MATH 239: Introduction to Combinatorics

Chris Thomson

Winter 2013, University of Waterloo Notes written from Bertrand Guenin's lectures.

1 Introduction, Permutations, and Combinations

 \leftarrow January 7, 2013

1.1 Course Structure

The grading scheme is 50% 55% final, 30% midterm, 10% quizzes 5% participation marks (clicker questions), and 10% assignments. There are ten quizzes and ten assignments. The quizzes will not be announced in advance, and each quiz consists of a single clicker question. Assignments are typically due on Friday mornings at 10 am. in the dropboxes outside of MC 4066. The midterm exam is scheduled for March 7, 2013, from 4:30 pm - 6:20 pm. There is no textbook for the course, but there are course notes available at Media.doc in MC, and they're highly recommended.

MATH 239 is split into two parts: counting (weeks 1-5) and graph theory (weeks 6-12).

See the course syllabus for more information – it's available on Waterloo LEARN.

1.2 Sample Counting Problems

Problem 1.1. How many ways are there to cut a string of length 5 into parts of sizes 1 and 2?

Here are a few example cuts:

	1	2	3	4	5	5 cuts: size 1, size 1, size 1, size 1, size 1.
	1	1	2	2	3	3 cuts: size 2, size 2, size 1.
ĺ	1	2	2	3	3	3 cuts: size 1, size 2, size 2.

This is a finite problem. You could count all of the possibilities manually in this case. However, this problem could be made more complicated to a point where manually counting all possibilities would become quite cumbersome, as is the case in the next problem.

Problem 1.2 (Cuts). How many ways are there to cut a string of size 372,694 into parts of sizes 3, 17, 24, and 96?

Definition 1.1. A positive integer n has a **composition** (m_1, m_2, \ldots, m_k) , where m_1, \ldots, m_k are positive integers and where $n = m_1 + m_2 + \ldots + m_k$. m_1, \ldots, m_k are the **parts** of the composition.

Problem 1 could be rephrased as looking for the number of compositions of 5 where all parts are 1 or 2.

Problem 1.3. How many compositions of n exist such that all parts are odd?

Problem 1.4 (Binary Strings). Let $S = a_1, a_2, \ldots, a_n$ where $a_i \in \{0, 1\}$. How many strings S exist?

For each a_i , there is the choice between 0 or 1, and that choice is independent for each character of the string (for each a_i). So, there are 2^n binary strings of length n.

Problem 1.5. How many binary strings of size n exist that do not include the substring 1100?

For example: $1010\underline{1100}101 \notin S$.

Problem 1.6. How many binary strings of size n exist such that there is no odd-length sequences of zeroes?

For example: $1001001\underline{000}11 \notin S$.

Problem 1.7 (Recurrences). How many times does a recursive function get called for a particular input n?

1.3 Sample Graph Theory Problems

Problem 1.8. For any arbitrary map of regions, color the regions such that no two touching boundaries do not have the same color, with the least number of colors possible.

The **four-color theorem** (proven later in the course) states that you can always do this with four colors. It's also always possible to color these regions with five colors. It's *sometimes* possible to color the regions with three or fewer colors, depending on the layout of the regions and their boundaries.

1.4 Permutations and Combinations

1.4.1 Set Notation

The usual set and sequence notation is used in this course. (1,2,3) is a sequence (where order matters), and $\{1,2,3\}$ is a set (where order does not matter).

We will also be using one piece of notation you may not be familiar with: $[n] := \{1, 2, \dots, n\}$.

1.4.2 Permutations

Definition 1.2. A **permutation** of [n] is a rearrangement of the elements of [n]. The number of permutations of a set of n objects is $n \times (n-1) \times \ldots \times 1 = n!$.

For example: the number of permutations of 6 objects is $6 \times 5 \times 4 \times 3 \times 2 \times 1 = 6!$ permutations.

Why is this the case? Simple: there are n choices for the first position, (n-1) choices for the second position, (n-2) choices for the third position, and so on, until there's 1 choice for the nth position.

