Instantaneous Q_I/Q_{ext} -Measurements in CEBAF incl. Transmission Line Calibration

Procedure

2019-09-05

Frank Marhauser

Procedure: Steps in Chronological Order

Step 1) Compute attenuation factor: $Att = 10^{-\alpha(dB)/10}$

$$Att = \frac{I_{tot}V_c + \sqrt{(I_{tot}V_c)^2 + 4P_f \cdot P_r}}{2P_f}$$

$$0 \le Att \le 1$$

If Att > 1, then Att = 1

Step 2) Compute attenuation in dB

$$\alpha(dB) = -10 \cdot Log 10(Att)$$

$$\alpha(dB) \ge 0$$

Step 3) Correct raw forward and reflected power levels using α

$$P_{f.c} = P_f \cdot 10^{-\alpha/10}$$

$$P_{r,c} = P_r \cdot 10^{+\alpha/10}$$

Step 4) Solve for Q_{l} using P_{fwd} and P_{ref}

Step 4) Compute Ql — factors using corrected forward and reflected power levels

Step 4a)
$$Q_{l}(P_{f,c}, I_{tot}, V_{c}, \Psi, \frac{R}{Q}) = \frac{2P_{f,c} - I_{tot}V_{c} - 2P_{f,c}\sqrt{1 - \frac{I_{tot}V_{c}}{P_{f,c}} - \frac{I_{tot}^{2} \cdot V_{c}^{2}}{4P_{f,c}^{2}} tan^{2}\Psi}}{R/Q I_{tot}^{2}}$$

Step 4b)
$$Q_{l}(P_{r,c}, I_{tot}, V_{c}, \Psi, \frac{R}{Q}) = \frac{2P_{r,c} + I_{tot}V_{c} - 2P_{r,c}\sqrt{1 + \frac{I_{tot}V_{c}}{P_{r,c}} - \frac{I_{tot}^{2} \cdot V_{c}^{2}}{4P_{r,c}^{2}} tan^{2}\Psi}}{R/Q I_{tot}^{2}}$$

Cavity parameter

CRFP (kW)

CRRP (kW)

GMES (MV/m) $\rightarrow V_c = GMES*L_{act}$ Detuning angle (T)DETA (deg.)

R/Q

South linac with Hall D beam current

$$I_{tot} = \begin{pmatrix} Hall\ A\ injected\ I \\ Hall\ B\ injected\ I \\ Hall\ C\ injected\ I \\ Hall\ D\ injected\ I \end{pmatrix} \cdot \begin{pmatrix} passes\ to\ Hall\ A \\ passes\ to\ Hall\ B \\ passes\ to\ Hall\ C \\ 5 \end{pmatrix}^T$$

Beam currents and recirculating passes

IBC1H04CRCUR2 (μA), MMSHLAPASS IBC2C24CRCUR3 (nA), MMSHLBPASS IBC3H00CRCUR4 (μA), MMSHLCPASS IBCAD00CRCUR6 (nA), MMSHLDPASS Note: Depending on where cavity resides (SL or NL), the total average beam current (I_{tot}) needs to be that of the SL or NL

North linac with Hall D 6th pass in NL

$$I_{tot} = \begin{pmatrix} Hall\ A\ injected\ I \\ Hall\ B\ injected\ I \\ Hall\ C\ injected\ I \end{pmatrix} \cdot \begin{pmatrix} passes\ to\ Hall\ A \\ passes\ to\ Hall\ B \\ passes\ to\ Hall\ C \\ 6 \end{pmatrix}^T$$

Cavity Parameters

Parameter	Units	C20	C50	C75	C100
Q_0 spec at 2.07 K		2.4e9	6.8e9	8.0e9	7.2e9
$Q_{\rm ext}$ spec		6.6e6	8.0e6	2.0e7	3.2e7
β		364	850	400	225
R/Q	Ω	482.5	482.5	525.4	868.9
\mathcal{L}_{act}	m	0.5	0.5	0.4916	0.7
E_{acc}	MV/m	5	12.5	19.1	19.2
(1+β)/4β		0.251	0.250	0.251	0.251
(β-1)/(β+1)		0.995	0.998	0.994	0.991

Only cavity parameters required depending on cavity type

Parameter	Units	OC shape C20	OC shape 7-cell SL21 and F100	OC shape C50	HC shape C75	LL shape C100
R/Q	Ω	482.5	672.38	482.5	525.4	868.9
\mathcal{L}_{act}	m	0.5	0.7	0.5	0.4916	0.7