

Introdução à Química-Física

Aula 10

Responda às questões que se seguem com base nos dados de equilíbrio líquidovapor para a mistura binária, metanol, CH_3OH (1) / etanol, C_2H_5OH , (2), a 25°C, indicados na figura abaixo:

- a) Determine as pressões de vapor do etanol e do metanol puros, a 25°C.
- b) Determine a composição do vapor em equilíbrio com a solução contendo 55% de metanol.
- c) Represente no mesmo gráfico o vapor em equilíbrio com a solução contendo 55% de metanol, e represente também a tie-line correspondente. Marque no gráfico a região do líquido.

Pergunta 3 (5 val)

O benzeno e o etilbenzeno são substâncias que formam misturas líquidas que seguem aproximadamente a lei de Raoult. Com base na tabela seguinte de valores de pressão de vapor do benzeno e do etilbenzeno puros a diferentes temperaturas, estabeleça a relação correcta entre as temperaturas de ebulição à pressão de 90 kPa e composição do vapor ou do líquido para estas substâncias.

T (°C)	80	90	100
Benzeno	101,01 kPa	136,11 kPa	180,04 kPa
Etilbenzeno	16,77 kPa	24,25 kPa	34,25 kPa

A 80 °C o vapor contém

%

de benzeno.

A 80 °C o líquido contém

%

de etilbenzeno.

Mistura binária de líquidos voláteis

Mistura binária de líquidos voláteis

Mistura binária de líquidos voláteis

Propriedades Coligativas de Soluções de Não-Electrólitos

Propriedades coligativas (ou propriedades colectivas) são propriedades que dependem apenas do número de partículas do soluto em solução e não da natureza dessas partículas.

$$P_1 = X_1 P_1^0$$

Lei de Raoult

 X_1 = fracção molar do solvente

Se a solução contiver apenas um soluto:

$$X_1 = 1 - X_2$$

 X_2 = fracção molar do soluto

Elevação ebulioscópica e depressão

Elevação ebulioscópica e depressão

)		•)
CKI	OC		n	
	OS	LU	U	La
•			Γ.	-

Solvente	T _f (°C)	k _f (°Cm ⁻¹)	T_b (°C)	k _b (°Cm ⁻¹)
Água	0	1.86	100.0	0.52
Benzeno	5.5	5.12	80.1	2.53
Etanol	-117.3	1.99	78.4	1.22
Ácido acético	16.6	3.90	117.9	2.93
Ciclo-hexano	6.6	20.0	80.7	2.79

Propriedades Coligativas de Soluções de Electrólitos

0,1 m de solução de NaCl → 0,1 m Na⁺ iões e 0,1 m Cl⁻ iões

0,1 m de solução de NaCl — 0,2 m iões em solução

N.º total de partículas na solução depois da dissolução

factor de van't Hoff (i)

N.º de unidades dissolvidas inicialmente na solução

i deve ser

não-electrólitos 1

NaCl 2

CaCl₂ 3

Propriedades Coligativas de Soluções de Electrólitos

Elevação ebulioscópica

 $\Delta T_{\rm b} = i K_{\rm b} m$

Depressão crioscópica

 $\Delta T_{\rm f} = i K_{\rm f} m$

Factores de van't Hoff para Soluções de Electrólitos 0,0500 <i>M</i> a 25°C				
Electrólito	i (Medido)	i (Calculado)		
Sacarose*	1,0	1,0		
HC1	1,9	2,0		
NaCl	1,9	2,0		
$MgSO_4$	1,3	2,0		
$MgCl_2$	2,7	3,0		
FeCl ₃	3,4	4,0		

^{*} A sacarose é um não-electrólito. Apresenta-se aqui apenas como termo de comparação.

Propriedades coligativas

Pressão osmótica

$$\Pi = RT \quad \frac{n_2}{V}$$
 Solução de não electrólitos

$$\Pi \approx i RT \frac{n_2}{V}$$

Solução de electrólitos e *i* é o número de iões gerado para a solução

$$\frac{\Pi V}{n_2 RT} = 1 + B \frac{n_2}{V} + C \left(\frac{n_2}{V}\right)^2 + \cdots,$$
 Solução de não electrólitos

$$\frac{\Pi V}{i \ RT \ n_2} = 1 + B \frac{n_2}{V} + C \left(\frac{n_2}{V}\right)^2 + \cdots$$
 Solução de electrólitos e i é o número de iões gerado para a solução

The addition of 0,24 g of sulfur to 100.0 g of the solvent carbon tetrachloride lowers the solvent's freezing point by 0,28 °C. Sulfur is known to exist in molecular form. What is the molar mass and molecular formula of sulfur? (Dados: M(S) = 32,01 gmol⁻¹)

The osmotic pressure due to 23,20 g of polyethylene (PE) dissolved in enough benzene to produce 100,0 mL of solution was $1,10 \times 10^{-2}$ atm, at 25 °C. Calculate the average molar mass of the polymer, which is a nonelectrolyte.