# 2010-2011 学年第二学期《数据结构》试卷 A 卷

| 题号 | _  | 1  | 111 | 四 | 五  | 总分 | 审核 |
|----|----|----|-----|---|----|----|----|
| 题分 | 15 | 30 | 12  | 8 | 35 |    |    |
| 得分 |    |    |     |   |    |    |    |

| <b>得分   评阅人</b>   一、填空(15 分,每空 1 分)                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. 数据结构是指数据及其相互之间的 <mark>联系</mark>                                                                                                                                                                        |
| 。当结点之间存在 M 对 N (M: N) 的联系                                                                                                                                                                                 |
| <br>时,称这种结构为 <mark>图</mark> 。                                                                                                                                                                             |
| 2. 与顺序表相比,链表的主要特点是插入、删除操作的效率比较                                                                                                                                                                            |
| 高。                                                                                                                                                                                                        |
| 3. 逻辑上的线性结构我们称为线性表,线性表即可以用顺序表存储,也可以用链表存储。现在在某个应用程序中需要使用线性表,在程序中会经常对线性表的元素进行随机访问,在该应用程序中的线性表应选用顺序存储结构。                                                                                                     |
| 4. 队列的插入操作是在队列的 <mark>首部</mark> 进行,删除操作是在队列的 <mark>尾部</mark> _进行。                                                                                                                                         |
| 5. 广义表 A= (a, (a, b), ((a, b), c)), 则它的深度为4,它的长度为3。                                                                                                                                                       |
| 6. 一个二叉树按顺序方式存储在一个一维数组中, 如图                                                                                                                                                                               |
| 1       2       3       4       5       6       7       8       9       10       11       12       13       14       15         A       B       C       D       E       F       G       H       I       J |
| 结点 E 的左孩子节点是H。                                                                                                                                                                                            |
| 6. 对图的遍历主要有两种方法,这两种方法是 <mark>深度优先</mark> 和 <mark>宽</mark> 度优先                                                                                                                                             |

| 7. 对于无向图 G, 若用邻接矩阵 A表示,则 G 的第 k 个顶点的度等于A 的第 k 行的非零元素个数,若用邻接表表示,则 G 的第 k 个顶点的度等于_与 第 k 个顶点相关联的链表的长度。                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------|
| 8. 为得到一棵排序二叉树的有序序列,应该对该二叉树进行 <mark>中序</mark> 遍<br>历。                                                                                         |
| 9. 对于一个关健字序列 $\{k_1,k_2,,k_n\}$ ,若有 $k_i$ = $k_j$ $(i <> j)$ ,排序之前 $k_i$ 在 $k_j$ 之前,若某种排序方法使得排序后 $k_j$ 在 $k_i$ 之前,则称这种排序方法是 <mark>不稳定</mark> |
|                                                                                                                                              |
| 10.5 阶 B_树中,每个结点最多有4                                                                                                                         |
| 11. 在线性表的散列存储中,处理冲突的常用方法有开放定址法                                                                                                               |

| 得分 | 评阅人 |
|----|-----|
|    |     |

二、选择(30分,将你的选择填在下表中)

链地址法

两种。

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |

1.下列函数在最坏情况下的时间复杂度是[\_\_D\_\_\_]

和

A.  $O(nlog_2^n)$  B.  $O(log_2^n)$ 

B.  $O(log_2^n)$  C O(n) D  $O(n^2)$ 

2. 设单链表中结点的结构为(data, next)。链表的首指针为 first,指针 s 指向被插入节点(用\*s 表示),则将\*s 插入链表首部,则应执行下列[\_\_A\_\_\_]操作?

A .s->next = first; first = s; B .s->next = first->next; first->next = s;

C. s->next = first->next; first = s; D. first->next = s; s->next = first;

- 3.设有单循环链表, 指针 rear 指向链表尾部, 现在要在链表尾部插入节点 s, 则应该执行 下面哪一种操作?[ A ]

A. s->next=rear->next;rear->next=s;rear=s; B. s->next=rear; rear->next=s;rear=s;

C.rear->next=s; s->next=rear->next; rear=s; D. s->next=rear->next; rear=s; rear->next=s;

- 4.设有一个顺序栈 S,元素  $s_1$ ,  $s_2$ ,  $s_3$ ,  $s_4$ ,  $s_5$  依次进栈,如果 5 个元素的出栈顺序 为 s3, s4, s2, s5, s1, 则顺序栈的容量至少应为[ C ]

A. 6 B. 5 C. 4 D. 2

5.以顺序表实现的循环对列,front 表示队头, rear 表示列尾, 队列长度为 n, 顺序表下标从0开始,则队列中当前元素个数是[\_\_\_\_\_\_]计算

A. rear-front

- B. fron-rear
- C. (rear-front+n) %n D. front+1-rear
- 7. 在下面的 4 棵二叉树中, [ C ]不是完全二叉树



8. 已知某二叉树的后序遍历序列是 acbed,中序遍历序列是 abcde,则这棵二叉 树的先序遍历序列是[ B ]

A. dbeac B. dbace C. deabc D. debca

9. 在一棵二叉树的二叉链表表示中,假设 Bp 表示非空指针域的个数, Kp 表 示空指针域个数,则 Kp 与 Bp 的关系是[\_\_\_\_\_]。

A. Kp=Bp+1, B. Kp=Bp+n0+1, C. Kp=Bp, D. Kp=Bp+n0-1

任何一棵二叉树的叶节点在先序、中序和后序遍历中,其相对次序 10. [ A ]

