AD/A-001 978

A RESPONSE SURFACE FOR THE COMPLEX MODULUS OF COMPOSITE MATERIALS

Charles E. Arthur, et al

Virginia Polytechnic Institute and State University

Prepared for:

Air Force Materials Laboratory

30 October 1974

DISTRIBUTED BY:

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

BY DIST. AVAIL AND/OF SPCIAL	D'C Buf Section UNANTOTION	ACCESSION for	
UNANCE TO DESTINATION DESTINAT	UNANCE TO DESTINATION DESTINAT		Puf' Section
BY	BY	-	
DISTRIBUTION/AVAILABILITY CODES	DISTRIBUTION/AVAILABILITY CODES	Keliadi 11720L	************************
	\cap		

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AN 10-001978

Security Classification			M-1701110
	ONTROL DATA - R		
(Security classification of title, body of abstract and inde 1. ORIGINATING ACTIVITY (Corporate author)	exing annotation must be	20. REPORT	security classification Jnclassified
Virginia Polytechnic Institute & State	University	26. GROUP	
A RESPONSE SURFACE FOR THE COMPLEX MO	DULUS OF COMPOS	SITE MATER	IALS
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Technical Report, July 1972 -	April, 1974		
CHARLES E. ARTHUR, AGNES S. HELLER AND	ASHOK B. THAK	KER	
May 197	70. TOTAL NO.	G PAGES	76. NO. OF REFS
BG. CONTRACT OR GRANT NO. F33615-72-C-2111 B. PROJECT NO. 7340	98, ORIGINATOR	'S REPORT NU	MBER(\$)
c. Task No. 734003	eb. OTHER REPORT NO(5) (Any other numbers that may be essigned this report) AFML-TR-74-185		
10. DISTRIBUTION STATEMENT Approved for public	release; dist	ribution u	unlimited.
11. SUPPLEMENTARY NOTES Reproduced by	Air Force	-	s Laboratory

NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Springfield, VA. 22151

Wright-Patterson Air Force Base, Ohio 45433

13. ABSTRACT

The complex modulus of boron/epoxy and graphite/epoxy laminates has been measured in forced vibration tests at frequencies ranging from 20 to 17,000 Hz and temperatures varied between -50° and +300°F.

The data was analyzed using response surface methodology. Based on the response surface time-temperature shift parameters, master curves, and probability relations have been developed.

DD FORM .. 1473

UNCLASSIFIED

Security Classification

UNCLASSIFIED . . Security Classification LINK A LINK B LINK C KEY WORDS ROLE ROLE ROLE Composite Materials Laminated Composites Complex Modulus Response Surface Time-Temperature Effects **Vibration Tests**

UNCLASSIFIED

ia/

AFML-TR-74-185

A RESPONSE SURFACE FOR THE COMPLEX MODULUS OF COMPOSITE MATERIALS

COLLEGE OF ENGINEERING
VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY
BLACKSBURG, VIRGINIA 24061

Technical Report AFML-TR-74-185

October 30, 1974

Approved for release; distribution unlimited.

Air Force Materials Laboratory
Air Force System Command
Wright Patterson Air Force Base, Ohio

FOREWORD

The research and development reported herein was conducted under Air Force Contract F33615-72-C-2111 at Virginia Polytechnic Institute and State University. The work was initiated under Project 7340, "Non-metallic and Composite Materials", Task 734003, "Structural Plastics and Composites". The Air Force Project Engineer directing the program was Dr. J. Whitney (AFML/MBM) of the Mechanics and Surface Interactions Branch, Nonmetallic Materials Division, Air Force Materials Laboratory at Wright-Patterson Air Force Base, Ohio. Dr. R. A. Heller was Principal Investigator at Virginia Polytechnic Institute and State University.

The work covered in this report was performed by C. E. Arthur, A. S. Heller, and A. B. Thakker of Virginia Polytechnic Institute and State University.

The report covers part of the work conducted between 1 Jul 1972 and 30 Apr 1974.

The report was submitted by the authors in May 1974.

This technical report has been reviewed and is approved for publication.

J. M. WHITNEY

Project Engineer

FOR THE COMMANDER

S. W. TSAI, Chief

Mechanics & Surface Interactions Branch

Nonmetallic Materials Division

ABSTRACT

The complex modulus of boron/epoxy and graphite/epoxy laminates has been measured in forced vibration tests at frequencies ranging from 20 to 17,000 Hz and temperatures varied between -50° and +300°F.

The data was analyzed using response surface methodology. Based on the response surface time-temperature shift parameters, master curves, and probability relations have been developed.

TABLE OF CONTENTS

I	INTRODUCTION
II	REVIEW OF PERTINENT LITERATURE
III	SPECIMENS
IV	VIBRATION TESTS
	Advantages of Vibration Testing
	Measurement of the Complex Modulus 5
٧	DEVELOPMENT OF A RESPONSE SURFACE
	Multiple Regression Procedure
	Response Surfaces
VI	TEMPERATURE SHIFT PARAMETERS
VII	HUMIDITY EFFECTS
VIII	CONCLUSIONS
APPENI	DIX
	Boron/Epoxy Vibration Data
	Graphite/Epoxy Vibration Data 47
IX	REFERENCES

LIST OF ILLUSTRATIONS

		PAGE
1.	Test Configuration for Transverse Vibration	. 6
2.	Test Configuration for Axial Vibration	. 7
3.	Schematic Diagram of Vibration Testing System	. 8
4.	Typical Axial Vibration Test Results on Boron Epoxy Specimens at Various Temperatures	. 10
5.	Effects of Mass Cancellation on Resonance and Anti-Resonance Peaks	. 11
6.	Measurement of Damping	. 13
7.	Contour for the Storage Modulus of Boron Epoxy	. 18
8.	Contour for the Loss Modulus of Boron Epoxy	. 19
9.	Constant Temperature Curves for the Storage Modulus of Boron Epoxy	. 20
0.	Constant Temperature Curves for the Loss Modulus of Boron Epoxy	· 21
1.	95% Probability Curves for the Damping Ratio of Boron Epoxy at -50° F	· 24
2.	Contour for the Storage Modulus of Graphite Epoxy	25
3.	Contour for the Loss Modulus of Graphite Epoxy	26
4.	Constant Temperature Curves for the Storage Modulus of Graphite Epoxy	. 27
5.	Constant Temperature Curves for the Loss Modulus of Graphite Epoxy	- 28
6.	95% Probability Curves for the Damping Ratio of Graphite Epoxy at -50°F	29
7.	Horizontal and Vertical Shift	31
8	Time Shifts Due to Temperature Changes	. 33

LIST OF ILLUSTRATIONS (continued)

		PAGE
19.	Vertical Shifts Due to Temperature Changes	35
20.	Master Curve for the Storage Modulus of Boron/Epoxy for a Reference Temperature of 80°F (300°K)	36
21.	Master Curve for the Storage Modulus of Graphite/Epoxy for a Reference Temperature of 80°F (300°K)	37

LIST OF TABLES

		PAGE
1.	R ² , σ , and the Coefficients of Equation (24) for Degrees Kelvin	22
2.	Coefficients of Equation (24) for Degrees Fahrenheit	23

SECTION I

INTRODUCTION

The significance of the role of advanced composite materials in many engineering applications is increasing. Environmental effects on the material properties of composites is an important aspect of design considerations.

To determine the long term influence of the individual contributions of time, temperature, and humidity on composite materials would require extensive numbers of specimens and tests. In order to isolate significant variables experiments have been designed for maximum utilization of specimens.

Due to wide variation in the information obtained from experimentation a statistical analysis of the data was conducted. Multiple regression techniques were employed and the significance of the individual variables was tested.

This experimental program resulted in the development of response surfaces for the complex moduli of composite materials.

SECTION II

REVIEW OF PERTINENT LITERATURE

Environmental effects on the mechanical properties of advanced composites have received only limited theoretical analyses. Most of the work done in this area has been experimental in nature because of the complexity of the problem. The choice of fiber, matrix, and lay-up of fiber reinforced, laminated composites are important in the consideration of environmental effects.

Kaminski, Lemmon, and McKague [Reference 1] discuss a regression analysis method for establishing temperature allowables. This approach places scatistical significance on a temperature retention curve. The statistical model suggested by them is

$$y = b_0 + b_1 T + b_2 T^2 + e$$

where y is the response (stress or strain), T is the test temperature, and e is random error. The error term, e, accounts for the variation in observed results at a constant temperature and is assumed to be normally distributed with mean zero and variance σ^2 . The variance of e is assumed

to be the same for all temperatures. The constants b_0 , b_1 , and b_2 are regression coefficients and are estimated from least squares techniques.

Reference 2 describes an experimental approach for finding humidity and thermal effects on graphite/epoxy composites. These tests involved hygrothermal exposures (combinations of constant temperature and constant humidity) and dynamic exposures (changing temperature and/or humidity) of the specimens. The specimen lay-up and thickness is varied in this approach. Tests to determine water desorption as well as absorption behavior were conducted. The effects of moisture on certain properties were determined by mechanical tests. The effects of increasing the moisture content is seen to increase the creep of the material. Also it is seen that at elevated temperatures there is a loss of flexural and shear strength with increased moisture content.

Browning and Whitney [Reference 3] find that the effects of absorbed moisture on the elevated temperature mechanical properties of fiber-reinforced laminates is highly dependent on the lay-up of the material and the type of loading. For example, a quasi-isotropic boron epoxy laminate when tested in tension at 350 F after exposure to high humidity has approximately the same tensile properties as it did at 350 F before moisture was absorbed. The same material, with a uni-directional lay-up and tested in flexure, shows a 50% reduction in its 350°F flexure strength, although the same amount of moisture was absorbed as in the first specimen.

It is also found in Reference 3 that in the epoxy laminate systems water behaves as a plasticizing agent that disrupts the strong hydrogen bonds. The reversibility of this water absorption process is shown by the change of properties from "dry" to "wet" specimens. The "wet" specimens, after being dried, exhibit the same properties as they did before exposure. Fiber controlled composites have much less dependence on moisture absorption than matrix controlled materials. However, both exhibit this reversibility.

Pritchard and Taneja [Reference 4] state that the rate at which hot water degrades a glass fiber reinforced resin is accelerated by stress. The resin, fiber, and coupling agent are all susceptable to hydrolysis. Swelling and crack formation have been observed in low molecular weight constituents. These phenomena occur more rapidly when the laminate is stressed. Specimens which were exposed to water on one side only were used to determine the rate at which water permeates into them. A dependence upon the molecular structure of the resin, the void volume and the mobility is seen. The rate of degradation is expected to have a relationship upon the permeation rate of water in the material.

Reference 5 states that the effect of moisture is generally to reduce the strength and ultimate strain of a composite. However, the

stress-strain characteristics and the initial modulus are not greatly altered by exposure to humidity. No significant change in strength or modulus was seen in cross-ply laminates.

Halpin [Reference 6] states that although the range of interest for the linear viscoelastic behavior of polymers can cover a large number of decades in time or frequency the range of any given experimental instrument is limited. In order to obtain values of the response function over a wide range of frequency or time, a suitable procedure is to change the effective time or frequency scale by changing the ambient conditions, such as temperature.

It is found in many cases that observations of the material response taken over a range of frequency or time at one temperature will result in good superposition upon observations taken at a different temperature if a simple translation along the log time axis is made. This means that a change in temperature is equivalent to a change in the time scale. A master curve can be developed for a reference temperature from which all other temperature curves can be developed by a time shift. This relationship between the temperature and time scale can be represented by a shift factor \mathbf{a}_{T} . This shift factor is the ratio of the time scale at an arbitrary temperature to the time scale at a reference temperature, \mathbf{T}_{T} . A function of the reference temperature and the arbitrary temperature can be used to define \mathbf{a}_{T} [Reference 6].

