Sphere: intercept

Find distance t to intersection w of a straight line with

a spherical surface.

Sphere: $|\vec{w} - \vec{s}|^2 = r^2$ (1) 2-D Line: $|\vec{w}| = \vec{p} + \vec{u}t$ (2)

Substitute (2) into (1) and solve for t:

 $|\overrightarrow{p} + ut - \overrightarrow{s}|^2 = |\overrightarrow{d} + ut|^2 = r^2$ where $\overrightarrow{d} = \overrightarrow{p} - \overrightarrow{s}$

$$d^{2} + 2(\vec{d} \cdot \vec{n})t + n^{2}t^{2} = r^{2}$$

$$n^{2}t^{2} + 2(\vec{d} \cdot \vec{n})t + (d^{2} - r^{2}) = 0$$

$$a \neq 0$$

$$b$$

$$c$$
(3)

If there are two positive roots t, return the smaller one; otherwise return the larger root, or signal no solution. If a valid t is available, use it in (2) to get w.

Sphere:: subpoint, Sphere:: distance

Send the line from center through w; its intersection with x this is the subpoint (if w = center, return no solution for the subpoint). The returned distance between in and the subpoint carries a sign

aceon	rch ng	fo	the	tab.	le.
2-D	0			7	- W
/	Irl		\	00	
	1		7 54	bpoint	+
	cent				

n W	inside	outside
inward	positive	negative
outward	negative	positive
	0	-