Introduction to Reinforcement Learning

I-Chen Wu

- Sutton, R.S. and Barto, A.G., Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA, 1998.
 - $\quad http://webdocs.cs.ualberta.ca/{\sim} sutton/book/ebook/the-book.html$
 - Bible in this area.
- David Silver, Online Course for Deep Reinforcement Learning.
 - http://www.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html

David Silver:

(the leader of the AlphaGo team)

"DL+RL =
$$AI$$
"

Many Faces of Reinforcement Learning

- Computer Science
 - Machine Learning
- Engineering
 - Optimal Control
- Mathematics
 - Operations Research
- Economics
 - Bounded Rationality
- Psychology
 - Classical/Operant Conditioning
- Neuroscience
 - Reward System

Branches of Machine Learning

- Supervised Learning (SL)
 - learning from a training set of labeled examples provided by a knowledgeable external supervisor.
- Unsupervised Learning (UL)
 - typically about finding structure hidden in collections of unlabeled data.
- Reinforcement Learning (RL)
 - learning from interaction

What are different from others?

• Characteristics:

- No supervisor, only a reward signal
- Feedback is delayed, not instantaneous
- Time really matters
- Agent's actions affect the subsequent data

• UL vs. RL:

- RL is learning from interaction.
- RL does not rely on examples of correct behavior.
- RL is trying to maximize a reward signal, instead of trying to find hidden structure.

Successful Examples

- In AI, it has been used to defeat human champions at games of skill.
 - Backgammon (Tesauro, 1994).
 - Connect6/2048/Threes! (Wu et al., 2015). Reach the top levels.
 - Go programs, used in the past 10 years. (Monte-Carlo Tree Search)
 - AlphaGo, using deep reinforcement learning (2016)
- In robotics, fly stunt maneuvers in robot-controlled helicopters (Abbeel et al.) and make a humanoid robot walk.
- In economics, manage an investment portfolio (Choi et al.).
- In neuroscience, model the human brain (Schultz et al.);
- In psychology, predict animal behavior (Sutton and Barto).
- In systems, control a power station
- In engineering, it has been used to allocate bandwidth to mobile phones and to manage complex power systems (Ernst et al.).

(Not even include successful examples for deep reinforcement learning)

Board Game: Go

• Game 1: AlphaGo vs. 李世石

Stochastic Game: 2048 (lab)

The First Game Reaching 65536 in the World (in 10,000 Trials)

http://2048.aigames.nctu.edu.tw/replay.php

Video Games: Flappy Bird (lab)

Open AI: Pole Balancing (lab)

RL Demo

RL Demo

[Deisenroth et al, 2011] Learning to Control a Low-Cost Manipulator using Data-Efficient Reinforcement Learning

Marc Peter Deisenroth, Carl Edward Rasmussen, Dieter Fox

Learning to Control a Low-Cost Robotic Manipulator using Data-Efficient Reinforcement Learning

R:SS 2011

Learning Contact-Rich Manipulation Skills with Guided Policy Search [Levine et. al. 2015]

ChatBot

- Hi, may I help you?
- I'm looking for a Chinese restaurant
 - Which area in mind?
- Somewhere in the downtown.
 - Hu Nan Restaurant is recommended by many people.
- Noop! The food is too hot.
 - How about Dumpling House?
- Good. Give me the direction to it.
 - It is located in
- Thank you.
 - Are you satisfied with the service.
- Yes.

Stock Market

Reinforcement Learning

- A computational approach to learning from interaction
 - Explore designs for machines that are effective in
 - solving learning problems of scientific or economic interest,
 - evaluating the designs through mathematical analysis or computational experiments.
 - Focus on goal-directed learning from interaction, when compared with other approaches to machine learning.
 - The learner must discover which actions yield the most reward by trying them.
 - ► Two characteristics: most important distinguishing features of reinforcement learning.
 - trial-and-error search
 - delayed reward

Agent-Environment Interaction Framework

- Agent: The learner and decision-maker.
- Environment: The thing it interacts with, comprising everything outside the agent.
- State: whatever information is available to the agent.
- Reward: single numbers.

