

تعليمات عامة

- يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؛
- عدد الصفحات: 3 (الصفحة الأولى تتضمن تعليمات ومكونات الموضوع والصفحتان المتبقيتان تتضمنان موضوع الامتحان) ؟
 - يمكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه ؟
 - ينبغى تفادي استعمال اللون الأحمر عند تحرير الأجوبة ؟
- بالرغم من تكرار بعض الرموز في أكثر من تمرين ، فكل رمز مرتبط بالتمرين المستعمل فيه ولا علاقة له بالتمارين السابقة أو اللاحقة .

مكونات الموضوع

- يتكون الموضوع من ثلاثة تمارين ومسألة ، مستقلة فيما بينها ، وتتوزع حسب المجالات كما يلي :

3 نقط	الهندسة الفضائية	التمرين الأول
3 نقط	الأعداد العقدية	التمرين الثاني
3 نقط	حساب الاحتمالات	التمرين الثالث
11 نقطة	دراسة دالة عددية و حساب التكامل والمتتاليات العددية	المسألة

- بالنسبة للمسألة ، ln يرمز لدالة اللوغاريتم النبيرى

NS 22

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها

التمرين الأول: (3ن)

0.5

0.5

0.5

0.5

B(-4,1,0) و A(2,1,0) النقطتين $(0,\vec{i},\vec{j},\vec{k})$ و ونعتبر، في الفضاء المنسوب إلى معلم متعامد ممنظم مباشر

- المستوى المار من النقطة A و $\vec{u}=\vec{i}+\vec{j}-\vec{k}$ و المستوى المار من النقطة عليه (P) ليكن (P) المستوى x+y-z-3=0 بين أن
 - \overrightarrow{MA} . $\overrightarrow{MB}=0$ التكن (S) مجموعة النقط M من الفضاء التي تحقق العلاقة $\Omega(-1,1,0)$ و شعاعها $\Omega(-1,1,0)$ و شعاعها $\Omega(-1,1,0)$
- (C) أـ احسب مسافة النقطة Ω عن المستوى (P) ثم استنتج أن (P) يقطع Ω وفق دائرة Ω 0.5
 - H(0,2,-1) هو النقطة (C) هو النقطة (C) هو النقطة
 - OHB ثم استنتج مساحة المثلث $\overrightarrow{OH} \wedge \overrightarrow{OB} = \overrightarrow{i} + 4 \overrightarrow{j} + 8 \overrightarrow{k}$ ثم استنتج مساحة المثلث (4 التمرين الثانى: (3 ن)

 $a=2+\sqrt{2}+i\sqrt{2}$ بحيث a بحيث العقدي آ

- $2\sqrt{2+\sqrt{2}}$ بين أن معيار العدد العقدي a هو (1
- $a=2\left(1+\cos\frac{\pi}{4}\right)+2i\sin\frac{\pi}{4}$ نحقق من أن (2 0.25
- $1+\cos 2\theta=2\cos^2 \theta$ بین أن $\cos^2 \theta$ میث $\cos^2 \theta$ میث ، حیث $\cos^2 \theta$ مین أن ، $\cos^2 \theta$
- $(\sin 2\theta = 2\cos \theta \sin \theta)$ نذکر أن $a = 4\cos^2\frac{\pi}{8} + 4i\cos\frac{\pi}{8}\sin\frac{\pi}{8}$ بـ بين أن $a = 4\cos^2\frac{\pi}{8} + 4i\cos\frac{\pi}{8}\sin\frac{\pi}{8}$
- $a^4=\left(2\sqrt{2+\sqrt{2}}
 ight)^4i$ قم بين أن $a^4=\left(2\sqrt{2+\sqrt{2}}
 ight)^4i$ هو شكل مثلثي للعدد $a^4=\left(2\sqrt{2+\sqrt{2}}
 ight)^4i$ هو شكل مثلثي للعدد ومن المعدد عن المعدد عن المعدد المعدد المعدد عن المعدد ال

النقطتين Ω و A اللتين لحقاهما A اللتين المستوى العقدي المنسوب إلى معلم متعامد ممنظم مباشر A اللتين الحقاهما المستوى العقدي المنسوب إلى معلم متعامد ممنظم مباشر

