Лабораторная работа 5.

Прямые методы минимизации функций многих переменных.

Постановка задачи: Требуется найти безусловный минимум функции n переменных $f(x_1, x_2, ..., x_n)$, т.е. такую точку $x^* \in E_n$, что $f(x^*) = \min_{x \in F} f(x)$.

В данной работе рассматриваются прямые методы решения задачи, для применения которых не требуется информации о производных целевой функции.

Метод правильного симплекса.

Стратегия поиска: Симплексом в E_n называется выпуклая оболочка n+1 точек $x_1, x_2, ..., x_{n+1}$, не принадлежащих ни к какому (n-1) - мерному подпространству E_n . Правильным симплексом называется множество из n+1 равноудаленной точки. Например, в E_2 правильный симплекс — правильный треугольник, в E_3 - правильный тетраэдр.

В начале метода строится некоторый правильный симплекс в пространстве E_n . На каждой итерации сравниваются значения f(x) в вершинах симплекса. Затем преобразуется та вершина симплекса, в которой f(x) достигает максимальное значение. Преобразование происходит путем отражения данной вершины симметрично относительно центра тяжести x_c остальных вершин. Если значение целевой функции f(x) в полученной точке меньше, чем в исходной, то переходят к новому симплексу. Иначе пытаются осуществить процедуру отражения для остальных вершин исходного симплекса, занумерованных в правильном порядке. Если все попытки неудачны, повторяют процедуру отражения с уменьшенной длиной ребра до тех пор, пока длина ребра не станет меньше заданной точности ε .

Алгоритм:

- 1. Задать точность вычислений ε , выбрать начальное приближение x^0 , ребро a.
- 2. Построить начальный правильный симплекс по заданному ребру a и точке x^0 .
- 3. Вычислить значения f(x) в вершинах симплекса.
- 4. Упорядочить вершины симплекса в порядке возрастания значений f(x).
- 5. Найти $x_c^1 = \frac{1}{n} \sum_{i=1}^n x^{1,i}$ и выполнить отражение вершины n+1: $x^{2,n+1} = 2x_c^1 x^{1,n+1}$.

Если $f(x^{2,n+1}) < f(x^{1,n+1})$, то положить $x^{1,n+1} = x^{2,n+1}$ и перейти к шагу 3. Иначе перейти к шагу 6.

- 6. По формулам, аналогичным формулам пункта 5, вычислить отражения вершин с номерами j=n,n-1,...,k. Где k выбирается из условия $f(x^{2,k}) < f(x^{1,k})$, либо k=1.
- 7. Если k > 1, то положить $x^{1,k} = x^{2,k}$ и перейти к шагу 3. Иначе перейти к шагу 8.
- 8. Выбрать новый размер ребра a = a/2. Если $a > \varepsilon$, пер ейти к пункту 2. Иначе остановка расчета и выбор в качестве точки минимума точки x^0 .

<u>Метод деформируемого симплекса</u> (Метод Нелдера-Мида).

Стратегия поиска: Метод является усовершенствованным вариантом метода правильного симплекса. В данном случае при построении нового симплекса, кроме операции отражения, допускаются операции сжатия и растяжения. А именно, положение новой вершины симплекса после k итераций находится путем сравнения и выбора наименьшего среди значений целевой функции в следующих четырёх пробных точках:

$$z^{1} = x_{c}^{k} - \alpha (x_{c}^{k} - x^{k,n+1}) = \frac{1 - \alpha}{n} \sum_{i=1}^{n} x^{k,i} + \alpha x^{k,n+1}, \quad 0 < \alpha < 1;$$

$$z^{2} = x_{c}^{k} + \alpha (x_{c}^{k} - x^{k,n+1}) = \frac{1 + \alpha}{n} \sum_{i=1}^{n} x^{k,i} - \alpha x^{k,n+1}, \quad 0 < \alpha < 1;$$

$$z^{3} = x_{c}^{k} + \beta (x_{c}^{k} - x^{k,n+1}) = \frac{1 + \beta}{n} \sum_{i=1}^{n} x^{k,i} - \beta x^{k,n+1}, \quad \beta \approx 1;$$

$$z^{4} = x_{c}^{k} + \gamma (x_{c}^{k} - x^{k,n+1}) = \frac{1 + \gamma}{n} \sum_{i=1}^{n} x^{k,i} - \gamma x^{k,n+1}, \quad \gamma > 1.$$

