INTPLASTAT

Mickaël Gastineau

December 11, 2018

1 Version séquentielle

- Compilation: make clean make
- Execution en interactif: intplastat.x ???.par
- Soumission sur bessel qsubserial -fastsse4 intplastat.x ???.par

2 Version MPI

- Compilation: make mpi
- Soumission sur bessel (ici 48 coeurs) : qsubmpi 48 -fastsse4 -outdir STDIN/ intplastat_mpi.x ????.par
- \bullet Fusion des fichiers mpi des diffrénts processeurs (ici, chemin="DATA" et nf_rad="sim2014XX") mergempi.sh DATA sim2014XX

3 Fichiers d'entree

3.1 Fichier de paramètres intplastat.par

Contrôles de l'intégration

Nom du champ	Descriptif
chemin	dossier où seront stockés les fichiers
nf rad	radical de tous les fichiers générés
nf initext	fichier de conditions initiales des planètes
m_minext	si if dump=1, fichier de redémarrage xxx.dump
ref gmsun	Valeur du GM du soleil de référence
101_8IIIBUII	0: valeur issue de la Table 1 de "NOMINAL VALUES FOR SE-
	LECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015
	RESOLUTION B3"
	1: valeur calculée à partir de la constante de Gauss
	(k=0.01720209895e0)
int type	schéma de l'intégrateur (e.g., 'ABA4' ou 'ABAH4' (liste 3.2)))
	=0, intégrateur à pas fixe.
type_pas	=1, intégrateur à pas variable (cf. A. petit, 2019).
tinit	temps initial (en géneral 0)
611116	si if dump=1, temps auquel on prend les conditions initiales dans
	le fichier xxx.dump
dt	pas de temps de l'intégration en année
n iter	nombre de pas d'intégrations à calculer. A la fin de l'intégration, le
11-1061	temps final sera n_iter*dt ans.
n out	fréquence d'écriture des intégrales premières, coordonnées cartési-
11_000	ennes et éléments elliptiques. Il est exprimé en nombre de pas
	d'intégrations. Les données seront écrites tous les nout*dt années.
out ell	format des éléments elliptiques écrites dans les fichiers xxx.ell
	1: elliptiques héliocentriques canoniques
	CI(1:6) = (a,e,I,M,omega,Omega)
	2: elliptiques héliocentriques non canoniques
	CI(1:6) = (a,e,I,M,omega,Omega)
	3: elliptiques héliocentriques canoniques
	$\mathrm{CI}(1:6) = (\mathrm{a,la,k,h,q,p})$
	4: elliptiques héliocentriques non canoniques
	CI(1:6) = (a,la,k,h,q,p)
n_dump	fréquence d'écriture des fichiers de redémarrage xxx.dump. Il est
	exprimé en nombre de pas d'intégrations. Les données seront écrites
	tous les n_dump*dt années.
if invar	=0, l'intégration se fait dans le repère actuel.
_	=1, l'intégration se fait dans le plan invariant et les données générées
	sont dans ce plan invariant
if int	=0, les intégrales premières ne sont pas écrites.
_	=1, les intégrales premières sont écrites dans les fichiers xxx.int. Un
	fichier par système 3
if ell	=0, les éléments elliptiques ne sont pas écrits.
_	=1, les éléments elliptiques sont écrits dans les fichiers xxx.ell. Un
	fichier par système
if_car	=0, les éléments cartésiens (positions/vitesses) ne sont pas écrits.
_	=1, les éléments cartésiens positions/vitesses) sont écrits dans les
	fichiers xxx.car. Un fichier par système

Nom du champ	Descriptif
if_dump	=0, les fichiers de redémarrage ne sont pas écrits.
	=1, les données pour un redémarrage sont écrits dans les fichiers
	xxx.dump. Un fichier par système

Calcul des minimum, moyenne et maximum en a,e,I

Cela génère les fichiers xxx.minmax_aei.

Nom du champ	Descriptif
minmax_aei_compute	=0, les minimum, moyenne et maximum en a,e,I ne sont pas
	calculées. Tous les autres champs sont ignorés.
	=1, les minimum, moyenne et maximum en a,e,I sont cal-
	culés. Un fichier par processeur.
minmax_aei_stepcalc	fréquence de calcul des minimum, moyenne et maximum en
	a,e,I. Il est exprimé en nombre de pas d'intégrations. Les
	données seront calculées tous les minmax_aei_stepcalc*dt
	années.
minmax_aei_stepout	Longueur en nombre d'itérations sur laquelle on effectue les
	calculs de minimum, moyenne et maximum en a,e,I. Les
	minimum, moyenne et maximum en a,e,I sont écrites tous
	les minmax_aei_stepout*dt années dans les fichiers min-
	max_aei.
minmax_aei_elltype	Type des éléments elliptiques utilisé pour le calcul des min-
	imum, moyenne et maximum en a,e,I
	1: elliptiques héliocentriques canoniques
	$\mathrm{CI}(1:6) = (\mathrm{a,e,I,M,omega,Omega})$
	2: elliptiques héliocentriques non canoniques
	$\mathrm{CI}(1:6) = (\mathrm{a,e,I,M,omega,Omega})$

Calcul des minimum, moyenne et maximum en différence d'éléments elliptiques : $a_{p(1)}-a_{p(2)},~\lambda_{p(1)}-\lambda_{p(2)}$ et $\varpi_{p(1)}-\varpi_{p(2)}$ avec uen double détermination des angles

Cela génère les fichiers xxx.minmax_alp. Une double détermination est réalisée pour les angles entre $[-\pi,\pi]$ et $[0,2\pi]$.

