

Sozio-Technische Aspekte des Software Engineering

Wintersemester 2020/2021

Entwicklerteams als soziale Netzwerke

Dr. Jil Klünder
Fachgebiet Software Engineering
Leibniz Universität Hannover

Dimensionen der Kommunikation

1) Struktur

- Idee: Analysiere Entwicklerteams als soziales Netzwerk
- Verwendete Methode: Soziale Netzwerkanalyse

2) Mimik und Gestik

- Idee: Analysiere Interaktionen (hier: in Meetings)
- Verwendete Methode: act4teams® und act4teams-SHORT

3) Inhalt

- Idee: Ordne den Nachrichten Emotionen zu
- Verwendete Methode: Sentiment Analysis

Softwareentwicklung ist Teamarbeit

Idee

- Entwicklerteam tauscht sich regelmäßig aus
- Jedes Teammitglied weiß, was es wissen muss
- Angemessener Informationsfluss

Schwierigkeit

- Informationen erreichen nicht immer alle beteiligten Personen
- Anforderungen können nicht richtig umgesetzt werden
- >Kunde ist unzufrieden

Übersicht

- Informationsflussanalyse mit FLOW
- Informationsflussdiagramme als soziale Netzwerke
- Soziale Netzwerkanalyse im SE
- Etablierte Analysemöglichkeiten
- Anwendung in einer Einzelfallstudie
- Tool-Unterstützung

Informationsflussanalyse in Softwareprojekten mit FLOW

FLOW beschäftigt sich mit der systematischen Erforschung von Informationsflüssen in der Software-Entwicklung

- FLOW unterscheidet zwischen zwei Typen von Informationen
- Feste Information ist
 - Langfristig verfügbar
 - Wiederholt abrufbar
 - Für Dritte verständlich

Flüssige Information ist nicht fest, d.h. mindestens eines der oben genannten Kriterien ist nicht erfüllt

Ziele von FLOW

Verbesserung der Informationsflüsse in der Software-Entwicklung

Systematisches Vorgehen bei FLOW

- 1) Erfasse Informationen über die Informationsflüsse
 - Interviewen geeigneter Personen nach einem standardisierten Vorgehen (Fragebogen)
- 2) Visualisiere Informationsflüsse
 - Zeichnen eines FLOW-Diagramms durch Vereinigung der Diagramme aus den Interviews
- 3) Analysiere
 - Betrachten des Diagramms, um kritische Stellen zu finden

FLOW-Notation

Beispielhaftes FLOW-Diagramm

Beispielhaftes FLOW-Diagramm

Schwierigkeiten bei der Analyse

- Das Ergebnis hängt von den Erfahrungen des Analysten ab
 - Anzahl an Befunden variiert
 - Was wird gefunden?
 - Worauf achtet der Analyst?
- Ergebnisse sind rein qualitativ
 - Werden evtl vom Team nicht angenommen/akzeptiert
 - Viel Interpretationsspielraum
- Durch die graphische Visualisierung kann man die Interpretation beeinflussen

Eine quantitative Auswertung ist objektiver und kann den Analysten unterstützen.

Analyse des FLOW-Diagramms

- Frage: Wie kann man Strukturen in dem FLOW-Diagramm erkennen?
- Idee: Wir fassen das Informationsflussdiagramm als soziales Netzwerk auf und nutzen Methoden und Metriken der sozialen Netzwerkanalyse

Übungsaufgabe 4-1

- (1) Nennen Sie vier mögliche Schwachstellen, die in einem Informationsflussnetzwerk identifiziert werden sollten. Warum handelt es sich hierbei um Schwachstellen?
- (2) Welche (Art von) Metriken erachten Sie als sinnvolle Unterstützung bei der Analyse von Informationsflussnetzwerken)?
- (3) Geben Sie für jede der unter (1) genannten Schwachstellen eine Möglichkeit an, wie sie objektiv identifiziert werden können.

