BAYESIAN CLASSIFIERS WITH DISCRETE PREDICTORS

Pedro Larrañaga, Concha Bielza, Jose Luis Moreno

Computational Intelligence Group Artificial Intelligence Department Universidad Politécnica de Madrid

Machine Learning Master in Data Science + Master HMDA

- Naive Bayes
- Selective naive Bayes
- Semi-naive Bayes
- 4 Tree augmented naive Bayes
- 5 Forest augmented naive Bayes
- 6 Superparent-one-dependence estimators
- // k-dependence Bayesian classifiers
- Bayesian network augmented naive Bayes
- Markov blanket-based Bayesian classifier
- 10 Unrestricted Bayesian classifiers
- Bayesian multinets
- 12 Summary

Discrete Bayesian network classifiers (Bielza and Larrañaga, 2014)

Bayes decision rule

$$p(\mathbf{x}, c) = p(c|\mathbf{pa}(c)) \prod_{i=1}^{n} p(x_i|\mathbf{pa}(x_i))$$

This method is really usefull when we have a loss function of this type. For any other, the precession is not guarantied

The Bayes decision rule (minimization of the expected loss) for a 0-1 loss function:

$$c^* = \arg \max_{c} p(c|\mathbf{x}) = \arg \max_{c} p(\mathbf{x}, c)$$

Categorization of discrete Bayesian network classifiers

Parameter Estimation

Maximun likelihood estimation

The mle estimator for $p(x_i|\mathbf{pa}(x_i))$ is given by $\frac{N_{ijk}}{N_{ij}}$

- N_{ijk} is the frequency in \mathcal{D} of cases with $X_i = k$ and $\mathbf{Pa}(X_i) = j$
- N_{ij} is the frequency in \mathcal{D} of cases with $\mathbf{Pa}(X_i) = j$ (i.e., $N_{ij} = \sum_{k=1}^{R_i} N_{ijk}$)

Bayesian estimation

Assuming a Dirichlet prior distribution over

 $(p(X_i = 1 | \mathbf{Pa}(X_i) = j), ..., p(X_i = R_i | \mathbf{Pa}(X_i) = j))$ with all hyperparameters equal to α , the posterior distribution is Dirichlet with hyperparameters equal to $N_{ijk} + \alpha$,

$$k = 1, ..., R_i$$

$$p(X_i = k | \mathbf{Pa}(X_i) = j)$$
 is estimated by $\frac{N_{ijk} + \alpha}{N_{ii} + B_{ii}\alpha}$ (Lindstone rule)

- Laplace estimation: $\alpha = 1$
- Schurmann-Grassberger rule: $\alpha = \frac{1}{B_i}$

- Naive Bayes
- Selective naive Bayes
- 3 Semi-naive Bayes
- 4 Tree augmented naive Bayes
- 5 Forest augmented naive Bayes
- Superparent-one-dependence estimators
- k-dependence Bayesian classifiers
- Bayesian network augmented naive Bayes
- Markov blanket-based Bayesian classifier
- 10 Unrestricted Bayesian classifiers
- Bayesian multinets
- 12 Summary

Naive Bayes as a Bayesian network

Under the assumtion of independece of conditionally probabilities, we can reduce grately the dimensionality of the problem

Naive Bayes (Minsky, 1961)

Predictor variables conditionally independent given $C: p(c|\mathbf{x}) \propto p(c) \prod_{i=1}^{n} p(x_i|c)$

$$c^* = arg \max_{c} P(C = c) \prod_{i=1}^{n} P(X_i = x_i | C = c)$$

Structure of a naïve Bayes

Decision boundary of a naive Bayes

Decision boundary = hyperplane (Minsky, 1961)

$$p(x_i|c) = p(X_i = 0|C = c) \left[\frac{p(X_i = 1|C = c)}{p(X_i = 0|C = c)} \right]^{x_i}$$

with $x_i = 0, 1$. Then, substituting this in $p(c|\mathbf{x}) \propto p(c) \prod_{i=1}^n p(x_i|c)$ and taking the natural log:

$$\ln p(c|\mathbf{x}) \propto \ln p(c) + \ln \prod_{i=1}^{n} p(X_{i} = 0|C = c) + \sum_{i=1}^{n} x_{i} \ln \left[\frac{p(X_{i} = 1|C = c)}{p(X_{i} = 0|C = c)} \right]$$