States and Actions in the Framework

Environment: reaction

Agent: action

Environment: reaction

Agent: action

Environment: reaction

Agent: action

Go

2048

Robot

Environment: Dynamics

Agent: Navigate

Environment: Dynamics

Agent: Navigate

Environment: Dynamics

Agent: Navigate

Markov Decision Processes (MDP)

A Markov Decision Process is a tuple

$$<\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma>$$

- S is a finite set of states
- $-\mathcal{A}$ is a finite set of actions
- \mathcal{P} is a state transition probability matrix (part of the environment), $\mathcal{P}_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$
- \mathcal{R} is a reward function, $\mathcal{R}_{s}^{a} = \mathbb{E}[R_{t+1}|S_{t} = s, A_{t} = a]$
- γ is a discount factor $\gamma \in [0, 1]$.

Markov Property

- An episode: (assuming finite and MDP here for simplicity)
 - States: S_i
 - ▶ Initial state: S_1
 - Current state: S_t
 - End state: S_T (not necessarily required)
 - Actions: A_i
 - History: $H_t = (S_1, A_1, R_2, S_2, A_2, R_3, S_3, ..., R_t)$
- Markov Property:
 - "The future is independent of the past given the present"
 - A state S_t is Markov if and only if $\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1,...,S_t]$

Environment State vs. Agent State

- The environment state S_t^e :
 - the environment's private representation
 - i.e. whatever data the environment uses to pick the next observation/reward

- The environment state is not necessarily visible to the agent
 - Even if S_t^e is visible, it may contain irrelevant information
- The agent state S_t^a :
 - The agent's internal representation
 - i.e. whatever information the agent uses to pick the next action
 - i.e. it is the information used by reinforcement learning algorithms
 - It can be any function of history:

$$S_t^a = f(H_t)$$

- Partially Observable: (not discussed here)
 - When $S_t^a \neq S_t^e$

Example: Mahjong

Partially observable:

I-Chen Wu

Rewards

- A reward R_t is a scalar feedback signal
 - Indicates how well agent is doing at step t
 - The agent's job is to maximize cumulative reward

 S_t

Reinforcement learning is based on the reward hypothesis

- Example: (2048)

4	8	16	16	Right move Reward = 40	4	8	32
2		4	4			2	8
			2				2
		2		s'_t			2

Definition (Reward Hypothesis)

 All goals can be described by the maximization of expected cumulative reward

Rewards for Previous Examples?

- In AI, it has been used to defeat human champions at games of skill.
 - Backgammon (Tesauro, 1994).
 - Connect6/2048/Threes! (Wu et al., 2015). Reach the top levels.
 - Go programs, used in the past 10 years. (Monte-Carlo Tree Search)
 - AlphaGo, using deep reinforcement learning (2016)
- In robotics, fly stunt maneuvers in robot-controlled helicopters (Abbeel et al.) and make a humanoid robot walk.
- In economics, manage an investment portfolio (Choi et al.).
- In neuroscience, model the human brain (Schultz et al.);
- In psychology, predict animal behavior (Sutton and Barto).
- In systems, control a power station
- In engineering, it has been used to allocate bandwidth to mobile phones and to manage complex power systems (Ernst et al.).

Sequential Decision Making

- Goal:
 - Select actions to maximize total future reward
- Maximize $R_{t+1} + R_{t+2} + \cdots + R_T$
 - assuming time = t.

- Notes:
 - Actions may have long term consequences
 - Reward may be delayed
 - It may be better to sacrifice immediate reward to gain more longterm reward

Sequential Decision Making – Examples

• Examples:

- In 2048, establish a sequence of $(2^t, 2^{t-1}, 2^{t-2}, ...)$
- In chess, block opponent moves
 to help winning chances many moves from now.
- 2
 32768
 8192
 4096

 16384
 1024
 512
 256

 2048
 32
 64
 128

 16
 16
 2
 4
- In a financial investment, may take months to mature
- In robotics, refuel a helicopter to prevent a crash.

