

## WLAN体系基本知识介绍





技术培训中心/高志岩

文档类型: 文档密级: 主送对象: 抄送对象: 文档编号: 审核人:



| 修订日期      | 修订版本 | 修订描述  | 作者  |
|-----------|------|-------|-----|
| 2011-7-27 | V1.0 | 初稿完成。 | 高志岩 |
|           |      |       |     |
|           |      |       |     |



- 掌握常见WLAN术语及概念
- 掌握WLAN射频技术特点
- 掌握WLAN 数据转发工作原理
- 掌握常见无线器件相关知识



- · 第一章 WLAN基础概念
- · 第二章 WLAN射频技术
- 第三章 WLAN数据转发工作原理
- 第四章 常见无线器件介绍

#### 什么是WLAN?

- > WLAN是 Wireless Local Area Network 的缩写,指应用无线通信技术将 计算机设备互联起来,构成可以互相通信和实现资源共享的网络体系。
- › 针对有线局域网一些缺点:线路成本、移动性差等,对于组网便捷性和移动性的要求,促成了WLAN的技术的诞生
- › 目前WLAN主要采用IEEE 802.11系列技术标准,为了保持和有线网络同等级的接入速度,目前比较常用的802.11g能够提供54M bit/s的速率,而802.11n则能提供300M bit/s,最后600M bit/s的速率。

- 什么是Wi-Fi?
  - > Wi-Fi联盟(Wireless Fidelity Alliance)是一个商业联盟,拥有 Wi-Fi的商标。它负责Wi-Fi 认证与商标授权的工作,总部位於美国德州奥斯汀(Austin)。成立于1999年,主要目的是在全球范围内推行Wi-Fi产品的兼容认证,发展802.11技术。目前,该联盟成员单位超过200家,其中42%的成员单位来自亚太地区,中国区会员也有5个。



- WLAN由以下四个组件组成:
  - > Station(工作站):
    - » 支持802.11的终端设备,比如安装无线网卡的PC,支持WLAN的手机, 支持WLAN的PDA等,都属于Station范畴,简称STA
  - › Access Point (AP,接入点):
    - » 为STA提供基于802.11的无线接入服务,同时将无线的802.11 mac帧格式转换为有线网络的帧,相当于有线网络的无线延伸。
  - > Wireless Medium(无线媒介):
    - » 802.11标准定义了2类物理层:射频物理层(2.4GHz和5GHz)和红外物理层。目前广泛应用的是射频方式
  - › Distribution System (DS, 分布式系统):
    - » 即将各个接入点连接起来的骨干网络,通常是以太网。

- WLAN网络类型、拓扑
  - 〉 独立型网络
    - »一般是由几个STA组成的暂时性网络,所有STA地位平等,无需设置任何的中心控制结点





- WLAN网络类型、拓扑
  - 〉 基础结构型网络
    - » 需要AP提供接入服务,所有STA关联到AP上,访问外部以及STA之间交 互的数据均由AP负责转发。



#### • 服务集的概念

- > BSS(basic service set,基本服务集),是802.11网络提供服务的基本单元。在一个BSS的服务区域内(即射频信号覆盖的范围内),STA之间能够相互通信
  - » 独立型网络称为Independent Basic Service Set
  - » 基础结构型网络也称为Infrastructure Baisc Service Set
- > SSID (service set identifier,服务集标识符),用来标识BSS。
  - » BSSID:基本服务集标识符,AP的MAC地址,不可修改
  - » ESSID:扩展服务集标识符,通过AP广播出去,可修改。



• 802.11体系





- 第一章 WLAN基础概念
- · 第二章 WLAN射频技术相关介绍
- 第三章 WLAN数据转发工作原理
- 第四章 常见无线器件介绍



#### • 射频技术相关信息

|        | 802.11        | 802.11b       | 802.11a                          | 802.11g                   |
|--------|---------------|---------------|----------------------------------|---------------------------|
| 标准发布时间 | 1997~7        | 1999~9        | 1999~9                           | 2003~7                    |
| 合法频宽   | 83.5          | 83.5          | 325                              | 83.5                      |
| 频率范围   | 2.4~2.4835GHz | 2.4~2.4835GHz | 5.150~5.350GHz<br>5.725~5.850GHz | 2.4~2.4835GHz             |
| 非重叠信道  | 3             | 3             | 12                               | 3                         |
| 调制技术   | FHSS/DSSS     | CCK/DSSS      | OFDM                             | CCK/OFDM                  |
| 物理发送速率 | 1,2           | 1,2,5.5,11    | 6,9,12,18,24,36,<br>48,54        | 6,9,12,18,24,36,<br>48,54 |
| 兼容性    | N/A           | 与11g产品互通      | 与b/g不能互通                         | 与11b产品互通                  |



- 802.11b与802.11g的频段与信道划分
  - 工作的频率范围是2.4GHz~2.4835GHz。在此频率范围内又划分出14个信道。每个信道的中心频率相隔5MHz,每个信道可供占用的带宽为22MHz,
  - 如下图示channel 1的中心频率为2412MHz, channel 6的中心频率为2437MHz,channel 11的中心频率为2462MHz。3个信道理论上是不相干扰的信道。





