

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Testy nieparametryczne

Statystyka

Dr inż. Janusz Majewski Katedra Informatyki

Testy nieparametryczne

Testy nieparametryczne nie dotyczą poszczególnych parametrów rozkładu, ale istoty rozkładów jako całości. Nie ma przy tym żadnych założeń o typie rozkładu. Stosujemy jej gdy między innymi:

- 1) może istnieć oczywista nienormalność rozkładu,
- 2) może istnieć przypuszczalna nienormalność rozkładu, czasem nawet znacznego stopnia, ale liczebność próby może być zbyt mała, aby to ustalić,
- 3) potrzebna jest szybka metoda statystyczna, wymagająca niewielkiej ilości obliczeń,
- 4) pomiar ma charakter jakościowy, tworzy, np. szereg rangowy lub istotne są tylko znaki,
- 5) nie są spełnione założenia związane z rozkładem (parametrami rozkładu lub typem rozkładu), co uniemożliwia przeprowadzenie testu parametrycznego.

Służy on do zweryfikowania hipotezy, że populacja ma określony typ rozkładu. Wymaga się, aby populacja badana miała rozkład ciągły o dystrybuancie F(x). Na podstawie wyników próby o liczebności N (N co najmniej kilkadziesiąt!) wylosowanej niezależnie chcemy zweryfikować hipotezę zerową, że dystrybuanta badanej populacji F(x) jest identyczna z dystrybuantą pewnego konkretnego hipotetycznego rozkładu ciągłego $F_0(x)$, czyli

$$H_0: F(x) = F_0(x)$$

$$H_1: F(X) \neq F_0(X)$$

Wyniki próby należy uporządkować w kolejności rosnącej i pogrupować w stosunkowo wąskie przedziały o prawych końcach x_j . Liczebność j-tego przedziału oznaczamy r_j . Dla każdej wartości x_j wyznaczamy wartość dystrybuanty empirycznej (z próby) $F_e(x)$ według wzoru:

$$F_e(x_j) = \frac{\sum_{i \le j} n_i}{N}$$

Z rozkładu hipotetycznego wyznaczamy następnie dla każdego x_j wartość teoretycznej dystrybuanty $F_0(x)$. Dla każdego x_j obliczamy bezwzględną wartość odchylenia dystrybuanty empirycznej od teoretycznej $\left|F_e\left(x_j\right)-F_0\left(x_j\right)\right|$. Dalej wyznaczamy wartość maksymalnego modułu odchylenia

$$D = \sup_{x_j} |F_e(x_j) - F_0(x_j)|$$

oraz wartość statystyki λ

$$\lambda = D\sqrt{N}$$

Statystyka ta przy założeniu prawdziwości H_0 ma rozkład λ -Kołmogorowa (niezależny od postaci dystrybuanty teoretycznej $F_0(x)$). Odrzucamy H_0 , gdy $\lambda \geq \alpha \lambda$ (wartość krytyczna $\alpha \lambda$ odczytywana z tablic)

$\alpha\lambda$	α
1,224	0,1
1,358	0,05
1,627	0,01
1,731	0,005
1,950	0,001

Jeśli chcemy sprawdzić normalność rozkładu populacji przy użyciu testu λ -Kołmogorowa, obliczamy \bar{x} oraz s z próby. Jeśli próba jest duża, można przyjąć, że $\mu=\bar{x}$, $\sigma=s$. Dokonujemy standaryzacji wartości x_j dla końców przedziału.

$$u_j = \frac{x_j - \bar{x}}{s}$$

i obliczamy wartości dystrybuanty empirycznej

$$F_e(u_j) = \frac{\sum_{i \le j} n_i}{N}$$

i następnie z tablic odczytujemy wartości dystrybuanty rozkładu normalnego $F_0(u_i)$. Dalej jak poprzednio.