На практике хорошо себя зарекомендовал следующий выбор параметров для нахождения пробных точек: $\alpha = 1/2$, $\beta = 1$, $\gamma = 2$.

При деформациях утрачивается свойство правильности исходного симплекса. Поэтому, не стремясь к правильности начального симплекса, его строят из произвольной базовой точки $x^0 \in E_n$ по формулам $x^i = x^0 + a\,e^i$, где e^i - i-й базисный вектор; a - параметр симплекса.

Для того чтобы избежать сильной деформации симплекса, алгоритм иногда дополняют процедурой обновления. Например, после N шагов алгоритма из одной вершины, пусть x^1 , снова строят симплекс по формулам $x^{i+1} = x^1 + a e^i$, полагая $a = \|x^1 - x^{n+1}\|$.

Алгоритм:

- 1. Задать точность вычислений ε , выбрать начальное приближение x^0 , ребро a, число обновления N. Положить счётчик итераций k=0.
- 2. Построить начальный симплекс по формуле $x_j = x_0 + a e_j$, где e_j j-й базисный вектор.
- 3. Вычислить значения f(x) в вершинах симплекса. Положить k = k + 1.
- 4. Упорядочить вершины симплекса в порядке возрастания значений f(x).
- 5. Найти $x_c^k = \frac{1}{n} \sum_{i=1}^n x^{k,i}$ и выполнить отражение вершины n+1 в ту из пробных точек (z^1, z^2, z^3, z^4) , значение функции в которой минимально.
- 6. Посчитать среднее арифметическое длин рёбер треугольника $\rho_{cp} = \frac{\sum\limits_{i=1}^{n} \rho(x^{k;i}, x^{k;i+1})}{n+1}$, если $\rho_{cp} < \varepsilon$ перейти к шагу 8, иначе перейти к шагу 7 $a = \rho_{cp}$, $x^0 = x^{k;1}$.

7. Если счётчик итераций k кратен N перейти к пункту 2, иначе к пункту 3.

Метод циклического покоординатного спуска.

Стратегия поиска: Метод заключается в последовательной одномерной минимизации целевой функции f(x) с исчерпывающим спуском сначала по направлению первого базисного вектора e^1 , затем - второго e^2 и так далее. После окончания минимизации по направлению последнего базисного вектора e^n цикл повторяется.

Критерием остановки метода является условие того, что за полный цикл норма изменения точки x не превышает заданной точности метода, то есть расстояние между промежуточной точкой минимума вначале цикла и в его конце меньше ε .

Алгоритм:

- 1.Задать начальную точку $x_0^0 \in E_n$, базисные вектора $(e_1,e_2,...,e_j,...,e_n)$, величины $\varepsilon_1,\varepsilon_2$ критерия достижения точности $\rho(x_0^k,x_n^k)<\varepsilon_1$ или $\left|f(x_0^k)-f(x_n^k)\right|<\varepsilon_2$. Найти $f(x_0^0)$, положить j=1, счётчик итераций k=0.
- 2.Решить задачу одномерной минимизации $\Phi(\alpha) = f(x_{j-1}^k + \alpha e_j) \to \min$, $\alpha \in E$, т.е. найти α^* . Положить $x_j^k = x_{j-1}^k + \alpha^* e^j$, вычислить $f(x_j^k)$.
- 3. Если j < n, то положить j = j + 1 и перейти к шагу 2, иначе к шагу 4.
- 4.Проверить условие достижения точности $\rho(x_0^k, x_n^k) < \varepsilon_1$ или $\left| f(x_0^k) f(x_n^k) \right| < \varepsilon_2$. Если оно выполняется, то положить $x^* = x_n^k$, $f(x^*) = f(x_n^k)$ и закончить поиск. Иначе положить $x_0^{k+1} = x_n^k$, k = k+1, j = 1 и перейти к шагу 2.

