

طراحی الگوریتم (بهار ۱۴۰۱) کوئیز اول

تاریخ امتحان: ۱۴۰۰/۱۲/۷

مدت امتحان: ۲۰ دقیقه

Question: In the quicksort algorithm, suppose each time the array is divided with the ratio of α and $1-\alpha$, where α is a constant and $0<\alpha\leq\frac{1}{2}$. Show that the minimum depth (or height) of a leaf in the recursion tree is approximately $-\log n/\log \alpha$ and the maximum depth is $-\log n/\log(1-\alpha)$. Don't worry about rounding errors in integer divisions.

پاسخ:

اگر درخت اجرای بازگشتی را رسم کنید، کمترین عمق متعلق به قسمتی است که هر بار بخش کوچکتر آرایه به αn هر درخت اجرای بازگشتی را رسم کنید، بخشی که ضریب α دارد.) هربار الگوریتم، اندازه ی آرایه را از α به عبارتی، بخشی که ضریب α دارد.) هربار الگوریتم، اندازه یه آزایه را از مرحله (در عمق α)، اندازه به $\alpha^i n$ کاهش میابد. هنگامی به برگ میرسیم که آنقدر آرایه شکسته شده باشد که طول آن یک باشد. به عبارتی، $\alpha^m n = 1$. این عبارت را میتوانیم به صورت $\alpha^m n = 1$ نیز بنویسیم. با حل این رابطه (با گرفتن لگاریتم از طرفین) خواهیم داشت:

$$m \log \alpha = -\log n => m = -\log n / \log \alpha$$

به طور مشابه، بیشترین عمق، مربوط به بخشی است که هربار بخش بزرگتر آرایه به آن اختصاص پیدا می کند (به عبارتی، بخشی که ضریب m=1 دارد.) در عمق m=1 دارد.) در عمق m=1 دارد.) در عمق m=1 عبارتی، بخشی که خواهد m=1 عبارت می بینیم که حداکثر عمق m=1 عبارت می بینیم که حداکثر عمق m=1 بود.

دقت کنید که این مقادیر تقریبی است. چون در هر مرحله، آرایه دقیقا به lpha و lpha تقسیم نمی گردد.