Definition 1.3. A k-subset is a subset of size k.

Problem 1.9. How many k-subsets of [n] exist?

Let's consider a more specific case: how many 4-subsets of 6 are there? $\frac{6\times5\times4\times3}{4!}$.

For simplicity's sake, we will introduce notation for this, which we will refer to as a **combination**, denoted as $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ where $n, k \in \mathbb{Z} \geq 0$.

Proposition 1.1. There are $\binom{n}{k}$ k-subsets of [n].

1.4.3 Application: Binomial Theorem

← January 9, 2013

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Why is this true?

$$(1+x)^3 = \underbrace{(1+x)(1+x)(1+x)}_{1} \underbrace{(1+x)(1+x)}_{2} = 1 + 3x + 3x^2 + x^3 = \binom{3}{0} + \binom{3}{1}x + \binom{3}{2}x^2 + \binom{3}{3}x^3$$

Proof.

$$(1+x)^n = \underbrace{(1+x)^2 (1+x) \cdots (1+x)^n}_{1}$$

In order to get x^k , we need to choose x in k of $\{1,\ldots,n\}$. There are $\binom{n}{k}$ ways of doing this.

2 Simple Tools for Counting

2.1 Partitioning

Sets S_1, S_2 partition the set S if $S = S_1 \cup S_2$ and $S_1 \cap S_2 = \emptyset$.

Example 2.1.

$$S = [5] = \begin{cases} S_1 = \{1, 2\} \\ S_2 = \{3, 4, 5\} \end{cases}$$
$$|S| = |S_1| + |S_2|$$

Proposition 2.1.
$$2^n = \sum_{k=0}^n \binom{n}{k}$$

Proof. We will discuss two proof methods.

- 1. Algebraic proof. Set x = 1 in the Binomial Theorem.
- 2. **Combinatorial proof**. We will count the left-hand side and the right-hand side in different ways to reach the same result.

Let S be the set of subsets of [n]. $|S| = 2^n$, since for every element of [n] we have two possibilities: include or don't include the element in S.

<u>Aside</u>: suppose n = 2. Then $S = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$.

Partition S into S_0, S_1, \ldots, S_n , where S_k is the set of k-subsets of [n].

$$\underbrace{|S|}_{2^n} = \underbrace{|S_0|}_{\binom{n}{0}} + \underbrace{|S_1|}_{\binom{n}{1}} + \dots + \underbrace{|S_n|}_{\binom{n}{n}}$$

Proposition 2.2.
$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Proof. Let S be the set of k-subsets of [n]. Then $|S| = \binom{n}{k}$. Partitioning S, let S_1 be the subsets of S containing n, and let S_2 be the subsets of S not containing n.

It's easy to see that $|S_1| = \binom{n-1}{k-1}$ (n is already included in our choices) and $|S_2| = \binom{n-1}{k}$. We now have $|S| = |S_1| + |S_2| = \binom{n-1}{k-1} + \binom{n-1}{k}$.

2.2 Pascal's Triangle

Pascal's Triangle is a triangle where each value is determined by the sum of its two direct parents. The uppermost value is 1.

$$n=0:$$
 1
 $n=1:$ 1 1
 $n=2:$ 1 2 1
 $n=3:$ 1 3 3 1
 $n=4:$ 1 4 6 4 1

Proposition 2.3.
$$\binom{q+r}{q} = \sum_{i=0}^{r} \binom{q+i-1}{q-1}$$

For example: let
$$q = 3, r = 2$$
. Then we have: $\binom{5}{3} = \binom{2}{2} + \binom{3}{2} + \binom{4}{2}$.

Proof. Let S be the set of q-subsets of [q+r], so $|S|=\binom{q+r}{q}$. Partition S such that S_i is the set of q-subsets where the largest element is q+i (where $i=0,\ldots,r$).

