21-630 Final Exam Reference Sheet Sunday, April 30, 2013

Existence of Solutions

Contraction Mapping Theorem: (p. 14)

 $B \subset \mathbb{R}^N$ be closed, $\mathcal{F}: \mathcal{C}_B \to \mathcal{C}_B$ a contraction. Then, \mathcal{F} has a unique fixed point in \mathcal{C}_B .

Cauchy-Lipschitz Theorem (Part I): (p. 21)

 $\varepsilon > 0$, f continuous, Lipschitz in x on $[t_0, t_0 + \delta_0] \times [x_0 - \varepsilon, x_0 + \varepsilon]$. Then, $\dot{x} = f(t, X), X(t_0) = x_0$ has a solution on $[t_0, t_0 + \delta_0]$.

Cauchy-Peano Theorem: (p. 22)

f continuous $[t_0, t_0 + \delta_0] \times [x_0 - \varepsilon, x_0 + \varepsilon]$. Then, $\exists \delta \in (0, \delta_0]$ so that $\dot{x} = f(t, X), X(t_0) = x_0$ has a solution on $[t_0, t_0 + \delta]$.

Ascola-Arzela Theorem: (p. 25)

 $\{X^{(n)}\}$ pointwise-bounded, equicontinuous in $\mathcal{C}_{\mathbb{R}^N}[t_0, t_1]$. Then, $\{X^{(n)}\}$ uniformly bounded with a uniformly convergent subsequence.

Extension Theorem: (p. 35)

 $D = I_t \times D_x$, I_t open interval, $D_x \subset \mathbb{R}^N$ open, $f : D \to \mathbb{R}^N$ continuous. Then, any solution of $\dot{X} = f(t, X), X(t_0) = x_0$ has a right-maximal extension, and, for any compact $S \subset D_x$, right-maximal solutions eventually leave S. Note, if f bounded, every solution can be extended to \mathbb{R} .

Uniqueness

Gronwall's Inequality (Simple Version): (p. 39)

 $A \in \mathbb{R}, B \geq 0, X$ continuous on $I = [t_0, t]$ or $I = [t_0, \infty),$

$$X(t) \le A + B \int_{t_0}^t X(s) \, ds, \quad \forall t \in I.$$

Then, $X(t) \leq Ae^{B(t-t_0)}, \forall t \in I$.

Gronwall's Inequality (Full Version): (p. 40)

 $a, b \in \mathcal{C}_{\mathbb{R}}(I), b \geq 0, X \text{ continuous on } I = [t_0, t] \text{ or } I = [t_0, \infty),$

$$X(t) \le a(t) + \int_{t_0}^t b(s)X(s) ds, \quad \forall t \in I.$$

Then, $\forall t \in I$,

$$X(t) \le a(t) + \int_{t_0}^t a(s)b(s)e^{\int_s^t b(\tau)\,d\tau}\,ds.$$

Cauchy-Lipschitz Theorem (Part II): (p. 44)

Assumptions as in Cauchy-Lipschitz Theorem (Part I). $\exists \delta \in (0, \delta]$ solution unique on $[t_0, t_0 + \delta]$.

Smoothness in Initial Conditions

Continuity in Initial Conditions (p. 48)

 C^1 in Initial Conditions (p. 51)

Linear Systems

Abel-Liouville Theorem: (p. 60)

If $\psi(t)$ is a matrix solution of $\dot{X} = A(t)X$, then $\det(\psi(t)) = \det(\psi(t_0))e^{\int_{t_0}^t \operatorname{tr}(A(s)) ds}, \forall t_0, t \in I$. Corollary 4.1 (p. 61) restates the definition of 'fundamental matrices' in terms of $\det(\psi(t))$.

Variation of Parameters: (p. 63)

If $\Phi(t)$ is a fundamental matrix solution of $\dot{X} = A(t)X$, then

$$X(t) = \Phi(t)\Phi^{-1}(t_0)x_0 + \int_{t_0}^t \Phi(t)\Phi^{-1}(s)b(s) ds$$

solves $\dot{X} = A(t)X + b(t), X(t_0) = x_0$. Note: if A(t) constant, then $\Phi(t)\Phi^{-1}(s) = \Phi(t-s)$.

