Metody Odkrywania Wiedzy Dokumentacja końcowa projektu

"Predykcja zużycia energii na podstawie danych czujnikowych"

Krzysztof Belewicz Paweł Pieńczuk

25 stycznia 2020

1. Opis projektu

Celem projektu było wyznaczenie całkowitego zużycia energii dla zadanej chwili czasu, tzn. sumy poborów sprzętów AGD (kolumna 'Appliances') i oświetlenia (kolumna 'Lights'). Zbiór danych został pozyskany z archiwum dostępnego na stronie: https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction. Pojęciem docelowym jest wartość całkowitej pobieranej mocy przez gospodarstwo domowe.

TODO

2. Opis danych

2.1. Charakterystyka danych

Dane wykorzystywane do eksperymentów zostały zebrane za pomocą sieci czujników w niewielkim domu w czasie 4.5 miesiąca. Składają się z:

- daty i godziny pomiaru,
- poboru energii sprzętów domowych [Wh],
- poboru energii oświetlenia [Wh],
- pomiarów temperatury i wilgotności dla 8 różnych pomieszczeń ([°C], [%]),
- pomiarów temperatury i wilgotności dla zewnętrznej, północnej strony budynku ([°C], [%]),
- danych z pobliskiej stacji pogodowej:
 - \circ temperatura powietrza [$^{\circ}C$],
 - \circ temperatura punktu rosy [$^{\circ}C$],
 - o ciśnienie atmosferyczne [mm Hg],
 - o wilgotność [%],
 - o prędkość wiatru [m/s],
 - o widoczność [km].

2.2. Przygotowanie danych

Każdy pomiar został uśredniony z 3 próbek wykonanych w równych odstępach co ok. 3,3 min. W ramach przygotowania danych, data i godzina pomiaru zostały rozdzielone na dwie oddzielne kolumny – ułatwi to późniejsze operacje na danych.

3. Opis algorytmów

TODO - ten chapter jest imo zawarty w 'konstrukcji i ocenie modeli' ergo można usunąć, grafikę przenieść tam. (chapter jest tutaj bo skopiowałem sprawko wstępne) (grafika nie wiem czemu tutaj jest, tak wyszło)

Variable importance

4. Selekcja atrybutów

TODO jakoś ładnie opisać, to co niżej raczej dla inspiracji

Algorytm randomForest pozwala uszeregować atrybuty na dwa sposoby:

- przydatność atrybutu oceniania jest względem tego, jak bardzo model pogorszy się gdy tego atrybutu zabraknie,
- przydatność atrybutu określa zmniejszenie nieczystości po podziale w oparciu o ten atrybut. Została wybrana pierwsza metoda ze względu na jej widoczny i bezpośredni związek z jakością całego modelu.

Najprostszym, zadowalającym rozwiązaniem jest zastosowanie pakietu randomForest w celu wyznaczenia predykcyjnej przydatności atrybutów, a następnie wybór (może w kilku wariantach) pewnej liczby najlepszych atrybutów (np. najlepsze 25%, 50% itp.). W tym przypadku zalecałbym użycie miary "mean decrease accuracy", co wymaga użycia w wywołaniu funkcji randomForest argumentu importance=TRUE, zaś w wywołaniu funkcji importance lub varImpPlot argumentu type=1. Inne bardziej zautomatyzowane podejścia można znaleźć w kilku pakietach wymienionych tutaj: https://github.com/FrancisArgnR/R-FeatureSelection-Packages

4.1. Wyniki selekcji atrybutów

TODO jakaś tabelka albo co + ew wnioski

5. Konstrukcja i ocena modeli

5.1. Metody konstrukcji modeli

Pojedyncze modele drzew regresji zazwyczaj cierpią z powodu wysokiej wariancji – jedną z metod jej redukcji jest tzw. Bagging (**B**ootstrap **agg**regat**ing**). Metoda ta polega na łączeniu i uśrednianiu wielu modeli drzew, co zmniejsza wariancję i redukuje zbytnie dopasowanie.