$$w_{c0} = \ln p(c) + \ln \prod_{i=1}^{n} p(X_{i} = 0|C = c)$$

$$w_{ci} = \ln \left[\frac{p(X_{i} = 1|C = c)}{p(X_{i} = 0|C = c)} \right]$$

then $\ln p(c|\mathbf{x}) \propto w_{c0} + \mathbf{w}_c^T \mathbf{x}$ with $\mathbf{w}_c^T = (w_{c1}, ..., w_{cn})$ The decision boundary is

$$\ln p(C = 0|\mathbf{x}) - \ln p(C = 1|\mathbf{x}) = (w_{00} - w_{10}) + (\mathbf{w}_0 - \mathbf{w}_1)^T \mathbf{x} = 0$$

which defines a hyperplane

Naive Bayes con hidden variables

- Naive Bayes
- 2 Selective naive Bayes
- Semi-naive Bayes
- 4 Tree augmented naive Bayes
- 5 Forest augmented naive Bayes
- 6 Superparent-one-dependence estimators
- k-dependence Bayesian classifiers
- Bayesian network augmented naive Bayes
- Markov blanket-based Bayesian classifier
- 10 Unrestricted Bayesian classifiers
- Bavesian multinets
- 12 Summary

Selective naive Bayes

Selective naive Bayes

Relevant and non-redundant predictors : $p(c|\mathbf{x}) \propto p(c|\mathbf{x}_F) = p(c) \prod_{i \in F} p(x_i|c)$ \mathbf{X}_F denotes the projection of \mathbf{X} onto the selected feature subset $F \subseteq \{1, 2, ..., n\}$

A selective naive Bayes structure for which $p(c|\mathbf{x}) \propto p(c)p(x_1|c)p(x_2|c)p(x_4|c)$

Filter and wrapper

- Filter: $\mathbb{I}(X_i, C)$ (Pazzani and Billsus, 1997)
- Wrapper: greedy forward (Langley and Sage, 1994), floating search (Pernkopf and O'Leary, 2003), genetic algorithms (Liu et al. 2001) and estimation of distribution algorithms (Inza et al., 2000)

- Naive Bayes
- Selective naive Bayes
- 3 Semi-naive Bayes
- 4 Tree augmented naive Bayes
- 5 Forest augmented naive Bayes
- 6 Superparent-one-dependence estimators
- k-dependence Bayesian classifiers
- Bayesian network augmented naive Bayes
- Markov blanket-based Bayesian classifier
- 10 Unrestricted Bavesian classifiers
- Bavesian multinets
- 12 Summary

Semi-naive Bayes

Relaxing conditional independencies by Cartesian products

The new predictor variables (original ones or Cartesian products of originals) are still conditionally independent given the class variable

$$p(c|\mathbf{x}) \propto p(c) \prod_{j=1}^{K} p(\mathbf{x}_{S_j}|c),$$

where $S_j \subseteq \{1, 2, ..., n\}$ denotes the indices in the j-th feature (original or Cartesian product), j = 1, ..., K, $S_i \cap S_i = \emptyset$, for $j \neq I$

A semi-naive Bayes structure for which $p(c|\mathbf{x}) \propto p(c)p(x_1, x_3|c)p(x_5|c)$

Semi-naive Bayes

The forward sequential selection and joining (FSSJ) (Pazzani, 1996)

- Starts from an empty structure. The accuracy is obtained by using the simple decision rule where the most likely label is assigned to all instances
- 2 Then the algorithm considers the best option between:
 - (a) Adding a variable not used by the current classifier as conditionally independent of the features (original or Cartesian products) used in the classifier, and
 - (b) Joining a variable not used by the current classifier with each feature (original or Cartesian products) present in the classifier

Building process (FSSJ)

- (a) The selective naive Bayes with X_2 has yielded the best accuracy
- (b) After building the models with these sets of predictor variables:
- $\{X_2,X_1\},\{X_2,X_3\},\{X_2,X_4\},\{(X_2,X_1)\},\{(X_2,X_3)\}$ and $\{(X_2,X_4)\}$, the last option is selected according to its accuracy
- (c) The winner model out of $\{X_1, (X_2, X_4)\}$, $\{X_3, (X_2, X_4)\}$, $\{(X_1, X_2, X_4)\}$, and $\{(X_3, X_2, X_4)\}$. The accuracy does not improve with $\{X_1, X_3, (X_2, X_4)\}$, $\{(X_1, X_3), (X_2, X_4)\}$, and $\{X_3, (X_1, X_2, X_4)\}$, and the process stops

