

4.7W防削顶单声道D类音频功率放大器

■ 特点

- ・防削顶失真功能(Anti-Clipping Function, ACF)
- ・优异的全带宽EMI抑制性能
- · 免滤波器数字调制,直接驱动扬声器
- ・输出功率
 - 1.40W (V_{DD} =3.6V, R_L =4 Ω , THD+N=10%) 2.82W (V_{DD} =5.0V, R_L =4 Ω , THD+N=10%) 4.71W (V_{DD} =6.5V, R_L =4 Ω , THD+N=10%)
- ・卓越的"咔嗒-噼噗"(Click-Pop)噪声抑制性能
- ・高信噪比SNR: 87dB (V_{DD}=5V, Av=23.5dB)
- ・低静态电流
 - 2.64mA (V_{DD} =3.6V, Vin=0V \sim No load)
 - 3.26mA (V_{DD}=5.0V, Vin=0V, No load)
 - 4.04mA (V_{DD} =5.0V, Vin=0V $_{\sim}$ No load)
- ・低关断电流: 0.01µA
- 过流保护及自动恢复功能
- 过热保护功能
- ・欠压异常保护功能
- ・无铅无卤封装, SOP8、SOP8-PP和WLCSP-9

■ 应用

- ・便携式音箱
- iphone/ipod/MP3 docking
- ・PMP/MP4/MP5播放器
- · 便携式游戏机
- ・掌上电脑PDAs
- ・USB音箱
- ・平板电脑
- ・导航仪GPS
- ・手机

■ 概述

HT6872是一款低EMI的,防削顶失真的,单声道免滤波D类音频功率放大器。在6.5V电源,10% THD+N,4Ω负载条件下,输出4.71W功率,在各类音频终端应用中维持高效率并提供AB类放大器的性能。

HT6872的最大特点是防削顶失真(ACF)输出控制功能,可检测并抑制由于输入音乐、语音信号幅度过大所引起的输出信号削顶失真(破音),也能自适应地防止在电池应用中由电源电压下降所造成的输出削顶,显著提高音质,创造非常舒适的听音享受,并保护扬声器免受过载损坏。同时芯片具有ACF-Off模式。

HT6872具有独有的电磁辐射(EMI)抑制技术和优异的全带宽低辐射性能,辐射水平在不加任何辅助设计时仍远在FCC Part15 Class B 标准之下,不仅避免了干扰其他敏感电路还降低了系统设计难度。

HT6872内部集成免滤波器数字调制技术,能够直接驱动扬声器,并最大程度减小脉冲输出信号的失真和噪音。输出无需滤波网络,极少的外部元器件节省了系统空间和成本,是便携式应用的理想选择。

此外,HT6872内置的关断功能使待机电流最小化,还集成了输出端过流保护、片内过温保护和电源 欠压异常保护等功能。

■ 典型应用图

■ 引脚信息

■ 引脚定义*1

SOP 引脚号	WLCSP 焊球号	引脚 名称	I/O	ESD 保护电路	功能
1	C2	CTRL	I	PN	ACF模式和关断模式控制端
2	B2	BYPASS	Α	PN	模拟参考电压
3	C1	IN-	Α	PN	反相输入端(差分-)
4	A1	IN+	Α	PN	同相输入端(差分+)
5	A3	OUT+	0	-	同相输出端(BTL+)
6	A2	VDD	Power	-	电源
7	B1/B3	GND	GND	-	地
8	C3	OUT-	0	-	反相输出端(BTL-)

注1 I: 输入端 O: 输出端 A: 模拟端

当大于VDD的电压外加于PN保护型端口(ESD保护电路由PMOS和NMOS组成)时,PMOS电路将有漏电流流过。

■ 电气特性

● 极限工作条件*2

参数	符号	最小值	最大值	单位
电源电压范围	V _{DD}	-0.3	6.5	V
输入信号电压范围 (IN+, IN-)	Vin	Vss-0.6	V _{DD} +0.6	V
输入信号电压范围 (除IN+, IN-外)	Vin	Vss-0.3	V _{DD} +0.3	V
工作环境温度范围	TA	-40	85	${\mathbb C}$
工作结温范围	TJ	-40	150	${\mathbb C}$
储存温度	T _{STG}	-50	150	$^{\circ}$

