Исходные данные

Константы:

 $\rho = 0.9 \ \text{г/см}^3$ - Плотность льда.

 $g = 9.80665 \text{ м/c}^2$ - Ускорение свободного падения.

 $\phi = 90^{\circ}$ - Угол между направлением ветра и осью ВЛ.

Местность и климатические условия:

Тип местности: Населенная (ПУЭ 2.5.5) Тип местности по ветру: В (ПУЭ 2.5.6)

 Район по ветру:
 2

 Район по гололеду:
 2

 $W_0 = 500 \ \Pi a$ - Нормативное ветровое давление на высоте 10 м над поверхностью земли (ПУЭ 2.5.41, табл.2.5.1).

 $W_r = 200 \ \Pi a$ - Нормативное ветровое давление при гололеде (ПУЭ 2.5.43).

 $b_9 = 15 \text{ мм}$ - Нормативная толщина стенки гололеда (ПУЭ 2.5.46).

 $b_y = 15$ мм - Условная толщина стенки гололеда (ПУЭ 2.5.48). При отсутствии региональных карт и данных наблюдений $b_y = b_9$.

t_{сг} = 5.8 °C - Среднегодовая температура воздуха.

 $t_{min} = -42.2 \, ^{\circ}\text{C}$ - Минимальная температура воздуха.

 $t_{max} = 39\ ^{\circ}\text{C}$ - Максимальная температура воздуха.

 t_{w0} = -5 °C - Температура воздуха при нормативном ветровом давлении W0 (ПУЭ 2.5.51).

 $t_{\rm r} = -5~{\rm ^{\circ}C}$ - Температура воздуха при гололеде (ПУЭ 2.5.51, для высотных отметок местности < 1000 м).

Коэффициенты, не зависящие от конструктива опор ВЛ:

 $k_w = 0.65$ - Коэффициент, учитывающий изменение ветрового давления по высоте в зависимости от типа местности (ПУЭ 2.5.44, табл. 2.5.2).

 $k_i = 1$ - Коэффициент, учитывающий изменение толщины стенки гололеда по высоте и от типа местности (ПУЭ 2.5.49, табл.2.5.4)

 k_i =1 при высоте приведенного центра тяжести проводов или тросов до 25 м.

 $k_d = 1$ - Коэффициент, учитывающий изменение толщины стенки гололеда в зависим. от диам. провода (ПУЭ 2.5.49, табл.2.5.4)

 $k_d\!\!=\!\!1$ при высоте приведенного центра тяжести проводов или тросов до 25 м.

 $\gamma_{pw} = 1$ - Региональный коэффициент, принимаемый от 1 до 1,3 (ПУЭ 2.5.54). Принимается по заданию на проектирование. При отсутствии указаний = 1.

 $\gamma_{pr} = 1$ - Региональный коэффициент, принимаемый от 1 до 1,5 (ПУЭ 2.5.55) Принимается по заданию на проектирование. При отсутствии указаний = 1.

 $\gamma_{\text{fw}} = 1.1$ - Коэффициент надежности по ветровой нагрузке, равный 1,1 (ПУЭ 2.5.54).

 $\gamma_{\rm fr} = 1.3$ - Коэффициент надежности по гололедной нагрузке (ПУЭ 2.5.55, 2.5.65)

1,3 - для районов по гололеду I и II;

1,6 - для районов по гололеду III и выше.

 $\gamma_d = 0.5$ - Коэффициент условий работы, равный 0,5 (ПУЭ 2.5.55).

 $\gamma_{
m d\ apm}=1$ - Коэффициент условий работы для выбора изоляторов и арматуры (ПУЭ 2.5.100)

1,4 - для ВЛ, проходящих в районах с $t_{cr} \le -10$ °C или $t_{min} \le -50$ °C;

1 - для остальных ВЛ

 $\gamma_{\text{м анк}} = 2.5$ - Коэффициент надежности по материалу для выбора анкерного зажима (ПУЭ 2.5.101)

 $\gamma_{\text{м крюк}} = 1.1$ - Коэффициент надежности по материалу для выбора крюков и штыреей (ПУЭ 2.5.101)

Промежуточная опора

СВ110-5 - Марка стойки

 $M_{cr} = 50000 \; H \cdot M$ - Расчетный изгибающий момент стойки на уровне земли.

 $H_{cr} = 11 \text{ м}$ - Общая длина стойки.

 $H_1 = 2.5 \ \text{м}$ - Глубина заделки стойки (по чертежу опоры).

 $H = H_{cr}$ - $H_1 = 11$ - 2.5 = 8.5 м - Высота надземной части стойки.

 $A = 1.57 \text{ м}^2$ - Площадь надземной части стойки с наветренной стороны.

 $G_1 = 800 \text{ кг}$ - Масса надземной части стойки.

f = 0.5 м - Прогиб стойки на уровне ее вершины.

 $f_1 = 0.4 \cdot f = 0.4 \cdot 0.5 = 0.2$ м - Прогиб стойки на уровне H/2.

 $\beta = 0.8$ - Коэффициент для нормативной пульсационной составляющей ветровой нагрузки (ПУЭ 2.5.60).

 $C_{x0} = 2$ - Аэродинамический коэффициент для стойки (Табл.1 МП)

2 - для стоек прямоугольного сечения

0,8 - для стоек круглого сечения.

Характеристики подвешиваемых проводников

		Проводники маг	гистрали				
Марка		СИП-3 1х70	СИП-3 1х70	СИП-3 1х70	СИП-3 1х70	СИП-3 1х70	СИП-3 1х70
Диаметр с изоляцией, мм	d	15	15	15	15	15	15
Масса, кг/км	m	282	282	282	282	282	282
Суммарное сечение несущих жил, мм ²	S	70	70	70	70	70	70
Модуль упругости (ПУЭ, табл.2.5.8), Н/мм ²	E	62500	62500	62500	62500	62500	62500
Температурный к-т линейного удлиннения (ПУЭ 2.5.84, табл.2.5.8), 1/°C	α	2.3E-05	2.3E-05	2.3E-05	2.3E-05	2.3E-05	2.3E-05
Коэффициент лобового сопротивления без гололеда (ПУЭ 2.5.52)	C _x	1.2	1.2	1.2	1.2	1.2	1.2
Коэффициент лобового сопротивления для проводов и тросов покрытых гололедом (ПУЭ 2.5.52)	Схг	1.2	1.2	1.2	1.2	1.2	1.2
Допустимые тяжения, кН, и напряжения, Н/мм²:							
При наибольшей нагрузке и низшей	T _{max}	7.98	7.98	7.98	7.98	7.98	7.98
температуре	σ_{max}	114	114	114	114	114	114
При среднегодовой температуре (ПУЭ 2.5.83,	T _{max_cr}	5.95	5.95	5.95	5.95	5.95	5.95
табл. 2.5.7)	σ _{max cr}	85	85	85	85	85	85
При среднегодовой температуре, при котором	Ттах_сг_вибр	2.8	2.8	2.8	2.8	2.8	2.8
не требуется защита от вибрации (ПУЭ 2.5.85, табл. 2.5.10)	оттах_сг_вибр	40	40	40	40	40	40
Лимит, заданный проектировщиком	Тн	7	7	7	7	7	7
	$\sigma_{\scriptscriptstyle \mathrm{H}}$	100	100	100	100	100	100
Итоговое допустимое тяжение в режимах	Т _{р_доп}	7	7	7	7	7	7
наибольшей нагрузки и низшей температуры, $min(T_{max}, T_{\scriptscriptstyle H})$	о р_доп	100	100	100	100	100	100
Итоговое допустимое тяжение в режиме	Т _{сг_доп}	2.8	2.8	2.8	2.8	2.8	2.8
среднегодовой температуры, $\min(T_{\text{max cr}}, T_{\text{max cr}}, T_{\text{вибр}}, T_{\text{н}})$	С СГ_ДОП	40	40	40	40	40	40
Высота подвески на опоре, м	h	8.8	8.8	8.2	8.2	7.6	7.6
Допустимый габарит до земли в населенной местности, м	Γ	6	6	6	6	6	6
Допустимый габарит до земли в ненаселенной местности, м	Γ	5	5	5	5	5	5
Пролет ответвления, м		-	-	-	-	-	-
Требования к арматуре в нормальном режиме работы ВЛ:							
MPH анкерного зажима не менее, кH $T_{p \text{доп}} \cdot \gamma_{\text{M} \text{анк}} \cdot \gamma_{\text{d} \text{арм}} = T_{p \text{доп}} \cdot 2.5 \cdot 1$		17.5	17.5	17.5	17.5	17.5	17.5

МРН крюков и штырей (Fx -вдоль оси ВЛ) не	7.7	7.7	7.7	7.7	7.7	7.7
менее, кН						
$T_{p \text{ доп}} \cdot \gamma_{M \text{ крюк}} \cdot \gamma_{d \text{ арм}} = T_{p \text{ доп}} \cdot 1.1 \cdot 1$						

Таблица тяжений и стрел провеса в установившемся режиме

СИП-3 1х70

Район по ветру:2 (500 Па)Район по гололеду:2 (15 мм)Высота подвески:8.8 мПриведенный пролет:42.36 м

Максимальное (нормативное) тяжение проводника:

- в режимах наибольшей нагрузки и низшей температуры: $T_{p_доп} = 7000 \text{ H}; \quad \sigma_{p_доп} = T_{p_доп} / S = 100 \text{ H/Mm}^2.$

- в режиме среднегодовой температуры: $T_{\text{сг_доп}} = 2800 \text{ H}; \ \sigma_{\text{сг_доп}} = T_{\text{сг_доп}}/\text{S} = 40 \text{ H/мм}^2.$

