بس مِاللَّهِ الرَّمَن الرَّحِيمِ

Chapter 2 – Updated Version 2021

- 1. Theis considered as the first stage in most computer vision applications.
 - a. Computer vision
 - b. image processing
 - c. see the image
 - d. Taz photography
- 2. why image processing
 - a. to preprocess the image
 - b. convert it into a form suitable for further analysis
 - c. A&B
- 3. Image Noise Reasons
 - a. Light Variations
 - b. Camera Electronics
 - c. Surface Reflectance
 - d. Lens
 - e. Time effects
 - f. All Of The Above

I(x,y): the true pixel values n(x,y): the noise at pixel (x,y) $\hat{I}(x,y) = I(x,y) + n(x,y)$

- 4. Noise Equation:
- 5. Gaussian Noise Equation:
- 6. **point** to point mapping to perform brightness, contrast adjustments, color correction and transformations.
 - a. Point Operators

$$n(x,y) = e^{\frac{-n^2}{2\sigma^2}}$$

- b. Image filters in spatial domain
- c. Image filters in the frequency domain

- d. Templates and Image Pyramids
- mathematical operations of a grid of numbers to perform smoothing, sharpening, and measuring texture.
 - a. Point Operators
 - b. Image filters in spatial domain
 - c. Image filters in the frequency domain
 - d. Templates and Image Pyramids
- 8. a way to modify the **frequencies** of images to perform Denoising, sampling, and image compression.
 - a. Point Operators
 - b. Image filters in spatial domain
 - c. Image filters in the frequency domain
 - d. Templates and Image Pyramids
- 9. A way to match a template to the image to perform Detection and coarse-to-fine registration
 - a. Point Operators
 - b. Image filters in spatial domain
 - c. Image filters in the frequency domain
 - d. Templates and Image Pyramids
- 10. They are the simplest kinds of image processing transforms
 - a. Point Operators
 - b. Image filters in spatial domain
 - c. Image filters in the frequency domain
 - d. Templates and Image Pyramids
- 11. Each output pixel's value depends only on input pixel value.
 - a. Point Operators
 - b. Image filters in spatial domain
 - c. Image filters in the frequency domain
 - d. Templates and Image Pyramids
- 12. Point operators include
 - a. Brightness
 - b. Contrast Adjustments
 - c. Color Correction

	d.	Transformations.				
	e.	All of the above				
13.	A gene	ral image processing operator is a function that takes one or more input images and				
	produces an output image					
	a.	<u>True</u>				
	b.	False				
14.	Commo	Commonly used point processes are with a constant				
	a.	multiplication				
	b.	addition				
	c.	subtraction				
	d.	<u>A&B</u>				
15.	Multipl	lication (a > 0) and addition (b) are called				
	a.	Gain and Bias parameters				
	b.	Bias and Gain parameters				
16.	Gain ar	nd Bias parameters control <mark>contrast</mark> and <mark>brightness</mark>				
	a.	<u>True</u>				
		False				
<u>17.</u>	Gain ar	nd Bias parameters can be spatially when simulating the used by				
<u>17.</u>	Gain ar	nd Bias parameters can be spatially when simulating the used by graphers to selectively darken the sky.				
17 .	Gain ar photog a.	nd Bias parameters can be spatially when simulating the used by graphers to selectively darken the sky. Fixed, graded density filter				
17.	Gain ar photog a.	nd Bias parameters can be spatially when simulating the used by graphers to selectively darken the sky. Fixed, graded density filter Varying, graded density filter				
17.	Gain ar photog a. b.	nd Bias parameters can be spatially when simulating the used by graphers to selectively darken the sky. Fixed, graded density filter Varying, graded density filter Varying, graded contrast filter				
	Gain ar photog a. b. c. d.	raphers to selectively darken the sky. Fixed, graded density filter Varying, graded density filter Varying, graded contrast filter Varying, fixed density filter				
	Gain ar photog a. b. c. d.	raphers to selectively darken the sky. Fixed, graded density filter Varying, graded density filter Varying, graded contrast filter Varying, fixed density filter is varying from 0 and 1, this operator can be used to perform a				
	Gain ar photog a. b. c. d.	raphers to selectively darken the sky. Fixed, graded density filter Varying, graded density filter Varying, graded contrast filter Varying, fixed density filter is varying from 0 and 1, this operator can be used to perform a between two images or videos.				
	Gain ar photog a. b. c. d. The	raphers to selectively darken the sky. Fixed, graded density filter Varying, graded density filter Varying, graded contrast filter Varying, fixed density filter is varying from 0 and 1, this operator can be used to perform a between two images or videos. Spatial blend operator and temporal cross-dissolve				
	Gain ar photog a. b. c. d. The	raphers to selectively darken the sky. Fixed, graded density filter Varying, graded density filter Varying, graded contrast filter Varying, fixed density filter				
	Gain ar photog a. b. c. d. The a. b.	raphers to selectively darken the sky. Fixed, graded density filter Varying, graded density filter Varying, graded contrast filter Varying, fixed density filter				
18 .	Gain ar photog a. b. c. d. The a. b. c. d.	raphers to selectively darken the sky. Fixed, graded density filter Varying, graded density filter Varying, graded contrast filter Varying, fixed density filter is varying from 0 and 1, this operator can be used to perform a between two images or videos. Spatial blend operator and temporal cross-dissolve linear blend operator and fixed cross-dissolve linear blend operator and temporal cross-dissolve linear blend operator and temporal cross-dissolve				
18 .	Gain ar photog a. b. c. d. The a. b. c. d.	raphers to selectively darken the sky. Fixed, graded density filter Varying, graded density filter Varying, graded contrast filter Varying, fixed density filter				
18 .	Gain ar photog a. b. c. d. The a. b. c. d.	raphers to selectively darken the sky. Fixed, graded density filter Varying, graded density filter Varying, graded contrast filter Varying, fixed density filter				

