# Лабораторная работа № 7

# Tema: «Решение практических задач в Power BI. ABC-XYZ анализ»

Цель работы: получить навыки проведения ABC-XYZ анализа в Power Bi.

### Теоретическая справка

#### АВС-анализ

Схема классификации ABC классифицирует объекты на основе стоимости, объединяя в группы объекты, которые вносят определенный процент в общую сумму. Типичным примером ABC-классификации является сегментация продуктов (сущностей) на основе продаж (стоимости). Самые продаваемые продукты, на долю которых приходится до 70-80 % от общего объема продаж, относятся к кластеру А. Продукты, на долю которых приходится следующие 15-20 % продаж, входят в кластер В, а продукты, на долю которых приходится последние 5-10 % продаж, относятся к классу С. Отсюда и название модели - три кластера (ABC).

АВС-классификация может быть статической или динамической. Статическая АВС-классификация присваивает класс каждому продукту статически, так что класс продукта не меняется в зависимости от фильтров, применяемых к отчету. Динамическая АВС-классификация рассчитывает класс каждого продукта динамически, на основе фильтров отчета. Таким образом, при динамической АВС-классификации кластеризация товаров должна выполняться в несколько этапов, что приводит к менее эффективному - хотя и более гибкому - алгоритму.

Существует и третий шаблон для этого типа кластеризации, который находится между статической и динамической версиями, - это ABC с моментальными снимками. Например, если необходимо обновлять класс ABC продукта на ежегодной основе, можно создать таблицу моментальных снимков, содержащую класс ABC продукта за каждый год.

### Статическая АВС-классификация

Статическая классификация АВС основана на вычисляемых столбцах:

- Продажи продукта : общий объем продаж продукта (текущая строка).
- Накопленные продажи : промежуточный итог продаж продукции, ранжированный от наибольшего к наименьшему.
- Накопленный процент : процент накопленных продаж по отношению к общему объему продаж.
- Класс АВС: класс продукта, который может быть А, В или С.

Вычисляемый столбец «Продажи продукта» в таблице «Продукт»

### Product Sales = [Sales Amount]

Вычисляемый столбец «Накопленные продажи» в таблице «Продукт»

Cumulated Sales =

```
VAR CurrentProductSales = 'Product'[Product Sales]
VAR BetterProducts =
  FILTER (
    'Product',
    'Product'[Product Sales] >= CurrentProductSales
VAR Result =
  SUMX (
    BetterProducts,
    'Product'[Product Sales]
  )
RETURN
  Result
Вычисляемый столбец «Накопленный процент» в таблице «Продукт»
Cumulated Pct =
DIVIDE (
  'Product'[Cumulated Sales],
  SUM ( 'Product'[Product Sales] )
```

Вычисляемый столбец «Класс ABC» в таблице «Продукт»

```
ABC Class =
SWITCH (
  TRUE,
  'Product' [Cumulated Pct] <= 0.7, "A",
  'Product'[Cumulated Pct] <= 0.9, "B",
  "C"
```

### Результирующая таблица:

| Product Name                                         | Product Sales<br>▼ | Cumulated Sales | Cumulated Pct | ABC Class |
|------------------------------------------------------|--------------------|-----------------|---------------|-----------|
| Adventure Works 26" 720p LCD HDTV M140 Silver        | 1,303,983.46       | 1,303,983.46    | 4.26%         | А         |
| A. Datum SLR Camera X137 Grey                        | 725,840.28         | 2,029,823.74    | 6.64%         | Α         |
| Contoso Telephoto Conversion Lens X400 Silver        | 683,779.95         | 2,713,603.69    | 8.87%         | Α         |
| SV 16xDVD M360 Black                                 | 364,714.41         | 3,078,318.10    | 10.06%        | Α         |
| Contoso Projector 1080p X980 White                   | 257,154.75         | 3,335,472.85    | 10.90%        | Α         |
| Contoso Washer & Dryer 21in E210 Pink                | 182,094.12         | 3,517,566.97    | 11.50%        | Α         |
| Fabrikam Independent filmmaker 1/3" 8.5mm X200 White | 165,594.00         | 3,683,160.97    | 12.04%        | Α         |
| Proseware Projector 1080p LCD86 Silver               | 160,627.05         | 3,843,788.02    | 12.56%        | А         |

### АВС-анализ с моментальными снимками

Может потребоваться назначать класс АВС каждому продукту на ежегодной основе, чтобы один и тот же продукт мог попадать в разные классы АВС в разные годы. В этом случае вам

