

Data Mining Theory (データマイニング工学)

Mahito Sugiyama (杉山麿人)

Today's Outline

- Recap the main points of last week's lecture
- Discretization on learning
- Real number computation (実数計算)
- Learning = computing = discretization?
- All slides are at: http://mahito.info/materials.html

Structurization of Hypothesis Space

- To search hypotheses,
 - (i) The structure of the hypothesis space \mathcal{H}
 - (ii) An operator that enables to traverse the space are indispensable
- The structured space is mathematically modeled as a poset (partially ordered set; 半順序集合)
- As an operator, we use refinement (精密化)
 - For each hypothesis, a learner can "refine" it and derive a set of one level-specific hypotheses

Structurization of Hypothesis Space

Analog data (reals)

	Feature A	Feature B	Class
1			1
2			0
3			1
4			0

Analog data (reals)

Discretization by measurement

Discretization by measurement

	Analog dat	a (reals)		Digital data (rationals)			
	Feature A	Feature B	Class	Feature A	Feature B	Class	
1	1.539582	0.6069	1	1.5	0.6	1	
2	0.676711	0.2655	o 🖒	0.6	0.2	0	
3	1.111577	0.4998	1	1.1	0.4	1	
4	1.871501		0	1.8	0.7	0	
							

Discretization by measurement

Discretization by measurement

Fatal Error Caused by Discretization

Solve the system of equations [Schröder, 2003]

$$40157959.0 x + 67108865.0 y = 1$$
 67108864.5 $x + 112147127.0 y = 0$

– We can solve by the well-known formula:

$$x = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{21} a_{12}}, \quad y = \frac{b_2 a_{11} - b_1 a_{21}}{a_{11} a_{22} - a_{21} a_{12}}$$

 Computation by floating point arithmetic with double precision variables (IEEE 754):

$$X = 112147127, \quad Y = -67108864.5$$

Correct solution:

$$X = 224294254, \quad Y = -134217729$$

Treat Data as Intervals

Analog data (reals)					Digital data (rationals)			
	Feature A	Feature B	Class		Feature A	Feature B	Class	
1	1.539582	0.6069	1		1.2~1.6	0.6~0.8	1	
2	0.676711	0.2655	0		0.4~0.8	0.2~0.4	0	
3	1.111577	0.4998	1		1.1~1.2	0.4~0.5	1	
4	1.871501		0		1.8~1.9	0.7~0.8	0	
				/				

Discretization by measurement

Geometric Point of View

Digital data (rationals)

Feature A	Feature B	Clas
1.2~1.6	0.6~0.8	1
0.4~0.8	0.2~0.4	0
1.1~1.2	0.4~0.5	1
1.8~1.9	0.7~0.8	0

- Discretized data are intervals in \mathbb{R}^d
 - The width of an interval corresponds to the error of a data point
- A learner finds a set intersecting intervals of class 1

How to Compute Real Numbers?

- Consider computation of $f(x) = 3 \cdot x$
- For example: $f(1/3) = 3 \cdot 1/3$
- Since 1/3 = 0.33333..., a computer should output 0.99999... (or 1.00000...)
- However, it cannot output any digit since:
 - If an input is 0.333... forever, the output is 0.999...
 - If an input is 0.333...34 at some point,
 the output is 1.000...02
- Thus the computer cannot determine even the first digit at any moment

What is Problem in Real Number Computation?

- The problem is caused by the representation of real numbers (実数表現)
- Decimal representation (10進表現) lacks redundancy (冗長性)
 - We need more sequences that represent the same number
- Solution: signed digit representation (符号付き2進数)
 - Use three symbols: 1, 0, and $\bar{1}$ ($\bar{1}$ means –1) and defined as:

$$\rho(a_1a_2\ldots)=\sum_{i=1}^{\infty}a_i\cdot 2^{-i}$$

Same as the binary representation if we use only 0 and 1

Gray Code

- Using signed digit representation, we can achieve computation over reals in a natural sense
- Another interesting representation is Gray code (グレイコード) by Frank Gray (1947) and Émile Baudot (1878)
 - Originally, another binary encoding of natural numbers
 - Important in applications of conversion between analog and digital information [Knuth, 2005]
- Gray codes for natural numbers:

	0	1	2	3	4	5	6	7
Binary	000	001	010	011	100	101	110	111
Gray	000	001	011	010	110	111	101	100

Gray Code Embedding

- Gray code can be used for real number representation
 - We use three symbols 0, 1, and ⊥
- The Gray code embedding (グレイコード埋め込み) is an injection γ_G that maps $x \in [0,1]$ to an infinite sequence $p_0p_1p_2\ldots$, where
 - $-p_i := 1 \text{ if } 2^{-i}m 2^{-(i+1)} < x < 2^{-i}m + 2^{-(i+1)} \text{ for an odd } m,$
 - $p_i = 0$ if the same holds for an even m,
 - $-p_i := \perp \text{ if } x = 2^{-i}m 2^{-(i+1)} \text{ for some integer } m$
- Power of representations for real number computation:
 Gray code = signed digit representation [Dusky, 2002]
 binary representation

