University of Waterloo Department of Computer Science

CS370 Midterm Examination: Fall 2005

Tuesday, November 1, 2005 Duration = 2 hours	Instructors: Profs K. O. Geddes and Y. Li
Name	Student ID
	Section: 8:30 11:30 1:30

The aids allowed are:

- Printed Course Notes
- Lecture notes
- Your assignments
- One text book
- Hand Calculators

There are 8 questions - do all 8.

Question	Mark	Max	Init.
1		6	
2		8 -	
3		6	
4		6	
5		5	
6		4	
7		5	
8		8	
Total		50	

1. (6 marks)

Consider the function

$$f(x) = \frac{5}{1+x^2}$$

(a) Write the interpolating polynomial $p_1(x)$ for the function f(x) in the Lagrange form for data $x_1 = 0$, $x_2 = 1$ and $x_3 = 2$.

(b) Let $p_2(x) = c_0 + c_1 x + c_2 x^2$ be the polynomial in simple monomial form that interpolates f(x) at the same data points x_1, x_2, x_3 as in (a). Compute the coefficients c_0, c_1 , and c_2 of $p_2(x)$.

(c) What is the relation between $p_1(x)$ and $p_2(x)$? Justify your answer.

2. (8 marks)

(a) Let S(x) be the following piecewise cubic function

$$S(x) = \begin{cases} S_1(x) & \text{for } 0 \le x < 1 \\ S_2(x) & \text{for } 1 \le x \le 3 \end{cases},$$

for some polynomials $S_1(x)$ and $S_2(x)$ of degree not exceeding 3. Do not assume any representation of $S_1(x)$ and $S_2(x)$ for this part of the question.

(i) Write down the condition on $\frac{dS_1(1)}{dx}$ and $\frac{dS_2(1)}{dx}$ that would have to be satisfied for S(x) to be a cubic spline on interval $0 \le x \le 3$.

(ii) What condition on the second derivatives of S_1 and S_2 would have to be satisfied for S(x) to be a cubic spline on interval $0 \le x \le 3$?

 $Continued \dots$

(b) We now specify the following representations for $S_1(x)$ and $S_2(x)$:

$$S(x) = \begin{cases} S_1(x) = 0.917x^3 - 5.917x + a_1 & \text{for } 0 \le x < 1 \\ S_2(x) = b_3x^3 + b_2x^2 + b_1x + 5.375 & \text{for } 1 \le x \le 3 \end{cases},$$

where a_1 , b_1 , b_2 , and b_3 are unknown coefficients. We now also require that $\frac{d^2S(x)}{dx^2}=0$ at the end points of the interval, i.e. for x=0 and x=3.

Write down four equations that could be used to solve for the four unknowns a_1 , b_1 , b_2 and b_3 . For each equation, indicate what requirement for S(x), or its derivatives, the equation is based on. You should express the equations as linear equations in a_1 , b_1 , b_2 and b_3 , but you do not need to solve them.

3. (6 marks)

Suppose you are fitting a straight line

$$y = ax + b$$

to the three data points (0,1), (1,2), and (3,3).

(a) Set up the 3×2 overdetermined linear system for the least squares problem.

(b) Write down the coefficient matrix and right hand side vector of the corresponding normal equations.

(c) Compute numerical values a and b of the least squares solution.

4. (6 marks)

Consider the following data (t_k, x_k) , $k = 1, \ldots, 5$, given in the following table:

t_k	0	1	2	3	4	
x_{k}	x_1	x_2	x_3	x_4	x_5	

Let S(t) be the interpolating cubic spline for data (t_k, x_k) $k = 1, \ldots, 5$. Use S(t) to construct two larger data tables by adding some interpolated points. The first larger table has data $(t_k^{(1)}, x_k^{(1)})$ for $k = 1, \ldots, 9$, where $t_k^{(1)} = (k-1)/2$:

$t_k^{(1)}$	0	.5	1	1.5	2	2.5	3	3.5	4
$x_k^{(1)}$	$x_1^{(1)}$	$x_{2}^{(1)}$	$x_3^{(1)}$	$x_4^{(1)}$	$x_5^{(1)}$	$x_6^{(1)}$	$x_7^{(1)}$	$x_8^{(1)}$	$x_9^{(1)}$

The second larger table has data $(t_k^{(2)}, x_k^{(2)})$ with about 10 times as many columns as (t_k, x_k) , where $t_k^{(2)} = (k-1)/10$, $k = 1, \ldots, 41$. Note: help command descriptions for some Matlab spline commands are provided in the

appendix.

- (a) Write the Matlab commands to compute the representation of S(t). You may assume that two vectors named t and x have been initialized with the data $(t_k, x_k), k = 1, \ldots, 5,$ from the first table above. Your commands should assign the representation to a Matlab variable Srep.
- (b) Show how Srep as described in part (a) can be used to compute the table values $x^{(1)}$ and $x^{(2)}$ as specified above.

