PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-351598

(43)Date of publication of application: 19.12.2000

(51)Int.Cl.

B66F 9/24

(21)Application number: 11-166117

(71)Applicant: NIPPON YUSOKI CO LTD

(22)Date of filing:

14.06.1999

(72)Inventor: KIMURA KAZUO

HASE HIDEKI

(54) FORKLIFT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a forklift which can dispense with the possesion of ID card and increase a security and cope with even when the necessity of an operation at the emergency time is generated. SOLUTION: A finger mark discrimination device 15 for

SOLUTION: A finger mark discrimination device 15 for discriminating the finger mark of an operator is mounted on a forklift and an electric source is turned on so as to operate the forklift/when it is judged thereby that the finger mark of the operator is right. By providing a maintenance key switch to the place not seen from the outside and operating this switch, the electric source is turned on even when a person himself does not confirm.

LEGAL STATUS

[Date of request for examination]

22.07.2002

[Date of sending the examiner's decision of

13.05.2005

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-351598 (P2000-351598A)

(43)公開日 平成12年12月19日(2000.12.19)

(51) Int.Cl.⁷

識別記号

FΙ

テーマコート*(参考)

B66F 9/24

B66F 9/24

Z 3F333

審査請求 未請求 請求項の数4 〇L (全 7 頁)

(21)出願番号

特願平11-166117

(71)出願人 000232807

日本輸送機株式会社

(22)出顧日 平成11年6月14日(1999.6.14) 京都府長岡京市東神足2丁目1番1号

(72)発明者 木村 和男

京都府長岡京市東神足2丁目1番1号 日

本輸送機株式会社内

(72)発明者 長谷 日出樹

京都府長岡京市東神足2丁目1番1号 日

本輸送機株式会社内

Fターム(参考) 3F333 AA02 AB13 AE02 DA10 DB05

DB10 FA34 FA40

(54) 【発明の名称】 フォークリフト

(57)【要約】

【課題】IDカードの所持を不要にするとともにセキュ リティ性を高め、また、緊急時に運転の必要性が生じた 場合でも対応が可能なフォークリフトを提供すること。

【解決手段】運転者の指紋を識別するための指紋識別装 置15をフォークリフトに搭載し、この指紋識別装置1 5によって運転者の指紋が正当と判断された場合に電源 をオンして、フォークリフトを動かせるようにする。ま た、メンテナンスキースイッチを外部から分からない場 所に設け、このスイッチを操作することにより、本人認 証がされない場合でも電源がオンするようにした。

1

【特許請求の範囲】

【請求項1】運転者の指紋を識別するための指紋識別装 置を搭載し、この指紋識別装置によって運転者の指紋が 正当と判断された場合にのみ電源をオンすることを特徴 とするフォークリフト。

【請求項2】指紋識別装置には運転者の指紋が暗証番号 とともにあらかじめ登録されており、暗証番号と指紋の 入力に基づいて本人認証を行なう請求項1に記載のフォ ークリフト。

【請求項3】運転者の本人認証を行なうための認証装置 10 を搭載し、この認証装置によって運転者の認証が正当に 行われた場合に電源をオンするフォークリフトであっ て、メンテナンスキースイッチを備え、このメンテナン スキースイッチの操作によって、前記認証装置による本 人認証とは関係なく電源をオンするようにしたことを特 徴とするフォークリフト。

【請求項4】電源がオンでかつキースイッチが投入され ている状態において、未作業状態が一定時間継続した場 合に電源を自動的にオフするようにした請求項1、2ま たは3に記載のフォークリフト。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はフォークリフトに関 し、特にセキュリティ性能を向上させたフォークリフト に関するものである。

[0002]

【従来の技術】物流システムや重度の荷役作業におい て、フォークリフトは必需品となっているが、このフォ ークリフトは法律上有資格者でなければ運転できないこ とになっている。しかし、実際には無資格者や部外者に 30 よる運転があとを絶たず、事故などのトラブルが多く発 生しているのが現状である。

【0003】このような問題に対処するため、たとえば 運転者にIDカードを所持させ、IDカードをフォーク リフトに装備されたカードリーダで読み取って、正規に 登録された者であるか否かを判別し、正規に登録された 者に対してのみフォークリフトが運転可能状態になるよ うにしたシステムが実用化されている。

[0004]

