Floating Point Circuits

- Topics
 - Addition and Subtraction
 - » Go for the hard one first
 - Multiply
 - Fused Multiply Add FMA/MAF
 - Divide
 - Sqrt

School of Computing

1

CS5830

Addition Algorithm

- Basic algorithm for add
 - subtract exponents to see which one is bigger d=Ex Ey
 - swap values so biggest exponent addend is in a fixed register
 - alignment step
 - » shift smallest significand d positions to the right
 - » copy largest exponent into exponent field of the smallest
 - add or subtract signifcands
 - » add if signs equal subtract if they aren't
 - » (Opposite for FP subtract (subtract if signs equal, add it not))
 - normalize result
 - » details next slide
 - round according to the specified mode
 - generate exceptions if they occur

School of Computing

2

Normalization Cases

- · Result already normalized
 - no action needed
- On an add
 - you may have 2 leading bits before the "."
 - hence significand shift right one & increment exponent
- On a subtract
 - the significand may have n leading zero's
 - hence shift significand left by n and decrement exponent by n
 - note: common circuit is a L0D ::= leading 0 detector

Value = $(-1)^S \times 1.F \times 2^{E-127}$

School of Computing

,

Devil is in the Details

- · For now let's assume we're dealing with normals
- ExpSub
 - 2 8-bit unsigned numbers
 - » subtract can't generate an overflow
 - 2 choices
 - » unsigned subtract
 - borrow out becomes the sgn(d)
 - » turn into 2's complement and add them
 - requires 9 bits → suboptimal choice
- Eop is simple
 - XOR of Sx and Sy
- 2 mux stages
 - both are 2:1
 - » SWAP is 24 bits wide, and the 2:1 is 8 bits for the exponent
 - why 24?
 - · in order to allow both normals and denormals

School of Computing

5

CS5830

R-Shift Alignment Step

- · Again 2 options
 - simple shift mantissa and decrement d
 - » problem for large d this is too slow
 - barrel shift
 - » how many stages?
 - » note that d is an 8 bit unsigned number

THE UNIVERSITY

School of Computing

6

R-Shift Alignment Step

- · Again 2 options
 - simple shift mantissa and decrement d
 - » problem for large d this is too slow
 - barrel shift
 - » how many stages?
 - » note that d is an 8 bit unsigned number
- Answer
 - 5 stages + a conditioner + a sticky circuit
 - take advantage of the fact that 24 is the biggest shift that makes sense
 - hence OR the high order 3 bits of d
 - » if 1: zero the fraction
 - · sticky is an OR of the full 24 bit fraction of the moment
 - · usually just a tree of NOR gates
 - » if 0: barrel shift based on the other 5 bits
 - · each shift stage has a sticky NOR tree of the shift amount

School of Computing

7

Barrel Shifters Ain't Cheap

- · Lots of 2:1 muxes and lots of wires
- Important trick
 - for any Eop
 - » there is a max of one long shift
 - » and the other shift is at most 1
 - hence
 - » mux the barrel shifter where it's needed
- Note barrel shifter may get used twice
 - alignment when exponents differ significantly
 - on an effective subtract during normalization
 - » lots of leading zero's in the significand
 - so hefty structure gets amortized

School of Computing

9

CS5830

S-Add-Sub

- Add or subtract significands
 - what you do depends on the Eop = XOR(Mx, My)
 - same as the integer world
 - » either build an adder subtractor
 - » or on an effective subtract complement and add
- Note
 - we didn't do a magnitude compare on the significands
 - hence the result may be negative
 - » → sign of result must be kept
 - » influences the sign of the result NOT the result value
 - one minor advantage of floating point
 - no need to worry about calculating overflow in this step

School of Computing

10

L₀D

- Detecting the number of leading order 0
 - 24 places to look need a 5 bit result
- several methods
 - 5 boolean functions of 24 variables
 - » it's not as bad as it looks
 - priority encoder
 - » if all higher order bits are 0 select a hardwired 5 bit code
 - » also not too bad but a bit slower
 - table lookup
 - » small table 24x5 bits
 - » the worst choice

