HOUSING PRICE PREDICTION PROJECT

By
Alivia Dasgupta

Acknowledgement

Firstly, I would like to thank FlipRobo Technologies for giving me the opportunity to work on this project. This project includes mentioning of all the references, research papers, data sources, professionals and other resources that helped me and guided me in completion project.

INTRODUCTION

Business Problem Framing

The main objective of this project is to model the price of houses with the available independent variables. This model will then be used by the management to understand how exactly the prices vary with the variables. They can accordingly manipulate the strategy of the firm and concentrate on areas that will yield high returns. Further, the model will be a good way for the management to understand the pricing dynamics of a new market.

Conceptual Background of the Domain Problem

Houses are one of the necessary need of each and every person around the globe and therefore housing and real estate market is one of the markets which is one of the major contributors in the world's economy. It is a very large market and there are various companies working in the domain. Data science comes as a very important tool to solve problems in the domain to help the companies increase their overall revenue, profits, improving their marketing strategies and focusing on changing trends in house sales and purchases. Predictive modelling, Market mix modelling, recommendation systems are some of the machine learning techniques used for achieving the business goals for housing companies. Our problem is related to one such housing company.

Technical Requirements

➤ Data contains 1460 entries each having 81 variables.

- ➤ Data contains Null values. We need to treat them using the domain knowledge and your own understanding.
- Extensive EDA has to be performed to gain relationships of variable and price.
- ➤ Data contains numerical as well as categorical variable. We need to handle them accordingly.
- ➤ We have to build Machine Learning methods, apply regularization and determine the optimal values for HyperParameters.
- > We need to find important features which affect the price positively or negatively.
- Two datasets are being provided to us (test.csv, train.csv).

ADVANTAGES:

- 1. The objective behind to take this project is to implement the required data science skills.
- 2. Improve the analytical thinking.
- 3. Get into the real world problem solving mechanics.

Analytical Problem Framing

Mathematical Modeling of the Problem:

This is a Regression problem, where our end goal is to predict the Prices of House, based on given data provided in the dataset. We have divided the provided dataset into Training and Testing phases. A Regression Model will be built and trained using the Training data and the Test data is used to predict the outcomes. This will be compared with available test results to find how our model has performed.

We are using Mean Absolute Error, Root Mean Square Error, and 'R2_Score' to determine the best model among, ❖ Linear Regression ❖ Decision Tree Regression ❖ Random Forest Regression ❖ K Neighbors Regression ❖ Lasso Regression The best results were obtained using Lasso Regression. So, let's discuss a little bit about it.

In a simple regression problem (a single xand a single y), the form of the model would be:

y = B0 + B1*x where B0 —intercept, B1 —coefficient, x — independent variable y — output or the dependent variable. In higher dimensions when we have more than one input (x), The General equation for a Multiple linear regression with p — independent variables: Y=B0 + B1 * X1 + B2 * X2 +...... + Bp * Xp + E(Random Error or Noise).

Data Sources and their formats

A US-based housing company named Surprise Housing has decided to enter the Australian market. The company uses data analytic to purchase houses at a price below their actual values and flip them at a higher price. For the same purpose, the company has collected a data set from the sale of houses in Australia. The data is provided in the CSV file below. The dataset contains 1460 rows and 81 columns (including the train dataset and test dataset). The top 5 rows of the dataset are:

out[5]:		1-4	MSSubClass	MeZenine				A.II			Liellielee		e a va a va Da va la	DeelAsses	Beelo		MI
	_																
		337	20	RL	86.0	14157	Pave	NaN	IR1	HLS	AllPub		0				Na
		1018	120	RL	NaN	5814	Pave	NaN	IR1	LVI	AllPub		0	C			Na
	2	929	20	RL	NaN	11838	Pave	NaN	Reg	LvI	AllPub		0				Na
		1148	70	RL	75.0	12000	Pave	NaN	Reg	Bnk	AllPub		0	C			Na
	4	1227	60	RL	86.0	14598	Pave	NaN	IR1	LVI	AllPub		0	C			Na
	5	650	180	RM	21.0	1936	Pave	NaN	Reg	LVI	AllPub		0	C	Na		Na
	6	1453	180	RM	35.0	3675	Pave	NaN	Reg	LVI	AllPub		0	C	Na.	V NaN	Na
	7	152	20	RL	107.0	13891	Pave	NaN	Reg	LvI	AllPub		0	C	Na.	V NaN	Na
	8	427	80	RL	NaN	12800	Pave	NaN	Reg	Low	AllPub		396	C	Na	NaN	Na
	9	776	120	RM	32.0	4500	Pave	NaN	ED and	1.04	A HER LIE		0	C	Na Na	v NaN	6.1-
				15171	32.0	4000	Pave	Mana	Reg	LVI	AllPub		0		Na	4 Naiv	Na
	10	OWE 1		T AIVI	32.0	4800	Pave	NaN	Reg	LVI	AllPub		Ü		Na	Nan	Na
			80 columns	73.00	32.0	4800	Pave	NaN	Reg	LVI	AllPub				Na	v Naiv	
	10			1500	32.0	4500	Pave	NaN	Reg	LVI	AllPub		0		Na	y Naiv	h
	4			1400	32.0	4500	Pave	Nan	Reg	LVI	All-ub				Na	y Nan	
n [6]:	4	train	80 columns														•
n [6]:	4	train	80 columns n.tail(10) Id MSSubCla		g LotFrontag	je LotAr	ea Stre	et Alle	/ LotShape	a LandConto		es .					e MiscVal
tn [6]:	∢ □ df_	train	<pre>80 columns 1.tail(10) Id MSSubCla 73</pre>	ss MSZonin	g LotFrontag L Na	je LotAr N 112	ea Stre	et Alle	∕ LotShape	LandConto	ur Utiliti	es .	PoolArea	PoolQC	Fence	MiscFeatur	e MiscVal
n [6]:	df_	train 8 6	a.tail(10) Id MSSubCla 73	ss MSZonin 20 R	g LotFrontag L Na L 42	ge LotAr N 112	ea Stre 50 Pa 11 Pa	eet Alle ive Naf	/ LotShape	LandConto	ur Utiliti VI AllP	es . ub .	PoolArea	PoolQC NaN	Fence NaN	M iscF e atur Na	e MiscVal
n [6]:	df_	train 8 6	80 columns n.tail(10) Id MSSubCla 73 43 51 1	55 MSZonin 20 R 90 R	g LotFrontag L Na L 42 L 53	je LotAn N 112 .0 77	ea Stre 50 Pa 11 Pa 43 Pa	ve Native Native Native Nati	y LotShape	LandConto	ur Utiliti vi AliP vi AliP	es . ub .	PoolArea 0 0	PoolQC NaN NaN	Fence NaN NaN	MiscFeatur Na Na	e MiscVal
n [6]:	df_	train 8 6 9 9	* 80 columns n.tail(10) Id MSSubCla 73 43 51 1	ss MSZonin 20 R 90 R 20 R	g LotFrontag L Na L 42 L 53 L Na	je LotAn N 112 .0 77 .0 40 N 107	ea Stre 50 Pa 11 Pa 43 Pa 62 Pa	ve Naf ve Naf ve Naf ve Naf	/ LotShape	LandConto	ur Utiliti	es . ub . ub . ub .	PoolArea 0 0	PoolQC NaN NaN NaN NaN	Fence NaN NaN NaN	MiscFeatur Na Na Na	e MiscVal V O V O
	df_	trair 68 6 69 9 60 5 61 13	1	ss MSZonin 20 R 90 R 20 R	g LotFrontag L Na L 42 L 53 L Na L 45	le LotAn N 112: 0 77 0 40: N 107:	ea Stre 50 Pa 11 Pa 43 Pa 62 Pa 12 Pa	ve Native Native Native Native Native Sn	LotShape	LandContol	ur Utiliti vi AliP vi AliP	ub . ub . ub . ub .	PoolArea 0 0 0	PoolQC NaN NaN NaN NaN NaN NaN	Fence NaN NaN NaN NaN NaN	MiscFeatur Na Na Na Na	

