Computergrafik

Vorlesung im Wintersemester 2014/15 Kapitel 1: Farbe, Bilder und Perzeption

Prof. Dr.-Ing. Carsten Dachsbacher Lehrstuhl für Computergrafik Karlsruher Institut für Technologie

Organisatorisches

Termine

- Donnerstag 24. 10. heute
- Montag 27. 10. 1. Übung: VM, Organisatorisches, C++, ...
 - Anmeldung mit ...@student.kit.edu
- Dienstag 28. 10. Vorlesung
- Donnerstag 30. 10. keine Vorlesung
- Montag
 3. 11. Übung
- Dienstag 4. 11. Vorlesung
- Donnerstag 6. 11. Vorlesung

> ...

Inhalt

- Bilder, Darstellung, Frame Buffer
- Licht, Sehen und Wahrnehmung
 - Farbsehen, Darstellung von Farben und Farbräume
 - Simultankontrast, Weber-Fechner-Gesetz
- Rasterbilder
 - Abtastung
 - einfache Operationen auf Bildern

Salvador Dali

Inhalt

- Bilder, Darstellung, Frame Buffer
- Licht, Sehen und Wahrnehmung
 - Farbsehen, Darstellung von Farben und Farbräume
 - Simultankontrast, Weber-Fechner-Gesetz
- Rasterbilder
 - Abtastung
 - einfache Operationen auf Bildern

Literatur

■VD

- Fundamentals of Computer Graphics,
 - P. Shirley, S. Marschner, 3rd Edition, AK Peters
 - → Kapitel 3 (Raster Images)

Computergrafik und Farbbilder

- CG: Erzeugung und Manipulation von Bildern
 - Bilder sind in aller Regel sogenannte Rasterbilder:
 2D Arrays aus farbigen Pixeln (Picture Elements)
 - aber: welche Konsequenzen hat das? Was ist Licht? Farbe?

Raster Displays und Bilder

- Geräte zur Darstellung und Aufnahme von Bildern, z.B.
 - Monitor: Bildpunkte, Farben durch Mischung aus rot, grün und blau
 - Digitalkamera: Sensor = 2D Gitter aus lichtempfindlichen Bildpunkten

Aufnahme und Wiedergabe von Bildern

Visuelle Wahrnehmung

Erzeugung und Darstellung

Virtuelle Szene (Geometrie, Material, Kamera, Lichtquellen, ...)

Realistisches Bild?
Beleuchtung,
Material, ...?

Betrachter der Szene auf dem Monitor

Monitor

Ansteuerung des

Monitors

Speicherung, Verarbeitung, Bildmanipulation, Ausgabe

Bsp. physikalisch-basiertes Rendering

fotorealistische Bilder erzeugt man durch Simulation des Lichttransports

Bild: Gianni Melis, berechnet mit "fryrender"

Erzeugung und Darstellung

Virtuelle Szene (Geometrie, Material, Kamera, Lichtquellen, ...)

... ergänzt durch reale Daten (Texturen, Environment Maps, 3D Scanner, ...)

Speicherung, Verarbeitung, Bildmanipulation, Ausgabe

Bsp. Augmented Reality

Bsp. synthetische Beleuchtung realer Personen

17

Vektormonitor (nur als Überblick)

- im Prinzip ein Oszilloskop
 - Ablenkspulen (1), Glühkathode (2), Elektronenstrahl (3), Bündelungsspule (4), Phosphorbeschichtung an der Innenseite des Schirms (5)
 - Elektronen auf einer Phosphorschicht verursachen
 - ▶ Fluoreszenz (Dauer ca. $22\mu s = 22 \cdot 10^{-6} s$, verwendet bei Monitoren) und
 - Phosphoreszenz (ca. 210ms)
 - Anm. phosphoros griech. lichttragend, keine Phosphorverbindungen
- Darstellung eines Bildes
 - Objekte (Linien) kontinuierlich zeichnen
 - ein Bild wiederholt darstellen
 - hohe Bildwiederholrate notwendig

