Predictors

Jong-Han Kim

LEO6006 Data Science and Machine Learning for Aerospace Systems

Inha University

Predictors

Data fitting

 $lackbox{}$ we think $y \in \mathbf{R}^m$ and $x \in \mathbf{R}^d$ are (approximately) related by

$$y \approx f(x)$$

- ▶ *x* is called the *independent variable* or *feature vector*
- ightharpoonup y is called the *outcome* or *response* or *target* or *label* or *dependent variable*
- \blacktriangleright very often m=1, *i.e.*, the outcome is scalar
- $lackbox{} y$ is something we want to predict, given x
- lacktriangle we don't know the 'true' relationship between x and y

Features

often x is a vector of features:

- documents
 - ightharpoonup x is word count histogram for a document
- patient data
 - ightharpoonup x are patient attributes, test results, symptoms
- customers
 - ightharpoonup x is purchase history and other attributes of a customer

Where features come from

- \blacktriangleright we use u to denote the raw input data, such as a vector, word or text, image, video, audio, ...
- $ightharpoonup x = \phi(u)$ is the corresponding *feature vector*
- \blacktriangleright the function ϕ is called the *embedding* or *feature function*
- \blacktriangleright ϕ might be very simple or quite complicated
- lacktriangle often we take $\phi(u)_1=x_1=1$, the constant feature
- lacktriangle similarly, the raw output data v can be featurized as $y=\psi(v)$
- ▶ (much more on these ideas later)

Data and prior knowledge

- $lackbox{}$ we are given data $x^1,\ldots,x^n\in\mathsf{R}^d$ and $y^1,\ldots,y^n\in\mathsf{R}$
- igl (x^i, y^i) is the *i*th *data pair* or *observation* or *example*
- lacktriangle collectively we call x^1,\ldots,x^n and y^1,\ldots,y^n a data set
- we also (might) have *prior knowledge* about what f might look like
 - ightharpoonup e.g., f is smooth or continuous: $f(x)pprox f(ilde{x})$ when x is near $ilde{x}$
 - ▶ or we might know y > 0

6

Predictor

- ightharpoonup we seek a *predictor* or *model* $g: \mathbb{R}^d \to \mathbb{R}$
- for feature vector x, our prediction (of y) is $\hat{y} = g(x)$
- predictor g is chosen based on both data and prior knowledge
- ▶ in terms of raw data, our predictor is

$$\hat{v}=\psi^{-1}(g(\phi(u)))$$

(with a slight variation when ψ is not invertible)

- $m{\hat{y}}^ipprox y^i$ means our predictor does well on ith data pair
- lacktriangle but our real goal is to have $\hat{y} pprox y$ for (x,y) pairs we have not seen

Information flow

Parametrized predictors

- lacktriangledown many predictors have the form $\hat{y}=g(x; heta)$, also written as $\hat{y}=g_{ heta}(x)$
- ▶ the function g fixes the *structure* or *form* of the predictor
- $\theta \in \mathbb{R}^p$ is a *parameter* (vector) for the prediction model
- ightharpoonup choosing a particular $\theta \in \mathbb{R}^p$ is called *tuning* or *training* or *fitting* the model
- ightharpoonup a learning algorithm is a recipe for choosing θ given data
- example: linear regression model
 - $\blacktriangleright \hat{y} = g_{\theta}(x) = \theta_1 x_1 + \cdots + \theta_d x_d$
 - ▶ you can fit a linear regression model using least squares
 - ▶ (and other methods too; much more on that later)

Nearest neighbor predictors

Nearest neighbor predictor

- \blacktriangleright we are given data set $x_1, \ldots, x_n, y_1, \ldots, y_n$
- nearest neighbor predictor.
 - ightharpoonup given x, find its nearest neighbor x_i among given data
 - lacktriangle then predict $\hat{y}=g(x)=y_i$
- extremely intuitive
- ightharpoonup parameter is full data set: $\theta = (x_1, \ldots, x_n, y_1, \ldots, y_n)$
- 'training' is easy; it requires no computation
- lacktriangledown g is a piecewise constant function of x, since $g(x)=y_i$ when x is closer to x_i than the other x_j s

