Manual de Usuario: Termostato NodeMCU

1. Descripción General del Proyecto

Este proyecto es un termostato inteligente basado en el microcontrolador NodeMCU (ESP8266). Utiliza un sensor de temperatura MAX6675 para medir la temperatura con alta precisión y la muestra en una pantalla LCD. A través de una interfaz web local, puedes monitorear la temperatura en tiempo real, ver un historial de datos y configurar el dispositivo (Wi-Fi, temperatura objetivo y offset de calibración) sin necesidad de reprogramarlo. También controla un relé que se activa o desactiva para mantener la temperatura deseada.

2. Instalación de Hardware y Pinout

La correcta conexión de los componentes es fundamental para el funcionamiento del sistema.

Conexión del MAX6675

El MAX6675 es un módulo de termopar que utiliza una interfaz SPI para comunicarse con el NodeMCU.

- VCC: Conectar al pin 3V3 del NodeMCU.
- **GND:** Conectar al pin **GND** del NodeMCU.
- SCK: Conectar al pin D5 (GPIO14) del NodeMCU.
- **CS:** Conectar al pin **D7** (GPIO13) del NodeMCU.
- **SO:** Conectar al pin **D6** (GPIO12) del NodeMCU.

Conexión del LCD (I2C)

La pantalla LCD de 16x2 utiliza el protocolo I2C, lo que simplifica la conexión a solo cuatro cables.

- VCC: Conectar al pin 5V del NodeMCU.
- **GND:** Conectar al pin **GND** del NodeMCU.
- SDA: Conectar al pin D2 (GPIO4) del NodeMCU.
- SCL: Conectar al pin D1 (GPIO5) del NodeMCU.

Conexión del Relé

El relé se utiliza para controlar el encendido y apagado de un dispositivo externo (por ejemplo, un calentador o una bomba).

- VCC: Conectar al pin 3V3 del NodeMCU.
- **GND:** Conectar al pin **GND** del NodeMCU.
- **IN:** Conectar al pin **D8** (GPIO15) del NodeMCU.

3. Uso y Operación

Encendido y Pantalla LCD

Al encender el dispositivo, la pantalla LCD mostrará un mensaje de bienvenida y luego el estado de la conexión Wi-Fi:

- Si la conexión es exitosa, mostrará la temperatura actual y la dirección IP asignada.
- Si la conexión falla, se activará el **Modo AP** y la pantalla mostrará "Modo AP" y la dirección IP 192.168.4.1.
- Si la conexión se pierde, intentará reconectarse y mostrará "Reconectando...".

Acceso a la Interfaz Web

- 1. **Conéctate a la red Wi-Fi** que configuraste. Si la configuración Wi-Fi no existe o falló, busca la red **"NodeMCU-Config"** y conéctate a ella (sin contraseña).
- 2. Abre un navegador web y navega a la dirección IP que se muestra en la pantalla LCD. Si estás en Modo AP, la dirección es 192.168.4.1.
- 3. Verás la página principal con la temperatura en tiempo real, un gráfico del historial y las estadísticas (mínimo, máximo y promedio).

Panel de Configuración

Desde la interfaz web, puedes acceder a la página /config para ajustar los siguientes parámetros. Estos cambios se guardarán permanentemente en la memoria del dispositivo.

- **SSID y Contraseña:** Para cambiar la red Wi-Fi a la que se conecta el dispositivo.
- **Intervalo de Muestreo:** Define cada cuánto tiempo (en milisegundos) se toma una nueva lectura de temperatura.
- **Temperatura Objetivo:** La temperatura que el sistema intentará mantener. Si la temperatura cae por debajo de este valor, el relé se activará.
- **Offset de Temperatura:** Un valor de calibración (positivo o negativo) para corregir posibles desviaciones del sensor.

4. Referencia Técnica y Código

Bibliotecas Usadas

Para compilar y cargar el código, necesitas las siguientes bibliotecas instaladas en tu IDE de Arduino:

- ESP8266WiFi
- ESPAsyncWebServer

- Wire
- LiquidCrystal I2C
- MAX6675
- EEPROM
- NTPClient

Lógica del Programa

El programa se divide en varias secciones lógicas:

- Configuración (EEPROM): Almacena y carga los ajustes del dispositivo para que no se pierdan al apagarlo.
- Conectividad (Wi-Fi y NTP): Gestiona la conexión a tu red Wi-Fi, con un modo de contingencia (AP) y sincroniza la hora con un servidor NTP para tener marcas de tiempo precisas en el historial.
- Sensor y Control (MAX6675 y Relé): Lee la temperatura del sensor, aplica el offset de calibración y controla el relé según la temperatura objetivo.
- Interfaz de Usuario (LCD y Web): Muestra los datos clave en la pantalla LCD y sirve una página web completa para monitorear y configurar el sistema.

El código está optimizado para la estabilidad hecho en C++, con una lógica de reconexión de Wi-Fi en el loop() para asegurar que el dispositivo permanezca en línea, y utiliza un cliente NTP para una referencia de tiempo precisa.

Byte-electronicLAB