Learning with Noisy Supervision

Part II: Statistical Learning with Noisy Supervision

Tongliang Liu

Trustworthy Machine Learning Lab School of Computer Science University of Sydney

Structure

Structure

Basics Consistent algorithms Transition matrix

Learning without label noise

Problem setup:

```
Data: S = \{(x_1, y_1), ..., (x_n, y_n)\} \sim D^n.
```

Aim: Learn a classifier $f \in F$, such that $\forall (x, y) \sim D$, f(x) is a good prediction for y.

What is the best classifier we can obtain?

w.r.t. accuracy

To measure the accuracy, we define loss function $\ell(x,y), f \mapsto \ell(y,f(x)) \in \mathbb{R}$. For example, 0-1 loss: $\mathbf{1}(y \neq \text{sign}(f(x)))$.

The best classifier should be the one that has the smallest loss on all the possible data from the domain.

Theoretically,

$$R_{D,0-1}(f) = \mathbb{E}_{(X,Y)\sim D}[\mathbf{1}(Y \neq \text{sign}(f(X)))]$$

$$= \iint P(X = \mathbf{x}, Y = y) \, \mathbf{1}(y \neq \text{sign}(f(\mathbf{x}))) d\mathbf{x} dy$$

$$= 1 - \iint P(X = \mathbf{x}, Y = y) \, \mathbf{1}(y = \text{sign}(f(\mathbf{x}))) d\mathbf{x} dy.$$

$$f_{\rho}(\mathbf{x}) = \arg\max_{y} P(Y = y | X = \mathbf{x}).$$

Expected risk, Bayes classifier

The expected risk:

$$R_{D,0-1}(f) = \mathbb{E}_{(X,Y)\sim D}[\mathbf{1}(Y \neq \text{sign}(f(X)))].$$

Bayes risk:
$$R_{D,0-1}^* = \inf_f R_{D,0-1}(f)$$
.

The Bayes decision rule (Bayes classifier):

$$f_{\rho} = \underset{f}{\operatorname{arg inf}} R_{D,0-1}(f).$$

Restricted Bayes risk: $f^* = \inf_{f \in \mathcal{F}} R_{D,0-1}(f)$.

Empirically,

In reality, we can only observe a sample of data

$$S = \{(x_1, y_1), \dots, (x_n, y_n)\} \sim D^n$$

We approximate the expected risk R(f) via the empirical risk: $\widehat{R}_{D,\ell}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i))$.

We minimize the empirical risk to find a predictor:

$$f_n = \underset{f \in \mathcal{F}}{\operatorname{arg \, min}} \, \widehat{R}_{D,\ell}(f)$$
.

Statistically consistent classifier [1,2]:

With high probability, as $n \to \infty$, we have: $R_{D,\ell}(f_n) \to R_{D,\ell}(f^*)$.

[1] Mohri et al. *Foundations of machine learning*. MIT press, 2018. [2] Devroye, et al. *A probabilistic theory of pattern recognition*. Vol. 31. Springer Science & Business Media, 2013.

Aim:

Designing algorithms whose outputs will approach $f_{\rho}(\mathbf{x}) = \arg\max_{\mathbf{y}} P(Y = \mathbf{y}|X = \mathbf{x}).$

Structure

Basics Consistent algorithms Transition matrix

Learning with label noise

Noisy sample: $\tilde{S} = \{(x_1, \tilde{y}_1), ..., (x_n, \tilde{y}_n)\} \sim \tilde{D}^n$, where \tilde{y} stands for noisy labels and \tilde{D} the noisy distribution.

What is the best classifier we can learn?

Can we approach $f_{\rho}(x) = \arg \max_{y} P(Y = y | X = x)$?

Learning with label noise

One category: extracting confident examples or correct labels.

SOTA, e.g., Co-teaching [3]; Joint Optim [4].

Another category: label-noise learning [5]. Methodology, i.e., statistically consistent algorithms.

Learning with label noise

One category: extracting confident examples or correct labels.

SOTA, e.g., Co-teaching [3]; Joint Optim [4].

Another category: label-noise learning [5]. Methodology, i.e., statistically consistent algorithms.

Why called "label-noise learning"?

