RQM Solving Hydrogen Atom

Haoting Xu, Zhenjie Liu

December 25, 2019

https://github.com/HaotingXu/seminar_lec

Runge-Lenz Vector

$${\cal K} = \gamma^0 \vec{\Sigma} \cdot \vec{\it L} + \gamma^0$$

2 / 28

简要回顾

狄拉克方程

$$(i\gamma^{\mu}\partial_{\mu} - \mathbf{m}\mathbf{1}_4)\,\psi = 0$$

哈密顿量

$$\hat{H} = i\partial_t = \vec{\alpha} \cdot \vec{p} + \beta m + V(r)$$

其中

$$\vec{\alpha} = \begin{pmatrix} \sigma_i \\ \sigma_i \end{pmatrix}, \ \beta = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

我们今天要求解 $\hat{H}\psi = E\psi$ 。

Runge-Lenz Vector

我们定义 Runge-Lenz 矢量

$$K = \gamma^0 (\Sigma_i L_i + 1)$$

作为小练习, 试证明 [K, H] = 0, [K, J] = 0。

对易关系的证明

$$\begin{aligned} [K,H] &= & [\gamma^0 \Sigma_i \epsilon_{ijk} x_j P_k, \alpha_m P_m + \gamma^0 m] \\ &= & [\gamma^0 \Sigma_i \epsilon_{ijk} x_j P_k, \alpha_m P_m] + P_m [\gamma^0, \alpha_m] \end{aligned}$$

计算第一项

$$\begin{split} \left[\gamma^0 \Sigma_i \epsilon_{ijk} x_j P_k, \alpha_m P_m \right] &= \gamma^0 \alpha_m \Sigma_i \epsilon_{ijk} P_k [x_j, P_m] \\ &= i \gamma^0 \Sigma_i \epsilon_{ijk} \alpha_j P_k \\ &= i \gamma^0 P_k \epsilon_{ijk} \begin{pmatrix} \delta_{ij} + i \epsilon_{ijm} \sigma_m \\ \delta_{ij} + i \delta_{ijm} \sigma_m \end{pmatrix} \\ &= - \gamma^0 P_k \begin{pmatrix} 2 \sigma_k \end{pmatrix} \end{split}$$

对易关系的证明

计算第二项

$$P_m[\gamma^0, \alpha_m] = P_k \begin{pmatrix} 0 & 2\sigma_k \\ -2\sigma_k & 0 \end{pmatrix}$$

故得到 [K, H] = 0。再来考虑 [K, J],

$$[K, J] = [\gamma^{0}(\Sigma_{i}L_{i} + 1), L_{j} + \frac{1}{2}\Sigma_{j}]$$

$$= \gamma^{0}\Sigma_{i}[L_{i}, L_{j}] + \frac{1}{2}\gamma^{0}[\Sigma_{i}, \Sigma_{j}]L_{i}$$

$$= i\gamma^{0}\epsilon_{ijk}(\Sigma_{i}L_{k} + \Sigma_{k}L_{i})$$

$$= 0$$

量子数

假设 K 的本征值为 κ ,即 $K\psi = \kappa\psi$,则现在描述一个态需要四个量子数

$$|n,j,m_j,\kappa\rangle$$

普通的量子力学描述氢原子的态

$$|n, I, m_I, m_s\rangle$$

可见 κ 或多或少取代了 I 的地位,现在我们来看看 κ 和 I 具体有什么关系。

我们来计算 K^2

$$K^{2} = \gamma^{0}(\Sigma_{i}L_{i} + 1)\gamma^{0}(\Sigma_{j}L_{j} + 1)$$

$$= \Sigma_{i}L_{i}\Sigma_{j}L_{j} + 2\Sigma_{i}L_{i} + 1$$

$$= L_{i}L_{j}(\delta_{ij} + i\epsilon_{ijk}\Sigma_{k}) + 2\Sigma_{i}L_{i} + 1$$

其中

$$\epsilon_{ijk}L_{i}L_{j} = \frac{1}{2}(\epsilon_{ijk}L_{i}L_{j} + \epsilon_{jik}L_{j}L_{i})$$

