k9 simples

John Estrada

Table of Contents

k	9: N	Manual
1	In	ntro
	1.1	Get k9
	1.2	rlwrap
	1.3	Simple example
	1.4	Document formatting for code examples
	1.5	k9 nuances
	1	.5.1 : is used to set a variable to a value
	1	.5.2 % is used to divide numbers
	1	.5.3 Evaluation is done right to left
	1	.5.4 There is no arithmetic order
	1	.5.5 Operators are overloaded depending on the number of
		arguments 5
	1	.5.6 Lists and functions are very similar 5
	1	.5.7 k9 is expressed in terms of grammar
	1.6	Help/Info Card
2	D	ata / Nouns 7
	2.1	Numeric Data Types
	2.2	Extreme values
3	$\mathbf{F}_{\mathbf{t}}$	unctions / Verbs 9
	3.1	$set \Rightarrow x:y \dots 9$
	3.2	$plus \Rightarrow x+y9$
	3.3	$flip \Rightarrow +x$
	3.4	
	3.5	$negate \Rightarrow -x \dots 11$
	3.6	$times \Rightarrow x^*y \dots 11$
	3.7	$first \Rightarrow *x$ 11
	3.8	$divide \Rightarrow x\%y11$
	3.9	$\min \Rightarrow x\&y11$
	3.10	where $\Rightarrow \&x$
	3.11	$\max \Rightarrow x \mid y \dots 12$
	3.12	$reverse \Rightarrow x$
	3.13	$less \Rightarrow x < (>) y $
	3.14	$up \Rightarrow \langle (\rangle) x \dots 13$
	3.15	$equal \Rightarrow x=y \dots 13$
	3.16	$group \Rightarrow =x \dots 13$
	3.17	$match \Rightarrow x^*y \dots 14$
	3.18	$not \Rightarrow \tilde{x} \dots 14$
	3.19	$\text{kev} \Rightarrow \text{v}^{\dagger}\text{v}$

3.20	$enum \Rightarrow !x.$	14
3.21	$cat \Rightarrow x,y$	14
3.22	$enlist \Rightarrow x$	15
3.23	$\operatorname{cut} \Rightarrow x^{*}y$	
3.24	$asc \Rightarrow ^x$	
3.25	$cast \Rightarrow x\$y \dots$	15
3.26	$string \Rightarrow \$x$	15
3.27	$take \stackrel{-}{\Rightarrow} x\#y \dots$	16
3.28	$count \Rightarrow \#x \dots$	16
3.29	$drop \Rightarrow x_{-}y_{-}$	16
3.30	$find \Rightarrow x?y \dots$	16
3.31	unique \Rightarrow ?x	17
3.32	$at \Rightarrow x@y$	17
3.33	$type \Rightarrow @x \dots$	17
3.34	$apply \Rightarrow x.y$	18
3.35	$value \Rightarrow .x$	18
Fι	$egin{aligned} ext{unction Modifiers} \ / \ ext{Adverbs} \dots & \dots \end{aligned}$	19
1.1	$each \Rightarrow f'x$	19
1.2	$\mathrm{bar} \Rightarrow \mathrm{x'y}$	19
1.3	$\mathrm{scan} \Rightarrow (f \setminus) x \dots $	19
1.4	$left \Rightarrow f\backslash [x;y] \dots$	19
1.5	$\text{mod} \Rightarrow x \setminus y \dots$	20
1.6	$over \Rightarrow (f/)x \dots \dots$	20
1.7	$right \Rightarrow f/[x;y]$	20
1.8	$\mathrm{div} \Rightarrow \mathrm{x/y} \dots \dots$	20
${ m Li}$	sts	21
	· ·	
	The Government of the Control of the	
\mathbf{D}	ictionaries and Dictionary Functions	2 3
6.1	Dictionaries	
6.2	Dictionary Key !	23
3.3	Dictionary as Value	23
6.4	Sorting a Dictionary by Key ^	24
5.5	Sorting a Dictionary by Value $<$ and $>$	24
6.6	Flipping a Dictionary into a Table $+\dots$	$\dots 25$
5.7	Functions that operate on each value in a dictionary $\ldots \ldots$	25
5.8	Functions that operate over values in a dictionary $\ldots\ldots$	26
ъ л		27
	3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.30 3.31 3.32 3.33 3.34 4.5 4.5 4.5 4.5 3.6 3.6 3.6 3.6 4.5 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	3.21 cat $\Rightarrow x,y$ 3.22 enlist $\Rightarrow x$ 3.23 cut $\Rightarrow x^*y$ 3.24 asc $\Rightarrow x^*x$ 3.25 cast $\Rightarrow x^*y$ 3.26 string $\Rightarrow x$ 3.27 take $\Rightarrow x \neq y$ 3.28 count $\Rightarrow \#x$ 3.29 drop $\Rightarrow xy$ 3.30 find $\Rightarrow x^2y$ 3.31 unique $\Rightarrow ?x$ 3.32 at $\Rightarrow x \otimes y$ 3.33 type $\Rightarrow \otimes x$ 3.35 value $\Rightarrow x$ 3.5 value $\Rightarrow x$ Function Modifiers / Adverbs 3.1 each $\Rightarrow f^*x$ 3.2 bar $\Rightarrow x^*y$ 3.3 scan $\Rightarrow (f^*x)$ 3.4 left $\Rightarrow f^*(x)$ 3.5 mod $\Rightarrow x^*y$ 4.6 over $\Rightarrow (f^*x)$ 5.7 right $\Rightarrow f^*(x)$ 6.8 div $\Rightarrow x/y$ Lists 5.1 List syntax 6.2 List Indicing 6.3 Updating List Elements Dictionaries and Dictionary Functions 6.1 Dictionary Sey! 6.2 Dictionary Sey! 6.3 Dictionary as Value 6.4 Sorting a Dictionary by Value $<$ and $>$ 6.5 Flipping a Dictionary into a Table $+$ 6.7 Functions that operate on each value in a dictionary