- Naive Bayes
- Selective naive Bayes
- Semi-naive Bayes
- 4 Tree augmented naive Bayes
- 5 Forest augmented naive Bayes
- 6 Superparent-one-dependence estimators
- k-dependence Bayesian classifiers
- Bayesian network augmented naive Bayes
- Markov blanket-based Bayesian classifier
- 10 Unrestricted Bayesian classifiers
- Bayesian multinets
- 12 Summary

Tree augmented naive Bayes

Tree augmented naive Bayes (Friedman et al., 1997)

The predictor subgraph is necessarily a tree: all predictor variables contain exactly one parent, except for one variable that has no parents, called the *root*

$$p(c|\mathbf{x}) \propto p(c)p(x_r|c) \prod_{i=1,i\neq r}^n p(x_i|c,x_{j(i)})$$

where X_r denotes the root node and $\{X_{i(i)}\} = \mathbf{Pa}(X_i) \setminus C$, for any $i \neq r$

 $p(c|\mathbf{x}) \propto p(c)p(x_1|c, x_2)p(x_2|c, x_3)p(x_3|c)p(x_4|c, x_3)p(x_5|c, x_4)$. (b) Selective TAN (Blanco et al., 2005), for which $p(c|\mathbf{x}) \propto p(c)p(x_2|c, x_3)p(x_5|c, x_3)p(x_5|c)p(x_4|c, x_3)$

As we see in this one

we have to compute a three order probability

Learning algorithm for TAN

Tree Augmented Naive (Bayes)

Algorithm 1: Learning a TAN structure

Input : A data set $\mathcal{D}=\{(\mathbf{x}^1,c^1),...,(\mathbf{x}^N,c^N)\}$ with $\mathbf{X}=(X_1,...,X_n)$ Output: A TAN structure

- 1 for i < j, i, j = 1, ..., n do
- 2 Compute $\mathbb{I}(X_i, X_j | C) = \sum_{i,j,r} p(x_i, x_j, c_r) \log_2 \frac{p(x_i, x_j | c_r)}{p(x_i | c_r) p(x_j | c_r)}$
- 3 endfor
- 4 Build a complete undirected graph where the nodes are $X_1, ..., X_n$. Annotate the weight of an edge connecting X_i and X_i by $\mathbb{I}(X_i, X_j | C)$
- 5 Build a maximum weighted spanning tree:
- 6 Select the two edges with the heaviest weights
- 7 **while** The tree contains fewer than n-1 edges **do**
- if They do not form a cycle with the previous edges then Select the next heaviest edge
- else Reject the edge and continue
- 10 endwhile
- 11 Transform the resulting undirected tree into a directed one by choosing a root node and setting the direction of all edges to be outward from this node
- 12 Construct a TAN structure by adding a node C and an arc from C to each X_i

This method provides the tree with the most amount of likelyhood

TAN building process

 $\mathbb{I}(X_1, X_3 | C) > \mathbb{I}(X_2, X_4 | C) > \mathbb{I}(X_1, X_2 | C) > \mathbb{I}(X_3, X_4 | C) > \mathbb{I}(X_1, X_4 | C) > \mathbb{I}(X_3, X_5 | C) > \mathbb{I}(X_1, X_5 | C) > \mathbb{I}(X_2, X_3 | C) > \mathbb{I}(X_2, X_5 | C) > \mathbb{I}(X_4, X_5 | C)$

(a-c) Edges are added according to conditional mutual information quantities arranged in ascending order. (d-e) Edges $X_3 - X_4$ and $X_1 - X_4$ (dashed lines) cannot be added since they form a cycle. (f) Maximum weighted spanning tree. (a) The directed tree obtained by choosing X_1 as the root node. (h) Final TAN structure

