Marginal Chi² Analysis:

Beyond Goodness of Fit for Logistic Regression Models

Quantitative Financial Risk Management Centre

Conference on Risk Management in the Retail Financial Services Sector

London - 22-23 January 2009

Gerard.Scallan @scoreplus.com

QFRMC Conference 23/01/2009 - @ ScorePlus SARL 2009

Structure of Presentation

Logistic Regression: Two basic ideas

Score = Log (Odds)

Actual = Expected For each categorical variable in

- model:
 - e.g. residential status
- Actual Goods in Attribute
 - = Expected Goods in Attribute
- Actual Bads in Attribute
 - = Expected Bads in Attribute
- Direct consequence of maximum likelihood equations
- Analogous result on averages for continuous predictors

Model correctly estimates "average" risk for each group

QFRMC Conference 23/01/2009 - @ ScorePlus SARL 2009

102

Actual = Expected Equations ... equivalent to Maximum Likelihood

Problem : estimate scorecard β from sample of Goods (G) and Bads (B)

For case
$$i: \Pr_{\beta}(i \in G) = \frac{e^{x_i'\beta}}{1 + e^{x_i'\beta}}$$

$$\Pr_{\beta}(i \in B) = \frac{1}{1 + e^{x_i'\beta}}$$

$$\Pr_{\beta}(i \in B) = \frac{1}{1 + e^{x_i'\beta}}$$

Likelihood Function:
$$L(\beta) = \prod_{i \in G} \frac{e^{x_i'\beta}}{1 + e^{x_i'\beta}} \times \prod_{i \in B} \frac{1}{1 + e^{x_i'\beta}}$$

$$\frac{e^{x_i'\boldsymbol{\beta}}}{1+e^{x_i'\boldsymbol{\beta}}} \times \prod_{1+e^{x_i'\boldsymbol{\beta}}} \frac{1}{1+e^{x_i'\boldsymbol{\beta}}}$$

$$\ln L(\boldsymbol{\beta}) = \sum_{i \in G} x_i' \boldsymbol{\beta} - \sum_{i \in G \cup B} \ln(1 + e^{x_i' \boldsymbol{\beta}})$$

Maximise by setting partial derivatives w.r.t. each component $\,j\,$ of $\,m{\beta}\,$ to zero :

$$\frac{\partial \ln \mathcal{L}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}_{i}} = \sum_{i \in G} X_{ij} - \sum_{i \in G \cup \mathcal{B}} \frac{e^{x_{i}'\boldsymbol{\beta}} X_{ij}}{1 + e^{x_{i}'\boldsymbol{\beta}}} = \sum_{i \in G} X_{ij} - \sum_{i \in G \cup \mathcal{B}} X_{ij} \operatorname{Pr}_{\boldsymbol{\beta}}(i \in G) = 0$$

Let $x_{ij} = 1$ if i is in category A_j , $x_{ij} = 0$ otherwise :

$$||A_j \cap G|| = \sum_{i \in A} \operatorname{Pr}_{\beta}(i \in G)$$

Actual Goods = Expected Goods

What is "Expected"?

Model implies "expected" outcome for each sample point

QFRMC Conference 23/01/2009 - © ScorePlus SARL 2009

104

Characteristic in model (Categorical variables)

Structure of Presentation

Marginal Chi²: Characteristic not (yet) in model

Null Hypothesis: Existing score accurately estimates probabilities

Probabilities generate "expected" values in each cell

Debit	OBSERVED			EXPECTED			
Turnover	Goods	Bads	Total	Goods	Bads	Total	
<= 1000	436	174	610	487.7	122.3	610	overscored
1000 <= 2000	178	38	216	184.6	31.4	216	overscored
2000 <= 2500	84	17	101	86.2	14.8	101	overscored
2500 <= 3500	263	46	309	263.1	45.9	309	ok
> 3500	6240	618	6858	6179.4	678.6	6858	underscored
Total	7201	893	8094	7201	893	8094	
	Chi ² =	33.06	D.F. =	4	p-value	0.000	12%

- Calculated on model build sample:
 - ◆ Intercept term in model guarantees actual = expected for total sample
- Use Log-Likelihood Chi² a matter of taste!

Observed pattern not explained by model estimates => score is not a sufficient statistic for risk

Chi² Measure - Pros and Cons

Pros

- Identify candidates for entry to model
- For many potential predictors, expected converges to actual rapidly
 - As terms added to model
 - Indicates common information content
 - Gives understanding of collinearity structure
- Highlights "incremental" information

Cons

- Lots of very significant misfits
- Chi² measures certainty not distance
 - 0.0000009% vs. 0.0000007% meaningless
- Ambiguity in degrees of freedom
 - Classed characteristics
- Chi² statistic proportional to sample size
 - Hinders learning across samples
- Beware of false positives!

Right idea – wrong packaging

QFRMC Conference 23/01/2009 - @ ScorePlus SARL 2009

108

Marginal Information and Delta Scores

Debit	OBSERVED			EXPECTED			Δ-score
Turnover	Goods	Bads	WoE	Goods	Bads	WoE	
<= 1000	436	174	-1.17	487.7	122.3	-0.70	-0.46
1000 <= 2000	178	38	-0.54	184.6	31.4	-0.32	-0.23
2000 <= 2500	84	17	-0.49	86.2	14.8	-0.33	-0.16
2500 <= 3500	263	46	-0.34	263.1	45.9	-0.34	0.00
> 3500	6240	618	0.22	6179.4	678.6	0.12	0.10
Total	7201	893	0.00	7201	893	0.00	0.00
	Chi ² =	33.06 D.F. = 4 p-value			0.00012%		
Marginal Information Value 0.086							

