# Metode numerik

MATERI: PERSAMAAN NON LINIER

# Penyelesaian Persamaan Non Linier

- Penyelesaian persamaan non linier adalah penentuan akarakar persamaan non linier.
- •Akar sebuah persamaan f(x) =0 adalah nilai-nilai x yang menyebabkan nilai f(x) sama dengan nol.
- Akar persamaan f(x) adalah titik potong antara kurva f(x) dan sumbu X.

## Penyelesaian Persamaan Non Linier



Titik potong kurva dengan sb x ada diantara x=-0.5 dan x=-0.6, Sehingga akar atau penyelesaian pers. Y=f(x) juga berada di x=-0.5 dan x=-0.6

# Teorema Penyelesaian Persamaan Non Linier

Suatu range x=[a,b] mempunyai akar bila f(a) dan f(b) berlawanan tanda atau memenuhi f(a).f(b)<0.



Karena f(a).f(b)<0 maka pada range x=[a,b] terdapat akar</li>



 Karena f(a).f(b)>0 maka pada range x=[a,b] tidak dapat dikatakan terdapat akar.

# Penyelesaian Persamaan Non Linier

#### Metode Tertutup

- Mencari Akar pada range [a,b] tertentu
- Dalam range [a,b] dipastikan terdapat satu akar
- Hasil selalu Konvergen

- ☐ Metode Tabel
- ☐ Metode Biseksi
- ☐ Metode Regula Falsi

- Metode Tebuka
  - Diperlukan tebakan awal
  - X<sub>n</sub> dipakai untuk menghitung X<sub>n+1</sub>
  - Hasil dapat konvergen atau divergen

- ➤ Metode Iterasi Sederhana
- ➤ Metode Newton-Raphson
- ➤ Metode Secant

# Metode Tabel

METODE TERTUTUP

### Metode Tabel

Metode Tabel atau Metode Pembagian Area , dimana untuk x = [a,b] atau x di antara a dan b dibagi sebanyak N bagian dan pada masing-masing bagian dihitung nilai f(x) sehingga diperoleh tabel :

| Х                     | f(x)  |
|-----------------------|-------|
| X <sub>0</sub> =a     | f(a)  |
| X <sub>1</sub>        | f(x1) |
| <b>x</b> <sub>2</sub> | f(x2) |
| <b>X</b> <sub>3</sub> | f(x3) |
|                       |       |
| X <sub>n</sub> =b     | f(b)  |

- Dari tabel bila didapatkan f(x<sub>k</sub>)=0 atau mendekati 0 maka dikatakan bahwa x<sub>k</sub> adalah penyelesaian persamaan f(x<sub>k</sub>) =0.
- Bila tidak ada  $f(x_k)$  yang =0, maka dicari nilai  $f(x_k)$  dan  $f(x_k+1)$  yang berlawanan tanda bila tidak ditemukan maka dikatakan tidak mempunyai akar untuk x = [a,b]

### Metode Tabel

| Х                     | f(x)  |
|-----------------------|-------|
| X <sub>0</sub> =a     | f(a)  |
| X <sub>1</sub>        | f(x1) |
| <b>X</b> <sub>2</sub> | f(x2) |
| <b>X</b> <sub>3</sub> | f(x3) |
|                       |       |
| X <sub>n</sub> =b     | f(b)  |

Dua pendapat untuk menentukan perkiraan akar :

- 1. Akar persamaan ditentukan oleh nilai mana yang lebih dekat, bila  $|f(x_k)|$   $|f(x_{k+1})|$  maka akarnya  $x_k$ , dan bila  $|f(x_{k+1})| < |f(x_k)|$  maka akarnya  $x_{k+1}$ .
- 2. Akarnya perlu di cari lagi, dengan range  $x = [x_k, x_{k+1}]$

### Contoh Metode Tabel

#### Penyelesaian Analitik

$$2x^2 + 3x - 4 = 0$$
  
dgn rumus abc :  $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 

$$x = \frac{-3 \pm \sqrt{3^2 - 4 * 2 * - 4}}{2 * 2}$$

$$x = \frac{-3 \pm \sqrt{9 + 32}}{4}$$

$$x = \frac{-3 \pm 6,40312}{4}$$

Maka solusinya adalah:

$$x_1 = \frac{-3+6,40312}{4} \qquad x_2 = \frac{-3-6,40312}{\text{Go to PC settings to activate Windows}}$$

$$x_1 = -2,3505$$
  $x_2 = 0,85078$ 

$$x_2 = 0.85078$$

Penyelesaian Numerik – Metode Tabel

Metode Numerik.xlsx

Selesaikan persamaan : 2x + 3x - 4 = 0 dengan range x = [-4,5]Jawaban :

- Hitung step x mulai dari -4 s/d 5
- Dapatkan nilai f(x) dimulai dari x=-4
- Dari tabel diperoleh hasil bahwa perubahan f(x) terdapat di

x=-3 dan x=-2 
$$\rightarrow$$
 X2 dengan nilai f(x)= 5 dan -2.

$$x=0$$
 dan  $x=1 \rightarrow X1$  dengan nilai  $f(x)=-4$  dan 1.

