Chapter Six

Trees

Nature Lover's View Of A Tree

Computer Scientist's View

Linear Lists And Trees

- Linear lists are useful for serially ordered data.
 - \bullet (e₀, e₁, e₂, ..., e_{n-1})
 - Days of week.
 - Months in a year.
 - Students in this class.
- Trees are useful for hierarchically ordered data.
 - Employees of a corporation.
 - President, vice presidents, managers, and so on.

Hierarchical Data And Trees

- The element at the top of the hierarchy is the root.
- Elements next in the hierarchy are the children of the root.
- Elements next in the hierarchy are the grandchildren of the root, and so on.
- Elements that have no children are leaves.

Example Tree

- A tree t is a finite nonempty set of elements.
- One of these elements is called the root.
- The remaining elements, if any, are partitioned into trees, which are called the subtrees of t.

Leaves

Parent, Grandparent, Siblings, Ancestors, Descendants

Levels

Caution

- Some texts start level numbers at 0 rather than at 1.
- Root is at level 0.
- Its children are at level 1.
- The grand children of the root are at level 2.
- And so on.
- We shall number levels with the root at level 1.

height = depth = number of levels

Node Degree = Number Of Children

Tree Degree = Max Node Degree

Degree of tree = 3.

Binary Tree

- Finite (possibly empty) collection of elements.
- A nonempty binary tree has a root element.
- The remaining elements (if any) are partitioned into two binary trees.
- These are called the left and right subtrees of the binary tree.

Differences Between A Tree & A Binary Tree

- No node in a binary tree may have a degree more than 2, whereas there is no limit on the degree of a node in a tree.
- A binary tree may be empty; a tree cannot be empty.

Differences Between A Tree & A Binary Tree

 The subtrees of a binary tree are ordered; those of a tree are not ordered.

- Are different when viewed as binary trees.
- Are the same when viewed as trees.

Arithmetic Expressions

- (a + b) * (c + d) + e f/g*h + 3.25
- Expressions comprise three kinds of entities.
 - Operators (+, -, /, *).
 - Operands (a, b, c, d, e, f, g, h, 3.25, (a + b), (c + d), etc.).
 - Delimiters ((,)).

Operator Degree

- Number of operands that the operator requires.
- Binary operator requires two operands.
 - a + b
 - c / d
 - e f
- Unary operator requires one operand.
 - -+g
 - h

Infix Form

- Normal way to write an expression.
- Binary operators come in between their left and right operands.
 - a * b
 - a + b * c
 - a * b / c
 - (a + b) * (c + d) + e f/g*h + 3.25

Operator Priorities

- How do you figure out the operands of an operator?
 - a + b * c
 - a * b + c / d
- This is done by assigning operator priorities.
 - priority(*) = priority(/) > priority(+) = priority(-)
- When an operand lies between two operators, the operand associates with the operator that has higher priority.

Tie Breaker

• When an operand lies between two operators that have the same priority, the operand associates with the operator on the left.

- a + b c
- a * b / c / d

Delimiters

• Subexpression within delimiters is treated as a single operand, independent from the remainder of the expression.

$$(a + b) * (c - d) / (e - f)$$

Infix Expression Is Hard To Parse

- Need operator priorities, tie breaker, and delimiters.
- This makes computer evaluation more difficult than is necessary.
- Postfix and prefix expression forms do not rely on operator priorities, a tie breaker, or delimiters.
- So it is easier for a computer to evaluate expressions that are in these forms.

Postfix Form

- The postfix form of a variable or constant is the same as its infix form.
 - **a**, b, 3.25
- The relative order of operands is the same in infix and postfix forms.
- Operators come immediately after the postfix form of their operands.
 - Infix = a + b
 - Postfix = ab+

Postfix Examples

- Infix = a + b * c
 - Postfix = abc* +
- Infix = a * b + c
 - Postfix = ab * c +

- Infix = (a + b) * (c d) / (e + f)
 - Postfix = ab + cd *ef + /

Unary Operators

- Replace with new symbols.
 - + a => a @
 - + a + b => a @ b +
 - -a => a?
 - a-b => a ? b -

- Scan postfix expression from left to right pushing operands on to a stack.
- When an operator is encountered, pop as many operands as this operator needs; evaluate the operator; push the result on to the stack.
- This works because, in postfix, operators come immediately after their operands.

