Phonetic Word Embeddings& Tasks They

motion /mousen soybean /solbin

similarly to semantic word embeddings, phonetic word embeddings project strings into fixed-dimensional vector space based on phonetic properties

Autoencoder

LSTM encoder & decoder; minimize reconstruction loss

LSTM encoder; minimize distance error

we know $S_A(ocean, queens)$ and want S_V with f such that $S_V(f(ocean), f(queens)) = S_A(ocean, queens))$ minimize loss $||f(ocean) - f(queens)||_2 - S_A(ocean, queens)||_2$

RESULTS

	Model	Human Sim. (Pearson)	INTRINSIC Art. Dist. (Pearson)	Retrieval (rank perc.)	Analogies (Acc@1)	EXTRINSIC Rhyme (accuracy)	Cognate (accuracy)	OVERALL
Ours	Metric Learner	0.46	0.94	0.98	84%	83%	64%	0.78
	Triplet Margin	0.65	0.96	1.00	100%	77%	66%	0.84 ★
	Count-based	0.82	0.10	0.84	13%	79%	68%	0.56
	Autoencoder	0.49	0.16	0.73	50%	61%	50%	0.50
Others'	Poetic Sound Sim	. 0.74	0.12	0.78	35%	60%	57%	0.53
	phoneme2vec	0.77	0.09	0.80	17%	88%	64%	0.56
	Phon. Sim. Embd	0.16	0.05	0.50	0%	51%	52%	0.29
Semantic	BPEmb	0.23	0.08	0.60	5%	54%	66%	0.36
	fastText	0.25	0.12	0.64	2%	58%	68%	0.38
	BERT	0.10	0.34	0.69	4%	58%	63%	0.40
	INSTRUCTOR	0.60	0.12	0.73	7%	54%	66%	0.45

Table 1: Embedding method performance in our evaluation suite. Higher number is always better.

Articulatory distance

Correlation $S_A(x, x')$ and $S_V(f(x), f(x'))$

articulatory distance between strings $S_A(sick, sit) = 0.8$

vector distance between embeddings

Human judgement

Correlation $S_H(x, x')$ and $S_V(f(x), f(x'))$

human perception of sound similarity S_H(ocean, motion) = 0.7

vector distance between embeddings

Rhyme detection

Accuracy of MLP classifier on $\{f(x), f(x')\}$

each pair (x, x') either rhymes or not $(ocean, motion) \rightarrow rhyme (ocean, soybean) \rightarrow no-rhyme$

Cognate detection

Accuracy of MLP classifier on $\{f(x), f(x')\}$

each pair (x, x') is either a cognate or not $\{plant_{EN}, plante_{FR}\} \rightarrow cognate \ \{plane_{EN}, plante_{FR}\} \rightarrow no-cognate$

Sound analogies

 $w_1 : m(w_1) \leftrightarrow w_2 : m(w_2)$

for semantic embeddings man : royal(man) ↔ woman : royal(woman) man : king ↔ woman : queen

for phonetic embeddings /sin/: +voice(/sin/) ↔ /tin/: +voice(/tin/) /sin/: /zin/ ↔ /tin/: /din/

retrieve $f(w_1) - f(m(w_1)) + f(w_2) &$ hope for $f(m(w_2))$

Applications

Linguistic analysis • Cognate/loanword detection • Multilingual named entity recognition • Keyphrase extraction • Spelling correction • Phonotactic learning • Multimodal word embeddings • Spoken language understanding • Language identification • Postry generation Poetry generation

English Hello. How are you? • Amharic Uか. かかず • Bengali Lates, Carlo (configuration)? • French Bonjour. Comment vas-tu? • German Hallo. Wie geht's? • Polish Cześć. Jak się masz? • Spanish Hola. ¿Cómo estás? • Swahili Habari. Habari yako? • Uzbek Salom. Qalaysiz?