Vektormonitor (nur als Überblick)

Darstellung des Bildes: Objekte (Linien) kontinuierlich zeichnen

Asteroids, Atari 1979

Röhrenmonitor (CRT, Cathode Ray Tube)

- Kathodenstrahlröhrenbildschirm
 - ➢ Glühkathoden (1), Elektronenstrahlen (2), Bündelungsspulen (3), Ablenkspulen (4), Anodenanschluss (5), Lochmaske (6), Fluoreszenzschicht mit roten, grünen und blauen Bildpunkten (7,8)

http://de.wikipedia.org/wiki/Kathodenstrahlröhre

Röhrenmonitor (CRT, Cathode Ray Tube)

- Prinzip der Darstellung
 - ▶ das Bild wird zeilenweise aufgebaut (links→rechts, oben→unten)
 - flimmerfreie Darstellung erfordert hohe Geschwindigkeit (>50Hz)

die Intensität der Elektronenstrahlen (zu dem Zeitpunkt, an dem ein Bildpunkt getroffen wird) bestimmt die Helligkeit der Bildpunkte

hierzu muss das Bild vorliegen

- naheliegend: speichere Bilder als 2D Array aus Pixeln (Picture Element)
- für jeden Pixel speichere die Farbe mit 3 Werten für rot/grün/blau
- Frame Buffer: Speicher in dem das Bild für die Darstellung abgelegt ist
- entscheidender Vorteil gegenüber Vektormonitoren: ist das Bild erst einmal im Frame Buffer, dann ist die Darstellung unabhängig von dessen Berechnungsaufwand

Flüssigkristallbildschirm (liquid crystal display, LCD)

Innenseiten zweier Glasplatten sind mit transparenter Elektrodenschicht überzogen; dazwischen befinden sich Flüssigkristalle
The Electric and Magnetic Fields

- > Polarisationsfilter: 90° zueinander verdreht
- Anordnung der Flüssigkristalle
 - ohne Spannung: erreicht durch Beschichtung
 - mit Spannung: nach dem elektrischen Feld
 - Flüssigkristalle verändern die Polarisation des Lichts

http://en.wikipedia.org/wiki/Liquid_crystal_display

Weitere Displays

⊴VD

- weitere lichtemittierende Bildschirme
 - Plasma
 - LED (Light Emitting Diode): (anorganische) Halbleiter
 - OLED (organic light emitting diode)
 - dünnfilmige Displays aus organischen, halbleitenden Materialen
 - leuchten bei Anlegen einer elektrischen Spannung
- Beamer / Videoprojektoren
 - LCD, DLPU/DMD, D-ILA, ...
- elektronisches Papier, E-Paper

Charakteristika

Vektor-Displays

- Bildaufbau schwierig bei komplexen Szenen
- Linien und Drahtgittermodelle
- hohe Auflösung

Vektor-Grafik (z.B. SVG)

wichtig für auflösungsunabhängige Darstellung

Rastergrafik

- wiederholter Bildaufbau ist unabhängig von der Komplexität der Szene
- typischerweise ausgefüllte, schattierte Flächen
- endliche Anzahl Pixel: "Aliasing"-Effekte und Moiré Effekte

wir sprechen zunächst nur über Rasterbilder und Rastergrafik

Frame Buffer

Stellen Sie sich den Frame Buffer wie folgt vor…

```
#define WIDTH 1024
#define HEIGHT 768
// Array: RGB-Frame Buffer
unsigned char buffer[ WIDTH * HEIGHT * 3 ];
for (y = 0; y < HEIGHT; y++) {
 for (x = 0; x < WIDTH; x++)
   // Werte zw. 0 und 255 (niedrigste und höchste Intensität)
   buffer[ (x + y * WIDTH) * 3 + 0 ] = "Rot-Wert";
   buffer[ (x + y * WIDTH) * 3 + 1 ] = "Grün-Wert";
   buffer[ (x + y * WIDTH) * 3 + 2 ] = "Blau-Wert";
CopyImageToScreen( buffer );
```