•
$$(a + b) * (c - d) / (e + f)$$

•
$$ab + cd - *ef + /$$

b

a

```
• (a + b) * (c - d) / (e + f)
• a b + c d - * e f + /
• ab + cd - *ef + /
```

d c (a + b)

- (a + b) * (c d) / (e + f)
- ab + cd *ef + /
- ab + cd *ef + /

$$(c-d)$$

$$(a+b)$$

- (a + b) * (c d) / (e + f)
- ab + cd *ef + /

$$f$$
e
 $(a + b)*(c - d)$

(a + b) * (c - d) / (e + f)
a b + c d - * e f + /
a b + c d - * e f + /
a b + c d - * e f + /
a b + c d - * e f + /
a b + c d - * e f + /

• ab + cd - *ef + /

$$(e + f)$$

 $(a + b)*(c - d)$

Prefix Form

- The prefix form of a variable or constant is the same as its infix form.
 - **a**, b, 3.25
- The relative order of operands is the same in infix and prefix forms.
- Operators come immediately before the prefix form of their operands.
 - Infix = a + b
 - Postfix = ab+
 - Prefix = +ab

Binary Tree Form

• a + b

• - 2

Binary Tree Form

• (a + b) * (c - d) / (e + f)

Merits Of Binary Tree Form

- Left and right operands are easy to visualize.
- Code optimization algorithms work with the binary tree form of an expression.
- Simple recursive evaluation of expression.

Binary Tree Properties & Representation

Minimum Number Of Nodes

- Minimum number of nodes in a binary tree whose height is h.
- At least one node at each of first h levels.

minimum number of nodes is h

Maximum Number Of Nodes

• All possible nodes at first h levels are present.

Maximum number of nodes

$$= 1 + 2 + 4 + 8 + \dots + 2^{h-1}$$
$$= 2^{h} - 1$$

Number Of Nodes & Height

- Let n be the number of nodes in a binary tree whose height is h.
- $h \le n \le 2^h 1$
- $\log_2(n+1) \le h \le n$

Full Binary Tree

• A full binary tree of a given height h has $2^h - 1$ nodes.

Height 4 full binary tree.

Numbering Nodes In A Full Binary Tree

- Number the nodes 1 through $2^h 1$.
- Number by levels from top to bottom.
- Within a level number from left to right.

Node Number Properties

- Parent of node i is node i / 2, unless i = 1.
- Node 1 is the root and has no parent.

Node Number Properties

- Left child of node i is node 2i, unless 2i > n, where n is the number of nodes.
- If 2i > n, node i has no left child.

Node Number Properties

- Right child of node i is node 2i+1, unless 2i+1
 > n, where n is the number of nodes.
- If 2i+1 > n, node i has no right child.

Complete Binary Tree With n Nodes

- Start with a full binary tree that has at least n nodes.
- Number the nodes as described earlier.
- The binary tree defined by the nodes numbered 1 through n is the unique n node complete binary tree.

• Complete binary tree with 10 nodes.

Binary Tree Representation

- Array representation.
- Linked representation.

Array Representation

• Number the nodes using the numbering scheme for a full binary tree. The node that is numbered i is stored in tree[i].

Right-Skewed Binary Tree

• An n node binary tree needs an array whose length is between n+1 and 2^n .

Linked Representation

- Each binary tree node is represented as an object whose data type is TreeNode.
- The space required by an n node binary tree is n * (space required by one node).

The Struct binaryTreeNode

```
template <class T>
class TreeNode
   T data;
   TreeNode<T> *leftChild,
                *rightChild;
   TreeNode()
      {leftChild = rightChild = NULL; }
   // other constructors come here
};
```

Linked Representation Example

Some Binary Tree Operations

- Determine the height.
- Determine the number of nodes.
- Make a clone.
- Determine if two binary trees are clones.
- Display the binary tree.
- Evaluate the arithmetic expression represented by a binary tree.
- Obtain the infix form of an expression.
- Obtain the prefix form of an expression.
- Obtain the postfix form of an expression.

