Algorithms and Complexity on Temporal Graphs

George B. Mertzios

School of Engineering and Computing Sciences, Durham University, UK

Graduiertenkolleg – Monday Lecture: Methods for Discrete Structures

TU Berlin / FU Berlin / HU Berlin

July 2016

Many systems in Science and Technology:

- abstracted as graphs
- vertex ←→ elementary system unit
- edge ←→ some kind of interaction between units

Many systems in Science and Technology:

- abstracted as graphs
- vertex ←→ elementary system unit
- edge ←→ some kind of interaction between units

However many modern systems are highly dynamic:

- Modern communication networks:
 - links change dynamically at a high rate
 - mobile ad hoc, sensor, peer-to-peer, opportunistic, delay-tolerant networks, etc.
- Network changes may:
 - follow specific patterns,
 e.g. satellites following a trajectory, or
 - be unpredictable, e.g. mobile ad hoc networks

The internet graph.

Further examples of modern dynamic systems:

- Social networks: friendships are added/removed, individuals leave, new ones enter
- Transportation networks: transportation units change with time their position in the network
- Physical systems: e.g. systems of interacting particles

Further examples of modern dynamic systems:

- Social networks: friendships are added/removed, individuals leave, new ones enter
- Transportation networks: transportation units change with time their position in the network
- Physical systems: e.g. systems of interacting particles

The common characteristic in all these applications:

- the graph topology is subject to discrete changes over time
- ⇒ the notion of vertex adjacency must be appropriately re-defined (by introducing the time dimension in the graph definition)

Various graph concepts (e.g. reachability, connectivity):

crucially depend on the exact temporal ordering of the edges

Overview

- Temporal graphs
- Temporal paths
- Strongly connected components
- Menger's theorem
- Temporal design problems
- Temporal exploration
- Temporal TSP
- Future research directions

Formally:

Definition (Temporal Graph)

A temporal graph is a pair (G, λ) where:

- G = (V, E) is an underlying (di)graph and
- $\lambda: E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

Formally:

Definition (Temporal Graph)

A temporal graph is a pair (G, λ) where:

- \bullet G = (V, E) is an underlying (di)graph and
- $\lambda : E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.
- If $t \in \lambda(e)$ then edge e is available at time t
- This formal definition (for single-availabilities per edge) embarks from: [Kempe, Kleinberg, Kumar, STOC, 2000]
 [Berman, Networks, 1996]
- In general every edge can have multiple availabilities
 [Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013]

Formally:

Definition (Temporal Graph)

A temporal graph is a pair (G, λ) where:

- \bullet G = (V, E) is an underlying (di)graph and
- ullet $\lambda: E o 2^{\mathbb{N}}$ is a discrete time-labeling function.

Remarks:

- Denote $\lambda_{\min}/\lambda_{\max}$ be the smallest/largest time-label in (G, λ)
- \bullet λ_{max} can also be infinite (e.g. in periodic temporal graphs)
- Otherwise the the age of (G,λ) is $\alpha(\lambda)=\lambda_{\mathsf{max}}-\lambda_{\mathsf{min}}+1$
- Unless otherwise specified:
 - the labels are given explicitly with the input
 - $c(\lambda)$ is the total number of labels

Formally:

Definition (Temporal Graph)

A temporal graph is a pair (G, λ) where:

- G = (V, E) is an underlying (di)graph and
- $\lambda : E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

temporal graph:

1,4 2,4

temporal instances:

0

0

Formally:

Definition (Temporal Graph)

A temporal graph is a pair (G, λ) where:

- G = (V, E) is an underlying (di)graph and
- $\lambda : E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

temporal graph:

temporal instances:

Formally:

Definition (Temporal Graph)

A temporal graph is a pair (G, λ) where:

- G = (V, E) is an underlying (di)graph and
- $\lambda : E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

temporal graph:

temporal instances:

Formally:

Definition (Temporal Graph)

A temporal graph is a pair (G, λ) where:

- G = (V, E) is an underlying (di)graph and
- $\lambda : E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

temporal graph:

temporal instances:

0

Formally:

Definition (Temporal Graph)

A temporal graph is a pair (G, λ) where:

- G = (V, E) is an underlying (di)graph and
- $\lambda : E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

temporal graph:

temporal instances:

Related models

Related notions of dynamicity in graphs:

flows over time

```
[Fleischer, Skutella, SIAM J. on Computing, 2007]
[Hoppe, Tardos, Math. Oper. Res., 2000]
[Fleischer, Tardos, Oper. Res. Lett., 1998]
```

- flows on static graph topologies with transit times on the edges
- continuous availabilities; natural model, different techniques

Related models

Related notions of dynamicity in graphs:

flows over time

```
[Fleischer, Skutella, SIAM J. on Computing, 2007]
[Hoppe, Tardos, Math. Oper. Res., 2000]
[Fleischer, Tardos, Oper. Res. Lett., 1998]
```

- flows on static graph topologies with transit times on the edges
- continuous availabilities; natural model, different techniques
- minimum label graph problems
 [Fellows, Guo, Kanj, J. Comp. Syst. Sci., 2010]
 - ullet input: static topology G with a label on each edge, graph property Π
 - \bullet goal: find an edge subset with the smallest number of distinct labels which satisfies Π

Related models

Related notions of dynamicity in graphs:

- dynamic graphs
 [Demetrescu, Finocchi, Italiano, Handbook Data Str. and Appl., 2004]
 - topology changes via insertion/deletion of vertices/edges
 - changes are assumed to happen rarely
 - goals: efficient query & solution update after a dynamic change

Related models

Related notions of dynamicity in graphs:

- dynamic graphs
 [Demetrescu, Finocchi, Italiano, Handbook Data Str. and Appl., 2004]
 - topology changes via insertion/deletion of vertices/edges
 - changes are assumed to happen rarely
 - goals: efficient query & solution update after a dynamic change

In contrast, in context of temporal networks:

- topology is expected to change frequently and massively
- ⇒ changes are not anomalies or exceptions
 - they are rather an integral part of the system
- ⇒ can not be reasonably modeled with network faults /failures

Temporal graphs were studied under various different names:

- time-varying graphs
 [Aaron et al., WG, 2014]
 [Flocchini et al., ISAAC, 2009]
 [Tang et al., ACM Comp. Comm. Review, 2010]
- evolving graphs (usually "graph-centric")
 [Avin et al., ICALP, 2008]
 [Clementi et al., SIAM J. Discr. Math., 2010]
 [Ferreira, IEEE Network, 2004]
 [Bui Xuan et al., Int. J. Found. Comp. Sci., 2003]
- dynamic graphs
 [Giakkoupis et al., ICALP, 2014]
 [Casteigts et al., Int. J. Par., Emergent & Distr. Syst, 2012]
 [Bhadra and Ferreira, ADHOC-NOW, 2003]
- graphs over time
 [Leskovec et al., ACM Trans. Knowl. Disc. from Data, 2007]

Recent surveys and books:

- Time-Varying Graphs and Dynamic Networks
 [Casteigts et al., Int. J. Par., Emergent & Distr. Syst, 2012]
 - an attempt to integrate and unify existing models and concepts
- Deterministic Algorithms in Dynamic Networks
 [Casteigts, Flocchini, Defence R&D Canada, Tech. Report I, 2013]
 [Casteigts, Flocchini, Defence R&D Canada, Tech. Report II, 2013]
 - survey of deterministic algorithms for distributed computing
 - temporal graph classes based on temporal patterns of the labels

Recent surveys and books:

