

Customer Segmentation Classification

Data Mining - Fall 2022

Claraestela Torres, Bristow Richards, Aditya Singh

https://tinyurl.com/5cec2ztr

Data Overview

- "Customer Segmentation Classification" uploaded to Kaggle by user Kash
 Link
- This data had 11 columns: 1 id column, 1 target variable, and 9 predictors
 - ID Unique ID
 - o Gender Gender of the customer
 - o **Ever Married** Marital status of the customer
 - o Age Age of the customer
 - **Graduated** Is the customer a graduate?
 - o **Profession** Profession of the customer
 - Work Experience Work Experience in years
 - Spending Score (target 2) Spending score of the customer
 - **Family Size** Number of family members for the customer (including the customer)
 - Var_1 Anonymised Category for the customer in the training data
 - Segmentation (target 1) Customer Segment of the customer
- The data had around 10,500 observations, split roughly 80%-20% into training and testing. Roughly 20% of the data had null values.

Continuous Data

Correlation Matrix

(Classification)

Task 1: Customer "Segmentation"

KNN Classifier - 2 neighbors

	precision	recall	f1-score	support
D	0.340	0.403	0.369	692
В	0.198	0.260	0.225	450
С	0.241	0.270	0.255	381
A	0.497	0.249	0.332	631
accuracy			0.305	2154

Decision Tree - Leave nodes: 20

	precision	recall	f1-score	support
D	0.35	0.37	0.36	692
В	0.29	0.25	0.27	450
С	0.26	0.34	0.30	381
A	0.44	0.38	0.41	631
accuracy			0.34	2154

Naive Bayes

	precision	recall	f1-score	support
D B C A	0.327 0.236 0.230 0.405	0.247 0.076 0.520 0.403	0.281 0.114 0.319 0.404	692 450 381 631
accuracy			0.305	2154

Random

	Fore:	s t recall	f1-score	support
D B C A	0.32 0.22 0.25 0.44	0.30 0.07 0.45 0.46	0.31 0.10 0.32 0.45	692 450 381 631
accuracy			0.33	2154

Task 2: Customer Spending Score (Classification)

Setup - Multi-class classification

Target: Spending Score -> Low, Mid, High

Features: All features except segmentation

Let's look at important features before modelling

Information Gain

Correlation with Target

For Features with abs(correlation)>0.1

Label Imbalance

0: Low spenders,

1: mid spenders

2: high spenders

We see that there are many more low spenders

Comparing the classification models

Random Forest Feature Importance

Task 3: Exploratory Clustering

Clustering attempts

- Scoring metrics for clustering could not converge on ideal value for k
- Normalizing data or ignoring categorical data did not help
- It was not possible to explore different clusters for qualities the business would be interested in

Closing Remarks

Closing Remarks

- Too many categorical variables made our data sparse
- Clustering algorithms we learned perform better on continuous data
- Classification models struggled on classifying "Segmentation"
 - Maybe this is because the segmentation is arbitrary and fundamentally not correlated strongly with features -> business problem
- Classification models succeeded on classifying "Spending_Score"