Computational Physics Exercise 5

Lukas Bayer & Jan Glowacz

December 9, 2020

1 Task 1

We were to dumb to solve this within 10 minutes and too lazy to spend more time on an exercise that is only worth 1 point.

2 Task 2

We implemented the Metropolis-Hastings algorithm described on the excercise sheet. Figures 1 and 2 show our test of the algorithm with $\delta = 2$, N = 64 and $\beta = 1$.

Figure 1: Magnetization m after each Metropolis-Hastings sweep

Since did not solve Task 1 we cannot compare our results to the analytical solution.

Figure 2: Energy E after each Metropolis-Hastings sweep

3 Task 3

$$\phi_i^{(2a)} = \frac{1}{2} \left(\phi_{2i}^{(a)} + \frac{1}{2} \left(\phi_{2i+1}^{(a)} + \phi_{2i-1}^{(a)} \right) \right) \tag{1}$$

But since we were tasked to set $\phi^{(a)} = 0$, we don't have any external field at any level. We may have misinterpreted the exercise.

Exercises Seite

Figure 3

4 Task 4

We implemented the multigrid algorithm described on the excercise sheet.

5 Task 5

We test our implementation of the multigrid algorithm with $N=64, \ \delta=2, \ \gamma=\{1,2\}, n_{\rm level}=3$ and $\nu_{\rm pre}=\nu_{\rm post}=\{4,2,1\}$. We use 500 thermalization and 5000 measurement steps. The results are shown in figures 4 and 5.

Figure 4: Magnetization m after each Multigrid sweep

We also calculate the normalized autocorrelation of the squared magnetization m^2 for the trajectories determined by the Metropolis-Hastings and Multigrid alogrithms. This is shown in figure 6.

Figure 5: Energy E after each Multigrid sweep

Figure 6: Autocorrelation of the squared magnetization m^2 determined by the Multigrid and Metropolis-Hastings algorithms