Modèle de langage

Dans le modèle de bayes naïf multinomial, on peut distinguer deux parties

$$P([W_1,...,W_d], C) = P(C) \prod_i P(W_i \mid C)$$

modèle des catégories modèle de langage

- Un modèle de langage est une distribution sur du texte, c.-à-d. sur des séquences de mots
 - étant donné un texte $[w_1,...,w_d]$, lui assigne une probabilité $P([w_1,...,w_d])$
- Dans le modèle de bayes naïf multinomial, le modèle de langage est très simple
 - les mots sont générés indépendamment les uns des autres (étant donnée la catégorie C)

 Un meilleur modèle générerait le ie mot d'une phrase au moins à partir des quelques mots précédents dans la phrase

$$P([W_1,...,W_d]) = \prod_i P(W_i \mid W_{i-n+1},...,W_{i-1})$$
n-1 mots précédents

- On appelle de tels modèles de langage des modèles n-gramme
 - ◆ un *n*-gramme est une sous-séquence de *n* mots, extraite d'un corpus
 - on les appelle modèles n-gramme parce qu'ils sont estimés à partir des fréquences de tous les n-grammes d'un corpus
- Ces modèles sont en fait des modèles (chaînes)
 de Markov d'ordre n-1

Exemple: dans le document

« Perceptron , un OOV OOV apprentissage OOV »

il y a:

◆ 7 unigrammes (*n*=1) dont 5 différents

```
« Perceptron »
« , »
« un »
« OOV »
« OOV »
« apprentissage »
« OOV »
```

Exemple: dans le document

« Perceptron , un OOV OOV apprentissage OOV »

il y a:

◆ 6 **bigrammes** (*n*=2), tous différents

```
(« Perceptron », « , »)
(« , », « un »)
(« un », « OOV »)
(« OOV », « OOV »)
(« OOV », « apprentissage »)
(« apprentissage », « OOV »)
```

Exemple: dans le document

« Perceptron , un OOV OOV apprentissage OOV »

il y a:

◆ 5 **trigrammes** (*n*=3), tous différents

```
(« Perceptron », « , », « un »)
(« , », « un », « OOV »)
(« un », « OOV », « OOV »)
(« OOV », « OOV », « apprentissage »)
(« OOV », « apprentissage », « OOV »)
```

- etc.
- Tendance historique des n-grammes: http://books.google.com/ngrams

Apprentissage de modèle *n*-gramme

 On peut apprendre un modèle n-gramme à partir des fréquences de n-grammes dans un corpus de documents D_t

$$P(W_i = w \mid w_{i-n+1}, \dots, w_{i-1}) = \text{nb. de fois que } w \text{ suit les mots } w_{i-n+1}, \dots, w_{i-1}$$

$$\text{nb. de fois que } w_{i-n+1}, \dots, w_{i-1} \text{ est suivi d'un mot}$$

$$= \underbrace{\sum_t \text{freq}(\ (w_{i-n+1}, \dots, w_{i-1}, w), D_t\)}_{\sum_t \text{ freq}(\ (w_{i-n+1}, \dots, w_{i-1}, *), D_t\)}$$

$$\text{mot quelconque}$$

Apprentissage de modèle *n*-gramme

Exemple: soit les fréquences totales suivantes

<i>n</i> -gramme	freq(n-gramme, D)	
(« modèle », « de », « Bayes »)	5	1
(« modèle », « de », « Markov »)	25	L.
(« modèle », « de », « langage »)	10	
		\sum
(« modèle », « de », *)	200	

Alors le modèle trigramme assignerait les probabilités:

```
P(W_i = \text{w Bayes }) \mid W_{i-2} = \text{w modèle }), W_{i-1} = \text{w de }) = 5/200

P(W_i = \text{w Markov }) \mid W_{i-2} = \text{w modèle }), W_{i-1} = \text{w de }) = 25/200

P(W_i = \text{w langage }) \mid W_{i-2} = \text{w modèle }), W_{i-1} = \text{w de }) = 10/200
```

Lissage de modèle *n*-gramme

- On peut également lisser les modèles n-gramme en général
 - encore plus important, puisque plus un *n*-gramme est long, moins il sera fréquent
 - la plupart des n-grammes imaginables auront une fréquence de zéro, pour n grand
- Première approche: lissage δ

$$P(W_{i} = w \mid w_{i-n+1}, \dots, w_{i-1}) = \frac{\delta + \sum_{t} \text{freq}((w_{i-n+1}, \dots, w_{i-1}, w), D_{t})}{\delta(|V|+1) + \sum_{t} \text{freq}((w_{i-n+1}, \dots, w_{i-1}, *), D_{t})}$$

Lissage δ

Exemple: soit les fréquences totales suivantes

<i>n</i> -gramme	freq(n-gramme, D)	
(« modèle », « de », « Bayes »)	5	7
(« modèle », « de », « langage »)	10	L.
(« modèle », « de », « langue »)	0	
] '
(« modèle », « de », *)	200	-

• Trigramme avec lissage δ = 0.1 et un vocabulaire de taille |V|=999

$$P(W_i = \text{w Bayes }) \mid W_{i-2} = \text{w modèle }), W_{i-1} = \text{w de }) = (0.1+5)/(100+200) = 5.1/300$$

 $P(W_i = \text{w langage }) \mid W_{i-2} = \text{w modèle }), W_{i-1} = \text{w de }) = (0.1+10)/(100+200) = 10.1/300$
 $P(W_i = \text{w langue }) \mid W_{i-2} = \text{w modèle }), W_{i-1} = \text{w de }) = (0.1+0)/(100+200) = 0.1/300$

Lissage par interpolation linéaire

- Deuxième approche: lissage par interpolation linéaire
 - faire la moyenne (pondérée) de modèles unigrammes, bigrammes, trigrammes, ...
 jusqu'à n-gramme

$$P_{\lambda}(W_{i} = w \mid w_{i-n+1}, \dots, w_{i-1}) = \lambda_{1} P(W_{i} = w) + \lambda_{2} P(W_{i} = w \mid w_{i-1}) + \lambda_{3} P(W_{i} = w \mid w_{i-2}, w_{i-1}) + \dots + \lambda_{n} P(W_{i} = w \mid w_{i-n+1}, \dots, w_{i-1})$$
où $\sum_{i} \lambda_{i} = 1$

- Exemple:
 - ♦ le trigramme (« modèle », « de », « langue ») a une fréquence de 0
 - ◆ le bigramme (« de », « langue ») est présent dans le corpus
 - \bullet alors $P_{\lambda}(W_i = w \mid w_{i-n+1}, \dots, w_{i-1}) > 0$, en autant que λ_2 ou $\lambda_1 > 0$