FBX4025 – Sistemas Digitais I

Objetivos

- Apresentar o conceito de circuitos sequenciais
- Apresentar a arquitetura de contadores assíncronos e síncronos
- Apresentar a arquitetura de Memórias

Configurações básicas

Os contadores podem ser classificados pelo:

Tipo de controle: - assíncrono;

- síncrono.

2. Tipo de contagem: - crescente (up);

- decrescente (down).

Tipo de código: - hexadecimal;

decimal (década);

outros.

Contadores Assíncronos

Contadores Assíncronos de década crescente

Descidas de clock	Q_3	Q ₂	Q_1	Q_0	CLR
12	j- ≯ 0	0	0	0	1
2 <u>a</u>	0	0	0	1	1
<u>3a</u>	0	0	1	0	1
<u>4ª</u>	0	0	1	1	1
<u>5a</u>	0	1	0	0	1
6 <u>a</u>	0	1	0	1	1
7 <u>a</u>	0	1	1	0	1
<u>8a</u>	0	1	1	1	1
9 <u>a</u>	1	0	0	0	1
10ª.	<u>1</u>	_ 0	0	1	1
	(1	0	1	0)	0

Contadores Assíncronos seqüencial de 0 a n (crescente) (exemplo – n=5)

Contadores Assíncronos decrescente

Decimal		Bina	ário	
15	1	1	1	1
14	1	1	1	0
13	1	1	0	1
12	1	1	0	0
11	1	0	1	1
10	1	0	1	0
9	1	0	0	1
8	1	0	0	0
7	0	1	1	1
6	0	1	1	0
5	0	1	0	1
4	0	1	0	0
3	0	0	1	1
2	0	0	1	0
1	0	0	0	1
0	<u>0</u>	0	0	0

Contadores Assíncronos decrescente

Contadores Assíncronos crescente/decrescente

Contadores Síncronos

J	K	Qf
0	0	Qa
0	1	0
1	0	1
1	1	Qa

(mantém o estado)

(fixa 0)

(fixa 1)

(inverte o estado)

Qa	Qf	J	K
()	()	()	·X
()	1	1	X
1	()	X	1
1	1	X	0

Contadores Síncronos

Contadores Síncronos

ck	Q_3	Q_2	Q_1	Q_0	
<u>1ª</u>	0	0	0	0	∢ -¬
2 <u>a</u>	0	0	0	1	
3 <u>a</u>	0	0	1	0	
4 <u>a</u>	0	0	1	1	
<u>5a</u>	0	1	0	0	
1ª 2ª 3ª 4ª 5ª 6ª	0	1	0	1	Ì
7ª 8ª 9ª 10ª	0	1	1	0	į
<u>8a</u>	0	1	1	1	Ì
<u>9a</u>	1	0	0	0	
10ª	1	0	0	1 0	
11ª	1	0	1	0	ļ
12a	1	0	1	1	
13ª	1	1	0	0	
14a	1	1	0	1	
15a	1	1	1	0	
16ª	1	1	1	1	i

Karnaugh

					./	//						
Descidas do pulso de clock	Q ₃	Q ₂	Qı	Q ₀	J_3	K,	J_2	K ₂	Ji	K	Jo	K ₀
1 <u>a</u> :	- ≯ ()	()	0	()	0	X	0	X	0	X	1	X
2ª	0	0	()	1	0	X	0	X	1	X	X	1
3ª :	0	0	1	0	0	X	0	X	X	0	1	X
4ª	()	()	1	1	0	X	1	X	X	1	X	1
5ª	0	1	()	()	0	X	X	0	0	X	1	X
$6^{\underline{a}}$	0	1	0	1	0	X	X	0	1	X	X	1
7ª	()	1	1	0	0	X	X	0	X	0	1	X
8 <u>ª</u>	0	1	1	-1	1	X	X	1	X	1	X	1
92	1	0	0	0	X	0	0	X	0	X	1	X
10^{a}	1	0	0	1	X	0	0	X	1	X	X	1
11^{a}	1	0	1	0	X	0	0	X	. X	0	1	X
12ª	1	0	1	1	X	0	1	X	X	1	X	1
13ª	1	1	0	0	X	0	X	0	0	X	1	X
14ª	1	1	()	ı	X	0	X	()	1	X	X	1
15ª	1	1	1	()	X	()	X	()	X	0	1	X
16ª [:]	1	1.	1	1	X	1	X	1	X	1	X	1

