Objetivos

En esta quincena aprenderás a:

- Distinguir los distintos tipos de variables estadísticas.
- Agrupar en intervalos los datos de un estudio estadístico.
- Hacer la tabla estadística asociada a un conjunto de datos.
- Representar e interpretar gráficos estadísticos, y saber cuando es conveniente utilizar cada tipo.
- Calcular la media, la moda, la mediana y los cuartiles de un conjunto de datos.
- Que son y cómo se calculan los parámetros de dispersión: el rango o recorrido, la varianza y la desviación típica, el coeficiente de variación.

1.Hacer estadística pág. 190NecesidadPoblación y muestraVariables	
2.Recuento de datos pág. 197 Recuento de datos Gráficos Agrupación de datos en intervalos	1
3.Medidas de centralización pág.195 y posición Medida Moda Cuarteles y mediana	5
4.Medidas de dispersión pág. 19 Rango y desviación media Desviación típica Coeficiente de variación	7

Ejercicios para practicar

Para saber más

Resumen

Autoevaluación

Actividades para enviar al tutor

Antes de empezar

Estadística

La estadística, a nivel primario, es una actividad que todo el mundo hace desde muy pequeño. El mero hecho de contar y/o clasificar tus juguetes (tus coches, muñecas/os, canicas, videojuegos,...) ya es una actividad estadística.

Clasificar objetos

El destornillador a la caja de herramientas, los cubiertos al cajón de la cocina, los libros a la estantería, los videojuegos junto a la consola,...

Competiciones escolares En tu instituto habrá equipos y competiciones, y habrá que llevar un cómputo de resultados y una ordenación de equipos según una puntuaciones. Hasta es posible que haya un registro de varios años

1. Estadística descriptiva

Necesidad

Al poner en práctica una medida social para saber su aceptación. ¿A cuántas personas puede ir dirigida?, ¿cuáles son los distintos niveles?. Frente a una iniciativa como esta, preguntar a toda la población puede agotar los recursos destinados a ella, una encuesta previa puede ahorrarnos algún que otro equívoco.

Población y muestra

Cuando se hace un estudio estadístico el investigador decide si analizará toda la población o una muestra elegida previamente.

Población es el conjunto de individuos, con alguna característica común, sobre el que se hace un estudio estadístico.

La **muestra** es un subconjunto de la población. Debe elegirse que sea representativa de toda la población en la característica estudiada.

Atributos y Variables.

Cada una de las propiedades o características que podemos estudiar es una **variable estadística**. Dependiendo de los posibles valores que puedan tomar se clasifican en:

- Variables cualitativas o atributos. Los valores de la variable no son números sino cualidades, se expresan con palabras. El color, la forma, el sexo,...son ejemplos de variables cualitativas.
- Variables cuantitativas. Los datos se expresan numéricamente y pueden ser:
 - Discretas. Cada una de las variables solo puede tomar valores enteros (1, 2, 3...). El nº de hermanos, el nº ventanas de casa, el nº colegios de tu población,...
 - Continuas. Pueden tomar cualquier valor de un intervalo dado. Nuestro peso, altura, fuerza, no es posible medirlas con números enteros, la densidad del aire, la velocidad media de los fórmula 1 en una carrera,...

El color de los lápices, es una variable cualitativa

La altura, edad y peso, son variables cuantitativas.

4

30

0,11

1

47

Turquesa

Total

2. Recuento y gráficos

Es parte del proceso, después de recopilar los datos se procede a su recuento para expresarlos de forma ordenada y para que sea más fácil trabajar con ellos. Generalmente se elabora una tabla como se muestra a la izquierda donde puedes practicar.

- Frecuencia **absoluta**, es el nº de veces que aparece un dato. A la de x_i la llamaremos f_i.
- Frecuencia relativa, es el cociente entre la frecuencia absoluta y el nº total de datos.
- Frecuencia acumulada de un dato, es la suma de las frecuencias absolutas de los valores que son menores o iguales que él, la indicaremos con F_i. También se pueden calcular las frecuencias relativas acumuladas.

Diagramas de barras y de sectores

Los datos estadísticos suelen representarse de forma gráfica, ya que de esta forma podemos hacernos una idea de su distribución de un solo golpe de vista. En función del tipo de variable conviene más usar un tipo de gráfico u otro.

 Diagrama de sectores, puede aplicarse a cualquier tipo de variable, aunque es el más adecuado en variables cualitativas y para una primera toma de contacto con los valores de una población. Es un círculo dividido en sectores de ángulo proporcional a la frecuencia de cada valor.

La amplitud de cada sector se obtiene multiplicando la frecuencia relativa por 360°.

$$\frac{\text{frecuencia}}{\text{n}^{\circ} \text{ total de datos}} = \frac{\text{grados del sector}}{360}$$

 Diagrama de barras. También puede aplicarse a cualquier tipo de variable, aunque se considera el idóneo para variables discretas. Cada valor se corresponde con una barra de longitud proporcional a su frecuencia.

Diagrama de barras

EJERCICIOS resueltos

1. ¿Cuántas personas suponen una muestra del 10% de una población de 10.000 habitantes? ¿Y de una de 6000 habitantes?.

Solución: a) 10.000 · 10 /100 = 1000,

b) $6000 \cdot 10/100 = 600$

2. Una empresa de sondeos estadísticos tiene capacidad para entrevistar a 1000 personas por semana. Si dispone de 4 semanas a qué porcentaje de una población de 100.000 habitantes puede entrevistar para obtener una muestra.

