2024年上海市高考数学试卷解析 (回忆版)

2024.6.7

一、填空题(本大题共12题	.满分54分,第1	-6颗每颗4分.	第7-12 题每题5分)

- 1. 设全集 $U = \{1,2,3,4,5\}$,集合 $A = \{2,4\}$,则 $\overline{A} =$ ______
- 2. 已知 $f(x) = \begin{cases} \sqrt{x}, x > 0 \\ 1, x \leq 0 \end{cases}$, $f(3) = \underline{\qquad}$
- 3. 已知 $x \in R$, $x^2 2x 3 < 0$ 的解集为_____.
- 5. 已知 $k \in R$, $\vec{a} = (2,5)$, $\vec{b} = (6,k)$, $\vec{a} / / \vec{b}$, 则 k 的值为 ______.
- 6. 在 $(x+1)^n$ 的二项展开式中,若各项系数和为 32,则 x^2 项的系数为 _____.
- 7. 已知抛物线 $y^2 = 4x$ 上有一点 P 到准线的距离为 9, 那么 P 到 x 轴的距离为 ______.
- 8. 某校举办科学竞技比赛,有 A、B、C3 种题库, A 题库有 5000 道题, B 题库有 4000 道题, C 题库有 3000 道题. 小申已完成所有题,他 A 题库的正确率是 0.92, B 题库的正确率是 0.86, C 题库的正确率是 0.72. 现他从所有的题中随机选一题,正确率是 ______.
- 9. 已知虚数 z,其实部为 1,且 $z + \frac{2}{z} = m(m \in R)$,则实数 m 为 _____.
- 10. 设集合 A 中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值 _____.
- 11. 已知 A 在 O 正东方向,B 在 O 的正北方向,O 到 A、B 距离相等, $\angle BTO=16.5$ °, $\angle ATO=37$ °,则 $\angle BOT=$ ______. (精确到 0.1 度)

12. 等比数列 $\{a_n\}$ 首项 $a_1>0$, q>1,记 $\ln=\{x-y\,|\,x,y\in[a_1,a_2]\cup[a_n,a_{n+1}]\}$,若对任意正整数 n, \ln 是闭区间,则 q 的范围是 ______.

- 二、选择题(本大题共4题,满分18分,第13-14题每题4分,第15-16题每题5分)
- 13. 已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是(
 - A. 气候温度高,海水表层温度就高
 - B. 气候温度高,海水表层温度就低
 - C. 随着气候温度由低到高,海水表层温度呈上升趋势
 - D. 随着气候温度由低到高,海水表层温度呈下降趋势
- 14. 下列函数 f(x) 的最小正周期是 2π 的是 (
 - A. $\sin x + \cos x$
- B. $\sin x \cos x$
- $C. \sin^2 x + \cos^2 x \qquad D. \sin^2 x \cos^2 x$
- 15. 定义一个集合 Ω ,集合中的元素是空间内的点集,任取 P_1 , P_2 , P_3 \in Ω ,存在不全为 0 的实数 λ_1 , λ_2 , λ_3 , 使得 $\lambda_1\overrightarrow{OP_1} + \lambda_2\overrightarrow{OP_2} + \lambda_3\overrightarrow{OP_3} = \vec{0}$. 已知 $(1,0,0) \in \Omega$,则 $(0,0,1) \notin \Omega$ 的充分条件是 (
 - A. (0,0,0)
- B. (-1,0,0)
- C.(0,1,0)
- D. (0,0,-1)
- 16. 定义集合 $M = \{x_0 | x_0 \in R, x \in (-\infty, x_0), f(x) < f(x_0)\}$, 在使得 M = [-1, 1] 的所有 f(x) 中,下列成立的是)
 - A. f(x) 是偶函数

B. f(x) 在 x=2 处取最大值

C. f(x) 严格增

- D. f(x) 在 x=-1 处取到极小值
- 三、解答题(本大题共5题,共14+14+14+18+18=78分)
- 17. 如图为正四棱锥 P-ABCD, O 为底面 ABCD 的中心.
 - (1) 若 AP = 5, $AD = 3\sqrt{2}$, 求 $\triangle POA$ 绕 PO 旋转一周形成的几何体的体积;
 - (2) 若 AP = AD, E 为 PB 的中点, 求直线 BD 与平面 AEC 所成角的大小.

- 18. 若 $f(x) = \log_a x(a > 0, a \neq 1)$.
 - (1)y = f(x) 过 (4,2),求f(2x-2) < f(x)的解集;
 - (2) 存在x使得f(x+1)、f(ax)、f(x+2) 成等差数列,求a的取值范围.

19. 为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区 29000 名学生中抽取 580 人,得到日均体育锻炼时长与学业成绩的数据如下表所示:

时间范围 学业成绩	[0,0.5)	[0.5,1)	[1,1.5)	[1.5,2)	[2,2.5)
优秀	5	44	42	3	1
不优秀	134	147	137	40	27

- (1) 该地区 29000 名学生中体育锻炼时长大于1小时人数约为多少?
- (2) 估计该地区初中学生日均体育锻炼的时长 (精确到 0.1)
- (3) 是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?

附:
$$\chi^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
, $P(\chi^2 \geqslant 3.841) \approx 0.05$.

- 20. 双曲线 $\Gamma: x^2 \frac{y^2}{b^2} = 1$, (b>0), A_1 , A_2 为左右顶点,过点 M(-2,0) 的直线 l 交双曲线 Γ 于两点 P、Q,且点 P在第一象限,
 - (1)若e=2时,求b.
 - (2) 若 $b = \frac{2\sqrt{6}}{3}$, $\triangle MA_2P$ 为等腰三角形时, 求点 P 的坐标.
 - (3) 过点 Q作 OQ延长线交 Γ 于点 R, 若 $\overrightarrow{A_1R} \cdot \overrightarrow{A_2P} = 1$, 求 b 取值范围.

- 21. 对于一个函数 f(x) 和一个点 M(a,b),令 $s(x) = (x-a)^2 + (f(x)-b)^2$,若 $P(x_0,f(x_0))$ 是 s(x) 取到最小值的点,则称 P 是 M 在 f(x) 的"最近点".
 - (1) 对于 $f(x) = \frac{1}{x}$, $D = (0, +\infty)$, 求证: 对于点 M(1,0), 存在点 P, 使得 P 是 M 在 f(x) 的"最近点";
- (2) 对于 $f(x) = e^x$, D = R, M(1,0), 请判断是否存在一个点 P, 它是 M在 f(x) 最近点, 且直线 MP 与 f(x) 在点 P 处的切线垂直;
- (3) 设 f(x) 存在导函数,且 g(x) 在定义域 R 上恒正,设点 $M_1(t-1,f(t)-g(t))$, $M_2(t+1,f(t)+g(t))$.若 对任意的 $t \in R$,都存在点 P,满足 P 是 M_1 的最近点,也是 M_2 的最近点,试求 f(x) 的单调性.