(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-109734

(43)公開日 平成8年(1996)4月30日

(51) Int.CI.⁶

FI

技術表示箇所

E 0 4 F 15/04 B 2 7 M 3/04

F 9024-2E

9123 - 2B

審査請求 未請求 請求項の数3 OL (全 7 頁)

(21)出願番号

特願平6-248104

(22)出願日

平成6年(1994)10月13日

(71)出额人 000004673

ナショナル住宅産業株式会社・

大阪府豊中市新千里西町1丁目1番4号

(72)発明者 松本 医史

大阪府豊中市新千里西町1丁目1番4号

ナショナル住宅産業株式会社内

(72) 発明者 機川 洋一

大阪府豐中市新千里西町1丁目1番4号

ナショナル住宅産業株式会社内

(74)代理人 弁理士 宫井 暎夫

(54) 【発明の名称】 木質床材の接合部構造

(57)【要約】

【目的】 木質床材 10 が膨張しても、接合部分が浮き 上がる等の悪影響を受けない木質床材の接合部構造を提 供することを目的とする。

「博成」 靖面に突起11を形成した木質床材10と、 ~面に溝12を形成した木質床材10とを実継ぎし、突 起11の突出寸法より清12の深さ寸法を大きくし、木 質床材10の底面に清12に沿って延びる切込み清17 を形成し、実施ざ状態にて木質床材10,10の上部塔 面13, 15間に隙間 tを形成し、かつ下部端面14, 16を突き合わせたものである。

【特許請求の範囲】

【請求項1】 端面に突起を形成した一方の木質床材 と、 端面に溝を形成した他方の木質床材とを実継ぎして なる木質床材の接合部構造であって、

前記突起の突出寸法より前記剤の深さ寸法を大きくし、 前記清の下方において前記他方の木質床材の底面に前記 滑に沿って延びる切込み滑を形成し、実継ぎ状盤にて前 記一方の木質床材の前記突起より上部の上部端面と、前 記他方の木質床材の前記清より上部の上部端面との間に 隙間を形成し、前記一方の木質床材の前記突起より下部 10 の下部端面と、前記他方の木質床材の前記消より下部の 下部境面とを突き合わせたことを特徴とする木質床材の 接合部構造。

【請求項2】 常面に突起を形成した一方の木質床材 と、矯面に溝を形成した他方の木質床材とを実継ぎして なる木質床材の接合部構造であって、

前記突起の突出寸法より前記清の深さ寸法を大きくし、 実継ぎ状態にて前記突起の先端と前記簿の底部との間に 弾性体を介装し、前記一方の木質床材の前記突起より上 部の上部端面と、前記他方の木質床材の前記清より上部 20 の上部端面との間に隙間を形成し、前記一方の木質床材 の前記突起より下部の下部端面と、前記他方の木質床材 の前記簿より下部の下部端面との間に隙間を形成したこ とを特徴とする木質床材の接合部構造。

【請求項3】 端面に突起を形成した一方の木質床材 と、靖面に溝を形成した他方の木質床材とを実継ぎして なる木質床材の接合部構造であって、

前記突起の突出寸法より前記簿の深さ寸法を大きくし、 前配突起の先端に拡係した係止部を形成し、前配溝の底 部に前記係止部が嵌合して保止可能な被係止滯を形成 30 し、実績ぎ状態にて前配一方の木質床材の前配突起より 上部の上部端面と、前記他方の木質床材の前記簿より上 部の上部増面との間に隙間を形成し、前記一方の木質床 材の前配突起より下部の下部端面と、前配他方の木質床 材の前記簿より下部の下部落面との間に隙間を形成した ことを特徴とする木質床材の接合部構造。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、住宅等における木質 床材の接合部構造に関するものである。

[0002]

【従来の技術】従来より、図15および図16に示すよ うに、対向端面にそれぞれ突起61ならびに清62を形 成してなる木質床材60がある。図17は、一対の木質 床材60,60を実歴ぎしてなる接合部構造を示してお り、一方の木質床材6.0の突起61より上部の上部落面 63と、他方の木質床材60の清62より上部の上部落 面64とが突き合っている。

[0003]

の構成によれば、一方の木質床材60の上部矯面63 と、他方の木質床材60の上部端面64とが突き合って おり、各木質床材60、60の含水量が湿気等により増 加して膨張すると、互いの接合面に圧縮力が作用して接 合部分に浮き上がりが生じる。その結果、木質床材 6 0,60に残留圧縮応力が作用して、木質床材60,6 0が変形するという問題があった。

【0004】この発明の目的は、木質床材が膨張しても 悪影響を受けない木質床材の接合部構造を提供すること である.

[0005]

【課題を解決するための手段】請求項1の木質床材の接 合部構造は、韓面に突起を形成した一方の木質床材と、 **靖面に溝を形成した他方の木質床材とを実維ぎしてな** り、突起の突出寸法より溝の深さ寸法を大きくし、溝の 下方において他方の木質床材の底面に溝に沿って延びる 切込み清を形成し、実継ぎ状盤にて一方の木質床材の突 起より上部の上部端面と、他方の木質床材の清より上部 の上部常面との間に隙間を形成し、一方の木質床材の突 起より下部の下部端面と、他方の木質床材の清より下部 の下部端面とを突き合わせたことを特徴とするものであ ろ.

[0006] 讃求項2の木質床材の接合部構造は、端面 に突起を形成した一方の木質床材と、端面に溝を形成し た也方の木質床材とを実継ぎしてなり、突起の突出寸法 より溝の深さ寸法を大きくし、実継ぎ状態にて突起の先 雄と溝の底部との間に弾性体を介装し、一方の木質床材 の突起より上部の上部塔面と、他方の木質床材の清より 上部の上部落面との間に隙間を形成し、一方の木質床材 の突起より下部の下部端面と、他方の木質床材の清より 下部の下部増面との間に隙間を形成したことを特徴とす るものである。

[0007] 請求項3の木質床材の接合部構造は、端面 に突起を形成した一方の木質床材と、端面に清を形成し た他方の木質床材とを実継ぎしてなり、突起の突出寸法 より清の深さ寸法を大きくし、突起の先端に拡径した係 止部を形成し、沸の底部に保止部が嵌合して保止可能な 被保止溝を形成し、実験ぎ状態にて一方の木質床材の突 起より上部の上部落面と、他方の木質床材の清より上部 40 の上部落面との間に隙間を形成し、一方の木質床材の突 起より下部の下部端面と、他方の木質床材の清より下部 の下部端面との間に隙間を形成したことを特徴とするも のである。

