Laborator 6

In acest laborator numarul alocat fiecarui student in fisierul studenti.pdf este

denumit Ast, deoarece exista deja variabila A care denota matricea sistemului algebric asociat problemei Galerkin de aproximare. Acest laborator valoreaza 20 procente din nota finala. Trebuie trimis pana la data urmatorului laborator.

Metoda elementului finit, cazul 1d

In acest laborator vom vedea cum se rezolva numeric problema

$$-u'' = f in (0,1) u(0) = u(1) = 0 (1)$$

folosind metoda elementului finit cu elemente finite liniare. In testele noastre numerice $f(x) = \pi^2 sin(\pi x)$, ca atare $u = sin(\pi x)$.

Vom nota cu $\Omega = (0,1)$ si

$$||v|| = \left(\int_0^1 v^2\right)^{1/2}$$

 $H_0^1(\Omega)$ va fi completarea ca spatiu Banach a spatiului $C_0^{\infty}(\Omega)$ (spatii infinit derivabile pe Ω cu suport compact in Ω) in raport cu norma $||\cdot||_1$ definita prin

$$||v||_1^2 = \int_0^1 v^2 dx + \int_0^1 (v')^2 dx = ||v||^2 + ||v'||^2$$

Mai intai ecuatia (1) se inmulteste cu o functie test $v \in C_0^{\infty}(\Omega)$, se integreaza pe Ω si apoi folosind integrare prin parti rezulta

$$\int_0^1 u'v'dx = \int_0^1 fvdx$$

pentru orice $v \in C_0^{\infty}(\Omega)$, insa luand limita, rezulta ca de fapt

$$\int_0^1 u'v'dx = \int_0^1 fvdx$$

pentru orice $v \in H_0^1(\Omega)$

Practic, acum putem formula problema: Aflati $u \in H_0^1(\Omega)$ asa ca

$$\int_0^1 u'v'dx = \int_0^1 fvdx \tag{2}$$

pentru orice $v \in H_0^1(\Omega)$

Se arata ca problemele (1,2) au aceeasi solutie unica, deci rezolvand 2 vom rezolva 1.

Acum, pentru $n \ge 1$ numar natural vom considera pe Ω reteaua $x_i = i/n$ (adica n+1 numere echidistante in Ω , $x_0 = 0$, $x_n = 1$). Notam h = 1/n (= $x_{i+1} - x_i$).

Corespunzator acestei retele vom considera subspatiul finit dimensional $X \in H_0^1(\Omega)$

$$X = \{ \varphi : [0,1] \to R | \varphi \ continua, \varphi|_{[x_i,x_{i+1}]} liniara, pentru \ i = 0..n-1, \varphi(0) = \varphi(1) = 0 \}$$

adica X va contine functiile continue, liniare pe $[x_i, x_{i+1}]$, i = 0, ..., n-1 si nule in capete. Problema 2 se poate restrange acum pe spatiul X in forma urmatoare:

Aflati $u_X \in X$ asa ca

$$\int_{0}^{1} u'_{X} v'_{X} dx = \int_{0}^{1} f v_{X} dx \tag{3}$$

pentru orice $v_X \in X$

 u_X este aproximarea produsa de metoda elementului finit.

S-a aratat la curs ca u_X este calculabil (prin rezolvarea unui sistem liniar) si, in plus, el satisface

$$||u - u_X||_{L^2(\Omega)} \le Ch^2 ||u''||_{L^2(\Omega)} \quad ||u' - u_X'||_{L^2(\Omega)} \le Ch||u''||_{L^2(\Omega)} \tag{4}$$

unde C este o constanta generala ce nu depinde de u, h.