Data Preprocessing Done

As our dataset contains null values (missing values) so we have replace the missing values with the required values. Details are mentioned below

Summary of EDA

- 1. GrLivArea' and 'TotalBsmtSF' seem to be linearly related with 'SalePrice'. Both relationships are positive, which means that as one variable increases, the other also increases. In the case of 'TotalBsmtSF', we can see that the slope of the linear relationship is particularly high.
- 2. 'OverallQual' and 'YearBuilt' also seem to be related with 'SalePrice'. The relationship seems to be stronger in the case of 'OverallQual', where the box plot shows how sales prices increase with the overall quality. We just analysed four variables, but there are many other that we should analyse. The trick here seems to be the choice of the right features (feature selection) and not the definition of complex relationships between them (feature engineering). That said, let's separate the wheat from the chaff

Models

```
In [61]: from sklearn.preprocessing import LabelEncoder
          lblencoder = LabelEncoder()
In [62]: trn data = df train.copy()
          tst data = df test.copy()
In [63]: for col in trn_data.select_dtypes(include=['0']).columns:
              trn_data[col] = lblencoder.fit_transform(trn_data[col].astype(str))
              tst_data[col] = lblencoder.fit_transform(tst_data[col].astype(str))
In [64]: targets = trn_data['SalePrice']
          trn_data.drop(['SalePrice'], axis=1, inplace=True)
          from sklearn.preprocessing import StandardScaler, MinMaxScaler
          mnmx = MinMaxScaler()
          stdnorm = StandardScaler()
In [65]: def standardized normalized(data):
              df col = data.columns
              data = mnmx.fit_transform(data)
              data = stdnorm.fit_transform(data)
              return pd.DataFrame(data, columns=df_col)
In [66]: trn_data.shape
Out[66]: (1168, 75)
In [67]: trn_data = standardized_normalized(trn_data)
          tst_data = standardized_normalized(tst_data)
In [68]: trn_data.sample(10)
Out[68]:
                MSSubClass MSZoning LotFrontage LotArea
                                                            Street LotShape LandContour Utilities LotConfig LandSlope ... OpenPorchSF EnclosedPorch 3S
                   2.939506 1.558511
                                       -1.934561 -0.999793 0.058621 0.752055
                                                                               0.318473
                                                                                           0.0 0.606420 -0.226126 ...
                                                                                                                         -0.701705
                                                                                                                                       -0.364375 -0
                                                                              -2.499530
                                                                                                          3.295414 ...
           1053
                  -0.877042 -0.021646
                                       10.307645 1.917132 0.058621 -0.664720
                                                                                           0.0 0.606420
                                                                                                                         -0.701705
                                                                                                                                       -0.364375 -(
                   0.077095 -0.021646
                                        0.539035 -0.027335 0.058621 0.752055
                                                                               0.318473
                                                                                           0.0 0.606420
                                                                                                        -0.226126 ...
                                                                                                                                       -0.364375 -0
                                                                                                                          0.081987
            237
                   -0.877042 -0.021646
                                       0.318473
                                                                                           0.0 -1.829688
                                                                                                        -0.226126 ...
                                                                                                                         -0.219433
                                                                                                                                       -0.364375 -(
                                                                                           0.0 0.606420 -0.226126 ...
                   1.508301 -0.021646
                                       -1.389531 -0.605538 0.058621 0.752055
                                                                               0.318473
                                                                                                                          0.232697
                                                                                                                                       -0.364375 -0
                                                                                           0.0 -1.220661 -0.226126 ...
                   -0.877042 -0.021646
                                       -1.012203 0.182413 0.058621 -1.373107
                                                                               0.318473
                                                                                                                                       -0.364375 -0
