Esercizio 2 (8 punti) Data una stringa di numeri interi $A = (a_1, a_2, \dots, a_n)$, si consideri la seguente ricorrenza z(i,j) definita per ogni coppia di valori (i,j) con $1 \le i,j \le n$:

$$z(i,j) = \begin{cases} a_j & \text{if } i = 1, 1 \le j \le n, \\ a_{n+1-i} & \text{if } j = n, 1 < i \le n, \\ (z(i-1,j) \cdot z(i,j+1)) - z(i-1,j+1) & \text{altrimenti.} \end{cases}$$

- 1. Si fornisca il codice di un algoritmo iterativo bottom-up $COMPUTE_{-}Z(A)$ che, data in input la stringa A restituisca in uscita il valore z(n, 1).
- 2. Si valuti il numero esatto $T_{CZ}(n)$ di operazioni tra interi eseguite dall'algoritmo sviluppato

QUANTO OPORAZIONI? $=2(m-1)^2$

2. Si valuti il numero esatto $T_{CZ}(n)$ di operazioni tra interi eseguite dall'algoritmo sviluppato al punto (a).

Esercizio 2 (8 punti) Per n > 0, siano dati due vettori a componenti intele a, b \mathbb{Z}^n . Si consideri la quantità c(i,j), con $0 \le i \le j \le n-1$, definita come segue:

FOR
$$S=0$$
 TO $N-1$ $\begin{cases} a_i & \text{se } 0 < i \leq n-1 \text{ e } j=n-1, \\ b_j & \text{se } i=0 \text{ e } 0 \leq j \leq n-1, \\ c(i-1,j) \cdot c(i,j+1) & 0 < i \leq j < n-1. \end{cases}$ Si vuole calcolare la quantité $M=\max\{c(i,j):0\leq i\leq j\leq n-1\}$ $M(n,1)$

1. Si fornisca il codice di un algoritmo iterativo bottom-up per il calcolo di M .

M=MAXCM, CCO, S]

2. Si valuti la complessità esatta dell'algoritmo, associando costo unitario ai prodotti tra numeri intella e costo nullo a tutte le altre operazioni.

FOR 1=1 TO N-1 M = MAXCH, C[1, m-1] C[1, m - 1] = A[1] M = Max(M, C[1, m-1]

(ci prendiamo la lunghezza dell'array e inizializziamo il minimo a meno infinito (così, qualsiasi COMPUTE(a,b) prima quantità massima sarà più grande) n <- length(a) M = -infinitofor i=1 to n-1 do $C[i,n-1] \leftarrow a_i$ $M \leftarrow MAX(M,C[i,n-1])$ Ricordandosi che: for j=0 to n-1 do "i" va da i ad (n-1), quindi diventa perché abbiamo già inizializzato, $C[0,j] \leftarrow b_{j}$ "j" va da (n-1) a 0 compresi, quindi dato che abbiamo inizializzato,

$$c(i,j) = \begin{cases} a_i & \text{se } 0 < i \leq n-1 \text{ e } j = n-1, \\ b_j & \text{se } i = 0 \text{ e } 0 \leq j \leq n-1, \\ c(i-1,j) \cdot c(i,j+1) & 0 < i \leq j < n-1. \end{cases}$$
 a quantità $M = \max\{c(i,j) : 0 \leq i \leq j \leq n-1\}.$ M(n, 1)

FOR 1=1 TO N-2 FOR 3= N-2 DOWNTO 1 (I) [1-1,1] = C[1,1] · C[1,1] M = MAX CM, C[1,5]> // M = - 00 (PERCHÉ TROVI MAX)

ETURN M

 $M \leftarrow MAX(M,C[0,j])$

for i=1 to n-2 do
for j=n-2 downto i do
$$C[i,j] \leftarrow C[i-1,j] \cdot C[i,j+1]$$
 $M \leftarrow MAX(M,C[i,j])$
 $N = 1$
 $N = 1$
 $N = 2$
 $N = 1$
 $N = 1$

$$T(n) = \sum_{i=1}^{n-2} \sum_{j=i}^{n-2} 1 = \sum_{i=1}^{n-2} n - 1 - i = \sum_{k=1}^{n-2} k = (n-1)(n-2)/2.$$