- ♦ Weight of Evidence (WoE) = log (Attribute Odds) log (Population Odds)
 - One-dimensional score coefficients
- Delta Score = Observed WoE Expected WoE
 - Approximation to score coefficients needed to line up expected with observed
- Marginal Information Value = Avg_{Good}(Delta Score) Avg_{Bad}(Delta Score)
 - Similar to Kullback-Liebler Information Value
 - Increased spread between average score of goods and bads
 - ... if this characteristic brought into model

Measuring Collinearity Overlaps in predictive power

- Most information is not unique to a single characteristic
- Delta scores reduce in magnitude as "correlated" variables enter model

 DEBIT TURNOVER

Small Delta Scores => Information already covered by other characteristics in model

QFRMC Conference 23/01/2009 - @ ScorePlus SARL 2009

110

Selection of Model Characteristics Marginal IV

- Marginal IV is best indicator of potential contribution to model
- Choose the largest Marginal IV
- Provided "significant" Marginal Chi²
 - Problem with degrees of freedom
- Better approach than Stepwise
- Negative Marginal IVs indicate possible over-fitting
- Rule of Thumb:
 - -.020 < MIV < .020

Zero Marginal Information = Sufficient Statistic

Model Segmentation Testing for Interactions

- Characteristic interactions
 - => Multiple models
 - e.g. Delinquency Time on books
- Test for Actual = Expected on each subpopulation
 - For each predictive characteristic
 - Enables systematic screening for interactions
- Small samples => Statistics matter!
- Shows many splits unnecessary

Clear conceptual framework (and algorithm) for tough problem

QFRMC Conference 23/01/2009 - @ ScorePlus SARL 2009

112

Structure of Presentation

Tracking Approach (and model validation!)

Score = Log (Odds)

Validation Process

- Key business decisions based on assumed score-risk relationship
 - Basis for strategies
 - Requires management assumptions on PIT parameters
 - Fit logistic regression on validation population
 - Evaluates overall performance of model
 - Ensures Actual = Expected for total population
- Starting point for Marginal Chi² analysis

Marginal Chi² reports should be part of regular monitoring

QFRMC Conference 23/01/2009 - @ ScorePlus SARL 2009

114

Change in Behaviour? Example of tracking analysis

Days in Excess This Month

- Clear WoE pattern
- IV: 0.62 Marginal IV: 0.07
 - But some negative contributions
- The Δ-scores show that scorecard "exaggerates"
 - Worst not as bad as scores suggest
- Why? Change in treatment of Excess?
- Zero excess (2/3 of population) is under-rated

Use statistics to tell the business story

Assessing Branch Performance Adding business value

ACCOUNT OPENINGS 2008/Q2								
Store		Default Rate	Performance					
	Budget	At Opening	at 9 months	Absolute	Relative			
Paris	3.5%	3.7%	3.9%	Good	Poor			
Lille	5.0%	5.2%	4.8%	Poor	Good			
Lyon	4.0%	3.9%	3.6%	Good	Good			
Marseille	4.8%	5.0%	5.3%	Poor	Poor			
Total	4.1%	4.2%	4.2%					

- "At opening" figures derived from scores on account opening time
 - Profile of applicants different from budget expectations
- Isolate departures from expectations
 - Take account of differing potential
- Can be extended to policy rules, marketing campaigns, collections strategies, ...

The power of sufficient statistics ...

QFRMC Conference 23/01/2009 - @ ScorePlus SARL 2009

116

Structure of Presentation

Basel: Litmus test for rating systems

Basel Requirements

- Banks must use "all relevant and material information in assigning ratings" (Basel Accord, para. 411)
- Validation must show outcomes are in line with model expectations
- Management must show understanding of rating systems

Marginal Chi² Approach

- ... allows rigourous verification that rating systems are "sufficient statistics"
- ... identifies any departures from model predictions
 - ... and suggests fixes
- … provides understandable interpretation of ratings:
 - Actual = Expected

Use Basel infrastructure to improve business decisions

QFRMC Conference 23/01/2009 - © ScorePlus SARL 2009

118

The Credit Crunch ... and Marginal Chi²

Principles

- Identify emerging variables
 - E.g. balance building
 - Potential additions to model
- Works with small samples
 - Chi² measures reliability
 - Useful results from 50-100 bads
- Works fast
 - 3-4 months after scoring
- Indicates quick (and dirty) corrective action
- Spots emergence from recession
 - Segments outperforming
 - Best time to be in business

Practice

- Cheque Account
- Emerging market
- Mild excess more likely to deteriorate
- Strong vintage effect
 - short time on books
- Amount of excess balances matters more
- "Invulnerable" accounts unaffected
- Worst accounts don't deteriorate proportionately
 - "Permanent recession"

Makes scoring models more transparent to ordinary people

Key Management Consequences Accountability

- Fast recognition of changes in risk
 - ... and business consequences
 - ... and suggests what to do about it
- Accountability for performance
 - E.g. risk performance of marketing campaigns
 - What is changing and why?
- Better business integration
 - Blurs line between model development and management
 - Aligns risk feedback loop (nearly) to marketing cycle

Makes scoring models more transparent to ordinary people

Open questions

- Continuous predictors
 - Analogue of Marginal IV
- Probabilities not homogeneous
 - Is Chi² still robust?
- Alternative definitions of Δ-scores
 - 1st iteration of Newton-Raphson
- Variance of Δ-scores
 - Variance of expected WoE?
 - Use of re-sampling techniques
- Translate from log-odds language to PDese

- Sequential testing
 - Information from consistency of results over time?
- Extend to models other than Logistic Regression
 - Survival analysis
 - Balance and revenue models

Some trivial – others not

QFRMC Conference 23/01/2009 - © ScorePlus SARL 2009