Curriculum for Artificial Intelligence.

© Ishav Verma 2022.

Under this curriculum the learners would be taught about the Artificial Intelligence & it's real-life applications. For this the curriculum of the course is divided into four parts with whole duration of 24 Hours. They are as:

- 1. Python Basics. (6 Hours)
- 2. Maths Basics. (2 Hours)
- 3. Artificial Intelligence. (12 Hours)
- 4. Useful Platforms for AI Development. (4 Hours)

The course curriculum can be defined as following topics:

1. Python Basics:

- a. About Python:
 - i. What is Python?
 - ii. Features of Python.
 - iii. Uses of Python.
 - iv. Environment Setup.
 - v. IDE Setup: VS Code, Jupyter Lab, Google Colab & IBM Watson Studio.
- b. Python Basic concepts:
 - i. Programming Basics in Python.
 - ii. Python Data Types.
 - iii. Control Flow Statements.
 - iv. Functions.
 - v. Objects & Classes.
- c. Python Advanced concepts:
 - i. Python regular Expressions.
 - ii. I/O Operations.
 - iii. Exception.
 - iv. Data Structures.
- d. Third Party Libraries.
 - i. Introduction to 'pip'.
 - ii. Useful 'pip' commands.
 - iii. Numpy.
 - iv. Pandas.
 - v. Matplotlib.
 - vi. Scipy.
 - vii. Scikit-Learn.
 - viii. Tensorflow Tensorflow, tensorflow-gpu, keras, CUDA & cuDNN.
- e. CUDA & cuDNN setup with Nvidia GPU(s).

2. Maths Basics:

- a. Relation of Mathematics & AI.
- b. Linear Algebra:
 - i. Basic Concepts & Operations.
 - ii. Linear Transformation & Matrix

- iii. Matrix Decomposition.
- c. Probability & Statistics:
 - i. Basics of Probability & Statistics.
 - ii. Random variable & probability distribution.
 - iii. Estimation.
- d. Optimization Problem:
 - i. Classification of Optimization problem.
 - ii. Gradient descent method.

3. Artificial Intelligence:

- a. Artificial Intelligence:
 - i. What is AI?
 - ii. History of Al.
 - iii. Future scope of Al.
 - iv. How to achieve AI.
 - v. Introduction to AI, ML & DL.
 - vi. Difference among AI, ML & DL.
- b. Data Cleaning:
 - i. What is Data & Datasets?
 - ii. How to get Datasets?
 - iii. Need of Data.
 - iv. Data Examination.
 - v. Data Cleansing.
 - vi. Understanding features & labels
 - vii. Process of feature selection.
- c. Machine Learning:
 - i. What is ML?
 - ii. Types of ML.
 - iii. Different types of ML algorithms.
 - iv. Process of ML.
 - v. Case study & Hands on Practice.
- d. Deep Learning:
 - i. What is DL?
 - ii. DL Algorithms.
 - iii. Activation Function, Normalizer & Optimizer.
 - iv. What are neural Networks?
 - v. Types of Neural Networks.
 - vi. Case study & Hands on Practice.
- e. Model Building:
 - i. Model Selection.
 - ii. Model Building.
 - iii. Model Exporting.
 - iv. Model Deployment.
 - v. Model Management

4. Useful Platforms for AI Development:

- a. Github:
 - i. What is Github?
 - ii. What is Git & Gitbash?
 - iii. Github Codespaces.
 - iv. Git commands.
- b. Kaggle:
 - i. What is Kaggle?
 - ii. Kaggle Competitions.
 - iii. Finding Datasets on Kaggle.
- c. IBM Watson:
 - i. What is Watson?
 - ii. Watson Studio.
 - iii. Watson APIs.
- d. NVIDIA:
 - i. What is NVIDIA?
 - ii. NVIDIA AI.
 - iii. NVIDIA Omniverse.
 - iv. NVIDIA GPU(s).
 - v. NVIDIA CUDA & cuDNN.
- e. UiPath:
 - i. What is RPA?
 - ii. How to use RPA?
 - iii. RPA & AI.
 - iv. Integrating AI using RPA.

Outcomes of Course:

- Understanding how python can be used for AI Development.
- Understanding various ML Algorithms & their implementation.
- Understanding about Neural Networks & their implementation.
- Understanding the use of AI to solve Real-life Problems.
- Build & deploy own projects.