Model label noise

Transition matrix:

$$\begin{bmatrix} P(\tilde{Y}=1|Y=1,x) & \cdots & P(\tilde{Y}=1|Y=C,x) \\ \vdots & \ddots & \vdots \\ P(\tilde{Y}=C|Y=1,x) & \cdots & P(\tilde{Y}=C|Y=C,x) \end{bmatrix}.$$

Transition matrix

$$\begin{bmatrix} P(\tilde{Y} = 1 | \mathbf{x}) \\ \vdots \\ P(\tilde{Y} = C | \mathbf{x}) \end{bmatrix} = \begin{bmatrix} P(\tilde{Y} = 1 | Y = 1, \mathbf{x}) & \cdots & P(\tilde{Y} = 1 | Y = C, \mathbf{x}) \\ \vdots & \ddots & \vdots \\ P(\tilde{Y} = C | \mathbf{x}) \end{bmatrix} \begin{bmatrix} P(Y = 1 | \mathbf{x}) \\ \vdots \\ P(Y = C | Y = 1, \mathbf{x}) & \cdots & P(\tilde{Y} = C | Y = C, \mathbf{x}) \end{bmatrix} \begin{bmatrix} P(Y = 1 | \mathbf{x}) \\ \vdots \\ P(Y = C | \mathbf{x}) \end{bmatrix}$$

Why called "label-noise learning"?

- Label-noise learning [5]
- Noisy-label learning
- Learning with noisy labels [6]

Model Label Noise

(1) Random Classification Noise (RCN) [7]:

$$\rho_{\tilde{Y},Y}(X) = P(\tilde{Y}\big|Y,X) = P(\tilde{Y}\big|Y) = \rho, \forall Y \neq \tilde{Y}.$$

(2) Class-conditional Noise (CCN) [6]:

$$\rho_{\tilde{Y},Y}(X) = P(\tilde{Y}|Y,X) = P(\tilde{Y}|Y).$$

(3) Instance-dependent Noise (IDN) [8,9]:

$$\rho_{\widetilde{Y},Y}(X) = P(\widetilde{Y}|Y,X).$$

[7] Angluin, Dana, and Philip Laird. "Learning from noisy examples." *Machine Learning* 2.4: 343-370, 1988.
[8] Cheng, Jiacheng, et al. "Learning with bounded instance and label-dependent label noise." *ICML* 2020.
[9] Berthon, Antonin, et al. "Confidence scores make instance-dependent label-noise learning possible." *ICML*, 2021.

Model Label Noise

(1) Random Classification Noise (RCN) [7]:

$$\rho_{\tilde{Y},Y}(X) = P(\tilde{Y}|Y,X) = P(\tilde{Y}|Y) = \rho, \forall Y \neq \tilde{Y}.$$

(2) Class-conditional Noise (CCN) [6]:

$$\rho_{\tilde{Y},Y}(X) = P(\tilde{Y}|Y,X) = P(\tilde{Y}|Y).$$

(3) Instance-dependent Noise (IDN) [8,9]:

$$\rho_{\widetilde{Y},Y}(X) = P(\widetilde{Y}|Y,X).$$

[7] Angluin, Dana, and Philip Laird. "Learning from noisy examples." *Machine Learning* 2.4: 343-370, 1988.
[8] Cheng, Jiacheng, et al. "Learning with bounded instance and label-dependent label noise." *ICML* 2020.
[9] Berthon, Antonin, et al. "Confidence scores make instance-dependent label-noise learning possible." *ICML*, 2021.

Random Classification Noise (RCN)

Theorem 1. The losses satisfying the following symmetric criterion is robust to RCN:

$$L(f(X), +1) + L(f(X), -1) = C,$$

where C is a constant. That is

$$\arg\min_{f} R_{D,L}(f) = \arg\min_{f} R_{\widetilde{D},L}(f)$$
.

Because:
$$R_{\widetilde{D},L}(f) = \mathbb{E}_{(X,\widetilde{Y})\sim\widetilde{D}}[L(f(X),\widetilde{Y})] = (1-2\rho)R_{D,L}(f) + \rho C.$$

$$pprox \widehat{R}_{\widetilde{D},L}(f)$$

[10] Du Plessis, Marthinus C. et al. "Analysis of learning from positive and unlabeled data." NeurIPS 2014

Random Classification Noise (RCN)

The symmetric losses that are robust to RCN:

- (1) 0-1 Loss: $L(f(X), Y) = \mathbf{1}(\text{sign}(f(X)) \neq Y);$
- (2) Unhinged Loss: L(f(X), Y) = 1 Yf(X);
- (3) Sigmoid Loss: $L(f(X), Y) = \frac{1}{1 + e^{Yf(X)}}$;
- (4) Ramp Loss: $L(f(X), Y) = \frac{1}{2} \max(0, \min(2, 1 Yf(X))) \dots$

Class-conditional Noise (CCN)

The loss correction method: Modify ℓ to be $\tilde{\ell}$ such that

$$\mathbb{E}_{(X,\tilde{Y})\sim \widetilde{D}}\big[\widetilde{\ell}\big(f(X),\tilde{Y}\big)\big] = \mathbb{E}_{(X,Y)\sim Y}\big[\ell(f(X),Y)\big]$$

By exploiting the model of label noise:

$$\begin{bmatrix} P(\tilde{Y}=1|\mathbf{x}) \\ \vdots \\ P(\tilde{Y}=C|\mathbf{x}) \end{bmatrix} = \begin{bmatrix} P(\tilde{Y}=1|Y=1) & \cdots & P(\tilde{Y}=1|Y=C) \\ \vdots & \ddots & \vdots \\ P(\tilde{Y}=C|Y=1) & \cdots & P(\tilde{Y}=C|Y=C) \end{bmatrix} \begin{bmatrix} P(Y=1|\mathbf{x}) \\ \vdots \\ P(Y=C|\mathbf{x}) \end{bmatrix}$$

$$\begin{bmatrix} P(\tilde{Y}=1|\mathbf{x}) \\ \vdots \\ P(\tilde{Y}=C|\mathbf{x}) \end{bmatrix} = \begin{bmatrix} P(\tilde{Y}=1|Y=1) & \cdots & P(\tilde{Y}=1|Y=C) \\ \vdots & \ddots & \vdots \\ P(\tilde{Y}=C|Y=1) & \cdots & P(\tilde{Y}=C|Y=C) \end{bmatrix} \begin{bmatrix} P(Y=1|\mathbf{x}) \\ \vdots \\ P(Y=C|\mathbf{x}) \end{bmatrix}$$

Unbiased estimator (binary classification) [6]:

$$\tilde{\ell}_{ue}(f(\mathbf{x}), y) = \frac{\left(1 - \rho_{y,-y}\right)\ell(f(\mathbf{x}), y) - \rho_{-y,y}\ell(f(\mathbf{x}), -y)}{1 - \rho_{-1,+1} - \rho_{+1,-1}}$$

The idea is that $\mathbb{E}_{\tilde{y}|y}[\tilde{\ell}_{ue}(f(x), \tilde{y})] = \ell(f(x), y)$.

Thus,
$$\mathbb{E}_{(X,\tilde{Y})\sim \widetilde{D}}\big[\widetilde{\ell}_{ue}\big(f(X),\widetilde{Y}\big)\big] = \mathbb{E}_{(X,Y)\sim D}\big[\ell(f(X),Y)\big]$$

[6] Natarajan, Nagarajan, et al. "Learning with noisy labels." NeurIPS 2013.

Neural Network

Newral Network

$$g(X)$$

softmax

$$\begin{bmatrix} P(\tilde{Y}=1|\mathbf{x}) \\ \vdots \\ P(\tilde{Y}=C|\mathbf{x}) \end{bmatrix} = \begin{bmatrix} P(\tilde{Y}=1|Y=1) & \cdots & P(\tilde{Y}=1|Y=C) \\ \vdots & \ddots & \vdots \\ P(\tilde{Y}=C|Y=1) & \cdots & P(\tilde{Y}=C|Y=C) \end{bmatrix} \begin{bmatrix} P(Y=1|\mathbf{x}) \\ \vdots \\ P(Y=C|\mathbf{x}) \end{bmatrix}$$

Importance reweighting [11]:

$$\tilde{\ell}_{ir}(f(\boldsymbol{x}), y) = \frac{P(\boldsymbol{x}, y)}{\tilde{P}(\boldsymbol{x}, y)} \ell(f(\boldsymbol{x}), y) = \frac{\boldsymbol{g}_{y}(\boldsymbol{x})}{(T^{T}\boldsymbol{g})_{y}(\boldsymbol{x})} \ell(f(\boldsymbol{x}), y),$$

where $f(x) = \arg \max_{j \in \{1,...,C\}} g_j(x)$.