- lacksquare dots show data points (x_i,y_i) , $x_i\in \mathsf{R}\ (d=1)$
- ▶ line shows $\hat{y} = g(x)$

lacksquare dots show data points (x_i,y_i) , $x_i\in \mathsf{R}^2$ (d=2), red surface is $\hat{y}=g(x)$

k-nearest neighbor predictor

- lacktriangle given x, find its k nearest neighbors x^{i_1},\ldots,x^{i_k} among given data
- ightharpoonup k-nearest neighbor predictor (k-NN) predicts the average of the associated outcomes

$$\hat{y}=g(x)=rac{1}{k}(y^{i_1}+\cdots+y^{i_k})$$

- ▶ a useful generalization of nearest neighbor predictor
- many variations, e.g.,
 - \blacktriangleright use a weighted average to form \hat{y}
 - pre-process by clustering the original data set

Example: k=2

Soft nearest neighbor predictor

lacktriangle prediction is weighted average, $\hat{y}=g(x)=\sum w^i\,y^i$, with weights

$$w^i = rac{e^{-\|x-x^i\|^2/
ho^2}}{e^{-\|x-x^1\|^2/
ho^2} + \dots + e^{-\|x-x^n\|^2/
ho^2}}$$

that depend on \boldsymbol{x}

- ho > 0 is a parameter, a characteristic length
- ightharpoonup weight w^i is larger when x is near x^i
- \blacktriangleright for small ρ , this reverts to nearest neighbor predictor

Linear predictors

Linear predictor

- lacktriangle a linear predictor has the form $g(x;\theta) = \theta^{\mathsf{T}} x$
- lacktriangle for m=1 (scalar y), parameter is a vector $heta \in \mathbf{R}^d$
- ▶ for m > 1 (vector y), parameter is a matrix $\theta \in \mathbf{R}^{d \times m}$
- ▶ also called a *linear regression model*
- prediction is a linear combination of features

$$\hat{y} = g(x) = \theta_1 x_1 + \dots + \theta_d x_d$$

- lacktriangledown for m= 1, $heta_i$ are entries of heta
- $\blacktriangleright \ \text{ for } m>1, \ \theta_i^\mathsf{T} \ \text{are rows of } \theta$
- ▶ there are many ways to fit a linear regression model to data, including least squares

Interpreting a linear predictor

- \blacktriangleright we consider scalar y (m=1); similar results hold for vector y
- ▶ linear predictor has form

$$\hat{y}=g(x)= heta_1x_1+\cdots+ heta_dx_d$$

- θ_3 is the amount prediction $\hat{y} = g(x)$ increases when x_3 increases by 1 (particularly interpretable when x_3 is Boolean, *i.e.*0 or 1)
- $m{\theta}_7=0$ means that the prediction does not depend on x_7
- lacktriangleright eta small means predictor is insensitive to changes in x:

$$|g(x) - g(\tilde{x})| = |\theta^{\mathsf{T}}x - \theta^{\mathsf{T}}\tilde{x}| = |\theta^{\mathsf{T}}(x - \tilde{x})| \leq ||\theta||_2 \, ||x - \tilde{x}||_2$$

Affine predictor

- \blacktriangleright in many cases the first feature is constant, *i.e.*, $x_1=1$
- \blacktriangleright the linear predictor g is then an affine function of $x_{2:d}$, i.e., linear plus a constant

$$g(x) = heta^ op x = heta_1 + heta_2 x_2 + \dots + heta_d x_d$$

- lacktriangledown $heta_1$ is called the *offset* or *constant term* in the predictor
- $ightharpoonup heta_1$ is the prediction when all features (except the constant) are zero

Polynomial predictor

- ightharpoonup with appropriate embedding of u, can get nonlinear function of u with a linear predictor of x
- ▶ common example with $u \in \mathbf{R}$:

$$x=\phi(u)=(1,u,u^2,\ldots,u^{d-1})$$

 $(\phi: \mathbf{R} \to \mathbf{R}^d \text{ is called } polynomial \text{ or } power \text{ embedding})$

▶ linear predictor has form

$$\hat{y} = \theta^{\top} x = \theta_1 + \theta_2 u + \theta_3 u^2 + \dots + \theta_d u^{d-1}$$

