

2/19/2

003921687

WPI Acc No: 1984-067231/ 198411

XRAM Acc No: C84-029081

XRDX Acc No: N84-050494

Prepn. of biodegradable polyurethane - by reacting hydroxy-contg. oligoester with hexamethylene diisocyanate and diol, in two stages

Patent Assignee: PHYSIOLOGY INST (PHYS-R)

Inventor: KARTELISHV T M; KATSARAPA R D; ZAALISHVIL M M

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
SU 1016314	A	19830507	SU 2854648	A	19791217	198411 B

Priority Applications (No Type Date): SU 2854648 A 19791217

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
SU 1016314	A	5		

Abstract (Basic): SU 1016314 A

Use of a cpd. of formula (I) where k= 0-20, l=0-20 with k= 0, l not 0 or l=0 and k not 0 O O, R is H and R' is CH₃, or R= R' is H or R= R' is CH₃, R" is -(CH₂)₂- , -(CH₂)₃- , -CH₂-CH(CH₃)- , -(CH₂)₂-CH(CH₃)- or -(CH₂)₂-O-(CH₂)₂ as the OH-contg. oligoester in the prepn. of polyurethanes, and carrying out the sthesis in two stages,

for 0.5-1 hour at 90-120 deg. and 4-5 hours at 160-190 deg., imparts biodegradability to the material. The process is carried out by reacting molten (I) with hexamethylene diisocyanate, in the presence of a diol such as 1,3-propanediol or ethylene glycol serving as chain lengthener. The product finds use in medicine as a self-disintegrating surgical material.

The product is soluble in organic solvents and can be cast into films with tensile strength of 300-400 kg/cm² and limiting elongation of 100-200%. Bul.17/7.5.83.

(5pp Dwg.No.0/0)

Title Terms: PREPARATION; BIODEGRADABLE; POLYURETHANE; REACT; HYDROXY; CONTAIN; OLIGOESTER; HEXA; METHYLENE; DI; ISOCYANATE; DIOL; TWO; STAGE

Derwent Class: A25; A96; E17; P34

International Patent Class (Additional): A61L-015/00; C08G-018/32

File Segment: CPI; EngPI

Manual Codes (CPI/A-N): A05-G02; A05-G04; A09-A; A12-V; E10-E04G

Plasdoc Codes (KS): 0004 0226 1296 1300 1319 1325 1760 1840 2148 2152 2155
2441 2513 2575 2606 2635 2764

Polymer Fragment Codes (PF):

001 014 02& 038 150 157 169 170 171 195 200 207 209 239 344 346 357 40-
431 435 532 537 541 544 551 567 573 645 687

Chemical Fragment Codes (M3):

01 H4 H402 H482 H581 H582 H583 H584 H589 H8 J0 J011 J012 J013 J014 J2
J271 J272 J273 M280 M311 M312 M313 M314 M321 M322 M323 M331 M332
M340 M342 M349 M381 M391 M392 M393 M416 M620 M781 M903 Q110

Derwent Registry Numbers: 0822-U; 1300-U; 1455-U

THIS PAGE BLANK (USPTO)

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

09 SU 1016314 A

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР
ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ Н А В Т О Р С К О М У С В И Д Е Т Е Л Ь С Т В У

(21) 2854648/23-05
 (22) 17.12.79
 (46) 07.05.83. Бюл. № 17
 (72) М.М. Заалишвили, Р.Д. Кацарава
 и Т.М. Картьвельишвили
 (71) Институт физиологии им. И.С.Бер-
 риташвили
 (53) 678.664 (088.8)
 (56) 1. Губанов Э.Ф., Тейтельбаум Б.Я.,
 Апухтина Н.П. и Синайский А.Г. Зависимость некоторых свойств поли-
 эфиуретановых блоксополимеров от
 молекулярного веса блоков. Синтез и
 физико-химия полимеров (полиуретаны).
 К., "Наукова Думка", 1968, с. 168.
 2. Липатова Т.Э., Лоос С.С. и
 Момбужай М.М. Взаимодействие поли-
 эфиуретанов с физиологически актив-
 ными средами. Высокомолекулярные сое-
 динения А 12. 1970, с. 20-51 (proto-
 тип).

(54) (57) СПОСОБ ПОЛУЧЕНИЯ ПОЛИЭФИР-
 УРЕТАНОВ путем взаимодействия в
 расплаве сложного гидроксилсодержа-
 щего олигоэфира с гексаметилендиизо-

цианатом в присутствии диола, отличающийся тем, что, с целью придания конечному продукту биодеградируемых свойств, в качестве сложного гидроксилсодержащего олиго-эфира используют соединение общей формулы

и процесс проводят ступенчато: при 90-120°C в течение 0,5-1 ч, при 160-190°C в течение 4-5 ч.

