

Computer Organization - CMPE361

Department of Computer Engineering TED University- Fall 2023

Memory Systems 4- Caches

These Slides are mainly based on slides of the text book (downloadable from the book's website).

Capacity Misses

- Cache is too small to hold all data of interest at once
- If cache full: program accesses data X & evicts data Y
- Capacity miss when access Y again
- How to choose Y to minimize chance of needing it again?
- Least recently used (LRU) replacement:
 - the least recently used block is evicted

Types of Misses

- Compulsory: first time data accessed
- Capacity: cache too small to hold all data of interest
- Conflict: data of interest maps to same location in cache

Miss penalty: time it takes to retrieve a block from lower level of hierarchy

LRU Replacement

MIPS assembly

```
lw $t0, 0x04($0)
lw $t1, 0x24($0)
lw $t2, 0x54($0)
```

		Way 1			Way 0		1
V	U	Tag	Data	٧	Tag	Data	•
0	0			0			Set 3 (11)
0	0			0			Set 3 (11) Set 2 (10)
0	0			0			Set 1 (01)
0	0			0			Set 0 (00)

LRU Replacement

MIPS assembly

lw \$t0, $0 \times 04 (\$0)$ lw \$t1, $0 \times 24 (\$0)$ lw \$t2, $0 \times 54 (\$0)$

		Way 1			١		
V	U	Tag	Data	V	Tag	Data	
0	0			0			Set 3 (11)
0	0			0			Set 2 (10)
1	0	00010	mem[0x0024]	1	00000	mem[0x0004]	Set 1 (01)
0	0			0			Set 0 (00)

(a) Way 1 Way 0 V U Tag Tag Data Data Set 3 (11) 0 0 0 Set 2 (10) 0 0 Set 1 (01) 00...010 mem[0x00...24] 00...101 mem[0x00...54] Set 0 (00) 0 0 (b)

U=0 in (a) indicate way 0 is LRU U=1 in (b) indicates way 1 is LRU

Cache Summary

- What data is held in the cache?
 - Recently used data (temporal locality)
 - Nearby data (spatial locality)
- How is data found?
 - Set is determined by address of data
 - Word within block also determined by the address
 - In associative caches, data could be in one of ways
- What data is replaced?
 - Least-recently used way in the set