Sea $(X, \|\cdot\|)$ un espacio real normado, $f: X \to \mathbb{R}$ un funcional convexo y $x_0 \in X$.

- (a) Pruebe que $\partial f(x_0)$ es un conjunto convexo (contenido en el conjunto de funcionales lineales continuos $l: X \to \mathbb{R}$).
- (b) Sea $x^*: X \to \mathbb{R}$ un funcional lineal y continuo. Pruebe que

(b.1)
$$\partial (f + x^*)(x_0) = x^* + \partial f(x_0),$$

(b.2)
$$\partial(\lambda f)(x_0) = \lambda \partial f(x_0)$$
.

(a)

Para probar (a) primero vemos que por el Teorema 3.26 del texto base como f es convexo el conjunto $\partial f(x_0)$ es no vació. Recordamos que la definición de $\partial f(x_0)$ es,

$$\partial f(x_0) = \{ l \in X^* | f(x) \ge f(x_0) + l(x - x_0), \ \forall x \in X \},\$$

donde X^* es el espacio dual de X.

Para todo $l_1, l_2 \in \partial f(x_0)$ y para todo $\lambda \in [0, 1]$, dado $x \in X$ tenemos,

$$(\lambda l_1 + (1 - \lambda)l_2)(x - x_0) = \lambda l_1(x - x_0) + (1 - \lambda)l_2(x - x_0).$$

Por tanto,

$$f(x_0) + (\lambda l_1 + (1 - \lambda)l_2)(x - x_0) = f(x_0) + \lambda l_1(x - x_0) + (1 - \lambda)l_2(x - x_0)$$

$$= \lambda (f(x_0) + l_1(x - x_0)) + (1 - \lambda)(f(x_0) + l_2(x - x_0))$$

$$\leq \lambda f(x) + (1 - \lambda)f(x)$$

$$= f(x).$$

Y por tanto $(\lambda l_1 + (1 - \lambda)l_2) \in \partial f(x_0)$, lo que implica que $\partial f(x_0)$ es convexo.

(b.1)

Vemos que $\partial (f+x^*)(x_0) \subset x^* + \partial f(x_0)$. Para todo $l \in \partial (f+x^*)(x_0)$ tenemos que

$$(f+x^*)(x) \ge (f+x^*)(x_0) + l(x-x_0) \Rightarrow f(x_0) \ge f(x_0) + l(x-x_0) - x^*(x-x_0) = f(x_0) + (l-x^*)(x-x_0),$$

dado que x^* es un funcional lineal y continuo, concluimos que $l - x^* \in \partial f(x_0)$ y esto implica que $l \in x^* + \partial f(x_0)$.

Veamos ahora que $x^* + \partial f(x_0) \subset \partial (f + x^*)(x_0)$. Sea $l \in \partial f(x_0)$ entonces,

$$(f+x^*)(x_0)+(l+x^*)(x-x_0)=f(x_0)+l(x-x_0)+x^*(x_0)+x^*(x-x_0) < f(x)+x^*(x),$$

por tanto $l + x^* \in \partial(f + x^*)(x_0)$, que implica $x^* + \partial f(x_0) \subset \partial(f + x^*)(x_0)$ y consecuentemente $x^* + \partial f(x_0) = \partial(f + x^*)(x_0)$.

(b.2)

Igual que en el apartado anterior comprobamos ambas inclusiones. Veamos que $\partial(\lambda f)(x_0) \subset \lambda \partial f(x_0)$. Para todo $l \in \partial(\lambda f)(x_0)$, tenemos

$$(\lambda f)(x) \ge (\lambda f)(x_0) + l(x - x_0) \Rightarrow f(x) \ge f(x_0) + \frac{1}{\lambda}l(x - x_0),$$

por tanto $\frac{1}{\lambda}l \in \partial f(x_0)$ que implica $l \in \lambda \partial f(x_0)$.

Veamos ahora que $\lambda \partial f(x_0) \subset \partial(\lambda f)(x_0)$. Sea $l \in \partial f(x_0)$ y sea $\lambda > 0$, entonces

$$\lambda f(x) \ge \lambda f(x_0) + \lambda l(x - x_0),$$

por tanto $\lambda l \in \partial(\lambda f)(x_0)$. Y se cumple $\partial(\lambda f)(x_0) = \lambda \partial f(x_0)$.

