Modeling multi-relational data from knowledge bases with embeddings

Dat Quoc Nguyen

Department of Computing Macquarie University Sydney, Australia

December 2016

Vector representations/embeddings

- One-hot representation: high-dimensional and sparse vector
 - Vocabulary size: N
 - N-dimensional vector: filled with 0s, except for a 1 at the position associated with word index

Vector representations/embeddings

- Deep learning evolution: most neural network toolkits do not play well with one-hot representations
 - Dense vector: low-dimensional distributed vector representation
 - ▶ Vector size $k \ll N$, for example: k = 100, Vocabulary size N = 100000

Vector representations/embeddings: "distance" results

Outline

- STransE model for knowledge base completion and search personalization
 - Introduction
 - Our new embedding model STransE
 - STransE results for knowledge base completion
 - STransE results for search personalization
 - Summary
 - A neighborhood mixture model for knowledge base completion
 - Introduction
 - Our neighborhood mixture model
 - Experimental evaluation
 - Summary

Introduction

- Knowledge bases (KBs) of real-world triple facts (head entity, relation, tail entity) are useful resources for NLP tasks
- Issue: large KBs are still far from complete
- So it is useful to perform link prediction in KBs or knowledge base completion (KBC): predict which triples not in a knowledge base are likely to be true

Our embedding model STransE

- The TransE model (Bordes et al., 2013) represents each relation r by a translation vector \mathbf{v}_r , which is chosen so that $\mathbf{v}_h + \mathbf{v}_r \approx \mathbf{v}_t$
 - ▶ Good for 1-to-1 relationships, e.g: *is_capital_of*
 - ▶ Not good for 1-to-Many, Many-to-1 and Many-to-Many, e.g. gender
- STransE: a new embedding model for link prediction
 - Our STransE represents each entity as a low dimensional vector, and each relation by two matrices and a translation vector
 - ▶ STransE choose matrices $\mathbf{W}_{r,1}$ and $\mathbf{W}_{r,2}$, and vector \mathbf{v}_r so that:

$$\mathbf{W}_{r,1}\mathbf{v}_h + \mathbf{v}_r \approx \mathbf{W}_{r,2}\mathbf{v}_t$$

Our embedding model STransE

• For each triple (h, r, t), STransE defines a score function f(h, r, t) of its implausibility:

$$f(h,r,t) = \|\mathbf{W}_{r,1}\mathbf{v}_h + \mathbf{v}_r - \mathbf{W}_{r,2}\mathbf{v}_t\|_{\ell_{1/2}}$$

 To learn the vectors and matrices, we minimize the following margin-based objective function:

$$\mathcal{L} = \sum_{\substack{(h,r,t) \in \mathcal{G} \\ (h',r,t') \in \mathcal{G}'_{(h,r,t)}}} \max \left(0, \gamma + f(h,r,t) - f(h',r,t') \right)$$

$$\mathcal{G}'_{(h,r,t)} = \{ (h',r,t) \mid h' \in \mathcal{E}, (h',r,t) \notin \mathcal{G} \}$$