There is a similar effect of water absorption upon the time scale which can be characterized by a water concentration shift factor a. A master curve can also be developed at a reference humidity. A simulation change in temperature and water concentration could be approximated by a reduced time, t/a_{Ta} [Reference 6].

Acceleration of testing can be obtained by using these time shift factors. The effect of increasing temperature and water concentration is to decrease the time required to carry out experimentation.

In addition to time shifting there are vertical shifts in the storage moduli predicted by the kinetic theory of rubber elasticity. This theory indicates that for ideal rubber-like networks the storage modulus should be inversely proportional to the product of absolute temperature and density. The response is therefore shifted by a factor

$$\frac{E'}{E_r}$$
, = $\frac{\rho}{\rho} \frac{r^T r}{T}$

where ρ and T are the density and absolute temperature that correspond to the response E' and ρ_r is the density taken at the reference temperature T_r . The response at the reference temperature is E'_r [Reference 6].

Composite materials consisting of elastic fibers and a viscoelastic matrix behave in a more complex manner than do thermo-rheologically simple, linear viscoelastic materials. It is, however, possible to develop time-temperature superposition methods for such materials based mostly on experimental evidence, though the theoretical explanation of some of the nonlinear characteristics is not yet available.

The experiments and the analysis of the data presented here show a methodology for the determination of shift parameters and indicates the accelerating effects of various environmental variables.

SECTION III

SPECIMENS

The specimens chosen for the experiments were fiber controlled laminates with epoxy matrices. One metallic fiber and one non-metallic fiber was used. The Brunswick Corporation of Marion, Virginia fabricated the specimens.

The metallic fiber, boron was purchased from Avco Corp. as 55-05 boron tape with specific gravity 2.012. This tape was layed up as follows: 0° , $\pm 45^{\circ}$, 0° , 0° , $\pm 45^{\circ}$, 0° , with each angle measured from the longitudinal axis of the specimen. These eight ply specimens have a thickness varying from .040 to .045 in. The material was fabricated in panels approximately 12 to 15 in. wide and 15 to 21 in. long.

The second material was fabricated from Hercules X3501A-S graphite tape in an eight ply laminate identical to the boron epoxy lay-up. The panels were approximately 12 in. wide and 16 to 21 in. long. The specific gravity of the graphite specimens is 1.476.

Test specimens were routed from the panels using a slotted router coated with 60/80 diamond grit. This insured minimum fiber breakout at the ends. The ends were kept perpendicular and the edges parallel to the fiber direction. The specimen width was .75 in. in four different lengths, 5, 10, 15, and 20 in. [Reference 7].

SECTION IV

VIBRATION TESTS

Advantages of Vibration Testing

Forced vibration testing as a means for obtaining experimental data has several desirable features. Since the test itself is non-destructive many observations can be taken from a single specimen. This drastically

reduces the need for a large number of specimens. The ease with which observations are taken makes the collection of a large amount of data possible. This was essential for the statistical analysis used.

Measurement of the Complex Modulus

The complex modulus is determined from a forced oscillation experiment in which the lag angle, δ , between the imposed sinusoidal strain

$$\varepsilon = \varepsilon_0 \exp(j_\omega t) \tag{1}$$

and the resulting sinusoidal stress

$$\sigma = E^* \varepsilon = |E^*| \varepsilon_0 \exp j (\omega t - \delta)$$
 (2)

is measured. In equations (1) and (2) ϵ_0 is the strain amplitude, ω is the circular frequency, j is $\sqrt{-1}$, t is time, and

$$E^* = E'(1+j \tan \delta) \tag{3}$$

is the complex modulus. The storage modulus, E', is the real part and the loss modulus, E", is the imaginary part of the complex modulus. When the lag angle is small,

$$E'' = Im(E^*) = E' tan \delta = E' \delta$$
 (4)

Forced vibration experiments were performed using transverse and axial excitation on both materials. For low frequencies (20-5000 Hz) specimens were vibrated in a double cantilever bending configuration by clamping them at midspan to an accelerometer fastened to the moving element of an electromagnetic shaker. For higher frequencies (4,000-17,000 Hz) the specimens were vibrated axially (vertically) by clamping one end of each specimen in the accelerometer as shown in Figures 1 and 2.

The experiments were carried out in a temperature controlled cabinet with six temperature levels ranging from -50°F to +300°F. The excitation frequency was varied continuously by a sweep oscillator and the acceleration of the moving element of the shaker was kept constant by an electronic servo/monitor in a feedback loop (Fig. 3).

Figure 1. Test Configuration for Transverse, Vibration

Figure 2. Test Configuration for Axial Vibration

Figure 3. Schematic Diagram of Vibration Testing System.

An XY plotter recorded a force/acceleration versus frequency curve for each observation. These curves (Figure 4) reached a maximum value at the anti-resonant frequency and a minimum value at the resonant frequency. The anti-resonant frequency was used to determine the modulus and damping characteristics of the specimen. The effect of the mass of the accelerometer and specimen holder are not present at anti-resonance. If the resonance had been used additional electronic equipment would have been necessary to provide for mass cancellation (Figure 5). For transverse vibration the lowest three anti-resonant peaks were observed. In the axial tests only the first vibration mode was observed because the frequency response of the test system was not high enough to monitor additional modes. (The upper limit of the system was approximately 20 kHz.)

The storage modulus and lag angle (damping ratio) were calculated with the aid of isotropic beam and bar theories. Since the ratios of length to thickness ranged from 455:1 to 110:1 the effects of shear were negligible and Euler's bending theory was used.

For a homogeneous isotropic bar in axial excitation the normalized driving point impedence, Z, is given by

$$\frac{Z}{J\omega M} = \frac{F_1/a_1}{M} = \frac{1}{n*\ell} \tan n*\ell + \gamma$$
 (5)

where F_1 is the driving force, a_1 is the acceleration of the transducer of mass m_1 , $M = \rho A \ell$ is the mass of the bar with ρ the mass density, A the cross-sectional area and ℓ the length; $n^* = \omega \, \sqrt{\rho/E^*}$ and $\gamma = m_1/M$.

The relation between the storage modulus and the frequency is given by

$$C^2 = \frac{E^i}{\rho} \tag{6}$$

where C, the wave speed is

$$C = f_n \lambda_n \tag{7}$$

Here f_n is the frequency in Hertz at an anti-resonance and λ_n is the wavelength for the anti-resonance.

For the fixed-free boundary conditions used here

$$\lambda_1 = 4\ell, \ \lambda_2 = \frac{4\ell}{3}, \ \lambda_3 = \frac{4\ell}{5}, \ \cdots \tag{8}$$

Figure 4. Typical Axial Vibration Test Results on Boron/Epoxy Specimens at Various Temperatures

Figure Effects of Mass Cancellation on Resonance and Antiresonance Peaks.

Therefore it follows that at first anti-resonance

$$E' = 16x^2 \rho f_1^2$$
 (9)

At anti-resonance Z reaches a maximum.

For small &, at an anti-resonance, it can be shown that

$$\delta = \frac{\omega_2^2 - \omega_1^2}{\omega_0} = \frac{f_2^2 - f_1^2}{f_0} \tag{10}$$

where f is the nthanti-resonant frequency and f and f are the half power frequencies as shown in Figure 6. At the half power points the impedence is equal to .707 times its peak value at anti-resonance. The half power points are 3 Db below the peak when plotted on a logarithmic scale. The impedence, Z, is plotted in Figure 6 resulting in a maximum at the anti-resonance frequency.

It can also be shown that the storage modulus for vibration of a double cantilever beam driven by a sinusoidal force at the midpoint is given by

$$E' = \frac{48\pi^2 f_n^2 \rho}{h^2} \left[\frac{L}{2(na)} \right]^4$$
 (11)

where h is the thickness of the beam. Values of the parameter "na" are given in Snowden [Reference 8]: $na_1 = 1.8751$, $na_2 = 4.6941$, $na_3 = 7.8548$. The value of the damping ratio is again computed from equation (10).

SECTION V

DEVELOPMENT OF A RESPONSE SURFACE

Multiple Regression Procedure

The response surface problem is to find the response, y, which depends upon a set of k controllable variables, x_1 , x_2 , ..., x_k , that is

$$y = f(x_1, x_2, ..., x_k)$$
 (12)

The form of f in equation (12) is unknown but is assumed to be a polynomial function of low order.

Figure 6. Measurement of Damping Ratio

If k=2 one might assume a model for y of the form

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_1 x_1^2 + \beta_2 x_2^2 + \beta_1 x_1 x_2 + \varepsilon$$
 (13)

where $\beta_0, \beta_1, \ldots, \beta_{12}$ are coefficients to be estimated, y is the measured response, and ϵ is random error.

If n experimental observations are made the data can be written in the following form

The number of observations must be greater than the number of coefficients to be estimated. The ith observation can be written as

$$y_1 = \beta_0 + \beta_1 x_{11} + \beta_2 x_{21} + \beta_{11} x_{11}^2 + \beta_{22} x_{21}^2 + \beta_1 x_{11} x_{21} + \epsilon_1$$
 (14)

where ε_1 is a random variable. It is assumed that ε_1 is independent from observation to observation and is normally distributed with variance σ^2 . The model of equation (14) can be written in matrix notation as

$$\underline{y} = [X]\underline{\beta} + \underline{\varepsilon} \tag{15}$$

where

$$Y = \begin{cases} y_1 \\ y_2 \\ \vdots \\ y_n \end{cases} \qquad \underline{\varepsilon} = \begin{cases} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{cases}$$
 (16)

$$\underline{\beta} = \begin{cases} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_{11} \\ \beta_{22} \\ \beta_{12} \end{cases} \tag{17}$$

$$[X] = \begin{bmatrix} 1 & x_{11} & x_{21} & x_{11}^2 & x_{21}^2 & x_{11}^2 x_{21} \\ 1 & x_{12} & x_{22} & x_{12}^2 & x_{22}^2 & x_{12}^2 x_{22} \\ 1 & x_{1n} & x_{2n} & x_{1n}^2 & x_{2n}^2 & x_{1n}^2 x_{2n} \end{bmatrix}$$
(18)

and

The method of least squares is used to estimate the regression coefficients of equation (17). The least squares method uses as an estimate for $\underline{\beta}$ the vector that minimizes the sum of the squares of the errors

$$L = \sum_{i=1}^{n} \varepsilon_i^2 = \underline{\varepsilon}'\underline{\varepsilon} . \tag{19}$$

L can be written as

$$L = (y - [X]\hat{\beta})^{b} (y - [X]\hat{\beta})$$
 (20)

where $\hat{\beta}$ is the vector of estimates for $\underline{\beta}$.

Expanding the right hand side of equation (20)

$$L = \underline{y}'\underline{y} - ([X]\hat{\underline{g}})'\underline{y} - \underline{y}'([X]\hat{\underline{g}}) + ([X]\hat{\underline{g}})'([X]\underline{g})$$

$$L = \underline{y}'\underline{y} - 2\hat{\underline{g}}'[X]'\underline{y} + \hat{\underline{g}}'[X]'[X]\hat{\underline{g}}$$
(21)

To find the $\hat{\beta}$ which minimizes L, equation (21) is differentiated.

$$\frac{\partial L}{\partial \beta} = -2[X]'\underline{Y}+2[X]'[X]\hat{g} \qquad (22)$$

Setting the partial derivative to zero and solving for $\hat{\underline{\rho}}$, the least squares estimator is

$$\hat{g} = ([x]'[x])^{-1}[x]'y$$
 (23)

These equations are called the "normal equations" for estimating $\underline{\beta}$.

The preceding development follows that of Myers [Reference 9].