Bagging może zostać zrealizowany za pomocą pakietu *ipred* lub *caret*. *Ipred* jest z reguły prostszy w realizacji, jednakże stosowanie *caret* niesie za sobą kilka zalet. Znacznie prościej jest weryfikować krzyżowo wyniki – pomimo możliwości wykorzystania błędu OOB (Out-of-Bag) w *ipred*, weryfikacja krzyżowa daje dużo lepsze zrozumienie spodziewanego błędu. Dodatkowo możliwy jest dostęp do zmiennej odpowiedniości w wygenerowanych drzewach.

Do konstrukcji modeli klasyfikacji został wykorzystany pakiet rpart budujacy drzewo klasyfikacji oraz pakiet e1071, który umozliwia waidacje skrosna oraz automatyczny dobór parametrów w celu zmninimalizowania błedu.

5.2. Budowa modelu klasyfikacji z pakietu ipred

TODO - pakiety R, parametry (np kryteria stopu, etc)

5.3. Ocena modeli

TODO opisać że wybraliśmy np: CC - współczynnik korelacji liniowej Pearsona

$$\frac{cov(P,A)}{var(P) \cdot var(A)}$$

TODO tutaj ładnie się wpasuje co po kolei w kodzie poszło

6. Wnioski

TODO

Plik: main.r

```
# main v1.1
   #setwd("E:/Documents/Studies/MOW/MOW project")
   #setwd("Z:/Offtop/MOW/Project/MOW_project")
   setwd("F:/GitHub/MOW_project")
 5
   setwd(".")
6
7
   library(rsample)
                          # data splitting
   library(dplyr)
                          # data wrangling
 9 library(ipred)
                          # bagging
10 library(caret)
                          # bagging
11 library(dmr.regtree)
12
13
   rm(list = ls())
14
15
   # DATA COLLECTION AND ORGANIZATION GOES HERE
16
17
   source('R/data_org.R', echo=TRUE)
18
19
   # FEATURE SELECTION GOES HERE
20
21
   source('R/feature_selection.R')
22
   source('R/simple.filter.R')
23
24
   res <- feature_selection(test_data = test_data,
25
                                    type = "rf",
26
                                    part = 0.25,
27
                                    trees_num=20)
28
29
   # CREATING MODELS GOES HERE
30
31
   # EVALUATION PROCEDURES GOES HERE
32
33
   source("R/model_eval.R")
34
35
   ctrl <- trainControl(method = "cv", number = 10)</pre>
36 args_t <- c(method="treebag",trControl=ctrl)</pre>
37
38
   tempdataframe <- model_eval(test_data = test_data,</pre>
39
                                 fun = rpart,
40
                                 formula = as.character(res$attr_part[1]),
41
                                 crossval_number = 10
42
43
   tempdataframe2 <- model eval(test data = test data,
44
                                  fun = lm,
45
                                  formula = as.character(res$attr_part[1]),
                                  crossval_number = 10
46
47
48
   tempdataframe3 <- model_eval(test_data = test_data,</pre>
49
                                  fun = bagging,
50
                                  formula = as.character(res$attr_part[1]),
51
                                  crossval\_number = 10
52
53
   tempdataframe4 <- model_eval(test_data = test_data,</pre>
54
                                  fun = train,
55
                                  formula = as.character(res$attr_part[1]),
56
                                  crossval\_number = 10,
57
                                  args=args_t
58
```

