- 1. Let G be a group. Let $H \triangleleft G$ be a normal subgroup of prime index p. Let $a \in H$. Suppose the conjugacy class of a inside G is of size m. Show that the conjugacy class of a inside H is of size either m or m/p.
- 2. Classify all groups of order 253 up to isomorphism.
- 3. Either prove or disprove the following statement, with a full justification. If R is an integral domain that is not a field, then the polynomial ring R[x] can neverbe a principal ideal domain.
- 4. (a) Suppose that A is a complex $n \times n$ matrix with $A^3 = A$. Show that A is diagonalizable.
 - (b) Suppose that A is a 2×2 matrix over the field \mathbb{Q} of rational numbers with no non-trivial eigenvectors with entries in \mathbb{Q} , and that $A^3 = A$. Show that A is similar over \mathbb{Q} to $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.
- 5. Find the number of monic irreducible sextic polynomials in $\mathbb{F}_3[x]$, where \mathbb{F}_3 is the field of three elements.
- 6. Let $\mathbb Q$ be the field of rational numbers, and $\mathbb C$ the field of complex numbers. Let $\sqrt{2}$ denote the positive square root of 2 in $\mathbb C$. Let $\alpha = \sqrt{4+3\sqrt{2}}$ denote the positive square root of $4+3\sqrt{2}$ in $\mathbb C$.
 - (a) Determine the minimal polynomial of α .
 - (b) Show that $L = \mathbb{Q}(\alpha)$ is not galois over Q.
 - (c) Let M be the galois closure of L over $\mathbb Q.$ What is the order of the galois group G of M over $\mathbb Q?$