Übersicht

- Informationsflussanalyse mit FLOW
- Informationsflussdiagramme als soziale Netzwerke
- Soziale Netzwerkanalyse im SE
- Etablierte Analysemöglichkeiten
- Anwendung in einer Einzelfallstudie
- Tool-Unterstützung

Soziale Netzwerkanalyse (abstrakt)

- Kommt aus den Sozial- und Verhaltenswissenschaften, ist aber auch in der Ökonomie und dem Marketing weit verbreitet
- Es gibt definierte Beziehungen zwischen sozialen Entitäten, die auf Strukturen und Auffälligkeiten untersucht werden können
- Beispiele für Beziehungen:
 - Interaktionen
 - Kommunikation
 - Kooperation
 - Handelsbeziehungen

S. Wasserman and K. Faust: Social network analysis: Methods and applications. Vol. 8. Cambridge university press, 1994.

Terminologie

- Soziale Netzwerke haben zwei Elemente
 - Akteure
 - Beziehungen (zwischen Akteuren)
- Akteure und ihre Aktionen sind interdependent, d.h. untereinander verwoben (statt unabhängig voneinander)
- Beispiel: Akteure sind Entwickler und die Beziehung ist Kommunikation.
 Spricht ein Entwickler A über einen bestimmten Zeitraum mit Entwickler B, so ist es wahrscheinlich, dass infolgedessen die Kommunikation der Entwickler A und B mit an deren Entwicklern C, D, E und F abnimmt, weil weniger Zeit zur Verfügung steht

Definition: Akteur

Ein Akteur ist eine Entität in einem sozialen Netzwerk. Akteure sind diskrete, individuelle, kollektive oder unternehmerische soziale Entitäten. Die Menge aller Akteure eines sozialen Netzwerks bezeichnen wir mit

$$A := \{a_i: 1 \le i \le n\},\$$

Wobei n die Anzahl an Akteuren im Netzwerk ist und a_i für die Akteure steht.

- Beispiele aus dem SE
 - Informationsspeicher (in dieser VL)
 - Klassen im Quellcode
 - Packages

- S. Wasserman and K. Faust: Social network analysis: Methods and applications. Vol. 8. Cambridge university press, 1994.
- J. Klünder: Analyse der Zusammenarbeit in Softwareprojekten mittels Informationsflüssen und Interaktionen in Meetings. Logos Verlag Berlin, 2019

Definition: Beziehung

Eine Beziehung ist eine Verknüpfung zwischen zwei Akteuren. Dabei kann eine Beziehung sowohl uni- als auch bidirektional sein.

- Beispiele aus dem SE
 - Informationsflüsse (in dieser VL)
 - Abhängigkeiten zwischen Klassen
 - Methodenaufrufe

- S. Wasserman and K. Faust: Social network analysis: Methods and applications. Vol. 8. Cambridge university press, 1994.
- J. Klünder: Analyse der Zusammenarbeit in Softwareprojekten mittels Informationsflüssen und Interaktionen in Meetings. Logos Verlag Berlin, 2019.

Definition: Beziehung (mathematisch)

Eine Beziehung ist eine Abbildung, die zwei Akteure auf einen Wahrheitswert abbildet, der genau dann WAHR ist, wenn eine Beziehung besteht. Demnach ist eine Beziehung eine Abbildung

$$r: A \times A \rightarrow \{0; 1\}$$

- S. Wasserman and K. Faust: Social network analysis: Methods and applications. Vol. 8. Cambridge university press, 1994.
- J. Klünder: Analyse der Zusammenarbeit in Softwareprojekten mittels Informationsflüssen und Interaktionen in Meetings. Logos Verlag Berlin, 2019.

