REPORT: HENSEL LIFTING AND NEWTON ITERATION IN VALUTATION RINGS

Instructor: Amit Kumar Sinhababu and Sumanta Ghosh

SOHAM CHATTERJEE

SOHAMCHATTERJEE999@GMAIL.COM WEBSITE: SOHAMCH08.GITHUB.IO

This is a report on the paper [vzG84]

Contents

_ Page 17 _____

CHAFIERI	INTRODUCTION	PAGE 3
CHAPTER 2	Hensel Lifting	PAGE 4
2.1	Hensel Ring	4
2.2	Conditions related to Hensel's Lemma	5
2.3	Hensel's Lemma	6
2.4	Hensel's Computation	10
2.5	Proof of Hensel's Lemma	10
CHAPTER 3		D 40
CHAPTER 3	Newton Iteration	PAGE 13
CHAPTER 4	Solving Differential Equations	PAGE 14
CHAPTER 5	FINDING SHORT VECTORS IN MODULES	Page 15
Chapter 6	FACTORIZATION OF POLYNOMIALS	Page 16

CHAPTER 7

Chapter 1 Introduction

Hensel Lifting

The hensel method described here will lift an approximate factorization of a polynomial over a Hensel Ring R with valuation v where the factors are relatively prime. We will show a linear convergence and a quadratic convergence behavior for the liftings.

2.1 Hensel Ring

Definition 2.1.1: Hensel Ring

A ring with valuation $v:R \to \mathbb{R}_{\geq 0}$ is called a Hensel Ring if:

- (i) $\forall a \in R, v(a) \leq 1$
- (ii) $\forall a, b \in R, \forall \epsilon > 0, \exists c \in R \text{ such that } (v(a) \le v(b) \implies v(a bc) \le \epsilon)$

In other words R is Hensel iff it is contained and dense in the valuation ring of its quotient field (with respect to the unique extension of v). We sometimes call such v a Hensel Valuation.

In condition (ii) we assume we can compute the c efficiently.

Theorem 2.1.1

Condition (i) of Hensel Ring $\implies v$ is Non-Archimedean.

Proof: Let $a, b \in R$. Now

$$\begin{split} v(a+b)^k &= v((a+b)^k) \\ &= v\left(\sum_{i=0}^k \binom{k}{i} a^{n-i} b^i\right) \le \sum_{i=0}^k v\left(\binom{k}{i}\right) v(a)^{n-i} v(b)^i \\ &\le \sum_{i=0}^k v(a)^{n-i} v(b)^i \le \sum_{i=0}^k M^{n-i} M^i \\ &= \sum_{i=0}^k M^k = M^k (k+1) \end{split}$$
 [m = max v(a), v(b)]

Hence

$$\left(\frac{v(a+b)}{M}\right)^k \le (k+1) \iff \frac{v(a+b)}{M} \le (1+k)^{\frac{1}{k}}$$

As $k \to \infty$ the RHS approaches 1 so $v(a+b) \le M$.

Chapter 2 Hensel Lifting Page 5

Example 2.1 (*p*-adic Valuations)

- \mathbb{Z} with p-adic valution v_p where $p \in \mathbb{N}$ is prime is a Hensel ring. Here $v_p(a) = p^{-n}$ where $n = \max\{k \ge 1\}$
- $\mathbb{F}[y]$ with p-adic valutaion v_p where $p \in \mathbb{F}[y]$ is an irreducible polynomial is a Hensel Ring. Here $v_p(f) = 0$ $2^{-n \deg p}$ where $n = \max\{k \ge 0 \mid p^k \mid f\}$

From the valuation v over R we naturally get a valuation v over the polynomial ring R[x] by defining

$$\forall f \in R[x], \text{ let } f = \sum_{i=0}^{n} f_i x^i, \text{ then } v\left(\sum_{i=0}^{n} f_i x^i\right) = \max_{i} \{v(f_i)\}$$

2.2 Conditions related to Hensel's Lemma

We will define 5 conditinos. First suppose we have:

- (1) $f \in R[x]$
- (2) $f_0, \dots, f_m \in R[x]$ $\mathcal{F} = \{f_i : 0 \le i \le m\}$ (3) $f_0^*, \dots, f_m^* \in R[x]$ $\mathcal{F}^* = \{f_i^* : 0 \le i \le m\}$ (4) $s_0, \dots, s_m \in R[x]$ $S = \{s_i : 0 \le i \le m\}$ (5) $s_0^*, \dots, s_m^* \in R[x]$ $S^* = \{s_i^* : 0 \le i \le m\}$

- $(7) \quad \alpha, \delta, \epsilon \in \mathbb{R}$
- $(8) \quad \delta^* \in \mathbb{R}$
- $\gamma = \max\{\delta, \alpha\epsilon\}$

As you can see the set \mathcal{F}^* basically represents the lift of \mathcal{F} but here since we are saying the conditions in more generality we are not assuming any relations among them and we define some conditions involving them.

