1/1 WPAT - ©Thomson Derwent

Accession Nbr:

2004-099992 [11]

Sec. Acc. CPI:

C2004-041576

Sec. Acc. Non-CPI:

N2004-079592

Title:

Preparing polyunsaturated fatty acids in transgenic plants, useful e.g. in pharmaceuticals and nutrition, by transforming plants with sequences encoding specific desaturases

Derwent Classes:

B05 C03 C06 D16 D23 E19 P13

Patent Assignee:

(BADI) BASF PLANT SCI GMBH

Inventor(s):

CIRPUS P; KUIJPERS A; LERCHL J; RENZ A

Nbr of Patents:

4

Nbr of Countries:

104

Patent Number:

DE10219203 A1 20031113 DW2004-11 A01H-001/00 234 *

AP: 2002DE-1019203 20020429

四WO200393482 A2 20031113 DW2004-11 C12N-015/82 Ger

AP: 2003WO-EP04297 20030425

DSNW: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

DSRW: AT BE BG CH CY CZ DE DK EA EE ES FI FR GB GH GM GR HU IE IT KE LS LU MC MW MZ NL OA PT RO SD SE SI SK SL SZ TR TZ UG ZM ZW

区AU2003232512 A1 20031117 DW2004-42 C12N-015/82

FD: Based on WO200393482 AP: 2003AU-0232512 20030425

EP1501932 A2 20050202 DW2005-10 C12N-015/82 Ger

FD: Based on WO200393482

AP: 2003EP-0747357 20030425; 2003WO-EP04297 20030425

DSR: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LT LU

THIS PAGE BLANK (USPTO)

LV MC MK NL PT RO SE SI SK TR

Priority Details:

2002DE-1019203 20020429

IPCs:

A01H-001/00 C12N-015/82 C12P-007/64

Abstract:

DE10219203 A

NOVELTY - Method for preparing polyunsaturated fatty acids and their derivatives (I) in transgenic plants, at a level of at least 1wt.% on total fatty acids.

DETAILED DESCRIPTION - Method for preparing polyunsaturated fatty acids and their derivatives of formula R1-CO-(CH2)n-(CH=CH-CH2)m-(CH2)p-Me (I) in transgenic plants, at a level of at least 1 wt.% on total fatty acids, involves introducing into the plant:

- (a) at least one sequence that encodes a polypeptide (II) with Delta -6-desaturase activity;
- (b) at least one sequence encoding a polypeptide (III) with Delta -6-elongase activity; and optionally
- (c) a sequence encoding a polypeptide (IV) with Delta -5-desaturase activity, then growing and harvesting the plants.

R1 = hydroxy, coenzyme A-(thioester), phosphatidyl-choline, -ethanolamine, -glycerol, -serine or -inositol, diphosphatidylglycerol, (glyco)sphingolipid, -OCH2-CH(OR3)-CH2OR2 or -CO-(CH2)n-(CH=CH-CH2)m-(CH2)p-Me;

R2 = hydrogen, phosphatidyl-choline, -ethanolamine, -glycerol, -serine or -inositol, diphosphatidylglycerol, (glyco)sphingolipid, optionally unsaturated 2-24C alkylcarbonyl or -CO-(CH2)n-(CH=CH-CH2)m-(CH2)p-Me;

R3 = hydrogen or optionally unsaturated 2-24C alkylcarbonyl;

n = 3, 4 or 6;

m = 3, 4 or 5;

p = 0 or 3.

ACTIVITY - Antilipemic; Cardiant; Cerebroprotective; Hypotensive;

Antiinflammatory; Antirheumatic; Antiarthritic.

No details of tests for these activities are given.

MECHANISM OF ACTION - None given.

USE - (I) and their derivatives are useful in human and animal nutrition, cosmetics and pharmaceuticals, e.g. for reducing levels of cholesterol in the blood; for protecting against heart disease, stroke and hypertension, and for alleviating (chronic) inflammatory processes in autoimmune diseases such as rheumatoid arthritis. (Dwg.0/3)

Manual Codes:

CPI: B04-B03B B05-B01M B05-B01P B10-B02H B10-C04E B10-E04A B10-E04C B14-C03 B14-C09B B14-D02A2 B14-E11 B14-F01 B14-F02B B14-F06 B14-G02D B14-N16 B14-R01 C04-B03B C05-B01M C05-B01P C10-B02H C10-C04E C10-E04A C10-E04C C14-C03 C14-C09B C14-D02A2 C14-E11 C14-F01 C14-F02B C14-F06 C14-G02D C14-N16 C14-R01 D05-H12 D05-H12E D05-H16B D10-A E05-G07 E05-G09D E10-B02D E10-C04L E10-E04J E10-E04M1

Update Basic:

2004-11

Update Basic (Monthly):

THIS PAGE BLANK (USPTO)

2004-02

Update Equivalents:

2004-11; 2004-42; 2005-10

Update Equivalents (Monthly):

2004-02; 2004-07; 2005-02

THIS PAGE BLANK (USPTO)

19 BUNDESREPUBLIK DEUTSCHLAND

[®] Offenlegungsschrift[®] DE 102 19 203 A 1

⑤ Int. Cl.⁷: **A 01 H 1/00**

DEUTSCHES
PATENT- UND
MARKENAMT

(71) Anmelder:

(1) Aktenzeichen:(2) Anmeldetag:

(43) Offenlegungstag:

102 19 203.0 29. 4. 2002

13. 11. 2003

② Erfinder:

Cirpus, Petra, Dr., 68163 Mannheim, DE; Renz, Andreas, Dr., 67117 Limburgerhof, DE; Lerchl, Jens, Dr., Svalös, SE; Kuijpers, Anne-Marie, Dr., 67166 Otterstadt, DE

L Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

Werfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Fettsäureester, die ungesättigte Fettsäuren mit mindestens drei Doppelbindungen enthalten, sowie freien ungesättigten Fettsäuren mit einem Gehalt von mindestens 1 Gew.-%, bezogen auf die gesamten in den Pflanzen enthaltenden Fettsäuren durch Expression mindestens einer Nukleinsäuresequenz, die für ein Polypeptid mit Δ-6-Desaturaseaktivität codiert, und mindestens einer Nukleinsäuresequenz, die für ein Polypeptid mit Δ-6-Elongaseaktivität codiert. Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit einer dritten Nukleinsäuresequenz, die für ein Polypeptid mit Δ-5-Desaturaseaktivität codiert, in der transgenen Pflanze exprimiert werden.

BASF Plant Science GmbH, 67065 Ludwigshafen,

Die Erfindung betrifft weiterhin die Verwendung definierter Nukleinsäuresequenzen, die für Polypeptide mit einer Δ -6-Desaturaseaktivität, Δ -6-Elongaseaktivität oder Δ -5-Desaturaseaktivität codieren, ausgewählt aus einer Gruppe von Nukleinsäuresequenzen bzw. die Verwendung von Nukleinsäurekonstrukten,enthaltend die vorge-

nannten Nukleinsäuresequenzen.

Beschreibung

[0001] Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Fettsäureester, die ungesättigte Fettsäuren mit mindestens drei Doppelbindungen enthalten, sowie freien ungesättigten Fettsäuren mit einem Gehalt von mindestens 1 Gew.-% bezogen auf die gesamten in der Pflanzen enthaltenden Fettsäuren durch Expression mindestens einer Nukleinsäuresequenz, die für ein Polypeptid mit Δ-6-Desaturaseaktivität codiert, und mindestens einer Nukleinsäuresequenz, die für ein Polypeptid mit Δ-6-Elongaseaktivität codiert. Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit einer dritten Nukleinsäuresequenz, die für ein Polypeptid mit Δ-5-Desaturaseaktivität codiert, in der transgenen Pflanze exprimiert werden.

[0002] Die Erfindung betrifft weiterhin die Verwendung definierter Nukleinsäuresequenzen, die für Polypeptide mit einer Δ-6-Desaturaseaktivität, Δ-6-Elongaseaktivität oder Δ-5-Desaturaseaktivität codieren ausgewählt aus einer Gruppe von Nukleinsäuresequenzen bzw. die Verwendung von Nukleinsäurekonstrukten enthalten die vorgenannten Nukleinsäuresequenzen.

[0003] Bestimmte Produkte und Nebenprodukte natürlich vorkommender Stoffwechselprozesse in mikrobiellen Zellen oder in den Zellen von Tieren und vorteilhaft Pflanzen sind für ein breites Spektrum an Industrien, einschließlich der Futtermittel-, Nahrungsmittel-, Kosmetik- und pharmazeutischen Industrie, nützlich. Zu diesen gemeinsam als "Feinchemikalien" bezeichneten Molekülen gehören auch Lipide und Fettsäuren, unter denen eine beispielhafte Klasse die mehrfach ungesättigten Fettsäuren sind. Mehrfach ungesättigte Fettsäuren (polyunsaturated fatty acids, PUFAs) werden beispielsweise Nahrungsmittel für Kinder zugegeben, um einen höheren Nährwert dieser Nahrungsmittel zu erzeugen. PUFAs haben zum Beispiel einen positiven Einfluss auf den Cholesterinspiegel im Blut von Menschen und eignen sich daher zum Schutz gegen Herzkrankheiten. Feinchemikalien wie mehrfach ungesättigte Fettsäuren (polyunsaturated fatty acids, PUFAs) lassen sich aus tierischen Quellen, wie beispielsweise Fisch, isolieren oder mit Mikroorganismen durch Züchtung von Mikroorganismen, die so entwickelt worden sind, dass sie große Mengen eines oder mehrerer gewünschter Moleküle produzieren und akkumulieren oder sezemieren, im großen Maßstab herstellen.

[0004] Fettsäuren und Triglyceride haben eine Vielzahl von Anwendungen in der Lebensmittelindustrie, der Tierernährung, der Kosmetik und im Pharmabereich. Je nachdem ob es sich um freie gesättigte oder ungesättigte Fettsäuren oder um Triglyceride mit einem erhöhten Gehalt an gesättigten oder ungesättigten Fettsäuren handelt, sind sie für die unterschiedlichsten Anwendungen geeignet. Mehrfach ungesättigte Ω-3-Fettsäuren und Ω-6-Fettsäuren stellen dabei einen wichtigen Bestandteil der tierischen und menschlichen Nahrung dar. Aufgrund der heute üblichen Zusammensetzung der menschlichen Nahrung ist ein Zusatz von mehrfach ungesättigten Ω-3-Fettsäuren, die bevorzugt in Fischölen vorkommen, zur Nahrung besonders wichtig. So werden beispielsweise mehrfach ungesättigte Fettsäuren wie Docosahexaensäure (= DHA, C22:6^{Δ4,7,10,13,16,19}) oder Eisosapentaensäure (= EPA, C20:5^{Δ5,8,11,14,17}) Babynahrung zur Erhöhung des Nährwertes zugesetzt. Der DHA wird dabei ein positiver Effekt auf die Entwicklung des Gehirns zugeschrieben.

[0005] Hauptsächlich werden die verschiedenen Fettsäuren und Triglyceride aus Mikroorganismen wie Mortierella oder aus Ölproduzierenden Pflanzen wie Soja, Raps, Sonnenblume, Algen wie Cryptocodinium oder Phaeodactylum und weiteren gewonnen, wobei sie in der Regel in Form ihrer Triacylglyceride (= Triglyceride = Triglycerole) anfallen. Sie können aber auch aus Tieren wie z. B. Fischen gewonnen werden. Die freien Fettsäuren werden vorteilhaft durch Verseifung hergestellt. Höhere mehrfach ungesättigte Fettsäuren wie DHA, EPA, Arachidonsäure (= ARA, C20:4^{Δ5,8,11,14}), Dihomo-γ-linolensäure (C20:3^{Δ8,11,14}) oder Docosapentaensäure (DPA, C22:5^{Δ7,10,13,16,19}) lassen sich nicht aus Ölfruchtpflanzen wie Raps, Soja, Sonnenblume, Färberdistel oder anderen isolieren. Übliche natürliche Quellen für diese Fettsäuren sind Fische wie Hering, Lachs, Sardine, Goldbarsch, Aal, Karpfen, Forelle, Heilbutt, Makrele, Zander oder Thunfisch oder Algen.

[0006] Je nach Anwendungszweck sind Öle mit gesättigten oder ungesättigten Fettsäuren bevorzugt, so sind z. B. in der humanen Ernährung Lipide mit ungesättigten Fettsäuren speziell mehrfach ungesättigten Fettsäuren bevorzugt. Den mehrfach ungesättigten Ω -3-Fettsäuren wir dabei ein positiver Effekt auf den Cholesterinspiegel im Blut und damit auf die Möglichkeit der Prävention einer Herzerkrankung zugeschrieben. Durch Zugabe dieser Ω -3-Fettsäuren zu Nahrung kann das Risiko einer Herzerkrankung, eines Schlaganfalls oder von Bluthochdruck deutlich verringert werden. Auch entzündliche speziell chronisch entzündliche Prozesse im Rahmen immunologischer Erkrankungen wie rheumatroider Arthritis lassen sich durch Ω -3-Fettsäuren positiv beeinflussen. Sie werden deshalb Lebensmitteln speziell diätischen Lebensmitteln zugegeben oder finden in Medikamenten Anwendung.

[0007] Ω -6-Fettsäuren wie Arachidonsäure haben bei diesen rheumatischen Erkrankungen aufgrund unserer üblichen Nahrungsmittelzusammensetzung eher einen negativen Effekt auf diese Krankheiten.

[0008] Ω-3- und Ω-6-Fettsäuren sind Vorläuser von Gewebshormonen, den sogenannten Eicosanoiden wie den Prostaglandinen, die sich von der Dihomo-γ-linolensäure, der Arachidonsäure und der Eicosapentaensäure ableiten, den Thromoxanen und Leukotrienen, die sich von der Arachidonsäure und der Eicosapentaensäure ableiten. Eicosanoide (sog. PG₂-Serie), die aus Ω-6-Fettsäuren gebildet werden fördern in der Regel Entzündungsreaktionen, während Eicosanoide (sog. PG₃-Serie) aus Ω-3-Fettsäuren geringe oder keine entzündungsfördernde Wirkung haben.

[0009] Aufgrund ihrer positiven Eigenschaften hat es in der Vergangenheit nicht an Ansätzen gefehlt, Gene, die an der Synthese von Fettsäuren bzw. Triglyceriden beteiligt sind, für die Herstellung von Ölen in verschiedenen Organismen mit geändertem Gehalt an ungesättigten Fettsäuren verfügbar zu machen. So wird in WO 91/13972 und seinem US-Äquivalent eine Δ-9-Desaturase beschrieben. In WO 93/11245 wird eine Δ-15-Desaturase in WO 94/11516 wird eine Δ-12-Desaturase beansprucht. Weitere Desaturasen werden beispielsweise in EP-A-0 550 162, WO 94/18337, WO 97/30582, WO 97/21340, WO 95/18222, EP-A-0 794 250, Stukey et al., J. Biol. Chem., 265, 1990: 20144–20149, Wada et al., Nature 347, 1990: 200–203 oder Huang et al., Lipids 34, 1999: 649–659 beschrieben. Die biochemische Charakterisierung der verschiedenen Desaturasen ist jedoch bisher nur unzureichend erfolgt, da die Enzyme als membrangebundene Proteine nur sehr schwer zu isolieren und zu charakterisieren sind (McKeon et al., Methods in Enzymol. 71, 1981: 12141–12147, Wang et al., Plant Physiol. Biochem., 26, 1988: 777–792). In der Regel erfolgt die Charakterisierung membrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Enserten gegen und seinen geeigneten Organismus, der anschließend auf Enserten gemeinsche Genaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Enserten gemeinsche Genaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Enserten gemeinsche Genaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Enserten Genaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Enserten Genaturasen der Genaturasen der Genaturasen der Genaturasen der Genaturasen Genaturasen der Genaturasen Genaturasen

zymaktivität mittels Edukt- und Produktanalyse untersucht wird. Δ-6-Desaturasen werden in WO 93/06712, US 5,614,393, US 5614393, WO 96/21022, WO 00/21557 und WO 99/27111 beschrieben und auch die Anwendung zur Produktion in transgenen Organismen beschrieben wie in WO 98/46763 WO 98/46764, WO 9846765. Dabei wird auch die Expression verschiedener Desaturasen wie in WO 99/64616 oder WO 98/46776 und Bildung polyungesättigter Fettsäuren beschrieben und beansprucht. Bzgl. der Effektivität der Expression von Desaturasen und ihren Einfluss auf die Bildung polyungesättigter Fettsäuren ist anzumerken, dass durch Expression einer einzelnen Desaturase wie bisher beschrieben lediglich geringe Gehalte an Δ-6-ungesättigten Fettsäuren/Lipiden wie z.B. gamma-Linolensäure und Stearidonsäure erreicht wurden. Weiterhin wurde in der Regel ein Gemisch aus ω3 und ω6 Fettsäuren erhalten, da alle bisher beschriebenen Δ-6-Desaturasen zum Beispiel Linolsäure (ω-6-Fettsäure) als auch α-Linolensäure (ω-3-Fettsäure) umsetzten.

[0010] Besonders geeignete Mikroorganismen zur Herstellung von PUFAs sind Mikroorganismen wie Thraustochytrien oder Schizochytrien-Stämme, Algen wie Phaeodactylum tricornutum oder Crypthecodinium-Arten, Ciliaten, wie Stylonychia oder Colpidium, Pilze, wie Mortierella, Entomophthora oder Mucor. Durch Stammselektion ist eine Anzahl von Mutantenstämmen der entsprechenden Mikroorganismen entwickelt worden, die eine Reihe wünschenswerter Verbindungen, einschließlich PUFAs, produzieren. Die Mutation und Selektion von Stämmen mit verbesserter Produktion eines bestimmten Moleküls wie den mehrfach ungesättigten Fettsäuren ist jedoch ein zeitraubendes und schwieriges Verfahren. Deshalb werden, wenn immer möglich wie oben beschrieben gentechnologische Verfahren bevorzugt. Mit Hilfe der vorgenannten Mikroorganismen lassen sich jedoch nur begrenzte Mengen der gewünschten mehrfach ungesättigten Fettsäuren wie DPA, EPA oder ARA herstellen. Wobei diese in der Regel je nach verwendeten Mikroorganismus als Fett-

säuregemische aus beispielsweise EPA, DPA und DHA anfallen.

[0011] Alternativ kann die Produktion von Feinchemikalien geeigneterweise über die Produktion in Pflanzen, die so entwickelt sind, dass sie die vorstehend genannten PUFAs herstellen, im großen Maßstab durchgeführt werden. Besonders gut für diesen Zweck geeignete Pflanzen sind Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten wie Raps, Canola, Lein, Soja, Sonnenblumen, Borretsch und Nachtkerze. Aber auch andere Nutzpflanzen, die Öle oder Lipide und Fettsäuren enthalten, sind gut geeignet, wie in der eingehenden Beschreibung dieser Erfindung erwähnt. Mittels herkömmlicher Züchtung ist eine Reihe von Mutantenpflanzen entwickelt worden, die ein Spektrum an wünschenswerten Lipiden und Fettsäuren, Cofaktoren und Enzymen produzieren. Die Selektion neuer Pflanzensorten mit verbesserter Produktion eines bestimmten Moleküls ist jedoch ein zeitaufwändiges und schwieriges Verfahren oder sogar unmöglich, wenn die Verbindung in der entsprechenden Pflanze nicht natürlich vorkommt, wie im Fall von mehrfach ungesättigten C_{18} -, C_{20} -Fettsäuren und C_{22} -Fettsäuren und solchen mit längeren Kohlenstoffketten.

[0012] Aufgrund der positiven Eigenschaften ungesättigter Fettsäuren hat es in der Vergangenheit nicht an Ansätzen gefehlt, diese Gene, die an der Synthese von Fettsäuren bzw. Triglyceriden beteiligt sind, für die Herstellung von Ölen in verschiedenen Pflanzen mit einem geändertem Gehalt an mehrfach ungesättigten Fettsäuren verfügbar zu machen. Bisher konnten jedoch längerkettige mehrfach ungesättigte C20- und/oder C22-Fettsäuren wie EPA oder ARA nicht in Pflan-

30

40

45

50

55

60

zen hergestellt werden.

[0013] Es bestand daher die Aufgabe ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäureestern und/ oder freien mehrfach ungesättigten Fettsäuren mit mindestens drei Doppelbindungen im Fettsäuremolekül zu entwikkeln. Diese Aufgabe wurde durch das erfindungsgemäße Verfahren zur Herstellung von Verbindungen der allgemeinen

$$\begin{array}{c|c}
CH_2 & CH_2 & CH_2 & CH_2 & CH_2 \\
\hline
\end{array}$$

$$\begin{array}{c|c}
CH_2 & CH_2 & CH_2 & CH_3 \\
\hline
\end{array}$$
(I)

in transgenen Pflanzen mit einem Gehalt von mindestens 1 Gew.-% bezogen auf die gesamten Fettsäuren dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst:

- a) Einbringen mindestens einer Nukleinsäuresequenz in eine Pflanze, die für ein Polypeptid mit einer Δ-6-Desaturaseaktivität codiert; sowie
- b) Einbringen mindestens einer zweiten Nukleinsäuresequenz, die für ein Polypeptid mit einer Δ-6-Elongaseaktivität codiert; und
- c) gegebenenfalls Einbringen einer dritten Nukleinsäuresequenz, die für ein Polypeptid mit einer Δ-5-Desaturaseaktivität codiert;
- d) anschließend kultivieren und ernten der Pflanzen; und

wobei die Variablen und Substituenten in der Formeln I folgende Bedeutung haben:

R1 = -OH, Coenzym A-(Thioester), Phosphatidylcholin-, Phosphatidylcthanolamin-, Phoshatidylglycerol-, Diphosphatidylglycerol-, Phosphatidylserin-, Phosphatidylinositol-, Sphingolipid-, Glycoshingolipid- oder einen Rest der folgenden allgemeinen Formel II

$$H_{2}C-O-R^{2}$$
 $HC-O-R^{3}$
 $H_{2}C-O$
65

R² = H, Phosphatidylcholin-, Phosphatidylethanolamin-, Phoshatidylglycerol-, Diphosphatidylglycerol-, Phosphatidyl-

serin-, Phosphatidylinositol-, Shingolipid-, Glycoshingolipid-, Glycoshingolipid- oder gesättigtes oder ungesättigtes C_2 -Alkylcarbonyl-,

 R^3 = H, gesättigtes oder ungesättigtes C_2 - C_{24} -Alkylcarbonyl-, oder

10

R² und R³ unabhängig voneinander einen Rest der allgemeinen Formel Ia

$$\begin{array}{c}
CH_{2} & CH_{2} \\
CH_{2} & CH_{2}
\end{array}$$

$$\begin{array}{c}
CH_{2} & CH_{3} \\
CH_{2} & CH_{3}
\end{array}$$
(Ia),

n = 3, 4 oder 6, m = 3, 4 oder 5 und p = 0 oder 3, bevorzugt bedeutet n = 3, m = 4 oder 5 und p = 0 oder 3.

[0014] R¹ bezeichnet in den Verbindungen der Formel I -OH (Hydroxyl-), AcetylCoenzym A-, Phosphatidylcholin-, Phosphatidylethanolamin-, Phosphatidylglycerol-, Diphosphatidylglycerol-, Phosphatidylserin-, Phosphatidylinositol-, Sphingolipid-, Glycoshingolipid- oder einen Rest der folgenden allgemeinen Formel II

$$H_2C-O-R^2$$
 H_2C-O-R^3
 H_2C-O-F

[0015] Die vorgenannten Reste für R¹ sind jeweils als Ester bzw. Thioester an die Verbindungen der allgemeinen Formel I gebunden.

[0016] R² bezeichnet in den Verbindungen der Formel II Wasserstoff, Phosphatidylcholin-, Phosphatidylethanolamin-, Phoshatidylglycerol-, Diphosphatidylglycerol-, Phosphatidylserin-, Phosphatidylinositol-, Shingolipid-, Glycoshingolipid-, Glycoshingolipid- oder gesättigtes oder ungesättigtes C₂-C₂₄-Alkylcarbonyl-.

[0017] Als ungesättigtes oder gesättigtes C2-C22-Alkylcarbonyl- seien Reste wie Ethylcarbonyl-, n-Propylcarbonyl-, n-Butylcarbonyl-, n-Pentylcarbonyl-, n-Hexylcarbonyl-, n-Heptylcarbonyl-, n-Octylcarbonyl-, n-Nonylcarbonyl-, n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten können. Bevorzugt sind gesättigte oder ungesättigte C₁₀-C₂₂-Alkylcarbonylreste wie n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten. Besonders bevorzugt sind gesättigte oder ungesättigte C₁₀-C₂₂-Alkylcarbonylreste wie C₁₀-Alkylcarbonyl-, C₁₁-Alkylcarbonyl-, C₁₂-Alkylcarbonyl-, C₁₃-Alkylcarbonyl-, C₁₄-Alkylcarbonyl-, C₁₆-Alkylcarbonyl-, C₁₈-Alkylcarbonyl-, C₂₀-Alkylcarbonyl-, C₂₂-Alkylcarbonyl- oder C₂₄-Alkylcarbonylbonyl-Reste, die ein oder mehrere Doppelbindungen enthalten. Ganz besonders bevorzugt sind gesättigte oder ungesättigte C₁₆-C₂₂-Alkylcarbonylreste wie C₁₆-Alkylcarbonyl-, C₁₈-Alkylcarbonyl-, C₂₀-Alkylcarbonyl- oder C₂₂-Alkylcarbonyl-Reste, die ein oder mehrere Doppelbindungen enthalten. Bevorzugt enthalten die genannten Reste zwei, drei, vier oder fünf Doppelbindungen. Besonders bevorzugt enthalten die Reste drei, vier oder fünf Doppelbindungen. Ganz besonders bevorzugt sind C₁₈-Alkylcarbonylreste, die eine, zwei, drei oder vier Doppelbindungen enthalten, und C₂₀-Alkylcarbonylreste, die drei, vier oder fünf Doppelbindungen enthalten. Alle genannten Reste leiten sich von den entsprechenden Fettsäuren ab.

[0018] R³ bezeichnet in den Verbindungen der Formel II Wasserstoff, gesättigtes oder ungesättigtes C₂-C₂₄-Alkylcar-bonyl.

[0019] Als ungesättigtes oder gesättigtes C₂-C₂₂-Alkylcarbonyl- seien Reste wie Ethylcarbonyl-, n-Propylcarbonyl-, n-Butylcarbonyl-, n-Pentylcarbonyl-, n-Hexylcarbonyl-, n-Heptylcarbonyl-, n-Octylcarbonyl-, n-Nonylcarbonyl-, n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten können. Bevorzugt sind gesättigte oder ungesättigte C₁₀-C₂₂-Alkylcarbonylreste wie n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten. Besonders bevorzugt sind gesättigte oder ungesättigte C_{10} - C_{22} -Alkylcarbonylreste wie C_{10} -Alkylcarbonyl-, C_{11} -Alkylcarbonyl-, C_{12} -Alkylcarbonyl-, C_{13} -Alkylcarbonyl-, C_{14} -Alkylcarbonyl-, C₁₆-Alkylcarbonyl-, C₁₈-Alkylcarbonyl-, C₂₀-Alkylcarbonyl-, C₂₂-Alkylcarbonyl- oder C₂₄-Alkylcarbonylbonyl-Reste, die ein oder mehrere Doppelbindungen enthalten. Ganz besonders bevorzugt sind gesättigte oder ungesättigte C₁₆-C₂₂-Alkylcarbonylreste wie C₁₆-Alkylcarbonyl-, C₁₈-Alkylcarbonyl-, C₂₀-Alkylcarbonyl- oder C₂₂-Alkylcarbonylbonyl-Reste, die ein oder mehrere Doppelbindungen enthalten. Bevorzugt enthalten die genannten Reste zwei, drei, vier oder fünf Doppelbindungen. Besonders bevorzugt enthalten die Reste drei, vier oder fünf Doppelbindungen. Ganz besonders bevorzugt sind C₁₈-Alkylcarbonylreste, die eine, zwei, drei oder vier Doppelbindungen enthalten, und C₂₀-Alkylcarbonylreste, die drei, vier oder fünf Doppelbindungen enthalten. Alle genannten Reste leiten sich von den entsprechenden Fettsäuren ab.

[0020] R² und R³ bezeichnen weiterhin in den Verbindungen der Formel II unabhängig voneinander einen Rest der allgemeinen Formel Ia

$$\begin{array}{c|c}
CH_2 & CH_2 & CH_2 & CH_2 & CH_3 \\
\hline
\end{array}$$
(Ia)

wobei n = 3, 4 oder 6, m = 3, 4 oder 5 und p = 0 oder 3 bedeutet, bevorzugt bedeutet n = 3, m = 4 oder 5 und p = 0 oder 3. [0021] Die vorgenannten Reste R^1 , R^2 und R^3 können auch Substituenten wie Hydoxyl- oder Epoxigruppen tragen oder auch Dreifachbindungen enthalten.

[0022] Bei den im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen handelt es sich um isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-5-, Δ-6-Desaturase- oder Δ-6-Elongaseaktivität codieren.

10

30

[0023] Die im Verfahren hergestellten Verbindungen der Formel I enthalten vorteilhaft eine Mischung aus unterschiedlichen Resten R¹, R² oder R³, die sich von unterschiedlichen Glyceriden ableiten lassen. Weiterhin lassen sich die vorgenannten Reste von verschieden Fettsäuren wie kurzkettigen Fettsäuren mit 4 bis 6 C-Atomen, mittelkettigen Fettsäuren mit 8 bis 12 C-Atomen oder langkettigen Fettsäuren mit 14 bis 24 C-Atomen ableiten, bevorzugt sind die langkettigen Fettsäuren.

[0024] Im erfindungsgemäßen Verfahren werden vorteilhaft Fettsäureester (= Verbindungen der Formel I) mit mehrfach ungesättigten C_{18} -, C_{20} - und/oder C_{22} -Fettsäuremolekülen mit mindestens zwei Doppelbindungen im Fettsäureester hergestellt. Bevorzugt enthalten diese Fettsäuremoleküle drei, vier oder fünf Doppelbindungen und führen vorteilhaft zur Synthese von γ -Linolensäure (= GLA, C18:3 $^{\Delta6,9,12}$), Stearidonsäure (= SDA, C18:4 $^{\Delta6,9,12,15}$), Dihomo- γ -Linolensäure (= DGLA, 20:3 $^{\Delta8,11,14}$), Eicosatetraensäure (= ETA, C20:4 $^{\Delta5,8,11,14}$), Arachidonsäure (ARA), Eicosapentaensäure (EPA) oder deren Mischungen, bevorzugt EPA und/oder ARA.

[0025] Die Fettsäureester mit mehrfach ungestättigten C₁₈-, C₂₀- und/oder C₂₂-Fettsäuremolekülen können aus den Organismen, die für die Herstellung der Fettsäureester verwendet wurden, in Form eines Ols oder Lipids beispielsweise in Form von Verbindungen wie Sphingolipide, Phosphoglyceride, Lipide, Glycolipide wie Glycoshingolipid, Phospholipide wie Phosphatidylethanolamin, Phosphatidylcholin, Phoshatidylserin, Phosphatidylglycerol, Phosphatidylinositol oder Diphosphatidylglycerol, Monoacylglyceride, Diacylglyceride, Triacylglyceride oder sonstige Fettsäureester wie die AcetylCoenzymA-Ester, die die mehrfach ungesättigten Fettsäuren mit mindestens zwei bevorzugt drei Doppelbindungen enthalten, isoliert werden. Neben diesen Estern sind die mehrfach ungesättigten Fettsäuren auch als freie Fettsäuren oder gebunden in anderen Verbindungen in den Pflanzen enthalten. In der Regel liegen die verschiedenen vorgenannten Verbindungen (Fettsäureester und frei Fettsäuren) in der Pflanze in einer ungefähren Verteilung von 80 bis 90 Gew.-% Triglyceride, 2 bis 5 Gew.-% Diglyceride, 5 bis 10 Gew.-% Monoglyceride, 1 bis 5 Gew.-% freie Fettsäuren, 2 bis 8 Gew.-% Phospholipide vor, wobei sich die Summe der verschiedenen Verbindungen zu 100 Gew.-% ergänzt.

10026] Inn erfindungsgemäßen Verfahren werden die Verbindungen der allgemeinen Formel I mit einem Gehalt von mindestens 1 Gew.-%, vorteilhaft von mindestens 2 Gew.-%, bevorzugt von mindestens 3 Gew.-%, besonders bevorzugt von mindestens 5 Gew.-%, besonders bevorzugt von mindestens 5 Gew.-%, ganz besonders bevorzugt von mindestens 10 Gew.-% bezogen auf die gesamten Fettsäuren in der transgenen Pflanze hergestellt. Da im erfindungsgemäßen Verfahren von den Ausgangsverbindungen Linolsäure (C18:2) bzw. Linolensäure (C18:3) mehrere Reaktionsschritte durchlaufen werden, fallen die Endprodukte des Verfahrens wie beispielsweise Arachidonsäure (ARA) oder Eicosapentaensäure (EPA) nicht als Reinprodukte an, es sind immer auch geringe Spuren der Vorstufen im Endprodukt enthalten. Sind in der Ausgangspflanze sowohl Linolsäure als auch Linolensäure vorhanden, so liegen die Endprodukte wie ARA und EPA als Mischungen vor. Die Vorstufen sollten vorteilhaft nicht mehr als 20 Gew.-%, bevorzugt nicht mehr als 15 Gew.-%, besonders bevorzugt nicht als 10 Gew.-%, ganz besonders bevorzugt nicht mehr als 5 Gew.-% bezogen auf die Menge des jeweilige Endprodukts betragen. Vorteilhaft werden in einer transgenen Pflanze als Endprodukte nur ARA oder nur EPA im erfindungsgemäßen Verfahren gebunden oder als freie Säuren (siehe Verbindungen der allgemeinen Formel I) hergestellt. Werden beide Verbindungen (ARA + EPA) gleichzeitig hergestellt, werden sie vorteilhaft in einem Verhältnis von mindesten 1 : 2 (EPA : ARA), vorteilhaft von mindestens 1 : 3, bevorzugt von 1 : 4, besonders bevorzugt von 1 : 5 hergestellt.

[0027] Als Organismus für die Herstellung im erfindungsgemäßen Verfahren kommen prinzipiell alle Pflanzen wie Moose, Algen, zweikeimblättrige oder einkeimblättrige Pflanzen in Frage. Vorteilhaft werden Organismen im erfindungsgemäßen Verfahren verwendet, die zu den Öl-produzierenden Organismen gehören, das heißt die für die Herstellung von Ölen verwendet werden, wie Algen wie Crypthecodinium, Phaeodactylum oder Pflanzen, insbesondere Pflanzen bevorzugt Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Erdnuss, Raps, Canola, Sonnenblume, Safflor (Färberdistel), Mohn, Senf, Hanf, Rhizinus, Olive, Sesam, Calendula, Punica, Nachtkerze, Königskerze, Distel, Wildrosen, Haselnuss, Mandel, Macadamia, Avocado, Lorbeer, Kürbis, Lein, Soja, Pistazien, Borretsch, Bäume (Ölpalme, Kokosnuss oder Walnuss) oder Feldfrüchte, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa oder Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten sowie ausdauernde Gräser und Futterfeldfrüchte. Bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Erdnuss, Raps, Canola, Sonnenblume, Safflor (Färberdistel), Mohn, Senf, Hanf, Rhizinus, Olive, Calendula, Punica, Nachtkerze, Kürbis, Lein, Soja, Borretsch, Bäume (Ölpalme, Kokosnuss). Besonders bevorzugt sind C18:2- und/oder C18:3-Fettsäure reiche Pflanzen wie Sonnenblume, Färberdistel, Tabak, Königskerze, Sesam, Baumwolle, Kürbis, Mohn, Nachtkerze, Walnuss, Lein, Hanf, Distel oder Färberdistel. Ganz besonders bevorzugt sind Pflanzen wie Färberdistel, Sonnenblume, Mohn, Nachtkerze, Walnuss, Lein oder Hanf.

[0028] Durch die enzymatische Aktivität der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die für Polypeptide mit Δ -5-, Δ -6-Desaturase- oder Δ -6-Elongaseaktivität codieren, können unterschiedliche Verbindungen der Formel I hergestellt werden.

[0029] Je nach Auswahl der für das erfindungsgemäße Verfahren verwendeten Pflanze lassen sich Mischungen der verschiedenen Verbindungen der allgemeinen Formel I oder einzelne Verbindungen wie EPA oder ARA in freier oder ge-

bundener Form herstellen. Je nachdem welche Fettsäurezusammensetzung in der Ausgangspflanze vorherrscht (C18:2oder C18:3-Fettsäuren) entstehen so Verbindungen der allgemeinen Formel I, die sich von C18:2-Fettsäuren ableiten, wie GLA, DGLA oder ARA enthaltende Verbindungen der Formel I oder, die sich von C18:3-Fettsäuren ableiten, wie SDA, ETA oder EPA enthaltende Verbindungen der Formel I. Liegt in der für das Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur Linolsäure (= LA, C18:2^{A9,12}) vor, so können als Produkte des Verfahrens nur GLA, DGLA und ARA entstehen, die als freie Fettsäuren oder gebunden vorliegen können. Ist in der im Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur α -Linolensäure (= ALA, C18:3 $^{\Delta 9,12,15}$) beispielsweise wie in Lein, so können als Produkte des Verfahrens nur SDA, ETA und EPA entstehen, die wie oben beschrieben als freie Fettsäuren oder gebunden vorliegen können. Durch Modifikation der Aktivität der an der Synthese beteiligten Enzyme (Δ-5-, Δ-6-Desaturase und Δ-6-Elongase) bzw. durch Einbringen nur der ersten beiden Gene Δ-6-Desaturase und Δ-6-Elongase) der Synthesekette lassen sich gezielt in den vorgenannten Pflanzen nur einzelne Produkte herstellten (siehe Fig. I). Durch die Aktivität der Δ-6-Desaturase und Δ-6-Elongase entstehen GLA und DGLA bzw. SDA und ETA, je nach Ausgangspflanze und ungesättigter Fettsäure. Bevorzugt entstehen DGLA bzw. ETA oder deren Mischungen. Wird die Δ-5-Desaturase zusätzlich in Pflanze eingebracht, so entstehen zusätzlich ARA oder EPA. Vorteilhaft werden nur ARA oder EPA oder deren Mischungen synthetisiert, abhängig von der in der Pflanze vorliegenden Fettsäure, die als Ausgangssubstanz für die Synthese dient. Da es sich um Biosyntheseketten handelt, liegen die jeweiligen Endprodukte nicht als Reinsubstanzen in den Pflanzen vor. Es sind immer auch geringe Mengen der Vorläuferverbindungen im Endprodukt enthalten. Diese geringen Mengen betragen weniger als 20 Gew.-%, vorteilhaft weniger als 15 Gew.-%, besonders vorteilhaft weniger als 10 Gew.-%, ganz besonders vorteilhaft weniger als 5, 4, 3, 2 oder 1 Gew.-% bezogen auf das Endprodukt DGLA, ETA oder deren Mischungen bzw. ARA, EPA oder deren Mischungen.

[0030] Im erfindungsgemäßen Verfahren werden sind unter transgenen Pflanzen auch Pflanzenzellen, -gewebe, -organe oder ganze Pflanzen zu verstehen, die zur Herstellung von Verbindungen der allgemeinen Formel I angezüchtet werden. Unter Anzucht ist beispielsweise die Kultivierung der transgenen Pflanzenzellen, -gewebe oder -organe auf einem Nährmedium oder der ganzen Pflanze auf bzw. in einem Substrat beispielsweise in Hydrokultur oder auf einem Ackerboden zu verstehen.

[0031] Im erfindungsgemäßen Verfahren können prinzipiell alle Nukleinsäuren verwendet werden, die für Polypeptide mit Δ -5-, Δ -6-Desaturase- oder Δ -6-Elongaseaktivität codieren. Vorteilhaft Stammen diese Nukleinsäuren aus Pflanzen wie Algen wie Isochrysis oder Crypthecodinium, Diatomeen wie Phaeodactylum, Moose wie Physcomitrella, Ceratodon oder höheren Pflanzen wie den Primulaceae wie Aleuritia, Calendula stellata, Osteospermum spinescens oder Osteospermum hyoseroides, Mikroorganismen wie Pilzen wie Aspergillus, Thraustochytrium, Phytophtora, Entomophthora, Mucor oder Mortierella, Hefen oder Tieren wie Nematoden wie Caenorhabditis, Insekten oder dem Mensch. Vorteilhaft stammen die Δ -5-, Δ -6-Desaturase- oder Δ -6-Elongasegene aus Pilzen oder aus Pflanzen wie Algen oder Moosen, bevorzugt aus Pflanzen.

[0032] Vorteilhaft wird im erfindungsgemäßen Verfahren eine Nukleinsäuresequenz ausgewählt aus der Gruppe den in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 oder deren Derivat oder Homologe, die für Polypeptide codieren, die noch die enzymatische Aktivität besitzen. Diese Sequenzen werden einzeln oder in Kombination in Expressionskonstrukte cloniert, diese Expressionskonstrukte sind in den Sequenzen SEQ ID NO: 33–37 wiedergegeben. Diese Expressionskonstrukte ermöglichen eine optimale Synthese der im erfindungsgemäßen Verfahren produzierten Verbindungen der allgemeinen Formel I.

[0033] Bei einer bevorzugten Ausführungsform umfasst das Verfahren ferner den Schritt des Gewinnens einer Zelle, die die im Verfahren verwendeten Nukleinsäuresequenzen, die für eine Δ-5- oder Δ-6-Desaturase und eine Δ-6-Elongase codieren, enthält, wobei eine Zelle mit den Nukleinsäuresequenz, einem Genkonstrukt oder einem Vektor, welche die Expression der Δ-5-, Δ-6-Desaturase- oder Δ-6-Elongasenukleinsäure allein oder in Kombination herbeiführen, transformiert wird. Bei einer weiteren bevorzugten Ausführungsform umfasst dieses Verfahren ferner den Schritt des Gewinnens der Feinchemikalie aus der Kultur. Die so hergestellte Zelle ist vorteilhaft eine Zelle einer Ölfruchtpflanze wie beispielsweise Erdnuss, Raps, Canola, Lein, Soja, Safflower, Hanf, Sonnenblumen oder Borretsch.

[0034] Unter transger Pflanze im Sinne der Erfindung ist zu verstehen, daß die im Verfahren verwendeten Nukleinsäuren nicht an ihrer natürlichen Stelle im Genom eines Organismus sind, dabei können die Nukleinsäuren homolog oder heterolog exprimiert werden.

[0035] Tansgen bedeutet aber auch, dass die erfindungsgemäßen Nukleinsäuren an ihrem natürlichen Platz im Genom eines Organismus sind, dass jedoch die Sequenz gegenüber der natürlichen Sequenz verändert wurde und/oder das die Regulationssequenzen, der natürlichen Sequenzen verändert wurden. Bevorzugt ist unter transgen die Expression der erfindungsgemäßen Nukleinsäuren an nicht natürlicher Stelle im Genom zu verstehen, das heißt eine homologe oder bevorzugt heterologe Expression der Nukleinsäuren liegt vor. Bevorzugte transgene Pflanzen sind die Ölfruchtpflanzen. [0036] Transgene Pflanzen, die die im erfindungsgemäßen Verfahren synthetisierten Verbindungen der Formel I enthalten, können direkt vermarktet werden ohne die synthetisierten Verbindungen zu isolieren. Unter Pflanzen im erfindungsgemäßen Verfahren sind alle Pflanzenteile, Pflanzenorgane wie Blatt, Stiel, Wurzel, Knollen oder Samen oder die gesamte Pflanze zu verstehen. Der Samen umfasst dabei alle Samenteile wie die Samenhüllen, Epidermis- und Samenzellen, Endosperm oder Embyrogewebe. Die im erfindungsgemäßen Verfahren hergestellten Verbindungen können aber auch aus den Pflanzen in Form ihrer Öle, Fett, Lipide und/oder freien Fettsäuren isoliert werden. Durch dieses Verfahren hergestellte Verbindungen der Formel I lassen sich durch Ernten der Organismen entweder aus der Kultur, in der sie wachsen, oder vom Feld ernten. Dies kann über Pressen oder Extraktion der Pflanzenteile bevorzugt der Pflanzensamen erfolgen. Dabei können die Öle, Fette, Lipide und/oder freien Fettsäuren durch sogenanntes kalt schlagen oder kalt pressen ohne Zuführung von Wärme durch Pressen gewonnen werden. Damit sich die Pflanzenteile speziell die Samen leichter aufschließen lassen, werden sie vorher zerkleinert, gedämpft oder geröstet. Die so vorbehandelten Samen können anschließend gepresst werden oder mit Lösungsmittel wie warmen Hexan extrahiert werden. Anschließend wird das Lösungsmittel wieder entfernt. Auf diese Weise können mehr als 96% der im Verfahren hergestellten Verbindungen isoliert werden. Anschließend werden die so erhaltenen Produkte weiter bearbeitet, das heißt raffiniert. Dabei werden zunächst

die Pflanzenschleime und Trübstoffe. Die sogenannte Entschleimung kann enzymatisch oder beispielsweise chemisch/ physikalisch durch Zugabe von Säure wie Phosphorsäure erfolgen. Anschließend werden die freien Fettsäuren durch Behandlung mit einer Base beispielsweise Natronlauge entfernt. Das erhaltene Produkt wird zur Entfernung der im Produkt verbliebenen Lauge mit Wasser gründlich gewaschen und getrocknet. Um die noch im Produkt enthaltenen Farbstoffe zu entfernen werden die Produkte einer Bleichung mit beispielsweise Bleicherde oder Aktivkohle unterzogen. Zum Schluss wird das Produkt noch beispielsweise mit Wasserdampf noch desodonert.

[0037] Vorzugsweise sind die durch dieses Verfahren produzierten PUFAs C_{18} - oder C_{20-22} -Fettsäuremoleküle mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise drei, vier, bei Kombination mit einer weiteren Elongasen und einer Δ -4 Desaturase fünf oder sechs Doppelbindungen. Diese C_{18} - oder C_{20-22} -Fettsäuremoleküle lassen sich aus dem Organismus in Form eines Öls, Lipids oder einer freien Fettsäure isolieren. Geeignete Organismen sind beispielsweise die vorstehend erwähnten. Bevorzugte Organismen sind transgene Pflanzen.

10

25

[0038] Eine erfindungsgemäße Ausführungsform sind Öle, Lipide oder Fettsäuren oder Fraktionen davon, die durch das oben beschriebene Verfahren hergestellt worden sind, besonders bevorzugt Öl, Lipid oder eine Fettsäurezusammensetzung, die PUFAs umfassen und von transgenen Pflanzen herrühren.

[0039] Eine weitere erfindungsgemäße Ausführungsform ist die Verwendung des Öls, Lipids oder der Fettsäurezusammensetzung in Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika.

[0040] Unter dem Begriff "Öl" oder "Fett" wird ein Fettsäuregemisch verstanden, das ungesättigte, gesättigte, vorzugsweise veresterte Fettsäure(n) enthält. Bevorzugt ist, dass das Öl oder Fett einen hohen Anteil an ungesättigter, unkonjugierter veresterter Fettsäure(n), insbesondere Linolsäure, γ-Linolensäure, Dihomo-γ-linolensäure, Arachidonsäure, α-Linolensäure, Stearidonsäure, Eicosatetraensäure oder Eicosapentaensäure hat. Vorzugsweise ist der Anteil an ungesättigten veresterten Fettsäuren ungefähr 30%, mehr bevorzugt ist ein Anteil von 50%, noch mehr bevorzugt ist ein Anteil von 60%, 70%, 80% oder mehr. Zur Bestimmung kann z. B. der Anteil an Fettsäure nach Überführung der Fettsäuren in die Methylestern durch Umesterung gaschromatographisch bestimmt werden. Das Öl oder Fett kann verschiedene andere gesättigte oder ungesättigte Fettsäuren, z. B. Calendulasäure, Palmitin-, Stearin-, Ölsäure etc., enthalten. Insbesondere kann je nach Ausgangspflanze der Anteil der verschiedenen Fettsäuren in dem Öl oder Fett schwanken.

[0041] Bei den im Verfahren hergestellten Verbindungen der Formel I, die mehrfach ungesättigte Fettsäuren mit mindestens zwei Doppelbindungen enthalten, handelt es sich um Sphingolipide, Phosphoglyceride, Lipide, Glycolipide, Phospholipide, Monoacylglycerin, Diacylglycerin, Triacylglycerin oder sonstige Fettsäureester.

[0042] Aus den so im erfindungsgemäßen Verfahren hergestellten Verbindungen der allgemeinen Formel I lassen sich die enthaltenden mehrfach ungesättigten Fettsäuren beispielsweise über eine Alkalibehandlung beispielsweise wäßrige KOH oder NaOH oder saure Hydrolyse vorteilhaft in Gegenwart eines Alkohols wie Methanol oder Ethanol oder über eine enzymatische Abspaltung freisetzen und isolieren über beispielsweise Phasentrennung und anschließender Ansäuerung über z. B. H₂SO₄. Die Freisetzung der Fettsäuren kann auch direkt ohne die vorhergehend beschriebene Aufarbeitung erfolgen.

[0043] Die im Verfahren verwendeten Nukleinsäuren können nach Einbringung in eine Pflanzenzelle bzw. Pflanze entweder auf einem separaten Plasmid liegen oder in das Genom der Wirtszelle integriert sein. Bei Integration in das Genom kann die Integration zufallsgemäß sein oder durch derartige Rekombination erfolgen, dass das native Gen durch die eingebrachte Kopie ersetzt wird, wodurch die Produktion der gewünschten Verbindung durch die Zelle moduliert wird, oder durch Verwendung eines Gens in trans, so dass das Gen mit einer funktionellen Expressionseinheit, welche mindestens eine die Expression eines Gens gewährleistende Sequenz und mindestens eine die Polyadenylierung eines funktionell transkribierten Gens gewährleistende Sequenz enthält, funktionell verbunden ist. Vorteilhaft werden die Nukleinsäuren über Multiexpressionskassetten oder Konstrukte zur multiparallelen samen-spezifischen Expression von Genen in die Pflanzen gebracht.

[0044] Moose und Algen sind die einzigen bekannten Pflanzensysteme, die erhebliche Mengen an mehrfach ungesättigten Fettsäuren, wie Arachidonsäure (ARA) und/oder Eicosapentaensäure (EPA) und/oder Docosahexaensäure (DHA) herstellen. Moose enthalten PUFAs in Membranlipiden während Algen, algenverwandte Organismen und einige Pilze auch nennenswerte Mengen an PUFAs in der Triacylglycerolfraktion akkumulieren. Daher eignen sich Nukleinsäuremoleküle, die aus solchen Stämmen isoliert werden, die PUFAs auch in der Triacylglycerolfraktion akkumulieren, besonders vorteilhaft für das erfindungsgemäße Verfahren und damit zur Modifikation des Lipid- und PUFA-Produktionssystems in einem Wirt, insbesondere Pflanzen, wie Ölfruchtpflanzen, beispielsweise Raps, Canola, Lein, Hanf, Soja, Sonnenblumen, Borretsch. Sie sind deshalb vorteilhaft im erfindungsgemäßen Verfahren verwendbar.

[0045] Die Herstellung einer Triensäure mit C_{18} -Kohlenstoffkette mithilfe von Desaturasen konnte bisher gezeigt werden. In diesen literaturbekannten Verfahren wurde die Herstellung von γ -Linolensäure beansprucht. Bisher konnte jedoch niemand die Herstellung sehr langkettiger mehrfach ungesättigter Fettsäuren (mit C_{20} - und längerer Kohlenstoffkette sowie von Triensäuren und höher ungesättigten Typen) allein durch modifizierte Pflanzen zeigen.

[0046] Zur Herstellung der erfindungsgemäßen langkettiger PUFAs müssen die mehrfach ungesättigten C₁₈-Fettsäuren zunächst durch die enzymatische Aktivität einer Desaturase zunächst desaturiert und anschließend über eine Elongase um mindestens zwei Kohlenstoffatome verlängert werden. Nach einer Elongationsrunde führt diese Enzymaktivität zu C₂₀-Fettsäuren, und nach zwei oder drei Elongationsrunden zu C₂₂- oder C₂₄-Fettsäuren. Die Aktivität der erfindungsgemäßen Verfahren verwendeten Desaturasen und Elongasen führt vorzugsweise zu C₁₈-, C₂₀- und/oder C₂₂-Fettsäuren mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier oder fünf Doppelbindungen, besonders bevorzugt zu C₁₈- und/oder C₂₀-Fettsäuren mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier oder fünf Doppelbindungen im Molekül. Nachdem eine erste Desaturierung und die die Verlängerung stattgefunden hat, können weitere Desaturierungsschritte wie z. B. eine solche in Δ-5-Position erfolgen. Besonders bevorzugt als Produkte des erfindungsgemäßen Verfahrens sind Arachidonsäure und Eicosapentaensäure. Die C₁₈-Fettsäuren mit mindestens zwei Doppelbindungen in der Fettsäure können durch die erfindungsgemäße enzymatische Aktivität in Form der freien Fettsäure oder in Form der Ester, wie Phospholipide, Glycolipide, Sphingolipide, Phosphoglyceride, Monoacylglycerin, Diacylglycerin oder Triacylglycerin, verlängert werden.

[0047] Unter der Verwendung von Klonierungsvektoren in Pflanzen und bei der Pflanzentransformation, wie denjenigen, die veröffentlicht sind in und dort zitiert sind: Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, Florida), Kapitel 6/7, S. 71-119 (1993); F. F. White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-143; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225)), lassen sich die Nukleinsäuren zur gentechnologischen Veränderung eines breiten Spektrums an Pflanzen verwenden, so dass diese ein besserer oder effizienterer Produzent eines oder mehrerer von Lipiden hergeleiteter Produkte, wie PUFAs, wird. Diese verbesserte Produktion oder Effizienz der Produktion eines von Lipiden hergeleiteten Produktes, wie PUFAs, kann durch direkte Wirkung der Manipulation oder eine indirekte Wirkung dieser Manipulation hervorgerufen werden.

[0048] Es gibt eine Reihe von Mechanismen, durch die die Veränderung eines erfindungsgemäßen Desaturase-Proteins die Ausbeute, Produktion und/oder Effizienz der Produktion einer Feinchemikalie aus einer Ölfruchtpflanze oder einem Mikroorganismus aufgrund eines veränderten Proteins direkt beeinflussen kann. Die Anzahl oder Aktivität des Desaturase-Proteins oder -Gens sowie von Genkombinationen von Desaturasen und Elongasen kann erhöht sein, so dass grö-Bere Mengen dieser Verbindungen de novo hergestellt werden, weil den Organismen diese Aktivität und Fähigkeit zur Biosynthese vor dem Einbringen des entsprechenden Gens fehlte. Entsprechendes gilt für die Kombination mit weiteren Desaturasen oder Elongasen oder weiteren Enzymen aus dem Lipidstoffwechsel. Auch die Verwendung verschiedener divergenter, d. h. auf DNA-Sequenzebene unterschiedlicher Sequenzen kann dabei vorteilhaft sein bzw. die Verwendung von Promotoren zur Genexpression, die eine andere zeitliche Genexpression z. B. abhängig vom Reifegrad eines Samens oder Öl-speichernden Gewebes ermöglicht.

[0049] Durch das Einbringen eines Desaturase- und/oder Elongase-Gens oder mehrerer Desaturase- und Elongase-Gene in einen Organismus allein oder in Kombination mit anderen Genen in eine Zelle kann nicht nur den Biosynthesefluss zum Endprodukt erhöhen, sondern auch die entsprechende Triacylglycerin-Zusammensetzung erhöhen oder de novo schaffen. Ebenso kann die Anzahl oder Aktivität anderer Gene, die am Import von Nährstoffen, die zur Biosynthese einer oder mehrerer Feinchemikalien (z. B. Fettsäuren, polaren und neutralen Lipiden) nötig sind, erhöht sein, so dass die Konzentration dieser Vorläufer, Cofaktoren oder Zwischenverbindungen innerhalb der Zellen oder innerhalb des Speicherkompartiments erhöht ist, wodurch die Fähigkeit der Zellen zur Produktion von PUFAs, wie im folgenden beschrieben, weiter gesteigert wird. Fettsäuren und Lipide sind selbst als Feinchemikalien wünschenswert; durch Optimierung der Aktivität oder Erhöhung der Anzahl einer oder mehrerer Desaturasen und/oder Elongasen, die an der Biosynthese dieser Verbindungen beteiligt sind, oder durch Zerstören der Aktivität einer oder mehrerer Desaturasen, die am Abbau dieser Verbindungen beteiligt sind, kann es möglich sein, die Ausbeute, Produktion und/oder Effizienz der Produktion von Fettsäure- und Lipidmolekülen aus Pflanzen zu steigern.

[0050] Die im erfindungsgemäßen Verfahren verwendeten isolierten Nukleinsäuremoleküle codieren für Proteine oder Teilen von diesen, wobei die Proteine oder das einzelne Protein oder Teilen davon eine Aminosäuresequenz enthält, die ausreichend homolog zu einer Aminosäuresequenz der Sequenz SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 ist, so dass das Protein oder der Teil davon eine Desaturase- oder Elongase-Aktivität beibehält. Vorzugsweise hat das Protein oder der Teil davon, das/der von dem Nukleinsäuremolekül kodiert wird, seine wesentliche enzymatische Aktivität und die Fähigkeit, am Stoffwechsel von zum Aufbau von Zellmembranen von Pflanzen notwendigen Verbindungen oder am Transport von Molekülen über diese Membranen teilzunehmen. Vorteilhaft ist das von den Nukleinsäuremolekülen kodierte Protein zu mindestens etwa 50%, vorzugsweise mindestens etwa 60% und stärker bevorzugt mindestens etwa 70%, 80% oder 90% und am stärksten bevorzugt mindestens etwa 95%, 96%, 97%, 98%, 99% oder mehr homolog zu einer Aminosäuresequenz der Sequenz SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32. Bevorzugt ist das Protein ein Volllängen-Protein, das im wesentlichen in Teilen homolog zu einer gesamten Aminosäuresequenz der SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 (die von dem in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 gezeigten offenen Leserahmen herrührt) ist. Im Sinne der Erfindung ist unter Homologie oder homolog, Identität oder identisch zu verstehen.

[0051] Unter wesentlicher enzymatischer Aktivität der verwendeten Desaturasen und der Elongase ist zu verstehen, dass sie gegenüber den durch die Sequenzen mit SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 codierten Proteinen/Enzymen im Vergleich noch mindestens eine enzymatische Aktivität von mindestens 10%, bevorzugt 20%, besonders bevorzugt 30% und ganz besonders 40% aufweisen und damit am Stoffwechsel von zum Aufbau von Fettsäuren in einer Pflanzenzelle notwendigen Verbindungen oder am Transport von Molekülen über Membranen teilnehmen können, wobei desaturierte C18- oder C20-22-Kohlenstoffketten mit Doppelbindungen an mindestens zwei, vorteilhaft drei, vier oder fünf Stellen gemeint ist.

Vorteilhaft im Verfahren verwendbare Nukleinsäuren stammen aus Pilzen oder Pflanzen wie Algen oder Moosen wie den Gattungen Physcomitrella, Thraustochytrium, Phytophtora, Ceratodon, Isochrysis, Aleurita, Muscarioides, Mortierella, Borago, Phaeodactylum, Crypthecodinium oder aus Nematoden wie Ceanorhabditis, speziell aus den Gattungen und Arten Physcomitrella patens, Phytophtora infestans, Ceratodon purpureus, Isochrysis galbana, Aleurita farinosa, Muscarioides viallii, Morticrella alpina, Borago officinalis, Phaeodactylum tricormutum oder Ceanorhabditis ele-

[0053] Alternativ können die verwendeten isolierten Nukleotidsequenzen für Desaturasen oder Elongasen codieren, die an eine Nukleotidsequenz der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 hybridisieren, z. B. unter stringenten Bedingungen hybridisieren.

[0054] Die im Verfahren verwendeten Nukleinsäuresequenzen werden vorteilhaft in einer Expressionskassette, die die Expression der Nukleinsäuren in Pflanzen ermöglicht, eingebracht.

[0055] Vorteilhafte Expressionskassetten werden in SEQ ID NO: 33 bis 37 wiedergegeben. Dabei werden die für die Desaturasen und/oder die Elongasen codierenden Nukleinsäuresequenzen mit einem oder mehreren Regulationssignalen vorteilhafterweise zur Erhöhung der Genexpression funktionell verknüpft. Diese regulatorischen Sequenzen sollen die gezielte Expression der Gene und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus

bedeuten, dass das Gen erst nach Induktion exprimiert und/oder überexprimiert wird, oder dass es sofort exprimiert und/ oder überexprimiert wird. Beispielsweise handelt es sich bei diesen regulatorischen Sequenzen um Sequenzen an die Induktoren oder Repressoren binden und so die Expression der Nukleinsäure regulieren. Zusätzlich zu diesen neuen Regulationssequenzen oder anstelle dieser Sequenzen kann die natürliche Regulation dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch verändert worden sein, so dass die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Die Expressionskassette (= Expressionskonstrukt = Genkonstrukt) kann aber auch einfacher aufgebaut sein, das heißt es wurden keine zusätzlichen Regulationssignale vor die Nukleinsäuresequenz oder dessen Derivate inseriert und der natürliche Promotor mit seiner Regulation wurde nicht entfernt. Stattdessen wurde die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und/oder die Genexpression gesteigert wird. Diese veränderten Promotoren können in Form von Teilsequenzen (= Promotor mit Teilen der erfindungsgemäßen Nukleinsäuresequenzen) auch allein vor das natürliche Gen zur Steigerung der Aktivität gebracht werden. Das Genkonstrukt kann außerdem vorteilhafterweise auch eine oder mehrere sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promotor enthalten, die eine erhöhte Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der DNA-Sequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden wie weitere regulatorische Elemente oder Terminatoren. Die Δ5-Desaturase-/Δ6-Desaturase und/oder Δ6-Elongase-Gene können in einer oder mehreren Kopien in der Expressionskassette (= Genkonstrukt) enthalten sein. Worteilhaft liegt nur jeweils eine Kopie der Gene in der Expressionskassette vor. Dieses Genkonstrukt oder die Genkonstrukte können zusammen im Wirtsorganismus exprimiert werden. Dabei kann das Genkonstrukt oder die Genkonstrukte in einem oder mehreren Vektoren inseriert sein und frei in der Zelle vorliegen oder aber im Genom inseriert sein. Es ist vorteilhaft für die Insertion weiterer Gene im Wirtsgenom, wenn die zu exprimierenden Gene zusammen in einem Genkonstrukt vorliegen. [0056] Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.

[0057] Eine weitere Ausführungsform der Erfindung sind ein oder mehrere Genkonstrukte, die eine oder mehrere Sequenzen enthalten, die durch Seq ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 definiert sind und gem. SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 Polypeptide kodieren. Die genannten Desaturasen führen dabei eine Doppelbindung in Δ -5 oder Δ -6-Position ein, wobei das Substrat ein, zwei, drei oder vier Doppelbindungen aufweisen. Die Elongase (Δ -6-Elongase) besitzt eine Enzymaktivität, die eine Fettsäure um mindestens zwei Kohlenstoffatome verlängert. Gleiches gilt für ihre Homologen, Derivate oder Analoga, die funktionsfähig mit einem oder mehreren Regulationssignalen, vorteilhafterweise zur Steigerung der Genexpression, verbunden sind.

[0058] Vorteilhafte Regulationssequenzen für das neue Verfahren liegen beispielsweise in Promotoren vor, wie dem cos-, tac-, trp-, tet-, trp-, tet-, lpp-, lac-, lpp-lac-, lac-, lpp-lac-, lac-, lpp-, lppwerden vorteilhafterweise in Gram-negativen Bakterien angewendet. Weitere vorteilhafte Regulationssequenzen liegen beispielsweise in den Gram-positiven Promotoren amy und SPO2, in den Hefe- oder Pilzpromotoren ADC1, MFa, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH oder in den Pflanzenpromotoren CaMV/35S [Franck et al., Cell 21 (1980). 285-294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, lib4, usp, STLS1, B33, nos oder im Ubiquitinoder Phascolin-Promotor vor. In diesem Zusammenhang vorteilhaft sind ebenfalls induzierbare Promotoren, wie die in EP-A-0 388 186 (Benzylsulfonamid-induzierbar), Plant J. 2, 1992: 397-404 (Gatz et al., Tetracyclin-induzierbar), EP-A-0 335 528 (Abzisinsäure-induzierbar) oder WO 93/21334 (Ethanol- oder Cyclohexenol-induzierbar) beschriebenen Promotoren. Weitere geeignete Pflanzenpromotoren sind der Promotor von cytosolischer FBPase oder der ST-LSI-Promotor der Kartoffel (Stockhaus et al., EMBO J. 8, 1989, 2445), der Phosphoribosylpyrophosphatamidotransferase-Promotor aus Glycine max (Genbank-Zugangsnr. U87999) oder der in EP-A-0 249 676 beschriebene nodienspezifische Promotor. Besonders vorteilhafte Promotoren sind Promotoren, welche die Expression in Geweben ermöglichen, die an der Fettsäurebiosynthese beteiligt sind. Ganz besonders vorteilhaft sind samenspezifische Promotoren, wie der ausführungsgemäße USP Promotor aber auch andere Promotoren wie der LeB4-, DC3, Phaseolin- oder Napin-Promotor. Weitere besonders vorteilhafte Promotoren sind samenspezifische Promotoren, die für monokotyle oder dikotyle Pflanzen verwendet werden können und in US 5,608,152 (Napin-Promotor aus Raps), WO 98/45461 (Oleosin-Promotor aus Arobidopsis), US 5,504,200 (Phaseolin-Promotor aus Phaseolus vulgaris), WO 91/13980 (Bce4-Promotor aus Brassica) von Baeumlein et al., Plant J., 2, 2, 1992: 233-239 (LeB4-Promotor aus einer Leguminose) beschrieben sind, wobei sich diese Promotoren für Dikotyledonen eignen. Die folgenden Promotoren eignen sich beispielsweise für Monokotyledonen lpt-2- oder lpt-1-Promotor aus Gerste (WO 95/15389 und WO 95/23230), Hordein-Promotor aus Gerste und andere, in WO 99/16890 beschriebene geeignete Promotoren.

[0059] Es ist im Prinzip möglich, alle natürlichen Promotoren mit ihren Regulationssequenzen, wie die oben genannten, für das neue Verfahren zu verwenden. Es ist ebenfalls möglich und vorteilhaft, zusätzlich oder alleine synthetische Promotoren zu verwenden, besonders wenn sie eine Samen-spezifische Expression vermitteln, wie z. B. beschrieben in WO 99/16890.

[0060] Um einen besonders hohen Gehalt an PUFAs in transgenen Pflanzen zu erzielen, sollten die PUFA-Biosynthesegene vorteilhaft samen-spezifisch in Ölsaaten exprimiert werden. Hierzu können Samen-spezifische Promotoren verwendet werden, bzw. solche Promotoren die im Embryo und/oder im Endosperm aktiv sind. Samen-spezifische Promotoren können prinzipiell sowohl aus dikotolydonen als auch aus monokotolydonen Pflanzen isoliert werden. Im folgenden sind vorteilhafte bevorzugte Promotoren aufgeführt: USP (= unknown seed protein) und Vicilin (Vicia faba) [Bäumlein et al., Mol. Gen Genet., 1991, 225(3)], Napin (Raps) [US 5,608,152], Acyl-Carrier Protein (Raps) [US 5,315,001 und WO 92/18634], Oleosin (Arabidopsis thaliana) [WO 98/45461 und WO 93/20216], Phaseolin (Phaseolus vulgaris) [US 5,504,200], Bee4 [WO 91/13980], Leguminosen B4 (LegB4-Promotor) [Bäumlein et al., Plant J., 2, 2, 1992], Lpt2 und lpt1 (Gerste) [WO 95/15389 u. WO 95/23230], Samen-spezifische Promotoren aus Reis, Mais u. Weizen [WO 99/16890], Amy 32b, Amy 6-6 und Aleurain [US 5,677,474], Bee4 (Raps) [US 5,530,149], Glycinin (Soja)

[EP 571 741], Phosphocnol-Pyruvatcarboxylase (Soja) [JP 06/62870], ADR12-2 (Soja) [WO 98/08962], Isocitratlyase (Raps) [US 5,689,040] oder β-Amylase (Gerste) [EP 781 849].

[0061] Die Pflanzengenexpression lässt sich auch über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 89–108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397–404) und ein Ethanol-induzierbarer Promotor.

[0062] Um eine stabile Integration der Biosynthesegene in die transgene Pflanze über mehrere Generation sicherzustellen, sollte jede der im Verfahren verwendeten Nukleinsäuren, die für die Δ-6-Desaturase, die Δ-5-Desaturase oder die Δ-6-Elongase codieren, unter der Kontrolle eines eigenen bevorzugt eines unterschiedlichen Promotors exprimiert werden, da sich wiederholende Sequenzmotive zu Instabilität der T-DNA bzw. zu Rekombinationsereignissen früheren können. Die Expressionskassette ist dabei vorteilhaft so aufgebaut, dass einem Promotor eine geeignete Schnittstelle zur Insertion der zu expremierenden Nukleinsäure folgt vorteilhaft in einem Polylinker anschließend gegebenenfalls ein Terminator hinter dem Polylinker liegt. Diese Abfolge wiederholt sich mehrfach bevorzugt drei-, vier- oder fünfmal, so dass bis zu fünf Gene in einem Konstrukt zusammengeführt werden und so zur Expression in die transgene Pflanze eingebracht werden können. Vorteilhaft wiederholt sich die Abfolge bis zu dreimal (siehe Sequenzprotokoll SEQ ID NO: 33-37). Die Nukleinsäuresequenzen werden zur Expression über die geeignete Schnittstelle beispielsweise im Polylinker hinter den Promotor inseriert. Vorteilhaft hat jede Nukleinsäuresequenz ihren eigenen Promotor und gegebenenfalls ihren eigenen Terminator. Es ist aber auch möglich mehrere Nukleinsäuresequenzen hinter einem Promotor und ggf. vor einem Terminator zu inserieren. Dabei ist die Insertionsstelle bzw. die Abfolge der inserierten Nukleinsäuren in der Expressionskassette nicht von entscheidender Bedeutung, das heißt eine Nukleinsäuresequenz kann an erster oder letzter Stelle in der Kassette inseriert sein, ohne dass dadurch die Expression wesentlich beeinflusst wird. Es können in der Expressionskassette vorteilhaft unterschiedliche Promotoren wie beispielsweise der USP-, LegB4 oder DC3-Promotor und unterschiedliche Terminatoren verwendet werden. Es ist aber auch möglich nur einen Promotortyp in der Kassette zu verwenden. Dies kann jedoch zu unerwünschten Rekombinationsereignissen führen.

[0063] Wie oben beschrieben sollte die Transkription der eingebrachten Gene vorteilhaft durch geeignete Terminatoren am 3'-Ende der eingebrachten Biosynthesegene (hinter dem Stoppcodon) abgebrochen werden. Verwendet werden kann hier z. B. der OCS1 Terminator. Wie auch für die Promotoren, so sollten hier für jedes Gen unterschiedliche Terminatorsequenzen verwendet werden.

[0064] Das Genkonstrukt kann, wie oben beschrieben, auch weitere Gene umfassen, die in die Organismen eingebracht werden sollen. Es ist möglich und vorteilhaft, in die Wirtsorganismen Regulationsgene, wie Gene für Induktoren, Repressoren oder Enzyme, welche durch ihre Enzymaktivität in die Regulation eines oder mehrerer Gene eines Biosynthesewegs eingreifen, einzubringen und darin zu exprimieren. Diese Gene können heterologen oder homologen Ursprungs sein. Weiterhin können vorteilhaft im Nukleinsäurekonstrukt bzw. Genkonstrukt weitere Biosynthesegene des Fettsäureoder Lipidstoffwechsels enthalten sein oder aber diese Gene können auf einem weiteren oder mehreren weiteren Nukleinsäurekonstrukten liegen. Vorteilhaft werden als Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ein Gen ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidasc(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n) oder deren Kombinatio-

[0065] Dabei können die vorgenannten Desaturasen in Kombination mit Elongasen und anderen Desaturasen in erfindungsgemäßen Expressionskassetten kloniert werden und zur Transformation von Pflanzen mithilfe von Agrobakterium eingesetzt werden.

[0066] Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen
Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren
und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird. Die Expressionskassetten können prinzipiell direkt zum Einbringen
in die Pflanze verwendet werden oder aber in einen Vektoren eingebracht werden.

[0067] Diese vorteilhaften Vektoren, vorzugsweise Expressionsvektoren, enthalten die im Verfahren verwendeten Nukleinsäure, die für Δ-5- oder Δ-6-Desaturen oder Δ-6-Elonagasen codieren, oder ein Nukleinsäurekonstrukt, die die verwendeten Nukleinsäure allein oder in Kombination mit weiteren Biosynthesegenen des Fettsäure- oder Lipidstoffwechsels. Wie hier verwendet, betrifft der Begriff "Vektor" ein Nukleinsäuremolekül, das eine andere Nukleinsäure transportieren kann, an welche es gebunden ist. Ein Vektortyp ist ein "Plasmid", was für eine zirkuläre doppelsträngige DNA-Schleife steht, in die zusätzlichen DNA-Segmente ligiert werden können. Ein weiterer Vektortyp ist ein viraler Vektor, wobei zusätzliche DNA-Segmente in das virale Genom ligiert werden können. Bestimmte Vektoren können in einer Wirtszelle, in die sie eingebracht worden sind, autonom replizieren (z. B. Bakterienvektoren mit bakteriellem Replikationsursprung). Andere Vektoren werden vorteilhaft beim Einbringen in die Wirtszelle in das Genom einer Wirtszelle integriert und dadurch zusammen mit dem Wirtsgenom repliziert. Zudem können bestimmte Vektoren die Expression von Genen, mit denen sie funktionsfähig verbunden sind, steuern. Diese Vektoren werden hier als "Expressionsvektoren" bezeichnet. Gewöhnlich haben Expressionsvektoren, die für DNA-Rekombinationstechniken geeignet sind, die Form von Plasmiden. In der vorliegenden Beschreibung können "Plasmid" und "Vektor" austauschbar verwendet werden, da das Plasmid die am häufigsten verwendete Vektorform ist. Die Erfindung soll jedoch diese anderen Expressionsvektorformen, wie virale Vektoren, die ähnliche Funktionen ausüben, umfassen. Ferner soll der Begriff Vektor auch andere Vektoren, die dem Fachmann bekannt sind, wie Phagen, Viren, wie SV40, CMV, TMV, Transposons, IS-Elemente, Phasmide, Phagemide, Cosmide, lineare oder zirkuläre DNA, umfassen.

[0068] Die im Verfahren vorteilhaft verwendeten rekombinanten Expressionsvektoren umfassen die die unten be-

schriebenen Nukleinsäuren oder das oben beschriebene Genkonstrukt in einer Form, die sich zur Expression der verwendeten Nukleinsäuren in einer Wirtszelle eignen, was bedeutet, dass die rekombinanten Expressionsvektoren eine oder mehrere Regulationssequenzen, ausgewählt auf der Basis der zur Expression zu verwendenden Wirtszellen, die mit der zu exprimierenden Nukleinsäuresequenz funktionsfähig verbunden ist, umfasst. In einem rekombinanten Expressionsvektor bedeutet "funktionsfähig verbunden", dass die Nukleotidsequenz von Interesse derart an die Regulationssequenz(en) gebunden ist, dass die Expression der Nukleotidsequenz möglich ist und sie aneinander gebunden sind, so dass beide Sequenzen die vorhergesagte, der Sequenz zugeschriebene Funktion erfüllen (z. B. in einem In-vitro-Transkriptions-/Translationssystem oder in einer Wirtszelle, wenn der Vektor in die Wirtszelle eingebracht wird). Der Begriff "Regulationssequenz" soll Promotoren, Enhancer und andere Expressionskontrollelemente (z. B. Polyadenylierungssignale) umfassen. Diese Regulationssequenzen sind z. B. beschrieben in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990), oder siehe: Gruber und Crosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raton, Florida, Hrsgb.: Glick und Thompson, Kapitel 7, 89-108, einschließlich der Literaturstellen darin. Regulationssequenzen umfassen solche, welche die konstitutive Expression einer Nukleotidsequenz in vielen Wirtszelltypen steuern, und solche, welche die direkte Expression der Nukleotidsequenz nur in bestimmten Wirtszellen unter bestimmten Bedingungen steuern. Der Fachmann weiß, dass die Gestaltung des Expressionsvektors von Faktoren, wie der Auswahl der zu transformierenden Wirtszelle, dem Ausmaß der Expression des gewünschten Proteins usw., abhängen kann.

10

[0069] Die verwendeten rekombinanten Expressionsvektoren können zur Expression von Desaturasen und Elongasen in prokaryotischen oder eukaryotischen Zellen gestaltet sein. Dies ist vorteilhaft, da häufig Zwischenschritte der Vektorkonstruktion der Einfachheithalber in Mikroorganismen durchgeführt werden. Beispielsweise können Desaturase- und/ oder Elongase-Gene in bakteriellen Zellen, Insektenzellen (unter Verwendung von Baculovirus-Expressionsvektoren), Hefe- und anderen Pilzzellen (siehe Romanos, M. A., et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8: 423-488; von den Hondel, C. A. M. J. J., et al. (1991) "Heterologous gene expression in filamentous fungi", in: More Gene Manipulations in Fungi, J. W. Bennet & L. L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego; und von den Hondel, C. A. M. J. J., & Punt, P. J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J. F., et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge), Algen (Falciatore et al., 1999, Marine Biotechnology, 1, 3: 239-251), Ciliaten der Typen: Holotrichia, Peritrichia, Spirotrichia, Suctoria, Tetrahymena, Paramecium, Colpidium, Glaucoma, Platyophrya, Potomacus, Desaturaseudocohnilembus, Euplotes, Engelmaniella und Stylonychia, insbesondere der Gattung Stylonychia lemnae, mit Vektoren nach einem Transformationsverfahren, wie beschrieben in WO 98/01572, sowie bevorzugt in Zellen vielzelliger Pflanzen (siehe Schmidt, R. und Willmitzer, L. (1988) "High efficiency Agrobacterium tumefaciensmediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep.: 583-586; Plant Molecular Biology and Biotechnology, C Press, Boca Raton, Florida, Kapitel 6/7, S. 71-119 (1993); F. F. White, B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-43; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225 (und darin zitierte Literaturstellen)) exprimiert werden. Geeignete Wirtszellen werden ferner erörtert in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Der rekombinante Expressionsvektor kann alternativ, zum Beispiel unter Verwendung von T7-Promotor-Regulationssequenzen und T7-Polymerase, in vitro transkribiert und translatiert werden.

[0070] Die Expression von Proteinen in Prokaryoten erfolgt meist mit Vektoren, die konstitutive oder induzierbare Promotoren enthalten, welche die Expression von Fusions- oder nicht-Fusionsproteinen steuern. Typische Fusions-Expressionsvektoren sind u. a. pGEX (Pharmacia Biotech Inc. Smith, D. B., und Johnson, K. S. (1988) Gene 67: 31–40), pMAL (New England Biolabs, Beverly, MA) und pRIT5 (Pharmacia, Piscataway, NJ), bei denen Glutathion-S-Transferase (GST), Maltose E-bindendes Protein bzw. Protein A an das rekombinante Zielprotein fusioniert wird.

[0071] Beispiele für geeignete induzierbare nicht-Fusions-E. coli-Expressionsvektoren sind u. a. pTrc (Amann et al. (1988) Gene 69: 301–315) und pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60–89). Die Zielgenexpression vom pTrc-Vektor beruht auf der Transkription durch Wirts-RNA-Polymerase von einem Hybrid-trp-lac-Fusionspromotor. Die Zielgenexpression aus dem pET 11d-Vektor beruht auf der Transkription von einem T7-gn10-lac-Fusions-Promotor, die von einer coexprimierten viralen RNA-Polymerase (T7 gn1) vermittelt wird. Diese virale Polymerase wird von den Wirtsstämmen BL21 (DE3) oder HMS174 (DE3) von einem residenten λ-Prophagen bereitgestellt, der ein T7 gn1-Gen unter der Transkriptionskontrolle des lacUV 5-Promotors birgt.

[0072] Andere in prokaryotischen Organismen geeignete Vektoren sind dem Fachmann bekannt, diese Vektoren sind beispielsweise in E. coli pLG338, pACYC184, die pBR-Reihe, wie pBR322, die pUC-Reihe, wie pUC18 oder pUC19, die M113mp-Reihe, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III¹¹³-B1, λgt11 or pBdCI, in Streptomyces pIJ101, pIJ364, pIJ702 oder pIJ361, in Bacillus pUB110, pC194 oder pBD214, in Corynebacterium pSA77 oder pAJ667.

[0073] Bei einer weiteren Ausführungsform ist der Expressionsvektor ein Hefe-Expressionsvektor. Beispiele für Vektoren zur Expression in der Hefe S. cerevisiae umfassen pYeDesaturasec1 (Baldari et al. (1987) Embo J. 6: 229-234), pMFa (Kurjan und Herskowitz (1982) Cell 30: 933-943), pJRY88 (Schultz et al. (1987) Gene 54: 113-123) sowie pYES2 (Invitrogen Corporation, San Diego, CA). Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie den filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: von den Hondel, C. A. M. J. J., & Punt, P. J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, J. F. Peberdy et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge, oder in: More Gene Manipulations in Fungi [J. W. Bennet & L. L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego]. Weitere geeignete Hefevektoren sind beispielsweise pAG-1, YEp6, YEp13 oder pEMBLYe23. [0074] Alternativ können die Desaturasen und/oder Elongasen in Insektenzellen unter Verwendung von Baculovirus-

Expressionsvektoren exprimiert werden. Baculovirus-Vektoren, die zur Expression von Proteinen in gezüchteten Insek-

tenzellen (z. B. Sf9-Zellen) verfügbar sind, umfassen die pAc-Reihe (Smith et al. (1983) Mol. Cell Biol. 3: 2156–2165) und die pVL-Reihe (Lucklow und Summers (1989) Virology 170: 31–39).

