

Introduction to partitioning

Unit objectives

After completing this unit, you should be able to:

- Describe the following terms:
 - Partition, logical partition (LPAR), resource
- Describe the benefits of partitioning
- Describe the following partition concepts:
 - Dynamic logical partitioning
 - Micro-partitioning
 - Virtual I/O
 - Live Partition Mobility (LPM)
 - Capacity on demand (CoD)
- Describe the functions of the Hardware Management Console (HMC)
- Describe the functions performed by the POWER Hypervisor
- Describe the overall process for configuring partitions
- List references for IBM POWER5, POWER6, and POWER7 processor-based system partitioning

What is a partition?

Partition:

- The allocation of one system's resources to create logically separate systems
- An independent operating environment

Physical partition

- Physical partition:
 - Resources are allocated in physical building blocks.
 - Blocks contain groups of processors, memory, and I/O slots.

 Interconnect

Physical partition

Physical partition

Logical partition

- A partition is the allocation of system resources to create logically separate systems within the same physical footprint.
- A logical partition exists when the isolation is implemented with firmware.
 - Not based on physical system building block
 - Provides configuration flexibility

Partition characteristics

- Each partition has its own:
 - Operating system
 - Licensed Internal Code (LIC) and Open Firmware
 - Console
 - Resources
 - Other things expected in a stand-alone operating system environment, such as:
 - Problem logs
 - Data (libraries, objects, file systems)
 - Performance characteristics
 - Network identity
 - Date and time

Partition resources

- Resources are allocated to partitions.
 - Memory allocated in units as small as the LMB size
 - Dedicated whole processors or shared processing units
 - Individual I/O slots
 - · Including virtual devices
- Some resources can be shared.
 - Virtual devices
 - Host Ethernet adapter
- Some core system components are inherently shared.

S = I/O Slot M = Memory P = Processor

LPAR resource example

- Flexibility to allocate resources depending on need
- With DLPAR operations, resources can be moved, removed, or added with a restarting the partition.

- IBM POWER5+ processor-based LPAR-capable systems:
 - IBM System p5 entry, mid-range, and high-end servers
 - Example models:
 - IBM System p5 505
 - IBM System p5 510
 - IBM System p5 520
 - IBM System p5 550
 - IBM System p5 560
 - IBM System p5 570
 - IBM System p5 575
 - IBM System p5 590
 - IBM System p5 595

Visit http://www.ibm.com for latest list of models.

- IBM POWER6 processor-based LPAR-capable systems:
 - Entry, mid-range, and high-end servers
 - IBM Power Systems
 - Example models:
 - IBM Power Blade Express servers
 - IBM Power 520
 - IBM Power 550
 - IBM Power 560
 - IBM Power 570
 - IBM Power 575
 - IBM Power 595

Visit http://www.ibm.com for latest list of models.

- IBM POWER7 processor-based LPAR-capable systems:
 - IBM Power Systems
 - Example models:
 - IBM BladeCenter PS700/701/702 Express
 - IBM Power 750
 - IBM Power 770
 - IBM Power 780
 - IBM Power 755

Visit http://www.ibm.com for latest list of models.

Benefits of using partitions

- Capacity management:
 - Flexibility to allocate resources
- Consolidation:
 - Consolidate hardware, floor space, software licenses, support contracts, and in-house support and operations
 - Efficient use of resources
- Application isolation on a single frame:
 - Separate workloads
 - Guaranteed resources
 - Data integrity
- Merge production and test environments:
 - Test on same hardware

The ability to have virtual Ethernet and virtual I/O devices is a benefit to using POWER5, POWER6, and POWER7 processor-based partitions.

Software licensing

- Licensing is per operating system and is based on processing power.
 - Partial processor and shared processor pool features affect licensing.
- Third-party application provider licenses will vary.

POWER Hypervisor functions

- The POWER Hypervisor is firmware that provides:
 - Virtual memory management:
 - Controls page table and I/O access
 - Manages real memory addresses versus offset memory addresses
 - Virtual console support
 - Security and isolation between partitions:
 - Partitions allowed access only to resources allocated to them (enforced by the POWER Hypervisor)
 - Shared processor pool management

The HMC provides:

- Virtual console windows
- LPAR configuration and operation management
- Capacity on demand (CoD) management
- Service tools
- Access to LPM function

PC-based console:

- Running custom Linux and Java applications
- Remotely accessible
- Connects to service processor over private or open network

Desktop

Rack-mount

The big picture

Managed system

Advanced partition features

- Dynamic resource allocation
- Advanced processor concepts
- Virtual I/O
- Integrated Virtual Ethernet
- Active Memory Sharing
- Live Partition Mobility
- Capacity on demand

Dynamic partitioning

- DLPAR is the ability to add, remove, or move resources between partitions without restarting the partitions.
- Resources include:
 - Processors, memory, and I/O slots
 - Add and remove virtual devices
- Security and isolation between LPARs are not compromised.
 - A partition sees its own resources plus other available virtual resources.
 - Resources are reset when moved.
- Applications might or might not be DLPAR-aware.

