

VC-2015-feb-sol.pdf

DEDLED

Variable Compleja I

3º Doble Grado en Ingeniería Informática y Matemáticas

Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación Universidad de Granada

LA ESPERANZA ES LO ÚLTIMO QUE SE PIERDE. BUENO, EXCEPTO TU MÓVIL, O TU VIAJE, O TU EX.

ERO TÚ ESTO LO APRUEBAS SEGURO.

1

Variable Compleja I (Febrero 2015)

Soluciones a los ejercicios del examen

1. Para cada $n \in \mathbb{N}$, se considera la función $f_n : \mathbb{C} \to \mathbb{C}$ definida por

$$f_n(z) = \int_0^n \sqrt{t} e^{-tz} dt \qquad \forall z \in \mathbb{C}$$

- a) Probar que f_n es una función entera y calcular su desarrollo en serie de Taylor
- b) Estudiar la convergencia de la sucesión $\{f_n\}$ en el semiplano de la derecha $\Omega = \{ z \in \mathbb{C} : \operatorname{Re} z > 0 \} .$
- c) Deducir que $f \in \mathcal{H}(\Omega)$, donde $f(z) = \int_{0}^{+\infty} \sqrt{t} e^{-tz} dt$ para todo $z \in \Omega$.

Solución.

a). Fijado $n \in \mathbb{N}$, para probar que f_n es una función entera se puede aplicar el teorema de holomorfía de la integral dependiente de un parámetro, considerando la cadena $\Gamma = [0, n]$ y la función $\Phi : \Gamma^* \times \mathbb{C} \to \mathbb{C}$ definida por

$$\Phi(t,z) \, = \, \sqrt{t} \, e^{-tz} \qquad \, \forall \, (t,z) \in \Gamma^* \times \mathbb{C}$$

Claramente Φ es continua y, para todo $t \in \Gamma^*$, la función $\Phi_t : \mathbb{C} \to \mathbb{C}$ definida por

$$\Phi_t(z) = \Phi(t, z) = \sqrt{t} e^{-tz} \qquad \forall z \in \mathbb{C}$$

es una función entera, luego el mencionado teorema nos dice que f_n también es entera. No obstante, puesto que vamos a expresar $\,f_n\,$ como suma de una serie de potencias que converge en todo el plano, eso también probará que f_n es entera.

Fijado $z \in \mathbb{C}$, para todo $t \in [0, n]$ tenemos obviamente

$$\sqrt{t} e^{-tz} = \sqrt{t} \sum_{k=0}^{\infty} \frac{(-tz)^k}{k!} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \sqrt{t} t^k z^k$$
 (1)

y vamos a probar que esta serie converge uniformemente en el intervalo [0, n]. Para todo $k \in \mathbb{N} \cup \{0\}$ y todo $t \in [0, n]$ se tiene claramente

$$\left| \, \frac{(-1)^k}{k\,!} \, \sqrt{t} \,\, t^k \, z^k \, \right| \, \leq \, \sqrt{n} \, \frac{\left(\, n \, | \, z \, | \, \right)^k}{k\,!}$$

Teniendo presente que tanto $n \in \mathbb{N}$ como $z \in \mathbb{C}$ están fijos, la serie $\sum_{k \geq 0} \sqrt{n} \frac{(n|z|)^k}{k!}$ es convergente, de hecho su suma es $\sqrt{n} e^{n|z|}$

Por tanto, el test de Weierstrass nos dice que la serie que aparece en (1) converge uniformemente en el intervalo [0,n]. Aplicando entonces la continuidad de la integral de Cauchy, tenemos

$$f_n(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \left(\int_0^n \sqrt{t} \ t^k dt \right) z^k = \sum_{k=0}^{\infty} \frac{2 (-1)^k \sqrt{n} \ n^{k+1}}{k! (2k+3)} z^k$$
 (2)

y en particular, la última serie converge en el punto z que habíamos fijado. Como $z \in \mathbb{C}$ era arbitrario, la serie de potencias que aparece en (2) tiene radio de convergencia infinito y su suma coincide con la función f_n en todo el plano. Esto prueba que f_n es una función entera y (2) nos da su desarrollo en serie de Taylor centrado en el origen.

