CAPÍTULO III

0.1. DERIVADAS DE FUNCIONES

La derivada de una función compleja de una Variable Compleja se define, exactamente, de la misma manera que el caso real del cálculo elemental.

0.1.1. DEFINICIÓN

Sea $f: D \subset C \to C$, una función compleja de variable compleja, entonces la derivada f' de la función f en el punto z_0 está dado por:

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

siempre y cuando el límite exista.

0.1.2. PROPIEDADES DE LA DERIVADA DE FUNCIONES COMPLEJAS

Sean $f,g:D\subset C\to C$ funciones complejas y k una constante compleja entonces:

1.- Si
$$w = f(z) = k$$
 $\Rightarrow \frac{dw}{dz} = 0$

2.- Si
$$w = kf(z)$$
 $\Rightarrow \frac{dw}{dz} = k.f'(z)$

3.- Si
$$w = f(z) \pm g(z)$$
 $\Rightarrow \frac{dw}{dz} = f'(z) \pm g'(z)$

4.- Si
$$w = (f.g)(z)$$
 $\Rightarrow \frac{dw}{dz} = f'(z).g(z) + f(z).g'(z)$

5.- Si
$$w = \frac{(f)(z)}{g(z)}$$
 $\Rightarrow \frac{dw}{dz} = \frac{g(z).f'(z)-f(z).g'(z)}{g^2(z)}, g(z) \neq 0$

La demostración de estas propiedades son idénticas al de las funciones reales del cálculo elemental, demostraremos la propiedad (4).

$$\frac{dw}{dz} = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) \cdot g(z + \Delta z) - f(z) \cdot g(z)}{\Delta z}$$

$$\frac{dw}{dz} = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) \cdot g(z + \Delta z) - f(z + \Delta z) \cdot g(z) + f(z + \Delta z) \cdot g(z) - f(z) \cdot g(z)}{\Delta z}$$

$$\frac{dw}{dz} = \lim_{\Delta z \to 0} \{ f(z + \Delta z) . \left[\frac{g(z + \Delta z) - g(z)}{\Delta z} \right] + g(z) . \left[\frac{f(z + \Delta z) - f(z)}{\Delta z} \right] \}$$

$$\frac{dw}{dz} = f(z) \lim_{\Delta z \to 0} \frac{g(z + \Delta z) - g(z)}{\Delta z} + g(z) \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

$$\frac{dw}{dz} = f(z).g'(z) + g(z).f'(z)$$

0.1.3. DEFINICIÓN

La función $f:D\subset C\to C$ es derivable en el punto $z_0\in D$, si existe la derivada en $z_0(f'(z_0))$ es decir:

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

Lo que es equivalente a:

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

donde $\triangle z = z - z_0$ entonces $z = z_0 + \triangle z$

además si $\Delta z \to 0$ entonces $z-z_0 \to 0$

de donde $z \to z_0$

$$\Delta z = z - z_0 = (x + iy) - (x_0 + iy) = (x - x_0) + (y - y_0)i = \Delta x + i \Delta y$$

$$\triangle z = \triangle x + i \triangle y$$

 $\triangle z \rightarrow 0$, entonces $\triangle x + i \triangle y \rightarrow 0$

de donde $\triangle x \to 0$ \wedge $\triangle y \to 0$

por lo tanto: $(\triangle x, \triangle y) \rightarrow (0,0)$

0.1.4. 3.4. INTERPRETACIÓN GEOMÉTRICA DE LA DERIVADA.-

Sea $f: D \subset C \to C$ una función compleja y $z_0 \in D$ un punto P en el plano complejo (z) y sea w_0 su imagen P' en el plano (w) bajo la transformación w = f(z), puesto que se supone que f(z) es univoca, el punto z_0 es aplicado sólo en el punto w_0 .

GRAFICO 1 Y GRAFICO 2

Al incrementar a z_0 en Δ z se obtiene el punto Q este punto tiene como imagen a Q' en el plano (w), entonces se observa que P'Q' representa al número complejo Δ $w = f(z_0 + \Delta z) - f(z_0)$, se reduce que la derivada en z existe y está dado por:

$$\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta x) - f(z_0)}{\Delta z} = \lim_{Q \to P} \frac{Q'P'}{QP}$$

0.1.5. ECUACIONES DE CAUCHY-RIEMANN.-

Se trata de obtener un par de ecuaciones que deben satisfacer las primeras derivadas parciales de las funciones componentes u y v de una función f(z) = u(x,y) + iv(x,y) en un punto $z_0 = (x_0,y_0)$ para que exista en el, la derivada de f, así mismo veremos como expresar $f'(z_0)$ en términos de tales derivadas parciales.

