Análisis II - Análisis Matemático II Matemática 3

Examen Final - 21/12/2017

Nombre:

L. U.:

Ej. 1	Ej. 2	Ej. 3	Ej. 4	Nota

- 1. Sea $f:[0,1]\times[0,1]\to\mathbb{R}$ de clase \mathcal{C}^1 y S la superficie de \mathbb{R}^3 definida como S=Graf(f).
 - a) Exhibir una parametrización regular (y probar que lo es) de S y un campo vectorial unitario normal a S.
 - b) Dar la fórmula del área de S.
- 2. Sea $F: \mathbb{R}^2 \to \mathbb{R}^2$ un campo de clase \mathcal{C}^1 , tal que para todo rectángulo $Q = [a,b] \times [c,d]$ vale

$$\int_C F. \, ds = 0,$$

donde C es el borde de Q. Probar que F es conservativo.

3. Sea I un intervalo abierto de la recta, $A: I \to \mathbb{R}^{n \times n}$ y $b: \to \mathbb{R}^n$ funciones continuas. Supongamos que $\{X_1(t), \ldots, X_n(t)\}$ es una base de soluciones del sistema lineal homogéneo de n ecuaciones

$$X'(t) = A(t)X(t).$$

Probar que existen funciones $c_1(t),\ldots,c_n(t)$ definidas en I de clase \mathcal{C}^1 tales que

$$X(t) = c_1(t)X_1(t) + \ldots + c_n(t)X_n(t)$$

es una solución del sistema lineal de n ecuaciones

$$X'(t) = A(t)X(t) + b(t).$$

4. Hallar una matriz A de 2×2 y un vector $b \in \mathbb{R}^2$ tales que la función

$$X(t) = 5e^{-2t}cos(t).(1,2) - 3e^{-2t}sen(t).(1,1)$$

sea la solución del sistema

$$X' = AX \quad \text{con} \quad X(0) = b.$$