Dose Response Curves

A new option for modeling winter hardiness

What is a dose response curve?

Based on a logistic regression

Used for estimating the response of something to the amount of dose it is given. So lots of use with pharmaceuticals and toxicity

I dont think it is the same as a growth model, but still getting my head around this

What is a dose response curve?

$$f(x,(b,c,d,e)) = c + \frac{d-c}{1 + e^{b(\log(x) - \tilde{e})}}$$

Where:

x is the concentration of the dose (amount of winter cold)

b is the response rate (slope)

d is the upper asymptote of the response (maximum hardiness)

b is the lower asymptote of the response (minimum hardiness)

e is the effective dose ED50 (winter temperature where cold hardiness is half way between min and max)

 \tilde{e} is the log of the effective dose ED50

Constraints

The dose response must be positive

I added 30 to all my temperature values for the modeling so there are no minus temperatures

I think it helps if the response variable is also positive?

I multiplied winter hardiness values with -1 so more dose means higher values

What does it look like?

I was not sure where to start with this model so I fit a parametric one using the DRC package in R

Simulating the data

I used the parameters suggested by the DRC R package model to simulate the data

$$f(x, (b, c, d, e)) = c + \frac{d - c}{1 + e^{b(\log(x) - \tilde{e})}}$$

Where:

x is the concentration of the dose (amount of winter cold)

b is the response rate (slope)

d is the upper asymptote of the response (maximum hardiness)

b is the lower asymptote of the response (minimum hardiness)

e is the effective dose ED50 (winter temperature where cold hardiness is half way between min and max)

 \tilde{e} is the log of the effective dose ED50

Simulating the data

I used the parameters suggested by the DRC R package model to simulate the data

$$f(x, (b, c, d, e)) = c + \frac{d - c}{1 + e^{b(\log(x) - \tilde{e})}}$$

x = winter air temp + 30

y = winter hardiness * -1

b = 11

d = 24

c = 10

e = 37

Simulating the data

Transformed data

Re-transformed to original data

Playing with varience

I also tried changing the amounts of variation on the sifferent parameters to see how thsi affects the shape of the data.

Playing with varience

bsigma = 0, dsigma = 0, csigma = 2, esigma = 0, gsigma = bsigma = 0, dsigma = 2, csigma = 0, esigma = 0, gsigma =

Playing with varience

bsigma = 2, dsigma = 0, csigma = 0, esigma = 0, gsigma = bsigma = 0, dsigma = 0, csigma = 0, esigma = 5, gsigma =

Next Steps

Try and build a Stan model

Probably start with no hierarchical levels. Then try one on either b or e. Mayeb both is all goes well?