$$\cup \{ (h,r,t') \mid t' \in \mathcal{E}, (h,r,t') \notin \mathcal{G} \}$$

 $ightharpoonup \gamma$: the margin hyper-parameter

Related work

Model	Score function $f(h, r, t)$
STransE	$\ \mathbf{W}_{r,1}\mathbf{v}_h + \mathbf{v}_r - \mathbf{W}_{r,2}\mathbf{v}_t\ _{\ell_{1/2}}$; $\mathbf{W}_{r,1}$, $\mathbf{W}_{r,2} \in \mathbb{R}^{k \times k}$; $\mathbf{v}_r \in \mathbb{R}^k$
TransE	$\ \mathbf{v}_h + \mathbf{v}_r - \mathbf{v}_t\ _{\ell_{1/2}}$; $\mathbf{v}_r \in \mathbb{R}^k$
TransH $\ (\mathbf{I}-m{r}_{p}m{r}_{p}^{ op})m{v}_{h}+m{v}_{r}-(\mathbf{I}-m{r}_{p}m{r}_{p}^{ op})m{v}_{t}\ _{\ell_{1/2}}$	
	$m{r}_{p}, m{v}_{r} \in \mathbb{R}^{k} ; m{l}: ext{Identity matrix size} k imes k$
TransD $ \ (\mathbf{I} + \boldsymbol{r}_p \boldsymbol{h}_p^\top) \boldsymbol{v}_h + \boldsymbol{v}_r - (\mathbf{I} + \boldsymbol{r}_p \boldsymbol{t}_p^\top) \boldsymbol{v}_t \ _{\ell_{1/2}} $	
	$m{r}_p, m{v}_r \in \mathbb{R}^n \; ; m{h}_p, m{t}_p \in \mathbb{R}^k \; ; m{l} \colon Identity \; matrix \; size \; n imes k$
TransR	$\ \mathbf{W}_r \mathbf{v}_h + \mathbf{v}_r - \mathbf{W}_r \mathbf{v}_t\ _{\ell_{1/2}}$; $\mathbf{W}_r \in \mathbb{R}^{n \times k}$; $\mathbf{v}_r \in \mathbb{R}^n$
NTN	$\mathbf{v}_r^ op t$ anh $(\mathbf{v}_h^ op \mathbf{M}_r \mathbf{v}_t + \mathbf{W}_{r,1} \mathbf{v}_h + \mathbf{W}_{r,2} \mathbf{v}_t + \mathbf{b}_r)$
IVIIV	\mathbf{v}_r , $\mathbf{b}_r \in \mathbb{R}^n$; $\mathbf{M}_r \in \mathbb{R}^{k \times k \times n}$; $\mathbf{W}_{r,1}$, $\mathbf{W}_{r,2} \in \mathbb{R}^{n \times k}$
DISTMULT	$oldsymbol{v}_h^{ op} oldsymbol{W}_r oldsymbol{v}_t$; $oldsymbol{W}_r$ is a diagonal matrix $\in \mathbb{R}^{k imes k}$
Bilinear-COMP	$\mathbf{v}_h^{T} \mathbf{W}_{r_1} \mathbf{W}_{r_2} \mathbf{W}_{r_m} \mathbf{v}_t ; \mathbf{W}_{r_1}, \mathbf{W}_{r_2},, \mathbf{W}_{r_m} \in \mathbb{R}^{k \times k}$
TransE-COMP	$\ \mathbf{v}_h + \mathbf{v}_{r_1} + \mathbf{v}_{r_2} + + \mathbf{v}_{r_m} - \mathbf{v}_t\ _{\ell_{1/2}} ; \mathbf{v}_{r_1}, \mathbf{v}_{r_2},, \mathbf{v}_{r_m} \in \mathbb{R}^k$
TransE-NMM	$\ \boldsymbol{\vartheta}_{h,r} + \boldsymbol{v}_r - \boldsymbol{\vartheta}_{t,r^{-1}}\ _{\ell_{1/2}}$

STransE results for knowledge base completion

 We conducted experiments on two benchmark datasets WN18 and FB15k (Bordes et al., 2013)

Dataset	#E	#R	#Train	#Valid	#Test
WN18	40,943	18	141,442	5,000	5,000
FB15k	14,951	1,345	483,142	50,000	59,071

• Entity prediction task:

- Predict h given (?, r, t) or predict t given (h, r, ?) where ? denotes the missing element
- ► Corrupt each correct test triple (h, r, t) by replacing either h or t by each of the possible entities
- Rank these candidates by their implausibility value
- Metrics: mean rank and Hits@10

Method	WI	N18	FB	15k
Method	MR	H10	MR	H10
TransE	251	89.2	125	47.1
TransH	303	86.7	87	64.4
TransR	225	92.0	77	68.7
CTransR	218	92.3	75	70.2
KG2E	348	93.2	59	74.0
TransD	212	92.2	91	77.3
TATEC	-	-	58	76.7
Our STransE model	206	93.4	69	79.7
RTransE	-	-	50	76.2
PTransE	-	-	58	84.6