- Naive Bayes
- Selective naive Bayes
- 3 Semi-naive Bayes
- 4 Tree augmented naive Bayes
- 5 Forest augmented naive Bayes
- 6 Superparent-one-dependence estimators
- k-dependence Bayesian classifiers
- Bayesian network augmented naive Bayes
- Markov blanket-based Bayesian classifier
- 10 Unrestricted Bavesian classifiers
- Bavesian multinets
- 12 Summary

TAN building process

Forest augmented naive Bayes (FAN) (Lucas, 2004)

- FAN: a forest –i.e., a disjoint union of trees– in the predictor subgraph, augmented with a naive Bayes. The forest is obtained using a maximum weighted spanning forest algorithm (Fredman and Tarian, 1987)
- Selective FAN: allows the predictor variables to be optionally dependent on the class variable, that is, missing arcs from C to some X_i can be found (Ziebart et al., 2007)

(a) FAN with two root nodes X_2 and X_4 : $p(c|\mathbf{x}) \propto p(c)p(x_1|c, x_2)p(x_2|c)p(x_3|c, x_4)p(x_4|c)p(x_5|c, x_4)$. (b) Selective FAN: $p(c|\mathbf{x}) \propto p(c)p(x_2|c, x_1)p(x_3|c, x_4)p(x_4|c)$

- Naive Bayes
- Selective naive Bayes
- Semi-naive Bayes
- 4 Tree augmented naive Bayes
- 5 Forest augmented naive Bayes
- 6 Superparent-one-dependence estimators
- k-dependence Bayesian classifiers
- Bayesian network augmented naive Bayes
- Markov blanket-based Bayesian classifier
- 10 Unrestricted Bayesian classifiers
- Bayesian multinets
- 12 Summary

Superparent-one-dependence estimators

Superparent-one-dependence estimators (SPODE) (Keogh and Pazzani, 2002)

- One-dependence estimators (ODEs): each predictor variable is allowed to depend on at most one other predictor in addition to the class (is a particular case of a TAN model)
- SPODEs are an ODE where all predictors depend on the same predictor, called the superparent, in addition to the class

$$p(c|\mathbf{x}) \propto p(c)p(x_{SP}|c) \prod_{i=1,i\neq Sp}^{n} p(x_i|c,x_{SP})$$

where X_{SD} denotes the superparent node

A SPODE structure, with X_3 as superparent, for which $p(c|\mathbf{x}) \propto p(c)p(x_1|c, x_3)p(x_2|c, x_3)p(x_3|c)p(x_4|c, x_3)p(x_5|c, x_3)$

Superparent-one-dependence estimators

Averaged one-dependence estimator (AODE) (Webb et al., 2005)

- AODE averages the predictions of all qualified SPODEs (metaclassifier)
- 'Qualified" means including, for each instance $\mathbf{x} = (x_1, ..., x_{Sp}, ..., x_n)$, only the SPODEs for which the probability estimates are accurate, that is, where the training data contain more than m cases satisfying $X_{SP} = x_{SP}$ (m = 30)

$$p(c|\mathbf{x}) \propto p(c,\mathbf{x}) = \frac{1}{|\mathcal{SP}^m_{\mathbf{x}}|} \sum_{X_{SD} \in \mathcal{SP}^m_{\mathbf{x}}} p(c) p(x_{SP}|c) \prod_{i=1, i \neq Sp}^{n} p(x_i|c, x_{SP})$$

where $\mathcal{SP}_{\mathbf{x}}^{m}$ denotes for each \mathbf{x} the set of predictor variables qualified as superparents and $|\cdot|$ is its cardinality.

 AODE avoids model selection, thereby decreasing the variance component of the classifier

- Naive Bayes
- Selective naive Bayes
- Semi-naive Bayes
- 4 Tree augmented naive Bayes
- 5 Forest augmented naive Bayes
- Superparent-one-dependence estimators
- // k-dependence Bayesian classifiers
- Bayesian network augmented naive Bayes
- Markov blanket-based Bayesian classifier
- 10 Unrestricted Bayesian classifiers
- Bayesian multinets
- 12 Summary

k-dependence Bayesian classifiers (k-DB) (Sahami, 1996)

k-DB

- k-DB allows each predictor variable to have a maximum of k parent variables apart from the class variable. Naive Bayes and TAN are particular cases
- $lackbox{0}$ $p(c|\mathbf{x}) \propto p(c) \prod_{i=1}^n p(x_i|c, x_{i_1}, ..., x_{i_k})$ where $X_{i_1}, ..., X_{i_k}$ are the parents of X_i

