Clustering-based ion chromatogram extraction and peak-picking for high-resolution LC-MS data

LC-HRMS data Divide Step 1 **Partitions** Step 2 Cluster **EICs** Step 3 **Detect**

Figure 1: Peak picking with enviPick is done in three consecutive steps.

Peaks

Step 1 477.6

Figure 5: The interactive data and result viewer of enviPick.

Martin Loos¹, Matthias Ruff¹, Heinz Singer¹, Juliane Hollender¹

¹ Eawag Dübendorf, Überlandstrasse 133, 8600 Dübendorf, Switzerland

Motivation

Peak picking joins individual LC-HRMS data points into a single mass signal. As a critical step of data reduction and analysis, peak picking must deal with:

- Noisy, heterogeneous and large data sets as shown in Figure 2.
- Chromatographic peaks varying strongly in shape and width.
- Isobaric compounds and chemical baselines.
- Data preprocessed at acquisition (baseline-correction, centroidization).
- Interference of (un)resolved masses even at high resolutions.
- High priority and confidence in data points of high intensity.

Existing peak picking strategies do not cover all of the above aspects. Hence, a novel approach is presented to extract ion chromatograms (EICs) and to detect individual signal peaks, based on three steps (cp. Figure 1).

Figure 2: Data from the same LC-HRMS experiment differs strongly depending on the m/z-region (Orbitrap XL Velos Pro, R60K@m/z400).

Data partitioning

Given: set of centroided and baseline-corrected LC-HRMS data points m

Divide data into unrelated regions to acccelerate and parallelize computation of step 2:

- Link each data point to its neigbours found within large tolerances of ΔRT_L and $\Delta m/z_L$
- Group all directly and indirectly linked data points into a single partition P_x

The partition size (number of data points) often increases with m/z.

Figure 3: LC-HRMS data points during the partitioning process

EIC clustering

Given: *n* partitions $P=\{P_{x=1},...,P_{x=n}\}$ with *k* data points $m_x=\{m_{x,1},...,m_{x,k}\}$ in each.

- (A) Cluster data points in each partition.
- (1) Start with an empty cluster set $C_x = \{\}$.
- (2) Select data point $m_{x,1}$ from intensity-ranked data m_x .
- (3) Is $m_{x,1}$ assignable to any of w existing cluster $C_x = \{C_{x,y=1}, \ldots, C_{x,y=w}\}$ within (a) $\Delta m/z_{x,y}$, $\Delta RT_{x,y}$ and (b) no other clustered $m_{x,y,i\leq p}$ with identical RT? No: Assign $m_{x,w+1,1} = m_{x,1}$. Add new cluster $C_{x,w+1} = \{m_{x,w+1,1}\}$ to C_x . Set $\Delta m/z_{x,w+1} = 2*(m/z)$ range of mass precision).
 - Set $\Delta RT_{x,w+1} = RT$ search window $<< RT_L$. **Yes:** Add measurement to the cluster *y* with smallest difference in mean m/z, i.e., assign $m_{x,y,p+1} = m_{x,1}$. Adapt $\Delta m/z_{x,y}$. Extent $\Delta RT_{x,y}$.
- (4) Remove $m_{x,1}$ from m_x .

Repeat (2) to (4) until $m_x = \emptyset$.

- (B) Merge cluster in C_x :
- (1) List all cluster pairs with data points (a) nested in each others $\Delta m/z_{x,v}$ and (b) not having duplicated RT.
- (2) Merge cluster pair with smallest mean *m/z* difference.
- (3) Update: (a) $\Delta m/z_{x,y}$ of merged cluster, (b) C_x and (c) list of cluster pairs.

Repeat (1) to (3) until list of cluster pairs is empty.

Each cluster in the final set C_x corresponds to an extracted ion chromatogram (EIC).

Peak detection & filtering

Given: w EICs $C_x = \{C_{x,y=1}, ..., C_{x,y=w}\}$ with p data points $m_{x,y} = \{m_{x,y,1}, ..., m_{x,y,p}\}$.

- (A) Detect up to q peaks in each EIC:
- (1) Order $m_{x,v}$ by RT and interpolate data gaps $\leq \Delta RT_{gap}$.
- (2) Select most intense data point $m_{x,y,max}$ as candidate peak apex.
- (3) $S_d(n) = \text{sum of intensity decreases between } m_{x,y,max} \text{ and } m_{x,y,n}$.
- (4) $S_i(n) = \text{sum of intensity increases between } m_{x,y,max} \text{ and } m_{x,y,n}$. (5) For n>max, set upper peak bound n_{UB} as $argmax \quad Sd(n) \gamma S_i(n)$
- (6) For n < max, set lower peak bound n_{LB} as $arg^n max Si(n) \gamma S_d(n)$
- (7) Remove data points of peak $n_{LB} \le n \le n_{UB}$ from $m_{x,v}$ Repeat (2) to (7) at most q times
- (8) If $m_{x,y} \neq \emptyset$, set baseline: interpolate gaps and smooth
- (9) Subtract baseline intensity from peak intensities
- (10) Set EIC noise N as median intensity deviation of $m_{x,v}$ from baseline
- (B) Filter peaks by S/N, S/B, intensity threshold, # data points per ΔRT

enviPick R package

- Raw data & result viewer
- Browser-based user interface
- Wrapper & step-wise functions
- Batch processing
- Freely available (GPL-3)
- Reads .mzXML data:
- Baseline-corrected
- Centroided

n=max n_{UB} n_{LB} $S_d(n)$ $S_d(n) - \gamma S_i(n)$ $S_i(n)$ baseline RT $m_{x,y,n_{UB}}$ (base B) $m_{x,y,n=max}$ (signal S)

Figure 4: LC-HRMS data points (grey) in an EIC subsection. Notations refer to the peak picking process of step 3.

Figure 6: enviPick provides a convenient user interface.