### Введение в программирование:

# Марковский алгорифм, грамматики и конечные автоматы

#### Аннотация

Данный курс в той или иной форме рассказывается новичкам, поступающим в ЛНМО; обычно это происходит в летней школе. Курс предназначен для первоначального ознакомления с предметом. Данный документ содержит краткий конспект теоретической части курса.

## 1 Алгорифм Маркова

### 1.1 Синтаксис алгорифма Маркова

Определение 1.1. Алфавит — конечное множество символов.

**Определение 1.2.** Слово — конечная последовательность символов. Слово в алфавите A — конечная последовательность символов из алфавита A.

**Определение 1.3.** Язык — множество слов.

Определение 1.4. Правило — запись, имеющая такой вид

$$\alpha \rightarrow \beta$$

или такой вид:

$$\alpha \rightarrow . \beta$$

Здесь греческие буквы ( $\alpha$  и  $\beta$ ) обозначают произвольные слова в некотором алфавите.

Определение 1.5. Чтобы задать алгорифм Маркова, необходимо задать:

- Алфавит
- Упорядоченный набор правил

### 1.2 Семантика алгорифма Маркова

**Определение 1.6.** Применимое правило. Назовем правило применимым к некоторой строке, если его левая часть входит в эту строку.

**Определение 1.7.** Шаг алгорифма Маркова. Пусть задана некоторая строка. Найдем первое применимое правило алгорифма Маркова. Возьмем самое левое вхождение левой части этого правила и заменим его на правую часть правила. Получившаяся строка будет называться результатом применения шага алгорифма Маркова к исходной строке.

Если ни одно правило не применимо, то мы будем говорить, что сделать шаг невозможно.

**Определение 1.8.** Результат применения алгорифма Маркова. Пусть задана некоторая строка. Будем применять шаги алгорифма Маркова, каждый следующий шаг применяя к результату предыдущего шага, пока шаги возможно выполнять и пока не было выполнено ни одного правила с точкой.

В случае, если какое-то из условий нарушено (т.е. не осталось применимых правил, либо выполнилось правило с точкой), то результат последнего выполненного шага назовем результатом применения алгорифма Маркова.

### 2 Грамматика

Определение 2.1. Чтобы задать грамматику, необходимо задать:

• Алфавит (A), состоящий из двух непересекающихся конечных множества символов, называемых алфавитами терминальных  $(A_T)$  и нетерминальных  $(A_H)$  символов:

$$A = A_T \cup A_H, \quad A_T \cap A_H = \emptyset$$

- $\bullet$  Набор правил без точек в алфавите A, в каждом из которых которых левая часть содержит по крайней мере один нетерминальный символ
- Начальный символ некоторый символ из  $A_H$ .

**Определение 2.2.** Будем говорить, что слово s задаётся грамматикой, если выполнены следующие два утверждения:

- Оно целиком состоит из терминальных символов данной грамматики;
- Существует последовательность применения правил, которая преобразует начальный символ в слово s. В данном случае мы разрешаем применять правила в произвольном порядке к произвольным вхождениям в строке, не требуя применения самого первого правила к самому левому вхождению.

**Определение 2.3.** Будем говорить, что язык задается грамматикой, если грамматика задает те и только те слова, которые входят в язык.

### 3 Сокращения записи

Для упрощения записи мы будем пользоваться следующими сокращениями, которые можно раскрыть в традиционную грамматику.

### 3.1 Альтернатива

Будем писать  $\alpha \to \beta | \gamma$  вместо двух строчек

$$\begin{array}{ccc} \alpha & \rightarrow & \beta \\ \alpha & \rightarrow & \gamma \end{array}$$

Данная запись означает «строчка  $\alpha$  может быть преобразована либо в  $\beta$ , либо в  $\gamma$ ».

#### 3.2 Необязательная часть

Будем писать  $\alpha \to [\beta]$  вместо двух строчек

$$\alpha \rightarrow \alpha \rightarrow \beta$$

Данная запись означает «строчка  $\alpha$  может быть преобразована либо в  $\beta$ , либо в пустую строку».

### 3.3 Повторение

Будем писать  $\alpha \to \{\beta\}^*$  вместо таких строчек

$$\begin{array}{ccc} \alpha & \to & S \\ S & \to & \beta S \\ S & \to & \varepsilon \end{array}$$

Здесь S — некоторый новый, ранее не встречавшийся в данной грамматике нетерминальный символ.

Данная запись означает повторение строчки  $\beta$  ноль или более раз.

Аналогично мы можем рассмотреть повторение строки один или более раз:  $\alpha \to \{\beta\}^+$  вместо строчек

$$\begin{array}{ccc} \alpha & \to & S \\ S & \to & \beta S \\ S & \to & \beta \end{array}$$

Эти два типа повторения легко выражаются один через другой: как  $\{\alpha\}^+$  можно представить как  $\alpha\{\alpha\}^*$ , так и  $\{\alpha\}^*$  — как  $\varepsilon|\{\alpha\}^+$ .

## 4 Иерархия Хомского

**Определение 4.1.** Назовем грамматику неукорачивающей, если все правила в этой грамматике имеют в левой части не больше символов, чем в соответствующей правой части. Грамматика также может содержать правило вида  $S \to \varepsilon$ , но только если нетерминал S не содержится в правых частях правил.

**Определение 4.2.** Назовем грамматику бесконтекстной (контекстно-свободной), если все правила в этой грамматике имеют в левой части в точности один нетерминальный символ и ничего, кроме него.

Определение 4.3. Назовем грамматику построенной по регулярному выражению, если:

- Алфавит нетерминальных символов состоит в точности из одного символа
- Грамматика имеет единственное правило, левая часть которого нетерминальный символ, а правая состоит только из терминальных символов. Также, в правой части разрешено использовать сокращения записи (операции «альтернатива», «необязательная часть» и «повторение»).

**Определение 4.4.** Будем говорить, что язык — неукорачивающий (бесконтекстный, автоматный), если он может быть задан соответствующей грамматикой.

Определение 4.5. Иерархия Хомского имеет 4 уровня:

| Уровень в иерархиг | и Тип грамматики                     |
|--------------------|--------------------------------------|
| 0                  | Грамматика общего вида               |
| 1                  | Неукорачивающая                      |
| 2                  | Бесконтекстная                       |
| 3                  | Построенная по регулярному выражению |

Легко заметить, что если грамматика (язык) принадлежит уровню k иерархии Хомского, то он принадлежит и всем уровням, меньшим k.

# 5 Регулярные выражения и конечные автоматы

Определение 5.1. Конечным автоматом мы назовем совокупность:

- двух алфавитов алфавита терминальных символов  $A_T$  и алфавита состояний  $A_C$ ;
- таблицы переходов, сопоставляющей паре символов терминальному и состоянию некоторое новое состояние:  $T: A_T \times A_C \to A_C$ ;
- начального состояния и множества допускающих состояний.

**Определение 5.2.** Шаг применения конечного автомата. Если автомат находится в некотором состоянии  $s \in A_C$ , то результатом применения автомата к некоторому символу  $a \in A_T$  будет новое состояние T[s,a].

**Определение 5.3.** Будем говорить, что автомат допускает некоторую строку, если последовательное применение автомата ко всем символам из строки в порядке их записи в слове приводит автомат из начального в допускающее состояние.

**Определение 5.4.** Будем говорить, что автомат задаёт язык, если он допускает те и только те слова, которые принадлежат языку.

#### 5.1 Недетерминированные конечные автоматы

Введем альтернативный способ изображения конечных автоматов — в виде графа. Будем сопоставлять состояниям автомата точки, а клеткам таблицы переходов — дуги. Допускающие состояния будем обозначать двойным кружком, начальное состояние — входящей стрелкой. Если дуги для символа для какого-то состояния не указано, то появление такого символа ведёт к недопуску строки.

Пример задания одного и того же автомата с помощью таблицы и с помощью графа:



**Определение 5.5.** Недетерминированный конечный автомат — это конечный автомат, в котором в каждой клетке таблицы переходов записано не одно состояние, а множество состояний. То есть, функция переходов задаётся иначе:  $T: A_T \times A_C \to 2^{A_C}$ .

**Определение 5.6.** Мы будем говорить, что недетерминированный конечный автомат допускает строку, если на каждом шаге применения автомата к символам входной строки (то есть, на символе  $t \in A_T$  и в состоянии  $s \in A_C$ ) найдётся такой переход (из множества допустимых переходов T[t,s]), что после последнего шага автомата он окажется в допускающем состоянии.

То же самое можно выразить несколько парадоксальной фразой: недетерминированный автомат на каждом шагу «угадывает», какой из вариантов перехода выбрать, чтобы достигнуть допускающего состояния.

**Определение 5.7.** Недетерминированный конечный автомат с эпсилон-переходами — конечный автомат, в котором к алфавиту терминальных символов добавлен «пустой» символ  $\varepsilon$ , не встречающийся во входной строке.

Определение 5.8. Назовём состояние r  $\varepsilon$ -достижимым из состояния s, если существует последовательность  $\varepsilon$ -переходов, позволяющая достичь r из s.

Определение 5.9. Мы будем говорить, что недетерминированный конечный автомат с  $\varepsilon$ -переходами допускает строку, если на каждом шаге применения автомата к символам входной строки (то есть, на символе  $t \in A_T$  и в состоянии  $s \in A_C$ ) найдётся такое  $\varepsilon$ -достижимое состояние r и такой переход из него (из множества допустимых переходов T[t,r]), что после последнего шага автомата допускающее состояние окажется  $\varepsilon$ -достижимо.

Иными словами, недетерминированный конечный автомат с  $\varepsilon$ -переходами может в любой момент самопроизвольно выполнить любое количество  $\varepsilon$ -переходов, если это ведёт к цели (к допуску строчки).

Несложно показать, что по любому недетерминированному автомату с  $\varepsilon$ -переходами можно построить детерминированный, задающий тот же язык (для этого надо рассмотреть автомат с алфавитом состояний  $2^{A_C}$ ). Поэтому классы языков, задаваемые и детерминированными и недетерминированными автоматами, одинаковы. Однако, в разных задачах удобен разный тип автоматов.

#### 5.2 Соответствие регулярных выражений конечным автоматам

Известно, что грамматики, построенные по регулярным выражениям, задают в точности то же множество языков, что и конечные автоматы. Мы можем это показать, например, двумя включениями: показав, как заданный грамматикой язык задать конечным автоматом — и как язык, заданный конечным автоматом, задать с помощью грамматики, построенной по регулярному выражению.

Мы покажем, как преобразовать регулярное выражение в недетерминированный конечный автомат, задающий тот же язык. Обратное преобразование также можно произвести, но оно останется за рамками данного курса.

В регулярном выражении возможны 4 типа конструкций: литерал (терминальный символ), конкатенация  $(\alpha\beta)$ , альтернатива  $(\alpha|\beta)$  и повторение  $(\{\alpha\}^+)$ . Нам достаточно предложить способ построения автомата для литералов и способы построения более сложных автоматов на основе уже имеющихся в остальных трёх типах конструкций.

1. Литерал. Автомат, допускающий символ x (и только его), выглядит так:



2. Конкатенация. Пусть даны два автомата, задающие  $\alpha$  и  $\beta$  (они схематично изображены квадратами на графе). Тогда автоматом, задающим  $\alpha\beta$ , будет



3. Альтернатива. Пусть даны два автомата, задающие  $\alpha$  и  $\beta$ . Тогда автоматом, задающим  $\alpha|\beta$ , будет



4. Повторение. Пусть дан автомат, задающий  $\alpha$ . Тогда автоматом, задающим  $\{\alpha\}^+$ , будет



При помощи этих четырёх примитивов можно последовательно построить автомат, соответствующий любому регулярному выражению.