An example of a 3-DB structure for which $p(c|\mathbf{x}) \propto p(c)p(x_1|c)p(x_2|c, x_1)p(x_3|c, x_1, x_2)p(x_4|c, x_1, x_2, x_3)p(x_5|c, x_1, x_3, x_4)$

Learning a k-DB

- The inclusion order of the predictor variables X_i in the model is given by $\mathbb{I}(X_i, C)$, starting with the highest
- Once X_i enters the model, its parents are selected by choosing the k variables X_i in the model with the highest values of $\mathbb{I}(X_i, X_i | C)$

Building a k-DB with k=2

$$\mathbb{I}(X_3, C) > \mathbb{I}(X_1, C) > \mathbb{I}(X_4, C) > \mathbb{I}(X_5, C) > \mathbb{I}(X_2, C).$$

$$\begin{array}{lll} \mathbb{I}(X_3,X_4|C) & > & \mathbb{I}(X_2,X_5|C) > \mathbb{I}(X_1,X_3|C) > \mathbb{I}(X_1,X_2|C) > \mathbb{I}(X_2,X_4|C) > \mathbb{I}(X_2,X_3|C) \\ & > & \mathbb{I}(X_1,X_4|C) > \mathbb{I}(X_4,X_5|C) > \mathbb{I}(X_1,X_5|C) > \mathbb{I}(X_3,X_5|C) \\ \end{array}$$

An example of k-DB structure learning with k=2. (a-c) Variables X_3 , X_1 and X_4 enter the model one by one, taking as parents the current predictor variables. (d) X_5 enters the model with parents X_1 and X_4 . (e) X_2 enters the model with parents X_1 and X_5 . This is the final k-DB structure

- Naive Bayes
- Selective naive Bayes
- 3 Semi-naive Bayes
- 4 Tree augmented naive Bayes
- 5 Forest augmented naive Bayes
- 6 Superparent-one-dependence estimators
- k-dependence Bayesian classifiers
- Bayesian network augmented naive Bayes
- Markov blanket-based Bayesian classifier
- 10 Unrestricted Bayesian classifiers
- Bayesian multinets
- 12 Summary

Bayesian network augmented naive Bayes (BAN) (Ezawa and Norton, 1996)

BAN

- Any Bayesian network structure as the predictor subgraph
- The posterior distribution is $p(c|\mathbf{x}) \propto p(c) \prod_{i=1}^{n} p(x_i|\mathbf{pa}(x_i))$

A BAN structure for which $p(c|\mathbf{x}) \propto p(c)p(x_1|c)p(x_2|c)p(x_3|c)p(x_4|c, x_1, x_2, x_3)p(x_5|c, x_3, x_4)$

Bayesian network augmented naive Bayes (BAN) (Ezawa and Norton, 1996)

Building a BAN

- Ranks the *n* predictor variables based on $\mathbb{I}(X_i, C)$, and then it selects the minimum number of predictor variables k satisfying $\sum_{j=1}^{k} \mathbb{I}(X_j, C) \ge t_{CX} \sum_{j=1}^{n} \mathbb{I}(X_j, C)$, where $0 < t_{CX} < 1$ is the threshold
- ② $\mathbb{I}(X_i, X_j | C)$ is computed for all pairs of the selected variables. The edges corresponding to the highest values are selected until a percentage t_{XX} of the overall conditional mutual information $\sum_{i < j}^k \mathbb{I}(X_i, X_i | C)$ is surpassed
- 3 Edge directionality is based on the variable ranking of the first step: higher-ranked variables point toward lower-ranked variables

- Naive Bayes
- Selective naive Bayes
- Semi-naive Bayes
- 4 Tree augmented naive Bayes
- 5 Forest augmented naive Bayes
- 6 Superparent-one-dependence estimators
- k-dependence Bayesian classifiers
- Bayesian network augmented naive Bayes
- Markov blanket-based Bayesian classifier
- 10 Unrestricted Bayesian classifiers
- Bayesian multinets
- 12 Summary

Markov blanket-based Bayesian classifier (Koller and Sahami, 1996)

