Graphical Models

TTT4185 Machine Learning for Signal Processing

Giampiero Salvi

 $\begin{array}{c} \text{Department of Electronic Systems} \\ \text{NTNU} \end{array}$

HT2021

Course plan (So far)

- Speech Perception and Production
- Speech Analysis and Feature Extraction (Ex. 1)
- Intro to Machine Learning/Probability and Information Theory
- Linear Models for Regression and Classification
- Kernel Methods and Support Vector Machines (Ex. 2)
- Deep Neural Networks (Ex. 3)

Course plan (Rest of the lectures)

Guest lecture!

Pablo Ortiz, Telenor Research

•	Graphical Models (Bayesian Networks)	2h
•	Unsupervised Learning (k-means and Mixture Models)	2h
•	Sequences and Hidden Markov Models	4h
•	Dimensionality Reduction	2h
•	Summary	1h

2020-11-24

Computer Exercises: Orals

- You will be able to book a time from week 46
- The focus will be on understanding rather than implementation
- More information will be given by the TAs

Graphical Models: Motivation

So far (supervised learning)

- ullet \mathbf{x}_i input, t_i output
- ullet goal: estimate $f(\mathbf{x})$ that approximates relationship between \mathbf{x} and t

We would like to consider probabilistic models more in general

- given a set of random variables $\mathbf{x}_1, \dots, \mathbf{x}_K$
- ullet describe the joint probability distribution $p(\mathbf{x}_1,\ldots,\mathbf{x}_K)$

Graphical Models:

- simple way to visualize structure in probabilistic models
- insights into the properties of the model (conditional independence)
- complex computations expressed in terms of graphical manipulations

Graphical Models

Definition

- Each node corresponds to a random variable
- Each link (edge or arc) represents probabilistic relationship between variables
- Graph: how to decompose the joint distribution into factors

Bayesian Networks:

- Directed graphs
- useful to express causal relationships

Markov Random Fields:

Undirected graphs

Factor Graphs:

Mainly used for calculations

Bayesian Network simple example

Three variables a, b, and c.

$$\begin{array}{lcl} p(a,b,c) & = & p(c|a,b)p(a,b) \\ & = & p(c|a,b)p(b|a)p(a) \end{array}$$

$$p(x_1, ..., x_7) =$$

$$p(x_1)$$

$$p(x_2|x_1)$$

$$p(x_3|x_1, x_2)$$

$$p(x_4|x_1, x_2, x_3)$$

$$p(x_5|x_1, x_2, x_3, x_4)$$

$$p(x_6|x_1, x_2, x_3, x_4, x_5)$$

$$p(x_7|x_1, x_2, x_3, x_4, x_5, x_6)$$

$$p(x_1, ..., x_7) =$$

$$p(x_1)$$

$$p(x_2|x_1)$$

$$p(x_3|x_1, x_2)$$

$$p(x_4|x_1, x_2, x_3)$$

$$p(x_5|x_1, x_2, x_3, x_4)$$

$$p(x_6|x_1, x_2, x_3, x_4, x_5)$$

$$p(x_7|x_1, x_2, x_3, x_4, x_5, x_6)$$

$$p(x_1, ..., x_7) = p(x_1)$$

$$p(x_2)$$

$$p(x_3)$$

$$p(x_4|x_1, x_2, x_3)$$

$$p(x_5|x_1, x_3)$$

$$p(x_6|x_4)$$

$$p(x_7|x_4, x_5)$$

$$p(x_1, \dots, x_7) = \prod_{k=1}^K p(x_k | \mathsf{pa}_k)$$

If we observe x_4 ...

If we observe x_4 ... d-separation:

Head-to-tail:

 x_2 and x_6 conditionally independent

If we observe x_4 ... d-separation:

Head-to-tail:

 x_2 and x_6 conditionally independent

Tail-to-tail:

 x_{6} and x_{7} conditionally independent

If we observe x_4 ... d-separation:

Head-to-tail:

 x_2 and x_6 conditionally independent

Tail-to-tail:

 x_6 and x_7 conditionally independent

Head-to-head:

 x_1, x_2 and x_3 dependent (explaining away)

Model:

$$p(t|\mathbf{w}, \mathbf{x}, \sigma^2) = \mathcal{N}(\mathbf{w}^T \mathbf{x}, \sigma^2)$$

 $p(\mathbf{w}|\alpha) = \mathcal{N}(0, \frac{1}{\alpha}\mathbf{I})$

$$\mathbf{t} = (t_1, \dots, t_n)^T$$

$$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^T$$

$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{w}) \prod_{n=1}^{N} p(t_n | \mathbf{w})$$

$$\mathbf{t} = (t_1, \dots, t_n)^T$$

$$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^T$$

$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{w}) \prod_{n=1}^{N} p(t_n | \mathbf{w})$$

$$\mathbf{t} = (t_1, \dots, t_n)^T$$

$$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^T$$

$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{w}) \prod_{n=1}^N p(t_n | \mathbf{w})$$

$$p(\mathbf{t}, \mathbf{w} | \mathbf{X}, \alpha, \sigma^2) = p(\mathbf{w} | \alpha) \prod_{n=1}^N p(t_n | \mathbf{w}, \mathbf{x}_n, \sigma^2)$$

Generative Models: Ancestral Sampling

- consider variables x_1, \ldots, x_k with joint $p(x_1, \ldots, x_k)$
- \bullet order them in such a way that there is no link from any node x_i to any node x_j if j < i
- ullet we want a sample $\hat{x}_1,\ldots,\hat{x}_k$
- first sample \hat{x}_1 from $p(x_1)$
- then for every n=[2,k] sample \hat{x}_n from $p(x_n|pa_n)$

Inference

- Given a set of observed variables, compute marginal for the other nodes
 - junction tree algorithm: efficient algorithm based on dynamic programming
- given a set of data points eliminate arcs
 - K2 algorithm

conditional distributions

$$P(o_1, \dots, o_M | i_1, \dots, i_N)$$

$$P(i_1, \dots, i_M | o_1, \dots, o_N)$$

conditional distributions $P(o_1, \cdots, o_M | i_1, \cdots, i_N)$ $P(i_1, \cdots, i_M | o_1, \cdots, o_N)$

conditional distributions $P(o_1, \cdots, o_M | i_1, \cdots, i_N)$ $P(i_1, \cdots, i_M | o_1, \cdots, o_N)$

joint distribution $P(v_1, v_2, \cdots, v_K)$

conditional distributions $P(o_1, \cdots, o_M | i_1, \cdots, i_N)$ $P(i_1, \cdots, i_M | o_1, \cdots, o_N)$

joint distribution $P(v_1,v_2,\cdots,v_K) \quad \text{marginalisation} \\ P(o_5|i_1,i_3)$

Multi-modality: analogy

Use of Graphical Models

- interpret probabilistic methods
- use directly as ML method (junction tree and K2 algorithms)
- Pros: much more flexible than SVMs and DNNs
- Cons: learning more difficult
 - not feasible for complex (noisy, continuous) perception tasks
 - more suitable for higher cognitive functions (discrete)