Assignment 2 AI2000

Foundations of Machine Learning

Darpan Gaur CO21BTECH11004

Problem 1

Margin boundaries are defined as:

$$\mathbf{w}^T \mathbf{x}_+ + b = 1$$
 (Positive Margin Boundary)
 $\mathbf{w}^T \mathbf{x}_- + b = -1$ (Negative Margin Boundary) (1)

Now, margin becomes:

$$\rho = (+1) * \frac{\mathbf{w}^T \mathbf{x}_+ + b}{\|\mathbf{w}\|} + (-1) * \frac{\mathbf{w}^T \mathbf{x}_- + b}{\|\mathbf{w}\|} = \frac{2}{\|\mathbf{w}\|}$$
(2)

To find maximum margin hyperplane, we need to maximize ρ , and solve:

$$\max_{\mathbf{w},b} \frac{2}{\|\mathbf{w}\|} \text{ or } \min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2$$
subject to $y_i(\mathbf{w}^T \mathbf{x_i} + b) \ge 1$, $\forall i, where \ y_i \in \{-1, +1\}$

If we replace $y_i \in \{-1, +1\}$ with $y_i \in \{\gamma, -\gamma\}$, then the margin boundaries will be:

$$\mathbf{w}^{T}\mathbf{x}_{+} + b = \gamma$$
 (Positive Margin Boundary)
 $\mathbf{w}^{T}\mathbf{x}_{-} + b = -\gamma$ (Negative Margin Boundary) (4)

Now, margin becomes:

$$\rho = \gamma * \frac{\mathbf{w}^T \mathbf{x}_+ + b}{\|\mathbf{w}\|} + (-\gamma) * \frac{\mathbf{w}^T \mathbf{x}_- + b}{\|\mathbf{w}\|} = \frac{2\gamma}{\|\mathbf{w}\|}$$
 (5)

To find maximum margin hyperplane, we need to maximize ρ , and solve:

$$\max_{\mathbf{w},b} \frac{2\gamma}{\|\mathbf{w}\|} \text{ or } \min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2$$
subject to $y_i(\mathbf{w}^T \mathbf{x_i} + b) \ge \gamma$, $\forall i, where \ y_i \in \{-\gamma, +\gamma\}$

Here, margin is scaled by γ . But our optimization problem remains the same, i,e, we need to maximize margin i.e, minimize $\|\mathbf{w}\|^2$. Hence solution for the maximum margin hyperplane remains the same.

Problem 2

The half-margin of maximum-margin SVM defined by ρ , i.e., $\rho = \frac{1}{\|\mathbf{w}\|}$. The optimization problem for maximum-margin SVM is:

$$\max_{\mathbf{w},b} \frac{1}{\|\mathbf{w}\|} \text{ or } \min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2$$
subject to $y_i(\mathbf{w}^T \mathbf{x_i} + b) > 1$, $\forall i, where \ y_i \in \{-1, +1\}$

$$L = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i [y_i(\mathbf{w}^T \mathbf{x_i} + b) - 1]$$

$$\tag{8}$$

Can solve for \mathbf{w} , b as function of α .

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \quad \Rightarrow \quad \mathbf{w} = \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}$$

$$\frac{\partial L}{\partial b} = 0 \quad \Rightarrow \quad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
(9)

Substitute \mathbf{w} and b back into L to get the dual optimization problem:

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x_{i}}^{T} \mathbf{x_{j}}$$
subject to $\alpha_{i} \geq 0, \quad \forall i$

$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
(10)

Say, (x_j, y_j) is the support vector, then $w^T x^j + b = y_j$

$$b = y_j - w^T x^j = y_j - \sum_{i=1}^n \alpha_i y_i x_i^T x_j$$

Taking sum by multiplying with $\alpha_j.y_j$ on both sides, we get:

$$\sum_{j=1}^{n} \alpha_j y_j b = \sum_{j=1}^{n} \alpha_j y_j^2 - \sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

$$\Longrightarrow \sum_{j=1}^{n} \alpha_j - \|\mathbf{w}\|^2 = 0 \implies \sum \alpha_j = \|\mathbf{w}\|^2$$

$$\Longrightarrow \sum_{j=1}^{n} \alpha_j = \frac{1}{\rho^2}$$
(11)

