Вариант 1

1. (5)
$$df(M_0) = dx$$
, $d^2(M_0) = -dy^2$, $f(x,y) = x - 1 - \frac{y^2}{2} + o((x-1)^2 + y^2)$.

- **2. (6)** Непрерывна при $\alpha \ge 0$, дифференцируема при $\alpha > 1/2$.
- 3. (3) $L = 2\ln(1+\sqrt{2})$.
- **4 а). ④** Сходится при $0 \le \alpha < 2$.
- **4 b). 6** Абсолютно сходится при $\alpha > 3/2$; условно сходится при $1 < \alpha \le 3/2$; расходится при $\alpha \le 1$.
- 5. ② $\sqrt[n]{a_n} \rightarrow e^{-1/2}$ при $n \rightarrow \infty$, ряд сходится.
- 6.⑤ $f(x) = e^x$, $|f_n(x) f(x)| = 2e^x \sin^2[1/(2nx)]$; $x \in E_1$, $|f_n(x) f(x)| \le e^2/(2n^2)$, последовательность равномерно сходится на E_1 ; $x_n = n \in E_2$, $|f_n(x_n) f(x_n)| \sim e^n/(2n^4)$ при $n \to \infty$, сходится неравномерно на E_2 .
- 7. ④ $e^t 1 = t e^{\xi}$, $t = \frac{x}{\sqrt{n}}$; $x \in E_1$, $|u_n(x)| \le \frac{ex}{\sqrt{n}} \cdot \frac{x^2}{n+1} \le \frac{e}{n^{3/2}}$; ряд равномерно сходится на E_1 ; $x_n = \sqrt{n}$, $u_n(x_n) \sim (e-1)\pi/4$ при $n \to \infty$; ряд сходится неравномерно на E_2 .

8.4
$$f(x) = \frac{\pi x^2}{2} + \sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{2n+3}}{(2n+1) 4^n}; \quad R = 2.$$

9.4 a)
$$f(x) = \frac{\sin x}{x}$$
, $g(x) = \frac{1}{x^2}$, $f(x)g(x) = \frac{\sin x}{x^3}$.
b) $f(x) = x^3 \sin x^5$, $g(x) = \frac{1}{x^2}$, $f(x)g(x) = x \sin x^5$.

Вариант 2

- 1. (5) $df(M_0) = dx$, $d^2(M_0) = -dx^2 + 2 dx dy$, $f(x,y) = x x^2/2 + x(y-1) + o(x^2 + (y-1)^2)$.
- **2. (6)** Непрерывна при $\alpha \geqslant 0$ и дифференцируема при $\alpha > 2/3$.
- 3. (3) S = 1/2.
- **4 а). 4** Сходится при $\alpha < 2$.
- **4 b). (6)** Абсолютно сходится при $\alpha > 1$; условно сходится при $-2 < \alpha \leqslant 1$; расходится при $\alpha \leqslant -2$.
- 5.2 $a_{n+1}/a_n \to 1/3$ при $n \to \infty$, ряд сходится.
- 6. ⑤ $f(x) = \sqrt{x}, |f_n(x) f(x)| = \sqrt{n} |\ln(1+t) t|, t = \sqrt{x/n};$ $x \in E_1, |f_n(x) f(x)| \le 1/\sqrt{n},$ последовательность равномерно сходится на $E_1;$ $x_n = \sqrt{n} \in E_2, |f_n(x_n) f(x_n)| = (1 \ln 2)\sqrt{n} \to \infty,$ сходится неравномерно на $E_2.$
- 7. ④ $u_n(x) = 2\sin^2\left(\frac{x^{5/2}}{2\sqrt{n}}\right); \quad x \in E_1, \quad 0 \leqslant u_n(x) \leqslant \frac{2x^5}{4n} \cdot \frac{e^x}{\sqrt{n}} \leqslant \frac{e}{2n^{3/2}};$ ряд равномерно сходится на $E_1;$. $x_n = \sqrt[5]{n}, \quad u_n(x_n) \sim \pi \sin^2(1/2)$ при $n \to \infty$; ряд сходится неравномерно на E_2 .
- **8.** (a) $f(x) = \pi x^4 + \sum_{n=0}^{\infty} C_{-1/2}^n \frac{(-1)^{n+1} 3^{2n+1} x^{2n+5}}{2n+1}; \quad R = 1/3.$
- **9.** ⓐ a) $f(x) = \frac{\sin x}{x}$, $g(x) = \frac{\sin x}{x}$, $f(x)g(x) = \frac{\sin^2 x}{x^2}$. b) $f(x) = \frac{\sin x}{\sqrt{x}}$, $g(x) = \frac{2\cos x}{\sqrt{x}}$, $f(x)g(x) = \frac{\sin 2x}{x}$.

c) a)
$$f(x) = \frac{\sin x}{\sqrt{x}}$$
, $g(x) = \frac{\sin x}{\sqrt{x}}$, $f(x)g(x) = \frac{\sin^2 x}{x}$.