Пролет,		T	яжение	провод	ника, Н			Стрелы провеса, м, при температуре, °С														
M	Режим	ВГ	В	-5Γ	tmin	tcг	tmax	-42.2	-20	-15	-10	-5	0	+5	+10	+15	+20	+25	+30	+35	+39	-5Γ
					-42	+6	+39															
57	tmin	5452	3983	4850	7000	2515	1049	0.16	0.23	0.26	0.29	0.33	0.38	0.44	0.51	0.59	0.69	0.79	0.89	0.99	1.07	0.91
40	tmin	5452	3983	4850	7000	2515	1049	0.08	0.11	0.13	0.14	0.16	0.19	0.21	0.25	0.29	0.34	0.39	0.44	0.49	0.53	0.45
10	tmin	5452	3983	4850	7000	2515	1049	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03
15	tmin	5452	3983	4850	7000	2515	1049	0.01	0.02	0.02	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.05	0.06	0.07	0.07	0.06
46	tmin	5452	3983	4850	7000	2515	1049	0.10	0.15	0.17	0.19	0.21	0.25	0.28	0.33	0.39	0.45	0.51	0.58	0.65	0.70	0.59
38	tmin	5452	3983	4850	7000	2515	1049	0.07	0.10	0.11	0.13	0.15	0.17	0.19	0.23	0.26	0.31	0.35	0.40	0.44	0.48	0.40
21	tmin	5452	3983	4850	7000	2515	1049	0.02	0.03	0.04	0.04	0.04	0.05	0.06	0.07	0.08	0.09	0.11	0.12	0.13	0.15	0.12

Таблица тяжений и стрел провеса в установившемся режиме

СИП-3 1х70

Район по ветру:2 (500 Па)Район по гололеду:2 (15 мм)Высота подвески:8.2 мПриведенный пролет:42.36 м

Максимальное (нормативное) тяжение проводника:

- в режимах наибольшей нагрузки и низшей температуры: $T_{p_доп} = 7000 \text{ H}; \ \sigma_{p_доn} = T_{p_доn}/S = 100 \text{ H/mm}^2.$ - в режиме среднегодовой температуры: $T_{cr_доn} = 2800 \text{ H}; \ \sigma_{cr_доn} = T_{cr_доn}/S = 40 \text{ H/mm}^2.$

	, , , , , , , , , , , , , , , , , , , ,			1 10.,,,,,,,,,,,,				Tel John 2000 Tay ou John Tel John V. Tel Jahr.														
Пролет,		T	яжение	провод	ника, Н							(трелы 1	провеса	, м, при	темпер	атуре, °	С				
M	Режим	ВГ	В	-5Γ	tmin	tcг	tmax	-42.2	-20	-15	-10	-5	0	+5	+10	+15	+20	+25	+30	+35	+39	-5Γ
					-42	+6	+39															
57	tmin	5452	3983	4850	7000	2515	1049	0.16	0.23	0.26	0.29	0.33	0.38	0.44	0.51	0.59	0.69	0.79	0.89	0.99	1.07	0.91
40	tmin	5452	3983	4850	7000	2515	1049	0.08	0.11	0.13	0.14	0.16	0.19	0.21	0.25	0.29	0.34	0.39	0.44	0.49	0.53	0.45
10	tmin	5452	3983	4850	7000	2515	1049	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03
15	tmin	5452	3983	4850	7000	2515	1049	0.01	0.02	0.02	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.05	0.06	0.07	0.07	0.06
46	tmin	5452	3983	4850	7000	2515	1049	0.10	0.15	0.17	0.19	0.21	0.25	0.28	0.33	0.39	0.45	0.51	0.58	0.65	0.70	0.59
38	tmin	5452	3983	4850	7000	2515	1049	0.07	0.10	0.11	0.13	0.15	0.17	0.19	0.23	0.26	0.31	0.35	0.40	0.44	0.48	0.40
21	tmin	5452	3983	4850	7000	2515	1049	0.02	0.03	0.04	0.04	0.04	0.05	0.06	0.07	0.08	0.09	0.11	0.12	0.13	0.15	0.12

Таблица тяжений и стрел провеса в установившемся режиме

СИП-3 1х70

 Район по ветру:
 2 (500 Па)

 Район по гололеду:
 2 (15 мм)

 Высота подвески:
 7.6 м

 Приведенный пролет:
 42.36 м

Максимальное (нормативное) тяжение проводника:

- в режимах наибольшей нагрузки и низшей температуры: $T_{p_доп} = 7000 \text{ H}; \ \sigma_{p_доn} = T_{p_доn}/S = 100 \text{ H/mm}^2.$ - в режиме среднегодовой температуры: $T_{cr_доn} = 2800 \text{ H}; \ \sigma_{cr_доn} = T_{cr_доn}/S = 40 \text{ H/mm}^2.$

		-F-D	- ' '					Tel gon 2000 20 don 200 don 20														
Пролет,		T	яжение	провод	ника, Н							(Стрелы	провеса	, м, при	темпер	атуре, °	С				
M	Режим	ВГ	В	-5Γ	tmin	tcг	tmax	-42.2	-20	-15	-10	-5	0	+5	+10	+15	+20	+25	+30	+35	+39	-5Γ
					-42	+6	+39															
57	tmin	5452	3983	4850	7000	2515	1049	0.16	0.23	0.26	0.29	0.33	0.38	0.44	0.51	0.59	0.69	0.79	0.89	0.99	1.07	0.91
40	tmin	5452	3983	4850	7000	2515	1049	0.08	0.11	0.13	0.14	0.16	0.19	0.21	0.25	0.29	0.34	0.39	0.44	0.49	0.53	0.45
10	tmin	5452	3983	4850	7000	2515	1049	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03
15	tmin	5452	3983	4850	7000	2515	1049	0.01	0.02	0.02	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.05	0.06	0.07	0.07	0.06
46	tmin	5452	3983	4850	7000	2515	1049	0.10	0.15	0.17	0.19	0.21	0.25	0.28	0.33	0.39	0.45	0.51	0.58	0.65	0.70	0.59
38	tmin	5452	3983	4850	7000	2515	1049	0.07	0.10	0.11	0.13	0.15	0.17	0.19	0.23	0.26	0.31	0.35	0.40	0.44	0.48	0.40
21	tmin	5452	3983	4850	7000	2515	1049	0.02	0.03	0.04	0.04	0.04	0.05	0.06	0.07	0.08	0.09	0.11	0.12	0.13	0.15	0.12

Расчет габаритного пролета

СИП-3 1х70

 $f_{max} = h$ - $\Gamma = 8.8$ - 6 = 2.8 м - Допустимая стрела провеса

 $\gamma_{\rm nw} = 1$ - Коэффициент надежности по ответственности (для расчета ветровой нагрузки)(ПУЭ 2.5.54)

 $\gamma_{\rm nr} = 1$ - Коэффициент надежности по ответственности (для расчета гололедной нагрузки)(ПУЭ 2.5.55)

Численным методом подбираем пролет до тех пор, пока расчетная стрела провеса не будет равна допустимой.

 $L_{\text{габ.}} = L_{\text{прив.}} = 106 \text{ м}$ - Ожидаемая величина пролета

 $a_{w0} = 0.71$ - Коэффициент, учитывающий неравномерность ветрового давления по пролету ВЛ (ПУЭ 2.5.52).

а_{wr} = 1 - Коэффициент, учитывающий неравномерность ветрового давления по пролету ВЛ (ПУЭ 2.5.52).

Нормативные нагрузки:

2) От гололеда (ПУЭ 2.5.53):

$$P^{\text{H}}_{\text{T}} = \pi \cdot k_{i} \cdot k_{d} \cdot b_{3} \cdot (d + k_{i} \cdot k_{d} \cdot b_{3}) \cdot \rho \cdot g = \pi \cdot 1 \cdot 1 \cdot 0.015 \cdot (0.015 + 1 \cdot 1 \cdot 0.015) \cdot 900 \cdot 9.80665 = 12.48 \text{ H/m}.$$

4) От ветра без гололеда (ПУЭ 2.5.52):

$$\hat{P}^{\text{H}}_{\text{W}} = a_{\text{W}0} \cdot k_{1} \cdot k_{\text{W}} \cdot C_{x} \cdot W_{0} \cdot d \cdot \sin^{2} \varphi = 0.71 \cdot 1.094 \cdot 0.65 \cdot 1.2 \cdot 500 \cdot 0.015 \cdot \sin^{2} (\pi/2) = 4.54 \text{ H/M}.$$

5) От ветра при гололеде (ПУЭ 2.5.52):

$$P^{\mu}_{wr} = a_{wr} \cdot k_1 \cdot k_w \cdot C_{xr} \cdot W_r \cdot (d + 2 \cdot k_i \cdot k_d \cdot b_y) \cdot \sin^2 \varphi = 1 \cdot 1.094 \cdot 0.65 \cdot 1.2 \cdot 200 \cdot (0.015 + 2 \cdot 1 \cdot 1 \cdot 0.015) \cdot \sin^2 (\pi/2) = 7.68 \text{ H/m}.$$

Расчетные нагрузки:

1) От собственного веса:

$$P_1 = m \cdot g = 0.282 \cdot 9.80665 = 2.77 \text{ H/m}.$$

2) Расчетная линейная гололедная нагрузка (ПУЭ 2.5.55):

$$P_{\scriptscriptstyle \Gamma} = P^{\scriptscriptstyle \rm H}_{\scriptscriptstyle \Gamma} \cdot \gamma_{\scriptscriptstyle \Pi\Gamma} \cdot \gamma_{\scriptscriptstyle \Gamma\Gamma} \cdot \gamma_{\scriptscriptstyle f\Gamma} \cdot \gamma_{\scriptscriptstyle d} = 12.48 \cdot 1 \cdot 1 \cdot 1.3 \cdot 0.5 = 8.11 \ H/_{\scriptscriptstyle M}.$$

3) От веса провода/кабеля, покрытого гололедом:

$$P_3 = P_1 + P_r = 2.77 + 8.11 = 10.88 \text{ H/m}.$$

4) Расчетная ветровая нагрузка без гололеда (ПУЭ 2.5.54):

$$P_{w0} = P^{\scriptscriptstyle H}_{w0} \cdot \gamma_{nw} \cdot \gamma_{pw} \cdot \gamma_{fw} = 4.54 \cdot 1 \cdot 1 \cdot 1.1 = 5 \text{ H/m}.$$