minmax_diffalp_compute	$=0$, les minimum, moyenne et maximum en $a_{p(1)}-a_{p(2)}$,
	$\lambda_{p(1)} - \lambda_{p(2)}$ et $\varpi_{p(1)} - \varpi_{p(2)}$ ne sont pas calculées. Tous
	les autres champs sont ignorés.
	=1, les minimum, moyenne et maximum en $a_{p(1)} - a_{p(2)}$,
	$\lambda_{p(1)} - \lambda_{p(2)}$ et $\varpi_{p(1)} - \varpi_{p(2)}$ sont calculés. Un fichier par
	processeur.
minmax_diffalp_stepcalc	fréquence de calcul des minimum, moyenne et maxi-
	mum en a, λ et ϖ . Il est exprimé en nombre de pas
	d'intégrations. Les données seront calculées tous les min-
	max_diffalp_stepcalc*dt années.
minmax_diffalp_stepout	Longueur en nombre d'itérations sur laquelle on effectue
	les calculs de minimum, moyenne et maximum en a, λ
	et ϖ . Les minimum, moyenne et maximum en a, λ et ϖ
	sont écrites tous les minmax_diffalp_stepout*dt années
	dans les fichiers minmax_alp.
minmax_diffalp_elltype	Type des éléments elliptiques utilisé pour le calcul des
	minimum, moyenne et maximum en $a_{p(1)} - a_{p(2)}, \lambda_{p(1)} - 1$
	$\lambda_{p(2)}$ et $arpi_{p(1)}-arpi_{p(2)}$
	6: elliptiques héliocentriques non canoniques
	$\mathrm{CI}(1:6) = (\mathrm{a,e,I},\lambda,arpi,\mathrm{Omega})$
minmax_diffalp_pla(1)	indice de la première planète $p(1)$. Les indices commen-
	cent à 1.
minmax_diffalp_pla(2)	indice de la deuxième planète $p(2)$. Les indices commen-
	cent à 1.

Calcul des minimum, moyenne et maximum en différence d'éléments elliptiques : $a_{p(1)}-a_{p(2)},\;\lambda_{p(1)}-\lambda_{p(2)}$ et $\varpi_{p(1)}-\varpi_{p(2)}$ avec des angles redressés

Cela génère les fichiers xxx.minmax_alc. Les angles sont redressés (pour être continu) avant d'effectuer les calculs.

minmax_diffalc_compute	=0, les minimum, moyenne et maximum en $a_{p(1)} - a_{p(2)}$,
	$\lambda_{p(1)} - \lambda_{p(2)}$ et $\varpi_{p(1)} - \varpi_{p(2)}$ ne sont pas calculées. Tous
	les autres champs sont ignorés.
	=1, les minimum, moyenne et maximum en $a_{p(1)} - a_{p(2)}$,
	$\lambda_{p(1)} - \lambda_{p(2)}$ et $\varpi_{p(1)} - \varpi_{p(2)}$ sont calculés. Un fichier par
	processeur.
minmax_diffalc_stepcalc	fréquence de calcul des minimum, moyenne et maxi-
	mum en a, λ et ϖ . Il est exprimé en nombre de pas
	d'intégrations. Les données seront calculées tous les min-
	max_diffalc_stepcalc*dt années.
minmax_diffalc_stepout	Longueur en nombre d'itérations sur laquelle on effectue
	les calculs de minimum, moyenne et maximum en a, λ et
	ϖ . Les minimum, moyenne et maximum en a, λ et ϖ
	sont écrites tous les minmax_diffalp_stepout*dt années
	dans les fichiers minmax_alp.
minmax_diffalc_elltype	Type des éléments elliptiques utilisé pour le calcul des
	minimum, moyenne et maximum en $a_{p(1)} - a_{p(2)}, \lambda_{p(1)} - a_{p(2)}$
	$\lambda_{p(2)}$ et $arpi_{p(1)}-arpi_{p(2)}$
	6: elliptiques héliocentriques non canoniques
	$ ext{CI}(1:6) = (ext{a,e,I}, \lambda, arpi, ext{Omega})$
$minmax_diffalc_pla(1)$	indice de la première planète $p(1)$. Les indices commen-
	cent à 1.
minmax_diffalc_pla(2)	indice de la deuxième planète $p(2)$. Les indices commen-
	cent à 1.

Calcul des minimum, moyenne et maximum en différence d'éléments elliptiques : $(a_{p(1)}-a_{p(2)})^2$, $(e_{p(1)}-e_{p(2)})^2$ et $(a_{p(1)}-a_{p(2)})^2+(e_{p(1)}-e_{p(2)})^2$

Cela génère les fichiers xxx.minmax_ae2.

1:00 2	
minmax_diffae2_compute	$=0$, les minimum, moyenne et maximum en $(a_{p(1)} -$
	$(a_{p(2)})^2, (e_{p(1)} - e_{p(2)})^2 \text{ et } (a_{p(1)} - a_{p(2)})^2 + (e_{p(1)} - e_{p(2)})^2 \text{ ne}$
	sont pas calculées. Tous les autres champs sont ignorés.
	$=1$, les minimum, moyenne et maximum en $(a_{p(1)} - 1)$
	$(a_{p(2)})^2$, $(e_{p(1)} - e_{p(2)})^2$ et $(a_{p(1)} - a_{p(2)})^2 + (e_{p(1)} - e_{p(2)})^2$
	sont calculés. Un fichier par processeur.
minmax_diffae2_stepcalc	fréquence de calcul des minimum, moyenne et maxi-
	mum en a et e. Il est exprimé en nombre de pas
	d'intégrations. Les données seront calculées tous les min-
	max_diffae2_stepcalc*dt années.
minmax_diffae2_stepout	Longueur en nombre d'itérations sur laquelle on effectue
	les calculs de minimum, moyenne et maximum en a et
	e. Les minimum, moyenne et maximum en a et e sont
	écrites tous les minmax_diffae2_stepout*dt années dans
	les fichiers minmax_ae2.
minmax_diffae2_elltype	Type des éléments elliptiques utilisé pour le calcul des
	minimum, moyenne et maximum en $(a_{p(1)} - a_{p(2)})^2$,
	$(e_{p(1)} - e_{p(2)})^2$ et $(a_{p(1)} - a_{p(2)})^2 + (e_{p(1)} - e_{p(2)})^2$
	6: elliptiques héliocentriques non canoniques
	$\mathrm{CI}(1:6) = (\mathrm{a.e.}, \mathrm{I.}, \lambda, \varpi, \mathrm{Omega})$
minmax_diffae2_pla(1)	indice de la première planète $p(1)$. Les indices commen-
	cent à 1.
minmax_diffae2_pla(2)	indice de la deuxième planète $p(2)$. Les indices commen-
	cent à 1.

