PiWIN

Radio Link Failure Prediction Project

Realized by: PRODAL

Phase III

Summary:

- 1. The team
- 2. Introduction
- 3. Business objectives
- 4. Data sciences objectives
- 5. Data preparation
- 6. Data exploration
- 7. Data cleaning
- 8. Data transformation
- 9. Feature engineering
- 10. Feature selection
- 11. Modeling
- 12.ML vs Dl
- 13. Conclusion

The Team:

Introduction

The goal of our project is to limit the radio link failure by exploiting the data to guarantee an ideal environment.

To ensure an ideal transmission environment we will implement several models to predict radio link failures.

Business objectives:

- Ensure performance of the network by avoiding network failures
- Reduce the effect of the weather on the performance of the radio link
- Financial gain and customer satisfaction

Data science objectives:

- Predict radio link failure for next day and next 5 days based on region, historical data and weather data.
- Implement a prediction system to identify the causes of the radio link failure

Identify weather conditions that affect directly the network

Anticipate the settings to be made on the radio stations to avoid radio link failure

Data preparation:

Code:

```
xlsx = pd.ExcelFile('data-Test-2020-09-01.xlsx')
sheets = pd.read excel(xlsx, sheet name=None, index col=0,
                       na filter=True, convert float=False)
met stations = sheets['met-stations']
met real = sheets['met-real']
met forecast = sheets['met-forecast']
rl sites = sheets['rl-sites']
rl kpis = sheets['rl-kpis']
distances = sheets['distances']
# Station names
stations = met stations['station no'].tolist()
# Forecast dates
forecast dates = sorted(list(set(met forecast['datetime'])))
```

Merged dataset:

Filtred by Met_forecast

Data exploration:

Statistical Description(93250 * 67):

	mw_connection_no	site_no	link_length	severaly_error_second	error_second	unavail_second	avail_time	bbe
count	9.325000e+04	93250.000000	14606.000000	93250.000000	93250.000000	93250.000000	93250.000000	93250.000000
mean	4.796969e+05	37249.962155	5958.605847	0.160097	1.934273	305.722177	84541.888665	67.034198
std	4.509775e+05	31923.074906	5854.243154	20.688216	43.597285	4888.954324	10784.345415	3358.574491
min	1.435940e+05	277.000000	35.000000	0.000000	0.000000	0.000000	1.000000	0.000000
25%	2.088880e+05	10404.000000	1333.000000	0.000000	0.000000	0.000000	86400.000000	0.000000
50%	2.959210e+05	23989.000000	3500.000000	0.000000	0.000000	0.000000	86400.000000	0.000000
75 %	3.514740e+05	62702.000000	10269.000000	0.000000	0.000000	0.000000	86400.000000	0.000000
max	1.384577e+06	99297.000000	30279.000000	6238.000000	7191.000000	86400.000000	108000.000000	600513.000000
8 rows ×	40 columns							

Classes Distribution:

False 92825

True 425

Name: rlf, dtype: int64

Null Values (13 columns):

polarization	79847
freq band	376
link length	78644
scalibility score	48093
humidity max day1	602
humidity min day1	602
wind dir day1	602
wind speed day1	602
history_polarization	80447
history freq band	376
history_link_length	79245
history_scalibility_score	49865
history clutter class	393
dtype: int64	

Descision

Making

< 1000 -

imputer

> 1000:

Delete

- Heavily imbalanced class labels (0,06% « True » labels)
- Uneven Data samples
- Insufficient converge of all possible radio link failures scenarios
- Missing values (18%)
- Unavailibity of actual weather forecast from RL sites,

Data cleaning

- Dropping some links according to outliers RF Links analysis based on triangulation.
- Dropping some NA values
- Upsampling and downsampling based on the month

Data transformation:

 We have a regression model so we decided to Normalize numerical columns such as "bbe" and "unvail_seconds" by using standard scalling

 We have a binary classifier so we decided to use One Hot Encoding for categorical columns such as "history_polarization" and "adaptive_modulation"

