FRG note

November 18, 2019

Contents

1	Wetterich Equation		3
2	QCI		6
	2.1	Meson field propagator	7
	2.2	Quark field propagator	8
	2.3	Gluon field propagator	8
	2.4	Gluon vertex	9
A	Four	rier transform of n-point function	10

1 Wetterich Equation

Consider the generating function which is cutoff at infrared:

$$Z_{k}[J] = \exp(W_{k}[J]) = \int [d\phi] \exp\{-S[\phi] - \Delta S_{k}[\phi]] + J^{a}\phi_{a}\}$$
 (1)

The ϕ stands for every kind of field here. Index a stands for every degree of freedom, including different fields, different components of a field. Such as the space-time coordinates or momentum index. $S[\phi]$ is the classical action, J^a is the source of ϕ_a . $\Delta S_k[\phi]$ is the infrared cutoff, its function is to cutoff the quantum fluctuation at $p^2 \le k^2$ and keep the fluctuation at $p^2 > k^2$ invariant. We usually choose the form of quadratic term (mass term) to achieve the infrared cutoff.

$$\Delta S_k[\phi] = \frac{1}{2} \phi_a R_k^{ab} \phi_b \tag{2}$$

with $R_k^{ab} = R_k^{ba}$ (a, b is the index of the boson), $R_k^{ab} = -R_k^{ba}$ (a, b is the index of the fermion). Here we give a example of a simple scalar field. In the coordinate space:

$$\Delta S_k[\phi] = \frac{1}{2} \int d^4x d^4y \varphi(x) R_k(x, y) \varphi(y)$$
(3)

So

$$R_{k}(x,y) = \int \frac{d^{4}p}{(2\pi)^{4}} R_{k}(p,-p) e^{ip(x-y)}$$

$$= \int \frac{d^{4}p}{(2\pi)^{4}} R_{k}(p) e^{ip(x-y)}$$
(4)

$$\varphi(x) = \int \frac{d^4p}{(2\pi)^4} e^{ipx} \varphi(p) \tag{5}$$

$$\Delta S_{k}[\varphi] = \frac{1}{2} \int d^{4}x d^{4}y \varphi(x) R_{k}(x, y) \varphi(y)$$

$$= \frac{1}{2} \int d^{4}x d^{4}y \int \frac{d^{4}p_{1}}{(2\pi)^{4}} e^{ip_{1}x} \varphi(p_{1}) \int \frac{d^{4}p}{(2\pi)^{4}} R_{k}(p) e^{ip(x-y)} \int \frac{d^{4}p_{2}}{(2\pi)^{4}} e^{ip_{2}y} \varphi(p_{2})$$

$$= \frac{1}{2} \int \frac{d^{4}p}{(2\pi)^{4}} \varphi(-p) R_{k}(p) \varphi(p)$$

$$= \frac{1}{2} \int \frac{d^{4}q}{(2\pi)^{4}} \varphi(-q) R_{k}(q) \varphi(q)$$
(6)

For the determined q, the regulator $R_k(q)$ satisfies the following properties

$$R_{k\to\infty}(q)\to\infty \quad R_{k\to0}(q)\to 0$$
 (7)

To suppress the fluctuation at $q^2 < k^2$ and keep the fluctuation at high momentum unchanging, we should choose

$$R_k(q)|_{q^2 < k^2} \sim k^2, \quad R_k(q)|_{q^2 > k^2} \sim 0$$
 (8)

for example

$$R_k(q) \sim \frac{q^2}{e^{\frac{q^2}{k^2}} - 1}$$
 (9)

of course, we can choose other forms of the regulator. From (1) we can get

$$\frac{\delta W_k[J]}{\delta J^a} = \frac{1}{Z_k} \frac{\delta Z_k[J]}{\delta J^a}$$

$$= \frac{1}{Z_k} \int [d\phi] \phi_a \exp\{-S[\phi] - \Delta S_k[\phi] + J^a \phi_a\}$$

$$= \langle \phi_a \rangle$$
(10)