- Time-Varying Graphs and Dynamic Networks
 [Casteigts et al., Int. J. Par., Emergent & Distr. Syst, 2012]
 - an attempt to integrate and unify existing models and concepts
- Deterministic Algorithms in Dynamic Networks
 [Casteigts, Flocchini, Defence R&D Canada, Tech. Report I, 2013]
 [Casteigts, Flocchini, Defence R&D Canada, Tech. Report II, 2013]
 - survey of deterministic algorithms for distributed computing
 - temporal graph classes based on temporal patterns of the labels
 - satellites periodic availabilities
 - sensor networks $\,\longrightarrow\,$ connected at every instant
 - − contacts in a company → bounded edge recurrence (every week)
 - community contacts unbounded, yet recurrent interactions

Recent surveys and books:

- Time-Varying Graphs and Dynamic Networks
 [Casteigts et al., Int. J. Par., Emergent & Distr. Syst, 2012]
 - an attempt to integrate and unify existing models and concepts
- Deterministic Algorithms in Dynamic Networks
 [Casteigts, Flocchini, Defence R&D Canada, Tech. Report I, 2013]
 [Casteigts, Flocchini, Defence R&D Canada, Tech. Report II, 2013]
 - survey of deterministic algorithms for distributed computing
 - temporal graph classes based on temporal patterns of the labels
 - satellites periodic availabilities
 - sensor networks $\,\longrightarrow\,$ connected at every instant
 - − contacts in a company → bounded edge recurrence (every week)
 - community contacts \longrightarrow unbounded, yet recurrent interactions
- Temporal Networks [Holme, Saramäki, eds., Springer, 2013]
 - temporal network methods for complex networks

Overview

- Temporal graphs
- Temporal paths
- Strongly connected components
- Menger's theorem
- Temporal design problems
- Temporal exploration
- Temporal TSP
- Future research directions

The conceptual shift from static to temporal graphs significantly impacts:

- the definition of basic graph parameters
- the type of tasks to be computed

Graph properties can be classified as:

- a-temporal, i.e. satisfied at every instance
 - connectivity at every point in time
- temporal, i.e. satisfied over time
 - communication routes over time

The most natural known temporal notion in temporal graphs:

Definition (Temporal path; Time-respecting path; Journey)

Let (G, λ) be a temporal graph and $P = (e_1, e_2, \dots, e_k)$ be a walk in G.

A temporal path is a sequence $((e_1, \ell_1), (e_2, \ell_2), \ldots, (e_k, \ell_k))$, where:

$$\ell_1 < \ell_2 < \ldots < \ell_k$$

and $\ell_i \in \lambda(e_i)$, $1 \leq i \leq k$.

The most natural known temporal notion in temporal graphs:

Definition (Temporal path; Time-respecting path; Journey)

Let (G, λ) be a temporal graph and $P = (e_1, e_2, \ldots, e_k)$ be a walk in G. A temporal path is a sequence $((e_1, \ell_1), (e_2, \ell_2), \ldots, (e_k, \ell_k))$, where: $\ell_1 < \ell_2 < \ldots < \ell_k$ and $\ell_i \in \lambda(e_i)$, 1 < i < k.

Motivation due to causality in information dissemination:

- information "flows" along edges whose labels respect time ordering
- ⇒ strictly increasing labels along the path
 - a "static path" given "in pieces"

The most natural known temporal notion in temporal graphs:

Definition (Temporal path; Time-respecting path; Journey)

Let (G,λ) be a temporal graph and $P=(e_1,e_2,\ldots,e_k)$ be a walk in G. A temporal path is a sequence $((e_1,\ell_1),(e_2,\ell_2),\ldots,(e_k,\ell_k))$, where: $\ell_1<\ell_2<\ldots<\ell_k$ and $\ell_i\in\lambda(e_i),\,1\leq i\leq k$.

Motivation due to causality in information dissemination:

- information "flows" along edges whose labels respect time ordering
- ⇒ strictly increasing labels along the path
 - a "static path" given "in pieces"

Most identified temporal graph parameters are "temporal path"-related:

• temporal versions of distance, diameter, connectivity, reachability, exploration, centrality measures, etc.

The most natural known temporal notion in temporal graphs:

Definition (Temporal path; Time-respecting path; Journey)

Let (G, λ) be a temporal graph and $P = (e_1, e_2, \ldots, e_k)$ be a walk in G. A temporal path is a sequence $((e_1, \ell_1), (e_2, \ell_2), \ldots, (e_k, \ell_k))$, where: $\ell_1 < \ell_2 < \ldots < \ell_k$

and $\ell_i \in \lambda(e_i)$, $1 \leq i \leq k$.

A temporal path:

temporal path: $0 \frac{1}{25} \frac{3}{25} \frac{4}{25} \frac{7}{25} \frac{18}{25} \frac{25}{25} \frac{1}{25}$

temporal instances:

0

0

The most natural known temporal notion in temporal graphs:

Definition (Temporal path; Time-respecting path; Journey)

Let (G, λ) be a temporal graph and $P = (e_1, e_2, \ldots, e_k)$ be a walk in G. A temporal path is a sequence $((e_1, \ell_1), (e_2, \ell_2), \ldots, (e_k, \ell_k))$, where: $\ell_1 < \ell_2 < \ldots < \ell_k$

and $\ell_i \in \lambda(e_i)$, $1 \le i \le k$.

A temporal path:

temporal path: 0 1 3 0 4 7 0 18 25

temporal instances:

The most natural known temporal notion in temporal graphs:

Definition (Temporal path; Time-respecting path; Journey)

Let (G, λ) be a temporal graph and $P = (e_1, e_2, \ldots, e_k)$ be a walk in G. A temporal path is a sequence $((e_1, \ell_1), (e_2, \ell_2), \ldots, (e_k, \ell_k))$, where: $\ell_1 < \ell_2 < \ldots < \ell_k$

and $\ell_i \in \lambda(e_i)$, $1 \leq i \leq k$.

A temporal path:

temporal path: 0 1 3 4 7 18 25 0 temporal instances: 0 0 0 0 0

The most natural known temporal notion in temporal graphs:

Definition (Temporal path; Time-respecting path; Journey)

Let (G, λ) be a temporal graph and $P = (e_1, e_2, \ldots, e_k)$ be a walk in G. A temporal path is a sequence $((e_1, \ell_1), (e_2, \ell_2), \ldots, (e_k, \ell_k))$, where: $\ell_1 < \ell_2 < \ldots < \ell_k$

and $\ell_i \in \lambda(e_i)$, $1 \leq i \leq k$.

A temporal path:

The most natural known temporal notion in temporal graphs:

Definition (Temporal path; Time-respecting path; Journey)

Let (G, λ) be a temporal graph and $P = (e_1, e_2, \ldots, e_k)$ be a walk in G. A temporal path is a sequence $((e_1, \ell_1), (e_2, \ell_2), \ldots, (e_k, \ell_k))$, where: $\ell_1 < \ell_2 < \ldots < \ell_k$

and $\ell_i \in \lambda(e_i)$, $1 \le i \le k$.

A temporal path:

The most natural known temporal notion in temporal graphs:

Definition (Temporal path; Time-respecting path; Journey)

Let (G, λ) be a temporal graph and $P = (e_1, e_2, \ldots, e_k)$ be a walk in G. A temporal path is a sequence $((e_1, \ell_1), (e_2, \ell_2), \ldots, (e_k, \ell_k))$, where: $\ell_1 < \ell_2 < \ldots < \ell_k$

and $\ell_i \in \lambda(e_i)$, $1 \leq i \leq k$.

A temporal path:

temporal path: 0 1 3 0 4 7 18 25 0 temporal instances: 0 0 0 0 0 0

The most natural known temporal notion in temporal graphs:

Definition (Temporal path; Time-respecting path; Journey)

Let (G, λ) be a temporal graph and $P = (e_1, e_2, \ldots, e_k)$ be a walk in G. A temporal path is a sequence $((e_1, \ell_1), (e_2, \ell_2), \ldots, (e_k, \ell_k))$, where: $\ell_1 < \ell_2 < \ldots < \ell_k$

and $\ell_i \in \lambda(e_i)$, $1 \le i \le k$.

