Overcoming empathy failures to improve prosociality Experimental evidence from Colombia

Angela Fonseca Galvis¹ Santiago Alonso¹ Sandra Polanía-Reyes²
Andrés Casas¹ Emile Bruneau³

¹Pontificia Universidad Javeriana, ²Universidad de Navarra, ³University of Pennsylvania

Fedesarrollo April 14, 2023

Prosocial behavior as a desired effect

- Theory shows it as key for political and economic development
 - ► reduces social inefficiency in the presence of incomplete contracts, Arrow 1971, Becker 1976, Akerlof 1984
 - ▶ solves collective action problems, Ostrom 1990
 - determines integration policies' success 3ie 2009, J-PAL 2013

Prosocial behavior as a desired effect

- Theory shows it as key for political and economic development
 - reduces social inefficiency in the presence of incomplete contracts,
 Arrow 1971, Becker 1976, Akerlof 1984
 - solves collective action problems, Ostrom 1990
 - determines integration policies' success 3ie 2009, J-PAL 2013
- Practice finds it highly valuable
 - determines economic behavior
 - ▶ improves efficiency, Heckman 2004, Miguel et al. 2012

Prosocial behavior as a desired effect

- Theory shows it as key for political and economic development
 - ► reduces social inefficiency in the presence of incomplete contracts, Arrow 1971, Becker 1976, Akerlof 1984
 - ▶ solves collective action problems, Ostrom 1990
 - determines integration policies' success 3ie 2009, J-PAL 2013
- Practice finds it highly valuable
 - determines economic behavior
 - ▶ improves efficiency, Heckman 2004, Miguel et al. 2012
- Empathy among citizens is a prime mechanism Borman et al 2001, Jolliffle & Farrington 2004, Williams et al 2014, Bauer & Freitag 2018

Example: Intra-group conflict and media interventions

- Communities in Colombia face an inflow of non-desirable individuals
 - Colombian Revolutionary Armed Forces (FARC) ex-combatants
 - Venezuelan migrants V Migrants Gallump 2019

Example: Intra-group conflict and media interventions

- Communities in Colombia face an inflow of non-desirable individuals
 - Colombian Revolutionary Armed Forces (FARC) ex-combatants
 - Venezuelan migrants V Migrants Gallump 2019
- There is descriptive experimental evidence
 - ▶ social psychology measures **alone** with ex combatants, ethnic groups in Europe Bruneau et al 2015, 2017 and migrants in US Moore-Berg et al 2021
 - Prosociality alone towards migrants in Europe
 - ▶ Prosociality within groups, exFarc, in Afghanistan Condra & Linardi 2019

Example: Intra-group conflict and media interventions

- Communities in Colombia face an inflow of non-desirable individuals
 - Colombian Revolutionary Armed Forces (FARC) ex-combatants
 - Venezuelan migrants V Migrants Gallump 2019
- There is descriptive experimental evidence
 - ▶ social psychology measures **alone** with ex combatants, ethnic groups in Europe Bruneau et al 2015, 2017 and migrants in US Moore-Berg et al 2021
 - Prosociality alone towards migrants in Europe
 - ▶ Prosociality within groups, exFarc, in Afghanistan Condra & Linardi 2019
- Little is known in the about how to promote pro-sociality towards these groups.
 - ▶ Info and prosociality towards refugees in Germany Grimalda et al 2018, in Uruguay Gandelman & Lamé 2021
 - ► Info/labels/forcing interaction and empathy in Israel and Palestina
 - ► Media/Edutainment interventions towards exFarc Bruneau et al 2022, migrants Rodriguez Chatruc & Rozo 2021

• What determines preferences for redistribution?

- What determines preferences for redistribution?
 - Income maximization

- What determines preferences for redistribution?
 - Income maximization
 - ★ Position on the income distribution Meltzer & Richard 1981

- What determines preferences for redistribution?
 - ▶ Income maximization
 - ★ Position on the income distribution Meltzer & Richard 1981
 - ★ Perceptions about own position on income distribution Cruces et al 2013

- What determines preferences for redistribution?
 - Income maximization
 - ★ Position on the income distribution Meltzer & Richard 1981
 - ★ Perceptions about own position on income distribution Cruces et al 2013
 - Social insurance
 - * Risk aversion Gärtner et al
 - Social preferences
 - ★ Ideology Fehr et al 2020, Alesina La Ferrara 2018
 - ★ Presence of migrants, diversity Alesina et al 2020

- What determines preferences for redistribution?
 - Income maximization
 - ★ Position on the income distribution Meltzer & Richard 1981
 - ★ Perceptions about own position on income distribution Cruces et al 2013
 - Social insurance
 - * Risk aversion Gärtner et al
 - Social preferences
 - ★ Ideology Fehr et al 2020, Alesina La Ferrara 2018
 - ★ Presence of migrants, diversity Alesina et al 2020
- Why is it important?
 - Influences the support for redistributive policies and support for specific groups

 Our mechanism: A Social psychologically informed media intervention - tailor-made design Williams et al 2014, Bauer & Freitag 2018, Bruneau et al. 2022

- Our mechanism: A Social psychologically informed media intervention - tailor-made design Williams et al 2014, Bauer & Freitag 2018, Bruneau et al. 2022
- Aiming to improve empathy (social psychology & neuroscience) towards Venezuelan migrants and exFarc via information and learning

- Our mechanism: A Social psychologically informed media intervention - tailor-made design Williams et al 2014, Bauer & Freitag 2018, Bruneau et al. 2022
- Aiming to improve empathy (social psychology & neuroscience) towards Venezuelan migrants and exFarc via information and learning
- A 5-minute media intervention from interviews conducted with ...
 - exFarc in a Colombian demobilization camp and non-FARC Colombians in neighbouring communities Bruneau et al. 2022
 - Venezuelan migrants in a slum Bogota and Colombians

- Our mechanism: A Social psychologically informed media intervention - tailor-made design Williams et al 2014, Bauer & Freitag 2018, Bruneau et al. 2022
- Aiming to improve empathy (social psychology & neuroscience) towards Venezuelan migrants and exFarc via information and learning
- A 5-minute media intervention from interviews conducted with ...
 - exFarc in a Colombian demobilization camp and non-FARC Colombians in neighbouring communities Bruneau et al. 2022
 - Venezuelan migrants in a slum Bogota and Colombians
- on prosociality (economics) and social biases (cognitive science)
 - ▶ lab-in-the-field economic experiment
 - underlying cognitive processing behind pro-social judgements with movement tracking Song & Nakayama 2009, Freeman et al 2011: velocity, curvature, postitions, changes of mind...

Venezuela's migrant crisis is the largest in Latin American history and the second largest worldwide UNHCR, 2022

Venezuela's migrant crisis is the largest in Latin American history and the second largest worldwide UNHCR, 2022

Venezuela's migrant crisis is the largest in Latin American history and the second largest worldwide UNHCR, 2022

A median Colombian vs. a Venezuelan migrant, an exFarc from a representative sample of **839 participants** in the main Colombian regions

 Using Internally Displaced People (IDP) and low income Colombians as comparison groups

Venezuela's migrant crisis is the largest in Latin American history and the second largest worldwide UNHCR, 2022

- Using Internally Displaced People (IDP) and low income Colombians as comparison groups
- Measure empathy AND prosociality (i.e. Altruism, Trust and preferences for redistribution)

Venezuela's migrant crisis is the largest in Latin American history and the second largest worldwide UNHCR, 2022

- Using Internally Displaced People (IDP) and low income Colombians as comparison groups
- Measure empathy AND prosociality (i.e. Altruism, Trust and preferences for redistribution)
- Effect of a Social psychologically informed media intervention on BOTH empathy and prosociality + social biases

Venezuela's migrant crisis is the largest in Latin American history and the second largest worldwide UNHCR, 2022

- Using Internally Displaced People (IDP) and low income Colombians as comparison groups
- Measure empathy AND prosociality (i.e. Altruism, Trust and preferences for redistribution)
- Effect of a Social psychologically informed media intervention on BOTH empathy and prosociality + social biases
- Panel connected to the WVS 2018, 2020, 2021 with COVID perceptions.
- Public policy implications: what determines support for policies that redistribute in favor of migrants and exFarc?

