数学入門B 定期試験問題

2015年1月29日第3時限施行 担当 水野 将司

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を禁ず. 解答用紙のみを提出し、問題用紙は持ち帰ること.

全問について答えよ. 「答えのみでよい」と書かれていない問題については、証明をつけること.

問題 1.

集合族 $\{A_n\}_{n\in\mathbb{N}}$ に対して、次の各問いに答えよ.

- (1) $\bigcup_{n\in\mathbb{N}} A_n$ の定義を答えよ (答えのみでよい).
- (2) $\prod_{n\in\mathbb{N}} A_n$ の定義を答えよ (答えのみでよい).
- (3) $\bigcap_{n\in\mathbb{N}}\left(0,1+\frac{1}{n}\right)=(0,1]$ を証明せよ.
- (4) 空でない集合 X,Y, 写像 $f:X\to Y$, 集合族 $\{B_n\}_{n\in\mathbb{N}}\subset 2^Y$ に対して,

$$f^{-1}\left(\bigcup_{n\in\mathbb{N}}B_n\right)=\bigcup_{n\in\mathbb{N}}f^{-1}(B_n)$$

を示せ.

問題 2.

集合 X に対して, X の濃度を #X で表す. 次の各問いに答えよ.

- (1) 集合 A, B に対して, #A = #B の定義を述べよ (答えのみでよい).
- (2) 集合 *A*, *B* に対して, #*A* ≤ #*B* の定義を述べよ (答えのみでよい).
- (3) 可算集合と非可算集合の例をそれぞれ2つ述べよ(答えのみでよい).
- (4) $A := \{x \in \mathbb{Z} : x \le 0\}$ とおく. このとき, $\#\mathbb{N} = \#A$ を示せ.
- (5) # $\mathbb{Q} \leq #\mathbb{R}$ を示せ.

問題 3.

 $\mathbb{R}[X]$ を X を変数とする 1 変数実数多項式全体からなる集合とする. $f(X), g(X) \in \mathbb{R}[X]$ に対して

 $f(X)\sim g(X) \Longleftrightarrow_{\mathrm{定義}}$ ある $q(X)\in\mathbb{R}[X]$ が存在して f(X)-g(X)=(X-1)q(X)で定義する.

- (1) 次が正しいか正しくないかを答えよ(答えのみでよい).
 - (a) $3X^2 + 4X + 1 \sim X^2 + 4X 1$
 - (b) $X^3 + X^2 + X + 1 \sim 2X^3 X^2 + 4X 1$
- $(2) \sim$ が $\mathbb{R}[X]$ 上の同値関係であることの定義を述べよ (答えのみでよい).
- (3) $\overline{f(X)}$ を $f(X) \in \mathbb{R}[X]$ を代表元とする ~ に関する同値類とするとき、同値類 $\overline{f(X)}$ の定義を述べよ (答えのみでよい).
- (4) $\mathbb{R}[X]/(X-1)$ を $\mathbb{R}[X]$ の同値関係 \sim による商集合とするとき, 商集合 $\mathbb{R}[X]/(X-1)$ の定義を述べよ (答えのみでよい).
- (5) $\overline{f(X)}$, $\overline{g(X)} \in \mathbb{R}[X]/(X-1)$ に対して、和 $\overline{f(X)} + \overline{g(X)}$ を $\overline{f(X)} + \overline{g(X)} := \overline{f(X) + g(X)}$

で定義するとき、この定義が well-defined であることを示せ.

以下余白 計算用紙として使ってよい.

略解

問題 1. (1) $\bigcup_{n\in\mathbb{N}} A_n := \{x : \exists n \in \mathbb{N} \text{ s.t. } x \in A_n\}$

- $(2) \prod_{n \in \mathbb{N}} A_n := \left\{ f : \mathbb{N} \to \bigcup_{n \in \mathbb{N}} A_n : \forall n \in \mathbb{N} \text{ に対して } f(n) \in A_n \right\}$ 問題 **2.** (1) 全単射 $f : A \to B$ が存在する.
- (2) 単射 $f: A \rightarrow B$ が存在する.
- (3) 可算集合の例: \mathbb{N} , \mathbb{Z} , \mathbb{Q} , $\mathbb{N} \times \mathbb{N}$ 非可算集合の例: \mathbb{R} , \mathbb{C} , $2^{\mathbb{N}}$

