WeCasa

Project Plan Document Team HAGS JP

Team Lead:

Allison Austin

Team Members:

Githel Lynn Suico Haley Nguyen Joshua Quibin Judy Li Matthew Chung

https://github.com/githelsui/WeCasa

Date Submitted: December 6, 2022

Project Plan Version Table

Version	Description	Date
1.0	Initial Project Plan - Budget/Resources - Project Risks - Project Schedule - Staff Organization	10/5/2022
1.1	Content Improvements - Project Risks - Work Item POCs - Updated Web Server - Feasibility Assessment	12/6/2022

Table of Contents

Project Plan Version Table	2
Table of Contents	3
Overview	5
Scope	5
Goals	5
Technological Process	5
Project Management Framework	5
Tools	5
Versioning	6
Deliverables	6
Project Risks	6
Resources	8
Team	8
Resources	8
Hardware	9
Required Software	9
Budget	9
Timeline	10
Schedule	10
Work Breakdown	10
Work Item POCs	10
Documentation	10
Core Components	11
Features	11
Schedule Changes	12
Project Summary Breakdown	12
Feasibility Assessment	12
Team Organization	13
Team Structure	13
Role Definitions:	13
Team Reporting and Communication	14
Mechanisms for Progress Reporting	14
Mechanisms for Intra Team Communication	1.4

Glossary	14
References	16

Overview

Scope

WeCasa will target the California, United States market at launch with future plans to expand nationwide and other English speaking countries. California privacy laws as well as the Web Content Accessibility Guidelines (WCAG, 2022) will be met at initial launch. The browser of choice will be Chrome 104 due to it being the most popular browser.

Goals

The WeCasa team is focused on building a professional and scalable product while following proper coding and teamwork frameworks. The primary goal is to brainstorm and execute the implementation of useful features for our app. Though it is just as important to make sure the processes of development are as productive as possible. The team is also driven to learn more about the entire software engineering process and how to properly build a full stack application.

Technological Process

Project Management Framework

• SCRUM - Agile Methodology

Tools

- Version Control: Git
- Project Information Website: Github Pages
- Scheduling Software: Google Sheets
- Team Communication: Discord
- Client Communication: Microsoft Outlook
- Task Management : Trello
- SCRUM Meetings: FigJam
- Documentation Storage/Management: Google Drive, GitHub

Versioning

WeCasa will follow semantic versioning #.#.# (Major/Minor/Patch) with initial releases starting with '0.1.0' and Minor/Patch versioning incrementation based on client feedback. Client approval will involve Major versioning incrementation which signifies official documentation release.

Deliverables

Deliverables are derived from the senior project requirements and project-specific requirements. At a high level, major deliverables for the project include documentation and a centralized code package.

Project Risks

The project risks are documented in the risk management table. Each risk will be assigned the following attributes:

- Threat Level: describes the impacts of the risk.
 - Low: the impact of the risk is minimal and can be easily managed.
 - Medium: the risk might negatively affect performance, but won't stop progress.
 - High: the risk would result in an un-shippable product.
- Likelihood of Event: Corresponds with how likely the risk is.
- **Tolerance Level**: Quantifiable metric (hours) specifying the amount of buffer allocated to the risk.
- Mitigation Plan: Details plans to prevent the risk from happening.
- Management Plan: Explains how risk will be reduced if it occurs.

High Priority

Risk	Threat	Likelihood	Tolerance	Mitigation Plan	Management Plan
	Level	of Event	Level		
			(hrs)		
Hardware	High	Unlikely	10-12 hr	Our team will execute	In case of hardware failure,
equipment				common hardware	we will borrow CSULB
failure				maintenance procedures,	laptops through the
				such as avoiding	CSUCCESS program.
				overcharging, placing	
				liquids nearby, and	