Pentru a calcula u_X vom considera in X(care are dimensiunea n-1) baza algebrica formata din functiile $\varphi_1,...,\varphi_{n-1}$ atasate nodurilor interioare $x_1,...,x_{n-1}$ unde φ_i e dat de urmatoarea formula analitica

$$\varphi_i(x) = \begin{cases} \frac{x - x_{i-1}}{h} & x \in [x_{i-1}, x_i] \\ \frac{x_{i+1} - x}{h} & x \in [x_i, x_{i+1}] \\ 0 & in \ rest \end{cases}$$

Apoi solutia u_X se scrie pe aceasta baza

$$u_X = c_1 \varphi_1 + c_2 \varphi_2 + \dots + c_{n-1} \varphi_{n-1}$$

iar coeficientii $c_1, c_2, ..., c_{n-1}$ urmeaza a fi determinati.

Din motive legate de usurarea scrierii codului dar si pentru tratarea altor conditii la frontiera (adica situatia in care prescriem valori nelule in capete, $u(0) = \alpha, u(1) = \beta$) vom adauga la baza algebrica 2 functii de baza corespunzatoare nodurilor din capete

$$\varphi_0(x) = \begin{cases} \frac{x_1 - x}{h} & x \in [x_0, x_1] \\ 0 & in \ rest \end{cases}$$

$$\varphi_n(x) = \begin{cases} \frac{x - x_{n-1}}{h} & x \in [x_{n-1}, x_n] \\ 0 & in \ rest \end{cases}$$

si vom incerca sa gasim solutia

$$u_X = c_0 \varphi_0 + c_1 \varphi_1 + c_2 \varphi_2 \dots + c_{n-1} \varphi_{n-1} + c_n \varphi_n$$

unde, din start stim ca $c_0 = c_n = 0$

S-a aratat la curs(este de fapt un calcul simplu) ca $c_1, ... c_{n-1}$ satisfac sistemul

$$Ac = F$$

unde $A = (A_{ij})i, j = 1..n - 1, F = (F_i)i = 1..n - 1$ sunt dati de formulele

$$A_{ij} = \int_0^1 \varphi_i' \varphi_j' dx, F_i = \int_0^1 f \varphi_i dx, \quad i = 1..n - 1$$
 (5)

S-a aratat la curs ca datorita formei speciale a functiilor φ_i va rezulta ca

$$A_{i,i-1} = -\frac{1}{h}$$

$$A_{i,i} = \frac{2}{h}$$

$$A_{i,i+1} = -\frac{1}{h}$$

$$A_{i,j} = 0, j \neq i - 1, i, i + 1$$

$$F_i = \int_{x_{i-1}}^{x_i} \frac{x - x_{i-1}}{h} f dx + \int_{x_i}^{x_{i+1}} \frac{x_{i+1} - x}{h} f dx$$

$$(6)$$

Asadar, sistemul va lua forma

$$\begin{pmatrix} \frac{2}{h} & -\frac{1}{h} & 0 & 0 & 0 & 0 & \dots & 0 \\ -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & 0 & 0 & 0 & \dots & 0 \\ 0 & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & 0 & 0 & \dots & 0 \\ 0 & 0 & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & & -\frac{1}{h} & \frac{2}{h} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ \dots \\ c_{n-1} \end{pmatrix} = \begin{pmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \\ \dots \\ F_{n-1} \end{pmatrix}$$

Adaugarea celor 2 coeficienti c_0, c_n se face in modul urmator:

- 1) se calculeaza coeficientii A_{ij} si F_i corespunzatori tuturor indicilor i, j = 0...n (adica si pentru indicil din capete) cu formulele 5.
- 2) in matricea A care rezulta prima linie se inlocuieste cu

iar ultima cu

iar in vectorul F prima si ultima componenta se inlocuieste cu 0 rezultand sistemul de mai jos(se observa ca rezolvand acest sistem rezulta $c_0 = c_n = 0$ iar restul coeficientilor vor satisface EXACT sistemul de mai sus).

