RELASI

MATEMATIKA DISKRIT

BY: Yana Cahya Kirana, M.Pd

POLITEKNIK TEDC BANDUNG

Relasi

- Relasi biner R antara himpunan A dan B adalah himpunan bagian dari $A \times B$.
- Notasi: $R \subseteq (A \times B)$.
- a R b adalah notasi untuk $(a, b) \in R$, yang artinya a dihubungankan dengan b oleh R
- $a \not\in b$ adalah notasi untuk $(a, b) \not\in R$, yang artinya a tidak dihubungkan oleh b oleh relasi R.
- Himpunan A disebut daerah asal (domain) dari R, dan himpunan B disebut daerah hasil (range) dari R.

Contoh 3. Misalkan

```
A = \{\text{Amir, Budi, Cecep}\}, B = \{\text{IF221, IF251, IF342, IF323}\}

A \times B = \{(\text{Amir, IF221}), (\text{Amir, IF251}), (\text{Amir, IF342}),

(\text{Amir, IF323}), (\text{Budi, IF221}), (\text{Budi, IF251}),

(\text{Budi, IF342}), (\text{Budi, IF323}), (\text{Cecep, IF323}),

(\text{Cecep, IF251}), (\text{Cecep, IF342}), (\text{Cecep, IF323}),
```

Misalkan R adalah relasi yang menyatakan mata kuliah yang diambil oleh mahasiswa pada Semester Ganjil, yaitu

```
R = {(Amir, IF251), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Cecep, IF323) }
```

- Dapat dilihat bahwa $R \subseteq (A \times B)$,
- A adalah daerah asal R, dan B adalah daerah hasil R.
- (Amir, IF251) $\in R$ atau Amir R IF251
- (Amir, IF342) $\notin R$ atau Amir \Re IF342.

Contoh 4. Misalkan $P = \{2, 3, 4\}$ dan $Q = \{2, 4, 8, 9, 15\}$. Jika kita definisikan relasi R dari P ke Q dengan

$$(p, q) \in R$$
 jika p habis membagi q

maka kita peroleh

$$R = \{(2, 2), (2, 4), (4, 4), (2, 8), (4, 8), (3, 9), (3, 15)\}$$

- Relasi pada sebuah himpunan adalah relasi yang khusus
- Relasi pada himpunan A adalah relasi dari $A \times A$.
- Relasi pada himpunan A adalah himpunan bagian dari $A \times A$.

Contoh 5. Misalkan R adalah relasi pada $A = \{2, 3, 4, 8, 9\}$ yang didefinisikan oleh $(x, y) \in R$ jika x adalah faktor prima dari y. Maka

$$R = \{(2, 2), (2, 4), (2, 8), (3, 3), (3, 9)\}$$

Representasi Relasi

1. Representasi Relasi dengan Diagram Panah

. Representasi Relasi dengan Tabel

• Kolom pertama tabel menyatakan daerah asal, sedangkan kolom kedua menyatakan daerah hasil.

Tabel 1

A	B	
Amir	IF251	
Amir	IF323	
Budi	IF221	
Budi	IF251	
Cecep	IF323	

Tabel 2

P	Q	
2	2	
2	4	
4	4	
2	8	
4	8	
3	9	
3	15	

Tabel 3

A	\boldsymbol{A}	
2	2	
2	4	
2	8	
3	3	
3	3	

3. Representasi Relasi dengan Matriks

- Misalkan R adalah relasi dari $A = \{a_1, a_2, ..., a_m\}$ dan $B = \{b_1, b_2, ..., b_n\}$.
- Relasi *R* dapat disajikan dengan matriks $M = [m_{ij}]$,

yang dalam hal ini

$$m_{ij} = \begin{cases} 1, & (a_i, b_j) \in R \\ 0, & (a_i, b_j) \notin R \end{cases}$$

Dengan kata lain, elemen matriks pada posisi (i,j) bernilai 1 jika a_i dihubungkan dengan b_j , dan bernilai 0 jika a_i tidak dihubungkan dengan b_j . matriks representasi relasi merupakan contoh matriks zero-one.

Contoh 6. Relasi *R* pada Contoh 3 dapat dinyatakan dengan matriks

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

dalam hal ini, a_1 = Amir, a_2 = Budi, a_3 = Cecep, dan b_1 = IF221, b_2 = IF251, b_3 = IF342, dan b_4 = IF323.