Gray Code on Reals

Gray Code on Reals

Binary Representation

Binary Representation

Computation via Type-2 Machine

- Computation of real numbers is realized as conversion between their representations (infinite sequences)
- Computation on infinite sequences in Σ^{ω} is formulated using Type-2 machine

$$\sum^{\omega} \frac{g}{\longrightarrow} \sum^{\omega} \xi^{\omega}$$

$$\xi \downarrow \qquad \qquad \downarrow \zeta$$

$$X \xrightarrow{f} Y$$

Type-2 Machine

- In finite time, a computer (Type-2 machine) receives a finite prefix (接頭辞) of an infinite sequence that represents a real number
 - The input is thus discretized (離散化)
- A computer continues to output succeeding digits of output which is getting closer to the true value

- In finite time, a computer (Type-2 machine) receives a finite prefix (接頭辞) of an infinite sequence that represents a real number
 - The input is thus discretized (離散化)
- A computer continues to output succeeding digits of output which is getting closer to the true value
- This is similar to the mechanism of learning
 - Discretized approximation (in computing)
 - Partial information of concepts (in learning)

Partial information **Approximation** of the result of the target Computing Discretized Discretized Computer real number real number Learning **Data** Learner **Hypotheses**

Real Number Computation as Learning

- Concept (learning target): a real number $x \in \mathbb{R}$
- Hypothesis: a finite sequence $H = a_1 a_2 \dots a_k$
 - A hypothesis H represents an interval $\nu(H)$
- Data: prefixes of $x = \rho(a_1 a_2 ...)$
- Correctness:
 - Consistency: H is always consistent with x, i.e., $x \in v(H)$
 - Instead of convergence in identification in the limit, we have **effectivity**: For a sequence of hypotheses $w_1, w_2, w_3, \ldots, \upsilon(w_i) \supseteq \upsilon(w_{i+1})$ always holds

Summary of Real Number Computation in Machine Learning Framework

Target Real number

Representation Gray code/signed digit representation

Data Prefix (Discretized value, interval)

Algorithm Depends on functions

Correctness

Consistency & Effectivity

Example: Binary Representation

- $\Sigma = \{0, 1\}$
- Binary representation $\rho : \Sigma^{\omega} \to [0, 1]$:

$$\rho(a_1 a_2 \dots) = \sum_{i=1}^{\infty} a_i \cdot 2^{-i}$$

• Binary representation for finite sequence

$$\upsilon: \Sigma^* \to \mathcal{P}([0,1])$$
:

$$\upsilon(a_1 a_2 \dots a_k) = [\rho(a_1 a_2 \dots a_k) 000 \dots), \rho(a_1 a_2 \dots a_k) 111 \dots)]$$

$$= \left[\sum_{i=1}^{k} a_i \cdot 2^{-i}, \sum_{i=1}^{k} a_i \cdot 2^{-i} + 2^{-k} \right]$$

Binary Representation

Example: Signed Digit Representation

- $\Sigma = \{0, 1, \bar{1}\}$
- Signed digit representation $\rho : \Sigma^{\omega} \to [0, 1]$:

$$\rho(a_1 a_2 \dots) = \sum_{i=1}^{\infty} a_i \cdot 2^{-i}$$

• Signed digit representation for finite sequence $\upsilon: \Sigma^* \to \mathcal{P}([0,1])$:

$$v(a_1 a_2 \dots a_k) = \left[\rho(a_1 a_2 \dots a_k \bar{1} \bar{1} \bar{1} \dots), \ \rho(a_1 a_2 \dots a_k 1 1 1 \dots) \right]$$
$$= \left[\sum_{i=1}^k a_i \cdot 2^{-i} - 2^{-k}, \sum_{i=1}^k a_i \cdot 2^{-i} + 2^{-k} \right]$$

Refinement

- Refinement of signed digit representation is simple:
 - 1. $w \xrightarrow{\rho} w0$
 - 2. $w \stackrel{\rho}{\rightarrow} w1$
 - 3. $w \stackrel{\rho}{\rightarrow} w\bar{1}$
- "Learning with refinement"
 - = "Real number computation"

Efficient Learning with Refinement

1. $i \leftarrow 1, S \leftarrow \emptyset, H \leftarrow \top, Q \leftarrow \emptyset // Q$ is a list of candidate hypotheses 2. repeat $S \leftarrow S \cup \{(x_i, y_i)\}$ while H is not consistent with S if $x \in \upsilon(H)$ for some $(x, o) \in S$ then 5. Append all $\rho(H)$ to the tail of Q 6. end if $H \leftarrow$ the first hypothesis in Q, and remove it from Q 8. end while 9. 10. $H_i \leftarrow H$ and output H_i 11. $i \leftarrow i + 1$ 12. until forever

Conclusion

- Computing and learning have been studied in different fields
- However, if we consider computation over \mathbb{R} , there is a close connection between computing and learning
- This is still a developing field
 - No textbook!
 - Some interesting papers:
 - de Brecht, M., Topological and Algebraic Aspects of Algorithmic Learning Theory, PhD thesis (2010)
 - Sugiyama, M. and Hirowatari, E. and Tsuiki, H. and Yamamoto, A., Learning Figures with the Hausdorff Metric by Fractals—Towards Computable Binary Classification, Machine Learning (2012)

Take-Home Massages

- 1. Learning \simeq Computing on \mathbb{R} \neq Computing on \mathbb{N}
- 2. Representation of objects is essential
- 3. Structure of hypothesis space is crucial for efficiency
- 4. We are learners in data mining