Hands-on Activity 8.1: Aggregating Data with Pandas

Name: Jann Moises Nyll B. De los Reyes

Section: CPE22S3

Date: March 27, 2024

Submitted to: Engr. Roman M. Richard

8.1.1 Intended Learning Outcomes

After this activity, the student should be able to:

- Demonstrate querying and merging of dataframes
- · Perform advanced calculations on dataframes
- Aggregate dataframes with pandas and numpy Work with time series data

8.1.2 Resources

- Computing Environment using Python 3.x
- Attached Datasets (under Instructional Materials)

8.1.3 Procedures

The procedures can be found in the canvas module. Check the following under topics:

- 8.1 Weather Data Collection
- 8.2 Querying and Merging
- 8.3 Dataframe Operations
- 8.4 Aggregations
- 8.5 Time Series

8.1.4 Data Analysis

Provide some comments here about the results of the procedures.

8.1.5 Supplementary Activity

Using the CSV files provided and what we have learned so far in this module complete the following exercises:

- 1. With the earthquakes.csv file, select all the earthquakes in Japan with a magType of mb and a magnitude of 4.9 or greater.
- 2. Create bins for each full number of magnitude (for example, the first bin is 0-1, the second is 1-2, and so on) with a magType of ml and count how many are in each bin.
- 3. Using the faang.csv file, group by the ticker and resample to monthly frequency. Make the following aggregations:
 - Mean of the opening price
 - o Maximum of the high price
 - o Minimum of the low price
 - Mean of the closing price
 - o Sum of the volume traded
- 4. Build a crosstab with the earthquake data between the tsunami column and the magType column. Rather than showing the frequency count, show the maximum magnitude that was observed for each combination. Put the magType along the columns.
- 5. Calculate the rolling 60-day aggregations of OHLC data by ticker for the FAANG data. Use the same aggregations as exercise no. 3.

- 6. Create a pivot table of the FAANG data that compares the stocks. Put the ticker in the rows and show the averages of the OHLC and volume traded data.
- 7. Calculate the Z-scores for each numeric column of Netflix's data (ticker is NFLX) using apply().
- 8. Add event descriptions
 - o Create a dataframe with the following three columns: ticker, date, and event. The columns should have the following values:
 - ticker: 'FB'
 - date: ['2018-07-25', '2018-03-19', '2018-03-20']
 - event: ['Disappointing user growth announced after close.', 'Cambridge Analytica story', 'FTC investigation']
 - Set the index to ['date', 'ticker']
 - Merge this data with the FAANG data using an outer join
- 9. Use the transform() method on the FAANG data to represent all the values in terms of the first date in the data. To do so, divide all the values for each ticker by the values for the first date in the data for that ticker. This is referred to as an index, and the data for the first date is the base (https://ec.europa.eu/eurostat/statistics-explained/ index.php/ Beginners:Statisticalconcept-Indexandbaseyear). When data is in this format, we can easily see growth over time. Hint: transform() can take a function name.

ANSWERS

1.) With the earthquakes.csv file, select all the earthquakes in Japan with a magType of mb and a magnitude of 4.9 or greater.

```
1 #Setup
2 import pandas as pd
3 import numpy as np
4
5
6 earthquake = pd.read_csv('/content/drive/MyDrive/data/earthquakes.csv')
7 earthquake.head()
8
```

	mag	magType	time	place	tsunami	parsed_place	
0	1.35	ml	1539475168010	9km NE of Aguanga, CA	0	California	11.
1	1.29	ml	1539475129610	9km NE of Aguanga, CA	0	California	
2	3.42	ml	1539475062610	8km NE of Aguanga, CA	0	California	
3	0.44	ml	1539474978070	9km NE of Aguanga, CA	0	California	
4	2.16	md	1539474716050	10km NW of Avenal, CA	0	California	

Next steps: View recommended plots

We will use .query() to filter the following criteria.

```
1 # 1.) select all earthquake in japan, magType = mb ,and magnitude >=4.9
```

3 japan_earthquake = earthquake.query('parsed_place == "Japan" and magType == "mb" and mag >= 4.9')

4 japan_earthquake.head()

	mag	magType	time	place	tsunami	parsed_place	
1563	4.9	mb	1538977532250	293km ESE of Iwo Jima, Japan	0	Japan	11.
2576	5.4	mb	1538697528010	37km E of Tomakomai, Japan	0	Japan	
3072	4.9	mb	1538579732490	15km ENE of Hasaki, Japan	0	Japan	
3632	4.9	mb	1538450871260	53km ESE of Hitachi, Japan	0	Japan	

2.) Create bins for each full number of magnitude (for example, the first bin is 0-1, the second is 1-2, and so on) with a magType of ml and count how many are in each bin.

