

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

Edexcel A Level Maths: Pure

2.2 Quadratics

Contents

- * 2.2.1 Quadratic Graphs
- * 2.2.2 Discriminants
- * 2.2.3 Completing the Square
- * 2.2.4 Solving Quadratic Equations
- * 2.2.5 Further Solving Quadratic Equations (Hidden Quadratics)

2.2.1 Quadratic Graphs

Your notes

Quadratic Graphs

What are quadratic graphs?

- The general equation of a quadratic graph is $y = ax^2 + bx + c$
- Their shape is called a parabola ("U" shape)
- Positive quadratics have a value of a>0 so the parabola is upright U
- Negative quadratics have a value of a < 0 so the parabola is upside down Ω

Using quadratic graphs

You need to be able to:

- **sketch** a quadratic graph given an equation or information about the graph
- determine, from the equation, the axes intercepts
- factorise, if possible, to find the roots of the quadratic function
- find the coordinates of the **turning point** (maximum or minimum)

You may have to rearrange the equation before you can find some of these things

Head to www.savemyexams.com for more awesome resources

Examiner Tip

- Your calculator may tell you the **roots** of a quadratic function and the coordinates of the turning point
- But don't rely on it think about how many marks the question is worth and how much method/working you should show
- Remember sometimes you'll need to rearrange an equation into the form $y = ax^2 + bx + c$

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

Worked example	

2

Sketch the graph of $y = 2x^2 + 5x - 12$ stating the coordinates of the axes intercepts and the turning point.

: AXES INTERCEPTS ARE (0,-12), (-4,0) AND ($\frac{3}{2}$,0)

Page 5 of 24

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

4 ′ 8 ′	

Head to www.savemyexams.com for more awesome resources

2.2.2 Discriminants

Your notes

Discriminants

What is a discriminant?

- ullet The discriminant is the part of the quadratic formula that is under the square root sign b^2-4ac
- It is sometimes denoted by the Greek letter Δ (capital delta)

How does the discriminant affect graphs and roots?

There are three options for the outcome of the discriminant:

- If $b^2 4ac > 0$ the quadratic crosses the x-axis **twice** meaning there are **two distinct real roots**
- If $b^2 4ac = 0$ the quadratic touches the x-axis **once** meaning there is **one real root** (also called repeated roots)
- If $b^2 4ac < 0$ the quadratic **does not cross** the x-axis meaning there are no real roots

$$1F b^2 - 4ac = 0$$

$$1F b^2 - 4ac < 0$$

Discriminant and inequalities

- You need to be able to set up and solve equations and inequalities (often quadratic) arising from the discriminant
- Sketch the quadratic and decide whether you're looking above or below zero to write your solutions correctly

Head to www.savemyexams.com for more awesome resources

Examiner Tip

- When questions just mention "real roots", the roots could be **distinct** or **repeated** (i.e. they arent talking about complex numbers!)
- In these cases, you only need to worry about solving $b^2 4ac \ge 0$
- When solving using inequalities always sketch the quadratic and decide whether you're looking above or below zero to help write your solutions correctly

Worked example

Find the values of \boldsymbol{k} for which the quadratic function

$$f(x) = 2kx^2 + kx - k + 2$$
 has real roots.

$$f(x) = 2kx^{2} + kx - k + 2$$

$$(k)^{2} - 4(2k)(-k+2) \geqslant 0$$

$$k^{2} - 8k(2-k) \geqslant 0$$

$$k^{2} - 16k + 8k^{2} \geqslant 0$$

$$9k^{2} - 16k \geqslant 0$$

$$k(9k - 16) \geqslant 0$$

$$k(9k - 16) \geqslant 0$$

$$k \leqslant 0 \text{ OR } k \geqslant \frac{16}{9}$$

$$Capyright C Save My Exams. All Rights Reserved$$

$$Save my exams.$$

Head to www.savemyexams.com for more awesome resources

2.2.3 Completing the Square

Your notes

Completing the square

What is completing the square?