Major Components of an RL Agent

- Value function: how good is each state and/or action
- Policy: agent's behavior function
- Model: agent's representation of the environment

Policy

- A policy is the agent's behavior
 - It is a map from state to action,

Policy types:

- Deterministic policy: $a = \pi(s_i)$
- Stochastic policy: $\pi(a|s) = \mathbb{P}[A_t = a | S_t = s]$
 - ▶ Sometimes, written in $\pi(s, a)$.

• Examples:

- In 2048: Up/down/left/right
- In robotics: angle/force/...

Agent

Environment

Value Function

state

 S_t

reward

 R_t

- A value function is a prediction of future reward
 - Used to evaluate the goodness/badness of states
 - therefore to select between actions.

- Return
$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$$

- Types of value functions under policy π :
 - State value function: the expected return from s.

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma \bar{R}_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

= $\mathbb{E}_{\pi}[G_t \mid S_t = s]$

- Q-Value function: the expected return from s taking action a.

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

- Examples:
 - In 2048, the expected score from a board S_t .

action

Model

- A model predicts
 what the environment will do next
 - \mathcal{P} is a state transition probability matrix, $\mathcal{P}_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$
 - predicts the next state
 - $\Re S$ is a reward function, $\Re S_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
 - predicts the next (immediate) reward
- Examples:
 - In 2048:
 - \blacktriangleright After a move, \mathcal{P} is to generate a tile randomly as follows:
 - 2-tile: with probability of 9/10
 - 4-tile: with probability of 1/10

Categorizing RL Agents (Policy & Value)

- Value Based
 - No Policy (Implicit)
 - Value Function
- Policy Based
 - Policy
 - No Value Function (Implicit)
- Actor Critic
 - Policy
 - Value Function

Categorizing RL Agents (Model)

- Model Free
 - Policy and/or Value Function
 - No Model
- Model Based
 - Policy and/or Value Function
 - Model

Model-free Reinforcement Learning

- Temporal Difference (TD) Learning
 - TD methods learn directly from episodes of experience
 - TD is model-free: no knowledge of MDP transitions / rewards
 - TD learns from incomplete episodes, by bootstrapping
 - TD updates a guess towards a guess
- Monte-Carlo (MC) Learning
 - MC methods learn directly from episodes of experience
 - MC is model-free: no knowledge of MDP transitions / rewards
 - MC learns from complete episodes: no bootstrapping
 - MC uses the simplest possible idea: value = mean return
 - Caveat: can only apply MC to episodic MDPs
 - ▶ All episodes must terminate
 - Monte-Carlo Tree Search (MCTS) is a successful one based on MC learning.

Monte-Carlo Learning

- Incremental Monte-Carlo
 - Update value $V(S_t)$ toward actual return G_t $V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$
 - $-\alpha$: learning rate, or called step size.
- Unbiased, but high variance.

Temporal-Difference Learning

- Simplest temporal-difference learning algorithm: TD(0)
 - Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$ $V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$
 - TD target: $R_{t+1} + \gamma V(S_{t+1})$
 - TD error: $R_{t+1} + \gamma V(S_{t+1}) V(S_t)$
 - α : learning rate, or called step size.
- Biased, but lower variance

Case Studies I-Chen Wu

- David Silver, Online Course for Deep Reinforcement Learning.
 - http://www.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
- M. Szubert and W. Jaśkowski, "Temporal difference learning of n-tuple networks for the game 2048," 2014 IEEE Conference on Computational Intelligence and Games (CIG), Aug. 2014, pp. 1–8.
- Kun-Hao Yeh, et al., Multi-Stage Temporal Difference Learning for 2048-like Games, accepted by IEEE Transactions on Computational Intelligence and AI in Games (SCI), doi: 10.1109/TCIAIG.2016.2593710, 2016.
- Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

