федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа №1 Перевод чисел между различными системами счисления Вариант 22

Выполнил:

Кулагин Вячеслав Дмитриеич, Р3109

Преподаватель:

Рудникова Тамара Владимировна

Оглавление

Задание	3
Основные этапы выполнения первой части задания	
Основные этапы выполнения дополнительного задания	10
Заключение по обязательной части	11
Заключение по дополнительной части	12
Заключение по работе	12
Используемые источники	12

Задание

- 1. Решить 13 примеров на перевод из системы счисления "A" в "B", Для примеров с 5-го по 7-й выполнить операцию перевода по сокращенному правилу (для систем с основанием 2 в системы с основанием 2^k). Для примеров с 4-го по 6-й и с 8-го по 9-й найти ответ с точностью до 5 знака после запятой.
- 2. Написать программу на любом языке программирования, которая бы на вход получала число в системе счисления "С" из примера 11, а на выходе вы выдавала это число в системе счисления "В" из примера 11. В случае выполнения этого задания предоставить листинг программы в отчёте.

Вариант: 22 (09 + 13). Исходные данные вредставлены в Таблице 1.

№ задания	A	В	С
1	94118	10	15
2	9A977	13	10
3	95183	11	9
4	65,94	10	2
5	DE,86	16	2
6	10,55	8	2
7	0,110001	2	16
8	0,101011	2	10
9	DE,EF	16	10
10	45	10	Фиб
11	258	-10	10
12	1000000010	Фиб	10
13	1786	-10	10

Таблица 1 - исходные данные

Основные этапы выполнения первой части задания

1. Решение первого задания представлено на Рисунке 1

Рисунок 1 - решение пункта 1

Таким образом, $94118_{10} \rightarrow 1CD48_{15}$

2. Для решения второго задания посчитаем, каким будет число в 10-ой системе счисления

$$9\,A\,977_{13} = 9\cdot13^4 + 10\cdot13^3 + 9\cdot13^2 + 7\cdot13 + 7 = 257049 + 21970 + 1521 + 91 + 7 = 280638_{10}$$
 Таким образом, $9A977_{13} \rightarrow 280638_{10}$

3. Для осуществления преобразования из 11-ричной системы счисления в 9-ричную систему счисления, необходимо сначала перевести число в 10-ричную систему счисления, а лишь затем в 9-ричную.

Сначала переведём 95183₁₁ в 10-ричную систему счисления: $95183_{11} = 9 \cdot 11^4 + 5 \cdot 11^3 + 1 \cdot 11^2 + 8 \cdot 11 + 3 = 131769 + 6655 + 121 + 88 + 3 = 138636_{10}$

Теперь переведём 138636 в 9-ричную систему счисления, решение представлено на Рисунке 2.

Рисунок 2 - решение пункта 3

Таким образом, $95183_{11} \rightarrow 231150_9$

4. Чтобы перевести число с запятов в другую систему счисления, можно сначала перевести целую часть, а затем, отдельно, дробную

Процесс первода целой части числа в двоичную систему счисления представлен на Рисунке 3.

Процесс перевода десятичной части числа в двоичную систему счисления предствален в Таблице 2.

Рисунок 3 - решение пункта 4

Таблица 2 - решение пункта 4

На этом вычисление цифр дробной части остановлено, так как задание требует точности до 5 знаков после запятой.

Таким образом, $65,94_{10} \rightarrow 1000001,11110_2$

5. Для выполнения этого пункта, воспользуемся упрощенным правилом перевода из системы счисления 2 в систему счисления 2^k и обратно. В помощь будем использовать данные из Таблицы 3, которые выводятся простым расписыванием всех возможных 2/3/4-ёх значных чисел в двоичной системе счисления, которые представляют соответсвенно четверичную, восьмеричную и шестнадцатиричную системы счисления. Для решения этого пункта, воспользуемся последним столбцом.

