PUB-NO: JP02002012940A

DOCUMENT-IDENTIFIER: JP 2002012940 A

TITLE: CORROSION RESISTIVE STEEL FOR TANK LOADING OIL AND ITS PRODUCTION METHOD

PUBN-DATE: January 15, 2002

INVENTOR-INFORMATION:

NAME COUNTRY

KIMURA, HIDETO SHOMURA, KATSUMI WADA, NORIMI ASSIGNEE-INFORMATION:

NAME COUNTRY

NKK CORP

APPL-NO: JP2001123043 APPL-DATE: April 20, 2001

PRIORITY-DATA: 2000JP-123565 (April 25, 2000)

INT-CL (IPC): C22C 38/00; B21B 3/00; C21D 8/02; C22C 38/58

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a corrosion resistive steel for tank loading oil, having good corrosion resistivity and capable of improving weldability and reducing an alloy cost.

SOLUTION: This corrosion resistive steel for tank loading tank loading tank which is used in primer painting state, is composed of, by mass, below 0.016% tank below 1.5% Si, below 3.0% Mn, below 0.035% P, below 0.01% S, and further, one or more of 0.1-1.4% tank Cu, 0.2-4% Cr and 0.05-0.7% Ni, and the balance substantially Fe, wherein a value of Pcm expressed by the formula tank Pcm=C+Si/30+Mn/20+Cr/20+Cu/20+Ni/60+Mo/15+V/10+5BiÜ0.22 (1), is 0.22 or below.

COPYRIGHT: (C)2002, JP0

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-12940 (P2002-12940A)

(43)公開日 平成14年1月15日(2002.1.15)

(51) Int.Cl. ⁷		識別記号	FΙ	テーマコード(参考)
C 2 2 C	38/00	3 0 1	C 2 2 C 38/00	301F 4K032
B 2 1 B	3/00		B 2 1 B 3/00	A
C 2 1 D	8/02		C 2 1 D 8/02	В
C 2 2 C	38/58		C 2 2 C 38/58	
			審査請求未請求	請求項の数8 OL (全 12 頁)
(21)出願番号	큵	特願2001-123043(P2001-123043)	(71)出願人 0000041:	
(22)出顧日		平成13年4月20日(2001.4.20)	東京都千	替株式会社 F代田区丸の内一丁目1番2号
(31)優先権主	上張番号	特願2000-123565 (P2000-123565)	(72)発明者 木村 秀東京都刊	67歴 F代田区丸の内一丁目1番2号 日

(33)優先権主張国 日本(JP) 東京都千代田区丸の内一丁目1番2号 日

本鋼管株式会社内

(72)発明者 正村 克身

東京都千代田区丸の内一丁目1番2号 日

本鋼管株式会社内

(74)代理人 100116230

弁理士 中濱 泰光

最終頁に続く

(54) 【発明の名称】 貨油タンク用耐食鋼およびその製造方法

平成12年4月25日(2000.4.25)

(57)【要約】

(32)優先日

【課題】 十分な耐食性を有し、かつ溶接性の向上およ び合金コストの削減が可能な貨油タンク用耐食鋼を提供

【解決手段】 プライマー塗装状態で使用する貨油タン ク用耐食鋼において、化学成分として、mass%で、C:O. 16%以下、Si:1.5%以下、Mn:3.0%以下、P:0.035%以 下、S:0.01%以下を含み、さらに、Cu:0.1%~1.4%、C r:0.2~4%、Ni:0.05~0.7%のうちの1種以上を含み、 残部が実質的にFeからなり、下記の式(1)で表される Pcmの値が0.22以下であることを特徴とする貨油タンク 用耐食鋼を用いる。

Pcm=C+Si/30+Mn/20+Cr/20+Cu/20+Ni/60+Mo/15+V/10+5B ≦0.22 (1)

但し、元素記号はそれぞれの元素のmass%を示す。

 $Pem=C+Si/30+Mn/20+Cr/20+Cu/20+Ni/60+Mo/15+V/10+5B \le 0.22 \qquad (1)$

1

【特許請求の範囲】

【請求項1】 プライマー塗装状態で使用する貨油タン ク用耐食鋼において、化学成分として、mass%で、C:O. 16%以下、Si:1.5%以下、Mn:3.0%以下、P:0.035%以 下、S:0.01%以下を含み、さらに、Cu:0.1%~1.4%、C*

用耐食鋼。

但し、元素記号はそれぞれの元素のmass%を示す。 【請求項2】 プライマー塗装状態で使用する貨油タン ク用耐食鋼において、化学成分として、mass%で、C:O. 16%以下、Si:1.5%以下、Mn:2.0%以下、P:0.035%以 ※10 鋼。

※下、S:0.01%以下、Cu:0.1%~1.4%を含み、残部が実 質的にFeからなり、下記の式(1)で表されるPcmの値 が0.22以下であることを特徴とする貨油タンク用耐食

$Pcm = C + Si/30 + Mn/20 + Cr/20 + Cu/20 + Ni/60 + Mo/15 + V/10 + 5B \le 0.22$ (1)

但し、元素記号はそれぞれの元素のmass%を示す。

【請求項3】 プライマー塗装状態で使用する貨油タン ク用耐食鋼において、化学成分として、mass%で、C:O. 15%以下、Si:1.5%以下、Mn:0.2%以上3.0%以下、P: 0.035%以下、S:0.005%以下を含み、さらに、Cr:0.2~★ ★4%、Cu:0.2%~1.0%、Ni:0.1~0.7%のうち1種以上 を含み、残部が実質的にFeからなり、下記の式(1)で 表されるPcmの値が0.22以下であることを特徴とする貨 油タンク用耐食鋼。

$Pcm = C + Si/30 + Mn/20 + Cr/20 + Cu/20 + Ni/60 + Mo/15 + V/10 + 5B \le 0.22$ (1)

但し、元素記号はそれぞれの元素のmass%を示す。

【請求項4】 請求項1ないし請求項3のいずれか1つ に記載の化学成分に加えて、さらにA1:0.8 mass%以下 を含むことを特徴する貨油タンク用耐食鋼。

【請求項5】 請求項1ないし請求項4のいずれか1つ に記載の化学成分に加えて、さらにMo:0.5 mass%以下 を含むことを特徴する貨油タンク用耐食鋼。

【請求項6】 請求項1ないし請求項5のいずれか1つ に記載の化学成分に加えて、さらにNb:0.05mass%以 下、V:0.12mass%以下、Ti:0.1mass%以下のうち、いず れか1種または2種以上を含むことを特徴する貨油タン ク用耐食鋼。

