CHON TỔNG

Cho dãy số nguyên dương $A=(a_1,a_2,\dots,a_n)$ hãy chỉ ra một dãy con của dãy A có tổng bằng m.

Dữ liêu: Vào từ file văn bản SUBSETSUM.INP

- Dòng 1 chứa hai số nguyên dương $n \le 10^5$; $m \le 10^5$
- Dòng 2 chứa n số nguyên dương $a_1, a_2, ..., a_n$ $(\sum_{i=1}^n a_i \le 10^5)$

Kết quả: Ghi ra file văn bản SUBSETSUM.OUT

- Dòng 1 ghi từ YES nếu tồn tại dãy con của A có tổng bằng m, ngược lại ghi từ NO
- Nếu dòng 1 ghi từ YES, dòng 2 ghi chỉ số các phần tử được chon theo thứ tự tăng dần.

Ví dụ

SUBSETSUM.INP	SUBSETSUM.OUT					
6 99	YES					
11 44 33 55 77 88	1 3 4					

Thuật toán

Cho dãy $A = (a_1, a_2, ..., a_n)$. Cần chọn một dãy con có tổng bằng m.

Với một số nguyên không âm $x \leq m$.

Gọi f[x] là chỉ số i nhỏ nhất thỏa mãn: Có thể chọn trong i phần tử đầu của dãy A: $(a_1, a_2, ..., a_i)$ ra một dãy con có tổng bằng x. Nếu không tồn tại chỉ số i như vậy ta coi như $f[x] = +\infty$.

Ví dụ với n = 4. Dãy A cho như sau

i	1	2	3	4
a_i	8	2	1	3

Mảng f sẽ là

I	x	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
ĺ	f[x]	0	3	2	3	4	4	4	+∞	1	3	2	3	4	4	4	+∞

Trước hết ta thấy rằng f[0] = 0 theo định nghĩa. Vì ta có thể chọn trong 0 phần tử đầu của dãy A (dãy \emptyset) ra một dãy con (chính nó) có tổng bằng 0.

Ta xây dựng công thức tính f[x] trong điều kiện đã biết f[0], f[1], ..., f[x-1].

Nếu f[x] = i thì khi chọn một dãy con của $(a_1, a_2, ..., a_i)$ để được tổng bằng x, dĩ nhiên ta phải chọn a_i (nếu không thì vi phạm định nghĩa f[x] = i nhỏ nhất thỏa mãn...) và như vậy a_i phải $\leq x$.

Ngoài ra khi bỏ a_i ra khỏi dãy các phần tử được chọn, ta sẽ thu được một dãy khác có tổng bằng $x-a_i$ và dãy này phải là dãy con của (a_1,a_2,\dots,a_{i-1}) . Nói cách khác, ta phải có cách chọn một dãy con của (a_1,a_2,\dots,a_{i-1}) để được tổng bằng $x-a_i$. Tiêu chuẩn này tức là $f[x-a_i]$ tồn tại và nhỏ hơn i. Ta chỉ cần kiểm tra bằng điều kiện $f[x-a_i] < i$ do tiêu chuẩn $f[x-a_i]$ tồn tại nghĩa là $f[x-a_i] < +\infty$ được bao hàm trong điều kiện $f[x-a_i] < i$ rồi.

Vậy cách tính f[x] là tìm chỉ số i nhỏ nhất thỏa mãn: $a_i \le x \&\& f[x - a_i] < i$ rồi gán f[x] = i.

Khi tính xong mảng f, để chỉ ra cách chọn cho tổng bằng m, ta bắt đầu với phần tử a[i] với i = f[m]. Phần tử a[i] này chắc chắn phải chọn.

Chọn xong phần tử này thì lặp lại để chỉ ra cách chọn cho tổng bằng m-=a[i], cứ lặp đến khi m=0 thì không cần chọn tiếp nữa.

```
while (m > 0)
{
    i = f[m];
        «Thông báo chọn a[i]»;
        m -= a[i];
}
```

Độ phức tạp tính toán của thuật toán này là $O(m \times n)$. Tuy là thuật toán đúng nhưng chưa đạt yêu cầu về tốc độ. Gọi S là tổng các phần tử trong dãy a. Một nhận xét nhỏ cho phép cải tiến độ phức tạp tính toán xuống còn $O(m\sqrt{S})$: Nếu trong dãy a có 3 phần tử giống nhau, chẳng hạn 3 số v, v, v, khi đó có thể thay 2 số v bởi một số có giá trị 2v (còn 2 phần tử v, 2v) mà không ảnh hưởng đến việc chọn được/không chọn được tổng bằng m.

Bằng cách thay thế như vậy, không có một giá trị nào xuất hiện > 2 lần trong dãy a. Ta sẽ chỉ ra rằng số phần tử của dãy a bây giờ là một đại lượng $O(\sqrt{S})$.

Thật vậy, giả sử dãy a có n=2k phần tử, vì các phần tử trong dãy a xuất hiện ≤ 2 lần nên nếu sắp xếp tăng dần dãy a...

Hai phần tử nhỏ nhất trong a có tổng $\geq 1 + 1$

Hai phần tử tiếp theo có tổng $\geq 2 + 2$

Hai phần tử tiếp theo có tổng $\geq 3 + 3$

•••

Vậy

$$S = \sum_{i=1}^{n} a_i \ge 2 \times (1 + 2 + \dots + k) = (k+1) \times k$$

Vậy $k < \sqrt{S}$ tức là $n < 2\sqrt{S}$.