Solución: En 4 semanas puede entrevistar a 4000 personas. 4000 de 100.000 equivale a 4 de 100. Así pues el 4%.

3. Con el fin de conocer mejor la forma de viajar de una población han preparado una encuesta. Algunas de las preguntas trataron sobre: Nº de días de viaje, dinero empleado, número de bultos, zonas geográficas, medio de transporte, naturaleza del viaje (negocios, turismo, familiar, salud...) y nº de personas. Clasifica estas variables estadísticas.

Solución:

V cualitativa: Zonas geográficas, medio de transporte y naturaleza del viaje.

V. cuantitativa discreta: Nº de días, número de bultos y nº de personas.

V. cuantitativa continua: Dinero empleado.

4. Haz un recuento de los siguientes datos

4	4	2	1	2	2	4	4	2	3	4
3	2	2	2	4	4	3	4	4	2	1

Solución:

)	olucion.	
	Xi	fi
	1	3
	2	8
	3	4
	4	9

5. Haz un recuento de los siguientes datos, un gráfico de sectores y otro de barras. Indica el ángulo de cada sector.

Pelota, máscara, pelota, máscara, máscara, bici, máscara, bici, máscara, máscara, máscara, máscara, videojuego, máscara, pelota, videojuego, pelota, videojuego, pelota, máscara.

Solución:

Solucion.			
Xi	fi	grados	Videjuego William
Videojuego	4	60	Máscara Máscara
Máscara	3	45	
Bici	10	150	Bici IIIIIIIII
Pelota	7	105	Pelota.

Los datos

55	491	42	465	653
829	798	254	155	427
153	533	945	878	230
690	652	476	110	87
14	751	47	211	341
737	473	452	352	246
499	109	694	308	933
326	209	729	651	397
161	329	975	848	823
240	640	319	526	

Agrupados en 5 intervalos Observa las marcas de cada clase como se corresponden con la media de sus extremos.

Intervalo	Marca	Frecuencia
[0, 200)	100	10
[200, 400)	300	13
[400,600)	500	9
[600,800)	700	10
[800, 1000)	900	7

Agrupados ahora en 8 intervalos

Intervalo	Marca	Fr.
[0, 125)	62,5	7
[125 , 250)	187,5	8
[250 , 375)	312,5	7
[375 , 500)	437,5	8
[500,625)	562,5	2
[625,750)	687,5	8
[750,875)	812,5	5
[875, 1000)	937,5	4

Agrupación de datos en intervalos

En variables continuas, o en discretas cuanto el número de datos distintos se hace casi tan grande como el número de datos, y para poder estudiarlos, se hace necesario agruparlos en **intervalos** o **clases**, habitualmente de la misma amplitud y como mínimo cuatro.

Por ejemplo, en una población hay casi tantas alturas como individuos pero podemos agruparlos en bajos, medios y altos; también podríamos hacer bajos, medios-bajos, medios-altos y altos, o clasificarlos de 10 en 10 cm, o de 20 en 20...

 Para representar a todos los datos de un intervalo elegimos un valor, el punto medio del intervalo, se llama marca de clase.

Histograma

Cuando los datos vienen agrupados en intervalos se usa para representarlos gráficamente el **histograma**. Cada valor se representa con un rectángulo de anchura el intervalo correspondiente y con la altura proporcional a su frecuencia.

Los histogramas para los datos del margen agrupados en cinco y ocho intervalos:

Polígono de frecuencias.

Lo creamos al unir los extremos superiores de las barras de los histogramas o de los diagramas de barras.

EJERCICIOS resueltos

6. Agrupa los siguientes datos en 10 grupos. Agrupa los mismos datos, ahora, en 5 grupos y haz un gráfico para cada agrupación.

2	9	9	8	2	9	5	4	1	7	7	1
2	8	4	1	6	1	9	1	4	7	4	9
4	1	3	2	3	4	3	1	1	1	4	5
10	6	6	2	1	4	3	7	6	6	10	2
9	8	9	7	7	4						

Solución:

7. Agrupa los datos siguientes en 5 intervalos de igual amplitud, haz un gráfico y un polígono de frecuencias.

7,2	6	6,3	9,8	9,1	9,3
5,7	6,7	8,4	5,7	3,1	1,4
5,4	1,1	4,8	2,5	0,1	4
5,3	1,3	3,6	1,9	5,2	1,7

Solución:

	fi
[0,2)	6
[2,4)	3
[4,6)	7
[6,8)	4
[8,10)	4

Media Ejemplo 1 10, 12, 10, 14 y 13 $\overline{X} = \frac{10+12+10+14+13}{52} = \frac{59}{5} = 11.8$ Ejemplo 2 Xi · fi Χi fī 5 20 10 6 60 7 15 105 20 9 180 25 4 100 30 6 180 La media. $\frac{645}{36} = 17,91$ 36

Mod	a		
Ejem	plo 1	Ejemplo	2
Xi fi	Moda	Xi fi	Moda
5 8	5	100 5	
10 5		200 5	
15 1		300 1	
20 8	20	400 3	
25 0		500 2	
30 3	3	600 9	600

Medidas de posición

Ampliamos la tabla con la columna de frecuencias acumuladas y porcentajes de estas

xi	fi	Fi	%
1	10	10	15,152
2	10	20	30,303
3	17	37	56,061
4	12	49	74,242
5	17	66	100

y/o una barra con longitudes proporcionales a las frecuencias

$$Q_1=2$$
, $Q_2=Me=3$ y $Q_3=5$

3. Medidas de centralización y posición

La media

Todos los alumnos saben que con un 6 y un 4 tienen de media 5. Pues la media en estadística no es otra cosa que eso, solo que, habitualmente, con más datos.

