1 Compactness

We assume there are countably many sentence symbols.

A finite set $\{\varphi_1, \dots, \varphi_n\}$ of wff's is satisfiable iff $\varphi_1 \wedge \dots \wedge \varphi_n$ is not a contradiction.

We say that $\{\varphi_1, \dots, \varphi_n\}$ is consistent when it's satisfiable.

We say that \mathcal{T} of wff's is consistent when \mathcal{T} is finitely satisfiable.

i.e. $\varphi_1 \wedge \cdots \wedge \varphi_n$ is not contradiction for any $\varphi_i \in \mathcal{T}$.

Let $\mathcal T$ be a consistent set of wff's. We extend $\mathcal T$ to a maximal consistent set Δ of wff's.

Lemma 1.0.1 Let S be a consistent set of wff's, and let φ a wff. Then $S \cup \{\varphi\}$ or $S \cup \{\neg\varphi\}$ is consistent.

Lemma 1.0.2 Let S be a consistent set of wff's, then the following are equivalent:

- 1. S is a maximal consistent set of wff's
- 2. For any wff φ either $\varphi \in S$ or $\neg \varphi \in S$