Student Examination Number	

The University of Edinburgh

College of Science and Engineering

Simane FOR ANONANO SIGNAS	SEAL MARKED BY ANIMATORS
Signature Charles and Charles	MITHER EXAMINATIONS

Pre - Honours 2

MATH08064 Fundamentals of Pure Mathematics

Tuesday, 18th August 2015 9:30am – 12:30pm

Chairman of Examiners - Professor B Leimkuhler

External Examiner - Dr S D Theriault

All six questions from <u>Section A</u> count (40% total mark). The <u>best three of four</u> answers from <u>Section B</u> will count (60% of total mark).

In the examination it is permitted to have;

A copy of the course text book
An Introduction to Analysis by W.R.Wade (for analysis)
Groups by C.R.Jordan and D.A.Jordan (for group theory)
Any other notes (printed or hand-written)

Calculators and other electronic aids

It must not be a graphical calculator.
It must not be able to communicate with any other device.

A scientific calculator is permitted in this examination.

Saatian A	Maria
Section A	Mark
1	
2	
3	
4	
5	
6	
Total	
Section B	Mark
7	
8	
9	
10	
Total	

This examination will be marked anonymously.

Section A (40 points). Solve all 6 problems in this section.

- (1) State, with a brief justification, whether the following statements are TRUE or FALSE:
 - (a) \mathbb{R} is a group under multiplication.
 - (b) $M_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{R} \right\}$ is a group under matrix multiplication.
 - (c) $\mathbb{R}_+^* = \{r \in \mathbb{R} \mid r > 0\}$ is a group under multiplication.

- (2) State, with a brief justification, whether the following statements are TRUE or FALSE:
 - (a) $D_3 \cong \mathbb{Z}_6$.
 - (b) $D_3 \cong S_3$.
 - (c) $D_{12} \cong S_4$.

(3) Suppose that G is a group with subgroup H, and let $g \in G$. Prove that

gH is a subgroup of $G\iff g\in H.$

[6 marks]

- (4) Are the following statements TRUE or FALSE? If TRUE give a proof, whereas if FALSE give a counterexample or justification.
 - (a) Let $f: \mathbb{Z} \to \mathbb{R}$. Then f is a continuous function.
 - (b) Let $f: \mathbb{R} \to \mathbb{Q}$ be a continuous function. Then f is a constant function.
 - (c) Let $f:[a,b]\to\mathbb{R}$ be a continuous function with maximum at a point $c\in(a,b)$. Then f'(c)=0.

[6 marks]

(5) Let $(a_n)_{n=1}^{\infty}$ be a bounded sequence. Then the number

$$\lim_{n\to\infty} \left(\inf\{a_k: k \ge n\}\right)$$

is called *limit inferior* and is denoted by $\lim \inf_{n\to\infty} a_n$.

- (a) Show that the limit inferior is well defined, that is the limit $\lim_{n\to\infty} (\inf\{a_k : k \ge n\})$ exists and is finite for any bounded sequence (a_n) .
- (b) Show that the sequence $(a_n)_{n=1}^{\infty}$ has a subsequence that converges to $\liminf_{n\to\infty} a_n$. Hint: Argue that for any $n\in\mathbb{N}$ one can find $i\geq n$ such that

$$\inf\{a_k : k \ge n\} \le a_i < \inf\{a_k : k \ge n\} + \frac{1}{n}.$$

Use this to construct the subsequence we are looking for.

(6) Consider the sequence defined recursively by

$$a_1 = 0$$
, $a_{n+1} = \sqrt{6 + a_n}$, for $n = 2, 3, \dots$

Prove that this sequence is convergent and find its limit.

Section B (60 points). Solve any three problems in this section.

(7) (a) Prove that the symmetry group of the graph

is isomorphic to $S_3 \times S_2$.

[6 marks]

- (b) For the above graph, consider its set of vertices V, and its group of symmetries G. Then G acts on V.
 - (i) The set V is partitioned into orbits. Determine this partition.
 - (ii) For each vertex $v \in V$, describe the stabilizer $\operatorname{Stab}_G(v)$.

[10 marks]

- (c) State, with a brief justification, whether the following statements are TRUE or FALSE.
 - (i) The group action in (b) is transitive.
 - (ii) The group action in (b) is faithful.

[4 marks]

- (8) (a) Recall that $\mathbb{C}^* := \{z \in \mathbb{C} \mid z \neq 0\}$, which is a group under multiplication. Show that the exponential function $\exp \colon \mathbb{C} \to \mathbb{C}^*$ sending $z \mapsto e^z$ is a group homomorphism, and determine its image and kernel. [6 marks]
 - (b) State whether the following claims are TRUE or FALSE. If they are TRUE give a proof, whereas if they are FALSE give a counterexample.
 - (i) The function $D_3 \to \mathbb{Z}_6$ sending all elements to 1 is a group homomorphism.
 - (ii) The function $D_3 \to \mathbb{Z}_6$ sending all elements to 0 is a group homomorphism.
 - (iii) The function $\mathbb{Z}_{10} \to \mathbb{Z}_{10}$ sending $z \mapsto 2z$ (for all $z \in \mathbb{Z}_{10}$) is a group homomorphism.

[9 marks]

(c) Give an explicit example of a group homomorphism $\theta: G \to H$ for which Im θ is not a normal subgroup of H. [5 marks]

(9) Let $f(x) = \exp(-x^2)$. Consider the sequence defined recursively by

$$x_{n+1} = f(x_n), \quad n = 1, 2, 3, \dots, \qquad x_1 = \frac{1}{3}.$$

(a) Show that $f:[0,1] \to [0,1]$.

[3 marks]

- (b) Use the intermediate value theorem to show that there exists $u \in (0,1)$ such that $\exp(-u^2) = u$. [7 marks]
- (c) Show that $|f'(x)| \le \sqrt{2\exp(-1)} < 1$ for all $x \in [0, 1]$.

[3 marks]

(d) Let $c = \sqrt{2 \exp(-1)}$. Show using the mean value theorem that

$$|x_{n+1} - u| \le c|x_n - u|$$
, for all $n \in \mathbb{N}$.

[5 marks]

(e) Prove that the limit $\lim_{n\to\infty} x_n$ exists and equals u.

[2 marks]

(10) (a) Suppose that $(a_k)_{k=1}^{\infty}$ is a sequence such that $\frac{|a_{k+1}|}{|a_k|} \to a > 0$ for some $a \in \mathbb{R}$. Prove that for all |x| < 1/a the series

$$\sum_{k=1}^{\infty} a_k (\sin x)^k$$

is absolutely convergent.

[7 marks]

(b) For which p > 0 is the series

$$\sum_{k=2}^{\infty} \frac{(-1)^k}{k^p}$$

convergent? Absolutely convergent?

[7 marks]

- (c) State, with a brief justification, whether the following statements are TRUE or FALSE:
 - (i) If $|a_k| \leq b_k$ and $\sum_{k=1}^{\infty} b_k$ is absolutely convergent then $\sum_{k=1}^{\infty} a_k$ is convergent.
 - (ii) If the sequence $(a_n)_{n\in\mathbb{N}}\to 0$ as $n\to\infty$ then there exists a subsequence $(a_{n_k})_{k\in\mathbb{N}}$ such that

$$\sum_{k=1}^{\infty} a_{n_k}$$

is convergent.

(iii) If $\sum_{k=1}^{\infty} a_k = \infty$ then the limit $\lim_{k\to\infty} a_k$ cannot equal to zero. [6 marks]