

Title: Isoforms of the Human Vitamin D Receptor
Inventor: Crofts et al.
Application No.: 09/509,482
Docket No.: RICE-014

FIG.1A

FIG.1B

FIG. 1C

(SEQ ID NO.14) _____

Transcript 1:

Transcript 6:

Transcript 9:

MEAMA ASTSL PDPGD FDRNV PRI [DBD] 427aa
MEAMA ASTSL PDPGD FDRNV PRI [DBD] 477aa
MEW RNKKR SDWLS MVLRTAGVEG MEAMA ASTSL PDPGD FDRNV PRI [DBD] 450aa

(SEQ ID NO.16) _____

(SEQ ID NO.15) _____

Title: Isoforms of the Human Vitamin D Receptor
Inventor: Crofts et al.
Application No.: 09/509,482
Docket No.: RICE-014

FIG. 4

- A. 5'...atcccttaag GGCTOCTGAACTAGCCAGCTGGACGGAG
AAATGGACTCTAGCCTCCTCTGATAGCCTCATGCCAGGCC
CGTGCACATTGCTTGCTGCCTCCCTCAATCCTCATAGCT
TCTCTTGGAgttaagtacag...3' (SEQ ID NO: 13)

- B. 5'...TGCACCTGGCGGTGAGCCTGGGACAGGGGTGAGGC
CAGAGACGGACGGACGCAGGGGCCGGCAGAAGGCGAGGG
AGAACAGCGGCACTAAGGCAGAAAGGAAGAGGGCGGTGTG
TTCACCCGCAGCCCAATCCATCACTCAGCAACTCCTAGAC
GCTGGTAGAAAGTTCTCCGAGGAGCCTGCCATCCAGTCGT
GCGTGCAG...3' (SEQ ID NO: 5)

- C. 5'...tgttttttag AGGCAGCATGAAACAGTGGATGTGCAGAG
AGAACGATCTGGGTCCAGTAGCTCTGACACTOCTCAGCTGT
AGAAACCTTGACAACCTGACATCAGTTGTACAATGGAA
CGGTATTTTACTCTCATGTCTGAAAAGGCTATGATAA
AGATCAAAGtaagatatt...3' (SEQ ID NO: 6)

- D. 5'...GTTTCCTTCTTCTGTCGGGGCGCCTGGC**ATG**GAGTGG
AGGAATAAGAAAAGGAGCGATTGGCTGTCGATG**GTGCTCA**
GAAC TGCTGGAGTGGAGGgtgttaacc...3' (SEQ ID NO: 1)

Title: Isoforms of the Human Vitamin D Receptor
Inventor: Crofts et al.
Application No.: 09/509,482
Docket No.: RICE-014

FIG. 5A

Transcript 6

(Sequence Range: 1 to 1463)

FIG. 5B

410	420	430	440	450
*	*	*	*	*
CCACTGCCAG GCCTGCCGGC TCAAAACGCTG TGTGGACATC GGCATGATGA				
GGTGACGGTC CGGACGGCCG AGTTTGCAC ACACCTGTAG CCGTACTACT				
HisCysGln AlaCysArg LeuLysArgCys ValAspIle GlyMetMet>				
460	470	480	490	500
*	*	*	*	*
AGGAGTTCAT TCTGACAGAT GAGGAAGTGC AGAGGAAGCG GGAGATGATC				
TCCTCAAAGTA AGACTGTCTA CTCCTTCACG TCTCCTTCGC CCTCTACTAG				
LysGluPheIle LeuThrAsp GluGluVal GlnArgLysArg GluMetIle>				
510	520	530	540	550
*	*	*	*	*
CTGAAGCGGA AGGAGGAGGA GGCTTGAAG GACAGTCTGC GGCCCAAGCT				
GACTTCGCCT TCCTCCTCCT CCGGAACCTTC CTGTCAGACG CCGGGTTCGA				
LeuLysArg LysGluGluGlu AlaLeuLys AspSerLeu ArgProLysLeu>				
560	570	580	590	600
*	*	*	*	*
GTCTGAGGAG CAGCAGCGCA TCATTGCCAT ACTGCTGGAC GCCCACCATA				
CAGACTCCTC' GTCGTCGCGT AGTAACGGTA TGACGACCTG CGGGTGGTAT				
SerGluGlu GlnGlnArg IleIleAlaIle LeuLeuAsp AlaHisHis>				
610	620	630	640	650
*	*	*	*	*
AGACCTACGA CCCCACCTAC TCCGACTTCT GCCAGTTCCG GCCTCCAGTT				
TCTGGATGCT GGGGTGGATG AGGCTGAAGA CGGTCAACGGC CGGAGGTCAA				
LysThrTyrAsp ProThrTyr SerAspPhe CysGlnPheArg ProProVal>				
660	670	680	690	700
*	*	*	*	*
CGTGTGAATG ATGGTGGAGG GAGCCATCCT TCCAGGCCA ACTCCAGACA				
GCACACTTAC TACCACCTCC CTCGGTAGGA AGGTCCGGGT TGAGGTCTGT				
ArgValAsn AspGlyGlyGly SerHisPro SerArgPro AsnSerArgHis>				
710	720	730	740	750
*	*	*	*	*
CACTCCCAGC TTCTCTGGGG ACTCCTCCTC CTCCTGCTCA GATCACTGTA				
GTGAGGGTCG AAGAGACCCC TGAGGAGGAG GAGGACGAGT CTAGTGACAT				
ThrProSer PheSerGly AspSerSerSer SerCysSer AspHisCys>				
760	770	780	790	800
*	*	*	*	*
TCACCTCTTC AGACATGATG GACTCGTCCA GCTTCTCCAA TCTGGATCTG				
AGTGGAGAAG TCTGTACTAC CTGAGCAGGT CGAAGAGGTT AGACCTAGAC				
IleThrSerSer AspMetMet AspSerSer SerPheSerAsn LeuAspLeu>				
810	820	830	840	850
*	*	*	*	*
AGTGAAGAAG ATTCAAGATGA CCCTTCTGTG ACCCTAGAGC TGTCCCAGCT				
TCACCTCTTC TAAGTCTACT GGGAGACAC TGGGATCTCG ACAGGGTCGA				
SerGluGlu AspSerAspAsp ProSerVal ThrLeuGlu LeuSerGlnLeu>				