注2: 为保证器件可靠性和寿命,以上绝对最大额定值不能超过。否则,芯片可能立即造成永久性损坏或者其可靠性大大恶化。若输入端电压在可能超过VDD/GND的应用环境中使用,推荐使用一个外部二极管来保证该电压不会超过绝对最大额定值。

● 推荐工作条件

参数	符号	条件	最小值	典型值	最大值	单位
电源电压	V _{DD}		2.5	5	6.5	V
工作打控組座	_	tsp (Min.)=50ms	-20	25	0.5	%
工作环境温度	l a	tsp (Min.)=80ms	-30	25	85	C
扬声器阻抗	R∟		2*4	4		Ω

-2-

注3: VDD的上升时间应当超过1µs。

注4:扬声器阻抗为2欧姆应选取SOP8-PP封装,增加散热性能,并且不推荐工作在VDD=3.6~5V范围之外。

● 直流特性(DC)

V_{SS}=0V, V_{DD}=2.5V~6.5V, Ta= -40°C~85°C, 除非特殊说明.

参数	符号	条件	最小值	典型值	最大值	单位
VDD电源的启动阈值	Vuvlh			2.06		V
VDD电源的关断阈值	Vuvll			1.90		V
ACF 模式的设置阈值电压	V _{MOD1}		1.20		V _{DD}	V
ACF-Off 模式的设置阈值电压	V _{MOD2}		0.40	0.80 ^{*5}	0.90	V
SD 关断模式的设置阈值电压	V модз		Vss		0.20	V
		VDD=3.6V, Vin=0V、 No load		2.64		
静态电流	loo	VDD=5.0V, Vin=0V、 No load		3.26		mA
		VDD=6.5V, Vin=0V No load		4.04		
关断电流	Isp	CTRL=Vss, Ta=25°C		0.01		μA
BYPASS端电压值	VBYPASS			V _{DD} /2		V

注5: HT6872启动时CTRL端电压须大于0.80V。

● 模拟特性

Vss=0V, Vdd =5V, Av=18dB, Ta=25°C, Cin=0.1uF, Rin=12 kΩ, ACF-Off模式, 除非特殊说明.

参数	符号	条件		最小值	典型值	最大值	单位
		RL= 4Ω , VDD= $3.6V$	6.4111		1.14		
	•	RL=4Ω, VDD=5.0V	f=1kHz, THD+N=1%		2.30		
输出功率	Po	RL=4Ω, VDD=6.5V	111.5 * 11 170		3.85		W
相山切平	FO	RL= 4Ω , VDD= $3.6V$	6 41 11		1.40		VV
		RL= 4Ω , VDD= 5.0 V	f=1kHz, THD+N=10%		2.82		
	R _L =4Ω, V _{DD} =6.5V		4.71				
总谐波失真加噪声	THD+N	RL=4Ω, Po=1W, f=1kHz			0.08		%
输出噪声	V_N	f=20Hz~20kHz, A加权, Av=23.5dB			120		μV_{rms}
信噪比	SNR	A加权, Av=	A加权, Av=23.5dB		87		dB
电源抑制比	PSRR	f=1kHz			-72		dB
效率	n	VDD=5V, RL=4	Ω, Po=2W		82		%
双平	η	VDD=5V, RL=89	Ω, Po=1W		85		%
输出失调电压	Vos				±7		mV
频响特性	fres	C _{IN} =0.1µF, f=100Hz~20kHz		-3	-	1	dB
系统增益	Av ₀	R _{IN} =12 kΩ			23.5		dB
ACF衰减增益	Aa			-10		0	dB

注6: 以上模拟特性随所选元件和PCB布局而有所变化;以上特性在以8 Ω 或4 Ω 电阻串联30 μ H电感作为输出负载的测试条件下获得。

● 交流特性(AC)

V_{SS}=0V, V_{DD} =2.5 to 6.5V, Ta=-30℃~85℃, 除非特殊说明.

