MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

11 avril 2014

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Complément p-valeur et liens entre tests et régions de confiance

Sélection de variables

Aujourd'hui

- 1 Tests asymptotiques
- 2 Tests d'adéquation
 - Tests de Kolmogorov-Smirnov
 - Tests du χ^2
- 3 Compléments : *p*-valeur et liens entre tests et régions de confiance
- 4 Sélection de variables
 - Backward Stepwise Regression
- 5 Test du χ^2 d'indépendance

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Complément p-valeur et liens entre tests et régions de confiance

Sélection de variables

Le test de Wald : hypothèse nulle simple

- <u>Situation</u> la suite d'expériences $(\mathfrak{Z}^n, \mathcal{Z}^n, \{\mathbb{P}^n_{\vartheta}, \vartheta \in \Theta\})$ est engendrée par l'observation Z^n , $\vartheta \in \Theta \subset \mathbb{R}$
- Objectif: Tester

$$H_0: \vartheta = \vartheta_0$$
 contre $\vartheta \neq \vartheta_0$.

■ Hyopthèse : on dispose d'un estimateur $\widehat{\vartheta}_n$ asymptotiquement normal

$$\sqrt{n}(\widehat{\vartheta}_n - \vartheta) \stackrel{d}{ o} \mathcal{N}(0, \nu(\vartheta))$$

en loi sous \mathbb{P}^n_{ϑ} , $\forall \vartheta \in \Theta$, où $\vartheta \leadsto v(\vartheta) > 0$ est continue.

■ Sous l'hypothèse (ici sous $\mathbb{P}^n_{\vartheta_0}$) on a la convergence

$$\sqrt{n} \frac{\widehat{\vartheta}_n - \vartheta_0}{\sqrt{\nu(\widehat{\vartheta}_n)}} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$$

en loi sous $\mathbb{P}^n_{\vartheta_0}$.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Complément p-valeur et liens entre tests et régions de confiance

Sélection de

Test de Wald (cont.)

- Remarque $\sqrt{v(\widehat{\vartheta}_n)} \leftrightarrow \sqrt{v(\vartheta_0)}$ ou d'autres choix encore...
- On a aussi

$$T_n = n \frac{(\widehat{\vartheta}_n - \vartheta_0)^2}{\nu(\widehat{\vartheta}_n)} \stackrel{d}{\longrightarrow} \chi^2(1)$$

sous $\mathbb{P}^n_{\vartheta_0}$.

■ Soit $q_{1-\alpha,1}^{\chi^2}>0$ tel que si $U\sim\chi^2(1)$, on a $\mathbb{P}\left[U>q_{1-\alpha,1}^{\chi^2}
ight]=\alpha$. On choisit la zone de rejet

$$\mathcal{R}_{n,\alpha}=\big\{T_n\geq q_{1-\alpha,1}^{\chi^2}\big\}.$$

Le test de zone de rejet $\mathcal{R}_{n,\alpha}$ s'appelle Test de Wald de l'hypothèse simple $\vartheta = \vartheta_0$ contre l'alternative $\vartheta \neq \vartheta_0$ basé sur $\widehat{\vartheta}_n$.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Compléments p-valeur et liens entre tests et régions de confiance

Sélection de variables

Propriétés du test de Wald

Proposition

Le test Wald de l'hypothèse simple $\vartheta=\vartheta_0$ contre l'alternative $\vartheta\neq\vartheta_0$ basé sur $\widehat{\vartheta}_n$ est

lacktriangle asymptotiquement de niveau lpha :

$$\mathbb{P}_{\vartheta_0}^n \left[T_n \in \mathcal{R}_{n,\alpha} \right] \to \alpha.$$

convergent ou (consistant). Pour tout point $\vartheta \neq \vartheta_0$

$$\mathbb{P}^n_{\vartheta}\left[T_n\notin\mathcal{R}_{n,\alpha}\right]\to 0.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Complément p-valeur et liens entre tests et régions de confiance

Sélection de variables

Test du χ²

Preuve

- Test asymptotiquement de niveau α par construction.
- Contrôle de l'erreur de seconde espèce : Soit $\vartheta \neq \vartheta_0$. On a

$$T_{n} = \left(\sqrt{n} \frac{\widehat{\vartheta}_{n} - \vartheta}{\sqrt{\nu(\widehat{\vartheta}_{n})}} + \sqrt{n} \frac{\vartheta - \vartheta_{0}}{\sqrt{\nu(\widehat{\vartheta}_{n})}}\right)^{2}$$
$$=: T_{n,1} + T_{n,2}.$$

On a $T_{n,1} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$ sous \mathbb{P}^n_{ϑ} et

$$T_{n,2} \xrightarrow{\mathbb{P}_{\vartheta}^n} \pm \infty \text{ car } \vartheta \neq \vartheta_0$$

Donc $T_n \xrightarrow{\mathbb{P}_{\vartheta}^n} +\infty$, d'où le résultat.

■ Remarque : si $\vartheta \neq \vartheta_0$ mais $|\vartheta - \vartheta_0| \lesssim 1/\sqrt{n}$, le raisonnement ne s'applique pas. Résultat non uniforme en le paramètre.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Compléments p-valeur et liens entre tests et régions de confiance

Sélection de variables

Test de Wald : hypothèse nulle composite

■ Même contexte : $\Theta \subset \mathbb{R}^d$ et on dispose d'un estimateur $\widehat{\vartheta}_n$ asymptotiquement normal :

$$\sqrt{n}(\widehat{\vartheta}_n - \vartheta) \stackrel{d}{\longrightarrow} \mathcal{N}(0, V(\vartheta))$$

où $V(\vartheta)$ est définie positive et continue en ϑ .

■ But Tester $H_0: \vartheta \in \Theta_0$ contre $H_1: \vartheta \notin \Theta_0$, où

$$\Theta_0 = \{\vartheta \in \Theta, \ g(\vartheta) = 0\}$$

et

$$g: \mathbb{R}^d \to \mathbb{R}^m$$

 $(m \le d)$ est régulière.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Complément p-valeur et liens entre tests et régions de confiance

Sélection de

Test de Wald cont.