Cases

- **2**048
 - Temporal Difference (TD) Learning
 - N-tuple networks
- Atari games
 - Temporal Difference (TD) Learning
 - Deep Q-networks (DQN), a kind of Deep NN
- Go Programs (with Monte-Carlo Tree Search)
 - Monte-Carlo (MC) Learning
 - Multi-Armed Bandits
 - Planning
- AlphaGo (with Reinforcement Learning) to be added.
 - Monte-Carlo (MC) Learning
 - Policy Gradient
- Pole Balancing to be added.
 - Policy Gradient
 - Actor-Critic

Case Study: 2048

[Szubert et al., 2014; Yeh et al., 2016]

2048 RL Agent

- Value function:
 - The expected score/return G_t from a board S
 - But, #states is huge
 - \blacktriangleright About 17^{16} (=10²⁰).
 - Empty, $2 (=2^1)$, $4 (=2^2)$, $8 (=2^3)$, ..., $65536 (=2^{16})$.
 - Need to use value function approximator.
- Policy:
 - Simply choose the action (move) with the maximal value based on the approximator.
- Model: agent's representation of the environment
 - After a move, randomly generate a tile:
 - ▶ 2-tile: with probability of 9/10
 - ▶ 4-tile: with probability of 1/10
 - Reward: simply follow the rule of 2048.

TD Learning in 2048

- State value function: (Normally $\gamma = 1$)
 - Update value $V(S_t)$ toward TD target $R_{t+1} + \gamma V(S_{t+1})$ $V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$
- Making a decision (based on value).

$$\pi(s) = argmax_a(R_{t+1} + \mathbb{E}[V(S_{t+1}) \mid S_t = s, A_t = a])$$

- Problem: Less efficient upon making decision.

 S_{t+1}

Q-Learning in 2048

- Q-value function: (Normally $\gamma = 1$)
 - Update value $Q(S_t, A_t)$ toward TD target $R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$ $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t))$
- Making decision (based on value).

$$\pi(s) = argmax_a(Q(S_t, a))$$

- more efficient.
- A minor problem: Four times more memory

Afterstates in 2048

- Afterstate S_t^{af} is a state after action A_t at S_t .
 - Why not use S_t^{af} instead of (S_t, A_t) ?
 - Note: in 2048, the reward R_{t+1} is not included in S_t^{af} .
- Afterstate value function: (Normally $\gamma = 1$)
 - Update value $V^{af}(S_t^{af})$ toward TD target $\gamma \max_{a} (R_{t+1} + V^{af}(S_{t+1}^{af}))$

$$V^{af}\left(S_t^{af}\right) \leftarrow V^{af}\left(S_t^{af}\right) + \alpha \left(\gamma \max_{a} \left(R_{t+1} + V^{af}\left(S_{t+1}^{af}\right) - V^{af}\left(S_t^{af}\right)\right)\right)$$

Making decision (based on value).

$$\pi(s) = argmax_a \left(V^{af} \left(S_t^{af} \right) \right)$$

- For simplicity, we use V, instead of V^{af} , if it can be applied to both.
- More efficient.

$$R_{t+1} + Q(S_{t+1}, A_{t+1})$$

Value Function Approximation

- As mentioned above, #states is huge, so we need to use value function approximation.
 - Use a value function approximator, $\hat{v}(S, \theta) \approx V(S)$.
 - Simply use deterministic policy: $\pi(S) = argmax_a(\hat{v}(S, \theta))$
- But, what kind of value function approximator can we use?
 - What features can we choose?
 - ▶ Traditionally, # of empty cells, # of continuous cells, big tiles, etc.
 - Linear (like n-tuple network) vs. non-linear (like NN)
- n-tuple network is a powerful network for 2048.
 - Explore a large set of features.
 - Simplify operations by linear value function approximation.

