- Accepting nonimproving neighbors: These approaches enable moves that
 degrade the current solution. It becomes possible to move out the basin of
 attraction of a given local optimum. Simulated annealing and tabu search are
 popular representative of this class of algorithms. Simulated annealing was the
 first algorithm addressing explicitly the question "why should we consider only
 downhill moves?"
- Changing the neighborhood: This class of approaches consists in changing the neighborhood structure during the search. For instance, this approach is used in variable neighborhood search strategies.
- Changing the objective function or the input data of the problem: In this class, the problem is transformed by perturbing the input data of the problem, the objective function or the constraints, in the hope to solve more efficiently the original problem. This approach has been implemented in the guided local search, the smoothing strategies, and the noising methods. The two last approaches may be viewed as approaches changing the landscape of the problem to solve.

2.4 SIMULATED ANNEALING

Simulated annealing applied to optimization problems emerges from the work of S. Kirkpatrick et al. [464] and V. Cerny [114]. In these pioneering works, SA has been applied to graph partitioning and VLSI design. In the 1980s, SA had a major impact on the field of heuristic search for its simplicity and efficiency in solving combinatorial optimization problems. Then, it has been extended to deal with continuous optimization problems [204,512,596].

SA is based on the principles of statistical mechanics whereby the annealing process requires heating and then slowly cooling a substance to obtain a strong crystalline structure. The strength of the structure depends on the rate of cooling metals. If the initial temperature is not sufficiently high or a fast cooling is applied, imperfections (metastable states) are obtained. In this case, the cooling solid will not attain thermal equilibrium at each temperature. Strong crystals are grown from careful and slow cooling. The SA algorithm simulates the energy changes in a system subjected to a cooling process until it converges to an equilibrium state (steady frozen state). This scheme was developed in 1953 by Metropolis [543].

Table 2.4 illustrates the analogy between the physical system and the optimization problem. The objective function of the problem is analogous to the energy state of the system. A solution of the optimization problem corresponds to a system state. The decision variables associated with a solution of the problem are analogous to the molecular positions. The global optimum corresponds to the ground state of the system. Finding a local minimum implies that a metastable state has been reached.

SA is a stochastic algorithm that enables under some conditions the degradation of a solution. The objective is to escape from local optima and so to delay the convergence. SA is a memoryless algorithm in the sense that the algorithm does not

TABLE 2.4 Analogy Between the Physical System and the Optimization Problem

Physical System	Optimization Problem
System state	Solution
Molecular positions	Decision variables
Energy	Objective function
Ground state	Global optimal solution
Metastable state	Local optimum
Rapid quenching	Local search
Temperature	Control parameter T
Careful annealing	Simulated annealing

use any information gathered during the search. From an initial solution, SA proceeds in several iterations. At each iteration, a random neighbor is generated. Moves that improve the cost function are always accepted. Otherwise, the neighbor is selected with a given probability that depends on the current temperature and the amount of degradation ΔE of the objective function. ΔE represents the difference in the objective value (energy) between the current solution and the generated neighboring solution. As the algorithm progresses, the probability that such moves are accepted decreases (Fig. 2.25). This probability follows, in general, the Boltzmann distribution:

$$P(\Delta E, T) = e^{-\frac{f(s') - f(s)}{T}}$$

It uses a control parameter, called temperature, to determine the probability of accepting nonimproving solutions. At a particular level of temperature, many trials are explored. Once an equilibrium state is reached, the temperature is gradually decreased

FIGURE 2.25 Simulated annealing escaping from local optima. The higher the temperature, the more significant the probability of accepting a worst move. At a given temperature, the lower the increase of the objective function, the more significant the probability of accepting the move. A better move is always accepted.

according to a cooling schedule such that few nonimproving solutions are accepted at the end of the search. Algorithm 2.3 describes the template of the SA algorithm.