■ Hypothèse : la différentielle (de matrice $J_g(\vartheta)$) de g est de rang maximal m en tout point de (l'intérieur) de Θ_0 .

Proposition

En tout point ϑ de l'intérieur de Θ_0 (i.e. sous l'hypothèse), on a, en loi sous \mathbb{P}^n_{ϑ} :

$$\sqrt{n}g(\widehat{\vartheta}_n) \stackrel{d}{\longrightarrow} \mathcal{N}(0, J_g(\vartheta)V(\vartheta)J_g(\vartheta)^T),$$

$$\begin{split} T_n &= n g(\widehat{\vartheta}_n)^T \Sigma_g(\widehat{\vartheta}_n)^{-1} g(\widehat{\vartheta}_n) \stackrel{d}{\longrightarrow} \chi^2(m) \\ où \Sigma_g(\vartheta) &= J_g(\vartheta) V(\vartheta) J_g(\vartheta)^T. \end{split}$$

■ Preuve : méthode « delta » multidimensionnelle.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Complément p-valeur et liens entre tests et régions de confiance

Sélection de variables

Test de Wald (fin)

Proposition

Sous les hypothèses précédentes, le test de zone de rejet

$$\mathcal{R}_{\alpha} = \left\{ T_n \ge q_{1-\alpha,m}^{\chi^2} \right\}$$

avec
$$\mathbb{P}\left[U>q_{1-\alpha,m}^{\chi^2}\right]=lpha$$
 si $U\sim\chi^2(m)$ est

■ Asymptotiquement de niveau α en tout point ϑ de (l'intérieur) de Θ_0 :

$$\mathbb{P}_{\vartheta}^{n}\left[T_{n}\in\mathcal{R}_{n,\alpha}\right]\to\alpha.$$

■ Convergent : pour tout $\vartheta \notin \Theta_0$ on a

$$\mathbb{P}_{\vartheta}^{n}\left[T_{n}\notin\mathcal{R}_{n,\alpha}\right]\to0.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Compléments p-valeur et liens entre tests et régions de confiance

Sélection de variables

Tests d'adéquation

 <u>Situation</u> On observe (pour simplifier) un *n*-échantillon de loi *F* inconnu

$$X_1, \ldots, X_n \sim_{\text{i.i.d.}} F$$

Objectif Tester

$$H_0: F = F_0$$
 contre $F \neq F_0$

où F_0 distribution donnée. Par exemple : F_0 gaussienne centrée réduite.

Il est très facile de construire un test asymptotiquement de niveau α . Il suffit de trouver une statistique $\phi(X_1, \ldots, X_n)$ de loi connue sous l'hypothèse.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmanr

Tests asymptotiques

Tests d'adéquation

Tests de Kolmogorov-Smirnov Tests du χ^2

Compléments p-valeur et liens entre tests et régions de confiance

Sélection de variables

Test du χ^2

Test d'adéquation : situation

Exemples : sous l'hypothèse

$$\phi_1(X_1,\ldots,X_n) = \sqrt{nX_n} \sim \mathcal{N}(0,1)$$
 $\phi_2(X_1,\ldots,X_n) = \sqrt{n} \frac{\overline{X}_n}{s_n} \sim \mathsf{Student}(n-1)$ $\phi_3(X_1,\ldots,X_n) = (n-1)s_n^2 \sim \chi^2(n-1).$

- Le problème est que ces tests ont une faible puissance : ils ne sont pas consistants.
- Pas exemple, si $F \neq$ gaussienne mais $\int_{\mathbb{R}} x dF(x) = 0$, $\int_{\mathbb{R}} x^2 dF(x) = 1$, alors

$$\mathbb{P}_{F}\left[\phi_{1}(X_{1},\ldots,X_{n})\leq x\right]\rightarrow\int_{-\infty}^{x}e^{-u^{2}/2}\frac{du}{\sqrt{2\pi}},\ x\in\mathbb{R}.$$

(résultats analogues pour ϕ_2 et ϕ_3).

■ La statistique de test ϕ_i ne caractérise pas la loi F_0 .

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

> Tests de Kolmogorov-Smirnov Tests du χ^2

Compléments p-valeur et liens entre tests et régions de

Sélection de variables

Test de Kolmogorov-Smirnov

Rappel Si la fonction de répartition F est continue,

$$\sqrt{n}\sup_{x\in\mathbb{R}}\left|\widehat{F}_n(x)-F(x)\right|\stackrel{d}{\longrightarrow}\mathbb{B}$$

où la loi de \mathbb{B} ne dépend pas de F.

Proposition (Test de Kolmogorov-Smirnov)

Soit $q_{1-\alpha}^{\mathbb{B}}$ tel que $\mathbb{P}\left[\mathbb{B}>q_{1-\alpha}^{\mathbb{B}}
ight]=lpha$. Le test défini par la zone de rejet

$$\mathcal{R}_{n,\alpha} = \left\{ \sqrt{n} \sup_{x \in \mathbb{R}} \left| \widehat{F}_n(x) - F_0(x) \right| \ge q_{1-\alpha}^{\mathbb{B}} \right| \right\}$$

est asymptotiquement de niveau $\alpha: \mathbb{P}_{F_0}\left[\widehat{F}_n \in \mathcal{R}_{n,\alpha}\right] \to \alpha$ et consistant :

$$\forall F \neq F_0 : \mathbb{P}_F \left[\widehat{F}_n \notin \mathcal{R}_{n,\alpha} \right] \to 0.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation Tests de

Kolmogorov-Smirnov Tests du χ^2

Compléments p-valeur et liens entre tests et régions de confiance

Sélection de variables

Test du Chi-deux

■ X variables qualitative : $X \in \{1, ..., d\}$.

