Student: Lambru Eusebiu-Vasilica

Grupa:5302

Amplificator de instrumentatie

Etape proiect:

- 1. Realizarea unui amplificator de instrumentatie (AdI) standard, folosind 3 AO tip 741
- 2. Masurarea amplificatorului realizat: amplificare, tensiune de decalaj la intrare, banda de trecere
- 3. Proiectarea unui AdI cu banda trecere 0,1 Hz -100 folosind un filtru de ordin 1 trece sus pe etajul de intrare si un filtru trece jos de ordin 1 pe etajul de iesire
- 4. Calculul unul filtru oprește banda de 50 Hz (se vor discuta avantajele/dezavantajele conectării la intrare sau la ieșire a acestui filtru)
- 5. Calcul complet de zgomot
- 6. Calculul tensiunii de decalaj si de fugă cu temperatura, pentru plaja de temperaturi 0..50
- 7. Calcul estimativ (cu ipoteze realiste) a perturbatiilor vazute la iesirea Adl

Schema amplificator de instrumentatie:

Etapa I:

Componente circuit practic:

Amplificatorul folosit: UA741CP

 $R1 = 220\Omega$

R2=R3=3*R1=660 Ω

R4=R5=470 Ω

R6=R7=7R4=7R5=7*470=3.3k Ω

R8=R9=100k Ω

Tensiunea de iesire in functie de diferenta tensiunii de la intrare: $v0 = \frac{R6}{R4} \left(1 + \frac{2R2}{R1}\right) (v2 - v1)$

Pentru a avea o amplificare intre 50-60 am considerat rezistentele: R6=R7=7R4=7R5, R2=R3=3R1

Pt R1 am ales $220\Omega = R2 = R3 = 3R1 = 660\Omega \pm 1\%$

Pt R4=R5 = 470Ω =>R6=R7=7R4=7R5=3.3k Ω ±1%

Pt R8, R9 de la intrarile neinversoare , am ales o rezistenta de $100k\Omega$

=>
$$A = \frac{R6}{R4} \left(1 + \frac{2R2}{R1} \right) = \frac{3.3k}{470} \left(1 + 2 * \frac{660}{220} \right) = 49.14$$

Presupunem ca Vin = 170mV => v0 = 49.14 * 0.17 = 8.35[V]

Forma de unda obtinuta pentru frecventa de 200Hz si semnal de intrare de 170mV

Etapa 2:

Pentru alimentarea amplificatorului, am ales o sursa dubla de alimentare de ±10V, astfel, putem varia tensiunea de la intrare doar in intervalul [170mV : 200mV]

Pentru determinarea amplifiării diferenţiale s-a folosit schema de mai jos

Masurari practice:

Pentru sursa de semnal la intrare, am folosit Vin=200mV =>Vout= 9.8V => Ad = 9.8 / 0.2 = 49

Pentru determinarea amplifiării de mod comun s-a folosit schema următoare:

Masurari practice

Vout = 25mV , Vin=200mV = > Acm = vout/vin =25mV / 200mV = 0.125

Factorul de rejectie al modului comun: CMRR= Ad / Ac = 49 / 0.125 = 392

Valoarea exprimata in dB: 20log(392) = 51.86

Etapa 3

Cerinta: Proiectarea unui AdI cu banda trecere 0,1 Hz -100 folosind un filtru de ordin 1 trece sus pe etajul de intrare si un filtru trece jos de ordin 1 pe etajul de iesire

Schema folosita cu implementarea filtrelor FTJ/FTS:

Calcul valori condensatoare pentru FTS respectiv FTJ:

Lombro Eusebio Grupo 5302

Vom alege (1=1m7

$$FTJ \int_{\delta} \delta = \frac{1}{2\pi f FTJ}$$

$$f = Ty = 100H2$$

$$\delta = R6C2$$

$$FTJ \int_{0}^{2} \frac{1}{2\pi f_{FTJ}} \qquad R_{6} = 3.3 \text{ K.D.}$$

$$f_{FTJ} = 100 \text{ Hz}$$

$$2 = \frac{1}{2\pi f_{FTJ}} \cdot R_{6} = \frac{1}{6.88 \cdot 10^{2} \cdot 3.3 \cdot 10^{3}}$$

$$8 = R_{6}(2)$$

$$- 48.10 - 7100$$

Etapa 4 – Filtrul Notch

Circuitul folosit este un filtru T(Notch) pasiv

C=470nF

 $R=6.37k\Omega$

$$F = \frac{1}{2\pi RC} = \frac{1}{6.28*6.78*10^3*470*10^{-9}} = 49.94 \text{Hz}$$