				updating the operating	
				system when needed.	
Technology	High	Unlikely	10-12 hr	Our team will use	In case of technology
stack failure				commonly used and	infrastructure failures, we
				well-known components.	will research and switch to a
					more optimal technology.
Dependency	High	Unlikely	10-12 hr	To avoid dependency	In case a dependency fails,
Failure				failures, our team will	we will remove the
				examine our libraries	incompatible library and
				before usage to ensure	utilize the abstraction we
				compatibility with one	built in order to replace it
				another. Also, to avoid	with a more efficient
				this failure our team will	package.
				also feasibly build an	
				abstraction around the	
				library for easier	
				replacement.	
Changes in	High	Likely	10-12 hr	Our team will build	In case of law, regulation,
user and				components with control	user and functional
functional				abstraction that will allow	requirements changes, the
requirements				for easy replacement of	abstraction we built will
				new user and functional	allow for easy replacement
				requirements.	for the new requirements.
Late	High	Unlikely	10-12 hr	Our team will follow the	In case of any late
deliverables				project timeline with	deliverables, the team will
				recurring meetings, and	reassess deadlines, and
				milestones. Our project	make a detailed plan to
				plan also accounts for	reach the end goal.
				risks that might affect our	
				deliverable.	
Losing team	High	Likely	10-12 hr	Our project plan accounts	In the case that we have less
members				for this risk (28 hours of	team members than at the
				capacity) at the end of	start of the project, we will
				the project schedule.	have less tasks in the last
					few sprints to allow for
					planned tasks to be punted.

Medium Priority

Risk	Threat	Likelihood	Tolerance	Mitigation Plan	Management Plan
	Level	of Event	Level		
Going over budget	Medium	Unlikely	5-8 hr	We will ensure that	Keep a tab of expenses and
				all software being	divide up costs between each

				used is under a free	team member at the end of the
				license.	project.
Changes to client	Medium	Unlikely	5-8 hr	Our team will plan	Re-evaluate work item
schedule/deadlines				for 3-5 days of	priorities to adhere to feature
				room in the project	deadline changes
				schedule for	
				deadlines to be	Perform backlog grooming
				moved up.	

Low Priority

Risk	Threat	Likelihood	Tolerance	Mitigation Plan	Management Plan
	Level	of Event	Level		
Requirements	Low	Unlikely	>4 hr	Conduct stand-ups 2x	In case there is an
Creep				per week to monitor	undetected scope creep, we
				progress. Scope is also	can re-evaluate our initial
				initially defined in	scope, and reduce or
				project proposal,	expand if necessary.
				reviewed monthly by	
				team to prevent	
				undetected scope creep.	

Resources

Team

While a complete team would contain all the following staff members, HAGS JP has six members. Each team member will be performing multiple jobs.

- Team Leader/ Lead Engineer
- Scrum Master
- Web Developer
- Backend Developer
- Data Engineer
- Beta Tester
- UI/UX Designer

Resources

The development team will use software packages and solutions that are free and

open source. This includes the front-end/back-end framework, data store, development environment, web server, and testing framework. Computers and other devices that will be used to develop and test code, document the project, and connect with team members will be the personal computers already owned by each team member.

Hardware

Minimum specification recommendation for personal computers:

CPU: Intel Core i5 Processor Display Resolution: 1920 x 1080

RAM: 8GB

Storage: 128GB+

Operating System: Windows/macOS

Required Software

Front-end Framework: React Back-end Framework: .NET 6.x

Web Server: Apache HTTP Server 2.4+

Data Store: Maria DB 10.x

IDE: Visual Studio Code 2022 Community Edition (1.7x Windows/Mac)

Interface Design Tool: Figma 107.0

Budget

Resources - Software (open-source) - Computers (personal items)	\$0
Labor (Average Salary in Long Beach, California from Ziprecruiter.com) While each team member will perform the tasks of multiple roles, their overall salary will be only the higher paying role they perform. - Team Lead/Lead Engineer: \$128,351 - Scrum Master: \$123,743 - Web Developer: \$81,120 - Backend Developer: \$82,120 - UI/UX Engineer: \$98,196	(\$128,351 x 1) + (\$123,743 x 1) + (\$81,120 x 1) + (\$82,120 x 2) + (\$98,196 x 1) =

Total	\$595,650
-------	-----------

Timeline

The WeCasa application will be completed by May 5, 2023.

Schedule

The project schedule coordinates with the CSULB fall and spring semester schedules, and includes fall, winter, and spring breaks. We used a Gantt Chart to map out the dependencies and work item assignments for each sprint, as well as document crucial due dates and academic breaks. Due to the high level of detail in the schedule, it might not be readable in this document. For more detail, this schedule can be viewed in the WeCasa code repository found on GitHub.

Click here to view —> Gantt Chart

Work Breakdown

Work items can be broken down into smaller tasks based on the business requirements for a particular feature. The Business Requirements Document can be viewed in the WeCasa GitHub repository.

