

Universdad Nacional Autónoma de México

Tarea I

Computación

Alumno: E. Alexeiv Rosales Guillen

- M. en C. Diana Pineda Vázquez
- Ayte. Sebastián Pérez Patricio

Instrucciones: Realiza el pseudocódigo y diagrama de flujo de cada uno de los siguientes problemas. Nota, entiéndase el usuario como la persona que interactúa con la el programa de la computadora.

1. Problema I.

Calcular la densidad de un material solicitando la masa y el volumen del mismo y señalar si el material flota o se hunde en agua (considera la densidad del agua de $1.0 \frac{g}{cm^3}$).

1.1. Pseudocódigo.

```
Densidad <- ConDen(Masa, Volumen)</pre>
       Definir Densidad Como Real;
       Densidad <- Masa/Volumen;</pre>
   Fin Funcion
       Definir Masa, Volumen, Lim Como Real;
       Lim <- 1.0;
       Escribir "Cuanto vale la Masa?";
       Leer Masa;
       Escribir "Cuanto vale el Volumen?";
10
       Leer Volumen;
11
       Si (ConDen(Masa, Volumen) > Lim) Entonces
12
            Escribe "Se hunde";
13
14
            Escribir "No se hunde";
       FinSi
16
   Fin
17
```

Listing 1: Pseudocódigo, problema I.

1.2. Diagrama de flujo.

2. Problema II.

Calcular el promedio de un número de calificaciones n, preguntado al usuario. Devuelve el resultado del promedio al usuario.

2.1. Pseudocódigo.

```
Funcion Res <- Suma(A, B)
       Definir Res Como Real;
       Res <- (A + B);
   Fin Funcion
   Funcion Promedio <- Promediar(Val, Cant)
       Definir Promedio Como Real;
       Promedio <- (Val / Cant);</pre>
   Fin Funcion
   Inicio
       Definir N, i, Aux, Total Como Entero;
10
       Escribir "Cuantas materias?";
11
       Leer N;
       i <- 0;
13
       Total <- 0;
14
       Mientras (i < N) Entonces
15
           Escribir "Calificacion?";
16
           Leer Aux;
^{17}
           Total <- Suma(Total / Aux);</pre>
       Fin Mientras
19
       Escribir "El promedio es: ", Promedio (Total, N);
20
   Fin
```

Listing 2: Pseudocódigo, problema II.

2.2. Diagrama de flujo.

3. Problema III.

Encuentra el valor de \sqrt{x} para x=5 con el siguiente procedimiento y considerando tres (3) cifras decimales. Escribe el resultado de cada paso señalado, ordenadamente y, además, expresa claramente el resultado final.

- lacktriangle Asigna a b el valor de x.
- Repite los pasos iii y iv mientras $b \neq \frac{x}{b}$.
- Usando el valor actual de b, asígnale el nuevo valor $\frac{1}{2}\left(\frac{x}{b}+b\right)$
- lacktriangle Reporta el valor de b.
- Reporta el valor de b como el resultado de \sqrt{x} .

3.1. Pseudocódigo.

```
Funcion b_n <- Algd(x, b)
       Definir b_n Como Real;
2
       b_n < (1/2 * (b + (x/b));
3
   Fin Funcion
   Incio
       Definir b, x Como Real;
       x <- 5;
       b <- x;
       Mientras (b !=(x/b)) Entonces
            b \leftarrow Algd(x, b);
10
            Escribir "Valor b: ", b;
11
       Fin Mientras
^{12}
   Fin
```

Listing 3: Pseudocódigo, problema III

3.2. Diagrama de flujo.