The lab: Activities and decisions

• One token is US\$2

The lab: Activities and decisions

- One token is US\$2
- Four Activities
 - 1 Dictator Game (DG): 5 tokens, 2 players
 - 2 Trust Game (TG): 3 tokens, 2 players
 - 3 Income Distribution Game Grimalda et al 2018, Almas et al 2020 with lottery (IDG-luck): 5 tokens, 3 players
 - Income Distribution Game with salary (IDG-merit): 5 tokens, 3 players

The lab: Activities and decisions

- One token is US\$2
- Four Activities
 - ① Dictator Game (DG): 5 tokens, 2 players
 - 2 Trust Game (TG): 3 tokens, 2 players
 - 3 Income Distribution Game Grimalda et al 2018, Almas et al 2020 with lottery (IDG-luck): 5 tokens, 3 players
 - Income Distribution Game with salary (IDG-merit): 5 tokens, 3 players
- Players will only know identity of other player in terms of three characteristics Cárdenas et al 2008, Glaeser et al 2000

Number of decisions in DG or TG

Player 1	Player 2 (randomly assigned)	Decisions
Any citizen	low SES (\leq 3)	
from the sample	\leq Incomplete Secondary education	4
of participants	None, IDP, ExFarc OR VenMigrant	

 P2 and P3 accepted to participate in the study and received a show up fee.

- P2 and P3 accepted to participate in the study and received a show up fee.
 - ▶ Activity 3 with luck P2 and P3 are hired to perform a task. Both receive the same payment. One player is randomly chosen to receive 5 extra tokens (for simplicity it will be always P2)

- P2 and P3 accepted to participate in the study and received a show up fee.
 - Activity 3 with luck P2 and P3 are hired to perform a task. Both receive the same payment. One player is randomly chosen to receive 5 extra tokens (for simplicity it will be always P2)
 - Activity 4- with merit Only P2 is hired to perform a task and received a 5-token payment. P3 did not have the opportunity to perform and did not received any extra payment.

- P2 and P3 accepted to participate in the study and received a show up fee.
 - Activity 3 with luck P2 and P3 are hired to perform a task. Both receive the same payment. One player is randomly chosen to receive 5 extra tokens (for simplicity it will be always P2)
 - Activity 4- with merit Only P2 is hired to perform a task and received a 5-token payment. P3 did not have the opportunity to perform and did not received any extra payment.
- P1 receives 5 tokens and her re-allocation decision ranges from 0 to 5 tokens

- P2 and P3 accepted to participate in the study and received a show up fee.
 - Activity 3 with luck P2 and P3 are hired to perform a task. Both receive the same payment. One player is randomly chosen to receive 5 extra tokens (for simplicity it will be always P2)
 - Activity 4- with merit Only P2 is hired to perform a task and received a 5-token payment. P3 did not have the opportunity to perform and did not received any extra payment.
- P1 receives 5 tokens and her re-allocation decision ranges from 0 to 5 tokens
- P2 and P3 know each other's three characteristics
- P1 knows P2 and P3's characteristics

- P2 and P3 accepted to participate in the study and received a show up fee.
 - Activity 3 with luck P2 and P3 are hired to perform a task. Both receive the same payment. One player is randomly chosen to receive 5 extra tokens (for simplicity it will be always P2)
 - Activity 4- with merit Only P2 is hired to perform a task and received a 5-token payment. P3 did not have the opportunity to perform and did not received any extra payment.
- P1 receives 5 tokens and her re-allocation decision ranges from 0 to 5 tokens
- P2 and P3 know each other's three characteristics
- P1 knows P2 and P3's characteristics
 - Activity 3 7 decisions
 - Activity 4 4 decisions:
 - None-None
 - None-IDP
 - None-ExFarc
 - None-Migrant

- Phase 1. P2 and P3 Recruitment and implementation:
 - Migrants, IDPs and low SES colombians who live in Ciudad Bolívar.
 - Ex combatants: referred by the Agency for Reincorporation and Normalization (ARN) office.

- Phase 1. P2 and P3 Recruitment and implementation:
 - Migrants, IDPs and low SES colombians who live in Ciudad Bolívar.
 - ► Ex combatants: referred by the Agency for Reincorporation and Normalization (ARN) office.
- Phase 2. P1 Sample: online panel
- Qualtrics software

- Phase 1. P2 and P3 Recruitment and implementation:
 - Migrants, IDPs and low SES colombians who live in Ciudad Bolívar.
 - Ex combatants: referred by the Agency for Reincorporation and Normalization (ARN) office.
- Phase 2. P1 Sample: online panel
- Qualtrics software
- P1 is randomly assigned to one treatment group

- Phase 1. P2 and P3 Recruitment and implementation:
 - Migrants, IDPs and low SES colombians who live in Ciudad Bolívar.
 - ► Ex combatants: referred by the Agency for Reincorporation and Normalization (ARN) office.
- Phase 2. P1 Sample: online panel
- Qualtrics software
- P1 is randomly assigned to one treatment group
- 70 minutes duration average

The field: procedures

- Phase 1. P2 and P3 Recruitment and implementation:
 - Migrants, IDPs and low SES colombians who live in Ciudad Bolívar.
 - Ex combatants: referred by the Agency for Reincorporation and Normalization (ARN) office.
- Phase 2. P1 Sample: online panel
- Qualtrics software
- P1 is randomly assigned to one treatment group
- 70 minutes duration average
- Two activity quizzes before each set of decisions

The field: procedures

- Phase 1. P2 and P3 Recruitment and implementation:
 - Migrants, IDPs and low SES colombians who live in Ciudad Bolívar.
 - ► Ex combatants: referred by the Agency for Reincorporation and Normalization (ARN) office.
- Phase 2. P1 Sample: online panel
- Qualtrics software
- P1 is randomly assigned to one treatment group
- 70 minutes duration average
- Two activity quizzes before each set of decisions
- Payment: 1 activity and 1 decision is randomly chosen for payment
 + show-fee + incentivized expectations: US\$20 average

Treatments

- No video
- Control video: exposure to a 5 min video on the coffee region in Colombia Bruneau et al 2022
- Video TE: exposure to a 5 min video that presents ex-combatants as similar as the median colombian Bruneau et al 2022
- Video TM: participants will be exposed to 5 min video that presents migrants as similar as the median colombian reproducing the same psychological barriers structure in Bruneau et al 2022

• Blatant dehumanization (refined, rational, primitive, aggressive)

- Blatant dehumanization (refined, rational, primitive, aggressive)
- Feeling thermometer

- Blatant dehumanization (refined, rational, primitive, aggressive)
- Feeling thermometer
- Meta-dehumanization (subhuman, animals, inferior, instinct driven)

- Blatant dehumanization (refined, rational, primitive, aggressive)
- Feeling thermometer
- Meta-dehumanization (subhuman, animals, inferior, instinct driven)
- Meta-perceptions

- Blatant dehumanization (refined, rational, primitive, aggressive)
- Feeling thermometer
- Meta-dehumanization (subhuman, animals, inferior, instinct driven)
- Meta-perceptions
- Collective blame

- Blatant dehumanization (refined, rational, primitive, aggressive)
- Feeling thermometer
- Meta-dehumanization (subhuman, animals, inferior, instinct driven)
- Meta-perceptions
- Collective blame
- Direct empathy (family related situations)
- Threat.

