Informace ve vypocetni technice

1 Informace

- obecne: údaj o deni v realnem svete
- v informatice: retezec znak, ktere lze vysilat, prijimat, uchovavat a zpracovavat

2 Ciselne soustavy

- ciselna soustava je zpsob reprezentace cisel. zapis cisla v dane soustave je dana posloupnosti symbol cislic.
- rozlisujeme spoustu soustav; mezi zakladni patri dvojkova (binarni), osmickova (oktalni), desitkova (decimalni) a sestnactkova (hexadecimalni).

Dec	Bin	Hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

2.1 Binarni

• dvojkova soutstava je soustava, ktera pouziva jen dve cislice (0; 1).

- kazda cislice odpovida n-te mocnine cisla 2, kde n je pozice dane cislice v zapsanem cisle binarni cislo
- tato soustava se pouziva ve vsech dnesnich pocitacich z dvodu jednoducheho rozdeleni dvou stav elektrickeho obvodu (vypnuto; zapnuto) ci pravdivost

binarni cislo	1	1	0	1	0	1	1	0
pozice cislice	7	6	5	4	3	2	1	0
mocniny cisla dve	27	$2\hat{6}$	$2\hat{5}$	$2\hat{4}$	$2\hat{3}$	$2\hat{2}$	2Î	20
hodnoty mocnin	128	64	32	16	8	4	2	1
krat binarni cislice	x1	x1	x0	x1	x0	x1	x1	x0
vysledky soucinu	128	64	0	16	0	4	2	0

• pro prevod z dvojkove soustavy do desitkove si jednotlive cislice umocnime podle pozice cislice. pokud cislice je rovna 1 pricteme do celkoveho vysledku jeji pozicni mocninu; pokud cislice je rovna 0 cislici preskocime. podle teto logiky zjistime, ze '11010110' se rovna 214.

$$1\ 1\ 0\ 1\ 0\ 1\ 1\ 0$$
 $128\ 64\ x\ 16\ x\ 4\ 2\ x$
 $128\ +\ 64\ +\ 16\ +\ 4\ +\ 2\ =\ 214$

2.2 Decimalni

• tato soustava pouziva 10 cislic (0-9). tato soustava je nejrozsirenejsi na svete. umozuje presny zapis libovolnych celych cisel, zapornych cisel (zacinaji znakem "minus" -). pomoci desetine carky/tecky lze zapsat libovolne realne cislo.

2.3 Hexadecimalni

- soustava s 16 cislicemi (0-9, A-F), kde v desitkove soustave cislo '10' je nahrazeno pismenem v sestnactkove 'A', atd...
- prevod z hex do dec:

$$3F7 = (3*16^2) + (15*16^1) + (7*16^0) = 1015$$

- hexadecimalni soustava se pouziva napr pro adresy v operacni pameti pocitace.
- z konstrukcniho hlediska pocitace pracuji v dvojkove soustave, ale mnohaciferna cisla se spatne ctou, proto se cisla a kódy prevadi do sestnactkove (pripadne osmickove). v prog. jazyce C se pred hexadec. cislo

pise predpona '0x' (napr. '0xAB'), v Assembly se pro zmenu pise predpona '\$' (napr. '\$AB').

3 CPU

- umi vykonavat strojove instrukce (slozen v program) a obsluhovat vstupy a vystupy.
- rotoze procesor, ktery by dokazal vykonat program psany ve vyssim prog. jazyce, by byl az moc slozity, je kód prekladan na strojovy kód (ten umi napr. presouvat informaci z registru do registru).
- registry uchovavaji data ze vstup a mezivysledky
- obsahuje aritmeticko-logickou jednotku (ALU) ktera s daty provadi aritmeticke a logicke operace.

4 Zaporna cisla

- V teto soustave pro zaporna cisla vyuzivame dvojkovy doplnek
- pro znegovani cisla se invertuji vsechny bity (z 0 se stava 1; z 1 se stava 0) a k vysledku pricteme 1
- nevyhodou je asymetricky interval (napr. <-8; 7>)

vypocet intervalu:

$$-\frac{2^n}{2}; \frac{2^n}{2} - 1$$

5 Ochrana dat

 kontrolni soucet je informace predana spolu s pvodnimi daty, slouzici k overeni, zda pri prenosu nedoslo k chybe. kontrolni soucet je presne urcena operace provedena s pvodnimi daty, lze ji overit u prijemce. pokud nove vypocitany kontrolni soucet nesouhlasi s pvodnim, znamena to, ze doslo k poskozeni pvodni zpravy nebo kontrolniho souctu.

6 Poradi bajt

• (nebo *endianita*) zpsob ulozeni cisel v operacni pameti

• v jakem poradi jsou v operacni pameti ulozeny jednotlive rady cisel, ktere zabiraji vice nez jeden bajt

6.1 Little-endian

• na pameove misto s nejnizsi adresou se ulozi *nejmene vyznamny bajt (LSB)* a za nej se ukladaji ostatni bajty az po *nejvice vyznamny bajt (MSB)*.

6.2 Big-endian

• na pameove misto s nejnizsi adresou se ulozi *nejvice vyznamny bajt* a za nej se ukladaji ostatni bajty az po *nejmene vyznamny bajt*.

6.3 Middle-endian

- slozitejsi zpsob pro urceni jednotlivych bajt
- kombinace little-endianu a big-endianu

7 Zakladni datove typy

7.1 Logicka hodnota

• nebo-li 'boolean' se vyuziva v pripadech, kdy vlastnosti mohou mit jen dve hodnoty pravda nebo lez ('True || False')

7.2 Cele cislo

- nebo-li 'integer'
- jazyky mohou ale nemusi rozlisovat cislo bez znamenka a se znamenkem.
- u vetsiny jazyk je cislo omezene intervalem a kódovano v dvojkovem doplku.

7.3 Znak

- nebo-li 'char', ohranicuje se apostrofem (')
- ve skutecnosti vyjadrena celym cislem

• znaky jsou kódovany v UNICODE nebo v ASCII a jejim narodnim rozsirenim

7.4 Realne cislo

- nebo-li 'float' ci 'double'
- je cislo s plovouci desetinnou carkou, jako znak pro desetinnou carku se pouziva '. ' (*tecka*)
- je psano v dvojkove soustave

$$celecislo*2^{exponent}$$

(exponent je take cele cislo)

• mnoha desetinna cisla nelze v tomto formatu presne reprezentovat, proto se mze stat, ze se realna cisla budou v pocitaci chovat jinak, nez bychom cekali

7.5 Textovy retezec

- nebo-li 'string', ohranicuje se uvozovkami (")
- slouzi k ulozeni konecneho retezci znak