- \blacktriangleright this is a linear function of x, but a polynomial function of u
- ▶ (much more on this topic later)

Tree-based predictors

Tree-based predictors

- ▶ predictor represented by partially developed Boolean tree
- lacktriangleright non-leaf nodes associated with an index i and threshold t
- ightharpoonup each leaf has a value \hat{y}
- \blacktriangleright parameter θ encodes tree, thresholds, leaf values
- predictor is piecewise constant function of x, interpretable when the tree is small enough

Neural network predictors

Neural network layers

▶ a (feedforward) *neural network* predictor consists of a composition of functions

$$\hat{y} = g^3 \big(g^2 (g^1(x)) \big)$$

(we show three here, but we can have any number)

- lacktriangle written as $g=g^3\circ g^2\circ g^1$ (the symbol \circ means function composition)
- ightharpoonup each g^i is called a *layer*; here we have 3 layers
- lacktriangle we can write the predictor $\hat{y}=g^3\left(g^2\left(g^1(x)\right)\right)$ as

$$z^1 = g^1(x); \quad z^2 = g^2(z^1); \quad \hat{y} = g^3(z^2)$$

- lacktriangle the vector $z^i \in \mathbf{R}^{d^i}$ is called the *activation* or *output* of layer i
- we sometimes write $z^0 = x$, $d^0 = d$, and $z^3 = \hat{y}$, $d^3 = m$ (so the predictor input x and predictor output y are also considered activations of layers)
- sometimes visualized as flow graph

Layer functions

lacktriangledown each layer g^i is a composition of a function h with an affine function

$$g^i(z^{i-1}) = h\left(heta_i^\mathsf{T}(1,z^{i-1})
ight)$$

- ▶ the matrix $\theta_i \in \mathbf{R}^{(d^{i-1}+1)\times d^i}$ is the *parameter* (also called *weights*) for layer i
- ▶ the function $h : \mathbb{R} \to \mathbb{R}$ is a scalar *activation function*, which acts elementwise on a vector argument (*i.e.*, it is applied to each entry of a vector)
- common activation functions include
 - $h(x) = (x)_{+} = \max(x, 0)$, called ReLU (rectified linear unit)
 - $h(x) = e^x/(1+e^x)$, called sigmoid function
- lacktriangle an M-layer neural network predictor is parameterized by $heta=(heta_1,\ldots, heta_M)$ (for M layers)

Network depiction

- ▶ neural networks are often represented by *network* diagrams
 - ▶ each vertex is a component of an activation
 - edges are individual weights or parameters
- lacktriangle example above has 3 layers, with $d^0=2$, $d^1=4$, $d^2=2$, $d^3=1$

$$\theta_1 = \begin{bmatrix} 0.80 & 0.10 & 1.30 & 1.20 \\ -0.50 & 0.70 & 0.80 & 2.90 \\ -1.80 & 0.20 & -1.50 & -0.60 \end{bmatrix}$$

$$\theta_2 = \begin{bmatrix} 1.40 & 1.10 \\ -0.10 & -0.90 \\ 0.50 & 0.20 \\ -0.40 & 0.90 \\ -0.40 & -0.10 \end{bmatrix}$$

$$\theta_3 = \begin{bmatrix} 0.90 \\ 0.70 \\ 0.50 \end{bmatrix}$$

Neural network predictors

- ▶ neural network described above is called a *feedforward neural network* or *multi-layer perceptron*
- $\,\blacktriangleright\,$ there are many variations on this basic neural network
- ▶ you'll see them in other classes

Summary

Summary

- lacktriangle a predictor is a function $g: \mathbf{R}^d o \mathbf{R}^m$ meant to predict the outcome y, given feature vector x
- there are many types of predictors
 - nearest-neighbor
 - tree
 - linear
 - neural networks
 - ... and many others
- ightharpoonup most predictors are parametrized, with the form $g_{\theta}(x)$
- g fixes the form of the predictor
- lacktriangledown $heta\in\mathsf{R}^p$ are parameters that we choose to fit the data, which is called training the predictor
- we'll see later how training is done