Answer Set Programming for the Semantic Web

Tutorial

Thomas Eiter, Roman Schindlauer (TU Wien)
Giovambattista Ianni (TU Wien, Univ. della Calabria)
Axel Polleres (Univ. Rey Juan Carlos, Madrid)

Supported by IST REWERSE, FWF Project P17212-N04, CICyT project TIC-2003-9001-C02.

Unit 5 - An ASP Extension: Nonmonotonic dl-Programs

T Eiter

KBS Group, Institute of Information Systems, TU Vienna

European Semantic Web Conference 2006

Unit Outline

- Introduction
- 2 dl-Programs
- 3 Answer Set Semantics
- 4 Applications and Properties
- 6 Further Aspects

- Instead of a native, simple ontology inside the program, an external ontology should be used
- An ontology is available, formulated in OWL, which contains information about available wine bottles, as instances of a concept Wine.
- It has further concepts SweetWine, DryWine, RedWine and WhiteWine for different types of wine.

- Instead of a native, simple ontology inside the program, an external ontology should be used
- An ontology is available, formulated in OWL, which contains information about available wine bottles, as instances of a concept Wine.
- It has further concepts SweetWine, DryWine, RedWine and WhiteWine for different types of wine.

- Instead of a native, simple ontology inside the program, an external ontology should be used
- An ontology is available, formulated in OWL, which contains information about available wine bottles, as instances of a concept Wine.
- It has further concepts SweetWine, DryWine, RedWine and WhiteWine for different types of wine.

- Instead of a native, simple ontology inside the program, an external ontology should be used
- An ontology is available, formulated in OWL, which contains information about available wine bottles, as instances of a concept Wine.
- It has further concepts SweetWine, DryWine, RedWine and WhiteWine for different types of wine.
- How to use this ontology from the logic program ?
- How to ascribe a semantics for this usage?

Nonmonotonic Description Logic Programs

- An extension of answer set programs with queries to DL knowledge bases (through dl-atoms)
- Formal semantics for emerging programs (nonmonotonic dl-programs), fostering the interfacing view
 - \Rightarrow Clean technical separation of DL engine and ASP solver
- \bullet New generalized definitions of answer sets of a general $dl\mbox{-program}$

```
Important: bidirectional flow of information
```

 \Rightarrow The logic program also may provide input to DL knowledge base

```
Prototype implementation, examples
```

http://www.kr.tuwien.ac.at/staff/roman/semweblr

Nonmonotonic Description Logic Programs

- An extension of answer set programs with queries to DL knowledge bases (through dl-atoms)
- Formal semantics for emerging programs (nonmonotonic dl-programs), fostering the interfacing view
 - \Rightarrow Clean technical separation of DL engine and ASP solver
- New generalized definitions of answer sets of a general dl-program

Important: bidirectional flow of information

⇒ The logic program also may provide input to DL knowledge base

```
Prototype implementation, examples
```

http://www.kr.tuwien.ac.at/staff/roman/semweblp

Nonmonotonic Description Logic Programs

- An extension of answer set programs with queries to DL knowledge bases (through dl-atoms)
- Formal semantics for emerging programs (nonmonotonic dl-programs), fostering the interfacing view
 - \Rightarrow Clean technical separation of DL engine and ASP solver
- New generalized definitions of answer sets of a general dl-program

Important: bidirectional flow of information

 \Rightarrow The logic program also may provide input to DL knowledge base

Prototype implementation, examples

http://www.kr.tuwien.ac.at/staff/roman/semweblp/

Approach to enable a call to a DL engine in ASP:

- ullet Pose a query, Q, to a DL knowledge base, L
- Allow to modify the extensional part (ABox) of KB
- ullet Query evaluates to true, iff Q is provable in modified L.

Approach to enable a call to a DL engine in ASP:

- ullet Pose a query, Q, to a DL knowledge base, L
- Allow to modify the extensional part (ABox) of KB
- ullet Query evaluates to true, iff Q is provable in modified L.

Examples: wine ontology

- DL[Wine]("ChiantiClassico")
- DL[Wine](X)
- $DL[DryWine \uplus my_dry; Wine](W)$ add all assertions DryWine(c) to the ABox (extensional part) of L, such that $my_dry(c)$ holds.

Approach to enable a call to a DL engine in ASP:

- ullet Pose a query, Q, to a DL knowledge base, L
- ullet Allow to modify the extensional part (ABox) of KB
- ullet Query evaluates to true, iff Q is provable in modified L.

Examples: wine ontology

- DL[Wine]("ChiantiClassico")
- DL[Wine](X)
- $DL[DryWine \uplus my_dry; Wine](W)$ add all assertions DryWine(c) to the ABox (extensional part) of L, such that $my_dry(c)$ holds.

