Optimizing Moolloy A Solver for Multi-Objective Optimization Problems

TEAM AMALGAM

JOSEPH HONG, CHRIS KLEYNHANS, MING-HO YEE, ATULAN ZAMAN

The Value Packaging Problem

Single-Objective Optimization?

Compute a weighted sum.

Solve a single-objective optimization problem.

 $\sum w_i x_i$

But we can do better.

Multi-Objective Optimization

Pareto optimal solutions:

Exact not approximate, **discrete** not continuous

Guided Improvement Algorithm (GIA)

Find all Pareto optimal solutions.

Areas for improvement: speed and scalability

Moolloy System Architecture

Alloy

Kodkod

SAT solver (MiniSat)

Compiles model for Kodkod

GIA implementation

Constraint solver

Two Approaches

Engineer a better tool

Checkpointing + formula rewriting

Design a better algorithm

Partitioning for parallelism

https://flic.kr/p/5rCjjx

Value Packaging Solve Time

Checkpointing

GIA involves stepping up and backtracking.

We added functionality to save and reuse state.

Formula Rewriting

(electrical + plumbing < 100)</pre>

By rewriting formulas, we can eliminate variables.

```
Before:
  (total_cost == electrical + plumbing)
    AND
  (total_cost < 100)

After:</pre>
```

Partitioned GIA (PGIA)

How can we multi-thread the algorithm?

https://flic.kr/p/9AscDz

Splitting the Search Space

A *locally optimal* solution should be *globally optimal*.

Can we guarantee locally optimal = globally optimal?

Locally Optimal = Globally Optimal

Find a Pareto point, then split the search space.

Whoops...

Amalgam Dashboard		Models	Workers	Commits	
~	spl/apacheicse212/apac	spl/apacheicse212/apacheicse212_14.als			
~	spl/apacheicse212/apacheicse212.als				
×	spl/berkeleydbqualityjou	rnal/berkeleyo	dbqualityjour	nal_05.als	
×	spl/berkeleydbqualityjou	rnal/berkeleyo	dbqualityjour	nal_16.als	
×	spl/berkeleydbqualityjou	rnal/berkeley	dbqualityjour	nal_17.als	
×	spl/berkeleydbqualityjou	rnal/berkeley	dbqualityjour	nal_19.als	
×	spl/berkeleydbqualityjou	rnal/berkeley	dbqualityjour	nal_20.als	

"Beware: Ideas that seem to intuitively work in two dimensions do not always generalize to three or more dimensions."

Locally Optimal ≠ Globally Optimal

Search Order Matters

3 7

L 5

Future Work

Improve engineering

Improve algorithms

More case studies

Run PGIA recursively

Conclusions

Checkpointing + rewriting + partitioning Average 200x speedup

Paper accepted by ABZ '14

Value packaging problem solved in 18 minutes (originally: 12 hours)

We're preparing a paper