Applying STransE for search personalization

- Search engines play the most important roles in the Internet era
- Two users search using the same keywords, they are often looking for different information (i.e. difference due to the users' interests)
- Personalized search customizes results based on user's search history (i.e. submitted queries and clicked documents)
- Let (q, u, d) represent a triple (query, user, document)
- The query q, user u and document d are represented by vector embeddings \mathbf{v}_q , \mathbf{v}_u and $\mathbf{v}_d \in \mathbb{R}^k$, respectively

$$f(q, u, d) = \|\mathbf{W}_{u,1}\mathbf{v}_q + \mathbf{v}_u - \mathbf{W}_{u,2}\mathbf{v}_d\|_{\ell_{1/2}}$$

• Represent the profile for the user u by two matrices $\mathbf{W}_{u,1}$ and $\mathbf{W}_{u,2} \in \mathbb{R}^{k \times k}$ and a vector \mathbf{v}_u , which represents the user's topical interests.

Applying STransE for search personalization

$$f(q, u, d) = \|\mathbf{W}_{u,1}\mathbf{v}_q + \mathbf{v}_u - \mathbf{W}_{u,2}\mathbf{v}_d\|_{\ell_{1/2}}$$

- \mathbf{v}_d and \mathbf{v}_q are pre-determined by employing the LDA topic model
- To learn the user embeddings and matrices, we minimize the margin-based objective function:

$$\mathcal{L} = \sum_{\substack{(q, u, d) \in \mathcal{G} \\ (q', u, d') \in \mathcal{G}'_{(q, u, d)}}} \max \left(0, \gamma + f(q, u, d) - f(q', u, d')\right)$$

- Re-rank the original list of documents produced by a search engine:
 - Download the top 10 ranked documents given the input query q
 - For each ranked document d and query q, we apply a trained LDA model to infer the topic distribution \mathbf{v}_d and topic distribution \mathbf{v}_a
 - For each triple (q, u, d), we calculate the value f(q, u, d), and then sort the values f to achieve a new ranked list

STransE results for search personalization

- Use a dataset of query logs of of 106 anonymous users in 15 days from 01 July 2012 to 15 July 2012
- Separate the last log entries within search sessions into a test set and a validation set; Use the remaining log entities for training
- After pre-processing, the training set consists of 5,658 correct triples, the test and validation sets contain 1,210 and 1,184 correct triples

15 106 6,632 8,052 2,394 33,591	#days	#users	#distinct queries	#clicked docs	#sessions	#distinct docs
	15	106	6,632	8,052	2,394	33,591

Results:

Metric	SE	SP	STransE	TransE
MRR	0.559	0.631 _{+12.9%}	0.656 _{+17.3%}	0.645 _{+15.4%}
P@1	0.385	0.452 _{+17.4%}	0.501 _{+30.3%}	0.481 _{+24.9%}

- ▶ **SE**: The original rank from the search engine; **SP**: The SOTA search personalization method with a learning-to-rank framework
- ▶ The subscripts denote the relative improvement over the baseline SE

Summary

- A new embedding model named STransE for link prediction in KBs (i.e. for KB completion)
- STransE uses a low-dimensional vector and two projection matrices to represent each relation
 - Produce highly competitive results on standard link prediction evaluations
 - ▶ Extend STransE to exploit relation path information in knowledge bases
- When applying to a search personalization task, STransE helps to improve the ranking quality significantly

Outline

- STransE model for knowledge base completion and search personalization
 - Introduction
 - Our new embedding model STransE
 - STransE results for knowledge base completion
 - STransE results for search personalization
 - Summary
 - A neighborhood mixture model for knowledge base completion
 - Introduction
 - Our neighborhood mixture model
 - Experimental evaluation
 - Summary

Introduction

- Embedding models for KBC:
 - Associate entities and/or relations with dense feature vectors or matrices
 - ▶ Obtain SOTA performance and generalize to large KBs
- Most embedding models for KBC learn only from triples
- Recent works show that the relation paths between entities in KBs provide useful information and improve KBC

```
(\mathsf{Harrison}\ \mathsf{Ford}, \mathbf{born\_in\_hospital}/r_1, \mathsf{Swedish}\ \mathsf{Covenant}\ \mathsf{Hospital})
```

- \Rightarrow (Swedish Covenant Hospital, **located_in_city**/ r_2 , Chicago)
- \Rightarrow (Chicago, city_in_country/r₃, United States)

