TEMA 1. INTRODUCCIÓN A LA RECUPERACIÓN DE INFORMACIÓN

Contenidos basados en los materiales de otros cursos como los de Manning y Baeza

Contenidos

- 1. Introducción
 - 1.1. Recuperación de Información
 - 1.2. Objetivos de la RI
 - 1.3. Algo de historia
 - 1.4. Relación con otras disciplinas
 - 1.5. Recuperación de Datos vs RI
- 2. Arquitectura
 - 2.1. Arquitectura de un sistema de RI
 - 2.2. Proceso de indexación, recuperación y ranking
- 3. Modelo de RI Booleano
 - 3.1. Consultas y respuestas
 - 3.2. Matriz de incidencia binaria
- 4. Índice Invertido
 - 4.1. Fases de construcción de un Índice invertido
 - 4.2. Pasos en la indexación
- 5. Procesado Booleano de consultas

Bibliografía

A Introduction to Information Retrieval:

Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze.

Cambridge University Press, 2009.

Capítulo 1

1. INTRODUCCIÓN

- 1.1. Recuperación de Información1.2. Objetivos de la RI1.3. Algo de historia

- 1.4. Rélación con otras disciplinas1.5. Recuperación de Datos vs RI

1.1. Recuperación de Información (RI)

Bajo este nombre se engloban las diversas arquitecturas, algoritmos, o sistemas cuyo objetivo es encontrar ciertos elementos entre una gran colección no estructurada de ellos, que satisfacen una información requerida.

Trata con la representación, almacenamiento, organización y

acceso a la información.

1.2. Objetivos de la RI

- Objetivos originales de la Recuperación de Información: búsqueda e indexación de documentos.
- Objetivos actuales de la Recuperación de Información:
 - búsqueda e indexación de documentos,
 - búsqueda en la web,
 - clasificación de textos,
 - arquitecturas de los sistemas,
 - interfaces de usuario,
 - visualización de los datos,
 - filtrado, multilingüismo ...

1.3. Algo de historia

- Desde los orígenes de la escritura hace más de 5000 años, los hombres han organizado la información para posteriormente poder acceder fácilmente a sus distintos elementos.
- Para almacenar los libros, papiros o documentos se construyeron edificios específicos: bibliotecas.
- La biblioteca más antigua conocida existió en Elba, en la civilización de los sumerios, entre los años 3000 a 2500 aC. En el 300 aC Ptolomeo I creó la biblioteca de Alejandría.

Algo de historia cont.

- El volumen de información propicia el desarrollo de estructuras para realizar búsquedas rápidas: los *índices*.
- Los índices fueron creados manualmente representando conjuntos de *categorías*, con etiquetas asociadas a éstas.
- Con la aparición de los computadores se pudieron empezar a generar índices de grandes volúmenes de datos de forma automática.

1.4. Relación con otras disciplinas

En Recuperación de Información intervienen tópicos y técnicas procedentes de otras disciplinas:

- Estructuras de Datos y Algoritmos
- Bases de datos
- Procesamiento de lenguaje natural
- Inteligencia Artificial
- Interfaces y visualización
- Minería de datos
- Machine learning

1.5. Recuperación de datos vs RI

	Recuperación de datos	Recuperación de información
Según la forma de responder a la pregunta	se utilizan preguntas altamente formalizadas, cuya respuesta es directamente la información deseada	las preguntas resultan difíciles de trasladar a un lenguaje normalizado, y la respuesta es un conjunto de documentos que pueden contener, sólo probablemente, lo deseado, con un evidente factor de indeterminación
Según la relación entre el requerimiento al sistema y la satisfacción del usuario	la relación es determinística entre la pregunta y la satisfacción	la relación es probabilística, a causa del nivel de incertidumbre presente en la respuesta
Según el criterio de éxito	el criterio a emplear es la corrección y la exactitud	el único criterio de valor es la satisfacción del usuario, basada en un criterio personal de utilidad
Según la rapidez de respuesta	depende del soporte físico y de la perfección del algoritmo de búsqueda y de los índices	depende de las decisiones y acciones del usuario durante el proceso.

