Chapitre 6 : Fonction logarithme népérien

I. Définition

La fonction exponentielle est continue et strictement croissante sur R, à valeurs dans $]0 ; +\infty[$.

D'après le théorème des valeurs intermédiaires, pour tout réel a de $]0:+\infty[$ l'équation $e^x = a$ admet une unique solution dans \mathbb{R} .

Définition : On appelle logarithme népérien d'un réel strictement positif b, l'unique solution de l'équation $e^x = b$. On la note ln b.

La fonction logarithme népérien, notée ln, est la fonction :

$$\ln:]0; +\infty[\longrightarrow \mathbb{R}$$
$$x \mapsto \ln x$$

Remarques:

- Les fonctions exp et ln sont des fonctions réciproques l'une de l'autre.
- Les courbes représentatives des fonctions exp et ln sont symétriques par rapport à la droite d'équation y = x.
- Dans le domaine scientifique, on utilise la fonction logarithme décimale, notée \log , et définie par : $\log a = \frac{\ln a}{\ln 10}$

Conséquences:

- a) Pour y > 0: $e^x = y \Leftrightarrow x = \ln y$
- b) $\ln 1 = 0$; $\ln c = 1$; $\ln \frac{1}{e} = -1$
- c) $\ln e^x = x$
- d) Pour $x > 0 : e^{\ln x} = x$

II. Propriétés de la fonction logarithme népérien

1) Relation fonctionnelle

Théorème : Pour tous réels x et y strictement positifs, on a : $\ln(x \times y) = \ln x + \ln y$

Remarque : Cette formule permet de transformer un produit en somme.

Corollaires Pour tous réels x et y strictement positifs. on a :

- a) $\ln \frac{1}{x} = -\ln x$ b) $\ln \frac{x}{y} = \ln x \ln y$ c) $\ln \sqrt{x} = \frac{1}{2} \ln x$ d) $\ln x^n = n \ln x$. avec $n \in \mathbb{Z}$

$$\ln 1 = \ln \left(\frac{1}{2} \times \frac{1}{2} \right)$$

$$0 = \ln 2 + \ln \frac{1}{2}$$

$$\ln \frac{1}{2} = -\ln 2$$

ln (xs = ln (Va x Va) ln (xs = ln Vac + ln Vac ln (xs = 2 ln Vac ln Vac = 1 ln x

 $\ln \frac{x}{x} = \ln \left(x \times \frac{1}{x} \right)$ $= \ln x + \ln \frac{1}{x}$ $= \ln x - \ln x$

Méthode: Simplifier une expression contenant des logarithmes

Vidéo https://youtu.be/HGrK77-SC14

Simplifier les expressions suivantes :

$$A = \ln(3 - \sqrt{5}) + \ln(3 + \sqrt{5})$$
= $\ln(3 - \sqrt{5}) (3 + \sqrt{5})$
= $\ln(9 - 5)$
= $\ln 4$

$$B = 3 \ln 2 + \ln 5 - 2 \ln 3$$

$$= \ln 2^{3} + \ln 5 - \ln 3^{3}$$

$$= \ln 4 + \ln 5$$

$$= \ln (4 \times 5)$$

$$= \ln (4 \times 5)$$

$$= \ln 40$$

$$= 3 \ln 2 + \ln 2 + \ln 2$$

$$= 2 + 1 = \ln 2$$

$$= 3 - \ln 2$$

3) Équations et inéquations

<u>Propriétés</u>: Pour tous réels x et y strictement positifs, on a :

a)
$$\ln x = \ln y \iff x = y$$

b)
$$\ln x < \ln y \iff x < y$$

Méthode: Résoudre une équation ou une inéquation avec des logarithmes

1) Résoudre dans I les équations et inéquations suivantes :