Sea $\|\cdot\|_{\diamond}$ una norma en \mathbb{R}^n y sea

$$f(x) = ||x||_{\diamond}.$$

Se define la norma dual del siguiente modo:

$$||l||_* = \max_{h \neq 0} \frac{|\langle l, h \rangle|}{||h||_{\diamond}} = \max_{||h||_{\diamond} = 1} |\langle l, h \rangle|.$$

Pruebe que se cumplen las siguientes propiedades:

- (a) $\partial f(0) = \{l \in \mathbb{R}^n : ||l||_* \le 1\}$. En particular, pruebe que
 - (a.1) $\partial \|0\|_2 = \{l \in \mathbb{R}^n : \|l\|_2 \le 1\},$
 - (a.2) $\partial \|0\|_1 = \{l \in \mathbb{R}^n : \|l\|_{\infty} \le 1\},$
 - (a.3) $\partial \|0\|_{\infty} = \{l \in \mathbb{R}^n : \|l\|_1 \le 1\},$
- (b) $\partial f(x) = \{l \in \mathbb{R}^n : ||l||_* \le 1, \ \langle l, x \rangle = ||x||_{\diamond} \}$, para cada $x \in \mathbb{R}^n$.

(a)

Aplicando la definición de subgradiente tenemos

$$\begin{split} \partial \|0\|_{\diamond} &= \{l \in \mathbb{R}^n : \|x\|_{\diamond} \ge l(x), \ \forall x \in \mathbb{R}^n \} \\ &= \{l \in \mathbb{R}^n : \frac{|l(x)|}{\|x\|_{\diamond}} \le 1, \ \forall x \in \mathbb{R}^n \setminus \{0\} \} \\ &= \{l \in \mathbb{R}^n : \|l\|_* \le 1 \}. \end{split}$$

Los siguientes subapartados son consecuencia del resultado anterior y que el dual de la norma ℓ^2 es ℓ^2 , el dual de ℓ^1 es ℓ^∞ y el dual de ℓ^∞ es ℓ^1 .

Norma dual de ℓ^2

Para ver que la norma dual de ℓ^2 es ella misma usamos la siguiente definición norma dual, para cualquier $y \in (\mathbb{R}^n)^* = \mathbb{R}^n$,

$$||y||_2^* = \sup_{||x||_2 \le 1} |\langle x, y \rangle|.$$

Usando la desigualdad de Cauchy-Schwarz tenemos,

$$|\langle x, y \rangle| \le ||x||_2 ||y||_2 \le ||y||_2$$

, donde en la ultima desigualdad usamos $||x|| \le 1$. Finalmente si usamos $x = \frac{y}{||y||_2}$, que cumple ||x|| = 1, tenemos

$$|\langle x, y \rangle| = ||y||_2,$$

alcanzando el supremo y por tanto

$$||y||_2^* = ||y||_2.$$

Norma dual de ℓ^{∞}

Veamos que la norma dual de ℓ^{∞} es ℓ^1 , tenemos que para cualquier $y \in (\mathbb{R}^n)^* = \mathbb{R}^n$,

$$||y||_{\infty}^* = \sup_{\|x\|_{\infty} \le 1} |\langle x, y \rangle| = \sup_{\max_{1 \le i \le n} |x_i| \le 1} \left| \sum_{i=1}^n x_i y_i \right|.$$

La restricción $\max_{1 \le i \le n} |x_i| \le 1$, implica que $x \in [-1, 1]^n \subset \mathbb{R}^n$.

Para maximizar la suma elegimos $x \in [-1, 1]^n$ tal que

$$x_i = \begin{cases} 1 & \text{si } y_i \ge 0, \\ -1 & \text{si } y_i < 0. \end{cases}$$

De este modo se tiene

$$|\langle x, y \rangle| = \sum_{i=1}^{n} |y_i|,$$

i por tanto

$$||y||_{\infty}^* = \sum_{i=1}^n |y_i| = ||y||_1.$$

Norma dual de ℓ^1

Finalmente veamos que la norma dual de ℓ^1 es ℓ^∞ , tenemos que para cualquier $y \in (\mathbb{R}^n)^* = \mathbb{R}^n$,

$$||y||_1^* = \sup_{||x||_1 \le 1} |\langle x, y \rangle| = \sup_{\sum_{i=1}^n |x_i| \le 1} \left| \sum_{i=1}^n x_i y_i \right|.$$

