

FIGURE 3. The product action.

## 6. The product action

Wreath products have another 'natural' action which we discuss here. As we shall see this action is often primitive.

Let H and K be groups acting on sets  $\Delta$  and  $\Gamma$  respectively. Consider the wreath product  $K \wr_{\Delta} H = B \rtimes H$  where  $B = K^{\Delta}$ . Let  $\Omega := \Gamma^{\Delta}$ , the set of functions from  $\Delta$  to  $\Gamma$ . Define a function

$$\varphi: (K \wr_{\Delta} H) \times \Omega \to \Omega, \ ((b,g),\alpha) \mapsto \alpha^{(b,g)}$$

where

$$\alpha^{(b,g)}: \Delta \to \Gamma, \ \delta \mapsto (\delta^{g^{-1}}\alpha)^{(\delta^{g^{-1}})b}.$$

This definition is rather opaque! So let us consider the stituation where  $\Delta$  is finite and we can identify it with the set  $\{1, \ldots, \ell\}$ . Now we can think of B as a direct product of  $\ell$  copies of K, and our definition of  $\alpha^{(b,g)}$  becomes

$$\alpha^{(b,g)}: \Delta \to \Gamma, \ \delta \mapsto (i^{g^{-1}}\alpha)^{b_{ig^{-1}}}.$$

Now Figure 3 demonstrates what is going on – it turns out that the definition is rather natural.

We have still to check that the definition is really an action - to avoid confusion, I will do this only for the case where  $\Delta$  is finite (so  $\Delta$  can be taken to be  $\{1, \ldots, n\}$ ). Let  $(b, g), (b', g') \in K \wr_{\Delta} H$  and  $i \in \Delta$ :

- $i\alpha^{(1,\dots,1,1)1} = (i^1\alpha)^1 = i\alpha$  as required.
- Observe that

$$i(\alpha^{(a_1,\dots,a_n)g})^{(c_1,\dots,c_n)h} = (i^{h^{-1}}\alpha^{(a_1,\dots,a_n)g})^{c_{i^{h^{-1}}}}$$

$$= (i^{h^{-1}g^{-1}}\alpha)^{a_{i^{g^{-1}}c_{i^{h^{-1}}}}}$$

$$= (i^{(gh)^{-1}}\alpha)^{(ac^{g^{-1}})_{i^{(gh)^{-1}}}}$$

$$= i\alpha^{(a_1,\dots,a_n)(c_1,\dots,c_n)^{g^{-1}}gh}$$

$$= i\alpha^{(a_1,\dots,a_n)g(c_1,\dots,c_n)h}$$

Thus  $K \wr_{\Delta} H$  acts on  $\Omega = \Gamma^{\Delta}$ , and this action is called the *product action* of the wreath product on  $\Omega$ .

**Example 17.** Recall the group  $G = \text{Sym}(3) \wr \text{Sym}(2)$  that we studied in Example 16. In that example we examined a subgroup of Sym(6) that was isomorphic to G and acted imprimitively on [1,6]. In contrast here we will find a subgroup of Sym(9) that is isomorphic to G.

Recall that  $G = B \times \text{Sym}(2)$  where  $B \cong \text{Sym}(3) \times \text{Sym}(3)$ . Thus we write

$$G = \{(b_1, b_2)h \mid k_1, k_2 \in \text{Sym}(3), h \in \text{Sym}(2)\}$$

and observe that an element  $(k_1, k_2)h$  lies in B if and only if h = 1. Similarly  $(k_1, k_2)h \notin B$  if and only if h = g, the unique non-trivial element of Sym(2).

