

Dynamic Programming vs Reinforcement Learning

Noah Ruhmer

11. October 2022

Content

- 1. Introduction
- 2. Theory
- 3. Example
- 4. Results
- 5. Bibliography

Motivation

- Learn theory of optimal control problems
- Compare between model-free and model-based approaches
- Apply dynamic programming and reinforcement learning in practice
- Compare these different methods

Markov Decision Process

Describes a discrete-time dynamic process [Bel57]. Useful for solving optimization problems via dynamic programming.

- States
- Actions
- Transitions (probabilistic)
- Cost/Reward

Markov Property:

"Given the present, the future does not depend upon the past."

Dynamic Programming

Model-based mathematical optimization of a MDP [Bel66]. Sub-problems solved recursively retrieving an optimal policy.

- Requires optimal substructure (e.g. Shortest Path)
- Requires overlapping sub problems (e.g. Fibonacci)

Stochastic Bellman Equation:

$$V(s) = \max_{a} \left(R(a, s) + \sum_{s'} P(a, s, s') V(s') \right)$$

Reinforcement Learning

Trial and Error (Explorative) approach to estimate optimal policy.

- 1. Observe state
- 2. Choose action depending on state by using the policy
- 3. Execute action
- 4. Reward or punishment from environment
- 5. Record information about reward for action-state pair
 - Reward depending on outcome not actions
 - Policy maximizes received reward

Q-Learning

Model-free reinforcement learning algorithm [Wat89]. It does not need transition rules to learn.

- Uses table assigning each action-state pair a value
- Learning by exploration in the environment
- Policy is to pick action with highest Q-Value
- Converges to optimal policy [WD92]

Q-Table update:

$$Q_{new}(a, s) = Q(a, s) + \alpha \cdot \left(R(a, s) + \gamma \cdot \max_{a} Q(a, s') - Q(a, s)\right)$$

Parking Problem

N sequentially placed spaces where a driver wants to park with minimal cost. The driver is incrementally visiting the spaces observing only the current space [Ber19].

- Place is free with probability p
- The last space N (garage) has a fixed cost C and is free
- c(i) decreasing from N to 0

There cost come only from transitioning to the parked state. Intuitive solution is to park as late as possible.

Parking Problem

- 2N states
- 2 actions

Previous states do not influence the current. Best policy to park after a threshold.

Dynamic Programming Solution

Recursive Value Function:

$$V(i) = p \cdot c(i) + (1 - p) \cdot V(i + 1)$$

$$V(N) = C, \quad \forall i : 0 \le i < N$$

Explicit Value Function:

$$V(i) = C \cdot (1-p)^{N-i} + \sum_{i=0}^{N-i} p \cdot (N-i-j) \cdot (1-p)^{j}$$

Optimal Expected cost: $\max_i V(i) = V^*$

Parking at the first free space after this is optimal.

Q-Learning Rewards

Approximate the Dynamic Programming solution.

We want minimal cost, however Q-Learning uses maximal rewards.

Total rewards:

- Negate cost function
- Shift it to use only positive values

Incremental rewards:

- reward driving instead of parking
- sum of reward needs to be equal to other reward functions → negative reward in garage

Q-Learning Training

Q-Table initialized to 0.

Parameters:

- learning rate: $\alpha =$ 0.05 and descending, higher for N larger than 500
- exploration rate: $\epsilon = 0.05$ and descending
- discount factor: $\gamma = 0.999$

Results can be further improved by tuning these parameters and by increasing the training time.

Result Comparison

N	Q-learning		Dynamic Programming
-	μ	σ	-
50	17.005	0.263	16.366
100	26.251	0.519	25.140
200	37.145	0.989	35.764
500	53.973	1.591	51.663

Statistics from 20 independently learned policies

Conclusion

Dynamic Programming

- Full system model needed
- High requisites on the system
- Delivers an exact solution

Reinforcement Learning

- No system model needed
- Approximated solution
- Adaptive to similar problems

- [Bel57] Richard Bellman. "A Markovian decision process". In: Journal of mathematics and mechanics (1957), pp. 679–684.
- [Bel66] Richard Bellman. "Dynamic programming". In: Science 153.3731 (1966), pp. 34–37.
- [Ber19] Dimitri Bertsekas. Reinforcement learning and optimal control. Athena Scientific, 2019.
- [Wat89] Christopher John Cornish Hellaby Watkins. "Learning from delayed rewards". In: (1989).
- [WD92] Christopher JCH Watkins and Peter Dayan. "Q-learning". In: Machine learning 8.3 (1992), pp. 279–292.