Loops in java

18 April 2024

1. For Loop

```
For ( int i=0; i<n; i++) {
// code to be executed repeatedly
}
```

Scenario: Prime Number Generator with Sieve of Eratosthenes

Description: You are given a task to implement a program that generates prime numbers up to a specified limit using the *Sieve of Eratosthenes algorithm*. The program should prompt the user to enter the upper limit for prime number generation and then display all prime numbers up to that limit.

Requirements:

- Prompt the user to enter an upper limit N for prime number generation.
- Implement the Sieve of Eratosthenes algorithm to generate all prime numbers up to N.
- Use a Boolean array to mark all numbers as prime or composite.
- ➤ Iterate through the array using a for loop to mark multiples of each prime number as composite.
- Display all prime numbers found up to the specified limit N.

Challenges:

- ➤ Efficiently implement the Sieve of Eratosthenes algorithm to handle large values of N.
- Ensure that the program handles user input validation to prevent invalid inputs.
- Optimize the program for performance and memory usage, especially for larger values of N.

1. While Loop

This loop is used when the number of iterations is not known before hand, and it continues as long as the specified condition is true.

```
int i=0; while
(i<n) { i++; }
```

Scenario: Temperature Converter

Description: You are task to develop a program to convert temperatures between

Celsius and Fahrenheit scales. The program should allow the user to input a temperature in either Celsius or Fahrenheit and then convert it to the other scale. The conversion formulas are as follows.

- To convert Celsius to Fahrenheit: $F = 9/5 \times C + 32$
- To convert Fahrenheit to Celsius: $C = 5/9 \times (F 32)$

Requirements:

- Prompt the user to choose the temperature scale they want to convert from (Celsius or Fahrenheit).
- Prompt the user to enter the temperature value in the chosen scale.
- ➤ Use a while loop to repeatedly prompt the user for input until they choose to exit the program.
- ➤ Convert the input temperature to the other scale using the appropriate conversion formula.
- Display the converted temperature to the user.
- Allow the user to choose whether to convert another temperature or exit the program.

Challenges:

- ➤ Handle invalid input from the user, such as non-numeric values or incorrect choices.
- Implement a user-friendly interface with clear prompts and feedback messages.
- ➤ Ensure that the program runs efficiently and handles conversions accurately for a wide range of input values.