【発明が解決しようとする課題】しかしながら、IDカ 40 ードを用いたシステムでは、運転者がカードの所持を忘 れた場合に、フォークリフトを動かすことができなくな るという難点がある。また、カードを紛失した場合は、 カードを拾得した第三者によってフォークリフトが運転 されるおそれがある。さらに、カードは偽造されやすい ため、セキュリティを確保する上では一定の限界があ

【0005】また、このシステムではIDによる本人認 証を経ないとフォークリフトを動かせないので、緊急時 や点検時などにおいて第三者がフォークリフトを運転す 50

る必要が生じた場合には、対応ができないという問題も ある。

【0006】そこで、本発明は上記のような問題点を解 消し、IDカードの所持を不要にするとともに、セキュ リティ性を高めたフォークリフトを提供することを課題 としている。

【0007】また、本発明は、非常時に第三者が運転す る必要が生じた場合でも対応が可能なフォークリフトを 提供することを課題としている。

[0008]

【課題を解決するための手段】上記課題を解決するため に、本発明に係るフォークリフトは、運転者の指紋を識 別するための指紋識別装置を搭載し、この指紋識別装置 によって運転者の指紋が正当と判断された場合にのみ電 源をオンするようにしたものである。

【0009】このようにすることで、運転者の指紋が正 当と判断されない場合は電源がオンしないため、正規の 登録者以外の者はフォークリフトを運転できず、また、 指紋によって本人認証を行なうため、カードの所持は不 20 要となり、紛失や偽造による第三者の不正使用のおそれ もなくなる。

【0010】ここで、指紋識別装置に運転者の指紋を暗 証番号とともにあらかじめ登録しておき、暗証番号と指 紋の入力に基づいて本人認証を行なうようにすれば、セ キュリティ性能は一層向上する。

【0011】また、上記課題を解決するために、本発明 に係るフォークリフトは、認証装置とは別にメンテナン スキースイッチを設け、認証装置によって運転者の認証 が正当に行われた場合に電源をオンするとともに、メン テナンスキースイッチが操作された場合は、本人認証と は関係なく電源をオンするようにしたものである。

【0012】メンテナンスキースイッチは、パネルの中 など部外者には分からない場所に設けられ、通常は操作 されないが、非常時にはこのキースイッチを操作するこ とで、第三者もフォークリフトを動かすことができるよ うになる。

【0013】なお、本発明において、電源がオンでかつ キースイッチが投入されている状態において、未作業状 態が一定時間継続した場合には電源をオフするようにす れば、盗難や、部外者の無断運転による事故などを未然 に防止することができ、より安全性を高めることができ る。

[0014]

【発明の実施の形態】以下、本発明の実施形態につき、 図を参照しながら説明する。図1は本発明に係るフォー クリフトを後方から見た場合の斜視図である。図におい て、車体100の前部には荷物を保持するフォーク1 と、このフォーク1を昇降させるためのマスト2が設け られている。3は車体100の進行方向を操作するハン ドル、4はフォーク1を上昇・下降させたり前傾・後傾

させたりする操作レバー、5はブレーキペダル、6は車 体100の前輪、7は車体100の後輪、8は運転者が 着座するシート、9はシート8の上方に設けられて落下 物から運転者を保護するためのヘッドガード、10はヘ ッドガード9を支持するピラーである。

【0015】11は車体100の後部に装備されたウエ イトで、このウエイト11はフォーク1に荷物を載置し た場合に、車体100の前後の重量バランスをとるため のものである。12はフォークリフトを駆動するための バッテリー (図示省略) が内蔵されたバッテリー収納部 10 であり、このバッテリー収納部12の上にシート8が取 り付けられている。

【0016】13は、フォーク1を昇降させるためのり フトシリンダ、14はフォーク1を前傾および後傾させ るためのティルトシリンダであり、これらの各シリンダ は油圧シリンダで構成されている。15は本発明の特徴 をなす指紋識別装置であって、ハンドル3や操作レバー 4とともに運転席の前部に装備されている。

【0017】図2は、上記フォークリフトにおける電気 的構成を示したブロック図である。15は上述した指紋 20 識別装置であり、その詳細は後述する。16はフォーク リフトを作動させるためのメインキースイッチで、図1 の運転席に設けられる。17は非常用のメンテナンスキ ースイッチで、図1の運転席の外部からは分からない場 所(パネルの内部など)に設けられる。18は図1の操 作レバー4などから構成される操作部である。