Darstellung am Bildschirm über API-Funktionen

Rasterbilder: diskrete Repräsentation eines Bildes

- Bild I ist rechteckiges Gitter von Pixeln ("Bildpunkten")
- Auflösung: Breite × Höhe = Anzahl der Pixel
 - > z.B. 640 × 480, 1280 × 1024, 1920 × 1080 (FullHD), 3840 × 2160 (4K), ...
- Farbtiefe: Anzahl Bits pro Pixel

Тур	Farbe	Farbtiefe
binär, schwarz/weiß	$I: \mathbb{N}^2 \to [0,1]$	1 Bit/Pixel
Graustufen, Intensität	$I: \mathbb{N}^2 \to [0,255]$	8 Bit/Pixel (12 Bit/Pixel medizinische Anwend.)
Farbe mit Farbtabelle (lookup table)	$I: \mathbb{N}^2 \to LUT([0,255])$	8 Bit/Pixel → 256 Einträge 24 Bit/LUT Eintrag
True Color	$I: \mathbb{N}^2 \to [0,255]^3$	24 Bit/Pixel
High Dynamic Range	$I: \mathbb{N}^2 \to \mathbb{R}^3_+$ (zur Darstellung i.d.R. auf 8 Bit abgebildet)	3× 32 Bit Floating Point/Pixel

Vorschau: Auflösung und Aliasing

Displays, Frame Buffer und Darstellung

- typische Werte für Frame Buffers
 - Auflösung 1920 × 1080 ≈ 2 Mio. Pixel, Farbtiefe: 24 Bit (je 8 Bit RGB)
 - ca. 6 MB Daten → ca. 356MB/s Bandbreite bei 60Hz Darstellung
 - früher: 16-Bit Framebuffer (5 Bit rot, 6 Bit grün, 5 Bit blau "HiColor")

Frame Buffer (historisches)

- ▶ 8 Bit Frame Buffer (256 frei wählbare Farben aus 2²⁴)
 - $ightharpoonup I: \mathbb{N}^2 \to LUT([0,255])$
 - u.a. VGA-Grafikkarten, GIF-Dateiformat

Frame Buffer (historisches)

- 8 Bit Frame Buffer (256 frei wählbare Farben aus 2²⁴)
 - ► Fehlerdiffusion (Dithering): fehlende Farben durch bestimmte Anordnung der verfügbaren Farben nachbilden
 - Wahrnehmung als Mischfarben

Bsp. Dithering

Frame Buffer (nostalgisches...)

- Commodore C64 (1982)
 - ightharpoonup 160 imes 200 Pixel, je 4 Farben (aus 16) pro 4 imes 8 Block

Darstellung der Bilder

- höhere RGB-Werte bedeuten hellere Farben
 - aber was genau passiert mit diesen Werten? wie hell werden sie dargestellt/erscheinen sie?
- ▶ Beschreibung der Abbildung Wert → Helligkeit durch eine Transferfunktion f (mit Werten [0, N])

$$f:[0,N] \rightarrow [I_{min},I_{max}]$$

- diese Transferfunktion ist bestimmt durch
 - (physikalische) Eigenschaften des Displays
 - gewünschte Darstellungscharakteristika

Transferfunktion

Einschränkungen

- ightharpoonup maximale Displayhelligkeit I_{max}
 - wie hell kann ein Pixel sein?
 - LCD: typ. <10% (!) der Helligkeit der Hintergrundbeleuchtung
 - Projektor: Leistung der Lampe, Filter, Optik
- ightharpoonup minimale Displayhelligkeit I_{min}
 - wie viel Licht emittiert das Display für schwarze Pixel?
 - Streuung von Elektronen bei CRTs, Polarisierungsqualität bei LCDs, ...
- ightharpoonup am Display reflektiertes Umgebungslicht k
 - in der Praxis großer Einfluss auf den Kontrast (daher große Anstrengungen Displays mit gutem Schwarzwerten zu konstruieren)
 - \triangleright ein typischer Wert: 5% von I_{max} (in einem Büro)
 - daher: dunkle Wände/Decken in Kinos!