Esercizio 2 (9 punti) Supponiamo di avere un numero illimitato di monete di ciascuno dei seguenti valori: 50, 20, 1. Dato un numero intero positivo n, l'obiettivo è selezionare il più piccolo numero di monete tale che il loro valore totale sia n. Consideriamo l'algoritmo greedy che consiste nel selezionare ripetutamente la moneta di valore più grande possibile.

- \rightarrow (a) Fornire un valore di n per cui l'algoritmo greedy non restituisce una soluzione ottima.
 - (b) Supponiamo ora che i valori delle monete siano 10, 5, 1. In questo caso l'algoritmo greedy restituisce sempre una soluzione ottima: dimostrare che ogni insieme ottimo M^* di monete di valore totale n contiene la scelta greedy.

[
$$m = 50$$
 (50 monete de 1)]

65. (1 monete de 50)

626607

60 \rightarrow [$50 + 10 \cdot 1$] \rightarrow Nov Ortino!

20 - 20 - 20

(b) Supponiamo ora che i valori delle monete siano 10, 5, 1. In questo caso l'algoritmo greedy restituisce sempre una soluzione ottima: dimostrare che ogni insieme ottimo M^* di monete di valore totale n contiene la scelta greedy.

CRESSON =

MIN.N.

DIFFERENCE

PEOLULI

$$X = 50L.$$
 OFFINA

 $X = 50L.$ OFFINA

 $X = 50L.$

(b) Sia M^* una soluzione ottima. Sia x il valore maggiore tra 10, 5, e 1 che sia non superiore a n. Se M^* contiene una moneta di valore x, la proprietà è dimostrata. Altrimenti, sia $M \subseteq M^*$ un insieme di (2 o più) monete di valore totale x (si osservi che tale insieme esiste sempre quando i valori delle monete sono 10, 5, 1); consideriamo $M' = M^* \setminus M \cup X$, dove X è l'insieme contenente una moneta di valore x. M' è un insieme di monete di valore totale n e di cardinalità inferiore a quella di M^* : assurdo, quindi questo secondo caso non può verificarsi, e quindi M^* contiene necessariamente una moneta di valore x.

Domanda A (7 punti) Si consideri la funzione ricorsiva search(A,p,r,k) che dato un array A, ordinato in modo decrescente, un valore k e due indici p,q con $1 \le p \le r \le A.length$ restituisce un indice i tale che $p \le i \le r$ e A[i] = k, se esiste, e altrimenti restituisce 0.

Soluzione: La prova di correttezza avviene per induzione sulla lunghezza l=r-p+1 del sottoarray A[p..r] di interesse. Se l=0, ovvero p>r, la funzione ritorna correttamente 0, dato che non ci sono elementi nel sottoarray e quindi non ci possono essere elementi =k. Se invece l>0 si calcola $q=\lfloor (p+r)/2\rfloor$ e si distinguono tre casi:

• se A[q] = k si ritorna correttamente k

• se A[q] > k, dato che l'array è ordinato in modo decrescente certamente $A[j] \ge A[q] > k$ per $p \le j \le q$. Quindi il valore k può trovarsi solo nel sottoarray A[q+1,r]. La chiamata $search(\underline{A,q+1,r,k})$, dato che il sottoarray ha lunghezza minore di l, per ipotesi induttiva restituisce un indice i tale che $q+1 \le i \le r$ e A[i] = k, se esiste, e altrimenti restituisce 0. Per l'osservazione precedente, questo è il valore corretto da restituire anche per search(A,p,r,k) e si conclude.

 $igcap \bullet$ se A[q] < k si ragiona in modo duale rispetto al caso precedente.

