ECS 32B – Introduction to Data Structures Homework 01

Name: Camden Possinger Student ID: 916955731

Due: October 9, 2020, 5:00pm PST

Make sure to clearly identify your name and student number. Submit only one pdf file via Gradescope. Do not submit a separate file for each problem. If you handwrite your solutions, make sure they are clear and readable.

Problem 1 (10 points each)

For each of the following functions, do the following:

- Calculate T(n), making sure not to discard constants or low-order terms yet (you may or may not count the counting variable in a for loop)
- Given what you think is the Big-O performance for the function
- Prove that your proposed Big-O for the function is correct (make sure to show your work; do not just provide values for c and n_0)

- T(n) is $\frac{n}{2} + 2$
- *O*(*n*) is *n*
- Prove T(n) is O(n) showing that $T(n) \le c \cdot f(n)$ where c > 0 and $n_0 \ge 0$ such that $\forall n \ge n_0$

$$\frac{n}{2} + 2 \le c \cdot n$$

when $n_0 = 2$ and $c = 2$
 $3 \le 4$ is true
 $c > 0$ and $n_0 \ge 0$ where $n \ge n_0$
 $T(n)$ is $O(n)$

- T(n) is $(n-1)^3 + 2$ which simplifies to $n^3 3n^2 + 3n + 1$
- O(n) is n^3
- Prove T(n) is O(n) showing that $T(n) \le c \cdot f(n)$ where c > 0 and $n_0 \ge 0$ such that $\forall n \ge n_0$

$$n^3 - 3n^2 + 3n + 1 \le c \cdot n^3$$

when $n_0 = 2$ and $c = 1$
 $3 \le 8$ is true
since $c > 0$ and $n_0 \ge 0$ where $n \ge n_0$
 $T(n)$ is $O(n)$

- T(n) is 2(n+1) + 3 which simplifies to 2n + 5
- *O*(*n*) is *n*
- Prove T(n) is O(n) showing that $T(n) \le c \cdot f(n)$ where c > 0 and $n_0 \ge 0$ such that $\forall n \ge n_0$

$$2n + 5 \le c \cdot n$$

when $n_0 = 3$ and $c = 4$
 $11 \le 12$ is true
since $c > 0$ and $n_0 \ge 0$ where $n \ge n_0$
 $T(n)$ is $O(n)$

- T(n) is $n^2 + n + 2$
- O(n) is n^2
- Prove T(n) is O(n) showing that $T(n) \le c \cdot f(n)$ where c > 0 and $n_0 \ge 0$ such that $\forall n \ge n_0$

$$n^2 + n + 2 \le c \cdot n^2$$

when $n_0 = 2$ and $c = 3$
 $8 \le 12$ is true
since $c > 0$ and $n_0 \ge 0$ where $n \ge n_0$
 $T(n)$ is $O(n)$

- T(n) is n + 2
- *O*(*n*) is *n*
- Prove T(n) is O(n) showing that $T(n) \le c \cdot f(n)$ where c > 0 and $n_0 \ge 0$ such that $\forall n \ge n_0$

$$n+2 \le c \cdot n$$

when $n_0 = 2$ and $c = 3$
 $4 \le 6$ is true
since $c > 0$ and $n_0 \ge 0$ where $n \ge n_0$
 $T(n)$ is $O(n)$

Problem 2 (10 points each)

Suppose an algorithm solves a problem of input size n in at most the number of steps listed for each T(n) given below. Calculate the Big- Θ (not just Big-O) for each T(n). Show your work, including values for c and n_0 .

(1)
$$T(n)$$
 is 5 $O(n)$ is 1 $O(n)$ is 1 $O(n)$ is 1 $O(n)$ is 1 for $5 \le c \cdot 1$ for $5 \ge c \cdot 1$ $O(n)$ is $O(n)$ for $O(n)$ for

(2)
$$T(n)$$
 is $2n^2 + 1$ $O(n)$ is n^2 $O(n)$ is n^2 for $2n^2 + 1 \le c \cdot n^2$ $O(n)$ is n^2 for $2n^2 + 1 \le c \cdot n^2$ for $2n^2 + 1 \ge c \cdot n^2$ $O(n)$ is $O(n)$ $O(n)$

Since
$$T(2n^2+1)$$
 is $O(n^2)$ and $T(2n^2+1)$ is $\Omega(n^2)$ $T(2n^2+1)$ is $\Theta(n^2)$

 $T(3n^4 + 2n^3 + 2n)$ is $\Theta(n^4)$

 $T(log(5 \times 2^n))$ is $\Theta(n)$

(3)
$$T(n)$$
 is $3n^4 + 2n^3 + 2n$ $T(n)$ is $3n^4 + 2n^3 + 2n$ $O(n)$ is n^4 $O(n)$ is n^4 for $3n^4 + 2n^3 + 2n \le c \cdot n^4$ for $3n^4 + 2n^3 + 2n \ge c \cdot n^4$ for $3n^4 + 2n^3 + 2n \ge c \cdot n^4$ $n_0 = 1$ and $c = 8$ gives $n_0 = 1$ and n_0

(4)
$$T(n)$$
 is $log(5 \times 2^n)$ which simplifies to $log5 + log2^n$ where the base of the log is 2 $O(n)$ is n for $n + log5 \le c \cdot n$ for $n + log5 \ge c \cdot n$ $n_0 = 2$ and $n_0 = 2$ gives $n_0 = 1$ gives $n_0 = 1$

Since $T(log(5 \times 2^n))$ is O(n) and $T(log(5 \times 2^n))$ is $\Omega(n)$

(5) T(n) is $4n^2logn$ O(n) is n^2logn for $4n^2logn \le c \cdot n^2logn$ $n_0 = 2$ and c = 5 gives $16 \le 20$ which is true so T(n) is O(n)

T(n) is $4n^2logn$ O(n) is n^2logn for $4n^2logn \ge c \cdot n^2logn$ $n_0 = 2$ and c = 3 gives $16 \ge 12$ which is true so T(n) is $\Omega(n)$

Since $T(4n^2logn)$ is $O(n^2logn)$ and $T(4n^2logn)$ is $\Omega(n^2logn)$ $T(4n^2logn)$ is $\Theta(n^2logn)$