mIPEA User Manual

(version 1.0)

- mIPEA is a user-friendly and multi-functionality platform specifically tailored to the needs of streamlined processing of m⁶A-Seq data in a reference genome-free manner. By taking advantage of machine learning (ML) algorithms, mIPEA enhanced the m⁶A-Seq data analysis by constructing robust computational models for identifying high-quality transcripts and high-confidence m⁶A-modified regions.
- mlPEA comprises four functional modules: **Data Preprocessing, Transcriptome Construction, m⁶A Calling, and Functional Exploration**.
- mlPEA was powered with an advanced packaging technology, which enables compatibility and portability.
- mlPEA project is hosted on https://github.com/cma2015/mlPEA
- mlPEA Docker image is available at https://hub.docker.com/r/malab/mlpea

Functional Exploration

This module provided five functions to perform functional exploration of m⁶A-Seg data

Functions	Description	Input	Output	Time (test data)	Reference
ML-based Transcript Annotation	Predict the coding region of assembled transcripts	Assembled transcripts in FASTA format	Prediction scores of translation initiation and termination sites of assembled transcripts in txt format	~3 min	In-house scripts
Function Annotation	Annotate the functions of coding transcripts	RNA modifications in BED format and assembled transcripts in FASTA format	Functions corresponding to transcripts in txt format	~3 min	
Differential Methylation	Identify differential methylation modifications under multiple conditions	Assembled transcripts in FASTA format and alignment file in bam format	RNA differential modifications in BED format	~5 min	In-house scripts
Enrichment Analysis	Perform GO or KEGG enrichment analysis for any species	Transcript list and function annotation results	The enriched GO/KEGG terms	~3 min	
Motif Discovery	Integrate MEME- ChIP and HOMER to performed <i>de novo</i> motif discovery	RNA modifications in BED format and assembled transcriptome sequences in FASTA format	Discovered motifs in HTML format	~1 min	

ML-based Transcript Annotation

In this function, we utilized **TranslationAI**, a deep neural network to directly predict and analyze translation initiation (TIS) and termination sites (TSS) from transcripts.

Input

Assembly transcript in FASTA format

Output

- TranslationAl prediction results in TXT format
- Transcripts annotation results in TXT format

How to use this function

• The following screenshot shows us how to use this function.

Function Annotation

In this function, functional annotation was performed useing eggNOG-mapper (database v5.0.2) to identify potential functions based on homology.

Input

Assembled transcript in FASTA format

Output

Assembled transcripts function annotation results in TXT format by eggNOG

How to use this function

• The following screenshot shows us how to use this function.

Differential Methylation

In this function, for pair-wised m⁶A-Seq data, mIPEA can identify differentially methylated regions (DMRs) using **QNB**, with the negative-binomial distribution model to capture the within-group variability of m⁶A methylation level across all samples.

Input

- Assembled transcript in FASTA format
- Alignment reaults in BAM format

Output

• The differential peak region matrix in TXT format

How to use this function

• The following screenshot shows us how to use this function.

Enrichment Analysis

In this function, for a set of m⁶A-modified transcripts of interest, Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis is performed utilizing the R package clusterProfiler.

Input

- Assembled transcripts function annotation results in TXT format by eggNOG
- RNA modifications transcript list

Output

- The enriched GO/KEGG terms
- A PDF focument of top enriched GO/KEGG terms

How to use this function

• The following screenshot shows us how to use this function.

Motif Discovery

This function integrates MEME-ChIP and HOMER to perform de novo motif discovery.

Input

• RNA modifications regions in BED format

Assembled transcript in FASTA format

Output

• An HTML report generated by MEME-ChIP or HOMER

How to use this function

• The following screenshot shows us how to use this function.

