Sequences and Series Tutorial

Dr. Nijat Aliyev

BHOS

Calculus

November 20, 2023

Find the general term for the sequences.

12.
$$\left\{-\frac{1}{4}, \frac{2}{9}, -\frac{3}{16}, \frac{4}{25}, \ldots\right\}$$

13.
$$\{1, -\frac{2}{3}, \frac{4}{9}, -\frac{8}{27}, \ldots\}$$

- 11. $\{2, 7, 12, 17, \ldots\}$. Each term is larger than the preceding one by 5, so $a_n = a_1 + d(n-1) = 2 + 5(n-1) = 5n 3$.
- 12. $\left\{-\frac{1}{4}, \frac{2}{9}, -\frac{3}{16}, \frac{4}{25}, \ldots\right\}$. The numerator of the nth term is n and its denominator is $(n+1)^2$. Including the alternating signs, we get $a_n = (-1)^n \frac{n}{(n+1)^2}$.
- 13. $\left\{1, -\frac{2}{3}, \frac{4}{9}, -\frac{8}{27}, \ldots\right\}$. Each term is $-\frac{2}{3}$ times the preceding one, so $a_n = \left(-\frac{2}{3}\right)^{n-1}$.

17-46 Determine whether the sequence converges or diverges.
If it converges, find the limit.

17.
$$a_n = 1 - (0.2)^n$$

18.
$$a_n = \frac{n^3}{n^3 + 1}$$

$$\boxed{19.} \ a_n = \frac{3 + 5n^2}{n + n^2}$$

21.
$$a_n = e^{1/n}$$

$$23. \ a_n = \tan\left(\frac{2n\pi}{1+8n}\right)$$

20.
$$a_n = \frac{n^3}{n+1}$$

22.
$$a_n = \frac{3^{n+2}}{5^n}$$

24.
$$a_n = \sqrt{\frac{n+1}{9n+1}}$$

17.
$$a_n = 1 - (0.2)^n$$
, so $\lim_{n \to \infty} a_n = 1 - 0 = 1$ by (9). Converges

18.
$$a_n = \frac{n^3}{n^3 + 1} := \frac{n^3/n^3}{(n^3 + 1)/n^3} = \frac{1}{1 + 1/n^3}$$
, so $a_n \to \frac{1}{1 + 0} = 1$ as $n \to \infty$. Converges

19.
$$a_n = \frac{3+5n^2}{n+n^2} = \frac{(3+5n^2)/n^2}{(n+n^2)/n^2} = \frac{5+3/n^2}{1+1/n}$$
, so $a_n \to \frac{5+0}{1+0} = 5$ as $n \to \infty$. Converges

20.
$$a_n = \frac{n^3}{n+1} = \frac{n^3/n}{(n+1)/n} = \frac{n^2}{1+1/n^2}$$
, so $a_n \to \infty$ as $n \to \infty$ since $\lim_{n \to \infty} n^2 = \infty$ and $\lim_{n \to \infty} (1+1/n^2) = 1$. Diverges

21. Because the natural exponential function is continuous at 0, Theorem 7 enables us to write

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}e^{1/n}=e^{\lim_{n\to\infty}(1/n)}=e^0=1.\quad \text{Converges}$$

21. Because the natural exponential function is continuous at 0, Theorem 7 enables us to write

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} e^{1/n} = e^{\lim_{n \to \infty} (1/n)} = e^0 = 1$$
. Converges

22.
$$a_n = \frac{3^{n+2}}{5^n} = \frac{3^2 3^n}{5^n} = 9(\frac{3}{5})^n$$
, so $\lim_{n \to \infty} a_n = 9 \lim_{n \to \infty} (\frac{3}{5})^n = 9 \cdot 0 = 0$ by (9) with $r = \frac{3}{5}$. Converges

23. If
$$b_n = \frac{2n\pi}{1+8n}$$
, then $\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{(2n\pi)/n}{(1+8n)/n} = \lim_{n\to\infty} \frac{2\pi}{1/n+8} = \frac{2\pi}{8} = \frac{\pi}{4}$. Since \tan is continuous at $\frac{\pi}{4}$, by

Theorem 7,
$$\lim_{n\to\infty} \tan\left(\frac{2n\pi}{1+8n}\right) = \tan\left(\lim_{n\to\infty} \frac{2n\pi}{1+8n}\right) = \tan\frac{\pi}{4} = 1$$
. Converges

