

Introduction to Convolutional Neural Networks

CNN Basics & Paper Review

Table of contents

on Computer vision algorithm

Key differences of Between CNN & ANN

O2 FNN & RBM, RNN

o8 None

os Artificial Neural Network

9 None

O4 ANN & CNN

10 None

O5 Overfittig in CNN

11 None

o6 How to Treat Overfitting in CNN

12 Receptive Field

Dog & Cat Classification project

Artificial Neural Network

Basic concepts & Operations of ANN

Artificial Neural Network?

ANN & CNN

Basic concepts & Operations of ANN

ANN → Using Weights and activation function

CNN → Using Layer (Input, Convolutional, Activation, Pooling, Fully-Connected Layer)

Input Processing Differences

ANN: Feed-Forward Neural Network

CNN: Image data → Fillter → feture map

ANN

Structural Difference: Fully-Connected Layer 구성

Use of spatial information: image data → Flatten 1D Vector → Spatial information loss

Parameter Sharing: 각 연결에는 가중치가 있어 많은 Parameter 필요

translation invariance: Input data의 평행 이동 취약

Feature extraction method: 수작업으로 직접 특징 추출

CNN

Structural Difference: Convolutional Layer, Pooling Layer

Use of spatial information: CNN → Convolution Operation → Spatial Info & Regional Patterns 유지

Parameter Sharing: Sharing Convolution Filter → Reduce Number of Parameter

invariance(불변성): Image 위치 변화 강함

Feature extraction method: Data로 부터 자동으로 특징을 "학습" & "추출"

Convolution Neural Network Important Concepts

Activate Function

Sigmoid

Sigmoid 함수는 input값이 커지면 커질수록 1에 수렴하고, 작아지면 작아질수록 0에 수렴하는 성질을 지녔다.

Activate Function

ReLu

ReLu 함수는 은닉층의 활성화 함수로 사용된다. 입력값이 0보다 작거나 같을 때는 항상 0을 출력, 0보다 크면 입력값과 동일한 출력값 출력

Activate Function

Softmax

Softmax 함수는 시그모이드와 비슷하게, 0 ~ 1사이로 변환하여 출력하지만, 출려값들의 합이 1이 되도록 하는 함수이다.

$$y_k = \frac{\exp(a_k)}{\sum_{i=1}^n \exp(a_i)}$$

정리

Sigmoid: 이진 분류 모델의 마지막 활성화 함수

Softmax: 다중 분류 모델의 마지막 활성화 함수

ReLU: 기본적으로 은닉층에 사용하는 활성화 함수

Pooling Role in CNN

NONE

Definition and concept of Pooling

Why do we use Pooling?

- First: Reduced Spatial Dimensions
- Second: Feture Translation Invariance
- Third: Preserving information
- Fourth: Control Over Model Size

Reduced Spatial Dimensions

Pooling은 공간적 차원(W, H)을 줄여 신경망에서 계산 비용, 과적합을 줄인다.

Prevent Overfitting

Control Over Model Size

Column: 5

Apply Padding

Control Over Model Size

즉 Control Over Model Size을 통해서

Feture Map의 Size를 원하는대로 유지 또는 축소 / 확대가 가능하다.

- 제한된 컴퓨팅 자원에서 작은 Model로 학습 가능.
- 특정 작업에서 적합한 모델 크기 선택 가능
- 모델 최적화를 위해 다양한 구조를 탐색 가능

Max Pooling

Max Pooling: Input Feature Map의 각 영역에 대해 최대값을 해당 영역으로 출력으로 사용

각 영역에 존재하는 특징에 대한 가장 중요한 정보를 유지하는데 좋음.

Definition of Pooling

Three Types of Pooling operations

- Max Pooling: 배치의 최대 픽셀 값 선택된다.
- Min Pooling: 배치의 최소 필셀 값이 선택된다.
- Average Pooling: 배치에 포함된 모든 픽셀의 평균 값이 선택된다.

