CMPT 332 Fall 2014

Department of Computer Science University of Saskatchewan CMPT 332 Midterm Exam

October 31, 2014	Name:
Number of Pages: 5	Signature:
Time: 50 minutes	Student Number:
Total: 50 marks.	NSID:

CAUTION - Candidates suspected of any of the following, or similar, dishonest practices shall be dismissed from the examination and shall be liable to disciplinary action.

- 1. Having at the place of writing any communication devices, any books, papers or memoranda, calculators, audio or visual cassette players, or other memory aid devices.
- 2. Speaking or communicating with other candidates.
- 3. Purposely exposing written papers to the view of other candidates. The plea of accident or forgetfulness shall not be received.

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	TOTAL
5	6	5	12	10	4	3	5	50

1. (5 marks) Assume you have 640 KB of main memory. Processes A, B, C, D, E and F with their associated memory requirements are presented to the medium-term scheduler for execution in the following order. How is memory allocated for the following sequence of operations for loading these 6 processes into memory using the **Best Fit** algorithm? Show your answer by providing one diagram of RAM **after** all the allocation and deallocation has been completed.

Process	Size (in KB)
A	180
В	100
С	244
D	98
Е	240
F	70

Operations to perform:

- Allocate D,
- Allocate A,
- Allocate C,
- Free A,
- Allocate E,
- Allocate B,
- Allocate F,
- Free D.

IF the operations cannot be completed in the given order, indicate which operations would have to be aborted. **Do not** complete an aborted operation at a later time.

2. (6 marks). What are three various **categories** of information about processes that are stored for a multi-threaded process? Give an example piece of information of **each** category and **why** it belongs to that category.

3. (5 marks). For the following Fork/Join code, draw the Process Flow Graph and give the Cobegin/Coend code (if possible) that corresponds to that particular code sequence.

P1 fork L2 fork L3 Р5 goto L8 L2: P2 fork L6 P7 goto L4 L3: P3 L4: join 2 P4 goto L8 L6: P6 L8: join 3 Р8

4. (12 marks) Process Scheduling. Consider the following job mix, including relative arrival times.

Jo	b	Arrival Time	CPU Burst Time
A	-	0	10
В		5	8
С	ļ	4	6
D)	2	4
Е	i	7	5

Show the order of execution of these jobs using Round-Robin with a quantum of 2 and Shortest Remaining Time First. Use a time-line like in the interactive examples and/or class showing which jobs execute during which time slots. For RR, jobs are assumed to arrive just **before** the time slot indicated and are placed at the **back** of the ready queue.

RR								
 I	 I		 					
0	2	etc	 					
TAT:				S	pecific CPU	EFFICIENC	Υ:	
SRTF								
0								
TAT:				S]	pecific CPU	EFFICIENC'	Y:	

Indicate the avg. turnaround time (TAT) and the **specific CPU efficiency** for each algorithm on this set of tasks. For the efficiency, assume that each context switch takes .2 of a time unit. For the timeline, assume that each context switch takes 0 time. No calculator is necessary; leave the efficiency as a fraction.

5. (10 marks). Semaphores, Monitors, and Rendezvous IPC can all solve the same classes of problems, in that you can implement one facility with one of the others. Use S/R/R IPC to implement the Monitor primitives MonEnter, MonLeave, MonWait, and MonSignal as defined in class, and a MonitorServer thread. Provide detailed C-like pseudocode. Identify and use the List Operations that you need, but do not implement them. Assume that messages consist of a pointer to shared space and a buffer length. I've got you started.

```
)
                                              int MonLeave(
                                                                               )
int MonEnter(
                                             {
{
}
                                             }
                                                                                )
int MonWait(
                                )
                                             int MonSignal(
}
                                             }
void MonServer (
                                                 )
{
```

}

6. (4 marks) Briefly outline one approach to What is one advantage of one of your sugg	r each of deadlock detection and deadlock avoidance . estions over the other?
	,
7 (3 marks) What are three challenges for in	ter-machine communication (whether message passing or
RPC) from the application's point of view	v? What is one solution for each challenge, if there is a
solution?	
Challenge	Solution
0 (F 1) W	
	rel threads provide the same interface/functionality to the rer, they are much different. Describe these differences in
regards to the complexity of the imple	mentation and the performance consequences.
	THE END