Relation path $p=\{r_1,r_2,r_3\}$ is useful for predicting the relationship "nationality" between the head and tail entities

Introduction

 Our motivation: neighborhoods could provide lots of useful information for predicting the relationship between the entities

Ben_Affleck

- $=\omega_{r,1}(Violet_Anne, child_of)$
 - $+\omega_{r,2}(\text{male},\text{gender}^{-1})$
 - $+\omega_{r,3}(\text{Los_Angeles}, \text{live_in}^{-1})$
 - $+\omega_{r,4}(\operatorname{Oscar_award}, \operatorname{won}^{-1})$

Our neighbor-based entity representation

```
\mathcal{E} = \{ Ben\_Affleck, Los\_Angeles, ... \}
\mathcal{R} = \{\text{live\_in}, \text{won}, \text{child\_of}, \text{gender}, ...\}
\mathcal{G} = \{(Violet\_Anne, child\_of, Ben\_Affleck),
         (Ben_Affleck, won, Oscar_award),
         (Ben_Affleck, live_in, Los_Angeles), ...}
  \mathcal{N}_e is the set of all entity and relation pairs
    that are neighbors for entity e
  \mathcal{N}_{\mathsf{Ben\_Affleck}} = \{(\mathsf{Violet\_Anne}, \mathsf{child\_of}),
                        (male, gender^{-1}),
                        (Los_Angeles, live_in^{-1}),
                        (Oscar_award, won^{-1})
```


Our neighbor-based entity representation

- $\mathbf{v}_e \in \mathbb{R}^k$: k-dimensional "base" vector associated with entity e
- $\mathbf{u}_{e,r} \in \mathbb{R}^k$: relation-specific entity vector, $e \in \mathcal{E}, r \in \mathcal{R} \cup \mathcal{R}^{-1}$
- The neighborhood-based entity representation $\vartheta_{e,r}$ for an entity e for predicting the relation r is defined as follows:

$$\vartheta_{e,r} = a_e \boldsymbol{v}_e + \sum_{(e',r') \in \mathcal{N}_e} b_{r,r'} \boldsymbol{u}_{e',r'}$$
 (1)

 $a_{\rm e}$ and $b_{{\it r},{\it r}'}$ are the mixture weights that are constrained to sum to 1:

$$a_e \propto \delta + \exp \alpha_e$$
 (2)

$$b_{r,r'} \propto \exp \beta_{r,r'}$$
 (3)

 $\delta \geqslant$ 0: hyper-parameter α_e , $\beta_{r,r'}$: learnable exponential mixture parameters

Our neighbor-based entity representation

$$\boldsymbol{\vartheta}_{e,r} = \boldsymbol{a}_e \boldsymbol{v}_e + \sum_{(e',r') \in \mathcal{N}_e} \boldsymbol{b}_{r,r'} \boldsymbol{u}_{e',r'}$$
 Violet Anne child of
$$\boldsymbol{e} = \text{Ben_Affleck}$$

$$\boldsymbol{r} = \text{occupation}$$

$$\mathcal{N}_e = \{(\text{Violet_Anne}, \text{child_of}),$$

$$(\text{male}, \text{gender}^{-1}),$$

$$(\text{Los_Angeles}, \text{live_in}^{-1}),$$

$$(\text{Oscar_award}, \text{won}^{-1})\}$$

e = Ben Affleck

r = occupation

Our new embedding model TransE-NMM for KBC

- Embedding models define for each triple $(h, r, t) \in \mathcal{G}$, a score function f(h, r, t) that measures its implausibility
- Goal: choose f such that the score f(h, r, t) of a plausible triple (h, r, t) is smaller than the score f(h', r', t') of an implausible triple (h', r', t').
- Entity e and relation r are represented with vectors $\mathbf{v}_e \in \mathbb{R}^k$ and $\mathbf{v}_r \in \mathbb{R}^k$

$$f(h,r,t)_{\mathsf{TransE}} = \|oldsymbol{v}_h + oldsymbol{v}_r - oldsymbol{v}_t\|_{\ell_{1/2}}$$

