You are here: About.com > Computing/Technology > Desktop Video > Articles

About.com

The network of sites led by expert guides.

<u>David Simpson</u> - your About.com Guide to: **Desktop Video** Thu, Apr 6, 2000

Join us Chat... Forums... Newsletters... & More

Content: TalkAbout: Shopping: Welcome | Netlinks | Articles | Guide Bio | Search | Related Forums | Chat | Events | Newsletter | Share This Site | Join ShopNow | Books | Videos | Jobs | ShoppingAbout

DV Coding: How it Works with IEEE-1394

Dateline: 3/26/98

by Thomas "Rick" Tewell
VP of Engineering
Sequoia Advanced Technologies
(The following is published by
permission of Thomas Tewell.)

The following was derived from a PowerPoint presentation. In order to save bandwidth and your time, I extracted the text information from the slides. However, some slides needed the graphics in order to be understood; those I have included here. If they are

too small to read, simply click your mouse button on the image and download the full-size file.
-David Simpson

DV Coding: How it works with IEEE-1394

Presented July 29, 1997

Thomas "Rick" Tewell

VP of Engineering

Sequoia Advanced Technologies

What is DV?

- * DV is a compressed digital video and audio recording standard
- * DVC is an abbreviation for Digital Video Cassette
- * MiniDV is a small DV consumer cassette.
- * DV is endorsed by over 50 major manufacturers.
- * It is not DVD!!!

What are the tape specs?

- * 6.35 mm (1/4") magnetic tape
- * MiniDV cassettes (used in digital camcorders) hold up to 60 minutes of audio/video
- * Standard DV cassettes (Sony calls DVCAM) hold up to 180 minutes of audio/video
- * 60 minute MiniDV cassette holds almost 13 gigabytes of digital data!
- * 180 minute DV cassette holds almost 39 gigabytes of digital data!
- * Effective data rate is 3.6 MB/sec continuous

Compressed Video Specs

- * Compresses a 720 x 480 4:1:1 YUV image to 103,950 bytes (ratio 4:9: 1)
- * Intra-frame DCT based compression
- * Ideal for video editing solutions
- * Operates at 30 frames per second
- * Effective video transmission rate is 3.12 MB/sec

What does DV have to do with IEEE-1394?

* The hot new digital camcorders use IEEE-1394 to transport DV data

How do I get DV data into my computer?

It is a two step process.

- * Capture the DV Data
- * Decode the DV Data

Capturing DV Data

- * Most 1394 digital camcorders broadcast DV data on isochronous channel 63
- * Set tag bit to 01 when you listen on Isochronous channel 63

This usually results in a 'channel' specification of 127 with most Windows 95 IEEE-1394 APIs

* DV data packets are 488 bytes long

Log 25 1993

8 bytes of CIP header and 480 bytes of DV data

* You must look for the start of a video frame as these 488 byte packets come across the 1394 bus

> We look for the 16-bit value 0x1F07 at byte offset 0x08 to determine if we have the first packet of a video frame

DVC 1934 Packet

- * Once you have start of frame you must collect the next 250 valid packets of data to have a complete DV frame * Every 15th packet is a null packet and
- should be discarded

Adaptec and TI handle null packets with their Windows 95 API differently so care must be taken here!

- * Once you have 250 valid packets of data in a buffer you must cycle through the packets and discard the CIP headers
- * If all went well, you should have a buffer with a 120,000 byte DV frame in it!

Decoding DV Data

- * A NTSC DV frame (720 x 480) is divided into 10 DIF (data in frame) sequences each 12,000 bytes long
- * One DIF sequence contains five super blocks of video pixel data
- * There are 150 DIF blocks of 80 bytes each in each DIF sequence

135 DIF blocks are used for video information
9 DIF blocks are used for audio information
6 DIF blocks are used for Header, Subcode and Video Auxiliary (VAUX) information

DV FRAME Data Structure

OF Journal II No Company 19 10 Co

DIF Sequence Structure

Cose Same Date

**

Decoding DV Data (continued)

* DV video frames are organized into 270 individual video segments

27 video segments per DIF sequence

* A video segment is made up of 5 compressed macro blocks

A macro block is 80 bytes long

3 bytes for DIF block ID information 14 bytes each for Y0, Y1, Y2 and **Y3** 10 bytes each for CR and CB 1 byte for the quantization number (QNO) and block status (STA) * Each macro block represents a 32 x 8 pixel region taken from each of five 'columns' of the video frame

Super blocks

- * Super blocks are a logical organization of 27 macro blocks
- * There are 50 super blocks in a NTSC DV video frame
- * A group of 5 super blocks (1 from each super block column) make up one DIF sequence

4/6/2000 12:07 PM

Super blocks

- * Super blocks are a logical organization of 27 macro blocks
- * There are 50 super blocks in a NTSC DV video frame
- * A group of 5 super blocks (1 from each super block column) make up one DIF sequence

The building of a NTSC DV frame

Decoding DV Data (continued)

* Decoding a video segment (a group of 5 related compressed macro blocks)

Extract AC coefficients via a three pass variable length decoding algorithm

Pass 1: decode VLC AC coefficients for Y0, Y1, Y2, Y3, CR and CB within a macro block Pass 2: decode overflowed VLC AC coefficients within a macro block

10 of 13 4/6/2000 1:08 PM

Pass 3: decode overflowed VLC AC coefficients within a video segment

Decoding DV Data (continued)

* Once you have AC coefficients:

Inverse quantization
Zigzag coefficient output
ordering
Inverse weighting
Inverse Discrete Cosine
Transform (DCT) either 8-8
or 2-4-8
2-4-8 is used when there is a
lot of detail in the pixel group
Store the pixel values in their
proper location in the video
frame

- * Every 3 video segments you must be sure to skip the audio DIF block
- * Every 27 video segments you must be sure to skip the header, subcode and VAUX DIF blocks (6 total)
- * Do the previous video segment decoding sequence 270 times and you have a YUV 4:1:1 720 x 480 video

frame!

More information?

* DVC "Blue Book"

M. Tsunoo/MR.
Administration Department
AVC products development
laboratory
Matsushita Electric Industrial
Co, LTD
2-15 Matsuba-cho,
Kadoma-shi, Osaka, 571
Japan
Tel 81-6-905-4023, Fax
81-6-906-8125

- * 1394 TA website
- * Global DVC Club website
- * DVC & Firewire central website
- * Seguoia website

Sequoia Advanced Technologies

- * Developer of IEEE-1394 consumer level system software specializing in Windows 95 and Windows NT
- * Developed a high quality DVC codec for decoding and encoding DVC frames
- * Has a full IEEE-1394 DV solution for Windows 95 and Windows NT

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

•	BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
£.	☐ GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.