WHAT IS CLAIMED IS:

1	 A system for performing cryptographic operations on net 	work data, the
2	system comprising:	
3	an input interface configured to receive data into the syste	em;
4	a plurality of processors in a cascaded arrangement, each	processor having
5	an input coupled to the input interface and an output coupled to respective	e inputs of each
6	of the other processors downstream in the arrangement, the processors ea	ach configured to
7	perform respective cryptographic operations on the data; and	
8	an output interface coupled to the input interface and to the	ne output of each
9	of the processors, the output interface configured to transmit data out of	the system and to
10	direct the data through the system in coordination with the input interfac	e according to a
11	predetermined algorithm.	

- 2. The system of claim 1, wherein the plurality of processors comprises:

 a first processor having its data inputs coupled only to the input interface,
 the first processor configured to compress uncompressed data and to decompress
 compressed data.
- 3. The system of claim 2, wherein the first processor is configured to compress and decompress the data according to at least one of a Lempel-Ziv-Stac (LZS) and an Adaptive Lossless Data Compression (ALDC) compression algorithm.
- 4. The system of claim 2, wherein the plurality of processors comprises:

 a second processor having a first input coupled to the input interface and a second input coupled to an output of the first processor, the second processor configured to obscure non-secure data and to decipher secure data.
- 5. The system of claim 4, wherein the second processor is configured to obscure and decipher the data according to at least one of a Data Encryption Standard (DES), a Triple-DES, and an Advanced Encryption Standard (AES) algorithm.
- 1 6. The system of claim 4, wherein the plurality of processors comprises:

 Att'y Docket No. RPS920020016US1 24

2		a third processor having a first input coupled to the input interface, a		
3	second input	second input coupled to an output of the first processor, and a third input coupled to an		
4	output of the	second processor, the third processor configured to determine an integrity of		
5	the data.			
1	7.	The system of claim 6, wherein the third processor is configured to		
2	determine the	integrity by hashing the data according to at least one of a Secure Hash		
3	Algorithm (S	HA-1) and a Message Data 5 (MD5) algorithm.		
1	8.	The system of claim 1, wherein the predetermined algorithm is based on		
2	control inform	nation included in a security association related to the data.		
1	9.	The system of claim 8, wherein the input interface is configured to receive		
2	the control in	formation and to forward the control information to each of the processors		
3	for use in per	forming the respective cryptographic operations on the data.		
1	10.	The system of claim 9, wherein the control information includes at least		
2	one of:	•		
3		an identity of an authentication algorithm used to hash the data;		
4		an identity of an encryption algorithm used to obscure and decipher the		
5	data;			
6		keying material used by at least one of the authentication and encryption		
7	algorithms; an	nd		
8		a lifetime of the security association related to the data.		
1	11.	The system of claim 1, comprising:		
2		logic configured to determine a checksum associated with the data		
3	transmitted or	ut of the system.		
1	12.	A method for performing cryptographic operations on network data, the		
2	method comp	rising:		
3		receiving data;		

4		directing the received data through a cascaded arrangement of processors		
5	according to	according to a predetermined algorithm, each processor having an input coupled to the		
6	received data	received data and an output coupled to respective inputs of each of the other processors		
7	downstream	downstream in the arrangement;		
8		performing respective cryptographic operations defined by the		
9	predetermine	ed algorithm on the received data using the plurality of processors; and		
10		transmitting the operated-on data after performing the cryptographic		
11	operations d	efined by the predetermined algorithm.		
1	13.	The method of claim 12, comprising:		
2		compressing uncompressed received data and decompressing compressed		
3	received data using a first processor in the arrangement having its data inputs coupled			
4	only to the received data.			
1	14.	The method of claim 13, comprising:		
2		compressing and decompressing the received data according to at least one		
3	of a Lempel-	Ziv-Stac (LZS) and an Adaptive Lossless Data Compression (ALDC)		
4	compression	algorithm.		
1	15.	The method of claim 13, comprising:		
2		obscuring non-secure data and deciphering secure data using a second		
3	processor in the arrangement having a first input coupled to the received data and a			
4	second input	coupled to an output of the first processor.		
1	16.	The method of claim 15, comprising:		
2		obscuring and deciphering the data according to at least one of a Data		
3	Encryption S	Standard (DES), a Triple-DES, and an Advanced Encryption Standard (AES)		
4	algorithm.			
1	17.	The method of claim 15, comprising:		
2		determining an integrity of the data using a third processor in the		
3	arrangement	having a first input coupled to the received data, a second input coupled to		