In the below discussing, we replace $\langle \phi_a \rangle$ with ϕ_a and

$$\frac{\delta^2 W_k[J]}{\delta J^b \delta J^a} = \langle \phi_b \phi_a \rangle_c \equiv G_{ba}^k \tag{11}$$

index c stands for the connected diagram, G is the propagator that depends on the scale k. Now we do the Legendre transformation on the generated functional of connected diagram, then we can obtain the generated functional of one-particle irreducible diagram, that is the effective action

$$\Gamma_k[\phi] = -W_k[J] + J^a \phi_a - \Delta S_k[\phi] \tag{12}$$

Beware here $\phi_a \equiv \langle \phi_k \rangle$. In order to consider the boson and fermion together, we introduce the following symbols

$$J^a \phi_a = r_b^a \phi_a J^b \tag{13}$$

with

$$r_b^a = (-1)^{ab} \delta_b^a \tag{14}$$

$$(-1)^{ab} \equiv \begin{cases} -1, & for \ a,b \ Fermionic \\ 1, & for \ a,b \ Bosonic \end{cases}$$
 (15)

So from (12) we obtain

$$\frac{\delta(\Gamma_k[\phi] + \Delta S_k[\phi])}{\delta \phi_a} = r_b^a J^b \tag{16}$$

Differentiate J on both sides of the above formula

$$\frac{\delta^2(\Gamma_k[\phi] + \Delta S_k[\phi])}{\delta J^b \delta \phi_a} = r_b^a \tag{17}$$

$$l.h.s = \frac{\delta^{2}(\Gamma_{k}[\phi] + \Delta S_{k}[\phi])}{\delta J^{b} \delta \phi_{a}}$$

$$= \frac{\delta \phi_{c}}{\delta J^{b}} \frac{\delta^{2}(\Gamma_{k}[\phi] + \Delta S_{k}[\phi])}{\delta \phi_{c} \delta \phi_{a}}$$

$$= G_{bc}^{k} \frac{\Gamma_{k}[\phi] + \Delta S_{k}[\phi]}{\delta \phi_{c} \delta \phi_{a}}$$
(18)

We obtain

$$G_{bc}^{k} \frac{\Gamma_{k}[\phi] + \Delta S_{k}[\phi]}{\delta \phi_{c} \delta \phi_{a}} = r_{b}^{a}$$
(19)

$$\frac{\Gamma_k[\phi] + \Delta S_k[\phi]}{\delta \phi_c \delta \phi_a} = (\Gamma_k^{(2)}[\phi] + R_k)^{ca}$$
(20)

then

$$G_{bc}^{k}(\Gamma_{k}^{(2)}[\phi] + R_{k})^{ca} = r_{b}^{a}G_{bc}^{k} = r_{b}^{a}(\Gamma_{k}^{(2)}[\phi] + R_{k})_{ac}^{-1}$$
(21)

Now we calculate $\partial_t W_k[J] = k \frac{\partial}{\partial k} W_k[J]$

$$\begin{split} \partial_{t}W_{k}[J] &= \partial_{t}lnZ_{k}[J] \\ &= \frac{1}{Z_{k}} \partial_{t}Z_{k}[J] \\ &= \frac{1}{Z_{k}} \int [d\phi](-\partial_{t}\Delta S_{k}[\phi])e^{-S[\phi]-\Delta S_{k}[\phi]+J^{a}\phi_{a}} \\ &= -\frac{1}{Z_{k}} \int [d\phi] \frac{1}{2} \phi_{a} \partial_{t}R_{k}^{ab} \phi_{b}e^{-S[\phi]-\Delta S_{k}[\phi]+J^{a}\phi_{a}} \\ &= -\frac{1}{2} \langle \phi_{a}\phi_{b} \rangle \partial_{t}R_{k}^{ab} \\ &= -\frac{1}{2} (\langle \phi_{a}\phi_{b} \rangle_{c} + \langle \phi_{a} \rangle \langle \phi_{b} \rangle) \partial_{t}R_{k}^{ab} \end{split}$$

$$(22)$$

we replace $\langle \phi_a \rangle$ with ϕ_a again

$$\langle \phi_a \phi_b \rangle_c = \begin{cases} \langle \phi_b \phi_a \rangle, & for \quad a, b \quad Bosonic \\ -\langle \phi_b \phi_a \rangle, & for \quad a, b \quad Fermionic \end{cases}$$
 (23)

