Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Lukáš Lejdar **Naměřeno:** 1. října 2024

Obor: F **Skupina:** Út 16:00 **Testováno:**

Úloha č. 6:

Elektromagnetické kmity v RLC obvodu

 $T=21,1~^{\circ}\mathrm{C}$ $p=101,35~\mathrm{kPa}$ $\varphi=47,7~\%$

1. Úvod

Cílem je změřit frekvenční charakteristiku RLC obvodu a jeho přechodové jevy. Obvod sestavím ze sériově zapojeného odporu, cívky a kondenzátoru, pro které nejdřív zjistím impedanci a fázový posun.

2. Postup měření

2.1. Impedance a fázový posun

Pro měření impedance \hat{Z} použiju obvod z obrázku 1 a), kde na funkčním generátor nastavím harmonický průběh napětí $U_1 = U_{M1} \cos(\omega t)$. Po ustálení pak platí

$$\hat{Z} = \frac{\hat{U}_Z}{\hat{I}} = R_I \frac{\hat{U}_Z}{\hat{U}_I} = R_I \frac{\|\hat{U}_1 - \hat{U}_2\|}{U_2} e^{i\varphi_Z}.$$
 (1)

Pokud na osciloskopu nastavím rozdíl měřených napětí U_1 a U_2 , můžu jejich amplitudu a fázový posun zjistit přímo. Odpor, indukčnost a kapacitu potom pro jednotlivé součástky spočítám jako

$$\hat{Z}_R = R_R$$
 $\hat{Z}_L = R_L + i\omega L$ $\hat{Z}_C = R_C + \frac{1}{i\omega C}$.

Obrázek 1: (a) Aparatura pro měření impedance \hat{Z} (b) pro měření přechodových jevů.

2.2. Frekvenční charakteristika RLC obvodu

Bude mě zajímat celková impedance RLC obvodu \hat{Z} , v závislosti na nastavené frekvenci $f = \frac{\omega}{2\pi}$ harmonického generátoru napětí. Opět použiju zapojení z obrázku 1 a), kde za součástku dosadím sériově zapojený RLC obvod pro odpor, cívku a kondenzátor. Po ustálení platí opět platí (1), kde

$$Z^2 = R_{\text{celk}}^2 + \left(\omega L - \frac{1}{\omega C}\right)^2 \tag{2}$$

$$\varphi_Z = \arctan\left(\frac{\omega L - \frac{1}{\omega C}}{R_{\text{celk}}}\right).$$
(3)

Z nabývá minima, když $\omega = \omega_0 = \frac{1}{\sqrt{LC}}$ s odpovídajícím $\varphi_0 = 0$. Použiju stejné součástky jako v 1. části a hodnotu ω_0 nejdřív spočítám teoreticky. Nastavím frekvenci $f_0 = \frac{w_0}{2\pi}$ a v jejím okolí postupně proměřím závislost vodivosti $G(\omega) = \frac{1}{Z(\omega)}$ a fázový posun $\varphi(w)$.

2.3. Přechodové jevy

Měřit budu na obvodu z obrázku 2 (b), kde na funkčním generátoru nastavím obdélníkové pulzy pro U_{low} a U_{high} s takovou frekvencí, aby se obvod pokaždé stihl ustálit než dojde k další změně napětí. V kroku z low na high tak nastává $U_C(t_0) = U_{\text{low}}$, $I(t_0) = 0 = \dot{U}_C(t_0)C$ a $U_f = U_{\text{high}}$, čímž jsou počáteční podmínky zadané pro $U_C(t)$, které se tím stává hledanou závislostí.

