

Grundzüge der Theoretischen Informatik, WS 21/22: Musterlösung zum 12. Übungsblatt

Julian Dörfler

Aufgabe A12.1 (Feedback Vertex Set) (4 Punkte)

Sei G = (V, E) ein gerichteter Graph. Dann ist ein k-Feedback Vertex Set (kurz k-FVS) eine Menge $F \subseteq V$ von k Knoten, so dass G nach Entfernen aller Knoten aus F azyklisch¹ ist.

Wir definieren nun

$$FVS = \{(G, k) \mid G \text{ enthält ein } k\text{-FVS}\}$$

Zeigen Sie, dass FVS NP-vollständig ist.

Hinweis: Reduzieren Sie von VertexCover.

Lösung A12.1 (Feedback Vertex Set) Wir beweisen zuerst FVS ∈ NP, indem wir einen Polynomialzeit-Verifizierer angeben.

Bei Eingabe (G, k) mit Zertifikat c prüfe, ob c eine Menge F von k Knoten aus G kodiert. Danach entferne alle Knoten aus F aus G und prüfe ob der resultierende Graph azyklisch ist. Wenn all dies erfüllt ist akzeptiere, ansonsten verwerfe.

All dies ist offensichtlich in Polynomialzeit möglich, also ist $\mathsf{FVS} \in \mathsf{NP}.$

Um nun zu zeigen, dass FVS NP-schwer ist, reduzieren wir VertexCover auf FVS.

Bei Eingabe (G, k) mit G = (V, E) konstruiere einen Graphen G' = (V, E') mit

$$E' = \{(u, v), (v, u) \mid \{u, v\} \in E\}$$

Danach gib (G', k) aus.

Diese Reduktion ist offensichtlich in Polynomialzeit möglich.

Falls nun $(G, k) \in \mathsf{VertexCover}$, dann enthält G ein $\mathsf{Vertexcover}$ C der Größe k. Wir behaupten nun, dass C ebenfalls ein k-Feedback Vertex Set für G' ist. Angenommen G' ohne C enthielte noch einen Zyklus , dann enthält G' ohne C insbesondere noch eine Kante $(u, v) \in E'$. Dies würde aber implizieren, dass $\{u, v\} \in E$, dies ist aber ein Widerspruch dazu, dass C ein $\mathsf{Vertexcover}$ für G ist. Also ist $(G', k) \in \mathsf{FVS}$.

Falls nun $(G', k) \in \mathsf{FVS}$, dann existiert ein k-FVS F für G'. Wir behaupten nun, dass F ebenfalls ein Vertexcover für G ist: Sei $\{u, v\} \in E$ beliebig. Dann ist $\{(u, v), (v, u)\}$ ein gerichteter Kreis in G'. Daher enthält F entweder u oder v. F ist also ein k-Vertexcover für G. Also ist $(G, k) \in \mathsf{VertexCover}$.

Da VertexCover NP-schwer ist, ist also auch FVS NP-schwer.

Da FVS sowohl in NP, als auch NP-schwer ist, ist FVS NP-vollständig.

¹d.h. G enthält keinen gerichteten Kreis mehr

Aufgabe A12.2 (Rucksackproblem) (4 Punkte)

Beim Rucksackproblem KNAPSACK ist das Ziel, gegeben ein Tupel von Elementen $M = (m_1, \ldots, m_n)$ mit Gewichten $W = (w_1, \ldots, w_n)$ und Werten $C = (c_1, \ldots, c_n)$, sowie zwei natürlichen Zahlen U und L, herauszufinden, ob es eine Teilmenge $M' = (m_{i_1}, \ldots, m_{i_\ell})$ von M gibt, so dass

$$\sum_{j=1}^{\ell} w_{i_j} \le U \text{ und } \sum_{j=1}^{\ell} c_{i_j} \ge L.$$

In diesem Fall ist die Instanz (M, W, C, U, L) lösbar.

Zeigen Sie, dass das folgende Problem NP-vollständig ist: Wir definieren nun das Problem:

$$\mathsf{KNAPSACK} = \{ (M, W, C, U, L) \mid (M, W, C, U, L) \text{ ist l\"osbar} \}.$$

- (a) Zeigen Sie, dass $\mathsf{KNAPSACK}$ in Zeit polynomiell in L und n von einer DTM entscheidbar ist.
- (b) Zeigen Sie, dass KNAPSACK NP-vollständig ist. *Hinweis:* Reduzieren Sie von SubsetSum.
- (c) Wieso widersprechen sich die beiden vorhergehenden Teilaufgaben nicht?