Set  $\Gamma := \{1, 2, 3\}$  and define

$$\Omega := \{ (\alpha_1, \alpha_2) \mid \alpha_1, \alpha_2 \in \Gamma \}.$$

30 NICK GILL

Observe that  $\Omega$  is equal to the set of functions  $\{1,2\} \to \{1,2,3\}$ , a set of cardinality 9. Now the product action of G on  $\Omega$  is given by

$$(\alpha_1, \alpha_2)^{(k_1, k_2)1} = (\alpha_1^{k_1}, \alpha_2^{k_2})$$
 and  $(\alpha_1, \alpha_2)^{(k_1, k_2)g} = (\alpha_2^{k_2}, \alpha_1^{k_1}).$ 

The first of these corresponds to elements of B and it is easy enough to see that B acts transitively on  $\Omega$  thus, in particular, so does G. Let us consider whether or not G acts primitively or not. Let us calculate the stabilizer of the point (1,1):

$$G_{(1,1)} = \{(k_1, k_2)h \mid k_1, k_2 \in \langle (2,3) \rangle, h \in \text{Sym}(2)\}.$$

Now consider the action of  $G_{(1,1)}$  on  $\Omega$ . It is easy enough to check that the orbits of this action are

$$\{(1,1)\},\$$
  
 $\{(1,2),(1,3),(2,1)(3,1)\}\$  and  $\{(2,2),(2,3),(3,3),(3,2)\}.$ 

Since G is transitive, (E5.5) implies that, if G is imprimitive, then there is only one possible non-trivial G-congruence and it has the property that all blocks have size 3. On the other hand (E5.6) implies that the block containing (1,1) is a union of orbits of the stabilizer  $G_{(1,1)}$ . We conclude that G acts primitively on  $\Omega$ .

**(E6.1)** Consider the product action of the group  $Sym(2) \wr Sym(3)$  (on a set of size 8). Is this action primitive?

**Lemma 6.1.** Let H and K be groups acting on sets  $\Delta$  and  $\Gamma$  respectively, where  $|\Gamma| \geq 2$ . Then the product action of  $K \wr_{\Delta} H$  on  $\Omega := \Gamma^{\Delta}$  is faithful if and only if the respective actions of H and K on  $\Delta$  and  $\Gamma$  are faithful.

*Proof.* Suppose that the respective actions of H and K on  $\Delta$  and  $\Gamma$  are faithful, and suppose that for some  $(b,g) \in K \wr_{\Delta} H$ ,  $\alpha^{(b,g)} = \alpha$  for all  $\alpha : \Delta \to \Gamma$ . This implies that, for all  $\delta \in \Delta$ ,

$$((\delta^{g^{-1}}\alpha)^{(\delta^{g^{-1}})b} = \delta\alpha.$$

Write  $\gamma$  for  $\delta^{g^{-1}}$  and observe that then

$$(\gamma \alpha) = (\delta \alpha)^{((\delta^{g^{-1}})b)^{-1}}.$$

But now if  $\gamma$  and  $\delta$  are distinct for some  $\delta$ , then, since  $\alpha$  can be any function from  $\Delta \to \Gamma$  and  $|\Gamma| \ge 2$ , we have a contradiction. We conclude that  $\gamma = \delta$  for all  $\delta$  and, since H acts faithfully on  $\Delta$ , this implies that q = 1.

Now since  $\delta^{g^{-1}}\alpha$  can be any element of  $\Gamma$ , and K is faithful on  $\Gamma$ , we conclude that  $(\delta)b = 1$  for all  $\delta$  and the result follows.

(E6.2) Prove the converse.

**Lemma 6.2.** Suppose that G is a primitive subgroup of  $\operatorname{Sym}(\Omega)$ . Then G is regular if and only if, for some (and hence all)  $\omega \in \Omega$ ,  $G_{\alpha}$  is a proper subgroup of  $N_G(G_{\alpha})$ .

*Proof.* It is convenient to assume that  $|\Omega| > 2$  so that, by Lemma 5.2, G is transitive and  $G_{\omega}$  is maximal in G. (When  $|\Omega| = 2$  the result is obvious.)