$$\mathbb{P}\left[X=\ell\right]=p_{\ell},\;\ell=1,\ldots d.$$

- La loi de X est caratérisée par $\mathbf{p} = (p_1, \dots, p_d)^T$.
- Notation

$$\mathcal{M}_d = \{ \mathbf{p} = (p_1, \dots, p_d)^T, \ 0 \le p_\ell, \sum_{\ell=1}^d p_\ell = 1 \}.$$

■ Objectif $\mathbf{q} \in \mathcal{M}_d$ donnée. A partir d'un *n*-échantillon

$$X_1,\ldots,X_n\sim_{\mathsf{i.i.d.}}\mathbf{p},$$

tester H_0 : $\mathbf{p} = \mathbf{q}$ contre H_1 : $\mathbf{p} \neq \mathbf{q}$.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests l'adéquation Tests de

Smirnov Tests du χ^2

Compléments p-valeur et liens entre tests et régions de confiance

Sélection de variables

Construction « naturelle » d'un test

Comparaison des fréquences empiriques

$$\widehat{p}_{n,\ell} = rac{1}{n} \sum_{i=1}^n 1_{X_i = \ell}$$
 proche de $q_\ell, \ \ell = 1, \ldots, d$?

Loi des grands nombres :

$$(\widehat{p}_{n,1},\ldots,\widehat{p}_{n,d}) \stackrel{\mathbb{P}_{\mathbf{p}}}{\longrightarrow} (p_1,\ldots,p_d) = \mathbf{p}.$$

Théorème central-limite?

$$\mathbf{U}_n(\mathbf{p}) = \sqrt{n} \left(\frac{\widehat{p}_{n,1} - p_1}{\sqrt{p_1}}, \dots, \frac{\widehat{p}_{n,d} - p_d}{\sqrt{p_d}} \right) \stackrel{d}{\longrightarrow} ?$$

 Composante par composante oui. Convergence globale plus délicate. MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation Tests de Kolmogoroy-

Smirnov Tests du χ^2

Compléments : p-valeur et liens entre tests et régions de confiance

Sélection de variables

Statistique du Chi-deux

Proposition

Si les composantes de **p** sont toute non-nulles

lacktriangle On a la convergence en loi sous $\mathbb{P}_{\mathbf{p}}$

$$\mathbf{U}_n(\mathbf{p}) \stackrel{d}{\longrightarrow} \mathcal{N}(0, V(\mathbf{p}))$$

avec
$$V(\mathbf{p}) = \mathrm{Id}_d - \sqrt{\mathbf{p}} (\sqrt{\mathbf{p}})^T$$
 et $\sqrt{\mathbf{p}} = (\sqrt{p_1}, \dots, \sqrt{p_d})^T$.

De plus

$$\|\mathbf{U}_n(\mathbf{p})\|^2 = n \sum_{\ell=1}^d \frac{(\widehat{p}_{n,\ell} - p_\ell)^2}{p_\ell} \stackrel{d}{\longrightarrow} \chi^2(d-1).$$

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

> olmogorovmirnov ests du x^2

Tests du χ^2 Complément

Compléments : p-valeur et liens entre tests et régions de confiance

Sélection de variables

Preuve de la normalité asymptotique

■ Pour i = 1, ..., n et $1 \le \ell \le d$, on pose

$$Y_\ell^i = rac{1}{\sqrt{p_\ell}}ig(1_{\{X_i=\ell\}}-p_\ellig).$$

Les vecteurs $\mathbf{Y}_i = (Y_1^i, \dots, Y_d^i)$ sont indépendants et identiquement distribués et

$$\mathbf{U}_n(\mathbf{p}) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \mathbf{Y}_i,$$

$$\mathbb{E}\left[Y_{\ell}^{i}\right]=0,\,\mathbb{E}\left[(Y_{\ell}^{i})^{2}\right]=1-\rho_{\ell},\,\mathbb{E}\left[Y_{\ell}^{i}Y_{\ell'}^{i}\right]=-(\rho_{\ell}\rho_{\ell'})^{1/2}.$$

On applique le TCL vectoriel.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests symptotiques

ests 'adéquation

Smirnov
Tests du 2

Tests du χ^2

Compléments : p-valeur et liens entre tests et régions de confiance

Sélection de variables

Convergence de la norme au carré

- On a donc $\mathbf{U}_n(\mathbf{p}) \stackrel{d}{\longrightarrow} \mathcal{N}(0, V(\mathbf{p}))$.
- On a aussi

$$\|\mathbf{U}_n(\mathbf{p})\|^2 \stackrel{d}{\longrightarrow} \|\mathcal{N}(0, V(\mathbf{p}))\|^2$$
$$\sim \chi^2(\operatorname{Rang}(V(\mathbf{p})))$$

par Cochran : $V(\mathbf{p}) = \mathrm{Id}_d - \sqrt{\mathbf{p}} (\sqrt{\mathbf{p}})^T$ est la projection orthogonale sur $\mathrm{vect}\{\sqrt{\mathbf{p}}\}^\perp$ qui est de dimension d-1.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Smirnov
Tests du χ^2

Compléments
p-valeur et
liens entre

Sélection de

Test d'adéquation du χ^2

• « distance » du χ^2 :

$$\chi^2(\mathbf{p},\mathbf{q}) = \sum_{\ell=1}^d \frac{(p_\ell - q_\ell)^2}{q_\ell}.$$

• Avec ces notations $\|\mathbf{U}_n(\mathbf{p})\|^2 = n\chi^2(\widehat{\mathbf{p}}_n, \mathbf{p})$.

