МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра ИС

ОТЧЁТ

по практической работе №1

по дисциплине «Статистический анализ»

Тема: Формирование и первичная обработка выборки.

Ранжированные и интервальные ряды.

Вариант № 8

Студент гр. 9372	Иванов Р.С.
Преподаватель	 Сучков А.И.

Санкт-Петербург 2021

Цель работы.

Ознакомление с основными правилами формирования выборки и подготовки выборочных данных к статистическому анализу.

Основные теоретические положения.

Для изучения формы эмпирического распределения проводят группировку данных. Результаты группировки представляют в виде таблиц и графиков.

Аналитическая группировка данных предназначена для анализа корреляционной взаимосвязи. Такая группировка заключается в разбиении диапазона возможных значений на интервалы и подсчете итогов по каждой группе. Для каждого из интервалов необходимо вычислить следующие показатели:

- $-n_i$ частота (количество элементов выборки, попадающих в данный интервал);
- $-p_i$ относительная частота, частость (доля числа элементов в данном интервале от объема выборки);

Постановка задачи.

Осуществить формирование репрезентативной выборки заданного объема из имеющейся генеральной совокупности экспериментальных данных.

Осуществить последовательное преобразование полученной выборки в ранжированный, вариационный и интервальный ряды. Применительно к интервальному ряду построить и отобразить графически полигон, гистограмму эмпирическую функцию распределения для абсолютных и относительных частот, а также кумуляту. Полученные результаты содержательно проинтерпретировать.

Выполнение работы.

Во время выполнения работы был написан код на языке Python, выполняющий поставленную задачу. Реализовано чтение и дальнейшая обработка данных из Price_Mileage.csv, одобренного преподавателем. Для этого была использована библиотека csv.

Выборка была сформирована во время выполнения практической работы 0 и использована в ходе выполнения этой практической работы. Объём выборки составлял 115 позиций.

Ранжированный ряд был получен с помощью встроенной функции sort. Часть результата представлена в табл.1.

				•					
3641	5359	5775	6530	6743	6748	7250	7415	9445	10145
10447	10944	11346	12265	13162	13239	14870	15340	17355	17432
17946	19164	19235	19420	19636	20575	21304	23095	23783	23987
24722	26026	26353	26549	26996	27327	28280	28307	30229	•••

Таблица 1 – Начало ранжированного ряда

Вариационный ряд составлен с помощью библиотеки nltk. Пример указан в табл. 2. Так как в качестве выборки был взят пробег машин, вариационный ряд не позволяет сделать никаких содержательных выводов.

Таблица 2 – Начало вариационного ряда

X_i	3641	5359	5775	6530	6743	6748	7250	7415	9445	
n _i	1	1	1	1	1	1	1	1	1	
p _i	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	

Для интервального ряда вычислен размах вариации в соответствие с формулой (1).

$$R = x_{\text{max}} - x_{\text{min}} \tag{1}$$

Вычислено рекомендуемое количество интервалов в соответствие с формулой (2).

$$k = 1 + \log_2 n \tag{2}$$

Берется интервалов на 1 больше, так как за x_0 берется не x_{min} , а рассчитывается по рекомендованной преподавателем формуле (3).

$$x_0 = x_{\min} - \frac{h}{2} \tag{3}$$

где h – длина каждого интервала нашего ряда, высчитанная по формуле (4).

$$h = \frac{R}{k} \tag{4}$$

Пример построения интервального ряда в табл. 3.

Таблица 3 – Интервальный ряд

Xi	(0; 27023]	(27023; 54046]	(54046; 81069]	(81069; 108092]	(108092; 135115]	(135115; 162138]	(162138; 189161]		(216184; 243207]
n_i	35	44	14	13	4	1	3	0	1
p_i	0.304	0.383	0.122	0.113	0.035	0.009	0.026	-	0.009

Также были высчитаны центры интервалов, для удобного отображения на графиках. Полигоны частот абсолютных и относительных рассчитаны с помощью библиотеки *matplotlib* (как и все последующие графики), функцией *plot*. Записаны в файлы *poly.png* и *poly_otn.png* соответственно. Примеры полигонов см. на рис. 1 и рис. 2.

Рисунок 1 - poly_otn.png

Гистограммы частот абсолютных и относительных рассчитаны с помощью функции *bar*. Файлы записаны как *gist.png*, *gist_otn.png* соответственно. Примеры гистограммы см. на рис. 3 и рис. 4.

Для отображения кумуляты и эмпирической функции были высчитаны накопленные относительные и абсолютные частоты. Файлы кумуляты записаны как *сит.рпд* и *сит.рпд* для абсолютных и относительных частот соответственно. Примеры кумулят отображены на рис. 5 и рис. 6.

Файлы эмпирической функции распределения записаны *emp_func_otn.png* и *emp_func.png* для относительных и абсолютных частот соответственно. Примеры см. на рис. 7 и рис. 8.

Рисунок 8 - emp_func_otn.png

Для удобной интерпретации информации все файлы, а также значения ранжированного, вариационного и интервального рядов сгруппированы в *xlsx* файле с помощью библиотеки *орепрухl*. Исходный код программы см. в приложении A.

Вывод.

Изучены основные правила формирования выборки и подготовки выборочных данных к статистическому анализу. Обнаружено, что графики относительных и абсолютных частот не отличаются своим поведением. Изучили способы построения кумуляты, полигонов, эмпирических функций и гистограмм.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

```
import matplotlib.pyplot as plt
from openpyxl.drawing.image import Image
        if y.isdigit(): sample.append(int(y))
R = sample[len(sample) - 1] - sample[0] # Размах
interval = []
```

```
accum freq = []
accum_afreq = []
b = 0
    accum afreq.append(a)
x = middle int
plt.plot(x, y)
plt.title("Полигон частот")
plt.savefig('poly.png')
plt.show()
plt.clf()
y = [interval[i][2] for i in range(len(interval))]
plt.plot(x, y)
plt.title("Полигон относительных частот")
plt.savefig("poly otn.png")
plt.show()
plt.clf()
y = [interval[i][1] for i in range(len(interval))]
plt.title("Гистограмма частот")
plt.savefig("gist.png")
plt.clf()
plt.bar(x, y, width=h)
plt.title("Гистограмма относительных частот")
plt.savefig("gist otn.png")
plt.show()
plt.clf()
U = []
```

```
X.append(x0 + h * i + h)
plt.title("Эмпирическая функция распределения относительных частот")
plt.xlim(0, 250000)
plt.ylim(0, 1.1)
plt.clf()
plt.quiver(X, Y, -h, 0, angles='xy', scale units='xy', scale=1, color='b')
plt.xlim(0, 250000)
plt.savefig("emp func.png")
plt.show()
plt.clf()
plt.title("Кумулята частот")
plt.clf()
plt.plot(middle int, accum afreq)
plt.title("Кумулята относительных частот")
wb = Workbook()
filename = "output.xlsx"
ws.append(variation[i][0] for i in range(len(variation)))
ws.append([variation[i][1] for i in range(len(variation))])
ws.append([str(interval[i][0]) for i in range(len(interval))])
ws.append([interval[i][1] for i in range(len(interval))])
ws.append([interval[i][2] for i in range(len(interval))])
ws.add image(Image("poly otn.png"), "K18")
ws.add image(Image("gist.png"), "A43")
ws.add image(Image("emp func.png"), "A69")
```