Fix  $\omega \in \Omega$  and observe that, since G is transitive, G is regular if and only if  $G_{\omega}$  is trivial. Thus if G is regular, then  $N_G(G_{\alpha}) = G$  and  $G_{\alpha}$  is a proper subgroup of  $N_G(G_{\alpha})$ , as required.

On the other hand if G is not regular, then  $G_{\omega}$  contains a non-trivial element g and, in particular,  $G_{\omega}$  is not normal (since, otherwise, g would fix every element of  $\Omega$  which is impossible). Thus  $G_{\Omega} \leq N_G(G_{\alpha}) < G$ . Now observe that, since G is primitive,  $G_{\alpha}$  is maximal in G, and we conclude that  $G_{\Omega} = N_G(G_{\alpha})$ , as required.

**Proposition 6.3.** Suppose that H and K are nontrivial groups acting on the sets  $\Delta$  and  $\Gamma$  respectively. Then the wreath product  $K \wr_{\Delta} H$  is primitive in the product action on  $\Omega := \Gamma^{\Delta}$  if and only if:

- (1) K acts primitively but not regularly on  $\Gamma$ ; and
- (2)  $\Delta$  is finite and H acts transitively on  $\Delta$ .

*Proof.* Suppose that (1) and (2) hold, and, without loss of generality, let  $\Delta = \{1, \dots, \ell\}$ . It is clear that the base group  $B = \underbrace{H \times \dots \times H}$  acts transitively on  $\Omega$ , so the same is true of W.

Fix  $\gamma \in \Gamma$ . We take L to be the stabilizer of the constant element

$$\phi_{\gamma}: \Delta \to \Gamma, \delta \to \gamma.$$

Observe that

$$L = \{(b, h) \in W \mid b_i \in K_\gamma \text{ for all } i\}.$$

By Lemma 5.2 it is sufficient to show that L is maximal. Thus suppose that  $L < M \le W$ ; we will show that M = W.

Define

$$H_0 := \{(1, h) \mid h \in h\}.$$

Since  $W = BH_0 = BL$  we have  $M = (M \cap B)L$ . Therefore  $M \cap B > L \cap B$  and so, for some  $i_0$ , there exists  $(b, 1) \in M \cap B$  with  $b_{i_0} \notin K_{\gamma}$ . Since K is primitive and not regular, Lemma 6.2 implies that  $K_{\gamma} = N_K(K_{\gamma})$  and so, for some  $u \in K_{\gamma}$ , we have  $(b_{i_0})^{-1}u(b_{i_0}) \notin K_{\gamma}$ . Consider the element

$$c := (1, \dots, 1, u, 1, \dots, 1) \in B$$

where the non-identity element is in the  $i_0$ -th position.

Then  $d := [b, c] \in M \setminus L$  where  $d_{i_0} = [b_{i_0}, u] \in K \setminus K_{\gamma}$  and  $d_i = 1$  for all  $i \neq i_0$ . Since K is primitive,  $K_{\gamma}$  is maximal, and so  $K = \langle K_{\gamma}, d_{i_0} \rangle$ ; therefore M contains the subgroup

$$B(i_0) := \{(b, 1) \in B \mid b_i = 1 \text{ for all } i \neq i_0\}.$$

Since  $H_0 \leq M$  and H is transitive on  $\Delta$  we conclude that  $B(i) \leq L$  for all  $i \in \Delta$ . Since  $\Delta$  is finite we conclude that  $B = \prod_{i \in \Delta} B(i) \leq M$ . Thus  $M = BH_0 = W$  as required.

(E6.3) Prove the converse.

**(E6.4)**Let p be a prime,  $\ell > 1$  any positive integer. Let

$$C_p = \langle (1, 2, 3, \dots, p) \rangle$$

be a cyclic subgroup of order p in  $\operatorname{Sym}(p)$ , and consider the wreath product  $G = C_p \wr \operatorname{Sym}(\ell)$  in the product action on a set of size  $p^{\ell}$ . Prove that the action is transitive and imprimitive; calculate the order of the blocks of imprimitivity preserved by G; describe the setwise stabilizer of a block of imprimitivity.

