LoRA Review

Paper: Low-Rank Adaptation of Large Language Models

Sangho Kim

- Introduction
- Problem Statement
- Existing Solutions
- Method
- Experimental Results
- Conclusion

Introduction

- 최근 GPT와 같은 LLM 또는 Foundation model이 등장함에 따라 task-specific model을 위한 fine-tuning 방법이 소개됨
- 이때 full fine-tuning을 수행하게 되면 무수히 많은 GPU가 필요
- 한정된 하드웨어로 fine-tuning을 원활히 수행하고 충분히 좋은 성능의 모델을 뽑아내기 위해 LoRA를 소개
- 간단히 말해, pre-trained weight는 freezing하고 trainable rank decomposition matrices를 network 중간에 삽입
- 이후 기존 모델에 비해 훨씬 더 적은 parameter를 학습
- 논문에서는 GPT-3와 같은 original model에 비해 trainable parameter가 약 10,000배 줄어든다고 소개
- 또한 추가적인 inference latency가 없다는 장점도 존재
- 다양한 LLM model에 LoRA를 적용함에도 불구하고 비슷하거나 오히려 더 좋은 성능을 달성하는 실험 결과도 존재

Introduction

- LoRA의 구조를 간단하게 그리면 오른쪽 그림과 같음
- 즉, SVD의 개념처럼 Decomposition Low Rank Matrix를 삽입
- 이때 B는 0으로 initialization
- A는 $N(0, \sigma^2)$ 를 따르는 random variable로 initialization

Figure 1: Our reparametrization. We only train A and B.

- Introduction
- Problem Statement
- Existing Solutions
- Method
- Experimental Results
- Conclusion

Problem Statement

- 먼저, pre-trained weight인 Φ 가 존재하는 model $P_{\Phi}(y|x)$ 가 주어지며 이는 GPT, LLaMA 등과 같은 LLM으로 간주
- 이후, downstream task에 맞춰 tuning하기 위한 context-target pairs가 필요
- 이를 $Z = \{(x_i, y_i)\}_{i=1,\dots,N}$ 이라 가정, 이때 x_i, y_i 는 sequences of tokens
- 만약 full fine-tuning을 수행하게 된다면 pre-trained weight Φ₀와 추가적인 weight ΔΦ를 가지고 initialization
- 즉, 식으로 표현하면 다음과 같음

$$\max_{\Phi} \sum_{(x,y) \in \mathcal{Z}} \sum_{t=1}^{|y|} \log \left(P_{\Phi}(y_t|x, y_{< t}) \right)$$

• 그러나 LoRA는 다음의 objective를 설정 가능

$$\max_{\Theta} \sum_{(x,y)\in\mathcal{Z}} \sum_{t=1}^{|y|} \log \left(p_{\Phi_0 + \Delta\Phi(\Theta)}(y_t|x, y_{< t}) \right)$$

• 즉, pre-trained weight인 Φ_0 는 freezing, $\Delta\Phi$ 만 학습 (오른쪽 그림에서 주황색 부분)

- Introduction
- Problem Statement
- Existing Solutions
- Method
- Experimental Results
- Conclusion

- 본 연구에서 해결하고자 하는 문제에 대한 기존 방법론들은 크게 다음 2가지로 나뉘어짐
 - 1. adding adapter layer
 - 2. optimizing some forms of the input layer activation

• 이 중 1번 방법론은 다음 그림과 같음

• 즉, Transformer Block 안에 작은 사이즈의 trainable module을 추가해 fine-tuning하는 방법

• 2번 방법론은 다음 그림과 같음

• 즉, input embedding에 prompt embedding을 추가하고 이를 다양한 방법으로 학습해 fine-tuning 대체

- 그러나 1번 방법론은 다음의 문제점을 가지고 있음
- Transformer는 Parallelism에 의존하는데, 1번 스타일의 Adapter를 적용하면 additional computing + bottleneck 발생
- 이에 따른 실험은 다음 table에서 볼 수 있음

Batch Size Sequence Length Θ	32	16	1	
	512	256	128	
	0.5M	11M	11 M	
Fine-Tune/LoRA	1449.4±0.8	338.0±0.6	19.8±2.7	
Adapter ^L	1482.0±1.0 (+2.2%)	354.8±0.5 (+5.0%)	23.9±2.1 (+20.7%)	
Adapter ^H	1492.2±1.0 (+3.0%)	366.3±0.5 (+8.4%)	25.8±2.2 (+30.3%)	

Table 1: Infernece latency of a single forward pass in GPT-2 medium measured in milliseconds, averaged over 100 trials. We use an NVIDIA Quadro RTX8000. " $|\Theta|$ " denotes the number of trainable parameters in adapter layers. Adapter^L and Adapter^H are two variants of adapter tuning, which we describe in Section 5.1. The inference latency introduced by adapter layers can be significant in an online, short-sequence-length scenario. See the full study in Appendix B.

