Running Time of Programs

Exercise 1. Suppose you have the choice between three algorithms:

- (a) Algorithm A solves your problem by dividing it into five subproblems of half the size, recursively solving each subproblem, and then combining the solutions in linear time.
- (b) Algorithm B solves problems of size n by recursively solving two subproblems of size n-1 and then combining the solutions in constant time.
- (c) Algorithm C solves problems of size n by dividing them into nine subproblems of size $\frac{n}{3}$, recursively solving each subproblem, and then combining the solutions in $\mathcal{O}(n^2)$ time.

Estimate the running times of each of these algorithms. Which one would you choose?

Exercise 2. Recall the recurrence for Mergesort: T(1) = 0; $T(n) = 2T(\frac{n}{2}) + (n-1)$, for n > 1. Prove by induction that

$$T(n) = n \cdot (\log_2 n - 1) + 1$$
 for $n = 2^k$, $k > 1$

Exercise 3. Analyse the complexity of the following recursive algorithm to test whether a number x occurs in an *unordered* list $L = [x_1, x_2, \ldots, x_n]$ of size n. Take the cost to be the number of list element comparison operations.

Search $(x, L = [x_1, x_2, ..., x_n])$:

- if $x_1 = x$ then return yes
- else if n > 1 then return **Search** $(x, [x_2, ..., x_n])$
- else return no

*Exercise 4. Analyse the complexity of the following recursive algorithm to test whether a number x occurs in an *ordered* list $L = [x_1, x_2, \ldots, x_n]$ of size n. Take the cost to be the number of list element comparison operations.

BinarySearch $(x, L = [x_1, x_2, \dots, x_n])$:

- if n = 0 then return no
- else
 - if $x_{\lceil \frac{n}{2} \rceil} > x$ then return $\mathbf{BinarySearch}(x, [x_1, \dots, x_{\lceil \frac{n}{2} \rceil 1}])$
 - else if $x_{\lceil \frac{n}{2} \rceil} < x$ return **BinarySearch** $(x, [x_{\lceil \frac{n}{2} \rceil+1}, \dots, x_n])$
 - else return yes