【請求項7】 請求項1ないし請求項6のいずれか1つ 30 に記載の化学成分に加えて、さらにB:0.01mass%以下を 含むことを特徴する貨油タンク用耐食鋼。

【請求項8】 仕上げ温度を800℃以上で圧延を行い、 その後冷却速度2℃/sec以上で600℃以下まで冷却を行う ことを特徴とする請求項1ないし請求項7のいずれか1 つに記載の貨油タンク用耐食鋼の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、タンカー用鋼に 関し、特に貸油タンク用として耐食性に優れた、プライ マー塗装併用型の貨油タンク用高耐食鋼およびその製造 方法に関するものである。

[0002]

【従来の技術】国際海事機構の規制により、新建造タン カーのダブルハル構造が義務づけられて以降、貨油タン ク、バラストタンク、デッキプレート等の船舶構造物に は新たな腐食問題が投じられることとなった。海水環境 と湿潤高温環境が繰返されるバラストタンク材では、腐 食要因を解析した結果、海水腐食と飛沫帯環境での腐 食、又結露環境腐食に耐える鋼材が要求され、バラスト☆50 いて行われているような、腐食メカニズムの分類と推定

☆タンク部に該当するデッキプレートにおいても、裏面に おける腐食環境として、バラストタンク上部と同様のも 20 のが想定されている。

【0003】これらの用途に適した鋼材として、特開平 7-267182号公報では、Cu-P, Cu-Cr, Cu-P-Cr系鋼材が優 れた耐食性を示すとして提案されている。この技術によ る鋼材は、C:0.15%以下、Si:0.02~1.5%、Mn:0.2~ 5.0%、S:0.005%以下、Cu:0.1~1.0%、P:0.01~0.1 5%を含み、さらに、Ni:0~1.5%、Nb:0~0.03%、なら びにMo:0~1.0%、V:0~1.0%およびW:0~1.0%のう ちの1種または2種以上、Al:0~1.0%、Ti:0~0.5%の うちの1種または2種を含むバラストタンク用低合金鋼 である。

【0004】また、特開平7-310141号公報、特開平8-24 6048号公報では、いずれも1~3%程度のCrを含有する耐 食鋼が、バラストタンク環境で有効に使用可能な耐食性 を示すとして提案されている。特開平7-310141号公報記 載の耐食鋼は、Cr:0.5~3.5%を主成分とし、Ni:1.5% 以下、Mo:0.8%以下のうちの1種以上、あるいはさらに Nb:0.005~0.05%、Ti:0.005~0.05%のうちの1種以上 を含む鋼である。特開平8-246048号公報記載の耐食鋼 は、C:0.1 %以下、Si:0.10~0.80%、Mn:1.50%以 下、Al:0.005~0.050 %、Cr:1.0~3.0 %、Ti:0.005~

[0005]

【発明が解決しようとする課題】一方、最近のタンカ ー、特にVLCCと呼称される大型の貨油船で、貨油タンク 内面に著しい腐食が発見されるケースがある。この現象 は、従来問題とされなかったことから、新たな腐食課題 としてクローズアップされているというのが現状であ る。そのため、貨油タンク、もしくは貨油タンク該当部 分のデッキプレートの腐食防止は、バラストタンクにつ

0.03%、N:0.0020~0.0120%を含む鋼である。

残部が実質的にFeからなり、下記の式(1)で表される

Pcmの値が0.22以下であることを特徴とする貨油タンク

*r:0.2~4%、Ni:0.05~0.7%のうちの1種以上を含み、

がなされないまま、危急の課題とされている。

【0006】貨油タンク用材料の上記のような腐食問題 を解決する手段として、組立て前に適用される錆止めプ ライマー塗装および重塗装がある。しかし多くの場合、 塗装は使用にともない傷みを生じ、表面損傷部位より錆 が発生し、塗膜を破壊するいわゆる塗膜下腐食の進行に より、通常の使用では長くても5~10年の使用で、裸使 用と変らないほどの腐食が認められる状況にあり、メン テナンス費用は膨大なものとなる。

【0007】また、前述の特開平7-310141号公報または 10 特開平8-246048号公報記載のバラストタンク用の鋼は、 その実施例を見ると添加元素の量が多く、溶接性が著し く劣るばかりか合金コストの増分に見合う塗装併用下で の耐食性向上効果が小さい。即ち、貨油タンク用の鋼材 として必ずしも使用しやすいとは言えない。これは特開 平7-267182号公報記載の技術でも同様で、その実施例で はCuを添加する場合は0.5~0.14%、Pを添加する場合 は0.045~0.14%、Crを添加する場合は1~5%となって

【0008】この発明は、以上の問題点を解決し、貨油 タンクにおける腐食メカニズムを解明してそれに対して 十分な耐食性を有し、かつ溶接性の向上および合金コス トの削減が可能な貨油タンク用耐食鋼を提供することを 目的とする。

[0009]

【課題を解決するための手段】この発明は、貨油タンク において鋼材に作用する腐食環境について、詳細に調査 する中でなされた。その結果、最近の大型タンカーにお ける腐食要因としては、貨油タンク内に導入される原動 機排ガスの影響および原油揮発成分中の硫化水素の影響 が大きいことが明らかとなった。排ガスは原油からの揮 発成分による爆発防止のために導入されるものである が、排ガスには、酸素、窒素のほかに、相当量の炭酸ガ ス、SOx、場合によってはH2Sなど、腐食性ガスも含まれ る。

【0010】そのため、これら腐食性ガスの存在下で温*

但し、元素記号はそれぞれの元素のmass%を示す。本件 第2の発明は、プライマー塗装状態で使用する貨油タン ク用耐食鋼において、化学成分として、mass%で、C:O. 16%以下、Si:1.5%以下、Mn:2.0%以下、P:0.035%以 下、S:0.01%以下、Cu:0.1%~1.4%を含み、残部が実 質的にFeからなり、上記の式(1)で表されるPcmの値 が0.22以下であることを特徴とする貨油タンク用耐食鋼 である。本件第3の発明は、プライマー塗装状態で使用 する貨油タンク用耐食鋼において、化学成分として、ma ss%で、C:0.15%以下、Si:1.5%以下、Mn:0.2%以上3. 0%以下、P:0.035%以下、S:0.005%以下を含み、さら に、Cr:0.2~4%、Cu:0.2%~1.0%、Ni:0.1~0.7%の