- 2번 방법론도 문제점을 가지고 있음
- 이 방법론의 대표적인 예로 prefix tuning이 존재하는데 이는 optimize하기 어려움
- 성능 또한 trainable parameter에 따라 단조적으로 증가하지 않는다는 문제점도 존재

- Introduction
- Problem Statement
- Existing Solutions
- Method
- Experimental Results
- Conclusion

- 이제 본격적으로 LoRA에 대해 자세히 알아보자
- $W_0 \in \mathbb{R}^{d \times k}$ the neural network pre-trained weight (freezing parameters)
- LoRA에 해당하는 adapter는 $\Delta W = BA$ 이며 이때 $B \in R^{d \times r}, A \in R^{r \times k}$ (trainable parameters)
- 여기서 $r \ll \min(d, k)$ 은 hyperparameter로 LoRA의 rank를 결정
- x를 input, h를 LoRA가 탑재된 network module의 output이라고 하면 다음과 같이 쓸 수 있음

$$h = W_0 x + \Delta W x = W_0 x + BAx$$

• 여기서 $\Delta W x$ 는 $\frac{\alpha}{r}$ 에 의해 scaling

- Generalization of Full Fine-tuning
 - LoRA를 적용해도 full fine-tuning을 할 때만큼의 expressiveness를 가질 수 있음
- 앞에서 소개했던 기존 2가지 방법론은 문제를 야기
 - 1. Adapter-based method:
 - 추가적인 MLP layer 학습 필요
 - 2. Prefix-based method:
 - input에 prompt embedding을 추가해야 하기 때문에 input sequence를 추가하는 데 한계가 존재
- No Additional Inference Latency
 - 특정 task에 적용하기 위해 BA matrix를 fine-tuning한 후 다른 task에 적용하고 싶다면 새로운 BA matrix를 fine-tuning을 수행하면 된다는 장점
 - 이 때문에 no additional inference latency라고 표현한 듯 하다

- 이 논문에서는 attention module에만 LoRA를 적용
- LoRA의 가장 큰 장점은 적은 수의 trainable parameter + efficient memory storage usage
- VRAM을 최대 2/3까지 줄일 수 있으며 $r \ll d_{model}$ 이어야 함
- GPT-3를 예로 들자면
 - 원래 GPT-3 (175B)를 학습하는 데 필요한 VRAM은 1.2TB
 - Attention Module에 LoRA를 적용하면 350GB까지 감소 가능
 - 또한 r=4로 설정하고 query, value projection matrices에만 적용한다면 35MB까지 감소
 - 이를 통해 25%의 speedup을 유도
- LoRA의 한계점
 - 다른 downstream task에 적용할 때마다 BA를 바꿔줘야 한다는 것

- LoRA가 왜 엄청나게 효율적인 모델인지 살펴보자
- 먼저 LoRA를 식으로 표현하면 다음과 같다

$$h = W_0 x + \Delta W x = W_0 x + BAx$$

- 이때 BA 부분만 학습을 한 후, $(W_0+BA)x = W_{new}x$ 로 나타낼 수 있음
- 즉, 새로 tuning한 weight는 W_{new} 로 표현할 수 있고 이때 모델의 parameter 수는 변함이 없음
- 또한 다양한 task에 대해 fine-tuning하여 얻은 여러 BA들을 가지고 적재적소에 활용 가능

- Introduction
- Problem Statement
- Existing Solutions
- Method
- Experimental Results
- Conclusion

- 실험 내용들을 보기 전에 몇 가지 notation을 정리하고 가자
 - FT : Fine-Tuning
 - FTTop2 : 마지막 2개의 layer만 Tuning
 - BitFit (Bias-only) : bias vector만 training
 - Prefix-embedding tuning: input token 사이에 special token을 삽입
 - Prefix-layer tuning : 논문에서는 we learn the activations after every Transformer Layer라고 표현을 했지만 나름 내가 이해하기로는 "activation을 취한 이후의 output을 scaling한다는 것 아닐까? 추측한다"
 - Adapter tuning
 - Adapter^H: Self-attention, MLP, Resudial connection 이후에 adapter layer 탑재
 - Adapter P: MLP, LayerNorm 이후에만 적용
 - Adapter^D: Dropout concept을 활용한 Adapter Layer