Para maximizar $|\langle x, y \rangle|$ con la restricción $||x||_1 \leq 1$, los componente $|x_i|$ deberían estar concentrados en maximizar los valores mas grandes $|y_i|$. En particular el máximo se alcanza cuando $x_k = \text{signo}(y_k)$ para $|y_k|$ el componente mas grande de y y $x_i = 0$ para todo $i \neq k$. Esto es, sea $k = \text{argmax}_{1 \leq i \leq n} |y_i|$, entonces

$$x_i = \begin{cases} \operatorname{signo}(y_k) & \text{si } i = k, \\ 0 & \text{si } i \neq k. \end{cases}$$

En tal caso la norma dual es

$$||y||_1^* = \max_{1 \le i \le n} |y_i| = ||y||_{\infty}.$$

(b)

Veamos que

$$\partial f(x) = \{ l \in \mathbb{R}^n : ||l||_* \le 1, \ \langle l, x \rangle = ||x||_{\diamond} \}, \ \forall x \in \mathbb{R}^n,$$

en el caso x = 0, ya hemos visto en el apartado anterior que se cumple, por tanto veamos que se cumple para $x \neq 0$.

Sea $l \in \mathbb{R}^n$ tal que $||l||_* \le 1$ y $\langle l, x \rangle = ||x||_{\diamond}$, tenemos que para cualquier $y \in \mathbb{R}^n$,

$$\begin{split} \|x\|_{\diamond} + \langle l, y - x \rangle &= \|x\|_{\diamond} + \langle l, y \rangle - \langle l, x \rangle \\ &= \|x\|_{\diamond} + \langle l, y \rangle - \|x\|_{\diamond} \\ &= \langle l, y \rangle \\ &\leq \|y\|_{\diamond} \cdot \frac{|\langle l, y \rangle|}{\|y\|_{\diamond}} \\ &\leq \|y\|_{\diamond} \|l\|_{*} \\ &\leq \|y\|_{\diamond}, \end{split}$$

por tanto $l \in \partial ||x||_{\diamond}$, que implica $\{l \in \mathbb{R}^n : ||l||_* \le 1, \ \langle l, x \rangle = ||x||_{\diamond}\} \subset \partial f(x)$, para todo $x \in \mathbb{R}^n$. Sea $l \in \partial f(x)$, tenemos que

$$||x||_{\diamond} - \langle l, x \rangle = ||2x||_{\diamond} - ||x||_{\diamond} - \langle l, 2x - x \rangle \ge 0,$$

у

$$-\|x\|_{\diamond} + \langle l, x \rangle = \|0\|_{\diamond} - \|x\|_{\diamond} - \langle l, 0 - x \rangle \ge 0.$$

Las dos desigualdades llevan a $||x||_{\diamond} = \langle l, x \rangle$. Ademas para todo $y \in \mathbb{R}^n$, se cumple

$$||y||_{\diamond} \ge ||x||_{\diamond} + \langle l, y - x \rangle$$

$$= ||x||_{\diamond} + \langle l, y \rangle - ||x||_{\diamond}$$

$$= \langle l, y \rangle.$$

Por lo tanto podemos concluir que

$$||l||_* = \sup_{y \in \mathbb{R}^n} \frac{|\langle l, y \rangle}{||y||_{\diamond}} \le 1.$$

Por tanto se cumple $\partial f(x) \subset \{l \in \mathbb{R}^n : ||l||_* \le 1, \ \langle l, x \rangle = ||x||_{\diamond}\}$, para todo $x \in \mathbb{R}^n$. Y con ambas inclusiones concluimos que $\partial f(x) = \{l \in \mathbb{R}^n : ||l||_* \le 1, \ \langle l, x \rangle = ||x||_{\diamond}\}$.

Sean $f_1, f_2 : \mathbb{R}^n \to \mathbb{R}$ dos funciones diferenciables y convexas. Se considera la función

$$f(x) = \max\{f1(x), f2(x)\}.$$

Sea $x_0 \in \mathbb{R}^n$ un punto tal que $f(x_0) = f_1(x_0) = f_2(x_0)$. Pruebe que l es un subgradiente de f en x_0 si y sólo si

$$l = \lambda \nabla f_1(x_0) + (1 - \lambda) \nabla f_2(x_0)$$
, para $\lambda \in [0, 1]$.

