

Tenicas Digitais शहार्डा Computação

Funções Booleanas

Aula 9

Álgebra Booleana de Chaveamento

Álgebras Booleanas

- variáveis, constantes
- valores de variáveis e constantes: conjunto discreto e finito
- operadores "+", ".", "complemento" definidos sobre as constantes
- elementos neutros para cada operador

Álgebra Booleana de Chaveamento

- valores 0 e 1
- operadores "+", ".", "complemento" definidos sobre 0 e 1

A	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

A	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

A	Ā
0	1
1	0

• "0" é o elemento neutro do operador "+"

• "1" é o elemento neutro do operador "."

Axiomas e Teoremas da Álgebra Booleana

1.
$$X + 0 = X$$

3.
$$X + 1 = 1$$

5.
$$X + X = X$$

$$7. \quad X + \overline{X} = 1$$

9.
$$\overline{\overline{X}} = X$$

10.
$$X + Y = Y + X$$

12.
$$X + (Y + Z) = (X + Y) + Z$$

14.
$$X \cdot (Y + Z) = XY + XZ$$

16.
$$\overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$$

2.
$$X \cdot 1 = X$$

4.
$$X \cdot 0 = 0$$

6.
$$X \cdot X = X$$

8.
$$X \cdot \overline{X} = 0$$

11.
$$X Y = Y X$$

13.
$$X(YZ) = (XY)Z$$

15.
$$X + YZ = (X + Y)(X+Z)$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

Lei comutativa

Lei associativa

Lei distributiva

DeMorgan

- Dual de uma expressão algébrica
 - trocar OR ← → AND
 - trocar $0 \longleftrightarrow 1$
- Em qualquer equação booleana acima, X pode ser substituído por uma expressão qualquer.
- Exemplo:

$$X + 1 = 1$$

X + 1 = 1 substituindo X por AB + C AB + C + 1 = 1

$$\mathbf{AB} + \mathbf{C} + \mathbf{1} = \mathbf{1}$$

- Lei distributiva $X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$
- Ex. : (A + B) (A + CD)

aplicando lei distributiva ao contrário => A + BCD

Avaliação de Funções Booleanas

• Construção de uma Tabela-Verdade

Exemplo: F (A,B)
4 combinações de valores de A,B
uma linha para cada combinação

A	В	F(A,B)
0	0	
0	1	
1	0	
1	1	

- Avaliação da função
 - substituir variáveis por 0 ou 1
 - avaliar AND, OR, complemento na ordem estabelecida

$$\overline{X + Y} = \overline{X} \cdot \overline{Y}$$

X	Y	X+Y	$\overline{X+Y}$
0	0	0	1
0	1	1	0
1	0	1	0 _
1	1	1	0

X	Y	$\overline{\mathbf{X}}$	$\overline{\mathbf{Y}}$	$\overline{\mathbf{X}}.\overline{\mathbf{Y}}$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	, 0
1	1	0	0	0

As 2 tabelas-verdade são idênticas, portanto a igualdade das funções é verdadeira

Funções Booleanas e Circuitos Lógicos

- · Pode-se obter um circuito da seguinte maneira
 - cada termo é uma porta
 - cada literal é uma entrada para uma porta
 - portas adicionais : inversores na entrada composição dos termos (1 AND ou 1 OR)

literais

Cada ocorrência de variável (complementada ou não)

O número de termos e literais dá uma medida aproximada da complexidade do circuito.

