V.Barbera – Chimica Generale Esame del 10.07.2023 RISOLUZIONE ESERCIZI

Esercizio 1. Qual è la nomenclatura esatta dei seguenti composti? HClO₃, Al(OH)₃, NaHCO₃

- a) Acido ipocloroso, idrossido di allumino, carbonato di potassio;
- b) Perclorato di idrogeno, Idrossido di alluminio (II), acido carbonico;
- c) Acido perclorico, idrossido di alluminio, bicarbonato di sodio;
- d) Tutte le risposte sono corrette;
- e) Nessuna delle risposte precedenti

Esercizio 2. La formula minima di un composto, determinata tramite l'analisi elementare, è C₁₀H₇O₂. Sapendo che la sua massa molecolare è pari a 318.34 g/mol, indicare la corretta formula molecolare.

- <mark>a)</mark> C₂₀H₁₄O₄
- b) C₅H₇O
- c) $C_{12}H_{24}O_6$
- d) $C_{15}H_{30}O_{10}$
- e) $C_{30}H_{30}O_{15}$

Esercizio 3. Quanti protoni, neutroni ed elettroni ci sono nell'atomo di Oro?

- a) 15, 65, 15
- b) 20, 30, 30
- c) 79, 118, 79
- d) 95, 131, 95
- e) 15, 15, 15

Esercizio 4. Mettere in ordine crescente di raggio atomico i seguenti elementi:

K⁺, Ca²⁺, F⁻, Br

RISOLUZIONE

a)
$$r(Ca^{2+}) \le r(K^+), \le r(Br), r \le (F^-)$$

b)
$$r(K^+) \le r(F^-) \le r(Ca^{2+}) \le r(Br^-)$$

c) Sono tutti elementi con stesso raggio atomico

d) $r(F^-) \ge r(Br^-) \ge r(Ca^{2+}) \ge r(K^+)$

ESERCIZIO 5:

Indicare cosa c'è di sbagliato in ognuna delle seguenti strutture di Lewis:

RISOLUZIONE:

¿Ö-Cl-Ö: ha 20 elettroni di valenza, mentre la molecola ClO₂ ha 19 elettroni di valenza. La seguente è una struttura di Lewis corretta per lo ione clorito, anche se non sono indicate le parentesi e il segno meno.

¿Ö-Cl-Ö:

[·C-N] ha solo sei elettroni attorno all'atomo C e globalmente mancano due elettroni.

[·C=N] è una struttura di Lewis più plausibile per lo ione cianuro.

ESERCIZIO 6:

Un'analisi ha rilevato che 135.0 mg di una proteina corrispondono ad 1.5x10⁻⁵ mol della stessa. Qual è la massa molecolare della proteina?

- a) $3.0 \times 10^4 \text{ g/mol}$;
- b) $5.0 \times 10^5 \text{ g/mol}$;
- c) 7.43 x 10⁸ g/mol;

d) 9000 g/mol

e) 123.54 g/mol

ESERCIZIO 7: Un solido che si sciolga in esano e non in acqua sarà probabilmente un solido di quale origine? Indicare la risposta corretta

- 1) Ionico
- 2) Covalente
- 3) Molecolare
- 4) Amorfo
- 5) Metallico

Esercizio 8 Qual è la formule generale utilizzata nella regola di Huckel per discriminare se una molecola risulta aromatica o meno? Riguarda, inoltre, quale tipo di elettroni?

- a) 4n; riguarda gli elettroni π ;
- b) 4n + 2; riguarda gli elettroni σ ;
- c) 4n + 2; riguarda gli elettroni π ;
- d) Nessun elettrone π ; è in grado di formare legame dativo con altre molecole di benzene
- e) nessuna delle risposte date

ESERCIZIO 9

Una soluzione di densità 0.988 g/mL a 20 °C viene preparata sciogliendo 12.8 mL di CH₃CH₂CH₂OH (d= 0.803 g/mL) in tanta acqua da ottenere 75.0 mL di soluzione. Qual è la percentuale di CH₃CH₂CH₂OH espressa in (a) volume, (b) in massa?

- a) 87.8% in volume; 15.7% in massa
- b) 24.3% in volume; 37.0% in massa
- c) 62.5% in volume; 9.9% in massa
- d) 12.8% in volume; 12.8% in massa
- e) 17.1% in volume; 13.5% in massa

Esercizio 10. Un campione di 0.418 g di un gas ha volume di 115 mL a 66.3 °C e 743 mmHg. Qual è la massa molare del gas?