- $H_1(m, f, \mathcal{F}, \mathcal{S}, \epsilon) := v\left(f \prod_{i=0}^m f_i\right) \le \epsilon < 1$
- $H_2(m, f, \mathcal{F}, \mathcal{S}, z, \delta) := v\left(\sum_{i=0}^m s_i \prod_{i \neq i} f_i z\right) \leq \delta < 1$
- $H_3(m, f, \mathcal{F}, \mathcal{S}, z, \alpha, \delta, \epsilon) := (1)$ f_1, \dots, f_m are monic
 - (2) $\deg\left(\prod_{i=0}^{m} f_i\right) \leq \deg f$ (3) $\deg s_i \leq \deg f_i \ \forall \ i \in [m]$ (4) $\alpha \delta \leq 1, \alpha \epsilon^2 \leq 1$

 - (5) $1 \leq \alpha v(z)$
- $H_4(m, \mathcal{F}, \mathcal{F}^*, \mathcal{S}, \mathcal{S}^*, \alpha, \delta, \epsilon) \coloneqq (1) \quad v(f_i^* f_i) \le \alpha \epsilon$ $\forall 0 \le i \le \epsilon$ (2) $v(s_i^* s_i) \le \alpha \epsilon$ $\forall 0 \le i \le \epsilon$ (3) $\deg f_i^* = \deg f_i$ $\forall i \in [m]$ (4) $\deg s_i < \deg f_i \Longrightarrow \deg s_i^* < \deg f_i^*$ $\forall i \in [m]$ $\forall \ 0 \le i \le m$ $\forall \ 0 \le i \le m$
- $H_5(m, f, \mathcal{F}, \mathcal{F}^*, \mathcal{S}, \mathcal{S}^*, \alpha, \delta, \epsilon, \delta^*) := \text{Let } p \in [m]$. Then suppose
 - $I_p = \{I_0, I_1, \dots, I_p\}$ be a partition of $\{0, \dots, m\}$ with $o \in I_0$.
 - $-\overline{\mathcal{F}}_p^m = \{\overline{f}_i : i \in [p]\} \subseteq R[x]$ be a set of monic polynomials

Then define:

$$F_i = \prod_{j \in I_i} f_j, \qquad F_i^* = \prod_{j \in I_i} f_j^*, \qquad \mathfrak{s}_i^* = \sum_{j \in I_i} s_j \frac{F_i^*}{f_i^*}$$

2.3 Hensel's Lemma Page 6

So now we denote:

$$\mathscr{F} = \{F_i : 0 \le i \le p\}, \qquad \mathscr{F}^* = \{F_i : 0 \le^* i \le p\}, \qquad \mathscr{S} = \{\mathfrak{s}_i^* : 0 \le i \le p\}$$

Assume:

- 1. $v(\overline{f}_i F_i) \le \alpha \epsilon \ \forall \ i \in [p]$
- 2. $\alpha v(s_i) \leq 1 \ \forall \ 0 \leq i \leq m$
- 3. $\alpha\delta < 1, \alpha^2\delta \le 1$
- 4. $\alpha^2 \epsilon < 1, \alpha^3 \epsilon \le 1$

Then the following are equivalent:

(i) $\exists \overline{f}_0, \overline{s}_0, \dots, \overline{s}_p \in R[x]$ denote

$$\overline{\mathcal{F}} = \{\overline{f}_i : 0 \le i \le p\}, \qquad \overline{\mathcal{S}} = \{\overline{s}_i : 0 \le i \le p\}$$

then the following conditions are true:

- (a) $H_1(p, f, \overline{\mathcal{F}}, \overline{\mathcal{S}}, \epsilon^*)$
- (b) $H_2(p, f, \overline{\mathcal{F}}, \overline{\mathcal{S}}, z, \delta^*)$
- (c) $H_3(p, f, \overline{\mathcal{F}}, \overline{\mathcal{S}}, z, \alpha^*, \delta^*, \epsilon^*)$
- (d) $H_4(p, f, \mathscr{F}, \overline{\mathscr{F}}, \mathscr{S}, \overline{\mathcal{S}}, z, \alpha^*, \delta^*, \epsilon^*)$

where $\alpha^* = \alpha$, $\epsilon^* = \alpha \epsilon \gamma$

- (ii) $\exists \overline{f}_0 \in R[x]$ such that $H_1(p, f, \overline{\mathcal{F}}, \overline{\mathcal{S}}, \epsilon^*)$ is true
- (iii) $\forall i \in [p]$ we have $v(\overline{f}_i F_i^*) \le \epsilon^*$.

The first 3 conditions here togather imply that: From H_1 we get that $f_0 \cdots f_m$ is a good approximation of factorization of f with ϵ -precision, $H_2 \implies z$ plays a similar role to the gcd of f_0, \ldots, f_m and it shows the generalized bezout's identity for gcd for multiple elements. In the usual treatment of Hensel's Lemma f_0, \ldots, f_m are relatively prime (more precisely their images in the residue class field or R modulo the maximal ideal $\langle a \in R \mid v(a) < 1 \rangle$ satisfy the assumption then one can find s_0, \ldots, s_m, δ satisfying H_2 with z=1. One can set $\alpha=1$ or in general one can choose $\alpha=\frac{1}{v(z)}$. Thus H_2 staes that f_0, \ldots, f_m are approximately pairwise relatively prime.

 H_4 shows the connection between the lifts f_i^* , s_i^* and f_i , s_i .

 H_5 basically states that the lifts are unique in the sense that one can group some of the f_i 's to form F_0, \ldots, F_p and change F_i to \overline{f}_i with precision ϵ^* and still one will have the factorization of f with precision ϵ^* . H_5 is very important for the factorization algorithm in chapter 6.

Now we will state the Hensel's Lemma and will later give the algorithm to obtain the lifts.

2.3 Hensel's Lemma

First we will prove a helping lemma which will be very much usefull in the proof of Hensel's Lemma then we will state the actual theorem.

Theorem 2.3.1

- (i) Let $a, f, p, s \in R[x]$ such that f is monic and s = pf + a with $\deg a < \deg f$. Then we have $v(p) \le v(s)$ and $v(a) \le v(s)$
- (ii) Let $h_0, \ldots, h_m \in R[x]$ and $h_0^*, \ldots, h_m^* \in R[x]$ such that we have $v(h_i^* h_i) \le \epsilon$ for all $0 \le i \le m$. Then we have $v\left(\prod_{i=0}^m h_i \prod_{i=0}^m h_i^*\right) \le \epsilon$

Page 7 Chapter 2 Hensel Lifting

(i) Suppose $\deg s \ge \deg f \ge 0$ otherwise $\deg s < \deg f$ Then $s = 0 \times f + a = a$ so we get v(a) = v(s) and $v(p) = v(0) = 0 \le v(s)$. Hence assume $l = \deg s - \deg f \ge 0$. Then $p = \sum_{i=0}^{l} p_i x^i$ where $p_i \in R$ for all $0 \le i \le l$.

Now we will induct on l-i. Let deg f=n and deg s=m. Hence assume $f=\sum\limits_{i=0}^n f_i x^i$ and $s=\sum\limits_{i=0}^m s_i x^i$ where for all $0 \le i \le n$ and $0 \le j \le m$, $f_i, s_j \in R$. Since f is monic $f_n=1$

Base Case (i = l):

$$v(p_l) = v(p_l)v(f_n) = v(p_lf_n) = v(s_m) \le v(s)$$

Inductive Step : $v(p_i) \le v(s)$ for all $l - k \le i \le l$. Now coefficient of $x^{(l-k-1)+n}$ in S is

$$s_{l-k-1+n} = \sum_{i=l-k-1}^{l} p_i f_{l-k-1+n-i}$$

Therefore $p_{l-k-1}f_n = s_{l-k-1+n} - \sum_{i=l-k}^{l} p_i f_{l-k-1+n-i}$. Therefore

$$\begin{split} v(p_{l-k-1}) &= v(p_{l-k-1}f_n) \leq \max\{v(s_{l-k-1+n}), v(p_if_{l-k-1+n-i}) \mid l-k \leq i \leq l\} \\ &\leq \max\{v(s_{l-k-1+n}), v(p_i) \mid l-k \leq i \leq l\} \\ &\leq v(s) \end{split}$$

Therefore by induction we have $v(p_i) \le v(s)$ for all $0 \le i \le l$. Then $v(p) \le v(s)$.