b). Si B un subconjunto no vacío de Ω tal que inf $\{\text{Re }z:z\in B\}=\alpha>0$, probaremos que la sucesión $\{f_n\}$ converge uniformemente en B. Para ello escribimos la sucesión $\{f_n\}$ en forma de serie:

$$f_n = \sum_{k=1}^{n} (f_k - f_{k-1}) \quad \forall n \in \mathbb{N}$$

donde se entiende que f_0 es idénticamente nula. Para todo $z \in B$ y todo $k \in \mathbb{N}$ se tiene entonces

$$|f_{k}(z) - f_{k-1}(z)| = \left| \int_{k-1}^{k} \sqrt{t} \, e^{-kt} \, dt \right| \le \int_{k-1}^{k} \left| \sqrt{t} \, e^{-tz} \, dt \right| \le \sqrt{k} \int_{k-1}^{k} e^{-t \operatorname{Re} z} \, dt$$

$$\le \sqrt{k} \int_{k-1}^{k} e^{-\alpha t} \, dt = \frac{\sqrt{k}}{\alpha} \left(e^{-\alpha(k-1)} - e^{-\alpha k} \right) = \frac{(e^{\alpha} - 1)}{\alpha} \sqrt{k} \, e^{-\alpha k} = M_{k}$$

donde M_k se define por la última igualdad. La serie $\sum_{k\geq 1} M_k$ es convergente, ya que

$$\lim_{k \to \infty} \frac{M_{k+1}}{M_k} \, = \, \lim_{k \to \infty} \sqrt{\frac{k+1}{k}} \, e^{-\alpha} \, = \, e^{-\alpha} \, < \, 1$$

y basta aplicar el criterio del cociente. Por el test de Weierstrass, la serie $\sum_{k\geq 1} (f_k - f_{k-1})$

converge uniformemente en B, es decir, $\{f_n\}$ converge uniformemente en B.

Si ahora K es compacto y $K \subset \Omega$, tenemos claramente mín $\{\text{Re }z:z\in K\}>0$ y podemos usar lo anterior con B=K. Por tanto, $\{f_n\}$ converge uniformemente en cada subconjunto compacto de Ω y, en particular, converge puntualmente en Ω .

(c) Sabemos que $\{f_n\}$ converge puntualmente en Ω , y tenemos claramente

$$\lim_{n \to \infty} f_n(z) \, = \, \lim_{n \to \infty} \int_0^n \sqrt{t} \, e^{-tz} \, dt \, = \, \int_0^\infty \sqrt{t} \, e^{-tz} \, dt \, = \, f(z) \qquad \, \forall \, z \in \Omega$$

Como f_n es holomorfa en Ω para todo $n \in \mathbb{N}$, y hemos visto que $\{f_n\}$ converge uniformemente a f en cada subconjunto compacto de Ω , el teorema de convergencia de Weierstrass nos asegura que $f \in \mathcal{H}(\Omega)$, como queríamos.

Variable Compleja I

Banco de apuntes de la

Comparte estos flyers en tu clase y consigue más dinero y recompensas

- Imprime esta hoja
- 2 Recorta por la mitad
- Coloca en un lugar visible para que tus compis puedan escanar y acceder a apuntes
- Llévate dinero por cada descarga de los documentos descargados a través de tu QR

2. Integrando una conveniente función compleja a lo largo de la frontera del conjunto $\{z \in \mathbb{C} : \varepsilon < |z| < R, \ 0 < \arg z < \pi/2\}$, con $0 < \varepsilon < 1 < R$, evaluar la integral

$$\int_0^{+\infty} \frac{\log x}{1 + x^4} \, dx$$

Solución.

