Elektronika

XVII. Hangolt erősítők Teljesítmény erősítők

17.1. Erősítő sávszélessége

Sávszélesség

Az a frekvencia tartomány ahol jól erősít Határ frekvenciák: ahol 3dB-el lecsökken a feszültség Sávszélesség, B = ff − fa (felső határfrekvencia − alsó határ frekvencia) Sávszélesség alapján az erősítő lehet: szélessávú vagy hangolt (szelektív) Szelektív erősítő: ha nagyon kicsi a sávszélesség → pl. különböző rádió vagy TV csatornák szétválasztása egymástól

17.2. Szelektív erősítők

Szelektív (hangolt) erősítő

- csak egy adott kis frekvencia sáv erősítése a cél (kicsi sávszélesség)
 - → pl. különböző rádió vagy TV csatornák közül csak az egyik erősítése, a többié nem
- általában nagy frekvencián üzemelnek (> 100 kHz)
- az erősítő munkaellenállása (Rc vagy RD) frekvencia függő impedancia
 - → párhuzamos vagy soros rezgőkör

Közös emitteres hangolt erősítő

Jellemzői:

- a frekvencia sáv kiválasztása,
 behangolása → rezgőkörrel
- a sáv közepére hangoljuk
- hátrányok:
 - nem elég meredek!
 - Au a sávban nem egyenletes!
- egyenáramúlag a párhuzamos rezgőkör rövidzár! → Rc = 0
- a rezonancia frekvencián (és közelében)
 Rc = Rp (a rezgőkör párhuzamos veszteségi ellenállása)

Minta feladat 1.


```
\begin{array}{lll} \text{UT} = 12 \ \text{V} & \text{Rt} = 20 \ \text{k}\Omega \\ \text{UCE} = 6 \ \text{V} & \text{IE} \approx \text{IC} = 2 \ \text{mA} \\ \text{UBE} = 0,65 \ \text{V} & \text{h11e} = 8 \ \text{k}\Omega \\ \text{h22e} = 25 \ \text{\muS} & \text{h21e} = 240 \\ \text{L} = 2\text{mH} & \text{C} = 1\text{nF} & \text{Rp} = 100 \ \text{k}\Omega \end{array}
```

- Számoljuk ki a szükséges ellenállásokat!
- Számoljuk ki a rezonancia frekvenciát, bemeneti és kimeneti ellenállást, a feszültség erősítést és a sávszélességet!

Minta feladat 1. munkapont beállítás

$$U_T = 12 V$$

UCE = 6 V
$$IE \approx IC = 2 \text{ mA}$$

UBE = 0,65 V $h_{21e} = 240 = B$

- Számoljuk ki a szükséges ellenállásokat!

Megoldás

Áramok

$$IB = IC / B = 2 \text{ mA} / 240 = 0,00833 \text{ mA}$$

$$I_0 = 10 * I_B = 10 * 0,00833 \text{ mA} = 0,0833 \text{ mA}$$

$$IE = IC + IB = 2,00833 \text{ mA}$$

Jobb oldali hurok

$$UT - UCE - UE = 0$$
 \rightarrow $UE = UT - UCE = 12 - 6 = 6 V$

Re = Ue / Ie =
$$6 \text{ V} / 2,00833 \text{ mA} = 2,987 \text{ k}\Omega$$

kis hurok

$$UBE + UE - UB = 0$$

$$U_B = U_{BE} + U_E = 0.65 + 6 = 6.65 \text{ V}$$

$$R_2 = U_B / I_0 = 6,65 \text{ V} / 0,0833 \text{ mA} = 79,83 \text{ k}\Omega$$

Nagy hurok

$$U_{R1} = U_T - U_B = 12 - 6,65 = 5,35 \text{ V}$$

 $R_1 = U_{R1} / (I_0 + I_B) = 5,35 \text{ V} / 0,09163 \text{ mA} = 58,387 \text{ k}\Omega$

Minta feladat 1. Váltakozó áramú számítás, fo frekvencián

A rezgőkört terhelő veszteségi ellenállás:

Rv = Rki x Rt = 11,76 kΩ
Jósági tényező (terhelt)
$$\rightarrow$$

Qt = Rv / XL = 11,76 / 1,41 = 8,34
Terhelt sávszélesség \rightarrow
Bt = fo / Qt = 112,539 kHz / 8,34 = 13,49 kHz

$$R_t = 20 kΩ$$
 $h_{11e} = 8 kΩ$ $h_{22e} = 25 μS$ $h_{21e} = 240$ $L = 2mH$ $C = 1nF$ $R_p = 100 kΩ$

 Számoljuk ki a rezonancia frekvenciát, bemeneti és kimeneti ellenállást, a feszültség erősítést és a sávszélességet!

