1. For each of the following languages

 $\mathbf{L}_1 = \{ a^p; p \text{ is a prime number } \},$ 

 $\mathbf{L}_2 = \{ a^p; p \text{ is a prime number, } m \text{ is a fixed number and } m \ge p \ge 0 \},$ 

$$\mathbf{L}_3 = \{ a^m b^{2m} c^{3m}; m \ge 0 \},$$

$$\mathbf{L}_4 = \{ a^m b^2 c^{3m}; m \geq 0 \},$$

find if it is:

- a) a regular language;
- b) a context-free language;
- c) a recursively enumerable language.

In case (a) for the language  $L_i$ , build a finite automaton A such that  $L(A) = L_i$ .

In case (b), prove that  $L_i$  is not a regular language and build a formal grammar G such that  $L(G) = L_i$ .

In case (c), explain why  $\mathbf{L}_i$  is not a regular or context-free language and how to build a Turing machine T such that  $\mathbf{L}(T) = \mathbf{L}_i$ .

Pumping Lemma for CFL:

If L is CFL, then L has a pumping lemma p such that any string w, where  $|w| \geq p$ . w may be divided into 5 pieces w = uvxyz such that

- $ullet \ uv^ixy^iz$  is in L for all  $i\geq 0$
- |vy| > 0
- $|vxy| \leq p$

1.  $L_1$ :

 ${\cal L}_1$  is not a regular language, not a context-free language, it is a recursively enumerable language.

Proof:

Suppose  $L_1$  is context-free language, then the pumping lemma should be hold. Suppose a pumping length p, then consider some prime number  $n \geq p+2$ . (Such an n must exist since there are an infinite number of primes)

Let a string  $w = a^n$ , split into uvxyz.

Let 
$$|vy| = m$$
, then  $|uxz| = n - |vy| = n - m$ .

By the pumping lemma,  $uv^{n-m}xy^{n-m}z\in L_2.$ 

$$egin{aligned} |uv^{n-m}xy^{n-m}z| &= |uxz| + (n-m) imes (|v| + |y|) \ &= n-m + (n-m)m \ &= (n-m)(m+1) \end{aligned}$$

Which is not prime unless one of the above factores is 1.

However, (n-m)>1 since  $n\geq p+2$  was chosen and  $m\leq p$  since  $m=|vy|\leq |vxy|\leq p$ .

And 
$$(m+1)>1$$
 since  $m=|vy|,and|vy|>0$ .

Hence,  $|uv^{n-m}xy^{n-m}z|$  is composite number, it is not in  $L_1$ . A contradiction.

Therefore,  $L_1$  is not context-free language. At the same time, since it is not CFL, then it must not a regular language.

To prove it is RFL, we need to show a Turning machine T. T has two tapes: one for the input, another to store all the numbers between 2 and n-1. T Acts as follow.

- 1) First T counts the number p of a's on tape 1.lif p=0 or p=1, reject. If p =2, accept. T Writes 2 a's on tape 2.
- 2) T scans both tapes from left to right. It checks if the number of a's on tape 1 is divisible by the number of a's on tape 2. If yes, reject. Otherwise:
- 3) Add one a to tape 2. If the number of a's on both tapes are the same, accept. Otherwise, go to (2). So  $L(T)=L_1$ . Hence  $L_1$  is REL.
  - 2.  $L_2$  is regular language since every finite language is regular. A NFA could be constructed as follow:

Note that for states  $q_i$  ( $\forall i \leq p$ ). when i is prime number, the state  $q_i$  is final state.

Since it is regular language, it must be a context-free language as well.

Similar, since it is regular language, **it must be a recursively enumerable language.** Since  $RL \subseteq CFL \subset REL$ .

## 3. $L_3$ is not regualr language, and it is not context-free language. $L_3$

 $L_3$  is not context free language proof:

Suppose  $L_3$  is CFL, then the pumping lemma could be hold.

Choose pumping length n, let string  $w=a^mb^{2m}c^{3m}$ 

Split into 
$$uvwy$$
, where  $|vwx| \le n$ .

 $(uvwx) \in M$ ,  $vwx$  only contains' a

Since  $vviwxiy \in L_3$ .

When  $i=0$ ,  $uwy \in L_3$ 
 $uwy = a^{m-uvx}b^{2m}C^{3m}$ 
 $vx \ne \varepsilon$ 
 $|vx| \ne L_3$ 

contradiction

Since  $L_3$  is not CFL, then it must be not RL as well. Since RL  $\subseteq$  CFL.

 ${\cal L}_3$  is RFL.

The turning machine T acts as follow:



One tape for the input. Place the right and left endmarker ""\".

T scan the tape from left to right.

1) If head is at X, then accepts. If head is at "a", then erase it. Then change the rightmost 26's to c's, and then remove the rightmost I c's.

If the number of b's or c's is insufficient, reject.

3) Scan left until X is found, then take I step right,
go to (1).

So  $L(T)=L_3$  . It is REL.

## 4. $L_4$ :

## It is not regular language.

Proof:

Suppose  $\mathcal{L}_4$  is regular language. Then pumping lemma should be hold.

Suppose a pumping length n, let string  $w=a^mb^2c^{3m}$  ,  $m\geq$ .n

Split into xyz.

$$7yZ = a^{p} a^{m-p} b^{2} c^{3m}$$

$$= a^{p-q} a^{q} a^{m-p} b^{2} c^{3m}$$

$$= a^{m+q} b^{2} c^{3m} \neq L_{4}$$

A contradiction, hence  $L_4$  is not RL.

## It is context-free language.

A CFG as below:

E o I

I o aIccc

I o bb

Since it is CFL, then **it must be recursively enumerable language** as well.