FIG. 5C

860 870 880 890 900
* * * * *
CTCCATGCTG CCCCCACCTGG CTGACCTGGT CAGTTACAGC ATCCAAAAGG
GAGGTACGAC GGGGTGGACC GACTGGACCA GTCAATGTCG TAGGTTTCC
SerMetLeu ProHisLeu AlaAspLeuVal SerTyrSer IleGlnLys>

910 920 930 940 950
* * * * *
TCATTGGCTT TGCTAACGATG ATACCAGGAT TCAGAGACCT CACCTCTGAG
AGTAACCGAA ACGATTCTAC TATGGTCCTA AGTCTCTGGA GTGGAGACTC
ValIleGlyPhe AlaLysMet IleProGly PheArgAspLeu ThrSerGlu>

960 970 980 990 1000
* * * * *
GACCAGATCG TACTGCTGAA GTCAAGTGCC ATTGAGGTCA TCATGTTGCG
CTGGTCTAGC ATGACGACTT CAGTTCACGG TAACTCCAGT AGTACAACGC
AspGlnIle ValLeuLeuLys SerSerAla IleGluVal IleMetLeuArg>

1010 1020 1030 1040 1050
* * * * *
CTCCAATGAG TCCTTCACCA TGGACGACAT GTCCTGGACC TGTGGCAACC
GAGGTTACTC AGGAAGTGGT ACCTGCTGTA CAGGACCTGG ACACCGTTGG
SerAsnGlu SerPheThr MetAspAspMet SerTrpThr CysGlyAsn>

1060 1070 1080 1090 1100
* * * * *
AAGACTACAA GTACCCGGTC AGTGACGTGA CCAAAGCCGG ACACAGCCTG
TTCTGATGTT CATGGCGCAG TCACTGCACT GGTTCGGCC TGTGTCGGAC
GlnAspTyrLys TyrArgVal SerAspVal ThrLysAlaGly HisSerLeu>

1110 1120 1130 1140 1150
* * * * *
GAGCTGATTG AGCCCCTCAT CAAGTTCCAG GTGGGACTGA AGAAGCTGAA
CTCGACTAAC TCGGGGAGTA GTTCAAGGTC CACCTGACT TCTTCGACTT
GluLeuIle GluProLeuIle LysPheGln ValGlyLeu LysLysLeuAsn>

1160 1170 1180 1190 1200
* * * * *
CTTGCATGAG GAGGAGCATG TCCTGCTCAT GGCCATCTGC ATCGTCTCCC
GAACGTACTC CTCCTCGTAC AGGACGAGTA CCGGTAGACG TAGCAGAGGG
LeuHisGlu GluGluHis ValLeuLeuMet AlaIleCys IleValSer>

1210 1220 1230 1240 1250
* * * * *
CAGATCGTCC TGGGGTGCAG GACGCCGCGC TGATTGAGGC CATCCAGGAC
GTCTAGCAGG ACCCCACGTC CTGCGGCGCG ACTAACTCCG GTAGGTCCTG
ProAspArgPro GlyValGln AspAlaAla LeuIleGluAla IleGlnAsp>

1260 1270 1280 1290 1300
* * * * *
CGCCTGTCCA ACACACTGCA GACGTACATC CGCTGCCGCC ACCCGCCCC
GCGGACAGGT TGTGTGACGT CTGCATGTAG GCGACGGCGG TGGGCGGGG
ArgLeuSer AsnThrLeuGln ThrTyrIle ArgCysArg HisProProPro>

Title: Isoforms of the Human Vitamin D Receptor
Inventor: Crofts et al.
Application No.: 09/509,482
Docket No.: RICE-014

FIG. 5D

1310 1320 1330 1340 1350
* * * * * * *
GGGCAGCCAC CTGCTCTATG CCAAGATGAT CCAGAAGCTA GCCGACCTGC
CCCGTCGGTG GACGAGATACTA GGTCTTACTA GGTCTTCGAT CGGCTGGACG
GlySerHis LeuLeuTyr AlaLysMetIle GlnLysLeu AlaAspLeu>

1360 1370 1380 1390 1400
* * * * * * *
GCAGCCTCAA TGAGGAGCAC TCCAAGCAGT ACCGCTGCCT CTCCTTCCAG
CGTCGGAGTT ACTCCTCGTG AGGTTCGTCA TGGCGACGGA GAGGAAGGTC
ArgSerLeuAsn GluGluHis SerLysGln TyrArgCysLeu SerPheGln>

1410 1420 1430 1440 1450
* * * * * * *
CCTGAGTGCA GCATGAAGCT AACGCCCTT GTGCTCGAAC TGTTTGGCAA
GGACTCACGT CGTACTTCGA TTGCGGGGAA CACGAGCTTC ACAAAACCGTT
ProGluCys SerMetLysLeu ThrProLeu ValLeuGlu ValPheGlyAsn>

