Computer Arithmetic

Dr. Ahmed H. Zahran WGB 182
a.zahran@cs.ucc.ie

Floating-Point Addition

- Consider a 4-digit decimal example $9.999 \times 10^1 + 1.610 \times 10^{-1}$
- 1. Align decimal points (Shift number with smaller exponent) $9.999 \times 10^1 + 0.016 \times 10^1$
- 2. Add significands $9.999 \times 10^1 + 0.016 \times 10^1 = 10.015 \times 10^1$
- 3. Normalize result & check for over/underflow
 - 1.0015×10^2
- 4. Round and renormalize if necessary
 - 1.002×10^2

Floating-Point Addition

- Now consider a 4-digit binary example
 - Add 0.5_{10} and -0.4375_{10} $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2}$
- 1. Align binary points (*Shift* number with smaller exponent) $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. **Add** significands

$$1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$$

- 3. **Normalize** result & check for over/underflow $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. **Round** and renormalize if necessary
- $1.000_2 \times 2^{-4}$ (no change) = 0.0625_{10}

Floating-Point Multiplication

- Consider a 4-digit decimal example
 - $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. **Add** exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. **Multiply** significands
 - $1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^{5}$
- 3. **Normalize** result & check for over/underflow
 - 1.0212×10^6
- 4. Round and renormalize if necessary
 - 1.021×10^{6}
- 5. **Determine** *the sign* of result from signs of operands
 - $+1.021 \times 10^{6}$

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - Multiply 0.5₁₀ and -0.4375₁₀
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2}$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.110_2 \Rightarrow 1.110_2 \times 2^{-3}$
- 3. **Normalize** result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. *Round* and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. **Determine sign**: +ve × -ve ⇒ -ve
 - $-1.110_2 \times 2^{-3} = -0.21875_{10}$

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

Review

- Revised binary representation
- Explored basic integer operations and the [optimized] hardware implementation of multiplication and division
- Introduced floating point representation [precision and range]
- Explored the floating point adder hardware design
- Explored the procedure of multiplication and division

FP Example: °F to °C

• C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- MIPS code:

```
f2c: lwc1 $f16, const5
lwc1 $f18, const9
div.s $f16, $f16, $f18
lwc1 $f18, const32
sub.s $f18, $f12, $f18
mul.s $f0, $f16, $f18
jr $
```

Associativity Pitfall a+(b+c) = (a+b)+c

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
у	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

Floating point addition is not generally associative!

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" [§]
- The Intel Pentium FDIV bug in 1994
 - The market expects accuracy
 - Costed \$500 Million to correct
 - No Christmas bonus for Intel Engineers

Reading

• Sections 3.6, 3.7, 3.9, and 3.10