Approach to enable a call to a DL engine in ASP:

- ullet Pose a query, Q, to a DL knowledge base, L
- ullet Allow to modify the extensional part (ABox) of KB
- ullet Query evaluates to true, iff Q is provable in modified L.

Examples: wine ontology

- DL[Wine]("ChiantiClassico")
- DL[Wine](X)
- $DL[DryWine \uplus my_dry; Wine](W)$ add all assertions DryWine(c) to the ABox (extensional part) of L, such that $my_dry(c)$ holds.

A dl-atom has the form

$$DL[S_1 o p_1 p_1, \dots, S_m o p_m p_m; Q](\mathbf{t}), \qquad m \ge 0,$$

where

- ullet each S_i is either a concept or a role
- $op_i \in \{ \uplus, \uplus \}$,
- p_i is a unary resp. binary predicate (input predicate),
- ullet $Q(\mathbf{t})$ is a DL query

```
op_i = \  \  \, \text{increases} \, S_i \, \, \text{by} \, p_i.
op_i = \  \  \, \text{increases} \, \neg S_i \, \, \text{by} \, p_i
```

A dl-atom has the form

$$DL[S_1 o p_1 p_1, \dots, S_m o p_m p_m; Q](\mathbf{t}), \qquad m \ge 0,$$

where

- ullet each S_i is either a concept or a role
- $op_i \in \{ \uplus, \uplus \}$,
- p_i is a unary resp. binary predicate (input predicate),
- $Q(\mathbf{t})$ is a DL query.

A dl-atom has the form

$$DL[S_1 op_1 p_1, \dots, S_m op_m p_m; Q](\mathbf{t}), \qquad m \ge 0,$$

where

- ullet each S_i is either a concept or a role
- $op_i \in \{ \uplus, \uplus \}$,
- p_i is a unary resp. binary predicate (input predicate),
- $Q(\mathbf{t})$ is a DL query.

A dl-atom has the form

$$DL[S_1 op_1 \mathbf{p_1}, \dots, S_m op_m \mathbf{p_m}; Q](\mathbf{t}), \qquad m \ge 0,$$

where

- ullet each S_i is either a concept or a role
- $op_i \in \{ \uplus, \uplus \}$,
- p_i is a unary resp. binary predicate (input predicate),
- $Q(\mathbf{t})$ is a DL query.

A dl-atom has the form

$$DL[S_1 o p_1 p_1, \dots, S_m o p_m p_m; Q](\mathbf{t}), \qquad m \ge 0,$$

where

- ullet each S_i is either a concept or a role
- $op_i \in \{ \uplus, \uplus \}$,
- p_i is a unary resp. binary predicate (input predicate),
- $Q(\mathbf{t})$ is a DL query.

DL Queries

A DL query $Q(\mathbf{t})$ is one of

- (a) a concept inclusion axiom $C \sqsubseteq D$, or its negation $\neg (C \sqsubseteq D)$,
- (b) C(t) or $\neg C(t)$, for a concept C and term t, or
- (c) $R(t_1, t_2)$ or $\neg R(t_1, t_2)$, for a role R and terms t_1, t_2 .

Remarks:

- Further queries are conceivable (e.g., conjunctive queries)
- The queries above are standard queries.

dl-Programs

A dl-rule r is of form

$$a \leftarrow b_1, \ldots, b_k, not \ b_{k+1}, \ldots, not \ b_m, \quad m \ge k \ge 0,$$

where

- a is a classical first-order literal
- b_1, \ldots, b_m are classical first-order literals or dl-atoms (no function symbols).

Definition

A nonmonotonic description logic (dl-) program KB = (L, P) consists of

- a knowledge base L in a description logic ([] *Box),
- a finite set of dl-rules P.

dl-Programs

A dl-rule r is of form

$$a \leftarrow b_1, \ldots, b_k, not \ b_{k+1}, \ldots, not \ b_m, \quad m \ge k \ge 0,$$

where

- a is a classical first-order literal
- b_1, \ldots, b_m are classical first-order literals or dl-atoms (no function symbols).

Definition

A nonmonotonic description logic (dl-) program $\mathit{KB} = (L, P)$ consists of

- a knowledge base L in a description logic ([] *Box),
- a finite set of dl-rules P.

Social Dinner IX

Task

Modify wineCover09a.dlp by fetching the wines now from the ontology.

For instance:

```
wineBottle(X) :- DL["Wine"](X).
```

Fetches all the known instances of Wine.

Think at how the "isA" predicate could be redefined in terms of dl-atoms

```
isA(X,"SweetWine") :- ?
isA(X,"DessertWine") :- ?
isA(X,"ItalianWine") :- ?
```

Solution at

Social Dinner IX

Task

Modify wineCover09a.dlp by fetching the wines now from the ontology.