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & \dots & 0 & 0 \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & 0 & 0 & 0 & 0 & \dots & 0 & 0 \\
0 & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & 0 & 0 & 0 & \dots & 0 & 0 \\
0 & 0 & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & 0 & 0 & \dots & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & 0 & \dots & 0 & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \dots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \dots & 0 & 1
\end{pmatrix}
\begin{pmatrix}
c_0 \\
c_1 \\
c_2 \\
c_3 \\
c_4 \\
\vdots \\
c_{n-1} \\
c_n
\end{pmatrix} = \begin{pmatrix}
0 \\
F_1 \\
F_2 \\
F_3 \\
F_4 \\
\vdots \\
F_{n-1} \\
0
\end{pmatrix} (7)$$

Acesta este sistemul pe care il vom rezolva pentru a gasi coeficientii $c_1, ..., c_n$.

Fac aici observatia ca daca se doreste rezolvarea problemei initiale cu alte conditii la frontiera de pilda $u(0) = \alpha, u(1) = \beta$ se arata relativ usor ca in sistemul 7 de mai sus trebuie sa punem in vectorul F valorile $F_0 = \alpha$ si $F_n = \beta$, adica sistemul devine

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & \dots & 0 & 0 \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & 0 & 0 & 0 & 0 & \dots & 0 & 0 \\
0 & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & 0 & 0 & 0 & \dots & 0 & 0 \\
0 & 0 & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & 0 & 0 & \dots & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & 0 & \dots & 0 & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \dots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \dots & 0 & 1
\end{pmatrix}
\begin{pmatrix}
c_0 \\
c_1 \\
c_2 \\
c_3 \\
c_4 \\
\vdots \\
c_{n-1} \\
c_n
\end{pmatrix} = \begin{pmatrix}
\alpha \\
F_1 \\
F_2 \\
F_3 \\
F_4 \\
\vdots \\
F_{n-1} \\
\beta
\end{pmatrix}$$
(8)

Asadar, aplicarea metodei elelementului finit pentru problema 1 presupune

- 1) Construirea matricii A si a termenului liber F in sistemul 7.
- 2) Rezolvarea sistemului si reprezentarea solutiei sub forma

$$u_X = c_0 \varphi_0 + c_1 \varphi_1 + c_2 \varphi_2 + \dots + c_{n-1} \varphi_{n-1} + c_n \varphi_n$$

Cum se calculeaza integralele corespunzatoare lui $F_1, F_2,...F_{n-1}$?

Etapa 1 de mai sus presupune si calculul coeficientilor lui F, care, conform formulelor 6, revine la calculul unor integrale definite. Aceste integrale vor fi calculate numeric folosind o metoda de integrare numerica de ordin mai mare ca 2, in cazul nostru vom folosi metoda de integrare Gauss-Legendre cu 5 noduri care este o metoda de ordin 11.

Pe scurt, in aceasta metoda de integrare numerica se determina 5 numere $x_1, ..., x_5$ care sunt radacinile polinomului

$$63x^5 - 70x^3 + 15x$$

(care este un multiplu al polinomului Legendre de grad 5, $((x^2 - 1)^5)^{(5)}$). (Observati ca aceste radacini sunt calculabile exact, dar eu le voi reprezenta aproximativ).

$$x_1 = -0.906179845938664$$

 $x_2 = -0.538469310105683$
 $x_3 = 0$
 $x_4 = 0.538469310105683$
 $x_5 = 0.906179845938664$

Corespunzator acestor noduri se calculeaza niste ponderi, notate $w_1, ..., w_5$, calculate dupa formula

$$w_i = \int_{-1}^1 l_i(x) dx$$

unde

$$l_i(x) = \frac{\prod_{j=1, j \neq i}^5 (x - x_j)}{\prod_{j=1, j \neq i}^5 (x_i - x_j)}$$

mai exact, ponderile au urmatoarele valori aproximative

 $w_1 = 0.236926885056189$ $w_2 = 0.478628670499367$ $w_3 = 0.5688888888888$ $w_4 = 0.478628670499367$ $w_5 = 0.236926885056189$

