4.5 Summary of curve sketching

微分應用之五: 畫圖.

如何畫圖?

找幾個點連起來?(X)點太少,或是這些點不夠關鍵,

用繪圖軟體畫?(X)計算不夠精準,位數不足,會誤導極值存在,看不出來.

Guidelines of sketching curve 注意事項

- A. Domain 定義域.
- B. Intercepts x-,y-軸交點: (x,0) with f(x)=0, and (0,f(0)).
- C. Symmetry 對稱性:

f is even 偶函數 if f(-x) = f(x): 對稱 y-軸 (x = 0); ex: $\cos x$; f is odd 奇函數 if f(-x) = -f(x): 對稱原點 (0,0); ex: $\sin x$; f is periodic 週期函數 if f(x+p) = f(x): 複製 [0,p]; ex: $\sin x$.

- D. **Asymptotes** 漸近線: (離原點越遠跟函數圖形越靠近的線.) Vertical Asymptote 垂直:x=a if $\lim_{x\to a/a^+/a^-} f(a) = \infty/-\infty$. (a 通常不在 domain, 只要看 a^+/a^- .) Horizontal Asymptote 水平:y=L if $\lim_{x\to\pm\infty} f(a)=L$. (if defined) Slant Asymptote 斜: y=mx+b if $\lim_{x\to\pm\infty} [f(x)-(mx+b)]=0$. (?)
- E. Interval of increasing/decreasing 遞增/減區間: Critical number c: f'(c) = 0 or does not exist. 以 c 分界考慮 f'(x) > 0: increasing, f'(x) < 0: decreasing.
- F. Local max/min 極值: The first/second derivative test:

For critical number c, f'(x): $\begin{cases} + \to - & \text{local max,} \\ - \to + & \text{local min,} \\ \text{no change no local max/min.} \end{cases}$ $f'(c) = 0 & f''(c) > 0 : \text{local min,} f'(c) = 0 & f''(c) < 0 : \text{local max.} \end{cases}$

G. Concavity & inflection point 凹性與反曲點: Find f''(p) = 0 or does not exist. 以 p 分界考慮 f''(x) > 0: Concave Upward, f''(x) < 0: Concave Downward; Inflection Point (p, f(p)): f is continuous and f''(x) change sign at p.

H. Just Sketch It. ✓

Example 0.1 Sketch
$$y = \frac{2x^2}{r^2 - 1}$$
.

Let
$$f(x) = \frac{2x^2}{x^2 - 1}$$
.

Let
$$f(x) = \frac{2x^2}{x^2 - 1}$$
.
A. Domain $\{x \neq \pm 1\} = (-\infty, -1) \cup (-1, 1) \cup (1, \infty)$.

B. Intercept (0,0).

C.
$$f(-x) = f(x)$$
 even.

D.
$$\lim_{x \to 1^{+}} f(x) = \infty$$
 or $\lim_{x \to 1^{-}} f(x) = -\infty$, v.a.: $x = 1$.

C.
$$f(-x) = f(x)$$
 even.
D. $\lim_{x \to 1^+} f(x) = \infty$ or $\lim_{x \to 1^-} f(x) = -\infty$, v.a.: $x = 1$.
 $\lim_{x \to -1^+} f(x) = -\infty$ or $\lim_{x \to -1^-} f(x) = \infty$, v.a.: $x = -1$.
 $\lim_{x \to \pm \infty} f(x) = 2$. h.a: $y = 2$.
E-G.

$$\lim_{x \to a} f(x) = 2$$
. h.a: $y = 2$

$$f' = \frac{-4x}{(x^2 - 1)^2}$$
, $f' = 0$ when $x = 0$, \nexists when $x = \pm 1$ (not in domain).

	< -1	-1	-1 < x < 0	0	0 < x < 1	1	1 <
f'	+	∄	+	0	_	∄	_
f''	+	∄		_		∄	+
		no		max		no	

Skill: 增減以臨界值作分界, 每段中代入好算的數字判斷 f' 的正負.

Example 0.2 Sketch
$$f(x) = \frac{x^2}{\sqrt{x+1}}$$
.