Consideramos el abierto $\Omega=\mathbb{C}^*\setminus\mathbb{R}^-$ y el conjunto finito S formado por la raíces cuartas de -1 es decir, tomando $\alpha=e^{i\pi/4}$, se tiene $S=\{\alpha\,,\,i\,\alpha\,,\,-\alpha\,,\,-i\,\alpha\}$. Es claro que $S'\cap\Omega=\emptyset$. Como el logaritmo principal es una función holomorfa en Ω , la función $f:\Omega\setminus S\to\mathbb{C}$ definida por

$$f(z) = \frac{\log z}{1 + z^4} \qquad \forall z \in \Omega \setminus S$$

es holomorfa en $\,\Omega \setminus S\,.\,$

Para $0 < \varepsilon < 1 < R$ usamos el camino cerrado $\Gamma = \sigma_1 + \gamma_R - \sigma_2 - \gamma_{\varepsilon}$, donde

$$\sigma_1(x) = x$$
, $\sigma_2(x) = ix$ $\forall x \in [\varepsilon, R]$
 $\gamma_R(t) = R e^{it}$, $\gamma_{\varepsilon}(t) = \varepsilon e^{it}$ $\forall t \in [0, \pi/2]$

Es claro que $\Gamma^* \subset \Omega \setminus S$ y que Γ es un ciclo nul-homólogo con respecto Ω , pues de hecho Ω es homológicamente conexo. Por último se tiene claramente

$$\operatorname{Ind}_{\Gamma}(\alpha) = 1$$
 y $\operatorname{Ind}_{\Gamma}(i \alpha) = \operatorname{Ind}_{\Gamma}(-\alpha) = \operatorname{Ind}_{\Gamma}(-i \alpha) = 0$

Por tanto, el teorema de los residuos nos dice que

$$I = \int_{\Gamma} f(z) dz = 2 \pi i \operatorname{Res} (f(z), \alpha)$$

Para calcular el residuo, se tiene claramente

$$\lim_{z \to \alpha} (z - \alpha) f(z) = \lim_{z \to \alpha} \frac{(z - \alpha) \log z}{1 + z^4} = \lim_{z \to \alpha} \frac{\log z}{(z + \alpha)(z - i\alpha)(z + i\alpha)}$$
$$= \frac{\log \alpha}{2 \alpha^3 (1 - i)(1 + i)} = \frac{i \pi/4}{4 \alpha^3} = \frac{\pi}{16 \alpha} \neq 0$$

donde también se podría haber aplicado la regla de L'Hôpital. Así pues, f tiene un polo simple en el punto α y acabamos de calcular el residuo, luego podemos escribir

$$I\,=\,2\,\pi\,i\,\frac{\pi}{16\,\alpha}\,=\,\frac{\pi^2\,\alpha}{8}$$

Denotaremos por $I_1, I_R, I_2, I_{\varepsilon}$ a las integrales de f sobre los arcos $\sigma_1, \gamma_R, \sigma_2, \gamma_{\varepsilon}$ respectivamente, y vamos a trabajar por separado con cada una de estas integrales La que en principio no interesa es

$$I_1 = \int_{\sigma_1} f(z) dz = \int_{\varepsilon}^{R} \frac{\log x}{1 + x^4} dx$$

Proyectos reales para presentar a las empresas **not found**

¡Adquiere **habilidades reales** y prepárate para el mundo laboral con un Bootcamp de programación!