問題 3. (1)(a) 正しくない(b) 正しい

(2) (反射律) $\forall f(X) \in \mathbb{R}[X]$ に対して $f(X) \sim f(X)$

(対称律) $\forall f(X), g(X) \in \mathbb{R}[X]$ に対して $f(X) \sim g(X)$ ならば $g(X) \sim f(X)$

(推移律) $\forall f(X), g(X), h(X) \in \mathbb{R}[X]$ に対して $f(X) \sim g(X), g(X) \sim h(X)$ ならば $f(X) \sim h(X)$

- $(3) \ \overline{f(X)} := \{ g(X) \in \mathbb{R}[X] : f(X) \sim g(X) \}$
- (4) $\mathbb{R}[X]/(X-1) := \{\overline{f(X)} : f(X) \in \mathbb{R}[X]\}$

[](3) 1. (0,1+1) (001] を示す。

XE (O HH) 1= XAI ANEIN 1= 2113 XE/O. HH)

おり O<x<1tn となる (nは任意より) nコのと 形と O<x<1となるので xe(0.1)となる。

2. (0.1) C (0.1+1) E7-7.

 $\forall x \in (0.1]$ に対し、 $\forall n \in \mathbb{N}$ について | < H in たがら $0 < x \leq | < H in$ となる。 (表、て $x \in (0.1+\frac{1}{h})$ となるので $x \in (0.1+\frac{1}{h})$ となるので $x \in (0.1+\frac{1}{h})$ となるので $x \in (0.1+\frac{1}{h})$

(4) 1. f'(UNBn) CU f'(Bn) EF.7.

 $\forall x \in f^{-1}(\bigcup_{N \in \mathbb{N}} B_n)$ (文才し $f(x) \in \bigcup_{N \in \mathbb{N}} B_n$ たから ある $n \in \mathbb{N}$ が存在して $f(x) \in B_n$ となる。 あって $x \in f^{-1}(B_n)$ となるから $x \in \bigcup_{N \in \mathbb{N}} f^{-1}(B_n)$ となる。

2. U f-1(Bn) C f-1(U Bn) E7-7.

 $\forall x \in U f^{-1}(B_n) | c \neq t \in B_n \text{ sign} \in \mathbb{N} \text{ of } f \in L_{\mathcal{I}}$ $x \in f^{-1}(B_n) | c \neq t \in B_n | c \neq t \in S_n \text{ sign} \in B_n | c \neq t \in S_n \text{ sign} \in S_n \text{ sign$

- ②(4)全戦射f:N→Aが存在することを示す YneN に対しf(n):=1-n と定める。
 - 1. f^{n} ight the $z \in z \in z$. $\forall n, m \in N = \forall d \in f(n) = f(m)$ Engine f(x) = f(n) = f(n) = f(n)2. f^{n} en $f^$

 - (3) (5) 示すべきことは サテム、, ディス、, ラん、, ラん、, ラん、 (大人) (X-1) に 対して、 テム) = デム、, タム) = ダム、 EANですると テムトタん) = ディストタん、 となることである。

f(x)=f(x) よりf(x)~f(x) となるからる(x) 合限[x]からまして f(x)-f(x)=(x-1)を(x) とかける。

引(x) = 引(x) まり別(x)~り(x)となるから 名(x) ER (x)が存在してり(x)-り(x)= (x-1)を(x)とかは、作し

(f(x) + g(x)) - (f(x) + g(x)) = (f(x) - f(x)) + (g(x) - g(x)) = (x - 1)(g(x) + g(x)) = (x - 1)(g(x) + g(x)) (f(x) + g(x)) = (x - 1)(g(x) - g(x)) (f(x) + g(x)) = (f(x) + g(x)) + (g(x) + g(x)) (f(x) + g(x)) = (f(x) + g(x)) + (g(x) + g(x)) (f(x) + g(x)) = (f(x) + g(x)) (f(x) + g(x)) =