S5C: полнота и корректность

Мини-курс «Эпистемическая логика: исчисления и модели»

Виталий Долгоруков, Елена Попова

Международная лаборатория логики, лингвистики и формальной философии НИУ ВШЭ

Летняя школа «Логика и формальная философия» Факультет свободных искусств и наук сентябрь 2022

Исчисления S5C и S5C'

Теорема о дедуктивной эквивалентности S5C и S5C' (Упражнение)

$$\vdash_{S5C} \varphi \iff \vdash_{S5C'} \varphi$$

Теорема о корректности исчисления S5C (Упражнение)

$$\vdash_{S5C} \varphi \Rightarrow \models_{S5C} \varphi$$

Компактность логики

Обозначение

$$\Gamma \models_{L} \varphi := \forall F(F \models L \Rightarrow (F \models \Gamma \Rightarrow F \models \varphi))$$

Определение. Компактность логики.

Логика L называется компактной е.т.е. $\Gamma \models_L \bot \Rightarrow \exists \Gamma' \subseteq \Gamma$ т.ч. Γ' – конечно и $\Gamma' \models_L \bot$. Альтернативное определение: ?

Компактность и сильная полнота

Теорема

Логика является сильно полной е.т.е. она полна и компактна.

Некомпактность S5C

Теорема.

Логика S5C не является компактной.

Доказательство.

$$X = \{\neg C_{ab}p\} \cup \{E_{ab}^n p \mid n \in \mathbb{N}\}\$$

- 1. $X \models_{S5C} \bot$, т.е. X невыполнимо
- 2. $X' \not\models_{S5C} \bot$, где $X' \subseteq X$ и X' конечно

Следствие

Логика S5C не является сильно полной.

Полнота (по Крипке) S5C

Теорема

Логика S5C является полной (по Крипке), т.е. $\models_{S5C} \varphi \iff \vdash_{S5C} \varphi$

Замыкание $cl(\varphi)$

Определение. Замыкание

Пусть $cl: ELC \mapsto \mathcal{P}(ELC)$ функция т.ч. $cl(\varphi)$ – наименьшее множество, удовлетворяющее следующим условиям:

- 1. $Sub(\varphi) \subseteq cl(\varphi)$
- 2. если $\psi \in cl(\varphi)$ и ψ не начитается с \neg , то $\neg \psi \in cl(\varphi)$
- 3. если $C_G\psi\in cl(\varphi)$, то $\{K_iC_G\psi\mid i\in G\}\subseteq cl(\varphi)$

Пример

• $cl(C_{ab}p) = \{p, \neg p, C_{ab}p, \neg C_{ab}p, K_aC_{ab}p, \neg K_aC_{ab}p, K_bC_{ab}p, \neg K_bC_{ab}p\}$

Утверждение

Для любого $\varphi \in ELC$: $cl(\varphi)$ – конечно

Максимальность и непротиворечивость

Определение

Множество формул $X \in L_{KC}$ называется S5C- непротиворечивым е.т.е.

- (a) $X \not\vdash_{S5C} \bot$
- (b) не существует $\varphi_1, \ldots \varphi_n \in X$ т. ч. $\vdash_{S5C} \neg (\varphi_1 \wedge \cdots \wedge \varphi_n)$

Упражнение: докажите, что условия (a) и (b) эквивалентны

Обозначение: $\Phi = cl(arphi)$ для $arphi \in L_{\mathcal{KC}}$

Определение.

Будем говорить, что множество $X \subset \Phi$ является Φ -максимальным S5C-непротиворечивым е.т.е.

- X S5C-непротиворечиво и
- $\forall Y \in \Phi(X \subset Y \Rightarrow Y \vdash_{S5C} \bot)$.