Proposition

Pour $\mathbf{q} \in \mathcal{M}_d$ le test simple défini par la zone de rejet

$$\mathcal{R}_{n,\alpha} = \left\{ n\chi^2(\widehat{\mathbf{p}}_n, \mathbf{q}) \ge q_{1-\alpha,d-1}^{\chi^2} \right\}$$

où $\mathbb{P}\left[U>q_{1-\alpha,d-1}^{\chi^2}\right]=lpha$ si $U\sim\chi^2(d-1)$ est asymptotiquement de niveau lpha et consistant pour tester

$$H_0: \mathbf{p} = \mathbf{q}$$
 contre $H_1: \mathbf{p} \neq \mathbf{q}$.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation Tests de Kolmogorov-

Tests du χ^2

Compléments : p-valeur et liens entre tests et régions de confiance

Sélection de variables

Exemple de mise en oeuvre : expérience de Mendel

Soit d = 4 et

$$\mathbf{q} = \left(\frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}\right).$$

Répartition observée : n = 556

$$\widehat{\mathbf{p}}_{556} = \frac{1}{556}(315, 101, 108, 32).$$

lacktriangle Calcul de la statistique du χ^2

$$556 \times \chi^2(\widehat{\mathbf{p}}_{556}, \mathbf{q}) = 0,47.$$

- On a $q_{95\%,3} = 0,7815$.
- **Conclusion**: Puisque 0,47 < 0,7815, on accepte l'hypothèse $\mathbf{p} = \mathbf{q}$ au niveau $\alpha = 5\%$.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

ests 'adéquation Tests de

Tests du χ^2

Compléments p-valeur et liens entre tests et régions de confiance

Sélection de variables

p-valeurs

Exemple : on observe

$$X_1, \dots, X_n \sim_{\text{i.i.d.}} \mathcal{N}(\mu, \sigma^2), \quad \sigma^2 \text{ connu.}$$

- Objectif: tester $H_0: \mu = 0$ contre $H_1: \mu \neq 0$.
- Au niveau $\alpha = 5\%$, on rejette si

$$\left|\overline{X}_{n}\right| > \frac{\phi^{-1}(1-\alpha/2)}{\sqrt{n}}$$

■ Application numérique : n=100, $\overline{X}_{100}=0.307$. On a $\frac{\phi^{-1}(1-0.05/2)}{\sqrt{100}}\approx 0.196$. on rejette l'hypothèse....

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmanr

Tests asymptotiques

Tests d'adéquation

Compléments : p-valeur et liens entre tests et régions de confiance

Sélection de variables

Test du χ^2

p-valeur (cont.)

- Et pour un autre choix de α ?. Pour $\alpha=0.01$, on a $\frac{\phi^{-1}(1-0.01/2)}{\sqrt{100}}\approx 0.256$. On rejette toujours... Pour $\alpha=0.001$, on a $\frac{\phi^{-1}(1-0.001/2)}{\sqrt{100}}\approx 0.329$. On accepte H_0 !
- Que penser de cette petite expérience?
 - En pratique, on a une observation une bonne fois pour toute (ici 0.307) et on « choisit » α ... comment?
 - On ne veut pas α trop grand (trop de risque), mais en prenant α de plus en plus petit... on va fatalement finir par accepter H_0 !
- Défaut de méthodologie inhérent au principe de Neyman (contrôle de l'erreur de première espèce).

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Compléments : p-valeur et liens entre tests et régions de confiance

Sélection de variables

p-valeur

• Quantité significative : non par le niveau α , mais le seuil de basculement de décision : c'est la p-valeur (p-value) du test.

Définition

Soit \mathcal{R}_{α} une famille de zones de rejet d'un test de niveau α pour une hypothèse H_0 contre une alternative H_1 . Soit Z l'observation associée à l'expérience. On a $Z \in \mathfrak{F}$ et $\mathcal{R}_0 = \mathfrak{F}$. On appelle p-valeur du test la quantité

$$p - valeur(Z) = \inf\{\alpha, Z \in \mathcal{R}_{\alpha}\}.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Compléments : p-valeur et liens entre tests et régions de confiance

Sélection de variables

Interprétation de la p-valeur

- Une grande valeur de la p-valeur s'interprète en faveur de ne pas vouloir rejeter l'hypothèse.
- « Ne pas vouloir rejeter l'hypothèse » peut signifier deux choses :
 - L'hypothèse est vraie
 - L'hypothèse est fausse mais le test n'est pas puissant (erreur de seconde espèce grande).
- Souvent : la p-valeur est la probabilité (sous H_0) que la statistique de test d'une expérience « copie » soit \geq à la statistique de test observée.
- **Exemple** du test du χ^2 et de l'expérience de Mendel

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Compléments : p-valeur et liens entre tests et régions de confiance

Sélection de variables

Expérience de Mendel et p-valeur

Sous l'hypothèse H_0

556 ·
$$\chi^2(\widehat{\mathbf{p}}_{556},\mathbf{q}) \sim \chi^2(3)$$
.

- Les données fournissent $556 \cdot \chi^2(\widehat{\mathbf{p}}_{556}, \mathbf{q}) = 0.47$ et $q_{1-0.05,3}^{\chi^2} = 0.7815$. On accepte l'hypothèse.
- Calcul de la *p*-valeur : pour $Z \sim \chi^2(3)$

$$p - \text{valeur} = \mathbb{P}_{\mathbf{q}} [Z > 0.47] = 0.93.$$

La « pratique » invite à ne pas rejeter H_0 .

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Compléments: p-valeur et liens entre tests et régions de confiance

Sélection de

Régression linéaire multiple (=Modèle linéaire)

■ La fonction de régression est $r(\vartheta, \mathbf{x}_i) = \vartheta^T \mathbf{x}_i$. On observe

$$(\mathbf{x}_1, Y_1), \ldots, (\mathbf{x}_n, Y_n)$$

avec

$$Y_i = \vartheta^T \mathbf{x}_i + \xi_i, \quad i = 1, \dots, n$$

où
$$\vartheta \in \Theta = \mathbb{R}^k$$
, $\mathbf{x}_i \in \mathbb{R}^k$.

