Tips When Doing CAD Collaboration

李岱峰, 17机器人工程 2020.07.22

Sketches

- Fully define sketches. All **BLACK**, no **BLUE**.
 - DO NOT use "Fully Define Sketch" button
- Use equations, relations, and general variables
 - Use relation definitions (for example, "="), or define variables
- Dimension rectangles from the edges, not the corner
- Make separate features in separate sketch unless it's master sketch from top-down
- Use symmetrical relations
- Put origin at a mounting location (or center point)
- Use construction lines to help define sketch (less unnecessary trim)
- 3D Sketch 2D first then having 3D sketch come off of that

Sketch - Fully Define Sketches

Sketch - Combine Common Dimensions

Sketch - Dimensioning Rectangles

Demonstration

Use Construction Lines

Also:

- -Symmetrical Relation
- -Origin

Parts

- Use symmetry whenever possible
- Use configuration when possible
- Make features like when it's being machined
- Name useful dimensions and features
 - Especially when those dimensions are referenced
- Make several simple features instead of one complicated feature. (More robust and easy to edit)
- Use fillet features instead of sketch fillets
- Apply cosmetic fillet and chamfer last

Use Symmetrical Relations

Use Configuration

Demonstration

Make features Like Being Machined (not necessary for you now)

Label Important Dimensions

Fillet in Feature Not Sketch if Possible

Assembly

- Origin plane mates (especially first part)
- If possible, mate all components to one or two fixed references
 - Long chains of components take longer to solve and more likely to get errors.
 - Do not create loops for mates
- Fully define the position of each part in assembly, unless visualization of motion needed for certain parts
 - Option: use mechanical mates
- Patterns, not multiple same parts if possible (greatly reduce computing power needed)
- Lock rotation on cylindrical mate if you don't need rotation

Put Origin as Mount Location

Use Component Patterns

Demonstration

Small trick for assembling: Copy with mates

Demonstration

Reference

- http://help.solidworks.com/2018/English/SolidWorks/sldworks/c_Best_
 _Practices_for_Mates_SWassy.htm?verRedirect=1
- https://blog.alignex.com/10-large-assembly-best-practices-in-solidworks
- https://forum.solidworks.com/thread/183132
- https://petercad.com/category/solidworks-best-practices/
- https://www.solidsolutions.co.uk/solidworks/tutorial-videos/top-down-modelling-best-practice.aspx
- Robotics Institute, CMU. Design & CAD Best Practices

Gear Basics

李岱峰

2020.07.22

Content

- Types of gear
- Calculate gear transmission
- 渐开线 Involute curves
- Nomenclature/Terminology
- SW TOOLBOX
- 插件

Types of Gears

Parallel Axes

Spur Gear

Rack

Internal Gear

Helical Gear

Intersecting Axes

Bevel Gear

Miter Gear

Spiral Bevel Gear

Nonparallel, Nonintersecting Axes

Worm & Worm Wheel

Screw Gear

Types of Gears

Calculate gear transmission

节点

$$\frac{\omega_2}{\omega_1} = -\frac{R_1}{R_2}$$

If the pitch point moves, then the angular speed of the driven gear changes

渐开线 Involute curves

$$\begin{cases} \theta_K = \tan \alpha_K - \alpha_k = inv\alpha_K \\ r_K = \frac{r_b}{\cos \alpha_K} \end{cases}$$

极坐标方程

其中: $inv\alpha_k$ 称为渐开线函数

$$X_a(t) = r(\cos t + (t - a)\sin t)$$

$$Y_a(t) = r(\sin t + (t - a)\cos t)$$

笛卡尔坐标系方程 a代表起始位置

Nomenclature/Terminology

• Circular pitch 齿距 p_c

$$p_c = \frac{2\pi r_{p_1}}{N_1} = \frac{2\pi r_{p_2}}{N_2} \Rightarrow \boxed{\frac{\omega_2}{\omega_1} = -\frac{r_{p_1}}{r_{p_2}} = -\frac{N_1}{N_2}}$$

 N_1 , N_2 : teeth number of gear 1 and 2.

压力角 • Pressure angle ϕ (usually 14.5° or 20°)

基圆齿距• Base pitch $p_b=p_c\cos\phi=2\pi r_{b_1}/N_1=2\pi r_{b_2}/N_2$

模数 • Module $m = 2r_{p_1}/N_1 = 2r_{p_2}/N_2$

齿顶高 • Addendum a (usually chosen to be m or 0.8m)

齿根高 • Dedendum d (usually chosen to be 1.25m or m)

空隙 • Clearance d-a

齿厚• Tooth thickness (usually $0.5p_c$)

• Width of space (usually $0.5p_c$; always larger than tooth)

• **Backlash** = width of space — tooth thickness

Standard modules m (SI, mm/tooth; larger is bigger)

Preferred	1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50
Next choice	1.125, 1.375, 1.75, 2.25, 2.75, 3.5, 4.5, 5.5, 7, 9, 11, 14, 18, 22, 28, 36, 45

演示: SW Toolbox和今日制造插件

Reference

- 中国大学MOOC,西安交通大学,机械设计基础: https://www.icourse163.org/course/XJTU-1001595002?tid=1206706204
- SUSTech ME303 Introduction to Mechanical Design, Chaoyang Song: https://ancorasir.com/?page_id=2159
- SUSTech SDM232 Mechanical Design and Manufacturing, Yuanqing Wu.
- - https://www.bilibili.com/video/BV1dT4y1J7eM?t=110&tdsourcetag=s_pctim_aiomsg