Tarefa Aulas 1 e 2 – Exploração de SNA em R

Questões Base

- Explore as rotinas Exemplo Rede One Mode_Brasília T10.Re Exemplo Rede Two Mode_Brasília T10.R. Rode os códigos na plataforma R utilizando como base as tabelas Rede One Mode_Tarefa Aulas 1 e 2_Brasília T10.xlsx e Rede Two Mode_Tarefa Aulas 1 e 2_Brasília T10.xlsx. (atenção: não são as mesmas bases trabalhadas em sala). Compile as saídas dos códigos (conteúdo das variáveis, gráficos, tabelas) em um documento Word (usando o modelo deste documento) e comente seus resultados, análises, potenciais implicações gerenciais, etc, conforme discutido em sala nas Aulas 1 e 2.
- Utilizando a Rede One Mode do arquivo Rede One Mode_Tarefa Aulas 1 e 2_Brasília T10.xlsx descreva sua estrutura de componentes, nós, arestas, centralidades, cliques, diâmetro, distância média e densidade. Faça pequenas modificações na tabela e veja seus resultados.
- Inclua outras análises em seu código (usando as extensões sna, network ou igraph) e comente os resultados (seja criativo!).
 - 1) A Rede One Mode foi extraída de uma matriz de adjacência de 1 componente, 33 variáveis e 36 linhas

a. Nós: 33

```
IGRAPH 8afa7b3 DN-- 2 33 --
+ attr: name (v/c), C (e/n), D (e/n), E (e/n), F (e/n), G (e/n), H (e/n), I (e/n), J (e/n), K
| (e/n), L (e/n), M (e/n), N (e/n), O (e/n), P (e/n), Q (e/n), R (e/n), S (e/n), T (e/n), U
| (e/n), V (e/n), W (e/n), X (e/n), Z (e/n), AA (e/n), AB (e/n), AC (e/n), AD (e/n), AE (e/n),
| AF (e/n). AG (e/n). AH (e/n)
```

b. Arestas: 534

```
IGRAPH 13a9bb3 UN-B 66 534 --
+ attr: type (v/l), name (v/c)
+ edges from 13a9bb3 (vertex names):

[1] A--B A--C A--I A--J A--N A--O A--P A--T A--U A--W A--X A--Z A--AB A--AC A--AD A--AF
[17] A--AG A--AH B--A B--C B--J B--L B--M B--O B--P B--V B--W B--X B--Z B--AB B--AC B--AD
[33] B--AE B--AF B--AG B--AH C--A C--B C--D C--I C--M C--N C--Q C--U C--W C--AA C--AB C--AC
[49] C--AD C--AE C--AF C--AG C--AH D--C D--E D--F D--G D--H D--I D--J D--L D--O D--P D--V
[65] D--X D--AA D--AC D--AD D--AE D--AF D--AG E--D E--F E--J E--P E--U E--X E--Z E--AC E--AD
[81] E--AE F--D F--E F--H F--I F--J F--L F--Q F--V F--Z F--AC F--AD G--D G--H G--I G--Q
[97] G--U G--AA G--AB G--AF G--AG G--AH H--D H--F H--G H--J H--K H--L H--R H--T H--V H--AA
[113] H--AB H--AC H--AD H--AE H--AF H--AG H--AH I--A I--C I--D I--F I--G I--J I--L I--M I--O
```


Figura X : Visualização geral da Rede One Mode

c. Centralidades

o Centralidade de grau (degree)

[1] 18 18 17 18 10 11 10 17 22 21 7 13 13 16 17 12 19 8 12 15 17 15 19 12 16 18 14 22 23 23 21 22 18

Nós que apresentam maior número maior grau, ou seja, maior número de laços/autores

- AD=23 laços
- AE= 23 laços

Figura X : Visualização por Grau Por Número de Laços

o Centralidade de proximidade (closeness)

[1] 0.6956522 0.6808511 0.6956522 0.5925926 0.6037736 0.5925926 0.6808511 0.7619048 0.7441860 [11] 0.5614035 0.6274510 0.6274510 0.6666667 0.6808511 0.6153846 0.7111111 0.5714286 0.6153846 0.6530612 [21] 0.6808511 0.6530612 0.7111111 0.6153846 0.6666667 0.6956522 0.6400000 0.7619048 0.7804878 0.7804878 [31] 0.7441860 0.7619048 0.6956522