Lösung A12.2 (Rucksackproblem)

(a) Wir benutzen dynamische Programmierung:

Gegeben (M, W, C, U, L) erstelle eine Tabelle T, mit L+1 Zeilen und n+1 Spalten (jeweils 0-indiziert). Der Eintrag $T_{i,j}$ in der i-ten Zeile und j-ten Spalte soll hierbei den minimalen Wert enthalten, den $\sum_{k \in M'} w_k$ annehmen kann für Teilmengen $M' \subseteq \{1, \ldots, j\}$ mit $\sum_{k \in M'} c_k \geq i$. Die Einträge $T_{i,j}$ werden wie folgt berechnet:

$$T_{i,j} = \begin{cases} 0 & \text{falls } j = 0 \text{ und } i = 0\\ \infty & \text{falls } j = 0 \text{ und } i > 0\\ \min\{T_{i,j-1}, T_{i-c_j,j-1} + w_j\} & \text{falls } j > 0 \text{ und } c_j \le i\\ \min\{T_{i,j-1}, w_j\} & \text{sonst} \end{cases}$$

Nun ist $T_{L,n} \leq U$, genau dann, wenn $(M, W, C, U, L) \in \mathsf{KNAPSACK}$.

Wir verwenden in diesem Algorithmus ∞ symbolisch. Dies wird entweder extra behandelt in den arithmetischen Operationen oder durch eine große Zahl (mindestens U+1) ausgetauscht. Da zur Berechnung von $T_{i,j}$ nur auf $T_{i',j'}$ mit $i' \leq i$ und $j' \leq j$ zugegriffen werden muss, ist die Laufzeit polynomiell² in $L \cdot n$. Für die Korrektheit des Algorithmus gibt es nun zwei Fälle für eine Menge $M' \subseteq \{1, \ldots, j\}$:

 $^{^2}$ In der Praxis wäre dies direkt $O(L \cdot n)$, jedoch müssen wir bei einer DTM um die Kodierung der Tabelle Gedanken machen. Dies ist aber maximal ein polynomieller Overhead.

- $j \in M'$: Für $M'' = M' \setminus \{j\}$ gilt $\sum_{k \in M''} c_k = \sum_{k \in M'} c_k c_j \ge i c_j$ und $\sum_{k \in M'} w_k = \sum_{k \in M''} w_k + w_j$, somit ist M'' enthalten in den Mengen über die $T_{i-c_j,j-1}$ definiert wurde.
- $j \notin M'$: M' selbst ist nun schon in den Mengen enthalten über denen $T_{i,j-1}$ definiert wurde.

Es gibt auch eine alternative Lösung mit Laufzeit polynomiell in U und n: Wir benutzen erneut dynamische Programmierung:

Gegeben (M, W, C, U, L) erstelle eine Tabelle T, mit U+1 Zeilen und n+1 Spalten (jeweils 0-indiziert). Der Eintrag $T_{i,j}$ in der i-ten Zeile und j-ten Spalte soll hierbei den maximalen Wert enthalten, den $\sum_{k \in M'} c_k$ annehmen kann für Teilmengen $M' \subseteq \{1, \ldots, j\}$ mit $\sum_{k \in M'} w_k \leq i$. Die Einträge $T_{i,j}$ werden wie folgt berechnet:

$$T_{i,j} = \begin{cases} 0 & \text{falls } j = 0\\ \max\{T_{i,j-1}, T_{i-w_j, j-1} + c_j\} & \text{falls } j > 0 \text{ und } c_j \le i\\ T_{i,j-1} & \text{sonst} \end{cases}$$

Nun ist $T_{U,n} \geq L$, genau dann, wenn $(M, W, C, U, L) \in \mathsf{KNAPSACK}$.