For instance:

```
wineBottle(X) :- DL["Wine"](X).
```

Fetches all the known instances of Wine.

Think at how the "isA" predicate could be redefined in terms of dl-atoms

```
isA(X,"SweetWine") :- DL[SweetWine](X).
isA(X,"DessertWine") :- DL[DessertWine](X).
isA(X,"ItalianWine") :- DL[ItalianWine](X).
```

Solution at wineCover9b.dlp

Social Dinner X

- Suppose now that we learn that there is a bottle, "SelakslceWine", which is a white wine and not dry.
- We may add this information to the logic program by facts¹:

```
white("SelaksIceWine"). not_dry("SelaksIceWine").
```

 In our program, we may pass this information to the ontology by adding in the dl-atoms the modification

```
WhiteWine \uplus white, DryWine \uplus not dry.
```

E.g., DL [Wine] (X) is changed to

DL[WhiteWine += white, DryWine -= not_dry; Wine](X).

¹See wineCover09c.dlp

- HB_P^{Φ} : Set of all ground (classical) literals with predicate symbol in P and constants from finite relational alphabet Φ .
- Constants: those in P and (all) individuals in the ABox of L.
- Herbrand interpretation: consistent subset $I \subseteq HB_P^\Phi$
 - $I \models_L \ell$ for classical ground literal ℓ , iff $\ell \in I$;
 - $I \models_L DL[S_1op_1p_1..., S_mop_mp_m; Q](\mathbf{c})$ if and only if

$$L \cup A_1(I) \cup \cdots \cup A_m(I) \models Q(\mathbf{c})$$

where

•
$$A_i(I) = \{S_i(\mathbf{e}) \mid p_i(\mathbf{e}) \in I\}, \text{ for } op_i = \uplus;$$

•
$$A_i(I) = {\neg S_i(\mathbf{e}) \mid p_i(\mathbf{e}) \in I}$$
, for $op_i = \forall$.

• The models of $K\!B = (L,P)$ are the joint models of all rules in P (defined as usual)

- HB_P^{Φ} : Set of all ground (classical) literals with predicate symbol in P and constants from finite relational alphabet Φ .
- ullet Constants: those in P and (all) individuals in the ABox of L.
- ullet Herbrand interpretation: consistent subset $I\subseteq HB_P^\Phi$
 - $I \models_L \ell$ for classical ground literal ℓ , iff $\ell \in I$;
 - $I \models_L DL[S_1op_1p_1...,S_mop_mp_m;Q](\mathbf{c})$ if and only if

$$L \cup A_1(I) \cup \cdots \cup A_m(I) \models Q(\mathbf{c})$$

where

•
$$A_i(I) = \{S_i(\mathbf{e}) \mid p_i(\mathbf{e}) \in I\}, \text{ for } op_i = \uplus;$$

•
$$A_i(I) = {\neg S_i(\mathbf{e}) \mid p_i(\mathbf{e}) \in I}$$
, for $op_i = \forall$.

• The models of $K\!B = (L,P)$ are the joint models of all rules in P (defined as usual)

- HB_P^{Φ} : Set of all ground (classical) literals with predicate symbol in P and constants from finite relational alphabet Φ .
- ullet Constants: those in P and (all) individuals in the ABox of L.
- Herbrand interpretation: consistent subset $I \subseteq HB_P^\Phi$
 - $I \models_L \ell$ for classical ground literal ℓ , iff $\ell \in I$;
 - $I \models_L DL[S_1 op_1 p_1 \dots, S_m op_m p_m; Q](\mathbf{c})$ if and only if

$$L \cup A_1(I) \cup \cdots \cup A_m(I) \models Q(\mathbf{c}),$$

where

- $A_i(I) = \{S_i(\mathbf{e}) \mid p_i(\mathbf{e}) \in I\}, \text{ for } op_i = \uplus;$
- $A_i(I) = {\neg S_i(\mathbf{e}) \mid p_i(\mathbf{e}) \in I}$, for $op_i = \forall$.
- The models of KB=(L,P) are the joint models of all rules in P (defined as usual)

- HB_P^{Φ} : Set of all ground (classical) literals with predicate symbol in P and constants from finite relational alphabet Φ .
- ullet Constants: those in P and (all) individuals in the ABox of L.
- Herbrand interpretation: consistent subset $I \subseteq HB_P^\Phi$
 - $I \models_L \ell$ for classical ground literal ℓ , iff $\ell \in I$;
 - $I \models_L DL[S_1 op_1 p_1 \dots, S_m op_m p_m; Q](\mathbf{c})$ if and only if

$$L \cup A_1(I) \cup \cdots \cup A_m(I) \models Q(\mathbf{c}),$$

where

- $A_i(I) = \{S_i(\mathbf{e}) \mid p_i(\mathbf{e}) \in I\}, \text{ for } op_i = \uplus;$
- $A_i(I) = {\neg S_i(\mathbf{e}) \mid p_i(\mathbf{e}) \in I}$, for $op_i = \forall$.
- The models of KB=(L,P) are the joint models of all rules in P (defined as usual)