[8000]

、【作用】請求項1の木質床材の接合部構造によると、一 方の木質床材の突起の突出寸法より他方の木質床材の清 の深さ寸法を大きくし、両木質床材の上部端面間に隙間 を形成し、かつ他方の木質床材の底面に清に沿って切込 み溝を形成したので、木質床材が膨張しても他方の木質 【発明が解決しようとする課題】しかしながら上記従来 50 床材の切込み清にて南の下部先端が変形あるいは破壊す ることで、圧縮力が吸収される。

【0009】請求項2の木質床材の接合部構造による と、一方の木質床材の突起の突出寸法より他方の木質床 材の溝の深さ寸法を大きくし、両木質床材の上部端面間 に隙間を形成し、両木質床材の下部端面間に隙間を形成 し、かつ突起の先端と隣の底部との間に弾性体を介装し たので、木質床材が膨張しても弾性体が圧縮すること で、圧縮力が吸収される。

【0010】請求項3の木質床材の接合部構造による と、一方の木質床材の突起の突出寸法より他方の木質床 10 った問題はない。 材の湾の深さ寸法を大きくし、両木質床材の上部端面間 に隙間を形成し、両木質床材の下部端面間に隙間を形成 したので、木質床材が膨張しても木質床材に圧縮力が作 用しない。しかも、一方の木質床材の突起の先端の保止 部を他方の木質床材の酒の底部の被係止酒に係止したの で、木質床材が収縮しても、両木質床材が離れない。

[0011] 【実施例】

第1の実施例

明する。図1は、木質床材10の平面図、図2は図1の Ⅰ 【 - Ⅰ 【 断面図を示している。木質床材 1 0 の対向端 面にそれぞれ突起11ならびに滑12が形成されてい る。突起11より下部の下部落面14は、突起11より 上部の上部端面13より後退しており、また清12より 下部の下部端面16は、溝12より上部の上部端面15 より突出している。また、溝12の下方において木質床 材10の底面に溝12に沿って延びる切込み溝17が形 成されている。なお、木質床材10は、例えばハードポ ードやMDF等の各種繊維板等にて形成されている。

【0012】図3および図4は、一対の木質床材10、 10の接合部分の構成を示しており、一方の木質床材1 0の下部増面14と他方の木質床材10の下部増面16 ※ とを突き合わせ、かつ他方の木質床材10の溝12に、 ·方の木質床材10の突起11を嵌合して実礎ぎする。 凶4に示すように、突起11の突出寸法より溝12の深 さ寸法が大きく形成されている。また、一方の木質床材 10の上部端面13と、他方の木質床材10の上部端面 15との間には、隙間 t (例えば、0.3mm~0.4 mm) が形成されている。

【0013】図5は、このようにして4枚の木質床材1 0を接続した状態を示している。なお、木質床材10の 含水率は、木質床材10に収縮が起こり難いように予め 低めに管理しておく。このように構成された木質床材1 0の接合部構造によると、木質床材10,10が配張す ると、互いに突き合った下部境面14,16に圧縮力が 作用する。その際、他方の木質床材10の切込み溝17 にて清12の下部先端が変形あるいは破壊することで、 圧縮力が吸収される。よって、圧縮力が作用しないよう

に突起11の先端と滑12の底部とが接触せず、木質床 材10.10に圧縮力が作用しないため、接合部分の浮 き上がりを防ぐことができる。すなわち、両木質床材1 0.10の上部端面13,15間の隙間 t (0.3~ 0. 4mm) の寸法分までは、両木質床材10. 10が 接近しても圧縮力は作用しない。なお、切込み溝17に て他方の木質床材10の滑12の下部先端が変形あるい は破壊するが、木質床材10の下面におけることであ り、見栄えが悪くなったり、破損片にてけがをするとい

【0014】また、木質床材10,10に圧縮力が作用 しないため、残留圧縮応力も発生せず、元の含水率に戻 ったときに木質床材10が収縮し、接合部分に隙間 しよ りも大きな隙間が発生するようなことはなく、床面の見 栄えは損なわれない。なお、両木質床材10,10間に 形成される隙間 t については、0.3~0.4mmと小 さく、見栄えを損ねるような心配はない。

【0015】第2の実施例

この発明の第2の実施例を図6ないし図8に基づいて説 この発明の第1の実施例を図1ないし図5に基づいて説 20 明する。図6は、木質床材20の断面図を示している。 木質床材20の対向端面にそれぞれ突起21ならびに溝 22が形成されている。突起21より下部の下部端面2 4は、突起21より上部の上部落面23より後退してお り、また清22より下部の下部端面26は、清22より 上部の上部端面25より突出している。また、清22の 底部には、さらに小溝27が形成されている。

> [0016] 図7および図8は、一対の木質床材20, 20の接合部分の構成を示しており、一方の木質床材2 0の小溝27に沿って弾性体28を嵌合する。弾性体2 30 8は、断面形状台形の棒状の部材であり、ゴムや合成樹 窟等にて形成されている。そして、他方の木質床材.20 の突起21の先端を弾性体28に当接して、一方の木質 床材20の溝22に、他方の木質床材20の突起21を 嵌合して実雑ぎする。図8に示すように、突起21の突 出寸法より溝22の深さ寸法が大きく形成されている。 また、他方の木質床材20の上部端面23と、一方の木 質床材20の上部端面25との間には、隙間 t (0.3 ~0.4mm) が形成されている。さらに、一方の木質. 床材20の下部矯両26と、他方の木質床材20の下部 40 端面24との間にも隙間が形成されている。なお、木質 床材20の含水率は、木質床材20に収縮が起こり難い ように予め低めに管理しておく。

【0017】このように構成された木質床材20の接合 部構造によると、木質床材20,20が底張すると、互 いに突き合った突起21の先端と溝22の底部との間に 圧縮力が作用するが、突起21の先端と溝22の底部と の間に弾性体28を介装したので、木質床材20,20 が膨張しても弾性体28が圧縮したり、あるいは弾性体 28が小溝27に嵌まり込むことで、圧縮力が吸収され に隙間 t を介して配置した上部落面 13, 15、ならび 50 る。よって、圧縮力が作用しないように隙間 t を介して 配置した上部端面23、25、ならびに隙間を介装して 配置した下部端面24,26が接触せず、木質床材2 0,20に圧縮力が作用しないため、接合部分の浮き上 がりを防ぐことができる。すなわち、両木質床材20. 20の上部端面23.25間の隙間 t (0.3~0.4 mm) の寸法分までは、両木質床材20,20が接近し ても圧縮力は作用しない。