5) Расчетная ветровая нагрузка при гололеде(ПУЭ 2.5.54):

$$P_{\rm wr} = P_{\rm wrh} \cdot \gamma_{\rm nw} \cdot \gamma_{\rm pw} \cdot \gamma_{\rm fw} = 7.68 \cdot 1 \cdot 1 \cdot 1.1 = 8.45 \ H/m.$$

6) От веса провода и давления ветра на провод, свободный от гололеда:

$$P_6 = \sqrt{(P_1^2 + P_{w0}^2)} = \sqrt{(2.77^2 + 5^2)} = 5.71 \text{ H/m}.$$

7) От веса провода с гололедом и давления ветра на него:

$$P_7 = \sqrt{(P_3^2 + P_{wr}^2)} = \sqrt{(10.88^2 + 8.45^2)} = 13.77 \text{ H/m}.$$

Удельные нагрузки:

- 1) $\gamma_1 = P_1/S = 2.77/70 = 0.04 \text{ H/(M·MM}^2)$
- 2) $\gamma_r = P_r/S = 8.11/70 = 0.12 \text{ H/(m·mm}^2)$
- 3) $\gamma_3 = P_3/S = 10.88/70 = 0.16 \text{ H/(M·mm}^2)$
- 4) $\gamma_{w0} = P_{w0}/S = 5/70 = 0.07 \text{ H/(m·mm}^2)$
- 5) $\gamma_{\text{WT}} = P_{\text{WT}}/S = 8.45/70 = 0.12 \text{ H/(m·mm}^2)$
- 6) $\gamma_6 = P_6/S = 5.71/70 = 0.08 \text{ H/(M·MM}^2)$
- 7) $\gamma_7 = P_7/S = 13.77/70 = 0.2 \text{ H/(M·MM}^2)$

Определим какой из режимов 6 или 7 будет режимом наибольшей нагрузки:

$$\gamma_7 > \gamma_6$$

$$t_{pmax} = t_{\Gamma} = -5 \, ^{\circ}\text{C}$$

$$\gamma_{\text{pmax}} = \gamma_7 = 0.2 \text{ H/(M·MM}^2)$$

Допустимое тяжение в режимах наибольшей нагрузки и низшей температуры:

$$T_{p_{AOI}} = min(T_{max}, T_{H}) = min(7980, 7000) = 7000 \text{ H}.$$

$$\sigma_{p_{\text{доп}}} = T_{p_{\text{доп}}}/S = 7000/70 = 100 \text{ H/Mm}^2.$$

Допустимое тяжение в режиме среднегодовой температуры

$$T_{\text{cr}_\text{доп}} = \min(T_{\text{max}_\text{cr}_\text{BH\'op}}, T_{\text{max}_\text{cr}}, T_{\text{H}}) = \min(2800, 5950, 7000) = 2800 \text{ H}.$$

$$\sigma_{\text{CF} \text{ JOH}} = T_{\text{CF} \text{ JOH}}/S = 2800/70 = 40 \text{ H/mm}^2.$$

Выбор исходного режима

Условия для выбора:

$$\sigma_{c_\Gamma} \le \sigma_{c_{\Gamma}_{IO\Pi}}; \qquad \quad \sigma_{c_{\Gamma}} \le 40 \ H/_{MM}^2$$

$$\sigma_{pmax} \le \overline{\sigma_{p \text{ доп}}}; \qquad \sigma_{pmax} \le 100 \text{ H/mm}^2$$

Предполагаем режим низшей температуры в качестве исходного:

$$t_0 = t_{min} = -42.2 \, ^{\circ}\text{C}$$

$$\sigma_0 = \sigma_{p \text{ поп}} = 100 \text{ H/mm}^2$$

$$\gamma_0 = \gamma_1 = 0.04 \text{ H/(M} \cdot \text{MM}^2)$$

Из уравнения состояния провода находим ост:

$$t = t_{cr} = 5.8$$
 °C

$$\gamma = \gamma_1 = 0.04 \text{ H/(m·mm}^2)$$

$$\sigma_{cr} = 47.06 \text{ H/mm}^2$$

Из уравнения состояния провода находим σ_{pmax} :

$$t = t_{pmax} = -5 \, ^{\circ}C$$

$$\begin{split} \gamma &= \gamma_{pmax} = 0.2 \text{ H/(M·mm}^2) \\ \sigma_{pmax} &= 120.26 \text{ H/mm}^2 \end{split}$$

Условие не выполняется.

Предполагаем режим наибольшей нагрузки в качестве исходного:

 $t_0 = t_{pmax} = \text{--}5~^{\circ}\mathrm{C}$

 $\sigma_0 = \sigma_{p_\text{doff}} = 100 \text{ H/mm}^2$

 $\gamma_0 = \gamma_{pmax} = 0.2 \text{ H/(m·mm}^2)$

Из уравнения состояния провода находим σ_{cr} :

 $t = t_{cr} = 5.8 \, ^{\circ}\mathrm{C}$

 $\gamma = \gamma_1 = 0.04 \text{ H/(m·mm}^2)$

 $\sigma_{cr}=28.29~H/\text{mm}^2$

Из уравнения состояния провода находим σ_{tmin} :

 $t = t_{min} = -42.2 \, ^{\circ}\text{C}$

 $\gamma = \gamma_1 = 0.04 \text{ H/(m·mm}^2)$

 $\sigma_{tmin} = 55.21~H/\text{mm}^2$

Условие выполняется. Исходный режим - режим наибольшей нагрузки

Систематический расчет

Из уравнения состояния находим характеристики СИП-3 1x70 в нормальном режиме для сочетаний климатических условий по ПУЭ 2.5.71:

Сочетание	t, °C	γ, H/(м·мм²)	σ, H/мм ²	T, H	f, м
климатических условий					
BΓ (Pmax)	-5	0.2	100	7000	2.76
В	-5	0.08	53.88	3771.43	2.13
(-5)Γ	-5	0.16	84.85	5939.68	2.57
tmin	-42.2	0.04	55.21	3864.61	1.01
tcr	5.8	0.04	28.29	1980.28	1.96
tmax	39	0.04	21.58	1510.51	2.57

Итого габаритный пролёт:

 $L_{ra6.} = 106 \text{ M}$

f = 2.76 м - Максимальная стрела провеса в габаритном пролете

Расчет габаритного пролета

СИП-3 1х70

 $f_{max} = h - \Gamma = 8.2 - 6 = 2.2$ м - Допустимая стрела провеса

 $\gamma_{\rm nw} = 1$ - Коэффициент надежности по ответственности (для расчета ветровой нагрузки)(ПУЭ 2.5.54)

 $\gamma_{\rm nr} = 1$ - Коэффициент надежности по ответственности (для расчета гололедной нагрузки)(ПУЭ 2.5.55)

Численным методом подбираем пролет до тех пор, пока расчетная стрела провеса не будет равна допустимой.

 $L_{\text{габ.}} = L_{\text{прив.}} = 94 \text{ м}$ - Ожидаемая величина пролета

 $a_{w0} = 0.71$ - Коэффициент, учитывающий неравномерность ветрового давления по пролету ВЛ (ПУЭ 2.5.52).

а_{wr} = 1 - Коэффициент, учитывающий неравномерность ветрового давления по пролету ВЛ (ПУЭ 2.5.52).

Нормативные нагрузки:

2) От гололеда (ПУЭ 2.5.53):

$$P^{\text{H}}_{\text{T}} = \pi \cdot k_{i} \cdot k_{d} \cdot b_{3} \cdot (d + k_{i} \cdot k_{d} \cdot b_{3}) \cdot \rho \cdot g = \pi \cdot 1 \cdot 1 \cdot 0.015 \cdot (0.015 + 1 \cdot 1 \cdot 0.015) \cdot 900 \cdot 9.80665 = 12.48 \text{ H/m}.$$

4) От ветра без гололеда (ПУЭ 2.5.52):

$$\hat{P}^{\text{H}}_{\text{W}} = a_{\text{W}0} \cdot k_{1} \cdot k_{\text{W}} \cdot C_{x} \cdot W_{0} \cdot d \cdot \sin^{2} \varphi = 0.71 \cdot 1.112 \cdot 0.65 \cdot 1.2 \cdot 500 \cdot 0.015 \cdot \sin^{2} (\pi/2) = 4.62 \text{ H/M}.$$

5) От ветра при гололеде (ПУЭ 2.5.52):

$$P^{\mu}_{WT} = a_{WT} \cdot k_{l} \cdot k_{W} \cdot C_{XT} \cdot W_{\Gamma} \cdot (d + 2 \cdot k_{l} \cdot k_{d} \cdot b_{y}) \cdot \sin^{2} \varphi = 1 \cdot 1.112 \cdot 0.65 \cdot 1.2 \cdot 200 \cdot (0.015 + 2 \cdot 1 \cdot 1 \cdot 0.015) \cdot \sin^{2} (\pi/2) = 7.81 \text{ H/m}.$$

Расчетные нагрузки:

1) От собственного веса:

$$P_1 = m \cdot g = 0.282 \cdot 9.80665 = 2.77 \text{ H/m}.$$

2) Расчетная линейная гололедная нагрузка (ПУЭ 2.5.55):

$$P_{\scriptscriptstyle \Gamma} = P^{\scriptscriptstyle \rm H}_{\scriptscriptstyle \Gamma} \cdot \gamma_{\scriptscriptstyle \Pi\Gamma} \cdot \gamma_{\scriptscriptstyle \Gamma\Gamma} \cdot \gamma_{\scriptscriptstyle f\Gamma} \cdot \gamma_{\scriptscriptstyle d} = 12.48 \cdot 1 \cdot 1 \cdot 1.3 \cdot 0.5 = 8.11 \ H/_{\scriptscriptstyle M}.$$

3) От веса провода/кабеля, покрытого гололедом:

$$P_3 = P_1 + P_r = 2.77 + 8.11 = 10.88 \text{ H/m}.$$

4) Расчетная ветровая нагрузка без гололеда (ПУЭ 2.5.54):

$$P_{w0} = P^{H}_{w0} \cdot \gamma_{nw} \cdot \gamma_{pw} \cdot \gamma_{fw} = 4.62 \cdot 1 \cdot 1 \cdot 1.1 = 5.08 \text{ H/m}.$$

