Unsupervised Cross-system Log Anomaly Detection via Domain Adaptation

Index

- 1. Introduction
- 2. FrameWork
- 3. Experiments
- 4. Conclusion

Introduction

Cold-start problem : 새로 배포되는 system 은 anomaly log 를 자동적으로 탐지해야 하지만, 그러한 탐지모델을 만들기 위해서는 충분한 데이터와 시간이 필요하다.

Solution: Transfer Learning-based Approach

- **기존 transfer learning 모델의 단점** : source 와 target system 의 normal 과 anomaly log data 둘 다를 요구한다.
 - 현실은 target system 에서 anomalous data 를 많이 모으기는 힘들다
- LogTAD : source 와 target system 둘 다에서 labeled 된 anomalous sample 을 요구하지 않음.
 - o source 와 target system 의 normal log data 에 기반하여 system invariant center representation 을 끌어낸다.
 - o source 와 target system 의 log sequence 를 비슷한 분포를 가지는 같은 '구' 로 mapping 하기 위해 domain adversarial 을 사용 (두 시스템의 shared center 를 끌어냄)

Introduction

<main contribution>

- 1. normal samples 만을 사용해서 cross-system anomaly detection model 을 개발
- 2. LogTAD 는 target system 으로부터의 적은 수의 sample 을 요구함 -> cold-start problem of anomaly detection 를 해결
- 3. 실험결과는 LogTAD 가 source, target system 양쪽에서 좋은 성능을 보임을 확인한다.

2. FrameWork

Framework

- S : source system
- T: target system
- X: system 으로부터 생성된 log sequence $\mathcal{X} = \{x_n\}_{n=1}^N$
 - o xn:n 번째 log message
- dataset D : normal log sequence
 - Ds : source system 으로부터의 normal log sequence

$$\mathcal{D}^S = \{\mathcal{X}_i^S\}_{i=1}^{M_S}$$

○ Dt : target system 으로부터의 normal log sequence (small number)

$$\mathcal{D}^T = \{X_i^T\}_{i=1}^{M_T} (M_T << M_S)$$

Framework

LogTAD 의 framework 는 두 part 로 구성된다.

Figure 1: Framework of LogTAD

- 1. encoder(LSTM) : 양쪽 system 의 log sequence 들을 mapping
- 2. 양쪽 system 의 log representation 을 하나의 구(hypersphere) 에 mapping
 - 구는 shared center 를 가짐
 - normal sequence 들을 구의 중심에 가까이 mapping 하는데 DeepSVDD 의 idea 사용함

Framework - Log sequence representation

cross-system anomaly detection 의 template : raw message 의 정보를 사용 => system 간에 transfer 가능

- 1. word embedding : word2vec 사용 → log message 의 각 word 를 표현
- 2. 한 log message 의 word embedding 의 **평균(mean)** 을 낸다 → 하나의 log message 의 representation 을 얻기 위한 과정
- 3. encoder(shared LSTM model) 가 log message sequence 를 sequence representation 으로 encoding 한다.

$$\mathbf{h}_n = LSTM(\mathbf{x}_n, \mathbf{h}_{n-1})$$

- o xn:n 번째 feature vector
- o hn: LSTM 모델의 n 번째 hidden vector
- 4. → 마지막 hidden vector:hN 은 전체 sequence 의 정보를 capture 한다 ⇒ v = hN(log sequence representation)

Framework - Log sequence centralization

- 1. 모든 log sequence 의 center $\mathbf{c} = \mathbf{L} \in \mathbf{log}$ sequence 의 평균 $\mathbf{c} = Mean(\mathbf{v}_i^{\epsilon})$, where $\epsilon \in \{S, T\}$
- 2. objective function

$$\mathcal{L}_{en} = \sum_{\epsilon \in \{S,T\}} \sum_{i=1}^{M_{\epsilon}} \|\mathbf{v}_{i}^{\epsilon} - \mathbf{c}\|^{2}.$$

→ 위 objective function 을 **최소화** 시켜서 **normal log sequence 를 구의 중심에 가깝게** 만든다.