【0018】また、木質床材20,20に圧縮力が作用。 しないため、残留圧縮応力も発生せず、元の含水率に戻 ったときに木質床材20が収縮し、接合部分に隙間 tよ 10 りも大きな隙間が発生するようなことはなく、床面の見 栄えは損なわれない。なお、弾性体28を短尺ものにて 形成し、小溝27に部分的に設置してもよい。

【0019】第3の実施例

この発明の第3の実施例を図9ないし図11に基づいて 説明する。図9は、木質床材30の断面図を示してい る。木質床材30の対向端面に突起31ならびに滯32 が形成されている。突起31より下部の下部端面34 は、突起31より上部の上部端面33より後退してお り、また溝32より下部の下部端面36は、溝32より 20 上部の上部端面35より突出している。また、突起31 の先端に沿って固定溝37が形成されており、この固定 清37に先端が二股に分かれた弾性体38が嵌合固定さ れている。弾性体38は、ゴムや合成樹脂等からなる長 尺の部材にて形成されている。

[0020] 図10および図11は、一対の木質床材3 0,30の接合部分の構成を示しており、弾性体38の 二股に分かれた先端を一方の木質床材30の溝32の底 部に当接して、一方の木質床材30の滑32に、他方の 木質床材30の突起31を嵌合して実准ぎする。図11 30 に示すように、突起31の突出寸法より滑32の深さ寸 法が大きく形成されている。また、他方の木質床材30 の上部端面33と、一方の木質床材30の上部端面35 との間には、隙間 t (0.3~0.4mm) が形成され ている。さらに、一方の木質床材30の下部端面36 と、他方の木質床材30の下部端面34との間にも隙間 が形成されている。なお、木質床材30の含水率は、木 質床材30に収縮が起こり難いように予め低めに管理し ておく.

【0021】このように構成された木質床材30の接合 40 部構造においても、第2の実施例と同様の効果が得られ る.

第4の実施例

この発明の第4の実施例を図12ないし図14に基づい て説明する。図12は、木質床材40の断面図を示して いる。木質床材40の対向端面に突起41ならびに清4 2が形成されている。突起41より下部の下部端面44 は、突起41より上部の上部端面43より後退してお り、また溝42より下部の下部域面46は、溝42より

の先端に沿って上下に拡径した係止部47が形成されて おり、この係止部47の先端に沿ってスリット48が形 成されている。さらに、清42の底部に係止部47が嵌 合して係止可能な幅広の被係止済49が形成されてい る。なお、係止部47は、突起41と一体の木製の部材 であってもよいが、被係止滞49に嵌合し易いように、 ゴムや合成樹脂等の弾性体にて形成してもよい。

[0022] 図13および図14は、一対の木質床材4 0.40の接合部分の構成を示しており、係止部47を 被係止滯49に係止して、一方の木質床材40の濟42 に、他方の木質床材40の突起41を嵌合して実維ぎす る。保止部47を被保止清49に保止する際には、保止 部47がスリット48の存在によって上下方向から圧縮 され、円滑に被係止溝49に係止し、係止後は元の状態 に復元して被係止清49に引っ掛かるようにして係止す る。図14に示すように、突起41の突出寸法より清4 2の深さ寸法が大きく形成されている。また、他方の木 質床材40の上部端面43と、一方の木質床材40の上 部端面45との間には、隙間 t (0.3~0.4mm) が形成されている。さらに、一方の木質床材40の下部 端面46と、他方の木質床材40の下部端面44との間 にも隙間が形成されている。なお、木質床材40の含水 率は、木質床材40に収縮が起こり疑いように予め低め に管理しておく。

【0023】このように構成された木質床材40の接合 部構造によると、木質床材40,40が膨張しても、圧 縮力が作用しないように隙間 t を介して配置した上部塔 面43,45、隙間を介装して配置した下部端面44, 46、ならびに突起41の先端の保止部47と潜42の 底部の被係止溝49とがいずれも接触しておらず、木質 床材40,40に圧縮力が作用せず、接合部分の浮き上 がりを防ぐことができる。すなわち、両木質床材40, 40の上部端面43,45間の隙間t(0.3~0.4 mm) の寸法分までは、両木質床材40, 40が接近し ても圧縮力は作用しない。

【0024】また、木質床材40、40に圧縮力が作用 しないため、残留圧縮応力も発生せず、元の含水率に戻 ったときに木質床材40が収縮し、接合部分に隙間 tよ りも大きな隙間が発生するようなことはなく、床面の見 栄えは損なわれない。仮に、隙間 t の寸法以上に、両木 質床材40,40が接近し、木質床材40に残留圧縮応 力が生じることとなっても、係止部47を被係止消49 に係止したことで、両木質床材40.40の水平方向の 移動が規制され、木質床材40,40が互いに離れて接 合部に隙間が生じるのを防止できる。

【0025】さらに、木質床材40に収縮力が作用した 場合であっても、保止部47を被保止溝49に保止した ことで、両木質床材40,40の水平方向の移動が規制 され、木質床材40,40が互いに離れて接合部に隙間 上部の上部落面45より突出している。また、突起41 50 が生じるのを防止できる。なお、係止部47は、突起4

1の先端に部分的に設けてもよい。また、前記各実施例 では、木質床材10,20,30,40が突起11,2 1. 31, 41と清12, 22, 32, 42の両方を有 する部材であったが、突起11.21.31.41の み、あるいは溝 1 2, 2 2, 3 2, 4 2 のみを有する木 質床材どうしを接合する構造であってもよい。

[0026] さらに、木質床材10,20,30,40 の形状は、実施例のような正方形のものに限らず、長方 形等の矩形、あるいはそれ以外の形状としてもよい。

[0027]

【発明の効果】請求項1の木質床材の接合部構造による と、一方の木質床材の突起の突出寸法より他方の木質床 材の溝の深さ寸法を大きくし、両木質床材の上部端面間 に隙間を形成し、かつ他方の木質床材の底面に溝に沿っ て切込み溝を形成したので、木質床材が膨張しても他方 の木質床材の切込み清にて清の下部先端が変形あるいは 、破壊することで、圧縮力が吸収される。よって、両木質 末材の接合部分にて浮き上がりが発生せず、しかも木質 床材に残留圧縮応力が発生しないので、木質床材の変形 を防止できるという効果が得られる。

