

РОССИЙСКАЯ АКАДЕМИЯ НАРОДНОГО ХОЗЯЙСТВА И ГОСУДАРСТВЕННОЙ СЛУЖБЫ ПРИ ПРЕЗИДЕНТЕ РОССИЙСКОЙ ФЕДЕРАЦИИ

Динамика инвестиций в НИОКР, экспорта и производительности фирм

Касьянова Ксения ЭО-15-01

Динамика инвестиций в НИОКР:

Цель:

 Определить взаимосвязь между решением фирмы инвестировать в НИОКР и/или экспортировать, учитывая влияние обоих на будущую производительность фирмы.

Обзор литературы:

- 1. Эмпирические статьи об экспорте и производительности: Bernard and Jensen (1999); Bustos (2007)
- 2. Макро/торговые модели совместного принятия решений по HИОКР и экспорту: Atkeson and Burstein (2008); Constantini and Melitz (2008)
- Структурная оценка отраслевого равновесия: Olley and Pakes (1996) - динамика производительности; Das, Roberts and Tybout (2007) - экспорт с учетом невозвратных затрат и фиксированных расходов
- Механизм эндогенных инноваций: Bustos (2007), Lileeva and Trefler (2007) - либерализация торговли приводит к росту инноваций; Aw, Roberts, and Winston (2007): НИОКР и экспорт коррелируют.

Динамика инвестиций в НИОКР:

Резюме:

Экспорт и производительность фирмы взаимосвязаны:

- ▶ Робастные выводы в подтверждение "естественного отбора" по уровню производительности (self-selection)
- ► Смешанные выводы о наличии "Learning-by-Exporting"

Взаимозависимость решений инвестировать в НИОКР и экспортировать на уровне фирмы:

- Экспорт → выход на больший рынок → выше стимулы для исследований и разработок
- ▶ "Отбор" по уровню производительности (selection)
- ▶ R & D → более высокая ожидаемая производительность в будущем → усиление влияния "отбора"

Эффект размера рынка зависит от

- прибыльности на отечественном / экспортном рынке
- инновационный процесс
- > затратам, связанным с каждым видом деятельности

Технология:

Краткосрочные предельные издержки:

$$\ln c_{it} = \ln c(k_{it}, w_t) \neg x_{it} = \beta_0 + \beta_k \ln k_{it} + \beta_w \ln w_t \neg x_{it}$$

- k_{it} основной капитал, w_t цена переменных затрат, x_{it} производительность
- Различается для разных фирмам, но не зависит от объема производства
- Два источника неоднородности: наблюдаемый капитал, ненаблюдаемый производительность.

Спрос:

Спрос на продукцию фирмы на внутреннем рынке (Dixit -Stiglitz)

$$q_{it}^D = Q_t^D (p_{it}^D / P_t^D)^{\eta_D} = \frac{I_t^D}{P_t^D} \left(\frac{p_{it}^D}{P_t^D}\right)^{\eta_D} = \Phi_t^D (p_{it}^D)^{\eta_D}$$

• Φ^D_t - агрегированный показатель по внутреннему рынку Аналогичным образом, определяется спрос на продукцию фирмы на экспортном рынке:

$$q_{it}^{X} = Q_{t}^{X} (p_{it}^{X}/P_{t}^{X})^{\eta_{X}} = z_{it} \frac{I_{t}^{X}}{P_{t}^{X}} \left(\frac{p_{it}^{X}}{P_{t}^{X}}\right)^{\eta_{X}} = \Phi_{t}^{X} z_{it} (p_{it}^{X})^{\eta_{X}}$$

- z_{it} шок спроса для конкретной фирмы на экспортном рынке. Определяет неоднородность между экспортным и внутренним рынком для каждой фирмы.
- Φ^X_t агрегированный показатель по внутреннему рынку

Функции выручки на внутреннем и экспортном рынках:

$$\ln r_{it}^D = (\eta_D + 1) \ln (\frac{\eta_D}{\eta_D + 1}) + \ln \Phi_t^D + (\eta_D + 1) \ln c_{it}$$

$$\ln r_{it}^X = (\eta_X + 1) \ln (\frac{\eta_X}{\eta_X + 1}) + \ln \Phi_t^X + (\eta_X + 1) \ln c_{it} + z_{it}$$

Функции прибыли:

напрямую связывают доход с ненаблюдаемыми x_{it} и z_{it} .

$$\pi_{it}^{D} = (-1/\eta_D)r_{it}^{D}(\Phi_t^{D}, k_{it}, x_{it})$$

$$\pi_{it}^X = (-1/\eta_X) r_{it}^X (\Phi_t^X, k_{it}, x_{it}, z_{it})$$

Общие издержки:

$$tvc_{it} = r_{it}^{D}(1 + \frac{1}{\eta_{D}}) + r_{it}^{X}(1 + \frac{1}{\eta_{X}})$$

Производительность x_{it} изменяется эндогенно, в зависимости от решения инвестировать в НИОКР d_{it-1} и экспортировать e_{it-1} :

$$x_{it} = g(x_{it-1}, d_{it-1}, e_{it-1}) + \psi_{it}$$

- d,e в зависимости от модели либо дискретные (0/1), либо непрерывные переменные
- d_{it-1} определяет "learning-by-investing"; e_{it-1} определяет "learning-by-exporting"

Шоки экспортного спроса z_{it} изменяются экзогенно как марковский процесс первого порядка:

$$z_{it} = \rho_z z_{it-1} + \mu_{it}, \mu_{it} \sim N(0, \sigma_{\mu}^2)$$

Капитал определяется размером фирмы k_i : ряды с очень небольшими изменениями во времени

Источники динамики:

- e и d влияют на изменения будущего значения x; z постоянен во времени
- Решение о инвестировании в НИОКР или экспорте связано с единовременными первоначальными затратами.

Последовательность принятия решений и получения информации:

- 1. В начале периода t определяются (x_{it}, z_{it}) текущей производительности и шока экспортного спроса.
- 2. Определяется случайная фиксированная стоимость экспорта в момент времени t γ^F_{it} и размер невозвратных затрат, связанных с решением экспортировать $^S_{it}$
- 3. Фирма максимизирует статическую прибыль или π^D_{it} , или при решении экспортировать π^X_{it} .
- 4. Определяется случайная фиксированная стоимость инноваций в НИОКР в момент времени t γ^I_{it} и размер невозвратных затрат, связанных с инновациями в НИОКР γ^D_{it}
- 5. Конец периода t, реализуются новые состояния переменных (x_{it+1}, z_{it+1}) .

Задача фирмы:

$$\max_{\{e_t,d_t\}} \left\{ E_0 \sum_{t=0}^{\infty} \delta^t \left\{ \pi^D(x_t) + e_t [\pi^X(x_t, z_t) - \gamma^X(e_{t-1})] - d_t \gamma^R(d_{t-1}) \right\} \right\}$$

$$s.t.: x_t = g(x_{t-1}, e_{t-1}, d_{t-1})$$

- Задача динамической оптимизации
- Высокие значения производительности x_t влияют на стимулы принятия решения как в пользу e_t , так и d_t
- > Зависимость между e_t и d_t через целевую функцию и динамику производительности
- Постоянство в выборе за счет превышения невозвратных затрат над в сравнении с фиксированными затратами (оба варианта)

Пусть

$$s_{it} = (z_{it}, x_{it}, k_i, e_{it-1}, d_{it-1}, \Phi_t)$$

Целевая функция фирмы в год t:

$$V_{it}(s_{it}) = \int \pi_{it}^D + \max_{e_{it} \in (0,1)} \{\pi_{it}^X - e_{it-1}\gamma_{it}^F - (1 - e_{it-1})\gamma_{it}^S + V_{it}^E, V_{it}^D\} dG^\gamma$$

Ожидаемая выгода от решения экспортировать:

$$\begin{split} V^E_{it}(s_{it}) &= \int \max_{d_{it} \in (0,1)} \{\delta E_t V_{it+1}(s_{it+1}|\cdot, e_{it} = 1, d_{it} = 1) - \gamma^I_{it} d_{it-1} - \gamma^D_{it}(1 - d_{it-1}), \\ &\delta E_t V_{it+1}(s_{it+1}|\cdot, e_{it} = 1, d_{it} = 0)\} dG^{\gamma^{I,D}} \end{split}$$