Framework - System-agnostic representation via domain adversarial training

• Adversarial training 의 objective function

$$\mathcal{L}_{adv} = \min_{G} \max_{D} \left(\mathbb{E}_{\mathcal{X}^{S} \sim P_{\text{source}}} \left[\log D(G(\mathcal{X}^{S})) \right] + \mathbb{E}_{\mathcal{X}^{T} \sim P_{\text{target}}} \left[\log (1 - D(G(\mathcal{X}^{T}))) \right] \right),$$

- Xs : source log sequences
- Xt : target system □ log sequences
- minmax optimization 으로 training 함으로써, shared LSTM 으로부터 생성된 representation
 은 discriminator 를 mislead 할 수 있음
 - o **min G**: log representation 을 생성하는 LSTM 모델의 generator G => 서로 다른 system 으로부터의 log representation 이 비슷한 분포를 갖도록 i.e., $\mathbf{v}^\epsilon = G(X^\epsilon)$
 - o **max D** : log representation 의 출처가 어딘지 예측하는 FCNN 모델의 discriminator D => target 인지 source 인지 판별이 불가능하도록 i.e., $D(\mathbf{v}^\epsilon) = \sigma(\mathbf{w}^T\mathbf{v}^\epsilon + b)$

Framework - System-agnostic representation via domain adversarial training

• 마지만 training 이 objective function

$$\mathcal{L} = \mathcal{L}_{en} + \lambda \mathcal{L}_{adv},$$

- ο **λ**: two parts(encoder, adversarial)를 조정하는 하이퍼파라미터
- 마지막 training 이 끝나면, 양쪽 system 의 sample 을 center c 에 임베딩할 수 있는 능력을 얻게 된다

Log Anomaly detection

- **decision boundary** 결정하기 : radius set 하기 → normal 과 anomaly 를 나누는 경계가 됨
 - radius y 보다 distance 가 크면 anomalous sequence 로 판단
- **각각의 system 에 validation set(**검증 셋) 을 둔다 → best radius 를 찾기 위해
 - validation set : 각 시스템의 one-day log sequence 로 둔다 y^S and y^T

3. Experiments

Datasets.

Table 1: Statistics of the Datasets

Dataset	# of Logs	# of Log Sequences			
		Normal	Anomalous		
BGL	1,212,150	265,583	37,450		
TB	3,737,209	565,817	368,481		

- 두 개의 supercomputer system 으로부터 얻은 dataset 사용
 - 1. BGL(Blue Gene/L) Lawrence Livermore National Labs
 - 2. TB(Thunderbird) Sandia National Labs

Datasets.

Table 2: Statistics of Shared Words

	BGL Normal	BGL Anomalous	TB Normal	TB Anomalous
BGL Normal	664	133	254	25
BGL Anomalous	133	195	99	16
TB Normal	254	99	1753	49
TB Anomalous	25	16	49	54

→ BGL 과 TB 에서 공유되는 shared words 의 개수를 보여줌

ex.

- BGL 의 normal log sequence 의 unique word : 664
- TB 의 normal log sequence 의 unique word : 1753
- BGL, TB 의 normal log sequence 의 shared word : 254

Baselines.

5가지 anomaly detection 과 비교해서 LogTAD 의 성능을 측정

- PCA(Principal Component Analysis) → a dimensional reduction based anomaly detection approach
- 2. **LogCluster** → clustering-based log anomaly detection approach
- 3. **Deeplog** → a deep learning based log anomaly detection
- DeepSVDD(Deep support vector data description) → a deep learning based one-class classification model
- 5. **LogTransfer** → cross-system anomaly detection 이 가능하지만, to train a classifier 위해 두 시스템의 labeled data 가 필요

Implementation Details.

