Yüksek Düzey Programlama - Digit Recognition

Öz

Bu çalışmada, el yazısı rakamları otomatik olarak tanıyabilen bir görüntü sınıflandırma modeli geliştirilmiştir. Modelin temelinde, görsel verilerden anlamlı özellikler çıkarabilen bir derin öğrenme yöntemi olan **Convolutional Neural Network (CNN)** bulunmaktadır.

28×28 piksellik gri tonlamalı rakam görüntülerinden oluşan veri seti, piksellerin normalizasyonu ve yeniden boyutlandırılması ile model için uygun hale getirilmiştir. Model eğitimi sırasında **Adam optimizasyon algoritması** ve **Sparse Categorical Crossentropy kayıp fonksiyonu** kullanılmıştır. Sonuç olarak, eğitim ve test veri setlerinde yüksek doğruluk oranları elde edilmiştir.

Giriş

Bu projede, el yazısı rakamların doğru bir şekilde tanınmasını sağlayan bir CNN modeli geliştirilmiştir. CNN, görsellerdeki pikseller arası ilişkileri öğrenip analiz ederek, veri sınıflandırmasını etkili bir şekilde gerçekleştirmektedir.

Materyal ve Metot

Veri Seti

Çalışmada, Kaggle platformundan alınan Digit Recognizer veri seti kullanılmıştır. Veri seti:

- train.csv: Etiketlenmiş 42.000 el yazısı rakamı (0-9) içerir.
- test.csv: 28.000 etiketsiz görüntü içerir. Modelin doğruluğunu test etmek için kullanılır.

Veriler, her biri 28×28 piksel boyutunda gri tonlamalı rakam görüntülerinden oluşmaktadır. Eğitim için verilerde bölümleme yapılmamış, tüm **train.csv** dosyası kullanılmıştır.

Model Eğitimi

- Modelde Convolutional Neural Network (CNN) mimarisi kullanılmıştır.
- Eğitim sürecinde:
 - Adam optimizasyon algoritması ile model hızla optimize edilmiştir.
 - Sparse Categorical Crossentropy kayıp fonksiyonu ile doğruluk oranı ölçülmüştür.
- 50 Epoch boyunca model eğitilmiş ve eğitim sürecinde doğruluk oranı sürekli artmıştır.

CNN model mimarisi aşağıdaki şekilde tanımlanmış, ardından optimizasyon algoritması dahil edilip derlenmiştir:

```
model = tf.keras.models.Sequential([
   tf.keras.layers.Flatten(input_shape=(784,)),
   tf.keras.layers.Dense(128, activation='relu'),
   tf.keras.layers.Dense(10) # 10 sayi var.
])

model.compile(
   optimizer=tf.keras.optimizers.Adam(0.001),
   loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
   metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],
)
```

Sonuçlar

Eğitim Performansı

CNN modeli, eğitim veri setinde %99,76 doğruluk oranına ulaşmıştır. Eğitim sürecine ait kayıp ve doğruluk grafikleri aşağıdaki gibidir:

Test Performansı

Model, test veri setinde %98,53 doğruluk oranına ulaşmıştır.

Gerçek Veri ve Tahmin Edilen Verilerin Görsel Çıktısı

Tahmin Edilen Veri	Gerçek Veri	