Matriciellement

$$\mathbf{Y} = \mathbb{M}\vartheta + \boldsymbol{\xi}$$

avec $\mathbf{Y} = (Y_1, \dots, Y_n)^T$, $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)^T$ et \mathbb{M} la matrice $(n \times k)$ dont les lignes sont les \mathbf{x}_i .

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Compléments : p-valeur et liens entre tests et régions de confiance

Sélection de

EMC en régression linéaire multiple

Estimateur des moindres carrés en régression linéaire multiple : tout estimateur $\widehat{\vartheta}_n^{\,mc}$ satisfaisant

$$\sum_{i=1}^{n} (Y_i - (\widehat{\vartheta}_n^{mc})^T \mathbf{x}_i)^2 = \min_{\vartheta \in \mathbb{R}^k} \sum_{i=1}^{n} (Y_i - \vartheta^T \mathbf{x}_i)^2.$$

■ En notations matricielles :

$$\begin{split} \|\boldsymbol{\mathsf{Y}} - \mathbb{M}\,\widehat{\vartheta}_{\mathsf{n}}^{\,\mathsf{mc}}\,\|^2 &= & \min_{\vartheta \in \mathbb{R}^k} \|\boldsymbol{\mathsf{Y}} - \mathbb{M}\,\vartheta\|^2 \\ &= & \min_{v \in V} \|\boldsymbol{\mathsf{Y}} - v\|^2 \end{split}$$

où $V = \operatorname{Im}(\mathbb{M}) = \{ v \in \mathbb{R}^n : v = \mathbb{M} \, \vartheta, \, \vartheta \in \mathbb{R}^k \}.$ Projection orthogonale sur V.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Compléments : p-valeur et liens entre tests et régions de confiance

Sélection de

Géométrie de l'EMC

L'EMC vérifie

$$M \, \widehat{\vartheta}_{\mathsf{n}}^{\, \mathsf{mc}} = P_{V} \mathbf{Y}$$

où P_V est le projecteur orthogonal sur V.

■ Mais $\mathbb{M}^T P_V = \mathbb{M}^T P_V^T = (P_V \mathbb{M})^T = \mathbb{M}^T$. On en déduit les équations normales des moindres carrés :

$$\boxed{\mathbb{M}^T \, \mathbb{M} \, \widehat{\vartheta}_{\mathsf{n}}^{\, \mathsf{mc}} = \mathbb{M}^T \, \mathbf{Y}.}$$

Proposition

Si $\mathbb{M}^T \mathbb{M}$ (matrice $k \times k$) inversible, alors $\widehat{\vartheta}_n^{\text{mc}}$ est unique et

$$\widehat{\boldsymbol{\vartheta}_{\mathsf{n}}^{\,\mathsf{mc}}} = \left(\,\boldsymbol{\mathbb{M}}^{\,\mathsf{T}}\,\boldsymbol{\mathbb{M}}\,\right)^{-1}\,\boldsymbol{\mathbb{M}}^{\,\mathsf{T}}\,\boldsymbol{\mathsf{Y}}$$

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Compléments : p-valeur et liens entre tests et régions de confiance

Sélection de variables

Exemple de données de régression

Patient	age	sex	bmi	map	tc	ldl	hdl	tch	ltg	glu	Respons
1	59	2	32.1	101	157	93.2	38	4	4.9	87	151
2	48	1	21.6	87	183	103.2	70	3	3.9	69	75
3	72	2	30.5	93	156	93.6	41	4	4.7	85	141
4	24	1	25.3	84	198	131.4	40	5	4.9	89	206
5	50	1	23.0	101	192	125.4	52	4	4.3	80	135
6	23	1	22.6	89	139	64.8	61	2	4.2	68	97
	:	:	:			:	:	:	:	:	:
441	36	1	30.0	95	201	125.2	42	5	5.1	82	220
442	36	1	19.6	71	250	132.2	97	3	4.6	92	57

n=442, k=10

bmi = Bodv Mass Index

map = Blood Pressure

tc, ldl, tch, ltg, glu = Blood Serum Measurements

Response Y = a quantitative measure of disease progression 1 year after baseline

MAP 433: Introduction

aux méthodes statistiques. Cours 9

Compléments : p-valeur et liens entre tests et régions de

confiance

Résultats de traitement statistique initial

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	152.133	2.576	59.061	< 2 <i>e</i> - 16 * **
age	-10.012	59.749	-0.168	0.867000
sex	-239.819	61.222	-3.917	0.000104 * **
bmi	519.840	66.534	7.813	4.30 <i>e</i> – 14 * **
map	324.390	65.422	4.958	1.02e - 06 * **
tc	-792.184	416.684	-1.901	0.057947
ldl	476.746	339.035	1.406	0.160389
hdl	101.045	212.533	0.475	0.634721
tch	177.064	161.476	1.097	0.273456
ltg	751.279	171.902	4.370	1.56e - 05 * **
glu	67.625	65.984	1.025	0.305998

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Compléments : p-valeur et liens entre tests et régions de confiance

Sélection de variables

Test du χ² d'indépendance

Propriétés de l'EMC : cadre gaussien

■ Lois des coordonnées de $\widehat{\vartheta}_{n}^{\,mc}$:

$$(\widehat{\vartheta}_{\mathsf{n}}^{\,\mathsf{mc}})_{j} - \vartheta_{j} \sim \mathcal{N}(0, \sigma^{2}b_{j})$$

où b_j est le jème élément diagonal de $(\mathbb{M}^T \mathbb{M})^{-1}$.

$$\frac{(\widehat{\vartheta}_{\mathsf{n}}^{\,\mathsf{mc}})_{j} - \vartheta_{j}}{\widehat{\sigma}_{n} \sqrt{b_{j}}} \sim t_{n-k}$$

loi de Student à n - k degrés de liberté.

$$t_q = rac{\xi}{\sqrt{\eta/q}}$$

où $q \geq 1$ un entier, $\xi \sim \mathcal{N} \big(0, 1 \big), \; \eta \sim \chi^2(q)$ et ξ indépendant de η .