Per quanto riguarda la ricorrenza, ignorando i casi base, dato che la funzione ricorre su di un array la cui dimensione è la metà di quello originale, si ottiene:

$$T(n) = T(n/2) + c$$

Rispetto allo schema standard del master theorem ho $a=1,\,b=2$ e f(n)=c. Ho dunque che $f(n)=1=\Theta(n^{\log_2 1}=n^0=1.$ Pertanto si conclude che $T(n)=\Theta(n^0\log n)=\Theta(\log n)$.

P [9] M

[P < 9 < M]

[P < 9 <

 $\Theta(f(n))$ Mostrare che la ricorrenza

Domanda A (7 punti) Dare la definizione della classe $\Theta(f(n))$. Mostrare che la ricorrenza

$$T(n) = \frac{3}{4}T(n/3) + T(2n/3) + 2n$$

ha soluzione in $\Theta(n)$.

Domanda A (7 punti) Dare la definizione della classe $\Theta(f(n))$. Mostrare che la ricorrenza

$$T(n) = \frac{3}{4}T(n/3) + T(2n/3) + 2n$$

ha soluzione in $\Theta(n)$.

$$O \rightarrow T(m) = O(n)$$

$$\Rightarrow T(m) \leq C(m)$$

$$C_1 d > 0$$

$$\Rightarrow T(m) = Q(m)$$

$$T(m) \geq d(m)$$

$$T(n) = \frac{3}{4}T(n/3) + T(2n/3) + 2n$$

$$T(n) < C(n)$$

 $T(n) = \frac{3}{4}T(\frac{n}{3}) + \Gamma(\frac{2n}{3}) + 2n$
 $C(n) < \frac{3}{4}C(\frac{n}{3}) + C(\frac{2n}{3}) + 2n$

$$\frac{C(m)}{m} \leq \frac{m(\frac{1}{4} + \frac{3}{3}C + 2)}{m} \quad \forall m \geq 0$$

$$T(m) = -2(m) - T(m) \ge o(m)$$

$$T(m) = \frac{2}{4}D(\frac{m}{3}) + T(\frac{2}{3}m) + 2m$$

$$dm \ge \frac{2}{4}d(\frac{m}{3}) + d(\frac{2}{3}m) + 2m$$

$$[\forall m \ge 0] d \ge \frac{1}{4} + \frac{2}{3}d + 2$$

$$12d \ge \frac{3d + 8d}{12} + 2m \cdot 12$$

$$12ol \ge 11 ol + 2m$$

$$[ol \ge 2m, \forall m \ge 0] = m$$

Domanda A (5 punti) Risolvere la ricorrenza $T(n) = 4T(n/2) + n^2\sqrt{n}$ utilizzando il master theorem.

T(n) = 4 T(
$$\frac{n}{2}$$
) + $\frac{n^2\sqrt{n}}{n^2}$
 $\frac{1}{2}$
 $\frac{1}{2}$

Soluzione: Rispetto allo schema generale si ha $a=4,\,b=2,\,f(n)=n^2\sqrt{n}=n^{\frac{5}{2}}.$ Si osserva che $\log_b a = 2$ quindi $f(n) = \Omega(n^{\log_b a + \epsilon})$ (per $0 < \epsilon \le \frac{1}{2}$). In aggiunta vale la condizione di regolarità, ovvero $af(\frac{n}{b}) \le cf(n)$ per qualche c < 1. Infatti $af(\frac{n}{b}) = 4f(\frac{n}{2}) = 4\frac{n^2}{4}\sqrt{\frac{n}{2}} = n^2\sqrt{\frac{n}{2}} \le cn^2\sqrt{n}$ per $c \ge \frac{1}{\sqrt{2}}$ (che è < 1). Quindi $T(n) = \Theta(n^2\sqrt{n})$.

Domanda B (4 punti) Dato l'array A = [60, 90, 49, 65, 46, 73, 88, 45, 43], mostrare in forma di albero, il max-heap prodotto dalla procedura BuildMaxHeap.

CONTINUSO..