5) Расчетная ветровая нагрузка при гололеде(ПУЭ 2.5.54):

$$P_{\scriptscriptstyle W\Gamma} = P_{\scriptscriptstyle W\Gamma H} \cdot \gamma_{\scriptscriptstyle DW} \cdot \gamma_{\scriptscriptstyle PW} \cdot \gamma_{\scriptscriptstyle FW} = 7.81 \cdot 1 \cdot 1 \cdot 1.1 = 8.59 \ H/_M.$$

6) От веса провода и давления ветра на провод, свободный от гололеда:

$$P_6 = \sqrt{(P_1^2 + P_{w0}^2)} = \sqrt{(2.77^2 + 5.08^2)} = 5.78 \text{ H/m}.$$

7) От веса провода с гололедом и давления ветра на него:

$$P_7 = \sqrt{(P_3^2 + P_{wr}^2)} = \sqrt{(10.88^2 + 8.59^2)} = 13.86 \text{ H/m}.$$

Удельные нагрузки:

- 1) $\gamma_1 = P_1/S = 2.77/70 = 0.04 \text{ H/(M·MM}^2)$
- 2) $\gamma_r = P_r/S = 8.11/70 = 0.12 \text{ H/(m·mm}^2)$
- 3) $\gamma_3 = P_3/S = 10.88/70 = 0.16 \text{ H/(M·MM}^2)$
- 4) $\gamma_{w0} = P_{w0}/S = 5.08/70 = 0.07 \text{ H/(M·MM}^2)$
- 5) $\gamma_{\text{WT}} = P_{\text{WT}}/S = 8.59/70 = 0.12 \text{ H/(m·mm}^2)$
- 6) $\gamma_6 = P_6/S = 5.78/70 = 0.08 \text{ H/(M·MM}^2)$
- 7) $\gamma_7 = P_7/S = 13.86/70 = 0.2 \text{ H/(M·MM}^2)$

Определим какой из режимов 6 или 7 будет режимом наибольшей нагрузки:

$$\gamma_7 > \gamma_6$$

$$t_{pmax} = t_{\Gamma} = -5 \, ^{\circ}\text{C}$$

$$\gamma_{\text{pmax}} = \gamma_7 = 0.2 \text{ H/(M·MM}^2)$$

Допустимое тяжение в режимах наибольшей нагрузки и низшей температуры:

$$T_{p_AO\Pi} = min(T_{max}, T_H) = min(7980, 7000) = 7000 \text{ H}.$$

$$\sigma_{p \text{ доп}} = T_{p \text{ доп}}/S = 7000/70 = 100 \text{ H/mm}^2.$$

Допустимое тяжение в режиме среднегодовой температуры

$$T_{\text{cr}_\text{доп}} = \min(T_{\text{max}_\text{cr}_\text{BH\'op}}, T_{\text{max}_\text{cr}}, T_{\text{H}}) = \min(2800, 5950, 7000) = 2800 \text{ H}.$$

$$\sigma_{\text{CF} \text{ JOH}} = T_{\text{CF} \text{ JOH}}/S = 2800/70 = 40 \text{ H/mm}^2.$$

Выбор исходного режима

Условия для выбора:

$$\sigma_{c_\Gamma} \leq \sigma_{c_{\Gamma_\text{ДОП}}}; \qquad \quad \sigma_{c_\Gamma} \leq 40 \ H/\text{mm}^2$$

$$\sigma_{pmax} \le \overline{\sigma_{p \text{ доп}}}; \qquad \sigma_{pmax} \le 100 \text{ H/mm}^2$$

Предполагаем режим низшей температуры в качестве исходного:

$$t_0 = t_{min} = -42.2 \, ^{\circ}\text{C}$$

$$\sigma_0 = \sigma_{p \text{ доп}} = 100 \text{ H/mm}^2$$

$$\gamma_0 = \gamma_1 = 0.04 \text{ H/(M} \cdot \text{MM}^2)$$

Из уравнения состояния провода находим ост:

$$t = t_{cr} = 5.8$$
 °C

$$\gamma = \gamma_1 = 0.04 \text{ H/(m·mm}^2)$$

$$\sigma_{cr} = 45.08 \text{ H/mm}^2$$

Из уравнения состояния провода находим σ_{pmax} :

$$t = t_{pmax} = -5 \, ^{\circ}C$$

$$\begin{split} \gamma &= \gamma_{pmax} = 0.2 \ H/(\text{M} \cdot \text{MM}^2) \\ \sigma_{pmax} &= 113.25 \ H/\text{MM}^2 \end{split}$$

Условие не выполняется.

Предполагаем режим наибольшей нагрузки в качестве исходного:

 $t_0 = t_{pmax} = \text{--}5~^{\circ}\mathrm{C}$

 $\sigma_0 = \sigma_{p_\text{доп}} = 100 \text{ H/mm}^2$

 $\gamma_0 = \gamma_{pmax} = 0.2 \text{ H/(m·mm}^2)$

Из уравнения состояния провода находим σ_{cr} :

 $t = t_{cr} = 5.8 \, ^{\circ}\text{C}$

 $\gamma = \gamma_1 = 0.04 \text{ H/(m·mm}^2)$

 $\sigma_{cr}=31.2~H/\text{mm}^2$

Из уравнения состояния провода находим σ_{tmin} :

 $t = t_{min} = -42.2 \, ^{\circ}\text{C}$

 $\gamma = \gamma_1 = 0.04 \text{ H/(m·mm}^2)$

 $\sigma_{tmin} = 70.52 \text{ H/mm}^2$

Условие выполняется. Исходный режим - режим наибольшей нагрузки

Систематический расчет

Из уравнения состояния находим характеристики СИП-3 1x70 в нормальном режиме для сочетаний климатических условий по ПУЭ 2.5.71:

Сочетание	t, °C	γ, H/(м·мм²)	σ, H/мм ²	T, H	f, м
климатических условий					
BΓ (Pmax)	-5	0.2	100	7000	2.19
В	-5	0.08	57.44	4021.13	1.59
(-5)Γ	-5	0.16	85.61	5992.87	2
tmin	-42.2	0.04	70.52	4936.71	0.62
ter	5.8	0.04	31.2	2183.95	1.4
tmax	39	0.04	21.84	1529.09	2

Итого габаритный пролёт:

 $L_{\text{raf.}} = 94 \text{ m}$

f = 2.19 м - Максимальная стрела провеса в габаритном пролете

Расчет габаритного пролета

СИП-3 1х70

 $f_{max} = h$ - $\Gamma = 7.6$ - 6 = 1.6 м - Допустимая стрела провеса

 $\gamma_{\rm nw} = 1$ - Коэффициент надежности по ответственности (для расчета ветровой нагрузки)(ПУЭ 2.5.54)

 $\gamma_{\rm nr} = 1$ - Коэффициент надежности по ответственности (для расчета гололедной нагрузки)(ПУЭ 2.5.55)

Численным методом подбираем пролет до тех пор, пока расчетная стрела провеса не будет равна допустимой.

 $L_{\text{габ.}} = L_{\text{прив.}} = 80 \text{ м}$ - Ожидаемая величина пролета

 $a_{w0} = 0.71$ - Коэффициент, учитывающий неравномерность ветрового давления по пролету ВЛ (ПУЭ 2.5.52).

а_{wr} = 1 - Коэффициент, учитывающий неравномерность ветрового давления по пролету ВЛ (ПУЭ 2.5.52).

Нормативные нагрузки:

2) От гололеда (ПУЭ 2.5.53):

$$P^{\text{H}}_{\text{T}} = \pi \cdot k_{i} \cdot k_{d} \cdot b_{3} \cdot (d + k_{i} \cdot k_{d} \cdot b_{3}) \cdot \rho \cdot g = \pi \cdot 1 \cdot 1 \cdot 0.015 \cdot (0.015 + 1 \cdot 1 \cdot 0.015) \cdot 900 \cdot 9.80665 = 12.48 \text{ H/m}.$$

4) От ветра без гололеда (ПУЭ 2.5.52):

$$\hat{P}^{\text{H}}_{\text{W}} = a_{\text{W}0} \cdot k_{1} \cdot k_{\text{W}} \cdot C_{x} \cdot W_{0} \cdot d \cdot \sin^{2}\varphi = 0.71 \cdot 1.14 \cdot 0.65 \cdot 1.2 \cdot 500 \cdot 0.015 \cdot \sin^{2}(\pi/2) = 4.73 \text{ H/M}.$$

5) От ветра при гололеде (ПУЭ 2.5.52):

$$P^{\text{H}}_{\text{WT}} = a_{\text{WT}} \cdot k_{1} \cdot k_{\text{W}} \cdot C_{\text{XT}} \cdot W_{\Gamma} \cdot (d + 2 \cdot k_{1} \cdot k_{d} \cdot b_{y}) \cdot \sin^{2} \varphi = 1 \cdot 1.14 \cdot 0.65 \cdot 1.2 \cdot 200 \cdot (0.015 + 2 \cdot 1 \cdot 1 \cdot 0.015) \cdot \sin^{2} (\pi/2) = 8 \text{ H/m}.$$

Расчетные нагрузки:

1) От собственного веса:

$$P_1 = m \cdot g = 0.282 \cdot 9.80665 = 2.77 \text{ H/m}.$$

2) Расчетная линейная гололедная нагрузка (ПУЭ 2.5.55):

$$P_{\scriptscriptstyle \Gamma} = P^{\scriptscriptstyle \rm H}_{\scriptscriptstyle \Gamma} \cdot \gamma_{\scriptscriptstyle \Pi\Gamma} \cdot \gamma_{\scriptscriptstyle \Gamma\Gamma} \cdot \gamma_{\scriptscriptstyle f\Gamma} \cdot \gamma_{\scriptscriptstyle d} = 12.48 \cdot 1 \cdot 1 \cdot 1.3 \cdot 0.5 = 8.11 \ H/_{\scriptscriptstyle M}.$$