SU 1016314 A

BEST AVAILABLE COPY

1016314

2

Изобретение относится к синтезу полизифиуретанов, которые могут быть использованы в медицине, например, в качестве саморассасывающихся хирургических материалов.

Известен способ получения полизифиуретанов путем взаимодействия гидроксилсодержащих олигомеров сложного эфирного типа с динозицианатом в присутствии диола [1].

Недостатком известного способа получения полизифиуретанов является их непригодность для использования в медицине в качестве биодеградируемых материалов.

Наиболее близкий по технической сущности к предлагаемому является способ получения полизифиуретанов путем взаимодействия в расплаве сложного гидроксилсодержащего олигоэфира с гексаметилендиизоцианатом в присутствии диола.

В качестве сложного гидроксилсодержащего олигоэфира используют продукт конденсации дикарбоновой кислоты и диола, например адипиновой кислоты и этиленгликоля в расплаве [2].

Недостатком, полученных известным способом, полизифиуретанов является отсутствие в их макромолекулах связей, способных подвергаться ферментативной биодеградации.

Целью изобретения является придание биодеградируемых свойств конечному продукту.

Указанныя цель достигается тем, что согласно способу при получении полизифиуретанов путем взаимодействия в расплаве сложного гидроксилсодержащего олигомера с гексаметилендиизоцианатом в присутствии диола, имеющего формулу

жущего олигоэфира используют соединения формулы

где $k = 0-20$; $l = 0-20$
(причем $k = 0$, $l \neq 0$;
 $l = 0$, $k \neq 0$)

и процесс проводят ступенчато: при $90-120^\circ C$ в течение 0,5-1 ч, при $160-190^\circ C$ в течение 4-5 ч.

Блоксополимерную структуру полученных полимеров подтверждают изучением их растворимости в органических растворителях и сравнением с растворимостью соответствующих гомополимеров, а также изучением их ИК- и ЯМР-спектров. Синтезированные полизифиуретаны обладают пленко- и волокнообразующими свойствами. Они растворяются во многих органических растворителях, образуя высококонцентрированные растворы, из этих раствором методом полива на стеклянные подложки были получены эластичные пленки, имеющие прочность на разрыв 300-400 кг/см² и разрывное удлинение 100-200%.

Строение и характеристики использованных полизифирных смол приводятся в табл.1.

т а б л и ц а 1

Шифр олигомера	Олигоэфир на основе			Гидроксил %	Средний молекулярный вес
	Гликолид (R=H), моль	Лактид (R'=CH ₃), моль	Диол (R''=C ₂ H ₅ , C ₃ H ₇) моль		
СЭ-1-0	0,10	0,00	Этиленгликоль 0,01	2,34	1450
СЭ-06-04	0,06	0,04	Этиленгликоль 0,01	2,43	1400
СЭ-05-05	0,05	0,05	Этиленгликоль 0,01	1,60	2125
СЭ-04-06	0,04	0,06	Этиленгликоль 0,01	2,12	1600
СЭ-0-1	0,00	0,10	Этиленгликоль 0,01	1,80	1890
СП-1-0	0,10	0,00	1,3-Пропандиол	3,72	910

П р и м е р 1. В трехгорлую колбу, снаженную мешалкой, вводом и выводом для аргона помещают 0,005 моль олигомера СЭ-1-0 (табл.1) и колбу нагревают до $120-125^\circ C$. К образовав-

шемуся расплаву добавляют половину (0,05 моль) гексаметилендиизоцианата (суммарное количество гексаметилендиизоцианата 0,1 моль). Расплав перемешивают в течение 30 мин, после че-

го температуру снижают до 90–100°C и вводят 0,095 моль удлинителя (диола): 1,3-пропандиола. Смесь вновь нагревают до 120°C и перемешивают еще 30 мин и затем осторожно, по порциям вводят оставшееся количество (0,05 моль дизоцианата). Реакционная масса быстро загустевает и не перемешивается. Температуру медленно повышают до 190°C так, чтобы реакционная смесь легко перемешивалась и выдерживают при данной температуре в течение 4 ч. Расплав выливают на чашку Петри и охлаждают. Приведенная вязкость $\eta = 0,64$ дL/g в м-крезоле, $t^0 = 25^\circ\text{C}$, $C = 0,5$ г/dL.

П р и м е р 2. В трехгорлую колбу, снабженную мешалкой, вводом и выводом для аргона помещают 0,085 моль олигомера СЭ-06-04, колбу нагревают до 90°C и к образовавшемуся расплаву добавляют половину 0,05 моль гексаметилдизоцианата. Реакционную смесь нагревают до 120°C в течение 30 мин затем охлаждают до 90°C и вводят 0,095 моль пропандиола, вновь нагревают до 120°C в течение 30 мин, охлаждают до 90°C и осторожно вводят оставшееся количество дизоцианата. Смесь медленно нагревают до 160°C, причем температуру повышают так, чтобы в колбе был хорошо перемешиваемый расплав. Реакционную смесь выдерживают при 160°C в течение 5 ч, после чего выливают на чашку Петри и охлаждают. $\eta_{\text{пр}} = 0,58$ дL/g в смеси тетрахлорэтана: фенол (3:1), $t^0 = 25^\circ\text{C}$, $C = 0,5$ г/dL.