8	$\mathbf{I}/$	O	28
	8.1	Input format values to table	28
	8.2	Format to $CSV/json/k \Rightarrow csv x$	
	8.3	write line \Rightarrow x 0:y	
	8.4	read line \Rightarrow 0:x	29
	8.5	write char \Rightarrow x 1:y	29
	8.6	read char \Rightarrow 1:x	29
	8.7	write data $\Rightarrow 2$:	29
	8.8	$conn/set \Rightarrow 3:$	29
	8.9	$http/get \Rightarrow 4:$	
9	T_{i}	ables and kSQL	30
	9.1	Tables	30
	9.2	A_Tables	30
	9.3	S_Tables	30
	9.4	kSQL	31
1()]	X	32
	10.1	Errors	32
		0.1.1 error: parse	
	10	0.1.2 error: value	
	10	0.1.3 error: class	32
	10	0.1.4 error: length	
	10	0.1.5 error: domain	
	10.2	`freq Histogram	

k9: Manual

k9: Manual

This document explains the usage of the k9 programming language in very simple terms and is intended for newbies only.

1 Intro

Shakti, aka k9, is a programming language built for speed, consice syntax, and data manipulation. The syntax is a bit special and although it might feel like an impediment at first becomes an advantage with use.

The k9 language is more closely related to mathematics syntax than most programming lanauges. It requires the developer to learn to speak k9 but once that happens most find an ability to "speak" quicker in k9 than in other languages. At this point an example might help.

In mathematics, "3+2" is read as "3 plus 2" as you learn at an early age that "+" is the "plus" sign. For trival operations like arithmetic most programming languages use symbols also. Moving on to something less math like most programming lanauges switch to clear words while k9 remains with symbols which turn out to have the same level of clarity. As an example, to determine the distinct values of a list most programming languages might use a synatx like distinct() while k9 uses ?. This requires the developer to learn how to say a number of symbols but once that happens it results in much shorter code that is quicker to write, harder to bug, and easier to maintain.

In math which do you find easier to answer?

Math with text

Three plus two times open parenthesis six plus fourteen close parenthesis

```
Math with symbols 3+2*(6+14)
```

In code which do you find easier to understand?

```
Code with text x = (0.12,3,4,1,17,-5,0,3,11);y=5; distinct_x = distinct(x); gt_distinct_x = [i for i in j if i >= y]; Code with symbols x:(0.12,3,4,1,17,-5,0,3,11);y:5; z@\&v < z:?x
```

If you're new to k9 and similar languages, then you should likely appreciate symbols is shorter but looks like line noise. That's true but so did arithetic until you learns the basics.

When you first learned arithmetic you likely didn't have a choice. Now you have a choice about learning k9. If you give it a try, then I expect you'll get it quickly and move onto the power phase fast enough that you'll be happy you gave it a chance.

1.1 Get k9.

https://shakti.com/

Go to the Shakti website and click on download. You'll need to enter a few pieces of information and then you'll have a choice to download either a Linux or MacOS version. Click on the required OS version and you'll download a k.zip file around 50 kb in size. Unzip that file and you'll have a single executable file k which is the language.

1.2 rlwrap

Although you only need the k binary to run k9 most will also install rlwrap, if not already installed, in order to get command history in a terminal window. rlwrap is "Readline wrapper: adds readline support to tools that lack it" and allows one to arrow up to go through the command buffer generally a useful option to have.

In order to start k9 you should either run k or rlwrap k to get started. Here I will show both options but in generally one would run as needed. In this document lines with input be shown with a leading space and output will be without. In the examples below the user starts a terminal window in the directory with the k file. Then the users enters rlwrap ./k RET. k9 starts and displays the date of the build, (c), and shakti and then listens to user input. In this example I have entered the command to exit k9, //. Then I start k9 again without rlwrap and again exit the session.

```
rlwrap ./k
2020.04.01 (c) shakti
//
./k
2020.04.01 (c) shakti
```

1.3 Simple example

Here I will start up k9, perform some trivial calculations, and then close the session. After this example it will be assumed the user will have a k9 session running and working in repl mode. Comments (/) will be added to the end of lines as needed.