 $\frac{\pi}{2}$ على التوالي هما ω و α على التوالي هما ω و ω على التوالي هما ω و زاويته ω على التوالي هما على التوالي ا

- 2i هو R بين أن اللحق b للنقطة B صورة النقطة A بالدوران b
 - $\left|z-2i\right|=2$ حدد مجموعة النقط M ذات اللحق عبد ر2

التمرين الثالث: (3ن)

يحتوي صندوق U_1 على 7 كرات : أربع كرات حمراء و ثلاث كرات خضراء (لا يمكن التمييز بينها باللمس) و يحتوي صندوق U_2 على U_3 كرات : ثلاث كرات حمراء و كرتان خضراوان (لا يمكن التمييز بينها باللمس)

 U_2 الصندوق

 $U_{\scriptscriptstyle 1}$ الصندوق

- U_1 نعتبر التجربة التالية : نسحب عشوائيا و في آن واحد ثلاث كرات من الصندوق (I ليكن A الحدث : " الحصول على كرة حمراء واحدة و كرتين خضراوين ". و B الحدث : " الحصول على ثلاث كرات من نفس اللون " .
 - $p(B) = \frac{1}{7}$ و $p(A) = \frac{12}{35}$ بين أن
- U_2 نعتبر التجربة التالية : نسحب عشوائيا و في آن واحد كرتين من U_1 ثم نسحب عشوائيا كرة واحدة من (II) نعتبر التجربة التالية : "الحصول على ثلاث كرات حمراء ".

$$p(C) = \frac{6}{35}$$
 بین أن

الامتحان الوطنى الموحد للبكالوريا - الدورة العادية 2015 - الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها

المسألة: (11 ن)

0.5

0.5

0.5

0.25

0.5

0.5

0.25

0.5

0.5

0.75

0.75

$$f(x) = \frac{1}{x(1-\ln x)}$$
: بحيث بحيث f للمتغير الحقيقي بحيث يا

و ليكن $\left(C_{f}
ight)$ المنحنى الممثل للدالة f في معلم متعامد ممنظم و الوحدة $\left(C_{f}
ight)$ و ليكن

$$(f]$$
 بين أن $[D_f] = [0,e]$ بين أن $[D_f] = [0,e]$ بين أن الدالة $[D_f] = [0,e]$

.
$$\lim_{x\to e} f(x)$$
 و أول هندسيا النتيجتين المتوصل إليهما $\lim_{x\to e} f(x)$

. بـ احسب
$$f(x)$$
 بيتم تحديده بيتم أن المنحنى C_f يقبل مقاربا بجوار بيتم تحديده

$$(x(1-\ln x)=x-x\ln x)$$
 ين أن $(x-\ln x)=x-x\ln x$ ثم أول هندسيا النتيجة الحساب $(x(1-\ln x)=x-x\ln x)$ ثم أول هندسيا النتيجة الحساب أن

$$D_f$$
 نکل $f'(x) = \frac{\ln x}{x^2 (1 - \ln x)^2}$ نکل (3 0.75)

$$]e,+\infty[$$
 و $[1,e[$ على كل من المجالين $[0,1]$ و تزايدية على كل من المجالين $[0,+\infty[$ و تناقصية على المجال المجالين $[0,+\infty[$

$$D_f$$
 على على جـ ضع جدول تغيرات الدالة

$$g(x)=1-x^2\left(1-\ln x\right)$$
: ينكن g الدالة العددية المعرفة على المجال $g(x)=1-x^2\left(1-\ln x\right)$ بتكن والدالة العددية المعرفة على المجال

و ليكن
$$(C_g)$$
 المنحنى الممثل للدالة g في معلم متعامد ممنظم (انظر الشكل)

$$x$$
 2,1 2,2 2,3 2,4 $g(x)$ -0,14 -0,02 0,12 0,28

2,2<lpha<2,3 بين أن المعادلة (E) تقبل حلا lpha بحيث

$$D_f$$
 الكل $f(x) - x = \frac{g(x)}{x(1-\ln x)}$ اكل $f(x) = \frac{g(x)}{x(1-\ln x)}$