Relasi R pada Contoh 4 dapat dinyatakan dengan matriks

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

yang dalam hal ini, $a_1 = 2$, $a_2 = 3$, $a_3 = 4$, dan $b_1 = 2$, $b_2 = 4$, $b_3 = 8$, $b_4 = 9$, $b_5 = 15$.

4. Representasi Relasi dengan Graf Berarah

- Relasi pada sebuah himpunan dapat direpresentasikan secara grafis dengan **graf berarah** (*directed graph* atau *digraph*)
- Graf berarah tidak didefinisikan untuk merepresentasikan relasi dari suatu himpunan ke himpunan lain.
- Tiap elemen himpunan dinyatakan dengan sebuah titik (disebut juga simpul atau *vertex*), dan tiap pasangan terurut dinyatakan dengan busur (*arc*)
- Jika $(a, b) \in R$, maka sebuah busur dibuat dari simpul a ke simpul b. Simpul a disebut **simpul asal** (*initial vertex*) dan simpul b disebut **simpul tujuan** (*terminal vertex*).
- Pasangan terurut (a, a) dinyatakan dengan busur dari simpul a ke simpul a sendiri. Busur semacam itu disebut **gelang** atau **kalang** (loop).

Contoh 7. Misalkan $R = \{(a, a), (a, b), (b, a), (b, c), (b, d), (c, a), (c, d), (d, b)\}$ adalah relasi pada himpunan $\{a, b, c, d\}$.

R direpresentasikan dengan graf berarah sbb:

Sifat-sifat Relasi Biner

• Relasi biner yang didefinisikan pada sebuah himpunan mempunyai beberapa sifat.

1. **Refleksif** (reflexive)

- Relasi R pada himpunan A disebut **refleksif** jika $(a, a) \in R$ untuk setiap $a \in A$.
- Relasi R pada himpunan A tidak refleksif jika ada $a \in A$ sedemikian sehingga $(a, a) \notin R$.

Contoh 8. Misalkan $A = \{1, 2, 3, 4\}$, dan relasi R di bawah ini didefinisikan pada himpunan A, maka

- (a) Relasi $R = \{(1, 1), (1, 3), (2, 1), (2, 2), (3, 3), (4, 2), (4, 3), (4, 4)\}$ bersifat refleksif karena terdapat elemen relasi yang berbentuk (a, a), yaitu (1, 1), (2, 2), (3, 3), dan (4, 4).
- (b) Relasi $R = \{(1, 1), (2, 2), (2, 3), (4, 2), (4, 3), (4, 4)\}$ tidak bersifat refleksif karena $(3, 3) \notin R$.

Contoh 9. Relasi "habis membagi" pada himpunan bilangan bulat positif bersifat refleksif karena setiap bilangan bulat positif habis dibagi dengan dirinya sendiri, sehingga $(a, a) \in R$ untuk setiap $a \in A$.

Contoh 10. Tiga buah relasi di bawah ini menyatakan relasi pada himpunan bilangan bulat positif **N**.

$$R: x \text{ lebih besar dari } y,$$
 $S: x + y = 5,$ $T: 3x + y = 10$

Tidak satupun dari ketiga relasi di atas yang refleksif karena, misalkan (2, 2) bukan anggota R, S, maupun T.

• Relasi yang bersifat refleksif mempunyai matriks yang elemen diagonal utamanya semua bernilai 1, atau $m_{ii} = 1$, untuk i = 1, 2, ..., n,

• Graf berarah dari relasi yang bersifat refleksif dicirikan adanya gelang pada setiap simpulnya.

2. Menghantar (transitive)

• Relasi R pada himpunan A disebut **menghantar** jika $(a, b) \in R$ dan $(b, c) \in R$, maka $(a, c) \in R$, untuk $a, b, c \in A$.

