Co DENSITY IN LP Consider (1R", Lebesgue measure). We want to prove the following: Thue. (Lusin): Let $u: \Omega \to |R|$ be Lebesgue-measurable with $\Omega \subseteq |R|^m$ meas. and bounded. Then: ∀ε>0 ∃KC Ω, K compact s.t. INIXIXE A UIX is continuous Brook: Fix $s \in IN$, s > 0, and decompose $IR = \bigcup_{i=1}^{\infty} I_{is}$, with I_{is} pairwise dissoint s.t. $|I_{is}| < \frac{1}{3} \forall i$. Chaose $\gamma_{is} \in I_{is}$ and let $A_{is} = u^{-1}(I_{is})$, then $\Omega = \bigcup_{i=1}^{\infty} A_{is}$, A_{is} poissise dissolut, measurable. So $\exists K_{is}$ s.t. $K_{is} \subset A_{is}$, $|A_{is} \setminus K_{is}| < \frac{\varepsilon}{z_{i+s}}$, K_{is} compact $\forall i$. Then: $| \Delta \setminus \bigcup_{i=1}^{\infty} |K_{is}| < \frac{\varepsilon}{2^{s}}$ In general $\bigcup_{i=1}^{+\infty} K_{is}$ is not compact, but $\exists N_s \in IN s.t.$ $| \Delta \setminus \bigcup_{i=1}^{\infty} | K_{is}| < \frac{\varepsilon}{2s}$ and UNKis =: Ks is compact. Define now Us: Ks → IR by $u_s(x) = x_{is} \quad (x \in K_{is})$ ⇒ us is continuous (trivially: piecewise constant on sets with positive distance between each other). Moreover: $|u_{5} - u| < \frac{1}{3}$ Consider now $K = \bigwedge_{s=1}^{+\infty} K_s$, we have $|\Omega \setminus K| < \mathcal{E}$, K is compact and $u_s \rightarrow u$ uniformly on K, so $u_{|K}$ is continuous. Thu. (Tietze): Let K⊆IRie le compact, u:K→IR continuous. Then

 $\exists v: IR^{n} \rightarrow IR \quad \text{continuous s.t.}:$ $v(x) = u(x) \quad \forall x \in K \quad \Lambda \quad \|v\|_{\infty, IR^{n}} = \|u\|_{\infty, K}$ We can further sequire that $v \in C_{c}^{c}(\Omega)$, where Ω is any open set s.t. $K \subset \Omega$.

Proof: Let M= ||u||_{ook} = mox{|u(x)| x ∈ K}. Divide [-M, M] in 3 equal parts [-M, -1/3], [-1/3, 1/3], [1/3, M] and consider K1 = U-1([-M, -1/3]), K₂ = u⁻¹ ([M₃, M]) ⇒ K₁, K₂ are compact and dissoint. Let S = dist (K1, K2) > 0. Define V1(x) = - 1/3 + 2/3 min { dist (x, K1), S}

 $\Rightarrow v_1 \in C^{\circ}(\mathbb{R}^n), \|v_1\|_{\infty, \mathbb{R}^n} = \frac{\mathbb{M}}{3}, \|u - v_1\|_{\infty, \mathbb{K}} \leqslant \frac{2}{3} \mathbb{M}.$ Apply the same construction with $u - v_1$ insteads of u, we

 $\exists v_2 \in C^{\circ}(IR^{\prime\prime\prime}) \text{ s.t. } ||v_2||_{\infty,IR^{\prime\prime\prime}} = \frac{2}{3^2}M, ||(u-v_1)-v_2||_{\infty,K} \leqslant (\frac{2}{3})^2M$ Iterating the procedure we obtain:

 $\exists v_{\mathsf{K}} \in C^{\circ}(\mathit{IR}^{\mathsf{M}}) \text{ s.t. } \|v_{\mathsf{K}}\|_{\infty,\mathit{IR}^{\mathsf{M}}} = \frac{2^{\mathsf{K}-1}}{3^{\mathsf{K}}} \mathsf{M}, \|(u - \sum_{i=1}^{\mathsf{K}-1} v_i) - v_{\mathsf{K}}\|_{\infty,\mathit{K}} \leqslant \left(\frac{2}{3}\right)^{\mathsf{K}} \mathsf{M}$ ⇒ take $v(x) = \sum_{k=1}^{\infty} v_k(x)$, then $v \in C^0(\mathbb{R}^n) \wedge v(x) = u(x) \forall x \in K$ We now show that we can require $v \in C^0(-\Omega)$. Take $-\Omega^1$ s.t. 1 is open, KC1 CC1. Then:

 $dist((IR^{m}\backslash \Omega^{1}), K) > 0 \Rightarrow \exists \neq \in C^{o}(IR^{m}) \text{ s.t.}$ f(x)=0 on $\Omega \setminus \Omega' \wedge f(x)=1$ on $K \wedge O \leqslant f(x) \leqslant 1 \forall x$ Now replace v(x) with v(x) f(x) E (c(1)

<u>Thu.</u>:

Int $\Omega \subset \mathbb{R}^n$ be open, $1 \leqslant p < +\infty$, then $C_c^{\circ}(\Omega)$ is deuse in $L^{p}(\Delta)$

Proof: Let $u \in L^p(\Omega)$. Suppose, for the moment, that $\|u\|_{L^\infty(\Omega)} = M < +\infty$ and that Ω is bounded. By Lusiu $\exists K \in \Omega$ compact s.t. INIKIKE A UK is continuous. By Tietze FrECc(2) s.t. u(x) = v(x) 7x ∈ K ~ ||v||_{L∞(D)} = M. Compute:

$$\|u-v\|_{L^{p}(\Omega)}^{p} = \int_{\Omega} |u(x)-v(x)|^{p} dx = \int_{\Omega} |u(x)-v(x)|^{p} dx \leqslant \mathcal{E}(2M)^{p}$$

Let now u be unbounded and consider the functions $U_{n}(x) = \min\{ n, \max\{-n, u(x)\} \} \Rightarrow \|u_{n}\|_{L^{\infty}} = n \wedge \lim_{n \to +\infty} |u_{n}(x)| = u(x)$

We have that un IP u (Lebesgue). Let now A be unbounded and consider:

$$U_{\mathcal{M}}(x) = \begin{cases} U(x) & |x| < \alpha \\ 0 & |x| \geqslant \alpha \end{cases}$$

⇒ again we have that un [> u (Zebesque)

<u>Condlary:</u>

Given Ω as above, $p \in [1, +\infty)$, $L^p(\Omega)$ is separable.

Conclusing (Continuity of Translations in LP): Given $p \in [1, +\infty)$, $u \in L^p(IR^n)$, $y \in IR^n$, we define the y-translation of u as:

$$\tau_{\gamma} u(x) := u(x-\gamma)$$

Then we have that lim 11 T>U-U11_1P(IRM) = 0

This is trivially true for UEC's because such u is uniformly continuous.

Consider now (: IR" → IR given by the following:

$$Y(x) = \begin{cases} c e^{\frac{1}{|x|^2 - 1}} & |x| < 1 \\ 0 & |x| \ge 1 \end{cases}$$
 (Bump Function)

 $\Rightarrow \zeta \in C_c^{\infty}(IR^n) \land Supp \zeta = \overline{B_1(0)}$. We choose $\zeta \in S.t. \int_{IR^n} \zeta(x) dx = 1$ We can re-scale (as follows:

$$(\kappa(x) = \kappa^{n} (\kappa x) : R^{n} \rightarrow R, \kappa s.t. \int_{R^{n}} (\kappa(x) dx = 1)$$

 \Rightarrow supp $(k \in B_{\frac{1}{2}}(0))$

 \Rightarrow given $u \in L^{p}(\mathbb{R}^{n})$ we can regularize it by convolution:

$$U_{K}(x) := \int_{\mathbb{R}^{N}} u(x-y) \, \phi_{K}(y) \, dy \text{ with } u_{K} \in C^{\infty}(\mathbb{R}^{N}) \wedge u_{K} \frac{\mathbb{L}^{p}(\Omega)}{\mathbb{L}^{p}(\Omega)} u,$$

$$\phi_{K}(y) = C_{K} \left(\frac{1+\cos x}{2}\right)^{K}, \int_{\mathbb{R}^{N}} \phi_{K} = 1$$

