Klausur Computergraphik (WS 2018/19)

Prüfer: Bearbeitungszeit: Zugelassene Hilfsmittel: Datum:	Prof. Dr. R. Dörner, HS RheinMain 90 min ein beidseitig handbeschriebenes DIN A4 Blatt, Stifte. (insbesondere Taschenrechner und eigenes Papier ist verboten) 7. März 2019		
Name:	Vorname:		
MatrNr.			
	 Unterschrift		
verwenden Sie die ein leeres Blatt be Hinweis der Art "v	en im dafür vorgesehenen Raum. Wenn der Platz nicht ausreicht, Rückseiten - wenn alle Rückseiten beschrieben sind, fordern Sie ist der Aufsicht an. Schreiben Sie im vorgesehenen Raum einen veiter siehe S. 3 Rückseite". Fehlt dieser Hinweis, ist die Lösung bt es mehrere Lösungen zu derselben Aufgabe, so werden keine		
 Wer einen Täusch 	nungsversuch begeht oder einem Täuschungsversuch Vorschubte "nicht bestanden".		
 Es darf nicht mit B "schwarz" zulässig. 	leistift geschrieben werden. Es sind nur Schreibfarben "blau" oder		
• Starten Sie mit der	Bearbeitung der Klausur nur, wenn Sie prüfungsfähig sind.		
• Die Klausur ist in je	edem Fall bestanden mit 43 Punkten.		
Es wurden Pu	ınkte erreicht.		
Note, Handzeichen:			

Gegeben sind Punkte A, B, C, ...L sowie ein **Bézier-Spline**, der aus zwei kubischen Bézier-Kurven $Q_1(t)$ und $Q_2(t)$, jeweils $t \in [0,1]$, zusammengesetzt ist, die G^1 -stetig ineinander über gehen, aber nicht C^1 -stetig.

(a) Ergänzen Sie jeweils einen der Punkte A, B, ..., L (mit Begründung)?

Stützpunkt 1 von Q₁ ist _____, weil _____

Stützpunkt 2 von Q₁ ist _____, weil _____

Stützpunkt 3 von Q₁ ist _____, weil _____

Stützpunkt 4 von Q₁ ist _____, weil _____

Stützpunkt 1 von Q₂ ist _____, weil _____

Stützpunkt 2 von Q₂ ist _____, weil _____

Stützpunkt 3 von Q₂ ist ____, weil _____

- Stützpunkt 4 von Q₂ ist _____, weil _____
- (b) Die Punkte A, B, C, ..., L sollen die Stützpunkte für einen kubischen uniformen B-Spline R(t) werden. Ergänzen Sie den Knotenvektor:
- 2 P. $T = [2,5, _{_}]$
 - (c) Berechnen Sie R(17). Die Basismatrix für uniforme kubische B-Splines lautet dabei:

$$M_{uniformer_B-Spline} = \frac{1}{6} \cdot \begin{bmatrix} -1 & 3 & -3 & 1\\ 3 & -6 & 3 & 0\\ -3 & 0 & 3 & 0\\ 1 & 4 & 1 & 0 \end{bmatrix}$$

8 P.

Gegeben ist folgende VRML-Szene:

```
DEF T1 Transform {
 scale 1 1 3
 children[
            DEF T2 Transform{
             scale 3 1 1
             children[
                        DEF K Viewpoint{
                         fieldOfView 0.7
                         position 2 2 0
                         orientation 0 0 1 1.57}
                        DEF T3 Transform{
                                      0 0 2 1.57
                         rotation
                                     1 1 1
                         translation
                         children[
                                    DEF S1 Shape{
                                     geometry Sphere{} }
                        1 }
            1}
            DEF T4 Transform{
```

DEF S2 Shape{

translation 2 2 2

children[

1}

(a) Zeichnen Sie den Szenengraph (nur Transform-, Shape- und Viewpoint-Nodes, keine Fields)