Конечная каноническая модель

Определение

Обозначим $\Phi = cl(\varphi)$ для формулы $\varphi \in L_{KC}$. $M^{\Phi} = (W^{\Phi}, (\sim_i^{\Phi})_{i \in Ag}, V^{\Phi})$ – конечная каноническая модель, где

- $W^{\Phi} = \{X \subset \Phi \mid X \Phi M.S5C H.M. формул\}$
- $X \sim^{\Phi}_{i} Y := \forall \varphi \in \Phi : K_{i} \varphi \in X \Rightarrow \varphi \in Y$ для любого $i \in Ag$
- $X \models p \iff p \in X$

Упражнение

Используя следующее обозначение: $\boxed{\#_i X := \{ \varphi \mid K_i \varphi \in X \}}$, переформулировать $X \sim_c^c Y$

Схема доказательства

Теорема о корректности и полноте исчисления S5C

$$\forall \varphi \in L_{KC} \models_{S5} \varphi \iff \vdash_{S5C} \varphi$$

Доказательство.

 (\Leftarrow) Корректность. Проверка общезначимости аксиом и правил вывода исчисления S5C (Упражнение)

(⇒) Полнота.

$$\forall_{S5C} \varphi \Rightarrow \neg \varphi \forall_{S5C} \perp \Rightarrow \{\neg \varphi\} \subset X \in W^{\Phi} \Rightarrow M^{\Phi}, X \models \neg \varphi \Rightarrow (M^{\Phi} \in S5 \Rightarrow \not\models_{S5} \varphi)$$

Нужно доказать:

- Лемма об истинности
- Каноничность $M^{\Phi} \in S5$

Лемма об истинности

Лемма

Пусть Ф замыкание формулы φ_0 , M^{Φ} – к.к.м., $X \in W^{\Phi}$

$$\forall \varphi' \in \Phi : \varphi' \in X \iff M^{\Phi}, X \models \varphi'$$

Доказательство.

Докажем индукцией по построению φ' .

БИ
$$\varphi' = p$$

ШИ Сл.1
$$\varphi' = \neg \varphi_1$$

Сл.2
$$\varphi' = \varphi_1 \wedge \varphi_2$$

Сл.3
$$\varphi' = K_i \varphi$$

Сл.4
$$\varphi' = C_G \varphi$$

Сл.4 $\varphi' = C_G \varphi$

Обозначения

- $\underline{X} := \varphi_1 \wedge \cdots \wedge \varphi_n$, где $X = \{\varphi_1, \dots, \varphi_n\}$,
- $S := \{X \in W^{\Phi} \mid M^{\Phi}, X \models C_G \varphi\}, \overline{S} := W^{\Phi} \setminus S$
- $\chi := \bigvee \{\underline{X} \mid X \in S\}$

Сл.4. (\Leftarrow) $C_G \varphi \in X \Leftarrow M^{\Phi}, X \models C_G \varphi$

$$S := \{X' \in W^c \mid M^c, X' \models C_G \varphi\} \qquad \boxed{\chi := \bigvee \{\underline{X'} \mid X' \in S\}} \qquad \boxed{\overline{S} := W^c \setminus S}$$

$$\frac{\vdash \bigwedge_{Y' \in \overline{S}} \neg \underline{Y'} \leftrightarrow \bigvee_{X' \in S} \underline{X'}}{\vdash (\bigwedge_{Y' \in \overline{S}} \neg \underline{Y'}) \leftrightarrow \chi}$$

$$\frac{\vdash \chi \to E_G \chi}{\vdash C_G (\chi \to E_G \chi)} \qquad \vdash C_G (\chi \to E_G \chi) \to (\chi \to C_G \chi) \qquad \vdash \chi \to \varphi$$

$$\frac{\vdash \underline{X} \to C_G \chi}{\vdash \chi \to C_G \varphi}$$

$$\frac{\vdash \underline{X} \to C_G \varphi}{\overline{X} \vdash C_G \varphi}$$

$$\frac{\vdash \underline{X} \to C_G \varphi}{\overline{C_G \varphi} \in X}$$

$$S := \{ X' \in W^c \mid M^c, X' \models C_G \varphi \} \qquad \chi := \bigvee \{ \underline{X'} \mid X' \in S \}$$

