Instacart Market Basket Analysis

Георгий Даньщин

План

- Описание задачи
- Описание данных
- Метрика оценки качества
- Оптимизация метрики
- Признаки
- Модели

Задача

- Дана история более, чем 3 млн заказов, сделанных 200к разными пользователями
- Необходимо предсказать какие продукты из тех, которые были заказаны ранее, пользователь выберет в следующем заказе
- Данные по заказам были разбиты на 3 набора
 - prior история заказов по всем пользователям
 - train/test последний заказ каждого из пользователей
 - о пользователи в train и test не пересекаются

Данные: заказы пользователей

- 3421083 заказов (131209 train, 75000 test, 3214874 prior)
- 206209 пользователей
- для каждого пользователя есть история от 4х до 100 заказов

Колонки:

- order_id
- user_id
- eval_set набор данных [prior|train|test]
- order_number номер заказа пользователя
- order_dow день недели
- order_hour_of_day час, в который был сделан заказ
- days_since_prior_order кол-во дней, прошедших с предыдущего заказа

Данные: состав заказов

• в заказе может быть от 1 до 145 продуктов (в среднем 10)

Колонки:

- order_id
- product_id
- add_to_cart_order порядковый номер добавления продукта в корзину
- reordered заказывался ли этот продукт пользователем ранее

Данные: продукты

49688 продуктов

Колонки:

- product_id
- product_name
- department_id один из 21 отделов (snacks, pantry, beverages, etc.)
- aisle_id одна из 134 категорий товаров (ice cream ice, tea, frozen meals, etc.)

Метрика

- Для каждого заказа в тесте необходимо предсказать список продуктов из этого заказа среди тех, которые были заказаны ранее
- Если ни один продукт не заказан повторно, нужно предсказать None для этого заказа
- None можно предсказывать вместе с набором product_id
- Качество оценивается с помощью метрики f1_score

$$FScore(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n} \frac{2tp_i}{2tp_i + fp_i + fn_i}$$

Pipeline

Pipeline

User/Order **Product User-Product** User/Order features features features features User/Order row with target None User/Product Pair with target reordered Binary classification Binary classification Thresholding

Выбор порога

- константный порог для всех пользователей
- отдельная модель для предсказания порога
- expected F-score maximization
 - Thresholding Classifiers to Maximize F1 Score
 - Optimizing F-measure: A Tale of Two Approaches

Expected F-Score maximization

• Для каждого заказа есть предсказанные вероятности продуктов

$$\hat{p}_{\mathrm{None}}, \hat{p}_{1}, \ldots, \hat{p}_{k}$$

• Предполагая, что продукты выбираются независимо, для каждого из 2^k возможных вариантов корзин можно вычислить вероятность корзины:

$$b = \{b_i\}_{i=1}^k \in B, \quad \forall i \ b_i \in \{0, 1\}, \quad b_{\text{None}} = \{0\}_{i=1}^k$$

$$\mathbb{P}(b_{\text{None}}) = \hat{p}_{\text{None}}, \quad \mathbb{P}(b) = \prod_{i=1}^k \hat{p}_i^{b_i} (1 - \hat{p}_i)^{1 - b_i}$$

Expected F-Score maximization

b	P(b)	fscore
None	0.07200	0.000
3	0.66239	0.667
2	0.00248	0.000
2, 3	0.01077	0.500
1	0.03165	0.667
1, 3	0.13760	1.000
1, 2	0.00051	0.500
1, 2, 3	0.00224	0.800

p(None) = 0.072, p(1) = 0.172, p(2) = 0.016, p(3) = 0.813, T = 0.15

Expected F-Score maximization

 Для каждого порога Т и набора b можно вычислить F-score напрямую, а значит можно вычислить матожидание F-score:

$$\mathbb{E}\operatorname{Fscore}(T) = \sum_{b \in B} \mathbb{P}(b)\operatorname{Fscore}(T, b)$$

• Оптимальным будет порог, на котором матожидание максимально:

$$T^* = \arg\max_{T} \mathbb{E}\operatorname{Fscore}(T)$$

 Наивная реализация имеет экспоненциальную сложность, но есть алгоритм, вычисляющий порог за квадратичное время по кол-ву меток (пример реализации есть в <u>kernel</u>)

Признаки

- признаки пользователя
- признаки продукта
- признаки пары пользователь/продукт

Признаки пользователя

- кол-во дней, прошедших с первого заказа
- кол-во дней, прошедших с последнего заказа
- статистики по интервалам между заказами пользователя
- разница/отношение кол-ва дней, прошедших с последнего заказа и среднего интервала между заказами
- статистики по размеру заказов
- средний день недели/час заказов
- разница между текущим днём недели/часом и средним
- различные агрегации по фичам продукта и фичам пары пользователь/продукт