We have: $|S| = |S_0| + |S_1| + \cdots + |S_r|$. Note that $|S_i| = {r+i-1 \choose q-1}$. That gives us:

$$\underbrace{|S|}_{\binom{q+r}{q}} = \underbrace{\sum_{i=0}^{r} |S_i|}_{\binom{q+i-1}{q-1}}$$

2.3 Injections, Bijections, and Onto

Let's consider a function $f: S \to T$.

The function f is an **injection** if for all $x_1, x_2 \in S, x_1 \neq x_2$ such that $f(x_1) \neq f(x_2)$.

5

← January 11, 2013

That is, no element in the codomain T is the image of more than one element in S.

The function f is **onto** (or a **surjection**) if for all $y \in T$, there exists $x \in S$ such that f(x) = y. That is, all elements in the codomain T are the image of an element in S. Multiple elements in S can map to the same element in T.

The function f is a **bijection** if it is both injective and onto. That is, there is a one-to-one mapping between elements in S and T, and vice versa.

Proposition 2.4. If S and T are finite, |S| = |T| if f is bijective.

Definition 2.1. g is the inverse of f if:

- 1. For all $x \in S$, g(f(x)) = x.
- 2. For all $y \in T$, f(g(y)) = y.

In order to show that a function has a bijection, find the inverse function.

2.4 Application: Binomial Coefficients

Proposition 2.5.
$$\binom{n}{k} = \binom{n}{n-k}$$

Proof. I will prove this proposition in a combinatorial using the bijection technique. We want to show that the cardinalities are the same.

Let S_1 be the set of k-subsets of [n], so $|S_1| = \binom{n}{k}$, as shown earlier. Let S_2 be the set of (n-k)-subsets of [n], so $|S_2| = \binom{n}{n-k}$. We need to show that $|S_1| = |S_2|$, so we need to show that there is a bijection between S_1 and S_2 , $f: S_1 \to S_2$.

<u>Aside</u>: suppose n=5 and k=2. Then, the bijection could be $\{1,3\} \rightarrow \{2,4,5\}$ (the complement function).

The bijective function is $f(A) = [n] \setminus A$ (the complement function). Check: f is its own inverse (let g = f).

3 Power Series and Generating Functions

3.1 Power Series

Definition 3.1. Let (a_0, a_1, \ldots) be a sequence of rational numbers. Then:

$$A(x) = \sum_{i \ge 0} a_i x^i$$

This is called a **power series**.

Example 3.1.
$$a_i = 2^i \implies A(x) = 1 + 2x + 4x^2 + 8x^3 + \cdots$$

If the sequence is finite, it is just a polynomial.

3.1.1 A General Counting Problem

Let S be the set of objects σ . Each object σ has a weight $w(\sigma)$. We want to know how many objects of S have some weight k.

Example 3.2. Let $\sigma \subseteq [n], w(\sigma) = |\sigma|$. The question becomes: how many k-subsets of [n]?

Example 3.3. Let σ be the set of coins (1, 5, 5, 10, 25, 11, 12), and let $w(\sigma)$ be the total value of the coins in σ .

The question becomes: how many sets of coins have total value k? In other words, how many ways are there to give change on k amount?

3.2 Generating Functions

Definition 3.2. Given S as the set of objects σ and a weight function $w(\sigma)$:

$$\phi_S(x) = \sum_{\sigma \in S} x^{w(\sigma)}$$

This is called the **generating function for S**, w.

Example 3.4. Let $S = \{ \sigma | \sigma \subseteq \{1, 2, 3\} \}, w(\sigma) = |\sigma|.$

σ	$w(\sigma)$	$x^{w(\sigma)}$
Ø	0	1
{1}	1	x
{2}	1	x
$\{3\}$	1	x
$\{1, 2\}$	2	x^2
$\{1, 3\}$	2	x^2
$\{2, 3\}$	2	x^2
$\{1, 2, 3\}$	3	x^3

 $\phi_S(x) = 1 + 3x + 3x^2 + x^3 = (1+x)^3$ is the generating function. Notice the coefficients are the number of objects whose weight is equal to the exponent.

