Sasa Mardi, EE23BTECH11222

Question 11.9.3-19: Find the sum of the products of the corresponding terms of the sequences 2, 4, 8, 16, 32 and 128, 32, 8, 2, $\frac{1}{2}$.

Solution: Define the sequences as follows:

Sequence 1: $x_1(n) = 2 \times 2^n$ with a common ratio of $r_1 = 2$.

Sequence 2: $x_2(n) = 128 \times \left(\frac{1}{4}\right)^n$ with a common ratio of $r_2 = \frac{1}{4}$.

Tables for both sequences:

n	$x_1(n)$	$x_2(n)$
0	2	128
1	4	32
2	8	8
3	16	2
4	32	$\frac{1}{2}$

Table for the product of corresponding terms:

ſ	n	$x_1(n)$	$x_2(n)$	$x_1(n) \times x_2(n)$
Γ	0	2	128	256
	1	4	32	128
	2	8	8	64
	3	16	2	32
	4	32	$\frac{1}{2}$	16

Sum of the products of corresponding terms:

$$256 + 128 + 64 + 32 + 16 = 496$$

So, the sum of the products of the corresponding terms of the sequences is 496.

1