Assignment 7

Akhila Kumbha, CS21BTECH11031

June 3, 2022

Outline

Question

Solution

Question

Show that if the random variables X_i are i.i.d. and normal, then their sample mean \bar{X} and sample variances S^2 are two independent random variables.

Solution

Given that the random variables X_i are i.i.d. and normal. We wish to show that RVs

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \tag{1}$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$
 (2)

are independent. Since S^2 is a function of the n RVs $X_i - \bar{X}$, it suffices to show that each of these RVs is independent of \bar{X} .

We assume for simplicity that $E(X_i) = 0$. Clearly,

$$E(X_i\bar{X}) = \frac{1}{n}E\left\{X_i^2\right\} = \frac{\sigma^2}{n} \tag{3}$$

$$E(\bar{X}\bar{X}) = \frac{1}{n^2} \sum_{i=1}^{n} X_i^2 = \frac{\sigma^2}{n}$$
 (4)

because $E(X_iX_j) = 0$ for $i \neq j$. Hence,

$$E((X_i - \bar{X})\bar{X}) = 0 \tag{5}$$

Thus, the RVs $X_i - \bar{X}$ and \bar{X} are orthogonal and since they are jointly normal, they are independent.