Transferfunktion

Dynamikumfang

- $ightharpoonup \dots$ beschreibt den erreichbaren Kontrast: $R_d = \frac{I_{max} + k}{I_{min} + k}$
- Beispiele (Werte nur zur Orientierung):
 - ▶ LCD Bildschirm unter schlechten/guten Bedingungen 20:1 bis 100:1
 - (Foto-)Druck 30:1 bis 80:1
 - Film (Negative direkt betrachtet) 1000:1
 - High Dynamic Range Display 10000:1
- ightharpoonup Hinweis: Abschätzungen auf den nächsten Folien nehmen k=0 an und betrachten monochrome Bilder bzw. eine Primärfarbe

 $I_{max} \downarrow$

Clamping/ Abschneiden

andere Skalierung

 $I_{min} \uparrow$

Clamping/ Abschneiden

andere Skalierung

$I_{min} \uparrow \mathsf{und} \ \overline{I_{max}} \downarrow$

Wie hätten wir die Transferfunktion gerne?

- aufeinander folgende Pixelwerte sollen keinen sichtbaren Helligkeitsunterschied verursachen – sonst würde man in glatten Bildbereichen Bänder erkennen (so wie rechts im Bild)
- Experimente zeigen: wir nehmen einen Helligkeitsunterschied von ca. 2% wahr
 - d.h. in dunklen Bereichen benötigen wir (absolut) kleinere Schritte

Bestimmen der Transferfunktion

- ~2% Helligkeitsunterschied führt zu einer Exponentialfunktion:
 - $0 \mapsto I_{min}; 1 \mapsto 1.02 \cdot I_{min}; 2 \mapsto (1.02)^2 \cdot I_{min}; 3 \mapsto ...$
 - ▶ $\log 1.02 \approx \frac{1}{120}$, d.h. wir benötigen 120 Schritte für eine Dekade Dynamikumfang (240 für LCDs mit 100:1, 360 für Film mit 1000:1, 480 für HDR-Displays mit 10000:1)
 - 8-Bit sind also gerade genug für LCDs!
- wie sähe es mit linearer Quantisierung aus? (linear bedeutet: gleich große Helligkeitsschritte)
 - ightharpoonup ein Schritt muss < 2% von I_{min} sein
 - \triangleright wir müssen Helligkeiten bis I_{max} darstellen
 - ightharpoonup wir benötigen also $\frac{I_{max}-I_{min}}{0.02\cdot I_{min}} pprox 50 \cdot R_d$ Schritte
 - ightharpoonup mit Dynamikumfang $R_d=rac{I_{max}+k}{I_{min}+k}$ und Annahme k=0
 - ightharpoonup 5000 für LCDs ($R_d = 100:1$), 500000 für HDR-Displays, ...

Quantisierung in der Praxis

- ▶ Option 1: lineare Quantisierung mit $I(n) = (n/N)I_{max}$
 - einfach und praktisch, Arithmetik mit Pixel-Werten
 - viele Quantisierungsschritte (→ höherer Speicherbedarf)
 - verwendet bei der Berechnung von Bildern
- ightharpoonup Option 2: potenzfunktionsbasierte Quantisierung $I(n)=(n/N)^{\gamma}I_{max}$
 - kommt der idealen Exponentialfunktion nahe
 - aber welcher Exponent? muss mit angegeben werden!
 - meist genügen 8 Bit, 12 Bit für anspruchsvolle Anwendungen
 - Umwandlung in lineare Werte vor Berechnungen
 - oft verwendet bei der Speicherung von Bildern
- ➤ **Achtung:** üblicherweise gleicht die Transferfunktion von Displaysystemen selbst einer potenzfunktionsbasierten Quantisierung