A 不发生改变, B.会逆序改变 C.会随机改变 D.不确定

11. AOV 网是一种 ( D )。

- A. 有向图 B. 无向图 C. 无向无环图 D. 有向无环图

| 12.在 AOE 网络中,关键路径指的是[                      | A]                |
|--------------------------------------------|-------------------|
| A.从源点到汇点的最长路径                              | B.从源点到汇点的最短路径     |
| C.最长的回路                                    | D.最短的回路           |
| 13. 随机生成 100 万个数据, 使用[                     |                   |
| A. 选择排序 B. 插入排序                            | C. 快速排序 D. 归并排序   |
| 14. AVL 树是一种平衡的二叉排序树,树中任                   | E意节点的[C]          |
| A. 左、右子树的高度均相同,                            | B. 左子树的高均大于右子树的高度 |
| C.左、右子树的高度差的绝对值不超过 1,                      | D. 右子树的高均大于左子树的高度 |
| 15. 对于一个具有 $n$ 个结点和 $e$ 条边的无链表中边结点的总数为[B]。 | E向图,若采用邻接表表示,则所有边 |
| A: e/2 B: e C:                             | 2e D: n+e         |

# 得分 评阅人

三、算法与程序设计 (10分)

1. (3')下述递归程序的功能是 计算二叉树叶子节点个数

2. (4')下面是用 c++语言编写的对不带头结点的单链表进行就地逆置的算法,请完成程序。

```
void List_reverse(ListNode *L) //ListNode 表示链表节点
{
p=L;
    :
```

```
while(p!=NULL) {
        s=p;
         p=p->next;
         L=s;
        }
   }
3. (3')有序表的二分查找,返回待查找的关键字 kev 的数组下标。
 #define N 1000 (或某整数)
 int Search Bin(int A[N], int key) //数组下标为 1.. N-1; 若查找不成
 功,返回为0
 { int low, high, mid;
     1ow = 1, high=N-1;
     while( ) {
           mid= ____;
           if (key == S[mid]) return mid;
           else if (key < S[mid]) high=mid-1;
           else ____;
     }
     return 0;
连通图的深度优先遍历算法(4')
 void DFS(Graph G, int v)
         // 从顶点 v 出发,深度优先搜索遍历连通图 G
   visited[v] = TRUE;
   VisitFunc(v); //对顶点 v 进行处理
```

```
for (w=FirstAdjVex(G, v); [w!=0]; w=NextAdjVex(G, v, w))
         if (!visited[w])
           [ DFS (G, w); ]
 } // DFS
拓扑排序算法(4')
 #define M 50
 void TopSort(int A[M][M], int vexnum, int TopSeq[])
  {//TopSeq[] 保存拓扑序列的数组, indegree[] 保存各顶点的入度
 int indegree[M];
 FindInDegree (G, indegree); //求各顶点的入度
 InitStack(S)://初始化一个栈 S
 for (v=0; v< vexnum; v++) { //所有入度为 0 的顶点进栈
       if([indegree[v]==0]) Push(S, v);
 count=0;
 while(!StackEmpty(S)) {
       Pop(S, v); TopSeq[count]=v; count++; //输出拓扑序列
       for (k=0): k < vexnum : k++ 
             if (A[v][k]!=0) [indegree[k]--];
             if (indegree[k]==0) Push (S, k):
             }
       }
 }
```

【写出算法程序(8')(两题中任选一题)】 1.写出快速排序算法程序。

## 2.写出二叉树的非递归先序遍历算法

| 得分 | 评阅人 |
|----|-----|
|    |     |

五、综合应用(36分)

1.(6')下图是二叉树是由一杳普通树转换而来,将其还原成普通树的形式





2. (8') 假设用于通信的电文仅由 5 个符(a, b, c, d, e, f)组成,这 8 个字符的频率为如表所示  $\begin{bmatrix} a & b & c \end{bmatrix}$ 

| a | b | С | d  | е  | f  |
|---|---|---|----|----|----|
| 2 | 6 | 3 | 25 | 12 | 50 |

- (1) 画出 huffman 树 (权值小的节点在左边,权值大的节点在右边)
- (2) 写出每个字符的的编码(左分支编码为 0, 右分支编码为 1)

#### 答案



编码结果

a:00000

b:0001

c:00001

d:01

e:001

f:1

3. 对下面的无向带权图 G,写出其最小生成树(要求从顶点1出发)



- 4. (6')给定数据序列(21, 12, 13, 58, 45, 72, 85)
  - (1) 构造二叉排序树
  - (2) 构造平衡二叉排序树 (画出旋转过程)





5. 设哈希表长度为 11,哈希函数 h(x)=x%11,给定的关键字序列为:12,23,33,45,38,55,49,28,62.

(1) 用哈希函数计算每个关键字的地址,将关键字填入下表中 (如果关键字有冲突,按顺序将其填入相同的空格中)

| 0        | 1             | 2  | 3 | 4 | 5             | 6  | 7  | 8 | 9 | 10 |
|----------|---------------|----|---|---|---------------|----|----|---|---|----|
| 0,<br>55 | 12<br>,<br>45 | 23 |   |   | 38<br>,<br>49 | 28 | 62 |   |   |    |

(2) 画出用线性探测法解决冲突,构造的哈希表

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|---|----|
|   |   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |   |    |

- 6. 给定数据序列(42, 76, 157, 137, 93, 24, 159, 12, 121, 11)
  - (1) 写出第一趟快速排序的结果

#### 第一趟结果

11, 12, 24, <u>42</u>, 93, 137, 159, 157, 121, 76

## (2) 构建初始大顶堆