следует построить решение с дополнительной таблицей моментальных снимков, содержащей правильный класс АВС для каждого продукта и года.

| Calendar Year | CY 2007    |                  | CY 2008    |                  | CY 2009    |                  |
|---------------|------------|------------------|------------|------------------|------------|------------------|
| ABC Class     | # Products | ABC Sales Amount | # Products | ABC Sales Amount | # Products | ABC Sales Amount |
| Α             | 167        | 7,904,463.00     | 342        | 6,946,534.50     | 430        | 6,544,508.84     |
| В             | 280        | 2,272,418.98     | 367        | 1,988,074.60     | 394        | 1,873,490.44     |
| C             | 811        | 1,133,064.14     | 769        | 992,973.88       | 689        | 935,815.59       |
| Total         | 1,258      | 11,309,946.12    | 1,478      | 9,927,582.99     | 1,513      | 9,353,814.87     |

Модель требует дополнительной таблицы для хранения класса ABC для каждого года и продукта. Таблица *ABC по годам* не имеет связей с другими таблицами в модели и содержит ключ продукта, год и назначенный класс.

| ProductKey | Calendar Year | ABC Class |
|------------|---------------|-----------|
| 7          | CY 2008       | С         |
| 7          | CY 2009       | С         |
| 8          | CY 2007       | Α         |
| 8          | CY 2009       | В         |
| 9          | CY 2009       | С         |

Вычисление дополнительной таблицы

```
ABC by Year =
VAR ProductsByYear =
  SUMMARIZE (
    Sales.
    'Product'[ProductKey],
    'Date'[Calendar Year]
VAR SaleByYearProduct =
  ADDCOLUMNS (
    ProductsByYear,
    "@ProdSales", [Sales Amount],
    "@YearlySales", CALCULATE (
      [Sales Amount],
      ALL ('Product')
    )
VAR CumulatedSalesByYearProduct =
  ADDCOLUMNS (
    SaleByYearProduct,
    "@CumulatedSales",
    VAR CurrentSales = [@ProdSales]
```

```
VAR CurrentYear = 'Date'[Calendar Year]
    VAR CumulatedSalesWithinYear =
      FILTER (
        SaleByYearProduct,
        AND (
          'Date'[Calendar Year] = CurrentYear,
          [@ProdSales] >= CurrentSales
      )
    RETURN
      SUMX (
        CumulatedSalesWithinYear,
        [@ProdSales]
      )
  )
VAR CumulatedPctByYearProduct =
  ADDCOLUMNS (
    CumulatedSalesByYearProduct,
    "@CumulatedPct", DIVIDE (
      [@CumulatedSales],
      [@YearlySales]
    )
  )
VAR ClassByYearProduct =
  ADDCOLUMNS (
    CumulatedPctByYearProduct,
    "@AbcClass", SWITCH (
      TRUE,
      [@CumulatedPct] \le 0.7, "A",
      [@CumulatedPct] <= 0.9, "B",
      "C"
VAR Result =
  SELECTCOLUMNS (
    ClassByYearProduct,
    "ProductKey", 'Product'[ProductKey],
    "Calendar Year", 'Date'[Calendar Year],
    "ABC Class", [@AbcClass]
```

#### **RETURN**

Result

Результирующая таблица

| ProductKey Calendar Year | @ProdSales   | @YearlySales  | @Cumulated Sales | @CumulatedPct @AbcClass |
|--------------------------|--------------|---------------|------------------|-------------------------|
| 153 CY 2007              | 1,289,602.38 | 11,309,946.12 | 1,289,602.38     | 11.40% A                |
| 1052 CY 2007             | 716,435.28   | 11,309,946.12 | 2,006,037.66     | 17.74% A                |
| 1293 CY 2007             | 675,449.95   | 11,309,946.12 | 2,681,487.61     | 23.71%A                 |
| 176 CY 2007              | 362,430.21   | 11,309,946.12 | 3,043,917.82     | 26.91% A                |
| 587 CY 2007              | 169,256.25   | 11,309,946.12 | 3,213,174.07     | 28.41% A                |
| 1939 CY 2008             | 135,039.58   | 9,927,582.99  | 135,039.58       | 1.36% A                 |
| 1895 CY 2007             | 124,562.10   | 11,309,946.12 | 3,337,736.17     | 29.51% A                |
| 1897 CY 2009             | 109,759.66   | 9,353,814.87  | 109,759.66       | 1.17% A                 |
| 552 CY 2007              | 102,459.00   | 11,309,946.12 | 3,440,195.17     | 30.42% A                |

