Fast Online Training with Frequency-Adaptive Learning Rates for Chinese Word Segmentation and New Word Detection

The Hong Kong Polytechnic University Peking University

Outline

- Introduction
- Method
 - Joint modeling: word segmentation + new word detection
 - New features
- A new online training method
 - Feature-frequency adaptive online training
 - Finish the training in 10 passes
- Experiments
- Conclusions

Introduction

3 proposals in this work

Introduction

3 proposals in this work

◆ 1) Joint modeling

word segmentation + new word detection

2) New features

high dimensional edge features on CRFs

Introduction

3 proposals in this work

1) Joint modeling

word segmentation + new word detection

2) New features

high dimensional edge features on CRFs

3) Very Fast online training **major proposal**

• finish the training in 10 passes

- Prior work on word seg & new word detection
 - Separate: two tasks are independent

Prior work on word seg & new word detection

- Separate: two tasks are independent
- Pipeline: first word seg, then new word detection

◆Our work

- Joint modeling: word seg + new word detection
- For simplicity, we use a single CRF model

◆Our work

- Joint modeling: word seg + new word detection
- For simplicity, we use a single CRF model

9

2) New features

◆ Traditional features are character ngrams

2) New features

- Traditional features are character ngrams
- New features: word-based ngrams
 - Word lexicon is collected from training data
 - Word unigram features
 - Word bigram features

2) New features

- Traditional features are character ngrams
- New features: word-based ngrams
 - Word lexicon is collected from training data
 - Word unigram features
 - Word bigram features

- Traditional edge features avoid observations
 - to avoid feature explosion

- Traditional edge features avoid observations
 - to avoid feature explosion

- Traditional edge features avoid observations
 - to avoid feature explosion
- Proposal: New edge features involving observations
 - Tractable feature explosion: #feature increased 9 times
 - \rightarrow 10 millions features

- Traditional edge features avoid observations
 - to avoid feature explosion
- Proposal: New edge features involving observations
 - Tractable feature explosion: #feature increased 9 times
 - \rightarrow 10 millions features

Large-scale word segmentation is already slow

Large-scale word segmentation is already slow

With high dimensional new features (10 millions)

>Even more slower training speed than before

- Large-scale word segmentation is already slow
- With high dimensional new features (10 millions)
- >Even more slower training speed than before
- → Need a fast training method, even with 10 millions of features

Batch training

- Limited memory BFGS (LBFGS)
- Too slow, need 300 passes for training

Batch training

- Limited memory BFGS (LBFGS)
- Too slow, need 300 passes for training

Existing online training methods

- Stochastic gradient descent (SGD)
- Moderately fast, need 50 passes for training

Batch training

- Limited memory BFGS (LBFGS)
- Too slow, need 300 passes for training

Existing online training methods

- Stochastic gradient descent (SGD)
- Moderately fast, need 50 passes for training

Main proposal: a very fast online training method

• Finish the training in 10 passes

Potential problem of existing online training

- Over-simplified setting
- Learning rate: use only 1 scalar for all weights

Potential problem of existing online training

- Over-simplified setting
- Learning rate: use only 1 scalar for all weights

$$oldsymbol{w}_{t+1} = oldsymbol{w}_t + oldsymbol{\nabla}_{oldsymbol{w}_t} oldsymbol{\mathcal{L}}_{stoch}(oldsymbol{z}_i, oldsymbol{w}_t)$$

better to use different learning rates for different features?