[0075] Die oben genannten Vektoren bieten nur einen kleinen Überblick über mögliche geeignete Vektoren. Weitere Plasmide sind dem Fachmann bekannt und sind zum Beispiel beschrieben in: Cloning Vectors (Hrsgb. Pouwels, P. H., et al., Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018). Weitere geeignete Expressionssysteme für prokaryotische und eukaryotische Zellen siehe in den Kapiteln 16 und 17 von Sambrook, J., Fritsch, E. F., und Maniatis, T., Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989.

[0076] Bei einer weiteren Ausführungsform können des Verfahrens können die Desaturasen und/oder Elongasen in einzelligen Pflanzenzellen (wie Algen), siehe Falciatore et al., 1999, Marine Biotechnology 1 (3): 239–251 und darin zitierte Literaturangaben, und Pflanzenzellen aus höheren Pflanzen (z. B. Spermatophyten, wie Feldfrüchten) exprimiert werden. Beispiele für Pflanzen-Expressionsvektoren umfassen solche, die eingehend beschrieben sind in: Becker, D., Kemper, E., Schell, J., und Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20: 1195–1197; und Bevan, M. W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12: 8711–8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, S. 15–38.

[0077] Eine Pflanzen-Expressionskassette enthält vorzugsweise Regulationssequenzen, welche die Genexpression in Pflanzenzellen steuern können und funktionsfähig verbunden sind, so dass jede Sequenz ihre Funktion, wie Termination der Transkription, erfüllen kann, beispielsweise Polyadenylierungssignale. Bevorzugte Polyadenylierungssignale sind diejenigen, die aus Agrobacterium tumefaciens-t-DNA stammen, wie das als Octopinsynthase bekannte Gen 3 des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984) 835ff.) oder funktionelle Äquivalente davon, aber auch alle anderen in Pflanzen funktionell aktiven Terminatoren sind geeignet.

[0078] Da die Pflanzengenexpression sehr oft nicht auf Transkriptionsebenen beschränkt ist, enthält eine Pflanzen-Expressionskassette vorzugsweise andere funktionsfähig verbunden Sequenzen, wie Translationsenhancer, beispielsweise die Overdrive-Sequenz, welche die 5'-untranslatierte Leader-Sequenz aus Tabakmosaikvirus, die das Protein/RNA-Verhältnis erhöht, enthält (Gallie et al., 1987, Nucl. Acids Research 15: 8693–8711).

[0079] Die Pflanzengenexpression muss wie oben beschrieben funktionsfähig mit einem geeigneten Promotor verbunden sein, der die Genexpression auf rechtzeitige, zell- oder gewebespezifische Weise durchführt. Nutzbare Promotoren sind konstitutive Promotoren (Benfey et al., EMBO J. 8 (1989) 2195–2202), wie diejenigen, die von Pflanzenviren stammen, wie 35S CAMV (Franck et al., Cell 21 (1980) 285–294), 19S CaMV (siehe auch US 5352605 und WO 84/02913) oder Pflanzenpromotoren, wie der in US 4,962,028 beschriebene der kleinen Untereinheit der Rubisco.

[0080] Andere bevorzugte Sequenzen für die Verwendung zur funktionsfähigen Verbindung in Pflanzengenexpressions-Kassetten sind Targeting-Sequenzen, die zur Steuerung des Genproduktes in sein entsprechendes Zellkompartiment notwendig sind (siehe eine Übersicht in Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285–423 und darin zitierte Literaturstellen), beispielsweise in die Vakuole, den Zellkern, alle Arten von Plastiden, wie Amyloplasten, Chloroplasten, Chromoplasten, den extrazellulären Raum, die Mitochondrien, das Endoplasmatische Retikulum, Ölkörper, Peroxisomen und andere Kompartimente von Pflanzenzellen.

[0081] Die Pflanzengenexpression lässt sich auch wie oben beschrieben über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 89–108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäureinduzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397–404) und ein Ethanol-induzierbarer Promotor.

[0082] Auch Promotoren, die auf biotische oder ablotische Stressbedingungen reagieren, sind geeignete Promotoren, beispielsweise der pathogeninduzierte PRP1-Gen-Promotor (Ward et al., Plant. Mol. Biol. 22 (1993) 361–366), der hitzeinduzierbare hsp80-Promotor aus Tomate (US 5,187,267), der kälteinduzierbare Alphaamylase-Promotor aus Kartoffel (WO 96/12814) oder der durch Wunden induzierbare pinII-Promotor (EP-A-0 375 091).

[0083] Es sind insbesondere solche Promotoren bevorzugt, welche die Genexpression in Geweben und Organen herbeiführen, in denen die Lipid- und Ölbiosynthese stattfindet, in Samenzellen, wie den Zellen des Endosperms und des sich entwickelnden Embryos. Geeignete Promotoren sind der Napingen-Promotor aus Raps (US 5,608,152), der USP-Promotor aus Vicia faba (Baeumlein et al., Mol Gen Genet, 1991, 225 (3): 459-67), der Oleosin-Promotor aus Arabidopsis (WO 98/45461), der Phaseolin-Promotor aus Phaseolus vulgaris (US 5,504,200), der Bce4-Promotor aus Brassica (WO 91/13980) oder der Legumin-B4-Promotor (LeB4; Baeumlein et al., 1992, Plant Journal, 2 (2): 233-9) sowie Promotoren, welche die samenspezifische Expression in Monokotyledonen-Pflanzen, wie Mais, Gerste, Weizen, Roggen, Reis usw. herbeiführen. Geeignete beachtenswerte Promotoren sind der lpt2- oder lpt1-Gen-Promotor aus Gerste (WO 95/15389 und WO 95/23230) oder die in WO 99/16890 beschriebenen (Promotoren aus dem Gersten-Hordein-Gen, dem Reis-Glutelin-Gen, dem Reis-Oryzin-Gen, dem Reis-Prolamin-Gen, dem Weizen-Gliadin-Gen, Weizen-Glutelin-Gen, dem Mais-Zein-Gen, dem Hafer-Glutelin-Gen, dem Sorghum-Kasirin-Gen, dem Roggen-Secalin-Gen).

[0084] Insbesondere kann die multiparallele Expression der im Verfahren verwendeten Desaturasen und/Elongasen allein oder in Kombination mit anderen Desaturasen oder Elongasen gewünscht sein. Die Einführung solcher Expressionskassetten kann über eine simultane Transformation mehrerer einzelner Expressionskonstrukte erfolgen oder bevorzugt durch Kombination mehrerer Expressionskassetten auf einem Konstrukt. Auch können mehrere Vektoren mit mit jeweils mehreren Expressionskassetten transformiert und auf die Wirtszelle übertragen werden.

[0085] Ebenfalls besonders geeignet sind Promotoren, welche die plastidenspezifische Expression herbeiführen, da Plastiden das Kompartiment sind, in dem die Vorläufer sowie einige Endprodukte der Lipidbiosynthese synthetisiert werden. Geeignete Promotoren, wie der virale RNA-Polymerase-Promotor, sind beschrieben in WO 95/16783 und WO 97/06250, und der clpP-Promotor aus Arabidopsis, beschrieben in WO 99/46394.

[0086] Vektor-DNA lässt sich in prokaryotische oder eukaryotische Zellen über herkömmliche Transformations- oder Transfektionstechniken einbringen. Die Begriffe "Transformation" und "Transfektion", Konjugation und Transduktion,

wie hier verwendet, sollen eine Vielzahl von im Stand der Technik bekannten Verfahren zum Einbringen fremder Nukleinsäure (z. B. DNA) in eine Wirtszelle, einschließlich Calciumphosphat- oder Calciumchlorid-Copräzipitation, DEAE-Dextran-vermittelte Transfektion, Lipofektion, natürliche Kompetenz, chemisch vermittelter Transfer, Elektroporation oder Teilchenbeschuss, umfassen. Geeignete Verfahren zur Transformation oder Transfektion von Wirtszellen, einschließlich Pflanzenzellen, lassen sich finden in Sambrook et al. (Molecular Cloning: A Laboratory Manual., 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) und anderen Labor-Handbüchern, wie Methods in Molecular Biology, 1995, Bd. 44, Agrobacterium protocols, Hrsgb: Gartland und Davey, Humana Press, Totowa, New Jersey.

[0087] Wirtszellen, die im Prinzip zum Aufnehmen der erfindungsgemäßen Nukleinsäure, des erfindungsgemäßen Genproduktes oder des erfindungsgemäßen Vektors geeignet sind, sind alle prokaryotischen oder eukaryotischen Organismen. Die vorteilhafterweise verwendeten Wirtsorganismen sind Organismen, wie Bakterien, Pilze, Hefen oder Pflanzenzellen vorzugsweise Pflanzen oder Teile davon. Pilze, Hefen oder Pflanzen werden vorzugsweise verwendet, besonders bevorzugt Pflanzen, ganz besonders bevorzugt Pflanzen, wie Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Raps, Nachtkerze, Hanf, Diestel, Erdnuss, Canola, Lein, Soja, Safflor, Sonnenblume, Borretsch, oder Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölplame, Kokosnuss) sowie ausdauernde Gräser und Futterfeldfrüchte. Besonders bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Soja, Erdnuß, Raps, Canola, Lein, Hanf, Nachtkerze, Sonnenblume, Safflor, Bäume (Ölpalme, Kokosnuß).

[0088] Im erfindungsgemäßen Verfahren werden vorteilhaft Nukleinsäuresequenzen verwendet, die für die Polypeptide mit einer Δ -6-Desaturaseaktivität, Δ -6-Elongaseaktivität oder Δ -5-Desaturaseaktivität codierenden, ausgewählt aus der Gruppe:

a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29 oder SEQ ID NO: 31 dargestellten Sequenz,

b) Nukleinsäuresequenzen, die aufgrund des degenerierten genetischen Codes durch Rückübersetzung der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Aminosäuresequenzen erhalten werden,

30

50

c) Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29 oder SEQ ID NO: 31 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Aminosäuresequenzen codieren und mindestens 50% Homologie auf Aminosäureebene aufweisen, ohne daß die enzymatische Wirkung der Polypeptide wesentlich reduziert ist.

[0089] Die oben genannte erfindungsgemäße Nukleinsäure stammt von Organismen, wie Tieren, Ciliaten, Pilzen, Pflanzen wie Algen oder Dinoflagellaten, die PUFAs synthetisieren können.

[0090] Der Begriff "Nukleinsäure(molekül)", wie hier verwendet, umfasst zudem die am 3'- und am 5'-Ende des kodierenden Genbereichs gelegene untranslatierte Sequenz: mindestens 500, bevorzugt 200, besonders bevorzugt 100 Nukleotide der Sequenz stromaufwärts des 5'-Endes des kodierenden Bereichs und mindestens 100, bevorzugt 50, besonders bevorzugt 20 Nukleotide der Sequenz stromabwärts des 3'-Endes des kodierenden Genbereichs. Ein "isoliertes" Nukleinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure vorliegen. Eine "isolierte" Nukleinsäure hat vorzugsweise keine Sequenzen, welche die Nukleinsäure in der genomischen DNA des Organismus, aus dem die Nukleinsäure stammt, natürlicherweise flankieren (z. B. Sequenzen, die sich an den 5'- und 3'-Enden der Nukleinsäure befinden). Bei verschiedenen Ausführungsformen kann das isolierte Desaturase- oder Elongase-Nukleinsäuremolekül zum Beispiel weniger als etwa 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0,5 kb oder 0,1 kb an Nukleotidsequenzen enthalten, die natürlicherweise das Nukleinsäuremolekül in der genomischen DNA der Zelle, aus der die Nukleinsäure stammt flankieren.

[0091] Die im Verfahren verwendeten Nukleinsäuremoleküle, z. B. ein Nukleinsäuremolekül mit einer Nukleotidsequenz der SEQ ID NO: 1 oder eines Teils davon, kann unter Verwendung molekularbiologischer Standardtechniken und der hier bereitgestellten Sequenzinformation isoliert werden. Auch kann mithilfe von Vergleichsalgorithmen beispielsweise eine homologe Sequenz oder homologe, konservierte Sequenzbereiche auf DNA oder Aminosäureebene identifiziert werden. Diese können als Hybridisierungssonde sowie Standard-Hybridisierungstechniken (wie z. B. beschrieben in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) zur Isolierung weiterer im Verfahren nützlicher Nukleinsäuresequenzen verwendet werden. Überdies lässt sich ein Nukleinsäuremolekül, umfassend eine vollständige Sequenz der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 oder einen Teil davon, durch Polymerasekettenreaktion isolieren, wobei Oligonukleotidprimer, die auf der Basis dieser Sequenz oder von Teilen davon, verwendet werden (z. B. kann ein Nukleinsäuremolekül, umfassend die vollständigen Sequenz oder einen Teil davon, durch Polymerasekettenreaktion unter Verwendung von Oligonukleotidprimern isoliert werden, die auf der Basis dieser gleichen Sequenz erstellt worden sind). Zum Beispiel lässt sich mRNA aus Zellen isolieren (z. B. durch das Guanidiniumthiocyanat-Extraktionsverfahren von Chirgwin et al. (1979) Biochemistry 18: 5294-5299) und cDNA mittels Reverser Transkriptase (z. B. Moloncy-MLV-Reverse-Transkriptase, erhältlich von Gibco/BRL, Bethesda, MD, oder AMV-Reverse-Transkriptase, erhältlich von Gibco/BRL, Bethesda, erhältlich von Gibco/BRL, Bethesda, erhältlich von Gibco/BRL, Bethesda, erhältlich von Gibco/BRL, Bethesda, erhältlich von Gibco/BRL, erhältl skriptase, erhältlich von Seikagaku America, Inc., St. Petersburg, FL) herstellen. Synthetische Oligonukleotidprimer zur

Amplifizierung mittels Polymerasekettenreaktion lassen sich auf der Basis einer der in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 sowie der in Fig. 5a gezeigten Sequenzen oder mithilfe der in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 dargestellten Aminosäuresequenzen erstellen. Eine erfindungsgemäße Nukleinsäure kann unter Verwendung von cDNA oder alternativ von genomischer DNA als Matrize und geeigneten Oligonukleotidprimern gemäß Standard-PCR-Amplifikationstechniken amplifiziert werden. Die so amplifizierte Nukleinsäure kann in einen geeigneten Vektor kloniert werden und mittels DNA-Sequenzanalyse charakterisiert werden. Oligonukleotide, die einer Desaturase-Nukleotidsequenz entsprechen, können durch Standard-Syntheseverfahren, beispielsweise mit einem automatischen DNA-Synthesegerät, hergestellt werden.

[0092] Homologe der verwendeten Desaturase- oder Elongase-Nukleinsäuresequenzen mit der Sequenz SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 bedeutet beispielsweise allelische Varianten mit mindestens etwa 50 bis 60%, vorzugsweise mindestens etwa 60 bis 70%, stärker bevorzugt mindestens etwa 70 bis 80%, 80 bis 90% oder 90 bis 95% und noch stärker bevorzugt mindestens etwa 95%, 96%, 97%, 98%, 99% oder mehr Homologie zu einer in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 gezeigten Nukleotidsequenzen oder ihren Homologen, Derivaten oder Analoga oder Teilen davon. Weiterhin sind isolierte Nukleinsäuremoleküle einer Nukleotidsequenz, die an eine der in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 gezeigten Nukleotidsequenzen oder einen Teil davon hybridisieren, z. B. unter stringenten Bedingungen hybridisiert. Allelische Varianten umfassen insbesondere funktionelle Varianten, die sich durch Deletion, Insertion oder Substitution von Nukleotiden aus/in der in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 dargestellten Sequenz erhalten lassen, wobei aber die Absicht ist, dass die Enzymaktivität der davon herrührenden synthetisierten Proteine für die Insertion eines oder mehrerer Gene vorteilhafterweise beibehalten wird. Proteine, die noch die enzymatische Aktivität der Desaturase oder Elongase besitzen, das heißt deren Aktivität im wesentlichen nicht reduziert ist, bedeutet Proteine mit mindestens 10%, vorzugsweise 20%, besonders bevorzugt 30%, ganz besonders bevorzugt 40% der ursprünglichen Enzymaktivität, verglichen mit dem durch SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 kodierten Protein.

[0093] Homologen der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 bedeuten beispielsweise auch bakterielle, Pilz- und Pflanzenhomologen, verkürzte Sequenzen, einzelsträngige DNA oder RNA der kodierenden und nicht-kodierenden DNA-Sequenz.

[0094] Homologen der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 bedeutet auch Derivate, wie beispielsweise Promotorvarianten. Die Promotoren stromaufwärts der angegebenen Nukleotidsequenzen können durch einen oder mehrere Nukleotidaustausche, durch Insertion(en) und/oder Deletion(en) modifiziert werden, ohne dass jedoch die Funktionalität oder Aktivität der Promotoren gestört wird. Es ist weiterhin möglich, dass die Aktivität der Promotoren durch Modifikation ihrer Sequenz erhöht ist oder dass sie vollständig durch aktivere Promotoren, sogar aus heterologen Organismen, ersetzt werden.

[0095] Die vorgenannten Nukleinsäuren und Proteinmoleküle mit Desaturase- oder Elongaseaktivität, die am Stoffwechsel von Lipiden und Fettsäuren, PUFA-Cofaktoren und Enzymen oder am Transport lipophiler Verbindungen über Membranen beteiligt sind, werden im erfindungsgemäßen Verfahren zur Modulation der Produktion von Verbindungen der allgemeinen Formel I in transgenen Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Sojabohne, Erdnuss, Baumwolle, Linum Arten wie Öl- oder Faserlein, Brassica-Arten, wie Raps, Canola und Rübsen, Pfeffer, Sonnenblume, Borretsch, Nachtkerze und Tagetes, Solanacaen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Maniok, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölpalme, Kokosnuss) und ausdauernden Gräsern und Futterfeldfrüchten, entweder direkt (z. B. wenn die Überexpression oder Optimierung eines Fettsäure aus modifizierten Organismen hat) verwenden und/oder können eine indirekt Auswirkung haben, die dennoch zu einer Steigerung der Ausbeute, Produktion und/oder Effizienz der Produktion einer gewünschten Verbindung oder einer Abnahme unerwünschter Verbindungen führt (z. B. wenn die Modulation des Stoffwechsels von Lipiden und Fettsäuren, Cofaktoren und Enzymen zu Veränderungen der Ausbeute, Produktion und/oder Effizienz der Produktion oder der Zusammensetzung der gewünschten Verbindungen innerhalb der Zellen führt, was wiederum die Produktion einer oder mehrerer Fettsäuren beeinflussen kann).

[0096] Die Kombination verschiedener Vorläufermoleküle und Biosyntheseenzyme führt zur Herstellung verschiedener Fettsäuremoleküle, was eine entscheidende Auswirkung auf die Zusammensetzung der Lipide hat. Da mehrfach ungesättigte Fettsäuren (= PUFAs) nicht nur einfach in Triacylglycerin sondern auch in Membranlipide eingebaut werden. [0097] Die Lipidsynthese lässt sich in zwei Abschnitte unterteilen: die Synthese von Fettsäuren und ihre Bindung an sn-Glycerin-3-Phosphat sowie die Addition oder Modifikation einer polaren Kopfgruppe. Übliche Lipide, die in Membranen verwendet werden, umfassen Phospholipide, Glycolipide, Sphingolipide und Phosphoglyceride. Die Fettsäuresynthese beginnt mit der Umwandlung von Acetyl-CoA in Malonyl-CoA durch die Acetyl-CoA-Carboxylase oder in Acetyl-ACP durch die Acetyltransacylase. Nach einer Kondensationsreaktion bilden diese beiden Produktmoleküle zusammen Acetoacetyl-ACP, das über eine Reihe von Kondensations-, Reduktions- und Dehydratisierungsreaktionen umgewandelt wird, so dass ein gesättigtes Fettsäuremolekül mit der gewünschten Kettenlänge erhalten wird. Die Produktion der ungesättigten Fettsäuren aus diesen Molekülen wird durch spezifische Desaturasen katalysiert, und zwar entweder aerob mittels molekularem Sauerstoff oder anaerob (bezüglich der Fettsäuresynthese in Mikroorganismen siehe F. C. Neidhardt et al. (1996) E. coli und Salmonella. ASM Press: Washington, D. C., S. 612–636 und darin enthaltene Literaturstellen; Lengeler et al. (Hrsgb.) (1999) Biology of Procaryotes. Thieme: Stuttgart, New York, und die enthaltene Literaturstellen).

[0098] Vorläufer für die PUFA-Biosynthese sind beispielsweise Ölsäure, Linol- und Linolensäure. Diese C₁₈-Kohlenstoff-Fettsäuren müssen auf C₂₀ und C₂₂ verlängert werden, damit Fettsäuren vom Eicosa- und Docosa-Kettentyp erhalten werden. Mithilfe der im Verfahren verwendeten Desaturasen wie der Δ-5- und Δ-6-Desaturase und der Δ-6-Elongase können Arachidonsäure und Eicosapentaensäure sowie verschiedene andere langkettige PUFAs erhalten, extrahiert und für verschiedene Zwecke bei Nahrungsmittel-, Futter-, Kosmetik- oder pharmazeutischen Anwendungen verwendet wer-

den. Mit den genannten Enzymen können vorzugsweise $C_{18} + C_{20}$ Fettsäuren mit mindestens zwei, drei, vier oder fünf Doppelbindungen im Fettsäuremolekül, vorzugsweise zu C_{20} -Fettsäuren mit vorteilhaft drei, vier oder fünf Doppelbindungen im Fettsäuremolekül hergestellt werden. Die Desaturierung kann vor oder nach Elongation der entsprechenden Fettsäure erfolgen. Daher führen die Produkte der Desaturiaseaktivitäten und der möglichen weiteren Desaturierung und Elongation zu bevorzugten PUFAs mit höherem Desaturierungsgrad, einschließlich einer weiteren Elongation von C_{20} zu C_{22} -Fettsäuren, zu Fettsäuren wie γ -Linolensäure, Dihomo- γ -linolensäure, Arachidonsäure, Stearidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Substrate im erfindungsgemäßen Verfahren sind zum Beispiel Linolsäure, γ -Linolensäure, γ -Linolensäure, γ -Linolensäure, γ -Linolensäure, γ -Linolensäure und/oder γ -Linolensäure, dihomo- γ -linolensäure bzw. Arachidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Die C_{18} - oder C_{20} -Fettsäuren mit mindestens zwei Doppelbindungen in der Fettsäure fallen im erfindungsgemäßen Verfahren in Form der freien Fettsäure oder in Form ihrer Ester (siehe Formel I) beispielsweise in Form ihrer Glyceride an.

[0099] Unter dem Begriff "Glycerid" wird ein mit ein, zwei oder drei Carbonsäureresten verestertes Glycerin verstanden (Mono-, Di- oder Triglycerid). Unter "Glycerid" wird auch ein Gemisch an verschiedenen Glyceriden verstanden. Das Glycerid oder das Gylceridgemisch kann weitere Zusätze, z. B. freie Fettsäuren, Antioxidantien, Proteine, Kohlenhydrate, Vitamine und/oder andere Substanzen enthalten.

[0100] Unter einem "Glycerid" im Sinne des erfindungsgemäßen Verfahrens werden ferner vom Glycerin abgeleitete Derivate verstanden. Dazu zählen neben den oben beschriebenen Fettsäureglyceriden auch Glycerophospholipide und Glyceroglycolipide. Bevorzugt seien hier die Glycerophospholipide wie Lecithin (Phosphatidylcholin), Cardiolipin, Phosphatidylglycerin, Phosphatidylserin und Alkylacylglycerophospholipide beispielhaft genannt.

[0101] Ferner müssen Fettsäuren anschließend an verschiedene Modifikationsorte transportiert und in das Triacylglycerin-Speicherlipid eingebaut werden. Ein weiterer wichtiger Schritt bei der Lipidsynthese ist der Transfer von Fettsäuren auf die polaren Kopfgruppen, beispielsweise durch Glycerin-Fettsäure-Acyltransferase (siehe Frentzen, 1998, Lipid, 100(4–5): 161–166).

[0102] Veröffentlichungen über die Pflanzen-Fettsäurebiosynthese, Desaturierung, den Lipidstoffwechsel und Membrantransport von fetthaltigen Verbindungen, die Betaoxidation, Fettsäuremodifikation und Cofaktoren, Triacylglycerin-Speicherung und -Assemblierung einschließlich der Literaturstellen darin siehe in den folgenden Artikeln: Kinney, 1997, Genetic Engeneering, Hrsgb.: JK Setlow, 19: 149–166; Ohlrogge und Browse, 1995, Plant Cell 7: 957–970; Shanklin und Cahoon, 1998, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 611–641; Voelker, 1996, Genetic Engeneering, Hrsgb.: JK Setlow, 18: 111–13; Gerhardt, 1992, Prog. Lipid R. 31: 397–417; Gühnemann-Schäfer & Kindl, 1995, Biochim. Biophys Acta 1256: 181–186; Kunau et al., 1995, Prog. Lipid Res. 34: 267–342; Stymne et al., 1993, in: Biochemistry and Molecular Biology of Membrane and Storage Lipids of Plants, Hrsgb.: Murata und Somerville, Rockville, American Society of Plant Physiologists, 150–158, Murphy & Ross 1998, Plant Journal. 13(1): 1–16.

[0103] Die im Verfahren hergestellten PUFAs, umfassen eine Gruppe von Molekülen, die höhere Tiere nicht mehr synthetisieren können und somit aufnehmen müssen oder die höhere Tiere nicht mehr ausreichend selbst herstellen können und somit zusätzlich aufnehmen müssen, obwohl sie leicht von anderen Organismen, wie Bakterien, synthetisiert werden, beispielsweise können Katzen Arachidonsäure nicht mehr synthetisieren.

[0104] Der Begriff "Desaturase oder Elongase" oder "Desaturase- oder Elongase-Polypeptid" im Sinne der Erfindung umfasst Proteine, die an der Desaturierung und Elongierung von Fettsäuren teilnehmen, sowie ihre Homologen, Derivaten oder Analoga. Die Begriffe Desaturase oder Elongase-Nukleinsäuresequenz(en) umfassen Nukleinsäuresequenzen, die eine Desaturase oder Elongase kodieren und bei denen ein Teil eine kodierende Region und ebenfalls entsprechende 5'- und 3'-untranslatierte Sequenzbereiche sein können. Die Begriffe Produktion oder Produktivität sind im Fachgebiet bekannt und beinhalten die Konzentration des Fermentationsproduktes (Verbindungen der Formel I), das in einer bestimmten Zeitspanne und einem bestimmten Fermentationsvolumen gebildet wird (z. B. kg Produkt pro Stunde pro Liter). Der Begriff Effizienz der Produktion umfasst die Zeit, die zur Erzielung einer bestimmten Produktionsmenge nötig ist (z. B. wie lange die Zelle zur Aufrichtung einer bestimmten Durchsatzrate einer Feinchemikalie benötigt). Der Begriff Ausbeute oder Produkt/Kohlenstoff-Ausbeute ist im Fachgebiet bekannt und umfasst die Effizienz der Umwandlung der Kohlenstoffquelle in das Produkt (d. h. die Feinchemikalie). Dies wird gewöhnlich beispielsweise ausgedrückt als kg Produkt pro kg Kohlenstoffquelle. Durch Erhöhen der Ausbeute oder Produktion der Verbindung wird die Menge der gewonnenen Moleküle oder der geeigneten gewonnenen Moleküle dieser Verbindung in einer bestimmten Kulturmenge über einen festgelegten Zeitraum erhöht. Die Begriffe Biosynthese oder Biosyntheseweg sind im Fachgebiet bekannt und umfassen die Synthese einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle aus Zwischenverbindungen, beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Die Begriffe Abbau oder Abbauweg sind im Fachgebiet bekannt und umfassen die Spaltung einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle in Abbauprodukte (allgemeiner gesagt, kleinere oder weniger komplexe Moleküle) beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Der Begriff Stoffwechsel ist im Fachgebiet bekannt und umfasst die Gesamtheit der biochemischen Reaktionen, die in einem Organismus stattfinden.

[0105] Der Stoffwechsel einer bestimmten Verbindung (z. B. der Stoffwechsel einer Fettsäure) umfasst dann die Gesamtheit der Biosynthese-, Modifikations- und Abbauwege dieser Verbindung in der Zelle, die diese Verbindung betreffen.

[0106] Bei einer weiteren Ausführungsform kodieren Derivate des erfindungsgemäßen Nukleinsäuremoleküls Proteine mit mindestens 50%, vorteilhaft etwa 50 bis 60%, vorzugsweise mindestens etwa 60 bis 70% und stärker bevorzugt mindestens etwa 70 bis 80%, 80 bis 90%, 90 bis 95% und am stärksten bevorzugt mindestens etwa 96%, 97%, 98%, 99% oder mehr Homologie (= Identität) zu einer vollständigen Aminosäuresequenz der SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32. Die Homologie der Aminosäuresequenz kann über den gesamten Sequenzbereich mit dem Programm PileUp (J. Mol. Evolution., 25, 351–360, 1987, Higgins et al., CABIOS, 5, 1989: 151–153) oder BEST-FIT oder GAP bestimmt (Henikoff, S. and Henikoff, J. G. (1992). Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89: 10915–10919.)

[0107] Die Erfindung umfasst zudem Nukleinsäuremoleküle, die sich von einer der in SEQ ID NO: 1, 3, 5 oder 11 gezeigten Nukleotidsequenzen (und Teilen davon) aufgrund des degenerierten genetischen Codes unterscheiden und somit die gleiche Desaturase kodieren wie diejenige, die von den in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 gezeigten Nukleotidsequenzen kodiert wird.

[0108] Zusätzlich zu den in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 gezeigten Desaturase-Nukleotidsequenzen erkennt der Fachmann, dass DNA-Sequenzpolymorphismen, die zu Änderungen in den Aminosäuresequenzen der Desaturasen oder Elongasen führen, innerhalb einer Population existieren können. Diese genetischen Polymorphismen im Desaturase- oder Elongase-Gen können zwischen Individuen innerhalb einer Population aufgrund von natürlicher Variation existieren. Diese natürlichen Varianten bewirken üblicherweise eine Varianz von 1 bis 5% in der Nukleotidsequenz des Desaturase- oder Elongase-Gens. Sämtliche und alle dieser Nukleotidvariationen und daraus resultierende Aminosäurepolymorphismen in der Desaturase oder Elongase, die das Ergebnis natürlicher Variation sind und die funktionelle Aktivität von Desaturasen oder Elongasen nicht verändern, sollen im Umfang der Erfindung enthalten sein.

[0109] Für das erfindungsgemäße Verfahren vorteilhafte Nukleinsäuremoleküle können auf der Grundlage ihrer Homologie zu den hier offenbarten Desaturase- oder Elongase-Nukleinsäuren unter Verwendung der Sequenzen oder eines Teils davon als Hybridisierungssonde gemäß Standard-Hybridisierungstechniken unter stringenten Hybridisierungsbedingungen isoliert werden. Dabei können beispielsweise isolierte Nukleinsäuremoleküle verwendet werden, die mindestens 15 Nukleotide lang sind und unter stringenten Bedingungen mit dem Nukleinsäuremolekülen, die eine Nukleotidsequenz der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 umfassen, hybridisieren. Es können auch Nukleinsäuren mindestens 25, 50, 100, 250 oder mehr Nukleotide verwendet werden. Der Begriff "hybridisiert unter stringenten Bedingungen", wie hier verwendet, soll Hybridisierungs- und Waschbedingungen beschreiben, unter denen Nukleotidsequenzen, die mindestens 60% homolog zueinander sind, gewöhnlich aneinander hybridisiert bleiben. Die Bedingungen sind vorzugsweise derart, dass Sequenzen, die mindestens etwa 65%, stärker bevorzugt mindestens etwa 70% und noch stärker bevorzugt mindestens etwa 75% oder stärker zueinander homolog sind, gewöhnlich aneinander hybridisiert bleiben. Diese stringenten Bedingungen sind dem Fachmann bekannt und lassen sich in Current Protocols in Molecular Biology, John Wiley & Sons, N. Y. (1989), 6.3.1-6.3.6., finden. Ein bevorzugtes, nicht einschränkendes Beispiel für stringente Hybridisierungsbedingungen sind Hybridisierungen in $6 \times Natriumchlorid/Natriumcitrat$ (sodium chloride/sodiumcitrate = SSC) bei etwa 45°C, gefolgt von einem oder mehreren Waschschritten in 0,2 × SSC, 0,1% SDS bei 50 bis 65°C. Dem Fachmann ist bekannt, dass diese Hybridisierungsbedingungen sich je nach dem Typ der Nukleinsäure und, wenn beispielsweise organische Lösungsmittel vorliegen, hinsichtlich der Temperatur und der Konzentration des Puffers unterscheiden. Die Temperatur unterscheidet sich beispielsweise unter "Standard-Hybridisierungsbedingungen" je nach dem Typ der Nukleinsäure zwischen 42°C und 58°C in wässrigem Puffer mit einer Konzentration von 0,1 bis 5 × SSC (pH 7,2). Falls organisches Lösungsmittel im obengenannten Puffer vorliegt, zum Beispiel 50% Formamid, ist die Temperatur unter Standardbedingungen etwa 42°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:DNA-Hybride zum Beispiel 0,1 × SSC und 20°C bis 45°C, vorzugsweise zwischen 30°C und 45°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:RNA-Hybride zum Beispiel 0,1 × SSC und 30°C bis 55°C, vorzugsweise zwischen 45°C und 55°C. Die vorstehend genannten Hybridisierungstemperaturen sind beispielsweise für eine Nukleinsäure mit etwa 100 bp (= Basenpaare) Länge und einem G + C-Gehalt von 50% in Abwesenheit von Formamid bestimmt. Der Fachmann weiß, wie die erforderlichen Hybridisierungsbedingungen anhand von Lehrbüchern, wie dem vorstehend erwähnten oder aus den folgenden Lehrbüchern Sambrook et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989; Hames und Higgins (Hrsgb.) 1985, "Nucleic Acids Hybridization: A Practical Approach", IRL Press at Oxford University Press, Oxford; Brown (Hrsgb.) 1991, "Essential Molecular Biology: A Practical Approach",

[0110] Zur Bestimmung der prozentualen Homologie (= Identität) von zwei Aminosäuresequenzen (z. B. einer der Sequenzen der SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32) oder von zwei Nukleinsäuren (z. B. einer der Sequenzen der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31) werden die Sequenzen zum Zweck des optimalen Vergleichs untereinander geschrieben (z. B. können Lücken in die Sequenz eines Proteins oder einer Nukleinsäure eingefügt werden, um ein optimales Alignment mit dem anderen Protein oder der anderen Nukleinsäure zu erzeugen). Die Aminosäurereste oder Nukleotide an den entsprechenden Aminosäurepositionen oder Nukleotidpositionen werden dann verglichen. Wenn eine Position in einer Sequenz durch den gleichen Aminosäurerest oder das gleiche Nukleotid wie die entsprechende Stelle in der anderen Sequenz belegt wird, dann sind die Moleküle an dieser Position homolog (d. h. Aminosäure- oder Nukleinsäure-"Homologie", wie hier verwendet, entspricht Aminosäure- oder Nukleinsäure-"Identität"). Die prozentuale Homologie zwischen den beiden Sequenzen ist eine Funktion der Anzahl an identischen Positionen, die den Sequenzen gemeinsam sind (d. h. % Homologie = Anzahl der identischen Positionen/Gesamtanzahl der Positionen × 100). Die Begriffe Homologie und Identität sind damit als Synonym anzusehen.

IRL Press at Oxford University Press, Oxford, bestimmt werden können.

[0111] Ein isoliertes Nukleinsäuremolekül, das eine Desaturase oder Elongase kodiert, die zu einer Proteinsequenz der SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 homolog ist, kann durch Einbringen einer oder mehrerer Nukleotidsubstitutionen, -additionen oder -deletionen in eine Nukleotidsequenz der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 erzeugt werden, so dass eine oder mehrere Aminosäuresubstitutionen, -additionen oder -deletionen in das kodierte Protein eingebracht werden. Mutationen können in eine der Sequenzen der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 durch Standardtechniken, wie stellen-spezifische Mutagenese und PCR-vermittelte Mutagenese, eingebracht werden. Vorzugsweise werden konservative Aminosäuresubstitutionen an einer oder mehreren der vorhergesagten nicht-essentiellen Aminosäureresten hergestellt. Bei einer "konservativen Aminosäuresubstitution" wird der Aminosäurerest gegen einen Aminosäurerest mit einer ähnlichen Seitenkette ausgetauscht. Im Fachgebiet sind Familien von Aminosäureresten mit ähnlichen Seitenketten definiert worden. Diese Familien umfassen Aminosäuren mit basischen Seitenketten (z. B. Lysin, Arginin, Histidin), sauren Seitenketten (z. B. Asparaginsäure, Glutaminsäure), ungeladenen polaren Seitenketten (z. B. Glycin, Asparagin, Glutamin, Serin, Threonin, Tyrosin, Cystein), unpolaren Seitenketten, (z. B. Alanin, Valin, Leucin, Isoleucin, Prolin, Phenylalanin, Methionin, Tryp-

tophan), beta-verzweigten Scitenketten (z. B. Threonin, Valin, Isoleucin) und aromatischen Scitenketten (z. B. Tyrosin, Phenylalanin, Tryptophan, Histidin). Ein vorhergesagter nicht-essentieller Aminosäurerest in einer Desaturase oder Elongase wird somit vorzugsweise durch einen anderen Aminosäurerest aus der gleichen Seitenkettenfamilie ausgetauscht. Alternativ können bei einer anderen Ausführungsform die Mutationen zufallsgemäß über die gesamte oder einen Teil der Desaturase-kodierenden Sequenz eingebracht werden, z. B. durch Sättigungsmutagenese, und die resultierenden Mutanten können nach der hier beschriebenen Desaturase-Aktivität durchmustert werden, um Mutanten zu identifizieren, die Desaturase- oder Elongase-Aktivität beibehalten. Nach der Mutagenese einer der Sequenzen der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 kann das kodierte Protein rekombinant exprimiert werden, und die Aktivität des Proteins kann z. B. unter Verwendung der hier beschriebenen Tests bestimmt werden.

[0112] Diese Erfindung wird durch die nachstehenden Beispiele weiter veranschaulicht, die nicht als beschränkend aufgefaßt werden sollten. Der Inhalt sämtlicher in dieser Patentanmeldung zitierten Literaturstellen, Patentanmeldungen, Patente und veröffentlichten Patentanmeldungen ist hier durch Bezugnahme aufgenommen.

10

15

20

25

30

40

50

55

60

65

Beispielteil

Beispiel 1

Allgemeine Verfahren

a) Allgemeine Klonierungsverfahren

[0113] Klonierungsverfahren, wie beispielsweise Restriktionsspaltungen, Agarosegelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrocellulose- und Nylonmembranen, Verbindung von DNA-Fragmenten, Transformation von Escherichia coli- und Hefe-Zellen, Anzucht von Bakterien und Sequenzanalyse rekombinanter DNA, wurden durchgeführt wie beschrieben in Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) oder Kaiser, Michaelis und Mitchell (1994) "Methods in Yeast Genetics" (Cold Spring Harbor Laboratory Press: ISBN 0-87969-451-3).

b) Chemikalien

[0114] Die verwendeten Chemikalien wurden, wenn im Text nicht anders angegeben, in p. A.-Qualität von den Firmen Fluka (Neu-Ulm), Merck (Darmstadt), Roth (Karlsruhe), Serva (Heidelberg) und Sigma (Deisenhofen) bezogen. Lösungen wurden unter Verwendung von reinem pyrogenfreiem Wasser, im nachstehenden Text als H₂O bezeichnet, aus einer Milli-Q-Wassersystem-Wasserreinigungsanlage (Millipore, Eschborn) hergestellt. Restriktionsendonukleasen, DNA-modifizierende Enzyme und molekularbiologische Kits wurden bezogen von den Firmen AGS (Heidelberg), Amersham (Braunschweig), Biometra (Göttingen), Boehringer (Mannheim), Genomed (Bad Oeynhausen), New England Biolabs (Schwalbach/Taunus), Novagen (Madison, Wisconsin, USA), Perkin-Elmer (Weiterstadt), Pharmacia (Freiburg), Qiagen (Hilden) und Stratagene (Amsterdam, Niederlande). Wenn nicht anders angegeben, wurden sie nach den Anweisungen des Herstellers verwendet.

Beispiel 2

Isolierung von Gesamt-RNA und poly(A)+-RNA aus Pflanzen

[0115] Die Isolierung von Gesamt-RNA aus Pflanzen wie Lein und Raps etc. erfolgt nach einer bei Logemann et al beschriebenen Methode (1987, Anal. Biochem. 163, 21) isoliert. Aus Moos kann die Gesamt-RNA Protonema-Gewebe nach dem GTC-Verfahren (Reski et al., 1994, Mol. Gen. Genet., 244: 352–359) gewonnen werden.

Beispiel 3

Transformation von Agrobacterium

[0116] Die Agrobacterium-vermittelte Pflanzentransformation kann zum Beispiel unter Verwendung des GV3101-(pMP90-) (Koncz und Schell, Mol. Gen. Genet. 204 (1986) 383–396) oder LBA4404- (Clontech) oder C58C1 pGV2260 (Deblaere et al 1984, Nucl. Acids Res. 13, 4777–4788) Agrobacterium tumefaciens-Stamms durchgeführt werden. Die Transformation kann durch Standard-Transformationstechniken durchgeführt werden (ebenfalls Deblaere et al. 1984).

Beispiel 4

Pflanzentransformation

[0117] Die Agrobacterium-vermittelte Pflanzentransformation kann unter Verwendung von Standard-Transformations- und Regenerationstechniken durchgeführt werden (Gelvin, Stanton B., Schilperoort, Robert A., Plant Molecular Biology Manual, 2. Aufl., Dordrecht: Kluwer Academic Publ., 1995, in Sect., Ringbuc Zentrale Signatur: BT11-P ISBN 0-7923-2731-4; Glick, Bernard R., Thompson, John E., Methods in Plant Molecular Biology and Biotechnology, Boca Raton: CRC Press, 1993, 360 S., ISBN 0-8493-5164-2).

[0118] Beispielsweise kann Raps mittels Kotyledonen- oder Hypokotyltransformation transformiert werden (Moloney et al., Plant Cell 8 (1989) 238-242; De Block et al., Plant Physiol. 91 (1989) 694-701). Die Verwendung von Antibiotika

17

für die Agrobacterium- und Pflanzenselektion hängt von dem für die Transformation verwendeten binären Vektor und Agrobacterium-Stamm ab. Die Rapsselektion wird gewöhnlich unter Verwendung von Kanamycin als selektierbarem Pflanzenmarker durchgeführt.

[0119] Der Agrobacterium-vermittelte Gentransfer in Lein (Linum usitatissimum) lässt sich unter Verwendung von beispielsweise einer von Mlynarova et al. (1994) Plant Cell Report 13: 282-285 beschriebenen Technik durchführen. [0120] Die Transformation von Soja kann unter Verwendung von beispielsweise einer in EP-A-0 0424 047 (Pioneer Hi-Bred International) oder in EP-A-0 0397 687, US 5,376,543, US 5,169,770 (University Toledo) beschriebenen Tech-

nik durchgeführt werden.

15

[0121] Die Pflanzentransformation unter Verwendung von Teilchenbeschuss, Polyethylenglycol-vermittelter DNA-Aufnahme oder über die Siliziumcarbonatfaser-Technik ist beispielsweise bes chrieben von Freeling und Walbot "The maize handbook" (1993) ISBN 3-540-97826-7, Springer Verlag New York).

Beispiel 5

Plasmide für die Pflanzentransformation

[0122] Zur Pflanzentransformation können binäre Vektoren, wie pBinAR (Höfgen und Willmitzer, Plant Science 66 (1990) 221-230) oder pGPTV (Becker et al 1992, Plant Mol. Biol. 20: 1195-1197) verwendet werden. Die Konstruktion der binären Vektoren kann durch Ligation der cDNA in Sense- oder Antisense-Orientierung in T-DNA erfolgen. 5' der cDNA aktiviert ein Pflanzenpromotor die Transkription der cDNA. Eine Polyadenylierungssequenz befindet sich 3' von der cDNA. Die binären Vektoren können unterschiedliche Markergene tragen. Insbesondere kann das nptII-Markergen codierend für Kanamycin-Resistenz vermittelt durch Neomycinphosphotransferase gegen die herbizidresistente Form eines Acetolactat Synthasegens (AHAS oder ALS) ausgetauscht werden. Das ALS-Gen ist beschrieben in Ott et al., J. Mol. Biol. 1996, 263: 359-360. Der v-ATPase-c1-Promotor kann in das Plasmid pBin19 oder pGPTV kloniert werden und durch Klonierung vor das ALS Codierregion für die Markergenexpression genutzt werden. Der genannte Promotor entspricht einem 1153 Basenpaarfragment aus beta-Vulgaris (Plant Mol Biol, 1999, 39: 463-475). Dabei können sowohl Sulphonylharnstoffe als auch Imidazolinone wie Imazethapyr oder Sulphonylharnstoffe als Antimetaboliten zur Selek-

[0123] Die gewebespezifische Expression lässt sich unter Verwendung eines gewebespezifischen Promotors erzielen. Beispielsweise kann die samenspezifische Expression erreicht werden, indem der DC3- oder der LeB4- oder der USP-Promotor oder der Phaseolin-Promotor 5' der cDNA einkloniert wird. Auch jedes andere samenspezifische Promotorelement wie z. B. der Napin- oder Arcelin Promotor Goossens et al. 1999, Plant Phys. 120(4): 1095-1103 und Gerhardt et al. 2000, Biochimica et Biophysica Acta 1490(1-2): 87-98) kann verwendet werden. Zur konstitutiven Expression in der ganzen Pflanzen lässt sich der CaMV-35S-Promotor oder ein v-ATPase C1 Promotor verwenden.

[0124] Insbesondere lassen sich Gene codierend für Desaturasen und Elongasen durch Konstruktion mehrerer Expressionskassetten hintereinander in einen binären Vektor klonieren, um den Stoffwechselweg in Pflanzen nachzubilden. [0125] Innerhalb einer Expressionskassette kann das zu exprimierende Protein unter Verwendung eines Signalpeptids, beispielsweise für Plastiden, Mitochondrien oder das Endoplasmatische Retikulum, in ein zelluläres Kompartiment dirigiert werden (Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423). Das Signalpeptid wird 5' im Leseraster mit der cDNA einkloniert, um die subzelluläre Lokalisierung des Fusionsprotein zu erreichen.

[0126] Beispiele für Multiexpressionskassetten sind im folgenden gegeben.

I.) Promotor-Terminator-Kassetten

[0127] Expressionskassetten bestehen aus wenigstens zwei funktionellen Einheiten wie einem Promotor und einem Terminator. Zwischen Promotor und Terminator können weitere gewünschte Gensequenzen wie Targetting-Sequenzen, Codierregionen von Genen oder Teilen davon etc. eingefügt werden. Zum Aufbau von Expressionskassetten werden Promotoren und Terminatoren (USP Promotor: Baeumlein et al., Mol Gen Genet, 1991, 225 (3): 459-67); OCS Terminator: Gielen et al. EMBO J. 3 (1984) 835ff.) mithilfe der Polymerasekettenreaktion isoliert und mit flankierenden Sequenzen nach Wahl auf Basis von synthetischen Oligonukleotiden maßgeschneidert.

[0128] Folgende Oligonukleotide können beispielsweise verwendet werden:

USP1 vome: CCGGAATTCGGCGCGCGCGAGCTCCTCGAGCAAATTTACACATTGCCA USP2 vome: CCGGAATTCGGCGCGCGCGAGCTCCTCGAGCAAATTTACACATTGCCA

USP3 vorne: CCGGAATTCGGCGCGCGCGCGAGCTCCTCGAGCAAATTTACACATTGCCA

USP1 hinten: AAAACTGCAGGCGGCCGCCCACCGCGGTGGGCTGTGAAGAAATT

USP2 hinten: CGCGGATCCGCTGGCTATGAAGAAATT

USP3 hinten: TCCCCCGGGATCGATGCCGGCAGATCTGCTGGCTATGAAGAAATT

OCS1 vorne: AAAACTGCAGTCTAGAAGGCCTCCTGCTTTAATGAGATAT

OCS2 vorne: CGCGGATCCGATATCGGGCCCGCTAGCGTTAACCCTGCTTTAATGAGATAT

OCS3 vorne: TCCCCCGGGCCATGGCCTGCTTTAATGAGATAT

OCS1 hinten: CCCAAGCTTGGCGCCCGAGCTCGAATTCGTCGACGGACAATCAGTAAATTGA

OCS2 hinten: CCCAAGCTTGGCGCGCCGAGCTCGAATTCGTCGACGGACAATCAGTAAATTGA

OCS3 hinten: CCCAAGCTTGGCGCGCGAGCTCGTCGACGGACAATCAGTAAATTGA

[0129] Die Methoden sind dem Fachmann auf dem Gebiet bekannt und sind allgemein literaturbekannt.

[0130] In einem ersten Schritt werden ein Promotor und ein Terminator über PCR amplifiziert. Dann wird der Terminator in ein Empfängerplasmid kloniert und in einem zweiten Schritt der Promotor vor den Terminator inseriert. Mithin erhält man eine Expressionskassette auf einem Trägerplasmid. Auf Basis des Plamides pUC19 werden die Plasmide pUT1, 2 und 3 erstellt.

[0131] Die Konstrukte sind erfindungsgemäß in SEQ ID NO: 33, 34 bis 42 definiert. Sie enthalten den USP-Promotor und den OCS Terminator. Auf Basis dieser Plasmide wird das Konstrukt pUT12 erstellt, indem pUT1 mittels Sall/Scal geschnitten wird und pUT2 mittels Xhol/Scal geschnitten wird. Die die Expressionskassetten enthaltenden Fragmente werden ligiert und in E. coli XLI blue MRF transformiert. Es wird nach Vereinzelung ampicillinresistenter Kolonien DNA präpariert und per Restriktionsanalyse solche Klone identifiziert, die zwei Expressionskassetten enthalten. Die Xhol/Sall Ligation kompatibler Enden hat dabei die beiden Schnittstellen Xhol und Sall zwischen den Expressionskassetten eleminiert. Es resultiert das Plasmid pUT12, das in SEQ ID NO: 36 definiert ist. Anschließend wird pUT12 wiederum mittels Sal/Scal geschnitten und pUT3 mittels Xhol/Scal geschnitten. Die die Expressionskassetten enthaltenden Fragmente werden ligiert und in E. coli XLI blue MRF transformiert. Es wird nach Vereinzelung ampicillinresistenter Kolonien DNA präpariert und per Restriktionsanalyse solche Klone identifiziert, die drei Expressionskassetten enthalten. Auf diese Weise wird ein Set von Multiexpressionskassetten geschaffen, dass für die Insertion gewünschter DNA genutzt werden kann und in Tabelle 1 beschrieben wird und zudem noch weitere Expressionskassetten aufnehmen kann. [0132] Diese enthalten folgende Elemente:

Tabelle 1	15
Tabelle I	13

PUC19- Derivat	Schnittstellen vor dem USP Promotor	Multiple Klonierungs-Schnittstellen	Schnittstellen hinter dem OCS-Terminator	
PUT1	EcoRI/AscI/ SacI/XhoI		Sall/EcoRl/ Sacl/Ascl/ HindIII	20
PUT2	EcoRI/AscI/ SacI/XhoI	BamHI/EcoRV/ ApaI/NheI/ HpaI	Sall/EcoRI/ SacI/AscI/ HindIII	
PUT3	EcoRI/AscI/ SacI/XhoI	BglII/Nael/ ClaI/SmaI/Ncol	Sall/Sacl/ Ascl/HindIII	
PUT12 Doppel- expressions- kasette	EcoRI/AscI/ SacI/XhoI	BstXI/NotI/ PstI/XbaI/StuI Und BamHI/EcoRV/ ApaI/NheI/ HpaI	Sall/EcoRI/ SacI/AscI/ HindIII	. 25
PUT123 Tripel- expressions- kassette	EcoRI/AscI/ SacI/XhoI	BstXI/NotI/ PstI/XbaI/StuI und BamHI/EcoRV/ ApaI/NheI/ HpaI und	Sall/Sacl/Ascl/HindIII	30
kassette		3. BglII/Nael/ Clal/Smal/Ncol		35

[0133] Weiterhin lassen sich wie beschrieben und wie in Tabelle 2 näher spezifiziert weitere Multiexpressionskassetten mithilfe des

- i) USP-Promotors oder mithilfe des
- ii) 700 Basenpaare 3'-Fragmentes des LeB4-Promotors oder mithilfe des
- iii) DC3-Promotors erzeugen und für samenspezifische Genexpression einsetzen.

[0134] Der DC3-Promotor ist beschrieben bei Thomas, Plant Cell 1996, 263: 359–368 und besteht lediglich aus der Region –117 bis +26 weshalb er mithin einer der kleinsten bekannten samenspezifischen Promotoren darstellt. Die Expressionskassetten können mehrfach den selben Promotor enthalten oder aber über drei verschiedene Promotoren aufgebaut werden.

[0135] Dem Sequenzprotokoll SEQ ID NO: 43 bis 49 sind die für die Pflanzentransformation verwendeten Vektoren sowie die Sequenzen der inserierten Gene/Proteine zu entnehmen.

[0136] Vorteilhaft verwendete Polylinker- bzw. Polylinker-Terminator-Polylinker sind den Sequenzen SEQ ID NO: 50 5 bis 52 zu entnehmen.

55

40

60

65

Tabelle 2

Multiple Expressionskassetten

5	Plasmidname des	Schnittstellen vor dem	Multiple	Schnittstellen hinter
	pUC19-Derivates	jeweiligen Promotor	Klonierungs-Schnittstellen	dem OCS-Terminator
	PUT1			Call/CaaDVCaaVAaaV
	(pUC19 mit	EcoRI/AscI/SacI/XhoI	(1) BstXI/NotI/PstI/ XbaI/StuI	Sall/EcoRI/Sacl/Ascl/
10	USP-OCS1)			HindIII
	PDCT		(2) PomHI/EcoPV/ And Albert	Call/CaaDI/Caat/Aaat/
	(pUC19 mit	EcoRI/AscI/SacI/XhoI	(2) BamHI/EcoRV/ ApaI/NheI/	Sall/EcoRl/Sacl/Ascl/
	DC3-OCS)		HpaI	HindIII
15	PleBT			
	(pUC19-mit	EcoRI/AscI/SacI/XhoI	(3) BglII/NaeI/ ClaI/SmaI/NcoI	Sall/Sacl/Ascl/HindIII
	LeB4(700)OCS)			
	PUD12		(1) BstXI/NotI/ PstI/XbaI/StuI	
20	(pUC 19 mit mit	EcoRI/AscI/SacI/XhoI	unđ	Sall/EcoRI/SacI/AscI/
	USP-OCS1 und	Doord 7 130D Sact 7 Mior	(2) BamHI/EcoRV/ ApaI/NheI/	HindIII
	mit DC3-OCS)		HpaI	
	PUDL123			
25	Triple expression		(1) BstXI/NotI/ PstI/XbaI/StuI und	Sall/Sacl/Ascl/HindIII
	cassette	EcoRI/AscI/SacI/XhoI	(2) BamHI/ (EcoRV*)/ApaI/NheI/	
	(pUC19 mit	Location Sach Milot	HpaI und	
	USP/DC3 und		(3) BglII/NaeI/ ClaI/SmaI/NcoI	
30	LeB4-700)			

* EcoRV Schnittstelle schneidet im 700 Basenpaarfragment des LeB4 Promotors (LeB4-700)

[0137] Analog lassen sich weitere Promotoren für Multigenkonstrukte erzeugen insbesondere unter Verwendung des

- a) 2,7 kB Fragmentes des LeB4-Promotors oder mithilfe des
- b) Phaseolin-Promotors oder mithilfe des
- c) konstitutiven v-ATPase c1-Promotors.

[0138] Es kann insbesondere wünschenswert sein, weitere besonders geeignete Promotoren zum Aufbau samenspezifischer Multiexpressionskassetten wie z. B. den Napin-Promotor oder den Arcelin-5 Promotor zu verwenden.

- II) Erstellung von Expressionskonstrukten, die Promotor, Terminator und gewünschte Gensequenz zur PUFA Genexpression in pflanzlichen Expressionskassetten enthalten
- 45 [0139] In pUT123 wird zun\u00e4chst \u00fcber BstXI und XbaI die \u00e4-6-Elongase Pp_PSE1 in die erste Kassette inseriert. Dann wird die \u00e4-6-Desaturase aus Moos (Pp_des6) \u00fcber BamHI/NaeI in die zweite Kassette inseriert und schlie\u00d8lich die \u00e4-5-Desaturase aus Phaeodactylum (Pt_des5) \u00fcber BglII/NcoI in die dritte Kassette inseriert. Das Dreifachkonstrukt erh\u00e4lt den Namen pARA1.
- [0140] Unter Berücksichtigung sequenzspezifischer Restriktionsschnittstellen können weitere Expressionskassetten gemäß Tabelle 3 mit der Bezeichnung pARA2, pARA3 und pARA4 erstellt werden.

Tabelle 3

55 _	Kombinationen von Desaturasen und Elongasen													
	Gen Plasmid	Δ-6-Desaturase	Δ-5-Desaturase	Δ-6-Elongase										
	pARA1	Pp_des6	Pt_des5	Pp_PSE1										
60	pARA2	Pt_des6	Pt_des5	Pp_PSE1										
~ [pARA3	Pt_des6	Ce_des5	Pp_PSE1										
	PARA4	Ce_des6	Ce_des5	Ce_PSE1										

Pp = Physcomitrella patens, Pt = Phaeodactylum tricornutum

65 Pp_PSE1 entspricht der Sequenz aus SEQ ID NO: 9.

PSE = PUFA spezifische Δ -6-Elongase

Ce_des5 = Δ-5-Desaturase aus Caenorhabditis elegans (Genbank Acc. Nr. AF 078796)

Ce_des6 = Δ-6-Desaturase aus Caenorhabditis elegans elegans (Genbank Acc. Nr. AF 031477, Basen 11-1342)

Ce_PSE1 = Δ-6-Elongase aus Caenorhabditis elegans (Genbank Acc. Nr. AF 244356, Basen 1-867)

[0141] Auch weitere Desaturasen oder Elongasegensequenzen können in Expressionskassetten beschriebener Art inseriert werden wie z. B. Genbank Acc. Nr. AF 231981, NM 013402, AF 206662, AF 268031, AF 226273, AF 110510 oder AF 110509.

iii)Transfer von Expressionskassetten in Vektoren zur Transformation von Agrobakterium tumefaciens und zur Transformation von Pflanzen

[0142] Die so erstellten Konstrukte werden mittels AscI in den binären Vektor pGPTV inseriert. Die multiple Klonierungssequenz wird zu diesem Zweck um eine AscI Schnittstelle erweitert. Zu diesem Zweck wird der Polylinker als zwei doppelsträngige Oligonukleotide neu synthetisiert, wobei eine zusätzliche AscI DNA Sequenz eingefügt wird. Das Oligonukleotid wird mittels EcoRI und HindIII in den Vektor pGPTV inseriert. Die notwendigen Kloniertechniken sind dem Fachmann bekannt und können einfach wie in Beispiel 1 beschrieben nachgelesen werden.

Beispiel 6

10

20

30

55

Untersuchung der Expression eines rekombinanten Genproduktes in einem transformierten Organismus

[0143] Die Aktivität eines rekombinanten Genproduktes im transformierten Wirtsorganismus kann auf der Transkriptions- und/oder der Translationsebene gemessen werden.

[0144] Ein geeignetes Verfahren zur Bestimmung der Menge an Transkription des Gens (ein Hinweis auf die Menge an RNA, die für die Translation des Genproduktes zur Verfügung steht) ist die Durchführung eines Northern-Blots wie unten ausgeführt (als Bezugsstelle siehe Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York, oder den oben erwähnten Beispielteil), wobei ein Primer, der so gestaltet ist, dass er an das Gen von Interesse bindet, mit einer nachweisbaren Markierung (gewöhnlich radioaktiv oder chemilumineszent) markiert wird, so dass, wenn die Gesamt-RNA einer Kultur des Organismus extrahiert, auf einem Gel aufgetrennt, auf eine stabile Matrix transferiert und mit dieser Sonde inkubiert wird, die Bindung und das Ausmaß der Bindung der Sonde das Vorliegen und auch die Menge der mRNA für dieses Gen anzeigt. Diese Information zeigt den Grad der Transkription des transformierten Gens an. Zelluläre Gesamt-RNA kann aus Zellen, Geweben oder Organen mit mehreren Verfahren, die alle im Fachgebiet bekannt sind, wie zum Beispiel das von Bormann, E. R., et al. (1992) Mol. Microbiol. 6: 317–326 beschriebene, präpariert werden.

Northern-Hybridisierung

[0145] Für die RNA-Hybridisierung wurden 20 μg Gesamt-RNA oder 1 μg poly(A)⁺-RNA mittels Gelelektrophorese in Agarosegelen mit einer Stärke von 1,25% unter Verwendung von Formaldehyd, wie beschrieben in Amasino (1986, Anal. Biochem. 152, 304) aufgetrennt, mittels Kapillaranziehung unter Verwendung von 10 × SSC auf positiv geladene Nylonmembranen (Hybond N+, Amersham, Braunschweig) übertragen, mittels UV-Licht immobilisiert und 3 Stunden bei 68°C unter Verwendung von Hybridisierungspuffer (10% Dextransulfat Gew./Vol., 1 M NaCl, 1% SDS, 100 mg Heringssperma-DNA) vorhybridisiert. Die Markierung der DNA-Sonde mit dem Highprime DNA labeling-Kit (Roche, Mannheim, Deutschland) erfolgte während der Vorhybridisierung unter Verwendung von alpha-³²P-dCTP (Amersham, Braunschweig, Deutschland). Die Hybridisierung wurde nach Zugabe der markierten DNA-Sonde im gleichen Puffer bei 68°C über Nacht durchgeführt. Die Waschschritte wurden zweimal für 15 min unter Verwendung von 2 × SSC und zweimal für 30 min unter Verwendung von 1 × SSC, 1% SDS, bei 68°C durchgeführt. Die Exposition der verschlossenen Filter wurde bei -70°C für einen Zeitraum von 1 bis 14 T durchgeführt.

[0146] Zur Untersuchung des Vorliegens oder der relativen Menge an von dieser mRNA translatiertem Protein können Standardtechniken, wie ein Western-Blot, eingesetzt werden (siehe beispielsweise Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York). Bei diesem Verfahren werden die zellulären Gesamt-Proteine extrahiert, mittels Gelelektrophorese aufgetrennt, auf eine Matrix, wie Nitrozellulose, übertragen und mit einer Sonde, wie einem Antikörper, der spezifisch an das gewünschte Protein bindet, inkubiert. Diese Sonde ist gewöhnlich mit einer chemilumineszenten oder kolorimetrischen Markierung versehen, die sich leicht nachweisen lässt. Das Vorliegen und die Menge der beobachteten Markierung zeigt das Vorliegen und die Menge des gewünschten, in der Zelle vorliegenden mutierten Proteins an.

Beispiel 7

Analyse der Auswirkung der rekombinanten Proteine auf die Produktion des gewünschten Produktes

[0147] Die Auswirkung der genetischen Modifikation in Pflanzen, Pilzen, Algen, Ciliaten oder auf die Produktion einer gewünschten Verbindung (wie einer Fettsäure) kann bestimmt werden, indem die modifizierten Mikroorganismen oder die modifizierte Pflanze unter geeigneten Bedingungen (wie den vorstehend beschriebenen) gezüchtet werden und das Medium und/oder die zellulären Komponenten auf die erhöhte Produktion des gewünschten Produktes (d. h. von Lipiden oder einer Fettsäure) untersucht wird. Diese Analysetechniken sind dem Fachmann bekannt und umfassen Spektroskopie, Dünnschichtehromatographie, Färbeverfahren verschiedener Art, enzymatische und mikrobiologische Verfahren sowie analytische Chromatographie, wie Hochleistungs-Flüssigkeitschromatographie (siehe beispielsweise Ullman, Encyclopedia of Industrial Chemistry, Bd. A2, S. 89–90 und S. 443–613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17; Rehm et al. (1993) Biotechnology, Bd. 3, Kapitel III: "Product recovery and purification", S. 469–714, VCH: Weinheim; Belter, P. A., et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Ken-

- nedy, J. F., und Cabral, J. M. S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J. A., und Henry, J. D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Bd. B3; Kapitel 11, S. 1–27, VCH: Weinheim; und Dechow, F. J. (1989) Separation and purification techniques in biotechnology, Noves Publications).
- [0148] Neben den oben erwähnten Verfahren werden Pflanzenlipide aus Pflanzenmaterial wie von Cahoon et al. (1999) Proc. Natl. Acad. Sci. USA 96 (22): 12935–12940, und Browse et al. (1986) Analytic Biochemistry 152: 141–145, beschrieben extrahiert. Die qualitative und quantitative Lipid- oder Fettsäureanalyse ist beschrieben bei Christie, William W., Advances in Lipid Methodology, Ayr/Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chromatography and Lipids. A Practical Guide Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 S. (Oily Press Lipid Library; 1); "Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952)–16 (1977) u. d. T.: Progress in the Chemistry of Fats and Other Lipids CODEN.
 - [0149] Zusätzlich zur Messung des Endproduktes der Fermentation ist es auch möglich, andere Komponenten der Stoffwechselwege zu analysieren, die zur Produktion der gewünschten Verbindung verwendet werden, wie Zwischenund Nebenprodukte, um die Gesamteffizienz der Produktion der Verbindung zu bestimmen. Die Analyseverfahren umfassen Messungen der Nährstoffmengen im Medium (z. B. Zucker, Kohlenwasserstoffe, Stickstoffquellen, Phosphat und andere Ionen), Messungen der Biomassezusammensetzung und des Wachstums, Analyse der Produktion üblicher Metabolite von Biosynthesewegen und Messungen von Gasen, die während der Fermentation erzeugt werden. Standardverfahren für diese Messungen sind in Applied Microbial Physiology; A Practical Approach, P. M. Rhodes und P. F. Stanbury, Hrsgb., IRL Press, S. 103–129; 131–163 und 165–192 (ISBN: 0199635773) und darin angegebenen Literaturstellen beschrieben.
 - [0150] Ein Beispiel ist die Analyse von Fettsäuren (Abkürzungen: FAME, Fettsäuremethylester; GC-MS, Gas-Flüssigkeitschromatographie-Massenspektrometrie; TAG, Triacylglycerin; TLC, Dünnschichtchromatographie).
- [0151] Der unzweideutige Nachweis für das Vorliegen von Fettsäureprodukten kann mittels Analyse rekombinanter Organismen nach Standard-Analyseversahren erhalten werden: GC, GC-MS oder TLC, wie verschiedentlich beschrieben von Christie und den Literaturstellen darin (1997, in: Advances on Lipid Methodology, Vierte Aufl.: Christie, Oily Press, Dundee, 119–169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren, Lipide 33: 343–353).
- [0152] Das zu analysierende Material kann durch Ultraschallbehandlung, Mahlen in der Glasmühle, flüssigen Stickstoff und Mahlen oder über andere anwendbare Verfahren aufgebrochen werden. Das Material muss nach dem Aufbrechen zentrifugiert werden. Das Sediment wird in Aqua dest, resuspendiert, 10 min bei 100°C erhitzt, auf Eis abgekühlt und erneut zentrifugiert, gefolgt von Extraktion in 0,5 M Schwefelsäure in Methanol mit 2% Dimethoxypropan für 1 Std. bei 90°C, was zu hydrolysierten Öl- und Lipidverbindungen führt, die transmethylierte Lipide ergeben. Diese Fettsäuremethylester werden in Petrolether extrahiert und schließlich einer GC-Analyse unter Verwendung einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 mikrom, 0,32 mm) bei einem Temperaturgradienten zwischen 170°C und 240°C für 20 min und 5 min bei 240°C unterworfen. Die Identität der erhaltenen Fettsäuremethylester muss unter Verwendung von Standards, die aus kommerziellen Quellen erhältlich sind (d. h. Sigma), definiert werden.
- [0153] Bei Fettsäuren, für die keine Standards verfügbar sind, muss die Identität über Derivatisierung und anschließende GC-MS-Analyse gezeigt werden. Beispielsweise muss die Lokalisierung von Fettsäuren mit Dreifachbindung über GC-MS nach Derivatisierung mit 4,4-Dimethoxyoxazolin-Derivaten (Christie, 1998, siehe oben) gezeigt werden.

Expressionskonstrukte in heterologen mikrobiellen Systemen

40

55

Stämme, Wachstumsbedingungen und Plasmide

[0154] Der Escherichia coli-Stamm XL1 Blue MRF kan (Stratagene) wurde zur Subklonierung der neuen Desaturase pPDesaturase1 aus Physcomitrella patens verwendet. Für die funktionelle Expression dieses Gens verwendeten wir den Saccharomyces cerevisiae-Stamm INVSc 1 (Invitrogen Co.). E. coli wurde in Luria-Bertini-Brühe (LB, Duchefa, Haarlem, Niederlande) bei 37°C kultiviert. Wenn nötig, wurde Ampicillin (100 mg/Liter) zugegeben, und 1,5% Agar (Gew./ Vol.) wurde für feste LB-Medien hinzugefügt. S. cerevisiae wurde bei 30°C entweder in YPG-Medium oder in komplettem Minimalmedium ohne Uracil (CMdum; siehe in: Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., Struhl, K., Albright, L. B., Coen, D. M., und Varki, A. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York) mit entweder 2% (Gew./Vol.) Raffinose oder Glucose kultiviert. Für feste Medien wurden 2% (Gew./Vol.) BactoTM-Agar (Difco) hinzugefügt. Die zur Klonierung und Expression verwendeten Plasmide sind pUC18 (Pharmacia) und pYES2 (Invitrogen Co.).

Beispiel 8

Klonierung und Expression PUFA-spezifischer Desaturasen und Elongaen

[0155] Für die Expression in Pflanzen wurden cDNA Klone aus SeQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31. so modifiziert, dass lediglich die Codierregion mittels Polymerase Kettenreaktion unter Zuhilfenahme zweier Oligonukleotide amplifiziert werden. Dabei wurde darauf geachtet, dass eine Konsensusequenz vor dem Startcodon zur effizienten Translation eingehalten wurde. Entweder wurde hierzu die Basenfolge ATA oder AAA gewählt und vor das ATG in die Sequenz eingefügt (Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell 44, 283–292). Vor diesem Konsensustriplett wurde zusätzlich eine Restriktionsschnittstelle eingeführt, die kompatibel sein muss zur Schnittstelle des Zielvektors, in den das Fragment kloniert werden soll und mit dessen Hilfe die Genexpression in Mikroorganismen oder Pflanzen erfolgen soll.

[0156] Die PCR-Reaktion wurde mit Plasmid-DNA als Matrize in einem Thermocycler (Biometra) mit der Pfu-DNA-(Stratagene)Polymerase und dem folgenden Temperaturprogramm durchgeführt: 3 min bei 96°C, gefolgt von 30 Zyklen

mit 30 s bei 96°C, 30 s bei 55°C und 2 min bei 72°C, 1 Zyklus mit 10 min bei 72°C und Stop bei 4°C. Die Anlagerungstemperatur wurde je nach gewählten Oligonukleotiden variiert. Pro Kilobasenpaare DNA ist von einer Synthesezeit von etwa einer Minute auszugehen. Weitere Parameter, die Einfluss auf die PCR haben wie z. B. Mg-Ionen, Salz, DNA Polymerase etc., sind dem Fachmann auf dem Gebiet geläufig und können nach Bedarf variiert werden.

[0157] Die korrekte Größe des amplifizierten DNA-Fragments wurde mittels Agarose-TBE-Gelelektrophorese bestätigt. Die amplifizierte DNA wurde aus dem Gel mit dem QIAquick-Gelextraktionskit (QIAGEN) extrahiert und in die SmaI-Restriktionsstelle des dephosphorylierten Vektors pUC18 unter Verwendung des Sure Clone Ligations Kit (Pharmacia) ligiert, wobei die pUC-Derivate erhalten wurden. Nach der Transformation von E. coli XL1 Blue MRF kan wurde eine DNA-Minipraparation (Riggs, M. G., & McLachlan, A. (1986) A simplified screening procedure for large numbers of plasmid minipreparation. BioTechniques 4, 310-313) an ampicillinresistenten Transformanden durchgeführt, und positive Klone mittels BamHI-Restriktionsanalyse identifiziert. Die Sequenz des klonierten PCR-Produktes wurde mittels Resequenzierung unter Verwendung des ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer, Weiterstadt) bestätigt.

Fettsäureanalyse

[0158] Die Gesamt-Fettsäuren wurden aus Pflanzensamen extrahiert und mittels Gaschromatographie analysiert. [0159] Die Samen wurden mit 1% Natriummethanolat in Methoanol aufgenommen und 20 min bei RT inkubiert. Anschließend wird mit NaCl Lösung gewaschen und die FAME in 0,3 ml Heptan aufgenommen. Die Proben wurden auf einer ZEBRON-ZB-Wax-Kapillarsäule (30 m, 0,32 mm, 0,25 mikro m; Phenomenex) in einem Hewlett Packard-6850-Gaschromatograph mit einem Flammenionisationsdetektor aufgetrennt. Die Ofentemperatur wurde von 70°C (1 min halten) bis 200°C mit einer Rate von 20°C/min, dann auf 250°C (5 min halten) mit einer Rate von 5°C/min und schließlich auf 260°C mit einer Rate von 5°C/min programmiert. Stickstoff wurde als Trägergas verwendet (4,5 ml/min bei 70°C). Die Fettsäuren wurden durch Vergleich mit Retentionszeiten von FAME-Standards (SIGMA) identifiziert.

Expressionsanalyse

[0160] Ergebnis der Expression einer Phaeodactylum tricornutum Δ-6-Acyl Lipid Desaturase, einer Phaeodactylum tricornutum Δ-5-Acyl Lipid Desaturase und der delta-6 spezifischen Elongase in Tabaksamen:

[0161] Fig. 2 Fettsäureprofil von transgenen Tabaksamen. Die Pflanzen wurden mit einer 3-fach Expressionskassette transformiert, die unter der Kontrolle des USP Promotors die delta-6-, die delta-5- und die Physcomitrella patens PpPSE1 exprimiert (pARA2). Es wurden 100 transgene Tabak und Leinpflanzen hergestellt, von denen ca. 20% Arachidonsäure im Samen synthetisierten.

[0162] Fig. 3 Tabak Wildtypkontrolle.

Beispiel 9

Reinigung des gewünschten Produktes aus transformierten Organismen

[0163] Die Gewinnung des gewünschten Produktes aus Pflanzenmaterial oder Pilzen, Algen, Ciliaten, tierischen Zellen oder aus dem Überstand der vorstehend beschriebenen Kulturen kann durch verschiedene, im Fachgebiet bekannte Verfahren erfolgen. Wird das gewünschte Produkt nicht aus den Zellen sezeiniert, können die Zellen aus der Kultur durch langsame Zentrifugation geerntet werden, die Zellen können durch Standardtechniken, wie mechanische Kraft oder Ultraschallbehandlung, lysiert werden. Organe von Pflanzen können mechanisch von anderem Gewebe oder anderen Organen getrennt werden. Nach der Homogenisation werden die Zelltrümmer durch Zentrifugation entfernt, und die Überstandsfraktion, welche die löslichen Proteine enthält, wird zur weiteren Reinigung der gewünschten Verbindung aufbewahrt. Wird das Produkt aus gewünschten Zellen sezerniert, werden die Zellen durch langsame Zentrifugation aus der Kultur entfernt, und die Überstandsfraktion wird zur weiteren Reinigung aufbewahrt.

[0164] Die Überstandsfraktion aus jedem Reinigungsverfahren wird einer Chromatographie mit einem geeigneten Harz unterworfen, wobei das gewünschte Molekül entweder auf dem Chromatographieharz zurückgehalten wird, viele Verunreinigungen in der Probe jedoch nicht, oder die Verunreinigungen auf dem Harz zurückbleiben, die Probe hingegen nicht. Diese Chromatographieschritte können wenn nötig wiederholt werden, wobei die gleichen oder andere Chromatographieharze verwendet werden. Der Fachmann ist in der Auswahl geeigneter Chromatographieharze und ihrer wirksamsten Anwendung für ein bestimmtes zu reinigendes Molekül bewandert. Das gereinigte Produkt kann durch Filtration oder Ultrafiltration konzentriert und bei einer Temperatur aufbewahrt werden, bei der die Stabilität des Produktes maximal ist.

[0165] Im Fachgebiet ist ein breites Spektrum an Reinigungsverfahren bekannt, und das vorstehende Reinigungsverfahren soll nicht beschränkend sein. Diese Reinigungsverfahren sind zum Beispiel beschrieben in Bailey, J. E., & Ollis, D. F., Biochemical Engineering Fundamentals, McGraw-Hill: New York (1986).

[0166] Die Identität und Reinheit der isolierten Verbindungen kann durch Standardtechniken des Fachgebiets bestimmt werden. Dazu gehören Hochleistungs-Flüssigkeitschromatographie (HPLC), spektroskopische Verfahren, Färbeverfahren, Dünnschichtchromatographie, insbesondere Dünnschichtchromatographie und Flammenionisationsdetektion (IA-TROSCAN, Jatron, Tokio, Japan), NIRS, Enzymtest oder mikrobiologisch. Eine Übersicht über diese Analyseverfahren siche in: Patek et al. (1994) Appl. Environ. Microbiol. 60: 133-140; Malakhova et al. (1996) Biotekhnologiya 11: 27-32; und Schmidt et al. (1998) Bioprocess Engineer. 19: 67-70. Ulmann's Encyclopedia of Industrial Chemistry (1996) Bd. A27, VCH: Weinheim, S. 89-90, S. 521-540, S. 540-547, S. 559-566, 575-581 und S. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A., et al. (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17.

23

15

20

10

35

25

Äquivalente

[0167] Der Fachmann erkennt oder kann viele Äquivalente der hier beschriebenen erfindungsgemäßen spezifischen Ausführungsformen feststellen, indem er lediglich Routineexperimente verwendet. Diese Äquivalente sollen von den Patentansprüchen umfasst sein.