First, we need to filter the data with a magType = ml, We also need to find the largest magnitude recorded using nlargest()

```
1 mb_magtype = earthquake.query('magType == "ml"')
2 mb_magtype.nlargest(5,'mag')
```

	mag	magType	time	place	tsunami	parsed_place	
9133	5.1	ml	1537274456960	64km SSW of Kaktovik, Alaska	1	Alaska	ıl.
1015	5.0	ml	1539152878406	61km SSW of Chignik Lake, Alaska	1	Alaska	
4101	4.2	ml	1538355504955	131km NNW of Arctic Village, Alaska	0	Alaska	
1273	4.0	ml	1539069081499	71km SW of Kaktovik, Alaska	1	Alaska	
1795	4.0	ml	1538904354275	60km WNW of Valdez, Alaska	1	Alaska	

Now, We will use pd.cut() to create 5 bins to store the following data since the largest value is the 5.1. We will also use value_counts() to count the magnitude in each bin.

Below is the to access each bins, we choose the last bin to check if it stores the largest magnitude.

```
1 mb_magtype[magnitude_binned == '4-5'].sort_values(
2 'mag', ascending=False
3 )
```

	mag	magType	time	place	tsunami	parsed_place
9133	5.10	ml	1537274456960	64km SSW of Kaktovik, Alaska	1	Alaska
1015	5.00	ml	1539152878406	61km SSW of Chignik Lake, Alaska	1	Alaska
4101	4.20	ml	1538355504955	131km NNW of Arctic Village, Alaska	0	Alaska
1273	4.00	ml	1539069081499	71km SW of Kaktovik, Alaska	1	Alaska
1795	4.00	ml	1538904354275	60km WNW of Valdez, Alaska	1	Alaska
2752	4.00	ml	1538658776412	67km SSW of Kaktovik, Alaska	1	Alaska
4123	4.00	ml	1538351680635	57km NNE of Gambell, Alaska	0	Alaska
8953	4.00	ml	1537317652790	269km SE of Kodiak, Alaska	0	Alaska
5262	3.95	ml	1538129105430	11km SSE of Kapaau, Hawaii	0	Hawaii
3260	3.90	ml	1538537377544	44km N of North Nenana, Alaska	0	Alaska
8677	3.90	ml	1537395162773	76km SSW of Kaktovik, Alaska	0	Alaska

- 3. Using the faang.csv file, group by the ticker and resample to monthly frequency. Make the following aggregations:
 - o Mean of the opening price
 - o Maximum of the high price
 - Minimum of the low price
 - o Mean of the closing price
 - o Sum of the volume traded

Setup

 $1 \; \mathsf{faang=} \; \mathsf{pd.read_csv('/content/drive/MyDrive/data/faang.csv'}, \; \mathsf{index_col} \; = \; \mathsf{'date'}, \; \mathsf{parse_dates} \; = \; \mathsf{True})$

2 faang

	ticker	open	high	low	close	volume	
date							11.
2018-01-02	FB	177.68	181.58	177.5500	181.42	18151903	
2018-01-03	FB	181.88	184.78	181.3300	184.67	16886563	
2018-01-04	FB	184.90	186.21	184.0996	184.33	13880896	
2018-01-05	FB	185.59	186.90	184.9300	186.85	13574535	
2018-01-08	FB	187.20	188.90	186.3300	188.28	17994726	
•••							
2018-12-24	GOOG	973.90	1003.54	970.1100	976.22	1590328	
2018-12-26	GOOG	989.01	1040.00	983.0000	1039.46	2373270	
2018-12-27	GOOG	1017.15	1043.89	997.0000	1043.88	2109777	
2018-12-28	GOOG	1049.62	1055.56	1033.1000	1037.08	1413772	
2018-12-31	GOOG	1050.96	1052.70	1023.5900	1035.61	1493722	