【0028】請求項2の木質床材の接合部構造による と、一方の木質床材の突起の突出寸法より他方の木質床 材の湾の深さ寸法を大きくし、両木質床材の上部端面間 に隙間を形成し、両木質床材の下部端面間に隙間を形成 し、かつ突起の先端と清の底部との間に弾性体を介装し たので、木質床材が膨張しても弾性体が圧縮すること で、圧縮力が吸収される。よって、両木質床材の接合部 分にて浮き上がりが発生せず、しかも木質床材に残留圧 縮応力が発生しないので、木質床材の変形を防止できる という効果が得られる。

【0029】請求項3の木質床材の接合部構造による と、一方の木質床材の突起の突出寸法より他方の木質床 材の溝の深さ寸法を大きくし、両木質床材の上部落面間 、に隙間を形成し、両木質床材の下部端面間に隙間を形成 、たので、木質床材が膨張しても木質床材に圧縮力が作 用しない。よって、両木質床材の接合部分にて浮き上が りが発生せず、しかも木質床材に残留圧縮応力が発生し ないので、木質床材の変形を防止できる。また、一方の 木質床材の突起の先端の係止部を他方の木質床材の溝の 底部の被係止滯に係止したので、木質床材が収縮して 40 47 保止部 も、両木質床材が離れず、接合部分の表面に大きな隙間

が生じるのを防止できるという効果が得られる。

【図面の簡単な説明】

【図1】この発明の第1の実施例の木質床材の平面図で ある。

【図2】図1の11-11断面図である。

【図3】この発明の第1の実施例の木質床材の接合部分 の分解斜視図である。

【図4】この発明の第1の実施例の木質床材の接合部分 の断面図である。

【図 5】この発明の第1の実施例の木質床材の接合状盤 の平面図である。

【図6】この発明の第2の実施例の木質床材の断面図で ある。

【図7】この発明の第2の実施例の木質床材の接合部分 の分解斜視図である。

【図8】この発明の第2の実施例の木質床材の接合部分 の断面図である。

【図9】この発明の第3の実施例の木質床材の断面図で ある。

【図 I 0】この発明の第3の実施例の木質床材の接合部・ 分の分解料視図である。

【図11】この発明の第3の実施例の木質床材の接合部 分の断面図である。

【図12】この発明の第4の実施例の木質床材の断面図 である.

【図13】この発明の第4の実施例の木質床材の接合部 分の分解斜視図である。

【図14】この発明の第4の実施例の木質床材の接合部 分の断面図である。

【図15】従来例の木質床材の平面図である。

【図16】図15のXVI-XVI断面図である。

【図17】従来何の木質床材の接合部分の断面図であ る。

【符号の説明】

10, 20, 30, 40 木質床材

11, 21, 31, 41 突起

12, 22, 32, 42 濟

17 切込み清

28,38 弹性体

49 被保止濟

【図9】

[図16]

•

•

.

•

[図15]

1の先端に部分的に設けてもよい。また、前記各実指例では、木質床材10,20,30,40が突起11,21,31,41と牌12,22,32,42の両方を有する部材であったが、突起11,21,31,41のみ、あるいは煤12,22,32,42のみを有する木質床材どうしを接合する構造であってもよい。

[0026] さらに、木質床材10、20、30、40 の形状は、実施例のような正方形のものに限らず、長方形等の矩形、あるいはそれ以外の形状としてもよい。 [0027]

【発明の効果】請求項1の木質床材の接合部構造による・と、一方の木質床材の突起の突出寸法より他方の木質床材の構の深さ寸法を大きくし、両木質床材の上部超面間に凝問を形成し、かつ他方の木質床材の底面に構に沿って切込み構を形成したので、木質床材が起張しても他方の木質床材の切込み構にて構の下部先端が変形あるいは、磁度することで、圧満力が吸収される。よって、両木質床材の接合部分にて浮き上がりが発生せず、しかも木質床材の接合部分にて浮き上がりが発生せず、しかも木質床材に残留圧縮応力が発生しないので、木質床材の変形を防止できるという効果が得られる。

【0028】請求項2の木質床材の接合部協造によると、一方の木質床材の突起の突出寸法より他方の木質床材の洗の深さ寸法を大きくし、再木質床材の上部増面間に飲間を形成し、两木質床材の下部増面間に缺間を形成し、かつ突起の先端と溝の底部との間に穿性体を介装したので、木質床材が超張しても弾性体が圧縮することで、圧縮力が吸収される。よって、両木質床材の接合部分にて浮き上がりが発生せず、しかも木質床材に残留圧縮応力が発生しないので、木質床材の変形を防止できるという効果が得られる。

【0029】

「初水項3の木質床材の接合部構造によると、一方の木質床材の突起の突出寸法より他方の木質床材の溝の流さ寸法を大きくし、両木質床材の上部幅面間に隙間を形成し、両木質床材の下部増面間に隙間を形成したので、木質床材が膨張しても木質床材に圧縮力が作用しない。よって、両木質床材の接合部分にて浮き上がりが発生せず、しかも木質床材に残留圧縮応力が発生しないので、木質床材の変形を防止できる。また、一方の木質床材の突起の先端の保止部を他方の木質床材の洗の底部の法保止ばに保止したので、木質床材が取縮しても、両木質床材が軽れず、接合部分の表面に大きな隙間

が生じるのを防止できるという効果が得られる。

【図面の哲単な説明】

【図1】この発明の第1の実施例の木質床材の平面図である。

【図2】図1の11-11断面図である。

[図3] この発明の第1の実施例の木質床材の接合部分の分別斜視図である。

【図4】この発明の第1の実施例の木質床材の接合部分の断面図である。

【図5】この発明の第1の実施列の木質床材の接合状態の平面図である。

【図 6】この発明の第2の実施例の木質床材の断面図である。

【図7】この発明の第2の実施例の木質床材の接合部分の分析射視園である。

【図8】この発明の第2の実施例の木質床材の接合部分の断面図である。

【図9】この発明の第3の実施例の木質床材の断面図である。

【図10】この発明の第3の実施例の水質床材の接合部分の分解料視図である。

【図11】この発明の第3の実施例の木質床材の接合部分の断面図である。

【図12】この発明の第4の実施例の木質床材の断面図である。

【図13】この発明の第4の実施例の木質床材の接合部分の分解料視図である。

【図14】この発明の第4の実施例の木質床材の接合部分の断面図である。

【図15】従来例の木質床材の平面図である。

【図16】図15のXVI-XVI断面図である。

【図17】従来例の木質床材の接合部分の断面図である。

【符号の説明】

10, 20, 30, 40 木質床材

11, 21, 31, 41 突起

12, 22, 32, 42 洗

17 切込み深

28,38 弹性体

4.7 係止部

49 被係止濟

[図9]

[図16]

•••

.