* 度サイクルが存在して酸露点腐食が作用した場合、塗膜 に微小な損傷部位が生じただけで該箇所より緻密性の低 い錆が発達する。この錆は塗膜と鋼材の間を発達して進 行し、ついには塗膜を連続的に剥離させる。さらに揮発 成分に含まれる硫化水素は、鋼材の塗膜剥離部分に作用 して腐食を進行させる。この硫化水素による腐食は油井 管等の原油接触環境で広く経験されるものである。この ような腐食が問題となるのは主にガスのたまる貸油タン ク上部であり、上記のような貸油タンク内上部の腐食雰 囲気を、以下タンク環境と記載する。

【0011】上記のように、調査の結果、貨油タンクに おける腐食メカニズムは、解明された。酸露点腐食の場 合には、たとえ合金を添加して耐食性を高めた鋼材を用 いたとしても、塗装を施さない裸使用では実用的な耐食 性は得られないので、塗装して使用することを前提とす る。しかし上記のような塗膜損傷部分の錆が拡大する問 題があるので、塗膜下の錆の進行を最小限とし、塗膜寿 命を長期化せしめるという観点に立ち、耐食鋼の成分設 計を繰り返し、当該雰囲気中で塗膜損傷部位も含めた十 20 分な耐食性を示す鋼材を開発するに至ったものが本発明

【0012】この発明の鋼材の成分設計においては、耐 食性のみならず、50kJ/cmレベルの入熱溶接、特に100kJ /cmを超える大入熱溶接の適用を受ける際の機械的性 質、溶接性等とのバランスについても、重要な要素とし て考慮されている。

【0013】本発明は、上記に基づきなされたものであ り、本件第1の発明は、プライマー塗装状態で使用する 貨油タンク用耐食鋼において、化学成分として、mass% で、C:0.16%以下、Si:1.5%以下、Mn:3.0%以下、P:0. 035%以下、S:0.01%以下を含み、さらに、Cu:0.1%~ 1.4%、Cr:0.2~4%、Ni:0.05~0.7%のうちの1種以上 を含み、残部が実質的にFeからなり、下記の式(1)で 表されるPcmの値が0.22以下であることを特徴とする貨 油タンク用耐食鋼である。

[0014]

 $Pcm=C+Si/30+Mn/20+Cr/20+Cu/20+Ni/60+Mo/15+V/10+5B \le 0.22 (1)$

※の式(1)で表されるPcmの値が0.22以下であることを 特徴とする貨油タンク用耐食鋼である。本件第4の発明 40 は、本件第1ないし本件第3の発明のいずれか1つに記 載の化学成分に加えて、さらにA1:0.8 mass%以下を含 むことを特徴する貨油タンク用耐食鋼である。本件第5 の説明は、本件第1ないし本件第4の発明のいずれか1 つに記載の化学成分に加えて、さらにMo:0.5 mass%以 下を含むことを特徴する貨油タンク用耐食鋼である。本 件第6の発明は、本件第1ないし本件第5の発明のいず れか1つに記載の化学成分に加えて、さらにmass%でNb: 0.05%以下、V:0.12%以下、Ti:0.1%以下のうち、いず れか1種または2種以上を含むことを特徴する貨油タン うち1種以上を含み、残部が実質的にFeからなり、上記※50 ク用耐食鋼である。本件第7の発明は、本件第1ないし

5

本件第6の発明のいずれか1つに記載の化学成分に加えて、さらにB:0.01mass%以下を含むことを特徴する貨油タンク用耐食鋼である。本件第8の発明は、仕上げ温度を800℃以上で圧延を行い、その後冷却速度2℃/sec以上で600℃以下まで冷却を行うことを特徴とする本件第1ないし本件第7の発明のいずれか1つに記載の貨油タンク用耐食鋼の製造方法である。

[0015]

【発明の実施の形態】以下、本発明の貨油タンク用耐食 鋼およびその製造方法について詳しく説明する。

【0016】まず化学成分の限定理由について述べる。 単位はすべてmass%である。

【0017】C:0.16%以下

Cは鋼の強化に役立つ元素であるが、過度の添加は溶接性と耐食性に悪影響を及ぼすため、添加量の上限を0.16%とする。より好ましくは、添加量の上限を0.15%とする。

【0018】Si:1.5%以下

Siは鋼の脱酸に有用な元素であるが、過度の添加は溶接 作業性に悪影響を及ぼすため、添加量の上限を1.5%と する。

【0019】Mn:3.0%以下

Mnは鋼の強化と靭性向上に有効な元素であるが、過度の 添加は溶接性を阻害するため、添加量の上限を3.0%と する。より好ましくは、添加量の上限を2.0%とする。 鋼の強度を確保するためには0.2%以上の添加が好まし い。

【0020】P:0.035%以下

Pは、溶接性を低下させる元素であり、含有量は低いほど望ましい。0.035%までは許容できる範囲であり、含有量を0.035%以下とする。

【0021】S:0.01%以下

Sは鋼の熱間加工性、耐溶接割れ性等を低下させる元素であり、含有量は低いほど望ましい0.01%までは許容できる範囲であり、含有量の上限を0.01%とする。より好ましくは、添加量の上限を0.005%とする。

【0022】Cr、Cu、Ni:1種以上

Cr、Cu、Niは、耐食性を確保する上で少なくともいずれか1種の添加が必要である。それぞれの添加量の範囲については次のようになる。

[0023] Cu:0.1~1.4%

Cuは鋼のタンク環境での耐塗膜下腐食性を著しく向上させる。0.1%以上添加しないとその効果は明瞭ではないが、1.4%を超える添加は溶接高温割れの傾向が顕著になるため、添加量を:0.1~1.4%とする。好ましくは0.2~1.0%が適当である。Cr、Cu、Niのうちいずれか1種を添加する場合はCuが最も効果的である。

[0024] Ni:0.05 \sim 0.7%

Niは高価な添加元素ではあるが、耐食性向上に有効で、 かつCuによる溶接性への害を抑制する効果を持つ。0.05 %以上添加しないとその効果は明瞭ではないが、添加量が0.7%を超さると、効果が飽和し、かさって網の経済

が0.7%を超えると、効果が飽和し、かえって鋼の経済性を損ない、溶接割れ性も低下するようになるため、添加量を0.7%以下とする。より好ましくは添加量の下限を0.1%とする。Cr、Cu、Niのうちいずれか2種を添加する場合はCuおよびNiの添加が効果的である。