Da zur Berechnung von $T_{i,j}$ nur auf $T_{i',j'}$ mit $i' \leq i$ und $j' \leq j$ zugegriffen werden muss, ist die Laufzeit polynomiell³ in $U \cdot n$. Für die Korrektheit des Algorithmus gibt es nun zwei Fälle für eine Menge $M' \subseteq \{1, \ldots, j\}$:

- $j\in M'$: Für $M''=M'\setminus\{j\}$ gilt $\sum_{k\in M''}w_k=\sum_{k\in M'}w_k-w_j\leq i-w_j$ und $\sum_{k\in M'}c_k=\sum_{k\in M''}c_k+c_j,$ somit ist M'' enthalten in den Mengen über die $T_{i-w_j,j-1}$ definiert wurde.
- $j \notin M'$: M' selbst ist nun schon in den Mengen enthalten über denen $T_{i,j-1}$ definiert wurde.
- (b) Wir reduzieren von SubsetSum: Sei (x_1, \ldots, x_n, b) eine Instanz von SubsetSum. Wir definieren $m_i = w_i = c_i = x_i$ für alle $i \in \{1, \ldots, n\}$ und setzen U = L = b.

Für eine Teilmenge $M' = (m_{i_1}, \dots, m_{i_\ell})$ von M sind Bedingungen

$$\sum_{j=1}^{\ell} w_{i_j} \le U \text{ und } \sum_{j=1}^{\ell} c_{i_j} \ge L.$$

mit dieser Wahl nun direkt äquivalent zu

$$\sum_{j=1}^{\ell} x_{i_j} = b$$

³In der Praxis wäre dies direkt $O(U \cdot n)$, jedoch müssen wir bei einer DTM um die Kodierung der Tabelle Gedanken machen. Dies ist aber maximal ein polynomieller Overhead.

Es folgt also sofort, dass

$$(x_1,\ldots,x_n,b)\in\mathsf{SubsetSum}\Leftrightarrow (M,W,C,U,L)\in\mathsf{KNAPSACK}$$
 .

Die Reduktion ist offensichtlich in polynomieller Zeit durchführbar und da SubsetSum NP-schwer ist, ist also KNAPSACK auch NP-schwer. Um Inklusion in NP zu zeigen, kann eine NTM einfach in Polynomialzeit eine Teilmenge $M' = (m_{i_1}, \ldots, m_{i_\ell})$ von M raten und dann verifizieren ob

$$\sum_{j=1}^{\ell} w_{i_j} \le U \text{ und } \sum_{j=1}^{\ell} c_{i_j} \ge L.$$

gelten.

Da KNAPSACK nun also NP-schwer und in NP enthalten ist, ist es ebenfalls NP-vollständig.

(c) Die beiden Teilaufgaben widersprechen sich nicht, da L (und auch alle anderen Zahlen der Eingabe) in Binärdarstellung gegeben werden. Somit kann L exponentiell in der Eingabelänge sein, womit der Algorithmus aus Teilaufgabe (a) exponentielle Laufzeit in der Eingabelänge hat.

Aufgabe A12.3 (3-Färbung) (4 Punkte)

Eine k-Knotenfärbung eines Graphen G=(V,E) ist eine Funktion $c:V\to\{1,2,\ldots,k\}$. Wir nennen eine solche Färbung gültig, wenn für alle $\{u,v\}\in E$ gilt $c(u)\neq c(v)$, also keine zwei benachbarten Knoten die gleiche Farbe zugewiesen bekommen. Wir sagen ein Graph G ist k-knotenfärbbar, wenn eine gültige k-Knotenfärbung c für G existiert.

Wir definieren

$$k$$
-Col = { $G \mid G \text{ ist } k$ -knotenfärbbar}

wobei wir im weiteren Verlauf der Aufgabe aber nur noch 3-Col betrachten.

Abbildung 1: Die Gadgetgraphen G_1, G_2 und G_3

- (a) Zeigen Sie 3-Col \in NP.
- (b) (0 Punkte) Machen Sie sich klar, dass in einem Dreieck, sobald zwei Knoten eine Farbe haben, der dritte Knoten eindeutig bestimmt ist. Somit können wir Farben eindeutig nach den drei Knoten aus G_1 als \top , \bot und z benennen.

- (c) Zeigen Sie, wie man mehrere Kopien von G_2 mit einer Kopie von G_1 verbinden kann, so dass alle Knoten mit Beschriftung x_i und $\overline{x_i}$ in allen gültigen Färbungen jeweils genau einen Knoten mit Farbe \bot und einen mit Farbe \top erhalten. Weiterhin sollte es für jede mögliche Kombination \bot und \top auf die x_i und $\overline{x_i}$ zu verteilen eine gültige Färbung geben.
- (d) Zeigen Sie, dass G_3 genau dann eine gültige 3-Knotenfärbung besitzt, wenn mindestens einer der Knoten ℓ_1, ℓ_2 und ℓ_3 eine andere Farbe zugewiesen bekommt als der Knoten \perp .
- (e) Zeigen Sie hiermit nun, dass 3-Col NP-schwer ist. *Hinweis*: Reduzieren Sie von 3-SAT.