Acestea sunt nodurile si ponderile corespunzatoare intervalului [-1,1] iar daca vei dori sa aproximezi o integrala pe acest interval vei scrie

$$\int_{-1}^{1} f(x)dx \approx I_5(f) = \sum_{i=1}^{5} w_i f(x_i)$$

Daca intervalul de integrare este [a, b] atunci nodurile si ponderile devin

$$\overline{x}_i = \frac{b-a}{2}x_i + \frac{a+b}{2}, \ \overline{w}_i = \frac{b-a}{2}w_i$$

iar formula de cuadratura este

$$\int_{a}^{b} f(x)dx \approx I_{5}(f) = \sum_{i=1}^{5} \overline{w}_{i} f(\overline{x}_{i})$$
(9)

Se poate arata ca aceasta metoda este de ordin 11,

$$\left| \int_{a}^{b} f(x)dx - I_{5}(f) \right| \leq C(b-a)^{11} ||f^{(10)}||_{\infty}$$

In general, daca se folosesc n noduri (radacinile polinomului Legendre de grad n) avem ca

$$\left| \int_{a}^{b} f(x)dx - I_{n}(f) \right| \le C(b-a)^{2n+1} ||f^{(2n)}||_{\infty}$$

Cerinta 1 Salvati textul de mai jos in fisierul ponderi.m in directorul de lucru al Matlabului.

Un apel de tipul

$$[w,x]=ponderi();$$

va incarca in w ponderile si in x nodurile corespunzatoare intervalului [-1, 1]. Folositi formula 9 (formula pentru $I_5(f)$) pentru a aproxima

$$\int_0^1 \sin(x + Ast) dx$$

Ast este numarul A alocat fiecarui student in studenti.pdf. Spre exemplu, iata cum aproximez eu

$$\int_{2}^{3} \cos(x) dx$$

utilizand formula de cuadratura de mai sus.

format long
%valoarea exacta a integralei
sin(3)-sin(2)

%ponderi, noduri pe [-1,1]
[w,x]=ponderi();

%ponderi,noduri pe [2,3] w=(3-2)/2*w; x=(3-2)/2*x+(2+3)/2;

%aproximam integrala cu formula de cuadratura w'*cos(x)

Cerinta 2 Codul de mai jos rezolva problema

$$-u'' = \pi^2 \sin(\pi x) \quad in \quad (0,1)$$

$$u(0) = 0, u(1) = 0$$
 (10)

cu solutia exacta $u(x) = sin(\pi x)$ Salvati textul de mai jos in fisierul fem1.m din directorul de lucru si modificati-l pentru ca el sa rezolve numeric problema

$$-u'' = Ast \cdot \pi^2 sin(\pi x) \quad in \quad (0,1)$$

$$u(0) = 0, u(1) = 0$$
 (11)

Care este solutia exacta in acest caz? Inlocuiti si ??????? cu textul corespunzator.

function c=fem1(n)

%metoda elementului finit cu elemente continue, liniare pe portiuni.

 $% f(x)=pi^2 sin(pi x)$

%solutie exacta u(x)=sin(pi x)

%n reprezinta nr de subintervale in care e divizat (0,1).

% c va reprezenta vectorul coeficientilor solutiei aproximante u_X in baza aleasa

$$c=(c_0,c_1,\ldots,c_n)$$
,

% A este matricea sistemului
A=eye(n+1,n+1);