- 802.11a工作频段与信道划分
  - 工作在5.8GHz频段的时候,中国wlan工作的频率范围是 5.725GHz~5.850GHz。在此频率范围内又划分出5个信道。每个信道的中心 频率相隔20MHz,如下图所示。其他地区的信道频段划分也附在下图。

□ 右表为美国UNII(Unlicensed National Information
Infrastructure)頻段信道分配表,包含24个互不干扰
的信道。
□ 在5GHz頻段以5M为步进划分信道,信道编号n=(信道中心频率GHz - 5GHz)\*1000/5。
□ 在中国802.11a工作在5.725 - 5.850GHz频段的5个信道,操作信道号分别为: 149、153、157、161、165

| UNI Band | Channel<br>Number | Transmit<br>Frequency |
|----------|-------------------|-----------------------|
|          | 36                | 5.180 GHz             |
|          | 40                | 5 200 GHz             |
| 1        | 44                | 5 220 GHz             |
|          | 48                | 5 240 GHz             |
|          | 52                | 5 260 GHz             |
| 11       | 56                | 5 280 GHz             |
| 111      | 60                | 5 300 GHz             |
|          | 64                | 5 320 GHz             |
|          | 100               | 5 500 GHz             |
|          | 104               | 5 520 GHz             |
|          | 108               | 5 540 GHz             |
|          | 112               | 5.560 GHz             |
|          | 116               | 5.580 GHz             |
| III      | 120               | 5 600 GHz             |
|          | 124               | 5 620 GHz             |
|          | 128               | 5.640 GHz             |
|          | 132               | 5 660 GHz             |
|          | 136               | 5 680 GHz             |
|          | 140               | 5.700 GHz             |
|          | 149               | 5.745 GHz             |
|          | 153               | 5.765 GHz             |
| IV       | 157               | 5 785 GHz             |
|          | 161               | 5 805 GHz             |
|          | 165               | 5 825 GHz             |



#### • 信号强度

- AP220-E设备标称功率为100mW,是指AP通过天线可以每秒辐射出100mW的能量。但在无线应用中,我们经常听到的功率单位是dBm而不是W或者mW。
- › dB (Decibel,分贝) 是一个纯计数单位,本意是表示两个量的比值大小,没有 单位。
- > 对于功率的比值, dB值= 10\*lg(A/B), 而dbm即为对于1mw功率的比值大小。
  - » 对于100mW的功率,按dBm单位进行折算后的值应为:
    - $10lg (100mW/1mw)=10lg (100) =20dBm_{\odot}$

#### • 信号强度

- AP220-E设备标称功率为100mW,是指AP通过天线可以每秒辐射出100mW的能量。但在无线应用中,我们经常听到的功率单位是dBm而不是W或者mW。
- › dB (Decibel,分贝) 是一个纯计数单位,本意是表示两个量的比值大小,没有 单位。
- > 对于功率的比值, dB值= 10\*lg(A/B), 而dbm即为对于1mw功率的比值大小。
  - » 对于100mW的功率,按dBm单位进行折算后的值应为:
    - 10lg (100mW/1mw)=10lg (100) = 20dBm.
- › Db的计算
  - » 3db=2, 5db=3, 7db=5, 10db=10, 0db=1
- › Db的加运算即等于普通数的乘运算。
  - » 500mw=5\*10\*10\*1mw=7+10+10+0dbm=27dbm
  - » 30mw=3\*10\*1mw=5+10+0dbm=15dbm



#### • 信号强度

- 为什么要用dB来描述功率呢,原因是dB能把一个很大(后面跟一长串0的)或者很小 (前面有一长串0的)的数比较简短地表示出来。
  - » X = 1000000000000000 (多少个了?) = 10logX = 150 dB
- > -75dbm等于多少mW?
  - » -75dbm=(0-5-10-10-10-10-10-10-10)dBm= $1/3/10/10/10/10/10/10/10=0.3 \times 10^{-7}$



#### • 接收灵敏度

- > 无线传输的接收灵敏度类似于人们沟通交谈时的听力, 即STA或AP解调出信号所要求的最低信号强度。
- › 一般来说AP的接收灵敏度为-85dBm,甚至达到-105dBm,而STA的接收灵敏度一般在-75dBm
- > WLAN的底噪(环境噪声)为-95dBm,因此信号强度如果低于-95dBm的话,这样的信号就等同于噪声。

#### • 信号的传送方式

- > AP的无线信号传递主要通过两种方式,辐射和传导。
- › AP无线信号辐射是指AP的信号通过天线将信号传递到空气中去,如下图左所示。
- AP无线信号的传导是指无线信号在线缆等介质内进行无线信号传递,如右图室分系统中的无线信号通过1/2"线缆传递。





- 信号强度与速率的关系
  - > 无线信号以无线电波的方式在空间中扩散,随着距离的增大,信号强度会逐渐衰减,这就意味着靠近发送源,信号强度越大。因此只有在靠近发送源的地方才能获得更大的速率