Max pooling

Max Pooling: image의 배경이 어둡고 이미지의 Bright Pixel에 focus 하고싶을 때의 경우 유용함.

Min pooling

Min Pooling: Max Pooling 과 반대로 이미지의 Dark Pixel에 초점을 맞추고 싶을떄 유용함.

Average Pooling

Average Pooling: 각 영역에 있는 요소의 평균값을 계산하여 출력으로 사용

Average Pooling은 때때로 최대 풀링에 비해 더 부드러운 결과 제공 가능함

Average pooling

Average Pooling: image를 부드럽게 만들어주기 떄문에 선명한 특징이 식별되지 않을수 있음.

Max Pooling

Why use Max Pooling in CNN

계산 감소: 신경망의 계산 복잡성을 제어하여 더 빠르고 휴욜적으로 수행이 가능하다.

특징 선택: Feature Map에서 Max 값을 선택하기 때문에 Feature이 앞으로 이동하면서 특징 보존 가능

향상된 일반화: 데이터 노이즈 줄임, 최대값만에 foucs가 가능함으로 더 중요한 Feature에 집중 가능

과적합 감소: 과적합 방지 가능

Batch Normalization

Why use Batch Normalization in CNN

Batch Norm: 신경망의 학습 속도 증대, 과정합 방지

- Why is it important?
- How does it work?

Normalization

Normalization: Data를 표준화 하는데 사용되는 전처리 기술

Methods of Normalization

method: 0 ~ 1 사이의 범위로 크기를 조정하는 것

Normalization

How does it Work?

feed forward neural network

 x_i : 입력

Z: 뉴런의 출력

a: 활성화 함수의 출력

y: 네트워크 출력

Normalization

Batch Norm 적용: 활성화 함수를 적용하기 직전 뉴런의 출력값들에 적용됨

Apply Change State

- 미니배치 내 출력값들의 평균을 뺀다.
- 미니배치 내 출력값들의 표준편차로 나눈다.
- 학습 가능한 스케일링 파라미터(Y)를 곱한다.
- 학습 가능한 이동 파라미터(β)를 더한다.

Result: 평균, 표준편차 0, 1로 변환됨.

CNN Architecture Detailed operations

Overall Architecture

Simple CNN architecture Consisting of 5 Layers

Convolution layer에는 많은 filter 존재 → 특징 추출

First Convolution Layer

Edge filter: CNN에서의 첫번째 작업

Pooling layer

Conv Layer 사이 Pooling Layer는 어떤 역할을 하나요?

0	0	0	0	0
105	102	100	97	96
103	99	103	101	102
101	98	104	102	100
99	101	106	104	99
104	104	104	100	98
	105 103 101 99	105 102 103 99 101 98 99 101	105 102 100 103 99 103 101 98 104 99 101 106	105 102 100 97 103 99 103 101 101 98 104 102 99 101 106 104

Kernel Matrix

0	-1	0
-1	5	-1
0	-1	0

Image Matrix

$$0*0+0*-1+0*0$$

+0*-1+105*5+102*-1
+0*0+103*-1+99*0 = 320

Output Matrix

Convolution with horizontal and vertical strides = 1

FC layer

Feature를 뽑다보면 마지막에는 물체와 유사한 형태들의 feature map 선별된다.

Layer가 뒤로 갈수록 filter의 총 개수의 증가 이유

- 1. 계층적 특징 표현 학습 초기 → 레이어를 넘어갈수록 복잡하고 추상적인 고수준 특징 학습하기 떄문
- 2. 특징 맵 유지 Pooling layer를 거치면서 중요한 패턴을 유지하기 떄문 \rightarrow 정보 손실 방지
- 3. 정보 용량 증가
- 4. 과적합 방지

Classification

객체와 유사한 Feature map을 통해서 Classification을 하게됨.

Dog VS Cat Classification project using Convolutional Neural Network

Thanks!

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon** and infographics & images by **Freepik**