535520: Optimization Algorithms Course Info and Logistics

Ping-Chun Hsieh (謝秉均)

September 2, 2024

Course Info

- Graduate-level math course
 - Focus on classic methods in the optimization literature

- No textbook (but references will be provided)
 - We will use slides / write-ups for most of the time

This course will be highly interactive!

Disclaimers!

There will be quite a lot of theorems and proofs

 You will have the opportunity to prove a few classic theorems in the written assignments:)

Logistics

- This course will be delivered in English
 (Feel free to ask questions in either <u>English or Mandarin</u>)
- Slides and assignments will be posted on E3
- Office hours: Wednesdays, 1pm-2pm @ EC418 (starting on 9/11)
- Feel free to bring your lunch (as long as it is not too smelly)
- TAs: Nai-Chieh Huang (黃迺絜), naich.cs09@nycu.edu.tw

Course Registration

- Default limit: 45 students
- Manual Registration: Up to 12 students
 - Due to the limited human resource and my bandwidth, I would prefer to stick to this number
 - For those who needs manual registration, please fill out the Google form: https://forms.gle/ATEug4iB6N1Q63of6
 - We will collect all the requests until 9pm, Wednesday (9/4)
 - Decisions will be sent on Thursday (9/5)
 - For those manually registered, you will NOT be able to drop the course
- Auditing is allowed (as long as there are seats available)
 - If you need access to E3, please contact the TAs

Grading

- Assignments: 45%
 - HW0: 9%
 - HW1-HW3: 36% in total

- Final Project: 55%
 - Video, slides, and handout: 25%
 - Peer review: 15%
 - Poster presentation: 15%

Assignments

- Each (except HW0) will be a mixture of proofs and mini-programming tasks
 - HW0: Foundations (Week 1)
 - HW1: Duality and simple first-order methods (~Week 3)
 - HW2: Variance reduction, and more advanced first-order methods (~Week 6)
 - HW3: Mirror descent and momentum-based methods (~Week 9)
- Goal? Get a sense of theoretical analysis and OPT packages

3D maneuver gear (cool!)

Hang in there! (Time and efforts needed)

Late-Submission Policy for Assignments

- You might be busy with your research, so we decide to run a "linear penalty scheduler"
 - Suppose the assignment is X days late
 - X in (0,1]: 1/6 of total score deducted
 - X in (1,2]: 2/6 of total score deducted
 - X in (2,3]: 3/6 of total score deducted
 - X in (3,4]: 4/6 of total score deducted
 - X in (4,5]: 5/6 of total score deducted
 - \rightarrow X > 5: No credit

Final Project

- · Goal: Reproduce, correct, and implement a recent theory OPT paper
 - Each project can be done by <u>1~2 students</u>
 - Select a paper published in a top ML/OPT venue
 - Conferences: ICML, NeurIPS, ICLR, COLT, AISTATS, UAI, etc.
 - Journals: JMLR, Journal of Optimization Theory and Applications (JOTA), SIAM Journal on Control and Optimization, etc
 - Reproduce the proof in a compact manner and identify mistakes
 - Implement the optimization algorithm and evaluate it on benchmark datasets
 - We will make all the material (<u>videos</u>, <u>slides</u>, <u>handout</u>, <u>and source code</u>)
 available to the class members on Github

Final Project: Peer Discussions!

Research = "present your novel ideas and shake the existing beliefs of others"!

Research is also about making factual critiques of other people's works

• We'd like to motivate more peer discussions!

Final Project: Peer Discussions (Cont.)

