

MATHEMATICAL METHODS 2020

Unit 3 Key Topic Test 5 – Exponential & Logarithmic Functions Technology Free

Recommended writing time*: 45 minutes
Total number of marks available: 30 marks

SOLUTIONS

© TSSM 2020 Page 1 of 5

Question 1

a.
$$e^{2x} - 2 = 0$$

 $e^{2x} = 2$
 $2x = \log_e 2$
 $x = \frac{1}{2}\log_e 2 \text{ or } \log_e \sqrt{2}$

1 mark

b.
$$4^x = 2^{x-5}$$

 $2^{2x} = 2^{x-5}$
 $2x = x - 5$
 $x = -5$

1 mark

c.
$$4^{x} - 8 \times 2^{x} = -12$$

 $2^{2x} - 8 \times 2^{x} + 12 = 0$
Let $a = 2^{x}$
 $a^{2} - 8a + 12 = 0$
 $(a - 6)(a - 2) = 0$
 $a = 2, 6$
 $2^{x} = 2, x = 1$

1 mark

1 mark

$$2^x = 6, x = log_2 6$$

1 mark

d.
$$e^{t} + 5 = 6e^{-t}$$

 $e^{t}(e^{t} + 5) = e^{t}(6e^{-t})$
 $e^{2t} + 5e^{t} = 6$
 $e^{2t} + 5e^{t} - 6 = 0$
Let $e^{t} = a$
 $a^{2} + 5a - 6 = 0$
 $(a + 6)(a - 1) = 0$
 $a = -6, 1$
 $e^{t} = -6, no solution$
 $e^{t} = 1, t = 0$

1 mark

0 1,0 0

1 mark 1 mark

Question 2

a.
$$2 - x > 0$$

 $x < 2$
 $a = 2$

1 mark

b. Let
$$x = log_e(2 - y)$$
 1 mark $e^x = 2 - y$ $y = 2 - e^x$ 1 mark $e^x = 2 - e^x$ 1 mark $e^x = 2 - e^x$ 1 mark 1 ma

Domain
$$f^{-1}(x)$$
 = range of $f(x)$
= R 1 mark

1 mark asymptotes 1 mark (1,0) and (0,1)1 mark $(\ln(2),0)$ and $(0,\ln(2))$ 1 mark shape

Question 3

a.
$$2log_e(x) - log_e(x+10) = log_e(\frac{1}{2})$$

 $log_e x^2 - log_e(x+10) = log_e(\frac{1}{2})$
 $log_e(\frac{x^2}{x+10}) = log_e(\frac{1}{2})$
 1 mark
 $\frac{x^2}{x+10} = \frac{1}{2}$
 $2x^2 = x + 10$
 $2x^2 - x - 10 = 0$
 $(2x-5)(x+2) = 0$
 $x = -2, \frac{5}{2}$
1 mark

As
$$x > 0$$

$$x = \frac{5}{2}$$
1 mark

b.
$$log_2(4-x) - log_2(2-x) = 2$$

 $log_2\left(\frac{4-x}{2-x}\right) = 2$ 1 mark
 $2^2 = \frac{4-x}{2-x}$

$$8-4x = 4-x$$

$$4 = 3x$$

$$x = \frac{4}{3}$$
1 mark

Since x < 2, this solution fits the domain

Question 4

a.
$$f(u) \times f(-u) = (e^{2u} - e^{-u})(e^{-2u} - e^{u})$$
 1 mark
= $e^{0} - e^{3u} - e^{-3u} + e^{0}$
= $2 - e^{3u} - e^{-3u}$ 1 mark

b.
$$f(x) = e^{2x} - e^{-x}$$

 $= e^x (e^x - e^{-2x})$ 1 mark
 $= e^x (e^x - \frac{1}{e^{2x}})$
 $= e^x \left(\frac{e^{3x} - 1}{e^{2x}}\right)$ 1 mark

c. Let
$$x = log_e \sqrt{\frac{y}{2}}$$
 1 mark $e^x = \sqrt{\frac{y}{2}}$ 2 1 mark $e^x = \sqrt{\frac{y}{2}}$ 2 $e^{2x} = \frac{y}{2}$ 2 e^{2x} 3 1 mark $e^x = \frac{y}{2}$ 4 1 mark $e^x = \frac{y}{2}$ 5 1 mark $e^x = \frac{y}{2}$ 6 1 mark $e^x = \frac{y}{2}$ 7 1 mark $e^x = \frac{y}{2}$ 8 1 mark $e^x = \frac{y}{2}$ 9 1

© TSSM 2020 Page 5 of 5