A temporal path:

The most natural known temporal notion in temporal graphs:

Definition (Temporal path; Time-respecting path; Journey)

Let (G, λ) be a temporal graph and $P = (e_1, e_2, \ldots, e_k)$ be a walk in G. A temporal path is a sequence $((e_1, \ell_1), (e_2, \ell_2), \ldots, (e_k, \ell_k))$, where: $\ell_1 < \ell_2 < \ldots < \ell_k$

and $\ell_i \in \lambda(e_i)$, $1 \le i \le k$.

A non-temporal path:

temporal instances:

The most natural known temporal notion in temporal graphs:

Definition (Temporal path; Time-respecting path; Journey)

Let (G,λ) be a temporal graph and $P=(e_1,e_2,\ldots,e_k)$ be a walk in G. A temporal path is a sequence $((e_1,\ell_1),(e_2,\ell_2),\ldots,(e_k,\ell_k))$, where: $\ell_1<\ell_2<\ldots<\ell_k$

and $\ell_i \in \lambda(e_i)$, $1 \leq i \leq k$.

A non-temporal path:

The most natural known temporal notion in temporal graphs:

Definition (Temporal path; Time-respecting path; Journey)

Let (G, λ) be a temporal graph and $P = (e_1, e_2, \ldots, e_k)$ be a walk in G. A temporal path is a sequence $((e_1, \ell_1), (e_2, \ell_2), \ldots, (e_k, \ell_k))$, where: $\ell_1 < \ell_2 < \ldots < \ell_k$

and $\ell_i \in \lambda(e_i)$, $1 \leq i \leq k$.

A non-temporal path:

non-temporal path: 0 1 0 3 0 4 0 4 0 18 0 15 0 temporal instances: 0 0 0 0 0 0 0

The most natural known temporal notion in temporal graphs:

Definition (Temporal path; Time-respecting path; Journey)

Let (G, λ) be a temporal graph and $P = (e_1, e_2, \ldots, e_k)$ be a walk in G. A temporal path is a sequence $((e_1, \ell_1), (e_2, \ell_2), \ldots, (e_k, \ell_k))$, where: $\ell_1 < \ell_2 < \ldots < \ell_k$

and $\ell_i \in \lambda(e_i)$, $1 \le i \le k$.

A non-temporal path:

The most natural known temporal notion in temporal graphs:

Definition (Temporal path; Time-respecting path; Journey)

Let (G, λ) be a temporal graph and $P = (e_1, e_2, \ldots, e_k)$ be a walk in G. A temporal path is a sequence $((e_1, \ell_1), (e_2, \ell_2), \ldots, (e_k, \ell_k))$, where: $\ell_1 < \ell_2 < \ldots < \ell_k$

and $\ell_i \in \lambda(e_i)$, $1 \leq i \leq k$.

A non-temporal path:

non-temporal path: \circ $\overset{1}{\circ}$ $\overset{3}{\circ}$ $\overset{4}{\circ}$ $\overset{4}{\circ}$ $\overset{18}{\circ}$ $\overset{15}{\circ}$ $\overset{15}{\circ}$ $\overset{1}{\circ}$ temporal instances: \circ \circ $\overset{\circ}{\circ}$ $\overset{\circ}{\circ}$ $\overset{\circ}{\circ}$ $\overset{\circ}{\circ}$ $\overset{\circ}{\circ}$ $\overset{\circ}{\circ}$ $\overset{\circ}{\circ}$ $\overset{\circ}{\circ}$

The most natural known temporal notion in temporal graphs:

Definition (Temporal path; Time-respecting path; Journey)

Let (G,λ) be a temporal graph and $P=(e_1,e_2,\ldots,e_k)$ be a walk in G. A temporal path is a sequence $((e_1,\ell_1),(e_2,\ell_2),\ldots,(e_k,\ell_k))$, where: $\ell_1<\ell_2<\ldots<\ell_k$

and $\ell_i \in \lambda(e_i)$, $1 \leq i \leq k$.

A non-temporal path:

Question: What is the temporal analogue of an *s-t* shortest path?

Question: What is the temporal analogue of an *s-t* shortest path?

Answer: Not uniquely defined!

- topologically shortest path: smallest number of edges
- fastest path: smallest duration
- foremost path: smallest arrival time

Question: What is the temporal analogue of an *s-t* shortest path?

Answer: Not uniquely defined!

- topologically shortest path: smallest number of edges
- fastest path: smallest duration
- foremost path: smallest arrival time

Example:

Question: What is the temporal analogue of an *s-t* shortest path?

Answer: Not uniquely defined!

- topologically shortest path: smallest number of edges
- fastest path: smallest duration
- foremost path: smallest arrival time

Example:

shortest: s-c-t (two edges)

Question: What is the temporal analogue of an *s-t* shortest path?

Answer: Not uniquely defined!

- topologically shortest path: smallest number of edges
- fastest path: smallest duration
- foremost path: smallest arrival time

Example:

shortest: s-c-t (two edges)

fastest: s-d-e-t (no intermediate waiting)

Question: What is the temporal analogue of an *s-t* shortest path?

Answer: Not uniquely defined!

- topologically shortest path: smallest number of edges
- fastest path: smallest duration
- foremost path: smallest arrival time

Example:

shortest: s-c-t (two edges)

fastest: s-d-e-t (no intermediate waiting)

foremost: s-a-b-t (arriving at time 6)

An easy algorithm for computing all foremost paths from a given source s: [Akrida, Gasieniec, Mertzios, Spirakis, WAOA, 2015]

- first sort the time-labels non-decreasingly
- run a BFS-like search starting from s
- at every time-step t consider only edges currently available
- if you reach a new vertex at time t, keep its predecessor

An easy algorithm for computing all foremost paths from a given source s: [Akrida, Gasieniec, Mertzios, Spirakis, WAOA, 2015]

Algorithm 1 Foremost Temporal Paths from Source s

```
1: Let S be the array with the sorted time-labels

2: R \leftarrow \{s\}

3: for each v \in V \setminus \{s\} do

4: pred[v] \leftarrow \emptyset; arr[v] \leftarrow \infty {Init.: Predecessor; Time Arrived}

5: for each time-label t \in S do

6: for each edge e = (u, v) with t \in \lambda(e) do

7: if u \in R, v \notin R, and arr[u] < t then {we reached v}

8: pred[v] \leftarrow u; arr[v] \leftarrow t {Predecessor; Time Arrived}

9: R \leftarrow R \cup \{v\}
```

An easy algorithm for computing all foremost paths from a given source s:

- easy adaptation of the static BFS algorithm
- running time $O(c(\lambda) \cdot \log(c(\lambda)))$
- due to the sorting of the labels

Algorithm 1 Foremost Temporal Paths from Source s

```
1: Let S be the array with the sorted time-labels

2: R \leftarrow \{s\}

3: for each v \in V \setminus \{s\} do

4: pred[v] \leftarrow \emptyset; arr[v] \leftarrow \infty {Init.: Predecessor; Time Arrived}

5: for each time-label t \in S do

6: for each edge e = (u, v) with t \in \lambda(e) do

7: if u \in R, v \notin R, and arr[u] < t then {we reached v}

8: pred[v] \leftarrow u; arr[v] \leftarrow t {Predecessor; Time Arrived}

9: R \leftarrow R \cup \{v\}
```

Polynomial algorithms exist also in the case of edges with traversal times for computing:

- shortest and foremost paths [adaptations of Dijkstra's algorithm]
- fastest paths

[Bui-Xuan, Ferreira, Jarry, Int. J. Found. Comp. Sci., 2003]

Polynomial algorithms exist also in the case of edges with traversal times for computing:

- shortest and foremost paths [adaptations of Dijkstra's algorithm]
- fastest paths

[Bui-Xuan, Ferreira, Jarry, Int. J. Found. Comp. Sci., 2003]

Question: Are all "path-related" temporal problems tractable?