Markov blanket-based Bayesian classifier

- If C can have parents: $p(c|\mathbf{x}) \propto p(c|\mathbf{pa}(c)) \prod_{i=1}^{n} p(x_i|\mathbf{pa}(x_i))$
- The Markov blanket (its parents, its children and the parents of the children) of C
 is the only knowledge needed to predict its behavior

A Markov blanket structure for C for which $p(c|\mathbf{x}) \propto p(c|x_2)p(x_1|c)p(x_2)p(x_3)p(x_4|c,x_3)$ The Markov blanket of C is $\mathbf{MB}(C) = \{X_1, X_2, X_3, X_4\}$

Markov blanket-based Bayesian classifier (Koller and Sahami, 1996)

Building a MB(C)

- Start from the set of all the predictor variables and eliminate a variable at each step (backward greedy strategy) until we have approximated MB(C)
- A feature is eliminated if it gives little or no additional information about C beyond what is subsumed by the remaining features
- Eliminates feature by feature trying to keep $p(C|\mathbf{MB}^{(t)}(C))$, the conditional probability of C given the current estimation of the Markov blanket at step t, as close to $p(C|\mathbf{X})$ as possible
- Closeness is defined by the Kullback-Leibler divergence

- Naive Bayes
- Selective naive Bayes
- Semi-naive Bayes
- 4 Tree augmented naive Bayes
- 5 Forest augmented naive Bayes
- 6 Superparent-one-dependence estimators
- k-dependence Bayesian classifiers
- Bayesian network augmented naive Bayes
- Markov blanket-based Bayesian classifier
- 10 Unrestricted Bayesian classifiers
- Bayesian multinets
- 12 Summary

Unrestricted Bayesian classifiers

Unrestricted Bayesian classifiers

- Do not consider C as a special variable in the induction process
- Any existing Bayesian network structure learning algorithm can be used
- The corresponding Markov blanket of C can be used later for classification purposes

An unrestricted Bayesian network classifier structure for which $p(c|\mathbf{x}) \propto p(c|x_2)p(x_1|c)p(x_2)p(x_3)p(x_4|c,x_3)$

- Naive Bayes
- Selective naive Bayes
- 3 Semi-naive Bayes
- 4 Tree augmented naive Bayes
- 5 Forest augmented naive Bayes
- 6 Superparent-one-dependence estimators
- k-dependence Bayesian classifiers
- Bayesian network augmented naive Bayes
- Markov blanket-based Bayesian classifier
- 10 Unrestricted Bayesian classifiers
- Bayesian multinets
- 12 Summary

Bayesian multinets (Geiger and Heckerman, 1996)

Bayesian multinets

- Several (local) Bayesian networks associated with a subset of a partition of the domain of a variable H, called the hypothesis or distinguished variable
- Asymmetric conditional independence assertions are represented in each local network topology
- For classification problems, the distinguished variable is the class variable C

$$p(c|\mathbf{x}) \propto p(c) \prod_{i=1}^{n} p(x_i|\mathbf{pa}_c(x_i))$$

 $\mathbf{Pa}_{c}(X_{i})$ parent set of X_{i} in the local Bayesian network associated with C=c

(a) Bayesian multinet as a collection of trees:

$$p(C = 0|\mathbf{x}) \propto p(C = 0)p(x_1|C = 0, x_2)p(x_2|C = 0, x_3)p(x_3|C = 0)p(x_4|C = 0, x_3)p(x_5|C = 0, x_4)$$
 and $p(C = 1|\mathbf{x}) \propto p(C = 1)p(x_1|C = 1)p(x_2|C = 1, x_3)p(x_3|C = 1, x_4)p(x_4|C = 1, x_5)p(x_5|C = 1, x_1)$ (b) Bayesian multinet as a collection of forests:

$$p(C = 0|\mathbf{x}) \propto p(C = 0)p(x_1|C = 0)p(x_2|C = 0, x_1)p(x_3|C = 0, x_4)p(x_4|C = 0)p(x_5|C = 0, x_4)$$
 and $p(C = 1|\mathbf{x}) \propto p(C = 1)p(x_1|C = 1, x_2)p(x_3|C = 1)p(x_3|C = 1)p(x_3|C = 1, x_2)p(x_5|C = 1, x_3)$