Then we obtain

$$\partial_t W_k[J] = -\frac{1}{2} STr G_k(\partial_t R_k) - \frac{1}{2} \phi_a \partial_t R_k^{ab} \phi_b$$
 (24)

STr is super trace, including the trace of every field and dispersed, continuously degree of freedom. For the fermion a negative sign should be added. Finally, from (12) and (24) we obtain

$$\partial_{t}\Gamma_{k}[\phi] = -\partial_{t}W_{k}[J] - \partial_{t}\Delta S_{k}[\phi]$$

$$= \frac{1}{2}\phi_{a}\partial_{t}R_{k}^{ab}\phi_{b} - \frac{1}{2}\phi_{a}\partial_{t}R_{k}^{ab}\phi_{b}$$

$$= \frac{1}{2}STrG_{k}(\partial_{t}R_{k})$$
(25)

This is the Wetterich equation.

2 QCD

In this section, we introduce the application of FRG in QCD. We start from the effective action that depends on the infrared cutoff scale k

$$\Gamma_{k} = \int d^{4}x \{ \frac{1}{4} F_{\mu\nu}^{a} F_{\mu\nu}^{a} + Z_{c,k} (\partial_{\mu} \overline{c}^{a}) D_{\mu}^{ab} c^{b} + \frac{1}{2\xi} (\partial_{\mu} A_{\mu}^{a})
+ Z_{q,k} \overline{q} (\gamma_{\mu} D_{\mu}) q - \lambda_{q,k} [(\overline{q} T^{0} q)^{2} - (\overline{q} \gamma_{5} T^{a} q)^{2}]
+ h_{k} [\overline{q} (i \gamma_{5} T^{a} \pi^{a} + T^{0} \sigma) q] + \frac{1}{2} Z_{\phi,k} (\partial_{\mu} \phi)^{2} \}$$
(26)

In the effective action

$$\phi = (\sigma, \pi^{a}), \rho = \frac{1}{2}\phi^{2}$$

$$D_{\mu} = \partial_{\mu} - iZ_{A,k}^{\frac{1}{2}} g_{k} A_{\mu}^{a} t^{a}$$

$$D_{\mu}^{ab} = \partial_{\mu} \delta^{ab} + Z_{A,k}^{\frac{1}{2}} g_{k} f^{acb} A_{\mu}^{c}$$
(27)

In the definition above $T^a(a=1,2,...,N_f^2-1)$ is the generator of flavor space with $T^0=\frac{1}{\sqrt{2N_f}}\mathbb{1}$; $t^a(a=1,2,...,N_c^2-1)$ is the generator of color space.

$$F_{\mu\nu} = \frac{i}{g} [D_{\mu}, D_{\nu}] = F_{\mu\nu}^{a} t^{a}$$

$$F_{\mu\nu}^{a} = Z_{A,k}^{\frac{1}{2}} (\partial_{\mu} A_{\nu}^{a} - \partial_{\nu} A_{\mu}^{a} + Z_{A,k}^{\frac{1}{2}} g_{k} f^{abc} A_{\mu}^{b} A_{\nu}^{c})$$
(28)

We rewrite the Wetterich equation as below

$$\partial_t \Gamma_k[\Phi] = \frac{1}{2} STr \widetilde{\partial_t} ln(\Gamma_k^{(2)} + R_k)$$
(29)

the tilde on the ∂_t stands for the derivation only works on the regulator R_k .