.

(19)Japan Patent Office

(12)PATENT PUBLICATION (A)

(13)Patent application publication number Patent publication number: Heisei 8-109734

(43) Date of publication Heisei 8 (1996), April 30

(51)Int. Cl.

Identification symbol

Office Internal reference number FI Technical demonstration place

E04F 15/

F

9024-2E

B27M 3/04

9123-2B

Request for examination not requested Number of claims 3 OL (total 7 pages)

(21) Application number 6-248104

(22) Date of application: 13/10/1994

(71)Applicant: 000004673

National Housing Industries Co Ltd.

Osaka-fu, Toyonaka-shi, Shinsenri Nishi 1 chome, 1 ban, 4 go

(72)Inventor: Matsumoto Tadashi

(same address)

(72)Inventor: Yokogawa Yoichi

(same address)

(74)Patent Attorney (?Name = ?Miai Hideo?)

(54) (Name of the invention) Coupling part structure of ligneous (translator: wooden/woody) floor material

(57) Abstract:

PURPOSE: The purpose of the invention is to provide a coupling part structure of ligneous floor material which receives no adverse influences such as floating of the coupling part, even in case the ligneous floor material expands.

CONSTITUTION: A ligneous floor material 10 with a projection 11 formed on its end surface and a ligneous floor material 10 with a groove 12 formed at its end surface are coupled, the depth dimension of the groove 12 is made larger than the projection dimension of the projection 11, a cut-out groove 17 extending in the parallel direction of the groove 12 is formed in the bottom surface of the ligneous floor material 10; in the coupled state a clearance (t) is formed between the upper end surfaces 13 and 15 of the ligneous floor materials 10 and 10, and the bottom end surfaces 14 and 16 are touching each other.

Scope of the patent Claims

(Claim 1) A coupling part structure consisting of one ligneous floor material with a projection formed on an end surface and an other ligneous floor material with a groove formed in an end surface coupled together,

a coupling part structure of ligneous floor material characterized in that the depth dimension of the said groove is made larger than the projection dimension of the said projection, a cut-out groove has been formed in the downward direction of the said groove in the bottom surface of the said other ligneous floor material, extending in the parallel direction of the said groove, in the coupled

state a clearance is formed between the upper end surface above the said projection of the said former ligneous floor material and the upper end surface above the said groove in the said latter ligneous floor material, the lower end surface beneath the said projection of the said former ligneous floor material and the lower end surface beneath the said groove of the said latter ligneous floor material are touching each other.

(Claim 2) A coupling part structure consisting of one ligneous floor material with a projection formed on an end surface and an other ligneous floor material with a groove formed in an end surface coupled together,

a coupling part structure of ligneous floor material characterized in that the depth dimension of the said groove is made larger than the projection dimension of the said projection, in the coupled state an elastic body is interposed between the tip of the said projection and the bottom part of the said groove, a clearance is formed between the upper end surface above the said projection of the said former ligneous floor material and the upper end surface above the said groove in the said latter ligneous floor material, and a clearance is formed between the lower end surface beneath the said projection of the said former ligneous floor material and the lower end surface beneath the said groove of the said latter ligneous floor material.

(Claim 3) A coupling part structure consisting of one ligneous floor material with a projection formed on an end surface and an other ligneous floor material with a groove formed in an end surface coupled together,

a coupling part structure of ligneous floor material characterized in that the depth dimension of the said groove is made larger than the projection dimension of the said projection, on the tip of the said projection a hook-fix part (translator: below this will be called "locking part") with enlarged diameter is formed, in the bottom part of the said groove a receiving hook-fix groove (translator: below this will be called "locking groove") is formed such the said locking part can be inserted and hook-locked in the groove, in the coupled state a clearance is formed between the upper end surface above the said projection of the said former ligneous floor material and the upper end between the lower end surface beneath the said projection of the said former ligneous floor material and the lower end surface beneath the said groove of the said latter ligneous floor material.

(Detailed description of the invention)

(0001)

(Industrial application) This invention relates to a coupling part structure of ligneous floor material in housing and the like.

(0002)

(Description of prior art) Conventionally, as shown in figure 15 and figure 16, there exists ligneous floor material 60 which has a projection 61 and a groove 62 formed in the respective opposing end surfaces. Figure 17 shows a coupling part structure consisting of a pair of ligneous floor materials 60 and 60 which are joined together; the upper end surface 63 which is above the projection 61 of the one ligneous floor material 60 and the upper end surface 64 which is situated above the groove 62 of the second ligneous floor material 60, are touching against each other.

(Problems to be solved by the invention) However, according to the aforementioned conventional constitution, the upper end surface 63 from the one ligneous floor material 60 and the upper end surface 64 of the other ligneous floor material 60 are touching against each other, and when, under the influence of humidity and the like, the moisture content of the ligneous floor materials 60 and 60 increases and the ligneous floor materials 60 and 60 expand, compressive forces act mutually on the coupling surfaces, and floating of the coupling part occurs. Consequently, residual compressive stress acts on the ligneous floor materials 60 and 60, and the problem existed that the ligneous floor

materials 60 and 60 were deformed. (0004)

The purpose of this invention is to provide a coupling part structure of ligneous floor material which is not adversely affected even if the ligneous floor material expands. (0005)

(Means for solving the problem) The coupling part structure of the ligneous floor material of claim I consists of one ligneous floor material with a projection formed on an end surface and a second ligneous floor material with a groove formed in an end surface coupled together, characterized in that the depth dimension of the groove is made larger than the projection dimension of the projection, a cut-out groove is formed below the groove in the bottom surface of the second ligneous floor material and extending in the parallel direction of the groove, in the coupled state a clearance is formed between the upper end surface above the projection of the former ligneous floor material and the upper end surface above the groove in the latter ligneous floor material, the lower end surface beneath the projection of the former ligneous floor material and the lower end surface beneath the groove of the latter ligneous floor material are touching against each other.

(0006) The coupling part structure of ligneous floor material of Claim 2 consists of one ligneous floor material with a projection formed on an end surface and an other ligneous floor material with a groove formed in an end surface coupled together, characterized in that the depth dimension of the groove is made larger than the projection dimension of the projection, in the coupled state an elastic body is interposed between the tip of the projection and the bottom part of the groove, a clearance is formed between the upper end surface above the projection of the former ligneous floor material and the upper end surface above the groove in the latter ligneous floor material, a clearance is formed between the lower end surface beneath the projection of the former ligneous floor material and the lower end surface beneath the groove of the latter ligneous floor material.