Analyse en fréquence en $a \exp^{\imath \lambda}, k + \imath h, q + \imath p$

 $Ce la~g\'en\`ere~les~fichiers~xxx.naf_alkhqp~ou~xxx.naf_alkh~selon~la~variable~naf_alkhqp_compute.$

Nom du champ	Descriptif
naf_alkhqp_compute	$=0$, l'analyse en fréquence en $a\exp^{\imath\lambda}, k+\imath h, q+\imath p$ n'est pas
	calculée. Tous les autres champs sont ignorés.
	$=1$, l'analyse en fréquence en $a\exp^{\imath\lambda}, k+\imath h, q+\imath p$ est calculé.
	Un fichier par processeur avec l'extension naf_alkhqp.
	$=2$, l'analyse en fréquence en $a\exp^{\imath\lambda}, k+\imath h$ est calculé (utile
	pour le cas plan $(q=p=0)$). Un fichier par processeur avec
	l'extension naf_alkh.
naf_alkhqp_stepcalc	fréquence des points utilisés pour l'analyse en fréquence.
	Il est exprimé en nombre de pas d'intégrations. Les en-
	trées de l'analyse en fréquence seront calculées tous les
	naf_alkhqp_stepcalc*dt années.
naf_alkhqp_stepout	Longueur en nombre d'itérations sur laquelle on effectue
	l'analyse en fréquence. Le résultat de l'analyse en fréquence
	est écrit tous les naf_alkhqp_stepout*dt années dans les
	fichiers naf_alkhqp ou naf_alkh.
naf_alkhqp_elltype	Type des éléments elliptiques utilisé pour le calcul de l'analyse
	en fréquence
	3: elliptiques héliocentriques canoniques
	CI(1:6) = (a,la,k,h,q,p)
	4: elliptiques héliocentriques non canoniques
0 11 1	CI(1:6) = (a,la,k,h,q,p)
naf_alkhqp_nterm	Nombre de termes recherchés pour l'analyse en fréquence.
naf_alkhqp_isec	=0, la méthode des secantes n'est pas utilisée.
C 11.1	=1, la méthode des secantes est utilisée.
naf_alkhqp_iw	présence de fenêtre.
	=-1, fenetre exponentielle PHI(T) = $1/CE * EXP(-1/(1-$
	T^2)) avec CE= 0.22199690808403971891E0
	=0, pas de fenêtre.
	= N > 0: PHI(T) = CN*(1+COS(PI*T))**N avec CN =
nof allahan dta	$2^N(N!)^2/(2N)!$
naf_alkhqp_dtour	Longueur d'un tour de cadran (en général 2π).
naf_alkhqp_tol	Tolérance pour déterminer si deux fréquences sont identiques.

Analyse en fréquence en $\exp^{\imath(\lambda_{p(1)}-\lambda_{p(2)})}$ et $\exp^{\imath(\varpi_{p(1)}-\varpi_{p(2)})}$

Cela génère les fichiers xxx.naf_diffalp.

Nom du champ	Descriptif
naf_diffalp_compute	$=0$, l'analyse en fréquence en $\exp^{i(\lambda_{p(1)}-\lambda_{p(2)})}$ et $\exp^{i(\varpi_{p(1)}-\varpi_{p(2)})}$ n'est pas calculée. Tous les autres champs sont ignorés.
	=1, l'analyse en fréquence en $\exp^{i(\lambda_{p(1)}-\lambda_{p(2)})}$ et $\exp^{i(\varpi_{p(1)}-\varpi_{p(2)})}$ est calculé. Un fichier par processeur avec l'extension naf_diffalp.
naf_diffalp_stepcalc	fréquence des points utilisés pour l'analyse en fréquence. Il est exprimé en nombre de pas d'intégrations. Les entrées de l'analyse en fréquence seront calculées tous les naf_diffalp_stepcalc*dt années.
naf_diffalp_stepout	Longueur en nombre d'itérations sur laquelle on effectue l'analyse en fréquence. Le résultat de l'analyse en fréquence est écrit tous les naf_diffalp_stepout*dt années dans les fichiers naf_diffalp ou naf_alkh.
naf_diffalp_elltype	Type des éléments elliptiques utilisés pour le calcul de l'analyse en fréquence 6: elliptiques héliocentriques non canoniques $CI(1:6) = (a,e,I,\lambda,\varpi,Omega)$
naf_diffalp_nterm	Nombre de termes recherchés pour l'analyse en fréquence.
naf_diffalp_isec	=0, la méthode des secantes n'est pas utilisée.
	=1, la méthode des secantes est utilisée.
naf_diffalp_iw	présence de fenêtre. =-1, fenetre exponentielle PHI(T) = $1/CE * EXP(-1/(1-T^2))$ avec CE= $0.22199690808403971891E0$ =0, pas de fenêtre. = $N > 0$: PHI(T) = CN*(1+COS(PI*T))**N avec CN = $2^N(N!)^2/(2N)!$
naf_diffalp_dtour	Longueur d'un tour de cadran (en général 2π).
naf_diffalp_tol	Tolérance pour déterminer si deux fréquences sont identiques.
naf_diffalp_pla(1)	indice de la première planète $p(1)$. Les indices commencent à 1.
naf_diffalp_pla(2)	indice de la deuxième planète $p(2)$. Les indices commencent à 1.

