FPGA-Based Tetris Game

Design Report for ECE385

"Eaton Cup" ECE 385 FPGA Platform Digital Design Competition 2024

Team:

- Jie Wang, Shitian Yang
- Student ID: 3200112404, 3200112415
- May 22rd, 2024

Advisors:

- Prof. Chushan Li, Prof. Zuofu Cheng
- TA: Jiebang Xia
- ZJU-UIUC Institute

1. Introduction

Overview

Our FPGA-based Tetris game leverages the Avalon Bus for IP communication, VGA for display, and PS/2 keyboard for user input. The system integrates multiple modules to manage game logic, display, audio, and user interaction.

Block Diagram Description

IP Cores and Avalon Bus

IP Cores Used:

- 1. Nios II Processor (nios2 gen2 0):
 - **Address**: 0x0000_1000-0x0000_17FF
 - **Function**: Controls the overall game logic and coordinates between hardware and software.
- 2. On-Chip Memory (onchip memory2 0):
 - Address: 0x0000 0000 0x0000 000F
 - **Description**: Stores the state of the game grid and active pieces.
- 3. SDRAM Controller (sdram):
 - Address: 0x1000 0000 0x17FF FFFF
 - **Description**: Provides additional memory for game data storage, ensuring smooth gameplay.
- 4. SDRAM PLL (sdram pll):
 - Address: 0x0000_0090 0x0000_009F
 - **Description**: Generates the clock signals required by the SDRAM controller.
- 5. System ID Peripheral (sysid_qsys_0):
 - Address: 0x0000 00A8 0x0000 00AF
 - **Description**: Provides a unique identifier for the system.
- 6. JTAG UART (jtag uart 0):
 - Address: 0x0000 00B0 0x0000 00B7
 - **Description**: Facilitates communication between the FPGA and a host computer for debugging purposes.
- 7. PS/2 Keyboard Input (keycode):
 - Address: 0x0000_0080 0x0000_008F
 - **Description**: Handles inputs from the keyboard to control game pieces.
- 8. Various OTG HPI Controllers:
 - Avalon Memory Mapped Slaves
 - Address: otg_hpi_address_s1:0x0000_0070 0x0000_007F
 - Address: otg_hpi_data_s1:0x0000_0060 0x0000_006F
 - Address: otg hpi r s1:0x0000 0050 0x0000 005F
 - Address: otg_hpi_w_s1: 0x0000_0040 0x0000_004F
 - Address: otg_hpi_cs_s1:0x0000_0030 0x0000_003F
 - Address: otg_hpi_reset_s1: 0x0000_0020 0x0000_002F
 - External Connections: Conduits for each OTG HPI module
 - **Description**: Interfaces for handling OTG communications and control signals.

Function Description of Each IP

- **VGA Controller**: Drives the VGA monitor, updating the display based on the current game state. It interprets the game grid data and renders the appropriate colors and shapes.
- **PS/2 Keyboard Interface**: Handles user inputs, translating key presses into game actions like moving or rotating tetrominoes.
- **Audio Code**: Manages sound playback, providing audio feedback and background music to enhance the gaming experience.
- **Memory Controller**: Ensures efficient storage and retrieval of game state information, supporting real-time updates and smooth gameplay.

2. Implementation and Interface Definition of Main Modules

2.1 Game Logic Controller

Implementation

- Module Name: game_logic.sv
- **Description**: Implements the core mechanics of the Tetris game, including piece generation, movement, collision detection, line clearing, and scoring.
- Interface:
 - Inputs:
 - clk: System clock.
 - reset: System reset signal.
 - key_input: Signals from the PS/2 keyboard.
 - Outputs:
 - grid state: Current state of the game grid.
 - score: Current game score.

FSM Design

- States:
 - 1. **INIT**: Initializes game state.
 - 2. **IDLE**: Waits for user input.
 - 3. **MOVE**: Updates position of the active tetromino.
 - 4. **ROTATE**: Rotates the active tetromino.
 - 5. **COLLISION_CHECK**: Checks for collisions.
 - 6. **LINE_CLEAR**: Clears completed lines and updates the score.
 - 7. **GAME_OVER**: Ends the game when conditions are met.

2.2 VGA Display Handler

Implementation

- Module Name: VGA controller.sv
- **Description**: Manages the rendering of the game state on a VGA display.

Rendering Logic

- Uses double buffering to avoid flickering.
- Converts game grid data into VGA-compatible signals.
- Supports different colors for each tetromino type.

2.3 Keyboard Handler

Implementation

- Module Name: keyboard handler.sv
- **Description**: Interprets PS/2 keyboard inputs and converts them into control signals for the game logic.
- Interface:
 - Inputs:
 - clk: System clock.
 - ps2 data: Data from the PS/2 keyboard.
 - Outputs:
 - key_input: Control signals for game actions (left, right, rotate, drop).

Key Mapping

- Arrow keys for movement.
- Spacebar for dropping tetrominoes.

3. Implementation Process of the C Algorithm

Overview

The C algorithm manages the overall game state, score tracking, and user input processing. It ensures synchronization between hardware and software components.

Execution Cycle

- 1. **Initialization**: Sets up the game environment, initializes variables, and starts the game loop.
- 2. Main Loop:

- Input Handling: Reads input from the PS/2 keyboard.
- **Game Logic Update**: Updates the game state based on inputs and timer interrupts.
- **Display Update**: Sends the updated game state to the VGA controller.
- **Sound Update**: Triggers sound effects based on game events.

Data Synchronization

• Registers Used:

- grid state reg: Stores the current state of the game grid.
- score reg: Stores the current score.
- input reg: Captures user inputs from the keyboard.

• Mechanism:

- The hardware modules write to these registers during each clock cycle.
- The software reads from these registers to update the game state and display.
- Interrupts are used to handle real-time updates and ensure smooth gameplay.

Conclusion

This report outlines the design, implementation, and interfacing of the FPGA-based Tetris game. By leveraging the Avalon Bus for IP communication and integrating SystemVerilog and C components, we achieve a real-time, interactive gaming experience using FPGA Development Board. Our project not only demonstrates technical understanding in ECE385: Digital Systems but also creativity and innovation, positioning us for the Eaton Competition.

IILLINOIS

ECE ILLINOIS