Pro kmity sériového RLC obvodu při konstantním budícím napětí $U(t) = U_{\text{high}} = U_f$ pak platí

$$L\ddot{U}_C(t) + R\dot{U}_C(t) + \frac{1}{C}U_C(t) = \frac{1}{C}U_f. \tag{4}$$

Kořeny charakteristické rovnice najdu jako $\lambda_{1,2}=-\alpha\pm\omega_d$, kde $\omega_d=\sqrt{\omega_0^2-\alpha^2}$, $\alpha=\frac{R}{2L}$ a $\omega_0=\frac{1}{\sqrt{LC}}$, přičemž rozlišujeme 3 typy řešení

① Podkritické s
$$\alpha > \omega_0$$

$$U_C(t) = C_1 \cos(\omega_d t + \varphi) e^{-\alpha t} + U_f \qquad R_R \approx R > 2\omega_0 L \quad (5)$$

(2) Nadkritické s
$$\alpha < \omega_0$$

$$U_C(t) = C_1 \sinh(i\omega_d t + \varphi)e^{-\alpha t} + U_f \qquad R_R \approx R < 2\omega_0 L \quad (6)$$

(3) Kritické s
$$\alpha = \omega_0$$

$$U_C(t) = (U_i - U_f)(1 + \alpha t)e^{-\alpha t} + U_f \qquad R_R \approx R = 2\omega_0 L \quad (7)$$

Veličiny C_1 i φ jdou taky vyjádřit pomocí počátečních podmínek, ale bude jednodušší je fitovat přímo. Důležité je zjistit hodnotu α , ze které spočítám odpor celého RLC obvodu, pokud znám indukčnost L. Musím zároveň počítat s tím, že zdroj má v tomto případě vnitřní odpor $R_G \approx 50~\Omega$, takže i změřený odpor $R = R_R + R_C + R_L + R_G$ bude navýšený o tuto hodnotu. V případě podkritických kmitů můžu znovu fitovat i ω_0 .

3. Výsledky měření

3.1. Impedance a fázový posun

Impedanci a fázový posun součástek jsem nejdřív měřil pomocí RLC metru nastaveného na 1 khz a výsledky uvedl v tabulce 1 spolu s odporem cívky při stejnosměrném proudu R_L^{LC} a dopočítanou vlastní frekvencí f_0 . Součástky jsem dál měřil i vlastním obvodem podle postupu ze sekce 2.1 pro různé frekvence zdroje. Výsledky tohoto měření jsou v tabulce 2.

$$\begin{array}{lll} f = 1 \text{ khz} \\ R_R = 20.42 \ \Omega & \varphi_R = 0 \\ C = 217.8 \text{ nF} & \varphi_C = 89.7 & R_C = 3.1 \ \Omega \\ L = 113 \text{ mH} & \varphi_L = 88.6 & R_L = 16.4 \ \Omega \\ \hline R_L^{\text{DC}} = 10.7 \ \Omega \\ f_0 = 1014 \text{ Hz} \end{array}$$

Tabulka 1: Část 1(a), výsledky z měření součástek RLC metrem.

odpor						
f[Hz]	$\ \hat{U}_1 - \hat{U}_2\ [V]$	$U_2 [mV]$	φ_Z [°]	$R_B [\Omega]$		
100	3.31	688	0	21.17		
300	3.31	689	0	21.14		
1000	3.32	688	0	21.23		
3000	3.32	688	0	21.23		
kondenzátor						
f[Hz]	$\ \hat{U}_1 - \hat{U}_2\ [V]$	U_2 [mV]	φ_Z [°]	$Z\left[\Omega\right]$	C[nF]	$R_C [\Omega]$
100	12.08	7.35	-89.9	7231	220	12.6
300	12.08	21.92	-90	2424	219	1.48
1000	12.07	72.9	-89.9	728.5	218	1.27
3000	11.75	211.7	-89.7	244.2	217	1.28
cívka						
f[Hz]	$\ \hat{U}_1 - \hat{U}_2\ [V]$	$U_2 [mV]$	φ_Z [°]	$Z\left[\Omega\right]$	$L [\mu H]$	$R_L [\Omega]$
100	9.05	540	81.5	73.7	0.116	10.9
300	11.7	240	86.8	215	0.114	12.0
1000	12.18	75	87.5	715	0.114	31.2
3000	12.22	28	88.5	1920	0.102	50.3

Tabulka 2: Část 1(b), výsledky měření součástek osciloskopem.

