Wine Quality Prediction

July 22, 2023

```
[35]: import numpy as np
      import pandas as pd
      import matplotlib.pyplot as plt
      import seaborn as sb
      from sklearn.model selection import train test split
      from sklearn.preprocessing import MinMaxScaler
      from sklearn import metrics
      from sklearn.svm import SVC
      from xgboost import XGBClassifier
      from sklearn.linear_model import LogisticRegression
      import warnings
      warnings.filterwarnings('ignore')
[34]: df = pd.read_csv('winequalityprediction-red.csv')
      print(df.head())
        fixed acidity volatile acidity citric acid residual sugar
                                                                      chlorides
                                                 0.00
     0
                  7.4
                                   0.70
                                                                  1.9
                                                                           0.076
     1
                  7.8
                                   0.88
                                                 0.00
                                                                  2.6
                                                                           0.098
                                                 0.04
     2
                  7.8
                                   0.76
                                                                  2.3
                                                                           0.092
     3
                                                 0.56
                                                                  1.9
                 11.2
                                   0.28
                                                                           0.075
     4
                  7.4
                                   0.70
                                                 0.00
                                                                  1.9
                                                                           0.076
        free sulfur dioxide total sulfur dioxide density
                                                               pH sulphates \
     0
                       11.0
                                              34.0
                                                     0.9978 3.51
                                                                        0.56
     1
                       25.0
                                              67.0
                                                     0.9968 3.20
                                                                        0.68
                                              54.0
                                                                        0.65
     2
                       15.0
                                                     0.9970 3.26
     3
                       17.0
                                              60.0
                                                     0.9980 3.16
                                                                        0.58
     4
                       11.0
                                              34.0
                                                     0.9978 3.51
                                                                        0.56
        alcohol quality
     0
            9.4
                       5
     1
            9.8
     2
            9.8
                       5
     3
            9.8
                       6
     4
            9.4
                       5
```

[3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype	
0	fixed acidity	1599 non-null	float64	
1	volatile acidity	1599 non-null	float64	
2	citric acid	1599 non-null	float64	
3	residual sugar	1599 non-null	float64	
4	chlorides	1599 non-null	float64	
5	free sulfur dioxide	1599 non-null	float64	
6	total sulfur dioxide	1599 non-null	float64	
7	density	1599 non-null	float64	
8	рН	1599 non-null	float64	
9	sulphates	1599 non-null	float64	
10	alcohol	1599 non-null	float64	
11	quality	1599 non-null	int64	
1.				

 ${\tt dtypes: float64(11), int64(1)}$

memory usage: 150.0 KB

[4]: df.describe().T

[4]:		count	mean	std	min	25%
	fixed acidity	1599.0	8.319637	1.741096	4.60000	7.1000
	volatile acidity	1599.0	0.527821	0.179060	0.12000	0.3900
	citric acid	1599.0	0.270976	0.194801	0.00000	0.0900
	residual sugar	1599.0	2.538806	1.409928	0.90000	1.9000
	chlorides	1599.0	0.087467	0.047065	0.01200	0.0700
	free sulfur dioxide	1599.0	15.874922	10.460157	1.00000	7.0000
	total sulfur dioxide	1599.0	46.467792	32.895324	6.00000	22.0000
	density	1599.0	0.996747	0.001887	0.99007	0.9956
	рН	1599.0	3.311113	0.154386	2.74000	3.2100
	sulphates	1599.0	0.658149	0.169507	0.33000	0.5500
	alcohol	1599.0	10.422983	1.065668	8.40000	9.5000
	quality	1599.0	5.636023	0.807569	3.00000	5.0000

	50%	75%	max
fixed acidity	7.90000	9.200000	15.90000
volatile acidity	0.52000	0.640000	1.58000
citric acid	0.26000	0.420000	1.00000
residual sugar	2.20000	2.600000	15.50000
chlorides	0.07900	0.090000	0.61100
free sulfur dioxide	14.00000	21.000000	72.00000
total sulfur dioxide	38.00000	62.000000	289.00000
density	0.99675	0.997835	1.00369
рН	3.31000	3.400000	4.01000

```
sulphates
                             0.62000
                                       0.730000
                                                    2.00000
      alcohol
                            10.20000 11.100000
                                                   14.90000
      quality
                             6.00000
                                       6.000000
                                                    8.00000
 [5]: df.isnull().sum()
 [5]: fixed acidity
                              0
      volatile acidity
                              0
      citric acid
                              0
      residual sugar
                              0
      chlorides
                              0
     free sulfur dioxide
                              0
      total sulfur dioxide
                              0
      density
                              0
                              0
     рΗ
      sulphates
                              0
      alcohol
                              0
      quality
                              0
      dtype: int64
 [9]: for col in df.columns:
        if df[col].isnull().sum() > 0:
          df[col] = df[col].fillna(df[col].mean())
      df.isnull().sum().sum()
 [9]: 0
[11]: df.hist(bins=40, figsize=(20, 20))
      plt.show()
```



```
[12]: plt.bar(df['quality'], df['alcohol'])
   plt.xlabel('quality')
   plt.ylabel('alcohol')
   plt.show()
```



```
[13]: plt.figure(figsize=(14, 14))
sb.heatmap(df.corr() > 0.7, annot=True, cbar=False)
plt.show()
```



```
[18]: ((1279, 10), (320, 10))
[19]: norm = MinMaxScaler()
      xtrain = norm.fit_transform(xtrain)
      xtest = norm.transform(xtest)
[36]: models = [LogisticRegression(), XGBClassifier(), SVC(kernel='rbf')]
      for i in range(3):
          models[i].fit(xtrain, ytrain)
          print(f'{models[i]} : ')
          print('Training Accuracy : ', metrics.roc_auc_score(ytrain, models[i].
       →predict(xtrain)))
          print('Validation Accuracy : ', metrics.roc_auc_score(ytest, models[i].
       →predict(xtest)))
          print()
     LogisticRegression():
     Training Accuracy: 0.7286886534333447
     Validation Accuracy: 0.765345444536196
     XGBClassifier(base_score=None, booster=None, callbacks=None,
                   colsample_bylevel=None, colsample_bynode=None,
                   colsample_bytree=None, early_stopping_rounds=None,
                   enable_categorical=False, eval_metric=None, feature_types=None,
                   gamma=None, gpu_id=None, grow_policy=None, importance_type=None,
                   interaction_constraints=None, learning_rate=None, max_bin=None,
                   max_cat_threshold=None, max_cat_to_onehot=None,
                   max_delta_step=None, max_depth=None, max_leaves=None,
                   min_child_weight=None, missing=nan, monotone_constraints=None,
                   n_estimators=100, n_jobs=None, num_parallel_tree=None,
                   predictor=None, random_state=None, ...) :
     Training Accuracy: 1.0
     Validation Accuracy: 0.8345523180370414
     SVC():
     Training Accuracy: 0.7699408577589806
     Validation Accuracy: 0.7930675160237505
 []:
[38]: print(metrics.classification_report(ytest,models[1].predict(xtest)))
                   precision
                                recall f1-score
                                                   support
                0
                        0.81
                                  0.84
                                            0.82
                                                       147
```

1	0.86	0.83	0.84	173
accuracy macro avg	0.83	0.83	0.83 0.83	320 320
weighted avg	0.84	0.83	0.83	320

[]:[