Definition: Beziehungskante

Eine Beziehungskante verknüpft einen Akteur mit einem anderen Akteur. Sie ist genau dann gegeben, wenn die Funktion r für die beiden Akteure den Wert WAHR zurückgibt. Die Menge aller Beziehungen in einem sozialen Netzwerk bezeichnen wir mit

$$R := \{(a_i, a_j): 1 \le i, j \le n \text{ und } r(a_i, a_j) = WAHR\} \subseteq A \times A$$

- S. Wasserman and K. Faust: Social network analysis: Methods and applications. Vol. 8. Cambridge university press, 1994.
- J. Klünder: Analyse der Zusammenarbeit in Softwareprojekten mittels Informationsflüssen und Interaktionen in Meetings. Logos Verlag Berlin, 2019

Definition: Soziales Netzwerk

Ein soziales Netzwerk besteht aus einer endlichen Menge A von Akteuren und einer Beziehung r zwischen ebendiesen Akteuren.

- Zwei Typen: unimodale und multimodale Netzwerke
- Unimodale Netzwerke haben nur einen Typ von Akteuren
 - Zum Beispiel Personen
- Multimodale Netzwerke haben mehrere verschiedene Typen von Akteuren
 - Zum Beispiel Personen und Dokumente

- S. Wasserman and K. Faust: Social network analysis: Methods and applications. Vol. 8. Cambridge university press, 1994.
- J. Klünder: Analyse der Zusammenarbeit in Softwareprojekten mittels Informationsflüssen und Interaktionen in Meetings. Logos Verlag Berlin, 2019

FLOW-Diagramm als soziales Netzwerk

- Bei einem FLOW-Diagramm handelt es sich um ein multimodales Netzwerk mit zwei Mengen von Akteuren (Personen und Dokumente)
- Beziehung: Es fließen Informationen von einem Knoten zu einem anderen Knoten, z.B.
 - Person -> Person: Person A spricht mit Person B
 - Person -> Dokument: Person A schreibt Dokument C
 - Dokument -> Person: Person A liest Dokument D
 - Dokument -> Dokument: Typischerweise nicht in FLOW vorgesehen. Nur in Sonderfällen (Dateitypänderung, Serverprotokolle, Log-Dateien). In allen anderen Fällen ist in der Regel ein Mensch involviert.

PROBLEM: Was passiert mit den Aktivitäten?

Transformation eines FLOW-Diagramms in ein FLOW-Netzwerk

- 1. Möglichkeit: Ein- und ausgehende Knoten werden direkt verbunden
- 2. Möglichkeit: Die Aktivität bleibt als Knoten erhalten
 - Hierdurch wird ein dritter Knotentyp hinzugefügt, der bei der Interpretation separat betrachtet werden muss

S. Kiesling *Verbesserung des Requirements Engineering*. Logos Verlag Berlin, 2018.

Wir betrachten wieder das Beispiel von vorhin

Zugehöriges FLOW-Netzwerk

 Hierbei wurden Personen und Dokumente in einem Knotentypen "Informationsspeicher" zusammengefasst

Übungsaufgabe 4-2

- (1) Entscheiden Sie für die folgenden Aussagen, ob sie wahr oder falsch sind:
 - (1) Jedes FLOW-Diagramm lässt sich eindeutig in ein FLOW-Netzwerk überführen.
 - (2) Aus jedem FLOW-Netzwerk lässt sich ein FLOW-Diagramm zurückkonstruieren.
- (2) Unter welchen Umständen sind FLOW-Netzwerk und FLOW-Diagramm äquivalent, d.h. eineindeutig?

Übersicht

- Informationsflussanalyse mit FLOW
- Informationsflussdiagramme als soziale Netzwerke
- Soziale Netzwerkanalyse im SE
- Etablierte Analysemöglichkeiten
- Anwendung in einer Einzelfallstudie
- Tool-Unterstützung

Wiederholung

Wir können aus einem Informationsflussdiagramm ein (soziales) Netzwerk

generieren

 Knoten repräsentieren Informationsspeicher (Personen oder Dokumente)

Kanten repräsentieren Informationsflüsse

Wie hilft das bei der Analyse?

Analyse sozialer Netzwerke

- Es gibt eine Vielzahl an Eigenschaften, die aus einem sozialen Netzwerk direkt abgeleitet werden können
 - Größe
 - Dichte
 - Distanzen
 - Zentralitätsmaße
 - uvm

Welche von den Maßen sind bereits etabliert (im SE)?

