

Chapter 5.4 Functions

Instructor: Abhishek Santra Email: abhishek.santra@uta.edu

1

Function Terminologies

- Let S and T be sets.
- A function (mapping) f from S to T, $f: S \to T$, is a subset of $S \times T$, where each member of S appears exactly once as the first component of an ordered pair.
- S is the domain and T the codomain of the function
 - Domain: Set of Starting Values
 - Codomain: Set from which associated values come
- \triangleright If (s,t) belongs to the function, then
 - $s \in S, t \in T$
 - t is denoted by f(s), i.e., t = f(s)
 - t is the image of s under f
 - s is a preimage of t under f, and
 - f is said to map s to t

Fall 2022

CSE2315: Abhishek Santra

3

Function Examples

- > Examples:
 - The **floor function** $\lfloor x \rfloor$ associates with each real number x the greatest integer less than or equal to x.
 - The **ceiling function** x associates with each real number x the smallest integer greater than or equal to x.
 - Example: \[2.8 \] = ?, \[2.8 \] = ?, \[-4.1 \] = ?, and \[-4.1 \] = ?

Fall 2022

CSE2315: Abhishek Santra

L'ab

4

Function Examples

- > Examples:
 - The floor function $\lfloor x \rfloor$ associates with each real number x the greatest integer less than or equal to x.
 - The **ceiling function** x associates with each real number x the smallest integer greater than or equal to x.
 - Example: $\lfloor 2.8 \rfloor = 2$, $\lceil 2.8 \rceil = 3$, $\lfloor -4.1 \rfloor = -5$, and $\lceil -4.1 \rceil = -4$
 - \blacksquare Both the floor function and the ceiling function are functions from R to Z_{\bullet}
- Function from S to T is a subset of S × T with certain restrictions on the ordered pairs it contains.
 - Each member of S must be used as a first component, exactly once
 - By the definition of a function, a binary relation that is one-tomany (or many-to-many) cannot be a function

Fall 2022

CSE2315: Abhishek Santra

5

5

Function Example: Modulo Function

- Remember: Dividend = divisor * quotient + remainder
- For any integer x and any positive integer n, the modulo function, denoted by $f(x) = x \mod n$, associates with x the remainder when x is divided by n
- ➤ One can write x as x = qn + r, $0 \le r < n$, where q is the quotient and r is the remainder, so the value of $x \mod n$ is r.
- Example:
 - 25 mod 2?

$$25 = 12 \cdot 2 + 1$$
, so $25 \mod 2 = 1$

■ -17 mod 5?

$$-17 = (-4) \cdot 5 + 3$$
, so $-17 \mod 5 = 3$

Fall 2022

CSE2315: Abhishek Santra

Functions of more than one variable

- A function $f: S_1 \times S_2 \times ... \times S_n \to T$ that associates each ordered *n*-tuple of elements $(s_1, s_2, ..., s_n), s_i \in S_i$ to unique element of T
- > Example
 - **f:Z** ×**N** ×{1,2} →**Z** is given by $f(x,y,z) = x^y+z$
 - Then, f(-4,3,1) = ? (-4)³+1 = -64+1 = -63

Fall 2022

CSE2315: Abhishek Santra

7

7

Equal Functions

- $\triangleright g: \mathbf{R} \to \mathbf{R}$, where $g(x) = x^3$.
- $ightharpoonup f: \mathbf{Z} \to \mathbf{R}$, given by $f(x) = x^3$
- > Are they same?
 - NO
 - f is not the same function as g
 - The domain has been changed, which changes the set of ordered pairs.

Fall 2022

CSE2315: Abhishek Santra

Equal Functions

- Two functions are equal if they have the same domain, the same codomain, and the same association of values of the codomain with values of the domain.
- To show that two functions with the same domain and the same codomain are equal, one must show that the associations are the same.
- > This can be done by showing that
 - given an arbitrary element of the domain,
 - both functions produce the same associated value for that element; that is, they map it to the same place.

Fall 2022

CSE2315: Abhishek Santra

9

9

Properties of Function: Onto Functions

- **Range**: **Set** of **images** in $f: S \rightarrow T$
- ➤ In every function with range R and codomain T, $R \subseteq T$.

- A function $f: S \to T$ is an **onto**, or **surjective**, function **if the** range of f equals the codomain of f.
- To prove that a given function is onto,
 - Show that $T \subseteq R$; then it will be true that R = T.
 - Show that an arbitrary member of the codomain is a member of the range
 - State a counter example to say not onto.
- ➤ Is $g: \mathbf{R} \to \mathbf{R}$ where $g(x) = x^3$ an onto function?
 - For any y in R, is it a cube value? Yes
- ➤ Is $g: \mathbb{N} \to \mathbb{N}$ where $g(x) = x^3$ an onto function?
 - NO. '2' belongs to Codomain, but does not belong to Range