Statistical Analysis System (SAS) computer programs were used to conduct the least squares regression [Reference 10]. Estimates were made for the regression coefficients for several polynomial models. Temperature, T, and the natural logarithm of time, t, were used as the independent variables in the models, where time is the period of oscillation at anti-resonance. Because of the assumption that the errors, ϵ_1 , are normally distributed, the implication that the components of the complex modulus can take on negative values exists. This is due to the fact that the normal distribution extends to plus and minus infinity. This physical impossibility is resolved by using lnE' and lnE" as the dependent variables in the regression analysis.

The computer program not only estimates the regression coefficients but chooses the model that produces the maximum R^2 . R^2 is the multiple correlation coefficient which is a measure of the percentage of variance in the dependent variable that has been accounted for by all of the independent variables combined [Reference 11]. Tests of significance are also conducted on the regression coefficients.

Although models up to fourth order were tried, the computer program showed that models above second order did not offer any appreciable improvement in fit. Therefore second order models were developed for the responses which include only those coefficients deemed significant by the computer program.

Response Surfaces

Using the above procedure response surfaces were developed for $ln\delta$, lnE', and lnE'' for both boron epoxy and graphite epoxy. These surfaces were of the form

$$lny = A + Blnt + Cln2t + DT + ET2 + FTlnt$$
 (24)

where y is either δ , E', or E". The values of the coefficients are given in Tables 1 and 2. The multiple correlation coefficient, R^2 , and the error standard deviation, σ , is also given for each surface in Table 1.

To aid in visualizing these surfaces contour plots are given (Figures 7, 8, 12, and 13). These plots were drawn by an XY plotter controlled by a digital computer which used the regression equations. The temperature scale is the abcissa and time (period) is the ordinate. There are plots for both the storage and loss moduli of boron epoxy and graphite epoxy.

When temperature is held constant the result is a two dimensional curve which is the intersection of a constant temperature plane and the response surface. Such constant temperature cuts were made using the experimental temperatures with the results shown for boron epoxy in Figures 9 and 10 and for graphite epoxy in Figures 14 and 15.

The regression relation, Equation 24, estimates a mean surface (mean line for constant temperature). It is possible to establish confidence bands for this mean surface. It is also possible to estimate tolerance bands for new observations.

The probability that a new observation will fall within the limits prescribed by y' is $\alpha/2\%$, where

$$y' = y + z_{\alpha/2} \sigma \{1 + \underline{x}([X]'[X]^{-1})\underline{x}'\}^{1/2}$$
 (25)

In this equation y is the value of the response ($ln\delta$, lnE', lnE'') on the regression surface defined by equation (24) and

$$\underline{x} = [1, 1nt, 1n^2t, T, T^2, T]$$
 (26)

 σ is the error standard deviation given in Table 1, $z_{\alpha/2}$ is the normal statistic corresponding to the $\alpha/2$ probability of exceedence, $\underline{x}([X]'[X])-1_{\underline{x}'}$ is a quadratic form with \underline{x}' the transpose of \underline{x} (Equation 26) and the [X] matrix is defined by Equation (18). Due to the nature of this particular experimental design and the large number of observations the value of the quadratic form is negligible compared to 1. In fact, an error of less than 1% is incurred if it is assumed to be zero. For 95% probability $z_{\alpha/2}$ is 1.96 and Equation (25) becomes

$$y' \neq y + 1.96\sigma$$
 (27)

Plots of the regression with 95% probability curves and the data are given for the damping ratio at -50°F for both materials in Figures 11 and 16.

Figure 7. Contour for the Storage Modulus of Boron/Epoxy

TABLE 1 $\label{eq:R2} \textbf{R}^{2}\text{, }\sigma\text{, and the Coefficients of Equation (24) for Degrees Kelvin}$

Boron Epoxy

	1 n s	InE'	lnE"
R^2	.65	.58	
σ	.33	.05	.38
A	2.42	16.48	18.90
В	1.642	-1 .899x10 ⁻²	1 .623
С	1 .115x10 ⁻¹	2.115x10 ⁻³	1.136x10 ⁻¹
D	-1 .352x10 ⁻²	0	-1 .352x10 ⁻²
E	1 .594x10 ⁻⁵	0	1.594x10 ⁻⁵
F	-5.362x10 ⁻⁴	7 .4 38x1 0 ⁻⁵	-4 .618x10 ⁻⁴
	Gra	phite Epoxy	
	1 ns	lnE'	1nE"
R^2	.70	.25	
σ	.41	.04	. 4 5
A	4 .65	15.93	20.58
В	2.285	-7 .81 7x1 0 ⁻³	2.277
C	1.478x10 ⁻¹	1.735x10 ⁻³	1.495x10 ⁻¹
D	-1.519x10 ⁻²	3.317x10 ⁻⁴	-1.486x10 ⁻²
Ε	1 .183x10 ⁻⁵	0	1.183x10 ⁻⁵
F	-1 .036x10 ⁻³	8.050x10 ⁻⁵	-9.555x10 ⁻⁴

TABLE 2
Coefficients of Equation (24) for Degrees Fahrenheit

	Bor	on Epoxy	
	l no	1 nE '	1nE"
A	1 .145x10 ⁻²	16.48	16.49
В	1 .505	0	1 .505
C	1 .1 15x1 0 ⁻¹	2.115x10 ⁻³	1 .136x10 ⁻¹
D	-2.988x10 ⁻³	0	-2.988x10 ⁻³
E	4 .920x10 ⁻⁶	0	4.920x10 ⁻⁶
F	-2.979x10 ⁻⁴	4.132x10 ⁻⁵	$-2.565x10^{-4}$

Graphite Epoxy

	1 ns	lnE'	1 nE"
A	1 .547	16.01	17 .56
В	2.021	1.274x10 ⁻²	2.034
C	1.478×10 ⁻¹	1 .736x10 ⁻³	1.495x10 ⁻¹
D	-5.081x10 ⁻³	1 .843x10 ⁻⁴	-4 .897x10 ⁻³
E	3.650x10 ⁻⁶	0	3.650×10^{-6}
F	-5.754x10 ⁻⁴	4 .47 2x 10 ⁻⁵	-5.307×10 ⁻⁴

Figure 16. 95% Probability Curves for the Damping Ratio of Graphite/Epoxy at -50°F

SECTION VI

TEMPERATURE SHIFT PARAMETERS

Although response surface analysis does not necessarily give a physical explanation for the underlying principles of the material behavior, a great deal of information can be obtained from this approach.

The surface may be extrapolated to various temperature levels and to testing times.

It is also possible to compare these results with the time-temperature superposition methods of linear viscoelasticity.

Curves of storage and loss modulus versus lnt at a constant temperature can be shifted horizontally along the lnt axis with changes in temperature. A vertical shift due to density changes also exists for thermorheologically simple materials [Reference 6 Halpin].

Similar horizontal and vertical shift parameters may be established for the fiber reinforced composites tested.

The horizontal shift can be obtained from the equation of the response surface. At the reference temperature, denoted by Tr, the response (Equation 24) function becomes

$$\ln y_{r} = A_{r} + B_{r}x + Cx^{2}$$
 (29)

where y is the response (E' or E"), x = lnt, $A_{r} = A + DT_{r} + ET_{r}^{2}$, and $B_{r} = B + FT_{r}$. The stationary point on the constant temperature curve (Figure 17) can be obtained by differentiating equation (29) with respect to x and equating the resulting derivative to zero.

$$\frac{d(\ln y_r)}{dx} = B_r + 2Cx = 0$$
 (30)

The coordinates of the stationary point are thus given by

$$x_r = -\frac{B_r}{2C}$$
, $\ln y_r = A_r - \frac{B_r^2}{4C}$ (31)

Figure 17. Horizontal and Vertical Shift

The stationary point can similarly be found for a curve at another temperature and the difference

$$x - x_r = 1 n \frac{t}{t_r} = -\frac{F}{2C} (T - T_r)$$
 (32)

is the horizontal shift parameter.

The vertical shift is likewise obtained and is given by

$$\ln y - \ln y_r = \ln \frac{y}{y_r} = (D - \frac{BF}{2C})(T - T_r) + (E - \frac{F^2}{4C})(T^2 - T_r^2)$$
 (33)

Both the horizontal and vertical shifts are functions of the temperature and the regression coefficients of the response surface. The time shift exists only if C and F, the quadratic $(\ln^2 t)$ and interaction (Tlnt) coefficients, are nonzero. The vertical shift is also a function of these coefficients. Tables 1 and 2 show that these parameters are nonzero. The shifts can be shown to be valid at all points on the curves and not just at the stationary points. Figures 18 and 19 show these shift parameters as functions of temperature with 80° F taken as the reference.

The time shift shows that an acceleration of testing time can be achieved for the storage modulus by increasing the temperature above the reference temperature. A new reduced time scale is given by $t = t_{a_{\rm T}}$, where $t_{\rm r}$ is the time at the reference temperature and $a_{\rm T}$ is the time shift parameter, $t/t_{\rm r}$. For example, $lna_{\rm T}$ for the storage modulus of graphite epoxy at 300°F is approximately -2.83 (Figure 18) and $a_{\rm T}$ is about .06, reducing the time scale to 6% of the 80°F time scale.

An increase in the time scale occurs when the temperature is elevated for the loss moduli, but this is much smaller than the decrease in time for the storage moduli.

According to Halpin [Reference 6], the storage modulus for an ideal rubber-like material should behave according to

$$\frac{E'}{E_r'} = \frac{\rho_r T_r}{\rho T} \tag{34}$$

However, the vertical shifts obtained from these response surfaces for the storage moduli do not exhibit this behavior. For example, the largest storage modulus shift, $\rm E'/E_r$ ', occurs for graphite epoxy

Figure 18. Time Shifts Due to Temperature Changes

and is approximately .98 at 300°F (422K) with the reference temperature being 80°F (300K). (See Figure 19). The above equation indicates a density ratio, $\rho/\rho_{\rm r}$, of about .7 which is much larger than the actual density change. This shows that the composite materials studied here behave according to some other mechanism that is not yet understood.

Using these temperature shift parameters, master curves have been constructed for the storage moduli and are given in Figures 20 and 21.

SECTION VII

HUMIDITY EFFECTS

The response surface model given in the previous section is second order in temperature and time with an interaction term (Tlnt) included. To account for humidity effects a new model would include a third independent variable. This new model may be of the form

$$y = \beta_0 + \sum_{i=1}^{3} \beta_i x_i + \sum_{i=1}^{3} \beta_{ii} x_i^2 + \sum_{\substack{i \ j \ i < j}} \beta_{i,j} x_i x_j + \epsilon$$
 (35)

where the β 's are constants, y is the measured response and ϵ is random error. The independent variables, x_1 , x_2 , x_3 , are time, temperature, and humidity or some function of these variables.

A response surface given by Equation (35) would not only give the temperature shift parameters but would give additional shift parameters due to the absorbed water in the material.

Experiments currently being performed will be used to estimate the parameters of Equation 35.

SECTION VIII

CONCLUSIONS

A non-destructive testing technique was used to determine the environmental effects on the complex moudlus of composite materials. A large number of experiments were conducted to obtain data at various

Figure 20. Master Curve for the Storage Modulus of Boron/Epoxy for a Reference Temperature of 80°F(300K)

temperatures. These data were used to obtain response surfaces for the complex moduli of boron epoxy and graphite epoxy.

Information about the material behavior can be obtained from the equation of the response surface. Horizontal and vertical shifts were developed to show the changes in the time and vertical scales due to changes in temperature.

To develop shifts due to humidity the same procedure could be carried out after gathering sufficient humidity data to fit a response surface.

It has been shown that an appreciable acceleration of testing time can be achieved by elevating the test temperature.

