WHAT IS CLAIMED IS:

1. A photothermographic material comprising a support and an image-forming layer disposed on the support, wherein the image-forming layer comprises a photosensitive silver halide, a non-photosensitive organic silver salt, a reducing agent and a binder, and the binder comprises a polymer formed by copolymerization of monomers including 10 to 70% by mass of a monomer represented by the following formula (M):

$$CH_{2} = CR^{01} - CR^{02} = CH_{2}$$

wherein R^{01} represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a halogen atom, or a cyano group; R^{02} represents an alkyl group having 1 to 6 carbon atoms, a halogen atom, or a cyano group; and where R^{01} and R^{02} are never both simultaneously a hydrogen atom.

- 2. A photothermographic material according to claim 1, wherein the image-forming layer contains an antifoggant formed from an organic polyhalogen compound.
- 3. A photothermographic material according to claim 2, wherein the organic polyhalogen compound is represented by the following formula (H) :

Formula (H)

$$Q - (Y) n - C(Z_1) (Z_2) X$$

wherein Q represents an alkyl group, an aryl group, or a heterocyclic group; Y represents a divalent linking group; n represents an integer of 0 or 1; Z_1 and Z_2 represent a halogen atom, respectively; and X represents a hydrogen atom or an electron-withdrawing group.

- 4. A photothermographic material according to claim 2, wherein the amount of the antifoggant is 0.01 to 0.5 g/m 2 .
- 5. A photothermographic material according to claim 3, wherein the amount of the antifoggant is 0.01 to 0.5 g/m^2 .
- 6. A photothermographic material according to claim 1, wherein the polymer has a glass-transition temperature of -30 to $70\,^{\circ}\text{C}$.
- 7. A photothermographic material according to claim 2, wherein the polymer has a glass-transition temperature of -30 to $70\,^{\circ}\text{C}$.
- 8. A photothermographic material according to claim 3, wherein the polymer has a glass-transition temperature of -30 to $70\,^{\circ}\text{C}$.
 - 9. A photothermographic material according to claim 4,

wherein the polymer has a glass-transition temperature of -30 to $70\,^{\circ}\text{C}$.

- 10. A photothermographic material according to claim 1, wherein the polymer is a polymer latex synthesized by an emulsion polymerization.
- A photothermographic material according to claim
 wherein the polymer is a polymer latex synthesized by an emulsion polymerization.
- 12. A photothermographic material according to claim 3, wherein the polymer is a polymer latex synthesized by an emulsion polymerization.
- 13. A photothermographic material according to claim 1, wherein R^{01} is a hydrogen atom and R^{02} is a methyl group in the formula (M).
- 14. A photothermographic material according to claim 2, wherein R^{01} is a hydrogen atom and R^{02} is a methyl group in the formula (M).
- 15. A photothermographic material according to claim 3, wherein R^{01} is a hydrogen atom and R^{02} is a methyl group in

the formula (M).

- 16. A photothermographic material according to claim

 1, wherein the polymer is copolymerized with monomers at 1

 to 20% by mass, said monomers having acid groups.
- 17. A photothermographic material according to claim 2, wherein the polymer is copolymerized with monomers at 1 to 20% by mass, said monomers having acid groups.
- 18. A photothermographic material according to claim 3, wherein the polymer is copolymerized with monomers at 1 to 20% by mass, said monomers having acid groups.