【0018】19はフォークリフトを走行させるための 走行モータを駆動する走行モータ駆動回路、20は図1 のリフトシリンダ13やティルトシリンダ14などを作 動させるための油圧モータを駆動する油圧モータ駆動回 30 路、21は運転席に設けられた表示器である。

【0019】上述の各ブロックは制御部22に接続され ている。制御部22は、CPU、ROM、RAM、クロ ック発生回路、インターフェース回路などを含み、フォ ークリフトの電気系統を制御するものである。そしてこ の電気系統は、図1のバッテリー収納部12に収納され たバッテリーを電源とする電源回路23から電源の供給 を受ける。

【0020】図3は指紋識別装置15の概略構成図であ る。24は指紋読取部であって、この部分に指の指紋面 40 を載置して光学的読取装置(図示省略)により指紋を読 み取る。25はテンキーから構成される暗証入力部であ って、運転者の暗証番号を入力するために設けられてい る。26は暗証番号や認証結果などを表示する表示部 で、液晶ディスプレイなどから構成される。この指紋識 別装置15には運転者の指紋が暗証番号とともにあらか じめ登録されており、暗証番号と指紋の入力に基づいて 本人認証を行なうようになっている。

【0021】図4はフォークリフトにおける作業の流れ を示したフローチャートである。次に、図4を参照し

て、本発明に係るフォークリフトの動作につき説明す る。

【0022】運転者はフォークリフトに搭乗すると(ス テップS1)、まず運転席にあるメインキースイッチ1 6をオンにする(ステップS2)。続いて運転者は、指 紋識別装置15の暗証入力部25のテンキーを用いて自 分の暗証番号を入力するとともに、指紋読取部24に指 を置いて本人認証の操作を行なう(ステップS3)。

【0023】指紋識別装置15は、入力された暗証番号 と読み取った指紋とに基づいて、これらがあらかじめ登 録されたものと一致するか否かを判別する(ステップS 4)。もし一致しなければ(ステップS4No)、表示 部26に認証が正しく行なわれなかった旨を表示し、ス テップS3に戻って再入力を待つ。暗証番号と指紋が登 録されたものと一致すれば、認証結果が正当であると判 断して(ステップS4Yes)、フォークリフトの電源 をオンにする(ステップS5)。すなわち、図2の電源 回路23からの電源供給によって、フォークリフトを運 転可能な状態にする。こうして、運転者はIDカードを 所持しなくても、指紋で本人認証を行なうことができ

【0024】フォークリフトの電源がオンして運転可能 な状態になると、運転者はフォークリフトの操作部18 を操作して、走行や荷役作業を行なう(ステップS 6)。そして、作業が終了するとメインキースイッチ1 6をオフにする(ステップS7)。メインキースイッチ 16がオフになると (ステップS7Yes)、フォーク リフトの電源はオフとなる(ステップS9)。

【0025】一方、作業が終了したのにメインキースイ ッチ16がオフにされない場合は(ステップS7N o) 、未作業状態が一定時間継続したか否かを判定する (ステップS8)。ここで、未作業状態とは、フォーク リフトのレバーやスイッチなどが全く操作されない状態 をいう。未作業状態の一定時間継続有無を判定するにあ たっては、たとえば制御部12に内蔵されたウオッチド グタイマによって、操作レバー4などの動きを監視し、 一定時間以上レバーが操作されない場合に信号を出すよ うにすればよい。あるいは、座乗タイプのフォークリフ トではシートスイッチが設けられているので、このシー トスイッチが一定時間以上運転者を検知しない場合(運 転者が座席を離れている場合)に、信号を出すようにす

【0026】未作業状態が一定時間に達していない場合 は(ステップS8No)、ステップS7に戻ってメイン キースイッチ16がオフされるのを待つ。一方、未作業 状態が一定時間継続したことが判定されると(ステップ S8Yes)、強制的にフォークリフトの電源をオフに する(ステップS9)。

【0027】このようにして、運転者がメインキースイ 50 ッチ16を切り忘れた場合でも、未作業状態が一定時間 継続すれば自動的に電源がオフとなるため、放置された フォークリフトが盗難にあったり、部外者が無断運転し てトラブルや事故を起こしたりすることが未然に防止さ れる。

