Nevyvážený Wheatstoneův můstek vyhodnocení změny odporu odporového snímače

Jakub Dvořák

21.11.2020

1 Úkol měření

- 1. a) Zapojte převodník R \rightarrow U s operačním zesilovačem podle schématu na obr. 1 ($U_{\rm r}$ = 10 V, $R_{\rm N1}$ = 10 k Ω) a změřte závislost odporu snímače na jeho úhlové výchylce $\alpha_{\rm v}$ rozsahu α = 0 až 180° po 15° (klidové poloze snímače $\alpha_{\rm m}$ 90° odpovídá hodnota odporu R_0 , tj. ΔR = 0).
 - b) Odporový snímač zapojte do Wheatstoneova můstku napájeného ze zdroje napětí U_{AC} = 5 V (obr. 2). Můstek vyvažte odporovou dekádou R_D pro hodnotu α = 90° a změřte závislost f_{MN} výstupního napětí U_{BD} na změně úhlu α , tj. na změně odporu ΔR (pro stejné hodnoty α jako v bodě 1). Odvod'te teoretický vztah pro toto napětí, tj.

$$U_{BD} = f_{MN}(\Delta R) = \frac{U_{AC}}{4} \frac{\frac{\Delta R}{R_0}}{1 + \frac{\Delta R}{2R_0}} \tag{1}$$

2. Odporový snímač zapojte do Wheatstoneova můstku napájeného ze zdroje proudu I=2,5 mA. Zdroj proudu realizujte pomocí operačního zesilovače (obr. 3). Můstek opět vyvažte odporovou dekádou $R_{\rm D}$ pro hodnotu $\alpha=90^{\circ}$ a změřte závislost fMP výstupního napětí $U_{\rm BD}$ na změně úhlu α , tj. na změně odporu Δ R (pro stejné hodnoty α jako v bodě 1). Odvod'te teoretický vztah pro toto napětí, tj.

$$U_{BD} = f_{MN}(\Delta R) = \frac{I}{4} \frac{\Delta R}{1 + \frac{\Delta R}{4R_0}}$$
 (2)

3. Podle schématu na obr. 4 zapojte tzv. "linearizovaný můstek" (velikost napájecího napětí volte U_Z = 2,5 V). Můstek vyvažte odporovou dekádou RD pro hodnotu α = 90° a změřte závislost U₂ = f_{LM} výstupního napětí U₂ na změně úhlu α, tj. na změně odporu ΔR (pro stejné hodnoty úhlu αjako v předešlých bodech). Odvoď te teoretický vztah pro toto napětí, tj.

$$U_2 = f_{LM}(\Delta R) = -\frac{\Delta R}{2R_0} U_Z \tag{3}$$

4. Do společného grafu vyneste odchylky hodnot naměřených dle bodů 2, 3 a 4 od lineárního průběhu. Směrnici přímky, od které budete určovat odchylky od linearity, stanovte z koncových bodů naměřené závislosti f_{LM}(ΔR) (tedy pro α = 0 a α = 180°). Pokud se absolutní hodnoty napětí v koncových bodech liší, nahraď te je aritmetickým průměrem těchto absolutních hodnot (spojnice U'₂ = f'_{LM}(ΔR) takto upravených koncových bodů prochází počátkem souřadnic [ΔR, U₂]). Odchylky závislostí f_{MN}(ΔR), f_{MP}(ΔR) a f_{LM}(ΔR) od linearity určete jako odchylky těchto závislostí od přímky U'₂ = f'_{LM}(ΔR). To lze udělat proto, že pro měření dle bodů 2, 3 a 4 jsou v zadáních zvoleny hodnoty napájecích napětí (resp. proudu) tak, aby směrnice všech závislostí v počátku byly zhruba stejné.

2 Schéma zapojení

Obrázek 1: Schéma zapojení pro převodník $R \rightarrow U$

Obrázek 2: Wheatstoneův můstek napájený ze zdroje napětí

Obrázek 3: Wheatstoneův můstek napájený ze zdroje proudu

Př 1 - přípravek s operačním zesilovačem

Př 2 - přípravek s dvojicí rezistorů

Př 3 - přípravek s odporovým snímačem úhlu

 Z_1 - napájecí zdroj operačního zesilovače

Z₁ - číslicově řízený zdroj ss napětí U_Z

ČV - číslicový voltmetr typ: Agilent 34401A

 R_{N1} - rezistor $10 \text{ k}\Omega$ R_{N1} - rezistor $1 \text{ k}\Omega$

R_D - odporová dekáda

3 Seznam použitých přístrojů

4 Teoretický úvod

Pro zapojení podle obrázku 1 platí

$$U_2 = -U_r \frac{U_x}{R_{N1}}.$$

Pro velikost měřeného odporu tedy platí

$$U_{\rm x} = -R_{\rm N1} \frac{U_2}{R_{\rm r}}.\tag{4}$$

Nevyvážený Wheatstoneův můstek se většinou využívá při měření neelektrických veličin, které jsou různými senzory převáděny na elektrický odpor.