Remember: the generating function for S with weights w is $\phi_S(x) = \sum_{k\geq 0} a_k x^k$, where a_k is the number of objects of size k in S.

Example 3.5. Let S be the set of subsets of [n], and $w(\sigma) = |\sigma|$.

$$\leftarrow$$
 January 14, 2013

$$\phi_S(x) = \sum_{k>0} \binom{n}{k} x^k = (1+x)^n$$

Note that $\binom{n}{k}$ is included because that's the number of k-subsets of [n]. $\phi_S(x) = (1+x)^n$ by the binomial theorem.

Proposition 3.1. Let $\phi_S(x)$ be the generating function for finite-size S with weight w. Then:

1.
$$\phi_S(1) = |S|$$

2. $\phi'_{S}(1) = sum \ of \ the \ weight \ of \ all \ the \ objects \ in \ S$.

Together, we get:

$$\frac{\phi_S'(1)}{\phi_S(1)}$$
 = average weight of objects in S

Considering the previous example again, we know that $|S| = 2^n$ and the average weight is clearly $\frac{n}{2}$. We can verify that with this proposition.

$$\phi_S(x) = (1+x)^n \implies \phi_S(1) = (1+1)^n = 2^n$$

$$\phi_S'(x) = n(1+x)^{n-1} \implies \phi_S'(1) = n2^{n-1}$$
average weight
$$= \frac{\phi_S'(1)}{\phi_S(1)} = \frac{n2^{n-1}}{2^n} = \frac{n}{2}$$

We'll now prove the proposition more generally.

Proof. We will prove the two parts of the proposition separately. The average weight clearly follows from those two results.

1.

$$\phi_S(x) = \sum_{\sigma \in S} x^{w(\sigma)}$$

Choose x = 1. Then $\phi_S(1) = \sum_{\sigma \in S} 1 = |S|$.

2.

$$\phi_S'(x) = \sum_{\sigma \in S} w(\sigma) x^{w(\sigma) - 1}$$

Choose x=1. Then $\phi_S'(1)=\sum_{\sigma\in S}w(\sigma)\cdot 1=$ total weight of all objects in S.

In order to work further with generating functions, we'll first need to learn how to manipulate power series generally.

3.3 Working With (Formal) Power Series

For the following definitions, we will assume the following power series are defined:

$$A(x) = a_0 + a_1 x + a_2 x^2 + \cdots$$
$$B(x) = b_0 + b_1 x + b_2 x^2 + \cdots$$

Definition 3.3. We define addition of power series as follows.

$$A(x) + B(x) := \sum_{n>0} (a_n + b_n)x^n$$

Note that this definition is consistent with the definition of addition for polynomials.

Definition 3.4. We define multiplication of power series as follows.

$$A(x)B(x) := \sum_{n>0} \sum_{k=0}^{n} a_k b_{n-k} x^n$$

Example 3.6.

$$(1+x+x^2+x^3+\cdots)(1-x)$$

= 1 \cdot 1 + (1\cdot -1 + 1\cdot 1)x + (1\cdot 1 + 1\cdot -1)x^2 + \cdot \cdot = 1

Definition 3.5. B(x) is the **inverse** of A(x) if A(x)B(x) = 1 (alternatively, B(x)A(x) = 1).

We will use the notation $B(x) = \frac{1}{A(x)}$ to indicate that B(x) is the inverse of A(x), and vice versa.

Example 3.7. The inverse of $(1+x+x^2+\cdots)$ is (1-x), as shown in the previous example.

Question: does every power series have an inverse? No. For example, $(x + x^2)$ does not have an inverse. But suppose for a moment that it does.

Proof. If $(x+x^2)$ has an inverse, there would exist constants b_i such that

$$(x+x^2)(b_0+b_1x+b_2x^2+b_3x^3+\cdots)=1$$

Clearly, this is impossible. In order to equal 1, b_0 must multiply by some constant term, however there is no other constant term. Therefore, our assumption was incorrect, meaning $(x+x^2)$ does not have an inverse.