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11 0 - 7-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		a) $\ln x = 2$, $I =]0$; $+\infty[$	b) $e^{x+1} = 5$, $I = \mathbb{R}$	c) $3 \ln x - 4 = 8$, $I =$]0; +∞[
$x = ln(5) - 1 \qquad ln x = l2 \qquad x = e^{12}$ $x = ln(5) - 1 \qquad e^{12} = e^{12}$		elna=el	lu (e 2 1] = lu (5)	3 ln x = 121	$x^3 = e^{ix}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$x = e^{x}$	20+1= (n (5)	ln x3 = 12	oc = e4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11 - 11	2c= ln 15)-1	eh 23 = e12	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		d) $\ln(6x-1) \ge 2$, $I = \begin{bmatrix} \frac{1}{6} \\ \frac{1}{6} \end{bmatrix}$;	+∞		ln (3) + lale x/ lb
$6x - 1 \ge e^{2}$ $6x - 2 = e^{2} + 1$ $5 = [e^{2} + 1] + \infty[$ $\ln(3e^{2}) \le \ln(5) - \ln(5)$ $\ln(5e^{2}) \le \ln(5e^{2}) = \ln(3e^{2})$ $\ln(5e^{2}) \le \ln(5e^{2}) = \ln(5e^{2})$		2 h/62-13 } e2 / 0	~ .	-3e2>-5	
$6 \times 2 e^{2} + 7 \qquad S = \underbrace{\left[e^{2} + 1\right]}_{f} + \infty \left[\begin{array}{c} \ln(3e^{2e}) \\ \ln(3e^{2e}) \\ \ln(5) \\ \ln(5)$			6	3e 2e < 5	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		2	[e2+1 +xo[en (3e2) < ln(
$ \ln ((x-3)x(9-x)) = 0 \qquad (-x^2+11x-2x-0) \qquad 3-x>0 \qquad 2c \leq 3 \\ \ln (-x^2+12x-27) = 0 \qquad (-x^2+112x-2x-0) \qquad (-x^2+112x-2x-0) \qquad (-x^2+112x-2x-1) \leq 0 \\ \ln (-x^2+12x-27) = 0 \qquad (-x^2+112x-2x-1) \leq 0 \qquad (-x^2+112x-2x-1) \leq 0 $		f) $\ln(x-3) + \ln(9-x) = 0$	$I = \mathbb{R}$	g) $\ln(3-x) - \ln(x+1)$	< 0 $I = \mathbb{R}$
$\lim_{x \to 2} (-\infty^{2} + 12 \times -27) = 0 \Delta = 12^{2} - 41 - 15 - 12 = 0 2 = 1 - 1 - 15 = 0$ $\lim_{x \to 2} (-\infty^{2} + 12 \times -27) = 0 \Delta = 12^{2} - 41 - 15 - 12 = 0 2 = 12 + 12 = 0$ $\lim_{x \to 2} (-\infty^{2} + 12 \times -27) = 0 \Delta = 12^{2} - 41 - 15 - 12 = 0 2 = 12 + 12 = 0$ $\lim_{x \to 2} (-\infty^{2} + 12 \times -27) = 0 \Delta = 12^{2} - 41 - 15 - 12 = 0 2 = 12 + 12 = 0$		ln ((20-3) x(9-25) = 0	1-22+12x-28=0		
$e^{\ln(-x^2+12xe^{-17})} = e^{-12+1/32} = 621 - \ln(\frac{3-x}{x+1}) \le 0$		1 1-22+12 2 -27	1=122-41-11-181=	201130 201-	_
$-2c^{2} + 12 = -27 = 1$ $2c_{2} = -12 \cdot \sqrt{32}$		elil-22+12 xe-271=	20 x1=-12+V32 32	ln (3-2) (0	_ , _ ;
1 × 1 = 7 = 0 5 C = 2 = 6+2V2		- 20 2+12 oc = 27 = 1	2 -6.20	2 241)	8
	Ì	e(* 1 - 7 - 2 ·) 5	C = 2 - 6+	202	

Méthode: Résoudre une équation ou une inéquation (pour les suites)

1) Résoudre dans $0; +\infty$ l'équation : $x^5 = 3$

20

2) On considère la suite $u_n = 2 \times 0.5^n$.

Déterminer à partir de quel rang les termes de la suite seront inférieurs à 0.001.

2 x 0,5 2 0,001 (=> 0,5 2 0,001 h (0,5 2) 6 h (0,0005) (=> 2 h (0,5) 6 h (0,0005) m > (0,95) 8 we m > 11; Un (0,001

9) $\ln\left(\frac{3-3e}{2+1}\right) \le 0$ (=> $e^{\ln\left(\frac{3-3e}{2+1}\right)} \le e^{e^{e}}$ (=> $\frac{3-2e}{2+1} \le 1$ (=> $3-2e \le 2+1$ (2) $3-1 \le 2a$ (2) $2 \ge 1$ (2) $3 \le 1 \le 2a$ (2) $2 \ge 1$

 $2c^{5} = 3$ $\ln(3c^{5}) = \ln(3)$ $\ln(3e^{5}) = \ln(3)$ $\ln(3e^{5}) = \ln(3)$ $\ln(3e^{5}) = \ln(3e^{5}) = \ln(3e^{5}) = 3e$ $\ln(3e^{5}) = \ln(3e^{5}) = \ln(3e^{5}) = 3e$ $\ln(3e^{5}) = \ln(3e^{5}) = \ln(3e^{5}) = 3e$

III. Étude de la fonction logarithme népérien

1) Continuité et dérivabilité

<u>Propriété</u>: La fonction logarithme népérien est continue sur]0; $+\infty[$.

<u>Propriété</u>: La fonction logarithme népérien est dérivable sur]0; $+\infty$ [et $(\ln x)' = \frac{1}{x}$.

Démonstration au programme: p236

Vidéo https://youtu.be/wmysrEq4XIg

<u>Propriété</u>: Soit u une fonction dérivable sur un intervalle I telle que u(x) > 0 pour tout x de I. La fonction f définie sur I par $f(x) = \ln(u(x))$ est dérivable sur I et pour tout réel x de I $f'(x) = \frac{u'(x)}{u(x)}$.