6 portas

- No exemplo:
- 3 termos 8 literais

- 3 portas de 3 entradas
- 1 porta de 2 entradas
- 2 portas de 1 entrada

Manipulações Algébricas

- Manipulação algébrica usando axiomas e teoremas => simplificação de circuitos
- · Redução do número de termos e/ou de literais deve resultar num circuito com menos portas

• Exemplo anterior

$$\mathbf{F} = \overline{\mathbf{X}} \mathbf{Y} \mathbf{Z} + \overline{\mathbf{X}} \mathbf{Y} \overline{\mathbf{Z}} + \mathbf{X} \mathbf{Z}$$

(identidade 14) lei distributiva

$$\mathbf{F} = \overline{\mathbf{X}} \mathbf{Y} (\mathbf{Z} + \overline{\mathbf{Z}}) + \mathbf{X} \mathbf{Z}$$

(identidade 7) complemento

$$F = \overline{X} Y \cdot 1 + X Z$$

(identidade 2) elemento identidade

$$\mathbf{F} = \overline{\mathbf{X}} \ \mathbf{Y} + \mathbf{X} \ \mathbf{Z}$$

2 termos

4 literais

4 portas

- 3 portas de 2 entradas
- 1 porta de 1 entrada

- Não existe nenhuma técnica especial para indicar qual manipulação algébrica deve ser aplicada para simplificar o circuito
 - método de tentativas
 - familiaridade com axiomas e teoremas

• Exemplos
$$X + XY = X \cdot (1+Y) = X \cdot 1 = X$$

 $XY + XY = X \cdot (Y+Y) = X \cdot 1 = X$

$$X + \overline{X}Y = (X + \overline{X}) \cdot (X + Y) = 1 \cdot (X + Y) = X + Y$$

Outros exemplos

$$X \cdot (X+Y) = X \cdot X + X \cdot Y = X + X \cdot Y = X \cdot (1+Y) = X \cdot 1 = X$$
 $(X+Y) \cdot (X+\overline{Y}) = X + Y \cdot \overline{Y} = X + 0 = X$
 $X \cdot (\overline{X}+Y) = X \cdot \overline{X} + X \cdot Y = 0 + X \cdot Y = XY$

Note-se que estas 3 funções são as duais das anteriores

Teorema do Consenso

$$XY + \overline{X}Z + YZ = XY + \overline{X}Z$$

Demonstração: fazer AND do terceiro termo com $X + \overline{X} = 1$

$$XY + \overline{X}Z + YZ = XY + \overline{X}Z + YZ (X + \overline{X})$$

$$= XY + \overline{X}Z + XYZ + \overline{X}YZ$$

$$= XY + XYZ + \overline{X}Z + \overline{X}YZ$$

$$= XY + XYZ + \overline{X}Z + \overline{X}YZ$$

$$= XY + XYZ + \overline{X}Z + \overline{X}YZ$$

$$= XY + XZ + \overline{X}Z + \overline{X}Z + \overline{X}Z + \overline{X}Z$$

Aplicação numa simplificação

$$(A + B) (\overline{A} + C) = A\overline{A} + AC + \overline{A}B + BC$$
$$= AC + \overline{A}B + BC$$
$$= AC + \overline{A}B$$

redundante segundo o teorema do consenso

Complemento de uma função

- a) Usando tabela-verdade trocar 0 ← 1
- exemplo: $F = X(\overline{Y}\overline{Z} + YZ)$
- construindo a tabela-verdade

X	Y	Z	YZ	YZ	$\overline{YZ} + YZ$	F	F
0	0	0	1	0	1 0	0	1
0	1 1	0	0	0	0	0	1
1	0	0	1	0	1	0 1	1 0
1	1	0	0	0	0	0	1 1
1	1	1	0	1	1	1	0

construção da função a partir da tabela-verdade

$$\overline{F} = \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}Z + \overline{X}Y\overline{Z} + + \overline{X}YZ + X\overline{Y}Z + XYZ$$

b) Usando DeMorgan

$$\overline{F} = \overline{X} (\overline{Y}\overline{Z} + YZ)$$

$$= \overline{X} + (\overline{Y}\overline{Z} + YZ)$$

$$= \overline{X} + (\overline{Y}\overline{Z} \cdot YZ)$$

$$= \overline{X} + (Y + Z) \cdot (\overline{Y} + \overline{Z})$$

$$= \overline{X} + Y\overline{Y} + Y\overline{Z} + \overline{Y}Z + Z\overline{Z}$$
$$= \overline{X} + Y\overline{Z} + \overline{Y}Z$$

