Name :	Utech
Roll No.:	
Inviailator's Signature ·	

CS/B.Tech (CE-OLD)/SEM-3/CE-301/2011-12 2011 MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) If A_1 and A_2 are mutually exclusive events then

a)
$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1) \cap P(A_2)$$

b)
$$P(A_1 \cup A_2) = P(A_1) + P(A_2)$$

c)
$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$$

d)
$$P(A_1 \cup A_2) = P(A_1) P(A_2)$$
.

ii) $\cos (5x)$ is a periodic function with the period

a) 2π

b) π

c) $\frac{2\pi}{5}$

d) none of these.

3157 (O) [Turn over

CS/B.Tech (CE-OLD)/SEM-3/CE-301/2011-12

b)
$$F(p+a)$$

c)
$$F(p).e^{ipa}$$

d)
$$F(p).e^{-ipa}$$
.

iv) Fourier cosine transform of e^{-x} is

a)
$$\frac{1}{1+s^2}$$

b)
$$\frac{1}{1-s^2}$$

c)
$$\frac{s}{1+s^2}$$

d)
$$\frac{s}{1-s^2}$$
.

v) If $P(A) = \frac{1}{3}$, $P(B) = \frac{3}{5}$ and A and B are mutually exclusive

events, then P ($A \cup B$) is equal to

a)
$$\frac{14}{15}$$

b)
$$\frac{11}{15}$$

d)
$$\frac{1}{5}$$
.

vi) If \overline{A} is the complementary event of A, then $P(A) + P(\overline{A})$ is equal to

a) 0

b) 1

c) 2

d) none of these.

(Notations have their usual meanings)

a)
$$\frac{p}{q} = \frac{y}{x}$$

b)
$$xyz = pq$$

c)
$$pq = z$$

d) none of these.

- viii) If A and B are independent events, P(B) = 0.14 and P(A|B) = 0.24, then the value of P(A) is
 - a) 0·14

b) 0.0336

c) 0.38

- d) 0.24.
- ix) The mean of an exponential distribution with parameter $\alpha \; (\; \alpha > 0 \;) \; is$
 - a) $\frac{1}{\alpha^3}$

b) $\frac{1}{\alpha^2}$

c) $\frac{1}{\alpha}$

- d) α
- x) If F be a distribution function of a random variable X, then

a)
$$\lim_{x\to\infty} F(x) = 0$$

b)
$$\lim_{x\to\infty} F(x) = 1$$

c)
$$\lim_{x\to\infty} F(x) = \infty$$

d)
$$\lim_{x\to\infty} F(x) = -\infty.$$

- xi) The partial differential equation $\frac{\partial u}{\partial t}$ constant, is known as
 - a) one dimensional wave equation
 - b) one dimensional heat-flow
 - c) two dimensional heat-flow equation
 - d) none of these.
- xii) For the random experiment of tossing two coins if X be the random variable such that X (an outcome) = "the number of heads", then the spectrum of X is
 - a) $\{0, 1, 2\}$
- b) { 1, 2, 3 }

c) $\{0, 1\}$

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Using Parseval's identities, prove that $\int_{0}^{\infty} \frac{\mathrm{d}t}{\left(a^2 + t^2\right)\left(b^2 + t^2\right)} = \frac{\pi}{2ab\left(a + b\right)}.$
- 3. Form the partial differential equation by eliminating the arbitrary functions from $f(x^2+y^2, z-xy)=0$.

3157 (O)

- 4. Solve two dimensional Laplace's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ by separation of variables.
- 5. An integer is chosen at random from the first 100 positive integers. What is the probability that the integer is divisible by 6 or 8?
- 6. Expand the function $f(x) = x \sin(x)$ as a Fourier Series in $[-\pi, \pi]$.
- 7. Find the Fourier integral representation of the function $f(x) = e^{-x} \text{ when } x > 0 \text{ with } f(-x) = f(x). \text{ Hence evaluate}$ $\int_{0}^{\infty} \frac{\cos(\lambda x)}{1+\lambda^{2}} \, \mathrm{d}\lambda.$

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

8. a) What is the Fourier expansion of the periodic function

$$f(x) = \begin{cases} 0 & \text{when } -\pi < x < 0 \\ \sin(x) & \text{when } 0 \le x < \pi \end{cases}$$

Hence evaluate $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots$

CS/B.Tech (CE-OLD)/SEM-3/CE-301/2011-12

- b) State giving reasons whether the following functions can be expanded in Fourier Series in the interval $-\pi \le x < \pi$:
 - i) cosec(x)

ii)
$$\sin\left(\frac{1}{x}\right)$$
. $10 + 5$

9. Derive one dimensional wave equation for vibrating string and solve it using the method of separation of variables.

$$10 + 5$$

- 10. a) From the Fourier Series expansion of $f(x) = x^2$ in $-\pi < x < \pi$ prove that $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.
 - b) Find the Fourier sine transform of $f(x) = \frac{1}{x} e^{-ax}$.

$$10 + 5$$

11. a) The distribution function F(x) of a variate X is defined as follows:

$$F(x) = A, -\infty < x < -1$$

$$= B, -1 \le x < 0$$

$$= C, 0 \le x < 2$$

$$= D, 2 \le x < \infty.$$

b) Solve the two dimensional heat equation, using Fourier transform:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \ 0 < x < \pi, \ 0 < y < \pi.$$

$$u \ (0, y) = u \ (\pi, y) = 0$$
 for $0 < y < \pi$ and $u \ (x, 0) = 0$ and $u \ (x, \pi) = u_0$ for $0 < x < \pi$.

- 12. a) If A and B are independent events then show that the following pairs are independent:
 - i) \overline{A} and \overline{B}
 - ii) \overline{A} and B.
 - b) Show by Tchebycheff's inequality that in 2000 throws with a coin the probability that the number of heads lies between 900 and 1100 is at least $\frac{19}{20}$. 10 + 5