- Completing the square is another method used to solve quadratic equations
- It simply means writing $y = ax^2 + bx + c$ in the form $y = a(x+p)^2 + q$
- It can be used to help find other information about the quadratic like coordinates of the turning point

How do I complete the square?

The method used will depend on the value of the coefficient of the \mathbf{x}^2 term in $y = ax^2 + bx + c$

When a = 1

- p is half of the coefficient of b
- \blacksquare qisc-p²

e.g.
$$y = x^2 + 8x - 2$$

STEP 1: "
$$p = \frac{b}{2}$$
" $p = \frac{8}{2} = 4$

STEP 2: "
$$q=c-p^2$$
" $q=-2-4^2=-18$

STEP 3: WRITE THE ANSWER!

$$y=(x+4)^2-18$$

Copyright © Save My Exams. All Rights Reserved

When a≠1

- You first need to take a out as a factor of the x^2 and x terms
- Then continue as above

e.g. $y = 4x^2 + 16x + 5$

Your notes

STEP 1: FACTOR "a" ON RHS $y = 4[x^2 + 4x] + 5$

STEP 2: WORKING WITH
$$[x^2+4x]$$
 ONLY, " $p=\frac{b}{2}$ "
$$p=\frac{4}{2}=2$$

STEP 3: STILL WITH
$$[x^2+4x]$$
 ONLY, " $q=c-p^2$ " $q=0-2^2=-4$

STEP 4: EXPAND AND SIMPLIFY
$$y = 4[(x+2)^2-4]+5$$

 $y = 4(x+2)^2-16+5$
 $y = 4(x+2)^2-11$

Copyright © Save My Exams. All Rights Reserved

When is completing the square useful?

- Completing the square helps us find the **turning point** on a quadratic graph
- It can also help you **create the equation** of a quadratic when given the turning point

■ It can also be used to **prove** and/or **show** results using the fact that a squared term will always be greater than or equal to 0

Examiner Tip

- Sometimes the question will explicitly ask you to complete the square
- Sometimes it will even remind you of the form to write it in
- But sometimes it will expect you to spot that completing the square is what you need to do to help with other parts of the question... like finding turning points!

 $Head \ to \underline{www.savemyexams.com} \ for more \ awe some \ resources$

✓ Worked example	i
	i
	i

- (a) Show $2x^2 + 6x + k > 0$ for $k > \frac{9}{2}$
- (b) What can you say about the roots of the equation

$$2x^2 + 6x + k = 0$$
 when $k = \frac{9}{2}$?

(a) ">0" IMPLIES A MINIMUM VALUE — SO COMPLETE THE SQUARE WITH "a≠1"

NOTE WITH STEP 2 & STEP 3
YOU ARE ONLY WORKING WITHIN
THE SQUARE [] BRACKETS

$$= 2 (x + \frac{3}{2})^2 - \frac{9}{2} + k$$
$$= 2 (x + \frac{3}{2})^2 + k - \frac{9}{2}$$

STEP 4: EXPAND AND SIMPLIFY

 $2(x+\frac{3}{2})^2 \ge 0$ FOR ALL VALUES OF x

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

(b) WHEN $k=\frac{9}{2}$ THE QUADRATIC BECOMES $2(x+\frac{3}{2})^2$ AND SO THERE WILL ONLY BE ONE ROOT (OR REPEATED ROOTS) TO THE EQUATION $2x^2+6x+k=0$

Copyright © Save My Exams. All Rights Reserved

2.2.4 Solving Quadratic Equations

Your notes

Solving Quadratic Equations

Solving quadratic equations

- We can solve quadratic equations when they are written in the form $ax^2 + bx + c = 0$
- If given an unusual looking equation, try to rearrange it into this form first
- The three ways to solve a quadratic you must know are
 - Factorising
 - Completing the square
 - Quadratic formula

Solving a quadratic equation by factorising

- Factorising is a great way to solve a quadratic quickly but won't work for all quadratics
- If the numbers are simple, try factorising first
- Once factorised, set each bracket to = 0 and solve

