Лабораторна робота №4

Розв'язати задачу безумовної оптимізації для квадратичної функції:

$$f(x) = ax_1^2 + bx_1x_2 + cx_2^2 + dx_1 + ex_2 \rightarrow min$$
,

методом *найшвидшого спуску*. Коефіцієнти a,b,c,d,e задані в таблиці, $\varepsilon = 0.001$.

No	а	b	С	d	е
1.	1	2	2	-2	-3
2.	7	1	1	-16	-3
3.	2	2	1	-2	-6
4.	1	2	3	-2	-3
5.	3	2	5	-2	-3
6.	1	-1	8	2	-1
7.	4	2	5	-2	-3
8.	6	2	1	6	6
9.	1	-1	1	-2	1
10.	3	2	1	-2	-3
11.	3	2	2	-2	-3
12.	8	2	1	-3	-6
13.	3	2	3	-2	-3
14.	9	5	1	6	2
15.	2	2	4	-2	-3
16.	7	-1	1	7	-4
17.	3	1	1	1	5
18.	7	5	1	6	3
19.	4	2	3	-2	-3
20.	9	1	1	2	-1
21.	5	4	1	6	4
22.	1	2	4	-2	-3
23.	3	3	1	6	5
24.	6	-1	1	-3	5
25.	3	2	1	12	-6
26.	3	4	2	-2	4
27.	8	-2	1	-1	1
28.	2	2	3	-2	-3
29.	5	-2	1	-2	3

Градієнтні методи. Метод найшвидшого спуску

Розглядається задача безумовної оптимізації:

$$f(x) \to \min, \quad x \in E^n.$$
 (1)

Функція f(x) диференційована на E^n . В градієнтних методах мінімізації за напрямок спуску $p^{(k)}$ з точки $x^{(k)}$ (нагадаємо формулу: $x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}, k = 0, 1, 2,$) вибирається антиградієнт функції f(x) у точці $x^{(k)}$, тобто

$$x^{(k+1)} = x^{(k)} - \alpha_k f'(x^{(k)}), \quad \alpha_k > 0, k = 0, 1, 2, \dots$$
 (2)

або в координатній формі

$$x_i^{(k+1)} = x_i^{(k)} - \alpha_k \frac{\partial f(x^{(k)})}{\partial x_i}, i = \overline{1, n}.$$

На промені $X = \left\{ x \in E^n \mid x = x^{(k)} - \alpha f'(x^{(k)}), \alpha > 0 \right\}$, який направлений за антиградієнтом функції f(x) у точці $x^{(k)}$ введемо функцію

$$g_k(\alpha) = f\left(x^{(k)} - \alpha f'(x^{(k)})\right), \ \alpha \ge 0$$
(3)

і визначимо α_k з умови

$$g_k(\alpha_k) = \min_{\alpha \ge 0} g_k(\alpha), \, \alpha_k > 0.$$
 (4)

Метод (2),(3), в якому кроковий множник α_k визначається з умови мінімізації функції f(x) вздовж напрямку градієнту, носить назву методу **найшвидшого спуску**.

Алгоритм методу

Початковий етап.

Вибрати довільну початкову точку $x^0 \in E^n$ і параметр точності пошуку $\varepsilon > 0$. Обчислити grad f = f'(x) і покласти k = 0.

Основний цикл.

Крок 1. Обчислити grad $f(x^{(k)})$.

Крок 2. Якщо $\left| \operatorname{grad} f \left(x^{(k)} \right) \right| \le \varepsilon$, то покласти $\hat{x} = x^{(k)}$ і зупинити обчислення; інакше перейти на крок 3.

Крок 3. Обчислити кроковий множник α_k 3 умови (4) для функції (3).

Крок 4. Обчислити наступне наближення

$$x^{(k+1)} = x^{(k)} - \alpha_k f'(x^{(k)}), \quad \alpha_k > 0.$$

Крок 5. Покласти k = k + 1 і перейти на крок 1.

Приклад. Знайти мінімум функції

$$f(x_1, x_2) = (2x_1 - x_2)^2 + 2(x_2 - 2)^2 + x_1x_2, x = (x_1, x_2) \in E^2$$

Розв'язання. Покладемо $\varepsilon = 0.01$. В якості початкового наближення візьмемо точку $x^{(0)} = \left(x_1^{(0)}; x_2^{(0)}\right) = (2.00; 2.00)$. В якості критерію зупинки: $\left\|f'\left(x^{(k)}\right)\right\|_2 \le \varepsilon$.

Точку мінімуму будемо шукати за формулою $x^{(k+1)} = x^{(k)} - \alpha_k f'(x^{(k)})$, де множник $\alpha_k > 0$ знаходимо з умови $g_k(\alpha_k) = \min_{\alpha \geq 0} g_k(\alpha)$, $g_k(\alpha) = f\left(x^{(k)} - \alpha f'(x^{(k)})\right)$.

