CS 3320 – Numerical Software

Module 11 Homework

1. (10 pt) Use a 5th order interpolating polynomial to estimate y at x = 3.5. In your answer, please show the interpolating polynomial. You can use Python library to find the interpolating polynomial.

	x	0	1.8	5	6	8.2	9.2
I	y	2.6	16.415	5.375	3.5	2.015	2.54

2. (10 pt) Given the data:

x	1	2	2.5	3	4	5
y=f(x)	0	5	7	6.5	2	0

- a. Plot the data and estimate f(3.4) from the plot. (You can use excel to plot the data.)
- b. Calculate f(3.4) using Newton Interpolating polynomial of order 1. (Do this by hand. Also, you only need two data point for order 1 interpolation. Make sure you pick the right points)
- c. Calculate f(3.4) using Newton Interpolating polynomial of order 5. (Do this by hand. Use finite divided differences to find the coefficients for each Newton interpolating polynomial.)

3. (10 pt) Given the data:

x	1	2	3	5	6
y=f(x)	4.75	4	5.25	19.75	36

Estimate f(4) using Lagrange polynomials of order one and three. (Do this by hand.)

4. (10 pt) Given the data.

(- 1 - 1)							
	\boldsymbol{x}	1	2	2.5	3	4	5
	y	1	5	7	8	2	1

Fit these data with (a) cubic splines with natural end conditions, (b) cubic splines with not-a-knot end conditions. Present comparative plots of 50 equally spaced interpolation points over the domain $1 \le x \le 5$. You may use Python for this problem. However, make sure you understand the definition of cubic spline and the various end conditions.