DataHow Coding Challenge

Presented by Adriana Mohap 31 October 2024

Task Description

- 1. Perform any data analysis you consider relevant.
- 2. Build any data processing pipeline and model of your choice.
- 3. Evaluate the performance of your model.
- 4. Prepare your code so that it can generate predictions and results on a holdout test set (which we will provide before the interview).

Data Description

- X:{name}: Represents measurements of process conditions, which are variables inherent to the process.
- W:{name}: Represents control conditions, which are measurements of the controlled parameters in the process.
- Z:{name}: Represents control setpoints, which are operator-defined control conditions that remain constant throughout the process.
- Y:{name}: Represents process attributes, which are measured at the end of the process.

Task 1: Data Analysis

- Load and preprocess data
- Aggregate descriptive statistics of all variables: mean, standard deviation, min and max values
- Plot the process variable distributions against the target value
- Analyze correlations between all variables

count	990.000000	990.000000	990.000000	990.000000	990.000000	990.00000	00 count	990.00006	990.00	0000 99	0.000000	990.000000
mean	13.425586	7.210130	7.406499	2.023753	3.271055	0.02882	22 mean	36.88346	6.94	1144	2.963942	5.250168
std	12.377215	6.399089	9.829110	1.809282	2.000817	0.06139	3 std	0.64996	0.32	6060	1.987881	3.084908
min	0.003421	0.00000	0.000000	0.000000	0.000000	0.00000	00 min	35.09096	9 6.02	5253	0.000000	0.000000
25%	3.704009	2.910059	0.147580	0.515444	1.580819	0.00000	25%	36.41414	6.69	6970	0.000000	0.000000
50%	8.991166	5.133313	4.136096	1.602359	3.488986	0.00723	34 50%	36.87878	88 6.92	9293	3.272727	6.696970
75%	21.486081	9.738994	9.719193	3.103277	4.843664	0.02461	LO 75%	37.40404	7.21	2121	4.606061	7.343434
max	61.242464	44.011310	62.089637	13.744255	8.078131	0.52569	95 max	37.98989	99 7.49	4949	5.979798	7.989899
	t Variables (Z: Z:FeedStart - 2		dRateGlc Z:Feed	RateGln Z:phSta	rt Z:phEnd	7·nhShift	Z:tempStart	Z:tempEnd Z	7.temnShift	Z:Stir	Z:D0	Z:ExpDuration
count				.000000 100.0000		100.000000	100.000000			100.000000	100.000000	
mean	2.000000	11.000000 4	1.000000 7	.000000 7.0000	6.500000	10.000000	37.000000	36.000000	10.000000	200.000000	55.000000	8.900000

2.348436

6.000000

8.000000

10.000000

12.000000

14.000000

0.577321

36.010101

36.510101

37.000000

37.489899

37.989899

X:Lysed

X:Lac

0.288660

6.005051

6.255051

6.500000

6.744949

6.994949

Control Variables (W:):

0.577321

35.010101

35.510101

36.000000

36.489899

36.989899

2.348436

6.000000

8.000000

10.000000

12.000000

14.000000

W:temp

W:pH

28.866041

150.505051

175.505051

200.000000

224.494949

249.494949

W:FeedGlc

14.433020

30.252525

42.752525

55.000000

67.247475

79.747475

W:FeedGln

2.032563

7.000000

7.000000

8.500000 10.000000

14.000000

Process Variables (X:):

0.710669

1.000000

1.750000

2.000000

2.250000

3.000000

1.214392

9.000000

10.000000

11.000000

12.000000

13.000000

std

min

50%

max

X:VCD

X:Glc

1.154642

2.020202

3.020202

4.000000

4.979798

5.979798

X:Gln

0.577321

6.010101

6.510101

7.000000

7.489899

7.989899

X:Amm

0.288660

6.505051

6.755051

7.000000

7.244949

7.494949

Correlation Heatmap of Process Variables

Task 2: Build Data Processing Pipeline and Model

- Build two functions for feature engineering:
 - engineer_features(process_data): X variables: mean, std, min, max; W variables: mean only; Z variables: initial values only
 - engineer_features_baseline(process_data): Baseline feature engineering using only mean values of X
 variables
- Random forest regression as model
 - o no assumptions about the underlying distribution of the data
 - works well with high dimensional data and collinearity in features

Task 3: Evaluate Performance

- Metrics over the Training and Test set:
 - R Squared
 - o RMSE
 - MAE
 - MAPE
- Visual Inspection of the predictions and the residuals

Top 10 Most Important Features

Future Work

- Gain domain knowledge about the process variables in order to adjust the selected features
- Create features that accurately reflect their relationships (interaction terms, growth rates etc.)
- Drop features that show high correlations
- Perform hyperparameter tuning; Cross-validation
- Use time variable as separate variable
- Select a model, which is able to capture time series data more accurately (for example LSTM or Recurrent networks) or use ensemble techniques