33

36

Fig. 3.1. Tree representation of t = f(e, f(x, i(x))).

Using a standard numbering of the nodes of the tree by strings of positive integers (as illustrated in the example), we can refer to positions in a term. In our example, position ϵ (the empty string) refers to the symbol f on the top level, and position 2 refers to the symbol f that occurs as second argument of the top-level f. The subterm of t at position 2 is i(x). More formally, notions like position and subterm can be defined by induction on the structure of terms.

Definition 3.1.3 Let Σ be a signature, X be a set of variables disjoint from Σ , and $s,t\in T(\Sigma,X)$.

- 1, The set of **position**s of the term θ is a set $\mathcal{P}os(s)$ of strings over the alphabet of positive integers, which is inductively defined as follows:
 - If $s = x \in X$, then $\mathcal{P}os(s) := \{\epsilon\}$, where ϵ denotes the empty string.
 - If $s = f(s_1, \dots, s_n)$, then

$$\mathcal{P}os(s) := \{\epsilon\} \cup \bigcup_{i=1}^n \{ip \mid p \in \mathcal{P}os(s_i)\}.$$

The position ϵ is called the root position of the term s, and the function or variable symbol at this position is called the rcot symbol of s. The prefix order defined as

 $p \le q$ iff there exists p' such that pp' = q

is a partial order on positions. We say that the positions p,q are parallel $(p \parallel q)$ iff p and q are incomparable with respect to \leq . The position p is above q if $p \leq q$ and p is strictly above q if p < q (below is defined

analogously). 2. The size |s| of a term s is the cardinality of Pos(s).

$$f(s_1,\ldots,s_n)|_{iq} := s_i|_q.$$

Note that, for $p=iq, p\in \mathcal{P}os(s)$ implies that s is of the form $s=f(s_1,\ldots,s_n)$ with $i\leq n$.

4. For $p \in Pos(s)$, we denote by $s[t]_p$ the term that is obtained from s by replacing the subterm at position p by t, i.e.

$$s[t]_{\epsilon} := t,$$

 $f(s_1, \dots, s_n)[t]_{iq} := f(s_1, \dots, s_t[t]_{q}, \dots, s_n).$

5. By Var(s) we denote the set of variables occurring in s, i.e.

 $Var(s) := \{x \in X \mid \text{there exists } p \in Pos(s) \text{ such that } s|_p = x\}.$

We call $p \in \mathcal{P}os(t)$ a variable position if $t|_p$ is a variable.

For the term t of the above example, $Pos(t) = \{\epsilon, 1, 2, 21, 22, 221\}$, $t_{12} = i(x)$, $t[\epsilon]_2 = f(\epsilon, \epsilon)$, $Var(t) = \{x\}$, and |t| = 6. Note that the size of t is just the number of nodes in the tree representation of t. The set of positions of a term is obviously closed under taking prefixes, i.e. if $q \in Pos(t)$ then $p \in Pos(t)$ for all $p \le q$. The following lemma states some useful rules for computing with positions and subterms.

Lemma 3.1.4 Let s,t,r be terms and p,q be strings over the positive inte-

1. If $pq \in Pos(s)$, then $s|_{pq} = (s|_p)|_q$.

2. If $p \in Pos(s)$ and $q \in Pos(t)$, then

$$(s[t]_p)|_{pq} = t|_q,$$

 $(s[t]_p)[r]_{pq} = s[t[r]_q]_p.$

3. If $pq \in Pos(s)$, then

$$(s[t]_{pq})|_p = (s|_p)[t]_q,$$

 $(s[t]_{pq})[r]_p = s[r]_p.$

4. If p and q are parallel positions in s (i.e. $p \parallel q$), then

$$(s[t]_p)|_q = s|_q,$$

$$(s[t]_p)[r]_q = (s[r]_q)[t]_p.$$