<u>Przykład:</u> Zbadano 200 próbek osocza krwi (pobranych od pacjentów bez anemii) oznaczając w każdej ilość tzw. azotu pozabiałkowego.

$$\bar{x} = 32.9$$
 $s = 1.4$

Zawartość azotu [mg% N]	X_j	U j	n j	Liczebność skumulowana	$F_e(u_j)$	$F_0(u_i)$	D_{j}
29,5- 30,5	30,5	-1,71	12	12	0,060	0,044	0,016
30,5- 31,5	31,5	-1,00	23	35	0,175	0,159	0,016
31,5- 32,5	32,5	-0,29	35	70	0,350	0,386	0,036!
32,5- 33,5	33,5	0,43	62	132	0,660	0,666	0,006
33,5- 34,5	34,5	1,14	44	176	0,880	0,873	0,007
34,5- 35,5	35,5	1,86	18	194	0,970	0,969	0,001
35,5- 36,5	36,5	2,57	6	200	1,000	0,995	0,005

Zawartość azotu [mg% N]	X_j	U j	n j	Liczebność skumulowana	$F_e(u_i)$	$F_0(u_i)$	D_{j}
29,5- 30,5	30,5	-1,71	12	12	0,060	0,044	0,016
30,5- 31,5	31,5	-1,00	23	35	0,175	0,159	0,016
31,5- 32,5	32,5	-0,29	35	70	0,350	0,386	0,036 !
32,5- 33,5	33,5	0,43	62	132	0,660	0,666	0,006
33,5- 34,5	34,5	1,14	44	176	0,880	0,873	0,007
34,5- 35,5	35,5	1,86	18	194	0,970	0,969	0,001
35,5- 36,5	36,5	2,57	6	200	1,000	0,995	0,005

$$\lambda = D \cdot \sqrt{N} = 0.036 \cdot \sqrt{200} = 0.509 < 0.05 \lambda = 1.358$$

Nie ma podstaw kwestionowania normalności

Dzielimy przedział zmienności na k rozłącznych klas (najlepiej, aby w każdej klasie znalazła się podobna liczba danych). Oznaczamy przez n_j liczebność j-tej klasy, przy czym:

$$N = \sum_{j=1}^{k} n_j$$

Po dokonaniu podziału określa się prawdopodobieństwa p_j , z jakimi, przy założeniu że rozkład jest zgodny z hipotetycznie zakładanym, zmienna losowa przyjmowałaby wartości z poszczególnych klas. W tym celu należy najpierw wyznaczyć na podstawie próby parametry rozkładu hipotetycznego, a następnie z tablic ustalić odpowiednie wartości prawdopodobieństw teoretycznych p_j . Dalej wyznaczamy statystykę χ^2

$$\chi^2 = \sum_{j=1}^k \frac{\left(n_j - Np_j\right)^2}{Np_j}$$

Statystyka ta ma w przybliżeniu rozkład χ^2 o k-r-1 stopniach swobody, przy czym r jest liczbą parametrów rozkładu szacowanych z próby (dla rozkładu normalnego r=2: średnia i odchylenie standardowe).

Odrzucamy H₀ o zgodności rozkładu teoretycznego i empirycznego, gdy $\chi^2 \ge_{\propto} \chi^2_{(k-r-1)}$.

<u>Przykład:</u> Zweryfikować testem χ^2 normalność rozkładu danych wieku pacjentów z nowotworem płuc w pewnym szpitalu.

Gdyby była taka możliwość należałoby tak wybrać granice przedziałów, aby liczebności w klasach były podobne. Tutaj n_j dla grupy wiekowej 25-35 jest niekorzystnie małe!

Wiek	n _j	X _j	u j	<i>F(u_j)</i>	p_{j}	Np _j	$(n_j - Np_j)^2$	$\frac{\left(N_{j}-Np_{j}\right)^{2}}{Np_{j}}$
25-35	<mark>17</mark>	35	-2,490	0,0064	0,0084	8,68	69,14	7,96
35-45	116	45	-1,282	0,1003	0,0929	127,56	133,63	1,05
45-55	493	55	-0,073	0,4721	0,3718	504,80	139,24	0,28
55-65	545	65	1,137	0,8729	0,4008	544,16	0,71	0,00
65-75	186	75		1,0000	0,1271	172,34	186,60	1,08
Razem	1357				1			10,37

Liczba stopni swobody = 5-2-1=2

$$\chi^2 = 10,37$$

$$_{0,05}\chi^2_{(2)} = 5,99$$
 $_{0,01}\chi^2_{(2)} = 9,21$

$$\chi \ge \chi^2_{krvt}$$
 dla $\alpha = 0.01$

Hipotezę o normalności rozkładu trzeba odrzucić!!