Simulierte Darstellung

- linearen Quantisierung (links)
- potenzfunktionsbasierte Quantisierung (rechts) ist sinnvoll, weil
 - nahe an der perzeptuell idealen Quantisierung
 - erlaubt akzeptable Qualität mit 8-Bit Quantisierung
 - Achtung Verwechslungsgefahr CRTs/Displaysysteme verhalten sich auch so: Helligkeit

 (Volt)²

Gamma-Korrektur

▶ aus technischen Gründen bildet ein idealer Monitor ($I_{min} = k = 0$, $I_{max} = 1$) einen Pixel-Wert n mit N Schritten (z.B. N = 255 bei 8 Bit) auf die Intensität I(n) ab:

$$I(n) \propto (n/N)^{\gamma}$$

- \triangleright Gamma-Wert γ charakterisiert das Display
- ightharpoonup üblicherweise berechnen wir (in der Computergrafik) Pixel-Werte a in einem linearen Raum mit ausreichend hoher Genauigkeit
 - ... und möchten bei der Darstellung ein lineares Verhalten ("doppelter Wert, doppelt so hell")
- Pixel-Werte werden daher direkt vor der Darstellung einer "Gamma-Korrektur" unterzogen
 - ightharpoonup damit $I(n) \propto a$ gilt verwenden wir

$$n \propto a^{1/\gamma}$$

diese Korrektur wird unabhängig für jede Primärfarbe durchgeführt

Gamma-Korrektur

Zusammenfassung

- aufgrund der Eigenschaften der menschlichen Wahrnehmung genügen vergleichsweise wenige Stufen nur mit exponentieller Quantisierung
- Displays weisen aus technischen Gründen ein ähnliches Verhalten auf
- wenn wir mit linearen Werten rechnen, benötigen wir Gamma-Korrektur
- Rasterbilder werden manchmal bereits Gamma-korrigiert gespeichert

Gamma-Korrektur

Beispiele

ightharpoonup ohne Gamma-Korrektur (oder mit zu kleinem γ) sehen Bilder zu dunkel und übersättigt aus

korrigiert mit einem γ zu klein für das Display

 $\mathrm{mit}\;\mathrm{korrektem}\;\gamma$

korrigiert mit einem γ zu groß für das Display

3.0 2.8 2.6 2.4 1.2 2.2 2.0

Alpha-Kanal

- oft werden Bilder mit 32 Bit/Pixel kodiert bzw. gespeichert
 - > z.B. im sogenannten sog. RGBA Format: 24 Bit Farbinformation und zusätzlich 8 Bit Alpha-Kanal (α = Opazität, Gegenteil von Transparenz)
 - verwendet im Frame Buffer der Grafikkarte, PNGs, Texturen, ...
- essentiell für Bildbearbeitung/Manipulation, Matting/Blue-Screen-Techniken, Texturen in der Computergrafik, ...

http://de.wikipedia.org/wiki/Alphakanal

Alpha-Kanal

24 Bit Farbinformation

8 Bit Alpha-Kanal schwarz = transparent

Fragestellungen

- nachdem wir nun Bilder darstellen (und nach der ersten Übung auch erzeugen) können beschäftigt uns...
- ... wie funktioniert die Wahrnehmung (von Farben) beim Menschen?
 - was können wir überhaupt darstellen?
 - worauf müssen wir bei der Darstellung noch achten?
- Rasterbilder
 - Vorteile von Rasterbildern kennen wir was sind die Nachteile? (Abtastung und damit verbundene Schwierigkeiten → später!)
 - einfache Operationen auf Bildern

Literatur

⊴VD

- Fundamentals of Computer Graphics,
 - P. Shirley, S. Marschner, 3rd Edition, AK Peters
 - → Kapitel 21 (Color)
 - → Kapitel 22 (Visual Perception)

Was ist Licht?

