2025年普通高等学校招生全国统一考试

数学

本试卷满分 150 分, 考试用时 120 分钟。

注意事项:

1.	答题前,	先将自己的姓名、	准考证号、	考场号、	座位号填写在试	卷和答题卡上,	并
认真核	准准考证	号条形码上的以上	信息,将条	形码粘贴	在答题卡上的指:	定位置。	

- 2. 请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效。
- 3. 选择题用 2B 铅笔在答题卡上把所选答案的标号涂黑,非选择题用黑色签字笔在答题卡上作答,字体工整,笔迹清楚。
 - 4. 考试结束后,请将试卷和答题卡一并上交。

	. •	J 1242	/H / () /	413 13 %		71 2	,				
-,	选挂	¥题:	本题共	8 小题	, 每小题 5 :	分,共 40	分。	在每小题组	合出自	内四个选项中,只	į
	有-	-项是	符合题	目要求的	的。						
1.	(1+	5i)i 🗎	的虚部为	J							
	A.	-1		В.	0	C. 3	1		D.	6	
2.	已知	和集合	$U = \{x$	x 是小 ⁻	于9的正整数	$\{X\}$, $A=\{1\}$,3,5}	,则 C _U A =	中元詞	素的个数为	
	A.	0		В.	3	C.	5		D.	8	
3.	已知	山双曲	1线 C 的	虚轴长	为实轴长的、	√7 倍,则	C 的	离心率为			
	A.	$\sqrt{2}$		В.	2	C.	$\sqrt{7}$		D.	$2\sqrt{2}$	
4.	已知	3) 点印	a,0) (a >	· 0) 是函	数 $y = 2 \tan(x)$	$(x-\frac{\pi}{3})$ 的图	像的	一个对称中		则 a 的最小值为	J
	A.	$\frac{\pi}{6}$		В.	$\frac{\pi}{3}$	C	$\frac{\pi}{2}$		D.	$\frac{4\pi}{3}$	
5.	已知	$\exists f(x)$:) 是定り	义在R	上且周期为	2的偶函	数,	当 2≤ <i>x</i> ≤	3 时	f(x) = 5 - 2x ,	

则 $f(-\frac{3}{4}) =$

A. $-\frac{1}{2}$	B. $-\frac{1}{4}$	C. $\frac{1}{4}$	D. $\frac{1}{2}$

数学试题第1页 (共4页)

6. 帆船比赛中,运动员可借助风力计测定风速的大小与方向,测出的结果在航海学中 称为视风风速, 视风风速对应的向量是真风风速对应的向量与船行风速对应的向量 之和,其中船行风速对应的向量与船速对应的向量大小相等、方向相反.图1给出 了部分风力等级、名称与风速大小的对应关系, 已知某帆船运动员在某时刻测得的 视风风速对应的向量与船速对应的向量如图2所示(线段长度代表速度大小,单位:

m/s),则该时刻的真风为

级数	名称	风速大小(单位: m/s)		
2	轻风	1.1~3.3		
3	微风	3.4~5.4		
4	和风	5.5~7.9		
5	劲风	8.0~10.1		
图 1				

A. 轻风 B. 微风

C. 和风

D. 劲风

7. 已知圆 $x^2 + (y+2)^2 = r^2$ (r>0) 上到直线 $y=\sqrt{3}x+2$ 的距离为1的点有且仅有2个, 则r的取值范围是

A. (0,1)

B. (1,3) C. $(3,+\infty)$ D. $(0,+\infty)$

8. 已知 $2 + \log_2 x = 3 + \log_3 y = 5 + \log_5 z$,则 x, y, z的大小关系不可能为

A. x > y > z B. x > z > y C. y > x > z D. y > z > x

- 二、选择题: 本题共 3 小题, 每小题 6 分, 共 18 分。在每小题给出的选项中, 有多项 符合题目要求。全部选对的得6分,部分选对的得部分分,有选错的得0分。
- 9. 在正三棱柱 $ABC A_iB_iC_i$ 中, D为 BC 的中点,则

A. $AD \perp A_1C$

B. BC ⊥平面 AAD

C. $AD // A_1 B_1$

D. CC, // 平面 AAD

- 10. 已知抛物线 $C: v^2 = 6x$ 的焦点为F,过F的一条直线交C于A,B两点,过A作直 线 $l: x = -\frac{3}{2}$ 的垂线, 垂足为D, 过F且与直线 AB 垂直的直线交l于点E, 则
 - A. |AD| = |AF| B. |AE| = |AB| C. $|AB| \ge 6$ D. $|AE| \cdot |BE| \ge 18$