Contoh 11. Misalkan $A = \{1, 2, 3, 4\}$, dan relasi R di bawah ini didefinisikan pada himpunan A, maka

(a) $R = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}$ bersifat menghantar. Lihat tabel berikut:

Pasan	Pasangan berbentuk			
(a,b)	(<i>b</i> , <i>c</i>)	(a, c)		
(3, 2) (4, 2) (4, 3) (4, 3)	(2, 1) (2, 1) (3, 1) (3, 2)	(3, 1) (4, 1) (4, 1) (4, 2)		

- (b) $R = \{(1, 1), (2, 3), (2, 4), (4, 2)\}$ tidak manghantar karena (2, 4) dan $(4, 2) \in R$, tetapi $(2, 2) \notin R$, begitu juga (4, 2) dan $(2, 3) \in R$, tetapi $(4, 3) \notin R$.
- (c) Relasi $R = \{(1, 1), (2, 2), (3, 3), (4, 4)\}$ jelas menghantar
- (d) Relasi $R = \{(1, 2), (3, 4)\}$ menghantar karena tidak ada $(a, b) \in R$ dan $(b, c) \in R$ sedemikian sehingga $(a, c) \in R$. Relasi yang hanya berisi satu elemen seperti $R = \{(4, 5)\}$ selalu menghantar Relasi dan Fungsi

Contoh 12. Relasi "habis membagi" pada himpunan bilangan bulat positif bersifat menghantar. Misalkan bahwa a habis membagi b dan b habis membagi c. Maka terdapat bilangan positif m dan n sedemikian sehingga b = ma dan c = nb. Di sini c = nma, sehingga a habis membagi c. Jadi, relasi "habis membagi" bersifat menghantar.

Contoh 13. Tiga buah relasi di bawah ini menyatakan relasi pada himpunan bilangan bulat positif **N**.

R: x lebih besar dari y, S: x + y = 6, T: 3x + y = 10

- R adalah relasi menghantar karena jika x > y dan y > z maka x > z.
- S tidak menghantar karena, misalkan (4, 2) dan (2, 4) adalah anggota S tetapi (4, 4) $\not\in S$.
- $T = \{(1, 7), (2, 4), (3, 1)\}$ menghantar.

- Relasi yang bersifat menghantar tidak mempunyai ciri khusus pada matriks representasinya
- Sifat menghantar pada graf berarah ditunjukkan oleh: jika ada busur dari *a* ke *b* dan dari *b* ke *c*, maka juga terdapat busur berarah dari *a* ke *c*.

3. Setangkup (symmetric) dan tolak-setangkup (antisymmetric)

- Relasi R pada himpunan A disebut **setangkup** jika $(a, b) \in R$, maka $(b, a) \in R$ untuk $a, b \in A$.
- Relasi R pada himpunan A tidak setangkup jika $(a, b) \in R$ sedemikian sehingga $(b, a) \notin R$.
- Relasi R pada himpunan A sedemikian sehingga $(a, b) \in R$ dan $(b, a) \in R$ hanya jika a = b untuk $a, b \in A$ disebut **tolak-setangkup**.
- Relasi R pada himpunan A tidak tolak-setangkup jika ada elemen berbeda a dan b sedemikian sehingga $(a, b) \in R$ dan $(b, a) \in R$.

- Contoh 14. Misalkan $A = \{1, 2, 3, 4\}$, dan relasi R di bawah ini didefinisikan pada himpunan A, maka
 - (a)Relasi $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (2, 4), (4, 2), (4, 4)\}$ bersifat setangkup karena jika $(a, b) \in R$ maka (b, a) juga $\in R$. Di sini (1, 2) dan $(2, 1) \in R$, begitu juga (2, 4) dan $(4, 2) \in R$.
 - (b) Relasi $R = \{(1, 1), (2, 3), (2, 4), (4, 2)\}$ tidak setangkup karena $(2, 3) \in R$, tetapi $(3, 2) \notin R$.
 - (c) Relasi $R = \{(1, 1), (2, 2), (3, 3)\}$ tolak-setangkup karena 1 = 1 dan $(1, 1) \in R$, 2 = 2 dan $(2, 2) \in R$, dan 3 = 3 dan $(3, 3) \in R$. Perhatikan bahwa R juga setangkup.
 - (d)Relasi $R = \{(1, 1), (1, 2), (2, 2), (2, 3)\}$ tolak-setangkup karena $(1, 1) \in R$ dan 1 = 1 dan, $(2, 2) \in R$ dan 2 = 2 dan. Perhatikan bahwa R tidak setangkup.
 - (e) Relasi $R = \{(1, 1), (2, 4), (3, 3), (4, 2)\}$ tidak tolak-setangkup karena $2 \neq 4$ tetapi (2, 4) dan (4, 2) anggota R. Relasi R pada (a) dan (b) di atas juga tidak tolak-setangkup.
 - (f) Relasi $R = \{(1, 2), (2, 3), (1, 3)\}$ tidak setangkup tetapi tolak-setangkup.

