第10次习题课 数项级数 参考解答

1. 求级数 $\sum_{n=1}^{\infty} \frac{1}{n(n+m)}$ 的和,其中 m 是正整数 .

解: 因为级数的前 N 项和为

$$\sum_{n=1}^{N} \frac{1}{n(n+m)} = \frac{1}{m} \sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{n+m} \right)$$

$$= \frac{1}{m} \left(1 + \frac{1}{2} + \dots + \frac{1}{m} + \frac{1}{m+1} + \dots + \frac{1}{N} \right) - \frac{1}{m} \left(\frac{1}{1+m} + \frac{1}{2+m} + \dots + \frac{1}{N+1} + \dots + \frac{1}{N+m} \right)$$

$$= \frac{1}{m} \left(1 + \frac{1}{2} + \dots + \frac{1}{m} - \frac{1}{N+1} - \frac{1}{N+1} - \dots - \frac{1}{N+m} \right),$$

所以

$$\sum_{n=1}^{\infty} \frac{1}{n(n+m)} = \lim_{N \to \infty} \sum_{n=1}^{N} \frac{1}{n(n+m)}$$

$$= \lim_{N \to \infty} \frac{1}{m} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{m} - \frac{1}{N+1} - \frac{1}{N+2} - \dots - \frac{1}{N+m} \right)$$

$$= \frac{1}{m} \left(1 + \frac{1}{2} + \dots + \frac{1}{m} \right) .$$

2.证明:级数 $\sum_{n=1}^{\infty} u_n$ 收敛的充分必要条件是: $\lim_{n\to\infty} u_n = 0$,且 $\sum_{n=1}^{\infty} (u_{2n-1} + u_{2n})$ 收敛.

证: 必要性: 因为 $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \sum_{k=1}^n a_k$ 存在,所以

 $\lim_{n \to \infty} u_n = \lim_{n \to \infty} (S_n - S_{n-1}) = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = 0 , \quad \coprod_{n \to \infty} \lim_{n \to \infty} S_{2n} = \lim_{n \to \infty} S_n .$

充分性: 因为 $\lim_{n\to\infty} S_{2n} = \lim_{n\to\infty} \sum_{k=1}^{2n} a_k$ 存在,且 $\lim_{n\to\infty} u_n = 0$,所以

$$\lim_{n\to\infty} S_{2n+1} = \lim_{n\to\infty} (S_{2n} + u_{2n+1}) = \lim_{n\to\infty} S_{2n} + \lim_{n\to\infty} u_{2n+1} = \lim_{n\to\infty} S_{2n} ,$$

从而 $\lim_{n\to\infty} S_n$ 存在 . 证毕

3.设 $\lim_{n\to\infty} a_n = l$.证明: 若l < 1,则 $\sum_{i=1}^{\infty} \frac{1}{n^{a_n}} = +\infty$;若l > 1,则级数 $\sum_{i=1}^{\infty} \frac{1}{n^{a_n}}$ 收敛;

若 l=1,举例说明级数 $\sum_{n=1}^{\infty} \frac{1}{n^{a_n}}$ 可能收敛也可能发散.

证: (1) 因为 $\lim_{n\to\infty} a_n = l < 1$, 所以存在 $N_1 > 0$, 当 $n > N_1$ 时,

$$a_n < q_1 = \frac{1+l}{2} < 1$$
.

这时
$$\frac{1}{n^{a_n}} > \frac{1}{n^{q_1}}$$
 , 且 $\sum_{n=N_1+1}^{\infty} \frac{1}{n^{q_1}} = +\infty$, 所以 $\sum_{n=1}^{\infty} \frac{1}{n^{a_n}} = +\infty$.

(2) 因为 $\lim_{n\to\infty} a_n = l > 1$,所以存在 $N_2 > 0$,当 $n > N_2$ 时,

$$a_n > q_2 = \frac{1+l}{2} > 1$$
.

这时 $0 < \frac{1}{n^{a_n}} < \frac{1}{n^{q_2}}$, 且 $\sum_{n=N_3+1}^{\infty} \frac{1}{n^{q_2}}$ 收敛,所以 $\sum_{n=1}^{\infty} \frac{1}{n^{a_n}}$ 收敛 .