geometry Sphere{} }

5 P.

1}

 Σ_3 : Seite 3

 $\Sigma 4$: Seite 4

Gegeben ist folgender Ausschnitt aus einem WebGL-Javascript, wobei die in der Lehrveranstaltung vorgestellten Hilfsfunktionen verwendet werden:

```
mat40 , erzeugt eine 4x4 Einheitsmatrix ",
mult(m1, m2) , berechnet das Matrixprotikt der Matrizen m1 und m2 ",
transpose(m1) , uransponiert die Matrix m1 ", inverse(m1) , invertiert die Matrix m1 ",
rotate(alpha, [x,y,z]) , erzeugt eine 4x4 Rotationsmatrix um die Achse (x,y,z) und den Winkel alpha ",
translate(x,y,z) , erzeugt eine 4x4 Translationsmatrix für den Translationsvektor (x,y,z) ",
scale(sx,sy,sz) , erzeugt eine 4x4 Skalierungsmatrix für die Skalierungswerte sx, sy, sz ",
perspective(fov, aspect, near, far) , erzeugt eine Projektionsmatrix "

// Projektionsmatrix
var projection = perspective(60.0, 1.0, 2.0, 3.0);

// Zeile A: hier die Model-Matrix mA anlegen

var mA =

// Zeile B: hier die View-Matrix mB anlegen

var mB =

// Zeile C: hier Matrix mC anlegen, die Objektkoordinaten in Clipping-Koordinaten umrechnet

var mC =
```

- 4 P. (a) Ergänzen Sie das Programm nach Zeile A so, dass alle Modelle zuerst um 3 in x-Richtung transliert und danach um die Achse durch die Punkte A(5,18,17) und B(39,0,1) um 30° gedreht werden.
- 4 P. (b) Ergänzen Sie das Programm nach Zeile B so, dass entsprechend lookAt(0,-5,1,0,-1,1,0,0,1) die Kamera positioniert wird (verwenden Sie dabei nur die oben angegebenen Hilfsfunktionen)
- 2 P. (c) Ergänzen Sie das Programm nach Zeile C so, dass eine Matrix mC angelegt wird, die Vertices von Objektkoordinaten in Clipping-Koordinaten umrechnet
 - (d) Wie ändert sich das Bild, wenn perspective(60.0, 1.0, 2.0, 3.0) abgeändert wird in: perspective(60.0, 1.0, 20.0, 30.0); ?

2 P.

(e) Ergänzen Sie den unten stehenden GLSL Vertex-Shader und Fragment-Shader möglichst einfach, um dem Vertex die Farbe Blau zuzuordnen, wenn er mehr als eine Distanz *d* (im Kamerakoordinatensystem) von der Kamera entfernt ist und die Farbe Rot sonst. Basierend auf den ermittelten Farbwerten soll ein Gouraud-Shading durchgeführt werden.

}
void main() { // Fragment-Shader

8 P. }

(f) Beschreiben Sie, wie der Shader-Code in WebGL kompiliert und zur Ausführung gebracht wird.

3 P.

Der Punkt P(1, 2, 0) soll mit einer Kamera, die sich an Punkt A(-1,0,0) befindet, auf die Projektionsebene mit der Gleichung x = -8 perspektivisch projiziert werden. Die Bildkoordinaten P' von P sind mit der aus der Vorlesung bekannten Matrix $M_{per}(d)$ zu berechnen.

	VOII F S	ind thit der aus der vorlesung bekannten Matrix M _{per} (d) zu berechnen.
	(a)	Um M_{per} anwenden zu können, muss eine Standardsituation eingehalten werden: Wo muss sich die Kamera befinden?
		Wohin muss die Kamera schauen?
2.0		Wo muss sich die Projektionsebene befinden?
3 P.	(b)	Wie kann man die Standardsituation für $M_{\text{per}}(d)$ erreichen?
3 P.		
	(c)	Berechnen Sie die Bildkoordinaten von Punkt P.
4 P.	(d)	Geben Sie die Koordinaten eines Punktes Q an, der sich nicht projizieren lässt.
2 P.		
	Aufgabe 5	
	(a)	Nennen Sie zwei innere Parameter einer Kamera
		1
2 P.		2

	(b)	Warum sollte das Clipping nach dem Culling durchgeführt werden?
3 P.		
	(c)	Nennen Sie einen Vorteil und einen Nachteil von Rastergrafiken gegenüber Vektorgrafiken:
		1
2 P.		2
	(d)	Was bezeichnet man in der Computergraphik mit "ambienten Licht"?
3 P.		
31.	(e)	Wie verhält sich der Platzbedarf einer MipMap zur Ausgangstextur (wobei diese quadratisch mit einer Zweierpotenz als Breite und Länge sein soll)?
3 P.		
	(f)	Gegeben ist folgender Ausschnitt eines GLSL – Shaders:
		vec4 v = vec4(1.0, 2.0, 3.0, 4.0); vec4 u = vec4(5.0, 6.0, 7.0, 8.0);
		v = u.bara; v.q = u.t;
2 P.		Welchen Wert hat v nach Ausführung der letzten Zeile? v = (,,)
	(g)	Nennen Sie zwei Möglichkeiten, wie man einen nicht-uniformen B-Spline durch einen bestimmten Stützpunkt zwingen kann:
		1
		2
2 P.		

 $\Sigma 8$: Seite 8