4

Por otra parte, tenemos

$$I_2 = \int_{\sigma_2} f(z) dz = \int_{\varepsilon}^{R} \frac{\log(ix)}{1 + x^4} i dx = i \int_{\varepsilon}^{R} \frac{\log x}{1 + x^4} dx - \frac{\pi}{2} \int_{\varepsilon}^{R} \frac{dx}{1 + x^4}$$

y observamos que la parte imaginaria de I_2 también es la integral real que nos interesa. Claramente, en la igualdad $I=I_1-I_2+I_R-I_\varepsilon$, conviene igualar las partes imaginarias de ambos miembros, obteniendo

$$\frac{\pi^2 \sqrt{2}}{16} = \operatorname{Im}(I) = -\int_{\varepsilon}^{R} \frac{\log x}{1 + x^4} dx + \operatorname{Im} I_R - \operatorname{Im} I_{\varepsilon}$$

Concluimos por tanto que

$$\left| \frac{\pi^2 \sqrt{2}}{16} + \int_{\varepsilon}^{R} \frac{\log x}{1 + x^4} dx \right| \le |I_R| + |I_{\varepsilon}| \tag{3}$$

Trabajamos ahora con las integrales I_R e I_ε . Para $z\in\gamma_R^*$ tenemos |z|=R>1 y $0\leq\arg z\leq\pi/2$, de donde

$$|\log z| < \log R + (\pi/2)$$
 v $|1 + z^4| > R^4 - 1 > 0$

Deducimos que

$$|I_R| \le \frac{\pi R}{2} \left(\frac{\log R + (\pi/2)}{R^4 - 1} \right), \quad \text{luego} \quad \lim_{R \to +\infty} I_R = 0$$
 (4)

Por otra parte, para $z\in\gamma_{\varepsilon}^*$ tenemos $|z|=\varepsilon<1$ y también $0\leq\arg z\leq\pi/2$ de donde

$$|\log z| \le (\pi/2) - \log \varepsilon$$
 y $|1 + z^4| \ge 1 - \varepsilon^4 > 0$

Deducimos que

$$|I_{\varepsilon}| \le \frac{\pi \varepsilon}{2} \frac{(\pi/2) - \log \varepsilon}{1 - \varepsilon^4}, \quad \text{luego} \quad \lim_{\varepsilon \to 0} I_{\varepsilon} = 0$$
 (5)

En vista de (3), (4) y (5), concluimos finalmente que

$$\int_0^\infty \frac{\log x}{1 + x^4} \, dx = -\frac{\pi^2 \sqrt{2}}{16}$$

3. Sean f y g funciones enteras verificando que

$$|f(z)| \le |g(z)| \quad \forall z \in \mathbb{C}$$

¿Qué se puede afirmar sobre f y g?

Solución.

Suponiendo que g no es idénticamente nula, el principio de identidad nos dice que el conjunto $A = \{a \in \mathbb{C} : g(a) = 0\}$ verifica que $A' = \emptyset$. Entonces $\mathbb{C} \setminus A$ es abierto, y consideramos la función $h \in \mathcal{H}(\mathbb{C} \setminus A)$ definida por

$$h(z) = \frac{f(z)}{g(z)}$$
 $\forall z \in \mathbb{C} \setminus A$

que por hipótesis verifica

$$|h(z)| \le 1 \qquad \forall z \in \mathbb{C} \setminus A$$

Fijado $a \in A$, como a es punto aislado de A, podemos tomar $\rho_a \in \mathbb{R}^+$ de forma que $D(a, \rho_a) \cap A = \{a\}$. La restricción de h a $D(a, r_a) \setminus \{a\}$ es una función holomorfa y acotada, luego el teorema de extensión de Riemann nos dice que existe una única función $h_a \in \mathcal{H}(D(a, \rho_a))$ tal que

$$h_a(z) = h(z) \qquad \forall z \in D(a, \rho_a) \setminus \{a\}$$

Como lo anterior es válido para todo $a \in A$, podemos definir $\varphi : \mathbb{C} \to \mathbb{C}$ escribiendo

$$\varphi(z) = h(z) \quad \forall z \in \mathbb{C} \setminus A \quad \text{v} \quad \varphi(a) = h_a(a) \quad \forall z \in A$$

En el caso $A = \emptyset$, lo anterior no es necesario, tomamos directamente $\varphi = h$.

