Práctico ALGABO: Más programación dinámica y el algoritmo A^* .

1. (Floyd Warshall).

- a) Describa con palabras qué problema resuelve el algoritmo de Floyd Warshall.
- b) Encuentre una recursión de Bellman que le permita resolver el problema mediante programación dinámica.
- c) Escriba el código de su implementación de la solución del problema.
- d) Utilice su implementación para resolver el problema en el grafo con matriz de adyacencia

	A	B	C	D	E	F
\overline{A}	0	4	1	3	∞	∞
B	∞	0	2	∞	5	∞
C	∞	∞	0	8	7	∞
D	∞	∞	∞	0	2	4
E	∞	∞	∞	∞	0	6
F	∞	∞	∞	$3 \\ \infty \\ 8 \\ 0 \\ \infty \\ \infty$	∞	0

- 2. (Árboles de búsqueda óptimos) Tenemos una lista de items $1, 2, \ldots, n$ con frecuencias respectivas de búsqueda p_1, \ldots, p_n .
 - a) Escriba formalmente el problema de optimización que quiere resolverse para encontrar un *árbol de búsqueda óptimo*.
 - b) Sea $W_{i,j}$ el tiempo esperado (weighted time) de búsqueda de un árbol binario óptimo de los items $\{i,i+1,\ldots,j\}$ con frecuencias respectivas de búsqueda p_i,p_{i+1},\ldots,p_j . Encuentre la recursión de Bellman que satiface $W_{i,j}$ justificando detalladamente su respuesta.

- c) Escriba su implementación de un algoritmo que calcule los valores W_{ij} de manera recursiva.
- d) Utilice su implementación para calcular el tiempo esperado de búsqueda y para encontrar el árbol óptimo para los siguientes siete items. Escriba los resultados intermedios utilizados en la evaluación de W_{ij} .

item	Frecuencia
1	20
2	5
3	17
4	10
5	20
6	3
7	25

- e) Cuántos árboles binarios (no necesariamente balanceados) posibles hay en 7 items?
- 3. (Aplicando A^* a mano) Considere el grafo con vértices A, B, C, D, E, G con vértice de inicio s = A, vértice de salida t = G y aristas dadas por la siguiente tabla:

Arista	Peso
(A,B)	1
(A,C)	3
(B,C)	3
(B,D)	4
(C,E)	1
(D,G)	5
(E,G)	2

En los siguientes ejercicios deberá ejecutar diferentes versiones del algoritmo A^* en este grafo a mano. Debe escribir los valores de X,Q ϕ y prev en cada uno de los ciclos de ejecución. No olvide dibujar el árbol de búsqueda tal como hicimos en clase.

- a) Ejecute el algoritmo de Dijkstra (es decir A^* con la heurística h=0).
- b) Ejecute el algoritmo A^* con la heurística

$$h(v) = \begin{cases} 4, & \text{si } v = D \\ 0, & \text{de lo contrario} \end{cases}$$

- c) Defina heur'istica admisible y demuestre que la heur\'istica del numeral anterior es admisible.
- d) Ejecute el algoritmo A^* a con la heurística

$$h(v) = \begin{cases} 100, & \text{si } v = C \\ 0, & \text{de lo contrario} \end{cases}$$

- e) Es la heurística del numeral anterior admisible? Justifique su respuesta.
- 4. Suponga que alguien nos dá la heurística perfecta, es decir $\overline{h}(v)$ es exáctamente igual al mínimo costo de un camino que sale de v y llega a algún vértice de salida. Cómo se comporta el algoritmo de A^* con la heurística $\overline{h}(v)$? Justifique rigurosamente su respuesta.