Para calcular la media si son pocos los datos, se suman todos y se divide entre el número total. Si son muchos, los tendremos agrupados, entonces se suman los productos de cada dato por su frecuencia absoluta y se divide esta suma por el número total de datos. Se indica con x.

La moda

¿Quién no ha oído alguna vez: "Está de moda ir a...", "Se lleva este tipo de pantalón, está de moda", o "Se ha puesto de moda el grupo"..., y todo el mundo entiende que hay una buena cantidad de personas en esas opciones.

Así pues, el valor que mas frecuencia tenga será "el de moda", aunque puede ocurrir que haya más de uno.

 La moda, Mo, de una distribución estadística es el valor de la variable que más se repite, el de mayor frecuencia absoluta.

La mediana y los cuartiles

La mediana y los cuartiles, como la media aritmética, sólo se pueden calcular cuando la variable es cuantitativa.

 La mediana, Me, es el valor que ocupa la posición central una ver ordenados los datos en orden creciente, es decir el valor que es mayor que el 50% y menor que el otro 50%.

La mediana divide la distribución en dos partes con igual nº de datos, si la dividimos en cuatro partes obtenemos los **cuartiles**, 1º, 2º y 3º, que se indican respectivamente $\mathbf{Q_1}$, $\mathbf{Q_2}$ y $\mathbf{Q_3}$.

Ordenados los datos, **el primer cuartil**, es mayor que el 25% de estos; **el tercer cuartil**, mayor que el 75%, y el segundo coincide con la mediana.

cuartiles

Estadística

EJERCICIOS resueltos

- 8. Calcula la media en cada caso:
 - a) 4, 6, 8

- **Soluciones**: a) (4+6+8)/3 = 6
- b) 4, 6, 8, 6

b) (4+6+8+6)=24/4=6

c) 100, 120, 180, 200

- c) (100+120+180+200)/4 = 150
- 9. Calcula la media de los siguientes datos

0	2
4	1

2

3 2

1

3 1

Sumamos todo y dividimos entre 24, el número de datos.

 $\overline{X} = 2.29$

Calcula la media de los siguientes datos

2,4	3
0.6	3.8

1,1 4 3,1 4

3,5 2,8

0,7 0,2

3

2,8 3,1

0

0,4

3,8 1,5

0,2 2,8 1,9 1,8 1,9 3,1

1

2

Solución: $\overline{X} = 2,19$

4

1

Determina la moda para los datos

2	
1	

3 0

0 1

2 4

1 0

2

Solución:

Mo = 1, es el valor que mas veces aparece, 8 en total.

12. Calcula la mediana, el primer y el segundo cuartil de los datos del ejercicio anterior.

Solución:

Hacemos el recuento, $0\rightarrow4$, $1\rightarrow8$, $2\rightarrow4$, $3\rightarrow5$ y $4\rightarrow3$, dibujamos barras de colores de longitudes proporcionales a las frecuencias, valdrían por ejemplo de 4mm, 8mm, 4mm, 5mm y 3mm. Dividimos toda la barra en 4 partes y nos fijamos el color en el que queda la división.

Mediana = 1,5,Q1=1 y Q3=3

Ó bien construimos la tabla y observamos donde quedan en la última columna los valores 25%, 50% y 75%.

Xi		fi	Fi	%
	0	4	4	16,667
	1	8	12	50
	2	4	16	66,667
	3	5	21	87,5
	4	3	24	100

Desviación media

Ejemplo					
Xi	fi	Xi+fi	X-Xi +fi		
5	2	10	29,44		
10	1	10	9,72		
15	3	45	14,16		
20	4	80	1,11		
25	6	150	31,66		
30	2	60	20,55		
	18	355	106,66		
DM=					

Desviación típica

Ejemplo

_,-,-				- 0
Xi	fi	Xi · fi	(X - Xi) ² ·fi	fi⊹Xi [∠]
5	5	25	1164,81	125
10	1	10	105,33	100
15	1	15	27,7	225
20	2	40	0,13	800
25	1	25	22,43	625
30	9	270	853,25	8100
	19	385	2173,68	9975

$$\sigma = \sqrt{\frac{2173,68}{19}} = 10,69$$

O bien, como x = 20,26

$$\sigma = \sqrt{\frac{9975}{19} - 20,26^2} = 10,69$$

Coeficiente de variación

$$\overline{x}$$
=12 σ =7 cv = $\overline{58,33}$ % \overline{x} =110 σ =7 cv = $\overline{6,36}$ % \overline{x} =1148,25 σ =7 cv = $\overline{0,60}$ %

4. Medidas de dispersión.

Rango y Desviación media

Las medidas de **dispersión** indican si los datos están más o menos agrupados respecto de las medidas de centralización.

 Rango o recorrido, es la diferencia entre el mayor y el menor valor de la variable, indica la longitud del intervalo en el que se hallan todos los datos.

Aunque el rango da una información importante, resulta más interesante calcular cuánto se desvían en promedio los datos de la media.

 Desviación media, es la media de los valores absolutos de las diferencias entre la media y los diferentes datos.

Varianza y desviación típica

Es otra forma de medir si los datos están o no próximos a la media y es la más utilizada.