- elektromagnetische Strahlung
 - ausbreitende Schwingungen eines elektromagnetischen Feldes
 - Wellenlänge
 - Intensität
 - Polarisation

- Welle-Teilchen-Dualismus
 - Wellenoptik: Beugung, Interferenz (Maxwell, 1865)
 - Teilchencharakter Lichtquanten / Photonen (Albert Einstein, 1905)
 - Frequenz ν , Wellenlänge $\lambda = c/\nu$, $c = 299792458 \text{m} \cdot \text{s}^{-1}$
 - \triangleright Energie eines Photons: $E = h\nu$ [eV] oder [J]
 - ▶ Plancksches Wirkungsquantum $h = 6.626 \cdot 10^{-34} \text{Js}$
 - Strahlenoptik: geometrische Optik als Standard in CG
- Radiometrie: Strahlungslehre, Messung der elektromagnetischen Strahlung
- Photometrie: Einbeziehen der Empfindlichkeit des Betrachters

Radiometrische Größen

- \triangleright Wellenlänge (λ)
 - gemessen in Metern (m)
 - jede Wellenlänge repräsentiert eine Spektralfarbe
 - ightharpoonup Frequenz $v = c/\lambda$ [Hz]
- ightharpoonup sichtbares Licht nimmt nur einen sehr kleinen Bereich der elektromagnetischen Strahlung ein: etwa 380nm 700nm

Spektralfarben

- monochromatisches Licht (nur eine bestimmte Wellenlänge) erscheint als helle und reine Farbe
 - Achtung: was Sie hier sehen ist nur eine Reproduktion, keine Spektralfarben!

Beleuchtung

- spektrale Zusammensetzung von Licht
 - Stimulus i.d.R. zusammengesetzt aus vielen Wellenlängen
 - > jede Wellenlänge mit einer bestimmten Intensität
 - $ightharpoonup P(\lambda)$ ist die Strahlungsleistung der Wellenlänge λ
 - Beispiel: Tageslicht

die Wahrnehmung dieser Verteilungen als Farbe ist ein Produkt des visuellen Systems des Menschen (Human Visual System, HVS)

Andere Farben

be die meisten Farben sind eine Mischung aus (vielen) Wellenlängen

Bild: David Forsyth

Andere Farben

be die meisten Farben sind eine Mischung aus (vielen) Wellenlängen

Bild: David Forsyth

Andere Farben

die meisten Farben sind eine Mischung aus (vielen) Wellenlängen

Bild: David Forsyth

Perzeption vs. Messung

- visuelles System des Menschen
 - das menschliche Auge kann die spektrale Zusammensetzung von Licht nicht erfassen
 - das Auge macht eingeschränkte Messungen
 - das Auge passt sich (physikalisch) den äußeren Umständen an
 - ... das Gehirn in vielfältiger Weise ebenso...
- Wahrnehmungsphysiologie: Untersuchung der Funktionsweise der sinnlichen Wahrnehmung
 - Sinnesrezeptoren, Signalübertragung, ... bis hin zur Verarbeitung der Reizinformation im Zentralnervensystem
 - der Wahrnehmungsprozess ist in seiner Gesamtheit (noch) nicht vollständig verstanden!