- sliding window (size :20) → short sequence 로 log file 을 자르기 위해
- Drain package → raw log message 에서 template 을 추출할 때 사용

모델

- LSTM encoder: (2 hidden layer with 128 dimensions) i.e., $\mathbf{v}^{\epsilon} = G(X^{\epsilon})$
- domain discriminator D : FCNN (2 hidden layer with 64 dimensions) i.e., $D(\mathbf{v}^{\epsilon}) = \sigma(\mathbf{w}^T \mathbf{v}^{\epsilon} + b)$

training stage 에서 사용하는 normal sequence

- 100,000 개의 source system 의 normal sequence 사용
- 1,000 개의 target system 의 normal sequence 사용

adversarial training - objective function의 하이퍼파라미터 조정 $\rightarrow \lambda$: 0.1

$$\mathcal{L} = \mathcal{L}_{en} + \lambda \mathcal{L}_{adv},$$

Experiments - Experimental Results

Table 3: Anomaly Detection on Source and Target Systems

	Method	Source		Target	
		F1	AUC	F1	AUC
	PCA w/ TB	0.322	0.587	0.731	0.776
	PCA w/o TB	0.642	0.816	0.558	0.504
	LogCluster w/ TB	0.530	0.746	0.677	0.716
BGL	LogCluster w/o TB	0.713	0.829	0.559	0.504
DGL →	DeepLog w/ TB	0.662	0.854	0.590	0.619
TB	DeepLog w/o TB	0.678	0.867	0.556	0.500
16	DeepSVDD w/ TB	0.499	0.725	0.567	0.616
	DeepSVDD w/o TB	0.566	0.789	0.577	0.646
	LogTransfer	0.971	0.972	0.792	0.828
	LogTAD	0.926	0.964	0.758	0.804
	PCA w/ BGL	0.789	0.798	0.577	0.773
	PCA w/o BGL	0.760	0.779	0.229	0.658
	LogCluster w/ BGL	0.708	0.688	0.697	0.886
TB	LogCluster w/o BGL	0.724	0.716	0.223	0.500
→ BGL	DeepLog w/ BGL	0.687	0.701	0.527	0.843
	DeepLog w/o BGL	0.660	0.677	0.223	0.500
	DeepSVDD w/ BGL	0.660	0.699	0.196	0.537
	DeepSVDD w/o BGL	0.794	0.808	0.195	0.497
	LogTransfer	0.995	0.995	0.788	0.833
	LogTAD	0.788	0.797	0.845	0.909

두 개의 시나리오 - F1score 와 AUC 측면에서 evaluate

- 1. BGL → TB : BGL 0| source, TB 가 target system
- 2. TB \rightarrow BGL : TB \supset source, BGL \bigcirc target system

AUC-ROC 곡선은 다양한 임계값에서 모델의 분류 성능에 대한 측정 그래프

- ROC(Receiver Operating Characteristic) = 모든 임계값에서 분류 모델의 성능을 보여주는 그래프
- AUC(Area Under the Curve) = ROC 곡선 아래 영역 → AUC가 높다는 사실은 클래스를 구별하는 모델의 성능이 훌륭하다는 것을 의미

LogTAD v.s. Unsupervised Anomaly Detection Approaches (PCA, LogCluster, DeepLog)

Table 3: Anomaly Detection on Source and Target Systems

	Method	Source		Target	
		F1	AUC	F1	AUC
	PCA w/ TB	0.322	0.587	0.731	0.776
	PCA w/o TB	0.642	0.816	0.558	0.504
	LogCluster w/ TB	0.530	0.746	0.677	0.716
BGL	LogCluster w/o TB	0.713	0.829	0.559	0.504
\rightarrow	DeepLog w/ TB	0.662	0.854	0.590	0.619
TB	DeepLog w/o TB	0.678	0.867	0.556	0.500
ТБ	DeepSVDD w/ TB	0.499	0.725	0.567	0.616
	DeepSVDD w/o TB	0.566	0.789	0.577	0.646
	LogTransfer	0.971	0.972	0.792	0.828
	LogTAD	0.926	0.964	0.758	0.804
	PCA w/ BGL	0.789	0.798	0.577	0.773
	PCA w/o BGL	0.760	0.779	0.229	0.658
	LogCluster w/ BGL	0.708	0.688	0.697	0.886
TB	LogCluster w/o BGL	0.724	0.716	0.223	0.500
→ BGL	DeepLog w/ BGL	0.687	0.701	0.527	0.843
	DeepLog w/o BGL	0.660	0.677	0.223	0.500
	DeepSVDD w/ BGL	0.660	0.699	0.196	0.537
	DeepSVDD w/o BGL	0.794	0.808	0.195	0.497
	LogTransfer	0.995	0.995	0.788	0.833
	LogTAD	0.788	0.797	0.845	0.909