${\tt SEQUENZPROTOKOLL}^{\dot{}}$

<110> BASF Plant Science GmbH	
<120> Verfahren zur Herstellung mehrfach ungesättigter	5
Fettsäuren in Pflanzen	
<130> 2002/271	10
<140> 2002_271	15
<141> 2002-04-26	•
<160> 64 :	20
<170> Patentin More 2 0	•
<170> PatentIn Vers. 2.0	•
<210> 1	. 25
<211> 1687	
<212> DNA	
<213> Borago officinalis	. 30
<220>	
<221> CDS	
<222> (42)(1388)	· ·
<223> Delta-6-Desaturase	40
	. 40
<400> 1	
tatctgccta ccctcccaaa gagagtagtc atttttcatc a atg gct gc	45
Met Ala Al	a Gln Ile
1	5
aag aaa tac att acc tca gat gaa ctc aag aac cac gat aaa	ccc gga 104
Lys Lys Tyr Ile Thr Ser Asp Glu Leu Lys Asn His Asp Lys	
10 . 15	20
	. 55
gat cta tgg atc tcg att caa ggg aaa gcc tat gat gtt tcg	gat tgg 152
Asp Leu Trp I,le Ser Ile Gln Gly Lys Ala Tyr Asp Val Ser	Asp Trp
25 30 35	60
gtg aaa gac cat cca ggt ggc agc ttt ccc ttg aag agt ctt	•
	65

	Val	Lys	Asp	His	Pro	Gly	Gly	Ser	Phe	Pro	Leu	Lys	Ser	Leu	Ala	Gly	
			40					45					50				
5																	
	caa	gag	gta	act	gat	gca	ttt	gtt	gca	ttc	cat	cct	gcc	tct	aca	tgg	248
	Gln	Glu	Val	Thr	Asp	Ala	Phe	Val	Ala	Phe	His	Pro	Ala	Ser	Thr	Trp	
10		55					60					65					
	aag	aat	ctt	gat	aag	ttt	ttc	act	ggg	tat	tat	ctt	aaa	gat	tac	tct	296
15						Phe											
15	70					75			_		80		_	_	_	85	
20	att	tct	gag	att	tct	aaa	gat	tat	agg	aaσ	ctt	ata	ttt	gag	ttt	tct	344
20						Lys											
					90				3	95				-	100		
25	aaa	ata	aat.	tta	tat	gac	aaa	aaa	aat	cat	att	atα	ttt	aca	act	tta	392
						Asp						-		_		-	J , L
	2,5		Cly	105	- 7 -	nsp	Lys	- 173	110	1113	116	Mec	FIIC	115	1111	Dea	
30				105					110					113.			
	tac	+++	ata	ac a	a+a	ctg	+++	act	ata	aat	at t	tat	~~~	at t	++~		440
						Leu								-	_		440
35	Cys	FILE	120	ALG	Met	neu	FIIE	125	Mec	ser	vai	TYL	130	vai	Leu	Pne	
			120					125					130				
	tat	asa	aat	att	tta	gta	cat	tta		tot	666	t at	++~	2+~	~~~		400
40						Val											488
	Cys	135	GIY	Val	Leα	vai	140	Leu	FIIE	ser	GIY	145	Leu	Mec	GΙΫ	Pne	
		133					140					147					
45	ctt	taa	att	cac	act	ggt	taa	a++	a aa	cat	~at	act	~~~	02 t	t > t	250	E 2 6
						Gly											536
	150	111	116	GIII	Ser	155	пр	116	GIY	nis	160	AIG	GIY	птэ	TYL	165	
50	130					133					100					105	
	αta	ata	tct	cat	tca	agg	ctt	aat	220		ata	aat	a++		aat	~ C3	584
						Arg											204
55	Val	Vai	Der	nsp	170	AT 9	neu	non	БУЗ	175	Het	GIY	116	FIIE	180	ALG	
					1,0					1/3					180		
	aat	tat	ctt	tca	~~=	ata	aat	a++	aat	t~~	+~~	222	+~~	224	aa.t	2.7.t	622
60						Ile											632
	non	Cys	Ten	185	GIY	116	261	TTE	190	111	тър	ъys	ıτρ	195	HIS	HOII	
				100					130					T 3 D			
65	ac a	cat	Cac	att	acc	tgt	aat	200	ctt	C 2 3	t a t	asc.	cct	as t	++-	C 2.7	680
	ي د د	-u-	-uc	س ب ب	guc	LyL	uul	ugu		yaa	cat	gac		yaı	LLA	caa	000

Ala	His	His 200	Ile	Ala	Cys	Asn	Ser 205	Leu	Glu	Tyr	Asp	Pro 210	Asp	Leu	Gln		
																	5
tat	ata	cca	ttc	ctt	gtt	gtg	tct	tcc	aag	ttt	ttt	ggt	tca	ctc	acc	728	
Tyr	Ile	Pro	Phe	Leu	Val	Val	Ser	Ser	Lys	Phe	Phe	Gly	Ser	Leu	Thr		
	215					220					225						10
		•															
tct	cat	ttc	tat	gag	aaa	agg	ttg	act	ttt	gac	tct	tta	tca	aga	ttc	776	
	His			_						_							15
230					235	_				240				_	245		
												٠					
ttt	gta	agt	tat	caa	cat	tgg	aca	ttt	tac	cct	att	atg	tgt	gct	gct	824	20
	Val												-	-			
			_	250		_			- 255				-	260			
																	25
agg	ctc	aat	atq	tat	σta	caa	tct	ctc	ata	ato	tta	tta	acc	aaσ	aga	872	2.5
	Leu									-							
3			265	-2				270		,	,		275	-2-	5		20
										•							30
aat	gtg	tcc	tat	cga	act	cat	σaa	ctc	tta	gga	tac	cta	ata	ttc	tca	920	
	Val																25
		280	-2-	9,	,		285			0_1		290					35
att	tgg	tac	cca	tta	ctt	att	tct	tat	tta	cct	aat	taa	aat.	gaa	aga	968	40
	Trp							_	_					-			40
	295	-3-				300		-2-			305				5		
att	atg	ttt	gtt	att	gca	agt	tta	tca	ata	act	gga	atq	caa	caa	att	1016	45
	Met															•	
310					315					320	-				325		
																	50
cag	ttc	tcc	ttg	aac	cac	ttc	tct	tca	agt	gtt	tat	gtt	gga	aag	cct	1064	
Gln	Phe	Ser	Leu	Asn	His	Phe	Ser	Ser	Ser	Val	Tyr	Val	Gly	Lys	Pro		
				330					335				_	340			55
aaa	ggg	aat	aat	tgg	ttt	gag	aaa	caa	acg	gat	ggg	aca	ctt	gac	att	1112	
	Gly																60
	_		345	_			_	350			_		355	_			
tct	tgt	cct	cct	tgg	atg	gat	tgg	ttt	cat	ggt	gga	ttg	caa	ttc	caa	1160	65
					_							_					

	Ser	Cys	Pro	Pro	Trp	Met	Asp	Trp	Phe	His	Gly	Gly	Leu	Gln	Phe	Gln	
			360					365					370				
5	•																
	att	gag	cat	cat	ttg	ttt	ccc	aag	atg	cct	aga	tgc	aac	ctt	agg	aaa	1208
	,				Leu												
10		375					380				_	385				-	
10																	
	atc	tcq	ccc	tac	gtg	atc	gag	tta	tac	aag	aaa	cat	aat	tta	cct	tac	1256
					Val									_			1230
15	390			-1-		395	,		0,0	_,_	400			200	110	405	
i	370										400					403	
/	aat	tat	c ca	tot	ttc	tcc	224	~~~	22+	~ = =	ata	202	ata	200	202	++~	1204
20																	1304
	ASII	IYI	Ата	Ser	Phe	Ser	гуs	Ата	ASII		Met	THE	rea	Arg		Leu	
					410		•			415					420		
25									<u></u>								
					ttg							_	_		_	_	1352
	Arg	Asn	Thr		Leu	Gln	Ala	Arg		Ile	Thr	Lys	Pro		Pro	Lys	
30				425					430				-	435			
					gaa							taa	aatt	acco	ett		1398
35	Asn	Leu	Val	Trp	Glu	Ala	Leu	His	Thr	His	Gly						
			440					445									
								•									
40	agtt	cato	rta a	taat	ttga	g at	tato	gtato	tec	tato	ıttt	gtgt	cttg	itc t	tggt	tctac	1458
	ttgt	tgga	igt c	atto	gcaac	t to	tctt	ttat	ggt	ttat	tag	atgt	tttt	ta a	tata	tttta	1518
45																	
	gagg	tttt	gc t	ttca	atcto	c at	tatt	gato	aat	aagg	agt	tgca	tatt	gt c	aatt	gttgt	1578
50	gctc	aata	itc t	gata	tttt	g ga	atgt	actt	tgt	acca	ctg	tgtt	ttca	igt t	gaag	ctcat	1638
30																	
	gtgt	actt	ct a	taga	cttt	g tt	taaa	tggt	tat	gaaa	aaa	aaaa	aaaa	a			1687
55																	
	<210	> 2															
	<211	> 44	8														
60	<212	> PR	T														
	<213	> Bo	rago	off	icir	alis	;										
			_														
65	<400	> 2															

	Met	Ala	Ala	Gln	Ile	Lys	Lys	Tyr	Ile	Thr	Ser	Asp	Glu	Leu	Lys	Asn		
	. 1				5					10					15			
	His	Asp	Lys	Pro 20	Gly	Asp	Leu	Trp	Ile 25	Ser	Ile	Gln	Gly	Lys 30	Ala	Tyr	. •	•
	Asp	Val	Ser 35	Asp	Trp	Val	Lys	Asp 40	His	Pro	Gly	Gly	Ser 45	Phe	Pro	Leu		16
\	Lys	Ser 50	Leu	Ala	Gly	Gln	Glu 55	Val	Thr	Asp	Ala	Phe 60	Val	Ala	Phe	His		1
•	Pro 65	Ala	Ser	Thr	Trp	Lys 70	Asn	Leu	Asp	Lys	Phe 75	Phe	Thr	Gly	Tyr	Tyr 80		20
	Leu	Lys	Asp	Tyr	Ser 85	Val	Ser	Glu	Val	Ser 90	Lys	Asp	Tyr	Arg	Lys 95	Leu		2
	Val	Phe		Phe	Ser	Lys	Met	Gly	Leu 105	Tyr	Asp	Lys	Lys	Gly 110	His	Ile	·	3(
	Met	Phe	Ala 115	Thr	Leu	Cys	Phe	Ile 120		Met	Leu	Phe	Ala 125	Met	Ser	Val		3
	Tyr	Gly 130	Val	Leu	Phe	Cys	Glu 135	Gly	Val	Leu	Val	His 140	Leu	Phe	Ser	Gly		41
	Cys 145	Leu	Met	Gly	Phe	Leu 150		Ile	Gln	Ser	Gly 155	Trp	Ile	Gly	His	Asp 160		4:
	Ala	Gly	His	Tyr	Met 165	Val	Val	Ser	Asp	Ser 170	Arg	Leu	Asn	Lys	Phe 175	Met		5
	Gly	Ile	Phe	Ala 180	Ala	Asn	Cys	Leu	Ser 185	Gly	Ile	Ser	Ile	Gly 190	Trp	Trp		5
	Lys	Trp	Asn 195	His	Asn	Ala	His	His 200	Ile	Ala	Cys	Asn	Ser 205	Leu	Glu	Tyr		6
	Asp	Pro	Asp	Leu	Gln	Tyr	Ile	Pro	Phe	Leu	Val	Val	Ser	Ser	Lys	Phe		6

5	Phe 225	Gly	Ser	Leu	Thr	Ser 230	His	Phe	Tyr	Glu	Lys 235	Arg	Leu	Thr	Phe	As:
10	Ser	Leu	Ser	Arg	Phe 245	Phe	Val	Ser	Tyr	Gln 250	His	Trp	Thr	Phe	Tyr 255	Pro
15	Ile	Met	Cys	Ala 260	Ala	Arg	Leu	Asn	Met 265	Tyr	Val	Gln	Ser	Leu 270	Ile	Me
20	Leu	Leu	Thr 275	Lys	Arg	Asn	Val	Ser 280	Tyr	Arg	Ala	His	Glu 285	Leu	Leu	Gly
25	Cys	Leu 290	Val	Phe	Ser	Ile	Trp 295	Tyr	Pro	Leu	Leu	Val 300	Ser	Cys	Leu	Pro
30	Asn 305	Trp	Gly	Glu	Arg	Ile 310	Met	Phe	Val	Ile	Ala 315	Ser	Leu	Ser	Val	Thi 320
35	Gly	Met	Gln	Gln	Val 325	Gln	Phe	Ser	Leu	Asn 330	His	Phe	Ser	Ser	Ser 335	Va]
40	туг	Val	Gly	Lys 340	Pro	Lys	Gly	Asn	Asn 345	Trp	Phe	Glu	Lys	Gln 350	Thr	Asr
45	Gly	Thr	Leu 355	Asp	Ile	Ser	Cys	Pro 360	Pro	Trp	Met	Asp	Trp 365	Phe	His	Gly
50	Gly	Leu 370	Gln	Phe	Gln	Ile	Glu 375	His	His	Leu	Phe	Pro 380	Lys	Met	Pro	Arg
55	Cys 385	Asn	Leu	Arg	Lys	Ile 390	Ser	Pro	Tyr	Val	Ile 395	Glu	Leu	Cys	Lys	Lys 400
60	His	Asn	Leu	Pro	Туr 405	Asn	Tyr	Ala	Ser	Phe 410	Ser	Lys	Ala	Asn	Glu 415	Met
65	Thr	Leu	Arg	Thr 420	Leu	Arg	Asn	Thr	Ala 425	Leu	Gln	Ala	Arg	Asp 430	Ile	Thr

Lys Pro Leu Pro Lys Asn Leu Val Trp Glu Ala Leu His Thr His Gly

٠.		433					440					445					
																	5
· -21	.0> 3										•						
	.0> 3	192									•						10
	2> D																10
<21	.3> P	hysc	omit	rella	a pa	tens											
							•										15
<22	0>			٠											•		
	1> C										•						
	2> (•						•		20
<22	3> D	elta	-6-E	long	ase												
<40	0> 3																
	cttc	atc	tcat	ctta	aa a	atato	ratt	c aa	gagto	gaat	tgad	atta	ata d	rage	тса	57	25
_					JJ J.	J - J		- 35.	J. J.	,,,,	- 3	J J.	, s	J-5	,		
atg	gag	gtc	gtg	gag	aga	ttc	tac	ggt	gag	ttg	gat	ggg	aag	gtc	tcg	105	30
Met	Glu	Val	Val	Glu	Arg	Phe	Tyr	Gly	Glu	Leu	Asp	Gly	Lys	Val	Ser		
1				. 5					10					15			
											•						35
	ggc															153	
GIN	Gly	vai	Asn 20	Ala	Leu	Leu	GIY	Ser 25	Pne	GIÀ	vai	GIU	30	Thr	Asp		
			20					2,5					30				40
acg	ccc	act	acc	aaa	ggc	ttg	ccc	ctc	gtt	gac	agt	ccc	aca	ccc	atc	201	
Thr	Pro	Thr	Thr	Lys	Gly	Leu	Pro	Leu	Val	Asp	Ser	Pro	Thr	Pro	Ile		45
		35					40					45					,,,
																·	
	ctc		•													249	50
vaı	Leu 50	GIY	Val	Ser	Val		Leu	Thr	Ile	Val		Gly	Gly	Leu	Leu	•	
	30					55					60						
tgg	ata	aag	gcc	agg	gat	ctg	aaa	ccg	cgc	gcc	tcq	gag	cca	ttt	ttg	· 2 9 7	55
	Ile																
65					70					75					80		60
																	00
	caa										_				_	345	
Leu	Gln	Ala	Leu	Val	Leu	Val	His	Asn	Leu	Phe	Суѕ	Phe	Ala	Leu	Ser		65

5	ctg	tat	atg	tgc	gtg	ggc	atc	gct	tat	cag	gct	att	acc	tgg	cgg	tac	393
	Leu	Tyr	Met	Cys	Val	Gly	Ile	Ala	Tyr	Gln	Ala	Ile	.Thr	\mathtt{Trp}	Arg	Tyr	•
				100					105					110			
10																	
	tct	ctc	tgg	ggc	aat	gca	tac	aat	cct	aaa	cat	aaa	gag	atg	gcg	att	441
	Ser	Leu	Trp	Gly	Asn	Ala	Tyr	Asn	Pro	Lys	His	Lys	Glu	Met	Ala	Ile	
15			115					120					125				
13																	
	ctg	gta	tac	ttg	ttc	tac	atg	tct	aag	tac	gtg	gaa	ttc	atg	gat	acc	489
20	Leu	Val	Tyr	Leu	Phe	Tyr	Met	Ser	Lys	Tyr	Val	Glu	Phe	Met	Asp	Thr	
		130					135					140					
25	gtt	atc	atg	ata	ctg	aag	cgc	agc	acc	agg	caa	ata	agc	ttc	ctc	cac	537
	Val	Ile	Met	Ile	Leu	Lys	Arg	Ser	Thr	Arg	Gln	Ile	Ser	Phe	Leu	His	
	145					150					155					160	
20												٠					
30	gtt	tat	cat	cat	tct	tca	att	tcc	ctc	att	tgg	tgg	gct	att	gct	cat	585
	Val	Tyr	His	His	Ser	Ser	Ile	Ser	Leu	Ile	Trp	Trp	Ala	Ile	Ala	His	
		_			165					170	-	-			175		
35						•											
	cac	act	cct	aac	aat	gaa	gca	tat	taa	tct	aca	act	cta	aac	tca	gga	633
		_				_	_					_			Ser		
40				180	023			-3-	185	501				190	501	Cly	
	gtg	cat	gtt	ctc	atg	tat	gcg	tat	tac	ttc	ttg	gct	gcc	tgc	ctt	cga	681
45															Leu		
			195			-		200	-				205	-		•	
50	agt	agc	cca	aag	tta	aaa	aat	aag	tac	ctt	ttt	taa	aac	agg	tac	tta	729
															Tyr	_	
		210					215		-3-			220	3	5			
55																	
	aca	caa	ttc	caa	ata	ttc	cag	+++	ato	cta	280	tta	ata	cag	gct	tac	777
															Ala		
60	225	0211		0211		230	0111		1100	Dou	235	200	V U 1	0111	1114	240	
						230					233					240	
	tac	gac	ato	222	aco	aat	aca	CCA	tat	CC3	Caa	taa	cta	atc	aag	att	825
65			_		_								_		Lys		023
	-1-	- ي		-y 3			4.2 G		- Y -	110	0111	1	Leu		د و ـ		

2	245	250	255
		ttt ctt ttc ggc aat Phe Leu Phe Gly Asn	
		270 gga aag caa aag gga	
		Gly Lys Gln Lys Gly 285	
	atcaa gccatagaaa ct		970
aagttggtgc tttctt	atct ccacttatct ttt	aagcagc atcagttttg a	aatgatgtg 1030 25
tgggcgtggt ctgcaa	gtag tcatcaatat aato	cggcctg agcacttcag a	tggattgtt 1090
agaacatgag taaaag	rcggt tattacggtg ttt:	attttgt accaaatcac c	
aattgaaata tttcag	attt gatcaatttc atc	tgaaaaa aa	1192 ₃₉
<210> 4 <211> 290 <212> PRT			40
<213> Physcomitre	lla patens		45
<400> 4 Met Glu Val Val G 1	lu Arg Phe Tyr Gly (5	Glu Leu Asp Gly Lys \	Val Ser so
Gln Gly Val Asn A	la Leu Leu Gly Ser I 25	Phe Gly Val Glu Leu 1	Thr Asp
Thr Pro Thr Thr L	ys Gly Leu Pro Leu \ 40	Val Asp Ser Pro Thr 1	Pro Ile

Val Leu Gly Val Ser Val Tyr Leu Thr Ile Val Ile Gly Gly Leu Leu

	Trp	Ile	Lys	Ala	Arg	Asp	Leu	Lys	Pro	Arg	Ala	Ser	Glu	Pro	Phe	Leu
	65					70					75					80
5																
,	Len	Cln	ת ו ת	T 011	₹7 - 1	Lon	77-7	ui c	A cm	T 011	Dho	C	Dh.a	27.0	T	C
	Deu	GIII	ATG	Leu	Val	Leu	vai	urs	ASII		Pne	Суѕ	Pne	Ala		ser
					85					90					95	
10																
	Leu	Tyr	Met	Cys	Val	Gly	Ile	Ala	Tyr	Gln	Ala	Ile	Thr	Trp	Arg	Tyr
				100					105					110		
15																
15	Ser	Len	ጥንጉ	Glv	Asn	Δla	ጥኒን፦	Acn	Pro	Lve	Hic	Lve	Glu	Mot	λ Ι ⇒	, Tlo
				01,			-3-		110	٠,٥	1110	L _y S		nec	AIG	116
			115					120					125			
20																
	Leu	Val	Tyr	Leu	Phe	Tyr	Met	Ser	Lys	Tyr	Val	Glu	Phe	Met	Asp	Thr
		130					135					140				
25																
	Val	Ile	Met	Ile	Leu	Lys	Arg	Ser	Thr	Arg	Gln	Ile	Ser	Phe	Leu	His
	145					150	_			Ū	155					160
											133					100
30		_	•			_			_				_		_	
	vaı	ıyr	His	Hls	Ser	Ser	ITE	Ser	Leu	He	Trp	Trp	Ala	Ile	Ala	His
					165					170					175	
35																
	His	Ala	${\tt Pro}$	Gly	Gly	Glu	Ala	Tyr	Trp	Ser	Ala	Ala	Leu	Asn	Ser	Gly
				180					185					190		
40	Va1	His	Val	I.em	Met	ጥህን	Δla	ጥኒፖ	ጥኒታ	Phe	T.611	Δ 1 =	בוג	Cvc	T ON	720
			195		1100	-3-			-7-	1116	neu	AIG		Cys	Leu	Arg
			190					200					205			
45																
	Ser	Ser	Pro	Lys	Leu	Lys	Asn	Lys	Tyr	Leu	Phe	Trp	Gly	Arg	Tyr	Leu
		210					215					220				
50																
50	Thr	Gln	Phe	Gln	Met	Phe	Gln	Phe	Met	Leu	Asn	Leu	Val	Gln	Ala	Tvr
	225					230					235					240
											233					240
55	m	7	M	7	መЪ	D	77 -	D	m	De-	63	.	-			
	ıyr	Asp	мес	rys	Thr	ASN	Ата	Pro	ıyr		GIn	Trp	Leu	ITe		Ile
					245					250					255	
60																
<i></i>	Leu	Phe	Tyr	Tyr	Met	Ile	Ser	Leu	Leu	Phe	Leu	Phe	Gly	Asn	Phe	Tyr
				260					265					270		

Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys

•			275					280					285						
	πb≻	Glu																:	5
,	1111											٠							
•		290																. 10	0
	<21	0> 5																	
	<21	1> 1	054															1:	5
	<212	2> D	NA													:			
	<213	3> T	hrau	stoc	hytr	ium													
																		20	O
:	<220)>															٠		
	<223	L> C	DS																
	<222	2> (43).	. (85	8)													2:	5
	<223	3> D	elta	-6-E	long	ase													
								•											
	<400)> 5																3	o
•	gaat	tcg	gca	cgag	agcg	cg c	ggag	cgga	g ac	ctcg	acca	ca	ata :	ato e	gag	cca	54		•
													Met 1						
													1					3.	5
								•					_					3.	J
	ctc	gac	agg	tac	agg	gcg	ctg	gcg	gag	ctc	acc	aca	agg	tac	acc	agc	102	•	
				Tyr														4	•
	5	•		-		10					15		5	-3-		20		4	u
1	tcg	gcg	gcc	ttc	aag	tgg	caa	gtc	acg	tac	gac	acc	aaσ	σac	agc	ttc	150		
				Phe														4.	3
					25	_				30	_		-	-	35				
																		_	
ç	gtc	ggg	ccc	ctg	gga	atc	cgg	gag	ccg	ctc	ggg	ctc	cta	ata	aac	tcc	198	5	U
				Leu															
		_		40	_				45					50	4				
																		5	5
ç	gtg	gtc	ctc	tac	ctg	agc	ctg	ctq	acc	ata	atc	tac	aca	cta	caa	aac	246		
				Tyr															
			55	_				60				-	65 [.]					6	C
t	tac	ctt	ggc	ggc	ctc	atg	gcg	ctc	cgc	agc	gtġ	cat	aac	ctc	gga	ctc	294		
				Glv														. 6	5

		70					75					80					
5	tgc	ctc	ttc	tcg	ggc	acc	ata	taa	atc	tac	acσ	agc	tac	ctc	ato	atc	342
,																Ile	
	85				-	90		•		-2-	95		-3-			100	
10																	
	cag	gat	ggg	cac	ttt	cgc	agc	ctc	gag	aca	gca	acq	tac	gag	cca	ctc	390
				His													
15					105					110			-		115		
13																	
	aag	cat	ccg	cac	ttc	cag	ctc	atc	agc	ttg	ctc	ttt	gcg	ctg	tcc	aag	438
20	Lys	His	Pro	His	Phe	Gln	Leu	Ile	Ser	Leu	Leu	Phe	Ala	Leu	Ser	Lys	
				120					125					130			
25	atc	tgg	gag	tgg	ttc	gac	acg	gtg	ctc	ctc	atc	gtc	aag	ggc	aac	aag	486
	Ile	Trp	Glu	Trp	Phe	Asp	Thr	Val	Leu	Leu	Ile	Val	Lys	Gly	Asn	Lys	
			135					140					145				
30											:	•					
	ctc	cgc	ttc	ctg	cac	gtc	ttg	cac	cac	gcc	acg	acc	ttt	tgg	ctc	tac	534
	Leu	Arg	Phe	Leu	His	Val	Leu	His	His	Ala	Thr	Thr	Phe	Trp	Leu	Tyr	
35		150					155					160					
					·												
	gcc	atc	gac	cac	atc	ttt	ctc	tcg	tcc	atc	aag	tac	ggc	gtc	gcg	gtc	582
40	Ala	Ile	Asp	His	Ile	Phe	Leu	Ser	Ser	Ile	Lys	Tyr	Gly	Val	Ala	Val	
	165					170					175					180	
45				atc													630
	Asn	Ala	Phe	Ile	His	Thr	Val	Met	Tyr	Ala	His	Tyr	Phe	Arg	Pro	Phe	
					185					190					195		
50																	
				ttg													678
	Pro	Lys	Gly	Leu	Arg	Pro	Leu	Ile	Thr	Gln	Leu	Gln	Ile	Val	Gln	Phe	
55				200					205					210			
				atc												_	726
60	Ile	Phe		Ile	Gly	Ile	His		Ala	Ile	Tyr	Trp	His	Tyr	Asp	Cys	
			215					220					225				

gag ccg ctc gtg cat acc cac ttt tgg gaa tac gtc acg ccc tac ctt 65 Glu Pro Leu Val His Thr His Phe Trp Glu Tyr Val Thr Pro Tyr Leu

230	235	240	
ttc gtc gtg ccc ttc ctc Phe Val Val Pro Phe Leu 245 250			822
tac gtc ctc gcg ccc gca Tyr Val Leu Ala Pro Ala 265		tag ccacgtaaca	868
gtagaccagc agegeegagg ac		·	2
catttgattc aacgaggcta ct			
ctcgag			1054
<210> 6 <211> 271 <212> PRT <213> Thraustochytrium			
<400> 6		•	4
Met Met Glu Pro Leu Asp 1 5	Arg Tyr Arg Ala Leu 1	Ala Glu Leu Ala Ala 15	4
Arg Tyr Ala Ser Ser Ala 20	Ala Phe Lys Trp Gln v 25	Val Thr Tyr Asp Ala 30	5
Lys Asp Ser Phe Val Gly 35	Pro Leu Gly Ile Arg (Glu Pro Leu Gly Leu 45	:
Leu Val Gly Ser Val Val	Leu Tyr Leu Ser Leu 1	Leu Ala Val Val Tyr 60	,

Ala Leu Arg Asn Tyr Leu Gly Gly Leu Met Ala Leu Arg Ser Val His

	Asn	Leu	Gly	Leu	Cys 85	Leu	Phe	Ser	Gly	Ala 90	Val	Trp	Ile	Tyr	Thr 95	Ser
5															,,,	
	Tyr	Leu	Met	Ile 100	Gln	Asp	Gly	His	Phe 105	Arg	Ser	Leu	Glu	Ala 110	Ala	Thr
10	Cys	Glu	Pro 115	Leu	Lys	His	Pro	Ніs 120	Phe	Gln	Leu	Ile	Ser 125	Leu	Leu	Phe
15	Ala	Leu 130	Ser	Lys	Ile	Trp	Glu 135	Trp	Phe	Asp	Thr	Val 140	Leu	Leu	Ile	Val
20	Lys 145	Gly	Asn	Lys	Leu	Arg 150	Phe	Leu	His	Val	Leu 155	His	His	Ala	Thr	Thr 160
25	Phe	Trp	Leu	туг	Ala 165	Ile	Asp	His	Ile	Phe 170	Leu	Ser	Ser	Ile	Lys 175	Tyr
30	Gly	Val	Ala	Val 180	Asn	Ala	Phe	Ile	His 185	Thr	Val	Met	Tyr	Ala 190	His	Tyr
35	Phe	Arg	Pro 195	Phe	Pro	Lys	Gly	Leu 200	Arg	Pro	Leu	Ile	Thr 205	Gln	Leu	Gln
40	Ile	Val 210	Gln	Phe	Ile	Phe	Ser 215	Ile	Gly	Ile	His	Thr 220	Ala	Ile	Tyr	Trp
45	His 225	Tyr	Asp	Cys	Glu	Pro 230	Leu	Val	His	Thr	His 235	Phe	Trp	Glu	Tyr	Val 240
50	Thr	Pro	Туг	Leu	Phe 245	Val	Val	Pro	Phe	Leu 250	Ile	Leu	Phe	Phe	Asn 255	Phe
55	Tyr	Leu	Gln	Gln 260	Tyr	Val	Leu	Ala	Pro 265	Ala	Lys	Thr	Lys	Lys 270	Ala	
60																
65	<210 <211	.> 20														

<213> Ceratodon purpureus

<220	0>																5
<22	1> C	DS												•		•	
<222	2> - (176)	(1	627)				•									
<223	3> D	elta	-6-D	esat [.]	uras	е											10
<400	0> 7																
ctca	aggc	agg	tctc	agtt	ga t	gaga	cgct	g ag	ttct	gaat	cct	ttga	gct	gtgt	caggct	60	15
cggd	cact	tgt (ggga	tggt	ga a	ggag	tgat	c ga	tcag	gagt	gca	ggag	ctg	catt	agtttc	120	. 20
tcag	gggti	cga	tcag	gttai	tt c	tgaa	aaag	g ct	gcat	ctat	gag	caqt	tta (caaa	a atg	178	20
										J	J - J				Met		
								,							1		25
gcc	ctc	gtt	acc	gac	ttt	ctg	aac	ttt	cţg	ggc	acg	aca	tgg	agc	aag	226	
														Ser			30
			5					10					15			·	
tac	agc	gtg	tac	acc	cat	agc	tat	gct	gga	aac	tat	ggg	cct	act	ttg	274	35
Tyr	Ser	Val	Tyr	Thr	His	Ser	Tyr	Ala	Gly	Asn	Tyr	Gly	Pro	Thr	Leu		
		20					25				•	30					
	٠.																40
aag	cac	gcc	aaa	aag	gtt	tct	gct	caa	ggt	aaa	act	gcg	gga	cag	aca	322	
Lys	His	Ala	Lys	Lys	Val	Ser	Ala	Gln	Gly	Lys	Thr	Ala	Gly	Gln	Thr		
	35					40					45						45
ctg	aga	cag	aga	tcg	gtg	cag	gac	aaa	aag	cca	ggc	act	tac	tct	ctg	370	
Leu	Arg	Gln	Arg	Ser	Val	Gln	Asp	Lys	Lys	Pro	Gly	Thr	Tyr	Ser	Leu		50
50					55					60					65		
														atc		418	55
Ala	Asp	Val	Ala	Ser	His	qaA	Arg	Pro	Gly	Asp	Cys	Trp	Met	Ile	Val		
				70					75					80			
																	60
														cct		466	
Lys	Glu	Lys		Tyr	Asp	Ile	Ser		Phe	Ala	Asp	Asp	His	Pro	Gly		
			85					90					95				65

gca Ala att Ile 130 tac Tyr	aca Thr 115 gga Gly aga Arg	ttc Phe gac Asp gat Asp	cat His ctt Leu atg Met tgg Trp	cca Pro gct Ala aga Arg 150	cct Pro agg Arg 135 gcc Ala	gcc Ala 120 gaa Glu gag Glu	gca Ala gag Glu ttt	tgg Trp ccc Pro	aag Lys ctt Leu	caa Gln gat Asp 140	ctc Leu 125 gaa Glu	aat Asn ttg Leu	gac Asp ctt Leu	tac Tyr aaa Lys	tac Tyr gac Asp 145	610
att Ile 130 tac Tyr	Thr 115 gga Gly aga Arg	ttc Phe gac Asp gat Asp	His ctt Leu atg Met tgg Trp	gct Ala aga Arg 150	agg Arg 135 gcc Ala	Ala 120 gaa Glu gag Glu	gca Ala gag Glu ttt Phe	Trp ccc Pro	Lys ctt Leu aga Arg	gat Asp 140	Leu 125 gaa Glu ggg	aat Asn ttg Leu	Asp ctt Leu	Tyr aaa Lys aag Lys	gac Asp 145	610
att Ile 130 tac Tyr	Thr 115 gga Gly aga Arg	gac Asp gat Asp	His ctt Leu atg Met tgg Trp	gct Ala aga Arg 150	agg Arg 135 gcc Ala	Ala 120 gaa Glu gag Glu	gag Glu ttt Phe	Trp ccc Pro	Lys ctt Leu aga Arg	gat Asp 140	Leu 125 gaa Glu ggg	Asn ttg Leu ctt	Asp ctt Leu	Tyr aaa Lys aag Lys	gac Asp 145	610
att Ile 130 tac Tyr	Thr 115 gga Gly aga Arg	gac Asp gat Asp	His ctt Leu atg Met tgg Trp	gct Ala aga Arg 150	agg Arg 135 gcc Ala	Ala 120 gaa Glu gag Glu	gag Glu ttt Phe	Trp ccc Pro	Lys ctt Leu aga Arg	gat Asp 140	Leu 125 gaa Glu ggg	Asn ttg Leu ctt	Asp ctt Leu	Tyr aaa Lys aag Lys	gac Asp 145	610
att Ile 130 tac Tyr	Thr 115 gga Gly aga Arg	gac Asp gat Asp	His ctt Leu atg Met tgg Trp	gct Ala aga Arg 150	agg Arg 135 gcc Ala	Ala 120 gaa Glu gag Glu	gag Glu ttt Phe	Trp ccc Pro	Lys ctt Leu aga Arg	gat Asp 140	Leu 125 gaa Glu ggg	Asn ttg Leu ctt	Asp ctt Leu	Tyr aaa Lys aag Lys	gac Asp 145	610
att Ile 130 tac Tyr	gga Gly aga Arg	gac Asp gat Asp	ctt Leu atg Met tgg	gct Ala aga Arg 150	agg Arg 135 gcc Ala	gaa Glu gag Glu	gag Glu ttt Phe	ccc Pro	ctt Leu aga Arg	gat Asp 140 gaa	gaa Glu	ttg Leu ctt	ctt Leu	aaa Lys aag Lys	gac Asp 145	
Ile 130 tac Tyr	gga Gly aga Arg	gat Asp	Leu atg Met tgg Trp	aga Arg 150	Arg 135 gcc Ala	gaa Glu gag Glu	Glu ttt Phe	Pro gtt	Leu aga Arg	Asp 140 gaa	gaa Glu ggg	Leu	Leu ttc	Lys aag Lys	Asp 145 agt	
Ile 130 tac Tyr	Gly aga Arg	gat Asp	Leu atg Met tgg Trp	aga Arg 150	Arg 135 gcc Ala	Glu gag Glu	Glu ttt Phe	Pro gtt	Leu aga Arg	Asp 140 gaa	Glu ggg	Leu	Leu ttc	Lys aag Lys	Asp 145 agt	
Ile 130 tac Tyr	Gly aga Arg	gat Asp	Leu atg Met tgg Trp	aga Arg 150	Arg 135 gcc Ala	Glu gag Glu	Glu ttt Phe	Pro gtt	Leu aga Arg	Asp 140 gaa	Glu ggg	Leu	Leu ttc	Lys aag Lys	Asp 145 agt	
tac Tyr	aga Arg	gat Asp gcc	atg Met tgg Trp	aga Arg 150	gcc Ala	gag Glu	ttt Phe	gtt	aga Arg	140 gaa	ggg	ctt	ttc	aag Lys	145 agt	658
tac Tyr	Arg aag	Asp gcc	Met tgg Trp	Arg 150 ttc	gcc Ala	Glu	Phe		Arg	gaa				Lys	agt	658
Tyr	Arg aag	Asp gcc	Met tgg Trp	Arg 150 ttc	Ala	Glu	Phe		Arg					Lys	_	658
Tyr	Arg aag	Asp gcc	Met tgg Trp	Arg 150 ttc	Ala	Glu	Phe		Arg					Lys	_	658
tcc	aag	gcc	tgg Trp	150 ttc				Val		Glu	Gly	Leu	Phe	_	Ser	
	_	_	Trp	ttc	ctg	ctt			155					160		
	_	_	Trp		ctg	ctt										
	_	_	Trp		ctg	ctt										
Ser	Lys	Ala		Phe			cag	act	ctg	att	aat	gca	gct	ctc	ttt	706
					Leu	Leu	Gln	Thr	Leu	Ile	Asn	Ala	Ala	Leu	Phe	
			165					170					175			
gct	gcg	agc	att	gcg	act	atc	tgt	tac	gac	aag	agt	tac	tgg	gct	att	754
Ala	Ala	Ser	Ile	Ala	Thr	Ile	Cys	Tyr	Asp	Lys	Ser	Tyr	Trp	Ala	Ile	
		180					185					190	_			
gtg	ctg	tca	gcc	agt	ttg	atg	ggt	ctc	ttc	atc	caa	caσ	tat	gga	taa	802
	Leu											_				
	195					200	2				205		0,70	0_3		
ctt	acc	cat	gat	ttc	ctt	cat	caa	cad	atc	+++	rar	220	cat	200	aca	850
													_			050
	nia	1113	nsp	THE		1113	GIII	GIII	Vai		GIU	ASII	Arg	1111		
210					213					220					225	
									.							
																898
Asn	Ser	Phe	Phe		Tyr	Leu	Phe	Gly		Cys	Val	Leu	Gly	Phe	Ser	
				230					235					240		
		tgg	tgg	agg	acg	aag	cac	aac	att	cat	cat	act	gct	ccg	aat	946
gta	tca		Trp	Arg	Thr	Lys	His	Asn	Ile	His	His	Thr	Ala	Pro	Asn	
_		Trp						250					255			
	Leu 210 aac	Leu Ala 210 aac tcc Asn Ser	Leu Ala His 210 aac tcc ttc Asn Ser Phe gta tca tgg	Leu Ala His Asp 210 aac tcc ttc ttt Asn Ser Phe Phe gta tca tgg tgg	Leu Ala His Asp Phe 210 aac tcc ttc ttt ggc Asn Ser Phe Phe Gly 230 gta tca tgg tgg agg Val Ser Trp Trp Arg	Leu Ala His Asp Phe Leu 210	Leu Ala His Asp Phe Leu His 210	Leu Ala His Asp Phe Leu His Gln 210	Leu Ala His Asp Phe Leu His Gln Gln 210 tr tr ggc tat ttg ttc ggc Asn Ser Phe Phe Gly Tyr Leu Phe Gly 230 gta tca tgg tgg agg acg aag cac aac Val Ser Trp Trp Arg Thr Lys His Asn	Leu Ala His Asp Phe Leu His Gln Gln Val 210 Leu His Gln Gln Val 215 215 aac tcc ttc ttt ggc tat ttg ttc ggc aat Asn Ser Phe Phe Gly Tyr Leu Phe Gly Asn 230 235 gta tca tgg tgg agg acg aag cac aac att Val Ser Trp Trp Arg Thr Lys His Asn Ile	Leu Ala His Asp Phe Leu His Gln Gln Val Phe 210 215 215 215 220 aac tcc ttc ttt ggc tat ttg ttc ggc aat tgc 220 220 Asn Ser Phe Phe Gly Tyr Leu Phe Gly Asn Cys 230 235 gta tca tgg tgg agg acg acg aag cac aac att cat Val Ser Trp Trp Arg Thr Lys His Asn Ile His	Leu Ala His Asp Phe Leu His Gln Gln Val Phe Glu 210	Leu Ala His Asp Phe Leu His Gln Gln Val Phe Glu Asn 210	Leu Ala His Asp Phe Leu His Gln Gln Val Phe Glu Asn Arg 210	Leu Ala His Asp Phe Leu His Gln Gln Val Phe Glu Asn Arg Thr 210	aac tcc ttc ttt ggc tat ttg ttc ggc aat tgc gtg ctt ggc ttt agt Asn Ser Phe Phe Gly Tyr Leu Phe Gly Asn Cys Val Leu Gly Phe Ser 230 235 240 gta tca tgg tgg agg acg aag cac aac att cat cat act gct ccg aat Val Ser Trp Trp Arg Thr Lys His Asn Ile His His Thr Ala Pro Asn

																ctc	994	
	Glu	Cys	Asp	Glu	Gln	Tyr	Thr	Pro	Leu	Asp	Glu	Asp	Ile	Asp	Thr	Leu		
			260					265					270					5
												•						
	ccc															_	1042	
	Pro		Ile	Ala	Trp	Ser	Lys	Glu	Ile	Leu	Ala	Thr	Val	Glu	Ser	Lys		10
		275					280					285						
	•																	
														ctg		•	1090	15
1	Arg	Ile	Leu	Arg	Val	Leu	Gln	Tyr	Gln	His	Tyr	Met	Ile	Leu	Pro	Leu	·	
1	290					295					300	·				305		
1	:															•		20
	ttg	ttc	atg	gcc	cgg	tac	agt	tgg	act	ttt	gga	agt	ttg	ctc	ttc	aca	1138	
	Leu	Phe	Met	Ala	Arg	Tyr	Ser	Trp	Thr	Phe	Gly	Ser	Leu	Leu	Phe	Thr	•	
					310					315					320			25
	ttc	aat	cct	gat	ttg	agc	acg	acc	aag	gga	ttg	ata	gag	aag	gga	aca	1186	
	Phe	Asn	Pro	Asp	Leu	Ser	Thr	Thr	Lys	Gly	Leu	Ile	Glu	Lys	Gly	Thr		30
				325					330					335				
					•													
	gtt	gct	ttt	cac	tac	gcc	tgg	ttc	agt	tgg	gct	gcg	ttc	cat	att	ttg	1234	35
	Val	Ala	Phe	His	Tyr	Ala	Trp	Phe	Ser	Trp	Ala	Ala	Phe	His	Ile	Leu		
	•		340					345					350			,	•	
																		40
	ccg	ggt	gtc	gct	aag	cct	ctt	gcg	tgg	atg	gta	gca	act	gag	ctt	gtg	1282	
	Pro	Gly	Val	Ala	Lys	Pro	Leu	Ala	Trp	Met	Val	Ala	Thr	Glu	Leu	Val		
		355					360					365						45
	gcc	ggt	ttg	ttg	ttg	gga	ttc	gtg	ttt	acg	ttg	agt	cac	aat	gga	aag	1330	
	Ala	Gly	Leu	Leu	Leu	Gly	Phe	Val	Phe	Thr	Leu	Ser	His	Asn	Gly	Lys		50
	370					375					380					385		
																	•	
	gag	gtt	tac	aat	gaa	tcg	aag	gac	ttc	gtg	aga	gcc	cag	gtt	att	acc	1378	55
	Gļu	Val	Tyr	Asn	Glu	Ser	Lys	qzA	Phe	Val	Arg	Ala	Gln	Val	Ile	Thr		50
					390					395					400			
																		60
	acc	cgt	aac	acc	aag	cga	ggc	tgg	ttc	aac	gat	tgg	ttc.	act	ggg	gga	1426	50
	Thr	Arg	Asn	Thr	Lys	Arg	Gly	Trp	Phe	Asn	Asp	Trp	Phe	Thr	Gly	Gly		
				405					410					415				65
																		65

	ctc	gac	acc	cag	att	gag	cat	cac	ctg	ttt	cca	aca	atg	ccc	agg	cac	1474
	Leu	Asp	Thr	Gln	Ile	Glu	His	His	Leu	Phe	Pro	Thr	Met	Pro	Arg	His	
5			420					425					430				
												٠					
	aac	tac	ccc	aag	atc	gca	cct	cag	gtc	gag	gct	ctt	tgc	aag	aag	cac	1522
10	Asn	Tyr	Pro	Lys	Ile	Ala	Pro	Gln	Val	Glu	Ala	Leu	Cys	Lys	Lys	His	
		435					440					445					
15	ggc	ctc	gag	tac	gat	aat	gtc	tcc	gtc	gtt	ggt	gcc	tct	gtc	gcg	gtt	1570
	Gly	Leu	Glu	Tyr	Asp	Asn	Val	Ser	Val	Val	Gly	Ala	Ser	Val	Ala	Val	
	450					455					460					465	
20																	
	gtg	aag	gcg	ctc	aag	gaa	att	gct	gat	gaa	gcg	tca	att	cgg	ctt	cac	1618
	Val	Lys	Ala	Leu	Lys	Glu	Ile	Ala	Asp	Glu	Ala	Ser	Ile	Arg	Leu	His	
25					470					475					480		
	gct	cac	taa	gaaa	tcgt	.cg a	actt	tgac	t at	tcat	ttt	ttc	gcct	ggc			1667
30	Ala	His															
	tacc	tcaa	at c	gttcg	rggag	rc ag	gtgc	ttgg	cag	tgtg	ttc	aacc	ggag	ica c	actg	aaaat	1727
35																	
	gtgc	agaa	tc c	attt	ccag	ra aa	ttac	catt	cct	agct	aaa	tctt	cttt	tt a	ccag	gtcgg	1787
40	atat	atga	aa c	tttt	ttga	t go	aaca	agta	gca	ttca	att	gaag	acat	tg t	tcga	gatat	1847
	aatt	cgca	gt g	tttc	tatt	c ag	cggg	cata	cgt	acta	gtc	cata	tcgg	cg g	ttgc	cgaga	1907
45																	
	gttt	acat	ta t	tagt	tggc	a ca	acga	gtag	atc	tagt	gta	aatt	tcta	tt t	ccgc	atgta	1967
50	atat	tact	ct g	aata	tata	c cg	ttat	ctat	ttt	ccta	aaa	aaaa	aaaa	aa a	aaaa	aaaaa	2027
50																	
	aaaa	aaaa	aa a	.aa													2040
55																	
<i>J</i> J																	
	<210	> 8															
60	<211																
60	<212	> PR'	T														
	<213	> Ce	rato	don	purp	ureu	s										
. c																	
65	-400-																

Met	Ala	Leu	Val	Thr	Asp	Phe	Leu	Asn	Phe	Leu	Gly	Thr	Thr	Trp	Ser	
1				· 5					10					15		
Lve	ጥ ኒ ያንግ	Ser	1751	Th re-	ωρ.~	ui a	Co~	(Th. ***	21.	01	3	·				
БÌЗ	ıyı	Ser	20		THE	HIS	ser	25	Ата	GIY	Asn	туг	Gly 30	Pro	Thr	
			. 20					23		• • •			30			1
Leu	Lys	His	Ala	Lvs	Lvs	Val	Ser	Ala	Gln	Glv	Lvs	Thr	Ala	Glv	Gln	
	_	35		_	-		40			-	-2-	45		017	0111	
					•											1
Thr	Leu	Arg	Gln	Arg	Ser	Val	Gln	Asp	Lys	Lys	Pro	Gly	Thr	Tyr	Ser	
	50					55					60	·				
																2
Leu	Ala	Asp	Val	Ala	Ser	His	Asp	Arg	Pro	Gly	Asp	Cys	Trp	Met	Ile	
65					70					75					80	
•			_													2.
vaı	Lys	Glu	Lys		Tyr	Asp	Ile	Ser		Phe	Ala	Asp	Asp		Pro	
				85					90	•				95		
Glv	Glv	Thr	Val	Tle	Ser	Thr	ጥህን	Dhe	Gly	, 70 mm	λcn	C1.	Thr	7.00	7757	3
O ₂	O ₂ y	****	100	110	Ser	****	ıyı	105	GIY	Arg	Asp	GIY	1110	ASD	vaı	
								203		-	. '					2
Phe	Ala	Thr	Phe	His	Pro	Pro	Ala	Ala	Trp	Lys	Gln	Leu	Asn	Asp	Tyr	. 3
		115					120			,		125		_	_	
																4
Tyr	Ile	Gly	Asp	Leu	Ala	Arg	Glu	Glu	Pro	Leu	qaA	Glu	Leu	Leu	Lys	`
	130					135					140					
																4
	Tyr	Arg	Asp	Met		Ala	Glu	Phe	Val		Glu	Gly	Leu	Phe		
145					150					155					160	
Ser	Ser	Lvs	Ala	T.T.	Phe	T.em	I.e.ii	Gln.	ጥb ×	T ON	Tlo	7.00	Ala	27-	T 011	5
		270	2114	165	1110	Deu	Deu	GIII	170	Dea	116	ASII	Ala	175	Leu	
									1.0					1/3		
Phe	Ala	Ala	Ser	Ile	Ala	Thr	Ile	Cys	Tyr	Asp	Lys	Ser	Tyr	Trp	Ala	5
			180					185	_	•			190			
Ile	Val	Leu	Ser	Ala	Ser	Leu	Met	Gly	Leu	Phe	Val	Gln	Gln	Cys	Gly	6
		195					200					205				
	_				_1											6
ı,r.b	Leu	Ala	His	Asp	Phe	Leu	His	Gln	Gln	Val	Phe	Glv	Asn	Arσ	Thr	

		210					215					220				
5	Ala 225	Asn	Ser	Phe	Phe	Gly 230	Tyr	Leu	Phe	Gly	Asn 235	Cys	Val	Leu	Gly	Ph.
10	Ser	Val	Ser	Trp	Trp 245	Arg	Thr	Lys	His	Asn 250	Ile	His	His	Thr	Ala 255	Pr
15 	Asn	Glu	Cys	Asp 260	Glu	Gln	Tyr	Thr	Pro 265	Leu	Asp	Glu	Asp	Ile 270	Asp	Th
20	Leu	Pro	Ile 275	Ile	Ala	Trp	Ser	Lys 280	Glu	Ile	Leu	Ala	Thr 285	Val	Glu	Se
25	Lys	Arg 290	Ile	Leu	Arg	Val	Leu 295	Gln	Tyr	Gln	His	Туr 300	Met	Ile	Leu	Pro
30	Leu 305	Leu	Phe	Met	Ala	Arg 310	Tyr	Ser	Trp	Thr	Phe 315	Gly	Ser	Leu	Leu	Phe 320
35	Thr	Phe	Asn	Pro	Asp 325	Leu	Ser	Thr	Thr	Lys .330	Gly	Leu	Ile	Glu	Lys 335	Gly
40	Thr	Val	Ala	Phe 340	His	Tyr	Ala	Trp	Phe 345	Ser	Trp	Ala	Ala	Phe 350	His	Ile
45	Leu	Pro	Gly 355	Val	Ala	Lys	Pro	Leu 360	Ala	Trp	Met	Val	Ala 365	Thr	Glu	Let
50	Val	Ala 370	Gly	Leu	Leu	Leu	Gly 375	Phe	Val	Phe	Thr	Leu 380	Ser	His	Asn	G13
55	Lys 385	Glu	Val	Туr	Asn	Glu 390	Ser	Lys	Asp	Phe	Val 395	Arg	Ala	Gln	Val	11e
60	Thr	Thr	Arg	Asn	Thr 405	Lys	Arg	Gly	Trp	Phe 410	Asn	Asp	Trp	Phe	Thr 415	Glγ
65	Gly	Leu	Asp	Thr 420	Gln	Ile	Glu	His	His 425	Leu	Phe	Pro	Thr	Met 430	Pro	Arç

	His	Asn	Tyr 435	Pro	Lys	Ile	Ala	Pro 440	Gln	Val	Glu	Ala	Leu 445	Cys	Lys	Lys		
	Hie	Glv	Leu	Glu	Tyr	Aen	Aen	Val	Ser	Val	tya 1	Glv	בומ	Ser	v-1	Δla		5
	nis	450		· ·	ıyı	ASP	455	Val	ser	vai	Val	460	Ala	261	vai	AIG		
	Val	Val	Lys	Ala	Leu	Lys	Glu	Ile	Ala	Asp	Glu	Ala	Ser	Ile	Arg	Leu		10
	465					470					475					480		15
	His	Ala	His															
<u> </u>	:																	20
	<210	0> 9 l> 14	167															
		2> D1 3> Ce		odon	purp	oure	ıs									•		25
	<220	0>																
	<221	l> CI			1													30
				. (146 -6-De	ol) esatu	ırase	•					,						35
	<400)> 9						•									•	
	ggat	ccaa														g aca ir Thr	51	40
				1	,			5					0	•				
					agc												99	45
	1rp 15	ser	тÀ2	туr	Ser	20	ıyr	Tnr	HIS	ser	Tyr 25	Ата	GTÀ	Asn	Tyr	30		50
	cct	act	ttg	aag	cac	gcc	aaa	aag	gtt	tct	gct	caa	ggt	aaa	act	gcg	147	
	Pro	Thr	Leu	Lys	His 35	Ala	Lys	Lys	Val	Ser 40	Ala	Gln	Gly	Lys	Thr 45	Ala		55
	aaa	റമന	aca	cta	aga	cad	ac=	tca	ata		asc.	222	220	CCa		act	195	
				Leu	Arg				Val					Pro			193	60
				50					55					60				

	tac	tct	ctg	gcc	gat	gtt	gct	tct	cac	gac	agg	cct	gga	gac	tgc	tgg	243
	Tyr	Ser	Leu	Ala	Asp	Val	Ala	Ser	His	Asp	Arg	Pro	Gly	Asp	Cys	Trp	
5			65					70					75				
	atg	atc	gtc	aaa	gag	aag	gtg	tat	gat	att	agc	cgt	ttt	gcg	gac	gac	291
10	Met	Ile	Val	Lys	Glu	Lys	Val	Tyr	Asp	Ile	Ser	Arg	Phe	Ala	Asp	Asp	
		80					85					90					
15	cac	cct	gga	ggg	acg	ġta	att	agc	acc	tac	ttt	ggg	cgg	gat	ggc	aca	339
				Gly										_			
	95					100					105	_	_	_	_	110	
20																	
20	gac	gtt	ttc	gca	aca	ttc	cat	cca	cct	gcc	gca	taa	aag	caa	ctc	aat	387
				Ala									_				
25					115					120		•	-		125		
23																	
	gac	tac	tac	att	gga	gac	ctt	act	agg	gaa	gag	ccc	ctt	gat	gaa	tta	435
20				Ile								_					
30	-	-	-	130					135	•	<u> </u>			140		202	
	ctt	aaa	gac	tac	aga	gat	ato	aga	acc	gag	ttt	att	aga	gaa	aaa	ctt	483
35				Tyr	•												
			145			2		150				, 42	155	014	CLJ	Deu	
40	ttc	aag	agt	tcc	aag	gcc	tgg	ttc	cta	ctt	caq	act	cta	att	aat	σca	531
				Ser													
		160					165					170					
45																	
	gct	ctc	ttt	gct	gcg	agc	att	gcg	act	atc	tat	tac	σac	aac	agt	tac	579
				Ala													
50	175					180					185			-3-		190	
	tgg	gct	att	gtg	ctq	tca	acc	agt	ttα	atσ	aat	ctc	ttc	atc	caa	cag	627
55				Val													
	-				195					200	2				205		
										_ = =							
60	tgt	gga	tga	ctt	gcc	cat	gat	ttc	ctt	cat	caa	cao	atc	ttt	gag	aac	675
				Leu													•
	-	-	_	210					215					220			
65																	

cgt	acc	gcg	aac	tcc	ttc	ttt	ggc	tat	ttg	ttc	ggc	aat	tgc	gtg	ctt	723	
Arg	Thr	Ala	Asn	Ser	Phe	Phe	Gly	Tyr	Leu	Phe	Gly	Asn	Суѕ	Val	Leu	•	
		225					230					235					5
											•						
ggc	ttt	agt	gta	tca	tgg	tgg	agg	acg	aag	cac	aạc	att	cat	cat	act	771	
Gly		Ser	Val	Ser	Trp	Trp	Arg	Thr	Lys	His	Asn	Ile	His	His	Thr		10
	240					245					250						
•																	
			gag											_	•	819	15
	Pro	Asn	Glu	Cys		Glu	Gln	Tyr	Thr	Pro	Leu	Asp	Glu	Asp	Ile		
255					260					265					270		
																	20
_			ccc			-		-	_	_		_	_		_	867	
Asp	Thr	Leu	Pro		Ile	Ala	Trp	Ser	_	Glu	Ile	Leu	Ala		Val	•	
				275			•		280	•				285		•	25
			aga													915	
Glu	Ser	Lys	Arg	Ile	Leu	Arg	Val		Gln	Tyr	Gln	His	Tyr	Met	Ile		30 (
			290					295					300				
			ttg -		_	_			_					_	_	963	35
Leu	Pro		Leu	Phe	Met	Ala	_		Ser	Trp	Thr		Gly	Ser	Leu		
		305					310					315					
																1011	40
			ttc			_	_	_	_		_		_		•	1011	
ьеи	320	1111	Phe	ASII	PIO	_	Leu	ser	mr	mr	_	GIA	Leu	тте	GIU		
	320					325					330						45
aan	aca.	aca	gtt	act	+++	cac	tac	acc	taa	ttc	aat	taa	act	aca	ttc	1050	
			Val													1059	
335	013			7114	340	1113	131	mu	ΙΙĐ	345	Jer	ııp	ĄIU	nıu	350		50
333					340					242					330	•	
cat	att	tta	ccg	aat.	atc	act	aaσ	cct	ctt	aca	taa	atα	αta	gca	act	1107	
			Pro			_	_					_	_	_	•		55
				355			-1-		360			1100	,	365			
gag	ctt	gtg	gcc	ggt	tta	tta	tta	gga	ttc	gta	ttt	acσ	tta	agt	cac	1155	60
			Ala				_					_		_			
			370	-				375					380				
																	65

65				20					25					30			
	Lys	Tyr	Ser	Val	Tyr	Thr	His	Ser	Tyr	Ala	Gly	Asn	Tyr	Gly	Pro	Thr	
60	1				5					10					15		
				Val	Thr	Asp	Phe	Leu	Asn	Phe	Leu	Gly	Thr	Thr	Trp	Ser	
	<400)> 10)														
55	~213	,, CE	tato	Juon	pur	our et	12										
				odon	D1:2~	nire.											
		L> 48 2> PF															
50)> 10															
	.044																
45																	
15		480															
				Ala			_										
40	cgg	ctt	cac	gct	cac	taa	gtc	jac									1467
								- · •									
			465		_, _			470	J_U	-20	.,_u	ر ي د.	475	പ്പ	DGI	***	
35				Val		.•											7237
	atc	aca	att	gtg	224	aca	ctc	aan	as a	att	act	aet	na a	aca	tca	att	1443
				450					455					460			
30	Lys	Lys	His	Gly	Leu	Glu	Tyr	Asp		Val	Ser	Val	Val	-	Ala	Ser	
				ggc											_		1395
		_															
25					435					440					445		
	Pro	Arg	His	Asn	-	Pro	Lys	Ile	Ala		Gln	Val	Glu	Ala		Cys	
				aac							-		_	-		_	1347
20																	
	415					420					425					430	
	Thr	Gly	Gly	Leu	Asp	Thr	Gln	Ile	Glu	His	His	Leu	Phe	Pro	Thr	Met	
15	act	ggg	gga	ctc	gac	aċc	cag	att	gag	cat	cac	ctg	ttt	cca	aca	atg	1299
		400					405				•	410					
10	Val	Ile	Thr	Thr	Arg	Asn	Thr	Lys	Arg	Gly	Trp	Phe	Asn	Asp	Trp	Phe	
	gtt	att	acc	acc	cgt	aac	acc	aag	cga	ggc	tgg	ttc	aac	gat	tgg	ttc	1251
-																	
5		-	385			-		390		-	-		395				
				Glu				_	_	_	-			_	_	_	
	aat	gga	aag	gag	gtt	tac	aat	gaa	tcg	aag	gac	ttc	gtg	aga	gcc	cag	1203

Leu	Lys	His	Ala	Lys	Lys	Val	Ser 40	Ala	Gln	Gly	Lys	Thr 45	Ala	Gly	Gln	
Thr	Leu 50	Arg	Gln	Arg	Ser	Val 55	Gln	Asp	Lys	Lys	Pro 60	·Gly	Thr	Tyr	Ser	
Leu 65	Ala	Asp	Val	Ala	Ser 70	His	Asp	Arg	Pro	Gly 75	Asp	Cys	Trp	Met	Ile 80	1.
Val	Lys	Glu	Lys	Val 85	Tyr	Asp	Ile	Ser	Arg 90	Phe	Ala	Asp	Asp	His 95	Pro	
Gly	Gly	Thr	Val 100	Ile	Ser	Thr	Tyr	Phe 105	Gly	Arg	Asp	Gly	Thr 110	Asp	Val	
Phe	Ala	Thr 115	Phe	His	Pro	Pro	Ala 120	Ala	Trp	Lys	Gln	Leu 125	Asn	Asp	Tyr	2
Tyr	Ile 130	Gly	Asp	Leu	Ala	Arg 135	Glu	Glu	Pro	Leu	Asp 140	Glu	Leu	Leu	Lys	. 3
Asp 145	Tyr	Arg	Asp	Met	Arg 150	Ala	Glu	Phe	Val	Arg 1 5 5	Glu	Gly	Leu	Phe	Lys 160	
Ser	Ser	Lys	Ala	Trp 165	Phe	Leu	Leu	Gln	Thr 170	Leu	Ile	Asn	Ala	Ala 175	Leu	4
Phe	Ala	Ala	Ser 180	Ile	Ala	Thr	Ile	Cys 185	Tyr	Asp	Lys	Ser	Tyr 190	Trp	Ala	.
Ile	Val	Leu 195	Ser	Ala	Ser	Leu	Met 200	Gly	Leu	Phe	Val	Gln 205	Gln	Cys	Gly	5
Trp	Leu 210	Ala	His	Asp	Phe	Leu 215	His	Gln	Gln	Val	Phe 220	Glu	Asn	Arg	Thr	5
Ala 225	Asn	Ser	Phe	Phe	Gly 230	Tyr	Leu	Phe	Gly	Asn 235	Cys	Val	Leu	Gly	Phe 240	6
																4

	Ser	Val	Ser	Trp	Trp	Arg	Thr	Lys	His	Asn	Ile	His	His	Thr	Ala	Pro
					245					250					255	
5																
	Asn	Glu	Cys	Asp	Glu	Gln	Tyr	Thr	Pro	Leu	Asp	Glu	Asp	Ile	Asp	Thr
				260					265					270		
10																
••	Leu	Pro	Ile	Ile	Ala	Trp	Ser	Lvs	Glu	Ile	Leu	Ala	Thr	Val	G1u	Ser
			275			-		280					285			
15	Lvs	Ara	Tle	Leu	Ara	Val	Leu	Gln	Tyr	Gln	His	ጥህዮ	Met	Tle	I.em	Pro
	2,5	290		Dea	9	Vul	295	O111	-3-	G.1.1	1113		nec	116	Deu	FIO
		250					275					300				
20	T	T	Dh.a	Wa h	27.	2	m	C	m	m1	Dl	01.	0	•	•	51
		Leu	Pne	Met	Ата		туг	Ser	Trp	Thr		GIÀ	ser	ьeи	ren	
	305					310					315					320
25																
	Thr	Phe	Asn	Pro	Asp	Leu	Ser	Thr	Thr	Lys	Gly	Leu	Ile	Glu	Lys	Gly
					325					330					335	
30																
	Thr	Val	Ala	Phe	His	Tyr	Ala	\mathtt{Trp}	Phe	Ser	Trp	Ala	Ala	Phe	His	Ile
				340					345					350		
35																
33	Leu	Pro	Gly	Val	Ala	Lys	Pro	Leu	Ala	Trp	Met	Val	Ala	Thr	Glu	Leu
			355					360					365			
40	Val	Ala	Gly	Leu	Leu	Leu	Gly	Phe	Val	Phe	Thr	Leu	Ser	His	Asn	Gly
		370					375					380				
45	Lys	Glu	Val	Tvr	Asn	Glu	Ser	Lvs	Asp	Phe	Val	Arg	Ala	Gln	Val	Ile
	385					390					395	5				400
											3,3					100
50	Thr	ጥኮኮ	Δνα	Δen	ሞኮ~	Lvc	Δτα	Glv	Trp	Dhe	λen	A cm	Trans.	Pho	Thr	Clv
	****	****	AL 9	ASII	405	БуЗ	ni g	Gry	TIP		ASII	nsp	пр	FILE		GIY
					403					410					415	
55	C1	T	3	mЪ	03	T 3	03	77.ª	77.	v -	D 3:	D	m³-	.		_
	GIY	Leu	Asp		Gin	TIE	GIU	HIS	His	Leu	Pne	Pro	Thr		Pro	Arg
				420					425					430		
60																
	His	Asn	Tyr	Pro	Lys	Ile	Ala	Pro	Gln	Val	Glu	Ala	Leu	Суѕ	Lys	Lys
			435					440					445			
65																
65	His	Gly	Leu	Glu	Tyr	Asp	Asn	Val	Ser	Val	Val	Gly	Ala	Ser	Val	Ala

										•	
		Lys Ala I		lu Ile	Ala A		Ala Se	r Ile i			5
	465		470			475	•		480		
	His Ala	His						•		•	10
	<210> 11	L									15
!	<211> 21	L60 ·							•	•	
į	<212> DN	JA									
,	<213> Ce	eratodon p	ourpureus								20
	:										
	<220>										
	<221> CI	os ·				•					25
	<222> (1	L59)(172	21)								
	<223> De	elta-6-Des	saturase	٠							
											30
	<400> 11										
	cggaggtc	etc ttgtcg	gttct tgg	agtctgt	gtcg	agcttg	gaatgc	ggta gg	gegeggeeg	60	
											35
	tttcgtgg	gtt ttggcg	gttgg cat	tgcgcga	a gggc	ggacag	tgggag	tgcg gg	gaggtctgt	120	
	•			٠							
	ttgtgcat	ga cgaggt	ggtt gta	atcttc	g ccgg	caga at	g gtg 1	tcc cag	g ggc ggc	176	40
						Me	t Val :	Ser Glı	ı Gly Gly		
							1		5		
											45
		tcg cag g							_	224	
	Gly Leu	Ser Gln G				sn Ile	Asp Val		His Leu		
		10			15			20			50
										050	
		atg ccc c								272	
	Ald Thi	Met Pro I 25	seu vai s	ar Asp	Pne L	eu ASn	var Lei		inr inr		55
		23		30			٠. د	5			
	tta aac	cag tgg a	ar ctt t	cc act	aca t	te act	ttc aad	n add d	rtc acq	320	
		Gln Trp S						_		520	60
	40			45			50				
	- :										
										101	65

act aag aaa cac agt tcg gac atc tcg gtg gag gca caa aaa gaa tcg

		Lys	Lys	His	Ser		Asp	Ile	Ser	Val	Glu	Ala	Gln	Lys	Glu		
	55					60					65					70	
5																	
	gtt	gcg	cgg	ggg	cca	gtt	gag	aat	att	tct	caa	tcg	gtt	gcg	cag	ccc	41
	Val	Ala	Arg	Gly	Pro	Val	Glu	Asn	Ile	Ser	Gln	Ser	Val	Ala	Gln	Pro	
10					75					80					85	-	
	atc	agg	cgg	agg	tgg	gtg	cag	gat	aaa	aag	ccg	gtt	act	tac	agc	ctg	464
15	Ile	Arg	Arg	Arg	Trp	val	Gln	Asp	Lys	Lys	Pro	Val	Thr	Tyr	Ser	Leu	
				90					95					100			
20	aaσ	gat	σta	act	tca	cac	gat	ata	ccc	cag	gac	tac	taa	att	ata	atc	512
20	_	•	_		_		_	_		_	_	•			Ile		
	,		105		502			110		· · · · ·		O, C	115				
			200														
25	222	a=a	220	ata	tat	ant.	ata	200	200	tta	act	a=a	C2C	Cac	cct	77 3	560
																	500
	rys		ьys	Val	туг	Asp		Ser	THE	Pne	Ala		GIII	nis	Pro	GIY	
30		120					125				:	130					
															gtt		608
35	Gly	Thr	Val	Ile	Asn	Thr	Tyr	Phe	Gly	Arg	Asp	Ala	Thr	Asp	Val	Phe	
	135					140					145	•				150	
												•					
40	tct	act	ttc	cac	gca	tcc	acc	tca	tgg	aag	att	ctt	cag	aat	ttc	tac	656
	Ser	Thr	Phe	His	Ala	Ser	Thr	Ser	Trp	Lys	Ile	Leu	Gln	Asn	Phe	Tyr	
					155					160					165		
45																	
	atc	ggg	aac	ctt	gtt	agg	gag	gag	ccg	act	ttg	gag	ctg	ctg	aag	gag	704
	Ile	Gly	Asn	Leu	Val	Arg	Glu	Glu	Pro	Thr	Leu	Glu	Leu	Leu	Lys	Glu	
50				170					175					180			
50																	
	tac	aga	gag	ttg	aga	gcc	ctt	ttc	ttg	aga	gaa	cag	ctt	ttc	aag	agt	752
	Tyr	Arg	Glu	Leu	Arg	Ala	Leu	Phe	Leu	Arg	Glu	Gln	Leu	Phe	Lys	Ser	
55			185					190					195				
	tcc	aaa	tcc	tac	tac	ctt	ttc	aag	act	ctc	ata	aat	gtt	tcc	att	gtt	800
60								_					_		Ile	_	
		200		_	_		205	-				210					
65	gcc	aca	agc	att	gcg	ata	atc	agt	ctg	tac	aag	tct	tac	cgg	gcg	gtt	84
	-		_					_	_		_					-	

Ala	Thr	Ser	Ile	Ala	Ile	Ile	Ser	Leu	Tyr	Lys	Ser	Tyr	Arg	Ala	Val		
215				•	220					225					230		
																	5
						atg										896	
Leu	Leu	Ser	Ala		Leu	Met	GIĀ	Leu		Ile	Gln	Gln	Cys	_	Trp		
				235					240	٠				245	•		10
tta	tet	cac	cat	+++	cta	cac	cat	car	at a		a a a	202	cac	taa	ctc	944	
						His		_								244	15
			250					255	•••		014		260		Deu		15
aat	gac	gtt	gtt	ggc	ťat	gtg	gtc	ggc	aac	gtt	gtt	ctg	gga	ttc	agt	992	20
Asn	Asp	Val	Val	Gly	Tyr	Val	Val	Gly	Asn	Val	Val	Leu	Gly	Phe	Ser		
		265					270					275					
																	25
gtc	tcg	tgg	tgg	aag	acc	aag	cac	aac	ctg	cat	cat	gct	gct	ccg	aat	1040	
Val	Ser	Trp	Trp	Lys	Thr	Lys	His	Asn	Leu	His	His	Ala	Ala	Pro	Asn		
	280					285				:	290						30
gaa	tgc	gac	caa	aag	tac	aca	ccg	att	gat	gag	gat	att	gat	act	ctc	1088	•
Glu	Суѕ	Asp	Gln	Lys	Tyr	Thr	Pro	Ile	Asp	Glu	Asp	Ile	Asp	Thr	Leu		35
295					300					305	•				310		
						aaa -								-	_	1136	40
Pro	ше	TIE	Ala		ser	Lys	Asp	Leu		Ala	Thr	Val	GIu		Lys		
				315					320					325			
acc	atα	tta	cga	att	ctt	cag	tac	cad	cac	cta	ttc	+++	tta	att	ctt	1184	45
						Gln										1104	
			330				-1-	335					340				
	•																50
ttg	acg	ttt	gcc	cgg	gcg	agt	tgg	cta	ttt	tgg	agc	gcg	gcc	ttc	act	1232	
Leu	Thr	Phe	Ala	Arg	Ala	Ser	Trp	Leu	Phe	Trp	Ser	Ala	Ala	Phe	Thr		55
		345					350					355					33
ctc	agg	CCC	gag	ttg	acc	ctt	ggc	gag	aag	ctt	ttg	gag	agg	gga	acg	1280	60
Leu		Pro	Glu	Leu	Thr	Leu	Gly	Glu	Lys	Leu	Leu	Glu	Arg	Gly	Thr		
	360					365					370						
																	65
atg	gct	ttg	cac	tac	att	tgg	ttt	aat	agt	gtt	gcg	ttt	tat	ctg	ctc	1328	

	Met	Ala	Leu	His	Tyr	Ile	Trp	Phe	Asn	Ser	Val	Ala	Phe	Tyr	Leu	Leu	
	375					380					385					390	
5	•																
	ccc	gga	tgg	aaa	cca	gtt	gta	tgg	atg	gtg	gtc	agc	gag	ctc	atg	tct	1376
	Pro	Gly	Trp	Lys	Pro	Val	Val	Trp	Met	Val	Val	Ser	Glu	Leu	Met	Ser	
10					395					400					405		•
	ggt	ttc	ctg	ctg	gga	tac	gtà	ttt	gta	ctc	agt	cac	aat	gga	atg	gag	1424
15	Gly	Phe	Leu	Leu	Gly	Tyr	Val	Phe	Val	Leu	Ser	His	Asn	Gly	Met	Glu	
ŧ				410					415					420		•	
į																	
20	gtg	tac	aat	acg	tca	aag	gac	ttc	gtg	aat	gcc	cag	att	gca	tcg	act	1472
	Val	Tyr	Asn	Thr	Ser	Lys	Asp	Phe	Val	Asn	Ala	Gln	Ile	Ala	Ser	Thr	•
			425					430					435				
25																	
	cgc	gac	atc	aaa	gca	ggg	gtg	ttt	aat	gat	tgg	ttc	acc	gga	ggt	ctc	1520
	Arg	Asp	Ile	Lys	Ala	Gly	Val	Phe	Asn	Asp	Trp	Phe	Thr	Gly	Gly	Leu	
30		440					445					450					
30																	
	aac	aga	cag	att	gag	cat	cat	cta	ttt	cca	acg	atg	ccc	agg	cac	aac	1568
35	Asn	Arg	Gln	Ile	Glu	His	His	Leu	Phe	Pro	Thr	Met	Pro	Arg	His	Asn	
33	455					460					465					470	
40	ctt	aat	aaa	att	tct	cct	cac	gtg	gag	act	ttg	tgc	aag	aag	cat	gga	1616
40	Leu	Asn	Lys	Ile	Ser	Pro	His	Val	Glu	Thr	Leu	Cys	Lys	Lys	His	Gly	
					475					480					485		
45																	
45	ctg	gtc	tac	gaa	gac	gtg	agc	atg	gct	tcg	ggc	act	tac	cgg	gtt	ttg	1664
	Leu	Val	Tyr	Glu	Asp	Val	Ser	Met	Ala	Ser	Gly	Thr	Tyr	Arg	Val	Leu	
50				490					495					500			
30																	
	aaa	aca	ctt	aag	gac	gtt	gcc	gat	gct	gct	tca	cac	cag	cag	ctt	gct	1712
55	Lys	Thr	Leu	Lys	Asp	Val	Ala	Asp	Ala	Ala	Ser	His	Gln	Gln	Leu	Ala	
33			505					510					515				
60	gcg	agt	tga	ggca	atcg	cag d	cacto	gtc	ga aa	acatt	ttt	g tc	tgtta	atag			1761
60	Ala	Ser															
		520															

65 tgttcatatg tgatcgaggg gaaaaggtcc catgctctga tctattcttc tgtagccaat 1821

atttttcaat	tgaaaggagg	ttcctcactt	atcttccatc	tatcgttgca	catcctgcat	1881
cagagttagc	gttggagtaa	tgttaagcac	ttgtagatta	tgcccaccat	tgccacattt	1941 5
ctgttcggtt	acaatcgttt	gattccatgc	tatcctccgt	gttcatctcg	ttgttataag	
caagcttgaa	aaaacatgct	acgagattgg	cagacgttgt	cttggcagct (gtagaggttg	2061
gttccattca	ttgtgtagta	cagaactctc	tcgtccctgt	ttctctacat	tacttgttac	2121 15
atagtgactt	tcattcacag	caaaaaaaaa	aaaaaaaa			2160 .
·						20
<210> 12						· .
<211> 520					•	25
<212> PRT <213> Cerat	todon purpu	reus				
				•		30
<400> 12	- cl- cl- c	3 Cl T ou	Can Clm Cl.	Com Tlo Clu	Clu Non	
net val Sei	5	ry Gry Leu :	10	Ser Ile Glu	15	35
Tio Acr Va	l Clu Hie L	ou Ala Thri	Met Pro Leu	Val Ser Asp	Phe Leu	
ile Asp va.	20	eu Ala III, I	25	30	The Bea	40
Asn Val Let		hr Leu Gly (40	Gln Trp Ser	Leu Ser Thr	Thr Phe	
						45
	s Arg Leu T		Lys His Ser	Ser Asp Ile	Ser Val	
50		55		60		50
Glu Ala Gl	n Lys Glu S	er Val Ala	Arg Gly Pro	Val Glu Asn	Ile Ser	
65		70	75		80	55
Gln Ser Va	l Ala Gln P	ro Ile Arg .	Arg Arg Trp	Val Gln Asp	Lys Lys	
	85	5	90	_	95	60
Dro Vol mb	r Mar Cor I	on Tue Ace	val Ala Co~	His Asp Met	Pro Gla	
FIO VAL IN.	100		105	110		

	qaA	Cys	Trp	Ile	Ile	Ile	Lys	Glu	Lys	Val	Tyr	Asp	Val	Ser	Thr	Phe
			115					120					125			
5	•															
	Ala	Glu	Gln	His	Pro	Gly	Gly	Thr	Val	Ile	Asn	Thr	Tyr	Phe	Gly	Arg
		130					135					140				
10																
	Asp	Ala	Thr	Asp	Val	Phe	Ser	Thr	Phe	His	Ala	Ser	Thr	Ser	Trp	Lys
	145					150					155					160
15																,
i i	Ile	Leu	Gln	Asn	Phe	Tyr	Ile	Gly	Asn	Leu	Val	Arg	Glu	Glu	Pro	Thr
/					165					170					175	
20																•
	Leu	Glu	Leu		Lys	Glu	Tyr	Arg	Glu	Leu	Arg	Ala	Leu	Phe	Leu	Arg
				180					185					190		
25			_		_	_	_	_							_	
	GIu	GIn		Phe	Lys	Ser	Ser		Ser	Tyr	Tyr	Leu		Lys	Thr	Leu
			195					200					205			
30	~ 7 -	>	**- 7	0	~ 1.	**- 7		-1	_					_	_	_
	116		vai	Ser	TIE	vaı		Thr	Ser	TTE	Ala		TTE	Ser	Leu	Tyr
		210					215					220				
35	Lvs	Ser	ጥላም	Ara	Δla	Val	T.em	T.em	Ser	Δla	Ser	T.011	Met	Gly	Len	Dhe
	225	JCI	131	1119		230	БСС		Ser	AIG	235	Бец	Mec	Gry	Dea	240
						230					233					210
40	Ile	Gln	Gln	Cys	Glv	Trp	Leu	Ser	His	qzA	Phe	Leu	His	His	Gln	Val
				-	245	•				250					255	
45	Phe	Glu	Thr	Arg	Trp	Leu	Asn	Asp	Val	Val	Gly	Tyr	Val	Val	Gly	Asn
				260					265					270		
50																
30	Val	Val	Leu	Gly	Phe	Ser	Val	Ser	Trp	Trp	Lys	Thr	Lys	His	Asn	Leu
			275					280					285			
55																
<i></i>	His	His	Ala	Ala	Pro	Asn	Glu	Cys	Asp	Gln	Lys	Tyr	Thr	Pro	Ile	Asp
		290					295					300				
60																
		Asp	Ile	Asp	Thr	Leu	Pro	Ile	Ile	Ala	Trp	Ser	Lys	Asp	Leu	Leu
	305					310					315					320

	Ala '.	Thr	Val	Glu	Ser 325	Lys	Thr	Met	Leu	Arg 330	Val	Leu	Gln	Tyr	Gln 335	His		
	Leu	Phe	Phe	Leu 340	Val	Leu	Leu	Thr	Phe 345	Ala	Arg	Ala	Ser	Trp 350	Leu	Phe		1
	Trp	Ser	Ala 355	Ala	Phe	Thr	Leu	Arg 360	Pro	Glu	Leu	Thr	Leu 365	Gly	Glu	Lys		•
/	Leu	Leu 370	Glu	Arg	Gly	Thr	Met 375	Ala	Leu	His	Tyr	Ile 380	Trp	Phe	Asn	Ser		
	val 385	Ala	Phe	Tyr	Leu	Leu 390	Pro	Gly	Trp	Lys	Pro 395	Val	Val	Trp	Met	Val 400		2
	Val	Ser	Glu	Leu	Met 405	Ser	Gly	Phe	Leu	Leu 410	Gly	Tyr	Val	Phe	Val 415	Leu		2
	Ser	His	Asn	Gly 420	Met	Glu	Val	Tyr	Asn 425	Thr	Ser	Lys	Asp	Phe 430	Val	Asn		3
	Ala	Gln	Ile 435	Ala	Ser	Thr	Arg	Asp 440		Lys	Ala	Gly	Val	Phe	Asn	Asp		3
	Trp	Phe 450	Thr	Gly	Gly	Leu	Asn 455	Arg	Gln	Ile	Glu	His 460	His	Leu	Phe	Pro		4
	Thr 465	Met	Pro	Arg	His	Asn 470	Leu	Asn	Lys	Ile	Ser 475	Pro	His	Val	Glu	Thr 480		4
	Leu	Cys	Lys	Lys	His 485	Gly	Leu	Val	Туr	Glu 490	Asp	Val	Ser	Met	Ala 495	Ser		5
	Gly	Thr	Tyr	Arg 500	Val	Leu	Lys	Thr	Leu 505	Lys	Asp	Val	Ala	Asp 510	Ala	Ala		5
	Ser	His	Gln 515	Gln	Leu	Ala	Ala	Ser 520										6

	~210	, 13	•														
	<211	l> 14	134														
5	<212	2> D1	IA														
	<213	3> Pł	aeo	dacty	/lum	tri	corn	ıtum									
10	<220)>															
••	<223	l> CI	os														
	<222	2> (1	L)	(1434	4)												
15	<223	3> De	elta-	-6-De	esatı	ırase	e										
	<400)> 13	3														
20	atg	ggc	aaa	gga	ggg	gac	gct	cgg	gcc	tcg	aag	ggc	tca	acg	gcg	gct	48
20				Gly													
	1				5	_		-		10	-	_			15		
25																	
23	cgc	aag	atc	agt	tgg	cag	gaa	gtc	aag	acc	cac	gcg	tct	ccg	gag	gac	96
	Arg	Lys	Ile	Ser	Trp	Gln	Glu	Val	Lys	Thr	His	Ala	Ser	Pro	Glu	Asp	
30				20					25	•				30			
50																	
	gcc	tgg	atc	att	cac	tcc	aat	aag	gtc	tac	gac	gtg	tcc	aac	tgg	cac	144
35	Ala	Trp	Ile	Ile	His	Ser	Asn	Lys	Val	Tyr	Asp	Val	Ser	Asn	Trp	His	
			35					40					45				
40	gaa	cat	ccc	gga	ggc	gcc	gtc	att	ttc	acg	cac	gcc	ggt	gac	gac	atg	192
	Glu	His	Pro	Gly	Gly	Ala	Val	Ile	Phe	Thr	His	Ala	Gly	Asp	Asp	Met	
		50					55					60					
45																	
	acg	gac	att	ttc	gct	gcc	ttt	cac	gca	CCC	gga	tcg	cag	tcg	ctc	atg	240
	Thr	Asp	Ile	Phe	Ala	Ala	Phe	His	Ala	Pro	Gly	Ser	Gln	Ser	Leu	Met	
50	65					70					75					80	
				tac						-	-						288
55	Lys	Lys	Phe	Tyr		Gly	Glu	Leu	Leu		Glu	Thr	Thr	Gly		Glu	
					85					90					95		
																	226
60		-		atc	-		-	_			_	_	-	_			336
	F10	GIII	GIII	Ile 100	WIG	File	GIU	гу	105	TÄL	Arg	ASD	ьeα	110	ser_	тур	
				100					100					110			
65	ctc	atc	ato	atg	gac	atσ	tto	aaσ	tec	aac	aaσ	taa	tto	tac	atic	tac	384
					29~	9		9			3	-55			500		

Leu	Ile	Met	Met	Gly	Met	Phe	Lys	Ser	Asn	Lys	Trp	Phe	Tyr	Val	Tyr		
		115		•			120					125					
																	5
				aac				_								432	
Lys		Leu	Ser	Asn	Met		Ile	Trp	Ala	Ala		Cys	Ala	Leu	Val		
	130					135					140				•		10
		_	_	cgc							_	_	_	_	_	480	
	Tyr	Ser	Asp	Arg		Trp	Val	His	Leu		Ser	Ala	Val	Met			15
145					150					155					160		
																	•
				cag												528	20
GIY	Thr	Phe	Phe	Gln	GIn	Ser	GIY	Trp		Ala	His	Asp	Phe		His		
				165					170					175		•	
																57 <i>6</i>	25
				acc											•	576	
HIS	GIn	vaı		Thr	гÀг	Arg	ьуs		GIY	Asp	ьец	GIY		Leu	Pne		
			180					185		•			190				30
			a+a	-+~		~~+		+	~+~		+	+			224	624	
				atg												624	
пр	GIA	195	Leu	Met	GIII	GIY	200	ser	vai	GIII	TID	205	гуѕ	ASII	гуs		35
		193					200					203					
cac	aác	aaa	cac	cac	acc	atc	CCC.	aac	ctc	cac	tac	tác	tcc	aca	atc	672	
				His												0,2	40
	210	2				215					220						
																	- C
gcg	caa	gat	ggg	gac	ccg	gac	atc	gat	acc	atg	ccc	ctt	ctc	gcc	tgg	720	45
				Asp													
225					230					235					240		50
	•																50
tcc	gtc	cag	caa	gcc	cag	tct	tac	cgg	gaa	ctc	caa	gcc	gac	gga	aag	768	
Ser	Val	Gln	Gln	Ala	Gln	Ser	Tyr	Arg	Glu	Leu	Gln	Ala	Asp	Gly	Lys		55
				245					250					255			33
gat	tcg	ggt	ttg	gtc	aag	ttc	atg	atc	cgt	aac	caa	tcc	tac	ttt	tac	816	60
Asp	Ser	Gly	Leu	Val	Lys	Phe	Met	Ile	Arg	Asn	Gln	Ser	Tyr	Phe	Tyr		00
			260					265					270				
																	65
ttt	ccc	atc	ttg	ttg	ctc	gcc	cgc	ctg	tcg	tgg	ttg	aac	gag	tcc	ttc	864	0.3