Linear Value Function Approximation

 Represent value function by a linear combination of features

$$\hat{v}(S;\theta) = x(S)^{\mathrm{T}}\theta = \sum_{j=1}^{n} x_j(S)\theta_j$$

• Gradient of $\hat{v}(S, \theta)$:

$$\nabla_{\theta} \hat{v}(S, \theta) = x(S)$$

Gradient Descent

- Update value $V(S_t)$ towards TD target $y_t = R_{t+1} + V(S_{t+1})$ $\Delta V = (R_{t+1} + V(S_{t+1}) - V(S_t)) = (y_t - V(S_t))$ $V(S_t) \leftarrow V(S_t) + \alpha \Delta V$
 - α : learning rate, or called step size.
 - Note: $\gamma = 1$ here.
- Objective function is to minimize the following loss in parameter θ . (note: $\hat{v}(S, \theta) = x(S)^{T}\theta$)

$$\mathcal{L}(w) = \mathbb{E}\left[\left(y_t - \hat{v}(S, \theta)\right)^2\right]$$

$$\nabla_{\theta} \mathcal{L}(\theta) = \left(y_t - \hat{v}(S, \theta)\right) \cdot \nabla_{\theta} \hat{v}(S, \theta) = \Delta V \cdot x(S)$$

• Update features w: step-size * prediction error * feature value $\theta \leftarrow \theta + \alpha \Delta V \cdot x(S)$

N-Tuple Network

- Example: 4-tuple networks as shown.
 - Each cell has 16 different tiles
 - 16⁴ features for this network.
 - ▶ But only one is on, others are 0.
 - ▶ So, we can use table lookup to find the feature weight.

64	•0	8	4
128	2•1		2
2	8•2		2
128	3		

0123	weight
0000	3.04
0001	-3.90
0002	-2.14
:	:
0010	5.89
:	:
0130	-2.01
:	:

Other N-Tuple Networks

- Left: [Szubert et al., 2014]; Right: [Yeh et al., 2016]
- Some researchers even used 7-tuple network.

Update Features in N-Tuple Networks

- For n-tuple networks, simply update values with $\alpha \Delta V$ at $LUT_i[index(s_i)]$
- Features:
 - 8 x 16⁴ features, x(S) = [0, 1, 0, ..., 0, 0, 1, ..., ..., 1, 0, 0, ...]
 - ▶ All 0s, except for 8 ones.
 - One 1 every 16⁴ features.
 - Let their indices be $s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8$.
 - Only need to update $\alpha \Delta V$ at the features indexed by these indices.
 - Very efficient and fast.
- \bullet For k n-tuple networks,

$$\hat{v}(S,\theta) = x(S)^{\mathrm{T}}\theta = \sum_{i=1}^{n} x_i(S)\theta_i = \sum_{i=1}^{k} LUT_i[index(s_i)]$$

- LUT_i : the i-th n-tuple network lookup table.
- $index(s_i)$: The index in the i-th n-tuple network of state S.
- Update features w: step-size * prediction error * feature value
 - $-\theta \leftarrow \theta + \alpha \Delta V \cdot x(S)$
 - Only need to update values θ_i with $\alpha \Delta V$ at $LUT_i[index(s_i)]$.

Afterstate Evaluation Function

```
1: function EVALUATE(s, a)

2: s', r \leftarrow \text{COMPUTE AFTERSTATE}(s, a)

3: return r + V(s')

4:

5: function Learn Evaluation(s, a, r, s', s'')

6: a_{next} \leftarrow \arg\max_{a' \in A(s'')} \text{Evaluate}(s'', a')

7: s'_{next}, r_{next} \leftarrow \text{Compute Afterstate}(s'', a_{next})

8: V(s') \leftarrow V(s') + \alpha(r_{next} + V(s'_{next}) - V(s'))
```



```
1: function PLAY GAME
        score \leftarrow 0
 2:
        s \leftarrow Initialize Game State
        while \negIs Terminal State(s) do
 4:
            a \leftarrow \arg\max_{a' \in A(s)} \text{EVALUATE}(s, a')
 5:
            r, s', s'' \leftarrow \text{MAKE MOVE}(s, a)
 6:
            if LEARNING ENABLED then
 7:
                 LEARN EVALUATION(s, a, r, s', s'')
 8:
9:
            score \leftarrow score + r
            s \leftarrow s''
10:
11:
        return score
12:
13: function MAKE MOVE(s, a)
        s', r \leftarrow \text{COMPUTE AFTERSTATE}(s, a)
14:
    s'' \leftarrow \text{Add Random Tile}(s')
        return (r, s', s'')
16:
```