• 다양한 adaptation method를 GLUE benchmark에 실험한 결과

Model & Method	# Trainable									
	Parameters	MNLI	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
RoB _{base} (BitFit)*	0.1M	84.7	93.7	92.7	62.0	91.8	84.0	81.5	90.8	85.2
$RoB_{base} (Adpt^{D})*$	0.3M	$87.1_{\pm .0}$	$94.2 \scriptstyle{\pm .1}$	$88.5{\scriptstyle\pm1.1}$	$60.8_{\pm.4}$	$93.1_{\pm.1}$	$90.2 \scriptstyle{\pm .0}$	$71.5_{\pm 2.7}$	$89.7_{\pm.3}$	84.4
$RoB_{base} (Adpt^{D})*$	0.9M	$87.3_{\pm .1}$	$94.7_{\pm.3}$	$88.4_{\pm.1}$	$62.6 \scriptstyle{\pm .9}$	$93.0_{\pm.2}$	$90.6 \scriptstyle{\pm .0}$	$75.9_{\pm2.2}$	$90.3_{\pm.1}$	85.4
RoB _{base} (LoRA)	0.3M	$87.5_{\pm .3}$	$\textbf{95.1}_{\pm .2}$	$89.7_{\pm.7}$	$63.4_{\pm1.2}$	$\textbf{93.3}_{\pm .3}$	$90.8 \scriptstyle{\pm .1}$	$\pmb{86.6}_{\pm.7}$	$\textbf{91.5}_{\pm .2}$	87.2
RoB _{large} (FT)*	355.0M	90.2	96.4	90.9	68.0	94.7	92.2	86.6	92.4	88.9
RoB _{large} (LoRA)	0.8M	90.6 $_{\pm .2}$	$96.2_{\pm.5}$	$\textbf{90.9}_{\pm 1.2}$	68.2 $_{\pm 1.9}$	$\textbf{94.9}_{\pm.3}$	$91.6 \scriptstyle{\pm .1}$	87.4 $_{\pm 2.5}$	92.6 $_{\pm .2}$	89.0
RoB _{large} (Adpt ^P)†	3.0M	90.2 _{±.3}	96.1 _{±.3}	90.2 _{±.7}	68.3 _{±1.0}	94.8 _{±.2}	91.9 _{±.1}	83.8 _{±2.9}	92.1 _{±.7}	88.4
$RoB_{large} (Adpt^{P})^{\dagger}$	0.8M	90.5 _{±.3}	96.6 $_{\pm .2}$	$89.7_{\pm 1.2}$	$67.8_{\pm 2.5}$	94.8 ±.3	$91.7_{\pm.2}$	$80.1_{\pm 2.9}$	$91.9_{\pm.4}$	87.9
$RoB_{large} (Adpt^{H})^{\dagger}$	6.0M	$89.9_{\pm .5}$	$96.2 \scriptstyle{\pm .3}$	$88.7_{\pm 2.9}$	$66.5_{\pm4.4}$	$94.7_{\pm.2}$	$92.1_{\pm.1}$	$83.4_{\pm 1.1}$	$91.0_{\pm 1.7}$	87.8
$RoB_{large} (Adpt^{H})^{\dagger}$	0.8M	$90.3_{\pm .3}$	$96.3 \scriptstyle{\pm .5}$	$87.7_{\pm 1.7}$	$66.3{\scriptstyle\pm2.0}$	$94.7 \scriptstyle{\pm .2}$	$91.5 \scriptstyle{\pm .1}$	$72.9_{\pm 2.9}$	$91.5 \scriptstyle{\pm .5}$	86.4
RoB _{large} (LoRA)†	0.8M	90.6 ±.2	$96.2 \scriptstyle{\pm .5}$	90.2 $_{\pm 1.0}$	$68.2_{\pm 1.9}$	94.8 ±.3	$91.6_{\pm .2}$	85.2 $_{\pm 1.1}$	92.3 _{±.5}	88.6
DeB _{XXL} (FT)*	1500.0M	91.8	97.2	92.0	72.0	96.0	92.7	93.9	92.9	91.1
DeB _{XXL} (LoRA)	4.7M	$91.9_{\pm .2}$	$96.9_{\pm.2}$	92.6 $_{\pm .6}$	72.4 $_{\pm 1.1}$	$\textbf{96.0}_{\pm.1}$	$\textbf{92.9}_{\pm.1}$	94.9 _{±.4}	$\textbf{93.0}_{\pm.2}$	91.3

- LoRA는 다른 method들과 비슷하거나 오히려 더 성능이 좋은 경우가 많음
- 여기서 주목할 만한 점은 trainable parameter의 갯수이다

