振り返りと導入

前回は自然パラメータ空間に Fisher 計量を定義した。本稿では次のことを行う:

• 最小次元実現の間のアファイン変換の一意存在を述べる。

X を可測空間、 $\mathcal{P} \subset \mathcal{P}(X)$ を X 上の指数型分布族とする。新たな用語として次の 2 つを導入しておく。

定義 0.1 (自然パラメータ付け). (V,T,μ) を P の実現、 ψ を (V,T,μ) の対数分配関数とする。

$$P_{(V,T,\mu)} \colon V^{\vee} \to \mathcal{P}(X), \quad \theta \mapsto \exp(\langle \theta, T(x) \rangle - \psi(\theta)) \,\mu(dx)$$
 (0.1)

を (V,T,μ) による $\mathcal{P}(X)$ の自然パラメータ付け (natural parametrization) という。

定義 0.2 (真パラメータ空間). (V,T,μ) を P の実現とする。

$$\Theta_{(V,T,\mu)}^{\mathcal{P}} := P_{(V,T,\mu)}^{-1}(\mathcal{P}) \tag{0.2}$$

をP の (V,T,μ) に関する**真パラメータ空間 (strict parameter space)** という。

以降、 \mathcal{P} の実現 (V,T,μ) , (V',T',μ') に対し、それぞれによる自然パラメータ付けを P,P' と略記したり、それぞれに関する真パラメータ空間を Θ,Θ' と略記したりすることがある。

1 最小次元実現の間のアファイン変換

本節の目標は、最小次元実現の間のアファイン変換の一意存在を述べた定理 1.12 の証明である。本節では、ステートメントを簡潔にするために圏の言葉を用いる。

命題-定義 1.1 (\mathcal{P} の実現とアファイン写像の圏). 次のデータにより圏が定まる:

- 対象: P の実現 (V, T, μ) 全体
- 射: (V,T,μ) から (V',T',μ') への射は、V から V' への全射アファイン写像 (L,b), $L\in \text{Lin}(V,V')$, $b\in V'$ であって T'(x)=L(T(x))+b μ -a.e.x をみたすもの
- 合成: アファイン写像の合成 (L,b)(K,c) = (LK,Lc+b)

この圏をPの実現とアファイン写像の圏と呼び、 C_P と書く。

証明 示すべきことは、射の合成が射であること、恒等射の存在、結合律の 3 点である。射の合成が射であることは、全射と全射の合成が全射であることと、 $\mu \ll \mu'$ かつ $\mu' \ll \mu$ が成り立つことより従う。また、 (V,T,μ) の恒等射は明らかに恒等写像 $(id_V,0)$ であり、結合律はアファイン写像の合成の結合律より従う。

最小次元実現を特徴づける2つの条件を導入する。

定義 1.2 (Affine span 条件). \mathcal{P} の実現 (V,T,μ) に関する条件

(1) $\Theta^{\mathcal{P}} \bowtie V^{\vee} \& \text{ affine span } 5_{\circ}$

П

が成り立つとき、 (V,T,μ) は affine span 条件をみたすという。

命題-定義 1.3 (単射性条件). \mathcal{P} の実現 (V,T,μ) に関する次の条件は同値である:

- (1) $P: V^{\vee} \to \mathcal{P}(X)$ は単射である。
- (2) $\forall \theta \in V^{\vee}$ に対し「 $\langle \theta, T(x) \rangle$ = const. μ -a.e. $x \implies \theta = 0$ 」が成り立つ。
- (3) V の任意の真アファイン部分空間 W に対し、「 $T(x) \in W$ μ -a.e.x でない」が成り立つ。

これらの条件が成り立つとき、 (V,T,μ) は**単射性条件**をみたすという。

証明 (1) ← (2) は 0502_資料.pdf の命題 2.2 で示した。(2) ← (3) は 0523_板書.pdf に書き留めてある。

単射性条件は射の一意性を保証する。

補題 1.4 (射の一意性). (V,T,μ) , (V',T',μ') を $\mathbf{C}_{\mathcal{P}}$ の対象とする。このとき、 (V,T,μ) が単射性条件をみたすならば (V,T,μ) から (V',T',μ') への射は一意である。

証明 (L,b), (K,c) を (V,T,μ) から (V',T',μ') への射とする。射の定義より

$$\begin{cases} T'(x) = L(T(x)) + b & \mu\text{-a.e.}x \\ T'(x) = K(T(x)) + c & \mu\text{-a.e.}x \end{cases}$$

$$(1.1)$$

が成り立つから、2式を合わせて

$$(K - L)(T(x)) = b - c$$
 μ -a.e. x (1.2)