- Test normalności Shapiro-Wilka może być używany nawet w przypadku prób o niewielkiej liczebności.
- Testowane hipotezy:

H₀: populacja, z której wylosowano próbę, ma rozkład normalny

*H*₁: populacja nie ma rozkładu normalnego

- Dane:
- n liczebność próby,
- $x_{(1)}, x_{(2)}, ..., x_{(n)}$ uporządkowana według wartości rosnących próba pobrana z populacji o ciągłej dystrybuancie,
- α poziom istotności

Statystyka testu:

$$W = \frac{\left(\sum_{i=1}^{\left[\frac{n}{2}\right]} a_i(n) (x_{(n-i+1)} - x_{(i)})\right)^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

gdzie:

 $\left[\frac{n}{2}\right]$ – część całkowita n/2

 $a_i(n)$ – stablicowane współczynniki Shapiro-Wilka, zależne od liczebności próby

n oraz i

i∖n	2	3	4	5	6	7	8	9	10	11
1	0,7071	0,7071	0,6872	0,6646	0,6431	0,6233	0,6052	0,5888	0,5739	0,5601
2		0	0,1677	0,2413	0,2806	0,3031	0,3164	0,3244	0,3291	0,3315
3				0	0,0875	0,1401	0,1743	0,1976	0,2141	0,2260
4						0	0,0564	0,0947	0,1224	0,1429
5								0	0,0399	0,0695
6										0

$i \setminus n$	12	13	14	15	16	17	18	19	20	21
1	0,5475	0,5359	0,5251	0,5150	0,5056	0,4968	0,4886	0,4808	0,4734	0,4643
2	0,3325	0,3325	0,3318	0,3306	0,3290	0,3273	0,3253	0,3232	0,3211	0,3185
3	0,2347	0,2412	0,2460	0,2495	0,2521	0,2540	0,2553	0,2561	0,2565	0,2578
4	0,1586	0,1707	0,1802	0,1878	0,1939	0,1988	0,2027	0,2059	0,2085	0,2199
5	0,0922	0,1099	0,1240	0,1353	0,1447	0,1524	0,1587	0,1641	0,1686	0,1736
6	0,0303	0,0539	0,0727	0,0880	0,1005	0,1109	0,1197	0,1271	0,1334	0,1399
7		0	0,0240	0,0433	0,0593	0,725	0,0837	0,0932	0,1013	0,1092
8				0	0,0196	0,0359	0,0496	0,0612	0,0711	0,0804
9						0	0,0130	0,0303	0,0422	0,0530
10								0	0,0140	0,0263
11										0

- Hipotezę zerową odrzucamy, gdy obliczone $W \le W_{(\alpha,n)}$ gdzie:
- $W_{(\alpha,n)}$ odczytana z tablicy wartość krytyczna testu Shapiro-Wilka
- Uwaga: nie zależy nam na odrzuceniu hipotezy zerowej, czyli jeśli rozkład ma być zbliżony do normalnego, to oczekujemy, aby $W > W_{(\alpha,n)}$
- Fragment tablicy wartości krytycznych testu Shapiro-Wilka (na następnym slajdzie)

n \ α	0,01	0,02	0,05	0,1
3	0,753	0,756	0,767	0,789
4	0,687	0,707	0,748	0,792
5	0,686	0,715	0,762	0,806
6	0,713	0,743	0,788	0,826
7	0,730	0,760	0,803	0,838
8	0,749	0,778	0,818	0,851
9	0,764	0,791	0,829	0,859
10	0,781	0,806	0,842	0,869
11	0,792	0,817	0,850	0,876
12	0,805	0,828	0,859	0,883
13	0,814	0,837	0,866	0,889
14	0,825	0,846	0,874	0,895
15	0,835	0,855	0,881	0,901
16	0,844	0,863	0,887	0,906
17	0,851	0,869	0,892	0,910
18	0,858	0,874	0,897	0,914
19	0,863	0,879	0,901	0,917
20	0,868	0,884	0,905	0,920
21	0,873	0,888	0,908	0,923

Przykład: Zebrano i posortowano niemalejąco 20 obserwacji charakteryzujących wskaźnik masy ciała (BMI) badanych pacjentów. Aby przeprowadzić analizę statystyczną musimy dowiedzieć się, czy rozkład tej cechy jest rozkładem normalnym.