Supongamos que l es de la forma

$$l = \lambda \nabla f_1(x_0) + (1 - \lambda) \nabla f_2(x_0),$$

con $\lambda \in [0,1]$. Entonces

$$f(x_0) + l(x - x_0) = f(x_0) + \lambda \nabla f_1(x_0)(x - x_0) + (1 - \lambda) \nabla f_2(x_0)(x - x_0)$$

$$\leq f(x_0) + \lambda (f_1(x) - f_1(x_0)) + (1 - \lambda)(f_2(x) - f_2(x_0))$$

$$= \lambda f_1(x) + (1 - \lambda) f_2(x)$$

$$\leq f(x),$$
(1)

donde en la primera desigualdad hemos usado el Lema 3.3 del texto base para ver que

$$\nabla g(\hat{x})(x - \hat{x}) \le g(x) - g(\hat{x}),$$

para toda función g convexa. Y la desigualdad (1) confirma que $l \in \partial f(x_0)$.

La idea para ver que todo subgradiente es de la forma

$$l = \lambda \nabla f_1(x_0) + (1 - \lambda) \nabla f_2(x_0)$$
, para $\lambda \in [0, 1]$,

es porque en el punto x_0 dado que las dos funciones coinciden sus dos vectores tangentes se cruzan en x_0 , en cada dirección dominara uno u otro en función de si f_1 o f_2 es mayor que la otra en un pequeño entorno de x_0 . Si el subgradiente no esta comprimido entre los dos vectores tangentes entonces en algún punto no se cumplirá la desigualdad $f(x) \ge f(x_0) + l(x - x_0)$. La Figura 1 ilustra esta idea en una dimension.

Vamos a formalizar la idea. Sea $l \in \partial f(x_0)$ tal que

$$l \neq l_{\lambda} = \lambda \nabla f_1(x_0) + (1 - \lambda) \nabla f_2(x_0)$$
, para $\lambda \in [0, 1]$.

Entonces existe $h \in \mathbb{R}^n$ tal que

$$l(h) > l_{\lambda}(h), \forall \lambda \in [0, 1] \Rightarrow \begin{cases} l(h) > \nabla f_1(x_0)(h), \\ l(h) > \nabla f_2(x_0)(h). \end{cases}$$

Sin perdida de generalidad podemos suponer que para un $\alpha>0$ suficientemente pequeño para que se cumpla

$$f(x_0 + \beta h) = f_1(x_0 + \beta h) \ge f_2(x_0 + \beta h), \ \forall 0 \le \beta \le \alpha.$$

Y por tanto en la dirección h la derivada direccional de f se corresponde con el gradiente de f_1 ,

$$f'(x_0)(h) = \nabla f_1(x_0)(h).$$

Entonces por el Lema 3.25 del texto base tenemos que

$$f'(x_0)(h) = \nabla f_1(x_0)(h) \ge l(h)!!$$

que contradice $l(h) > \nabla f_1(x_0)(h)$ y por tanto contradice $l \neq l_{\lambda}$. Resultando en que $\exists \lambda \in [0, 1]$ tal que $l = l_{\lambda}$, como queríamos ver.

Figure 1: El gráfico muestra dos funciones convexas y su máximo, el area gris es el area comprimida entre los dos vectores tangentes, y l_1, l_2 son dos vectores que pasan por x_0 pero no están en el area gris, se ve como no cumplen la desigualdad.

Sea $(X, \|\cdot\|)$ un espacio real normado y $f: X \to \mathbb{R} := \mathbb{R} \cup \{-\infty, +\infty\}$. La función $f^*: X^* \to \mathbb{R}$ definida por

$$f^*(x^*) = \sup_{x \in X} \{ \langle x, x^* \rangle - f(x) \},$$

se denomina la conjugada de Fenchel de f (X^* denota el conjunto de funcionales lineales y continuos $l: X \to \mathbb{R}$).

(a) Pruebe que

$$f(x) + f^*(x^*) \ge \langle x, x^* \rangle, \quad \forall x \in X, \quad x^* \in X^*.$$

La desigualdad anterior se conoce como desigualdad de Young-Fenchel.