(0007) The coupling part structure of ligneous floor material of Claim 3 consists of one ligneous floor material with a projection formed on an end surface and an other ligneous floor material with a groove formed in an end surface coupled together, characterized in that the depth dimension of the groove is made larger than the projection dimension of the projection, on the tip of the projection a locking part with enlarged diameter is formed, and in the bottom part of the groove a locking groove is formed, such the said locking part can be inserted and hook-locked in the groove, in the coupled state a clearance is formed between the upper end surface above the projection of the former ligneous floor material and the upper end surface above the groove in the latter ligneous floor material, a clearance is formed between the lower end surface beneath the projection of the former ligneous floor material and the lower end surface beneath the groove of the latter ligneous floor material.

(8000)

(Functioning) According to the coupling part structure of the ligneous floor material of claim 1, because, compared to the projection dimension of the projection of one ligneous floor material, the depth dimension of a groove of a second ligneous floor material is made larger, and a clearance is formed between the upper end surfaces of both ligneous floor materials, and a cut-out groove is formed in the bottom surface of the latter ligneous floor material extending in the parallel direction of the groove, even if the ligneous floor material expands, by the fact that, at the cut-out groove of the latter ligneous floor material the end tip beneath the groove is deformed or is destroyed, compressive forces are absorbed.

(0009) According to the coupling part structure of the ligneous floor material of claim 2, because, compared to the projection dimension of the projection of one ligneous floor material, the depth dimension of a groove of a second ligneous floor material is made larger, and a clearance is formed between the upper end surfaces of both ligneous floor materials, a clearance is formed between the lower end surfaces of both ligneous floor materials, and an elastic body is interposed between the

tip of the projection and the bottom of the groove, even if the ligneous floor material expands, by the fact that the elastic body is compressed, compressive forces are absorbed.

(0010) According to the coupling part structure of the ligneous floor material of claim 3, because, compared to the projection dimension of the projection of one ligneous floor material, the depth dimension of a groove of a second ligneous floor material is made larger, and a clearance is formed between the upper end surfaces of both ligneous floor materials, and a clearance is formed between the lower end surfaces of both ligneous floor materials, even if the ligneous floor material expands, no compressive forces act on the ligneous floor material. Moreover, as the locking part of the projection of the former ligneous floor material is hook-locked in the locking groove of the bottom of the groove of the latter ligneous floor material, even when the ligneous floor material shrinks, both ligneous floor materials do not separate.

(0011)

First example of embodiment

We explain the first example of embodiment of this invention based on the figures 1 to 5. Figure 1 shows the plane figure of a ligneous floor material 10, figure 2 shows a cross-section according to line II-II of figure 1. In the opposing end surfaces of the ligneous floor material 10, a projection 11 and a groove 12 are formed, respectively. The lower end surface 14 beneath the projection 11 is more retracted than the upper surface 13 situated above the projection 11, and the lower end surface 16 situated below the groove 12 is more protruding than the upper end surface 15 above the groove 12. Also, below the groove 12, in the bottom surface of the ligneous floor material 10, a cut-out groove 17 has been formed, extending in the parallel direction of the groove 12. Further, the ligneous floor material 10 may be formed using all types of fiber boards and the like, for example hardboard, MDF and the like.

(0012) Figures 3 and 4 show the constitution of a coupling part structure of a pair of ligneous floor materials 10 and 10, the lower end surface 14 of the former ligneous floor material 10 and the lower end surface 16 of the latter ligneous floor material 10 touching each other, and coupled together by inserting the projection 11 of the first ligneous floor material 10 in the groove 12 of the latter ligneous floor material 10.

As shown in figure 4, the depth dimension of the groove 12 is formed larger than the projection dimension of the projection 11. Also, a clearance t (for example, 0,3 mm - 0,4 mm) is formed between the upper end surface 13 of the former ligneous floor material 10 and the upper end surface 15 of the latter ligneous floor material 10.

(0013) Figure 5 shows a situation with 4 boards of ligneous floor material 10 joined in this way. Further, the moisture content of the ligneous floor material 10 is controlled beforehand and kept at a low level, in order to make it difficult for shrinking of the ligneous floor material 10 to occur. According to the coupling part structure of ligneous floor material 10 constituted in this way, when the ligneous floor materials 10 and 10 expand, compressive forces act on the mutually touching lower end surfaces 14 and 16. On such occasion, by the fact that at the cut-out groove 17 of the latter ligneous floor material 10 the end tip beneath the groove 12 is deformed or destroyed, compressive forces are absorbed. Consequently, because there is no contact between the upper end surfaces 13 and 15 which are positioned with a clearance t in between in order to avoid that compressive forces should act, and equally between the tip of the projection 11 and the bottom of the groove 12, and no compressive forces act on the ligneous floor materials 10 and 10, floating of the coupling part can be prevented. In other words, even if both ligneous floor materials 10 and 10 approach each other up to the level of the dimension of the clearance t (0,3 - 0,4 mm) between the upper end surfaces 13 and 15 of the two ligneous floor materials 10 and 10, no compressive forces are acting. Further, at the cut-out groove 17 the end tip beneath the groove 12 of the latter ligneous floor material 10 is deformed or destroyed, but this is something which occurs at the lower side of the ligneous floor material 10, and there is no such problem as deterioration of the esthetic aspect or injuries caused by the debris.

(0014) Also, because no compressive forces act on the ligneous floor materials 10 and 10, no residual compressive stress is generated, and when the ligneous floor material 10 shrinks when it returns to the original percentage of moisture contents, no clearances larger than clearance t appear at the coupling part, and there is no damage to the esthetic aspect of the floor surface. Also, the clearance t which is formed between both ligneous floor materials 10 and 10 is as small as 0,3 to 0,4mm, and there is no need to worry that this would adversely affect the appearance of the material.

(0015) Second example of embodiment

We explain the second example of embodiment of this invention based on the figures 6 to 8. Figure 6 shows a cross-section of a ligneous floor material 20. In the opposing end surfaces of ligneous floor material 20, a projection 21 and a groove 22 are formed respectively. The lower end surface 24 in the lower direction of projection 21 is more retracted than the upper end surface 23 above the projection 21, and the lower end surface 26 in the lower direction of groove 22 is more protruding than the upper end surface 25 above the groove 22. Also, at the bottom part of groove 22, another small groove 27 has been formed additionally.