- better to use different learning rates for different features?
- →YES. We use a vector of learning rates

- better to use different learning rates for different features?
- →YES. We use a vector of learning rates

$$oldsymbol{w}_{t+1} = oldsymbol{w}_t + oldsymbol{\gamma}_t \cdot oldsymbol{g}_t$$
 $oldsymbol{\gamma}_t \in \mathbb{R}_+^f$

$$\boldsymbol{g}_t = \nabla_{\boldsymbol{w}_t} \mathcal{L}_{stoch}(\boldsymbol{z}_i, \boldsymbol{w}_t) = \nabla_{\boldsymbol{w}_t} \left\{ \ell(\boldsymbol{z}_i, \boldsymbol{w}_t) - \frac{||\boldsymbol{w}_t||^2}{2n\sigma^2} \right\}$$

- better to use different learning rates for different features?
- →YES. We use a vector of learning rates

- better to use different learning rates for different features?
- →YES. We use a vector of learning rates
- ◆ → Learning of Learning rates: How to learn the values of the learning rates?

- better to use different learning rates for different features?
- →YES. We use a vector of learning rates
- ◆ → Learning of Learning rates: How to learn the values of the learning rates?

*Learning rates are learned from feature frequency information

*Higher frequency feature → lower learning rate

ADF learning algorithm

```
1: procedure ADF(q, c, \alpha, \beta)
 2: \boldsymbol{w} \leftarrow 0, t \leftarrow 0, \boldsymbol{v} \leftarrow 0, \boldsymbol{\gamma} \leftarrow c
 3: repeat until convergence
 4: . Draw a sample z_i at random
 5: v \leftarrow \text{UPDATE}(v, z_i)
 6: if t > 0 and t \mod q = 0
 7: \gamma \leftarrow \text{UPDATE}(\gamma, v)
 8: \boldsymbol{v} \leftarrow 0
 9: \boldsymbol{g} \leftarrow \nabla_{\boldsymbol{w}} \mathcal{L}_{stoch}(\boldsymbol{z}_i, \boldsymbol{w})
10: \boldsymbol{w} \leftarrow \boldsymbol{w} + \boldsymbol{\gamma} \cdot \boldsymbol{g}
11: t \leftarrow t + 1
```

ADF learning algorithm

```
1: procedure ADF(q, c, \alpha, \beta)
```

2:
$$\boldsymbol{w} \leftarrow 0, t \leftarrow 0, \boldsymbol{v} \leftarrow 0, \boldsymbol{\gamma} \leftarrow c$$

3: **repeat** until convergence

4: Draw a sample z_i at random

5: $v \leftarrow \text{UPDATE}(v, z_i)$

6: **if** t > 0 and $t \mod q = 0$

7: . . $\gamma \leftarrow \text{UPDATE}(\gamma, v)$

8: $\boldsymbol{v} \leftarrow 0$

9: $\boldsymbol{g} \leftarrow \nabla_{\boldsymbol{w}} \mathcal{L}_{stoch}(\boldsymbol{z}_i, \boldsymbol{w})$

10: $\boldsymbol{w} \leftarrow \boldsymbol{w} + \boldsymbol{\gamma} \cdot \boldsymbol{g}$

11: $t \leftarrow t + 1$

12: **return** *w*

ADF learning algorithm

```
    procedure ADF(q, c, α, β)
    w ← 0, t ← 0, v ← 0, γ ← c
    repeat until convergence
    Draw a sample z<sub>i</sub> at random
    v ← UPDATE(v, z<sub>i</sub>)
    if t > 0 and t mod q = 0
```

7: .
$$\gamma \leftarrow \text{UPDATE}(\gamma, v)$$

8:
$$\boldsymbol{v} \leftarrow 0$$

9:
$$\boldsymbol{g} \leftarrow \nabla_{\boldsymbol{w}} \mathcal{L}_{stoch}(\boldsymbol{z}_i, \boldsymbol{w})$$

10:
$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \boldsymbol{\gamma} \cdot \boldsymbol{g}$$

11:
$$t \leftarrow t + 1$$

12: **return** *w*

Convergence Analysis

 Good convergence properties of the proposed method

The ADF training is convergent

Theorem 1 Assume ϕ is the largest eigenvalue of the function $C_t = \prod_{m=1}^t (I - \gamma_0 \beta^m H(\mathbf{w}^*))$. For the proposed ADF training, its convergence rate is bounded by ϕ , and we have

$$\phi \le \exp\big\{\frac{\gamma_0 \lambda \beta}{\beta - 1}\big\},\,$$

where λ is the minimum eigenvalue of $\boldsymbol{H}(\boldsymbol{w}^*)$.

