Grafos:

Fundamentos Representaciones, etc.

Jose Aguilar

Introducción

Las estructura de datos no lineales se caracterizan por tener una relación de adyacencia genérica entre sus elementos, es decir, un elemento puede estar relacionado con cero, uno o más elementos.

- Hay múltiples aplicaciones de estas estructuras
- Los grafos son un ejemplo de esas estructuras, que se utilizan para modelar diversas situaciones tales como: sistemas de comunicación, redes de amigos, etc.
- Los grafos también son muy utilizados en computación: modelar programas paralelos, planificar tareas en el computador, planificar operaciones de E/S, etc.

Introducción

La estructura no lineal de datos más general es el grafo,

Un grafo **G(N, A, f)** es un conjunto no vacío de:

- N={n₁, n₂, ..., n_M) nodos o vértices,
- A={a₁, a₂, ..., a_K} aristas o arcos
- La función f: R → N × N que indica cuales pares de nodos están relacionados.

Introducción

Hay dos tipos de grafos según si sus relaciones (arcos) tienen dirección o no,

Grafos dirigidos o digrafos

$$D = \{N, A, f\}$$
 y tiene

$$N = \{1, 2, 3\},\$$

$$A = \{a, b, c, d\} y$$

$$f(a) = (1, 2), f(b) = (2, 3),$$

$$f(c) = (1, 3),$$

 $f: A \rightarrow N \times N$ pares ordenados de nodos que indican de que nodo sale el arco y a que nodo llega ese arco.

Grafos no dirigidos

f: L → N x N de pares no ordenados que indican que esos nodos están unidos en ambas direcciones

Para un $a_i \in A$ asociado al par de nodos (n_i, n_j) , donde $n_i n_j \in N$, si es dirigido y comienza en n_i y termina en n_j , n_i es el **nodo inicial** y n_j es el **nodo terminal**.

- Arco incidente: aj es un arco incidente sobre n_k, si n_k es el nodo terminal de a_j (digrafos).
- Arcos adyacentes: a_i y a_j son arcos adyacentes, si a_i y a_j son incidentes en el mismo nodo (digrafos).
- Arcos paralelos: Dos arcos son paralelos si ellos comienzan y terminan en los mismos nodos.

Bucle o lazo: Si un arco a_i comienza en n_i y termina en n_i e i=j, entonces n_{ii} es un bucle.

Ejemplo: Si f(w) = (3, 3) entonces w es un lazo.

Nodos adyacentes: Dado un par de nodos (n_i, n_j) que están unidos por el arco a_i , se dice que n_i es adyacente a n_j por a_i .

Ejemplo: 1 es adyacente a 2 por a.

Grado de incidencia positivo: El grado de incidencia positivo de un nodo n_i es el número de arcos que tienen como **nodo inicial** a n_i (digrafos).

Grado de incidencia negativo: El grado de incidencia negativo de un nodo n_i es el número de arcos que **terminan** en n_i (digrafos).

Grado de un nodo:

- Para digrafos es el grado de incidencia positivo menos el grado de incidencia negativo del nodo.
- Para grafos no dirigidos son los arcos conectados a él.

.

Multiplicidad de un par ordenado (n_i, n_j) : Dado el digrafo D. Si para un par ordenado de nodos $(n_i, n_j) \in N$ x N, hay k arcos distintos en A para los que $f(a_l) = (n_i, n_j)$, es decir, hay k arcos que unen n_i con n_j , se dice que el par (n_i, n_j) tiene multiplicidad k donde $k \ge 0$. La función de multiplicidad $m(n_i, n_j) = k$.

Ejemplo: m(1, 1) = 0, m(1, 2) = 1, m(1, 3) = 1, etc. 0

Grafo simple: Un digrafo D es simple si cada par ordenado $(n_i n_j) \in N \times N$ tiene como máximo de multiplicidad el valor 1.

Matriz de conexión: Todo grafo G tiene asociado una matriz M de dos dimensiones de orden $|N| \times |N|$, cuyos elementos representan la multiplicidad del par (n_i, n_i) .