1460
* *
TGAGATCTCC TGA (SEQ ID NO:2)
ACTCTAGAGG ACT (SEQ ID NO:17)
GluIleSer ***>(SEQ ID NO:9)

JUL 15 2003

FIG. 6A

Transcript 9

(Sequence range: 1 to 1382)

10 20 30 40 50
*
GTTTCCTTCT TCTGTGGGG CGCCTGGCA TGGAGTGGAG GAATAAGAAA
CAAAGGAAGA AGACAGCCCC GCGGAACCGT ACCTCACCTC CTTATTCTTT
MetGluTrpArg AsnLysLys>

60 70 80 90 100
*
AGGAGCGATT GGCTGTCGAT GGTGCTCAGA ACTGCTGGAG TGGAGGGGAT
TCCTCGCTAA CCGACAGCTA CCACGAGTCT TGACGACCTC ACCTCCCTA
ArgSerAsp TrpLeuSerMet ValLeuArg ThrAlaGly ValGluGlyMet>

110 120 130 140 150
*
GGAGGCAATG GCGGCCAGCA CTTCCTGCC TGACCCCTGGA GACTTGACC
CCTCCGTTAC CGCCGGTCGT GAAGGGACGG ACTGGGACCT CTGAAACTGG
GluAlaMet AlaAlaSer ThrSerLeuPro AspProGly AspPheAsp>

160 170 180 190 200
*
GGAACGTGCC CGGGATCTGT GGGGTGTGTG GAGACCGAGC CACTGGCTTT
CCTTGCACGG GGCCTAGACA CCCCACACAC CTCTGGCTCG GTGACCGAAA
ArgAsnValPro ArgIleCys GlyValCys GlyAspArgAla ThrGlyPhe>

210 220 230 240 250
*
CACTTCAATG CTATGACCTG TGAAGGCTGC AAAGGCTTCT TCAGGCGAAG
GTGAAGTTAC GATACTGGAC ACTTCCGACG TTTCCGAAGA AGTCCGCTTC
HisPheAsn AlaMetThrCys GluGlyCys LysGlyPhe PheArgArgSer>

260 270 280 290 300
*
CATGAAGCGG AAGGCACTAT TCACCTGCC CTTCAACGGG GACTGCCGCA
GTACTTCGCC TTCCGTGATA AGTGGACGGG GAAGTTGCC CTGACGGCGT
MetLysArg LysAlaLeu PheThrCysPro PheAsnGly AspCysArg>

310 320 330 340 350
*
TCACCAAGGA CAACCGACGC CACTGCCAGG CCTGCCGGCT CAAACGCTGT
AGTGGTTCT GTGGCTGCG GTGACGGTCC GGACGGCCGA GTTTGCGACA
IleThrLysAsp AsnArgArg HisCysGln AlaCysArgLeu LysArgCys>

360 370 380 390 400
*
GTGGACATCG GCATGATGAA GGAGTTCAATT CTGACAGATG AGGAAGTGCA
CACCTGTAGC CGTACTACTT CCTCAAGTAA GACTGTCTAC TCCTTCACGT
ValAspIle GlyMetMetLys GluPheIle LeuThrAsp GluGluValGln>

FIG. 6B

410 420 430 440 450
* * * * * *
GAGGAAGCGG GAGATGATCC TGAAGCGGAA GGAGGGAGG GCCTTGAGG
CTCCTTCGCC CTCTACTAGG ACTTCGCCTT CCTCCTCCTC CGGAACCTCC
ArgLysArg GluMetIle LeuLysArgLys GluGluGlu AlaLeuLys>

460 470 480 490 500
* * * * * *
ACAGTCTGCG GCCCAAGCTG TCTGAGGAGC AGCACGCGCAT CATTGCCATA
TGTCAAGACGC CGGGTTCGAC AGACTCCTCG TCGTCGCGTA GTAACGGTAT
AspSerLeuArg ProLysLeu SerGluGlu GlnGlnArgIle IleAlaIle>

510 520 530 540 550
* * * * * *
CTGCTGGACG CCCACCATAA GACCTACGAC CCCACCTACT CCGACTTCTG
GACGACCTGC GGGTGGTATT CTGGATGCTG GGGTGGATGA GGCTGAAGAC
LeuLeuAsp AlaHisHisLys ThrTyrAsp ProThrTyr SerAspPheCys>

560 570 580 590 600
* * * * * *
CCAGTTCCCG CCTCCAGTTC GTGTGAATGA TGTTGGAGGG AGCCATCCTT
GGTCAAGGCC GGAGGTCAG CACACTTACT ACCACCTCCC TCGGTAGGAA
GlnPheArg ProProVal ArgValAsnAsp GlyGlyGly SerHisPro>

610 620 630 640 650
* * * * * *
CCAGGCCCAA CTCCAGACAC ACTCCCAGCT TCTCTGGGA CTCCTCCTCC
GGTCCGGGTT GAGGTCTGTG TGAGGGTCGA AGAGACCCCT GAGGAGGAGG
SerArgProAsn SerArgHis ThrProSer PheSerGlyAsp SerSerSer>

660 670 680 690 700
* * * * * *
TCCTGCTCAG ATCACTGTAT CACCTTTCA GACATGATGG ACTCGTCCAG
AGGACGAGTC TAGTGACATA GTGGAGAAGT CTGTACTACC TGAGCAGGTC
SerCysSer AspHisCysIle ThrSerSer AspMetMet AspSerSerSer>