3) От веса провода/кабеля, покрытого гололедом:

$$P_3 = P_1 + P_r = 2.77 + 8.11 = 10.88 \text{ H/m}.$$

4) Расчетная ветровая нагрузка без гололеда (ПУЭ 2.5.54):

$$P_{w0} = P_{w0}^{H} \cdot \gamma_{nw} \cdot \gamma_{pw} \cdot \gamma_{fw} = 4.73 \cdot 1 \cdot 1.1 = 5.21 \text{ H/m}.$$

5) Расчетная ветровая нагрузка при гололеде(ПУЭ 2.5.54):

$$P_{\rm wr} = P_{\rm wrh} \cdot \gamma_{\rm nw} \cdot \gamma_{\rm pw} \cdot \gamma_{\rm fw} = 8 \cdot 1 \cdot 1 \cdot 1.1 = 8.8 \ H/_{M}.$$

6) От веса провода и давления ветра на провод, свободный от гололеда:

$$P_6 = \sqrt{(P_1^2 + P_{w0}^2)} = \sqrt{(2.77^2 + 5.21^2)} = 5.9 \text{ H/m}.$$

7) От веса провода с гололедом и давления ветра на него:

$$P_7 = \sqrt{(P_3^2 + P_{WT}^2)} = \sqrt{(10.88^2 + 8.8^2)} = 13.99 \text{ H/M}.$$

Удельные нагрузки:

- 1) $\gamma_1 = P_1/S = 2.77/70 = 0.04 \text{ H/(M·MM}^2)$
- 2) $\gamma_r = P_r/S = 8.11/70 = 0.12 \text{ H/(m·mm}^2)$
- 3) $\gamma_3 = P_3/S = 10.88/70 = 0.16 \text{ H/(M·MM}^2)$
- 4) $\gamma_{w0} = P_{w0}/S = 5.21/70 = 0.07 \text{ H/(M·mm}^2)$
- 5) $\gamma_{\text{WT}} = P_{\text{WT}}/S = 8.8/70 = 0.13 \text{ H/(M·MM}^2)$
- 6) $\gamma_6 = P_6/S = 5.9/70 = 0.08 \text{ H/(m·mm}^2)$
- 7) $\gamma_7 = P_7/S = 13.99/70 = 0.2 \text{ H/(M·MM}^2)$

Определим какой из режимов 6 или 7 будет режимом наибольшей нагрузки:

$$\gamma_7 > \gamma_6$$

$$t_{pmax} = t_{\Gamma} = -5 \, ^{\circ}\text{C}$$

$$\gamma_{\text{pmax}} = \gamma_7 = 0.2 \text{ H/(M·MM}^2)$$

Допустимое тяжение в режимах наибольшей нагрузки и низшей температуры:

$$T_{p_{AO\Pi}} = min(T_{max}, T_{H}) = min(7980, 7000) = 7000 \text{ H}.$$

$$\sigma_{p \text{ доп}} = T_{p \text{ доп}}/S = 7000/70 = 100 \text{ H/mm}^2.$$

Допустимое тяжение в режиме среднегодовой температуры

$$T_{\text{cr}_\text{доп}} = \min(T_{\text{max}_\text{cr}_\text{BH\'op}}, T_{\text{max}_\text{cr}}, T_{\text{H}}) = \min(2800, 5950, 7000) = 2800 \text{ H}.$$

$$\sigma_{\text{CF} \text{ JOH}} = T_{\text{CF} \text{ JOH}}/S = 2800/70 = 40 \text{ H/mm}^2.$$

Выбор исходного режима

Условия для выбора:

$$\sigma_{c_\Gamma} \leq \sigma_{c_{\Gamma_\text{ДОП}}}; \qquad \quad \sigma_{c_\Gamma} \leq 40 \ H/\text{mm}^2$$

$$\sigma_{pmax} \le \overline{\sigma_{p \text{ доп}}}; \qquad \sigma_{pmax} \le 100 \text{ H/mm}^2$$

Предполагаем режим низшей температуры в качестве исходного:

$$t_0 = t_{min} = -42.2 \, ^{\circ}\text{C}$$

$$\sigma_0 = \sigma_{\rm p \ non} = 100 \ {\rm H/mm^2}$$

$$\gamma_0 = \gamma_1 = 0.04 \text{ H/(M} \cdot \text{MM}^2)$$

Из уравнения состояния провода находим ост:

$$t = t_{cr} = 5.8$$
 °C

$$\gamma = \gamma_1 = 0.04 \text{ H/(m·mm}^2)$$

$$\sigma_{cr} = 42.68 \text{ H/mm}^2$$

Из уравнения состояния провода находим σ_{pmax} :

$$t = t_{pmax} = -5 \, ^{\circ}C$$

$$\begin{split} \gamma &= \gamma_{pmax} = 0.2 \ H/(\text{m} \cdot \text{mm}^2) \\ \sigma_{pmax} &= 104.69 \ H/\text{mm}^2 \end{split}$$

Условие не выполняется.

Предполагаем режим наибольшей нагрузки в качестве исходного:

 $t_0 = t_{pmax} = \text{--}5~^{\circ}\mathrm{C}$

 $\sigma_0 = \sigma_{p_\text{doff}} = 100 \text{ H/mm}^2$

 $\gamma_0 = \gamma_{pmax} = 0.2 \text{ H/(m·mm}^2)$

Из уравнения состояния провода находим σ_{cr} :

 $t = t_{cr} = 5.8 \, ^{\circ}\mathrm{C}$

 $\gamma = \gamma_1 = 0.04 \text{ H/(m·mm}^2)$

 $\sigma_{cr}=36.94~H/\text{mm}^2$

Из уравнения состояния провода находим σ_{tmin} :

 $t=t_{min}=\text{-}42.2\ ^{\circ}\mathrm{C}$

 $\gamma = \gamma_1 = 0.04 \text{ H/(m·mm}^2)$

 $\sigma_{tmin} = 90.09 \text{ H/mm}^2$

Условие выполняется. Исходный режим - режим наибольшей нагрузки

Систематический расчет

Из уравнения состояния находим характеристики СИП-3 1x70 в нормальном режиме для сочетаний климатических условий по ПУЭ 2.5.71:

Сочетание	t, °C	γ, H/(м·мм²)	σ, H/мм ²	T, H	f, м
климатических условий					
BΓ (Pmax)	-5	0.2	100	7000	1.6
В	-5	0.08	63.11	4417.62	1.07
(-5)Γ	-5	0.16	86.8	6076.26	1.43
tmin	-42.2	0.04	90.09	6306.24	0.35
ter	5.8	0.04	36.94	2586.05	0.86
tmax	39	0.04	22.33	1563.08	1.42

Итого габаритный пролёт:

 $L_{\text{raf.}} = 80 \text{ m}$

f = 1.6 м - Максимальная стрела провеса в габаритном пролете

Расчет ветрового пролета

```
\gamma_{\rm fisecl} = 1,05 - Коэффициент надежности по весовой нагрузке = 1,05 для проводов, изоляторов, арматуры (ПУЭ 2.5.69)
```

 $\gamma_{\rm fsec2} = 1,1$ - Коэффициент надежности по весовой нагрузке = 1,1 - для конструкций опор (МП1 табл.1, ПУЭ 2.5.69)

 $\gamma_{\rm fw~on} = 1,3$ - Коэффициент надежности по ветровой нагрузке (для расчетов по ПУЭ 2.5.62, 2.5.63)

 $\gamma_{\rm d\ on} = 1$ - Коэффициент условий работы (ПУЭ 2.5.65)

 $\gamma_{nw} = 1$ - Коэффициент надежности по ответственности (для расчета ветровой нагрузки)(ПУЭ 2.4.11/2.5.54)

 $\gamma_{nr} = 1$ - Коэффициент надежности по ответственности (для расчета гололедной нагрузки)(ПУЭ 2.4.11/2.5.55)

 $M_1 = g \cdot G_1 \cdot f_1 = 9.81 \cdot 800 \cdot 0.2 = 1569.06 \text{ H/m}$ - Момент от веса надземной части стойки на её прогибе

 $M_2 = \Sigma(g \cdot m \cdot F) = 275.23 \text{ H/м}$ - Момент от веса таверс и арматуры на прогибе опоры

 $M_g = \gamma_{fisec2} \cdot (M_1 + M_2) = 1.1 \cdot (1569.06 + 275.23) = 2028.73 \text{ H/M}$ - Суммарный момент от веса стойки, таверс и арматуры на прогибе опоры

1) Ветровой пролёт в режиме ветрового давления W0, гололёд отсутствует:

Момент от тяжения проводов ответвления к вводу:

 $\Sigma M_b = 0 \; H \cdot M$ - Суммарный момент от тяжения проводов ответвления к вводу, воспринимаемый опорой

Момент от ветровой нагрузки на стойку:

 $Q_{\text{нс1}} = k_w \cdot W_0 \cdot C_{x0} \cdot A = 0.65 \cdot 500 \cdot 2 \cdot 1.57 = 1020.5 \text{ H}$ - Нормативная средняя составляющая ветровой нагрузки на опору (ПУЭ 2.5.59)

 $Q_{\text{нп1}} = \beta \cdot Q_{\text{нс1}} = 0.8 \cdot 1020.5 = 816.4 \text{ H}$ - Нормативная пульсационная составляющая ветровой нагрузки (ПУЭ 2.5.60)

 $Q_{w01} = (Q_{Hc1} + Q_{Hn1}) \cdot \gamma_{nw} \cdot \gamma_{pw} \cdot \gamma_{fw_on} = (1020.5 + 816.4) \cdot 1 \cdot 1 \cdot 1.3 = 2387.97 \ H$ - Расчетная ветровая нагрузка на конструкцию опоры (ПУЭ 2.5.63)

 $M_{01} = Q_{w01} \cdot H/2 = 2387.97 \cdot 8.5/2 = 10148.87 \ H\cdot M$ - Момент от ветровой нагрузки на стойку

