

Big Data & Business Analytics

Raul Cardenas | Luisa Toro | Thomas Werner | Aman Kumar

PROBLEM STATEMENT

Define scope of the project

PROBLEM

What makes a tweet viral? Is it possible to classify a tweet as viral or not based on its metadata?

BACKGROUND

Twitter wants to rely less on ads and more on subscrition services

RELEVANCE

Current value proposition of Twitter Blue is not enticing enough

OBJECTIVE

Leverage AI to develop a comprehensive suite of creator tools to improve the value proposition of Twitter Blue

PROCESS

5-Step ML Process

I+II. DATA COLLECTION & EXPLORATION

Explore and extract relevant features

CONTENT

11,00 tweets extracted using Twitter's API

SPAN

2006 to 2018

RELEVANT FEATURES

- retweet count (int64)
- favorite count (int64)
- created at (datetime64[ns, UTC])
- *text* (object)
- user (object)
- metadata (object)

III. FEATURE ENGINEERING

Data preparation for modelling

1

TARGET COLUMN

Create a target column for the model to predict

2

ADD NEW FEATURES

Transform tweet metadata to generate desired variables for predictive modeling

3

ASSESS DATA IMBALANCE

Resample data to avoid biasing the model towards the dominant class

4

ENCODING + SCALING

Encode categorical features and normalize data

Big Data & Business Analytics

TARGET COLUMN

What makes a tweet viral?

RETWEET COUNT	IS VIRAL	
138	No	
429	Yes	
10,000	Yes	
•••	•••	

FEATURE ENGINEERING

List of features used for modelling

SAMPLE	COLUMNS	tweet_lenç
138	tweet_length: number of characters in tweet	followers_cou
300	followers_count: number of followers	friends_cou favourites_cou
145	friends_count: number of friends	verifi
5	favorites_count: total number of favorited	hashtags_cou
True	verified: account verification status	words_cou
en	language: language used in tweet	mor
2	hashtags_count: number of hashtags used in tweet	day_of_we is_vi
75	words_count: number of words in tweet	
9	month: month in number format	
5	day_of_week: day of the week in number format	
positive	sentiment: tweet sentiment analysis using Dilbert NLP mode) l

IV+V. MODELLING& EVALUATION

1

TRAIN/TEST SPLIT

80/20 train-test split (oversampling was performed after splitting the data)

2

MODELLING

Random Forest classifier, K-Neighbors classifier & Logistic Regression

3

EVALUATION

Confusion matrix + Performance metrics

Twitter

4

CONCLUSION

Model selection, outcomes, and recommendations

Big Data & Business Analytics

RANDOM FOREST CLASSIFIER

Confusion matrix + Performance metrics

Train: 0.8596 Test: 0.6540

	PRECISION	RECALL	F1-SCORE	SUPPORT
0	0.85	0.66	0.74	1676
1	0.38	0.65	0.48	544
Accuracy			0.65	2220
Macro Avg.	0.62	0.65	0.61	2220
Micro Avg.	0.74	0.65	0.68	2220

0 = not viral, 1 = viral - oversampled results

K-NEIGHBORS CLASSIFIER

Confusion matrix + Performance metrics

Train: 0.5868 Test: 0.5220

	PRECISION	RECALL	F1-SCORE	SUPPORT
0	0.78	0.51	0.62	1676
1	0.27	0.57	0.37	544
Accuracy			0.52	2220
Macro Avg.	0.53	0.54	0.49	2220
Micro Avg.	0.66	0.52	0.56	2220

0 = not viral, 1 = viral - oversampled results

LOGISTIC REGRESSION

Confusion matrix + Performance metrics

Train: 0.5941 Test: 0.5495

	PRECISION	RECALL	F1-SCORE	SUPPORT
0	0.83	0.50	0.63	1676
1	0.31	0.69	0.43	544
Accuracy			0.55	2220
Macro Avg.	0.57	0.60	0.53	2220
Micro Avg.	0.71	0.55	0.58	2220

0 = not viral, 1 = viral - oversampled results

Conclusions

Model selection, value add, recommendations

MODEL **VALUE ADD NEXT STEPS** SELECTION **Random Forest** Relevance Recommendations 1. Improve target definition 1. Best f1-score for class 1 1. Feature importance 2. Ensemble methods 2. Understand user behavior 2. Ovrftg. can be addressed 3. Collect more data 3. Less false positives 3. Improve engagement 4. Add new features (geo) 4. Highest accuracy 5. Highest recall for class 0 5. Resampling methods 6. Feature importance 6. Improve NLP analysis