CS5370: Assignment 2

Nakka Chakradhar - EE16BTECH1102

September 22, 2019

1. Settting some parameters:

Let input be a D dimension vector.

Let output be a K dimensional vector

Let the loss function

 s_{ji} denote the skip layer weight between i^{th} input and the j^{th} output.

 a_i^l denotes the output of the i^{th} neuron in l^{th} layer. This layer has M nodes for reference (Given 2 in the problem).

 σ is the activation function in the last layer of neurons.

gt is the target output.

$$output_k^2 = \sigma(\sum_{i=0}^{M} w_{ki}^l a_i^l + \sum_{i=0}^{D} s_{ki} x_i)$$

Let
$$z_k^2 = \sum_{i=0}^M w_{ki}^l a_i^l + \sum_{i=0}^D s_{ki} x_i$$

Then,
$$a_k^2 = \sigma(z_k^2)$$

 $E = \frac{1}{2} \sum_{i=1}^{K} (a_i^2 - gt_i)^2$, for one training example.

$$\frac{\partial E}{\partial s_{ii}} = (a_j^2 - gt_j) \times \sigma'(z_j^2) \times x_i$$

2. Answer to question 2

$$E(w) \approx E(\tilde{w}) + (w - \tilde{w})^T \nabla E|_{w = \tilde{w}} + \frac{1}{2} (w - \tilde{w})^T H(w - \tilde{w})$$

From the above expression, it is clear that the first term is a constant and the second term has W partial derivatives.

Since Hessian is symmetric, it has $\frac{\partial E}{\partial w_i \partial w_j} = \frac{\partial E}{\partial w_j \partial w_i}$, $\forall i, j \in \{1, 2, ..., W\}$.

Number of independent elements from Hessian = $\frac{W(W-1)}{2} + W$

Number of independent elements from $(w - \tilde{w}) = W$

Total =
$$\frac{W(W-1)}{2} + 2W = \frac{W(W+3)}{2}$$

3. Answer to question 3

Given:
$$x = \sum_{i} \alpha_i x_i$$

$$\alpha_i >= 0$$

$$\Sigma \alpha_i = 1$$

$$w^T x_i + w_0 > 0$$

$$z = \sum_{i} \beta_{i} z_{i}$$

$$\beta_{i} >= 0$$

$$\sum_{i} \beta_{i} = 1$$

$$w^{T} z_{i} + w_{0} < 0$$

1. The convex hulls intersect at a point say A. A belongs to both the convex hulls. \exists unique α and β such that $A = \sum_i \alpha_i x_i = \sum_i \beta_i z_i$.

Let's assume that the points are linearly separable and prove the statement via contradiction

Let's substitute this point in the equation of the decision boundary.

Since sum of αs , βs is 1, we have

$$f(A) = \Sigma_i(w^T \alpha_i x_i) + w_0 = \Sigma_i \alpha_i(w^T x_i + w_0) = \Sigma_i \beta_i(w^T z_i + w_0)$$

Since the points lie on different sides of the line, we have f(A) > 0 and f(A) < 0 simultaneously. This is a contradiction.

2. Given the convex hulls are linearly separable. Assume they are intersecting at a point A. A belongs to both the convex hulls. \exists unique α s and β s such that $A = \sum_i \alpha_i x_i = \sum_i \beta_i z_i$.

Let's substitute this point in the equation of the decision boundary.

Since sum of alphas is 1, we have

$$f(A) = \Sigma_i(w^T \alpha_i x_i) + w_0 = \Sigma_i \alpha_i(w^T x_i + w_0) = \Sigma_i \beta_i(w^T z_i + w_0)$$

Since the points lie on different sides of the line, we have f(A) > 0 and f(A) < 0 simultaneously. This is a contradiction. And hence our assumption that there exists a point A which is in common for both the convex hulls is false.

(The proofs are pretty similar because they are based on one assumption - there is a point in common and that point won't follow standard comparison methods leading to a contradiction).