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests symptotiques

Tests d'adéquation

Compléments : p-valeur et liens entre tests et régions de confiance

Sélection de variables

Exemple de données de régression

Données de diabète

Patient	age	sex	bmi	map	tc	ldl	hdl	tch	ltg	glu	Response
1	59	2	32.1	101	157	93.2	38	4	4.9	87	151
2	48	1	21.6	87	183	103.2	70	3	3.9	69	75
3	72	2	30.5	93	156	93.6	41	4	4.7	85	141
4	24	1	25.3	84	198	131.4	40	5	4.9	89	206
5	50	1	23.0	101	192	125.4	52	4	4.3	80	135
6	23	1	22.6	89	139	64.8	61	2	4.2	68	97
:	:	:	:	:	:	:	:	:	:	:	:
441	36	1	30.0	95	201	125.2	42	5	5.1	82	220
442	36	1	19.6	71	250	132.2	97	3	4.6	92	57

n=442, k=10

bmi = Body Mass Index

 $\mathrm{map} = \mathrm{Blood}\;\mathrm{Pressure}$

progression 1 year after baseline

tc, ldl, tch, ltg, glu = Blood Serum Measurements

Response Y = a quantitative measure of disease

4D + 4B + 4B + B + 900

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Compléments : p-valeur et liens entre tests et régions de confiance

Sélection de variables

Résultats de traitement statistique initial

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	152.133	2.576	59.061	< 2 <i>e</i> - 16 * **
age	-10.012	59.749	-0.168	0.867000
sex	-239.819	61.222	-3.917	0.000104 * **
bmi	519.840	66.534	7.813	4.30 <i>e</i> – 14 * **
map	324.390	65.422	4.958	1.02e - 06 * **
tc	-792.184	416.684	-1.901	0.057947
ldl	476.746	339.035	1.406	0.160389
hdl	101.045	212.533	0.475	0.634721
tch	177.064	161.476	1.097	0.273456
ltg	751.279	171.902	4.370	1.56e - 05 * **
glu	67.625	65.984	1.025	0.305998

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Compléments : p-valeur et liens entre tests et régions de confiance

Sélection de variables

Test du χ² d'indépendance

Questions statistiques

Sélection de variables. Lesquelles parmi les 10 variables : age, sex, bmi, map, tc, ldl, hdl, tch, ltg, glu sont significatives? Formalisation mathématique : trouver (estimer) l'ensemble $N = \{j : \vartheta_i \neq 0\}$.

Prévison. Un nouveau patient arrive avec son vecteur des 10 variables $\mathbf{x}_0 \in \mathbb{R}^{10}$. Donner la prévison de la réponse Y =état du patient dans 1 an.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Compléments : p-valeur et liens entre tests et régions de confiance

Sélection de

Test du χ² d'indépendanc

RSS (Residual Sum of Squares)

Modèle de régression

$$Y_i = r(\vartheta, \mathbf{x}_i) + \xi_i, \quad i = 1, \ldots, n.$$

Résidu : si $\widehat{\vartheta}_n$ est un estimateur de ϑ ,

$$\widehat{\xi}_i = Y_i - r(\widehat{\vartheta}_n, \mathbf{x}_i)$$
 résidu au point i .

RSS: Residual Sum of Squares, somme résiduelle des carrés. Caractérise la qualité d'approximation.

$$RSS(=RSS_{\widehat{\vartheta}_n}) = \|\widehat{\xi}\|^2 = \sum_{i=1}^n (Y_i - r(\widehat{\vartheta}_n, \mathbf{x}_i))^2.$$

■ En régression linéaire : $RSS = \|\mathbf{Y} - \mathbb{M} \, \widehat{\vartheta}_n \, \|^2$.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests symptotiques

Tests d'adéquation

Compléments p-valeur et liens entre tests et régions de confiance

Sélection de variables

Backward Stepwise Regressio

Sélection de variables : Backward Stepwise Regression

- On se donne un critère d'élimination de variables (plusieurs choix de critère possibles...).
- On élimine une variable, la moins significative du point de vue du critère choisi.
- On calcule l'EMC $\widehat{\vartheta}_{n,k-1}^{\mathrm{mc}}$ dans le nouveau modèle, avec seulement les k-1 paramétres restants, ainsi que le RSS : $\mathrm{RSS}_{k-1} = \|\mathbf{Y} \mathbb{M} \, \widehat{\vartheta}_{n,k-1}^{\mathrm{mc}}\|^2.$
- On continue à éliminer des variables, une par une, jusqu'à la stabilisation de RSS : $RSS_m \approx RSS_{m-1}$.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

p-valeur et liens entre tests et régions de confiance

Sélection de

Backward Stepwise Regression

Données de diabète : Backward Regression

■ Sélection "naïve" : {sex,bmi,map,ltg}

■ Sélection par Backward Regression :

Critère d'élimination : plus grande valeur de Pr(>|t|).

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	152.133	2.576	59.061	< 2 <i>e</i> - 16 * **
age	-10.012	59.749	-0.168	0.867000
sex	-239.819	61.222	-3.917	0.000104 * **
bmi	519.840	66.534	7.813	4.30 <i>e</i> – 14 * **
map	324.390	65.422	4.958	1.02 <i>e</i> – 06 * **
tc	-792.184	416.684	-1.901	0.057947
ldl	476.746	339.035	1.406	0.160389
hdl	101.045	212.533	0.475	0.634721
tch	177.064	161.476	1.097	0.273456
ltg	751.279	171.902	4.370	1.56e - 05 * **
glu	67.625	65.984	1.025	0.305998

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Compléments p-valeur et liens entre tests et régions de confiance

Sélection de

Backward Stepwise Regression

Données de diabète : Backward Regression

Backward Regression : Itération 2.

Critère d'élimination : plus grande valeur de Pr(>|t|).