Ожидаемая выгода от решения не экспортировать:

$$\begin{split} V_{it}^D(s_{it}) &= \int \max_{d_{it} \in (0,1)} \{\delta E_t V_{it+1}(s_{it+1}|\cdot, e_{it} = 0, d_{it} = 1) - \gamma_{it}^I d_{it-1} - \gamma_{it}^D (1 - d_{it-1}), \\ \delta E_t V_{it+1}(s_{it+1}|\cdot, e_{it} = 0, d_{it} = 0)\} dG^{\gamma^{I,D}} \end{split}$$

Ожидаемое значение целевой функции зависит от различных вариантов выбора e_{it} и d_{it} :

$$E_t V_{it+1} = \int_{\Phi'} \int_{z'} \int_{x'} V_{it+1}(s_{it+1}) dF(x'|x_{it}, e_{it}, d_{it}) dF(z'|z_{it}) dG(\Phi'|\Phi_t)$$

Три механизма через которые НИОКР и экспорт:

- 1. Отбор (Selection): вероятность выбора e_{it} и d_{it} увеличения с ростом x_{it} и z_{it} .
- 2. $MBD(s_{it}) = E_t V_{it+1}(\cdot | e_{it}, d_{it} = 1) E_t V_{it+1}(\cdot | e_{it}, d_{it} = 0)$:
 - \Rightarrow невозвратные издержки экспортирования γ_{it}^S
 - \Rightarrow производство "знаний" (learning-by-doing) $g(x_{it},e_{it},d_{it})$.
- 3. $MBE(s_{it}) = \pi_{it}^X + V_{it}^E(\cdot, d_{it-1}) V_{it}^D(\cdot, d_{it-1})$
 - \Rightarrow невозвратные издержки инвестирования в НИОКР γ^D_{it}
 - \Rightarrow производство "знаний" (learning-by-doing) $g(x_{it},e_{it},d_{it})$.

Эмпирическая модель

Оценка статических параметров модели:

Параметры спроса на внутреннем рынке и издержек:

- $lackbox \{tvc_{it},r_{it}^D,r_{it}^X\}$ для оценки эластичности спроса
- $(\Phi_D, \beta_0, \beta_k)$: уравнение дохода на внутреннем рынке позволяет восстановить ненаблюдаемую производительность фирмы x_{it} .
- $lackbox \{r_{it}^X, x_{it}\}$ для оценки шоков экспортного спроса z_{it}
- $ightharpoonup (\eta_X,\eta_D)$ для оценки общих издержек

Эмпирическая модель

Оценка динамических параметров модели:

• Уравнение динамики производительности:

$$x_{it} = g(x_{it-1}, d_{it-1}, e_{it-1}) + \xi_{it}$$

$$x_{it} = \alpha_0 + \alpha_1 x_{it-1} + \alpha_2 (x_{it-1})^2 + \alpha_3 (x_{it-1})^3 + \alpha_4 d_{it-1} + \alpha_5 e_{it-1} + \alpha_6 d_{it-1} e_{it-1} + \xi_{it}$$

- ▶ Динамика производительности $x_{it} = g(x_{it-1}, e_{it-1}, d_{it-1})$ оценивается МНК с использованием предположения о параметрической зависимости $g(\cdot)$
- lacktriangle Динамика решений экспортировать и инвестировать $\{e_{it},d_{it}|z_{it}\}$ оценивается ML

 $(\rho_z,\sigma_\mu,\Phi^X)$: уравнение доходов от экспорта - наблюдается только для экспортеров.

 G^{γ} : вероятности условного выбора фирмы

Выбор данных для оценки модели

Тайваньская электронная промышленность

- Сбалансированная панель за 2000-2004 гг из 1237 фирм
- Классы продукции: бытовая электроника, телекоммуникационное оборудование, компьютеры и складское оборудование, электронника.
- Наиболее динамично развивающаяся отрасль в тайваньском производственном секторе.
 - Участие в экспорте 0.39 конкуренция с низким уровнем рентабельности
 - ▶ Разработчики НИОКР 0.17 основной акцент на процессных инновациях
 - Значительная неоднородность в производительности и решениях фирм.
 - Устойчивый рост производительности, 3,6% в год в 80-х и 90-х годах.