Lösung A12.3 (3-Färbung)

(a) Wir zeigen dies mit einer NTM:

Bei Eingabe G=(V,E) rate eine 3-Knotenfärbung c für G. Dies können wir zum Beispiel durch Raten einer Liste der Länge |V| mit Einträgen aus $\{1,2,3\}$ machen. Nun akzeptiere, wenn für alle Kanten $\{u,v\}\in E$ gilt $c(u)\neq c(v)$ und verwerfe sonst.

Diese NTM ist offensichtlich Polynomialzeit beschränkt, es gilt also $3\text{-Col} \in \mathsf{NP}$.

(b) Allgemein: um eine k-Clique gültig zu k-knotenfärben müssen alle Knoten paarweise verschiedene Farben zugewiesen bekommen, Sobald also k-1 Knoten schon eine Farbe haben, so ist die Farbe eindeutig bestimmt.

Ein Dreieck ist nun einfach eine 3-Clique.

- (c) Wir verbinden G_1 mit n Kopien von G_2 indem wir alle Knoten die mit z beschriftet sind vereinigen. Da z immer die Farbe z hat, müssen x_i und $\overline{x_i}$ nun beide jeweils eine unterschiedliche der Farben \bot und \top zugewiesen bekommen. Insbesondere haben die Knoten x_i und $\overline{x_i}$ keine weiteren Kanten ausser dem Dreieck aus G_2 , d.h. beide Optionen sind möglich.
- (d) Zum analysieren von G_3 schauen wir uns den folgenden Teilgraphen H an:

Nehmen wir an I_1 und I_2 sind mit der gleichen Farbe (oBdA mit der Farbe 1) gefärbt. Dann haben A and B die Farben 2 und 3 in irgendeiner Reihenfolge. Somit muss O ebenfalls die Farbe 1, also die gleiche wie I_1 und I_2 haben.

Nehmen wir nun an, dass I_1 und I_2 unterschiedliche Farben haben (oBdA 1 und 2), dann gibt es gültige Färbungen für beliebige Farben am Knoten O. Dies beweisen wir durch explizites angeben der Färbungen:

Wenden wir dies nun doppelt auf G_3 an, wenn ℓ_1, ℓ_2 und ℓ_3 alle die Farbe \perp haben, sehen wir dass die folgenden Farben erzwungen sind:

Nun haben aber zwei benachbarte Knoten die gleiche Farbe, es kann also keine gültige Färbung geben. Falls nun aber mindestens einer von ℓ_1, ℓ_2 und ℓ_3 eine andere Farbe als \perp erhält, können wir die mittleren Knoten passend wählen um eine gültige Färbung zu erhalten.

(e) Wir reduzieren 3-SAT auf 3-Col.

Gegeben eine 3-CNF ϕ mit n Variablen und m Klauseln. Wir vereinigen nun eine Kopie von G_1 mit n Kopien von G_2 und m Kopien von G_3 , alle Knoten die mit \bot beschriftet sind, werden hierzu zu einem vereinigt, das gleiche gilt für alle Knoten die mit z beschriftet sind. Die Knoten mit Namen ℓ_1, ℓ_2 und ℓ_3 in der Kopie von G_3 , die zur Klausel $\ell_1 \lor \ell_2 \lor \ell_3$ in ϕ gehört, werden mit den entsprechenden Knoten aus G_2 vereinigt. Letztlich geben wir diesen kombinierten Graph G aus.

Diese Reduktion ist offensichtlich in Polynomialzeit möglich.

Sei nun $\phi \in 3$ -SAT. Dann gibt es eine erfüllende Belegung x_1, \ldots, x_n für ϕ . Färbe nun alle Knoten x_i mit \top und Knoten $\overline{x_i}$ mit \bot für Variablen x_i die mit 1 belegt werden und färbe nun alle Knoten x_i mit \bot und Knoten $\overline{x_i}$ mit \top für Variablen x_i die mit 0 belegt werden.

Es gibt nun nach Teilaufgabe (c) eine Möglichkeit die Kopien der Teilgraphen G_1 und G_2 zu färben und nach Teilaufgabe (d) einen Weg all die Teilgraphen G_3 korrekt zu 3-färben, der gesamte Graph ist also 3-färbbar.