参数	符号	条件	最小值	典型值	最大值	单位
上电启动时间 (或从关断唤醒时间)	t stup			90		ms
输入截止频率	fc	Cin=0.1uF, R_{IN} =12k Ω		133		Hz
ACF 启动时间	t AT1	V _{DD} =3.6V, g=10dB		72		ms
ACF 释放时间	t _{RL1}	V _{DD} =3.6V, g=10dB		720		ms
唤醒模式设置时间	twĸ		35			ms
关断设置时间	tsp	Ta(Min.)= -20°C	50			mo
大例以且时间	ISD	Ta(Min.)= -30°C	80			ms
各模式设置时间 (除关断外)	t MOD		0.1			ms
载波调制频率	fрwм			488		KHz

-3-

■ 典型特性曲线

■ 功能描述及应用信息

● 输入配置

HT6872 接受模拟差分或单端音频信号输入,产生 PWM 脉冲输出信号驱动扬声器。

对差分输入,通过隔直电容 C_{IN} 和输入电阻 R_{IN} 分别输入到 IN+和 $IN-端。系统增益 <math>Av=200/R_{IN}$,输入 RC 高通滤波器的截止频率 $f_c=1/(2\pi R_{IN}C_{IN})$ 。

对单端输入,则通过 C_{IN} 耦合到 IN+端。IN-端必须通过输入电阻和电容(与 C_{IN} 、 R_{IN} 值相同)接地。增益 Av 和截止频率 f_c 与差分输入时相同。

注意系统前级电路的输出阻抗 Z_{OUT} 应不超过 600Ω 。

● CTRL模式设置

在 CTRL 端输入不同电压值,能实现 3 种工作模式,即防削顶模式(ACF),防削顶功能关闭模式(ACF-Off)和芯片关断模式 (SD),详见下表。

表 1 CTRL 引脚不同模式设置的输入电压

参数名	符号	最小值	典型值	最大值	单位
ACF 模式的设置阈值电压	V_{MOD1}	1.20		V_{DD}	V
ACF-Off 模式的设置阈值电压	V_{MOD2}	0.40	0.80	0.90	V
SD 模式的设置阈值电压	V_{MOD3}	V_{SS}		0.20	V

应用时,可通过以下两种方式来设置预置模式:

(1) 外部微控制器设置方式

通过外部微控制器的逻辑控制端 CTRL 来控制实现 ACF 和 SD 模式,见下图。根据 V_{MOD1} 、 V_{MOD2} 和 V_{MOD3} 阈值来设置 CTRL 端电压,为消除噪声建议采用时间常数不小于 1ms 的 RC 滤波器(例如 R_{CTRL} =10K, C_{CTRL} =0.1 μ F)。

图2 微控制器单端控制CTRL

(2) 外部开关按钮变换模式

(一)精简应用电路(ACF)

图 3 是 ACF 和 SD 固定模式应用图, 开关 S1 闭合时处于 ACF-1 模式, 打开后则进入 SD 关断模式。

-6-

04/2014 - V0.3

图 3 ACF-1 模式实现

若不需 SD 低功耗应用,可去掉开关 S1 和下拉电阻 R_{PD},直接将 CTRL 脚接电源 VDD 即可。

(二)精简应用电路(ACF-off)

图4 ACF-Off 模式精简电路

表 2 ACF-Off 精简电路电阻取值

电源电压VDD	3.3V~5.5V	6.5V
R _{CTRL1}	200kΩ	200kΩ
R _{CTRL2}	39kΩ	30kΩ

● CTRL模式功能描述

(一) ACF ON 模式

在 ACF 模式下,当电路检测到输入信号幅度过大而产生输出削顶时,HT6872 通过自动调整系统增益,控制输出达到一种最大限度的无削顶失真功率水平,由此大大改善了音质效果。此外,当电源电压下降时,HT6872 也能自动衰减输出增益,实现与 VDD 下降值相匹配的最大限度无削顶输出水平。

图 5 ACF 工作原理示意图

ACF ON 模式下的启动时间(Attack time)指在突然输入足够大信号而产生输出削顶的条件下,从 ACF 启动对放大器的增益调整,直到增益从 Av₀ 衰减至距目标衰减增益 3dB 时的时间间隔;释放时间(Release time)指从产生削顶的输入条件消失,到增益退出衰减状态恢复到 Av₀的时间间隔。HT6872的最大衰减增益为 10dB。

