实验五 交流伺服电动机实验

伺服电动机在自动控制系统中作为执行元件,又称为执行电动机,将输入的控制电压信号变为相应的角位移或角速度.伺服电动机运行状态由控制信号控制,施加控制信号应当立即旋转,去掉控制电压应当立即停转,转速高低与控制信号成正比.

实验步骤和机械特性记录

- 1. 实测交流伺服电机 $U_f=220V$, $U_c=1$ (即 $U_c=U_N=220V$), C=3F时的机械特性
- · 左侧空气开关闭合, 面板交流开关闭合.
- · 调节变压器 T2 使 $U_c = U_N = 220V$.
- · 调节智能负载控制器给定,电机从空载至堵转过程中,将力矩 T 及电机转速记录于表 5-1 中.
- · 测试完毕, 及时断开所有电源开关.

	序号	1	2	3	4	5	6	7	8	9	10	11	12
	$T(N \cdot$	0.02	0.04	0.06	0.08	0.1	0.11	0.12	0.13	0.135	0.14	0.15	0.155
L	m)												
n	(r/min)	1922	1888	1817	1715	1462	1372	1322	1205	1200	1166	970	0

表1 机械特性

- 2. 实测交流伺服电机 $U_f = 220V$, $U_c = 1$ (即 $U_c = U_N = 220V$), C = 1.5F时的机械特性
- · 左侧空气开关闭合, 面板交流开关闭合.
- · 调节单相调压器 T2 使 $U_c = U_N = 220V$.
- · 调节智能负载控制器给定,电机从空载至堵转过程中,将力矩 T 及电机转速记录于表 5-2 中
- · 测试完毕, 及时断开所有电源开关.

序号	1	2	3	4	5	6	7	8	9
$T(N \cdot m)$	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.085
n(r/min)	1663	1629	1597	1518	1471	1300	1054	830	0

表 2 机械特性

- 3. 实测交流伺服电机 $U_f = 220V$, $U_c = 0.75$ (即 $U_c = 0.75U_N = 165V$), C = 3F 时的机械特件
- · 调节单相交流调压器使 $U_c = 0.75U_N = 165V$.
- · 重复上面实验,将数据记录于表 6-3 中.
- · 测试完毕, 及时断开所有电源开关.

序号	1	2	3	4	5	6	7	8	9
$T(N \cdot m)$	0.02	0.04	0.06	0.08	0.09	0.1	0.11	0.12	0.13
n(r/min)	1861	1815	1586	1327	1233	1179	1103	946	0

表 3 机械特性

4. 实验方法调整堵转状态下的旋转磁场

- 1. 断开主电源和左侧的空气开关,按照图 5-1 连接示波器,示波器两探头地线应接图中 N 线 (也是变压器的 NO). X 踪和 Y 踪幅值量程一致,并设在迭加状态. 初始状态时,电容 C 选择为 0.
- 2. 合上交流主电源, $U_f = 220V$,再调节交流单相调压器 T2 使 $U_c = 220V$,调节智能负载控制器给定,使电机堵转.
- 3. 逐步增大可变电容 C的容值,观察 I_f 与 I_c (通过电流表 A1 和 A2 测量)接近过程中示波器轨迹的变化.需要确认调整时 U_f 等于 U_c .

$C(\mu F)$	0.47	1	1.5	2	2.2	2.3	2.4
$I_f(A)$	0.04	0.07	0.11	0.18	0.20	0.22	0.24
$I_c(A)$	0.28	0.28	0.29	0.30	0.31	0.32	0.32

实验报告

1. 作交流伺服电动机幅值—相位控制时的机械特性.

图 1 机械特性

2. 分析实验数据及实验过程中发生的现象.

励磁回路串联电容,电磁转矩表达式十分复杂. 根据实验数据,电磁转距随转速增加,先增大再减小. C 越大,转矩越大; U_C 越大,转矩越小.

思考题

1. 分析无"自转"现象的原因? 怎样消除"自转"现象? 阻转矩大于单相运行时的最大转矩. 可以通过提高转子电阻来消除自转现象.

2. 幅值-相位控制的交流伺服电机,什么条件下电机气隙磁场为圆形磁场? 其理想空载转速是多大?

当激磁绕组与控制绕组所产生的磁势幅值相等,且两绕组电流相位差为 90° 时,电机的气隙磁场为圆形磁场. 此时,电机的理想空载转速为同步转速 n_1 .