- Blatant dehumanization (refined, rational, primitive, aggressive)
- Feeling thermometer
- Meta-dehumanization (subhuman, animals, inferior, instinct driven)
- Meta-perceptions
- Collective blame
- Direct empathy (family related situations)
- Threat.
- Hypothetical hiring

- Blatant dehumanization (refined, rational, primitive, aggressive)
- Feeling thermometer
- Meta-dehumanization (subhuman, animals, inferior, instinct driven)
- Meta-perceptions
- Collective blame
- Direct empathy (family related situations)
- Threat.
- Hypothetical hiring
- Malleability

- Blatant dehumanization (refined, rational, primitive, aggressive)
- Feeling thermometer
- Meta-dehumanization (subhuman, animals, inferior, instinct driven)
- Meta-perceptions
- Collective blame
- Direct empathy (family related situations)
- Threat.
- Hypothetical hiring
- Malleability
- Quantity and quality of interactions Ben/Ner et al 2015
- Exposure to violence

- (incentivized) empirical expectations on altruism, trust and redistribution due to lottery and opportunity
- (incentivized) altruism, trust, trustworthiness, redistribution due to lottery and opportunity

- (incentivized) empirical expectations on altruism, trust and redistribution due to lottery and opportunity
- (incentivized) altruism, trust, trustworthiness, redistribution due to lottery and opportunity
- WVS trust, stereotypes, social capital

- (incentivized) empirical expectations on altruism, trust and redistribution due to lottery and opportunity
- (incentivized) altruism, trust, trustworthiness, redistribution due to lottery and opportunity
- WVS trust, stereotypes, social capital
- BRIQ Institute's reciprocity, altruism measures and empirical expectations

- (incentivized) empirical expectations on altruism, trust and redistribution due to lottery and opportunity
- (incentivized) altruism, trust, trustworthiness, redistribution due to lottery and opportunity
- WVS trust, stereotypes, social capital
- BRIQ Institute's reciprocity, altruism measures and empirical expectations
- Support for integration policies

Main Hypotheses

- H1: Citizens are less prosocial when interacting with a migrant or an ex-combatant
- H2: Exposure to the intervention improves citizens' empathy and prosociality

 Across all actors TE and TM increased transfers in DG and TG, increased reallocation to Migrants and ExFarc in IDG-luck and higher for transfers to Migrants (ExFarc) under the TM (TE) treatment

- Across all actors TE and TM increased transfers in DG and TG, increased reallocation to Migrants and ExFarc in IDG-luck and higher for transfers to Migrants (ExFarc) under the TM (TE) treatment
- TM improved trust towards all actors in TG

- Across all actors TE and TM increased transfers in DG and TG, increased reallocation to Migrants and ExFarc in IDG-luck and higher for transfers to Migrants (ExFarc) under the TM (TE) treatment
- TM improved trust towards all actors in TG
- In the IDG-luck, TM and TR increased reallocation to all actors without tokens regardless of the group.

- Across all actors TE and TM increased transfers in DG and TG, increased reallocation to Migrants and ExFarc in IDG-luck and higher for transfers to Migrants (ExFarc) under the TM (TE) treatment
- TM improved trust towards all actors in TG
- In the IDG-luck, TM and TR increased reallocation to all actors without tokens regardless of the group.
- Exposure to TM (TR) humanizes migrants (ExFarc), affected both attitudes (e.g., support for inclusive policies) and empathy measures

Preliminary Results: Dictator

Table: Dictator Game

VARIABLES	(1) All_Actors DG	(2) C12 DG	(3) D DG	(4) E DG	(5) R DG
T = 1, neutral video	0.053***	0.023	0.039*	0.078***	0.073***
1 — 1, neutral video	(0.016)	(0.016)	(0.020)	(0.021)	(0.020)
T = 2. TE	0.059***	0.031*	0.027	0.109***	0.068***
,	(0.016)	(0.017)	(0.021)	(0.022)	(0.021)
T = 3, TR	0.084***	0.047***	0.038*	0.091***	0.161***
	(0.016)	(0.016)	(0.020)	(0.021)	(0.020)
Constant	0.427***	0.425***	0.526***	0.373***	0.383***
	(0.011)	(0.011)	(0.014)	(0.015)	(0.014)
Observations	3,355	838	839	839	839
R-squared	0.035	0.011	0.006	0.035	0.071
Number of ID	839	838	839	839	839

Standard errors in parentheses

Note: The Dependent variable is the percentage distribution by the participant over five tokens. The treatment variable represent the video shown to the participant that corresponds to control(neutral video), ExFarc(TE) or Migrants(TR). Column 1 contains the total sample, Column 2,3,4 and 5 restricts the sample to each of the actors that interacts with the participant:None(C12),Displaced(D),ExFarc(E)and Migrant(R)

Fuente: (Invamer,2022)

^{***} p<0.01, ** p<0.05, * p<0.1

Preliminary Results: Trust

Table: Trust Game

VARIABLES	(1) All_Actors TG	(2) C12 TG	(3) D TG	(4) E TG	(5) R TG
T=1, neutral video	0.009 (0.020)	0.008 (0.023)	0.019 (0.022)	0.017 (0.027)	-0.009 (0.026)
T=2, TE	0.029 (0.020)	0.021 (0.024)	0.002	0.080***	0.012 (0.027)
T = 3, TR	0.085***	0.053**	0.047**	0.090***	0.149***
Constant	0.591*** (0.014)	0.578***	0.694***	0.530***	0.563***
Observations	3,356	839	839	839	839
R-squared Number of ID	0.026 839	0.007 839	0.007 839	0.019 839	0.053 839

Standard errors in parentheses *** p < 0.01. ** p < 0.05. * p < 0.1

Note: The Dependent variable is the percentage distribution by the participant over three tokens. The treatment variable represent the video shown to the participant that corresponds to control(neutral video), ExFarc(TE) or Migrants(TR). Column 1 contains the total sample, Column 2,3,4 and 5 restricts the sample to each of the actors that interacts with the participant:None(C12),Displaced(D),ExFarc(E)and Migrant(R) Fuente: (Invamer,2022)

Preliminary Results: Redistribution with Luck

Third-Party Redistribution Game with Luck

i iiiiu-r arty	Neuisti	ibution	Gaine w	ILII LUCK				
-	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	All_Actors	C12_C12	D_C12	E_C12	R_C12	C12_D	C12_E	C12_R
VARIABLES	TRGL	TRGL	TRGL	TRGL	TRGL	TRGL	TRGL	TRGL
T=1, neutral	-0.007	0.008	-0.029	-0.050***	-0.015	-0.005	0.019	0.023
	(0.012)	(0.015)	(0.018)	(0.018)	(0.018)	(0.017)	(0.019)	(0.019)
T = 2, TE	-0.002	-0.010	-0.031	-0.025	-0.027	0.008	0.055***	0.016
	(0.013)	(0.016)	(0.019)	(0.019)	(0.019)	(0.018)	(0.020)	(0.020)
T = 3, TR	0.014	0.006	-0.020	-0.011	-0.017	0.023	0.044**	0.074***
	(0.012)	(0.015)	(0.018)	(0.018)	(0.018)	(0.017)	(0.019)	(0.019)
Constant	0.460***	0.446***	0.455***	0.483***	0.466***	0.529***	0.411***	0.428***
	(800.0)	(0.010)	(0.012)	(0.012)	(0.013)	(0.012)	(0.013)	(0.013)
Observations	5,873	839	839	839	839	839	839	839
R-squared	0.004	0.002	0.004	0.010	0.002	0.003	0.011	0.019
Number of ID	839	839	839	839	839	839	839	839

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Note: The Dependent variable is the percentage distribution by the participant over five tokens. The treatment variables represent the video shown to the participant like control(tourism), Ex-Farc or Migrants). Column 1 contains the total sample, Column 2,3,4,5,6,7 and 8 restricts the sample to each of pairs of actors that interacts with the participant:None(C12),Displaced(D),ExFarc(E) and Migrant(R) Fuente: (Invamer,2022)

Preliminary Results: Redistribution with Merit

Table: Third-Party Redistribution Game with Merit

VARIABLES	(1) All_Actors TRGM	(2) C12_C12 TRGM	(3) C12 ₋ D TRGM	(4) C12_E TRGM	(5) C12_R TRGM
T=1, neutral video	0.020	-0.001	0.010	0.028	0.041*
	(0.020)	(0.022)	(0.022)	(0.022)	(0.022)
T = 2, TE	0.040*	0.023	0.030	0.062***	0.044*
	(0.020)	(0.023)	(0.023)	(0.023)	(0.023)
T = 3, TR	0.052***	0.023	0.035	0.054**	0.096***
	(0.020)	(0.022)	(0.022)	(0.022)	(0.022)
Constant	0.299***	0.292***	0.357***	0.267***	0.280***
	(0.014)	(0.016)	(0.015)	(0.015)	(0.015)
Observations	3,356	839	839	839	839
R-squared	0.010	0.002	0.004	0.012	0.022
Number of ID	839	839	839	839	839
	Ctandar	d errore in na	ronthococ		

Standard errors in parentheses

*** p < 0.01. ** p < 0.05. * p < 0.1

Note: The Dependent variable is the percentage distribution of the participant over five tokens. The treatment variable represent the video shown to the participant like control(tourism), Ex-Farc or Migrants). Column 1 contains the total sample, Column 2,3,4 and 5 restricts the sample to each of the pairs of actors that interacts with the participant:None(C12).Displaced(D).ExFarc(E)and Migrant(R) Fuente: (Invamer.2022)

What factors determine preferences for redistribution?