1255 rows × 6 columns

Next steps: View recommended plots

Using groupby() and resample() for monthly frequency and .agg() in performing the following

```
1 faang_monthly_frequency = faang.groupby("ticker").resample("M").agg({
2         "open": np.mean,
3         "high": np.max,
4         "low": np.min,
5         "close": np.mean,
6         "volume": np.sum
7 })
```

9 faang_monthly_frequency

		open	high	low	close	volume
ticker	date					
AAPL	2018-01-31	170.714690	176.6782	161.5708	170.699271	659679440
	2018-02-28	164.562753	177.9059	147.9865	164.921884	927894473
	2018-03-31	172.421381	180.7477	162.4660	171.878919	713727447
	2018-04-30	167.332895	176.2526	158.2207	167.286924	666360147
	2018-05-31	182.635582	187.9311	162.7911	183.207418	620976206
	2018-06-30	186.605843	192.0247	178.7056	186.508652	527624365
	2018-07-31	188.065786	193.7650	181.3655	188.179724	393843881
	2018-08-31	210.460287	227.1001	195.0999	211.477743	700318837
	2018-09-30	220.611742	227.8939	213.6351	220.356353	678972040
	2018-10-31	219.489426	231.6645	204.4963	219.137822	789748068
	2018-11-30	190.828681	220.6405	169.5328	190.246652	961321947
	2018-12-31	164.537405	184.1501	145.9639	163.564732	898917007
AMZN	2018-01-31	1301.377143	1472.5800	1170.5100	1309.010952	96371290
	2018-02-28	1447.112632	1528.7000	1265.9300	1442.363158	137784020
	2018-03-31	1542.160476	1617.5400	1365.2000	1540.367619	130400151
	2018-04-30	1475.841905	1638.1000	1352.8800	1468.220476	129945743
	2018-05-31	1590.474545	1635.0000	1546.0200	1594.903636	71615299
	2018-06-30	1699.088571	1763.1000	1635.0900	1698.823810	85941510
	2018-07-31	1786.305714	1880.0500	1678.0600	1784.649048	97629820
	2018-08-31	1891.957826	2025.5700	1776.0200	1897.851304	96575676
	2018-09-30	1969.239474	2050.5000	1865.0000	1966.077895	94445693
	2018-10-31	1799.630870	2033.1900	1476.3600	1782.058261	183228552
	2018-11-30	1622.323810	1784.0000	1420.0000	1625.483810	139290208
	2018-12-31	1572.922105	1778.3400	1307.0000	1559.443158	154812304
FB	2018-01-31	184.364762	190.6600	175.8000	184.962857	495655736
	2018-02-28	180.721579	195.3200	167.1800	180.269474	516621991
	2018-03-31	173.449524	186.1000	149.0200	173.489524	996232472
	2018-04-30	164.163557	177.1000	150.5100	163.810476	751130388
	2018-05-31	181.910509	192.7200	170.2300	182.930000	401144183
	2018-06-30	194.974067	203.5500	186.4300	195.267619	387265765
	2018-07-31	199.332143	218.6200	166.5600	199.967143	652763259
	2018-08-31	177.598443	188.3000	170.2700	177.491957	549016789
	2018-09-30	164.232895	173.8900	158.8656	164.377368	500468912
	2018-10-31	154.873261	165.8800	139.0300	154.187826	622446235
	2018-11-30	141.762857	154.1300	126.8500	141.635714	518150415
	2018-12-31	137.529474	147.1900	123.0200	137.161053	558786249
GOOG	2018-01-31	1127.200952	1186.8900	1045.2300	1130.770476	28738485
	2018-02-28	1088.629474	1174.0000	992.5600	1088.206842	42384105
	2018-03-31	1096.108095	1177.0500	980.6400	1091.490476	45430049
	2018-04-30	1038.415238	1094.1600	990.3700	1035.696190	41773275
	2018-05-31	1064.021364	1110.7500	1006.2900	1069.275909	31849196

```
2018-06-30 1136.396190 1186.2900 1096.0100 1137.626667 32103642
      2018-07-31 1183.464286 1273.8900 1093.8000 1187.590476 31953386
      2018-08-31 1226.156957 1256.5000 1188.2400 1225.671739 28820379
      2018-09-30 1176.878421 1212.9900 1146.9100 1175.808947 28863199
      2018-10-31 1116.082174 1209.9600 995.8300 1110.940435
      2018-11-30 1054.971429 1095.5700 996.0200 1056.162381 36735570
      2018-12-31 1042.620000 1124.6500
                                       970.1100 1037.420526
                                                           40256461
NFLX 2018-01-31 231.269286 286.8100
                                       195.4200 232.908095 238377533
      2018-02-28
                 270.873158 297.3600
                                       236.1100 271.443684 184585819
      2018-03-31 312.712857 333.9800 275.9000 312.228095 263449491
      2018-04-30
                 309.129529 338.8200 271.2239
                                                307.466190 262064417
      2018-05-31
                329.779759 356.1000
                                       305.7300
                                                331.536818 142051114
                                       352.8200 384.133333 244032001
      2018-06-30
                 384.557595 423.2056
      2018-07-31
                 380.969090
                             419.7700
                                       328.0000
                                                381.515238 305487432
      2018-08-31 345.409591 376.8085 310.9280 346.257826 213144082
      2018-09-30
                 363.326842 383.2000
                                       335 8300
                                                362 641579 170832156
      2018-10-31 340.025348 386.7999
                                       271.2093
                                                335.445652 363589920
      2018-11-30 290.643333 332.0499 250.0000 290.344762 257126498
      2018-12-31 266.309474 298.7200 231.2300 265.302368 234304628
```

