2주차 EDA

김부현

1. 분석 데이터셋

https://www.kaggle.com/datasets/teejmahal20/airline-passenger-satisfaction

1. 인구사회학적 요인

Gender: Gender of the passengers (Female, Male)

Age: The actual age of the passengers

2. 승객 유형 분류

Customer Type: The customer type (Loyal customer, disloyal customer)

Type of Travel: Purpose of the flight of the passengers (Personal Travel, Business Travel)

Class: Travel class in the plane of the passengers (Business, Eco, Eco Plus)

Flight distance: The flight distance of this journey

1. 분석 데이터셋

3. 개별 서비스 만족도

Inflight wifi service: Satisfaction level of the inflight wifi service (0:Not Applicable;1-5)

Departure/Arrival time convenient: Satisfaction level of Departure/Arrival time convenient

Ease of Online booking: Satisfaction level of online booking

Gate location: Satisfaction level of Gate location

Food and drink: Satisfaction level of Food and drink

Online boarding: Satisfaction level of online boarding

Seat comfort: Satisfaction level of Seat comfort

Inflight entertainment: Satisfaction level of inflight entertainment

On-board service: Satisfaction level of On-board service

Leg room service: Satisfaction level of Leg room service

Baggage handling: Satisfaction level of baggage handling

Check-in service: Satisfaction level of Check-in service

Inflight service: Satisfaction level of inflight service

Cleanliness: Satisfaction level of Cleanliness

4. 지연시간

Departure Delay in Minutes: Minutes delayed when departure Arrival Delay in Minutes: Minutes delayed when Arrival

5. 항공 만족도 (결과변수 - 이진형)

Satisfaction: Airline satisfaction level(Satisfaction, neutral or dissatisfaction)

2. 결측값 확인

Arrival Delay in Minutes 변수에 결측값이 310개 존재함

3. 인구사회학적 요인

1. 성별

성별은 여성이 더 많으며, 주로 30~50대에서 많은 탑승객 분포를 보임.

2. 나이

4. 승객 유형

1. 고객 유형

2. 여행 유형

3. 좌석 유형

고객유형		여행 유형		좌석 유형	
Loyal Customer	84923	Business travel	71655	Business	49665
disloyal Customer	18981	Personal Travel	32249	Eco	46745
				Eco Plus	7494

비충성 고객, 개인목적일 경우, 좌석의 등급이 떨어질수록 불만족 비율이 큼.

4. 승객 유형

4. 비행거리

오른쪽 방향으로 꼬리가 긴 분포. (skewed)

사분위수 범위로 나누어 처리해보았더니 비행거리가 길수록 만족하는 비율이 커짐.

103904
1189.4
997.1
31
414
843
1743
4983

5. 개별 서비스 만족도 (5점 척도)

Service	mean	std
Inflight wifi service	2.73	1.33
Departure/Arrival time convenient	3.06	1.53
Ease of Online booking	2.76	1.40
Gate location	2.98	1.28
Food and drink	3.20	1.33
Online boarding	3.25	1.35
Seat comfort	3.44	1.32
Inflight entertainment	3.36	1.33
On-board service	3.38	1.29
Leg room service	3.35	1.32
Baggage handling	3.63	1.18
Checkin service	3.30	1.27
Inflight service	3.64	1.18
Cleanliness	3.29	1.31

개별항목 만족도가 높을수록 5점에 가까워지고, 낮을수록 1점에 가까워짐. 0점은 해당 없음 (Not Applicable)

크론바흐-알파값은 0.772로 일정한 수준의 내적일관성을 보임.

대부분 개별 서비스 만족도가 높을수록 최종 만족도가 높아지는 경향을 보이나,

유일하게 Departure/Arrival time convenient 만족도 변수는 최종 만족도와 반비례 관계를 보임.

6. 이/착륙 지연 시간


```
d_delay = data.loc[:,['Departure Delay in Minutes']]
 2 print(d_delay.quantile(.25))
 3 print(d_delay.quantile(.5))
   print(d_delay.guantile(.75))
Departure Delay in Minutes
                              0.0
Name: 0.25, dtype: float64
Departure Delay in Minutes
                              0.0
Name: 0.5, dtype: float64
Departure Delay in Minutes
                              12.0
Name: 0.75, dtype: float64
    d_{delay2} = d_{delay.replace(0, np.NaN)}
 2 d_delay3 = d_delay2.loc[:,['Departure Delay in Minutes']]
 3 print(d_delay3.quantile(.25))
   |print(d_delay3.quantile(.5))
 5 print(d_delay3.quantile(.75))
Departure Delay in Minutes
                              6.0
Name: 0.25, dtype: float64
Departure Delay in Minutes
                              16.0
Name: 0.5, dtype: float64
Departure Delay in Minutes
                              40.0
Name: 0.75, dtype: float64
```

```
a_delay = data.loc[:,['Arrival Delay in Minutes']]
 2 | print(a_delay.quantile(.25))
 3 print(a_delay.quantile(.5))
 4 | print(a_delay.quantile(.75))
Arrival Delay in Minutes
                            0.0
Name: 0.25, dtype: float64
Arrival Delay in Minutes
                            0.0
Name: 0.5, dtype: float64
Arrival Delay in Minutes
                            13.0
Name: 0.75, dtype: float64
    a_delay2 = a_delay.replace(0, np.NaN)
 2 a_delay3 = a_delay2.loc[:,['Arrival Delay in Minutes']]
 3 | print(a_delay3.quantile(.25))
   print(a_delay3.quantile(.5))
 5 print(a_delay3.quantile(.75))
Arrival Delay in Minutes
                            6.0
Name: 0.25, dtype: float64
Arrival Delay in Minutes
                            17.0
Name: 0.5, dtype: float64
Arrival Delay in Minutes
                            40.0
Name: 0.75, dtype: float64
```

	Departure Delay in Minutes	Arrival Delay in Minutes
mean	14.81	15.17
std	38.23	38.69
min	0	0
25%	0	0
50%	0	0
75%	12	13
max	1592	1584

대부분의 경우는 지연시간이 없으며 지연시간이 존재하는 경우도 대다수는 1시간을 넘어가지 않음.

6. 이/착륙 지연 시간

이륙 지연시간과 착륙 지연시간을 합쳐 새로운 파생변수를 생성하고 지연시간이 없는 경우, 지연시간이 60분 이하인 경우, 지연시간이 60분 이상인 경우, 총 3가지로 나누어보았음.

7. 상관계수 히트맵

Coefficient

P-value