После загрузки таблицы в модель таблица ABC by Year может использоваться в качестве фильтра, переназначающего родословную данных ProductKey и Calendar Year соответствующим столбцам в таблицах Product и Date

```
Products :=
VAR RemapFilterAbc =
  TREATAS (
    'ABC by Year',
                        -- Remap the columns of ABC by Year
    'Product'[ProductKey], -- so that only the specific
    'Date'[Calendar Year], -- combinations of product and year
    'ABC by Year'[ABC Class] -- are included in the filter context
  )
VAR Result =
  CALCULATE (
    DISTINCTCOUNT (Sales[ProductKey]),
    KEEPFILTERS (RemapFilterAbc)
  )
RETURN
  Result
```

**Динамический шаблон ABC** является наиболее гибким из трех представленных шаблонов, и, следовательно, он является самым медленным и требовательным к памяти. Цель состоит в том, чтобы динамически вычислить количество продуктов, объем продаж или любую другую меру, определяющую набор продуктов, которые принадлежат данному классу ABC в контексте отчета.

| Category                        | ABC Class | #Products | ABC Sales Amount |
|---------------------------------|-----------|-----------|------------------|
| ☐ Audio                         |           |           |                  |
| ☐ Cameras and camcorders        | Α         | 79        | 1,117,427.86     |
| ■ Cell phones                   | В         | 59        | 325,513.87       |
| ☐ Computers                     | С         | 147       | 161,668.53       |
| ☐ Games and Toys                | Total     | 285       | 1,604,610.26     |
| ☐ Home Appliances               |           |           |                  |
| ☐ Music, Movies and Audio Books |           |           |                  |
| □ TV and Video                  |           |           |                  |

Будучи динамической, вся логика определяется в мере, которая извлекает список продуктов в желаемом классе, а затем использует этот список как фильтр для требуемого расчета. Более того, с точки зрения модели, необходимо создать дополнительную таблицу ABC Classes, которая содержит три класса с их границами.

ABC Class Lower Boundary Upper Boundary

| Α | 0.00%  | 70.00%  |
|---|--------|---------|
| В | 70.00% | 90.00%  |
| С | 90.00% | 100.00% |

Мера, которая вычисляет объем продаж АВС

```
ABC Sales Amount :=
VAR SalesByProduct =
  CALCULATETABLE (
    ADDCOLUMNS (
      SUMMARIZE (Sales, 'Product'[ProductKey]),
      "@ProdSales", [Sales Amount]
    ALLSELECTED ('Product')
  )
VAR AllSales =
  CALCULATE (
    [Sales Amount],
    ALLSELECTED ('Product')
  )
VAR CumulatedPctByProduct =
  ADDCOLUMNS (
    SalesByProduct,
    "@CumulatedPct",
    VAR CurrentSalesAmt = [@ProdSales]
    VAR CumulatedSales =
      FILTER (
```

```
SalesByProduct,
         [@ProdSales] >= CurrentSalesAmt
      )
    VAR CumulatedSalesAmount =
      SUMX (
         CumulatedSales,
         [@ProdSales]
      )
    VAR Perc =
      DIVIDE (
         CumulatedSalesAmount,
         AllSales
      )
    RETURN
      MIN (Perc, 1) -- Avoid >100% in case of rounding issues
  )
VAR ProductsInClass =
  FILTER (
    CROSSJOIN (
      CumulatedPctByProduct,
      'ABC Classes'
    ),
    AND (
      [@CumulatedPct] > 'ABC Classes' [Lower Boundary],
      [@CumulatedPct] <= 'ABC Classes'[Upper Boundary]
    )
  )
VAR Result =
  CALCULATE (
                      -- The pattern is the same for every measure, just
    [Sales Amount], -- change this measure reference for other measures
    KEEPFILTERS ( ProductsInClass )
  )
RETURN
  Result
```

Мера, вычисляющая класс ABC, является разновидностью динамической классификации ABC. На этот раз мера не должна вычислять класс ABC всех продуктов — достаточно вычислить класс ABC выбранного продукта.