Remark: if a power series does not have a constant term then it has no inverse, and vice versa.

Theorem 3.1. If the constant term of A(x) is non-zero, then A(x) has an inverse, and we can find it.

Notation: given a power series A(x), we say $[x^k]A(x)$ represents the coefficient of x^k .

Example 3.8. Find the inverse of $1 - x + x^2 - x^3 + x^4 - \cdots$

$$\underbrace{(1-x+x^2-x^3+x^4-\cdots)(b_0+b_1x+b_2x^2+\cdots)}_{(\star)} = 1$$

$$[x^{0}](\star) = 1 \implies 1 \cdot b_{0} = 1 \implies b_{0} = 1$$
$$[x^{1}](\star) = 0 \implies 1 \cdot b_{1} - 1 \cdot b_{0} = 0 \implies b_{1} = b_{0} = 1$$
$$[x^{2}](\star) = 0 \implies 1 \cdot b_{2} - 1 \cdot b_{1} + 1 \cdot b_{0} = 0 \implies b_{2} = b_{1} - b_{0} = 0$$

Similarly, $b_3 = b_4 = \cdots = 0$. Thus, the inverse is (1 + x).

It's clear that the inverse for a power series is **unique**. We made no choices when determining the inverse, therefore it must be unique.

3.3.1 Finding Inverses

Given:

 $\leftarrow \underline{\text{January 16, 2013}}$

$$A(x) = \sum_{n>0} a_n x^n \text{ where } (a_0 \neq 0)$$

We want to find:

$$B(x) = \sum_{n>0} b_n x^n$$

We'll start by finding b_0 :

$$[x^0]A(x)B(x) = a_0b_0 = 1 \implies b_0 = \frac{1}{a_0}$$

Notice that if we didn't have the restriction on a_0 , we would've run into trouble here. Now, suppose you found $b_0, b_1, \ldots, b_{n-1}$ for $n \ge 1$. Find b_n .

$$b_n = \frac{1}{a_0} \cdot (-a_1 b_{n-1} - a_2 b_{n-2} - \dots - a_n b_0)$$

Proposition 3.2. Let A(x) and P(x) be formal power series. Suppose the constant for A(x) is not 0. Then there exists a unique B(x) such that A(x)B(x) = P(x).

Some useful formulæ:

$$\frac{1}{1-x} = 1 + x + x^2 + x_3 + \dots \text{ since } 1 = (1 + x + x^2 + \dots)(1-x)$$

$$\frac{1-x^{k+1}}{1-x} = 1 + x + x^2 + \dots + x^k \text{ since } 1 - x^{k+1} = (1 + x + x^2 + \dots + x^k)(1-x)$$

3.3.2 Compositions

Definition 3.6. Let A(x) and B(x) be formal power series defined by:

$$A(x) = \sum_{n \ge 0} a_n x^n \qquad B(x) = \sum_{n \ge 0} b_n x^n$$

We define the **composition** as:

$$A(B(x)) := \sum_{n>0} a_n [B(x)]^n$$

Example 3.9. Let $A(x) = 1 + x + x^2 + x^3 + \cdots$ and B(x) = 2x. Then the composition is $A(B(x)) = 1 + 2x + 4x^2 + 8x^3 + \cdots$.

Question: is the composition of two formal power series a formal power series itself? No.

Example 3.10. Suppose we pick $A(x) = 1 + x + x^2 + x^3 + \cdots$ and B(x) = 1 + x.

We have $A(B(x)) = 1 + (1+x) + (1+x)^2 + (1+x)^3 + \cdots$. This cannot be a formal power series because a formal power series requires that all coefficients (a_k) need to be rational numbers, and in this case a_0 is infinite.

Example 3.11. Suppose we pick $A(x) = 1 + x + x^2 + x^3 + \cdots$ and $B(x) = x + x^2$.