Итерационно увеличиваем пролет до тех пор пока момент от нагрузок не будет приближенно равен моменту стойки: L = 128 м - ожидаемая величина пролета

 $L_{\text{вес}} = 1,25 \cdot L = 1,25 \cdot 128 = 160 \text{ м}$ - Весовой пролет с 25% запасом на рельеф местности

Моменты от ветровой и весовой нагрузки:

Фидер 1, СИП-3 1х70

 $P_{w0H} = a_{w0} \cdot k_l \cdot k_w \cdot C_x \cdot W_0 \cdot d \cdot \sin^2 \varphi = 0.71 \cdot 1.072 \cdot 0.65 \cdot 1.2 \cdot 500 \cdot 0.015 \cdot 1 = 4.45 \text{ H/м}$ - Нормативная нагрузка от ветра без гололеда (ПУЭ 2.5.52)

 $P_{w0_on} = P_{w0H} \cdot \gamma_{nw} \cdot \gamma_{pw} \cdot \gamma_{fw_on} = 4.45 \cdot 1 \cdot 1 \cdot 1.3 = 5.79 \text{ H/м}$ - Расчетная ветровая нагрузка, воспринимаемая опорой (ПУЭ 2.5.62)

 $P_{\pi} = m \cdot g \cdot \gamma_{\text{fsec}1} = 0.282 \cdot 9.81 \cdot 1.05 = 2.9 \text{ H/м}$ - Расчетная нагрузка на опору ВЛ от веса СИП-3 1x70 (ПУЭ 2.5.69)

 $F = 0.93 \ \text{м}$ - Плечо от весовой нагрузки СИП-3 1х70 на прогибе опоры

 $M_w = P_{w0 \text{ ori}} \cdot L \cdot H = 5.79 \cdot 128 \cdot 8.8 = 6519.96 \text{ H} \cdot \text{м}$ - Момент от ветровой нагрузки на СИП-3 1х70, воспринимаемый опорой

 $M_{\Pi} = P_{\Pi} \cdot L_{\text{вес}} \cdot F = 2.9 \cdot 160 \cdot 0.93 = 432.97 \text{ H·м}$ - Момент от весовой нагрузки СИП-3 1х70, воспринимаемый опорой

Фидер 1, СИП-3 1х70

 $P_{w0H} = a_{w0} \cdot k_1 \cdot k_w \cdot C_x \cdot W_0 \cdot d \cdot \sin^2 \varphi = 0.71 \cdot 1.072 \cdot 0.65 \cdot 1.2 \cdot 500 \cdot 0.015 \cdot 1 = 4.45 \text{ H/м}$ - Нормативная нагрузка от ветра без гололеда (ПУЭ 2.5.52)

 $P_{w0_orr} = P_{w0H} \cdot \gamma_{nw} \cdot \gamma_{pw} \cdot \gamma_{fw_orr} = 4.45 \cdot 1 \cdot 1 \cdot 1.3 = 5.79 \text{ H/м}$ - Расчетная ветровая нагрузка, воспринимаемая опорой (ПУЭ 2.5.62)

 $P_{\pi} = m \cdot g \cdot \gamma_{\text{fBecl}} = 0.282 \cdot 9.81 \cdot 1.05 = 2.9 \text{ H/м}$ - Расчетная нагрузка на опору ВЛ от веса СИП-3 1x70 (ПУЭ 2.5.69)

F = 0.1 м - Плечо от весовой нагрузки СИП-3 1х70 на прогибе опоры

 $M_w = P_{w0_on} \cdot L \cdot H = 5.79 \cdot 128 \cdot 8.8 = 6519.96 \ H \cdot M$ - Момент от ветровой нагрузки на СИП-3 1х70, воспринимаемый опорой

 $M_{\Pi} = P_{\Pi} \cdot L_{BeC} \cdot F = 2.9 \cdot 160 \cdot 0.1 = 48.02 \text{ H·m}$ - Момент от весовой нагрузки СИП-3 1х70, воспринимаемый опорой

Фидер 1, СИП-3 1х70

 $P_{w0H} = a_{w0} \cdot k_1 \cdot k_w \cdot C_x \cdot W_0 \cdot d \cdot \sin^2 \varphi = 0.71 \cdot 1.072 \cdot 0.65 \cdot 1.2 \cdot 500 \cdot 0.015 \cdot 1 = 4.45 \text{ H/м}$ - Нормативная нагрузка от ветра без гололеда (ПУЭ 2.5.52)

 $P_{w0_on} = P_{w0_H} \cdot \gamma_{nw} \cdot \gamma_{pw} \cdot \gamma_{fw_on} = 4.45 \cdot 1 \cdot 1 \cdot 1.3 = 5.79 \text{ H/м} - \text{Расчетная ветровая нагрузка, воспринимаемая опорой (ПУЭ 2.5.62)}$

 $P_{\text{п}} = \text{m} \cdot \text{g} \cdot \gamma_{\text{faccl}} = 0.282 \cdot 9.81 \cdot 1.05 = 2.9 \text{ H/m}$ - Расчетная нагрузка на опору ВЛ от веса СИП-3 1x70 (ПУЭ 2.5.69)

F = 0.9 м - Плечо от весовой нагрузки СИП-3 1x70 на прогибе опоры

 $M_{\rm w} = P_{{
m w0_on}} \cdot L \cdot H = 5.79 \cdot 128 \cdot 8.2 = 6075.42 \ H \cdot {
m m}$ - Момент от ветровой нагрузки на СИП-3 1х70, воспринимаемый опорой

 $M_{\pi} = P_{\pi} \cdot L_{\text{вес}} \cdot F = 2.9 \cdot 160 \cdot 0.9 = 416.58 \text{ H·m}$ - Момент от весовой нагрузки СИП-3 1х70, воспринимаемый опорой

Фидер 1, СИП-3 1х70

 $P_{w0H} = a_{w0} \cdot k_1 \cdot k_w \cdot C_x \cdot W_0 \cdot d \cdot \sin^2 \varphi = 0.71 \cdot 1.072 \cdot 0.65 \cdot 1.2 \cdot 500 \cdot 0.015 \cdot 1 = 4.45 \text{ H/м} - Нормативная нагрузка от ветра без гололеда (ПУЭ 2.5.52)$

 $P_{w0_on} = P_{w0_H} \cdot \gamma_{nw} \cdot \gamma_{pw} \cdot \gamma_{fw_on} = 4.45 \cdot 1 \cdot 1.3 = 5.79 \text{ H/м}$ - Расчетная ветровая нагрузка, воспринимаемая опорой (ПУЭ 2.5.62)

 $P_{\pi} = m \cdot g \cdot \gamma_{fbec1} = 0.282 \cdot 9.81 \cdot 1.05 = 2.9 \text{ H/м}$ - Расчетная нагрузка на опору ВЛ от веса СИП-3 1x70 (ПУЭ 2.5.69)

F = 0.07 м - Плечо от весовой нагрузки СИП-3 1х70 на прогибе опоры

 $M_w = P_{w0_on} \cdot L \cdot H = 5.79 \cdot 128 \cdot 8.2 = 6075.42 \ H \cdot \text{м}$ - Момент от ветровой нагрузки на СИП-3 1х70, воспринимаемый опорой

 $M_{\text{II}} = P_{\text{II}} L_{\text{BeC}} \cdot F = 2.9 \cdot 160 \cdot 0.07 = 31.63 \text{ H} \cdot \text{м}$ - Момент от весовой нагрузки СИП-3 1х70, воспринимаемый опорой

Фидер 1, СИП-3 1х70

 $P_{w0\text{H}} = a_{w0} \cdot k_1 \cdot k_w \cdot C_x \cdot W_0 \cdot d \cdot \sin^2\!\phi = 0.71 \cdot 1.072 \cdot 0.65 \cdot 1.2 \cdot 500 \cdot 0.015 \cdot 1 = 4.45 \text{ H/м} - Нормативная нагрузка от ветра без гололеда (ПУЭ 2.5.52)$

 $P_{w0_on} = P_{w0H} \cdot \gamma_{nw} \cdot \gamma_{pw} \cdot \gamma_{fw_on} = 4.45 \cdot 1 \cdot 1 \cdot 1.3 = 5.79 \text{ H/M}$ - Расчетная ветровая нагрузка, воспринимаемая опорой (ПУЭ 2.5.62) $P_n = m \cdot g \cdot \gamma_{f8ec1} = 0.282 \cdot 9.81 \cdot 1.05 = 2.9 \text{ H/M}$ - Расчетная нагрузка на опору ВЛ от веса СИП-3 1x70 (ПУЭ 2.5.69)

F = 0.86 м - Плечо от весовой нагрузки СИП-3 1х70 на прогибе опоры

 $M_w = P_{w0_on} \cdot L \cdot H = 5.79 \cdot 128 \cdot 7.6 = 5630.88 \text{ H·m}$ - Момент от ветровой нагрузки на СИП-3 1х70, воспринимаемый опорой $M_\pi = P_\pi \cdot L_{\text{Bec}} \cdot F = 2.9 \cdot 160 \cdot 0.86 = 400.18 \text{ H·m}$ - Момент от весовой нагрузки СИП-3 1х70, воспринимаемый опорой

Фидер 1, СИП-3 1х70

 $P_{w0H} = a_{w0} \cdot k_1 \cdot k_w \cdot C_x \cdot W_0 \cdot d \cdot \sin^2 \varphi = 0.71 \cdot 1.072 \cdot 0.65 \cdot 1.2 \cdot 500 \cdot 0.015 \cdot 1 = 4.45 \text{ H/м}$ - Нормативная нагрузка от ветра без гололеда (ПУЭ 2.5.52)

$$\begin{split} &P_{w0_on} = P_{w0\text{H}} \cdot \gamma_{nw} \cdot \gamma_{pw} \cdot \gamma_{fw_on} = 4.45 \cdot 1 \cdot 1 \cdot 1.3 = 5.79 \text{ H/m} - \text{Расчетная ветровая нагрузка, воспринимаемая опорой (ПУЭ 2.5.62)} \\ &P_n = m \cdot g \cdot \gamma_{fbec1} = 0.282 \cdot 9.81 \cdot 1.05 = 2.9 \text{ H/m} - \text{Расчетная нагрузка на опору ВЛ от веса СИП-3 1x70 (ПУЭ 2.5.69)} \end{split}$$