Examples

• Suppose $L \models Wine("TaylorPort")$, and I contains wineBottle("TaylorPort")

```
Then I \models_L DL[``Wine"](``TaylorPort") and I \models_L wineBottle(``TaylorPort") :- DL[``Wine"](``TaylorPort")
```

• Suppose $I = \{white("siw"), not_dry("siw")\}.$ Then $I \models_L DL["WhiteWine" \uplus white, "DryWine" \uplus not_dry; "Wine"]("siw")$

Note that if "siw" does not occur in L, then $I \not\models_L DL["WhiteWine" \uplus white, "DryWine" \uplus not_dry; "Wine"]("siw")$

Examples

• Suppose $L \models Wine("TaylorPort")$, and I contains wineBottle("TaylorPort")

```
Then I \models_L DL[``Wine"](``TaylorPort") and I \models_L wineBottle(``TaylorPort") :- DL[``Wine"](``TaylorPort")
```

• Suppose $I = \{white("siw"), not_dry("siw")\}$. Then $I \models_L DL["WhiteWine" \uplus white, "DryWine" \uplus not dry; "Wine"]("siw")$

```
Note that if "siw" does not occur in L, then I \not\models_L DL ["WhiteWine" \uplus white, "DryWine" \uplusnot_dry; "Wine"]("siw")
```

- Suppose $L \not\models DL["Wine"]("Milk")$. Then for every I, $I \models_{L} compliant(joe, "Milk") :- DL["Wine"]("Milk")$ $I \models_{L} not \ DL["Wine"]("Milk").$
- Note that $I \models_L not DL["Wine"]("Milk")$ is different from $I \models_L DL[\neg "Wine"]("Milk")$.
- \bullet Inconsistency of L is revealed with unsatisfiable DL queries:

$$inconsistent := DL["Wine" \sqsubseteq \neg "Wine"]$$

Shorthand: $DL[\perp]$

Consistency can be checked by

$$consistent := not \ DL["Wine" \sqsubseteq \neg "Wine"]$$

- Suppose $L \not\models DL[``Wine"](``Milk")$. Then for every I, $I \models_{L} compliant(joe, ``Milk") :- DL[``Wine"](``Milk")$ $I \models_{L} not \ DL[``Wine"](``Milk").$
- Note that $I \models_L not \ DL["Wine"]("Milk")$ is different from $I \models_L DL[\neg "Wine"]("Milk")$.
- Inconsistency of L is revealed with unsatisfiable DL queries: $inconsistent: DL["Wine" <math>\square = "Wine"]$

Shorthand: $DL[\bot]$

Consistency can be checked by

 $consistent := not \ DL["Wine" \sqsubseteq \neg "Wine"]$

- Suppose $L \not\models DL[``Wine"](``Milk")$. Then for every I, $I \models_{L} compliant(joe, ``Milk") := DL[``Wine"](``Milk")$ $I \models_{L} not \ DL[``Wine"](``Milk").$
- Note that $I \models_L not DL["Wine"]("Milk")$ is different from $I \models_L DL[\neg "Wine"]("Milk")$.
- ullet Inconsistency of L is revealed with unsatisfiable DL queries:

$$inconsistent : DL["Wine" \sqsubseteq \neg "Wine"]$$

Shorthand: $DL[\bot]$

Consistency can be checked by

$$consistent := not \ DL["Wine" \sqsubseteq \neg "Wine"]$$

- Suppose $L \not\models DL["Wine"]("Milk")$. Then for every I, $I \models_{L} compliant(joe, "Milk") :- DL["Wine"]("Milk")$ $I \models_{L} not \ DL["Wine"]("Milk").$
- Note that $I \models_L not \ DL["Wine"]("Milk")$ is different from $I \models_L DL[\neg "Wine"]("Milk")$.
- ullet Inconsistency of L is revealed with unsatisfiable DL queries:

$$inconsistent - DL["Wine" \sqsubseteq \neg "Wine"]$$

Shorthand: $DL[\bot]$

Consistency can be checked by

$$consistent := not \ DL["Wine" \sqsubseteq \neg "Wine"]$$

Answer Sets

Answer Sets of positive KB = (L, P) (no *not* in P):

- KB = (L, P) has the least model lm(KB) (if satisfiable)
- The single answer set of KB is lm(KB)

Answer Sets of general KB = (L, P)

• Use a reduct KB^I akin to the Gelfond-Lifschitz (GL) reduct:

$$KB^I = (L, P^I)$$

where P^I is the GL-reduct of P wrt. I (treat dl-atoms like regular atoms)

• I is an answer set of KB iff $I = lm(KB^I)$.