П р и м е р 3. Синтез полимера осуществляют в соответствии с мето-

дикой, приведенной в примере 2, с той лишь разницей, что вместо олигомера СЭ-06-04 (табл.1) используют олигомер СЭ-05-05 (табл.1), а в качестве удлинителя цепи вместо 1,3-пропандиола используют этиленгликоль $\eta_{\text{пр}} = 0,52$ дL/g в смеси тетрахлорэтана: фенол (3:1), $t^0 = 25^\circ\text{C}$, $C = 0,5$ г/dL.

П р и м е р 4. Синтез полимера осуществляют в соответствии с методикой приведенной в примере 2, с той разницей, что вместо олигомера СЭ-06-04 берут олигомер СЭ-05-05, $\eta_{\text{пр}} = 0,50$ дL/g в смеси тетрахлорэтана с фенолом 3:1, $t^0 = 25^\circ\text{C}$, $C = 0,5$ г/dL.

П р и м е р 5. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 2 с той разницей, что вместо олигомера СЭ-06-04 берут олигомер СЭ-04-05, $\eta_{\text{пр}} = 0,47$ дL/g в смеси тетрахлорэтана с фенолом 3:1, $t^0 = 25^\circ\text{C}$, $C = 0,5$ г/dL.

П р и м е р 6. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 2, с той разницей, что вместо олигомера СЭ-06-04 берут олигомер СЭ-01, $\eta_{\text{пр}} = 0,48$ дL/g в смеси тетрахлорэтана с фенолом (3:1), $t^0 = 25^\circ\text{C}$, $C = 0,5$ г/dL.

П р и м е р 7. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 1, с той разницей, что вместо олигомера СЭ-1-0 берут олигомер СН-1-0 (табл.1) $\eta_{\text{пр}} = 0,60$ дL/g в м-крезоле, $t^0 = 25^\circ\text{C}$, $C = 0,5$ г/dL.

Условия синтеза и основные характеристики полученных полиэфиуретанов приведены в табл.2.

BEST AVAILABLE COPY
1016314

Таблица 2

Олигoeffирная смола на основе α -окси-кислот, моль	Дизоциакат, моль	Гликоль, моль	Время, ч.	Температура, $^{\circ}$ С	Чернота смеси тетрагидрохлорэтан: фенол (3:1), дп/г	Свойства пленок		
						Растворимость в 10 г полимера в 100 г растворителя	σ , кт/см ²	ϵ , %
C3-1-0 (0,005)	ГМДИ (0,1)	ПД (0,095)	190	4,0	0,64*	160-170	A, B, В, Г	390
C3-06-04 (0,005)	ГМДИ (0,1)	ПД (0,095)	160	5,0	0,58	120-130	A, B, В, Г	350
C3-05-05 (0,005)	ГМДИ (0,1)	ЭГ (0,095)	160	4,0	0,52	130-140	A, B, В, Г	340
C3-05-05 (0,005)	ГМДИ (0,1)	ПД (0,095)	160	5,0	0,50	130-135	A, B, В, Г	290
C3-04-06 (0,005)	ГМДИ (0,1)	ПД (0,095)	160	5,0	0,47	120-125	A, B, В, Г	290
C3-01-1 (0,005)	ГМДИ (0,1)	ПД (0,095)	160	5,0	0,48	100-120	A, B, В, Г	280
СП-1-0 (0,005)	НМДИ (0,1)	ПД (0,095)	190	4,0	0,60*	165-170	A, B, В, Г	200

Таким образом, применение предлагаемого способа получения полиэфируретанов, содержащих в цепях макромолекул олигоэфирные блоки на основе α -оксикислот, обеспечивает следующие преимущества: использование в качестве исходных смол олигоэфиров на основе α -оксикислот позволяет получать полиэфируретаны, содержащие в цепях макромолекул α -эфирные связи способные подвергаться ферментативной биодеградации;

полученные полиэфиуретаны полезны для использования в медицине в качестве саморассасывающихся материалов, поскольку содержат в цепях макромолекул биодеградируемые α -эфирные связи;

растворимость полученных полиэфиуретанов в органических растворителях, что облегчает их переработку в изделия-пленки, пористые материалы и т.д.

Составитель С. Пурина
Редактор Г. Волкова Техред М. Коштура Корректор В. Бутяга

Заказ 3315/24 Тираж 494 Подписьное
ВНИИПТИ Государственного комитета СССР
по делам изобретений и открытий
113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4

THIS PAGE BLANK (USPTO)