Yuchong Pan

Email: yuchong@mit.edu https://ypan.me Mobile: +1 (617) 749-5906

EDUCATION

Massachusetts Institute of Technology

Cambridge, MA

Ph.D., Applied Mathematics (GPA: 5.0/5.0)

September 2021 - present

• Research Interests: Algorithms, combinatorics, optimization, theoretical computer science, operations research, network flow algorithms, traveling salesman problem

University of British Columbia

Vancouver, BC

B.Sc., Combined Honours Computer Science and Mathematics (GPA: 94.4%)

September 2017 - May 2021

o Thesis: Optimization Problems on Network Flows with Degree Constraints, advised by F. Bruce Shepherd [Link]

Selected Employment

Massachusetts Institute of Technology

Cambridge, MA

Mentor

January 2022 - February 2022

o Directed Reading Program: Mentored two undergraduate students to read Randomized Algorithms by Motwani and Raghavan. Advised the students on the presentations in the program symposium.

University of British Columbia

Vancouver, BC

Research Assistant

April 2021 - August 2021

o Cost and Congestion of Exotic Network Flows: Studied new network flow models with side constraints imposed by new telecommunication technologies (e.g., IP routing, optical networks, etc.). This research assistantship is partially funded by a Work Learn International Undergraduate Research Award.

Microsoft Vancouver, BC

Software Engineer Intern

May 2020 - August 2020

• .NET Runtime IL Interpreter: Resurrected the IL (intermediate language) interpreter inside .NET Runtime. Conducted performance analyses for the various configurations of the IL interpreter. [GitHub] [Presentation]

Redmond, WA Microsoft

Software Engineer Intern

June 2019 - August 2019

o .NET Core Uninstall Tool: A guided tool that enables the controlled clean-up of a system such that only the desired versions of .NET Core SDKs and Runtimes remain. Prepared user documentation. Released as an open source command-line tool by Microsoft to external users. [GitHub] [Blog] [Documentation]

Selected Projects

- Directed Reading on the Traveling Salesman Problem (TSP): Ongoing directed reading project on recent progress of the approximability of TSP and background results, advised by Prof. Michel X. Goemans at MIT.
- Extending the Győri-Lovász Theorem: Ongoing research project on finding a constructive proof for the Győri-Lovász theorem, an important result in graph theory. Collaborating with Prof. F. Bruce Shepherd at UBC.
- MiniJava Compiler: MiniJava is a subset of the Java language. Implemented a MiniJava-to-x64 compiler, including phases of frontend, intermediate representation, code generation, and optimization.

Selected Awards

• Work Learn International Undergraduate Research Award	2021
• Stanley M Grant Scholarship in Mathematics, University of British Columbia	2019, 2021
• Faculty of Science International Student Scholarship, University of British Columbia	2018, 2019, 2020
• Trek Excellence Scholarship, University of British Columbia	2018, 2019, 2020
• Science Scholar / Dean's Honour List, University of British Columbia	2018, 2019, 2020
• 11th Place, ACM International Collegiate Programming Contest Pacific NW Region	2017
• Outstanding International Student Award, University of British Columbia	2017
• Silver Medal, China Team Selection Competition for International Olympiad in Inform	atics 2015
• Bronze Medal, Asia Pacific Informatics Olympiad	2015
• First Prize, National Olympiad in Informatics in Provinces (China)	2013, 2014

Programming Skills

• Languages: C++, Python, Java, C#, SQL, MATLAB, Go, JavaScript, LATEX