Hence

$$v(a) = v(s - pf) \le \max\{v(s), v(pf)\} \le \max\{v(s), v(p)\} \le v(s)$$

Therefore we have $v(a) \le v(s)$.

(ii) We will induct on $0 \le i \le m$.

Base Case : $v(h_0 - g_0^*) \le \epsilon$ Given

Inductive Step : Let this is true for i = k i.e.

$$v\left(\prod_{j=0}^k h_j - \prod_{j=0}^k h_j^*\right) \le \epsilon$$

Now

$$\prod_{j=0}^{k} h_j (h_{k+1} - h_{k+1}^*) + \prod_{j=0}^{k} h_j^* (h_{k+1} - h_{k+1}^*) = \left[\prod_{j=0}^{k+1} h_j - \prod_{j=0}^{k+1} h_j^* \right] - \left[h_{k+1}^* \prod_{j=0}^k h_j - h_{k+1} \prod_{j=0}^k h_j^* \right]$$

Therefore we have

$$\prod_{j=0}^{k+1} h_j - \prod_{j=0}^{k+1} h_j^* = \prod_{j=0}^k h_j (h_{k+1} - h_{k+1}^*) + \prod_{j=0}^k h_j^* (h_{k+1} - h_{k+1}^*) + \left[h_{k+1}^* \prod_{j=0}^k h_j - h_{k+1} \prod_{j=0}^k h_j^* \right]$$

Hence we have

$$v\left(\prod_{j=0}^{k+1}h_{j}-\prod_{j=0}^{k+1}h_{j}^{*}\right) \leq \max\left\{v\left(\prod_{j=0}^{k}h_{j}\right)v(h_{k+1}-h_{k+1}^{*}),v\left(\prod_{j=0}^{k}h_{j}^{*}\right)v(h_{k+1}-h_{k+1}^{*}),v\left(h_{k+1}^{*}\prod_{j=0}^{k}h_{j}-h_{k+1}\prod_{j=0}^{k}h_{j}^{*}\right)\right\}$$

$$\leq \max\left\{v(h_{k+1}-h_{k+1}^{*}),v\left(h_{k+1}^{*}\prod_{j=0}^{k}h_{j}-h_{k+1}\prod_{j=0}^{k}h_{j}^{*}\right)\right\}$$

$$\leq \max\left\{\epsilon,v\left(h_{k+1}^{*}\prod_{j=0}^{k}h_{j}-h_{k+1}\prod_{j=0}^{k}h_{j}^{*}\right)\right\}$$

2.3 Hensel's Lemma Page 8

Now we need to show that

$$v\left(h_{k+1}^*\prod_{j=0}^kh_j-h_{k+1}\prod_{j=0}^kh_j^*\right)\leq\epsilon$$

