

Taylor expand
$$f(x)$$
 around x^* :

$$f(x^* + \eta) = f(x^*) + \eta f(x^*) + 2f'(x^*) + O(h^3)$$

$$f(x^* + \eta) = f(x^* + \eta) \approx f(x^*) + \eta f'(x^*) + O(h^2)$$

$$f(x^* + \eta) = f(x^* + \eta) \approx f(x^*) + \eta f'(x^*) + O(h^2)$$

$$f(x^* + \eta) = f(x^* + \eta) \approx f(x^*) + \eta f'(x^*) + O(h^2)$$

$$f(x^* + \eta) = f(x^* + \eta) \approx f(x^*) + \eta f'(x^*) + O(h^2)$$

· linearized ogn. around xt variational egn associated with f(x), and x*.

 $\eta(t) = \eta_0 \exp(at)$ $a = f'(x^*)$

f'(x*)>0: n grows exponentially => x is lyegile f'(x) <0: n decays exponentially => x is linearly

de (lu(n)) = a is the log growth

a characteristic time scale
associated w/ growth/de cay perturbetins

characterist time saale.

Linear stability analysis gives no information when f'(K+)=0.

Exs: Determine The linear stability of the fixed pts. for \(\times = \sin(x) \). f(x) = sin(x) = 0 => X = KT Kintegers f'(x) = cos(x) => f(x) = cos(kT)= -1 Kodd. X = KIT is linearly my tuble if K is even 4 +(x) = sin(x)

Ex6: Use linear stabilly analysis for logistic eqn:

$$N = f(N) = rN(1 - \frac{N}{K}) \quad r_1K \text{ consts}$$

$$f(N) = 0 = rN(1 - \frac{N}{K}) = 0, \quad N^* = K$$

Existence and uniqueness him:

Consider The initial value problem $\dot{x} = f(x)$, $\dot{x}(o) = \dot{x}_o$ Suppose f(x) and (f'(x)) are continuous tunctions
on an open interval R of the x-axis, and

let \dot{x}_o be a joint in \dot{R} . Then, the \dot{x} -the has a sol'm $\dot{x}(t)$ on some interval $(-\tau, \tau)$ around $\dot{t} = 0$ and the sol'm is unique might in \dot{x} .

Ex 9: x=1+x2	$X(a) = K_o$		
$f(x) = 1 + x^2$	f'=2x	f"= \$2	
Continuous function		11 = 0 tou(t)	
Let x(0)=0:	$\frac{dx}{dt} = \int dt$		D+
$\frac{1}{4\pi^{-1}(x)} = \frac{1}{4\pi^{-1}(x)}$	$\int_{a}^{+x^{2}} (x) = t + \mathcal{L}$	10 1/2	
x(4) = ten(t) ta	$n^{-1}(0) = C = 0$	7 = II	
	5	olu only exists to	V