Nós com maior proximidade

AD: 0.780AE: 0.780

Figura X: Visualização de Centralidade por Proximidade

o Centralidade de intermediação

- [1] 0.6956522 0.6808511 0.6956522 0.5925926 0.6037736 0.5925926 0.6808511 0.7619048 0.7441860
- $[11] \ 0.5614035 \ 0.6274510 \ 0.6274510 \ 0.6666667 \ 0.6808511 \ 0.6153846 \ 0.7111111 \ 0.5714286 \ 0.6153846 \ 0.6530612$
- [21] 0.6808511 0.6530612 0.7111111 0.6153846 0.6666667 0.6956522 0.6400000 0.7619048 0.7804878 0.7804878
- [31] 0.7441860 0.7619048 0.6956522

Nós com maior grau de intermediação

AC: 18.66 AD: 19.40 AE: 18.07

Figura x – Visualização por centralidade de intermediação

d. Densidade e Eficiência

Esta Rede One mode apresentou densidade de 0.5056818 e eficiência de 0.5097656. Considerando o tamanho pequeno da rede é possível dizer que a rede tem uma possibilidade moderada de sobrevivência

e. Cliques

A rede one mode apresentou 12 cliques de 3 nós, 111 de 4nós, 158 de 5 nós, 42 de 7 nós e 1 de sete conforme resultado apresentado pelo R, uma vez que visualmente seria impossível a identificação dos cliques. Os cliques indicam grupos/subgrupos que apresentam semelhanças entre si, portanto pode-se dizer que no aspecto de negócio, quando uma empresa entende a necessidade de um individuo do grupo muito provavelmente poderá organizar uma estratégia para alcançar todos os indivíduos.

														\$cli	que	. cou	ınt																	
														1	2	3	, 4	4	5	6	7													
														0	0	12	11:	1 15	8	42	1													
													Fi	gura	x:	con	tage	m g	era	l de	cliq	ues												
\$	cliq	ue.o	cour	nt										_			·	·				•												
	Agg	Α	В	C	D	Ε	F	G	Н	Ι	J	Κ	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Z	AA	AΒ	AC	AD	ΑE	ΑF	AG	AΗ
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	12	0	0	0	0	2	0	2	2	1	0	6	0	0	0	0	0	3	2	0	0	5	0	0	0	1	0	1	3	3	2	0	0	3
4	111	13	27	16	17	10	1	6	14	20	8	3	2	3	11	16	13	5	7	11	13	8	7	12	10	15	26	19	18	5	53	20	13	22
5	158	28	26	32	34	2	5	2	17	69	56	0	6	44	26	32	4	27	0	7	14	22	5	60	6	30	26	4	15	28	46	50	57	10
õ	42	27	7	10	5	0	7	0	3	21	19	0	12	0	11	10	0	10	0	0	7	3	3	31	0	1	0	0	14	24	1	1	11	14
7	1	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	1	0
													Fi	gur	ах	: C	ont	tag	en	ı po	or l	Nós	5											

f. Distância Geodésica

i. Distância entre os nós – A rede mostrou distância máxima 2

Figura X: Distância Geodésica

ii. Quantidade de caminhos – a maior possibilidade de caminhos foi encontrada entre os nós 28 – 29 com 22 caminhos