$$= \frac{1}{2}\epsilon_{ijk}[L_{i}, L_{j}]$$

$$= \frac{i}{2}\epsilon_{ijk}\epsilon_{ijm}L_{m}$$

$$= \frac{i}{2}(\delta_{jj}\delta_{km} - \delta_{jm}\delta_{kj})L_{m}$$

$$= iL_{k}$$

 κ

于是有

$$K^2 = L^2 + \Sigma_i L_i + 1$$

对比

$$J^{2} = \left(L^{2} + \Sigma_{i}L_{i} + \frac{\Sigma_{i}\Sigma_{i}}{4}\right)$$
$$= L^{2} + \Sigma_{i}L_{i} + \frac{3}{4}$$

所以有 $J^2 = K^2 - \frac{1}{4}$, 故有 $\kappa^2 = j^2 + j + \frac{1}{4}$, 最终得到

$$\kappa = \pm \left(j + \frac{1}{2} \right)$$

可见 κ 的行为挺像以前的 L^2 的,那么 L^2 发生了什么呢?

角动量算符

因为 $L^2 = J^2 - \sigma_i L_i - 3/4$,所以要求得 L 需要先求得 $\sigma_i L_i$,注意到 K 的定义,有

$$K\psi = \begin{pmatrix} \sigma_i L_i + 1 & 0 \\ -\sigma_i L_i - 1 \end{pmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} = \pm (j + \frac{1}{2}) \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}$$

得到

$$\sigma_i L_i \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} = \begin{pmatrix} \pm (j + \frac{1}{2} \mp 1)\psi_A \\ \mp (j + \frac{1}{2} \pm 1)\psi_B \end{pmatrix}$$

代入角动量的公式得到

$$L^{2} \begin{pmatrix} \psi_{A} \\ \psi_{B} \end{pmatrix} = \begin{pmatrix} (j^{2} + j \pm j \pm \frac{1}{2} + \frac{1}{4})\psi_{A} \\ (j^{2} + j \mp j \mp \frac{1}{2} + \frac{1}{4})\psi_{B} \end{pmatrix}$$

角动量算符

和以前 $I = j \pm \frac{1}{2}$ 的对比

$$I(I+1) = j^2 + j \pm j \pm \frac{1}{2} + \frac{1}{4}$$

正好就是上面的结果。但是注意,角动量对于正能量和负能量的态其本征值已经不同,分别记为 I_A , I_B 。这取决于 κ 的值, κ 取正,则 $I_A = j + \frac{1}{2}$, $I_B = j - \frac{1}{2}$,如果 κ 取负,则 I_A , I_B 反过来取。

Raidal Equation

分离变量法

求解方程的一般步骤

现在我们万事俱备,终于可以来解方程了,我们来回顾一下原子物理中学习到的解方程的一般步骤

- 写出方程。
- 写出通解。
- 边界条件定系数之间的关系。
- 求得能量本征值。

这里和这个步骤大同小异,我们开始吧。这一小节讲如何写出径向方程。

狄拉克方程

记 $\psi = (\psi_A, \psi_B)^T$, 能量本征值方程为

$$(\vec{\alpha} \cdot \vec{p} + \beta m + V)\psi = E\psi$$

写成矩阵形式

$$\begin{pmatrix} 0 & \sigma_i P_i \\ \sigma_i P_i & 0 \end{pmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} = \begin{pmatrix} E - V - m \\ E - V + m \end{pmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}$$