Answer Sets

Answer Sets of positive KB = (L, P) (no *not* in P):

- KB = (L, P) has the least model lm(KB) (if satisfiable)
- The single answer set of KB is lm(KB)

Answer Sets of general KB = (L, P):

• Use a reduct KB^I akin to the Gelfond-Lifschitz (GL) reduct:

$$KB^I = (L, P^I)$$

where P^I is the GL-reduct of P wrt. I (treat dl-atoms like regular atoms)

• I is an answer set of KB iff $I = lm(KB^I)$.

- *Existence:* Positive dl-programs without "¬" and constraints always have an answer set
- Uniqueness: Layered use of "not" (stratified dl-program) ⇒ single answer set
- Conservative extension: For dl-program KB = (L, P) without dl-atoms, the answer sets are the answer sets of P.
- Minimality: answer sets of KB are models, and moreover minimal models.
- Fixpoint Semantics: Positive and stratified dl-programs with monotone dl-atoms possess fixpoint characterizations of the answer set.

- Existence: Positive dl-programs without "¬" and constraints always have an answer set
- Uniqueness: Layered use of "not" (stratified dl-program) ⇒ single answer set
- Conservative extension: For dl-program KB = (L, P) without dl-atoms, the answer sets are the answer sets of P.
- Minimality: answer sets of KB are models, and moreover minimal models.
- Fixpoint Semantics: Positive and stratified dl-programs with monotone dl-atoms possess fixpoint characterizations of the answer set.

- Existence: Positive dl-programs without "¬" and constraints always have an answer set
- Uniqueness: Layered use of "not" (stratified dl-program) ⇒ single answer set
- Conservative extension: For dl-program KB = (L, P) without dl-atoms, the answer sets are the answer sets of P.
- Minimality: answer sets of KB are models, and moreover minimal models.
- Fixpoint Semantics: Positive and stratified dl-programs with monotone dl-atoms possess fixpoint characterizations of the answer set.

- Existence: Positive dl-programs without "¬" and constraints always have an answer set
- Uniqueness: Layered use of "not" (stratified dl-program) ⇒ single answer set
- Conservative extension: For dl-program KB = (L, P) without dl-atoms, the answer sets are the answer sets of P.
- Minimality: answer sets of KB are models, and moreover minimal models.
- Fixpoint Semantics: Positive and stratified dl-programs with monotone dl-atoms possess fixpoint characterizations of the answer set.

- Existence: Positive dl-programs without "¬" and constraints always have an answer set
- Uniqueness: Layered use of "not" (stratified dl-program) ⇒ single answer set
- Conservative extension: For dl-program KB = (L, P) without dl-atoms, the answer sets are the answer sets of P.
- Minimality: answer sets of KB are models, and moreover minimal models.
- Fixpoint Semantics: Positive and stratified dl-programs with monotone dl-atoms possess fixpoint characterizations of the answer set.

- dl-atoms allow to query description knowledge base repeatedly
- We might use dl-programs as rule-based "glue" for inferences on a DL base.
- In this way, inferences can be combined
- Here, we show some applications where non-monotonic and minimization features of dl-programs can be exploited

- dl-atoms allow to query description knowledge base repeatedly
- We might use dl-programs as rule-based "glue" for inferences on a DL base.
- In this way, inferences can be combined
- Here, we show some applications where non-monotonic and minimization features of dl-programs can be exploited

- dl-atoms allow to query description knowledge base repeatedly
- We might use dl-programs as rule-based "glue" for inferences on a DL base.
- In this way, inferences can be combined
- Here, we show some applications where non-monotonic and minimization features of dl-programs can be exploited

- dl-atoms allow to query description knowledge base repeatedly
- We might use dl-programs as rule-based "glue" for inferences on a DL base.
- In this way, inferences can be combined
- Here, we show some applications where non-monotonic and minimization features of dl-programs can be exploited

Closed World Assumption (CWA)

Reiter's Closed World Assumption (CWA)

For ground atom p(c), infer $\neg p(c)$ if $KB \not\models p(c)$

• Express CWA for concepts C_1, \ldots, C_k wrt. individuals in L:

$$\neg c_1(X) \leftarrow not \ DL[C_1](X)$$
 \cdots
 $\neg c_k(X) \leftarrow not \ DL[C_k](X)$

• CWA for roles R: easy extension

Query Answering under CWA

Query: WhiteWine("VeuveCliquot") (Y/N)?