Verwendung von sozialer Netzwerkanalyse im SE – Eine SLR

- Analyse von rund 275 Publikationen, die sich mit der Anwendung von sozialer Netzwerkanalyse (SNA) im Software Engineering beschäftigen
 - Davon 92 relevant und weiter berücksichtigt
- In welchen Kontexten wird soziale Netzwerkanalyse angewendet und mit welchem Ziel?
- Wie werden die sozialen Netzwerke analysiert?

Übersicht über die Publikationen nach Jahren

Ziele der durchgeführten Studien

Datenquelle für die Definition der Netzwerke

■ GitHub

Repository

Welche Arten von Netzwerken sind im SE verbreitet?

Aus den Daten werden drei verschiedene Arten von Netzwerken gebildet:

- 1) Kollaborationsnetzwerke
- 2) Kommunikationsnetzwerke
- 3) Technische Netzwerke

Kollaborationsnetzwerke

- Knoten repräsentieren Entwickler, die in unterschiedlichen Beziehungen stehen
- Mögliche Beziehungen
 - Änderung von der gleichen Funktion im Quellcode
 - Änderung an der gleichen Datei
 - Arbeit am gleichen Projekt
 - Zusammenarbeit an Bug
 - ...

Kommunikationsnetzwerke

- Knoten repräsentieren Entwickler, die in unterschiedlichen Beziehungen stehen
- Mögliche Beziehungen
 - Kommunikation (verschiedene Arten)
 - E-Mail-Nachrichten
 - Kommentare an Issues oder Dateien.
 - Kommentare an Bugs
 - Informationsfluss

Technische Netzwerke

Knoten	Kanten
Klassen	Abhängigkeiten Funktionsaufrufe
Module	Abhängigkeiten
Testfälle	Testabdeckung
Quelldateien	Gemeinsam committet

Affiliationnetzwerke

- Setzen Entwickler und Projekte in Beziehung zueinander
- Entwickler und Projekt sind miteinander verbunden gdw. der Entwickler an dem Projekt mitarbeitet
- Induziert zwei unimodale Netzwerke:
 - Entwicklernetzwerk: Zwei Entwickler sind miteinander verbunden, wenn es ein Projekt gibt, an dem beide mitarbeiten
 - Projektnetzwerk: Zwei Projekte sind miteinander verbunden, wenn es einen Entwickler gibt, der an beiden Projekten mitwirkt

Weitere Netzwerktypen: Anforderungsbasierte Netzwerke

- Requirements Dependency Social Network
 - Knoten: Anforderungen
 - Kanten: Abhängigkeiten zwischen Anforderungen
- Requirements Centered Social Network
 - Knoten: Entwickler
 - Kanten: Zusammenarbeit an Anforderungen

Visualizing a Requirements-centred Social Network to Maintain Awareness Within Development Teams

Irwin Kwan, Daniela Damian and Margaret-Anne Storey
University of Victoria
Department of Computer Science
3800 Finnerty Road, Victoria, British Columbia
{irwink,danielad,mstorey}@cs.uvic.ca

Abstract

When the requirements in a software system change, we should notify every contributor who participates in the analysis, design, implementation, and testing of the requirement to reduce rework. However, the network of contributors working on a requirement is constantly changing, making it not only difficult to seek expertise from other team members, but also difficult to send requirements-change information to team members.

To promote communication and improve awareness among contributors working on the same requirement, in his position paper we suggest using a visual representation called a requirements-centred-social-network diagram. Using the social-network diagram, a contributor can learn about another contributor's communication patterns around the development of a requirement, or send requirements-change-awareness notifications to every member of a team working on the same requirement. This

of the system, and the final product, the software, is verified against the specification. This process of developing a requirement may involve the specification and analysis of the requirement, the design of a software architecture programming, and testing. No matter what process a software project follows, a large amount of collaboration must occur among the project members, or contributors, to ensure that the artifacts are properly built. A significant barrier to effective collaboration is the fact that software continually evolves, and over time, more contributors are involved in the development of a requirement than initially planned [1, 5]. Communication in this situation becomes problematic due to the dynamic nature of the team. Maintaining awareness among those working on a requirement, especially requirements-change awareness, becomes difficult because notifications may not reach every contributor working on the requirement.