5. (5 marks)

Consider the system FPNS of floating point numbers of the form

 $\pm 0.d_1d_2...d_t \times \beta^p$ for $L \leq p \leq U$, $d_1 \geq 1$, $d_i \geq 0$ for $1 < i \leq t$ or 0 (a special floating point number)

with parameters $t=5,\,\beta=10,\,L=-5$, U=5.

- (a) What is the smallest positive value that does not result in underflow?
- (b) What number is fl(2578.9523) in the floating point number system defined above?

(c) What number is $5912.32 \oplus 4087.50$? (\oplus is addition in the FPNS.)

(d) How many numbers are there in the interval [1,2) in the FPNS defined above?

6. (4 marks)

Matlab uses the IEEE standard double precision number system $\mathcal{F}(\beta=2,t=53,L=-1022,U=1023)$ for its floating point arithmetic. Its machine epsilon value is $eps=2^{-52}$. Let $a=16-2^{-23}$; $b=32+2^{-22}$. Both these numbers are in the FPNS; note that $16=2^4$.

(a) Compute $a \otimes b = fl(a \times b)$

(b) Compute the relative error

$$Relative Error = \frac{|a \otimes b - a b|}{|a b|}$$

and compare it to machine eps by computing the ratio RelativeError/eps.

7. (5 marks)

(a) Describe each step of Gaussian elimination with partial pivoting for the coefficient matrix A of the linear system Ax = b where :

$$A = \left(\begin{array}{ccc} 0 & 0.5 & -1 \\ 1 & 0 & 0 \\ 0 & 2 & 0.1 \end{array}\right).$$

(b) Give the corresponding permutation matrix P, the lower triangular matrix with unit diagonal L and the upper triangular matrix U such that PA = LU for matrix A in part (a).

8. (8 marks)

Let

$$p_1(x) = c_1 x^2 + c_2 x + c_3$$

be the monomial form of the interpolating polynomial for 3 data pairs (1,1), (a,-1), (0,0) for any value of a. The vector of coefficients, C_1 , satisfies the Vandermode system of linear equations, $VC_1 = D_1$, where:

$$V = \begin{pmatrix} 1 & 1 & 1 \\ a^2 & a & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad D_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

(a) Determine the entries $u_{2,2}, u_{2,3}, u_{3,3}$ in the upper triangular factor U of V = LU where

$$L = \left(egin{array}{ccc} 1 & 0 & 0 \\ a^2 & 1 & 0 \\ 0 & 0 & 1 \end{array}
ight) \; , \;\; U = \left(egin{array}{ccc} 1 & 1 & 1 \\ 0 & u_{2,2} & u_{2,3} \\ 0 & 0 & u_{3,3} \end{array}
ight)$$

(b) Suppose that we want to compute two additional quadratic polynomials $p_2(x)$ and $p_3(x)$ to interpolate (1,2), (a,-1/2), (0,0) and (1,4), (a,-1/4), (0,0) respectively. Write down the Vandermode systems satisfied by the column vector C_2 and C_3 which are the coefficients of $p_2(x)$ and $p_3(x)$ respectively.

Continued ...

(c) Assuming that the Matlab matrices L and U satisfying V = LU have been initialized for you according to part (a), write a Matlab program that computes matrix $C = [C_1, C_2, C_3]$ by re-using the factors L and U.

Appendix

help spline

SPLINE Cubic spline data interpolation.

YY = SPLINE(X,Y,XX) uses cubic spline interpolation to find YY, the values of the underlying function Y at the points in the vector XX. The vector X specifies the points at which the data Y is given. If Y is a matrix, then the data is taken to be vector-valued and interpolation is performed for each column of Y and YY will be length(XX)-by-size(Y,2).

PP = SPLINE(X,Y) returns the piecewise polynomial form of the cubic spline interpolant for later use with PPVAL and the spline utility UNMKPP.

Ordinarily, the not-a-knot end conditions are used. However, if Y contains two more values than X has entries, then the first and last value in Y are used as the endslopes for the cubic spline. Namely:

```
f(X) = Y(:,2:end-1), df(min(X)) = Y(:,1), df(max(X)) = Y(:,end)
```

Example:

This generates a sine curve, then samples the spline over a finer mesh:

```
x = 0:10; y = sin(x);
xx = 0:.25:10;
yy = spline(x,y,xx);
plot(x,y,'o',xx,yy)
```

Example:

This illustrates the use of clamped or complete spline interpolation where end slopes are prescribed. Zero slopes at the ends of an interpolant to the values of a certain distribution are enforced:

```
x = -4:4; y = [0 .15 1.12 2.36 2.36 1.46 .49 .06 0];
cs = spline(x,[0 y 0]);
xx = linspace(-4,4,101);
plot(x,y,'o',xx,ppval(cs,xx),'-');
```

See also INTERP1, PPVAL, SPLINES (The Spline Toolbox).

help ppval

PPVAL Evaluate piecewise polynomial.

