Modéliser le comportement statique des systèmes mécaniques Concours Centrale Supelec- PSI 2018

Sciences
Industrielles de
l'Ingénieur

1 Contexte et étude préliminaire

Objectif Valider la pertinence de l'utilisation d'une machine spéciale appelée tour en fosse pour le reprofilage des roues ferroviaires.

Ouestion 1

- Pour la méthode a, $t_{i1} = t_3 + t_4 = 14 \text{ h} = 840 \text{ min}$.
- Pour la méthode *b*, $t_{i2} = (6 \times 3 \times 2) t_5 + t_6 = 545 \text{ min.}$

Le gain de temps $\Delta t_i = t_{i1} - t_{i2} = 295$ min soit 4 h et 55 min. C'est autant de temps gagner sur l'exploitation de la rame.

2 Analyse de l'entraînement en rotation d'une roue

- 2.1 Description fonctionnelle et structurelle du tour en fosse
- 2.2 Modélisation du dispositif de mise en rotation d'une roue

Objectif Vérifier que la modélisation et les hypothèses retenues permettent de déterminer toutes les actions mécaniques nécessaires pour dimensionner les actionneurs des chaines d'énergie.

Question 2 À partir des informations données, on peut réaliser le graphe de structure suivant.

1

Méthode cinématique

• Nombre cyclomatique $\gamma = L - S + 1$ avec L = 5 liaisons et S = 4 solides, on a donc $\gamma = 5 - 4 + 1 = 2$ et

 $E_c = 12$ équations cinématiques.

- Nombre d'inconnues cinématiques :
 - 3 liaisons pivot : $1 \times 3 = 3$ inconnues;

- 2 liaisons sphère-plan: $5 \times 2 = 10$ inconnues;
- au total : $I_c = 13$ inconnues cinématiques.
- Mobilités:
 - mobilités utiles : $m_u = 2$: entraînement des deux moteurs;
 - mobilités internes : en considérant le glissement entre la roue et les rouleaux, la roue 3, ainsi que re₁ et re₂ les rouleaux peuvent tourner librement. On a donc : m_i = 3.
 - au final, selon les hypothèses, $m = m_i + m_u = 5$
- On a donc $h = m I_c + E_c = 5 13 + 12 = 4$.

Méthode statique

- 3 solides peuvent être isolés, $E_s = 3 \times 6 = 18$ équations statiques.
- Nombre d'inconnues statiques :
 - 3 liaisons pivot: $5 \times 3 = 15$ inconnues;
 - 2 liaisons sphère-plan : $1 \times 2 = 2$ inconnues;
 - au total : $I_s = 17$ inconnues statiques.
- Mobilités : $m = m_i + m_u = 5$.
- On a donc $h = m E_S + I_s = 5 18 + 17 = 4$.

Question 3 Condition de roulement sans glissement en $I_1: \overrightarrow{V(I_1 \in 3/re_1)} = \overrightarrow{0} \iff \overrightarrow{V(I_1 \in 3/0)} - \overrightarrow{V(I_1 \in re_1/0)} = \overrightarrow{0}$. Par suite,

•
$$\overrightarrow{V(I_1 \in 3/0)} = \overrightarrow{V(O_3 \in 3/0)} + \overrightarrow{I_1O_3} \wedge \overrightarrow{\Omega(3/0)} = R\overrightarrow{z_1} \wedge \omega_3 \overrightarrow{y_0} = -R\omega_3 \overrightarrow{x_1};$$

•
$$\overrightarrow{V(I_1 \in re_1/0)} = \overrightarrow{V(O_1 \in 3/0)} + \overrightarrow{I_1O_1} \wedge \overrightarrow{\Omega(3/0)} = -R_{re} \overrightarrow{z_1} \wedge \omega_{re_1} \overrightarrow{y_0} = R_{re} \omega_{re_1} \overrightarrow{x_1}$$
.

On a donc
$$-R\omega_3 - R_{re}\omega_{re_1} = 0 \Leftrightarrow \frac{\omega_3}{\omega_{re_1}} = -\frac{R_{re}}{R}$$
.