$$(\Gamma_k^{(2)})_{ab} = \frac{\overrightarrow{\delta}}{\delta \Phi_a^T} \Gamma_k \frac{\overleftarrow{\delta}}{\delta \Phi_b}$$
(30)

the definition of Φ is

$$\Phi = \begin{pmatrix}
A(q) \\
\sigma(q) \\
\pi(q) \\
q(q) \\
\overline{q}^{T}(q)
\end{pmatrix}$$

$$\Phi^{T} = \left(A^{T}(-q), \sigma(-q), \pi(-q), q^{T}(q), \overline{q}(q)\right)$$
(31)

the fluctuation matrix in the (29) can be rewrite as

$$\Gamma_k^{(2)} + R_k = P + F \tag{32}$$

The matrix P contains the propagators and regulators; matrix F contains the dependence of all kind of fields. So we can expanse the (29) with the number of the fields

$$\partial_{t}\Gamma_{k}[\Phi] = \frac{1}{2}STr\widetilde{\partial_{t}}ln(P+F)$$

$$= \frac{1}{2}STr\widetilde{\partial_{t}}ln[P(1+\frac{1}{P}F)]$$

$$\sim \frac{1}{2}STr\widetilde{\partial_{t}}ln(1+\frac{1}{P}F)$$

$$= \frac{1}{2}STr\left\{\widetilde{\partial_{t}}\left[\frac{1}{P}F - \frac{1}{2}(\frac{1}{P}F)^{2} + \frac{1}{3}(\frac{1}{P}F)^{3} - \frac{1}{4}(\frac{1}{P}F)^{4} + \cdots\right]\right\}$$

$$= \frac{1}{2}STr\widetilde{\partial_{t}}(\frac{1}{P}F) - \frac{1}{4}STr\widetilde{\partial_{t}}(\frac{1}{P}F)^{2} + \frac{1}{6}STr\widetilde{\partial_{t}}(\frac{1}{P}F)^{3} - \frac{1}{8}STr\widetilde{\partial_{t}}(\frac{1}{P}F)^{4} + \cdots$$
(33)

then we take the contribution of the lowest order in

$$\partial_{t}\Gamma_{k}[\Phi] = \frac{1}{2}STr\widetilde{\partial_{t}}ln(P+F)$$

$$= \frac{1}{2}STr\widetilde{\partial_{t}}ln[P(1+\frac{1}{P}F)]$$

$$= \frac{1}{2}STr\widetilde{\partial_{t}}[lnP+ln(1+\frac{1}{P}F)]$$

$$= \frac{1}{2}STr\widetilde{\partial_{t}}lnP+\frac{1}{2}STr\widetilde{\partial_{t}}ln(1+\frac{1}{P}F)$$

$$= \frac{1}{2}STr\widetilde{\partial_{t}}lnP+\frac{1}{2}STr\widetilde{\partial_{t}}(\frac{1}{P}F)-\frac{1}{4}STr\widetilde{\partial_{t}}(\frac{1}{P}F)^{2}+\frac{1}{6}STr\widetilde{\partial_{t}}(\frac{1}{P}F)^{3}-\frac{1}{8}STr\widetilde{\partial_{t}}(\frac{1}{P}F)^{4}+\cdots$$
(34)

2.1 Meson field propagator

The meson propagator part of the effective potential and its Fourier transform

$$\int d^4 x \frac{1}{2} Z_{\phi,k} (\partial_{\mu} \phi)^2$$

$$= \int \frac{d^4 q}{(2\pi)^4} \frac{1}{2} Z_{\phi,k} \phi(-q) q^2 \phi(q)$$
(35)

then consider the contribution of the meson mass

$$\Gamma_k^{\sigma\sigma}(q',q) \equiv \frac{\delta^2 \Gamma_k}{\delta\sigma(q')\delta\sigma(q)}
= (Z_{\phi,k}q^2 + m_{\sigma}^2)(2\pi)^4 \delta^4(q+q')$$
(36)

The corresponding cutoff function is

$$R_k^{\sigma\sigma}(q',q) = Z_{\phi,k} \vec{q}^2 r_B(\frac{\vec{q}^2}{k^2}) (2\pi)^4 \delta^4(q+q')$$
(37)

here we use the 3d regulator which is convenient to the calculation of the finite temperature. The $r_B(x) = (\frac{1}{x} - 1)\theta(1 - x)$ is an optimized regulator.