	Phe	Pro	Ile 275	Leu	Leu	Leu	Ala	Arg 280	Leu	Ser	Trp	Leu	Asn 285	Glu	Ser	Phe	
5		_	gcc														912
10	Lys	Cys 290	Ala	Phe	Gly	Leu	Gly 295	Ala	Ala	Ser	Glu	300	Ala	Ala	Leu	Glu	
15			gcc Ala	-													960
!	305					310					315					320	
20	ctg Leu	_	cac His		_		_				_						1008
25			•		325					330					335		•
		•	ttc Phe				•										1056
30				340					345					350			
35			ttc Phe 355	_		_		_								_	1104
40	_		tac		_	_		_	_	_			_				1152
	Ala	370	Tyr	Asn	Ala	Asp	375	Arg	Pro	Asp	Pne	380	Lys	Leu	GIn	Vai	
45		_	act Thr	_		_	_								_		1200
50	385					390					395					400	
55			tgg Trp														1248
60			agc Ser														1296
65	gaa	tcg	ttc	tgc	aag	gag	tgg	ggt	gtc	cag	tac	cac	gaa	gcc	gac	ctt	1344

	Glu	Ser	Phe 435	Cys	Lys	Glu	Trp	Gly 440	Val	Gln	Tyr	His	Glu 445	Ala	Asp	Leu		
	•		133					330					447					
												ggc					1392	
	Val		Gly	Thr	Met	Glu		Leu	His	His	Leu	Gly	Ser	Val	Ala	Gly	. •	
		450					455					460						1
	gaa	ttc	gtc	gtg	gat	ttt	gta	cgc	gat	gga	ccc	gcc	atg	taa			1434	
		Phe	Val	Val	Asp		Val	Arg	Asp	Gly		Ala	Met			•		1
	465					470					475							
																		2
•	<210)> 14	1															
		.> 47									,						•	
		!> PI			_						•							2
	<213	> Pi	aeoc	dacty	/lum	tric	cornu	tum										
	<400	> 14	<u>l</u>															3
	Met	Gly	Lys	Gly	Gly	Asp	Ala	Arg	Ala	Ser	Lys	Gly	Ser	Thr	Ala	Ala		
	1				5					10					15			
	Ara	Lve	Tle	Ser	-C-C-Ω	Gln	Glu	V = 1	Lvc		ui c	Ala	50*	Dro	C1.1	200		3
	,	LyS	110	20	115	GIII	GIU	,	25	1111	птъ	Ala	Ser	30	GIU	ASD		
																		4
	Ala	Trp	Ile	Ile	His	Ser	Asn	Lys	Val	Tyr	Asp	Val	Ser	Asn	Trp	His		
			35					40					45					
	Glu	Wie	Dro	Clv	Cly	7.] -	17-1	T10	Dho	(Tille see	774 ~	77-	G3	3	3	34-4		4
	GIU	50	FIO	GIY	GIY	AIG	55	116	PHE	THE	nis	Ala 60	GIĀ	Asp	Asp	Met		
	Thr	Asp	Ile	Phe	Ala	Ala	Phe	His	Ala	Pro	Gly	Ser	Gln	Ser	Leu	Met		5
	65					70					75					80		
	_			_			<u></u>											5
	Lys	Lys	Phe	Tyr		Gly	Glu	Leu	Leu		Glu	Thr	Thr	Gly		Glu		
					85					90					95		-	
	Pro	Gln	Gln	Ile	Ala	Phe	Glu	Lys	Gly	Tyr	Arg	Asp	Leu [.]	Arg	Ser	Lys		6
				100					105		-	-		110		-		
																		6
	Leu	Ile	Met.	Met	Glv	Met	Phe	Lvs	Ser	Asp	Lvs	TTO	Phe	Tvr	Val	Tvr		,

5	Lys	Cys 130	Leu	Ser	Asn	Met	Ala 135	Ile	Trp	Ala	Ala	Ala 140		Ala	Leu	Val
10	Phe 145	Tyr	Ser	Asp	Arg	Phe 150	Trp	Val	His	Leu	Ala 155	Ser	Ala	Val	Met	Leu 160
15	Gly	Thr	Phe	Phe	Gln 165	GÌn	Ser	Gly	Trp	Leu 170	Ala	His	Asp	Phe	Leu 175	His
20	His	Gln	Val	Phe 180	Thr	Lys	Arg	Lys	His 185	Gly	Asp	Leu	Gly	Gly 190	Leu	Phe
25	Trp	Gly	Asn 195	Leu	Met	Gln	Gly	Туг 200	Ser	Val	Gln	Trp	Trp 205	Lys	Asn	Lys
30	His	Asn 210	Gly	His	His	Ala	Val 215	Pro	Asn	Leu	His	Ċys 220	Ser	Ser	Ala	Val
35	Ala 225	Gln	Asp	Gly	Asp	Pro 230	qaA	Ile	Asp	Thr	Met 235	Pro	Leu	Leu	Ala	Trp 240
40	Ser	Val	Gln	Gln	Ala 245	Gln	Ser	Tyr	Arg	Glu 250	Leu	Gln	Ala	Asp	Gly 255	Lys
45	Asp	Ser	Gly	Leu 260	Val	Lys	Phe	Met	Ile 265	Arg	Asn	Gln	Ser	Tyr 270	Phe	Tyr
50	Phe	Pro	Ile 275	Leu	Leu	Leu	Ala	Arg 280	Leu	Ser	Trp	Leu	Asn 285	Glu	Ser	Phe
55	Lys	Cys 290	Ala	Phe	Gly	Leu	Gly 295	Ala	Ala	Ser	Glu	Asn 300	Ala	Ala	Leu	Glu
60	Leu 305	Lys	Ala	Lys	Gly	Leu 310	Gln	Tyr	Pro	Leu	Leu 315	Glu	Lys	Ala	Gly	11e
65	Leu	Leu	His	Tyr	Ala	_	Met	Leu	Thr	Val		Ser	Gly	Phe	Gly 335	

	atg	gtg	tcc	cag	ggc	ggc	ggt	ctc	tcg	cag	ggt	tcc	att	gaa	gaa	aac	48	
	Met	Val	Ser	Gln	Gly	Gly	Gly	Leu	Ser	Gln	Gly	Ser	Ile	Glu	Glu	Asn	·	
	1				5					10					15			5
												•						
	att	gac	gtt	gag	cac	ttg	gca	acg	atg	ccc	ctc	gtc	agt	gac	ttc	cta	96	
	Ile	Asp	Val	Glu	His	Leu	Ala	Thr	Met	Pro	Leu	Val	Ser	Asp	Phe	Leu	•	. 10
				20					25					30				
	aat	gtc	ctg	gga	acg	act	ttg	ggc	cag	tgg	agt	ctt	tcc	act	aca	ttc	144	15
	Asn	Val	Leu	Gly	Thr	Thr	Leu	Gly	Gln	Trp	Ser	Leu	Ser	Thr	Thr	Phe		
			35					40					45				•	
;	:															•		20
	gct	ttc	aag	agg	ctc	acg	act	aag	aaa	cac	agt	tcg	gac	atc	tcg	gtg	192	
	Ala	Phe	Lys	Arg	Leu	Thr	Thr	Lys	Lys	His	Ser	Ser	Asp	Ile	Ser	Val		
		50					55					60						25
	gag	gca	caa	aaa	gaa	tcg	gtt	ġcg	cgg	ggg	cca	gtt	gag	aat	att	tct	240	
	Glu	Ala	Gln	Lys	Glu	Ser	Val	Ala	Arg	Gly	Pro	Val	Glu	Asn	Ile	Ser		30
	65	,				70					75					80		
				÷	٠													
	caa	tcg	gtt	gcg	cag	ccc	atc	agg	cgg	agg	tgg	gtg	cag	gat	aaa	aag	288	35
	Gln	Ser	Val	Ala	Gln	Pro	Ile	Arg	Arg	Arg	Trp	Val	Gln	Asp	Lys	Lys		
	•				85			•		90					95		•	
													•					40
	ccg	gtt	act	tac	agc	ctg	aag	gat	gta	gct	tcg	cac	gat	atg	ccc	cag	336	
	Pro	Val	Thr	Tyr	Ser	Leu	Lys	Asp	Val	Ala	Ser	His	qaA	Met	Pro	Gln		
				100					105					110				45
	gac	tgc	tgg	att	ata	atc	aaa	gag	aag	gtg	tat	gat	gtg	agc	acc	ttc	384	
	Asp	Cys	Trp	Ile	Ile	Ile	Lys	Glu	Lys	Val	Tyr	Asp	Val	Ser	Thr	Phe		50
			115					120					125			. *		
		•																
	gct	gag	cag	cac	cct	gga	ggc	acg	gtt	atc	aac	acc	tac	ttc	gga	cga	432	55
	Ala	Glu	Gln	His	Pro	Gly	Gly	Thr	Val	Ile	Asn	Thr	Tyr	Phe	Gly	Arg		
		130					135					140						
																		60
	gac	gcc	aca	gat	gtt	ttc	tct	act	ttc	cac	gca	tcc	acc.	tca	tgg	aag	480	23
	Asp	Ala	Thr	Asp	Val	Phe	Ser	Thr	Phe	His	Ala	Ser	Thr	Ser	Trp	Lys		
	145					150					155					160		45
																		65

	att	ctt	cag	aat	ttc	tac	atc	ggg	aac	ctt	gtt	agg	gag	gag	ccg	act	528
	Ile	Leu	Gln	Asn	Phe	Tyr	Ile	Gly	Asn	Leu	Val	Arg	Glu	Glu	Pro	Thr	
5					165					170					175		
	ttg	gag	ctg	ctg	aag	gag	tac	aga	gag	ttg	aga	gcc	ctt	ttc	ttg	aga	576
10	Leu	Glu	Leu	Leu	Lys	Glu	Tyr	Arg	Glu	Leu	Arg	Ala	Leu	Phe	Leu	Arg	
				180					185		•			190			
15	gaa	cag	ctt	ttc	aag	agt	tcc	aaa	tcc	tac	tac	ctt	ttc	aag	act	ctc	624
	Glu	Gln	Leu	Phe	Lys	Ser	Ser	Lys	Ser	Tyr	Tyr	Leu	Phe	Lys	Thr	Leu	
			195					200		_			205	_			
20																	
20	ata	aat	gtt	tcc	att	gtt	gcc	aca	agc	att	gcg	ata	atc	agt	cta	tac	672
				Ser													
		210					215					220				-	
25																	
	aag	tct	tac	cgg	gcg	att	cta	tta	tca	acc	agt	tta	ato	aac	tta	ttt	720
	_			Arg		_	_			_	_	_	_	-	•		
30	225		•			230					235			2		240	
	att	caa	cag	tgc	gga	tgg	tta	tct	cac	gat	ttt	cta	cac	cat	caq	σta	768
35	_			Cys			_			_					_	_	
				-	245	•				250					255		
40	ttt	gag	aca	cgc	tgg	ctc	aat	gac	att	gtt	aac	tat	ata	atc	aac	aac	816
				Arg													
				260	_				265		-	-		270	_		
45																	
	gtt	gtt	ctg	gga	ttc	agt	gtc	tcg	tgg	tgg	aag	acc	aag	cac	aac	ctg	864
	Val	Val		Gly							_		_	His	Asn	Leu	
50			275					280	_		_		285				
	cat	cat	gct	gct	ccg	aat	gaa	tgc	gac	caa	aag	tac	aca	ccg	att	gat	912
55				Ala												_	
		290					295		_		-	300				-	
60	gag	gat	att	gat	act	ctc	ccc	atc	att	gct	tgg	agt	aaa	gat	ctc	ttg	960
				Asp													
	305	-		-		310					315		-	•		320	
65																	

gcc	act	gtt	gag	agc	aag	acc	atg	ttg	cga	gtt	ctt	cag	tac	cag	cac	1008	
Ala	Thr	Val	Glu	Ser	Lys	Thr	Met	Leu	Arg	Val	Leu	Gln	Tyr	Gln	His		
				325					330					335			5
												•				•	
cta	ttc	ttt	ttg	gtt	ctt	ttg	acg	ttt	gcc	cgg	gcg	agt	tgg	cta	ttt	1056	
Leu	Phe	Phe	Leu	Val	Leu	Leu	Thr	Phe	Ala	Arg	Ala	Ser	Trp	Leu	Phe		10
			340			•		345					350				•
tgg	agc	gcg	gcc	ttc	act	ctc	agg	ccc	gag	ttg	acc	ctt	ggc	gag	aag	1104	15
Trp	Ser	Ala	Ala	Phe	Thr	Leu	Arg	Pro	Glu	Leu	Thr	Leu	Gly	Glu	Lys		
		355					360					365					
																	20
ctt	ttg	gag	agg	gga	acg	atg	gct	ttg	cac	tac	att	tgg	ttt	aat	agt	1152	
Leu	Leu	Glu	Arg	Gly	Thr	Met	Ala	Leu	His	Tyr	Ile	Trp	Phe	Asn	Ser		
	370					375					380						25
																	- 25
gtt	gcg	ttt	tat	ctg	ctc	ccc	gga	tgg	aaa	cca	gtt	gta	tgg	atg	gtg	1200	
	Ala								*								20
385	,		_		390		_	-	-	395			_		400		. 30
atc	agc	σaσ	ctc	ato	tct	aat	ttc	cta	cta	gga	tac	ota	ttt	gta	ctc	1248	
	Ser			. '	•												35
				405					410	3				415		•	
												•					
agt	cac	aat	gga	ato	gag	ata	tac	aat	acσ	tca	aag	gac	ttc	ata	aat	1296	40
-	His			_					-		_	_					
			420				-1-	425					430				
																	45
acc	cag	att	gca	tca	act	cac	gac	atc	aaa	σca	aaa	ata	ttt	aat	gat	1344	
	Gln																
	,	435				9	440		-,-		- _1	445					50
taa	ttc	acc	gga	aat	ctc	aac	aga	cag	att	gag	cat	cat	cta	ttt	cca	1392	
	Phe						-	-								1000	55
	450		01,	01,		455	9	0		014	460						
	-30																
aco	atg	CCC	agg	cac	aac	ctt	aat	aaa	att	ter	cct	cac	ata	gag	act	1440	60
_	Met																
465			9		470			_,,		475					480		
					-,0					-, 5					200		65

	ttg	tgc	aag	aag	cat	gga	ctg	gtc	tac	gaa	gac	gtg	agc	atg	gct	tcg	1488
	Leu	Cys	Lys	Lys	His	Gly	Leu	Val	Tyr	Glu	Asp	Val	Ser	Met	Ala	Ser	
5					485					490					495		
																	4506
				cgg						_	_	-	_	_	_	_	1536
10	GIY	ınr	ıyr	Arg	vaı	Leu	гàг	unr		гуs	Asp	Val	Ala	_	Ala	Ala	
				500					505					510			
15	tca	cac	cag	cag	ctt	gct	gcg	agt	tga								1563
13	Ser	His	Gln	Gln	Leu	Ala	Ala	Ser								•	
			515					520									
20																٠	
																	•
)> 10															
25		L> 52															
		2> PI															
	<213	3> C	erato	odon	purp	oure	ıs										
30	-400	. 1	_														
)> 10		01 -	61	01	03	T	C	01	01	0	- 22 -	0 3	63 .	•	
	Met 1	Vai	ser	Gln	G1y	GIY	GIA	Leu	ser		GIĀ	ser	TTE	GIU		Asn	
35	1				J					10					15		
	Ile	Asp	Val	Glu	His	Leu	Ala	Thr	Met	Pro	Leu	Val	Ser	Asp	Phe	Leu	
40				20					25					30			
70																	
	Asn	Val	Leu	Gly	Thr	Thr	Leu	Gly	Gln	Trp	Ser	Leu	Ser	Thr	Thr	Phe	
45			35					40					45				
	Ala		Lys	Arg	Leu	Thr	Thr	Lys	Lys	His	Ser	Ser	Asp	Ile	Ser	Val	
50		50					55					60					
	01		~ 3	•	03		**- 7		_	~1	_			_			
		Ala	GIN	Lys	GIU		vaı	Ala	Arg	GIA		vai	GIU	Asn	TIE		
55	65					70					75					80	
	Gln	Ser	Val	Ala	Gln	Pro	Ile	Ara	Ara	Ara	Tro	۷a۱	Gln	Asp	Lvs	Lvs	
					85			5	9	90	P			٠ي	95	_, _	
60										- •							
	Pro	Val	Thr	Tyr	Ser	Leu	Lys	Asp	Val	Ala	Ser	His	Asp	Met	Pro	Gln	
				100					105				=	110			
65																	

	Asp	Cys		Ile	Ile	Ile	Lys		Lys	Val	Tyr	Asp		Ser	Thr	Phe			
	•		115					120					125						:
•	Ala	Glu 130	Gln	His	Pro	Gly	Gly 135	Thr	Val	Ile	Asn	Thr 140	Tyr	Phe	Gly	Arg			•
	Asp 145	Ala	Thr	Asp	Val	Phe 150	Ser	Thr	Phe	His	Ala 155	Ser	Thr	Ser	Trp	Lys 160	,	•	I'
	Ile	Leu	Gln	Asn	Phe 165	Tyr	Ile	Gly	Asn	Leu 170	Val	Arg	Glu	Glu	Pro 175	Thr			1:
•	Leu	Glu	Leu	Leu 180	Lys	Glu	Tyr	Arg	Glu 185	Leu	Arg	Ala	Leu	Phe 190	Leu	Arg		!	20
	Glu	Gln	Leu 195	Phe	Lys	Ser	Ser	Lys 200	Ser	Tyr	Tyr	Leu	Phe 205	Lys	Thr	Leu		:	2:
	Ile	Asn 210	Val	Ser	Ile	Val	Ala 215	Thr	Ser	Ile	Ala	Ile 220	Ile	Ser	Leu	Туг	·	:	3
	Lys 225	Ser	Tyr	Arg	Ala	Val 230	Leu	Leu	Ser	Ala	Ser 235	Leu	Met	Gly	Leu	Phe 240			3
	Ile	Gln	Gln-	Cys	Gly 245	Trp	Leu	Ser	His	Asp 250	Phe	Leu	His	His	Gln 255	Val			4
	Phe	Glu	Thr	Arg 260		Leu	Asn	Asp	Val 265		Gly	Tyr	Val	Val 270		Asn			4:
	Val	Val	Leu 275		Phe	Ser	Val	Ser 280	Trp	Trp	Lys	Thr	Lys 285		Asn	Leu			5
	His	His 290	Ala	Ala	Pro	Asn	Glu 295	Cys	Asp	Gln	Lys	T yr 300	Thr	Pro	Ile	Asp			5
	Glu 305	Asp	Ile	Asp	Thr	Leu 310	Pro	Ile	Ile	Ala	Trp 315	Ser	Lys	Asp	Leu	Leu 320			6
	Ala	Thr	Val	Glu	Ser	Lys	Thr	Met	Leu	Arg	Val	Leu	Gln	Tyr	Gln	His			6

													•			
					325					330					335	
5	Leu	Phe	Phe	Leu 340	Val	Leu	Leu	Thr	Phe 345	Ala	Arg	Ala	Ser	Trp 350	Leu	Ph
10	Trp	Ser	Ala 355	Ala	Phe	Thr	Leu	Arg 360	Pro	Glu	Leu	Thr	Leu 365	Gly	Glu	Ly
15	Leu	Leu 370	Glu	Arg	Gly	Thr	Met 375	Ala	Leu	His	Tyr	Ile 380	Trp	Phe	Asn	Se
20	Val 385	Ala	Phe	туг	Leu	Leu 390	Pro	Gly	Trp	Lys	Pro 395	Val	Val	Trp	Met	Va:
25	Val	Ser	Glu	Leu	Met 405	Ser	Gly	Phe	Leu	Leu 410	Gly	Tyr	Val	Phe	Val 415	Le
30	Ser	His	Asn	Gly 420	Met	Glu	Val	Tyr	Asn 425	Thr	Ser	Ĺys	Asp	Phe 430	Val	Ası
35	Ala	Gln	Ile 435	Ala	Ser	Thr	Arg	Asp 440	Ile	Lys	Ala	Gly	Val 445	Phe	Asn	Asj
40	Trp	Phe 450	Thr	Gly	Gly	Leu	Asn 455	Arg	Gln	Ile	Glu	His 460	His	Leu	Phe	Pro
45	Thr 465	Met	Pro	Arg	His	Asn 470	Leu	Asn	Lys	Ile	Ser 475	Pro	His	Val	Glu	Th:
50	Leu	Cys	Lys	Lys	His 485	Gly	Leu	Val	Tyr	Glu 490	Asp	Val	Ser	Met	Ala 495	Se

Ser His Gln Gln Leu Ala Ala Ser 515 520

500

Gly Thr Tyr Arg Val Leu Lys Thr Leu Lys Asp Val Ala Asp Ala Ala

505

510

⁶⁵ <210> 17

	l> 15	578															
<212	2> D1	AI.															
<213	3> Pi	nysco	omiti	cella	a pat	ens											5
														•			
<220)> ·							٠									
<22	1> CI	os															10
<222	2> (:	1)	(1578	3)													
<22	3> De	elta-	-6-De	esati	ırase	9				•							
					•												15
<400	0> 17	7															
	gta		aca	aac	aat	gga	ctt	cag	cag	aac	tct	ctc	gaa	gaa	aac	48	
	Val																
1			1114	5	CLJ	CLJ	200	0111	10	OL,	501		024	15			20
_				,					10					10			
								- 4								0.6	•
	_	_				-									ttc	96	25
Ile	Asp	Val		Hıs	Ile	Ala	Ser		Ser	Leu	Phe	Ser		Phe	Phe		
			20					25			,		30				
										:							30
agt	tat	gtg	tct	tca	act	gtt	ggt	tcg	tgg	agc	gta	cac	agt	ata	caa	144	
Ser	Tyr	Val	Ser	Ser	Thr	Val	Gly	Ser	Trp	Ser	Val	His	Ser	Ile	Gln		•
		35					40			•		45					35
											•						
cct																	
	ttg	aag	cgc	ctg	acg	agt	aag	aag	cgt	gtt	tcg	gaa	agc	gct	gcc	192	
Pro	Leu	_	_	_												192	40
Pro	_	_	_	_												192	40
Pro	Leu	_	_	_		Ser					Ser					192	40
	Leu	Lys	Arg	Leu	Thr	Ser 55	Lys	Lys	Arg	Val	Ser 60	Glu	Ser	Ala	Ala	192 240	
gtg	Leu 50 caa	Lys	Arg	Leu	Thr	Ser 55 gaa	Lys	Lys	Arg aga	Val aat	Ser 60 tcg	Glu	Ser	Ala cag	Ala gga		40
gtg Val	Leu 50	Lys	Arg	Leu	Thr gct Ala	Ser 55 gaa	Lys	Lys	Arg aga	Val aat Asn	Ser 60 tcg	Glu	Ser	Ala cag	Ala gga Gly		
gtg	Leu 50 caa	Lys	Arg	Leu	Thr	Ser 55 gaa	Lys	Lys	Arg aga	Val aat	Ser 60 tcg	Glu	Ser	Ala cag	Ala gga		
gtg Val 65	Leu 50 caa Gln	Lys tgt Cys	Arg ata Ile	tca Ser	Thr gct Ala 70	Ser 55 gaa Glu	Lys gtt Val	Lys cag Gln	Arg aga Arg	val aat Asn 75	Ser 60 tcg Ser	Glu agt Ser	ser acc Thr	Ala cag Gln	Ala gga Gly 80	240	
gtg Val 65	Leu 50 caa Gln gcg	Lys tgt Cys	Arg ata Ile	tca Ser	Thr gct Ala 70 gca	Ser 55 gaa Glu gaa	Lys gtt Val	Lys cag Gln gtc	aga Arg	val aat Asn 75	Ser 60 tcg Ser	Glu agt Ser	acc Thr	cag Gln	gga Gly 80		45
gtg Val 65	Leu 50 caa Gln	Lys tgt Cys	Arg ata Ile	tca Ser	Thr gct Ala 70 gca	Ser 55 gaa Glu gaa	Lys gtt Val	Lys cag Gln gtc	aga Arg gtg Val	val aat Asn 75	Ser 60 tcg Ser	Glu agt Ser	acc Thr	cag Gln cga Arg	gga Gly 80	240	45
gtg Val 65	Leu 50 caa Gln gcg	Lys tgt Cys	Arg ata Ile	tca Ser	Thr gct Ala 70 gca	Ser 55 gaa Glu gaa	Lys gtt Val	Lys cag Gln gtc	aga Arg	val aat Asn 75	Ser 60 tcg Ser	Glu agt Ser	acc Thr	cag Gln	gga Gly 80	240	45
gtg Val 65 act Thr	Leu 50 caa Gln gcg Ala	Lys tgt Cys gag Glu	Arg ata Ile gca Ala	tca Ser ctc Leu 85	Thr gct Ala 70 gca Ala	Ser 55 gaa Glu gaa Glu	Lys gtt Val tca Ser	cag Gln gtc Val	aga Arg gtg Val 90	val aat Asn 75 aag Lys	Ser 60 tcg Ser ccc Pro	Glu agt Ser acg Thr	acc Thr aga Arg	cag Gln cga Arg	gga Gly 80 agg Arg	240	45 50
gtg Val 65 act Thr	Leu 50 caa Gln gcg Ala	Lys tgt Cys gag Glu cag	Arg ata Ile gca Ala	tca Ser ctc Leu 85	gct Ala 70 gca Ala	Ser 55 gaa Glu gaa Glu	gtt Val tca Ser	cag Gln gtc Val	aga Arg gtg Val 90	aat Asn 75 aag Lys	Ser 60 tcg Ser ccc Pro	agt Ser acg Thr	acc Thr aga Arg	cag Gln cga Arg 95	gga Gly 80 agg Arg	240	45 50
gtg Val 65 act Thr	Leu 50 caa Gln gcg Ala	Lys tgt Cys gag Glu cag	Arg ata Ile gca Ala tgg Trp	tca Ser ctc Leu 85	gct Ala 70 gca Ala	Ser 55 gaa Glu gaa Glu	gtt Val tca Ser	cag Gln gtc Val	aga Arg gtg Val 90	aat Asn 75 aag Lys	Ser 60 tcg Ser ccc Pro	agt Ser acg Thr	acc Thr aga Arg gta Val	cag Gln cga Arg 95	gga Gly 80 agg Arg	240	45 50
gtg Val 65 act Thr	Leu 50 caa Gln gcg Ala	Lys tgt Cys gag Glu cag	Arg ata Ile gca Ala	tca Ser ctc Leu 85	gct Ala 70 gca Ala	Ser 55 gaa Glu gaa Glu	gtt Val tca Ser	cag Gln gtc Val	aga Arg gtg Val 90	aat Asn 75 aag Lys	Ser 60 tcg Ser ccc Pro	agt Ser acg Thr	acc Thr aga Arg	cag Gln cga Arg 95	gga Gly 80 agg Arg	240	45 50 55
gtg Val 65 act Thr tca Ser	Leu 50 caa Gln gcg Ala tct	Lys tgt Cys gag Glu cag Gln	Arg ata Ile gca Ala tgg Trp 100	tca Ser ctc Leu 85 aag	Thr gct Ala 70 gca Ala aag Lys	Ser 55 gaa Glu gaa Glu tcg Ser	gtt Val tca Ser aca	cag Gln gtc Val cac His	aga Arg gtg Val 90 ccc Pro	aat Asn 75 aag Lys cta Leu	Ser 60 tcg Ser ccc Pro	agt Ser acg Thr	acc Thr aga Arg gta Val	cag Gln cga Arg 95 gca Ala	gga Gly 80 agg Arg gta Val	240	45 50 55
gtg Val 65 act Thr tca Ser	Leu 50 caa Gln gcg Ala	tgt Cys gag Glu cag Gln	Arg ata Ile gca Ala tgg Trp 100 cca	tca Ser ctc Leu 85 aag Lys	gct Ala 70 gca Ala aag Lys	Ser 55 gaa Glu gaa Glu tcg Ser	gtt Val tca Ser aca Thr	cag Gln gtc Val cac His 105	aga Arg gtg Val 90 ccc Pro	aat Asn 75 aag Lys cta Leu	Ser 60 tcg Ser ccc Pro tca Ser	Glu agt Ser acg Thr gaa Glu	acc Thr aga Arg gta Val 110	cag Gln cga Arg 95 gca Ala	gga Gly 80 agg Arg gta Val	240	45 50 55

			115					120					125				
5	gat	gtt	tcc	aat	ttt	gcg	gac	gag	cat	ccc	gga	gga	tca	gtt	att	agt	432
	Asp	Val	Ser	Asn	Phe	Ala	Asp	Glu	His	Pro	Gly	Gly	Ser	Val	Ile	Ser	
	•	130					135					140					
10																	
10	act	tat	+++	gga	cga	gac	aac	aca	gat	att	ttc	tct	aαt	ttt	cat	aca	480
				Gly	-	_			_	_			-			_	
	145	171	1116	GLy	my	150	Gry	1111	пор	Vai	155	Der	DCI	1116	1113	160	
15	143					150	٠				100					-	
1				.													F20
į				tgg -													528
20	Ala	Ser	Thr	Trp		Пе	Leu	Gin	Asp		Tyr	He	GIY	Asp		GIu	
					165					170					175		
25	agg	gtg	gag	ccg	act	cca	gag	ctg	ctg	aaa	gat	ttc	cga	gaa	atg	aga	576
	Arg	Val	Glu	Pro	Thr	Pro	Glu	Leu	Leu	Lys	Asp	Phe	Arg	Glu	Met	Arg	
				180					185					190			
30																	
	gct	ctt	ttc	ctg	agg	gag	caa	ctt	ttc	aaa	agt	tcg	aaa	ttg	tac	tat	624
	Ala	Leu	Phe	Leu	Arg	Glu	Gln	Leu	Phe	Lys	Ser	Ser	Lys	Leu	Tyr	Tyr	
35			195					200					205				
	gtt	atg	aag	ctg	ctc	acg	aat	gtt	gct	att	ttt	gct	gcg	agc	att	gca	672
40	Val	Met	Lys	Leu	Leu	Thr	Asn	Val	Ala	Ile	Phe	Ala	Ala	Ser	Ile	Ala	
		210					215					220					
45	ata	ata	tgt	tgg	agc	aag	act	att	tca	gcg	gtt	ttg	gct	tca	gct	tgt	720
-	Ile	Ile	Cys	Trp	Ser	Lys	Thr	Ile	Ser	Ala	Val	Leu	Ala	Ser	Ala	Cys	
	225					230					235					240	
50																	
50	atg	atg	gct	ctg	tgt	ttc	caa	cag	tgc	gga	tgg	cta	tcc	cat	gat	ttt	768
	Met	Met	Ala	Leu	Cys	Phe	Gln	Gln	Cys	Gly	Trp	Leu	Ser	His	Asp	Phe	
					245					250					255		
55																	
	ctc	cac	aat	cag	gtg	ttt	gag	aca	cgc	tgg	ctt	aat	gaa	gtt	gtc	ggg	816
				Gln													
60				260					265	_				270		_	
	tat	gta	atc	ggc	aac	gcc	gtt	ctg	gga	ttt	agt	aca	gga	tga	taa	aag	864
65				Glv		_	-	_			_					_	Ÿ

gag aag cat aac ctt cat cat gct gct cca aat gaa tgc gat cag act Glu Lvs His Asn Leu His His Ala Ala Pro Aen Glu Cue Aen Cl.

Glu	Lys	His	Asn	Leu	His	His	Ala	Ala	Pro	Asn	Glu	Cys	Asp	Gln	Thr	•	
	290					295		•			300						
															٠		10
tac	caa	cca	att	gat	gaa	gat	att	gat	act	ctc	ccc	ctc	att	gcc	tgg	960	
Tyr	Gln	Pro	Ile	Asp	Glu	Asp	Ile	Asp	Thr	Leu	Pro	Leu	Ile	Ala	Trp		
305					310					315					320		15
agc	aag	gac	ata	ctg	gcc	aca	gtt	gag	aat	aag	aca	ttc	ttg	cga	atc	1008	
Ser	Lys	Asp	Ile	Leu	Ala	Thr	Val	Glu	Asn	Lys	Thr	Phe	Leu	Arg	Ile		20
				325					330					335			
ctc	caa	tac	cag	cat	ctg	ttc	ttc	atg	ggt	ctg	tta	ttt	ttc	gcc	cgt	1056	25
Leu	Gln	Tyr	Gln	His	Leu	Phe	Phe	Met	Gly	Leu	Leu	Phe	Phe	Ala	Arg		
			340					345					350				
											•						30
ggt	agt	tgg	ctc	ttt	tgg	agc	tgg	aga	tat	acc	tct	aca	gca	gtg	ctc	1104	
Gly	Ser	Trp	Leu	Phe	Trp	Ser	Trp	Arg	Tyr	Thr	Ser	Thr	Ala	Val	Leu		
		355					360					365	•				35
				·													
tca	cct	gtc	gac	agg	ttg	ttg	gag	aag	gga	act	gtt	ctg	ttt	cac	tac	1152	
Ser	Pro	Val	Asp	Arg	Leu	Leu	Glu	Lys	Gly	Thr	Val	Leu	Phe	His	Tyr		40
	370					375					380						
												•					
ttt	tgg	ttc	gtc	ggg	aca	gcg	tgc	tat	ctt	ctc	cct	ggt	tgg	aag	cca	1200	45
Phe	Trp	Phe	Val	Gly	Thr	Ala	Cys	Tyr	Leu	Leu	Pro	Gly	Trp	Lys	Pro		45
385					390					395					400		
																	50
tta	gta	tgg	atg	gcg	gtg	act	gag	ctc	atg	tcc	ggc	atg	ctg	ctg	ggc	1248	30
Leu	Val	Trp	Met	Ala	Val	Thr	Glu	Leu	Met	Ser	Gly	Met	Leu	Leu	Gly		
				405					410					415			
																	55
ttt	gta	ttt	gta	ctt	agc	cac	aat	ggg	atg	gag	gtt	tat	aat	tcg	tct	1296	
Phe	Val	Phe	Val	Leu	Ser	His	Asn	Gly	Met	Glu	Val	Tyr	Asn	Ser	Ser		•
			420					425					430				60
aaa	gaa	ttc	gtg	agt	gca	cag	atc	gta	tcc	aca	cgg	gat	atc	aaa	gga	1344	-
Lys	Glu	Phe	Val	Ser	Ala	Gln	Ile	Val	Ser	Thr	Arg	Asp	Ile	Lys	Gly		65

			435					440					445				
5	aac	ata	ttc	aac	gac	tgg	ttc	act	ggt	ggc	ctt	aac	agg	caa	ata	gag	1392
	Asn	Ile	Phe	Asn	Asp	Trp	Phe	Thr	Gly	Gly	Leu	Asn	Arg	Gln	Ile	Glu	
	•	450				_	455		_			460	J				
10																	•
10	cat	cat	ctt	ttc	cca	aca	atg	ccc	agg	cat	aat	tta	aac	aaa	ata	gca	1440
		_							Arg								
15	465					470					475			-		480	
13																•	
1	cct	aga	gtg	gag	gtg	ttc	tgt	aag	aaa	cac	ggt	cta	ata	tac	σaa	gac	1488
\ 20	Pro														_	_	
20					485		_	_	_	490	_			-	495	-	
25	gta	tct	att	gct	acc	ggc	act	tgc	aag	gtt	ttg	aaa	gca	ttg	aag	gaa	1536
<i>ــ</i>									Lys								
				500					505					510			
30																	
30	gtc	gcg	gag	gct	gcg	gça	gag	cag	cat	gct	acc	acc	agt	taa			1578
									His	_			_				
26			515					520					525				
35																	
								٠									
40	<210	> 18	3														
40	<211	.> 52	25														
	<212	> PF	rT														
45	<213	> Ph	ysco	omiti	ella	pat	ens										
43																	
	<400	> 18	3														
50	Met	Val	Phe	Ala	Gly	Gly	Gly	Leu	Gln	Gln	Gly	Ser	Leu	Glu	Glu	Asn	
30	1				5					10					15		
<i></i>	Ile	Asp	Val	Glu	His	Ile	Ala	Ser	Met	Ser	Leu	Phe	Ser	Asp	Phe	Phe	
55				20					25					30			
	Ser	Tyr	Val	Ser	Ser	Thr	Val	Gly	Ser	Trp	Ser	Val	His	Ser	Ile	Gln	
60			35					40					45				
	Pro	Leu	Lys	Arg	Leu	Thr	Ser	Lys	Lys	Arg	Val	Ser	Glu	Ser	Ala	Ala	
65		50					55					60					

Val 65	Gln	Cys	Ile	Ser	Ala 70	Glu	Val	Gln	Arg	Asn 75	Ser	Ser	Thr	Gln	Gly 80				
Thr	Ala	Glu	Ala	Leu 85	Ala	Glu	Ser	Val	Val 90	Lys	Pro	Thr	Arg	Arg 95	Arg				
Ser	Ser	Gln	Trp 100	Lys	Lys	Ser	Thr	His 105	Pro	Leu	Ser	Glu	Val 110	Ala	Val			•	
His	Asn	Lys 115	Pro	Ser	Asp	Cys	Trp 120	Ile	Val	Val	Lys	Asn 125	Lys	Val	Tyr				2
Asp	Val 130	Ser	Asn	Phe	Ala	Asp 135	Glu	His	Pro	Gly	Gly 140	Ser	Val	Ile	Ser				
Thr 145	Tyr	Phe	Gly	Arg	Asp 150	Gly	Thr	Asp	Val	Phe 155	Ser	Ser	Phe	His	Ala 160		•		2.
Ala	Ser	Thr	Trp	Lys 165	Ile	Leu	Gln	Asp	Phe 170	Tyr	Ile	Gly	Asp	Val 175					30
Arg ·	Val	Glu	Pro 180	Thr	Pro	Glu	Leu	Leu 185	Lys	Asp	Phe	Arg	Glu 190	Met	Arg				3:
Ala	Leu	Phe 195	Leu	Arg	Glu	Gln	Leu 200	Phe	Lys	Ser	Ser	Lys 205	Leu	Tyr	Tyr				41
Val	Met 210		Leu	Leu	Thr	Asn 215	Val	Ala	Ile	Phe	Ala 220	Ala	Ser	Ile	Ala				4:
Ile 225	Ile	Cys	Trp	Ser	Lys 230	Thr	Ile	Ser	Ala	Val 235	Leu	Ala	Ser	Ala	Cys 240				51
Met	Met	Ala	Leu	Cys 245	Phe	Gln	Gln	Cys	Gly 250	Trp	Leu	Ser	His	Asp 255	Phe	•			5.
Leu	His	Asn	Gln 260	Val	Phe	Glu	Thr	Arg 265	Trp	Leu	Asn	Glu	Val 270	Val	Gly				6

	Tyr	Val	Ile 275	Gly	Asn	Ala	Val	Leu 280	Gly	Phe	Ser	Thr	Gly 285	Trp	Trp	Lys
5																
,	Glu	Lys	His	Asn	Leu	His	His	Ala	Ala	Pro	Asn	Glu	Cys	Asp	Gln	Thr
		290					295					300	_	-		
10																
10	Tyr	Gln	Pro	Ile	Asp	Glu	Asp	Ile	Asp	Thr	Leu	Pro	Leu	Ile	Ala	Trr
	305				_	310	-		-		315					320
15																
13	Ser	Lys	Asp	Ile	Leu	Ala	Thr	Val	Glu	Asn	Lys	Thr	Phe	Leu	Ara	Il€
		-	•		325					330	-4 -				335	
20																
20	Leu	Gln	Tyr	Gln	His	Leu	Phe	Phe	Met	Glv	Leu	Leu	Phe	Phe	Ala	Arc
			-	340					345	_				350		
25	Glv	Ser	Tro	Leu	Phe	Tro	Ser	Tro	Ara	Tvr	Thr	Ser	Thr	Ala	Val	Lev
			355					360					365			
30	Ser	Pro	Val	Asp	Ara	Leu	Leu	Glu	Lvs	Glv	Thr	Val	Leu	Phe	His	Tvr
		370			5		375			,		380				-,,-
35	Phe	Tro	Phe	Val	Glv	Thr	Ala	Cvs	Tvr	Leu	Leu	Pro	Glv	Trp	Lvs	Pro
	385			•	2	390		-2-			395		3		-1-	400
40	Leu	Val	Trp	Met	Ala	Val	Thr	Glu	Leu	Met	Ser	Gly	Met	Leu	Leu	Gly
					405					410		_			415	_
45	Phe	Val	Phe	Val	Leu	Ser	His	Asn	Gly	Met	Glu	Val	Tyr	Asn	Ser	Ser
				420					425					430		
50	Lys	Glu	Phe	Val	Ser	Ala	Gln	Ile	Val	Ser	Thr	Arg	Asp	Ile	Lys	Gly
			435					440					445			
55	Asn	Ile	Phe	Asn	Asp	Trp	Phe	Thr	Gly	Gly	Leu	Asn	Arg	Gln	Ile	Glu
		450					455					460				
60	His	His	Leu	Phe	Pro	Thr	Met	Pro	Arg	His	Asn	Leu	Asn	Lys	Ile	Ala
	465					470					475					480
65	Pro	Ara	1/2 ¹	Glu	172 T	Dhe	Cve	Larc	Lare	ui c	Gly	Low	V=1	Тиг	Glas	λ ~~

			485					490					495			
Val Se	er Ile		Thr	Gly	Thr	Cys		Val	Leu	Lys	Ala		Lys	Glu		;
		500					505		, ,		•	510			·	
Val A	la Glu	Ala	Ala	Ala	Glu		His	Ala	Thr	Thr						10
	515					520					525					
<210>	10				,											1:
<211>																
<212>																
	Phyto	phth	ora :	infe	stans	5										20
<220>													•			2:
<221>	CDS															
<222>	(1)	(837))													
<223>	Delta	-6-E	longa	ase					,	•						. 30
<400>		Ο.													4.0	
	g act			,											48	3.
Met Se	er inr	Giu	Deu 5	теп	GIII	Ser	туг	10	Ald	Trp	Ala	ASII	15	THE		
•	,							10					13			
gag go	cc aag	ctg	ctg	gac	tgg	gtc	gac	cct	gag	ggc	ggc	tgg	aag	gtg	96	4
Glu Al																
		20					25					30				
																4.
cat co	ct atg	gca	gac	tac	ccc	cta	gcc	aac	ttc	tcc	agc	gtc	tac	gcc	144	
His Pr	ro Met	Ala	Asp	Tyr	Pro	Leu	Ala	Asn	Phe	Ser	Ser	Val	Tyr	Ala		5
	35					40					45					
	gc gtc														192	5:
	ys Val	Gly	Tyr	Leu		Phe	Val	Ile	Phe	_	Thr	Ala	Leu	Met		
5	50				55					60						
222 24	במ ממה	ata	CCC	ac-	a+~	22~	200	a~+	CC >	++-	c=~	+++	~+~	tac	240	6
aaa at		_		-		_		_			_				240	
ES Me	.c Gry	Val	110	70	11C	ъys	1117	Jer	75	₽€U	GIII	LIIC	VQI	TÀT		

	aac	CCC	atc	caa	gtc	att	gcc	tgc	tct	tat	atg	tgc	gtg	gag	gcc	gcc	288
	Asn	Pro	Ile	Gln	Val	Ile	Ala	Cys	Ser	Tyr	Met	Cys	Val	G1u	Ala	Ala	
5	•				85					90					95		
	atc	cag	gcc	tac	cgc	aac	ggc	tac	acc	gcc	gcc	ccg	tgc	aac	gcc	ttt	336
10	Ile	Gln	Ala	Tyr	Arg	Asn	Gly	Tyr	Thr	Ala	Ala	Pro	Cys	Asn	Ala	Phe	•
••				100					105					110			
15	aag	tcc	gac	gac	ccc	gtc	atg	ggc	aac	gtt	ctg	tac	ctc	ttc	tat	ctc	384
15	Lys	Ser	Asp	Asp	Pro	Val	Met	Gly	Asn	Val	Leu	Tyr	Leu	Phe	Tyr	Leu	
,	_		115	_				120				-	125		-		
1																	
20	tcc	aaσ	ato	ctc	gac	cta	tac	gac	aca	atc	ttc	att	atc	cta	gga	aag	432
															Gly		
		130					135					140			2	-3-	
25																	
	aaα	taa	aaa	cag	ctt	tcc	atc	t.t.a	cac	ata	tac	cac	cac	ctt	acc	ata	480
	_			_				_							Thr	-	
30	145	P	2,0	0111	Dea	150	110	Deu	*****	V 42	155	1115	1110	100		160	
						130					133					100	
	ctt	ttc	atc	tac	tat	ata	200	ttc	cac	acc	act	cad	G 3 C	aaa	gac	tca	528
35															Asp		320
	Dea	rne	vai	TYT	165	vai	1111	,	мg	170	AIG	GIII	nsp	GIY	175	261	
					103					170					1/3		
40	t = t	act	200	atc	ata	ctc	220	996	++6	ata	Cac	3.00	ato	at «	tac	a.c.t	576
															Tyr		570
	ıyı	nia	1111	180	Vai	Deu	nsii	GIY	185	Vai	nis	1111	116	190	IYI	1111	
45				100					103					190			
	tac	tac	ttc	atc	age	acc	cac	aca	cac	220	att	taa	taa	224	aag	tac	624
															Lys		024
50	131	171	195	V41	Ser	nia	1113	200	ALG	USII	116	iip	205	цуз	пуз	Tyr	
			100					200					203				
	ctc	200	cac	att	C20	ctt	ato	C2.0	++0	at a	200	n t a	220	at a	cag	~~~	672
55															Gln		0 / 2
	ncu	210	· · · · ·	110	GIII	Deu	215	GIII	FIIC	vai	1111	220	no.	Vai	GIII	GIY	
		210					213					220					
60	tac	cta	acc	tac	tot	CG =	C2~	tac	CC3	aac	a+~	cc+	cct	22~	gtg	cca	720
															Val		120
	225	Leu	1111	+ Y +	261	230	3211	Cys	FIU	GIY		FIU	FIU	пåр	val		
65	223					230					235					240	

								cag							-		768	
	Leu	Met	Tyr	Leu		Tyr	Val	Gln	Ser	Leu	Phe	Trp	Leu	Phe	Met	Asn		
					245					250					255			5
												•						
	ttc	tac	att	cgc	gcg	tac	gtg	ttc	ggc	ccc	aag	aaa	ccg	gcc	gtg	gag	816	
	Phe	Tyr	Ile	Arg	Ala	Tyr	Val	Phe	Gly	Pro	Lys	Lys	Pro	Ala	Val	Glu	,	10
				260					265					270				
	•																	
	gaa	tcg	aag	aag	aag	ttg	taa										837	15
	Glu	Ser	Lys	Lys	Lys	Leu										•	•	
			275															
!																		20
•																		20
	<210)> 20)															
	<211	> 27	78															
		2> PF						•										25
				htho	ra i	nfe	stand	<u>.</u>										
	~~	, - 11	ıy coş	,i ciic)	es	can	•										
	-400)> 20	,															30
		•		G7	- '	•	03 -	a				_		_		_,		
		ser	Thr	GIU		Leu	GIN	Ser	ıyr		Ата	Trp	Ala	Asn		Thr		
	1				5					10					15			35
								_										
	Glu	Ala	Lys		Leu	Asp	Trp	Val		Pro	Glu	Gly	Gly		Lys	Val		
				20					25				•	30				40
										•								
	His	Pro	Met	Ala	Asp	Tyr	Pro	Leu	Ala	Asn	Phe	Ser	Ser	Val	Tyr	Ala		
			35					40					45					45
	Ile	Cys ·	Val	Gly	Tyr	Leu	Leu	Phe	Val	Ile	Phe	Gly	Thr	Ala	Leu	Met	٠	
		50					55					60						50
																		50
	Lys	Met	Gly	Val	Pro	Ala	Ile	Lys	Thr	Ser	Pro	Leu	Gln	Phe	Val	Tyr		
	65					70					75					80		
																		55
	Asn	Pro	Ile	Gln	Val	Ile	Ala	Cys	Ser	Tyr	Met	Cys	Val	Glu	Ala	Ala	•	
					85					90		_			95			
																		60
	Ile	Gln	Ala	Tyr	Arg	Asn	Gly	Tyr	Thr	Ala	Ala	Pro	Cvs	Asn	Ala	Phe		
				100	-	•	_	- -	105			•		110		-		
				-														65

	Lys	Ser	Asp 115	Asp	Pro	Val	Met	Gly 120	Asn	Val	Leu	Tyr	Leu 125	Phe	Tyr	Leu
5	Ser	Lys 130	Met	Leu	Asp	Leu	Cys 135	Asp	Thr	Val	Phe	Ile 140	'Ile	Leu	Gly	Lys
10	Lys 145	Trp	Lys	Gln	Leu	Ser	Ile	Leu	His	Val	Tyr 155	His	His	Leu	Thr	Val
15	Leu	Phe	Val	Tyr	Tyr 165	Val	Thr	Phe	Arg	Ala 170	Ala	Gln	Asp	Gly	Asp 175	Ser
20	Tyr	Ala	Thr	Ile 180	Val	Leu	Asn	Gly	Phe 185	Val	His	Thr	Ile	Met 190	Tyr	Thr
25	Tyr	Tyr	Phe 195	Val	Ser	Ala	His	Thr 200	Arg	Asn	Ile	Trp	Trp 205	Lys	Lys	Tyr
30	Leu	Thr 210	Arg	Ile	Gln	Leu	Ile 215	Gln	Phe	Val	Thr	Met 220	Asn	Val	Gln	Gly
35	Tyr 225	Leu	Thr	Tyr	Ser	Arg 230	Gln	Cys	Pro	Gly	Met 235	Pro	Pro	Lys	Val	Pro 240
40	Leu	Met	Tyr	Leu	Val 245	Tyr	Val	Gln	Ser	Leu 250	Phe	Trp	Leu	Phe	Met 255	Asn
45	Phe	Tyr	Ile	Arg 260	Ala	Tyr	Val	Phe	Gly 265	Pro	Lys	Lys	Pro	Ala 270	Val	Glu
50	Glu	Ser	Lys 275	Lys	Lys	Leu										
55																
60	<211 <212)> 21 L> 14 2> DN 3> Ph	110 IA	lacty	vlum	tric	ornu	ıtum								
65	<220)>														

<22	1> CI	DS															
<22	2> (3	1)	(141)	0)												•	
<22	3> De	elta [.]	-5-De	esatı	ırase	е											:
<40	0> 2:	1 .															
atg	gct	ccg	gat	gcg	gat	aag	ctt	cga	caa	cgc	cag	acg	act	gcg	gta	48	. 10
Met	Ala	Pro	Asp	Ala	Asp	Lys	Leu	Arg	Gln	Arg	Gln	Thr	Thr	Ala	Val		
· 1				5					10					15			
																	'n
gcg	aag	cac	aat	gct	gct	acc	ata	tcg	acg	cag	gaa	cgc	ctt	tgc	agt	96	
Ala	Lys	His	Asn	Ala	Ala	Thr	Ile	Ser	Thr	Gln	Glu	Arg	Leu	Cys	Ser		
			20					25					30				20
:																	
ctg	tct	tcg	ctc	aaa	ggc	gaa	gaa	gtc	tgc	atc	gac	gga	atc	atc	tat	144	
Leu	Ser	Ser	Leu	Lys	Gly	Glu	Glu	Val	Cys	Ile	Asp	Gly	Ile	Ile	Tyr		2:
		35					40					45					2.
gac	ctc	caa	tca	ttc	gat	cat	ccc	ggg	ggt	gaa	acg	atc	aaa	atg	ttt	192	31
	Leu																31
	50				_	55		_	_		60		-				
											•						2
ggt	ggc	aac	gat	gtc	act	gta	cag	tac	aag	atg	att	cac	cca	tac	cat	240	3:
	Gly												_			•	
65					70				_	75				-	80		
									,								40
acc	gag	aag	cat	ttg	gaa	aag	atg	aag	cgt	gtc	ggc	aag	gtg	acg	gat	288	
	Glu																
				85					90					95			4:
ttc	gtc	tgc	gag	tac	aag	ttc	gat	acc	gaa	ttt	gaa	cgc	gaa	atc	aaa	336	_
Phe	Val	Cys	Glu	Tyr	Lys	Phe	Asp	Thr	Glu	Phe	Glu	Arg	Glu	Ile	Lys		5
			100					105					110			•	
														•			
cga	gaa	gtc	ttc	aag	att	gtg	cga	cga	ggc	aag	gat	ttc	ggt	act	ttg	384	5:
Arg	Glu	Val	Phe	Lys	Ile	Val	Arg	Arg	Gly	Lys	Asp	Phe	Gly	Thr	Leu		
		115					120					125					
																	6
gga	tgg	ttc	ttc	cgt	gcg	ttt	tgc	tac	att	gcc	att	ttc	ttc	tac	ctg	432	
	Trp																
	130					135					140			-			6

	cag	tac	cat	tgg	gtc	acc	acg	gga	acc	tct	tgg	ctg	ctg	gcc	gtg	gcc	480
	Gln	Tyr	His	Trp	Val	Thr	Thr	Gly	Thr	Ser	Trp	Leu	Leu	Ala	Val	Ala	
5	145					150					155					160	
	tac	gga	atc	tcc	caa	gcg	atg	att	ggc	atg	aat	gtc	cag	cac	gat	gcc	528
10	Tyr	Gly	Ile	Ser	Gln	Ala	Met	Ile	Gly	Met	Asn	Val	Gln	His	Asp	Ala	
					165					170					175		
15	aac	cac	ggg	gcc	acc	ťcc	aag	cgt	ccc	tgg	gtc	aac	gac	atg	cta	ggc	576
••	Asn	His	Gly	Ala	Thr	Ser	Lys	Arg	Pro	Trp	Val	Asn	Asp	Met	Leu	Gly	
			_	180			-		185	-			-	190		-	
20	ctc	ggt	gcg	gat	ttt	att	gat	gat	tcc	aaq	tga	ctc	taa	caq	gaa	caa	624
			Ala														
		2	195				1	200					205			U	
25			1,0					200					203				
	cac	tgg	acc	cac	cac	gct	tac	acc	aat	cac	gcc	gag	atg	gat	ccc	gat	672
30	His	Trp	Thr	His	His	Ala	Tyr	Thr	Asn	His	Ala	Glu	Met	Asp	Pro	Asp	
50		210					215				•	220					
35	agc	ttt	ggt	gcc	gaa	cca	atg	ctc	cta	ttc	aac	gac	tat	ccc	ttg	gat	720
33	Ser	Phe	Gly	Ala	Glu	Pro	Met	Leu	Leu	Phe	Asn	Asp	Tyr	Pro	Leu	Asp	
	225					230					235					240	
40	cat	ccc	gct	cgt	acc	tgg	cta	cat	cgc	ttt	caa	gca	ttc	ttt	tac	atg	768
			Ala													_	
					245					250					- 255		
45																	
	ccc	gtc	ttg	gct	gga	tac	tgg	ttg	tcc	gct	gtc	ttc	aat	cca	caa	att	816
			Leu														
50				260	_	_	_		265					270			
	ctt	gac	ctc	cag	caa	cgc	ggc	gca	ctt	tcc	gtc	ggt	atc	cgt	ctc	gac	864
55			Leu	_				_			_					_	
		•	275			3	2	280				,	285	9			
													200				
60	aac	act	ttc	att	cac	tca	cga	cac	aad	tat	aca	att	tto	taa	caa	act	912
			Phe														J 12
		290	1 11 C	116	1112	Set	295	arg	പുട	TÄL	TTQ		FIIG	тъ	лy	VTQ	
		230					43 3					300					

gtg	tac	att	gcg	gtg	aac	gtg	att	gct	ccg	ttt	tac	aca	aac	tcc	ggc	960	
Val	Tyr	Ile	Ala	Val	Asn	Val	Ile	Ala	Pro	Phe	Tyr	Thr	Asn	Ser	Gly		
305					310					315					320		5
												•		•		•	
ctc	gaa	tgg	tcc	tgg	cgt	gtc	ttt	gġa	aac	atc	atg	ctc	atg	ggt	gtg	1008	
Leu	Glu	Trp	Ser	Trp	Arg	Val	Phe	Gly	Asn	Ile	Met	Leu	Met	Gly	Val		10
				325				•	330					335			
gcg	gaa	tcg	ctc	gcg	ctg	gcg	gtc	ctg	ttt	tcg	tta	tca	cac	aat	ttc	1056	15
				Ala								_					
			340					345					350				
																	20
gaa	tcc	aça	gat	cgc	gat	cca	acc	acc	cca	cta	222	aao	aca	aaa	a a a	1104	20
				Arg				_		_		_	_		_		
GIU	Ser	355	ASD	Arg	vsħ	PIO	360		PIO	Leu	гуѕ	_	1111	· GTĀ	GIU		•
		333					360	•				365					25
													•				
				ttc					•			_				1152	
Pro		Asp	Trp	Phe	Lys		Gln	Val	Glu	Thr	Ser	Cys	Thr	Tyr	Gly		30
	370					375					380						
															•	•	
gga	ttc	ctt	tcc	ggt _.	tgc	ttc	acg	gga	ggt	ctc	aac	ttt	cag	gtt	gaa	1200	35
Gly	Phe	Leu	Ser	Gly	Cys	Phe	Thr	Gly	Gly	Leu	Asn	Phe	Gln	Val	Glu		
385					390					395					400		
	•																40
cac	cac	ttg	ttc	cca	cgc	atg	agc	agc	gct	tgg	tat	ccc	tac	att	gcc	1248	
His	His	Leu	Phe	Pro	Arg	Met	Ser	Ser	Ala	Trp	Tyr	Pro	Tyr	Ile	Ala		
				405					410					415			45
ccc	aag	gtc	cgc	gaa	att	tgc	gcc	aaa	cac	ggc	gtc	cac	tac	gcc	tac	1296	
Pro	Lys	Val	Arg	Glu	Ile	Cys	Ala	Lys	His	Gly	Val	His	Tyr	Ala	Tyr		50
			420					425					430				30
tac	ccg	tgg	atc	cac	caa	aac	ttt	ctc	tcc	acc	gtc	cgc	tac	atg	cac	1344	
				His							_	_		_			55
-		435					440					445					
												- •					
aca	acc	aaa	acc	ggt	acc	aac	taa	cac	can	ato	acc	aga	gaa	aat	CCC	1392	60
				Gly				_	_	_	_	•	_				
	450			3		455	1	9		-100	460	y	 4	27011			
						200					400						65

1410

ttg acc gga cgg gcg taa

	Leu	Thr	Gly	Arg	Ala												
5	465					470											
10	<211	0> 2: 1> 4 2> P:	69														
15				dact	ylum	tri	corn	utum								•	
20)> 2: Ala		Asp	Ala 5	Asp	Lys	Leu	Arg	Gln 10	Arg	Gln	Thr	Thr	Ala 15	Val	
25	Ala	Lys	His	Asn 20	Ala	Ala	Thr	Ile	Ser 25	Thr	Gln	Glu	Arg	Leu 30	Cys	Ser	
30	Leu	Ser	Ser 35	Leu	Lys	Gly	Glu	Glu 40	Val	Cys	Ile	Asp	Gly 45	Ile	Ile	Tyr	
35	Asp	Leu 50	Gln	Ser	Phe	Asp	His 55	Pro	Gly	Gly	Glu	Thr 60	Ile	Lys	Met	Phe	
40	Gly 65	Gly	Asn	Asp	Val	Thr 70	Val	Gln	Tyr	Lys	Met 75	Ile	His	Pro	Tyr	His 80	
45	Thr	Glu	Lys	His	Leu 85	Glu	Lys	Met	Lys	Arg 90	Val	Gly	Lys	Val	Thr 95	Asp	
50	Phe	Val	Cys	Glu 100	Tyr	Lys	Phe	Asp	Thr 105	Glu	Phe	Glu	Arg	Glu 110	Ile	Lys	
55	Arg	Glu	Val 115	Phe	Lys	Ile	Val	Arg 120	Arg	Gly	Lys	Asp	Phe 125	Gly	Thr	Leu	
60	Gly	Trp 130	Phe	Phe	Arg	Ala	Phe 135	Cys	Tyr	Ile	Ala	Ile 140	Phe	Phe	Tyr	Leu	
65	Gln	Tyr	His	Ттр	Val	Thr	Thr	Gly	Thr	Ser	Trp	Leu	Leu	Ala	Val	Ala	

	145					150					155					160		
•	Tyr	Gly	Ile	Ser	Gln 165	Ala	Met	Ile	Gly	Met 170	Asn	Val	Gln	His	Asp 175	Ala		5
	Asn	His	Gly	Ala 180	Thr	Ser	Lys	Arg	Pro 185	Trp	Val	Asn	Asp	Met 190	Leu	Gly		10
	Leu	Gly	Ala 195	Asp	Phe	Ile	Gly	Gly 200	Ser	Lys	Trp	Leu	Trp 205	Gln	Glu	Gln	·	15
	His	Trp 210	Thr	His	His	Ala	Tyr 215	Thr	Asn	His	Ala	Glu 220	Met	Asp	Pro	Asp		20
	Ser 225	Phe	Gly	Ala	Glu	Pro 230	Met	Leu	Leu	Phe	Asn 235	Asp	Tyr	Pro	Leu	Asp 240		25
	His	Pro	Ala	Arg	Thr 245	Trp	Leu	His	Arg	Phe 250	Gln	Ala	Phe	Phe	Tyr 255	Met		30
	Pro	Val	Leu	Ala 260	Gly	Туr	Trp	Leu	Ser 265	Ala	Val	Phe	Asn	Pro 270	Gln	Ile		35
	Leu	Asp	Leu 275	Gln	Gln	Arg	Gly	Ala 280	Leu	Ser	Val	Gly	Ile 285	Arg	Leu	Asp		40
	Asn	Ala 290	Phe	Ile	His	Ser	Arg 295	Arg	Lys	Туr	Ala	Val 300	Phe	Trp	Arg	Ala		45
	Val 305	Tyr	Ile	Ala	Val	Asn 310	Val	Ile	Ala	Pro	Phe 315	Tyr	Thr	Asn	Ser	Gly 320		50
	Leu	Glu	Trp	Ser	Ттр 325	Arg	Val	Phe	Gly	Asn 330	Ile	Met	Leu	Met	Gly 335	Val		55
	Ala	Glu	Ser	Leu 340	Ala	Leu	Ala	Val	Leu 345	Phe	Ser	Leu		His 350	Asn	Phe		60
	Glu	Ser	Ala 355	Asp	Arg	Asp	Pro	Thr 360	Ala	Pro	Leu	Lys	Lys 365	Thr	Gly	Glu		65

	Pro	Val 370	Asp	Trp	Phe	Lys	Thr 375		Val	Glu	Thr	Ser 380	Cys	Thr	Туr	Gly	
5																	
		Phe	Leu	Ser	Gly	Cys	Phe	Thr	Gly	Gly	Leu	Asn	Phe	Gln	Val	Glu	
	385					390					395					400	
10			_		_						٠					•	
	HIS	His	Leu	Phe		Arg	Met	Ser	Ser		Trp	Tyr	Pro	Tyr		Ala	
					405					410					415		
15	Pro	Taro	17-7	7 ~~	C1	73 -	0		T				•	_		_	
	PIO	гус	val	Arg 420	GIU	ıте	Cys	Ala		HIS	GIY	Val	His		Ala	Tyr	
				420					425					430			
20	Tvr	Pro	TYTO	Ile	Hie	Gln	Δen	Phe	Len	Sor	Wh re	77-7	7~~	//h ***	Mot	77.i ~	
	-71	110	435	110	1115	GIII	VOII	440	Leu	Ser	1111	vai	445	туг	мес	HIS	
								440					443				
25	Ala	Ala	Gly	Thr	Glv	Ala	Asn	Tro	Ara	Gln	Met	Ala	Ara	Glu	λen	Pro	
		450	-				455		9			460	9	oru	11311	110	
30											:						
30	Leu	Thr	Gly	Arg	Ala						·						
	465											_					
35																	
	<210	> 23									•						
40	<211	> 13	44														
	<212																
	<213	> Ca	enor	habd	litis	ele	gans	5									
45																	
	<220																
	<221			1 2 4 4													
50	<222 <223					×2.00											
	~243	, De	ı ca-	J-De	sacu	ırase											
	<400	> 23															
55	atg			cga	gag	caa	gag	cat	gag	cca	ttc	ttc	att	aaa	att	gat .	48
	Met																10
	1				5					10				-3 -	15	<u>-</u> -	
60																	
	gga	aaa	tgg	tgt	caa	att	gac	gat	gct	gtc	ctg	aga	tca	cat	cca	ggt	96
	Gly :	Lys	Trp	Cys	Gln	Ile	Asp	Asp	Ala	Val	Leu	Arg	Ser	His	Pro	Gly	
65																	

			20					25					30				
								2.5					30				
ggt	agt	gca	att	act	acc	tat	aaa	aat	atg	gat	gcc	act	acc	gta	ttc	144	;
Gly	Ser	Ala	Ile	Thr	Thr	Tyr	Lys	Asn	Met	Asp	Ala	Thr	Thr	Val	Phe	•	
		35					40	•				45					
																	1
cac	aca	ttc	cat	act	ggt	tct	aaa	gaa	gcg	tat	caa	tgg	ctg	aca	gaa	192	
His	Thr	Phe	His	Thr	Gly	Ser	Lys	Glu	Ala	Tyr	Gln	Trp	Leu	Thr	Glu		
	50				•	55					60						1:
ttg	aaa	aaa	gag	tgc	cct	aca	caa	gaa	cca	gag	atc	cca	gat	att	aag	240	
Leu	Lys	Lys	Glu	Cys	Pro	Thr	Gln	Glu	Pro	Glu	Ile	Pro	Asp	Ile	Lys		2
65	•				70					75					80		
gat	gac	cca	atc	aaa	gga	att	gat	gat	gtg	aac	atg	gga	act	ttc	aat	288	2
Asp	Asp	Pro	Ile	Lys	Gly	Ile	Asp	Asp	Val	Asn	Met	Gly	Thr	Phe	Asn		
				85					90					95			
										;	,						3
att	tct	gag	aaa	cga	tct	gcc	caa	ata	aat	aaa	agt	ttc	act	gat	cta	336	
Ile	Ser	Glu	Lys	Arg	Ser	Ala	Gln	Ile	Asn	Lys	Ser	Phe	Thr	Asp	Leu		
			100					105		•	•		110				3:
											٠						
cgt	atg	cga	gtt	cgt	gca	gaa	gga	ctt	atg	gat	gga	tct	cct	ttg	ttc	384	
Arg	Met	Arg	Val	Arg	Ala	Glu	Gly	Leu	Met	Asp	Gly	Ser	Pro	Leu	Phe		4
		115					120					125					
												•					
											att					432	4
Tyr		Arg	Lys	Ile	Leu	Glu	Thr	Ile	Phe	Thr	Ile	Leu	Phe	Ala	Phe		
	130					135					140						
																	5
											gct			_		480	
	Leu	Gln	Tyr	His		Tyr	Tyr	Leu	Pro		Ala	Ile	Leu	Met	Gly		
145					150					155					160		5
			_0														
											gaa					528	
Val	Ala	Trp	GIn	Gin	Leu	Gly	Trp	Leu	Ile	His	Glu	Phe	Ala	His	His		

cag ttg ttc aaa aac aga tac tac aat gat ttg gcc agc tat ttc gtt

Gln Leu Phe Lys Asn Arg Tyr Tyr Asn Asp Leu Ala Ser Tyr Phe Val

	,			180					185					190			
5 .								tca Ser 200					Lys				624
10			133					200					205				
								aat									672
15	Asn	Val 210	His	His	Ala	Ala	Thr 215	Asn	Val	Val	Gly	Arg 220	Asp	Gly	Asp	Leu	
į	gat	tta	gtc	cca	ttc	tat	gct	aca	gtg	gca	gaa	cat	ctc	aac	aat	tat	720
20		Leu	Val	Pro	Phe		Ala	Thr	Val	Ala		His	Leu	Asn	Asn	-	
	225					230					235					240	
25	tct	cag	gat	tca	tgg	gtt	atg	act	cta	ttc	aga	tgg	caa	cat	gtt	cat	768
	Ser	Gln	Asp	Ser		Val	Met	Thr	Leu	Phe	Arg	Trp	Gln	His	Val	His	
					245					250					255		
30	tgg	aca	ttc	atg	tta	cca	ttc	ctc	cgt	ctc	tcg	tgg	ctt	ctt	cag	tca	816
								Leu							-		
35				260					265					270			
	atc	att	ttt	gtt	agt	cag	atg	сса	act	cat	tat	tat	gac	tat	tac	aga	864
40								Pro								_	
-10			275					280					285				
	aat	act	aca	att	tat	gaa	car	gtt	aat	ctc	tct	tta	Cac	taa	act	taa	912
45								Val									712
		290					295					300					
50	tca	tta	aat	C 3 3	++~	+ > +	++-	a t a									0.50
								cta Leu									960
	305					310				•	315			3		320	
55																	
								gtt									100
60	PHE	rne	ьeu	vaı	Ser 325	нıs	ren	Val	GIY	Gly 330	Phe	Leu	Leu	Ser		Val	
					223					330					335		

1056

gtt act ttc aat cat tat tca gtg gag aag ttt gca ttg agc tcg aac

 65 Val Thr Phe Asn His Tyr Ser Val Glu Lys Phe Ala Leu Ser Ser Asn

			340					345					350				
atc	atg	tca	aat	tac	gct	tgt	ctt	caa	atc	atg	acc	aca	aga	aat	atg	1104	
Ile	Met	Ser	Asn	Tyr	Ala	Cys	Leu	Gln	Ile	Met	Thr	Thr	Arg	Asn	Met	•	
		355					360	•				365					
																	1
aga	cct	gga	aga	ttc	att	gac	tgg	ctt	tgg	gga	ggt	ctt	aac	tat	cag	1152	
	Pro														-		
	370					375	-		-		380			-4-			
																	,
att	gag	cac	cat	ctt	ttc	cca	асσ	ato	cca	cga	cac	aac	tta	220	act	1200	
	Glu															1200	_
385				Dea	390	110	1111	Met	FIO	395	urs	ASII	Leu	ASII			2
303					390					393					400		
at t	a+~	000	att	~++													
	atg															1248	2
vaı	Met	Pro	Leu		гуs	GIU	Pne	Ala		Ala	Asn	Gly	Leu		Tyr		
				405			•		410					415			
										:							. 3
	gtc															1296	
Met	Val	Asp	Asp	Tyr	Phe	Thr	Gly	Phe	Trp	Leu	Glu	Ile	Glu	Gln	Phe		•
			420	, ,				425					430				3
											•						
cga	aat	att	gca	aat	gtt	gct	gct	aaa	ttg	act	aaa	aag	att	gcc	tag	1344	
Arg	Asn	Ile	Ala	Asn	Val	Ala	Ala	Lys	Leu	Thr	Lys	Lys	Ile	Ala			4
		435					440					445					
<210	> 24																
<211	.> 44	7													·		
<212	> PR	T															
<213	> Ca	enor	habd	litis	ele	gans	5										•
<400	> 24																
Met	Val	Leu	Arg	Glu	Gln	Glu	His	Glu	Pro	Phe	Phe	Ile	Lvs	Ile	Asp		:
1		•	3	5					10				,	15			
_				-										10			

87

Gly Lys Trp Cys Gln Ile Asp Asp Ala Val Leu Arg Ser His Pro Gly

Gly Ser Ala Ile Thr Thr Tyr Lys Asn Met Asp Ala Thr Thr Val Phe

25

30

20

			3.	•				40	'				45			
5	His	s Thr 50		His	Thr	Gly	Ser 55		Glu	Ala	Tyr	Gln	Trp	Leu	Thr	Glu
10	Leu 65		: Lys	Glu	Cys	Pro 70		Gln	Glu	Pro	G1u 75	Ile	Pro	Asp	Ile	Lys 80
15	Asp	Asp	Pro	Ile	Lys 85		Ile	Asp	Asp	Val 90		Met	Gly	Thr	Phe 95	Asn
20	lle	e Ser	Glu	Lys 100	Arg	Ser	Ala	Gln	Ile 105	Asn	Lys	Ser	Phe	Thr 110	Asp	Leu
25	Arg	Met	Arg	Val	Arg	Ala	Glu	Gly 120	Leu	Met	Asp	Gly	Ser 125	Pro	Leu	Phe
30	Tyr	11e	Arg	Lys	Ile	Leu	Glu 135	Thr	Ile	Phe	Thr	Ile 140	Leu	Phe	Ala	Phe
35	Туг 145		Gln	Tyr	His	Thr 150	Tyr	Tyr	Leu	Pro	Ser 155	Ala	Ile	Leu	Met	Gly 160
40	Val	Ala	Trp	Gln	Gln 165	Leu	Gly	Trp	Leu	Ile 170	His	Glu	Phe	Ala	His 175	His
45	Gln	Leu	Phe	Lys 180	Asn	Arg	Tyr	Tyr	Asn 185	Asp	Leu	Ala	Ser	Туг 190	Phe	Val
50	Gly	Asn	Phe 195	Leu	Gln	Gly	Phe	Ser 200	Ser	Gly	Gly	Trp	Lys 205	Glu	Gln	His
55	Asn	Val 210	His	His	Ala		Thr 215	Asn	Val	Val	Gly	Arg 220	Asp	Gly	Asp	Leu
60		Leu	Val	Pro	Phe	Tyr 230	Ala	Thr	Val	Ala	Glu 235	His	Leu	Asn	Asn	Tyr 240
	Ser	Gln	Asp	Ser	יעריי	Val	Met	ጥኮዮ	ī.eu	Dhe	λνα	The same	C1 5	ui ~	1101	176 ~

Trp	Thr	Phe	Met 260	Leu	Pro	Phe	Leu	Arg 265	Leu	Ser	Trp	Leu	Leu 270	Gln	Ser		
Ile	Ile	Phe 275	Val	Ser	Gln	Met	Pro 280	Thr	His	Tyr	Tyr	Asp 285	Tyr	Tyr	Arg		·5
Asn	Thr 290	Ala	Ile	Tyr	Glu	Gln 295	Val	Gly	Leu	Ser	Leu 300	His	Trp	Ala	Trp		10
Ser 305	Leu	Gly	Gln	Leu	Tyr 310	Phe	Leu	Pro	Asp	Trp 315	Ser	Thr	Arg	Ile	Met 320		15
Phe	Phe	Leu	Val	Ser 325	His	Leu	Val	Gly	Gly 330	Phe	Leu	Leu	Ser	His	Val		20
Val	Thr	Phe	Asn 340	His	туг	Ser	Val	Glu 345	Lys	Phe	Ala	Leu	Ser 350	Ser	Asn		25
Ile	Met	Ser 355	Asn	Tyr	Ala	Cys	Leu 360	Gln	Ile	Met	Thr	Thr 365	Arg	Asn	Met		30
Arg	Pro 370	Gly	Arg	Phe	Ile	Asp 375	Trp	Leu	Trp	Gly	Gly 380	Leu	Asn	Tyr	Gln		. 35
Ile 385	Glu	His	His	Leu	Phe 390	Pro	Thr	Met	Pro	Arg 395	His	Asn	Leu	Asn	Thr 400		40
Val	Met	Pro	Leu	Val 405	Lys	Glu	Phe	Ala	Ala 410	Ala	Asn	Gly	Leu	Pro 415	Tyr		45
Met	Val	Asp	Asp 420	Tyr	Phe	Thr	Gly	Phe 425	Trp	Leu	Glu	Ile	Glu 430	Gln	Phe		50
Arg	Asn	Ile 435	Ala	Asn	Val	Ala	Ala 440	Lys	Leu	Thr	Lys	Lys 445	Ile	Ala			55
<210	> 25	i.															60
<211	> 95	4															

	<212	2 > DI	AV														
	<213	3> M	orti	erell	la a	lpina	£										
5																	
	<220)>															
	<221	L> CI	os														
10	<222	2> (:	1)	(954))												
	<223	3> D	elta	-6-E	longa	ase											
15	<400)> 2!	5														
	atg	gcc	gcc	gca	atc	ttg	gac	aag	gtc	aac	ttc	ggc	att	gat	cag	ccc	48
	Met	Ala	Ala	Ala	Ile	Leu	Asp	Lys	Val	Asn	Phe	Gly	Ile	Asp	Gln	Pro	
20	1				5					10					15		
	ttc	gga	atc	aag	ctc	gac	acc	tac	ttt	gct	cag	gcc	tat	gaa	ctc	gtc	96
25	Phe	Gly	Ile	Lys	Leu	Asp	Thr	Tyr	Phe	Ala	Gln	Ala	Tyr	Glu	Leu	Val	
				20					25					30			
30	acc	gga	aag	tcc	atc	gac	tcc	ttc	gtc	ttc	cag	gag	ggc	gtc	acg	cct	144
	Thr	Gly	Lys	Ser	Ile	Asp	Ser	Phe	Val	Phe	Gln	Glu	Gly	Val	Thr	Pro	
			35					40					45				
35																	
	ctc	tcg	acc	cag	aga	gag	gtc	gcc	atg	tgg	act	atc	act	tac	ttc	gtc	192
	Leu		Thr	Gln	Arg	Glu	Val	Ala	Met	Trp	Thr		Thr	Tyr	Phe	Val	
40		50					55					60					
				ggt													240
45		He	Phe	Gly	GIY		Gln	Ile	Met	Lys		Gln	Asp	Ala	Phe		
	65					70					75					80	
50				ctc									_		_		288
	Leu	Lys	PIO	Leu	85	тте	Leu	HIS	ASII		Leu	Leu	Thr	11e		ser	
					83					90					95		
55	aaa	tca	cta	ttg	ctc	cta	ttc	atc	a a a	220	cta	atc	ccc	atc	ctc	acc	336
				Leu													330
	GLy	Jei	Deu	100	Deu	Dea	Fire	116	105	ASII	Deu	vai	FIO	110	ьеu	A1G	
60				100					100					110			
	aga	aac	gga	ctt	ttc	tac	acc	atc	tac	gac	gac	aat	acc	taa	acc	cag	384
				Leu			_		_	-	-		_			_	_ • • •
65	_		115					120					125	F			

cgc	ctc	gag	ctc	ctc	tac	tac	ctc	aac	tac	ctg	gtc	aag	tac	tgg	gag	432	
Arg	Leu	Glu	Leu	Leu	Tyr	Tyr	Leu	Asn	Tyr	Leu	Val	Lys	Tyr	Trp	Glu		
	130					135					140						5
														,		•	
ttg	gcc	gac	acc	gtc	ttt	ttg	gtc	cťc	aag	aag	aag	cct	ctt	gag	ttc	480	
Leu	Ala	Asp	Thr	Val	Phe	Leu	Val	Leu	Lys	Lys	Lys	Pro	Leu	Glu	Phe		10
145					150					155					160		
ctg	cac	tac	ttc	cac	cac	tcg	atg	acc	atg	gtt	ctc	tgc	ttt	gtc	cag	528	15
Leu	His	Tyr	Phe	His	His	Ser	Met	Thr	Met	Val	Leu	Cys	Phe	Val	Gln		
			•	165					170					175			
																	20
ctt	gga	gga	tac	act	tca	gtg	tcc	tgg	gtc	cct	att	acc	ctc	aac	ttg	576	
Leu	Gly	Gly	Tyr	Thr	Ser	Val	Ser	Trp	Val	Pro	Ile	Thr	Leu	Asn	Leu		
			180					185					190				25
																	23
act	gtc	cac	gtc	ttc	atg	tac	tac	tac	tac	atg	cgc	tcc	gct	gcc	ggt .	624	
				Phe										-			20
		195				_	200	_	_	•		205			-		30 -
att	cac	atc	taa	tgg	aaq	caq	tac	tta	acc	act	ctc	cag	atc	atc	caq	672	26
				Trp	•												35
	210		-	-	-	215	-				220					•	
ttc	gtt	ctt	gac	ctc	gga	ttc	atc	tac	ttc	tac	acc	tac	acc	tac	ttc	720	
				Leu													
225			-		230			-		235		-		-	240		
				•													45
qcc	ttc	acc	tac	ttc	ccc	taa	act	ccc	aac	atc	aac	aaσ	tac	acc	aat	768	
				Phe													
			•	245					250			3	-3-	255			50
acc	gag	aat	act	gct	ctc	ttt	aac	tac	gga	ctc	ctc	tcc	agc	tat	ctc	816	
			_	Ala				_					_				55
		3	260				,	265	1				270	-1-			
			•										•				
tta	ctc	ttt	atc	aac	tta	tac	cac	att.	acc	tac	aat	acc	aan	acc	aao	864	60
				Asn													
		275					280			-1-		285	_,,0		_,_		
																	65