School of Computing

11

CS5830

L/R1 Shifter

- · variable number of left shifts or 1 right shift
 - right shift 1 is easy
 - » contributes to the sticky bit
 - variable left shift
 - » remember the guard bits
 - G + R are shifted
 - · 0's injected from the right
 - · sticky bit keeps its value
 - » if you implemented a barrel shifter for rounding
 - you probably want to re-use it rather than building 2 of them
 - » compensating for left vs. right
 - requires an additional mux at the front and back
 - · to handle bit reversal chores

School of Computing

12

Rounding

- Add
 - Add rnd to the 24 bit value based on the rounding mode
 - » unbiased: rnd=G(L+R+S) or the add 1 to G and maybe zero L trick
 - » +inf: rnd = sgn'(G+R+S)
 - » -inf: rnd = sgn(G+R+S)
 - » 0 → truncate: rnd=0
 - simple boolean function of 7 variables
 - » 2 mode bits
 - » 3 guard bits
 - » sgn
 - » L
- Shift
 - if carry into high order bit of add
 - » shift result 1 bit to the right
 - » signal overflow to exponent update

School of Computing

1

CS5830

Exponent Update

- · Just a loadable saturating counter
 - loaded with result of 2:1 exponent mux
- · w/ an associated subtracter
 - L value during normalization is subtrahend
 - incremented if ovf_rnd is signalled
 - confusion about ovf on a effective subtract???? Grr!!
- · Other tactics exist
 - but these depend on a bunch of timing issues that we're ignoring at this point
- Whew at last something is really simple

School of Computing

14

Sign Calculation

- This one is a bit hairy
 - logic is simple boolean function of 5 variables
 - » sign of the exponent subtract
 - » sign of the result
 - » Sx, Sy, and Op
 - · note this was the confusion in class (in the book as well)
 - Eop can be figured out from Sx and Sy and Op
 - but getting it correct is hard
 - » getting the truth table right always makes me crazy
- Let
 - Eop = 0 → add
 - Sx or Sy or Ss or sgn(d) = 0 → positive (normal convention)
 - \Rightarrow sgn(d) = 0 \Rightarrow Ex >= Ey
- Interactive phase begins

School of Computing

15

CS5830

Sign Function sgn(d) = 0

⇒Ex >= Ey
since
possible
=
then
Ss
counts

sgn(d) = 0

sgn(d)??	Sx	Sy	Op	Ss	Sz
0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	1	0	0
0	0	0	1	1	1
0	0	1	0	0	0
0	0	1	0	1	1
0	0	1	1	0	0
0	0	1	1	1	0
0	1	0	0	0	0
0	1	0	0	1	1
0	1	0	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
0	1	1	0	1	1
0	1	1	1	0	0
0	1	1	1	1	1

School of Computing

16

Sign Function sgn(d) = 1

sgn(d) =1

→Ey < Ex
no possible

then ignore

sgn(d)	Sx	Sy	Eop	Ss	Sz			
1	0	0	0	0	0			
1	0	0	0	1	0			
1	0	0	1	0	1			
1	0	0	1	1	1			
1	0	1	0	0	1			
1	0	1	0	1	1			
1	0	1	1	0	0			
1	0	1	1	1	0			
1	1	0	0	0	0			
1	1	0	0	1	0			
1	1	0	1	0	1			
1	1	0	1	1	1			
1	1	1	0	0	1			
1	1	1	0	1	1			
1	1	1	1	0	0			
1	1	1	1	1	0			

School of Computing

17

CS5830

And the Answer Is

Sign-of-Result = sgn*Sy*op' + Sx*Sy'*op + sgn'*Sx*Ss + Sy'*Op*Ss + Sgn*Sy'*op + Sy*Op'*Ss

Note: I'm pretty sure this is right but send email to <u>ald@cs.utah.edu</u> if you suspect an error – it's complicated and I haven't simulated it yet

