

planetmath.org

Math for the people, by the people.

Gelfand-Mazur theorem

Canonical name GelfandMazurTheorem
Date of creation 2013-03-22 17:29:03
Last modified on 2013-03-22 17:29:03
Owner asteroid (17536)

Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 7

Author asteroid (17536)

Entry type Theorem Classification msc 46H05 **Theorem -** Let \mathcal{A} be a unital Banach algebra over \mathbb{C} that is also a division algebra (i.e. every non-zero element is invertible). Then \mathcal{A} is isometrically isomorphic to \mathbb{C} .

Proof: Let e denote the unit of A.

Let $x \in \mathcal{A}$ and $\sigma(x)$ be its spectrum. It is known that the http://planetmath.org/SpectrumIs is a non-empty set in \mathbb{C} .

Let $\lambda \in \sigma(x)$. Since $x - \lambda e$ is not invertible and \mathcal{A} is a division algebra, we must have $x - \lambda e = 0$ and so $x = \lambda e$

Let $\phi: \mathbb{C} \longrightarrow \mathcal{A}$ be defined by $\phi(\lambda) = \lambda e$.

It is clear that ϕ is an injective algebra homomorphism.

By the above discussion, ϕ is also surjective.

It is isometric because $\|\lambda e\| = |\lambda| \|e\| = |\lambda|$

Therefore, \mathcal{A} is isometrically isomorphic to \mathbb{C} . \square