(3)
$$\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1+1}{n}}}$$
 发散 . 因为 $\lim_{n\to\infty} \frac{n}{n^{\frac{1+1}{n}}} = 1$, 且 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散;

$$\sum_{n=2}^{\infty} \frac{1}{n^{1+\frac{1}{\sqrt{\ln n}}}}$$
收敛 . 因为 $\frac{1}{n^{1+\frac{1}{\sqrt{\ln n}}}} = \frac{1}{n \cdot n^{\frac{1}{\sqrt{\ln n}}}} = \frac{1}{ne^{\sqrt{\ln n}}}$, 且无穷积分

$$\int_{2}^{+\infty} \frac{1}{x e^{\sqrt{\ln x}}} \, \mathrm{d}x = \int_{\ln 2}^{+\infty} \frac{1}{e^{\sqrt{x}}} \, \mathrm{d}x = \int_{\sqrt{\ln 2}}^{+\infty} \frac{2x}{e^{x}} \, \mathrm{d}x \,$$
 收敛 .

注: 当 l=1 时, 也可考虑级数 $\sum \frac{1}{n(\ln n)^q} = \sum \frac{1}{n^{1+\frac{q\ln \ln n}{\ln n}}}$, 其敛散性依赖于 q, 但

$$1 + \frac{q \ln \ln n}{\ln n} \to 1 \ (n \to \infty) \ .$$

4. 证明: 若 $\sum_{k=1}^{\infty} (u_{n_{k-1}+1} + \cdots + u_{n_k})$ 收敛,其中 $n_0 = 0$, $1 \le n_1 < \cdots < n_k < \cdots$,且每个括号内各

项的符号相同,则 $\sum_{n=1}^{\infty} u_n$ 收敛。

证明: 设
$$\tilde{S}_k = \sum_{m=1}^k (u_{n_{m-1}+1} + \dots + u_{n_m})$$
且 $\lim_{k \to \infty} \tilde{S}_k = A$. $\Leftrightarrow S_k = \sum_{m=1}^k u_m$, 则

 $S_{n_{k-1}} = \tilde{S}_{k-1}, \ S_{n_k} = \tilde{S}_k$, 对 $\forall m \geq 1$, $\exists k \geq 1$ 使得 $n_{k-1} < m < n_k$, 若每个括号内所有项的

符号相同(或正或负),则当m从 n_{k-1} 变化到 n_k 时,部分和 S_m 单调增加或单调减小,

即
$$\tilde{S}_{k-1} < S_m \leq \tilde{S}_k$$
 或 $\tilde{S}_{k-1} > S_m \geq \tilde{S}_k$. 当 $m \to \infty$ 时 , 有 $k \to \infty$, 所 以

$$\lim_{m \to \infty} S_m = \lim_{k \to \infty} \tilde{S}_k = A$$
,故级数 $\sum_{n=1}^{\infty} u_n$ 收敛,且其和也是 A .证毕

5. 判断下列正项级数的敛散性:

(1)
$$\sum_{n=1}^{\infty} \sin(\frac{\pi}{2n^2+1})$$
;

解: 收敛 . 因为 $\lim_{n\to\infty} n^2 \cdot \sin(\frac{\pi}{2n^2+1}) = \frac{\pi}{2}$, 且 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 收敛 .

$$(2) \quad \sum_{n=2}^{\infty} \frac{n^p}{\ln n} \; ;$$

解:由比阶判别法知,当p < -1时,收敛;当 $p \ge -1$ 时,发散.

(3)
$$\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n})^p \ln(1 + \frac{2n}{n^2 + 1});$$

解: 因为
$$(\sqrt{n+1}-\sqrt{n})^p \ln(1+\frac{2n}{n^2+1}) = \frac{1}{(\sqrt{n+1}+\sqrt{n})^p} \ln(1+\frac{2n}{n^2+1}) \sim \frac{1}{n^{\frac{1+\frac{p}{2}}{2}}} (n \to \infty)$$

所以, 当p > 0时, 收敛; 当 $p \leq 0$ 时, 发散.

(4)
$$\sum_{n=1}^{\infty} nr^n$$
, 其中 $r > 0$

解法 1: 因为 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{(n+1)r^{n+1}}{nr^n} = r$,所以,当 r < 1 时,收敛;当 r > 1 时,发散;当 r = 1

时,通项不趋向于零,发散.