Relasi $R = \{(1, 1), (2, 2), (2, 3), (3, 2), (4, 2), (4, 4)\}$ tidak setangkup dan tidak tolak-setangkup. R tidak setangkup karena $(4, 2) \in R$ tetapi $(2, 4) \notin R$. R tidak tolak-setangkup karena $(2, 3) \in R$ dan $\{(3, 12)\}$ Relapi dan Fungsi 3.

Contoh 15. Relasi "habis membagi" pada himpunan bilangan bulat positif tidak setangkup karena jika a habis membagi b, b tidak habis membagi a, kecuali jika a = b. Sebagai contoh, 2 habis membagi 4, tetapi 4 tidak habis membagi 2. Karena itu, $(2, 4) \in R$ tetapi $(4, 2) \notin R$. Relasi "habis membagi" tolak-setangkup karena jika a habis membagi b dan b habis membagi a maka a = b. Sebagai contoh, 4 habis membagi 4. Karena itu, $(4, 4) \in R$ dan a 4.

Contoh 16. Tiga buah relasi di bawah ini menyatakan relasi pada himpunan bilangan bulat positif **N**.

$$R: x$$
 lebih besar dari y , $S: x + y = 6$, $T: 3x + y = 10$

- R bukan relasi setangkup karena, misalkan 5 lebih besar dari 3 tetapi 3 tidak lebih besar dari 5.
- S relasi setangkup karena (4, 2) dan (2, 4) adalah anggota S.
- *T* tidak setangkup karena, misalkan (3, 1) adalah anggota *T* tetapi (1, 3) bukan anggota *T*.
- S bukan relasi tolak-setangkup karena, misalkan $(4, 2) \in S$ dan $(4, 2) \in S$ tetapi $4 \neq 2$.
- Relasi *R* dan *T* keduanya tolak-setangkup (tunjukkan!). IF2151/Relasi dan Fungsi

• Relasi yang bersifat setangkup mempunyai matriks yang elemen-elemen di bawah diagonal utama merupakan pencerminan dari elemen-elemen di atas diagonal utama, atau $m_{ij} = m_{ji} = 1$, untuk i = 1, 2, ..., n:

• Sedangkan graf berarah dari relasi yang bersifat setangkup dicirikan oleh: jika ada busur dari *a* ke *b*, maka juga ada busur dari *b* ke *a*.

• Matriks dari relasi tolak-setangkup mempunyai sifat yaitu jika $m_{ij} = 1$ dengan $i \neq j$, maka $m_{ji} = 0$. Dengan kata lain, matriks dari relasi tolak-setangkup adalah jika salah satu dari $m_{ij} = 0$ atau $m_{ii} = 0$ bila $i \neq j$:

• Sedangkan graf berarah dari relasi yang bersifat tolaksetangkup dicirikan oleh: jika dan hanya jika tidak pernah ada dua busur dalam arah berlawanan antara dua simpul berbeda.

Relasi Inversi

• Misalkan R adalah relasi dari himpunan A ke himpunan B. Invers dari relasi R, dilambangkan dengan R^{-1} , adalah relasi dari B ke A yang didefinisikan oleh

$$R^{-1} = \{(b, a) \mid (a, b) \in R \}$$

Contoh 17. Misalkan $P = \{2, 3, 4\}$ dan $Q = \{2, 4, 8, 9, 15\}$. Jika kita definisikan relasi R dari P ke Q dengan

 $(p, q) \in R$ jika p habis membagi q

maka kita peroleh

$$R = \{(2, 2), (2, 4), (4, 4), (2, 8), (4, 8), (3, 9), (3, 15)\}$$

 R^{-1} adalah *invers* dari relasi R, yaitu relasi dari Q ke P dengan

 $(q, p) \in R^{-1}$ jika q adalah kelipatan dari p

maka kita peroleh $R^{-1} = \{(2,2),(4,2),(4,4),(8,2),(8,4),(9,3),(15,3)\}$

Jika M adalah matriks yang merepresentasikan relasi R,

$$M = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

maka matriks yang merepresentasikan relasi R^{-1} , misalkan N, diperoleh dengan melakukan transpose terhadap matriks M,

$$N = M^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Mengkombinasikan Relasi

- Karena relasi biner merupakan himpunan pasangan terurut, maka operasi himpunan seperti irisan, gabungan, selisih, dan beda setangkup antara dua relasi atau lebih juga berlaku.
- Jika R_1 dan R_2 masing-masing adalah relasi dari himpuna A ke himpunan B, maka $R_1 \cap R_2$, $R_1 \cup R_2$, $R_1 R_2$, dan $R_1 \oplus R_2$ juga adalah relasi dari A ke B.