Query Answering under CWA

Query: WhiteWine("VeuveCliquot") (Y/N)?

```
Add CWA-literals to L:
```

```
Ask whether KB \models ww("VeuveCliquot") or KB \models \neg ww("VeuveCliquot")
```

Extended CWA

- CWA can be inconsistent (disjunctive knowledge)
- Example: Knowledge base

$$L = \{ Artist("Jody"), Artist \equiv Painter \sqcup Singer \}$$

• CWA for Painter, Singer adds

$$\neg Painter("Jody"), \neg Singer("Jody").$$

• This implies $\neg Artist("Jody")$

Extended CWA

- CWA can be inconsistent (disjunctive knowledge)
- Example:

Knowledge base

$$L = \{ Artist("Jody"), Artist \equiv Painter \sqcup Singer \}$$

• CWA for Painter, Singer adds

$$\neg Painter("Jody"), \neg Singer("Jody").$$

• This implies $\neg Artist("Jody")$

Minimal Models

• ECWA singles out "minimal" models of L wrt Painter and Singer (UNA in L on ABox):

```
\begin{array}{l} \overline{p}(X) \leftarrow \ not \ p(X) \\ \overline{s}(X) \leftarrow \ not \ s(X) \\ p(X) \leftarrow \ DL[Painter \cup \overline{p}, Singer \cup \overline{s}; Painter](X) \\ s(X) \leftarrow \ DL[Painter \cup \overline{p}, Singer \cup \overline{s}; Singer](X) \\ f \leftarrow \ not \ f, \ DL[\bot] \ \ /^* \ \text{kill model if} \ L \ \text{is inconsistent} \ ^*/ \\ \text{Answer sets:} \\ M_1 = \{p(\text{``Jody''}), \overline{s}(\text{``Jody''})\}, \\ M_2 = \{s(\text{``Jody''}), \overline{p}(\text{``Jody''})\} \end{array}
```

Extendible to keep concepts "fixed"

 ⇒ ECWA(φ: P: Q: Z)

Minimal Models

• ECWA singles out "minimal" models of L wrt Painter and Singer (UNA in L on ABox):

$$\begin{array}{l} \overline{p}(X) \leftarrow not \; p(X) \\ \overline{s}(X) \leftarrow not \; s(X) \\ p(X) \leftarrow DL[Painter \cup \overline{p}, Singer \cup \overline{s}; Painter](X) \\ s(X) \leftarrow DL[Painter \cup \overline{p}, Singer \cup \overline{s}; Singer](X) \\ f \leftarrow not \; f, \; DL[\bot] \quad /^* \; \text{kill model if} \; L \; \text{is inconsistent} \; ^*/ \end{array}$$

Answer sets:

$$M_1 = \{p("Jody"), \overline{s}("Jody")\},$$

$$M_2 = \{s("Jody"), \overline{p}("Jody")\}$$

Extendible to keep concepts "fixed"

 ⇒ ECWA(φ; P; Q; Z)

Minimal Models

 ECWA singles out "minimal" models of L wrt Painter and Singer (UNA in L on ABox):

$$\begin{array}{l} \overline{p}(X) \leftarrow not \ p(X) \\ \overline{s}(X) \leftarrow not \ s(X) \\ p(X) \leftarrow DL[Painter \cup \overline{p}, Singer \cup \overline{s}; Painter](X) \\ s(X) \leftarrow DL[Painter \cup \overline{p}, Singer \cup \overline{s}; Singer](X) \\ f \leftarrow not \ f, \ DL[\bot] \ /^* \ \text{kill model if} \ L \ \text{is inconsistent} \ ^*/ \end{array}$$

Answer sets:

$$M_1 = \{p("Jody"), \overline{s}("Jody")\},$$

$$M_2 = \{s("Jody"), \overline{p}("Jody")\}$$

Extendible to keep concepts "fixed"

 ⇒ ECWA(φ; P; Q; Z)

Default Reasoning

Add simple default rules a la Poole (1988) on top of ontologies

Example: wine ontology

```
L = \{ SparklingWine("VeuveCliquot"), \\ ("SparklingWine" \sqcap \neg "WhiteWine")("Lambrusco") \},
```

Use default rule: Sparkling wines are white by default

```
 \begin{array}{lll} r1: & \textit{white}(W) \leftarrow \textit{DL}[\textit{SparklingWine}](W), \textit{not} \neg \textit{white}(W) \\ r2: & \neg \textit{white}(W) \leftarrow \textit{DL}[\textit{WhiteWine} \uplus \textit{white}; \neg \textit{WhiteWine}](W) \\ r3: & f \leftarrow \textit{not} \ f, \textit{DL}[\bot] \ \ /^* \ \text{kill model if} \ L \ \text{is inconsistent} \ ^*/ \end{array}
```

- In answer set semantics, r2 effects maximal application of r1.
- Answer Set: $M = \{white("VeuveCliquot"), \neg white("Lambrusco")\}$