Solving a quadratic equation by completing the square

- Completing the square will work for any quadratic
- Make sure you know how to complete the square
- Remember this will help with questions involving turning points too

Head to www.savemyexams.com for more awesome resources

COMPLETING THE SQUARE

Solving a quadratic equation by the quadratic formula

- The quadratic formula might look complicated but it just uses the coefficients a, b and c from the quadratic equation
- The quadratic formula will work for any quadratic

Head to www.savemyexams.com for more awesome resources

QUADRATIC FORMULA

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

✓ save my exams

Solving a quadratic equation by using a calculator

- Most calculators now have the ability to solve quadratics
- Get used to how your calculator functions work

Head to www.savemyexams.com for more awesome resources

Copyright © Save My Exams. All Rights Reserved

• So the solution to the quadratic equation $2x^2 + 5x - 12 = 0$ are x = 1.5 and x = -4

Examiner Tip

- A calculator can be super-efficient but be aware some marks are for method
- There will never be many marks for solving a quadratic at AS/A level
- Use your judgement:
 - is it a "show that" or "prove" question?
 - how many marks?
 - how long is the question?
- Remember the quadratic formula with a song... there are loads of fun ones on YouTube

Solve the equation $x + 5 = \frac{12}{x}$.

Head to www.savemyexams.com for more awesome resources

2.2.5 Further Solving Quadratic Equations (Hidden Quadratics)

Your notes

Further Solving Quadratic Equations (Hidden Quadratics)

What are hidden quadratic equations?

- Hidden quadratic equations are quadratics written in terms of a function f(x)
- A normal quadratic appears in the form $ax^2 + bx + c = 0$
- Whereas a hidden quadratic appears in the form $a[f(x)]^2 + b[f(x)] + c = 0$
- This might look complicated but it simply means X has been replaced by f(x)
- e.g. $\sin^2 x + 2\sin x 3 = 0$ is just the hidden quadratic of $x^2 + 2x 3 = 0$ where $f(x) = \sin x$

How to solve hidden quadratic equations

- First rearrange the function into the form $a[f(x)]^2 + b[f(x)] + c = 0$
- Replacing the function and solving the 'normal' quadratic first
- Then substitute the function back into the solutions to solve the original quadratic

e.g. $2\cos x = 3 - \cos^2 x$ $0^{\circ} \le x \le 360^{\circ}$

STEP 1: REARRANGE INTO THE FORM $d[f(x)]^{2} + bf(x) + c = 0$ $cos^{2}x + 2cos x - 3 = 0$

STEP 2: "IGNORE" THE FUNCTION OF x

AND SOLVE AS A NORMAL QUDRATIC

USE A SUBSTITUTION, y=f(x) IF

YOU PREFER

$$y = \cos x$$
, $y^2 + 2y - 3 = 0$
 $(y+3)(y-1) = 0$
 $y=-3$ $y=1$

STEP 3: USE THESE SOLUTIONS, AND THE FUNCTION OF x, TO SOLVE THE ORIGINAL QUESTION

 $\cos x = -3$ $\cos x = 1$ NO SOLUTIONS x = 0, 360°

Worked example

Solve the equation $3^{2x+1} = 82 \times 3^x - 27$.

$$3^{1} \times 3^{2x} - 82 \times 3^{x} + 27 = 0$$

AWKWARD TO

SPOT BUT 82×3^{x}

IS THE CLUE

$$3(3^{x})^{2} - 82(3^{x}) + 27 = 0$$
 THIS IS NOW IN THE FORM $a[f(x)]^{2} + bf(x) + c = 0$

LET
$$y=3^x$$

 $3y^2 - 82y + 27 = 0$

$$(3y-1)(y-27) = 0$$

 $y = \frac{1}{3}$ $y = 27$

YOU DO NOT HAVE TO USE A SUBSTITUTION

$$3^{x} = \frac{1}{3}$$
 $3^{x} = 27$

Save my exams