Binary Tree Traversal

- Many binary tree operations are done by performing a traversal of the binary tree.
- <u>In a traversal</u>, *each element* of the binary tree is *visited exactly once*.
- During the visit of an element, all action (make a clone, display, evaluate the operator, etc.) with respect to this element is taken.

Binary Tree Traversal Methods

- Preorder
- Inorder
- Postorder
- Level order

Binary Tree Traversal Methods

- In a traversal of a binary tree, each element of the binary tree is visited exactly once.
- During the visit of an element, all action (make a clone, display, evaluate the operator, etc.) with respect to this element is taken.

Binary Tree Traversal Methods

- Preorder
- Inorder
- Postorder
- Level order

Preorder Traversal

```
template <class T>
void PreOrder(TreeNode<T> *t)
   if (t != NULL)
      Visit(t);
      PreOrder (t->leftChild);
      PreOrder(t->rightChild);
```

Preorder Example (Visit = print)

a b c

Preorder Example (Visit = print)

abdgheicfj

Preorder Of Expression Tree

$$/ * + a b - c d + e f$$

Gives prefix form of expression!

Inorder Traversal

```
template <class T>
void InOrder(TreeNode<T> *t)
   if (t != NULL)
      InOrder(t->leftChild);
      Visit(t);
      InOrder(t->rightChild);
```

Inorder Example (Visit = print)

bac

Inorder Example (Visit = print)

gdhbeiafjc

Inorder By Projection (Squishing)

Inorder Of Expression Tree

Gives infix form of expression (sans parentheses)!

Postorder Traversal

```
template <class T>
void PostOrder(TreeNode<T> *t)
   if (t != NULL)
      PostOrder(t->leftChild);
      PostOrder(t->rightChild);
      Visit(t);
```

Postorder Example (Visit = print)

b c a

Postorder Example (Visit = print)

ghdiebjfca

Postorder Of Expression Tree

$$a b + c d - * e f + /$$

Gives postfix form of expression!

Traversal Applications

- Make a clone.
- Determine height.
- •Determine number of nodes.

Level Order

```
Let t be the tree root.
while (t != NULL)
  visit t and put its children on a FIFO queue;
  if FIFO queue is empty, set t = NULL;
  otherwise, pop a node from the FIFO queue
  and call it t;
```

Level-Order Example (Visit = print)

abcdefghij

Binary Tree Construction

- Suppose that the elements in a binary tree are distinct.
- Can you construct the binary tree from which a given traversal sequence came?
- When a traversal sequence has more than one element, the binary tree is not uniquely defined.
- Therefore, the tree from which the sequence was obtained cannot be reconstructed uniquely.

Some Examples

preorder = ab

inorder = ab

postorder = ab

level order = ab

Binary Tree Construction

- Can you construct the binary tree, given two traversal sequences?
- Depends on which two sequences are given.

Preorder And Postorder

preorder = ab
postorder = ba
b

- Preorder and postorder do <u>not uniquely define a</u> binary tree.
- Nor do preorder and level order (same example).
- Nor do postorder and level order (same example).

Inorder And Preorder

- inorder = g d h b e i a f j c
- preorder = a b d g h e i c f j
- Scan the preorder left to right using the inorder to separate left and right subtrees.
- a is the root of the tree; gdhbei are in the left subtree; fjc are in the right subtree.

Inorder And Preorder

- preorder = a b d g h e i c f j
- b is the next root; gdh are in the left subtree; ei are in the right subtree.

Inorder And Preorder

- preorder = abdgheicfj
- d is the next root; g is in the left subtree; h is in the right subtree.

Inorder And Postorder

- Scan postorder from right to left using inorder to separate left and right subtrees.
- inorder = g d h b e i a f j c
- postorder = g h d i e b j f c a
- Tree root is a; gdhbei are in left subtree; fjc are in right subtree.

Inorder And Level Order

- Scan level order from left to right using inorder to separate left and right subtrees.
- inorder = g d h b e i a f j c
- level order = abcdefghij
- Tree root is a; gdhbei are in left subtree; fjc are in right subtree.