- La varianza es la media de los cuadrados de las desviaciones.
- La desviación típica es la raíz cuadrada positiva de la varianza. Para designarla emplearemos la letra griega "sigma" σ.

$$\sigma = \sqrt{\frac{\sum fi \left(Xi - \overline{X}\right)^2}{n}} \quad \text{ o } \quad \sigma = \sqrt{\frac{\sum fi Xi^2}{n} - \overline{X}^2}$$

Es importante que entiendas el significado de estas medidas, cuanto mayores sean más dispersos estarán los datos.

Los intervalos alrededor de la media de amplitud 2 o 4 veces la desviación típica, tienen mucha importancia en estadística por el porcentaje de datos que hay en ellos.

Coeficiente de variación

Es el cociente entre la desviación típica y la media, se utiliza para comparar las dispersiones de datos de distinta media.

Por ejemplo, para los datos 4 y 6, el CV=1/5=0.2 y para 101 y 99 es CV=1/100=0.01. En ambos casos la desviación típica es la misma, pero en relación a la media es mas importante en el primero.

Utilizar la Calculadora científica

MODELO 1

Modo estadístico

Primero se ha de elegir el modo estadístico. En muchas calculadoras se hace pulsando:

$[MODE][\cdot]$

Datos desordenados

A continuación hay que introducir los datos, por ejemplo para 2, 3, 4, 3 teclearemos:

[2][M+] [3][M+] [4][M+] [3][M+]

Y para hacer los cálculos:

- Para la media [SHIFT] [x]
- Para la desviación típica [SHIFT] [σ_n]

También se puede sumar todos, o los cuadrados, o contar el nº de datos introducidos, pulsando respectivamente:

[SHIFT][Σx] [SHIFT][Σx^2] [SHIFT][n]

Datos en una tabla

xi fi Se introducen los datos según la

2 4 secuencia: [2][x][4][M+]

3 3 [3][×][3][M+]

4 5 [4][x][5][M+]

Y ahora ya se pueden realizar los cálculos como antes.

MODELO 2

Modo estadístico e introducción de datos Elegimos el modo estadístico (mode stat 1-VAR) y nos aparece una columna donde introducir datos, uno tras otro, no importa que vayan desordenados. Si tuviéramos una tabla con frecuencias tendríamos que activar las frecuencias (Setup frequency on) y rellenar las columnas. Después del último dato pulsar AC.

Cálculos

Pulsando SHIFT STAT nos aparece un menú, 1:type, 2:Data, 3:Edit, 4:Sum, 5:Var 6:MinMax. Con la opción 5:Var accederemos a calcular la media, desviación típica y cantidad de datos. Con la opción 4:sum las sumas que habitualmente necesitamos. Con la opción 6:MinMax el mínimo y el máximo. Y con la opción 2:Data podremos modificar los datos introducidos.

Nota: Hay muchos modelos de calculadoras, pero afortunadamente, todas son bastante parecidas, trata de averiguar por ti mismo el funcionamiento de la tuya si no coinciden con éstas, consulta el manual o pregunta a tu profesor.

EJERCICIOS resueltos

13. Calcula el rango y la desviación media de los datos:

8	8	12	8	9	8	8	8	8	7	5	12
7	12	11	7	9	5	5	7	9	7	8	11

$$x_i$$
 f_i $x_i f_i$ $\left| x_i - \overline{x} \right| f_i$ Solución:

La media:
$$\overline{x} = \frac{147}{20} = 7.4$$

8 3 24 1,8 Calculamos la desviación de cada dato respecto a la media,

14. Calcula la desviación media de los datos tabulados siguientes:

$$x_i$$
 f_i $x_{i'}f_i$ $|x_i - \overline{x}| \cdot f_i$ Solución: [0,200) 100 7 700 2831,82 Calculamos la media: [200,400) 300 8 2400 1636,36 $\overline{x} = \frac{22200}{44} = 504,55$

2768,18

9054,55

1759,09 Completamos la última columna:

$$DM = \frac{9054,55}{44} = 205,59$$

[600,800)

[800,1000) 900

700

9

7

Total: 44 22200

6300

6300

EJERCICIOS resueltos

15. Calcula la media y la desviación típica en

Solución:

a)
$$\overline{X} = \frac{250 + 200}{2} = 225$$
 $\sigma = \sqrt{\frac{(250 - 225)^2 + (200 - 225)^2}{2}} = \sqrt{\frac{25^2 + 25^2}{2}} = 25$ b) $\overline{X} = \frac{175 + 275}{2} = 225$ $\sigma = \sqrt{\frac{(175 - 225)^2 + (275 - 225)^2}{2}} = \sqrt{\frac{50^2 + 50^2}{2}} = 50$

16. Calcula la media y la desviación típica en:

a)
$$\bar{X} = \frac{7+5+3+2+4+5}{6} = \frac{26}{6} = 4,33$$

$$\sigma = \sqrt{\frac{7^2+5^2+3^2+2^2+4^2+5^2}{6} - 4,33^2} = \sqrt{\frac{128}{6} - 18,75} = 1,59$$

b)
$$\overline{X} = \frac{20 + 25 + 20 + 22 + 21}{5} = \frac{108}{5} = 21,6$$

$$\sigma = \sqrt{\frac{20^2 + 25^2 + 20^2 + 22^2 + 21^2}{5} - 21,6^2} = \sqrt{\frac{2350}{5} - 466,56} = 1,85$$

17. ¿Cuál de las dos distribuciones anteriores presenta mayor dispersión?

