Duality

Goran Banjac

Large-Scale Convex Optimization ETH Zurich

March 24, 2020

Lagrangian

standard form problem (not necessarily convex)

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i=1,\ldots,m$ $h_j(x)=0, \quad j=1,\ldots,p$

variable $x \in \mathbb{R}^n$, domain $\mathcal{D} \subseteq \mathbb{R}^n$, optimal value p^\star

Lagrangian: $\mathcal{L} : \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p \mapsto \mathbb{R}$

$$\mathcal{L}(x,\lambda,\nu) := f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \nu_j h_j(x)$$

- weighted sum of objective and constraint functions
- λ_i is Lagrange multiplier associated with $g_i(x) \leq 0$
- ν_j is Lagrange multiplier associated with $h_j(x)=0$

Lagrange dual function

Lagrange dual function: $d \colon \mathbb{R}^m \times \mathbb{R}^p \mapsto \mathbb{R}$

$$\begin{split} d(\lambda, \nu) &\coloneqq \inf_{x \in \mathcal{D}} \mathcal{L}(x, \lambda, \nu) \\ &= \inf_{x \in \mathcal{D}} \left\{ f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \nu_j h_j(x) \right\} \end{split}$$

d is concave, can be $-\infty$ for some λ, ν

lower bound property: if $\lambda \geq 0$, then $d(\lambda, \nu) \leq p^*$

• indeed, if \bar{x} is feasible and $\lambda \geq 0$, then

$$f(\bar{x}) \ge \mathcal{L}(\bar{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} \mathcal{L}(x, \lambda, \nu) = d(\lambda, \nu)$$

• minimizing over all feasible \bar{x} gives $p^* \geq d(\lambda, \nu)$

Lagrange dual problem

Lagrange dual problem:

$$\begin{array}{ll} \text{maximize} & d(\lambda, \nu) \\ \text{subject to} & \lambda \geq 0 \end{array}$$

- finds best lower bound on p^* obtained from Lagrange dual function
- ullet a convex optimization problem; optimal value denoted d^\star
- λ, ν are dual feasible if $\lambda \geq 0$, $(\lambda, \nu) \in \text{dom } d$
- often simplified by making implicit constraints $(\lambda, \nu) \in \operatorname{dom} d$ explicit

Standard form LP

Lagrangian is given by

$$\mathcal{L}(x,\lambda,\nu) = c^T x + \nu^T (Ax - b) - \lambda^T x$$
$$= -b^T \nu + (c + A^T \nu - \lambda)^T x$$

• \mathcal{L} is affine in x, hence

$$d(\lambda, \nu) = \inf_{x} \mathcal{L}(x, \lambda, \nu) = \begin{cases} -b^T \nu & c + A^T \nu - \lambda = 0\\ -\infty & \text{otherwise} \end{cases}$$

dual problem is thus

$$\begin{array}{ll} \text{maximize} & -b^T \nu \\ \text{subject to} & A^T \nu + c \geq 0 \end{array}$$

Weak and strong duality

weak duality: $d^{\star} \leq p^{\star}$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems

strong duality: $d^* = p^*$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualification (CQ)

Relative interior

- relint $\mathcal C$ is interior of $\mathcal C\subseteq\mathbb R^n$ relative to its affine hull
- properties:
 - relint $\mathcal{C} \subseteq \mathcal{C}$
 - if aff $\mathcal{C} = \mathbb{R}^n$, then relint $\mathcal{C} = \operatorname{int} \mathcal{C}$
 - if $\mathcal C$ is nonempty and convex, then $\operatorname{relint} \mathcal C \neq \emptyset$

Slater's constraint qualification

strong duality holds for a convex problem

$$\label{eq:force_eq} \begin{aligned} & \text{minimize} & & f(x) \\ & \text{subject to} & & g_i(x) \leq 0, \quad i = 1, \dots, m \\ & & & Ax = b \end{aligned}$$

if it is strictly feasible, i.e.,

$$\exists x \in \text{int } \mathcal{D} \quad \text{such that} \quad g_i(x) < 0, \ i = 1, \dots, m, \quad Ax = b$$

- can be sharpened by replacing $\operatorname{int} \mathcal{D}$ with $\operatorname{relint} \mathcal{D}$; linear inequalities need not hold with strict inequality
- there exist many other types of constraint qualification

Complementary slackness

• assume strong duality holds, x^\star is primal optimal, $(\lambda^\star, \nu^\star)$ is dual optimal

$$f(x^*) = d(\lambda^*, \nu^*) = \inf_{x \in \mathcal{D}} \left\{ f(x) + \sum_{i=1}^m \lambda_i^* g_i(x) + \sum_{j=1}^p \nu_j^* h_j(x) \right\}$$

$$\leq f(x^*) + \sum_{i=1}^m \lambda_i^* g_i(x^*) + \sum_{j=1}^p \nu_j^* h_j(x^*)$$

$$\leq f(x^*)$$

- hence, the two inequalities hold with equality
- x^* minimizes $\mathcal{L}(x, \lambda^*, \nu^*)$
- $\lambda_i^{\star} g_i(x^{\star}) = 0$ for all $i = 1, \dots, m$ (complementary slackness):

$$\lambda_i^{\star} > 0 \Longrightarrow g_i(x^{\star}) = 0, \qquad g_i(x^{\star}) < 0 \Longrightarrow \lambda_i^{\star} = 0$$