$$\chi := \bigvee \{\underline{X'} \mid X' \in S\}$$

Лемма
$$\vdash \underline{X} \rightarrow \chi$$

▶ Доказательство: по построению χ (по КЛВ). ◀

$$S := \{X' \in W^c \mid M^c, X' \models C_G \varphi\} \qquad \chi := \bigvee \{\underline{X'} \mid X' \in S\} \qquad \boxed{\#_i X := \{\psi \mid K_i \psi \in X\}}$$

$$\chi := \bigvee \{\underline{X'} \mid X' \in \mathcal{S}\}$$

$$\#_i X := \{ \psi \mid K_i \psi \in X \}$$

Лемма: $\vdash \chi \to \varphi$

▶ Достаточно доказать, что для любого $X \in S \vdash X \to \varphi$

$egin{array}{cccccccccccccccccccccccccccccccccccc$	1	$X X \in S$		9	$\varphi \in Y$	по п.и.
4 $y_0 := \#_i X \cup \{ \neg \varphi \}$ постр. 12 $y_0 \vdash \bot$ 5 $y_0 \not\vdash \bot$ $\rhd : «\bot»$ 13 $\#_i X \vdash \varphi$ 4 6 $y_0 \subseteq Y \in W^c$ по л.Линд. 14 $X \vdash \#_i X$ 3 7 $X \sim_i^c Y$ по постр. Y 15 $X \vdash \varphi$ 5, 6	2		$X \in S$	10	$ eg \varphi \in Y$	по постр. У
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	3		1	11	«⊥»	6, 7
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	4	$y_0 := \#_i X \cup \{\neg \varphi\}$	постр.	12	<i>y</i> ₀ ⊢ ⊥	
7 $X \sim_i^c Y$ по постр. Y 15 $X \vdash \varphi$ 5, 6	5	<i>y</i> ₀ ⊬ ⊥	⊳: «⊥»	13	$\#_i X \vdash \varphi$	4
	6	$y_0 \subseteq Y \in W^c$	по л.Линд.	14	$X \vdash \#_i X$	3
8 $M^c, Y \models \varphi$ 1, 4 16 $\vdash \underline{X} \rightarrow \varphi$ 7	7	$X \sim_i^c Y$	по постр. У	15	$X \vdash \varphi$	5, 6
	8	$M^c,Y\modelsarphi$	1, 4	16	$\vdash \underline{X} \to \varphi$	7

$$S := \{ X' \in W^c \mid M^c, X' \models C_G \varphi \}$$

$$\chi := \bigvee \{ \underline{X'} \mid X' \in S \}$$

Лемма:
$$\vdash \chi \to E_G(\bigwedge_{Y' \in \overline{S}} \neg \underline{Y'})$$

 $\neg \psi \in Y$

$$lacktriangle$$
 Достаточно доказать, что $orall i \in G \ orall X \in S \ orall Y \in \overline{S} \ dash\underline{X}
ightarrow K_i
eg \underline{Y}$

по постр. ψ

Лемма:
$$\forall S \subseteq W^c \vdash \bigwedge \{Y \mid Y \in \overline{S}\} \leftrightarrow \bigvee \{X \mid X \in S\}$$
, где $\overline{S} := W^c \setminus S$

- ▶ Доказательство собирается из следующих утверждений:
 - 1. $\forall X,Y \in W^c$ т.ч. $X \neq Y \vdash \neg(\underline{X} \land \underline{Y})$
 - 2. $\vdash \bigvee \{\underline{X} \mid X \in W^c\}$

◂

Упражнение

Собрать доказательство леммы из утверждений. Подсказка: понадобится только КЛВ.

Утверждение: $\forall X, Y \in W^{\Phi}$ т.ч. $X \neq Y \vdash \neg(\underline{X} \land \underline{Y})$

Утверждение $\vdash \bigvee \{\underline{X} \mid X \in W^{\Phi}\}$

 $\neg h(X_i) \in X_i$

 $\ll \perp \gg$

9

10

19 / 21

Каноничность к.к.м.

Определение

Класс моделей S5.

Лемма

 $M^\Phi \in S$ 5, то есть, \sim_i^Φ – рефлексивно, симметрично и транзитивно.

Рефлексивность \sim_i^{Φ}