【0028】ところで、上述した実施形態によれば、指紋照合装置15によって本人認証を行なっているため、カードの所持忘れによってフォークリフトの運転が不可能になる事態を回避できる。しかしその反面、指紋登録者以外の者は、緊急時において正当目的でフォークリフトを運転しようしても、運転ができないという不具合が10生じる。また、車体にトラブルが発生した場合や定期点検時などには、フォークリフトを移動させる必要が生じるが、このような場合でも、指紋登録がされていない第三者はフォークリフトを動かすことができないという不具合が生じる。これは、本人認証の手段として指紋識別以外の手段を用いた場合でも同様である。

【0029】そこで、本発明の他の実施形態として、メンテナンスキースイッチ17を設け、本人認証とは関係なく、メンテナンスキースイッチ17が操作されることによって電源をオンする方式が考えられる。ここで、メンテナンスキースイッチ17は前述のように、運転席のパネル内部など外部から分からない場所に設けられているので、部外者によって操作される心配はない。

【0030】次に、この実施形態の動作を図4を参照して説明する。運転者はフォークリフトに搭乗すると(ステップS1)、まず運転席にあるメインキースイッチ16をオンにする(ステップS2)。続いて運転者は、認証装置により本人認証の操作を行なう(ステップS3)。この場合の認証装置としては、前述の指紋識別装置15に限らず、たとえばIDカードを用いて認証を行なうものや暗証番号入力のみを用いて認証を行なうものであってもよく、あるいは、画像処理技術による顔面照合によって本人認証を行なうものなどでもよい。

【0031】認証結果が正当と判断されれば、フォークリフトの電源をオンにして(ステップS5)、フォークリフトを運転可能な状態にする。なお、これ以降のステップS6~S9の動作は、前述の場合と同様であるので、説明を省略する。

【0032】一方、上記本人認証による電源オンとは別に、メンテナンスキースイッチ17がオンされると(ス 40 テップS10)、フォークリフトの電源は無条件にオンとなる(ステップS5)。すなわち、本人認証を経ることなく、メンテナンスキースイッチ17だけで電源をオンさせることができる。その後のステップS6~S9の動作は前述の場合と同様であり、メンテナンスキー17を切り忘れた場合も、未作業状態が一定時間継続すると、自動的に電源がオフとなる(S7~S9)。

【0033】このようにして、メンテナンスキースイッ 23 チ17の操作によって、運転者以外の第三者も非常時に 24 はフォークリフトを運転することが可能となり、緊急事 50 25

態発生時や点検時などにおいて迅速・円滑な対応をとることができる。また、正規の運転者が指を怪我していて指紋が認証されないような場合や、IDカードを忘れたような場合でも、メンテナンスキースイッチ17を操作することによって、フォークリフトの運転に支障がなくなる

【0034】なお、本発明は上述した実施形態のみに限定されるものではなく、他にも種々の形態を採用することができる。たとえば、上記実施形態では、制御部22が図4の手順にしたがってソフトウエアにより電源のオン、オフ制御を行なっているが、これをハードウエアによって実現してもよい。一例として、指紋識別装置を起動回路に接続し、指紋識別装置の認証結果が正常な場合に、起動回路に通電することによってキースイッチを有効にし、フォークリフトが稼働するようにしてもよい。

【0035】また、上記実施形態では、指紋識別装置において指紋を暗証番号とともに入力しているため、セキュリティ性を確保する上で有効であるが、暗証番号を省略して指紋のみを入力するようにしてもよい。

【発明の効果】本発明によれば、指紋識別により本人認証を行なうため、カードを所持する必要がなくなるとともに、カードの紛失や偽造による第三者の不正使用も有効に防止することができ、セキュリティ性能が向上する。

【0037】また、メンテナンスキースイッチの操作により電源がオンとなるので、本人認証が行なわれない場合でもフォークリフトを運転することができ、非常時における対応が可能となる。

【0038】さらに、キースイッチがオンのまま未作業状態が一定時間継続した場合は電源が自動的にオフとなるので、盗難や、部外者の無断運転によるトラブルおよび事故を未然に防止でき、より安全性を高めることができる。

【図面の簡単な説明】

【図1】本発明に係るフォークリフトの斜視図である。

【図2】本発明に係るフォークリフトの電気的構成を示すブロック図である。

【図3】指紋識別装置の概略構成図である。

【図4】フォークリフトにおける作業の流れを示したフローチャートである。

【符号の説明】

15 指紋識別装置

16 メインキースイッチ

17 メンテナンスキースイッチ

18 操作部

22 制御部

23 電源回路

24 指紋読取部

25 暗証入力部

[0036]

(5)

特開2000-351598

26 表示部

* *100 車体

【図1】 【図3】

