1. Выбор положения отливки в форме, плоскости разъема формы и модели.

Выбор положения отливки в форме и плоскости разъема формы выполняется согласно требованиям пункта 1.3 (м/ук 2788 стр.33).

Линию разъема модели и формы выбираем перпендикулярно осевой линии отверстия, т.к. высота детали значительно меньше ее диаметра.

2. Определяем припуски на механическую обработку поверхностей отливки детали. Данные сводим в таблицу 1.

Таблица 1 – Припуски на механическую обработку

Номинальные	Класс	Lann recky to our	Допуск	Припуск на мех.	Размеры	Размеры
размеры детали, мм	точности отливки	Ряд припусков	размеров отливки, мм	обработку, мм	отливки, мм	модели отливки, мм
Ø240	8	3	1,8	2×2,8	Ø245,6	Ø248,1
Ø175	8	3	1,8	2×2,8	Ø169,4	Ø167,7
Ø105	8	3	1,6	2×2,4	Ø109,8	Ø110,9
Ø100	8	3	1,4	2×2,4	Ø 104,8	Ø 105,8
Ø80	8	3	1,4	2×2,4	Ø75,2	Ø74,4
70	8	3	1,4	3,2 / 2,4	75,6	76,3
55	8	3	1,2	3,0 / 2,2	60,2	60,8
40	8	3	1,1	3,0/2,2	45,2	45,6
20	8	3	1,0	3,0/2,2	25,2	25,4

3. Определяем уклоны отливки

Уклоны назначаются в зависимости от высоты и материала модели по таблице 3.6.

Выбираем **деревянную** модель. При высоте поверхности до 20мм выбираем уклон 3°, свыше 20 мм 1°30'.

4. Определяем радиусы скругления:

$$r = \left(\frac{1}{5} \div \frac{1}{3}\right) \frac{a+B}{2}$$

где a и e — толщина сопрягаемых стенок отливки.

$$r_1 = \left(\frac{1}{5} \div \frac{1}{3}\right) \frac{30 + 67.5}{2} = 9,75...16,25 \text{ MM}$$

$$r_2 = \left(\frac{1}{5} \div \frac{1}{3}\right) \frac{20+35}{2} = 5,5...9,1 \text{ MM}$$

Принимаем r1 = 10 мм; r2 = 6 мм.

5. Изготовление стержней и выбор размеров их знаков.

Длина (l) или высота (h) знака зависит от длины стержня в отливке и от диаметра отверстия.

Длина вертикального стержневого знака выбирается по табл. 3.8.

A = 20 MM

B = 35 MM

6. Определяем массу детали

$$G_{\text{дет}} = \gamma \cdot V_{\text{дет}},$$

где $V_{\partial em}$ – объем детали; $\gamma = 0.0071 \text{ кг/см}^3 - \text{плотность чугуна};$

Определяем объем детали:

Рисунок 1- Схема расчета объема детали

$$D1 = 240 \text{ mm} = 24 \text{ cm}$$
; $d1 = 105 \text{ mm} = 10,5 \text{ cm}$; $d2 = 175 \text{ mm} = 17,5 \text{ cm}$; $d3 = 105 \text{ mm} = 10,5 \text{ cm}$; $d4 = 100 \text{ mm} = 10 \text{ cm}$; $d0 = 80 \text{ mm} = 8 \text{ cm}$; $d0 = 80 \text{ cm$

$$\begin{split} V_{\text{ДеТ}} &= V_1 - V_2 - V_3 - V_4 - V_5 = 3165, 1 - 1096, 8 - 307, 7 - 117, 7 - 276, 3 = 1366, 6\text{cm}^3 \\ V_1 &= \frac{\pi \cdot D_{1^2}}{4} \cdot H = \frac{3,14 \cdot 24^2}{4} \cdot 7 = 3165, 1\text{cm}^3 \\ V_2 &= \frac{\pi \cdot (D_{1^2} - d_{1^2})}{4} \cdot h_1 = \frac{3,14 \cdot (24^2 - 10,5^2)}{4} \cdot 3 = 1096, 8\text{cm}^3 \\ V_3 &= \frac{\pi \cdot (d_{2^2} - d_{3^2})}{4} \cdot h_2 = \frac{3,14 \cdot (17,5^2 - 10,5^2)}{4} \cdot 2 = 307, 7\text{cm}^3 \\ V_4 &= \frac{\pi \cdot d_{4^2}}{4} \cdot h_3 = \frac{3,14 \cdot 10^2}{4} \cdot 1,5 = 117, 7\text{cm}^3 \\ V_5 &= \frac{\pi \cdot d_{0^2}}{4} \cdot h_4 = \frac{3,14 \cdot 8^2}{4} \cdot 5,5 = 276, 3\text{cm}^3 \end{split}$$

Масса детали:

$$G_{\partial em} = 7.1 \cdot 1366.6 = 9703 \, \varepsilon = 9.7 \, \kappa \varepsilon$$

7. Расчет размеров литниковой системы Определяем массу отливки:

$$G_{\text{отл}} = \gamma \cdot V_{\text{отл}},$$

где V_{omn} – объем отливки;

Определяем объем отливки.