24. Using the last limit law for sequences and the continuity of the square root function,

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}\sqrt{\frac{n+1}{9n+1}}=\sqrt{\lim_{n\to\infty}\frac{n+1}{9n+1}}=\sqrt{\lim_{n\to\infty}\frac{1+1/n}{9+1/n}}=\sqrt{\frac{1}{9}}=\frac{1}{3}.\quad \text{Converges}$$

- **57.** For what values of r is the sequence $\{nr^n\}$ convergent?
- **58.** (a) If $\{a_n\}$ is convergent, show that

$$\lim_{n\to\infty}a_{n+1}=\lim_{n\to\infty}a_n$$

- (b) A sequence {a_n} is defined by a₁ = 1 and a_{n+1} = 1/(1 + a_n) for n ≥ 1. Assuming that {a_n} is convergent, find its limit.
- 59. Suppose you know that {a_n} is a decreasing sequence and all its terms lie between the numbers 5 and 8. Explain why the sequence has a limit. What can you say about the value of the limit?

- 57. If $|r| \ge 1$, then $\{r^n\}$ diverges by (9), so $\{nr^n\}$ diverges also, since $\{nr^n| = n |r^n| \ge |r^n|$. If |r| < 1 then $\lim_{x \to \infty} xr^x = \lim_{x \to \infty} \frac{x}{r^{-x}} \stackrel{\text{if }}{=} \lim_{x \to \infty} \frac{1}{(-\ln r)^{n-x}} = \lim_{x \to \infty} \frac{r^x}{-\ln r} = 0$, so $\lim_{n \to \infty} nr^n = 0$, and hence $\{nr^n\}$ converges
- 58. (a) Let $\lim_{n\to\infty} a_n = L$. By Definition 2, this means that for every $\varepsilon > 0$ there is an integer N such that $|a_n L| < \varepsilon$ whenever n > N. Thus, $|a_{n+1} L| < \varepsilon$ whenever n + 1 > N $\iff n > N 1$. It follows that $\lim_{n\to\infty} a_{n+1} = L$ and so $\lim_{n\to\infty} a_n = \lim_{n\to\infty} a_{n+1}$.
 - (b) If $L = \lim_{n \to \infty} a_n$ then $\lim_{n \to \infty} a_{n+1} = L$ also, so L must satisfy L = 1/(1+L) $\Rightarrow L^2 + L 1 = 0 \Rightarrow L = -\frac{1+\sqrt{3}}{2}$ (since L has to be nonnegative if it exists).
- 59. Since {a_n} is a decreasing sequence, a_n > a_{n+1} for all n ≥ 1. Because all of its terms lie between 5 and 8, {a_n} is a bounded sequence. By the Monotonic Sequence Theorem, {a_n} is convergent; that is, {a_n} has a limit L. L must be less than 8 since {a_n} is decreasing, so 5 ≤ L < 8.</p>

whenever |r| < 1.

60–66 Determine whether the sequence is increasing, decreasing, or not monotonic. Is the sequence bounded?

60.
$$a_n = (-2)^{n+1}$$

61.
$$a_n = \frac{1}{2n+3}$$

63.
$$a_n = n(-1)^n$$

65.
$$a_n = \frac{n}{n^2 + 1}$$

62.
$$a_n = \frac{2n-3}{3n+4}$$

64.
$$a_n = ne^{-n}$$

66.
$$a_n = n + \frac{1}{n}$$

- 60. The terms of $a_n = (-2)^{n+1}$ alternate in sign, so the sequence is not monotonic. The first five terms are 4, -8, 16, -32, and 64. Since $\lim_{n \to \infty} |a_n| = \lim_{n \to \infty} 2^{n-1} = \infty$, the sequence is not bounded.
- **61.** $a_n = \frac{1}{2n+3}$ is decreasing since $a_{n+1} = \frac{1}{2(n+1)+3} = \frac{1}{2n+5} < \frac{1}{2n+3} = a_n$ for each $n \ge 1$. The sequence is bounded since $0 < a_n \le \frac{1}{5}$ for all $n \ge 1$. Note that $a_1 = \frac{1}{5}$.
- **62.** a_a . $\frac{2n-3}{3n+4}$ defines an increasing sequence since for $f(x)=\frac{2x-3}{3x+4}$,
 - $f'(x) = \frac{(3x+4)(2)-(2x-3)(3)}{(3x+4)^2} = \frac{17}{(3x+4)^2} > 0. \text{ The sequence is bounded since } a_n \geq a_1 = -\frac{1}{7} \text{ for } n \geq 1.$

and
$$a_n < \frac{2n-3}{3n} < \frac{2n}{3n} = \frac{2}{3}$$
 for $n \ge 1$.