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	152.133	2.573	59.128	< 2e - 16
sex	-240.835	60.853	-3.958	0.000104
bmi	519.905	64.156	5.024	8.85 <i>e</i> — 05
map	322.306	65.422	4.958	7.43 <i>e</i> - 07
tc	-790.896	416.144	-1.901	0.058
ldl	474.377	338.358	1.402	0.162
hdl	99.718	212.146	0.470	0.639
tch	177.458	161.277	1.100	0.272
ltg	749.506	171.383	4.373	1.54 <i>e</i> - 05
glu	67.170	65.336	1.013	0.312

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Compléments p-valeur et liens entre tests et régions de confiance

Sélection de

Backward Stepwise Regression

Données de diabète : Backward Regression

Backward Regression : Itération 5 (dernière).

Variables sélectionnées :

{sex,bmi,map,tc,ldl,ltg}

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	152.133	2.572	59.159	< 2e - 16
sex	-226.511	59.857	-3.784	0.000176
bmi	529.873	65.620	8.075	6.69 <i>e</i> – 15
map	327.220	62.693	5.219	2.79 <i>e</i> – 07
tc	-757.938	160.435	-4.724	3.12 <i>e</i> – 06
ldl	538.586	146.738	3.670	0.000272
ltg	804.192	80.173	10.031	< 2e - 16

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests symptotiques

Tests d'adéquation

Compléments p-valeur et liens entre tests et régions de confiance

Sélection de

Backward Stepwise Regression

Sélection de variables : Backward Regression

Discussion de Backward Regression:

- Méthode de sélection purement empirique, pas de justification théorique.
- Application d'autres critères d'élimination en Backward Regression peut amener aux résultats différents.
 Exemple. Critère C_p de Mallows-Akaike : on élimine la variable j qui réalise

$$\min_{j} \left(\mathrm{RSS}_{m,(-j)} + 2\widehat{\sigma}_{n}^{2} m \right).$$

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Complémen p-valeur et liens entre tests et régions de confiance

Sélection de

Backward Stepwise Regression

Lien tests et régions de confiance

■ $\mathcal{E} = (\mathfrak{Z}, \{\mathbb{P}_{\vartheta}, \vartheta \in \Theta\})$, expérience statistique engendrée par l'observation Z avec $\Theta \subset \mathbb{R}^d$,.

Définition

Une région de confiance de niveau $1-\alpha$ pour $\vartheta \in \Theta$ est un sous-ensemble $\mathcal{C}_{\alpha}(Z)$ de \mathbb{R}^d tel que

$$\forall \vartheta \in \Theta, \ \mathbb{P}_{\vartheta} \left[\vartheta \in \mathcal{C}_{\alpha}(Z) \right] \geq 1 - \alpha.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

p-valeur et liens entre tests et régions de confiance

Sélection de

Backward Stepwise Regression

Dualité tests - régions de confiance

Proposition

■ Si, pour tout $\vartheta_0 \in \Theta$, il existe un test de zone de rejet $\mathcal{R}_{\alpha}(\vartheta_0)$ pour tester $H_0: \vartheta = \vartheta_0$ contre $\vartheta \neq \vartheta$, alors

$$\mathcal{C}_{\alpha}(Z) := \left\{ \vartheta \in \Theta, \ Z \in \mathcal{R}_{\alpha}^{c} \right\}$$

est une région de confiance pour ϑ de niveau $1-\alpha$.

■ Si $C_{\alpha}(Z)$ est une région de confiance de niveau $1 - \alpha$ pour $\vartheta \in \Theta$, alors le test défini par la région critique

$$\mathcal{R}_{\alpha} := \left\{ \vartheta_0 \in \mathcal{C}_{\alpha}^c \right\}$$

est de niveau α pour tester $H_0: \vartheta = \vartheta_0$ contre $H_1: \vartheta \neq \vartheta_0$.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

p-valeur et liens entre tests et régions de confiance

Sélection de variables

Backward Stepwise Regression

Tests du χ^2

- Adéquation à une loi discrète (finie).
- Test du χ^2 avec paramètres estimés.
- Test d'indépendance.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmanr

Tests asymptotiques

Tests d'adéquation

Complémen p-valeur et liens entre tests et régions de confiance

Sélection de

Lois discrète finies

■ X variables qualitative : $X \in \{1, ..., d\}$.

$$\mathbb{P}\left[X=\ell\right]=p_{\ell},\;\ell=1,\ldots d.$$

- La loi de X est caractérisée par $\mathbf{p} = (p_1, \dots, p_d)^T$.
- Notation

$$\mathcal{M}_d = \{ \mathbf{p} = (p_1, \dots, p_d)^T, \ 0 \le p_\ell \le 1, \sum_{\ell=1}^d p_\ell = 1 \}.$$

■ Objectif $\mathbf{q} \in \mathcal{M}_d$ donnée. A partir d'un *n*-échantillon

$$X_1,\ldots,X_n\sim_{\text{i.i.d.}} \mathbf{p},$$

tester H_0 : $\mathbf{p} = \mathbf{q}$ contre H_1 : $\mathbf{p} \neq \mathbf{q}$.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Compléments p-valeur et liens entre tests et régions de confiance

Sélection de

Rappel : Test d'adéquation du χ^2

• « distance » du χ^2 :

$$\chi^2(\mathbf{p},\mathbf{q}) = \sum_{\ell=1}^d \frac{(p_\ell - q_\ell)^2}{q_\ell}.$$

Proposition

Pour $\mathbf{q} \in \mathcal{M}_d$ le test simple défini par la zone de rejet

$$\mathcal{R}_{n,\alpha} = \left\{ n\chi^2(\widehat{\mathbf{p}}_n, \mathbf{q}) \geq q_{1-\alpha,d-1}^{\chi^2} \right\}$$

où $q_{1-\alpha,d-1}^{\chi^2}>0$ est défini par $\mathbb{P}\left[U>q_{1-\alpha,d-1}^{\chi^2}\right]=\alpha$ si $U\sim\chi^2(d-1)$ est asymptotiquement de niveau α et consistant pour tester

$$H_0: \mathbf{p} = \mathbf{q}$$
 contre $H_1: \mathbf{p} \neq \mathbf{q}$.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Compléments p-valeur et liens entre tests et régions de confiance