The score function of our new model TransE-NMM is defined as follows:

$$f(h,r,t) = \|\vartheta_{h,r} + \mathbf{v}_r - \vartheta_{t,r^{-1}}\|_{\ell_{1/2}}$$
 (4)

$$oldsymbol{artheta}_{\mathsf{e},\mathsf{r}} = a_{\mathsf{e}} oldsymbol{v}_{\mathsf{e}} + \sum_{(\mathsf{e}',\mathsf{r}') \in \mathcal{N}_{\mathsf{e}}} b_{\mathsf{r},\mathsf{r}'} oldsymbol{u}_{\mathsf{e}',\mathsf{r}'}$$

$$\boldsymbol{u}_{e,r} = \boldsymbol{v}_e + \boldsymbol{v}_r \tag{5}$$

$$\mathbf{v}_{r^{-1}} = -\mathbf{v}_r$$

Our new embedding model TransE-NMM for KBC

$$\vartheta_{e,r} = a_e \boldsymbol{v}_e + \sum_{(e',r') \in \mathcal{N}_e} b_{r,r'} \big(\boldsymbol{v}_{e'} + \boldsymbol{v}_{r'} \big)$$

$$\boldsymbol{v}_{olet} \text{ Anne}$$

$$\boldsymbol{v}_{olet} \text{ Child of }$$

$$\boldsymbol{v}_{$$

Parameter optimization

- Model parameters:
 - Entity vectors v_e
 - Relation type vectors v_r
 - $\alpha = \{\alpha_e | e \in \mathcal{E}\}$: entity-specific weights
 - ▶ $\beta = \{\beta_{r,r'} | r, r' \in \mathcal{R} \cup \mathcal{R}^{-1} \}$: relation-specific weights
- Minimize the L₂-regularized margin-based objective function:

$$\mathcal{L} = \sum_{\substack{(h,r,t) \in \mathcal{G} \\ (h',r,t') \in \mathcal{G}'_{(h,r,t)}}} [\gamma + f(h,r,t) - f(h',r,t')]_{+} + \frac{\lambda}{2} (\|\alpha\|_{2}^{2} + \|\beta\|_{2}^{2})$$

$$\mathcal{G}'_{(h,r,t)} = \{ (h',r,t) \mid h' \in \mathcal{E}, (h',r,t) \notin \mathcal{G} \}$$

$$\cup \{ (h,r,t') \mid t' \in \mathcal{E}, (h,r,t') \notin \mathcal{G} \}$$

- $[x]_{+} = \max(0, x)$
- $\triangleright \gamma$: the margin hyper-parameter
- \triangleright λ : the L_2 regularization parameter