De même en exploitant le roulement sans glissement en I_2 , $\frac{\omega_3}{\omega_{rea}} = -\frac{R_{re}}{R}$.

La condition de roulement sans glissement supprime les 3 mobilités internes; donc m' = 2 et h' = 1.

Question 4 Dans les conditions précédentes, les couples \mathscr{C}_{mi} ne peuvent pas être déterminés. Il faudrait imposer un taux de rotation rigoureusement identique pour ω_{re_1} et ω_{re_2} .

2.3 Motorisation du dispositif de mise en rotation d'une roue

Objectif Analyser la chaîne d'entraînement en rotation d'une roue et vérifier le choix de la machine électrique.

Question 5 On conserve l'hypothèse que sre est supposé fixe par rapport au bâti. On a $E_1 = M_1 + R_1 + re_1$. Ces 3 solides sont en liaison pivot par rapport au bâti. En conséquence, $T(E_1/0) = T(M_1/0) + T(R_1/0) + T(re_1/0) = \frac{1}{2}J_m\omega_m^2 + \frac{1}{2}J_{re}\omega_{re}^2 + \frac{1}{2}J_{re}\omega_{re}^2 = \frac{1}{2}\left(J_m + J_{red}k^2 + J_{re}k^2\left(\frac{R_{re}}{R}\right)^2\right)\omega_m^2$.

On a donc $J_{eq} = J_m + J_{red}k^2 + J_{re}k^2\left(\frac{R_{re}}{R}\right)^2$.

Question 6 On prend le graphe de structure suivant :

On isole E_1 . Bilan des puissances internes : les liaisons internes au système considrée sont considérées sans frottement. On a donc : $\mathcal{P}_{int}(E_1) = 0$.

Bilan des puissances externes:

• la puissance développée par le moteur peut s'exprimer par $\mathscr{P}(\text{sre} \to M_1/0) = C_m \omega_m$;

• puissance développée par l'action de 3 sur re₁ : $\mathscr{P}(3 \to \text{re}_1/0) = \{ \mathscr{V}(\text{re}_1/0) \} \otimes \{ \mathscr{T}(3 \to \text{re}_1) \} = \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_r \otimes \mathbb{P}(3 \to \text{re}_1/0) = \{ \mathscr{V}(\text{re}_1/0) \} \otimes \{ \mathscr{T}(3 \to \text{re}_1) \} = \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_r \otimes \mathbb{P}(3 \to \text{re}_1/0) = \{ \mathscr{V}(\text{re}_1/0) \} \otimes \{ \mathscr{T}(3 \to \text{re}_1) \} = \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_r \otimes \mathbb{P}(3 \to \text{re}_1/0) = \{ \mathscr{V}(\text{re}_1/0) \} \otimes \{ \mathscr{T}(3 \to \text{re}_1) \} = \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_r \otimes \mathbb{P}(3 \to \text{re}_1/0) = \{ \mathscr{V}(\text{re}_1/0) \} \otimes \{ \mathscr{T}(3 \to \text{re}_1/0) \} \otimes \{ \mathscr{T}(3 \to$

$$\left\{\begin{array}{c} -F_{z1}\overrightarrow{z_1} - F_{x1}\overrightarrow{x_1} \\ \overrightarrow{0} \end{array}\right\}_{I_1} = -kR_{re}F_{x1}\omega_m.$$

On applique le théorème de l'énergie cinétique et $\frac{dT(E_1/0)}{dt} = C_m \omega_m - kR_{re}F_{x1}\omega_m \Rightarrow \dot{\omega}_m J_{eq} = C_m - kR_{re}F_{x1}$.