Analyse en fréquence en $(\lambda_{p(1)}-\lambda_{p(2)})$ et $(\varpi_{p(1)}-\varpi_{p(2)})$

Cela génère les fichiers $xxx.naf_difflpm$.

Les analyses en fréquence sont effectuées sur $[0,2\pi]$ et sur $[-\pi,\pi]$.

Nom du champ	Descriptif
naf_difflpm_compute	$=0$, l'analyse en fréquence en $(\lambda_{p(1)}-\lambda_{p(2)})+0i$ et $(\varpi_{p(1)}-1)$
	$\varpi_{p(2)}$) + 0 \imath n'est pas calculée. Tous les autres champs sont ignorés.
	$=1,$ l'analyse en fréquence en $(\lambda_{p(1)}-\lambda_{p(2)})+0\imath$ et $(arpi_{p(1)}-1)$
	$\varpi_{p(2)}) + 0i$ est calculé. Un fichier par processeur avec
	l'extension naf_difflpm.
naf_difflpm_stepcalc	fréquence des points utilisés pour l'analyse en fréquence.
	Il est exprimé en nombre de pas d'intégrations. Les en-
	trées de l'analyse en fréquence seront calculées tous les
C 1:03	naf_difflpm_stepcalc*dt années.
naf_difflpm_stepout	Longueur en nombre d'itérations sur laquelle on effectue
	l'analyse en fréquence. Le résultat de l'analyse en fréquence
	est écrit tous les naf_diffipm_stepout*dt années dans les
naf_difflpm_elltype	fichiers naf_difflpm ou naf_alkh. Type des éléments elliptiques utilisés pour le calcul de
nai_dimpin_entype	l'analyse en fréquence
	6: elliptiques héliocentriques non canoniques
	$\mathrm{CI}(1:6) = (\mathrm{a.e.J.}\lambda, \varpi, \mathrm{Omega})$
naf difflpm nterm	Nombre de termes recherchés pour l'analyse en fréquence.
naf difflpm isec	=0, la méthode des secantes n'est pas utilisée.
	=1, la méthode des secantes est utilisée.
naf_difflpm_iw	présence de fenêtre.
	=-1, fenetre exponentielle $PHI(T) = 1/CE * EXP(-1/(1 - 1))$
	(T^2)) avec CE= 0.22199690808403971891E0
	=0, pas de fenêtre.
	$=N>0$: PHI(T) = CN*(1+COS(PI*T))**N avec CN = $2^N(N!)^2/(2N)!$
naf_difflpm_dtour	Longueur d'un tour de cadran (en général 2π).
naf_difflpm_tol	Tolérance pour déterminer si deux fréquences sont identiques.
naf_difflpm_pla(1)	indice de la première planète $p(1)$. Les indices commencent
	à 1.
naf_difflpm_pla(2)	indice de la deuxième planète $p(2)$. Les indices commencent
	à 1.

Contrôle de l'énergie

Cela arrête l'intégration si l'erreur relative sur l'énergie varie trop. La valeur de l'énergie au temps initial est pris comme référence.

Nom du champ	Descriptif
ctrl_energie_compute	=0, le contrôle de l'énergie n'est pas réalisé. Tous les
	autres champs sont ignorés.
	=1, le contrôle de l'énergie est réalisé.
ctrl_energie_stepcalc	fréquence des points de contrôle de l'énergie. Il est exprimé
	en nombre de pas d'intégrations. La variation de l'énergie
	sera vérifiée tous les ctrl_energie_stepcalc*dt années.
ctrl_energie_relenermax	valeur maximale de la variation de l'erreur relative
	sur l'énergie. Si l'erreur relative dépasse cette valeur,
	l'intégration s'arrête. La valeur de l'énergie au temps ini-
	tial est pris comme référence.

Contrôle de la distance à l'étoile

Cela arrête l'intégration si une planète s'approche trop près ou s'éloigne trop de l'étoile.

Si ctrl_diststar_compute =2, cela génère un fichier xxx.ctrlstar_car.

Si ctrl_diststar_compute =3, cela génère un fichier xxx.ctrlstar_ell.

Nom du champ	Descriptif
ctrl_diststar_compute	=0, le contrôle de distance n'est pas réalisé. Tous les autres
	champs sont ignorés.
	=1, le contrôle de distance est réalisé et aucun dump n'est
	réalisé.
	=2, le contrôle de distance est réalisé et un dump en coor-
	donées cartésiennes est effectué.
	=3, le contrôle de distance est réalisé et un dump en coor-
	donées elliptiques est effectué.
ctrl_diststar_stepcalc	fréquence des points de contrôle de distance. Il est exprimé
	en nombre de pas d'intégrations. La distance sera vérifiée
	tous les ctrl_diststar_stepcalc*dt années.
ctrl_diststar_distmin	distance minimale en UA à l'étoile. Si une planète a une dis-
	tance à l'étoile inférieure à cette valeur, l'intégration s'arrête.
ctrl_diststar_distmax	distance maximale en UA à l'étoile. Si une planète a une
	distance à l'étoile supérieure à cette valeur, l'intégration
	s'arrête.

Contrôle de la distance entres planètes

Cela arrête l'intégration si une planète s'approche d'une autre planète. On définit une "boule interdite" (basé sur un rayon) autour de chaque planète dans le fichier ctrl_distpla_nfdistmin. Chaque planète a son propre "rayon" de boule interdite. Donc dès qu'une autre planète est à l'intérieure de cette boule, on arrête l'intégration.