となる。そこで V' の基底をひとつ選んで固定し、成分ごとに (V,T,μ) の単射性条件 (2) を適用すれば、K=L を得る。よって (1.1) で K=L として b=c μ -a.e. したがって b=c を得る。以上より (L,b)=(K,c) である。

射が存在するための十分条件を調べる。

補題 1.5 (基底測度だけを変化させた対象からの射). (V,T,μ') から (V,T,μ) への射が存在する。

証明 (id,0)が求める射である。

補題 1.6 (基底測度以外を変化させた対象からの射). (V,T,μ) が affine span 条件と単射性条件をみたすならば、任意の対象 (V',T',μ) から (V,T,μ) への射が存在する。

証明 P, P' の右逆写像 $\theta: \mathcal{P} \to \Theta^{\mathcal{P}}$ および $\theta': \mathcal{P} \to \Theta'^{\mathcal{P}}$ をひとつずつ選んでおく。

0,...,m) が存在して、 $e^i := a^i - a^0 \ (i = 1,...,m)$ は V^\vee の基底となる。そこで $p^i := P(a^i) \in \mathcal{P} \ (i = 0,...,m)$ とおき、(L,b) を次のように定める:

$$L: V' \to V, \quad t' \mapsto \langle \theta'(p^i) - \theta'(p^0), t' \rangle e_i$$
 (1.3)

$$b := \{ \psi(\theta(p^i)) - \psi(\theta(p^i)) - \psi(\theta'(p^0)) + \psi(\theta'(p^0)) \} e_i \in V$$
(1.4)

示すべきことは、すべての $p \in \mathcal{P}$ に対し

$$T(x) = L(T'(x)) + b \quad \mu\text{-a.e.}x$$
 (1.5)

が成り立つことと、(L,b)が全射となることである。

Step 2: T(x) = L(T'(x)) + b の証明 指数型分布族の定義より、任意の $p \in \mathcal{P}$ に対し、ある μ -零集合 $N_p \subset X$ が存在して

$$\exp(\langle \theta(p), T(x) \rangle - \psi(\theta(p))) = \frac{dp}{d\mu}(x) = \exp(\langle \theta'(p), T'(x) \rangle - \psi'(\theta'(p))) \qquad (x \in X \setminus N_p)$$
 (1.6)

$$\therefore \qquad \langle \theta(p), T(x) \rangle - \langle \theta'(p), T'(x) \rangle = \psi(\theta(p)) - \psi'(\theta'(p)) \qquad (x \in X \setminus N_p) \tag{1.7}$$

が成り立つ。とくに各i=0,...,mに対し

$$\langle \theta(p^i), T(x) \rangle - \langle \theta'(p^i), T'(x) \rangle = \psi(\theta(p^i)) - \psi'(\theta'(p^i)) \qquad (x \in X \setminus N_{p^i})$$
(1.8)

が成り立つから、

$$\langle \theta(p^{i}) - \theta(p^{0}), T(x) \rangle - \langle \theta'(p^{i}) - \theta'(p^{0}), T'(x) \rangle$$

$$= \psi(\theta(p^{i})) - \psi'(\theta'(p^{i})) - \psi(\theta(p^{0})) + \psi'(\theta'(p^{0})) \qquad (x \in X \setminus (N_{p^{0}} \cup N_{p^{i}}))$$

$$(1.9)$$

となる。ここで (V,T,μ) の単射性条件より $\theta(p^i) = \theta(P(a^i)) = a^i$ が成り立つから、上の式より

$$\langle e^{i}, T(x) \rangle = \langle \theta'(p^{i}) - \theta'(p^{0}), T'(x) \rangle + \psi(\theta(p^{i})) - \psi'(\theta'(p^{i})) - \psi(\theta(p^{0})) + \psi'(\theta'(p^{0})) \qquad (x \in X \setminus (N_{n^{0}} \cup N_{n^{i}}))$$

$$(1.10)$$

したがって

$$T(x) = L(T'(x)) + b \qquad (x \in X \setminus (N_{p^0} \cup \dots \cup N_{p^m}))$$

$$(1.11)$$

が成り立つ。これで Step 2 が完了した。

Step 3: (L,b) が全射であることの証明 L が全射であることをいえばよい。もし L が全射でなかったとすると、 $T(x) = L(T'(x)) + b \in \text{Im } L + b$ が p-a.e.x すなわち μ -a.e.x に対し成り立つことになるが、Im L + b は V の真アファイン部分空間だから (V,T,μ) の単射性条件に反する。したがって L は全射である。

補題 1.7 (2 条件をみたす対象への射). (V,T,μ) が affine span 条件と単射性条件をみたすならば、任意の対象 (V',T',μ') から (V,T,μ) への射が存在する。

証明 上の2つの補題より存在する2つの射 $(V',T',\mu') \rightarrow (V',T',\mu) \rightarrow (V,T,\mu)$ を合成すればよい。