[0025]Cr:0.2~4%

Crの添加は炭酸ガス腐食の抑制に効果があることが知られているが、タンク環境でも一定の防食効果および耐塗10 膜下腐食性が得られる元素である。0.2%以上添加しないとその効果は明瞭ではないが、添加量が4%を超えると、低温割れ抑止のために予熱や後熱が必要になり、また溶接作業性も低下するため、添加量を0.2%以上、4%以下とする。

【0026】A1:0.8%以下

Alはタンク環境での耐塗膜下腐食性を向上させるので適宜添加できる。0.8%を超える添加を行うと溶接時にスラグを多発し、作業性を顕著に低下させるため、添加する場合は0.8%以下とする。

0 【0027】Mo:0.5%以下

Moは該当する使用環境での耐食性に有害な元素であるが、鋼の強度特性を向上させるため、制限して使用することが出来る。0.5%を超える添加は耐塗膜下腐食性の低下の傾向を著しくするため、添加量を0.5%以下とする

【0028】Nb:0.05%以下、V:0.12%以下、Ti:0.1%以下

Nb、V、Tiは鋼中の炭素と結合して炭化物を形成し、溶接性に及ぼす炭素の影響を減じることが出来るため、一30 定量の添加を選択できる。ただし、Nbは0.05%、Vは0.12%、Tiは0.1%を超えて添加すると、炭化物が多量に析出し、溶接時にクラックを生じやすくなるため、添加量としてはNbは0.05%以下、Vは0.12%以下、Tiは0.1%以下とする。

【0029】B:0.01%以下

Bは熱間加工性の向上に有効な添加元素であり、選択して添加が可能であるが、0.01%を超える添加は溶接高温割れの傾向を著しくするため、添加量を0.01%以下とする。

10 【 O O 3 O 】Pcm値:0.22以下(Pcm=C+Si/30+Mn/20+Cr/2 0+Cu/20+Ni/60+Mo/15+V/10+5B (1))

以上の各元素に対する制限を設けたうえで、上記式

(1)に相当するPcm値について規定する。これは溶接割れ感受性を示す特性値であり、この値が0.22を超えると溶接時の低温割れ発生率が著しく高くなるため、Pcm値を0.22以下に保持することが必要である。

【0031】本発明の鋼の化学成分の内、上記の化学成分以外の残部は実質的にFeである。「残部が実質的にFeである」とは、本発明の作用効果を無くさない限り、

かつCuによる溶接性への害を抑制する効果を持つ。0.05 50 不可避不純物をはじめ、他の微量元素を含有するものが

6

本発明の範囲に含まれ得ることを意味する。

【0032】本発明の実施にあたっては、一部の化学成分については、以下のようにすることもできる。

【0033】C: Cは鋼の強化の観点からは、0.03%以上添加することが好ましい。

【 0 0 3 4 】S: Sについては安定して0.005%以下とするために、脱硫処理を行うことが好ましい。

【0035】Cr: Crは添加に伴い防食効果が向上するが、添加量が0.6%を超えると防食効果の向上が鈍化する傾向が見られ、また鋼の溶接性は次第に劣化するので、添加する場合は0.6%以下とすることが好ましい。【0036】Cu: Cuは添加量が0.4%を超えると、やはり鋼の溶接性が次第に劣化する傾向が見られるので、添加する場合は0.4%以下とすることが好ましい。

【 O O 3 7 】Ni: Niは、添加量が0.5%を超えると効果が飽和し始めるため、費用対効果の観点からは添加量を0.5%以下とすることが好ましい。

【0038】A1: A1は添加量が0.4%を超えると、溶接 時のスラグ発生により作業性に影響が出てくるので、添 加する場合は0.4%以下とすることが好ましい。

【0039】次に、製造方法について説明する。

【0040】上記の化学成分の鋼は、通常の鋼と同様の方法で製造できる。例えば、鋼の溶製では、転炉等で主要5元素C、Si、Mn、P、Sを発明の範囲に調節するとともに、必要に応じてその他の合金元素を添加する。

【0041】その後、連続鋳造等により得られた鋳片を そのままあるいは冷却後、圧延を行う。圧延条件につい ては、耐食鋼としては特に条件を問わないが、機械的特 性の観点からは適切な圧下比を確保する必要がある。

【0042】圧延の際、熱間圧延後の冷却速度を制御すると、引張強度490N/mm²級以上の高強度鋼材とすることができる。その方法は、熱間圧延の仕上げ温度を800℃以上とし、その後2℃/s以上の冷却速度で600℃以下まで冷却するものである。仕上げ温度が800℃未満では靭性が劣り、冷却速度が2℃/s未満もしくは冷却停止温度が600℃超えの場合には、490MPa級以上の強度が得られない。冷却は一度冷却した後再加熱して冷却しても、直接冷却しても良い。

【0043】本発明では、耐食性を発揮するため上記のように製造した鋼に、有機もしくは無機の塗装、あるい 40 は錆止めプライマーによる塗膜を施して使用する必要がある。塗装およびプライマーの種類は問わないが、無機系ジンクプライマーによる塗膜を用いると最も効果的である。

【0044】本発明による耐食鋼の適用形態としては、 VLCCタンカーの貨油タンク上部の構造体ないしデッキプレートに、プライマー塗装ままで用いることが最も通常である。さらに、タンク内部もしくは天井部の梁、柱等の構造体として用いても好適な耐食性と機械的性質を発揮しうる。 [0045]

【実施例】以下に本発明の実施例を示す。

【0046】(実施例1) 本実施例では、溶解はすべて1470N(150kgw)真空誘導溶解炉により、鋳造も真空中で実施した。245N(25kgw)鋳塊となしたのち、1200℃に加熱して熱間圧延し、厚さ25mmの板材とした。この25mmの板材を溶接割れ性の評価に用いた。さらに、1180℃に再加熱して熱間圧延して厚さ6mmの板材とし、耐食性評価試験に供した。

8

【0047】溶接高温割れ性の評価には、厚さ25mmの板材に深さ15mmのV溝を切り、溶接ビードを置いて、冷却後の溶着金属部の割れの有無を比較評価する方法を用いた。溶接方法はサブマージアーク溶接とし、溶接材料は市販の強度50キロ級(490N/mm²級)ワイヤとした。溶接条件は、電圧38~45V、電流1000~1250A、溶接速度40cm/分、入熱139kJ/cmとした。割れの検出にはX線透過法を用いた。また、同時にスラグの発生等によるビードの乱れ、作業性の悪化についても評価した。