School of Computing

18

Exceptions

- Overflow
 - causes
 - » exponent incremented during normalization or rounding overflow
 - detect
 - » when carry out of exponent update counter happens
 - note one of the operands could have been infinity
 - · don't need to special case for an add
 - » OR when exponent is all 1's
 - action
 - » set result to ∞
 - hence saturating counter
 - and carry out or all 1's → 0'ing Mz
 - sign takes care of itself
 - » set overflow flag

School of Computing

19

CS5830

Underflow

- NOTE: Al's view and the book's differ
- Book:
 - cause: if exponent decremented during normalization
 - result: E ← 0, fraction left un-normalized
- My view:
 - E goes to 0 or below for any reason

School of Computing

20

Other Exceptions

- Zero
 - cause
 - » significand (after rounding) goes to zero
 - action
 - » set E to 0, and set zero flag
- Inexact
 - set flag if prior to rounding G+R+S = 1
- NaN
 - here's the weird one
 - must check X and Y operands
 - » if either is a NaN
 - » then set flag and force result to NaN

School of Computing

2

What Changed?

- S-Add/Sub
 - replaced by 2's complement adder
 - » on eff-sub complement subtrahend
 - · bit invert and then put carry in to adder
 - » to avoid re-complementing the result
 - smallest operand is complemented → result positive
 - complicates the compare however
 - need to compare the exponents & significands
 - since exponents may be =
- LZA leading zero anticipation
 - calculates the position of the leading 1
 - similar to the add in complexity but done in parallel

School of Computing

25

CS5830

More Changes

- Round and Big (>3) left shift in parallel
 - claim if big left shift occurs then G,R,S=0 hence no rounding needed
 - » I claim this isn't quite true
 - you don't know how many bits were shifted right and there might be a 1 out there.
 - hence R-shift count would also be required to determine role of sticky bit

School of Computing

26

Improving Further

2 paths

- CLOSE for subtraction and exponent difference of 0 or 1
- FAR for addition and subtraction when d > 1

However

- path latencies are quite different
- not substantially evil
 - » can always signal a ready bit
- but this complicates the processor pipeline
 - » and makes forwarding super weird
- can always fix with a non-laminar pipeline
 - » but it is non-laminar

figure 8.10 from the text

School of Computing

27

Comments on Text Pipeline

- Basically it depends where you are in the timing regime
 - for slow clock rates and a good process
 - » the previous pipeline model is fine
 - for high performance processors on a best process
 - » every non-trivial module will be pipelined
 - » Horowitz example
 - · 4-cycle pipelined floating-point adder
 - · runs at 30 FO4 delays per cycle in standard cell
 - implementation (5 FO4 from clocking overhead)
 - - ~10,000lλ x 3300λ
 - however
 - » both area and frequency are hugely dependent on F04 budget
 - » 15 F04 designs exist with 20+ stages
 - · these designs are very laminar
 - · you have to be at 15 F04

School of Computing

29

CS5830

Floating Point Multiplication

- · Basic algorithm
 - multiply significands & add exponents
 - » exponent add
 - slightly tricky why?
 - » multiply of m bits → 2m bit result
 - only need to keep 2 bits from lower order half for rounding
 G & Sticky
 - normalize result and update exponent
 - » exponent update needs to check for all 1's and overflow
 - round
 - checks for special values and set exception flags
 - » NaN in → NaN out → should be a qNaN
 - » Infinity
 - overflow on carry out → ∞ → E = all 1's, f = all 0's
 - exponent can still go to all 1's even with no overflow
 - hence a all 1's check circuit is required

School of Computing

30

Exponent Addition

- Biased representation
 - E = actual value + bias
 - Ex = Vx + B
 - \rightarrow Ex + Ey = Vx + Vy + 2B
 - » → need to subtract the bias to get the proper representation
 - 0's and denormals
 - » if Ex or Ey is 0 then must set carry in
 - » since actual V = 1-bias in this case
 - Ez = Ex + Ey B
- Mz overflow
 - effectively need a 9 bit add/subtract
 - Mx + My step can produce a carry out
 - » but on the bias subtract step the carry out bit may clear
 - » if not then the exponent must be set to all 1's
- Sign of the result
 - Sz = XOR(Sx, Sy)