Polynomial algorithms exist also in the case of edges with traversal times for computing:

- shortest and foremost paths [adaptations of Dijkstra's algorithm]
- fastest paths

[Bui-Xuan, Ferreira, Jarry, Int. J. Found. Comp. Sci., 2003]

Question: Are all "path-related" temporal problems tractable?

Answer: Not all!

E.g. some temporal variations of:

- connectivity problems
- reachability problems

Overview

- Temporal graphs
- Temporal paths
- Strongly connected components
- Menger's theorem
- Temporal design problems
- Temporal exploration
- Temporal TSP
- Future research directions

- We write $u \rightsquigarrow v$ if there exists a temporal path from u to v
- The relation \rightsquigarrow is not symmetric: $u \rightsquigarrow v \Leftrightarrow v \rightsquigarrow u$

$$u \xrightarrow{3} a \xrightarrow{5} v$$

- We write $u \rightsquigarrow v$ if there exists a temporal path from u to v
- The relation \rightsquigarrow is not symmetric: $u \rightsquigarrow v \Leftrightarrow v \rightsquigarrow u$

• and not transitive: $u \rightsquigarrow z$, $z \rightsquigarrow v \Leftrightarrow u \rightsquigarrow v$

$$u \quad 3 \quad x \quad 5 \quad z \quad 2 \quad 0$$

⇒ the time dimension creates its own "level of direction"

Recall:

Definition

A directed (static) graph G is strongly connected if there is a path in each direction between each pair of vertices of G.

Recall:

Definition

A directed (static) graph G is strongly connected if there is a path in each direction between each pair of vertices of G.

A key property:

Observation

Let S be a (maximal) strongly connected subgraph and $u, v \in S$. If P = (u, ..., z, ..., v) is a path from u to v then $z \in S$.

• Does this transfer to temporal graphs?

static:

temporal:

temporal:

temporal: $a \xrightarrow{3} b$

strongly connected component

• $\{a, b\}$: direct temporal paths between a and b

- $\{a, b\}$: direct temporal paths between a and b
- $\{b, c\}$: the only temporal path from c to b passes through $a \notin \{b, c\}$

connected

component

• $\{a, b\}$: direct temporal paths between a and b

• $\{b, c\}$: the only temporal path from c to b passes through $a \notin \{b, c\}$

connected

component

• $\{a, b, c\}$: no temporal path from a to c

Definition (Bharda, Ferreira, 2003)

An open strongly connected component (o-SCC) in a temporal graph is a set S of vertices such that $u \rightsquigarrow v$ for every $u, v \in S$.

Examples of an o-SCC: $\{a, b\}, \{b, c\}$

Definition (Bharda, Ferreira, 2003)

An open strongly connected component (o-SCC) in a temporal graph is a set S of vertices such that $u \rightsquigarrow v$ for every $u, v \in S$.

Examples of an o-SCC: $\{a, b\}$, $\{b, c\}$

Definition (Bharda, Ferreira, 2003)

A strongly connected component (SCC) in a temporal graph is a set S of vertices such that, for every $u, v \in S$, there is a temporal path from u to v that uses only vertices from S.

Example of a SCC: $\{a, b\}$

- イロト イ部ト イミト イミト - ヨーの

A difference to the static case:

- there can be a path between two vertices of the SCC (e.g. $\{a, b\}$) that traverses vertices outside the SCC (e.g. c)
- the same for an o-SCC (e.g. $\{b, c\}$)

Further differences to the static case:

two different SCCs can have common vertices

Further differences to the static case:

- two different SCCs can have common vertices
 - $\{a, c, d\}$ is a SCC

Further differences to the static case:

- two different SCCs can have common vertices
 - {*a*, *c*, *d*} is a SCC
 - $\{b, c, d\}$ is another SCC

Further differences to the static case:

- two different SCCs can have common vertices
 - {a, c, d} is a SCC
 - $\{b, c, d\}$ is another SCC
 - $\{a, b, c, d\}$ is **not** a SCC (no temporal path $b \rightsquigarrow a$)

Further differences to the static case:

- two different SCCs can have common vertices
 - {a, c, d} is a SCC
 - $\{b, c, d\}$ is another SCC
 - $\{a, b, c, d\}$ is **not** a SCC (no temporal path $b \rightsquigarrow a$)

• Can we compute/verify temporal SCCs/o-SCCs efficiently?

Theorem (Bharda, Ferreira, 2003)

Given a vertex subset S of a temporal graph (G, λ) , we can verify in polynomial time whether S is a SCC (resp. an o-SCC).

Theorem (Bharda, Ferreira, 2003)

Given a vertex subset S of a temporal graph (G, λ) , we can verify in polynomial time whether S is a SCC (resp. an o-SCC).

Proof.

- ullet consider the induced (temporal) subgraph on S (resp. whole (G,λ))
- from every vertex $v \in S$ compute all foremost temporal paths
 - or all shortest / fastest paths, with any of the known algorithms
- if at least one vertex v does not reach the whole S (resp. whole G):
 - then S is not a SCC (resp. an o-SCC)

Observation: similarly to static graphs

Theorem

Given a temporal graph (G, λ) , it is NP-hard to compute the maximum size of a SCC, even if all edges have one and the same label.

Theorem

Given a temporal graph (G, λ) , it is NP-hard to compute the maximum size of a SCC, even if all edges have one and the same label.

Proof.

- Reduction from CLIQUE.
- Given a static undirected graph G construct a temporal graph (G, λ) :
 - **1** for each v_i of G create vertex u_i in G,
 - 2 for each edge (v_i, v_j) of G add these two arcs to G:

• G has a clique of size $k \Leftrightarrow (\mathcal{G}, \lambda)$ has an SCC of size k.

Theorem (Bharda, Ferreira, 2003)

Given a temporal graph (G, λ) , it is NP-hard to compute the maximum size of an o-SCC, even if all edges have two labels.

Theorem (Bharda, Ferreira, 2003)

Given a temporal graph (G, λ) , it is NP-hard to compute the maximum size of an o-SCC, even if all edges have two labels.

Proof.

- Again reduction from CLIQUE.
- Given a static undirected graph G construct a temporal graph (G, λ) :
 - ① for each v_i of G create vertex u_i in G,
 - ② for each edge (v_i, v_j) of G create a vertex h_{ij} in G and:
 - add the arcs $(u_i, h_{ij}), (u_i, h_{ij})$ with label 0,
 - add the arcs $(h_{ij}, u_i), (h_{ij}, u_i)$ with label 1.

Theorem (Bharda, Ferreira, 2003)

Given a temporal graph (G, λ) , it is NP-hard to compute the maximum size of an o-SCC, even if all edges have two labels.

Proof (continued).

- Whenever (v_i, v_i) is an edge in $G \Rightarrow u_i \rightsquigarrow u_i$ in \mathcal{G}
- A vertex h_{ij} has a temporal path only to u_i and u_j
- \Rightarrow any o-SCC with more than 3 vertices contains only u_i -vertices

Theorem (Bharda, Ferreira, 2003)

Given a temporal graph (G, λ) , it is NP-hard to compute the maximum size of an o-SCC, even if all edges have two labels.

Proof (continued).

- Whenever (v_i, v_i) is an edge in $G \Rightarrow u_i \leadsto u_i$ in \mathcal{G}
- A vertex h_{ij} has a temporal path only to u_i and u_i
- \Rightarrow any o-SCC with more than 3 vertices contains only u_i -vertices
- \Rightarrow G has a clique of size $k \Leftrightarrow (\mathcal{G}, \lambda)$ has an o-SCC of size k.