ب- بین أن المستقیم
$$(\Delta)$$
الذي معادلته $y=x$ يقطع المنحنى

$$lpha$$
 و 1 في النقطتين اللتين أفصولاهما النقطتين اللتين أفصو

$$[1\,,\,lpha\,]$$
 جـ حدد ، انطلاقا من $f(x)-x\leq 0$ اثنارة الدالة g على المجال g على المجال و بين أن

$$\left(C_{f}
ight)$$
 و المنحنى (Δ) المستقيم (Δ) المستقيم (Δ) المستقيم (Δ) المختى (3 Δ

(
$$D_f$$
 نكل x من $\frac{1}{x(1-\ln x)} = \frac{\frac{1}{x}}{1-\ln x}$: الحظ أن $\frac{1}{x(1-\ln x)} = \frac{1}{x(1-\ln x)}$ لكل $\frac{1}{x(1-\ln x)} = \frac{1}{x(1-\ln x)}$ كان من $\frac{1}{x(1-\ln x)} = \frac{1}{x(1-\ln x)}$

ب- احسب ، ب
$$cm^2$$
 ، مساحة حيز المستوى المحصور بين المنحنى C_f و المستقيمين $x=\sqrt{e}$ و $x=1$ اللذين معادلتاهما $x=\sqrt{e}$ و $x=1$

$$IN$$
 من $u_{n+1}=f\left(u_{n}\right)$ و $u_{0}=2$: المعرفة بما يلي المعرفة بما يلي (III) نعتبر المتتالية العددية

$$IN$$
 بين بالترجع أن $1 \leq u_n \leq \alpha$ بين بالترجع أن $1 \leq u_n \leq \alpha$

(ورد المتالية
$$(u_n)$$
 المتالية (u_n) عناقصية (يمكن استعمال نتيجة السؤال (u_n) ج-) ج- (2 المتالية المتالية (u_n) ج- (2 المتالية المتالية المتالية (u_n) عناقصية (u_n) ج- (u_n)

. استنتج أن المتتالية
$$(u_n)$$
 متقاربة و حدد نهايتها (3

الصفحة	N.D.
2	INR

22

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - عناصر الإجابة – مادة: الرياضيات – شعبة العلوم التجريبية بمسائكها وشعبة العلوم والتكنولوجيات بمسلكيها

1	٠,	11	١	المسألة
((1	11)	المساله

0.5	(5 11 <u>) 1322 </u>	
	(1-l	0.5
أ- 0.25 لكل نهاية من النهايتين و 0.25 للتأويل ب- 0.25 للتوصل إلى $f(x) = 0$ و 0.25 للاستنتاج	10	
ج- 0.25 للنهاية و 0.25 للتأويل	(2	1.75
$[0,1]$ بـ- 0.25 ل $f'(x) \le 0$ لكل x من $[0,1]$ و 0.25 ل $f'(x) \le 0$		
$[e,+\infty[$ و 0.25 ل $e,+\infty[$ لكل x من $[e,+\infty[$ و 0.25 ل $e,+\infty[$ و 0.25 ل $e,+\infty[$ و 0.25 ل و 0.25 ل و 1, e	(3	2
. 25. و	-	
$g(2,2) \times g(2,3) < 0$ ل $g(2,2) \times g(2,3) < 0$ و $g(2,2) \times g(2,3) < 0$ و $g(2,2) \times g(2,3) < 0$ و $g(2,2) \times g(2,3) < 0$	(1-II	1
0.25 - i		1.25
·	(2	1.25
[1,lpha] با المجال $[0.25]$ و x ل المجال $[0.25]$ الك x من x المجال x المجال الم		
انظر الشكل أسفله	(3	1.25
$4 imes\int_{1}^{\sqrt{e}}ig(x-f(x)ig)dx$ هي cm^2 هي 0.25 للنتيجة بالمساحة ب cm^2 هي 0.25 للنتيجة	(4	1.5
$2(e-1-2\ln 2)$ cm^2 و 0.25 للتوصل إلى أن المساحة هي		
0.5	(1-(III	0.5
0.5	(2	0.5
	(3	0.75
$[1,lpha]$ متقاربة (تناقصية و مصغورة) و $[1,lpha]$ متقاربة (تناقصية و مصغورة) متعاربة (التأكيد على أن $[u_n]$	`	
0.5	(2	0.5