Ejemplo: La matriz de conexión del digrafo G es

$$M = \begin{array}{c} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$$

Conceptos digrafos

Camino: Un camino C de un digrafo D es una secuencia de arcos $(a_1, a_2, ..., a_n)$ tal que para todo par (a_i, a_j) de arcos consecutivos en C, el fin de a_i coincide con el inicio de a_j .

Camino simple: Es el camino que no recorre el mismo arco dos veces.

Camino elemental: Es el camino que no visita un mismo nodo más de una vez.

Conceptos digrafos

Circuito: Es un camino finito en el que el origen del primer arco coincide con el fin del último.

Circuito simple: Un circuito es simple si a su vez es un camino simple.

Orden de un camino: Es el número de arcos que conforman el camino.

Conceptos digrafos

Ejemplos de caminos

Ejemplos de circuitos

Nodo accesible: Un nodo n_i es accesible desde otro nodo n_i, si

- $n_i = n_i o$
- existe un camino desde n_i hasta n_i.

Nodo sucesor: Un nodo n_j es sucesor de un nodo n_i si existe un camino que va desde n_i hasta n_j.

Nodo predecesor: Un nodo n_i es predecesor de otro nodo n_j si existe un camino que va desde n_i hasta n_j.

Grafo conexo: Un grafo G es conexo si y sólo si sus nodos no pueden ser particionados en dos conjuntos no vacíos N1 y N2, tal que todas sus trayectoria (caminos/cadenas) desde un punto cualquiera a otro estén en el mismo conjunto.

Un grafo es conexo si, para cualquier par de nodos a y b en G, existe al menos una trayectoria (una sucesión de vértices adyacentes que no repita vértices) de a a b

Subgrafo: Un subgrafo SG de G es un grafo constituido por un subconjunto SN de N y un subconjunto SA de A que conectan los nodos de SN.

Isomorfismo: Dos grafos G y G' son isomórficos si existe una biyección f: $N \rightarrow N'$ tal que $(n_i, n_j) \in A \Leftrightarrow (f(n_i), f(n_j)) \in A'$.

Isoformismo entre G y G'

$$F(a)=1$$

$$F(b)=6$$

$$F(c)=8$$

$$F(d)=3$$

$$F(g)=5$$

$$F(h)=2$$

. . .

Vecino: En un grafo dirigido G, el vecino de un nodo n es cualquier nodo adyacente a n en la versión no dirigida de G.

Conceptos grafo no dirigido

Cadena: Para un grafo no dirigido GND es la secuencia de líneas (I₁, I₂, ..., I_n) tal que el fin I_i coincide con el origen de I_{i+1}.

Cadena simple: Es la cadena donde ninguna línea se repite.

Cadena elemental: Es la cadena donde ningún nodo se repite.

Conceptos grafo no dirigido

Ciclo: Es una cadena finita donde el nodo inicial de la cadena coincide con el nodo terminal de la misma.

Ciclo simple: Es el ciclo que a su vez es una cadena simple.

Ciclo hamiltoniano.

Grafo múltiple: Es un grafo que contiene alguna arista paralela.

Digrafo acíclico: Es un digrafo que no contiene circuitos. Se le conoce con las siglas dag.

Grafo o digrafo con peso: Es un grafo o digrafo que tiene un valor entero o real asignado a cada arista.

Grafo completo: Es un grafo no dirigido donde cada par de nodos es adyacente

Grafo bipartito: Es un grafo no dirigido que puede ser dividido en dos subgrafos sin conexión entre ellos. Es un grafo G=(N,E) cuyos vértices se pueden separar en dos conjuntos disjuntos U y V,

Multigrafo: Es un grafo no dirigido que puede tener varias aristas y lazos entre sus nodos.

Hipergrafo: Es un grafo no dirigido con hiper-aristas que conectan varios nodos (muchas).

Ejemplo: hipertexto, hipermedia, redes sociales.

Grafo fuertemente conexo: Un digrafo G con caminos para todo par fe vertivcecs en ambos sentidos

Grafos no dirigidos particulares

- Euleriano admite un circuito que contiene todas sus aristas
- Hamiltoneado: tiene un camino cerrado elemental que contiene todos los vertices
- Completo

vértice de corte o punto de articulación

es un vértice de un grafo tal que si el grafo estaba conectado antes de retirar el vértice, entonces pasará a desconectarse.

