第一章 贝尔曼最优方程

1.1 设计思想

1. 网格环境定义

网络大小: NUM STATES = GRID ROW * GRID COL

网格结构:使用一维向量 grid 定义网格世界,包含不同的状态和对应的奖励。 状态可以是普通状态、禁区、目标或边界。

奖励设置:

OTHERSTEP: 普通状态的奖励。

FORBIDDEN: 禁区的惩罚。

TARGET: 目标状态的奖励。

BORDER: 越界惩罚。

设置 gamma。

2. 动作定义

动作数 NUM ACTION = 5。

定义五种可能的动作: RIGHT、DOWN、UP、LEFT、STAY。每个动作对应一个整数值。

3. 初始化策略 policy, 状态值 V

policy: 采用的策略,定义为大小[NUM_STATES, NUM_ACTION]的矩阵,其中 policy[s][a]表示在状态 s 时,选择动作 a 的概率。

V: 状态值向量,长度与状态个数相同,初始化为 $v_i = 0$ 。

4. 贝尔曼方程求解

使用迭代法: 使用第 k 次迭代的 V_k , $Q(s,a) = \sum_r p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v(s')$,求得动作值Q,带入policy, $v_{k+1}(s) \sum_a \pi(a|s) q_k(s,a)$ 求得 V_{k+1} ,若 $||V_{k+1} - V_k|| < \alpha$,则取得结果,并保留最优策略,若不满足,则更新 V_k ,继续迭代。

5. 贝尔曼最优方程求解

- 1) 值迭代:循环每一个状态 s,求 s 在每种动作 a 下的动作值 $Q(s,a) = R + \gamma P V_k$ 。取 Q 最大的动作,更新 $V_{k+1} = \max Q_k(s,a)$,若 $\|V_{k+1} V_k\| < \alpha$,则取得结果,并保留最优策略,若不满足,则更新 V_k ,继续迭代。

值 $Q(s,a) = R + \gamma PV_k$ 。取 Q 最大的动作,更新策略 policy。若 $||V_{k+1} - V_k|| < \alpha$,则取得结果,并保留最优策略,若不满足,则更新 V_k ,继续迭代。

3) 截断式策略迭代: 在策略迭代基础上, 修改策略评估阶段迭代次数为固定值 MAX ITER, 其他与策略迭代相同。

1.2 伪码描述

1. 值迭代

初始化: 所有(s,a)概率模型已知。初始猜测 V_0

目标: 求解贝尔曼最优方程, 搜索最优状态值和最优策略

对于第 k+1 次迭代, while $||V_{k+1} - V_k|| > \alpha$, do

对于每个状态 s, do

对于每个动作 a, do

计算 q 值
$$Q_k(s,a) = \sum p(r|s,a)r + \gamma \sum p(s'|s,a)v_k(s')$$

取最大 q 值对应动作 $a_k^*(s) = \arg \max_a Q_k(s, a)$

策略更新: 如果 $a = a_k^*(s)$,则 $\pi_{k+1}(a|s) = 1$,否则 $\pi_{k+1}(a|s) = 0$

值更新: $\pi_{k+1}(s) = \max Q_k(a,s)$

2. 策略迭代

初始化: 所有(s,a)概率模型已知, 初始猜测 π_0

目标:搜索最优状态值和最优策略

对于第 k 次迭代,while $||V_{\pi_k} - V_{\pi_{k-1}}|| > \alpha$,do

策略评估:

初始化: 任意初始猜测 $v_{\pi_k}^{(0)}$

对于第 k 次迭代,当 $v_{\pi_k}^{(j)}$ 未收敛,即 $\left|\left|v_{\pi_k}^{(j)}-v_{\pi_k}^{(j-1)}\right|\right|>\alpha$,do

对于每个状态 s, do

$$v_{\pi_k}^{(j+1)}(s) = \sum_a \pi_k(a|s) \left[\sum_r p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a) v_{\pi_k}^{(j)}(s') \right]$$

策略改进:

对于每个状态 s, do

对于每个动作 a, do

$$q_{\pi_k}(s, a) = \sum_r p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi_k}(s')$$

取最大 q 值对应动作 $a_k^*(s) = \arg \max_a q_{\pi_k}(s, a)$

如果
$$a = a_k^*(s)$$
,则 $\pi_{k+1}(a|s) = 1$,否则 $\pi_{k+1}(a|s) = 0$

3. 截断式策略迭代

初始化: 所有(s,a)概率模型已知, 初始猜测 π_0

目标:搜索最优状态值和最优策略

对于第 k 次迭代,while
$$\left|\left|V_{\pi_k} - V_{\pi_{k-1}}\right|\right| > \alpha$$
,do

策略评估:

初始化:任意初始猜测 $v_{\pi_k}^{(0)} = v_{k-1}$,最大迭代次数设置为 $j_{truncate}$ 。

当 $j < j_{truncate}$, do

对于每个状态 s, do

$$v_{\rm k}^{(j+1)}(s) = \sum_{a} \pi_k(a|s) \left[\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a) v_k^{(j)}(s') \right]$$

