UVA CS 4501: Machine Learning

Lecture 9: Supervised Classification

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

Where are we? Five major sections of this course

- Regression (supervised)
- ☐ Classification (supervised)
- Unsupervised models
- Learning theory
- ☐ Graphical models

(Intro to Supervised Classification)

- Applications and Variants
- ☐ Roadmap of section
- Evaluating Metrics

A Dataset for classification

$$f:[X] \longrightarrow [Y]$$

Output Class: categorical variable

- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/ predictors/regressors: [columns, except the last]
- Target/outcome/response/label/dependent variable: special column to be predicted [last column]

Notation

- Inputs
 - X_i (jth element of vector X): random variables written in capital letter
 - p #inputs, N #observations
 - X : matrix written in bold capital
 - Vectors are assumed to be column vectors
 - Discrete inputs often described by characteristic vector (dummy variables)
- Outputs
 - quantitative Y
 - qualitative C (for categorical)
- Observed variables written in lower case
 - The i-th observed value of X is x_i and can be a scalar or a vector

Many Variants w.r.t. Y

- - Binary Classification
 - Multi-class Classification
 - Hierarchical Classification
 - Multi-label Classification
 - Structured Predictions
 - •

Binary: Application I: Text Reviewbased Sentiment Classification

I believe that this book is not at all helpful since it does not explain thoroughly the material . it just provides the reader with tables and calculations that sometimes are not easily understood ...

Input X: e.g. a piece of English text

Binary: Application II: Cancer Classification using gene expression

Many Variants w.r.t. Y

- Binary Classification
- Multi-class Classification
- Hierarchical Classification
- Multi-label Classification
- Structured Predictions
- •

Multi-Class: Application III: Classifying Galaxies Courtesy: http://aps.umn.edu

Class:

Stages of Formation

Intermediate

Data Size:

- 72 million stars, 20 million galaxies
- Object Catalog: 9 GB
- Image Database: 150 GB

Attributes:

- Image features,
- Characteristics of light waves received, etc.

Late

From [Berry & Linoff] Data Mining Techniques, 1997

Hierarchical: Application IV: Text Categorization, e.g. Google News

IBM Watson Data Analysis Service Revealed

Text Categorization

- Pre-given categories and labeled document examples (Categories may form hierarchy)
- Classify new documents
- A standard supervised learning problem

Examples of Text Categorization

- News article classification
- Meta-data annotation
- Automatic Email sorting
- Web page classification

•

Text Document Representation (LATER)

- Each document becomes a `term' vector,
 - each term is an (attribute) of the vector,
 - the value of each describes the number of times the corresponding term occurs in the document.

		Wi	MS	· \ •	1						Wo
Bag of	'words'	te	CO	70	b	SC	ga	١	lc	time	se <i>a</i>
		team	coach	pla y	ball	score	game	n <u>W</u> .	lost	timeout	season
	Document 1	3	0	5	0	2	6	0	2	0	2
	Document 2	0	7	0	2	1	0	0	3	0	0
	Document 3	0	1	0	0	1	2	2	0	3	0

1 3 1.15

Many Variants w.r.t. Y

- Binary Classification
- Multi-class Classification
- Hierarchical Classification
- Multi-label Classification
- Structured Predictions

•

Multi-Labels: Application V: – Objective recognition / Image Labeling (Label Images into predefined word labels)

When not using Deep Learning: Image Representation for – Objective recognition

Image representation → bag of "visual words"

An object image:
 histogram of visual
 vocabulary – a numerical
 vector of D dimensions.

Structured Output: Application VI: – Natural Language Parsing

The screen was a sea of red

Language Parsing

Structured Output: Application VII: – Audio Classification

- Real-life applications:
 - Customer service phone routing
 - Voice recognition software

Music Information Retrieval Systems e.g., Automatic Music Classification

- To classify music in various ways
 - Genre or style classification
 - Mood classification
 - Performer or composer identification
 - Music recommendation
 - Playlist generation
 - Hit prediction
 - Audio to symbolic transcription
 - etc.
- Such areas often share similar central procedures

Dr. Yanjun Qi / UVA CS

Music Information Retrieval Systems e.g., Automatic Music Classification

Musical data collection

- The instances (basic entities) to classify
- Audio recordings, scores, cultural data, etc.