Question 7 En isolant l'ensemble $E_2 = \{M_2 + R_2 + re_2\}$ et en appliquant le théorème de l'énergie cinétique : $\dot{\omega}_m J_{eq} = C_m - k R_{re} F_{x2}$. Comme les caractéristiques des deux chaînes d'entraînement sont les mêmes, on a donc nécessairement $F_{x1}=F_{x2}.$

Question 8 On a vu que $\frac{\omega_3}{\omega_{ro.}} = -\frac{R_{re}}{R}$ de plus $\omega_{re_1} = k\omega_m$; donc $\omega_3 = -k\frac{R_{re}}{R}\omega_m$. En dérivant, on a $\dot{\omega}_3 = -k\frac{R_{re}}{R}\dot{\omega}_m$.

Question 9 Stratégie : on cherche à exprimer le couple moteur en fonction des grandeurs du géométriques, inertielles, ... pour cela, la roue étant en pivot d'axe $(O, \overrightarrow{y_0})$ on va réaliser un théorème du moment dynamique en O_3 en projection sur $\overrightarrow{v_0}$.

On isole la roue 3.

On réalise le bilan des actions mécaniques extérieures :

- action de la pivot en O_3 (pas de moment en O_3 en projection sur $\overrightarrow{y_0}$);
- action des liaisons sphères plans :

$$-\overrightarrow{\mathcal{M}(O_3, re_1 \to 3)} \cdot \overrightarrow{y_0} = \left(\overrightarrow{O_3 I_1} \wedge \left(F_{x_1} \overrightarrow{x_1} + F_{z_1} \overrightarrow{z_1}\right)\right) \cdot \overrightarrow{y_0} = \left(-R \overrightarrow{z_1} \wedge \left(F_{x_1} \overrightarrow{x_1} + F_{z_1} \overrightarrow{z_1}\right)\right) \cdot \overrightarrow{y_0} = -RF_{x_1}.$$

$$-\overrightarrow{\mathcal{M}(O_3, re_2 \to 3)} \cdot \overrightarrow{y_0} = \left(\overrightarrow{O_3 I_2} \wedge \left(F_{x_2} \overrightarrow{x_2} + F_{z_2} \overrightarrow{z_2}\right)\right) \cdot \overrightarrow{y_0} = \left(-R \overrightarrow{z_2} \wedge \left(F_{x_2} \overrightarrow{x_2} + F_{z_2} \overrightarrow{z_2}\right)\right) \cdot \overrightarrow{y_0} = -RF_{x_2}.$$

• action de l'outil : $\overrightarrow{\mathcal{M}}(O_3, \text{outil} \to 3) \cdot \overrightarrow{y_0} = \left(\overrightarrow{O_3C} \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left(\left(-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}\right) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{y_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{y_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{y_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{y_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{y_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{y_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right)$ $\left(-\lambda(t)\overrightarrow{y_0}\wedge \overline{R(\text{outil}\to 3)} - R_C(t)\overrightarrow{z_0}\wedge \overline{R(\text{outil}\to 3)}\right)\cdot \overrightarrow{y_0} = \left(-R_C(t)\overrightarrow{z_0}\wedge \overline{R(\text{outil}\to 3)}\right)\cdot \overrightarrow{y_0} = -R_C(t)\left(\overrightarrow{y_0}\wedge \overrightarrow{z_0}\right)\cdot \overrightarrow{y_0}$ $\overrightarrow{R(\text{outil} \to 3)} = -R_C(t)\overrightarrow{x_0} \cdot \overrightarrow{R(\text{outil} \to 3)} = R_C(t)f_{ex}.$

Enfin, la roue étant supposée équilibrée, on a $\overrightarrow{\delta(O_3, 3/0)} \cdot \overrightarrow{y_0} = J_3 \ddot{\omega}_3$.