Problem 3

(a)
$$k(x,z) = k_1(x,z) + k_2(x,z)$$

Let k_1 has corresponding feature map ϕ_1 and k_2 has corresponding feature map ϕ_2 , Then, $k_1(x, z) = \langle \phi_1(x), \phi_1(z) \rangle$ and $k_2(x, z) = \langle \phi_2(x), \phi_2(z) \rangle$ For all x and z,

$$k(x,z) = k_1(x,z) + k_2(x,z) = \langle \phi_1(x), \phi_1(z) \rangle + \langle \phi_2(x), \phi_2(z) \rangle$$
$$k(x,z) = \langle \phi_1(x) + \phi_2(x), \phi_1(z) + \phi_2(z) \rangle$$

As k(x, z) is represented using inner product of concatenation of feature maps ϕ_1 and ϕ_2 , hence, k(x, z) is a valid kernel.

(b)
$$k(x,z) = k_1(x,z) \cdot k_2(x,z)$$

Let k_1 has corresponding feature map ϕ^1 and k_2 has corresponding feature map ϕ^2 , Then, $k_1(x,z) = \langle \phi^1(x), \phi^1(z) \rangle$ and $k_2(x,z) = \langle \phi^2(x), \phi^2(z) \rangle$ For all x and z, where $x, z \in \mathbb{R}^d$,

$$k(x,z) = k_1(x,z) \cdot k_2(x,z) = \langle \phi^1(x), \phi^1(z) \rangle \cdot \langle \phi^2(x), \phi^2(z) \rangle$$

$$k(x,z) = \left(\sum_{i=1}^d \phi_i^1(x) \phi_i^1(z) \right) \cdot \left(\sum_{j=1}^d \phi_j^2(x) \phi_j^2(z) \right)$$

$$k(x,z) = \sum_{i=1}^d \sum_{j=1}^d \phi_i^1(x) \phi_i^1(z) \phi_j^2(x) \phi_j^2(z)$$

$$k(x,z) = \sum_{i=1}^d \sum_{j=1}^d \langle \phi_i^1(x) \phi_j^2(x), \phi_i^1(z) \phi_j^2(z) \rangle$$

$$k(x,z) = \langle \phi(x), \phi(z) \rangle, \quad where \quad \phi(x) = \left[\phi_1^1(x)\phi_1^2(x), \phi_1^1(x)\phi_2^2(x), \dots, \phi_d^1(x)\phi_d^2(x) \right]$$

As k(x,z) is represented using inner product of feature maps ϕ , hence, k(x,z) is a valid kernel.

(c)
$$k(x,z) = h(k_1(x,z))$$

h is a polynomial function with positive coefficients. Say, h be a d degree polynomial function, then $h(k_1(x,z)) = \sum_{i=0}^d a_i k_1(x,z)^i$ $h(k_1(x,z))$ has terms products of form:

- product of kernels, i.e., $k_1(x,z)^i$, which is valid kernel by part (b).
- summation of kernels, i.e., $\sum_{i=0}^{d} a_i k_1(x,z)^i$, which is valid kernel by part (a).
- scaler multiplication of kernel, i.e., $c \cdot k_1(x, z)$.

• addition of constant term.

$$k(x,z) = c \cdot k_1(x,z) = c \cdot \langle \phi_1(x), \phi_1(z) \rangle = \langle \sqrt{c}\phi_1(x), \sqrt{c}\phi_1(z) \rangle$$

Therefore, k(x, z) is a valid kernel for scalar multiplication with c > 0 also given positive coefficients. Similarly for addition of constant it is valid.

Combining results of all four properties, $k(x,z) = h(k_1(x,z))$ is a valid kernel.

(d)
$$k(x,z) = \exp(k_1(x,z))$$

$$\exp(k_1(x,z)) = \sum_{i=0}^{\infty} \frac{k_1(x,z)^i}{i!}$$

 $\exp(k_1(x,z))$ has terms products of form:

- product of kernels, i.e., $k_1(x,z)^i$, which is valid kernel by part (b).
- summation of kernels, i.e., $\sum_{i=0}^{\infty} \frac{k_1(x,z)^i}{i!}$, which is valid kernel by part (a).
- scaler multiplication of kernel, i.e., $\frac{1}{i!} \cdot k_1(x,z)$.

In part (c), we shown that all above properties hold. Hence $k(x, z) = \exp(k_1(x, z))$ is a valid kernel.