APPENDIX

TABULATION OF VIBRATION DATA

The experimental observations are listed in a computer period in order of decreasing period (increasing frequency) for each test temperature. The temperatures are given in degrees Fahrenheit and the period (which is the reciprocal of the frequency in Hertz) is given in seconds. The damping ratio is a nondimensional quantity and is computed by using equation (10). The storage modulus is given by equations (9) and (11) and is in units of psi. Each specimen is coded using two characters. The first character is numeric with the numbers 1, 2, 3, and 4 signifying transverse excitation of speicmens of length 5, 10, 15, and 20 in. respectively. The numbers 5, 6, 7, and 8 are for axial vibration and also denote lengths of 5, 10, 15, and 20 in. respectively.

The second character is alphabetic ranging from A to E. This code identifies each of five specimens having nominally identical dimensions.

Specimens were excited at the first three antiresonant frequencies. The first appearance of a code number in the tabulation signifies the lowest antiresonant frequency, second appearance identifies the next highest frequency etc.

BURUN EPOXY VIBRATION DATA

TEMP	PERIOD	CAMPING RATIL	STOFAGE MUDULUS	SPEC
-53	J.5051E-01	U-384UE-01	C.1440F UE	40
ーラレ	U.5025i-01	0.3570E-01	0.1455t 08	411
-50	J.4988E-01	0.3640E-01	U.1471L UE	40
ーシン	5.49486-(1	J. 2970E-01	0.1500E U8	44
-50	J.274JE-U1	J.2050E-01	U.1548E 08	3Γ
- 90	J. 27176-01	C. 242 UE - 31	(.1574F 08	3 D
ー ン・)	J.123dE-01	J. 2010E-01	U.1497E U8	20
-50	ひ・1235: ーレ1	5.2510E-01	0.1506E U8	2 A
ーショ	J.12256-U1	0.2200E-01	U.1531E UB	21)
ーソレ	0.12235-01	U.1830E-01	0.1534E 08	2E
-50	0.12146-01	J. 226Ut - 01	0.1559F LO	26
-50	じゅおとうひとーいる	J.780JE-J2	0.1375E 08	46
-) .	0.81655-02	J.77COL-02	0.14u5E 08	41)
ーショ	J.8140r02	J.73UJE-02	0.1412E UE	43
-50	1.01306-32	J. 7460t-02	C.1415F C8	4C
-50	0.30401-62	J. 7603E - 32	C-1448E JA	44
-50	J.+40JL-02	0.730UE-J2	U.1487F Lô	3A
ーンし	0.43901-02	U.6700E-02	0.1538E 08	38
ーりし	U.435JE-02	0.430UE-02	0.15651 08	30
-50	J. 259Jt-32	C.6600F-02	0.16151 08	1 E
ーンじ	J.298JL-J2	U.5900E-02	0.1620E UR	ĮΛ
-50	0.14636-32	J.490JL-02	0.1525E 08	2 A
- 50	U.195UE-UZ	J.430UE-02	0.1544E Ud	20
ーちょ	J.19931-02	U.49CUE-52	₩•1538E Ûb	2£
-50	3-14402-02	0.4H00E-02	0.1550f Ja	20
-) J	J.192JE-62	C.1003E-01	0.1581e 08	23
-50	0.15006-02	J. 47601-02	U.1554F 08	3 t
-50	0.15508-02	3.67CUE-02	0.15 USF US	34
- > 0	J.15502-02	0.6203E-02	6.1575 F ⊌6	30
- 5J	J.1510E-02	3.79UUE-02	U-1652F 08	313
-50	J. 4850[-03	J. 970CE-02	6.1550t U8	18
-50	U•4830r=63	0.5800E-02	0.1654E U8	10
-50	J.4765=03	G.7100E-52	0.1011E t3	1 ^
-50	J.1950E−ごま	J.1560E-01	0.1849E U8	7Δ
-50	0.19515-03	0.2010E-01	0.1844E U8	70
-53	U.193UL-13	6.1240E-01	0.1869£ UE	7C
− 5∪	0.19304-03	0.17001-61	0.188UE 08	7 i:
- 50	J.1920E-03	0.163LE-01	C.1891E JE	7 8
- 5∪	3.17131-03	0.1280F-01	0.1594F CA	14
-20	0.1010E-03	0.42038-02	0.1805- 08	66.
- 70	ひ・1 シリンモーしょ	0.1170t-01	C-1828E 18	61)
- 50	0.13002-33	U.1U60E-01	0.1020E 00	66
ーラし	7.15375-03	U.105ct-01	0.1867E 38	GH
- 5 0	J.691JL-04	U.135UE-01	0.1629E UH	5 F
- 5∪	1).689UL-U4	U-1240E-01	0.1630F Lo	5 A
-50	J.078JL-04	0.105UE-01	U.1693E U6	50

SCRUN EPOXY VIBRATION DATA

TLAP	PERTUD	DAMPING RATIO	STORAGE MODULUS	SPEC
-50	ひっちゅりひとーご4	J.1240E-01	J.1734F J8	50
-50	J.0640E-04	J.1100E-01	0.1.054E UB	26
-25	9.9092L-01	0.356CE-01	0.1417F 08	46
-25	J.5U51E-01	U.3550E-01	0.1440E 08	40
-25	J.>U38E+01	J.3530E-01	0.1447F U8	4t
-25	0.50302-01	J.3470E-01	0.1452E 08	40
-65	J.495dL-U1	0.288JE-01	0.1494F 08	4 A
-25	U.2740E-J1	J.2170F-01	0.1541E 08	3 E
-25	J.2722E-01	J. 239UE - J1	0.1565F 08	31)
-25	J.2683[-U]	0.2240E-01	0.1613E UB	30
-25	0.12364-01	U-2170E-01	0.1497F 08	Α'،
-25	J-1235E-01	J. 216Ct - U1	0.1506F Ub	2E
-20	0.12316-01	J.184JE-01	3.1510E U8	21.
-25	0.1225E-01	J.2140E-01	J.1529E J8	20
-25	0.12125-01	0.2120E-01	U.1563E U8	28
-25	J. 02016-02	J.760-E-02	. 0.1369E 35	46
-25	0.01301-02	C.6500F-05	ü.14Ubf 08	415
-25	0.81301-02	0.6600E-02	0.1410E LA	40
-25	1.01305-02	U.7000E-02	C.1414F 68	4C
-25	J.8J6UE-U2	0.690UE-02	0.1431F U8	41
-25	3.447JL-62	0.730UE-02	G.1482F J3	3A
5	U-4440E-02	J.6700F-02	0.1505F U8	30
-25	J.445JE-U2	0.8UCOE-02	0.1511F U8	3 H
-25	0.4300E-02	0.4400E-02	0.1559L 0E	30
-25	J. 3c 7JE-02	6.6100E-02	0.1525F U8	10
-25	3-30305-02	0.61301-02	0.1505F 08	10
-25 -25	J. 2993E-J2	0.5700E-02	0.16168 08	14
-25	0.19732-02 0.19531-02	0.490UE-U2	0.1514E 08	2A
-25	U.1950E-02	J.4900E-02 J.470UE-02	J.1533F 68	2F
-25	J.1950F-02	0.5803E-02	0.1533E 08 0.1532E 03	20
-65	0.1520E=02	J. 3500E-02	0.1532E 00 0.1581F 08	20 28
-20	J. 150Jr-02	0.490cE-02	0.1546E 0d	25 3E
-25	J.15051 -02	0.4900E-02	U.1546E 08	3 ξ 3 Δ
-25	J.155J€-02	0.05001-02	0.1562F 08	3is
-25	3.15936-02	0.7700t-02	0.1577F 08	3C
-25	J.1550E-J2	J.6200E-02	0.15658 38	30
-20	0.4690:-03	0.34JJE-02	0.1528F (8	10
-25	J.484Jc-UJ	J.5300E-02	0.1658F U8	15
-65	J.480JE-J3	J.1200E-01	0.15837 38	1 A
-25	J.146Ja-U5	U.1570E-01	0.1816E J8	74
-25	U.145JE-U3	J.158UE-01	J.184JE 06	7 E
-25	J.1950L-03	0.1660E-01	C.1044E UE	7 8
-25	J.194JE-03	J.1570E-31	J.1851E Ja	70
-25	0.17102-03	U.1690E-01	0.1589E 00	1 A
-25	J.134UE-03	J.46UUE-02	C.1744E U3	60

BURDN EPOXY VIBRATION DATA

TEMP	PEKTUU	DAMPING RATIO	STORAGE MODULUS	SPEC
-25	0.132JE-03	0.10706-01	0.1781E 08	oθ
-25	0.13108-03	J.1063E-01	0.1805[78	6 É
-20	ひ。よろいうにーひろ	0.8200E-02	0.1838t 08	60
-25	U.12831-U3	J.1L30E-01	85 31881.0	6A
-25	J.693JE-64	0.1210E-01	0.1616E 08	5E
-25	1.69278-04	0.1250E-01	0.1622E 08	54
-25	0.69136-04	0.1170E-01	C.1627F 08	58
-25	J. 084UE-L4	U.1130E-01	0.1663E C8	50
-25	0.674JE-04	0.115UE-31	0.17U9E 08	5 C
Ü	U. >67+E-01	0.3350E-01	U.1427F 08	4F
Ĵ	0.5060E-31	J. 3390E-01	0.1431f. U8	40
j	りょりいうしたーし1	0.3280E-01	0.1440E U8	48
Ü	0.504JF− U1	0.3280E-01	U-1446F UB	40
J	0.45715-01	0.2730E-01	U.1487E UH	4A
Ü	0.274JE-cl	J. 2473E-01	J.1548E J6	31)
J	J.27211-61	J.2150E-01	J.1570E UR	3 E
J	0.26356-01	J-2420E-01	0.1613E DE	3 C
Ú	J.12331-01	0.2170E-01	U.1497E U8	2 A
U	J.12356-01	0.198JE-01	0.1505E 08	20
ن	0.12312-01	U.184JE-01	⊎•1516E 08	2 H
J	0.1231:-01	0.1990F-01	0.1516E 08	2 H
ರ	J. 024JF-J2	0.65008-02	U.1377E US	4 E
J	J.010JE-02	0.610uE-02	U-1403F U8	48
J	0.81JUE-02	0.6500E-02	0.1409E UB	4 C
ù	J.815JE-02	J.65JJE-U2	C.1408E U8	4U
J	J.8090E-02	0.6500E-02	0.1429F U8	44
J	J.4493E-U2	0.790LE-02	0.1469E 08	34
J	0.444JE-02	0.0700E-02	0.1498F Jb	30
J	3.437J=-02	0.650UE-02	0.1552F CE	30
v	0.30806-02	0.620UE-02	0.1516F J8	10
Ú	U.30136-02	0.6000E-02	0.1582E 08	10
Ù	0.50156-02	0.6000E-02	0.1582F 08	1 £
J	J.297Jf -02	0.5900E-02	C.1630E 08	LA
J	0.1970b-62 0.1980b-62	0.3903E−02 0.5900E−02	U.15USE US	2A
	-	0.7000E-02	0.1520E UR	25
J	J.1950E-02 J.195JE-02	0.5400E-02	0.1535£ 08	2C
o o	0.1930E=02	0.9300E-02	0.1532E 08 0.1565F 08	20
ů).157JE-02	0.4300E-02		3 t
	J.1560E-02	6.6500E-02	U-1538E 08	3E
3	J. 15001-02	0.6500E-02	Ŭ•1556E U8 □•1556E U8	3A
Ü	U.125UL-02	U.5n0UE-U2		3D
	J.49JJE-03	J.4900E-02	0.1569E U8 0.1520E U8	3C
U	U.485UE=03	U.4900E-02	•	10
Ü	U.481JE-U3	0.7900E-02 0.1920E-01	0.1550E 08 0.1580E 08	10 14
ũ	0.4815E-03	J.139UE-01	0.17e3F 06	7A
J	7427000-03	0113701-01	O.T.LOJE OO	T A