Для приближенного решения вспомогательной задачи одномерной минимизации на шаге 2 на практике удобно использовать метод поразрядного поиска. Алгоритм этого одномерного метода не требует обязательного задания границ интервала минимизации.

Метод Хука-Дживса.

<u>Стратегия поиска:</u> Эффективность прямого поиска точки минимума унимодальной целевой функции можно повысить, если на каждом k -м шаге поиска последовательно выбирать направление спуска. Для этого на каждом k -м шаге выделяют предварительный этап <u>исследующего поиска</u>. Целью этого этапа является выбор направления спуска путем исследования поведения целевой функции f(x) в окрестности точки x^{k-1} , найденной на предыдущем шаге. В результате исследующего поиска находится точка \bar{x}^k , для которой $f(\bar{x}^k) < f(x^{k-1})$. Направление спуска, завершающего k -й шаг поиска, определяется вектором $\bar{x}^k - x^{k-1}$.

Алгоритм исследующего покоординатного спуска:

- 1. Задать точку x с приращениями по каждой координате Δ_j , j = 1,...,n.
- 2. Положить $\bar{x} = x$, j = 1.

- 3. Сделать пробный шаг $y = \overline{x} \Delta_j e^j$, где e^j j-й базисный вектор. Если $f(\overline{x}) \le f(y)$, то перейти к шагу 4, иначе к шагу 5.
- 4. Сделать пробный шаг $y = \overline{x} + \Delta_j e^j$. Если $f(\overline{x}) \le f(y)$, то прейти к шагу 6, иначе к шагу 5.
- 5. Положить $\bar{x} = y$. Перейти к шагу 6.
- 6. Положить j = j + 1. Если $j \le n$, то перейти к шагу 3. Иначе исследующий поиск окончен получена точка \bar{x} , для которой $f(\bar{x}) < f(x)$, если $\bar{x} \ne x$.

Полный алгоритм Хука – Дживса:

- 1.Выбрать начальную точку x^0 , вектор приращений $\Delta = (\Delta_1,...,\Delta_n)$, коэффициент уменьшения шага $\gamma > 1$, параметр окончания поиска $\varepsilon > 0$.
- 2. Провести исследующий покоординатный поиск из точки x^0 , т.е. найти точку \overline{x}^0 . Если $\overline{x}^0 \neq x^0$, то перейти к шагу 4, иначе к шагу 3.
- 3.Проверка окончания поиска. Если $\|\Delta\| < \varepsilon$, то прекратить поиск и положить $x^* = x^0$. Иначе положить $\Delta = \Delta/\gamma$ и перейти к шагу 2.
- 4. Перемещение из точки \bar{x}^0 в направлении убывания $\bar{x}^0 x^0$:

$$x^{1} = x^{0} + a_{k} (\overline{x}^{0} - x^{0}),$$

подбирая $a_k > 0$, чтобы найти такую точку x^1 , чтобы $f(x^1) < f(\overline{x}^0)$.

5.Положить $x^0 = x^1$ и перейти к шагу 2.

Замечание 1. Значение a_k можно подбирать из условия исчерпывающего спуска целевой функции f(x) при смещении точки \overline{x}^0 в направлении этого вектора.

Замечание 2. В простейшем варианте метода значение a_k не подбирают, а полагают $a_k = 2$. В этом случае формула, по которой осуществляется спуск, имеет вид

$$x^{1} = x^{0} + 2(\overline{x}^{0} - x^{0}) = 2\overline{x}^{0} - x^{0}$$

Метод случайного поиска (алгоритм с возвратом при неудачном шаге).