PCA, LogCluster, and DeepLog 는 unsupervised models 이고 domain adaptation 을 위해 설계되지 않았으므로, 2가지 기준에 대해 평가

 training with or without using the log sequences from the target system.

unsupervised models - performance

- 1. target system 의 training samples 없이 source system 안에서는 양쪽 시나리오에서 괜찮은 성능 보임.
- 2. 그러나, training 에 target data 를 넣어서 학습(w)시키면 target system 에서는 괜찮은 성능을 보이지만 source system 에서는 안 좋은 성능을 보임.
- \rightarrow 기존 모델들은 시스템간 적응 능력 x, 데이터 섞으면 오히려 성능 저하
- ⇒ Using the log sequences from both source and target systems, normal samples 분포에 대해 혼동을 일으킴.

LogTAD

양쪽 시나리오(BGL \rightarrow TB and TB \rightarrow BGL) 에서 source 와 target 둘 다 기존 모델들보다 성능이 잘 나옴.

LogTAD v.s. DeepSVDD.

Table 3: Anomaly Detection on Source and Target Systems

	Method	Source		Target	
		F1	AUC	F1	AUC
	PCA w/ TB	0.322	0.587	0.731	0.776
	PCA w/o TB	0.642	0.816	0.558	0.504
	LogCluster w/ TB	0.530	0.746	0.677	0.716
BGL	LogCluster w/o TB	0.713	0.829	0.559	0.504
\rightarrow	DeepLog w/ TB	0.662	0.854	0.590	0.619
TB	DeepLog w/o TB	0.678	0.867	0.556	0.500
ID	DeepSVDD w/ TB	0.499	0.725	0.567	0.616
	DeepSVDD w/o TB	0.566	0.789	0.577	0.646
	LogTransfer	0.971	0.972	0.792	0.828
	LogTAD	0.926	0.964	0.758	0.804
	PCA w/ BGL	0.789	0.798	0.577	0.773
	PCA w/o BGL	0.760	0.779	0.229	0.658
TB → BGL	LogCluster w/ BGL	0.708	0.688	0.697	0.886
	LogCluster w/o BGL	0.724	0.716	0.223	0.500
	DeepLog w/ BGL	0.687	0.701	0.527	0.843
	DeepLog w/o BGL	0.660	0.677	0.223	0.500
	DeepSVDD w/ BGL	0.660	0.699	0.196	0.537
	DeepSVDD w/o BGL	0.794	0.808	0.195	0.497
	LogTransfer	0.995	0.995	0.788	0.833
	LogTAD	0.788	0.797	0.845	0.909

DeepSVDD 는 training dataset 에 given target sequences - target,
 source 에서 둘 다 낮은 성능(F1 score) 보임

이유: mixed training data lead to diverse data distribution

⇒ 위의 분포에서 파생된 center 는 only use a small number of samples from the target system 때문에 anomalies 감지 능력 저하

without domain adaptation,

- the samples from the target systems 은 the source system 의 outliers 와 비슷함
- ightarrow the performance of DeepSVDD \subseteq source system 에서 좋지 않음
- 따라서 domain adversarial adaptation 을 사용하면 문제 해결
- → samples have similar distribution

Another observation

- only using data from the source system 경우도 performance of DeepSVDD 안 좋음.
- \rightarrow 01 \Re : LogTAD derives the center by using more samples with the same distribution.

LogTAD v.s. LogTransfer.