V = PPVAL(PP,XX) returns the value at the points XX of the piecewise polynomial contained in PP, as constructed by SPLINE or the spline utility MKPP.

V = PPVAL(XX,PP) is also acceptable, and of use in conjunction with FMINBND, FZERO, QUAD, and other function functions.

Example:

Compare the results of integrating the function cos and this spline:

```
a = 0; b = 10;
int1 = quad(@cos,a,b,[],[]);
x = a : b; y = cos(x); pp = spline(x,y);
int2 = quad(@ppval,a,b,[],[],pp);
```

int1 provides the integral of the cosine function over the interval [a,b] while int2 provides the integral over the same interval of the piecewise polynomial pp which approximates the cosine function by interpolating the computed x,y values.

See also SPLINE, MKPP, UNMKPP.

help csape

CSAPE Cubic spline interpolation with various end-conditions.

```
PP = CSAPE(X,Y)
```

returns the cubic spline interpolant (in ppform) to the given data (X,Y) using Lagrange end-conditions (see default in table below).

PP = CSAPE(X,Y,CONDS) uses the end-conditions specified in CONDS, with default values (which depend on the particular conditions).

PP = CSAPE(X,Y,CONDS,VALCONDS) uses the end-conditions specified in CONDS, with particular values as specified in VALCONDS.

CONDS may be a *string* whose first character matches one of the following: 'complete' or 'clamped', 'not-a-knot', 'periodic', 'second', 'variational', with the following meanings:

'complete': match endslopes (as given in VALCONDS, with

default as under *default*)

'not-a-knot' : make spline C^3 across first and last interior

break (ignoring VALCONDS if given)

'periodic' : match first and second derivatives at first data

point with those at last data point

(ignoring VALCONDS if given)

'second' : match end second derivatives (as given in VALCONDS,

with default [0 0], i.e., as in variational)

'variational' : set end second derivatives equal to zero

(ignoring VALCONDS if given)

The *default*: match endslopes to the slope of the cubic that matches the first four data at the respective end.

By giving CONDS as a 1-by-2 matrix instead, it is possible to specify *different* conditions at the two endpoints, namely CONDS(i) with value VALCONDS(:,i), with i=1 (i=2) referring to the left (right) endpoint.

CONDS(i)=j means that the j-th derivative is being specified to be VALCONDS(:,i) , j=1,2. CONDS(1)=0=CONDS(2) means periodic end conditions.

If CONDS(i) is not specified or is different from 0, 1 or 2, then the default value for CONDS(i) is 1 and the default value of VALCONDS(:,i) is taken. If VALCONDS is not specified, then the default value for VALCONDS(:,i) is taken to be

deriv. of cubic interpolant to nearest four points, if CONDS(i)=1;

0 if CONDS(i)=2.

It is possible (and, in the case of gridded data required) to specify VALCONDS as part of Y. Specifically, if size(Y) == [d,ny] and ny == length(X)+2, then VALCONDS is taken to be Y(:,[1 end]), and Y(:,i+1) is matched at X(i), i=1:length(X).

It is also possible to handle gridded data, by having X be a cell array containing m univariate meshes and, correspondingly, having Y be an m-dimensional array (or an m+1-dimensional array if the function is to be vector-valued). Correspondingly, CONDS is a cell array with m entries, but the information normally specified by VALCONDS is now expected to be part of Y.

For example,

fnplt(csape([0:4], [1 0 -1 0 1;0 1 0 -1 0], 'periodic')), axis equal
plots a circle, while

x = linspace(0,2*pi,21); pp = csape(x, sin(x), [1 2], [1 0]);

gives a good approximation to the sine function on the interval [0 .. 2*pi] (matching its slope 1 at the left endpoint, x(1) = 0, and its second

derivative 0 at the right endpoint, x(21) = 2*pi, in addition to its value at every x(i), i=1:21).

As a multivariate vector-valued example, here is a sphere, done as a parametric bicubic spline, using prescribed slopes in one direction and periodic side conditions in the other:

```
x = 0:4; y=-2:2; s2 = 1/sqrt(2);
clear v
v(3,:,:) = [0 1 s2 0 -s2 -1 0].'*[1 1 1 1 1];
v(2,:,:) = [1 0 s2 1 s2 0 -1].'*[0 1 0 -1 0];
v(1,:,:) = [1 0 s2 1 s2 0 -1].'*[1 0 -1 0 1];
sph = csape({x,y},v,{'clamped','periodic'});
values = fnval(sph,{0:.1:4,-2:.1:2});
surf(squeeze(values(1,:,:)),squeeze(values(2,:,:)),squeeze(values(3,:,:)))
% the previous two lines could have been replaced by: fnplt(sph)
axis equal, axis off
```

See also CSAPI, SPAPI, SPLINE.

 ${\bf Scrap\ paper}$

Scrap paper