Search notes

=> D HIS

(FILE 'HOME' ENTERED AT 18:59:40 ON 15 SEP 2004)

	FILE 'MEDLO	-	E' ENTERED AT 18:59:58 ON 15 SEP 2004	
L1	717	S	NEUROECTODERM	
L2	4673	S	NEUROTROPHIN?	
L3	. 0	S	L1 (5A) L2	
L4	4	S	L1 (P) L2	
L5	812814	S	TH	
L6	9	s	L1 AND L5	
L7	87357	S	DOPAMINE	
L8	0	S	L6 AND L7	
L9	93248	S	DOPAMINE?	
L10	0	S	L9 AND L6	
L11	5209	S	NEUROECTODERM?	
L12	16	S	L11 AND L9	
L13	849289	S	CULTUR?	
L14	811	S	L11 AND L13	
L15	5	S	L14 AND L9	
L16	17	S	SKNMC	
L17	0	S	L16 AND L9	

=>

ANSWER 12 OF 16 MEDLINE on STN

AN 90156545 MEDLINE

DN PubMed ID: 2304148

- TI CD4-independent, productive infection of a neuronal cell line by human immunodeficiency virus type 1.
- AU Li X L; Moudgil T; Vinters H V; Ho D D
- CS Department of Medicine, Cedars-Sinai Medical Center and UCLA School of Medicine 90048.
- NC AI25541 (NIAID) AI28747 (NIAID)
- SO Journal of virology, (1990 Mar) 64 (3) 1383-7. Journal code: 0113724. ISSN: 0022-538X.
- CY United States
- DT Journal; Article; (JOURNAL ARTICLE)
- LA English
- FS Priority Journals; AIDS
- EM 199003
- ED Entered STN: 19900601 Last Updated on STN: 19970203 Entered Medline: 19900326
- One neuronal cell line (SK-N-MC) was found to be susceptible to productive infection by multiple isolates of the human immunodeficiency virus type 1 (HIV-1). Characterization of SK-N-MC cells showed that these cells are neuroectodermal in origin in that they express dopamine hydroxylase, catecholamines, neuron-specific enolase, and neurofilaments. Despite their susceptibility to HIV-1 infection, SK-N-MC cells had no detectable CD4 and this infection was not blocked by anti-CD4 monoclonal antibodies (OKT4A, Leu3A) or recombinant soluble CD4. These experiments demonstrated that certain cells of neuroectodermal origin are susceptible to infection in vitro by HIV-1 via a CD4-independent mechanism.
- L12 ANSWER 13 OF 16 MEDLINE on STN

ANSWER 3 OF 4 MEDLINE on STN

AN 1998012248 MEDLINE

DN PubMed ID: 9348344

TI Critical role of TrkB and brain-derived neurotrophic factor in the differentiation and survival of retinal pigment epithelium.

AU Liu Z Z; Zhu L Q; Eide F F

CS Department of Neurology, University of Chicago, Chicago, Illinois 60637, USA.

NC K1100568

SO Journal of neuroscience : official journal of the Society for Neuroscience, (1997 Nov 15) 17 (22) 8749-55. Journal code: 8102140. ISSN: 0270-6474.

CY United States

DT Journal; Article; (JOURNAL ARTICLE)

LA English

FS Priority Journals

EM 199712

ED Entered STN: 19980109
Last Updated on STN: 20000303
Entered Medline: 19971208

In the vertebrate eye, the retinal pigment epithelium (RPE) and the neural retina arise from a single layer of neuroectoderm. Factors influencing the differentiation of retinal neurons have been identified; however, little is known about molecules directing the differentiation of the RPE. Here we have found that the neurotrophin brain-derived neurotrophic factor (BDNF) plays an autocrine role in the differentiation and survival of Xenopus laevis RPE. Fluorescent in situ hybridization studies showed a precise co-expression of BDNF and its receptor trkB in the retinal neuroepithelium and actively differentiating RPE; in vitro studies demonstrated survival- and differentiation-promoting effects in serum-free explants and dissociated cultures. When a dominant negative mutant of the trkB receptor was expressed in developing embryos, severe arrest of RPE differentiation was seen with persistence of nestin- and Notch-positive neuroblasts.

L4 ANSWER 4 OF 4 MEDLINE on STN

AN 94011529 MEDLINE

DN PubMed ID: 8407001