Solución:

Las desviaciones típicas son muy similares 1,59 y 1,85 Para comparar calculamos el coeficiente de variación: a) $CV=(1,59/4,33)\cdot 100=36,72\%$ b) $CV=(1,85/21,6)\cdot 100=8,56\%$ Ahora se puede apreciar que la dispersión es mucho mayor en la distribución a).

18. Calcula la media y la desviación típica de los datos agrupados siguientes:

X _i	5	10	15	20	25	30
f _i	9	2	3	5	9	4

Solución:

Xi fi Xi fi
$$(X-Xi)^2$$
 fi fi Xi
5 9 45 1371,31 225
10 2 20 107,86 200
15 3 45 16,47 675
20 5 100 35,27 2000
25 9 225 527,56 5625
30 4 120 640,72 3600
32 555 2699,21 12325
2° Forma \overline{X} =17,34 σ = $\sqrt{\frac{12325}{32}}$ - 17,34 2 = 9,18

19. ¿Cuál es el coeficiente de variación de la distribución anterior?

Solución:
$$CV = \frac{9,18}{17,34} \cdot 100 = 52,94\%$$

Estadística

Para practicar

- 1. ¿Cuántas personas suponen una muestra del 5% de una población de 20.000 habitantes? ¿Y de una de 1000 habitantes?.
- 2. De una población de 30000 individuos se ha estudiado varias características en 150 individuos. ¿Qué porcentaje del total ha sido estudiado?
- 3. Un veterinario estudia las siguientes características en una muestra de animales de una granja tipo de animal, peso, color de los ojos, temperatura corporal, número de compañeros y metros cuadrados por animal.
- Haz un recuento de los siguientes datos, un gráfico de sectores y otro de barras. Indica el ángulo de cada sector.

a	b	С	a	С	С
d	С	d	b	d	а
d	а	b	b	С	С
a	a	b	а	b	d

5. Haz un recuento de los siguientes datos y un diagrama de barras con polígono de frecuencias

3	3	1	1	3	2
3 2 2	3	2	1	3	2
2	3	1	1	4	3
2	2	4	4	3	3

6. Agrupa los siguientes datos en 10 grupos. Agrupa los mismos datos, ahora, en 5 grupos.

	- 1	9 1			
3	6	5	9	2	6
2	2	7	9	4	6
2	5	9	9	1	0
2	5	3	6	7	8
6	4	3	6	7	9
10	10	9	1	6	8
6	2	3	9	6	5
6	6	5	7	6	6
10	1	3	4	4	4

- 7. Calcula la media en cada caso:
- a) 14,16, 18 b) 24, 26, 28, 26
- c) 1000, 1200, 1800, 2000

8. Calcula la media de los siguientes datos

3	3	1	1	3	2
3 2 2	3	2	1	3	2
2	3	1	1	4	3
2	2	4	4	3	3

Calcula la media de los siguientes datos

10	1,5	18	20	16	1
9,5	5,50	15,5	6,5	4,5	4
8,5	7,5	1,5	15	13	0
20	12,5	7,5	4,5	14,5	9

10. Determina la moda para los datos

3	3	1	1		2
3	3	2	1	3	2
2	3	1	1	4	3
2	2	4	4	3	3

- **11.** Calcula la mediana, el primer y el segundo cuartil de los datos del ejercicio anterior.
- **12**. Calcula de desviación media en cada caso:
- a) 14, 16, 18 b) 34, 36, 38, 36
- c) 1000, 1200, 1800, 2000

13. Calcula el rango y la desviación media de los datos:

23	8	21	24	20	9
33	20	11	36	13	1
40	25	30	12	18	5
40	27	16	26	9	7

14. Calcula la desviación media de los datos tabulados siguientes:

Intervalo	Marca = Xi	Fr	Fi ∙ X-Xi
[0, 200]	100	1	450
[200, 400)	300	3	750
[400,600)	500	3	150
[600,800)	700	2	300
[800 , 1000	900	3	1050

- 15. Calcula la media y la desviación típica en
 - a) 2000, 2500
 - b)1750, 2750
 - c) 2500, 2500
- 16. Calcula la media y la desviación típica de los datos:

3	1	1	3	1	4
4	4	4	1	1	4
4	2	2	2	3	2
4	2	4	2	1	3

- 17. Calcula el coeficiente de variación de los datos del ejercicio anterior.
- 18. Calcula la media y la desviación típica de los datos:

25	29	40	9	32	4
15	35	26	24	16	2
11	16	37	10	30	2
35	17	8	40	38	5

- 19. Calcula el coeficiente de variación de los datos del ejercicio anterior.
- 20. Calcula la media y la desviación los datos típica de agrupados siguientes:

Χi fi 5 7

10 0

15 - 2 20 2

25 4

30 2

21. Haz los cálculos para un millón de habitantes en cada comunidad.

Tasa de criminalidad. 2006 Infracciones penales por 1.000 hab.

Tasas más altas

Illes Balears	78,8
Comunidad de Madrid	70,8
Comunitat Valenciana	67,5
Ceuta	67,4
Cataluña	65,3

22. De cada millón de viajeros, ¿cuántos corresponden cada а Viajeros que utilizan transporte interurbano, 2007

Fuentes: INE, RENFE, FEVE, D. Gral. de Aviación Civil y D. Gral. de Puertos y Costas

23. ¿Cuántos conductores había en el año 2002? ¿Cuántos eran hombres y cuántas mujeres?

