Approfondimento 3.3

Dimostrazione del Teorema 3.18

Sia $N=(\Sigma,Q,\delta,q_0,F)$ un NFA e sia $M_N=(\Sigma,\mathcal{T},\Delta,\epsilon\text{-}clos(q_0),\mathcal{F})$ l'automa ottenuto da N con la costruzione per sottinsiemi. Osserviamo in primo luogo che M_N è un automa finito deterministico. Infatti, la costruzione per sottinsiemi ci assicura che $\Delta(S,a)$ è definita per ogni coppia (S,a) con $S\in\mathcal{T}$ e $a\in\Sigma$. Inoltre $\Delta(S,a)$ è certo un elemento di \mathcal{T} , ancora per costruzione. Dunque l'unica cosa da dimostrare è che $\mathcal{L}[N]=\mathcal{L}[M_N]$.

Prima di iniziare la dimostrazione, osserviamo che la nozione di ϵ -chiusura si riduce all'indentità nel caso di un qualsiasi DFA (che, per definizione, non possiede ϵ -transizioni): per ogni insieme di stati R di un DFA, ϵ -clos(R) = R.

Useremo la funzione estesa $\hat{\delta}$. In particolare, detto $i_M = \epsilon \text{-}clos(q_0)$ lo stato iniziale di M_N , ci basterà mostrare che per ogni stringa $w \in \Sigma^*$ si ha $\hat{\delta}(q_0, w) = \hat{\Delta}(i_M, w)$. Lo facciamo per induzione sulla lunghezza di w.

Base: |w|=0, cioè $w=\epsilon$. Per definizione di $\hat{\delta}$, si ha $\hat{\delta}(q_0,\epsilon)=\epsilon$ - $clos(q_0)=i_M$. D'altra parte, $\hat{\Delta}(i_M,\epsilon)=\epsilon$ - $clos(i_M)=i_M$, perché in un DFA la ϵ -chiusura è l'identità.

Passo: w=xa, con $a\in \Sigma$ e $x\in \Sigma^*$; per ipotesi induttiva, supponiamo che $\hat{\delta}(q_0,x)=\hat{\Delta}(i_M,x)=\{p_1,\ldots,p_k\}$ e dobbiamo dimostrare che $\hat{\delta}(q_0,xa)=\hat{\Delta}(i_M,xa)$. Per definizione di $\hat{\delta}$, si ha

$$\hat{\delta}(q_0, xa) = \epsilon - clos(\bigcup_{i=1}^k \delta(p_i, a)).$$

Allo stesso modo con $\hat{\Delta}$, per definizione, sfruttando l'ipotesi induttiva e trascurando la ϵ -chiusura, si ha

$$\hat{\Delta}(i_M, xa) = \Delta(\{p_1, \dots, p_k\}, a).$$

Prendiamo ora in considerazione la definizione di Δ che si ottiene con la costruzione per sottinsiemi. L'algoritmo dà, sfruttando la definizione di mossa:

$$\Delta(\{p_1,\ldots,p_k\},a) = \epsilon - clos(mossa(\{p_1,\ldots,p_k\},a)) = \epsilon - clos(\bigcup_{i=1}^k \delta(p_i,a)).$$