

Department of Computer Science & Informatics CSIA6843

Statistical Analysis System Programming
BASE SAS COMPETENCY PRACTICAL EVALUATION

Assessment: Practical Project

Date Issued: 24 August 2022

Due Date: 25 October 2022

Submission Procedure: BlackBoard

Examiner: Mr. L. Grobbelaar

Moderator: Me. W. Kuyler

Examiner

W. G. Kuyr Moderator

Instructions:

- 1) Please complete all the sections of the project as code segments by making use of the SAS integrated development environment University Edition.
- 2) Your initials and surname as well your student number should appear at least once at the top of each code section or consecutive code section (as a comment). This is how your work will be identified.
- 3) Each code section should contain, in commented form, the section number or consecutive section numbers relevant to the code e.g. "Section 1.1" or "Section 1.1 – 1.3". If you present consecutive section numbers as one section of code, please indicate the different section numbers relevant to the code in comments. Code that does not contain this information will not be assessed.
- 4) Where you are required to programmatically create datasets, you are required to include the relevant section number in the form of headers in the output as well as your name and student number in the form of footers. This is mandatory for the output of each dataset created.
- 5) Ensure the program sections you code successfully execute on different computers.
- 6) Change the name of the folder containing the input data files to "SASUFS".
- 7) Save all your code in a secondary folder named "Code" in the "SASUFS" folder.
- 8) All created datasets, unless specified as temporary, should be considered as being permanent and written to a library named "SASProject".

General:

The mark obtained for this project will account for 30% (thirty percent) of your final mark.

The assignment covers BASE SAS Programming I concepts.

Your assignment is due on the 29th of October 2022.

Submissions should be via BlackBoard in the form of a .zip folder saved as your student number.

Any questions or queries may be raised in the scheduled classes or via E-Mail (LgrobbeL@cut.ac.za).

fyffelaur Examiner

To complete the first, second and third sections, you will need to execute the cre8data and libname programs accordingly. The data needed to complete sections two and four is contained within the accompanying folder.

Section 1 [10 marks]

Write a program to display a subset of orion.employee_addresses as shown below. The program should sort the observations by State, City, and Employee_Name and then display the sorted observations grouped by State. The resulting report should contain 311 observations. (10)

US Employees by S	tate
State=C/	Α
Employee	Zip
ID Name	City Code
120656 Amos, Salley	San Diego 92116
120759 Apr, Nishan	San Diego 92071
121017 Arizmendi, Gilbert	San Diego 91950
121062 Armant, Debra	San Diego 92025
121049 Bataineh, Perrior	San Diego 92126

Section 2 [25 marks]

2.1 Write a PROC PRINT step to display the report below using **orion.sales** as input. Subset the observations and variables to produce the report shown below. Include titles, labels, and formats. The results contain 13 observations. (10)

		ales Emplo	•				
	Edilli	ig Officer ;	520,000				
Firs	st			Date	e		
Employee_I	ID Name	e Last	Name	Title	Salar	/	Hired
121036	Teresa	Mesley	Sales F	ep. I	\$25,965		OCT2007
121038	David	Anstey	Sales R	ep. I	\$25,285	Δ	UG2010
121044	Ray	Abbott	Sales Re	p. I	\$25,660	ΑI	UG1979
121106	James	Hilburge	r Sales I	Rep. I	\$25,880)	FEB2000
121108	Libby	Levi	Sales Rep	.1 5	\$25,930	NO	V2010

- 2.2 Complete the following tasks:
- a. Retrieve the starter program **Q2_2.sas** from the supplied data folder.
- b. Create a character format named \$GENDER that displays gender codes as follows: (4)

F	Female
М	Male
Any other	Invalid
value	code

c. Create a numeric format named SALRANGE that displays salary ranges as follows: (5)

At least 20,000 but less than 100,000	Below \$100,000
At least 100,000 and up to 500,000	\$100,000 or more
missing	Missing salary
Any other value	Invalid salary

d. In the PROC PRINT step, apply these two user-defined formats to the **Gender** and **Salary** variables, respectively. Submit the program to produce the following report: (6)

Examiner Examiner

W. Kur 3 Moderator

Partial PROC PRINT Output:

Salary and Gender Values for Non-Sales Employees Employee_ID Job_Title Salary Gender 1 120101 Director \$100,000 or more Male 2 120104 Administration Manager Below \$100,000 Female 3 120105 Secretary I Below \$100,000 Female Missing salary Male 4 120106 Office Assistant II 120107 Office Assistant III Below \$100,000 Female 5 6 120108 Warehouse Assistant II Below \$100,000 Female 7 120108 Warehouse Assistant I Below \$100,000 Female 8 120110 Warehouse Assistant III Below \$100,000 9 120111 Security Guard II Below \$100,000 Male 120112 Below \$100,000 Female 10 120113 Security Guard II 11 Below \$100,000 Female 12 Below \$100,000 Invalid code 120114 Security Manager 13 120115 Service Assistant I Invalid salary Male

Section 3 [20 marks]

Complete the following	3.	Comp	ete 1	the	fol	lowing
--	----	------	-------	-----	-----	--------

a. Write a DATA step to create **work.delays** using **orion.orders** as input. (2)

b. Create a new variable, **Order_Month**, and set it to the month of **Order_Date**.

