MASTER MSS 1 Semestre 2

STATISTIQUE DES PROCESSUS

Conditionnement Dans Le Modèle Gaussien Rappels de cours et exercices corrigés

RAHMOUNE AHMED

Département de Mathématiques Faculté des Sciences Université M'hamed Bougara-Boumerdes-

> UMBB Mars 2022

Rappels de cours

Soit $Z_n = \begin{pmatrix} X_{n_X} \\ Y_{n_Y} \end{pmatrix}$ où $n = n_X + n_Y$ un vecteur **Gaussien sur** \mathbb{R}^n .

 Z_n est subdivisé en Z_n est subdivisé en Z_n jouant le rôle d'une variable explicative et Z_n prenant le rôle d'une variable à expliquée

Ainsi **L'espace** \mathbb{R}^n est considéré comme produit cartésien de deux espaces \mathbb{R}^{n_X} et \mathbb{R}^{n_Y} .

On a:
$$Z_n = \begin{pmatrix} X_{n_X} \\ Y_{n_Y} \end{pmatrix}$$
 est Gausienne de moyenne le vecteur $E(Z)_n = \begin{pmatrix} E(X_{n_X}) \\ E(Y_{n_Y}) \end{pmatrix}$ et de

On a: $Z_n = \begin{pmatrix} X_{n_X} \\ Y_{n_Y} \end{pmatrix}$ est Gausienne de moyenne le vecteur $E(Z)_n = \begin{pmatrix} E(X_{n_X}) \\ E(Y_{n_Y}) \end{pmatrix}$ et de matrice variance covariance notée $\Gamma_Z = \begin{bmatrix} \Gamma_X & \Gamma_0 \\ \Gamma_0^T & \Gamma_Y \end{bmatrix}$ où $\Gamma_0 = \Gamma_{X,Y} = E(X - E(X))(Y - E(X))$ $E(Y))^T$

on suppose que la matrice variance covariance du vecteur X_{n_X} notés Γ_X est définie positive(det $\Gamma_X > 0$)

Soit $x \in \mathbb{R}^{n_X}$

Alors:

(i) la loi de Y/X = x est une loi Gaussienne

$$\mathcal{N}(E(Y/X=x), \Gamma_Y^{X=x})$$

(ii) **D'espérance** E(Y/X = x)

définie:

$$E(Y/X = x) = E(Y) + a(x - E(X))$$
 où $a = \Gamma_0^T \cdot \Gamma_X^{-1}$

(iii) De matrice variance covariance notée $\Gamma_Y^{X=x}$ définie

$$\Gamma_Y^{X=x} = \Gamma_Y - \Gamma_0^T \cdot \Gamma_X^{-1} \Gamma_0$$

Remarques:

- 1) E(Y/X) comme variable aléatoire dépendante de X est de nature Gaussienne $\operatorname{car} X$ est Gaussien $\operatorname{et} aX + b$ est Gaussienne.
- 2) E(Y/X = x) coincide avec la **regression** de Y/X = x

Exercices Avec Corrections Détaillées

Exercice 1

$$n = n_X + n_Y = 1 + 1$$
 Soit $Z_{n=2} = \begin{pmatrix} X \\ Y \end{pmatrix}$ un vecteur Gaussien de moyenne $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$, de matrice variance covariance $\Gamma = \Gamma_Z = \begin{bmatrix} \Gamma_X & \Gamma_0 \\ \Gamma_0^T & \Gamma_Y \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$

- (i) Vérifier que l'est une matrice de variance covariance
- (ii) Déterminer les lois de X et Y.
- (iii) Est ce qu'ils sont indépendantes? justifier.
- (iv) Quelle est la loi deY/X = x
- (v) Donner sa moyenne (Calculer E(Y/X=x)) et particulièrement au pointx=-2. Que remarquez vous?
 - (vi) Donner sa variance var(Y/X = x)

Solution 1

- (i) Γ est une matrice carrée d'ordre 2, symétrique ($\Gamma = \Gamma^T$) et définie positve($\det \Gamma = 5 > 0$)
- (ii) comme le vecteur $Z = \begin{pmatrix} X \\ Y \end{pmatrix}$ est Gaussien il s'ensuit que les composantes Xet Y sont

aussi Gaussien.