(b) Sea $x_0 \in \text{dom } f$. Demuestre que

$$x^* \in \partial f(x_0)$$

si v sólo si

$$f(x) + f^*(x^*) = \langle x_0, x^* \rangle, \tag{2}$$

y que lo anterior implica que $x_0 \in \partial f^*(x^*)$.

(c) Sea $x_0 \in \text{dom } f$. Demuestre que

$$\partial f(x_0) \neq \emptyset \iff f(x_0) = \max_{x^* \in X^*} (\langle x_0, x^* \rangle - f^*(x^*)).$$

(a)

Para cualquier $x \in X$ y $x^* \in X^*$, tenemos

$$f(x) + f^*(x^*) = f(x) + \sup_{\hat{x} \in X} \{ \langle \hat{x}, x^* \rangle - f(\hat{x}) \}$$

$$\geq f(x) + \langle x, x^* \rangle - f(x)$$

$$= \langle x, x^* \rangle.$$

Como queríamos ver.

(b)

Supongamos que $x^* \in \partial f(x_0)$, entonces,

$$f(x) \ge f(x_0) + \langle x - x_0, x^* \rangle, \ \forall x \in X,$$

$$\Rightarrow \langle x_0, x^* \rangle \ge f(x_0) + \{\langle x, x^* \rangle - f(x)\}, \ \forall x \in X,$$

$$\Rightarrow \langle x_0, x^* \rangle \ge f(x_0) + f^*(x^*).$$

Usando el anterior resultado junto al resultado del apartado anterior, tenemos que

$$\langle x_0, x^* \rangle = f(x_0) + f^*(x^*).$$

Supongamos ahora que x^* cumple (2), entonces para todo $x \in X$, tenemos

$$f(x_0) + \langle x - x_0, x^* \rangle = \langle x, x^* \rangle - \langle x_0, x^* \rangle + \langle x_0, x^* \rangle - f^*(x^*)$$

$$= \langle x, x^* \rangle - \sup_{\hat{x} \in X} \{ \langle \hat{x}, x^* \rangle - f(\hat{x}) \}$$

$$\leq \langle x, x^* \rangle - (\langle x, x^* \rangle - f(x))$$

$$= f(x),$$

por tanto $x^* \in \partial f(x_0)$.

Finalmente veamos que si $x^* \in X^*$ y $x_0 \in X$ cumplen (2), entonces se tiene que para cualquier $y^* \in X^*$

$$f^*(x^*) + \langle x_0, y^* - x^* \rangle = -f(x_0) + \langle x_0, x^* \rangle - \langle x_0, x^* \rangle + \langle x_0, y^* \rangle$$
$$= \langle x_0, y^* \rangle - f(x_0)$$
$$\leq \sup_{x \in X} \{ \langle x, y^* \rangle - f(x) \}$$
$$= f^*(y^*),$$

por tanto $x_0 \in \partial f^*(x^*)$.

(c)

Supongamos que $\partial f(x_0) \neq \emptyset$ y que $y^* \in \partial f(x_0)$, por la desigualdad de Young-Fenchel tenemos que

$$f(x_0) \ge \langle x_0, x^* \rangle - f^*(x^*), \ \forall x^* \in X^*,$$

lo que implica que

$$f(x_0) \ge \max_{x^* \in X^*} (\langle x_0, x^* \rangle - f^*(x^*))$$

$$\ge \langle x_0, y^* \rangle - f^*(y^*)$$

$$= f(x_0),$$
(3)

donde en la ultima igualdad hemos usado el resultado del apartado anterior. Por tanto las desigualdades de (3) son igualdades y tenemos

$$f(x_0) = \max_{x^* \in X^*} (\langle x_0, x^* \rangle - f^*(x^*)).$$

Supongamos ahora que

$$f(x_0) = \max_{x^* \in X^*} (\langle x_0, x^* \rangle - f^*(x^*)).$$

Sea $y^* \in X^*$ tal que

$$\langle x_0, y^* \rangle - f^*(y^*) \ge \langle x_0, x^* \rangle - f^*(x^*),$$

es decir y^* es un máximo de la función $\langle x_0, x^* \rangle - f^*(x^*)$. Entonces tenemos que

$$f(x_0) + f^*(y^*) = \langle x_0, y^* \rangle,$$

por tanto usando el resultado del apartado anterior tenemos que $y^* \in \partial f(x_0)$, y por tanto $\partial f(x_0) \neq \emptyset$.