MATH 7320, Functional Analysis I

HOMEWORK 2

- 1. Let \mathcal{X} be a normed space and \mathcal{M} be a subspace of \mathcal{X} . Prove that \mathcal{M} is dense in \mathcal{X} iff $f \in \mathcal{X}^*$ and $f \mid_{\mathcal{M}} = 0$ implies f = 0.
- 2. Let \mathcal{X} be a normed space.
 - i) Show that if \mathcal{X} is reflexive, then it is complete.
 - ii) Show that \mathcal{X} is reflexive iff \mathcal{X}^{**} is reflexive.
 - iii) Show that if \mathcal{X} is reflexive, then every closed subspace of \mathcal{X} is reflexive.
 - iv) Show that if \mathcal{X} is reflexive, then for every $f \in \mathcal{X}^*$ there exists $\mathbf{x} \in \mathcal{X}$ such that $\|\mathbf{x}\| \leq 1$ and $f(x) = \|f\|$.
 - v) Show that c_0 is not reflexive.
- 3. Let $f \in (\ell^1)^*$. Show that there exists a unique sequence $(a_n) \in \ell^{\infty}$ such that for every sequence $(x_n) \in \ell^1$ we have

$$f((x_n)) = \sum_{n \in \mathbb{N}} x_n \overline{a_n}.$$

Moreover, the map $(\ell^1)^* \to \ell^{\infty}$ defined by $f \mapsto (a_n)$ is an isometric isomorphism (aka a surjective isometric linear vegetarian map).

- 4. Read/recall the Hölder's inequality from your previous courses or from the literature.
- 5. Let $1 and <math>q \in \mathbb{R}$ be such that $\frac{1}{p} + \frac{1}{q} = 1$. Let $(a_n) \in \ell^q$. Define $f : \ell^p \to \mathbb{C}$ by

$$f((x_n)) = \sum_{n \in \mathbb{N}} x_n \overline{a_n} \quad \forall (x_n) \in \ell^p.$$

Show that $f \in (\ell^p)^*$ and moreover, the map $\ell^q \to (\ell^p)^*$ defined by $(a_n) \mapsto f$ is a continuous linear map.