Please report any typos/issues on Campuswire.

- 1 Let $f(x,y) = \frac{x^2-y^2}{x^2+y^2}$; it is a real valued function on $\mathbb{R}^2 \setminus \{(0,0)\}$. Consider the limits $\lim_{x\to 0} \lim_{y\to 0} f(x,y)$, $\lim_{y\to 0} \lim_{x\to 0} f(x,y)$ and $\lim_{(x,y)\to(0,0)} f(x,y)$. Compute these limits if they exist.
- **2** Find a sequence $\{h_n : \mathbb{R} \to \mathbb{R}\}_{n \in \mathbb{N}}$ of continuous functions so that $\lim_{x \to 0} \lim_{n \to \infty} h_n(x)$ and $\lim_{n \to 0} \lim_{x \to \infty} h_n(x)$ exist and are unequal.

Hint: find a function $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ so that $\lim_{x\to 0} \lim_{y\to 0} f(x,y) \neq \lim_{y\to 0} \lim_{x\to 0} f(x,y)$.

- **3** Find a sequence of continuous functions $f_n:[0,1]\to\mathbb{R}$ that converge to the zero function so that the sequence $a_n=\int_{[0,1]}f_n$ diverges to $+\infty$ as $n\to\infty$, i.e., $\lim_{n\to\infty}a_n=+\infty$. Hint: p. 139 of the textbook.
- 4 Let m be a positive integer, $\{a_n\}_{n\geq 0}$ a sequence of real numbers. Prove that the series $\sum_{n=0}^{\infty} a_n$ converges if and only if $\sum_{n=0}^{\infty} a_{n+m}$ converges, and that in this case

$$\sum_{n=0}^{\infty} a_n = a_0 + \dots + a_{m-1} + \sum_{n=0}^{\infty} a_{n+m}.$$

5 Suppose $f: \mathbb{R} \to \mathbb{R}$ is continuous, $h: \mathbb{R} \to \mathbb{R}$ differentiable. Consider

$$G(x) := \int_0^{h(x)} f(t) dt.$$

Explain why G is differentiable and find its derivative in terms of f, h and h'.

- **6** Suppose $f:[0,\infty)\to(0,\infty)$ is a decreasing function. Prove that $\sum_{n=0}^{\infty}f(n)$ converges if and only if the limit $\lim_{n\to\infty}\int_{[0,n]}f$ exists.
- 7 Consider the sequence of functions $f_n(x) := \frac{1}{\sqrt{n}} \sin nx$ on the interval $[0, 2\pi]$. Prove that the sequence $\{f_n\}$ converges uniformly to the zero functions. Does the sequence of derivatives $\{f'_n\}$ converge? Prove your answer.