- We included a question of household income, as well as asked respondents to identify their position on the left-right scale.
- We asked questions about trust in different institutions, such as local and national governments, etc.

Table: Dictator Game-Heterogeneous effects with income variable

VARIABLES	(1) All_Actors DG	(2) All_Actors_controls DG	(3) C12 DG	(4) C12_controls DG	(5) D DG	(6) D_controls DG	(7) E DG	(8) E_controls DG	(9) R DG	(10) R_controls DG
				-						
T=1, neutral video	0.060***	0.047	0.028*	0.001	0.049**	0.026	0.087***	0.085**	0.075***	0.080**
	(0.016)	(0.029)	(0.017)	(0.030)	(0.020)	(0.037)	(0.022)	(0.040)	(0.021)	(0.038)
T = 2, TE	0.059***	0.007	0.028	-0.010	0.027	-0.061	0.111***	0.065	0.070***	0.035
	(0.017)	(0.031)	(0.017)	(0.032)	(0.021)	(0.040)	(0.023)	(0.042)	(0.022)	(0.041)
T = 3, TR	0.082***	0.064**	0.046***	0.012	0.038*	0.001	0.085***	0.083**	0.159***	0.164***
	(0.016)	(0.028)	(0.017)	(0.029)	(0.021)	(0.036)	(0.022)	(0.038)	(0.021)	(0.036)
income	0.010**	0.001	0.014***	0.002	0.018***	0.001	0.004	-0.001	0.005	0.003
	(0.005)	(0.009)	(0.005)	(0.009)	(0.006)	(0.011)	(0.007)	(0.012)	(0.006)	(0.011)
1.T#c.income		0.005		0.013		0.010		0.000		-0.002
		(0.012)		(0.012)		(0.015)		(0.016)		(0.015)
2.T#c.income		0.023**		0.017		0.039***		0.021		0.016
		(0.012)		(0.012)		(0.015)		(0.016)		(0.015)
3.T#c.income		0.008		0.016		0.017		0.000		-0.003
		(0.011)		(0.011)		(0.014)		(0.015)		(0.014)
Constant	-1.721	-1.743	-1.879	-1.770	-1.976	-1.979	-1.078	-1.168	-1.950	-2.058
	(1.141)	(1.145)	(1.188)	(1.194)	(1.465)	(1.467)	(1.547)	(1.555)	(1.488)	(1.496)
Observations	3,347	3,347	836	836	837	837	837	837	837	837
R-squared	0.108	0.113	0.071	0.074	0.100	0.108	0.101	0.103	0.134	0.136
Number of ID	837	837	836	836	837	837	837	837	837	837

Standard errors in parentheses

Note: This table shows 10 columns from the Dictator Game results applying Random effects using between regression estimators, The Dependent variable is the percentage distribution of the participant over five tokens. The treatment variable represent the video shown to the participant that corresponds to control(neutral video), ExFarc(TE) or Migrants(TR). All the coefficients are read against non video shown.Column 1 and 2 contains the total sample,the rest of them restricts the sample to each of the actors that interacts with the participant:None(C12),Displaced(D),ExFarc(E)and Migrant(R).For each sample segmentation all sociodemographic variables are included.

^{***} p<0.01, ** p<0.05, * p<0.1

Table: Trust Game-Heterogeneous effects with income variable

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	All_Actors	All_Actors_controls	C12	C12_controls	D	D_controls	E	E_controls	R	R_controls
VARIABLES	TG	TG	TG	TG	TG	TG	TG	TG	TG	TG
T=1, neutral video	0.014	-0.018	0.017	-0.010	0.021	0.008	0.028	-0.025	-0.008	-0.045
i = 1, ilcuttat video	(0.020)	(0.037)	(0.023)	(0.043)	(0.023)	(0.042)	(0.027)	(0.050)	(0.027)	(0.049)
T = 2, TE	0.020)	-0.035	0.020	-0.003	0.000	-0.013	0.082***	-0.037	0.021	-0.088*
1 – 2, 12	(0.021)	(0.039)	(0.025)	(0.046)	(0.024)	(0.045)	(0.029)	(0.053)	(0.028)	(0.052)
T = 3, TR	0.086***	0.047	0.053**	0.030	0.050**	0.029	0.088***	0.019	0.152***	0.110**
	(0.020)	(0.035)	(0.024)	(0.041)	(0.023)	(0.041)	(0.028)	(0.048)	(0.027)	(0.047)
income	0.013**	-0.003	0.006	-0.002	0.012*	0.007	0.017**	-0.011	0.015*	-0.006
	(0.006)	(0.011)	(0.007)	(0.013)	(0.007)	(0.012)	(0.009)	(0.015)	(800.0)	(0.014)
1.T#c.income		0.015		0.012		0.006		0.024		0.016
		(0.015)		(0.017)		(0.017)		(0.020)		(0.019)
2.T#c.income		0.030**		0.010		0.006		0.054***		0.049**
		(0.015)		(0.017)		(0.017)		(0.020)		(0.020)
3.T#c.income		0.018		0.011		0.010		0.032*		0.019
		(0.014)		(0.016)		(0.016)		(0.019)		(0.018)
Constant	-0.472	-0.396	1.517	1.619	0.540	0.618	-2.606	-2.488	-1.341	-1.333
	(1.436)	(1.441)	(1.681)	(1.691)	(1.650)	(1.660)	(1.957)	(1.960)	(1.906)	(1.910)
Observations	3,348	3,348	837	837	837	837	837	837	837	837
R-squared	0.085	0.089	0.082	0.083	0.057	0.057	0.095	0.104	0.117	0.124
Number of ID	837	837	837	837	837	837	837	837	837	837

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Note: The 10 columns shows the Trust Game results applying Random effects Models using between regression estimators, The Dependent variable is the percentage distribution of the participant to the treatment variable represent the video shown to the participant that corresponds to control(neutral video), ExFarc(TE) or Migrants(TR). All the coefficients are read against non video shown.Column 1 and 2 contains the total sample, the rest of them restricts the sample to each of the actors that interacts with the participant:None(C12),Displaced(D),ExFarc(E)and Migrant(R).For each sample segmentation all sociodemographic variables are included.

Table: Third-Party Redistribution Game with Luck-Heterogeneous effects with income variable

VARIABLES	(1) All_Actors TRGL	(2) All_Actors_controls TRGL	(3) C12_C12 TRGL	(4) C12_C12_controls TRGL	(5) D_C12 TRGL	(6) D_C12_controls TRGL	(7) E_C12 TRGL	(8) E_C12_controls TRGL	(9) R _s C12 TRGL	(10) R_C12_controls TRGL	(11) C12_D TRGL	(12) C12_D_controls TRGL	(13) C12_E TRGL	(14) C12_E_controls TRGL	(15) C12,R TRGL	(16) C12_R_controls TRGL
T=1, neutral video	-0.007 (0.012)	-0.025 (0.023)	0.009	0.005	-0.032* (0.018)	-0.071** (0.034)	-0.048*** (0.018)	-0.037 (0.034)	-0.014	-0.045 (0.034)	-0.005 (0.018)	0.002	0.020	-0.026 (0.035)	0.020	-0.003 (0.036)
T = 2, TE	-0.003	-0.032 (0.024)	-0.006	-0.016 (0.030)	-0.035*	-0.090**	-0.026 (0.019)	-0.037	-0.032	-0.063*	0.006	-0.018 (0.035)	0.052**	-0.002 (0.037)	0.018	-0.000 (0.038)
T = 3, TR	0.010	-0.000 (0.022)	0.006	-0.009 (0.027)	-0.030 (0.019)	-0.055* (0.032)	-0.013 (0.019)	-0.034 (0.032)	-0.023 (0.019)	-0.016 (0.033)	0.018	0.017 (0.031)	0.035*	0.025	(0.020)	0.070**
income	-0.002 (0.004)	-0.008 (0.007)	-0.002 (0.005)	-0.005 (0.008)	-0.007 (0.006)	-0.021** (0.010)	-0.001 (0.006)	-0.004 (0.010)	(0.001)	-0.005 (0.010)	-0.002 (0.006)	-0.004 (0.010)	(0.001)	-0.011 (0.010)	-0.002 (0.006)	-0.008 (0.010)
1.T#c.income		0.008		0.002 (0.011)		0.018 (0.013)		-0.006 (0.013)		0.015 (0.014)		-0.004 (0.013)		0.021 (0.014)		0.011 (0.014)
2.T#c.income		0.013 (0.009)		0.005 (0.011)		0.025* (0.014)		0.005 (0.014)		0.014 (0.014)		(0.011)		0.024* (0.014)		0.008 (0.014)
3.T#c.income Constant	1.047	0.004 (0.009) 1.067	1.217	0.007 (0.011) 1.255	2.518*	0.011 (0.013) 2.591*	0.974	0.010 (0.013) 0.985	0.641	-0.004 (0.013) 0.642	-0.080	0.000 (0.012) -0.152	0.348	0.004 (0.013) 0.396	1.708	0.003 (0.013) 1.756
Constant	(0.894)	(0.898)	(1.089)	(1.096)	(1.318)	(1.323)	(1.313)	(1.320)	(1.347)	(1.353)	(1.273)	(1.280)	(1.378)	(1.382)	(1.387)	(1.395)
Observations R-squared	5,859	5,859 0.072	837 0.061	837 0.061	837 0.069	837 0.073	837 0.069	837 0.071	837 0.060	837 0.064	837 0.065	837 0.066	837 0.090	837 0.096	837 0.085	837 0.086
Number of ID	837	837	837	837	837	837	837	837	837	837	837	837	837	837	837	837