DLPAR allows you to react to changing resource needs.

Micro-partitioning: Shared processor pool

IBM Power Systems

- Time sliced sub-processor allocations are dispatched according to demand and entitled capacity.
 - This example shows one 10 ms time slice, seven running partitions, and four processors.

© Copyright IBM Corporation 2010

Virtual I/O

- Each partition has virtual I/O slots.
 - Configurable for each partition
- Virtual slots can have a virtual adapter instance.
 - Ethernet, SCSI, or Fibre Channel
- Virtual I/O slots can be dynamically added or removed just like physical I/O slots.
 - Cannot be dynamically moved to another partition

Virtual I/O example

Integrated Virtual Ethernet

- Also referred to as host Ethernet adapter:
 - Included in all POWER6 and POWER7 system configurations (except high-end)
- Provides network connectivity for LPARs without a Virtual I/O Server:
 - Integrated high-speed Ethernet ports with hardware-assisted virtualization capabilities
 - Offers virtualization support for Ethernet connections
- Three types are available:
 - Two port 1 Gbps^a (default)
 - Four port 1 Gbps^a
 - Two port 10 Gbps^b
- Connected to the GX+ bus:
 - An LHEA must be created on the logical partition.

$$a = RJ45 b = fiber$$

IVE example

© Copyright IBM Corporation 2010

Active Memory Sharing

- Active Memory Sharing (AMS) allows multiple LPARs to share a common pool of physical memory.
 - AMS intelligently assigns memory from one partition to another based on memory page demands.
 - Optimizes memory utilization and provides flexible memory usage

Live Partition Mobility

- Migration or movement of an LPAR from one physical server to another
- Useful for:
 - Reducing the impact of planned outages and increasing application availability
 - Workload balancing and consolidation
 - Relocation of workload to enable workload

Provision of new technology with no disruption to service (migration

to newer systems)

- Requirements:
 - POWER6 or POWER7 systems
 - LPAR must only have virtual adapters

Capacity on demand

- Capacity upgrade on demand (CUoD)
 - Permanent activation of processors or memory
- Trial CoD
 - No charge 30-day activation of processors or memory resources
- On/Off CoD
 - Ability to activate processor or memory resources temporarily
- Utility CoD
 - Additional processor capacity on a temporary basis within the shared processor pool
- Capacity BackUp:
 - Processors and memory temporarily added to backup server
 - Prepaid for up to 90 days

PowerVM editions

PowerVM editions hardware features include the following components:

PowerVM editions	Express	Standard	Enterprise	
Maximum LPARs	3 / Server	10 / Core	10 / Core	
Management	VMControl, IVM	VMControl, IVM, HMC	VMControl, IVM, HMC	
Virtual I/O Server	✓	✓	✓	
PowerVM Lx86	✓	✓	✓	
Shared dedicated capacity	✓	✓	✓	
Multiple shared processor pools		✓	✓	
Active Memory Sharing			✓	
Live Partition Mobility			✓	

PowerVM Standard Edition is standard on the IBM System p5 590 and p5 595

Partitioning concepts summary

Part#1 Virtual I/O Server PPPPP	Part#2 AIX V6	Part#3 Linux	Part#4 i5/OS	Part#5 AIX V5	Part#6 AIX V6	Part#7-11 AIXV6/Linux	LAN
PPPPPP	PPP	Р	PPPPPP				
MMMMM	MMMM	MMM	MMM	M	MM	M M M M	
AAAAA	AAAAA	AAA	AAAA	AA	AAA	A Virtual LAN	
						Virtual I/O	
AIX 6 Kernel	AIX 6 Kernel	Linux Kernel	i5/OS Kernel	AIX 6 Kernel	AIX 6 Kernel	0 0 0 0 0 s s s s s	
Virtual Ethernet							
POWER Hypervisor							

Integrated Virtualization Manager

- Provides support for LPARs without a physical HMC:
 - Manages a single server
 - IVM software runs in the Virtual I/O Server partition.
 - Provides a subset of HMC functionality
 - Hypervisor has been modified to enable VIOS to manage the partitioned system without an HMC.
 - Implicit rule of configuration and setup
 - It requires that the server not be partitioned.
 - First operating system installed must be the VIOS.
 - Virtual I/O server partition owns all physical I/O
 - Client partitions can access virtual optical, virtual disk, virtual Ethernet, IVE, and console.