Das menschliche Auge

- Hornhaut (cornea) und Linse
 - fokussieren des einfallenden Lichts auf die Netzhaut
- Pupille
 - reguliert den Lichteinfall durch pigmentierte Regenbogenhaut (Iris)
- Ziliarmuskel: streckt Linse, kontrolliert Brennweite
- Retina (Netzhaut)
 - enthält Millionen lichtempfindlicher Zellen
 - chemische Reaktion, Signalerzeugung
 - Fovea centralis (gelber Fleck):
 Bereich des schärfsten Sehens
 (~1.5mm Durchmesser, 50-60
 Tausend lichtempfindliche Zellen)
 - blinder Fleck

Rezeptoren im menschlichen Auge

Bild: www.dma.ufg.ac.at

Das Auge als Sensor – Rezeptoren

Lichtempfindliche Rezeptoren im menschlichen Auge

- Zapfen (Cones)
 - für photopisches Sehen (Tagsehen) und trichromatisches Farbsehen
 - 3 Arten: unterschiedliche Empfindlichkeit gegenüber Lichtspektra
 - S (7%) entsprechen blau
 - M (37%) entsprechen grün (gelb-grün)
 - L (56%) entsprechen rot (orange-rot) [Genetics Encyclopedia]
 - ca. 6-7 Mio. konzentriert in und um die Fovea, weniger empfindlich

Das Auge als Sensor – Rezeptoren

Lichtempfindliche Rezeptoren im menschlichen Auge

- Stäbchen (Rods)
 - für skotopisches, monochromatisches Sehen (Nachtsehen)
 - lichtempfindlicher, überall auf der Retina
 - ca. 120 Mio. Stäbchen
 - 1000× empfindlicher als Zapfen
- im mesopischen Bereich (Dämmerungssehen) sind Stäbchen und Zapfen aktiv: Übergang von Farb- zu monochromatischem Sehen

Trichromatisches Farbsehen

perzeptuelle Antwort auf Licht unterschiedlicher Wellenlänge:

$$s = \int S(\lambda)P(\lambda)d\lambda$$
 $m = \int M(\lambda)P(\lambda)d\lambda$ $l = \int L(\lambda)P(\lambda)d\lambda$

- Antwort des S-Rezeptors entspricht in etwa blauem Licht
- M- und L-Rezeptoren decken größere Wellenlängenbereiche ab
 - also nicht nur "grün" und "rot", eher gelb-grün und orange-rot

Trichromatisches Farbsehen

perzeptuelle Antwort auf Licht unterschiedlicher Wellenlänge:

$$s = \int S(\lambda)P(\lambda)d\lambda$$
 $m = \int M(\lambda)P(\lambda)d\lambda$ $l = \int L(\lambda)P(\lambda)d\lambda$

unterschiedliche Wellenlänge und Intensität, aber gleiche Antwort

Trichromatisches Farbsehen

perzeptuelle Antwort auf Licht unterschiedlicher Wellenlänge:

$$s = \int S(\lambda)P(\lambda)d\lambda$$
 $m = \int M(\lambda)P(\lambda)d\lambda$ $l = \int L(\lambda)P(\lambda)d\lambda$

unterschiedliche Wellenlänge und Intensität, aber unterschiedliche Antworten bei unterschiedlichen Rezeptoren!

Farbsehen

■VD

- rot-grün Sehschwäche?
- Tetrachromaten? UV-Sehen?

Metamerismus

perzeptuelle Antwort auf Licht unterschiedlicher Wellenlänge:

$$s = \int S(\lambda)P(\lambda)d\lambda$$
 $m = \int M(\lambda)P(\lambda)d\lambda$ $l = \int L(\lambda)P(\lambda)d\lambda$

- Metamerismus: unterschiedliche Spektren können gleich aussehen
 - penau dann, wenn unterschiedliche Lichtspektren $P(\lambda)$ dieselbe Antwort (s, m, l) hervorrufen
 - sehr hilfreich: dadurch kann ein Monitor mit drei Primärfarben denselben Eindruck vermitteln, wie ein komplexes Spektrum

Bild: Hughes, Bell, Doppelt

Additive und subtraktive Farbmischung

- Grundfarben der...
 - ...additiven Farbmischung: Rot, Grün und Blau
 - ...subtraktiven Farbmischung: Cyan, Magenta, Gelb

Additive Farbmischung

- Farbkombination durch Addition der Spektren
 - > z.B. CRT/LCD Monitore, mehrere Projektoren auf einem Schirm

Subtraktive Farbmischung

- Farbkombination durch Multiplikation der Spektren
 - z.B. fotografischer Film, Farbstifte, Farbdrucker
 - welche Wellenlängenbereiche werden absorbiert, welche reflektiert?