Experiments

- **♦** Data
- ♦ Sighan bakeoff 2004
 - Microsoft Research data (MSR)
 - Peking University data (PKU)
 - City University of Hongkong data (CU)

	#W.T.	#Word	#C.T.	#Char
MSR	8.8×10^4	2.4×10^{6}	5×10^3	4.1×10^{6}
CU	6.9×10^4	1.5×10^{6}	5×10^3	2.4×10^{6}
PKU	5.5×10^4	1.1×10^{6}	5×10^3	1.8×10^{6}

Experiments

Results

Baseline: CRF with SGD training

Data	Method	Passes	Train-Time (sec)	NWD Rec	Pre	Rec	CWS F-score
MSR	Baseline	50	4.7e3	72.6	96.3	95.9	96.1
•	+ New features	50	1.2e4	75.3	97.2	97.0	97.1
	+ New word detection	50	1.2e4	78.2	97.5	96.9	97.2
	+ ADF training	10	2.3e3	77.5	97.6	97.2	97.4
CU	Baseline	50	2.9e3	68.5	94.0	93.9	93.9
	+ New features	50	7.5e3	68.0	94.4	94.5	94.4
	+ New word detection	50	7.5e3	68.8	94.8	94.5	94.7
	+ ADF training	10	1.5e3	68.8	94.8	94.7	94.8
PKU	Baseline	50	2.2e3	77.2	95.0	94.0	94.5
	+ New features	50	5.2e3	78.4	95.5	94.9	95.2
	+ New word detection	50	5.2e3	79.1	95.8	94.9	95.3
	+ ADF training	10	1.2e3	78.4	95.8	94.9	95.4

♦ Results

 New feature (word feature + high dimensional edge features) helps

Data	Method	Passes	Train-Time (sec)	NWD Rec	Pre	Rec	CWS F-score
MSR	Baseline	50	4.7e3	72.6	96.3	95.9	96.1
	+ New features	50	1.2e4	75.3	97.2	97.0	97.1
	+ New word detection	50	1.2e4	78.2	97.5	96.9	97.2
	+ ADF training	10	2.3e3	77.5	97.6	97.2	97.4
CU	Baseline	50	2.9e3	68.5	94.0	93.9	93.9
	+ New features	50	7.5e3	68.0	94.4	94.5	94.4
	+ New word detection	50	7.5e3	68.8	94.8	94.5	94.7
	+ ADF training	10	1.5e3	68.8	94.8	94.7	94.8
PKU	Baseline	50	2.2e3	77.2	95.0	94.0	94.5
	+ New features	50	5.2e3	78.4	95.5	94.9	95.2
	+ New word detection	50	5.2e3	79.1	95.8	94.9	95.3
	+ ADF training	10	1.2e3	78.4	95.8	94.9	95.4

♦ Results

■ Joint modeling (word seg + new word detection) helps slightly on word segmentation, but largely on NWD rec.

Data	Method	Passes	Train-Time (sec)	NWD Rec	Pre	Rec	CWS F-score
MSR	Baseline	50	4.7e3	72.6	96.3	95.9	96.1
	+ New features	50	1.2e4	75.3	97.2	97.0	97.1
	+ New word detection	50	1.2e4	78.2	97.5	96.9	97.2
	+ ADF training	10	2.3e3	77.5	97.6	97.2	97.4
CU	Baseline	50	2.9e3	68.5	94.0	93.9	93.9
	+ New features	50	7.5e3	68.0	94.4	94.5	94.4
	+ New word detection	50	7.5e3	68.8	94.8	94.5	94.7
	+ ADF training	10	1.5e3	68.8	94.8	94.7	94.8
PKU	Baseline	50	2.2e3	77.2	95.0	94.0	94.5
	+ New features	50	5.2e3	78.4	95.5	94.9	95.2
	+ New word detection	50	5.2e3	79.1	95.8	94.9	95.3
	+ ADF training	10	1.2e3	78.4	95.8	94.9	95.4

Results

 ADF training greatly reduced training time, yet with even higher F-score!