Aby obliczyć wartość statystyki testowej dla testu Shapiro-Wilka musimy wyznaczyć następujące wartości:

$$\sum_{i=1}^{20} (x_i - \bar{x})^2 = (21.7 - 26.185)^2 + \dots + (31.2 - 26.185)^2 = 132.6055$$

Statystyka testowa W przyjmie zatem wartość:

$$W = \frac{128,2703}{132,6055} = 0,9673$$

Dla α =0,05 i dla n=20 , stablicowana wartość krytyczna wynosi $W_{(0,05;20)}$ =0,905 . A zatem zachodzi nierówność $W>W_{(\alpha,n)}$, co oznacza, że nie ma podstaw do odrzucenia hipotezy o normalności rozkładu badanych danych.

Z dwóch populacji wylosowano niezależne próby losowe o liczebnościach N_1 i N_2 odpowiednio. Zakłada się, że istnieje możliwość ustawienia obserwacji z jednej i drugiej próby w jednym wspólnym szeregu, przy czym można obserwacje te uporządkować według pewnego porządku (nadać im rangi). Rangi powinny być liczbami od 1 do $N=N_1+N_2$. Dopuszczalne są tzw. rangi wiązane (kilka obserwacji jest sklasyfikowanych na "tym samym miejscu"-wówczas wartość liczbowa rangi musi być odpowiednią średnią).

 H_0 : Próby wylosowano z populacji o tych samych rozkładach H_1 : Próby wylosowano z populacji o różnych rozkładach

Obliczamy sumy rang dla próby pierwszej i drugiej osobno. Porównujemy mniejszą z tych sum z wartością krytyczną z tablic. Hipotezę zerową odrzucamy, gdy suma rang jest MNIEJSZA(!) od wartości krytycznej.

Wartości krytyczne dla testu sumy rang Wilcoxona dla danych niesparowanych

n _A	n _B	α = 0,01	α = 0,05	n _A	n _B	α = 0,01	α = 0,05
	4 - 11		5	16	19		
	5	10	11 5 12 6 13 7 14 8 2 15 3 16 3 17 4 18	6	17	20	
	6	11	13		7	18	21
	7	11	14	_	8	19	<mark>23</mark>
4	8	12	15	5	9	20	24
	9	13	16		10	21	26
	10	13	17		11	22	27
	11	14	18		12	23	28
	12	15	19				

<u>Przykład:</u> Badano, jaką część budżetu centrów onkologicznych (badania nad rakiem, diagnozowanie i terapia, edukacja publiczna, rehabilitacja, udogodnienia dla ciężko chorych i umierających) stanowią koszty diagnozowania i terapii. Według tego chciano porównać lecznictwo onkologiczne w Europie Zachodniej i Wschodniej.

 H_0 : Nie ma różnicy w poziomie wydatków na diagnozowanie i leczenie raka (w stosunku do całkowitego budżetu centrów onkologicznych) między Europą Zachodnią i Wschodnią (1985 r.)

 H_1 : Są różnice w poziomie wydatków na diagnozowanie i leczenie raka między Europą Zachodnią i Wschodnią

Poziomy wydatków (%)	Ranga	Kwalifikacja
40	1	WE
61	2	WE
64	3	EE
68	4	WE
75	5	EE
80	6	WE
82	7	WE
88	8	WE
91	9	EE
93	10 ½	EE
93	10 ½	WE
98	12	EE
99,8	13	WE

EE:

WE:

$$N_2 = 8$$

$$\sum_{rang} WE = 1 + 2 + 4 + 6 + 7 + 8 + 9 + 10,5 + 13 = 51,5$$

Wartość krytyczna dla α =0,05 N₁=5, N₂= 8 wynosi 23 Ponieważ 39,5 > 23 **NIE MA PODSTAW DO ODRZUCENIA H₀!**

Dane tworzą pary obserwacji związane z pewnym obiektem (np. pacjentem). Różnice między obserwacjami z danej pary dają się uporządkować i można im przypisać rangi. Wyznaczamy rangi różnic bez uwzględniania znaków różnic, po czym sumujemy oddzielnie rangi różnic dodatnich, oddzielnie rangi różnic ujemnych, nie biorąc pod uwagę różnic równych zero.

