Ideas about Mobile Learning

张海鹏

2017-04-23

BG(1/3)

A New Lightweight, Modular, and Scalable Deep Learning Framework

BG(2/3)

«MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications» (Andrew G. Howard etc. Google Inc)

BG(3/3)

«Scaling Distributed Machine Learning with the Parameter Server» (M Li,OSDI 2014)

SGD(Distributed)

```
Algorithm 3 SimuParallelSGD(Examples \{c^1, \dots c^m\}, Learning Rate \eta, Machines k)

Define T = \lfloor m/k \rfloor
Randomly partition the examples, giving T examples to each machine. for all i \in \{1, \dots k\} parallel do
Randomly shuffle the data on machine i.

Initialize w_{i,0} = 0.

for all t \in \{1, \dots T\}: do
Get the tth example on the ith machine (this machine), c^{i,t}

w_{i,t} \leftarrow w_{i,t-1} - \eta \partial_w c^i(w_{i,t-1})
end for end for Aggregate from all computers v = \frac{1}{k} \sum_{i=1}^k w_{i,t} and return v.
```

«Parallelized Stochastic Gradient Descent » (Martin A. Zinkevich etc.NIPS 2010)

SGD(Distributed)

总体配置

项目	描述	数目
管理节点	2U服务器	一台
计算节点	2U服务器	四台
网络连接	千兆交换机	一台
计算网络	Infiniband交换机	一台
供电系统	32A PDU	两个

管理节点配置

项目	描述	数目
CPU	Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz	2
内存	16G ECC REG	4
硬盘 (系统盘)	Intel 240GB SSD	1
硬盘 (存储盘)	2TB SATA HDD	3

计算节点配置

项目	描述	数目
CPU	Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz	2
内存	32G ECC REG	8
硬盘	1TB SATA HDD	1
GPU计算卡	NVIDIA Tesla K80	2

Cons for Cs:

- 1. 数据在master节点,worker节点通过分发获取数据
- 2. worker节点数目扩展不易
- 3. master和worker节点成本高
- 4. 通信成本高(infiniband)
- 5. 物理移动性差

Pros for Ms:

- 1. 数据天然在worker上
- 2. 天然的增量学习
- 3. worker扩展容易
- 4. worker成本较低
- 5. 通信成本低(避免网络延迟和带宽问题)

- 6. 物理移动性好
- 7. 隐私性
- 8. 用户体验
- 9. 省电和水

Ms(with S)

Ms(without S)

Ms(without S)

Ms(without S)

Pros:

- 1. 未来的移动社交应用场景,几部手机共同做一件事情
- 2. 实现worker节点的通信,降低master的通信负载
- 3. 天然的容错(以通信换容错),而且手机容错的能力更加强大
- 4. 树形结构天然的优点,如果能够和模型结合更加的**OK**,树 形结构本身的优良性质
- 5. N1本身是信息的管理单元,不是计算单元

Implementation

研究意义: Smart Phone for Smart Cities

结构研究: 中心和无中心

问题关键: Convergence,Complexity

研究问题: Logistic/Linear Regression Based On Parallel SGD

潜在问题:冷启动,节点角色等

Q&R

TKS

创造始于问题,有了问题才会思考,有了思考,才有解决问题的方法,才有找到独立思路的可能。

——陶行知

LIVE FOR IDEAS.

--张海鹏