Suponiendo que $\exists f'(z_0) = \lim_{\Delta z \to (0,0)} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$, sea $z_0 = x_0 + iy_0$ y $\Delta z = \Delta x + i \Delta y$, entonces por el teorema de límite se tiene:

$$Re(f'(z_0)) = \lim_{(\Delta x, \Delta y) \to 0} Re(\frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}) \dots (1)$$

$$Im(f'(z_0)) = \lim_{(\Delta x, \Delta y) \to (0,0)} Im(\frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z})...(2)$$

ahora agrupando se tiene:

$$\frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \frac{[u(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0)] + i[v(x_0 + \Delta x, y_0 + \Delta y) - v(x_0, y_0)]}{\Delta x + i \Delta y} \dots (3)$$

Las expresiones (1) y (2) son variables cuando $(\triangle x, \triangle y) \longrightarrow (0,0)$ de todas las formas posibles, en particular es cuando $(\triangle x, \triangle y) \longrightarrow (0,0)$ horizontalmente por los puntos $(\triangle x, 0)$.

GRAFICO

Quiere decir que $\Delta y = 0$ en la ecuación (3) resultan:

$$Re(f'(z_0)) = \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x}$$

$$Im(f'(z_0)) = \lim_{\Delta x \to 0} \frac{v(x_0 + \Delta x, y_0) - v(x_0, y_0)}{\Delta x}, \text{ esto es:}$$

$$f'(z_0) = u_x(x_0, y_0) - iv_x(x_0, y_0)...(4)$$

donde $u_x(x_0, y_0), v_x(x_0, y_0)$ son las derivadas parciales con respecto a x de las funciones u y v en el punto (x_0, y_0)

ahora haremos tender $(\triangle x, \triangle y) \longrightarrow (0,0)$ verticalmente por los puntos $(0, \triangle y)$, es decir $\triangle x = 0$, en la ecuación (3) resulta.

$$f'(z_0) = v_y(x_0, y_0) - iu_y(x_0, y_0)...(5)$$

Las ecuaciones (4) y (5) no solamente dan $f'(z_0)$ en términos de las derivadas parciales de las funciones componentes u y v, sino que proporciona condiciones necesarias para la existencia de $f'(z_0)$.

Al igualar las partes real e imaginaria de las ecuaciones (4) y (5) vemos que

la existencia de $f'(z_0)$ exige que:

$$u_x(x_0, y_0) = v_y(x_0, y_0)$$
 \wedge $u_y(x_0, y_0) = -v_x(x_0, y_0)...(6)$

Las ecuaciones de (6) son las ecuaciones de CAUCHY-RIEMANN.

0.1.6. TEOREMA.-

Sea f(z) = u(x,y) + iv(x,y) una función compleja definida en alguna región D que contiene al punto z_0 y que tiene primeras derivadas parciales continuas, con respecto a x e y, y que satisfacen las ecuaciones de CAUCHY-RIEMANN en z_0 , entonces $f'(z_0)$ existe.

Demostración

Si $x \neq x_0$ y $y \neq y_c$, el cociente de la diferencia se puede escribir.

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{u(x, y) - u(x_0, y_0)}{z - z_0} + i \frac{v(x, y) - v(x_0, y_0)}{z - z_0}$$

$$=\frac{x-x_0}{z-z_0}[\frac{u(x,y)-u(x_0,y)}{x-x_0}+i\frac{v(x,y)-v(x_0,y_0)}{x-x_0}]+\frac{y-y_0}{z-z_0}[\frac{u(x_0,y)-u(x_0,y_0)}{y-y_0}+i\frac{v(x_0,y)-v(x_0,y_0)}{y-y_0}]$$

$$=\frac{x-x_0}{z-z_0}[u_x(x_0+t_1(x-x_0),y)+iv_x(x_0+t_2(x-x_0),y)]+\frac{y-y_0}{z-z_0}[u_y(x_0,y_0+t_3(y-y_0))+iv_y(x_0,y_0+t_4(y-y_0))+iv_y(x_0,y_0+t_4(y-y_0))]+\frac{y-y_0}{z-z_0}[u_x(x_0+t_1(x-x_0),y)+iv_x(x_0+t_2(x-x_0),y)]+\frac{y-y_0}{z-z_0}[u_y(x_0,y_0+t_3(y-y_0))+iv_y(x_0,y_0+t_4(y-y_0))+iv_y(x_0,y_0)$$

donde $0 < t_k < 1, k = 1, 2, 3, 4$, por el teorema del valor medio del cálculo diferencial, este teorema también se cumple para $x = x_0$ y $y = y_0$; como las derivadas parciales son continuas en z_0 , podemos escribir en la forma.

