Lista 5 - Física Geral 2 - Ciências da Computação

Prof. Dr. André Livorati

1 de novembro de 2019

Exercícios de Força Magnética

- 1) Um elétron com velocidade $\vec{v}=(2\times 10^6~m/s)\hat{i}+(3\times 10^6~m/s)\hat{j}$ está se movendo em uma região onde existe um campo magnético uniforme $\vec{B}=(0,03~T)\hat{i}-(0,15~T)\hat{j}$. (a) determine a força que age sob o elétron; (b) repita o cálculo para um próton com a metade da velocidade.
- 2) Um próton está se movendo em uma região onde existe um campo magnético uniforme dado por $\vec{B} = (10\hat{i} 20\hat{j} + 30\hat{k})~mT$. Em um instante t, o próton tem uma velocidade $\vec{v} = (v_x\hat{i} + v_y\hat{j} + 2,0~km/s~\hat{k})$, e a força magnética que age sob o próton é $\vec{F}_B = (4 \times 10^{-17}~N)\hat{i} + (2 \times 10^{-17}~N)\hat{j}$. Nesse instante de tempo t, quais são os valores de v_x e de v_y ?

Exercícios de Partícula carregada em Movimento Circular

- 3) Uma partícula descreve uma trajetória circular em uma região onde existe um campo magnético uniforme de módulo B=4,0~mT. A partícula é um próton ou um elétron (a identidade da partícula faz parte do problema) e está sujeita a uma força magnética de módulo $3,20\times 10^{-15}~N$. Determine (a) a velocidade escalar da partícula; (b) o raio da trajetória; (c) o período do movimento.
- 4) Em um experimento de física nuclear, um próton com uma energia cinética de 1,0~MeV descreve uma trajetória circular em uma região de campo magnético uniforme. Qual deve ser a energia (a) de uma partícula alfa (q=+2e,m=4,0u) e (b) de um dêuteron (q=+e,m=2,0u), para que a trajetória da partícula seja igual a próton?
- 5) Uma partícula descreve uma movimento circular uniforme com 26,1 nm de raio em um campo magnético uniforme. O módulo da força magnética experimentada pela partícula é de $1,60 \times 10^{-17}~N$. Qual é a energia cinética da partícula?

6) Uma certa partícula subatômica decai em um elétron e em um pósitron. Suponha que, no instante do decaimento, a partícula está em repouso em um campo magnético uniforme \vec{B} de módulo 3,53 mT e que as trajetórias do elétron e do pósitron resultantes do decaimento estão em um plano perpendicular à \vec{B} . Quanto tempo após o decaimento o elétron e o pósitron se chocam?

Exercícios de Força Magnética em fio Percorrido por corrente

- 7) Um fio de comprimento 1,80 m é percorrido por uma corrente de 13 A e faz um ângulo de 35^o com um campo magnético uniforme de módulo B=1,50~T. Calcule a força magnética exercida pelo campo no fio.
- 8) Um fio de 50 cm de comprimento é percorrido por uma corrente de 0,5 A no sentido positivo do eixo x na presença de um campo $\vec{B} = (0,003\ T)\hat{j} + (0,01\ T)\hat{k}$. Em termos dos vetores unitários, qual é a força magnética que o campo exerce no fio?
- 9) Na figura abaixo, um fio metálico de massa $m=24,1\ mg$ pode deslizar com atrito insignificante sobre dois trilhos paralelos e horizontais separados por uma distância $d=2,56\ cm$. O conjunto está em uma região onde existe um campo magnético uniforme de módulo $56,3\ mT$. No instante t=0, um gerador G é ligado aos trilhos e produz uma corrente constante de $i=9,13\ mA$ no fio e nos trilhos (mesmo quando o fio está se movendo). No instante $t=61,1\ ms$, determine (a) a velocidade escalar do fio; (b) o sentido do movimento do fio (para a esquerda ou para a direita).

10) Um elétron se move em uma circunferência de raio $r=5,29\times10^{-11}~m$ com uma velocidade de $2,19\times10^6~m/s$. Trate a trajetória circular como uma espira percorrida por uma corrente constante igual à razão entre a carga do elétron e o período de movimento. Se a trajetória do elétron está em uma região onde existe um campo magnético constante de módulo B=7,1~mT, qual é o menor valor possível do módulo do torque aplicado pelo campo à espira?