School of Computing

31

CS5830

Normalization & Rounding

- Normalization
 - similar to what happened with addition except
 - » inputs in range 1:2 → result in range 1:4
 - » hence may need one right shift & increment exponent
 - right shift → update sticky
- Rounding
 - also similar to addition but with only 2 guard bits: G & S
 - » let
 - L = low order bit of mantissa (.....LGS)
 - sgn is sign of the result
 - unbiased
 - » rnd = GS+GS'L = G(S+L)
 - toward 0
 - » simple truncation: rnd = 0
 - **→** +∞
 - » rnd = sgn'(G+T)
 - → -∞
 - » rnd = sgn(G+T)

School of Computing

32

Exceptions and Special Values

- Exceptions (same as for addition)
 - exponent overflow after normalization → set overflow flag
 - » and result is set to infinity
 - exponent = 0 → set underflow flag (zero or denormal)
 - zero flag set (2 options)
 - » check for 0 operand and other not infinity
 - · OK since need to check for NaN's and infinity anyway
 - » check result
 - inexact set if G+T=1
 - NaN set
 - » if one operand is 0 and the other is infinity
 - » or if one or both operands are NaN's
- Denormals
 - possible when one or both operands are denormals
 - » hence left shift during normalization and exponent subtract
 - also when exponent underflows the mantissa is shifted right
 - » creates denormal

School of Computing

34

Denormal Conundrum

- Whacky method
 - normalization phase shifts left and decrements exponent
 - then if exponent underflows
 - » increment exponent and then right shift significand until exponent gets back to zero
 - can you say SLOW!
 - » one trick is to notice if an operand is denormal
 - » if not then this step won't happen
- Alternative
 - negative exponent → shift amount

School of Computing

35

CS5830

Improving on the Basic Algorithm

- Multiplier is the slowest phase
 - pipeline it and use the tactics you already know about
 - » output of multiplier's high half is in carry-save form
 - » then use row compressors to speed up partial product add
- Overlap multiply with sticky bit computation
 - basic method
 - » use conventional representation for low-half
 - → carry-propagate adders for partial product add
 - » then take bit-wise OR of the result and OR that to Sticky
 - improvement 1: use a trick
 - » number of trailing result 0's is the sum of the operand trailing 0's
 - if > 25 (24 bit significand plus G) then S=0 otherwise S=1
 - improvement 2: use faster carry-save for low half as well
 - » determine sticky from carry-save representation of the low-half

School of Computing

36

The Carry-Save Sticky

- Basic idea
 - add -1 (all 1's in 2's complement) to partial product
 - » effect: add one more row of partial products e.g. -1
 - » if result would have been zero then result will be -1

S sssssss C ccccccc -1 11111111

Note: I don't see the

performance adv. here

zzzzzzz

tttttt

 $Z_i = (S_i \times C_i)'$

 $T_i = S_{i+1} + C_{i+1}$ $W_i = Z_i \text{ xor } T_i$

Sticky = NAND(W;)

School of Computing

37

CS5830

Multiply-Add Fused

- MAF advantages (note text views the glass as half full)
 - increased precision
 - » single round and normalize as opposed to two
 - common operation
 - » hardware support for the common case principle
 - » benefit to the compiler as well
 - simplifies forwarding/bypass logic
 - » particularly important for long latency operations
 - reduces register file pressure
 - » savings in power and increases performance
 - · one of the few times you can win on both fronts
 - easy to use for either ADD or Multiply
 - » X*Y+W
 - · Y set to 1 for an add
 - · W set to 0 for a multiply

School of Computing

38

Other FMA/MAF Issues (the book elides)

- IEEE 754 spec doesn't include MAF as an operation
 - Wedge it in as follows
 - » define new super extended format
 - · allows doubles to be exactly represented
 - » define multiplication to silently cast operands to SEF and return exact result
 - » define addition to silently cast the W operand to SEF and return the result in the desired precision
 - SEF's added accuracy simplifies iterative divide and SQRT operations
 - Some serious software issues about when it should and shouldn't be used
 - » e.g.: SQRT(X*X-(Y*Y)) when X==Y
 - · could return Zero, NaN, or a small positive number from MAF
 - non-MAF will return 0
 - oops!!