Sehingga disimpulkan akar ada di

x=-2 untuk X2 (karena % error untuk f(x) nya lebih kecil daripada di x=-3)

dan x=1 untuk X1 (karena % error untuk f(x) nya lebih kecil daripada di x=0)

| X  | f(x) |
|----|------|
| -4 | 16   |
| -3 | 5    |
| -2 | -2   |
| -1 | -5   |
| 0  | -4   |
| 1  | 1    |
| 2  | 10   |
| 3  | 23   |
| 4  | 40   |
| 5  | 61   |

# Algoritma Metode Tabel

- Defisikan fungsi f(x)
- (2) Tentukan range untuk x yang berupa batas bawah x<sub>bawah</sub> dan batas atas x<sub>atas</sub>.
- (3) Tentukan jumlah pembagi N
- (4) Hitung step pembagi h. Dimana h =  $\frac{x_{atas} x_{bawah}}{x_{atas}}$
- (5) Untuk i = 0 s/d N, hitung

$$x_i = x_{bawah} + i.h$$
  $y_i = f(x_i)$ 

- (6) Untuk i = 0 s/d N dicari k dimana
- \*. Bila f(x<sub>k</sub>) = 0 maka x<sub>k</sub> adalah penyelesaian
- \*. Bila f(x<sub>k</sub>).f(x<sub>k+1</sub>) < 0 maka :

Bila  $|f(x_k)| < |f(x_{k+1})|$  maka  $x_k$  adalah penyelesaian Bila tidak, maka  $x_{k+1}$ adalah penyelesaian atau dapat dikatakan penyelesaian berada di antara  $x_k$  dan  $x_{k+1}$ .

### Resume Metode Tabel

- Metode tabel ini secara umum sulit mendapatkan penyelesaian dengan error yang kecil.
- Toleransi error 0,0001
- Tetapi metode ini digunakan sebagai taksiran awal mengetahui area penyelesaian yang benar sebelum menggunakan metode yang lebih baik dalam menentukan penyelesaian.

# Metode Biseksi

METODE TERTUTUP

### Metode Biseksi

- Metode biseksi ini membagi range menjadi 2 bagian, dari dua bagian ini dipilih bagian mana yang mengandung akar dan bagian yang tdk mengandung akar dibuang. Hal ini dilakukan berulang-ulang hingga diperoleh akar persamaan.
- Untuk menggunakan metode biseksi, tentukan batas bawah
  (a) dan batas atas (b). Kemudian dihitung nilai tengah :

$$x = \frac{a+b}{2}$$

- Dari nilai x ini perlu dilakukan pengecekan keberadaan akar
  :
  - f(a) . f(b) < 0, maka b=x, f(b)=f(x), a tetap</p>
  - $f(a) \cdot f(b) > 0$ , maka a=x, f(a)=f(x), b tetap
- Setelah diketahui dibagian mana terdapat akar, maka batas bawah & batas atas di perbaharui sesuai dengan range dari bagian yg mempunyai akar.



# Grafik Metode Biseksi



# Algoritma Metode Biseksi

#### Algoritma Metode Biseksi:

- Definisikan fungsi f(x) yang akan dicari akarnya
- Tentukan nilai a dan b
- Tentukan torelansi e dan iterasi maksimum N
- 4. Hitung *f*(*a*) dan *f*(*b*)
- Jika f(a).f(b)>0 maka proses dihentikan karena tidak ada akar, bila tidak dilanjutkan
- 6. Hitung  $x = \frac{a+b}{2}$  Hitung f(x)
- 7. Bila f(x).f(a)<0 maka b=x dan f(b)=f(x), bila tidak a=x dan f(a)=f(x)
- Jika |b-a|<e atau iterasi>iterasi maksimum maka proses dihentikan dan didapatkan akar = x, dan bila tidak, ulangi langkah 6.

## Algoritma Metode Biseksi

 Metode biseksi dengan tolerasi error 0.001 dibutuhkan 10 iterasi, semakin teliti (kecil toleransi errornya) maka semakin besar jumlah iterasinya

# Metode Regula Falsi

METODE TERTUTUP

# Metode Regula Falsi

- Metode regula falsi adalah metode pencarian akar persamaan dengan memanfaatkan kemiringan dan selisih tinggi dari dua titik batas range.
- Metode ini bekerja secara iterasi dengan melakukan update range.
- Titik pendekatan yang digunakan oleh metode regula falsi adalah :

$$X = \frac{f(b).a - f(a).b}{f(b) - f(a)}$$

# Grafik Metode Regula Falsi



# Algoritma Metode Regula Falsi

#### Algoritma Metode Regula Falsi

- Definisikan fungsi f(x)
- 2. Tentukan batas bawah (a) dan batas atas (b)
- 3. Tentukan toleransi error (e) dan iterasi maksimum (n)
- 4. Hitung fa = fungsi(a) dan fb = fungsi(b)
- Untuk iterasi I = 1 s/d n atau error > e

6. 
$$x = \frac{fb.a - fa.b}{fb - fa}$$
 Hitung fx = fungsi(x)

- 7. Hitung error = |fx|
- Jika fx.fa <0 maka b = x dan fb = fx, jika tidak a = x dan fa = fx.
- Akar persamaan adalah x.