Признаки продукта

- доля заказов с продуктом
- доля пользователей, которые заказывали продукт
- кол-во, доля reorder'ов для продукта
- кол-во, доля пользователей, совершавших reorder
- средний нормализованный порядковый номер добавления в корзину
- вероятность заказа продукта в первый раз, вероятность reorder'a, их отношение
- размер категорий (aisle, department) продукта
- вероятности reorder'а для категорий

Признаки пары пользователь/продукт

- кол-во/доля заказов данного продукта пользователем
- кол-во дней/заказов, прошедших с последней покупки выбранного продукта
- статистики кол-ва дней/заказов между покупками продукта
- разница/отношение между кол-вом дней/заказов, прошедших с последней покупки продукта и средним кол-во дней/заказов
- средний нормированный порядковый номер добавления заказа в корзину
- такие же признаки, вычисленные для aisle и department
- tfidf по паре пользователь/продукт
- восстановленное svd разложение tfidf матрицы пользователь/продукт

История заказов конкретного продукта

user_id	order_id	order_number	target
72812	361096	1	1
72812	485157	2	0
72812	1816060	3	0
124747	1181461	1	0
124747	2527579	2	1
124747	941001	3	1
141122	3098547	1	1
141122	1241431	2	0

Заказы, в которых возможен reorder для продукта

user_id	order_id	order_number	target
72812	361096	1	1
72812	485157	2	0
72812	1816060	3	0
124747	1181461	1	0
124747	2527579	2	1
124747	941001	3	1
141122	3098547	1	1
141122	1241431	2	0

Product regressions

- Для каждого продукта из prior, который заказывался не менее 100 раз (около 20k продуктов) выберем все заказы, для которых был возможен reorder этого продукта
- Обучим отдельную логистическую регрессию для каждого продукта на следующих данных:
 - X one hot encoding по продуктам из n (от 1 до 5) предыдущих заказов
 - y reorder
- Предсказания регрессии будем использовать в качестве признаков для train и test

order_id	order_lag_1	order_lag_2	order_lag_3	target
3245	[4123, 34, 1]	[4123, 34]	[1]	0
1239	[123, 3, 1, 23]	[123, 3, 1, 23]	[123, 4, 2, 23]	1
4322	[5]	[5, 6]	[5]	1

Markov chains

- Для каждой пары заказ/продукт из prior введём 2 состояния:
 - 0 продукт был заказан этим пользователем в предыдущем заказе
 - 1 продукт не был заказан этим пользователем в предыдущем заказе
- Для каждого состояния вычислим вероятности, усредняя по всем заказам, в которых был возможен reorder:

P(reorder|state, user)

 $\mathbb{P}(\text{reorder}|\text{state},\text{product})$

 $\mathbb{P}(\text{reorder}|\text{state}, \text{user}, \text{product})$

- Все вероятности будем считать используя аддитивное сглаживание
- Вычисленные вероятности будем использовать в виде фичей для train и test,
 подставляя их в соответствии с состоянием/пользователем/продуктом

Markov chains

- Другой вариант задания состояний:
 - 0 продукт никогда не заказывался пользователем
 - 1 продукт был заказан в предыдущем заказе в первый раз
 - 2 продукт был в предыдущих заказах, но не в прошлом
 - о 3 продукт был заказан в предыдущем заказе не в первый раз
- Расширим состояния ещё больше, декартово умножая состояния за п предыдущих заказов (от 1 до 5ти)
- Такие же признаки посчитаем для категорий (aisle/department)

Streaks

- Для каждой пары пользователь/продукт построим график по всем заказам пользователя:
 - х порядковый номер заказа
 - у = 1, если продукт был в заказе, -1, если не было

Streaks

 Назовём streak'ом группу заказов, идущих подряд, в которой по конкретному продукту было принято одно и то же решение (купить/не купить)

Streak

Признаки:

- длина последнего streak в днях и заказах, умноженная на знак streak (+1/-1)
- статистики по длинам streaks в днях и заказах
- статистики по длинам положительных/отрицательных streaks
- разница/отношение длины последнего streak и средней длины
- разница/отношение длины последнего streak и средней длины того же типа (положительный/отрицательный)
- статистики по длинам streaks по всем пользователям, и разница с последним

Trends

- для каждой пары пользователь/продукт построим тренд (регрессия таргета на номер заказа) за последние 10/20/30/50/100 дней
- в качестве фичей возьмём наклон и предсказание тренда

Модели

- Локальная валидация считалась по 5ти фолдам, разбитым по пользователям
- p(None) предсказывалось отдельным xgb на фичах пользователя
- Ансамбль из 7 xgboost: 0.4073408 public, 0.4058049 private
- Ансамбль из 7 lightgbm: 0.4071269 public, 0.4062934 private

Ансамбль

- 1. все признаки (239)
- 2. без streak (203)
- 3. fea markov chains (213)
- 4. 6e3 product regressions (234)
- 5. 6e3 trend (227)
- 6. без streak и markov chains (177)
- 7. без product regressions и markov chains (208)