LG aimers 8등 solution

TEAM 치킨마요덮밥

목차

01 EDA 및 데이터 전처리

02 모델 학습

03 추론

1) train 데이터 특징

15890개의 고유ID의 459일치 판매량으로 이루어진 데이터.

	ID	제품	대분류	중분류	소분류	브랜드	2022-01-01	2022-01-02	2023-04-03	2023-04-04
0	0	B002-00001-00001	B002-C001-0002	B002-C002-0007	B002-C003-0038	B002-00001	0	0	0	0
1	1	B002-00002-00001	B002-C001-0003	B002-C002-0008	B002-C003-0044	B002-00002	0	0	 2	0
2	2	B002-00002-00002	B002-C001-0003	B002-C002-0008	B002-C003-0044	B002-00002	0	0	 0	0
3	3	B002-00002-00003	B002-C001-0003	B002-C002-0008	B002-C003-0042	B002-00002	0	0	0	0
4	4	B002-00003-00001	B002-C003-0042	B002-C002-0001	B002-C003-0003	B002-00003	0	0	0	0

2) 데이터 정제(LSTM)

판매량이 일정 기간 연속으로 0인 구간을 확인 후 이상 요인(품절, 공급부재, 미등록 등)의 이유로 판단되어 제거

	₽	제품	2022-01-01	2023-04-03
0	0	B002-00001-00001	0	0
1	1	B002-00002-00001	 0	 2
2	2	B002-00002-00002	 0	 0
З	3	B002-00002-00003	0	0
4	4	B002-00003-00001	0	0

:

```
판매량 30일 이상 0인 구간 제거
fin_list = []
for k in tqdm(range(train_data.shape[0])): # 15890개에 대해 반복
  a = train_data.iloc[k, 4:] # 각 제품에 대해
  period = CFG['PERIOD'] # 0인 기간 30
 fir_list = []
  i = 0 # 첫 시작
  while i ⟨ len(a)-1: # 전체 길이 동안
    sec_list = []
    if a[i] == 0: # 해당 값이 0이면
      sec_list.append(i)
      while a[i] == 0:
        i += 1
        if i == 459:
           break
      sec_list.append(i-1)
      if (sec_list[1] - sec_list[0]) >= period:
        fir_list.append(sec_list)
    i+=1
 fin_list.append(fir_list)
```

2023-04-04

0

0

0

0

0

2) 데이터 정제(ML)

2022-01-03	143218
2022-10-06	762097
2022-10-07	751579
2023-02-23	19422
2023-02-24	17532
2023-03-28	7527
2023-04-04	159393

일자별 판매량 총합 계산.

- 일자별 판매량 총합 계산 후 일정 수준에 미달하는 경우 일자 제거
- 10만개 미만, 70만개 초과인 경우 해당 일자 제거

	ID	제품	2022-01-01	2023-04-03	2023-04-04
0	0	B002-00001-00001	0	0	0
1	1	B002-00002-00001	 0	 2	0
2	2	B002-00002-00002	 0	 0	0
3	3	B002-00002-00003	0	0	0
4	4	B002-00003-00001	0	0	0

:

2) 데이터 정제(ML)

ID별 판매량 차이가 커 ID별로 예측하는 것이 예측력을 높일 수 있다 판단데이터셋 형태를 다음과 같이 변환

	ID	COUNT	제품	대분류		Year	Month	Day	COUNTS_56	COUNTS_57	COUNTS_58	COUNTS_59
0	0	0	B002-00001-00001	B002-C001-0002		2022	3	1	0	0	0	0
1	0	0	B002-00001-00001	B002-C001-0002		2022	3	2	0	0	0	0
2	0	0	B002-00001-00001	B002-C001-0002		2022	3	3	0	0	0	0
3	0	0	B002-00001-00001	B002-C001-0002		2022	3	4	 0	0	0	0
4	0	0	B002-00001-00001	B002-C001-0002		2022	3	5	0	0	0	0
					:							
5783959	15889	0	B002-03799-00010	B002-C001-0002		2023	4	4	0	0	0	0

3) 파생변수 생성

- (1) 주말, 휴일, 공휴일 변수 생성 (ALL)
 - 주말 및 공휴일이 판매량에 영향을 미칠 것으로 예상하여 주말, 공휴일, 휴일 변수 생성