Then we treat the Pi meson in the same way

$$\Gamma_{k,ij}^{\pi\pi}(q',q) \equiv \frac{\delta^2 \Gamma_k}{\delta \pi_i(q') \delta \pi_j(q)}
= \delta_{ij} (Z_{\phi,k} q^2 + m_\pi^2) (2\pi)^4 \delta^4(q+q')$$
(38)

The cutoff function is

$$R_{k,ij}^{\pi\pi} = \delta_{ij} R_k^{\sigma\sigma} \tag{39}$$

In the calculation of finite temperature we have $q_0 = 2\pi nT$ in which the *n* is integer.

2.2 Quark field propagator

The quark propagator part and its Fourier transform

$$\int d^4x Z_{q,k} \overline{q}(x) (\gamma_{\mu} \partial_{\mu} + \frac{m_f}{Z_{q,k}}) q(x)
= \int \frac{d^4q}{(2\pi)^4} Z_{q,k} \overline{q}(q) (i \not q + \frac{m_f}{Z_{q,k}}) q(q)$$
(40)

The Fourier transform of the quark and anti-quark fields

$$q(x) = \int \frac{d^4q}{(2\pi)^4} e^{iqx} q(q)$$

$$\overline{q}(x) = \int \frac{d^4q}{(2\pi)^4} e^{-iqx} \overline{q}(q)$$
(41)

The derivation of the effective action amount of the quark fields is

$$\Gamma_{k,ij}^{\overline{q}q}(q',q) \equiv \frac{\overrightarrow{\delta}}{\delta q_i(q')} \Gamma_k \frac{\overleftarrow{\delta}}{\delta \overline{q}_j(q)}
= (Z_{q,k} i q_{ij} + m_f \delta_{ij}) (2\pi)^4 \delta^4(q'-q)
= (Z_{q,k} i q_{\mu} (\gamma_{\mu})_{ij} + m_f \delta_{ij}) (2\pi)^4 \delta^4(q'-q)$$
(42)

$$\Gamma_{k,ij}^{q\overline{q}} \equiv \frac{\overrightarrow{\delta}}{\delta q_i(q')} \Gamma_k \frac{\overleftarrow{\delta}}{\delta \overline{q}_j(q)}
= -(Z_{q,k} i q_{\mu} (\gamma_{\mu})_{ji} + m_f \delta_{ji}) (2\pi)^4 \delta^4(q' - q)$$
(43)

The corresponding regulator function is

$$R_{k,ij}^{\bar{q}q}(q',q) = Z_{q,k}i\vec{q} \cdot \vec{\gamma}_{ij}r_F(\frac{\vec{q}^2}{k^2})(2\pi)^4 \delta^4(q'-q)$$
(44)

with

$$r_F(x) = (\frac{1}{\sqrt{x}} - 1)\theta(1 - x)$$
 (45)

2.3 Gluon field propagator

The differential form of the effective action is

$$(\Gamma_k^{AA})_{\mu\nu}^{ab}(q',q) \equiv \frac{\delta^2 \Gamma_k}{\delta A_{\mu}^a(q')\delta A_{\nu}^b(q)}$$

$$= [Z_{A,k}q^2(\delta_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}) + \frac{q^2}{\xi}(\frac{q_{\mu}q_{\nu}}{q^2})]\delta^{ab}(2\pi)^4 \delta^4(q'+q)$$
(46)

The regulator function is

$$(R_k^{AA})_{\mu\nu}^{ab}(q',q) = \left[Z_{A,k}\vec{q}^2 r_B(\frac{\vec{q}^2}{k^2})(\delta_{\mu\nu} - \frac{q_\mu q_\nu}{q^2}) + \frac{\vec{q}^2}{\xi} r_B(\frac{\vec{q}}{k^2})(\frac{q_\mu q_\nu}{q^2})\right] \delta^{ab}(2\pi)^4 \delta^4(q'+q) \tag{47}$$

The propagator of the gluon is

$$(G_k^{AA})_{\mu\nu}^{ab}(q',q) = \left[\frac{1}{Z_{A,k}(q_0^2 + \vec{q}^2(1+r_B))}(\delta_{\mu\nu} - \frac{q_\mu q_\nu}{q^2}) + \frac{\xi}{q_0^2 + \vec{q}^2(1+r_B)} \frac{q_\mu q_\nu}{q^2}\right] \delta^{ab}(2\pi)^4 \delta^4(q'+q) \tag{48}$$

