Aluna: Marcela Neves Belchior

Matrícula: 11721BCC044

Atividade Prática – Multiplicação de Matrizes

Descrição dos experimentos realizados

Ambos os algoritmos, Algoritmo 1 e Algoritmo de Strassen, foram implementados na

linguagem de programação C, pois tenho mais familiaridade com essa linguagem. Para a

realização dos testes, foram criadas funções para alocação de memória das matrizes,

inserção de elementos aleatórios nas matrizes, operações básicas em matriz (soma e

subtração), liberar a memória dinamicamente alocada e os algoritmos de multiplicação.

O programa foi executado 20 vezes para matrizes de dimensões entre 10x10 e 200x200

(variação de múltiplos de 10). Em cada execução do programa, foram criadas duas

matrizes com valores aleatórios e estas foram multiplicadas usando o Algoritmo 1 e o

Algoritmo de Strassen, armazenando em um arquivo .txt o tempo gasto para a execução

em segundos de cada uma das funções, esse processo foi realizado 30 vezes para matrizes

diferentes de mesma dimensão.

Comparando o desempenho dos dois algoritmos

Com o tempo de execução de cada algoritmo registrado em uma arquivo .txt foi possível

calcular a média de tempo para cada dimensão de matriz. Essas médias podem ser

observadas na Tabela 1. Os valores registrados na Tabela 1, foram utilizados para a

criação de uma gráfico de dimensões da matriz versus tempo de execução em segundos

(Gráfico 1).

Observando os dados expostos na Tabela 1 e no Gráfico 1 fica claro que para matrizes de

dimensões menores que 200 o Algoritmo 1 ainda é mais eficiente que o Algoritmo de

Strassen, embora a complexidade do Algoritmo 1, O(n³), seja maior que a complexidade

do Algoritmo de Strassen, O(n^{2,8074}). Nesse estudo, não foi possível analisar o

comportamento dos algoritmos em questão com matrizes de dimensões superiores, por

carência de memória da máquina na qual o experimento foi realizado.

DIMENSÕES	ALGORITMO 1	ALGORITMO
DA MATRIZ (NXN)		DE STRASSEN
10	0	0,001030
20	0	0,007570
30	0	0,007270
40	0,00207	0,02760
50	0	0,03127
60	0,00157	0,03070
70	0,00423	0,16300
80	0,00467	0,16473
90	0,00930	0,17830
100	0,00683	0,18227
110	0,01203	0,17977
120	0,01560	0,18340
130	0,02140	1,23730
140	0,02547	1,21070
150	0,02867	1,20203
160	0,03693	1,16650
170	0,04440	1,16900
180	0,05143	1,15453
190	0,06880	1,16167
200	0,07127	1,25620

Tabela 1. Relação entre a dimensão de matriz e tempo de execução em segundos dos algoritmos

Gráfico 1. Representação dos dados da Tabela 1. Linha azul representa o Algoritmo 1 e linha vermelha representa o Algoritmo de Strassen. (dimensão da matriz *versus* tempo em segundos)