A. Domain
$$\{x > -1\} = (-1, \infty)$$
.

B. Intercept
$$(0,0)$$
.

D.
$$\lim_{x \to -1^+} f(x) = \infty$$
. v.a.: $x = -1$.

$$\lim f(x) = \infty$$
. h.a. none

$$E-\widetilde{G}$$

D.
$$\lim_{x \to -1^+} f(x) = \infty$$
. $v.a.: x = -1$.
 $\lim_{x \to \infty} f(x) = \infty$. $h.a: none$.
 $E-G$.
 $f' = \frac{x(3x+4)}{2(x+1)^{3/2}}, f' = 0 \text{ when } x = 0(, x = -\frac{4}{3} \notin (-1, \infty))$.

$$f'' = \frac{3x^2 + 8x + 8}{4(x+1)^{5/2}} > 0. \ (Both \ does \ not \ exist \ when \ x = -1 \notin (-1, \infty)).$$

(分子用判別式
$$b^2 - 4ac = 8^2 - 4 \times 3 \times 8 < 0$$
 或 $3x^2 + 8x + 8 = x^2 + 2(x + 4)^2 \ge 0$.)

		<u> </u>	1 < x	< 0	0	0 <
f	:/		_		0	+
f	//				+	
				-	min	

Note: 知道定義域的好處: 沒有圖就不用畫到那邊.

Skill: 臨界值不在定義域的不用看!

Attention: 要在定義域的才算臨界值, 不要數錯!

Example 0.3 Sketch $f(x) = xe^x$.

- A. Domain \mathbb{R} .
- B. Intercept (0,0).
- C. No symmetry.

D.
$$\lim_{x \to \infty} f(x) = \infty$$
, (不可以寫 $= \infty \cdot e^{\infty} = \infty \cdot \infty$, 直接寫 $= \infty$.)

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x e^x = \lim_{x \to -\infty} \frac{x}{e^{-x}} \left(\infty \cdot \mathbf{0} \to \frac{\infty}{\infty} \right)$$

$$f' = e^x(1+x), f' = 0 \text{ when } x = -1.$$

$$f' = e^x(1+x), f' = 0 \text{ when } x = -1.$$

 $f'' = e^x(2+x), f'' = 0 \text{ when } x = -2.$

ĺ	< -2	$\begin{vmatrix} -2 \end{vmatrix}$	-2 < x <	-1	-1	-1 <
f'			_		0	+
f''	_	0		Н	-	
		IP			min	

Skill: 凹性找 f''(x) = 0 or \nexists 的地方 (f' 的臨界值) 做分界. Note: 漸近線剛好是座標軸 (x = 0 or y = 0) 可以省略標示.

Example 0.4 Sketch
$$f(x) = \frac{\cos x}{2 + \sin x}$$
.

- A. Domain \mathbb{R} . B. Intercept $((\frac{1}{2} + n)\pi, 0)$, $(0, \frac{1}{2})$. C. Periodic with period 2π . Draw $[0, 2\pi)$ and repeat.
- D. No asymptote.

E-G.
$$f' = -\frac{1+2\sin x}{(2+\sin x)^2}, \ f' = 0 \ \text{when } x = \frac{7}{6}\pi, \frac{11}{6}\pi. \ (只看 [0,2\pi).)$$

$$f'' = \frac{-2\cos x(1-\sin x)}{(2+\sin x)^2}, \ f'' = 0 \ \text{when } x = \frac{\pi}{2}, \frac{3}{2}\pi. \ (只看 [0,2\pi).)$$

	(2 +	$\sin x$;)-			2 2			
	$\begin{bmatrix} 0 \\ \frac{\pi}{2} \end{bmatrix}$	$\frac{\pi}{2}$	$\frac{\pi}{2}$ $\frac{7}{6}\pi$	$\frac{7}{6}\pi$	$rac{7}{6}\pi \ rac{3}{2}\pi$	$\frac{3}{2}\pi$	$\frac{3}{2}\pi$ $\frac{11}{6}\pi$	$\left \frac{11}{6} \pi \right $	$\frac{11}{6}\pi$ 2π
f'	_	_		0		+		0	_
f''	_	0		+		0		_	
		IP		min		IP		max	

Skill: 看出週期 (通常是三角的) 函數畫一段就夠了.

Example 0.5 Sketch $f(x) = \ln(4 - x^2)$.

