Método del Punto Fijo

Integrantes:

Apaza Curtihuanca Job Edward Apaza Huayta Sadith Lina Paricahua Pari Clyde Neil Quispe Ramos Henrry Higinio

Curso: Programación Numérica

Definición

El **método del punto fijo** es un procedimiento iterativo para resolver ecuaciones no lineales de la forma:

$$f(x) = 0$$

Se basa en reescribir la ecuación en la forma:

$$x = g(x)$$

donde g es una función adecuada. Una solución r de f(x) = 0 es un **punto fijo** de g(x), es decir:

$$r = g(r)$$
.

Fundamento teórico

Si $g:[a,b] \rightarrow [a,b]$ es continua y existe $r \in [a,b]$ tal que g(r) = r, entonces r es una raíz de f(x) = 0. Definimos la sucesión:

$$x_{n+1} = g(x_n), \quad n = 0, 1, 2, \dots$$

donde x_0 es una aproximación inicial. Si la sucesión converge, el límite será la raíz buscada.

Existencia de raíz

Si g(a) > a y g(b) < b, existe al menos un $r \in (a, b)$ tal que g(r) = r.

Definimos h(x) = g(x) - x. Entonces:

$$h(a) > 0, \quad h(b) < 0$$

Por el **Teorema de Bolzano**, existe $r \in (a, b)$ tal que $h(r) = 0 \Rightarrow g(r) = r$.

Ilustración gráfica

Condición de convergencia

El método converge si, en un entorno de la raíz r, se cumple:

En este caso, la sucesión $\{x_n\}$ converge a r. Si |g'(r)| > 1, el método diverge.

Algoritmo

- 1. Reescribir f(x) = 0 en la forma x = g(x).
- 2. Elegir una aproximación inicial x_0 .
- 3. Iterar con la fórmula:

$$x_{n+1}=g(x_n)$$

hasta que:

$$|x_{n+1}-x_n|<\varepsilon$$

donde ε es la tolerancia deseada.

Reformulación del Problema

Dada la ecuación:

$$f(x) = 0$$

Se reformula como:

$$x = g(x)$$

donde g(x) es la función de iteración.

Condiciones de Convergencia

Para que el método de punto fijo funcione deben cumplirse:

- ightharpoonup g es continua en [a, b].
- ▶ $g(x) \in [a, b]$ para todo $x \in [a, b]$.
- ▶ $|g'(x)| \le L < 1$ para todo $x \in [a, b]$.

Proceso Iterativo

Valor inicial: $x_0 \in [a, b]$

Iteraciones:

$$x_{n+1} = g(x_n), \quad n = 0, 1, 2, \dots$$

Cálculo de Errores

Error absoluto:

$$E_{\mathsf{abs}} = |x_{n+1} - x_n|$$

Error relativo:

$$E_{\text{rel}} = \frac{|x_{n+1} - x_n|}{|x_{n+1}|}$$

Cota de error (Banach):

$$|x_n - x^*| \le \frac{L}{1 - L} |x_{n+1} - x_n|$$

 $|x_n - x^*| \le \frac{L^n}{1 - L} |x_1 - x_0|$

Criterios de Parada

- ▶ Por error absoluto: $|x_{n+1} x_n| < \epsilon$
- ▶ Por error relativo: $\frac{|x_{n+1} x_n|}{|x_{n+1}|} < \epsilon$
- **Por iteraciones máximas:** $n > N_{\text{max}}$

Validación de la Solución

Punto fijo:

$$|g(x^*) - x^*| < \epsilon$$

Ecuación original:

$$|f(x^*)| < \delta$$

Transformación adecuada de la ecuación

La ecuación original:

$$f(x) = 0$$

debe reescribirse como:

$$x = g(x)$$
.

Esta reescritura no es única y no todas las formas garantizan convergencia.

Ejemplo:

$$x^3 + x - 1 = 0$$

Dos posibles transformaciones:

$$g_1(x) = 1 - x^3$$
, $g_2(x) = \sqrt[3]{1 - x}$

Una de ellas puede converger y la otra no, según:

Teorema del Punto Fijo de Banach

El teorema garantiza que si g(x) es continua en [a,b] y además es contractiva, es decir, existe k con 0 < k < 1 tal que:

$$|g(x_1)-g(x_2)| \leq k|x_1-x_2|, \quad \forall x_1,x_2 \in [a,b],$$

entonces existe un único punto fijo r al que converge el método.