Karush-Kuhn-Tucker (KKT) conditions

- the following four conditions are called KKT conditions (for a problem with differentiable f, g_i, h_j):
 - 1. primal feasibility: $g_i(x) \leq 0, i = 1, \ldots, m, h_j(x) = 0, j = 1, \ldots, p$
 - 2. dual feasibility: $\lambda \geq 0$
 - 3. complementary slackness: $\lambda_i g_i(x) = 0, i = 1, \dots, m$
 - 4. stationarity: gradient of Lagrangian with respect to x vanishes

$$\nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) + \sum_{j=1}^{p} \nu_j \nabla h_j(x) = 0$$

• if strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions

KKT conditions for convex problem

- if $\bar{x},\bar{\lambda},\bar{\nu}$ satisfy KKT conditions for a convex problem, then they are optimal
 - from complementary slackness and primal feasibility: $f(\bar{x}) = \mathcal{L}(\bar{x}, \bar{\lambda}, \bar{\nu})$
 - from stationarity: $d(\bar{\lambda}, \bar{\nu}) = \mathcal{L}(\bar{x}, \bar{\lambda}, \bar{\nu})$
 - hence, $f(\bar{x}) = d(\bar{\lambda}, \bar{\nu})$
- if Slater's condition is satisfied, then x is optimal if and only if there exist λ, ν so that (x, λ, ν) satisfy KKT conditions

Implicit constraints

example: LP with box constraints

$$\begin{array}{lll} \text{minimize} & c^Tx & \text{maximize} & -b^T\nu - \mathbf{1}^T\lambda_1 - \mathbf{1}^T\lambda_2 \\ \text{subject to} & Ax = b & \text{subject to} & c + A^T\nu + \lambda_1 - \lambda_2 = 0 \\ & -\mathbf{1} \leq x \leq \mathbf{1} & \lambda_1 \geq 0, \quad \lambda_2 \geq 0 \end{array}$$

• reformulation: $\mathcal{D} = \{x \in \mathbb{R}^n \mid -1 \le x \le 1\}$

minimize
$$c^T x$$

subject to $Ax = b$

dual function:

$$d(\nu) = \inf_{x \in \mathcal{D}} \left\{ c^T x + \nu^T (Ax - b) \right\}$$
$$= -b^T \nu - ||A^T \nu + c||_1$$

• dual problem: maximize $-b^T \nu - \|A^T \nu + c\|_1$

Standard form conic program

- $\mathcal{K} \subseteq \mathbb{R}^m$ is a proper convex cone
- Lagrange multiplier for $x \geq_{\mathcal{K}} 0$ is vector $\lambda \in \mathbb{R}^m$
- Lagrangian is given by

$$\mathcal{L}(x,\lambda,\nu) = c^T x - \lambda^T x + \nu^T (Ax - b)$$

- lower bound property: if $\lambda \geq_{\mathcal{K}^*} 0$, then $d(\lambda, \nu) \leq p^*$
- dual problem

$$\begin{array}{ll} \text{maximize} & d(\lambda,\nu) \\ \text{subject to} & \lambda \geq_{\mathcal{K}^{\star}} 0 \end{array}$$

Composite minimization

• consider *primal* composite optimization problem

minimize
$$f(x) + g(Lx)$$

(f and g are convex closed proper, L linear operator)

• we will derive dual problem and primal-dual optimality conditions

Fenchel duality

reformulate the composite optimization problem as

$$\begin{array}{ll} \mbox{minimize} & f(x) + g(y) \\ \mbox{subject to} & Lx = y \end{array}$$

equivalent formulation with indicator function

minimize
$$f(x) + g(y) + \mathcal{I}_{\{0\}}(Lx - y)$$

reformulate the indicator function via

$$h(x,y) = \sup_{\mu} \left\{ \mu^{T} (Lx - y) \right\}$$

the problem can now be written as

$$p^* = \inf_{(x,y)} \sup_{\mu} \{ f(x) + g(y) + \mu^T (Lx - y) \}$$

Weak duality

let

$$\mathcal{L}(x, y, \mu) := f(x) + g(y) + \mu^{T}(Lx - y)$$

then

$$p^{\star} = \inf_{(x,y)} \sup_{\mu} \mathcal{L}(x,y,\mu) \geq \sup_{\mu} \inf_{(x,y)} \mathcal{L}(x,y,\mu) = d^{\star}$$

- the inequality is known as the min-max inequality
- holds for general functions (also in nonconvex case)
- in our setting this is called weak duality

