吉林大学

2012~2013学年第二学期《高等数学BII》 试卷

2013 年 6 月 27 日

_	 三	四	总分

- (A) $\frac{3}{2}$.

- (B) 0. (C) $\frac{6}{5}$. (D) 不存在.
- 2. 如果f(x,y)的点 (x_0,y_0) 处的两个偏导数都存在,则(
- (A) f(x,y)在点 (x_0,y_0) 的某个邻域内有界.
- (B) f(x,y)在点 (x_0,y_0) 的某个邻域内可微.
- (C) $f(x,y_0)$ 在点 x_0 处连续, $f(x_0,y)$ 在点 y_0 处连续.
- (D) f(x,y)在点 (x_0,y_0) 处连续.

3. 设空间曲线
$$\Gamma$$
的方程是
$$\begin{cases} x^2+y^2+z^2=1, & \text{则} \oint_{\Gamma} y^2 \mathrm{d}s=(\\ x+y+z=0, \end{cases}$$
 (A) $\frac{2}{3}\pi$. (B) 2π . (C) $\frac{3}{2}\pi$. (D) 6π . 4. 数项级数 $\sum_{n=1}^{\infty} \left(\frac{\ln^n 3}{2^n} + \frac{1}{n(n+1)}\right)$ 的和等于 ().

(A)
$$\frac{2}{3}\pi$$
.

4. 数项级数
$$\sum_{n=1}^{\infty} \left(\frac{\ln^n 3}{2^n} + \frac{1}{n(n+1)} \right)$$
的和等于 ().

(A)
$$\frac{4 - \ln 3}{2 - \ln 3}$$
. (B) $\frac{2}{2 - \ln 3}$. (C) $\frac{\ln 3}{2 - \ln 3}$.

得分

三、按要求解答下列各题(共4道小题,每小题8分,满分32分).

1. 设 f, φ 是 $C^{(2)}$ 类函数, $z = yf(\frac{x}{y}) + x\varphi(\frac{y}{x})$,求:(1) $\frac{\partial z}{\partial y}$; (2) $x\frac{\partial^2 z}{\partial x^2} + y\frac{\partial^2 z}{\partial x \partial y}$.

2. 计算 I =
$$\iint_D (xy+|x^2+y^2-2|)\mathrm{d}\sigma$$
,其中区域 $D=\{(x,y)|x^2+y^2\leqslant 3\}$.

3. 设函数 f(x,y,z) 连续,且 $f(x,y,z)=\sqrt{x^2+y^2}+z$ $\iiint_{\Omega}f(x,y,z)\mathrm{d}V$,其中区域 $\Omega=\{(x,y,z)|\sqrt{x^2+y^2}\leqslant z\leqslant 1\}$,求 f(x,y,z) 的表达式.

4. 计算曲线积分 $\mathbf{I}=\oint_L(\mathbf{e}^x\sin y-8y)\mathrm{d}x+(\mathbf{e}^x\cos y-8)\mathrm{d}y$,其中 L 为 圆周 $x^2+y^2=2x$,取逆时针方向.

得 分

四、按要求解答下列各题(共4道小题,每小题8分,满分32分).

1. 计算曲面积分 ${\rm I}=\iint\limits_\Sigma xz^2{\rm d}y{\rm d}z+(x^2y-z^3){\rm d}z{\rm d}x+(2xy+y^2z){\rm d}x{\rm d}y$,其中曲面 Σ 为上半球面 $z=\sqrt{1-x^2-y^2}$ 的上侧.

2. 设 f(x) 具有一阶连续导数, $f(\frac{1}{2})=3$,且满足方程 $\int_0^x f(t)\mathrm{d}t=\frac{x}{2}f(x)+x$,求 f(x).

3. 求幂级数 $\sum_{n=1}^{\infty} n(x+1)^{n-1}$ 的收敛域与和函数.

4. 求函数 $f(x,y)=x^2+y^2-xy-3y$ 在闭区域 $D=\{(x,y)|\ 0\leqslant y\leqslant 4-x,0\leqslant x\leqslant 4\}$ 上的最大值和最小值.