Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

Práctica 07

Vianey Aileen Borrás Pablo - 316033619 Kevin Axel Prestegui Ramos - 316201373

> Arquitectura de Computadoras Dr. Jorge Luis Ortega Arjona.

Fecha de entrega: 05 de mayo de 2020.

1. Usando flip-flops tipo JK, diseña un circuito secuencial que realice un conteo de 0 a 9, el conteo deberá incrementar cuando el pulso del reloj cambie a 1. El estado posterior a 9 será el estado inicial 0.

Para realizar este circuito lo primero que hicimos fue hacer la tabla de transición del 0 al 9, después se procedió a hacer su tabla de verdad tomando en cuenta la tabla del flip-flop tipo JK. Al sacar la tabla de verdad se simplificaron mediante mapas de Karnaugh como se muestra a continuación.

Q Ou	Inputs				
Present State	Next State	J _n	K _n		
0	0	0	Х		
0	1	1	Х		
1	0	Х	1		
1	1	X	0		

Input	Actual			Siguiente			J			K						
	Q0	Q1	Q2	Q3	Q3	Q2	Q1	Q0	J3	J2	J1	J0	К3	K2	K1	K0
0	0	0	0	0	0	0	0	1	0	0	0	1	Х	Х	х	Х
1	0	0	0	1	0	0	1	0	0	0	1	Х	Х	Х	х	1
2	0	0	1	0	0	0	1	1	0	0	Х	1	Х	Х	0	Х
3	0	0	1	1	0	1	0	0	0	1	Х	Х	Х	Х	1	1
4	0	1	0	0	0	1	0	1	0	Х	0	1	Х	0	Х	Х
5	0	1	0	1	0	1	1	0	0	Х	1	Х	Х	0	Х	1
6	0	1	1	0	0	1	1	1	0	Х	Х	1	Х	0	0	Х
7	0	1	1	1	1	0	0	1	1	Х	Х	Х	Х	1	1	1
8	1	0	0	0	1	0	0	1	Х	0	0	1	0	Х	Х	Х
9	1	0	0	1	0	0	0	0	Х	0	0	Х	1	Х	х	1

Figure 1: Tabla de verdad

Figure 2: Mapas de Karnaugh

Una vez hecho lo anterior procedimos a construir el circuito donde usamos cuatro flip-flops tipo JK los cuales pueden contar hasta el 15, un reloj, la constante y 4 leds los cuales prenden de acuerdo al número que se debe mostrar del 0 al 9, como solo queremos que el circuito funcione hasta al 9 y tenemos 4 leds usamos un AND el cual esta conectado al segundo y cuarto flip-flop para así evitar fallas en el circuito.

2. Conecta el circuito anterior a un display para visualizar el conteo.

Para este circuito lo que único que se hizo fue conectar el circuito anterior a un 7-segment display para poder visualizar el conteo, el display fue conectado a un BCD el cual es un circuito que tiene de entrado cuatro segmentos y siete segmentos de salida los cuales son conectados al display para visualizar la información.

A continuación se muestra la tabla de verdad para la construcción del circuito BCD, la cual se realiza de acuerdo a los segmentos que se colocan en on para mostrar los números en el display.

Figure 3: Tabla de verdad del BCD

3. Diseña un circuito usando el anterior, donde el conteo sea de 0 a 999.

Para este circuito el diseño es similar al anterior, pero como esta vez necesitamos mostrar más dígitos el circuito se uso tres veces, donde se ocuparon tres 7-segment display y tres BCD, además para poder resetear todos los flips-flops una vez que se llega al número 999 se usó una compuerta OR y así vuelva a iniciar el conteo desde el 0.

4. ¿En qué se diferencian los tipos de flip-flops?

Flip-flop JK

Cuenta con dos entradas de datos J y K,donde el valor de las entradas J=1 y K=1, el flip-flop JK obliga a las salidas a conmutar su estado al opuesto a cada pulso del reloj, lo cual lo convierte en un flip-flop muy versátil.

Flip-flop D

Solo cuenta con una entrada para hacer el cambio de salidas, A cada pulso del reloj el estado presente en la entrada D sera transferido a la salida Q y Q'.

Flip-flop RS

Tiene tres entradas, S,R y C cuyo objetivo es la de permitir o no el cambio de estado del flip-flop, y tiene una salida Q y a veces una salida complementada.

Flip-flop T

Se obtiene del tipo JK cuando las entradas J y K se conectan para proporcionar una entrada designada. En este flip-flop cuando T=0(J=K=0) una transición del reloj no cambia el estado del flip-flop y cuando T=1(J=K=1) una transición del reloj complementa el estado del flip-flop.

5. ¿Si el conteo fuera de 0-15, ¿Cómo harías el circuito? (No es necesario que lo implementes).

Para hacer este circuito usaríamos el circuito que se utilizo para el ejercicio 1 el cual ocupa cuatro flip-flops, además de usar dos displays y dos circuitos BCD los que estarán conectados a los displays para mostrar los dígitos. Añadiríamos otro flip-flop donde J=1 y K=1 el cual sera alimentado con el pulso del reset por medio de la entrada del reloj y la salida Q se conectara con el bit menos significativo del BCD que es el 1, mientras que los demás estarán conectados a tierra y para hacer que cuente hasta el 15 agregamos una compuerta AND que tendra 3 entradas las cuales estarán conectadas al las Q del primer y tercer flip-flop del circuito original y la otra estará conectada a la Q del flip-flop que se agrego y finalmente tenemos que resetear todos los flip-flops una vez que el conteo haya llegado hasta el 15.