Si ctrl_distpla_compute =2, cela génère un fichier xxx.ctrlpla_car.

Si ctrl_distpla_compute =3, cela génère un fichier xxx.ctrlpla_ell.

Nom du champ	Descriptif
ctrl_distpla_compute	=0, le contrôle de distance n'est pas réalisé. Tous les autres
	champs sont ignorés.
	=1, le contrôle de distance est réalisé et aucun dump n'est
	réalisé.
	=2, le contrôle de distance est réalisé et un dump en coor-
	donées cartésiennes est effectué.
	=3, le contrôle de distance est réalisé et un dump en coor-
	donées elliptiques est effectué.
ctrl_distpla_stepcalc	fréquence des points de contrôle de distance. Il est exprimé
	en nombre de pas d'intégrations. La distance sera vérifiée
	tous les ctrl_distpla_stepcalc *dt années.
	si ce nombre est positif, le contrôle s'effectue sur les pas de
	sortie.
	si ce nombre est négatif, le contrôle s'effectue sur les pas du
	schéma symplectique.
ctrl_distpla_nfdistmin	Nom du fichier contenant les distances minimales entre les
	planètes.

3.2 Schéma d'intégration disponibles

	Variables héliocentriques
ABAH4	
ABAH5	
ABAH6	
ABAH7	
ABAH8	
ABAH9	
ABAH10	
ABA82	Laskar $SABA_4$ and McLahan $(8,2)$
ABA82	McLahan (8,4)
ABA844	Blanes $(8,4,4)$
ABAH864	Blanes $(8,6,4)$
ABAH1064	Blanes $(10,6,4)$
BABH4	
BABH5	
BABH6	
BABH7	
BABH8	
BABH9	
BABH10	
BABH82	Laskar $SBAB_4$ and McLahan $(8,2)$
BABH84	McLahan (8,4)
BABH844	Blanes $(8,4,4)$
BABH864	Blanes $(8,6,4)$
BABH1064	Blanes $(10,6,4)$

[&]quot;High order symplectic integrators for perturbed Hamiltonian systems". J. Laskar, P. Robutel, 2010

"New families of symplectic splitting methods for numerical integration in dynamical astronomy". Blanes, Casas, Farres, Laskar, Makazaga, Murua, 2013

	Variables de Jacobi
ABA4	
ABA5	
ABA6	
ABA7	
ABA8	
ABA9	
ABA10	
ABA82	Laskar $SABA_4$ and McLahan (8,2)
ABA864	Blanes $(8,6,4)$
ABA1064	Blanes $(10,6,4)$
ABA104	Blanes (10,4)
BAB4	
BAB5	
BAB6	
BAB7	
BAB8	
BAB9	
BAB10	
BAB82	Laskar $SBAB_4$ and McLahan $(8,2)$
BAB84	McLahan (8,4)
BAB864	Blanes (8,6,4)

"High order symplectic integrators for perturbed Hamiltonian systems". J. Laskar, P. Robutel, 2010

"New families of symplectic splitting methods for numerical integration in dynamical astronomy". Blanes, Casas, Farres, Laskar, Makazaga, Murua, 2013

3.3 Format du fichier nf initext

Ce fichier contient les conditions initiales (masses et coordonnées) des systèmes planétaires. Ce fichier stocke un système planétaire par ligne.

Les masses sont exprimées en masse solaire. La masse solaire de référence dépend du flag ref_gmsun. Les unités des coordonnées des planètes doivent être en UA, an et radians.

Sur chaque ligne, on a:

- colonne 1 : chaine sans espace donnant le nom du système. Par exemple P0001 ou N0002,
- colonne 2 : nombre de planètes (sans l'étoile) , nommé nbplan.
- colonne 3 : Masse de l'étoile exprimée en masse solaire (=1 pour le système solaire)
- colonne 4 à 4+nbplan-1 : Masse des planètes exprimée en masse solaire

- colonne 4+nbplan : type de coordonnées initiales des planètes
 - 1: elliptiques héliocentriques canoniques CI(1:6) = (a,e,I,M,omega,Omega)
 - 2: elliptiques héliocentriques non canoniques CI(1:6) = (a,e,I,M,omega,Omega)
 - 3: elliptiques héliocentriques canoniques CI(1:6) = (a,la,k,h,q,p)
 - 4: elliptiques héliocentriques non canoniques CI(1:6) = (a,la,k,h,q,p)
 - -5: positions vitesses héliocentriques CI(1:6) = (x,y,z,vx,vy,vz)
- \bullet colonne 4+nbplan+1 à 4+nbplan+6 : coordonnées initiales (6 composantes) de la planète 1
- colonnes suivantes : coordonnées initiales (6 composantes) pour les planètes suivantes

Par exemple, si on a 3 planètes avec des positions/vitesses héliocentriques, on a dans les colonnes :

1	2	3	4	5	6	7	8-13	14-19	20-25
P0001	3	M_{star}	M_1	M_2	M_3	5	$CI_1(1:6)$	$CI_2(1:6)$	$CI_3(1:6)$

3.4 Format du fichier ctrl distpla nfdistmin

Ce fichier contient les distances minimales entre les planètes des systèmes planétaires. Ce fichier stocke un système planétaire par ligne. L'ordre des systèmes planétaires doit être le même que dans le fichier nf initext.

L'unité des distances minimales doivent être en UA.

Sur chaque ligne, on a:

- colonne 1 : chaine sans espace donnant le nom du système. Par exemple P0001 ou N0002,
- colonne 2 : nombre de planètes (sans l'étoile) , nommé nbplan.
- colonne 3 à 3+nbplan-1 : Distance minimale pour chaque planète.