Sei nun G 3-färbbar. Dann wähle als Belegung $x_i = 1$ wenn der Knoten x_i die gleiche Farbe wie der Knoten \top bekommt und $x_i = 0$ sonst. Nun muss in jeder Kopie des Teilgraphen G_3 nach Teilaufgabe (d) mindestens einer der Knoten ℓ_1, ℓ_2, ℓ_3 entweder

mit z oder mit \top gefärbt sein. Nach Teilaufgabe (c) ist hierbei die einzige Möglichkeit \top , somit erfüllt die Belegung alle Klauseln, es gilt also $\phi \in 3$ -SAT.

Da 3-SAT NP-schwer ist, ist also 3-Col ebenfalls NP-schwer.

Aufgabe A12.4 (co-NP) (4 Punkte)

Wir definieren

$$coNP = \{ L \mid \overline{L} \in NP \}.$$

- (a) Zeigen Sie: $co-NP \neq NP \Rightarrow P \neq NP$.
- (b) Eine Sprache L ist co-NP-vollständig wenn

$$L \in \text{co-NP} \land \forall L' \in \text{co-NP} : L' <_P L$$
.

Zeigen Sie, dass die folgende Sprache co-NP-vollständig ist:

 $\mathsf{TAUT} = \{ F \mid F \text{ ist eine tautologische Formel in disjunktiver Normalform} \}.$

Lösung A12.4 (co-NP)

- (a) Wir zeigen die Kontraposition. Sei also $\mathsf{P} = \mathsf{NP}$. Aus $L \in \mathsf{P} \Leftrightarrow \overline{L} \in \mathsf{P}$ folgt $\mathsf{co-NP} = \{L \mid \overline{L} \in \mathsf{NP}\} = \{L \mid \overline{L} \in \mathsf{P}\} = \{L \mid L \in \mathsf{P}\} = \{L \mid L \in \mathsf{NP}\} = \mathsf{NP} \,.$
- (b) Wir zeigen zunächst, dass $\overline{\mathsf{SAT}}$ co-NP-vollständig ist: Sei $L \in \mathsf{co-NP}$. Dann ist $\overline{L} \in \mathsf{NP}$. Aus der NP-Vollständigkeit von SAT folgt, dass $\overline{L} \leq_P \mathsf{SAT}$, und daher auch $L \leq_P \overline{\mathsf{SAT}}$. Außerdem ist $\overline{\mathsf{SAT}} \in \mathsf{co-NP}$, da $\mathsf{SAT} \in \mathsf{NP}$. Nun muss gezeigt werden, dass (1) $\overline{\mathsf{SAT}} \leq_P \mathsf{TAUT}$ und dass (2) $\mathsf{TAUT} \leq_P \overline{\mathsf{SAT}}$. Damit folgt aus der co-NP-Vollständigkeit von $\overline{\mathsf{SAT}}$, die co-NP-Vollständigkeit von $\overline{\mathsf{TAUT}}$.
 - (1) Wir geben die Reduktion an: Gegeben ein x, testen wir ob x eine CNF-Formel kodiert. Wenn nein, geben wir die trivial wahre DNF-Formel $(x_1 \vee \neg x_1)$ zurück. Ansonsten sei Φ die von x kodierte Formel. Wir negieren die Formel Φ und erhalten durch mehrmaliges benutzen des Satzes von de Morgan eine DNF-Formel (tausche \wedge und \vee und negiere alle Literale), die wir zurückgeben.

Sei nun $x \in \overline{\mathsf{SAT}}$. Wenn x keine Formel kodiert, gibt die Reduktion $(x_1 \lor \neg x_1) \in \mathsf{TAUT}$ zurück. Ansonsten kodiert x eine unerfüllbare Formel F. In diesem Fall ist das Komplement von F eine Tautologie, welche wir als DNF-Formel zurückgeben.

Sei $x \notin \overline{\mathsf{SAT}}$, d.h. $x \in \mathsf{SAT}$. Dann kodiert x eine erfüllbare CNF-Formel F. Dann ist die Negation von F aber keine Tautologie.

Da die Konstruktion (tausche \wedge und \vee und negiere alle Literale) in polynomieller Zeit durchführbar ist, folgt $\overline{\mathsf{SAT}} \leq_P \mathsf{TAUT}$.

(2) Analog zu (1): Wir negieren eine tautologische DNF-Formel und erhalten eine unerfüllbare CNF-Formel.