Повышение быстродействия ВУ

- 1 Преобразование операционной части.
 - 1.1 Увеличение масштабов аппаратной реализации функций.
 - 1.2 Уменьшение глубины логических схем и повышение тактовой частоты.
 - 1.3 Параллельная обработка.
 - 1.4 Другие способы повышения быстродействия.
- 2 Преобразование управляющей части.
 - 2.1 Одновременное считывание нескольких микрокоманд.
 - 2.2 Конвейерное выполнение микрокоманд.

- Знать: способы преобразования операционной и управляющей частей ВУ: увеличение масштабов аппаратной реализации функций; уменьшение глубины логических схем и повышение тактовой частоты; многоэлементная и многостадийная обработка; одновременное считывание микрокоманд.
- <u>Уметь:</u> преобразовать структуру ВУ с целью повышения быстродействия и оценить достигнутый результат.
- Помнить: о сочетании различных способов повышения быстродействия ВУ.
- Литература: [1,14].

1 Преобразование операционной части

1.1 Увеличение масштабов аппаратной реализации функций

- Под увеличением масштабов аппаратной реализации функции понимают переход от разворачивания вычислительного процесса во времени (микропрограммная реализация) к разворачиванию его в пространстве (аппаратная реализация).
- Примерами такого перехода могут служить: преобразование последовательного сумматора в параллельный (параллельно-последовательный), преобразование устройства умножения в матричный умножитель и др.

Переход от последовательного сумматора к параллельному

1.2 Уменьшение глубины логических схем и повышение тактовой частоты

- Длительность тактового периода: $t = t_{OY} + t_{YY}$.
- Тактовая частота работы ВУ: F=1/t.
- Время задержки сигнала в ОУ: t_{OV} =max{ t_{I} ,..., t_{s} ,..., t_{S} }, где t_{s} время выполнения s-й микрооперации (МО), S число МО. Время задержки сигнала в УУ определяется аналогично.
- Время выполнения МО определяется глубиной логической схемы: $t_{MO} = \tau * (l_{KC} + l_T)$, где $\tau -$ время задержки сигнала на логическом элементе; l_{KC} глубина логической схемы (число логических элементов, через которые проходит сигнал в комбинационной схеме при выполнении МО); l_T число логических элементов, через которые проходит сигнал при фиксации результата в триггерах.

Повышение тактовой частоты

- Уменьшение глубины логических схем позволяет сократить число логических уровней через которые проходит сигнал.
- При представлении логических функций в виде дизъюнктивной формы уровней может быть не более 3: «НЕ», «И», «ИЛИ»).
- Уменьшение числа логических уровней позволяет сократить время выполнения МО, что обеспечивает повышение тактовой частоты работы ВУ.
- Повысить тактовую частоту также можно используя более быстродействующую элементную базу, с меньшим временем задержки сигнала на логическом элементе (τ).

1.3 Параллельная обработка

Многоэлементная

При многоэлементной обработке N одинаковых функций: $F_1, F_2, ..., F_N$ вычисляется одновременно за время T.

Многостадийная (конвейерная)

 X_1, X_2, \ldots, X_N

Фиксатор

 $y_1, y_2, ..., y_N$

Ступень п

При установившейся конвейерной обработке за время T/n вычисляется очередная функция.

При n=N (число ступеней равно числу функций) N функций в пределе будет вычислено за время Т.

Декомпозиция функции и запуск конвейера

Предполагается представление исходной функции F в виде суперпозиции функций f_1, f_2, f_3, f_4 одинаковой сложности: $F=f_4(f_3(f_2(f_1(x_1))))$.

 $s_i=f_i(s_{i-1}), i=1,...,n; s_0=x_1; s_n=y_1.$

	Такт (вход)				
Ступень	T_1	T_2	T_3	T_4	
	\mathbf{x}_1	\mathbf{x}_2	x ₃	X ₄	
f_1	$s_1 = f_1(x_1)$	$s_1 = f_1(x_2)$	$s_1 = f_1(x_3)$	$s_1 = f_1(x_4)$	
f_2	_	$s_2 = f_2(s_1)$	$s_2 = f_2(s_1)$	$s_2 = f_2(s_1)$	
f_3		_	$s_3 = f_3(s_2)$	$s_3 = f_3(s_2)$	
f_4			_	$y_1 = s_4 = f_4(s_3)$	

Виды конвейеров

- Конвейеры делятся на синхронные и асинхронные:
 - в синхронных конвейерах одновременно происходит передача информации во всех ступенях;
 - в асинхронных конвейерах результаты на следующую ступень передаются по мере её готовности.
- В общем случае на каждой из ступеней конвейера может выполняться одна из нескольких функций. При этом ступень настраивается на заданную функцию перед выполнением вычисления.
- Могут быть использованы конвейеры с замыкаемыми и размыкаемыми обратными связями.