補題 1.8. (V,T,μ) が affine span 条件をみたさないならば、 (V,T,μ) よりも次元の小さいある対象 $(\widetilde{V},\widetilde{T},\widetilde{\mu})$ へのある射 $(V,T,\mu)\to (\widetilde{V},\widetilde{T},\widetilde{\mu})$ が存在する。

証明 (V,T,μ) が affine span 条件をみたさないとする。すると、ある真ベクトル部分空間 $W \subseteq V^{\vee}$ および $\theta_0 \in \Theta^{\mathcal{P}}$ が存在して aspan $\Theta^{\mathcal{P}} = W + \theta_0$ が成り立つ。そこで $\widetilde{V} \coloneqq V/W^{\perp}$ と定め、 $\pi \colon V \to \widetilde{V}$ を自然な射影として $\widetilde{T} \coloneqq \pi \circ T \colon X \to \widetilde{V}$ と定める。また、X 上の測度 $\widetilde{\mu} \coloneqq \exp \langle \theta_0, T(x) \rangle \cdot \mu$ と定める。このように定めた組 $(\widetilde{V}, \widetilde{T}, \widetilde{\mu})$ が \mathcal{P} の実現であることは一旦認めて最後に示すこととし、まず次元と射について確かめる。

まず $(\widetilde{V},\widetilde{T},\widetilde{\mu})$ の次元は $\dim \widetilde{V} = \dim V - \dim W^{\perp} = \dim W < \dim V^{\vee} = \dim V$ より (V,T,μ) の次元よりも小さい。また、 $(\pi,0)$ は明らかに (V,T,μ) から $(\widetilde{V},\widetilde{T},\widetilde{\mu})$ への射を与える。

あとは $(\widetilde{V},\widetilde{T},\widetilde{\mu})$ が \mathcal{P} の実現であることを示せばよい。指数型分布族の定義 $(0502_$ 資料.pdf) の条件 (E0), (E1), (E3) の成立は簡単に確かめられるから、ここでは条件 (E3) だけ確かめる。そこで $p \in \mathcal{P}$ を任意とする。 (V,T,μ) が \mathcal{P} の実現であることから、ある $\theta \in V^{\vee}$ が存在して

$$p(dx) = \frac{\exp \langle \theta, T(x) \rangle}{\int_{X} \exp \langle \theta, T(x) \rangle \ d\mu(x)} \mu(dx)$$
 (1.12)

が成り立つ。ここで線型写像 $\langle \theta - \theta_0, \cdot \rangle : V \to \mathbb{R}$ は $\operatorname{Ker} \langle \theta_0, \cdot \rangle \supset W^{\perp}$ をみたすから、図式

$$V \xrightarrow{\langle \theta - \theta_{0,\varsigma} \rangle} \mathbb{R}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

を可換にする線型写像 $\widetilde{\theta}$: $\widetilde{V}\to\mathbb{R}$ すなわち線型形式 $\widetilde{\theta}\in\widetilde{V}^\vee$ が存在する。この $\widetilde{\theta}$ が条件 (E3) をみたすものであることを確かめればよいが、各 $x\in X$ に対し

$$\langle \widetilde{\theta}, \widetilde{T}(x) \rangle = \langle \theta - \theta_0, T(x) \rangle$$
 (1.14)

$$= \langle \theta, T(x) \rangle - \langle \theta_0, T(x) \rangle \tag{1.15}$$

が成り立つから

$$p(dx) = \frac{\exp \langle \theta, T(x) \rangle}{\int_{X} \exp \langle \theta, T(x) \rangle \ \mu(dx)} \mu(dx)$$
 (1.16)

$$= \frac{\exp\left\langle \widetilde{\theta}, \widetilde{T}(x) \right\rangle \exp\left\langle \theta_0, T(x) \right\rangle}{\int_{\mathcal{X}} \exp\left\langle \widetilde{\theta}, \widetilde{T}(x) \right\rangle \exp\left\langle \theta_0, T(x) \right\rangle \mu(dx)} \mu(dx) \tag{1.17}$$

$$= \frac{\exp\left\langle \widetilde{\theta}, \widetilde{T}(x) \right\rangle}{\int_{\mathcal{X}} \exp\left\langle \widetilde{\theta}, \widetilde{T}(x) \right\rangle \widetilde{\mu}(dx)} \widetilde{\mu}(dx) \tag{1.18}$$

となる。したがって条件 (E3) の成立が確かめられた。以上より $(\widetilde{V},\widetilde{T},\widetilde{\mu})$ は m P の実現である。これで証明が完了した。

補題 1.9. (V,T,μ) が単射性条件をみたさないならば、 (V,T,μ) よりも次元の小さいある対象 $(\widetilde{V},\widetilde{T},\widetilde{\mu})$ へのある 射 $(V,T,\mu)\to (\widetilde{V},\widetilde{T},\widetilde{\mu})$ が存在する。