Fall 2022

CSE2315: Abhishek Santra

Properties of Function: One-to-One Functions

- A function $f: S \to T$ is **one-to-one**, or **injective**, if no member of T is the image under f of two distinct elements of S.
- Idea same as for binary relations in general, except that every element of S must appear as a first component in an ordered pair.
- To prove that a function is one-to-one, we **assume** that there are elements s_1 and s_2 of S such that $f(s_1) = f(s_2)$ and then show that $s_1 = s_2$
- ➤ Is function $g: \mathbf{R} \to \mathbf{R}$ defined by $g(x) = x^3$ one-to-one?
 - Assume, a and b are real numbers with q(a) = q(b), thus $a^3 = b^3$
 - This is only possible when a = b
 - Thus, it is one-to-one

Fall 2022

CSE2315: Abhishek Santra

11

11

Example: One-to-one function

- ightharpoonup The function $g: \mathbf{R} \to \mathbf{R}$ defined by $g(x) = x^2$
 - For any 2 real numbers a, b where $a^2 = b^2$, does it mean a = b?
 - Counter Example
 g(2) = g(-2) = 4
 But, 2 is not equal to -2
 - Not one-to-one
- ightharpoonup The function h: $\mathbf{N} \to \mathbf{N}$ defined by $h(x) = x^2$
 - Is one-to-one
 - If a and b are nonnegative integers with h(a)=h(b), then $a^2=b^2$
 - Because a and b are both nonnegative, a = b

Fall 2022

CSE2315: Abhishek Santra

Properties of Function: Bijections

- ightharpoonup A function $f:S \to T$ is **bijective** (a **bijection**) if it is **both one-to-one and onto**.
- The function $g: \mathbf{R} \to \mathbf{R}$ given by $g(x) = x^3$ is a bijection.

Are these functions? If yes, one-to-one / onto?

13

13

Properties of Function: Bijections

- A function $f:S \to T$ is **bijective** (a **bijection**) if it is **both one-to-one and onto**.
- The function $g: \mathbf{R} \to \mathbf{R}$ given by $g(x) = x^3$ is a bijection.

Composition of Functions

- Let $f: S \to T$ and $g: T \to U$. Then the **composition function**, $g \circ f$, is a function from S to U defined by $(g \circ f)(s) = g(f(s))$
- ➤ The function *g* ∘ *f* is applied right to left; function *f* is applied first and then function *g*.

- Function composition preserves the properties of being onto and being one-to-one.
- **THEOREM:** The composition of two bijections is a bijection.

Fall 2022

CSE2315: Abhishek Santra

16

16

Composition of Functions: Examples

- ightharpoonup Let f:R \rightarrow R be defined by f(x)= x^2
- \triangleright Let g:R \rightarrow R be defined by g(x)= -x
- ➤ Let h:R→R be defined by h(x)= 2x
 - What is the value of (g ∘ f)(4)?

(g o f)(4) =
$$g(f(4))$$

= $g(16)$
= -16

What is the value of (f ∘ g)(4)?

$$f(g(4)) = f(-4) = 16$$

■ What is the value of (h ∘ f ∘ g)(4)?

$$h(f(g(4))) = h(f(-4)) = h(16) = 32$$

> Solve practice question 31

Fall 2022

CSE2315: Abhishek Santra

Inverse Functions

When the function f turns the apple into a banana, Then the inverse function f^{-1} turns the banana back to the apple

Fall 2022

CSE2315: Abhishek Santra

18

18

Inverse Functions

- ightharpoonup Let $f: S \to T$ be a **bijection**
 - Because f is onto, every $t \in T$ has a preimage in S
 - Because **f** is one-to-one, that preimage is unique.
- \triangleright The function that maps each element of a set S to itself, that is, that leaves each element of S unchanged, is called the **identity** function on S and denoted by i_S .
- **DEFINITION:** Let f be a function, $f: S \to T$. If there exists a function $g: T \to S$ such that $g \circ f = i_S$ and $f \circ g = i_T$, then g is called the **inverse function** of f, denoted by f^{-1} .

Fall 2022

CSE2315: Abhishek Santra

19

Inverse Function: Example

- **THEOREM** Let $f: S \to T$. Then f is a bijection **if and only if** f^{-1} exists.
- \triangleright f: R → R given f(x) = 3x + 4 is a bijection
- \triangleright Find f^{-1}

Solution:

- For any $x \in R$, f(x) = 3x + 4. Let f(x) = y. To find, $x = f^{-1}(y)$
- \rightarrow Thus, y = 3x + 4
- For inverse, we need to represent x in terms of y
- Thus, $y = 3x + 4 \Rightarrow x = (y 4)/3 = f^{-1}(y)$
- ➤ Thus, $f^{-1}(y) : R \to R$ given by $f^{-1}(y) = (y 4)/3$
- \triangleright Verify: For any element $s \in R$
 - $(f^{-1} \circ f)(s) = f^{-1}(f(s)) = f^{-1}(3s+4) = ((3s+4) 4) / 3 = s$
 - $(f \circ f^{-1})(s) = f(f^{-1}(s)) = f((s-4)/3) = (3((s-4)/3) + 4) = s$

Fall 2022

CSE2315: Abhishek Santra

20

20

Summary

- ➤ What is a function?
 - Terminologies: Domain, CoDomain, Image, PreImage, Range, ...
 - Examples: Modulo, Floor, Ceil, ...
- > Equal Function
- Properties
 - One-to-one, Onto, Bijective
- Composition of function
- Inverse Function

Fall 2022

CSE2315: Abhishek Santra