Plik: data_org.R

```
#data_org.R
 2
   # data collecting and organization
 3
4 training_data <- read.csv("training.csv")
5 complete_data <- read.csv("energydata_complete.csv")</pre>
6
7 month = as.numeric(substring(complete_data$date, 6, 7))
8 day = as.numeric(substring(complete_data$date, 9, 10))
9 hours = as.numeric(substring(complete_data$date, 12, 13))
10 minutes = as.numeric(substring(complete_data$date, 15, 16))
11 day_mon = day + 30 * month
12 min_hour = minutes + 60 * hours
13
14 test_data <- data.frame(</pre>
     Appliances = complete_data$Appliances,
15
16
     month = substring(complete_data$date, 6, 7),
17
     day = substring(complete_data$date, 9, 10),
18
     hours = substring(complete_data$date, 12, 13),
19
     minutes = substring(complete_data$date, 15, 16),
20
     day_mon = day_mon,
21
     min_hour = min_hour,
22
     T1 = complete_data$T1,
23
     T2 = complete_data$T2,
24
     T3 = complete_data$T3,
25
     T4 = complete_data$T4,
26
     T5 = complete_data$T5,
27
     T6 = complete_data$T6,
28
     T7 = complete_data$T7,
29
     T8 = complete data$T8,
30
     T9 = complete_data$T9,
31
     RH_1 = complete_data$RH_1,
32
     RH_2 = complete_data$RH_2,
33
     RH_3 = complete_data$RH_3,
34
     RH_4 = complete_data$RH_4,
35
     RH_5 = complete_data$RH_5,
36
     RH_6 = complete_data$RH_6,
37
     RH_7 = complete_data$RH_7,
38
     RH_8 = complete_data$RH_8,
39
     RH_9 = complete_data$RH_9,
40
     T_out = complete_data$T_out,
41
     RH_out = complete_data$RH_out,
42
     Press_mm_hg = complete_data$Press_mm_hg,
43
     Windspeed = complete_data$Windspeed,
44
     Visibility = complete_data$Visibility,
45
     Tdewpoint = complete_data$Tdewpoint,
46
     rv1 = complete_data$rv1,
47
     rv2 = complete_data$rv2
48
   )
49
50 test_data <- test_data[1:1000,]</pre>
51
52 month = as.numeric(substring(training_data$date, 6, 7))
53 day = as.numeric(substring(training_data$date, 9, 10))
54
   hours = as.numeric(substring(training_data$date, 12, 13))
55 minutes = as.numeric(substring(training_data$date, 15, 16))
56
57 \text{ day\_mon} = \text{day} + 30 * \text{month}
58 min_hour = minutes + 60 * hours
59
```

```
60 vars train <- data.frame(</pre>
61
     Appliances = training_data$Appliances,
62
     month = substring(training_data$date, 6, 7),
63
     day = substring(training_data$date, 9, 10),
64
     hours = substring(training_data$date, 12, 13),
65
     minutes = substring(training_data$date, 15, 16),
66
     day_mon = day_mon,
67
     min_hour = min_hour,
68
     T1 = training data$T1,
69
     T2 = training_data$T2,
70
     T3 = training_data$T3,
71
     T4 = training_data$T4,
72
     T5 = training_data$T5,
73
     T6 = training_data$T6,
74
     T7 = training_data$T7,
75
     T8 = training_data$T8,
76
     T9 = training_data$T9,
77
     RH_1 = training_data$RH_1,
78
     RH_2 = training_data$RH_2,
79
     RH_3 = training_data$RH_3,
80
     RH_4 = training_data$RH_4,
81
     RH_5 = training_data$RH_5,
82
     RH_6 = training_data$RH_6,
83
     RH 7 = training data$RH 7,
84
     RH_8 = training_data$RH_8,
85
     RH_9 = training_data$RH_9,
86
     RH_out = training_data$RH_out,
87
     T_out = training_data$T_out,
88
     Press_mm_hg = training_data$Press_mm_hg,
89
     Windspeed = training_data$Windspeed,
90
     Visibility = training_data$Visibility,
91
     Tdewpoint = training_data$Tdewpoint,
92
     rv1 = training_data$rv1,
93
     rv2 = training_data$rv2
94 )
```