$$D1 = 245.6 \text{ mm} = 24.56 \text{ cm}; d1 = 104.8 \text{ mm} = 10.48 \text{ cm}; d2 = 169.4 \text{ mm} = 16.94 \text{ cm}; d3 = 109.8 \text{ mm} = 10.98 \text{ cm}; d4 = 104.8 \text{ mm} = 10.48 \text{ cm}; d0 = 75.2 \text{ mm} = 7.52 \text{ cm}; H = 75.6 \text{ mm} = 7.56 \text{ cm}; h1 = 30.4 \text{ mm} = 3.04 \text{ cm}; h2 = 20 \text{ mm} = 2 \text{ cm}; h3 = 15.4 \text{ mm} = 1.54 \text{ cm}; h4 = 60.2 \text{ mm} = 6.02 \text{ cm}$$

$$\begin{split} V_{\text{ОТЛ}} &= V_1 - V_2 - V_3 - V_4 - V_5 = 3579, 7 - 1216 - 261, 2 - 132, 7 - 267, 2 = 1702, 6\text{см}^3 \\ V_1 &= \frac{\pi \cdot D_{1^2}}{4} \cdot H = \frac{3,14 \cdot 24,56^2}{4} \cdot 7,56 = 3579, 7\text{см}^3 \\ V_2 &= \frac{\pi \cdot (D_{1^2} - d_{1^2})}{4} \cdot h_1 = \frac{3,14 \cdot (24,56^2 - 10,48^2)}{4} \cdot 3,04 = 1216\text{см}^3 \\ V_3 &= \frac{\pi \cdot (d_{2^2} - d_{3^2})}{4} \cdot h_2 = \frac{3,14 \cdot (16,94^2 - 10,98^2)}{4} \cdot 2 = 261,2\text{cm}^3 \\ V_4 &= \frac{\pi \cdot d_{4^2}}{4} \cdot h_3 = \frac{3,14 \cdot 10,48^2}{4} \cdot 1,54 = 132,7\text{cm}^3 \\ V_5 &= \frac{\pi \cdot d_{0^2}}{4} \cdot h_4 = \frac{3,14 \cdot 7,52^2}{4} \cdot 6,02 = 267,2\text{cm}^3 \end{split}$$

Масса отливки:

$$G_{\text{отл}} = 7,1 \cdot 1702,6 = 12,1$$
 кг

Суммарная площадь сечения питателей для чугуна определяется по формуле:

$$\Sigma F_{\text{пит}} = \frac{G_{\text{отл}}}{0.34 \cdot \mu \cdot S \cdot \sqrt{G_{\text{отл}} \cdot \text{Hp}}}, \text{cm}^2;$$

где μ =0,3-0,5 — коэффициент, учитывающий гидравлическое сопротивление литниковой системы; S=1,35 — коэффициент, зависящий от средней толщины стенки отливки (δ =10...20 мм);

$$Hp = Hc - \frac{P^2}{2 \cdot c};$$

Hp =
$$5.35 - \frac{5.35^2}{2.7.56} = 3.5$$
 см;

Следовательно, суммарное сечение питателей будет равно:

$$\Sigma F_{\text{пит}} = \frac{12,1}{0,34 \cdot 0,5 \cdot 1,35 \cdot \sqrt{12,1 \cdot 3,5}} = 8,1 \text{ cm}^2;$$

По найденной суммарной площади сечения питателей Σ Fпит определяем площадь сечения шлаковика Fш и стояка Fcт из соотношения: Σ Fпит: Fu: Fct=1:1,06:1,11

Откуда
$$F_{\text{III}}=1,06\cdot \Sigma F_{\text{пит}}=1,06\cdot 8,1=8,6\ \text{см}^2;$$
 $F_{\text{CT}}=1,11\cdot \Sigma F_{\text{пит}}=1,11\cdot 8,1=8,99\ \text{см}^2;$

Сечение стояка круглое:

$$D_{\text{ct}} = \sqrt{\frac{4 \cdot F_{\text{ct}}}{\pi}} = \sqrt{\frac{4 \cdot 8,99}{3,14}} = 3,38 \text{ cm} = 33,8 \text{ mm};$$

Площадь питателя

$$a_{\text{пит}} = \sqrt{\frac{\Sigma F_{\text{пит}}}{0.315}} = \sqrt{\frac{8.1}{0.315}} = 5.1 \text{ cm} = 51 \text{ mm};$$

Ширина питателя

$$b_{\text{пит}} = 1$$
,1 · $a_{\text{пит}} = 1$,1 · $51 = 56$,1 мм;

Высота питателя

$$h_{\text{пит}} = 0.3 \cdot a_{\text{пит}} = 0.3 \cdot 51 = 15.3 \text{ мм};$$

Площадь шлаковика

$$a_{\text{III}} = \sqrt{\frac{F_{\text{III}}}{0.935}} = \sqrt{\frac{8.6}{0.935}} = 3 \text{ cm} = 30 \text{ mm};$$

Ширина шлаковика

$$b_{ ext{ iny III}} = 0$$
,7 · а $_{ ext{ iny III}} = 0$,7 · 30 $= 21$ мм;

Высота шлаковика

$$h_{\text{III}} = 1$$
,1 · а $_{\text{III}} = 1$,1 · 30 = 33 мм;