William Stallings Data and Computer Communications

BAB 2
Protokol dan Arsitektur

Karakteristik

- Langsung atau tidak langsung
- Monolitik atau terstruktur
- Simetris atau asimetris
- Standar atau tidak standar

Langsung atau Tidak Langsung

- Langsung
 - ☐ Sistem yang berbagi sebuah sambungan titik ke titik atau
 - □ Sistem yang berbagi sebuah sambungan dengan banyak titik
 - □ Data dapat lewat tanpa intervensi oleh "agent" yang aktif
- Tidak Langsung
 - Switched network atau
 - □ Internetwork atau internet
 - Transfer data tergantung pada entitas lain

Monolitik atau Terstruktur

- Komunikasi adalah pekerjaan yang kompleks
- Terlalu kompleks untuk sebuah unit
- Desain yang tersruktur memecahkan masalah menjadi unit yang lebih kecil
- Struktur yang berlapis

Simetris atau Asimetris

- Simetris
 - Komunikasi antar entitas pasangan
- Asimetris
 - Client/server

Standar atau Tidak Standar

- Protokol non standar dibuat untuk komputer dan pekerjaan tertentu
- K sumber dan L penerima menjadikan K*L protokol dan 2*K*L implementasi
- □ Jika yang dipakai adalah protokol yang umum, yang dibutuhkan adalah K + L implementasi

Pemakaian Protokol Standar

(a) Without standards: 12 different protocols; 24 protocol implementations

(a) With standards: 1 protocol; 7 implementations

Fungsi-Fungsi

- Encapsulation
- Segmentation and reassembly
- Connection control (Pengendalian hubungan)
- Ordered delivery (Pengiriman sesuai order)
- □ Flow control (Pengendalian aliran)
- Error control (Pengendalian kesalahan)
- Addressing (Pengalamatan)
- Multiplexing
- □ Transmission services (Layanan transmisi)

Enkapsulasi

- Penambahan informasi kontrol terhadap data
 - □ Informasi alamat
 - □ Kode pendeteksi kesalahan / deteksi error
 - Kontrol protokol

Segmentasi/Fragmentasi

- Blok data dalam ukuran yang terbatas
- Pesan-pesan lapisan aplikasi mungkin berukuran besar
- Paket jaringan bisa jadi lebih kecil
- Membagi blok yang lebih besar menjadi lebih kecil disebut "segmentation" (atau "Fragmentation" dalam TCP/IP)
 - ☐ ATM blocks (cells) panjangnya 53 octet
 - ☐ Ethernet blocks (frames) panjangnya sampai 1526 octets
- Checkpoint dan restart/recovery

Kenapa ada Fragment?

- Kelebihan
 - Pengendalian kesalahan lebih efisien
 - Akses ke fasilitas jaringan yang lebih seimbang
 - Waktu jeda yang lebih pendek
 - Buffer yang diperlukan lebih kecil
- Kekurangan
 - Overheads
 - Peningkatan interupsi pada penerima
 - Waktu proses lebih lama

Kontrol Koneksi

- Hubungan terbentuk
- Transfer data
- Pemutusan hubungan / koneksi
- Dapat menginterupsi hubungan dan memperbaiki
- Nomor urut digunakan untuk
 - □ Pengiriman terurut / ordered dilevery
 - pengendalian / kontrol aliran
 - pengendalian / kontrol kesalahan

Transfer Data berorientasi Hubungan

Pengiriman terurut

- PDU dapat memilih jalur lain melalui jaringan
- PDU bisa keluar dari urutan
- Nomor Urut PDU digunakan untuk pengurutan

Pengendalian aliran

- Dilakukan oleh entitas yang menerima
- Jumlah batas atau rata-rata dari data / rate of data
- Berhenti atau tunggu
- ☐ Sistem kredit
 - Sliding window
- digunakan pada aplikasi seperti lapisan jaringan