At this point you might want to check which symbol has the highest return, most variance, or any other analysis on the data.

```
#'=q
                              / count each unique a/b/c combination
a b c |
-- -- --|---
 0 1 1 4 0 7
-1 -1 -1|379
-1 0 0|367
 0 -1 -1|391
 1 1 1 349
  -1#+\q
                              / calulate the return of each symbol
 ъ с
-68 117 73
 {(+/m*m:x-avg x)%#x}'+q / calulate the variance of each symbol
a|0.6601538
bl0.6629631
c|0.6708467
```

1.4 Document formatting for code examples

This document uses a number of examples to help clarify k9. The sytax is that input has a leading space and output does not. This follows the terminal syntax where the REPL input has space but prints output without.

```
3+2 / this is input
5 / this is output
```

1.5 k9 nuances

One will need to understand some basic rules of k9 in order to progress. These will likely seem strange at first.

1.5.1: is used to set a variable to a value

a:3 is used to set the variable, a, to the value, 3. a=3 is an equality test to determine if a is equal to 3.

1.5.2 % is used to divide numbers

Yeah, 2 divide by 5 is written as 2%5 and not 2/5.

1.5.3 Evaluation is done right to left

2+5*3 is 17 and 2*5+3 is 16. 2+5*3 is first evaluated on the right most portion, 5*3, and once that is computed then it proceeds with 2+15. 2*5+3 goes to 2*8 which becomes 16.

1.5.4 There is no arithmetic order

+ does not happen specially before or after *. The order of evaluation is done right to left unless parenthesis are used. (2+5)*3 = 21 as the 2+5 in parenthesis is done before being multiplied by 3.

1.5.5 Operators are overloaded depending on the number of arguments.

```
*(3;6;9) / single argument so * is first element of the list 3

2*(3;6;9) / two arguments so * is multiplication
6 12 18
```

1.5.6 Lists and functions are very similar.

k9 syntax encourages you to treat lists and functions in a similar function. They should both be thought of a mapping from a value to another value or from a domain to a range.

```
1:3 4 7 12
f:{3+x*x}
102
7
f02
7
```

1.5.7 k9 is expressed in terms of grammar.

k9 uses an analogy with grammar to describe language syntax. The k9 grammar consists of nouns (data), verbs (functions) and adverbs (function modifiers).

- The boy ate an appple. (Noun verb noun)
- The girl ate each olive. (Noun verb adverb noun)

In k9 as the $\mathrm{Help/Info}$ card shows data are nouns, functions/lists are verbs and modifiers are adverbs.

- 3 > 2 (Noun verb noun)
- 3 >' 0 1 2 3 4 5 (Noun verb adverb noun)

1.6 Help/Info Card

Typing \ in the terminal gives you a concise overview of the language. This document aims to provide details to beginning users where the help screen is a tad too terse.

```
\
$k a.k
```

```
Type System
Verb
                          Adverb
                                                Noun
                                       i bar
                                                bool 110b
                                                                  b \ \ \ a.k
: set
                            each
             flip
                          / over/right i div
                                                int 2 3 4
                                                                  i *\d [d]
 plus
                          \ scan/left i mod
                                                flt 2e3 ON OW
                                                                  f \v [d]
  minus
             negate
* times
             first
                         ': eachprior
                                               *fix 2.34 3.00
                                                                    *\f [d]
% divide
                          /: [n]f-loop i sv
                                                date 2024.01.01
                                                                 d \w [x]
& min
             where
                         \: [n]f-loop i vs
                                                time 12:34:56.789 t \t:n x
| max
             reverse
                                                char "ab "
                                                                  c \u:n x
                                                str `a`b`
< less
             up
                         I/0
> more
             down
                         0: readwrite line
                                                list (2;3.4; `c)
                                                                 L \fl line
  equal
             group
                         1: readwrite char
                                                dict [a:2;b:`c] ?? \fc char
  match
             not
! key
                         2: write
                                                func \{(+/x)\% #x\}
             enum
                                       data
             enlist
                                                expr :32+1.8*x
  cat
  \operatorname{cut}
             asc
$ cast
                                       cond
                         $[c;t;f]
             string
                         #[t;c;b[;a]]
                                       select
                                               table [[]a:`b`c] A
# take
             count
                         *_[t;c;b[;a]]
                                       update Stable S! [[]...] SA
  drop
?
  find
                         *?[x;i;f[;y]]
                                       splice Atable [[a:..]b:] AA
             unique
@ at
                         @[x;i;f[;y]]
                                                                      \cd dir
             type
                                       amend
                          .[x;i;f[;y]]
                                                                      \\ exit
             value
                                       dmend
  apply
/comment \display [dict] :expr (leading space)
```

```
count first last min max sum avg; in bin within; key
select A by B from T where C; delete from T where C
*exp log sin cos

time/cuanto: 2m 2d 2h.. 12:34:56.123456789 e.g. .z.d+2m / .z.[tuv]
date/cuando: 2024.01.01T12:34:56.123456789 e.g. 7\.z.d / .z.[TUV]

v~'`json?'json v:(`ab;"abc";2;2e3;0N;0W;.z.D;.z.t)
v~'`csv ?'csv v:(`ab;"abc";2;2e3;0N;0W;.z.D;.z.t)
error: value class rank type domain length limit
limit: {[param8]local8 global32 const128 jump256}
```