数学试题第2页 (共4页)

- 11. 已知 $\triangle ABC$ 的面积为 $\frac{1}{4}$,若 $\cos 2A + \cos 2B + 2\sin C = 2$, $\cos A\cos B\sin C = \frac{1}{4}$,则
 - A. $\sin C = \sin^2 A + \sin^2 B$

B.
$$AB = \sqrt{2}$$

$$C. \sin A + \sin B = \frac{\sqrt{6}}{2}$$

D.
$$AC^2 + BC^2 = 3$$

- 三、填空题:本题共3小题,每小题5分,共15分。
- 12. 若直线 y = 2x + 5 是曲线 $y = e^x + x + a$ 的一条切线,则 a = .
- 13. 若一个等比数列的各项均为正数,且前4项的和等于4,前8项的和等于68,则这个等比数列的公比等于______.
- 14. 有 5 个相同的球,分别标有数字1, 2, 3, 4, 5,从中有放回地随机取 3 次,每次取 1 个球. 记 X 为这 5 个球中至少被取出 1 次的球的个数,则 X 的数学期望 E(X) =______.
- 四、解答题: 本题共 5 小题, 共 77 分。解答应写出文字说明、证明过程或演算步骤。
- 15. (13分)

为研究某疾病与超声波检查结果的关系,从做过超声波检查的人群中随机调查了 1000人,得到如下列联表:

超声波检查结果 组别	正常	不正常	合计
患该疾病	20	180	200
未患该疾病	780	20	800
合计	800	200	1 000

- (1) 记超声波检查结果不正常者患该疾病的概率为p,求p的估计值;
- (2) 根据小概率值 $\alpha = 0.001$ 的独立性检验,分析超声波检查结果是否与患该疾病有关.

附:
$$\chi^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
, $\frac{P(\chi^2 \ge k)}{k}$ 0.050 0.010 0.001
 $\frac{1}{2}$ 0.050 0.010 0.001 $\frac{1}{2}$ 0.050 0.010 0.010 $\frac{1}{2}$ 0.050 0.010 0.010 0.010 0.010 $\frac{1}{2}$ 0.050 0.010 0.0

16. (15分)

已知数列
$$\{a_n\}$$
 中, $a_1 = 3$, $\frac{a_{n+1}}{n} = \frac{a_n}{n+1} + \frac{1}{n(n+1)}$.

- (1) 证明:数列 $\{na_n\}$ 是等差数列;
- (2) 给定正整数 m ,设函数 $f(x) = a_1 x + a_2 x^2 + \cdots + a_m x^m$,求 f'(-2) .

数学试题第3页 (共4页)

17. (15分)

如图,在四棱锥 P-ABCD 中, PA 上底面 ABCD, $AB \perp AD$, $BC \parallel AD$.

- (1) 证明: 平面 PAB 1 平面 PAD;
- (2) 设 $PA = AB = \sqrt{2}$, $AD = \sqrt{3} + 1$, BC = 2, 且点 P,
- B, C, D均在球O的球面上.
 - (i)证明:点O在平面 ABCD 内;
 - (ii) 求直线 AC与PO 所成角的余弦值.

18. (17分)

已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的离心率为 $\frac{2\sqrt{2}}{3}$,下顶点为A,右顶点为B, $AB = \sqrt{10}$.

- (1) 求C的标准方程;
- (2) 已知动点P不在y轴上,点R在射线AP上,且满足 $|AP|\cdot |AR|=3$.
- (i)设P(m,n),求R的坐标(用m,n表示);
- (ii)设O为坐标原点,Q是C上的动点,直线OR的斜率是直线OP的斜率的 3 倍,求 |PQ|的最大值.

19. (17分)

- (1) 求函数 $f(x) = 5\cos x \cos 5x$ 在 $[0, \frac{\pi}{4}]$ 的最大值;
- (2) 给定 $\theta \in (0,\pi)$ 和 $a \in \mathbb{R}$,证明:存在 $y \in [a-\theta,a+\theta]$ 使得 $\cos y \leq \cos \theta$;
- (3) 设 $b \in \mathbb{R}$,若存在 $\varphi \in \mathbb{R}$ 使得 $5\cos x \cos(5x + \varphi) \leq b$ 对 $x \in \mathbb{R}$ 恒成立,求b的最小值.