Overview

- Temporal graphs
- Temporal paths
- Strongly connected components
- Menger's theorem
- Temporal design problems
- Temporal exploration
- Temporal TSP
- Future research directions

Two fundamental duality results in (static) graph theory:

Theorem (Menger, 1927)

Two fundamental duality results in (static) graph theory:

Theorem (Menger, 1927)

Two fundamental duality results in (static) graph theory:

Theorem (Menger, 1927)

Two fundamental duality results in (static) graph theory:

Theorem (Menger, 1927)

A temporal analogue of the "edge-version":

Theorem (Berman, 1996)

In single-labeled temporal graphs, the maximum number of edge-disjoint temporal s-t paths is equal to the minimum number of edges needed to temporally separate s from t.

Proof (sketch).

- Reduce the temporal (undirected) graph to a static directed graph.
- Edge-disjoint paths and minimum edge separators remain invariant.
- Apply Menger's edge-version theorem.

A temporal analogue of the "edge-version":

Theorem (Berman, 1996)

In single-labeled temporal graphs, the maximum number of edge-disjoint temporal s-t paths is equal to the minimum number of edges needed to temporally separate s from t.

A temporal analogue of the "edge-version":

Theorem (Berman, 1996)

In single-labeled temporal graphs, the maximum number of edge-disjoint temporal s-t paths is equal to the minimum number of edges needed to temporally separate s from t.

However the "intuitive" temporal vertex-version fails:

Lemma (Berman, 1996; Kempe, Kleinberg, Kumar, 2000)

However the "intuitive" temporal vertex-version fails:

Lemma (Berman, 1996; Kempe, Kleinberg, Kumar, 2000)

There exists a single-labeled temporal graph where:

maximum number of vertex-disjoint temporal s-t paths <
minimum number of vertices needed to temporally separate s from t.

no two vertex-disjoint temporal s-t paths

However the "intuitive" temporal vertex-version fails:

Lemma (Berman, 1996; Kempe, Kleinberg, Kumar, 2000)

- no two vertex-disjoint temporal s-t paths
- the removal of any one vertex leaves s and t temporally connected

However the "intuitive" temporal vertex-version fails:

Lemma (Berman, 1996; Kempe, Kleinberg, Kumar, 2000)

- no two vertex-disjoint temporal s-t paths
- the removal of any one vertex leaves s and t temporally connected

However the "intuitive" temporal vertex-version fails:

Lemma (Berman, 1996; Kempe, Kleinberg, Kumar, 2000)

- no two vertex-disjoint temporal s-t paths
- the removal of any one vertex leaves s and t temporally connected

However the "intuitive" temporal vertex-version fails:

Lemma (Berman, 1996; Kempe, Kleinberg, Kumar, 2000)

There exists a single-labeled temporal graph where:

maximum number of vertex-disjoint temporal s-t paths <
minimum number of vertices needed to temporally separate s from t.

Theorem (Kempe, Kleinberg, Kumar, 2000)

It is NP-hard to compute:

- the maximum number of vertex-disjoint temporal s-t paths and
- the minimum number of vertices to temporally separate s from t.

On the positive side:

• a single-labeled temporal graph is called Mengerian if the temporal vertex-version of Menger's theorem holds for every labeling λ

Similarly to Kuratowski's theorem:

Theorem (Kempe, Kleinberg, Kumar, 2000)

A single-labeled temporal graph (G, λ) is Mengerian $\Leftrightarrow G$ does not contain a subdivision of:

An appropriate temporal vertex-version of Menger's theorem

We say that:

- two temporal paths are out-disjoint if they never leave from the same node at the same time
- we remove departure time t from vertex u if:
 - we remove label t from for all edges (u, w)

An appropriate temporal vertex-version of Menger's theorem

We say that:

- two temporal paths are out-disjoint if they never leave from the same node at the same time
- we remove departure time t from vertex u if:
 - we remove label t from for all edges (u, w)

Theorem (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP 2013)

In multi-labeled temporal graphs, the maximum number of out-disjoint s-t temporal paths equals the minimum number of vertex departure times needed to temporally separate s from t.

- vertex removal ---> vertex departure time removal

An appropriate temporal vertex-version of Menger's theorem

Three out-disjoint temporal paths from s to t:

An appropriate temporal vertex-version of Menger's theorem

Theorem (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP 2013)

In multi-labeled temporal graphs, the maximum number of out-disjoint s-t temporal paths equals the minimum number of vertex departure times needed to temporally separate s from t.

Proof (main idea).

- \bullet Using the time expansion of the temporal graph (\textit{G},λ)
 - ullet static "layered" directed graph with one copy of G for every time label
- ullet Equivalent (static) flow problem with capacities in $\{1,\lambda_{\max}\}$

Overview

- Temporal graphs
- Temporal paths
- Strongly connected components
- Menger's theorem
- Temporal design problems
- Temporal exploration
- Temporal TSP
- Future research directions

So far:

- we were given the input temporal graph (G, λ) and
- we were asked to optimize some metric (e.g. a foremost path)

Many times the problem is different:

- we are given a graph G and
- we are asked to construct a time-labeling λ such that:
 - \bullet λ minimizes some cost function and
 - (G, λ) satisfies some connectivity constraints

[Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013]

[Akrida, Gasieniec, Mertzios, Spirakis, WAOA, 2015]

In many scheduling problems:

- the provided graph topology G represents a given static specification
 - e.g. available bus routes in the city center
- the aim is to organize a temporal schedule on this specification, e.g.
 - when the buses should be in which stop
 - such that every pair of stops is connected via a route
- while minimizing some cost function
 - e.g. with as few buses as possible

In many scheduling problems:

- the provided graph topology G represents a given static specification
 - e.g. available bus routes in the city center
- the aim is to organize a temporal schedule on this specification, e.g.
 - when the buses should be in which stop
 - such that every pair of stops is connected via a route
- while minimizing some cost function
 - e.g. with as few buses as possible

Creating and maintaining a connection does not come for free, e.g.:

- edge "rentals" / toll roads
- in wireless sensor networks the connection cost depends on the power consumption of the vertices awake

We mainly study the following cost functions of a time-label λ :

- temporality au: the maximum number of labels per edge
 - a distributed / decentralized measure of cost in the temporal network
- **2** temporal cost κ : the total number of labels on all edges
 - a centralized measure of cost
- **3** as well as trade-offs between the age $\alpha(\lambda)$ and these parameters

We mainly study the following cost functions of a time-label λ :

- temporality τ : the maximum number of labels per edge
 - a distributed / decentralized measure of cost in the temporal network
- - a centralized measure of cost
- (a) as well as trade-offs between the age $\alpha(\lambda)$ and these parameters

and two fundamental connectivity properties:

- preserve in (G, λ) all reachabilities in G
 - if v is reachable from u in $G \Rightarrow u \leadsto v$ in (G, λ)
- 2 preserve in (G, λ) all paths in G
 - G has a path $P\Rightarrow (G,\lambda)$ has a temporal path on the same edges as P

We mainly study the following cost functions of a time-label λ :

- **1 temporality** τ : the maximum number of labels per edge
 - a distributed / decentralized measure of cost in the temporal network
- - a centralized measure of cost
- $oldsymbol{\circ}$ as well as trade-offs between the age $lpha(\lambda)$ and these parameters

and two fundamental connectivity properties:

- preserve in (G, λ) all reachabilities in G
 - if v is reachable from u in $G \Rightarrow u \rightsquigarrow v$ in (G, λ)
- 2 preserve in (G, λ) all paths in G
 - ullet G has a path $P\Rightarrow (G,\lambda)$ has a temporal path on the same edges as P

Notation (combining cost function & connectivity property):

• $\tau(G, all\ paths)$, $\tau(G, all\ paths, \alpha(\lambda))$, $\kappa(G, reach)$, etc.