| Category                        | Product Name                                | Sales Amount | ABC Class |
|---------------------------------|---------------------------------------------|--------------|-----------|
| ☐ Audio                         | <b>A</b>                                    |              |           |
| ☐ Cameras and camcorders        | Adventure Works CRT15 E101 Black            | 1,458.00     | С         |
| ☐ Cell phones                   | Adventure Works CRT15 E101 White            | 1,350.00     | С         |
| ■ Computers                     | Adventure Works CRT19 E10 White             | 607.20       | C         |
| ☐ Games and Toys                | Adventure Works Desktop PC1.60 ED160 Brown  | 5,641.96     | В         |
| ☐ Home Appliances               | Adventure Works Desktop PC1.60 ED160 Silver | 11,229.92    | Α         |
| ☐ Music, Movies and Audio Books | Adventure Works Desktop PC1.80 ED180 Black  | 6,642.00     | В         |
| ☐ TV and Video                  | Adventure Works Desktop PC1.80 ED180 Brown  | 10,332.00    | Α         |
|                                 | Adventure Works Desktop PC1.80 ED180 White  | 17,878.05    | Α         |
| Calendar Year                   | Adventure Works Desktop PC1.80 ED182 Black  | 9,998.00     | Α         |
| CY 2007                         | Adventure Works Desktop PC2.30 MD230 Black  | 34,400.57    | Α         |
| ■ CY 2008                       | Adventure Works Desktop PC2.30 MD230 Brown  | 17,817.03    | Α         |
| ☐ CY 2009                       | Adventure Works Desktop PC2.30 MD230 Silver | 17,371.00    | Α         |
|                                 | Total                                       | 2,066,341.75 | ۸         |

### Мера, вычисляющая класс АВС

```
ABC Class :=
IF (
  HASONEVALUE ( 'Product'[ProductKey] ),
  VAR SalesByProduct =
    CALCULATETABLE (
      ADDCOLUMNS (
        SUMMARIZE (Sales, 'Product'[ProductKey]),
        "@ProdSales", [Sales Amount]
      ),
      ALLSELECTED ('Product')
  VAR AllSales =
    CALCULATE (
      [Sales Amount],
      ALLSELECTED ('Product')
  VAR CurrentSalesAmt = [Sales Amount]
  VAR CumulatedSales =
    FILTER (
      SalesByProduct,
      [@ProdSales] >= CurrentSalesAmt
  VAR CumulatedSalesAmount =
    SUMX (
      CumulatedSales,
      [@ProdSales]
```

```
VAR CurrentCumulatedPct =
DIVIDE (
    CumulatedSalesAmount,
    AllSales
)

VAR Result =
SWITCH (
    TRUE,
    ISBLANK ( CurrentCumulatedPct ), BLANK (),
    CurrentCumulatedPct <= 0.7, "A",
    CurrentCumulatedPct <= 0.9, "B",
    "C"
)

RETURN
Result
)
```

#### ХҮХ-анализ

XYZ-анализ – это метод классификации, который оценивает стабильность спроса на товар. Это важно для планирования прогнозирования и управления запасами.

Класс Х: Это товары с очень стабильным и предсказуемым спросом. Их легко прогнозировать, и они редко вызывают проблемы со складскими запасами.

Класс Ү: Это товары со средней стабильностью спроса. Их прогнозирование может быть сложнее, и они могут вызвать периодические проблемы со складскими запасами.

Класс Z: Это товары с очень нестабильным и непредсказуемым спросом. Их очень сложно прогнозировать, и они часто вызывают проблемы со складскими запасами.

Вычисление классов в XYZ-анализе может быть несколько сложнее, так как оно требует анализа временных рядов и вычисления коэффициента вариации (отношение стандартного отклонения к среднему значению) для спроса на каждый товар. В общих чертах процесс можно описать следующим образом:

- 1. Для каждого товара собираются исторические данные о спросе за определенный период времени.
- 2. Рассчитывается среднее значение и стандартное отклонение спроса на каждый товар.
- 3. Рассчитывается коэффициент вариации для каждого товара.
- 4. Товары классифицируются в соответствии с их коэффициентом вариации: товары с низким коэффициентом вариации относятся к классу X, с умеренным к классу Y, а с высоким к классу Z.

Таблица, которая группирует данные по продукту и дате, и подсчитает количество продаж в каждый день.