解法 2: 当 $r \ge 1$ 时,通项不趋向于零,发散;当0 < r < 1时,因为

$$\lim_{n \to \infty} n^2 \cdot nr^n = \lim_{x \to +\infty} \frac{x^3}{r^{-x}} = \lim_{x \to +\infty} \frac{3x^2}{-r^{-x} \ln r} = \lim_{x \to +\infty} \frac{6}{-r^{-x} \ln^3 r} = 0,$$

且 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 收敛,所以 $\sum_{n=1}^{\infty} nr^n$ 收敛.

$$(5) \quad \sum_{n=2}^{\infty} \frac{n^{\ln n}}{(\ln n)^n} \; ;$$

解: 因为

$$\lim_{n\to\infty} \sqrt[n]{\frac{n^{\ln n}}{(\ln n)^n}} = \lim_{n\to\infty} \frac{n^{\frac{\ln n}{n}}}{\ln n} = \lim_{n\to\infty} \frac{e^{\frac{\ln^2 n}{n}}}{\ln n} = 0,$$

所以级数 $\sum_{n=2}^{\infty} \frac{n^{\ln n}}{(\ln n)^n}$ 收敛.

(6)
$$\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}$$
;

解: 因为 $\lim_{n\to\infty} \ln n = +\infty$, 所以 n 充分大时 $\ln n > e^2$, $\frac{1}{(\ln n)^{\ln n}} < \frac{1}{(e^2)^{\ln n}} = \frac{1}{n^2}$.

所以级数 $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}$ 收敛.

(7)
$$\sum_{n=1}^{\infty} \frac{1}{a^{\ln n}} (a > 0)$$
;

解: $\frac{1}{a^{\ln n}} = \frac{1}{(e^{\ln a})^{\ln n}} = \frac{1}{(e^{\ln n})^{\ln a}} = \frac{1}{n^{\ln a}}$,所以当 $\ln a > 1$ 时,即 a > e 时级数收敛,其他情形发散.

$$(8) \quad \sum_{n=2}^{\infty} \frac{1}{\ln(n!)} \quad .$$

解: 发散 . 因为 $\frac{1}{\ln(n!)} > \frac{1}{n \ln n}$, 且 $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ 发散 .

(9)
$$1+a+ab+a^2b+a^2b^2+a^3b^2+\cdots+a^nb^n+a^{n+1}b^n+\cdots$$
, $a>0, b>0$.

解: 对原级数加括号得到级数

$$(1+a) + (ab+a^2b) + (a^2b^2 + a^3b^2) + \dots + (a^nb^n + a^{n+1}b^n) + \dots$$
$$= (1+a) + ab(1+a) + a^2b^2(1+a) + \dots + a^nb^n(1+a) + \dots,$$

这是一个几何级数,公比为 ab, 所以当 ab < 1 时收敛,其他情形发散.

因为正项级数收敛当且仅当它以某种方式加括号后收敛,所以原级数当 *ab* < 1 时收敛, 其他情形发散.

6. 判断下列级数的敛散性,并说明是否绝对收敛.

$$(1) \quad \sum_{n=1}^{\infty} \frac{a^n}{n^p} \; ;$$

解: 由于
$$\lim_{n\to\infty} \left| \frac{a^{n+1}}{(n+1)^p} \cdot \frac{n^p}{a^n} \right| = |a|$$
,所以

当 |a| > 1 时, $\sum_{n=1}^{\infty} \frac{a^n}{n^p}$ 发散; 当 |a| < 1 时, $\sum_{n=1}^{\infty} \frac{a^n}{n^p}$ 绝对收敛;

当 a=1 时, p>1 收敛, $p \leq 1$ 发散;

当 a = -1 时, $p \le 0$ 发散, 0 条件收敛, <math>p > 1 绝对收敛 .

$$(2) \quad \sum_{n=1}^{\infty} \frac{a^n}{n!};$$

解: 因为 $\lim_{n\to\infty} \left| \frac{a^{n+1}}{(n+1)!} \cdot \frac{n!}{a^n} \right| = 0$, 所以级数 $\sum_{n=1}^{\infty} \frac{a^n}{n!}$ 绝对收敛.

(3) 已知级数 $\sum_{n=1}^{\infty} a_n^2$ 收敛,判断级数 $\sum_{n=1}^{\infty} \frac{a_n}{n}$ 的敛散性.

解:由均值不等式可知 $\left| \frac{a_n}{n} \right| \leq \frac{1}{2} \left(\frac{1}{n^2} + a_n^2 \right)$,又 $\sum_{n=1}^{\infty} a_n^2 = \sum_{n=1}^{\infty} \frac{1}{n^2}$ 均收敛,所以 $\sum_{n=1}^{\infty} \frac{a_n}{n}$ 绝对收敛.

