

Python Programming

Basics

Mariusz Dzieńkowski

Institute of Computer Science Lublin University of Technology

m.dzienkowski@pollub.pl

Python code understanding

- print the basic printing command
 - >>>> print("Hello, World")
 - >>>> print(3+4)
 - >>>> print(4 * "*")
 - >>>> x = 2
 - >>>> print("x= ",x)
 - >>> print("abc", "def", "ghi", sep="; ")
 - >>> print(1,2, "abc", sep="-", end="\n")
 - >>>> print("""abc def

ghi jkl mno prs""")

- Comments
 - #Greeting

Python code understanding

- Special characters in strings
 - \ continuation
 - \n new line
 - \t horizontal tab
 - \r carriage return
- Operators for numbers
 - +
 - _
 - *
 - / or //
 - **%**
 - **
- Logical operators: and, or, not

Business card

- Terminal app that displays short information about you:
 - 1st line: first name and surname
 - 2nd line: field of study
 - 3rd line: university
 - 4th line: country of residence
- Hint: use print function only once

```
******

* Mariusz Dzieńkowski *

* Institute of Computer Science *

* Lublin University of Technology *

* POLAND *
```

Problem 1 - solutions

Source code

■ Variant 1

■ Variant 2

Assigment

- The first assignment to a variable creates it no declaration, dynamic typing
- Assignment uses = and comparison uses ==

This makes it easy to swap values

Assignments can be chained

Basic datatypes

- Integers (default for numbers)a = 5 / 3 # Answer 1 -> integer division
- Floats

$$b = 1.2345$$

- Strings
 - Can use "... " or '...'
 - Use triple double-quotes for multi-line strings or strings that contain both " and ' inside of them

Midpoint calculation

- Terminal app that calculates the midpoint of a line
- Problem solution
 - Take two values of the first point (x_1, y_1) and the second point (x_2, y_2)
 - Calculate the midpoint's value x and value y
 - Print the final result

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right) \qquad (x_2, y_2)$$

$$(x_1, y_1) \bullet$$

Problem 2 - solution

Midpoint calculation

Source code

```
print("Calculate the midpoint of a line.")

x1=float(input("Enter the value of x (the first endpoint): "))
y1=float(input("Enter the value of y (the first endpoint): "))

x2=float(input("Enter the value of x (the second endpoint): "))
y2=float(input("Enter the value of y (the second endpoint): "))

x_m_point=(x1+x2)/2
y_m_point=(y1+y2)/2

print("The midpoint's x value is: ",x_m_point)
print("The midpoint's y value is: ",y_m_point)
```

Sphere volume

- Terminal app that calculates the volume of a sphere
- Problem solution
 - Take a radius
 - Calculate the volume of a sphere by using the formula: $V = \frac{4}{3}\pi r^3$
 - Print the final result

Problem 3 - solution

Sphere volume

■ Source code

```
import math
r=float(input("Enter a radius [cm]: "))
v=4/3*math.pi*r**3
print("V= %.2f"% v, "cm3")
```

Duration time of a class

- Terminal app that calculates the duration time of a class – difference between the start time and the end time of the class
- Problem solution
 - Enter 3 values as the start time: hour, minute, second
 - Enter 3 values as the end time: hour, minute, second
 - Calculate the duration time
 - Print the final result in format hh:mm:ss

Problem 4 - solution

Source code – version 1

```
print("Enter start time:")
hst=int(input("Hour: "))
mst=int(input("Minute: "))
sst=int(input("Second: "))
print("Enter end time:")
het=int(input("Hour: "))
met=int(input("Minute: "))
set=int(input("Second: "))
ts=hst*3600+mst*60+sst
tk=het*3600+met*60+set
t=tk-ts
h=t//3600
m=t%3600//60
s=t%3600%60
print("Duration of the class: ",h,":",m,":",s)
```

Problem 4 - solution

Source code - version 2 (with a conditional operator)

```
print("Enter start time:")
hst=int(input("Hour: "))
mst=int(input("Minute: "))
sst=int(input("Second: "))
print("Enter end time:")
het=int(input("Hour: "))
met=int(input("Minute: "))
set=int(input("Second: "))
ts=hst*3600+mst*60+sst
tk=het*3600+met*60+set
t=tk-ts
h=t//3600
m=t%3600//60
s=t%3600%60
print("Duration of the class: ",'0'+str(h) if h<10 else h,
      ":",'0'+str(m) if m<10 else m,
      ":",'0'+str(s) if s<10 else s)
```

Problem 4 - solution

Source code - version 3 (with a built-in Python functions)

Abacus

- Terminal app that asks the user for a number (between 1 and 9999) and then displays the number on a simple abacus
- Result for the number 1852

Problem 5- solution

Source code

```
number=int(input("Enter a number (between 1 and 9999): "))
x1=number//1000
x2=number%1000//100
x3=number%100//10
x4=number%10

print("|",(10-x4)*"x","-----",x4*"x","|", sep='')
print("|",(10-x3)*"x","-----",x3*"x","|", sep='')
print("|",(10-x2)*"x","-----",x2*"x","|", sep='')
print("|",(10-x1)*"x","-----",x1*"x","|", sep='')
```

Python conditions

Simple if statement

if condition:
 indentedStatmentBlock

■ if — else statement

else:

if condition:

indentedStatementBlockForTrueCondition

indentedStatementBlockForFalseCondition

■ Multiple test and if – elif statement

if condition1:

indentedStatementBlockForTrueCondition1
elif condition2:

indentedStatementBlockForTrueCondition2

else:

indentedStatementBlockForFalseCondition

if-else statment on one line

■ Traditional if - else statement

```
if count ==N:
    count = 0
else:
    count = N + 1
```

On one line

BMI (Body Mass Index)

- Terminal app to calculate the body mass index
- Problem solution
 - Enter weight in kilograms and height in meters
 - Print the bmi result, followed by the users' BMI classification:

```
18.5 or less – underweight
```

18.5 to 24.99 – normal weight

25 or greater - overweight

```
Input your height in meters: 1.9
Input your weight in kilograms: 100
A person with a BMI of 27.7 is overweight.
```

Problem 6 - solution

Source code

```
height=float(input("Input your height in meters: "))
weight=float(input("Input your weight in kilograms: "))
bmi=round(weight/(height**2),2)

print("A person with a BMI of ",bmi," is", end=" ")

if bmi<18.5:
    print("underweight.")
elif bmi<24.9:
    print("normal weight.")
else:
    print("overweight.")</pre>
```

Checking Leap Year

- Terminal app that checks whether a given year is a leap year
- Problem solution
 - Take the value of the year as input
 - Using an if-statement, check whether the year is a leap year or not
 - Print the final result

Problem 7 - solution

Checking Leap Year – Program Explanation

- The if statement checks if the year is a multiple of 4 but isn't a multiple of 100 or if it is a multiple of 400 (not every year that is a multiple of 4 is a leap year)
- Source code

```
year=int(input("Enter year to be checked: "))
if(year%4==0 and year%100!=0 or year%400==0):
    print("The year ",year," is a leap year.")
else:
    print("The year ",year," isn't a leap year")
```