【0048】一方、溶接時の低温割れ感受性の評価に 20 は、日本工業規格JIS Z3158で規定されるy型溶接割れ試 験を実施し、鋼板冷却後の割れの有無で評価した。溶接 は市販の490N/mm²級被覆アーク溶接用ワイヤを使用し、 溶接条件は、電圧24V、電流170A、溶接速度15cm/min、 入熱16kJ/cmとした。割れの検出には断面切断法を用い た。

【0049】さらに、耐食性については、厚さ6mmの板材から寸法6mm×55mm×45mmの腐食試験片を切り出し、全面にプライマー処理を施して腐食試験に供した。プライマー処理は、事前によくショット錆落としを実施した試験片に、亜鉛末入り顔料を一定の割合で含有する、アルキルシリケート樹脂ワニス溶剤使用のジンク系プライマーの吹付塗装を行い、室温で24時間乾燥させた。亜鉛末入り顔料の重量割合については、43%のものと48%のものを使用して比較した。

【0050】耐食性の評価を加速するため、試験面には 鋼材表面に達するX字型のカッティングを施し、これを 模擬損傷箇所として腐食試験後の表面錆、塗膜下の錆の 進行を表面積率で評価した。なお、試験前の損傷面積率 は1.0%であった。

【0051】腐食試験は、貨油タンク内の環境条件を模擬した雰囲気と温度サイクル中に、試験片を曝して、腐食箇所拡大率の評価を実施した。貨油タンク内模擬環境は、ガス組成10%CO2,8%O2,0.02%SOx,残部N2の混合ガスを過飽和水蒸気圧の下に充満させて、試験用の雰囲気とした。この雰囲気中に挿入した試験片には、ヒータと冷却装置によって30℃/60℃の繰返し温度サイクルを、1サイクル1日として90日間付与し、結露水による腐食を模擬できるようにした。

【0052】表1、表2、表3は、それぞれ本発明鋼と 50 比較鋼の成分分析結果、および(1)式によるPcmと、 C

上記の評価方法を用いた溶接性と耐食性の評価結果、即ちV溝試験における高温割れの有無(割れなしを◎で示している)、作業性評価の結果(作業性の劣るものに*を付している)、低温割れ感受性(割れの無いものを◎で示している)、プライマー種類(43:亜鉛末顔料の重*

*量割合43%、48:同48%) 模擬環境における錆(腐食) 面積率(単位%)をまとめて示している。

10

[0053]

【表1】

	- ₽	Ú	Si	Σ	Ъ	s	solAl	t. N	ਨ	ර්	Z	Nb	٨	8	ш	Mo	Рсш	高 割れ	低温割れ	プイ マー種 類	號 積率 (%)
	-	0.11	0.28	1.07	0.013	0.003	0.04	0.003	0.01	0.46	0.00						0.196	-	0	43	1.7
	N	0.15	0.26	0.97	0.011	0.00	0.01	0.002	0.0	0.21	0.00						0.218	_	0	48	4.6
	8	0.09	1.39	1.21	0.014	0.002	0.05	0.005	0.0	0.37	0.0						0.216	0	0	£3	23
Ħ	4	0.07	0.31	2.11	0.012	0.003	0.04	0.002	0.0	0.33	0.00						0.203	0	0	43	4.5
	ιΩ	0.12	0.43	1.14	0.033	0.004	0.04	0.004	000	0.29	0.00						0.206	0	0	4	3.9
	9	0.1	0.45	0.95	0.010	0.005	0.73	0.003	0.02	09.0	0.00						0.204	_	0	₹	9'
	7	60.0	0.38	1.05	0.014	0.004	0.08	0.003	000	0.42	0.00						0.176		0	₹	8.
絥	00	600	0.37	0.99	0.013	0.002	0.01	0.002	0.87	0.15	0.54						0.212	_	0	\$	
	6	0.1	0.31	1.02	0.020	0.003	0.03	0.004	0.0	0.21	0.03						0.183	0	0	\$	=
	2	0.03	0.19	0.21	0.011	0.002	0.0	0.002	0.0	3.44	900						0.219	_	0	₽	=
	=	0.10	0.27	1.16	0.008	0.002	0.04	0.003	0.31	000	0.16						0.185		0	84	2 .
雷	2	0.14	0.28	0.63	0.015	0.004	0.04	0.002	0.28	000	0.15						0.197	0	0	43	<u>6.</u>
_	53	0.09	1.39	1.07	0.011	0.003	0.03	0.004	0.20	0.0	0.1						0.202		0	43	15
	7	0.09	0.32	2.11	0.007	0.002	0.02	0.001	0.21	000	0.15						0.219	_	0	5	3.4
	땬	0.12	0.24	1.06	0.033	0.004	90.0	0.003	0.25	000	0.16						0.196		0	43	2.8
騳	16	0.10	0.35	Ξ	0.014	0.005	0.73	0.00	0.30	0.00	0.18						0.185		0	£43	2.8
	1	110	0.53	1.24	0.016	0.004	0.44	0.003	0.23	0.00	0.14						0.204		0	2	14
	8	0.08	0.33	1.02	0.012	0.002	0.03	0.002	0.87	0.00	0.54						0.195	0	0	43	1.4
	6	000	0.42	1.09	0.011	0.003	0.03	0.004	0.33	0.11	0.26						0.185		0	4	유
	20	0.03	0.17	0.22	0.013	0.002	0.03	0.003	0.04	3.42	0.02						0.220		0	43	1.0
														無記入は分析セず	は分れ	14 th	11-11	* 主たは分析限	阴果美活	押	

【0054】 【表2】

- 2		
-/-	$\overline{}$	٠,
- 1	- 1	- 1

特開2002-12940 12

【0055】 【表3】

1 1 0.179 0.201 0.181 0.180 0.203 0.207 0.174 0.208 0.208 0.219 0.219 0.178 0.39 0.41 0.22 0.18 0.44 ₽ 0.02 0.03 0.01 <u>≔</u> 0.002 0.00 0.004 œ 0.03 > 0.04 0.02 0.01 0.01 0.02 0.02 0.01 운 င် 0.01 0.02 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ₹ 0.002 0.004 0.004 0.022 0.015 0.020 0.021 ₹ 22 22 22 22 22 22 23 33 33 33 34 34 35 温