• increasing labels on $P_1 \Rightarrow$ decreasing labels from (u_{n-1}, u_n) to (u_1, u_2)

- increasing labels on $P_1 \Rightarrow$ decreasing labels from (u_{n-1}, u_n) to (u_1, u_2)
- P_2 uses first (u_{n-1}, u_n) , then (u_1, u_2)
- ⇒ increasing pair of labels on these edges
 - To preserve both P_1 , P_2 we need 2 labels on at least one of these two edges $\Rightarrow \tau(C_n, all\ paths) \geq 2$

- increasing labels on $P_1 \Rightarrow$ decreasing labels from (u_{n-1}, u_n) to (u_1, u_2)
- P_2 uses first (u_{n-1}, u_n) , then (u_1, u_2)
- ⇒ increasing pair of labels on these edges
 - To preserve both P_1 , P_2 we need 2 labels on at least one of these two edges $\Rightarrow \tau(C_n, all \ paths) \geq 2$

• The labeling that assigns to each edge (u_i, u_{i+1}) the labels $\{i, n+i\}$ preserves all simple paths, i.e. $\tau(C_n, all\ paths) \leq 2$

- $\Rightarrow \tau(C_n, all paths) = 2$
 - The maximum label is 2n (can be "tuned" to 2n-2)

Restricting the age

What if we restrict the age to $\alpha(\lambda) = n - 1$?

- Assume that some edge e of C_n misses label $i \in \{1, 2, ..., n-1\}$
- Then there exists a temporal path on C_n that needs label i on edge e to finish by time n − 1

Restricting the age

What if we restrict the age to $\alpha(\lambda) = n - 1$?

- Assume that some edge e of C_n misses label $i \in \{1, 2, ..., n-1\}$
- Then there exists a temporal path on C_n that needs label i on edge e to finish by time n − 1
- \Rightarrow the optimal labeling assigns $\{1, 2, \dots, n-1\}$ to all edges of C_n
- $\Rightarrow \tau(C_n, all \ paths, n-1) = n-1$

Restricting the age

More generally:

Theorem (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013)

If G is a directed ring C_n and $\alpha(\lambda) = (n-1) + k$, where $1 \le k \le n-1$, then

$$\tau(G, all \ paths, \alpha) = \Theta(n/k).$$

In particular:
$$\lfloor \frac{n-1}{k+1} \rfloor + 1 \le \tau(G, \text{ all paths}, \alpha) \le \lceil \frac{n}{k+1} \rceil + 1$$
.

Temporality of a DAG

A topological sort of a digraph *G*:

- a linear ordering of its vertices, where
- if G contains an arc (u, v) then u appears before v

It is known:

• a digraph G can be topologically sorted \Leftrightarrow G is a DAG

Temporality of a DAG

Lemma (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013)

If G is a DAG then $\tau(G, all paths) = 1$.

Proof.

- Take a topological sort u_1, u_2, \ldots, u_n of G
- Give to every label i to every edge (u_i, u_j) , where i < j.

Temporality of a DAG

Lemma (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013)

If G is a DAG then $\tau(G, all paths) = 1$.

Proof.

- Take a topological sort u_1, u_2, \ldots, u_n of G
- Give to every label i to every edge (u_i, u_i) , where i < j.

Remarks:

- $\tau(G, all\ paths) = 1$
- the same even if we restrict the age

Intuition gained:

• cycles can increase the temporality of a (di)graph

Intuition gained:

• cycles can increase the temporality of a (di)graph

Based on this intuition:

Definition (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013)

The set $K = \{e_1, e_2, \dots, e_k\} \subseteq E(G)$ is an edge-kernel of G if for every permutation of K there is a (static) path of G that visits all edges of K according to this permutation.

Theorem (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013)

If a (di)graph G has an edge-kernel of size k then $\tau(G, all paths) \geq k$.

Theorem (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013)

If a (di)graph G has an edge-kernel of size k then $\tau(G, all paths) \ge k$.

Proof.

- Let K be a kernel of size k.
- On every edge $e \in K$, sort the labels increasingly.
- Construct a permutation π of K as follows:
 - e₁ is an edge with the maximum 1st label in K,
 - e_2 is an edge with the maximum 2nd label in K, ...
 - e_k is an edge with the maximum kth label in K.
- ullet In any temporal path that visits the edges according to π :
 - at the *i*th edge e_i of K we can not use any of its i-1 smallest labels
 - \Rightarrow edge e_i needs one ith label
- \Rightarrow at least one edge of K needs at least kth labels

Lemma (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013)

The complete (di)graph on n vertices has an edge-kernel of size $\lfloor n/2 \rfloor$.

Lemma (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013)

The complete (di)graph on n vertices has an edge-kernel of size $\lfloor n/2 \rfloor$.

Lemma (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013)

There exist (undirected) planar graphs with an edge-kernel of size $\Omega(n^{\frac{1}{3}})$.

Lemma (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013)

The complete (di)graph on n vertices has an edge-kernel of size $\lfloor n/2 \rfloor$.

Lemma (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013)

There exist (undirected) planar graphs with an edge-kernel of size $\Omega(n^{\frac{1}{3}})$.

Proof idea.

- Consider the grid graph $G = G_{2n^2,2n}$ with $O(n^3)$ vertices and edges
- Then G has an edge-kernel of n edges:

Temporality: preserving all reachabilities

Theorem (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013)

Let G be an undirected (or strongly connected directed) graph. Then $\tau(G, reach) \leq 2$.

Proof.

- pick an arbitrary vertex v
- let v have (static) distance at most k to all other vertices
- build a temporal in-tree to vertex v with labels $\{1, 2, ..., k\}$
- from v build a temporal out-tree to vertex v with labels $\{k+1, k+2, \ldots, 2k\}$
- ⇒ all vertices remain temporally connected with 2 labels per edge

Temporality: preserving all reachabilities

Theorem (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013)

Let G be an undirected (or strongly connected directed) graph. Then $\tau(G, reach) \leq 2$.

Similarly to our analysis for DAGs:

Theorem (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013)

Let G be a directed graph. Then $\tau(G, reach) = \max_{C \in \mathcal{C}(G)} \tau(C, reach)$, where $\mathcal{C}(G)$ is the set of strongly connected components of G.

Temporality: preserving all reachabilities

Theorem (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013)

Let G be an undirected (or strongly connected directed) graph. Then $\tau(G, reach) \leq 2$.

Similarly to our analysis for DAGs:

Theorem (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013)

Let G be a directed graph. Then $\tau(G, reach) = \max_{C \in \mathcal{C}(G)} \tau(C, reach)$, where $\mathcal{C}(G)$ is the set of strongly connected components of G.

Therefore:

Corollary

 $\tau(G, reach) \leq 2$ for every directed or undirected graph.

That is: we can preserve all reachabilities with at most 2 labels per edge.

A very different cost function: total number κ of labels

Theorem (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013)

Let d(G) denote the (static) diameter of the directed graph G. The problem of computing $\kappa(G, reach, d(G))$ is APX-hard, even when each directed cycle of G has length at most 2.

A very different cost function: total number κ of labels

Theorem (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013)

Let d(G) denote the (static) diameter of the directed graph G. The problem of computing $\kappa(G, reach, d(G))$ is APX-hard, even when each directed cycle of G has length at most 2.

Proof (sketch).

- reduction from Max-XOR(3):
 - formula ϕ with n variables and m clauses
 - XOR-clauses $(\ell_i \oplus \ell_j)$ with two literals each: $(\ell_i \oplus \ell_j) = 1 \Leftrightarrow \ell_i \neq \ell_j$
 - each variable appears in at most 3 clauses $\Rightarrow m \leq \frac{3}{2}n$
 - the goal is to find a truth assignment τ with the maximum number $|\tau(\phi)|$ of XOR-satisfied clauses
- from ϕ we construct a graph G_{ϕ} and we prove:
 - $|\tau(\phi)| \ge k \iff \kappa(G_{\phi}, reach, d(G_{\phi})) \le 39n 4m 2k$

Proof (sketch, continued).