証明 (V,T,μ) よりも次元の小さい実現 $(\widetilde{V},\widetilde{T},\widetilde{\mu})$ の具体的な構成は、最小次元実現が単射性条件をみたすことを述べた $0425_$ コメント.pdf の定理 0.3 (あるいは $0425_$ 資料.pdf の定理 4.2) の証明において与えた。その証明内の claim より射の構成も明らかである。

上の補題を用いて最小次元実現の特徴づけが得られる。

定理 1.10 (最小次元実現の特徴づけ). $\mathcal P$ の実現 (V,T,μ) に関する次の条件は同値である:

- (1) (V,T,μ) は \mathcal{P} の最小次元実現である。
- (2) (V,T,μ) は affine span 条件と単射性条件をみたす。

証明 (1) ⇒(2) 上の2つの補題と背理法により従う。

(2) \Rightarrow (1) (V,T,μ) が affine span 条件と単射性条件をみたすとする。 $\mathcal P$ の任意の実現 (V',T',μ') に対し、補題 1.7 より全射線型写像 $L:V'\to V$ が存在するから、 $\dim V \leq \dim V'$ である。したがって V は $\mathcal P$ の最小次元実現である。

注意 1.11 (正規分布族の最小次元実現). **0425**_資料.pdf の例 3.2 でみた正規分布族の例は最小次元実現である。 単射性条件は、 (θ_1, θ_2) が異なれば平均か分散の少なくとも一方が異なることになり、異なる確率分布を与えることからわかる。Affine span 条件も明らか。

定理 1.12 (最小次元実現の間のアファイン変換). (V,T,μ) , (V',T',μ') がともに最小次元実現ならば、 (V,T,μ) から (V',T',μ') への射 (L,b) がただひとつ存在する。さらに、(L,b) は同型射であり、L は線型同型写像である。

同じことを圏の言葉を使わずに言い換えると次のようになる。

定理 1.12 (最小次元実現の間のアファイン変換). (V,T,μ) , (V',T',μ') がともに最小次元実現ならば、線型写像 $L:V\to V'$ とベクトル $b\in V'$ であって

$$T(x) = L(T'(x)) + b$$
 μ -a.e. x (1.19)

をみたすものがただひとつ存在する。さらに、Lは線型同型写像である。

証明 補題 1.4, 1.7 より、射 (L,b): $(V,T,\mu) \to (V',T',\mu')$ はただひとつ存在する。(L,b) の逆射は補題 1.7 より存在する射 (K,c): $(V',T',\mu') \to (V,T,\mu)$ である。実際、合成射 $(K,c) \circ (L,b)$, $(L,b) \circ (K,c)$ は補題 1.4 より恒等射に一致する。

系 1.13 (自然パラメータの変換). 上の定理の L は

$$\theta'(p) = {}^{t}L(\theta(p)) \qquad (\forall p \in \mathcal{P})$$
 (1.20)

をみたす。ただし写像 $\theta: \mathcal{P} \to \Theta^{\mathcal{P}}$ および $\theta': \mathcal{P} \to \Theta'^{\mathcal{P}}$ は P, P' の逆写像である。

証明 $p \in \mathcal{P}$ を任意とすると、式 (1.7) のあたりと同様の議論により、 μ' -a.e.x に対し

$$\langle \theta(p), L(T'(x)) + b \rangle - \langle \theta'(p), T'(x) \rangle = \psi(\theta(p)) - \psi'(\theta'(p)) \tag{1.21}$$

$$\therefore \quad \langle {}^{t}L(\theta(p)), T'(x) \rangle - \langle \theta'(p), T'(x) \rangle = \psi(\theta(p)) - \psi'(\theta'(p)) - \langle \theta(p), b \rangle \tag{1.22}$$

$$\therefore \qquad \langle {}^{t}L(\theta(p)) - \theta'(p), T'(x) \rangle = \psi(\theta(p)) - \psi'(\theta'(p)) - \langle \theta(p), b \rangle \tag{1.23}$$

が成り立つ。したがって、 (V',T',μ) の単射性条件より ${}^tL(\theta(p)) = \theta'(p)$ が成り立つ。

今後の予定

- 指数型分布族 *P* 自体に構造を入れる。
- Amari-Chentsov テンソルを定義する。
- 正規分布族の場合の具体的な計算を行う (Fisher 計量、Levi-Civita 接続、測地線など)。

参考文献

[Ama16] Shun-ichi Amari, **Information Geometry and Its Applications**, Applied Mathematical Sciences, vol. 194, Springer Japan, Tokyo, 2016 (en).

[Yos] Taro Yoshino, bn1970.pdf, Dropbox.