Exercice 1. (Familles libres et génératrices de vecteurs)

Les familles suivantes sont-elles libres ou génératrices? Si oui le prouver, sinon donner un contre-exemple.

- 1. $\{(1,1),(1,-i)\}$ dans l'espace vectoriel \mathbb{C}^2 sur \mathbb{C}
- 2. $\{(1,2,2),(-2,0,2),(-2,2,-1)\}\$ dans l'espace vectoriel \mathbb{R}^3 sur \mathbb{R}
- 3. $\{(1,2,2),(-2,0,2),(-2,2,-1)\}$ dans l'espace vectoriel \mathbb{C}^3 sur \mathbb{R}
- 4. Donner une base de \mathbb{C}^2 sur \mathbb{R} . Et sur \mathbb{C} ?

Exercice 2. (Indépendance linéaire de fonctions)

Dans l'espace vectoriel des fonctions $\mathcal{F}(\mathbb{R},\mathbb{R})$, les familles ci-dessous sont-elles libres?

- 1. $\{3x^2, 2x^4\}$
- 2. $\{3^x, 3^{x+3}\}$
- 3. $\{1m\sin^2(x),\cos^2(x)\}$
- 4. $\{\cos(x), \cos(2x), \cos(4x)\}\$
- 5. La famille infinie $\{1, \sin(x), \sin(2x), \sin(4x), \sin(8x), \sin(16x), \dots\}$

Exercice 3. (Sous-famille libre)

Montrer l'affirmation suivante :

Si $\{v_1, \ldots, v_n\}$ est une famille libre dans un espace vectoriel V,

Alors toute sous-famille $\{v_i\}_{i\in I}$ indexée par $I\subset\{1,\ldots,n\}$ est aussi libre.

Exercice 4. (Dimension d'un espace vectoriel sur \mathbb{R} et sur \mathbb{C})

On note $\dim_{\mathbb{K}}(E)$ la dimension de l'espace vectoriel E sur le corps \mathbb{K} .

- (a) Montrer que $\dim_{\mathbb{R}}(\mathbb{R}) = 1$ et $\dim_{\mathbb{R}}(\mathbb{C}) = 2$.
- (b) En déduire $\dim_{\mathbb{R}}(\mathbb{R}^n)$ et $\dim_{\mathbb{R}}(\mathbb{C}^n)$.
- (c) Montrer que $\dim_{\mathbb{C}}(\mathbb{C}) = 1$. En déduire $\dim_{\mathbb{C}}(\mathbb{C}^n)$.

Exercice 5. (Base, famille libre maximale et famille génératrice minimale)

Soit V un espace vectoriel sur K et une famille de vecteurs $\mathcal{F} = \{v_1, \dots, v_n\} \subset V$.

- (a) En cours, nous avons vu que les conditions suivantes sont équivalentes :
 - (i) \mathcal{F} est une base de V
 - (ii) \mathcal{F} est une famille libre maximale de V
 - (iii) \mathcal{F} est une famille génératrice minimale de V

L'équivalence $(i) \iff (ii)$ a été montrée en cours. Montrer l'équivalence $(i) \iff (iii)$.

(b) Montrer que

 \mathcal{F} est une base de $V \iff \mathcal{F}$ est génératrice et $\operatorname{card}(\mathcal{F}) = \dim_{\mathbb{K}}(V)$

 $Indication: card(\mathcal{F})$ est le nombre d'éléments de la famille \mathcal{F} .