

ECE201-Digital Design

(Ch.08 Register Transfer Level)

3 June 2019

by

Kyu-Seek Sohn

Contents

- Digital system = control logic + datapath
- Register Transfer Level
- Algorithmic State Machine
- Design Example : Binary Multiplier
- Home Work

A Digital System

Control logic + datapath model

Control logic Input data Output data

Fig. 8-2 Control and Datapath Interaction

Control Logic

- Sequencing the operations in the datapath
 - Command: signals generated by the control logic
- A sequencial circuit
 - Internal state dictate the control command for the system
- Inputs
 - External inputs
 - Status conditions from the datapath
- Outputs
 - Commands to the datapath

Datapath

- Data processing path
 - Series of registers along which data is manipulated
- Operations manipulating data
 - Transfer operations
 - Arithmetic operations
 - Logic operations (bit-wise)
 - Shift operations
- Outputs
 - Output data
- Inputs
 - Input data

Register Transfer Level(RTL)

- Register is :
 - Basic unit of data processing in the datapath
 - Basic component of datapath
- Operations executed on registers
 - Transfer operations
 - Arithmetic operations
 - Logical operations
 - Shift operations
 - Relational operations

Algorithmic State Machines(ASM)

Definition

A special flowchart that defines digital hardware algorithms

Use of ASM

 To specify accurately the control sequence and datapath operations in a digital system

Meaning of ASM

- Timing reliationship between the state of the states of a sequential control logic
- Event causing the state transition

Components of ASM

State box

Fig. 8-3 State Box

Decision box

Fig. 8-4 Decision Box

Conditional box

ig. 8-5 Conditional Box

State Box

Fig. 8-3 State Box

Decision Box

Fig. 8-4 Decision Box

Conditional Box

From exit path of decision box

Register operation or output

(a) General description

(b) Example with conditional box

Fig. 8-5 Conditional Box Ch.08 Register Transfer Level

ASM Block

The operational unit executing datapath function in one time clock

Fig. 8-6 ASM Block

Register Configuration

Fig. 8-13 Block Diagram of Binary Multiplier

ASM Chart of The Binary Multiplier

Control Logic State Diagram

 T_0 : Initial state

$$T_1: A \leftarrow 0, C \leftarrow 0, P \leftarrow n$$

$$T_2: P \leftarrow P - 1$$

if
$$(Q_0)$$
= 1 then $(A \leftarrow A + B, C \leftarrow C_{out})$

 T_3 : shift right CAQ, $C \leftarrow 0$

(b) Register transfer operations

Fig. 8-15 Control Specifications for Binary Multiplier

Control Block Diagram

Fig. 8-16 Control Block Diagram

Sequence Register and Decoder

State table for control circuits

Table 8-3 *State Table for Control of Fig. 8-10*

Present-State Symbol	Present State		Inputs			Next State		Outputs		
	G ₁	G _o	S	A ₃	A ₄	G ₁	G _o	$T_{\mathbf{o}}$	<i>T</i> ₁	T ₂
T_0	0	0	0	X	X	0	0	1	0	0
T_0	0	0	1	X	X	0	1	1	0	0
T_1	0	1	X	0	X	0	1	0	1	0
T_1	0	1	X	1	0	0	1	0	1	0
T_1	0	1	X	1	1	1	1	0	1	0
T_2	1	1	X	X	X	0	0	0	0	1

$$D_{G1} = T_1 + T_2 + T_{3Z}'$$
 $D_{G0} = T_0S + T_2$

Control Logic Diagram

Fig. 8-17 Logic Diagram of Control for Binary Multiplier Using a Sequence Register and Decoder

One Flip-Flop per State

■ State diagram ⇒ F-F input equations

Ch.08 Register

Fig. 8-18 One Flip-Flop Per State Controller