

Human Detector and Tracker

Objective/Overview	Approach
 Human detection and tracking are significant tasks in many applications, whether autonomous driving or VR games. Using deep learning, thousands of images can be analyzed and a model can be created to track humans. 	 We will be using either YOLOv\$ architecture or Haar Features on each frame (image) of the video. YOLOv\$ divides each image into multiple small regions that make predictions of bounding boxes. Once we have the coordinates of the bounding box in the image, we convert them into the world frame and return those values.
Specific Approach	Key Milestones/Measures of success (add date)
 We will have 2 modes of detection, either the user can input an image or a video. In the case of a video, it will be read frame by frame to ease the processing. We will be implementing the detection pipeline in a 2D coordinate system and then use a camera projection matrix or camera focal length to get the coordinates in the camera frame. Since the camera matrix is unavailable, creating that might be a challenge. 	 UML diagram and activity diagram - 10/10/2022 Structured code implemented using OOP - 10/13/2022 Developing unit tests - 10/10/2022 Detection of humans accurately, along with tracking in a video - 10/20/2022 Documentation that follows proper structure and guidelines 10/22/2022