4	an output of the first processor, and a third input coupled to an output of the second		
5	processor.		
1	18.	The method of claim 17 communicings	
1	10.	The method of claim 17, comprising:	
2	0 11 1	hashing the data to determine the integrity according to at least one of a	
3	Secure Hash	Algorithm (SHA-1) and a Message Data 5 (MD5) algorithm.	
1	19.	The method of claim 12, comprising:	
2		determining the predetermined algorithm based on control information	
3	included in a security association related to the received data.		
1	20.	The method of claim 19, comprising:	
2		receiving the control information; and	
3		forwarding the control information to each of the processors for use in	
4	performing t	he respective cryptographic operations on the data.	
1	21	The method of claim 20 commissions	
1	21.	The method of claim 20, comprising:	
2		including in the control information at least one of:	
3		an identity of an authentication algorithm used to hash the data;	
4		an identity of an encryption algorithm used to obscure and	
5	decipher the	•	
6		keying material used by at least one of the authentication and	
7	encryption algorithms; and		
8		a lifetime of the security association related to the data.	
1	22.	The method of claim 12, comprising:	
2		determining a checksum associated with the transmitted data.	
1	23.	A computer readable medium containing a computer program for	
2	performing c	ryptographic operations on network data, wherein the computer program	
3		ecutable instructions for:	
4	•	receiving data;	
		-	

5	directing the received data through a cascaded arrangement of processors		
6	according to a predetermined algorithm, each processor having an input coupled to the		
7	received data and an output coupled to respective inputs of each of the other processors		
8	downstream in the arrangement;		
9	performing respective cryptographic operations defined by the		
10	predetermined algorithm on the received data using the plurality of processors; and		
11	transmitting the operated-on data after performing the cryptographic		
12	operations defined by the predetermined algorithm.		
1	24. The computer readable medium of claim 23, wherein the computer		
2	program comprises executable instructions for:		
3	compressing uncompressed received data and decompressing compressed		
4	received data using a first processor in the arrangement having its data inputs coupled		
5	only to the received data;		
6	obscuring non-secure data and deciphering secure data using a second		
7	processor in the arrangement having a first input coupled to the received data and a		
8	second input coupled to an output of the first processor; and		
9	determining an integrity of the data using a third processor in the		
10	arrangement having a first input coupled to the received data, a second input coupled to		
11	an output of the first processor, and a third input coupled to an output of the second		
12	processor.		
1	25. The computer readable medium of claim 24, wherein the computer		
2	program comprises executable instructions for:		
3	compressing and decompressing the received data according to at least one		
4	of a Lempel-Ziv-Stac (LZS) and an Adaptive Lossless Data Compression (ALDC)		
5	compression algorithm;		
6	obscuring and deciphering the data according to at least one of a Data		
7	Encryption Standard (DES), a Triple-DES, and an Advanced Encryption Standard (AES)		
8	algorithm; and		

9		nashing the data to determine the integrity according to at least one of
10	Secure Hash	Algorithm (SHA-1) and a Message Data 5 (MD5) algorithm.
1	26.	The computer readable medium of claim 23, wherein the computer
2	program com	prises executable instructions for:
3		determining the predetermined algorithm based on control information
4	included in a security association related to the received data;	
5		receiving the control information; and
6		forwarding the control information to each of the processors for use in
7	performing the	ne respective cryptographic operations on the data.
1	27.	The computer readable medium of claim 23, wherein the computer
2	program com	prises executable instructions for:
3		determining a checksum associated with the transmitted data.