Plik: feature selection.R

```
1
   # feature_selection.R
 2
 3 library(randomForest)
4 library(rpart)
                          # plotting regression trees
5 library(rpart.plot)
6 library (Metrics)
                          # RMSE
7 library(dmr.disc)
8 library(dmr.stats)
 a
10 #' @title Feature Selection
11 #'
12 #' @param test_data - data to perform feature ranking
13 #' @param type - "rf" - randomForest IMPORTANCE-based ranking (MSE) (default),
14 #' "bootstrap" - bootstraped R2-based (coef. of determination) ranking
15 #' "simple" - simple filter based algorithms
16~ #' @param part - part of attributes returned by feature selection, 0 < part <=1 (default=0
17
   #' @param trees_num - numbers of trees (randomForest) or bootstrap sets (bootstrap)
18
19 #' @return formula with selected attributes
20 #'
21 #'
   # ′
22
23
   feature_selection <<- function(test_data, type="rf", part=1, trees_num=10) {</pre>
24
25
     if ( !is.data.frame(test_data) ) {
26
       message("Pass_data_frame_format")
27
       stop()
28
29
     if (trees num<1) {</pre>
30
       message("Trees_number_should_be_>=_1")
31
       stop()
32
33
     if (part>1|part<=0) {
34
       message("Parts_of_atrributes_must_be_>0_and_<=1")</pre>
35
       stop()
36
37
38
     print("FEATURE_SELECTION")
39
     count <- ceiling((ncol(test_data)-1)*part)</pre>
40
41
     if (type=="rf") {
42
        full_model_RF <- randomForest(formula = Appliances ~ .,</pre>
43
                             data = test_data,
44
                             importance = TRUE,
45
                             ntree=trees_num)
46
        importance_RF <- data.frame(importance(full_model_RF, type=1), "k"=1:(ncol(test_data)-</pre>
47
       wyniki <- data.frame("importance"=importance_RF[order(importance_RF[,1],decreasing = T
48
                                   "k"=importance_RF$k[order(importance_RF[,1],decreasing = TRU
49
                                   "attr"=rownames(importance_RF)[order(importance_RF[,1], decr
50
51
        # plotting most important parameters
52
       varImpPlot(x=full_model_RF,
53
                 n.var=count,
54
                 type=1,
55
                 main="Variable_importance")
56
57
        # passing most important attributes from feature selection
58
       count <- ceiling((ncol(test_data)-1)*part)</pre>
59
       attr_part <- paste(wyniki$attr[2:count], collapse = "+")</pre>
```

```
60
        attr part <- paste("Appliances", "~", attr part)</pre>
61
        out <- data.frame(attr_part, wyniki)</pre>
62
        return (out)
63
64
      else if(type=="bootstrap") {
65
66
        r2 <- function(pred.y, true.y)</pre>
67
         { 1 - length(true.y) *mse(pred.y = pred.y, true.y=true.y) / ((length(true.y)-1) *var(true.y
68
69
        N=trees_num
70
71
        wyniki <- data.frame(matrix(0,ncol=3,nrow=(ncol(test_data)-2)))</pre>
72
73
         # bootstrap
74
        for (i in 1:N)
75
76
           wyniki_tmp <- data.frame("quality"=double(), "quality_perm"=double(), "quality_diff"</pre>
77
78
           n <- sample(nrow(test_data), nrow(test_data), replace=TRUE)</pre>
79
           data_train <- test_data[n,]</pre>
80
           data_test <- test_data[-n,]</pre>
81
82
           # tworzenie modelu na wszystkich atrybutach
83
           model <- rpart(formula=Appliances~.,</pre>
84
                           data=data_train,
85
                           method='anova'
86
87
           pred_full <- predict(model, data_test)</pre>
88
89
           quality <- r2(pred.y = pred_full, true.y = data_test$Appliances)
90
91
           # badanie wplywu permutacji
92
           for (k in 2:(ncol(test_data)-1))
93
94
             # permutacja k-tego atrybutu
95
             data_test_perm <- data_test</pre>
96
             data_test_perm[,k] <- sample(data_test_perm[,k])</pre>
97
98
             # predykcja dla atrybutow o spermutowanych wartosciach
99
             pred_perm <- predict(model, data_test_perm)</pre>
100
101
             quality_perm <- r2(pred.y = pred_perm, true.y = data_test_perm$Appliances)
102
103
             quality_diff <- quality - quality_perm</pre>
104
             wyniki_tmp <- rbind(wyniki_tmp, c(quality, quality_perm, quality_diff))</pre>
105
106
           # dodanie wynikow z i-tej iteracji
107
           wyniki <- wyniki + wyniki_tmp
108
109
110
        wyniki <- wyniki/N
111
112
        wyniki <- data.frame(2:k, colnames(test_data)[2:k], wyniki[,3])
        wyniki <- wyniki[order(wyniki[,3], decreasing = TRUE),]</pre>
113
114
        colnames(wyniki) <- c("k", "attr", "R2_diff")</pre>
115
116
        count <- ceiling((ncol(test_data)-1)*part)</pre>
        message('Najwa?aniejsze_', part*100, '%_atrybut?w_to:\n', paste(wyniki$attr[1:count],
117
118
        attr_part <- paste(wyniki$attr[2:count], collapse = "+")</pre>
119
        attr_part <- paste("Appliances", "~", attr_part)</pre>
120
```

```
121
        out <- data.frame(attr_part, wyniki)</pre>
122
        return (out)
123
124
125
      else if (type=="simple") {
126
         # Symmetric uncertainty - symunc
127
         # discnm.eqfreq - equal-frequency discretization
128
129
         res <- simple.filter(formula = Appliances~.,
130
                                data = discnm.eqfreq(~.,test_data,50),
131
                                dd=symunc)
132
133
        names_t <- names(res)</pre>
134
         attr_part <- paste(names_t[1:count], collapse = "+")</pre>
135
        attr_part <- paste("Appliances", "~", attr_part)</pre>
136
        out <- data.frame(attr_part, res)</pre>
137
        return (out)
138
139
      else{
140
        message("Wrong, type, of, feature, selection:..\"bootstrap\"..\"rf\".or,.\"simple\".")
141
         stop()
142
143 }
```