4.) Build a crosstab with the earthquake data between the tsunami column and the magType column. Rather than showing the frequency count, show the maximum magnitude that was observed for each combination. Put the magType along the columns.

```
1 pd.crosstab(
    index=earthquake.tsunami,
     columns=earthquake.magType,
     colnames=['magType'],
     values = earthquake.mag, # use the magnitude column to perform calculation
     aggfunc=np.max # we use np.max to find the maximum magnitude that was observed
8)
    magType mb mb_lg
                           mh ml ms 20
                      md
                                           mw
                                               mwb
                                                    mwr mww
    tsunami
       0
                  3.5 4.11 1.1 4.2 NaN 3.83 5.8 4.8 6.0
       1
            6.1 NaN NaN NaN 5.1 5.7 4.41 NaN NaN 7.5
```

5.) Calculate the rolling 60-day aggregations of OHLC data by ticker for the FAANG data. Use the same aggregations as exercise no. 3

		open	high	low	close	volume	
ticker	date						11.
AAPL	2018-01-02	166.927100	169.0264	166.0442	168.987200	25555934.0	
	2018-01-03	168.089600	171.2337	166.0442	168.972500	55073833.0	
	2018-01-04	168.480367	171.2337	166.0442	169.229200	77508430.0	
	2018-01-05	168.896475	172.0381	166.0442	169.840675	101168448.0	
	2018-01-08	169.324680	172.2736	166.0442	170.080040	121736214.0	
	***		•••				
NFLX	2018-12-24	283.509250	332.0499	233.6800	281.931750	525657894.0	
	2018-12-26	281.844500	332.0499	231.2300	280.777750	520444588.0	
	2018-12-27	281.070488	332.0499	231.2300	280.162805	532679805.0	
	2018-12-28	279.916341	332.0499	231.2300	279.461341	521968250.0	
	2018-12-31	278.430769	332.0499	231.2300	277.451410	476309676.0	
1255 row	s × 5 columns						

We can join it with the original data for comparison:

```
1 faang_rolling_60 = faang.groupby("ticker").rolling(window="60D").agg({
2 "open": np.mean,
     "high": np.max,
     "low": np.min,
     "close": np.mean,
     "volume": np.sum
7 }).join(
8 faang.groupby("ticker").agg({
     "open": np.mean,
10 "high": np.max,
11 "low": np.min,
"close": np.mean,
13 "volume": np.sum
14 }),lsuffix='_rolling'
15 ).sort_index(axis=1)
16
17 faang_rolling_60
```