Par exemple, si on a 3 planètes, on a dans les colonnes :

1	2	3	4	5	
P0001	3	$dmin_1$	$dmin_2$	$dmin_3$	

4 Fichiers de sortie

4.1 Format du fichier ???.ci

Ce fichier contient les conditions initiales (masses et coordonnées) des systèmes planétaires. Ce fichier stocke un système planétaire par ligne.

Son format est identique à celui de nf_initext.

4.2 Format du fichier ???.control

Ce fichier contient 5 colonnes et indique pour pour chaque condition initiale si l'intégration s'est bien déroulée ou non. Ce fichier stocke un système planétaire par ligne.

Sur chaque ligne, on a:

- colonne 1 : chaine sans espace donnant le nom du système. Par exemple P0001 ou N0002,
- \bullet colonne 2:
 - 0: l'intégration s'est correctement terminée
 - -3: problème de convergence dans kepsaut. L'intégration s'est interrompue.
 - -4: cas non elliptique. L'intégration s'est interrompue.
 - -5: variation trop grande de l'énergie. La colonne 6 contient la valeur absolue de l'erreur relative de l'énergie par rapport à l'énergie au temps 0.
 L'intégration s'est interrompue.
 - 6: corps trop proche de l'étoile. La colonne 6 contient la distance de la planète à l'étoile. L'intégration s'est interrompue.
 - -7: corps trop loin de l'étoile. La colonne 6 contient la distance de la planète à l'étoile. L'intégration s'est interrompue.
 - 9: corps trop proche d'une planète. La colonne 6 contient le numéro de la planète qui est trop proche. L'intégration s'est interrompue.
- colonne 3 : temps initial de l'intégration
- colonne 4 : temps finale de l'intégration
- colonne 5 : corps (si disponible) ayant généré l'erreur
- colonne 6 : 0 si aucune erreur. Sinon, elle contient une valeur dépendante de la colonne 2.

4.3 Format du fichier ???.int

Chaque fichier contient un seul système planétaire. Ce fichier contient 5 colonnes et stocke la valeur des intégrales premières : énergie et moment cinétique.

Sur chaque ligne, on a:

colonne 1	colonne 2	colonne 3-5
temps	énergie	moment cinétique (x,y,z)

La première ligne contient la valeur initiale des intégrales premières. Les lignes suivantes contient la différence (absolue) des intégrales par rapport à la valeur initiale.

4.4 Format du fichier ???.car

Ce fichier contient les positions héliocentriques et vitesses héliocentriques cartésiennes des planètes. Les unités sont en AU et AU/an . Chaque fichier contient un seul système planétaire.

Sur chaque ligne, on a:

	0 ,				
colonne 1	colonne 2-7	colonne 8-13			
$_{ m temps}$	(x,y,z,vx,vy,vz) de la planète 1	(x,y,z,vx,vy,vz) de la planète 2			

4.5 Format du fichier ???.ell

Ce fichier contient les éléments elliptiques des planètes. Le type d'élément dépend du paramètres **out_ell**. Les unités sont en AU, an et radians. Chaque fichier contient un seul système planétaire.

Sur chaque ligne, on a:

-1	0)		
colonne 1	colonne 2-7	colonne 8-13	
$_{ m temps}$	$\mathrm{ell}(1:6)$ de la planète 1	ell(1:6) de la planète 2	

4.6 Format du fichier ???.ctrlstar car

Ce fichier contient les positions héliocentriques et vitesses héliocentriques cartésiennes des planètes lors de l'arrêt de l'intégration dû à une distance trop proche ou lointaine à l'étoile. Les unités sont en AU et AU/an.

Il y a un fichier par processeur. Chaque fichier contient plusieurs systèmes planétaires.

Sur chaque ligne, on a:

colonne 1	colonne 2	colonne 3-8	colonne 9-14	
nom	temps	(x,y,z,vx,vy,vz) de la planète 1	(x,y,z,vx,vy,vz) de la planète 2	

4.7 Format du fichier ???.ctrlstar ell

Ce fichier contient les éléments elliptiques des planètes lors de l'arrêt de l'intégration dû à une distance trop proche ou lointaine à l'étoile. Le type d'élément dépend du paramètres **out ell**. Les unités sont en AU, an et radians.

 $\overline{\Pi}$ y a un fichier par processeur. Chaque fichier contient plusieurs systèmes planétaires.

Sur chaque ligne, on a:

colonne 1	colonne 2	colonne 3-8	colonne 9-14	
nom	$_{ m temps}$	ell(1:6) de la planète 1	$\mathrm{ell}(1:6)$ de la planète 2	

4.8 Format du fichier ???.ctrlpla car

Ce fichier contient les positions héliocentriques et vitesses héliocentriques cartésiennes des planètes lors de l'arrêt de l'intégration d $\hat{\mathbf{u}}$ à une distance trop proche entre planètes. Les unités sont en AU et AU/an.

Il y a un fichier par processeur. Chaque fichier contient plusieurs systèmes planétaires. Sur chaque ligne, on a :

colonne 1	colonne 2	colonne 3-8	colonne 9-14	
nom	temps	(x,y,z,vx,vy,vz) de la planète 1	(x,y,z,vx,vy,vz) de la planète 2	

4.9 Format du fichier ???.ctrlpla ell

Ce fichier contient les éléments elliptiques des planètes lors de l'arrêt de l'intégration dû à une distance trop proche entre planètes. Le type d'élément dépend du paramètres **out ell**. Les unités sont en AU, an et radians.

Il y a un fichier par processeur. Chaque fichier contient plusieurs systèmes planétaires. Sur chaque ligne, on a :

colonne 1	colonne 2	colonne 3-8	colonne 9-14	
nom	$_{ m temps}$	$\mathrm{ell}(1:6)$ de la planète 1	$\mathrm{ell}(1:6)$ de la planète 2	

4.10 Format du fichier ???.minmax aei

Ce fichier contient les minimum, maximum et moyenne en a,e et i sur une tranche de temps. Les unités sont en AU et radians. Les types des éléments elliptiques dépendent du paramètre **minmax aei elltype**.

