Agenda

ANALYSIS OF ALGORITHMS: ONLINE PROBLEMS AND AMORTIZED ANALYSIS

- COMPETITIVE ANALYSIS
 - REVIEW: PAGING PROBLEMS
- REVIEW: DICTIONARY DATA STRUCTURE
 - INPUT DISTRIBUTIONS

Amortized Analysis

- Usually, algorithms are analyzed for
 - (i) worst case behavior and (ii) average case behavior
- Average case behavior is aggregated (to compute the average) over a sequence of inputs:
 - But often a specific input distribution is assumed
 - typically, it is the <u>uniform distribution</u>
 - Real workloads often behave differently:
 - uniform distribution is not (necessarily) the common case!

Amortized Analysis

- Recall the competitive analysis of page replacement algorithms:
 - Worst case behavior was measured but it was averaged over a sequence of inputs!
 - This is referred to as amortized analysis.

Dictionary Data Structure

- Consider the dictionary data structure with its typical operations:
 - find, insert, and delete
- Usually analysis is done on an individual operation:
 - e.g. what is the worst case time complexity of a find operation in a list?
- Or it is averaged over a sequence of operations:
 - e.g. what is the average case time complexity of a find operation in a list?
 - The answer to this depends on input distribution.
- In fact the way the list can be best arranged will depend on the input distribution.

Dictionary Data Structure

- The way the list can be best arranged will depend on the input distribution:
 - i.e. in an offline problem scenario in which the designer knows the input sequence ahead of time
 - she can decide a data structure that is best for the sequence.
 - e.g. a Binary Search Tree where frequency of access of each element is known
 - and therefore more frequently accessed items can be placed near the root
 - Recall the exercise on <u>Dynamic Programming</u> algorithm for <u>Optimal BST</u>

Dictionary Data Structure

- But when operations are online, one needs adaptive data structures:
 - these are referred to as self-organizing lists:
 - e.g. can you rearrange the BST if you know the frequency of one or more input items?

3/4/2016 6

Self-Organizing Lists: Abstract Model

- Assume the following dictionary model:
 - A dictionary stores its elements as an unsorted list
 - find scans the list sequentially, i.e. to locate the ith item, the cost is i.
 - Similarly, insert would cost i+1 for the ith item.
- Suppose accesses are independent of each other and suppose the probability of accessing item i is given, say, p_i
 - An optimum algorithm will arrange items in nonincreasing order by probability :
 - let us refer to this algorithm as DP (for <u>decreasing</u> <u>probability</u>).

Self-Organizing Lists

- Self-Organizing Strategies:
 - Move-to-Front (MF):
 - On access/insertion, move the item to the front, without changing the relative order of other items.
 - Transpose (T):
 - On access/insertion, exchange it with the preceding item
 - Frequency Count (FC):
 - Maintain the list in non-increasing order by frequency count. Increase count on access/insertion.

3/4/2016 8

S-O Lists: Performance

- Suppose
 - the list size is fixed,
 - accesses are independent of each other, and
 - the probability of accessing item i is given, say, p_i
 - [Note: The last assumption is required in DP, but in other cases we use it only for analysis. End of Note.]
- What would be the competitive performance of the online algorithms?

S-O Lists: Performance of FC

- How competitive is FC w.r.t. DP?
 - E_{FC} / $E_{DP} \cong 1$
 - Intuitive argument (based on the Law of Large Numbers):
 - Consider a long sequence of operations i.e.
 - #operations >> size of list
 - FC would have put the most frequent items in the beginning of the list
 - according to the frequency (at this point)
 - Now if you run DP on this sequence of operations on this list, how would they (FC and DP) compare?

3/4/2016 10

S-O Lists: Performance of MF

- Under assumptions similar to those of the last slide:
 - $E_{MF}(p) / E_{DP}(p) \le 2.$
- Proof:
 - Given a sequence S,
 - let b(i,k) be the (asymptotic) probability that the S_i appears in the list before S_k
 - S_i appears before S_k if the most recent access of S_i happened after the most recent access of S_k
 - Let m denote the number of intervening requests between accesses to S_i and S_k
 - Then

$$b(i,k) = p_i * \sum_{m=0}^{\infty} (1 - p_i - p_k)^m$$

= $p_i / (p_i + p_k)$

S-O Lists: Performance of MF

[contd.]

- $^{\Box}$ $E_{MF}(p) / E_{DP}(p) <= 2.$
- Proof [contd.]:
 - $b(i,k) = p_i / (p_i + p_k)$
 - The average search time (i.e. E_{MF}) is given by:
 - $\sum_{1 < k < n} (p_k * (1 + \sum_{1 < i < n, i < k} b(i,k)))$ $1 + 2 * \sum_{1 < i < k < n} p_i * p_k / (p_i + p)$
 - The optimal offline time i.e. E_{DP} is
 - $\sum_{1 \le k \le n} p_k * k$
 - The ratio of average time to optimal time turns out to be bounded by
 - 2 * (1 1/(n+1))

S-O Lists: Performance of MF and T - Results

- $E_{MF}(p) / E_{DP}(p) \le 2$.
- $\blacksquare \quad \mathsf{E}_\mathsf{T}(\mathsf{p}) \mathrel{<=} \; \mathsf{E}_\mathsf{MF}(\mathsf{p})$
 - But MF performs much better in practice:
 - because it soon converges to its asymptotic behavior given a random initial list
 - and it behaves close to a static decreasing frequency algorithm.
 - When tested on real data:
 - MF beats T consistently
 - MF is competitive with FC and sometimes better
 - because MF is tuned for data with high locality

Amortized Analysis

- Consider a hashtable with separate chaining on collision:
 - What is the cost of find operation?
 - What does it depend on?
 - How do you adapt when collisions increase?
 - What is the cost of adaptation?
 - Exercise:
 - Derive the amortized cost with rehashing:
 - Clearly state the assumptions i.e. the values chosen for design parameters:
 - <u>threshold load factor</u> for rehashing and <u>resize factor</u>.
 - Question:
 - What if you have to consider deletions as well as insertions?