*** p<0.01, ** p<0.05, * p<0.1

Note: The 16 columns shows Third-Party Redistribution Game with Luck results applying Random effects Models using between regression estimators, The Dependent variable is the percentage distribution of the participant over five tokens. The treatment variables represent the video shown to the participant like control(tourism), Ex-Farc or Migrants) All the coefficients are read against non video shown. Column 1 contains the total sample, Column 2,3,4,5,6,7 and 8 restricts the sample to each of pairs of actors that interacts with the participant:None(C12),Displaced(D),ExFarc(E)and Migrant(R).For each sample segmentation all sociodemographic variables are included.

Table: Third-Party Redistribution Game with Merit-Heterogeneous effects with income variable

VARIABLES	(1) All_Actors TRGM	(2) All_Actors_controls TRGM	(3) C12_C12 TRGM	(4) C12_C12_controls TRGM	(5) C12_D TRGM	(6) C12_D_controls TRGM	(7) C12_E TRGM	(8) C12_E_controls TRGM	(9) C12_R TRGM	(10) C12_R_controls TRGM
T = 1. neutral video	0.014	-0.033	-0.007	-0.060	0.005	-0.030	0.021	-0.018	0.036	-0.022
i = 1, ileutrai video	(0.020)	(0.036)	(0.023)	(0.042)	(0.022)	(0.041)	(0.021	(0.040)	(0.022)	(0.041)
T = 2, TE	0.042**	0.007	0.024	-0.001	0.035	0.000	0.061***	0.028	0.046*	-0.001
	(0.021)	(0.039)	(0.024)	(0.044)	(0.023)	(0.043)	(0.023)	(0.043)	(0.024)	(0.044)
T = 3, TR	0.044**	0.017	0.017	-0.026	0.029	-0.012	0.042*	0.034	0.087***	0.071*
	(0.020)	(0.035)	(0.023)	(0.040)	(0.022)	(0.039)	(0.022)	(0.039)	(0.023)	(0.039)
income	-0.021***	-0.033***	-0.022***	-0.036***	-0.025***	-0.038***	-0.021***	-0.030**	-0.015**	-0.029**
	(0.006)	(0.011)	(0.007)	(0.012)	(0.007)	(0.012)	(0.007)	(0.012)	(0.007)	(0.012)
1.T#c.income		0.022		0.025		0.016		0.019		0.027*
		(0.014)		(0.016)		(0.016)		(0.016)		(0.016)
2.T#c.income		0.016		0.011		0.016		0.015		0.022
		(0.015)		(0.017)		(0.016)		(0.016)		(0.017)
3.T#c.income		0.012		0.020		0.019		0.003		0.006
		(0.014)		(0.016)		(0.015)		(0.015)		(0.015)
Constant	3.824***	3.971***	3.171*	3.412**	4.623***	4.780***	4.554***	4.625***	2.949*	3.065*
	(1.415)	(1.421)	(1.624)	(1.631)	(1.585)	(1.594)	(1.583)	(1.591)	(1.603)	(1.609)
Observations	3,348	3,348	837	837	837	837	837	837	837	837
R-squared	0.098	0.100	0.089	0.092	0.091	0.093	0.085	0.087	0.117	0.121
Number of ID	837	837	837	837	837	837	837	837	837	837

Standard errors in parentheses

*** p<0.01 ** p<0.05 * p<0.1

The 10 columns shows the Third-Party Redistribution Game with Merit results applying Random effects Models using between regression estimators, The Dependent variable is the percentage distribution of the participant over five tokens. The treatment variable represent the video shown to the participant like control(tourism), Ex-Farc or Migrants. All the coefficients are read against non video shown. Column 1 an 2 contains the total sample, the rest of them restricts the sample to each of the pairs of actors that interacts with the participant:None(C12), Displaced(D), Ex-Farc(E) and Migrant(R). For each sample segmentation all sociodemographic variables are included.

Table: Dictator Game with Income Controls

	(1) All_Actors	(2) All_Actors_controls	(3) C12	(4) C12_controls	(5) D	(6) D_controls	(7) E	(8) E_controls	(9) R	(10) R_controls
VARIABLES	DG	DG	DG	DG	DG	DG	DG	DG	DG	DG
$T=1,\ neutral\ video$	0.053*** (0.016)	0.060*** (0.016)	0.023 (0.016)	0.029* (0.017)	0.039*	0.050**	0.078*** (0.021)	0.086*** (0.022)	0.073***	0.077*** (0.021)
T = 2, TE	0.059***	0.058***	0.031*	0.028	0.027	0.027	0.109***	0.110***	0.068***	0.070***
T = 3, TR	(0.016) 0.085***	(0.017) 0.079***	(0.017) 0.048***	(0.017) 0.043**	(0.021) 0.040**	(0.022)	(0.022) 0.092***	(0.023) 0.082***	(0.021) 0.162***	(0.022) 0.158***
Income: \$1 a \$2 mill.	(0.016)	(0.016) -0.004 (0.020)	(0.016)	(0.017) 0.007 (0.020)	(0.020)	(0.021) -0.003 (0.025)	(0.021)	(0.022) 0.008 (0.027)	(0.020)	(0.021) -0.027 (0.026)
Income: \$2 a \$3 mill.		0.000 (0.023)		0.014 (0.024)		0.014 (0.029)		-0.008 (0.031)		-0.019 (0.030)
Income: \$3 a \$5 mill.		0.013 (0.022)		0.026 (0.023)		0.030 (0.028)		0.016 (0.029)		-0.017 (0.028)
Income: \$5 a \$8 mill.		0.019 (0.025)		0.032 (0.026)		0.038 (0.033)		0.005 (0.034)		0.002 (0.033)
Income: > \$8 millones		0.085** (0.034)		0.119*** (0.036)		0.141*** (0.044)		0.044 (0.047)		0.038 (0.045)
Constant	0.427*** (0.011)	-1.631 (1.142)	0.425*** (0.011)	-1.780 (1.189)	0.526*** (0.014)	-1.844 (1.465)	0.373*** (0.015)	-1.013 (1.552)	0.383*** (0.014)	-1.883 (1.491)
Observations	3,351	3,347	837	836	838	837	838	837	838	837
R-squared Number of ID	0.036 838	0.113 837	0.011 837	0.078 836	0.006 838	0.106 837	0.035 838	0.102 837	0.071 838	0.138 837

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Note: This table shows 10 columns from the Dictator Game results applying Random effects using between regression estimators, The Dependent variable is the percentage distribution of the participant over five tokens. The treatment variable represent the video shown to the participant that corresponds to control(neutral video), ExFarc(TE) or Migrants(TR). All the coefficients are read against non video shown.Column 1 and 2 contains the total sample,the rest of them restricts the sample to each of the actors that interacts with the participant:None(C12),Displaced(D),ExFarc(E)and Migrant(R).For each sample segmentation there is a specification without controls and another with all the sociodemographic variables.