Algorithm 2.3 Template of simulated annealing algorithm.

```
Input: Cooling schedule. s = s_0; /* Generation of the initial solution */ T = T_{max}; /* Starting temperature */ Repeat Repeat /* At a fixed temperature */ Generate a random neighbor s'; \Delta E = f(s') - f(s); If \Delta E \leq 0 Then s = s' /* Accept the neighbor solution */ Else Accept s' with a probability e^{\frac{-\Delta E}{T}}; Until Equilibrium condition /* e.g. a given number of iterations executed at each temperature T */ T = g(T); /* Temperature update */ Until Stopping criteria satisfied /* e.g. T < T_{min} */ Output: Best solution found.
```

Example 2.23 Illustration of the SA algorithm. Let us maximize the continuous function $f(x) = x^3 - 60x^2 + 900x + 100$. A solution x is represented as a string of 5 bits. The neighborhood consists in flipping randomly a bit. The global maximum of this function is 01010(x = 10, f(x) = 4100). The first scenario starts from the solution 10011(x = 19, f(x) = 2399) with an initial temperature T_0 equal to 500 (Table 2.5). The second scenario starts from the same solution 10011 with an initial temperature T_0 equal to 100 (Table 2.6). The initial temperature is not high enough and the algorithm gets stuck by local optima.

In addition to the current solution, the best solution found since the beginning of the search is stored. Few parameters control the progress of the search, which are the temperature and the number of iterations performed at each temperature.

Theoretical analysis of the asymptotic convergence of SA is well developed [478]. The search may be modeled by a Markov chain, where the next state depends only

The second of th								
T	Move	Solution	f	Δf	Move?	New Neighbor Solution		
500	1	00011	2287	112	Yes	00011		
450	3	00111	3803	<0	Yes	00111		
405	5	00110	3556	247	Yes	00110		
364.5	2	01110	3684	<0	Yes	01110		
328	4	01100	3998	<0	Yes	01100		
295.2	3	01000	3972	16	Yes	01000		
265.7	4	01010	4100	<0	Yes	01010		
239.1	5	01011	4071	29	Yes	01011		
215.2	1	11011	343	3728	No	01011		

TABLE 2.5 First Scenario T = 500 and Initial Solution (10011)

TABLE 2.6 Second Scenario: T = 100 and Initial Solution (10011). When Temperature is not High Enough, Algorithm Gets Stuck

T	Move	Solution	f	Δf	Move?	New Neighbor Solution
100	1	00011	2287	112	No	10011
90	3	10111	1227	1172	No	10011
81	5	10010	2692	< 0	Yes	10010
72.9	2	11010	516	2176	No	10010
65.6	4	10000	3236	< 0	Yes	10000
59	3	10100	2100	1136	Yes	10000

on the current state. There is a guarantee of convergence toward the optimal solution:

$$\Pr(s_M \in R) \to 1$$
 as $M \to \infty$

where R represents the set of global optimal solutions and s_M the solution at iteration M under the following slow cooling schedule:

$$T_k = \frac{\Gamma}{\log k}$$

where Γ is a constant. In practice, such a cooling schedule is useless because it is an asymptotic convergence; that is, the convergence is obtained after an infinite number of iterations. However, much more work is needed in the analysis of finite time performance [267].

In addition to the common design issues for S-metaheuristics such as the definition of the neighborhood and the generation of the initial solution, the main design issues specific to SA are

- The acceptance probability function: It is the main element of SA that enables nonimproving neighbors to be selected.
- The cooling schedule: The cooling schedule defines the temperature at each step of the algorithm. It has an essential role in the efficiency and the effectiveness of the algorithm.

The following sections present a practical guideline in the definition of the acceptance probability function and the cooling schedule in SA.

2.4.1 Move Acceptance

The system can escape from local optima due to the probabilistic acceptance of a nonimproving neighbor. The probability of accepting a nonimproving neighbor is proportional to the temperature T and inversely proportional to the change of the objective function ΔE .