In the following calculation we adopt the Landau gauge $\xi = 0$, then we can obtain the matrix P

P =

$$\begin{pmatrix} Z_{A,k}(q_0^2 + \vec{q}^2(1 + r_B))(\delta_{\mu\nu} - \frac{q_\mu q_\nu}{q^2})\delta_{ab} & 0 & 0 & 0 & 0 \\ 0 & Z_{\phi,k}(q_0^2 + \vec{q}^2(1 + r_B)) + m_\sigma^2 & 0 & 0 & 0 \\ 0 & 0 & (Z_{\phi,k}(q_0^2 + \vec{q}^2(1 + r_B)) + m_\pi^2)\delta_{ij} & 0 & 0 \\ 0 & 0 & (Z_{\phi,k}(q_0^2 + \vec{q}^2(1 + r_B)) + m_\pi^2)\delta_{ij} & 0 & 0 \\ 0 & 0 & 0 & 0 & (Z_{\phi,k}i(q_0r_0 + \vec{q}\cdot\vec{r}(1 + r_F)) + m_f)^T \\ 0 & 0 & 0 & (Z_{\phi,k}i(q_0r_0 + \vec{q}\cdot\vec{r}(1 + r_F)) + m_f \end{pmatrix}$$

And then we can obtain the propagator matrix

$$\frac{1}{P} = \begin{pmatrix}
(G_k^{AA})_{\mu\nu}^{ab} & 0 & 0 & 0 & 0 \\
0 & G_k^{\sigma} & 0 & 0 & 0 \\
0 & 0 & (G_k^{\pi})_{ij} & 0 & 0 \\
0 & 0 & 0 & 0 & G_k^{q\bar{q}} \\
0 & 0 & 0 & G_k^{\bar{q}q} & 0
\end{pmatrix}$$
(50)

the definition of the matrix elements are

$$(G_{k}^{AA})_{\mu\nu}^{ab} = \frac{1}{Z_{A,k}(q_{0}^{2} + \vec{q}^{2}(1 + r_{B}))} (\delta_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^{2}}) \delta_{ab}$$

$$G_{k}^{\sigma} = \frac{1}{Z_{\phi,k}(q_{0}^{2} + \vec{q}^{2}(1 + r_{B})) + m_{\sigma}^{2}}$$

$$(G_{k}^{\pi})_{ij} = \frac{1}{Z_{\phi,k}(q_{0}^{2} + \vec{q}^{2}(1 + r_{B})) + m_{\pi}^{2}} \delta_{ij}$$

$$G_{k}^{q\bar{q}} = \frac{-Z_{q,k}i(q_{0}r_{0} + \vec{q} \cdot \vec{r}(1 + r_{F})) + m_{f}}{Z_{q,k}^{2}(q_{0}^{2} + \vec{q}^{2}(1 + r_{F})^{2}) + m_{f}^{2}}$$

$$G_{k}^{q\bar{q}} = -(G_{k}^{q\bar{q}})^{T}$$
(51)

2.4 Gluon vertex

$$\Gamma_{k} \sim \frac{1}{4} F_{\mu\nu}^{a} F_{\mu\nu}^{a}
= \frac{1}{4} Z_{A,k} (\partial_{\mu} A_{\nu}^{a} - \partial_{\nu} A_{\mu}^{a} + Z_{A,k}^{\frac{1}{2}} g_{k} f^{abc} A_{\mu}^{b} A_{\nu}^{c}) (\partial_{\mu} A_{\nu}^{a} - \partial_{\nu} A_{\mu}^{a} + Z_{A,k}^{\frac{1}{2}} g_{k} f^{ab'c'} A_{\mu}^{b'} A_{\nu}^{c'})
\sim \frac{1}{2} Z_{A,k}^{\frac{3}{2}} (\partial_{\mu} A_{\nu}^{a} - \partial_{\nu} A_{\mu}^{a}) g_{k} f^{abc} A_{\mu}^{b} A_{\nu}^{c} + \frac{1}{4} Z_{A,k}^{2} g_{k}^{2} f^{abc} f^{ab'c'} A_{\mu}^{b} A_{\nu}^{c} A_{\nu}^{b'} A_{\nu}^{c'}$$
(52)