- 63. The terms of $a_n = n(-1)^n$ alternate in sign, so the sequence is not monotonic. The first five terms are -1, 2, -3, 4, and -5
 - Since $\lim_{n\to\infty} |a_n| = \lim_{n\to\infty} n = \infty$, the sequence is not bounded.

64. $a_n = ne^{-n}$ defines a positive decreasing sequence since the function $f(x) = xe^{-x}$ is decreasing for x > 1.

$$[f'(x)=e^{-x}-xe^{-x}=e^{-x}(1-x)<0 \text{ for } x>1.]$$
 The sequence is bounded above by $a_1=\frac{1}{c}$ and below by 0 .

- **65.** $a_n = \frac{n}{n^2 + 1}$ defines a decreasing sequence since for $f(x) = \frac{x}{x^2 + 1}$, $f'(x) = \frac{(x^2 + 1)(1) x(2x)}{(x^2 + 1)^2} = \frac{1 x^2}{(x^2 + 1)^2} \le 0$
 - for $x \ge 1$. The sequence is bounded since $0 < a_n \le \frac{1}{2}$ for all $n \ge 1$.
- **66.** $a_n = n + \frac{1}{n}$ defines an increasing sequence since the function $g(x) = x + \frac{1}{x}$ is increasing for x > 1. $[g'(x) = 1 1/x^2 > 0]$ for x > 1.] The sequence is unbounded since $a_n \to \infty$ as $n \to \infty$. (It is, however, bounded below by $a_1 = 2$.)

69. Show that the sequence defined by

$$a_1 = 1 a_{n+1} = 3 - \frac{1}{a_n}$$

is increasing and $a_n < 3$ for all n. Deduce that $\{a_n\}$ is convergent and find its limit.

- **69.** $a_1 = 1$, $a_{n+1} = 3 \frac{1}{a_n}$. We show by induction that $\{a_n\}$ is increasing and bounded above by 3. Let P_n be the proposition
 - that $a_{n+1}>a_n$ and $0< a_n<3$. Clearly P_1 is true. Assume that P_n is true. Then $a_{n+1}>a_n \Rightarrow \frac{1}{a_{n+1}}<\frac{1}{a_n} \Rightarrow \frac{1}{a_n}$
 - $-\frac{1}{a_{n+1}}>-\frac{1}{a_n}$. Now $a_{n+2}=3-\frac{1}{a_{n+1}}>3-\frac{1}{a_n}=a_{n+1}$ \Leftrightarrow P_{n+1} . This proves that $\{a_n\}$ is increasing and bounded above by 3, so $1=a_1< a_n<3$, that is, $\{a_n\}$ is bounded, and hence convergent by the Monotonic Sequence Theorem.
 - If $L=\lim_{n\to\infty}a_n$, then $\lim_{n\to\infty}a_{n+1}=L$ also, so L must satisfy $L=3\sim 1/L$ \Rightarrow $L^2-3L+1=0$ \Rightarrow $L=\frac{3\pm\sqrt{5}}{2}$.

But L > 1, so $L = \frac{3 + \sqrt{5}}{2}$.

- 77. Prove that if $\lim_{n\to\infty} a_n = 0$ and $\{b_n\}$ is bounded, then $\lim_{n\to\infty} (a_n b_n) = 0$.
- **78.** Let $a_n = \left(1 + \frac{1}{n}\right)^n$.
 - (a) Show that if $0 \le a < b$, then

$$\frac{b^{n+1}-a^{n+1}}{b-a}<(n+1)b^n$$

- (b) Deduce that $b^{n}[(n+1)a nb] < a^{n+1}$.
- (c) Use a = 1 + 1/(n + 1) and b = 1 + 1/n in part (b) to show that $\{a_n\}$ is increasing.
- (d) Use a = 1 and b = 1 + 1/(2n) in part (b) to show that $a_{2n} < 4$.

77. To Prove: If $\lim_{n\to\infty}a_n=0$ and $\{b_n\}$ is bounded, then $\lim_{n\to\infty}(a_nb_n)=0$.

Proof: Since $\{b_n\}$ is bounded, there is a positive number M such that $|b_n| \leq M$ and hence, $|a_n| |b_n| \leq |a_n| M$ for all $n \geq 1$. Let $\varepsilon > 0$ be given. Since $\lim_{n \to \infty} a_n = 0$, there is an integer N such that $|a_n - 0| < \frac{\varepsilon}{M}$ if n > N. Then $|a_nb_n - 0| = |a_nb_n| = |a_n| |b_n| \leq |a_n| M = |a_n - 0| M < \frac{\varepsilon}{M} \cdot M = \varepsilon$ for all n > N. Since ε was arbitrary, $\lim_{n \to \infty} (a_nb_n) = 0$.

