Introduction to Algorithms and Data Structures

Lecture 19: All-pairs shortest paths via Dynamic Programming

Mary Cryan

School of Informatics University of Edinburgh

"All pairs" shortest paths in graphs

We return to the world of graphs and directed graphs (following Lects 14-16).

In this lecture we again consider *weighted* graphs (and digraphs) G = (V, E) where there is a weight function $w : E \to \mathbb{R}$ defining weights for all arcs/edges.

We are interested in evaluating the cost of shortest paths (from specific node u to specific node v) in the given weighted graph.

We will focus on all pairs shortest paths where we want to find the value of the minimum-cost path from u to v, for every $u, v \in V$.

"All pairs" shortest paths in graphs

We return to the world of graphs and directed graphs (following Lects 14-16).

In this lecture we again consider *weighted* graphs (and digraphs) G = (V, E) where there is a weight function $w : E \to \mathbb{R}$ defining weights for all arcs/edges.

We are interested in evaluating the cost of shortest paths (from specific node u to specific node v) in the given weighted graph.

We will focus on all pairs shortest paths where we want to find the value of the minimum-cost path from u to v, for every $u, v \in V$.

(we will allow negative weights, but will assume there is no cycle with total negative weight)

Very different approach from Dijkstra's Algorithm!

All-pairs shortest paths

Given: A graph or digraph G=(V,E) together with a weight function $w:E\to\mathbb{R}$ on edges. (assume V is in 1-1 correspondence with $\{0,\ldots,n-1\}$).

Problem: Compute a matrix $D \in \mathbb{R}^{n \times n}$ such that D[i,j] is the value of the shortest-path (wrt w) from i to j, for every $0 \le i,j \le n-1$.

(possibly useful in the backend for a routefinding app)

Definition

Let $u,v\in V$ and suppose we have a path $p=e_1,\ldots,e_{|p|}$ from u to v (u is the source of e_1 and v the destination of $e_{|p|}$. Then the cost d_p of this path is

$$\sum_{h=1}^{|p|} w(e_h).$$

"Different $u \to v$ paths have different costs, we want the path with minimum cost" (and we want this for every u, v)

All-pairs shortest paths (preliminaries)

Lemma

Let $i, j \in V$, and suppose that there is at least one path from u to v in G = (V, E).

Assume there is no cycle of total negative weight in G, w. Then the minimum-cost path from u to v has length $\leq n-1$.

Argument holds by contradiction

Also tells us we'll only see any particular vertex w once inside a S.P.

Floyd-Warshall: the idea

The Floyd-Warshall algorithm is defined around a trick where we consider "paths through low-index vertices" ... and increase the pool of "low-index vertices" by 1 each time.

Let $V_k = \{0, \dots, k-1\}$ for every $1 \le k \le n$.

Let $\mathcal{P}_k = \{p : p \text{ a path in } G \text{ with internal vertices restricted to } V_k\}$. (endpoints of the paths can have higher indices)

IADS - Lecture 19 - slide 5

Floyd-Warshall: the idea

Want to trink about how we can compute the min-cost-path (i, i) for every i, jev.

The smaller subproblems?

The min-cost-path values that restrict the intermediate vertices of candidate paths to VK=30,..., k-13

And as we work -- we will increase k.

- stark with k=0 (Vo is empty)
- next with k=1 (V=205)
- on to k=2 (V2=30,15)

And so on, until kis mi

Floyd-Warshall: the idea

Remember VK=20,..., K-15 And Pu the set of paths with interior restricted to Vu use this to make pk+1 k is not used: is used once: Dirint+

All-pairs shortest paths (Floyd-Warshall)

Definition

For $0 \le i, j \le n-1$ and $k \ge 0$, let

$$d_{ij}^{< k} = \begin{cases} 0 & i = j \\ \min\{d_p : p \in \mathcal{P}_k, p \text{ is from } i \text{ to } j\} & i \neq j, \ i \to j \text{ paths exist in } \mathcal{P}_k \\ \infty & i \neq j, \text{ no } \mathcal{P}_k \text{ path for } i \to j. \end{cases}$$

Let $D^{< k} = (d_{ij}^{< k})_{0 \le i,j \le n-1}$; we may call $D^{< k}$ the distance up to k matrix of G.

Revision: A better description of $D^{< k}$ is to say it is the matrix of *distances via* V_k -restricted paths. After all, it is not the (distances) that are required to be low, only the indices of the vertices allowed to appear along a candidate path.