2 Data / Nouns

The basic data types of the k9 language are numbers (interger and float), text (characters and enumerated/name) and temporal (date and time). It is common to have functions operate on multiple data types.

In additional to the basic data types, data can be put into lists (uniform and non-uniform), dictionaries (key-value pairs), and tables (transposed/flipped dictionaries). Dictionaries and tables will be covered in a seperate chapter.

Data types can be determined by using the @ function on values or lists of values. In the case of lists @ returns the type of the list `L but the function can be modified to evalue each type @' instead and return the type of each element in the list.

```
@(3;3.1;"b"; `a;12:01:02.123;2020.04.05)
`L
@'(3;3.1;"b"; `a;12:01:02.123;2020.04.05)
`i`f`c`s`t`D
```

2.1 Numeric Data Types

Numbers can be stored as integers and floats.

```
@3
    @3.1
    f
    a:3;b:3.1;
    @a
    i
    @b
    `f
```

Numeric data can be recast as other types using the \$ command. The \$ is an overloaded function and can either convert to string or cast to type if provided. The first usage take only a single argument, the item to be converted to a string, while the second usage takes two arguments, the items to be converted and also the type to convert into.

You'll note that the string of 3 is represented as ,"3". The comma represents the string is a list of length one and not a single element.

```
$3  / convert to string
,"3"

$12  / convert to string
"12"
  `f$12  / convert to float
12f
  `t$12  / convert to time
00:00:00.012
  `d$12  / convert to date
2024-01-13
```

2.2 Extreme values

Data types can not only represent in-range values but also null and out-of-range values.

type	null	out of range
i	0N	0W
f	0n	0 w

3 Functions / Verbs

This chapter explains all functions, aka verbs. Most functions are overloaded and change depending on the number and type of arguments.

```
Verb
   (*note set::)
  (*note plus::)
                          (*note flip::)
  (*note minus::)
                          (*note negate::)
  (*note times::)
                          (*note first::)
%
  (*note divide::)
                          (*note where::)
& (*note min::)
  (*note max::)
                          (*note reverse::)
< (*note less::)
                          (*note asc::)
> (*note more::)
                          (*note dsc::)
= (*note equal::)
                          (*note group::)
   (*note match::)
                          (*note not::)
! (*note key::)
                          (*note enum::)
  (*note cat::)
                          (*note enlist::)
   (*note cut::)
                          (*note sort::)
                          (*note string::)
$ (*note cast::)
                          (*note count::)
# (*note take::)
  (*note drop::)
                          (*note floor::)
? (*note find::)
                          (*note unique::)
0 (*note at::)
                          (*note type::)
                          (*note value::)
   (*note apply::)
3.1 \text{ set} \Rightarrow x:y
Set a variable, x, to a value, y.
      a:3
     3
      b:(`green;37;"blue)
     green
     37
     blue
      c:\{x+y\}
      С
     \{x+y\}
      c[12;15]
     27
3.2 plus \Rightarrow x+y
Add x and y.
```

3+7

```
10
      a:3;
      a+8
     11
      3+4 5 6 7
     7 8 9 10
      3 4 5+4 5 6
     7 9 11
      3 4+1 2 3 / lengths don't match, will error: length
     error: length
      10:00+1
                     / add a minute
     10:01
      10:00:00+1
                     / add a second
     10:00:01
      10:00:00.000+1 / add a millisecond
     10:00:00.001
3.3 flip \Rightarrow +x
Flip, or transpose, x.
      x:((1 2);(3 4);(5 6))
     1 2
```

```
x
1 2
3 4
5 6
+x
1 3 5
2 4 6
  `a`b!+x
a|1 3 5
b|2 4 5
+ `a`b!+x
a b
```

3.4 minus \Rightarrow x-y

```
Subtract y from x.
```

```
5-2
3
x:4;y:1;
x-y
3
```

3.5 negate \Rightarrow -x

```
Negative x.

-3

-3

-3

-3

3

x:4;

-x

-4

d:`a`b!((1 2 3);(4 5 6))

-d

a|-1 -2 -3

b|-4 -5 -6
```

3.6 times \Rightarrow x*y

Mutliply x and y.