Le TMD appliqué en 3 en projection sur $\overrightarrow{y_0}$ est donné par $J_3\ddot{\omega}_3 = -2RF_{x1} + R_C(t)f_{ex}$. De plus, $\omega_3 = -k\frac{R_{re}}{R}\omega_m$ et

$$\dot{\omega}_m J_{eq} = C_m - k R_{re} F_{x1} \Longleftrightarrow F_{x1} = \frac{C_m - \dot{\omega}_m J_{eq}}{k R_{re}}.$$

Au final:

$$-J_3k\frac{R_{re}}{R}\dot{\omega}_m = -2R\frac{C_m - \dot{\omega}_mJ_{eq}}{kR_{re}} + R_C(t)f_{ex} \iff C_m = \dot{\omega}_mJ_{eq} + J_3k^2\frac{R_{re}^2}{2R^2}\dot{\omega}_m + \frac{R_C(t)kR_{re}f_{ex}}{2R}.$$

Question 10 En utilisant l'expression précédente, le couple est maximum lorsque $R_C(t) = R_M$.

Question 11 En utilisant la décomposition du vecteur vitesse, $\overline{V(C \in \text{outil/3})} = \overline{V(C \in \text{outil/0})} - \overline{V(C \in \text{3/0})}$. D'après le document réponse, $\overrightarrow{V(C \in \text{outil}/0)} = V_f(t)\overrightarrow{u} = -b\omega_3\overrightarrow{u}$. Par ailleurs, $\overrightarrow{V(C \in 3/0)} = R_C(t)\omega_3\overrightarrow{x_0}$.

Au final, $\overrightarrow{V(C \in \text{outil}/3)} = V_f(t) \overrightarrow{u} - R_C(t) \omega_3 \overrightarrow{x_0}$.

 $\overrightarrow{V(C \in \text{outil}/3)} \cdot \overrightarrow{x_0} = -V_C = V_f(t) \overrightarrow{t} u \cdot \overrightarrow{x_0} - R_C(t) \omega_3 = -R_C(t) \omega_3$. On a donc $V_C = R_C(t) \omega_3$. Ainsi:

- $V_C = R_C(t)\omega_3(t) = R_M\omega_{C_0} \Rightarrow \omega_{C_0} = \frac{V_C}{R_M}$. $V_C = R_C(t)\omega_3(t) = R_m\omega_{C_1} \Rightarrow \omega_{C_1} = \frac{V_C}{R_m}$.

Question 12

Dans ces conditions, on a $\omega_3(t) = \frac{\omega_{C_1} - \omega_{C_0}}{t_1}t + \omega_{C_0}$

Question 13 On a
$$l(t) = \|\overrightarrow{C_0C}\| = \|\int_0^t V_f(t)\overrightarrow{u} dt\| = \|\int_0^t -b\omega_3(t)\overrightarrow{u} dt\| = \|\int_0^t -b\left(\frac{\omega_{C_1} - \omega_{C_0}}{t_1}t + \omega_{C_0}\right)\overrightarrow{u} dt\|$$

$$= b\|\left(\frac{\omega_{C_1} - \omega_{C_0}}{2t_1}t^2 + \omega_{C_0}t\right)\overrightarrow{u}\|.$$
Au final, $l(t) = b\left(\frac{\omega_{C_1} - \omega_{C_0}}{2t_1}t^2 + \omega_{C_0}t\right).$

Question 14 D'après la figure, on a $l(t_1) = ||\overrightarrow{C_0C_1}|| = \sqrt{(R_M - R_m)^2 + e^2}$.

On a donc
$$l(t_1) = b \left(\frac{\omega_{C_1} - \omega_{C_0}}{2t_1} t_1^2 + \omega_{C_0} t_1 \right) = \sqrt{(R_M - R_m)^2 + e^2} \Leftrightarrow t_1 \left(\frac{\omega_{C_1} - \omega_{C_0}}{2} + \omega_{C_0} \right) = \frac{\sqrt{(R_M - R_m)^2 + e^2}}{b}.$$

$$\Leftrightarrow t_1 = \frac{\sqrt{(R_M - R_m)^2 + e^2}}{b} \frac{2}{\omega_{C_1} + \omega_{C_0}}.$$

Question 15 En dérivant l'expression obtenue à la question 12, on a $\dot{\omega}_3(t) = \frac{\omega_{C_1} - \omega_{C_0}}{t_1} = \frac{b\left(\omega_{C_1} + \omega_{C_0}\right)\left(\omega_{C_1} - \omega_{C_0}\right)}{2\sqrt{(R_M - R_m)^2 + e^2}}$.