X suit la loi
$$\mathcal{N}(\mu = -2, \sigma^2 = 2)$$

Y suit la loi
$$\mathcal{N}(\mu = 1, \sigma^2 = 3)$$

- (iii) X et Y ne sont pas indépendantes, en effet on a $cov(X,Y) = 0 \Leftrightarrow X$ indept àY comme cov(X,Y)=1 alors X et Y sont dépendants
- (iv) La la loi de Y/X = x est Gaussienne $\mathcal{N}(E(Y/X = x), \Gamma_V^{X=x})$
- (v) La moyenne

premiére écriture

$$\begin{split} E(Y/X=x) &= ax+b\\ \text{où } a &= \frac{cov(X,Y)}{var(X)} = \frac{1}{2}\\ \text{et } b &= E(Y) - aE(X) = 1+1=2 \end{split}$$

Ainsi

$$E(Y/X = x) = \frac{1}{2}x + 2$$

La deuxième écriture

On remplace b par sa valeur

$$E(Y/X = x) = ax + E(Y) - aE(X)$$

$$E(Y/X = x) = E(Y) + a(x - E(X))$$

Ainsi

$$E(Y/X = x) = 1 + \frac{1}{2}(x+2)$$

Sa valeur au point x = -2 est la valeur 1

Remarque:

D'une façon générale
$$E(Y/X = x)$$
 passe par le point $\begin{pmatrix} E(X) \\ E(Y) \end{pmatrix}$

(vi) de variance

$$\begin{split} &\Gamma_{Y}^{X=x} = \Gamma_{Y} - \Gamma_{0}^{T}.\Gamma_{X}^{-1}\Gamma_{0} \\ &var(Y/X=x) = var(Y) - \frac{cov^{2}(X,Y)}{Var(X)} \\ &var(Y/X=x) = 3 - \frac{(1)^{2}}{2} = \frac{5}{2} \end{split}$$

finalement

$$Y/X=x$$
 suit la loi $\mathcal{N}(E(Y/X=x)=\frac{1}{2}x+2,\Gamma_Y^{X=x}=\frac{5}{2})$

ainsi

Résultat finale

la loi conditionnelle Y/X est une loi Normale centré en $\frac{1}{2}X+2$ et de variance $\frac{5}{2}$

Exercice 2 Soit $Z = \begin{pmatrix} X \\ Y \end{pmatrix}$ un vecteur Gaussien de moyenne $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$, de matrice variance covariance $\Gamma = \Gamma_Z = \begin{bmatrix} \Gamma_X & \Gamma_0 \\ \Gamma_0^T & \Gamma_Y \end{bmatrix} = \begin{bmatrix} Var(X) & cov(X,Y) \\ cov(Y,X) & Var(Y) \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 2 & 9 \end{bmatrix}$

- (ii) Calculer sa moyenne au pointx (Calculer E(Y/X=x))
- (iii) Déduire la variable aléatoire E(Y/X). Donner sa loi.
- (iv) Evaluer sa variance var(Y/X = x)
- (v) Comparer les lois de Y/X = x des deux exercices 1 et 2. Que Remarquez vous?. justifier.

Solution 2

- (i) La la loi de Y/X = x est Gaussienne $\mathcal{N}(E(Y/X = x), \Gamma_Y^{X=x})$

(ii) de moyenne
$$E(Y/X=x)=ax+b$$
 où $a=\frac{cov(X,Y)}{var(X)}=\frac{2}{4}=\frac{1}{2}$

et
$$b = E(Y) - aE(X) = 3 - \frac{2}{2} = 2$$

donc $E(Y/X = x) = \frac{1}{2}x + 2$ ou d'une autre façon

$$E(Y/X = x) = E(Y) + a(x - E(X)) = 3 + \frac{1}{2}(x - 2)$$

(iii)
$$E(Y/X) = \frac{1}{2}X + 2$$

sa loi est Gaussienne de moyenne $\frac{1}{2}E(X)+2=3$

et de variance $\frac{1}{4}var(X) = 1$

Finalement E(Y/X) suit $\mathcal{N}(3,1)$

(iv)Evaluer var(Y/X = x)

