CptS 453 — Homework-03

Charles Nguyen, #011606177

Problem 1:

The bijection is $\psi: V_i \to U_i$, where:

$$V = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$U = \{a, d, j, e, b, c, i, g, h, f\}$$

are both ordered sets.

Problem 2:

For:

- $-P_a:a-1$
- $-C_a:a-1$
- $-K_a:a-1$
- $K_{a,b}: 2a 1$, where $a \le b$
- $-Q_a:a-1$

Problem 3:

- A. For $0 \le d(u, v)$, d = 0 when u = v, otherwise d > 0.
- B. As explained in A, when u = v then d = 0.
- C. Due to reflexivity, d(u, v) = d(v, u).
- D. Given the premises, we know that there is a shortest path from $u \to v$ and similarly from $v \to w$. Given that $u \neq v$ and $v \neq w$, due to transitivity, there must be a shortest path from $u \to w$ where $u \neq w$. Thus, d(u, w) must be finite, or $d(u, w) < \infty$.
- E. It could be the case that u = w, or u = v, or v = w which cause cycles in the walk.
- F. Given D, we we can see that:

- d(u, v) = number of edges between u and v where neither is repeating.
- d(v, w) = number of edges between v and u where neither is repeating.

Thus, d(u, w) is the number of edges between u and w. Since both d(u, v) and d(v, w) denote paths and $u \neq w$, d(u, w) must also be a path. Thus, $d(u, w) < \infty$.

G. $d(u, w) = \infty$.

H. $d(u, w) = \infty$.

Problem 4:

A. In terms of $|V_G| = n_1$ and $|V_H| = n_2$, $|V_{G \times H}| = n_1 \cdot n_2$.

B. In terms of $|V_G| = n_1$ and $|V_H| = n_2$, and $E_G = m_1$ and $E_H = m_2$, then $|E_{G \times H}| = n_1 \cdot m_2 + n_2 \cdot m_1$.

C. Using the definition of the Cartesian product, let $Z = V_{G \times H}$. For a vertex $(v_1, w_1) \in Z$ there are b neighbors (v_2, w_2) such that $v_1 = v_2$ and $w_1 w_2 \in E_H$. Similarly, there are a neighbors (v_1, w_1) such that $w_1 = w_2$ and $v_1 v_2 \in E_G$. Since, both neighbors sets are in distinct edge sets, we count each neighbor of (v_1, w_1) exactly once. Thus, Z is (a + b)-regular.