PROBLEM SET 2 (DUE 02/05/25)

SHUDDHODAN KADATTUR VASUDEVAN

1**1. Prove the following: For any morphism $f: X \to Y$ of finite type between Noetherian schemes and \mathscr{F} a coherent sheaf on X. The locus in X

$$\{x \in X | \mathscr{F} \text{ is flat over } Y \text{ at } x\},\$$

is open.

- 2. Let $f: X \to Y$ be a morphism from a reduced scheme to a Noetherian normal scheme Y of dimension 1. Then f is flat iff every generic point of X maps to a generic point of Y. **HINT:** Use the fact that the local rings of Y are PID's and that flatness is the same as torsion freeness over a PID. First assume X is integral and solve the problem. Then see what is that you need and do the general case.
- 3. Let X be a scheme and let $\{U_i\}_{1 \leq i \leq n}$ be a finite open cover. Let $Y := \sqcup_i U_i$ and let $f: Y \to X$ be the natural map. Verify faithfully flat descent of quasi-coherent sheaves for f.
- 4. In this exercise we will see an application of Galois descent. A rank one torus T over $\mathbb R$ is an affine group scheme such that $T\times_{\mathbb R}\mathbb C\simeq \operatorname{GL}_1$ as affine group schemes over $\mathbb C$. Assume that the endomorphism group of GL_1 (as an affine group scheme) is $\mathbb Z$.². Classify all rank one tori over $\mathbb R$.

HINT: First come up with a \mathbb{R} -torus which is **not** isomorphic to GL_1 as \mathbb{R} -group schemes but becomes isomorphic to it over \mathbb{C} . For this you may want to use the coordinate ring $\frac{\mathbb{C}[x,y]}{xy-1}$. Then use Galois descent to give an upper bound on the possible number of such tori.

5. Let $\pi: \tilde{X} \to X$ be the normalization of a non-normal one-dimensional integral scheme of finite type over a field. Show that π is never flat.

Date: February 10, 2025.

¹Skip this for now. We will revisit this after we discuss Tor

²This is not hard. We will eventually prove this.