School of Computing

39

CS5830

MAF's and Compilers (also elided)

- Basic MAF facts
 - requires compiler support or custom assembly language
 - compilers are never forced to use MAF's
 - hence difficult in saying anything definitive about rounding behavior on systems with MAF hardware
 - compilers should have a switch that disables MAF code generation
- Register pressure
 - actually worse for an individual instruction
 - » 3 reads and 1 write for a MAF instruction
 - » → increase of register read ports may result
 - at algorithm level register pressure is less
 - » 3 reads and 1 write vs. 4 reads and 2 writes for non-MAF
- HW benefits
 - parallel partial product accumulation and addend alignment
 - add is done to product still in carry-save form
 - potential better support for denormals

School of Computing

40

Basic MAF Algorithm

- Z = X*Y+W
 - Mx * My; Ex+Ey = Exy
 - » product must be kept in full double precision
 - · since add may cancel the high-order half
 - » partial product adds can be in carry-save format
 - compare Exy and Ew
 - » produces alignment shift
 - » shift addend significand
 - · double precision result removes need to shift smaller significand
 - select max(Exy,Ew) for exponent
 - add product and aligned addend
 - » result here needs to be in conventional form
 - normalize result and update exponent
 - round
 - determine exception flags and special values

School of Computing

41

CS5830

Alignment of W

- Basic trick
 - By comparing Exy and Ew you can determine
 - » least signifcant bit of the product and the addend
 - However the distance between them can be enormous in either direction
 - » consider
 - large*large+tiny OR tiny*tiny+large
 - » need to avoid storing all the bits in between
 - » ideas?

School of Computing

42

Alignment Cases

- W is much smaller than X*Y
 - then W is crushed to sticky before being added
- W is much larger than X*Y
 - then add it with a single 0 separator and crush X*Y to sticky
- · W is smaller than X*Y
 - low-order part is crushed to sticky
 - high order part is added
- W is larger than X*Y
 - simple align and add
- Bottom line
 - adder stage requires 3m+2 bits
 - » m bits for addend, separator, 2m for product, and guard
 - the sticky bit is out there too

School of Computing

43

Devil is Still in the Details

- For biased exponent max(Ex+Ey, Ew)
 - → max(Ebx + Eby bias, Ebw)
- Alignment of W w.r.t double precision product performed concurrently
 - since product isn't aligned
 - » left shift can be up to m+3 positions
 - » right shift can be up to 2m-1 positions
 - avoid the need for bidirectional shift
 - » position addend m+3 positions to the left of the product
 - » then shift right by d
 - where d=Ex+Ey-Ew+m+3
 - · which for a biased representation really means
 - d = Ebx + Eby Ebw bias + m+3
 - » no shift is performed if d<=0
 - » max shift is 3m+1

School of Computing

45

CS5830

More Devils

- · Adder output may require realignment
 - since add may cancel high-order product bits
 - max left shift of up to 2m bits may be required
 - fast method (same as with Fadd)
 - » leading one position (LOP)
 - note book terminology change LOD for Fadd discussion
 - » replaced by LZA (leading zero anticipator)
 - · same complexity as adder
 - » LZA and add step done in parallel
- · Pipelining the design for higher throughput
 - not nearly as easy as the book would lead you to believe
 - a good pipeline is all about timing
 - » and timing is always a serious pain in the tuckus

School of Computing

46

MAF Special Values and Exceptions

- Final operation is an ADD
 - hence all of this is the same as with Fadd
 - refer to slides 18, 19, 20