710 720 730 740 750
* * * * * *
CTTCTCCAAT CTGGATCTGA GTGAAGAAGA TTCAAGATGAC CCTTCTGTGA
GAAGAGGTTA GACCTAGACT CACTTCTTCT AAGTCTACTG GGAAGACACT
PheSerAsn LeuAspLeu SerGluGluAsp SerAspAsp ProSerVal>

760 770 780 790 800
* * * * * *
CCCTAGAGCT GTCCCAGCTC TCCATGCTGC CCCACCTGGC TGACCTGGTC
GGGATCTCGA CAGGGTCGAG AGGTACGACG GGGTGGACCG ACTGGACCAAG
ThrLeuGluLeu SerGlnLeu SerMetLeu ProHisLeuAla AspLeuVal>

810 820 830 840 850
* * * * * *
AGTTACAGCA TCCAAAAGGT CATTGGCTTT GCTAAAGATGA TACCAGGATT
TCAATGTCGT AGGTTTCCA GTAACCGAAA CGATTCTACT ATGGTCCTAA
SerTyrSer IleGlnLysVal IleGlyPhe AlaLysMet IleProGlyPhe>

FIG. 6C

860 870 880 890 900
* * * * *
CAGAGACCTC ACCTCTGAGG ACCAGATCGT ACTGCTGAAG TCAAGTGCCA
GTCTCTGGAG TGGAGACTCC TGGTCTAGCA TGACGACTTC AGTTCACGGT
ArgAspLeu ThrSerGlu AspGlnIleVal LeuLeuLys SerSerAla>

910 920 930 940 950
* * * * *
TTGAGGTCAT CATGTTGCGC TCCAATGAGT CCTTCACCAC GGACGACATG
AACTCCAGTA GTACAAACGCG AGGTTACTCA GGAAGTGGTA CCTGCTGTAC
IleGluValIle MetLeuArg SerAsnGlu SerPheThrMet AspAspMet>

960 970 980 990 1000
* * * * *
TCCTGGACCT GTGGCAACCA AGACTACAAG TACCGCGTCA GTGACCGTGAC
AGGACCTGGA CACCGTTGGT TCTGATGTTA ATGGCGCAGT CACTGCACTG
SerTrpThr CysGlyAsnGln AspTyrLys TyrArgVal SerAspValThr>

1010 1020 1030 1040 1050
* * * * *
CAAAGCCGGA CACAGCCTGG AGCTGATTGA GCCCCTCATC AAGTTCCAGG
GTTTCGGCCT GTGTGGACCC TCGACTAACT CGGGGAGTAG TTCAAGGTCC
LysAlaGly HisSerLeu GluLeuIleGlu ProLeuIle LysPheGln>

1060 1070 1080 1090 1100
* * * * *
TGGGACTGAA GAAGCTGAAC TTGCATGAGG AGGAGCATGT CCTGCTCATG
ACCCTGACTT CTTCGACTTG AACGTACTCC TCCTCGTACA GGACGAGTAC
ValGlyLeuLys LysLeuAsn LeuHisGlu GluGluHisVal LeuLeuMet>

1110 1120 1130 1140 1150
* * * * *
GCCATCTGCA TCGTCTCCCC AGATCGTCCT GGGGTGCAGG ACGCCGCGCT
CGGTAGACGT AGCAGAGGGG TCTAGCAGGA CCCCACGTCC TGCGGCGCGA
AlaIleCys IleValSerPro AspArgPro GlyValGln AspAlaAlaLeu>

1160 1170 1180 1190 1200
* * * * *
GATTGAGGCC ATCCAGGACC GCCTGTCCAA CACACTGCAG ACGTACATCC
CTAACTCCGG TAGGTCTGG CGGACAGGTT GTGTGACGTC TGCATGTAGG
IleGluAla IleGlnAsp ArgLeuSerAsn ThrLeuGln ThrTyrIle>

1210 1220 1230 1240 1250
* * * * *
GCTGCCGCCA CCCGCCCG GGCAGCCACC TGCTCTATGC CAAGATGATC
CGACGGCGGT GGGCGGGGGC CCGTCGGTGG ACGAGATACG GTTCTACTAG
ArgCysArgHis ProProPro GlySerHis LeuLeuTyrAla LysMetIle>

1260 1270 1280 1290 1300
* * * * *
CAGAAGCTAG CCGACCTGCG CAGCCTCAAT GAGGAGCACT CCAAGCAGTA
GTCTTCGATC GGCTGGACGC GTCGGAGTTA CTCCTCGTGA GGTTCGTCAT
GlnLysLeu AlaAspLeuArg SerLeuAsn GluGluHis SerLysGlnTyr>

JUL 15 2003

FIG. 6D

1310 1320 1330 1340 1350
* * * * * * * * *
CCGCTGCCTC TCCTTCCAGC CTGAGTCAG CATGAAGCTA ACGCCCCTTG
GGCGACGGAG AGGAAGGTG GACTCACGTC GTACTTCGAT TGCGGGAAAC
ArgCysLeu SerPheGln ProGluCysSer MetLysLeu ThrProLeu>

1360 1370 1380
* * * * * *
TGCTCGAACGT GTTTGGCAAT GAGATCTCCT GA (SEQ ID NO:3)
ACGAGCTTCA CAAACCGTTA CTCTAGAGGA CT (SEQ ID NO:18)
ValLeuGluVal PheGlyAsn GluIleSer ***> (SEQ ID NO:10)