Feature engineering:

Date/Time feature (Year / Month / Day)

Aggregation feature (sum/count/max/min)

Polynomial feature

Feature selection:

- Select feature by importance
- Select feature by k-best
- Select feature by k-square
- Select feature by k-scoring

	rxlevmax	capacity	temp_max_day1	temp_min_day1	humidity_max_day1	humidity_min_day1	wind_dir_day1	wind_speed_day1	wd1_few clouds	wd1_heav ra
19800	-28.2	456.0	14.0	5.0	71	43	349	15	0	
19802	-39.5	160.0	14.0	5.0	71	43	349	15	0	
19872	-30.0	456.0	14.0	5.0	71	43	349	15	0	
19904	-33.3	247.0	14.0	5.0	71	43	349	15	0	
19953	-22.5	200.0	17.0	6.0	82	39	310	11	0	
22405	-39.8	417.0	15.0	7.0	78	52	61	13	0)
22419	-37.6	74.0	15.0	7.0	78	52	61	13	0	
22431	-29.4	154.0	15.0	7.0	78	52	61	13	0	
22493	-39.8	456.0	7.0	2.0	92	77	151	4	0	
22552	-40.4	72.0	10.0	1.0	91	71	248	7	0	

117 rows × 30 columns

Modeling

Camparing Models:

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	мсс	TT (Sec)
dt	Decision Tree Classifier	0.9672	0.9671	0.9950	0.9429	0.9682	0.9343	0.9360	0.0330
xgboost	Extreme Gradient Boosting	0.9922	0.9962	0.9950	0.9896	0.9923	0.9845	0.9845	1.3340
lightgbm	Light Gradient Boosting Machine	0.9920	0.9966	0.9945	0.9896	0.9920	0.9840	0.9840	0.5150
rf	Random Forest Classifier	0.9930	0.9976	0.9940	0.9920	0.9930	0.9860	0.9860	0.4680
et	Extra Trees Classifier	0.9807	0.9974	0.9860	0.9757	0.9808	0.9614	0.9615	0.3680
catboost	CatBoost Classifier	0.9779	0.9954	0.9679	0.9878	0.9777	0.9559	0.9562	3.8260
knn	K Neighbors Classifier	0.7774	0.8639	0.8902	0.7267	0.8000	0.5547	0.5698	0.0570
gbc	Gradient Boosting Classifier	0.9321	0.9654	0.8772	0.9855	0.9280	0.8641	0.8697	0.4120
ada	Ada Boost Classifier	0.8704	0.9242	0.8642	0.8753	0.8696	0.7408	0.7410	0.1860
Ir	Logistic Regression	0.8368	0.8717	0.8296	0.8422	0.8355	0.6736	0.6742	1.2070
ridge	Ridge Classifier	0.8315	0.0000	0.8156	0.8427	0.8286	0.6631	0.6638	0.0480
lda	Linear Discriminant Analysis	0.8308	0.8733	0.8146	0.8421	0.8278	0.6616	0.6624	0.0630
svm	SVM - Linear Kernel	0.5811	0.0000	0.5990	0.6879	0.5451	0.1624	0.2147	0.1710
nb	Naive Bayes	0.6678	0.7380	0.5644	0.7131	0.6288	0.3356	0.3440	0.0230
qda	Quadratic Discriminant Analysis	0.5523	0.6623	0.4519	0.6776	0.4253	0.1043	0.1418	0.0390

Decision tree

- Tree based Algo
- Tuned model
- Normalised dataset

Decision tree is the **BEST** model

Best Model Results						
F1-Score	99.74%					
Accuracy	99.7%					
Model	Extra Tree					

 RLF can be predicted with good reliability using weather coditions, RL KPI metrics and terrain characteristics

Frequent re-training with new RL failure scenarios will improve model performance

Deep learning model

Machine learning vs Deep learning

	Machine learning	Deep learning
Run time	0,64 sec	0,75sec
Accuracy	99,7%	98,7%

Conclusion