Megoldás

Rezonancia frekvencia:

fo = 1 / (2π*
$$\sqrt{L*C}$$
)
fo = 1 / (2π* $\sqrt{0,002*0,000000001}$)
fo = 112,539 kHz
XL = XC = 2π * fo * L = 1,41 kΩ

bemeneti ellenállás: Rbe = (R1 x R2) x h11e Rbe = (58,387 x 79,83 k Ω) x 8 k Ω = 6,47 k Ω

kimeneti ellenállás: Rki = RC x 1/h22e Rki = $100 \times 40 \text{ k}\Omega$ = $28.57 \text{ k}\Omega$

feszültség erősítés: Au = - h21e * (Rki x Rt) / h11e

 $Au = -240 * (28,57 \times 20 \text{ k}\Omega) / 8 \text{ k}\Omega = -352,9$

Minta feladat 2.

$$\begin{array}{lll} U_T \, = \, 12 \; V & R_t \, = \, 2 \; k\Omega \\ U_{CE} \, = \, 6 \; V & I_{E} \, \approx \, I_{C} \, = \, 2 \; mA \\ U_{BE} \, = \, 0,65 \; V & h_{11e} \, = \, 8 \; k\Omega \\ h_{22e} \, = \, 25 \; \mu S & h_{21e} \, = \, 240 \\ L \, = \, 0,2mH & f_0 \, = \, 1 \; MHz & R_p \, = \, 50 \; k\Omega \\ n_1 \, = \, 4^*n_2 & \end{array}$$

- Számoljuk ki a szükséges ellenállásokat! Ez ugyanaz mint az előző mintafeladat esetén!!
- Számoljuk ki a rezgőkör kapacitását, bemeneti és kimeneti ellenállást, a feszültség erősítést és a sávszélességet!

Munkapont beállítás

```
IB = Ic / B = 2 mA / 240 = 0,00833 mA

I0 = 10 * IB = 10 * 0,00833 mA = 0,0833 mA

IE = Ic + IB = 2,00833 mA

UT - Uce - Ue = 0 \rightarrow Ue = UT - Uce = 12 - 6 = 6 V

Re = Ue / Ie = 6 V / 2,00833 mA = 2,987 kΩ_

UBE + Ue - UB = 0

UB = UBE + Ue = 0,65 + 6 = 6,65 V

R2 = UB / I0 = 6,65 V / 0,0833 mA = 79,83 kΩ

UR1 = UT - UB = 12 - 6,65 = 5,35 V

R1 = UR1 / (I0 + IB) = 5,35 V / 0,09163 mA = 58,387 kΩ
```

Minta feladat 2. váltakozó áramú számítás, fo frekvencián

 $h_{11e} = 8 k\Omega$ $h_{21e} = 240$ L = 0.2mH $h_{22e} = 25 \mu S$ $R_t = 2 kΩ$ $f_0 = 1 MHz$ $R_p = 50 kΩ$ $n_1 = 4*n_2$

váltakozó áramú helyettesítő kép

bemeneti ellenállás: Rbe = (R1 x R2) x h11e Rbe = (58,387 x 79,83 k Ω) x 8 k Ω = 6,47 k Ω

fo frekvencián

A kimenet felől nézve

kimeneti ellenállás: Rki = $(n_2 / n_1)^2 * (Rp x 1/h_{22e})$ Rki = $(1 / 4)^2 * (50 x 40 k\Omega) = 1,39 k\Omega$

Minta feladat 2. váltakozó áramú számítás, fo frekvencián

 $h_{11e} = 8 k\Omega$ $h_{21e} = 240$ L = 0.2mH $h_{22e} = 25 \mu S$ Rt = 2 k Ω fo = 1 MHz

 $n_1 = 4*n_2$

 $R_p = 50 k\Omega$

váltakozó áramú helyettesítő kép

Megoldás

f₀ = 1 / (2π* $\sqrt{L*C}$) C = 1 / (L* (2π*f₀)²) = 126,65 pF X_L = X_C = 2π * f₀ * L = 1,26 kΩ

A rezgőkört terhelő veszteségi ellenállás:

 $Rv = (Rp \times 1/h22e) \times ((n_1 / n_2)^2 * Rt)$

Rv = 13,11 k Ω Jósági tényező (terhelt) \rightarrow Qt = Rv / XL = 13,11 / 1,26 = 10,4 Terhelt sávszélesség \rightarrow Bt = fo / Qt = 1000 kHz / 10,4 = 96,15 kHz

```
\begin{array}{l} U_{kip} = - \ i_b * \ h_{21e} * \ ((R_p \ x \ 1/h_{22e}) \ x \ ((n_1 \ / \ n_2)^2 * \ R_t)) \\ i_b = - \ (U_{be} \ / \ h_{11e}) \qquad \acute{es} \qquad U_{kis} = (n_2 \ / \ n_1) * U_{kip} \end{array}
```

Így a feszültség erősítés: $Au = -(n_2/n_1)*h_{21e}*((Rp x 1/h_{22e}) x ((n_1/n_2)^2*Rt)) / h_{11e}$ $Au = -(1/4)*240*13,11 k\Omega / 8 k\Omega = -98,33$

17.4. Szelektív erősítők

Földelt source kapcsolású hangolt erősítő

 jellemzői hasonlóak mint a földelt emitteresé

fo = 1 /
$$(2\pi^*\sqrt{L^*C})$$

fo = 1 / $(2\pi^*\sqrt{0,0001*0,0000000001})$
fo = = 1,59 MHz
Rezonancia frekvencián
 $\rightarrow XL = XC = 2\pi^*f_0 *L = 1 k\Omega$

$$\begin{array}{lll} U_T = 12 V & R_t = 100 \; k\Omega \\ I_{D0} = 2 mA & U_{GS0} = - 2 \; V \\ y_{22s} = 25 \; \mu S & y_{21s} = \; 4 \; mA \, / \, V \\ L = 0,1 mH & C = 100 pF & R_p = 80 \; k\Omega \end{array}$$

- Számoljuk ki a szükséges ellenállásokat!
- Számoljuk ki a rezonancia frekvenciát, a feszültség erősítést és a sávszélességet!

$$loo = lso = 2 \text{ mA}$$
 RG legyen $1 \text{ M}\Omega$
 $Us = -UGSO = 2 \text{ V}$
 $Rs = Us / lso = 2 \text{ V} / 2 \text{ mA} = 1 \text{ k}\Omega$

URD = 0 !! (egyen áramon a tekercs miatt)

Rki = Rp x
$$1/y_{22s}$$
 = 80 kΩ x $1/25$ μS
Rki = 80 x 40 kΩ = 26,67 kΩ

Erősítés rezonancia frekvencián →

Au = - y_{21s} * (R_{ki} x R_t)
Au = - 4 mA/V * (26,67x100 k
$$\Omega$$
) = -84

A rezgőkört terhelő veszteségi ellenállás:

Rv = Rp x 1/y22s x Rt = 21 kΩ
Jósági tényező
$$\rightarrow$$

Ot = Rv / XL = 21 / 1 = 21

 $B_t = f_0 / Q_t = 1,59 \text{ MHz} / 21 = 75,7 \text{ kHz}$

17.5. Feladatok

1. feladat:

$$\begin{array}{lll} U_T &= 9V & R_t = 20 \; k\Omega \\ I_{D0} = 2mA & U_{GS0} &= -3 \; V \\ y_{22s} = 25 \; \mu S & y_{21s} = \; 4 \; mA \, / \, V \\ L = 1,6mH & C = 0,4nF & R_p = 80 \; k\Omega \end{array}$$

- Számoljuk ki a szükséges ellenállásokat!
- Számoljuk ki a rezonancia frekvenciát, a feszültség erősítést és a sávszélességet!

17.5. Feladatok

2. feladat:

 $\begin{array}{lll} U_{T} = 10V & R_{t} = 10 \ k\Omega \\ U_{CE} = 5V & I_{E} \approx I_{C} = 1,1 mA \\ U_{BE} = 0,7V & h_{11e} = 8,5 \ k\Omega \\ h_{22e} = 20 \ \mu S & h_{21e} = 230 \\ L = 1 mH & C = 1 nF & R_{p} = 200 \ k\Omega \end{array}$

- Számoljuk ki a szükséges ellenállásokat!
- Számoljuk ki a rezonancia frekvenciát, a feszültség erősítést és a sávszélességet!