	b.	Linear blend operator
	c.	Color balancing
	d.	Graded density filter
20.	The	. is used by photographers to selectively darken the skys.
	a.	Gamma correction
	b.	Linear blend operator
	C.	Color balancing
	d.	Graded density filter
21.	Gamma	a value equal is usually fit for most digital cameras.
	a.	2.1
	b.	<u>2.2</u>
	c.	2.3
	d.	2.4
22.	Color in	mages can be treated as <mark>arbitrary vector-valued</mark> functions or collections of <mark>independent</mark>
	<mark>bands</mark>	
	a.	True
	b.	False
23.	But it u	sually makes sense to think about color images as highly correlated signals with strong
	connec	tions <mark>to</mark> the <mark>image formation process</mark> , <mark>sensor design</mark> , and <mark>human perception</mark>
	a.	<u>True</u>
	b.	False
<mark>24.</mark>	adding	the same value to each color channel increases,, and of
	each pi	xel
	a.	hue
	b.	saturation
	C.	intensity
	d.	all of the above
25.		can be performed either by <mark>multiplying each channel with a deferent scale factor</mark> or
	by the	more complex process of mapping to XYZ color space
	a.	Pixel balancing
	b.	Zzzzzzz!
	c.	Color balancing

	d.	Contrast balancing
26.	The pro	ocess of <mark>extracting</mark> the object from the original image
	a.	Compositing
	b.	Matting
	c.	alpha-matted color image
	d.	opacity
27.	The pro	ocess of <mark>inserting</mark> an image into another image.
	a.	Compositing
	b.	Matting
	C.	alpha-matted color image
	d.	opacity
28.	The int	ermediate representation used for the foreground object between matting and
	compo	siting is called an
	a.	Compositing
	b.	Matting
	c.	alpha-matted color image
	d.	opacity
29.	It conta	ains a <mark>fourth alpha channel</mark> (or <mark>A</mark>) that <mark>describes</mark> the relative amount of <mark>opacity</mark>
	a.	Compositing
	b.	Matting
	c.	alpha-matted image
	d.	opacity
30.		is the fractional coverage at each pixel
31.	The op	posite of transparency
	a.	Compositing
	b.	Matting
	c.	alpha-matted color image
	d.	<u>opacity</u>
32.	Pixels v	within the object are fully if opacity = $\frac{1}{2}$, while pixels fully outside the object are
	fully	if opacity = <mark>0</mark>
	a.	Opaque, transparent
	b.	Transparent, opaque

\sim	• • •	
22	compositing	Adulation
ാം.	compositing	Cuualiuii

To composite a new (or foreground) image on top of an old (background) image, the over operator is used, $C = (1 - \alpha)B + \alpha F$.