	Year	Month	Day	Weekday	Weekday_Name	주말여부	공휴일여부	휴일여부
2022-01-01	2022	1	1	5	토	Υ	Υ	Υ
2022-01-02	2022	1	2	6	일	Υ	N	Υ
2022-01-03	2022	1	3	0	월	N	N	N
2022-01-04	2022	1	4	1	화	N	N	N
2022-01-05	2022	1	5	2	수	N	N	N

3) 파생변수 생성

- (2) 변동량 차/합 변수 생성(LSTM)
 - 전일 판매량 대비 당일 판매량의 변동 정도를 표현하기 위해 판매량 변동량 / 전일 + 당일 판매량 합 변수 생성

$$V1_{t} = \begin{cases} \frac{y_{t} - y_{t-1}}{y_{t} + y_{t-1}}, & t: 2022 - 01 - 02 & \text{o} \end{cases} \\ 0, & t: 2022 - 01 - 01 \end{cases}$$

- (3) 판매량 변동량 역수 변수 생성(LSTM)
 - 판매량의 급한 변동에 대한 학습효과를 완화시키기 위해 전일 대비 판매량 변동량의 역수를 취한 변수를 생성

$$V2_{t} = \begin{cases} \frac{1}{y_{t} - y_{t-1}}, & t: 2022 - 01 - 02 \text{ or } \\ 0, & t: 2022 - 01 - 01 \end{cases}$$

02. 모델 학습

02 모델 학습

모델 검증 방법

- Rolling window 방법 이용(ML : size = 60, LSTM : size = 75)

모델 설정

```
- 모델 : LSTM,

XGBOOST(n_estimator=1000),

RandomForest(n_estimator=1000),

ExtraTree(n_estimator = 200) 사용
```

LSTM

```
BaseModel(
  (Istm): LSTM(7, 512, batch_first=True)
  (fc): Sequential(
      (0): Linear(in_features=512, out_features=256, bias=True)
      (1): SiLU()
      (2): Linear(in_features=256, out_features=128, bias=True)
      (3): SiLU()
      (4): Dropout(p=0.2, inplace=False)
      (5): Linear(in_features=128, out_features=21, bias=True)
    )
    (actv): SiLU()
)
```


02 모델 학습

모델 결과 비교

- Rolling window 방법 이용(ML : size = 60, LSTM : size = 75)

Model	Loss	
RF(n_estimator = 100)	17.26	Madal ansamble
RF(n_estimator = 200)	16.77	Model ensemble
RF(n_estimator = 1000)	16.73	
XGB(n_estimator = 200)	18.21	RF(n_estimator=100
XGB(n_estimator = 500)	18.21	
XGB(n_estimator = 1000)	18.21	+ XGB(n_estimator=10
LGBM(n_estimator = 1000)	17.82	
EXTRA(n_estimator = 200)	16.17	+ Extra(n_estimator=2
LSTM(변수조합2)	0.02488	
LSTM(변수조합1)	0.02492	+ LSTM(변수조합2)
LSTM(변수조합3)	0.02489	
LSTM(변수조합4)	0.02490	

02 모델 학습

최종 모델 Parameter

LSTM

- TRAIN_WINDOW_SIZE: 75
- EPOCHS: 10
- LEARNING_RATE: 0.0001
- BATCH_SIZE: 2048
- SEED: 9909
- PERIOD: 30

ML

- train_window_size : 60

RandomForest

• n_estimators = 1000, random_state = 41

XGBRegressor

n_estimators = 1000, random_state = 41

ExtraTree

n_estimators = 200, random_state = 41

03. 추론

03 추론

예측

4개의 모델(LSTM, XGB, RF, Extra)을 앙상블이후 4개 모델의 예측값의 평균을 사용 반올림하여 정수 형태로 반환

03 추론

평가 지표

최소한의 예측 가능성을 확보하고자 최소 판매량을 1로 설정

대분류 별 Pseudo 예측 정확도:
$$PSFA_m = 1 - \frac{1}{n} \sum_{day=1}^n \sum_{i=1}^N ((\frac{|y_i^{day} - p_i^{day}|}{\max(y_i^{day}, p_i^{day})}) \times \frac{y_i^{day}}{\sum_{i=1}^N y_i^{day}}) \times \frac{y_i^{day}}{\sum_{j=1}^N y_j^{day}})$$
 $\times \frac{y_i^{day}}{\sum_{j=1}^N y_j^{day}}$ $\times \frac{y_i^{day}}{\sum_{j=1}^$

전체 Pseudo 예측 정확도:
$$PSFA = \frac{1}{M} \sum_{m=1}^{M} PSFA_m$$

Thank you.