Pengendalian kesalahan

- Mencegah kehilangan atau kerusakan
- Pendeteksian kesalahan
 - Pengirim menambahkan bit pendeteksi kesalahan
 - Penerima menguji bit tsb
 - ☐ Jika OK, acknowledge
 - ☐ Jika salah, membuang paket / dikembalikan
- □ Retransmission (Mengirim Ulang)
 - Jika tidak ada aknowledge pada waktu yang ditentukan, kirim ulang
- Dibentuk pada berbagai lapisan

Pengalamatan

- Addressing level (Tingkat pengalamatan)
- Addressing scope (Cakupan pengalamatan)
- Connection identifiers (Identifikasi hubungan)
- Addressing mode (Mode pengalamatan)

Addressing level (Tingkat Pengalamatan)

- Tingkat didalam arsitektur dimana entitas diberi nama
- Alamat unik untuk setiap End-System (komputer) atau router
- Alamat tingkat jaringan
 - ☐ IP atau alamat internet (TCP/IP)
 - □ Network service access point atau NSAP (OSI)
- Proses didalam sistem
 - Nomer Port (TCP/IP)
 - ☐ Service access point atau SAP (OSI)

Konsep Pengalamatan

Addressing Scope / Jangkauan Pengalamatan

- Global nonambiguity
 - ☐ Alamat global yang mengidentifikasi sistem yang unik
 - □ Hanya ada satu sistem dengan alamat X
- Global applicability
 - Memungkinkan disetiap sistem (setiap alamat) untuk mengidentifikasi sistem (alamat) lain dengan alamat global sistem lain
 - Alamat X mengidentifikasi bahwa sistem bisa dari mana saja pada jaringan
- Contoh, Alamat MAC pada jaringan IEEE 802

Penanda hubungan

- Transfer data berorientasi hubungan (rangkaian virtual)
- Mengalokasi sebuah nama hubungan selama fase transfer
 - Overhead diturunkan ketika penanda hubungan lebih pendek daripada alamat global
 - Routing bisa dibetulkan dan diidentifikasi oleh nama hubungan
 - Entitas dapat memiliki banyak hubungan multiplexing
 - Informasi status dipertahankan

Addressing Mode (Mode Pengalamatan)

- Biasanya sebuah alamat mewakili sebuah sistem tunggal
 - alamat "unicast"
 - Mengirim ke satu mesin atau orang
- Bisa mengalamati semua entitas didalam suatu domain
 - Broadcast
 - ☐ Mengirim ke semua mesin atau pemakai
- Bisa mengalamati sebagian entitas didalam suatu domain
 - Multicast
 - mengirim ke sebagian mesin atau grup dari pemakai

Multiplexing

- Mendukung banyak hubungan pada satu mesin
- Memetakan banyak hubungan pada satu tingkat dari satu hubungan ke yang lain
 - Membawa sejumlah hubungan pada satu kabel serat optik
 - Menggabungkan jalur ISDN untuk memperoleh bandwidth

Layanan Transmisi

- Prioritas
 - Contoh, pengendalian pesan
- Kualitas layanan
 - Minimum acceptable throughput / laju penyelesaian minimum
 - Maximum acceptable delay / batas penundaan maksimum
- Pengamanan
 - □ Pembatasan akses

Model OSI

- Suatu model lapisan
- Setiap lapisan membentuk subset dari fungsi komunikasi yang diperlukan
- Setiap lapisan masih diperlukan untuk lapisan dibawahnya untuk membentuk fungsi yang lebih "primitif"
- Setiap lapisan menyediakan layanan untuk lapisan diatasnya
- Perubahan pada satu lapisan tidak boleh mengakibatkan perubahan pada lapisan yang lain