#### • 信号衰减

地板衰减: 30db

承重墙衰减: 20-40db

砖墙: 10db

学生宿舍窗户(10mm): 3db

人体: 3db

空旷走廊: 30dB/50m



- 第一章 WLAN基础概念
- 第二章 WLAN射频技术相关介绍
- · 第三章 WLAN数据转发工作原理
- 第四章 常见无线器件介绍



#### CSMA/CA

- > CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)即载波监听多路访问/冲突避免
- > WLAN采用半双工通信机制,同一个区域内,只能一个设备发包。
- > WLAN设备使用冲突检测与退避机制来应对无线环境中的干扰。避免由于同频信号重叠导致无法解调。

- CSMA/CA协议的工作流程分为两个分别是:
  - 7 1.送出数据前,监听媒体状态,等没有人使用媒体,维持一段时间后,再等待一段随机的时间后依然没有人使用,才送出数据。由于每个设备采用的随机时间不同,所以可以减少冲突的机会。
  - > 2.送出数据前,先送一段小小的请求传送报文(RTS: Request to Send)给目标端,等待目标端回应 CTS: Clear to Send 报文后,才开始传送。利用RTS-CTS握手(handshake)程序,确保接下来传送资料时,不会被碰撞。同时由於RTS-CTS封包都很小,让传送的无效开销变小。



- 第一章 WLAN基础概念
- 第二章 WLAN射频技术相关介绍
- 第三章 WLAN数据转发工作原理
- 第四章 常见无线器件介绍

#### • 全向天线

全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。全向天线在通信系统中一般应用距离近,覆盖范围大。全向天线的辐射范围比较象一个苹果。





#### • 定向天线

> 定向天线,在水平方向图上表现为一定角度范围辐射,也就是平常所说的有方向性。同全向天线一样,波瓣宽度越小,增益越大。定向天线在通信系统中一般应用于通信距离远,覆盖范围小,目标密度大,频率利用率高的环境。定向天线的主要辐射范围象个倒立的不太完整的圆锥。



- 室内天线
  - > 吸顶天线





- 室外天线
  - 〉 全向天线

| 频率范围    | 2400~2483 |
|---------|-----------|
| 増益      | 12        |
| 垂直面波瓣宽度 | 7         |
| 驻波比     | <1.5      |
| 极化方式    | 垂直        |
| 接头型号    | N-K       |
| 支撑杆直径   | 40-50mm   |



| 频率范围    | 5100~5850 |
|---------|-----------|
| 增益      | 12        |
| 垂直面波瓣宽度 | 7         |
| 驻波比     | <2.0      |
| 极化方式    | 垂直        |
| 接头型号    | N-K       |
| 支撑杆直径   | 40-50mm   |



## 第四章 常见无线器件介绍

### Ruijie 锐捷网络

#### • 室外天线

#### 〉 定向板状天线



| 频率范围    | 2400~2483 |
|---------|-----------|
| 増益      | 14        |
| 垂直面波瓣宽度 | 15        |
| 水平面波瓣宽度 | 90        |
| 前后比     | 25db      |
| 驻波比     | <1.5      |
| 极化方式    | 垂直        |
| 接头型号    | N-K       |
| 支撑杆直径   | 50-75mm   |





| 频率范围    | 2400~2483 |
|---------|-----------|
| 増益      | 10        |
| 垂直面波瓣宽度 | 30        |
| 水平面波瓣宽度 | 110       |
| 前后比     | 25db      |
| 驻波比     | <1.5      |
| 极化方式    | 垂直        |
| 接头型号    | N-K       |
| 支撑杆直径   | 40-50mm   |

| 频率范围    | 5150~5850 |
|---------|-----------|
| 増益      | 15        |
| 垂直面波瓣宽度 | 7         |
| 水平面波瓣宽度 | 120       |
| 前后比     | 25db      |
| 驻波比     | <1.7      |
| 极化方式    | 垂直        |
| 接头型号    | N-K       |
| 支撑杆直径   | 50-60mm   |



- 室外天线
  - > 抛物面天线



| 频率范围    | 5725~5850 |
|---------|-----------|
| 増益      | 24        |
| 垂直面波瓣宽度 | 12        |
| 水平面波瓣宽度 | 9         |
| 前后比     | 20db      |
| 驻波比     | <1.5      |
| 极化方式    | 垂直        |
| 接头型号    | N-K       |
| 支撑杆直径   | 40-50mm   |



| 频率范围    | 2400~2483 |
|---------|-----------|
| 増益      | 24        |
| 垂直面波瓣宽度 | 14        |
| 水平面波瓣宽度 | 10        |
| 前后比     | 31        |
| 驻波比     | <1.5      |
| 极化方式    | 垂直        |
| 接头型号    | N-K       |
| 支撑杆直径   | 40-50mm   |



# 谢 谢 创新网络价值

星网锐捷网络有限公司

地址: 北京海淀区复兴路29号中意鹏奥大厦东楼11层 邮编: 100036

E-Mail: xxx@ruijie.com.cn