Ключевые переменные: доход (на внутреннем и экспортном рынках), физический капитал (размер фирмы), расходы на НИОКР, переменные затраты (материал, труд, энергия)

Выбор данных для оценки модели

- Причины постоянства в выборе: (1) высокие размеры невозвратных издержек (2) высокая степень постоянства структуры неоднородности прибыли фирм.
- Экспорт более распространен, чем инвестиции в НИОКР.
- Проведение одного из мероприятий в год t повышает вероятность выбора второго в год t+1, или уменьшает вероятность отказа от другой в год t+1

4		Status Year t+1					
	Status year t	Neither	only R&D	only Export	Both		
	All Firms	.563	.036	.255	.146		
	Neither	.871	.014	.110	.005		
	only R&D	.372	.336	.058	.233		
	only Export	.213	.010	.708	.070		
	Both	.024	.062	.147	.767		

Рис.: Матрица перехода для решений инвестировать в НИОКР и экспортировать

Оценка модели

Parameter	Discourts D&D	C+! D0 D
	Discrete R&D	Continuous R&D
$1+1/\eta_D$.8432 (.0195)*	.8432 (.0195)*
$1+1/\eta_X$.8361 (.0164)*	.8361 (.0164)*
β_k	0633 (.0052)*	0636 (.0051)*
α_0	.0879 (.0198)*	.0866 (.0194)*
α_1	.5925 (.0519)*	.5982 (.0511)*
α_2	.3791 (.0915)*	.3777 (.0912)*
α_3	1439 (.0585)*	1592 (.0588)*
α_4	.0479 (.0099)*	.0067 (.0012)*
α_5	.0196 (.0046)*	.0197 (.0045)*
α_6	0118 (.0115)	0022 (.0014)
$SE(\xi_{it})$.1100	.1098
sample size	3703	3703

Рис.: Оценки динамики производительности

Parameter	Estimate	St Error
γ_I (Innov FC)	67.606	3.930
γ_D (Innov SC)	354.277	31.377
γ_F (Export FC)	11.074	0.389
γ_S (Export SC)	50.753	3.483
Φ_X (Export Rev Intercept)	3.813	0.063
ρ_Z (Export Rev AR process)	0.773	0.014
$\log \sigma_{\mu}$ (Export Rev Std Dev)	-0.287	0.018

Рис.: Оценки динамики принятия решений

Оценка модели

	Year 2002	Year 2003	Year 2004		
	Export Market	Participation Ra	te		
Actual Data	0.395	0.392	0.390		
Predicted	0.370	0.371	0.371		
R&D Investment Rate					
Actual Data	0.177	0.170	0.169		
Predicted	0.172	0.168	0.167		
	Average	Productivity			
Actual Data	0.436	0.444	0.436		
Predicted	0.449	0.441	0.432		

Рис.: Прогноз уровней производительности, вовлеченности в инвестирование и экспорт

Status year t		Status Year t+1			
		Neither	only R&D	only Export	Both
Neither	Predicted	0.866	0.019	0.110	0.008
	Actual	0.871	0.014	0.110	0.005
only R&D	Predicted	0.476	0.214	0.116	0.193
	Actual	0.372	0.336	0.058	0.233
only Export	Predicted	0.292	0.010	0.622	0.077
	Actual	0.213	0.010	0.708	0.070
Both	Predicted	0.049	0.028	0.138	0.784
	Actual	0.024	0.062	0.147	0.767

Рис.: Прогноз матрицы перехода для фирм, продолжающих свою деятельность

Результат

Динамика производительности (оценка $g(\cdot)$):

$$\frac{\Delta x_{it} > 0}{\Delta e_{it-1}} > 0; \frac{\Delta x_{it}}{\Delta d_{it-1}} > 0; \frac{\Delta^2 x_{it}}{\Delta e_{it} \Delta d_{it}} < 0$$

- Производительность растет в ответ на НИОКР и экспорт.
- Воздействие НИОКР на производительность больше, но относительно низкая стоимость экспорта делает его более популярным выбором.

Невозвратные и постоянные затраты на экспорт и НИОКР:

- Расходы на НИОКР примерно вдвое больше, чем расходы на экспорт
- Невозвратные издержки примерно в два раза больше фиксированных
- Составляют около 10% доходов

Взаимозависимость между экспортом и инвестициями в НИОКР:

- "Отбор" основанный на производительности фирмы x_{it} для e_{it} и d_{it} (с учетом стабильного экспортного спроса)
- Постоянства в выборе из-за больших по сравнению с фиксированными издержками невозвратных расходов
- Вероятность экспортировать уменьшается при инвестировании в НИОКР и вероятность инвестировать в НИОКР уменьшаются при экспорте