Il y a un fichier par processeur. Chaque fichier contient plusieurs systèmes planétaires. Sur chaque ligne, on a dans chaque colonne:

sar shaqas none, sh a dans shaqas sarshins.												
1	2		3-11								12	2
			planète 1								planè	te 2
		a			e			i			a	
nom	$rac{ ext{temps}}{ ext{final}}$	min	moy	max	min	moy	max	min	moy	max	min	

Ici, le temps final est le temps de fin de chaque tranche. Le fichier contient toutes les tranches d'une même condition initiale.

4.11 Format du fichier ???.minmax alp

Ce fichier contient les minimum, maximum et moyenne en $a_{p(1)} - a_{p(2)}$, $\lambda_{p(1)} - \lambda_{p(2)}$ et $\varpi_{p(1)} - \varpi_{p(2)}$ sur une tranche de temps. Les unités sont en AU et radians. Pour les différences d'angle, il y a une double détermination entre $[0, 2\pi]$ et entre $[-\pi, \pi]$. Les types des éléments elliptiques dépendent du paramètre **minmax** alp elltype.

Il y a un fichier par processeur. Chaque fichier contient plusieurs systèmes planétaires. Le fichier contient toutes les tranches d'une même condition initiale.

colonne	description		
1	nom		
2	temps final de chaque trai	nche	
3		min	
4	$a_{p(1)} - a_{p(2)}$	moy	
5		max	
6		min	
7	$\lambda_{p(1)} - \lambda_{p(2)} \operatorname{sur} [0, 2\pi]$	moy	
8		max	
9		min	
10	$\lambda_{p(1)} - \lambda_{p(2)} \operatorname{sur} [-\pi, \pi]$	moy	
11		max	
12		min	
13	$\varpi_{p(1)} - \varpi_{p(2)} \text{ sur } [0, 2\pi]$	moy	
14		max	
15		min	
16	$\varpi_{p(1)} - \varpi_{p(2)} \operatorname{sur} \left[-\pi, \pi \right]$	moy	
17		max	

4.12 Format du fichier ???.minmax_alc

Ce fichier contient les minimum, maximum et moyenne en $a_{p(1)} - a_{p(2)}$, $\lambda_{p(1)} - \lambda_{p(2)}$ et $\varpi_{p(1)} - \varpi_{p(2)}$ sur une tranche de temps. Les unités sont en AU et radians. Pour les différences d'angle, les différences d'angles sotn redressés pour obtenir une différence continue. Les types des éléments elliptiques dépendent du paramètre **minmax alc elltype**.

Il y a un fichier par processeur. Chaque fichier contient plusieurs systèmes planétaires. Le fichier contient toutes les tranches d'une même condition initiale.

colonne	,	description
1	nom	
2	temps final de	chaque tranche
3		min
4	$a_{p(1)} - a_{p(2)}$	moy
5		max
6		min
7	$\lambda_{p(1)} - \lambda_{p(2)}$	moy
8		max
12		min
13	$\varpi_{p(1)} - \varpi_{p(2)}$	moy
14		max

4.13 Format du fichier ???.minmax ae2

Ce fichier contient les minimum, maximum et moyenne en $(a_{p(1)} - a_{p(2)})^2$, $(e_{p(1)} - e_{p(2)})^2$ et $(a_{p(1)} - a_{p(2)})^2 + (e_{p(1)} - e_{p(2)})^2$ sur une tranche de temps. Les unités sont en AU. Les types des éléments elliptiques dépendent du paramètre minmax_ae2_elltype.

Il y a un fichier par processeur. Chaque fichier contient plusieurs systèmes planétaires. Le fichier contient toutes les tranches d'une même condition initiale.

Sur chaque ligne, on a dans chaque colonne:

colonne	d	escription
1	nom	
2	temps final de chaque tranche	
3		min
4	$(a_{p(1)} - a_{p(2)})^2$	moy
5		max
3		min
4	$(e_{p(1)} - e_{p(2)})^2$	moy
5		max
3		min
4	$(a_{p(1)} - a_{p(2)})^2 + (e_{p(1)} - e_{p(2)})^2$	moy
5		max

4.14 Format du fichier ???.naf_alkhqp

Ce fichier contient l'analyse en fréquence en $a\exp^{i\lambda}, k+ih, q+ip$ sur une tranche de temps. Les unités des fréquences dépendent de naf_alkhqp_dtour.

Il y a un fichier par processeur. Chaque fichier contient plusieurs systèmes planétaires. Le fichier contient toutes les tranches d'une même condition initiale.

colonne	description			
1	nom			
2	temps initial (T0) de chaque tranche			
3 4 5	planete 1	$a \exp^{i\lambda}$	terme 1	fréquence amplitude (partie réelle) amplitude (partie imag- inaire)
	planete 1	$a \exp^{i\lambda}$	terme ??	
	planete 1	$a \exp^{i\lambda}$	terme naf_alkhqp_nterm	fréquence amplitude (partie réelle) amplitude (partie imag- inaire)
	planete 1	k + ih	terme 1	fréquence amplitude (partie réelle) amplitude (partie imag- inaire)
	planete 1	k + ih	terme ??	
	planete 1	k + ij	terme naf_alkhqp_nterm	fréquence amplitude (partie réelle) amplitude (partie imag- inaire)
	planete 1	q + ip	terme 1	fréquence amplitude (partie réelle) amplitude (partie imag- inaire)
	planete 1	q + ip	terme ??	1.1.1
	planete 1	q + ip	terme naf_alkhqp_nterm	fréquence amplitude (partie réelle) amplitude (partie imag- inaire)
	planete 2	$a \exp^{i\lambda}$	terme 1	fréquence

4.15 Format du fichier ???.naf alkh

Ce fichier contient l'analyse en fréquence en $a \exp^{i\lambda}, k + ih$ sur une tranche de temps. Les unités des fréquences dépendent de naf alkhqp dtour.