Graßmannsche Gesetze

- nach Hermann Günther Graßmann (1809–1877)
- jeder Farbeindruck kann mit 3 Grundgrößen beschrieben werden
 - > Farbe ist eine 3-dimensionale Größe
 - z.B. Farbton, Sättigung, Helligkeit oder rot, grün, blau oder ...
- Intensität einer additiv gemischten Farbe entspricht der Summe der Intensitäten der Ausgangsfarben (Superpositionsprinzip)
- der Farbton einer additiven Mischfarbe hängt nur vom Farbeindruck der Ausgangsfarben ab (nicht von deren genauen Spektren!)
 - d.h. keine Rückschlüsse auf spektrale Zusammensetzung möglich

RGB Farbraum

■VD

- biologisch und technisch motivierte Farbdarstellung
 - als Basis dienen 3 Primärfarben: rot, grün, blau
 - ightharpoonup z.B. mit $\lambda_1 = 645nm$, $\lambda_2 = 525nm$, $\lambda_3 = 444nm$
 - right einen 3-dimensionalen Farbraum: $\mathbf{C} = r\mathbf{R} + g\mathbf{G} + b\mathbf{B}$ mit $(r, g, b) \in [0,1]^3$

- b die Koeffizienten r, g, b nennt man Tristimuluswerte
- die Definition der Primärfarben hängt vom jeweiligen RGB-Raum ab
- additive Farbmischung eignet sich gut für Monitore, Beamer, ...
- Luminanzapproximation: Y = 0.3r + 0.59g + 0.11b

CMY(K) Farbraum

- subtraktiver Farbraum (cyan, magenta, yellow)
 - dualer Raum zu RGB

- jede Primärfarbe absorbiert einen Teil des Spektrums
- Tinte, Farbstoffe, Pigmente

CMYK

- beim Drucken wird meist noch eine 4. "Key-Farbe" verwendet
- als Key-Farbe verwendet man pures Schwarz
- praktische Gründe
 - Mischung von CMY ergibt typischerweise kein Schwarz
 - Tinteneinsparung
- $K = \min(C, M, Y), C' = C K, M' = \cdots$ (Achtung: u.U. andere Konversion, je nach Gerät auf dem CMYK verwendet wird)

HSV Farbraum

- Farbton (Hue), Sättigung (Saturation), Helligkeit (Value)
 - Darstellung als Zylinder oder (hexagonaler) Kegel

- weder additiv noch subtraktiv
- aber: intuitiv und deshalb oft in Benutzerschnittstellen
- ► Konversion RGB \leftrightarrow HSV $V = \max(r, g, b)$, $S = (\max \min)/\max$, $H \in [0^\circ, 360^\circ]$ mit Fallunterscheidung, Farben am Rand: rot, gelb, grün, cyan, blau, violett

Farbmodell, -raum und Stimuli

- ein Farbmodell ist ein mathematisches Modell mit dem Farben durch Wertetupel beschrieben werden können
 - meist 3-Tupel (z.B. RGB), Ausnahmen 4-Tupel (CMYK)
 - es müssen die entsprechenden Grundfarben angegeben werden
- ein Farbraum ist die Menge der Farben, die mit einem bestimmten Modell beschrieben werden können
- die Tristimuluswerte beschreiben eine Farbe in einem bestimmten Farbraum eines Farbmodells (= ohne Angabe des Farbmodells und -raums sind diese Werte nichtssagend)