5						gga Gly											912
10						aag Lys 310			-		_			taa			954
15	<211 <212	0> 20 L> 3: 2> PI B> Mo	17 RT	erell	la al	lpina	à										
25)> 20 Ala		Ala	Ile 5	Leu	Asp	Lys	Val	Asn 10	Phe	Gly	Ile	Asp	Gln 15	Pro	
30	Phe	Gly	Ile	Lys 20	Leu	Asp	Thr	Туг	Phe 25	Ala	Gln	Ala	Туг	Glu 30	Leu	Val	
35	Thr	Gly	Lys 35	Ser	Ile	Asp	Ser	Phe ·40	Val	Phe	Gln	Glu	Gly 45	Val	Thr	Pro	
40	Leu	Ser 50	Thr	Gln	Arg	Glu	Val 55	Ala	Met	Trp	Thr	Ile 60	Thr	Tyr	Phe	Val	
45	Val 65	Ile	Phe	Gly	Gly	Arg 70	Gln	Ile	Met	Lys	Ser 75	Gln	Asp	Ala	Phe	Lys 80	
50	Leu	Lys	Pro	Leu	Phe 85	Ile	Leu	His	Asn	Phe 90	Leu	Leu	Thr	Ile	Ala 95	Ser	
55	Gly	Ser	Leu	Leu 100	Leu	Leu	Phe	Ile	Glu 105	Asn	Leu	Val	Pro	Ile 110	Leu	Ala	
60	Arg	Asn	Gly 115	Leu	Phe	Tyr	Ala	Ile 120	Cys	Asp	Asp	Gly	Ala 125	Trp	Thr	Gln	

	Arg	Leu 130	Glu	Leu	Leu	Tyr	туr 135	Leu	Asn	Tyr	Leu	Val 140	Lys	Tyr	Trp	Glu				
٠	Leu L45	Ala	Asp	Thr	Val	Phe	Leu	Val	Leu	Lys	Lys 155	Lys	Pro	Leu	Glu	Phe				
1	Leu	His	Tyr	Phe	His 165	His	Ser	Met	Thr	Met 170	Val	Leu	Cys	Phe	Val	Gln	. •			10
1	Leu	Gly	Gly			Ser	Val	Ser			Pro	Ile	Thr			, Leu				13
1	Thr	Val	His	180 Val	Phe	Met	Tyr	туr	185 Tyr	Tyr	Met	Arg	Ser	190 Ala	Ala	Gly	٠			20
,	/al	Ara	195 Ile	Tro	Trp	Lvs	Gln	200 Tyr	Leu	Thr	Thr	Leu	205 Gln	Ile	Val	Gln	٠			2:
		210					215	•				220								30
	25?	Val	Leu	Asp	Leu	Gly 230	Phe	Ile	Tyr	Phe	Cys 235	Ala	Tyr	Thr	Tyr	Phe 240				3:
I	la	Phe	Thr	Tyr	Phe 245	Pro	Trp	Ala	Pro	Asn 250	Val	Gly	Lys	Cys	Ala 255	Gly			•	
7	hr	Glu	Gly	Ala 260	Ala	Leu	Phe	Gly	Cys 265	Gly	Leu	Leu	Ser	Ser 270	Tyr	Leu				4
1	eu		Phe 275	Ile	Asn	Phe	Tyr	Arg 280	Ile	Thr	Tyr	Asn	Ala 285	Lys	Ala	Lys		•		4
F	la	Ala 290	Lys	Glu	Arg	Gly	Ser 295	Asn	Phe	Thr	Pro	Lys 300	Thr	Val	Lys	Ser				50
	31y 305	Gly	Ser	Pro	Lys	Lys 310	Pro	Ser	Lys	Ser	Lys 315	His	Ile							5
						310														6
)> 27 > 13									•									6

<213> Thraustochytrium

5	<220)>															
	<221	l> CI	os														
	<222	2> (1	L)	(1320))												
10	<223	3> D€	elta-	-5-De	esatı	ırase	9										
	<400)> 27	7														
15	atg	ggc	aag	ggc	agc	gag	ggc	cgc	agc	gcg	gcg	cgc	gag	atg	acg	gcc	48
	Met	Gly	Lys	Gly	Ser	Glu	Gly	Arg	Ser	Ala	Ala	Arg	Glu	Met	Thr	Ala	
	1				5					10					15		
20																	
20	gag	aca	aac	aac	gac	aaq	cgg	aaa	acq	att	ctg	atc	gag	ggc	gtc	ctg	96
						_	-								Val		
			-	20		-,, -	5	-,-	25					30			
25																	
	tac	gac	aca	aca	aac	+++	aad	cac	cca	aac	aat	tea	atc	atc	aac	ttc	144
															Asn		
30	IYL	ASP		1111	ASII	File	Буѕ	40	PIO	GIY	GīÀ	361		116	VOII	FIIC	
			35					40					45				
35					•	•									cgc		192
	Leu		Glu	Gly	Glu	Ala		Val	Asp	Ala	Thr		Ala	Tyr	Arg	Glu	
		50					55					60					
40																	
	ttt	cat	cag	cgg	tcc	ggc	aag	gcc	gac	aag	tac	ctc	aag	tcg	ctg	ccg	240
	Phe	His	Gln	Arg	Ser	Gly	Lys	Ala	Asp	Lys	Tyr	Leu	Lys	Ser	Leu	Pro	
45	65					70					75					80	
	aag	ctg	gat	gcg	tcc	aag	gtg	gag	tcg	cgg	ttc	tcg	gcc	aaa	gag	cag	288
50	Lys	Leu	Asp	Ala	Ser	Lys	Val	Glu	Ser	Arg	Phe	Ser	Ala	Lys	Glu	Gln	
					85					90					95		
55	gcg	cgg	cgc	gac	gcc	atg	acg	cgc	gac	tac	gcg	gcc	ttt	cgc	gag	gag	336
33	Ala	Arg	Arg	Asp	Ala	Met	Thr	Arg	Asp	Tyr	Ala	Ala	Phe	Arg	Glu	Glu	
				100					105					110			
60	ctc	gtc	gcc	gag	ggg	tac	ttt	gac	ccg	tcg	atc	ccg	cac	atg	att	tac	384
	Leu	Val	Ala	Glu	Gly	Tyr	Phe	Asp	Pro	Ser	Ile	Pro	His	Met	Ile	Tyr	
			115					120					125				

	cgc	gtc	gtg	gag	atc	gtg	gcg	ctc	ttc	gcg	ctc	tcg	ttc	tgg	ctc	atg	432	
	Arg	Val	Val	Glu	Ile	Val	Ala	Leu	Phe	Ala	Leu	Ser	Phe	Trp	Leu	Met	•	
	•	130					135					140	•					5
												,						
	tcc	aag	gcc	tcg	ccc	acc	tcg	ctc	gtg	ctg	ggc	gţg	gtg	atg	aac	ggc	480	
	Ser	Lys	Ala	Ser	Pro	Thr	Ser	Leu	Val	Leu	Gly	Val	Val	Met	Asn	Gly		10
	145					150					155					160		
	att	gcg	cag	ggc	cgc	tgc	ggc	tgg	gtc	atg	cac	gag	atg	ggc	cac	ggg	528	15
	Ile	Ala	Gln	Gly	Arg	Cys	Gly	Trp	Val	Met	His	Glu	Met	Gly	His	Gly	•	
					165					170					175			
į														•				20
	: tcg	ttc	acg	ggc	gtc	atc	tgg	ctc	gac	gac	cgg	atg	tgc	gag	ttc	ttc	576	20
	_		_	Glv	_							_						
				180			_		185	_			_	190				25
								•	•								•	25
	tac	aac	atc	ggc	tac	aac	ato	agc	aaa	cac	tac	taa	aaq	aac	caq	cac	624	
				Gly												_		
	-3-	2	195	2	-3-			200					205					30
	agc	aaα	cac	cac	acc	aca	CCC	aac	cac	ctc	gag	cac	gat	atc	gat	ctc	672	
	_	_		His	_				_				_	_	_			35
		210					215			200	014	220	1105	142	p		,	
							223											
	aac	aca	cta	ccc	cta	atc	acc	++ +	aac	gag	cac	atc	ata	cac	aag	afc	720	40
		_	_	Pro	_	_	_				_	_		_	_	_		
	225					230					235			9	2	240		
						230					233					210		45
	aac	CCG	gga	tcg	cta	cta	aca	ctic	taa	cta	cac	ata	Carr	aca	tac	ctc	768	
				Ser													, 00	
	2,2	110	017	001	245	Deu	1124	Deu		250	9	var	O.I.I.	1,114	255	LCu		50
					2.3					230					233	. •		
	ttt	aca	ccc	gtc	tca	tac	cta	ctc	atc	aac	ctt	aac	taa	acq	ctc	tac	816	
				Val		_											010	55
	1110	niu	110	260	001	Cys	LCu		265	O ₁	200	OL,	115	270	204	-3-		
				200					200					2,0				
	cta	cac	cca	cgc	tac	ato	cta	cac	acc	aac	כממ	Cac	ato	gag	ttc	atc	864	60
				Arg														
	Leu	****	275	y	~ y .	110 C	Leu	280	- 111	ج رے	· ·	****	285	Jiu	1116	141		
			٠.٠					200					203					65

	tgg	atc	ttc	gcg	cgc	tac	att	ggc	tgg	ttc	tcg	ctc	atg	ggc	gct	ctc	912
	Trp	Ile	Phe	Ala	Arg	Tyr	Ile	Gly	Trp	Phe	Ser	Leu	Met	Gly	Ala	Leu	
5		290					295					300					
																	•
	ggc	tac	tcg	ccg	ggc	acc	tcg	gtc	ggg	atg	tac	ctg	tgc	tcg	ttc	ggc	960
10	Gly	Tyr	Ser	Pro	Gly	Thr	Ser	Val	Gly	Met	Tyr	Leu	Cys	Ser	Phe	Gly	
	305					310					315					320	
15	ctc	ggc	tgc	att	tac	att	ttc	ctg	cag	ttc	gcc	gtc	agc	cac	acg	cac	1008
13	Leu	Gly	Cys	Ile	Tyr	Ile	Phe	Leu	Gln	Phe	Ala	Val	Ser	His	Thr	His	
		_			325					330					335		
20	ctg	ccg	ata	acc	aac	ccq	gag	gac	caq	cta	cac	taa	ctc	gag	tac	aca	1056
	_	_			Asn	-		_	_	_							
				340				_	345			-		350	-		
25																	
	acc	gac	cac	acσ	gtg	aac	att	agc	acc	ааσ	tcc	t.aa	ctc	atc	aca	taa	1104
				_	Val			_		_				_	_		
30			355					360		2,0	00+	110	365	,,,	. * * * *	115	
								500					303				
	taa	atα	tca	aac	ctg	aac	ttt	cad	atc	gag	cac	CAC	ctc	ttc	ccc	acq	1152
35					Leu	•											1100
		370	501	11011			375	0.2.1.		014		.380	DC C	1110	110	1111	
							5.5					300					
40	aca	cca	сад	ttc	cgc	ttc	aaq	gaa	atc	agt	cct	cac	atc	aaa	acc	ctc	1200
					Arg												1200
	385				5	390		0			395	9				400	
45																	
	ttc	aag	cac	cac	aac	ctc	cca	tac	tac	gac	cta	CCC	tac	aca	agc	aca	1248
	_				Asn												2210
50		_, ~	9		405	200	110	-7-	- , -	410	Lou	110			415	1124	
					105					410					413		
	atc	tca	acc	acc	ttt	acc	aat	ctt	tat	tcc	atc	aac	cac	tca	atc	aac	1296
55					Phe												1250
				420				200	425	Jez	var	OLY		430	vai	Gry	
				-20					207					400			
60	acc	gac	acc	aaα	aag	cag	gac	taa									1320
					Lys			-94									1720
		حير حد د	435	_,5	_, 5	J-11		440									
65			-55					110									

<210	> 28	3															
<211	> 43	39															
<212	?> PI	T															
<213	> Ti	nraus	stoch	nytri	ium									•		•	
								•									
<400	> 28	3															1
Met	Gly	Lys	Gly	Ser	Glu	Gly	Arg	Ser	Ala	Ala	Arg	Glu	Met	Thr	Ala		
1				5					10	٠				15			
					٠												1:
Glu	Ala	Asn	Gly	Asp	Lys	Arg	Lys	Thr	Ile	Leu	Ile	Glu	Gly	Val	Leu		
			20	_	_		_	25					30				
																	2
Tyr	asA	Ala	Thr	Asn	Phe	Lys	His	Pro	Gly	Gly	Ser	Ile	Ile	Asn	Phe		_
-	-	35				-	40		-	-		45					
																	2
Leu	Thr	Glu	Glv	Glu	Ala	Gly	Val	Asp	Ala	Thr	Gln	Ala	Tyr	Arg	Glu		2
	50		-			55		-			60		-	J			
																	2
Phe	His	Gln	Ara	Ser	Glv	Lvs	Ala	Asp	Lvs	Tvr	Leu	Lvs	Ser	Leu	Pro		3
65			5		70					75					80		
																	_
Lvs	Leu	Asp	Ala	Ser	Lvs	Va1	Glu	Ser	Arq	Phe	Ser	Ala	Lvs	Glu	Gln		3
•		-		85	-				90	,			-	95		•	
Ala	Arg	Arg	Asp	Ala	Met	Thr	Arg	Asp	Tyr	Ala	Ala	Phe	Arg	Glu	Glu		4
	J	J	100					105	-				110				
Leu	Val	Ala	Glu	Gly	Tvr	Phe	Asp	Pro	Ser	Ile	Pro	His	Met	Ile	Tvr		4
		115		2			120					125			-1-		
Ara	Val	Val	Glu	Ile	Val	Ala	Leu	Phe	Ala	Leu	Ser	Phe	Trp	Leu	Met		5
•	130					135					140						
Ser	Lvs	Ala	Ser	Pro	Thr	Ser	Leu	Val	Leu	Glv	Val	Val	Met	Asn	Glv		5
145					150					155					160		
Ile	Ala	Gln	Glv	Arg	Cys	Glv	Tro	Val	Met	His	Glu	Met	Glv	His	Glv		6
			-	165	-	-	•		170				-	175	-		
														_			
																	6

	Ser	Phe	Thr	Gly 180	·Val	Ile	Trp	Leu	Asp 185	Asp	Arg	Met	Cys	Glu 190	Phe	Phe
5																
	Tyr	Gly	Val 195	Gly	Cys	Gly	Met	Ser 200	Gly	His	Туr	Trp	Lys 205	Asn	Gln	His
10	Ser	Lys 210	His	His	Ala	Ala	Pro 215	Asn	Arg	Leu	Glu	His	Asp	Val	Asp	Leu
15																
	Asn	Thr	Leu	Pro	Leu	Val	Ala	Phe	Asn	Glu	Arg	Val	Val	Arg	Lys	Val
	225					230					235					240
20	Lys	Pro	Gly	Ser	Leu 245	Leu	Ala	Leu	Trp	Leu 250	Arg	Val	Gln	Ala	Tyr 255	Leu
25																
	Phe	Ala	Pro	Val 260	Ser	Cys	Leu	Leu	Ile 265	Gly	Leu	Gly	Trp	Thr 270	Leu	Tyr
30	Leu	His	Pro 275	Arg	Tyr	Met	Leu	Arg 280	Thr	Lys	Arg	His	Met 285	Glu	Phe	Val
35																
	Trp	11e 290	Phe	Ala	Arg	Tyr	11e 295	Gly	Trp	Phe	Ser	Leu 300	Met	Gly	Ala	Leu
40	Glv	Tvr	Ser	Pro	Glv	Thr	Ser	Val	Glv	Met	ጥ ህዮ	Leu	Cvs	Ser	Phe	Glv
	305				2	310			- -3		315		0,2	501		320
45	Leu	Gly	Cys	Ile	Туг 325	Ile	Phe	Leu	Gln	Phe 330	Ala	Val	Ser	His	Thr 335	His
50	Leu	Pro	Val	Thr 340	Asn	Pro	Glu	Asp	Gln 345	Leu	His	Trp	Leu	Glu 350	Tyr	Ala
55	Ala	Asp	His 355	Thr	Val	Asn	Ile	Ser 360	Thr	Lys	Ser	Trp	Leu 365	Val	Thr	Trp
60	Trp	Met 370	Ser	Asn	Leu	Asn	Phe 375	Gln	Ile	Glu	His	His 380	Leu	Phe	Pro	Thr
65	Ala	Pro	Gln	Phe	Arg	Phe	Lys	Glu	Ile	Ser	Pro	Arg	Val	Glu	Ala	Leu

	385					390					395					400		
	Phe	Lys	Arg	His	Asn 405	Leu	Pro	Tyr	Tyr	Asp 410	Leu	Pro	Tyr	Thr	Ser 415	Ala		5
	Val	Ser	Thr	Thr 420	Phe	Ala	Asn	Leu	Туг 425	Ser	Val	Gly	His	Ser 430	Val	Gly		10
1.1.1	Ala	Asp	Thr 435	Lys	Lys	Gln	Asp									•		15
1)> 29																20
	<212	l> 9: 2> DI 3> Ma	ΑV	erel:	la ai	lpina	a											25
	<220 <221)> L> CI	os					•								*		30
				(957) -6-E) Longa	ase												35
	atg		tcg					ctc Leu									48	40
	1 ttt	ato	gac	ctt	. 5	acc	act	atc	aat.	10	caa	acc	aca	CCC	15	atc	96	45
								Ile										50
							_	gtg Val 40	_	_	_		_				144	55
			gtc					ggg Gly					gtg				192	60 ·
		50					55	atg				60					240	65

	Leu	Ala	Arg	Glu	Leu	Pro	Leu	Met	Asn	Pro	Phe	His	Val	Leu	Leu	Ile	
	65				•	70					75					80	
5																	
	gtg	ctc	gct	tat	ttg	gtc	acg	gtc	ttt	gtg	ggc	atg	·cag	atc	atg	aag	288
	Val	Leu	Ala	Tyr	Leu	Val	Thr	Val	Phe	Val	Gly	Met	Gln	Ile	Met	Lys	
10					85					90					95		
	aac	ttt	gag	cgg	ttc	gag	gtc	aag	acg	ttt	tcg	ctc	ctg	cac	aac	ttt	336
15	Asn	Phe	Glu	Arg	Phe	Glu	Val	Lys	Thr	Phe	Ser	Leu	Leu	His	Asn	Phe	
				100					105					110			
20	tgt	ctg	gtc	tcg	atc	agc	gcc	tac	atg	tgc	ggt	ggg	atc	ctg	tac	gag	384
	Cys	Leu	Val	Ser	Ile	Ser	Ala	Tyr	Met	Cys	Gly	Gly	Ile	Leu	Tyr	Glu	
			115					120					125				
25																	
	gct	tat	cag	gcc	aac	tat	gga	ctg	ttt	gag	aac	gct	gct	gat	cat	acc	432
	Ala	Tyr	Gln	Ala	Asn	Tyr	Gly	Leu	Phe	Glu	Asn	Ala	Ala	Asp	His	Thr	
30		130					135				:	140					
50											·						
	ttc	aag	ggt	ctt	cct	atg	gcc	aag	atg	atc	tgg	ctç	ttc	tac	ttc	tcc	480
35	Phe	Lys	Gly	Leu	Pro	Met	Ala	Lys	Met	Ile	Trp	Leu	Phe	Tyr	Phe	Ser	
55	145					150					155	•				160	
												•					
40	aag	atc	atg	gag	ttt	gtc	gac	acc	atg	atc	atg	gtc	ctc	aag	aag	aac	528
	Lys	Ile	Met	Glu	Phe	Val	Asp	Thr	Met	Ile	Met	Val	Leu	Lys	Lys	Asn	
					165					170					175		
45																	
	aac	cgc	cag	atc	tcc	ttc	ttg	cac	gtt	tac	cac	cac	agc	tcc	atc	ttc	576
	Asn	Arg	Gln	Ile	Ser	Phe	Leu	His	Val	Tyr	His	His	Ser	Ser	Ile	Phe	
50				180					185					190			
-																	
	acc	atc	tgg	tgg	ttg	gtc	acc	ttt	gtt	gca	ccc	aac	ggt	gaa	gcc	tac	624
55	Thr	Ile	Trp	Trp	Leu	Val	Thr	Phe	Val	Ala	Pro	Asn	Gly	Glu	Ala	Tyr	
55			195					200					205				
60	ttc	tct	gct	gcg	ttg	aac	tcg	ttc	atc	cat	gtg	atc	atg	tac	ggc	tac	672
~	Phe	Ser	Ala	Ala	Leu	Asn	Ser	Phe	Ile	His	Val	Ile	Met	Tyr	Gly	Tyr	
		210					215					220					
65																	
•	tac	ttc	tta	tca	acc	tta	aac	ttc	aaσ	cad	ata	tica	ttc	atc	aac	ttc	720

Tyr	Phe	Leu	Ser	Ala	Leu	Gly	Phe	Lys	Gln	Val	Ser	Phe	Ile	Lys	Phe		
225				•	230					235		•			240		
														•			:
	atc															768	
Tyr	Ile	Thr	Arg		Gln	Met	Thr	Gln		Cys	Met	Met	Ser		Gln		
				245					250		•			255	•		10
				_ •												016	
	tcc															816	
Ser	Ser	Пр	260	Mec	TAT	AIA	Mec	265	vai	Leu	GIY	Arg		GIY	TYL		15
			260					205					270				
ccc	ttc	ttc	atc	aca	rict	cta	ctt	taa	ttc	tac	ato	taa	acc	ato	ctc	864	•
	Phe			_	_	_					_			-		004	20
110	1110	275	110	2111	nia	Deu	280	110	1110	131	1100	285	7.1.L	Hec	Deu		
												203					-
aat	ctc	ttc	tac	aac	ttt	tac	aga	aaq	aac	acc	aag	tta	acc	aaq	cag	912	2:
	Leu																
,	290		-3-			295	5				300			3			-
	77.									•							30
gcc	aag	gcc	gac	gct	gcc	aag	gag	aag	gca	agg	aag	ttg	cag	taa		957	
_	Lys		_	_	_	_		_	-			_					2
305					310	_		_		315							3:
							•										41
<21	0> 30)					•								•		-
<21	1> 31	18										, . .					
<21	2> PI	RT															4:
<21	3> Mo	ortie	erel	la al	lpina	a											•
<40	0> 30	כ															50
Met	Glu	Ser	Ile	Ala	Pro	Phe	Leu	Pro	Ser	Lys	Met	Pro	Gln	Asp	Leu		
1				5					10					15			
																	5:
Phe	Met	Asp	Leu	Ala	Thr	Ala	Ile	Gly	Val	Arg	Ala	Ala	Pro	Tyr	Val		
٠			20					25					30				
	_				_		_							_			6
Asp	Pro		Glu	Ala	Ala	Leu		Ala	Gln	Ala	Glu	-	Tyr	Ile	Pro		
		35					40					45					
ጥኮ~	Ile	Ual	ui c	u: c	mb~	λ~~	Clu	Dho	ī ov	บอา	- ר ת	17-7	C1	S^~	Dro		6
TILL	$\tau \tau e$	AGT	UTP	UTP	TIIL	wrd	GTA	riie	red	vаı	wrd	val	تالك	Ser	PIU		

5	Leu 65	Ala	Arg	Glu	Leu	Pro 70	Leu	Met	Asn	Pro	Phe 75	His	Val	Leu	Leu	Ile 80
10	Val	Leu	Ala	Tyr	Leu 85	Val	Thr	Val	Phe	Val 90	Gly	Met	Gln	Ile	Met 95	Lys
15	Asn	Phe	Glu	Arg 100	Phe	Glu	Val	Lys	Thr 105	Phe	Ser	Leu	Leu	His 110	Asn	Phe
20	Cys	Leu	Val 115	Ser	Ile	Ser	Ala	Tyr 120	Met	Cys	Gly	Gly	Ile 125	Leu	Tyr	Glu
25	Ala	Tyr 130	Gln	Ala	Asn	Tyr	Gly 135	Leu	Phe	Glu	Asn	Ala 140	Ala	Asp	His	Thr
30	Phe 145	Lys	Gly	Leu	Pro	Met 150	Ala	Lys	Met	Ile	Trp 155	Leu	Phe	Tyr	Phe	Ser 160
35	Lys	Ile	Met	Glu	Phe 165	Val	Asp	Thr	Met	Ile 170	Met	Val	Leu	Lys	Lys 175	Asn
40	Asn	Arg	Gln	Ile 180	Ser	Phe	Leu	His	Val 185	Tyr	His	His	Ser	Ser 190	Ile	Phe
45	Thr	Ile	Trp 195	Trp	Leu	Val	Thr	Phe 200	Val	Ala	Pro	Asn	Gly 205	Glu	Ala	Туr
50	Phe	Ser 210	Ala	Ala	Leu	Asn	Ser 215	Phe	Ile	His	Val	Ile 220	Met	Tyr	Gly	Туr
55	Tyr 225	Phe	Leu	Ser	Ala	Leu 230	Gly	Phe	Lys	Gln	Val 235	Ser	Phe	Ile	Lys	Phe 240
60	Tyr	Ile	Thr	Arg	Ser 245	Gln	Met	Thr	Gln	Phe 250	Cys	Met	Met	Ser	Val 255	Gln
65	Ser	Ser	Trp	Asp 260	Met	Tyr	Ala	Met	Lys 265	Val	Leu	Gly	Arg	Pro 270	Gly	Tyr

Pro	Phe	Phe	Ile	Thr	Ala	Leu	Leu	Trp	Phe	Tyr	Met	Trp	Thr	Met	Leu		
		275		•			280					285					
													_		_		5
Gly	Leu	Phe	Tyr	Asn	Phe	Tyr	Arg	Lys	Asn	Ala	Lys	·Leu	Ala	Lys	Gln	•	
	290					295					300						
															•		10
	Lys	Ala	Asp	Ala		Lys	Glu	Lys	Ala	Arg	Lys	Leu	Gln				
305					310					315							
																	15
)> 31																•
	L> 13								5	•							20
	2> Dì																
<213	3> Mo	ortie	erell	la al	lpina	à											•
								•									25
<220													•				
<223	L> CI	os															
<222	2> (1	L)	(1374	1)						:							. 30
<223	3> De	elta-	-6-D€	esatu	rase	•											
									. :								•
	0> 31				•												35
							agg									48	
	Ala	Ala	Ala		Ser	Val	Arg	Thr		Thr	Arg	Ala	Glu		Leu		
1				5					10					15			40
																0.6	
							ggc									96	
Asn	Ala	GIu		Leu	Asn	Glu	Gly		Lys	Asp	Ala	Glu		Pro	Phe		45
			20					25					30				
_	_			_		_	gtg		_	_	_			_		144	50
Leu	Met		TTE	Asp	Asn	Lys	Val	туr	Asp	Val	Arg		Pne	vaı	Pro		
		35					40					45					
																100	55
_					_		att		_		_		_	_		192	
Asp		Pro	GIY	GIY	Ser		Ile	Leu	Thr	His		GТУ	Lys	Asp	GIY		
	50					55					60						60
20-	~~-	~+-		~	255				~~~	~~+		+	~~~	20+	a++	240	
	_	_		-			cac			_	_					240	
ınr	ASP	val	rne	ASP	1111	rne	His	11.0	GIÜ	nid	wig	пр	GIU	THE	neu		65

	65					70					75					80	
5	gcc	aac	ttt	tac	gtt	ggt	gat	att	gac	gag	agc	gac	cgc	gat	atc	aag	288
	Ala	Asn	Phe	Tyr	Val 85	Gly	Asp	Ile	Asp	Glu 90	Ser	Asp	Arg	Asp	Ile 95	Lys	
10																	•
	aat	gat	gac	ttt	gcg	gcc	gag	gtc	cgc	aag	ctg	cgt	acc	ttg	ttc	cag	336
	Asn	Asp	Asp	Phe	Ala	Ala	Glu	Val	Arg	Lys	Leu	Arg	Thr	Leu	Phe	Gln	
15				100					105					110		•	
į	tct	ctt	ggt	tac	tac	gat	tct	tcc	aag	gca	tac	tac	gcc	ttc	aag	gtc	384
20	Ser	Leu	Gly	Tyr	Tyr	Asp	Ser	Ser	Lys	Ala	Tyr	Tyr	Ala	Phe	Lys	Val	
			115					120					125				٠
25	tcg	ttc	aac	ctc	tgc	atc	tgg	ggt	ttg	tcg	acg	gtc	att	gtg	gcc	aag	432
20	Ser	Phe	Asn	Leu	Cys	Ile	Trp	Gly	Leu	Ser	Thr	Val	Ile	Val	Ala	Lys	
		130					135					140					
30																	
50	tgg	ggc	cag	acc	tcg	acc	ctc	gcc	aac	gtg	ctc	tcg	gct	gcg	ctt	ttg	480
	Trp	Gly	Gln	Thr	Ser	Thr	Leu	Ala	Asn	Val	Leu	Ser	Ala	Ala	Leu	Leu	
35	145					150					155					160	
	ggt	ctg	ttc	tgg	cag	cag	tgc	gga	tgg	ttg	gct	cac	gac	ttt	ttg	cat	528
40	Gly	Leu	Phe	Trp	Gln	Gln	Cys	Gly	Trp	Leu	Ala	His	Asp	Phe	Leu	His	
70					165					170					175		
45	cac	cag	gtc	ttc	cag	gac	cgt	ttc	tgg	ggt	gat	ctt	ttc	ggc	gcc	ttc	576
45	His	Gln	Val	Phe	Gln	Asp	Arg	Phe	Trp	Gly	Asp	Leu	Phe	Gly	Ala	Phe	
				180					185					190			
50																	
	ttg	gga	ggt	gtc	tgc	cag	ggc	ttc	tcg	tcc	tcg	tgg	tgg	aag	gac	aag	624
	Leu	Gly	Gly	Val	Cys	Gln	Gly	Phe	Ser	Ser	Ser	Trp	Trp	Lys	Asp	Lys	
55			195					200					205				
			act			_				_				-		-	672
60	HIS		Thr	HIS	HIS	ALA		Pro	Asn	vaı	Hls		GIU	Asp	Pro	Asp	
		210					215					220					
	att	gac	acc	cac	cct	ctg	ttg	acc	tga	agt	gag	cat	gca	tta	gaq	ato	720
65			Thr														
		-															

	225					230					235					240	•	
		+ ~~	~>+	at a	222	~~+	~2~	~~~	at a	200	220	250	tgg	tca	cat	tta	768	
																	700	5
	Pne	Ser	Asp	vai		Asp	GIU	GIU	Leu		Arg	Met	Trp	Ser	-	Pne		
					245					250		•			255			
																	•	10
	atg	gtc	ctg	aac	cag	acc	tgg	ttt	tac	ttc	ccc	att	ctc	tcg	ttt	gcc	816	
	Met	Val	Leu	Asn	Gln	Thr	Trp	Phe	Tyr	Phe	Pro	Ile	Leu	Ser	Phe	Ala		
				260					265					270				15
ŀ																•	•	
İ	cgt	ctc	tcc	tgg	tgc	ctc	cag	tcc	att	ctc	ttt	gtg	ctg	cct	aac	ggt	864	
,	Arg	Leu	Ser	Trp	Cys	Leu	Gln	Ser	Ile	Leu	Phe	Val	Leu	Pro	Asn	Gly		20
	:		275		_			280					285				•	20
														• 0				
	cad	acc	cac	aan	CCC	tca	aac	aca	cat.	ata	CCC	atc	tcg	tta	atc	gag	912	
	_	_		_		_			_				Ser				, ,	25
	GIII		1113	Lys	110	Jer	_		n. g	Val	110	300	JCI	Deu	VU1	Gau		
		290		•			295					300						
																		30
	_		-										gcc				960	
	Gln	Leu	Ser	Leu	Ala	Met	His	Trp	Thr	Trp	Tyr	Leu	Ala	Thr	Met	Phe		
	305					310					315					320		35
																	•	
	ċtg	ttc	atc	aag	gat	ccc	gtc	àac	atg	ctg	gtg	tac	ttt	ttg	gtg	tcg	1008	
	Leu	Phe	Ile	Lys	Asp	Pro	Val	Asn	Met	Leu	Val	Tyr	Phe	Leu	Val	Ser		40
					325					330					335			
														*				
	cag	gcg	gtg	tgc	gga	aac	ttg	ttg	gcg	atc	gtg	ttc	tcg	ctc	aac	cac	1056	45
	Gln	Ala	Val	Cys	Gly	Asn	Leu	Leu	Ala	Ile	Val	Phe	Ser	Leu	Asn	His	•	45
				340					345					350				
	aac	aat.	at.o	cct	ata	atc	t.ca	aaq	gag	gag	aca	atc	gat	ata	gat.	ttc	1104	50
													Asp					
	71011	O1,	355	110	var		501	360	014	014	1114	V 4.1	365	1100		1110		
			333					300					303					55
																	1150	
													ccg				1152	
	Phe		Lys	Gln	Ile	Ile		Gly	Arg	Asp	Val		Pro	GΙΆ	Leu	Phe		60
		370					375					380						
	gcc	aac	tgg	ttc	acg	ggt	gga	ttg	aac	tat	cag	atc	gag	cac	cac	ttg	1200	65
	Ala	Asn	Trp	Phe	Thr	Gly	Gly	Leu	Asn	Tyr	Gln	Ile	Glu	His	His	Leu		CO

	385					390					395					400	
5	ttc	cct	tcg	atg	cct	cgc	cac	aac	ttt	tca	aag	atc	cag	cct	gct	gtc	1248
	Phe	Pro	Ser	Met	Pro	Arg	His	Asn	Phe	Ser	Lys	Ile	·Gln	Pro	Ala	Val	
					405					410					415		
10																	
	gag	acc	ctg	tgc	aaa	aag	tac	aat	gtc	cga	tac	cac	acc	acc	ggt	atg	1296
	Glu	Thr	Leu	_	Lys	Lys	Tyr	Asn		Arg	Tyr	His	Thr		Gly	Met	
15				420					425					430			
					gca												1344
20	IIe	GIu	_	unr	Ala	GIU	Val		Ser	Arg	Leu	Asn		Val	ser	Lys	
			435					440					445				
	act	~~~	too	220	atg	aat	220	aca	C2 C	taa							1374
25					Met					caa	•						<i>±</i> 373
	1124	450	DCI	2,0		017	455		0111								
		100										•					
30																	
	<210)> 32	2														
26	<213	L> 45	57														
35	<212	2> PI	RT														
	<213	3> Ma	ortie	erel	la a	lpina	a										
40																	
10	<400)> 32	2														
	Met	Ala	Ala	Ala	Pro	Ser	Val	Arg	Thr	Phe	Thr	Arg	Ala	Glu	Val	Leu	
45	1				5					10					15		
	Asn	Ala	Glu		Leu	Asn	Glu	Gly		Lys	Asp	Ala	Glu		Pro	Phe	
50				20					25					30			
		20.1	-1	~7.		_			_	_			1	-1		-	
	Leu	Met		lle	Asp	Asn	Lys		Tyr	Asp	Val	Arg		Phe	Val	Pro	
55			35					40					45				
	Acr	ui e	Dro	Gl ₃₇	Gly	Ser	t/a l	Tle	Leu	ሙኍ	uic	1721	Gly	Lare	Δen	Gly	
	പാവ	50	FIU	СТА	GIY	Ser	55	716	neu	1111	1112	60	GIĀ	פעם	പാവ	GIY	
60		50					رر					50					
	Thr	Asp	Val	Phe	Asp	Thr	Phe	His	Pro	Glu	Ala	Ala	Tro	Glu	Thr	Leu	
	65					70					75		🗜			80	
65																	

Ala	Asn	Phe	Tyr	Val 85	Gly	Asp	Ile	Asp	G1u 90	Ser	Asp	Arg	Asp	Ile 95	Lys	
																:
Asn	Asp	Asp	Phe 100	Ala	Ala	Glu	Val	Arg 105	Lys	Leu 	Arg	Thr	Leu 110	Phe	Gln	•
																10
Ser	Leu	Gly 115	Tyr	Tyr	Asp	Ser	Ser 120	Lys	Ala	Tyr	Tyr	Ala 125	Phe	Lys	Val	
																1:
Ser		Asn	Leu	Cys	Ile		Gly	Leu	Ser	Thr	Val 140	Ile	Val	Ala	Lys	
	130					135					140					20
Trp	Gly	Gln	Thr	Ser	Thr	Leu	Ala	Asn	Val	Leu	Ser	Ala	Ala	Leu	Leu	2.
145					150					155					160	
C1	Ton	Dho	Trp	C1 n	Cln	Cvc	Clv		Lou	ת 1 ת	uic	A cro	Phe	Len	uie.	. 2
GIY	Leu	FIIE	пр	165	GIII	Cys	GIA	ΙΙĐ	170	AIG	nis	nsp	rne	175		
										•	•					3
His	Gln	Val	Phe	Gln	Asp	Arg	Phe		Gly	Asp	Leu	Phe		Ala	Phe	
			180					185					190			
Leu	Gly	Gly	Val	Cys	Gln	Gly	Phe	Ser	Ser	Ser	Trp	Trp	Lys	Asp	Lys	3.
		195					200					205				
His	Asn	ጥኮዮ	His	His	Ala	Ala	Pro	Asn	Val	His	Glv	Glu	Asp	Pro	Asp	4
	210					215					220					
																4.
	Asp	Thr	His	Pro			Thr	Trp	Ser			Ala	Leu	Glu		
225					230					235					240	
Phe	Ser	Asp	Val	Pro	Asp	Glu	Glu	Leu	Thr	Arg	Met	Trp	Ser	Arg	Phe	5
				245					250					255		
Met	Val	Leu	Asn	Gln	Thr	Tro	Phe	Tvr	Phe	Pro	Ile	Leu	Ser	Phe	Ala	5.
			260					265					270			
																6
Arg	Leu	Ser 275	Trp	Cys	Leu	Gln	Ser 280	Ile	Leu	Phe	Val	Leu 285	Pro	Asn	Gly	
		2,5					200					200				
Gln	Ala	His	Lvs	Pro	Ser	Glv	Ala	Ara	Val	Pro	Ile	Ser	Leu	Val	Glu	6

		290					295					300				
	Gln 305	Leu	Ser	Leu	Ala	Met 310	His	Trp	Thr	Trp	Tyr 315	Leu	Ala	Thr	Met	Phe
10	Leu	Phe	Ile	Lys	Asp 325	Pro	Val	Asn	Met	Leu 330	Val	Tyr	Phe	Leu	Val 335	Ser
15	Gln	Ala	Val	Cys 340	Gly	Asn	Leu	Leu	Ala 345	Ile	Val	Phe	Ser	Leu 350	Asn	His
20	Asn	Gly	Met 355	Pro	Val	Ile	Ser	Lys 360	Glu	Glu	Ala	Val	Asp 365	Met	Asp	Phe
25	Phe	Thr 370	Lys	Gln	Ile	Ile	Thr 375	Gly	Arg	Asp	Val	His 380	Pro	Gly	Leu	Phe
30	Ala 385	Asn	Trp	Phe	Thr	Gly 390	Gly	Leu	Asn	Tyr	Gln 395	Ile	Glu	His	His	Leu 400
35	Phe	Pro	Ser	Met	Pro 405	Arg	His	Asn	Phe	Ser 410	Lys	Ile	Gln	Pro	Ala 415	Val
40	Glu	Thr	Leu	Cys 420	Lys	Lys	Tyr	Asn	Val 425	Arg	Tyr	His	Thr	Thr 430	Gly	Met
45	Ile	Glu	Gly 435	Thr	Ala	Glu	Val	Phe 440	Ser	Arg	Leu	Asn	Glu 445	Val	Ser	Lys
50	Ala	Ala 450	Ser	Lys	Met	Gly	Lys 455	Ala	Gln							
55	<210)> 3 3	3													
60	<212	L> 35 2> Di 3> Ur	NA	√n												
		_														

 65 <223> Sequenz stellt eine pflanzliche

Promotor-Terminator-Expressionskassette in Vektor pUC19 dar

<400> 33				ı			
tcgcgcgttt	cggtgatgac	ggtgaaaacc	tctgacacat	gcagctcccg	gagacggtca	60	10
cagcttgtct	gtaagcggat	gccgggagca	gacaagcccg	tcagggcgcg	tcagcgggtg	120	
ttggcgggtg	tcggggctgg	cttaactatg	cggcatcaga	gcagattgta	ctgagagtgc	180	15
accatatgcg	gtgtgaaata	ccgcacagat	gcgtaaggag	aaaataccgc	atcaggcgcc	240	20
attcgccatt	caggctgcgc	aactgttggg	aagggcgatc	ggtgcgggcc	tcttcgctat	3.00	20
tacgccagct	ggcgaaaggg	ggatgtgctg	caaggcgatt	aagttgggta	acgccagggt	360	25
tttcccagtc	acgacgttgt	aaaacgacgg	ccagtgaatt	cggcgcgccg	agctcctcga	420	
gcaaatttac	acattgccac	taaacgtcta	aacccttgta	atttgttttt	gttttactat	480	30
gtgtgttatg	tatttgattt	gcgataaatt	tttatatttg	gtactaaatt	tataacacct	540	35
tttatgctaa	cgtttgccaa	cacttagcaa	tttgcaagtt	gattaattga	ttctaaatta	600	
tttttgtctt	ctaaatacat	atactaatca	actggaaatg	taaatatttg	ctaatatttc	660	40
tactatagga	gaattaaagt	gagtgaatat	ggtaccacaa	ggtttggaga	tttaattgtt	720	45
gcaatgctgc	atggatggca	tatacaccaa	acattcaata	attcttgagg	ataataatgg	780	
taccacacaa	gatttgaggt	gcatgaacgt	cacgtggaca	aaaggtttag	taatttttca	840	50
agacaacaat	gttaccacac	acaagttttg	aggtgcatgc	atggatgccc	tgtggaaagt	900	55
ttaaaaatat	tttggaaatg	atttgcatgg	aagccatgtg	taaaaccatg	acatccactt	960	
ggaggatgca	ataatgaaga	aaactacaaa	tttacatgca	actagttatg	catgtagtct	1020	60
atataatgag	gattttgcaa	tactttcatt	catacacact	cactaagttt	tacacgatta	1080	

taatttcttc atagccagcc caccgcggtg ggcggccgcc tgcagtctag aaggcctcct 1140 5 gctttaatga gatatgcgag acgcctatga tcgcatgata tttgctttca attctgttgt 1200 gcacgttgta aaaaacctga gcatgtgtag ctcagatcct taccgccggt ttcggttcat 1260 tctaatgaat atatcacccg ttactatcgt atttttatga ataatattct ccgttcaatt 1320 tactgattgt ccgtcgacga attcgagctc ggcgcgccaa gcttggcgta atcatggtca 1380 tagctgtttc ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga 1440 agcataaagt gtaaagcctg gggtgcctaa tgagtgagct aactcacatt aattgcgttg 1500 cgctcactgc ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc 1560 caacgcgcgg ggagaggcgg tttgcgtatt gggcgctctt ccgcttcctc gctcactgac 1620 tcgctgcgct cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa ggcggtaata 1680 cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa 1740 aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct ccgccccct 1800 gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa 1860 agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc gaccctgccg 1920 cttaccggat acctgtccgc ctttctccct tcgggaagcg tggcgctttc tcatagctca 1980 cgctgtaggt atctcagttc ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa 2040 cccccgttc agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaacccg 2100 gtaagacacg acttatcgcc actggcagca gccactggta acaggattag cagagcgagg 2160 tatgtaggcg gtgctacaga gttcttgaag tggtggccta actacggcta cactagaagg 2220 acagtatttg gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc 2280

<211> 3590 <212> DNA <213> Unknown <220> <223> Sequenz stellt eine pflanzliche	
<211> 3590 <212> DNA <213> Unknown <220> <223> Sequenz stellt eine pflanzliche	5
<211> 3590 <212> DNA <213> Unknown <220> <223> Sequenz stellt eine pflanzliche	
<212> DNA <213> Unknown <220> <223> Sequenz stellt eine pflanzliche	10
<220> <223> Sequenz stellt eine pflanzliche Promotor-Terminator-Expressionskassette in Vektor pUC19 dar	
<220> <223> Sequenz stellt eine pflanzliche Promotor-Terminator-Expressionskassette in Vektor pUC19 dar	
<223> Sequenz stellt eine pflanzliche Promotor-Terminator-Expressionskassette in Vektor pUC19 dar	15
Promotor-Terminator-Expressionskassette in Vektor pUC19 dar	
Promotor-Terminator-Expressionskassette in Vektor pUC19 dar	20
<400> 34	25
targette contestes artesises tatasasat assatasa asasaatta 60	
tegegegttt eggtgatgae ggtgaaaace tetgacacat geageteeeg gagaeggtea 60	
cagettgtet gtaageggat geegggagea gacaageeeg teagggegeg teagegggtg 120	30
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180	35
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc 240	
attcgccatt caggctgcgc aactgttggg aagggcgatc ggtgcgggcc tcttcgctat 300	40
actigueate taggetgege aactgriggg aagggegate ggtgegggee tettegetat 300	
tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt 360	15
	45
tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt cggcgcgccg agctcctcga 420	
	50
gcaaatttac acattgccac taaacgtcta aacccttgta atttgttttt gttttactat 480	
gtgtgttatg tatttgattt gcgataaatt tttatatttg gtactaaatt tataacacct 540	
gegogeousg custoguese gogacuauss secusiones goursands customes, the	55
tttatgctaa cgtttgccaa cacttagcaa tttgcaagtt gattaattga ttctaaatta 600	
	60
tttttgtctt ctaaatacat atactaatca actggaaatg taaatatttg ctaatatttc 660	
tactatagga gaattaaagt gagtgaatat ggtaccacaa ggtttggaga tttaattgtt 720	

gcaatgctgc atggatggca tatacaccaa acattcaata attcttgagg ataataatgg 780 5 taccacacaa gatttgaggt gcatgaacgt cacgtggaca aaaggtttag taatttttca 840 agacaacaat gttaccacac acaagttttg aggtgcatgc atggatgccc tgtggaaagt 900 ttaaaaatat tttggaaatg atttgcatgg aagccatgtg taaaaccatg acatccactt 960 ggaggatgca ataatgaaga aaactacaaa tttacatgca actagttatg catgtagtct 1020 atataatgag gattttgcaa tactttcatt catacacact cactaagttt tacacgatta 1080 taatttette atagecageg gateegatat egggeeeget agegttaace etgetttaat 1140 gagatatgcg agacgcctat gatcgcatga tatttgcttt caattctgtt gtgcacgttg 1200 taaaaaacct gagcatgtgt agctcagatc cttaccgccg gtttcggttc attctaatga 1260 atatatcacc cgttactatc gtatttttat gaataatatt ctccgttcaa tttactgatt 1320 gtccgtcgac gaattcgagc tcggcgcgc aagcttggcg taatcatggt catagctgtt 1380 tectgtgtga aattgttate egeteacaat tecacacaac ataegageeg gaageataaa 1440 gtgtaaagcc tggggtgcct aatgagtgag ctaactcaca ttaattgcgt tgcgctcact 1500 gcccgctttc cagtcgggaa acctgtcgtg ccagctgcat taatgaatcg gccaacgcgc 1560 ggggagaggc ggtttgcgta ttgggcgctc ttccgcttcc tcgctcactg actcgctgcg 1620 ctcggtcgtt cggctgcggc gagcggtatc agctcactca aaggcggtaa tacggttatc 1680 cacagaatca ggggataacg caggaaagaa catgtgagca aaaggccagc aaaaggccag 1740 gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg ctccgcccc ctgacgagca 1800 tcacaaaaat cgacgctcaa gtcagaggtg gcgaaacccg acaggactat aaagatacca 1860 ggcgtttccc cctggaagct ccctcgtgcg ctctcctgtt ccgaccctgc cgcttaccgg 1920

	1980	cacgetgtag	teteataget	cgtggcgctt	cttcgggaag	gcctttctcc	atacetgtee
	2040	aacccccgt	tgtgtgcacg	caagctgggc	tcgttcgctc	tcggtgtagg	gtatctcagt
	2100	cggtaagaca	gagtccaacc	ctatcgtctt	tatccggtaa	cgctgcgcct	tcagcccgac
1	2160	ggtatgtagg	agcagagcga	taacaggatt	cagccactgg	ccactggcag	cgacttatcg
1	2220	ggacagtatt	tacactagaa	taactacggc	agtggtggcc	gagttcttga	cggtgctaca
	2280	gctcttgatc	agagttggta	cttcggaaaa	agccagttac	gctctgctga	tggtatctgc
2	2340	agattacgcg	tgcaagcagc	tttttttgtt	gtagcggtgg	accaccgctg	cggcaaacaa
2	2400	acgctcagtg	acggggtctg	gatcttttct	aagatccttt	ggatctcaag	cagaaaaaaa
	2460	tcttcaccta	tcaaaaagga	catgagatta	ggattttggt	tcacgttaag	gaacgaaaac
. 3	2520	agtaaacttg	agtatatatg	atcaatctaa	gaagttttaa	aattaaaaat	gatcctttta
3	2580	gtctatttcg	tcagcgatct	ggcacctatc	taatcagtga	taccaatgct	gtctgacagt
	2640	agggcttacc	acgatacggg	gtagataact	tccccgtcgt	gttgcctgac	ttcatccata
4	2700	cagatttatc	tcaccggctc	agacccacgc	tgataccgcg	agtgctgcaa	atctggcccc
4	2760	ctttatccgc	ggtcctgcaa	gcgcagaagt	gaagggccga	cagccagccg	agcaataaac
	2820	cagttaatag	agtagttcgc	agctagagta	gttgccggga	tctattaatt	ctccatccag
5	2880	cgtttggtat	tcacgctcgt	catcgtggtg	ttgctacagg	gttgttgcca	tttgcgcaac
5	2940	ccatgttgtg	acatgatccc	aaggcgagtt	cccaacgatc	agctccggtt	ggcttcattc
	3000	tggccgcagt	agaagtaagt	gatcgttgtc	tcggtcctcc	gttagctcct	caaaaaagcg
6	3060	catccgtaag	actgtcatgc	taattctctt	cagcactgca	atggttatgg	gttatcactc
6	3120	gtatgcggcg	tgagaatagt	caagtcattc	agtactcaac	gtgactggtg	atgcttttct

accgagttge tettgeeegg egteaataeg ggataataee gegeeacata geagaacttt 3180

5 aaaagtgete ateattggaa aaegttette ggggegaaaa eteteaagga tettaeeget 3240

gttgagatee agttegatgt aaeceaeteg tgeaeceaae tgatetteag eatetttae 3300

10 ttteaceage gtttetgggt gageaaaaae aggaaggeaa aatgeegeaa aaaagggaat 3360

15 aagggegaca eggaaatgtt gaataeteat aetetteett ttteaatatt attgaageat 3420

ttateagggt tattgtetea tgageggata eatattgaa tgtattaga aaaataaaea 3480

20 aataggggtt eegegeacat tteeeegaaa agtgeeaeet gaegtetaag aaaecattat 3540

ttateatgaca ttaaecetata aaaataggeg tateaegagg eeetttegte 3590

- <210> 35
 - <211> 3584
 - <212> DNA
- 35 <213> Unknown
 - <220>
- <223> Sequenz stellt eine pflanzliche Promotor-Terminator-Expressionskassette in Vektor pUC19 dar
- <400> 35

tegegegttt eggtgatgae ggtgaaaace tetgaeacat geageteeeg gagaeggtea 60

- cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
- ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
 - accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc 240
- attcgccatt caggctgcgc aactgttggg aagggcgatc ggtgcgggcc tcttcgctat 300
- tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt 360

ttt	cccagtc	acgacgttgt	aaaacgacgg	ccagtgaatt	cggcgcgccg	agctcctcga	420	
gca	aatttac	acattgccac	taaacgtcta	aacccttgta	atttgttttt	gttttactat	480	5
gtg	tgttatg	tatttgattt	gcgataaatt	tttatatttg	gțactaaatt	tataacacct	540	
ttt	atgctaa	cgtttgccaa	cacttagcaa	tttgcaagtt	gattaattga	ttctaaatta	600	10
ttt	ttgtctt	ctaaatacat	atactaatca	actggaaatg	taaatatttg	ctaatatttc	660	15
tac	tatagga	gaattaaagt	gagtgaatat	ggtaccacaa	ggtttggaga	tttaattgtt	720	
gca	atgctgc	atggatggca	tatacaccaa	acattcaata	attcttgagg	ataataatgg	780	20
tac	cacacaa	gatttgaggt	gcatgaacgt	cacgtggaca	aaaggtttag	taatttttca	840	25
aga	caacaat	gttaccacac	acaagttttg	aggtgcatgc	atggatgccc	tgtggaaagt	900	
tta	aaaatat	tttggaaatg	atttgcatgg	aagccatgtg	taaaaccatg	acatccactt	960	30
gga	aggatgca	ataatgaaga	aaactacaaa	tttacatgca	actagttatg	catgtagtct	1020	35
ata	ataatgag	gattttgcaa	tactttcatt	catacacact	cactaagttt	tacacgatta	1080	
taa	atttcttc	atagccagca	gatctgccgg	catcgatccc	gggccatggc	ctgctttaat	1140	40
gaç	gatatgcg	agacgcctat	gatcgcatga	tatttgcttt	caattctgtt	gtgcacgttg	1200	45
taa	aaaacct	gagcatgtgt	agctcagatc	cttaccgccg	gtttcggttc	attctaatga	1260	
ata	atatcacc	cgttactatc	gtattttat	gaataatatt	ctccgttcaa	tttactgatt	1320	50
gto	ccgtcgac	gagctcggcg	cgccaagctt	ggcgtaatca	tggtcatagc	tgtttcctgt	1380	55
gto	gaaattgt	tatccgctca	caattccaca	caacatacga	gccggaagca	taaagtgtaa	1440	
ago	cctggggt	gcctaatgag	tgagctaact	cacattaatt	gcgttgcgct	cactgcccgc	1500	60
ttt	ccagtcg	ggaaacctgt	cgtgccagct	gcattaatga	atcggccaac	gcgcggggag	1560	

aggcggtttg cgtattgggc gctcttccgc ttcctcgctc actgactcgc tgcgctcggt 1620 5 cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt tatccacaga 1680 atcaggggat aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg 1740 10 taaaaaggcc gcgttgctgg cgtttttcca taggctccgc cccctgacg agcatcacaa 1800 aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga ctataaagat accaggcgtt 1860 teccetgga ageteceteg tgegetetee tgtteegace etgeegetta eeggatacet 1920 20 gtccgccttt ctcccttcgg gaagcgtggc gctttctcat agctcacgct gtaggtatct 1980 cagttcggtg taggtcgttc gctccaagct gggctgtgtg cacgaacccc ccgttcagcc 2040 cgaccgctgc gccttatccg gtaactatcg tcttgagtcc aacccggtaa gacacgactt 2100 atcgccactg gcagcagcca ctggtaacag gattagcaga gcgaggtatg taggcggtgc 2160 tacagagttc ttgaagtggt ggcctaacta cggctacact agaaggacag tatttggtat 2220 ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa 2280 acaaaccacc gctggtagcg gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa 2340 aaaaggatct caagaagatc ctttgatctt ttctacgggg tctgacgctc agtggaacga 2400 aaactcacgt taagggattt tggtcatgag attatcaaaa aggatcttca cctagatcct 2460 tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa cttggtctga 2520 cagttaccaa tgcttaatca gtgaggcacc tatctcagcg atctgtctat ttcgttcatc 2580 catagttgcc tgactccccg tcgtgtagat aactacgata cgggagggct taccatctgg 2640 ccccagtgct gcaatgatac cgcgagaccc acgctcaccg gctccagatt tatcagcaat 2700 aaaccagcca gccggaaggg ccgagcgcag aagtggtcct gcaactttat ccgcctccat 2760

ccagto	ctatt	aattgttgcc	gggaagctag	agtaagtagt	tcgccagtta	atagtttgcg	2820
caacgt	tgtt	gccattgcta	caggcatcgt	ggtgtcacgc	tcgtcgtttg	gtatggcttc	2880 5
attcag	gctcc	ggttcccaac	gatcaaggcg	agttacatga	tccccatgt	tgtgcaaaaa	
agcggt	tagc	tccttcggtc	ctccgatcgt	tgtcagaagt	aagttggccg	cagtgttatc	3000
actcat	ggtt	atggcagcac	tgcataattc	tcttactgtc	atgccatccg	taagatgctt	3060 15
ttctgt	gact	ggtgagtact	caaccaagtc	attctgagaa	tagtgtatgc	ggcgaccgag	
ttgcto	ttgc	ccggcgtcaa	tacgggataa	taccgcgcca	catagcagaa	ctttaaaagt	3180
gctcat	catt	ggaaaacgtt	cttcggggcg	aaaactctca	aggatcttac	cgctgttgag	3240 25
atccag	gttcg	atgtaaccca	ctcgtgcacc	caactgatct	tcagcatctt	ttactttcac	
cagcgt	ttct	gggtgagcaa	aaacaggaag	gcaaaatgcc	gcaaaaaagg	gaataagggc	3360
gacaco	ggaaa	tgttgaatac	tcatactctt	cctttttcaa	tattattgaa	gcatttatca	3420 35
gggtta	attgt	ctcatgagcg	gatacatatt	tgaatgtatt	tagaaaaata	aacaaatagg	
ggttco	gege	acatttcccc	gaaaagtgcc	acctgacgtc	taagaaacca	ttattatcat	35 4 0
gacatt	aacc	tataaaaata	ggcgtatcac	gaggcccttt	cgtc		3584
<210><211>							50
<212>							
<213>	Unkno	own					55
<220>							
<223>		enz stellt e otor-Termina			te in Vektor	r	60
	pUC19	dar dar					

117

<400> 36

tegegegttt eggtgatgae ggtgaaaace tetgacacat geageteeeg gagaeggtea 60 5 cagettgtet gtaageggat geegggagea gacaageeeg teagggegeg teagegggtg 120 ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180 10 accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc 240 attcgccatt caggctgcgc aactgttggg aagggcgatc ggtgcgggcc tcttcgctat 300 tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt 360 20 tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt cggcgcgccg agctcctcga 420 gcaaatttac acattgccac taaacgtcta aacccttgta atttgttttt gttttactat 480 gtgtgttatg tatttgattt gcgataaatt tttatatttg gtactaaatt tataacacct 540 tttatgctaa cgtttgccaa cacttagcaa tttgcaagtt gattaattga ttctaaatta 600 tttttgtctt ctaaatacat atactaatca actggaaatg taaatatttg ctaatatttc 660 tactatagga gaattaaagt gagtgaatat ggtaccacaa ggtttggaga tttaattgtt 720 gcaatgctgc atggatggca tatacaccaa acattcaata attcttgagg ataataatgg 780 taccacacaa gatttgaggt gcatgaacgt cacgtggaca aaaggtttag taatttttca 840 agacaacaat gttaccacac acaagttttg aggtgcatgc atggatgccc tgtggaaagt 900 ttaaaaatat tttggaaatg atttgcatgg aagccatgtg taaaaccatg acatccactt 960 ggaggatgca ataatgaaga aaactacaaa tttacatgca actagttatg catgtagtct 1020 atataatgag gattttgcaa tactttcatt catacacact cactaagttt tacacgatta 1080 taatttette atageeagee caeegeggtg ggeggeegee tgeagtetag aaggeeteet 1140 gctttaatga gatatgcgag acgcctatga tcgcatgata tttgctttca attctgttgt 1200

gcacgttgta	a aaaaacctga	gcatgtgtag	ctcagatcct	taccgccggt	ttcggttcat	1260	
tctaatgaat	atatcacccg	ttactatcgt	atttttatga	ataatattct	ccgttcaatt	1320	5
tactgattgt	ccgtcgagca	aatttacaca	ttgccactaa	acgtctaaac	ccttgtaatt	1380	
tgtttttgtt	ttactatgtg	tgttatgtat	ttgatttgcg	ataaattttt	atatttggta	1440	10
ctaaatttat	aacacctttt	atgctaacgt	ttgccaacac	ttagcaattt	gcaagttgat	1500	15
taattgatto	taaattattt	ttgtcttcta	aatacatata	ctaatcaact	ggaaatgtaa	1560	
atatttgcta	a atatttctac	tataggagaa	ttaaagtgag	tgaatatggt	accacaaggt	1620	20
ttggagattt	aattgttgca	atgctgcatg	gatggcatat	acaccaaaca	ttcaataatt	1680	25
cttgaggata	a ataatggtac	cacacaagat	ttgaggtgca	tgaacgtcac	gtggacaaaa	1740	
ggtttagta	a tttttcaaga	caacaatgtt	accacacaca	agttttgagg	tgcatgcatg	1800	30
gatgccctgt	t ggaaagttta	aaaatatttt	ggaaatgatt	tgcatggaag	ccatgtgtaa	1860	35
aaccatgaca	a tccacttgga	ggatgcaata	atgaagaaaa	ctacaaattt	acatgcaact	1920	
agttatgcat	t gtagtctata	taatgaggat	tttgcaatac	tttcattcat	acacactcac	1980	40
taagtttta	c acgattataa	tttcttcata	gccagcggat	ccgatatcgg	gcccgctagc	2040	45
gttaaccct	g ctttaatgag	atatgcgaga	cgcctatgat	cgcatgatat	ttgctttcaa	2100	
ttctgttgtg	g cacgttgtaa	aaaacctgag	catgtgtagc	tcagatcctt	accgccggtt	2160	50
tcggttcat	t ctaatgaata	tatcacccgt	tactatcgta	tttttatgaa	taatattctc	2220	55
cgttcaatt	t actgattgtc	cgtcgacgaa	ttcgagctcg	gcgcgccaag	cttggcgtaa	2280	
tcatggtca	t agctgtttcc	tgtgtgaaat	tgttatccgc	tcacaattcc	acacaacata	2340	60
cgagccgga	a gcataaagtg	taaagcctgg	ggtgcctaat	gagtgagcta	actcacatta	2400	

attgcgttgc gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca gctgcattaa 2460 5 tgaatcggcc aacgcgcggg gagaggcggt ttgcgtattg ggcgctcttc cgcttcctcg 2520 ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc tcactcaaag 2580 10 gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa 2640 ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc tggcgttttt ccataggctc 2700 cgccccctg acgagcatca caaaaatcga cgctcaagtc agaggtggcg aaacccgaca 2760 ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc tcctgttccg 2820 accetgeege ttaceggata cetgteegee ttteteeett egggaagegt ggegetttet 2880 catagctcac gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa gctgggctgt 2940 gtgcacgaac cccccgttca gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag 3000 tecaaeeegg taagaeaega ettategeea etggeageag eeaetggtaa eaggattage 3060 agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac 3120 actagaagga cagtatttgg tatctgcgct ctgctgaagc cagttacctt cggaaaaaga 3180 gttggtagct cttgatccgg caaacaaacc accgctggta gcggtggttt ttttgtttgc 3240 aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcctttgat cttttctacg 3300 gggtctgacg ctcagtggaa cgaaaactca cgttaaggga ttttggtcat gagattatca 3360 aaaaggatct tcacctagat ccttttaaat taaaaatgaa gttttaaatc aatctaaagt 3420 atatatgagt aaacttggtc tgacagttac caatgcttaa tcagtgaggc acctatctca 3480 gcgatctgtc tatttcgttc atccatagtt gcctgactcc ccgtcgtgta gataactacg 3540 atacgggagg gettaccate tggeeccagt getgeaatga tacegegaga eccaegetea 3600

	ccggctccag	atttatcagc	aataaaccag	ccagccggaa	gggccgagcg	cagaagtggt	3660	
	cctgcaactt	tatccgcctc	catccagtct	attaattgtt	gccgggaagc	tagagtaagt	3720	5
	agttcgccag	ttaatagttt	gcgcaacgtt	gttgccattg	ctacaggcat	cgtggtgtca	3780	
	cgctcgtcgt	ttggtatggc	ttcattcagc	tccggttccc	aacgatcaag	gcgagttaca	3840	10
	tgatccccca	tgttgtgcaa	aaaagcggtt	agctccttcg	gtcctccgat	cgttgtcaga	3900	15
\	agtaagttgg	ccgcagtgtt	atcactcatg	gttatggcag	cactgcataa	ttctcttact	3960	
	gtcatgccat	ccgtaagatg	cttttctgtg	actggtgagt	actcaaccaa	gtcattctga	4020	20
	gaatagtgta	tgcggcgacc	gagttgctct	tgcccggcgt	caatacggga	taataccgcg	4080	25
	ccacatagca	gaactttaaa	agtgctcatc	attggaaaac	gttcttcggg	gcgaaaactc	4140	
	tcaaggatct	taccgctgtt	gagatccagt	tcgatgtaac	ccactcgtgc	acccaactga	4200	30
	tcttcagcat	cttttacttt	caccagcgtt	tctgggtgag	caaaaacagg	aaggcaaaat	4260	· 35
	ġccgcaaaaa	agggaataag	ggcgacácgg	aaatgttgaa	tactcatact	cttccttttt	4320	
	caatattatt	gaagcattta	tcagggttat	tgtctcatga	gcggatacat	atttgaatgt	4380	40
	atttagaaaa	ataaacaaat	aggggttccg	cgcacatttc	cccgaaaagt	gccacctgac	4440	45
	gtctaagaaa	ccattattat	catgacatta	acctataaaa	ataggcgtat	cacgaggccc	4500	
	tttcgtc	•					4507	50
	<210> 37				·			55
	<211> 5410 <212> DNA							
	<213> Unkno	own						60
	<220>							65

<223> Sequenz stellt eine pflanzliche

Promotor-Terminator-Expressionskassette in Vektor pUC19 dar

<400> 37 ttttggaaat gatttgcatg gaagccatgt gtaaaaccat gacatccact tggaggatgc 60 aataatgaag aaaactacaa atttacatgc aactagttat gcatgtagtc tatataatga 120 ggattttgca atactttcat tcatacacac tcactaagtt ttacacgatt ataatttctt 180 catagccagc ggatccgata tcgggcccgc tagcgttaac cctgctttaa tgagatatgc 240 gagacgccta tgatcgcatg atatttgctt tcaattctgt tgtgcacgtt gtaaaaaaacc 300 tgagcatgtg tagctcagat ccttaccgcc ggtttcggtt cattctaatg aatatatcac 360 ccgttactat cgtattttta tgaataatat tctccgttca atttactgat tgtccgtcga 420 gcaaatttac acattgccac taaacgtcta aacccttgta atttgttttt gttttactat 480 gtgtgttatg tatttgattt gcgataaatt tttatatttg gtactaaatt tataacacct 540 tttatgctaa cgtttgccaa cacttagcaa tttgcaagtt gattaattga ttctaaatta 600 tttttgtctt ctaaatacat atactaatca actggaaatg taaatatttg ctaatatttc 660 tactatagga gaattaaagt gagtgaatat ggtaccacaa ggtttggaga tttaattgtt 720 gcaatgctgc atggatggca tatacaccaa acattcaata attcttgagg ataataatgg 780 taccacacaa gatttgaggt gcatgaacgt cacgtggaca aaaggtttag taatttttca 840 agacaacaat gttaccacac acaagttttg aggtgcatgc atggatgccc tgtggaaagt 900 ttaaaaatat tttggaaatg atttgcatgg aagccatgtg taaaaccatg acatccactt 960 ggaggatgca ataatgaaga aaactacaaa tttacatgca actagttatg catgtagtct 1020 atataatgag gattttgcaa tactttcatt catacacact cactaagttt tacacgatta 1080

taatttcttc	atagccagca	gatctgccgg	catcgatccc	gggccatggc	ctgctttaat	1140	
gagatatgcg	agacgcctat	gatcgcatga	tatttgcttt	caattctgtt	gtgcacgttg	1200	5
taaaaaacct	gagcatgtgt	agctcagatc	cttaccgccg.	gtttcggttc	attctaatga	1260	
atatatcacc	cgttactatc	gtatttttat	gaataatatt	ctccgttcaa	tttactgatt	1320	10
gtccgtcgac	gagctcggcg	cgccaagctt	ggcgtaatca	tggtcatagc	tgtttcctgt	1380	15
gtgaaattgt	tatccgctca	caattccaca	caacatacga	gccggaagca	taaagtgtaa	1440	
agcctggggt	gcctaatgag	tgagctaact	cacattaatt	gcgttgcgct	cactgcccgc	1500	20
tttccagtcg	ggaaacctgt	cgtgccagct,	gcattaatga	atcggccaac	gcgcggggag	1560	25
aggcggtttg	cgtattgggc	gctcttccgc	ttcctcgctc	actgactcgc	tgcgctcggt	1620	
cgttcggctg	cggcgagcgg	tatcagctca	ctcaaaggcg	gtaatacggt	tatccacaga	1680	30
atcaggggat	aacgcaggaa	agaacatgtg	agcaaaaggc	cagcaaaagg	ccaggaaccg	1740	35
taaaaaggcc	gcgttgctgg	cgtttttcca	taggctccgc	cccctgacg	agcatcacaa	1800	
aaatcgacgc	tcaagtcaga	ggtggcgaaa	cccgacagga	ctataaagat	accaggcgtt	1860	40
tccccctgga	agctccctcg	tgcgctctcc	tgttccgacc	ctgccgctta	ccggatacct	1920	45
gtccgccttt	ctcccttcgg	gaagcgtggc	gctttctcat	agctcacgct	gtaggtatct	1980	
cagttcggtg	taggtcgttc	gctccaagct	gggctgtgtg	cacgaacccc	ccgttcagcc	2040	50
cgaccgctgc	gccttatccg	gtaactatcg	tcttgagtcc	aacccggtaa	gacacgactt	2100	55
atcgccactg	gcagcagcca	ctggtaacag	gattagcaga	gcgaggtatg	taggcggtgc	2160	
tacagagttc	ttgaagtggt	ggcctaacta	cggctacact	agaaggacag	tatttggtat	2220	60
ctgcgctctg	ctgaagccag	ttaccttcgg	aaaaagagtt	ggtagctctt	gatccggcaa	2280	

acaaaccacc gctggtagcg gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa 2340 aaaaggatct caagaagatc ctttgatctt ttctacgggg tctgacgctc agtggaacga 2400 aaactcacgt taagggattt tggtcatgag attatcaaaa aggatcttca cctagatcct 2460 10 tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa cttggtctga 2520 cagttaccaa tgcttaatca gtgaggcacc tatctcagcg atctgtctat ttcgttcatc 2580 catagttgcc tgactccccg tcgtgtagat aactacgata cgggagggct taccatctgg 2640 20 ccccagtgct gcaatgatac cgcgagaccc acgctcaccg gctccagatt tatcagcaat 2700 aaaccagcca gccggaaggg ccgagcgcag aagtggtcct gcaactttat ccgcctccat 2760 ccagtctatt aattgttgcc gggaagctag agtaagtagt tcgccagtta atagtttgcg 2820 caacgttgtt gccattgcta caggcatcgt ggtgtcacgc tcgtcgtttg gtatggcttc 2880 attcagetce ggtteecaae gateaaggeg agttacatga tececcatgt tgtgeaaaaa 2940 agcggttagc tccttcggtc ctccgatcgt tgtcagaagt aagttggccg cagtgttatc 3000 actcatggtt atggcagcac tgcataattc tcttactgtc atgccatccg taagatgctt 3060 ttctgtgact ggtgagtact caaccaagtc attctgagaa tagtgtatgc ggcgaccgag 3120 ttgctcttgc ccggcgtcaa tacgggataa taccgcgcca catagcagaa ctttaaaagt 3180 gctcatcatt ggaaaacgtt cttcggggcg aaaactctca aggatcttac cgctgttgag 3240 atccagttcg atgtaaccca ctcgtgcacc caactgatct tcagcatctt ttactttcac 3300 cagcgtttct gggtgagcaa aaacaggaag gcaaaatgcc gcaaaaaagg gaataagggc 3360 gacacggaaa tgttgaatac tcatactctt cctttttcaa tattattgaa gcatttatca 3420 gggttattgt ctcatgagcg gatacatatt tgaatgtatt tagaaaaata aacaaatagg 3480

ggt	tccgcgc	acatttcccc	gaaaagtgcc	acctgacgtc	taagaaacca	ttattatcat	3540	
gad	cattaacc	tataaaaata	ggcgtatcac	gaggcccttt	cgtctcgcgc	gtttcggtga	3600	5
tga	acggtgaa	aacctctgac	acatgcagct	cccggagacg	gtcacagctt	gtctgtaagc	3660	10
gga	atgccggg	agcagacaag	cccgtcaggg	cgcgtcagcg	ggtgttggcg	ggtgtcgggg	3720	10
cto	ggcttaac	tatgcggcat	cagagcagat	tgtactgaga	gtgcaccata	tgcggtgtga	3780	15
aat	Laccgcac	agatgcgtaa	ggagaaaata	ccgcatcagg	cgccattcgc	cattcaggct	3840	
gcg	gcaactgt	tgggaagggc	gateggtgeg	ggcctcttcg	ctattacgcc	agctggcgaa	3900	
agg	ggggatgt	gctgcaaggc	gattaagttg	ggtaacgcca	gggttttccc	agtcacgacg	3960	25
ttç	gtaaaacg	acggccagtg	aattcggcgc	gccgagetee	tcgagcaaat	ttacacattg	4020	
CC	actaaacg	tctaaaccct	tgtaatttgt	ttttgtttta	ctatgtgtgt	tatgtatttg	40,80	30
att	tgcgata	aatttttata	tttggtacta	aatttataac	accttttatg	ctaacgtttg	4140	. 35
ĊС	acactta	gcaatttgca	agttgattaa	ttgattctaa	attatttttg	tcttctaaat	4200	
aca	atatacta	atcaactgga	aatgtaaata	tttgctaata	tttctactat	aggagaatta	4260	40
aaç	gtgagtga	atatggtacc	acaaggtttg	gagatttaat	tgttgcaatg	ctgcatggat	4320	45
ggo	catataca	ccaaacattc	aataattctt	gaggataata	atggtaccac	acaagatttg	4380	
ago	gtgcatga	acgtcacgtg	gacaaaaggt	ttagtaattt	ttcaagacaa	caatgttacc	4440	50
aca	acacaagt	tttgaggtgc	atgcatggat	gccctgtgga	aagtttaaaa	atattttgga	4500	55
aat	gatttgc	atggaagcca	tgtgtaaaac	catgacatcc	acttggagga	tgcaataatg	4560	
aag	gaaaacta	caaatttaca	tgcaactagt	tatgcatgta	gtctatataa	tgaggatttt	4620	60
gca	atacttt	cattcataca	cactcactaa	gttttacacg	attataattt	cttcatagcc	4680	

agcccaccgc ggtgggcggc cgcctgcagt ctagaaggcc tcctgcttta atgagatatg 4740

s cgagacgcct atgatcgcat gatatttgct ttcaattctg ttgtgcacgt tgtaaaaaac 4800

ctgagcatgt gtagctcaga tccttaccgc cggtttcggt tcattctaat gaatatatca 4860

cccgttacta tcgtatttt atgaataata ttctccgttc aatttactga ttgtccgtcg 4920

agcaaaattta cacattgcca ctaaacgtct aaacccttgt aatttgttt tgttttacta 4980

tgtgtgttat gtatttgatt tgcgataaat ttttatattt ggtactaaat ttataacacc 5040

ttttatgcta acgtttgcca acacttagca atttgcaagt tgattaattg attctaaatt 5100

ctactatagg agaattaaag tgagtgaata tggtaccaca aggtttggag atttaattgt 5220

tgcaatgctg catggatggc atatacacca aacattcaat aattcttgag gataataatg 5280

gtaccacaca agatttgagg tgcatgaacg tcacgtggac aaaaggttta gtaattttc 5340

aagacaacaa tgttaccaca cacaagttt gaggtgcatg catggatgcc ctgtggaaag 5400

tttaaaaata

<210> 38

<211> 12093

<212> DNA

<213> Unknown

<220>

<223> pflanzlicher Expressionsvektor mit einer
Promotor-Terminator-Expressionskassette