Table 3: Anomaly Detection on Source and Target Systems

	Method	Source		Target	
	Method	F1	AUC	F1	AUC
	PCA w/ TB	0.322	0.587	0.731	0.776
	PCA w/o TB	0.642	0.816	0.558	0.504
	LogCluster w/ TB	0.530	0.746	0.677	0.716
BGL	LogCluster w/o TB	0.713	0.829	0.559	0.504
\rightarrow	DeepLog w/ TB	0.662	0.854	0.590	0.619
TB	DeepLog w/o TB	0.678	0.867	0.556	0.500
ТБ	DeepSVDD w/ TB	0.499	0.725	0.567	0.616
	DeepSVDD w/o TB	0.566	0.789	0.577	0.646
	LogTransfer	0.971	0.972	0.792	0.828
	LogTAD	0.926	0.964	0.758	0.804
	PCA w/ BGL	0.789	0.798	0.577	0.773
	PCA w/o BGL	0.760	0.779	0.229	0.658
TB → BGL	LogCluster w/ BGL	0.708	0.688	0.697	0.886
	LogCluster w/o BGL	0.724	0.716	0.223	0.500
	DeepLog w/ BGL	0.687	0.701	0.527	0.843
	DeepLog w/o BGL	0.660	0.677	0.223	0.500
	DeepSVDD w/ BGL	0.660	0.699	0.196	0.537
	DeepSVDD w/o BGL	0.794	0.808	0.195	0.497
	LogTransfer	0.995	0.995	0.788	0.833
	LogTAD	0.788	0.797	0.845	0.909

LogTransfer : supervised transfer learning method (the source and target systems 의 normal and anomalous data 를 채택하여 a cross-system anomaly detection classifier 훈련시킴)

- \rightarrow 충분한 labeled data 를 사용할 수 있을 때 좋은 성능 달성
 - In this experiment,
 - 목표: LogTAD 와 유사한 성능을 달성할 수 있도록 훈련하는데 how many labeled anomalous samples 필요한지 식별
 - train dataset
 - **100 anomalous sequences** from the source system
 - **10 anomalous sequences** from the target system
 - LogTransfer can achieve the best performance in the source system.
 - scenario BGL → TB,
 LogTAD 보다 약간 더 나은 성능 달성
 - scenario TB → BGL, using 10 anomalous sequences from the target system → LogTAD 보다 성능 향상 실패

Visualization.

the effectiveness of our cross-system adaptation approach by visualizing sequence representations v.

- sequence representations 을 2-dimensional space 에 매핑하기 위해
 t-SNE algorithm 채택
- 2. For each dataset, 300 normal and anomalous sequences 랜덤 선택
- 3. BGL → TB 시나리오 사용
- As shown in Figure 2(a),
 normal sequences from the source and target systems 와
 anomalous sequences from the target system 가 섞여있음.
 - As shown in Figure 2(b), normal sequences from both source and target systems → close to the center anomalous sequences from both systems ↔ the center region.

Sample Size.

Figure 3: LogTAD performance with different training sizes from the target system. (x-axis is in log-scale)

- the scenario BGL → TB, 3(a)
 only using 10 normal log sequences from the Thunderbird
 dataset → 좋은 성능 달성
- the scenario TB → BGL, 3(b)
 using around 100 samples can achieve reasonable performance
- → using a small number of normal sequences from the target system 함으로서 high anomaly detection performance on the target system 달성 가능

4. Conclusion

Conclusion

LogTAD: It makes the normal log data in a **hypersphere** close to a center and utilizes the **domain adversarial adaptation** to make the log data from different systems follow similar distributions. (cross-system log anomaly detection framework)

- normal log data 를 구의 중심에 가깝게 하고 domain adversarial adaptation 을 활용하여 서로 다른 system 의 log data 들도 비슷한 분포를 갖도록 만듦.
- 이점: large distances to the center 로 different 시스템에서의 anomaly detection 가능
- 한계점 : source 와 target system 이 share similar patterns in terms of descriptive words 라는 가정
 - → 앞으로 이 가정을 일반화 할 계획