c) Tomar dual da função e complementar cada literal

$$\mathbf{F} = \mathbf{X}(\mathbf{\overline{Y}}.\mathbf{\overline{Z}} + \mathbf{Y}.\mathbf{Z})$$

$$\mathbf{F'} = \mathbf{X} + (\mathbf{\overline{Y}} + \mathbf{\overline{Z}}) (\mathbf{Y} + \mathbf{Z})$$

$$\overline{F} = \overline{X} + (Y + Z) \cdot (\overline{Y} + \overline{Z})$$

$$= \overline{X} + Y\overline{Y} + Y\overline{Z} + YZ + Z\overline{Z}$$

$$= \overline{X} + Y\overline{Z} + \overline{Y}Z$$

Y	Z	X	YZ	YZ	F
0	0	1	0	0	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	0	0	1
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	0	0	0	0
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0	0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0	0 0 1 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1	$egin{array}{c ccccccccccccccccccccccccccccccccccc$

Axiomas e Teoremas da Álgebra Booleana de Chaveamento

1.
$$X + 0 = X$$

3.
$$X + 1 = 1$$

5.
$$X + X = X$$

$$7. \quad X + \overline{X} = 1$$

9.
$$\overline{\overline{X}} = X$$

10.
$$X + Y = Y + X$$

12.
$$X + (Y + Z) = (X + Y) + Z$$

14.
$$X \cdot (Y + Z) = XY + XZ$$

16.
$$\overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$$

2.
$$X \cdot 1 = X$$

4.
$$X \cdot 0 = 0$$

6.
$$X \cdot X = X$$

8.
$$X \cdot \overline{X} = 0$$

11.
$$XY = YX$$

13.
$$X(YZ) = (XY)Z$$

15.
$$X + YZ = (X + Y)(X+Z)$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

Lei comutativa

Lei associativa

Lei distributiva

DeMorgan

Porta OR:

1.
$$X + 0 = X$$

$$X \longrightarrow X$$

3.
$$X + 1 = 1$$

5.
$$X + X = X$$

$$7. \quad X + \overline{X} = 1$$

$$\frac{X}{X}$$
 1

E1 E2 S 0 0 0 0 1 1 1 0 1 1 1 1

Porta AND:

2.
$$X \cdot 1 = X$$

4.
$$X \cdot 0 = 0$$

6.
$$X \cdot X = X$$

8.
$$X \cdot \overline{X} = 0$$

$$\frac{\mathbf{X}}{\mathbf{X}}$$
 $\mathbf{0}$

E 1	E2	S
0	0	0
0	1	0
1	0	0
1	1	1

Porta NOT:

Lei Comutativa:

10.
$$X + Y = Y + X$$

11.
$$X Y = Y X$$

$$X$$
 Y
 $S1$
 X
 X
 $S1$

Expansão de Portas com Múltiplas Entradas:

CUIDADO!!!

Teorema de DeMorgan:

16.
$$\overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

Usando o Teorema de DeMorgan ...

$$S = \overline{X (\overline{Y}\overline{Z} + YZ)}$$

$$= \overline{X} + (\overline{Y}\overline{Z} + YZ)$$

$$= \overline{X} + (\overline{Y}\overline{Z} \cdot YZ)$$

$$= \overline{X} + (Y + Z) \cdot (\overline{Y} + \overline{Z})$$

Dica: sempre que possível e interessante (simplifica a implementação) a aplicação do Teorema de DeMorgan, troca-se a porta lógica de AND para OR, e vice-versa, invertendo-se os sinais de entrada e saída.

Combinação de Portas Lógicas

X	Y	Z	A	В	C	D	S
0	0	0	0	0	1	1	0
0	0	1	0	1	1	1	0
0	1	0	1	1	0	0	1
0	1	1	1	0	1	1	0
1	0	0	1	0	1	1	0
1	0	1	1	1	0	1	0
1	1	0	1	1	0	0	1
1	1	1	1	0	1	1	0

Formas de Onda (transição no tempo):

