Support Voctor Machine Econvex opt.

Preclass 03: Convex Optimization ু ইন্ট্রে

[SCS4049] Machine Learning and Data Science

Seongsik Park (s.park@dgu.edu)

School of Al Convergence & Department of Artificial Intelligence, Dongguk University

Optimization problem in standard form

- $x \in \mathbb{R}^n$ is the optimization variable
- $f_0: \mathcal{R}^n \to \mathcal{R}$ is the objective or cost function \leftarrow ইমিয়া মেটে
- $f_i:\mathcal{R}^n \to \mathcal{R}, i=1,2,...,m$ are the inequality constraint functions
- $h_i: \mathcal{R}^n \to \mathcal{R}$ are the equality constraint functions

ML < 到码针

court. given ()C(1), y(1)), (x(2), y(2)) ...

object min $\sum_{n=1}^{N} (y^{(n)} - \theta^T x^{(n)})^2$

V

solution normal egn.

' G.D.

경로찾기 Soution 92: K17と言う化計 4 1823化元 子生子过: Ch宝正要/2014中2082 UIZBOI フルネト HC.

Convex optimization problem

Important property: feasible set of a convex optimization problem is convex

Lagrangian

standard form problem

(minimize
$$f_0(\mathbf{x})$$
 (10)

subject to
$$f_i(\mathbf{x}) \le 0, \quad i = 1, 2, ..., m$$
 (11)
 $h_i(\mathbf{x}) = 0, \quad i = 1, 2, ..., p$ (12)

$$u_i(\mathbf{x}) = 0, \qquad i = 1, 2, ..., p$$
 (12)

variable $x \in \mathbb{R}^n$, domain \mathcal{D} , optimal value p^*

Lagrangian: L: $\mathcal{R}^n \times \mathcal{R}^m \times \mathcal{R}^p \to \mathcal{R}$ with dom $L = \mathcal{D} \times \mathcal{R}^m \times \mathcal{R}^p$

$$\sum_{i=1}^{p} \sum_{j=1}^{p} \underbrace{\sum_{i=1}^{p} \sum_{j$$

- weighted sum of objective and constraint functions
- $(\hat{\lambda}_i)$ is Lagrange multiplier associated with $f_i(x) \leq 0$
- ν_i is Lagrange multiplier associated with $h_i(x) = 0$

$$(x,y,v) = (x+y) + v(x^2+y^2-1)$$

Lagrange dual function

Lagrange dual function: $g: \mathcal{R}^m \times \mathcal{R}^p \to \mathcal{R}$

$$g(\lambda, \nu) = \min_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \lambda, \nu) \tag{14}$$

$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$
 (15)

g is concave, can be $-\infty$ for some λ, ν

lower bound property: if $\lambda \geq 0$, then $g(\lambda, \nu) \leq p^*$

proof: if \tilde{x} is feasible and $\lambda \geq 0$, then

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \min_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$
 (16)

minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda, \nu)$

The dual problem

Lagrange dual problem

$$\frac{g(\lambda,\nu)}{\text{subject to}} = \frac{g(\lambda,\nu)}{\lambda \geq 0}$$
 (17)
$$\frac{\lambda \geq 0}{\text{inequality , } \forall \text{ multiplier.}}$$

- finds best lower bound on * obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted @
- λ, ν are dual feasible if $\lambda \geq 0$, $(\lambda, \nu) \in \text{dom } g$
- often simplified by making implicit constraint $(\lambda, \nu) \in \mathrm{dom}\, g$ explicit

primal problem

min
$$f_0(x)$$

S.t. ζ $f_1(x) \leq 0 \leq$
 ζ $f_2(x) \leq 0 \leq$
 ζ $f_1(x) = 0$
 ζ $f_2(x) = 0$
 ζ $f_3(x) = 0$.

1 (x, 7, 7, 12, v, 02, 03)

= $f_0(\alpha) + \Lambda_1 f_1(\alpha) + \Lambda_2 f_2(\alpha)$ + $V_1 h_1(\alpha) + V_2 h_2(\alpha) + V_3 h_3(\alpha)$

2 g(71,72,12,02,03) = min X(x,71,72,01,02,03)

3) Max $g(\pi_1,\pi_2,0,\nu_2,\nu_3)$ S.t. $\pi_1 \ge 0$ $\pi_2 \ge 0$

Weak and strong duality

weak duality: $d^* \leq p^*$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems

strong duality: $d^* = p^*$

- · does not hold in general
- holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Geometric interpretation

for simplicity, consider problem with one constraint $f_1(x) \leq 0$ interpretation of dual function

$$g(\lambda) = \min_{(u,t) \in \mathcal{G}} (t + \lambda u) \qquad \text{where } \mathcal{G} = \{ (f_1(x), f_0(x)) \mid x \in \mathcal{D} \}$$
 (19)

- $\lambda u + t = g(\lambda)$ is supporting hyperplane to \mathcal{G}
- hyperplane intersects t-axis at $t = g(\lambda)$

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_i , h_i)

1. primal constraints:
$$f_i(x) \le 0$$
 i = 1, ..., m, $h_i(x) = 0$, i = 1, ..., p

- 2. dual constraints: $\lambda \geq 0$
- 3. complementary stackness: $\lambda_i f_i(x) = 0, i = 1, ..., m$
- 4. gradient of Lagrangian with respect to *x* vanishes:

$$\nabla f_0(x) + \sum_{i=1}^{m} \lambda_i \nabla f_i(x) + \sum_{i=1}^{p} \nu_i \nabla h_i(x) = 0$$
 (20)

if strong duality holds and ware optimal, then they must satisfy the KKT conditions

$$\begin{array}{l} \text{Primal} \\ \text{constraind} \\ f_{1}(z) \leq 0 \\ \\ f_{2}(z) \leq 0 \\ \\ h_{1}(z) = 0 \\ \\ h_{2}(z) = 0 \\ \\ h_{3}(z) = 0 \end{array}$$

dw.1

Complementary Slackness

Slackness
$$700\%$$
 70%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%
 10%

$$f_{(x)}>0 \Longrightarrow J_{(x)}=0$$

$$f_{(x)}>0 \Longrightarrow f_{(x)}=0$$

$$f_{\lambda}(x) \qquad 7_{\lambda}$$

$$\geq 0 \qquad = 0$$

$$= 0 \qquad > 0$$

inequality > 0
$$7i=0$$
 \Rightarrow Ed. $= 0$ $7i>0 \Rightarrow Ed. $= 0$ $7i>0 \Rightarrow Ed. $= 0$ \Rightarrow Ed. $=$$$

Reference and further reading

- "Chap 7 | Sparse Kernel Machines" of C. Bishop, Pattern Recognition and Machine Learning
- "Chap 5 | Support Vector Machines" of A. Geron, Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow
- "Chap 4 | Convex Optimization Problems", "Chap 5 | Duality" of S. Boyd, Convex Optimization