If changes are not promptly communicated to contrib-

<u>Übungsaufgabe:</u>

Welchen Nutzen haben die anforderungsbasierten Netzwerke?

Analyse von sozialen Netzwerken

- Es gibt viele leicht zu berechnende Metriken für die sozialen Netzwerke
- Außerdem gibt es verschiedene Zentralitätsmaße mit ähnlichen, aber unterschiedlichen Aussagen
- Kann man auf fast jeden Netzwerktyp anwenden
- Wichtig ist, wie man die Ergebnisse interpretiert

Aber (siehe GQM): Lieber messen, was sinnvoll ist, statt alles zu messen, was möglich ist!

Frage: Welche Metriken aus der sozialen Netzwerkanalyse unterstützen die Informationsflussanalyse?

Übungsaufgabe 4-3

(1) Betrachten Sie das folgende Kollaborationsnetzwerk.

- (1) Definieren Sie das soziale Netzwerk formal, d.h. mathematisch.
- (2) Welche Informationen können Sie dem Netzwerk entnehmen?
- (3) Was würden Sie empfehlen, bevor "I" das Team verlässt?

Übersicht

- Informationsflussanalyse mit FLOW
- Informationsflussdiagramme als soziale Netzwerke
- Soziale Netzwerkanalyse im SE
- Etablierte Analysemöglichkeiten
- Anwendung in einer Einzelfallstudie
- Tool-Unterstützung

Was wird bereits verwendet?

Beispiel: Grad-Zentralität

- Informationsflussanalyse
 - Frequenz und Menge an eingehenden und ausgehenden Informationen
 - Gibt an, welche Knoten für den Informationsfluss wie relevant sind
- Zentrale Personen
 - Senden und/oder empfangen viele Informationen
 - Verlust einer solchen Person führt zu lückenhafter Informationsweitergabe oder Zeitverzug

Beispiel: Closeness-Zentralität

- Gibt die durchschnittliche Distanz eines Knotens zu jedem anderen Knoten im Netzwerk an
 - Misst, wie "gut" ein Knoten im Netzwerk positioniert ist
- Zeit bis zum Eintreffen einer Information, die durch das Netzwerk fließt

- Zentrale Personen
 - Wichtig für die Informationsflussanalyse, da sie viele Informationen in sich vereinen und Informationen im Schnitt schneller erhalten

Beispiel: Betweenness-Zentralität

- Misst, wie oft ein Knoten auf dem kürzesten Pfad zwischen zwei anderen Knoten liegt
- Identifiziert Personen, die für die Informationsweitergabe zwischen zwei anderen Personen besonders relevant sind
- Zentrale Personen
 - Haben das Potenzial, den Informationsfluss zwischen zwei Knoten zu beeinflussen

Potenzial der sozialen Netzwerkanalyse bei Informationsflüssen

- Methoden aus der sozialen Netzwerkanalyse k\u00f6nnen in vielen F\u00e4llen helfen, z.B.
 - Identifikation der "Stillen Post" zur Vermeidung von Zwischenschritten

- Identifikation von "Information Brokern" oder "Kompetenzspinnen"
 - Viele ein- und ausgehende Kanten: Degree-Zentralität
- Identifikation von "wichtigen" Knoten
 - i.S.v. vielen weitergegebenen Informationen: *Degree-Zentralität*
 - i.S.v. vielen zeitkritischen Informationen: Betweenness-Zentralität

Übungsaufgabe 4-4

- (1) Welche Netzwerkmaße würden Sie für die Beantwortung der folgenden, bei Informationsflussanalysen häufig auftauchenden Fragen betrachten?
 - (1) Welche Knoten sind für die Weitergabe von Informationen relevant?
 - (2) Welche Knoten müssen viele Informationen verwalten?
 - (3) Welche Knoten sind eher abseits?
 - (4) An welchen Stellen kann der Informationsfluss durch weniger Zwischenschritte verkürzt werden?