Table: Trust Game

	(1) All_Actors	(2) All_Actors_controls	(3) C12	(4) C12_controls	(5) D	(6) D_controls	(7) E	(8) E_controls	(9) R	(10) R_controls
VARIABLES	TG	TG	TG	TG	TG	TG	TG	TG	TG	TG
T=1,neutralvideo	0.009	0.013 (0.020)	0.008	0.017 (0.023)	0.019 (0.022)	0.020 (0.023)	0.017 (0.027)	0.027 (0.027)	-0.009 (0.026)	-0.010 (0.027)
T=2, TE	0.029 (0.020)	0.031 (0.021)	0.021 (0.024)	0.019 (0.025)	0.002 (0.023)	0.001 (0.024)	0.080*** (0.028)	0.082*** (0.029)	0.012 (0.027)	0.021 (0.028)
T = 3, TR	0.085***	0.079***	0.056**	0.045*	0.049**	0.043*	0.090***	0.082***	0.147***	0.145***
Income: \$1 a \$2 mill.	(0.020)	(0.020) 0.051** (0.024)	(0.023)	(0.024) 0.008 (0.029)	(0.022)	(0.023) 0.062** (0.028)	(0.027)	(0.028) 0.067** (0.034)	(0.026)	(0.027) 0.068** (0.033)
Income: \$2 a \$3 mill.		0.034		-0.025 (0.033)		0.047		0.067*		0.046
Income: \$3 a \$5 mill.		0.050* (0.027)		0.003 (0.032)		0.052* (0.031)		0.091**		0.056 (0.036)
Income: \$5 a \$8 mill.		0.026 (0.032)		-0.022 (0.037)		0.034 (0.037)		0.046 (0.043)		0.048 (0.042)
Income: > \$8 mill.		0.175*** (0.043)		0.135*** (0.050)		0.182*** (0.049)		0.179*** (0.059)		0.203*** (0.057)
Constant	0.591*** (0.014)	-0.326 (1.428)	0.578*** (0.016)	1.740 (1.674)	0.694*** (0.016)	0.659 (1.643)	0.530*** (0.019)	-2.481 (1.955)	0.563*** (0.018)	-1.223 (1.899)
Observations	3,352	3,348	838	837	838	837	838	837	838	837
R-squared	0.027	0.102	0.008	0.097	0.007	0.072	0.019	0.104	0.052	0.129
Number of ID	838	837	838	837	838	837	838	837	838	837

Standard errors in parentheses

Note: The 10 columns shows the Trust Game results applying Random effects Models using between regression estimators, The Dependent variable is the percentage distribution of the participant over three tokens. The treatment variable represent the video shown to the participant that corresponds to control(neutral video), ExFarc(TE) or Migrants(TR). All the coefficients are read against non video shown.Column 1 and 2 contains the total sample, the rest of them restricts the sample to each of the actors that interacts with the participant:None(C12),Displaced(D),ExFarc(E)and Migrant(R)For each sample segmentation there is a specification without controls and another with all the sociodemographic variables.

^{***} p<0.01, ** p<0.05, * p<0.1

Table: Third-Party Redistribution Game with Luck

(0.008) (0.007) (0.010) (1.003) (0.012) (1.322) (0.012) (1.317) (0.013) (1.381) (0.012) (1.270) (0.013) (1.381) (0.012) (1.270) (0.013) (1.382) (0.013	(16) C12 ₂ R ₂ controls TRGL	(15) C12,R TRGL	(14) C12_E_controls TRGL	(13) C12,E TRGL	(12) C12_D_controls TRGL	(11) C12,D TRGL	(10) R_C12_controls TRGL	(9) R _* C12 TRGL	(8) E_C12_controls TRGL	(7) E,C12 TRGL	(6) D_C12_controls TRGL	(5) D,C12 TRGL	(4) C12_C12_controls TRGL	(3) C12,C12 TRGL	(2) All_Actors_controls TRGL	(1) All_Actors TRGL	VARIABLES
T - 2. TE 0.012 0.013 0.015 0.																	
T - 2, TE .0222	0.019																T = 1, neutral video
Control Cont	(0.019)																
T - 3. TR 0.014 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.	0.019																T = 2, TE
1	(0.020)																
																	T = 3, TR
		(0.019)		(0.019)		(0.017)		(0.018)		(0.018)		(0.018)		(0.015)		(0.012)	
10 10 10 10 10 10 10 10	0.007																Income: \$1 a \$2 mill.
	(0.024)																
1.000 1.00	800.0																Income: \$2 a \$3 mill.
	(0.028)																
	-0.005																Income: \$3 a \$5 mill.
	(0.026)																
	0.004		0.007		-0.002		0.024		-0.007		-0.036		-0.008		-0.003		Income: \$5 a \$8 mill.
Contact Cont	(0.031)																
Constant 0.46(*** 1.025 0.44(*** 1.221 0.455*** 2.547* 0.423*** 0.004 0.466*** 0.500 0.529*** 0.127 0.411*** 0.390 0.230** (Doing) (Doing) (Doing) (Doing) (Doing) (1.023) (Doing) (1.022) (D.127) (D.131) (D	-0.014																Income: > \$8 mill.
(0.008) (0.807) (0.010) (1.003) (0.012) (1.322) (0.012) (1.317) (0.013) (1.311) (0.012) (1.270) (0.013) (1.381) (0.012) (1.270) (0.013) (1.382) (0.013	(0.042)		(0.042)		(0.038)		(0.041)		(0.040)		(0.040)		(0.033)		(0.027)		
Observations 5,866 5,859 838 837 838 8		0.428***															Constant
R-squared 0.004 0.070 0.002 0.061 0.004 0.070 0.010 0.070 0.003 0.062 0.003 0.067 0.011 0.092 0.021	(1.391)	(0.013)	(1.382)	(0.013)	(1.276)	(0.012)	(1.351)	(0.013)	(1.317)	(0.012)	(1.322)	(0.012)	(1.093)	(0.010)	(0.897)	(0.008)	
	837					838	837	838		838	837	838	837	838		5,866	Observations
	0.086	0.021	0.092	0.011	0.067	0.003	0.062	0.003	0.070		0.070	0.004	0.061	0.002	0.070	0.004	R-squared
Number of ID 836 837 838 837 838 837 838 837 838 837 838 837 838 837 838 837 838	837	838	837	838	837	838	837	838	837	838	837	838	837	838	837	838	Number of ID

*** p<0.01, ** p<0.05, * p<0.1

Note: The 16 columns shows the Third-Party Redistribution Game with Luck results applying Random effects Models using between regression estimators, The Dependent variable is the percentage distribution of the participant over five tokens. The treatment variables represent the video shown to the participant like control(tourism), Ex-Farc or Migrants) All the coefficients are read against non video shown. Column 1 contains the total sample, Column 2,3,4,5,6,7 and 8 restricts the sample to each of pairs of actors that interacts with the participant:None(C12),Displaced(D),ExFarc(E)and Migrant(R). For each sample segmentation there is a specification without controls and another with all the sociodemographic variables.