On a
$$\ln(u)' = \frac{u'}{u}$$

2) Variations

Propriété: La fonction logarithme népérien est strictement croissante sur]0; $+\infty[$.

3) Convexité

<u>Propriété</u>: La fonction logarithme népérien est concave sur]0; $+\infty[$.

4) Limites aux bornes

<u>Propriétés</u>: $\lim_{x\to+\infty} \ln x = +\infty$ et $\lim_{x\to 0} \ln x = -\infty$

On dresse le tableau de variations de la fonction logarithme népérien :

X	0	+∞
$(\ln x)'$	+	
ln x	 -∞	₩∞

5) Courbe représentative

Valeurs particulières :

$$ln 1 = 0$$

$$ln e = 1$$

Equation de la tangente à la courbe de ln au point d'abscisse 1 :

Demonstration

Mg ($\ln(xs) = 5c$ Soit $f(se) = e \ln(xs)$ $= e^{\ln(xs)}$ $f(se) = (\ln(xs) e^{\ln(xs)}$ $= (\ln(xe)) = 5c$ Or f(xe) = 0Or f(xe) = 0On a $(\ln(xs) + xe) = 1$ Sonce $(\ln(xe)) = \frac{1}{xe}$

u=ln(25 u=s(ln(2e))

IV- Croissance comparée des fonctions logarithme et puissances

Propriétés (croissances comparées):

a)
$$\lim_{x\to +\infty} \frac{\ln x}{x} = 0$$
 et pour tout entier non nul n , $\lim_{x\to +\infty} \frac{\ln x}{x^n} = 0$
b) $\lim_{x\to 0} x \ln x = 0$ et pour tout entier n , $\lim_{x\to 0} x^n \ln x = 0$

b)
$$\lim_{x\to 0} x \ln x = 0$$
 et pour tout entier n , $\lim_{x\to 0} x^n \ln x = 0$

Démonstration du b. dans les cas où n = 1 (au programme) : p240

Remarque: Les fonctions puissances imposent leur limite devant la fonction logarithme népérien.

Méthode: Déterminer une limite par croissance comparée

Vidéo https://youtu.be/IA3W j4p-c8

Vidéo <https://youtu.be/OYcsChr8src>

$$a) \lim_{x \to +\infty} x - \ln x$$

$$b) \lim_{x \to +\infty} \frac{\ln x}{x - 1}$$

$$\lim_{x \to +\infty} \frac{\ln x}{x -$$

b)
$$\lim_{x \to +\infty} \frac{\ln x}{x-1}$$

$$\lim_{x \to +\infty} \frac{\ln x}{x-1}$$

$$\lim_{x \to +\infty} \frac{\ln (x)}{x-1} = \frac{\ln (x)}{\ln (x-1)}$$
ou $\lim_{x \to +\infty} \frac{\ln (x)}{x-1} = \frac{\ln (x)}{\ln (x-1)} = \frac{\ln (x)}{\ln (x-1)}$

$$\lim_{x \to +\infty} \frac{\ln (x)}{x-1} = \frac{\ln (x)}{\ln (x-1)} = \frac{\ln (x)}{\ln (x-1)}$$

$$\lim_{x \to +\infty} \frac{\ln (x)}{x-1} = \frac{\ln (x)}{\ln (x-1)} = \frac{\ln (x)}{\ln (x-1)}$$

$$\lim_{x \to +\infty} \frac{\ln (x)}{x-1} = \frac{\ln (x)}{\ln (x-1)} = \frac{\ln (x)}{\ln (x)}$$

$$\lim_{x \to +\infty} \frac{\ln (x)}{x-1} = \frac{\ln (x)}{\ln (x)} = \frac{\ln (x)}{\ln (x)}$$

$$\lim_{x \to +\infty} \frac{\ln (x)}{x-1} = \frac{\ln (x)}{\ln (x)} = \frac{\ln (x)}{\ln (x)}$$

$$\lim_{x \to +\infty} \frac{\ln (x)}{x-1} = \frac{\ln (x)}{\ln (x)} = \frac{\ln (x)}{\ln (x)}$$

III. Études de fonctions contenant des logarithmes

Méthode : Étudier les variations d'une fonction contenant des logarithmes

► Vidéo https://youtu.be/iT9C0BiOK4Y

- 1) Déterminer les variations de la fonction f définie sur]0; $+\infty[$ par $f(x) = 3 x + 2 \ln x$
- 2) Étudier la convexité de la fonction f.

 $\underline{\text{M\'ethode}}$: Étudier la position relative de la courbe de la fonction logarithme et de la droite d'équation y = x

Vidéo https://youtu.be/0hQnOs hcss

Étudier la position relative de la courbe de la fonction logarithme et de la droite d'équation y = x.

limite lim (1- =) = 1 Is lim by las = 0 Por Q langled = 0