ProductSalesByDate = SUMMARIZE('Sales', 'Sales'[OrderDate],

'Products'[Product Name], "DailySales", SUM('Sales'[Order Quantity]))

Таблица для вычисления среднего значения и стандартного отклонения для продаж каждого продукта.

```
ProductSalesStatistics =
SUMMARIZE(
    ProductSalesByDate,
    'ProductSalesByDate'[Product Name],
    "AverageSales", AVERAGEX(RELATEDTABLE('ProductSalesByDate'),
'ProductSalesByDate'[DailySales]),
    "StandardDeviation", STDEVX.P(RELATEDTABLE('ProductSalesByDate'),
'ProductSalesByDate'[DailySales])
)
```

**Коэффициент вариации (CV)** вычисляется как стандартное отклонение продаж, деленное на среднее значение продаж.

CV = 'ProductSalesStatistics'[StandardDeviation] / 'ProductSalesStatistics'[AverageSales]

Товары с низким коэффициентом вариации (не более 0,1) относятся к классу X, с умеренным( от 0,1 до 0,25) - к классу Y, а с высоким (выше 0,25) - к классу Z.

```
XYZ Classification =
IF(
    'ProductSalesStatistics'[CV] <= 0.1,
    "X",
    IF(
        'ProductSalesStatistics'[CV] <= 0.25,
        "Y",
        "Z"
        )
)</pre>
```

### Результирующая таблица:

| Product Name | AverageSales ~   | StandardDeviation - | CV -              | XYZ Classification |
|--------------|------------------|---------------------|-------------------|--------------------|
| Product 1    | 15,7971428571429 | 9,43240571386857    | 0,597095677311268 | Z                  |
| Product 11   | 14,408293460925  | 8,13732582421173    | 0,564766802278144 | Z                  |
| Product 2    | 14,689349112426  | 8,72837677433822    | 0,594197653519903 | Z                  |
| Product 5    | 12,6387434554974 | 6,66294222691269    | 0,527183912734185 | Z                  |
| Product 7    | 15,7864214992928 | 9,65081653304247    | 0,611336554866143 | Z                  |
| Product 13   | 11,4967880085653 | 6,05696462910498    | 0,526839724677226 | Z                  |
| Product 4    | 9,09271523178808 | 3,57761804915813    | 0,393459814583305 | Z                  |
| Product 6    | 9,6466666666667  | 4,06962187705716    | 0,421868197345248 | Z                  |
| Product 12   | 9,1156462585034  | 3,02487871641436    | 0,331833709935008 | Z                  |
| Product 8    | 9,24             | 3,63442796966272    | 0,393336360353108 | Z                  |
| Product 14   | 8,74324324324324 | 2,86903699264353    | 0,328143334552738 | Z                  |
| Product 9    | 11,2068965517241 | 5,62484590274407    | 0,501909326706394 | Z                  |
| Product 10   | 9,2666666666667  | 4,36450328088878    | 0,470989562685839 | Z                  |
| Product 3    | 9,33774834437086 | 3,30339463614324    | 0,353767794367113 | Z                  |

Объединение ABC-XYZ анализа позволяет сформировать более комплексное представление о товарном ассортименте, учитывая и значимость товаров, и стабильность спроса на них. Это позволяет более эффективно управлять запасами и оптимизировать стратегию продаж.

Пример кольцевого графика, посчитанного по общему объему продаж, показывающего какие товары проносят наибольший вклад в общую выручку, с точки зрения ABC-XYZ классификации.



#### Самостоятельное задание

- 1. В качестве источника данных для ABC-XYZ анализа, используйте базу Northwind https://github.com/jpwhite3/northwind-SOLite3?tab=readme-ov-file.
- 2. Объедините таблицы Orders, Order Details и Products в одну Sales.
- 3. Проведите статический ABC-анализ по таблице Sales
- 4. Проведите АВС-анализ с моментальными снимками
  - 4.1. Создайте таблицу моментальных снимков, содержащую класс АВС продукта за каждый год
- 5. Проведите динамический АВС-анализ
  - 5.1. Используйте меру Product, для фильтрации таблицы Sales
- 6. Проведите ХҮХ- анализ
  - 6.1. Создайте таблицу с временным рядом, которая группирует данные по продукту и дате, и подсчитает количество продаж в каждый день.
  - 6.2. Создайте таблицу для вычисления среднего значения и стандартного отклонения для продаж каждого продукта.
  - 6.3. Рассчитайте коэффициент вариации и разделите его значения на классы XYZ
  - 6.4. Создайте результирующую таблицу.
- 7. Объедините ХҮХ классы и АВС-классы в одной таблице
- 8. Постройте кольцевую диаграмму для полученной таблицы. С помощью фильтра ТОР-N для каждого сегмента оставьте 10 товаров, с максимальной долей выручки и минимальным коэффициентом вариации.