Двоичная <-> Четверичная	Двоичная <-> Восьмеричная	Двоичная <-> Шестнадцатеричная
00 <-> 0	000 <-> 0	0000 <-> 0
01 <-> 1	001 <-> 1	0001 <-> 1
10 <-> 2	010 <-> 2	0010 <-> 2
11 <-> 3	011 <-> 3	0011 <-> 3
	100 <-> 4	
	101 <-> 5	1101 <-> D
	110 <-> 6	1110 <-> E
	111 <-> 7	1111 <-> F

Таблица 3 - перевод чисел между системами счисления - степенями двойки Разделим наше число на фрагменты и получим ответ, решение представленно в Таблице 4.

Исходное	D	Ε,	8	6
число				
Полученное	1101	1110,	1000	0110
число				

Таблица 4 - решение пункта 5

Таким образом, округлив результат до 5 знаков после запятой: DE,86 $_2$ \rightarrow 11011110,10001 $_2$

6. Для решения этого пункта воспользуемся тем же способом, что в пункте 5. Будем использовать данные Таблицы 3 для решения, однако брать значения для перевода в восьмеричную систему счисления.

Разделим число на фрагменты и получим ответ, решение представлено в Таблице 5.

Исходное	1	0,	5	5
число				
Полученное	001	000,	101	101
число				

Таблица 5 - решение пункта 6

Таким образом, округлив результат до 5 знаков после запятой: $10,55_8 \rightarrow 1000,10111_2$

7. Для решения этого пункта воспользуемся тем же способом, что в пункте 5. Будем использовать данные Таблицы 3 для решения.

Разделим число на фрагменты по 4, считая как до, так и после запятой в отдельности, при недостатвке символов допишем незначащие нули, получим ответ. Решение представлено в Таблице 6.

Исходное число	0,	1100	01 <i>00</i>
Полученное число	0,	С	4

Таблица 6 - решение пункта 7, курсивом выделены незначащие нули

Таким образом, $0,110001_2 \rightarrow 0,C4_{16}$

8. Для решения этого пункта, переведём число классическим способом в десятичную систему счисления:

$$0,101011_2 = 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3} + 0 \cdot 2^{-4} + 1 \cdot 2^{-5} + 1 \cdot 2^{-6} = 0,5 + 0,125 + 0,03125 + 0,015625 = 0,671875_{10}$$

Таким образом, округлив результат до 5 знаков после запятой: $0,101011_2 \rightarrow 0,67188_{10}$

9. Для решения этого пункта, переведём число классическим способом в десятичную систему счисления:

$$DE, EF_{16} = 13 \cdot 16^{1} + 14 \cdot 16^{0} + 13 \cdot 16^{-1} + 15 \cdot 16^{-2} = 208 + 14 + 0,875 + 0,05859375 = 222,93359375_{10}$$

Таким образом, округлив результат до 5 знаков после запятой: DE,EF $_{16} \rightarrow 222,93359_{10}$

10. Для перевода десятичного числа в число, записанное в фиббоначиевой системе счисления, следует вспомнить начало ряда чисел Фиббоначи, вот он:

При этом первая единица не используется при переводе в фиббоначиевую систему счисления. Число 45 можно представить из чисел ряда Фиббоначи как: 45 = 34 + 8 + 3. Таким образом, $45_{10} \rightarrow 10010100_{II}$

11. Для перевода числа, записанного в отрицательной системе счисления, нет необходимости использовать какое-то особое правило, будем пользоваться классическим способом перевода числа в десятичную систему счисления:

$$258_{-10} = 2 \cdot -10^2 + 5 \cdot -10^1 + 8 \cdot -10^0 = 200 - 50 + 8 = 158_{10}$$

Таким образом, $258_{-10} \rightarrow 158_{10}$

12. Для перевода числа, записанного в фиббоначиевой системе счисления будем использовать ряд чисел Фиббоначи, для нахождения числа мы должны умножать значение каждого разряда на его вес (который появлсяется из ряда чисел Фиббоначи), а затем их сложить, однако, поскольку цифрами этой системы счисления являются только единицы и нули, мы можем лишь сложить веса тех разрядов, где стоят единицы. Решение этого задания, с разбивой чисел по разрядам представлена в Таблице 7.

