Evaluación

Nombre	APELLIDOS	
CURSO Y GRUPO	F ECHA	Calificación

1 Dado el número complejo z = 3 - 2i, su conjugado, \overline{z} , su opuesto, -z, y su inverso, $\frac{1}{z}$, son:

a)
$$\overline{z} = 3 + 2i$$
, $-z = -3 + 2i$, $\frac{1}{z} = \frac{3}{13} + \frac{2}{13}i$

- **b)** $\overline{z} = -3 + 2i$, -z = 3 + 2i, $\frac{1}{z} = \frac{1}{3 2i}$
- c) $\overline{z} = 3 + 2i$, -z = -3 + 2i, $\frac{1}{z} = \frac{3}{5} + \frac{2}{5}i$
- **2** i³⁵, i², i⁴⁴, i⁵³, son iguales a:
 - a) $i^{35} = i$ $i^2 = -1$
- $i^{53} = -i$
- **b)** $i^{35} = -i$ $i^{44} = 1$
- $i^2 = -1$
- () $i^{35} = 1$ $i^{44} = i$ $i^{53} = -i$
- 3 La forma polar y la forma trigonométrica del número complejo $z = \sqrt{2} - \sqrt{2}i$, son:
 - a) $z = 2_{135^{\circ}}$ $z = 2 (\cos 135^{\circ} + i \sin 135^{\circ})$
 - $z = 4 (\cos 315^{\circ} + i \sin 315^{\circ})$
 - c) $z = 2_{315^{\circ}}$ $z = 2 (\cos 315^{\circ} + i \sin 315^{\circ})$
- 4 La forma binómica y la forma trigonométrica del número complejo conjugado de $z = 3_{120^{\circ}}$, son:
 - a) $\overline{z} = 3 (\cos 300^{\circ} + i \sin 300^{\circ})$

$$\overline{z} = 1,5 - 2,6i$$

b) $\overline{z} = -3 (\cos 120^{\circ} + i \sin 120^{\circ})$

$$\overline{z} = 1.5 + 2.6i$$

c) $\overline{z} = 3 (\cos 240^{\circ} + i \sin 240^{\circ})$

$$\overline{z} = -1,5 - 2,6i$$

- 5 La forma binómica y la forma polar del número complejo z = 3 (cos 210° – i sen 210°), son:
 - a) $z = -3_{210^{\circ}}$ z = 2,6 + 1,5i
 - **b)** $z = 3_{150^{\circ}}$ z = -2.6 + 1.5i
 - **c)** $z = 3_{210^{\circ}}$ z = -2.6 - 1.5i

- **6** El número complejo $(-3 + 3i)^6$ es igual a:
 - *a*) −5832i
- **b)** 5832i
- **7** Las soluciones de la ecuación $x^4 + 625 = 0$, son:
 - **a)** $x_1 = 5_{45^{\circ}}$ $x_2 = 5_{135^{\circ}}$
- $\chi_3 = 5_{225^{\circ}}$ $\chi_4 = 5_{315^\circ}$
- **b)** $x_1 = 5_{0^{\circ}}$
- $\chi_3 = 5_{180^\circ}$ $x_4 = 5_{270^\circ}$
- $x_2 = 5_{90^{\circ}}$ **c)** $x_1 = 5$
- $x_3 = 5i$
- $\chi_2 = -5$
- $x_4 = -5i$
- **8** Los vértices de un pentágono regular de centro *O*, sabiendo que uno de ellos es el punto (2, -1), son:
 - a) A = (2, 1)
 - B = (2,21,0,33)
 - C = (0,37, 2,21)
 - D = (-1,98, 1,03)
 - E = (-1,59, -1,57)

 - **b)** A = (2, -1)
 - B = (3,51,3,56)
 - C = (-2,28,4,43)D = (-4,94, -0,83)
 - E = (-0.74, -4.94)
 - A = (2, -1)
 - $B \rightarrow 1,57 + 1,59i$
 - $C \rightarrow -1.02 + 1.98i$
 - $D \rightarrow -2,21 0,37i$
 - $E \rightarrow -0.33 2.21i$
- **9** Las soluciones, en el conjunto \mathbb{C} , de la ecuación $x^4 + 8x^3 + 24x^2 - 8x - 25 = 0$, son:
 - a) $x_1 = -4 + 3i$
 - $x_2 = -4 3i$
 - $x_3 = 1$, $x_4 = -1$
 - **b)** $x_1 = -1$
 - $x_2 = 1$
 - $x_3 = 4 + 3i$
 - $x_4 = 4 3i$
 - **c)** $x_1 = -4 + 3i$
 - $x_2 = -4 3i$
 - $\chi_3 = i, \ \chi_4 = -i$
- 10 $\frac{(\sqrt{3})_{30^{\circ}}(1-\sqrt{3}i)^3}{(1-i)^2}$ es igual a:
 - a) $(4\sqrt{3})_{120^{\circ}}$ b) $(4\sqrt{3})_{300^{\circ}}$ c) $(3\sqrt{3})_{120^{\circ}}$