يرسش ۱ : تبديل خطى T : L -> W را در نظر بگيريد. نشان دهيد T يک تبديل injective مي باشد اگر و ننها اگر null(T) = {0} باشد.

پرسش ۲: با دلیل بگویید تبدیل های خطی زیر surjective هستند یا خیر

$$T\mathfrak{p}=\mathfrak{p}'$$
 به طوریکه $\mathtt{T}:\mathfrak{p}_5(R)\to\mathfrak{p}_5(R):$ آ

$$T\mathfrak{h}=\mathfrak{h}'$$
 به طوریکه $T:\mathfrak{h}_{5}(R) o\mathfrak{h}_{4}(R):$ ب

پرسش ۳: تبدیل خطی T:V->W را در نظر بگیرید. نشان دهید دو گزاره زیر معادل هستند.

۲ : ۱ یک تبدیل isomorphism می باشد

۲ : اگر $\{v_1, v_2, ..., v_k\}$ یک مجموعه بردار برای فضای برداری v_1 باشد آنگاه $\{T(v_1), T(v_2), ..., V_k\}$ یک مجموعه پایه برای v_2 می باشد.

پرسش ۴: فضای برداری ۷ را فضای برداری تمام ماتریس های 2 در 2 متقارن در نظر بگیرید. (این فضا بعدش سه می باشد و یک مجموعه پایه آن

می باشد بیابید. T(1) = I می باشد). یک تبدیل خطی ایزومورفیسم T: [0, 1] : [0, 1] : [0, 1] می باشد بیابید.

پرسش Δ : در نظر بگیرید دو مجموعه $D = \{d_1, d_2, d_3\}$ و $D = \{d_1, d_2, d_3\}$ باشند. سپس فرض کنید

 $f_3 = -3d_1 + 2d_3$, $f_2 = 3d_2 + d_3$, $f_1 = 2d_1 - d_2 - d_3$

آ: پیدا کنید ماتریس تبدیل مختصات از F به D

 $x = f_1 - 2f_2 + f_3$ ب : پیدا کنید $[x]_D$ را به صورتیکه

پرسش ۶: ماتریس A را در نظر بگیرید به طوریکه $A^3=2I$ ثابت کنید A را در نظر بگیرید به طوریکه است.

پرسش ۷: اگر ماتریس های A1, ..., An ماتریس های مربعی باشند. (ماتریس بلوکی زیر بالا مثلثی است و ماتریس های مربعی ذکر شده روی قطر اصلی قرار دارند)

$$A = \begin{bmatrix} A_1 & * & \cdots & * \\ 0 & A_2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_m \end{bmatrix}$$

 $det(A) = det(A_1) det(A_2) det(A_3)... det(A_m)$ اثبات کنید