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{x - x_0}{z - z_0} [u_x(z_0) + iv_x(z_0) + \epsilon_1] + \frac{y - y_0}{z - z_0} [u_y(z_0) + iv_y(z_0) + \epsilon_2]$$

donde $\epsilon_1, \epsilon_2 \to 0$, cuando $z \to z_0$ aplicando las ecuaciones de CAUCHY-RIEMANN al último término, se puede combinar los términos para obtener

$$\frac{f(z) - f(z_0)}{z - z_0} = u_x(z_0) + iv_x(z_0) + \frac{(x - x_0)\epsilon_1 + (y - y_0)\epsilon_2}{z - z_0}$$

como $|x-x_0||y-y_0|\leqslant |z-z_0|$, la desigualdad nos conduce

$$||\frac{(x-x_0)\epsilon_1+(y-y_0)\epsilon_2}{z-z_0}||\leqslant ||\epsilon_1||+||\epsilon_2||\to 0$$
 cuando $z\to z_0$

Por lo tanto el último término tiende a cero cuando $z\to z_0$, luego al tomar límite ,el último término tiende a cero cuando $z\to z_0$.

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = u_x(z_0) + iv_x(z_0)$$

0.1.7. ECUACIONES DE CAUCHY-RIEMANN EN COOR-DENADAS POLARES

Sea f(z) = u(x,y) + jv(x,y) una función compleja, transformaremos esta función a coordenadas polares

La relación entre las coordenadas cartesianas y las coordenadas polares es: $x = r\cos(\theta)$ y $y = r\sin(\theta)$, $\theta = arctg(\frac{y}{x})$

$$f(z) = u(r,\theta) + jv(r,\theta) \tag{1}$$

Calcularemos las derivadas parciales de u y v con respecto a x y y, para esto aplicaremos la regla de la cadena

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial x} + \frac{\partial u}{\partial \theta} \cdot \frac{\partial \theta}{\partial x} & (1) \\ \frac{\partial u}{\partial y} = \frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial y} + \frac{\partial u}{\partial \theta} \cdot \frac{\partial \theta}{\partial y} & (2) \\ \frac{\partial v}{\partial x} = \frac{\partial v}{\partial r} \cdot \frac{\partial r}{\partial x} + \frac{\partial v}{\partial \theta} \cdot \frac{\partial \theta}{\partial x} & (3) \\ \frac{\partial v}{\partial y} = \frac{\partial v}{\partial r} \cdot \frac{\partial r}{\partial y} + \frac{\partial v}{\partial \theta} \cdot \frac{\partial \theta}{\partial y} & (4) \end{cases}$$

$$r = \sqrt{x^2 + y^2} \Rightarrow \begin{cases} \frac{\partial r}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}} = \frac{x}{r} = \frac{r\cos(\theta)}{r} = \cos(\theta) \\ \frac{\partial r}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}} = \frac{y}{r} = \frac{r\sin(\theta)}{r} = \sin(\theta) \\ \theta = arctg(\frac{y}{x}) \Rightarrow \begin{cases} \frac{\partial \theta}{\partial x} = \frac{-y}{x^2 + y^2} = \frac{-y}{r^2} = \frac{-r\sin(\theta)}{r^2} = \frac{-1}{r}\sin(\theta) \\ \frac{\partial \theta}{\partial y} = \frac{x}{x^2 + y^2} = \frac{x}{r^2} = \frac{r\cos(\theta)}{r^2} = \frac{1}{r}\cos(\theta) \end{cases}$$
reemplazando en (1),(2),(3),(4), se tiene:

$$\begin{cases} \frac{\partial u}{\partial x} = \cos(\theta) \frac{\partial u}{\partial r} + \frac{1}{r} \sin(\theta) \frac{\partial u}{\partial \theta} & (5) \\ \frac{\partial u}{\partial y} = \sin(\theta) \frac{\partial u}{\partial r} + \frac{1}{r} \sin(\theta) \frac{\partial u}{\partial \theta} & (6) \\ \frac{\partial v}{\partial x} = \cos(\theta) \frac{\partial v}{\partial r} + \frac{1}{r} \sin(\theta) \frac{\partial v}{\partial \theta} & (7) \\ \frac{\partial v}{\partial y} = \sin(\theta) \frac{\partial v}{\partial r} + \frac{1}{r} \cos(\theta) \frac{\partial v}{\partial \theta} & (8) \end{cases}$$