FIG. 7A

Transcript 10
(Sequence Range: 1 to 1534)

10 20 30 40 50
* * * * * * * * * * * * * * * * * * * *
GTTTCCTTCT TCTGTCGGGG CGCCTTGGCA TGAGTGGAG GAATAAGAAA
CAAAGGAAGA AGACAGCCCC GCGGAACCGT ACCTCACCTC CTTATTCTTT
MetGluTrpArg AsnLysLys>

60 70 80 90 100
* * * * * * * * * * * * * * * * * * * *
AGGAGCGATT GGCTGTCGAT GGTGCTCAGA ACTGCTGGAG TGGAGGGGAT
TCCTCGCTAA CCGACAGCTA CCACGAGTCT TGACGACCTC ACCTCCCCTA
ArgSerAsp TrpLeuSerMet ValLeuArg ThrAlaGly ValGluGlyMet>

110 120 130 140 150
* * * * * * * * * * * * * * * * * * * *
GGAGGCAATG GCGGCCAGCA CTTCCCTGCC TGACCCCTGGA GACTTTGACC
CCTCCGTTAC CGCCGGTCGT GAAGGGACGG ACTGGGACCT CTGAAACTGG
GluAlaMet AlaAlaSer ThrSerLeuPro AspProGly AspPheAsp>

160 170 180 190 200
* * * * * * * * * * * * * * * * * * * *
GGAACGTGCC CGGGATCTGT GGGGTGTGTG GAGACCGAGC CACTGGCTTT
CCTTGCACGG GGCTTAGACA CCCCCACACAC CTCTGGCTCG GTGACCGAAA
ArgAsnValPro ArgIleCys GlyValCys GlyAspArgAla ThrGlyPhe>

210 220 230 240 250
* * * * * * * * * * * * * * * * * * * *
CACTTCAATG CTATGACCTG TGAAGGCTGC AAAGGCTTCT TCAGGTGAGC
GTGAAGTTAC GATACTGGAC ACTTCCGACG TTTCCGAAGA AGTCCACTCG
HisPheAsn AlaMetThrCys GluGlyCys LysGlyPhe PheArg*** (SEQ ID NO:11)

260 270 280 290 300
* * * * * * * * * * * * * * * * * * * *
CCCCCTCCCA GGCTCTCCCC AGTGGAAAGG GAGGGAGAAG AAGCAAGGTG
GGGGGAGGGT CCGAGAGGGG TCACCTTTCCT CTCCTCTTC TTCGTTCCAC

310 320 330 340 350
* * * * * * * * * * * * * * * * * * * *
TTTCCATGAA GGGAGCCCTT GCATTTTCA CATCTCCCTTC CTTACAATGT
AAAGGTACTT CCCTCGGGAA CGTAAAAAGT GTAGAGGAAG GAATGTTACA

360 370 380 390 400
* * * * * * * * * * * * * * * * * * * *CCATGGAACA TGGGGCGCTC ACAGGCCACAG GAGCAGGAGG GTCTTGGCGA
GGTACCTTGT ACGCCGCGAG TGTCGGTGTG CTCGTCCTCC CAGAACCGCT

FIG. 7B

410 420 430 440 450
* * * * * * * * * *
AGCATGAAGC GGAAGGC ACT ATT CAC CTG C CCCT CAAC G GGGACTGCC G
TCGTACTTCG CCTTCCGTGA TAAGTGGACG GGGAAAGTTGC CCCTGACGGC

460 470 480 490 500
* * * * * * * * * *
CATCACCAAG GACAACC GAC GCC ACTGCCA GGCCTGCCGG CTCAAACGCT
GTAGTGGTTC CTGTTGGCTG CGGTGACGGT CCGGACGGCC GAGTTTGCGA

510 520 530 540 550
* * * * * * * * * *
GTGTGGACAT CGGCATGATG AAGGAGTTCA TTCTGACAGA TGAGGAAGTG
CACACCTGTA GCCGTACTAC TTCCTCAAGT AAGACTGTCT ACTCCTTCAC

560 570 580 590 600
* * * * * * * * * *
CAGAGGAAGC GGGAGATGAT CCTGAAGCGG AAGGAGGAGG AGGCCTTGAA
GTCTCCTTCG CCCTCTACTA GGACTTCGCC TTCCCTCCTCC TCCGGAACCT

610 620 630 640 650
* * * * * * * * * *
GGACAGTCTG CGGCCAACCAT AAGACCTACG ACCCCACCTA CTCCGACTTC
CCTGTCAGAC GCGGGTTCG ACAGACTCCT CGTCGTCGCG TAGTAACGGT

660 670 680 690 700
* * * * * * * * * *
TACTGCTGGA CGCCCACCAT AAGACCTACG ACCCCACCTA CTCCGACTTC
ATGACGACCT GCGGGTGGTA TTCTGGATGC TGGGGTGGAT GAGGCTGAAG

710 720 730 740 750
* * * * * * * * * *
TGCCAGTTCC GGCCTCCAGT TCGTGTGAAT GATGGTGGAG GGAGCCATCC
ACGGTCAAGG CGGGAGGTCA AGCACACTTA CTACCACCTC CCTCGGTAGG

760 770 780 790 800
* * * * * * * * * *
TTCCAGGCC C AACTCCAGAC ACACCTCCAG CTTCTCTGGG GACTCCTCCT
AAGGTCCGGG TTGAGGTCTG TGTGAGGGTC GAAGAGACCC CTGAGGAGGA