Related work

Model	Score function $f(h, r, t)$
STransE	$\ \mathbf{W}_{r,1}\mathbf{v}_h + \mathbf{v}_r - \mathbf{W}_{r,2}\mathbf{v}_t\ _{\ell_{1/2}}$; $\mathbf{W}_{r,1}$, $\mathbf{W}_{r,2} \in \mathbb{R}^{k \times k}$; $\mathbf{v}_r \in \mathbb{R}^k$
TransE	$\ \mathbf{v}_h + \mathbf{v}_r - \mathbf{v}_t\ _{\ell_{1/2}}$; $\mathbf{v}_r \in \mathbb{R}^k$
TransH	$\ (\mathbf{I} - \mathbf{r}_{p}\mathbf{r}_{p}^{\top})\mathbf{v}_{h} + \mathbf{v}_{r} - (\mathbf{I} - \mathbf{r}_{p}\mathbf{r}_{p}^{\top})\mathbf{v}_{t}\ _{\ell_{1/2}}$
	$m{r}_{p}, m{v}_{r} \in \mathbb{R}^{k} ; m{l}: ext{Identity matrix size} k imes k$
TransD	$\ (\mathbf{I} + \mathbf{r}_p \mathbf{h}_p^{\top}) \mathbf{v}_h + \mathbf{v}_r - (\mathbf{I} + \mathbf{r}_p \mathbf{t}_p^{\top}) \mathbf{v}_t \ _{\ell_{1/2}}$
	$m{r}_p, m{v}_r \in \mathbb{R}^n \; ; m{h}_p, m{t}_p \in \mathbb{R}^k \; ; m{l} \colon Identity \; matrix \; size \; n imes k$
TransR	$\ \mathbf{W}_r \mathbf{v}_h + \mathbf{v}_r - \mathbf{W}_r \mathbf{v}_t\ _{\ell_{1/2}}$; $\mathbf{W}_r \in \mathbb{R}^{n \times k}$; $\mathbf{v}_r \in \mathbb{R}^n$
NTN	$\mathbf{v}_r^{ op} tanh(\mathbf{v}_h^{ op} \mathbf{M}_r \mathbf{v}_t + \mathbf{W}_{r,1} \mathbf{v}_h + \mathbf{W}_{r,2} \mathbf{v}_t + \mathbf{b}_r)$
IVIIV	\mathbf{v}_r , $\mathbf{b}_r \in \mathbb{R}^n$; $\mathbf{M}_r \in \mathbb{R}^{k \times k \times n}$; $\mathbf{W}_{r,1}$, $\mathbf{W}_{r,2} \in \mathbb{R}^{n \times k}$
DISTMULT	$oldsymbol{v}_h^{ op} oldsymbol{W}_r oldsymbol{v}_t$; $oldsymbol{W}_r$ is a diagonal matrix $\in \mathbb{R}^{k imes k}$
Bilinear-COMP	$\mathbf{v}_h^{T} \mathbf{W}_{r_1} \mathbf{W}_{r_2} \mathbf{W}_{r_m} \mathbf{v}_t ; \mathbf{W}_{r_1}, \mathbf{W}_{r_2},, \mathbf{W}_{r_m} \in \mathbb{R}^{k \times k}$
TransE-COMP	$\ \mathbf{v}_h + \mathbf{v}_{r_1} + \mathbf{v}_{r_2} + + \mathbf{v}_{r_m} - \mathbf{v}_t\ _{\ell_{1/2}}$; $\mathbf{v}_{r_1}, \mathbf{v}_{r_2},, \mathbf{v}_{r_m} \in \mathbb{R}^k$
TransE-NMM	$\ \boldsymbol{\vartheta}_{h,r} + \boldsymbol{v}_r - \boldsymbol{\vartheta}_{t,r^{-1}}\ _{\ell_{1/2}}$

Evaluation: experimental setup

Dataset:	WN11	FB13	NELL186
#R	11	13	186
#E	38,696	75,043	14,463
#Train	112,581	316,232	31,134
#Valid	2,609	5,908	5,000
#Test	10,544	23,733	5,000

- #E: number of entities
- #R: number of relation types
- #Train, #Valid and #Test are the numbers of correct triples in the training, validation, and test sets, respectively
- Each validation and test set also contains the same number of incorrect triples as the number of correct triples

Triple classification task:

- Predict whether a triple (h, r, t) is correct or not
- ightharpoonup Set a relation-specific threshold $heta_r$ for each relation type r
- For an unseen test triple (h, r, t), if f(h, r, t) is smaller than θ_r then the triple will be classified as correct, otherwise incorrect
- Relation-specific thresholds are determined by maximizing the microaveraged accuracy on the validation set

Evaluation: experimental setup

Entity prediction task:

- ▶ Predict h given (?, r, t) or predict t given (h, r, ?) where ? denotes the missing element
- ightharpoonup Corrupt each correct test triple (h, r, t) by replacing either h or t by each of the possible entities in turn
- Rank these candidates in ascending order of their implausibility value compute by the score function
- "Raw" and "Filtered" setting protocols in which "Filtered" setting is to filter out before ranking any corrupted triples that appear in the KB
- ▶ Metrics: mean rank (MR), mean reciprocal rank (MRR) and Hits@10 (H10)

Relation prediction task:

- ▶ Predict r given (h,?,t) where ? denotes the missing element
- Corrupt each correct test triple (h, r, t) by replacing r by each of the possible relations in turn