School of Computing

48

Floating Point Division

- For q=x/d
- Basic algorithm
 - divide the significands, subtract the exponents
 - Mq = Mx/Md
 - use the methods you already know about
 - SRT (Sweeny, Robertson, Tocher developed this algo. independently)
 - the only nice thing about division is that q fits in the same m bits as x and d.
 - » Eq=Ex Ed
 - but we need to remember that the exponents are biased
 - hence: Ebq = Ebx Eby + bias
 - » Sq = XOR(Sx, Sd)
 - normalize Mq and update exponent
 - round
 - determine exception flags and special values

School of Computing

49

Devil is STILL in the Details

- Normalization depends on range of significands
 - x and d are between 1:2 if they are normals
 - hence q is between ½ and 1
 - » → a possible left shift of one position might be needed
 - » means the guard bit is needed as the shift-in value
- Rounding
 - things to notice
 - » G was used in normalization
 - » infinite number of bits might be needed for an exact result
 - · as if FP ops are ever exact
 - » anything else?
 - yep shows up in 2 slides
 - need R and Sticky
 - » sticky is tricky (next slide)

School of Computing

51

CS5830

Tricky Stuff

- Sticky is tricky
 - Sticky bit is effectively
 - » 0 if the remainder is 0
 - » 1 if it isn't
 - Hence you need to check for the remainder = 0
- Rounding to Nearest has a trick you can exploit
 - the tie case can't happen
 - tie case → f+1 bit exact quotient for an f-bit fraction
 - » \rightarrow Mq=1d₁...d_f*1q₁...q_f1x2^{1-e}=1x₁...x_fx2^{f+2}
 - e is 0 or 1 since result may be normalized or not
 - remember the 1 bit shift
 - » LHS has an odd number of terms → < f+1 leading 0's
 - » RHS has at least f+2 leading 0's
 - » hence can't be true so tie can't happen

School of Computing

52

Digit Recurrence Rounding

- Digit recurrence division (text 5.2.2)
 - do recurrent division
 - » need to do m+2+p steps
 - need m for the quotient
 - · +2 for Guard and Round
 - p is either 1 or 2 based on the redundant digit representation
 - then correct,
 - in the floating point case we then normalize and round
- · What might happen
 - if final residual is negative we may need to decrement the last bit of the quotient q_i
 - rounding might then increment it again
- · Opportunity to combine correct, normalize and round steps

School of Computing

53

CS5830

Rounding to Nearest

- Q1...QmGR
 - sign = sign of the residual
- Correction
 - Qm-sign
- Rounding
 - if quotient is normalized then add Sticky-sign to position G
 - if quotient is not normalized then add Sticky-sign to position R
- Note book has a lot of notation (you've noticed)
 - but this is the idea

School of Computing

54

Floating Point SQRT

- S = Sqrt(X)
- · Basic algorithm
 - Ms = SQRT (Mx)
 - Es = Ebx/2 (problem with this?)
 - » oops problem Es may not be an integer
 - » if low order bit = 0
 - · then shift exponent right 1
 - · compute the square root of Mx
 - done using iterative approximation methods (overview shortly)
 - » if low order bit = 1
 - then Ms = Mx/2 and Es = Ex+1
 - note this can happen at most once since what you care about is the real unbiased value of the exponent being even – if it was odd then this step fixes the problem but creates another
 - what is it?
 - Normalize and update exponent
 - Round
 - Determine flags and special values

School of Computing

55

CS5830

Ex low order bit test

- · Remember the bias
 - Ebx = Ev + bias
 - Hence Ebx/2 = Ev/2 + bias/2 != Ev/2 + bias = what we want
 - » therefore must add bias to Ebx before the check
 - (Ebx + bias)/2 = Ev/2 + bias/2 + bias/2 = Ev/2 + bias
- Trick
 - do we need to do the whole addition to determine
 - » yes and no
 - · yes if the Ebx+Bias is even then we keep the value
 - no: if Ebx+Bias is odd then we throw the sum away
 - » note bias is always odd in IEEE 754
 - · hence if Ebx is even then we don't do the add