7. 设 $a_n > 0$, $\{a_n\}$ 单调,且级数 $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ 收敛,证明: $\sum_{n=1}^{\infty} a_n$ 收敛.

证: 若 $\{a_n\}$ 单调增加,则 $0 < a_n = \sqrt{a_n^2} \le \sqrt{a_n a_{n+1}}$,所以 $\sqrt{a_n a_{n+1}} \ge a_1 > 0$,这与级数 $\sum_{i=1}^{\infty} \sqrt{a_n a_{n+1}}$

收敛矛盾.所以 $\{a_n\}$ 单调减小.从而 $0 < a_{n+1} = \sqrt{a_{n+1}^2} \le \sqrt{a_n a_{n+1}}$. 因为级数 $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ 收敛,

所以 $\sum_{n=1}^{\infty} a_{n+1}$ 收敛,故 $\sum_{n=1}^{\infty} a_n$ 收敛. 证毕

8.设n为正整数, x_n 为方程 $x^n+nx-1=0$ 的正根.试确定 α 的范围,使得级数 $\sum_{n=0}^{\infty}x_n^{\alpha}$ 收敛.

解: 设 $f(x) = x^n + nx - 1$, 则 $f(0) \cdot f(\frac{1}{n}) < 0$, 所以方程 $x^n + nx - 1 = 0$ 在区间 $(0, \frac{1}{n})$ 内有实根.

又 $f'(x) = nx^{n-1} + n > 0$ (x > 0),所以方程 $x^n + nx - 1 = 0$ 的正实根唯一.

因此
$$0 < x_n < \frac{1}{n}$$
.

注意到
$$x_n^n < x_n < \frac{1}{n}$$
 , 所以 $\lim_{n \to \infty} x_n^n = 0$. 由方程 $x^n + nx - 1 = 0$ 知

$$nx_n = 1 - x_n^n,$$

所以 $\lim_{n\to\infty} nx_n = 1$. 从而 $\lim_{n\to\infty} n^{\alpha}x_n^{\alpha} = 1$.

故当 $\alpha > 1$ 时,级数 $\sum_{n=1}^{\infty} x_n^{\alpha}$ 收敛; 当 $\alpha \le 1$ 时,级数 $\sum_{n=1}^{\infty} x_n^{\alpha}$ 发散.

9. 证明: 若级数 $\sum_{n=1}^{\infty} u_n \ (u_n > 0)$ 发散, $S_n = \sum_{k=1}^n u_k$, 则级数 $\sum_{n=1}^{\infty} \frac{u_n}{S_n}$ 也发散.

证明: 因为 $\sum_{n=1}^{\infty}u_n$ $(u_n>0)$ 发散,因此 $S_n=\sum_{k=1}^nu_k \to +\infty$ $(n\to\infty)$,从而对 $\forall n$, $\exists p\in\mathbb{N}^+$

有 $S_{n+p} \ge 2S_n$,故

$$\frac{u_{n+1}}{S_{n+1}} + \frac{u_{n+2}}{S_{n+2}} + \dots + \frac{u_{n+p}}{S_{n+p}} > \frac{u_{n+1} + u_{n+2} + \dots + u_{n+p}}{S_{n+p}} = \frac{S_{n+p} - S_n}{S_{n+p}} = 1 - \frac{S_n}{S_{n+p}} \ge \frac{1}{2} ,$$

从而由柯西收敛准则知, $\sum_{n=1}^{\infty} \frac{u_n}{S_n}$ 发散. 证毕

10. 证明: 若级数 $\sum_{n=1}^{\infty} u_n \ (u_n > 0, \ n = 1, 2, \cdots)$ 收敛,则 $\sum_{n=1}^{\infty} \frac{u_n}{\ln u_n}$ 收敛,其逆是否成立?

证明: 因为 $\sum_{n=1}^{\infty}u_n$ $(u_n>0,\ n=1,2,\cdots)$ 收敛,因此 $\lim_{n\to\infty}u_n=0$,从而 $\lim_{n\to\infty}\ln u_n=-\infty$,故

$$\exists N>0$$
 , 当 $n>N$ 时, $\left|\frac{u_n}{\ln u_n}\right|<2u_n$,所以 $\sum_{n=1}^{\infty}\frac{u_n}{\ln u_n}$ 绝对收敛。