<400> 38
gatctggcgc cggccagcga gacgagcaag attggccgcc gcccgaaacg atccgacagc 60

gcgcccagca caggtgcgca ggcaaattgc accaacgcat acagcgccag cagaatgcca 120

	acaaacaa	tgatgttgtt	cgagcgaacc	agategegea	ggaggcccgg	cagcaccggc		
at	aatcaggc	cgatgccgac	agcgtcgagc	gcgacagtgc	tcagaattac	gatcaggggt	240	5
at	gttgggtt	tcacgtctgg	cctccggacc	agcctccgct	ggtccgattg	aacgcgcgga	300	10
tt.	ctttatca	ctgataagtt	ggtggacata	ttatgtttat	cagtgataaa	gtgtcaagca	360	10
tg.	acaaagtt	gcagccgaat	acagtgatcc	gtgccgccct	ggacctgttg	aacgaggtcg	420	15
gc	gtagacgg	tctgacgaca	cgcaaactgg	cggaacggtt	gggggttcag	cagccggcgc	480	20
tt	tactggca	cttcaggaac	aagcgggcgc	tgctcgacgc	actggccgaa	gccatgctgg	540	20
cg	gagaatca	tacgcattcg	gtgccgagag	ccgacgacga	ctggcgctca	tttctgatcg	600	25
gg	aatgcccg	cagcttcagg	caggcgctgc	tcgcctaccg	cgatggcgcg	cgcatccatg	660	
cci	ggcacgcg	accgggcgca	ccgcagatgg	aaacggccga	cgcgcagctt	cgcttcctct	720	30
gc	gaggcggg	tttttcggcc	ggggacgccg	tcaatgcgct	gatgacaatc	agctacttca	780	35
ċŧ	gttggggc	cgtgcttgag	gagcagġccg	gcgacagcga	tgccggcgag	cgcggcggca	840	
cc	gttgaaca	ggctccgctc	tcgccgctgt	tgcgggccgc	gatagacgcc	ttcgacgaag	900	40
ccg	ggtccgga	cgcagcgttc	gagcagggac	tcgcggtgat	tgtcgatgga	ttggcgaaaa	960	45
gga	aggctcgt	tgtcaggaac	gttgaaggac	cgagaaaggg	tgacgattga	tcaggaccgc	1020	
tgo	ccggagcg	caacccactc	actacagcag	agccatgtag	acaacatccc	ctcccccttt	1080	50
cca	accgcgtc	agacgcccgt	agcagcccgc	tacgggcttt	ttcatgccct	gccctagcgt	1140	55
cca	agcctca	cggccgcgct	cggcctctct	ggcggccttc	tggcgctctt	ccgcttcctc	1200	
gct	cactgac	tcgctgcgct	cggtcgttcg	gctgcggcga	gcggtatcag	ctcactcaaa	1260	60
ggo	ggtaata	cggttatcca	cagaatcagg	ggataacgca	ggaaagaaca	tgtgagcaaa	1320	

aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct 1380 ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac 1440 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1500 gaccetgeeg ettaceggat acetgteege ettteteeet tegggaageg tggegetttt 1560 ccgctgcata accctgcttc ggggtcatta tagcgatttt ttcggtatat ccatccttt 1620 tegeaegata tacaggattt tgeeaaaggg ttegtgtaga ettteettgg tgtateeaac 1680 ggcgtcagcc gggcaggata ggtgaagtag gcccacccgc gagcgggtgt tccttcttca 1740 ctgtccctta ttcgcacctg gcggtgctca acgggaatcc tgctctgcga ggctggccgg 1800 ctaccgccgg cgtaacagat gagggcaagc ggatggctga tgaaaccaag ccaaccagga 1860 agggcagccc acctatcaag gtgtactgcc ttccagacga acgaagagcg attgaggaaa 1920 aggcggcggc ggccggcatg agcctgtcgg cctacctgct ggccgtcggc cagggctaca 1980 aaatcacggg cgtcgtggac tatgagcacg tccgcgagct ggcccgcatc aatggcgacc 2040 tgggccgcct gggcggcctg ctgaaactct ggctcaccga cgacccgcgc acggcgcggt 2100 teggtgatge caegateete gecetgetgg egaagatega agagaageag gaegagettg 2160 gcaaggtcat gatgggcgtg gtccgcccga gggcagagcc atgacttttt tagccgctaa 2220 aacggccggg gggtgcgcgt gattgccaag cacgtcccca tgcgctccat caagaagagc 2280 gacttcgcgg agctggtgaa gtacatcacc gacgagcaag gcaagaccga gcgcctttgc 2340 gacgeteace gggetggttg ceetegeege tgggetggeg geegtetatg geeetgeaaa 2400 cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgccggc gttgtggata 2460 cctcgcggaa aacttggccc tcactgacag atgaggggcg gacgttgaca cttgaggggc 2520

cgactcaccc	ggcgcggcgt	tgacagatga	ggggcaggct	cgatttcggc	cggcgacgtg	2580	
gagctggcca	gcctcgcaaa	tcggcgaaaa	cgcctgattt	tacgcgagtt	tcccacagat	2640	5
gatgtggaca	agcctgggga	taagtgccct	gcggtattga.	cacttgaggg	gcgcgactac	2700	10
tgacagatga	ggggcgcgat	ccttgacact	tgaggggcag	agtgctgaca	gatgaggggc	2760	10
gcacctattg	acatttgagg	ggctgtccac	aggcagaaaa	tccagcattt	gcaagggttt	2820	15
ccgcccgttt	ttcggccacc	gctaacctgt	cttttaacct	gcttttaaac	caatatttat	2880	
aaaccttgtt	tttaaccagg	gctgcgccct	gtgcgcgtga	ccgcgcacgc	cgaagggggg	2940	20
tgcccccct	tctcgaaccc	tcccggcccg	ctaacgcggg	cctcccatcc	ccccaggggc	3000	25
tgcgcccctc	ggccgcgaac	ggcctcaccc	caaaaatggc	agcgctggca	gtccttgcca	3060	
ttgccgggat	cggggcagta	acgggatggg	cgatcagccc	gagcgcgacg	cccggaagca	3120	30
ttgacgtgcc	gcaggtgctg	gcatcgacat	tcagcgacca	ggtgccgggc	agtgagggcg	3180	35
gcggcctggg	tggcggcctg	cccttcactt	cggccgtcgg	ggcattcacg	gacttcatgg	3240	
cggggccggc	aatttttacc	ttgggcattc	ttggcatagt	ggtcgcgggt	gccgtgctcg	3300	40
tgttcggggg	tgcgataaac	ccagcgaacc	atttgaggtg	ataggtaaga	ttataccgag	3360	45
gtatgaaaac	gagaattgga	cctttacaga	attactctat	gaagcgccat	atttaaaaag	3420	
ctaccaagac	gaagaggatg	aagaggatga	ggaggcagat	tgccttgaat	atattgacaa	3480	50
tactgataag	ataatatatc	ttttatatag	aagatatcgc	cgtatgtaag	gatttcaggg	3540	55
ggcaaggcat	aggcagcgcg	cttatcaata	tatctataga	atgggcaaag	cataaaaact	3600	
tgcatggact	aatgcttgaa	acccaggaca	ataaccttat	agcttgtaaa	ttctatcata	3660	60
attgggtaat	gactccaact	tattgatagt	gttttatgtt	cagataatgc	ccgatgactt	3720	

tgtcatgcag ctccaccgat tttgagaacg acagcgactt ccgtcccagc cgtgccaggt 3780 5 gctgcctcag attcaggtta tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt 3840 gcagetttee etteaggegg gatteataea geggeeagee ateegteate catateacea 3900 10 cgtcaaaggg tgacagcagg ctcataagac gccccagcgt cgccatagtg cgttcaccga 3960 atacgtgcgc aacaaccgtc ttccggagac tgtcatacgc gtaaaacagc cagcgctggc 4020 gcgatttagc cccgacatag ccccactgtt cgtccatttc cgcgcagacg atgacgtcac 4080 tgcccggctg tatgcgcgag gttaccgact gcggcctgag ttttttaagt gacgtaaaat 4140 cgtgttgagg ccaacgccca taatgcgggc tgttgcccgg catccaacgc cattcatggc 4200 catatcaatg attttctggt gcgtaccggg ttgagaagcg gtgtaagtga actgcagttg 4260 30 ccatgtttta cggcagtgag agcagagata gcgctgatgt ccggcggtgc ttttgccgtt 4320 acgcaccacc ccgtcagtag ctgaacagga gggacagctg atagacacag aagccactgg 4380 agcacctcaa aaacaccatc atacactaaa tcagtaagtt ggcagcatca cccataattg 4440 40 tggtttcaaa atcggctccg tcgatactat gttatacgcc aactttgaaa acaactttga 4500 aaaagctgtt ttctggtatt taaggtttta gaatgcaagg aacagtgaat tggagttcgt 4560 cttgttataa ttagcttctt ggggtatctt taaatactgt agaaaagagg aaggaaataa 4620 taaatggcta aaatgagaat atcaccggaa ttgaaaaaac tgatcgaaaa ataccgctgc 4680 gtaaaagata cggaaggaat gtctcctgct aaggtatata agctggtggg agaaaatgaa 4740 aacctatatt taaaaatgac ggacagccgg tataaaggga ccacctatga tgtggaacgg 4800 gaaaaggaca tgatgctatg gctggaagga aagctgcctg ttccaaaggt cctgcacttt 4860 gaacggcatg atggctggag caatctgctc atgagtgagg ccgatggcgt cctttgctcg 4920

ya.	agagtatg	aagatgaaca	aagccctgaa	aagactatcg	agetgtatge	ggagtgcatc	4980	
age	getettte	actccatcga	catatcggat	tgtccctata	cgaatagctt	agacagccgc	5040	5
tta	agccgaat	tggattactt	actgaataac	gatctggccg	atgtggattg	cgaaaactgg	5100	10
gaa	agaagaca	ctccatttaa	agatccgcgc	gagctgtatg	attttttaaa	gacggaaaag	5160	
cc	cgaagagg	aacttgtctt	ttcccacggc	gacctgggag	acagcaacat	ctttgtgaaa	5220	15
gat	tggcaaag	taagtggctt	tattgatctt	gggagaagcg	gcagggcgga	caagtggtat	5280	20
gad	cattgcct	tctgcgtccg	gtcgatcagg	gaggatatcg	gggaagaaca	gtatgtcgag	5340	20
cta	atttttg	acttactggg	gatcaagcct	gattgggaga	aaataaaata	ttatatttta	5400	25
ctç	ggatgaat	tgttttagta	cctagatgtg	gcgcaacgat	gccggcgaca	agcaggagcg	5460	20
cad	ccgacttc	ttccgcatca	agtgttttgg	ctctcaggcc	gaggcccacg	gcaagtattt	5520	30
ggg	gcaagggg	tcgctggtat	tcgtgcaggg	caagattcgg	aataccaagt	acgagaagga	5580	35
ċgg	gccagacg	gtctacggga	ccgacttcat	tgccgataag	gtggattatc	tggacaccaa	5640	
ggo	caccaggc	gggtcaaatc	aggaataagg	gcacattgcc	ccggcgtgag	tcggggcaat	5700	40
cco	gcaagga	gggtgaatga	atcggacgtt	tgaccggaag	gcatacaggc	aagaactgat	5760	45
cga	acgcgggg	ttttccgccg	aggatgccga	aaccatcgca	agccgcaccg	tcatgcgtgc	5820	
gco	ccgcgaa	accttccagt	ccgtcggctc	gatggtccag	caagctacgg	ccaagatcga	5880	50
gcg	gcgacagc	gtgcaactgg	ctccccctgc	cctgcccgcg	ccatcggccg	ccgtggagcg	5940	55
tto	gcgtcgt	ctcgaacagg	aggcggcagg	tttggcgaag	tcgatgacca	tcgacacgcg	6000	
agg	gaactatg	acgaccaaga	agcgaaaaac	cgccggcgag	gacctggcaa	aacaggtcag	6060	60
cga	ıggccaag	caggccgcgt	tgctgaaaca	cacgaagcag	cagatcaagg	aaatgcagct	6120	65

ttccttgttc gatattgcgc cgtggccgga cacgatgcga gcgatgccaa acgacacggc 6180 ccgctctgcc ctgttcacca cgcgcaacaa gaaaatcccg cgcgaggcgc tgcaaaacaa 6240 ggtcattttc cacgtcaaca aggacgtgaa gatcacctac accggcgtcg agctgcgggc 6300 cgacgatgac gaactggtgt ggcagcaggt gttggagtac gcgaagcgca cccctatcgg 6360 cgagccgatc accttcacgt tctacgagct ttgccaggac ctgggctggt cgatcaatgg 6420 ccggtattac acgaaggccg aggaatgcct gtcgcgccta caggcgacgg cgatgggctt 6480 20 cacgtccgac cgcgttgggc acctggaatc ggtgtcgctg ctgcaccgct tccgcgtcct 6540 ggaccgtggc aagaaaacgt cccgttgcca ggtcctgatc gacgaggaaa tcgtcgtgct 6600 gtttgctggc gaccactaca cgaaattcat atgggagaag taccgcaagc tgtcgccgac 6660 ggcccgacgg atgttcgact atttcagctc gcaccgggag ccgtacccgc tcaagctgga 6720 aaccttccgc ctcatgtgcg gatcggattc cacccgcgtg aagaagtggc gcgagcaggt 6780 cggcgaagcc tgcgaagagt tgcgaggcag cggcctggtg gaacacgcct gggtcaatga 6840 tgacctggtg cattgcaaac gctagggcct tgtggggtca gttccggctg ggggttcagc 6900 agccagcgct ttactggcat ttcaggaaca agcgggcact gctcgacgca cttgcttcgc 6960 teagtatege tegggaegea eggegegete taegaactge egataaacag aggattaaaa 7020 ttgacaattg tgattaaggc tcagattcga cggcttggag cggccgacgt gcaggatttc 7080 cgcgagatcc gattgtcggc cctgaagaaa gctccagaga tgttcgggtc cgtttacgag 7140 55 cacgaggaga aaaagcccat ggaggcgttc gctgaacggt tgcgagatgc cgtggcattc 7200 ggcgcctaca tcgacggcga gatcattggg ctgtcggtct tcaaacagga ggacggcccc 7260 aaggacgctc acaaggcgca tctgtccggc gttttcgtgg agcccgaaca gcgaggccga 7320

ggggtcgccg	gtatgctgct	gcgggcgttg	ccggcgggtt	tattgctcgt	gatgatcgtc	7380	
cgacagattc	caacgggaat	ctggtggatg	cgcatcttca	tcctcggcgc	acttaatatt	7440	5
tcgctattct	ggagcttgtt	gtttatttcg	gtctaccgcc	tgccgggcgg	ggtcgcggcg	7500	10
acggtaggcg	ctgtgcagcc	gctgatggtc	gtgttcatct	ctgccgctct	gctaggtagc	7560	10
ccgatacgat	tgatggcggt	cctgggggct	atttgcggaa	ctgcgggcgt	ggcgctgttg	7620	15
gtgttgacac	caaacgcagc	gctagatcct	gtcggcgtcg	cagcgggcct	ggcgggggcg	7680	•
gtttccatgg	cgttcggaac	cgtgctgacc	cgcaagtggc	aacctcccgt	gcctctgctc	7740	20
acctttaccg	cctggcaact	ggcggccgga	ggacttctgc	tcgttccagt	agctttagtg	7800	25
tttgatccgc	caatcccgat	gcctacagga	accaatgttc	tcggcctggc	gtggctcggc	7860	
ctgatcggag	cgggtttaac	ctacttcctt	tggttccggg	ggatctcgcg	actcgaacct	7920	30
acagttgttt	ccttactggg	ctttctcagc	cccagatctg	gggtcgatca	gccggggatg	7980	35
ċatcaggccg	acagtcggaa	cttcgggtcc	ccgacctgta	ccattcggtg	agcaatggat	8040	
aggggagttg	atatcgtcaa	cgttcacttc	taaagaaata	gcgccactca	gcttcctcag	8100	40
cggctttatc	cagcgatttc	ctattatgtc	ggcatagttc	tcaagatcga	cagcctgtca	8160	45
cggttaagcg	agaaatgaat	aagaaggctg	ataattcgga	tctctgcgag	ggagatgata	8220	
tttgatcaca	ggcagcaacg	ctctgtcatc	gttacaatca	acatgctacc	ctccgcgaga	8280	50
tcatccgtgt	ttcaaacccg	gcagcttagt	tgccgttctt	ccgaatagca	tcggtaacat	8340	55
gagcaaagtc	tgccgcctta	caacggctct	cccgctgacg	ccgtcccgga	ctgatgggct	8400	
gcctgtatcg	agtggtgatt	ttgtgccgag	ctgccggtcg	gggagctgtt	ggctggctgg	8460	60
tggcaggata	tattgtggtg	taaacaaatt	gacgcttaga	caacttaata	acacattgcg	8520	

gacgttttta atgtactggg gtggtttttc ttttcaccag tgagacgggc aacagctgat 8580 tgcccttcac cgcctggccc tgagagagtt gcagcaagcg gtccacgctg gtttgcccca 8640 gcaggcgaaa atcctgtttg atggtggttc cgaaatcggc aaaatccctt ataaatcaaa 8700 10 agaatagccc gagatagggt tgagtgttgt tccagtttgg aacaagagtc cactattaaa 8760 gaacgtggac tccaacgtca aagggcgaaa aaccgtctat cagggcgatg gcccactacg 8820 tgaaccatca cccaaatcaa gttttttggg gtcgaggtgc cgtaaagcac taaatcggaa 8880 20 ccctaaaggg agcccccgat ttagagcttg acggggaaag ccggcgaacg tggcgagaaa 8940 ggaagggaag aaagcgaaag gagcgggcgc cattcaggct gcgcaactgt tgggaagggc 9000 gatcggtgcg ggcctcttcg ctattacgcc agctggcgaa agggggatgt gctgcaaggc 9060 gattaagttg ggtaacgcca gggttttccc agtcacgacg ttgtaaaacg acggccagtg 9120 aattaattoo catottgaaa gaaatatagt ttaaatattt attgataaaa taacaagtoa 9180 ggtattatag tccaagcaaa aacataaatt tattgatgca agtttaaatt cagaaatatt 9240 tcaataactg attatatcag ctggtacatt gccgtagatg aaagactgag tgcgatatta 9300 tgtgtaatac ataaattgat gatatagcta gcttagctca tcggggggatc cgtcgaagct 9360 agcttgggtc ccgctcagaa gaactcgtca agaaggcgat agaaggcgat gcgctgcgaa 9420 tcgggagcgg cgataccgta aagcacgagg aagcggtcag cccattcgcc gccaagctct 9480 tcagcaatat cacgggtagc caacgctatg tcctgatagc ggtccgccac acccagccgg 9540 55 ccacagtcga tgaatccaga aaagcggcca ttttccacca tgatattcgg caagcaggca 9600 tegecatggg teaegaegag atectegeeg tegggeatge gegeettgag eetggegaae 9660 agttcggctg gcgcgagccc ctgatgctct tcgtccagat catcctgatc gacaagaccg 9720

gc	ctccatcc	gagtacgtgc	tegetegatg	cgatgtttcg	cttggtggtc	gaatgggcag	9780	
gt	agccggat	caagcgtatg	cagccgccgc	attgcatcag	ccatgatgga	tactttctcg	9840	5
gc	:aggagcaa	ggtgagatga	caggagatcc	tgccccggca	cttcgcccaa	tagcagccag	9900	10
tc	ccttcccg	cttcagtgac	aacgtcgagc	acagetgege	aaggaacgcc	cgtcgtggcc	9960	10
ag	ccacgata	gccgcgctgc	ctcgtcctgc	agttcattca	gggcaccgga	caggtcggtc	10020	15
tt	gacaaaaa	gaaccgggcg	cccctgcgct	gacagccgga	acacggcggc	atcagagcag	10080	
CC	gattġtct	gttgtgccca	gtcatagccg	aatagcctct	ccacccaagc	ggccggagaa	10140	20
cc	tgcgtgca	atccatcttg	ttcaatccaa	gctcccatgg	gccctcgact	agagtcgaga	10200	25
tc	tggattga	gagtgaatat	gagactctaa	ttggataccg	aggggaattt	atggaacgtc	10260	
ag	tggagcat	ttttgacaag	aaatatttgc	tagctgatag	tgaccttagg	cgacttttga	10320	. 30
ac	gcgcaata	atggtttctg	acgtatgtgc	ttagctcatt	aaactccaga	aacccgcggc	10380	35
tg	agtggctc	cttcaacgtt	gcggttctgt	cagttccaaa	cgtaaaacgg	cttgtcccgc	10440	
gt	categgeg	ggggtcataa	cgtgactccc	ttaattctcc	gctcatgatc	ttgatcccct	10500	40
gc	gccatcag	atccttggcg	gcaagaaagc	catccagttt	actttgcagg	gcttcccaac	10560	45
ct	taccagag	ggcgccccag	ctggcaattc	cggttcgctt	gctgtccata	aaaccgccca	10620	
gt	ctagctat	cgccatgtaa	gcccactgca	agctacctgc	tttctctttg	cgcttgcgtt	10680	50
tt	cccttgtc	cagatagccc	agtagctgac	attcatccgg	ggtcagcacc	gtttctgcgg	10740	55
ac	tggctttc	tacgtgttcc	gcttccttta	gcagcccttg	cgccctgagt	gcttgcggca	10800	
gc	gtgaagct	tgcatgcctg	caggtcgacg	gcgcgccgag	ctcctcgagc	aaatttacac	10860	60
ati	tgccacta	aacgtctaaa	cccttgtaat	ttgtttttgt	tttactatgt	gtgttatgta	10920	65

tttgatttgc gataaatttt tatatttggt actaaattta taacaccttt tatgctaacg 10980 5 tttgccaaca cttagcaatt tgcaagttga ttaattgatt ctaaattatt tttgtcttct 11040 aaatacatat actaatcaac tggaaatgta aatatttgct aatatttcta ctataggaga 11100 10 attaaagtga gtgaatatgg taccacaagg tttggagatt taattgttgc aatgctgcat 11160 ggatggcata tacaccaaac attcaataat tcttgaggat aataatggta ccacacaaga 11220 tttgaggtgc atgaacgtca cgtggacaaa aggtttagta atttttcaag acaacaatgt 11280 taccacaca aagttttgag gtgcatgcat ggatgccctg tggaaagttt aaaaatattt 11340 tggaaatgat ttgcatggaa gccatgtgta aaaccatgac atccacttgg aggatgcaat 11400 aatgaagaaa actacaaatt tacatgcaac tagttatgca tgtagtctat ataatgagga 11460 ttttgcaata ctttcattca tacacactca ctaagtttta cacgattata atttcttcat 11520 agccagccca ccgcggtggg cggccgcctg cagtctagaa ggcctcctgc tttaatgaga 11580 tatgcgagac gcctatgatc gcatgatatt tgctttcaat tctgttgtgc acgttgtaaa 11640 aaacctgagc atgtgtagct cagatcctta ccgccggttt cggttcattc taatgaatat 11700 atcacccgtt actatcgtat ttttatgaat aatattctcc gttcaattta ctgattgtcc 11760 gtcgacgaat tcgagctcgg cgcgcctcta gaggatcgat gaattcagat cggctgagtg 11820 gctccttcaa cgttgcggtt ctgtcagttc caaacgtaaa acggcttgtc ccgcgtcatc 11880 ggcgggggtc ataacgtgac tcccttaatt ctccgctcat gatcagattg tcgtttcccg 11940 ccttcagttt aaactatcag tgtttgacag gatatattgg cgggtaaacc taagagaaaa 12000 gagcgtttat tagaataatc ggatatttaa aagggcgtga aaaggtttat ccttcgtcca 12060 12093 tttgtatgtg catgccaacc acagggttcc cca

	<210> 39							
	<211> 1208	5						
	<212> DNA							9
	<213> Unkno	own			•			
	<220>		_					10
			pressionsvel					
	Promo	otor-Termina	ator-Expres	sionskasset	te			
	-400> 20							15
	<400> 39	~~~~~	~~~~~~~	5 t t c c c c c c c	~~~~~		60	
ļ	gatetggege	cggccagcga	gacgagcaag	actggccgcc	geeegaaaeg	accegacage	60	
	acacccaaca	caggtgggg	ggcaaattgc	accaacacat	3030000030	cagaatgcca	120	20
	gegeetagea	caggigggea	ggcaaactgc		acagegeeag	cagaatycta		
	tagtgggcgg	tgacgtcgtt	cgagtgaacc	agatogogoa	aasaacccaa	cagcaccggc	180	26
	5-555555	-555	05-505-00	agassgegea	9949944499	cageacegge	100 ,	25
	ataatcaggc	cgatgccgac	agcgtcgagc	gcgacagtgc	tcagaattac	gatcaggggt	240	
			3 2 3 3			3		30
	atgttgggtt	tcacgtctgg	cctccggacc	agcctccgct	ggtccgattg	aacgcgcgga	300	50
	ttctttatca	ctgataagtt	ggtggacata	ttatgtttat	cagtgataaa	gtgtcaagca	360	35
							•	
	tgacaaagtt	gcagccgaat	acagtgatec	gtgccgccct	ggacctgttg	aacgaggtcg	420	
					•			4(
	gcgtagacgg	tctgacgaca	cgcaaactgg	cggaacggtt	gggggttcag	cagccggcgc	480	
	tttactggca	cttcaggaac	aagcgggcgc	tgctcgacgc	actggccgaa	gccatgctgg	540	45
			_				.0.	
	cggagaatca	tacgcattcg	gtgccgagag	ccgacgacga	ctggcgctca	tttctgatcg	600	
	aastaaaa		an agaaataa	*			660	50
	ggaatgeeeg	cagciccagg	caggcgctgc	tegeetaeeg	egatggegeg	cgcatccatg	000	
	ccaacacaca	accoggcgca	ccgcagatgg	aaacaaccaa	cacacaactt	cactteetet	720	
	JJ 1		3333			ogoccocco		55
	gcgaggcggg	tttttcggcc	ggggacgccg	tcaatgcgct	gatgacaatc	agctacttca	780	
					_	-		
	ctgttggggc	cgtgcttgag	gagcaggccg	gcgacagcga	tgccggcgag	cgcggcggca	840	60

ccgttgaaca ggctccgctc tcgccgctgt tgcgggccgc gatagacgcc ttcgacgaag 900 5 ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tgtcgatgga ttggcgaaaa 960 ggaggctcgt tgtcaggaac gttgaaggac cgagaaaggg tgacgattga tcaggaccgc 1020 10 tgccggagcg caacccactc actacagcag agccatgtag acaacatccc ctcccccttt 1080 ccaccgcgtc agacgcccgt agcagcccgc tacgggcttt ttcatgccct gccctagcgt 1140 ccaageetea eggeeget eggeetetet ggeggeette tggegetett eegetteete 1200 20 gctcactgac tcgctgcgct cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa 1260 ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa 1320 aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct 1380 ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac 1440 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1500 gaccetgeeg ettaceggat acetgteege ettteteeet tegggaageg tggegetttt 1560 ccgctgcata accctgcttc ggggtcatta tagcgatttt ttcggtatat ccatcctttt 1620 tcgcacgata tacaggattt tgccaaaggg ttcgtgtaga ctttccttgg tgtatccaac 1680 ggcgtcagcc gggcaggata ggtgaagtag gcccacccgc gagcgggtgt tccttcttca 1740 ctgtccctta ttcgcacctg gcggtgctca acgggaatcc tgctctgcga ggctggccgg 1800 ctaccgccgg cgtaacagat gagggcaagc ggatggctga tgaaaccaag ccaaccagga 1860 agggcagccc acctatcaag gtgtactgcc ttccagacga acgaagagcg attgaggaaa 1920 aggcggcggc ggccggcatg agcctgtcgg cctacctgct ggccgtcggc cagggctaca 1980 aaatcacggg cgtcgtggac tatgagcacg tccgcgagct ggcccgcatc aatggcgacc 2040

	2100	acggcgcggt	cgacccgcgc	ggctcaccga	ctgaaactct	gggcggcctg	tgggccgcct
5	2160	gacgagcttg	agagaagcag	cgaagatcga	gccctgctgg	cacgatcctc	tcggtgatgc
10	2220	tagccgctaa	atgacttttt	gggcagagcc	gtccgcccga	gatgggcgtg	gcaaggtcat
10	2280	caagaagagc	tgcgctccat	cacgtcccca	gattgccaag	gggtgcgcgt	aacggccggg
15	2340	gcgcctttgc	gcaagaccga	gacgagcaag	gtacatcacc	agctggtgaa	gacttcgcgg
	2400	gccctgcaaa	gccgtctatg	tgggctggcg	ccctcgccgc	gggctggttg	gacgctcacc
20	2460	gttgtggata	ggccgccggc	gagacaccgc	agccgtgtgc	acgccgtcga	cgcgccagaa
25	2520	cttgaggggc	gacgttgaca	atgaggggcg	tcactgacag	aacttggccc	cctcgcggaa
	2580	cggcgacgtg	cgatttcggc	ggggcaggct	tgacagatga	ggcgcggcgt	cgactcaccc
. 30	2640	tcccacagat	tacgcgagtt	cgcctgattt	tcggcgaaaa	gcctcgcaaa	gagctggcca
35	2700	gcgcgactac	cacttgaggg	gcggtattga	taagtgccct	agcctgggga	gatgtggaca
	2760	gatgaggggc	agtgctgaca	tgaggggcag	ccttgacact	ggggcgcgat	tgacagatga
40	2820	gcaagggttt	tccagcattt	aggcagaaaa	ggctgtccac	acatttgagg	gcacctattg
45	2880	caatatttat	gcttttaaac	cttttaacct	gctaacctgt	ttcggccacc	ccgcccgttt
	2940	cgaagggggg	ccgcgcacgc	gtgcgcgtga	gctgcgccct	tttaaccagg	aaaccttgtt
50	3000	ccccaggggc	cctcccatcc	ctaacgcggg	tcccggcccg	tctcgaaccc	tgcccccct
5.5	3060	gtccttgcca	agcgctggca	caaaaatggc	ggcctcaccc	ggccgcgaac	tgcgcccctc
	3120	cccggaagca	gagcgcgacg	cgatcagccc	acgggatggg	cggggcagta	ttgccgggat
60	3180	agtgagggcg	ggtgccgggc	tcagcgacca	gcatcgacat	gcaggtgctg	ttgacgtgcc
	3240	gacttcatgg	ggcattcacg	cggccgtcgg	cccttcactt	tggcggcctg	gcggcctggg

cggggccggc aatttttacc ttgggcattc ttggcatagt ggtcgcgggt gccgtgctcg 3300 tgttcggggg tgcgataaac ccagcgaacc atttgaggtg ataggtaaga ttataccgag 3360 gtatgaaaac gagaattgga cctttacaga attactctat gaagcgccat atttaaaaag 3420 ctaccaagac gaagaggatg aagaggatga ggaggcagat tgccttgaat atattgacaa 3480 tactgataag ataatatatc ttttatatag aagatatcgc cgtatgtaag gatttcaggg 3540 ggcaaggcat aggcagcgcg cttatcaata tatctataga atgggcaaag cataaaaact 3600 tgcatggact aatgcttgaa acccaggaca ataaccttat agcttgtaaa ttctatcata 3660 attgggtaat gactccaact tattgatagt gttttatgtt cagataatgc ccgatgactt 3720 tgtcatgcag ctccaccgat tttgagaacg acagcgactt ccgtcccagc cgtgccaggt 3780 gctgcctcag attcaggtta tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt 3840 gcagetttee etteaggegg gatteataea geggeeagee ateegteate catateacea 3900 cgtcaaaggg tgacagcagg ctcataagac gccccagcgt cgccatagtg cgttcaccga 3960 atacgtgcgc aacaaccgtc ttccggagac tgtcatacgc gtaaaacagc cagcgctggc 4020 gegatttagc cccgacatag ccccactgtt cgtccatttc cgcgcagacg atgacgtcac 4080 tgcccggctg tatgcgcgag gttaccgact gcggcctgag ttttttaagt gacgtaaaat 4140 cgtgttgagg ccaacgccca taatgcgggc tgttgcccgg catccaacgc cattcatggc 4200 55 catatcaatg attttctggt gcgtaccggg ttgagaagcg gtgtaagtga actgcagttg 4260 ccatgtttta cggcagtgag agcagagata gcgctgatgt ccggcggtgc ttttgccgtt 4320 acgcaccacc ccgtcagtag ctgaacagga gggacagctg atagacacag aagccactgg 4380 65 agcacctcaa aaacaccatc atacactaaa tcagtaagtt ggcagcatca cccataattg 4440

	gata	Ctat	. <u>c</u>	gttatacg	CC	aactttgaa	ıa	acaactttga	4500	,	
19	aggt	ttta	g	gaatgcaa	gg	aacagtgaa	ıt	tggagttcgt	4560)	5
ŗt	ggta	tctt	t	aaatact	gt	agaaaagag	ıg	aaggaaataa	4620		
ıc	cacc	ggaa	t	tgaaaaa	ac	tgatcgaaa	a	ataccgctgc	4680		10
c	ctcc	tgct	. а	aaggtata	ta	agctggtgg	g	agaaaatgaa	4740)	15
a	acag	ccgg	t	tataaagg	ga	ccacctatg	ıa	tgtggaacgg	4800		
19	tgga	.agga	ıa	agctgcc	tg	ttccaaagg	ŗt	cctgcacttt	4860		20
c	atct	gctc	: ē	atgagtga	gg	ccgatggcg	ŗt	cctttgctcg	4920		25
cc	gccc	tgaa	ı ā	aagattat	.cg	agctgtatg	jC	ggagtgcatc	4980)	
ŧt	tatc	ggat	: t	tgtcccta	ta	cgaatagct	t	agacagccgc	5040		30
ja	tgaa	taac	: ç	gatctggc	cg:	atgtggatt	g	cgaaaactgg	5100)	35
	atcc	gcgc	: <u>c</u>	gagctgta	tg	atttttaa	a	gacggaaaag	5160)	
20	ccca	cggc	: <u>c</u>	gacctggg	ag	acagcaaca	t	ctttgtgaaa	5220		40
:0	ttga	tctt	: <u>c</u>	ggagaag	ıcg	gcagggcgg	ja	caagtggtat	5280		45
ja	cgat	cago	,	gaggatat	.cg	gggaagaad	a	gtatgtcgag	5340)	
ca	tcaa	ıgcct	: 0	gattggga	ıga	aaataaaat	a	ttatatttta	5400		50
ąç	taga	tgtg	J 9	gcgcaacg	gat	gccggcgad	ca	agcaggagcg	5460)	55
gt	tgtt	ttgg	j (ctctcagg	jcc	gaggccca	g	gcaagtattt	5520	0	
Ę	gtgc	aggg	j (caagatto	gg	aataccaa	gt	acgagaagga	5580	0	60
ac	gact	tcat	: 1	tgccgata	ag	gtggatta	tc	tggacaccaa	5640		65

ggcaccagge gggtcaaatc aggaataagg gcacattgee eeggegtgag teggggcaat 5700 5 cccgcaagga gggtgaatga atcggacgtt tgaccggaag gcatacaggc aagaactgat 5760 cgacgcgggg ttttccgccg aggatgccga aaccatcgca agccgcaccg tcatgcgtgc 5820 gccccgcgaa accttccagt ccgtcggctc gatggtccag caagctacgg ccaagatcga 5880 gegegacage gtgcaactgg etececetge cetgeeegeg ceateggeeg eegtggageg 5940 ttcgcgtcgt ctcgaacagg aggcggcagg tttggcgaag tcgatgacca tcgacacgcg 6000 aggaactatg acgaccaaga agcgaaaaac cgccggcgag gacctggcaa aacaggtcag 6060 cgaggccaag caggccgcgt tgctgaaaca cacgaagcag cagatcaagg aaatgcagct 6120 ttccttgttc gatattgcgc cgtggccgga cacgatgcga gcgatgccaa acgacacggc 6180 ccgctctgcc ctgttcacca cgcgcaacaa gaaaatcccg cgcgaggcgc tgcaaaacaa 6240 ggtcattttc cacgtcaaca aggacgtgaa gatcacctac accggcgtcg agctgcgggc 6300 cgacgatgac gaactggtgt ggcagcaggt gttggagtac gcgaagcgca cccctatcgg 6360 cgagccgatc accttcacgt tctacgagct ttgccaggac ctgggctggt cgatcaatgg 6420 ccggtattac acgaaggccg aggaatgcct gtcgcgccta caggcgacgg cgatgggctt 6480 cacgtccgac cgcgttgggc acctggaatc ggtgtcgctg ctgcaccgct tccgcgtcct 6540 ggaccgtggc aagaaaacgt cccgttgcca ggtcctgatc gacgaggaaa tcgtcgtgct 6600 gtttgctggc gaccactaca cgaaattcat atgggagaag taccgcaagc tgtcgccgac 6660 ggcccgacgg atgttcgact atttcagctc gcaccgggag ccgtacccgc tcaagctgga 6720 aaccttccgc ctcatgtgcg gatcggattc cacccgcgtg aagaagtggc gcgagcaggt 6780 cggcgaagcc tgcgaagagt tgcgaggcag cggcctggtg gaacacgcct gggtcaatga 6840

tga	acctggtg	cattgcaaac	gctagggcct	tgtggggtca	gtteeggetg	ggggttcagc	6900	
age	ccagcgct	ttactggcat	ttcaggaaca	agcgggcact	gctcgacgca	cttgcttcgc	6960	5
tc	agtatege	tcgggacgca	cggcgcgctc	tacgaactgc	cgataaacag	aggattaaaa	7020	
tt:	gacaattg	tgattaaggc	tcagattcga	cggcttggag	cggccgacgt	gcaggatttc	7080	10
cg	cgagatcc	gattgtcggc	cctgaagaaa	gctccagaga	tgttcgggtc	cgtttacgag	7140	15
ca	cgaggaga	aaaagcccat	ggaggcgttc	gctgaacggt	tgcgagatgc	cgtggcattc	7200	
gg	cgcctaca	tcgacggcga	gatcattggg	ctgtcggtct	tcaaacagga	ggacggcccc	7260	20
aa	ggacgctc	acaaggcgca	tctgtccggc	gttttcgtgg	agcccgaaca	gcgaggccga	7320	25
gg	ggtcgccg	gtatgctgct	gcgggcgttg	ccggcgggtt	tattgctcgt	gatgatcgtc	7380	
cga	acagattc	caacgggaat	ctggtggatg	cgcatcttca	tcctcggcgc	acttaatatt	7440	30
tc	gctattct	ggagcttgtt	gtttatttcg	gtctaccgcc	tgccgggcgg	ggtcgcggcg	7500	35
ac	ggtaggcg	ctgtgcagcc	gctgatggtc	gtgttcatct	ctgccgctct	gctaggtagc	7560	
cc	gatacgat	tgatggcggt	cctgggggct	atttgcggaa	ctgcgggcgt	ggcgctgttg	7620	40
gt	gttgacac	caaacgcagc	gctagatcct	gtcggcgtcg	cagcgggcct	ggcgggggcg	7680	45
gti	ttccatgg	cgttcggaac	cgtgctgacc	cgcaagtggc	aacctcccgt	gcctctgctc	7740	
ace	ctttaccg	cctggcaact	ggcggccgga	ggacttctgc	tcgttccagt	agctttagtg	7800	50
tt	tgatccgc	caatcccgat	gcctacagga	accaatgttc	teggeetgge	gtggctcggc	7860	55
ct	gateggag	cgggtttaac	ctacttcctt	tggttccggg	ggatetegeg	actcgaacct	7920	
ac	agttgttt	ccttactggg	ctttctcagc	cccagatctg	gggtcgatca	gccggggatg	7980	60
ca	tcaggccg	acagtcggaa	cttcgggtcc	ccgacctgta	ccattcggtg	agcaatggat	8040	

aggggagttg atatcgtcaa cgttcacttc taaagaaata gcgccactca gcttcctcag 8100 5 cggctttatc cagcgatttc ctattatgtc ggcatagttc tcaagatcga cagcctgtca 8160 cggttaagcg agaaatgaat aagaaggctg ataattcgga tctctgcgag ggagatgata 8220 10 tttgatcaca ggcagcaacg ctctgtcatc gttacaatca acatgctacc ctccgcgaga 8280 tcatccgtgt ttcaaacccg gcagcttagt tgccgttctt ccgaatagca tcggtaacat 8340 gagcaaagtc tgccgcctta caacggctct cccgctgacg ccgtcccgga ctgatgggct 8400 20 gcctgtatcg agtggtgatt ttgtgccgag ctgccggtcg gggagctgtt ggctggctgg 8460 tggcaggata tattgtggtg taaacaaatt gacgcttaga caacttaata acacattgcg 8520 gacgttttta atgtactggg gtggtttttc ttttcaccag tgagacgggc aacagctgat 8580 30 tgcccttcac cgcctggccc tgagagagtt gcagcaagcg gtccacgctg gtttgcccca 8640 gcaggcgaaa atcctgtttg atggtggttc cgaaatcggc aaaatccctt ataaatcaaa 8700 agaatagccc gagatagggt tgagtgttgt tccagtttgg aacaagagtc cactattaaa 8760 gaacgtggac tccaacgtca aagggcgaaa aaccgtctat cagggcgatg gcccactacg 8820 tgaaccatca cccaaatcaa gttttttggg gtcgaggtgc cgtaaagcac taaatcggaa 8880 ccctaaaggg agcccccgat ttagagcttg acggggaaag ccggcgaacg tggcgagaaa 8940 ggaagggaag aaagcgaaag gagcgggcgc cattcaggct gcgcaactgt tgggaagggc 9000 gatcggtgcg ggcctcttcg ctattacgcc agctggcgaa agggggatgt gctgcaaggc 9060 gattaagttg ggtaacgcca gggttttccc agtcacgacg ttgtaaaacg acggccagtg 9120 aattaattcc catcttgaaa gaaatatagt ttaaatattt attgataaaa taacaagtca 9180 ggtattatag tccaagcaaa aacataaatt tattgatgca agtttaaatt cagaaatatt 9240

tcaataact	g attatatcag	ctggtacatt	gccgtagatg	aaagactgag	tgcgatatta	9300	
tgtgtaata	c ataaattgat	gatatagcta	gcttagctca	tcgggggatc	cgtcgaagct	9360	5
agcttgggt	c ccgctcagaa	gaactcgtca	agaaggcgat	agaaggcgat	gcgctgcgaa	9420	10
tcgggagcg	g cgataccgta	aagcacgagg	aagcggtcag	cccattcgcc	gccaagctct	9480	10
tcagcaata	t cacgggtagc	caacgctatg	tcctgatagc	ggtccgccac	acccagccgg	9540	15
ccacagtcg	a tgaatccaga	aaagcggcca	ttttccacca	tgatattcgg	caagcaggca	9600	
tcgccatgg	g tcacgacgag	atcctcgccg	tcgggcatgc	gcgccttgag	cctggcgaac	9660	20
agttcggct	g gcgcgagccc	ctgatgctct	tcgtccagat	catcctgatc	gacaagaccg	9720	25
gcttccatc	c gagtacgtgc	tcgctcgatg	cgatgtttcg	cttggtggtc	gaatgggcag	9780	
gtagccgga	t caagcgtatg	cagccgccgc	attgcatcag.	ccatgatgga	tactttctcg	9840	30
gcaggagca	a ggtgagat <u>g</u> a	caggagatcc	tgccccggca	cttcgcccaa	tagcagccag	9900	35
tcccttccc	g cttcagtgac	aacgtcgagc	acagctgcgc	aaggaacgcc	cgtcgtggcc	9960	
agccacgat	a gccgcgctgc	ctcgtcctgc	agttcattca	gggcaccgga	caggtcggtc	10020	40
ttgacaaaa	a gaaccgggcg	cccctgcgct	gacagccgga	acacggcggc	atcagagcag	10080	45
ccgattgtc	t gttgtgccca	gtcatagccg	aatagcctct	ccacccaagc	ggccggagaa	10140	
cctgcgtgc	a atccatcttg	ttcaatccaa	gctcccatgg	gccctcgact	agagtcgaga	10200	50
tctggattg	a gagtgaatat	gagactctaa	ttggataccg	aggggaattt	atggaacgtc	10260	55
agtggagca	t ttttgacaag	aaatatttgc	tagctgatag	tgaccttagg	cgacttttga	10320	
acgcgcaat	a atggtttctg	acgtatgtgc	ttagctcatt	aaactccaga	aacccgcggc	10380	60
tgagtggct	c cttcaacgtt	gcggttctgt	cagttccaaa	cgtaaaacgg	cttgtcccgc	10440	64

gtcatcggcg ggggtcataa cgtgactccc ttaattctcc gctcatgatc ttgatcccct 10500 5 gegecateag atcettggeg geaagaaage cateeagttt actttgeagg getteecaae 10560 cttaccagag ggcgccccag ctggcaattc cggttcgctt gctgtccata aaaccgccca 10620 10 gtctagctat cgccatgtaa gcccactgca agctacctgc tttctctttg cgcttgcgtt 10680 ttcccttgtc cagatagccc agtagctgac attcatccgg ggtcagcacc gtttctgcgg 10740 actggctttc tacgtgttcc gcttccttta gcagcccttg cgccctgagt gcttgcggca 10800 20 gcgtgaagct tgcatgcctg caggtcgacg gcgcgcgag ctcctcgagc aaatttacac 10860 attgccacta aacgtctaaa cccttgtaat ttgtttttgt tttactatgt gtgttatgta 10920 tttgatttgc gataaatttt tatatttggt actaaattta taacaccttt tatgctaacg 10980 tttgccaaca cttagcaatt tgcaagttga ttaattgatt ctaaattatt tttgtcttct 11040 aaatacatat actaatcaac tggaaatgta aatatttgct aatatttcta ctataggaga 11100 attaaagtga gtgaatatgg taccacaagg tttggagatt taattgttgc aatgctgcat 11160 ggatggcata tacaccaaac attcaataat tcttgaggat aataatggta ccacacaaga 11220 tttgaggtgc atgaacgtca cgtggacaaa aggtttagta atttttcaag acaacaatgt 11280 taccacacac aagttttgag gtgcatgcat ggatgccctg tggaaagttt aaaaatattt 11340 tggaaatgat ttgcatggaa gccatgtgta aaaccatgac atccacttgg aggatgcaat 11400 aatgaagaaa actacaaatt tacatgcaac tagttatgca tgtagtctat ataatgagga 11460 ttttgcaata ctttcattca tacacactca ctaagtttta cacgattata atttcttcat 11520 agccagcgga tccgatatcg ggcccgctag cgttaaccct gctttaatga gatatgcgag 11580 acgcctatga tcgcatgata tttgctttca attctgttgt gcacgttgta aaaaacctga 11640

2	gcatgtgtag	ctcagatcct	taccgccggt	ttcggttcat	tctaatgaat	atatcacccg	11700	
t	, ttactatcgt	atttttatga	ataatattct	ccgttcaatt	tactgattgt	ccgtcgacga	11760	5
·	attcgagctc	ggcgcgcctc	tagaggatcg	atgaattcag	atcggctgag	tggctccttc	11820	10
á	aacgttgcgg	ttctgtcagt	tccaaacgta	aaacggcttg	tcccgcgtca	tcggcggggg	11880	10
1	tcataacgtg	actcccttaa	ttctccgctc	atgatcagat	tgtcgtttcc	cgccttcagt	11940	15
1	ttaaactatc	agtgtttgac	aggatatatt	ggcgggtaaa	cctaagagaa	aagagcgttt	12000	
·	attagaataa	tcggatattt	aaaagggcgt	gaaaaggttt	atccttcgtc	catttgtatg	12060	20
1	tgcatgccaa	ccacagggtt	cccca			·	12085	25
	-							
٠	<210> 40					•		30
•	<211> 12079							
٠	<212> DNA							
•	<213> Unkno	own						35
•	<220>			•			•	
	<223> pflar	nzlicher Exp	pressionsvel	ktor mit eir	ner		•	40
	Promo	otor-Termina	ator-Express	sionskassett	ie			40
	-400- 40				•			
	<400> 40		ascasacssa	attenence	gcccgaaacg	atccaacaac	60	45
,	gatetygege	cggccagcga	gacgagcaag	accygecyce	gcccgaaacg	accegacage		
(gcgcccagca	caggtgcgca	ggcaaattgc	accaacgcat	acagegecag	cagaatgcca	120	50
,	tagtgggcgg	tgacgtcgtt	cgagtgaacc	agategegea	ggaggcccgg	cagcaccggc	180	
į	ataatcaggc	cgatgccgac	agcgtcgagc	gcgacagtgc	tcagaattac	gatcaggggt	240	55
i								
	atgttgggtt	tcacgtctgg	cctccggacc	agcctccgct	ggtccgattg	aacgcgcgga	300	60
					ggtccgattg			60

gcgtagacgg tctgacgaca cgcaaactgg cggaacggtt gggggttcag cagccggcgc 480 5 tttactggca cttcaggaac aagcgggcgc tgctcgacgc actggccgaa gccatgctgg 540 cggagaatca tacgcattcg gtgccgagag ccgacgacga ctggcgctca tttctgatcg 600 10 ggaatgcccg cagcttcagg caggcgctgc tcgcctaccg cgatggcgcg cgcatccatg 660 ccggcacgcg accgggcgca ccgcagatgg aaacggccga cgcgcagctt cgcttcctct 720 gcgaggcggg tttttcggcc ggggacgccg tcaatgcgct gatgacaatc agctacttca 780 20 ctgttggggc cgtgcttgag gagcaggccg gcgacagcga tgccggcgag cgcggcggca 840 ccgttgaaca ggctccgctc tcgccgctgt tgcgggccgc gatagacgcc ttcgacgaag 900 ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tgtcgatgga ttggcgaaaa 960 ggaggctcgt tgtcaggaac gttgaaggac cgagaaaggg tgacgattga tcaggaccgc 1020 tgccggagcg caacccactc actacagcag agccatgtag acaacatccc ctccccttt 1080 ccaccgcgtc agacgcccgt agcagcccgc tacgggcttt ttcatgccct gccctagcgt 1140 40 ccaageetea eggeegeget eggeetetet ggeggeette tggegetett eegetteete 1200 gctcactgac tegetgeget eggtegtteg getgeggega geggtateag etcactcaaa 1260 ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa 1320 aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct 1380 ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac 1440 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1500 gaccetgeeg ettaceggat acetgteege ettteteeet tegggaageg tggegetttt 1560 ccgctgcata accctgcttc ggggtcatta tagcgatttt ttcggtatat ccatcctttt 1620

	1680	tgtatccaac	ctttccttgg	ttcgtgtaga	tgccaaaggg	tacaggattt	tcgcacgata
5	1740	tccttcttca	gagcgggtgt	gcccacccgc	ggtgaagtag	gggcaggata	ggcgtcagcc
	1800	ggctggccgg	tgctctgcga	acgggaatcc	gcggtgctca	ttcgcacctg	ctgtccctta
10	1860	ccaaccagga	tgaaaccaag	ggatggctga	gagggcaagc	cgtaacagat	ctaccgccgg
15	1920	attgaggaaa	acgaagagcg	ttccagacga	gtgtactgcc	acctatcaag	agggcagccc
	1980	cagggctaca	ggccgtcggc	cctacctgct	agcctgtcgg	ggccggcatg	aggcggcggc
20	2040	aatggcgacc	ggcccgcatc	tccgcgagct	tatgagcacg	cgtcgtggac	aaatcacggg
25	2100	acggcgcggt	cgacccgcgc	ggctcaccga	ctgaaactct	gggcggcctg	tgggccgcct
	2160	gacgagcttg	agagaagcag	cgaagatcga	gccctgctgg	cacgatecte	tcggtgatgc
30	.2220	tagccgctaa	atgacttttt	gggcagagcc	gtccgcccga	gatgggcgtg	gcaaggtcat
35	2280	caagaagagc	tgcgctccat	cacgtcccca	gattgccaag	gggtgcgcgt	aacggccggg
•	2340	gcgcctttgc	gcaagaccga	gacgagcaag	gtacatcacc	agctggtgaa	gacttcgcgg
. 40	2400	gccctgcaaa	gccgtctatg	tgggctggcg	ccctcgccgc	gggctggttg	gacgctcacc
45	2460	gttgtggata	ggccgccggc	gagacaccgc	agccgtgtgc	acgccgtcga	cgcgccagaa
	2520	cttgaggggc	gacgttgaca	atgaggggcg	tcactgacag	aacttggccc	cctcgcggaa
50	2580	cggcgacgtg	cgatttcggc	ggggcaggct	tgacagatga	ggcgcggcgt	cgactcaccc
55	2640	tcccacagat	tacgcgagtt	cgcctgattt	tcggcgaaaa	gcctcgcaaa	gagctggcca
	2700	gcgcgactac	cacttgaggg	gcggtattga	taagtgccct	agcctgggga	gatgtggaca
60	2760	gatgaggggc	agtgctgaca	tgaggggcag	ccttgacact	ggggcgcgat	tgacagatga
	2820	gcaagggttt	tccagcattt	aggcagaaaa	ggctgtccac	acatttgagg	gcacctattg

ccgcccgttt ttcggccacc gctaacctgt cttttaacct gcttttaaac caatatttat 2880 5 aaaccttgtt tttaaccagg gctgcgccct gtgcgcgtga ccgcgcacgc cgaagggggg 2940 tgcccccct tctcgaaccc tcccggcccg ctaacgcggg cctcccatcc ccccaggggc 3000 tgcgccctc ggccgcgaac ggcctcaccc caaaaatggc agcgctggca gtccttgcca 3060 ttgccgggat cggggcagta acgggatggg cgatcagccc gagcgcgacg cccggaagca 3120 ttgacgtgcc gcaggtgctg gcatcgacat tcagcgacca ggtgccgggc agtgagggcg 3180 gcggcctggg tggcggcctg cccttcactt cggccgtcgg ggcattcacg gacttcatgg 3240 cggggccggc aatttttacc ttgggcattc ttggcatagt ggtcgcgggt gccgtgctcg 3300 tgttcggggg tgcgataaac ccagcgaacc atttgaggtg ataggtaaga ttataccgag 3360 gtatgaaaac gagaattgga cctttacaga attactctat gaagcgccat atttaaaaag 3420 ctaccaagac gaagaggatg aagaggatga ggaggcagat tgccttgaat atattgacaa 3480 tactgataag ataatatatc ttttatatag aagatatcgc cgtatgtaag gatttcaggg 3540 ggcaaggcat aggcagcgcg cttatcaata tatctataga atgggcaaag cataaaaact 3600 tgcatggact aatgcttgaa acccaggaca ataaccttat agcttgtaaa ttctatcata 3660 attgggtaat gactccaact tattgatagt gttttatgtt cagataatgc ccgatgactt 3720 tgtcatgcag ctccaccgat tttgagaacg acagcgactt ccgtcccagc cgtgccaggt 3780 gctgcctcag attcaggtta tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt 3840 gcagctttcc cttcaggcgg gattcataca gcggccagcc atccgtcatc catatcacca 3900 cgtcaaaggg tgacagcagg ctcataagac gccccagcgt cgccatagtg cgttcaccga 3960 atacgtgcgc aacaaccgtc ttccggagac tgtcatacgc gtaaaacagc cagcgctggc 4020

gc	gatttagc	cccgacatag	cccactgtt	cgtccatttc	cgcgcagacg	atgacgtcac	4080	
tg	cccggctg	tatgcgcgag	gttaccgact	gcggcctgag	ttttttaagt	gacgtaaaat	4140	5
cg	tgttgagg	çcaacgccca	taatgcgggc	tgttgcccgg	catccaacgc	cattcatggc	4200	10
ca	tatcaatg	attttctggt	gcgtaccggg	ttgagaagcg	gtgtaagtga	actgcagttg	4260	10
CC	atgtttta	cggcagtgag	agcagagata	gcgctgatgt	ccggcggtgc	ttttgccgtt	4320	15
ac	gcaccacc	ccgtcagtag	ctgaacagga	gggacagctg	atagaçacag	aagccactgg	4380	
age	cacctcaa	aaacaccatc	atacactaaa	tcagtaagtt	ggcagcatca	cccataattg	4440	20
tg	gtttcaaa	atcggctccg	tcgatactat	gttatacgcc	aactttgaaa	acaactttga	4500	25
aa	aagctgtt	ttctggtatt	taaggtttta	gaatgcaagg	aacagtgaat	tggagttcgt	4560	
ct	tgttataa	ttagcttctt	ggggtatctt	taaatactgt	agaaaagagg	aaggaaataa	4620	30
ta	aatggcta	aaatgagaat	atcaccggaa	ttgaaaaaac	tgatcgaaaa	ataccgctgc	4680	35
gt	aaaagata	cggaaggaat	gteteetget	aaggtatata	agctggtggg	agaaaatgaa	4740	
aa	cctatatt	taaaaatgac	ggacagccgg	tataaaggga	ccacctatga	tgtggaacgg	4800	40
ga	aaaggaca	tgatgctatg	gctggaagga	aagctgcctg	ttccaaaggt	cctgcacttt	4860	45
ga	acggcatg	atggctggag	caatctgctc	atgagtgagg	ccgatggcgt	cctttgctcg	4920	
ga	agagtatg	aagatgaaca	aagccctgaa	aagattatcg	agctgtatgc	ggagtgcatc	4980	50
ag	gctctttc	actccatcga	catatcggat	tgtccctata	cgaatagctt	agacagccgc	5040	55
tt	agccgaat	tggattactt	actgaataac	gatctggccg	atgtggattg	cgaaaactgg	5100	
ga	agaagaca	ctccatttaa	agatccgcgc	gagctgtatg	attttttaaa	gacggaaaag	5160	60
cc	cgaagagg	aacttgtctt	ttcccacggc	gacctgggag	acagcaacat	ctttgtgaaa	5220	

gatggcaaag taagtggctt tattgatctt gggagaagcg gcagggcgga caagtggtat 5280 5 gacattgcct tctgcgtccg gtcgatcagg gaggatatcg gggaagaaca gtatgtcgag 5340 10 ctggatgaat tgttttagta cctagatgtg gcgcaacgat gccggcgaca agcaggagcg 5460 caccgacttc ttccgcatca agtgttttgg ctctcaggcc gaggcccacg gcaagtattt 5520 gggcaagggg tcgctggtat tcgtgcaggg caagattcgg aataccaagt acgagaagga 5580 cggccagacg gtctacggga ccgacttcat tgccgataag gtggattatc tggacaccaa 5640 ggcaccaggc gggtcaaatc aggaataagg gcacattgcc ccggcgtgag tcggggcaat 5700 cccgcaagga gggtgaatga atcggacgtt tgaccggaag gcatacaggc aagaactgat 5760 30 cgacgcgggg ttttccgccg aggatgccga aaccatcgca agccgcaccg tcatgcgtgc 5820 gccccgcgaa accttccagt ccgtcggctc gatggtccag caagctacgg ccaagatcga 5880 gegegacage gtgcaactgg etececetge eetgeeegeg ceateggeeg eegtggageg 5940 40 ttcgcgtcgt ctcgaacagg aggcggcagg tttggcgaag tcgatgacca tcgacacgcg 6000 aggaactatg acgaccaaga agcgaaaaac cgccggcgag gacctggcaa aacaggtcag 6060 cgaggccaag caggccgcgt tgctgaaaca cacgaagcag cagatcaagg aaatgcagct 6120 ttccttgttc gatattgcgc cgtggccgga cacgatgcga gcgatgccaa acgacacggc 6180 ccgctctgcc ctgttcacca cgcgcaacaa gaaaatcccg cgcgaggcgc tgcaaaacaa 6240 ggtcattttc cacgtcaaca aggacgtgaa gatcacctac accggcgtcg agctgcgggc 6300 cgacgatgac gaactggtgt ggcagcaggt gttggagtac gcgaagcgca cccctatcgg 6360 cgagccgatc accttcacgt tctacgagct ttgccaggac ctgggctggt cgatcaatgg 6420

jtε	attac	acgaaggccg	aggaatgcct	gtcgcgccta	caggcgacgg	cgatgggctt	6480	
jto	ccgac	cgcgttgggc	acctggaatc	ggtgtcgctg	ctgcaccgct	tccgcgtcct	6540	5
ccg	gtggç	aagaaaacgt	cccgttgcca	ggtcctgatc	gacgaggaaa	tegtegtget	6600	10
g	ctggc	gaccactaca	cgaaattcat	atgggagaag	taccgcaagc	tgtcgccgac	6660	
ccg	gacgg	atgttcgact	atttcagctc	gcaccgggag	ccgtacccgc	tcaagctgga	6720	is
ett	tccgc	ctcatgtgcg	gatcggattc	cacccgcgtg	aagaagtggc	gcgagcaggt	6780	20
ga	aagcc	tgcgaagagt	tgcgaggcag	cggcctggtg	gaacacgcct	gggtcaatga	6840	20
ect	tggtg	cattgcaaac	gctagggcct	tgtggggtca	gttccggctg	ggggttcagc	6900	25
caç	gcgct	ttactggcat	ttcaggaaca	agcgggcact	gctcgacgca	cttgcttcgc	6960	
jta	atcgc	tegggaegea	cggcgcgctc	tacgaactgc	cgataaacag	aggattaaaa	7020	30
aca	aattg	tgattaaggc	tcagattcga	cggcttggag	cggccgacgt	gcaggatttc	7080	35
jaç	gatcc	gattgtcggc	cctgaagaaa	gctccagaga	tgttcgggtc	cgtttacgag	7140	
gaç	ggaga	aaaagcccat	ggaggcgttc	gctgaacggt	tgcgagatgc	cgtggcattc	7200	40
gco	ctaca	tcgacggcga	gatcattggg	ctgtcggtct	tcaaacagga	ggacggcccc	7260	45
gad	cgctc	acaaggcgca	tctgtccggc	gttttcgtgg	agcccgaaca	gcgaggccga	7320	
gto	cgccg	gtatgctgct	gcgggcgttg	ccggcgggtt	tattgctcgt	gatgatcgtc	7380	50
cag	gattc	caacgggaat	ctggtggatg	cgcatcttca	tcctcggcgc	acttaatatt	7440	55
cta	attct	ggagcttgtt	gtttatttcg	gtctaccgcc	tgccgggcgg	ggtcgcggcg	7500	
gta	aggcg	ctgtgcagcc	gctgatggtc	gtgttcatct	ctgccgctct	gctaggtagc	7560	60
ata	acgat	tgatggcggt	cctgggggct	atttgcggaa	ctgcgggcgt	ggcgctgttg	7620	65

gtgttgacac caaacgcagc gctagatcct gtcggcgtcg cagcggggcct ggcgggggcg 7680 5 gtttccatgg cgttcggaac cgtgctgacc cgcaagtggc aacctcccgt gcctctgctc 7740 acctttaccg cctggcaact ggcggccgga ggacttctgc tcgttccagt agctttagtg 7800 10 tttgatccgc caatcccgat gcctacagga accaatgttc tcggcctggc gtggctcggc 7860 ctgatcggag cgggtttaac ctacttcctt tggttccggg ggatctcgcg actcgaacct 7920 acagttgttt ccttactggg ctttctcagc cccagatctg gggtcgatca gccggggatg 7980 catcaggccg acagtcggaa cttcgggtcc ccgacctgta ccattcggtg agcaatggat 8040 aggggagttg atatcgtcaa cgttcacttc taaagaaata gcgccactca gcttcctcag 8100 cggctttatc cagcgatttc ctattatgtc ggcatagttc tcaagatcga cagcctgtca 8160 30 cggttaagcg agaaatgaat aagaaggctg ataattcgga tctctgcgag ggagatgata 8220 tttgatcaca ggcagcaacg ctctgtcatc gttacaatca acatgctacc ctccgcgaga 8280 tcatccgtgt ttcaaacccg gcagcttagt tgccgttctt ccgaatagca tcggtaacat 8340 gagcaaagtc tgccgcctta caacggctct cccgctgacg ccgtcccgga ctgatgggct 8400 gcctgtatcg agtggtgatt ttgtgccgag ctgccggtcg gggagctgtt ggctggctgg 8460 tggcaggata tattgtggtg taaacaaatt gacgcttaga caacttaata acacattgcg 8520 gacgttttta atgtactggg gtggtttttc ttttcaccag tgagacgggc aacagctgat 8580 tgcccttcac cgcctggccc tgagagagtt gcagcaagcg gtccacgctg gtttgcccca 8640 gcaggcgaaa atcctgtttg atggtggttc cgaaatcggc aaaatccctt ataaatcaaa 8700 agaatagccc gagatagggt tgagtgttgt tccagtttgg aacaagagtc cactattaaa 8760 gaacgtggac tccaacgtca aagggcgaaa aaccgtctat cagggcgatg gcccactacg 8820

tç	gaaccatca	cccaaatcaa	gttttttggg `	gtcgaggtgc	cgtaaagcac	taaatcggaa	8880	
C	cctaaaggg	agcccccgat	ttagagcttg	acggggaaag	ccggcgaacg	tggcgagaaa	8940	. 5
g	gaagggaag	aaagcgaaag	gagcgggcgc	cattcaggct	gcgcaactgt	tgggaagggc	9000	10
g	atcggtgcg	ggcctcttcg	ctattacgcc	agctggcgaa	agggggatgt	gctgcaaggc	9060	10
g	attaagttg	ggtaacgcca	gggttttccc	agtcacgacg	ttgtaaaacg	acggccagtg	9120	15
a	attaattcc	catcttgaaa	gaaatatagt	ttaaatattt	attgaṭaaaa	taacaagtca	9180	
g	gtattatag	tccaagcaaa	aacataaatt	tattgatgca	agtttaaatt	cagaaatatt	9240	20
t	caataactg	attatatcag	ctggtacatt	gccgtagatg	aaagactgag	tigcgatatta	9300	25
t	gtgtaatac	ataaattgat	gatatagcta	gcttagctca	tcgggggatc	cgtcgaagct	9360	
а	gcttgggtc	ccgctcagaa	gaactcgtca	agaaggcgat	agaaggcgat	gcgctgcgaa	9420	30
t	cgggagcgg	cgataccgţa	aagcacgagg	aagcggtcag	cccattcgcc	gccaagctct	9480	35
t	cagcaatat	cacgggtagc	caacgctatg	tcctgatagc	ggtccgccac	acccagccgg	9540	
С	cacagtcga	tgaatccaga	aaagcggcca	ttttccacca	tgatattcgg	caagcaggca	9600	40
t	cgccatggg	tcacgacgag	atcctcgccg	tcgggcatgc	gcgccttgag	cctggcgaac	9660	45
a	gttcggctg	gcgcgagccc	ctgatgctct	tcgtccagat	catcctgatc	gacaagaccg	9720	
g	cttccatcc	gagtacgtgc	tcgctcgatg	cgatgtttcg	cttggtggtc	gaatgggcag	9780	50
g	tagccggat	caagcgtatg	cagccgccgc	attgcatcag	ccatgatgga	tactttctcg	9840	55
g	caggagcaa	ggtgagatga	caggagatcc	tgccccggca	cttcgcccaa	tagcagccag	9900	
t	.cccttcccg	cttcagtgac	aacgtcgagc	acagctgcgc	aaggaacgcc	cgtcgtggcc	9960	60
a	gccacgata	gccgcgctgc	ctcgtcctgc	agttcattca	gggcaccgga	caggtcggtc	10020	

ttgacaaaaa gaaccgggcg cccctgcgct gacagccgga acacggcggc atcagagcag 10080 ccgattgtct gttgtgccca gtcatagccg aatagcctct ccacccaagc ggccggagaa 10140 cctgcgtgca atccatcttg ttcaatccaa gctcccatgg gccctcgact agagtcgaga 10200 tctggattga gagtgaatat gagactctaa ttggataccg aggggaattt atggaacgtc 10260 agtggagcat ttttgacaag aaatatttgc tagctgatag tgaccttagg cgacttttga 10320 acgcgcaata atggtttctg acgtatgtgc ttagctcatt aaactccaga aacccgcggc 10380 tgagtggctc cttcaacgtt gcggttctgt cagttccaaa cgtaaaacgg cttgtcccgc 10440 gtcatcggcg ggggtcataa cgtgactccc ttaattctcc gctcatgatc ttgatcccct 10500 gcgccatcag atccttggcg gcaagaaagc catccagttt actttgcagg gcttcccaac 10560 30 cttaccagag ggcgcccag ctggcaattc cggttcgctt gctgtccata aaaccgccca 10620 35 gtctagctat cgccatgtaa gcccactgca agctacctgc tttctctttg cgcttgcgtt 10680 ttcccttgtc cagatagccc agtagctgac attcatccgg ggtcagcacc gtttctgcgg 10740 40 actggctttc tacgtgttcc gcttccttta gcagcccttg cgccctgagt gcttgcggca 10800 gcgtgaagct tgcatgcctg caggtcgacg gcgcgcgag ctcctcgagc aaatttacac 10860 attgccacta aacgtctaaa cccttgtaat ttgtttttgt tttactatgt gtgttatgta 10920 tttgatttgc gataaatttt tatatttggt actaaattta taacaccttt tatgctaacg 10980 tttgccaaca cttagcaatt tgcaagttga ttaattgatt ctaaattatt tttgtcttct 11040 aaatacatat actaatcaac tggaaatgta aatatttgct aatatttcta ctataggaga 11100 60 attaaagtga gtgaatatgg taccacaagg tttggagatt taattgttgc aatgctgcat 11160 ggatggcata tacaccaaac attcaataat tcttgaggat aataatggta ccacacaaga 11220

tttgaggtgc	atgaacgtca	cgtggacaaa	aggtttagta	atttttcaag	acaacaatgt	11280	
taccacacac	aagttttgag	gtgcatgcat	ggatgccctg	tggaaagttt	aaaaatattt	11340	5
tggaaatgat	ttgcatggaa	gccatgtgta	aaaccatgac	atccacttgg	aggatgcaat	11400	
aatgaagaaa	actacaaatt	tacatgcaac	tagttatgca	tgtagtctat	ataatgagga	11460	10
ttttgcaata	ctttcattca	tacacactca	ctaagtttta	cacgattata	atttcttcat	11520	15
agccagcaga	tctgccggca	tcgatcccgg	gccatggcct	gctttaatga	gatatgcgag	11580	
acgcctatga	tcgcatgata	tttgctttca	attctgttgt	gcacgttgta	aaaaacctga	11640	20
gcatgtgtag	ctcagatcct	taccgccggt	ttcggttcat	tctaatgaat	atatcacccg	11700	25
ttactatcgt	atttttatga	ataatattct	ccgttcaatt	tactgattgt	ccgtcgacga	11760	
gctcggcgcg	cctctagagg	atcgatgaat	tcagatcggc	tgagtggctc	cttcaacgtt	11820	. 30
gcggttctgt	cagttccaaa	cgtaaaacgg	cttgtcccgc	gtcatcggcg	ggggtcataa	11880	35
cgtgactccc	ttaattctcc	gctcatgatc	agattgtcgt	ttcccgcctt	cagtttaaac	11940	
tatcagtgtt	tgacaggata	tattggcggg	taaacctaag	agaaaagagc	gtttattaga	12000	40
ataatcggat	atttaaaagg	gcgtgaaaag	gtttatcctt	cgtccatttg	tatgtgcatg	12060	45
ccaaccacag	ggttcccca					12079	
							50
<210> 41 <211> 1300	2						
<211> 1300.	•						55
<213> Unkno	own						
<220>							60
<223> pfla	nzlicher Exp	pressionsve	ktor mit zw	ei			

Promotor-Terminator-Expressionskassetten

<4	00>	41

gatctggcgc cggccagcga gacgagcaag attggccgcc gcccgaaacg atccgacagc 60 gegeecagea caggtgegea ggeaaattge accaaegeat acagegecag cagaatgeea 120 tagtgggcgg tgacgtcgtt cgagtgaacc agatcgcgca ggaggcccgg cagcaccggc 180 ataatcaggc cgatgccgac agcgtcgagc gcgacagtgc tcagaattac gatcaggggt 240 atgttgggtt tcacgtctgg cctccggacc agcctccgct ggtccgattg aacgcgcgga 300 ttctttatca ctgataagtt ggtggacata ttatgtttat cagtgataaa gtgtcaagca 360 tgacaaagtt gcagccgaat acagtgatcc gtgccgccct ggacctgttg aacgaggtcg 420 25 gcgtagacgg tctgacgaca cgcaaactgg cggaacggtt gggggttcag cagccggcgc 480 tttactggca cttcaggaac aagcgggcgc tgctcgacgc actggccgaa gccatgctgg 540 cggagaatca tacgcattcg gtgccgagag ccgacgacga ctggcgctca tttctgatcg 600 ggaatgcccg cagcttcagg caggcgctgc tcgcctaccg cgatggcgcg cgcatccatg 660 ccggcacgcg accgggcgca ccgcagatgg aaacggccga cgcgcagctt cgcttcctct 720 gcgaggcggg tttttcggcc ggggacgccg tcaatgcgct gatgacaatc agctacttca 780 ctgttggggc cgtgcttgag gagcaggccg gcgacagcga tgccggcgag cgcggcgaca 840 ccgttgaaca ggctccgctc tcgccgctgt tgcgggccgc gatagacgcc ttcgacgaag 900 ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tgtcgatgga ttggcgaaaa 960 ggaggctcgt tgtcaggaac gttgaaggac cgagaaaggg tgacgattga tcaggaccgc 1020 tgccggagcg caacccactc actacagcag agccatgtag acaacatccc ctccccttt 1080 60 ccaccgcgtc agacgcccgt agcagcccgc tacgggcttt ttcatgccct gccctagcgt 1140

65

cca	agcctca	cggccgcgct	cggcctctct	ggcggccttc	tggcgctctt	ccgcttcctc	1200	
gct	cactgac	tegetgeget	cggtcgttcg	gctgcggcga	gcggtatcag	ctcactcaaa	1260	5
ggc	ggtaata	cggttatcca	cagaatcagg	ggataacgca	ggaaagaaca	tgtgagcaaa	1320	
agg	gccagcaa	aaggccagga	accgtaaaaa	ggccgcgttg	ctggcgtttt	tccataggct	1380	10
ccç	gccccct	gacgagcatc	acaaaaatcg	acgctcaagt	cagaggtggc	gaaacccgac	1440	15
agg	gactataa	agataccagg	cgtttcccc	tggaagctcc	ctcgtgcgct	ctcctgttcc	1500	
gac	cctgccg	cttaccggat	acctgtccgc	ctttctccct	tcgggaagcg	tggcgctttt	1560	20
ccg	gctgcata	accctgcttc	ggggtcatta	tagcgatttt	ttcggtatat	ccatcctttt	1620	25
tcg	gcacgata	tacaggattt	tgccaaaggg	ttcgtgtaga	ctttccttgg	tgtatccaac	1680	
ggc	gtcagcc	gggcaggata	ggtgaagtag	gcccacccgc	gagcgggtgt	tccttcttca	1740	30
cto	gtccctta	ttcgcacctg	gcggtgctca	acgggaatcc	tgctctgcga	ggctggccgg	1800	35
ċta	eccgccgg	cgtaacagat	gagggcaagc	ggatggctga	tgaaaccaag	ccaaccagga	1860	
agg	gcagccc	acctatcaag	gtgtactgcc	ttccagacga	acgaagagcg	attgaggaaa	1920	40
agg	geggegge	ggccggcatg	agcctgtcgg	cctacctgct	ggccgtcggc	cagggctaca	1980	45
aaa	atcacggg	cgtcgtggac	tatgagcacg	tccgcgagct	ggcccgcatc	aatggcgacc	2040	
tgg	gccgcct	gggcggcctg	ctgaaactct	ggctcaccga	cgacccgcgc	acggcgcggt	2100	50
tcg	ggtgatgc	cacgateete	gccctgctgg	cgaagatcga	agagaagcag	gacgagcttg	2160	55
gca	aggtcat	gatgggcgtg	gtccgcccga	gggcagagcc	atgacttttt	tagccgctaa	2220	
aac	ggccggg	gggtgcgcgt	gattgccaag	cacgtcccca	tgcgctccat	caagaagagc	2280	60
gac	ttcgcgg	agctggtgaa	gtacatcacc	gacgagcaag	gcaagaccga	gcgcctttgc	2340	60

gacgctcacc gggctggttg ccctcgccgc tgggctggcg gccgtctatg gccctgcaaa 2400 s cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgccggc gttgtggata 2460 cctcgcggaa aacttggccc tcactgacag atgaggggcg gacgttgaca cttgaggggc 2520 10 cgactcaccc ggcgcggcgt tgacagatga ggggcaggct cgatttcggc cggcgacgtg 2580 gagetggeca geetegeaaa teggegaaaa egeetgattt taegegagtt teeeacagat 2640 gatgtggaca agcctgggga taagtgccct gcggtattga cacttgaggg gcgcgactac 2700 20 tgacagatga ggggcgcgat ccttgacact tgaggggcag agtgctgaca gatgaggggc 2760 gcacctattg acatttgagg ggctgtccac aggcagaaaa tccagcattt gcaagggttt 2820 ccgcccgttt ttcggccacc gctaacctgt cttttaacct gcttttaaac caatatttat 2880 30 aaaccttgtt tttaaccagg gctgcgccct gtgcgcgtga ccgcgcacgc cgaagggggg 2940 tgcccccct tctcgaaccc tcccggcccg ctaacgcggg cctcccatcc ccccaggggc 3000 tgcgcccctc ggccgcgaac ggcctcaccc caaaaatggc agcgctggca gtccttgcca 3060 ttgccgggat cggggcagta acgggatggg cgatcagccc gagcgcgacg cccggaagca 3120 ttgacgtgcc gcaggtgctg gcatcgacat tcagcgacca ggtgccgggc agtgagggcg 3180 gcggcctggg tggcggcctg cccttcactt cggccgtcgg ggcattcacg gacttcatgg 3240 eggggeegge aatttttace ttgggeatte ttggeatagt ggtegeggt geegtgeteg 3300 tgttcggggg tgcgataaac ccagcgaacc atttgaggtg ataggtaaga ttataccgag 3360 gtatgaaaac gagaattgga cctttacaga attactctat gaagcgccat atttaaaaag 3420 ctaccaagac gaagaggatg aagaggatga ggaggcagat tgccttgaat atattgacaa 3480 tactgataag ataatatatc ttttatatag aagatatcgc cgtatgtaag gatttcaggg 3540

	3600	cataaaaact	atgggcaaag	tatctataga	cttatcaata	aggcagcgcg	ggcaaggcat
5	3660	ttctatcata	agcttgtaaa	ataaccttat	acccaggaca	aatgcttgaa	tgcatggact
	3720	ccgatgactt	cagataatgc	gttttatgtt	tattgatagt	gactccaact	attgggtaat
10	3780	cgtgccaggt	ccgtcccagc	acagcgactt	tttgagaacg	ctccaccgat	tgtcatgcag
15	3840	ctgattacgt	atatcgcttg	ttcgctgcgt	tgccgctcaa	attcaggtta	gctgcctcag
,	3900	catatcacca	atccgtcatc	gcggccagcc	gattcataca	cttcaggcgg	gcagctttcc
20	3960	cgttcaccga	cgccatagtg	gccccagcgt	ctcataagac	tgacagcagg	cgtcaaaggg
25	4020	cagegetgge	gtaaaacagc	tgtcatacgc	ttccggagac	aacaaccgtc	atacgtgcgc
	4080	atgacgtcac	cgcgcagacg	cgtccatttc	cccactgtt	cccgacatag	gcgatttagc
30	4140	gacgtaaaat	ttttttaagt	gcggcctgag	gttaccgact	tatgcgcgag	tgcccggctg
35	4200	cattcatggc	catccaacgc	tgttgcccgg	taatgcgggc	ccaacgccca	cgtgttgagg
	4260	actgcagttg	gtgtaagtga	ttgagaagcg	gcgtaccggg	attttctggt	catatcaatg
40	4320	ttttgccgtt	ccggcggtgc	gcgctgatgt	agcagagata	cggcagtgag	ccatgtttta
45	4380	aagccactgg	atagacacag	gggacagctg	ctgaacagga	ccgtcagtag	acgcaccacc
	4440	cccataattg	ggcagcatca	tcagtaagtt	atacactaaa	aaacaccatc	agcacctcaa
50	4500	acaactttga	aactttgaaa	gttatacgcc	tcgatactat	atcggctccg	tggtttcaaa
55	4560	tggagttcgt	aacagtgaat	gaatgcaagg	taaggtttta	ttctggtatt	aaaagctgtt
	4620	aaggaaataa	agaaaagagg	taaatactgt	ggggtatctt	ttagcttctt	cttgttataa
60	4680	ataccgctgc	tgatcgaaaa	ttgaaaaaac	atcaccggaa	aaatgagaat	taaatggcta
65	4740	agaaaatgaa	agctggtggg	aaggtatata	gtctcctgct	cggaaggaat	gtaaaagata

aacctatatt taaaaatgac ggacagccgg tataaaggga ccacctatga tgtggaacgg 4800 5 gaaaaggaca tgatgctatg gctggaagga aagctgcctg ttccaaaggt cctgcacttt 4860 gaacggcatg atggctggag caatctgctc atgagtgagg ccgatggcgt cctttgctcg 4920 gaagagtatg aagatgaaca aagccctgaa aagattatcg agctgtatgc ggagtgcatc 4980 aggetettte aetecatega catateggat tgteectata egaatagett agacageege 5040 ttagccgaat tggattactt actgaataac gatctggccg atgtggattg cgaaaactgg 5100 gaagaagaca ctccatttaa agatccgcgc gagctgtatg attttttaaa gacggaaaag 5160 cccgaagagg aacttgtctt ttcccacggc gacctgggag acagcaacat ctttgtgaaa 5220 gatggcaaag taagtggctt tattgatctt gggagaagcg gcagggcgga caagtggtat 5280 gacattgcct tctgcgtccg gtcgatcagg gaggatatcg gggaagaaca gtatgtcgag 5340 ctggatgaat tgttttagta cctagatgtg gcgcaacgat gccggcgaca agcaggagcg 5460 caccgacttc ttccgcatca agtgttttgg ctctcaggcc gaggcccacg gcaagtattt 5520 gggcaagggg tcgctggtat tcgtgcaggg caagattcgg aataccaagt acgagaagga 5580 cggccagacg gtctacggga ccgacttcat tgccgataag gtggattatc tggacaccaa 5640 ggcaccaggc gggtcaaatc aggaataagg gcacattgcc ccggcgtgag tcggggcaat 5700 cccgcaagga gggtgaatga atcggacgtt tgaccggaag gcatacaggc aagaactgat 5760 cgacgcgggg ttttccgccg aggatgccga aaccatcgca agccgcaccg tcatgcgtgc 5820 gccccgcgaa accttccagt ccgtcggctc gatggtccag caagctacgg ccaagatcga 5880 gegegacage gtgeaactgg etececetge cetgeeegeg ceateggeeg eegtggageg 5940 65

tt.	egegtegt	ctcgaacagg	aggcggcagg	tttggcgaag	tegatgacea	tcgacacgcg		
ag	gaactatg	acgaccaaga	agcgaaaaac	cgccggcgag	gacctggcaa	aacaggtcag	6060	5
cg	aggccaag	caggccgcgt	tgctgaaaca	cacgaagcag	cagatcaagg	aaatgcagct	6120	10
tt	ccttgttc	gatattgcgc	cgtggccgga	cacgatgcga	gcgatgccaa	acgacacggc	6180	10
CC	gctctgcc	ctgttcacca	cgcgcaacaa	gaaaatcccg	cgcgaggcgc	tgcaaaacaa	6240	15
gg	tcattttc	cacgtcaaca	aggacgtgaa	gatcacctac	accggcgtcg	agctgcgggc	6300	
cg	acgatgac	gaactggtgt	ggcagcaggt	gttggagtac	gcgaagcgca	cccctatcgg	6360	20
cg	agccgatc	accttcacgt	tctacgagct	ttgccaggac	ctgggctggt	cgatcaatgg	6420	25
CC	ggtattac	acgaaggccg	aggaatgcct	gtcgcgccta	caggcgacgg	cgatgggctt	6480	
ca	cgtccgac	cgcgttgggc	acctggaatc	ggtgtcgctg	ctgcaccgct	tccgcgtcct	6540	30
gg	accgtggc	aagaaaacgt	cccgttgcca	ggtcctgatc	gacgaggaaa	tcgtcgtgct	6600	35
ġt	ttgctggc	gaccactaca	cgaaattcat	atgggagaag	taccgcaagc	tgtcgccgac	6660	
gg	cccgacgg	atgttcgact	atttcagctc	gcaccgggag	ccgtacccgc	tcaagctgga	6720	40
aa	ccttccgc	ctcatgtgcg	gatcggattc	cacccgcgtg	aagaagtggc	gcgagcaggt	6780	45
cg	gcgaagcc	tgcgaagagt	tgcgaggcag	cggcctggtg	gaacacgcct	gggtcaatga	6840	
tg	acctggtg	cattgcaaac	gctagggcct	tgtggggtca	gttccggctg	ggggttcagc	6900	50
ag	ccagcgct	ttactggcat	ttcaggaaca	agcgggcact	gctcgacgca	cttgcttcgc	6960	55
tc	agtatcgc	tcgggacgca	cggcgcgctc	tacgaactgc	cgataaacag	aggattaaaa	7020	
tt	gacaattg	tgattaaggc	tcagattcga	cggcttggag	cggccgacgt	gcaggatttc	7080	60
cg	cgagatcc	gattgtcggc	cctgaagaaa	gctccagaga	tgttcgggtc	cgtttacgag	7140	

cacgaggaga aaaagcccat ggaggcgttc gctgaacggt tgcgagatgc cgtggcattc 7200 5 ggcgcctaca tcgacggcga gatcattggg ctgtcggtct tcaaacagga ggacggcccc 7260 aaggacgete acaaggegea tetgteegge gttttegtgg agecegaaca gegaggeega 7320 ggggtcgccg gtatgctgct gcgggcgttg ccggcgggtt tattgctcgt gatgatcgtc 7380 cgacagattc caacgggaat ctggtggatg cgcatcttca tcctcggcgc acttaatatt 7440 tegetattet ggagettgtt gtttattteg gtetaeegee tgeegggegg ggtegeggeg 7500 20 acggtaggcg ctgtgcagcc gctgatggtc gtgttcatct ctgccgctct gctaggtagc 7560 ccgatacgat tgatggcggt cctggggggct atttgcggaa ctgcggggcgt ggcgctgttg 7620 gtgttgacac caaacgcagc gctagatcct gtcggcgtcg cagcgggcct ggcgggggcg 7680 gtttccatgg cgttcggaac cgtgctgacc cgcaagtggc aacctcccgt gcctctgctc 7740 acctttaccg cctggcaact ggcggccgga ggacttctgc tcgttccagt agctttagtg 7800 tttgatccgc caatcccgat gcctacagga accaatgttc tcggcctggc gtggctcggc 7860 40 ctgatcggag cgggtttaac ctacttcctt tggttccggg ggatctcgcg actcgaacct 7920 acagttgttt ccttactggg ctttctcagc cccagatctg gggtcgatca gccggggatg 7980 catcaggeeg acagteggaa ettegggtee eegacetgta eeatteggtg ageaatggat 8040 aggggagttg atatcgtcaa cgttcacttc taaagaaata gcgccactca gcttcctcag 8100 cggctttatc cagcgatttc ctattatgtc ggcatagttc tcaagatcga cagcctgtca 8160 cggttaagcg agaaatgaat aagaaggctg ataattcgga tctctgcgag ggagatgata 8220 tttgatcaca ggcagcaacg ctctgtcatc gttacaatca acatgctacc ctccgcgaga 8280 tcatccgtgt ttcaaacccg gcagcttagt tgccgttctt ccgaatagca tcggtaacat 8340