All-pairs shortest paths (Floyd-Warshall) - recurrence

Let $k \geq 0$ and consider the minimum-cost path for $i \to j$ in \mathcal{P}_{k+1} (for any $0 \leq i, j \leq n-1$), if such a path exists. Two cases:

- (a) The vertex k itself lies inside this minimum $i \to j$ path of \mathcal{P}_{k+1} (but assuming no negative cycles, will only appear once) Then $D^{< k+1}[i,j] = D^{< k}[i,k] + D^{< k}[k,j]$.
- (b) Vertex k is **not** in the interior of the minimum $i \to j$ path of \mathcal{P}_{k+1} . Then $D^{< k+1}[i,j] = D^{< k}[i,j]$.

Recurrence:

$$D^{< k+1}[i,j] = \begin{cases} 0 & i = j \\ \min\{D^{< k}[i,j], D^{< k}[i,k] + D^{< k}[k,j]\} & \text{otherwise} \end{cases}$$

Base case:

$$D^{<0}[i,j] = \begin{cases} 0 & i = j \\ w(i,j) & \text{if } i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

We let $d + \infty = \infty + d = \infty + \infty = \infty$ for all integers $d \ge 0$.

All-pairs shortest paths (Floyd-Warshall) - Algorithm

Algorithm FloydWarshall(G, w)

7. 8.

return $D^{< n}$

```
1. Initialise D^{<0} using Base case details

2. for k = 0 to n - 1 do

3. for i = 0 to n - 1 do

4. for j = 0 to n - 1 do

5. D^{< k+1}[i,j] \leftarrow D^{< k}[i,j] //Default option

6. if j \neq i and (D^{< k}[i,k] + D^{< k}[k,j]) < D^{< k+1}[i,j]

7. D^{< k+1}[i,j] \leftarrow D^{< k}[i,k] + D^{< k}[k,j]
```

In practice we don't need all these arrays: we just need D^{curr} and D^{next} , and we can re-use ...

Getting the actual paths (Floyd-Warshall)

Build "predecessor" arrays $\Pi^{< k}$ in partnership with the $D^{< k}$ arrays. $\Pi^{< k}[i,j]$ is the index of the vertex that appears *directly before* j in the shortest path from i to j subject to the restriction of intermediate vertices to V_k .

Body of the loop changes to:

5.
$$D^{< k+1}[i,j] \leftarrow D^{< k}[i,j]$$
 //Default option
$$\Pi^{< k+1}[i,j] \leftarrow \Pi^{< k}[i,j]$$
 //Copy "predecessor" (of j) too 6. **if** $j \neq i$ **and** $(D^{< k}[i,k] + D^{< k}[k,j]) < D^{< k+1}[i,j]$ 7.
$$D^{< k+1}[i,j] \leftarrow D^{< k}[i,k] + D^{< k}[k,j]$$

$$\Pi^{< k+1}[i,j] \leftarrow \Pi^{< k}[k,j]$$
 // "Predecessor" (of j) is from the $D^{< k}[k,j]$ subpath

Then we can carry out a recursive "trace-back" starting from $\Pi^{< n}[i,j]$ to build the path achieving shortest path value $D^{< n}[i,j]$, for any i,j.

Running time is $Theta(n^3)$ time

line 1. The matrix $D^{<0}$ is essentially (almost) the weights matrix of the graph. It's computable in $O(n^2)$ time ... just copy over.

lines 2.-7. The "triple loop"

- \triangleright We have n iterations of the outer loop with k
- n iterations of the middle loop with i
- n iterations of the inner loop with j
- ightharpoonup ... and the body (lines 5.-7.) are O(1)

Hence we have $n \cdot n \cdot n \cdot O(1)$, giving $O(n^3)$.

- $\Omega(n^3)$ Easier than usual to see the matching $\Omega(n^3)$ bound.
 - The iterations of medium/inner loop are independent of the loops outside, hence we also have $n \cdot n \cdot n \cdot \Omega(1)$.

Homework example

Follow the Algorithm to build $D^{<1}$, $D^{<2}$, $D^{<3}$, $D^{<4}$, $D^{<5}$ (and also the Π arrays, if you like)

Reading

Even though this is named the "Floyd-Warshall" Algorithm (from around 1962), (essentially) the same Algorithm had previously been published by the French mathematician Bernard Roy in 1959.

Reading:

- For the Floyd-Warshall Algorithm, the relevant sections of [CLRS] are Sections 25.1 and 25.2.
- Some of the content in Chapter 24 of [CLRS] (about Single Source) is helpful.