The N-Tuple Networks Used

• Use the following [Szubert and Jaskowaski 2014]

Ours:

I-Chen Wu

Performance Results (without search)

2048 rate	100%
4096 rate	100%
8192 rate	99.20%
16384 rate	83.30%
32768 rate	8.10%
Maximum score	607488
Average score	331820

Case Study: Atari 2600 Games

• Learn to play Atari games from video only (without knowing the game a priori)

Deep Q-Networks (DQN)

DQN uses experience replay and fixed Q-targets

- Take action according to ϵ -greedy policy
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{D}
- Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}
- Compute Q-learning targets w.r.t. old, fixed parameters θ^-
- Optimize MSE between Q-network and Q-learning targets
 - Minimize a sequence of loss functions $\mathcal{L}(\theta_i)$ that changes at each iteration i.

$$- \mathcal{L}_i(\theta_i) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}_i} \left[\left(r + \gamma \max_{a'} Q(s', a'; \theta_i^-) - Q(s, a; \theta_i) \right)^2 \right]$$

- Using variant of stochastic gradient descent
 - Differentiating the loss function with respect to the weights we arrive at the following gradient

$$- \nabla_{\theta_i} \mathcal{L}_i(\theta_i) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}_i} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right) \cdot \nabla_{\theta_i} Q(s,a;\theta_i) \right]$$

DQN in Atari

- End-to-end learning of values Q(s, a) from pixels s
- Input state s
 - stack of raw pixels from last 4 frames
- Output
 - $Q(s, a_i | \theta)$ for 18 joystick/button positions
- $+ Q(s, a_1|\theta)$ **DCNN** (θ) $\rightarrow Q(s, a_n | \theta)$

- Reward
 - change in score for that step

State

Performance of Deep Q-Learning

• Left (stronger than human)

Case Study: Go (MCTS)

- Monte-Carlo Tree Search:
 - Monte-Carlo (MC) Learning (z: 1 for win, 0 for loss)
 - Multi-Armed Bandits
 - Planning
- Very successful for Go in the past decade.
- And also applied to others successfully.
 - Other games like Havannah, Hex, GGP
 - Other applications, like mathematical optimization problems (scheduling, UCP, camera coverage).

Go – One of the Most Popular Games

- Game tree complexity: about 10^{360}
 - It is just impossible to try all moves.

Can Alpha-Beta Search Work for Go?

- Alpha-Beta Search
 - Very successful for many games such as chess.
 - ▶ Almost dominate all computer games before 2006.
 - ▶ This is what Deep Blue used.
- The key for chess: evaluate position accurately and efficiently.
 - E.g., features:

_	King: 1000	
_	Queen: 200	max
_	Rook: 100	
_	Knight: 80	min
_	Bishop: 70	
_	Pawn: 30	may

Guarded Pawns: 30Guarded Knights: 40

min

max

- Problem for chess:
 - need to consult with experts for feature values.

Why not alpha-beta search for Go?

- No simple heuristics like chess.
 - Only black/white pieces (no difference)
- Must know life-and-death
 - But, all are correlated.
 - Like the lower-right one.
 - But, this is very complex.

Since no simply heuristics to evaluate,

- Why not use Monte-Carlo?
- Calculate it based on stochastics.