10

20

30

- 1	- 4

1 /																								1	_1	
鶴 積 (%)	4.7	2.5	4.0	2.2	1.2	3.3	0.	2.4	2.1	1.1	1.7	1.3	Ξ.	3.6	5.9	2.1	80.	11	3.3	3.0	3.0	3.6	8	8	24	
プイ ペー 種類	48	48	43	43	43	\$	43	43	43	43	43	43	5	43	₽	43	43	43	43	8	43	43	2	43	43	あり
低温割れ	0	0	0	0	製光	0	整	0	0	0	0	聖	藍	0	٥	0	0	0	0	0	0	製	©	0	0	
高調化						뻍												*		* ©				0	0	* は作業性
Pcm	0.219	0.198	0.214	0.170	0.276	0.161	0.260	0.216	0.217	0.219	0.197	0.240	0.295	0.204	0.212	0.219	0.212	0.222	0.183	0.212	0.212	0.245	0.190	0.155	0.201	± *
ω																		0.71			0.51					榧
μ.																	0.18				0.12					界未
20																0.015				0.002						または分析限界未満
>															0.15				0.11	0.10						抗战
£														0.06					900	000	0.02					
Z	0.00	0.0	0.00	0.0	0.65	0.02	0.00	0.13	0.10	0.17	0.24	0.78	0.20	000	000	0.03	0.13	0.05	0.0	0.02	0.01	0.00	0.00	8	0.00	安全
ప	0.22	0.44	0.38	0.31	0.14	0.26	4.24	0.0	0.0	0.00	0.00	0.00	4.03	0.36	0.27	0.41	0.14	0.31	0.40	0.38	0.36	0.39	0.0	8	0.18	記入は分析せず、
3	0.00	0.0	0.01	0.00	1.46	0.03	0.00	0.24	0.20	0.30	0.28	0.70	0.28	0.00	0.00	0.04	0.26	000	0.01	0.02	0.01	000	00	9	0.00	兼
total N	0.001	0.003	0.002	0.002	0.003	0.002	0.003	0.002	0.005	0.004	0.003	0.00	0.003	0.002	0.002	0.006	0.003	0.00	0.003	0.002	0.003	0.003	0.004	0.003	0.004	
sol.	0.02	90.0	0.05	0.04	0.02	0.03	0.04	0.03	0.08	0.0	0.88	0.02	0.04	0.07	0.04	0.17	0.05	0.02	0.12	0.15	0.18	0.03	0.02	0.03	0.02	
S	0.003	0.003	0.002	0.005	0.002	0012	0.002	0.003	0.005	0.004	0.002	0.00	0.004	0.003	0.004	0.003	0.003	0.002	0.005	0.003	0.004	0.003	0.004	0.003	0.002	
Ъ	0.012	0.013	0.011	0.039	0.008	0.014	0.007	0.022	0.017	0.009	0.013	0.014	0.011	0.013	0.012	0.011	0.016	0.014	0.012	0.014	0.013	0.025	0.015	0.014	0.018	
Mn	0.43	03	3.10	50.	1.23	0.95	0.22	0.46	0.85	306	00.1	0.94	0.51	1.45	1.82	1.08	1.12	1.08	0.58	0.77	0.65	1.61	1.03	96.0	1.34	_
ΞŌ	0.18	1.62	0.27	0.35	0.42	0.56	0.21	0.26	1.88	0.23	0.58	0.46	0.61	0.39	0.98	0.22	0.42	0.44	0.37	69.0	0.50	97.0	0.51	0.42	0.74	範囲9
C	0.18	0.07	0.03	60.0	0.11	0.08	0.03	0.17	0.10	0.04	0.11	0.13	0.03	0.10	0,06	90.0	0.12	0.09	0.11	0.1	0.11	0.12	0.12	60.0	0.10	下線:発明範囲外
	99	37	8	8	4	42	43	45	46	47	84	49	22	2	25	53	54	55	26	88	59	61	62	63	64	上機
			ᠴ																靐							

【0056】表1と表2にまとめた本発明成分による鋼材(No.1~35)は、すべて耐溶接割れ性と溶接時の作業性を兼ね備え、かつ耐塗膜下腐食性が良好で、好適に使用可能であることがわかる。一方、表3にまとめた比較鋼(No.36~64)は、成分の限定理由の項で述べたような背景から、耐溶接割れ性、溶接作業性、模擬環境下での耐塗膜下腐食性の何れかが十分ではない。これより、これらを満足するためには本発明による成分設計が好適であることが理解できる。

【 O O 5 7 】図1は、Pcm値とy型溶接割れ試験結果の関係を示す図である。この図より、Pcmの値が、0.22以下である場合は溶接割れが発生せず(図中no crack)、その25mmの板材を溶接割れが発生すること(図中 crack)が分かる。よって、Pcmの値が0.22を超えると溶接時の低温割れ発生率が著しく高くなるため、Pcm値を0.2 * 50 性評価試験に供した。

*2以下に保持することが必要である。

【0058】図2は、添加Cr、Cu量と塗膜付結露腐食試験結果の関係を示す図である。この図より、添加Cr、Cu量の増加により、結露腐食試験による錆面積率(図中Sで示す)が縮小されることが分かる。錆面積率の許容限度を15%以下とするには、Cr量を0.2%以上Cu量を0.1%以上とすればよいことが分かる。

【0059】(実施例2) 本実施例では、溶解はすべて5t真空誘導溶解炉によって行い、鋳造も真空中で実施した。9800Nの鋳塊となしたのち、1200℃に加熱して各種の製造条件で熱間圧延し、厚さ25mmの板材とした。この25mmの板材を溶接割れ性の評価、引張り試験、シャルピー衝撃試験に供した。さらに、この25mmの板材を1180℃に再加熱して熱間圧延して厚さ6mmの板材とし、耐食性評価試験に供した。

【 O O 6 O 】 引張り試験片は圧延方向に全厚試験片を採取し、常温での引張り強度で評価した。引張り強度が49 ON/mm²以上の場合を良好とした。シャルピー衝撃試験は、板厚中央部より V ノッチシャルピー試験片を採取し、試験温度-40℃における3本平均の吸収エネルギーで評価した。試験温度-40℃以上で50J以上の吸収エネルギーを示す場合を良好と判定した。

【0061】溶接高温割れ性の評価には、厚さ25mmの板材に深さ15mmのV溝を切り、溶接ビードを置いて、冷却後の溶着金属部の割れの有無を比較評価する方法を用い 10た。溶接方法はサブマージアーク溶接とし、溶接材料は市販の490N/mm²級ワイヤとした。溶接条件は、電圧38~45V、電流1000~1250A、溶接速度40cm/分、入熱139kJ/cmとした。割れの検出にはX線透過法を用いた。また、同時にスラグの発生等によるビードの乱れ、作業性の悪化についても評価した。