	[,19]	Γ,207	[,21]	[,22]	[,23]	[,24]	Γ,257	[,26]	[,27]	Γ,287	[,29]	[,30]	Γ.317	[,32]	Γ.331
[1,]	8	1	1	8	1	1	1	11	1	1	1	15	1	1	1
[2,]	9	9	11	1	1	1	1	12	1	1	1	1	1	1	1
[3,]	11	12	1	7	1	10	11	1	1	1	1	1	1	1	1
[4,]	8	9	11	1	11	1	8	1	9	1	1	1	1	1	9
[5,]	3	5	1	8	3	1	1	6	3	1	1	1	7	8	5
[6,]	5	6	6	1	7	5	1	5	4	1	1	8	5	6	5
[7,]	7	8	1	4	6	5	6	1	1	7	8	10	1	1	1
[8,]	9	1	10	1	10	9	8	1	1	1	1	1	1	1	1
[9,]	1	1	1	10	1	8	1	14	1	1	1	1	1	1	1
[10,]	10	1	12	1	1	10	1	11	1	1	1	1	1	1	12
[11,]	5	7	1	4	4	4	3	1	4	1	1	1	4	5	4
[12,]	7	8	4	1	1	6	7	1	6	1	1	9	8	9	7
[13,]	6	8	1	7	1	4	1	5	6	10	11	12	1	1	1
[14,] 9 10 11 1 1 8 1 9 6 1 1 1 1 1 [15,] 11 12 1 7 1 10 11 1 1 1 1 1 1 1 1 1															1
	11	12	1	7	1	10	11	1	1	1	1	1	1	1	1
[16,]	8	7	8	1	8	11	7	1	1	1	1	1	1	1	5
[17,] 1 1 12 1 1 4 1 12 1 1 1 1 12 13 1 [18,] 4 1 1 3 4 3 1 5 1 4 5 8 1 1															13
[18,] 4 1 1 3 4 3 1 5 1 4 5 8 1 1 [19,] 1 10 7 1 1 8 7 1 1 1 1 1 1															1
[18,] 4 1 1 3 4 3 1 5 1 4 5 8 1 1 [19,] 1 10 7 1 1 8 7 1 1 1 1 1 1 1															1
[20,]	10	1	1	6	1	8	10	1	8	1	1	1	1	1	1
[21,]	7	1	1	1	11	8	1	10	7	1	1	1	1	1	12
[22,]	1	6	1	1	1	1	1	8	7	13	13	1	12	12	8
[23,]	1	1	11	1	1	9	11	1	9	1	1	14	1	1	1
[24,]	8	8	8	1	9	1	8	1	4	1	1	1	1	1	1
[25,]	7	10	1	1	11	8	1	3	7	10	11	1	1	1	1
[26,]	1	1	10	8	1	1	3	1	1	1	1	1	1	1	11
[27,]	1	8	7	7	9	4	7	1	1	11	11	1	13	13	10
[28,]	1	1	1	13	1	1	10	1	11	1	22	18	16	16	1
[29,]	1	1	1	13	1	1	11	1	11	22	1	19	16	1	1
[30,]	1	1	1	1	14	1	1	1	1	18	19	1	1	1	1
			Fi	gur	a X	: Ou	iant	idad	le de	car	minl	108			
				0"	1	٠ ٧٠					111				

Utilizando a Rede Two Mode do arquivo Rede Two Mode_Tarefa Aulas 1 e 2_Brasília T10.xlsx descreva sua estrutura de componentes, nós, arestas, centralidades. Faça pequenas modificações na tabela e veja seus resultados.

- 2) A Rede Two Mode foi extraída de uma matriz de adjacência de 1 componente com 21 variáveis e 25 linhas
 - a. Nós Produtos 25
 - b. Nós Pessoas 21
 - **c.** Arestas : 273

```
IGRAPH 39c7e6a UN-B 46 273 --
+ attr: type (v/l), name (v/c)
+ edges from 39c7e6a (vertex names):
 [1] João --iPhone
                                  João --iPad
                                                                João --jogo.MineCraft
[4] João --Camisa.do.Corinthians João --Flauta.Transversal
                                                                João --Lista.Telefônica
[7] João --Caixa.de.Fósforos
                                  João --Calculadora
                                                                João --Pokemon
[10] João --Álcool.Gel
                                  João --Máscara
                                                                João --Vacina
[13] João --Hamburguer
                                  João --Maionese
                                                                Maria--iPhone
[16] Maria--iPad
                                  Maria--Livro.Harry.Potter
                                                                Maria--jogo.MineCraft
[19] Maria--Camisa.do.Corinthians Maria--Bola.de.Futebol
                                                                Maria--Flauta.Transversal
                                  Maria--Caixa.de.Fósforos
                                                                Maria--Calculadora
[22] Maria--Lista.Telefônica
+ ... omitted several edges
```


Figura x : Visualização Geral da Rede Two Modes

d. Centralidades

o Centralidade de grau (degree)

Nós que apresentaram maior grau, ou seja, maior número de laços/autores

Álcool-Gel: 25Máscara: 22Vacina: 22

Itens obviamente justificados pelo período da pandemia da Covid-19

Centralidade de proximidade (closeness)

