Understanding Histograms in Statistics

Statistics Course Notes

Introduction to Histograms

A **histogram** is a graphical representation of the distribution of numerical data. It provides a visual summary of:

- The **frequency** of data points
- The **spread** of the data
- Potential patterns or outliers

Histograms form the basis for deriving probability density functions (PDFs) using techniques like kernel density estimation (KDE).

Key Components of a Histogram

- Bins: Equally spaced intervals that cover the range of data
- Frequency: Number of data points in each bin
- Axes:
 - Horizontal: Represents data ranges (bins)
 - Vertical: Represents frequency/count

Constructing a Histogram: Step-by-Step

Consider the age dataset: {23, 24, 25, 30, 34, 36, 40, 50, 60, 75, 80}

Step 1: Define Bins

Choose bin size (e.g., 10-year intervals):

Bin Range	Description
0-10	
10-20	
20-30	Ages 23, 24, 25, 30
30-40	Ages 34, 36, 40
40-50	Age 50
50-60	Age 60
60-70	
70-80	Ages 75, 80

Step 2: Count Frequencies

Bin	Frequency
0-10	0
10-20	0
20-30	4
30-40	3
40-50	1
50-60	1
60-70	0
70-80	2

Step 3: Plot the Histogram

Important Concepts

1. Bin Size Selection

• Smaller bins \rightarrow More detail but noisier

• Larger bins \rightarrow Smoother but less detail

• Rule of thumb: Number of bins $\approx \sqrt{n}$ where n = data points

2. Boundary Conventions

• Standard: [lower, upper] - includes lower bound, excludes upper

• Example: [20, 30) contains 20 but not 30

• Note: Always specify your boundary convention!

3. Continuous vs. Discrete Data

• Continuous: Bars touch each other (shown above)

• Discrete: Gaps between bars (categorical data)

Histograms to Probability Density Functions (PDFs)

A histogram can be converted to a smooth PDF using **Kernel Density Estimation** (**KDE**):

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right)$$

Where:

• K = kernel function (e.g., Gaussian)

• h = bandwidth (smoothing parameter)

• n = number of data points

Practical Considerations

- 1. Outliers: Can distort bin ranges consider trimming
- 2. Zero-frequency bins: Indicate gaps in data distribution
- 3. Software implementation:

```
# Python example
import matplotlib.pyplot as plt
ages = [23,24,25,30,34,36,40,50,60,75,80]
plt.hist(ages, bins=8, edgecolor='black')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.show()
```

Key Takeaways

- Histograms visualize distribution of continuous data
- Bin size critically impacts interpretation
- Histograms provide foundation for **probability density estimation**
- KDE creates smooth PDFs from histograms
- Always document bin boundaries and size