• diameter $d(G_i) = 9$

Proof (sketch, continued).

- diameter $d(G_i) = 9$
- to achieve a maximum label 9 we have two choices:
 - $x_i = 0$

Proof (sketch, continued).

- diameter $d(G_i) = 9$
- to achieve a maximum label 9 we have two choices:
 - $x_i = 0$
 - $x_i = 1$

Proof (sketch, continued).

- for every clause $(\ell_i \oplus \ell_j)$ where:
 - ℓ_i corresponds to the *p*th appearance of x_i $(p \in \{1, 2, 3\})$
 - ℓ_j corresponds to the qth appearance of x_j $(q \in \{1, 2, 3\})$

we identify the pth branch of G_i and the qth branch of G_j as follows:

Proof (sketch, continued).

- for every clause $(\ell_i \oplus \ell_j)$ where:
 - ℓ_i corresponds to the *p*th appearance of x_i $(p \in \{1, 2, 3\})$
 - ℓ_j corresponds to the qth appearance of x_j $(q \in \{1, 2, 3\})$

we identify the pth branch of G_i and the qth branch of G_j as follows:

- $\ell_i \neq \ell_i \iff$ the correct "tracks" of these branches are labeled
- otherwise we use both "tracks" ⇒ pay more labels

A simple approximation algorithm:

• the reachability number of $u \in V$:

$$r(u) = |\{v \in V : v \text{ is reachable from } u\}|$$

• the total reachability number: $r(G) = \sum_{u \in V} r(u)$

Theorem (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013)

A $\frac{r(G)}{n-1}$ -approximation for $\kappa(G, reach, d(G))$ can be computed in polynomial time for connected graphs G.

A simple approximation algorithm:

• the reachability number of $u \in V$:

$$r(u) = |\{v \in V : v \text{ is reachable from } u\}|$$

• the total reachability number: $r(G) = \sum_{u \in V} r(u)$

Theorem (Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013)

A $\frac{r(G)}{n-1}$ -approximation for $\kappa(G, reach, d(G))$ can be computed in polynomial time for connected graphs G.

Proof.

- Compute from every $u \in V$ a temporal out-tree
- \Rightarrow all reachabilities are maintained with $\leq r(G)$ labels
 - ullet OPT $\geq n-1 \Rightarrow$ approximation ratio $\frac{r(G)}{n-1}$

The "inverse" design problem:

- ullet given a temporal graph (G,λ) that maintains all reachabilities of G
- remove the maximum number of labels by maintaining reachabilities
- removal cost $r(G, \lambda)$

The "inverse" design problem:

- ullet given a temporal graph (G,λ) that maintains all reachabilities of G
- remove the maximum number of labels by maintaining reachabilities
- removal cost $r(G, \lambda)$

Theorem (Akrida, Gasieniec, Mertzios, Spirakis, WAOA, 2015)

The problem of computing $r(G, \lambda)$ is APX-hard on undirected graphs G.

The "inverse" design problem:

- ullet given a temporal graph (G,λ) that maintains all reachabilities of G
- remove the maximum number of labels by maintaining reachabilities
- removal cost $r(G, \lambda)$

Theorem (Akrida, Gasieniec, Mertzios, Spirakis, WAOA, 2015)

The problem of computing $r(G, \lambda)$ is APX-hard on undirected graphs G.

Proof (sketch).

- reduction from monotone Max-XOR(3):
 - same as Max-XOR(3) but no variable is negated
- from ϕ we construct a graph G_{ϕ} and we prove:
 - $|\tau(\phi)| \ge k \iff r(G_{\phi}, \lambda) \ge 9n + k$

Overview

- Temporal graphs
- Temporal paths
- Strongly connected components
- Menger's theorem
- Temporal design problems
- Temporal exploration
- Temporal TSP
- Future research directions

Temporal exploration

Temporal Exploration Problem (TEXP) (Michail, Spirakis, 2014)

Input: Temporal graph (G, λ) and source vertex s Goal: Visit each vertex at least once with a temporal walk that minimizes the arrival time (possibly revisiting vertices)

Its "static analogue": Graphic Traveling Salesman Problem

• $\frac{13}{9}$ -approximation algorithm [Mucha, *Th. Comp. Syst.*, 2014]

Temporal exploration

Temporal Exploration Problem (TEXP) (Michail, Spirakis, 2014)

Input: Temporal graph (G, λ) and source vertex s

Goal: Visit each vertex at least once with a temporal walk that minimizes the arrival time (possibly revisiting vertices)

Its "static analogue": Graphic Traveling Salesman Problem

• $\frac{13}{9}$ -approximation algorithm [Mucha, *Th. Comp. Syst.*, 2014]

Observation

The decision version in the static case can be solved in linear time.

Proof.

- A static graph G is explorable \Leftrightarrow G is connected.
- \Rightarrow Check connectivity in G by DFS.

Temporal exploration

Temporal Exploration Problem (TEXP) (Michail, Spirakis, 2014)

Input: Temporal graph (G, λ) and source vertex s Goal: Visit each vertex at least once with a temporal walk that minimizes the arrival time (possibly revisiting vertices)

Its "static analogue": Graphic Traveling Salesman Problem

• $\frac{13}{9}$ -approximation algorithm [Mucha, *Th. Comp. Syst.*, 2014]

Observation

If a temporal graph (G, λ) is connected at every time t, then it is always explorable.

However:

Theorem (Michail, Spirakis, MFCS, 2014)

The decision version in the temporal case is NP-complete.

Proof.

Clearly in NP:

- certificate is a temporal walk visiting all vertices
- ullet concatenation of n-1 temporal paths
- in worst case: each temporal path re-visits all visited vertices
- \Rightarrow size of certificate: $O(n^2)$ (regardless of the arrival time)

Proof (continued).

NP-hardness: reduction from HAMILTONIAN PATH (HP)

- given a graph G and source s (instance of (HP))
- ullet construct a temporal graph D on the same vertices and edges as G:
 - where $\lambda(e) = \{1, 2, \dots, n-1\}$ for every edge of G

Proof (continued).

NP-hardness: reduction from Hamiltonian Path (HP)

- given a graph G and source s (instance of (HP))
- construct a temporal graph D on the same vertices and edges as G:
 - where $\lambda(e) = \{1, 2, ..., n-1\}$ for every edge of G
- 1 Let G have a Hamiltonian path starting from s
- \Rightarrow D has a temporal Hamiltonian path from s, visiting all vertices until time n-1
- \Rightarrow D is explorable from s

Proof (continued).

NP-hardness: reduction from Hamiltonian Path (HP)

- given a graph G and source s (instance of (HP))
- ullet construct a temporal graph D on the same vertices and edges as G:
 - where $\lambda(e) = \{1, 2, ..., n-1\}$ for every edge of G
- Conversely, let D have a temporal walk W from s, visiting each vertex at least once
 - Since the age of D is n-1:
 - W must visit all vertices in n-1 steps
 - ⇒ it visits each vertex exactly once
- \Rightarrow G has a Hamiltonian path from s

Theorem (Erlebach, Hoffmann, Kammer, ICALP, 2015)

There exists an infinite family of temporal graphs that require $\Omega(n^2)$ time to be explored.

Theorem (Erlebach, Hoffmann, Kammer, ICALP, 2015)

There exists an infinite family of temporal graphs that require $\Omega(n^2)$ time to be explored.