On a la formule Générale

$$\Gamma_Y^{X=x} = \Gamma_Y - \Gamma_0^T \cdot \Gamma_X^{-1} \Gamma_0$$
$$var(Y/X = x) = var(Y) - \frac{cov^2(X, Y)}{Var(X)} = 9 - \frac{4}{4} = 8$$

Finalement

La la loi de Y/X=x est Gaussienne $\mathcal{N}(E(Y/X=x)=\frac{1}{2}x+2,\Gamma_Y^{X=x}=8)$

Ainsi

la loi conditionnelleY/X est une loi Normale centré en $\frac{1}{2}X+2$ et de variance 8

(v) Comparaison

En exercice 1 pour le couple

$$Z = \begin{pmatrix} X \\ Y \end{pmatrix} \text{ un vecteur Gaussien de moyenne } \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \text{ de matrice variance covariance}$$

$$\Gamma = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$

On a trouvé: la loi conditionnelleY/X est une loi Normale centré en

La moyenne
$$E(Y/X) = \frac{1}{2}X + 2$$

et de variance

La variance
$$Var(Y/X) = \frac{5}{2}$$

En exercice 2 pour le couple

Soit
$$Z=\begin{pmatrix}X\\Y\end{pmatrix}$$
 un vecteur Gaussien de moyenne $\begin{pmatrix}2\\3\end{pmatrix}$, de matrice variance covariance
$$\Gamma=\begin{bmatrix}4&2\\2&9\end{bmatrix}$$

On a trouvé: la loi conditionnelleY/X est une loi Normale centré en

La moyenne
$$E(Y/X) = \frac{1}{2}X + 2$$

et de variance

La variance
$$Var(Y/X) = 8$$

Remarque ils ont la **même** moyenne $E(Y/X) = \frac{1}{2}X + 2$ et de variance différentes.

justification: Voir leurs matrice variance covariance

$$\Gamma_1 = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}; \Gamma_2 = \begin{bmatrix} 4 & 2 \\ 2 & 9 \end{bmatrix} \text{ on constate le rapport } \frac{cov(X,Y)}{Var(X)} \text{ est le même}$$

$$a_1 = \frac{cov(X,Y)}{Var(X)} = \frac{1}{2}$$

$$a_2 = \frac{cov(X,Y)}{Var(X)} = \frac{2}{4}$$
et $b_1 = E(Y) - aE(X) = 1 + \frac{2}{2} = 2$

$$b_2 = E(Y) - aE(X) = 3 - \frac{2}{2} = 2$$

Exercice 3
$$Soit Z_3 = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} \text{ un vecteur Gaussien de moyenne } \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \text{ de matrice variance covariance }$$

$$\Gamma = \Gamma_{Z_3} = \begin{bmatrix} varX_1 & cov(X_1, X_2) & cov(X_1, X_3) \\ cov(X_2, X_1) & var(X_2) & cov(X_2, X_3) \\ cov(X_3, X_1) & cov(X_3, X_2) & var(X_3) \end{bmatrix} = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

$$1) \text{ Déterminer } E(X_1 / \begin{pmatrix} X_2 \\ X_3 \end{pmatrix})$$

Solution 3

 X_1 joue le rôle d'une variable à expliquer, elle est plongée dans \mathbb{R} (on a $n_1=1$) et $\begin{pmatrix} X_2 \\ X_3 \end{pmatrix}$ jouent le rôle d'une variable explicative plongée dans \mathbb{R}^2 (on a $n_2=2$)

La matrice variance covariance du vecteur
$$\begin{pmatrix} X_2 \\ X_3 \end{pmatrix}$$
 est $\Gamma_{(X_2,X_3)} = \begin{pmatrix} var(X_2) & cov(X_2,X_3) \\ cov(X_3,X_2) & var(X_3) \end{pmatrix} = \begin{pmatrix} var(X_2) & cov(X_2,X_3) \\ cov(X_3,X_2) & var(X_3) \end{pmatrix}$

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} (\det \Gamma_{(X_2, X_3)} = 4 - 1 = 3)$$