Matrix Norms and Exponentials and Jordan Canonical Form: (pp. 69-76, 83) $|A^k| \le |A|^k$, $|A|_{\infty} \le |A| \le N|A|_{\infty}$, etc.

Bounding Solutions by Spectral Radius: (p. 85)

If σ is the largest eigenvalue (by real part) of A, then $\exists C > 0$ such that $|e^{At}| \leq Ce^{\sigma t}(1 + t^{N-1})$. As a corollary, $\forall \varepsilon > 0$, $\exists C_{\varepsilon} > 0$ such that $|e^{At}| \leq C_{\varepsilon}e^{(\sigma + \varepsilon)t}$.

Stability

Homogeneous Linear Systems (p. 89)

The critical point 0 is stable for X = AX if and only if all first order eigenvalues are non-positive and higher order eigenvalues are strictly negative (in real part).

Also, 0 is asymptotically stable if and only if all eigenvalues have strictly negative real part.

Linearization (pp. 93, 97)

f(x) = 0, all eigenvalues of Df(x) have strictly negative real part. Then x asymptotically stable.

f(x) = 0, some eigenvalue of Df(x) has strictly positive real part. Then x is unstable.

Lyapunov Functions (pp. 108, 111, 114)

f cont., f(t,0) = 0, $v(t,x) \in C^1$ positive definite, D_*v negative semidefinite. Then, 0 is stable.

f cont., f(t,0) = 0, $v(t,x) \in C^1$ positive definite, D_*v negative definite, v bounded above in t near 0. Then, 0 asymptotically stable.

f cont., f(t,0) = 0, $v(t,x) \in C^1$, D_*v negative definite, v bounded below in t near 0. Every nbhd of 0 has x with v(0,x) > 0. Then, 0 unstable.

Invariance Theory

Omega Limit Sets (pp. 124-125)

 $\Omega(x_0)$ is positively invariant and closed. If $C^+(x_0)$ is bounded, then $\Omega(x_0)$ is nonempty, compact, and connected, and

$$\operatorname{dist}(Y(t,x_0),\Omega(x_0))\to 0 \text{ as } t\to\infty.$$

For $S \subseteq \mathbb{R}^N$, there exists a largest positively invariant subset M_S of S.

Theorem 5.8 (p. 132)

 $0 \in S \supseteq \mathbb{R}^N$ open, $w \in C^1(S)$, w(0) = 0, $D_*w \le 0$ on S, $\eta \ge 0$, $0 \in H_\eta$ closed bounded connected component of $w^{-1}((-\infty, \eta])$, M largest positively invariant subset of $H_\eta \cap (D_*w)^{-1}(\{0\})$. Then, $\forall x_0 \in H_\eta$, $\operatorname{dist}(Y(t, x_0), M) \to 0$ as $t \to \infty$. Usually, to use this, we want $M = \{0\}$.

Two-Dimensional Systems

For autonomous planar systems, $\dot{r} = \dot{X}\cos\theta + \dot{Y}\sin\theta$ and $\dot{\theta} = \dot{Y}\frac{\cos\theta}{r} - \dot{X}\frac{\sin\theta}{r}$.

Poincaré-Bendixson Theorem (p. 142)

 $f: \mathbb{R}^2 \to \mathbb{R}^2$ C^1 , X bounded solution of X = f(X), $\Omega(X(0))$ contains no critical point. Then, either X is periodic with $\Omega(X(0)) = C^+(X(0))$ or \exists periodic solution Y with $\Omega(X(0)) = C^+(Y(0))$. **Jordan Curve Theorem** (p. 146)

 $C \subseteq \mathbb{R}^2$, ψ bijective, cont. mapping from unit circle into C. Then, we can partition \mathbb{R}^2 into 3 pathwise connected components, C, O_E , and O_I .

If C is the image of a periodic solution, then O_I contains a critical point.

Transversals (pp. 147-153)

Corollary of Divergence Theorem (p. 160)

Y nonconstant periodic solution. Then,

$$\iint_{O_I} \operatorname{div} f \, dy \, dx = 0.$$

Orbital Stability (p. 162)

Boundary Value Problems

Separate inhomogeneities due to boundary conditions and differential equation.

Green's Functions (pp. 183, 190)

Examples

Circuit Theory (p. 164)

Predator-Prey Model (p. 174)

Rigid Body Motion (p. 177)