Au final,
$$\dot{\omega}_3(t) = \frac{b\left(\omega_{C_1}^2 - \omega_{C_0}^2\right)}{2\sqrt{(R_M - R_m)^2 + e^2}}.$$

Question 16 D'après les annexes, on a $R_m = 0.4 \,\mathrm{m}$ et $V_C = 400 \,\mathrm{m}\,\mathrm{min}^{-1}$. On a donc $N_3 = \frac{V_C}{\pi \cdot 2R_m} = \frac{400}{0.8\pi} = 159 \,\mathrm{tr}\,\mathrm{min}^{-1}$. On a donc $N_m = N_3 \frac{R}{kR_e} = 159 \frac{0.47}{0.1 \cdot 0.175} = 4275 \,\mathrm{tr}\,\mathrm{min}^{-1}$. Le moteur doit donc pouvoir tourner au

On ne sait pas si le couple moteur maximum calculé (22 Nm) tient compte du rendement. S'il tient compte du rendement, le moteur ME_10_10 convient. Sinon, il faudra utiliser le ME_5_15.

3 Analyse de la commande du dispositif de mise en translation de l'outil

Objectif Analyser la chaîne d'asservissement en position et en vitesse du porte-outil afin de proposer puis de régler un correcteur permettant d'assurer le niveau de précision attendu pour le profil de la roue.

3.1 Effet de la déformation de l'outil sur la forme de la roue reprofilée

Question 17 Graphiquement on a:

- $\Delta u_1 = \Delta z_2 \simeq 5 \,\mu\text{m}$;
- $R^2 + \Delta x_2^2 = (R + \Delta u_2)^2$ soit $\Delta u_2 = \sqrt{R^2 + \Delta x_2^2} R = \sqrt{0.47^2 + 0.0005^2} 0.47 \approx 0.27 \,\mu\text{m}$.

Il y a un rapport de 18,8 entre le défaut dû à la compression et celui dû à la flexion. On néglige donc ce dernier.

3.2 Analyse d'une solution avec un porte-outil fixé au bâti

Objectif Déterminer les variations de position du point de contact C entre la roue et l'outil pour une variation

sinusoïdale de l'effort perturbateur $f_c(t)$.

Question 18 On isole l'outil. Celui-ci est soumis :

- à l'action du ressort suivant $\overrightarrow{z_0}$: $-Kz_2(t)$;
- à l'action de l'amortisseur $\overrightarrow{z_0}$: $-\lambda \dot{z}_2(t)$;
- à l'action de l'effort perturbateur $\overrightarrow{z_0}$: $f_c(t)$.

En appliquant le théorème de la résultante dynamique suivant $\overrightarrow{z_0}$ on obtient : $-Kz_2(t) - \lambda \dot{z}_2(t) + f_c(t) = m_2 \ddot{z}_2(t)$.

En utilisant la transformée de Laplace, on obtient alors $-KZ_2(p) - \lambda p Z_2(p) + F_c(p) = m_2 p^2 Z_2(p) \Leftrightarrow S(p) = \frac{Z_2(p)}{F_c(p)} = \frac{Z_2(p)}{$

$$\frac{1}{K + \lambda p + m_2 p^2}.$$

En mettant cette fonction de transfert sous forme canonique, on a $K_S = 1/K \simeq 3.57 \times 10^{-8} \,\mathrm{m\,N^{-1}}$, $\omega_{0S}^2 = \frac{K}{m_0} \Rightarrow$

$$\omega_{0S} \simeq 35\,533\,\mathrm{rad}\,\mathrm{s}^{-1} \text{ et } \frac{2\xi_S}{\omega_{0S}} = \frac{\lambda}{K} \Longleftrightarrow \xi_S = \frac{\lambda}{2\sqrt{Km_2}} \simeq 0, 1.$$

$$\text{L'amplitude maximale est donnée par}: A_{\text{max}} = \frac{K_{S}}{2\xi_{S}\sqrt{1-\xi_{S}^{2}}} \simeq \frac{3,57\cdot10^{-8}}{0,2\sqrt{1-0,01}} = 1,8\cdot10^{-7}$$

Analyse des asservissements du porte-outil

Modélisation du mouvement pour la commande

Objectif Modéliser le comportement dynamique de l'outil et du porte-outil, puis étudier une commande en position $z_1(t)$ comprenant un correcteur proportionnel.