810 820 830 840 850
* * * * * * * * * *
CCTCCTGCTC AGATCACTGT ATCACCTCTT CAGACATGAT GGACTCGTCC
GGAGGACGAG TCTAGTGACA TAGTGGAGAA GTCTGTACTA CCTGAGCAGG

860 870 880 890 900
* * * * * * * * * *
AGCTCTCCA ATCTGGATCT GAGTGAAGAA GATTCAAGATG ACCCTCTGT
TCGAAGAGGT TAGACCTAGA CTCACTTCTT CTAAGTCTAC TGGGAAGACA

910 920 930 940 950
* * * * * * * * * *
GACCCTAGAG CTGTCCAGC TCTCCATGCT GCCCCACCTG GCTGACCTGG
CTGGGATCTC GACAGGGTCG AGAGGTACGA CGGGGTGGAC CGACTGGACC

FIG. 7C

960 970 980 990 1000
* * * * * *
TCAGTTACAG CATCCAAAAG GTCATTGGCT TTGCTAAGAT GATACCAGGA
AGTCAATGTC GTAGGTTTC CAGTAACCGA AACGATTCTA CTATGGTCCT

1010 1020 1030 1040 1050
* * * * * *
TTCAGAGACC TCACCTCTGA GGACCAAGATC GTACTGCTGA AGTCAAGTGC
AAGTCTCTGG AGTGGAGACT CCTGGTCTAG CATGACGACT TCAGTTCACG

1060 1070 1080 1090 1100
* * * * * *
CATTGAGGTC ATCATGTTGC GCTCCAATGA GTCCTTCACC ATGGACGACA
GTAACCTCAG TAGTACAACG CGAGGTTACT CAGGAAGTGG TACCTGCTGT

1110 1120 1130 1140 1150
* * * * * *
TGTCTGGAC CTGTGGCAAC CAAGACTACA AGTACCGCGT CAGTGACGTG
ACAGGACCTG GACACCGTTG GTTCTGATGT TCATGGCGCA GTCACTGCAC

1160 1170 1180 1190 1200
* * * * * *
ACCAAAGCCG GACACAGCCT GGAGCTGATT GAGCCCCCTCA TCAAGTTCCA
TGGTTTCGGC CTGTGTCGGA CCTCGACTAA CTCGGGGAGT AGTTCAAGGT

1210 1220 1230 1240 1250
* * * * * *
GGTGGGACTG AAGAACGCTGA ACTTGATGAA GGAGGAGCAT GTCCTGCTCA
CCACCCCTGAC TTCTTCGACT TGAACGTACT CCTCCTCGTA CAGGACGAGT

1260 1270 1280 1290 1300
* * * * * *
TGGCCATCTG CATCGTCTCC CCAGATCGTC CTGGGGTGCA GGACGCCGCG
ACCGGTAGAC GTAGCAGAGG GGTCTAGCAG GACCCCACGT CCTGCGGCCG

1310 1320 1330 1340 1350
* * * * * *
CTGATTGAGG CCATCCAGGA CCCCTGTCC AACACACTGC AGACGTACAT
GACTAACTCC GGTAGGTCTT GGCGGACAGG TTGTGTGACG TCTGCATGTA

1360 1370 1380 1390 1400
* * * * * *
CCGCTGCCGC CACCCGCCCG CGGGCAGCCA CCTGCTCTAT GCCAAGATGA
GGCGACGGCG GTGGGGGGGG GCCCCTCGGT GGACGAGATA CGGTTCTACT

1410 1420 1430 1440 1450
* * * * * *
TCCAGAAGCT AGCCGACCTG CGCAGCCTCA ATGAGGAGCA CTCCAAGCAG
AGGTCTTCGA TCGGCTGGAC CGTCGGAGT TACTCCTCGT GAGGTTCGTC

1460 1470 1480 1490 1500
* * * * * *
TACCGCTGCC TCTCCTTCCA GCCTGAGTGC AGCATGAAGC TAACGCCCT
ATGGCGACGG AGAGGAAGGT CGGACTCACG TCGTACTTCG ATTGCGGGGA

O P E
JUL 15 2003
PATENT & TRADEMARK OFFICE
Title: Isoforms of the Human Vitamin D Recep
Inventor: Crofts et al.
Application No.: 09/509,482
Docket No.: RICE-014

FIG. 7D

1510

1520

1530

* * * * *

TGTGCTCGAA GTGTTTGGCA ATGAGATCTC CTGA (SEQ ID NO:4)
ACACGAGCTT CACAAACCGT TACTCTAGAG GACT (SEQ ID NO:19)

FIG. 8A

10 20 30 40 50
* * * * *
TGC GAC CTT GCGGTGAGCC TGGGGACAGG GGTGAGGCCA GAGACGGACG
ACGCTGGAAC CGCCACTCGG ACCCCTGTCC CCACTCCGGT CTCTGCCTGC

60 70 80 90 100
* * * * *
GACGCAGGGGG CCCGGCCCAA GGCAGGGGAG AACAGCAGCA CTAAGGCAGA
CTGCGTCCCC GGGCCGGGTT CCGCTCCCTC TTGTCGCCGT GATTCCGTCT

110 120 130 140 150
* * * * *
AAGGAAGAGGG GCGGTGTGTT CACCCGCAGC CCAATCCATC ACTCAGCAAC
TTCCTTCTCC CGCCACACAA GTGGGCGTCG GGTTAGGTAG TGAGTCGTTG

