

Neural Networks and Sensor Fusion

Aprendizaje Automático Embebido

Neural Networks - Basic Unit

$$u_k = \boldsymbol{w}_k^T \boldsymbol{x} + b_k$$

$$y_k = \varphi(u_k)$$

Neural Networks – Activation functions

Neural Networks – Activation functions

Neural Networks – Activation functions

Neural Network - SoftMax

$$P(y=j\mid \mathbf{x}) = rac{e^{\mathbf{x}^\mathsf{T}\mathbf{w}_j}}{\sum_{k=1}^K e^{\mathbf{x}^\mathsf{T}\mathbf{w}_k}}$$

Neural Network - SoftMax

$$P(y=j\mid \mathbf{x}) = rac{e^{\mathbf{x}^\mathsf{T}\mathbf{w}_j}}{\sum_{k=1}^K e^{\mathbf{x}^\mathsf{T}\mathbf{w}_k}}$$

$$egin{bmatrix} P(ext{cat}) \ P(ext{dog}) \end{bmatrix} &= \sigma(egin{bmatrix} 1.2 \ 0.3 \end{bmatrix}) \ &= egin{bmatrix} rac{e^{1.2}}{e^{1.2}+e^{0.3}} rac{e^{0.3}}{e^{1.2}+e^{0.3}} \end{bmatrix} \ &= egin{bmatrix} 0.71 \ 0.29 \end{bmatrix}$$

Neural Network - Accelerometer

Features accY Peak 1 Height

Output layer

Layer 2

Softmax

Neural Network - Accelerometer

 $y_k = \varphi(\mathbf{w}_k^T \mathbf{x} + b_k)$ $\mathbf{y} = \varphi(\mathbf{W}\mathbf{x} + \mathbf{b})$

Features		
accx RMS accx Peak 1 Freq accx Peak 1 Height accx Peak 2 Freq accx Peak 2 Height accx Peak 3 Freq accx Peak 3 Freq accx Spec Pow 0.1-0.5 accx Spec Pow 0.5-1.0	Spec Pow 2.0-5. Spec Pow 2.0-5. RMS Peak 1 Height Peak 2 Freq Peak 2 Freq Peak 3 Freq Peak 3 Height Spec Pow 0.1-0. Spec Pow 1.0-2. Spec Pow 2.0-5.	accz Peak 1 Freq accz Peak 1 Height accz Peak 2 Height accz Peak 2 Height accz Peak 3 Freq accz Peak 3 Height accz Peak 3 Height accz Spec Pow 0.1-0.5 accz Spec Pow 0.5-1.0 accz Spec Pow 1.0-2.0 accz Spec Pow 2.0-5.0

Layer 1

Layer 2

Output layer

 $0.0 \le P_n \le 1.0$

$$P_1 + P_2 + P_3 + P_4 = 1.0$$

Neural Network - Setup

Somos Innovación Tecnológica con Senjolo Humano

Neural Network - Training

Vigilada Mineducación

, ntido Humano

Overfitting

Underfit: Model fails to capture trends in the data

Good fit: Model captures trends and can generalize to unseen data

Overfit: Model captures training data trends but fails on unseen data

Vigilada Mineducac

Neural Network – Underfit and Overfit

Underfit: Model performs poorly on training and validation data

Good fit: Model generalizes well from training to validation data

Overfit: Model predicts training data well but fails to generalize to validation data

Vigilada Mineducaci

Neural Network – Underfit and Overfit

Underfit: Model performs poorly on training and validation data

Good fit: Model generalizes well from training to validation data

Overfit: Model predicts training data well but fails to generalize to validation data

Neural Network – Fix Underfit

Underfit: Model performs poorly on training and validation data

- Get more data.
- Try different features or more features.
- Train for longer.
- Try more complex model (more layers, more nodes, etc.)

Vigilada Mineduca

Neural Network – Fix Overfit

Overfit: Model predicts training data well but fails to generalize to validation data

Get more data.

Early stopping.

Reduce model complexity.

Add regularization terms.

Add dropout layers (for neural networks).

Somos Innovación Tecnológica con Sentido Hun

1 Gracias!