Il y a un fichier par processeur. Chaque fichier contient plusieurs systèmes planétaires. Le fichier contient toutes les tranches d'une même condition initiale.

colonne	description			
1	nom			
2	temps initial (T0) de chaque tranche			
3 4 5	planete 1		terme 1	fréquence amplitude (partie réelle) amplitude (partie imag- inaire)
	planete 1	$a \exp^{i\lambda}$	terme ??	
	planete 1	$a \exp^{i\lambda}$	terme naf_alkhqp_nterm	fréquence amplitude (partie réelle) amplitude (partie imag- inaire)
	planete 1	k + ih	terme 1	fréquence amplitude (partie réelle) amplitude (partie imag- inaire)
	planete 1	k + ih	terme ??	
	planete 1	, and the second	terme naf_alkhqp_nterm	fréquence amplitude (partie réelle) amplitude (partie imag- inaire)
	planete 2	$a \exp^{i\lambda}$	terme 1	fréquence

4.16 Format du fichier ???.naf_diffalp

Ce fichier contient l'analyse en fréquence en $\exp^{i(\lambda_{p(1)}-\lambda_{p(2)})}$ et $\exp^{i(\varpi_{p(1)}-\varpi_{p(2)})}$ sur une tranche de temps. Les unités des fréquences dépendent de naf_diffalp_dtour.

Il y a un fichier par processeur. Chaque fichier contient plusieurs systèmes planétaires. Le fichier contient toutes les tranches d'une même condition initiale.

colonne	description			
1	nom			
2	temps initial (T0) de chaque tranche			
3 4	$\exp^{\imath(\lambda_{p(1)}-\lambda_{p(2)})}$	terme 1	fréquence amplitude (partie réelle)	
5			amplitude (partie imagi- naire)	
	$\exp^{i(\lambda_{p(1)}-\lambda_{p(2)})}$	terme??		
	$\exp^{i(\lambda_{p(1)}-\lambda_{p(2)})}$	terme $naf_diffalp_nterm$	fréquence amplitude (partie réelle) amplitude (partie imagi- naire)	
	$\exp^{i(\varpi_{p(1)}-\varpi_{p(2)})}$	terme 1	fréquence amplitude (partie réelle) amplitude (partie imagi- naire)	
	$\exp^{i(\varpi_{p(1)}-\varpi_{p(2)})}$	terme ??		
	$\exp^{i(\varpi_{p(1)}-\varpi_{p(2)})}$	terme $naf_diffalp_nterm$	fréquence amplitude (partie réelle) amplitude (partie imagi- naire)	

4.17 Format du fichier ???.naf_difflpm

Ce fichier contient l'analyse en fréquence en $(\lambda_{p(1)} - \lambda_{p(2)})$ et $(\varpi_{p(1)} - \varpi_{p(2)})$ sur une tranche de temps. Les unités des fréquences dépendent de naf_difflpm_dtour.

Il y a un fichier par processeur. Chaque fichier contient plusieurs systèmes planétaires. Le fichier contient toutes les tranches d'une même condition initiale.

colonne	description					
1	nom					
2	temps initial (T0) de chaque tranche					
3 4 5	$(\lambda_{p(1)} - \lambda_{p(2)}) \operatorname{sur} [0, 2\pi]$	terme 1	fréquence amplitude (partie réelle) amplitude			
			(partie imagi- naire)			
	$(\lambda_{p(1)} - \lambda_{p(2)}) \operatorname{sur} [0, 2\pi]$	terme ??				
	$(\lambda_{p(1)} - \lambda_{p(2)}) \operatorname{sur} [0, 2\pi]$	terme naf_difflpm_nterm	fréquence amplitude (partie réelle) amplitude (partie imagi- naire)			
	$(\lambda_{p(1)} - \lambda_{p(2)})$ sur $[-\pi, \pi]$	terme 1	fréquence amplitude (partie réelle) amplitude (partie imagi- naire)			
	$(\lambda_{p(1)} - \lambda_{p(2)})$ sur $[-\pi, \pi]$	terme ??				
	$(\lambda_{p(1)} - \lambda_{p(2)})$ sur $[-\pi, \pi]$	terme naf_difflpm_nterm	fréquence amplitude (partie réelle) amplitude (partie imagi- naire)			
	$(\varpi_{p(1)} - \varpi_{p(2)})$ sur $[0, 2\pi]$	terme 1	fréquence amplitude (partie réelle) amplitude (partie imaginaire)			
	$(\varpi_{p(1)} - \varpi_{p(2)}) \operatorname{sur} [0, 2\pi]$	terme ??				
	$(arphi_{p(1)}-arphi_{p(2)})$ sur $[0,2\pi]$ $(arphi_{p(1)}-arphi_{p(2)})$ sur $[0,2\pi]$	terme naf_difflpm_nterm	fréquence amplitude (partie réelle) amplitude (partie imagi- naire)			
	$(\varpi_{p(1)} - \varpi_{p(2)}) \operatorname{sur} [-\pi, \pi]$	terme 1 24	fréquence amplitude (partie réelle) amplitude (partie imagi- naire)			
	$(\varpi_{p(1)} - \varpi_{p(2)})$ sur $[-\pi, \pi]$	terme ??				
	$(\varpi_{p(1)} - \varpi_{p(2)}) \operatorname{sur} [-\pi, \pi]$	terme naf_difflpm_nterm	fréquence amplitude (partie réelle) amplitude (partie imagi-			