Evolution of Cooperation (Section 5)

28 February 2017

Overview

► Part I: review of material on structured interactions (assortment)

Overview

- Part I: review of material on structured interactions (assortment)
- ▶ Part II: work through last problem set together?

Overview

- Part I: review of material on structured interactions (assortment)
- ▶ Part II: work through last problem set together?
- Part II: group discussion of readings w/ activity?

► Assume individuals are either defectors or cooperators in single-period PD.

- Assume individuals are either defectors or cooperators in single-period PD.
- ► They periodically update their type in response to relative success of strategies (C and D)

- Assume individuals are either defectors or cooperators in single-period PD.
- They periodically update their type in response to relative success of strategies (C and D)
- Example: suppose people live in villages that are homogenous by type and some fraction α of their interactions take place within the village.

- Assume individuals are either defectors or cooperators in single-period PD.
- ➤ They periodically update their type in response to relative success of strategies (C and D)
- Example: suppose people live in villages that are homogenous by type and some fraction α of their interactions take place within the village.
- ▶ The remaining $1-\alpha$ interactions take place in a city where types are well mixed.

- Assume individuals are either defectors or cooperators in single-period PD.
- ► They periodically update their type in response to relative success of strategies (C and D)
- Example: suppose people live in villages that are homogenous by type and some fraction α of their interactions take place within the village.
- ▶ The remaining $1-\alpha$ interactions take place in a city where types are well mixed.
- ▶ If the fraction of cooperators is p, probability that cooperator pairs with a fellow cooperator is: not p, but $\alpha + (1 \alpha)p!$

- Assume individuals are either defectors or cooperators in single-period PD.
- ► They periodically update their type in response to relative success of strategies (C and D)
- ightharpoonup Example: suppose people live in villages that are homogenous by type and some fraction α of their interactions take place within the village.
- \blacktriangleright The remaining $1-\alpha$ interactions take place in a city where types are well mixed.
- ▶ If the fraction of cooperators is p, probability that cooperator pairs with a fellow cooperator is: not p, but $\alpha + (1 \alpha)p$!
- Probability that defector pairs with a defector is: $\alpha + (1 \alpha)(1 p)!$

- Assume individuals are either defectors or cooperators in single-period PD.
- ► They periodically update their type in response to relative success of strategies (C and D)
- Example: suppose people live in villages that are homogenous by type and some fraction α of their interactions take place within the village.
- \blacktriangleright The remaining $1-\alpha$ interactions take place in a city where types are well mixed.
- ▶ If the fraction of cooperators is p, probability that cooperator pairs with a fellow cooperator is: not p, but $\alpha + (1 \alpha)p$!
- Probability that defector pairs with a defector is: $\alpha + (1 \alpha)(1 p)!$
- ▶ **Note**: $\alpha = 1$ is extreme segmentation; $\alpha = 0$ is random pairing!

$$\begin{array}{c|cc}
C & D \\
C & R,R & S,T \\
D & T,S & P,P
\end{array}$$

•
$$\pi_C = \alpha R + (1 - \alpha)[pR + (1 - p)S]$$

$$\begin{array}{c|c}
C & D \\
C & R,R & S,T \\
D & T,S & P,P
\end{array}$$

- $\pi_C = \alpha R + (1 \alpha)[pR + (1 p)S]$
- $\pi_D = \alpha P + (1 \alpha)[pT + (1 p)P]$

- $\pi_C = \alpha R + (1 \alpha)[pR + (1 p)S]$
- ► $\pi_D = \alpha P + (1 \alpha)[pT + (1 p)P]$ ► Equilibrium level of cooperation: $p^* = \frac{\alpha(S-R) + P S}{(1-\alpha)(R-S-T+P)}$

$$\begin{array}{c|c}
C & D \\
C & R,R & S,T \\
D & T,S & P,P
\end{array}$$

- $\pi_C = \alpha R + (1 \alpha)[pR + (1 p)S]$
- $\pi_D = \alpha P + (1 \alpha)[pT + (1 p)P]$
- Equilibrium level of cooperation: $p^* = \frac{\alpha(S-R)+P-S}{(1-\alpha)(R-S-T+P)}$
- May be stable or unstable, depending on payoff matrix!

$$\begin{array}{c|c}
C & D \\
C & R,R & S,T \\
D & T,S & P,P
\end{array}$$

- $\pi_C = \alpha R + (1 \alpha)[pR + (1 p)S]$
- $\pi_D = \alpha P + (1 \alpha)[pT + (1 p)P]$
- ► Equilibrium level of cooperation: $p^* = \frac{\alpha(S-R)+P-S}{(1-\alpha)(R-S-T+P)}$
- May be stable or unstable, depending on payoff matrix!
- ▶ If unstable, p^* is boundary between basin of attraction at p = 1 and p = 0.

- $p^* = \frac{\alpha(S-R) + P S}{(1-\alpha)(R-S-T+P)}$
- ▶ For stable (interior) equilibrium, denominator must be < 0, requiring numerator to also be negative for p > 0.

- $p^* = \frac{\alpha(S-R)+P-S}{(1-\alpha)(R-S-T+P)}$
- For stable (interior) equilibrium, denominator must be < 0, requiring numerator to also be negative for p > 0.
- ▶ That is, we need: $(1 \alpha)(T P) > (1 \alpha)(R S)$.

- $p^* = \frac{\alpha(S-R)+P-S}{(1-\alpha)(R-S-T+P)}$
- For stable (interior) equilibrium, denominator must be < 0, requiring numerator to also be negative for p > 0.
- ▶ That is, we need: $(1 \alpha)(T P) > (1 \alpha)(R S)$.
- ▶ Stability happens when reward from defection on a cooperator (T R) is bigger than the penalty of cooperating against a defector (P S)!

