

Determining the Optimal Number of Vowel Clusters in a Wide Range of Fundamental Frequencies using Unsupervised Learning

MSc Thesis Defense

Simon Frischknecht

September 16, 2021

Table of Contents

- Introduction
- Speech Data and MFCC
- Clustering Methods
- Cluster Validation Techniques
- Implementation and Evaluation
- Conclusion

Introduction

Introduction

- For humans, the higher the fundamental frequency (fo), vowels become less intelligible
- Recognition of corner vowels (a, i, u) up to around 1 kHz fo
- Goal of this thesis: Use machine learning algorithms to see how they solve this task
- In particular: apply clustering algorithms to groups vowels

Speech Data and MFCC

Vowel Speech Data

- Eight isolated Standard German vowels (a, e, i, o, u, ä, ö, ü)
- Recorded by four professional female actresses
- Data comes from larger corpus
- Wide range of fundamental frequencies (fo)
- Restrict to 10 fo levels 220, 330, 440, 523, 587, 659, 698, 784, 880, 988 Hz

Mel-Frequency Cepstral Coefficients (MFCCs)

- MFCCs are a numeric representation of speech signals
- It is a standard in many modern speech recognition systems
- Input for clustering algorithms
- It is based on several transformations:
 - Discrete Fourier Transform
 - Mel scale
 - Discrete Cosine Transform

MFCC Generation

Clustering Methods

Clustering Methods

- Clustering methods are unsupervised learning algorithms
- No labels are used (in contrast to supervised learning)
- These algorithms have the goal of finding groups in a dataset:
 - "Observations in the same group should be as similar as possible, and observations in different groups should be as dissimilar from each other as possible."
- Big challenge: how many clusters are there?

Clustering Methods

- List of used clustering algorithms:
 - k-Means
 - Gaussian Mixture Model
 - Hierarchical Clustering
 - Spectral Clustering
 - Mean Shift
 - DBSCAN
 - Affinity Propagation

K-Means

- Simple iterative algorithm
- Computationally fast
- Solves non-convex optimization problem
- Finds different solutions based on initialization and number of iterations
- Needs to define the number of clusters k a priori

Gaussian Mixture Model (GMM)

- K-means can be seen as a special case of a GMM
- It is a probabilistic technique that assumes normally distributed clusters
- High flexibility, can easily overfit (Bias-variance tradeoff)
- Computationally expensive (estimate covariance matrices)
- Needs to define the number of clusters k a priori

Mean Shift

- Different to k-means and GMM
- Clustering method based on kernel density estimation
- Two parameters: kernel function and bandwidth
- Find local maxima of estimated density
- No need to define the number of clusters k

Cluster Validation Techniques

Clustering Validation Techniques

Often needed to find optimal number of clusters

Internal Evaluation

- Do not make use of the true labels
- More realistic for most real-world applications
- Analyzed in thesis: Davies-Bouldin Index, Calinski-Harabasz Index, Dunn Index, Silhouette Index

External Evaluation

- Make use of the ground truth
- Potential to find optimal results
- Analyzed in thesis: Rand Index, Fowlkes-Mallows Index, Mutual Information, V-Measure

Some clustering algorithms estimate the optimal number of clusters by itself

Implementation and Evaluation

K-Means

Gaussian Mixture Model

Mean Shift

Conclusion

Conclusion

- Seven clustering methods analyzed
- No "best" clustering algorithm
- Clustering results depend on validation criterions
- Exception: mean shift, affinity propagation and DBSCAN estimate clusters on its own
- Internal evaluation criterions frequently underestimate the true number of clusters
- External validation methods partially suggest the correct number of groups
- fo has no significant influence on the results

It was fun to work on this topic!

Thank you for your attention!

References

- Friedrichs, D., Maurer, D., & Dellwo, V. (2015). The phonological function of vowels is maintained at fundamental frequencies up to 880 Hz. The Journal of the Acoustical Society of America, 138(1), EL36-EL42.
- Friedrichs, D., Maurer, D., Rosen, S., & Dellwo, V. (2017). Vowel recognition at fundamental frequencies up to 1 kHz reveals point vowels as acoustic landmarks. The Journal of the Acoustical Society of America, 142(2), 1025–1033.
- Kathiresan, T., Maurer, D., & Dellwo, V. (2019). Highly spectrally undersampled vowels can be classified by machines without supervision. The Journal of the Acoustical Society of America, 146(1), EL1-EL7.

Appendix

Hierarchical Clustering (Internal)

Hierarchical Clustering (Exernal)

Spectral Clustering (Internal)

Spectral Clustering (External)

Affinity Propagation

DBSCAN (no validation criterions)

GMM (BIC, AIC)

