EXAM OF STATISTICS (DESCRIPTIVE STATISTICS AND REGRESSION)

Pharmacy/Biotechnology 1st year	Version A	October, 14 2019
Name:	DNI:	Group:

Duration: 1 hour and 15 minutes.

(4.5 pts.) 1.It has been measured the systolic blood pressure (in mmHg) in two groups of 100 persons of two populations A and B. The table below summarize the results.

Systolic blood pressure	Num persons A	Num persons B
(80, 90]	4	6
(90, 100]	10	18
(100, 110]	28	30
(110, 120]	24	26
(120, 130]	16	10
(130, 140]	10	7
(140, 150]	6	2
(150, 160]	2	1

- (a) Which of the two systolic blood pressure distributions is less asymmetric? Which one has a higher kurtosis? According to skewness and kurtosis can we assume that populations A and B are normal?
- (b) In which group is more representative the mean of the systolic blood pressure?
- (c) Compute the value of the systolic blood pressure such that 30% of persons of the group of population A are above it?
- (d) Which systolic blood pressure is relatively higher, 132 mmHg in the group of population A, or 130 mmHg in the group of population B?
- (e) If we measure the systolic blood pressure of the group of population A with another tensiometer, and the new pressure obtained (Y) is related with the first one (X) according to the equation y = 0.98x 1.4, in which distribution, X or Y, is more representative the mean?

Use the following sums for the computations:

Group A: $\sum x_i n_i = 11520$ mmHg, $\sum x_i^2 n_i = 1351700$ mmHg², $\sum (x_i - \bar{x})^3 n_i = 155241.6$ mmHg³ y $\sum (x_i - \bar{x})^4 n_i = 16729903.52$ mmHg⁴. Group B: $\sum x_i n_i = 11000$ mmHg, $\sum x_i^2 n_i = 1230300$ mmHg², $\sum (x_i - \bar{x})^3 n_i = 165000$ mmHg³ y $\sum (x_i - \bar{x})^4 n_i = 13632500$ mmHg⁴.

- (1 pts.) 2. In a symmetric distribution the mean is 15, the first quartile 12 and the maximum value is 25.
 - (a) Draw the box and whiskers plot.
 - (b) Could an hypothetical value of 2 be considered an outlier in this distribution?
- $(4.5 \mathrm{~pts.})$ 3. A pharmaceutical company is trying three different analgesics to determine if there is a relation among the time required for them to take effect. The three analgesics were administered to a sample of 20 patients and the time it took for them to take effect was recorded. The following sums summarize the results, where X, Y and Z are the times for the three analgesics.

```
\begin{array}{l} \sum x_i = 668 \text{ min, } \sum y_i = 855 \text{ min, } \sum z_i = 1466 \text{ min,} \\ \sum x_i^2 = 25056 \text{ min}^2, \sum y_i^2 = 42161 \text{ min}^2, \sum z_i^2 = 123904 \text{ min}^2, \\ \sum x_i y_j = 31522 \text{ min}^2, \sum y_j z_j = 54895 \text{ min}^2. \end{array}
```

- (a) Is there a linear relation between the times X and Y? And between Y and Z? How are these linear relationships?
- (b) According to the regression line, how much will the time X increase for every minute that time Y increases?
- (c) If we want to predict the time Y using a linear regression model, ξ which of the two times X or Z is the most suitable? Why?
- (d) Using the chosen linear regression model in the previous question, predict the value of Y for a value of X or Z of 40 minutes.
- (e) If the correlation coefficient between the times X and Z is r=-0.69, compute the regression line of X on Z.