, ,	aaaytt	tgeegeetta	Caacggctct	cccgccgacg	ccycccgga	ctgatgggct		
gcct	gtatcg	agtggtgatt	ttgtgccgag	ctgccggtcg	gggagctgtt	ggctggctgg	8460	5
tggc	aggata	tattgtggtg	taaacaaatt	gacgcttaga	caacttaata	acacattgcg	8520	
gacg	ttttta	atgtactggg	gtggtttttc	ttttcaccag	tgagacgggc	aacagctgat	8580	10
tgcc	cttcac	cgcctggccc	tgagagagtt	gcagcaagcg	gtccacgctg	gtttgcccca	8640	15
gcag	gcgaaa	atcctgtttg	atggtggttc	cgaaatcggc	aaaatccctt	ataaatcaaa	8700	
agaa	tagccc	gagatagggt	tgagtgttgt	tccagtttgg	aacaagagtc	cactattaaa	8760	20
gaac	gtggac	tccaacgtca	aagggcgaaa	aaccgtctat	cagggcgatg	gcccactacg	8820	25
tgaa	ccatca	cccaaatcaa	gttttttggg	gtcgaggtgc	cgtaaagcac	taaatcggaa	8880	
ccct	aaaggg	agcccccgat	ttagagcttg	acggggaaag	ccggcgaacg	tggcgagaaa	8940	30
ggaa	gggaag	aaagcgaaag	gagcgggcgc	cattcaggct	gcgcaactgt	tgggaagggc	9000	35
gatc	ggtgcg	ggcctcttcg	ctattacgcc	agctggcgaa	agggggatgt	gctgcaaggc	9060	
gatt	aagttg	ggtaacgcca	gggttttccc	agtcacgacg	ttgtaaaacg	acggccagtg	9120	40
aatt	aattcc	catcttgaaa	gaaatatagt	ttaaatattt	attgataaaa	taacaagtca	9180	45
ggta	ttatag	tccaagcaaa	aacataaatt	tattgatgca	agtttaaatt	cagaaatatt	9240	
tcaa	taactg	attatatcag	ctggtacatt	gccgtagatg	aaagactgag	tgcgatatta	9300	50
tgtg	taatac	ataaattgat	gatatagcta	gcttagctca	tcgggggatc	cgtcgaagct	9360	55
agct	tgggtc	ccgctcagaa	gaactcgtca	agaaggcgat	agaaggcgat	gcgctgcgaa	9420	
tcgg	gagcgg	cgataccgta	aagcacgagg	aagcggtcag	cccattcgcc	gccaagctct	9480	60
tcag	caatat	cacgggtagc	caacgctatg	tcctgatagc	ggtccgccac	acccageegg	9540	65

ccacagtcga tgaatccaga aaagcggcca ttttccacca tgatattcgg caagcaggca 9600 5 tegecatggg teacgacgag atectegeeg tegggeatge gegeettgag cetggegaae 9660 agtteggetg gegegageee etgatgetet tegteeagat cateetgate gacaagaceg 9720 10 gcttccatcc gagtacgtgc tcgctcgatg cgatgtttcg cttggtggtc gaatgggcag 9780 gtagccggat caagcgtatg cagccgccgc attgcatcag ccatgatgga tactttctcg 9840 gcaggagcaa ggtgagatga caggagatcc tgccccggca cttcgcccaa tagcagccag 9900 20 tcccttcccg cttcagtgac aacgtcgagc acagctgcgc aaggaacgcc cgtcgtggcc 9960 agccacgata gccgcgctgc ctcgtcctgc agttcattca gggcaccgga caggtcggtc 10020 ttgacaaaaa gaaccgggcg cccctgcgct gacagccgga acacggcggc atcagagcag 10080 ccgattgtct gttgtgccca gtcatagccg aatagcctct ccacccaagc ggccggagaa 10140 cctgcgtgca atccatcttg ttcaatccaa gctcccatgg gccctcgact agagtcgaga 10200 tctggattga gagtgaatat gagactctaa ttggataccg aggggaattt atggaacgtc 10260 agtggagcat ttttgacaag aaatatttgc tagctgatag tgaccttagg cgacttttga 10320 acgcgcaata atggtttctg acgtatgtgc ttagctcatt aaactccaga aacccgcggc 10380 tgagtggctc cttcaacgtt gcggttctgt cagttccaaa cgtaaaacgg cttgtcccgc 10440 gtcatcggcg ggggtcataa cgtgactccc ttaattctcc gctcatgatc ttgatcccct 10500 gcgccatcag atccttggcg gcaagaaagc catccagttt actttgcagg gcttcccaac 10560 cttaccagag ggcgccccag ctggcaattc cggttcgctt gctgtccata aaaccgccca 10620 gtctagctat cgccatgtaa gcccactgca agctacctgc tttctctttg cgcttgcgtt 10680 ttcccttgtc cagatagccc agtagctgac attcatccgg ggtcagcacc gtttctgcgg 10740

	10800	gcttgcggca	cgccctgagt	gcagcccttg	gcttccttta	tacgtgttcc	actggctttc
5	10860	aaatttacac	ctcctcgagc	gcgcgccgag	caggtcgacg	tgcatgcctg	gcgtgaagct
	10920	gtgttatgta	tttactatgt	ttgtttttgt	cccttgtaat	aacgtctaaa	attgccacta
10	10980	tatgctaacg	taacaccttt	actaaattta	tatatttggt	gataaatttt	tttgatttgc
15	11040	tttgtcttct	ctaaattatt	ttaattgatt	tgcaagttga	cttagcaatt	tttgccaaca
	11100	ctataggaga	aatatttcta	aatatttgct	tggaaatgta	actaatcaac	aaatacatat
20	11160	aatgctgcat	taattgttgc	tttggagatt	taccacaagg	gtgaatatgg	attaaagtga
25	11220	ccacacaaga	aataatggta	tcttgaggat	attcaataat	tacaccaaac	ggatggcata
	11280	acaacaatgt	atttttcaag	aggtttagta	cgtggacaaa	atgaacgtca	tttgaggtgc
. 30	11340	aaaaatattt	tggaaagttt	ggatgccctg	gtgcatgcat	aagttttgag	taccacacac
35	11400	aggatgcaat	atccacttgg	aaaccatgac	gccatgtgta	ttgcatggaa	tggaaatgat
	11460	ataatgagga	tgtagtctat	tagttatgca	tacatgcaac	actacaaatt	aatgaagaaa
40	11520	atttcttcat	cacgattata	ctaagtttta	tacacactca	ctttcattca	ttttgcaata
45	11580	tttaatgaga	ggcctcctgc	cagtctagaa	cggccgcctg	ccgcggtggg	agccagccca
	11640	acgttgtaaa	tctgttgtgc	tgctttcaat	gcatgatatt	gcctatgatc	tatgcgagac
50	11700	taatgaatat	cggttcattc	ccgccggttt	cagatcctta	atgtgtagct	aaacctgagc
55	11760	ctgattgtcc	gttcaattta	aatattctcc	ttttatgaat	actatcgtat	atcacccgtt
	11820	tttttgtttt	ttgtaatttg	gtctaaaccc	gccactaaac	tttacacatt	gtcgagcaaa
60	11880	aaatttataa	atttggtact	aaatttttat	gatttgcgat	ttatgtattt	actatgtgtg
	11940	attgattcta	aagttgatta	agcaatttgc	gccaacactt	gctaacgttt	caccttttat

aattatttt gtcttctaaa tacatatact aatcaactgg aaatgtaaat atttgctaat 12000 s atttctacta taggagaatt aaagtgagtg aatatggtac cacaaggttt ggagatttaa 12060 ttgttgcaat gctgcatgga tggcatatac accaaacatt caataattct tgaggataat 12120 10 aatggtacca cacaagattt gaggtgcatg aacgtcacgt ggacaaaagg tttagtaatt 12180 15 tttcaagaca acaatgttac cacacacaag ttttgaggtg catgcatgga tgccctgtgg 12240 aaagtttaaa aatattttgg aaatgatttg catggaagcc atgtgtaaaa ccatgacatc 12300 20 cacttggagg atgcaataat gaagaaaact acaaatttac atgcaactag ttatgcatgt 12360 agtctatata atgaggattt tgcaatactt tcattcatac acactcacta agttttacac 12420 gattataatt tottoatago cagoggatoo gatatogggo cogotagogt taaccotgot 12480 ttaatgagat atgcgagacg cctatgatcg catgatattt gctttcaatt ctgttgtgca 12540 cgttgtaaaa aacctgagca tgtgtagctc agatccttac cgccggtttc ggttcattct 12600 aatgaatata tcaccegtta ctategtatt tttatgaata atatteteeg tteaatttae 12660 tgattgtccg tcgacgaatt cgagctcggc gcgcctctag aggatcgatg aattcagatc 12720 . ggctgagtgg ctccttcaac gttgcggttc tgtcagttcc aaacgtaaaa cggcttgtcc 12780 cgcgtcatcg gcgggggtca taacgtgact cccttaattc tccgctcatg atcagattgt 12840 cgtttcccgc cttcagttta aactatcagt gtttgacagg atatattggc gggtaaacct 12900 aagagaaaag agcgtttatt agaataatcg gatatttaaa agggcgtgaa aaggtttatc 12960 cttcgtccat ttgtatgtgc atgccaacca cagggttccc ca 13002

60

<210> 42

<211> 13905

<212> DNA

<213> Unknown

<220>	
<223> pflanzlicher Expressionsvektor mit drei	
Promotor-Terminator-Expressionskassetten	
	• '

10 <400> 42 gatctggcgc cggccagcga gacgagcaag attggccgcc gcccgaaacg atccgacagc 60 gegeecagea eaggtgegea ggeaaattge aceaacgeat acagegeeag eagaatgeea 120 tagtgggcgg tgacgtcgtt cgagtgaacc agatcgcgca ggaggcccgg cagcaccggc 180 ataatcaggc cgatgccgac agcgtcgagc gcgacagtgc tcagaattac gatcaggggt 240 25 atgttgggtt tcacgtctgg cctccggacc agcctccgct ggtccgattg aacgcgcgga 300 ttctttatca ctgataagtt ggtggacata ttatgtttat cagtgataaa gtgtcaagca 360 tgacaaagtt gcagccgaat acagtgatcc gtgccgccct ggacctgttg aacgaggtcg 420 gcgtagacgg tctgacgaca cgcaaactgg cggaacggtt gggggttcag cagccggcgc 480 tttactggca cttcaggaac aagcgggcgc tgctcgacgc actggccgaa gccatgctgg 540 cggagaatca tacgcattcg gtgccgagag ccgacgacga ctggcgctca tttctgatcg 600 45 ggaatgcccg cagcttcagg caggcgctgc tcgcctaccg cgatggcgcg cgcatccatg 660 ceggeacgeg acegggegea ecgeagatgg aaacggeega egegeagett egetteetet 720 50 gcgaggcggg tttttcggcc ggggacgccg tcaatgcgct gatgacaatc agctacttca 780 55 ctgttggggc cgtgcttgag gagcaggccg gcgacagcga tgccggcgag cgcggcgaca 840 ccgttgaaca ggctccgctc tcgccgctgt tgcgggccgc gatagacgcc ttcgacgaag 900 60 ceggteegga egeagegtte gageagggae tegeggtgat tgtegatgga ttggegaaaa 960 ggaggetegt tgteaggaae gttgaaggae egagaaaggg tgaegattga teaggaeege 1020

tgccggagcg caacccactc actacagcag agccatgtag acaacatccc ctccccttt 1080 ccaccgcgtc agacgcccgt agcagcccgc tacgggcttt ttcatgccct gccctagcgt 1140 ccaagectea eggeeget eggeetetet ggeggeette tggegetett eegetteete 1200 gctcactgac tcgctgcgct cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa 1260 ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa 1320 aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct 1380 ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac 1440 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1500 gaccetgeeg ettaceggat acetgteege ettteteeet tegggaageg tggegetttt 1560 ccgctgcata accctgcttc ggggtcatta tagcgatttt ttcggtatat ccatccttt 1620 tegeaegata tacaggattt tgecaaaggg ttegtgtaga ettteettgg tgtatecaae 1680 ggcgtcagcc gggcaggata ggtgaagtag gcccacccgc gagcgggtgt tccttcttca 1740 ctgtccctta ttcgcacctg gcggtgctca acgggaatcc tgctctgcga ggctggccgg 1800 ctaccgccgg cgtaacagat gagggcaagc ggatggctga tgaaaccaag ccaaccagga 1860 agggcagccc acctatcaag gtgtactgcc ttccagacga acgaagagcg attgaggaaa 1920 aggeggegge ggeeggeatg ageetgtegg cetacetget ggeegtegge cagggetaca 1980 aaatcacggg cgtcgtggac tatgagcacg tccgcgagct ggcccgcatc aatggcgacc 2040 55 tgggccgcct gggcggcctg ctgaaactct ggctcaccga cgacccgcgc acggcgcggt 2100 teggtgatge caegateete gecetgetgg egaagatega agagaageag gaegagettg 2160 gcaaggtcat gatgggcgtg gtccgcccga gggcagagcc atgacttttt tagccgctaa 2220

aa	cggccggg	gggtgtgtgt.	yactyccaag	cacgleecea	tgegetecat	Caagaagagc	2280	
ga	cttcgcgg	agctggtgaa	gtacatcacc	gacgagcaag	gcaagaccga	gcgcctttgc	2340	5
ga	cgctcacc	gggctggttg	ccctcgccgc	tigggctggcg	gccgtctatg	gccctgcaaa	2400	10
cg	cgccagaa	acgccgtcga	agccgtgtgc	gagacaccgc	ggccgccggc	gttgtggata	2460	10
cc	tcgcggaa	aacttggccc	tcactgacag	atgaggggcg	gacgttgaca	cttgaggggc	2520	15
cg	actcaccc	ggcgcggcgt	tgacagatga	ggggcaggct	cgatttcggc	cggcgacgtg	2580	
ga	gctggcca	gcctcgcaaa	tcggcgaaaa	cgcctgattt	tacgcgagtt	tcccacagat	2640	20
ga	tgtggaca	agcctgggga	taagtgccct	gcggtattga	cacttgaggg	gcgcgactac	2700	25
tg.	acagatga	ggggcgcgat	ccttgacact	tgaggggcag	agtgctgaca	gatgaggggc	2760	
gc.	acctattg	acatttgagg	ggctgtccac	aggcagaaaa	tccagcattt	gcaagggttt	2820	30
CC	gcccgttt	ttcggccacc	gctaacctgt	cttttaacct	gcttttaaac	caatatttat	2880	35
aa	accttgtt	tttaaccagg	gctgcgccct	gtgcgcgtga	ccgcgcacgc	cgaagggggg	2940	
tg	cccccct	tctcgaaccc	tcccggcccg	ctaacgcggg	cctcccatcc	ccccaggggc	3000	40
tg	egececte	ggccgcgaac	ggcctcaccc	caaaaatggc	agcgctggca	gtccttgcca	3060	45
tt	gccgggat	cggggcagta	acgggatggg	cgatcagccc	gagcgcgacg	cccggaagca	3120	
tt	gacgtgcc	gcaggtgctg	gcatcgacat	tcagcgacca	ggtgccgggc	agtgagggcg	3180	50
gc	ggcctggg	tggcggcctg	cccttcactt.	cggccgtcgg	ggcattcacg	gacttcatgg	3240	55
cg	gggccggc	aatttttacc	ttgggcattc	ttggcatagt	ggtcgcgggt	gccgtgctcg	3300	
tg	ttcggggg	tgcgataaac	ccagcgaacc	atttgaggtg	ataggtaaga	ttataccgag	3360	60
gta	atgaaaac	gagaattgga	cctttacaga	attactctat	gaagcgccat	atttaaaaag	3420	

ctaccaagac gaagaggatg aagaggatga ggaggcagat tgccttgaat atattgacaa 3480 tactgataag ataatatatc ttttatatag aagatatcgc cgtatgtaag gatttcaggg 3540 ggcaaggcat aggcagcgcg cttatcaata tatctataga atgggcaaag cataaaaact 3600 tgcatggact aatgcttgaa acccaggaca ataaccttat agcttgtaaa ttctatcata 3660 attgggtaat gactccaact tattgatagt gttttatgtt cagataatgc ccgatgactt 3720 tgtcatgcag ctccaccgat tttgagaacg acagcgactt ccgtcccagc cgtgccaggt 3780 gctgcctcag attcaggtta tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt 3840 gcagctttcc cttcaggcgg gattcataca gcggccagcc atccgtcatc catatcacca 3900 25 cgtcaaaggg tgacagcagg ctcataagac gccccagcgt cgccatagtg cgttcaccga 3960 atacgtgcgc aacaaccgtc ttccggagac tgtcatacgc gtaaaacagc cagcgctggc 4020 gcgatttagc cccgacatag ccccactgtt cgtccatttc cgcgcagacg atgacgtcac 4080 tgcccggctg tatgcgcgag gttaccgact gcggcctgag ttttttaagt gacgtaaaat 4140 cgtgttgagg ccaacgccca taatgcgggc tgttgcccgg catccaacgc cattcatggc 4200 catatcaatg attttctggt gcgtaccggg ttgagaagcg gtgtaagtga actgcagttg 4260 ccatgtttta cggcagtgag agcagagata gcgctgatgt ccggcggtgc ttttgccgtt 4320 acgcaccacc ccgtcagtag ctgaacagga gggacagctg atagacacag aagccactgg 4380 agcacctcaa aaacaccatc atacactaaa tcagtaagtt ggcagcatca cccataattg 4440 55 tggtttcaaa atcggctccg tcgatactat gttatacgcc aactttgaaa acaactttga 4500 aaaagctgtt ttctggtatt taaggtttta gaatgcaagg aacagtgaat tggagttcgt 4560 cttgttataa ttagcttctt ggggtatctt taaatactgt agaaaagagg aaggaaataa 4620

Lao	atggeta	adatgagaat	accaccggaa	ttgaaaaac	tgatcgaaaa	ataccgctgc	4680	
gta	aaagata	cggaaggaat	gtctcctgct	aaggtatata	agctggtggg	agaaaatgaa	4740	5
aac	ctatatt	taaaaatgac	ggacagccgg	tataaaggga	ccacctatga	tgtggaacgg	4800	10
gaa	aaggaca	tgatgctatg	gctggaagga	aagctgcctg	ttccaaaggt	cctgcacttt	4860	10
gaa	cggcatg	atggctggag	caatctgctc	atgagtgagg	ccgatggcgt	cctttgctcg	4920	15
gaa	gagtatg	aagatgaaca	aagccctgaa	aagattatcg	agctgtatgc	ggagtgcatc	4980	
agg	ctctttc	actccatcga	catatcggat	tgtccctata	cgaatagctt	agacagccgc	5040	20
tta	gccgaat	tggattactt	actgaataac	gatctggccg	atgtggattg	cgaaaactgg	5100	25
gaa	gaagaca	ctccatttaa	agatccgcgc	gagctgtatg	atttttaaa	gacggaaaag	5160	
ccc	gaagagg	aacttgtctt	ttcccacggc	gacctgggag	acagcaacat	ctttgtgaaa	5220	30
gat	ggcaaag	taagtggctt	tattgatctt	gggagaagcg	gcagggcgga	caagtggtat	5280	35
gac	attgcct	tctgcgtccg	gtcgatcagg	gaggatatcg	gggaagaaca	gtatgtcgag	5340	
cta	tttttg	acttactggg	gatcaagcct	gattgggaga	aaataaaata	ttatatttta	5400	40
ctg	gatgaat	tgttttagta	cctagatgtg	gcgcaacgat	gccggcgaca	agcaggagcg	5460	45
cac	cgacttc	ttccgcatca	agtgttttgg	ctctcaggcc	gaggcccacg	gcaagtattt	5520	
ggg	caagggg	tcgctggtat	tcgtgcaggg	caagattcgg	aataccaagt	acgagaagga	5580	50
eggo	ccagacg	gtctacggga	ccgacttcat	tgccgataag	gtggattatc	tggacaccaa	5640	55
ggca	accaggc	gggtcaaatc	aggaataagg	gcacattgcc	ccggcgtgag	tcggggcaat	5700	
ccc	gcaagga	gggtgaatga	atcggacgtt	tgaccggaag	gcatacaggc	aagaactgat	5760	60
gac	gcgggg	ttttccgccg	aggatgccga	aaccatcgca	agccgcaccg	tcatgcgtgc	5820	

gccccgcgaa accttccagt ccgtcggctc gatggtccag caagctacgg ccaagatcga 5880 gcgcgacagc gtgcaactgg ctcccctgc cctgcccgcg ccatcggccg ccgtggagcg 5940 ttcgcgtcgt ctcgaacagg aggcggcagg tttggcgaag tcgatgacca tcgacacgcg 6000 aggaactatg acgaccaaga agcgaaaaac cgccggcgag gacctggcaa aacaggtcag 6060 cgaggccaag caggccgcgt tgctgaaaca cacgaagcag cagatcaagg aaatgcagct 6120 ttccttgttc gatattgcgc cgtggccgga cacgatgcga gcgatgccaa acgacacggc 6180 20 ccgctctgcc ctgttcacca cgcgcaacaa gaaaatcccg cgcgaggcgc tgcaaaacaa 6240 ggtcattttc cacgtcaaca aggacgtgaa gatcacctac accggcgtcg agctgcgggc 6300 cgacgatgac gaactggtgt ggcagcaggt gttggagtac gcgaagcgca cccctatcgg 6360 cgagccgatc accttcacgt tctacgagct ttgccaggac ctgggctggt cgatcaatgg 6420 ccggtattac acgaaggccg aggaatgcct gtcgcgccta caggcgacgg cgatgggctt 6480 cacgtccgac cgcgttgggc acctggaatc ggtgtcgctg ctgcaccgct tccgcgtcct 6540 ggaccgtggc aagaaaacgt cccgttgcca ggtcctgatc gacgaggaaa tcgtcgtgct 6600 gtttgctggc gaccactaca cgaaattcat atgggagaag taccgcaagc tgtcgccgac 6660 ggcccgacgg atgttcgact atttcagctc gcaccgggag ccgtacccgc tcaagctgga 6720 aaccttccgc ctcatgtgcg gatcggattc cacccgcgtg aagaagtggc gcgagcaggt 6780 cggcgaagcc tgcgaagagt tgcgaggcag cggcctggtg gaacacgcct gggtcaatga 6840 55 tgacctggtg cattgcaaac gctagggcct tgtggggtca gttccggctg ggggttcagc 6900 agccagcgct ttactggcat ttcaggaaca agcgggcact gctcgacgca cttgcttcgc 6960 tcagtatcgc tcgggacgca cggcgcgctc tacgaactgc cgataaacag aggattaaaa 7020

נבי	gacaattg	tgattaaggc	tcagattcga	cggcttggag	cggccgacgt	gcaggatttc	7080	
, cg	cgagatcc	gattgtcggc	cctgaagaaa	gctccagaga	tgttcgggtc	cgtttacgag	7140	5
ca	cgaggaga	aaaagcccat	ggaggcgttc	gctgaacggt	tgcgagatgc	cgtggcattc	7200	10
gg	cgcctaca	tcgacggcga	gatcattggg	ctgtcggtct	tcaaacagga	ggacggcccc	7260	10
aa	ggacgete	acaaggcgca	tctgtccggc	gttttcgtgg	agcccgaaca	gcgaggccga	7320	15
gg	ggtegeeg	gtatgctgct	gcgggcgttg	ccggcgggtt	tattgctcgt	gatgatcgtc	7380	
cga	acagattc	caacgggaat	ctggtggatg	cgcatcttca	tcctcggcgc	acttaatatt	7440	20
tc	gctattct	ggagcttgtt	gtttatttcg	gtctaccgcc	tgccgggcgg	ggtcgcggcg	7500	25
acç	ggtaggcg	ctgtgcagcc	gctgatggtc	gtgttcatct	ctgccgctct	gctaggtagc	7560	
ccg	gatacgat	tgatggcggt	cctgggggct	atttgcggaa	ctgcgggcgt	ggcgctgttg	7620	30
gto	gttgacac	caaacgcagc	gctagatcct	gtcggcgtcg	cagcgggcct	ggcgggggcg	7680	35
gt 1	tccatgg	cgttcggaac	cgtgctgacc	cgcaagtggc	aacctcccgt	gcctctgctc	7740	
acc	ctttaccg	cctggcaact	ggcggccgga	ggacttctgc	tcgttccagt	agctttagtg	7800	40
tt	gatccgc	caatcccgat	gcctacagga	accaatgttc	teggeetgge	gtggctcggc	7860	45
etç	gatcggag	cgggtttaac	ctacttcctt	tggttccggg	ggatctcgcg	actcgaacct	7920	
ıca	agttgttt	ccttactggg	ctttctcagc	cccagatctg	gggtcgatca	gccggggatg	7980	50
at	caggccg	acagtcggaa	cttcgggtcc	ccgacctgta	ccattcggtg	agcaatggat	8040	55
gg	ggagttg	atatcgtcaa	cgttcacttc	taaagaaata	gcgccactca	gcttcctcag	8100	
gg	gctttatc	cagcgatttc	ctattatgtc	ggcatagttc	tcaagatcga	cagcctgtca	8160	60
gg	ıttaagcg	agaaatgaat	aagaaggctg	ataattcgga	tctctgcgag	ggagatgata	8220	

tttgatcaca ggcagcaacg ctctgtcatc gttacaatca acatgctacc ctccgcgaga 8280 tcatccgtgt ttcaaacccg gcagcttagt tgccgttctt ccgaatagca tcggtaacat 8340 gagcaaagtc tgccgcctta caacggctct cccgctgacg ccgtcccgga ctgatgggct 8400 gcctgtatcg agtggtgatt ttgtgccgag ctgccggtcg gggagctgtt ggctggctgg 8460 tggcaggata tattgtggtg taaacaaatt gacgcttaga caacttaata acacattgcg 8520 gacgttttta atgtactggg gtggtttttc ttttcaccag tgagacgggc aacagctgat 8580 20 tgcccttcac cgcctggccc tgagagagtt gcagcaagcg gtccacgctg gtttgcccca 8640 gcaggcgaaa atcctgtttg atggtggttc cgaaatcggc aaaatccctt ataaatcaaa 8700 agaatagccc gagatagggt tgagtgttgt tccagtttgg aacaagagtc cactattaaa 8760 gaacgtggac tccaacgtca aagggcgaaa aaccgtctat cagggcgatg gcccactacg 8820 tgaaccatca cccaaatcaa gttttttggg gtcgaggtgc cgtaaagcac taaatcggaa 8880 ccctaaaggg agccccgat ttagagcttg acggggaaag ccggcgaacg tggcgagaaa 8940 40 ggaagggaag aaagcgaaag gagcgggcgc cattcaggct gcgcaactgt tgggaagggc 9000 gatcggtgcg ggcctcttcg ctattacgcc agctggcgaa agggggatgt gctgcaaggc 9060 gattaagttg ggtaacgcca gggttttccc agtcacgacg ttgtaaaacg acggccagtg 9120 aattaattcc catcttgaaa gaaatatagt ttaaatattt attgataaaa taacaagtca 9180 ggtattatag tccaagcaaa aacataaatt tattgatgca agtttaaatt cagaaatatt 9240 55 tcaataactg attatatcag ctggtacatt gccgtagatg aaagactgag tgcgatatta 9300 tgtgtaatac ataaattgat gatatagcta gcttagctca tcggggggatc cgtcgaagct 9360 agcttgggtc ccgctcagaa gaactcgtca agaaggcgat agaaggcgat gcgctgcgaa 9420

TC!	gggagcgg	cgataccgta	aagcacgagg	aagcggtcag	cccattcgcc	gccaagctct	9480	
tc	agcaatat	cacgggtagc	caacgctatg	tcctgatagc	ggtccgccac	acccagccgg	9540	5
cc.	acagtcga	tgaatccaga	aaagcggcca	ttttccacca	tgatattcgg	caagcaggca	9600	10
tc	gccatggg	tcacgacgag	atcctcgccg	tcgggcatgc	gcgccttgag	cctggcgaac	9660	10
ag	ttcggctg	gcgcgagccc	ctgatgctct	tcgtccagat	catcctgatc	gacaagaccg	9720	15
gc	ttccatcc	gagtacgtgc	tcgctcgatg	cgatgtttcg	cttggtggtc	gaatgggcag	9780	
gta	agccggat	caagcgtatg	cagccgccgc	attgcatcag	ccatgatgga	tactttctcg	9840	20
gca	aggagcaa	ggtgagatga	caggagatcc	tgccccggca	cttcgcccaa	tagcagccag	9900	25
tc	ccttcccg	cttcagtgac	aacgtcgagc	acagctgcgc	aaggaacgcc	cgtcgtggcc	9960	
ago	ccacgata	gccgcgctgc	ctcgtcctgc	agttcattca	gggcaccgga	caggtcggtc	10020	30
tt	gacaaaaa	gaaccgggcg	cccctgcgct	gacagccgga	acacggcggc	atcagagcag	10080	35
cc	gattgtct	gttgtgccca	gtcatagccg	aatagcctct	ccacccaagc	ggccggagaa	10140	
cct	tgcgtgca	atccatcttg	ttcaatccaa	gctcccatgg	gccctcgact	agagtcgaga	10200	40
tct	tggattga	gagtgaatat	gagactctaa	ttggataccg	aggggaattt	atggaacgtc	10260	45
agt	tggagcat	ttttgacaag	aaatatttgc	tagctgatag	tgaccttagg	cgacttttga	10320	
acg	gcgcaata	atggtttctg	acgtatgtgc	ttagctcatt	aaactccaga	aacccgcggc	10380	50
tga	agtggctc	cttcaacgtt	gcggttctgt [.]	cagttccaaa	cgtaaaacgg	cttgtcccgc	10440	55
gto	categgeg	ggggtcataa	cgtgactccc	ttaattctcc	gctcatgatc	ttgatcccct	10500	
gcg	gccatcag	atccttggcg	gcaagaaagc	catccagttt	actttgcagg	gcttcccaac	10560	60
ctt	accagag	ggcgccccag	ctggcaattc	cggttcgctt	gctgtccata	aaaccgccca	10620	

gtctagctat cgccatgtaa gcccactgca agctacctgc tttctctttg cgcttgcgtt 10680 ttcccttgtc cagatagccc agtagctgac attcatccgg ggtcagcacc gtttctgcgg 10740 actggctttc tacgtgttcc gcttccttta gcagcccttg cgccctgagt gcttgcggca 10800 gcgtgaagct tgcatgcctg caggtcgacg gcgcgccgag ctcctcgagc aaatttacac 10860 attgccacta aacgtctaaa cccttgtaat ttgtttttgt tttactatgt gtgttatgta 10920 tttgatttgc gataaatttt tatatttggt actaaattta taacaccttt tatgctaacg 10980 20 tttgccaaca cttagcaatt tgcaagttga ttaattgatt ctaaattatt tttgtcttct 11040 aaatacatat actaatcaac tggaaatgta aatatttgct aatatttcta ctataggaga 11100 attaaagtga gtgaatatgg taccacaagg tttggagatt taattgttgc aatgctgcat 11160 ggatggcata tacaccaaac attcaataat tcttgaggat aataatggta ccacacaaga 11220 tttgaggtgc atgaacgtca cgtggacaaa aggtttagta atttttcaag acaacaatgt 11280 taccacacac aagttttgag gtgcatgcat ggatgccctg tggaaagttt aaaaatattt 11340 tggaaatgat ttgcatggaa gccatgtgta aaaccatgac atccacttgg aggatgcaat 11400 aatgaagaaa actacaaatt tacatgcaac tagttatgca tgtagtctat ataatgagga 11460 ttttgcaata ctttcattca tacacactca ctaagtttta cacgattata atttcttcat 11520 agccagccca ccgcggtggg cggccgcctg cagtctagaa ggcctcctgc tttaatgaga 11580 tatgcgagac gcctatgatc gcatgatatt tgctttcaat tctgttgtgc acgttgtaaa 11640 55 aaacctgagc atgtgtagct cagatcctta ccgccggttt cggttcattc taatgaatat 11700 atcacccgtt actatcgtat tittatgaat aatatictcc gitcaatita cigatigtcc 11760 gtcgagcaaa tttacacatt gccactaaac gtctaaaccc ttgtaatttg tttttgtttt 11820

	11880	aaatttataa	atttggtact	aaatttttat	gatttgcgat	ttatgtattt	actatgtgtg
5	11940	attgattcta	aagttgatta	agcaatttgc	gccaacactt	gctaacgttt	caccttttat
	12000	atttgctaat	aaatgtaaat	aatcaactgg	tacatatact	gtcttctaaa	aattatttţ
10	12060	ggagatttaa	cacaaggttt	aatatggtac	aaagtgagtg	taggagaatt	atttctacta
15	12120	tgaggataat	caataattct	accaaacatt	tggcatatac	gctgcatgga	ttgttgcaat
20	12180	tttagtaatt	ggacaaaagg	aacgtcacgt	gaggtgcatg	cacaagattt	aatggtacca
20	12240	tgccctgtgg	catgcatgga	ttttgaggtg	cacacacaag	acaatgttac	tttcaagaca
25	12300	ccatgacatc	atgtgtaaaa	catggaagcc	aaatgatttg	aatattttgg	aaagtttaaa
	12360	ttatgcatgt	atgcaactag	acaaatttac	gaagaaaact	atgcaataat	cacttggagg
30	12420	agttttacac	acactcacta	tcattcatac	tgcaatactt	atgaggattt	agtctatata
. 35	12480	taaccctgct	ccgctagcgt	gatatcgggc	cageggatee	tcttcatagc	gattataatt
•	12540	ctgttgtgca	gctttcaatt	catgatattt	cctatgatcg	atgcgagacg	taatgagat
40	12600	ggttcattct	cgccggtttc	agateettae	tgtgtagctc	aacctgagca	cgttgtaaaa
45	12660	ttcaatttac	atattctccg	tttatgaata	ctatcgtatt	tcacccgtta	aatgaatata
	12720	tgtaatttgt	tctaaaccct	ccactaaacg	ttacacattg	tcgagcaaat	tgattgtccg
50	12780	tttggtacta	aatttttata	atttgcgata	tatgtatttg	ctatgtgtgt	ttttgtttta
55	12840	agttgattaa	gcaatttgca	ccaacactta	ctaacgtttg	accttttatg	aatttataac
	12900	aatgtaaata	atcaactgga	acatatacta	tcttctaaat	attatttttg	ttgattctaa
60	12960	acaaggtttg	atatggtacc	aagtgagtga	aggagaatta	tttctactat	tttgctaata
	13020	aataattctt	ccaaacattc	ggcatataca	ctgcatggat	tgttgcaatg	gagatttaat

gaggataata atggtaccac acaagatttg aggtgcatga acgtcacgtg gacaaaaggt 13080 5 ttagtaattt ttcaagacaa caatgttacc acacacaagt tttgaggtgc atgcatggat 13140 gccctgtgga aagtttaaaa atattttgga aatgatttgc atggaagcca tgtgtaaaac 13200 catgacatcc acttggagga tgcaataatg aagaaaacta caaatttaca tgcaactagt 13260 tatgcatgta gtctatataa tgaggatttt gcaatacttt cattcataca cactcactaa 13320 gttttacacg attataattt cttcatagcc agcagatctg ccggcatcga tcccgggcca 13380 tggcctgctt taatgagata tgcgagacgc ctatgatcgc atgatatttg ctttcaattc 13440 tgttgtgcac gttgtaaaaa acctgagcat gtgtagctca gatccttacc gccggtttcg 13500 gttcattcta atgaatatat cacccgttac tatcgtattt ttatgaataa tattctccgt 13560 tcaatttact gattgtccgt cgacgagctc ggcgcgcctc tagaggatcg atgaattcag 13620 ateggetgag tggeteette aacgttgegg ttetgteagt tecaaacgta aaacggettg 13680 tecegegtea teggeggggg teataaegtg acteeettaa tteteegete atgateagat 13740 tgtcgtttcc cgccttcagt ttaaactatc agtgtttgac aggatatatt ggcgggtaaa 13800 cctaagagaa aagagcgttt attagaataa tcggatattt aaaagggcgt gaaaaggttt 13860 atccttcgtc catttgtatg tgcatgccaa ccacagggtt cccca 13905

50

<210> 43

<211> 15430

<212> DNA

<213> Unknown

<220>

<223> pflanz. Expressionsvektor mit zwei Promotor-Terminator-Expressionskassetten inseriert ist

65

Physcomitrella patens Elongase und Desaturase

<220>							5
<221> CDS				•			
<222> (1154	3)(12415)					•	
<220>					•	•	10
<221> CDS							
<222> (1331	3)(14890)						i5
					•.		
<400> 43				•			
gatctggcgc	cggccagcga	gacgagcaag	attggccgcc	gcccgaaacg	atccgacagc	60	20
						100	
gcgcccagca	caggtgcgca	ggcaaattgc	accaacgcat	acagcgccag	cagaatgcca	120	
tagtgggcgg	tgacgtcgtt	cgagtgaacc	agatogogoa	aasaacccaa	cagcaccggc	180	25
	cgacgccgcc	,		33-33-0033			
ataatcaggc	cgatgccgac	agcgtcgagc	gcgacagtgc	tcagaattac	gatcaggggt	240	30
atgttgggtt	tcacgtctgg	cctccggacc	agcctccgct	ggtccgattg	aacgcgcgga	300	
							35
ttctttatca	ctgataagtt	ggtggacata	ttatgtttat	cagtgataaa	gtgtcaagca	360	
tgacaaagtt	acaaccaaat	acantnator	ataccaccet	ggacctgttg	aacgaggtcg	420	
egacaaagee	gougooguut	acagegacoo	· ·	ggaccogccg	aacgaggcog	120	40
gcgtagacgg	tctgacgaca	cgcaaactgg	cggaacggtt	gggggttcag	cagccggcgc	480	
							45
tttactggca	cttcaggaac	aagcgggcgc	tgctcgacgc	actggccgaa	gccatgctgg	540	
				·			
cggagaatca	tacgcattcg	gtgccgagag	ccgacgacga	ctggcgctca	tttctgatcg	600	50
ggaatgcccg	cagetteagg	cagggggtgg	tcacctacca	castaacaca	cacatecata	660	
ggaacgcccg	cagetteagg	caggegeege	cegeecaeeg	cgacggcgcg	cycacccacy	000	
ccggcacgcg	accgggcgca	ccgcagatgg	aaacggccga	cgcgcagctt	cgcttcctct	720	55
gcgaggcggg	ttttcggcc	ggggacgccg	tcaatgcgct	gatgacaatc	agctacttca	780	60
			·				
ctgttggggc	cgtgcttgag	gagcaggccg	gcgacagcga	tgccggcgag	cgcggcggca	840	
ccattaaaca	gactccactc	tegecactat	tacagaccac	gatagacgcg	ttcgacgaag	900	65

ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tgtcgatgga ttggcgaaaa 960 ggaggctcgt tgtcaggaac gttgaaggac cgagaaaggg tgacgattga tcaggaccgc 1020 tgccggagcg caacccactc actacagcag agccatgtag acaacatccc ctcccccttt 1080 ccaccgcgtc agacgcccgt agcagcccgc tacgggcttt ttcatgccct gccctagcgt 1140 ccaagectea eggeegeet eggeetetet ggeggeetet teggegetett eegetteete 1200 gctcactgac tcgctgcgct cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa 1260 20 ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa 1320. aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct 1380 ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac 1440 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1500 gaccetgeeg ettaceggat acetgteege ettteteeet tegggaageg tggegetttt 1560 ccgctgcata accctgcttc ggggtcatta tagcgatttt ttcggtatat ccatccttt 1620 tcgcacgata tacaggattt tgccaaaggg ttcgtgtaga ctttccttgg tgtatccaac 1680 ggcgtcagcc gggcaggata ggtgaagtag gcccacccgc gagcgggtgt tccttcttca 1740 ctgtccctta ttcgcacctg gcggtgctca acgggaatcc tgctctgcga ggctggccgg 1800 ctaccgccgg cgtaacagat gagggcaagc ggatggctga tgaaaccaag ccaaccagga 1860 agggcagccc acctatcaag gtgtactgcc ttccagacga acgaagagcg attgaggaaa 1920 55 aggcggcggc ggccggcatg agcctgtcgg cctacctgct ggccgtcggc cagggctaca 1980 aaatcacggg cgtcgtggac tatgagcacg tccgcgagct ggcccgcatc aatggcgacc 2040 tgggccgcct gggcggcctg ctgaaactct ggctcaccga cgacccgcgc acggcgcggt 2100

	ggtgatge		gccctgctgg	cgaagatcga	agagaagcag	gacgagettg	2160	
gc	aaggtcat	gatgggcgtg	gtccgcccga	gggcagagcc	atgactttt	tagccgctaa	2220	5
aa	cggccggg	gggtgcgcgt	gattgccaag	cacgtcccca	tgcgctccat	caagaagagc	2280	10
ga	cttcgcgg	agctggtgaa	gtacatcacc	gacgagcaag	gcaagaccga	gcgcctttgc	2340	10
ga	cgctcacc	gggctggttg	ccctcgccgc	tgggctggcg	gccgtctatg	gccctgcaaa	2400	15
cg	cgccagaa	acgccgtcga	agccgtgtgc	gagacaccgc	ggccgccggc	gttgtggata	2460	- 20
CC:	tcgcggaa	aacttggccc	tcactgacag	atgaggggcg	gacgttgaca	cttgaggggc	2520	20
cga	actcaccc	ggcgcggcgt	tgacagatga	ggggcaggct	cgatttcggc	cggcgacgtg	2580	25
ga	gctggcca	gcctcgcaaa	tcggcgaaaa	cgcctgattt	tacgcgagtt	tcccacagat	2640	20
gai	tgtggaca	agcctgggga	taagtgccct	gcggtattga	cacttgaggg	gcgcgactac	2700	30
tga	acagatga	ggggcgcgat	ccttgacact	tgaggggcag	agtgctgaca	gatgaggggc	2760	35
gca	acctattg	acatttgagg	ggctgtccac	aggcagaaaa	tccagcattt	gcaagggttt	2820	
ccg	gcccgttt	ttcggccacc	gctaacctgt	cttttaacct	gcttttaaac	caatatttat	2880	40
aaa	accttgtt	tttaaccagg	gctgcgccct	gtgcgcgtga	ccgcgcacgc	cgaagggggg	2940	45
tgo	ccccct	tctcgaaccc	tcccggcccg	ctaacgcggg	cctcccatcc	ccccaggggc	3000	
tgo	gcccctc	ggccgcgaac	ggcctcaccc	caaaaatggc	agcgctggca	gtccttgcca	3060	50
ttç	gccgggat	cggggcagta	acgggatggg	cgatcagccc	gagcgcgacg	cccggaagca	3120	55
ttç	gacgtgcc	gcaggtgctg	gcatcgacat	tcagcgacca	ggtgccgggc	agtgagggcg	3180	
gcç	gcctggg	tggcggcctg	cccttcactt	cggccgtcgg	ggcattcacg	gacttcatgg	3240	60
gg	ggccggc	aatttttacc	ttgggcattc	ttggcatagt	ggtcgcgggt	gccgtgctcg	3300	•-

tgttcggggg tgcgataaac ccagcgaacc atttgaggtg ataggtaaga ttataccgag 3360 5 gtatgaaaac gagaattgga cctttacaga attactctat gaagcgccat atttaaaaag 3420 ctaccaagac gaagaggatg aagaggatga ggaggcagat tgccttgaat atattgacaa 3480 10 tactgataag ataatatatc ttttatatag aagatatcgc cgtatgtaag gatttcaggg 3540 ggcaaggcat aggcagcgcg cttatcaata tatctataga atgggcaaag cataaaaact 3600 tgcatggact aatgcttgaa acccaggaca ataaccttat agcttgtaaa ttctatcata 3660 20 attgggtaat gactccaact tattgatagt gttttatgtt cagataatgc ccgatgactt 3720 tgtcatgcag ctccaccgat tttgagaacg acagcgactt ccgtcccagc cgtgccaggt 3780 gctgcctcag attcaggtta tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt 3840 gcagctttcc cttcaggcgg gattcataca gcggccagcc atccgtcatc catatcacca 3900 cgtcaaaggg tgacagcagg ctcataagac gccccagcgt cgccatagtg cgttcaccga 3960 atacgtgcgc aacaaccgtc ttccggagac tgtcatacgc gtaaaacagc cagcgctggc 4020 gegatttage ceegacatag ecceaetgtt egtecattte egegeagaeg atgaegteae 4080 tgcccggctg tatgcgcgag gttaccgact gcggcctgag ttttttaagt gacgtaaaat 4140 cgtgttgagg ccaacgccca taatgcgggc tgttgcccgg catccaacgc cattcatggc 4200 catatcaatg attttctggt gcgtaccggg ttgagaagcg gtgtaagtga actgcagttg 4260 ccatgtttta cggcagtgag agcagagata gcgctgatgt ccggcggtgc ttttgccgtt 4320 acgcaccacc ccgtcagtag ctgaacagga gggacagctg atagacacag aagccactgg 4380 agcacctcaa aaacaccatc atacactaaa tcagtaagtt ggcagcatca cccataattg 4440 tggtttcaaa atcggctccg tcgatactat gttatacgcc aactttgaaa acaactttga 4500

aaa	aagctgtt	ttctggtatt	taaggttta	gaatgcaagg	aacagcgaat	tggagttcgt	4560	
ct	tgttataa	ttagcttctt	ggggtatctt	taaatactgt	agaaaagagg	aaggaaataa	4620	5
taa	aatggcta	aaatgagaat	atcaccggaa	ttgaaaaaac	tgatcgaaaa	ataccgctgc	4680	
gt:	aaaagata	cggaaggaat	gtctcctgct	aaggtatata	agctggtggg	agaaaatgaa	4740	10
aa	cctatatt	taaaaatgac	ggacagccgg	tataaaggga	ccacctatga	tgtggaacgg	4800	15
ga	aaaggaca	tgatgctatg	gctggaagga	aagctgcctg	ttccaaaggt	cctgcacttt	4860	
ga:	acggcatg	atggctggag	caatctgctc	atgagtgagg	ccgatggcgt	cctttgctcg	4920	20
ga	agagtatg	aagatgaaca	aagccctgaa	aagattatcg	agctgtatgc	ggagtgcatc	4980	25
ag	gctctttc	actccatcga	catatcggat	tgtccctata	cgaatagctt	agacagccgc	5040	
tt	agccgaat	tggattactt	actgaataac	gatctggccg	atgtggattg	cgaaaactgg	5100	30
ga	agaagaca	ctccatttaa	agatccgcgc	gagctgtatg	attttttaaa	gacggaaaag	5160	35
ĊC	cgaagagg	aacttgtctt	ttcccacggc	gacctgggag	acagcaacat	ctttgtgaaa	5220	
ga	tggcaaag	taagtggctt	tattgatctt	gggagaagcg	gcagggcgga	caagtggtat	5280	40
ga	cattgcct	tctgcgtccg	gtcgatcagg	gaggatatcg	gggaagaaca	gtatgtcgag	5340	45
ct	atttttg	acttactggg	gatcaagcct	gattgggaga	aaataaaata	ttatatttta	5400	
ct	ggatgaat	tgttttagta	cctagatgtg	gcgcaacgat	gccggcgaca	agcaggagcg	5460	50
ca	ccgacttc	ttccgcatca	agtgttttgg	ctctcaggcc	gaggcccacg	gcaagtattt	5520	55
gg	gcaagggg	tcgctggtat	tcgtgcaggg	caagattcgg	aataccaagt	acgagaagga	5580	
cg	gccagacg	gtctacggga	ccgacttcat	tgccgataag	gtggattatc	tggacaccaa	5640	60
gg	caccaggc	gggtcaaatc	aggaataagg	gcacattgcc	ccggcgtgag	tcggggcaat	5700	,.

cccgcaagga gggtgaatga atcggacgtt tgaccggaag gcatacaggc aagaactgat 5760 cgacgegggg ttttccgccg aggatgccga aaccatcgca agccgcaccg tcatgcgtgc 5820 gccccgcgaa accttccagt ccgtcggctc gatggtccag caagctacgg ccaagatcga 5880 gcgcgacage gtgcaactgg ctccccctgc cctgcccgcg ccatcggccg ccgtggagcg 5940 ttcgcgtcgt ctcgaacagg aggcggcagg tttggcgaag tcgatgacca tcgacacgcg 6000 aggaactatg acgaccaaga agcgaaaaac cgccggcgag gacctggcaa aacaggtcag 6060 20 cgaggccaag caggccgcgt tgctgaaaca cacgaagcag cagatcaagg aaatgcagct 6120 tteettgtte gatattgege egtggeegga eacgatgega gegatgeeaa acgaeacgge 6180 ccgctctgcc ctgttcacca cgcgcaacaa gaaaatcccg cgcgaggcgc tgcaaaacaa 6240 ggtcattttc cacgtcaaca aggacgtgaa gatcacctac accggcgtcg agctgcgggc 6300 cgacgatgac gaactggtgt ggcagcaggt gttggagtac gcgaagcgca cccctatcgg 6360 cgagccgatc accttcacgt tctacgagct ttgccaggac ctgggctggt cgatcaatgg 6420 ceggtattac acgaaggeeg aggaatgeet gtegegeeta caggegaegg egatgggett 6480 caegteegae egegttggge acetggaate ggtgtegetg etgeaeeget teegegteet 6540 ggaccgtggc aagaaaacgt cccgttgcca ggtcctgatc gacgaggaaa tcgtcgtgct 6600 gtttgctggc gaccactaca cgaaattcat atgggagaag taccgcaagc tgtcgccgac 6660 ggcccgacgg atgttcgact atttcagctc gcaccgggag ccgtacccgc tcaagctgga 6720 aaccttccgc ctcatgtgcg gatcggattc cacccgcgtg aagaagtggc gcgagcaggt 6780 cggcgaagcc tgcgaagagt tgcgaggcag cggcctggtg gaacacgcct gggtcaatga 6840 tgacctggtg cattgcaaac gctagggcct tgtggggtca gttccggctg ggggttcagc 6900

	6960	cttgcttcgc	gctcgacgca	agegggeaet	ttcaggaaca	ttactggcat	agccagcgct
5	7020	aggattaaaa	cgataaacag	tacgaactgc	cggcgcgctc	tcgggacgca	tcagtatcgc
	7080	gcaggatttc	cggccgacgt	cggcttggag	tcagattcga	tgattaaggc	ttgacaattg
10	7140	cgtttacgag	tgttcgggtc	gctccagaga	cctgaagaaa	gattgtcggc	cgcgagatcc
15	7200	cgtggcattc	tgcgagatgc	gctgaacggt	ggaggcgttc	aaaagcccat	cacgaggaga
	7260	ggacggcccc	tcaaacagga	ctgtcggtct	gatcattggg	tcgacggcga	ggcgcctaca
20	7320	gcgaggccga	agcccgaaca	gttttcgtgg	tctgtccggc	acaaggcgca	aaggacgctc
25	7380	gatgatcgtc	tattgctcgt	ccggcgggtt	gcgggcgttg.	gtatgctgct	ggggtcgccg
	7440	acttaatatt	tcctcggcgc	cgcatcttca	ctggtggatg	caacgggaat	cgacagattc
. 30	7500	ggtcgcggcg	tgccgggcgg	gtctaccgcc	gtttatttcg	ggagcttgtt	tcgctattct
35	7560	gctaggtagc	ctgccgctct	gtgttcatct	gctgatggtc	ctgtgcagcc	acggtaggcg
	7620	ggcgctgttg	ctgcgggcgt	atttgcggaa	cctgggggct	tgatggcggt	ccgatacgat
40	7680	ggcgggggcg	cagcgggcct	gtcggcgtcg	gctagatcct	caaacgcagc	gtgttgacac
45	7740	gcctctgctc	aacctcccgt	cgcaagtggc	cgtgctgacc	cgttcggaac	gtttccatgg
	7800	agctttagtg	tcgttccagt	ggacttctgc	ggcggccgga	cctggcaact	acctttaccg
50	7860	gtggctcggc	tcggcctggc	accaatgttc	gcctacagga	caatcccgat	tttgatccgc
55	7920	actcgaacct	ggatctcgcg	tggttccggg	ctacttcctt	cgggtttaac	ctgatcggag
	7980	gccggggatg	gggtcgatca	cccagatctg	ctttctcagc	ccttactggg	acagttgttt
60	8040	agcaatggat	ccattcggtg	ccgacctgta	cttcgggtcc	acagtcggaa	catcaggccg
	8100	gcttcctcag	gcgccactca	taaagaaata	cgttcacttc	atatcgtcaa	aggggagttg

cggctttatc cagcgatttc ctattatgtc ggcatagttc tcaagatcga cagcctgtca 8160 5 cggttaagcg agaaatgaat aagaaggctg ataattcgga tctctgcgag ggagatgata 8220 tttgatcaca ggcagcaacg ctctgtcatc gttacaatca acatgctacc ctccgcgaga 8280 tcatccgtgt ttcaaacccg gcagcttagt tgccgttctt ccgaatagca tcggtaacat 8340 gagcaaagtc tgccgcctta caacggctct cccgctgacg ccgtcccgga ctgatgggct 8400 gcctgtatcg agtggtgatt ttgtgccgag ctgccggtcg gggagctgtt ggctggctgg 8460 tggcaggata tattgtggtg taaacaaatt gacgcttaga caacttaata acacattgcg 8520 gacgttttta atgtactggg gtggtttttc ttttcaccag tgagacgggc aacagctgat 8580 tgcccttcac cgcctggccc tgagagagtt gcagcaagcg gtccacgctg gtttgcccca 8640 gcaggcgaaa atcctgtttg atggtggttc cgaaatcggc aaaatccctt ataaatcaaa 8700 agaatagccc gagatagggt tgagtgttgt tccagtttgg aacaagagtc cactattaaa 8760 gaacgtggac tccaacgtca aagggcgaaa aaccgtctat cagggcgatg gcccactacg 8820 tgaaccatca cccaaatcaa gttttttggg gtcgaggtgc cgtaaagcac taaatcggaa 8880 ccctaaaggg agcccccgat ttagagcttg acggggaaag ccggcgaacg tggcgagaaa 8940 ggaagggaag aaagcgaaag gagcgggcgc cattcaggct gcgcaactgt tgggaagggc 9000 gatcggtgcg ggcctcttcg ctattacgcc agctggcgaa aggggggatgt gctgcaaggc 9060 gattaagttg ggtaacgcca gggttttccc agtcacgacg ttgtaaaacg acggccagtg 9120 aattaattcc catcttgaaa gaaatatagt ttaaatattt attgataaaa taacaagtca 9180 ggtattatag tccaagcaaa aacataaatt tattgatgca agtttaaatt cagaaatatt 9240 tcaataactg attatatcag ctggtacatt gccgtagatg aaagactgag tgcgatatta 9300

tgtgtaatac	ataaattgat	gatatagcta	gcttagctca	tcgggggatc	cgtcgaagct	9360	
agcttgggtc	ccgctcagaa	gaactcgtca	agaaggcgat	agaaggcgat	gcgctgcgaa	9420	5
tcgggagcgg	cgataccgta	aagcacgagg	aagcggtcag	cccattcgcc	gccaagctct	9480	10
tcagcaatat	cacgggtagc	caacgctatg	tcctgatagc	ggtccgccac	acccagccgg	9540	10
ccacagtcga	tgaatccaga	aaagcggcca	ttttccacca	tgatattcgg	caagcaggca	9600	15
tcgccatggg	tcacgacgag	atcctcgccg	tegggeatge	gcgccttgag	cctggcgaac	9660	,
agttcggctg	gcgcgagccc	ctgatgctct	tcgtccagat	catcctgatc	gacaagaccg	9720	20
gcttccatcc	gagtacgtgc	tcgctcgatg.	cgatgtttcg	cttggtggtc	gaatgggcag	9780	25
gtagccggat	caagcgtatg	cagccgccgc	attgcatcag	ccatgatgga	tactttctcg	9840	20
gcaggagcaa	ggtgagatga	caggagatcc	tgccccggca	cttcgcccaa	tagcagccag	9900	30
tcccttcccg	cttcagtgac	aacgtcgagc	acagctgcgc	aaggaacgcc	cgtcgtggcc	9960	35
agccacgata	gccgcgctgc	ctcgtcctgc	agttcattca	gggcaccgga	caggtcggtc	10020	
ttgacaaaaa	gaaccgggcg	cccctgcgct	gacagccgga	acacggcggc	atcagagcag	10080	40
ccgattgtct	gttgtgccca	gtcatagccg	aatagcctct	ccacccaagc	ggccggagaa	10140	45
cctgcgtgca	atccatcttg	ttcaatccaa	gctcccatgg	gccctcgact	agagtcgaga	10200	
tctggattga	gagtgaatat	gagactctaa	ttggataccg	aggggaattt	atggaacgtc	10260	50
agtggagcat	ttttgacaag	aaatatttgc	tagctgatag	tgaccttagg	cgacttttga	10320	55
acgcgcaata	atggtttctg	acgtatgtgc	ttagctcatt	aaactccaga	aacccgcggc	10380	
tgagtggctc	cttcaacgtt	gcggttctgt	cagttccaaa	cgtaaaacgg	cttgtcccgc	10440	60
gtcatcggcg	ggggtcataa	cgtgactccc	ttaattctcc	gctcatgatc	ttgatcccct	10500	

	gcgccatcag	atccttggcg	gcaagaaagc	catccagttt	actttgcagg	gcttcccaac	10560
5	cttaccagag	ggcgccccag	ctggcaattc	cggttcgctt	gctgtccata	aaaccgccca	10620
	gtctagctat	cgccatgtaa	gcccactgca	agctacctgc	tttctctttg	cgcttgcgtt	10680
.0	ttcccttgtc	cagatagece	agtagctgac	attcatccgg	ggtcagcacc	gtttctgcgg	10740
.5	actggctttc	tacgtgttcc	gcttccttta	gcagcccttg	cgccctgagt	gcttgcggca	10800
1	gcgtgaagct	tgcatgcctg	caggtcgacg	gcgcgccgag	ctcctcgagc	aaatttacac	10860
20	attgccacta	aacgtctaaa	cccttgtaat	ttgtttttgt	tttactatgt	gtgttatgta	10920
.5	tttgatttgc	gataaatttt	tatatttggt	actaaattta	taacaccttt	tatgctaacg	10980
	tttgccaaca	cttagcaatt	tgcaagttga	ttaattgatt	ctaaattatt	tttgtcttct	11040
30	aaatacatat	actaatcaac	tggaaatgta	aatatttgct	aatatttcta	ctataggaga	11100
15	attaaagtga	gtgaatatgg	taccacaagg	tttggagatt	taattgttgc	aatgctgcat	11160
	ggatggcata	tacaccaaac	attcaataat	tcttgaggat	aataatggta	ccacacaaga	11220
Ю	tttgaggtgc	atgaacgtca	cgtggacaaa	aggtttagta	atttttcaag	acaacaatgt	11280
15	taccacacac	aagttttgag	gtgcatgcat	ggatgccctg	tggaaagttt	aaaaatattt	11340
	tggaaatgat	ttgcatggaa	gccatgtgta	aaaccatgac	atccacttgg	aggatgcaat	11400
60	aatgaagaaa	actacaaatt	tacatgcaac	tagttatgca	tgtagtctat	ataatgagga	11460
55	ttttgcaata	ctttcattca	tacacactca	ctaagtttta	cacgattata	atttcttcat	11520
	agccagccca	ccgcggtgga			aga ttc ta Arg Phe Ty		11572
60			1	var var Gru		10	
	ttg gat ggg	aag gtc tc	g cag ggc q	tg aat gca	tta cta aat	agt ttt	11620

	Leu	Asp	Gly	Lys	Val	Ser	Gln	Gly	Val	Asn	Ala	Leu	Leu	Gly	Ser	Phe		
					15					20					25			
																		5
	aaa	gtg	gag	ttg	acg	gat	acg	CCC	act	acc	aaa	ggc	ttg	ccc	ctc	gtt	11668	
	.Gly	Val	Gļu	Leu	Thr	Asp	Thr	Pro	Thr	Thr	Lys	Gly	Leu	Pro	Leu	Val		
·				30					35					40				10
	gac	agt	ccc	aca	ccc	atc	gtc	ctc	ggt	gtt	tct	gta	tac	ttg	act	att	11716	
	Asp	Ser	Pro	Thr	Pro	Ile	Val	Leu	Gly	Val	Ser	Val	Tyr	Leu	Thr	Ile		15
			45					50					55				•	
	ĺ																	
	gtc	att	gga	ggg	ctt	ttg	tgg	ata	aag	gcc	agg	gat	ctg	aaa	ccg	cgc	11764	20
	Val	Ile	Gly	Gly	Leu	Leu	Trp	Ile	Lys	Ala	Arg	Asp	Leu	Lys	Pro	Arg	•	
		60					65					70						
											•							25
	gcc	tcg	gag	cca	ttt	ttg	ctc	caa	gct	ttg	gtg	ctt	gtg	cac	aac	ctg	11812	
	Ala	Ser	Glu	Pro	Phe	Leu	Leu	Gln	Ala	Leu	Val	Leu	Val	His	Asn	Leu		
	75					80					85					90		30
																	•	
	ttc	tgt	ttt	gcg	ctc	agt	ctg	tat	atg	tgc	gtg	ggc	atc	gct	tat	cag	11860	
	Phe	Cys	Phe	Ala	Leu	Ser	Leu	Tyr	Met	Cys	Val	Gly	Ile	Ala	Tyr	Gln		·35
					95					100					105			
	1							•										•
	gct	att	acc	tgg	cgg	tac	tct	ctc	tgg	ggc	aat	gca	tac	aat	cct	aaa	11908	40
	Ala	Ile	Thr	Trp	Arg	Tyr	Ser	Leu	Trp	Gly	Asn	Ala	Tyr	Asn	Pro	Lys		
				110					115					120				
																		45
	cat	aaa	gag	atg	gcg	att	ctg	gta	tac	ttg	ttc	tac	atg	tct	aag	tac	11956	
	His	Lys	Glu	Met	Ala	Ile	Leu	Val	Tyr	Leu	Phe	Tyr	Met	Ser	Lys	Tyr		
			125					130					135					50
				•														50
	jtg	gaa	ttc	atg	gat	acc	gtt	atc	atg	ata	ctg	aag	cgc	agc	acc	agg	12004	
	Val	Glu	Phe	Met	Asp	Thr	Val	Ile	Met	Ile	Leu	Lys	Arg	Ser	Thr	Arg		55
		140					145					150						33
	caa	ata	agc	ttc	ctc	cac	gtt	tat	cat	cat	tct	tca	att	tcc	ctc	att	12052	60
	3ln	Ile	Ser	Phe	Leu	His	Val	Tyr	His	His	Ser	Ser	Ile	Ser	Leu	Ile		60
	155					160					165					170		
	:gg	tgg	gct	att	gct	cat	cac	gct	cct	ggc	ggt	gaa	gca	tat	tgg	tct	12100	65

	Trp	Trp	Ala	Ile	Ala	His	His	Ala	Pro	Gly	Gly	Glu	Ala	Tyr	Trp	Ser	
					175					180					185		
5																	
	gcg	gct	ctg	aac	tca	gga	gtg	cat	gtt	ctc	atg	tat	gcg	tat	tac	ttc	12148
	Ala	Ala	Leu	Asn	Ser	Gly	Val	His	Val	Leu	Met	Tyr	Ala	Tyr	Tyr	Phe	
10				190					195					200			
	ttg	gct	gcc	tgc	ctt	cga	agt	agc	cca	aag	tta	aaa	aat	aag	tac	ctt	12196
15	Leu	Ala	Ala	Cys	Leu	Arg	Ser	Ser	Pro	Lys	Leu	Lys	Asn	Lys	Tyr	Leu	
			205					210					215				
20	ttt	tgg	ggc	agg	tac	ttg	aca	caa	ttc	caa	atg	ttc	cag	ttt	atg	ctg	12244
	Phe	Trp	Gly	Arg	Tyr	Leu	Thr	Gln	Phe	Gln	Met	Phe	Gln	Phe	Met	Leu	
		220					225					230					
25																	
	aac	tta	gtg	cag	gct	tac	tac	gac	atg	aaa	acg	aat	gcg	cca	tat	cca	12292
	Asn	Leu	Val	Gln	Ala	Tyr	Tyr	Asp	Met	Lys	Thr	Asn	Ala	Pro	Tyr	Pro	
30	235					240					245					250	
50																	
	caa	tgg	ctg	atc	aag	att	ttg	ttc	tac	tac	atg	atc	tcg	ttg	ctg	ttt	12340
35	Gln	Trp	Leu	Ile	Lys	Ile	Leu	Phe	Tyr	Tyr	Met	Ile	Ser	Leu	Leu	Phe	
33					255					260					265		
40	ctt	ttc	ggc	aat	ttt	tac	gta	caa	aaa	tac	atc	aaa	CCC	tct	gac	gga	12388
40	Leu	Phe	Gly	Asn	Phe	Tyr	Val	Gln	Lys	Tyr	Ile	Lys	Pro	Ser	Asp	Gly	
				270					275					280			
45	aag	caa	aag	gga	gct	aaa	act	gag	tga	tcta	igaag	gc d	ctcct	gcti	tt		12435
	Lys	Gln	Lys	Gly	Ala	Lys	Thr	Glu									
			285					290									
50																	
	aato	gagat	at c	gcgag	gacgo	c ta	atgat	cgca	a tga	atatt	tgc	tttc	caatt	ct q	gttgt	gcacg	12495
55	ttgt	aaaa	aaa c	cctga	agcat	g to	gtago	ctcag	g ato	ctta	accg	ccgg	gttt	gg 1	ttcat	tctaa	12555
	tgaa	tata	atc a	acccg	gttac	ct at	cgta	attt	tat	gaat	aat	atto	ctccg	gtt (caatt	tactg	12615
60																	
	atto	tcc	gtc g	gagca	aatt	t ac	cacat	tgc	c act	caaac	gtc	taaa	accct	tg 1	taatt	tgttt	12675
65	ttgt	ttta	act a	atgtç	gtgtt	a to	gtatt	tgat	ttg	gcgat	aaa	ttti	tata	att 1	tggta	actaaa	12735

ttta	taaca	ac (cttt	tatg	ct a	acgt	ttgc	c aa	cact	tagc	aat	ttgc	aag	ttga	ttaatt	12795	
gatt	ctaaa	at 1	tatt	tttg	tc t	tcta	aata	c at	atac	taat	caa	ctgg	aaa	tgta	aatatt	12855	5
tgct	aatat	tt į	tcta	ctat	ag g	agaa	ttaa	a ġt	gagt	gaat	atg	gtac	cac	aagg	tttgga	·12915	
gatt	taati	g :	ttgc	aatg	ct g	catg	gatg	g ca	tata	cacc	aaa	catt	caa	taat	tcttga	12975	10
ggata	aataa	at g	ggta	ccac	ac a	agat	ttgag	g gt	gcat	gaac	gtc	acgt	gga	caaa	aggttt	13035	15
agta	atttt	it (caaga	acaa	ca a	tgtt	accad	c ac	acaa	gttt	tga	ggtg	cat .	gcat	ggatgc	13095	
cctgi	tgġaa	ıa ç	gttta	aaaa	at a	tttt	ggaaa	a tg	attt	gcat	gga	agcca	atg	tgta	aaacca	13155	20
															tagtta	•	
																	25
										,	٠				ctaagt	13275	30
tttac	cacga	it t	ataa	attto	ct to	cata	gccaç	g cg	gatco						e ggt	13330	
										Met	t Va	l Phe	e Ala	a Gl	y Gly		•
				, .					. •	Met	t Va	l Phe	e Ala 29!		y Gly		35
gga c										atc	gac	gtc	29	5 cac	att	13378	
gga d	Leu G									atc	gac	gtc	29	5 cac	att	13378	35
Gly I	Leu G 3 agt a	ln 00	Gln tct	Gly ctc	Ser	Leu agc	Glu 305 gac	Glu ttc	Asn	atc Ile	gac Asp	gtc Val 310 gtg	299 gag Glu tct	cac His	att Ile	13378	
gcc a	Leu G 3 agt a	ln 00	Gln tct	Gly ctc	Ser	Leu agc	Glu 305 gac	Glu ttc	Asn	atc Ile	gac Asp	gtc Val 310 gtg	299 gag Glu tct	cac His	att Ile		40
gcc a Ala s gtt g	Leu G 3 agt a Ser M 315	on tg	Gln tct Ser	Gly ctc Leu	ttc Phe	agc Ser 320	Glu 305 gac Asp	Clu ttc Phe	ttc Phe	atc Ile agt Ser	gac Asp tat Tyr 325	gtc Val 310 gtg Val	gag Glu tct Ser	cac His tca Ser	att Ile act Thr		40
gcc a	Leu G 3 agt a Ser M 315	on tg	Gln tct Ser	Gly ctc Leu	ttc Phe	agc Ser 320	Glu 305 gac Asp	Clu ttc Phe	ttc Phe	atc Ile agt Ser	gac Asp tat Tyr 325	gtc Val 310 gtg Val	gag Glu tct Ser	cac His tca Ser	att Ile act Thr	13426	40 45 50
gcc a Ala s gtt g Val G	Leu G 3 agt a Ser M 315 ggt t Gly S	tg et cg	Gln tct Ser tgg Trp	Ctc Leu agc Ser	ttc Phe gta Val 335	agc Ser 320 cac	Glu 305 gac Asp agt Ser	ttc Phe ata Ile	ttc Phe caa Gln	atc Ile agt Ser cct Pro 340	gac Asp tat Tyr 325 ttg Leu	gtc Val 310 gtg Val aag Lys	gag Glu tct Ser cgc	cac His tca Ser ctg	att Ile act Thr acg Thr 345	13426	40 45
gcc a Ala s gtt g Val G	agt a Ser M 315 ggt t Gly S	iln 00 tg et cg er	tct Ser tgg Trp	Ctc Leu agc Ser	ttc Phe gta Val 335	agc Ser 320 cac His	Glu 305 gac Asp agt Ser	ttc Phe ata Ile	ttc Phe caa Gln	atc Ile agt Ser cct Pro 340	gac Asp tat Tyr 325 ttg Leu	gtc Val 310 gtg Val aag Lys	gag Glu tct Ser cgc Arg	cac His tca Ser ctg Leu	att Ile act Thr acg Thr 345	13426 13474	40 45 50
gcc a Ala s gtt g Val c 330	agt a Ser M 315 ggt t Gly S aag a	iln 000 tg et cg er	tct Ser tgg Trp cgt	ctc Leu agc Ser gtt Val 350	ttc Phe gta Val 335 tcg Ser	agc Ser 320 cac His	Glu 305 gac Asp agt Ser	ttc Phe ata Ile gct Ala	ttc Phe caa Gln gcc Ala 355	atc Ile agt Ser cct Pro 340 gtg Val	gac Asp tat Tyr 325 ttg Leu caa Gln	gtc Val 310 gtg Val aag Lys	gag Glu tct Ser cgc Arg	cac His tca Ser ctg Leu tca Ser 360	att Ile act Thr acg Thr 345 gct Ala	13426 13474	40 45 50

	Glu	Val	Gln		Asn	Ser	Ser	Thr	Gln	Gly	Thr	Ala	Glu	Ala	Leu	Ala	
E				365					370					375			
5	gaa	tca	gtc	gtg	aag	ccc	acg	aga	cga	agg	tca	tct	cag	tgg	aag	aag	13618
	'Glu	Ser	Val	Val	Lys	Pro	Thr	Arg	Arg	Arg	Ser	Ser	Gln	Trp	Lys	Lys	
10			380					385					390				•
	tcg	aca	cac	ccc	cta	tca	gaa	gta	gca	gta	cac	aac	aag	cca	agc	gat	13666
15	Ser	Thr	His	Pro	Leu	Ser	Glu	Val	Ala	Val	His	Asn	Lys	Pro	Ser	Asp	
1		395					400					405					
ļ																	
20		tgg														_	13714
	_	Trp	TIE	vai	vai	_	Asn	Lys	Val	Tyr	_	Val	Ser	Asn	Phe		•
	410					415					420					425	
25	gac	gag	cat	ccc	aaa	aas	tca	att	att	ant	act	tat	+++	aas	cas	asc.	13762
		Glu						_		_					_	_	13702
20					430	223	501	• •		435		-3-		CLJ	440	nop	
30																	
	ggc	aca	gat	gtt	ttc	tct	agt	ttt	cat	gca	gct	tct	aca	tgg	aaa	att	13810
35		Thr									_						
33				445					450					455			
40	ctt	caa	gac	ttt	tac	att	ggt	gac	gtg	gag	agg	gtg	gag	ccg	act	cca	13858
	Leu	Gln	Asp	Phe	Tyr	Ile	Gly	Asp	Val	Glu	Arg	Val	Glu	Pro	Thr	Pro	
			460					465					470				
45																	
		ctg															13906
	GIU	Leu 475	Leu	гуѕ	Asp	Pne	Arg 480	GIU	Met	Arg	Ala		Phe	Leu	Arg	GIu	
50		-12 / J					400					485					
	caa	ctt	ttc	aaa	agt	tca	aaa	tta	tac	tat	att	atσ	aag	cta	ctc	аса	13954
		Leu										_	_	_		_	10001
55	490					495	_		_	_	500		_			505	
60	aat	gtt	gct	att	ttt	gct	gcg	agc	att	gca	ata	ata	tgt	tgg	agc	aag	14002
60	Asn	Val	Ala	Ile	Phe	Ala	Ala	Ser	Ile	Ala	Ile	Ile	Cys	Trp	Ser	Lys	
					510					515					520		
65																	
	act	att	tca	gcg	gtt	ttg	gct	tca	gct	tgt	atg	atg	gct	ctg	tgt	ttc	14050

	Thr	Ile	Ser		Val	Leu	Ala	Ser		Cys	Met	Met	Ala		Cys	Phe		
•	•			525					530					535				5
	caa	cag	tgc	gga	tgg	cta	tcc	cat	gat	ttt	ctc	cac	aat	cag	gtg	ttt	14098	
	Gln	Gln	Çys	Gly	Trp	Leu	Ser	His	Asp	Phe	Leu	His	Asn	Gln	Val	Phe		
			540					545					550	,				10
																	•	
		aca															14146	
	GIU	Thr	Arg	Trp	Leu	Asn		Val	Val	Gly	Tyr		Ile	Gly	Asn	Ala		15
		555					560					565						
	att	ctg	aaa	+++	ant	202	aaa	taa	taa	220	~~~	224	03±	224	a++		14104	20
:		Leu															14194	20
	570		4- 3		-	575	O17	111		Dy 3	580	Lys	mis	ASII	Leu	585		
																		25
	cat	gct	gct	cca	aat	gaa	tgc	gat	cag	act	tac	caa	cca	att	gat	gaa	14242	
		Ala																
					590					595					600			30
	gat	att	gat.	act	ctc	ccc	ctc	att	gcc	tgg	agc	aag	gac	ata	ctg	gcc	14290	
	Asp	Ile	Asp	Thr	Leu	Pro	Leu	Ile	Ala	Trp	Ser	Lys	Asp	Ile	Leu	Ala		· 35
				605					610					615				
		•																
		gtt														_	14338	40
	Inr	Val	620	Asn	Lys	Thr	Phe		Arg	Ile	Leu	Gln		Gln	His	Leu		
			020					625					630					
	ttc	ttc	ato	aat.	cta	tta	ttt	ttc	acc	cat	aat	agt	taa	ctc	+++	taa	14386	45
		Phe																
		635		-			640			5	2	645						50
			•															50
	agc	tgġ	aga	tat	acc	tct	aca	gca	gtg	ctc	tca	cct	gtc	gac	agg	ttg	14434	
	Ser	Trp	Arg	Tyr	Thr	Ser	Thr	Ala	Val	Leu	Ser	Pro	Val	Asp	Arg	Leu		55
	650					655					660					665		
		gag													-		14482	60
	Leu	Glu	Lys			Val	Leu	Phe			Phe	Trp	Phe	Val	_	Thr		
					670					675					680			
	aca	tgc	tat	ctt	ctic	cct	aat	taa	aac	CCS	tta	nt=	to~	at~	~~~	at~	14520	65
-	J - I						225	-99	uay	Jua	cca	yca	ryy	acy	gcg	gcg	14530	

	Ala	Cys	Tyr	Leu 685	Leu	Pro	Gly	Trp	Lys 690	Pro	Leu	Val	Trp	Met 695	Ala	Val	
5																	
	act	gag	ctc	atg	tcc	ggc	atg	ctg	ctg	ggc	ttt	gta	ttt	gta	ctt	agc	14578
	Thr	Glu	Leu	Met	Ser	Gly	Met	Leu	Leu	Gly	Phe	Val	Phe	Val	Leu	Ser	
10			700					705			-		710				
	cac	aat	ggg	atg	gag	gtt	tat	aat	tcg	tct	aaa	gaa	ttc	gtg	agt	gca	14626
15	His	Asn	Gly	Met	Glu	Val	Tyr	Asn	Ser	Ser	Lys	Glu	Phe	Val	Ser	Ala	
13		715	_			·	720				_	725					
	cag	atc	αta	tcc	aca	cgg	gat.	atc	aaa	gga	aac	ata	ttc	aac	gac	t.gg	14674
20	_		_			Arg	_								_		
	730		*42	001		735	···		2,2	017	740		1110			745	
	,50					,,,,					740					743	
25	++0	205	~~+	~~~		224	~~~			~~~	an t	a=+	a++	++-		2.52	1 4722
						aac											14722
	Pne	Thr	GIY	GIA		Asn	Arg	GIN	TIE		HIS	HIS	Leu	Pne		Thr	
30					750					755		•			760		
											•						
	atg	ccc	agg	cat	aat	tta	aac	aaa	ata	gca	cct	aga	gtg	gag	gtg	ttc	14770
35	Met	Pro	Arg	His	Asn	Leu	Asn	Lys	Ile	Ala	Pro	Arg	Val	Glu	Val	Phe	
				765	•	•			770					775			
40	tgt	aag	aaa	cac	ggt	ctg	gtg	tac	gaa	gac	gta	tct	att	gct	acc	ggc	14818
	Cys	Lys	Lys	His	Gly	Leu	Val	Tyr	Glu	Asp	Val	Ser	Ile	Ala	Thr	Gly	
			780					785					790				
45																	
43	act	tgc	aag	gtt	ttg	aaa	gca	ttg	aag	gaa	gtc	gcg	gag	gct	gcg	gca	14866
	Thr	Cys	Lys	Val	Leu	Lys	Ala	Leu	Lys	Glu	Val	Ala	Glu	Ala	Ala	Ala	
		795					800					805					
50																	
	gag	cag	cat	gct	acc	acc	agt	taa	gcta	agcgt	ta a	accct	gcti	t aa	atgaç	gatat	14920
	Glu	Gln	His	Ala	Thr	Thr	Ser										
55	810					815											
	acaa	agaco	rcc 1	tatoa	atcac	a to	ratat	tta	: tti	caat	tct	atta	ataca	aca 1	tata	aaaaa	14980
60	5-5-	-53	,				,					900	, - 5				
	ccto	iacc:	ato 1	tatar	rctc=	ar at	· cct t	acco	T CC	10++1	- כממ	ttc:	attol		- ra a t	atatc	15040
	حددر	, ay c	.cg (-y ca(,	ay al		المددو	,	99666	-cyy		الانات	-ua I	Lyaai	Jacate	17040
65	acco	att=	oct :	at cat	-2+++		atos:	at 2 2 +	- 2+4	cto	ratt	cast	rt+=,	sta :	=++~!	ccgtc	15100
	سددر	-9		y	-4		Lyac		. act		yuu	caa	LLLA	-cy (accy	ccycc	10100

gacgaattcg agctcggcgc	gcctctagag gatcgatgaa	ttcagatcgg ctgagtggct	15160
ccttcaacgt tgcggttctg	tcagttccaa acgtaaaacg	gcttgtcccg cgtcatcggc	15220 ₅
gggggtcata acgtgactcc	cttaattctc cgctcatgat	cagattgtcg tttcccgcct	15280
tcagtttaaa ctatcagtgt	ttgacaggat atattggcgg	gtaaacctaa gagaaaagag	15340
cgtttattag aataatcgga	tatttaaaag ggcgtgaaaa	ggtttatcct tcgtccattt	15400 ₁₅
gtatgtgcat gccaaccaca	gggttcccca		15430
.		•	20
<210> 44 <211> 290 <212> PRT			25
<213> Unknown			
<400> 44			
Met Glu Val Val Glu Ar 1 5	g Phe Tyr Gly Glu Leu 10	Asp Gly Lys Val Ser 15	35
Gln Gly Val Asn Ala Le	u Leu Gly Ser Phe Gly 25	Val Glu Leu Thr Asp	40
Thr Pro Thr Thr Lys Gl	y Leu Pro Leu Val Asp 40	Ser Pro Thr Pro Ile	45
Val Leu Gly Val Ser Va	l Tyr Leu Thr Ile Val	Ile Gly Gly Leu Leu	
50	55	60	50
Trp Ile Lys Ala Arg As	p Leu Lys Pro Arg Ala 0 75	Ser Glu Pro Phe Leu 80	55
Leu Gln Ala Leu Val Le	u Val His Asn Leu Phe 90	Cys Phe Ala Leu Ser 95	
Leu Tyr Met Cys Val Gl	y Ile Ala Tyr Gln Ala	Ile Thr Trp Arg Tyr	60
100	105	110	65

	Ser	Leu	Trp 115	Gly	Asn	Ala	Tyr	Asn 120	Pro	Lys	His	Lys	Glu 125	Met	Ala	Ile
5																
J	Leu	Val	Tyr	Leu	Phe	Tyr	Met 135	Ser	Lys	Tyr	Val	Glu 140	.Phe	Met	Asp	Thr
											•	110				
10	Val	Ile	Met	Tle	Leu	Lvs	Ara	Ser	Фhr	Ara	Gln	Tle	Ser	Phe	T.211	Hic
	145					150	9	Jer	****	· mg	155	110	001	1110	Deu	160
											133					100
15	T = T	m	uic	uic	502	50*	T10	Co=	Ton	T10	m	(T)	N1-	T1.	31.	77÷ -
	Vai	ıyı	urs	urs		ser	TIE	Ser	reu		Trp	тър	Ala	Ile		HIS
					165					170					175	
20	***			-21	63	~3		_	_				_		_	
	ніѕ	Ala	Pro		GIŢ	GIu	Ala	Tyr		Ser	Ala	Ala	Leu	Asn	Ser	Gly
				180					185					190		
25																
	Val	His		Leu	Met	Tyr	Ala		Tyr	Phe	Leu	Ala	Ala	Cys	Leu	Arg
			195					200					205			
30											:	•				
	Ser	Ser	Pro	Lys	Leu	Lys	Asn	Lys	Tyr	Leu	Phe	Trp	Gly	Arg	Tyr	Leu
		210					215					220				
35												•				
	Thr	Gln	Phe	Gln	Met	Phe	Gln	Phe	Met	Leu	Asn	Leu	Val	Gln	Ala	Tyr
	225					230					235	•				240
40																
	Tyr	Asp	Met	Lys	Thr	Asn	Ala	Pro	Tyr	Pro	${\tt Gln}$	Trp	Leu	Ile	Lys	Ile
					245					250					255	
45																
43	Leu	Phe	Tyr	Tyr	Met	Ile	Ser	Leu	Leu	Phe	Leu	Phe	Gly	Asn	Phe	Tyr
				260					265					270		
50	Val	Gln	Lys	Tyr	Ile	Lys	Pro	Ser	Asp	Gly	Lys	Gln	Lys	Gly	Ala	Lys
			275					280					285			
55	Thr	Glu														
		290														
60																
	<210)> 45	5													
		> 50														