BOREN EPUXY VIBRATION DATA

TEMP	PERIOD	DAMPING RATIO	STORAGE MODULUS	SPEC
J	Ú.196JE-€3	C. 1590E-01	0.1815E 08	76
U	3.19530-03	0.1660E-01	0.1833E US	73
U	J.1955t-C3	0.148JE-01	C.1837F U8	7C
U	J.1720E-03	U.1840E-01	0.1567E J8	14
J	0.13505-03	0.9700t-02	0.1716E U8	60
U	U-134JE-03	0.1080E-01	U.1744E 08	65
O	J.132JE-03	0.9500E-02	U.1766E 08	6E
Ú	0.13101-01	5.940UE-02	3.1814E 38	61.
ij	0.1300E-03	U.1040E-01	0.1843F U8	64
J	J.697UE-04	0.146CE-01	0.1600F 36	56
O	J.695JE-04	U.1290E-01	0.1607E UE	5Ē
J	J. 5950E-04	3.1186E-01	J.16U9F 38	54
О	J.686JE-04	J. 7000E-01	C.1652E UB	50
U	J.0780E-04	U.1120E-01	0.1693E C8	50
3 0	0.56432-01	0.247JE-01	∪.1446F ∂8	40
60	U-5047E-01	J.2470E-01	C.1446E 08	4ť
8.5	J.5615E-01	0.21101-01	U.1461E OR	413
BJ	J.500JE-01	J.2850E-01	0.1469F 08	46
85	J.4963E-U1	0.2090E-01	U.1489E 06	41
3)	J.2746r-01	J.17207-01	0.1545F 08	3 t
80	0.274of-01	0.1720E-01	0.1541F U8	30
83	U.27u3e-01	U-1890E-U1	0.1591E U8	31)
ರು	0.12461-01	J.1560E-01	0.14785 38	24
80	J.1242L-U1	0.15501-01	0.143BL G6	25
80	J.12338-01	0.1540E-01	0.1510E 08	20
33	U-1229F-U1	J.1723E-31	∪.1521 € Ja	2b
3 J	J.11986-01	0.16835-01	0.1601F 08	28
ამ	1.2250E-12	0.5800E-02	U.1361F 08	4 E
0)	J.ド150E-02	U.5000E-02	0.1409E 08	40
U	U.813UE-U2	0.4500E-02	C.1414E Ud	48
ರು	J.811JE-02	0.6300E-02	0.1422F 08	44
80	J.8100E-02	U.5700E-02	0.1424E 08	40
80	0.44205-02	0.5000E-02	0.1518F J8	3 L
80	0.44001-02	0.4400E-02	0.1532F 08	30
86	J.439JE-U2	U.7500E-02	U.1538E 08	3 ft
80	J.369JE-02	0.6200E-02	0.1506E UR	10
30	J.3040E-02	1.610UE-02	Ů•1553E ∪b	ĪΛ
80	C.3040E-02	0.6100E-02	0.1553E 08	1 6
33	0.30308-02	0.6100E-02	0.1563F L3	10
80	J.195JE-02	C.590CE-02	J.1497E 08	24
80	U.198UE-02	0.490UE-02	U.1497F OH	20
ຮຽ	J.197Jr - U2	0.7900E-02	C.1508E 08	28
6 U	J.157JE-02	0.4700E-02	0.15116 08	20
83	J.157JL-02	C.4100E-02	0.1503E UN	26
80	0.15702-02	0.0300E-02	0.1527E 08	3 A
80	J-1570E-02	0.63008-02	0.1526t Ca	30

BUREN EPEXY VIBRATION DATA

TEMP	PERIOU	DAMPING RATIO	STORAGE MODULUS	SPEC
85	0.15636-02	U-5200E-02	U.1546E Ud	باز
3)	3.150JE-02	6.6300E-02	0.1546E 08	38
80	U.155JE-62	0.3900E-02	U.1570E 08	3 E
øj	J.493JE-03	0.440CE-02	0.1505E 08	16
80	J.491u2-u3	U-1470E-01	0.1513E C8	18
87	0.490JE-03	0.540JE-02	0.152UE 38	16
80	1.48902-03	U.5900F-02	J.1528E DE	1 A
30	v.20102-03	0.1810E-01	3.17271 08	70
σü	J.158JE-03	U. 1190E-01	J.1763F 08	7 A
3 0	0.19806-03	U.1610E-01	0.1780E UE	10
ಶು	J.1983E-03	0.178CE-01	C.17671 OP	7 E
8)	U-197JF-03	0.1260E-01	Ŭ•1798E ⊍8	7¢
&)	U-1750E-03	U-9300E-02	6.1517F UE	1 A
81)	0.13501-03	0.8500F-02	C.1697E UE	6C
ಚಳ	0.1340E-03	0.10908-01	0.173UE LE	50
8.2	J.1340E-J3	C.8400E-02	0.1744F J8	6£
8)	J.133JE-03	0.1070E-01	0.1748£ 08	64
60	U.1313E-U3	U.1U6UE-Ü1	0.1809E C8	5 P.
ون	J.7093E-04	0.1980E-01	0.1547E 08	5 E
ยว	J.761JE-64	J. 1270E-01	0.1556E Co	54
80	J.6983E-04	0.1400E-01	0.1596E 08	50
87	J.6800E-04	0.10601-01	0.1650E 08.	٥c
200	0.5102101	U.2190F-01	0.1411E 38	4E
200	J.5097t-01	0.224JE-01	0.1414E US	40
200	J.5003F-01	J. 2380E-C1	0.1433F U8	40
200	J.5056E-01	0.2020E-01	0.14371 08	4C
200	J.5045t-01	0.2025E-01	0.1443F J8	4 A
200	J.2811E-01	U.1760E-U1	U.1472F J8	عد
200	0.28016-01	J. 1020E-01	0.14815 08	3D
200	J.2753E-C1	0.1720E-01	0.1534£ 08	30
200	J.1273F-01	0.1580E-01	0.1424E 08	2C
200	0.1298E-01 0.1256E-01	0.1250E+01	J.1451E 08	2 E
200 200	U.1250t-U1	U.1260E-01 U.1630F-01	0.1455F 08	24
200	0.1238E-01	J. 1550f - 01	0.1455E 08 0.1497E 08	2D 28
200				
200	0.8300E=02 0.8200E=02	0.5800E-02 J.5300E-02	0.1358F 0a 0.1391F va	4 t
200	J.d1dut-02	0.5300F-02	0.1391F Un 0.1397E 08	43 40
200	J. 016JE-02	0.5500t-02	C.1463F 68	4 A
200	0.810Jt-02	U.5400E-02	0.1406E 08	4C
200	J.451JE-02	G. 730ut-02	C.1458E U8	3A
200	J.446JE-U2	0.4500E-02	0.1485E U8	3D
200	J.445Ut:-02	C.67GOE-02	0.14916 08	38
200	0.44306-02	U. 7700E-02	0.1511F 08	3C
200	0.3100E-02	0.124UE-01	0.1497E OH	10
200	3.3070E-02	0.6700E-02	C.1525E (8	18
				

BUNCH EPOXY VIBRATION DATA

TEMP	PEKLUD	DAMPING RATIO	STURAGE MODULUS	SPEC
200	0.3070E-02	0.6100E-02	U.1521E 08	14
200	0.3000E-02	0.6100E-02	0.1534E U8	16
200	J.3050E-02	0.61098-02	0.1543F 08	10
20 0	J.20201-02	0.1000E-01	0.1438F 08	2 C
ŽUU	3.2010E-02	C.60CGE-02	0.145 ut us	26
200	U-2003E-02	C.6000E-02	0.1401E U8	20
200	0.200JE-02	U.7200E-02	0.1461E 38	24
200	J. 199JE-62	0.8000E-02	0.1473E C8	28
200	U.1010E-02	U.6700E-02	0.1465E 08	34
200	J.159JE-02	J.660(E-02	0.1498F U8	3B
200	0.15901-02	0.460JE-J2	0.1490E 38	3 E
200	9.1590E-02	Ú•6503E−02	0.1498E U8	3 C
200	J.1590E-02	0.6400E-U2	0.14891 UF	30
200	J.4980E-03	J.4500E-02	0.1476F UB	10
200	J.498UE-U3	0.890JE-02	0.1476F 08	13
200	J.4960E-03	0.6000E-02	U.1483E 08	16
200	U-4950E-U3	0.340UE-02	J.1491E U8	1 A
200	J-204JE-03	U.143UE-01	0.1672E UB	7 A
200	1.20406-03	J. 2200E-J1	0.1686E 16 ;	7 €
200	J.204JE-03	0.1530E-01	0.1672E J8	7()
200	J.ZU30E-03	0.1640E-01	0.1703E 08	7C
200	J-2020E-03	0.1460E-01	0.1713E 08	73
200	J. 19Jui - 03	U. 86CUE-02	3.1250F U8	19
200	J.18102-03	0.7200E-02	0.1420E 08	1 B
200	3.18001-03	0.1440E-01	0.1435E U8	16
200	U.1793E-03	0.9600E-02	6.1447E 08	1 A
200	0.14002-03	0.101GE-01	U.1593F C8	UC.
200	0.1390E-03	0.670CE-02	0.1620E C8	60
200	0.13/02-03	0.1100E-01	0.1656E 08	6A
200	J-130JE-03	J. 8600E-02	0.1673E 08	6E
200	J-134UE-03	0.1080E-01	0.1739E 08	5E
200	3.7203E-04	J. 2390E-01	C.1475E U8	5E
200 200	0.7170E-04 0.7130E-04	U.1290E-01 U.1710E-01	0.1512E 08	5 A
200 200	3.70005-04	0.1710E-01 0.1640E-01	U.1530F 58 U.1587E 53	う り
30.)				5C
300	0.515UE=01 J.5144E=Ul	0.2170E-01 0.266E-01	U•1380€ U6 C•1366€ O8	4L 4C
300 300	U.5134E-01	0.2000E-01	C.1366E 68 C.1394E 08	4U
ں ان ان ان ان ان	J.5110m-01	0.2130E-01	C.1407E U6	40 48
300	0.5084E-01	0.1940E-01	U.1421E UB	4A
300 300	J.2633L-C1	0.2003E=01	0.1448E 08	3 D
300	0.2804L-01	C.1750E-01	0.14782 08	3£
300	J.2797c-01	0.1750E-01	U.1465E U8	3C
300	J.1278E-01	0.134UE-01	U.1406E U8	20
300	J.12746-01	0.1810E-01	0.1415E Ja	20
303	0.12746-01	0.1400E-01	0.1415E U8	2E
	J 1 2 1 1 1 0 1	001.002.01	001.1256 00	£ 1.

