Dr. G. Tapken A. Flierl

Di 13.11.18 + Mi 14.11.18

6. Tutoriumsblatt zur Mathematik 2

Aufgabe 12

Die nebenstehende Skizze zeigt den Beginn einer Folge von Quadraten. Das äußere Quadrat besitzt eine Fläche von $4m^2$. Jedes Quadrat der Folge entsteht dadurch, dass die Mittelpunkte der Seiten des vorhergehenden Quadrates der Folge verbunden werden. Bestimmen Sie die Summe der Flächen aller dieser unendlich vielen Quadrate.

Aufgabe 13

Bestimmen Sie die Werte der folgenden Reihen:

a)
$$\sum_{k=0}^{\infty} 4 \cdot \left(-\frac{1}{4}\right)^k$$

b)
$$\sum_{k=1}^{\infty} \left(\frac{1}{3}\right)^k$$

Aufgabe 14

Untersuchen Sie die Zahlenfolge (a_n) auf Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert:

$$a_n = \begin{cases} 10^n & \text{falls } n < 10^{100} \\ \left(\frac{3}{4}\right)^n & \text{falls } n \ge 10^{100} \text{ und } n \text{ durch 5 teilbar} \\ \frac{(-1)^n}{n!} & \text{falls } n \ge 10^{100} \text{ und } n \text{ nicht durch 5 teilbar} \end{cases}$$

Aufgabe 15

Untersuchen Sie, ob die folgenden Reihen konvergieren/divergieren:

a)
$$\sum_{n=1}^{\infty} \frac{n}{5^n}$$

d)
$$\sum_{n=1}^{\infty} (1 + \frac{1}{n})^{-n}$$

b)
$$\frac{1}{11} + \frac{1}{101} + \frac{1}{1001} + \frac{1}{10001} + \dots$$

c)
$$1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + - \dots$$

e)
$$\sum_{n=1}^{\infty} \left(\frac{1}{2} + \frac{1}{n}\right)^n$$

Aufgabe 16

Bestimmen Sie den Entwicklungspunkt, den Konvergenzradius und den Konvergenzbereich folgender Potenzreihen:

a)
$$\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{x+2}{2} \right)^n$$

b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4 \cdot 2^{2n}} \cdot x^n$$