- Let $V = \{c_j, \ell_j : 0 \le j \le n-1\}$ be the vertex set of G
- The "snapshot" of G at time $t \ge 0$ is a star with center $c_{t \bmod n}$

Theorem (Erlebach, Hoffmann, Kammer, ICALP, 2015)

There exists an infinite family of temporal graphs that require $\Omega(n^2)$ time to be explored.

- Let $V = \{c_j, \ell_j : 0 \le j \le n-1\}$ be the vertex set of G
- The "snapshot" of G at time $t \ge 0$ is a star with center $c_{t \mod n}$

Theorem (Erlebach, Hoffmann, Kammer, ICALP, 2015)

There exists an infinite family of temporal graphs that require $\Omega(n^2)$ time to be explored.

- Let $V = \{c_j, \ell_j : 0 \le j \le n-1\}$ be the vertex set of G
- The "snapshot" of G at time $t \ge 0$ is a star with center $c_{t \mod n}$

Proof (continued).

- If the exploring agent is at a vertex that is not the current center:
 - it can only wait or travel to the current center
- If it moves, at the next step it will be again not in the current center
- \Rightarrow to go from ℓ_i to ℓ_j , $i \neq j$, n steps are needed:
 - the fastest way is to move from ℓ_i to the current center, to wait n-1 steps, and then go to ℓ_i

Proof (continued).

- If the exploring agent is at a vertex that is not the current center:
 - it can only wait or travel to the current center
- If it moves, at the next step it will be again not in the current center
- \Rightarrow to go from ℓ_i to ℓ_j , $i \neq j$, n steps are needed:
 - ullet the fastest way is to move from ℓ_i to the current center, to wait n-1 steps, and then go to ℓ_j
- \Rightarrow the total number of steps is $\Omega(n^2)$

Modifying the previous reduction, the result can be strongly amplified:

Theorem (Erlebach, Hoffmann, Kammer, ICALP, 2015)

Approximating TEXP with ratio $O(n^{1-\varepsilon})$ is NP-hard.

Modifying the previous reduction, the result can be strongly amplified:

Theorem (Erlebach, Hoffmann, Kammer, ICALP, 2015)

Approximating TEXP with ratio $O(n^{1-\epsilon})$ is NP-hard.

The previous reduction can be also "parameterized":

Theorem (Erlebach, Hoffmann, Kammer, *ICALP*, 2015)

For every $\Delta > 0$, there exists an infinite family of temporal graphs with maximum degree Δ that require $\Omega(\Delta n)$ time to be explored.

Modifying the previous reduction, the result can be strongly amplified:

Theorem (Erlebach, Hoffmann, Kammer, ICALP, 2015)

Approximating TEXP with ratio $O(n^{1-\epsilon})$ is NP-hard.

The previous reduction can be also "parameterized":

Theorem (Erlebach, Hoffmann, Kammer, ICALP, 2015)

For every $\Delta>0$, there exists an infinite family of temporal graphs with maximum degree Δ that require $\Omega(\Delta n)$ time to be explored.

Furthermore, on restricted classes of underlying graphs:

Theorem (Erlebach, Hoffmann, Kammer, ICALP, 2015)

Any temporal graph whose underlying graph has treewidth at most k, can be explored in $O(n^{1.5}k^2\log n)$ time.

Overview

- Temporal graphs
- Temporal paths
- Strongly connected components
- Menger's theorem
- Temporal design problems
- Temporal exploration
- Temporal TSP
- Future research directions

A different kind of graph dynamicity:

Temporal TSP(1,2) (Michail, Spirakis, 2014)

Input: Temporal graph (G, λ) which is always complete and edge weights among $\{1, 2\}$ which vary with time

Goal: Find a temporal tour of (G, λ) with the minimum cost

Example:

The solution approach to approximate TTSP(1,2): [Michail, Spirakis, *MFCS*, 2014]

- compute a "temporal matching" M with as many 1's as possible
- patch M with the remaining edges in a time-respecting way

where a temporal matching of (G, λ) is:

- a collection $M = \{(e_1, \ell_1), \dots, (e_k, \ell_k)\}$, where
- $\{e_1, \ldots, e_k\}$ is a matching in G and $\ell_i \in \lambda(e_i)$ for every i,
- $\ell_i \neq \ell_j$ for $i \neq j$.

The solution approach to approximate TTSP(1,2): [Michail, Spirakis, *MFCS*, 2014]

- compute a "temporal matching" M with as many 1's as possible
- patch M with the remaining edges in a time-respecting way

where a temporal matching of (G, λ) is:

- a collection $M = \{(e_1, \ell_1), \dots, (e_k, \ell_k)\}$, where
- $\{e_1, \ldots, e_k\}$ is a matching in G and $\ell_i \in \lambda(e_i)$ for every i,
- $\ell_i \neq \ell_j$ for $i \neq j$.

The Max-TEM(k) problem is, given a temporal graph:

- to compute a temporal matching of maximum size, where
- $|\ell_i \ell_i| \ge k$ whenever $i \ne j$.

Theorem (Michail, Spirakis, 2014)

Max-TEM(k) is NP-complete for every $k \ge 1$.

Proof: by a reduction from BALANCED 3SAT

Theorem (Michail, Spirakis, 2014)

Max-TEM(k) is NP-complete for every $k \ge 1$.

Proof: by a reduction from BALANCED 3SAT

On the positive side:

Lemma (Michail, Spirakis, 2014)

An $\frac{1}{c}$ -approximation for Max-TEM(2) implies a $(2-\frac{1}{2c})$ -approximation for TTSP(1,2).

Lemma (Michail, Spirakis, 2014)

There is a $\frac{1}{2+\epsilon}$ -approximation algorithm for Max-TEM(2).

- From the time expansion of (G, λ) build a "conflict graph" G^* which is a 5-claw free graph
- Max-TEM(2) in $(G, \lambda) \Leftrightarrow$ independent sets in G^*
- Apply the algorithm of [Halldórsson, SODA, 1995]

Lemma (Michail, Spirakis, 2014)

There is a $\frac{1}{2+\varepsilon}$ -approximation algorithm for Max-TEM(2).

Proof.

- From the time expansion of (G, λ) build a "conflict graph" G^* which is a 5-claw free graph
- Max-TEM(2) in $(G, \lambda) \Leftrightarrow$ independent sets in G^*
- Apply the algorithm of [Halldórsson, SODA, 1995]

Therefore:

Corollary (Michail, Spirakis, 2014)

There is a $(\frac{7}{4} + \varepsilon)$ -approximation algorithm for TTSP(1,2).

Overview

- Temporal graphs
- Temporal paths
- Strongly connected components
- Menger's theorem
- Temporal design problems
- Temporal exploration
- Temporal TSP
- Future research directions

Research Directions

- Find constant-factor approximations for the various temporal graph design problems
- Other structural properties of *G* that cause a growth of temporality for "all paths"? (apart from edge-kernels)
 - algorithms / complexity?
- Other natural connectivity properties subject to which optimization is to be performed
- Efficient deterministic/randomized/approximation algorithms on special temporal graph classes, i.e. by restricting:
 - the underlying topology G and/or
 - the temporal pattern with which the time-labels appear (a new dimension with no previous static analogue!)

Research Directions

- Temporal graphs defined by the mobility patterns of mobile wireless entities modeled by a sequence of unit disk graphs
 - Well-motivated as a natural source of temporal graphs
 - May allow for better approximations
- Other natural non-path temporal problems (apart from matchings)
 - a recently defined notion of a "Δ-temporal clique" in social networks: "a set of nodes and a time interval such that all pairs interact at least every Δ during this interval" [Viard, Latapy, Magnien, ASONAM, 2015]
- Our results so far are a first step towards answering this fundamental question:

To what extent can algorithmic and structural results of graph theory be carried over to temporal graphs?

Thank you for your attention!