Section 2.1

M444

Problems Solution

P.-O. Panise

No closed $\partial S = \begin{cases} Z : |Arg Z| = \frac{\pi}{4} \text{ and } Rez \ge 0 \end{cases}$

0E 25 but O\$S.

Uper

Let zo ES. Let r be the distance from 20 to the cone (see picture). Then the

dok B(20, r/2) CS. Since 20 was arbitrary, S is open.

We see that 25 cS and so

S is closed.

Problem 12 S = {z: |z-3i| > 1}

Not closed

 $\partial S = \{z: |z-3i| = 1\}.$

Thuefre, it is not closed because 2s & S.

Open. Let 20ES and r be the distance from 20 to the circle $\{z: |z-20|=1\}$. Consider $B(z_0, \frac{r}{z})$. Then

B(zo,r/z) CS, as shown on the picture. Since zo was arbidrary, Sie open.

Problem 15

Consider the disk

$$B_1(0) = \begin{cases} Z = x + iy : x^2 + y^2 < 1 \end{cases}$$

and the set

$$E = \{ 2 = x + iy : x^2 + 4y^2 < 1 \}$$

Then $\partial B_1(0) = \{2 = x + iy : x^2 + y^2 = i\}$

which is a sirele and

which is an ellipse. See picture.

Problem 16

The empty set \emptyset . We have $\partial \phi = \emptyset$.

Assume, for a contradiction, that $\partial \phi \neq \emptyset$.

Then, there is some $Z \in \partial \phi$. By definition, $\forall r > 0$,

 $\phi \cap B(z) \neq \phi \quad \text{and} \quad \phi \cap (Br(z)) \neq \phi$ However, $\phi \quad \text{has no element}$ $\Rightarrow \forall r > 0, \quad \phi \cap Br(z) = \phi \quad \text{and} \quad \phi \cap (Br(z))^c = \phi$ This is a contradiction, thue, $\partial \phi = \phi$.

Problem 17

(=>) Assume that S is open. We want to show that $\partial(C \mid S) \subset C \mid S$. Let $\partial(C \mid S) \subset C \mid S$. Let $\partial(C \mid S) \subset C \mid S$. We want to show that $\partial(C \mid S) \subset C \mid S$. Assume the contrary, that is $\partial(C \mid S) \subset C \mid S$.

Then, Zo & SC => Zo ES.

By assumption, S is open. There fre, $\exists r > 0$ such that $B(z_0) \subset S$. Hence $B_r(z_0) \cap S = \emptyset$.

But $z_0 \in \partial S$, so $B_r(z_0) \cap S \neq \emptyset$. This is a contradiction. We must conclude that $z_0 \in \mathbb{C}\backslash S = S^c$.

(\Leftarrow) Assume $\mathbb{C}\backslash S=S^c$ is closed. We want to show that S is open. Let $Z_0 \in S$. We want to show that $\exists r>0$ $\triangle f$. $B_r(z_0) \subset S$.

Assume the opposite, that is $\forall r>0$ $Br(z_0) \not + S$.

This means $\forall r>0$, $B_r(z_0) \cap S^c \neq \emptyset$ But, since $z_0 \in S$, we also have

Yr>0, B(Zo,r) NS = {Zo} + Ø. Hence, $\forall r > 0$ and $B(z_0) \cap S \neq \emptyset$. B, (20) 0 5° 70 (+) AL>0 Br(20) NSc +0 and Br(20) N (5c) + Ø. Thus. Zo E DS'. Since DS'C5c because S'is rlosed, we toulude that $Zo \in S^c$. Hence Zo E S' and Zo E S. A contradiction. We must have that S

is open.

Problem 20B

Consider $A_n = \{2: |2| \leq \frac{1}{n} \}$. Sina I so, An shrink to loj.

Anti C An

An shrinks to

 $\int_{R=1}^{\infty} A_{R} = \begin{cases} 0 \end{cases}.$

all open (disks) but 103 is closed (which is not open in this Case).