ACF 模式启动时间和释放时间(见下表)。

表 3 ACF 模式启动时间和释放时间

模式	启动时间	释放时间
ACF	72ms	720ms

(二) ACF OFF 模式

在 ACF-Off 模式下,ACF 功能被关闭,HT6872 不对输出削顶条件作检测,也不对系统增益作自动调整操作,系统增益保持为 Av=Av₀=23.5dB 恒定不变。HT6872 可能因输出存在破音失真而音质变坏。

(三) SD 模式

在关断模式(低功耗待机)下,芯片关闭所有功能并将功耗降低到最小,输出端为弱低电平状态(内部通过高阻接地)。

● 咔嗒-噼噗声消除

HT6872 内置控制电路实现了独创的杂音抑制效果,有效地抑制住了系统在上电、下电、关断及其唤醒操作过程中出现的瞬态咔嗒-噼噗(Click-Pop)噪声。

为达到更优异的咔嗒-噼噗声消除效果,一般情况下,建议采用 0.1μF 或更小的隔直电容 C_{IN}。同时 POP 噪声还可通过下列上电、下电时关断模式的时序控制措施来达到杂声微乎其微的效果:

- 电源上电时,保持关断模式,等电源足够稳定后再解除关断模式。
- · 电源下电时,提前设为关断模式。

● 保护功能

HT6872 具有以下几种保护功能:输出端过流保护、片内过温保护、电源欠压异常保护。

(1) 过流保护

当检测到一输出端对电源、对地、或对另一输出端短路时,过流保护启动,输出端切换至高阻态,防止 芯片烧毁损坏。短路情况消除后,可自动恢复正常工作。

(2) 过温保护

当检测到芯片内温度超过 **150**℃时,过温保护启动,正负输出端切换至弱低电平状态(内部通过高阻接地),防止芯片被热击穿损坏。

(3) 欠压保护

当检测到电源端 VDD 低于 V_{UVLL} (1.9V),启动欠压保护,输出端为弱低电平状态(内部通过高阻接地); 当检测到 VDD 高于 V_{UVLH} (2.06V),保护模式自动解除,经启动时间 T_{STUP} 后进入正常工作状态。

■ 应用电路举例

(1)单端输入,ACF 固定模式应用。通过打开开关S1进入SD关断模式,若不需SD低功耗应用,可去掉开关S1和下拉电阻R_{PD},直接将CTRL脚接电源VDD。

(2)单端输入,ACF-Off 固定模式应用。通过打开开关S1进入SD关断模式;若不需SD低功耗应用,可去掉开关S1。(请根据预置模式和VDD电压设置不同R_{CTRL1}和R_{CTRL2}值)

(3) 差分输入,非固定模式应用,通过CTRL1和CTRL2电位实现ACF、和 ACF-Off 灵活切换。

注 - 以上应用图中元件说明:

 C_{IN} : 隔直电容,采用 $0.1\mu F$ 或更小的(如 33nF), $\pm 10\%$ 的 C_{IN} 来进一步消除咔嗒-噼噗声和从输入端耦合进入的噪声。正负端两个 C_{IN} 之间需具有良好的匹配性。

 C_S : 电源去耦电容,采用足够低 ESR(等效串联电阻)的电容(不小于 $1\mu F$)。当 $R_L=4\Omega$ 或 VDD $\geq 4.5V$ 时,为更好的滤除低频噪声,建议另加一个低 ESR 电容(不小于 $10\mu F$)。去耦电容离 VDD 管脚越近越好,保持 3mm 之内。

 C_B : BYPASS 端口输出 VDD/2 电压,通过电容 C_B (1 μ F)接地以保证稳定性。

■ 封装外形

单位: mm

9焊球WLCSP

符号	最小	最大
Α	1.35	1.75
A1	0.10	0.25
A2	1.35	1.55
b	0.33	0.51
С	0.17	0.25
D	4.70	5.10
Е	3.80	4.00
E1	5.80	6.20
е	1.27(BSC)
L	0.40	1.27
θ	0°	8°

单位: mm

8引脚SOP