$3.7 \text{ first} \Rightarrow *x$

Return the first value of x.

```
*1 2 3

1

*((1 2);(3 4);(5 6))

1 2

**((1 2);(3 4);(5 6))

1

*`a`b!((1 2 3);(4 5 6))

1 2 3
```

$3.8 \text{ divide} \Rightarrow x\%y$

Divide x by y. 12%5 2.4 $6\%2 \qquad \text{/ division of two integers returns a float}$ 3f

$3.9 \min \Rightarrow x\&y$

The smaller of x and y.

```
3&2
2
1 2 3&4 5 6
1 2 3
010010b&111000b
010000
`a&`b
`a
```

3.10 where $\Rightarrow \&x$

Given a list of integer values, eg. x_-0 , x_-1 , ..., $x_-(n-1)$, generate x_-0 values of 0, x_-1 values of 1, ..., and $x_-(n-1)$ values of n-1.

```
& 3 1 0 2

0 0 0 1 3 3

&001001b

2 5

"banana"="a"

010101b

&"banana"="a"

1 3 5

x@&30<x:12.7 0.1 35.6 -12.1 101.101 / return values greater than 30

35.6 101.101
```

$3.11 \max \Rightarrow x | y$

The greater of x and y.

```
3|2
3
1 2 3|4 5 6
4 5 6
101101b|000111b
101111b
```

$3.12 \text{ reverse} \Rightarrow |x|$

Reverse the list x.

```
|0 3 1 2
2 1 3 0
|"banana"
"ananab"
|((1 2 3);4;(5 6))
5 6
4
1 2 3
```

$3.13 \text{ less} \Rightarrow x < (>) y$

3.14 up \Rightarrow < (>) x

The indices of a list in order to sort the list in ascending (descending) order.

```
<2 3 0 12
2 0 1 3
x0<x:2 3 0 12
0 2 3 12
```

$3.15 \text{ equal} \Rightarrow x=y$

$3.16 \text{ group} \Rightarrow =x$

A dictionary of the disinct values of x (key) and indices (values).

```
="banana"
a|1 3 5
b|0
n|2 4
=0 1 0 2 10 7 0 1 12
0|0 2 6
1|1 7
2|3
7|5
10|4
12|8
```

$3.17 \text{ match} \Rightarrow x^y$

```
Compare x and y.
```

$3.18 \text{ not} \Rightarrow \text{`x}$

Boolean invert of x

```
~1b
0b
~101b
010b
~37 0 12
010b
```

$3.19 \text{ key} \Rightarrow x!y$

Dictionary of x (key) and y (value)

$3.20 \text{ enum} \Rightarrow !x$

Generate an integer list from 0 to x-1.

```
!3
0 1 2
```

$3.21 \text{ cat} \Rightarrow x,y$

Concatenate x and y.

```
3,7
3 7
"hello"," ","there"
"hello there"
```

3.22 enlist \Rightarrow ,x

Create a list from \mathbf{x}

```
,3
,3
,1 2 3
1 2 3
3=,3
,1b
3~,3
```

$3.23 \text{ cut} \Rightarrow x^y$

Reshape a list y by indices x.

```
0 1 5^0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 1 5^0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
```

$3.24 \operatorname{asc} \Rightarrow \mathbf{\hat{x}}$

Sort list x into ascending order.

$3.25 \text{ cast} \Rightarrow x\y

```
`i$37.1 37.9
37 37
`f$3
3f
`D$"2020.03.01"
```

Cast y into type x.

2020-03-01 `t\$123

00:00:00.123

$3.26 \text{ string} \Rightarrow \x

```
Cast x to string.
```

\$`abc`d

```
abc
d
$4.7
"4.7"
```

$3.27 \text{ take} \Rightarrow x \# y$

First (last) x elements of y if x is positive (negative). If x is a list then returns any values in both x and y.

```
3#0 1 2 3 4 5 / first three
0 1 2
-3#0 1 2 3 4 5 / last three
3 4 5
2#"hello"
"he"
(1 2 3 7 8 9)#(2 8 20) / union
2 8
```

$3.28 \text{ count} \Rightarrow \#x$

Count the number of elements in x.

```
#0 1 2 12
4
#((0 1 2);3;(4 5))
3
#'a'b!((1 2 3);(4 5 6)) / count the number of keys
2
```

$3.29 \text{ drop} \Rightarrow x_{-}y$

Return the list y without the first (last) x elements if x is positive (negative). If x is a list then returns any values from y not in x.

```
3_0 1 2 3 4 5
3 4 5
-3_0 1 2 3 4 5
0 1 2
a:3;b:0 9 1 8 2 7;
a_b
8 2 7
(1 2 3 7 8 9)_(2 8 20)
,20
```

3.30 find \Rightarrow x?y

Find the first element of x that matches y otherwise return the end of vector.

```
`a`b`a`c`b`a`a?`b
1
`a`b`a`c`b`a`a?`d
```

```
7
0 1 2 3 4?10
5
(1;`a;"blue";7.4)?3
```

3.31 unique \Rightarrow ?x

Return the unique values of the list x. The ? preceeding the return value explicitly shows that list has no repeat values.

```
?`f`a`b`c`a`b`d`e`a
?`f`a`b`c`d`e
?"banana"
?"ban"
```

$3.32 \text{ at} \Rightarrow x@y$

Given a list x return the value(s) at index(indices) y.