[1] 0.5421687 0.5844156 0.4639175 0.4639175 0.5056180 0.5172414 0.4945055 0.5056180 0.5172414 0.5056180 [11] 0.4838710 0.5056180 0.4838710 0.5421687 0.4945055 0.4945055 0.4736842 0.4639175 0.5555556 0.4838710 [21] 0.5555556 0.5421687 0.5555556 0.4639175 0.4736842 0.4945055 0.4639175 0.5056180 0.4545455 0.6000000 [31] 0.4054054 0.5421687 0.5056180 0.5056180 0.4838710 0.4945055 0.4205607 0.4368932 0.5172414 0.5421687 [41] 0.4545455 0.6923077 0.6338028 0.6338028 0.5294118 0.4545455

Nós que apresentaram maior grau proximidade

- João:0.54
- Maria:0.58
- Gabriel 0.54
- Álcool-Gel: 0.69
- Máscara: 0.63
- Vacina: 0.63

Figura X:Visualização de Centralidade por Proximidade

o Centralidade de intermediação

[1]	56.081484	94.737325	7.916969	8.438990	26.150204	32.351229	36.342570	26.586217	29.419786
[10]	29.119906	20.854767	26.056657	24.629793	48.325791	27.235560	27.235560	14.638184	10.162023
[19]	75.036053	22.448776	66.617846	53.893769	118.402559	20.403864	24.914118	35.551465	16.676330
[28]	43.121781	14.156759	108.698698	4.015673	64.256845	43.657471	41.915853	23.976790	30.658452
[37]	2.793239	7.155496	50.682472	71.196402	17.931483	189.253127	136.486776	135.117891	57.143250
[46]	13.553746								

Nós que apresentaram maior grau de intermediação

Álcool-Gel: 189.25Máscara: 136.49Vacina: 135.12

e. Densidade e Eficiência

Esta Rede One mode apresentou densidade de 0.2637681e eficiência de 0.7525926. Considerando o tamanho pequeno da rede é possível dizer que a rede tem uma possibilidade baixa de sobrevivência.

f. Cliques

A rede two apresentou 273 cliques de 2 nós , ou seja não foi identificado outro tipo clique conforme resultado apresentado pelo R. A pessoa que participou do maior número cliques foi Maria e o produto mais vinculado foi o Álcool Gel. PENSAR QUE ESTRATÉGIA ISSO DÁ

A parte de imagem com identificação de relação rid1 não foi encontrada no arquivo.

Tarefa das Aulas 1 e 2

\$clique.count 1 2 0 273

Figura X: Contagem geral de Cliques

\$	clique	e.cou	ınt																	
	Agg 3	João	Maria	José	Paulo	Pedro	Luisa	Marce	elo Al	fredo	Joaquim	Gabı	riela F	lávia	Catap	ulto	Rodri	igo (Gabrie	l
1	0	0	0	0	0	0	0		0	0	0		0	0		0		0		0
2	273	14	17	7	7	11	12		10	11	12		11	9		11		9	1	4
	Bozo	Pesc	idelo F	elipe	Gisel	e Tat	iana R	enato	Nelso	n Cesa	r Regin	aldo	Romári	o Tha	is iPh	one '	iPad			
1	0		0	0)	0	0	0		0	0	0		0	0	0	0			
2	10		10	8	3	7	15	9	1	5 1	.4	15		7	8	12	9			
	Livro	o.Har	ry.Pot	ter j	jogo.Mi	neCra	ft Cam	isa.do	.Cori	nthiar	s Camis	a.do	.Palmei	ras B	ola.de	.Fut	ebol			
1				0			0				0			0			0			
2				14			8			2	.0			4			16			
	Flaut	ta.Tr	ansver	sal L	.ista.T	elefôr	nica C	aixa.d	de . Fós	foros	Calcula	dora	Deterg	gente	Agenda	Cacl	horro	Pok	emon	
1				0			0			0		0		0	0		0		0	
2				13			14			11		12		4	6		14		16	
	Lápis	s Áld	ool.Ge	el Más	cara V	acina	Hambu	rguer	Maion	ese										
1	(0		0	0	0		0		0										
2		_	_	-	22															