Lingkungan OSI

OSI as Framework for Standardization

Layer Specific Standards

Elemen Standarisasi

- Spesifikasi Protokol
 - □ Mengoperasikan antar lapisan yang sama pada dua sistem
 - ☐ Bisa melibatkan sistem operasi yang berbeda
 - ☐ Spesifikasi protokol harus tepat
 - ☐ Format of data units (Format unit data)
 - ☐ Semantics of all fields (Semantik dari semua field)
 - □ allowable sequence of PCUs (Urutan PCU yang diperkenankan)
- Definisi layanan
 - □ Penjelasan Fungsional tentang untuk apa disediakan
- Pengalamatan
 - Direferensikan oleh SAP

Lapisan OSI (1)

- Physical (Fisik)
 - Antarmuka fisik antar peralatan
 - Mechanical
 - Electrical
 - Functional
 - Procedural
- Data Link (Hubungan data)
 - Berupa pengaktifan, pemeliharaan dan pemutusan hubungan yang berjalan baik
 - Pendeteksian dan pengendalian kesalahan
 - Lapisan yang lebih tinggi dapat diasumsikan sebagai transmisi tanpa kesalahan

Lapisan OSI (2)

- Network (Jaringan)
 - Mengalirkan informasi
 - Lapisan yang lebih tinggi tidak perlu tahu tentang teknologi yang digunakan
 - ☐ Tidak diperlukan pada Hubungan Langsung
- Transport
 - Menukarkan data antar End-System
 - □ Tanpa kesalahan
 - □ Dalam urutan / secara bertahap
 - Tanpa kehilangan
 - □ Tanpa duplikat
 - Kualitas layanan

Lapisan OSI (3)

- Session
 - Mengendalikan dialog antar aplikasi
 - Aturan dialog
 - Pengelompokan
 - □ Recovery (Perbaikan / backup)
- Presentation
 - Pembentukan dan pengkodean data
 - ☐ Kompresi data
 - Enkripsi
- Application
 - Berupa aplikasi yang mengakses lingkungan OSI

Penggunaan Relay

TCP/IP Protocol Suite

- Arsitektur protokol komersial yang paling dominan
- Ditentukan dan digunakan secara spesifik sebelum OSI
- Dibangun oleh riset yang didanai oleh Departemen Pertahanan Amerika
- Digunakan oleh Internet

Arsitektur Protokol TCP/IP (1)

- Application Layer (Lapisan Aplikasi)
 - □ Komunikasi antar proses atau aplikasi
- ☐ End to End atau Lapisan Transport (TCP/UDP/...)
 - □ Transfer data End to End
 - □ Bisa melibatkan mekanisme yang handal (TCP)
 - Menyembunyikan detil jaringan yang digunakan
- ☐ (IP) Lapisan Internet
 - Pengaturan rute data

Arsitektur Protokol TCP/IP (2)

- Network Layer (Lapisan Jaringan)
 - Antarmuka logik antara End System dengan jaringan
- Physical Layer (Lapisan Fisik)
 - Media Transmisi
 - Kecepatan pensinyalan dan pengkodean data

PDU didalam TCP/IP

Beberapa Protokol didalam TCP/IP

BGP = Border Gateway Protocol OSPF = Open Shortest Path First

FTP = File Transfer Protocol RSVP = Resource ReSerVation Protocol HTTP = Hypertext Transfer Protocol SMTP = Simple Mail Transfer Protocol

ICMP = Internet Control Message Protocol SNMP = Simple Network Management Protocol

IGMP = Internet Group Management Protocol TCP = Transmission Control Protocol

IP = Internet Protocol UDP = User Datagram Protocol MIME = Multi-Purpose Internet Mail Extension

Perlu membaca

- ☐ Stallings chapter 2 (Stallings bab 2)
- Comer, D. Internetworking with TCP/IP volume I
- □ Comer,D. and Stevens,D. Internetworking with TCP/IP volume II and volume III, Prentice Hall
- □ Halsall, F> Data Communications, Computer Networks and Open Systems, Addison Wesley
- □ RFCs (Request For Comments)