3.33 type \Rightarrow @x

Return the data type of x.

```
@1
i
@1.2
f
@^a
s
@"a"
c
@2020.04.20
D
@12:34:56.789
t
@(1;1.2; a; "a"; 2020.04.20; 12:34:56.789) / type of a list
L
@'(1;1.2; a; "a"; 2020.04.20; 12:34:56.789) / type of elements of the list
i`f`s`c`D`t
```

$3.34 \text{ apply} \Rightarrow x.y$

Given list x return the value at index list y.

```
(3 4 7 12).,2
7
'a'b'c.,2
'c
((1 2);3;(4 5 6)).(0 1) / value at index 0 and then index 1
2
```

$3.35 \text{ value} \Rightarrow .x$

Return the value of dictionary x as lists.

4 Function Modifiers / Adverbs

k9 uses function modifiers / adverbs in order to have functions operate iteratively over lists.

$4.1 \text{ each} \Rightarrow f'x$

Apply each value in list x to function f.

```
*((1 2 3);4;(5 6);7) / first element of the list
1 2 3

*'((1 2 3);4;(5 6);7) / first element of each element
1 4 5 7
```

$4.2 \text{ bar} \Rightarrow x'y$

x divided by y using integer division and then multiplied by x. x is an integer and y is a list of integers.

```
5'0 1 2 3 4 5 9 10
0 0 0 0 0 5 5 10
```

$4.3 \operatorname{scan} \Rightarrow (f \setminus) x$

Create values for each x according to...

- $f@0 \rightarrow x@0$
- $f@1 \rightarrow f[f@0;x@1]$
- ..
- $f@i \rightarrow f[f@i-1;x@i]$
- ...
- $f@n \rightarrow f[f@n-1;x@n]$ (,\)("a";"b";"c")
 a
 ab
 abc
 (+\)1 20 300
 1 21 321
 ({y+10*x}\)1 20 300
 1 30 600

4.4 left \Rightarrow f\[x;y]

Apply f[y] to each value in x.

```
\{x+y\}[100\ 200\ 300;1\ 2\ 3] / add the lists together itemize 101 202 303 
 \{x+y\}\setminus[100\ 200\ 300;1\ 2\ 3] / add the list y to each value of x 101 102 103 201 202 203
```

```
301 302 303

{x,y}\[`l1`l2`l3;`r1`r2`r3]

l1 r1 r2 r3

l2 r1 r2 r3

l3 r1 r2 r3
```

$4.5 \mod \Rightarrow x \setminus y$

The remainder after y divided by x using integer division. x and y must be integers.

```
12\27
3
5\22
2
```

$4.6 \text{ over} \Rightarrow (f/)x$

Same as scan but only print last value.

```
(,/)("a";"b";"c")
"abc"
(+/)1 20 300
321
({y+10*x}/)1 20 300
600
```

$4.7 \text{ right} \Rightarrow f/[x;y]$

Apply f[x] to each value in y.

```
{x+y}[100 200 300;1 2 3] / add the lists together itemize
101 202 303
{x+y}/[100 200 300;1 2 3] / add the list y to each value of x
101 201 301
102 202 302
103 203 303
{x,y}/[`11`12`13;`r1`r2`r3]
11 12 13 r1
11 12 13 r2
11 12 13 r3
```

$4.8 \text{ div} \Rightarrow x/y$

y divided by x using integer division. x and y must be integers.

```
2/7
3
22/5
4
```

Chapter 5: Lists 21

5 Lists

k9 is optimized for operations on uniform lists of data. In order to take full advantage one should store data in lists and operate on them without iteration.

5.1 List syntax

In general, lists are created by data separated by semicolons and encased by parenthesis. Uniform lists can use a simpler syntax of spaces between elements.

```
a:1 2 3
b:(1;2;3)
                 / are a and b the same
a~b
1b
                / uniform lists are upper case value an element
@a
ìΙ
@'a
                / type of each element
`i`i`i
c:(1i;2f;"c";`d)
                / nonuniform lists are type `L
@'c
`i`f`c`s
c:1i 2f "c" `d / incorrect syntax for nonuniform list
error: type
```

5.2 List Indicing

Lists can be indexed by using a few notations.

```
a:2*1+!10 / 2 4 ... 20
a[10] / out of range return null
0
a[9] / square bracket
20
a@9 / at
20
a 9 / space
20
a(9) / parenthesis
```

5.3 Updating List Elements

Lists can be updated element wise but typically one is likely to be updating many elements and there is a syntax for doing so.

```
a:2*1+!10
a
2 4 6 8 10 12 14 16 18 20
a[3]:80
```

Chapter 5: Lists 22

```
a
2 4 6 80 10 12 14 16 18 20
a:@[a;0 2 4 6 8;0];a
0 4 0 80 0 12 0 16 0 20
a:@[a;1 3 5;*;100];a
0 400 0 8000 0 1200 0 16 0 20
a:@[a;!#a;:;0];a
```

List amend syntax has a few options so will be explained in more detail.