160 170 180 190 200
* * * * *
TCCTAGACGC TGGTAGAAAAG TTCCTCCGAG GAGCCTGCCA TCCAGTCGTG
AGGATCTGCG ACCATTTTC AAGGAGGCTC CTCGGACGGT AGGTCAGCAC

210 220 230 240 250
* * * * *
CGTGCAGAACG CCTTGGGTC TGAAGTGTCT GTGAGACCTC ACAGAACAGC
GCACGTCTTC GGAAACCCAG ACTTCACAGA CACTCTGGAG TGTCTTCTCG

260 270 280 290 300
* * * * *
ACCCCTGGGC TCCACTTACC TGCCCCCTGC TCCTTCAGGG ATGGAGGCCA
TGGGGACCCCG AGGTGAATGG ACGGGGGACG AGGAAGTCCC TACCTCCGTT
MetGluAla>

310 320 330 340 350
* * * * *
TGCGGGCCAG CACTTCCCTG CCTGACCCCTG GAGACTTTGA CCGGAACGTG
ACCGCCGGTC GTGAAGGGAC GGACTGGGAC CTCTGAAACT GGCCTTGCAC
MetAlaAlaSer ThrSerLeu ProAspPro GlyAspPheAsp ArgAsnVal>

360 370 380 390 400
* * * * *
CCCCGGATCT GTGGGGTGTG TGGAGACCGA GCCACTGGCT TTCACTTCAA
GGGGCCTAGA CACCCACAC ACCTCTGGCT CGGTGACCGA AAGTGAAGTT
ProArgIle CysGlyValCys GlyAspArg AlaThrGly PheHisPheAsn>

410 420 430 440 450
* * * * *
TGCTATGACC TGTGAAGGCT GCAAAGGCTT CTTCAGGCAGA AGCATGAAGC
ACGATACTGG ACACTTCCGA CGTTCCGAA GAAGTCCGCT TCGTACTTCG
AlaMetThr CysGluGly CysLysGlyPhe PheArgArg SerMetLys>

460 470 480 490 500
* * * * *
GGAAGGCACT ATTACACCTGC CCCTTCAACG GGGACTGCCG CATCACCAAG
CCTTCCGTGA TAAGTGGACG GGGAAAGTTGC CCCTGACGGC GTAGTGGTTC
ArgLysAlaLeu PheThrCys ProPheAsn GlyAspCysArg IleThrLys>

Title: Isoforms of the Human Vitamin D Receptor
 Inventor: Crofts et al.
 Application No.: 09/509,482
 Docket No.: RICE-014

FIG. 8B

510	520	530	540	550
*	*	*	*	*
GACAACCGAC GCCACTGCCA GGCCTGCCGG CTCAAACGCT GTGTGGACAT CTGTTGGCTG CGGTGACGGT CCGGACGGCC GAGTTGCGA CACACCTGTA AspAsnArg ArgHisCysGln AlaCysArg LeuLysArg CysValAspIle>				
560	570	580	590	600
*	*	*	*	*
CGGCATGATG AAGGAGTTCA TTCTGACAGA TGAGGAAGTG CAGAGGAAGC GCCGTACTAC TTCCCTCAAGT AAGACTGTCT ACTCCTTCAC GTCTCCTTCG GlyMetMet LysGluPhe IleLeuThrAsp GluGluVal GlnArgLys>				
610	620	630	640	650
*	*	*	*	*
GGGAGATGAT CCTGAAGCGG AAGGAGGAGG AGGCCTTGAA GGACAGTCTG CCCCTCTACTA GGACTTCGCC TTCCCTCTCC TCCGGAACCT CCTGTCAGAC ArgGluMetIle LeuLysArg LysGluGlu GluAlaLeuLys AspSerLeu>				
660	670	680	690	700
*	*	*	*	*
CGGCCCAAGC TGTCTGAGGA GCAGCAGCGC ATCATTGCCA TACTGCTGGA GCCGGGTTCG ACAGACTCCT CGTCGTCGCG TAGTAACGGT ATGACGACCT ArgProLys LeuSerGluGlu GlnGlnArg IleIleAla IleLeuLeuAsp>				
710	720	730	740	750
*	*	*	*	*
CGCCCACCAT AAGACCTACG ACCCCACCTA CTCCGACTTC TGCCAGTTCC CGGGGTGGTA TTCTGGATGC TGGGGTGGAT GAGGCTGAAG ACGGTCAAGG AlaHisHis LysThrTyr AspProThrTyr SerAspPhe CysGlnPhe>				
760	770	780	790	800
*	*	*	*	*
GCCCTCCAGT TCGTGTGAAT GATGGTGGAG GGAGCCATCC TTCCAGGCC CCGGAGGTCA AGCACACTA CTACCACCTC CCTCGGGTAGG AAGGTCCGGG ArgProProVal ArgValAsn AspGlyGly GlySerHisPro SerArgPro>				
810	820	830	840	850
*	*	*	*	*
AACTCCAGAC ACACCTCCAG CTTCTCTGGG GACTCCTCCT CCTCCTGCTC TTGAGGTCTG TGTGAGGGTC GAAGAGACCC CTGAGGAGGA GGAGGACGAG AsnSerArg HisThrProSer PheSerGly AspSerSer SerSerCysSer>				
860	870	880	890	900
*	*	*	*	*
AGATCACTGT ATCACCTCTT CAGACATGAT GGACTCGTCC AGCTTCTCCA TCTAGTGACA TAGTGGAGAA GTCTGTACTA CCTGAGCAGG TCGAAGAGGT AspHisCys IleThrSer SerAspMetMet AspSerSer SerPheSer>				
910	920	930	940	950
*	*	*	*	*
ATCTGGATCT GAGTGAAGAA GATTCAGATG ACCCTTCTGT GACCCTAGAG TAGACCTAGA CTCACCTCTT CTAAGTCTAC TGGGAAGACA CTGGGATCTC AsnLeuAspLeu SerGluGlu AspSerAsp AspProSerVal ThrLeuGlu>				
960	970	980	990	1000
*	*	*	*	*
CTGTCCCAGC TCTCCATGCT GCCCCACCTG GCTGACCTGG TCAGTTACAG GACAGGGTCTG AGAGGGTACGA CGGGGTGGAC CGACTGGACC AGTCAATGTC LeuSerGln LeuSerMetLeu ProHisLeu AlaAspLeu ValSerTyrSer>				