设置 $v_k = v_k^{(j_{truncate})}$

策略改进:

对于每个状态 s, do

对于每个动作 a, do

$$q_k(s, a) = \sum_r p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_k(s')$$

取最大 q 值对应动作 $a_k^*(s) = \arg \max_a q_k(s, a)$ 如果 $a = a_k^*(s)$,则 $\pi_{k+1}(a|s) = 1$,否则 $\pi_{k+1}(a|s) = 0$

1.3 时间复杂度分析

设初始网格世界为 $n \times m$, 令 $N = n \times m$, 每个状态动作值个数 A

1) 值迭代

迭代部分:求Q时间复杂度O(N*A),更新V时间复杂度O(N*A),迭代次数 K,相加有O(K*A*N)+O(K*N*A),综合时间复杂度O(K*A*N)。

2) 策略迭代

策略评估部分:设迭代次数 J,时间复杂度O(J*N*A);策略改进部分:时间复杂度O(N*A),总迭代次数为 K,时间复杂度O(K*J*N*A)+O(K*N*A),综合时间复杂度O(K*J*N*A)。

3) 截断式策略迭代

时间复杂度分析与策略迭代相同,在策略评估部分迭代次数J已知,综合时间复杂度O(K*J*N*A)。

1.4 结果分析

动作方向以箭头表示,保持原地不动表示为"S"。 环境设置如下:

1. 比较三种算法的收敛速度

设置参数如上图,分别使用值迭代、策略迭代与截断式策略迭代方法求解贝尔 曼最优方程,记录 TARGET 状态(图中蓝色方框)随迭代次数增加的 v 值变化。

首先,三种迭代方法得到最优策略与 V 值如下(S 表示保持不动):

从图中可以看出三种迭代方式均能得到最优策略,且最优策略与最优状态值相同。

绘制不同迭代方式下迭代速度,横坐标表示迭代次数,纵坐标表示 V[17] (TARGET 状态)的状态值:

从图中结果可以看出,策略迭代下,状态值 v 到达最优状态值 v*收敛速度最快,值迭代收敛速度最慢,截断式策略迭代收敛速度位于二者中间,与设计逻辑相符。

2. 对于截断式策略迭代-x 算法,给出 x=1,5,9,56,描述观测到的实验结果, 并绘制结果图,其中横轴表示迭代次数,纵轴表示状态值误差

从图中结果可以看出,策略评估时选择不同的迭代次数 x,值估计收敛速度不同: x 的值越大,值估计收敛得越快,如 x=1 与 x=5,收敛速度相差较大,x=1 时,迭代 60 次仍未达到阈值,当 x=5 时,迭代次数小于 20 次则达到阈值; 然而,当 x 很大时,增加 x 的好处很快就会下降,如 x=9 与 x=56,收敛速度相差较小,均在

第二章 MC ε - 贪心策略算法

2.1 设计思想

1. 网格环境定义

网络大小: NUM STATES = GRID ROW * GRID COL

网格结构:使用一维向量 grid 定义网格世界,包含不同的状态和对应的奖励。 状态可以是普通状态、禁区、目标或边界。

奖励设置:

OTHERSTEP: 普通状态的奖励。

FORBIDDEN: 禁区的惩罚。

TARGET: 目标状态的奖励。

BORDER: 越界惩罚。

设置 gamma。

设置 EPSILON。

2. 动作定义

动作数 NUM ACTION = 5。

定义五种可能的动作: RIGHT、DOWN、UP、LEFT、STAY。每个动作对应一个整数值。

3. 初始化策略 policy, 状态值 V

policy: 采用的策略,定义为大小[NUM_STATES, NUM_ACTION]的矩阵,其中 policy[s][a]表示在状态 s 时,选择动作 a 的概率,由 epsilon 决定。

V: 状态值向量,长度与状态个数相同,初始化为 $v_i = 0$ 。

4. 蒙特卡洛 ε-贪心策略

初始化动作值 Q[NUM_STATES, NUM_ACTION]; 回报 R[NUM_STATES, NUM_ACTION]: 用于记录全部 episodes 状态 s 下动作 a 的总回报; R_count[NUM_STATES, NUM_ACTION]: 记录全部 episodes 到达 s 状态 a 动作的次数。

初始化策略为状态选择每个动作概率相同。

当迭代次数少于设定次数:

根据初始 policy 每个状态动作的概率 policy[s][a],连续生成一条长度为 T 的

episode.

