

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : A61L 27/00		A1	(11) International Publication Number: WO 99/66967 (43) International Publication Date: 29 December 1999 (29.12.99)
(21) International Application Number:	PCT/US99/14247		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date:	23 June 1999 (23.06.99)		
(30) Priority Data: 09/103,874	24 June 1998 (24.06.98)	US	
(71) Applicant:	INTERNATIONAL HEART INSTITUTE OF MONTANA FOUNDATION [US/US]; 554 W. Broadway Street, Missoula, MT 59802 (US).		
(72) Inventors:	DURAN, Carlos, M.; 1232 Gerald Avenue, Missoula, MT 59801 (US). CHEUNG, David, T.; 10 West Palm Drive, Arcadia, CA 91007 (US). PANG, David, C.; 109 High Park Way, Missoula, MT 59803 (US).		Published <i>With international search report.</i> <i>Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>
(74) Agents:	KLEIN, Howard, J. et al.; Klein & Szekeres, LLP, Suite 700, 4199 Campus Drive, Irvine, CA 92612 (US).		

(54) Title: PROCESS FOR MAKING COMPLIANT DEHYDRATED TISSUE FOR IMPLANTATION

(57) Abstract

A process for preparing pliable soft tissue specimen which are resistant to cracking and devoid of viable cells includes the steps of treating native soft tissue obtained from a donor by a gradually increasing gradient of aliphatic alcohol or other suitable water miscible polar organic solvent until the last alcohol (or other solvent) solution has at least 25 % by volume of the organic liquid. Thereafter, the tissue specimen is treated with a solution containing glycerol or low molecular weight (< 1000D) polyethylene glycol, and polyethylene glycol of a molecular weight between approximately 6,000 to 15,000 D and heparin. Thereafter, the tissue specimen is briefly immersed in aqueous heparin solution, frozen and lyophilized. The tissue specimen is suitable for implantation as a homograft or xenograft, with or without rehydration.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

1 PROCESS FOR MAKING COMPLIANT DEHYDRATED TISSUE FOR IMPLANTATION

2

3

4 BACKGROUND OF THE INVENTION

5 1. Field of the Invention

6 The present invention is in the field of implant materials. More
7 particularly, the present invention is directed to compliant dehydrated implant
8 materials which have no viable cells, and can be stored and transported
9 without being immersed in liquid. The present invention is also directed to
10 the process of producing said implant materials.

11 2. Brief Description of the Prior Art

12 The use of autografts, homografts and xenografts for augmenting or
13 replacing defective tissues in humans and animals has been known for a long
14 time. From the standpoint of providing suitable materials for implantation,
15 augmenting or replacing hard tissues, such as bone, presents a different type of
16 problem than augmenting or replacing soft tissues. In the selection of
17 substitute materials for hard tissue graft, the strength and hardness of the graft
18 are important whereas compliance and flexibility are, generally speaking, less
19 crucial.

20 On the other hand, in the selection of soft tissue materials for
21 implantation, compliance and flexibility of the graft material are usually of
22 utmost importance because the soft tissue replacement material usually must
23 closely match the healthy functional tissue that will be replaced. In this
24 regard it must be remembered that natural soft tissue containing collagen is
25 strong and able to withstand repeated three-dimensional stress as well as
26 bending and deformation. Often natural soft tissue acts as a physical barrier
27 that must maintain its structural integrity. Ideally, replacement or
28 augmentation soft tissue that is utilized in implantation should have the same
29 characteristics as the natural soft tissue that it replaces, and should be easy to
30 obtain, store and transport. These, however are difficult goals that the prior

1 art has been striving to attain, and up to the present invention only with
2 moderate success.

