NAME:	SIGN:
SCHOOL:	REFERENCE NO:
P525/1	
CHEMISTRY	
Paper 1 2 ³ / ₄ hours	
$2^3/_4$ hours	

KAMOTA POST-MOCK EXAMINATIONS 2023 UGANDA ADVANCED CERTIFICATE OF EDUCATION CHEMISTRY PAPER 1 2 hours 45 minutes

INSTRUCTIONS

Answer **all** questions in section **A** and **six** questions in section **B**. Any **extra** question answered will not be marked. All questions must be answered in the spaces provided The Periodic Table with relative atomic masses will be provided **Illustrate your answers with equations where applicable** Molar gas constant $R = 8.314 \text{ Jmol}^{-1} \text{K}^{-1}$ Molar volume of gas at s.t.p is 22.4 litres

For Examiners Use Only

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

SECTION A (46 MARKS)

(Answer all the questions)

1. A cell convention is written as;

$$Pt_{(s)} \ / 2Cl^{\text{-}}_{(aq)} / Cl_{2(g)} \ / / Fe^{3+}_{(aq)} , Fe^{2+}_{(aq)} / Pt_{(s)}$$

Given the following standard electrode potential values

$$E^0/V$$

$$\begin{array}{ll} Cl_{2(g)}/2Cl^{*}_{(aq)} & +1.36 \\ Fe^{3+}_{(aq)},Fe^{2+}_{(aq)} & +0.76 \end{array}$$

(a) Calculate the e.m.f for the cell written in the cell convention above.

(2 marks)

(b) State whether the reaction is feasible or not. Give a reason for your answer.

 $(1^{1}/_{2} \text{ marks})$

(b) Write overall equation for the **feasible** reaction.

 $(1^1/_2 \text{ marks})$

- 2. An organic compound Q contains by mass 76.60% carbon, 6.38% hydrogen and the rest oxygen. Compound Q has a vapour density of 47 and burns with a sooty flame.
- (a) Determine the;
- (i) Empirical formula of Q.

(02 marks)

(ii) Molecular formula of Q

	(02 marks)
(b) State what will be observed and write equation for the reaction that takes place compound Q is reacted with;(i) benzenediazonium chloride in presence of sodium hydroxide solution.Observation	when
	$(^1/_2 \text{ mark})$
Equation	
	$(1^{1}/_{2} \text{ marks})$
(ii) ethanoic acid in presence of sodium hydroxide solution Observation	
	$(^1/_2 \text{ mark})$
Equation	
	$(1^{1}/_{2} \text{ marks})$
3. State what will be observed and write equation for the reaction that takes place vammonia is added drop wise until in excess to; (a) Tin(II) chloride solution Observation	when aqueous
Equation	(1 mark)
Equation	(1mark)
(b) Nickel (II) ethanoate solution. Observation	
	$(1^1/_2 \text{ marks})$
Equation	

4. (a) 2.0g of phosphorous when dissolved in 37.4g of carbon disulphide raised the boiling point of the by 1.003^{0} C. Boiling point constant for carbon disulphide is 2.35^{0} C mol⁻¹kg⁻¹.

 $(2^1/_2 \text{ marks})$

Determine the molecular formula of phosphorous in carbon disulphide.	
	(4 marks)
(b) Comment on your answer in (b). State the reason.	
	(2 marks)
5. State the conditions and write equation for the reaction that takes place for each elements given below and water.	of the
(a) Carbon Condition(s)	
	(1 mark)
Equation	
	(1 mark)
(b) Lead Condition(s)	
	$(^1/_2 \text{ mark})$
Equation	
	$(1^1/_2 \text{ marks})$
6. (a) State what will be observed when 2,4-dinitrophenyl hydrazine is added to cycin presence of a few drops of concentrated sulphuric acid.	clohexanone
	$(^1/_2 \text{ mark})$
(b) Outline the reaction mechanism for the reaction that takes place in (a) above.	

7.(a). For each of the compounds given, state the co-ordination number and oxidation state of the central atom and then give the name.

Compounds	Co-ordination	Oxidation	Name
	number	state	
[Fe(H2O)5(SCN)]2+			
Ag(CN)2			

(04 marks)

8. 2.0g of an **impure** sample of chromium (III) oxide was reacted with 100cm³ of 1.0M of hydrochloric acid which was in excess. The resultant solution formed was diluted to 250cm³ with distilled water.20 cm³ of this solution required 19.40cm³ of 0.1M sodium hydroxide solution for complete reaction. Determine the percentage purity of the sample.

(05 marks)

9.(a) A polymer has the structure

(i) State the type of polymerization involved in formation of the above given polymer.

								(1	mark)
(ii) Name the monome	ers invo	lved in t	he formati	on of the	polymer	•			
								(1	mark)
(b) Name one other ex named in (a) i above a	-				can be fo	ormed b	y the prod	cess as o	one
Name of polymer									
								$(^{1}/_{2})$	mark)
Name of monomers									
								(11	mark)
		SECT	TION B (5	54 MARK	ζS)				
			An	swer six (questions	S			
(10)(a) Explain what i	s meant	by the t	erm enthal	lpy of nev	ıtralizatio	on			
								(1:	mark)
(b) In an experiment t wise to 30cm ³ of 0.4M	1 sodiur	n hydrox	xide solutio	on. The in	nitial tem				
sodium hydroxide solu	ution we	ere 29 ⁰ C	and 27° C	respective	ely.				
The table below show			1			1	22	25	27.5
Volume of sulphuric acid added / cm ³	3.0	7.5	12	16.5	18.0	20	22	25	27.5
Temperature of the	29.1	30.9	32.5	33.8	34.0	34.0	34.0	33.5	33.1

Temperature of the	29.1	30.9	32.5	33.8	34.0	34.0	34.0	33.5	33.1
solution/ ^o C									

(i) Tabulate the values for the rise in temperature. (1mark)

(ii) Plot a graph of temperature rise against the volume of sulphuric acid added.