Convergencia lineal

La velocidad de aproximación es del orden:

$$|x_{n+1}-r|\leq k|x_n-r|$$

Esto significa:

- ► En cada paso el error se reduce aproximadamente por un factor *k*.
- ► El método es más lento comparado con otros de convergencia cuadrática (ej. Newton-Raphson).

Ventajas

- ▶ Implementación simple: basta definir g(x) y un valor inicial.
- Útil como preliminar: da un valor inicial para métodos más rápidos.
- **Generalidad:** aplicable siempre que se pueda construir g(x).
- **Bajo consumo de memoria:** solo se guardan los valores x_n y x_{n+1} .

Desventajas

- No siempre aplicable: no siempre es posible construir un g(x) adecuado.
- ▶ Alta sensibilidad: depende fuertemente de g(x) y de x_0 .
- Convergencia lenta: puede requerir muchas iteraciones para alta precisión.
- ▶ **Oscilación:** si $|g'(x)| \approx 1$, puede oscilar o divergir.

Problema

Queremos determinar la tasa de interés mensual r que permite que una inversión se **duplique en un año**.

$$f(r) = (1+r)^{12} - 2 = 0$$

- Si r es la tasa mensual, después de 12 meses el capital inicial se multiplica por $(1+r)^{12}$.
- El objetivo es resolver esta ecuación mediante el método de punto fijo.

Transformación a Punto Fijo

El método de punto fijo consiste en reescribir f(r) = 0 como:

$$r = g(r)$$

Opción exacta:

$$r = \sqrt[12]{2} - 1$$

Opción iterativa:

$$g(r) = \frac{2}{(1+r)^{11}} - 1$$

A partir de una estimación inicial r_0 , generamos la sucesión:

$$r_{n+1} = g(r_n)$$

Condiciones de Convergencia

Para que el método funcione, debe cumplirse:

$$|g'(r)|<1$$

Calculemos g'(r):

$$g(r) = \frac{2}{(1+r)^{11}} - 1$$

$$g'(r) = -22 \cdot \frac{1}{(1+r)^{12}}$$

Cerca de la solución $r \approx 0.058$, se verifica que |g'(r)| < 1, por lo que el método converge.

Iteraciones

Partimos de $r_0 = 0.05 (5\%)$.

$$r_{n+1}=g(r_n)$$

n	r _n	r_{n+1}	
0	0.050	0.059	
1	0.059	0.058	
2	0.058	0.058	

La sucesión converge a $r \approx 0.058$.

Conclusión

- El método de punto fijo nos permitió resolver la ecuación de forma iterativa.
- La tasa de interés mensual que hace que el capital se duplique en un año es aproximadamente:

$$r \approx 0.058$$
 (5.8%)

▶ El método es sencillo, pero requiere verificar la condición de convergencia |g'(r)| < 1.

Ejemplo Aplicado del Método del Punto Fijo

Función:

$$f(x) = e^x - 4x$$

Transformación a punto fijo:

$$x = g(x) = \ln(4x)$$

iteracion	x=i	x_i+1	f(x)=(e^x)-4+x	g(x)=x=ln(4-x)	error= (x_1-x)/>	%
x_0	1	1,098612289		1,098612289	0,089760773	9%
x_1	1,098612289	1,065189144		1,065189144	0,031377662	3%
x_2	1,065189144	1,076643007		1,076643007	0,010638497	1%
x_3	1,076643007	1,072732611		1,072732611	0,003645266	0%
x_4	1,072732611	1,074069356		1,074069356	0,001244561	0%
x_5	1,074069356	1,073612599		1,073612599	0,000425439	0%
x_6	1,073612599	1,073768693		1,073768693	0,000145371	0%
x_7	1,073768693	1,073715352		1,073715352	4,96796E-05	0%
x_8	1,073715352	1,07373358		1,07373358	1,69769E-05	0%
x_9	1,07373358	1,073727351		1,073727351	5,80157E-06	0%
x_10	1,073727351	1,07372948		1,07372948	1,98258E-06	0%
x_11	1,07372948	1,073728752		1,073728752	6,7751E-07	0%

Figure: