De la vérité à la démonstration : le théorème de complétude de Gödel

Guillaume Brunerie

Séminaire mathématique des élèves du lycée Louis-le-Grand

4 février 2009

- Démonstrations et modèles
 - Termes et formules
 - Démonstrabilité
 - Validité

- Démonstrations et modèles
 - Termes et formules
 - Démonstrabilité
 - Validité
- 2 Théorème de complétude
 - Théorème de correction
 - Théorème de complétude

- Démonstrations et modèles
 - Termes et formules
 - Démonstrabilité
 - Validité
- 2 Théorème de complétude
 - Théorème de correction
 - Théorème de complétude
- Compléments
 - Arithmétique non standard
 - Extension à des systèmes formels quelconques

- Démonstrations et modèles
 - Termes et formules
 - Démonstrabilité
 - Validité
- 2 Théorème de complétude
- 3 Compléments

Termes de l'arithmétique

 ${\mathcal C}$: ensemble des symboles de constantes, $0\in{\mathcal C}$

 \mathcal{V} : ensemble des symboles de variables (infini)

Définition

L'ensemble des termes sur $\mathcal C$ est défini par :

$$\mathcal{T} = \mathcal{C} | \mathcal{V} | \mathsf{S} \mathcal{T} | (\mathcal{T} + \mathcal{T}) | (\mathcal{T} \cdot \mathcal{T})$$

Définition

Un terme qui ne contient pas de symbole de variable est appellé un terme clos.

Exemples de termes

Exemples

Si $c \in \mathcal{C}$ et $x, y \in \mathcal{V}$,

- $x \cdot Sy + c$ n'est rien du tout
- $(0 + (0 \cdot Sc))$ est un terme clos
- $(((c + Sy) \cdot S(Sx \cdot (SS0 + SSSx))) + 0)$ est un terme.

Définition

L'ensemble des formules est défini par :

$$\mathcal{F} = \, \bot \, | \, (\mathcal{T} = \mathcal{T}) \, | \, \neg \mathcal{F} \, | \, (\mathcal{F} \vee \mathcal{F}) \, | \, (\mathcal{F} \wedge \mathcal{F}) \, | \, (\mathcal{F} \to \mathcal{F}) \, | \, \exists \mathcal{V} \mathcal{F} \, | \, \forall \mathcal{V} \mathcal{F}$$

Définition

L'ensemble des formules est défini par :

$$\mathcal{F} = \, \bot \, | \, (\mathcal{T} = \mathcal{T}) \, | \, \neg \mathcal{F} \, | \, (\mathcal{F} \vee \mathcal{F}) \, | \, (\mathcal{F} \wedge \mathcal{F}) \, | \, (\mathcal{F} \rightarrow \mathcal{F}) \, | \, \exists \mathcal{V} \mathcal{F} \, | \, \forall \mathcal{V} \mathcal{F}$$

Définitions

Variables libres : variables non liées par un quantificateur

Définition

L'ensemble des formules est défini par :

$$\mathcal{F} = \, \bot \, | \, (\mathcal{T} = \mathcal{T}) \, | \, \neg \mathcal{F} \, | \, (\mathcal{F} \vee \mathcal{F}) \, | \, (\mathcal{F} \wedge \mathcal{F}) \, | \, (\mathcal{F} \to \mathcal{F}) \, | \, \exists \mathcal{V} \mathcal{F} \, | \, \forall \mathcal{V} \mathcal{F}$$

Définitions

- Variables libres : variables non liées par un quantificateur
- Formule close: formule sans variable libre

Définition

L'ensemble des formules est défini par :

$$\mathcal{F} = \, \bot \, | \, (\mathcal{T} = \mathcal{T}) \, | \, \neg \mathcal{F} \, | \, (\mathcal{F} \vee \mathcal{F}) \, | \, (\mathcal{F} \wedge \mathcal{F}) \, | \, (\mathcal{F} \rightarrow \mathcal{F}) \, | \, \exists \mathcal{V} \mathcal{F} \, | \, \forall \mathcal{V} \mathcal{F}$$

Définitions

- Variables libres : variables non liées par un quantificateur
- Formule close: formule sans variable libre
- Théorie : ensemble de formules closes

Exemples de formules

Exemples

- $\forall x \exists n(x = S^n 0)$: rien du tout
- $\forall x \exists y ((x + y) = 0)$: formule close
- $\exists x (\neg (x = y) \land \neg (x = Sy))$: formule à une variable libre : y

Exemples de formules

Exemples

- $\forall x \exists n(x = S^n 0)$: rien du tout
- $\forall x \exists y ((x + y) = 0)$: formule close
- $\exists x (\neg (x = y) \land \neg (x = Sy))$: formule à une variable libre : y

Notation

- F(x): formule à une variable libre x
- F(t): formule obtenue en substituant $t \ge x$ dans F(x)

Exemples de formules

Exemples

- $\forall x \exists n(x = S^n 0)$: rien du tout
- $\forall x \exists y ((x + y) = 0)$: formule close
- $\exists x (\neg (x = y) \land \neg (x = Sy))$: formule à une variable libre : y

Notation

- F(x): formule à une variable libre x
- F(t): formule obtenue en substituant $t \ge x$ dans F(x)

Exemple

- F(x): $\exists y(x = (SS0 \cdot y))$
- F(SSS0) : $\exists y(SSS0 = (SS0 \cdot y))$

Définition

Définition

•
$$A_1: \forall x \neg (Sx = 0)$$

Définition

- $A_1: \forall x \neg (Sx = 0)$
- $A_2: \forall x \forall y ((Sx = Sy) \rightarrow (x = y))$

Définition

- $A_1: \forall x \neg (Sx = 0)$
- $A_2: \forall x \forall y ((Sx = Sy) \rightarrow (x = y))$
- $A_3 : \forall x((x+0) = x)$

Définition

- $A_1: \forall x \neg (Sx = 0)$
- $A_2: \forall x \forall y ((Sx = Sy) \rightarrow (x = y))$
- $A_3 : \forall x((x+0) = x)$
- A_4 : $\forall x \forall y ((x + Sy) = S(x + y))$

Définition

- $A_1: \forall x \neg (Sx = 0)$
- $A_2: \forall x \forall y ((Sx = Sy) \rightarrow (x = y))$
- $A_3 : \forall x((x+0) = x)$
- A_4 : $\forall x \forall y ((x + Sy) = S(x + y))$
- $\bullet \ A_5: \forall x((x\cdot 0)=0)$

Définition

- $A_1: \forall x \neg (Sx = 0)$
- $A_2: \forall x \forall y ((Sx = Sy) \rightarrow (x = y))$
- $A_3 : \forall x((x+0) = x)$
- A_4 : $\forall x \forall y ((x + \mathsf{S}y) = \mathsf{S}(x + y))$
- $\bullet \ A_5: \forall x((x\cdot 0)=0)$
- $A_6: \forall x \forall y ((x \cdot \mathsf{S}y) = ((x \cdot y) + x)))$

Définition

- $A_1: \forall x \neg (Sx = 0)$
- $A_2: \forall x \forall y ((Sx = Sy) \rightarrow (x = y))$
- $\bullet \ A_3: \forall x((x+0)=x)$
- A_4 : $\forall x \forall y ((x + \mathsf{S}y) = \mathsf{S}(x + y))$
- $\bullet \ A_5: \forall x((x\cdot 0)=0)$
- $A_6: \forall x \forall y ((x \cdot \mathsf{S}y) = ((x \cdot y) + x)))$
- $\{A_{rec}(F)\}$: axiomes de récurrence

Schéma d'axiomes de récurrence

Axiomes de récurrence

Pour toute formule $F(x, y_1, ..., y_n)$ on a l'axiome

$$A_{rec}(F): \forall y_1... \forall y_n((F(0) \land \forall x(F(x) \rightarrow F(Sx))) \rightarrow \forall xF(x))$$

Exemple

Si F(x) est la formule ((0+x)=x), on obtient l'axiome :

$$A_{rec}((0+x)=x):$$

$$((((0+0)=0) \land \forall x(((0+x)=x) \to ((0+Sx)=Sx))) \to \forall x((0+x)=x))$$

- 1 Démonstrations et modèles
 - Termes et formules
 - Démonstrabilité
 - Validité
- 2 Théorème de complétude
- Compléments

Notion de démonstration

On se place dans une théorie T (ensemble de formules closes).

Définition

Démonstration : suite finie de formules telle que chacune soit :

- un axiome
- une « conséquence logique » d'une ou plusieurs des formules précédentes
- une hypothèse (formule quelconque, mais indentée vers la droite)

Définition

Formule démontrable : formule close F telle qu'il existe une démonstration dont F soit la dernière formule et ne soit pas indentée.

On note $T \vdash F$

Règles de déduction (I)

Règles relatives à l'implication

$$\begin{array}{ccc}
1 & A & & 1 & A \\
 \rightarrow_i & 2 & B & & \rightarrow_e & 2 & (A \rightarrow B) \\
3 & (A \rightarrow B) & & 3 & B
\end{array}$$

Règles relatives à la conjonction

Exemple 1 (modus barbara)

A, B et C sont trois formules closes quelconques.

À démontrer

$$(((A \rightarrow B) \land (B \rightarrow C)) \rightarrow (A \rightarrow C))$$

Démonstration

$$\begin{array}{llll} 1 & ((A \rightarrow B) \land (B \rightarrow C)) & \text{hyp} \\ 2 & A & \text{hyp} \\ 3 & (A \rightarrow B) & \land_e^g(1) \\ 4 & B & & \rightarrow_e(2,3) \\ 5 & (B \rightarrow C) & & \land_e^d(1) \\ 6 & C & & \rightarrow_e(4,5) \\ 7 & (A \rightarrow C) & & \rightarrow_i \\ 8 & (((A \rightarrow B) \land (B \rightarrow C)) \rightarrow (A \rightarrow C)) & \rightarrow_i \end{array}$$

Règles de déduction (II)

Règles relatives à la disjonction

$$\begin{array}{ccc}
1 & A & & 1 & B \\
\vee_i^d 2 & (A \vee B) & & \vee_i^g 2 & (A \vee B)
\end{array}$$

$$\begin{array}{c}
1 \ (A \lor B) \\
\lor_e 2 \ (A \to C) \\
3 \ (B \to C) \\
4 \ C
\end{array}$$

Règles relatives à la négation

Règles relatives à l'égalité

$$=_{i} 1 (t = t) =_{e} 2 F(t)$$

$$3 F(u)$$

Règles de déduction (III)

Règles relatives au quantificateur universel

```
1 F(x) où x n'est libre dans 1 \forall x F(x)
\forall_i 2 \forall x F(x) aucune des hypothèses de F \forall_e 2 F(t)
```

Règles relatives au quantificateur existentiel

À démontrer

$$\neg \exists x (Sx = 0)$$

Démonstration

1
$$\exists x(Sx = 0)$$
 hyp
2 $(Sx = 0)$ hyp
3 $\forall x \neg (Sx = 0)$ A_1
4 $\neg (Sx = 0)$ $\forall_e(3, x)$
5 $((Sx = 0) \rightarrow \bot)$ $\neg_e(4)$
6 \bot $\rightarrow_e(2, 5)$
7 $((Sx = 0) \rightarrow \bot)$ \rightarrow_i
8 \bot $\exists_e(1, 7, x)$

À démontrer

$$\neg \exists x (Sx = 0)$$

Démonstration (suite)

```
1 \exists x(Sx = 0) hyp

: : : : \Rightarrow_i

7 ((Sx = 0) \rightarrow \bot) \Rightarrow_i

8 \bot \exists_e(1,7,x)

9 (\exists x(Sx = 0) \rightarrow \bot) \Rightarrow_i

10 \neg \exists x(Sx = 0) \neg i(9)
```

À démontrer

Toute involution est bijective.

Démonstration

Soit f une fonction involutive (hyp), montrons qu'elle est bijective. Injectivité :

Soit x et y tels que f(x) = f(y) (hyp)

On a alors f(f(x)) = f(f(y)) (=_i,=_e) donc x = y ($\forall_e * 2, =_e * 2$),

et donc f est injective $(\rightarrow_i, \forall_i * 2)$.

<u>Surjectivité</u> :

Soit z, on a f(f(z)) = z (\forall_e) , donc z admet un antécédent (\exists_i) et donc f est surjective (\forall_i)

Donc f est bijective (\land_i) et ainsi toute involution est bijective $(\rightarrow_i, \forall_i)$

- Démonstrations et modèles
 - Termes et formules
 - Démonstrabilité
 - Validité
- 2 Théorème de complétude
- 3 Compléments

Valeur d'un terme clos

Définition

Une interprétation de l'arithmétique est la donnée de :

- ullet Un ensemble ${\cal M}$
- ullet Pour chaque symbole de constante c, un élément $c_{\mathcal{M}}$ de \mathcal{M}
- Des applications $S_{\mathcal{M}}: \mathcal{M} \to \mathcal{M}, \ +_{\mathcal{M}}: \mathcal{M}^2 \to \mathcal{M}$ et $\cdot_{\mathcal{M}}: \mathcal{M}^2 \to \mathcal{M}$

Valeur d'un terme clos

Définition

Une interprétation de l'arithmétique est la donnée de :

- \bullet Un ensemble \mathcal{M}
- ullet Pour chaque symbole de constante c, un élément $c_{\mathcal{M}}$ de \mathcal{M}
- Des applications $S_{\mathcal{M}}: \mathcal{M} \to \mathcal{M}, +_{\mathcal{M}}: \mathcal{M}^2 \to \mathcal{M}$ et $\cdot_{\mathcal{M}}: \mathcal{M}^2 \to \mathcal{M}$

Définition

La valeur d'un terme clos est définie par récurrence par :

- Si $c \in \mathcal{C}$, $Val_{\mathcal{M}}(c) = c_{\mathcal{M}}$
- Si $t \in \mathcal{T}$, $Val_{\mathcal{M}}(\mathsf{S}t) = \mathsf{S}_{\mathcal{M}}(Val_{\mathcal{M}}(t))$
- Si $t, t' \in \mathcal{T}$, $Val_{\mathcal{M}}(t + t') = Val_{\mathcal{M}}(t) +_{\mathcal{M}} Val_{\mathcal{M}}(t')$ et $Val_{\mathcal{M}}(t \cdot t') = Val_{\mathcal{M}}(t) \cdot_{\mathcal{M}} Val_{\mathcal{M}}(t')$

Exemple

On considère l'interprétation définie par :

- \bullet $\mathcal{M} = \mathbb{R}$
- $0_M = 2$
- $c_{\mathcal{M}} = \pi$
- $S_{\mathcal{M}} = x \mapsto x^2$
- \bullet +_M = $(x, y) \mapsto xy$
- $\bullet \cdot_{\mathcal{M}} = (x,y) \mapsto \frac{x+y}{\sqrt{2+|x|}}.$

On a alors par exemple $Val_{\mathcal{M}}(0 + (0 \cdot Sc)) = 2 + \pi^2$

Définition

Définition

Soit $\mathcal M$ une interprétation de l'arithmétique, on définit la relation \models sur les formules closes par :

 \bullet $\mathcal{M} \not\models \bot$

Définition

- $\mathcal{M} \not\models \bot$
- $\mathcal{M} \models (t = t') \text{ ssi } Val_{\mathcal{M}}(t) = Val_{\mathcal{M}}(t')$

Définition

- M ⊭ ⊥
- $\mathcal{M} \models (t = t')$ ssi $Val_{\mathcal{M}}(t) = Val_{\mathcal{M}}(t')$
- $\mathcal{M} \models \neg F$ ssi $\mathcal{M} \not\models F$
- $\mathcal{M} \models (F \lor G)$ ssi $\mathcal{M} \models F$ ou $\mathcal{M} \models G$
- $\mathcal{M} \models (F \land G)$ ssi $\mathcal{M} \models F$ et $\mathcal{M} \models G$
- $\mathcal{M} \models (F \rightarrow G)$ ssi si $\mathcal{M} \models F$ alors $\mathcal{M} \models G$

Définition

- M ⊭ ⊥
- $\mathcal{M} \models (t = t')$ ssi $Val_{\mathcal{M}}(t) = Val_{\mathcal{M}}(t')$
- $\mathcal{M} \models \neg F$ ssi $\mathcal{M} \not\models F$
- $\mathcal{M} \models (F \lor G)$ ssi $\mathcal{M} \models F$ ou $\mathcal{M} \models G$
- $\mathcal{M} \models (F \land G)$ ssi $\mathcal{M} \models F$ et $\mathcal{M} \models G$
- $\mathcal{M} \models (F \rightarrow G)$ ssi si $\mathcal{M} \models F$ alors $\mathcal{M} \models G$
- $\mathcal{M} \models \exists x F(x)$ ss'il existe $a \in \mathcal{M}$ tel que $\mathcal{M} \models F(x)$

Définition

- M ⊭ ⊥
- $\mathcal{M} \models (t = t')$ ssi $Val_{\mathcal{M}}(t) = Val_{\mathcal{M}}(t')$
- $\mathcal{M} \models \neg F$ ssi $\mathcal{M} \not\models F$
- $\mathcal{M} \models (F \lor G)$ ssi $\mathcal{M} \models F$ ou $\mathcal{M} \models G$
- $\mathcal{M} \models (F \land G)$ ssi $\mathcal{M} \models F$ et $\mathcal{M} \models G$
- $\mathcal{M} \models (F \rightarrow G)$ ssi si $\mathcal{M} \models F$ alors $\mathcal{M} \models G$
- $\mathcal{M} \models \exists x F(x)$ ss'il existe $a \in \mathcal{M}$ tel que $\mathcal{M} \stackrel{\mathsf{x} := a}{\models} F(x)$
- $\mathcal{M} \models \forall x F(x)$ ssi pour tout $a \in \mathcal{M}$, $\mathcal{M} \models^{x,-a} F(x)$

Exemple

Exemple

On reprend l'interprétation précédente :

$$\mathcal{M} = \mathbb{R}, \ 0_{\mathcal{M}} = 2, \ S_{\mathcal{M}} = x \mapsto x^2, \ +_{\mathcal{M}} = (x, y) \mapsto xy,$$

 $\cdot_{\mathcal{M}} = (x, y) \mapsto \frac{x+y}{\sqrt{2+|x|}}$

Cette interprétation satisfait la formule close

$$\exists x ((\mathsf{S} x = x) \land \forall y ((x + y) = x))$$

Il suffit en effet de prendre $a = 0 \in \mathbb{R}$.

Validité d'une formule

Définition

Si T est une théorie, \mathcal{M} est un modèle de T si pour tout $F \in T$, $\mathcal{M} \models F$.

Exemples de modèles de PA

$$\begin{split} \mathcal{M} &= \mathbb{N}, \ 0_{\mathcal{M}} = 0, \ S_{\mathcal{M}} = n \mapsto n+1, \ +_{\mathcal{M}} = +, \ \cdot_{\mathcal{M}} = \cdot. \\ \mathcal{M} &= 2\mathbb{N}, \ 0_{\mathcal{M}} = 0, \ S_{\mathcal{M}} = n \mapsto n+2, \ +_{\mathcal{M}} = +, \ \cdot_{\mathcal{M}} = \left(x,y\right) \mapsto \frac{xy}{2}. \end{split}$$

Validité d'une formule

Définition

Si T est une théorie, \mathcal{M} est un modèle de T si pour tout $F \in T$, $\mathcal{M} \models F$.

Exemples de modèles de PA

$$\mathcal{M} = \mathbb{N}, \ 0_{\mathcal{M}} = 0, \ S_{\mathcal{M}} = n \mapsto n+1, \ +_{\mathcal{M}} = +, \ \cdot_{\mathcal{M}} = \cdot.$$

$$\mathcal{M} = 2\mathbb{N}, \ 0_{\mathcal{M}} = 0, \ S_{\mathcal{M}} = n \mapsto n+2, \ +_{\mathcal{M}} = +, \ \cdot_{\mathcal{M}} = (x, y) \mapsto \frac{xy}{2}.$$

Définition

Soit T une théorie, une formule close F est dite valide si elle est satisfaite dans *tout* modèle de T, et on note $T \models F$.

Sommaire

- Démonstrations et modèles
- 2 Théorème de complétude
 - Théorème de correction
 - Théorème de complétude
- Compléments

Théorème de correction

Soit *T* une théorie et *F* une formule close.

Si $T \vdash F$, alors $T \models F$.

On prend \mathcal{M} un modèle de T. Par récurrence sur la longueur de la démonstration en distinguant suivant la dernière règle utilisée.

Théorème de correction

Soit *T* une théorie et *F* une formule close.

Si $T \vdash F$, alors $T \models F$.

On prend \mathcal{M} un modèle de T. Par récurrence sur la longueur de la démonstration en distinguant suivant la dernière règle utilisée. Si c'est un axiome, c'est fini.

Théorème de correction

Soit T une théorie et F une formule close.

Si $T \vdash F$, alors $T \models F$.

On prend \mathcal{M} un modèle de T. Par récurrence sur la longueur de la démonstration en distinguant suivant la dernière règle utilisée. Si c'est un axiome, c'est fini.

Règles relatives à la disjonction

$$\begin{array}{c}
1 \ A \\
\vee_i^d 2 \ (A \lor B)
\end{array}$$

$$\begin{array}{ccc}
1 & B \\
\vee_i^g & 2 & (A \vee B)
\end{array}$$

$$\begin{array}{c}
1 \ (A \lor B) \\
\lor_e 2 \ (A \to C) \\
3 \ (B \to C)
\end{array}$$

Théorème de correction

Soit T une théorie et F une formule close.

Si $T \vdash F$, alors $T \models F$.

On prend \mathcal{M} un modèle de T. Par récurrence sur la longueur de la démonstration en distinguant suivant la dernière règle utilisée. Si c'est un axiome, c'est fini.

Règles relatives à la disjonction

etc.

Sommaire

- Démonstrations et modèles
- 2 Théorème de complétude
 - Théorème de correction
 - Théorème de complétude
- Compléments

Théorème de complétude

Théorème de complétude de Gödel

Soit *T* une théorie et *F* une formule close.

Si $T \models F$, alors $T \vdash F$.

Il suffit de montrer le théorème suivant :

Théorème

Soit T une théorie.

Si $T \nvdash \bot$ (T est dite consistante), alors il existe un modèle de T.

T: théorie consistante écrite sur \mathcal{C} (dénombrable) On cherche à construire \mathcal{M} tel que $\mathcal{M} \models F \iff Th \vdash F$ où Th est une surthéorie de T

T: théorie consistante écrite sur $\mathcal C$ (dénombrable) On cherche à construire $\mathcal M$ tel que $\mathcal M \models F \iff Th \vdash F$ où Th est une surthéorie de T

Le modèle qu'on choisit est l'ensemble des termes clos.

T: théorie consistante écrite sur \mathcal{C} (dénombrable) On cherche à construire \mathcal{M} tel que $\mathcal{M} \models F \iff Th \vdash F$ où Th est une surthéorie de T

Le modèle qu'on choisit est l'ensemble des termes clos.

• On doit le quotienter modulo $t \sim t'$ ssi $Th \vdash (t = t')$

T: théorie consistante écrite sur $\mathcal C$ (dénombrable) On cherche à construire $\mathcal M$ tel que $\mathcal M \models F \iff Th \vdash F$ où Th est une surthéorie de T

Le modèle qu'on choisit est l'ensemble des termes clos.

- ullet On doit le quotienter modulo $t\sim t'$ ssi $\mathit{Th}\vdash (t=t')$
- Pour tout énoncé qui affirme l'existence d'un objet, il doit exister un terme clos vérifiant cette propriété

T: théorie consistante écrite sur \mathcal{C} (dénombrable) On cherche à construire \mathcal{M} tel que $\mathcal{M} \models F \iff Th \vdash F$ où Th est une surthéorie de T

Le modèle qu'on choisit est l'ensemble des termes clos.

- On doit le quotienter modulo $t \sim t'$ ssi $Th \vdash (t = t')$
- Pour tout énoncé qui affirme l'existence d'un objet, il doit exister un terme clos vérifiant cette propriété
- La théorie doit être complète (T est complète si pour toute formule close F, T ⊢ F ou T ⊢ ¬F)

Définition

•
$$\begin{cases} C_1 = C \cup \{c_F \mid F \text{ formule sur } C \text{ à une variable libre} \} \\ T_1 = T \cup \{(\exists x F(x) \to F(c_F)) \mid F...\} \end{cases}$$

Définition

- $\begin{cases} C_1 = C \cup \{c_F \mid F \text{ formule sur } C \text{ à une variable libre} \} \\ T_1 = T \cup \{(\exists x F(x) \to F(c_F)) \mid F ... \} \end{cases}$
- $\begin{cases} \mathcal{C}_{n+1} = \mathcal{C}_n \cup \{c_F \mid F \text{ formule sur } \mathcal{C}_n, \text{ à une variable libre} \} \\ T_{n+1} = T_n \cup \{(\exists x F(x) \to F(c_F)) \mid F ... \} \end{cases}$

Pour $n \in \mathbb{N} \cup \{\infty\}$, T_n est une théorie écrite sur C_n .

Définition

```
•  \begin{cases} C_1 = \mathcal{C} \cup \{c_F \mid F \text{ formule sur } \mathcal{C} \text{ à une variable libre} \} \\ T_1 = T \cup \{(\exists x F(x) \to F(c_F)) \mid F ... \} \end{cases} 
•  \begin{cases} C_{n+1} = C_n \cup \{c_F \mid F \text{ formule sur } \mathcal{C}_n, \text{ à une variable libre} \} \\ T_{n+1} = T_n \cup \{(\exists x F(x) \to F(c_F)) \mid F ... \} \end{cases} 
•  \begin{cases} C_{\infty} = \bigcup_{n \in \mathbb{N}^*} C_n \\ T_{\infty} = \bigcup_{n \in \mathbb{N}^*} T_n \end{cases}
```

Pour $n \in \mathbb{N} \cup \{\infty\}$, T_n est une théorie écrite sur C_n .

Définition

```
• \begin{cases} C_1 = \mathcal{C} \cup \{c_F \mid F \text{ formule sur } \mathcal{C} \text{ à une variable libre} \} \\ T_1 = T \cup \{(\exists x F(x) \to F(c_F)) \mid F ... \} \end{cases}
• \begin{cases} C_{n+1} = C_n \cup \{c_F \mid F \text{ formule sur } \mathcal{C}_n, \text{ à une variable libre} \} \\ T_{n+1} = T_n \cup \{(\exists x F(x) \to F(c_F)) \mid F ... \} \end{cases}
• \begin{cases} C_{\infty} = \bigcup_{n \in \mathbb{N}^*} C_n \\ T_{\infty} = \bigcup_{n \in \mathbb{N}^*} T_n \end{cases}
```

Pour $n \in \mathbb{N} \cup \{\infty\}$, T_n est une théorie écrite sur C_n .

Définition

•
$$\begin{cases} C_1 = C \cup \{c_F \mid F \text{ formule sur } C \text{ à une variable libre} \} \\ T_1 = T \cup \{(\exists x F(x) \to F(c_F)) \mid F ... \} \end{cases}$$

•
$$\left\{ \begin{array}{l} \mathcal{C}_{n+1} = \mathcal{C}_n \cup \left\{ c_F \mid F \text{ formule sur } \mathcal{C}_n, \text{ à une variable libre} \right\} \\ T_{n+1} = T_n \cup \left\{ (\exists x F(x) \to F(c_F)) \mid F ... \right\} \end{array} \right.$$

$$\begin{cases}
\mathcal{C}_{\infty} = \bigcup_{n \in \mathbb{N}^*} \mathcal{C}_n \\
\mathcal{T}_{\infty} = \bigcup_{n \in \mathbb{N}^*} \mathcal{T}_n
\end{cases}$$

Pour $n \in \mathbb{N} \cup \{\infty\}$, T_n est une théorie écrite sur C_n .

Lemme (admis)

La théorie T_{∞} est consistante

Définition

•
$$K_0 = T_{\infty}$$

Définition

- $K_0 = T_{\infty}$
- Si K_n est complète, $K_{n+1} = K_n$

Définition

- $K_0 = T_{\infty}$
- Si K_n est complète, $K_{n+1} = K_n$
- Sinon $K_{n+1} = K_n \cup \{F_p\}$ où F_p est la première formule indécidable dans K_n . (F indécidable dans K_n ssi $K_n \nvdash F$ et $K_n \nvdash \neg F$)

Définition

- $K_0 = T_{\infty}$
- Si K_n est complète, $K_{n+1} = K_n$
- Sinon $K_{n+1} = K_n \cup \{F_p\}$ où F_p est la première formule indécidable dans K_n . (F indécidable dans K_n ssi $K_n \nvdash F$ et $K_n \nvdash \neg F$)
- $Th = \bigcup_{n \in \mathbb{N}} K_n$

Vérification de ses propriétés

Lemme

Th vérifie les propriétés suivante :

- T ⊂ Th
- Th est consistante
- Th est complète
- Pour toute formule F sur \mathcal{C}_{∞} à une variable libre, il existe un symbole de constante c_F tel que $Th \vdash (\exists x F(x) \rightarrow F(c_F))$

Création du modèle

Définition

On considère l'interprétation de l'arithmétique suivante :

- $\mathcal M$ est l'ensemble des termes clos écrits sur $\mathcal C_\infty$, quotienté par la relation d'équivalence $\mathit{Th} \vdash (t=t')$
- On interprète chaque constante par sa classe d'équivalence
- $S_{\mathcal{M}}(\overline{t}) = \overline{\mathsf{S}t}$
- $\overline{t} +_{\mathcal{M}} \overline{t'} = \overline{(t+t')}$
- $\overline{t} \cdot_{\mathcal{M}} \overline{t'} = \overline{(t \cdot t')}$

Il reste à vérifier que pour toute formule close F, $\mathcal{M} \models F \iff Th \vdash F$.

•
$$F = \bot$$
 (consistance)

- $F = \bot$ (consistance)
- F = (t = t') (quotient)

- $F = \bot$ (consistance)
- F = (t = t') (quotient)
- $F = \neg G$ (complétude + consistance)

- $F = \bot$ (consistance)
- F = (t = t') (quotient)
- $F = \neg G$ (complétude + consistance)
- $F = (G \vee H)$ (complétude)

- $F = \bot$ (consistance)
- F = (t = t') (quotient)
- $F = \neg G$ (complétude + consistance)
- $F = (G \vee H)$ (complétude)
- $F = (G \wedge H)$

- $F = \bot$ (consistance)
- F = (t = t') (quotient)
- $F = \neg G$ (complétude + consistance)
- $F = (G \vee H)$ (complétude)
- $F = (G \wedge H)$
- $F = (G \rightarrow H)$

- $F = \bot$ (consistance)
- F = (t = t') (quotient)
- $F = \neg G$ (complétude + consistance)
- $F = (G \vee H)$ (complétude)
- $F = (G \wedge H)$
- $F = (G \rightarrow H)$
- $F = \exists x G(x)$ (condition existence)

- $F = \bot$ (consistance)
- F = (t = t') (quotient)
- $F = \neg G$ (complétude + consistance)
- $F = (G \vee H)$ (complétude)
- $F = (G \wedge H)$
- $F = (G \rightarrow H)$
- $F = \exists x G(x)$ (condition existence)
- $F = \forall x G(x)$ (condition existence)

- $F = \bot$ (consistance)
- F = (t = t') (quotient)
- $F = \neg G$ (complétude + consistance)
- $F = (G \vee H)$ (complétude)
- $F = (G \wedge H)$
- $F = (G \rightarrow H)$
- $F = \exists x G(x)$ (condition existence)
- $F = \forall x G(x)$ (condition existence)

Par récurrence sur la structure de la formule

- $F = \bot$ (consistance)
- F = (t = t') (quotient)
- $F = \neg G$ (complétude + consistance)
- $F = (G \vee H)$ (complétude)
- $F = (G \wedge H)$
- $F = (G \rightarrow H)$
- $F = \exists x G(x)$ (condition existence)
- $F = \forall x G(x)$ (condition existence)

Le théorème de complétude est démontré

Sommaire

- Démonstrations et modèles
- 2 Théorème de complétude
- 3 Compléments
 - Arithmétique non standard
 - Extension à des systèmes formels quelconques

Modèle non standard de l'arithmétique

Définition

$$C = \{0, c\}$$

 $PA_{ns} = PA \cup \{\neg(c = 0), \neg(c = S0), \neg(c = SS0), \neg(c = SSS0), ...\}$

Modèle non standard de l'arithmétique

Définition

$$C = \{0, c\}$$

 $PA_{ns} = PA \cup \{\neg(c = 0), \neg(c = S0), \neg(c = SS0), \neg(c = SSS0), ...\}$

Proposition

$$PA_{ns} \nvdash \bot$$
.

Modèle non standard de l'arithmétique

Définition

$$\mathcal{C} = \{0, c\}$$

 $PA_{ns} = PA \cup \{\neg(c = 0), \neg(c = S0), \neg(c = SS0), \neg(c = SSS0), ...\}$

Proposition

$$PA_{ns} \nvdash \bot$$
.

Proposition

Par le théorème de complétude, il existe donc un modèle de PA_{ns} . $c_{\mathcal{M}}$ est différent de tous les entiers standards, donc on a un modèle non standard de l'arithmétique.

Sommaire

- Démonstrations et modèles
- 2 Théorème de complétude
- 3 Compléments
 - Arithmétique non standard
 - Extension à des systèmes formels quelconques

Généralisation

 f_i : symboles de fonction d'arité quelconque fixée

Définition

L'ensemble des termes est défini par :

$$\mathcal{T} = \mathcal{V} \mid f_i(\mathcal{T}, ..., \mathcal{T})$$

Généralisation

f_i : symboles de fonction d'arité quelconque fixée

Définition

L'ensemble des termes est défini par :

$$\mathcal{T} = \mathcal{V} \mid f_i(\mathcal{T}, ..., \mathcal{T})$$

 R_i : symboles de relation d'arité quelconque fixée (dont = d'arité 2 et \perp d'arité 0)

Définition

L'ensemble des formules est défini par :

$$\mathcal{F} = \left. R_i \big(\mathcal{T}, ..., \mathcal{T} \big) \, \right| \, \neg \mathcal{F} \, | \, \big(\mathcal{F} \vee \mathcal{F} \big) \, | \, \big(\mathcal{F} \wedge \mathcal{F} \big) \, | \, \big(\mathcal{F} \rightarrow \mathcal{F} \big) \, | \, \exists \mathcal{V} \mathcal{F} \, | \, \forall \mathcal{V} \mathcal{F}$$

Bibliographie suggérée

René David, Karim Nour, Christophe Raffalli Introduction à la logique Théorie de la démonstration

Jean-Louis Krivine Théorie des ensembles