Work Item POCs

Documentation

Work item	Team member
Project Proposal	Allison
Business Requirement Documentation	Joshua
High Level Design	Judy
Project Plan	Haley
Project Roadmap	Githel

Network Diagram	Allison
Low Level Design	Judy
Bill of Materials	Matthew

Core Components

Work item	Team member
Registration	Githel
Logging	Allison
Authentication	Judy
Authorization	Allison
User Management	Joshua

Features

Work item	Team member
App Settings	Joshua
Budget Sharing Bar	Judy
Bulletin Board	Judy
Calendar	Githel
Dashboard	Joshua
Group Lists	Githel
Incomplete Task Summary	Haley
Reminders	Haley
Round Tracking Bar	Matthew
Nudging	Matthew

Photo/Documentation Upload	Allison
User Feedback	Joshua

Schedule Changes

All schedule changes and updates will be made within the Gantt Chart.

Click here to view —> Gantt Chart

Project Summary Breakdown

Total Estimated Hours	846 hrs
Total Number of Sprints	12
Total Development Time	574 hrs
Total Testing Time	84 hrs
Total Margin Time (Buffer time)	180 hrs / 30 days

Feasibility Assessment

WeCasa Project Plan Feasibility Assessment

As seen above, the feasibility assessment of this project plan argues that our project plan will be successful as it addresses common risks and mitigates for unknown circumstances that might delay the delivery of our deliverable items. Considering the timeline our team has created, the project WeCasa will be delivered on the desired due date.

Team Organization

HAGS JP uses a "Hybrid" Agile Software Development Team Structure which consists of a combination of generalists and specialists.

Team Structure

Role Definitions:

Allison Austin

Team Lead/Lead Engineer: Allison is responsible for guiding, monitoring and leading HAGS JP.

Data Engineer: Allison is responsible for setting up the data pipeline, preparing data for downstream dependencies, and developing the Data Access Layer for feature implementation.

Githel Lynn Suico

Web Developer: Githel is a part of the interface team and will be coding a portion of the UI.

QA Tester: Githel is partially responsible for trying out unreleased features, reporting bugs/errors, and providing feedback.

Haley Nauyen

Web Developer: Haley is a part of the interface team and will be coding a portion of the UI.

UI/UX Designer: Haley is responsible for WeCasa brand design and UI/UX design.

QA Tester: Haley is partially responsible for trying out unreleased features, reporting bugs/errors, and providing feedback.

Joshua Quibin

Scrum Master: Joshua is responsible for ensuring HAGS JP uses SCRUM methodologies.

Web Developer: Joshua is a part of the interface team and will be coding a portion of the UI

QA Tester: Joshua is partially responsible for trying out unreleased features, reporting bugs/errors, and providing feedback.

Judy Li

Backend Engineer: Judy is partially responsible creating for server-side web application logic and integration of the web developers' work

QA Tester: Judy is partially responsible for trying out unreleased features, reporting bugs/errors, and providing feedback.

Matthew Chung

Backend Engineer: Matthew is partially responsible creating for server-side web application logic and integration of the web developers' work **QA Tester:** Matthew is partially responsible for trying out unreleased features, reporting bugs/errors, and providing feedback.

Team Reporting and Communication

Mechanisms for Progress Reporting

Progress reporting to the client is communicated through email or in-person team reviews. All files sent to team members are done via email or Discord. These communications are done informally, unless special documentation of the progress is required.

Mechanisms for Intra Team Communication

HAGS JP conducts bi-weekly in-person (twice a week) stand-up meetings to update other team members on their progress. These meetings also act as a medium for the team to ask questions and remove blockers that may not be communicated electronically. In the case a team member cannot make the meeting in-person, the meeting can be moved to Discord. All other communication is done electronically through Discord or email.

Glossary

Term	Definition
Beta tester	User that tests a product in a production environment to uncover bugs/issues before it gets released
IDE	Integrated Development Environment

POC	Point-Of-Contact
QA	Quality Assurance
UI/UX	User Interface/User Experience

References

Entry Level. (2022). ZipRecruiter; ZipRecruiter.

https://www.ziprecruiter.com/Salaries/Entry-Level-Salary-in-Long-Beach,CA

Simple Gantt Chart. (2022). Vertex42.com.

https://www.vertex42.com/ExcelTemplates/simple-gantt-chart.html

What Agile Software Development Team Structure Looks Like. (2022).

Relevant.software

https://relevant.software/blog/what-agile-software-development-team-structur

e-looks-like/