BORON EPOXY VIBRATION DATA

TEMP	PERIOD	DAMPING RATIO	STURAGE MODULUS	SPEC
3 00	0.1274E-01	J.1430E-01	0.14150 08	2۸
300	J.1262E-C1	0.1895E-01	0.1442E 08	28
300	J.837JE-U2	0.7100E-02	0.1335E 08	4E
300	J. 632UE-C2	G. 83COE-02	0.1351E Ú8	4C
300	J.83JOE-02	J.7100E-02	0.1358E 08	48
300	U.0200E-02	0.7400E-02	U.1369E 08	44
303	J. 5250c-02	3.61 CUE-02	0.1369E 08	41)
300	J.458JE-U2	J.7800E-02	0.1413E U8	3A
300	0.45236-02	0.68001-02	3.1452E 08	30
300	J.+51JE-02	U.5600F-02	0.1458F UB	30
300	J.448JE-CZ	J. 780JE-02	0.1472E 98	38
300	J.312JE-02	J.2180E-01	U.1479E U8	10
300	J.:110E-02	J.1240E-01	0.1488E 08	15
30J	J. 304 JE- 32	0.620UE-02	6.1506E CE	10
300	J-2060E-62	0.1150E-01	0.1378E US	20
300	0.2000E-02	J. 134CE-01	0.1375E 06	SE
300	U-204Jt-02	0.1020E-01	0.1409E LB	20
300	J.2630E-02	U.7300E-02	0.14216 (8	2 A
300	J.2030L-02	J.1220E-01	0.1418E 08	26
3 00	0.162JE-02	0.7000E-02	0.1443E US	33
300	J.162JE-52	0.67CUE-02	0.14435 08	3t
300	0.10206-02	U.7000E-02	0.1442F JP	34
300	J.162Jt-02	U. 8100F-02	0.1442E 08	3 D
300	U-1610E-02	J.750UE-02	U.1458E U8	3 C
306	J.5000E-03	0.1519E-01	0.1425£ 08	1 A
300	J.504JL-03	U.5000E-02	0.1439E U8	1 E
300	0.50408-03	0.5000E-02	0.1439F (8	10
300	J.2090E-03	J.1650E-01	0.1598E C8	7C
300	J.2090E-03	U.1320E-01	0.1598E U8	7 e
300	J.2090c-03	0.1270E-01	J.16(1E J8	7 D
300	0.20702-03	U.1320E-01	0.1635F UB	7E
300	J.Zuást-ú3	0.1030E-01	J.1645E 08	7 A
300	0.19302-03	U.9000E-02	0.1247E 08	19
3 i.) u	J.1900E-03	0.8900F-02	0.1294E UB	16
300	1.14232-03	0.1920E-01	C.154JE C8	6C
さいじ	0.14005-03	0.1390E-01	0.1580E 08	60
300	J-134UE-03	U-8100E-02	C.1616F 38	6E
330	0.13902-03	0.1390E-01	0.1611E 08	6A
300	J.13702-03	0.111UE-01	0.1656E C8	68
300	J.744Jz-04	0.3050E-01	0.1404E 08	5 E
300	J.7270E-04	0.1530E-01	0.1469E 38	5A
300	J. 721 JE - 34	0.198JF-01	0.1495E 08	50
300	J.716JE-04 J.712JE-04	0.2080E-01	0.1514F U8	58 5.6
300	J. 112JI-04	0.1710E-01	0.1532⊦ 08	5C

TEMP	PERTUD	DAMPING RATIO	STORAGE MUDULUS	SPEC
-50	J.553UE-01	J.4430E-01	0.8800E 07	44
-50	J.549JE-01	U.4840E-01	0.8920E 07	4B
- 50	J.546JE-01	0.4420E-01	0.9043E 07	4E
-50	0.53208-01	U.5270E-01	0.4520E J7	40
- 5J	J.3160E-01	J. 405UE-01	U.8523E 07	38
-50	0.3100E-U1	0.3850E-U1	0.854JE 07	3 A
-50	J.314UE-U1	J.370UE-01	0.865JE 07	3 D
- 50	0.31005-01	U.3780E-01	0.8890E 07	3 E
-50	U-3060E-01	J. 4160E-01	0.909UE 07	3 C
- 50	0.143JE-01	0.1783E-01	0.8263E 07	2 C
-50	J.140JE-01	0.1820E-01	0.8610E 07	28
- 50	J.159JE-J1	0.1870E-01	U.8760E C7	2A
-50	J.137JE-01	0.1850E-01	0.8970E 07	20
- 50	0.137JE-01	J.1580£-01	0.896JE 07	26
-50	J.891JE-J2	0.8110E-02	J.863JE U7	40
-50	0.809JE-02	J.7560E-02	U.8680E 07	44
-50	J.874JE-02	J.787JE-02	0.8863E 07	4B
-50	J.8613F-05	0.7700E-02	0.9260E 07	4E
-50	J. 05131-02	J. 7550E-02	0.9470E U7	40
-50	U.500JE-02	0.5500E-02	0.8680E 07	34
-50	J.499JE-02	0.602CE-02	0.6710E 07	3E
-50	0.4980E-02	U.5970E-02	0.876JE 07	38
- 50	0.457JE-02	0.6450E-02	0.880JF 07	30
-50	U-4890E-02	0.5940E-02	0.9090E 07	3C
-50	J. 1480E-02	U.6260E-02	0.8640E 07	10
− 50	0.34701-02	J.5610E-02	0.8720E 07	18
-50	0.33700-02	0.6783E-02	0.9250E 07	1 E
- 50	∪•335 0€−02	0.7400E-02	0.9390E U7	10
-50	U-32/0E-02	U.674UE-02	0.984JE J7	1 A
-50	0.2270E-02	0.499UE-02	0.8340E U7	5 C
- วบ	U-224UE-UZ	J.5430E-J2	0.8550E UT	28
-50	0.2220E-02	U.4870E-02	0.8693E U7	21
-50	0.21805-02	0.577UE-02	0.9040E 07	20
-50	0.21806-02	0.5000E-02	0.9023F 07	2٤
- 50	0.1790E-02	0.5750E-02	0.8660E 07	3 A
-50	0.178JE-02	U.6380E-02	0.8740E U7	38
-50	0.176UE-U2	U.713UE-02	0.8713E U7	3£
-50	0.17/16-02	0.5690E-02	0.880JE 07	3 D
-50	J-1750F-UZ	U.4580E-02	0.9083E 07	36
-5 0	3.56001:-03	0.390GE-52	0.8540E C7	10
-5u	0.55506-03	J.3890E-02	G.8700E 07	18
-50	0.547JE-03	0.3830E-02	0.8960E 07	1E
-50	0.5360E-03	0.4300E-02	0.4310E 07	10
-50	0.52905-03	U.5290E-02	0.4570E U7	LA
-50	0.3097E-03	0.62COE-02	0.9510E 37	88
-5ŭ	0.30706-03	0.550UE-02	0.967UE 07	ВΛ

GRAPHITL EPOXY VIERATIUN DATA

TEMP	PERTUD	DAMPING RATIO	STORAGE MODULUS	SPEC
-50	0.3049E-03	0.46U0E-02	0.9810E 07	80
-50	J.3025E-03	0.6400E-02	J.996UE U7	8C
-50	U.3022E-03	J.5800E-02	0.9980E 07	8E
-50	0.2384E-03	U.1723E-01	U.9020E 07	70
-50	0.2379E-03	0.1820E-01	U.5200E 07	7E
- 50	0.2349E-03	U.1060E-01	0.9300E U7	7C
-5°	0.2549E-03	U.1510E-01	U.929UE 07	78
-50	U.2348E-03	0.1120E-01	0.9300F C7	7A
-50	0.16JoE-03	J.1290E-01	0.8630F 07	68
-50	0.1605E-03	J.7200E-02	0.8843F 07	64
-50	0.16-2E-G3	0.1010E-01	6.8880E 07	6Ł
-5ú	U.1572E-US	J.113JE-01	0.9220E U7	6D
- 50	J.1512E-03	J.1273E-01	0.4220E 07	60
-50	U.1035E-03	0.4700E-02	0.9440E 07	88
->0	J.1028E-03	J.5160E-02	0.9570E 07	34
-50	J.1020E-03	0.5100E-02	U.9730E 07	8 C
-50	0-1016E-03	J.370UE-02	0.98106 07	80
-50	U.1012E-03	J.5100E-02	J.9890E 07	3 F
-50	U.799JE-U4	U.4400E-02	0.891JE 07	5A
-50	U.7960E-04	0.216UE-01	J.8480E 07	50
-50	0.786JE-04	J.2540E-01	0.9220F U7	5E
- 50	0.764UE-04	0.2610F-01	0.9640E 07	50
-50	J.7650E-04	0.9200E-02	0.974UE U7	5 H
-23	こ。うとりひだーじし	J.4713E-01	0.6580E 07	41)
-25	0.5530E-01	0.4260E-01	0.881JE J7	41
-25	U.5490E-01	0.4400E-01	0.692JE U7	48
-25	0.540JE-01	0.4370E-01	0.5020F U7	4E
-25	U.532JE-U1	0.50008-01	0.9520E 07	4C
-25	0.3160E-01	U.3610E-01	0.8510E U7	34
-25	J.315JE-01	0.356JE-01	0.8620F 07	3 D
-25	J.3150E-01	0.3590E-01	0.8600F 07	3 B
-25	3.31106-01	0.3730E-01	0.8840E 07	3 E
-25	J.3000E-01	0.3800E-01	0.9080E 07	3 C
-25	0.1430E-01	0.1860E-01	0.8190E 67	2C
-25	0.1400E-01	0.1610E-01	0.8580E 07	28
-25	0.1390E-01	0.1740E-01	U.8700E 07	2 A
-25	J.1370E-01	0.1610E-01	0.8950F 07	20
-25	0.1370E-01	U.1610E-01	0.8910E 07	2 E
-25	U.844JE-02	0.76JUE-02	0.6570E C7	4 D
-25	J.0920E-02	0.7690E-02	0.8620E 07	44
ーミン	U.877JE-UZ	0.7680E-02	0.8913F 07	48
-25	J.8643E-02	J.7500E-02	0.9200E C7	4E
-25	U.8563E-02	0.749UE-02	0.9360E 07	4C
-25	0.5C10E-02	0.4510E-02	0.8630F 07	3A
-25	0.5000E-02	J.6000E-02	0.868JE 07	3E
-25	U-498UE-02	0.5480E-02	J.8750E U7	3D

-25	TEMP	PERTOD	DAMPING RATIO	STERAGE MODULUS	SPEC
-25	-25	C.4980E-02	0.5550E-02	C.874JE 07	3B
-25				- • • • • • • • • • • • • • • • • • • •	
-25					
-25					
-25					
-25					
-25					
-25					
-25	-25				
-25	-25	J.223JE-02	U. 4450E-02		
-25	-25	U.218JE-02			
-25	-25	J.218JE-02	0.456UE-02	0.898UE 07	2F
-25	-25	J.1740E-02	J.4980E-02	0.865UE 07	36
-25	-25	U.1790E-02		0.068JF 07	3 F
-25	-25				
-25		J.1760E-02	U. 499CE-02		
-25	-25	U.1750E-02	0.496JE-02	0.902JE 07	3 C
-25	-25	U.5620E-03	U.4500E-02	0.8480E 07	10
-25	-25	0.5605-03	U.4640E-32	3.8680E 07	
-25	-25	U.J48JE-03	J.4340E-02	0.892JE U7	16
-25	-25	J.>370E-03	0.43CCE-02	J.928JE 07	
-25	-25	0.5290F-03	0.5290E-02	J.9580E 07	14
-25	-25	J.31J7E-33	J. SCCGE-02	0.9440E 07	88
-25	-25	0.30826-03	J.6500E-J2	0.960UE 07	84
-25	-25	J.3007E-03	U.5400L-02	U.9690E U7	8D
-25	-25	J.3045E-03	0.7300E-02	U.983UE 07	80
-25	-25	J.304JE-03	0.560UE-02	0.9860E U7	8 E
-25	-25	J.2404E-03	J.1620E-01	0.8870E 07	7E
-25	-25	J.2360E-63	J.1290E-01	0.5610F 07	70
-25	-25	0.2301E-03	J.1640E-01	0.9170E 07	78
-25	-25	J. 2344E-U3	0.1580E-01	0.4340E LT	7C
-25	-25	J.234JE-03	0.169UE-01	0.9360E 07	74
-25	-25	J.1612E-03	0.8000E-02	0.8770F 07	6A
-25	-25	J.16396-03	J. 9700E - 02	5.8800F 07	6 E
-25	ーとン				6 B
-25	-25	i.1583E-03		0.9090E U7	6D
-25					60
-25					88
-25			0.5900E-02	0.4540E U7	
-25 U.1017E-U3 U.5600E-02 U.9780E U7 8E -25 U.601JE-U4 U.520UE-02 U.8880E U7 5A -25 U.798UE-04 U.1960E-01 U.8950E U7 5D -25 U.792UE-04 U.1630E-01 U.9070E U7 5E					
-25 J.801JE-J4		-			
-25 J.798UE-04 0.196UE-01 U.895UE 07 5D -25 J.792UE-04 J.163UE-01 0.907UE 07 5E					
-25 J.792JE-04 J.1630E-01 0.907JE 07 5E					
-25 J./71JE-04 J.2850E-01 0.4590E 07 50					
	-25	J./71JE-04	U.2850E-01	0.4590E U7	5 C