 $(N'- \text{liczba wszystkich par w próbie}; N- \text{liczba par, dla których różnice} \neq 0)$

Wybieramy <u>mniejszą</u> z sum rang i porównujemy ją z wartością krytyczną dla danego poziomu istotności i dla danego N. Jeśli suma rang jest <u>MNIEJSZA(!)</u> od wartości krytycznej, odrzucamy hipotezę H_0 mówiącą, że: populacje, z których otrzymano pierwsze i drugie elementy par, mają takie same rozkłady. Podobnie jak poprzednio dopuszczalne są tzw. rangi wiązane; wówczas wartości liczbowe rang są odpowiednimi średnimi.

Wartości krytyczne testu Wilcoxona dla danych połączonych w pary

N	α = 0,05	α = 0,02	α = 0,01
6	0	-	-
7	2	0	-
8	4	2	0
9	6	3	2
10	<mark>8</mark>	5	3
11	11	7	5
12	14	10	7
13	17	13	10
14	21	16	13
15	25	20	16
16	30	24	20
17	35	28	23
18	40	33	28
19	46	38	32
20	52	43	38

<u>Przykład:</u> Czternastu pacjentów z rakiem głowy lub szyi leczono dwoma metodami (sekwencyjnie przez trzy miesiące, kolejność losowa).

Metoda A: radioterapia + lek

Metoda B: radioterapia + placebo

Efekty oznaczono wg skali 5 punktowej:

1- rozwój choroby

2- bez zmian

3- częściowy regres guza

4- całkowity regres z nawrotem

5- całkowity regres bez nawrotu

Porównać oba sposoby leczenia

Pacjent	Leczenie A	Leczenie B	Różnica	Ranga	Ranga ze znakiem	
1	3	5	2	7	-7	
2	3	2	1	3,5	+3,5	
3	2	1	1	3,5	+3,5	
4	5	2	3	8,5	+8,5	
5	5	1	4	10	+10	
6	5	4	1	3,5	+3,5	
7	2	1	1	3,5	+3,5	
8	5	4	1	3,5	+3,5	
9	5	2	3	8,5	+8,5	
10	5	4	1	3,5	+8,5	
11	1	1	0	Nie uwzględniamy		
12	5	5	0			
13	5	5	0			
14	5	5	0			

$$N^{'} = 14$$

$$N = 14 - 4 = 10$$

$$\sum rang\ ujemnych = 7$$

$$\sum rang\ dodatnich = 48$$

Wartość krytyczna dla α =0,05 i dla N=10 wynosi 8 Ponieważ 7 < 8 H_0 o równości rozkładów **ODRZUCAMY!**

Test ten jest "analogiem" nieparametrycznym analizy wariancji, nazywany jest też testem **Kruskala-Wallisa**. Sprawdza się hipotezę, że k prób pochodzi z populacji o identycznych rozkładach, tzn.:

$$H_0$$
: $F_1(x) = F_2(x) = \cdots = F_k(x)$

*H*₁: Nie wszystkie dystrybuanty porównywanych rozkładów są identyczne

Założenie: rozkłady testowanych populacji są ciągłe

 n_i – liczebność i-tej próby

 $N = \sum_{i=1}^k n_i$ – liczebność całkowita

Wszystkie N obserwacji ustawiamy w jeden szereg nadając im rangi od najmniejszej- najniższa ranga (na ogół =1) do największej. Następnie dla każdej i-tej próby obliczamy T_i – sumę rang obserwacji należących do tej próby.

Obliczamy wartość statystyki χ²

$$\chi^2 = \frac{12}{N(N+1)} \sum_{i=1}^{K} \frac{T_i^2}{n_i} - 3(N+1)$$

Statystyka ta ma przy założeniu prawdziwości H_0 rozkład zbliżony do $\chi^2_{(k-1)}$ Hipotezę zerową odrzucamy, gdy

$$\chi^2 \ge \alpha \chi^2_{(k-1)}$$

Przykład: Załóżmy, że przeprowadzono badania w celu porównania 4 metod leczenia pewnej choroby. Pobrano 5-elementowe próby losowe spośród chorych na daną chorobę, których leczono odpowiednio metodą I, II, III i IV. Wyniki terapii oceniono w specjalnym teście. Wartości testu podane w umownej punktacji przedstawia poniższa tabela. Podano w niej też rangi nadane wynikom obserwacji.