(3 marks)

(iii) Determine the	molarity of sulphu	ric acid.		((2 marks)
(iv) Calculate the e	enthalpy of neutrali	zation by sulphuric	acid.		
					(2marks)
11. The table below	w shows the hydrid	es of the group (VII)	elements and their	boiling po	oints.
Hydrides	HF	HCl	HBr	НІ	
Boiling points / K	253	188	206	238	
(a) Explain the tren	nd in the boiling po	ints of the hydrides.			
					(4 marks)

(b) The hydrides form acid solutions when dissolved in water. Arrange the hydrides of HBr , HCl and HI in order of increasing acid strength. Give reason for your answer.

(31	marks)
(c) Write equation to show how hydrogen fluoride and hydrogen bromide can be prepared.	•
(i) Hydrogen fluoride	
(1	l mark)
(ii) Hydrogen bromide	
(1	l mark)
(12) Write equations to show how the following synthesis can be carried out. In each case indicate the reagents and conditions necessary.(a) Propan-2-ol from 1-Bromopropane	
(b) Propanoic acid to ethylamine	marks)
(c) \sim COCH ₃ from benzene	marks)

(3 marks)

(2 marks)

(13)(a) Draw the structure and name the shapes of the species given in the table below

(13)(a) Draw the structure and	name the shapes of the species gi	ven in the table below
Species	Structure	Shape
NO ₂ -		
NO ₃ -		
NO ₂ +		
(b) Arrange the above given sp	pecies in order of increasing bond	$(4^{1}/_{2} \text{ marks})$
		(1 ¹ / ₂ marks)
(c) Name the reagent that can State the observation made. Reagent	be used to distinguish between NO	O_2^- and NO_3^- .
Observation		(1 mark)

(14) (12) (a) State **Hess' Law** of constant heat summation.

(b) (i) Explain what is meant by the term standard enthalpy of formation

(1 mark)

(ii) The standard enthalpies of combustions of carbon, hydrogen and propanol are; -394, -286 and -2010 Kj mol⁻¹ respectively.

Determine the standard enthalpy of formation of propanol.

(c) The following information is given;

Enthalpy of formation of magnesium oxide $= -642 \text{ Kj mol}^{-1}$ Enthalpy of atomization of magnesium $= +148 \text{ Kj mol}^{-1}$ First ionization energy of magnesium $= +738 \text{ Kj mol}^{-1}$ Second ionization energy of oxygen $= +496 \text{ Kj mol}^{-1}$ First electron affinity of oxygen $= -152 \text{ Kj mol}^{-1}$ Second electron affinity of oxygen $= +798 \text{ Kj mol}^{-1}$

- (iii) Calculate the lattice energy of magnesium oxide. (4 marks)
- (iv) State whether magnesium oxide is stable or not. Give a reason.

 $(1^{1}/_{2} \text{ marks})$

(iv) State the **two** factors that affect magnitude of lattice energy.

(1 mark)

(15) Complete the following organic reactions and outline the reaction mechanism.

Mechanism

(3 marks)

(b)
$$(CH_3)_3CC1$$
 $CH_3CH_2O^-/OH^-$ Heat

Mechanism

(3 marks)

Mechanism

(3 marks)

(16) (14) (a) The elements beryllium, magnesium and barium belong to group II in table.(i) Write the general outer electronic configuration of these elements.	he Periodic
	$\binom{1}{2}$ mark) roperty,
	(4 marks)
(b) Beryllium differs in some of its properties from the rest of the elements in the gro(i) State any two properties in which Beryllium differs from the rest of the members group.	
	(2 marks)
(ii) Give reasons why Beryllium shows different properties from the rest of the element	ents.
	$(1^1/_2 \text{ marks})$
(c) Name one reagent that can be used to distinguish between calcium ions and Bariu	ım ions.
	(1 mark)

During extraction of sodium metal, molten sodium chloride is mixed with another compound and the mixture electrolyzed in Downs cell. Both sodium metal and chlorine gas are obtained.				
(a) Name the compound which is mixed with sodium chloride before it's electrolyze its role.	ed and state			
	$(1^1/_2 \text{ marks})$			
(b) Write equations for the reaction that occur at the ; Anode				
	(1 mark)			
Cathode				
(c) State one use of sodium metal	(1mark)			
	$(^1/_2 \text{ mark})$			
(c) State what will be observed and write equation for the reaction that occurs when(i) A piece of sodium metal is added to ethanolObservation	;			
Equation	(01 mark)			
	$(1^1/_2 \text{ marks})$			
(ii) Chlorine gas is bubbled through hot concentrated sodium hydroxide solution. Observation				
	(01 mark)			

Equation

 $(1^1/_2 \text{ marks})$

END