3. Two methods of producing gasoline from crude oil are being investigated. The yields of both processes are assumed to be normally distributed. The following yield data have been obtained from the pilot plant.

\mathbf{P}	rocess		Yields	s(%)			
	1	24.2	26.8	25.7	24.8	25.9	26.5
	2	21.0	22.1	21.8	20.9	22.4	22.0

- a. Is there reason to believe that process 1 has a greater mean yield? Use $\alpha = 0.01$. Assume that both variances are equal.
- b. Assuming that in order to adopt process 1 it must produce a mean yield that is at least 5% greater than that of process 2 what are your recommendations?
- c. Find the power of the test in part a. if the mean yield of process 1 is 5% greater than that of process 2.
- d. Find the confidence interval for the mean yield difference (1- α =0.9)

. ſ	ارها،) ,	roly	V	ן נים	์ โดย	اِ،	e	Le	الر	cıQ	\mathcal{M}	C.	þ	o 1	יוטנ	n,	جارو،	- (ુ આ	ľ	લા	M) עפ	, l)G~Q	، ر(nQu	N	D S D)	
J				,										Í		. ,		\int_{Ω}		rs Pg	Vu Vu	ોિ	r) Pvi)					\mathcal{L}_{n}		رد. ر		
																							, -				.,.					L
											7	וענ	ည်	ි පිද	Era	אעונ	ગલ	ולא	Q·	1	1 4	אמבא	છ	אעין	એ િ	ગ્ર	γO	Q,	ρλ	ي ن (د	(a	
											٠				,					ار	1.			,						ก		L
																					, ,	_	, ~									

	<u>מדגמים</u>	<u>אוכלוסיות</u>
$\Delta = 0$	$1 - \text{EU}$: $\bar{x}_1 = 35.65$; $S_1^2 = 0.937$; $n_1 = 6$	$\sigma_1 = \sigma_2$
	$2 - \text{US}$: $\bar{x}_2 = \text{al} \gamma$; $S_2^2 = 0.376$; $n_2 = 6$	

$$H_0: \mu_1 - \mu_2 \le \Delta - H_1: \mu_1 - \mu_2 > \Delta$$

$$R = \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_1 + n_2 - 2, 1 - \alpha}\} \qquad \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + n_2 - 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + n_2 - 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + n_2 - 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + n_2 - 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + n_2 - 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + n_2 - 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + n_2 - 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + n_2 - 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + n_2 - 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + n_2 - 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + n_2 - 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + n_2 - 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + n_2 - 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + n_2 - 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + n_2 - 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + n_2 - 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + n_2 - 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + n_2 - 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + 2, 1 - \alpha}\} \qquad \qquad - \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + 2, 1 - \alpha}\} \qquad \qquad + \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + 2, 1 - \alpha}\} \qquad \qquad + \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + 2, 1 - \alpha}\} \qquad \qquad + \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + 2, 1 - \alpha}\} \qquad \qquad + \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + 2, 1 - \alpha}\} \qquad \qquad + \{t_{\bar{x}_1 - \bar{x}_2} > t_{n_2 + 2, 1 - \alpha}\} \qquad \qquad + \{t_{\bar{x}_1 -$$

$$t_{\bar{x}_1 - \bar{x}_2} = \frac{\bar{x}_1 - \bar{x}_2 - \Delta}{\sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}}} = \frac{35.65 - 31.7 - 0}{0.6815 + 0.6815} = 8.38$$