Game 1: AlphaGo vs. 李世石

Rules Overview Through a Game (opening 1)

 Black/White move alternately by putting one stone on an intersection of the board.

The example was given by B. Bouzy at CIG'07.

Rules Overview Through a Game (opening 2)

• Black and White aims at surrounding large « zones »

Rules Overview Through a Game

(atari 1)
A white stone is put into « atari » : it has only one liberty left.

Rules Overview Through a Game (defense)

• White plays to connect the one-liberty stone yielding a four-stone white string with 5 liberties.

Rules Overview Through a Game (atari 2)

• It is White's turn. One black stone is atari.

Deep Learning and Practice Reinforcement Learning Rules Overview Through a Game (capture 1)

• White plays on the last liberty of the black stone which is removed

Rules Overview Through a Game (human end of game)

• The game ends when the two players pass. (Experts would

stop here)

Rules Overview Through a Game (contestation 1)

• White contests the black « territory » by playing inside.

Rules Overview Through a Game (contestation 2)

• White contests black territory, but the 3-stone white string

has one liberty left

Rules Overview Through a Game (follow up 1)

• Black has captured the 3-stone white string

Rules Overview Through a Game (follow up 2)

• White lacks liberties...

Rules Overview Through a Game (follow up 3)

- Black suppresses the last liberty of the 9-stone string
- Consequently, the white string is removed

Rules Overview Through a Game (follow up 4)

 Contestation is going on. White has captured four black stones.

Rules Overview Through a Game (concrete end of game)

• The board is covered with either stones or « eyes ».

Programs know to end.

Stochastics

- Calculate values based on stochastics.
 - Good example: calculate π .

Deep Learning and Practice

Reinforcement Learning

Multi-Armed Bandit Problem

(吃角子老虎問題)

- Assume that you have infinite plays
 - How to choose the one with the maximal average return?

Exploration vs. Exploitation

- Example for the exploration vs exploitation dilemma
 - Exploration: is a long-term process, with a risky, uncertain outcome.
 - Exploitation: by contrast is short-term, with immediate, relatively certain benefits

Deterministic Policy: UCB1

- UCB: Upper Confidence Bounds. [Auer et al., 2002]
- Observed rewards when playing machine $i: X_{i,1}, X_{i,2}, ...$
- Initialization: Play each machine once.
- Loop:
 - Play machine *j* that maximizes,

$$\bar{X}_j + \sqrt{\frac{2\log n}{T_j(n)}}$$

where n is the overall number of plays done so far,

$$\bar{X}_{i,s} = \frac{1}{s} \sum_{i=1}^{s} X_{i,j} \quad , \quad \bar{X}_i = \bar{X}_{i,T_i(n)} ,$$

- Key:
 - Ensure optimal machine is played exponentially more often than any other machine.

Cumulative Regret

- Assume Machines M₁, M₂, M₃, M₄, M₅
 - Win rates: 37%, 42%, 47%, 52%, 57%
 - Trial numbers: n_1 , n_2 , n_3 , n_4 , n_5 .

Monte-Carlo Tree Search

- A kind of planning
- A kind of Reinforcement learning

Strength of Go Program after MCTS

• [Schaeffer et al., 2014]

Strength grew fast, after MCTS.

Case Study: AlphaGo

• Use stochastic policy gradient ascent to maximize the likelihood of the human move *a* selected in state *s*

$$\Delta\theta = \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) \cdot z$$

- $-\theta$: network parameter.
- $-\alpha$: learning rate
- z: the value of the episode
 - \blacktriangleright win/loss (1/-1) of the game

Case Study: Pole Balancing

[Lillicrap 2016] Continuous control with deep reinforcement learning, ICLR, 2016 (DeepMind),

- Deep Policy Gradient
 - Actor-critic, model-free algorithm
 - underlying the success of Deep Q-Learning to the continuous action domain

$$\Delta\theta = \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) \cdot Q_w(s_t, a_t)$$

