Variants of TM

Multi-track, multi-tape, NTM

Multi-track

• In this example, the tape symbol is the triplet (X,Y,Z) and we can see the tape as a single-track one.

Semi-infinite tape

Semi-infinite tape machine

Simulation of two way infinite by semi-infinite tape

Two way infinite tape simulated by semi -infinite tape

Multi-tape

Figure 8.16: A multitape Turing machine

Simulation of multi-tape by one-tape

Figure 8.17: Simulation of a two-tape Turing machine by a one-tape Turing machine

NTM

NONDETERMINISTIC TM

There is a choice in the next move.

$$\delta(q, X) = \{(q_1, Y_1, D_1), (q_2, Y_2, D_2), \dots, (q_k, Y_k, D_k)\}$$

• Here, Y_i is a tape symbol, and D_i is one from $\{L, R\}$, the direction of movement of the head.

The transition function for a nondeterministic Turing machine has the form

$$\delta: Q \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\}).$$

NONDETERMINISTIC COMPUTATION

NONDETERMINISTIC COMPUTATION

NONDETERMINISTIC COMPUTATION

 A computation of a Nondeterministic TM is a tree, where each branch of the tree is looks like a computation of an ordinary TM.

- If a single branch reaches the accepting state, the Nondeterministic TM accepts, even if other branches reach the rejecting state.
- What is the power of Nondeterministic TMs?
 - Is there a language that a Nondeterministic TM can accept but no deterministic TM can accept?

- Note, NTM rejects means
 - Each of the branch either explicitly rejects (by getting stuck in a non-final state), or goes in to an infinite loop.

THEOREM

Every nondeterministic Turing machine has an equivalent deterministic Turing Machine.

PROOF IDEA

- Timeshare a deterministic TM to different branches of the nondeterministic computation!
- Try out all branches of the nondeterministic computation until an accepting configuration is reached on one branch.
- Otherwise the TM goes on forever.

- Deterministic TM D simulates the Nondeterministic TM N.
- Some of branches of the N's computations may be infinite, hence its computation tree has some infinite branches.
- If D starts its simulation by following an infinite branch, D may loop forever even though N's computation may have a different branch on which it accepts.
- This is a very similar problem to processor scheduling in operating systems.
 - If you give the CPU to a (buggy) process in an infinite loop, other processes "starve".
- In order to avoid this unwanted situation, we want D to execute all of N's computations concurrently.

SIMULATING NONDETERMINISTIC COMPUTATION

SIMULATING NONDETERMINISTIC COMPUTATION

- During simulation, D processes the configurations of N in a breadth-first fashion.
- Thus D needs to maintain a queue of N's configurations (Remember queues?)

- D gets the next configuration from the head of the queue.
- D creates copies of this configuration (as many as needed)
- On each copy, D simulates one of the nondeterministic moves of N.
- D places the resulting configurations to the back of the queue.

STRUCTURE OF THE SIMULATING DTM

N is simulated with 2-tape DTM, D

STRUCTURE OF THE SIMULATING DTM

N is simulated with 2-tape DTM, D

 Built into the finite control of D is the knowledge of what choices of moves N has for each state and input.

STRUCTURE OF THE SIMULATING DTM

N is simulated with 2-tape DTM, D

- D examines the state and the input symbol of the current configuration (right after the dotted separator)
- If the state of the current configuration is the accept state of N, then D accepts the input and stops simulating N.

How D SIMULATES N

- Let m be the maximum number of choices N has for any of its states.
- Then, after n steps, N can reach at most $1 + m + m^2 + \cdots + m^n$ configurations (which is at most nm^n)
- Thus D has to process at most this many configurations to simulate n steps of N.
- Thus the simulation can take exponentially more time than the nondeterministic TM.
- It is not known whether or not this exponential slowdown is necessary.

IMPLICATIONS

COROLLARY

A language is Turing-recognizable if and only if some nondeterministic TM recognizes it.

COROLLARY

A language is decidable if and only of some nondeterministic TM decides it.

ENUMERATORS

- Remember we noted that some books used the term recursively enumerable for Turing-recognizable.
- This term arises from a variant of a TM called an enumerator.

- TM generates strings one by one.
- Everytime the TM wants to add a string to the list, it sends it to the printer.

ENUMERATORS

- The enumerator E starts with a blank input tape.
- If it does not halt, it may print an infinite list of strings.
- The strings can be enumerated in any order; repetitions are possible.
- The language of the enumerator is the collection of strings it eventually prints out.