		close	close_rolling	high	high_rolling	low	low_rolling	open	open_rolling	volume	volume_rolling	
ticker	date											11
AAPL	2018-01-02	186.986218	168.987200	231.6645	169.0264	145.9639	166.0442	187.038674	166.927100	8539383858	25555934.0	
	2018-01-03	186.986218	168.972500	231.6645	171.2337	145.9639	166.0442	187.038674	168.089600	8539383858	55073833.0	
	2018-01-04	186.986218	169.229200	231.6645	171.2337	145.9639	166.0442	187.038674	168.480367	8539383858	77508430.0	
	2018-01-05	186.986218	169.840675	231.6645	172.0381	145.9639	166.0442	187.038674	168.896475	8539383858	101168448.0	
	2018-01-08	186.986218	170.080040	231.6645	172.2736	145.9639	166.0442	187.038674	169.324680	8539383858	121736214.0	
***	•••		***									
NFLX	2018-12-24	319.290299	281.931750	423.2056	332.0499	195.4200	233.6800	319.620533	283.509250	2879045091	525657894.0	
	2018-12-26	319.290299	280.777750	423.2056	332.0499	195.4200	231.2300	319.620533	281.844500	2879045091	520444588.0	
	2018-12-27	319.290299	280.162805	423.2056	332.0499	195.4200	231.2300	319.620533	281.070488	2879045091	532679805.0	
	2018-12-28	319.290299	279.461341	423.2056	332.0499	195.4200	231.2300	319.620533	279.916341	2879045091	521968250.0	
	2018-12-31	319.290299	277.451410	423.2056	332.0499	195.4200	231.2300	319.620533	278.430769	2879045091	476309676.0	
1255 row	s × 10 columns	3										

6.) Create a pivot table of the FAANG data that compares the stocks. Put the ticker in the rows and show the averages of the OHLC and volume traded data.

```
1 faang.pivot_table(
2    index='ticker',
3    aggfunc='mean'
4    )
```

	close	high	low	open	volume	
ticker						11.
AAPL	186.986218	188.906858	185.135729	187.038674	3.402145e+07	
AMZN	1641.726175	1662.839801	1619.840398	1644.072669	5.649563e+06	
FB	171.510936	173.615298	169.303110	171.454424	2.768798e+07	
GOOG	1113.225139	1125.777649	1101.001594	1113.554104	1.742645e+06	
NFLX	319.290299	325.224583	313.187273	319.620533	1.147030e+07	

7.) Calculate the Z-scores for each numeric column of Netflix's data (ticker is NFLX) using apply().

Filter the netflix data using query()

```
1 nflx_data = faang.query('ticker == "NFLX"')
2 nflx_data.tail()
```

	ticker	open	high	low	close	volume	
date							1
2018-12-24	NFLX	242.00	250.6500	233.68	233.880	9547616	
2018-12-26	NFLX	233.92	254.5000	231.23	253.670	14402735	
2018-12-27	NFLX	250.11	255.5900	240.10	255.565	12235217	
2018-12-28	NFLX	257.94	261.9144	249.80	256.080	10987286	
2018-12-31	NFLX	260.16	270.1001	260.00	267.660	13508920	

```
1 nflx z scores = nflx data.loc['2018',['open','high','low','close','volume']
2 ].apply(lambda x:x.sub(x.mean()).div(x.std()))
4 nflx_z_scores.describe().T
                                          min
                                                   25%
                                                             50%
                                                                      75%
            count
                          mean std
                                                                               max
            251.0 2.264678e-16 1.0 -2.500753 -0.724501 0.058094 0.773272 2.060186
      high
             251.0 2.830848e-16 1.0 -2.516023 -0.706852 0.043234 0.771972 1.994929
            251.0 0.000000e+00 1.0 -2.410226 -0.769364 0.073324 0.751158 2.044406
      low
            251.0 -2.264678e-16 1.0 -2.416644 -0.706784 0.041082 0.763191 2.037640
     close
     volume 251.0 1.273881e-16 1.0 -1.391600 -0.619423 -0.183666 0.391332 8.276351
```

8.) Add event descriptions:

- Create a dataframe with the following three columns: ticker, date, and event. The columns should have the following values:
 - o ticker: 'FB'
 - o date: ['2018-07-25', '2018-03-19', '2018-03-20']
 - o event: ['Disappointing user growth announced after close.', 'Cambridge Analytica story', 'FTC investigation']
- Set the index to ['date', 'ticker']
- Merge this data with the FAANG data using an outer join

Next steps: View recommended plots

Before we set the index, we need to ensure that our date has a proper datatype

	event			
ıl.		ticker	date	
	Disappointing user growth announced after close.	FB	2018-07-25	
	Cambridge Analytica story	FB	2018-03-19	
	FTC investigation	FB	2018-03-20	

Merge the two data frame using <code>.merge()</code>, we also need to set an array of our <code>set_index</code> on our <code>left_on</code> and <code>right_on</code> to make a full outer join dataframe.