Ainsi
$$\Gamma_{(X_2,X_3)}^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

Ainsi d'aprés la formule*

$$E(X_1 / \begin{pmatrix} X_2 \\ X_3 \end{pmatrix}) = \begin{pmatrix} x_2 \\ x_3 \end{pmatrix}) = E(X_1) + a(\begin{pmatrix} x_2 \\ x_3 \end{pmatrix} - \begin{pmatrix} E(X_2) \\ E(X_3) \end{pmatrix}) \text{ où } a = \Gamma_0^T. \ \Gamma_{(X_2, X_3)}^{-1}$$

avec $\Gamma_0 = \Gamma_{(X_1,(X_2,X_3))} = (\Gamma_{(X_1,X_2)},\Gamma_{(X_1,X_3)})$ La matrice covariance entre variable expliquée X_1 et explicatives (X_2,X_3) qui n'est autre que la matrice composée de covariance entre X_1 et chacune des deux X_2 et X_3

$$\Gamma_0 = \mathbf{\Gamma}_{(X_1,(X_2,X_3))} = (\mathbf{\Gamma}_{(X_1,X_2)}, \mathbf{\Gamma}_{(X_1,X_3)}) = \begin{pmatrix} -1\\1 \end{pmatrix} \text{ainsi } \Gamma_0^T = \begin{pmatrix} -1\\1 \end{pmatrix}^T = \begin{pmatrix} -1\\1 \end{pmatrix}$$
Ainsi $a = \Gamma_0^T$. $\Gamma_{(X_2,X_3)}^{-1} = \frac{1}{3}(-1 - 1) \begin{pmatrix} 2 & -1\\-1 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 1 \end{pmatrix}$
puisque le vecteur initiale est centrée

on a:

$$E(X_1/\begin{pmatrix} x_2 \\ x_3 \end{pmatrix}) = \begin{pmatrix} -1 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} x_2 \\ x_3 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} = -x_2 + x_3$$

$$E(X_1/\begin{pmatrix} X_2 \\ X_3 \end{pmatrix}) = -X_2 + X_3$$

Exercice 4

Même question

pour

Soit
$$Z_3=\begin{pmatrix} X_1\\ X_2\\ X_3 \end{pmatrix}$$
 un vecteur Gaussien de moyenne $\begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}$, de matrice variance covariance $\Gamma=\Gamma_{Z_3}==\begin{bmatrix} \begin{bmatrix} 1 & 1 & 1\\ 1 & 3 & 2\\ 1 & 2 & 4 \end{bmatrix} \end{bmatrix}$
$$\det\begin{pmatrix} \begin{bmatrix} 1 & 1 & 1\\ 1 & 3 & 2\\ 1 & 2 & 4 \end{bmatrix})=5$$
 1) Déterminer $E(X_1/\begin{pmatrix} X_2\\ X_3 \end{pmatrix})$

2)Déterminer
$$E\left(\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} / X_3\right)$$

solution 4

1) Déterminer
$$E(X_1/\begin{pmatrix} X_2 \\ X_3 \end{pmatrix})$$
 $E(Y/X = x) = E(Y) + a(x - E(X))$ où $a = \Gamma_0^T . \Gamma_X^{-1} = \Gamma_{(Y,X)}^T . \Gamma_X^{-1}$ $Y = X_1$ $Y = X_1$ $X = \begin{pmatrix} X_2 \\ X_3 \end{pmatrix}$ $E(X_1/\begin{pmatrix} X_2 \\ X_3 \end{pmatrix}) = E(X_1) + a(\begin{pmatrix} X_2 \\ X_3 \end{pmatrix} - \begin{pmatrix} E(X_2) \\ E(X_3) \end{pmatrix}$ on a $\Gamma_0 = \Gamma_{(X_1,(X_2,X_3))} = (cov((X_1,X_2),cov(X_1,X_3)) = \begin{bmatrix} 1 & 1 \end{bmatrix}$ (matrice ligne) $\Gamma_X = \Gamma(X_2,X_3) = \begin{bmatrix} 3 & 2 \\ 2 & 4 \end{bmatrix}$ (det $\begin{bmatrix} 3 & 2 \\ 2 & 4 \end{bmatrix} = 8$) $\Gamma_X^{-1} = \begin{bmatrix} 3 & 2 \\ 2 & 4 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{3}{8} \end{bmatrix}$ $a = \Gamma_0 . \Gamma_X^{-1} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{3}{8} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & \frac{1}{8} \end{bmatrix}$ $E(X_1/\begin{pmatrix} X_2 \\ X_3 \end{pmatrix}) = E(X_1) + a(\begin{pmatrix} X_2 \\ X_3 \end{pmatrix}) - \begin{pmatrix} E(X_2) \\ E(X_3) \end{pmatrix} = 1 + \begin{bmatrix} \frac{1}{4} & \frac{1}{8} \end{bmatrix} \begin{bmatrix} X_2 + 1 \\ X_3 - 1 \end{bmatrix} = \frac{1}{4}X_2 + \frac{1}{8}X_3 + \frac{9}{8}$ au point $X_2 = x_2$ $X_3 = x_3$ $E(X_1/\begin{pmatrix} X_2 \\ X_3 = x_3 \end{pmatrix}) = \frac{1}{4}x_2 + \frac{1}{8}x_3 + \frac{9}{8}$ 2) Déterminer $E(\begin{pmatrix} X_1 \\ X_2 \end{pmatrix})/X_3$