Como la restricción de φ al abierto $\mathbb{C} \setminus A$ coincide con h, el carácter local de la derivada nos dice que φ es derivable en todo punto de $\mathbb{C} \setminus A$. Pero además, fijado $a \in A$, la restricción de φ al disco abierto $D(a, \rho_a)$ coincide con h_a , luego φ también es derivable en el punto a. Así pues, φ es una función entera.

Para $z \in \mathbb{C} \setminus A$ tenemos $|\varphi(z)| = |h(z)| \le 1$. Pero, para $a \in A$ también tenemos

$$|\varphi(a)| = |h_a(a)| = \lim_{z \to a} |h(z)| \le 1$$

luego $|\varphi(z)| \leq 1$ para todo $z \in \mathbb{C}$. Por el teorema de Liouville, φ es constante, es decir, existe $\lambda \in \mathbb{C}$ tal que $\varphi(z) = \lambda$ para todo $z \in \mathbb{C}$, y obviamente será $|\lambda| \leq 1$. Para $z \in \mathbb{C} \setminus A$ se tiene entonces $f(z) = h((z) g(z) = \lambda g(z)$, igualdad que es evidente para todo $a \in A$, pues entonces g(a) = 0, luego también f(a) = 0. Finalmente, esta igualdad también es obvia, con $\lambda = 1$ por ejemplo, cuando g es idénticamente nula, pues entonces f también lo es.

En resumen, podemos afirmar que

$$\exists \lambda \in \mathbb{C} : |\lambda| \le 1 \quad \text{y} \quad f(z) = \lambda g(z) \quad \forall z \in \mathbb{C}$$
 (6)

Recíprocamente, si se cumple (6), se tiene obviamente $|f(z)| \leq |g(z)|$ para todo $z \in \mathbb{C}$, luego no se puede afirmar nada más.

4. Sea $f \in \mathcal{H}(D(0,1)\setminus\{0\})$ una función que diverge en el origen. Probar que la imagen de f contiene un conjunto de la forma $\{z \in \mathbb{C} : |z| > \rho\}$ con $\rho \in \mathbb{R}^+$.

Solución.

Puesto que f diverge en el origen, existe $\delta \in \mathbb{R}^+$, con $\delta \leq 1$, tal que

$$|f(z)| > 1 \quad \forall z \in D(0, \delta) \setminus \{0\}$$

Además, tenemos claramente

$$\lim_{z \to 0} \frac{1}{f(z)} = 0$$

Definiendo entonces $g: D(0, \delta) \to \mathbb{C}$ por

$$g(z) = \frac{1}{f(z)} \quad \forall z \in D(0, \delta) \setminus \{0\} \quad \text{y} \quad g(0) = 0$$

obtenemos una función $g \in \mathcal{H}(D(0,\delta) \setminus \{0\})$, que es continua en el origen. Por el teorema de extensión de Riemann, deducimos que $g \in \mathcal{H}(D(0,\delta))$.

Puesto que $D(0,\delta)$ es un dominio y g no es constante, el teorema de la aplicación abierta nos dice que la imagen de g es un conjunto abierto y, en particular, 0=g(0) es un punto interior a la imagen de g, es decir,

$$\exists\, \varepsilon>0 \ : \ D(0,\varepsilon)\subset g\big(D(0,\delta)\big)$$

Bastará entonces tomar $\rho = 1/\varepsilon$.

En efecto, si $w \in \mathbb{C}$ verifica que $|w| > \rho$, tenemos $|1/w| < \varepsilon$, luego existe $z \in D(0, \delta)$ tal que g(z) = 1/w. Como $1/w \neq 0$ será también $z \neq 0$, así que

$$\frac{1}{w} = g(z) = \frac{1}{f(z)}$$
, es decir, $w = f(z)$

Esto prueba que el conjunto $\{w\in\mathbb{C}:|w|>\rho\}$ está contenido en la imagen de f como se pedía.