Übersicht

- Informationsflussanalyse mit FLOW
- Informationsflussdiagramme als soziale Netzwerke
- Soziale Netzwerkanalyse im SE
- Etablierte Analysemöglichkeiten
- Anwendung in einer Einzelfallstudie
- Tool-Unterstützung

Ziele der Anwendung in der Einzelfallstudie

 Wie sieht der Prozess der Anwendung aus? Von der Datenerhebung bis zur Analyse

Wobei hilft die soziale Netzwerkanalyse konkret?

Ablauf der Studie

- Ziel: Prüfung der Validität des Konzepts
 - Führt das Konzept zu korrekten Aussagen?
 - Sind diese Aussagen mit denen einer FLOW-Analyse vergleichbar?

Durchführung

Unternehmensstruktur

Schritt 1: FLOW-Interviews führen

Typischer Ablauf:

- Demographie (Erfahrungen, Jobbezeichnung, ...)
- Hauptaufgaben im Prozess
- Aufgaben priorisieren
- Für jede Hauptaufgabe:
 - Was liefert die Aufgabe? Was entsteht dabei?
 - Was wird dafür benötigt?
 - Gibt es Vorgaben oder andere steuernde Elemente?
 - Welche Tools werden dabei benötigt?

Erhebungsbogen für die Interviews

02.10.2009 Kurt Schneider & Kai Stapel http://www.se.uni-hannover.de/pages/de:projekte_flow

DFG Projekt InfoFLOW, 2008-2011

Schritt 2: FLOW-Diagramm zeichnen

 Das FLOW-Diagramm darf aus datenschutzrechtlichen Grundlagen nicht gezeigt werden.

Schritt 3: Ableiten des FLOW-Netzwerks

Schritt 4: Soziale Netzwerkanalyse

- 78 Knoten und 159 Kanten (Dichte: 0,026)
- 59% der Knoten sind feste Informationsspeicher
 - Viel Dokumentation und dadurch erh
 öhter Arbeitsaufwand
 - Prüfen, ob die Dokumente alle benötigt werden
- Durchschnittliche Pfadlänge von 5,6
 - Man braucht maximal 5 bis 6 Schritte von einem beliebigen Knoten im Netzwerk zu einem beliebigen anderen Knoten
- Viele zentrale Knoten (mindestens 3 verschiedene Arten von Zentralität):
 Geschäftsführer, TL, Admin, Entwicklerteam, eine Aktivität

Schritt 4: FLOW-Analyse

- 17 Befunde: 10 strukturelle und 7 inhaltliche Auffälligkeiten
- Zum Beispiel:
 - Strukturierte Kommunikation an Standort B, verwobene Kommunikation an Standort A
 - Drei zentrale Knoten: PL, TL an Standort A, Kunde
 - Viel schriftliche Dokumentation mit vielen Rückkopplungsschleifen
 - Tester arbeiten als "Clique" zusammen
 - Es gibt viele tote Dokumente

Schritt 5: Vergleich der Ergebnisse

- ✓ NET-FLOW liefert korrekte Befunde
- ✗ Keine Unterstützung der qualitativen Analyse
- → Zusammenspiel von FLOW-Analyse und NET-FLOW zielführend

Übersicht

- Informationsflussanalyse mit FLOW
- Informationsflussdiagramme als soziale Netzwerke
- Soziale Netzwerkanalyse im SE
- Etablierte Analysemöglichkeiten
- Anwendung in einer Einzelfallstudie
- Tool-Unterstützung

UCINET Software

Siehe Übung

- Entwickelt von Borgatti, Everett und Freeman
- Zur Analyse von sozialen Netzwerken
- Oft in Verbindung mit NetDraw zur Visualisierung der Netzwerke
- Unterstützt eine Vielzahl an Analysemöglichkeiten und Metriken
- Auswahl geeigneter Metriken und die Interpretation der Ergebnisse obliegt dem Nutzer