REAL ANALYSIS

LECTURE NOTES

ABSTRACT. The Notes indicate what we do in the lectures, but are not a complete replacement of the book and lectures. The text is from two books of *Real Analysis*:

- [1] Xingwei Zhou & Wenchang Sun: Real Variable Analysis, the third edition, Science Press, 2014.
- [2] E. Stein & R. Shakarchi: Real Analysis, Princeton University Press, 2005.

1. Measurable functions

Let us turn our attention to the objects that lie at the heart of integration theory: measurable functions. Recall that the characteristic function of a set E is given by

$$\chi_E(x) = \begin{cases} 1, & x \in E, \\ 0, & x \notin E. \end{cases}$$

Definition 1.1. A simple function is a function of the form $f = \sum_{k=1}^{N} a_k \chi_{E_k}$, where each E_k is a measurable set of finite measure, and the a_k are constants.

These functions will be the basic functions used to define the Lebesgue integral.

Definition 1.2. A step function is a function of the form $f = \sum_{k=1}^{N} a_k \chi_{R_k}$, where each R_k is a rectangle, and the a_k are constants.

These functions are the basic ones used to define the Riemann integral.

1.1. Definition and basic properties.

The real-valued function f on a measurable set $E \subset \mathbb{R}^n$ in our context is allowed to take on the infinite values $\pm \infty$, so that f(x) belongs to the extended real numbers

$$-\infty \le f(x) \le \infty.$$

We say a function f is finite-valued if $-\infty < f(x) < \infty$ for all x.

Unless otherwise clear from context, when we use notation $f: E \to [-\infty, \infty]$, we always refer that E is a measurable set of \mathbb{R}^n .

In the theory that follows, and the many applications of it, we shall almost always find ourselves in situation where a function takes on infinite values on at most a set of measure zero.

Definition 1.3. A function f defined on a measurable set $E \subset \mathbb{R}^n$ is measurable, if for all $a \in \mathbb{R}$, the set

$$f^{-1}([-\infty, a)) = \{x \in E : f(x) < a\}$$

is measurable.

To simplify our notation, we denote the set $\{x \in E : -\infty \le f(x) < a\}$ simply by $\{f < a\}$ whenever no confusion is possible.

Remark 1.1. Let $f: E \to [-\infty, +\infty]$, where E is a measurable set of \mathbb{R}^n .

- (i) f is measurable if and only if $\{f \leq a\}$ is measurable for all $a \in \mathbb{R}$; Proof: Note that $\{f \leq a\} = \bigcap_{k>1} \{f < a + \frac{1}{k}\}$ and $\{f < a\} = \bigcup_{k>1} \{f \leq a - \frac{1}{k}\}$.
- (ii) f is measurable if and only if $\{f \geq a\}$ is measurable for all $a \in \mathbb{R}$; Proof: Note that $\{f \geq a\} = \{f < a\}^c$.
- (iii) f is measurable if and only if $\{f > a\}$ is measurable for all $a \in \mathbb{R}$; Proof: Note that $\{f > a\} = \{f \le a\}^c$.
- (iv) f is measurable if and only if -f is measurable.
- (v) f is measurable if and only if $\{f = -\infty\}$, $\{f = \infty\}$ are measurable, and $\{a < f < b\}$ is measurable for all $a, b \in \mathbb{R}$;
- (vi) Conclusions of (v) hold for whichever combination of strict or weak inequalities one chooses.

Property 1 The finite-valued function f is measurable if and only if $f^{-1}(\mathcal{O})$ is measurable for every open set $\mathcal{O} \subset \mathbb{R}$, and if and only if $f^{-1}(F)$ is measurable for every closed set $F \subset \mathbb{R}$.

(This is also true for extended valued functions if we make the additional hypothesis that both $\{f = \infty\}$ and $\{f = -\infty\}$ are measurable.)

Proof. The point is that every open set $\mathcal{O} \subset \mathbb{R}$ is a countable union of open intervals, and every closed set $F \subset \mathbb{R}$ is the complement of an open set.

Remark 1.2. If f is finite-valued, then f is measurable if and only if $f^{-1}(\mathcal{B})$ is measurable for every Borel set \mathcal{B} of \mathbb{R} .

This is again true for extended valued functions if one additionally requires that $\{f = \infty\}$ and $\{f = -\infty\}$ are measurable.