Default Reasoning

Add simple default rules a la Poole (1988) on top of ontologies

Example: wine ontology

```
L = \{ SparklingWine("VeuveCliquot"), \\ ("SparklingWine" \sqcap \neg "WhiteWine")("Lambrusco") \},
```

Use default rule: Sparkling wines are white by default

```
 \begin{array}{lll} r1: & \textit{white}(W) \leftarrow \textit{DL}[\textit{SparklingWine}](W), \textit{not} \neg \textit{white}(W) \\ r2: & \neg \textit{white}(W) \leftarrow \textit{DL}[\textit{WhiteWine} \uplus \textit{white}; \neg \textit{WhiteWine}](W) \\ r3: & f \leftarrow \textit{not} \ f, \textit{DL}[\bot] \ /^* \ \textit{kill model if} \ \textit{L} \ \textit{is inconsistent} \ ^*/ \\ \end{array}
```

- ullet In answer set semantics, r2 effects maximal application of r1.
- Answer Set: $M = \{white("VeuveCliquot"), \neg white("Lambrusco")\}$

- Stratified dl-programs: intuitively, composed of hierarchic layers of positive dl-programs linked via default negation.
 - This generalization of the classic notion of stratification embodies a fragment of the language having single answer sets.
- Non-monotonic dl-atoms: Operator ∩

$$DL[WhiteWine \cap my_WhiteWine](X)$$

- Weak answer-set semantics (Here: Strong answer sets)
 Treat also positive dl-atoms like not-literals in the reduct
- Well-founded semantics
 Generalization of the traditional well-founded semantics for normal logic programs.

- Stratified dl-programs: intuitively, composed of hierarchic layers of positive dl-programs linked via default negation.
 - This generalization of the classic notion of stratification embodies a fragment of the language having single answer sets.
- Non-monotonic dl-atoms: Operator ∩

$$DL[WhiteWine \cap my_WhiteWine](X)$$

- Weak answer-set semantics (Here: Strong answer sets)
 Treat also positive dl-atoms like not-literals in the reduct
- Well-founded semantics
 Generalization of the traditional well-founded semantics for normal logic programs.

- Stratified dl-programs: intuitively, composed of hierarchic layers of positive dl-programs linked via default negation.
 - This generalization of the classic notion of stratification embodies a fragment of the language having single answer sets.
- Non-monotonic dl-atoms: Operator ∩

$$DL[WhiteWine \cap my_WhiteWine](X)$$

- Weak answer-set semantics (Here: Strong answer sets)
 Treat also positive dl-atoms like not-literals in the reduct
- Well-founded semantics
 Generalization of the traditional well-founded semantics for normal logic programs.

- Stratified dl-programs: intuitively, composed of hierarchic layers of positive dl-programs linked via default negation.
 - This generalization of the classic notion of stratification embodies a fragment of the language having single answer sets.
- Non-monotonic dl-atoms: Operator ∩

$$DL[WhiteWine \cap my_WhiteWine](X)$$

- Weak answer-set semantics (Here: Strong answer sets)
 Treat also positive dl-atoms like not-literals in the reduct
- Well-founded semantics
 Generalization of the traditional well-founded semantics for normal logic programs.

Computational Complexity

Deciding strong answer set existence for dl-programs (completeness results)

KB = (L, P)	$L \text{ in } \mathcal{SHIF}(\mathbf{D})$	$L \text{ in } \mathcal{SHOIN}(\mathbf{D})$
positive stratified general	EXP EXP NEXP	$egin{aligned} ext{NEXP} \ ext{P}^{ ext{NEXP}} \ ext{NP}^{ ext{NEXP}} \end{aligned}$

Recall: Satisfiability problem in

- $\mathcal{SHIF}(\mathbf{D}) / \mathcal{SHOIN}(\mathbf{D})$ is EXP-/NEXP-complete (unary numbers).
- ullet ASP is EXP-complete for positive/stratified programs P, and NEXP-complete for arbitrary P
- ullet Key observation: The number of ground $\mathrm{dl} ext{-atoms}$ is polynomial
- $\mathrm{NP^{NEXP}} = \mathrm{P^{NEXP}}$ is less powerful than disjunctive ASP ($\equiv \mathrm{NEXP^{NP}}$)
- Similar results for query answering

NLP-DL Prototype

- Fully operational prototype: NLP-DL http://www.kr.tuwien.ac.at/staff/roman/semweblp/.
- Accepts ontologies formulated in OWL-DL (as processed by RACER) and a set of dl-rules, where ←, ⊎, and ⊎, are written as ":-", "+=", and "-=", respectively.
- Model computation: compute
 - the answer sets
 - the well-founded model

Preliminary computation of the well-founded model may be exploited for optimization.