Question 19 D'après le schéma-blocs $Z_1(p) = H_2(p) (F_m(p) + H_1(p)Z_2(p))$. D'après la première équation différentielle, Question 19 D'après le schéma-blocs $Z_1(p) = H_2(p)$ ($F_m(p) + H_1(p)Z_2(p)$). D'après la première equation uniforment, on $a: m_1p^2Z_1(p) + \lambda pZ_1(p) + KZ_1(p) = \lambda pZ_2(p) + KZ_2(p) + F_m(p) \Leftrightarrow Z_1(p) \left(m_1p^2 + \lambda p + K\right) = Z_2(p) \left(\lambda p + K\right) + F_m(p) \Leftrightarrow Z_1(p) = \frac{Z_2(p) \left(\lambda p + K\right) + F_m(p)}{m_1p^2 + \lambda p + K}$. On a donc par identification $H_2(p) = \frac{1}{m_1p^2 + \lambda p + K}$ et $H_1(p) = \lambda p + K$. D'après le schéma-blocs $Z_2(p) = H_4(p) \left(F_c(p) + H_3(p)Z_1(p)\right)$. D'après la seconde équation différentielle, $m_2p^2Z_2(p) + \lambda pZ_2(p) + KZ_2(p) = \lambda pZ_1(p) + KZ_2(p) = \lambda pZ_1(p) + KZ_2(p) + KZ_2(p)$

$$F_m(p) \Leftrightarrow Z_1(p) = \frac{Z_2(p)(\lambda p + K) + F_m(p)}{m_1 n^2 + \lambda n + K}$$
. On a donc par identification $H_2(p) = \frac{1}{m_1 n^2 + \lambda n + K}$ et $H_1(p) = \lambda p + K$.

$$\lambda p Z_2(p) + K Z_2(p) = \lambda p Z_1(p) + K Z_1(p) + F_C(p) \Leftrightarrow Z_2(p) \left(m_2 p^2 + \lambda p + K\right) = Z_1(p) \left(\lambda p + K\right) + F_C(p) \Leftrightarrow Z_2(p) = \frac{Z_1(p) \left(\lambda p + K\right) + F_C(p)}{m_2 p^2 + \lambda p + K}$$

On a donc par identification $H_4(p) = \frac{1}{m_2 p^2 + \lambda p + K}$ et $H_3(p) = \lambda p + K$.

 $= H_2(p)F_m(p) + H_1(p)H_2(p)H_4(p)F_c(p) + H_1(p)H_2(p)H_3(p)H_4(p)Z_1(p)$

 $\Leftrightarrow Z_1(p)(1-H_1(p)H_2(p)H_3(p)H_4(p)) = H_2(p)(F_m(p)+H_1(p)H_4(p)F_c(p)).$

En utilisant le schéma-blocs, $Z_1(p) = (F_c(p)N_1(p) + F_m(p))N_2(p)$. Par identification, on obtient $N_1(p) = H_1(p)H_4(p)$

et
$$N_2(p) = \frac{H_2(p)}{1 - H_1(p)H_2(p)H_3(p)H_4(p)}$$
.