(0016) Figures 7 and 8 show the constitution of a coupling part structure of a pair of ligneous floor materials 20 and 20; an elastic body 28 is inserted along the small groove 27 of the one ligneous floor material 20. The elastic body 28 is a rod-shaped material with trapezoidal sectional profile, formed out of rubber, synthetic resin and the like. The tip of the projection 21 of the second ligneous floor material 20 is put against the elastic body 28, the projection 21 of the latter ligneous floor material 20 is inserted into the groove 22 of the former ligneous floor material 20 to make the join. As shown in figure 8, the depth dimension of the groove 22 is formed larger than the projection dimension of projection 21. Also, between the upper end surface 25 of the former ligneous floor material 20 and the upper end surface 23 of the latter ligneous floor material, a clearance t (0,3 - 0,4 mm) is formed. Moreover, a clearance is also formed between the lower end surface 26 of the former ligneous floor material 20 and the lower end surface 24 of the latter ligneous floor material 20. Further, the moisture content of the ligneous floor material 20 is controlled beforehand and kept at a low level, in order to make it difficult for shrinking of the ligneous floor material 20 to occur.

(0017) According to the coupling part structure of ligneous floor material 20 constituted in this way, when the ligneous floor materials 20 and 20 expand, compressive forces act between the mutually touching tip of the projection 21 and the bottom part of the groove 22, but as an elastic body 28 has been interposed between the tip of the projection 21 and the bottom part of the groove 22, even if the ligneous floor materials 20 and 20 expand, by the fact that the elastic body 28 is either compressed, or the elastic body 28 is pressed into the small groove 27, the compressive forces are absorbed. Consequently, because there is no contact between the upper end surfaces 23 and 25 which are positioned with a clearance t in between in order to avoid that compressive forces should act, and equally between the lower end surfaces 24 and 26 which are equally positioned with a clearance in between, and no compressive forces act on the ligneous floor materials 20 and 20, floating of the coupling part can be prevented. In other words, even if both ligneous floor materials 20 and 20 approach each other up to the level of the dimension of the clearance t (0,3 - 0,4 mm) between the upper end surfaces 23 and 25 of the two ligneous floor materials 20 and 20, no compressive forces are acting.

(0018) Also, because no compressive forces act on the ligneous floor materials 20 and 20, no residual compressive stress is generated, and when the ligneous floor material 20 shrinks when it returns to the original percentage of moisture contents, no clearances larger than clearance t appear at the coupling part, and there is no damage to the esthetic aspect of the floor surface. Further, the elastic body 28 may also be formed in shorter pieces and be placed in the small groove 27 by sections.

(0019) Third example of embodiment

We explain the third example of embodiment of this invention based on the figures 9 to 11. Figure 9 shows a cross-section of a ligneous floor material 30. In the opposing end surfaces of ligneous floor material 30, a projection 31 and a groove 32 are formed. The lower end surface 34 in the lower direction of projection 31 is more retracted than the upper end surface 33 above the projection 31, and the lower end surface 36 in the lower direction of groove 32 is more protruding than the upper end surface 35 above the groove 32. Also, along the tip part of the projection 31, a fixation groove 37 is formed, in this fixation groove 37 an elastic body 38 which has a bifurcated extremity is inserted and fixed. The elastic body 38 is formed as a long part consisting of rubber, sysnthetic resin or the like.

(0020) Figures 10 and 11 show the constitution of a coupling part structure of a pair of ligneous floor materials 30 and 30; putting the bifurcated tip of the elastic body 38 against the bottom part of the groove 32 of the former ligneous floor material 30, the projection 31 of the latter ligneous floor material 30 is inserted into the groove 32 of the former ligneous floor material 30 to make the join. As shown in figure 11, the depth dimension of the groove 32 is formed larger than the projection dimension of projection 31. Also, between the upper end surface 35 of the former ligneous floor material 30 and the upper end surface 33 of the latter ligneous floor material, a clearance t (0,3 - 0,4 mm) is formed. Moreover, a clearance is also formed between the lower end surface 36 of the former ligneous floor material 30 and the lower end surface34 of the latter ligneous floor material 30. Further, the moisture content of the ligneous floor material 30 is controlled beforehand and kept at a low level, in order to make it difficult for shrinking of the ligneous floor material 30 to occur.

(0021) With the coupling part structure of ligneous floor material 30 constituted in this way also, the same effects are obtained as with the second example of embodiment.

Fourth example of embodiment

We explain the fourth example of embodiment of this invention based on the figures 12 to 14. Figure 12 shows a cross-section of a ligneous floor material 40. In the opposing end surfaces of ligneous floor material 40, a projection 41 and a groove 42 are formed. The lower end surface 44 in the lower direction of projection 41 is more retracted than the upper end surface 43 above the projection 41, and the lower end surface 46 in the lower direction of groove 42 is more protruding than the upper end surface 45 above the groove 42. Also, along the tip part of the projection 41, on both upper and lower side, a locking part with enlarged diameter 47 is formed, and a slit 48 is formed along the tip part of the locking part 47. Moreover, in the bottom part of the groove 42, a locking groove 49 with large width is formed, in a way that makes it possible to insert and hook-fix the locking part 47 into the bottom of the groove 42. Further, the locking part 47 may be a wooden part which constitutes one integrated part together with the projection 41, but it may also be formed from rubber, synthetic resin and the like, to make it easy to insert it in the locking groove 49. (0022) Figures 13 and 14 show the constitution of a coupling part structure of a pair of ligneous floor materials 40 and 40; fixing the locking part 47 in the locking groove 49, the projection 41 of the latter ligneous floor material 40 is inserted into the groove 42 of the former ligneous floor material 40 to make the join. When fixing the locking part 47 in the locking groove 49, thanks to the existence of the slit 48 the locking part 47 is compressed from the upper and lower direction and is smoothly fixed in the locking groove 49, after insertion it returns to its original shape and is hook-fixed as it is caught in the locking groove 49.

As shown in figure 14, the depth dimension of the groove 42 is formed larger than the projection dimension of projection 41. Also, between the upper end surface 45 of the former ligneous floor material 40 and the upper end surface 43 of the latter ligneous floor material, a clearance t (0,3 - 0,4 mm) is formed. Moreover, a clearance is also formed between the lower end surface 46 of the

former ligneous floor material 40 and the lower end surface 44 of the latter ligneous floor material 40. Further, the moisture content of the ligneous floor material 40 is controlled beforehand and kept at a low level, in order to make it difficult for shrinking of the ligneous floor material 40 to occur.