这便是要求解的方程,我们首先要化简 $\sigma_i P_i$,将它和径向导数扯上关系。以 \hat{x}_i 表示 x_i 方向的单位矢量,有

$$\sigma_{n} p_{n} = \sigma_{i} \hat{x}_{i} \sigma_{j} \hat{x}_{j} \sigma_{n} P_{n}
= \sigma_{i} \frac{x_{i}}{r} \sigma_{j} \frac{x_{j}}{r} \sigma_{n} P_{n}
= \frac{1}{r} \frac{\sigma_{i} x_{i}}{r} (\sigma_{j} \sigma_{n} x_{j} P_{n})
= \frac{1}{r} \frac{\sigma_{i} x_{i}}{r} ((\delta_{jn} + i \epsilon_{jnk} \sigma_{k}) x_{j} P_{n})$$

狄拉克方程

利用

$$x_j P_j = -ir \frac{\partial}{\partial r}$$

得到

$$\sigma_n p_n = \frac{1}{r} \frac{\sigma_i x_i}{r} \left(-ir \frac{\partial}{\partial r} + i\sigma_i L_i \right)$$

我们一会将证明, $\frac{\sigma_i X_i}{r}$, $i\sigma_i L_i$ 都和径向部分没什么关系,故我们设

$$\psi_A = g(r)\mathcal{Y}_{jl_A}^{m_j}, \ \psi_B = if(r)\mathcal{Y}_{jl_B}^{m_j}$$

我们刚刚说过, ψ_A 和 ψ_B 都是 L^2 的本征态 (但是他们拼起来不是),我们之前学过角动量的本征函数为 Y_{lm} , 故有

$$\mathcal{Y}_{jl_A}^{m_j} = \alpha Y_{l_A, m_j - 1/2} \chi_+ + \beta Y_{l_A, m_j + 1/2} \chi_-$$

狄拉克方程

将上面的分离变量带入矩阵形式的狄拉克方程中,得到

$$\begin{split} & \frac{1}{r} \frac{\sigma_{i} x_{i}}{r} \left(-ir \frac{\partial}{\partial r} + i\sigma_{i} L_{i} \right) \begin{pmatrix} if(r) \mathcal{Y}_{j|B}^{m_{j}} \\ g(r) \mathcal{Y}_{j|A}^{m_{j}} \end{pmatrix} \\ & = \begin{pmatrix} E - V - m \\ E - V + m \end{pmatrix} \begin{pmatrix} g(r) \mathcal{Y}_{j|A}^{m_{j}} \\ if(r) \mathcal{Y}_{j|B}^{m_{j}} \end{pmatrix} \end{split}$$

我们接下来研究算符 $\frac{\sigma_i x_i}{r}$, $i\sigma_i L_i$ 的作用,我们将会惊奇的发现,它们让角度部分消掉了。

$\sigma_i L_i$

首先因为 $\sigma_i L_i$ 与 K 直接相关,所以因为 $K\psi = \kappa \psi$,有

$$\begin{pmatrix} \sigma_i L_i + 1 & 0 \\ 0 & -\sigma_i L_i - 1 \end{pmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} = \kappa \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}$$

得到

$$\sigma_i L_i \psi_B = (\kappa - 1) \psi_B$$

$$\sigma_i L_i \psi_A = (-\kappa - 1) \psi_A$$

首先,请尝试证明 $[\sigma_i x_i, J_i] = 0$, $[\frac{\sigma_i x_i}{r}, H] = 0$,即这个算符不改变 j 和 m_j 和 n。又因为它是一个 pseudoscalar,所以在坐标变换 $\hat{\pi}$ 下,有

$$\hat{\pi} \left(\frac{\sigma_i x_i}{r} \psi \right) \sim (-1) \frac{\sigma_i x_i}{r} \hat{\pi} \psi \sim (-1)^{l+1} \psi$$