A pesar de que estén bien definidos para grafos dirigidos, los vértices de corte se usan principalmente en los grafos no dirigidos.

Una arista de corte o puente, es una arista análoga a un vértice de corte;

Grafo biconexo y bicoherente

Un grafo G es biconexo si es conexo y no tiene puntos de articulación

Ejemplo: si G representa una red de telecomunicaciones, entonces G asegura que la red puede seguir funcionando aunque falle uno de los equipos de los nodos.

Un grafo G es bicoherente si todo punto de articulación está unido mediante al menos 2 aristas con cada componente del subgrafo restante Si además de biconexo, G es bicoherente, se tiene la seguridad que la red seguirá funcionando aunque falle una línea de transmisión

Tipo de Dato Abstracto del Grafo

Un grafo se especifica en base a sus funciones básicas, entre las que se pueden mencionar:

- crearlo,
- insertar un nodo nuevo o una arista nueva,
- conocer si está vacío o no,
- consultar si un nodo existe,
- Verificar si tiene un circuito o ciclo
- etc.

TDA del Grafo

Existen dos métodos para almacenar un grafo G:

- Matriz de adyacencia: se implementa utilizando el método secuencial o con arreglos y
- Listas de adyacencia implementada utilizando un método enlazado o listas enlazadas

Matriz de adyacencia

Es un arreglo de dos dimensiones que representa las conexiones entre pares de nodos o vértices.

Sea un grafo G con un conjunto de nodos N y un conjunto de aristas A. Suponga que el grafo es de orden n (número de nodos del grafo), donde n > 0.

 La matriz de adyacencia se representa por un arreglo de tamaño n x n, donde:

$$M(i, j) = \begin{bmatrix} 1 & \text{si existe un arco}(n_i n_j) \text{ en A,} \\ 0 & \text{en caso contrario} \end{bmatrix}$$

- Las columnas y las filas de la matriz representan los nodos del grafo.
- Si el grafo es no dirigido, la matriz es simétrica M(i,j) = M(j,i).

Matriz de adyacencia

/1	1	0	0	1	0/
1	0	1	0	1	0
0	1	0	1	0	0
0	0	1	0	1	1
$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	1	0	1	0	0
0/	0	0	1	0	0/

Listas de adyacencia

El segundo método utilizado para representar grafos es útil cuando un grafo posee muchos nodos y pocas aristas (grafos no densos).

- Se utiliza una lista enlazada, llamada directorio, que almacena los nodos N del grafo, y asociado a cada nodo del grafo se encuentra una lista enlazada con los nodos que son adyacentes a él.
- En las listas están las aristas del grafo.
 - Un grafo no dirigido de orden N con A aristas requiere N entradas en el directorio y 2*A entradas de listas enlazadas, excepto si existen bucles, que reduce el número de entradas a la lista en 1
 - Un grafo dirigido de orden N con A arcos requiere N entradas en el directorio y A entradas de listas enlazadas

Listas de adyacencia

Grafo No Dirigido

Grafo Dirigido

A
<i>,</i> ,

В

->	В	->	С	^	D
->	D	->	C	^	Α
->	Α	->	В		
->	В	->	Α		

L	7	
	7	

В

C

D

Ε

tipo de datos abstractos (TDAs)

20/1	1/07 Especifica	Especificación Grafo[TipoEle]			
1	Sintáctica creaGrafo()→Grafo, nuevoNodo(Grafo,TipoEle) →Grafo, nuevaArista(Grafo,TipoEle,TipoEle) →Grafo, eliNodo(Grafo,TipoEle) →Grafo, eliArista(Grafo,TipoEle,TipoEle) →Grafo, conNodo(Grafo,TipoEle,TipoEle) →Lógico, conArista(Grafo,TipoEle,TipoEle) →Lógico, nodoAdyacente(Grafo,TipoEle) →Lista[TipoEle], vacíoGrafo(Grafo) →Lógico>	-creaGrafo(): Crea un grafo vacíonuevoNodo(): Ingresa un nuevo nodo al grafo -nuevaArista(): Ingresa una nueva arista entre los dos nodos especificados, si existeneliNodo(): Elimina un nodo del grafoeliArista(): Elimina una arista del grafo entre los nodos especificadosconNodo(): Regresa verdadero sí existe en el			
2	Declaraciones TipoEle: no,{TipoNoDef}	grafoconArista(): Regresa verdadero si el arco existenodoAdyacente(): Regresa la lista de los arco:			
3	Semántica vacíoGrafo(creaGrafo())=Verdadero vacíoGrafo(nuevoNodo(creaGrafo(),no)=Falso conNodo(creaGrafo(), no)=Falso conNodo(nuevoNodo(creaGrafo(),no),no)=Verdadero conArista(creaGrafo(),no,no)=Falso conArista(nuevaArista(creaGrafo(),no,no),no,no)=Cierto eliNodo(creaGrafo(),no)=creaGrafo()	adyacentes a él. -vacíoGrafo(): Regresa verdadero si es el grafo esta vacío -destruyeGrafo(): Destruye el grafo			