Sélection de variables

Test du χ^2 avec paramètres estimés

- On observe $X_1, \ldots, X_n \sim_{\text{i.i.d.}} \mathbf{p} \in \mathcal{M}_d$.
- On teste

$$H_0: \mathbf{p} \in (\mathcal{M}_d)_0$$
 contre $\mathbf{p} \in \mathcal{M}_d \setminus (\mathcal{M}_d)_0$

où la famille

$$(\mathcal{M}_d)_0 = \{ \mathbf{p} = \mathbf{p}(\gamma), \ \gamma \in \Gamma \}$$

est régulière et $\Gamma \subset \mathbb{R}^d$ est « régulier » et de dimension m < d - 1.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Complément p-valeur et liens entre tests et régions de confiance

Sélection de variables

EMV et paramètres estimés

Proposition

On a les estimateurs du maximum de vraisemblance suivants :

■ Pour la famille \mathcal{M}_d : les fréquences empiriques

$$\widehat{oldsymbol{
ho}}_n^{ exttt{mv}} = \left(\widehat{oldsymbol{
ho}}_{n,1}, \ldots, \widehat{oldsymbol{
ho}}_{n,d}
ight)^T$$

■ Pour la famille restreinte $(\mathcal{M}_d)_0$:

$$\mathbf{p}(\widehat{\gamma}_n^{\,\mathrm{mv}}) = \arg\max_{\gamma \in \Gamma} \sum_{\ell=1}^d \widehat{p}_{n,\ell} \log p_\ell(\gamma).$$

Sous des hypothèses de régularité on a la convergence

$$n\chi^2(\widehat{\mathbf{p}}_n^{\,\mathrm{mv}},\mathbf{p}(\widehat{\gamma}_n^{\,\mathrm{mv}})) \stackrel{d}{\longrightarrow} \chi^2(\underline{d-m-1}).$$

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Compléments p-valeur et liens entre tests et régions de confiance

Sélection de

Test du χ^2 d'indépendance

1 L P 1 P P 1 = P 1 = P 2 Y 14 C

Application au test d'indépendance du χ^2

On observe

$$(X_1, Y_1), \ldots, (X_n, Y_n) \sim_{\text{i.i.d.}} \mathbf{p} \in \mathcal{M}_{d_1, d_2}$$

οù

$$\mathcal{M}_{d_1,d_2} = \{\mathbf{p} = \mathsf{proba. sur } \{1,\ldots d_1\} \times \{1,\ldots,d_2\}\}.$$

• Objectif: tester l'indépendance entre X et Y, c'est-à-dire $\mathbf{p} = (p_{\ell,\ell'})$ de la forme

$$p_{\ell,\ell'} = p_{\ell,ullet} p_{ullet,\ell'}$$

οù

$$p_{\ell,ullet} = \sum_{\ell'=1}^{d_2} p_{\ell,\ell'}, \;\; p_{ullet,\ell'} = \sum_{\ell=1}^{d_1} p_{\ell,\ell'}.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests symptotiques

Tests d'adéquation

Complément p-valeur et liens entre tests et régions de confiance

Sélection de

EMV sur l'hypothèse nulle

On note

$$\left(\mathcal{M}_{d_1,d_2}\right)_0 = \big\{ \mathbf{p} = (p_{\ell,\ell'}), \; p_{\ell,\ell'} = p_{\ell,\bullet}p_{\bullet\ell'} \big\}.$$

Proposition

- $(\mathcal{M}_{d_1,d_2})_0$ est en correspondance avec $\{\mathbf{p} = \mathbf{p}(\gamma), \gamma \in \Gamma\}$ $\Gamma \subset \mathbb{R}^m$ de dimension $m = d_1 + d_2 2$.
- L'estimateur du maximum de vraisemblance restreint à $(\mathcal{M}_{d_1,d_2})_0$ vaut

$$(\widehat{\rho}_{n,0}^{\,\mathrm{mv}})_{\ell,\ell'} = \frac{1}{n} \sum_{i=1}^{n} 1_{X_i = \ell} \times \frac{1}{n} \sum_{i=1}^{n} 1_{Y_i = \ell'}$$

i.e. le produit des fréquences empiriques.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Complément p-valeur et liens entre tests et régions de confiance

Sélection de variables

Conclusion : test du χ^2 d'indépendance

■ Objectif: Tester

$$H_0: \mathbf{p} \in \left(\mathcal{M}_{d_1,d_2}\right)_0$$
 contre $H_1: \mathbf{p} \in \mathcal{M}_{d_1,d_2} \setminus \left(\mathcal{M}_{d_1,d_2}\right)_0$.

Sous l'hypothèse, on a la convergence

$$n\chi^2(\widehat{\mathbf{p}}_n^{\mathrm{mv}},\widehat{\mathbf{p}}_{n,0}^{\mathrm{mv}}) \stackrel{d}{\longrightarrow} \chi^2((d_1-1)(d_2-1)).$$

■ En particulier, la statistique de test s'écrit

$$n\chi^{2}(\widehat{\mathbf{p}}_{n}^{\text{mv}}, \widehat{\mathbf{p}}_{n,0}^{\text{mv}}) = n\sum_{\ell,\ell'} \frac{\left((\widehat{\mathbf{p}}_{n})_{\ell,\ell'} - \widehat{p}_{n,(\ell,\bullet)}\widehat{p}_{n,(\bullet,\ell')}\right)^{2}}{\widehat{p}_{n,(\ell,\bullet)}\widehat{p}_{n,(\bullet,\ell')}}$$

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

Tests d'adéquation

Complément p-valeur et liens entre tests et régions de confiance

Sélection de variables