Football Match Prediction and Outcome Simulation using Machine Learning

Predicting football matches outcomes using different machine learning techniques with derived performance evaluation metrics and learning the sustainability of team's performance through match simulations.

File Contents

Datasets (raw and generated)

- `matchID_plEventsData.csv` : Raw event tracking data across 380 matches in the EPL 2020/21 season by Opta
- 'all shots model.csv': Data of all shots taken across 380 matches in the EPL 2020/21 season
- `shots_model.csv` : Data of all shots taken excluding penalties and own goals across 380 matches in the EPL 2020/21 season (used to train xG model)
- `xg_all_shots_model.csv` : xG values applied to all shots taken across 380 matches in the EPL 2020/21 season
- `withoutxA_pred.csv` : Match data fitted with total xG generated and Elo ratings for respective teams
- `prediction_data.csv` : Match data fitted with total xA generated
- `final_pred_data.csv` : Complete match data to be used in prediction models

Code / Notebooks

- 'requirements.txt' : List of all packages with respective versions used in the entire work
- `FCPython.py` : Pitch visualisation functions
- `xG Model Viz.ipynb`: Visualisations on extracted shot data
- `xGModel_build.ipynb` : Expected goals (xG) model development
- `genNewDS.ipynb` : Data handling and preprocessing for prediction models
- `SVM prediction.ipynb`: Prediction model using Support Vector Machines (SVM)
- `RF_prediction.ipynb` : Prediction model using Random Forest (RAF)
- `xGB prediction.ipynb` : Prediction model using Extreme Gradient Boosting (XGBoost)
- 'MCSimulation xG.ipynb': Match outcome simulation

Guide

Prerequisites

- 1. 'Python 3.7.13' is used. Any later versions should work.
- 2. Jupyter Notebook is used to run all the following codes.
- 3. Download and unzip the repository.
- 4. Run 'pip install -r requirements.txt' to install all required packages.

Expected Goals (xG) Model

- 1. Make sure 'FCPython.py' is in the same directory
- 2. Run 'xG_Model_Viz.ipynb' to build visualisations and extract shots and goals data
- 3. Observe shots and goals on pitch visualisations in the 'ShotsModel Output' folder.
- 4. Run 'xGModel build.ipynb' to build the xG model and fit it into our event data.

5. Observe xG model visualisations in `xG Output` folder.

Prediction Models

- 1. File loading instructions stated inside respective notebooks depending on the notebooks used. (cloud-based or local PC)
- 2. Run 'SVM prediction.ipynb' to build prediction model using SVM.
- 3. Run 'RF_prediction.ipynb' to build prediction model using Random Forest.
- 4. Run 'xGB prediction.ipynb' to build prediction model using XGBoost.

Match Outcome Simulation

- 1. Run 'MCSimulation xG.ipynb' to create match simulations using Monte Carlo simulation.
- 2. Select a match to run the simulation by inputting your desired match ID from [Understat](https://understat.com/league/EPL) when prompted.
 ![Browser URL from Understat](https://www.linkpicture.com/q/understat_ins.png)

The numbers displayed after "match/" is the match ID and it can be obtained from your browser's url after selecting on your desired match from [Understat](https://understat.com/league/EPL).

3. Observe results and visualisations generated.