%marimea retelei
h=1/n:

```
%calculam componentele matricii A
for(i=2:n)
    A(i,i-1)=??????;
    A(i,i)=???????;
    A(i,i+1)=?????;
end
%termenul liber
F=zeros(n+1,1);
%F(1)=0 corespunde lui 0
%F(2) lui 1/n
%F(3) lui 2/n
%F(i) lui (i-1)/n
%bucla peste toate subintervalele pt i=1,n
% primul subinterval este [0,1/n], al doilea [1/n,2/n]
%subintervalul i este [(i-1)/n,i/n]
for(i=1:n)
%pe [-1,1]
[w,x]=ponderi();
%pe subintervalul i --- > [(i-1)/n, i/n]
w=w*h/2;
x=x*h/2+(2*i-1)/(2*n);
%subintervalul i va contribui la modificarea a doua componente din F, anume F(i) si F(i+1)
% a se vedea formula de calcul pentru F(i)
%aplicam formula de cuadratura pe [(i-1)/n,i/n]
% ea presupune evaluarea functiilor ce trebuie integrate in nodurile
%formulei de cuadratura
F(i)=F(i)+w'*(???????*(i/n-x)/h);
F(i+1) = F(i+1) + w'*(???????*(x-(i-1)/n)/h);
end
F(1)=0;
F(n+1)=0;
```

```
c=A\F;
%=========
```

Cerinta 3 Executati

```
x=linspace(0,1,10);%9 subintervale
y=Ast*sin(pi*x);
c=fem1(9);
norm(c'-y)
xx=0:0.01:1;
plot(xx,Ast*sin(pi*xx),x,c);
```

explicati in ce sens comenzile de mai sus fac o verificare a codului dvs fem1.m (minim 2 randuri de explicatii).

Cerinta 4 Codul de mai jos erori.m calculeaza numeric erorile

$$||u - u_X||_{L^2}$$

 \sin

$$||u' - u_X'||_{L^2}$$

asociate problemei

$$-u'' = \pi^2 sin(\pi x)$$
 in $(0,1)$
 $u(0) = 0, u(1) = 0$

in sensul ca un apel de tipul

[er,erprim]=erori(6);

va returna in er1 o foarte buna aproximare(nu e valoarea exacta datorita faptului ca integrarea nu e facuta exact) a normei erorii

$$||u - u_X||_{L^2}$$

iar in er2 o foarte buna aproximare a normei derivatei erorii

$$||u' - u_X'||_{L^2}$$

corespunzatoare unei diviziuni cu 6 subintervale. Aici u este solutia exacta a problemei de mai sus iar u_X este solutia numerica a problemei Galerkin.

Modificati codul erori.m de mai jos pentru a calcula aceleasi erori asociate problemei

$$-u'' = Ast \cdot \pi^2 sin(\pi x)$$
 in $(0,1)$
 $u(0) = 0, u(1) = 0$

Verificati folosind acest cod estimarile erorii din formulele 4. (calculati erorile pentru n=4,8,16,32, apoi raportul erorilor succesive). Puneti aici numerele obtinute.

```
function [er,erprim] = erori(n)
h=1/n;
c=fem1(n);
er=0;
erprim=0.0;
for(i=1:n)
%pe [-1,1]
[w,x]=ponderi();
%ponderi, noduri pe [(i-1)/n,i/n]
w=w*h/2;
x=x*h/2+(2*i-1)/(2*n);
%aplicam formula de cuadratura
erprim=erprim+w'*(pi*cos(pi*x)+c(i)/h-c(i+1)/h).^2;
er=er+w'*(sin(pi*x)-c(i)*(i/n-x)/h-c(i+1)*(x-(i-1)/n)/h).^2;
end
er=sqrt(er);
erprim=sqrt(erprim);
%=========
```

Cerinta 5 Modificati codul fem1.m pentru ca sa rezolvati problema

$$-u'' = -6x in (0,1) u(0) = Ast, u(1) = Ast + 1$$
 (12)

care are ca solutie exacta $u = x^3 + Ast$.

(trebuie ca in codul fem1.m sa puneti F(1) = ????, F(n+1) = ???? a se vedea textul in ALBASTRU, atentie ca acolo F se indexeaza de la 0 la n, dar in Matlab F se indexeaza de la 1 la n+1).

Executati comenzi Matlab pentru a verifica faptul ca fem1.m functioneaza corect.