Hyperelastic materials and the Piola-Kirchhoff stress tensors

Leif Rune Hellevik

Department of Structural Engineering Norwegian University of Science and Technology Trondheim, Norway

Large deformations and Lagrangian coordinates

- ▶ Governing equations are formulated in K_0 for large deformations, i.e. (X, t)
- ► Conservation of mass implies $\rho dV = \rho_0 dV_0$
- Consequently for volume integrals in Cauchy's equations:

$$\int_V \mathbf{b} \, \rho \, dV = \int_{V_0} \mathbf{b} \, \rho_0 \, dV_0, \quad \int_V \mathbf{a} \, \rho \, dV = \int_{V_0} \mathbf{a} \, \rho_0 \, dV_0$$

► However $\int_A \mathbf{t} \, dA = ??$

Contact forces for Lagrangian coordinates

▶ We define a stress vector t₀ in K₀ by:

$$\mathbf{t}_0 dA_0 = \mathbf{t} dA \quad \Leftrightarrow \quad \int_{A_0} \mathbf{t}_0 dA_0 = \int_A \mathbf{t} dA$$

- which yields: $\mathbf{t}_0 = \frac{dA}{dA_0} \mathbf{t}$
- ▶ t₀ represents forces in K
- t₀ same direction as t but scaled
- Euler's first axiom:

$$\int_{V_0} \mathbf{a} \, \rho_0 \, dV_0 = \int_{A_0} \mathbf{t}_0 \, dA_0 + \int_{V_0} \mathbf{b} \, \rho_0 \, dV_0$$

The Piola-Kirchhoff stress tensors (PKS)

- ▶ The first PKS T₀
 - Analogous to the Cauchy stress theorem
 - $\quad \quad \textbf{t}_0 = \textbf{T}_0 \cdot \textbf{n}_0$
 - Invariant linear tensor equation
 - ▶ Unit normal n₀ on dA₀
 - Relation to the Cauchy stress tensor T

$$T_0 = JTF^{-T}, \quad J = \det F$$

- Not symmetric
- ► **T**₀ = eng./nominal stress

► The second PKS **S**

•
$$S = F^{-1}T_0 = JF^{-1}TF^{-T}$$

$$ightharpoonup$$
 $S = S^T$

Strain energy and Piola-Kirchhoff stresses

The Cauchy stress and the strain energy

$$\mathbf{T} = 2 \rho \mathbf{F} \frac{\partial \psi}{\partial \mathbf{C}} \mathbf{F}^{T}$$

lacktriangle The second PKS and the strain energy per unit mass ψ

$$\mathbf{S} = 2J
ho rac{\partial \psi}{\partial \mathbf{C}} = 2
ho_0 rac{\partial \psi}{\partial \mathbf{C}}, \qquad
ho J =
ho_0$$

▶ The second PKS and the strain energy per unit volume $\phi = \rho_0 \psi$

$$\mathbf{S}=2rac{\partial\phi}{\partial\mathbf{C}}$$

Isotropic hyperelastic materials

- No influence of directions on material response
- ► The strain energy can be expressed by the principal invariants of C

$$\phi = \phi(\mathit{I}_1, \mathit{I}_2, \mathit{I}_3)$$

Invariants

- $I_1 = tr(\mathbf{C})$
- $I_2 = \frac{1}{2}((\operatorname{tr} \mathbf{C})^2 \|\mathbf{C}\|^2)$
- $I_3 = \overline{\det}(\mathbf{C}) = \det(\mathbf{F}^2) = J^2$

Second PKS for isotropic hyperelastic materials

► From the general relation ●

$$\mathbf{S} = 2 \frac{\partial \phi}{\partial \mathbf{C}} = 2 \sum_{k=1}^{3} \frac{\partial \phi}{\partial I_k} \frac{\partial I_k}{\partial \mathbf{C}}$$

By algebraic manipulation

$$\frac{\partial I_1}{\partial \mathbf{C}} = \mathbf{1}, \quad \frac{\partial I_2}{\partial \mathbf{C}} = I_1 \mathbf{1} - \mathbf{C}, \quad \frac{\partial I_3}{\partial \mathbf{C}} = I_3 \mathbf{C}^{-1}$$

The second PKS

$$\mathbf{S} = 2\left(\frac{\partial \phi}{\partial I_1} + I_1 \frac{\partial \phi}{\partial I_2}\right) \mathbf{1} - 2\frac{\partial \phi}{\partial I_2} \mathbf{C} + 2I_3 \frac{\partial \phi}{\partial I_3} \mathbf{C}^{-1}$$

Incompressible isotropic hyperelastic materials

- ▶ Incompressibility $\Rightarrow J = 1 \Rightarrow I_3 = 1$
- Modified strain energy function:

$$\bar{\phi} = \phi(\mathbf{C}) + p(J-1)$$

- p undetermined Lagrange multiplier
- determined from boundary conditions
- Second PKS

$$\mathbf{S} = 2 \, rac{\partial ar{\phi}}{\partial \mathbf{C}} = 2 rac{\partial \phi(\mathbf{C})}{\partial \mathbf{C}} +
ho J \mathbf{C}^{-1}$$

Due to

$$\frac{\partial J}{\partial \mathbf{C}} = \frac{\partial J}{\partial I_3} \frac{\partial I_3}{\partial \mathbf{C}} = \frac{\partial \sqrt{I_3}}{\partial I_3} I_3 \mathbf{C}^{-1} = \frac{J}{2} \mathbf{C}^{-1}$$