Вариант 3

1. (5)
$$df(M_0) = dx$$
, $d^2(M_0) = -dx^2$, $f(x,y) = (x-1) - \frac{(x-1)^2}{2} + o((x-1)^2 + y^2)$.

- **2. (6)** Непрерывна при $\alpha > 0$ и дифференцируема при $\alpha > 3/4$.
- 3. (3) $\mathcal{P} = \frac{\pi}{\sqrt{2}}(\sqrt{6} + \ln(\sqrt{2} + \sqrt{3})).$
- **4** а). **4** Сходится при $-1 < \alpha < 0$.
- **4 b).** ⑥ Абсолютно сходится при $\alpha > 1$; условно сходится при $1/2 < \alpha \leqslant 1$; расходится при $\alpha \leqslant 1/2$.
- 5.② $\sqrt[n]{a_n} \to e^{-1/6}$ при $n \to \infty$, ряд сходится
- 6.⑤ $f(x) = \operatorname{tg} x, |f_n(x) f(x)| = n|\operatorname{arctg} t t|, t = \operatorname{tg} x/n;$ $x \in E_1, |\operatorname{arctg} t t| \leqslant Ct^2 \leqslant C/n^2,$ последовательность равномерно сходится на $E_1;$ $x_n = \operatorname{arctg} n \in E_2, |f_n(x_n) f(x_n)| = n(1 \pi/4),$ сходится неравномерно на $E_2.$
- 7. ④ $\sh t = t \ch \xi, \ t = \frac{e^x}{n}; \quad x \in E_1, \quad |u_n(x)| \leqslant \frac{e \ch 1}{n} \cdot \frac{1}{\sqrt{n}} = \frac{e \ch 1}{n^{3/2}};$ ряд равномерно сходится на $E_1;$ $x_n = \sqrt{n}, \quad u_n(x_n) > \frac{e^{\sqrt{n}} \sin 1}{\sqrt{n}} \to \infty \text{ при } n \to \infty; \text{ ряд сходится неравномерно на } E_2.$
- 8.4 $f(x) = \frac{\pi x}{4} + \sum_{n=0}^{\infty} \frac{(-1)^n x^{6n+4}}{(2n+1)2^{2n+1}}; \quad R = \sqrt[3]{2}.$
- 9.4 a) $f(x) = \frac{\sin x}{x}$, $g(x) = \frac{1}{x^2}$, $f(x)g(x) = \frac{\sin x}{x^3}$. b) $f(x) = x^3 \sin x^5$, $g(x) = \frac{1}{x^2}$, $f(x)g(x) = x \sin x^5$.

Вариант 4

- 1. (5) $df(M_0) = 2dx dy$, $d^2(M_0) = 2dx^2 dy^2$, $f(x,y) = 2(x-1) y + (x-1)^2 y^2/2 + o((x-1)^2 + y^2)$.
- 2. ⑥ Непрерывна при $\alpha \geqslant 0$ и дифференцируема при $\alpha > 4/5$.
- 3. ③ $V = \pi(\pi + 2)/8$.
- **4 а). ④** Сходится при $\alpha > 0$.
- **4 b). 6** Абсолютно сходится при $\alpha > 1$; условно сходится при $-2 < \alpha \leqslant 1$; расходится при $\alpha \leqslant -2$.
- **5.2** $a_{n+1}/a_n \to 36/e$ при $n \to \infty$, ряд расходится.
- 6.⑤ $f(x) = x^2, |f_n(x) f(x)| = x/\left[n\left(\sqrt{1 + 1/(nx)} + 1\right)\right];$ $x \in E_1, |f_n(x) f(x)| < 1/n,$ последовательность равномерно сходится на $E_1;$ $x_n = n \in E_2, |f_n(x_n) f(x_n)| > 1/(1 + \sqrt{2}),$ сходится неравномерно на $E_2.$
- 7. ④ $x \in E_1$, $0 \le u_n(x) \le \frac{e^x}{n} \cdot \frac{x^3}{\sqrt{n}} \le \frac{e}{n^{3/2}}$; ряд равномерно сходится на E_1 ; $x_n = \sqrt[6]{n}$, $u_n(x_n) > (n^{1/6} \ln n) \sin 1 \to \infty$ при $n \to \infty$; сходится неравномерно на E_2 .
- 8.4 $f(x) = \frac{\pi x^3}{2} + \sum_{n=0}^{\infty} \frac{(-1)^{n+1} 2^{2n+1} x^{2n+4}}{2n+1}; \quad R = 1/2.$
- 9.4 a) $f(x) = \frac{\sin x}{x}$, $g(x) = \frac{\sin x}{x}$, $f(x)g(x) = \frac{\sin^2 x}{x^2}$. b) $f(x) = \frac{\sin x}{\sqrt{x}}$, $g(x) = \frac{2\cos x}{\sqrt{x}}$, $f(x)g(x) = \frac{\sin^2 x}{x}$.
 - c) a) $f(x) = \frac{\sin x}{\sqrt{x}}$, $g(x) = \frac{\sin x}{\sqrt{x}}$, $f(x)g(x) = \frac{\sin^2 x}{x}$.