Bec	89	55	34	21	13	8	5	3	2	1
Число	1	0	0	0	0	0	0	0	1	0

Таблица 7 - решение пункта 12

Таким образом, $1000000010_{IJ} \rightarrow 89 + 2 = 91_{10}$

13. Для перевода числа, записанного в отрицательной системе счисления, нет необходимости использовать какое-то особое правило, будем пользоваться классическим способом перевода числа в десятичную систему счисления:

$$1786_{-10} = 1 \cdot -10^3 + 7 \cdot -10^2 + 8 \cdot -10^1 + 6 \cdot -10^0 = -1000 + 700 - 80 + 6 = -374_{10}$$

Таким образом, $1786_{-10} \rightarrow -374_{10}$

Основные этапы выполнения дополнительного задания

Необходимо написать программу, которая получала бы число в десятичной системе счисления, а возвращала бы число, записанное в -10-ричной системе счисления.

Алгоритм будет выглядеть следующем образом:

Мы будем переводить числа в -10 систему счисления, используя деление по модулю, однако, при таком переводе следует помнить, что остаток всегда должен оставаться положительным. Например, при делении 158 на основание системы счисления (-10) мы получим результат 15 (ост. 8), однако Руthon при делении по модулю (158 % -10) получим -2, чтобы получить фактический остаток, необходимо к числу прибавить основание системы счисления без минуса, т.е. -2+10=8. Также при целочисленном делении, если модуль получается отрицательным, получается число, которое фактически меньше на 1, чем необходимый остаток. Это связано с тем, что Руthon при целочисленном делении, округляет число вниз. Таким образом, в нашем примере мы получим неправильный результат: 158//-10=-16. Таким образом, для получения фактического результата, необходимо прибавить единицу.

Листинг программы представлен в разделе Заключение.

Заключение по обязательной части

Проведя лабораторную работу, я получил итоговые результаты по каждому пункту, результаты работы представлены в Таблице 8.

№ задания	A	В	С	Результат
1	94118	10	15	1CD48 ₁₅
2	9A977	13	10	28063810
3	95183	11	9	2311509
4	65,94	10	2	1000001,111102
5	DE,86	16	2	11011110,100012
6	10,55	8	2	1000,101112
7	0,110001	2	16	0,C4 ₁₆
8	0,101011	2	10	0,6718810
9	DE,EF	16	10	222,93359 ₁₀
10	45	10	Фиб	10010100դ
11	258	-10	10	15810
12	100000010	Фиб	10	9110
13	1786	-10	10	-374 ₁₀

Таблица 8 - результаты работы

Заключение по дополнительной части

Листинг программы представлен на Python:

```
n = int(input())

new_n = ''
while n != 0:
    q = n % -10
    n //= -10
    if q < 0:
        q += 10
        n += 1
    new_n = str(q) + new_n

print(new_n)</pre>
```

Заключение по работе

Проведя эту лабораторную работу, я научился переводить числа между различными системами счисления, включая также нестандратные системы счсления: отрицательные, Цекендорфа. А также написал программу для автоматического перевода из десятичной в -10 систему счисления.

Используемые источники

- 1. Алексеев Е.Г., Богатырев С.Д. Информатика. Мультимедийный электронный учебник.
- 2. https://www.geeksforgeeks.org/convert-number-negative-base-representation/
- 3. https://en.wikipedia.org/wiki/Negative_base
- 4. Орлов С. А., Цилькер Б. Я. Организация ЭВМ и систем: Учебник для вузов. 2-е изд. СПб.