Example: Thin sheet of incompressible material

- Zero stress in direction orthogonal to plane

$$S_{33} = 0$$

$$= 2 \left(\frac{\partial \phi}{\partial I_1} + I_1 \frac{\partial \phi}{\partial I_2} \right) - 2 \frac{\partial \phi}{\partial I_2} C_{33} + \rho \mathbf{C}_{33}^{-1}$$

The Lagrangian multiplier p is then given by

$$\rho = 2\frac{\partial \phi}{\partial I_2} C_{33}^2 + 2 \left(\frac{\partial \phi}{\partial I_1} + I_1 \frac{\partial \phi}{\partial I_2} \right) C_{33}$$

Examples of isotropic incompressible nonlinear hyperelastic materials

- Mooney-Rivlin
 - Used for rubber

- Neo-Hookean
 - $\phi = c_1(I_1 3)$
- Transversely isotropic membrane shells
 - Application to mitral valve mechanics
 - ► Fiber directions **a**₀ must be accounted for
 - Additional invariants introduced
 - $I_4 = a_0 Ca_0$
 - $I_5 = a_0 C^2 a_0$

Mitral valve anatomy

Continuum mechanical framework

- ▶ Deformation gradient: F
- Cauchy Green tensor: C = F^TF
- Invariants:

$$I_1 = \text{tr}\mathbf{C} = \mathbf{J} = \text{det}\mathbf{F} = \sqrt{\text{det}\mathbf{C}}, \quad \mathbf{I_4} = \mathbf{C} : \mathbf{a_0} \otimes \mathbf{a_0}$$

▶ a₀ is a unit vector corresponding to the fiber orientation in the undeformed configuration

Two-dimensional formulation

Transversely isotropic strain—energy function for mitral tissue:

$$\Psi(I_1, I_4) = c_0[exp^{c_1(I_1-3)^2+c_2(I_4-1)^2}-1] + p(J-1)$$

- p: Lagrange multiplier
- ▶ c₀, c₁ and c₂ are material parameters (see May-Newman and Yin (1998))
- Second Piola–Kirchhoff stress tensor S and Cauchy stress tensor σ:

$$\mathbf{S} = 2 \frac{\partial \Psi}{\partial \mathbf{C}} \quad \sigma = \frac{1}{J} \mathbf{F} \mathbf{S} \mathbf{F}^\mathsf{T}$$

Two-dimensional formulation

- ▶ Plane stress state, S₃₃ = 0 gives:
- Material elasticity tensor:

$$\mathbb{C}=2rac{\partial \mathbf{S}}{\partial \mathbf{C}}$$

Spatial elasticity tensor for incompressible material (J=1) (push-forward of \mathbb{C}): $\mathbb{C} = \chi_*(\mathbb{C})$, $c_{ijkl} = F_{il}F_{jJ}F_{kK}F_{lL}C_{lJKL}$

$$egin{aligned} \mathbf{c} &= \mathbf{4}\psi_{11}\mathbf{B}\otimes\mathbf{B} + \mathbf{4}\psi_{14}(\mathbf{B}\otimes\mathbf{a}\otimes\mathbf{a} + \mathbf{a}\otimes\mathbf{a}\otimes\mathbf{B}) \ &+ \mathbf{4}\psi_{44}\mathbf{a}\otimes\mathbf{a}\otimes\mathbf{a}\otimes\mathbf{a} + \mathbf{2}\ \mathbf{1}\otimes\left(\mathbf{F}rac{\partial\mathbf{p}}{\partial\mathbf{C}}\mathbf{F}^\mathsf{T}
ight) - \mathbf{2}\mathbf{p}\mathbb{I} \end{aligned}$$

- Implemented in UMAT ABAQUS/standard
- Cauchy Stress components and the tangent stiffness have to be computed

Experimental results (Leaflets) and optimization

Healthy anterior leaflet

HOCM anterior leaflet

Strain—energy functions used to capture transversely isotropic response of the leaflet tissues:

$$\begin{array}{lcl} \Psi & = & \mu(\bar{I}_1-3)+c_0\left(e^{c_1(\bar{I}_1-3)^2+c_2(\bar{I}_4-1)^2}-1\right)+\kappa(J-1)^2, \\ \tilde{\Psi} & = & \tilde{\mu}(\bar{I}_1-3)+\tilde{c}_0\left(e^{\tilde{c}_1(\bar{I}_1-3)^2+\tilde{c}_2(\bar{I}_4-1)^4}-1\right)+\kappa(J-1)^2, \end{array}$$

$$\tilde{\Psi} = \tilde{\mu}(\bar{l}_1 - 3) + \tilde{c}_0 \left(e^{\tilde{c}_1(l_1 - 3)^2 + \tilde{c}_2(l_4 - 1)^4} - 1 \right) + \kappa(J - 1)^2, (2)$$

Physiological versus pathological states

Mitral valves at peak systole (120 mmHg) Healthy valve

Deformed profiles

Animation of deceased response

Mitral valve mechanics

- ► The work of V. Prot and B. Skallerud on material valve mechanics was presented
- The model is a transversely isotropic membrane shell model as outlined in the previous slide
- In press for Int J Numer Meth Engng

Summary