Figura X: Contagem de Cliques por nós

g. Distância Geodésica ?????? é preciso rever o conceito — Duvidas da interpretação , ou o resultado esta errado

i. Distância entre os nós – A rede two modes mostrou distância máxima 3

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]	[,11]	[,12]	[,13]	[,14]	[,15]	[,16]	[,17]	[,18]
[1,]	0	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
[2,]	2	0	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
[3,]	2	2	0	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
[4,]	2	2	2	0	2	2	2	2	2	2	2	2	2	2	2	2	2	2
[5,]	2	2	2	2	0	2	2	2	2	2	2	2	2	2	2	2	2	2
[6,]	2	2	2	2	2	0	2	2	2	2	2	2	2	2	2	2	2	2
[7,]	2	2	2	2	2	2	0	2	2	2	2	2	2	2	2	2	2	2
[8,]	2	2	2	2	2	2	2	0	2	2	2	2	2	2	2	2	2	2
[9,]	2	2	2	2	2	2	2	2	0	2	2	2	2	2	2	2	2	2
[10,]	2	2	2	2	2	2	2	2	2	0	2	2	2	2	2	2	2	2
[11,]	2	2	2	2	2	2	2	2	2	2	0	2	2	2	2	2	2	2
[12,]	2	2	2	2	2	2	2	2	2	2	2	0	2	2	2	2	2	2
[13,]	2	2	2	2	2	2	2	2	2	2	2	2	0	2	2	2	2	2
[14,]	2	2	2	2	2	2	2	2	2	2	2	2	2	0	2	2	2	2
[15,]	2	2	2	2	2	2	2	2	2	2	2	2	2	2	0	2	2	2
[16,]	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	0	2	2
[17,]	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	0	2
[18,]	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	0
[19,]	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
[20,]	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Γ21.7	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

	[,19]	[,20]	[,21]	[,22]	[,23]	[,24]	[,25]	[,26]	[,27]	[,28]	[,29]	[,30]	[,31]	[,32]	[,33]	[,34]
[1,]	2	2	2	2	2	2	2	1	1	3	1	1	3	3	1	1
[2,]	2	2	2	2	2	2	2	1	1	1	1	1	3	1	1	1
[3,]	2	2	2	2	2	2	2	3	3	3	3	1	3	3	1	3
[4,]	2	2	2	2	2	2	2	1	3	3	3	1	3	3	3	3
[5,]	2	2	2	2	2	2	2	3	3	1	3	1	3	1	3	1
[6,]	2	2	2	2	2	2	2	3	3	1	3	1	3	1	3	1
[7,]	2	2	2	2	2	2	2	1	3	3	3	3	1	1	1	3
[8,]	2	2	2	2	2	2	2	3	1	1	3	1	3	1	1	3
[9,]	2	2	2	2	2	2	2	1	3	1	3	1	3	1	1	1
[10,]	2	2	2	2	2	2	2	3	1	1	1	1	3	1	3	1
[11,]	2	2	2	2	2	2	2	1	3	1	1	1	3	3	3	3
[12,]	2	2	2	2	2	2	2	3	1	3	3	1	3	1	1	1
[13,]	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	1
[14,]	2	2	2	2	2	2	2	3	1	1	1	1	3	1	1	1
[15,]	2	2	2	2	2	2	2	1	3	1	3	1	3	1	1	1
[16,]	2	2	2	2	2	2	2	1	3	1	3	1	3	1	1	1
[17,]	2	2	2	2	2	2	2	1	3	1	3	1	3	3	3	3
[18,]	2	2	2	2	2	2	2	3	1	3	1	1	3	3	3	3
[19,]	0	2	2	2	2	2	2	1	3	1	3	3	3	1	1	1
[20,]	2	0	2	2	2	2	2	3	1	3	1	1	3	3	3	3
[21,]	2	2	0	2	2	2	2	1	3	1	3	1	3	1	3	1

i. Quantidade de Caminhos - a maior possibilidade de caminhos foi de 161

ii.