Data	Method	Passes	Train-Time (sec)	NWD Rec	Pre	Rec	CWS F-score
MSR	Baseline	50	4.7e3	72.6	96.3	95.9	96.1
	+ New features	50	1.2e4	75.3	97.2	97.0	97.1
	+ New word detection	50	1.2e4	78.2	97.5	96.9	97.2
	+ ADF training	10	2.3e3	77.5	97.6	97.2	97.4
CU	Baseline	50	2.9e3	68.5	94.0	93.9	93.9
	+ New features	50	7.5e3	68.0	94.4	94.5	94.4
	+ New word detection	50	7.5e3	68.8	94.8	94.5	94.7
	+ ADF training	10	1.5e3	68.8	94.8	94.7	94.8
PKU	Baseline	50	2.2e3	77.2	95.0	94.0	94.5
	+ New features	50	5.2e3	78.4	95.5	94.9	95.2
	+ New word detection	50	5.2e3	79.1	95.8	94.9	95.3
	+ ADF training	10	1.2e3	78.4	95.8	94.9	95.4

♦ Results

+ ADF training

 ADF training greatly reduced training time, yet with even higher F-score!

Data	Method	Passes	Train-Time (sec)	NWD Rec	Pre	Rec	CWS F-score
MSR	Baseline	50	4.7e3	72.6	96.3	95.9	96.1
	+ New features	50	1.2e4	75.3	97.2	97.0	97.1
	+ New word detection	50	1.2e4	78.2	97.5	96.9	97.2
	+ ADF training	10	2.3e3	77.5	97.6	97.2	97.4
CU	Baseline	50	2.9e3	68.5	94.0	93.9	93.9
	+ New features	50	7.5e3	68.0	94.4	94.5	94.4
	+ New word detection	50	7.5e3	68.8	94.8	94.5	94.7
	+ ADF training	10	1.5e3	68.8	94.8	94.7	94.8
PKU	Baseline	50	2.2e3	77.2	95.0	94.0	94.5
	+ New features	50	5.2e3	78.4	95.5	94.9	95.2
	+ New word det We achieved best accuracy reports on the MSR &						

We achieved best accuracy reports on the MSR & PKU datasets

New training ADF vs. SGD vs. LBFGS

New training ADF vs. SGD vs. LBFGS

New training ADF vs. SGD vs. LBFGS

July 2012 ACL 2012 43

3 proposals

- Joint modeling: segmentation + new word detection
- New features: word features + high dimensional edge features
- A very fast online training method (main proposal)

3 proposals

- Joint modeling: segmentation + new word detection
- New features: word features + high dimensional edge features
- A very fast online training method (main proposal)

Experiments

Joint modeling helps

3 proposals

- Joint modeling: segmentation + new word detection
- New features: word features + high dimensional edge features
- A very fast online training method (main proposal)

Experiments

- Joint modeling helps
- New features helps a lot on model accuracy

3 proposals

- Joint modeling: segmentation + new word detection
- New features: word features + high dimensional edge features
- A very fast online training method (main proposal)

Experiments

- Joint modeling helps
- New features helps a lot on model accuracy
- The new training method finishes the training in 10 passes

3 proposals

- Joint modeling: segmentation + new word detection
- New features: word features + high dimensional edge features
- A very fast online training method (main proposal)

Experiments

- Joint modeling helps
- New features helps a lot on model accuracy
- The new training method finishes the training in 10 passes
- Final results beat the existing best reports on the datasets
 - More accurate & faster!

- **♦**Thanks!
- Any question?