- a) 13 g/mol
- b) 26 g/mol
- c) 89 g/mol
- d) 104 g/mol
- e) 345 g/mol

Esercizio 11. Qual è il volume, in litri, occupato da una miscela di 15.2 g di Ne(g) e 34.8 g di Ar(g) alla pressione 7.15 atm e 26.7 °C?

RISOLUZIONE

a) 5.59 L

b) 8.90 L

c) 12.31 L

d) 15.77 L

e) Nessuna delle risposte precedenti

Esercizio 12. Qual è la pressione, in pascal, esercitata da 1242 g di CO_{2(g)} confinata a -25 °C in un cilindro di 25 cm di dimaetro alto 1.75 m?

RISOLUZIONE

a) 6.77 x 10⁵ Pa

- b) $6.77 \times 10^3 \text{ Pa}$
- c) $3.21 \times 10^{12} \text{ Pa}$
- d) 14.56 Pa
- e) 12.98 x 10² Pa

ESERCIZIO 13

Considerare la reazione:

$$P_{4(s)} + 6 Cl_{2(g)} \longrightarrow 4 PCl_{3(g)}$$

Facendo reagire 4.50 g di P₄ con 3.90 L di Cl₂ misurati a 40°C e 2.50 atm, si sono ottenuti 10.2 g di PCl₃.

Calcolare la resa del processo.

RISPOSTA ESATTA

- a) 12%
- b) 3%
- c) 78%
- d) 90%
- e) 51%

Esercizio 14. Qual è la molalità del para-diclorobenzene in una soluzione preparata sciogliendo 2.65 g di $C_6H_4Cl_2$ in 50 mL di benzene (d = 0.879 g/mL)?

RISOLUZIONE:

a) 1.34 m

b) 0.410 m

- c) 9.33 m
- d) 2.10 m
- e) Nessuna delle risposte precedenti

Esercizio 15. Si prepara una soluzione con 1.28 moli di C_7H_{16} , 2.92 moli di C_8H_{18} e 2.64 moli di C_9H_{20} . Qual è la frazione molare e la percentuale molare di ogni componente? Riportare i risultati nella seguente tabella.

ESERCI 810 15 N. toble di moli = 1.88 + 2.92 + 2.64 = 6.84 md Erosaioni molesii 2 = 1.88 mol = 0.187 X (8418 = 2.92 mol = 0.427 2/9 HEO = 2.64 mol = 0.386 Per le % in pero boste moltiplicare tutto jor 100. % (+416 = 0.187 × 100 = 18,7% 1/6 18 A18 = 0.487 × 100 = 42, 7 % 1/6 (9 A20 = 0.386 × 100 = 38,6 %

Esercizio 16. "L'energia del mondo è costante, l'entropia del mondo aumenta fino ad un massimo". Questa è stata la famosa frase di Rudolf Clausius. Interpretare la frase utilizzando i concetti base della termodinamica.

RISOLUZIONE:

La prima legge della termodinamica dice che l'energia non viene ne creata ne distrutta, quindi l'energia dell'universo è costante. Una conseguenza del secondo principio della termodinamica è che l'entropia dell'universo aumenta in tutti i processi spontanei. Ciò vuol dire che l'entropia dell'universo aumenta verso un picco massimo.

Esercizio 17. Industrialmente il metanolo viene prodotto secondo la reazione:

$$CO_{(g)} + 2 H_{2(g)} \longrightarrow CH_3OH_{(g)}$$

Il processo è condotto a 500 K e a tale temperatura la K_p vale 6.09 x 10^{-3} .

Quanto vale il ΔG a 500 K?

- a) -13287 J
- b) -89054 J
- c) 21200 J
- d) 139 J
- e) 0 J

Esercizio 18.

Le entalpie standard di combustione di C (grafite), H₂ (g), e C₃H₈ (g) sono rispettivamente -393.5, -285.8 e -2219.9 KJ/mol. Usare questi valori per calcolare il Δ_rH° della reazione:

$$3 \text{ C (grafite)} + 4 \text{ H}_2(g) \rightarrow \text{C}_3\text{H}_8(g)$$

- a) -104 KJ/mol
- b) 104 KJ/mol
- c) 104
- d) -104 J mol
- e) 10.4 J/mol

```
Si inizia scrivendo le seguenti equazioni
     (a) C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(1) \Delta_r H^\circ = -2219.9 \text{ kJ mol}^{-1}
           C(grafite) + O_2(g) \longrightarrow CO_2(g)
                                                                              \Delta_r H^\circ = -393.5 \,\mathrm{kJ} \,\mathrm{mol}^{-1}
               H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(1)
                                                                              \Delta_r H^\circ = -285.8 \, \text{kJ mol}^{-1}
    Poiché il nostro obbiettivo nella reazione (7.19) è di produrre C_3H_8(g), lo stadio successivo è di trovare una
 reazione che formi C3H8(g), l'inverso della reazione (a).
     -(a): 3 CO_2(g) + 4 H_2O(1) → C_3H_8(g) + 5 O_2(g) Δ_rH^\circ = -(-2219.9 \text{ kJ mol}^{-1}) = +2219.9 \text{ kJ mol}^{-1}
Ora consideriamo i reagenti, C(grafite) e H2(g). Per avere il numero appropriato di moli di ciascuno bisogna
 moltiplicare l'equazione (b) per 3 e l'equazione (c) per 4.
              3 \text{ C(grafite)} + 3 \text{ O}_2(g) \longrightarrow 3 \text{ CO}_2(g) \Delta_r H^\circ = 3(-393.5 \text{ kJ mol}^{-1}) = -1181 \text{ kJ mol}^{-1}
                      4 H_2(g) + 2 O_2(g) \longrightarrow 4 H_2O(1) \Delta_r H^o = 4(-285.8 \text{ kJ mol}^{-1}) = -1143 \text{ kJ mol}^{-1}
   Qui la variazione netta è quella da noi descritta: sono state consumate 3 moli di C(grafite) e 4 di H2(g) ed è
stata prodotta 1 mole di C<sub>3</sub>H<sub>g</sub>(g). Questo è esattamente quanto richiesto dall'equazione (7.19). Combiniamo
ora le tre equazioni modificate.
                         3CO_2(g) + 4H_2O(1) \longrightarrow C_3H_8(g) + 5O_2(g) \Delta_r H^\circ = +2219.9 \text{ kJ mol}^{-1}
        3 \times (b): 3 \cdot C(grafite) + 3 \cdot O_2(g) \longrightarrow 3 \cdot CO_2(g)
                                                                                            \Delta_{\rm r} H^{\rm o} = -1181 \, {\rm kJ \, mol^{-1}}
                      4 H_2(g) + 2 O_2(g) \longrightarrow 4 H_2O(1)
                                                                                            \Delta_r H^\circ = -1143 \, \text{kJ mol}^{-1}
                                                                                             \Delta_r H^\circ = -104 \text{ kJ mol}^{-1}
                      3C(grafite) + 4H_2(g) \longrightarrow C_3H_8(g)
```

Esercizio 19. Calcolare il pH di una soluzione acquosa di HCl 0.1 M.

- a) pH = 3.0
- b) pH = 0.1
- c) pH = 1.0
- d) pH = 4.5
- e) pH = 7.0

Esercizio 20. Usando i valori riportati di seguito per la reazione condotta a 1200 K, calcolare la K_c per la reazione:

$$2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O_{(g)}$$

RISOLUZIONE:

a)
$$K_c = 1.8 \times 10^6$$

b)
$$K_c = 2 \times 10^8$$

c) $K_c = 5.0 \times 10^6$

d)
$$K_c = 3.2 \times 10^{13}$$

e)
$$K_c = 2.9 \times 10^{-6}$$

Esercizio 21. Calcolare il numero di moli di H₂SO₄ 95% in peso, presenti in un litro di soluzione acquosa.

(densità = 1.34 g/mL) Indicare il valore di pH quando la soluzione iniziale viene diluita fino ad un volume finale di 100 L.

RISOLUZIONE:

a) 0.12 mol; pH = 12

b) 12.94 mol; pH = 0.89

- c) 1.23 mol; pH = 2.35
- d) 4.89 mol; pH = 3.90
- e) Nessuna delle risposte precedenti

Esercizio 22. Una miscela all'equilibrio a 1000 K contiene 0.276 mol di H_2 , 0.276 mol di H_2 0. Determinare i valori di H_2 0. Determinare i valori di H_2 0.

RISOLUZIONE:

a)
$$K_p = 0.432$$
; $K_c = 65.554$

b)
$$K_p = 0.923$$
; $K_c = 32.098$

c) $K_p = 0.659$; $K_c = 0.659$

d)
$$K_p = 12.098$$
; $K_c = 12.098$

e)
$$K_p = 6.876$$
; $K_c = 6.577$

ESERCIZIO 22

$$K_{c} = [CO][H_{e}O] = \frac{meo}{V} \cdot \frac{m}{V}$$
 $M_{c} = 0$
 $M_{c} = 0$

Esercizio 23

Quanti millilitri di una soluzione al 15% in massa di $KOH_{(aq)}$ (d = 1.14 g/mL) servono per produrre 25.0 mL di soluzione a pH = 11.55?