可见,这个算符改变了态的字称。我们知道态的字称由量子数 / 来决定, 所以说,我们有

$$\frac{\sigma_i x_i}{r} \mathcal{Y}_{jl_A}^{m_j} = C \mathcal{Y}_{jl_B}^{m_j}$$

又因为

$$\left(\frac{\sigma_i x_i}{r}\right)^2 = 1$$

所以 $C = e^{i\delta}$,为了方便,我们取 C = -1,故有

$$\frac{\sigma_i x_i}{r} \mathcal{Y}_{jl_A}^{m_j} = -\mathcal{Y}_{jl_B}^{m_j}$$

Radial Equation

将两个算符带入狄拉克方程疯狂化简,我们发现角度部分竟然约掉了, 只剩下径向部分

$$\left(-\partial_r + \frac{(-\kappa - 1)}{r}\right) f(r) = (E - V - m)g(r)$$

$$\left(-\partial_r + \frac{(\kappa - 1)}{r}\right) g(r) = -(E - V + m)f(r)$$

凭借着物理学家的直觉,定义 F = rf, G = rg,带入方程中,得到径向方程

$$\frac{\partial F}{\partial r} + \frac{\kappa F}{r} + (E - V - m)G = 0$$

$$\frac{\partial G}{\partial r} - \frac{\kappa G}{r} - (E - V + m)F = 0$$

注意,上式对于任何的 V(r) 都成立。

变量替换

现在引入库仑势

$$V = -\frac{Z\alpha}{r}\hbar c = -\frac{Z\alpha}{r}$$

我们定义 $k_1 = m + E$, $k^2 = m - E$, $\rho = \sqrt{k_1 k_2} r$, 带入方程中得到

$$\left(\frac{\partial}{\partial \rho} - \frac{\kappa}{\rho}\right) F - \left(\sqrt{\frac{k_2}{k_1}} - \frac{Z\alpha}{\rho}\right) G = 0$$

$$\left(\frac{\partial}{\partial \rho} + \frac{\kappa}{\rho}\right) G - \left(\sqrt{\frac{k_2}{k_1}} + \frac{Z\alpha}{\rho}\right) F = 0$$

先来研究 $\rho \to \infty$ 时方程的行为, 当 $\rho \to \infty$ 时, 有

$$\frac{\partial^2 F}{\partial \rho^2} - F = 0$$

级数解

所以我们假设

$$F = \rho^s e^{-\rho} \sum_{m=0}^{\infty} a_m \rho^m, \quad G = \rho^s e^{-\rho} \sum_{m=0}^{\infty} b_m \rho^m$$

带入方程中并化简得到

$$-a_{m} + (s + m + 1 - \kappa)a_{m+1} - \sqrt{\frac{k_{2}}{k_{1}}}b_{m} + Z\alpha b_{m+1} = 0$$

$$-b_{m} + (s + m + 1 + \kappa)b_{m+1} - \sqrt{\frac{k_{1}}{k_{2}}}a_{m} - Z\alpha a_{m+1} = 0$$

取 m = -1,并要求级数没有负次方项

$$(s - \kappa)a_0 + Z\alpha b_0 = 0$$
$$(s + \kappa)b_0 - Z\alpha a_0 = 0$$

求出s

若使得上面方程组有解,则有

$$s = \pm \sqrt{\kappa^2 - Z^2 \alpha^2}$$

因为 $Z\alpha$ 很小, κ 是一个大于 1 的整数, 所以上式挺合理的。

令级数终止

现在我们让级数终止于 m = N, 即 $a_{N+1} = b_{N+1} = 0$, 带入递推关系有

$$a_N = -\sqrt{rac{k_2}{k_1}} b_N, \ \ b_N = -\sqrt{rac{k_1}{k_2}} a_N$$

现在令 m = N - 1,就可以得到能量本征值了。

$$-a_{N-1} + (s + N - \kappa)a_N - \sqrt{\frac{k_2}{k_1}}b_{N-1} + Z\alpha b_N = 0$$

$$-b_{N-1} + (s + N + \kappa)a_N - \sqrt{\frac{k_1}{k_2}}a_{N-1} + Z\alpha a_N = 0$$

聪明的你一定发现了这两个方程是一个方程。带入上面的关系,消掉 a_N ,得到

$$\sqrt{\frac{\mathit{k}_1}{\mathit{k}_2}} - \sqrt{\frac{\mathit{k}_2}{\mathit{k}_1}} = \frac{2(\mathit{s} + \mathit{N})}{\mathit{Z}\alpha}$$