pero por las ecuaciones de Cauchy-Riemann se tiene: $\frac{u}{x} - \frac{v}{y} = 0$ y $\frac{u}{y} + \frac{v}{x} = 0$ de las ecuaciones (5) y (8) se tiene:

$$\left(\frac{\partial u}{\partial r} - \frac{1}{r}\frac{\partial v}{\partial \theta}\right)\cos(\theta) - \left(\frac{1}{r}\frac{\partial u}{\partial \theta} + \frac{\partial v}{\partial r}\right)\sin(\theta) = 0 \tag{9}$$

de las ecuaciones (6) y (7) se tiene:

$$\left(\frac{1}{r} \cdot \frac{\partial u}{\partial \theta} + \frac{\partial v}{\partial r}\right) \cos(\theta) - \left(\frac{\partial u}{\partial r} - \frac{1}{r} \frac{\partial v}{\partial \theta}\right) \sin(\theta) = 0 \tag{10}$$

a las ecuaciones (9) y (10) multiplicamos por $cos(\theta)$ y $sen(\theta)$ respectivamente:

$$\left(\frac{\partial u}{\partial r} - \frac{1}{r}\frac{\partial v}{\partial \theta}\right)\cos^2(\theta) + \left(\frac{1}{r}\frac{\partial u}{\partial \theta} - \frac{\partial v}{\partial r}\right)\sin(\theta)\cos(\theta) = 0 \tag{*}$$

$$\left(\frac{1}{r} \cdot \frac{\partial u}{\partial \theta} + \frac{\partial v}{\partial r}\right) \cos(\theta) \cdot \sin(\theta) + \left(\frac{\partial u}{\partial r} - \frac{1}{r} \frac{\partial v}{\partial \theta}\right) \sin^2(\theta) = 0 \tag{**}$$

ahora sumando (*) y (**) y se obtiene:

$$\left(\frac{\partial u}{\partial r} - \frac{1}{r}\frac{\partial v}{\partial \theta}\right)(\cos^2(\theta)) + \sin^2(\theta)) = 0$$

de donde: $\frac{\partial u}{\partial r} - \frac{1}{r} \frac{\partial v}{\partial \theta} = 0$ por lo tanto: $\frac{\partial u}{\partial r} = \frac{1}{r} \cdot \frac{\partial v}{\partial \theta}$

nuevamente a las ecuaciones (9) y (10) multiplicamos por $-\sec(\theta)$ y $\cos(\theta)$ respectivamente:

$$-\left(\frac{\partial u}{\partial r} - \frac{1}{r}\frac{\partial v}{\partial \theta}\right)\operatorname{sen}(\theta).\cos(\theta) + \left(\frac{1}{r}\frac{\partial u}{\partial \theta} + \frac{\partial v}{\partial r}\right)\operatorname{sen}^{2}(\theta) = 0 \tag{a}$$

$$\frac{1}{r} \cdot \left(\frac{\partial u}{\partial \theta}\right) \cos^2(\theta) + \left(\frac{\partial u}{\partial r} - \frac{1}{r} \frac{\partial v}{\partial \theta}\right) \sin(\theta) \cdot \cos(\theta) = 0$$
 (b)

al sumar (a) y (b) se obtiene: $(\frac{1}{r}.\frac{\partial u}{\partial \theta} + \frac{\partial v}{\partial r})(\cos^2(\theta) + \sin^2(\theta)) = 0 \Rightarrow \frac{1}{r}.\frac{\partial u}{\partial \theta} + \frac{\partial v}{\partial r}$ $\therefore \frac{\partial v}{\partial r} = -\frac{1}{r}.\frac{\partial u}{\partial \theta}$

por lo tanto las ecuaciones de CAUCHY-RIEMANN en coordenadas polares son:

$$\frac{\partial u}{\partial r} = \frac{1}{r} \cdot \frac{\partial v}{\partial \theta} \text{ y } \frac{\partial v}{\partial r} = -\frac{1}{r} \cdot \frac{\partial u}{\partial \theta}$$

7

0.1.8. COORDENADAS CONJUGADAS

El número complejo $z\in\mathbb{C}$ y su conjugado $\overline{z}\in\mathbb{C}$, son determinadas en forma única por un par de coordenadas (x,y) dadas por z=x+jy, $\overline{z}=x-jy$ de donde $x=\frac{1}{2}(z+\overline{z})$ y $y=\frac{1}{2j}(z-\overline{z})$ entonces el par (z,\overline{z}) se llama çoordenadas conjugadas".