Hint: Use the MONTH function. (3)

c. Use a WHERE statement and a subsetting IF statement to select only the observations that meet all of the following conditions:

• **Delivery_Date** values that are more than four days beyond **Order_Date** (1)

• Employee_ID values that are equal to 99999999 (1)

• Order_Month values occurring in August (1)

d. The new data set should include only **Employee_ID**, **Customer_ID**, **Order_Date**, **Delivery_Date**, and **Order_Month**. (2)

e. Add permanent labels for Order_Date, Delivery_Date, and Order_Month as shown below.

(3)

f. Add permanent formats to display **Order_Date** and **Delivery_Date** as MM/DD/YYYY. (3)

g. Add a PROC CONTENTS step to verify that the labels and formats were stored permanently.

(2)

	Alphabetic List of Variables and Attributes
#	Variable Type Len Format Label
2	Customer_ID Num 8 12. Customer ID
4	Delivery_Date Num 8 MMDDYY10. Date Delivered
1	Employee_ID Num 8 12. Employee ID
3	Order_Date Num 8 MMDDYY10. Date Ordered
5	Order_Month Num 8 Month Ordered

Examiner

h. Write a PROC PRINT step to create the report below. Results should contain nine observations. (2)

		Delivery_ Order_
Obs	Employee_ID	Customer_ID Order_Date Date Month
1	9999999	70187 08/13/2007 08/18/2007 8
2	9999999	52 08/20/2007 08/26/2007 8
3	9999999	16 08/27/2007 09/04/2007 8
4	9999999	61 08/29/2007 09/03/2007 8
5	9999999	2550 08/10/2008 08/15/2008 8
6	9999999	70201 08/15/2008 08/20/2008 8
7	9999999	9 08/10/2009 08/15/2009 8
8	9999999	71 08/30/2010 09/05/2010 8
9	9999999	70201 08/24/2011 08/29/2011 8

Section 4 [20 marks]

- 4.1 Read the instructions below and complete each step accordingly:
 - a. Open **Q4_1.sas**. Insert a LIBNAME statement to associate the libref **out** with the Excel workbook **employees.xls** in the default data folder. (4)
 - b. Modify the program so that it creates a spreadsheet named salesemps in the employees.xls workbook.
 - c. Submit the SAS program and verify that it created the data set **out.salesemps** with 71 observations and 4 variables as shown in the partial SAS log below.

NOTE: 71 records were read from the infile "s:\workshop\newemps.csv".

The minimum record length was 28.

The maximum record length was 47.

NOTE: The data set OUT.salesemps has 71 observations and 4 variables.

The program will fail if the workbook already exists. Use Windows Explorer to navigate to the data folder and delete **employees.xls**.

4.2 Open Q4_2.sas.

- a. Write a DATA step to read the delimited in-stream data shown below.
 - An INFILE statement is required. Use SAS Help or online documentation to explore the use of DATALINES as a file specification in an INFILE statement. (6)

120102/Tom/Zhou/M/108,255/Sales Manager/01Jun1993

120103/Wilson/Dawes/M/87,975/Sales Manager/01Jan1978

120261/Harry/Highpoint/M/243,190/Chief Sales Officer/01Aug1991

121143/Louis/Favaron/M/95,090/Senior Sales Manager/01Jul2001

121144/Renee/Capachietti/F/83,505/Sales Manager/01Nov1995

121145/Dennis/Lansberry/M/84,260/Sales Manager/01Apr1980

Examiner

b. Generate the report below:

(4)

Orion Star Management Tear	m
First Last Title ID Gender	Salary HireDate
Tom Zhou Sales Manager 12010.	02 M 108255 06/01/1993
Wilson Dawes Sales Manager 1201	103 M 87975 01/01/1978
Harry Highpoint Chief Sales Officer 1202	261 M 243190 08/01/1991
Louis Favaron Senior Sales Manager 12	21143 M 95090 07/01/2001
Renee Capachietti Sales Manager 121	1144 F 83505 11/01/1995
Dennis Lansberry Sales Manager 121	1145 M 84260 04/01/1980

Total: {75}

~ END ~

Examiner