here we let

$$\Gamma_1 = (\partial_\mu A^a_\nu - \partial_\nu A^a_\mu) f^{abc} A^b_\mu A^c_\nu \tag{53}$$

then we can calculate the derivative

$$\frac{\delta\Gamma_1}{\delta A_{\mu}^a} = -2(\partial_{\nu})_a f^{abc} A_{\mu}^b A_{\nu}^c + 2f^{abc} (\partial_{\nu} A_{\mu}^b - \partial_{\mu} A_{\nu}^b) A_{\nu}^c \tag{54}$$

$$\frac{\delta^2 \Gamma_1}{\delta A^a_\mu \delta A^b_\nu} = -2(\partial_\rho)_a f^{abc} \delta_{\mu\nu} A^c_\rho - 2(\partial_\nu)_a f^{acb} A^c_\mu + 2f^{abc} (\partial_\rho)_b \delta_{\mu\nu} A^c_\rho + 2f^{acb} \partial_\nu A^c_\mu - 2f^{abc} (\partial_\mu)_b A^c_\nu - 2f^{acb} \partial_\mu A^c_\nu$$

$$= 2\delta_{\mu\nu} f^{abc} [(\partial_\rho)_b - (\partial_\rho)_a] A^c_\rho + 2f^{abc} [(\partial_\nu)_a A^c_\mu - (\partial_\mu)_b A^c_\nu] + 2f^{abc} (\partial_\mu A^c_\nu - \partial_\nu A^c_\mu)$$
(55)

$$\frac{\delta^{3}\Gamma_{1}}{\delta A_{\mu}^{a}\delta A_{\nu}^{b}\delta A_{\rho}^{c}} = 2\delta_{\mu\nu}f^{abc}[(\partial_{\rho})_{b} - (\partial_{\rho})_{a}] + 2f^{abc}[(\partial_{\nu})_{a}\delta_{\mu\rho} - (\partial_{\mu})_{b}\delta_{\rho\nu}] + 2f^{abc}[(\partial_{\mu})_{c}\delta_{\rho\nu} - (\partial_{\nu})_{c}\delta_{\mu\rho}]$$

$$= 2f^{abc}\left\{\delta_{\mu\nu}[(\partial_{\rho})_{b} - (\partial_{\rho})_{a}] + \delta_{\mu\rho}[(\partial_{\nu})_{a} - (\partial_{\nu})_{c}] + \delta_{\rho\nu}[(\partial_{\mu})_{c} - (\partial_{\mu})_{b}]\right\} \tag{56}$$

If we set

$$\Gamma_{2} = f^{abc} f^{ab'c'} A^{b}_{\mu} A^{c}_{\nu} A^{b'}_{\mu} A^{c'}_{\nu}$$

$$= f^{abc} f^{a'b'c} A^{a}_{\mu} A^{b}_{\nu} A^{a'}_{\mu} A^{b'}_{\nu}$$
(57)

Then we can obtain the derivation of the Γ_2

$$\frac{\delta\Gamma_2}{\delta A^a_\mu} = 4 f^{abc} f^{a'b'c} A^b_\nu A^{a'}_\mu A^{b'}_\nu \tag{58}$$

$$\frac{\delta^{2}\Gamma_{2}}{\delta A_{\mu}^{a}\delta A_{\nu}^{b}} = 4f^{abc}f^{a'b'c}A_{\mu}^{a'}A_{\nu}^{b'} + 4f^{ab''c}f^{ab'c}A_{\rho}^{b''}\delta_{\mu\nu}A_{\rho}^{b'}
+ 4f^{ab''c}f^{a'bc}A_{\nu}^{b''}A_{\mu}^{a'}
= 4f^{abc}f^{a'b'c}A_{\mu}^{a'}A_{\nu}^{b'} + 4\delta_{\mu\nu}f^{ab'c}f^{ab''c}A_{\rho}^{b'}A_{\rho}^{b''} - 4f^{ab''c}f^{ba'c}A_{\mu}^{a'}A_{\nu}^{b''}$$
(59)