Thus,
$$\mathbb{E}_{(X,\tilde{Y})\sim \widetilde{D}}\big[\widetilde{\ell}_{ir}\big(f(X),\widetilde{Y}\big)\big] = \mathbb{E}_{(X,Y)\sim D}\big[\ell(f(X),Y)\big]$$

$$\begin{bmatrix} P(\tilde{Y}=1|\mathbf{x}) \\ \vdots \\ P(\tilde{Y}=C|\mathbf{x}) \end{bmatrix} = \begin{bmatrix} P(\tilde{Y}=1|Y=1) & \cdots & P(\tilde{Y}=1|Y=C) \\ \vdots & \ddots & \vdots \\ P(\tilde{Y}=C|Y=1) & \cdots & P(\tilde{Y}=C|Y=C) \end{bmatrix} \begin{bmatrix} P(Y=1|\mathbf{x}) \\ \vdots \\ P(Y=C|\mathbf{x}) \end{bmatrix}$$

Forward correction [12]:

A summary of consistent algorithms

- Many methods for dealing with noisy labels Loss correction, Sample selection, label correction, ...
- Model label noise
 Random Classification Noise (RCN)
 Class-conditional Noise (CCN)
 Instance-dependent Noise (IDN)
- Symmetric loss functions are robust to RCN A loss function is symmetric if $\sum_{y} \ell(f(x), y) = c$
- Three loss correction methods
 Unbiased estimator, importance reweighting, forward correction

Structure

Basics Consistent algorithms Transition matrix

How to estimate the transition matrix

Given the noisy data
$$\tilde{S} = \{(\boldsymbol{x}_1, \tilde{y}_1), ..., (\boldsymbol{x}_n, \tilde{y}_n)\} \sim \widetilde{D}.$$

How to estimate the transition matrix *T*?

Anchor point assumption [11]

Rearrange the relationship among the noisy class posterior, the clean class posterior, and the transition matrix, we have

$$P(\tilde{Y} = 1 | \mathbf{x}) = (1 - \beta_{+1,-1} - \beta_{-1,+1}) P(Y = 1 | \mathbf{x}) + \beta_{-1,+1}$$

$$P(\tilde{Y} = -1|\mathbf{x}) = (1 - \beta_{+1,-1} - \beta_{-1,+1})P(Y = -1|\mathbf{x}) + \beta_{+1,-1}$$

We designed the following estimator:

$$\beta_{-y,+y} = \min_{x \in X} P(\tilde{Y} = y | x).$$

Definition

If $P(Y = i | \mathbf{x}^i) = 1$, then \mathbf{x}^i is called the anchor point for the *i*-th class.

Anchor point assumption

$$\begin{bmatrix} P(\tilde{Y}=1|X) \\ \vdots \\ P(\tilde{Y}=C|X) \end{bmatrix} = \begin{bmatrix} P(\tilde{Y}=1|Y=1) & \cdots & P(\tilde{Y}=1|Y=C) \\ \vdots & \ddots & \vdots \\ P(\tilde{Y}=C|Y=1) & \cdots & P(\tilde{Y}=C|Y=C) \end{bmatrix} \begin{bmatrix} P(Y=1|X) \\ \vdots \\ P(Y=C|X) \end{bmatrix}$$

$$T$$

$$\begin{bmatrix} P(\tilde{Y}=1|X=x^{1}) \\ \vdots \\ P(\tilde{Y}=C|X=x^{1}) \end{bmatrix} = \begin{bmatrix} P(\tilde{Y}=1|Y=1) & \cdots & P(\tilde{Y}=1|Y=C) \\ \vdots \\ P(\tilde{Y}=C|Y=1) & \cdots & P(\tilde{Y}=C|Y=C) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} P(\tilde{Y}=1|X=x^{i}) \\ \vdots \\ P(\tilde{Y}=C|X=x^{i}) \end{bmatrix} = \begin{bmatrix} P(\tilde{Y}=1|Y=i) \\ \vdots \\ P(\tilde{Y}=C|Y=i) \end{bmatrix}$$

How to find anchor points

Binary classification, find the anchor points:
$$\mathbf{x}^y = \underset{\mathbf{x} \in X}{\operatorname{argm}} ax P(\tilde{Y} = y | \mathbf{x}).$$

Multi-classification, approximate the anchor points for multi-class learning:

$$x^y \approx \underset{x \in X}{\operatorname{argm}} ax P(\tilde{Y} = y | x).$$

T estimator vs Dual-T estimator [13]

T estimator:
$$\begin{bmatrix} P(\tilde{Y} = 1 | X = \mathbf{x}^i) \\ \vdots \\ P(\tilde{Y} = C | X = \mathbf{x}^i) \end{bmatrix} = \begin{bmatrix} P(\tilde{Y} = 1 | Y = i) \\ \vdots \\ P(\tilde{Y} = C | Y = i) \end{bmatrix}$$

Estimation error: $|P(\tilde{Y} = c|x) - \hat{P}(\tilde{Y} = c|x)| = \Delta_1$.