Proof: Since open sets are Borel, one direction is immediate.

The main point is to show if f is measurable and $\mathcal{B} \in \mathcal{B}_{\mathbb{R}}$, then $f^{-1}(\mathcal{B})$ is measurable. For this let $\mathcal{S} = \{E : f^{-1}(E) \text{ is measurable}\}$. Then \mathcal{S} contains all open set, and is a σ -algebra. It follows that $\mathcal{B}_{\mathbb{R}} \subset \mathcal{S}$.

Property 2 If f is continuous (and hence finite-valued), then f is measurable. If f is finite-valued and measurable, and ϕ is continuous, then $\phi \circ f$ is measurable.

Proof. Only need to note that
$$(\phi \circ f)^{-1}(-\infty, a) = f^{-1}(\phi^{-1}(-\infty, a)).$$

Remark 1.3. As an immediate consequence, if f is measurable, then |f| is measurable.

Remark 1.4. In general, it is not true that $f \circ \phi$ is measurable whenever f is measurable and ϕ is continuous.

Exercise. Find an example for this.

Property 3 If $\{f_j\}_{j\geq 1}$ is a sequence of measurable functions with the same measurable domain, then

$$\sup_{j} f_{j}(x), \inf_{j} f_{j}(x), \lim_{j \to \infty} \sup_{j \to \infty} f_{j}(x), \lim_{j \to \infty} \inf_{j \to \infty} f_{j}(x)$$

are measurable functions.

Proof. Since $\sup_i f_j(x) > a$ if and only if $f_j(x) > a$ for some j, we see that

$$\{\sup_{j} f_j > a\} = \bigcup_{j \ge 1} \{f_j > a\}.$$

Hence $\sup_j f_j(x)$ is measurable. Since $\inf_j f_j(x) = -\inf_j (-f_j(x))$, we know that $\inf_j f_j(x)$ is measurable.

The result for the lim sup and lim inf follows from the two observations

$$\limsup_{j \to \infty} f_j(x) = \inf_k \{ \sup_{j \ge k} f_j(x) \} \text{ and } \liminf_{j \to \infty} f_j(x) = \sup_k \{ \inf_{j \ge k} f_j(x) \}.$$

As a consequence of Property 3, we prove the following result.

Property 4 If $\{f_j\}_{j\geq 1}$ is a sequence of measurable functions with the same measurable domain, and

$$\lim_{j \to \infty} f_j(x) = f(x),$$

then f is measurable.

Property 5 If f and g are measurable with common measurable domain, then so are f^k $(k \in \mathbb{N})$, λf for any $\lambda \in \mathbb{R}$, f + g and fg.

In the last three cases we require f and g are finite-valued so that λf , f + g and fg are well defined ¹.

Proof. Note that $\{f^k > a\} = \{f > a^{1/k}\}$ if k is odd, and if k is even and $a \ge 0$, then $\{f^k > a\} = \{f > a^{1/k}\} \cup \{f < -a^{1/k}\}$. Hence f^k is measurable.

It is readily verified that λf is measurable.

The third is because $\{f+g>a\}=\bigcup_{r\in\mathbb{O}}\{f>a-r\}\cap\{g>r\}.$

Finally, fg is measurable because of the previous results and the fact that

$$fg = \frac{1}{4} [(f+g)^2 - (f-g)^2].$$

1.2. Almost everywhere.

In measure theory, we can generally neglect sets of measure zero.

Definition 1.4. A property or statement is said to hold almost everywhere (written a.e.) if it is true except on a set of measure zero.

We say two functions f and g defined on a set E are equal almost everywhere, write

$$f(x) = g(x)$$
 a.e. $x \in E$,

if the set $\{x \in E : f(x) \neq g(x)\}$ has measure zero. We also abbreviate this by saying that f = g a.e.

One sees easily that if f is measurable and f = g a.e., then g is measurable.

For example, $\infty + a = \infty$, $\infty + \infty = \infty$, $\infty \times a$ (for $a \neq 0$) are well defined. But $\infty - \infty$ and $\infty \times 0$ are not well-defined

Moreover, all the properties above can be relaxed to conditions holding almost everywhere. For example, if f_j is a sequence of measurable functions and

$$\lim_{j \to \infty} f_j(x) = f(x) \ a.e.,$$

then f is measure. In this light, Property 5 holds when f and g are finite-valued almost everywhere.