Censo de conductores

Fuente: Dirección General de Tráfico

24. ¿Entre qué años aumentaron más detenidos por infracciones penales?

Tasa de detenidos

Fuente: Ministerio del Interior

El Instituto Nacional de Estadística publica periódicamente datos como estos. Consulta la web. (www.ine.es)

Equipamiento tecnológico de los hogares

Según datos de la Encuesta sobre Equipamiento y Uso de las Tecnologías de Información y Comunicación en los Hogares, en 2007 el 99% de los hogares dispone de teléfono (ya sea fijo o móvil), el 99,5% dispone de televisión y el 22,8% tiene recepción de televisión digital terrestre (TDT). En una de cada cinco viviendas con televisión, alguna de ellas es de pantalla plana (plasma, LCD). El DVD se halla presente en tres de cada cuatro hogares, en detrimento del vídeo.

Un 60,4% dispone de algún tipo de ordenador.

La banda ancha gana adeptos

6,5 millones de viviendas familiares tienen acceso a internet (un 44,6% del total). El 39% de los hogares disponen de conexión mediante banda ancha (ADSL, red de cable,...), lo que supone un incremento de 10 puntos respecto al año 2006. El mayor porcentaje de viviendas con acceso a internet se da en Comunidad de Madrid (56,6%) y Cataluña (51,3%). La diferencia en puntos porcentuales entre sexos respecto a los principales indicadores de uso de TIC se reduce en 2007, tanto en el uso de ordenador como en los usuarios frecuentes; sin embargo, aumenta en el acceso a

internet. El 60,5% de los varones han usado internet alguna vez frente a un 54,1% de las mujeres. En la Unión Europea, los países que disponen de indicadores TIC superiores a la media se encuentran, principalmente, en el norte de Europa. Por debajo de la media, se sitúan los países del área mediterránea o los que son de reciente ingreso.

Uso de TIC en hogares. 2007

	Hogares con acceso a internet (%)	Personas que compraron por internet (%)
Países Bajos Suecia Dinamarca Luxemburgo	83 79 78 75	55 53 56 47
Alemania Finlandia Reino Unido Bélgica	71 69 67 60	52 48 53 21
Austria Eslovenia Irlandia	58 57	36 16 33
Estonia Letonia Francia Eslovaquia	54 53 51 49 46	9 11 :
España	45	18
Lituania Italia Polonia Portugal Chipre	44 43 41 40 39	6 10 16 9 10
Hungría República Checa Grecia Rumania Bulgaria Malta	38 35 25 22 19	11 17 8 3 3
: Dato no disponib	le	Fuente: Furostat

: Dato no disponible

Fuente: Eurostat

Utilizar la Hoja de Cálculo

Α 3 1 2 4 3 3 4 5 4 6 6 3 7 8 9 4

Introducción de datos y primeros cálculos

En general, las siguientes opciones están disponibles en todas las hojas de cálculo, en particular en la de Openoffice y en Excel.

✓ Abre una hoja de cálculo e introduce los datos 3, 4, 5, 3, 4, 6, 3, 3, 4 en la columna A, en A1, A2,... estos valores serán los datos sobre los que haremos los primeros cálculos.

Los datos están en el área "A1: A9" de la hoja de cálculo.

Si los datos estuvieran en 3 filas x 3 columnas, empezando por A1, sería "A1:C3".

Y por ejemplo, si con el ratón selecciono las celdas de la imagen adjunta, el área que cubro es "A2:C3".

	Α	В	С
1	3		
2	4		
3	5		
A	2		-

Hay funciones para todas y cada uno los cálculos estadísticos que hemos estudiado y muchas más que puedes investigar por tu cuenta. Las funciones hacen cálculos con los números del área que se les proporciona.

Veamos como se harían los cálculos para los datos que hemos introducido. Haremos los cálculos en la columna C, la B la usaremos para indicar el nombre del cálculo que hay a continuación.

	B26	- fx	
	Α	В	С
1	3	Moda	3
2	4	Máximo	6
3		Mínimo	3
4	3	Rango	3
5	4	Suma	35
6	(Media	3,888888889
7	3	Mediana	4
8	3	Cuartil 1º	3
9	4	Cuartil 3º	4
10		Desviación típica	1,054092553
11		Desviación media	0,790123457
12			

Moda: En la celda C1 introduce la fórmula = **moda(A1:A9)**.

Máximo: En C2 escribe =máx(A1:A9)
Mínimo: Introduce =min(A1:A9)

Rango: =C2-C3

Suma: =suma(A1:A9)

Media: =promedio(área) Recuerda lo que es el área de los datos, A1:A9

Mediana: =mediana(área)

Cuartil 1°. =cuartil(área;1)

Cuartil 3°. =cuartil(área;3)

Desviación media: =desprom(área) Desviación típica: =desvest(área)

Ejercicio

Introduce datos en un área mas grande que la anterior, al menos de 20 celdas y haz todos los cálculos de dos formas, con la hoja de cálculo y como lo has estudiado. Si todos los resultados son correctos esta hoja te vale para cualquier conjunto de datos de ese tamaño.

ANEXO

Valores aleatorios.

Si en 20 celdas escribimos =aleatorio() (podemos escribirlo en una y copiarlo en las otras) tendremos 20 datos entre 0 y 1 aleatorios. Si queremos que sean números comprendidos entre 0 y 20 escribiremos =20*aleatorio() Y si queremos que no lleven decimales escribiremos =entero(20*aleatorio()) De esta forma nos inventamos 20 datos para hacer cálculos estadísticos.