Evaluation: quantitative results

Data	Method		Triple	class.	Entity prediction			Relation prediction		
Data		Method	Mic.	Mac.	MR	MRR	H@10	MR	MRR	H@10
	R	TransE	85.21	82.53	4324	0.102	19.21	2.37	0.679	99.93
WN11	11	TransE-NMM	86.82	84.37	3466	0.123	20.59	2.14	0.687	99.92
AAIATT	F	TransE			4304	0.122	21.86	2.37	0.679	99.93
	'	TransE-NMM			3447	0.137	23.03	2.14	0.687	99.92
	R	TransE	87.57	86.66	9037	0.204	35.39	1.01	0.996	99.99
FB13	К	TransE-NMM	88.58	87.99	8289	0.258	35.53	1.01	0.996	100.0
1 013	F	TransE			5600	0.213	36.28	1.01	0.996	99.99
	1	TransE-NMM			5018	0.267	36.36	1.01	0.996	100.0
	R	TransE	92.13	88.96	309	0.192	36.55	8.43	0.580	77.18
NELL186	TransE-NMM	94.57	90.95	238	0.221	37.55	6.15	0.677	82.16	
INLLLIOU		TransE			279	0.268	47.13	8.32	0.602	77.26
F	Г	TransE-NMM			214	0.292	47.82	6.08	0.690	82.20

- Mic.: Micro-averaged accuracy; Mac.: Macro-averaged accuracy
- "R" and "F" denote the "Raw" and "Filtered" settings used in the entity prediction and relation prediction tasks, respectively
 - Better results are in bold

Evaluation: quantitative results

Method	W11	F13
TransR	85.9	82.5
CTransR	85.7	-
TransD	<u>86.4</u>	89.1
TranSparse-S	<u>86.4</u>	88.2
TranSparse-US	86.8	87.5
NTN	70.6	87.2
TransH	78.8	83.3
SLogAn	75.3	85.3
KG2E	85.4	85.3
Bilinear-COMP	77.6	86.1
TransE-COMP	80.3	87.6
TransE	85.2	87.6
TransE-NMM	86.8	88.6

Micro-averaged accuracy for triple classification on WN11 and FB13

Results on the NELL186 test set:

Method	Triple	class.	Entity pred.		
Method	Mic.	Mac.	MR	H@10	
TransE-LLE	90.08	84.50	535	20.02	
SME-LLE	93.64	89.39	<u>253</u>	37.14	
SE-LLE	<u>93.95</u>	88.54	447	31.55	
TransE-SkipG	85.33	80.06	385	30.52	
SME-SkipG	92.86	<u>89.65</u>	293	39.70	
SE-SkipG	93.07	87.98	412	31.12	
TransE	92.13	88.96	309	36.55	
TransE-NMM	94.57	90.95	238	<u>37.55</u>	

The entity prediction results are in the "Raw" setting

Evaluation: qualitative results

- Take the relation-specific mixture weights from the learned TransE-NMM
- Extract neighbor relations with the largest mixture weights given a relation

Relation	Top 3-neighbor relations
has instance	type_of
nas_mstance	subordinate_instance_of
(WN11)	domain_topic
nationality	place_of_birth
пацопанц	place_of_death
(FB13)	location
CEOof	WorksFor
CEOOI	TopMemberOfOrganization
(NELL186)	PersonLeadsOrganization

Summary

- We introduced a neighborhood mixture model for knowledge base completic by constructing neighbor-based vector representations for entities
- We demonstrated its effect by extending the state-of-the-art embedding model TransE with our neighborhood mixture model
- Our model significantly improves TransE and obtains better results than the other state-of-the-art embedding models on three evaluation tasks
- We plan to apply the neighborhood mixture model to the relation path models to combine the useful information from both relation paths and entity neighborhoods

Thank you for your attention!

- Dat Quoc Nguyen, Kairit Sirts, Lizhen Qu and Mark Johnson. STransE: a novel embedding model of entities and relationships in knowledge bases. In *Proceedings of* NAACL-HLT, 2016.
- Dat Quoc Nguyen, Kairit Sirts, Lizhen Qu and Mark Johnson. Neighborhood Mixture Model for Knowledge Base Completion. In *Proceedings of CoNLL*, 2016.
- Thanh Vu*, Dat Quoc Nguyen*, Mark Johnson, Dawei Song and Alistair Willis. Search Personalization with Embeddings. In *Proceedings of ECIR 2017*, to appear.