(e)
$$k(x,z) = exp(-\frac{\|x-z\|^2}{\sigma^2})$$

 $exp(-\frac{\|x-z\|^2}{\sigma^2}) = exp(-\frac{(x-z)(x-z)^T}{\sigma^2}) = exp(-\frac{x^Tx - 2x^Tz + z^Tz}{\sigma^2})$
 $exp(-\frac{\|x-z\|^2}{\sigma^2}) = exp(-\frac{x^Tx}{\sigma^2}) \cdot exp(\frac{2x^Tz}{\sigma^2}) \cdot exp(-\frac{z^Tz}{\sigma^2})$
 $exp(-\frac{\|x-z\|^2}{\sigma^2}) = exp(-\frac{\|x\|^2}{\sigma^2}) \cdot exp(\frac{2x^Tz}{\sigma^2}) \cdot exp(-\frac{\|z\|^2}{\sigma^2})$

- $exp(-\frac{\|x\|^2}{\sigma^2})$ is a valid kernel by part (d).
- $exp(-\frac{||z||^2}{\sigma^2})$ is a valid kernel by part (d).
- $exp(\frac{2x^Tz}{\sigma^2})$ is a valid kernel by part (d).
- product of kernels, i.e., $exp(-\frac{\|x-z\|^2}{\sigma^2})$, which is valid kernel by part (b).

Combining results of all four properties, $k(x,z) = exp(-\frac{\|x-z\|^2}{\sigma^2})$ is a valid kernel.

Problem 4

Part (a)

Used linear kernel for SVM model, wiht deafult parameters.

- Accuracy of the model over entire test set is **0.97877**.
- Number of support vectors are 28.

Part (b)

Trained using first 50, 100, 200, 800 samples using linear kernel with default parameters.

Number of Samples	Accuracy	Number of Support Vectors
50	0.98113	2
100	0.98113	4
200	0.98113	8
800	0.98113	14

Part (c)

Used polynomial kernel with degee = q, C (regPar) = C, gamma = 1,and coef0 = 1. Training Error = 1 - Accuracy(train)

\mathbf{C}	Q=2	Q = 5
0.0001	0.008969	0.004484
0.001	0.004484	0.004484
0.01	0.004484	0.003844
1	0.003203	0.003203

Test Error = 1 - Accuracy(test)

C	Q = 2	Q = 5
0.0001	0.016509	0.018868
0.001	0.016509	0.021226
0.01	0.018868	0.021226
1	0.018868	0.021226

Number of Support Vectors

\mathbf{C}	Q=2	Q = 5
0.0001	236	26
0.001	76	25
0.01	34	23
1	24	21

- (i) False At C = 0.0001, training error at Q=2 is 0.008969, Q=5 is 0.004484.
- (ii) **True** At C = 0.001, number of support vectors at Q=2 is 76, Q=5 is 25.
- (iii) False At C=0.01 training error at Q=2 is 0.004484, Q=5 is 0.003844.
- (iv) False At C=1, test error at Q=2 is 0.018868, Q=5 is 0.021226.

Part (d)

Used RBF kernel with gamma = 1, C = C.

Table for training error (1-Accuracy(train)), test error (1 - Accuracy(test)), and number of support vectors.

\mathbf{C}	Training Error	Test Error	Number of Support Vectors
0.01	0.003844	0.023585	403
1	0.004484	0.021226	31
100	0.003203	0.018868	22
10^{4}	0.002562	0.023585	20
10^{6}	0.000641	0.023585	17

- Training error is decreasing with increase in C, and lowest (0.000641) for $C = 10^6$.
- Test error first decreases and then increases with increase in C, and lowest (0.018868) for C = 100.

Problem 5

Here training error = 1-accuracy(train) and test error = 1-accuracy(test).

(a): Standard run

Trained using linear kernel with default parameters.

- Train error 0.0.
- Test error **0.024**.
- Number of support vectors are 1084.

(b): Kernel variations

RBF kernel with gamma = 0.001.

• Train error 0.0.

- Test error 0.5.
- Number of support vectors are 6000.

Polynomial kernel with degree = 2, gamma = 1, coef0 = 1.

- Train error 0.0.
- Test error 0.021.
- Number of support vectors are 1755.

We get same train error for both kernels, but test error is higher for RBF kernel.