17.5. Feladatok

3. feladat:

$$\begin{array}{lll} \text{UT} &= 15 \text{ V} & \text{Rt} = 4 \text{ k}\Omega \\ \text{UCE} &= 7 \text{ V} & \text{IE} \approx \text{IC} = 2 \text{ mA} \\ \text{UBE} &= 0.7 \text{ V} & \text{h11e} = 8 \text{ k}\Omega \\ \text{h22e} &= 25 \text{ \muS} & \text{h21e} = 200 \\ \text{L} &= 1 \text{mH} & \text{fo} = 500 \text{ kHz} & \text{Rp} = 300 \text{ k}\Omega \\ \text{n1} &= 5 \text{*} \text{n2} \end{array}$$

- Számoljuk ki a szükséges ellenállásokat!
- Számoljuk ki a rezgőkör kapacitását,
 bemeneti és kimeneti ellenállást,
 a feszültség erősítést és a sávszélességet!

17.6. Műveleti erősítős kapcsolás

Hangolt erősítő

- a visszacsatoló ágban rezgőkör → az erősítés frekvencia függő → a rezonancia frekvencia környékén nagy, alatta és felette nagyon kicsi

Rezonancia frekvencia \rightarrow fo = 1 / (2 π * \sqrt{L} * \overline{C})

Rezonancia frekvencián (f₀) \rightarrow XL = XC \rightarrow visszacsatoló ágban Zv = Rp!!

$$\rightarrow$$
 Auv = - Rp / R1

Jósági tényező →
Q0 = Rp / XL
Sávszélesség →
B0 = fo / Q0

17.6. Műveleti erősítős kapcsolás

Minta feladat

Számoljuk ki a bemeneti ellenállás értékét , a rezonancia frekvenciát, a feszültség erősítést, a sávszélességet, a bemeneti és kimeneti feszültség értékét !

$$R1 = 18 \text{ k}\Omega \qquad Rt = 1 \text{ k}\Omega$$

$$Ug = 10\text{mV} \qquad Rg = 2 \text{ k}\Omega$$

$$L = 20\text{mH} \qquad C = 50\text{pF}$$

$$R_p = 450 \text{ k}\Omega$$

$$R_k = ?$$
 $R_{be} = ?$ $A_{uv} = ?$ $B = ?$


```
Rbe = R1 = 18 k\Omega

fo = 1 / (2\pi*\sqrt{L*C)

fo = 1 / (2\pi*\sqrt{0.02} * 0.00000000005)

fo = 159,155 kHz
```

$$\rightarrow$$
 XL = Xc = 2π*fo *L = 20 kΩ
 \rightarrow Au = - Rp / R1 \rightarrow Au = - 450/18 = -25
 \rightarrow Jósági tényező
Q0 = Rp / XL = 450/20 = 22,5

Ube = Ug * Rbe / (Rg +Rbe)
Ube =
$$10\text{mV}$$
* $18 \text{ k}\Omega$ / (2+18 k Ω) = 9 mV
Uki = Au * Ube = -25 * 9mV = -225 mV

Rp

17.7. Feladatok

1. feladat

Ube = ?

Számoljuk ki a bemeneti ellenállás értékét , a rezonancia frekvenciát, a feszültség erősítést, a sávszélességet, a bemeneti és kimeneti feszültség értékét !

$$R1 = 15 \text{ k}\Omega \qquad Rt = 1 \text{ k}\Omega$$

$$Ug = 24\text{mV} \qquad Rg = 3 \text{ k}\Omega$$

$$L = 4\text{mH} \qquad C = 40\text{pF}$$

$$R_p = 600 \text{ k}\Omega$$

$$Rk = ?$$
 $Rbe = ?$ $fo = ?$ $Auv = ?$ $B = ?$

Uki = ?

 R_p

17.7. Feladatok

1. feladat, megoldás

Számoljuk ki a bemeneti ellenállás értékét , a rezonancia frekvenciát, a feszültség erősítést, a sávszélességet, a bemeneti és kimeneti feszültség értékét !

$$R1 = 15 \text{ k}\Omega \qquad Rt = 1 \text{ k}\Omega$$

$$Ug = 24\text{mV} \qquad Rg = 3 \text{ k}\Omega$$

$$L = 4\text{mH} \qquad C = 40\text{pF}$$

$$R_p = 600 \text{ k}\Omega$$

$$Rk = ?$$
 $Rbe = ?$ $fo = ?$ $Auv = ?$ $B = ?$

Ube = ? Uki = ?


```
R<sub>be</sub> = R<sub>1</sub> = 15 kΩ

f<sub>0</sub> = 1 / (2π*\sqrt{L*C})

f<sub>0</sub> = 1 / (2π*\sqrt{0,004*0,00000000000})

f<sub>0</sub> = 397,89 kHz
```