Знаходимо grad
$$f(x)$$
: grad $f(x) = f'(x) = \left(\frac{\partial f}{\partial x_1}; \frac{\partial f}{\partial x_2}\right) = (8x_1 - 3x_2; -3x_1 + 6x_2 - 8).$

Знаходимо градієнт в початковій точці

grad
$$f(x)|_{x=x^{(0)}} = f'(x^{(0)}) = \left(\frac{\partial f}{\partial x_1}; \frac{\partial f}{\partial x_2}\right)|_{(2;2)} = (10;-2).$$

Перевіряємо $\left\| f'(x^{(0)}) \right\|_2 = \sqrt{10^2 + 2^2} = \sqrt{104} = 10.198 > 0.01.$

Ітерація 1.

$$x^{(1)} = x^{(0)} - \alpha_0 f'(x^{(0)}) = (2,2) - \alpha_0 (10,-2) = (2-10\alpha_0, 2+2\alpha_0).$$

Складаємо функцію $g_0(\alpha) = f\left(x^{(0)} - \alpha f'(x^{(0)})\right)$ та досліджуємо її на мінімум.

$$g_0(\alpha) = f\left(x^{(0)} - \alpha f'(x^{(0)})\right) = f\left(2 - 10\alpha; 2 + 2\alpha\right) = (2 - 22\alpha)^2 + 8\alpha^2 + (2 - 10\alpha)(2 + 2\alpha).$$

$$g_0'(\alpha) = 0 \Leftrightarrow -104 + 944\alpha = 0 \Rightarrow \alpha = 0.11$$

Отже,
$$\alpha_0 = 0.11$$
. Тоді $x^{(1)} = x^{(0)} - \alpha_0 f'(x^{(0)}) = (2;2) - 0.11 \cdot (10;-2) = (0.9;2.22)$.

Обчислюємо $f(x^{(0)}) = f(2;2) = 8$ та $f(x^{(1)}) = f(0.9; 2.22) = 2.271$. Умова моно-

тонності $f(x^{(1)}) < f(x^{(0)})$ виконується. Перевіряємо критерій зупинки:

Обчислюємо
$$f'(x^{(1)}) = (8x_1^{(1)} - 3x_2^{(1)}; -3x_1^{(1)} + 6x_2^{(1)} - 8)\Big|_{(0.9; 2.22)} = (0.54; 2.62).$$

Перевіряємо
$$\|f'(x^{(1)})\|_2 = \sqrt{0.54^2 + 2.62^2} = 2.675 > 0.1$$
.

Ітерація 2.

$$x^{(2)} = x^{(1)} - \alpha_1 f'(x^{(1)}) = (0.9; 2.22) - \alpha_1 (0.54; 2.62) = (0.9 - 0.54\alpha_1; 2.22 - 2.62\alpha_1)$$

Складаємо функцію $g_1(\alpha) = f(x^{(1)} - \alpha f'(x^{(1)}))$ та досліджуємо її на мінімум.

$$\begin{split} g_1(\alpha) &= f\Big(x^{(1)} - \alpha f'(x^{(1)})\Big) = (-.42 + 1.54\alpha)^2 + 2(.22 - 2.62\alpha)^2 + (.9 - .54\alpha)(2.22 - 2.62\alpha) \\ \text{Тоді} \quad g_1'(\alpha) &= 35.03\alpha - 7.156 \Rightarrow \alpha = 0.204 \text{ . Отже } \alpha_1 = 0.204 \text{ .} \end{split}$$

Тоді
$$x^{(2)} = x^{(1)} - \alpha_1 f'(x^{(1)}) = (0.79; 1.686)$$
. Знаходимо
$$f(x^{(2)}) = f(0.79; 1.686) = 1.54$$
. Умова монотонності $f(x^{(2)}) < f(x^{(1)})$ виконується.

Перевіряємо критерій зупинки. Обчислюємо $f'(x^{(2)}) = (1.262; -0.256)$. Тоді $\left\| f'(x^{(2)}) \right\|_2 = 1.288 > 0.01 \, .$

Продовжуємо обчислення. Результати наведені в таблиці. Процедура була зупинена при виконанні умови $\left\|f'\left(x^{(k)}\right)\right\|<\varepsilon$ ($\varepsilon=0.1$). Відзначимо, що метод найшвидшого спуску, як і всі градієнтні методи, добре працює на початковій стадії процесу мінімізації, а в околі стаціонарної точки його збіжність уповільнюється. Слід зауважити, що дана задача має точний розв'язок $\hat{x}=\left(\frac{24}{39};\frac{64}{39}\right)\approx \left(0.6154;1.641\right)$ та $f_{\min}=\frac{56}{39}\approx 1.4359$.

k	$x^{(k)}$	$f\left(x^{(k)}\right)$	$-f'(x^{(k)})$	α_k	$\left\ f'\left(x^{(k)}\right)\right\ $	$x^{(k+1)}$
0	(2.00; 2.00)	8.00	(-10; 2)	0.11	10.198	(0.9; 2.22)
1	(0.9; 2.22)	2.271	(-0.54; -2.62)	0.204	2.675	(0.79; 1686)
2	(0.79; 1686)	1.54	(-1.262; 0.256)	0.11	1.288	(0.651; 1.714)
3	(0.651; 1.714)	1.449	(-0.067; -0.329)	0.204	0.336	(0.637; 1.647)
4	(0.637; 1.647)	1.4376	(-0.159; 0.033)	0.11	0.163	(0.62; 1.65)
5	(0.62; 1.65)	1.4361	(-0.008; -0.041)	0.203	0.042	(0.618; 1.642)
6	(0.618; 1.642)	1.4359	(-0.02; 0.004)	0.11	0.02	(0.616; 1.642)
7	(0.616; 1.642)	1.4359	(-0.001; -0.005)		0.005	