The next result is analogous to Proposition 5.6, and deals with groups 'preserving a product structure'. Specifically a product structure on a set  $\Omega$  is a bijection  $\theta: \Omega \to \Gamma^{\Delta}$  where  $\Gamma$  and  $\Delta$  are sets. If a group G acts on  $\Omega$ , then this identification is a G-product structure if, for all  $g \in G$ , there exists  $h \in \operatorname{Sym}(\Delta)$  such that,

(7) for all 
$$\omega_1, \omega_2 \in \Omega$$
 and all  $\delta \in \Delta, \omega_1(\delta^h) = \omega_2(\delta^h) \Longrightarrow \omega_1^g(\delta) = \omega_2^g(\delta)$ .

(To ease notation here and below, I identify  $\Omega$  and  $\theta(\Omega)$ , thereby thinking of  $\omega \in \Omega$  as a function  $\Delta \to \Gamma$ .) We will only consider product structures on finite sets  $\Omega$ . In particular if  $|\Omega| = n < \infty$ , then we call the product structure non-trivial if  $1 < |\Gamma|, |\Delta| < n$ . If  $\theta : \Omega \to \Gamma^{\Delta}$  is a product structure, and a group G acts on the set  $\Omega$ , then we say that G preserves the product structure  $\theta$  if  $\theta$  is a G-product structure.

**Proposition 6.4.** Let  $\Omega$  be a finite set of order n. Suppose that  $\theta: \Omega \to \Gamma^{\Delta}$  is a product structure, with  $|\Gamma| = k$  and  $|\Delta| = \ell$ .

- (1)  $\theta$  is a G-product structure for a unique subgroup G of  $\operatorname{Sym}(\Omega)$  that is isomorphic to  $\operatorname{Sym}(k) \wr_{\Delta} \operatorname{Sym}(\ell)$ ;
- (2) if  $\theta$  is a H-product structure for some group  $H \leq \operatorname{Sym}(\Omega)$ , then  $H \leq G$ .

32 NICK GILL

*Proof.* Since  $\operatorname{Sym}(\Gamma)$  and  $\operatorname{Sym}(\Delta)$  act faithfully on  $\Gamma$  and  $\Delta$  respectively, Lemma 6.1 implies that  $G := \operatorname{Sym}(\Gamma) \wr \operatorname{Sym}(\Delta)$  acts faithfully on  $\Gamma^{\Delta}$  in the product action. This action preserves the product structure associated with  $\Gamma^{\Delta}$  since, for any  $g = (f_1, \ldots, f_{\ell})h$  in G, the definition of the product action implies that

$$\omega_1(\delta^{h^{-1}}) = \omega_2(\delta^{h^{-1}}) \Longrightarrow \omega_1^g(\delta) = \omega_2^g(\delta).$$

We obtain an embedding of  $G = \operatorname{Sym}(k) \wr_{\Delta} \operatorname{Sym}(\ell)$  in  $\operatorname{Sym}(\Omega) = \operatorname{Sym}(\Gamma^{\Delta})$ , as required.

To complete the proof, we must show that if  $\theta$  is a J-product structure for some group  $J \leq \operatorname{Sym}[\Omega)$ , then J is a subgroup of G (this will yield (ii) as well as the uniqueness part of (i)). Suppose that  $j \in J$  and let  $h^{-1}$  be the associated permutation of  $\operatorname{Sym}(\Omega)$  satisfying (7).

Then, for each  $\delta \in \Delta$ , (7) implies that we have an associated element  $g_{\delta} \in \operatorname{Sym}(\Gamma)$  such that, for any  $\omega \in \Omega$  and  $\delta \in \Delta$ ,

$$\omega^j(\delta) = (\omega(\delta^{h^{-1}})^{g_\delta}.$$

In other words, for all  $\omega \in \Omega$ ,

$$\omega^j = \omega^{(g_1, \dots, g_\ell)h}$$

where  $(g_1, \ldots, g_\ell)h \in G$  and we use the product action of G on  $\Omega$ . We are done.