Rezonancia frekvencián

$$\rightarrow$$
 XL = XC = 2π*f0 *L = 10 kΩ
 \rightarrow AU = - Rp / R1 \rightarrow AU = - 600/15 = -40

→ Jósági tényező
$$Q_0 = R_p / X_L = 600/10 = 60$$

→ Sávszélesség, Bo = fo / Qo = 6,63kHz

Ube = Ug * Rbe / (Rg +Rbe)
Ube =
$$24\text{mV}$$
* $15 \text{ k}\Omega$ / (3 +15 k Ω) = 20 mV
Uki = Au * Ube = -40 * 20mV = -800 mV

Rp

17.8. Teljesítmény erősítők

Nagyjelű erősítők

- Nagyjelű erősítő, teljesítmény erősítő: a kimeneti (meghajtó) fokozatok erősítő típusa
- cél: nagy feszültség (pl. 50V) és nagy teljesítmény (n*100W) leadása minél nagyobb hatásfokkal, minél kisebb torzítás mellett

<u>1. Típusai</u>

Üzemmód alapján lehet: A, AB, B, C vagy D osztályú

'A' osztályú – a munkapont lineáris szakaszán üzemel → kicsi a torzítás, rossz a hatásfok

'B' osztályú – a lezárás határán üzemel → csak az egyik félhullámot erősíti → 2db tranzisztor kell !

'AB' osztályú – 'A' és 'B' között üzemel

'C' osztályú – kicsit lezárva üzemel → még egy félhullámot sem visz át teljesen!

'D' osztályú – kapcsoló üzemű (a tranzisztorok teljesen kinyitva vagy zárva)

17.8. Teljesítmény erősítők

2. Határértékek

Nagy feszültség és áram ingadozások a munkapont körül → könnyen túlléphetjük az alkatrész maximális paramétereit !!

ICmaxmaximális kollektor áramUCEmaxmaximális kollektor-emitter feszültség (letörés)Ummaradék feszültség (telítési tartomány)Pdmaxmaximális disszipációs teljesítmény, Pd ≈ UCE*IC

17.9. Emitterkövető kapcsolás

Teljesítmény erősítők

- FE alapkapcsolás → nagy teljesítmény erősítés, DE nagy kimeneti ellenállás !! → transzformátoros csatolás
- FC alapkapcsolás → közepes teljesítmény erősítés, kicsi kimeneti ellenállás

1. Emitterkövető kapcsolás

FC alapkapcsolás, 'A' osztályú

kicsi a torzítás, de rossz a hatásfok!

$$A_u \approx 1$$

 $A_i \approx \beta/2$ ha $R_t = R_E$

Hátrány: mindig folyik áram a tranzisztoron, akkor is ha Ube=0 !!

→ rossz hatásfok

Ukimax = Ut/2 ha Rt=RE

Pkimax = Ut²/(8*RE) ha Rt=RE

PDmax = Ut²/RE tranzisztor max.

veszteségi teljesítménye

PT - telepből felvett max. teljesítmény

PT ≈ 2*PDmax

Hatásfok: $\eta = 100^* \text{ Pkimax / PT} = 6,25\%$

17.9. Emitterkövető kapcsolás

2. Ellenütemű komplementer emitterkövető elve

'B' osztályú

a nyugalmi kollektor áram közel 0

Pkimax = $Ut^2/(2*Rt)$ PD = $(4-\pi)*Ut^2/(4*\pi*Rt)$ tranzisztor veszteségi teljesítménye, ha K=1 PDmax = $Ut^2/(\pi^2*Rt)$ tranzisztor max. veszteségi teljesítménye, ha K=0,6 (2/ π) PT = Pkimax + 2*PDmax telepből felvett max. teljesítmény

Hatásfok: $\eta = 100^*$ Pkimax / PT = K* π /4 \rightarrow függ a kivezérléstől ! ha K=1 \rightarrow $\eta = 78,5\%$

- Ha Ube=0 → mindkét tranzisztor zárva, Ic=0
- Ha Ube>0 → felső tranzisztor kinyit → felső félhullámot ez erősíti
- Ha Ube<0 \rightarrow alsó tranzisztor kinyit \rightarrow alsó félhullámot ez erősíti