Grafo[TipoEle]

	Clases: Arreglo de Entero, Entero, Tabla, TipoEleTab, Salida[TipoEle], TipoEle}				
1	Estructura: privado:	-Grafo(). Constructor. Crea un grafo vacío			
2	Operaciones: público:	-nuevoNodo(). Transformador. Inserta un nuevo nodo al			
3	Grafo()	grafo.			
4	nuevoNodo(TipoEle: n)	-nuevaArista(). Transformador. Ingresa un nuevo arco al			
5	nuevaArista(TipoEle: ni, TipoEle: nf):	grafo.			
6	eliNodo(TipoEle: n)	-eliNodo(). Transformador. Elimina un nodo del grafo			
	eliArista(TipoEle: ni, TipoEle: nj)	-eliArista(). <i>Transformador. Elimina un arco del grafo.</i>			
	conNodo(TipoEle: n): Lógico	-conNodo(). Observador. Regresa verdadero, si existe.			
	conArista(TipoEle: ni, TipoEle: nf):Lógico	-conArista(). Observador. Regresa verdadero si existe el			
	nodoAdyacente(TipoEle: n, Entero: t): Arreglo[100] de	arco.			
	TipoEle	-nodoAdyacente(). <i>Observador. Regresa el arreglo de</i>			
	recorridoEnAmp()	nodos adyacentes y su tamaño.			
	recorridoEnProf()	-recorridoEnAmp(). Observador. Recorre el grafo en			
	rutaOptima(TipoEle: nj): Arreglo[100] de	amplitud.			
	Salida[TipoEle]	-recorridoEnProf(). Observador. Recorre el grafo en			
	vacíoGrafo():Lógico	profundidad			
	numNodos():Entero	-rutaOptima(). Observador. Regresa un arreglo con los			
	numAristas():Entero	nodos que conforman el camino de menos arcos a partir			
	=(Grafo[TipoEle])	de un nodo inicial			
	~Grafo()	-vacioGrafo(). Observador. Regresa verdadero si el grafo			
		<i>está</i> vacío.			
		-numNodos(), numAristas(). Observadores. Regresa el			
		número de nodos y el de aristas del grafo,			
		respectivamente.			
		-=(). Transformador. Asigna un grafo.			
		~Grafo(). <i>Destructor. Destructor del grafo</i>			

Listas de adyacencia

```
#include <vector>
#include <list>
vector< list<int> > grafo(MAX VERT);
char visitado[MAX VERT];
void inserta arista(int i, int j){
    grafo[i].push back(j);
    grafo[j].push back(i);
void limpia grafo() {
int i;
    for(i = 0; i < nvert; i++){
             grafo[i].clear();
             visitado[i] = 0;
list<int>::iterator aux, fin;
aux = qrafo[j].begin();
fin = grafo[j].end();
while(aux != fin) {
    if(!visitado[*aux]){
             pila.push(*aux);
             visitado[*aux] = 1;
    aux++;
```

Tarea de grafo

Tome una situación de su cotidiana (red de amigos, rutas para ir a su casa, recorrido en un viaje realizado, etc.) y modélela usando grafos.

Además, determine en el grafo los conceptos vistos en clase e interprételos (que podría significar el grado, para que sirve determinar que sea conexo, para que le sirve determinar una trayectoria, etc.