Ejemplo de Recuperación de Información:

Consulta: ¿Qué obras de Shakespeare contienen las palabras *Brutus y Caesar* pero no *Calpurnia*?

Búsqueda lineal ("Mala" solución):

Rastrear línea a línea todas las obras de Shakespeare para encontrar las que contienen *Brutus* y *Caesar*, y después eliminar aquéllas que contienen *Calpurnia*

¿Por qué es una mala solución?

- Lento (para grandes collecciones de documentos)
- No es trivial procesar <u>NOT</u> Calpurnia
- No permite ordenación de lo recuperado por relevancia (ranking)

Construcción de un índice

2. ARQUITECTURA

- 2.1. Arquitectura de un sistema de RI
- 2.2. Proceso de indexación, recuperación y ranking

2.1. Arquitectura de un sistema de RI

2.2. Proceso de indexación, recuperación y

ranking

3. MODELO DE RIBOOLEANO

- 3.1. Consultas y respuestas
- 3.2. Matriz de incidencia binaria

3.1. Consultas y respuestas

Las consultas (query) son expresiones booleanas de términos que se combinan con operadores lógicos AND, OR y NOT.

Ejemplo.

Query: Brutus AND Caesar AND NOT Calpurnia

Respuesta: Documentos relevantes respecto a la query

3.2. Matriz de incidencia binaria

Para cada término de la colección indica si un documento contiene o no el término (palabra) : matriz de incidencia binaria término-documento del corpus.

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Query: Brutus AND Caesar BUT NOT Calpurnia

Cálculo y Respuesta:

110100 *AND* 110111 *AND* 101111 = **100100**

Vector de Brutus AND vector de Caesar AND vector complementario de Calpurnia

Respuesta al Query: documentos relevantes

Antony and Cleopatra, Acto III, Escena 2

Agrippa: Why, Enobarbus,

When Antony found Julius *Caesar* dead, He cried almost to roaring; and he wept When at Philippi he found *Brutus* slain.

Hamlet, Acto III, Escena 2

Lord Polonius: I did enact Julius **Caesar** I was killed i' the Capitol; **Brutus** killed me.

4. ÍNDICE INVERTIDO

- 4.1. Fases de construcción de un Índice invertido
- 4.2. Pasos en la indexación

¿Qué ocurre con grandes colecciones de documentos?

- Supongamos un corpus de 1 millón de documentos, cada uno de ellos de 1000 palabras, de un promedio de 6 bytes/palabra: espacio ocupado 6 GB.
- Supongamos que el número de términos diferentes en este corpus es de 500K. : matriz de incidencia 500Kx1M de 0's y 1's.
- Normalmente esta matriz es muy *dispersa*, es decir hay muchos 0's: mejor es almacenar solamente los 1's, es decir, <u>cada palabra en qué documento está</u>.

Indice invertido

Esta constituido por dos elementos:

Diccionario, lista de términos distintos que contiene el texto, y

Lista de ocurrencias (postings list) para cada término se construye una lista con todos los documentos (identificador numérico docID) que lo contienen. Posting

Qué estructura de datos se puede usar para las postings lists?

- ¿Vector de talla fija? Problemas con las inserciones y borrados.
- Se necesitan estructuras de talla variable: listas enlazadas o vectores de longitud variable.
- Compromiso entre talla/facilidad de inserción.

Para responder secuencias de palabras o búsqueda de palabras próximas el índice simple no sirve.

Se puede añadir información como posición de la palabra dentro del texto donde aparece. Ejemplo:

1		4	12	18	21	24	35	43	50	54	64	67	77	83
	n	theory,	there	is	no	difference	between	theory	and	practice.	In	practice,	there	is.