LPAR configuration process

LPAR references

Documentation:

- http://www.ibm.com/support/publications/us/library/
- Software and hardware information centers available
- http://publib.boulder.ibm.com/eserver/

LPAR and PowerVM information:

http://www-03.ibm.com/systems/power/software/virtualization/index.html

IBM Redbooks:

http://www.redbooks.ibm.com/

Technical support Web sites:

- http://www.ibm.com/servers/eserver/support/unixservers/
- http://www14.software.ibm.com/webapp/set2/sas/f/vios/home.html
- http://www14.software.ibm.com/webapp/set2/sas/f/power5cm/power7.html

Linux Web site:

http://www.ibm.com/systems/p/linux/

Web links might change over time.

AN11 course content

- System p hardware overview
- HMC
- System Planning Tool
- HMC maintenance
- System power management
- Configuring LPARs
- Dynamic resource allocation

AN30 course content

- Advanced processor concepts
- Virtual I/O
- Virtual network configurations
- VSCSI configurations
- IVE
- Service management

Checkpoint (1 of 2)

- 1. True or False: A partition is an independent operating environment.
- 2. What is it that makes *logical partitioning* different from *physical partitioning*?
 - a. Resource assignments are flexible.
 - b. Resources can be moved between partitions without a restart.
 - c. Partitioning is not dependent on physical system building blocks.
- 3. Which of the following are true for dynamic partition operations?
 - a. All AIX 6 partitions on POWER6 and POWER7 processor-based systems are capable of dynamic resource allocations.
 - b. Virtual I/O devices can be dynamically added or removed but not moved between partitions.
 - c. Partitions do not need to be restarted to add, remove, or move resources.
- 4. List the types of resources that are configured in partitions.

Checkpoint solutions (1 of 2)

- 1. True or False: A partition is an independent operating environment.
- What is it that makes logical partitioning different from physical partitioning?
 - a. Resource assignments are flexible.
 - b. Resources can be moved between partitions without a restart.
 - c. Partitioning is not dependent on physical system building blocks.
- 3. Which of the following are true for dynamic partition operations?
 - a. All AIX 6 partitions on POWER6 and POWER7 processor-based systems are capable of dynamic resource allocations.
 - b. Virtual I/O devices can be dynamically added or removed but not moved between partitions.
 - c. Partitions do not need to be restarted to add, remove, or move resources.
- 4. List the types of resources that are configured in partitions. **Processors, memory, I/O slots (including the HEA)**

Checkpoint (2 of 2)

- 5. What system option provides the ability to order additional resources that can be activated when you need them?
- 6. Which of the following are benefits of using partitions?
 - a. Better management of resources across operating environments
 - b. Isolate applications that were all running on one system
 - c. Better high availability solution
 - d. Manage operational costs by consolidating resources
- 7. What is the system component that performs the resource allocation to partitions?
- 8. What is the system component needed to configure partitions, configure CoD, and provide access to virtual consoles?
- 9. What is the term used for the concept of allocating sub-processors to partitions?

Checkpoint solutions (2 of 2)

- 5. What system option provides the ability to order additional resources that can be activated when you need them? **Capacity on demand (CoD)**
- 6. Which of the following are benefits of using partitions?
 - a. Better management of resources across operating environments
 - b. Isolate applications that were all running on one system
 - c. Better high availability solution
 - d. Manage operational costs by consolidating resources
- 7. What is the system component that performs the resource allocation to partitions? **POWER Hypervisor**
- 8. What is the system component needed to configure partitions, configure CoD, and provide access to virtual consoles? **HMC or IVM**
- 9. What is the term used for the concept of allocating sub-processors to partitions? **Micro-partitioning**

Unit summary

Having completed this unit, you should be able to:

- Describe the following terms:
 - Partition, logical partition (LPAR), resource
- Describe the benefits of partitioning
- Describe the following partition concepts:
 - Dynamic logical partitioning
 - Micro-partitioning
 - Virtual I/O
 - Live Partition Mobility (LPM)
 - Capacity on demand (CoD)
- Describe the functions of the Hardware Management Console (HMC)
- Describe the functions performed by the POWER Hypervisor
- Describe the overall process for configuring partitions
- List references for IBM POWER5, POWER6, and POWER7 processor-based system partitioning