<212> PRT

<21	3> U	nkno	wn														
-40	0> 4:	5															5
			Ala	Gly	Gly	Gly	Leu	Gĺn	Gln	Glv	Ser	Leu	Glu	Glu	Asn		
1		•		5	-	-			10		,			15	,	1	. (
Ile	Asp	Val	Glu	His	Ile	Ala	Ser	Met	Ser	Leu	Phe	Ser	Asp	Phe	Phe		
			20					25					30			1	5
Ser	Tyr	Val	Ser	Ser	Thr	Val	Glv	Ser	Tro	Ser	Val	His	Ser	Ile	Gln		
	-	35					40					45				2	20
Pro		Lys	Arg	Leu	Thr		Lys	Lys	Arg	Val	Ser	Glu	Ser	Ala	Ala		
	50					55		,			60					. 2	.5
Val	Gln	Cys	Ile	Ser	Ala	Glu	Val	Gln	Arg	Asn	Ser	Ser	Thr	Gln	Glv		
65		_			70				, 5	7,5	•			•	80	3	0
Thr	Ala	Glu	Ala			Glu	Ser	Val		Lys	Pro	Thr	Arg	_	Arg	•	
				85,					90					95		3	5
Ser	Ser	Gln	Trp	Lys	Lys	Ser	Thr	His	Pro	Leu	Ser	Glu	Val	Ala	Val		
			100					105					110			4	·C
His	Asn	Lys 115	Pro	Ser	Asp	Cys	Trp 120	Ile	Val	Val	Lys		Lys	Val	Tyr		
							120					125				4	5
Asp	Val	Ser	Asn	Phe	Ala	qaA	Glu	His	Pro	Gly	Gly	Ser	Val	Ile	Ser		
	130					135					140					5	0
ΩЪ ⊶		Dh a	Q1	3	3	01			7	- 1-	~	<i>,</i>	-1				
145	Tyr	Pne	Gly	Arg	150	GIÀ	Thr	Asp	vaı	155	ser	Ser	Pne	HIS	160		
										100					100	5	5
Ala	Ser	Thr	Trp	Lys	Ile	Leu	Gln	Asp	Phe	Tyr	Ile	Gly	Asp	Val	Glu		
				165					170					175		6	0
Ara	Va1	Glu	Pro	ጥኮ ~	Dro	GI	Lon	Len	Lvc	y c.~	Dh.	λ~~	C1	Mo+	n		
· ·- · · ·	• W.I	JIU	180	* ***	110	GIU	₽€u	185	ъys	പാവ	FIIG	wr. A	190	rie C	AL G		
																_	

	Ala	Leu	Phe	Leu	Arg	Glu	Gln	Leu	Phe	Lys	Ser	Ser	Lys	Leu	Tyr	Tyr
			195					200					205			
5																
	Val	Met	Lys	Leu	Leu	Thr	Asn	Val	Ala	Ile	Phe	Ala	Ala	Ser	Ile	Ala
		210					215					220				
10																
	Ile	Ile	Суѕ	Trp	Ser	Lys	Thr	Ile	Ser	Ala	Val	Leu	Ala	Ser	Ala	Cys
	225					230					235					240
15																•
	Met	Met	Ala	Leu	Cys	Phe	Gln	Gln	Cys	Gly	Trp	Leu	Ser	His	Asp	Phe
					245					250					255	
20																
	Leu	His	Asn		Val	Phe	Glu	Thr		Trp	Leu	Asn	Glu	Val	Val	Gly
				260					265					270		
25	_						_									
	Tyr	Val		Gly	Asn	Ala	Val		Gly	Phe	Ser	Thr	-	Trp	Trp	Lys
			275					280					285			
30	03	-	***		•					_		~3	_	_		
	GIU	Lys	HIS	Asn	Leu	HIS		Ala	Ala	Pro	Asn		Cys	Asp	GIn	Thr
		290					295					300				
35		C1 m	Dro	T 10	3.00	C1	7.00	71.	3	лъ	T	Desc	T	T3 -		
	305	Gln	PIO	iie	Asp	310	ASP	TTE	Asp	THE		PIO	Leu	116	АТА	
	303					310					315					320
40	Ser	Lys	Asn	Tle	Len	Δla	ጥክኮ	Val	Glu	Acn	Tare	ሞኮዮ	Phe	T.011	Ara	Tle
					325			V41	U_L	330	Lyc		1110	Dea	335	110
45	Leu	Gln	Tyr	Gln	His	Leu	Phe	Phe	Met	Gly	Leu	Leu	Phe	Phe	Ala	Arg
				340					345	-				350		
50	Gly	Ser	Trp	Leu	Phe	Trp	Ser	Trp	Arg	туг	Thr	Ser	Thr	Ala	Val	Leu
			355					360					365			
55	Ser	Pro	Val	Asp	Arg	Leu	Leu	Glu	Lys	Gly	Thr	Val	Leu	Phe	His	Tyr
		370					375					380				
60																
•	Phe	Trp	Phe	Val	Gly	Thr	Ala	Cys	Tyr	Leu	Leu	Pro	Gly	Trp	Lys	Pro
	385					390					395					400
65																
	Leu	Val	\mathtt{Trp}	Met	Ala	Val	Thr	Glu	Leu	Met	Ser	Gly	Met	Leu	Leu	Gly

				405					410					415				
Phe	Val	Phe	Val 420	Leu	Ser	His	Asn	Gly 425	Met	Glu	Val	Tyr	Asn 430	Ser	Ser			
Lys	Glu	Phe	Val	Ser	Ala	Gln	Ile 440	Val	Ser	Thr	Arg	Asp 445	Ile	Lys	Gly			1
Asn	Ile 450	Phe	Asn	Asp	Trp	Phe 455	Thr	Gly	Gly	Leu	Asn 460	Arg	Gln	Ile	Glu			ì
His 465	His	Leu	Phe	Pro	Thr 470	Met	Pro	Arg	His	Asn 475	Leu	Asn	Lys	Ile	Ala 480			2
Pro	Arg	Val	Glu	Val 485	Phe	Cys	Lys	Lys	His 490	Gly	Leu	Val	Tyr	Glu 495	Asp		-	2
Val	Ser	Ile	Ala 500	Thr	Gly	Thr	Cys	Lys 505	Val	Leu	Lys	Ala	Leu 510	Lys	Glu			3
Val	Ala	Glu 515	Ala	Ala	Ala	Glu	Gln 520	His	Ala	Thr	Thr	Ser 525				-		3
<210															•			4
<211 <212 <213	> DI/	IA	m.															4
<220 <223	> pf			pres														5
	ir	seri	.ert	ermi mit tylu	Phys	comi	trel	la E				satu	ırase	:				5
<220 <221 <222	> CI) (1241	5)													6

<220>

```
<221> CDS
<222> (13313)..(14890)
<220>
<221> CDS
<222> (15791)..(17200)
<400> 46
gatctggcgc cggccagcga gacgagcaag attggccgcc gcccgaaacg atccgacagc 60
gcgcccagca caggtgcgca ggcaaattgc accaacgcat acagcgccag cagaatgcca 120
tagtgggcgg tgacgtcgtt cgagtgaacc agatcgcgca ggaggcccgg cagcaccggc 180
ataatcaggc cgatgccgac agcgtcgagc gcgacagtgc tcagaattac gatcaggggt 240
atgttgggtt tcacgtctgg cctccggacc agcctccgct ggtccgattg aacgcgcgga 300
ttctttatca ctgataagtt ggtggacata ttatgtttat cagtgataaa gtgtcaagca 360
tgacaaagtt gcagccgaat acagtgatcc gtgccgccct ggacctgttg aacgaggtcg 420
gcgtagacgg tctgacgaca cgcaaactgg cggaacggtt gggggttcag cagccggcgc 480
tttactggca cttcaggaac aagcgggcgc tgctcgacgc actggccgaa gccatgctgg 540
cggagaatca tacgcattcg gtgccgagag ccgacgacga ctggcgctca tttctgatcg 600
ggaatgeceg cagetteagg caggegetge tegectaceg egatggegeg egeatecatg 660
ccggcacgcg accgggcgca ccgcagatgg aaacggccga cgcgcagctt cgcttcctct 720
gcgaggcggg tttttcggcc ggggacgccg tcaatgcgct gatgacaatc agctacttca 780
ctgttggggc cgtgcttgag gagcaggccg gcgacagcga tgccggcgag cgcggcgag 840
ccgttgaaca ggctccgctc tcgccgctgt tgcgggccgc gatagacgcc ttcgacgaag 900
ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tgtcgatgga ttggcgaaaa 960
```

J	tgccaggaac	gttgaaggac	cgagaaaggg	tgacgattga	tcaggaccgc	1020		
a	caacccactc	actacagcag	agccatgtag	acaacatccc	ctccccttt	1080	5	5
ag	agacgcccgt	agcagcccgc	tacgggcttt	ttcatgccct	gccctagcgt	1140	1.0	•
C	cggccgcgct	cggcctctct	ggcggccttc	tggcgctctt	ccgcttcctc	1200	10	,
Ξģ	tcgctgcgct	cggtcgttcg	gctgcggcga	gcggtatcag	ctcactcaaa	1260	15	5
Cá	cggttatcca	cagaatcagg	ggataacgca	ggaaagaaca	tgtgagcaaa	1320		
a (aaggccagga	accgtaaaaa	ggccgcgttg	ctggcgtttt	tccataggct	1380	20)
a (gacgagcatc	acaaaaatcg	acgctcaagt	cagaggtggc	gaaacccgac	1440 .	25	5
ÇÇ	agataccagg	cgtttccccc	tggaagctcc	ctcgtgcgct	ctcctgttcc	1500		
10	cttaccggat	acctgtccgc	ctttctccct	tcgggaagcg	tggcgctttt	1560	. 30)
36	accctgcttc	ggggtcatta	tagcgatttt	ttcggtatat	ccatcctttt	1620	35	5
בַב	tacaggattt	tgccaaaggg	ttcgtgtaga	ctttccttgg	tgtatccaac	1680		
Įς	gggcaggata	ggtgaagtag	gcccacccgc	gagcgggtgt	tccttcttca	1740	40)
jc	ttcgcacctg	gcggtgctca	acgggaatcc	tgctctgcga	ggctggccgg	1800	45	5
jā	cgtaacagat	gagggcaagc	ggatggctga	tgaaaccaag	ccaaccagga	1860		
ŗt	acctatcaag	gtgtactgcc	ttccagacga	acgaagagcg	attgaggaaa	1920	50	ð
ŧς	ggccggcatg	agcctgtcgg-	cctacctgct	ggccgtcggc	cagggctaca	1980	53	5
ā	cgtcgtggac	tatgagcacg	tccgcgagct	ggcccgcatc	aatggcgacc	2040		
t	gggcggcctg	ctgaaactct	ggctcaccga	cgacccgcgc	acggcgcggt	2100	61	ð
rc	cacgateete	gccctgctgg	cgaagatcga	agagaagcag	gacgagcttg	2160		

gcaaggtcat gatgggcgtg gtccgcccga gggcagagcc atgacttttt tagccgctaa 2220 aacggccggg gggtgcgcgt gattgccaag cacgtcccca tgcgctccat caagaagagc 2280 gacttegegg agetggtgaa gtacateace gaegageaag geaagaeega gegeetttge 2340 10 gacgctcacc gggctggttg ccctcgccgc tgggctggcg gccgtctatg gccctgcaaa 2400 cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgccggc gttgtggata 2460 cctcgcggaa aacttggccc tcactgacag atgaggggcg gacgttgaca cttgaggggc 2520 20 cgactcaccc ggcgcggcgt tgacagatga ggggcaggct cgatttcggc cggcgacgtg 2580 gagctggcca gcctcgcaaa tcggcgaaaa cgcctgattt tacgcgagtt tcccacagat 2640 gatgtggaca agcctgggga taagtgccct gcggtattga cacttgaggg gcgcgactac 2700 tgacagatga ggggcgcgat ccttgacact tgaggggcag agtgctgaca gatgaggggc 2760 gcacctattg acatttgagg ggctgtccac aggcagaaaa tccagcattt gcaagggttt 2820 ccgcccgttt ttcggccacc gctaacctgt cttttaacct gcttttaaac caatatttat 2880 aaaccttgtt tttaaccagg gctgcgccct gtgcgcgtga ccgcgcacgc cgaagggggg 2940 tgcccccct tctcgaaccc tcccggcccg ctaacgcggg cctcccatcc ccccaggggc 3000 tgcgcccctc ggccgcgaac ggcctcaccc caaaaatggc agcgctggca gtccttgcca 3060 ttgccgggat cggggcagta acgggatggg cgatcagccc gagcgcgacg cccggaagca 3120 ttgacgtgcc gcaggtgctg gcatcgacat tcagcgacca ggtgccgggc agtgagggcg 3180 gcggcctggg tggcggcctg cccttcactt cggccgtcgg ggcattcacg gacttcatgg 3240 cggggccggc aatttttacc ttgggcattc ttggcatagt ggtcgcgggt gccgtgctcg 3300 tgttcggggg tgcgataaac ccagcgaacc atttgaggtg ataggtaaga ttataccgag 3360

gt	atgaaaac	gagaattgga	cctttacaga	actactctat	gaagegeeat	atttaaaaag	3420	
ct	accaagac	gaagaggatg	aagaggatga	ggaggcagat	tgccttgaat	atattgacaa	3480	5
ta	ctgataag	ataatatatc	ttttatatag	aagatatcgc	cgtatgtaag	gatttcaggg	3540	
gg	caaggcat	aggcagcgcg	cttatcaata	tatctataga	atgggcaaag	cataaaaact	3600	10
tg	catggact	aatgcttgaa	acccaggaca	ataaccttat	agcttgtaaa	ttctatcata	3660	15
at	tgggtaat	gactccaact	tattgatagt	gttttatgtt	cagataatgc	ccgatgactt	3720	
tg	tcatgcag	ctccaccgat	tttgagaacg	acagcgactt	ccgtcccagc	cgtgccaggt	3780	20
gc	tgcctcag	attcaggtta	tgccgctcaa	ttcgctgcgt	atatcgcttg	ctgattacgt	3840	25
gc	agctttcc	cttcaggcgg	gattcataca	gcggccagcc	atccgtcatc	catatcacca	3900	
cg	tcaaaggg	tgacagcagg	ctcataagac	gccccagcgt	cgccatagtg	cgttcaccga	3960	30
at	acgtgcgc	aacaaccgtc	ttccggagac	tgtcatacgc	gtaaaacagc	cagcgctggc	4020	35
gc	gatttagc	cccgacatag	ccccactgtt	cgtccatttc	cgcgcagacg	atgacgtcac	4080	
tg	cccggctg	tatgcgcgag	gttaccgact	gcggcctgag	ttttttaagt	gacgtaaaat	4140	40
cg	tgttgagg	ccaacgccca	taatgcgggc	tgttgcccgg	catccaacgc	cattcatggc	4200	45
ca	tatcaatg	attttctggt	gcgtaccggg	ttgagaagcg	gtgtaagtga	actgcagttg	4260	
cc	atgtttta	cggcagtgag	agcagagata	gcgctgatgt	ccggcggtgc	ttttgccgtt	4320	50
ac	gcaccacc	ccgtcagtag	ctgaacagga.	gggacagctg	atagacacag	aagccactgg	4380	55
ag	cacctcaa	aaacaccatc	atacactaaa	tcagtaagtt	ggcagcatca	cccataattg	4440	
tg	gtttcaaa	atcggctccg	tcgatactat	gttatacgcc	aactttgaaa	acaactttga	4500	60
aa	aagctgtt	ttctggtatt	taaggtttta	gaatgcaagg	aacagtgaat	tggagttcgt	4560	

cttgttataa ttagcttctt ggggtatctt taaatactgt agaaaagagg aaggaaataa 4620 taaatggcta aaatgagaat atcaccggaa ttgaaaaaac tgatcgaaaa ataccgctgc 4680 gtaaaagata cggaaggaat gtctcctgct aaggtatata agctggtggg agaaaatgaa 4740 10 aacctatatt taaaaatgac ggacagccgg tataaaggga ccacctatga tgtggaacgg 4800 gaaaaggaca tgatgctatg gctggaagga aagctgcctg ttccaaaggt cctgcacttt 4860 gaacggcatg atggctggag caatctgctc atgagtgagg ccgatggcgt cctttgctcg 4920 20 gaagagtatg aagatgaaca aagccctgaa aagattatcg agctgtatgc ggagtgcatc 4980 aggetettte aetecatega catateggat tgteectata egaatagett agacageege 5040 ttagccgaat tggattactt actgaataac gatctggccg atgtggattg cgaaaactgg 5100 30 gaagaagaca ctccatttaa agatccgcgc gagctgtatg attttttaaa gacggaaaag 5160 cccgaagagg aacttgtctt ttcccacggc gacctgggag acagcaacat ctttgtgaaa 5220 gatggcaaag taagtggctt tattgatctt gggagaagcg gcagggcgga caagtggtat 5280 gacattgcct tctgcgtccg gtcgatcagg gaggatatcg gggaagaaca gtatgtcgag 5340 ctggatgaat tgttttagta cctagatgtg gcgcaacgat gccggcgaca agcaggagcg 5460 caccgactte tteegeatea agtgttttgg eteteaggee gaggeeeaeg geaagtattt 5520 gggcaagggg tegetggtat tegtgeaggg caagattegg aataceaagt aegagaagga 5580 55 cggccagacg gtctacggga ccgacttcat tgccgataag gtggattatc tggacaccaa 5640 ggcaccaggc gggtcaaatc aggaataagg gcacattgcc ccggcgtgag tcggggcaat 5700 cccgcaagga gggtgaatga atcggacgtt tgaccggaag gcatacaggc aagaactgat 5760

CQ	acgcgggg	ttttccgccg	aggatgccga	aaccatcgca	agccgcaccg	tcatgcgtgc	5820	
gc	cccgcgaa	accttccagt	ccgtcggctc	gatggtccag	caagctacgg	ccaagatcga	5880	5
gc	gcgacagc	gtgcaactgg	ctcccctgc	cctgcccgcg	ccatcggccg	ccgtggagcg	5940	10
tt	cgcgtcgt	ctcgaacagg	aggcggcagg	tttggcgaag	tcgatgacca	tcgacacgcg	6000	10
ag	gaactatg	acgaccaaga	agcgaaaaac	cgccggcgag	gacctggcaa	aacaggtcag	6060	ì5
cg	aggccaag	caggccgcgt	tgctgaaaca	cacgaagcag	cagatcaagg	aaatgcagct	6120	20
tt	ccttgttc	gatattgcgc	cgtggccgga	cacgatgcga	gcgatgccaa	acgacacggc	6180	20
cc	gctctgcc	ctgttcacca	cgcgcaacaa	gaaaatcccg	cgcgaggcgc	tgcaaaacaa	6240	25
gg	tcattttc	cacgtcaaca	aggacgtgaa	gatcacctac	accggcgtcg	agctgcgggc	6300	
cg	acgatgac	gaactggtgt	ggcagcaggt	gttggagtac	gcgaagcgca	cccctatcgg	6360	30
cg	agccgatc	accttcacgt	tctacgagct	ttgccaggac	ctgggctggt	cgatcaatgg	6420	35
ċc	ggtattac	acgaaggccg	aggaatgcct	gtcgcgccta	caggcgacgg.	cgatgggctt	6480	
ca	cgtccgac	cgcgttgggc	acctggaatc	ggtgtcgctg	ctgcaccgct	tccgcgtcct	6540	40
gg	accgtggc	aagaaaacgt	cccgttgcca	ggtcctgatc	gacgaggaaa	tcgtcgtgct	6600	45
gt	ttgctggc	gaccactaca	cgaaattcat	atgggagaag	taccgcaagc	tgtcgccgac	6660	
gg	cccgacgg	atgttcgact	atttcagctc	gcaccgggag	ccgtacccgc	tcaagctgga	6720	50
aa	ccttccgc	ctcatgtgcg	gatcggattc	cacccgcgtg	aagaagtggc	gcgagcaggt	6780	55
cg	gcgaagcc	tgcgaagagt	tgcgaggcag	cggcctggtg	gaacacgcct	gggtcaatga	6840	
g	acctggtg	cattgcaaac	gctagggcct	tgtggggtca	gttccggctg	ggggttcagc	6900	60
age	cagcgct	ttactggcat	ttcaggaaca	agcgggcact	gctcgacgca	cttgcttcgc	6960	

tcagtatcgc tcgggacgca cggcgcgctc tacgaactgc cgataaacag aggattaaaa 7020 1 ttgacaattg tgattaaggc tcagattcga cggcttggag cggccgacgt gcaggatttc 7080 cgcgagatcc gattgtcggc cctgaagaaa gctccagaga tgttcgggtc cgtttacgag 7140 10 cacgaggaga aaaagcccat ggaggcgttc gctgaacggt tgcgagatgc cgtggcattc 7200 ggcgcctaca tcgacggcga gatcattggg ctgtcggtct tcaaacagga ggacggcccc 7260 aaggacgctc acaaggcgca tctgtccggc gttttcgtgg agcccgaaca gcgaggccga 7320 20 ggggtcgccg gtatgctgct gcgggcgttg ccggcgggtt tattgctcgt gatgatcgtc 7380 cgacagattc caacgggaat ctggtggatg cgcatcttca tcctcggcgc acttaatatt 7440 tegetattet ggagettgtt gtttattteg gtetaeegee tgeegggegg ggtegeggeg 7500 acggtaggcg ctgtgcagcc gctgatggtc gtgttcatct ctgccgctct gctaggtagc 7560 ccgatacgat tgatggcggt cctggggggct atttgcggaa ctgcgggcgt ggcgctgttg 7620 gtgttgacac caaacgcagc gctagatcct gtcggcgtcg cagcgggcct ggcggggcg 7680 gtttccatgg cgttcggaac cgtgctgacc cgcaagtggc aacctcccgt gcctctgctc 7740 acctttaccg cctggcaact ggcggccgga ggacttctgc tcgttccagt agctttagtg 7800 tttgatccgc caatcccgat gcctacagga accaatgttc tcggcctggc gtggctcggc 7860 ctgatcggag cgggtttaac ctacttcctt tggttccggg ggatctcgcg actcgaacct 7920 acagttgttt ccttactggg ctttctcagc cccagatctg gggtcgatca gccggggatg 7980 catcaggccg acagtcggaa cttcgggtcc ccgacctgta ccattcggtg agcaatggat 8040 aggggagttg atatcgtcaa cgttcacttc taaagaaata gcgccactca gcttcctcag 8100 eggetttate cagegattte etattatgte ggeatagtte teaagatega cageetgtea 8160

cgg	ttaagcg	agaaatgaat	aagaaggctg	ataattcgga	tctctgcgag	ggagatgata	8220	
ttt	gatcaca	ggcagcaacg	ctctgtcatc	gttacaatca	acatgctacc	ctccgcgaga	8280	5
tca	tccgtgt	ttcaaacccg	gcagcttagt	tgccgttctt	ccgaatagca	tcggtaacat	8340	
gag	caaagtc	tgccgcctta	caacggctct	cccgctgacg	ccgtcccgga	ctgatgggct	8400	10
gcc	tgtatcg	agtggtgatt	ttgtgccgag	ctgccggtcg	gggagctgtt	ggctggctgg	8460	15
tgg	caggata	tattgtggtg	taaacaaatt	gacgcttaga	caacttaata	acacattgcg	8520	
gac	gtttta	atgtactggg	gtggttttc	ttttcaccag	tgagacgggc	aacagctgat	8580	20
tgc	ccttcac	cgcctggccc	tgagagagtt.	gcagcaagcg	gtccacgctg	gtttgcccca	8640	25
gca	ggcgaaa	atcctgtttg	atggtggttc	cgaaatcggc	aaaatccctt	ataaatcaaa	8700	
aga	atagccc	gagatagggt	tgagtgttgt	tccagtttgg	aacaagagtc	cactattaaa	8760	30
gaa	cgtggac	tccaacgtça	aagggcgaaa	aaccgtctat	cagggcgatg	gcccactacg	8820	35
tga	accatca	cccaaatcaa	gttttttggg	gtcgaggtgc	cgtaaagcac	taaatcggaa	8880	
ccc	taaaggg	agcccccgat	ttagagcttg	acggggaaag	ccggcgaacg	tggcgagaaa	8940	40
gga	agggaag	aaagcgaaag	gagcgggcgc	cattcaggct	gcgcaactgt	tgggaagggc	9000	45
gat	cggtgcg	ggcctcttcg	ctattacgcc	agctggcgaa	agggggatgt	gctgcaaggc	9060	
gat	taagttg	ggtaacgcca [.]	gggttttccc	agtcacgacg	ttgtaaaacg	acggccagtg	9120	50
aat	taattcc	catcttgaaa	gaaatatagt	ttaaatattt	attgataaaa	taacaagtca	9180	55
ggt	attatag	tccaagcaaa	aacataaatt	tattgatgca	agtttaaatt	cagaaatatt	9240	
tca	ataactg	attatatcag	ctggtacatt	gccgtagatg	aaagactgag	tgcgatatta	9300	60
tgt	gtaatac	ataaattgat	gatatagcta	gcttagctca	tcgggggatc	cgtcgaagct	9360	65

agcttgggtc ccgctcagaa gaactcgtca agaaggcgat agaaggcgat gcgctgcgaa 9420 tegggagegg egatacegta aageaegagg aageggteag eecattegee gecaagetet 9480 tcagcaatat cacgggtagc caacgctatg tcctgatagc ggtccgccac acccagccgg 9540 10 ccacagtcga tgaatccaga aaagcggcca ttttccacca tgatattcgg caagcaggca 9600 tegecatggg teaegaegag atectegeeg tegggeatge gegeettgag cetggegaae 9660 agttcggctg gcgcgagccc ctgatgctct tcgtccagat catcctgatc gacaagaccg 9720 20 gcttccatcc gagtacgtgc tcgctcgatg cgatgtttcg cttggtggtc gaatgggcag 9780 gtagccggat caagcgtatg cagccgccgc attgcatcag ccatgatgga tactttctcg 9840 gcaggagcaa ggtgagatga caggagatcc tgccccggca cttcgcccaa tagcagccag 9900 tecetteceg etteagtgae aacgtegage acagetgege aaggaaegee egtegtggee 9960 agccacgata gccgcgctgc ctcgtcctgc agttcattca gggcaccgga caggtcggtc 10020 ttgacaaaaa gaaccgggcg cccctgcgct gacagccgga acacggcggc atcagagcag 10080 ccgattgtct gttgtgccca gtcatagccg aatagcctct ccacccaage ggccggagaa 10140 cctgcgtgca atccatcttg ttcaatccaa gctcccatgg gccctcgact agagtcgaga 10200 tctggattga gagtgaatat gagactctaa ttggataccg aggggaattt atggaacgtc 10260 agtggagcat ttttgacaag aaatatttgc tagctgatag tgaccttagg cgacttttga 10320 acgcgcaata atggtttctg acgtatgtgc ttagctcatt aaactccaga aacccgcggc 10380 tgagtggctc cttcaacgtt gcggttctgt cagttccaaa cgtaaaacgg cttgtcccgc 10440 gtcatcggcg ggggtcataa cgtgactccc ttaattctcc gctcatgatc ttgatcccct 10500 gcgccatcag atccttggcg gcaagaaagc catccagttt actttgcagg gcttcccaac 10560 65

	cttaccagag	ggcgccccag	ctggcaattc	cggttcgctt	gctgtccata	aaaccgccca	10620	
	gtctagctat	cgccatgtaa	gcccactgca	agctacctgc	tttctctttg	cgcttgcgtt	10680	5
	ttcccttgtc	cagatagece	agtagctgac	attcatccgg	ggtcagcacc	gtttctgcgg	10740	
	actggctttc	tacgtgttcc	gcttccttta	gcagcccttg	cgccctgagt	gcttgcggca	10800	10
	gcgtgaagct	tgcatgcctg	caggtcgacg	gcgcgccgag	ctcctcgagc	aaatttacac	10860	15
\	attgccacta	aacgtctaaa	cccttgtaat	ttgtttttgt	tttactatgt	gtgttatgta	10920	
	tttgatttgc	gataaatttt	tatatttggt	actaaattta	taacaccttt	tatgctaacg	10980	20
	tttgccaaca	cttagcaatt	tgcaagttga	ttaattgatt	ctaaattatt	tttgtcttct	11040	25
	aaatacatat	actaatcaac	tggaaatgta	aatatttgct	aatatttcta	ctataggaga	11100	
	attaaagtga	gtgaatatgg	taccacaagg	tttggagatt	taattgttgc	aatgctgcat	11160	30
	ggatggcata	tacaccaaac	attcaataat	tcttgaggat	aataatggta	ccacacaaga	11220	35
	tttgaggtgc	atgaacgtca	cgtggacaaa	aggtttagta	atttttcaag	acaacaatgt	11280	
	taccacacac	aagttttgag	gtgcatgcat	ggatgccctg	tggaaagttt	aaaaatattt	11340	40
	tggaaatgat	ttgcatggaa	gccatgtgta	aaaccatgac	atccacttgg	aggatgcaat	11400	45
	aatgaagaaa	actacaaatt	tacatgcaac	tagttatgca	tgtagtctat	ataatgagga	11460	
	ttttgcaata	ctttcattca	tacacactca	ctaagtttta	cacgattata	atttcttcat	11520	50
	agccagccca	ccgcggtgga				ac ggt gag	11572	55
			Met Glu 1	Val Val Glu	a Arg Phe Ty	yr Gly Glu 10		
					ttg ctg ggt		11620	60
	Leu Asp Gly	y Lys Val Se	er Gln Gly V	7al Asn Ala 20	Leu Leu Gly	y Ser Phe 25		45
								65

	ggg	gtg	gag	ttg	acg	gat	acg	ccc	act	acc	aaa	ggc	ttg	ccc	ctc	gtt	11668
	Gly	Val	Glu	Leu	Thr	Asp	Thr	Pro	Thr	Thr	Lys	Gly	Leu	Pro	Leu	Val	
5				30					35					40			
	gac	agt	ccc	aca	ccc	atc	gtc	ctc	ggt	gtt	tct	gta	tac	ttg	act	att	11716
10	Asp	Ser	Pro	Thr	Pro	Ile	Val	Leu	Gly	Val	Ser	Val	Tyr	Leu	Thr	Ile	
	_		45					50			•		55			•	
15	gtc	att	gga	ggg	ctt	ttg	tgg	ata	aag	gcc	agg	gat	ctg	aaa	ccg	cgc	11764
13	_		_		Leu												
		60	2				65		-		J	70		-		-	
20	acc	tca	rar	cca	ttt	tta	ctc	caa	act	tta	ata	ctt	ata	cac	aac	cta	11812
	_	_			Phe												
	75	Ser	Gru	110	1116	80	Deu	G111	niu	Deu	85	Dou	vul			90	
25	75					00					0,5					50	
		. .								*~~	~+~	~~-			+-+		11860
•		-			ctc												11800
30	Phe	Cys	Pne	Ala	Leu	Ser	Leu	туг	Met		vai	GIA	TTE	Ala		GIN	
					95					100					105		
																	11000
35					cgg												11908
	Ala	Ile	Thr	_	Arg	Tyr	Ser	Leu		Gly	Asn	Ala	Tyr		Pro	Lys	
				110					115					120			
40																	
				_	gcg		_	_		_			_		_		11956
	His	Lys		Met	Ala	Ile	Leu		Tyr	Leu	Phe	Tyr		Ser	Lys	Tyr	
45			125					130					135				
	gtg	gaa	ttc	atg	gat	acc	gtt	atc	atg	ata	ctg	aag	cgc	agc	acc	agg	12004
50	Val	Glu	Phe	Met	Asp	Thr	Val	Ile	Met	Ile	Leu	Lys	Arg	Ser	Thr	Arg	
		140					145					150					
55	caa	ata	agc	ttc	ctc	cac	gtt	tat	cat	cat	tct	tca	att	tcc	ctc	att	12052
33	Gln	Ile	Ser	Phe	Leu	His	Val	Tyr	His	His	Ser	Ser	Ile	Ser	Leu	Ile	
	155					160					165					170	
60	tgg	tgg	gct	att	gct	cat	cac	gct	cct	ggc	ggt	gaa	gca	tat	tgg	tct	12100
	Trp	Trp	Ala	Ile	Ala	His	His	Ala	Pro	Gly	Gly	Glu	Ala	Tyr	Trp	Ser	
					175					180					185		
65																	

	gcg	gct	ctg	aac	tca	gga	gtg	cat	gtt	ctc	atg	tat	gcg	tat	tac	ttc	12148	
	Ala	Ala	Leu	Asn	Ser	Gly	Val	His	Val	Leu	Met	Tyr	Ala	Tyr	Tyr	Phe	•	
				190					195					200				5
	,											•						
	ttg	gct	gcc	tgc	ctt	cga	agt	agc	cca	aag	tta	aaa	aat	aag	tac	ctt	12196	
	Leu	Ala	Ala	Cys	Leu	Arg	Ser	Ser	Pro	Lys	Leu	Lys	Asn	Lys	Tyr	Leu		10
			205					210					215					
	ttt	tgg	ggc	agg	tac	ttg	aca	caa	ttc	caa	atg	ttc	cag	ttt	atg	ctg	12244	15
i	Phe	Trp	Gly	Arg	Tyr	Leu	Thr	Gln	Phe	Gln	Met	Phe	Gln	Phe	Met	Leu	•	
Ì		220					225					230						
,																		20
	aac	tta	gtg	cag	gct	tac	tac	gac	atg	aaa	acg	aat	gcg	cca	tat	cca	12292	
	Asn	Leu	Val	Gln	Ala	Tyr	Tyr	Asp	Met	Lys	Thr	Asn	Ala	Pro	Tyr	Pro		
	235					240					245					250		25
	caa	tgg	ctg	atc	aag	att	ttg	ttc	tac	tac	atg	atc	tcg	ttg	ctg	ttt	12340	
	Gln	Trp	Leu	Ile	Lys	Ile	Leu	Phe	Tyr	Tyr	Met	Ile	Ser	Leu	Leu	Phe		30·
		_			255					260					265			30
		•			٠													
	ctt	ttc	aac	aat	ttt	tac	gta	caa	aaa	tac	atc	aaa	ccc	tct	gac	gga	12388	26
											Ile							·35
			2	270		- 4		1	275	-		•		280	-			
																		0.2
	aag	caa	aag	gga	act.	aaa	act	gag	tga	tct	agaag	aac (ctcci	tact	tt	•	12435	40
	_		_	Gly	•				- 5		- J	55-						
	_, ~		285	1		-2-		290										
			203															45
	aato	ragai	tat (acaa	aaca.	cc ta	atra:	teae	a tor	atat	ttac	ttt	caat	tet	attai	tgcacg	12495	
	auc	gugu	cac	gega	gueg		acgu	cege.	a cg		cego		cuuc		geeg	egeaeg		
	++~			ccta:	2002	ta t	rtan	ctca	r at	cctt	acca	cca	attt	caa	ttcat	ttctaa	12555	50
	ccg	caaa	uaa ·	cccg	agca	cg c	gcag	ccca	y ac		accg	ccg	gccc	-99	ccca	·		
	tas	atat:	atc	2000	atta	ct a	teat	attt	t ta	taaa	taat	att	ctcc	att.	caati	ttactg	12615	
	tya	acac	acc .	acce	gcca	cc a	cege	4666	c cu	cgaa	caac	acc.		gee		ccuccy	12015	55
	5 t t	atoc	ata	~=~~	-	++ a	C2C2	ttac	c ac	+===	catc	+==	2000	++~	taat:	ttgttt	12675	
	act	gucc	y cc	gage	aaat	cc a	caca	ctgc	c ac	caaa	cgcc	caa	accc	ctg	cuac	ccyccc	12075	
	++		3. a t	a+~+	~+ ~+	+= +	~ + > +	++~~		acas	+===	+++	++=+	a++	taat	actaaa	12735	60
	LLG		act	acyc	gtyt	La L	yıaı	ctya		ycya	caaa		LLQL	ull	egg c	uc caaa	12,33	
	+++	2+22	C2C	cttt	+=+~	ct a	aca+	ttac	C ==	cact	tago	aat	ttac	224	ttae	ttaatt	12795	
		uLad	cac		caty	cc a	ucyc	cege	c aa	cact	cage	uat	cege	uug	cega		12,70	65

	gatt	ctaa	aat 1	tatt	tttgt	c ti	tctaa	aatac	ata	atact	aat	caa	ctgga	aaa	tgtaa	aatatt	12855
5	tgct	aata	att (tctad	ctata	ag ga	agaat	ttaaa	gtg	gagto	gaat	atg	gtac	cac .	aaggi	tttgga	12915
	gatt	taat	tg 1	ttgca	aatgo	ct go	catg	gatgg	g cat	catao	cacc	aaa	atto	caa	taati	tcttga	12975
10	ggat	aata	aat q	ggtad	ccaca	ac a	agatt	ttgag	gto	gcato	jaac	gtca	acgto	gga (caaaa	aggttt	13035
15	agta	att	tt (caaga	acaad	ca a	tgtta	accac	aca	acaag	gttt	tgag	ggtgd	cat (gcato	ggatgc	13095
	cctg	gtgga	aaa q	gttta	aaaa	at a	ttttg	ggaaa	ı tga	attto	gcat	ggaa	agcca	atg	tgtaa	aaacca	13155
20	tgad	catco	cac 1	ttgga	aggat	g c	aataa	atgaa	gaa	aaact	aca	aatt	taca	atg (caact	tagtta	13215
25	tgca	atgta	agt (ctata	ataat	g ag	ggatt	tttgc	aat	cactt	tca	ttca	ataca	aca (ctcad	ctaagt	13275
30	ttta	acacç	gat (tataa	attto	et to	cataç	gccag	ı cgç	gatco		-		_		ggt Gly	13330
											·			29.	5		
35			-	cag Gln		. •						-	_				13378
	013	200	300	0	0-3			305	0				310	024			
40	_	_		tct							-						13426
45	Ala	315	Met	Ser	Leu	Phe	320	Asp	Phe	Phe	Ser	Tyr 325	Val	Ser	Ser	Thr	
	gtt	ggt	tcg	tgg	agc	gta	cac	agt	ata	caa	cct	ttg	aag	cgc	ctg	acg	13474
50	Val 330	Gly	Ser	Trp	Ser	Val	His	Ser	Ile	Gln	Pro 340	Leu	Lys	Arg	Leu	Thr 345	
	330					333					240					242	
55				cgt Arg													13522
	Jer	БуЗ	Lys	ni g	350	501	oru	501	2114	355	VUI	GIII	Cys	110	360	ALU	
60	gaa	gtt	cag	aga	aat	tcg	agt	acc	cag	gga	act	gcg	gag	gca	ctc	gca	13570
	_	_	_	Arg		_	_							_			
				365					370					375			

													tgg			13618	
Glu	Ser	Val	Val	Lys	Pro	Thr	Arg	Arg	Arg	Ser	Ser	Gln	Trp	Lys	Lys		
		380					385					390				•	5
tcg	aca	cac	ccc	cta	tca	gaa	gta	gca	gta	cac	aac	aag	cca	agc	gat	13666	
Ser	Thr	His	Pro	Leu	Ser	Glu	Val	Ala	Val	His	Asn	Lys	Pro	Ser	Asp		10
	395	•				400		٠			405						
	4						224	~+~	+ ~ +	~~+	~++	taa	22 +	+++	aca	13714	
_			_	_									aat			13/14	15
_	Trp	ше	vaı	Val		Asn	гуs	vai	туг		vai	Ser	Asn	Pile			
410					415					420					425		20
gac	gag	cat	ccc	gga	gga	tca	gtt	att	agt	act	tat	ttt	gga	cga	gac	13762	20
Asp	Glu	His	Pro	Gly	Gly	Ser	Val	Ile	Ser	Thr	Tyr	Phe	Gly	Arg	Asp		
				430					435					440	•		25
ggc	aca	gat	gtt	ttc	tct	agt	ttt	cat	gça	gct	tct	aca	tgg	aaa	att	13810	
Gly	Thr	Asp	Val	Phe	Ser	Ser	Phe	His	Ala	Ala	Ser	Thr	Trp	Lys	Ile		30
			445					450					455			•	
															•		
ctt	caa	gac	ttt	tac	att	ggt	gac	gtg	gag	agg	gtg	gag	ccg	act	cca	13858	35
Leu	Gln	Asp	Phe	Tyr	Ile	Gly	Asp	Va1	Glu	Arg	Val	Glu	Pro	Thr	Pro		
		460					465				•	470					
																	40
gag	ctg	ctg	aaa	gat	ttc	cga	gaa	atg	aga	gct	ctt	ttc	ctg	agg	gag	13906	
Glu	Leu	Leu	Lys	Asp	Phe	Arg	Glu	Met	Arg	Ala	Leu	Phe	Leu	Arg	Glu		
	475					480					485						45
													ctg			13954	
Gln	Leu	Phe	Lys	Ser	Ser	Lys	Leu	Tyr	Tyr	Val	Met	Lys	Leu	Leu	Thr		50
490					495					500					505		
aat	gtt	gct	att	ttt	gct	gcg	agc	att	gca	ata	ata	tgt	tgg	agc	aag	14002	
													Trp				55
				510					515					520			
																	60
act	att	tca	gcg	gtt	ttg	gct	tca	gct	tgt	atg	atg	gct	ctg	tgt	ttc	14050	00
Thr	Ile	Ser	Ala	Val	Leu	Ala	Ser	Ala	Суѕ	Met	Met	Ala	Leu	Cys	Phe		
			525					530					535				65
																	55

	caa	cag	tgc	gga	tgg	cta	tcc	cat	gat	ttt	ctc	cac	aat	cag	gtg	ttt	14098
	Gln	Gln	Cys	Gly	Trp	Leu	Ser	His	Asp	Phe	Leu	His	Asn	Gln	Val	Phe	
5			540					545					550				
	gag	aca	cac	taa	ctt	aat	gaa	att	atc	aaa	tat	ata	atc	aac	aac	acc	14146
10			_			Asn										_	
10	014	555	****9				560			0-3	-3-	565					
		333					500										
	at t	cta	aaa	+++	art	aca	aaa	taa	taa	220	asa	220	cat	220	ctt	cat	14194
15	_	_			_	Thr				_						• .	14171
		Leu	GIĀ	Pne	ser		GIŞ	пр	пр	гуs		гус	nis	ASII	Dea	585	
	570					575					580					363	
20																	14242
						gaa											14242
	His	Ala	Ala	Pro		Glu	Cys	Asp	Gln		Tyr	Gln	Pro	He		GIU	
25					590					595					600		
	gat	att	gat	act	ctc	ccc	ctc	att	gcc	tgg	agc	aag	gac	ata	ctg	gcc	14290
30	Asp	Ile	Asp	Thr	Leu	Pro	Leu	Ile	Ala	Trp	Ser	Lys	Asp	Ile	Leu	Ala	
				605					610					615			
35	aca	gtt	gag	aat	aag	aca	ttc	ttg	cga	atc	ctc	caa	tac	cag	cat	ctg	14338
	Thr	Val	Glu	Asn	Lys	Thr	Phe	Leu	Arg	Ile	Leu	Gln	Tyr	Gln	His	Leu	
			620					625					630				
40																	
	ttc	ttc	atg	ggt	ctg	tta	ttt	ttc	gcc	cgt	ggt	agt	tgg	ctc	ttt	tgg	14386
	Phe	Phe	Met	Gly	Leu	Leu	Phe	Phe	Ala	Arg	Gly	Ser	Trp	Leu	Phe	Trp	
45		635					640					645					
43																	
	agc	tgg	aga	tat	acc	tct	aca	gca	gtg	ctc	tca	cct	gtc	gac	agg	ttg	14434
50	Ser	Trp	Arg	Tyr	Thr	Ser	Thr	Ala	Val	Leu	Ser	Pro	Val	Asp	Arg	Leu	
50	650					655					660					665	
	ttg	gag	aag	gga	act	gtt	ctg	ttt	cac	tac	ttt	tgg	ttc	gtc	ggg	aca	14482
55	Leu	Glu	Lys	Gly	Thr	Val	Leu	Phe	His	Tyr	Phe	Trp	Phe	Val	Gly	Thr	
					670					675					680		
60	gcg	tgc	tat	ctt	ctc	cct	ggt	tgg	aag	cca	tta	gta	tgg	atg	gcg	gtg	14530
	_	-				Pro											
		•	4	685			-	•	690				-	695			
65																	

	act	gag	ctc	atg	tcc	ggc	atg	ctg	ctg	ggc	ttt	gta	ttt	gta	ctt	agc	14578	
	Thr	Glu	Leu	Met	Ser	Gly	Met	Leu	Leu	Gly	Phe	Val	Phe	Val	Leu	Ser	•	
	•		700					705					710					5
										•								
	cac	aat	agg	atg	gag	gtt	tat	aat	tcg	tct	aaa	gaa	ttc	gtg	agt	gca	14626	
															Ser			10
		715					720				_	725						
	caq	atc	ata	tcc	aca	caa	gat	atc	aaa	gga	aac	ata	ttc	aac	gac	tgg	14674	i5
ļ	_		_												Asp	•		15
1	730					735				_	740				-	745		
į	, , ,					,,,,												20
	: ttc	act	aat	aac	ctt	220	agg	caa	ata	gag	cat	cat	ctt	ttc	cca	aca	14722	20
															Pro			
	FILE	1111	GIY	GIY	750	VOII	Arg	GIII		755		1110	Deu	1110	760			
					750			•		,,,,					,00			25
				aa+			224		2+2	~~~	cat	202	ata	~=~	ata	ttc	14770	
															gtg		14//0	٠,
	Met	Pro	Arg		Asn	ren	Asn	гуs		Ala	Pro	Arg	vai		Val	PHE		30
				765	4				770				•	775				
																	1 4 0 1 0	
															acc		14818	35
	Cys	Lys	_	His	Gly	Leu	Val			Asp	Vai	Ser		Ala	Thr	GIÀ.		
			780					785					790					
																	1 1000	.40
			_	_												gca	14866	
	Thr	-	Lys	Val	Leu	Lys		Leu	Lys	Glu	Val		Glu	Aľa	Ala	Ala		
		795					800					805						45
								taa	gct	agcgi	tta a	accc	tgct	tt a	atga	gatat	14920	
	Glu	Gln	His	Ala	Thr	Thr	Ser											50·
	810		•			815				•								
	gcg	agac	gcc	tatg	atcg	ca t	gata	tttg	c tt	tcaa	ttct	gtt	gtgc	acg	ttgt	aaaaaa	14980	55
	cct	gagc	atg	tgta	gctc	ag a	tcct	tacc	g cc	ggtt	tcgg	ttc	attc	taa	tgaa	tatatc	15040	
																		60
	acc	cgtt	act	atcg	tatt	tt t	atga	ataa	t at	tctc	cgtt	caa	ttta	ctg	attg	tccgtc	15100	
	gag	caaa	ttt	acac	attg	cc a	ctaa	acgt	c ta	aacc	cttg	taa	tttg	ttt	ttgt	tttact	15160	65

	atgt	gtgt	ta 1	tgtat	ttga	at t	gcga	ataaa	ı ttt	ttat	tatt	tggt	cacta	aaa	tttat	caacac	15220
5	cttt	ctato	gct a	aacgt	ttg	cc aa	acact	tago	aat	ttgo	caag	ttga	attaa	att (gatto	ctaaat	15280
	tatt	tttg	gtc	ttcta	aaata	ac at	tatad	ctaat	caa	actgo	gaaa _.	tgta	aaata	att 1	tgcta	aatatt	15340
10	tcta	actat	tag	gagaa	attaa	aa gt	gagt	gaat	ato	ggtad	ccac	aagg	gtttg	gga (gattt	aattg	15400
15	ttgo	caatç	gct :	gcat	ggato	ggica	atata	acaco	c aaa	acatt	caa	taat	tcti	tga (ggata	aataat	15460
	ggta	accad	cac a	aagal	tttga	ag gt	gcat	gaac	gto	cacgt	gga	caaa	aaggt	ttt a	agtaa	atttt	15520
20	caag	gacaa	aca (atgti	tacca	ac ac	cacaa	agttt	tga	aggto	gcat	gcat	ggat	tgc (cctgt	ggaaa	15580
25	gttt	caaaa	aat	attti	tggaa	aa to	gattt	gcat	gga	aagco	catg	tgta	aaaa	cca 1	tgaca	atccac	15640
	ttgg	gagga	atg	caata	aatga	aa ga	aaaa	ctaca	a aat	ttac	catg	caad	ctagt	tta 1	tgcat	gtagt	15700
30	ctat	cataa	atg .	agga	ttttg	gc aa	atact	ttca	a tto	catac	; caca	ctca	actaa	agt 1	tttad	cacgat	15760
35	tata	aatt	tct	tcata	agcca	ag ca	agato	ctaaa								g ctt s Leu	15814
									Met	- AIC	820	_	ATO	a no	р гуз	825	
10	caa	caa	cac	cac	aca	act	aca	ata	aca	220	cac	aat	act	act	acc	ata	15862
															Thr		13002
15					830					835					840		
	tcg	acg	cag	gaa	cgc	ctt	tgc	agt	ctg	tct	tcg	ctc	aaa	ggc	gaa	gaa	15910
50	Ser	Thr	Gln		Arg	Leu	Cys	Ser		Ser	Ser	Leu	Lys	_	Glu	Glu	
				845					850					855			
55															cat		15958
	Val	Cys		Asp	Gly	Ile	Ile		Asp	Leu	Gln	Ser		Asp	His	Pro	
			860					865					870				
50	ggg	ggt	gaa	acg	atc	aaa	atg	ttt	ggt	ggc	aac	gat	gtc	act	gta	cag	16006
	Gly	Gly	Glu	Thr	Ile	Lys	Met	Phe	Gly	Gly	Asn	Asp	Val	Thr	Val	Gln	
		875					880					885					

tac	aag	atg	att	cac	ccg	tac	cat	acc	gag	aag	cat	ttg	gaa	aag	atg	16054	
Tyr	Lys	Met	Ile	His	Pro	Tyr	His	Thr	Glu	Lys	His	Leu	Glu	Lys	Met		
890					895					900					905		5
														•		•	
aag	cgt	gtc	ggc	aag	gtg	acg	gat	ttc	gtc	tgc	gag	tac	aag	ttc	gat	16102	
Lys	Arg	Val	Gly	Lys	Val	Thr	Asp	Phe	Val	Cys	Glu	Tyr	Lys	Phe	Asp		10
		•		910				•	915					920			
acc	gaa	ttt	gaa	cgc	gaa	atc	aaa	cga	gaa	gtc	ttc	aag	att	gtg	cga	16150	15
Thr	Glu	Phe	Glu	Arg	Glu	Ile	Lys	Arg	Glu	Val	Phe	Lys	Ile	Val	Arg		
			925					930					935				
												٠					20
cga	ggc	aag	gat	ttc	ggt	act	ttg	gga	tgg	ttc	ttc	cgt	gcg	ttt	tgc	16198	
Arg	Gly	Lys	Asp	Phe	Gly	Thr	Leu	Gly	Trp	Phe	Phe	Arg	Ala	Phe	Cys		
		940					945					950					. 25
																•	23
tac	att	gcc	att	ttc	ttc	tac	ctg	cag	tac	cat	tgg	gtc	acc	acg	gga .	16246	
Tyr	Ile	Ala	Ile	Phe	Phe	Tyr	Leu	Gln	Tyr	His	Ťrp	Val	Thr	Thr	Gly		30
_	955					960			_		965				-		. 30
acc	tct	tgg	ctq	ctg	gcc	ata	acc	tac	gga	atc	tcc	caa	aca	ato	att	16294	25
		Trp		,	•												35
970					975				3	980					985		
aac	atσ	aat	atc	caq	cac	gat	acc	aac	cac	aaa	acc	acc	tcc	aaq	cat	16342	40
		Asn									_			_	_		
				990					995	2				1000	9		
																	45
ccc	taa	gtc	aac	gac	atα	cta	aac	ctc	aat.	aca	gat	ttt	att	aat	aat	16390	
		Val														10000	
			1005					1010	,				1015	0-1	 2		50
							_					-					
tee	aaα	tgg	ctc	t.aa	cag	gaa	caa	cac	taa	acc	cac	cac	act	tac	acc	16438	
		Trp			_	-							_			20.50	55
	_	1020					1025					1030		- 7 -			
	-					-					•	-050					
aat	cac	gcc	gag	ato	gat	ccc	at	age	+++	aa+	acc	as s	cca	ata	ctc	16486	60
		Ala										_		_		10400	
	1035	A.a	GIU	1.1C C		1040	vəħ	SET	1116	-	1045	GIU	LIO	1.16 C	₽€u		
1					J	.040				•	.043						65

				_			_	_			_	_			cta		16534
	Ļeu	Phe	Asn	Asp	Tyr	Pro	Leu	Asp	His	Pro	Ala	Arg	Thr	Trp	Leu	His	
5	1050)			:	1055				1	1060					1065	
	'cgc	ttt	caa	gca	ttc	ttt	tac	atg	ccc	gtc	ttg	gct	gga	tac	tgg	ttg	16582
10	Arg	Phe	Gln	Ala	Phe	Phe	Tyr	Met	Pro	Val	Leu	Ala	Gly	Tyr	Trp	Leu	
				:	1070				:	1075				:	1080		
15	tcc	gct	gtc	ttc	aat	cca	caa	att	ctt	gac	ctc	cag	caa	cgc	ggc	gca	16630
1	Ser	Ala	Val	Phe	Asn	Pro	Gln	Ile	Leu	Asp	Leu	Gln	Gln	Arg	Gly	۸la	
1			:	1085					1090					1095			
20	i																
20	ctt	tcc	gtc	ggt	atc	cgt	ctc	gac	aac	gct	ttc	att	cac	tcg	cga	cgc	16678
	Leu	Ser	Val	Gly	Ile	Arg	Leu	Asp	Asn	Ala	Phe	Ile	His	Ser	Arg	Arg	
25			1100				-	1105					1110				
	aag	tat	gcg	gtt	ttc	tgg	cgg	gct	gtg	tac	att	gcg	gtg	aac	gtg	att	16726
30	Lys	Tyr	Ala	Val	Phe	Trp	Arg	Ala	Val	Tyr	Ile	Ala	Val	Asn	Val	Ile	
	1	1115				-	1120				1	1125					
35	gct	ccg	ttt	tac	aca	aac	tcc	ggc	ctc	gaa	tgg	tcc	tgg	cgt	gtc	ttt	16774
	Ala	Pro	Phe	Tyr	Thr	Asn	Ser	Gly	Leu	Glu	Trp	Ser	Trp	Arg	Val	Phe	
	1130)			-	1135		•		1	L140				:	1145	
40																	
						_				_	_			_	gcg	_	16822
	Gly	Asn	Ile			Met	Gly	Val			Ser	Leu	Ala	Leu	Ala	Val	
45				-	1150				-	1155				:	1160		
															ccg		16870
50	Leu	Phe			Ser	His	Asn			Ser	Ala	Asp	_		Pro	Thr	
			-	1165				-	1170					1175			
																	4.504.0
55															aca		16918
	Ala			rys	гÀ2	unr	-		Pro	vaı	Asp	_		гуs	Thr	Gin	
			1180				•	1185					1190				
60	ata	~~~	205	+ ~ ~	+~~	3.c.t	+	~~+	~~-			+		.		266	16066
															ttc		16966
		G1u 1195	inr	ser	cys		_	стλ	СТĀ	rne			стХ	cys	Phe	THE	
65	_	レエラコ				•	1200				•	1205					

gga ggt ctc aac ttt cag gtt gaa cac cac ttg ttc cca cgc atg agc	17014	
Gly Gly Leu Asn Phe Gln Val Glu His His Leu Phe Pro Arg Met Ser		
1210 1215 1220 1225		5
	•	
age get tgg tat eee tae att gee eee aag gte ege gaa att tge gee	17062	
Ser Ala Trp Tyr Pro Tyr Ile Ala Pro Lys Val Arg Glu Ile Cys Ala		10
1230 1235 1240		
aaa cac ggc gtc cac tac gcc tac tac ccg tgg atc cac caa aac ttt	17110	15
Lys His Gly Val His Tyr Ala Tyr Tyr Pro Trp Ile His Gln Asn Phe		
1245 1250 1255	,	
1243		20
ctc tcc acc gtc cgc tac atg cac gcg gcc ggg acc ggt gcc aac tgg	17158	20
Leu Ser Thr Val Arg Tyr Met His Ala Ala Gly Thr Gly Ala Asn Trp		٠
1260 1265 1270		25
	17200	
cgc cag atg gcc aga gaa aat ccc ttg acc gga cgg gcg taa	17200	
Arg Gln Met Ala Arg Glu Asn Pro Leu Thr Gly Arg Ala		30
1275 1280 1285		
	•	
agatctgccg gcatcgatcc cgggccatgg cctgctttaa tgagatatgc gagacgccta	17260	35
	٠	
tgatcgcatg atatttgctt tcaattctgt tgtgcacgtt gtaaaaaacc tgagcatgtg	17320	
		40
tagctcagat ccttaccgcc ggtttcggtt cattctaatg aatatatcac ccgttactat	17380	
cgtattttta tgaataatat tctccgttca atttactgat tgtccgtcga cgagctcggc	17440	45
•		
gcgcctctag aggatcgatg aattcagatc ggctgagtgg ctccttcaac gttgcggttc	17500	
		50
tgtcagttcc aaacgtaaaa cggcttgtcc cgcgtcatcg gcgggggtca taacgtgact		
cccttaattc tccgctcatg atcagattgt cgtttcccgc cttcagttta aactatcagt	17620	55
		55
gtttgacagg atatattggc gggtaaacct aagagaaaag agcgtttatt agaataatcg	17680	
		•
gatatttaaa agggcgtgaa aaggtttatc cttcgtccat ttgtatgtgc atgccaacca		60
cagggttccc ca	17752	
		65

<210> 47

	<21	1> 29	90													
5	<212	2> PI	RT													
	<21	3 > U1	nknor	wn												
	•															
10	<400	0> 41	7													
	Met	Glu	Val	Val	Glu	Arg	Phe	Tyr	Gly	Glu	Leu	Asp	Gly	Lys	Val	Ser
	1				5					10		_	_		15	
	_				_											
15	C1 ~	C1	1707	7.00	71 0	T 011	T 011	C1	Com	Dha	C1	1701	~1	T	Mb se	ž ~~
1	GIII	Gly	vai		ATG	reu	reu	GIY		Pne	GIY	Val	GIU		THE	ASD
/				20					25					30		
20																•
	Thr	Pro	Thr	Thr	Lys	Gly	Leu	Pro	Leu	Val	Asp	Ser	Pro	Thr	Pro	Ile
			35					40					45			
25																
	Val	Leu	Gly	Val	Ser	Val	Tyr	Leu	Thr	Ile	Val	Ile	Gly	Gly	Leu	Leu
		50					55					60				
30	Tro	Ile	Lvs	Ala	Ara	Asp	Leu	Lvs	Pro	Ara	Ala	Ser	Glu	Pro	Phe	Leu
	65		-,-		5	70		_,_		9	75	001	0			80
	0,5					, ,					, ,					00
35	T	G3		7	**- 7	*	**- 3	*** -		•	5 1	~	53		•	a
	Leu	Gln	Ala	Leu		Leu	vai	HIS	ASN		Pne	Cys	Pne	Ата		Ser
					85			•		90					95	
40																
	Leu	Tyr	Met	Cys	Val	Gly	Ile	Ala	Tyr	Gln	Ala	Ile	Thr	Trp	Arg	Tyr
				100					105					110		
45																
75	Ser	Leu	Trp	Gly	Asn	Ala	Tyr	Asn	Pro	Lys	His	Lys	Glu	Met	Ala	Ile
			115					120					125			
50	Leu	Val	Tvr	Leu	Phe	Tvr	Met	Ser	Lvs	Tvr	Val	Glu	Phe	Met	Asp	Thr
		130	•			-	135			-4-		140				
55	17-7	T1 ~	Mak	T1 -	T	T	2	C	m}	D	Q1	77.	C	Db -	T	77 <i>4</i>
		Ile	Met	116	Leu		Arg	Ser	Thr	Arg		TIE	Ser	Pne	Leu	
	145					150					155					160
60																
	Val	Tyr	His	His	Ser	Ser	Ile	Ser	Leu	Ile	Trp	Trp	Ala	Ile	Ala	His
					165					170					175	
65																

222

3 .

	His	Ala	Pro	Gly 180	Gly	Glu	Ala	Tyr	Trp 185	Ser	Ala	Ala	Leu	Asn 190	Ser	Gly		
	Val	His	Val	Leu	Met	Tyr	Ala	Tyr	Tyr	Phe	Leu	Ala	Ala	Cys	Leu	Arg		5
			195					200				•	205					10
	Ser	Ser 210	Pro	Lys	Leu	Lys	Asn 215	Lys	Tyr	Leu	Phe	Trp 220	Gly	Arg	Tyr	Leu		
		Gln	Phe	Gln	Met		Gln	Phe	Met	Leu		Leu	Val	Gln	Ala	_		15
/	225	Acn	Mot	Laze	Thr	230 Asn	Ala	Pro	Tur	Pro	235	Фrn	T.e.11	Tle	Lve	240		20
	TYL	nsp	Mec	IJЗ	245	ASII	AIG	FIO	Tyr.	250		IIP	Бей		255			25
	Leu	Phe	Tyr	Tyr 260	Met	Ile	Ser	Leu	Leu 265	Phe	Leu	Phe	Gly	Asn 270	Phe	Tyr		25
	Val	Ģln		туr	Ile	Lys	Pro		Asp	Gly	Lys	Gln	Lys	Gly	Ala	Lys		30
	Mlo so	C 1	275					280					285					. 35
	Thr	290						•	-									
	<210	> 48	1							•								40
		> 52 > PR																45
		> Un		m													-	50
		> 48 Val		Ala	Gly 5	Gly	Gly	Leu	Gln		Gly	Ser	Leu	Glu		Asn		
		Asp	Val	Glu		Ile	Ala	Ser	Met	10 Ser	Leu	Phe	Ser	Asp	15 Phe	Phe		55
		-		20					25					30				60
	Ser	Tyr	Val 35	Ser	Ser	Thr	Val	Gly 40	Ser	Trp	Ser	Val	His 45	Ser	Ile	Gln		-
																		65

	Pro	Leu 50	Lys	Arg	Leu	Thr	Ser 55	Lys	Lys	Arg	Val	Ser 60	Glu	Ser	Ala	Ala
5																
	Val	Gln	Cys	Ile	Ser	Ala	Glu	Val	Gln	Arg	Asn	Ser	Ser	Thr	Gln	Gly
	65					70					75					80
10																
	Thr	Ala	Glu	Ala	Leu	Ala	Glu	Ser	Val	Val	Lys	Pro	Thr	Arg	Arg	Arg
					85					90					95	
15																
	Ser	Ser	Gln	Trp	Lys	Lys	Ser	Thr	His	Pro	Leu	Ser	Glu	Val	Ala	Val
				100					105					110		
20																
20	His	Asn	Lys	Pro	Ser	Asp	Cys	Trp	Ile	Val	Val	Lys	Asn	Lys	Val	Tyr
			115					120					125			
25																
23	Asp	Val	Ser	Asn	Phe	Ala	Asp	Glu	His	Pro	Gly	Gly	Ser	Val	Ile	Ser
	_	130					135				_	140				
20																
30	Thr	Tyr	Phe	Gly	Arg	Asp	Gly	Thr	Asp	Val	Phe	Ser	Ser	Phe	His	Ala
	145	-		-	_	150	-		-		155					160
35	Ala	Ser	Thr	Trp	Lvs	Ile	Leu	Gln	Asp	Phe	Tvr	Ile	Glv	Asp	Val	Glu
					165				_	170				•	175	
40	Arg	Val	Glu	Pro	Thr	Pro	Glu	Leu	Leu	Lys	Asp	Phe	Arg	Glu	Met	Arg
				180					185	-	-		J	190		J
45	Ala	Leu	Phe	Leu	Arg	Glu	Gln	Leu	Phe	Lys	Ser	Ser	Lys	Leu	Tyr	Tyr
			195					200		-			205		-	-
50	Val	Met	Lys	Leu	Leu	Thr	Asn	Val	Ala	Ile	Phe	Ala	Ala	Ser	Ile	Ala
		210	-				215					220				
55	Ile	Ile	Cys	Trp	Ser	Lys	Thr	Ile	Ser	Ala	Val	Leu	Ala	Ser	Ala	Cys
	225		-	-		230					235					240
60	Met	Met	Ala	Leu	Cys	Phe	Gln	Gln	Cys	Gly	Trp	Leu	Ser	His	Asp	Phe
					245				-	250	_				255	
65	T.em	Hic	Acn	Gln	V-1	Dha	Glu	ጥኮዮ	Ara	Ψ×-γ	Len	Acr	Glu	17= 1	V=1	Gla

			260					265					270				
Tyr	Val	Ile 275	Gly	Asn	Ala	Val	Leu 280	Gly	Phe	Ser	Thr	Gly -285	Trp	Trp	Lys		
Glu	Lys 290	His	Asn	Leu	His	His 295	Ala	Ala	Pro	Asn	Glu 300	Cys	Asp	Gln	Thr		ı
Туr 305	Gln	Pro	Ile	Asp	Glu 310	Asp	Ile	Asp	Thr	Leu 315	Pro	Leu	Ile	Ala	Trp 320		1
Ser	Lys	Asp	Ile	Leu 325	Ala	Thr	Val	Glu	Asn 330	Lys	Thr	Phe	Leu	Arg 335	Ile		2
Leu	Gln	Tyr	Gln 340	His	Leu	Phe	Phe	Met 345	Gly	Leu	Leu	Phe	Phe 350	Ala	Arg		2
Gly		Trp 355	Leu	Phe	Trp	Ser	Trp 360	Arg	Tyr	Thr	Ser	Thr 365	Ala	Val	Leu		. 3
Ser	Pro 370	Val	Asp	Arg _.	Leu	Leu 375	Glu	Lys	Gly	Thr	Val 380	Leu	Phe	His	Tyr		3
Phe 385	Trp	Phe	Val	Gly	Thr 390	Ala	Cys	Tyr	Leu	Leu 395	Pro	Gly	Trp	Lys	Pro 400		4
Leu	Val	Trp	Met	Ala 405	Val	Thr	Glu	Leu	Met 410	Ser	Gly	Met	Leu	Leu 415	Gly		4
Phe	Val	Phe	Val 420	Leu	Ser	His	Asn	Gly 425	Met	Glu	Val	Tyr	Asn 430	Ser	Ser		5
Lys	Glu	Phe 435	Val	Ser	Ala	Gln	Ile 440	Val	Ser	Thr	Arg	Asp 445	Ile	Lys	Gly	·	5
Asn	Ile 450	Phe	Asn	Asp	Trp	Phe 455	Thr	Gly	Gly	Leu	Asn 460	Arg	Gln	Ile	Glu		6
His 465	His	Leu	Phe	Pro	Thr 470	Met	Pro	Arg	His	Asn 475	Leu	Asn	Lys	Ile	Ala 480		6

	Pro	Arg	Val	Glu	Val	Phe	Cys	Lys	Lys	His	Gly	Leu	Val	Tyr	Glu	Asp
					485					490					495	
5		_					_,	_			_	_		_	_	~->
	Val	Ser	IIe		Thr	GIY	Thr	Cys		Vai	Leu	Lys	Ala	Leu	Lys	GIU
				500					505					510		
10	Val	Ala	Glu	Ala	Ala	Ala	Glu	Gln	His	Ala	Thr	Thr	Ser			
			515					520					525			
15																
1																•
1	<210)> 49	9													
20	<211	L> 40	69													
		2> PI														
	<213	3> U1	nknov	M												
25	<400)> 49	9													
				Asp	Ala	Asp	Lys	Leu	Ara	Gln	Ara	Gln	Thr	Thr	Ala	Val
30	1			-	5	•	-			10					15	
,,																
	Ala	Lys	His	Asn	Ala	Ala	Thr	Ile	Ser	Thr	Gln	Glu	Arg	Leu	Cys	Ser
35				20					25					30		
	_	_	_	_	_											
	Leu	Ser	Ser 35	Leu	Lys	GIY	Glu	G1u 40	Val	Cys	Ile	Asp		Ile	Ile	Tyr
10			33					40					45			
	Asp	Leu	Gln	Ser	Phe	Asp	His	Pro	Gly	Gly	Glu	Thr	Ile	Lys	Met	Phe
4 5		50					55					60				
•5																
	Gly	Gly	Asn	Asp	Val	Thr	Val	Gln	Tyr	Lys	Met	Ile	His	Pro	Tyr	His
50	65					70					75					80
	Ωb ×	C1	T	77 i ~	T	C1	T	Ma.	T	7	17-1	01	T	*** 7	ml	.
	1111	GIU	гуs	птъ	85	GIU	гуs	met	rys	90	vai	GTĀ	гÃ2	Val	95	ASP
55										50					23	
	Phe	Val	Cys	Glu	Tyr	Lys	Phe	Asp	Thr	Glu	Phe	Glu	Arg	Glu	Ile	Lys
۲0				100					105					110		
50																
	Arg	Glu		Phe	Lys	Ile						Asp		Gly	Thr	Leu
			115					120					125			

Gin Tyr His Trp Val Thr Thr Gly Thr Ser Trp Leu Leu Ala Val Ala 145	Gly	Trp 130	Phe	Phe	Arg	Ala	Phe 135	Cys	Tyr	Ile	Ala	Ile 140	Phe	Phe	Tyr	Leu		•
Asn His Gly Ala Thr Ser Lys Arg Pro Trp Val Asn Asp Met Leu Gly 180		Tyr	His	Trp	Val		Thr	Gly	Thr	Ser		L'eu	Leu	Ala	Val			
Leu Gly Ala Asp Phe Ile Gly Gly Ser Lys Trp Leu Trp Gln Glu Gln 195 His Trp Thr His His Ala Tyr Thr Asn His Ala Glu Met Asp Pro Asp 210 Ser Phe Gly Ala Glu Pro Met Leu Leu Phe Asn Asp Tyr Pro Leu Asp 230 His Pro Ala Arg Thr Trp Leu His Arg Phe Gln Ala Phe Phe Tyr Met 255 Pro Val Leu Ala Gly Tyr Trp Leu Ser Ala Val Phe Asn Pro Gln Ile 260 Leu Asp Leu Gln Gln Arg Gly Ala Leu Ser Val Gly Ile Arg Leu Asp 285 Asn Ala Phe Ile His Ser Arg Arg Lys Tyr Ala Val Phe Trp Arg Ala 290 Val Tyr Ile Ala Val Asn Val Ile Ala Pro Phe Tyr Thr Asn Ser Gly 310 Leu Glu Trp Ser Trp Arg Val Phe Gly Asn Ile Met Leu Met Gly Val	Tyr	Gly	Ile	Ser		Ala	Met	Ile	Gly		Asn	Val	Gln	His	_	Ala		i:
His Trp Thr His His Ala Tyr Thr Ash Ala Glu Met Asp Pro Asp Asp 210	Asn	His	Gly		Thr	Ser	Lys	Arg		Trp	Val	Asn	Asp		Leu	Gly		
210	Leu	Gly		Asp	Phe	Ile	Gly		Ser	Lys	Trp	Leu		Gln	Glu	Gln		20
225	His		Thr	His	His	Ala		Thr	Asn	His	Ala		Met	Asp	Pro	Asp		2:
His Pro Ala Arg Thr Trp Leu His Arg Phe Gln Ala Phe Phe Tyr Met 250 Pro Val Leu Ala Gly Tyr Trp Leu Ser Ala Val Phe Asn Pro Gln Ile 270 Leu Asp Leu Gln Gln Arg Gly 280 Asn Ala Phe Ile His Ser Arg Arg Lys Tyr Tyr Ala Val Phe Trp Arg Ala 290 Val Tyr Ile Ala Val Asn Val Ile Ala Phe Gly Asn Ile Met Leu Met Gly Val		Phe	Gly	Ala	Glu		Met	Leu	Leu	Phe		Asp	Tyr	Pro	Leu	_		30
Leu Asp Leu Gln Gln Arg Cly 275 Ala Leu Ser Val Gly 285 Ala Val Phe 285 Arg Leu Asp 285 Asn Ala Phe 290 Ture Arg Arg 295 Arg 295	His	Pro	Ala	Arg		Trp	Leu	His	Arg		Gln	Ala	Phe	Phe		Met		3:
Asn Ala Phe Ile His Ser Arg Arg Lys Tyr Ala Val Phe Trp Arg Ala 290	Pro	Val	Leu		Gly	Tyr	Trp	Leu		Ala	Val	Phe	Asn		Gln	Ile		40
290	Leu	Asp		Gln	Gln	Arg	Gly		Leu	Ser	Val	Gly		Arg	Leu	Asp		4:
305 310 315 320 Leu Glu Trp Ser Trp Arg Val Phe Gly Asn Ile Met Leu Met Gly Val	Asn		Phe	Ile	His	Ser		Arg	Lys	Tyr	Ala		Phe	Trp	Arg	Ala		50
		Tyr	Ile	Ala	Val		Val	Ile	Ala	Pro		Tyr	Thr	Asn	Ser			5:
	Leu	Glu	Trp	Ser		Arg	Val	Phe	Gly		Ile	Met	Leu	Met	_	Val		6

	Ala	Glu	Ser	Leu 340	Ala	Leu	Ala	Val	Leu 345	Phe	Ser	Leu	Ser	His 350	Asn	Phe	
5	Glu	Ser	Ala 355	Asp	Arg	Asp	Pro	Thr 360	Ala	Pro	Leu	Lys	Lys 365	Thr	Gly	Glu	
10	Pro	Val		Tro	Phe	Lvs	Thr		Val	Glu	Thr	Ser		Thr	Tyr	Glv	
16		370					375					380			•	- -	
15	Gly 385	Phe	Leu	Ser	Gly	Cys 390	Phe	Thr	Gly	Gly	Leu 395	Asn	Phe	Gln	Val	Glu 400	
20	His	His	Leu	Phe	Pro 405	Arg	Met	Ser	Ser	Ala 410	Trp	Tyr	Pro	Tyr	Ile 415	Ala	
25	Pro	Lys	Val		Glu	Ile	Cys	Ala		His	Gly	Val	His		Ala	Tyr	
30	ጥህም	Pro	Ψxx.	420	Wie	Gln.	Aen	Phe	425	Ser	Thr.	Val	Ara	430	Met	Wie	
	131	710	435	116	1115	GIII	ASII	440	Deu	Ser	1111	va1	445	171	Mec	1115	
35	Ala	Ala 450	Gly	Thr	Gly	Ala	Asn 455	Trp	Arg	Gln		Ala 460	Arg	Glu	Asn	Pro	
40	Leu 465	Thr	Gly	Arg	Ala												
45																	
50	<213	0> 50 L> 20 2> DI	5														
	<213	3> A:	rtif:	icia	l Sed	quenc	ce										
55	<220 <223)> 3> Po	olyl:	inker	r												
60)> 5(
65	gaat	tcg	gcg (gcc	gagci	cc c1	ccga	3									26

228

<210> 51		
<211> 265		
<212> DNA		5
<213> Artificial Sequence		
<220>		C
<223> Polylinker-Terminator-Polylinker		
<400> 51	i	. 5
ccaccgcggt gggcggccgc ctgcagtcta gaaggcctcc tgctttaatg agatatgcga		
gacgcctatg atcgcatgat atttgctttc aattctgttg tgcacgttgt aaaaaacctg	120	20
agcatgtgta gctcagatcc ttaccgccgg tttcggttca ttctaatgaa tatatcaccc	180	
gttactatcg tatttttatg aataatattc tccgttcaat ttactgattg tccgtcgacg		25
aattegaget eggegegeea agett	265	
<210> 52	3	3.5
<211> 257		
<212> DNA		
<213> Artificial Sequence	4	10
<220>		
<223> Polylinker-Terminator-Polylinker	4	15
<400> 52		
ggatccgata tcgggcccgc tagcgttaac cctgctttaa tgagatatgc gagacgccta	60	5(
tgatcgcatg atatttgctt tcaattctgt tgtgcacgtt gtaaaaaacc tgagcatgtg	120	
tagctcagat ccttaccgcc ggtttcggtt cattctaatg aatatatcac ccgttactat	180	5.5
cgtattttta tgaataatat tctccgttca atttactgat tgtccgtcga cgaattcgag		50
ctcggcgcgc caagett	257	

<210> 53

<211> 257

5 <212> DNA

<213> Artificial Sequence

10 <220>

<223> Polylinker-Terminator-Polylinker

15 <400> 53

25

35

40

45

50

55

60

65

agatetgecg geategatee egggeeatgg cetgetttaa tgagatatge gagaegeeta 60

20 tgatcgcatg atatttgctt tcaattctgt tgtgcacgtt gtaaaaaacc tgagcatgtg 120

tagctcagat ccttaccgcc ggtttcggtt cattctaatg aatatatcac ccgttactat 180

cgtattttta tgaataatat tctccgttca atttactgat tgtccgtcga cgaattcgag 240

o ctcggcgcgc caagctt

257

Patentansprüche

1. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I:

$$\begin{array}{c|c}
CH_2 & CH_2 & CH_2 & CH_2 & CH_2 & CH_3
\end{array}$$
(I)

in transgenen Pflanzen mit einem Gehalt von mindestens 1 Gew.-% bezogen auf die gesamten Fettsäuren dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst:

- a) Einbringen mindestens einer Nukleinsäuresequenz in eine Pflanze, die für ein Polypeptid mit einer Δ -6-Desaturaseaktivität codiert; sowie
- b) Einbringen mindestens einer zweiten Nukleinsäuresequenz, die für ein Polypeptid mit einer Δ -6-Elongaseaktivität codiert; und
- c) gegebenenfalls Einbringen einer dritten Nukleinsäuresequenz, die für ein Polypeptid mit einer Δ -5-Desaturaseaktivität codiert; und

d) anschließend kultivieren und ernten der Pflanzen; und

wobei die Variablen und Substituenten in der Formeln I folgende Bedeutung haben:

 R^1 = -OH, Coenzym A-(Thioester), Phosphatidylcholin-, Phosphatidylethanolamin-, Phosphatidylglycerol-, Diphosphatidylglycerol-, Phosphatidylserin-, Phosphatidylinositol-, Sphingolipid-, Glycoshingolipid- oder einen Rest der folgenden allgemeinen Formel II

$$H_{2}C-O-R^{2}$$
 $H_{2}C-O-R^{3}$
 $H_{2}C-O-C$
(11)

 R^2 = H, Phosphatidylcholin-, Phosphatidylethanolamin-, Phoshatidylglycerol-, Diphosphatidylglycerol-, Phosphatidylserin-, Phosphatidylinositol-, Shingolipid-, Glycoshingolipid-, Glycoshingolipid- oder gesättigtes oder ungesättigtes C_2 - C_{24} -Alkylcarbonyl-,

 R^3 = H, gesättigtes oder ungesättigtes C_2 - C_{24} -Alkylcarbonyl-, oder R^2 und R^3 unabhängig voneinander einen Rest der allgemeinen Formel Ia

n = 3, 4 oder 6, m = 3, 4 oder 5 und p = 0 oder 3.

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Substituenten \mathbb{R}^2 und \mathbb{R}^3 unabhängig voneinander \mathbb{C}_{10} - \mathbb{C}_{22} -Alkylcarbonyl- bedeuten.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Substituenten R^2 und R^3 unabhängig voneinander C_{16} -, C_{18} -, C_{20} oder C_{22} -Alkylcarbonyl- bedeuten.
- 4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die Substituenten R^2 und R^3 unabhängig voneinander ungesättigtes C_{16^-} , C_{18^-} , C_{20^-} oder C_{22} -Alkylcarbonyl- mit ein, Zwei, drei, vier oder fünf Doppelbindungen bedeuten.
- 5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die transgene Pflanze eine Ölfruchtpflanze ist.
- 6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass die transgene Pflanze ausgewählt aus der Gruppe Soja, Erdnuss, Raps, Canola, Lein, Nachtkerze, Königskerze, Distel, Haselnuss, Mandel, Macadamia, Avocado, Lorbeer, Wildrosen, Kürbis, Pistazien, Sesam, Sonnenblume, Färberdistel, Borretsch, Mais, Mohn, Senf, Hanf, Rhizinus, Olive, Calendula, Punica, Ölpalme, Walnuss oder Kokosnuß ist.
- 7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass die Verbindungen der Formel I durch Pressen oder Extraktion aus den transgenen Pflanzen in Form ihrer Öle, Fette, Lipide oder freien Fettsäuren gewonnen werden.
- 8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass die gemäß Ansprüch 7 gewonnenen Öle, Fette, Lipide oder freien Fettsäuren raffiniert werden.
- 9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass man die in den Verbindungen der Formel I enthaltenden gesättigten oder ungesättigten Fettsäuren freisetzt.
- 10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass die gesättigten oder ungesättigten Fettsäuren über ein alkalische Hydrolyse oder eine enzymatische Abspaltung freigesetzt werden.
- 11. Verfahren nach den Ansprüchen 1 bis 10, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel I in den transgenen Pflanzen mit einem Gehalt von mindestens 5 Gew.-% bezogen auf die gesamten Fettsäuren enthalten sind.
- 12. Verfahren nach den Ansprüchen 1 bis 11, dadurch gekennzeichnet, dass, die für die Polypeptide mit einer Δ -6-Desaturaseaktivität, Δ -6-Elongaseaktivität oder Δ -5-Desaturaseaktivität codierenden Nukleinsäuresequenzen, ausgewählt aus der Gruppe sind:
 - a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29 oder SEQ ID NO: 31 dargestellten Sequenz
 - b) Nukleinsäuresequenzen, die aufgrund des degenerierten genetischen Codes durch Rückübersetzung der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Aminosäuresequenzen erhalten werden,
 - c) Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29 oder SEQ ID NO: 31 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Aminosäuresequenzen codieren und mindestens 50% Homologie auf Aminosäureebene aufweisen, ohne daß die enzymatische Wirkung der Polypeptide wesentlich reduziert ist.
- 13. Verfahren nach den Ansprüchen 1 bis 12, dadurch gekennzeichnet, dass die Nukleinsäuresequenzen gemäß Anspruch 8 in einem Nukleinsäurekonstrukt mit einem oder mehreren Regulationssignalen verknüpft sind.
- 14. Verfahren nach den Ansprüchen 1 bis 13, dadurch gekennzeichnet, dass das Nukleinsäurekonstrukt zusätzliche Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n).

Hierzu 3 Seite(n) Zeichnungen

65

60

25

Figur 1: Biosynthesekette

Nummer: Int. Cl.⁷: DE 102 19 203 A1 A 01 H 1/00 13. November 2003

Offenlegungstag:

103 460/519

Nummer: Int. Cl.⁷: Offenlegungstag: DE 102 19 203 A1 A 01 H 1/00 13. November 2003

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLORED OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox

THIS PAGE BLANK (USPYU,