TABLA DE DERIVADAS

Simples		Compuestas	
Función	Derivada	Función	Derivada
y = c	y'= 0		
y = x	y'=1		
$y = x^n$	$y' = nx^{n-1}$	$y = f(x)^n$	$y' = nf(x)^{n-1} f'(x)$
$y = \sqrt{x}$	$y' = \frac{1}{2\sqrt{x}}$	$y = \sqrt{f(x)}$	$y' = \frac{f'(x)}{2\sqrt{f(x)}}$
$y = \sqrt[n]{x}$	$y' = \frac{1}{n \cdot \sqrt[n]{x^{n-1}}}$	$y = \sqrt[n]{f(x)}$	$y' = \frac{f'(x)}{n \cdot \sqrt[n]{f(x)^{n-1}}}$
$y = a^x \cos a > 0$	$y' = a^x \ln a$	$y = a^{f(x)} \cos a > 0$	$y' = f'(x)a^{f(x)} \ln a$
$y = e^x$	$y'=e^x$	$y = e^{f(x)}$	$y'=f'(x)e^{f(x)}$
$y = \log_a x$	$y' = \frac{1}{x} \log_a e$	$y = \log_a f(x)$	$y' = \frac{f'(x)}{f(x)} \log_a e$
$y = \ln x$	$y' = \frac{1}{x}$	$y = \ln f(x)$	$y' = \frac{f'(x)}{f(x)}$
$y = \operatorname{sen} x$	$y' = \cos x$	$y = \mathrm{sen}\ f(x)$	$y' = f'(x)\cos f(x)$
$y = \cos x$	$y = - \operatorname{sen} x$	$y = \cos f(x)$	$y = -f'(x)\operatorname{sen} f(x)$
$y = \operatorname{tg} x$	$y' = 1 + tg^2 x$	$y = \operatorname{tg} f(x)$	$y' = f'(x)[1 + tg^2 f(x)]$
$y = \arcsin x$	$y' = \frac{1}{\sqrt{1 - x^2}}$	$y = \arcsin f(x)$	$y' = \frac{f'(x)}{\sqrt{1 - f(x)^2}}$
$y = \arccos x$	$y' = \frac{-1}{\sqrt{1 - x^2}}$	$y = \arccos f(x)$	$y' = \frac{-f'(x)}{\sqrt{1 - f(x)^2}}$
$y = \operatorname{arctg} x$	$y' = \frac{1}{1+x^2}$	$y = \operatorname{arctg} f(x)$	$y' = \frac{f'(x)}{1 + f(x)^2}$