Plik: simple.filter.R

```
2
  library(dmr.stats)
3
  library(dmr.util)
4
5 dd.chi2 <- function(a1, a2) 1-chisq.test(a1, a2)$p.value
6 cd.kruskal <- function(a1, a2) 1-kruskal.test(a1, a2)$p.value
   cc.spearman <- function(a1, a2) 1-cor.test(a1, a2, method="spearman") $p.value
7
8
9 #' @title Simple attribute filter
10 #'
11 #' @param formula
12 #' @param data
13 #' @param dd
14 #' @param cd
15 #' @param cc
16 #'
17 #' @return
18 #'
19 #'
20 #'
21 simple.filter <- function(formula, data, dd=dd.chi2, cd=cd.kruskal, cc=cc.spearman)
22
23
     attributes <- x.vars(formula, data)</pre>
24
     target <- y.var(formula)</pre>
25
     utility <- function(a)
26
27
       unname(switch(attr.type(data[[a]], data[[target]]),
                      dd = dd(data[[a]], data[[target]]),
28
29
                      cd = cd(data[[a]], data[[target]]),
30
                      dc = cd(data[[target]], data[[a]]),
31
                      cc = cc(data[[a]], data[[target]])))
32
33
     sort(sapply(attributes, utility), decreasing=TRUE)
34
   }
```

Plik: model eval.R

```
# model evaluation
 1
 2
 3
   library(dmr.claseval)
4
 5
   #' @title Model Evaluation
   # 1
6
7
   #' @param test_data - data to perform cross-validation
 8
   #' @param fun - regression algorithm (e.g. train, bagging, lm) default=rpart
   #' @param formula - regression formula
10 #' @param crossval_number - number of cross-validations, default=10
   #' @param args - passed arguments into regression algorithm, default=NULL
11
12
   # 1
13 #' @return data frame with measures in following order: MSE, RRSE, MAE, RMSE, RAE, COR, RS
14 #'
   # ′
15
16 model_eval <<- function(test_data, fun=rpart, formula, crossval_number=10, args=NULL) {</pre>
17
18
     if ( !is.data.frame(test_data) ) {
19
        message("Pass_data_frame_format")
20
        stop()
21
22
     if ( !is.character(formula)) {
23
        message ("Pass string into attr parameter")
24
        stop()
25
26
     if (crossval_number<1) {</pre>
27
        message("Cross_validations_number_must_be_greater_than_0")
28
        stop()
29
30
     if (crossval_number==1) {
31
        warning("No_cross-validation")
32
33
     temp_model <- crossval(fun,
34
                             as.formula(formula),
35
                             test_data,
36
                             k=crossval_number,
37
                             args = args)
38
     MSE <- mse(temp_model$pred, temp_model$true)</pre>
39
     RRSE <- rrse(temp_model$pred, temp_model$true)</pre>
40
     MAE <- mae(temp_model$pred, temp_model$true)</pre>
41
     RMSE <- rmse(temp_model$pred, temp_model$true)</pre>
42
     RAE <- rae(temp_model$pred, temp_model$true)</pre>
43
     COR <- cor(temp model$pred, temp model$true, method="pearson")
44
     RSE <- rse(temp_model$pred, temp_model$true)</pre>
45
     out <- data.frame (MSE, RRSE, MAE, RMSE, RAE, COR, RSE)</pre>
46
47
     return (out)
48
```