Question 21
$$N_2(p) = \frac{H_2(p)}{1 - H_1(p)H_2(p)H_3(p)H_4(p)} = \frac{\frac{1}{m_1p^2 + \lambda p + K}}{1 - (\lambda p + K)\frac{1}{m_1p^2 + \lambda p + K}(\lambda p + K)\frac{1}{m_2p^2 + \lambda p + K}} = \frac{1}{(m_1p^2 + \lambda p + K) - m_2(p)}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{(m_{1}p^{2} + \lambda p + K)(m_{2}p^{2} + \lambda p + K) - (\lambda p + K)^{2}} = \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K} = \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}m_{1}p^{4} + \lambda m_{1}p^{3} + Km_{1}p^{2} + \lambda m_{2}p^{3} + \lambda^{2}p^{2} + \lambda p K + Km_{2}p^{2} + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda p + K}$$

$$= \frac{m_{2}p^{2} + \lambda p + K}{m_{2$$

$$=rac{m_2\left(p^2+rac{m_2}{m_2}p+rac{m_2}{m_2}
ight)}{p^2m_1m_2\left(p^2+rac{m_1+m_2}{m_1m_2}\lambda p+Krac{m_1+m_2}{m_1m_2}
ight)}$$

Par identification, on a : $A = \frac{1}{m_1}$, $\omega_1^2 = \frac{K}{m_2}$, $2\xi_1\omega_1 = \frac{\lambda}{m_2}$, $\omega_2^2 = K\frac{m_1 + m_2}{m_1 m_2}$, $2\xi_2\omega_2 = \lambda\frac{m_1 + m_2}{m_1 m_2}$. On a donc $\xi_1 = \frac{\lambda}{2\sqrt{m_2 K}}$ et $\xi_2 = \lambda\frac{\sqrt{m_1 + m_2}}{2\sqrt{K m_1 m_2}}$.

Question 22 D'après le diagramme asymptotique donné, on a nécessairement $\omega_1 < \omega_2$. On peut dresser un tableau des variations à partir de la fonction de transfert $N_2(p)$.

	ω_1		ω_1	
$\frac{A}{p^2}$	-40 dB/dec	c —40 dB/dec		-40 dB/dec
$p^2 + 2\xi_1\omega_1p + \omega_1^2$	0 dB/dec	40 dB/dec		40 dB/dec
$\frac{1}{p^2 + 2\xi_2\omega_2p + \omega_2^2}$	0 dB/dec	0 dB/dec		-40 dB/dec
$20\log N_2(p) $	-40 dB/dec	0 dB/dec		-40 dB/dec
$Arg(N_2(p))$	-180°	0°		-180°
-140 -150 -160 -160 -170 -180 -190		-4	0 dB/de	ec
-200				
-75 -90	0°			
-105				
−120 ⑤ ⇒s −135				
-150 -165				
-180°	1		-180°	
-195 100	200	300 400 500	600	700 800 900 1000

Question 23 Si le système n'est pas sollicité par des pulsations comprises entre 150 et 250 rad s⁻¹, on peut modéliser $N_2(p)$ par un double intégrateur. Le gain dB est donc $20\log A - 20\log \omega^2$. Pour $\omega = 500$ rad s⁻¹ on a $20\log A - 20\log 500^2 = -182, 5 \Rightarrow \log A = \frac{20\log 500^2 - 182, 5}{20}$ et $A = 1,87 \cdot 10^{-4}$.

Question 24 Dans le cas, la FTBO est de classe 2.

- req 1.1 : $M\varphi = 60^{\circ}$: impossible à respecter la phase sera toujours de -180° .
- req 1.2 : $\omega_{0\mathrm{dB}} = 200\,\mathrm{rad}\,\mathrm{s}^{-1}$: critère non respecté (cf diagramme de Bode).
- req 1.4 : erreur en régime permanent : $\Delta c < 40 \,\mu\text{m}$ pour un échelon d'amplitude $f_{c0} = 1 \,\text{kN}$: critère non respecté (pas d'intégrateur avant la perturbation).
- req 1.5 : défaut de la roue $\Delta u <$ 30 $\mu \rm m$ lorsque la perturbation est sinusoïdale.

La correctioin proportionnelle ne permet donc pas de respecter tous les critères du cahier des charges.

