

UNIVERSIDADE FEDERAL DE RORAIMA CENTRO DE CIÊNCIA E TECNOLOGIA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO DCC511 – Lógica de Predicados (2022.2) Prof. Msc. Thais Oliveira Almeida

AULA 6:

SÍMBOLOS LIVRE E FECHO DE FÓRMULA

- Símbolos livres de uma fórmula são suas variáveis livres, símbolos de função e de predicado;
 - Tudo menos os conectivos, variáveis dos quantificadores, símbolos de verdade e de pontuação.

- Retornando ao exemplo anterior, quais são os símbolos livres?
- $G = (\forall x) (\exists y) ((\forall z) p(x,y,w,z) \rightarrow (\forall y)q(z,y,x,z_1))$ $G = (\forall x) (\exists y) ((\forall z) p(x,y,w,z) \rightarrow (\forall y)q(z,y,x,z_1))$
 - O conjunto {w, z₁, p, q}, representa os símbolos livres da fórmula G.

- Indique os símbolos livres da fórmula abaixo.

- **∜**{p, r}

- Indique os símbolos livres da fórmula abaixo.
- $\stackrel{\bullet}{\leadsto} ((\exists x) p(x,y) \rightarrow f(z)) \longleftrightarrow ((\forall x) p(x) \rightarrow r(b))$
- **⋄**{p, r, f, y, z}

- Indique os símbolos livres da fórmula abaixo.
- $\stackrel{\bullet}{\leadsto} ((\exists x) p(x,y) \rightarrow f(z)) \longleftrightarrow ((\forall x) p(x) \rightarrow r(b))$
- **⋄**{p, r, f, z}

Fórmulas Fechadas

- Fórmulas ditas fechadas não possuem variáveis livres;
- $G = (\forall x) (\exists y) ((\forall z) p(x,y,w,z) \rightarrow (\forall y)q(z,y,x,z_1))$
 - Não é fechada.
 - G = $(\forall x)$ $(\exists y)$ $((\forall z) p(x,y,w,z) \rightarrow (\forall y)q(z,y,x,z_1))$
- É fechada.

Fecho de uma Fórmula

- Se H é fórmula da Lógica de Predicados e $\{x_1, x_2, ..., x_n\}$ é o conjunto das variáveis livres em H:
 - O fecho universal de H, $(\forall *)$ H, é $(\forall x_1)(\forall x_2)...(\forall x_n)$;
 - O fecho existencial de H, $(\exists^*)H$, $\in (\exists x_1)(\exists x_2)...(\exists x_n)$.

Fecho de uma Fórmula

- ❖ Indique o fecho universal e existencial das fórmulas abaixo.
- $((\exists x)p(x) \rightarrow r(b)) \longleftrightarrow ((\forall x)p(x) \rightarrow r(b))$
- *****{}
- $\stackrel{\bullet}{\bullet} ((\exists x) p(x,y) \rightarrow f(z)) \longleftrightarrow ((\forall x) p(x) \rightarrow r(b))$
- Conjunto das variáveis livres: {y, z}
- $(\exists^*)H = (\exists y), (\exists z)$

Ordem de Precedência de Quantificadores

- Os parênteses das fórmulas são omitidos quando não há problemas sobre suas interpretações;
- ❖ Da ordem maior para a menor:

¬ ∀,∃ →,↔ ∧,∨

Exercício

- Insira os parênteses na fórmula a seguir, conforme a ordem de precedência de quantificadores.
 - G = $(\forall x)$ $(\exists y)$ p $(x,y) \rightarrow (\exists z)$ $\neg q(z)$ ^ r(y)
 - $(\forall x) (\exists y) p(x,y) \rightarrow (\exists z) (\neg q(z)) ^ r(y)$
 - $((\forall x) (\exists y) p(x,y) \rightarrow (\exists z) (\neg q(z))) \land r(y)$
 - $^{\circ} (((\forall x) (\exists y) p(x,y) \rightarrow (\exists z) (\neg q(z))) ^{r}(y))$

Escopo de Quantificador

Abrangência de seu uso nas sub-fórmulas;

- Se E é uma fórmula na Lógica de Predicados:
 - Se (∀x)H é subfórmula de E;
 - O escopo de (∀x) é H.
 - ∘ Se (∃x)H é subfórmula de E;
 - ∘ O escopo de (∃x) é H.

Exercício

Defina o escopo dos quantificadores da fórmula G.

$$G = (\forall x) (\exists y) ((\forall z) p(x,y,w,z) \rightarrow (\forall y) q(z,y,x,z_1))$$

- ❖O escopo de (∀x) é:
 - ∘ $(\exists y) ((\forall z)p(x,y,w,z) \rightarrow (\forall y)q(z,y,x,z_1))$
- ❖O escopo de (∃y) é:
 - \circ (($\forall z$) p(x,y,w,z) \rightarrow ($\forall y$)q(z,y,x,z₁))
- ❖O escopo de (∀z) é:
 - p(x,y,w,z)
- ❖O escopo de (∀y) é:
 - q(z,y,x,z₁)