- $p^* = \frac{\alpha(S-R) + P S}{(1-\alpha)(R-S-T+P)}$
- For stable (interior) equilibrium, denominator must be < 0, requiring numerator to also be negative for p > 0.
- ▶ That is, we need: $(1 \alpha)(T P) > (1 \alpha)(R S)$.
- ▶ Stability happens when reward from defection on a cooperator (T R) is bigger than the penalty of cooperating against a defector (P S)!
- ▶ If p^* is stable, then increasing assortment will increase frequency of cooperators.

- $p^* = \frac{\alpha(S-R) + P S}{(1-\alpha)(R-S-T+P)}$
- For stable (interior) equilibrium, denominator must be < 0, requiring numerator to also be negative for p > 0.
- ▶ That is, we need: $(1 \alpha)(T P) > (1 \alpha)(R S)$.
- ▶ Stability happens when reward from defection on a cooperator (T R) is bigger than the penalty of cooperating against a defector (P S)!
- ▶ If p^* is stable, then increasing assortment will increase frequency of cooperators.
- ▶ If *p** is unstable, increasing assortment will increase cooperative basin of attraction.

▶ Let T = 4, R = 2, S = 0, P = 1 so that T > R > P > S.

Fraction cooperating, p

- ▶ Let T = 4, R = 2, S = 0, P = 1 so that T > R > P > S.
- ▶ Solid lines: $\alpha = 0$ (no assortment). Dotted lines: $\alpha = 0.6$

- ▶ Let T = 4, R = 2, S = 0, P = 1 so that T > R > P > S.
- ▶ Solid lines: $\alpha = 0$ (no assortment). Dotted lines: $\alpha = 0.6$
- $p^* = .50$ is stable equilibrium (Why?)

$$\begin{array}{c|cc}
C & D \\
C & R,R & S,T \\
D & T,S & P,P
\end{array}$$

▶ Recall *C* is ESS if:

$$\begin{array}{c|cc}
C & D \\
C & R,R & S,T \\
D & T,S & P,P
\end{array}$$

- ► Recall *C* is ESS if:
- 1. $\pi(C, C) > \pi(D, C)$ OR

$$\begin{array}{c|c}
C & D \\
C & R,R & S,T \\
D & T,S & P,P
\end{array}$$

- Recall C is ESS if:
- 1. $\pi(C, C) > \pi(D, C)$ OR
- 2. $\pi(C, C) = \pi(D, C)$ and $\pi(C, D) > \pi(D, D)$

$$\begin{array}{c|c}
C & D \\
C & R,R & S,T \\
D & T,S & P,P
\end{array}$$

- Recall C is ESS if:
- 1. $\pi(C, C) > \pi(D, C)$ OR
- 2. $\pi(C,C) = \pi(D,C)$ and $\pi(C,D) > \pi(D,D)$
 - ▶ Probability D meets C: $(1 \alpha)p$

$$\begin{array}{c|c}
C & D \\
C & R,R & S,T \\
D & T,S & P,P
\end{array}$$

- Recall C is ESS if:
- 1. $\pi(C, C) > \pi(D, C)$ OR
- 2. $\pi(C,C) = \pi(D,C)$ and $\pi(C,D) > \pi(D,D)$
- ▶ Probability D meets C: $(1 \alpha)p$
- ▶ Probability C meets C: $\alpha + p(1 \alpha)$

$$\begin{array}{c|c}
C & D \\
C & R,R & S,T \\
D & T,S & P,P
\end{array}$$

- Recall C is ESS if:
- 1. $\pi(C, C) > \pi(D, C)$ OR
- 2. $\pi(C, C) = \pi(D, C)$ and $\pi(C, D) > \pi(D, D)$
 - ▶ Probability D meets C: $(1 \alpha)p$
 - ▶ Probability C meets C: $\alpha + p(1 \alpha)$
 - ▶ Probability D meets D: $\alpha + (1 \alpha)(1 p)$

$$\begin{array}{c|c}
C & D \\
C & R,R & S,T \\
D & T,S & P,P
\end{array}$$

- ▶ Recall *C* is ESS if:
- 1. $\pi(C, C) > \pi(D, C)$ OR
- 2. $\pi(C, C) = \pi(D, C)$ and $\pi(C, D) > \pi(D, D)$
 - ▶ Probability D meets C: $(1 \alpha)p$
 - Probability C meets C: $\alpha + p(1-\alpha)$
 - ▶ Probability D meets D: $\alpha + (1 \alpha)(1 p)$
 - $\pi(C, C) = \alpha R + p(1 \alpha)R$; $\pi(D, C) = (1 \alpha)pT$

$$C$$
 D
 C $R = 2, R = 2$ $S = 0, T = 4$
 D $T = 4, S = 0$ $P = 1, P = 1$

$$\pi(C,C) = \alpha R + p(1-\alpha)R > \pi(D,D) = (1-\alpha)pT$$

$$C$$
 D
 C $R = 2, R = 2$ $S = 0, T = 4$
 D $T = 4, S = 0$ $P = 1, P = 1$

- $\pi(C,C) = \alpha R + p(1-\alpha)R > \pi(D,D) = (1-\alpha)pT$
- ▶ 1.2 + 0.8p > 1.6p at $\alpha = 0.6$

$$C$$
 D
 C $R = 2, R = 2$ $S = 0, T = 4$
 D $T = 4, S = 0$ $P = 1, P = 1$

- $\pi(C, C) = \alpha R + p(1 \alpha)R > \pi(D, D) = (1 \alpha)pT$
- ▶ 1.2 + 0.8p > 1.6p at $\alpha = 0.6$
- 1.6 > 0.8 at $\alpha = 0.6$, $p^* = 0.5$