RISOLUZIONE

- a) 13.0 mL
- b) 42.0 mL

c) 29.0 mL

- d) 89.3 mL
- e) Nessuna delle risposte precedenti

Esercizio 24. Descrivere qualitativamente le proprietà: affinità elettronica ed energia di ionizzazione

- 1) Affinità elettronica: semplicemente è l'energia da un atomo, allo stato gassoso, quando un elettrone viene aggiunto al guscio di valenza. Tendenzialmente gli atomi che sono soggetti ad affinità elettroniche si trovano nel loro stato neutro e, a seguito della trasformazione, danno luogo a ioni atomici.
- 2) Energia di ionizzazione: può essere considerata come la proprietà complementare all'affinità elettronica. Infatti, l'energia di ionizzazione è l'energia liberata da un atomo, in fase gas, a seguito della perdita di un elettrone dall'orbitale di valenza.

Esercizio 25. Calcolare la solubilità molare di Mg(OH)₂ in una soluzione acquosa di MgCl₂, 0.0862 M.

 $K_{ps} = 1.8 \times 10^{-11}$

RISOLUZIONE

a) $s = 7.3 \times 10^{-6} M$

b) $s = 4.9 \times 10^3 M$

c) $s = 5.1 \times 10^{-8} M$

d) $s = 8.4 \times 10^1 M$

e) $s = 1.3 \times 10^{-12} M$

ESERCIEIO 25

$$M_3(OH)_{2(S)} \rightleftharpoons M_3^{2+} + 20 \text{ A}^{-}(eq)$$

 $M_3(OH)_{2(S)} \rightleftharpoons M_3^{2+} + 20 \text{ A}^{-}(eq)$
 $M_3(OH)_{2(S)} \rightleftharpoons M_3^{2+} + 20 \text{ A}^{2+}(eq)$
 $M_3(OH)_{2(S)} \rightleftharpoons M_3^{2+} + 20 \text{ A}^{2+}(eq)$
 $M_3(OH)_{2(S)} \rightleftharpoons M_3^{2+} + 20 \text{ A}^{2+}(eq)$
 $M_3(OH)_{2($

Esercizio 26. Una barretta di Argento e una di Ferro vengono a contatto con una soluzione di HBr 1.0 M. Spiegare perché solo una delle due barrette si ossiderà tenendo presente i potenziali standard di riduzione riportati in tabella.

ESERCIZIO 26

HBR + 1/20 (e) -> Briggs + 1/30 taub facts)

Si essibe la barretta di ferro, producendo soni Fe 2+

E' (Fe 2+ /Fe) = -0.4, V < E' (A+/H20) = 0.00

Por l'argento, envece, abbromo la situazione aposte.

Infatti: E' Az+/Az = 0.80 V

Essendo, il volore di E' positivo, l'argento avra tendenza
a rudursi.

Esercizio 27. Calcolare la f.e.m. di una pila a concentrazione costituita da un semielemento di rame Cu/CuSO4 (0.0010 M) e un altro Cu/CuSO4 (0.10 M).

RISOLUZIONE

a) - 0.06 V

b) 0.06 V

c) 1.89 V

d) - 1.55 V

e) Nessuna delle risposte precedenti

ESERCIEIO 27

$$E^{\circ}(\omega^{2t}/\omega) = 0.34 \text{ V por la ternitorione}:$$
 $\omega^{t} + 20 \neq \omega$
 $\omega^{t} + 20 \neq \omega$

Esercizio 28. Indicare quali delle seguenti molecole è in grado di generare legami idrogeno:

RISOLUZIONE

- a) a), c)
- b) a), b), c)

c) a), b)

- d) b), c)
- e) Nessuna delle risposte precedenti

Esercizio 29. Quali delle seguenti basi presenta/no l'acido coniugato più forte?

- 1) OH / H₂O
- 2) NH_3 / NH_4^+
- 3) RO⁻/ ROH

RISOLUZIONE

- a) 1
- b) 1,2,3

c) 2

- d) 2,3
- e) Nessuna delle risposte precedenti

Esercizio 30. Durante l'esperimento di Thompson, l'omonimo scienziato così riuscì a scoprire?

- a) La natura dei nuclei atomici
- b) L'esistenza dei neutroni
- c) La reattività dei protoni
- d)Determinazione qualitativa del rapporto massa/carica e nascita degli elettroni
- e) Scoperta dell'atomo