- Videos: Each team will be asked to make a 30-40min lecture video
- All the videos will be archived on YouTube, publicly
- Each student will serve as a reviewer of 2-3 projects by watching the videos
- 2 assigned, and the other 1 is selected by yourself (optional, with bonus points)
- Reviewing = provide review comments and ask questions
- Review template will be provided
- The reviews will be done on OpenReview
- LLM-generated reviews will NOT count!
- Each team will need to submit a response (rebuttal) to the review comments as part of the peer review process
- Each team will also deliver a final poster presentation

Team Final Project: Major Steps

- Some major steps of preparing for the videos / handout
 - 1. Fully digest the proofs and reproduce them using your own words
 - 2. Identify all the assumptions and explain why they are needed
 - 3. Identify the <u>mistakes</u> (minor or major) in the paper
 - 4. Implement the optimization algorithm and evaluate it on benchmark datasets

Team Final Project: Major Steps (Cont.)

- 5. Compile your results into a "self-contained" lecture handout
 - Please typeset your report in LaTeX (template will be provided)
 - No page limit (will be graded based on quality, not quantity)

- 6. (Important!) Please use your own words
 - Do not copy the paper verbatim! (解釋而非轉述)
 - In fact, you shall write every sentence by using your own words
- The report will not be graded if the similarity is high

Some Milestones

Select a paper: by 10/15 (Week 7)

Upload your video and handout: by 11/25 (Week 13)

• Review period: 11/26-12/5 (Week 13-14)

• Rebuttal and discussion period: 12/6-12/20 (Week 15-16)

 Poster presentation: Sometime during 12/16-12/20 (Week 16; 1.5-hour sessions* 2, TBD)

Optimization: 3 Questions to Answer

1. Characterization: Sufficient / necessary conditions of an optimal solution?

2. Algorithms: Iterative algorithms that find an optimal solution?

3. Convergence: Do the iterates converge to an optimum? How fast?

Optimization is an Iterative Search Problem

Example: First-Order Methods

Popular variants:

- Gradient descent: $\theta_{t+1} = \theta_t \eta \nabla f(\theta_t)$
- Quasi-Newton : $\theta_{t+1} = \theta_t \eta D_t^{-1} \nabla f(\theta_t)$, $D_t \approx \nabla^2 f(\theta_t)$

Example: Zeroth-Order Methods

Use Cases:

- No gradient or Hessian information available
- f(x) can be accessed only by sequential sampling
- Sampling is sometimes assumed expensive or time-consuming

Applications of Zeroth-Order Methods

Hyperparameter Optimization for ML

Analog Circuit Design

Material Discovery

- Learning rate
- Regularization

- Width and length of MOS
- Bias current

- Composition
- Latent representation

Topics That Will Be Covered

Part I (W1-W3) Fundamentals

- Basic optimality conditions
- Lagrange multipliers
- Duality
- KKT conditions

Part II (W4-W10) First-order methods

- Gradient descent (GD)
- Stochastic GD
- Variance reduction
- Frank-Wolfe and PSGD

Part III (W11-W14)

Other Topics

- Zeroth-order methods
- Quasi-Newton
- Dual methods
- ADMM
- (Stochastic) Accelerated GD
- Momentum
- Mirror descent

Shall I Take This Course?

- This course will be a good fit:
 - If you'd like to understand the theory behind OPT algorithms
 - · If you'd kind of like math and enjoy doing theoretical analysis
 - If you are comfortable with research-oriented projects
- This course would not be a good fit:
 - If you expect to get much "hands-on experience" on optimization for neural networks
 - If you are a enthusiastic practitioner, first and foremost, and focus on making your engineering system work
 - If you prefer to do application-oriented OPT projects

Reference Texts

- Dimitri Bertsekas, "Nonlinear Programming," Athena Scientific, 2nd edition, 1999.
- Leon Bottou, Frank Curtis, and Jorge Nocedal, "Optimization Methods for Large-Scale Machine Learning," 2018.
- · Stephen Boyd and Lieven Vandenberghe, "Convex Optimization," 2004.
- Amir Beck, "Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB," Society for Industrial and Applied Mathematics, 2014
- Jorge Nocedal and Stephen J. Wright, "Numerical Optimization," Springer, 2nd edition, 2006
- Yurii Nesterov, "Lectures on Convex Optimization," Springer, 2nd edition, 2018