1 Introduction

A table of frequently used symbols:

\mathbf{Symbol}	Representation
g	the input graph
v	the set of nodes in g
e	the set of edges in g
\mathbf{n}	a node in v
\mathbf{G}	the constructed metagraph
V	the set of metanodes in G
\mathbf{E}	the set of metaedges in G
N	a metanode in V of the form $\{n_i : x_i\}$ where $n_i \in v$ and x_i is the number of atoms at n_i

Each $N \in V$ is composed of i many nodes from v. A metanode takes the form $\{n_i : x_i\}$ where $n_i \in v$ and x_i is the number of atoms at n_i . The $\sum_{i=0}^{i} x_i = k$ at any given N ensuring that all atoms are accounted for at each metanode

2 Algorithms

Algorithm 1: Construct Meta-Graph Input: g = (v, e): the input graph, $\{s, t\} \in v$: the start and target compounds, k: flow/number of atoms to conserve Output: G = (V, E): the meta-graph 1 $MG \leftarrow (MV = \emptyset, ME = \emptyset)$ /* initialize new metagraph 2 $start \leftarrow \{s: k\}$ /* create a metanode with all k atoms at the start compound */ 3 $V \leftarrow V \cup start$ /* Add the start state to the set of metanodes */

Algorithm 2:			
Input:			
Output:			