3 More particularly, in accordance with one major approach in the prior
4 art to preserve soft tissue for eventual implantation, tissues of human or animal
5 origins have been treated with chemical modifiers/preservatives, such as
6 glutaraldehyde, which cross-links collagen and other proteins. The
7 glutaraldehyde treated tissues have been shown to be adequately resistant to
8 mechanical fatigue as well as biodegradation when implanted in human
9 patients. However, the glutaraldehyde cross-linking alters the viscoelastic
10 properties of tissues, and therefore, as a result of host response undesirable
11 calcification and build-up of peripheral granulation tissues usually occur in the
12 implants with time. Glutaraldehyde is an effective biocidal (sterilizing) agent,
13 but when exposed to air it slowly loses its biocidal effectiveness. Therefore,
14 the tissue intended for implantation (bioprosthetic) must be kept in
15 glutaraldehyde solution during storage and transportation and the package
16 including the glutaraldehyde soaked bioprosthetic must be kept tightly sealed.
17 Moreover, it must not be exposed to significantly elevated temperature.
18 Because of these requirements the costs of utilizing glutaraldehyde-treated
19 soft tissue bioprostheses are high. Glutaraldehyde is toxic, and therefore it
20 must be carefully removed from the bioprosthetic by rinsing before
21 implantation. This represents still another disadvantage of glutaraldehyde-
22 treated bioprostheses.

23 Another major approach for providing soft tissue bioprosthetic in the
24 prior art utilizes liquid sterilants other than glutaraldehyde. Some of these
25 alternative approaches also avoid the calcification problems associated with
26 glutaraldehyde treated implants. However, in accordance with these
27 processes also, to avoid brittleness and to more-or-less maintain the physical
28 integrity of the bioprostheses the tissues have to be maintained, stored and

1 transported in liquid media up to the time immediately preceding implantation.

2 Still another alternative method for providing soft tissue bioprostheses
3 is the use of cryo-preserved fresh tissues of homograft (tissue from the same
4 species). Because of recent advances in cryo-preservation, the cryo-preserved
5 fresh tissues have recently made homograft implants relatively more
6 successful and more accepted as an alternative to glutaraldehyde-preserved
7 xenograft. A serious disadvantage of cryo-preserved bioprostheses is the
8 difficulty to assure that they are free of infectious disease agents. The costs of
9 preparing and handling of cryo-preserved bioprosthetic tissues is also very
10 high because of the need for keeping the tissues at all times below the usual or
11 normal freezer temperatures.

12 From among the numerous patent disclosures in the prior art directed to
13 preparing and/or preserving biological tissue for implantation or other use as
14 replacement tissue, United States Patent Nos. 5,116,552 (*Morita et al.*) and
15 5,336,616 (*Livesey et al.*) are mentioned as of interest to the present invention.

16 United States Patent No. 5,116,552 (*Morita et al.*) describes a process for
17 preparing lyophilized collagen sponge for medical applications, such as
18 artificial skin. The process of this reference comprises the steps of
19 impregnating cross-linked collagen sponge with an aqueous solution of a
20 hydrophilic organic solvent, freezing the sponge and thereafter vacuum drying
21 (lyophilizing) it. However, the resulting freeze-dried product is not pliable
22 and is not protected from cracking because the water and the hydrophilic
23 solvent or solvents have been removed in the lyophilization step. United
24 States Patent No. 5,336,616 (*Livesey et al.*) describes treatment of soft tissue
25 obtained from a source, such as a cadaver, with solutions containing
26 antioxidants, protease inhibitors and antibiotics (stabilizing solution), with
27 enzymes and detergents to remove viable antigenic cells (processing solution),
28 and after decellularization with a cryopreservative solution that prevents

1 destructive ice crystal formation while the tissue is frozen. The cryo-
2 preserving solution may include a combination of organic solvent and water.
3 After lyophilization the product is stored and transported in a sealed container
4 in an inert gas atmosphere, thus protected from atmospheric moisture. Prior to
5 implantation the tissue is rehydrated and must be restored with
6 immunotolerable viable cells to produce a permanently acceptable graft for
7 implantation.

8 Still other disclosures pertaining to the preparation and/or preservation
9 of biological tissue for implantation, or related subjects, can be found in
10 United States Patent Nos. 2,106,261; 2,610,625; 2,645,618; 3,939,260;
11 4,277,238; 4,280,954; 4,300,243; 4,383,832; 4,578,067; 4,703,108; 4,704,131;
12 4,760,131; 4,801,299; 4,911,915; 5,028,597; 5,131,850; 5,674,290 and U.K.
13 Patent Specification 716,161.

14 SUMMARY OF THE INVENTION

15 It is an object of the present invention to provide a soft tissue graft
16 suitable for implantation in humans or other mammals which graft after
17 rehydration has substantially the same mechanical properties as the natural soft
18 tissue from which the graft was obtained.

19 It is another object of the present invention to provide a soft tissue graft
20 that satisfies the foregoing objective, that is also devoid of viable cells and
21 does not require inoculation with viable cells prior to implantation.

22 It is still another object of the present invention to provide a soft tissue
23 graft that satisfies the foregoing objectives, that can be stored and transported
24 in a dehydrated form.

25 The foregoing and other objects and advantages are attained by a soft
26 tissue preparation that in its dehydrated state is compliant, resists cracking, is
27 devoid of viable cells and which is obtained by successively treating natural
28 soft tissue:

1 with liquid compositions of gradually increasing concentrations of a C₁
2 - C₃ alcohol, or other polar water miscible organic solvent in water, until the
3 last of said liquid compositions contains at least approximately 25 % by
4 volume alcohol, or the other organic solvent, or mixtures thereof, the balance
5 being water;

6 thereafter with a second liquid composition of aqueous glycerol or of
7 low molecular weight (<1000D) polyethylene glycol, containing the glycerol
8 or the low molecular weight polyethylene glycol, or mixtures thereof, in a
9 concentration range of approximately 10 to 50 % by volume, said second
10 liquid composition also containing approximately 3 - 20 % weight by volume
11 polyethylene glycol of a molecular weight in the range of 6,000 D to 15,000 D
12 and approximately 2 to 75 unit per milliliter heparin of a molecular weight
13 greater than approximately 3KD;

14 thereafter draining excess liquid from the soft tissue so treated;
15 thereafter immersing the soft tissue in an aqueous heparin solution of
16 approximately 20 to 500 unit per milliliter concentration, and
17 thereafter freezing the tissue and lyophilizing the tissue to dryness.

18 The features of the present invention can be best understood together
19 with further objects and advantages by reference to the following detailed
20 description of specific examples and embodiments.

21 DESCRIPTION OF THE PREFERRED EMBODIMENTS

22 The following specification sets forth the preferred embodiments of the
23 present invention. The embodiments of the invention disclosed herein are the
24 best modes contemplated by the inventors for carrying out their invention,
25 although it should be understood that various modifications can be
26 accomplished within the parameters of the present invention.

27 In accordance with the present invention soft tissue intended for graft in
28 mammals, including humans, is first obtained from a source, such as cadavers.

1 Bovine, ovine, porcine tissue and soft tissue obtained from other animals, such
2 as sheep, serve as examples. Human soft tissue may also be used.
3 Homografts, that is tissues implanted in the same species as the donor, as well
4 as xenografts, that is tissues implanted in species different from the donor, can
5 be prepared in accordance with the present invention. The types of tissues
6 used in accordance with the present invention are generally the same which are
7 normally used in state-of-the-art surgical procedures involving implantations
8 of soft tissues, primarily in humans. Examples of tissues frequently utilized in
9 these procedures are pericardium, aortic and pulmonary roots, tendons,
10 ligaments, skin, peritonium, pleura, mitral and tricuspid valves.

11 The soft tissue excised from the donor is usually trimmed to remove
12 loose excess or unneeded tissue and fat. Usually the tissue is then kept in
13 saline solution. Thereafter, and in accordance with the present invention, the
14 tissue is treated in a first aqueous solution containing a C₁ - C₃ alcohol in
15 relatively low concentration (approximately 15 - 35), and thereafter in a
16 second aqueous solution of greater alcohol concentration, in the range of
17 approximately 25 to 75 % volume by volume. (All concentrations described
18 in this application are volume by volume, unless specifically stated otherwise.)

19 The purpose of the treatment of the tissue specimen with the first and second
20 solutions is to gradually replace the water content of the specimen with
21 alcohol. Methyl, ethyl and iso-propyl alcohols can be used for this purpose
22 with ethyl alcohol being preferred. Other, non-toxic polar and water miscible
23 organic solvents e.g. acetonitrile, acetone or methyl-ethyl ketone can also be
24 used instead of the above-listed alcohols, and mixtures of alcohols and organic
25 solvents are also suitable for use in the invention. Preferably, the first
26 solution contains approximately 25 % ethyl alcohol, the balance being water,
27 and the second solution contains approximately 50 % ethyl alcohol, the
28 balance being water.

1 Those skilled in the art will readily recognize that the foregoing
2 manipulations represent treatment of the tissue specimen with a stepwise
3 increasing gradient of alcohol (or other suitable non-toxic water miscible
4 organic solvent) concentration, until a concentration of at least approximately
5 25 %, preferably approximately 50 %, and at most approximately 75 %
6 alcohol (or other suitable solvent) concentration is reached. Instead of
7 treating the tissue specimen with the aforesaid concentration gradient in two
8 steps, the specimen could also be treated with the gradient in three or more
9 steps, or even with a continuously increasing gradient until the upper limit of
10 the alcohol (or other suitable solvent) concentration is reached. The treatment
11 with the increasing gradient of alcohol (or other suitable solvent) concentration
12 is conducted at ambient temperature and is best performed by immersing the
13 tissue specimen in the solutions. The timing of the exposure of the tissue
14 specimen to these solutions is not critical and is somewhat dependent on the
15 thickness of the specimen. However sufficient time must be given for the
16 solution to penetrate the specimen. Typically, 30 minutes are sufficient and in
17 the preferred embodiments of the process of the invention the tissue specimen
18 are kept for approximately 30 minutes in each of the first and second alcohol
19 solutions.

20 After immersion (treatment) in the above-described alcohol solutions,
21 the tissue specimen is immersed (treated) in a third solution that contains
22 approximately 10 to 50 % glycerol, approximately 3 to 20 % weight by
23 volume polyethylene glycol of a molecular weight in the range of 6,000 D to
24 15,000 D and approximately 2 to 75 unit per milliliter heparin of a molecular
25 weight greater than approximately 3KD. Preferably, the third solution
26 contains approximately 20 % glycerol, approximately 5 % (weight by volume)
27 polyethylene glycol that has a molecular weight of approximately 8,000 D and
28 approximately 50 unit per milliliter heparin. Instead of glycerol, a low

1 molecular weight (<1000 D) polyethylene glycol can be included in the third
2 solution. The duration of immersion in the third solution is also not critical,
3 approximately 30 minutes are sufficient for very thin tissues such as ovine,
4 porcine, bovine or human pericardium, but for thicker tissues longer times of
5 exposure, such as 6 hours, or preferably 12 hours are convenient and preferred.

6 After treatment with the third solution, the tissue specimen is removed
7 therefrom and excess liquid is allowed to drain from the specimen. The
8 specimen is then briefly (for seconds as in a quick dip) immersed in, or is
9 otherwise treated with aqueous heparin solution of approximately 20 to 500
10 unit/ml concentration, and preferably of approximately 250 ml/unit
11 concentration, then the heparin solution is allowed to drain off. Thereafter, the
12 specimen is frozen in a manner usual in the art for freezing specimens prior to
13 lyophilization. Those skilled in the art understand that freezing is usually
14 conducted in a freezer of ultra-low temperature, that is between approximately
15 - 60°C - -80°C. After freezing, the tissue specimen is lyophilized (dried *in*
16 *vacuo*) in a manner known in the art.

17 Tissue samples processed in accordance with the invention tend to be
18 translucent and have a slight yellowish tint in color. Unlike tissues lyophilized
19 from 100% water or physiological saline solution, the tissues of the invention
20 are pliable, compliant and do not crack or break as a result of physical
21 manipulations.

22 For use in surgical procedures as an implant, and for most tests
23 conducted in accordance with the present invention to compare the treated
24 tissues with fresh tissues, the lyophilized tissues are first rehydrated in
25 physiological buffered saline. This is done by treating, preferably by
26 immersing, the lyophilized tissue of the invention in physiological buffered
27 saline solution for approximately 5 minutes to one hour. The rehydrated
28 tissues of the invention have an appearance that is practically

1 indistinguishable from the appearance of the fresh tissue. Rehydration is
2 typically conducted at ambient temperature. It can be done, other than in
3 saline, in the patient's own blood, in tissue culture medium, and in low
4 percentage (<10%) ethyl alcohol solution. A preferred method of rehydrating
5 tissue specimen in accordance with the present invention is in buffered saline
6 of pH 7.4.

7 As noted above, except for testing the tissue specimen of the present
8 invention, rehydration is performed only prior to use of the tissue specimen
9 for implantation. Otherwise the specimen are stored and transported at
10 ambient temperature in a sealed container protected from atmospheric
11 moisture. The lyophilized tissues can be readily sterilized by gas phase
12 sterilization methods, and can also be implanted without first being rehydrated.
13

14 The tissue specimen of the invention do not contain viable cells, but
15 tests described below demonstrated that after rehydration the tissue specimen
16 are not cytotoxic and are compatible for host endothelial cells to attach and
17 proliferate on them. This attachment and proliferation of host cells and lack
18 of cytotoxicity are important for long term survival of most implants. The
19 tissues of the invention are hemocompatible and resistant to platelet
20 aggregation and thrombus formation. Tests, described below, also
21 demonstrated that the collagen fibers of the native tissue have remained
22 substantially intact during the steps of the process of the invention, and are
23 substantially intact in the rehydrated tissue.

24 Specific Examples and Description of Tests

25 (a) preparation of lyophilized bovine or ovine pericardium

26 Fresh bovine and ovine pericardium was cut into strips and squares
27 were dissected to remove loose tissues and fat. The tissues were immediately
28 placed in aqueous 25% ethyl alcohol solution for 30 minutes. The aqueous

1 25% ethyl alcohol solution was replaced by aqueous 50% ethyl alcohol
2 solution for another 30 minutes. The second (50% ethyl alcohol) solution
3 was then replaced for approximately 16 hours by a third solution containing
4 20% glycerol, 5% weight by volume polyethylene glycol (MW 8,000) and 50
5 unit/ml heparin (molecular weight >3KD). The tissues were carefully
6 removed from the third solution, excess liquid was allowed to drain from the
7 tissues and the tissues were dipped in a heparin solution of 250 unit/ml for a
8 few seconds, prior to freezing the tissues at -70 ° C. The completely frozen
9 tissues were lyophilized to dryness.

10 The lyophilized bovine or ovine pericardium tissues obtained above had
11 a translucent appearance and a slight yellowish tint. They were pliable and
12 did not crack or break by physical manipulations. They could be rehydrated
13 by immersion in physiological buffered saline for approximately 5 minutes at
14 ambient temperature. After rehydration, the tissues were indistinguishable in
15 appearance from the native fresh tissues.

16 Human fibroblasts and umbilical cord vein endothelial cells were
17 cultured on the rehydrated pericardium tissues to study their biocompatibility.
18 Round discs of the tissues were cut to fit the bottom of the wells of a 24 well
19 culture plate. Plastic rings were placed on top of the tissues to hold the tissues
20 down and to ensure a good seal at the edge of the tissues. Cells were seeded
21 on the tissues in normal culture media for one week. At the end of the
22 incubation period, tissues were recovered and cut into different portions for
23 histology studies. Histological examination of the cross-section of the tissues
24 showed a thin layer of endothelial cells adhering to the surface of the tissues.
25 Cells on the tissues were also released by trypsin and counted. These results
26 showed that the rehydrated tissues are not cytotoxic and are biocompatible for
27 host cells to attach and proliferate. As is known, attachment and proliferation
28 of endothelial cells and other connective tissue cells on cardiac implants is

1 essential for the long term survival of the implant.

2 The integrity of the collagen fibers in the treated tissues was examined
3 by melting temperature measurements. For these, tissues were heated in
4 phosphate buffered saline from 37 ° C until they shrunk. The shrinkage
5 temperature of the fresh native tissues and of the lyophilized and rehydrated
6 tissues in accordance with the present invention was approximately the same,
7 at approximately 63+1 ° C, indicating that the collagen fibers remained intact
8 throughout the lyophilization and rehydration process.

9 (b) preparation of lyophilized sheep aortic and pulmonary roots

10 Aortic and pulmonary roots of donor sheep were also treated with the
11 aqueous 25% ethyl alcohol, aqueous 50% ethyl alcohol, aqueous 20%
12 glycerol 5% polyethylene glycol, and subsequent heparin solution and
13 lyophilized, as described above for the bovine and ovine pericardium.

14 The treated roots were rehydrated and implanted as homografts in the
15 descending aorta of host sheep. Our results show that after 100 days of
16 implantation, the valves were competent and the roots do not appear different
17 from the un-implanted native tissues. The hundred-day explant was free of
18 fibrin deposition and free of host tissue reaction. The leaflets of the valve
19 appeared intact and indistinguishable from the unimplanted valve by both
20 gross observation and histological examination.

1 WHAT IS CLAIMED IS:

- 2 1. A process for preparing a pliable soft tissue specimen, comprising
3 the steps of:
4 (1) treating natural soft tissue obtained from a donor with:
5 (a) liquid compositions of gradually increasing concentrations of
6 a polar organic solvent or solvents, until the last of said liquid
7 compositions contains at least approximately 25 % by volume of said
8 solvent, or mixture of solvents, the balance being water, the solvent
9 being selected from a group consisting of aliphatic alcohols having 1 to
10 3 carbons and other water miscible polar organic solvents;
11 (b) thereafter with a second liquid composition of aqueous
12 glycerol or of low molecular weight polyethylene glycol having a
13 molecular weight less than approximately 1000D, the glycerol or the
14 low molecular weight polyethylene glycol, or mixtures thereof being in
15 a concentration range of approximately 10 to 50 % by volume, said
16 second liquid composition also containing approximately 3 - 20 %
17 weight by volume of polyethylene glycol of a molecular weight in the
18 range of 6,000 D to 15,000 D and approximately 2 to 75 unit per
19 milliliter heparin of a molecular weight greater than approximately
20 3KD;
21 (2) thereafter briefly immersing the soft tissue in an aqueous heparin
22 solution, and
23 (3) thereafter freezing the tissue and lyophilizing the tissue to dryness.
24 2. The process in accordance with Claim 1 wherein the polar
25 organic solvents are selected from the group consisting of methyl alcohol,
26 ethyl alcohol, iso-propyl alcohol, acetonitrile, acetone and methyl ethyl
27 ketone.
28 3. The process in accordance with Claim 2 wherein the polar

1 organic solvent is ethyl alcohol.

2 4. The process in accordance with Claim 1 wherein the natural soft
3 tissue obtained from the donor is treated with liquid compositions of gradually
4 increasing concentrations of a polar organic solvent or solvents, until the last
5 of said liquid compositions contains at least approximately 50 % by volume
6 of said solvent, or mixture of solvents.

7 5. The process in accordance with Claim 4 where the polar organic
8 solvent is ethyl alcohol.

9 6. The process in accordance with Claim 1 wherein the second
10 liquid composition contains approximately 20 % by volume of glycerol.

11 7. The process in accordance with Claim 1 wherein the natural soft
12 tissue is treated in succession with two liquid compositions of a polar organic
13 solvent or solvents, the first of said compositions containing approximately 15
14 to 35 % by volume of the solvent or solvents, the second of said composition
15 containing approximately 25 to 75 % by volume of the solvent or solvents.

16 8. The process in accordance with Claim 7 wherein the polar
17 organic solvent is ethyl alcohol.

18 9. The process in accordance with Claim 1 further comprising the
19 step of rehydrating the lyophilized tissue specimen.

20 10. A process for preparing a pliable soft mammalian tissue
21 specimen, for eventual implantation in a mammal to replace or augment native
22 tissue, the process comprising the steps of:

23 (1) treating natural soft mammalian tissue obtained from a donor
24 with:

25 (a) liquid compositions of gradually increasing
26 concentrations of an aliphatic alcohol or mixture of aliphatic alcohols
27 having 1 to 3 carbon atoms, until the last of said liquid compositions
28 contains at least approximately 25 % by volume of said alcohol or

1 mixture of alcohols, the balance being water;

2 (b) thereafter with a second liquid composition of aqueous
3 glycerol containing the glycerol in a concentration range of
4 approximately 10 to 50 % by volume, said second liquid composition
5 also containing approximately 3 - 20 % weight by volume
6 polyethylene glycol of a molecular weight in the range of 6,000 D to
7 15,000 D and approximately 2 to 75 unit per milliliter heparin of a
8 molecular weight greater than approximately 3KD;

9 (2) thereafter briefly immersing the soft tissue in an aqueous heparin
10 solution of approximately 20 to 500 unit per milliliter concentration, and

11 (3) thereafter freezing the tissue and lyophilizing the tissue to dryness.

