

Probe-Prüfung: Analysis

1	Berechnen	bzw	beantworten	Sie
т.	Derecunen	DZW.	Deamworten	DIC.

a)
$$\lim_{n\to\infty} \frac{6n^4 - 3n^2 + 7}{3n^4 - 2n}$$

b)
$$\lim_{x\to 0} \frac{\sin(x)}{x}$$

c)
$$\lim_{x\to\infty} \frac{\cos(x)}{e^x}$$

d) Begründen oder widerlegen Sie: $\sum_{k=0}^{\infty} \frac{2^k}{k!} = \cos(2)$. e) Für welche $x \in \mathbb{R}$ konvergiert die Potenzreihe $\sum_{k=0}^{\infty} \frac{3k}{(k+1)!} (x-2)^k$?

2. Sei $h(x) = \ln(x)$

- a) Bestimmen Sie das Taylorpolynom $T_3(x)$ vom Grad 3 von h an der Stelle $x_0 = 1$.
- b) Approximieren Sie $h(x) \approx T_3(x)$ für x = 0, 5. Wie groß ist der Fehler?
- c) Geben Sie die Taylorreihe T(x) an und berechnen Sie für welche $x \in \mathbb{R}$ diese konvergiert.

3. Sei $g(x) = x^2 e^x$.

- a) Berechnen Sie die Grenzwerte $\lim_{x\to-\infty} g(x)$ und $\lim_{x\to\infty} g(x)$.
- b) Berechnen Sie die Nullstellen, lokalen Extrema und Wendepunkte von g.
- c) Skizzieren Sie den Graphen von g.
- d) Bestimmen Sie das Taylorpolynom $T_2(x)$ vom Grad 2 von g an der Stelle $x_0 = 0$.
- e) Wie groß ist der Fehler der Approximation $g(x) \approx T_2(x)$ für $x \in [0, 1]$?

4. Sei $f(x) = x^{-2}e^{x^2}$.

- a) Bestimmen Sie den Definitionsbereich von f.
- b) Berechnen Sie die Grenzwerte $\lim_{x\to-\infty} f(x)$, $\lim_{x\to 0} f(x)$ und $\lim_{x\to\infty} f(x)$.
- c) Ist die Funktion stetig hebbar auf ganz \mathbb{R} ?
- d) Berechnen Sie die Nullstellen.
- e) Berechnen Sie die Ableitungen f', f''.
- f) Bestimmen Sie lokale Extrema und Wendepunkte von f.
- g) Skizzieren Sie den Graphen von f.
- h) Bestimmen Sie das Taylorpolynom $T_2(x)$ vom Grad 2 von f an der Stelle $x_0 = 1$.
- i) Approximieren Sie f(1,01) mit dem Taylorpolynom und vergleichen Sie das Ergebnis mit dem Taschenrechner.

5. Berechnen Sie die folgenden Integrale:

a)
$$\int_0^2 z\sqrt{z^2 + 4}dz$$

b)
$$\int xe^x dx$$

e)
$$\int \frac{x+1}{2x^2+4x} dx$$

b)
$$\int xe^x dx$$

f)
$$\int \frac{x^2}{x^2 + 4x} dx$$

c)
$$\int xe^{x^2}dx$$

g)
$$\int \frac{2x+8}{x^2+4x+5} dx$$

c)
$$\int xe^{x^2}dx$$

c)
$$\int xe^{x^2}dx$$

d) $\int \sin(x)(2-x)dx$