TEMP	PEKTOD	DAMPING RATIO	STORAGE MODULUS	SPEC
-25	0.76931-04	0.9600E-02	0.9630E U7	5B
0	J.559UE-01	U.458UE-01	0.8630E 07	40
U	J.556JE-01	U.383JF-01	U.8730E 07	44
O	U.549JE-01	J.4060E-01	0.8930E C7	48
v	0.540UE-31	0.4090E-01	0.9020E 67	4E
J	0.5340E-01	J. 4220E-01	0.9450E U7	40
U	0.310JE-01	J.3410E-01	0.8550E C7	38
J	0.31608-61	0.34206-01	0.6510E 07	3 A
U	J.3150c-01	0.3000E-01	0.8610F U7	30
U	J.31236-01	J. 3570E-01	0.8773E 07	3 E
ن	J.5080E-J1	J. 3430F-01	U.9100F 07	3C
J	U.157JE-01	0.157JF-01	J.8253E 07	20
J	U-14JJE-U1	J.1610E-01	0.85738 07	28
5	J.1340E-01	0-174JE-U1	C. 670F 07	24
Ú	J.136JE-01	0.1550E-01	0.6820E U7	2 E
Ö	U.137UE-01	U.1560E-U1	0.8970E U7	20
Ŭ	U-8950E-02	0.73408-02	6.8569E 07	40
J	J. 388 JE-02	0.7100E-02	0.8700E U7	4 A
ن	J.877JE-02	0.7240E-02	0.891UE 67	48
J	U.HOSUE-UZ	U-6400E-02	0.9170F 07	4E
U	0.058JF-02	U.7120E-02	0.932JE 37	4C
J	3.5020E-02	0.3990E-J2	0.8610F G7	3A
Ü	0.5000E-02	0.6000E-02	0.8680E 67	3E
Ü	J.498JE-UZ	J.4980E-02	U.8740E 07	30
U	U.4970E-02	0.6010E-02	0.8780E 07	36
U	0.49UUE-02	0.5420E-02	U.905UE U7	3C
IJ	0.3500E-02	0.6300E-02	0.6603E 67	16
Ú	U .3480E-U2	0.4960E-02	J.871JE U7	18
ن	0.346JF-32	0.68C3E-02	0.9100E 07	15
Ú	U-3560E-U2	0.5870E-02	0.933UE U7	10
Ú	0.3290E-62	J.6010E-02	0.47101 07	1 A
J	0.2280E-02	J.4150E-02	L.8280E 07	20
J	0.2240E-02	U.4930E-02	0.6520E 07	26
7	J-224Ut-02	J.4050E-02	0.858JE 07	2A
ú	J.219JE-U2	J.5430E-02	0.8950E 07	20
ن	3.219UE-U2	ú.453JE-Ú2	0.89308 07	2E
ΰ	U.179JE-J2	U.647JE-02	0.867JE 07	36
U	J.17901-62	J.5050E-02	0.8613E 07	34
U	U.178JE-02	U.5760E-02	0.8670E U7	3 <i>E</i>
Ú	U.1770E-U2	0.5010E-02	0.6790E U7	311
j	J.1750E-02	0.4240F-02	0.90135 37	3C
U	J.563JE-03	0.50608-02	J.846JF G7	10
0	J.557JE-03	0.5040E-02	0.8630E 07	LB
C	U-55JJE-03	U.3850E-02	0.8860E 07	1 E
O	0.5390E-03	U.4850E-02	0.9230E 07	10
Ü	J.3300E-03	0.4770E-02	0.4530E 07	1 A

TEMP	PERIUD	DAMPING RATIO	STORAGE MODULUS	SPEC
J	0.3127E-03	0.6300E-02	0.9320E 07	88
0	J.3094E-03	J.6200E-02	0.9520E 07	84
0	U.3062E-03	0.7900E-02	0.9720E 07	80
ن	0.3054E-C3	0.6200E-02	G.9770E G7	8 E
C	0.2984E-03	0.7700E-02	0.9610E 07	80
J	J.2405E-03	0.1620E-01	0.8870E 07	7E
U	0.2386E-03	0.1290E-U1	0.9010E 07	7 D
J	0.2360E-03	J.1890E-01	0.4163E U7	7B
Ö	0.2363E-03	J.1380E-01	0.9180E 07	7 A
O	U-2358E-03	0.1550E-01	0.9220E 07	7C
Û	0.1621E-03	G.8700E-02	C.8670E 07	64
O	U.1010E-03	0.1170E-01	0.872JE 07	6E
j	J.1611E-03	0.6500E-02	0.8790E 07	68
S	U-1590E-03	J.8COUE-02	U-9020E U7	oD
Ü	U.1587E-G3	U.9200E-02	0.9050F C7	6C
Ú	U.1043E-03	0.6100E-02	0.930UE 07	88
U	0.1034E-03	0.620UE-02	0.9460E U7	88
Ü	0.1020E-03	0.550UE-02	0.9610F 07	8 C
Ü	J.1021E-03	0.510UE-02	0.9700E 07	90
Ü	v.1019E-03	0.610CE-02	0.9740E G7	۵E
O	U.8U5UE-04	0.5200E-02	0.8800E 07	5 A
O	J.80JUE-04	C-1800F-01	0.8900E J7	5D
)	J.7970E-04	0.1560E-01	0.8980E 07	5£
O	0.7730E-04	0.2900E-01	0.9540F 07	5C
0	0.172UE-04	C.8500E-02	0.9560E U7	58
90	0.5500E-01	0.3060E-01	0.8730E U7	4 D
87	0.5510E-01	0.2760E-01	0.886JE Ú7	4 A
90	U.543UE-01	0.2660E-01	0.9120E 07	48
80	J.5410E-C1	0.2810E-01	0.9190E 07	4E
80	0.5320E-01	0.3240E-01	0.9520E 07	4C
80	0.314UE-01	0.3520E-01	0.8620E G7	3E
80	0.3140E-C1	0.2450E-01	J-8620E 07	3A
80	U-3140E-C1	0.2030E-01	0.8660E 07	3 D
80	0.3130E-01	0.2340E-01	0.8680E 07	38
δÛ	0.305JE-01	0.2360E-01	0.9150E 07	3C
6 0	0.1430E-C1	0.122CE-01	0.8190E U7	2C
80	0.1390E-01	J.1270E-01	0.8690E 07	28
80	0.1380E-01	0.1250E-01	0.8790F 07	2A
80	J-137JE-01	U.1040E-01	0.9010E 07	20
80	J.137JE-C1	J.1180E-01	0.898UE C7	2E
80	0.3890E-02	0.6220E-02	0.8680E 07	44
80 a.:	0.8880E-02	0.6080E-02	0.8700E 07	4D
30 80	0.8800E-02	0.6010E-02	0.8870E 07	48
80	0.8700E-02	0.5700E-02	0.9070E 07	4E
80 80	0.8580E-02	0.6080F-02	0.9310F 07	4C
97	0.50305-02	0.375GE-02	0.8570F 07	3 A

TEMP	PEKTUD	DAMPING RATIO	STURAGE MUDULUS	SPEC
dU	U-499UE-02	0.5020E-02	U.8720E 07	3£
80	J.458JE-U2	J.547UE-02	0.8770E 07	38
υS	0.497JE-02	0.4470E-02	0.8790E 07	3 D
do	J.490JE-02	0.3920E-02	U.9050F U7	3C
80	U.3490F-02	U.4210E-02	0.8620E U7	10
80	J.3490E-02	0.3520E-02	0.8660E 07	18
80	0.33808-02	0.5410E-02	0.9220E 07	1E
80	0.336JE-02	0.4730E-02	0.9310E 07	10
80	J.33U0E-U2	0.3340E-02	0.9640F U7	1 A
90	0.227JE-02	U.4150E-02	0.8280E 07	2C
80	0.2240E-02	0.4010E-02	U.8520E U7	28
BÚ	J.2230E-02	J.3600E-02	U.8590E 07	24
43	J. 21936-02	0.3970E-02	C.898JE J7	2 E
80	J. 218JE-02	J.4850E-02	0.899JF U7	20
80	J.18UJE-02	0.5080E-02	U.8590E 37	34
60	J.1740E-02	J.5060E-02	Ú.867JE 07	3B
3)	J.178JE-02	0.5010E-02	0.8720E 07	3E
رن	0.1770E-02	0.43JOE-02	0.8820E U7	30
80	J.1750E-C2	U. 4230E-02	0.9040F U7	3 C
80	U. 262UE-03	U.395UE-U2	0.8473E 07	10
80	U.558UE-03	J.4590E-02	0.8610£ 07	18
80	0.5480E-03	U.3850E-02	0.8910E U7	16
80	U.538JE-U3	0.4310E-02	0.9250E U7	10
80	0.530JE-03	0.3710E-02	0.9540£ 07	LA
ც ე	0.3148E-U3	0.63COF-02	G.9200E 07	88
ijĴ	0.3113E-C3	J.6900E-02	C.941JE U7	A6
ອິບ	0.3094E-03	0.4900E-02	0.952JE 67	80
80	0.30396-03	0.7700E-02	0.9610E U7	ac
80	J.3007E-03	0.0200E-02	0.9690E G7	8E
80	0.2407E-03	U.1080E-01	0.8850E 07	7 D
80	J.2384E-63	J.1930E-01	0.4020E L7	7 E
30	0.2373E-03	J.1500E-01	0.9110E U7	7 A
80	0.23cot-03	0.1810E-01	0.9160F C7	7 B
80	0.23668-03	J.170CE-01	0.9160E 07	76
30	U.163UE-03	J.8100E-02	0.85838 67	6E
80	J.1628E-03	0.7300E-02	0.860JE 07	6A
80	0.15286-03	0.7400E-02	0.8600E 07	6 E
ÖÜ	J.1590E-03	0.1240E-01	0.8950E C7	٥D
90	0.15865-03	0.9000E-02	0.9060E 07	66
80	0.10526-03	0.63COE-02	0.9150E U7	88
80	U.1045E-03	0.1100E-01	0.9270E 07	84
80	U.1034E-03	0.5500E-02	6.9460E 07	8C
6 u	U.1030E-03	J.5200E-02	0.9540E 37	80
80	0.1026E-03	0.5700E-02	0.9610E 07	BE
80	U.8120E-04	0.570UE-02	0.8640E 07	5A
87	J.806JE-04	0.2380E-01	0.8770E 07	5 D