- @[list;indices;value]
- @[list;indices;identify function;value]
- @[list;indices;function;value]

The first syntax sets the list at the indices to value. The second syntax performs the same modification but explicitly lists the identity function, :. The third synatx is the same as the preceding but uses an arbitrary fuction.

Often the developer will need to determine which indices to modify and in cases where this isn't onerous it can be done in the function.

```
a:2*1+!10

@[a;&a<14;:;-3]

-3 -3 -3 -3 -3 14 16 18 20

@[!10;1 3 5;:;10 20 30]

0 10 2 20 4 30 6 7 8 9

@[!10;1 3 5;:;10 20] / index and value array length mistmatch

error: length

@[!10;1 3;:;10 20 30] / index and value array length mistmatch

error: length
```

6 Dictionaries and Dictionary Functions

Simple data types can be combined into structures including Dictionaries and Tables.

6.1 Dictionaries

Dictionaries are key-value pairs of data. The value in the dictionary can be a single element or a list.

```
d0:`pi`e`c!3.14 2.72 3e8;d0
pi|3.14
e |2.72
c |3e+08

d1:`time`temp!(12:00 12:01 12:10;25.0 25.1 25.6);d1
time|12:00 12:01 12:10
temp|25 25.1 25.6

d2:0 10 1!37.4 46.3 0.1;d2
0|37.4
10|46.3
1|0.1
```

6.2 Dictionary Key !

The keys from a dictionary can be retreived by using the ! function.

```
!d0

`pi`e`c

!d1

`time`time

!d2

0 10 1
```

6.3 Dictionary as Value .

A dictionary can be returned as values using the . function. The function returns a list of length two. The first element is a list of the keys. The second element is a list of the values.

```
. d0
pi e c
3.14 2.72 3e+08

. d1
time temp
12:00 12:01 12:10 25 25.1 25.6

. d2
0 10 1
37.4 46.3 0.1
```

One could return a specific value by indicing into a specific location. As an example in order to query the first value of the temp from d1, one would convert d1 into values (as value .), take the second index (take the value 1), take the second element (take the temp 1), and then query the first value (element 0).

```
d1
time|12:00 12:01 12:10
temp|25 25.1 25.6

(. d1)
time temp
12:00 12:01 12:10 25 25.1 25.6

(. d1)[1]
12:00 12:01 12:10
25 25.1 25.6

(. d1)[1][1]
25 25.1 25.6

(. d1)[1][1][0]
25f
```

6.4 Sorting a Dictionary by Key ^

pi|3.14 e |2.72 c |3e+08 ^d0 c |3e+08 e |2.72 pi|3.14

d0

6.5 Sorting a Dictionary by Value < and >

d0 pi|3.14 e |2.72 c |3e+08 <d0 e |2.72 pi|3.14 c |3e+08 >d0 c |3e+08 pi|3.14 e |2.72

6.6 Flipping a Dictionary into a Table +

This command flips a dictionary into a table but will be covered in detail in the table section. Flipping a dictionary whose values are a single element has no effect.

```
pi|3.14
e |2.72
c |3e+08
+d0
pi|3.14
e |2.72
c |3e+08
do~+d0
1b
d1
time | 12:00 12:01 12:10
temp|25 25.1 25.6
 +d1
time temp
----
12:00 25
12:01 25.1
12:10 25.6
d1~+d1
0b
```

6.7 Functions that operate on each value in a dictionary

There a number of simple functions on dictionaries that operate on the values. If 'f' is a function then f applied to a dictionary return a dictionary with the same keys and the values are application of 'f'.

```
-d: Negate
d + N: Add N to d
d - N: Subtract N from d
d * N: Multiple d by N
d % N: Divide d by N
|d: Reverse
<d: Sort Ascending</li>
>d: Sort Descending
```

```
• ~d : Not d
• &d : Given d:x!y repeate each x, y times, where y must be an integer
• =d : Given d:x!y y!x
 Examples
    d2
    0|37.4
   10|46.3
    1|0.1
    -d2
    0|-37.4
   10|-46.3
    1|-0.1
    d2+3
    0|40.4
   10|49.3
    1|3.1
    d2-1.7
    0|35.7
   10|44.6
    1|-1.6
    d2*10
    0|374
   10 | 463
    1 | 1
    d2%100
    0|0.374
   10|0.463
    1|0.001
```

6.8 Functions that operate over values in a dictionary

There are functions on dictions that operate over the values. If 'f' is a function applied to a dictionary 'd' then 'f d' returns a value.

```
• *d: First value
d0
pi|3.14
e |2.72
c |3e+08

*d0
3.14
```

7 More functions

TBD

Chapter 8: I/O

8 I/O

Functions for input and outu (I/O).