【0062】一方、溶接時の低温割れ感受性の評価には、日本工業規格JIS Z3158で規定されるy型溶接割れ試験を実施し、鋼板冷却後の割れの有無で評価した。溶接は市販の490N/mm²級被覆アーク溶接用ワイヤを使用し、溶接条件は電圧24V、電流170A、溶接速度15cm/min、入熱16kJ/cmとした。割れの検出には断面切断法を用いた。また、同時にスラグの発生等によるビードの乱れなどの、溶接欠陥や作業性についても評価した。

【0063】耐食性については、厚さ6mmの板材から寸法6mm×55mm×45mmの腐食試験片を切り出し、全面にプライマー処理を施して腐食試験に供した。プライマー処理は、事前によくショットによる錆落としを実施した試験片に、亜鉛末入り顔料を一定の割合で含有するアルキルシリケート樹脂ワニス溶剤使用のジンク系プライマーの吹付塗装を行い、室温で24時間乾燥させた。亜鉛末入り顔料の亜鉛の重量割合については、43%のものと48%のものを使用して比較した。

1.6

【0064】耐食性の評価を加速するため、試験面には 鋼材表面に達するX字型のカッティングを施し、これを 模擬損傷箇所として腐食試験後の表面錆、塗膜下の錆の 進行を損傷部の表面積率である錆面積率で評価した。な お、試験前の損傷部の面積率は1.0%であった。

【0065】腐食試験は、貨油タンク内の環境条件を模擬した雰囲気と温度サイクル中に試験片を曝して、腐食箇所拡大率の評価を実施した。貨油タンク内模擬環境は、ガス組成10%CO2、8%O2、0.02%SOx、0.13H2S、残部N2の混合ガスを過飽和水蒸気圧の下に充満させて、試験用の雰囲気とした。この雰囲気中に挿入した試験片には、ヒータと冷却装置によって30℃/60℃の繰返し温度サイクルを、1サイクル1日として90日間付与し、結露水による腐食を模擬できるようにした。

【0066】表4、表5に本発明鋼(No.101~135)お よび比較鋼(No.136~151)の成分分析結果、(1)式 によるPcm値を示す。本発明鋼であるNo.101、107、11 3、128については圧延条件を変化させて各種の試料を作 製した。表6に各鋼材に対する圧延仕上げ温度、圧延後 20 の冷却速度(冷速)、および冷却速度2℃/s以上に相当 する水冷した場合の冷却停止温度を示す。さらに、引張 試験より得られた強度、シャルピー衝撃試験より得られ た-40℃における吸収エネルギーvE-40、上記の評価方法 を用いた溶接性(溶接時の高温割れ性、低温割れ性につ いては、各試験において割れが発生した場合には高温割 れ・低温割れと記載し、割れなしの場合は◎を記載し、 作業性不良のものや溶接欠陥が存在する場合にはその旨 を記載して示す)、表面に適用したプライマー種類(4 3:亜鉛末顔料の重量割合43%、48:同48%、一部につい 30 てはプライマーの塗布を行わなかった)、模擬環境にお ける錆(腐食)面積率(単位%)を併せて示す。

[0067]

【表4】

17

[0069]

18

П	鋼材No.	C	Si	Mn	Р	S	Cu	Çr	Ni	Мо	solAl	total N	Nb	V	Ti	В	Рсп
	101	0.13	0.31	1.13	0.007	0.002	0.21	0.02	0.13		0.06	0.003					0.211
	102	0.16	0.18	0.88	0.012	0.003	0.15	0.01	0.10		0.04	0.003					0.220
ł I		0.09				0.002			0.15		0.04						0.214
本						0. 002			0.12		0.06						0.140
						0.005					0.01	0.004					0.217
1						0.009					0.01	0.002				i l	0.204
П						0.001			0.25		0.07						0.199
П						0.003			0, 40		0.05						0.210
1						0.001					0.06						0.218
1						0.002					0.06						0.133
1						0.002				0.46							0.189
発						0.001					0.76						0.193
ш						0.002					0.01						0.182
						0.002					0.01			İ			0.198
ш						0.005					0.02						0.185
						0.003			0.15		0.72						0.190
ш						0.004			l		0.47						0.215
ш						0.005											0. 203
						0.001			0.25		0.03					0.000	0. 200
明						0.003					0.08 0.07					0.009	0.216
						0.004			0.12		0.07			0.12			0.154
						0.002 0.001					0.00			0. 12	ı	Ι ΄	0.207 0.217
						0. 001			0. 15		0.02				0. 10		0. 170
1						0.003									۰. ۱۰		0. 198
						0.003					0.11		0 02	n n2			0. 218
						0.003					0.07				0.03		0. 202
銅						0.003					0.06					0.002	0.215
_						0.002			0. ia		0.06				0. 02		0.217
						0.005				0.31						-:	0.213
						0.001				0.30					0.01		0.195
1						0.002										0.003	0.190
ł						0.001									0.02		0.206
1						0.002				0.22		0.006	0.01	0.06	0.02		
1						0.002					0.01		l	1			0.205
											無記ろ	は分析し	Ŧ.	またに	分析	阻界未	

[0068] *【表5】 | Region | Pcm 0. 220 0. 218 鋼材No. 0.01 0.002 0.251 0. 215 0. 216 0. 217 0. 14 0.18 0.219 0.229

