HW 7 - ASTR404

Created with Wolfram Mathematica 11.0 on October 14, 2016

Daniel George - dgeorge5@illinois.edu

Initialization

Importing data for 15M star

```
In[1]:= data = SemanticImport[NotebookDirectory[] <> "15M_at_ZAMS.dat"];
      (*Central density and radius of the star*)
      \( \rho c = 10^data[Max, "logRho"]; R = 10^data[Max, "logR"]; \)
```

Solving the Lane-Emden equation

```
\begin{array}{ll} \log = \theta@n_{:=} \theta@n = Module[\{o = \$MachineEpsilon_, x_, y_\}, \\ & NDSolveValue[\{x^-2D[x^2D[y[x]_, x]_, x]_+y[x]^n == 0, y[o]_{==} 1, \\ & y'[o]_{==} 0, WhenEvent[Re@y[x]_{<} 0, "StopIntegration"]\}, y_, \{x_, o_, 10^2\}]]\\ & r@n_{:=} \theta[n][1, 1, 2](*Point where <math>\theta = 0*) \end{array}
```

Q1)

Plotting density vs radius

```
|In||S||= Show||ListLinePlot||data||10^#&, {"logR", "logRho"}|, PlotStyle \rightarrow Black, | PlotLegends \rightarrow Placed||35M star"|, {Right, Top}|, Frame -> True, FrameLabel \rightarrow {"R", "\rho"}|, Plot||\rhoc (\theta[#]||r@#x/R|)^#&/@{1.5, 3}// Evaluate, {x, 0, R}, | PlotLegends \rightarrow Placed||\theta|= 1.5", "n = 3"}, {Right, Top}|, PlotStyle \rightarrow Dashed, Filling \rightarrow Bottom||\theta|= 15M star | \theta|= 1.5", "n = 1.5" | \theta|= 1.
```


a)

The n = 3 polytrope is a good fit near the radius of the star (r > 3). Neither polytrope fits well in other regions.

Gas and radiation pressure vs radius

```
ln[6]:= ListLogPlot[Transpose[{10^Normal@data[;;, "logR"], #}] & /@
      {10^Normal@data[;;, "logPgas"], 10^Normal@data[;;, "logP"] - 10^Normal@data[;;, "logPgas"]},
     PlotRange → All, Joined → True, Frame -> True, Filling → Bottom, FrameLabel → {"R", "P"},
     PlotLegends → Placed[{"Gas pressure", "Radiation pressure"}, {Left, Bottom}]]
```


a)

The radiation pressure never dominates for this star. (The question does not ask why it doesn't dominate, however this could be because the radiative temperature gradient assumption).

b)

n ~ 1.5 corresponds to an ideal gas with low radiation whereas n ~ 3 corresponds to high radiation. However the star is closer to an n = 3 polytrope, despite the radiation pressure not dominating, because the Eddington model assumes a constant radiative temperature gradient.

Energy generated in PP and CNO cycles

```
In[7]:= ListLogPlot[Transpose[{10^Normal@data[All, "logR"], Normal@data[All, #]}] & /@#,
       PlotRange → All, Filling → Bottom, Frame -> True, FrameLabel → {"R", "Energy generated"},
       PlotLegends → Placed[#, {Left, Bottom}], Joined → True] &@{"pp", "cno"}
```


a)

Point where total energy generation reduces by 50%

```
In[8]:= energy = Interpolation[
        Transpose@{10^Normal[data[All, "logR"]], Normal[Total/@data[All, {"cno", "pp"}]]}];
     FindRoot[energy@r == .5 energy@energy[1, 1, 1], {r, Sequence @@energy[1, 1]}]
Out[9]= \{r \rightarrow 0.4084886\}
```

The energy generation is primarily due to the CNO cycle in this region as seen in the figure above.

Q4)

 $\label{lineplot} $$\inf_{0}:= ListLinePlot[Transpose[\{10^Normal@data[All, "logR"], Normal@data[All, #]\}], $$PlotRange $\to All, PlotTheme $\to "Scientific", Filling $\to Bottom, Frame -> True, $$PlotTheme $\to "Scientific", FrameLabel $\to \{"R", "\gamma"\}] & @ "gamma1" $$$$$

a)

The adiabatic index is always less than 5/3 for this star.

This is means that the equation of state is relativistic (more radiation).

Q5)

a)

Yes, for r less than about 1.1 the star is convective as can be seen from the plot above (grada \sim gradT). This is because the CNO cycle is dominant for this region (see Q3).

Where are all these physicists??

In[35]:=