EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

June 2004

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Paper No. S2

Qn no.	Scheme Mr.	ırks	
1(a)	A <u>list of</u> (all) the members of the <u>population</u>	B1	
(b)	A random variable that is a <u>function</u> of a random <u>sample</u> that contains <u>no unknown parameters</u>	B1 B1	(1)
		Total 2 ma	(2)
2(a)	1	Total 3 ma	rksj
` `	$P(X < 2.7) = \frac{3.7}{5} = 0.74$	B 1	
(b)			(1)
(0)	$E(X) = \frac{4-1}{2} = 1.5$ Require minus or complete attempt at integration, 1.5	M1A1	,
			(2)
(c)	Var(X) = $\frac{1}{12}(4+1)^2 = \frac{25}{12} = 2.083$ Require plus, $\frac{25}{12}or2\frac{1}{12}or2.083or2.08$	M1A1	
			(2)
3	l control de la control de	Total 5 mai B1B1	rks)
	* .		
	$P(X \ge 10) = 1 - P(X \le 9) = 0.0713 > 0.05$ Correct inequality, 0.0713 Do not reject H_0 , there is insufficient evidence to support Brad's claim. DNR, context		
	Do not reject 110, there is insummerent evidence to support Brad's claim. DIVE, context	AIAI	(7)
4(a)	() Fixed no of trials/ independent trials/ success & failure/ Probab of success is constant any 2	Total 7 mai B1B1	(7) rks)
			(2)
(b)	X is rv 'no of defective components $X \sim Bin(20,0.1)$ Bin(20,0.1)	B1	44
(c)	P(X=0)=0.1216 =0, 0.1216	M1A1	(1)
(1)	0, 0.1210		(2)
(d)	$P(X > 6) = 1 - P(X \le 6) = 1 - 0.9976 = 0.0024$ Strict inequality & 1- with 6s, 0.0024	M1A1	
(e)	1)/32-20-01-2		(2)
	E(X)=20x0.1=2 2 $Var(X)=20x0.1x0.9=1.8$ 1.8	B1 B1	
(f)			(2)
(~)	$X \sim \text{Bin}(100,0.1)$ Implied by approx used	B1	
	$X \sim P(10)$	B1	
	$P(X > 15) = 1 - P(X \le 15) = 1 - 0.9513 = 0.0487$ Strict inequality and 1- with 15, 0.0487		
	(OR $X \sim N(10,9)$, $P(X > 15.5) = 1-P(Z < 1.83) = 0.0336$ (0.0334) with 15.5	BIMIAI)	1
	(OR $X \sim N(10,10)$, $P(X > 15.5) = 1 - P(Z < 1.74) = 0.0409 (0.0410)$ with 15.5	BIM1A1)	
	er e	otal 13 mar	(4) ke)
			/

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

June 2004

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 2004

Paper No. S2

Qn no.	Scheme Ma	rks	
5 (a)	A range of values of a test statistic such that if a value of the test statistic		
	obtained from a particular sample lies in the critical region,	D1D1	
	then the null hypothesis is rejected (or equivalent).	B1B1	(2)
(b)	P(X < 2) = $P(X = 0) + P(X = 1)$ both	M1	√- /
	$=e^{-\frac{1}{7}} + \frac{e^{-\frac{1}{7}}}{7}$ both		
	$=e^{-7}+\frac{c}{7}$ both	A1	
	=0.990717599 =0.9907 to 4 sf awrt 0.991	A1	
			(3)
(c)	$X \sim P(14 \times \frac{1}{7}) = P(2)$	B1	
	$P(X \le 4) = 0.9473$ Correct inequality, 0.9473	MIAI	
			(3)
(d)	$H_0: \lambda = 4, H_1: \lambda < 4$ Accept $\mu \& H_0: \lambda = \frac{1}{7}, H_1: \lambda < \frac{1}{7}$	- B1B1	
	, ,		
	$X \sim P(4)$ Implied $P(X \le 1) = 0.0916 > 0.05$, Inequality 0.0916		
	$P(X \le 1) = 0.0916 > 0.05$, Inequality 0.0916 So insufficient evidence to reject null hypothesis	MIAI A1	
	Number of breakdowns has not significantly decreased	AI	
			(7)
6 (a)	No of defects in carpet area a sq m is distributed $Po(0.05a)$ Poisson, $0.05a$	otal 15 mai R1R1	rks)
	Defects occur at a constant rate, independent, singly, randomly Any 1	B1	
(b)			(3)
(0)	$X \sim P(30 \times 0.05) = P(1.5)$ P(1.5)	B1	
	$P(X=2) = \frac{e^{-1.5} \times 1.5^2}{2} = 0.2510$ Tables or calc 0.251(0)	M1A1	
	2		(3)
(c)	$P(X > 5) = 1 - P(X \le 5) = 1 - 0.9955 = 0.0045$ Strict inequality, 1-0.9955, 0.0045	M1M1A1	(3)
(d)			(3)
(4)	$X \sim P(17.75)$ Implied	B 1	
	$X \sim N(17.75, 17.75)$ Normal, 17.75	Bi	
	$P(X \ge 22) = P\left(Z > \frac{21.5 - 17.75}{\sqrt{17.75}}\right)$ Standardise, accept 22 or ±0.5	M1M1	
		Al	
	=0.1867		
	l sa	otal 15	(6)
	(1	otal 15 mar	KS)

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

June 2004

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS

Paper No. S2

Qn no.		Scheme		Ma	гks	
7(a)	$E(X) = \int_0^1 \frac{1}{3} x dx + \int_1^2 \frac{8x^4}{45} dx$		∫xf	(x)dx, 2 terms added	MiMi	
	$= \left[\frac{1}{6}x^2\right]_0^1 + \left[\frac{8x^5}{225}\right]_1^2$			Expressions, limits	A1A1	
	$=1.26\dot{8}=1.27$ to 3 sf	or $\frac{571}{450}$ or $1\frac{12}{450}$	2 <u>1</u> 50	awrt1.27	A1	(É)
(b)	$F(x_0) = \int_0^{x_0} \frac{1}{3} dx = \frac{1}{3} x_0 \text{ for } 0 \le$	<i>x</i> < 1	variable upper limi	t on $\int f(x)dx$, $\frac{1}{3}x_0$	M1A1	(5)
	$F(x_0) = \frac{1}{3} + \int_1^{x_0} \frac{8x^3}{45} dx \text{ for } 1 \le$	$x \le 2$ their	r fraction + v.u.l on	$\int f(x) dx \& 2 \text{ terms}$	М1	
	$= \frac{1}{3} + \left[\frac{8x^4}{180} \right]_1^{x_0}$			$\frac{8x^4}{180}$	8 1	
	$=\frac{1}{45}(2x_0^4+13)$				A1	
		0	<i>x</i> < 0			
	F(x) =	$\frac{1}{3}x$	$0 \le x < 1$	middle pair, ends	R1.R1	
		$\frac{1}{45}(2x^4+13)$	$1 \le x \le 2$	madio pari, ords	D1,D1	
(2)		1	<i>x</i> > 2			(7)
(c)	$F(m) = 0.5$ $\frac{1}{45} (2x^4 + 13) = \frac{1}{2}$			Their function=0.5	MIAIft	
	$m^4 = 4.75$ m = 1.48 to 3 sf			awrt 1.48	Al	(0)
(d)	mean <median Negative Skew</median 			dep	B1 B1	(3)
				(T	otal 17 m	(2) arks)