(0023) According to the coupling part structure of ligneous floor material 40 constituted in this way, even when the ligneous floor materials 40 and 40 expand, between the upper end surfaces 43 and 45 which, in order to avoid that compressive forces should act, are positioned with a clearance tin between, between the lower end surfaces 44 and 46 which are positioned with a clearance in between, and between the locking part 47 of the tip of the projection 41 and the locking groove 48 of the bottom part of the groove 42, no contact is made and no compressive forces act on the ligneous floor materials 40 and 40, and floating of the coupling part can be prevented. In other words, even if both ligneous floor materials 40 and 40 approach each other up to the level of the dimension of the clearance t (0,3 - 0,4 mm) between the upper end surfaces 43 and 45 of the two ligneous floor materials 40 and 40, no compressive forces are acting.

(0024) Also, because no compressive forces act on the ligneous floor materials 40 and 40, no residual compressive stress is generated, and when the ligneous floor material 40 shrinks when it returns to the original percentage of moisture contents, no clearances larger than clearance t appear at the coupling part, and there is no damage to the esthetic aspect of the floor surface. Even in a case where both ligneous floor materials 40 and 40 would approach over a larger distance than the dimension of clearance t and residual compressive stress would be generated in the ligneous floor materials 40, by the fact that the locking part 47 has been locked in the locking groove 49, the movement in the horizontal direction of both ligneous floor materials 40 and 40 is controlled, mutual separation of the ligneous floor materials 40 and 40 and the occurrence of gaps at the coupling part can be prevented.

(0025) Furthermore, even in the case where shrinkage forces would act upon the ligneous floor material 40, by the fact that the locking part 47 has been locked in the locking groove 49, the movement in the horizontal direction of both ligneous floor materials 40 and 40 is controlled, and mutual separation of the ligneous floor materials 40 and 40 and the occurrence of gaps at the coupling part can be prevented. Further, locking part 47 may also be installed partially by sections on the tip of projection 41. Also, in the different aforementioned examples of embodiment, ligneous floor materials 10, 20, 30 and 40 are material parts having both a projection 11, 21, 31 or 41 and a groove 12, 22, 32 or 42, but it may also be a structure that makes a join between ligneous floor materials that have only a projection 11, 21, 31, 41 or only a groove 12, 22, 32, 42. (0026) Furthermore, the shape of the ligneous floor materials 10, 20, 30 and 40 is not limited to a square shape as in the examples of embodiment, but it may also be a rectangle with oblong shape and the like, or any other shape. (0027)

(Effect of the invention) According to the coupling part structure of the ligneous floor material of claim 1, because compared to the projection dimension of a projection of one ligneous floor material, the depth dimension of a groove of a second ligneous floor material is made to be larger, a clearance is formed between the upper end surfaces of both ligneous floor materials, and a cut-out groove is formed in the bottom surface of the latter ligneous floor material extending in the parallel direction of the groove, even if the ligneous floor material expands, by the fact that the end part below the groove is deformed or breaks at the cut-out groove of the latter ligneous floor material, compressive forces are absorbed. Consequently, no floating occurs at the coupling part of both ligneous floor materials, and also, because no residual compressive stress is generated in the ligneous floor material, the effect is obtained that deformation of the ligneous floor material can be prevented.

(0028) According to the coupling part structure of the ligneous floor material of claim 2, because compared to the projection dimension of a projection of one ligneous floor material, the depth dimension of a groove of a second ligneous floor material is made to be larger, a clearance is

formed between the upper end surfaces of both ligneous floor materials, a clearance is formed between the lower end surfaces of both ligneous floor materials, and an elastic body is interposed between the tip of the projection and the bottom of the groove, even if the ligneous floor material expands, by the fact that the elastic body is compressed, compressive forces are absorbed. Consequently, no floating occurs at the coupling part of both ligneous floor materials, and also, because no residual compressive stress is generated in the ligneous floor material, the effect is obtained that deformation of the ligneous floor material can be prevented.

(0029) According to the coupling part structure of the ligneous floor material of claim 3, because compared to the projection dimension of a projection of one ligneous floor material, the depth dimension of a groove of a second ligneous floor material is made to be larger, a clearance is formed between the upper end surfaces of both ligneous floor materials, a clearance is formed between the lower end surfaces of both ligneous floor materials, even if the ligneous floor material expands, no compressive forces act on the ligneous floor material. Consequently, no floating occurs at the coupling part of both ligneous floor materials, and also, because no residual compressive stress is generated in the ligneous floor material, deformation of the ligneous floor material can be prevented. Also, because the locking part of the tip of the projection of the one ligneous floor material has been locked in the locking groove in the bottom of the groove of the latter ligneous floor material, the effect is obtained that, even if the ligneous floor material shrinks, both ligneous floor materials do not separate from each other, and the occurrence of a large gap in the surface of the joint part can be prevented.

(Explanation of the drawings)

(Figure 1) This is the plane figure of a ligneous floor material of the first example of embodiment of this invention.

(Figure 2) This is a cross-section according to line II-II of figure 1.

(Figure 3) This is a drawing at an oblique angle of a disassembled coupling part of ligneous floor material of the first example of embodiment of this invention.

(Figure 4) This is a cross-section of a coupling part of ligneous floor material of the first example of embodiment of this invention.

(Figure 5) This is a plane figure of the coupled state of ligneous floor materials of the first example of embodiment of this invention.

(Figure 6) This is a cross-sectional view of ligneous floor material of the second example of embodiment of this invention.

(Figure 7) This is a drawing at an oblique angle of a disassembled coupling part of ligneous floor naterial of the second example of embodiment of this invention.

(Figure 8) This is a cross-section of a coupling part of ligneous floor material of the second example of embodiment of this invention.

(Figure 9) This is a cross-sectional view of ligneous floor material of the third example of embodiment of this invention.

(Figure 10) This is a drawing at an oblique angle of a disassembled coupling part of ligneous floor material of the third example of embodiment of this invention.

(Figure 11) This is a cross-section of a coupling part of ligneous floor material of the third example of embodiment of this invention.

(Figure 12) This is a cross-sectional view of ligneous floor material of the fourth example of embodiment of this invention.

(Figure 13) This is a drawing at an oblique angle of a disassembled coupling part of ligneous floor material of the fourth example of embodiment of this invention.

(Figure 14) This is a cross-section of a coupling part of ligneous floor material of the fourth example of embodiment of this invention.

(Figure 15) This is a plane figure of a conventional ligneous floor material.

(Figure 16) This is a cross-section according to line XVI - XVI of figure 15.

(Figure 17) This is a cross-section of a coupling part of conventional ligneous floor material.

(Explanation of symbols)

10, 20, 30, 40 ligneous floor material

11, 21, 31, 41 projection

12, 22, 32, 42 groove

17 cut-out groove

28, 38 elastic body

47 locking part

49 locking groove