3.用比较法验证: f_v = nf_x

理论值 fx = 200Hz

表 1 波形个数与频率关系

波形个数 n	1	2	3	4	5
测量 fy(Hz)	197.5	394.8	591.7	788.6	986.3
计算 f _x (Hz)	197.50	197.40	197.23	197.15	197.26

$$\overline{f_x} = \frac{\sum f_x}{5} = (197.50 + 197.40 + 197.23 + 197.15 + 197.26)/5 \text{ Hz} = 197.31 \text{Hz}$$

$$E = \frac{|\overline{f_x} - 200|}{200} \times 100\% = 1.3\%$$

4.用李萨如图形测量未知信号的频率

理论值 f_v=50Hz

表 2 李萨如图形、交点数、频率关系

频率比 fy:fx	2:1	1:1	2:3	1:2	1:3
图形	8	O		\otimes	000
垂直交点数	2	2	6	4	6
水平交点数	4	2	4	2	2
读出 f _* /Hz	25.007	49.992	75.017	99.991	150.037
读出 f _y /Hz	50.014	49.992	50.011	49.996	50.012

$$\overline{f_y} = \frac{\sum f_y}{5} = (50.014 + 49.992 + 50.011 + 49.996 + 50.012)/5$$
Hz=50.005Hz

$$E = \frac{|\overline{f_x} - 50|}{50} \times 100\% = 0.010\%$$

5.测量二极管的正向导通电压

CH1 通道测得 U_{1p-p}=4.96V

CH2 通道测得 U2p=1.68V

正向导通电压为
$$U=\frac{U_{1p-p}}{2}-U_{2p}=0.80V$$

6.相位差的测量

测得输入周期 T=0.504ms

测得输入输出峰值时差 Δt=0.112ms

则相位差 $\Delta \Phi = \frac{\Delta t}{T} \times 360^{\circ} = 80^{\circ}0'0"$