12 11. The process in accordance with Claim 10 wherein the aliphatic
13 alcohol is ethyl alcohol.

14 12. The process in accordance with Claim 11 wherein the natural
15 soft tissue is treated with said compositions containing ethyl alcohol, until the
16 last of said compositions contains at least approximately 50 % by volume ethyl
17 alcohol.

18 13. The process in accordance with Claim 12 wherein the
19 concentration of glycerol in the second liquid composition is approximately 20
20 % by volume.

21 14. The process in accordance with Claim 13 wherein the
22 concentration of polyethylene glycol in the second liquid composition is
23 approximately 5 % weight by volume and the molecular weight of said
24 polyethylene glycol is approximately 8,000 D.

25 15. The process in accordance with Claim 14 wherein the natural
26 soft tissue is treated in succession with two liquid compositions of ethyl
27 alcohol, the first of said compositions containing approximately 15 to 35 % by
28 volume of ethyl alcohol, the second of said composition containing

1 approximately 25 to 75 % by volume of ethyl alcohol.

2 16. The process in accordance with Claim 16 further comprising the
3 step of rehydrating the lyophilized tissue specimen.

4 17. The process in accordance with Claim 10 wherein the natural soft
5 mammalian tissue is from pericardium, pleura, peritonium from aortic,
6 pulmonary mitral or tricuspid valves, or from tendon or skin.

7 18. A pliable soft tissue specimen which has been prepared in a
8 process comprising the steps of:

9 (1) treating natural soft tissue obtained from a donor with:

10 (a) liquid compositions of gradually increasing concentrations of
11 a polar organic solvent or solvents, until the last of said liquid
12 compositions contains at least approximately 25 % by volume of said
13 solvent, or mixture of solvents, the balance being water, the solvent
14 being selected from a group consisting of aliphatic alcohols having 1 to
15 3 carbons and other water miscible polar organic solvents;

16 (b) thereafter with a second liquid composition of aqueous
17 glycerol or of low molecular weight polyethylene glycol having a
18 molecular weight less than approximately 1000D, containing the
19 glycerol or the low molecular weight polyethylene glycol, or mixtures
20 thereof being in a concentration range of approximately 10 to 50 % by
21 volume, said second liquid composition also containing approximately
22 3 - 20 % weight by volume polyethylene glycol of a molecular weight
23 in the range of 6,000 D to 15,000 D and approximately 2 to 75 unit per
24 milliliter heparin of a molecular weight greater than approximately
25 3KD;

26 (2) thereafter briefly immersing the soft tissue in an aqueous heparin
27 solution, and

28 (3) thereafter freezing the tissue and lyophilizing the tissue to dryness.

1 **19.** The pliable soft tissue specimen in accordance with Claim 18
2 wherein in the process of preparing the specimen the polar organic solvents are
3 selected from the group consisting of methyl alcohol, ethyl alcohol, iso-propyl
4 alcohol, acetonitrile, acetone and methyl ethyl ketone.

5 **20.** The pliable soft tissue specimen in accordance with Claim 18
6 wherein in the process of preparing the specimen the natural soft tissue
7 obtained from the donor is treated with liquid compositions of gradually
8 increasing concentrations of a polar organic solvent or solvents, until the last
9 of said liquid compositions contains at least approximately 50 % by volume
10 of said solvent, or mixture of solvents.

11 **21.** The pliable soft tissue specimen in accordance with Claim 20
12 wherein in the process of preparing the specimen the polar organic solvent is
13 ethyl alcohol.

14 **22.** The pliable soft tissue specimen in accordance with Claim 18
15 wherein in the process of preparing the specimen the second liquid
16 composition contains approximately 18 % by volume of glycerol.

17 **23.** The pliable soft tissue specimen in accordance with Claim 18
18 wherein in the process of preparing the specimen the natural soft tissue is
19 treated in succession with two liquid compositions of a polar organic solvent
20 or solvents, the first of said compositions containing approximately 15 to 35 %
21 by volume of the solvent or solvents, the second of said composition
22 containing approximately 25 to 75 % by volume of the solvent or solvents.

23 **24.** The pliable soft tissue specimen in accordance with Claim 18
24 wherein the process of preparing the specimen further comprises the step of
25 rehydrating the lyophilized tissue specimen.

26 **25.** A pliable soft tissue specimen, for eventual implantation in a
27 mammal to replace or augment native tissue, which has been prepared in a
28 process comprising the steps of:

- 1 (1) treating natural soft mammalian tissue obtained from a donor
2 with:
 - 3 (a) liquid compositions of gradually increasing
4 concentrations of an aliphatic alcohol or mixture of aliphatic alcohols
5 having 1 to 3 carbon atoms, until the last of said liquid compositions
6 contains at least approximately 25 % by volume of said alcohol or
7 mixture of alcohols, the balance being water;
 - 8 (b) thereafter with a second liquid composition of aqueous
9 glycerol containing the glycerol in a concentration range of
10 approximately 10 to 50 % by volume, said second liquid composition
11 also containing approximately 3 - 20 % weight by volume polyethylene
12 glycol of a molecular weight in the range of 6,000 D to 15,000 D and
13 approximately 2 to 75 unit per milliliter heparin of a molecular weight
14 greater than approximately 3KD;
 - 15 (2) thereafter briefly immersing the soft tissue in an aqueous heparin
16 solution of approximately 20 to 500 unit per milliliter concentration, and
17 (3) thereafter freezing the tissue and lyophilizing the tissue to dryness.
- 18 26. The soft tissue specimen in accordance with Claim 25 wherein in
19 the process of preparing the specimen the aliphatic alcohol is ethyl alcohol.
- 20 27. The soft tissue specimen in accordance with Claim 26 wherein in
21 the process of preparing the specimen the natural soft tissue is treated with
22 said compositions containing ethyl alcohol, until the last of said compositions
23 contains at least approximately 50 % by volume ethyl alcohol.
- 24 28. The soft tissue specimen in accordance with Claim 27 wherein in
25 the process of preparing the specimen the concentration of glycerol in the
26 second liquid composition is approximately 20 % by volume.
- 27 29. The soft tissue specimen in accordance with Claim 28 wherein in
28 the process of preparing the specimen the concentration of polyethylene

1 glycol in the second liquid composition is approximately 5 % weight by
2 volume and the molecular weight of said polyethylene glycol is approximately
3 8,000 D.

4 **30.** The soft tissue specimen in accordance with Claim 29 wherein in
5 the process of preparing the specimen the natural soft tissue is treated in
6 succession with two liquid compositions of ethyl alcohol, the first of said
7 compositions containing approximately 15 to 35 % by volume of ethyl
8 alcohol, the second of said composition containing approximately 25 to 75 %
9 by volume of ethyl alcohol.

10 **31.** The soft tissue specimen in accordance with Claim 25 wherein the
11 process of preparing the specimen further comprises the step of rehydrating
12 the lyophilized tissue specimen.

13 **32.** The soft tissue specimen in accordance with Claim 25 wherein the
14 natural soft mammalian tissue is from pericardium, pleura, peritonium, from
15 aortic, pulmonary, mitral or tricuspid valves or from tendon and skin.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 99/14247

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 A61L27/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 A61L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 98 07452 A (SULZER VASCUTEK LIMITED ;WALKER DONALD FRANCIS (GB)) 26 February 1998 (1998-02-26) examples 1,2,5,6 ---	1-32
A	US 5 558 875 A (WANG SU) 24 September 1996 (1996-09-24)	1-5, 7, 10-12, 15, 17-21, 23, 25-27, 30, 32

column 4, line 36 - line 47

-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the International search

14 October 1999

Date of mailing of the International search report

22/10/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Heck, G

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 99/14247

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 4 357 274 A (WERNER HEINZ-HELMUT) 2 November 1982 (1982-11-02) the whole document -----	1,6,10, 13,14, 17,18, 22,25, 28,29,32

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 99/14247

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9807452 A	26-02-1998	AU 3950297 A	06-03-1998
US 5558875 A	24-09-1996	NONE	
US 4357274 A	02-11-1982	NONE	