Contadores Síncronos resultante dos Karnaughs

Contadores Síncronos resultante dos Karnaughs

	Q_3	Q_2	Q_1	Q_0	J_3	K 3	J_2	K ₂	Jı	K,	J_0	Ko
٠	()	()	0	0	0	X	0	X	0	X	1	X
	0	0	0	1	0	X	0	X	1	X	X	1
	0	0	1	0	0	X	0	X	X	0	1	X
	()	()	1	j	0	X	1	X	X	1	X	1
	0	1	0	0	0	X	X	0	0	X	1	X
	0	_1	0	1	0	X	X	0	1	X	X	1
	0	1	1	0	0	X	X	0	X	0	1	X
	0	1	1	1	1	X	X	1	X	1	X	1
	1	0	0	0	X	0	0	X	0	X	1	X
	1	0	0	1	X	1	0	X	0	X	X	1

Contadores Síncronos geradores de uma seqüência qualquer

Estados	Q_3	Q_2	Q_1	\mathbf{Q}_{o}	J ₃	K ₃	J_2	K ₂	J_1	K ₁	J_0	Ko
0	0	0	0	0	0	Х	0	Х	0	х	1	X
1	0	0	0	1	0	Х	0	Х	1	Х	Х	1
② ③	0	0	1	0	0	Х	0	Х	Х	0	1	X
	0	0	_1_	1	1	X	0	X	<u>X</u>	0	X	1
<u>(10</u>	1	0	1	0	0.6			ante	cede	010))
4)	0	1	0	0	0	Х	Х	0	0	Х	1	Х
5	0	1	0	1	0	X	X	0	1	Х	X	1
6	0	1	1	0	0	Х	X	0	Х	0	1	X
7	0	1	1	1	1	X	X	1	Х	1	Х	1
8	1	0	0	0	Х	0	0	Х	0	Х	1	X
9	1	0	0_	1	X	0_	0	X	1	X	X	0
	1	0	1	1	o e	stad	o 9	ante	cede	o 1	1	(
10	1	0	1	0	X	0_	1	X	X	1_	1	X
(13)	1	1	0	1	οe	stad	o 10	ante	eced	e o	13)
(11)	1	0	1	1	X	0	1	X	Х	1	X	1
12	1	1	0_	0	X	0	X	0	1_1	X	0	X
(14)	1	1	1	0	o e	stad	o 12	ante	eced	e o	14	
(13)	1	1	0_	1	Х	1	X	1	0	X	X	_1
<u></u>	0	0	0	0	o e	stad	o 13	ante	eced	eo()	_)
14)	1	1	1	0	Х	0	Х	0	Х	0	1	Х
15	1	1	1_	1	X	1	Х	1	X	1_	X	_1
(<u>O</u>	0	0	0	0	o e	stad	o 15	ante	eced	eo()	_)

Contador Anel

	Q_3	Q_2	Q_{i}	Q_0	J_3	K ₃	· J ₂	K ₂	Ji	Ki	J_0	\mathbf{K}_0
:▶	0	0	()	1	0	X	0	X	1	X	X	1
	0	()	1	0	0	X	1	X	X	1	0	X
	()	1	0	0	1	X	X	1	0	X	0 -	X
	1_	0	0	()	X	1	0	X	0	X	1	X

Contador Johnson

Clock	Q ₄	Q ₃	Q_2	Qi	Qo
10	()	()	0	()	0
2º	0	0	0	0	1
3⁰	0	0	0	1	1
4º	0	0	1	1	1
5º	()	1	1	1	1
6°	1	1	1	1	1
7º	1	1	1	1	0
8 <u>º</u>	1	1	1	0	0
9º	1	1	0	0	0
10º	1	0	0	0	0
	0	0	0	0	0

Circuitos Sequenciais

Referências

IDOETA, Ivan V.; CAPUANO, Francisco G. **ELEMENTOS DE ELETRÔNICA DIGITAL** 42ª edição. Editora Saraiva, 2019. E-book. ISBN 9788536530390.

TOCCI, Ronald J.; Widmer, Neal S.; Moss, Gregory L. **Sistemas digitais:** princípios e aplicações, 12^a ed. Editora Pearson, 2018. 1056 p. ISBN 9788543025018.

FLOYD, Thomas. Sistemas digitais: fundamentos e aplicações. 9. Porto Alegre