[13] Yao Y, et al. Dual T: Reducing estimation error for transition matrix in label-noise learning. NeurIPS 2020.

[13] Yao Y, et al. Dual T: Reducing estimation error for transition matrix in label-noise learning. NeurIPS 2020.

T estimator vs Dual-T estimator

We let $P(Y' = y | \mathbf{x}) = \hat{P}(\tilde{Y} = y | \mathbf{x})$, where Y' is a variable for intermediate class.

Dual-T estimator:

$$T_{ij} = P(\tilde{Y} = j | Y = i) = \sum_{l=1}^{C} P(\tilde{Y} = j | Y' = l, Y = i) P(Y' = l | Y = i)$$
$$= \sum_{l=1}^{C} T_{lj}^{\spadesuit} (Y = i) T_{il}^{\clubsuit}.$$

[13] Yao Y, et al. Dual T: Reducing estimation error for transition matrix in label-noise learning. NeurIPS 2020.

Estimation error of transition matrix

[13] Yao Y, et al. Dual T: Reducing estimation error for transition matrix in label-noise learning. NeurIPS 2020.

Sufficiently scattered assumption vs anchor point assumption

VolMinNet [14]

$$\min_{\widehat{T} \in \mathbb{T}} \operatorname{vol}(\widehat{T})$$

s. t. $\widehat{T}h_{\theta} = P(\widetilde{Y}|X)$

[14] Li, Xuefeng, et al. "Provably end-to-end label-noise learning without anchor points." ICML 2021.

T revision [15]

If
$$P(\widetilde{Y}|X = x) = [0.141; 0.189; 0.239; 0.281; 0.15],$$

then, $P(Y|X = x) = (T^{\top})^{-1}P(\widetilde{Y}|X = x) =$
 $[0.15; 0.28; 0.25; 0.3; 0.02].$
 $P(Y|X = x) = (\widetilde{T}^{\top})^{-1}P(\widetilde{Y}|X = x)$
 $= [0.1587; 0.2697; 0.2796; 0.2593; 0.0325].$

T revision [15]

$$\tilde{L}(\boldsymbol{x}, \tilde{\boldsymbol{y}}) = \beta(\boldsymbol{x}, \tilde{\boldsymbol{y}}) L(f(\boldsymbol{x}), \tilde{\boldsymbol{y}}) = \frac{g_{\tilde{\boldsymbol{y}}}(\boldsymbol{x})}{(T^{\mathsf{T}}g)_{\tilde{\boldsymbol{y}}}(\boldsymbol{x})} L(f(\boldsymbol{x}), \tilde{\boldsymbol{y}}).$$

$$f(\boldsymbol{x}) = \operatorname{argmax}_{i \in \{1, \dots, C\}} \boldsymbol{g}_i(\boldsymbol{x}).$$

A summary of estimating transition matrix

- ➤ How to estimate the transition matrix given only noisy data? Method: *T* estimator (by exploiting anchor points)
- ➤ Large estimation error of the noisy class posterior Method: Dual-*T* estimator (by decomposing the matrix)
- How about if there is no anchor points?
 Method: VolMinNet (using the sufficiently scattered assumption)
- ➤ How to deal with poorly estimated transition matrix Method: T revision (revising the matrix by using a slack variable)

Conclusion and future directions

Conclusion

- Statistically consistent algorithms: the classifier learned by using noisy data will converge to the optimal one defined by using clean data
- Statistically consistent algorithms are robust to the data distribution and label noise type
- Modelling the label noise and estimating the transition matrix are cores in label-noise learning

> Future directions

- Design effectively loss correction methods for deep learning
- How to address the finite/small sample problem
- How to use a small set of clean data to better estimate the transition matrix
- How to model and estimate the instance-dependent label noise (IDN)