Information Theory Thursday

Mathias Winther Madsen
mathias@gmail.com
github.com/mathias-madsen/nasslli2025/

NASSLLI, June 2025

Substitution Ciphers

FLO DOOYW)YOS O; / +OY; /YR O; F&/ U/)F &<; D EOH; E /<WFR F&/ UH; / L<W KY07/; K: F&/ /; FY: 0) < +0=YF@ <; D 9=WF <F F&<F IO H;FR < +/YF<H; WH;HWF/Y KUO+7 O) K=HUDH;E F&Y=WF)OYL<YD HFW E<KU/ O; F&/ WFY//F3 HF L<W FLO WFOYH/W &HE&@ W&OL/D ;O LH; DOLR :OF&H:E K=F < DOOY O: F&/ UOL/Y WFOY: <:D < KUH:D)OY/& /<D 0) DHW+OUO=Y/D L<UU 0; F&/ =II/Y@ <;D KOY/ H; />/Y:)/<F =Y/R F&/ S<Y7W 0) IY0U0;E/D <;D WOYDHD ;/EUHE/;+/3 F&/ D00YR L&H+& L<W /M=HII/D LHF& ;/HF&/Y K/UU ;OY 7;O+7/YR L<W KUHWF /Y/D <;D DHWF<H;/D3 FY<SIW WUO=+&/D H;FO F&/ Y/+/WW <;D WFY= +7 S<F+&/W O; F&/ I<;/UW@ +&HUDY/; 7/IF W&OI =IO; F&/ WF/IW@ F&/ W+&OOUKO: &<D FYH/D &HW 7;H)/ O; F&/ SO=UDH; EW@ <;D)OY +UOW/ 0; < E/;/Y<FH0;R; 0 0; / &<D <II/<Y/D F0 DYH>/ <L<: F& /W/ Y<:DOS >HWHFOYW OY FO Y/I<HY F&/HY Y<><E/W3

Substitution Ciphers

_	63, 17, 52, 7, 18, 34, 73
E	75, 9, 38, 11
T	50, 2, 36
A	5, 29, 48
0	71, 65, 22
N	8, 45
Ι	49, 12
S	23, 20
R	26, 60
÷	:
	ı

Ravi and Knight: "Bayesian inference for Zodiac and other homophonic ciphers," *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics*, 2011.

Permutation Ciphers

FOR _TH E_N EXT _FO UR_ DAY S_I T_S EEM ED_ ...

ORF TH_ _NE XTE FO_ R_U AYD _IS _ST EME D_E ...

Permutation Ciphers

From bigrams alone:

HEEWR	:	WHERE (49.3%)	EWHER (10.9%)	REWHE (8.6%)	HEREW (6.0%)
TTAH	:	THAT (55.8%)	TATH (16.1%)	ATHT (9.6%)	TTHA (6.8%)
TINGH	:	THING (45.2%)	TINGH (11.8%)	NGITH (8.0%)	NGHIT (7.6%)
OECN	:	ECON (20.3%)	CONE (18.1%)	ENCO (17.5%)	ONCE (16.8%)
DSAI	:	ADIS (22.4%)	DISA (9.9%)	ASID (9.9%)	ISAD (9.7%)

	1, 4, 7,	$2,5,8,\ldots$	3, 6, 9,
A	C	В	A
В	A	C	В
С		A	C

ABB BCA CCB AAB BCA ...

 \updownarrow

CCB AAA BAB CBB AAA ...

An Enigma machine

Henryk Zygalski, Jerzy Różycki, and Marian Rejewski in Poznań (photo by Adam Mickiewicz, 1932)

Rejewski: "How Polish Mathematicians Deciphered the Enigma," *IEEE Annals of the History of Computing*, 1981.

Perfect Secrecy

Definition

An encoding method achieves perfect secrecy if

$$p(x^n \mid y^n) = p(x^n)$$

for all plaintext messages x^n and ciphertexts y^n .

Shannon: "Communication Theory of Secrecy Systems," Bell System Technical Journal, 1949.

Perfect Secrecy

Message

			U	
Key	1	2	3	4
1	1	2	3	4
2	2	3	4	1
3	3	4	1	2
4	4	1	2	3

Theorem: Size of the Keyspace

A perfectly secret code has at least as many keys as there are (nonzero-probability) plaintext messages.

One-Time Pad

x^n	A	В	A	A	В	A	A	 В
k^n	0	1	1	0	0	1	1	 0
y^n	A	A	В	A	В	A	A	 В

Running-Key Ciphers

x^n	Т	Н	E	_	G	R	E	 •
k^n	W	Н	E	N	_	S	Н	
y^n	Р	5	/	N	G	J	2	 <

Marginal, Conditional, and Joint Entropy

Definition

$$\begin{split} H(X) &= E\left(\log_2\frac{1}{p(X)}\right) \\ H(X \mid Y) &= E\left(\log_2\frac{1}{p(X \mid Y)}\right) \\ H(X,Y) &= E\left(\log_2\frac{1}{p(X,Y)}\right) \end{split}$$

$$H(X,Y) = H(X|Y) + H(Y)$$

$$H(X \mid Y) \leq H(X)$$

Fano's Inequality

Theorem: Fano's Inequality

Let *X* be a random variable that can take *k* different values, one of which has probability $1 - \varepsilon$. Then $H(X) \le 1 + \varepsilon \log_2 k$.

In fact

$$\varepsilon H_2(1/k) \le H(X) \le 1 + \varepsilon \log_2 k,$$

or equivalently,

$$\frac{H(X)-1}{\log k} \ \leq \ \varepsilon \ \leq \ \frac{H(X)}{H_2(1/k)}.$$

Entropy for Codebreaking

$$H(X^n | Y^n) \le H(X^n, K | Y^n) = H(K | Y^n) \le H(K)$$