F = 0.03 м - Плечо от весовой нагрузки СИП-3 1х70 на прогибе опоры

 $M_w = P_{w0_on}\cdot L\cdot H = 5.79\cdot 128\cdot 7.6 = 5630.88~H\cdot M$ - Момент от ветровой нагрузки на СИП-3 1х70, воспринимаемый опорой $M_n = P_n\cdot L_{Bec}\cdot F = 2.9\cdot 160\cdot 0.03 = 15.23~H\cdot M$ - Момент от весовой нагрузки СИП-3 1х70, воспринимаемый опорой

 $M_{p1} = \Sigma M_w + \Sigma M_\pi + M_{01} + M_g + \Sigma M_b = 36703.02 + 1355.11 + 10148.87 + 2028.73 + 0 = 49974.71 \ H\cdot M$ - Суммарный момент, действующий на стойку

 $L_{\rm Bl} = 128~{\rm M}$ - Ветровой пролёт в режиме ветрового давления W0, гололёд отсутствует

2) Ветровой пролёт в режиме ветрового давления Wr на проводники, покрытые гололедом:

Момент от тяжения проводов ответвления к вводу:

 $\Sigma M_b = 0 \; H \cdot M$ - Суммарный момент от тяжения проводов ответвления к вводу, воспринимаемый опорой

Момент от ветровой нагрузки на стойку:

 $Q_{\text{нс2}} = k_w \cdot W_r \cdot C_{x0} \cdot A = 0.65 \cdot 200 \cdot 2 \cdot 1.57 = 408.2 \text{ H}$ - Нормативная средняя составляющая ветровой нагрузки на опору (ПУЭ 2.5.59)

 $Q_{\text{HII}2} = \beta \cdot Q_{\text{HC}2} = 0.8 \cdot 408.2 = 326.56 \text{ H}$ - Нормативная пульсационная составляющая ветровой нагрузки (ПУЭ 2.5.60)

 $Q_{w02} = (Q_{Hc2} + Q_{Hn2}) \cdot \gamma_{nw} \cdot \gamma_{pw} \cdot \gamma_{fw_on} = (408.2 + 326.56) \cdot 1 \cdot 1 \cdot 1.3 = 955.19 \text{ H}$ - Расчетная ветровая нагрузка на конструкцию опоры (ПУЭ 2.5.63)

 $M_{02} = Q_{w02} \cdot H/2 = 955.188 \cdot 8.5/2 = 4059.55 \ H\cdot M$ - Момент от ветровой нагрузки на стойку

Итерационно увеличиваем пролет до тех пор пока момент от нагрузок не будет приближенно равен моменту стойки: L = 74 м - ожидаемая величина пролета

 $L_{\text{вес}} = 1,25 \cdot L = 1,25 \cdot 74 = 92.5 \text{ м}$ - Весовой пролет с 25% запасом на рельеф местности

Моменты от ветровой и весовой нагрузки:

Фидер 1, СИП-3 1х70

 $P_{\text{WTH}} = a_{\text{WT}} \cdot k_{\text{I}} \cdot k_{\text{W}} \cdot C_{\text{XT}} \cdot W_{\text{T}} \cdot (d+2 \cdot k_{\text{i}} \cdot k_{\text{d}} \cdot b_{\text{y}}) \cdot \sin^2 \! \phi = 1 \cdot 1.152 \cdot 0.65 \cdot 1.2 \cdot 200 \cdot (0.015+2 \cdot 1 \cdot 1 \cdot 0.015) \cdot 1 = 8.09 \text{ H/м} - \text{Нормативная нагрузка от ветра при гололеде (ПУЭ 2.5.52)}$

 $P_{\text{wr_on}} = P_{\text{wrh}} \cdot \gamma_{\text{nw}} \cdot \gamma_{\text{pw}} \cdot \gamma_{\text{fw_on}} = 8.09 \cdot 1 \cdot 1 \cdot 1.3 = 10.51 \text{ H/m}$ - Расчетная ветровая нагрузка на СИП-3 1х70, воспринимаемая опорой (ПУЭ 2.5.62)

 $P_{\Pi} = m \cdot g \cdot \gamma_{fisecl} = 0.282 \cdot 9.81 \cdot 1.05 = 2.9 \text{ H/м}$ - Расчетная нагрузка на опору ВЛ от веса СИП-3 1x70 (ПУЭ 2.5.69)

 $P_{ro} = P_{rh} \cdot \gamma_{nr} \cdot \gamma_{pr} \cdot \gamma_{fr} \cdot \gamma_{d_or} = 12.48 \cdot 1 \cdot 1 \cdot 1.3 \cdot 1 = 16.22 \text{ H/m}$ - Расчетная линейная гололедная нагрузка на 1 м СИП-3 1х70, воспринимаемая опорами (ПУЭ 2.5.65)

F = 0.93 м - Плечо от весовой нагрузки СИП-3 1х70 на прогибе опоры

 $M_{\text{мг}} = P_{\text{wr_on}} \cdot L \cdot H = 10.51 \cdot 74 \cdot 8.8 = 6846.16 \ H \cdot \text{м}$ - Момент от ветровой нагрузки на СИП-3 1х70, воспринимаемый опорой $M_{\text{пг}} = (P_{\text{п}} + P_{\text{го}}) \cdot L_{\text{вес}} \cdot F = (2.9 + 16.22) \cdot 92.5 \cdot 0.93 = 1648.59 \ H \cdot \text{м}$ - Момент от весовой нагрузки СИП-3 1х70, воспринимаемый опорой

Фидер 1, СИП-3 1х70

 $P_{\text{wгн}} = a_{\text{wr}} \cdot k_{l} \cdot k_{\text{w}} \cdot C_{\text{xr}} \cdot W_{r} \cdot (d+2 \cdot k_{i} \cdot k_{d} \cdot b_{y}) \cdot \sin^{2}\!\phi = 1 \cdot 1.152 \cdot 0.65 \cdot 1.2 \cdot 200 \cdot (0.015+2 \cdot 1 \cdot 1 \cdot 0.015) \cdot 1 = 8.09 \text{ H/м} - \text{Нормативная нагрузка от ветра при гололеде (ПУЭ 2.5.52)}$

 $P_{wr_on} = P_{wrh} \cdot \gamma_{nw} \cdot \gamma_{pw} \cdot \gamma_{fw_on} = 8.09 \cdot 1 \cdot 1 \cdot 1.3 = 10.51 \text{ H/м}$ - Расчетная ветровая нагрузка на СИП-3 1x70, воспринимаемая опорой (ПУЭ 2.5.62)

 $P_{\pi} = m \cdot g \cdot \gamma_{facc1} = 0.282 \cdot 9.81 \cdot 1.05 = 2.9 \text{ H/M}$ - Расчетная нагрузка на опору ВЛ от веса СИП-3 1x70 (ПУЭ 2.5.69)

 $P_{ro} = P_{rh} \cdot \gamma_{nr} \cdot \gamma_{pr} \cdot \gamma_{fr} \cdot \gamma_{d_on} = 12.48 \cdot 1 \cdot 1 \cdot 1.3 \cdot 1 = 16.22 \text{ H/m}$ - Расчетная линейная гололедная нагрузка на 1 м СИП-3 1х70, воспринимаемая опорами (ПУЭ 2.5.65)

F = 0.1 м - Плечо от весовой нагрузки СИП-3 1х70 на прогибе опоры

 $M_{\text{мг}} = P_{\text{wr_on}} \cdot L \cdot H = 10.51 \cdot 74 \cdot 8.8 = 6846.16 \ H \cdot \text{м}$ - Момент от ветровой нагрузки на СИП-3 1х70, воспринимаемый опорой $M_{\text{пг}} = (P_{\text{п}} + P_{\text{го}}) \cdot L_{\text{вес}} \cdot F = (2.9 + 16.22) \cdot 92.5 \cdot 0.1 = 182.85 \ H \cdot \text{м}$ - Момент от весовой нагрузки СИП-3 1х70, воспринимаемый опорой

 $P_{\text{wгн}} = a_{\text{wr}} \cdot k_{l} \cdot k_{\text{w}} \cdot C_{\text{xr}} \cdot W_{r} \cdot (d + 2 \cdot k_{i} \cdot k_{d} \cdot b_{y}) \cdot \sin^{2} \varphi = 1 \cdot 1.152 \cdot 0.65 \cdot 1.2 \cdot 200 \cdot (0.015 + 2 \cdot 1 \cdot 1 \cdot 0.015) \cdot 1 = 8.09 \text{ H/м}$ - Нормативная нагрузка от ветра при гололеде (ПУЭ 2.5.52)

 $P_{wr_on} = P_{wrh} \cdot \gamma_{nw} \cdot \gamma_{pw} \cdot \gamma_{fw_on} = 8.09 \cdot 1 \cdot 1 \cdot 1.3 = 10.51 \text{ H/m}$ - Расчетная ветровая нагрузка на СИП-3 1x70, воспринимаемая опорой (ПУЭ 2.5.62)

 $P_{II} = m \cdot g \cdot \gamma_{facc} = 0.282 \cdot 9.81 \cdot 1.05 = 2.9 \text{ H/M}$ - Расчетная нагрузка на опору ВЛ от веса СИП-3 1x70 (ПУЭ 2.5.69)

 $P_{ro} = P_{rh} \cdot \gamma_{nr} \cdot \gamma_{pr} \cdot \gamma_{fr} \cdot \gamma_{d_on} = 12.48 \cdot 1 \cdot 1 \cdot 1.3 \cdot 1 = 16.22 \text{ H/m}$ - Расчетная линейная гололедная нагрузка на 1 м СИП-3 1х70, воспринимаемая опорами (ПУЭ 2.5.65)