TEMP	PERIOD	DAMPING RATIO	STURAGE MODULUS	SPEC
ಕರ	Ŭ•8U2ŬE−04	0.1620E-01	0.887UE 07	5E
80	0.776JE-04	0.1080E-01	0.9470E 07	5A
80	J. 776JE-U4	0.256UE-01	0.5460E 67	5C
200	0.558JE-01	0.2570E-01	0.8650E U7	40
230	U.556UE-01	J. 2440E-31	0.6730E 07	44
233	J.540JE-J1	0.2350E-01	0.9U20E U7	48
200	J.5430E-01	J.2280E-01	0.9120E L7	4E
200	U.5290E-01	U.2330E-01	0.9620E 07	4C
200	U-315JE-01	0.1890E-01	0.6600E 07	3A
200	0.3140E-C1	0.1620E-01	J.8620E 07	3B
200	J•313Jē−01	0.1690E-01	0.8683E U7	3 D
200	0.3113E-01	J.2050E-01	0.6790E 07	3E
200	∪.3U&JE-J1	J.2430E-01	0.9070E 07	3 C
200	J.145JE-01	0.1030E-01	0.6C3UE U7	2C
200	0.14JUE-U1	0.1070E-01	0.8620E 07	28
200	J.1400E-01	U.1140E-01	0.6580E 07	AS
200	J.138JE-01	0.1020E-01	0.885JE C7	20
230	0.137JE-01	0.1190E-01	6.8940E 07	2£
200	¿. 094JE-02	0.5810E-02	0.8590£ 07	40
200	U.093UE-UZ	J.6250E-02	C.8600E U7	41
200	U.363UE-U2	J.591CE-02	0.8790F 07	4B
200	U.8700E-02	0.5200E-02	0.9050E 07	4E
200	J.060JE-02	0.5670E-02	U.9280E 07	4C
200	し。りしろひとーしる	0.3540E-02	C.8510F 07	3 A
200	U.502UE-02	0.455UE-02	0.8620E 07	3E
200	0.2000E-02	0.5000E-02	0.86E0E 07	3B
200	0.499JE-02	0.4020E-02	0.6710F 07	30
200	J.492JE-U2	0.3940E-02	0.8960E 07	3C
200	J. 351 JE-02	0.3530E-02	0.854UE 07	10
200	0.35001-02	0.3500E-02	0.8610E 67	18
200	0.3390E-02	0.4840F-02	0.9150E U7	16
200	J.338JE-02	0.3400E-02	0.9210F 07	10
200	0.329UE-02	0.4730E-02	C.9700E C7	14
200 200	9.22806-02	0.3670E-02	0.8220E 07	2C
200	J.225JE-02	0.3620E-02	0.8440E 07	2B
230	U•224UE-02 U•22U0E-02	0.3590E-02	0.855JE L7	2A
200	0.2200k-02	0.3610E-02 0.3380E-02	0.8890E C7 0.8930E 07	20
200	J.1800E-02	0.4380E-02	0.8930E 07 0.8520E 07	2E
200	0.18JUE-02	U.3590E-02	0.8590E U7	3A
200	0.1790E-02	0.43406-02	0.868JE 07	3E 3D
200	0.179JE-J2	0.4.540E-02	C.8600E 07	3B
200	0.1760E-02	0.3500E-02	0.897JE J7	3C
200	0.563JE-03	U.2840E-02	0.8320F 07	10
200	J.5610E-03	0.28.40E 02	0.8610E G7	16
200	J.552UE-J3	0.33208-02	C.8813E 67	16
	0077200 07		0100131 01	LL

TEMP	PERIOD	DAMPING RATIO	STORAGE MODULUS	SPEC
250	0.54106-03	0.3220E-02	0.914UE 07	10
200	0.5330E-U3	0.4270E-02	0.9420E U7	14
200	0.3215E-03	J.9760E-02	0.3823E C7	38
200	0.3192E-03	0.1790E-01	0.8950E 07	BA
200	0.0145t-03	J.50U0E-02	0.9220E U7	30
200	J.3131E-U3	U.9400E-02	0.9300E 07	8C
200	0.31258-03	0.790UE-02	0.9340F 07	8E
200	J.2447E-63	0.1370E-01	0.8570F 07	7 D
200	J.2437E-03	0.2060E-01	0.8640E 07	78
200	U.24192-03	J.1740E-01	0.6760E 07	7 A
200	0.2414E-03	0.1780E-01	0. HBOUE 07	7 B
200	0.241JE-03	0.152UE-01	0.8830E 07	7C
200	0.10682-03	0.1050E-01	U-8200E 07	6A
200	0.1603E-63	0.94UUE-02	0.8250E 07	68
233	0.1003E-03	0.820UE-02	0.8340F C7	6E
200	J.1621E-03	0.1230E-01	0.8670E 07	60
200	J.162Jd-03	U.1310F-01	U-8680E 07	60
200	0.10722-03	0.8600E-02	0.881UE 07	88
200	0.107JE-03	0.2040E-01	0.8843E U7	84
200	0.105dm-03	0.1320E-01	0.9040E 07	80
200	0.1046E-03	U.8400E-02	0.9290E 07	8E
200	J. LC44E-03	0.4900E-02	U.9290E L7	3.6
200	0.835UE=04	U.1750E-01	0.8170E 37	5A
200	U.023JE-04	J.190CE-01	0.8420E 07	50
200	J.81JJE-04	J.1210E-01	0.6690E C7	5 É
200	J. 785JE-04	U-4300F-02	0.923JE C7	5 3
200	J.764JE-04	U.1840E-01	0.926JE 07	5C
300	U.558UE-U1	0.2450E-01	0.8660E 07	40
300	J.5500E-01	J.2390E-01	0.6730E 07	44
300	J.547UE-01	5.219UE-01	0.5010E U7	48
300	J. 2430E-01	0.222UE-01	0.912JE 07	4E
300	0.532UE-01	J.2290F-01	0.9530E 07	40
300	3.31506-61	0.1830E-01	0.8560E 07	34
さいひ	U.314U[-01	0.1890E-01	0.8620E U7	3 E
300	U.5140E-01	0.18206-01	0.8620F 07	36
300	0.3110E-01	U.179üE-01	0.8800F 07	30
303	U.309JE-U1	0.1840E-01	0.8910E 67	3C
300	J.144JE-U1	0.9330F-02	0.8170E 07	2 C
300	U-140JE-U1	U.9620E-02	0.655JE 07	2 B
360	U-139JE-01	0.972JE-02	0.6730E 67	2A
300	J.137JE-01	U.9390E-02	0.8993E 67	20
300	U-1370E-01	0.10608-01	0.5010E 07	2 E
300	U. 65/UE-02	U.5450E-02	C. 6520E 07	4A
JÜÜ	U-4940E-U2	0.5370E-02	0.8570E 67	4 D
300	J.863JE-02	0.5300E-02	0.0803E (7	48
30u	U.3700E-02	0.5200E-02	0.4070E 07	4E

TEMP	PERIOD	DAMPING RATIO	STORAGE MUDULUS	SPEC
300	0.8630E-02	J.569ÜE-02	0.9210E 07	4C
300	0.50501-32	0.6060E-02	C.8500E 07	3A
300	U.5030E-02	0.4520E-02	0.8590E 07	38
300	J.5C3JE-02	U. 3520E-02	U.8590F 07	3F
300	0.50101-02	U.4540E-02	0.86431 07	3D
300	U.489Ut-U2	0.3380E-02	0.9060E 07	3 C
300	0.352UE-02	0.352JE-02	0.8490E U7	10
300	0.350JE-02	0.2110E-02	0.857UE 07	18
300	J. 340JE-UZ	3.3830E-02	C.9090E U7	16
350	0.3390E-02	U.3550E-02	0.9160E 07	10
300	J. 3300E-U2	U.4610E-02	C.4690E 07	14
300	0.22408-02	0.5963E-02	0.8150E U7	2C
300	U-226UE-02	0.361GE-U2	0.8410E 07	28
300	0.226JE-02	0.543UE-02	0.8413E 07	2 A
300	0.2190E-02	U.3590E-02	0.6910E 07	20
300	U.219UE-U2	J.5180E-02	C.8930E C7	2E
300	0.1810E-02	J.3610E-02	C.8500E 07	38
300	J.1803E-02	0.4360E-02	6.6530E U7	3A
300	U.179UE-U2	0.5010E-02	0.862JE 07	3E
300	0.1783E-02	U.4990E-02	0.8870E 07	30
300	0.17605-02	U.4270E-02	0.896JE U7	3C
300	0.56835-03	0.284UE-02	0.8310E U7	10
30ú	0.5010E-03	0.3940E-02	0.8520E 07	16
300	J.5530E-03	J.277UE-02	0.6770E U7	1E
3vũ	0.5430E=03	J.2720E-02	0.9083E 67	10
300	0.5340 €−03	0.3200E-02	0.941UE 07	14
300	0.3237t-03	0.1940E-01	0.8700E C7	88
300	0.3235E-03	0.3170E-01	0.8720E 07	A B
300	0.3151E-03	0.1900E-01	0.9183E G7	8C
300	U.3141E-C3	U.4400E-02	C.9240E 07	80
300	0.24611-03	0.9360E-02	C.8470E 07	7 D
300	J.2453E-63	0.1660E-01	0.8520E 07	7 E
300	0.242/6-03	0.1350E-01	0.8713E U7	7 C
300	U.2421E-03	0.1700E-01	0.8750F C7	7 A
300	0.242JE-03	U.1740E-01	U.8760E 07	78
300	0.1696E-03	0.1530E-01	0.7930E U7	φA
30u	0.16/2E-03	0.7500E-02	0.8160E C7	68
300	0.1666E-03	0.1200E-01	0.8220E 07	6E
300	0.1044E-03	U.1260F-U1	0.8430F 07	60
300	U.164UE-U3	0.1250E-01	0.848JE C7	6D
300	U.1078E-03	0.1086E-01	0.870UE 07	88
300	C.1074E-63	0.2320E-01	0.6770E 07	84
300	0.1069E-03	0.1820E-01	0.8860E ú7	8C
300	J.1647E-63	0.3200E-02	0.9270E 37	80
300	J.839JE-04	0.1760E-01	0.8090E 07	5A
300	0.83331−04	0.2080E-01	0.8280E L7	50

TEMP	PERIOD	DAMPING RATIC	STORAGE MCDULUS	SPEC
300	0.8130E-04	0.1680E-01	0.8610E 07	5E
300	0.7680E-04	0.3900E-02	6.9190E 07	5B

IX. REFERENCES

- 1. Kaminski, B. E.; Lemon, G. H.; and McKogue, E. L.: Development of Engineering Data for Advanced Composite Materials. Convair Aerospace Division of General Dynamics, Fort Worth Operation. Technical Report AFML-TR-70-108, Vol. 1. October, 1972.
- 2. Life Assurance of Composite Structures, Second Quarterly Progress Report. Convair Aerospace Division of General Dynamics, Fort Worth Operation. December 15, 1973.
- 3. Browning, C. E.: The Effects of Moisture on the Properties of High Performance Structural Resins and Composites. 28th Annual Technical Conference, Reinforced Plastics/Composites Institute, The Society of Plastics Industry, Inc. 1973.
- 4. Pritchard, G; and Taneja, N.: Water Damage in Polyester Glass Laminates, Composites. July, 1973.
- 5. Development of Engineering Data on the Mechanical and Physical Properties of Advanced Composite Materials. IIT Research Institute. September, 1972.
- 6. Tsai, S. W.; Halpin, J. C.; Pagano, N. J.: Composite Materials Workshop. Technomic, Stamford, Connecticut, pp. 87-152. 1968.
- 7. Heller, R. A.; Swift, G. W.; Stinchcomb, W. W.; Thakker, A. B.; and Liu, J. C.: Time and Temperature Dependence of Boron-Epoxy and Graphite-Epoxy Laminates. Virginia Polytechnic Institute and State University, Technical Report AFML-TR-73-261. November, 1973.
- 8. Snowden, J. C.: Vibration and Shock in Damped Mechanical Systems. Wiley, New York, p. 271. 1968.
- 9. Myers, R. H.: Response Surface Methodology. Allyn and Bacon, Boston, pp. 26-29. 1971.
- 10. Barr, A. J.; and Goodnight, J. H.: SAS, A User's Guide to the Statistical Analysis System. North Carolina State University, Raleigh, North Carolina. 1972.
- 11. Hamburg, Morris: Statistical Analysis for Decision Making. Harcourt, Brace, and World, Inc., New York, p. 523. 1970.
- 12. Heller, R. A.; Thakker, A. B.; and Arthur, C. E.: Temperature Dependence of the Complex Modulus for Fiber Reinforced Materials. Virginia Polytechnic Institute and State University, Presented at the Composite Reliability Conference, Las Vegas, Nevada. April, 1974.