We have $A(B(x)) = 1 + (x + x^2)^1 + (x + x^2)^2 + \cdots$. In order to show that this is a formal power series, we need to show that the coefficient of x^k (which is a_k) is finite for all k.

Theorem 3.2. Let A(x) and B(x) be formal power series, and $[x^0]B(x) = 0$ (B(x)'s constant is zero). Then A(B(x)) is a formal power series.

Aside:

$$a(b(x)) = 1 + \underbrace{(x+x^2)^1}_{x(1+x)} + \underbrace{(x+x^2)^2}_{x(1+x)} + \underbrace{(x+x^2)^3}_{x(1+x)} + \cdots$$

Proof. We need to show that for any fixed k, $[x^k]A(B(x))$ is finite.

Let R(x) be such that B(x) = xR(x). Then we have:

$$[x^{k}]A(B(x)) = [x^{k}] \sum_{n \ge 0} a_{n} [B(x)]^{n}$$
$$= [x^{k}] \sum_{n \ge 0} a_{n} x^{n} R(x)$$
$$= [x^{k}] \sum_{n \ge 0}^{k} a_{n} x^{n} (R(x))^{n}$$

We made the last sum finite because we're interested in the coefficient of x^k only. Note that this last line shows we can determine the coefficient in a finite number of steps, since k is finite.

Example 3.12. Let $y \mapsto x^2$ (I will call x^2, y).

$$\frac{1}{1-x^2} = \frac{1}{1-y} = 1 + y + y^2 + y^3 + \cdots$$
$$= 1 + x^2 + x^4 + x^6 + \cdots$$

We used composition with $A(x) = 1 + y + y^2 + \cdots$ and $B(x) = x^2$ (constant is zero). We were only allowed to do this because $[x^0]B(x) = 0$.

3.3.3 Cartesian Product

Definition 3.7. Let A and B be sets. The **cartesian product** is defined as:

$$A \times B := \{(a, b) | a \in A, b \in B\}$$

Note that (a, b) is an ordered pair.

Example 3.13. Let $A = \{1, 2, 3\}$ and $B = \{x, y\}$. Then $A \times B = \{(1, x), (2, x), (3, x), (1, y), (2, y), (3, y)\}$.

The cardinality of $A \times B$ is the product of the cardinalities of A and B: $|A \times B| = |A||B|$.

3.4 The Sum and Product Lemmas

3.4.1 Sum Lemma

Let's consider a bin of two red marbles – one large marble (denoted R), and one small marble (denoted r). We define A to be the set of all selections of ≥ 1 marbles. We know:

$$A = \{\{r\}, \{R\}, \{r, R\}\}\$$

$$w(\sigma) = |\sigma|$$

$$\phi_A(x) = x + x + x^2 = 2x + x^2$$

Let's now consider a bin of green marbles – two large marbles (denoted G). We define B to be the set of all selections of ≥ 1 marbles. We know:

$$B = \{\{G\}, \{G, G\}\}$$
$$w(\sigma) = |\sigma|$$
$$\phi_B(x) = x + x^2$$

Let $S = A \cup B = \{\{r\}, \{R\}, \{r, R\}, \{G\}, \{G, G\}\}\}$, and note that $A \cap B = \emptyset$. What is the generating function for S?

$$\phi_S(x) = \underbrace{(x+x+x^2)}_{\phi_A(x)} + \underbrace{(x+x^2)}_{\phi_B(x)}$$

This works in general.

Theorem 3.3 (Sum Lemma). We have a set S of objects with weight w. Let A and B be partitions of S. Then:

$$\phi_S(x) = \phi_A(x) + \phi_B(x)$$

Proof.

$$\phi_S(x) = \sum_{\sigma \in S} x^{w(\sigma)} = \underbrace{\sum_{\sigma \in A} x^w(\sigma)}_{\phi_A(x)} + \underbrace{\sum_{\sigma \in B} x^{w(\sigma)}}_{\phi_B(x)}$$