As usual we have a categorical restatement, as follows.

(E6.5) Our category is called **ProductStruct** 

**Objects**: An object is a pair  $(\Omega, \theta)$  where  $\Omega$  is a finite set and  $\theta : \Omega \to \Gamma^{\Delta}$  is a product structure. Equivalently an object is a direct product  $\Gamma \times \cdots \times \Gamma$  where  $\Gamma$  is a finite set of size k.

**Arrows**: An arrow is a pair (g,h) where  $g: \Omega \to \Omega$  and  $h: \Delta \to \Delta$  are functions, and we require that (7) holds.

- (1) Prove that **ProductStruct** is a category.
- (2) Prove that if X is an object in **ProductStruct**, then  $\operatorname{Aut}(X) \cong \operatorname{Sym}(k) \wr \operatorname{Sym}(\ell)$ .
- (3) Prove that if G acts on  $X = \Gamma^{\ell}$  as an object from **ProductStruct**, then  $\sim$  is a G-product structure, and conversely.

The next proposition is a refinement of Proposition 5.7, making use of the previous two propositions.

**Proposition 6.5.** Let  $H \leq \operatorname{Sym}(\Omega)$  where  $|\Omega| < \infty$ . One of the following holds:

- (1) H is intransitive and  $H \leq \operatorname{Sym}(k) \times \operatorname{Sym}(n-k)$  for some 1 < k < n;
- (2) H is transitive and imprimitive and  $H \leq \operatorname{Sym}(k) \wr \operatorname{Sym}(\ell)$  for some  $1 \leq k, l \leq n$  with n = kl;
- (3) H is primitive, preserves a non-trivial product structure, and  $H \leq \operatorname{Sym}(k) \wr \operatorname{Sym}(\ell)$  for some  $1 < l < n, 2 < k < n \text{ with } n = k^l$ :
- (4) H is primitive and does not preserve a non-trivial product structure.<sup>25</sup>

Proof. We apply Proposition 5.7 and are able to assume that H is primitive. If  $\theta: \Omega \to \Gamma\Delta$  is a H-product structure, then Proposition 6.4 implies that H is a subgroup of a group  $\mathrm{Sym}(k) \wr \mathrm{Sym}(\ell)$  inside  $\mathrm{Sym}(n)$ , with  $n = k^l$ ; moreover, since the product structure is non-trivial, we have 1 < l < n, 1 < k < n with  $n = k^l$ . If k = 2, then  $\mathrm{Sym}(2)$  acts regularly on the associated set of order 2 and Proposition 6.3 implies that  $\mathrm{Sym}(2) \wr \mathrm{Sym}(l)$  is imprimitive, which is a contradiction. The result follows.

(E6.6) Let  $\Omega$  be a finite set of order n and let  $X = (\Omega, \theta)$  (resp.  $Y = (\Omega, \theta')$ ) be an object from **ProductStruct**. Let  $H = \operatorname{Aut}(X)$  (resp.  $K = \operatorname{Aut}(Y)$ ) be subgroups of  $\operatorname{Sym}(n)$ . When is H maximal? Are H and K conjugate? How many conjugacy classes of subgroups isomorphic to H does  $\operatorname{Sym}(n)$  contain? Describe the intersection of H and  $\operatorname{Alt}(n)$ .

To classify the subgroups of  $Sym(\Omega)$ , then, we need to study those primitive groups that do not preserve a product structure. To do this we change our approach slightly, and turn our attention to the *socle* of a permutation group.

<sup>&</sup>lt;sup>25</sup>Peter Cameron uses the notation *basic primitive group* to refer to a permutation group that is primitive and does not preserve a non-trivial product structure.