
广告2	0.01	0.99	0.0099	0.1	10
广告3	0.001	0.999	0.000999	0.0316227766016838	31.6227766016838

表2:不同预测CTR的广告,预测准确度的差异。

置信区间上界与训练完成度的关系

3、计算广告的平滑模式

什么是平滑?

平滑:根据当前的曝光不断更新广告CTR预估的过程。

为什么要做平滑:

- ✓ 同一个广告的CTR随着时间在不断变化;
- ✓ 和训练一样,短期CTR估计不准,波动较大;

基础平滑公式:

SmoothCTR = HistroyCTR × a + CurrentCTR × (1-a)

平滑公式进阶

纳入曝光和点击的考量

SmoothCTR a×HistoryC + (1-a)×CurrentC

a×Historyl + (1-a)×Currentl

考虑时间权重的平滑公式

使用贝叶斯思想构建平滑算法

先验知识

使用历史CTR作为先验知识。

当前条件

更新条件为当下的数据表现。

贝叶斯平滑的含义

SmoothCTR = $(\alpha + CurrentC - 1) / (\alpha + \beta + CurrentI - 2)$

平滑公式求解的关键是: α 和 β

求解α和β的思路

mean	$\frac{\alpha}{\alpha + \beta}$		
mode	$\frac{\alpha-1}{\alpha+\beta-2}$		

求解α和β的关键是令:mode=mean*r,其中r为可调系数, 其值非常接近1。

不同r对应的平滑图

优势总结

简化操作

- 不需要初 始CTR;
- 不需要单独训练位

持续进化

- 变权公式;
- 支持动态 规划
- 能够根据 情况设置 平滑程度

Thank you!