Zackery Field

ID: 23031734

CS 70, Summer 2013

Homework 1

Problem 3 (9 Points)

3a. [3 points]

Theorem:
$$\neg \forall x \exists y (P(x) \Rightarrow \neg Q(x,y)) \equiv \exists x \forall y (P(x) \land Q(x,y))$$

Proof:

$$\neg \forall x \exists y (P(x) \Rightarrow \neg Q(x,y)) \equiv \exists x \forall y (P(x) \land Q(x,y)) \tag{1}$$

$$\exists x \neg \exists y (P(x) \Rightarrow \neg Q(x, y)) \equiv \exists x \forall y (P(x) \land Q(x, y))$$
 (2)

$$\exists x \forall y \neg (P(x) \Rightarrow \neg Q(x,y)) \equiv \exists x \forall y (P(x) \land Q(x,y)) \tag{3}$$

$$\neg (P(x) \Rightarrow \neg Q(x,y)) \equiv (P(x) \land Q(x,y)) \tag{4}$$

Proof by Truth Table:

Р	Q	$\neg (P(x) \Rightarrow \neg Q(x,y))$	$(P(x) \wedge Q(x,y))$
T	Т	T	T
\mathbf{T}	F	F	\mathbf{F}
\mathbf{F}	Γ	F	\mathbf{F}
\mathbf{F}	F	F	F

After removing the equivalent quantifiers, the truth table demonstrates that the equivalence holds.

3b. [3 points]

Theorem:
$$\forall x \exists y (P(x) \Rightarrow Q(x,y)) \equiv \forall (P(x) \Rightarrow (\exists Q(x,y)))$$

Proof:

$$\forall x \exists y (P(x) \Rightarrow Q(x,y)) \equiv \forall x (P(x) \Rightarrow (\exists Q(x,y))) \tag{5}$$

$$\forall x \exists y (\neg P(x) \lor Q(x,y)) \equiv \forall x (\neg P(x) \lor (\exists Q(x,y))$$
 (6)

$$\forall x((\exists y \neg P(x)) \lor (\exists y(x,y))) \equiv \forall x(\neg P(x) \lor (\exists Q(x,y))$$
(7)

$$\forall x(\neg P(x) \lor (\exists y(x,y))) \equiv \forall x(\neg P(x) \lor (\exists Q(x,y))$$
(8)

Distributing the quantifiers across disjunction statements, and removing the $\exists y$ from P(x) demonstrates that the equivalence holds.

3c. [3 points]

Theorem:
$$\forall x \exists y (Q(x,y) \Rightarrow P(x)) \equiv \forall x ((\exists y Q(x,y)) \Rightarrow P(x))$$

Proof:

$$\forall x \exists y (Q(x,y) \Rightarrow P(x)) \equiv \forall x ((\exists y Q(x,y)) \Rightarrow P(x)) \tag{9}$$

$$\forall x \exists y (\neg Q(x, y) \lor P(x)) \equiv \forall x (\neg (\exists y Q(x, y)) \lor P(x))$$
(10)

$$\forall x (\exists y \neg Q(x, y) \lor \exists y P(x)) \equiv \forall x (\neg (\exists y Q(x, y)) \lor P(x))$$
(11)

$$\forall x(\exists y \neg Q(x, y) \lor P(x)) \neq \forall x(\forall y \neg Q(x, y) \lor P(x))$$
(12)

The equivalence does not hold due to the difference in quantifier associated with Q(x,y).