                                                                                                                          0.021703
                   2.462438 -0.021646
                                       -1.808785 -0.913235 0.058621 0.752055
                                                                               0.318473
                                                                                           0.0 0.606420 -0.226126 ...
                                                                                                                                       -0.364375 -0
                                                                                                                         -0.701705
            459
            462
                   -0.877042 -3.181960
                                       -0.718726 -0.679251 0.058621 -0.664720
                                                                               0.318473
                                                                                           0.0 0.606420 -0.226126 ...
                                                                                                                          1.468519
                                                                                                                                       -0.364375 -(
                  -0.877042 -0.021646
                                       0.161707 -0.140139 0.058621 0.752055
                                                                               0.318473
                                                                                           0.0 -1.829688 -0.226126 ...
                                                                                                                          0.262839
                                                                                                                                       -0.364375 -0
            24
                  -0.877042 -0.021646
                                      -0.718726 0.224295 0.058621 -1.373107
                                                                               0.318473
                                                                                           0.0 0.606420 -0.226126 ...
                                                                                                                         -0.701705
                                                                                                                                       -0.364375 -1
```

```
In [72]: from sklearn.linear_model import LinearRegression
             from sklearn.tree import DecisionTreeRegressor
             from sklearn.ensemble import RandomForestRegressor
            from sklearn.svm import SVR
            from xgboost import XGBRegressor
            from sklearn.neighbors import KNeighborsRegressor
            from sklearn.model selection import cross validate, ShuffleSplit
 In [73]: ml_algo = [
                 LinearRegression(),
                 DecisionTreeRegressor(),
                 RandomForestRegressor(),
                 SVR(),
                 XGBRegressor(),
                 KNeighborsRegressor()
 In [74]: ml_columns = ['MLAlgo Name', 'MLAlgo Parameters', 'MLAlgo Train MAE', 'MLAlgo Test MAE', 'MLAlgo Time']
             ml_algo_compare = pd.DataFrame(columns = ml_columns)
            ml_algo_predict = pd.DataFrame(targets.copy().values, columns=['Actual Sales'])
 In [75]: row_index=0
             for alg in ml_algo:
                #set name and parameters

MLA_name = alg._class_.__name_
ml_algo_compare.loc[row_index, 'MLAlgo Name'] = MLA_name

ml_algo_compare.loc[row_index, 'MLAlgo Parameters'] = str(alg.get_params())

cv_results = cross_validate(alg, trn_data, targets, scoring= 'neg_mean_absolute_error',cv = 3, return_train_score=True)

ml_algo_compare.loc[row_index, 'MLAlgo Time'] = cv_results['fit_time'].mean()

ml_algo_compare.loc[row_index, 'MLAlgo Train MAE'] = cv_results['train_score'].mean()

ml_algo_compare.loc[row_index, 'MLAlgo Test MAE'] = cv_results['test_score'].mean()
                 alg.fit(trn_data, targets)
                 ml_algo_predict[MLA_name] = alg.predict(trn_data)
                 row index += 1
In [78]: dtmodel = XGBRegressor()
           dtmodel.fit(trn_data, targets)
Out[78]: XGBRegressor(base score=0.5, booster='gbtree', callbacks=None,
                           colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,
                           early_stopping_rounds=None, enable_categorical=False,
                            eval_metric=None, gamma=0, gpu_id=-1, grow_policy='depthwise',
                            importance_type=None, interaction_constraints='',
                           learning rate=0.300000012, max bin=256, max cat to onehot=4,
                           max_delta_step=0, max_depth=6, max_leaves=0, min_child_weight=1,
                           missing=nan, monotone_constraints='()', n_estimators=100, n_jobs=0,
                           num parallel tree=1, predictor='auto', random state=0, reg alpha=0,
                            reg lambda=1, ...)
           In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
           On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [79]: from sklearn.metrics import mean_absolute_error, r2_score
           trn_p = dtmodel.predict(trn_data)
           tst_ = dtmodel.predict(tst_data)
In [80]: print("training mae:", mean_absolute_error(targets,trn_p))
           print("training r2:", r2_score(targets,trn_p))
           training mae: 695.7653306934932
           training r2: 0.9998312585722334
```

Conclusion

We have observed about the variables, we analysed 'SalePrice' alone and with the most correlated variables, we dealt with missing data and outliers, we tested some of the fundamental statistical assumptions and we even transformed categorial variables into dummy variables. That's a lot of work that Python helped us make easier.