1.3. Approximation by simple functions or step functions.

Theorem 1.1. If $f: E \to [0, \infty]$ is measurable, then there is an increasing sequence of non-negative simple functions $\{\phi_k\}_{k=1}^{\infty}$ that converges pointwise to f, namely

$$0 \le \phi_k(x) \le \phi_{k+1}(x)$$
 and $\lim_{k \to \infty} \phi(x) = f(x)$, for all $x \in E$.

Proof. We first truncate f as follows: for $x \in E$,

$$f_k(x) = \begin{cases} f(x), & |x| \le k, \ 0 \le f(x) \le k, \\ k, & |x| \le k, \ f(x) > k, \\ 0, & \text{otherwise.} \end{cases}$$

We then approximate f_k by a simple function within error 2^{-k} as follows: for $x \in E$,

$$\phi_k(x) = \frac{l}{2^k}$$
, if $\frac{l}{2^k} \le f_k(x) < \frac{l+1}{2^k}$ for $l \ge 0$ an integer.

One can check that ϕ_k satisfies the required properties.

Theorem 1.2. If $f: E \to [-\infty, \infty]$ is measurable, then there is a sequence of simple functions $\{\phi_k\}_{k=1}^{\infty}$ that converges that satisfies

$$|\phi_k(x)| \le |\phi_{k+1}(x)|$$
 and $\lim_{k \to \infty} \phi(x) = f(x)$, for all $x \in E$.

In particular, $|\phi_k(x)| \leq |f(x)|$ for all k and $x \in E$.

Proof. Write $f(x) = f^+(x) - f^-(x)$. Construct $\phi_k^{(1)}$ and $\phi_k^{(2)}$ for f^+ and f^- as in Theorem. Let $\phi_k = \phi_k^{(1)} - \phi_k^{(2)}$. One verifies that ϕ_k satisfies the needed properties.

²We use the notation: $f^+ = f\chi_{\{f>0\}}$ and $f^- = f\chi_{\{f<0\}}$. Then

$$f = f^+ - f^- \text{ and } |f| = f^+ + f^- \implies f^+ = \frac{1}{2}(|f| + f) \text{ and } f^- = \frac{1}{2}(|f| - f).$$

Theorem 1.3. If $f: E \to [-\infty, \infty]$ is measurable, then there is a sequence of step functions $\{\psi_k\}_{k=1}^{\infty}$ such that $\psi_k \to f$ almost everywhere.

Remark 1.5. We only get a.e. convergence and we do not have the monotonicity properties of the previous two theorems.

Proof. We divide the proof into several steps for clarification.

- Step 1. By Theorem 1.2, there is a sequence of simple functions $\phi_k \to f$ everywhere.
- Step 2. Any simple function ϕ is of the form $\sum_j a_j \chi_{A_j}$ for some finite collection of measurable sets A_j . We can require these A_j be disjoint, by considering any intersections.
 - (i) For every measurable set A, there is a finite union F of closed cubes such that $m(A\Delta F) < \varepsilon$.
 - (ii) F can be written as a sum of almost disjoint rectangles (consider the grid obtained by extending the sides of the cubes).

By taking the union $\tilde{F} \subset F$ of slightly smaller disjoint rectangles inside these rectangles we can ensure $m(F \setminus \tilde{F}) < \varepsilon$ and so $m(A\Delta \tilde{F}) < 2\varepsilon$.

- (iii) By replacing each A_j by the above \tilde{G} associated to A_j , we obtain a step function ψ such that $\psi = \phi$ except on a set of measure 2ε .
- Step 3. Applying Step 2 to each ϕ_k , one concludes there exist step functions ψ_k such that $m(E_k) \leq 2^{-k}$, where $E_k := \{\psi_k \neq \phi_k\}$.
- Step 4. Let $H_m = \bigcup_{j \geq m+1} E_j$. Then $m(H_m) \leq 2^{-m}$ and $\psi_k \to f$ except possibly on H_m .
- Step 5. It follows from the Step 4 and by the arbitrariness of m, $\psi_k \to f$ except possibly on $H = \bigcap_{m \ge 1} H_m$. But $H_m \searrow H$ and so $m(H) = \lim_{m \to \infty} m(H_m) = 0$.

Therefore $\psi_k \to f$ almost everywhere.