Indeed, change variables s.t.: $z = x - y \Rightarrow y = x - z, dy = dz \Rightarrow u_{\kappa}(x) = \int_{\mathbb{R}^n} u(z) \phi_{\kappa}(x - z) dz$ Proposition: Let $C \in C^{1}(\mathbb{R}^{n})$, $u \in L^{1}_{loc}(\mathbb{R}^{n})$ (the restriction of u on every compact set is L^{1}). Define $v(x) := \int_{\mathbb{R}^{n}} u(z) \phi(x-z) dz$. Then $v \in C^{1}(\mathbb{R}^{n})$ and $v \in C^{1}(\mathbb{R}^{n})$ $|v(x+y)-v(x)|=|\int_{\mathbb{R}^n}u(z)(\phi(x+y-z)-\phi(x-z))dz|$ dominated by 2M 1/K) >---0 sor v is continuous. Now we check the derivatives: $\partial_{x_i} v(x) = \lim_{h \to 0} \frac{v(x + he_i) - v(x)}{h}$ = $\lim_{h\to 0} \int_{K} u(z) \left(\frac{\phi(x+he_i-z)-\phi(x-z)}{h} \right) dz$ $\rightarrow \partial_{\times i} \phi(\times - z)$ The fact that $U_K \xrightarrow{LP(\Omega)} U$ derives from the following: $\|u-u_{\kappa}\|_{L^{p}(I\mathbb{R}^{n})}^{p}=\int_{I\mathbb{R}^{n}}|\int_{I\mathbb{R}^{n}}\left(u(\times-\times)-u(\times)\right)\phi_{\kappa}(\times)d_{\lambda}|^{p}d_{\lambda}$ $\leq \int_{\mathbb{R}^n} |\int_{\mathbb{R}^n} |u(x-y) - u(x)| \phi_{\kappa}(y) dy|^{p} dx$ $=\phi_{k}(y)^{\frac{1}{p}}\cdot\phi_{k}(y)^{1-\frac{1}{p}}$ $\leq \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} u(x-y) - u(x) |^{p} \phi_{\kappa}(y) dy \right) dx = \int_{\mathcal{B}_{\frac{1}{\kappa}}(0)} \psi_{\kappa}(y) \int_{\mathbb{R}^{n}} |u(x-y) - u(x)|^{p} dx dy$ < E for K lorge eunigh. < E for K lorge enough Take now $\Omega \subseteq \mathbb{R}^n$ open, $u \in L^p(\Omega)$ (extend u to be o outside of Ω), then we know that $\forall \varepsilon>0 \exists v \in C^{\infty}_{c}(\Omega)$ s.t. 114-v1128(2) < E. Let vx be the regularization by convolution

of v, then we have that $||v_k - v||_{L^p(-2)} \rightarrow 0$. Moreover,

 $v_{\kappa} \in C_{c}^{\infty}(\Omega)$ for κ large enough, so $\|v_{\kappa} - v\|_{L^{p}(\Omega)} < \varepsilon$ \wedge $\|v_{\kappa} - u\|_{L^{p}(\Omega)} < 2\varepsilon$ for κ large enough.

CONTINOUS FUNCTIONS DENSITY IN LP(M)

Suppose now to have (X, μ) , X locally, compact metric space, μ outer measure of X. Is it true that continuous functions are dense in $L^p(\mu)$??? Not in GENERAL!!! Yes, if μ is a RADON MEASURE.

Def. (Bonel Measure, Bonel regularity, Radon Measure):

µ is a BOREL MEASURE if Bonel sets are µ-measurable.

µ is BOREL REGULAR if VACX & B Bonel s.t. ACB \(\text{\$\mu}(A) = \mu(B) \) (B is a Bonel Euvelope of A).

µ is a RADON MEASURE if it is Bonel regular and \(\mu(K) < +\alpha \)

∀XCX, X compact.