8.1 Input format values to table

This section shows you the syntax for reading in data into a table with the correct type.

```
d:,(`date`time`int`float`char`symbol)
                                              / headers
d,:,(2020.04.20;12:34:56.789;37;12.3;"hi";`bye)) /data
d
date
          time
                      int float char symbol
2020-04-20 12:34:56.789 37 12.3 hi
`csv'd
                                              / to csv
date, time, int, float, char, symbol
2020-04-20,12:34:56.789,37,12.3,"hi",bye
"some.csv"0: csv'd
                                              / write to some.csv
0:"some.csv"
                                              / read from some.csv
date, time, int, float, char, symbol
2020-04-20,12:34:56.789,37,12.3,"hi",bye
("Dtifs*";,",")0:"some.csv"
                                              / read into table
              int float char
         time
date
                                      symbol
2020-04-20 12:34:56.789 37 12.3 "hi"
                                      bye
```

8.2 Format to $CSV/json/k \Rightarrow csv x$

Convert x to CSV/json/k format. Works on atoms, lists, and tables.

8.3 write line \Rightarrow x 0:y

Output to x the list of strings in y. y must be a list of strings. If y is a single stream then convert to list via enlist.

```
""0:("blue";"red") / "" represents stdout
blue
red
""0:$'("blue";"red";3) / each element to string
```

Chapter 8: I/O

```
blue
red
3
   "some.csv"0:,`csv 3 1 2 / will fail without enlist
```

8.4 read line \Rightarrow 0:x

Read from file x.

```
"some.txt"0:,`csv 3 1 2 / first write a file to some.txt
0:"some.txt" / now read it back
3,1,2
```

8.5 write char \Rightarrow x 1:y

Output to x the list of chars in y. y must be a list of chars. If y is a single char then convert to list via enlist.

```
"some.txt"1:"hello here\nis some text\n"
1:"some.txt"
"hello here\nis some text\n"
```

8.6 read char \Rightarrow 1:x

Read from file x.

```
"some.txt"0:,`csv 3 1 2 / first write a file to some.txt
1:"some.txt" / now read it back
"3,1,2\n"
```

8.7 write data \Rightarrow 2:

TBD

8.8 conn/set \Rightarrow 3:

TBD

8.9 http/get \Rightarrow 4:

TBD

9 Tables and kSQL

This chapter introduces k9 tables and the kSQL language to query.

9.1 Tables

Here is an example of a table with three columns (Day, Weather, and Temp) and three rows.

```
t:[[]Day:2020.04.10+!3;Weather:`sunny`cold`sunny;Temp:22 12 18]
          Weather Temp
Day
_____ ___
2020-04-10 sunny
                    22
2020-04-11 cold
                    12
2020-04-12 sunny
                    18
@t
                               / tables are type `A (`t is for time)
` A
+t
      |2020-04-10 2020-04-11 2020-04-12
Weather|sunny cold sunny
Temp
      122 12 18
```

9.2 A Tables

Here is an example of a A_table with three columns (Day, Weather, and Temp) and three rows. One column (Day) will be add as a key.

9.3 S₋Tables

TBD

```
x: a b! [[]c:2 3;d:3 4;e:4 5]
x
|c d e
-|- - -
a|2 3 4
b|3 4 5
```

9.4 kSQL

kSQL is a powerful query language for tables.

```
select |/\text{Temp}| from t where Weather=`sunny Temp|22|
```

Chapter 10: X

10 X

To be sorted.

10.1 Errors

This section contains information on the various error messages in k9.

10.1.1 error: parse

Syntax is wrong.

```
{37 . "hello" error: parse
```

10.1.2 error: value

Undefined variable is used.

```
g / assuming 'g' has not be defining in this session
error: value
```

10.1.3 error: class

3+`b

10.1.4 error: length

Operations on unequal length lists that require equal length.

```
(1 2 3)+(4 5) error: length
```

10.1.5 error: domain

Exhausted the number of input values

```
-12?10 / only 10 unique value exist error: domain
```

10.2 `freq Histogram

Compute a histogram of a list.

```
^freq x:100000710
0| 9907
1| 9963
2| 9938
3|10063
4|10018
5|10007
6|10037
7|10036
8| 9907
9|10124
```

Chapter 10: X

```
^#'=x / same result but slower
0| 9907
1| 9963
2| 9938
3|10063
4|10018
5|10007
6|10037
7|10036
8| 9907
9|10124
```