# Verificarea Rețelelor Neuronale Folosind Alpha-Beta CROWN și NeuralSAT pentru benchmark-ul ACAS XU

Bordea Liviu-Valentin, Ciurdea Roberta-Carla, Burcea Adina Mădălina Coordonator: Conf. Dr. Erașcu Mădălina



## Cuprins

- Motivația
- Descrierea Dataset-ului
- Instalarea și Rularea Tool-urilor
- Rezultate
- Concluzii

### Motivatia

- Într-un sistem critic pentru securitate precum ACAS Xu, un atacator poate exploata cu ușurință o situație limită gestionată incorect pentru a cauza daune semnificative, punând în pericol mii de vieți.
- Metodele existente pentru testarea rețelelor neurale în fața situațiilor limită se concentrează pe identificarea exemplelor adversare.

#### Descrierea Problemei:

 Reproducerea şi întelegerea rezultatului din Competiția de Verificare a Rețelelor Neurale (VNN-COMP) din 2023 pentru benchmark-ul ACAS Xu s-au realizat folosind Alpha-Beta-CROWN şi NeuralSAT

### Descrierea Dataset-ului

#### ACAS XU(Automated Collision Avoidance System)

- este un sistem de evitare a coliziunilor proiectat pentru aeronave fără pilot
- folosește rețele neuronale pentru a anticipa cele mai bune acțiuni optime în funcție de locația și viteza avioanelor atacatoare din apropiere

#### Structura:

- fisiere onnx 45 rețele neuronale;
- fisiere vnnlib 10 proprietăti;
- instances.csv conține lista completă a instanțelor de benchmark, câte una pe linie: onnx\_file, vnn\_lib\_file, timeout\_secs.
- generate.py creeaza fisierele .vnnlib și instances.csv;

## Instalarea și rularea Tool-urilor: Alpha-Beta CROWN

#### Instalare:

- Am folosit miniconda3.
- Am clonat de pe GitHub folderele "alpha-beta-CROWN" și "auto\_LIPRA".
- Am creat environmentul și am activat alpha-beta-crown.
- Am instalat pachetele necesare pentru a putea rula benchmark-ul.

#### Rulare:

- primele tentative de rulare au rezultat 2 erori diferite:
  - "killed": din cauza memoriei insuficiente.
  - "Recovery": blue recovery screen.
- Rularea a durat 5 ore.

### Instalarea și rularea Tool-urilor: NeuralSAT

#### Instalare:

- Am folosit miniconda3.
- Am clonat de pe github folderul "neuralsat".
- Am creat environmentul și am activat "neuralsat".

#### Rulare:

- Am folosit un script python ca să automatizăm rularea individuală.
- Rularea a durat 1 ora si 17 minute.

### Rezultate

 $\mathsf{Score} = 10 \text{*Verified} + 10 \text{*Falsified} \text{-} 150 \text{*Penalty}$ 

| # | Tool                      | Verified | Falsified | Fastest | Penalty | Score | Percent |
|---|---------------------------|----------|-----------|---------|---------|-------|---------|
| 1 | $\alpha$ - $\beta$ -CROWN | 112      | 47        | 0       | 27      | -2460 | 0%      |
| 2 | neuralSAT                 | 120      | 46        | 0       | 19      | -1190 | 0%      |

Table: Benchmark 2024-acasxu

• Timp mediu  $\alpha$ - $\beta$ -CROWN: 88.362 sec

• Timp mediu neuralSAT: 10.10 sec

• Număr de rezultate "Timeout": 27  $\alpha$ - $\beta$ -CROWN; 20 neuralSAT

## Rezultate: Comparații

| Competition | 2023             |           | 2024             |           |  |
|-------------|------------------|-----------|------------------|-----------|--|
| Tools       | alpha-beta-CROWN | neuralSAT | alpha-beta-CROWN | neuralSAT |  |
| Verified    | 139              | 138       | 112              | 120       |  |
| Falsified   | 47               | 46        | 47               | 46        |  |
| Fastest     | 0                | 0         | 0                | 0         |  |
| Penalty     | 0                | 0         | 27               | 19        |  |
| Score       | 1860             | 1840      | -2460            | -1190     |  |
| Percent     | 100%             | 98.9%     | 0%               | 0%        |  |

Table: Comparație Rezultate

### Concluzii

- Instalarea cu succes a ambelor tool-uri
- Verificarea benchmark-ului folosind cele două tool-uri
- Rezultate asemanatoare competiției trecute
- Penalizări datorate incapacității dispozitivelor

Mulţumim!