Contoh 18. Misalkan $A = \{a, b, c\} \text{ dan } B = \{a, b, c, d\}.$

Relasi
$$R_1 = \{(a, a), (b, b), (c, c)\}$$

Relasi $R_2 = \{(a, a), (a, b), (a, c), (a, d)\}$
 $R_1 \cap R_2 = \{(a, a)\}$
 $R_1 \cup R_2 = \{(a, a), (b, b), (c, c), (a, b), (a, c), (a, d)\}$
 $R_1 - R_2 = \{(b, b), (c, c)\}$
 $R_2 - R_1 = \{(a, b), (a, c), (a, d)\}$
 $R_1 \oplus R_2 = \{(b, b), (c, c), (a, b), (a, c), (a, d)\}$

• Jika relasi R_1 dan R_2 masing-masing dinyatakan dengan matriks M_{R1} dan M_{R2} , maka matriks yang menyatakan gabungan dan irisan dari kedua relasi tersebut adalah

$$M_{R1 \cup R2} = M_{R1} \vee M_{R2}$$
 dan $M_{R1 \cap R2} = M_{R1} \wedge M_{R2}$

Contoh 19. Misalkan bahwa relasi R_1 dan R_2 pada himpunan A dinyatakan oleh matriks

$$R_1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \quad \text{dan} \quad R_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

maka

$$M_{R1 \cup R2} = M_{R1} \lor M_{R2} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$M_{R1 \cap R2} = M_{R1} \wedge M_{R2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Komposisi Relasi

 Misalkan R adalah relasi dari himpunan A ke himpunan B, dan S adalah relasi dari himpunan B ke himpunan C.
 Komposisi R dan S, dinotasikan dengan S o R, adalah relasi dari A ke C yang didefinisikan oleh

 $S \circ R = \{(a, c) \mid a \in A, c \in C, \text{ dan untuk beberapa } b \in B, (a, b) \in R \text{ dan } (b, c) \in S \}$

Contoh 20. Misalkan

$$R = \{(1, 2), (1, 6), (2, 4), (3, 4), (3, 6), (3, 8)\}$$

adalah relasi dari himpunan {1, 2, 3} ke himpunan {2, 4, 6, 8} dan

$$S = \{(2, u), (4, s), (4, t), (6, t), (8, u)\}$$

adalah relasi dari himpunan $\{2, 4, 6, 8\}$ ke himpunan $\{s, t, u\}$.

Maka komposisi relasi R dan S adalah

$$S \circ R = \{(1, u), (1, t), (2, s), (2, t), (3, s), (3, t), (3, u)\}$$

Komposisi relasi *R* dan *S* lebih jelas jika diperagakan dengan diagram panah:

• Jika relasi R_1 dan R_2 masing-masing dinyatakan dengan matriks M_{R1} dan M_{R2} , maka matriks yang menyatakan komposisi dari kedua relasi tersebut adalah

$$M_{R2 \text{ o } R1} = M_{R1} \cdot M_{R2}$$

yang dalam hal ini operator "." sama seperti pada perkalian matriks biasa, tetapi dengan mengganti tanda kali dengan "^" dan tanda tambah dengan "\"."

Contoh 21. Misalkan bahwa relasi R_1 dan R_2 pada himpunan A dinyatakan oleh matriks

$$R_1 = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 dan
$$R_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

maka matriks yang menyatakan R_2 o R_1 adalah

$$M_{R2 \text{ o } R1} = M_{R1} \cdot M_{R2}$$

$$= \begin{bmatrix} (1 \land 0) \lor (0 \land 0) \lor (1 \land 1) & (1 \land 1) \lor (0 \land 0) \lor (1 \land 0) & (1 \land 0) \\ (1 \land 0) \lor (1 \land 0) \lor (0 \land 1) & (1 \land 1) \lor (1 \land 0) \lor (0 \land 0) & (1 \land 0) \\ (0 \land 0) \lor (0 \land 0) \lor (0 \land 1) & (0 \land 1) \lor (0 \land 0) \lor (0 \land 0) & (0 \land 0) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$