Előnye: a nagyon jó hatásfok

Hátrány: torzítás kis bemeneti feszültségnél ! \rightarrow ha |Ube| < 0,6 V \rightarrow Uki \approx 0 !! mert még nem nyit ki a tranzisztor

17.9. Emitterkövető kapcsolás

3. Ellenütemű komplementer emitterkövető működése

Ha Ube>0 → T2 zár, T1 kinyit → felső félhullámot ez erősíti

Ha Ube<0 \rightarrow T1 zár, T2 kinyit \rightarrow alsó félhullámot ez erősíti

1. AB vagy A osztályú ellenütemű emitterkövető elve

'AB' osztályú → kicsit nyitva a tranzisztorok, akkor is ha Ube = 0 → kicsi nyugalmi kollektor áram

Nyitó bázis-emitter előfeszítés kell!

Így nemcsak 'AB' osztályú, hanem 'A' osztályú beállítást is meg lehet valósítani

'A' osztályú

 $\eta_{\text{max}} = 50\%$ Ic0 ≈ 0.5 *Ikimax

'AB' osztályú

$$\eta = 50 - 78\%$$

 $lc0 \approx 0.05*lkimax - lc0 \approx 0.1*lkimax$

2. gyakorlati megvalósítások

a, nyitó bázis-emitter előfeszítés diódával

b, munkapont stabilizálás emitter ellenállással

c, munkapont stabilizálás emitter ellenállással és a bázis feszültség stabil értéken tartásával → áramgenerátor

Az emitter ellenállás (RE) csak kis értékű lehet !! mert rontja a hatásfokot

d, nyitó bázis-emitter előfeszítés tranzisztoros szinteltolóval, munkapont stabilizálás emitter ellenállással és a bázis feszültség stabil értéken tartásával → áramgenerátor

17.11. Teljesítményerősítő tipikus kapcsolások

1. kis kimeneti áramú

17.11. Teljesítményerősítő tipikus kapcsolások

2. nagy kimeneti áramú

Komplementer Darlington tranzisztorok, T1-T1' és T2-T2'

RE $\rightarrow 1-4\Omega$

 $Rz - D_3$ áram határolás $Rz \sim 0.5 \Omega$

 $I_{kimax} \approx Uz / Rz$

1. 'D' osztályú üzemmód

Kapcsoló üzemű (a tranzisztorok teljesen kinyitva vagy zárva). Nem a jel amplitúdóját erősítjük, nem az amplitúdó hordozza az információt, hanem vagy:

- impulzus-szélesség modulációt (PWM) használunk, ilyenkor a bemenő vezérlőjellel arányosan változik az impulzusszélesség (de a frekvencia állandó)
- impulzus-sűrűség modulációt (PDM) használunk, ilyenkor a bemenő vezérlőjellel arányosan változik az impulzus periódusideje (de az impulzusszélesség állandó)

Csak az erősítő kimenetén alakítjuk ezt át amplitúdó változássá (PWM esetén aluláteresztő szűrővel), hogy a hangszórót meg tudjuk hajtani.

Előny: jó hatásfok (90% körül), kisebb méret, kevesebb hő termelés

2. PWM

- PWM (Pulse Width Modulation → impulzus szélesség moduláció)
- Egy négyszögjel kitöltési tényezőjét változtatjuk ! (mennyi ideig van magas szinten ill. alacsony szinten)
- A négyszögjel frekvenciája és amplitúdója nem változik.
- a kitöltési tényezőt százalékban szokták megadni. Egy 50%-os PWM jel azt jelenti, hogy a jel az idő felében be, míg a másik felében ki van kapcsolva.
- Az effektív feszültség a kitöltési tényezővel lesz arányos!

PWM

forrás: Ruzsinszki Gábor: Programozható Elektronikák

3. 'D' osztályú erősítő felépítése

forrás: Digi-Key Electronics

Az analóg bemenő jelet átalakítjuk PWM jellé, és ezzel a PWM jellel kapcsolgatjuk a kimeneti FET-eket (erősítik a PWM jelet). A kimeneti aluláteresztő szűrő visszaállítja az analóg hullámformát (amely az eredeti analóg jellel arányos, csak annak felerősített verziója)

4. 'D' osztályú erősítő változatok

Félhidas (Half Bridge)

4. 'D' osztályú erősítő változatok

Teljes hidas (Full Bridge)

