3 Answers to Assignment 3: PL semantics

3.1 15 points

1. tautology 2. tautology 3. neither 4. contradiction 5. neither

3.2 15 points

1. correct 2. not correct 3. correct 4. not correct 5. not correct

3.3 15 points

1. correct 2. not correct 3. correct 4. correct 5. not correct

3.4 15 points

Examples of truth valuation v such that all premises are true and the conclusion is false. Listing only one example is enough.

•
$$A^v = 0, B^v = 0, C^v = 1$$

•
$$A^v = 0, B^v = 1, C^v = 0$$

•
$$A^v = 0, B^v = 1, C^v = 1$$

3.5 30 points

P1 (10 points):

Fragment 1:

$$\begin{array}{l} ((i \vee (\neg u)) \wedge (\neg (u \wedge q))) \\ \equiv ((i \vee (\neg u)) \wedge (\neg u \vee \neg q)) \\ \equiv \neg u \vee (i \wedge \neg q) \end{array} \qquad \text{(De Morgan's Law)}$$

Fragment 2:

$$(\neg(i \land u \land q)) \land (\neg((\neg i) \land u))$$

$$\equiv (\neg i \lor \neg u \lor \neg q) \land (i \lor \neg u)$$

$$\equiv \neg u \lor ((\neg i \lor \neg q) \land i)$$

$$\equiv \neg u \lor ((\neg i \land i) \lor (\neg q \land i))$$

$$\equiv \neg u \lor (\operatorname{False} \lor (\neg q \land i))$$

$$\equiv \neg u \lor (\neg q \land i)$$

$$\equiv \neg u \lor (\neg q \land i)$$

$$\equiv \neg u \lor (i \land \neg q)$$
(Commutative Laws)

P2 (10 points):

$$\begin{array}{l} (((i\vee(\neg u))\wedge(\neg(\neg(u\wedge q))))\wedge(u\wedge(\neg q)))\\ \equiv (((i\vee(\neg u))\wedge(u\wedge q))\wedge(u\wedge(\neg q))) & \text{(Double Negation)}\\ \equiv ((i\vee(\neg u))\wedge((u\wedge q)\wedge(u\wedge(\neg q)))) & \text{(Associativity)}\\ \equiv ((i\vee(\neg u))\wedge((u\wedge u)\wedge(q\wedge(\neg q)))) & \text{(Commutative Law)}\\ \equiv ((i\vee(\neg u))\wedge(u\wedge\operatorname{False})) & \text{(Idempotent Law, Negation Law)}\\ \equiv ((i\vee(\neg u))\wedge\operatorname{False}) & \text{(Domination Law)}\\ \equiv \operatorname{False} & \text{(Domination Law)} \end{array}$$

P3 (10 points):

$$\begin{aligned} &((i\vee(\neg u))\wedge(\neg(u\wedge q))))\wedge(\neg(u\wedge(\neg q)))\\ &\equiv &((i\vee(\neg u))\wedge(u\wedge q))\wedge(\neg(u\wedge(\neg q)))\\ &\equiv &((i\vee(\neg u))\wedge(u\wedge q))\wedge(\neg u\vee q))\\ &\equiv &((i\vee(\neg u))\wedge((u\wedge q))\wedge(\neg u\vee q))\\ &\equiv &(i\vee(\neg u))\wedge((u\wedge q)\wedge(\neg u\vee q)))\\ &\equiv &(i\vee(\neg u))\wedge(u\wedge(q\wedge(\neg u\vee q)))\\ &\equiv &(i\vee(\neg u))\wedge(u\wedge q)\\ &\equiv &((i\vee(\neg u))\wedge(u\wedge q)\\ &\equiv &((i\vee(\neg u)\wedge u)\wedge q)\\ &\equiv &((i\wedge u)\vee(\neg u\wedge u))\wedge q\\ &\equiv &((i\wedge u)\vee(\neg u\wedge u))\wedge q\\ &\equiv &((i\wedge u)\vee False)\wedge q\\ &\equiv &((i\wedge u)\wedge q) \end{aligned} \qquad \begin{tabular}{l} \mbox{(Domination Law)}\\ &\equiv &((i\wedge u)\wedge q) \\ &\equiv$$

3.6 10 points

Proof: By Lemma 5.2, $\{\neg, \land\}$ is an adequate set. So it suffices to show that \neg and \land are definable in terms of \uparrow .

Consider any well-formed formula $(\neg \alpha)$ and $(\alpha \land \beta)$, where α and β are well-formed.

$$(\neg \alpha) \equiv (\neg (\alpha \land \alpha)) \qquad \qquad \text{(Idempotent laws)}$$

$$\equiv (\alpha \uparrow \alpha) \qquad \qquad \text{(By definition of } \uparrow)$$

$$(\alpha \land \beta) \equiv (\neg (\neg (\alpha \land \beta))) \qquad \qquad \text{(Double negation)}$$

$$\equiv (\neg (\alpha \uparrow \beta)) \qquad \qquad \text{(By definition of } \uparrow)$$

$$\equiv ((\alpha \uparrow \beta) \uparrow (\alpha \uparrow \beta)) \qquad \qquad \text{(By previous proof)}$$

Hence, $\{\uparrow\}$ is adequate.