3.2. Frekvenční charakteristika RLC obvodu

Podle postupu ze sekce 2.2 jsem změřil závislost vodivosti $G(\omega) = \frac{1}{Z(\omega)}$ a fázový posun $\varphi(w)$ pro sériově zapojený obvod ze součástek z 1. části. Výsledné hodnoty jsou vyneseny do grafů 1 a) a b), kde fit vodivosti je vztahem

$$G(\omega) = \frac{G_0}{\sqrt{\left(\frac{\omega_0^2 - \omega^2}{\omega\alpha}\right)^2 + 1}}.$$
 (8)

Je to vyjádření rovnice (2) pomocí proměnných ω_0 a α , které tím získám přímo a jsou k nalezení v tabulce 2 spolu s ostatními dopočítanými hodnotami. Fázový posun už fitovaný není, jen jsou do vztahu (3) dosazené nalezené hodnoty.

$$\varphi = \arctan\left(\frac{\omega_0^2 - \omega^2}{\omega \alpha}\right) \tag{9}$$

2b
$R = 20.42\Omega$
$C=217\pm 1~\mathrm{nF}$
$L = 113.8 \pm 0.6 \text{ mH}$
$F = 8.79 \pm 0.04 \text{ 1/H}$
$\alpha = 180 \pm 1 \text{ Rad/s}$
$\omega_0 = 6366.7 \pm 0.9 \text{ Rad/s}$
$f_0 = 1013.3 \pm 0.1 \text{ Hz}$
$R_{\rm celk} = 41.0 \pm 0.3 \ \Omega$
$Q = 17.65 \pm 0.12 \text{ C}$

Obrázek 2: Část 2(b), výsledky zpracování rezonance RLC obvodu.

3.3. Přechodové jevy

Sestavil jsem obvod z obrázku 1 (b) a podle postupu v sekci 2.3 měřil kritické, podkritické a nadkritické tlumení. Fit naměřených dat je vztahy (5) (6) a (7), ze kterých získám tlumení α odkud dopočítám odpor obvodu $R=R_{\rm celk}+R_G$, kde $R_G\approx 50~\Omega$ a $R_{\rm celk}=R_R+R_L+R_C$. V případě podkritického tlumení bude $\alpha\ll\omega_0\implies\omega\approx\omega_0$ a proto předpokládám $R_L\approx 16~\Omega$ a $R_C\approx 3~\Omega$ z tabulky 1. V případě kritického a nadkritického tlumení lze očekávat odpor cívky $R_L\approx R_L^{DC}$, jelikož cívkou protéká stejnosměrný proud a odpor kondenzátoru R_C řádově 10, což vyvozuji z tabulky 2. Přesné odpory za těchto podmínek neznám.

4. Závěr

Reference

[1] Hustota pevných látek. Dostupné z http://www.converter.cz/tabulky/hustota-pevne.htmf.

Graf 1: Závsilost amplitudy vodivosti (a) a její fáze (b) na úhlové frekvenci ω sériového obvodu RLC.

Tabulka 3: Měření přechodových jevů RLC obvodu.

3a		
$f_0 = 1012.2 \pm 0.1 \text{ Hz}$		
$\omega_0 = 6365.9 \pm 0.7 \text{ Rad/s}$		
$\omega_d = 6353.2 \pm 0.7 \text{ Rad/s}$	3b	3c
$\alpha = 401.5 \pm 0.7$	$\alpha = 7050 \pm 20$	$\alpha = 22490 \pm 20 \ \Omega$
$R_R = 20.42 \ \Omega$	$R_R = 1500$	$R_R = 5000 \ \Omega$
$R = 90.7 \pm 0.2 \Omega$	$R = 1593 \pm 5$	$R = 5082 \pm 5 \Omega$
$R_L \approx 16 \ \Omega$	$R_L \approx 11 \ \Omega$	$R_L pprox 11 \ \Omega$
$R_C \approx 3 \Omega$	$R_C \approx 10 \ \Omega$	$R_C \approx 10 \ \Omega$
$R_{\rm celk} + R_G \approx 89 \ \Omega$	$R_{\rm celk} + R_G \approx 1571 \ \Omega$	$R_{\text{celk}} + R_G = 5071 \ \Omega$
3a) podkritické tlumení	3b) kritické tlumení	3c) nadkritické tlumení

Tabulka 7: Výsledky zpracování přechodovýh jevů. $R_G\approx 50$