Ona $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ variable à expliquée est dans un espace \mathbb{R}^2 et X_3 la variable explicative est dans une droite \mathbb{R}

D'aprés la formule

$$E(Y/X=x)=E(Y)+a(x-E(X))$$
 où $a=\Gamma_0^T.\Gamma_X^{-1}=\Gamma_{(Y,X)}^T.\Gamma_X^{-1}$

$$Y = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \text{ ainsi } E(Y) = \begin{pmatrix} E(X_1) \\ E(X_2) \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 et $X = X_3$ ainsi $E(X_3) = 1$ et $\Gamma_{X_3} = var(X_3) = 4$ $\Gamma_{X_2}^{-1} = \frac{1}{4}$ et

 $\Gamma_0 = \Gamma_{(Y,X)}$ la matrice covariance entre variable expliquée et variable explicative

$$\Gamma_{((X_1,X_2),X_3)} = (\Gamma_{(X_1,X_3)},\Gamma_{(X_2,X_3)}) = (1,2)$$

Ainsi
$$a = \Gamma_{((X_1, X_2), X_3)}^T \Gamma_{X_3}^{-1} = \frac{1}{4} (1, 2)^T = \begin{bmatrix} \frac{1}{4} & \frac{1}{2} \end{bmatrix}^T = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{2} \end{bmatrix}$$

$$E(\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} / X_3 = x_3) = E(\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}) + a(x_3 - E(X_3)) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \begin{bmatrix} \frac{1}{4} \\ \frac{1}{2} \end{bmatrix} (x_3 - 1) = \begin{bmatrix} \frac{1}{4}x_3 + \frac{3}{4} \\ \frac{1}{2}x_3 - \frac{3}{2} \end{bmatrix}$$

$$E(\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} / X_3) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \begin{bmatrix} \frac{1}{4} \\ \frac{1}{2} \end{bmatrix} (X_3 - 1) = \begin{bmatrix} \frac{1}{4}X_3 + \frac{3}{4} \\ \frac{1}{2}X_3 - \frac{3}{2} \end{bmatrix}$$

Exercice 5

Soit
$$X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$$
 un vecteur Gaussien de moyenne $E(X) = \begin{bmatrix} 3 \\ -2 \\ 1 \\ 4 \end{bmatrix}$ et de matrice variance

covariance
$$\Gamma_X = \left[egin{array}{ccccc} 2 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 2 \end{array} \right]$$

(i) Loi marginale de
$$\begin{bmatrix} X_1 \\ X_2 \\ X_4 \end{bmatrix}$$

- (ii) Calculer $E(X_1/X_2, X_4)$
- (iii) Calculer $Var((X_1/X_2, X_4)$
- (iv) Quelle est la loi de $X_1/X_2, X_4$

solution 5

La loi marginale du vecteur
$$\begin{bmatrix} X_1 \\ X_2 \\ X_4 \end{bmatrix}$$

$$\begin{bmatrix} X_1 \\ X_2 \\ X_4 \end{bmatrix} \text{ suit la loi } \mathcal{N}(\begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix})$$
 (ii) Calculer $E(X_1/X_2, X_4)$