78. (a)
$$\frac{b^{n+2}-a^{n+1}}{b-a} = b^n + b^{n-1}a + b^{n-2}a^2 + b^{n-3}a^3 + \dots + ba^{n-1} + a^n$$

 $< b^n + b^{n-1}b + b^{n-2}b^2 + b^{n-3}b^3 + \dots + bb^{n-1} + b^n = (n+1)b^n$

- (b) Since b-a>0, we have $b^{n+1}-a^{n+1}<(n+1)b^n(b-a) \Rightarrow b^{n+1}-(n+1)b^n(b-a)< a^{n+1}=b^n[(n+1)a-nb]< a^{n+1}$.
- (c) With this substitution, (n-1)a-nb=1, and so $b^n=\left(1+\frac{1}{n}\right)^n< a^{n+1}=\left(1+\frac{1}{n+1}\right)^{n+1}$.

9. Let
$$a_n = \frac{2n}{3n+1}$$
.

- (a) Determine whether $\{a_n\}$ is convergent.
- (b) Determine whether $\sum_{n=1}^{\infty} a_n$ is convergent.

- **9.** (a) $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{2n}{3n+1} = \frac{2}{3}$, so the sequence $\{a_n\}$ is convergent by (12.1.1).
 - (b) Since $\lim_{n\to\infty}a_n=\frac{2}{3}\neq 0$, the series $\sum_{n=1}^\infty a_n$ is divergent by the Test for Divergence.

27

47–51 Find the values of x for which the series converges. Find the sum of the series for those values of x.

47.
$$\sum_{n=1}^{\infty} \frac{x^n}{3^n}$$

48.
$$\sum_{n=1}^{\infty} (x-4)^n$$

49.
$$\sum_{n=0}^{\infty} 4^n x^n$$

50.
$$\sum_{n=0}^{\infty} \frac{(x+3)^n}{2^n}$$

$$51. \sum_{n=0}^{\infty} \frac{\cos^n x}{2^n}$$

- 47. $\sum_{n=1}^{\infty} \frac{x^n}{3^n} = \sum_{n=1}^{\infty} \left(\frac{x}{3}\right)^n \text{ is a geometric series with } r = \frac{x}{3}, \text{ so the series converges} \iff |r| < 1 \iff \frac{|x|}{3} < 1 \iff |x| < 3;$ that is, -3 < x < 3. In that case, the sum of the series is $\frac{a}{1-x} = \frac{x/3}{1-x/3} = \frac{x/3}{1-x/3} \cdot \frac{3}{3} = \frac{x}{3-x}.$
- **48.** $\sum_{n=1}^{\infty} (x-4)^n$ is a geometric series with r=x-4, so the series converges $\Leftrightarrow |r|<1 \Leftrightarrow |x-4|<1 \Leftrightarrow$
 - 3 < x < 5. In that case, the sum of the series is $\frac{x-4}{1-(x-4)} = \frac{x-4}{5-x}$.
- 49. $\sum_{n=0}^{\infty} 4^n x^n = \sum_{n=0}^{\infty} (4x)^n$ is a geometric series with r = 4x, so the series converges $\Leftrightarrow |r| < 1 \Leftrightarrow 4|x| < 1 \Leftrightarrow 1$

 $|x| < \frac{1}{4}$. In that case, the sum of the series is $\frac{1}{1 - 4x}$.

50.
$$\sum_{n=0}^{\infty} \frac{(x+3)^n}{2^n} \text{ is a geometric series with } r = \frac{x+3}{2}, \text{ so the series converges} \iff |r| < 1 \iff \frac{|x+3|}{2} < 1 \iff |x+3| < 2 \iff -5 < x < -1. \text{ For these values of } x \text{, the sum of the series is } \frac{1}{1-(x+3)/2} = \frac{2}{2-(x+3)} = -\frac{2}{x+1}.$$

51.
$$\sum_{n=0}^{\infty} \frac{\cos^n x}{2^n}$$
 is a geometric series with first term 1 and ratio $r = \frac{\cos x}{2}$, so it converges $\Leftrightarrow |r| < 1$. But $|r| = \frac{|\cos x|}{2} \le \frac{1}{2}$

for all x. Thus, the series converges for all real values of x and the sum of the series is $\frac{1}{1-(\cos x)/2}=\frac{2}{2-\cos x}$.