Fenchel dual problem

the problem with inf-sup swapped is the Fenchel dual problem

$$\begin{split} \sup_{\mu} \inf_{(x,y)} \mathcal{L}(x,y,\mu) &= \sup_{\mu} \inf_{(x,y)} \left\{ f(x) + g(y) + \mu^T (Lx - y) \right\} \\ &= \sup_{\mu} - \left(\sup_{(x,y)} \left\{ -f(x) - g(y) + \mu^T (-Lx + y) \right\} \right) \\ &= \sup_{\mu} \left\{ -\sup_{x} \left\{ x^T (-L^T \mu) - f(x) \right\} \right. \\ &\left. -\sup_{y} \left\{ \mu^T y - g(y) \right\} \right. \right\} \\ &= \sup_{\mu} \left\{ -f^* (-L^T \mu) - g^* (\mu) \right\} \end{split}$$

hence, primal and dual problems are

minimize
$$f(x) + g(Lx)$$
 maximize $-f^*(-L^T\mu) - g^*(\mu)$

Constraint qualification and strong duality

• strong duality holds if f,g are proper closed convex and $\mathrm{relint}\,\mathrm{dom}\,f\cap\mathrm{relint}\,\mathrm{dom}(g\circ L)\neq\emptyset$

Fermat's rule

• let $f \colon \mathbb{R}^n \mapsto \overline{\mathbb{R}}$, then $x \in \mathbb{R}^n$ minimizes f if and only if

$$0 \in \partial f(x)$$

ullet x minimizes f if and only if

$$f(y) \ge f(x) + 0^T (y - x)$$
 for all $y \in \mathbb{R}^n$

which by definition of subdifferential is equivalent to $0 \in \partial f(x)$

Fenchel-Young's equality

recall the definition of conjugate function

$$f^*(y) = \sup_{x} \left\{ y^T x - f(x) \right\}$$

applying Fermat's rule, we obtain the Fenchel-Young's equality:

$$f^*(y) = y^T x - f(x)$$
 if and only if $y \in \partial f(x)$

• similarly, applying Fermat's rule to biconjugate f^{**} yields

$$f^{**}(x) = y^T x - f^*(y)$$
 if and only if $x \in \partial f^*(y)$

• if f is closed and convex, then $f^{**} = f$, and thus

$$y \in \partial f(x)$$
 if and only if $x \in \partial f^*(y)$

(also known as *subdifferential inverse*)

Subdifferential calculus rules

• subdifferential of sum: if $x \in \text{dom } f_1 \cap \text{dom } f_2$, then

$$\partial (f_1 + f_2)(x) \supseteq \partial f_1(x) + \partial f_2(x)$$

• if f_1, f_2 are closed and convex and relint $\operatorname{dom} f_1 \cap \operatorname{relint} \operatorname{dom} f_1 \neq \emptyset$:

$$\partial(f_1 + f_2) = \partial f_1 + \partial f_2$$

• subdifferential of composition: if $Lx \in \text{dom } f$, then

$$\partial (f \circ L)(x) \supseteq L^T \partial f(Lx)$$

• if f is closed and convex and relint $dom(f \circ L) \neq \emptyset$:

$$\partial (f \circ L)(x) = L^T \partial f(Lx)$$

Optimality conditions for composite minimization

• let $f: \mathbb{R}^n \mapsto \overline{\mathbb{R}}, g: \mathbb{R}^m \mapsto \overline{\mathbb{R}}, L \in \mathbb{R}^{m \times n}$ with f, g closed convex and CQ holds (see slide 18), then

minimize
$$f(x) + g(Lx)$$

is solved by $x \in \mathbb{R}^n$ if and only if x satisfies

$$0 \in \partial f(x) + L^T \partial g(Lx)$$

CQ implies subdifferential calculus with equality:

$$0 \in \partial f(x) + L^{T} \partial g(Lx) = \partial (f + (g \circ L))(x)$$

 \bullet many algorithms search for x that satisfy $0 \in \partial f(x) + L^T \partial g(Lx)$

Alternative optimality conditions

• introducing dual variable $\mu \in \partial g(Lx)$ and using subdifferential inverse yields primal-dual necessary and sufficient optimality conditions:

$$\begin{cases} -L^T \mu \in \partial f(x) \\ \mu \in \partial g(Lx) \end{cases} \begin{cases} x \in \partial f^*(-L^T \mu) \\ \mu \in \partial g(Lx) \end{cases}$$
$$\begin{cases} -L^T \mu \in \partial f(x) \\ Lx \in \partial g^*(\mu) \end{cases} \begin{cases} x \in \partial f^*(-L^T \mu) \\ Lx \in \partial g^*(\mu) \end{cases}$$

note that the last condition is equivalent to

$$0 \in (-L)\partial f^*(-L^T\mu) + \partial g^*(\mu)$$

which is Fermat's rule for the dual problem

maximize
$$-\left(f^*(-L^T\mu) + g^*(\mu)\right)$$

References

- these lecture notes are based to a large extent on the following material:
 - Stanford EE364a class developed by Stephen Boyd
 - Lund course on Large-Scale Convex Optimization developed by Pontus Giselsson
- the original slides can be downloaded from

https://web.stanford.edu/class/ee364a/lectures.html https://archive.control.lth.se/ls-convex-2015/