 We can assume that the enumerator E writes one string at a time over a tape (it can use a tape symbol # to separate strings).

ENUMERATORS

THEOREM

A language is Turing recognizable if and only if some enumerator enumerates it.

PROOF.

The If-part: If an enumerator *E* enumerates the language *A* then a TM *M* recognizes *A*.

- M = "On input w
 - Run E. Everytime E outputs a string, compare it with w.
 - If w ever appears in the output of E, accept."

Clearly *M* accepts only those strings that appear on *E*'s list.

ENUMERATORS

THEOREM

A language is Turing recognizable if and only if some enumerator enumerates it.

PROOF.

The Only-If-part: If a TM *M* recognizes a language *A*, we can construct the following enumerator for *A*.

• For each possible string $s \in \Sigma^*$ we can verify whether M accepts s, if so output s on to the tape .

Following attempt, does not work.

- Assume that there is an enumerator which enumerates Σ^* in a standard order.
- For each possible string $s \in \Sigma^*$ we can verify whether M accepts s, if so output s on to the tape .
- The problem with this is, for some s the TM M
 can enter in to an infinite loop and never returns.
 - There may be other strings which are accepted by M but will never gets a chance to be verified (and thus never is outputted).

- A feasible way of doing this (without falling in to an infinite loop) is given in the next slide.
- Basic idea:
- For example if there are two strings w1 and w2 and one of them makes the TM to loop infinitely. Do the following.
 - 1. k = 1
 - 2. Run TM for k steps on w1 and if accept occurs then output "accept" and stop.
 - 3. Run TM for k steps on w2 and if accept occurs then output "accept" and stop.
 - 4. k++; goto step 2.

ENUMERATORS

THEOREM

A language is Turing recognizable if and only if some enumerator enumerates it.

PROOF.

The Only-If-part: If a TM M recognizes a language A, we can construct the following enumerator for A. Assume s_1, s_2, s_3, \ldots is a list of possible strings in Σ^* .

- E = "Ignore the input
 - Repeat the following for i = 1, 2, 3, ...
 - Pun M for i steps on each input $s_1, s_2, s_3, \ldots s_i$.
 - If any computations accept, print out corresponding s_i."

If M accepts a particular string, it will appear on the list generated by E (in fact infinitely many times)

THE DEFINITION OF ALGORITHM - HISTORY

in 1900, Hilbert posed the following problem:

"Given a polynomial of several variables with integer coefficients, does it have an integer root – an assignment of integers to variables, that make the polynomial evaluate to 0"

- For example, $6x^3yz^2 + 3xy^2 x^3 10$ has a root at x = 5, y = 3, z = 0.
- Hilbert explicitly asked that an algorithm/procedure to be "devised". He assumed it existed; somebody needed to find it!
- 70 years later it was shown that no algorithm exists.
- The intuitive notion of an algorithm may be adequate for giving algorithms for certain tasks, but was useless for showing no algorithm exists for a particular task.

This is known as Hilbert's Tenth Problem.

THE DEFINITION OF ALGORITHM - HISTORY

- In early 20th century, there was no formal definition of an algorithm.
- In 1936, Alonzo Church and Alan Turing came up with formalisms to define algorithms. These were shown to be equivalent, leading to the

CHURCH-TURING THESIS

Intutitive notion of algorithms

Turing Machine Algorithms

THE DEFINITION OF AN ALGORITHM

- Let $D = \{p \mid p \text{ is a polynomial with integral roots}\}$
- Hilbert's 10th problem in TM terminology is "Is D decidable?" (No!)
- However D is Turing-recognizable!
- Consider a simpler version $D_1 = \{p \mid p \text{ is a polynomial over } x \text{ with integral roots}\}$
- M_1 = "The input is polynomial p over x.
 - Evaluate p with x successively set to 0, 1, -1, 2, -2, 3, -3,
 - If at any point, p evaluates to 0, accept."
- D₁ is actually decidable since only a finite number of x values need to be tested (math!)
- D is also recognizable: just try systematically all integer combinations for all variables.

- For D_1 (polynomial of single variable) there is a bound and we can abandon the search beyond that and declare "No".
- For D such a bound cannot exist (proof is given by Matijasevich (1971)).
 - So, if answer is "No" we enter in to an infinite loop.

In 1971, Yuri Matijasevich gave a resounding negative answer to Hilbert's tenth problem.

- This is called undecidability.
- Hilbert's tenth problem is undecidable.

• We will see the theory behind this in the next