Feature extraction

- Features represent characteristic information about instances
- Must provide sufficient information to segment instances among classes (categories)

Machine learning

 Algorithms ("classifiers" or "learners") learn to associate feature patterns of instances with their classes

Audio, Types of features

Low-level

- Associated with signal processing and basic auditory perception
- e.g. spectral flux or RMS
- Usually not intuitively musical

High-level

- Musical abstractions
- e.g. meter or pitch class distributions

Cultural

- Sociocultural information outside the scope of auditory or musical content
- e.g. playlist co-occurrence or purchase correlations

₽/5/⁄bajun Qi / UVA CS

(Intro to Supervised Classification)

- Applications and Variants
- Roadmap of section
- Evaluating Metrics

Three major sections for classification

 We can divide the large variety of classification approaches into roughly three major types

1. Discriminative

- directly estimate a decision rule/boundary
- e.g., support vector machine, decision tree, logistic regression,
- e.g. neural networks (NN), deep NN

2. Generative:

- build a generative statistical model
- e.g., Bayesian networks, Naïve Bayes classifier

- 3. Instance based classifiers
 - Use observation directly (no models)
 - e.g. K nearest neighbors

A study comparing Classifiers

An Empirical Comparison of Supervised Learning Algorithms

Rich Caruana Alexandru Niculescu-Mizil CARUANA@CS.CORNELL.EDU ALEXN@CS.CORNELL.EDU

Department of Computer Science, Cornell University, Ithaca, NY 14853 USA

Abstract

A number of supervised learning methods have been introduced in the last decade. Unfortunately, the last comprehensive empirical evaluation of supervised learning was the Statlog Project in the early 90's. We present a large-scale empirical comparison between ten supervised learning methods: SVMs, neural nets, logistic regression, naive bayes, memory-based learning, random forests, decision trees, bagged trees, boosted trees, and boosted stumps. We also examine the effect that calibrating the models via Platt Scaling and Isotonic Regression has on their performance. An important aspect of our study is

This paper presents results of a large-scale empirical comparison of ten supervised learning algorithms using eight performance criteria. We evaluate the performance of SVMs, neural nets, logistic regression, naive bayes, memory-based learning, random forests, decision trees, bagged trees, boosted trees, and boosted stumps on eleven binary classification problems using a variety of performance metrics: accuracy, F-score, Lift, ROC Area, average precision, precision/recall break-even point, squared error, and cross-entropy. For each algorithm we examine common variations, and thoroughly explore the space of parameters. For example, we compare ten decision tree styles, neural nets of many sizes, SVMs with many kernels, etc.

Because some of the performance metrics we examine

A study comparing Classifiers 11 binary classification datasets

				Katho
PROBLEM	#ATTR	TRAIN SIZE	TEST SIZE	%POZ)amol
ADULT	14/104	5000	35222	25% (are
BACT	11/170	5000	34262	69%
COD	15/60	5000	14000	50%
CALHOUS	9	5000	14640	52%
COV_TYPE	54	5000	25000	36%
HS	200	5000	4366	24%
LETTER.P1	16	5000	14000	3%
LETTER.P2	16	5000	14000	53%
MEDIS	63	5000	8199	11%
MG	124	5000	12807	17%
SLAC	59	5000	25000	50%

→ A study comparing Classifiers

→ 11 binary classification problems (8 metrics)

Table 2. Normalized scores for each learning algorithm by metric (average over eleven problems)