3.3.2 Calcul des paramètres des correcteurs de la loi de commande

Objectif Déterminer les paramètres d'une loi de commande afin de valider les performances statiques et dynamiques du cahier des charges.

Question 25 On a $\arg(H_{BO}(j\omega)) = \arg(AK_v) + \arg\left(p + \frac{1}{T_i}\right) + \arg\left(p + K_p\right) - 3\arg(p) = \arctan T_i\omega + \arctan \omega/K_P - 270$. On souhaite que la marge de phase soit de 60° soit $\arg\left(H_{BO}(j\omega_{0dB})\right) = -120^\circ$. On a donc $-120 = \arctan T_i\omega_{0dB} + 120^\circ$.

 $\arctan \omega_{0\,\mathrm{dB}}/K_P - 270 \Leftrightarrow \arctan T_i \omega_{0\,\mathrm{dB}} + \arctan \omega_{0\,\mathrm{dB}}/K_P = 150.$

$$\operatorname{Cor} \tan \omega_{0 \, \mathrm{dB}}/K_P = 270 \iff \arctan T_i \omega_{0 \, \mathrm{dB}} + \arctan \omega_{0 \, \mathrm{dB}}/K_P = 150.$$

$$\operatorname{Cor} \tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}.$$

$$\operatorname{Con} \operatorname{a} \operatorname{donc} \tan 150 = \frac{T_i \omega_{0 \, \mathrm{dB}} + \omega_{0 \, \mathrm{dB}}/K_P}{1 - T_i \omega_{0 \, \mathrm{dB}}^2/K_P} \iff \tan 150 - \tan 150 T_i \omega_{0 \, \mathrm{dB}}^2/K_P = T_i \omega_{0 \, \mathrm{dB}} + \omega_{0 \, \mathrm{dB}}/K_P$$

$$\iff T_i = \frac{K_P \tan 150 - \omega_{0 \, \mathrm{dB}}}{K_P \omega_{0 \, \mathrm{dB}} + \tan 150 \omega_{0 \, \mathrm{dB}}^2}$$

Question 26
$$H_{BO}(j\omega) = AK_v \frac{-\omega^2 + K_P j\omega + \frac{j\omega}{T_i} + \frac{K_p}{T_i}}{-\omega^3} = -\frac{AK_v}{\omega^3} \left(\left(\frac{K_p}{T_i} - \omega^2 \right) + \left(\frac{1}{T_i} + K_P \right) j\omega \right)$$
On a donc $\log |H_{BO}(j\omega)| = \frac{AK_v}{\omega^3} \sqrt{\left(\frac{K_p}{T_i} - \omega^2 \right)^2 + \left(\frac{1}{T_i} + K_P \right)^2 \omega^2}.$
Pour $\omega = \omega_{0dB}$, $\log |H_{BO}(j\omega)| = 1$. En conséquence, $\frac{AK_v}{\omega^3} \sqrt{\left(\frac{K_p}{T_i} - \omega^2 \right)^2 + \left(\frac{1}{T_i} + K_P \right)^2 \omega^2} = 1$

$$\Leftrightarrow K_v = \frac{\omega_{0dB}^3}{A\sqrt{\left(\frac{K_p}{T_i} - \omega_{0dB}^2 \right)^2 + \left(\frac{1}{T_i} + K_P \right)^2 \omega_{0dB}^2}}$$

Question 27

Question 28

Analyse de l'influence du paramètre b

Objectif Déterminer la valeur maximale de b permettant de conserver la stabilité de l'asservissement.

Question 29 D'après le schéma-blocs, $Q(p) = Q_c(p) - Z_2(p)H_r(p)$. D'après les équations données et en utilisant le théorème du retard, on a $Q(p) = Q_c(p) - Z_2(p) + Z_2(p)e^{-\tau p} = Q_c(p) - Z_2(p)(1 - e^{-\tau p})$. En conséquence, $H_r(p) = 1 - e^{-\tau p}$.

Question 30 FTBO(p) = $bK_fS(p)H_r(p)$.

Question 31

Synthèse

Question 32 Synthèse?