ESCUELA POLITÉCNICA SUPERIOR

Matemáticas II. Curso 2022-23

Grado en Ingeniería Eléctrica

SEGUNDA CONVOCATORIA - PRIMERA PARTE

17-07-2023

NOMBRE y APELLIDOS:

DNI/Pasaporte: Grupo:

EJERCICIO 1.

- **1.A)** [5 puntos] Sea $f(x) = \frac{1+x}{x^2(2+x)}$.
 - **A.1)** Calcular $\int f(x)dx$.
 - **A.2)** Comprobar que la integral impropia $\int_1^\infty f(x)dx$ es convergente.
 - **A.3)** Utilizar el método de Simpson, con n=2, para aproximar la integral $\int_1^5 f(x)dx$.
- **1.B)** [5 puntos] Sea \mathcal{R} la región situada en el primer cuadrante que se encuentra acotada por las gráficas de $y = x^2 + 1$, y = 5 3x, x = 0.
 - **B.1)** Calcular el área de la región \mathcal{R} .
 - **B.2)** Expresar, mediante integrales, el volumen del sólido de revolución que se genera al girar la región $\mathcal R$
 - i) Alrededor del eje OY.
 - ii) Alrededor de la recta y = 5.

EJERCICIO 2.

- **2.A)** [7 puntos] Sea $f(x,y) = x^2y + 6x 9y$.
 - **A.1)** Obtener el plano tangente a la superficie z = f(x, y) en el punto (1, 1, -2).
 - **A.2)** Calcular los extremos relativos de la función f.
 - $\mathbf{A.3}$) Calcular los extremos absolutos de la función f en la región triangular.

$$\mathcal{T} = \left\{ (x, y) \in \mathbb{R}^2 : \quad 0 \le x \le 3, \quad -x \le y \le 0 \right\}.$$

2.B) [3 puntos] Sea z = g(x, y) la función dada implícitamente por la ecuación

$$y^{3}x + z^{2}\cos(yz) - 1 = x^{3}y$$

siendo g(1,0) = 1. Calcular la derivada direccional de g(x,y) en el punto (1,0) en la dirección del vector $\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$.