<u>Стратегия поиска:</u> Задается начальная точка x^0 . Каждая последующая точка находится по формуле

$$x^{k+1} = x^k + \alpha_k \frac{\xi}{\|\xi\|}, \quad k = 0,1,...$$

где $a_k > 0$ - величина шага, $\xi = (\xi_1, ..., \xi_n)$ - некоторая реализация n-мерного случайного вектора ξ . Будем считать, что координаты вектора ξ - это независимые случайные величины, равномерно распределенные на отрезке [-1;1]. На текущей итерации при помощи генерирования случайных векторов ξ получаются точки, лежащие на гиперсфере радиуса a_k с центром в точке x^k . Если значение функции в полученной точке не меньше, чем в центре сферы, шаг считается неудачным. Если число неудачных шагов из данной точки достигает заданного числа M, поиск повторяется из той же точки с уменьшенным шагом до тех пор, пока шаг не станет меньше заданной точности. Если же значение функции в полученной точке

меньше, чем в центре, шаг считается удачным и полученное значение выбирается за новый центр поиска.

Алгоритм:

- 1.Выбрать параметр точности $\varepsilon > 0$, начальный шаг $\alpha > 0$, коэффициент уменьшения шага $\gamma > 1$, предельное число попыток M, точку x. Вычислить f(x).
- 2. Положить счетчик числа неудачных попыток j = 1.
- 3. Получить реализацию случайного вектора ξ .
- 4. Найти пробную точку $y = x + \alpha \frac{\xi}{\|\xi\|}$, вычислить f(y) .
- 5. Если f(y) < f(x), то положить x = y, f(x) = f(y) и перейти к шагу 4. Иначе перейти к шагу 6.
- 6.Положить j = j + 1. Если $j \le M$, то перейти к шагу 3, иначе к шагу 7.
- 7. Проверка условия достижения точности. Если $\alpha < \varepsilon$, то поиск завершить, полагая $x^* = x$, $f^* = f(x)$. Иначе положить $\alpha = \alpha / \gamma$ и прейти к шагу 2.

<u>Замечание.</u> На практике предельное число неудачных попыток M обычно полагают равным 3n, где n - число переменных целевой функции.

Задания

- 1. Написать в среде MATLAB функции, реализующие методы правильного симплекса, Нелдера-Мида, циклического покоординатного спуска, метод Хука-Дживса и метод случайного поиска.
- 2. Протестировать работу реализованных методов на примере овражной функции

$$f(x) = x_1^2 + a x_2^2,$$

при a=1,250,1000. Задавая $\varepsilon=10^{-3}$ и $\varepsilon=10^{-5}$, сравнить скорость работы методов при различных значениях параметра a по числу итераций и по числу вычислений целевой функции.

3. Выбрать для выполнения работы тестовую функцию, номер которой соответствует номеру Вашего компьютера. Например, для компьютера №3 это будет функция 3), для компьютера №13 — функция 4): 13-9=4; для компьютера №23 это будет функция 5): 23-9×2=5.