	В	his operator attenuates the influence of the background image by a factor $(1-\alpha)$ and then adds in the color (and opacity) alues corresponding to the foreground layer F.
34.	The	channel describe the relative amount of opacity or fractional coverage at each pixel.
	a.	Beta
	b.	Sigma
	c.	<u>Alpha</u>
	d.	Gamma
35.	Histogr	am equalization intensity mapping function f (I) makes the output histogram
	a.	<u>Flat</u>
	b.	Curvy
	c.	Sherif Mounir
36. Locally adaptive histogram equalization an example of a Or		
	a.	Point operator
	b.	Neighborhood operator
	C.	Local operator
	d.	<u>B&C</u>
<mark>37</mark> .	full hist	togram equalization is an example of operations that can be done in transformations
	a.	Frequency
	b.	Spatial
	c.	<u>Point</u>
	d.	Template
38.	Neighb	orhood operator uses a collection of pixel values in the vicinity of a given pixel to
	determ	nine its final output value

- a. True
- b. false
- 39. linear filtering filters images in order to

- a. local tone adjustment
- b. soft blur
- c. sharpen details
- d. accentuate edges
- e. remove noise.

f. All of the above

- 40. Linear filtering operators involve weighted combinations of pixels in small neighborhoods
 - a. true
 - b. False
- 41. compute function of local neighborhood at each position.
 - a. Hamada bl ganzabeel
 - b. point operators
 - c. Image filtering
 - d. Linear filtering
- 42. Image filtering can be used in
 - a. Enhance images: Denoise, resize, increase contrast, etc.
 - b. Extract information from images: Texture, edges, distinctive points, etc.
 - c. Detect patterns: Template matching.
 - d. All of the above
- 43. Derivative is the Rate of change
 - a. True
 - b. False

Gradient direction

Derivative Functions

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$
 Backward difference
Given function
$$f(x,y)$$
 Gradient vector
$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$
 ifference
Gradient magnitude
$$|\nabla f(x,y)| = \sqrt{f_x^2 + f_y^2}$$

 $\theta = \tan^{-1} \frac{f_x}{f_y}$

Derivative Masks Backward difference [-1 1] Forward difference [1 -1] Central difference [-1 0 1]

Convolution

- 44. Replaces each pixel with an average of its neighborhood and Achieve smoothing effect
- 45. Makes a border around the image

a. Box filter

- b. Average filter
- Gaussian filter
- All of the above

$$f \otimes h = \sum_{k} \sum_{l} f(k,l)h(i+k, j+l)$$

f = Image

h = Kernel ● Mean

$$I = \frac{I_1 + I_2 + \dots I_n}{n} = \frac{\sum_{i=1}^{n} I_i}{n}$$

• Weighted mean

$$I = \frac{w_1 I_1 + w_2 I_2 + \ldots + w_n I_n}{n} = \frac{\sum_{i=1}^{n} w_i I_i}{n}$$

- 46. Weight contributions of neighboring pixels by nearness
 - a. Box filter
 - b. Average filter
 - c. Gaussian filter(low-pass filter)
 - d. All of the above
- 47. Gaussian equation

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

- 48. Remove high-frequency components from the image (low-pass filter images become more smooth).
 - a. Box filter
 - b. Average filter
 - c. Gaussian filter
 - d. All of the above
- 49.is another gaussian.
 - a. Convolution

b. Convolution with self

- 50. Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width $\sigma\sqrt{2}$.
 - a. True
 - b. False
- 51. Factors into product of two 1D gaussians
 - a. Kernel
 - b. Separable kernel
- 52. Gaussian
 - a. Most common natural model.
 - b. Smooth function, it has infinite number of derivatives.
 - c. Fourier Transform of Gaussian is Gaussian.
 - d. Convolution of a Gaussian with itself is a Gaussian.
 - e. There are cells in eye that perform Gaussian filtering.
 - f. All of the above
- 53. This photo was taken by who?

- a. Taz photography
- b. Taz photography