Ejercicio#. Indice simple

Vocabulary	n_i	Occurrences as inverted	d lists	
to	2	[1,4],[2,2]		
do	3	[1,2],[3,3],[4,3]		
is	1	[1,2]		
be	4	[1,2],[2,2],[3,2],[4,2]		
or	1	[2,1]	To do in to be	
not	1	[2,1]	To do is to be. To be is to do.	To be or not to be.
1	2	[2,2],[3,2]		I am what I am.
am	2	[2,2],[3,1]	d_1	
what	1	[2,1]	α_I	d_2
think	1	[3,1]	I think therefore I am	_
therefore	1	[3,1]	Do be do be do.	Do do do, da da da.
da	1	[4,3]		Let it be, let it be.
let	1	[4,2]	d_3	
it	1	[4,2]	a_3	d_4

Si se requiere apuntar la posición de la palabra en el documento (caracteres o por palabras) se debe construir un *Full inverted index*

Ejercicio#1. Construye un Full inverted Index, conteo de posición por palabras (no cuentan los símbolos de puntuación).

Vocabulary	n_i
to	2
do	3
is	1
be	4
or	1
not	1
I	2
am	2
what	1
think	1
therefore	1
da	1
let	1
it	1

Occurrences as inverted lists

Ejercicio#1. Full inverted Index, conteo de posición por palabras (no cuentan los símbolos de puntuación).

Vocabulario	n_{i}	Ocurrencias		
to	2	[1,4,[1,4,6,9]],[2,2,[1,5]]		
do	3	[1,2,[2,10]],[3,3,[6,8,10]]],[4,3,[1,2,3]]	
is	1	[1,2,[3,8]]		
be	4	[1,2,[5,7]],[2,2,[2,6]],[3,2	2,[7,9]],[4,2,[9,12]]	
or	1	[2,1,[3]]		
not	1	[2,1,[4]]	To do is to be.	
I	2	[2,2,[7,10]],[3,2,[1,4]]	To be is to do.	To be or not to be.
am	2	[2,2,[8,11]],[3,1,[5]]		I am what I am.
what	1	[2,1,[9]]	d_1	d_2
think	1	[3,1,[2]]		a_2
therefore	1	[3,1,[3]]	I think therefore I am. Do be do be do.	Do do do, da da da.
da	1	[4,3,[4,5,6]]	Do be do be do.	Let it be, let it be.
let	1	[4,2,[7,10]]	d_3	
it	1	[4,2,[8,11]]	α_3	d_4

4.1. Fases de construcción de un Indice invertido

4.2. Pasos en la indexación

Paso 1: Secuencia de pares (token, documento)

Doc 2

I did enact Julius Caesar I was killed i' the Capitol; Brutus killed me.

Doc 1

So let it be with Caesar. The noble Brutus hath told you Caesar was ambitious

docID
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2
2

Paso 2: Ordenar por términos

Term	docID
I	1
did	1
enact	1
julius	1
•	1
caesar	1
<u> </u>	
was	1
killed	1
i'	1
the	1
capitol	1
brutus	1
killed	1
me	1
so	2
let	2
it	2
be	2
with	2
caesar	2
the	2
noble	2
brutus	2
hath	2
told	2
you	2
caesar	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
was	2
ambitious	2

Paso 3: Creación del diccionario y las listas de ocurrencias (postings lists) postings Lists

- Se diferencia entre diccionario y listas de ocurrencias
- Se juntan las repeticiones de un término en un mismo documento y se apunta su frecuencia.

¿Cómo indexar eficientemente? ¿Cuánto espacio de almacenamiento necesitamos?

5. PROCESADO BOOLEANO DE CONSULTAS

Consultas de una sola palabra

- La búsqueda más sencilla es encontrar todas las ocurrencias de la palabra
- La estructura y búsqueda en el diccionario puede hacerse utilizando estructuras de datos clásicas como: Tabla Hash, Trie, B-tree,...
- Normalmente el diccionario puede caber en memoria central, mientras que las postings lists se almacenan en disco (acceso más lento).

