DEEP LEARNING FOR COMPUTER VISION

Summer Seminar UPC TelecomBCN, 4 - 8 July 2016

Giró-i-Nieto

McGuinness

Organizers

Day 3 Lecture 4

Object Detection

+ info: TelecomBCN.DeepLearning.Barcelona

Deep ConvNets for Recognition for...

Objects (local)

Video (2D+T)

Object Detection

CAT, DOG, DUCK

The task of assigning a **label** and a **bounding box** to all objects in the image

Classes = [cat, dog, duck]

Cat? NO

Dog?NO

Classes = [cat, dog, duck]

Cat? NO

Dog?NO

Classes = [cat, dog, duck]

Cat?YES

Dog?NO

Classes = [cat, dog, duck]

Cat? NO

Dog?NO

Problem:

Too many positions & scales to test

Solution: If your classifier is fast enough, go for it

HOG

Deformable Part Model

Object Detection with CNNs?

CNN classifiers are computationally demanding. We can't test all positions & scales!

Solution: Look at a tiny subset of positions. Choose them wisely:)

Region Proposals

- Find "blobby" image regions that are likely to contain objects
- "Class-agnostic" object detector
- Look for "blob-like" regions

Slide Credit: CS231n

Region Proposals

Selective Search (SS)

Multiscale Combinatorial Grouping (MCG)

[SS] Uijlings et al. Selective search for object recognition. IJCV 2013

[MCG] Arbeláez, Pont-Tuset et al. Multiscale combinatorial grouping. CVPR 2014

Object Detection with CNNs: R-CNN

1. Input image

warped region

aeroplane? no.

person? yes.

tvmonitor? no.

Girshick et al. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR 2014

R-CNN

1. Train network on proposals

2. Post-hoc training of SVMs & Box regressors on fc7 features

R-CNN

Girshick et al. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR 2014

R-CNN: Problems

- Slow at test-time: need to run full forward pass of CNN for each region proposal
- 2. SVMs and regressors are post-hoc: CNN features not updated in response to SVMs and regressors
- 3. Complex multistage training pipeline

Slide Credit: CS231n

R-CNN Problem #1: Slow at test-time: need to run full forward pass of CNN for each region proposal

Solution: Share computation of convolutional layers between region proposals for an image

Convolution and Pooling

Hi-res input image: 3 x 800 x 600 with region proposal

Hi-res conv features: CxHxWwith region proposal

Rol conv features: Cxhxwfor region proposal

Fully-connected layers expect low-res conv features: Cxhxw

R-CNN Problem #2&3: SVMs and regressors are post-hoc. Complex training.

Solution: Train it all at together E2E

		R-CNN	Fast R-CNN
Faster!	Training Time:	84 hours	9.5 hours
	(Speedup)	1x	8.8x
FASTER!	Test time per image	47 seconds	0.32 seconds
	(Speedup)	1x	146x
Better!	mAP (VOC 2007)	66.0	66.9

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN: Problem

Test-time speeds don't include region proposals

	R-CNN	Fast R-CNN	
Test time per image	47 seconds	0.32 seconds	
(Speedup)	1x	146x	
Test time per image with Selective Search	50 seconds	2 seconds	
(Speedup)	1x	25x	

Slide Credit: CS231n

Region Proposal Network

Bounding Box Regression Objectness scores k anchor boxes 2k scores 4k coordinates (object/no object) cls layer reg layer 256-d intermediate layer sliding window conv feature map

In practice, k = 9 (3 different scales and 3 aspect ratios)

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
(Speedup)	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	66.9

 Faster R-CNN is the basis of the winners of COCO and ILSVRC 2015 object detection competitions.

He et al. <u>Deep residual learning for image recognition</u>. arXiv 2015

YOLO: You Only Look Once

Divide image into S x S grid

Within each grid cell predict:

B Boxes: 4 coordinates + confidence

Class scores: C numbers

Regression from image to $7 \times 7 \times (5 * B + C)$ tensor

Direct prediction using a CNN

SSD: Single Shot MultiBox Detector

SSD: Single Shot MultiBox Detector

System	VOC2007 test mAP	FPS (Titan X)	Number of Boxes
Faster R-CNN (VGG16)	73.2	7	300
Faster R-CNN (ZF)	62.1	17	300
YOLO	63.4	45	98
Fast YOLO	52.7	155	98
SSD300 (VGG)	72.1	58	7308
SSD300 (VGG, cuDNN v5)	72.1	72	7308
SSD500 (VGG16)	75.1	23	20097

Training with Pascal VOC 07+12

Resources

- Related Lecture from CS231n @ Stanford [slides][video]
- Caffe Code for:
 - o R-CNN
 - o Fast R-CNN
 - Faster R-CNN [<u>matlab</u>][<u>python</u>]
- YOLO
 - Original (Darknet)
 - Tensorflow
 - o <u>Keras</u>
- SSD (Caffe)