Table: Third-Party Redistribution Game with Merit

VARIABLES	(1) All_Actors TRGM	(2) All_Actors_controls TRGM	(3) C12_C12 TRGM	(4) C12_C12_controls TRGM	(5) C12_D TRGM	(6) C12_D_controls TRGM	(7) C12_E TRGM	(8) C12_E_controls TRGM	(9) C12_R TRGM	(10) C12_R_controls TRGM
T = 1, neutral video	0.020	0.013	-0.001	-0.009	0.010	0.005	0.028	0.020	0.041*	0.035
i = 1, ileutrai video	(0.020)	(0.020)	(0.022)	(0.023)	(0.022)	(0.022)	(0.022)	(0.022)	(0.022)	(0.023)
T = 2. TE	0.040*	0.042**	0.023	0.024	0.030	0.035	0.062***	0.061***	0.044*	0.047**
,	(0.020)	(0.021)	(0.023)	(0.024)	(0.023)	(0.023)	(0.023)	(0.023)	(0.023)	(0.024)
T = 3, TR	0.053***	0.042**	0.025	0.015	0.036*	0.026	0.054**	0.042*	0.095***	0.087***
	(0.020)	(0.020)	(0.022)	(0.023)	(0.022)	(0.023)	(0.022)	(0.023)	(0.022)	(0.023)
Income: \$1 a \$2 mill.		0.001		0.015		-0.019		-0.001		0.011
		(0.024)		(0.028)		(0.027)		(0.027)		(0.028)
Income: \$2 a \$3 mill.		-0.029		-0.029		-0.051		-0.034		-0.004
		(0.028)		(0.032)		(0.031)		(0.031)		(0.032)
Income: \$3 a \$5 mill.		-0.052*		-0.049		-0.075**		-0.054*		-0.029
		(0.027)		(0.031)		(0.030)		(0.030)		(0.030)
Income: \$5 a \$8 mill.		-0.075**		-0.069*		-0.115***		-0.070**		-0.044
		(0.032)		(0.036)		(0.035)		(0.035)		(0.036)
Income: > \$8 mill.		-0.083*		-0.082*		-0.088*		-0.095**		-0.066
		(0.043)		(0.049)		(0.048)		(0.048)		(0.048)
Constant	0.299***	3.813***	0.292***	3.139*	0.357***	4.689***	0.267***	4.524***	0.280***	2.900*
	(0.014)	(1.419)	(0.016)	(1.628)	(0.015)	(1.590)	(0.015)	(1.589)	(0.015)	(1.608)
Observations	3,352	3,348	838	837	838	837	838	837	838	837
R-squared	0.010	0.099	0.003	0.091	0.004	0.093	0.011	0.086	0.021	0.119
Number of ID	838	837	838	837	838	837	838	837	838	837

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: The 10 columns shows the Third-Party Redistribution Game with Merit results applying Random effects Models using between regression estimators, The Dependent variable is the percentage distribution of the participant over five tokens. The treatment variable represent the video shown to the participant like control(tourism), Ex-Farc or Migrants. All the coefficients are read against non video shown. Column 1 an 2 contains the total sample, the rest of them restricts the sample to each of the pairs of actors that interacts with the participant:None(C12), Displaced(D), Ex-Farc(E) and Migrant(R). For each sample segmentation there is a specification without controls and another with all the sociodemographic variables.

Concluding Remarks

- Both treatment videos increase altruism and trust in favor of Migrants and ExFarc
- In the two redistribution games the TE video increases reallocation towards ExFarc, and the TR video increases reallocation towards Migrants
- Higher income people transfer more in the DG and TG, but less in the redistribution game with merit.
- Next steps? Robustness checks, explore income-ideology-trust connection

Table: Dictator Game with Ideology

	(1) All_Actors	(2) All_Actors_	(3) C12	(4) C12_	(5) D	(6) D_	(7) E	(8) E_	(9) R	(10) R_
VARIABLES	DG	DG	DG	DG	DG	DG	DG	DG	DG	DG
T=1, neutral video	0.052*** (0.016)	0.051 (0.040)	0.021 (0.016)	0.001 (0.042)	0.038* (0.021)	0.030 (0.052)	0.079*** (0.021)	0.084 (0.053)	0.072*** (0.020)	0.097* (0.052)
T = 2, TE	0.056***	0.008	0.030*	0.005	0.023	-0.004	0.106***	0.066	0.065***	-0.030
	(0.016)	(0.042)	(0.017)	(0.044)	(0.021)	(0.055)	(0.022)	(0.056)	(0.021)	(0.054)
T = 3, TR	0.087***	0.080*	0.046***	0.051	0.045**	0.012	0.094***	0.117**	0.163***	0.146***
	(0.016)	(0.043)	(0.016)	(0.045)	(0.021)	(0.056)	(0.021)	(0.057)	(0.021)	(0.055)
Ideology_1	-0.006**	-0.008	0.000	-0.002	-0.001	-0.003	-0.018***	-0.019***	-0.004	-0.007
1.T#c.ldeology_1	(0.003)	(0.005) 0.000 (0.007)	(0.003)	(0.005) 0.004 (0.007)	(0.003)	(0.006) 0.001 (0.009)	(0.004)	(0.007) -0.001 (0.009)	(0.003)	(0.006) -0.005 (0.009)
2.T#c.ldeology_1		0.009 (0.007)		0.005 (0.008)		0.005 (0.010)		0.008		0.019*
3.T#c.ldeology_1		0.001 (0.008)		-0.001 (0.008)		0.006 (0.010)		-0.005 (0.010)		0.003 (0.010)
Constant	0.457*** (0.018)	0.469*** (0.029)	0.425*** (0.019)	0.436*** (0.030)	0.529*** (0.023)	0.544*** (0.038)	0.466*** (0.024)	0.469*** (0.039)	0.404*** (0.023)	0.423*** (0.037)
Observations	3,267	3,267	816	816	817	817	817	817	817	817
R-squared	0.044	0.046	0.010	0.011	0.007	0.008	0.069	0.071	0.074	0.082
Number of ID	817	817	816	816	817	817	817	817	817	817

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Note: This table shows 10 columns from the Dictator Game results applying Random effects using between regression estimators, The Dependent variable is the percentage distribution of the participant over five tokens. The treatment variable represent the video shown to the participant that corresponds to control(neutral video), ExFarc(TE) or Migrants(TR). All the coefficients are read against non video shown.Column 1 and 2 contains the total sample, the rest of them restricts the sample to each of the actors that interacts with the participant:None(C12),Displaced(D),ExFarc(E) and Migrant(R).For each sample restriction, there is a column showing the Ideology variable as control and other adding the interaction with the Treatment Variable. The Ideology is a auto report scale from 0 to 10 where 10 means to be more in right party and 0 to the left party.

Table: Trust Game with Ideology

VARIABLES	(1) All_Actors TG	(2) All_Actors_ TG	(3) C12 TG	(4) C12_ TG	(5) D TG	(6) D_ TG	(7) E TG	(8) E. TG	(9) R TG	(10) R ₋ TG
-										
T=1, neutral video	0.010 (0.020)	0.045 (0.050)	0.010 (0.024)	0.007 (0.059)	0.018 (0.023)	0.078 (0.057)	0.019 (0.027)	0.127* (0.068)	-0.005 (0.026)	-0.033
T = 2, TE	0.030	0.039	0.024)	0.059)	-0.000	0.010	0.027)	0.110	0.026)	(0.067) -0.012
1 – 2, 12	(0.021)	(0.053)	(0.025)	(0.063)	(0.024)	(0.061)	(0.028)	(0.072)	(0.028)	(0.070)
T = 3, TR	0.085***	0.116**	0.054**	0.089	0.048**	0.084	0.087***	0.126*	0.150***	0.165**
	(0.020)	(0.054)	(0.024)	(0.064)	(0.023)	(0.062)	(0.027)	(0.074)	(0.027)	(0.072)
ldeology_1	-0.004	-0.000	0.002	0.004	-0.003	0.002	-0.016***	-0.008	0.001	-0.001
	(0.003)	(0.006)	(0.004)	(0.007)	(0.004)	(0.007)	(0.005)	(0.009)	(0.004)	(0.008)
1.T#c.ldeology_1		-0.007		0.001		-0.011		-0.021*		0.005
		(0.009)		(0.010)		(0.010)		(0.012)		(0.012)
2.T#c.ldeology_1		-0.002		-0.005		-0.002		-0.005		0.005
A = "		(0.009)		(0.011)		(0.011)		(0.013)		(0.012)
3.T#c.Ideology_1		-0.006		-0.007		-0.007		-0.007		-0.003
ć	0.609***	(0.010)	0.505+++	(0.011)	0.709***	(0.011)	0.611***	(0.013)	0.550***	(0.013)
Constant	(0.022)	0.591*** (0.036)	0.565*** (0.027)	0.552*** (0.043)	(0.026)	0.681*** (0.042)	(0.031)	0.565*** (0.050)	0.553*** (0.030)	0.564*** (0.048)
	(0.022)	(0.030)	(0.021)	(0.043)	(0.020)	(0.042)	(0.031)	(0.000)	(0.030)	(0.040)
Observations	3,268	3,268	817	817	817	817	817	817	817	817
R-squared	0.027	0.028	0.007	0.008	0.008	0.010	0.035	0.039	0.052	0.053
Number of ID	817	817	817	817	817	817	817	817	817	817