从 T-1 时刻开始,倒序记录每个(s,a)对的 reward,加入对应的 R[s][a],并且 R_count[s][a]+1,Q[s][a] = R[s][a] / R_count[s][a]。

遍历完整条 episode 后,选择每个状态 s 下,最大的 Q[s][a]更新策略,设置 policy[s][best_action]= 1.0 - EPSILON + EPSILON / NUM_ACTIONS,该状态下其他 policy[s][a] = EPSILON / NUM_ACTIONS。

利用新的 policy 重复上述步骤,直到迭代结束。

2.2 伪码描述

初始化: 初始猜测 π_0 和 $\epsilon \in [0,1]$ 的值,对于所有的(s, a), Returns(s, a)=0。

目的: 寻找最优策略。

对于每个 episode, do

episode 生成: 随机选择一个起始"状态-动作对"(s0, a0)并确保所有对都可能被选择。按照当前策略, 生成一个长度为 T 的 episode: $s_0, a_0, r_1, ..., s_{T-1}, a_{T-1}, r_T$ 。

策略评估和策略改进:

初始化: $g \leftarrow 0$

对于 episode 的每步,t=T-1, T-2, ..., 0, do

 $g \leftarrow \gamma g + r_{t+1}$

使用每次访问方法:

 $Returns(s_t, a_t) \leftarrow Returns(s_t, a_t) + g$

策略评估: $q(s_t, a_t)$ = average(Returns(s_t, a_t))

$$\pi(a|s_t) = egin{cases} 1 - rac{|A(s_t)|-1}{|A(s_t)|} arepsilon & ext{if } a = a^* \ rac{arepsilon}{|A(s_t)|} & ext{if } a
eq a^* \end{cases}$$

2.3 时间复杂度分析

令总状态数 N,动作数 A。

单条 episode 生成: O(T),策略评估O(T),策略改进O(N*A),共有 K 条 episode,时间复杂度O(K*T) + O(K*T) + O(K*N*A),一般设置T > N*A,综合时间复杂度O(K*T)。

2.4 结果分析

环境参照第一章。

- 1. 分析 ε =1、ε =0.5 时,单个 episode 可以访问的 "状态-动作对"情况: episode 的长度分别为 100 步、1000 步、10000 步, 100 万步的情况。
- (1) $\varepsilon = 1$, 选择 state = 0 为起点,每个动作概率相同

(a) 100 步

(d) 100 万步

当模拟 100 步时,一部分状态与动作未能访问到;模拟 1000 步时,状态与动 作均访问到;模拟 10000 步时,每个状态与动作访问次数增加;统计模拟 100 万步 情况,对于 125 个状态动作对,访问次数均超过 7600 次,低于 8400 次,访问次数 较为均衡,符合 $\varepsilon = 1$ 时,选择各个动作概率相同要求。

(2) $\varepsilon = 0.5$,选择 state = 0 为起点,最优动作概率大于其他动作

当模拟 100 步时, 只有少部分状态与动作被访问到; 当模拟 1000 步时, 仍然 存在部分状态动作对没有访问,与(1)中模拟 1000 步存在差异;模拟 10000 步时, 全部状态动作对被访问:模拟100万步,少数状态动作对访问次数极多,超过200000, 部分访问次数接近25000,大部分状态动作对访问次数极少。

2. 分析 ε = 0、 ε = 0.1、 ε = 0.2、 ε = 0.5 时,最优的ε贪心策略及其状态值。 (1) $\varepsilon = 0$

	→	→	→	ļ	3.5	3.9	4.3	4.8	5.3
Ţ.	<u> </u>	→	→	ļ	3.1	3.5	4.8	5.3	5.9
1	<u> </u>	ļ		ļ	2.8	2.5	10.0	5.9	6.6
Î	→	0		ļ	2.5	10.0		10.0	7.3
Î	→	1	←	—	2.3	9.0	10.0	9.0	8.1

(2) $\varepsilon = 0.1$

当 ε = 0.1时,最优策略与贪心策略一致,但最优状态值与贪心策略差异较大, ε 策略的最优状态值整体小于贪心策略。并且,在贪心策略中,TARGET 的状态值最大(为 10),而 ε 策略 TARGET 的状态值(3.3)小于四周网格状态值(3.7),主要由于周围存在禁区,而 TARGET 状态存在 ε /|| Δ ||的概率进入禁区,获得负的收益。

(3) $\varepsilon = 0.2$

当 ε = 0.2时,最优策略与贪心策略不一致,且 TARGET 下状态值最小。由于 ε 增大,选择非最优动作的可能性增加,以 TARGET 状态为例,选择 UP、LEFT、

RIGHT 策略均会走到禁区而获得负的收益, ε 增加使其收益为负的概率增大,因此 TARGET 周围禁区最多,状态值最低。同时由于不确定性增大,负收益使其他动作 判断存在偏差, ε 最优策略与贪心策略不一致。

(4) $\varepsilon = 0.5$

+	←	-	-	⇔	-4.3	-5.5	-4.5	-2.6	-2.3
↔	**	←	↔		-5.6	-7.7	-7.7	-4.1	-2.4
+	←		-		-5.4	-8.9	-8.0	-5.6	-2.8
←	←	-	←		-6.7	-8.7	-9.3	-5.4	-4.2
.	-	-	-		-7.7	-8.7	-6.5	-5.1	-3.7

当 ε = 0.5时,最优策略与贪心策略差异巨大,并且全部状态下状态值均为负,分析原因与 ε = 0.2相同。 ε 增大,虽然探索性增大,但最优性受损,难以获得与贪心策略一致的最优策略,蒙特卡洛方法失效。因此,在选择 ε 大小时,需要平衡探索性与最优性,选择较小的 ε 。