其逆不成立,例如 $u_n = \frac{1}{n \ln n}$. 则级数 $\sum_{n=2}^{\infty} \frac{-1}{n \ln n [\ln n + \ln(\ln n)]}$ 收敛. 事实上,

$$\left|\frac{-1}{n\ln n[\ln n + \ln(\ln n)]}\right| \le \frac{1}{n\ln^2 n}, \quad \text{由于级数} \sum_{n=2}^{\infty} \frac{1}{n\ln^2 n} \, \text{收敛,} \quad \text{因此以} \sum_{n=1}^{\infty} \frac{u_n}{\ln u_n} \, \text{收敛.} \quad \text{但级数}$$

$$\sum_{n=2}^{\infty} u_n = \sum_{n=2}^{\infty} \frac{1}{n \ln n}$$
发散. 证毕

11. 证明: 若级数 $\sum_{n=1}^{\infty} b_n$ 收敛,且级数 $\sum_{n=1}^{\infty} (a_n - a_{n-1})$ 绝对收敛,则级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛.

证明: 因为 $\sum_{n=1}^{\infty} (a_n - a_{n-1})$ 绝对收敛,因此由柯西收敛准则知,对 $\forall \varepsilon > 0$, $\exists N_1 > 0$, 当

$$n > N_1$$
 时,对 $\forall p \in \mathbb{N}^+$,有 $\left| a_{n+1} - a_{n+2} \right| + \dots + \left| a_{n+p-1} - a_{n+p} \right| < \varepsilon$,故

$$|a_{n+1} - a_{n+p}| \le |a_{n+1} - a_{n+2}| + \dots + |a_{n+p-1} - a_{n+p}| < \varepsilon$$
,

即 $\{a_n\}$ 是柯西列. 令 $B_n=\sum_{k=1}^n b_k$,因为 $\sum_{n=1}^\infty b_n$ 收敛,因此 $\{B_n\}$ 是柯西列,故存在M>0使

得对 $\forall n \geq 1$, $\left|B_n\right| \leq M$ 且 $\left|a_n\right| \leq M$. 对上述给定的 $\varepsilon > 0$, 也存在 $N_2 > 0$, 当 $n > N_2$ 时,

 $\forall p \in \mathbb{N}^+, \ \ \dot{\boldsymbol{q}} \left| \boldsymbol{B}_{\boldsymbol{n}+\boldsymbol{p}} - \boldsymbol{B}_{\boldsymbol{n}} \right| < \varepsilon \;, \ \ \boldsymbol{\mathfrak{D}} \; \boldsymbol{N} = \max\{\boldsymbol{N}_1, \boldsymbol{N}_2\} \;, \ \ \boldsymbol{\mathbb{M}} \, \boldsymbol{\mathcal{M}} > \boldsymbol{N} \; \boldsymbol{\mathrm{D}}, \ \ \boldsymbol{\mathcal{M}} \; \boldsymbol{\mathcal{M}} \in \mathbb{N}^+, \ \ \boldsymbol{\boldsymbol{\mathcal{M}}} = \boldsymbol{\mathcal{M}} \; \boldsymbol{$

$$\begin{split} & \left| a_{n+1}b_{n+1} + a_{n+2}b_{n+2} + \dots + a_{n+p}b_{n+p} \right| \\ & = \left| a_{n+1}(B_{n+1} - B_n) + a_{n+2}(B_{n+2} - B_{n+1}) + \dots + a_{n+p}(B_{n+p} - B_{n+p-1}) \right| \\ & = \left| -B_n a_{n+1} + B_{n+1}(a_{n+1} - a_{n+2}) + \dots + a_{n+p}B_{n+p} \right| \\ & = \left| B_n a_{n+p} - B_n a_{n+1} + B_{n+1}(a_{n+1} - a_{n+2}) + \dots + a_{n+p}B_{n+p} - B_n a_{n+p} \right| \\ & = \left| B_n (a_{n+p} - a_{n+1}) + B_{n+1}(a_{n+1} - a_{n+2}) + \dots + a_{n+p}(B_{n+p} - B_n) \right| \\ & \leq \left| B_n \right| \cdot \left| a_{n+p} - a_{n+1} \right| + \left(\left| B_{n+1} \right| \cdot \left| a_{n+1} - a_{n+2} \right| + \dots + \left| B_{n+p-1} \right| \cdot \left| a_{n+p-1} - a_{n+p} \right| \right) + \left| a_{n+p} \right| \cdot \left(\left| B_{n+p} \right| - \left| B_n \right| \right) \\ & \leq M \varepsilon + M \varepsilon + M \varepsilon = 3M \varepsilon. \end{split}$$

由柯西收敛准则知,级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛. 证毕