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Note: The 10 columns shows the Trust Game results applying Random effects Models using between regression estimators, The Dependent variable is the percentage distribution of the participant over three tokens. The treatment variable represent the video shown to the participant that corresponds to control(neutral video), ExFarc(TE) or Migrants(TR). All the coefficients are read against non video shown. Column 1 and 2 contains the total sample, the rest of them restricts the sample to each of the actors that interacts with the participant:None(C12),Displaced(D),ExFarc(E)and Migrant(R). For each sample restriction, there is a column showing the Ideology variable as control and other adding the interaction with the Treatment Variable. The Ideology is a auto report scale from 0 to 10 where 10 means to be more in right party and 0 to the left party. Fuerte: (Invamer, 2022)

Table: Third-Party Redistribution Game with Luck Interacted with Ideology (Part 1)

and Ideology										
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
	All_Actors	All_Actors_	C12_C12	C12_C12_	D_C12	D_C12_	E_C12	E_C12_		
VARIABLES	TRGL	TRGL	TRGL	TRGL	TRGL	TRGL	TRGL	TRGL		
T=1, neutral video	-0.004	-0.008	0.010	0.018	-0.027	-0.060	-0.047***	0.050		
	(0.012)	(0.031)	(0.015)	(0.038)	(0.018)	(0.046)	(0.018)	(0.046)		
T = 2, TE	-0.002	-0.010	-0.010	0.023	-0.033*	-0.048	-0.023	0.041		
	(0.013)	(0.033)	(0.016)	(0.040)	(0.019)	(0.048)	(0.019)	(0.048)		
T = 3, TR	0.018	0.005	0.011	0.022	-0.017	-0.080	-0.006	0.010		
	(0.012)	(0.033)	(0.015)	(0.041)	(0.018)	(0.049)	(0.018)	(0.049)		
Ideology_1	-0.001	-0.002	0.001	0.003	0.003	-0.001	0.005	0.014**		
	(0.002)	(0.004)	(0.002)	(0.005)	(0.003)	(0.006)	(0.003)	(0.006)		
1.T#c.ldeology_1		0.001		-0.002		0.006		-0.019**		
		(0.005)		(0.007)		(0.008)		(0.008)		
2.T#c.ldeology_1		0.002		-0.006		0.003		-0.012		
		(0.006)		(0.007)		(0.009)		(800.0)		
3.T#c.ldeology_1		0.002		-0.002		0.012		-0.003		
		(0.006)		(0.007)		(0.009)		(0.009)		
Constant	0.465***	0.470***	0.440***	0.428***	0.437***	0.463***	0.457***	0.411***		
	(0.014)	(0.022)	(0.017)	(0.027)	(0.021)	(0.033)	(0.020)	(0.033)		
Observations	5,719	5,719	817	817	817	817	817	817		
R-squared	0.005	0.005	0.003	0.004	0.006	0.009	0.013	0.021		
Number of ID	817	817	817	817	817	817	817	817		
		Star	ndard errors	in parenthes	ses					

*** p<0.01, ** p<0.05, * p<0.1 Overcoming empathy failures

Table: Third-Party Redistribution Game with Luck Interacted with Ideology (Part

and Ideology										
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
	R_C12	R_C12_	C12_D	C12_D_	C12_E	C12_E_	C12_R	C12_R_		
VARIABLES	TRGL	TRGL	TRGL	TRGL	TRGL	TRGL	TRGL	TRGL		
T=1, neutral video	-0.012	-0.028	-0.005	0.032	0.021	-0.043	0.029	-0.028		
	(0.019)	(0.047)	(0.018)	(0.044)	(0.019)	(0.048)	(0.019)	(0.048)		
T = 2, TE	-0.026	-0.063	0.005	-0.014	0.053***	0.006	0.020	-0.017		
	(0.019)	(0.049)	(0.018)	(0.047)	(0.020)	(0.051)	(0.020)	(0.051)		
T = 3, TR	-0.014	-0.039	0.022	0.034	0.046**	0.017	0.082***	0.074		
	(0.019)	(0.050)	(0.018)	(0.048)	(0.019)	(0.052)	(0.019)	(0.052)		
Ideology_1	-0.002	-0.006	-0.005*	-0.004	-0.010***	-0.017***	0.000	-0.005		
	(0.003)	(0.006)	(0.003)	(0.006)	(0.003)	(0.006)	(0.003)	(0.006)		
1.T#c.ldeology_1		0.003		-0.007		0.012		0.011		
		(0.008)		(0.008)		(0.008)		(0.008)		
2.T#c.ldeology_1		0.007		0.004		0.009		0.007		
		(0.009)		(800.0)		(0.009)		(0.009)		
3.T#c.ldeology_1		0.005		-0.002		0.005		0.001		
		(0.009)		(0.009)		(0.009)		(0.009)		
Constant	0.476***	0.494***	0.557***	0.548***	0.462***	0.497***	0.423***	0.450***		
	(0.021)	(0.034)	(0.020)	(0.032)	(0.022)	(0.035)	(0.022)	(0.035)		
Observations	817	817	817	817	817	817	817	817		
R-squared	0.003	0.004	0.007	0.010	0.025	0.028	0.024	0.026		
Number of ID	817	817	817	817	817	817	817	817		
		S+	andard erro	rs in narenth	16565		7 4 3 7 4	. =		

Fedesarrollo

Table: Third-Party Redistribution Game with Merit and Ideology

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
VARIABLES	All_Actors TRGM	All_Actors_ TRGM	C12_C12 TRGM	C12_C12_ TRGM	C12_D TRGM	C12_D_ TRGM	C12_E TRGM	C12_E_ TRGM	C12_R TRGM	C12_R_ TRGM
	1110111		1110111	1110111	1110111	1110111	1110111	1110111	1110111	1110111
T=1, neutral video	0.026	-0.039	0.007	-0.077	0.018	-0.033	0.032	-0.014	0.046**	-0.030
	(0.020)	(0.050)	(0.023)	(0.057)	(0.022)	(0.056)	(0.022)	(0.056)	(0.023)	(0.057)
T = 2, TE	0.042**	-0.049	0.029	-0.080	0.032	0.005	0.064***	-0.033	0.044*	-0.089
	(0.021)	(0.053)	(0.024)	(0.060)	(0.023)	(0.059)	(0.023)	(0.059)	(0.023)	(0.060)
T = 3, TR	0.057***	-0.001	0.032	-0.039	0.042*	0.026	0.055**	0.027	0.098***	-0.019
	(0.020)	(0.054)	(0.023)	(0.061)	(0.022)	(0.060)	(0.022)	(0.060)	(0.023)	(0.061)
Ideology_1	0.005	-0.005	0.009**	-0.003	0.004	-0.000	-0.003	-0.011	0.010***	-0.004
	(0.003)	(0.006)	(0.004)	(0.007)	(0.004)	(0.007)	(0.004)	(0.007)	(0.004)	(0.007)
1.T#c.ldeology_1		0.012		0.016		0.010		0.009		0.014
		(0.009)		(0.010)		(0.010)		(0.010)		(0.010)
2.T#c.Ideology_1		0.017*		0.021*		0.005		0.019*		0.025**
		(0.009)		(0.011)		(0.010)		(0.010)		(0.011)
3.T#c.ldeology_1		0.011		0.013		0.003		0.005		0.022**
		(0.010)		(0.011)		(0.011)		(0.011)		(0.011)
Constant	0.268***	0.320***	0.239***	0.304***	0.331***	0.355***	0.278***	0.320***	0.225***	0.302***
	(0.022)	(0.036)	(0.026)	(0.041)	(0.025)	(0.040)	(0.025)	(0.040)	(0.025)	(0.041)
Observations	3,268	3,268	817	817	817	817	817	817	817	817
R-squared	0.013	0.018	0.010	0.015	0.006	0.007	0.013	0.017	0.030	0.039
Number of ID	817	817	817	817	817	817	817	817	817	817

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Note: The 10 columns shows the Allocation B Game results applying Random effects Models using between regression estimators, The Dependent variable is the percentage distribution of the participant over five tokens. The treatment variable represent the video shown to the participant like control(tourism), Ex-Farc or Migrants) All the coefficients are read against non video shown. Column 1 and 2 contains the total sample, the rest of them restricts the sample to each of the pairs of actors that interacts with the participant: None(C12), Displaced(D), ExFarc(E) and Migrant(R). For each sample restriction, there is a column showing the Ideology variable as control and other adding the interaction with the Treatment Variable. The Ideology is a autoreport scale from 0 to 10 where 10 means to be more in right party and 0 to the left party. Fuente: (Invamer. 2022)