A. Domain
$$(-2, 2)$$
.

B. Intercept
$$(0, \ln 4), (\pm \sqrt{3}, 0)$$
.

C.
$$f(-x) = f(x)$$
, even.

D.
$$\lim_{x \to 2^{-}} f(x) = -\infty$$
, $\lim_{x \to -2^{+}} f(x) = -\infty$, v.a.: $x = 2$, $x = -2$.

$$E$$
– G .

D.
$$\lim_{x \to 2^{-}} f(x) = -\infty$$
, $\lim_{x \to -2^{+}} f(x) = -\infty$, $v.a.: x = 2$, $x = -2$.
 $E-G$.

 $f' = \frac{-2x}{4-x^2}$, $f' = 0$ when $x = 0$. $(\nexists \text{ when } x = \pm 2 \notin (-2,2)$.)

$$f'' = \frac{-8 - 2x^2}{(4 - x^2)^2} < 0. \ (\nexists \ when \ x = \pm 2 \notin (-2, 2).)$$

	$-2 \sim 0$	0	$0 \sim 2$
f'	+	0	_
f''			
		max	

Example 0.6 Sketch $f(x) = \frac{x^3}{x^2 + 1}$.

- A. Domain \mathbb{R} .
- B. Intercept (0,0).
- C. f(-x) = -f(x), odd.
- $D. \lim_{x \to \pm \infty} f(x) = \pm \infty, \text{ no } v.a. \text{ nor } h.a.$

Skill: 當 $x \to \pm \infty$ 很大/小, +1 影響不大, $\frac{x^3}{x^2 + 1} \approx x$.

$$\lim_{x \to \pm \infty} [f(x) - x] = \lim_{x \to \pm \infty} (\frac{x^3}{x^2 + 1} - x) = \lim_{x \to \pm \infty} \frac{-x}{x^2 + 1} (\frac{\infty}{\infty})$$

$$\stackrel{l'H}{=} \lim_{x \to \pm \infty} \frac{-1}{2x} = 0, \text{ Slant asymptote: } y = x.$$

$$E-G.$$

$$f' = \frac{x^2(x^2 + 3)}{(x^2 + 1)^2}, f' = 0 \text{ when } x = 0.$$

$$f' = \frac{x^2(x^2+3)}{(x^2+1)^2}, \ f' = 0 \ when \ x = 0.$$

$$f'' = \frac{2x(3-x^2)}{(x^2+1)^3}, \ f'' = 0 \ when \ x = 0, \pm\sqrt{3}.$$

	$<-\sqrt{3}$	/	-	$\sqrt{3} < x$	< 0	0	0 <	< x < v	$\sqrt{3}$	$ \sqrt{3} $	$\sqrt{3}$ <
f'	+					0	+				
f''	+	0		_		0	+		0	_	
		IP				IP				IP	

Note: 何時有斜漸進線? 如果是有理函數
$$\frac{f(x)}{g(x)}$$
, f 的次數比 g 的次數恰多 1.

Skill: 有理函數得到斜漸進線? 用長除法
$$\frac{f(x)}{g(x)} = \boxed{mx+b} + \frac{r(x)}{g(x)}$$
.

 \implies S.A.: y = mx + b.

Ex:
$$\frac{x^3}{x^2+1} = x + \frac{-x}{x^2+1}$$
.

 x
 x^2+1
 x^3
 x^3

Note: 有理函數以外很難猜, ex: $x - \tan^{-1} x$ (Exercise 4.5.71), 要驗證: $\lim_{x \to \pm \infty} |f(x) - (mx + b)| = 0$.

Do some practice: Exercise 4.5.61 \sim 68 (rational function).

Exercise 4.5.69.(exponential function) $1 + \frac{1}{2}x + e^{-x}$. (S.A.: $y = 1 + \frac{1}{2}x$.)

Exercise 4.5.70.(exponential function) $1 - x + e^{1+x/3}$. (S.A.: y = 1 - x.) (Hint: $\lim_{x \to -\infty} e^x = 0$.)

Exercise 4.5.72.(root function)
$$\sqrt{x^2 + 4x}$$
. (S.A.: $y = x + 2$, $y = -x - 2$.) (Hint: $\sqrt{x^2 + 4x} = \sqrt{(x+2)^2 - 4} \approx \sqrt{(x+2)^2} = |x+2|$.)