下線:発明範囲外

※ ※【表6】

無記入は分析せず、または分析限界未満

П	鋼材	圧延仕上	冷速	冷却停止	強度	vE-40 J	溶接性	プライ	鋳面積率%
\vdash	No.	温度℃ 840	℃/按 0.8	温度℃	MPa	208	7%	₹ 43	
ш	101	840		550	481 * 589	110	00000000000000000000000000000000000000	43	3.8 4.6
1	"	830 860	15 15	400	661	89	🙎	43	4.1
H		840	10	625	476 *	256	ΙX	48	3.8
H	#	850	10	650	462 *	249	l X	43	3.4
H	"	810	0.9	630	469 *	238	l X	なし	1.5mm/年**
H	4	820	15	550	623	62	lä	なし	1.6mm/年##
H	102	910	0.7	-	477 *	185	l ä	48	3.6
H	103	940	0.8	_	433 *	201	lő	43	3. 2
本	104	820	1. 0	_	506	145	Ιŏ	43	3.8
17	105	880	1.0	_	488 *	177	Ιō	43	4.1
H	105	870	1, 2	_	490	192	٥	43	4.6
H	107	850	0.9	-	503	180	٥	43	3.8
H	н	860	10	525	619	136	(C)	43	3.5
H	#	850	15	500	637	101	•	43	4.2
H	"	890	15	620	462 *	211	0	48	3.7
H		870	15	650	463 *	237	(O	43	4.8
H	108	930	0.9	-	488 *	179	l Q	43	1.6
H	109	900	0.7	-	417 *	210	l Ø	43	4.0
H	110	860	0.8	-	672	208	l ©	43	3. Z
	111	870	0.8	-	491	218	l &	48	2.9
発	112	880	1.0	-	459 *	224	l Ö	43	3.3
	113	890	0.9	-	426 *	185	9	43	4.8
i		840	6.0	550	611	133 169	<u> </u>	43 43	4.9 3.4
	114	850	1.1	-	512 536	167	2	43	3.6
ΙÌ	115 116	910 890	1.0 0.7	_	490	199	×	43	4.3
ll	117	890	0.1	-	489 *	184	8	43	
H	118	840	0.8	-	502	200	ă	43	1.9 3.7
H	119	810	0.8	_	508	202	lă	43	1.7
194	120	820	1.0	_	505	157	്	43	4.6
7"	121	800	i. i	_	398 *	191	ŏ	43	4.1
	122	840	1.0	_	4B7 *	203	Õ	43	3.6
	123	880	1.0	-	461 *	172	O	43	3.3
	124	870	1.0	-	433 *	216	©	43	4.4
	125	940	1.0	-	464 *	193	0	43	2.5
	126	910	1.0	-	504	163	0	43	3.0
1. 1	127	840	1.0	<u>-</u>	476 *	170	©	43	3.8
鋼	128	870	1.0		496	194) Õ	43	3.8
H	,,	870	3.0	550	583	123	l ©	43	3.6
L	.,,	860	15	450	647	104	9	43	3.7 4.6
H	129 130	880	1.0	_	468 ** 496	186 179	2	48 48	4.1
	131	900 860	0.9 0.9	_	470 *	201	` ×	43	3.6
Ιİ	132	850	0.7	_	463 *	225	 	43	3.9
	133	890	0.8	_	489 *	194	ă	43	4.2
	134	840	0.8		420 *	217	Õ	43	3.9
	135	870	1.0	-	416*	208	ŏ	43	3.5
Н	136	870	0.9	_	463*	214	低温割れ	48	15.2
	137	880	0.9		494	189	作整性不同	48	4.4
	138	860	0.8	-	549	23	低温割れ 高温割れ	48	3.6
比	139	840	0.8	-	470 *	254	高温割れ	48	4.7
	140	860	0.8	-	475 *	248	高温割れ	48	3.9
	141	910	1.0	-	479 *	240		48	16.4
	142	910	1.0	-	526	181	高温割れ	48	3. 2
较	143	900	0.8	-	591	35	高温割れ 低温割れ	48	3. 3 4. 1
	144	880	0.7		760 534	9 142	は温制れ	48 48	15.1
	145	890 920	1.0		534 462*	208	作業性不良	48 48	3.
24	146 147	920 900	1.1 0.8	1 [462 *	212	作業性个员 溶接欠陥	48 43	3. 6 4. 3
	148	840	1.2		479*	239	交接夕路	43	4. 8
	149	880	0.8	_	421*	256	水灰人服 交接欠款	48	4.6
	150	860	0. 9	_	480 *	217	高温割れ	48	3. 9
	151	860	0. 9 0. 9	-	555	31	溶接欠陥 高温割れ 低温割れ	48	3. 8
_		造条件が手					〇:潛接性良		
						718 - + T	JOHNO STATE	- and the !	****

*:JISで規定する 490MPa級網の強度に満たないもの

*:J|Sで規定する 490M **:滅肉量(全面腐食)

【0070】化学成分が本発明の範囲内である鋼材(No.101~135)は、すべて耐溶接割れ性と溶接時の作業性を兼ね備え、かつ耐塗膜下腐食性が良好で、貸油タンクに好適に使用可能であることがわかる。一方、化学成分が本発明の範囲外の比較鋼(No.136~151)は、成分の限定理由の項で述べたような背景から、耐溶接割れ性、溶接作業性に問題がある、または錆面積率が8%以上で模擬環境下での耐塗膜下腐食性が十分でない。また鋼材No.101のプライマー塗布を行わなかったものについては、鋼材全面に渡って非常に大きな減肉が生じることが確認された。これより、耐溶接割れ性、溶接作業性、模擬環境下での耐塗膜下腐食性を満足するためには本発明による成分設計の鋼材を用いれば良いことが分かった。また本発明の範囲の製造条件を用いると、JIS規定の490MPa級鋼以上の強度が得られる事が分かった。

【0071】図3は、Cu添加量と塗膜付結露腐食試験の*50 ができる。

* 錆面積率の関係を示す図である。この図より、Cu添加量が0.1%未満の場合は耐塗膜下腐食性に対するCu添加の効果が十分発揮されないことがわかった。一方、1.4%を超える添加は溶接高温割れが発生した。

[0072]

【発明の効果】本発明により鋼の化学成分を適切に調製することにより、貨油タンクにおける腐食メカニズムに対して十分な耐食性を有し、溶接性の向上および合金コストの削減が可能な貨油タンク用耐食鋼を得ることができる。その結果、VLCCタンカーの貨油タンク上部の構造体乃至デッキプレート用に、重塗装して、または重塗装することなくプライマー適用ままで用い得るばかりでなく、タンク内部もしくは天井部の梁、柱等の構造体として長期間好適に用い得る鋼材が提供され、船舶の製造コスト、維持管理コストの低減などの経済効果を得ることができる。

を示す図である。

【図面の簡単な説明】

【図1】Pcm値とy型溶接割れ試験結果の関係を示す図である。

21

【図2】Cr、Cu添加量と塗膜付結露腐食試験結果の関係

【図3】Cu添加量と塗膜付結露腐食試験の錆面積率の関係を示す図である。

22

【図2】

【図3】

フロントページの続き

(72)発明者 和田 典巳 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 F ターム(参考) 4KO32 AA01 AA02 AA04 AA05 AA11

AA12 AA15 AA16 AA17 AA19 AA22 AA23 AA27 AA29 AA31 AA32 AA35 AA36 BA01 CA03

CC03 CC04 CD02 CD03