FIG. 8C

1010 1020 1030 1040 1050
* * * * *
CATCCAAAAG GTCATTGGCT TTGCTAACAGT GATACCAGGA TTCAGAGACC
GTAGGTTTC CAGTAACCGA AACGATTCTA CTATGGTCCT AAGTCTCTGG
IleGlnLys ValIleGly PheAlaLysMet IleProGly PheArgAsp>

1060 1070 1080 1090 1100
* * * * *
TCACCTCTGA GGACCAGATC GTACTGCTGA AGTCAAGTGC CATTGAGGTC
AGTGGAGACT CCTGGTCTAG CATGACGACT TCAGTTCACG GTAACTCCAG
LeuThrSerGlu AspGlnIle ValLeuLeu LysSerSerAla IleGluVal>

1110 1120 1130 1140 1150
* * * * *
ATCATGTTGC GCTCCAATGA GTCCTTCACC ATGGACGACA TGTCCCTGGAC
TAGTACAAACG CGAGGTTACT CAGGAAGTGG TACCTGCTGT ACAGGACCTG
IleMetLeu ArgSerAsnGlu SerPheThr MetAspAsp MetSerTrpThr>

1160 1170 1180 1190 1200
* * * * *
CTGTGGCAAC CAAGACTACA AGTACCGCGT CAGTGACGTG ACCAAAGCCG
GACACCGTTG GTTCTGATGT TCATGGCGCA GTCACTGCAC TGGTTTCGGC
CysGlyAsn GlnAspTyr LysTyrArgVal SerAspVal ThrLysAla>

1210 1220 1230 1240 1250
* * * * *
GACACAGCCT GGAGCTGATT GAGCCCCCTCA TCAAGTTCCA GGTGGGACTG
CTGTGTCGGA CCTCGACTAA CTCGGGGAGT AGTTCAAGGT CCACCCCTGAC
GlyHisSerLeu GluLeuIle GluProLeu IleLysPheGln ValGlyLeu>

1260 1270 1280 1290 1300
* * * * *
AAGAAAGCTGA ACTTGCATGA GGAGGGAGCAT GTCCCTGCTCA TGGCCATCTG
TTCTTCGACT TGAACGTACT CCTCCTCGTA CAGGACGAGT ACCGGTAGAC
LysLysLeu AsnLeuHisGlu GluGluHis ValLeuLeu MetAlaIleCys>

1310 1320 1330 1340 1350
* * * * *
CATCGTCTCC CCAGATCGTC CTGGGGTGCA GGACGCCGCG CTGATTGAGG
GTAGCAGAGG GGTCTAGCAG GACCCCCACGT CCTGCGGCGC GACTAACTCC
IleValSer ProAspArg ProGlyValGln AspAlaAla LeuIleGlu>

1360 1370 1380 1390 1400
* * * * *
CCATCCAGGA CCGCCTGTCC AACACACTGC AGACGTACAT CCGCTGCCGC
GGTAGGTCTT GGCAGACAGG TTGTGTGACG TCTGCATGTA GGCGACGGCG
AlaIleGlnAsp ArgLeuSer AsnThrLeu GlnThrTyrIle ArgCysArg>

1410 1420 1430 1440 1450
* * * * *
CACCCGCCCG CGGGCAGCCA CCTGCTCTAT GCCAAGATGA TCCAGAAGCT
GTGGGGCGGGG GCCCCGTCGGT GGACGAGATA CGGTTCTACT AGGTCTTCGA
HisProPro ProGlySerHis LeuLeuTyr AlaLysMet IleGlnLysLeu>

1460 1470 1480 1490 1500
* * * * *
AGCCGACCTG CGCAGCCTCA ATGAGGGAGCA CTCCAAGCAG TACCGCTGCC
TCGGCTGGAC GCGTCGGAGT TACTCCTCGT GAGGTTCGTC ATGGCGACGG
AlaAspLeu ArgSerLeu AsnGluGluHis SerLysGln TyrArgCys>

FIG. 8D

1510 1520 1530 1540 1550
* * * * *
TCTCCTTCCA GCCTGAGTGC AGCATGAAGC TAACGCCCT TGTGCTCGAA
AGAGGAAGGT CGGACTCACG TCGTACTTCG ATTGCGGGGA ACACGAGCTT
LeuSerPheGln ProGluCys SerMetLys LeuThrProLeu ValLeuGlu>

1560 1570
* *
GTGTTTGGCA ATGAGATCTC CTGA (SEQ ID NO:7)
CACAAACCGT TACTCTAGAG GACT (SEQ ID NO:20)
ValPheGly AsnGluIleSer ***> (SEQ ID NO:12)