On a la formule

$$E(X_1/X_2, X_4) = b + a \begin{bmatrix} X_2 - E(X_2) \\ X_4 - E(X_4) \end{bmatrix}$$

Avec $b = E(X_1)$

et
$$a = \Gamma_{X_1,(X_2,X_4)}^T \cdot \Gamma_{(X_2,X_4)}^{-1}$$
 avec $\Gamma_{X_1,(X_2,X_4)}^T = [cov((X_1,X_2),cov(X_1,X_4))]$ (matrice ligne) calcul

$$b = E(X_1) = 3$$

on a la matrice variance covariance globale
$$\Gamma_X = \left[egin{array}{ccccc} 2 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 2 \end{array} \right]$$

d'où
$$\Gamma_{(X_2,X_4)} = \begin{bmatrix} var(X_2) & cov(X_2,X_4) \\ cov(X_2,X_4) & var(X_4) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

ainsi

$$\Gamma_{(X_2, X_4)}^{-1} = \begin{bmatrix} var(X_2) & cov(X_2, X_4) \\ cov(X_2, X_4) & var(X_4) \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$

et

$$\Gamma^T_{X_1,(X_2,X_4)} = [cov((X_1,X_2),cov(X_1,X_4)] = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

Ainsi

$$a = \Gamma_{X_1,(X_2,X_4)}^T \cdot \Gamma_{(X_2,X_4)}^{-1} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$E(X_1/X_2,X_4) = b + a \begin{bmatrix} X_2 - E(X_2) \\ X_4 - E(X_4) \end{bmatrix} = 3 + \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} X_2 - (-2) \\ X_4 - 4 \end{bmatrix}$$

$$\left[\begin{array}{cc} 1 & 0 \end{array}\right] \left[\begin{array}{c} X_2 - (-2) \\ X_4 - 4 \end{array}\right] = X_2 + 2$$

$$E(X_1/X_2, X_4) = X_2 + 5$$

(iii)Calculer $Var((X_1/X_2, X_4))$

On a la formule (au début) du rappel

$$\Gamma_Y^{X=x} = \Gamma_Y - \Gamma_0^T \cdot \Gamma_X^{-1} \Gamma_0$$

avec les rôles $Y=X_1$ et $X=(X_2, X_4)$

$$\Gamma_{X_1}^{X_2,X_4} = Var((X_1/X_2,X_4) = \Gamma_{X_1} - \Gamma_{(X_1,(X_2,X_4))}^T \Gamma_{(X_2,X_4)}^{-1} \Gamma_{(X_1,(X_2,X_4))}^{-1}$$

où $\Gamma_0^T = \Gamma_{(X_1,(X_2,X_4)}^T$ est une $\$ matrice ligne

Comme la matrice globale des covariances est: $\Gamma_X = \begin{bmatrix} 2 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 2 \end{bmatrix}$

on a
$$\Gamma_{X_1} = \operatorname{var}(X_1) = 2$$

$$\Gamma_{(X_2, X_4)}^{-1} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$

$$\Gamma_{(X_1,(X_2,X_4)}^T = \Gamma_{(X_1,(X_2,X_4))} = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

$$\operatorname{Var}((X_1/X_2, X_4) = \Gamma_{X_1} - \Gamma_{(X_1, (X_2, X_4))}^T \Gamma_{(X_2, X_4)}^{-1} \Gamma_{(X_1, (X_2, X_4))} = 2 - \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1$$

$$Var((Y, (Y, Y, Y))) = 2 \cdot 1 \cdot 1$$

 $Var((X_1/\bar{X}_2, X_4) = \bar{2} - 1 = 1)$

(iv) Quelle est la loi de $X_1/X_2, X_4$

 $X_1/X_2, X_4$ suit une loi $\mathcal{N}(E(X_1/X_2X_4), Var((X_1/X_2, X_4)) = \mathcal{N}(X_2 + 5, 1)$

$$X_1/X_2, X_4$$
 suit la loi Normale $\mathcal{N}(X_2+5,1)$