- Naive Bayes
- Selective naive Bayes
- Semi-naive Bayes
- Tree augmented naive Bayes
- 5 Forest augmented naive Bayes
- 6 Superparent-one-dependence estimators
- k-dependence Bayesian classifiers
- Bayesian network augmented naive Bayes
- Markov blanket-based Bayesian classifier
- 10 Unrestricted Bavesian classifiers
- Bayesian multinets
- 12 Summary

Bayesian network based classifiers

- Provides a posterior probability for each possible value of the class
- Competitive results (accuracy, Brier, ROC) with the state of the art in supervised classifiers
- Knowledge discovery from the structure of the Bayesian network

References (i)

- C. Bielza and P. Larrañaga (2014a). Discrete Bayesian network classifiers: A survey. ACM Computing Surveys, 47 (1), Article 5
- K.J. Ezawa and S.W. Norton (1996). Constructing Bayesian networks to predict uncollectible telecommunications accounts. IEEE Expert, 11(5), 45-51
- M.L. Fredman and R.E. Tarjan (1987). Fibonacci heaps and their uses in improved network optimization algorithms. *Journal ACM*, 34(3), 596-615
- N. Friedman, D. Geiger and M. Goldszmidt (1997). Bayesian network classifiers. Machine Learning, 29, 131-163
- D. Geiger and D. Heckerman (1996). Knowledge representation and inference in similarity networks and Bayesian multinets. Artificial Intelligence, 82, 45-74
- I. Inza, P. Larrañaga, R. Etxeberria and B. Sierra. Feature subset selection by Bayesian network-based optimization. Artificial Intelligence, 123(1-2), 157-184
- E.J. Keogh and M.J. Pazzani (2002). Learning the structure of augmented Bayesian classifiers. International Journal on Artificial Intelligence Tools, 11(4), 587-601
- D. Koller and M. Sahami (1996). Toward optimal feature selection. Proceedings of the 13th International Conference on Machine Learning, 284-292
- C. K. Kwoh and D. Gillies (1996). Using hidden nodes in Bayesian networks. Artificial Intelligence, 88, 1-38
- P. Langley and S. Sage (1994). Induction of selective Bayesian classifiers. Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence. 399-406
- H. Langseth and T.D. Nielsen (2006). Classification using hierarchical naive Bayes models. Machine Learning, 63(2), 135-159

References (ii)

- J.N.K. Liu, N. L. Li and T. S. Dillon (2001). An improved naive Bayes classifier technique coupled with a novel input solution method. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 31, 249-256
- P. Lucas (2004). Restricted Bayesian network structure learning. Advances in Bayesian Networks, 217-232.
- M. L. Minsky (1961). Steps toward artificial intelligence. Transactions on Institute of Radio Engineers, 49, 8-30
- S. Monti and G. F. Cooper (1999). A Bayesian network classifier that combines a finite mixture model and a naive Bayes model. Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, 447-456
- M. Pazzani (1996). Constructive induction of Cartesian product attributes. Proceedings of the Information, Statistics and Induction in Science Conference, 66-77
- M. Pazzani and D. Billsus (1997). Learning and revising user profiles: The identification of interesting web sites. Machine Learning, 27, 313-331
- F. Pernkopf and P. O'Leary (2003). Floating search algorithm for structure learning of Bayesian network classifiers. Pattern Recognition Letters, 24, 2839-2848
- M. Sahami (1996). Learning limited dependence Bayesian classifiers. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, 335-338
- G. I. Webb and J. Boughton and Z. Wang (2005). Not so naive Bayes: Aggregating one-dependence estimators. Machine Learning. 58. 5-24
- N.L. Zhang, T.D. Nielsen and F.V. Jensen (2004). Latent variable discovery in classification models. Artificial Intelligence in Medicine. 30(3), 283-299
- B. Ziebart, A.K. Dey and J.A. Bagnell (2007). Learning selectively conditioned forest structures with applications to DBNs and classification. Proceedings of the 23rd Conference Annual Conference on Uncertainty in Artificial Intelligence, 458-465

BAYESIAN CLASSIFIERS WITH DISCRETE PREDICTORS

Pedro Larrañaga, Concha Bielza, Jose Luis Moreno

Computational Intelligence Group Artificial Intelligence Department Universidad Politécnica de Madrid

Machine Learning Master in Data Science + Master HMDA