School of Computing

56

Other Issues

- Normalization
 - since x is between ½ and 2
 - » the $\frac{1}{2}$ results from the adjustment step for an odd true exponent value
 - SQRT(x) then has a range 1/(SQRT(2)): SQRT(2)
 - » hence a max left shift of 1 is required for values < 1
 - Rounding modes
 - » these are similar to division
 - · G could have been shifted
 - · hence we need R and Sticky
 - Sticky is needed for rounding to +/- ∞
 - Sticky is not needed for unbiased since the tie can't happen
 - rounding to zero is simple truncation

School of Computing

57

CS5830

Iterative Approximation

- We didn't have time to cover Chapter 7
 - serious arithmites should look at this
 - » useful for all weird stuff
 - · Cordic algorithms for trigonometric functions
 - SQRT or iterative division
 - since both are somewhat rare
 - minimizing hardware maybe a better choice than fast hardware
- · Hence this is just an overview
 - purpose = awareness
 - note: FMA/MAF circuits are very useful for this

School of Computing

58

Newton's Method

- note: also called Newton-Raphson method
- Idea
 - use a Taylor's series to find solutions to an equation in the area of a suspected root
 - » problems convergence and singularities if you guess wrong
 - Taylor's series of f(x) about a point x=x0+e
 - » $f(x0+e) = f(x0)+f'(x0)e+1/2f''(x0)e^2+...$
 - » keep first order terms and set f(x0+e)=0
 - » solve for e=e0
 - e0 = -(f(x0))/(f'(x0))
 - » eventually leads to a recurrence relation which says

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

School of Computing

59

CS5830

Iterative Divide w/ FMA's

• Use Newton-Raphson

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- For approximation to 1/B set
 - f(x) = 1/(x-B)
 - $f'(x) = -1/x^2$
- Then
 - $x_{i+1} = x_i + x_i^*(1-B^*x_i)$
 - » requires 2 FMA's
- Accuracy doubles until it reaches precision of calculation
- Important
 - want to use unbiased rounding for all intermediate values
 - » to avoid accumulated error
 - final round needs to be to user specified mode

School of Computing

60

Devil in the Details again

- Need to pick a suitable value for x₀
 - lots of methods to do this
 - » plus a lot of theory involved in the choice
 - fortunately for division
 - » trick is to not pick a value near 0
 - » given the range of the right answer is between 1/2 and 1
 - · this shouldn't be hard
 - » picking somewhere in the middle makes sense
 - how about ¾
 - more practically
 - » use high order bits as a table index to an initial value choice
 - » more index bits → more rapid convergence
- Stopping point
 - when nothing changed right of the sticky bit

School of Computing

61

CS5830

Iterative SQRT with FMA's

Also Newton-Raphson

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- For approximation to 1/(Sqrt(B)) set
 - $f(x) = 1/(x^2-A)$
 - $f'(x) = -2/x^3$
- Then
 - $x_{i+1} = x_i + x_i^* (1/2 (A/2^* x_i)^* x_i)$
 - » requires 3 FMA's
- Initial value
 - know answer can be between 1/sqrt(2) and sqrt(2)
 - » pick ¾ again or use index trick
- Note
 - inverse sqrt is easier than sqrt

School of Computing

62

Whew

- · That's it for floating point
- Bottom line
 - most of the hard stuff you already knew
 - » good algorithms for add/sub/mul/div
 - » they get used again
 - the school book algorithms are a start
 - but there is a lot of hair
 - » input operand checks
 - » result checks
 - » forcing special values
 - multiplexors and hardwired values selected conditionally
 - result of the hair
 - » floating point circuits tend to be larger and slower than their integer counterparts
- · The hope
 - you got the basics
 - and you have a deeper appreciation of the dangers of using FP in your programs

School of Computing

63