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]	[,11]	[,12]	[,13]	[,14]	[,15]	[,16]	[,17]	[,18]
[1,]	1	13	7	6	9	9	8	8	10	8	8	9	8	11	6	6	5	6
[2,]	13	1	7	7	10	11	9	11	12	11	8	11	8	14	8	8	7	7
[3,]	7	7	1	5	5	5	6	7	7	4	4	5	4	6	4	4	4	4
[4,]	6	7	5	1	5	6	5	6	6	5	5	5	3	5	3	3	6	5
[5,]	9	10	5	5	1	11	6	7	9	8	7	8	7	9	5	5	5	4
[6,]	9	11	5	6	11	1	6	8	9	9	7	9	7	10	5	5	6	5
[7,]	8	9	6	5	6	6	1	7	8	4	5	6	5	7	5	5	4	3
[8,]	8	11	7	6	7	8	7	1	9	8	5	8	4	10	6	6	6	6
[9,]	10	12	7	6	9	9	8	9	1	8	6	8	6	10	8	8	6	4
[10,]	8	11	4	5	8	9	4	8	8	1	6	9	5	11	5	5	6	7
[11,]	8	8	4	5	7	7	5	5	6	6	1	5	5	7	4	4	6	5
[12,]	9	11	5	5	8	9	6	8	8	9	5	1	6	11	5	5	5	6
[13,]	8	8	4	3	7	7	5	4	6	5	5	6	1	7	3	3	3	3
[14,]	11	14	6	5	9	10	7	10	10	11	7	11	7	1	7	7	6	7
[15,]	6	8	4	3	5	5	5	6	8	5	4	5	3	7	1	10	5	2
[16,]	6	8	4	3	5	5	5	6	8	5	4	5	3	7	10	1	5	2
[17,]	5	7	4	6	5	6	4	6	6	6	6	5	3	6	5	5	1	5
[18,]	6	7	4	5	4	5	3	6	4	7	5	6	3	7	2	2	5	1
[19,]	11	13	6	5	10	10	9	8	11	7	7	8	9	10	8	8	5	3
[20,]	7	8	4	5	5	6	4	6	4	7	6	7	4	8	3	3	6	7
Г21 Т	10	12	6	7	10	11	8	9	10	8	8	8	7	10	9	9	R	5

	[,19]	[,20]	[,21]	[,22]	[,23]	L,24J	[,25]	[,26]	[,27]	[,28]	[,29]	[,30]	[,31]	[,32]	[,33]	L,34J
[1,]	11	7	10	9	10	4	5	1	1	123	1	1	27	136	1	1
[2,]	13	8	12	12	11	6	6	1	1	1	1	1	32	1	1	1
[3,]	6	4	6	6	5	4	4	66	49	75	41	1	19	86	1	76
[4,]	5	5	7	7	4	4	2	1	48	76	42	1	15	81	62	73
[5,]	10	5	10	9	6	4	4	90	66	1	58	1	20	1	93	1
[6,]	10	6	11	10	7	5	4	95	74	1	64	1	22	1	98	1
[7,]	9	4	8	8	7	5	7	1	55	91	47	119	1	1	1	94
[8,]	8	6	9	9	7	6	5	90	1	1	61	1	25	1	1	111
[9,]	11	4	10	10	6	5	5	1	71	1	60	1	24	1	1	1
10,]	7	7	8	8	7	5	3	81	1	1	1	1	19	1	90	1
11,]	7	6	8	7	6	3	3	1	56	1	1	1	17	92	72	89
12,]	8	7	8	8	8	5	5	83	1	108	66	1	24	1	1	1
13,]	9	4	7	6	8	3	4	66	53	80	48	102	20	90	75	1
14,]	10	8	10	10	10	6	6	104	1	1	1	1	29	1	1	1
15,]	8	3	9	9	5	4	5	1	47	1	40	1	19	1	1	1
16,]	8	3	9	9	5	4	5	1	47	1	40	1	19	1	1	1
17,]	5	6	8	8	5	4	3	1	51	1	46	1	16	89	66	80
18,]	3	7	5	5	6	4	2	52	1	67	1	1	15	72	58	66
19,]	1	4	12	11	10	4	6	1	74	1	65	161	29	1	1	1
20,]	4	1	7	7	8	4	4	64	1	80	1	1	20	87	70	80
21.7	12	7	1	14	9	6	6	1	78	1	69	1	29	1	118	1