能量本征值

将有关定义带入,得到

$$E = \frac{m}{\sqrt{1 + \frac{Z^2 \alpha^2}{(N+s)^2}}}$$
$$= \frac{mc^2}{\sqrt{1 + \frac{Z^2 \alpha^2}{(N+\sqrt{\kappa^2 - Z^2 \alpha^2})^2}}}$$

展开

因为 Z_{α} 一般特别小,所以上式可按照 Z_{α} 展开,代入 mathematica 中得到

$$E \simeq mc^2 - \frac{mc^2(Z\alpha)^2}{(N+j+1/2)^2} - \frac{1}{2} \frac{(Z\alpha)^4 mc^2}{(N+j+1/2)^4} \left(\frac{N+j+1/2}{j+1/2} - \frac{3}{4} \right) + \cdots$$

从上式我们可以认出来原来的主量子数 n=N+j+1/2。而四次方项正是我们之前由微扰论算出的精细结构。

数值结果

首先对于氢原子,计算一下数值如下图。可见结果差别很小,这是由于 氢原子中电子运动的能量为 10eV,而电子质量大概 0.511MeV,所以速 度并不是很大。

spectral notation	n	ℓ	j	non-relativistic binding energy [eV]	relativistic binding energy [eV]	database values of binding energy [eV]
1s _{1/2}	1	0	1/2	-13.598 29	-13.59847	-13.59843
$2s_{1/2} \ 2p_{1/2} \ 2p_{3/2}$	2 2 2	0 1 1	1/2 1/2 3/2	−3.399 57 ↓ ↓	-3.39963 \downarrow -3.39958	-3.399 62 -3.399 63 -3.399 58
$3s_{1/2}$ $3p_{1/2}$ $3p_{3/2}$ $3d_{3/2}$ $3d_{5/2}$	3 3 3 3	0 1 1 2 2	1/2 1/2 3/2 3/2 5/2	-1.510921 ↓ ↓ ↓	-1.510941 \downarrow -1.510927 \downarrow -1.510923	-1.510 940 -1.510 941 -1.510 927 -1.510 928 -1.510 923

We have used $m=0.510\,9989\,\mathrm{MeV}$, $m_N=m_p=938.2720\,\mathrm{MeV}$, and $\alpha=1/137.0360$. Degeneracies are denoted by \downarrow . The database values of the binding energies have been adopted from Y. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD Team (2008). NIST Atomic Spectra Database (version 3.1.5), [Online]. Available: http://physics.nist.gov/asd3. Note that there exists an experimental value of the electron binding energy for the $1s_{1/2}$ state, $-13.598\,11\,\mathrm{eV}$, that has been adopted from J. E. Mack (1949) as given in C. E. Moore, Atomic Energy Levels (U.S. National Bureau of Standards, Washington D.C., 1949), vol. 1, p. 1.

Z很大

下表给出了 Z = 100 的类氢原子的结果,可见差异很大。

spectral notation	n	ℓ	j	non-relativistic binding energy [keV]	relativistic binding energy [keV]
$1s_{1/2}$	1	0	1/2	-136.1	-161.6
$2s_{1/2}$	2	0	1/2	-34.0	-42.1
$2p_{1/2}$	2	1	1/2	↓	1
$2p_{3/2}$	2	1	3/2	1	-35.2
$3s_{1/2}$	3	0	1/2	-15.1	-17.9
$3p_{1/2}$	3	1	1/2	↓	↓
$3p_{3/2}$	3	1	3/2	↓	-15.8
$3d_{3/2}$	3	2	3/2	\downarrow	↓
$3d_{5/2}$	3	2	5/2	↓	-15.3

We have used $m = 0.51100 \, \text{MeV}$ and $\alpha = 1/137.04$. Degeneracies are denoted by \downarrow .

Merry Christmas

不知道说什么好了,Merry Christmas!