• E2E NLG Challenge에서 GPT-2를 가지고 다양한 adapter를 적용한 실험

Model & Method	# Trainable	E2E NLG Challenge				
	Parameters	BLEU	NIST	MET	ROUGE-L	CIDEr
GPT-2 M (FT)*	354.92M	68.2	8.62	46.2	71.0	2.47
GPT-2 M (Adapter ^L)*	0.37M	66.3	8.41	45.0	69.8	2.40
GPT-2 M (Adapter ^L)*	11.09M	68.9	8.71	46.1	71.3	2.47
GPT-2 M (Adapter ^H)	11.09M	$67.3_{\pm .6}$	$8.50_{\pm.07}$	$46.0_{\pm.2}$	$70.7_{\pm.2}$	$2.44_{\pm .01}$
$GPT-2 M (FT^{Top2})*$	25.19M	68.1	8.59	46.0	70.8	2.41
GPT-2 M (PreLayer)*	0.35M	69.7	8.81	46.1	71.4	2.49
GPT-2 M (LoRA)	0.35M	$\textbf{70.4}_{\pm.1}$	$\pmb{8.85}_{\pm .02}$	$\textbf{46.8}_{\pm .2}$	$\textbf{71.8}_{\pm.1}$	$\pmb{2.53}_{\pm .02}$
GPT-2 L (FT)*	774.03M	68.5	8.78	46.0	69.9	2.45
GPT-2 L (Adapter ^L)	0.88M	$69.1_{\pm .1}$	$8.68_{\pm.03}$	$46.3_{\pm.0}$	$71.4_{\pm .2}$	$\pmb{2.49}_{\pm.0}$
GPT-2 L (Adapter ^L)	23.00M	$68.9_{\pm.3}$	$8.70_{\pm.04}$	$46.1_{\pm.1}$	$71.3_{\pm .2}$	$2.45_{\pm.02}$
GPT-2 L (PreLayer)*	0.77M	70.3	8.85	46.2	71.7	2.47
GPT-2 L (LoRA)	0.77M	$\textbf{70.4}_{\pm.1}$	$\pmb{8.89}_{\pm .02}$	$\textbf{46.8}_{\pm .2}$	$\textbf{72.0}_{\pm.2}$	$2.47_{\pm.02}$

- 이 실험에서는 LoRA가 대부분의 실험에서 근소하게 가장 좋은 성능을 보여주고 있음
- 여기서도 역시 trainable parameter 수에 비해 좋은 성능을 뽑아내는 엄청난 효율성을 보여줌

• WkikSQL에서 GPT-3를 가지고 다양한 adapter를 적용한 실험

Model&Method	# Trainable Parameters	WikiSQL Acc. (%)	MNLI-m Acc. (%)	SAMSum R1/R2/RL
GPT-3 (FT)	175,255.8M	73.8	89.5	52.0/28.0/44.5
GPT-3 (BitFit)	14.2M	71.3	91.0	51.3/27.4/43.5
GPT-3 (PreEmbed)	3.2M	63.1	88.6	48.3/24.2/40.5
GPT-3 (PreLayer)	20.2M	70.1	89.5	50.8/27.3/43.5
GPT-3 (Adapter ^H)	7.1M	71.9	89.8	53.0/28.9/44.8
GPT-3 (Adapter ^H)	40.1M	73.2	91.5	53.2/29.0/45.1
GPT-3 (LoRA)	4.7M	73.4	91.7	53.8/29.8/45.9
GPT-3 (LoRA)	37.7M	74.0	91.6	53.4/29.2/45.1

• 이 실험에서도 마찬가지로 LoRA는 다른 method와 비교해도 뒤지지 않는 성능 보유

• GPT-3에서 각 benchmark를 가지고 trainable parameter 수에 따른 성능 비교 실험

- 다른 method들은 trainable parameter의 수가 특정 임계값을 넘으면 성능이 떨어진다
- 반면 LoRA는 robust한 성능을 유지

- Introduction
- Problem Statement
- Existing Solutions
- Method
- Experimental Results
- Conclusion

Conclusion

- 넉넉하지 않은 GPU를 갖고 LLM에서 downstream task에 적용하기 위한 method인 LoRA를 소개
- 다양한 실험을 통해 LoRA의 엄청난 효율성과 성능을 입증
- 특히, GPT-3의 경우, trainable parameter의 수를 10,000배까지 감소

- 개인적 의견
 - Low Rank Decomposition이라는 간단한 아이디어로 누구나 LLM을 Fine-tuning할 수 있게 만들었단 것이 대단하다
 - 그리고 SVD라는 개념이 LLM fine-tuning method에 활용될 줄 몰랐다
 - 선형대수학을 공부한 사람이라면 누구나 아는 SVD를 이런 분야에 쓰다니 저자들의 아이디어가 정말 대단하다
 - 아마 내가 읽은 딥러닝 논문 중 다섯 손가락 안에 들 정도로 굉장한 논문이지 않을까 생각한다
 - 오랜만에 논문다운 논문을 읽은 것 같다