	[,35]	Γ.367	[,37]	Γ.387	Γ.397	Γ.407	Γ.417	[,42]	Γ.437	Γ.447	Γ.457	Γ.467
[1,]	1	1	42	52	115	1	58	1	1	1	1	1
[2,]	1	1	1	64	1	1	72	1	1	1	1	86
[3,]	61	1	22	31	72	1	37	1	1	1	80	42
[4,]	57	1	19	29	1	78	37	1	1	1	77	41
[5,]	1	1	33	45	101	115	49	1	1	1	1	1
[6,]	1	1	35	48	1	122	54	1	1	1	1	1
[7,]	75	1	30	42	83	1	48	1	1	1	1	54
[8,]	88	1	30	45	1	1	54	1	1	1	112	56
[9,]	1	1	35	53	107	1	57	1	1	1	124	67
[10,]	1	88	30	40	1	107	49	1	1	1	111	58
[11,]	72	77	26	36	84	90	44	1	1	1	1	1
[12,]	1	93	33	42	1	116	51	1	1	1	1	61
[13,]	1	74	1	36	74	1	38	1	1	1	1	1
[14,]	1	112	41	54	1	1	64	1	1	1	1	74
[15,]	65	76	24	1	76	1	1	1	120	119	87	45
[16,]	65	76	24	1	76	1	1	1	120	119	87	45
[17,]	59	70	20	36	1	84	1	1	1	1	82	43
[18,]	58	57	19	23	1	69	34	1	1	1	74	37
[19,]	1	1	1	1	110	1	64	1	1	1	1	1
[20,]	68	67	24	32	1	85	1	1	1	1	1	47
[21,]	107	1	40	1	1	1	1	1	1	1	1	1
[red	ached g	get0pti	ion("mo	ıx.pri	nt")	- omit	ted 25	rows _]			

• **Desafio:** Baseado na tabela da Rede Two Mode desta tarefa, faça uma análise de agrupamento (*cluster analysis*) do tipo hierárquico aglomerativo (dendrograma) das pessoas ou dos produtos adquiridos por elas, levando em consideração apenas a estrutura de relações entre elas. Comente como implementou e discuta os resultados, comparando com a rede construída. Utilize a plataforma R e o script de exemplo de uso de *Cluster Analysis* em R.

Dica: após a seleção dos grupos, desenhe a rede e represente os nós das pessoas (ou produtos) com cores de acordo com o grupo correspondente e interprete-a.

h. Análise de Clusters

i. Cortando a árvore em 3 Grupos

> gr	rupos -	<- cutree(hc,k=3)							
> gr	rupos									
	João	Maria	José	Paulo	Pedro	Luisa	Marcelo	Alfredo	Joaquim	Gabriela
	1	1	1	1	1	1	1	1	1	1
F	Flávia	Catapulto	Rodrigo	Gabriel	Bozo	Pesadelo	Felipe	Gisele	Tatiana	Renato
	1	1	1	1	2	2	1	1	1	1
1	Nelson	Cesar	Reginaldo	Romário	Thais					
	1	1	3	1	1					

Cortando a árvore em 4 Grupos

```
> grupos <- cutree(hc,k=4)
> grupos
     João
                          José
                                    Paulo
                                              Pedro
                                                         Luisa
                                                                            Alfredo
                                                                                       Joaquim
                                                                                                Gabriela
               Maria
                                                                 Marcelo
        1
                   1
                             2
                                                                        2
                                                                                  2
                                                                                             2
                                                  1
                                                             1
                                                                                                        1
   Flávia Catapulto
                                  Gabriel
                                                      Pesadelo
                       Rodrigo
                                               Bozo
                                                                   Felipe
                                                                                       Tatiana
                                                                                                  Renato
                                                                        2
        2
                                                  3
                                                             3
                                                                                  2
                                                                                                        2
                   1
   Nelson
               Cesar Reginaldo
                                  Romário
                                              Thais
                   1
                             4
                                                  2
```

iii. Análise das Variáveis

• Vacina, Máscara, Álcool-Gel

Box Plot Produto: Álcool-Gel

TEORIA

Densidade = diferença do número de aresta, + arestas + densa (números de conexões) Qto maior a densidade da rede mais chances de sobreviver ela tem.

Grau (degree) números de aresta que incidem sobre o nó Grau médio / média do grau = densidade * (n-1)

Indegree (número de arestas que chegam no nó) Indegree médio Outdegree(número de aresta que saem do nó)

Outdegree médio

a média do indegree é sempre igual a média do outdegree

Distancia é o menor caminho entre os nós

Distância Média = (pares de nós) – distancia entre todos os pares de nós

Cliques = subgrupos de nós que entre eles tem densidade máxima (cai na prova) e não há um nó adicional que esta conectado a todos eles . para redes sociais podem ser vistos como bolhas ou elementos que tem forte semelhança entre si

Diametro é a distancia entre os nós mais distantes da rede . se eu escolher dois nós quaisquer – a distancia é no máximo o diâmetro (não conta a ultima aresta)