

Grupo de Geodesia Satelital de Rosario (GGSR)

Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Universidad Nacional de Rosario. http://www.fceia.unr.edu.ar/gps/

CURSO DE FORMACIÓN

GEORREFERENCIACIÓN

Organizado por: Colegio de Profesionales de la Agrimensura de la Provincia de

Santa Fe Distrito Norte

Lugar: Salón de la Caja de Previsión Social de los Profesionales de la Ingeniería de la

Provincia de Santa Fe 1ra Circunscripción.

Fecha: Viernes 5 de agosto de 2016.

Horario de realización: 8:00 a 19:00 hs.

1. Introducción

- > Georreferenciación en las mensuras de inmuebles rurales.
- Normas, tolerancias, conceptos de precisión y error.
- > Acerca de las recetas y de las infinitas maneras de resolver un mismo problema.
- > Comentario sobre una propuesta del Instituto Geográfico Nacional (IGN).
- ➤ La cuestión esencial es contar con los conocimientos.
- ➤ El software informa respecto a la precisión estimada.

2. Métodos

2.1. <u>Utilizando 2 receptores</u>

- 2.1.1. Estacionar un receptor en un punto de la red (pasivo, de coordenadas conocidas) y el otro receptor en un lugar adecuado como base para efectuar el relevamiento. Posteriormente el primer receptor recorrerá los puntos necesarios.
- 2.1.2. Apoyarse en una Estación Permanente instalando un receptor como base en un lugar adecuado. Simultáneamente el otro receptor recorrerá los puntos del relevamiento.
- 2.1.3. Receptores de doble frecuencia: prácticamente es posible trabajar sin preocuparse por las distancias, pero sí debe considerarse el tiempo necesario según el método de medición (estático, stop and go o tiempo real)
- 2.1.4. Receptores de simple frecuencia: en este caso hay un límite para las distancias, pongamos por caso un máximo de 100 km (para una tolerancia de 50 cm) y también debe considerarse el tiempo necesario según el método de medición (estático, stop and go o tiempo real)
- 2.1.5. Habrá que considerar el caso particular cuando el equipo es mixto (receptores de doble y simple frecuencia).

2.2. <u>Utilizando un solo receptor</u>

Es posible aunque no sea lo habitual.

La referencia es siempre una Estación Permanente y el receptor se estaciona sobre los puntos a relevar.

El receptor puede ser de doble o simple frecuencia, con las consideraciones necesarias respecto a distancia y tiempo según el método utilizado (estático, stop and go o tiempo real).

3. Procesamiento y cálculos

Advertencia: En el caso 2.1.1. (Referencia en un punto pasivo), es fundamental introducir correctamente las coordenadas del punto de partida al efectuar el procesamiento.

Las coordenadas que definen la parcela sometida a mensura son siempre las geodésicas.

Lados, ángulos y superficies.

Los lados y ángulos pueden calcularse a partir de las coordenadas geodésicas. Una manera muy práctica es convertirlas en coordenadas planas utilizando la proyección Transversa Mercator (la que utiliza el sistema Gauss-Krüger⁽¹⁾), pero con meridiano central que pase por la zona donde está ubicada la parcela, con módulo de deformación 1 y con origen de abscisas también en la zona de la parcela.

Las coordenadas así obtenidas se pueden volcar a un CAD y calcular lados, ángulos y superficies, los que serán coherentes con las coordenadas geodésicas.

El programa Geocoo, disponible en *http://www.fceia.unr.edu.ar/gps/software/*, es muy práctico *Advertencia:* Si se utiliza para la proyección un meridiano central alejado se deforman las distancias.

Tan solo como ejemplo diremos que en un inmueble ubicado en la zona rural próxima a la ciudad de Rufino (tomamos latitud -34° 24′ y longitud 62° 54′, en la punta de la bota santafesina), con meridiano central - 60°, el módulo de deformación es 1.00087646, es decir que en 1000 m se produce una distorsión de 88 cm; o sea que en definitiva se calculan lados que no son coherentes con las coordenadas geodésicas, es decir con la realidad.

4. Combinación de mediciones satelitales y terrestres

Es perfectamente posible, a partir de un par de puntos de coordenadas conocidas, completar el relevamiento con estación total y en general con métodos e instrumental propios de la topografía clásica.

En tal caso, para calcular coordenadas geodésicas se debe realizar un proceso inverso al anteriormente descripto. Considerar que se está frente a una proyección plana con meridiano central y origen de abscisas en la zona y convertir tales coordenadas en geodésicas

Advertencia: Lo conveniente es que la medida de la base debe sea mayor que la del lado más largo o al menos de un orden similar, de modo tal que no se aumente la influencia de los errores propios de la medición de la base.

5. <u>Posicionamiento puntual preciso (PPP)</u>

Para obtener un punto base y completar con medición satelital.

Para obtener una base de dos puntos y completar con estación total.

Para relevar todos los puntos con PPP.

⁽¹⁾ La proyección conocida como Gauss Krüger responde a un diseño original de Johann Lambert (1772) al que Carlos Federico Gauss (1816) le dio forma analítica y Leonhard Krüger (1912) acotó las deformaciones mediante el uso de fajas o husos.

6. Normas provinciales

Posibles avances en la instrumentación de la georreferenciación en las mensuras rurales.

7. Evaluación

Al finalizar el curso se destinará un tiempo de 15 minutos para que los asistentes que requieran contar con certificado de asistencia efectúen la evaluación del mismo, respondiendo brevemente a las siguientes preguntas:

- (a) ¿El curso cubrió sus expectativas?
- (b) Por favor, indique cuáles son, a su juicio, los temas principales entre los que fueron abordados.
- (c) Indique qué temas deberían ser ampliados.
- (d) Indique también cuáles serían los temas necesarios pero que no fueron abordados.
- (e) Indique todo otro comentario que le parezca pertinente.