F = 0.9 м - Плечо от весовой нагрузки СИП-3 1х70 на прогибе опоры

 $M_{\text{мг}} = P_{\text{wr_on}} \cdot L \cdot H = 10.51 \cdot 74 \cdot 8.2 = 6379.38 \ H \cdot \text{м}$ - Момент от ветровой нагрузки на СИП-3 1х70, воспринимаемый опорой $M_{\text{пг}} = (P_{\text{п}} + P_{\text{го}}) \cdot L_{\text{вес}} \cdot F = (2.9 + 16.22) \cdot 92.5 \cdot 0.9 = 1586.15 \ H \cdot \text{м}$ - Момент от весовой нагрузки СИП-3 1х70, воспринимаемый опорой

Фидер 1, СИП-3 1х70

 $P_{\text{WTH}} = a_{\text{WT}} \cdot k_{\text{I}} \cdot k_{\text{W}} \cdot C_{\text{XT}} \cdot W_{\text{T}} \cdot (d + 2 \cdot k_{\text{i}} \cdot k_{\text{d}} \cdot b_{\text{y}}) \cdot \sin^2 \varphi = 1 \cdot 1.152 \cdot 0.65 \cdot 1.2 \cdot 200 \cdot (0.015 + 2 \cdot 1 \cdot 1 \cdot 0.015) \cdot 1 = 8.09 \text{ H/м}$ - Нормативная нагрузка от ветра при гололеде (ПУЭ 2.5.52)

 $P_{wr_on} = P_{wrh} \cdot \gamma_{nw} \cdot \gamma_{pw} \cdot \gamma_{fw_on} = 8.09 \cdot 1 \cdot 1 \cdot 1.3 = 10.51 \text{ H/M}$ - Расчетная ветровая нагрузка на СИП-3 1x70, воспринимаемая опорой (ПУЭ 2.5.62)

 $P_{\Pi} = m \cdot g \cdot \gamma_{facc1} = 0.282 \cdot 9.81 \cdot 1.05 = 2.9 \text{ H/M}$ - Расчетная нагрузка на опору ВЛ от веса СИП-3 1x70 (ПУЭ 2.5.69)

 $P_{ro} = P_{rh} \cdot \gamma_{nr} \cdot \gamma_{pr} \cdot \gamma_{fr} \cdot \gamma_{d_on} = 12.48 \cdot 1 \cdot 1 \cdot 1.3 \cdot 1 = 16.22 \text{ H/m}$ - Расчетная линейная гололедная нагрузка на 1 м СИП-3 1х70, воспринимаемая опорами (ПУЭ 2.5.65)

F = 0.07 м - Плечо от весовой нагрузки СИП-3 1х70 на прогибе опоры

 $M_{\text{мг}} = P_{\text{wr_on}} \cdot L \cdot H = 10.51 \cdot 74 \cdot 8.2 = 6379.38 \text{ H·м}$ - Момент от ветровой нагрузки на СИП-3 1х70, воспринимаемый опорой $M_{\text{пг}} = (P_{\text{п}} + P_{\text{го}}) \cdot L_{\text{вес}} \cdot F = (2.9 + 16.22) \cdot 92.5 \cdot 0.07 = 120.42 \text{ H·м}$ - Момент от весовой нагрузки СИП-3 1х70, воспринимаемый опорой

Фидер 1, СИП-3 1х70

 $P_{\text{wth}} = a_{\text{wt}} \cdot k_1 \cdot k_w \cdot C_{\text{xt}} \cdot W_r \cdot (d + 2 \cdot k_i \cdot k_d \cdot b_y) \cdot \sin^2 \varphi = 1 \cdot 1.152 \cdot 0.65 \cdot 1.2 \cdot 200 \cdot (0.015 + 2 \cdot 1 \cdot 1 \cdot 0.015) \cdot 1 = 8.09 \text{ H/м}$ - Нормативная нагрузка от ветра при гололеде (ПУЭ 2.5.52)

 $P_{wr_on} = P_{wrн} \cdot \gamma_{nw} \cdot \gamma_{pw} \cdot \gamma_{fw_on} = 8.09 \cdot 1 \cdot 1 \cdot 1.3 = 10.51 \text{ H/M}$ - Расчетная ветровая нагрузка на СИП-3 1x70, воспринимаемая опорой (ПУЭ 2.5.62)

 $P_n = m \cdot g \cdot \gamma_{fbec1} = 0.282 \cdot 9.81 \cdot 1.05 = 2.9 \text{ H/m}$ - Расчетная нагрузка на опору ВЛ от веса СИП-3 1x70 (ПУЭ 2.5.69) $P_{ro} = P_{rh} \cdot \gamma_{nr} \cdot \gamma_{pr} \cdot \gamma_{fr} \cdot \gamma_{d_on} = 12.48 \cdot 1 \cdot 1.3 \cdot 1 = 16.22 \text{ H/m}$ - Расчетная линейная гололедная нагрузка на 1 м СИП-3 1x70, воспринимаемая опорами (ПУЭ 2.5.65)

 $F = 0.86 \ \mathrm{M}$ - Плечо от весовой нагрузки СИП-3 1х70 на прогибе опоры

 $M_{\text{мг}} = P_{\text{wr_on}} \cdot L \cdot H = 10.51 \cdot 74 \cdot 7.6 = 5912.6 \text{ H·m}$ - Момент от ветровой нагрузки на СИП-3 1х70, воспринимаемый опорой $M_{\text{пг}} = (P_{\text{п}} + P_{\text{го}}) \cdot L_{\text{вес}} \cdot F = (2.9 + 16.22) \cdot 92.5 \cdot 0.86 = 1523.72 \text{ H·m}$ - Момент от весовой нагрузки СИП-3 1х70, воспринимаемый опорой

Фидер 1, СИП-3 1х70

 $P_{\text{wrh}} = a_{\text{wr}} \cdot k_{l} \cdot k_{\text{w}} \cdot C_{\text{xr}} \cdot W_{r} \cdot (d+2 \cdot k_{l} \cdot k_{d} \cdot b_{y}) \cdot \sin^{2}\!\phi = 1 \cdot 1.152 \cdot 0.65 \cdot 1.2 \cdot 200 \cdot (0.015+2 \cdot 1 \cdot 1 \cdot 0.015) \cdot 1 = 8.09 \text{ H/м} - \text{Нормативная нагрузка от ветра при гололеде (ПУЭ 2.5.52)}$

 $P_{wr_on} = P_{wrh} \cdot \gamma_{nw} \cdot \gamma_{pw} \cdot \gamma_{fw_on} = 8.09 \cdot 1 \cdot 1 \cdot 1.3 = 10.51 \text{ H/м}$ - Расчетная ветровая нагрузка на СИП-3 1x70, воспринимаемая опорой (ПУЭ 2.5.62)

 $P_{\rm n} = m \cdot g \cdot \gamma_{\rm fBec1} = 0.282 \cdot 9.81 \cdot 1.05 = 2.9 \ {\rm H/m}$ - Расчетная нагрузка на опору ВЛ от веса СИП-3 1x70 (ПУЭ 2.5.69) $P_{\rm ro} = P_{\rm rh} \cdot \gamma_{\rm nr} \cdot \gamma_{\rm pr} \cdot \gamma_{\rm fr} \cdot \gamma_{\rm d_on} = 12.48 \cdot 1 \cdot 1.3 \cdot 1 = 16.22 \ {\rm H/m}$ - Расчетная линейная гололедная нагрузка на 1 м СИП-3 1x70, воспринимаемая опорами (ПУЭ 2.5.65)

F = 0.03 м - Плечо от весовой нагрузки СИП-3 1х70 на прогибе опоры

 $M_{\text{мг}} = P_{\text{мг_оп}} \cdot L \cdot H = 10.51 \cdot 74 \cdot 7.6 = 5912.6 \text{ H·m}$ - Момент от ветровой нагрузки на СИП-3 1х70, воспринимаемый опорой $M_{\text{пг}} = (P_{\text{п}} + P_{\text{го}}) \cdot L_{\text{вес}} \cdot F = (2.9 + 16.22) \cdot 92.5 \cdot 0.03 = 57.98 \text{ H·m}$ - Момент от весовой нагрузки СИП-3 1х70, воспринимаемый опорой

 $M_{p2} = \Sigma M_{wr} + \Sigma M_{IIr} + M_{02} + M_g + \Sigma M_b = 38726.18 + 5188.91 + 4059.55 + 2028.73 + 0 = 49484.28 \ H\cdot M$ - Суммарный момент, действующий на стойку

 $L_{\rm B2} = 74~{\rm M}$ - Ветровой пролёт в режиме ветра Wr с гололедом

Итого ветровой пролёт:

 $L_B = min(L_{B1}; L_{B2}) = min(128; 74) = 74 \text{ M}$

Таблица расчетных пролетов

	Опора	на базе	стойки С	В110-5, за	аглублені	ие 2.5 м										
	Район	по ветру	, норматі	ивное вет	ровое дав	ление W	0, Па									
	1				2				3				4			
	Район	по голол	еду, норм	иативная	толщина	стенки го	ололеда в	э, мм	'							
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Габаритные пролеты для не	енаселенной	местнос	ти		•			<u>-</u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		<u>'</u>				
СИП-3 1х70, h=8.8м СИП-3 1х70, h=8.8м СИП-3 1х70, h=8.2м СИП-3 1х70, h=8.2м СИП-3 1х70, h=7.6м СИП-3 1х70, h=7.6м	120	102	82	72	120	102	82	72	120	102	82	72	120	102	82	72
СИП-3 1x70, h=8.8м СИП-3 1x70, h=8.8м СИП-3 1x70, h=8.2м СИП-3 1x70, h=8.2м СИП-3 1x70, h=7.6м СИП-3 1x70, h=7.6м	89	80	64	56	89	80	64	56	89	80	64	56	89	80	64	56
Ветровые пролеты для насе СИП-3 1х70, h=8.8м СИП-3 1х70, h=8.8м СИП-3 1х70, h=8.2м СИП-3 1х70, h=8.2м СИП-3 1х70, h=7.6м СИП-3 1х70, h=7.6м	103	74	56	46	103	74	56	46	88	74	56	46	63	63	56	46