

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

1 1. (Currently Amended) A server network comprising:
2 a plurality of cluster nodes connected via a SAN according to a SAN-based
3 protocol, each of the cluster nodes to perform communication according to the SAN-based
4 protocol; and

5 at least first and second router nodes bridging the plurality of cluster nodes to a
6 LAN,

7 wherein the router nodes are connected to the plurality of cluster nodes via the
8 SAN according to the SAN-based protocol and,

9 wherein the router nodes are connected to the LAN via a LAN-based protocol.

1 2. (Cancelled)

1 3. (Currently Amended) The network of claim [[2]] 1, wherein the LAN-based
2 protocol is TCP/IP.

1 4. (Cancelled)

1 5. (Currently Amended) The network of claim 1, wherein the SAN-based protocol
2 is one of INFINIBAND® INFINIBAND, Next Generation I/O (NGIO), and Future I/O (FIO).

1 6. (Cancelled)

1 7. (Previously Presented) The network of claim 1, wherein the second router node
2 bridges to the plurality of cluster nodes after the first router node fails-over to the second router
3 node.

1 8. (Previously Presented) The network of claim 1, wherein the first and second
2 router nodes bridge to the plurality of cluster nodes in parallel.

1 9. (Previously Presented) The network of claim 1, wherein each router node
2 comprises a session management agent for maintaining session information for sessions between
3 the router node and a cluster node of the plurality of cluster nodes.

1 10. (Previously Presented) The network of claim 1, wherein each router node
2 comprises a policy management agent for maintaining connection information and routing
3 policies for the plurality of cluster nodes.

1 11. (Previously Presented) The network of claim 1, wherein each router node
2 comprises a routing agent for maintaining connection information for the plurality of cluster
3 nodes.

1 12. (Previously Presented) The network of claim 1, wherein each router node
2 comprises a filter agent for bidirectional conversion between the SAN based protocol and a LAN
3 based protocol.

1 13. (Currently Amended) A server network comprising:
2 a plurality of cluster nodes connected [[via]] to a SAN according to a SAN-based
3 protocol, each of the cluster nodes to perform communication according to the SAN-based
4 protocol; and
5 at least one router node bridging the plurality of cluster nodes to a LAN,
6 wherein at least one cluster node comprises a management node for setting
7 routing policies on the router node.

1 14. (Previously Presented) The network of claim 13, wherein the management node
2 comprises a monitoring agent for obtaining statistics from the router node.

1 15. (Previously Presented) The network of claim 1, wherein a cluster node of the
2 plurality of cluster nodes comprises a session management agent for holding session information.

1 16. (Previously Presented) The network of claim 1, wherein a cluster node comprises
2 a policy management agent for maintaining routing policies for the plurality of cluster nodes.

1 17. (Previously Presented) A method of bridging a remote LAN client and plural
2 SAN cluster nodes, comprising:

3 receiving a request to establish a connection from the remote LAN client;

4 in response to the received request, accessing information that maps service types
5 to respective SAN cluster nodes;

6 based on a service type specified by the received request and based on accessing
7 the information, selecting one of the plural SAN cluster nodes;

8 receiving a LAN protocol communication from the remote LAN client;

9 transforming the LAN protocol communication into a SAN protocol

10 communication; and

11 sending the SAN protocol communication to the selected one of the SAN cluster
12 nodes.

1 18. (Cancelled)

1 19. (Previously Presented) The method of claim 17, further comprising:

2 maintaining statistical information for the SAN cluster nodes.

1 20 - 21. (Cancelled)

1 22. (Currently Amended) A router comprising:
2 a session management agent to maintain session information for sessions with a
3 plurality of cluster nodes over a LAN;
4 a routing agent to maintain connection information for the plurality of cluster
5 nodes connected via a SAN according to a SAN-based protocol, wherein the connection
6 information maps service types to respective cluster nodes, each of the cluster nodes to perform
7 communication according to the SAN-based protocol,
8 the routing agent to receive a service request that specifies a service type, and the
9 routing agent to select one of the cluster nodes based on the specified service type and the
10 connection information; and
11 a filter agent to convert between the SAN-based protocol and a LAN-based
12 protocol.

1 23. (Original) The router of claim 22, further comprising:
2 a policy management agent to maintain routing policies for the plurality of cluster
3 nodes.

1 24. (Previously Presented) The router of claim 22, wherein the connection
2 information comprises a policy table.

1 25. (Previously Presented) The router of claim 22, wherein the SAN-based protocol
2 is different from the LAN-based protocol.

1 26. (Previously Presented) The router of claim 22, wherein the connection
2 information further comprises information to indicate authentications to be performed for
3 respective service types.

1 27. (Previously Presented) The router of claim 22, wherein the connection
2 information further comprises weighting factor information to indicate a proportion of service
3 requests to be directed to a respective cluster node for a particular service type.

1 28. (Previously Presented) The network of claim 1, wherein the cluster nodes
2 connected via the SAN are viewed by a remote client as being assigned a single IP address.

1 29. (Previously Presented) The network of claim 2, wherein each router node
2 includes an agent to convert between communication according to the SAN-based protocol and
3 communication according to the LAN-based protocol, the SAN-based protocol being different
4 from the LAN-based protocol.

1 30. (Previously Presented) The network of claim 29, wherein each router node stores
2 session information to route data from remote LAN clients to the cluster nodes.

1 31. (Previously Presented) A method comprising:
2 receiving, by a router, a service request from a client over a LAN that operates
3 according to a LAN-based protocol;
4 in response to the service request, the router accessing connection information
5 mapping service types to respective SAN nodes that are interconnected by a SAN that operates
6 according to a SAN-based protocol, the SAN-based protocol being different from the LAN-
7 based protocol; and
8 in response to a service type requested by the service request and based on the
9 connection information, the router selecting one of the SAN nodes to establish a connection
10 between the client and selected SAN node.

1 32. (New) The method of claim 31, further comprising each of the SAN nodes
2 communicating across the SAN according to the SAN-based protocol.