So we get the F matrix element of the gluon part

A Fourier transform of n-point function

Consider a general n-point function $V(x_1, x_2, ..., x_n)$, Its Fourier transformation can be written as:

$$V(x_1, x_2, ..., x_n) = \int \frac{d^4 p_1}{(2\pi)^4} \frac{d^4 p_2}{(2\pi)^4} ... \frac{d^4 p_n}{(2\pi)^4} V(p_1, p_2, ..., p_n) e^{i(p_1 x_1 + p_2 x_2 + ..., p_n x_n)}$$
(60)

if *V* satisfies the following properties:

$$V(x_1, x_2, ...x_n) = V(x_1 - x_n, x_2 - x_n, ..., 0)$$
(61)

The value of V depends only on the relative value of the coordinates, so we can obtain

$$V(p_{1}, p_{2}, ...p_{n}) = \int d^{4}x_{1}d^{4}x_{2}...d^{4}x_{n}V(x_{1}, x_{2}, ...x_{n})e^{-i(p_{1}x_{1} + p_{2}x_{2} + ...p_{n}x_{n})}$$

$$= \int d^{4}x_{1}d^{4}x_{2}...d^{4}x_{n}V(x_{1} - x_{n}, x_{2} - x_{n}, ...0)e^{-i(p_{1}x_{1} + p_{2}x_{2} + ...p_{n}x_{n})}$$

$$= \int d^{4}x_{1}d^{4}x_{2}...d^{4}x_{n}V(x_{1}, x_{2}, ...0)e^{-i[p_{1}(x_{1} + x_{n})p_{2}(x_{2} + x_{n}) + ...p_{n-1}(x_{n-1} + x_{n})]}$$

$$= \int d^{4}x_{1}d^{4}x_{2}...d^{4}x_{n}V(x_{1}, x_{2}, ...0)e^{-i[p_{1}x_{1} + p_{2}x_{2} + ...p_{n-1}x_{n-1} + (p_{1} + p_{2} + ... + p_{n})x_{n}]}$$

$$= (2\pi)^{4}\delta^{4}(p_{1} + p_{2} + ...p_{n}) \int d^{4}x_{1}d^{4}x_{2}...d^{4}x_{n-1}V(x_{1}, x_{2}, ..., 0)e^{-i(p_{1}x_{1} + p_{2}x_{2} + ...p_{n-1}x_{n-1})}$$

$$(62)$$

So we can redefine $V(p_1, p_2, ... p_n)$ as

$$V(p_1, p_2, \dots p_n) = (2\pi)^4 \delta^4(p_1 + p_2 + \dots p_n) V(p_1, p_2, \dots p_{n-1}, -(p_1 + p_2 + \dots p_{n-1}))$$
(63)

$$V(x_{1},x_{2},...x_{n}) = \int \frac{d^{4}p_{1}}{(2\pi)^{4}} \frac{d^{4}p_{2}}{(2\pi)^{4}} ... \frac{d^{4}p_{n}}{(2\pi)^{4}} (2\pi)^{4} \delta^{4}(p_{1} + p_{2}... + p_{n}) V(p_{1},p_{2},... - (p_{1},p_{2} + ...p_{n-1})) e^{i(p_{1}x_{1} + p_{2}x_{2} + ...p_{n}x_{n})}$$

$$= \int \frac{d^{4}p_{1}}{(2\pi)^{4}} \frac{d^{4}p_{2}}{(2\pi)^{4}} ... \frac{d^{4}p_{n-1}}{(2\pi)^{4}} V(p_{1},p_{2},... - (p_{1},p_{2} + ...p_{n-1})) e^{i[p_{1}(x_{1} - x_{n}) + p_{2}(x_{2} - x_{n}) + ...p_{n-1}(x_{n-1} - x_{n})]}$$

$$(64)$$