MODEL	CAL	ACC	FSC	LFT	ROC	APR	BEP	RMS	MXE	MEAN	OPT-SEL
BST-DT	PLT	.843*	.779	.939	.963	.938	.929*	.880	.896	.896	.917
RF	PLT	.872*	.805	.934*	.957	.931	.930	.851	.858	.892	.898
BAG-DT	_	.846	.781	.938*	.962*	.937*	.918	.845	.872	.887*	.899
BST-DT	ISO	.826*	.860*	.929*	.952	.921	.925*	.854	.815	.885	.917*
RF	_	.872	.790	.934*	.957	.931	.930	.829	.830	.884	.890
BAG-DT	PLT	.841	.774	.938*	.962*	.937*	.918	.836	.852	.882	.895
RF	ISO	.861*	.861	.923	.946	.910	.925	.836	.776	.880	.895
BAG-DT	ISO	.826	.843*	.933*	.954	.921	.915	.832	.791	.877	.894
SVM	PLT	.824	.760	.895	.938	.898	.913	.831	.836	.862	.880
ANN	_	.803	.762	.910	.936	.892	.899	.811	.821	.854	.885
SVM	ISO	.813	.836*	.892	.925	.882	.911	.814	.744	.852	.882
ANN	PLT	.815	.748	.910	.936	.892	.899	.783	.785	.846	.875
ANN	ISO	.803	.836	.908	.924	.876	.891	.777	.718	.842	.884
BST-DT	_	.834*	.816	.939	.963	.938	.929*	.598	.605	.828	.851
KNN	PLT	.757	.707	.889	.918	.872	.872	.742	.764	.815	.837
KNN	_	.756	.728	.889	.918	.872	.872	.729	.718	.810	.830
KNN	ISO	.755	.758	.882	.907	.854	.869	.738	.706	.809	.844
BST-STMP	PLT	.724	.651	.876	.908	.853	.845	.716	.754	.791	.808
SVM	_	.817	.804	.895	.938	.899	.913	.514	.467	.781	.810
BST-STMP	ISO	.709	.744	.873	.899	.835	.840	.695	.646	.780	.810
BST-STMP	_	.741	.684	.876	.908	.853	.845	.394	.382	.710	.726
DT	ISO	.648	.654	.818	.838	.756	.778	.590	.589	.709	.774
1	1	1								11	1

(Intro to Supervised Classification)

- Applications and Variants
- ☐ Roadmap of section
- Evaluating Metrics

29

		AP actual AN				
PP	predicted+	TP	\overline{FP}			
PN	predicted-	FN	TN			

- (number of) true positive (TP)
- (number of) true negative (TN)
- (number of) false positive (FP)
- (number of) false negative (FN)

30

```
(number of) false positive (FP)
   eqv. with false alarm, Type I error
(number of) false negative (FN)
   eqv. with miss, Type II error
sensitivity or true positive rate (TPR)
   eav. with hit rate recall
    TPR = TP/P = TP/(TP + FN) Actual Positive
specificity (SPC) or true negative rate
    SPC = TN/N = TN/(TN + FP)
PPV = TP/(TP + FP)
negative predictive value (NPV)
    NPV = TN/(TN + FN)
fall-out or false positive rate (FPR)
   \mathit{FPR} = \mathit{FP}/\mathit{N} = \mathit{FP}/(\mathit{FP} + \mathit{TN}) = 1 - \mathit{SPC}
false negative rate (FNR)
    FNR = FN/(TP + FN) = 1 - TPR
false discovery rate (FDR)
   FDR = FP/(TP + FP) = 1 - PPV
accuracy (ACC)
   ACC = (TP + TN)/(TP + FP + FN + TN)
   is the harmonic mean of precision and sensitivity /2
F1 score
```

> Actual Negative

From Wiki

When with Unbalanced Issue (binary case)

• Class imbalance issue

• Balanced accuracy: = $\frac{1}{2} \left(\frac{TP}{PR} + \frac{TN}{PN} \right)$

predicted+ predicted-

Ratio of Positive Class (binary case)

4/5/18

Dr. Yanjun Qi / UVA CS

Bad-Neg-classifier

(1) Balmed A((=
$$\frac{1}{2} \left(\frac{TP}{P} + \frac{TN}{N} \right)$$

= $\frac{1}{2} \left(\frac{0}{0+\epsilon} + \frac{99}{100} \right) = 0.495$

another classifier

Balaused A
$$cc = \frac{1}{2}(\frac{1}{1} + \frac{99}{99}) = 1$$

$$Acc = \frac{1+99}{1+0+99+0} = 1$$

$$ACC = \frac{99}{101} \approx 99\%$$

BACC =
$$\frac{1}{2} \left(\frac{0}{1} + \frac{99}{100} \right) \approx 0.495$$

(POS Ratio
$$2/120$$
)
 $ACC = \frac{100}{120} \approx 83/0$
 $BACC = \frac{1}{2}(\frac{1}{20} + \frac{99}{100}) \approx 0.52$

Today Recap (Intro to Supervised Classification)

- Applications and Variants
- ☐ Roadmap of section
- ☐ Evaluating Metrics

J

References

- Big thanks to Prof. Ziv Bar-Joseph and Prof. Eric Xing @ CMU for allowing me to reuse some of his slides
- Elements of Statistical Learning, by Hastie,
 Tibshirani and Friedman
- Prof. Andrew Moore @ CMU's slides
- Tutorial slides from Dr. Tie-Yan Liu, MSR Asia