Consultas de más de una palabra

Podemos considerar dos casos:

- Operación AND (intersección): Se debe buscar la aparición de todas las palabras de la consulta obteniendo una lista para cada palabra. Después hay que hacer la intersección de las listas para encontrar la solución.
- Operación OR (unión): Se debe buscar la aparición de todas las palabras de la consulta obteniendo una lista para cada palabra. Después hay que hacer la unión de las listas para encontrar la solución.
- Importante: optimizar en función del orden en que se aplican los operadores.

Ejercicio#2

Partiendo de la siguiente matriz de incidencia binaria, vamos a obtener la solución a las siguientes consultas:

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Query1: Brutus AND Caesar

Query1: Brutus OR Caesar

Ejercicio#2

Obtener la solución a las siguientes consultas:

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Query1: Brutus AND Caesar

Query1: Brutus OR Caesar

Cálculo y Respuesta:

110100 *AND* 110111 = **110100** 110100 *OR* 110111 = **110111**

¿Qué pasa si lo tenemos representado mediante un índice invertido?

Ejercicio#3: crisis AND económica

- 1) Localizar *crisis* en el Diccionario y obtener su postings list.
- 2) Localizar **económica** en el Diccionario y obtener su postings list.
- 3) Obtener la intersección de las dos listas ("Merge")

- Las listas deben estar ordenadas por docID
- Algoritmo "Intersección": Recorre simultáneamente las dos listas extrayendo los elementos comunes.
- El coste es lineal con el número de elementos. Si las longitudes son n y m el coste es O(n+m)

Ejercicio#3: crisis AND económica

```
ALGORITMO INTERSECCION (p1, p2)

respuesta ← {}

mientras No_FINAL( p1) AND No_FINAL( p2)

hacer si docID (p1) = docID (p2)

entonces Añadir (respuesta, docID (p1))

p1 ← Avanzar_Siguiente(p1)

p2 ← Avanzar_Siguiente(p2)

sino si docID (p1) < docID (p2)

entonces p1 ← Avanzar_Siguiente(p1)

sino p2 ← Avanzar_Siguiente(p2)
```



```
ALGORITMO INTERSECCION (p1, p2)

respuesta ← {}

mientras No_FINAL( p1) AND No_FINAL( p2)

hacer si docID (p1) = docID (p2)

entonces Añadir (respuesta, docID (p1))

p1 ← Avanzar_Siguiente(p1)

p2 ← Avanzar_Siguiente(p2)

sino si docID (p1) < docID (p2)

entonces p1 ← Avanzar_Siguiente(p1)

sino p2 ← Avanzar_Siguiente(p2)
```


Ejercicio#4: Escribir el algoritmo que, a partir de las postings list correspondientes a la búsqueda de los términos A y B, nos proporciona el resultado de la consulta: (A) AND (NOT B)

Ejercicio#4: escribir el algoritmo que, a partir de las postings list correspondientes a la búsqueda de los términos A y B, nos proporcionaría el resultado de la consulta: (A) AND (NOT B)

```
ALGORITMO AND_NOT (p1, p2)
    respuesta \leftarrow \{\}
    mientras No_FINAL(p1) AND No_FINAL(p2)
                 si docID (p1) = docID (p2)
    hacer
                 entonces p1 ← Avanzar_Siguiente(p1)
                           p2 \leftarrow Avanzar\_Siguiente(p2)
                          si docID (p1) < docID (p2)
                 sino
                          entonces Añadir (respuesta, docID (p1))
                                    p1 \leftarrow Avanzar\_Siguiente(p1)
                                    p2 \leftarrow Avanzar\_Siguiente(p2)
                          sino
    mientras No_FINAL(p1)
                 Añadir (respuesta, docID (p1))
    hacer
                  p1 ← Avanzar_Siguiente(p1)
                                                   16
                                                          32
                                                                          128
                                                                  64
```

13

34

→ 32 → 64 → 128