Metoda I	Rangi	Metoda II	Rangi	Metoda III	Rangi	Metoda IV	Rangi
57	2	74	20	63	8,5	62	6,5
58	3	66	11,5	68	15	63	8,5
67	13	65	10	59	4,5	66	11,5
50	1	72	19	59	4,5	71	18
62	6,5	68	15	68	15	70	17
	25,5		75,5		47,5		61,5

W podanym przykładzie chcemy zweryfikować hipotezę, że wszystkie metody leczenia dają jednakowe wyniki. Musimy więc zastosować test sprawdzający hipotezę, że *k* niezależnych próbek pochodzi z tej samej populacji. Użyjemy w tym celu testu sumy rang Kruskala-Wallisa.

$$\chi^2 = 7,841454$$

$$_{0.05}\chi^2_{(3)} = 7.81$$

$$\chi^2 \geq 0.05 \chi^2_{(3)}$$

czyli odrzucamy hipotezę zerową. Na podstawie wyników analizy można wyciągnąć wniosek, że metody leczenia mają statystycznie istotny wpływ na wynik terapii.

Przypuśćmy, że dla każdego N obiektów dokonuje się obserwacji dwu zmiennych x i y. Czasami nie możemy zastosować analizy regresji liniowej i korelacji, gdyż:

- zależność nie jest liniowa,
- nie dysponujemy dokładnymi pomiarami ilościowymi zmiennych, choć potrafimy je uporządkować (nadać im rangi)
- istnieje uzasadnione podejrzenie o nienormalności rozkładu dwuwymiarowego (x, y)

Można wtedy wyznaczyć rangi obiektów względem dwu rozważanych kryteriów x i y i obliczyć współczynnik korelacji r_S Spearmana

$$r_S = 1 - \frac{6\sum_{i=1}^{N} (r_i^{(x)} - r_i^{(y)})^2}{N(N^2 - 1)}$$

N- liczebność próby

 $r_i^{(x)}$, $r_i^{(y)}$ - rangi i-tego obiektu względem odpowiednio kryteriów x i y.

Współczynnik r_S zachowuje się podobnie jak współczynnik korelacji Pearsona r czyli $(-1 \le r_S \le 1)$

Test istotności: tablica wartości krytycznych

N	α=0,05	α=0,01					
4 i mniej	1	-					
5	1,0	-					
6	0,886	1,0					
7	0,750	0,893					
8	0,714	0,857					
9 lub więcej	jak dla zwykłego <i>r</i> Pearsona badanego testem t-Studenta przy <i>N – 2</i> stopniach swobody						

 H_0 : $r_S = 0$

 H_1 : $r_S \neq 0$

 H_0 odrzucamy, gdy

 $|r_{S}| \geq {}_{\propto} r_{S(kryt)}$

<u>Przykład</u>: Po zakończeniu zajęć z psychologii klinicznej asystent uszeregował studentów według dwóch kryteriów: przydatności do zawodu (x) oraz znajomości psychologii (y). Czy korelacja między tymi kryteriami jest istotna?

Student	Α	В	С	D	E	F	G	Ι	_	J
Ranga wg przydatności do zawodu (x)	4	10	3	1	9	2	6	7	8	5
Ranga wg znajomości psychologii (<i>y</i>)	5	8	6	2	10	3	9	4	7	1

$$N = 10$$

$$r_{S} = 1 - \frac{\sum \left(r_{1}^{(x)} - r_{i}^{(y)}\right)^{2}}{N(N^{2} - 1)}$$

$$r_{S} = 1 - \frac{6(1 + 4 + 9 + 1 + 1 + 1 + 9 + 9 + 1 + 16)}{10(100 - 1)} = 0,685$$

Korzystamy z testu t, gdyż $N \ge 9$

$$t = r\sqrt{\frac{N-2}{1-r^2}} = 0,685\sqrt{\frac{8}{1-(0,685)^2}} = 2,662$$

$$_{0,05}t_{(8)} = 2,306$$

Ponieważ $|t| \ge t_{kryt}$ dla α =0,05, więc odrzucamy hipotezę zerową o braku korelacji między obydwoma klasyfikacjami.