Now

$$\begin{split} h_{k+1}^* \prod_{j=0}^k h_j - h_{k+1} \prod_{j=0}^k h_j^* &= \left(h_{k+1}^* \prod_{j=0}^k h_j - h_{k+1}^* h_k^* \prod_{j=0}^{k-1} h_j \right) + \left(\prod_{j=k}^{k+1} h_j^* \right) \left[\prod_{j=0}^{k-1} h_j \right] - \left[\prod_{j=k-1}^{k-1} h_j^* \right] \left[\prod_{j=0}^{k-2} h_j \right] \\ &+ \left(\prod_{j=k-1}^{k+1} h_j^* \right) \left[\prod_{j=0}^{k-2} h_j \right] - \left[\prod_{j=k-2}^{k+1} h_j^* \right] \left[\prod_{j=0}^{k-3} h_j \right] \right) \\ & \vdots \\ &+ \left(\prod_{j=k+1}^{k+1} h_j^* \right) \left[\prod_{j=0}^t h_j \right] - \left[\prod_{j=k}^{k+1} h_j^* \right] \left[\prod_{j=0}^{t-1} h_j \right] \right) \\ &\vdots \\ &+ \left(\prod_{j=k+1}^{k+1} h_j^* \right) \left[\prod_{j=0}^{k+1} h_j^* \right] + \left(\prod_{j=k}^{k+1} h_j^* \right) \left[\prod_{j=0}^{t-1} h_j \right] h_{k+1} \right) \\ &= h_{k+1}^* \prod_{j=0}^{k-1} h_j^* (h_k - h_k^*) + \left[\prod_{j=k}^{k+1} h_j^* \right] \left[\prod_{j=0}^{k-2} h_j \right] (h_{k-1} - h_{k-1}^*) \\ &+ \left[\prod_{j=k+1}^{k+1} h_j^* \right] \left[\prod_{j=0}^{t-3} h_j \right] (h_{k-2} - h_{k-2}^*) \\ &\vdots \\ &+ \left[\prod_{j=k+1}^{k+1} h_j^* \right] \left[\prod_{j=0}^{t-1} h_j \right] (h_t - h_t^*) \\ &\vdots \\ &+ \left[\prod_{j=k+1}^{k+1} h_j^* \right] (h_0 - h_0^*) + \left[\prod_{j=k}^{k} h_j^* \right] (h_{k+1}^* - h_{k+1}) \end{split}$$

Now for each $0 \le t \le k$ we have

$$v\left(\left[\prod_{j=t+1}^{k+1} h_{j}^{*}\right] \left[\prod_{j=0}^{t-1} h_{j}\right] (h_{t} - h_{t}^{*})\right) \leq v(h_{t} - h_{t}^{*}) \leq \epsilon, \qquad v\left(\left[\prod_{j=1}^{k} h_{j}^{*}\right] (h_{k+1}^{*} - h_{k+1})\right) \leq v(h_{k+1}^{*} - h_{k+1}) \leq \epsilon$$

Hence

$$v\left(h_{k+1}^*\prod_{j=0}^k h_j - h_{k+1}\prod_{j=0}^k h_j^*\right) \leq \max_{0 \leq t \leq k} \left\{v\left(\left[\prod_{j=t+1}^{k+1} h_j^*\right] \left[\prod_{j=0}^{t-1} h_j\right] \left(h_t - h_t^*\right)\right), v\left(\left[\prod_{j=1}^k h_j^*\right] \left(h_{k+1}^* - h_{k+1}\right)\right)\right\} \leq \epsilon$$

Therefore we have

$$v\left(h_{k+1}^* \prod_{j=0}^k h_j - h_{k+1} \prod_{j=0}^k h_j^*\right) \le \epsilon \implies v\left(\prod_{j=0}^{k+1} h_j - \prod_{j=0}^{k+1} h_j^*\right) \le \epsilon$$

Hence by induction we have $v\left(\prod\limits_{j=0}^m h_j - \prod\limits_{j=0}^m h_j^*\right) \leq \epsilon$

Page 9 Chapter 2 Hensel Lifting

Theorem 2.3.2 Hensel's Lemma

Assume that we have $f \in R[x]$, $\mathcal{F} = \{f_0, \dots, f_m\} \subseteq R[x]$, $S = \{s_0, \dots, s_m\} \subseteq R[x]$, $z \in R$ and $\alpha, \delta, \epsilon \in \mathbb{R}$ which satisfy:

- 1. $H_1(m, f, \mathcal{F}, \mathcal{S}, \epsilon)$
- 2. $H_2(m, f, \mathcal{F}, \mathcal{S}, z, \delta)$
- 3. $H_3(m, f, \mathcal{F}, S, z, \alpha, \delta, \epsilon)$