5 Naměřené hodnoty

6 Zpracování naměřených hodnot

Hodnoty z kapitoly 1 jsou zaneseny v tabulce 1.

Jednotlivé rozdíly napětí od lineární funkce jsou zakresleny v grafu.

α (°)	$R_X(\Omega)$	$\Delta R(\Omega)$	U (mV)	$\Delta U (\mathrm{mV})$	U (mV)	$\Delta U (\mathrm{mV})$	U (mV)	$\Delta U (\mathrm{mV})$	Lin. (mV)
180	2080,5	-315,1	-204,52	-7,59	-198,82	-13,29	-222,70	10,59	-212,11
170	2041,5	-276,1	-181,16	11,47	-175,15	5,46	-195,67	25,98	-169,69
150	1976,8	-211,4	-141,08	13,82	-135,20	7,93	-149,46	22,20	-127,27
130	1905,1	-139,7	-94,34	9,49	-89,81	4,96	-98,13	13,28	-84,84
110	1835,7	-70,3	-48,12	5,69	-45,14	2,71	-48,95	6,53	-42,42
90	1765,4	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
70	1696,8	68,6	49,04	-6,62	45,53	-3,11	48,47	-6,05	42,42
50	1632,5	132,9	97,65	-12,80	88,93	-4,09	93,95	-9,10	84,84
30	1564,5	200,9	150,57	-23,31	135,68	-8,42	142,03	-14,77	127,27
10	1504,8	260,6	198,97	-29,28	177,51	-7,82	184,28	-14,59	169,69
00	1466,7	298,7	230,76	-18,65	204,62	7,49	211,23	0,88	212,11

Tabulka 1: Vypočtené hodnoty rozdílů napětí od lineární funkce

Graf 1: Závislost rozdílu změny napětí od lineární funkce na výchylce snímače

6.1 Odvození vztahů

$$U_{\rm BD} = U_{\rm B} - U_{\rm D} = \left(U_{\rm AC} \frac{R_0}{2R_0}\right) - \left(U_{\rm AC} \frac{R_0 + \Delta R}{2R_0 + \Delta R}\right)$$

$$U_{\rm BD} = U_{\rm AC} \left(\frac{1}{2} - \frac{R_0}{2R_0 + \Delta R}\right) = U_{\rm AC} \frac{2R_0 + \Delta R - 2(R_0 + \Delta R)}{4R_0 + 2\Delta R} = -U_{\rm AC} \frac{\Delta R}{2(2R_0 + \Delta R)}$$

$$U_{\rm BD} = -\frac{U_{\rm AC}}{4} \cdot \frac{\frac{\Delta R}{R_0}}{1 + \frac{\Delta R}{2R_0}}$$
(5)

Pro odvození vztahu pro proudový zdroj budeme vycházet z proudového děliče:

$$\frac{I_{\rm B}}{I} = \frac{\frac{U}{2R_0}}{U\frac{4R_0 + \Delta R}{2R_0(2R_0 + \Delta R)}} = \frac{\mathcal{U}}{2\mathcal{R}_0} \cdot \frac{\frac{2\mathcal{R}_0(2R_0 + \Delta R)}{4R_0 + \Delta R}}{\mathcal{U}} = \frac{2R_0 + \Delta R}{4R_0 + \Delta R} \to I_{\rm B} = \frac{2R_0 + \Delta R}{4R_0 + \Delta R} \cdot I \tag{6}$$

$$I_{\rm D} = I - I_{\rm B} = I \left(1 - \frac{2R_0 + \Delta R}{4R_0 + \Delta R} \right) = \frac{2R_0}{4R_0 + \Delta R} \tag{7}$$

$$U_{\rm BD} = R_0 I_{\rm B} - (R_0 + \Delta R) \cdot I_{\rm D} = -I \frac{R_0 + \Delta R}{4R_0 + \Delta R} = -\frac{I}{4} \cdot \Delta \frac{1}{1 + \frac{\Delta R}{4R_0}}$$
(8)

7 Závěrečné vyhodnocení

Jak je vidět z grafu 1, tak nejvíce přesná metoda je můstek napájený ze zdroje proudu. Nicméně v praxi je nejpřesnější metoda linearizovaného můstku. Tato chyba mohla vzniknout například nepřesným určováním polohy úhlu ručičky. Další zdroj nepřesnosti mohl být nesprávné vyvážení můstku na začátku měření.

Seznam použité literatury a zdrojů informací

Seznam použitých internetových zdrojů

[1] Návod k laboratorní úloze