Contar

Si tenemos introducidos una cantidad grande de datos. Con la función **=contar(área)** nos da la cantidad de números del área (imagina que hay celdas vacías y no es fácil contar las que están rellenas de números).

Si lo que tenemos son datos cualitativos (textos) usaremos =contara(área) para que nos cuente las celdas ocupadas del área indicada.

Agrupar datos.

• En variable discreta. Si en un área de la hoja de cálculo tenemos 20 números enteros entre 0 y 4, por ejemplo. ¿Cómo podemos contar cuántos de ellos son un 4? Escribiremos en una celda en blanco =contar.si(área;4). Para contar el resto usaremos en la celda que nos convenga =contar.si(área;0), =contar.si(área;1), =contar.si(área;2), ...

14	Dato	s	Marca	Frecuencia
15	1	4	X1=0	5
16	0	0	X2=1	2
17	3	0	X3=2	5
18	2	3	X4=3	3 5
19	2	3	X5=4	5
20	4	4		Suma
21	2	1		20
22	4	0		
23	0	4		
24	2	2		

Por ejemplo. En la imagen de la izquierda hay 20 datos generados aleatoriamente entre 0 y 4. En la columna Marca indico que valores voy a contar en la siguiente columna, y en la columna frecuencia uso la fórmula '=contar.si(área;valor)' escribiendo: =contar.si(área;0), =contar.si(área;1), =contar.si(área;2), ...

Y finalmente compruebo sumando las frecuencias que se han contado todos los datos (en la celda D21 escribo =suma(d15:d19).

Ejercicio. Genera 20 datos aleatorios entre 0 y 4 y haz una tabla de frecuencias usando la función contar.si Calcula todos los parámetros estadísticos estudiados (rango, máximo, mínimo, media,...).

- En variable continua. Si tenemos 100 alturas entre 150 y 200 centímetros en un área de una hoja de cálculo y queremos saber cuántas están en el intervalo [150,160) usaremos =contar.si(area;">=150")-contar.si(area;">=160") ; para el intervalo [160,170) usaremos =contar.si(area;">=160")-contar.si(area;">=170") y así para cada uno de los intervalos.
- En **variable cualitativa**. Si lo que tenemos es 100 colores y queremos saber cuántos rojos hay se escribe: **=contar.si(área;"rojo")**

Clasificar

Según el tipo de variable que empleemos, usaremos la fórmula 'contar.si' sobre el área de datos tantas veces como sea necesario para clasificar todos los datos y nos pueda ser de utilidad. Así, para colores usaremos =contar.si(área; "rojo"), =contar.si(área; "verde"), ... tantas veces como colores tengamos, de forma ordenada, en una columna por ejemplo.

Ejemplo

Vamos a inventarnos el peso de 50 personas con valores entre 50 y 110. Usaremos la fórmula =aleatorio()*60+50, si queremos que sean valores enteros se pone =entero(aleatorio()*50+50) y la copiaremos en el área A1:E10.

Ahora hay que clasificar los datos. Como todos están entre 50 y 110 los intervalos tendrán que reflejarlo. Vamos ha realizar dos tablas distintas, una con valores de 20 en 20 y otra con valores de 10 en 10

Para primera, copiaremos la siguiente tabla en un lugar vacío de la hoja de cálculo

Intervalo, marca	Frecuencia
[50,70] 60	=contar.si(A1:E10;">=50")-contar.si(A1:E10;">=70")
[70,90] 80	=contar.si(A1:E10;">=70")-contar.si(A1:E10;">=90")
[90,110] 100	=contar.si(A1:E10;">=90")-contar.si(A1:E10;">=110")

Para la segunda, copiaremos esta tabla.

Intervalo, marca		Frecuencia
[50,60]	55	=contar.si(A1:E10;">=50")-contar.si(A1:E10;">=60")
[60,70]	65	=contar.si(A1:E10;">=60")-contar.si(A1:E10;">=70")
[70,80]	75	=contar.si(A1:E10;">=70")-contar.si(A1:E10;">=80")
[80,90]	85	=contar.si(A1:E10;">=80")-contar.si(A1:E10;">=90")
[90,100]	95	=contar.si(A1:E10;">=90")-contar.si(A1:E10;">=100")
[100,110]	105	=contar.si(A1:E10;">=100")-contar.si(A1:E10;">=110")

Ejercicio

Genera 100 números de 0 a 80 y haz dos agrupaciones en intervalos distintas. Por ejemplo, una de 10 en 10 y otra de 20 en 20.

Gráficos

Sencillo y sin etiquetas. Basta con seleccionar el área de las frecuencias de los datos y crear el gráfico pulsando en gráficos del menú insertar. Después podemos elegir el tipo de gráfico que queremos, y el aspecto de este entre una gran variedad de opciones que incorporan todas las hojas de cálculo.

Con etiquetas: Lo más sencillo es utilizar la primera fila o primera columna para las etiquetas. En las opciones del gráfico habrá que activar y/o desactivar la que corresponda con la forma de presentar los datos en la hoja.

Ejercicio

Haz dos gráficos diferentes, uno para cada una de las distribuciones del ejercicio anterior.