Then we can compute efficiently

$$\mathcal{F}^* = \{f_i^* : 0 \le i \le m\}$$
 and $T = \{t_0, \dots, t_m\}$

such that

- (i) **Linear Case**: $S^* = S$ and $\delta^* = \gamma$, $\epsilon^* = \alpha \gamma \epsilon$. Then we have the following conditions hold:
 - (a) $H_1(m, f, \mathcal{F}^*, \mathcal{S}^*, \epsilon^*)$
 - (b) $H_2(m, f, \mathcal{F}^*, \mathcal{S}^*, z, \delta^*)$
 - (c) $H_3(m, f, \mathcal{F}^*, \mathcal{S}^*, z, \alpha, \delta^*, \epsilon^*)$
 - (d) $H_4(m, f, \mathcal{F}, \mathcal{F}^*, \mathcal{S}, \mathcal{S}^*, \alpha, \delta, \epsilon)$
 - (e) $H_5(m, f, \mathcal{F}, \mathcal{F}^*, \mathcal{S}, \mathcal{S}^*, \alpha, \delta, \epsilon, \delta^*)$
- (ii) **Quadratic Case**: $S^* = T$ and $\delta^* = \alpha \gamma^2$, $\epsilon^* = \alpha \gamma \epsilon$. Assume that deg $s_i > \deg f_i$ for $0 \le i \le m$. Then we have the following conditions hold:
 - (a) $H_1(m, f, \mathcal{F}^*, \mathcal{S}^*, \epsilon^*)$
 - (b) $H_2(m, f, \mathcal{F}^*, \mathcal{S}^*, z, \delta^*)$
 - (c) $H_3(m, f, \mathcal{F}^*, \mathcal{S}^*, z, \alpha, \delta^*, \epsilon^*)$
 - (d) $H_4(m, f, \mathcal{F}, \mathcal{F}^*, \mathcal{S}, \mathcal{S}^*, \alpha, \delta, \epsilon)$
 - (e) $H_5(m, f, \mathcal{F}, \mathcal{F}^*, \mathcal{S}, \mathcal{S}^*, \alpha, \delta, \epsilon, \delta^*)$

2.4 Hensel's Computation Page 10

2.4 Hensel's Computation

```
Algorithm 1: Hensel's Computation
    Input:
         1. f \in R[x], \mathcal{F} = \{f_0, \dots, f_m\} \subseteq R[x], \mathcal{S} = \{s_0, \dots, s_m\} \subseteq R[x]
         z, z \in R
         3. \alpha, \delta, \epsilon \in \mathbb{R}
    Output: \mathcal{F}^* = \{f_0^*, \dots, f_m^*\}, T = \{t_0, \dots, t_m\}
 1 begin
          Set \gamma = \max\{\delta, \alpha\epsilon\}, \alpha^* = \alpha, \epsilon^* = \alpha\gamma\epsilon \text{ and } e = f - \prod_{i=0}^m f_i
 2
          for 1 \le i \le m do
 3
                Compute a_i, b_i, p_i \in R[x] such that
 4
                                                   s_i e = p_i f_i + a_i, \quad v(zb_i - a_i) \le \epsilon \gamma, \quad \deg b_i \le \deg a_i < \deg f_i
          Compute a_0, b_0 \in R[x] such that
 5
                                         a_0 = s_0 e + f_0 \sum_{i=1}^m p_i, \qquad v(zb_0 - a_0) \le \epsilon \gamma, \qquad \deg b_0 \le \deg f - \deg \prod_{i=1}^m f_i
          for 0 \le i \le m do
 6
            f_i^* = f_i + b_i
          for 1 \le i \le m do
                Compute c_i, d_i, g_i^* q_i \in R[x] such that
                             g_i^* = \prod_{j \neq i} f_j^*, \qquad s_i(s_i g_i^* - z) = q_i f_i^* + c_i, \qquad v(z d_i - c_i) \le \gamma^2, \qquad \deg d_i \le \deg c_i < \deg f_i^*
          Compute g_0^* = \prod_{i=1}^m f_i^* and c_0, d_0 \in R[x] such that
10
                      c_0 = s_o\left(\sum_{i=0}^m s_i g_i^* - z\right) + f_0^* \sum_{i=1}^m \left[q_i + s_i\left(\sum_{i \neq i} s_j \frac{g_j^*}{f_i^*}\right)\right], \quad v(zd_0 - c_0) \le \gamma^2, \quad \deg d_0 \le \deg f - \deg g_0
          for 0 \le i \le m do
11
12
            t_i = s_i - d_i
```

2.5 Proof of Hensel's Lemma

13

In the following section we will prove that the algorithm described in the above section gives us the \mathcal{F}^* and T which if you put in the Hensel Lemma for Linear Case and Quadratic Case the conditions are hold.