Filtrul Notch se aplica la iesirea amplificatorului nostru de instrumentatie deoarece zgomotul are o amplificare mai mica in al doilea etaj al amplificatorului, pe cand daca l-am pune la intrarea amplificatorului, am amplifica zgomotul de 50-60 ori mai mult

Etapa 5

Etapa 5 – Calculul complet de zgomot

Schema unui singur AO pentru calculul de zgomot:

 ez^2 – densitatea spectrală de putere a generatorului echivalent de zgomot la intrare (în tensiune)

 iz^2 -densitatea spectrală de putere a generatorului echivalent de zgomot la intrare în curent,

 eg^2 -densitatea spectrală de putere a zgomotului termic specific generatorului,

Rg-rezistenta interna a generatorului

Grafice pentru densitatile spectrale de putere

Sursa:

https://global.oup.com/us/companion.websites/fdscontent/uscompanion/us/pdf/microcircuits/students/amps/ua741philip.pdf

Valorile extrase din grafic:

a,b-> extrase din primul grafic a densitatii spectrale de putere a genneratorului echivalent de zgomot(in tensiune)

- 1. $a = 60 * 10^{-14} [V^2/Hz]$
- 2. $b=40*10^{-15}[V^2/Hz]$
- 3. f=10[Hz]

A,B ->extrase din al doilea grafic a densitatii spectrale de puitere a generatorului echivalent de zgomot(in curent)

- 1. $A = 60 * 10^{-22} [A^2/Hz]$
- 2. $B = 30*10^{-25}[A^2/Hz]$
- 3. f=10[Hz]

 $e^{2}(f) = a + \frac{b}{f} [V^{2}/\text{Hz}]$ (pentru zgomotul de tensiune)

 $i^{2}(f) = A + \frac{B}{f} [A^{2}/\text{Hz}]$ (pentru zgomotul de current)

Inlocuim cu valorile din grafic si obtinem:

1.
$$e^2(f) = 60 * 10^{-14} + \frac{40*10^{-15}}{f} [V^2/\text{Hz}]$$

2.
$$i^2(f) = 60 * 10^{-22} + \frac{30*10^{-25}}{f} [A^2/\text{Hz}]$$

Schema completa de zgomot:

Banda EKG [1; 100] [Hz]

Cum densitatea totala de zgomot poate fi calculata intr-un anumit interval de frecvente, rezulta urmatoarele relatii de calcul:

1.
$$e^2(f) = a * \ln\left(\frac{f^2}{f^4}\right) + b(f^2 - f^4)$$

1.
$$e^{2}(f) = a * \ln\left(\frac{f^{2}}{f^{1}}\right) + b(f^{2} - f^{1})$$

2. $i^{2}(f) = A * \ln\left(\frac{f^{2}}{f^{1}}\right) + B(f^{2} - f^{1})$

Calcul de zgomot pentru e^2 (f) si i^2 (f)

$$\begin{cases} a = 60 \cdot 10^{-14} \, \text{V}^2/\text{Hz} \\ b = 40 \cdot 10^{-15} \, \text{V}^2/\text{Hz} \end{cases}$$

$$\begin{cases} A = 60 \cdot 10^{-22} A^{2}/H_{2} \\ B = 30 \cdot 10^{-35} A^{2}/H_{2} \end{cases}$$

$$e^{2}(f) = a \ln(\frac{f^{2}}{f_{1}}) + b(f^{2} - f_{1})$$

 $e^{2}(f) = A \ln(\frac{f^{2}}{f_{1}}) + B(f^{2} - f_{1})$

$$e^{2}(f) = 4 / m \left(\frac{f_{1}}{f_{1}}\right) + 10 (f_{0}) + 40 \cdot (100 - 1) \cdot 10^{-15}$$

$$e^{2}(f) = 60 \cdot 10^{-14} + 4 \cdot 10^{3} \cdot 10^{-15}$$

$$\approx 2 \cdot 10^{-12} + 4 \cdot 10^{-12} = 6 \cdot 10^{-12}$$

$$\approx 2 \cdot 10^{-12} + 4 \cdot 10^{-12} = 6 \cdot 10^{-12}$$

$$i^{2}(t) = 60 \cdot 10^{-22} \cdot 4 + 30 \cdot 10^{-25} \cdot 100$$

= $2 \cdot 10^{-20} + 3 \cdot 10^{-22} = 2 \cdot 10^{-20}$
 $\approx 10^{-20}$

Cum e^2 (f)=6* 10^{-12} , am aproximat cu 10^{-11} , avand o toleranta de 50%

Din calcule rezulta ca $i^2(f) = 10^{-20}$

Calcul de zgomot total pentru iesire/intrare:

Lombro Eusebio Gropo 5302

$$R_{g} = 1 \text{K.s.}, e_{g} = ?$$

$$R_{1} = 320 \text{s.}, e_{1} = ?$$

$$100 \text{K.s.} \rightarrow 40 \text{mV/M} = \frac{(1)^{2}}{100 \text{K.s.}} \cdot 10^{-16} \approx 2 \cdot 10^{-15}$$

$$100 \text{K.s.} \rightarrow 40 \text{mV/M} = \frac{(1)^{2}}{100 \text{K.s.}} \cdot 10^{-16} \approx 2 \cdot 10^{-15}$$

$$R_{g} = 1 \text{K.s.} \rightarrow -e_{g}^{2} = 4 \text{K.s.} \cdot (42 - f_{1}) = 2 \cdot 10^{-15}$$

$$R_{1} = 320 \text{ s.} \rightarrow -e_{R_{1}}^{2} = 2 \cdot 10^{-15} \cdot \frac{320}{1 \text{K.s.}} \approx 4 \cdot 10^{-16}$$

$$R_{1} = 320 \text{ s.} \rightarrow -e_{R_{1}}^{2} = 2 \cdot 10^{-15} \cdot \frac{320}{1 \text{K.s.}} \approx 4 \cdot 10^{-16}$$

$$R_{1} = 320 \text{ s.} \rightarrow -e_{R_{1}}^{2} = 2 \cdot 10^{-15} \cdot \frac{320}{1 \text{K.s.}} \approx 4 \cdot 10^{-16}$$

$$= 2 \cdot 10^{-15} + 2 \cdot 10^{-15} + 2 \cdot 10^{-11} + 4 \cdot 10^{-16} + 2 \cdot 10^{-16}$$

Etapa 6

Pentru gama de temperaturi 0..50°C, se iau din datasheet urmatoarele valori:

Uoffset=1mV si Ioffset=20nA

Pentru Rg=1k Ω => tensiunea de offset la intrare este: Uoffset + Ioffset*Rg = 1mV + 20* 10^{-9} * 10^{3} = 1mV + 2* 10^{-5} <=> 1mV (2* 10^{-5} se simplifica)

Tensiunea de drift tipica data de producator este de aproximativ 10 μV / $^{\circ}C$

DC ELECTRICAL CHARACTERISTICS

 $T_A = 25$ °C, $V_S = \pm 15$ V, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	μ Α741			μ Α741C			
			Min	Тур	Max	Min	Тур	Max	UNIT
Vos	Offset voltage	R _S =10kΩ		1.0	5.0		2.0	6.0	m∨
		R _S =10kΩ, over temp.		1.0	6.0	l	l	7.5	m∨
ΔV _{OS} /ΔΤ		1		10			10		μV/°C
los	Offset current			20	200		20	200	nA
		Overtemp.		l		ĺ	l	300	nA
		T _A =+125°C		7.0	200	l	l	l	nA
		T _A =-55°C		20	500	l	l	l	nA
Δl _{OS} /ΔT		İ		200		l	200	l	pA/°C
I _{BIAS}	Input bias current			80	500		80	500	nA
		Overtemp.		l		l	l	800	nA
		T _A =+125°C		30	500	l	l	l	nA
		T _A =-55°C		300	1500	l	l	l	nA
ΔΙ _Β /ΔΤ				1			1		nA∕°C
		R _L =10kΩ	±12	±14		±12	±14		٧
Vout	Output voltage swing					l	l		I I
		R _L =2kΩ, overtemp.	±10	±13		±10	±13	Activ	rate Windows
		R _L =2kΩ, V _O =±10V	50	200		20	200		V/mV
Avoi	Large-signal voltage gain	R₁=2k∩ V∩=+10V	I	l		I	I	l	I İ