Las ecuaciones: z = x + jy, $\overline{z} = x - jy$

$$x = \frac{1}{2}(z + \overline{z})$$
, $y = \frac{1}{2j}(z - \overline{z})$

nos permite transformar las coordenadas rectangual
res(x,y)a coordenadas conjugadas (z,\overline{z})

0.1.9. FUNCIONES ANALÍTICAS

a) **DEFINICIÓN.-** Diremos que la función $f:D\subset C\to C$ es analítica en el punto $z_0\in D$, si f está definida y es derivable en alguna vecindad de z_0 , es decir "f. es analítica en z_0 si: $\exists V_\rho(z_0)$ tal que f esta definida en $V_\rho(z_0)$ y $\exists f'(z_0)$, $\forall z\in V_\rho(z_0)$

b) **DEFINICIÓN.-** La función $f:D\subset\mathbb{C}\to\mathbb{C}$ es analítica en D, si f es derivable $\forall z\in D$

OBSERVACIÓN.- A la función analítica también se le llama función regular u holomorfa

OBSERVACIÓN.- La derivada de uan función analítica u holomorfa también analítica, de aquí es que una función analítica tiene derivadas de todos los ordenes

c) DEFINICIÓN.- Si la función $f:D\subset\mathbb{C}\to\mathbb{C}$ es analítica en todo $\mathbb{C},$ se le llama función entera

a) FUNCIONES ARMÓNICAS.-

Si la función f(z) = u(x, y) + jv(x, y) es analítica en D entonces:

$$\begin{split} \frac{\partial u(x,y)}{\partial x} &= \frac{\partial v(x,y)}{\partial y} \wedge \frac{\partial u(x,y)}{\partial y} = -\frac{\partial v(x,y)}{\partial x} \ , \, \forall (x,y) \in D \\ \frac{\partial^2 u(x,y)}{\partial x^2} &= \frac{\partial^2 v(x,y)}{\partial x \partial y} \wedge \frac{\partial^2 u(x,y)}{\partial y^2} = -\frac{\partial^2 v(x,y)}{\partial y \partial x} \end{split}$$

como $\frac{\partial^2 u(x,y)}{\partial x^2}=\frac{\partial^2 v(x,y)}{\partial x\partial y}$, $\forall (x,y)\in D$ puesto que sus derivadas parciales son continuas, entonces:

$$\begin{split} \frac{\partial^2 u(x,y)}{\partial x^2} &= \frac{\partial^2 u(x,y)}{\partial^2 y} = 0 \ , \, \forall (x,y) \in D \\ \left\{ \begin{array}{l} \frac{\partial u(x,y)}{\partial x} &= \frac{\partial v(x,y)}{\partial y} \\ \frac{\partial u(x,y)}{\partial y} &= -\frac{\partial v(x,y)}{\partial x} \end{array} \right. \Rightarrow \left\{ \begin{array}{l} \frac{\partial^2 v(x,y)}{\partial y^2} &= \frac{\partial^2 u(x,y)}{\partial y \partial x} \\ \frac{\partial^2 v(x,y)}{\partial x^2} &= -\frac{\partial^2 u(x,y)}{\partial x \partial y} \end{array} \right. , \, \text{sumando} \\ \frac{\partial^2 v(x,y)}{\partial x^2} &+ \frac{\partial^2 v(x,y)}{\partial y^2} &= 0 \ , \, \forall (x,y) \in D \end{split}$$

por lo tanto las partes real e imaginaria de una función compleja f(z) =

$$u(x,y) + jv(x,y)$$
 analíticas son soluciones de la ecuación de Laplace, donde:

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$
 (Ecuación de Laplace de u)

$$\nabla^2 v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}$$
 (Ecuación de Laplace de v)

Este caso se dice también que u y v son funciones armónicas, además u y v son un par de conjugadas armónicas una con respecto a la otra.

OBSERVACIÓN.- Las ecuaciones siguientes:

$$\begin{cases} u_{xx} + u_{yy} = 0 \\ v_{xx} + v_{yy} = 0 \end{cases}$$

se llaman ecuaciones de Laplace de dos variables que en Física se conoce con el nombre de ecuación de potencial

DEFINICIÓN 0.1.10.

Toda función F(z) = u(x,y) + jv(x,y) que satisface las ecuaciones de Laplace se llaman "Funciones Armónicasz F(z) = u(x, y) + jv(x, y) es analítica, entonces u y v se llaman conjugadas armónicas"