N° de hermanos: 4 3 2 3 1 2 0 2 0 1 2 3 1 2 4 0 1 1 4 1 1 4 0 4 2 0 4 1

Recuento de datos:

xi	fi	xi fi	fi·(xi-X)
0	5	0	0
1	8	8	6,37
2	6	12	0,06
3	3	9	3,67
4	6	24	26,64
Tota	1 28	53	54.67

Gráficos de sectores y barras

Media y moda

Media =
$$\overline{X} = \frac{53}{28} = 1.89$$

Moda = Mo = 1

Cuartiles y mediana

Rango.

De 0 a 4, de amplitud 4

Desviación típica

$$\sigma = \sqrt{\frac{54.67}{28}} = 1.39$$

Coeficiente de variación

$$CV = 1.39 / 1.89 = 0.73 = 73\%$$

Variables estadísticas:

- Cualitativa, color preferido;
- Cuantitativa discreta, nº de hermanos
- cuantitativa continua, altura.

Altura: 172 162 147 184 140 156 153 186 157 189 162 175 162 158 163 150 152 163 151 182 146 154 163 170 183 162 176 167 168 165

Intervalo	Xi	fi	x _i · f _i	$(x_i - x)^2 \cdot f_i$
[140,150)	145	3	435	1200
[150,160)	155	8	1240	800
[160,170)	165	10	1650	0
[170,180)	175	4	700	400
[180,190)	185	5	925	2000
	Total	30	4950	4400

Media:

$$\frac{-}{x} = \frac{4950}{30} = 165$$

Varianza y Desviación típica:

$$\sigma^2 = \frac{4400}{30} = 146,67$$
 $\sigma = \sqrt{146,67} = 12,11$

Coeficiente de variación:

$$CV = 12,11/165 = 0,073 = 7,3\%$$

Histograma y polígono de frecuencias:

Autoevaluación

1. Haz un recuento de los datos siguientes

2	3	2	4	1	3
3	3	4	3	2	1
3	4	3	2	1	2
1	1	3	1	3	3

- 2. Haz un gráfico de barras para los datos anteriores.
- 3. Calcula la media de los datos dados por la tabla

Xi		fi	
	1		11
	2		3
	3		5
	4		5

- 4. Calcula la mediana de los datos anteriores.
- 5. Calcula el primer cuartil de los datos del ejercicio 3
- 6. Calcula el tercer cuartil de los datos del ejercicio 3
- 7. Calcula en rango de los datos del ejercicio 3
- 8. Calcula la desviación media de los datos anteriores
- 9. Calcula la desviación típica de los datos del ejercicio 3
- 10. Calcula el coeficiente de variación para los datos del ejercicio 3

Soluciones de los ejercicios para practicar

- 1. a) 400 b) 50
- 2. 0,5%
- 3. V- cualitativa: tipo animal, color de ojos.
 - V. cuantitativa discreta: número de compañeros.
 - V. cuantitativa continua: peso, temperatura y metros cuadrados.

4. a→7, b→6, c→6 y d→5

5. 0→0, 1→5, 2→6, 3→10, 4→3

- 6. En 10: $1 \rightarrow 3$, $2 \rightarrow 6$, $3 \rightarrow 5$, $4 \rightarrow 5$, $5 \rightarrow 5$, $6 \rightarrow 13$, $7 \rightarrow 4$, $8 \rightarrow 2$, $9 \rightarrow 7$ y $10 \rightarrow 4$. En 5: $(1 \circ 2) \rightarrow 9$, $(3 \circ 4) \rightarrow 10$, $(5 \circ 6) \rightarrow 18$, $(7 \cup 8) \rightarrow 6$ y $(9 \circ 10) \rightarrow 11$
- 7. a) (14+16+18)/3 = 16 b) (24+26+28+26)= 104/4 = 26 c) (1000+1200+1800+2000)/4=1500
- 8. $\overline{X} = 2.46$
- 9. $\overline{X} = 9.77$

- 10. Mo = 3, es el valor que mas veces aparece, 10 en total.
- 11. $1 \rightarrow 5$, $2 \rightarrow 6$, $3 \rightarrow 10$ y $4 \rightarrow 3$. Mediana = 3, Q1=2 y Q3=3
- 12. a) (2+0+2)/3 = 1,3333...b) (2+0+2+0) = 4/4 = 1c) (500+300+300+500)/4 = 1600/4=400
- 13. El rango oscila entre 1 y 40 con una amplitud de 39. \overline{X} = 20,58 , DM=8,92

$$DM = \frac{2700}{12} = 225$$

- **15.** a) $\overline{X} = 2250$ $\sigma = 250$
 - b) $\overline{X} = 2250$ $\sigma = 500$
 - c) $\overline{X} = 2500$ $\sigma = 0$
- **16.** Media = 2,58 D. típica = 1,21
- **17.** CV = 1,21/2,58 = 0,46
- **18.** $\overline{X} = 21,08 \text{ y } \sigma = 12,98$
- **19.** CV= 0.62
- **20.** $\overline{X} = 15,58 \text{ y } \sigma = 9,68$
- 21. 78800, 70800, 67500, 67400 y 65300
- 22. Carretera 67500, aéreo 22000, marítimo 5000 y ferrocarril 298000
- 23. Aproximadamente 22.000.000, de los que hombres son 14.000.000 y mujeres 8.000.000

Soluciones AUTOEVALUACIÓN

- 3. $\bar{x} = 2.17$
- 4. Me= 2

- 5. Q1 = 1
- $6. \quad Q3 = 3$
- 7. rango=3
- 8. DM = 1,11
- 9. $\sigma = 1.24$
- 10.Cv = 0.571

No olvides enviar las actividades al tutor