АЛУ для суммирования чисел ПЗ

1.4 Другие способы повышения быстродействия

- Алгоритмические способы повышения быстродействия (ускоренные алгоритмы выполнения операций, например, умножение с просмотром двух разрядов, умножение с запоминанием переносов и т.п.).
- Однородные вычислительные среды (автоматы с настраиваемой структурой).
- Волновые структуры.
- Апериодические схемы (автоматы).

Однородные вычислительные среды

 $W=X&Y\vee Z$

2 Преобразование управляющей части

2.1 Одновременное считывание микрокоманд Время выполнения микрокоманды: $t = \tau_{OV} + \tau_{VV}$, где au_{OV} – время задержки сигнала в ОУ, а au_{VV} – в УУ. При использовании в ВУ устройства управления с программируемой логикой задержку в УУ можно оценить по формуле: $\tau_{yy} = \tau_{E\Phi A} + \tau_{yT}$, где $\tau_{E\Phi A}$ — время задержки сигнала в блоке формирования адреса МК, а au_{yr} – время чтения МК из блока памяти микропрограмм Причем, как правило, $\tau_{ur} >> \tau_{E\Phi A}$

Поэтому сокращение времени чтения микрокоманд из памяти микропрограмм может обеспечить значительное повышения быстродействия ВУ.

Пример одновременной выборки МК

 $t_1 = \tau_{OV} + \tau_{E\Phi A} + \tau_{HT} + \tau_{MII} + \tau_{PMK} - \text{МК нет среди считанных};$ $t_2 = \tau_{OV} + \tau_{MII} + \tau_{PMK} - \text{МК есть среди считанных}.$

2.2 Конвейерное выполнение микрокоманд

- Процесс выполнения микрокоманды обычно делится на два этапа, приблизительно равной продолжительности:
 - Формирования адреса и чтения МК в УУ,
 - Выполнения микрокоманды и формирования значений логических условий в ОУ.
- Ступенями конвейера являются УУ и ОУ.
- Для совмещения во времени процессов в ОУ и УУ между ними устанавливаются фиксаторы (ф) буферные (конвейерные) регистры (БР).

Обычное выполнение

Конвейерное выполнение

Чтение МК

Чтение МК

Выполнение МК

Выполнение МК

$$t = \tau_{yy} + (\tau_{EP}) + \tau_{Oy}$$

$$t = \tau_{EP} + max\{\tau_{yy}, \tau_{Oy}\}$$

Эффективность работы конвейера: предсказание переходов

- Эффективность работы конвейера максимальна на линейных участках и может снизиться при большом числе ветвлений в микропрограмме (МП).
- Для ослабления влияния ветвлений на эффективность работы конвейера может быть использовано предсказание переходов.
- При предсказании перехода считывается МК, имеющая наибольшую вероятность выполнения. Если значение условия угадать не удалось, то происходит сбой конвейера и повторное считывание нужной МК.

Эффективность работы конвейера: преобразование микропрограммы

- Если алгоритм позволяет, то выполняется преобразование исходной МП: микрокоманда, вычисляющая значение логического условия, перемещается на одну МК к началу МП. При этом вычисление значения логического условия производится заранее и не нарушает работу конвейера.
- Если алгоритм не позволяет преобразовывать МП путем перемещения МК, то в МП вводятся пустые МК. Точнее, МК ветвления заменяется двумя МК. Первая МК выполняет необходимые микрооперации и вычисляет значение логического условия, а вторая («пустая») выполняет только переход по вычисленному первой значению логического условия.

Пример преобразования микропрограммы для ускорения работы конвейера

	Такт				
Ступень	T_1	T_2	T ₃	T ₄	
УУ	MK ₀	MK_1	?		
ОУ	-	MK_0	MK ₁		
		P=0*			
УУ	MK ₁	MK_0	MK ₃	MK ₄	
ОУ	_	MK_1	MK_0	MK_3	

* - значение условия Р формируется при выполнении МК₁