1)
$$f(x) = 64x_1^2 + 126x_1x_2 + 64x_2^2 - 10x_1 + 30x_2 + 13$$

2)
$$f(x) = 129x_1^2 - 256x_1x_2 + 129x_2^2 - 51x_1 - 149x_2 - 27$$

3)
$$f(x) = 254x_1^2 + 506x_1x_2 + 254x_2^2 + 50x_1 + 130x_2 - 111$$

4)
$$f(x) = 151x_1^2 - 300x_1x_2 + 151x_2^2 + 33x_1 + 99x_2 + 48$$

5)
$$f(x) = 85x_1^2 + 168x_1x_2 + 85x_2^2 + 29x_1 - 51x_2 + 83$$

6)
$$f(x) = 211x_1^2 - 420x_1x_2 + 211x_2^2 - 192x_1 + 50x_2 - 25$$

7)
$$f(x) = 194x_1^2 + 376x_1x_2 + 194x_2^2 + 31x_1 - 229x_2 + 4$$

8)
$$f(x) = 45x_1^2 - 88x_1x_2 + 45x_2^2 + 102x_1 + 268x_2 - 21$$

9)
$$f(x) = 99x_1^2 + 196x_1x_2 + 99x_2^2 - 95x_1 - 9x_2 + 91$$

- 4. Сравнить эффективность метода покоординатного циклического спуска и метода Хука–Дживса для задачи п.2 при a=250 и тестовой функции п.3 по числу итераций и по числу вычисленных значений целевой функции. Для метода Хука-Дживса величину шага исчерпывающего спуска выбирать по приближённой формуле и вычислять методом поразрядного поиска. Объяснить полученные результаты.
 - 5. Используя методы прямого поиска, минимизировать функцию Розенброка $f(x) = 100(x_1^2 x_2)^2 + (x_1 1)^2$

с точностью $\varepsilon = 10^{-3}$, выбрав начальную точку $x^0 = (-1; 2)^T$. Установить, какие из примененных алгоритмов не позволяют при заданной точности поиска получить точку минимума $x^* = (1; 1)^T$ вследствие преждевременного окончания процесса поиска.

- 6. На примере функции Розенброка провести сравнение лучшего из прямых методов с методом сопряжённых градиентов, а также с квазиньютоновскими методами ДФП и БФГЖ. Определить сколько итераций (а также вычислений функции и производных) потребуется каждому методу, что бы разность между численным и точным решением была меньше ε .
 - 7. На примере функции Химмельблау

$$f(x) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

рассмотреть особенности применения прямых методов для минимизации многомодальной функции. В качестве начального приближения взять точки (0,0) и (-5,0). Как зависит работа рассматриваемых алгоритмов от выбора начального приближения?

- 8. Встроенная функция Matlab fminsearch реализует метод Нелдера-Мида. Сравнить результаты ее работы с результатами, полученными Вашим алгоритмом. В каких случаях построенный вами алгоритм работает эффективнее функции fminsearch?
- 9. Сдать лабораторную работу преподавателю, *ответив предварительно на все следующие контрольные вопросы*.

Контрольные вопросы к Лабораторной работе 5.

- 1). Сформулировать стратегию построения алгоритма симплексного поиска.
- 2). Какая нумерация вершин симплекса называется правильной?
- 3).Описать алгоритм отражения вершины в методе правильного симплекса.
- 4). Зачем необходима и в чем заключается редукция правильного симплекса?
- 5).Сформулировать теоретическое обоснование минимизации целевой функции методом правильного симплекса.
- 6).В задачах минимизации с какими целевыми функциями метод правильного симплекса не может обеспечить высокой точности?
- 7). Сформулировать особенности минимизации целевой функции методом Нелдера-Мида по сравнению с ее минимизацией методом правильного симплекса.
- 8). Назвать класс целевых функций, при минимизации которых метод Нелдера-Мида имеет преимущество перед минимизацией по регулярному симплексу.
- 9). Сформулировать теоретическое обоснование минимизации целевой функции методом Нелдера-Мида.
- 10). Назвать класс унимодальных целевых функций, для которых эффективна минимизация методом циклического покоординатного спуска.
- 11). Как можно дополнительно повысить эффективность поиска точки минимума целевой функции, которая ищется методом циклического покоординатного спуска?
- 12).В чем состоит стратегия метода Хука-Дживса?
- 13). Какие подходы для реализации исследующего поиска в методе Хука-Дживса Вы знаете? В чем состоит метод исследующего покоординатного поиска?
- 14).Перечислите способы выбора ускоряющего множителя в методе Хука-Дживса при перемещении в направлении убывания.
- 15). Какие алгоритмы случайного поиска Вы знаете?
- 16).От какого параметра в наибольшей степени зависит эффективность алгоритмов случайного поиска?
- 17). На основе собственного опыта дать сравнительный анализ прямых методов.