Reasoning: both brave and cautious reasoning; well-founded inferences

Example: Review Assignment

It is given an ontology about scientific publications

- Concept Author stores authors
- Concept Senior (senior author)
- Concept Club100 (authors with more than 100 paper)
- •
- Goal: Assign submitted papers to reviewers
- Note: Precise definitions are not so important (encapsulation)

```
The program committee:

pc("vlif"). pc("mgel"). pc("dfen"). pc("fley"). pc("smil").

pc("mkif"). pc("ptra"). pc("ggot"). pc("ihor").
```

All PC members are in the "Club100" with more than 100 papers: Consider all senior researchers as candidate reviewers adding the club100 information to the OWL knowledge base:

```
cand(X,P) :- paper(P), DL["club100" += pc; "senior"](X).
```

Facts:

The program committee:

```
pc("vlif"). pc("mgel"). pc("dfen"). pc("fley"). pc("smil").
pc("mkif"). pc("ptra"). pc("ggot"). pc("ihor").
```

All PC members are in the "Club100" with more than 100 papers: Consider all senior researchers as candidate reviewers adding the club100 information to the OWL knowledge base:

```
cand(X,P) :- paper(P), DL["club100" += pc; "senior"](X).
```

Facts:

The program committee:

```
pc("vlif"). pc("mgel"). pc("dfen"). pc("fley"). pc("smil").
pc("mkif"). pc("ptra"). pc("ggot"). pc("ihor").
```

All PC members are in the "Club100" with more than 100 papers: Consider all senior researchers as candidate reviewers adding the club100 information to the OWL knowledge base:

```
cand(X,P) :- paper(P), DL["club100" += pc;"senior"](X).
```

```
Guess a reviewer assignment:
assign(X,P) :- not -assign(X,P), cand(X,P).
-assign(X,P) :- not assign(X,P), cand(X,P).
```

```
Check that each paper is assigned to at most one person:
:- assign(X,P), assign(X1,P), X1 != X.
```

```
A reviewer can't review a paper by him/herself:
:- assign(A,P), author(P,A).
```

```
Check whether all papers are correctly assigned (by projection)

a(P) :- assign(X,P).
error(P) :- paper(P), not a(P).
:~ error(P).
```

Note: error(P) detects unassignable papers rather than a simple constgint 📳 🗦 🤰 🥱 🔾

```
Guess a reviewer assignment:
assign(X,P) :- not -assign(X,P), cand(X,P).
-assign(X,P) :- not assign(X,P), cand(X,P).
```

```
Check that each paper is assigned to at most one person:

:- assign(X,P), assign(X1,P), X1 != X.
```

```
A reviewer can't review a paper by him/herself:
:- assign(A,P), author(P,A).
```

```
Check whether all papers are correctly assigned (by projection)

a(P) :- assign(X,P).

error(P) :- paper(P), not a(P).

:~ error(P).
```

Note: error(P) detects unassignable papers rather than a simplesconstraint, a simplesconstrai

```
Guess a reviewer assignment:
assign(X,P) :- not -assign(X,P), cand(X,P).
-assign(X,P) :- not assign(X,P), cand(X,P).
```

```
Check that each paper is assigned to at most one person:

:- assign(X,P), assign(X1,P), X1 != X.
```

```
A reviewer can't review a paper by him/herself:
:- assign(A,P), author(P,A).
```

```
Check whether all papers are correctly assigned (by projection)

a(P) :- assign(X,P).

error(P) :- paper(P), not a(P).

:~ error(P).
```

Note: error(P) detects unassignable papers rather than a simple constaint, 🚊 🔭 💈 🧒

```
Guess a reviewer assignment:
assign(X,P) :- not -assign(X,P), cand(X,P).
-assign(X,P) :- not assign(X,P), cand(X,P).
```

```
Check that each paper is assigned to at most one person:

:- assign(X,P), assign(X1,P), X1 != X.
```

```
A reviewer can't review a paper by him/herself:
:- assign(A,P), author(P,A).
```

```
Check whether all papers are correctly assigned (by projection)

a(P) :- assign(X,P).

error(P) :- paper(P), not a(P).

:~ error(P).
```

Note: error(P) detects unassignable papers rather than a simple constaint, 🚁 🗦 🔊 🤊 🔾

```
Guess a reviewer assignment:
assign(X,P) :- not -assign(X,P), cand(X,P).
-assign(X,P) :- not assign(X,P), cand(X,P).
```

```
Check that each paper is assigned to at most one person:
- assign(X,P), assign(X1,P), X1 != X.
```

```
A reviewer can't review a paper by him/herself:
:- assign(A,P), author(P,A).
```

```
Check whether all papers are correctly assigned (by projection)

a(P) :- assign(X,P).

error(P) :- paper(P), not a(P).

:~ error(P).
```

Note: error(P) detects unassignable papers rather than a simple constraint

T. Eiter

Task

Try out the complete reviewer example!

Run reviewer.dlp!