- 1 outer_join = df.merge(faang,left_on=['date','ticker'], right_on=['date','ticker'], how='outer', indicator=True
 2)
- 3 outer_join.set_index('date',inplace= True)

1 outer_join

	ticker	event	open	high	low	close	volume	_merge	
date									11.
2018-07-25	FB	Disappointing user growth announced after close.	215.715	218.62	214.27	217.50	64592585	both	
2018-03-19	FB	Cambridge Analytica story	177.010	177.17	170.06	172.56	88140060	both	
2018-03-20	FB	FTC investigation	167.470	170.20	161.95	168.15	129851768	both	
2018-01-02	FB	NaN	177.680	181.58	177.55	181.42	18151903	right_only	
2018-01-03	FB	NaN	181.880	184.78	181.33	184.67	16886563	right_only	
***							***	***	
2018-12-24	GOOG	NaN	973.900	1003.54	970.11	976.22	1590328	right_only	
2018-12-26	GOOG	NaN	989.010	1040.00	983.00	1039.46	2373270	right_only	
2018-12-27	GOOG	NaN	1017.150	1043.89	997.00	1043.88	2109777	right_only	
2018-12-28	GOOG	NaN	1049.620	1055.56	1033.10	1037.08	1413772	right_only	
2018-12-31	GOOG	NaN	1050.960	1052.70	1023.59	1035.61	1493722	right_only	
1255 rows × 8	columns								

1 outer_join.query('date == "2018-07-25" ') # to check if we have no anomalies in our data

	ticker	event	open	high	low	close	volume	_merge	
date									11.
2018-07-25	FB	Disappointing user growth announced after close.	215.7150	218.6200	214.2700	217.5000	64592585	both	
2018-07-25	AAPL	NaN	190.8977	192.6675	190.2746	192.6378	16826483	right_only	
2018-07-25	AMZN	NaN	1829.3000	1863.8400	1822.6400	1863.6100	3836333	right_only	
2018-07-25	NFLX	NaN	357.5700	363.2800	355.6500	362.8700	8516248	right_only	
2018-07-25	GOOG	NaN	1239.1300	1265.8600	1239.1300	1263.7000	2139999	right_only	

9. Use the transform() method on the FAANG data to represent all the values in terms of the first date in the data. To do so, divide all the values for each ticker by the values for the first date in the data for that ticker. This is referred to as an index, and the data for the first date is the base (https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Beginners:Statistical_concept_- Index_and_base_year). When data is in this format, we can easily see growth over time. Hint: transform() can take a function name.

```
1 faang index = faang.groupby("ticker").transform(
2 lambda x: x/x.iloc[0]
3)
4 faang_index
                 open high low close volume index ...
        date
    2018-01-02 1.000000 1.000000 1.000000 1.000000 1.000000
    2018-01-03 1.023638 1.017623 1.021290 1.017914 0.930292 1.017914
    2018-01-04 1.040635 1.025498 1.036889 1.016040 0.764707 1.016040
    2018-01-05 1.044518 1.029298 1.041566 1.029931 0.747830 1.029931
    2018-01-08 1.053579 1.040313 1.049451 1.037813 0.991341 1.037813
    2018-12-24 0.928993 0.940578 0.928131 0.916638 1.285047 0.916638
    2018-12-26 0.943406 0.974750 0.940463 0.976019 1.917695 0.976019
    2018-12-27 0.970248 0.978396 0.953857 0.980169 1.704782 0.980169
    2018-12-28 1.001221 0.989334 0.988395 0.973784 1.142383 0.973784
    2018-12-31 1.002499 0.986653 0.979296 0.972404 1.206986 0.972404
   1255 rows × 6 columns
1 #To check, if the following ticker were started in 1
3 faang_index.query('date =="2018-01-02"')
```

 \supseteq

date

open high low close volume index

 2018-01-02
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0