Proof of Theorem 2.3.2: Given that $v(e) \le \epsilon$. For $i \in [m]$ we have

return $\mathcal{F}^* = \{f_i^* : 0 \le i \le m\}, T = \{t_i : 0 \le i \le m\}$

$$s_i e = p_i f_i + a_i$$

Page 11 Chapter 2 Hensel Lifting

where f_i is monic and deg $a_i \le \deg f_i$. By Theorem 2.3.1 $v(s_i e) \ge v(a_i)$, and $v(s_i) \ge v(p_i)$. And

$$v(s_i e) = v(s_i)v(e) \le v(e) \le \epsilon$$

Hence we have $v(a_i) \le \epsilon$. Since $\alpha^2 \epsilon \le 1$, $\alpha v(z) \ge 1$ we have

$$v(a_i) \le \epsilon \le \alpha^{-2} \le v(z)^2 \le v(z)$$

For i = 0

$$v(a_0) \le s_0 e + f_0 \sum_{i=1}^m p_i$$

Hence

$$v(a_0) \le \max \left\{ v(s_0)v(e), v(f_0)v\left(\sum_{i=1}^m p_i\right) \right\}$$

$$\le \max\{v(s_0)v(e), v(f_0)v(p_i) \mid i \in [m]\}$$

$$\max\{v(e), v(p_i) \mid i \in [m]\}$$

$$v(e) \le \epsilon \le v(z)$$

So for $0 \le i \le m$ we have $v(a_i) \le \epsilon \le v(z)$.

Now in step 6 we have $f_i^* = f_i + b_i$ for $0 \le i \le m$. Therefore we have $v(f_i^* - f_i) = v(b_i)$ for $0 \le i \le m$. Now b_i is such that $v(zb_i - a)i) \le \epsilon \gamma$. Therefore

$$v(zb_i) = v(zb_i - a_i + a_i) \le \max\{v(zb_i - a_i), v(a_i)\} \le \max\{\epsilon\gamma, \epsilon\}$$

Hence

$$v(b_i) \le v(z)^{-1} \max\{\epsilon \gamma, \epsilon\} \le \alpha \max\{\epsilon \gamma, \epsilon\} \le \epsilon \max\{\alpha \gamma, \alpha\} \le \alpha$$

The last inequality holds since $\alpha v(z) > 1$ and $v(r) \le 1$ for all $r \in R$ implies $\alpha \ge 1$ and $\alpha \gamma = \max\{\alpha \delta, \alpha \epsilon^2\} \le 1$ So now we have

- $v(e) \le \epsilon$
- $v(a_i) \le \epsilon \le v(z)$
- $v(f_i^* f_i) = v(b_i) \le \alpha \epsilon$

Note:-

This proves:

- $H_3(m, f, \mathcal{F}^*, \mathcal{S}^*, z, \alpha, \delta^*, \epsilon^*)$ for both Linear and Quadratic case
- $H_4(m, f, \mathcal{F}, \mathcal{F}^*, \mathcal{S}, \mathcal{S}^*, \alpha, \delta, \epsilon)$ for Linear Case.

Now $g_i = \prod_{i \neq i} f_i$ for $0 \le i \le m$. Then we have

$$a_0 g_0 = s_0 g_0 + f_0 g_0 \sum_{i=1}^m p_i = s_0 g_0 e + \prod_{i=0}^m f_i \sum_{i=1}^m p_i = s_0 g_0 e + \sum_{i=1}^m g_i f_i p_i$$

$$= s_0 g_0 e + \sum_{i=1}^m g_i (s_i - a_i) = e \sum_{i=0}^n s_i g_i - \sum_{i=1}^m a_i g_i$$

$$= e \left[\sum_{i=0}^m s_i g_i - z \right] + \left[z e - \sum_{i=1}^m a_i g_i \right]$$

$$u_1$$

2.5 Proof of Hensel's Lemma

Given $v\left(\sum_{i=0}^{m} s_i g_i - z\right) \leq \delta$ by $H_2(m, f, \mathcal{F}, \mathcal{S}, z, \delta)$. So we have

$$v\left(e\sum_{i=0}^{m}s_{i}g_{i}-z\right)=v(e)v\left(\sum_{i=0}^{m}s_{i}g_{i}-z\right)\leq\epsilon\delta\implies v(u_{1})\leq\epsilon\delta$$

Now for the second summand $u_2 \deg e \leq \deg f$, $\deg g_i \leq \sum\limits_{j \neq i} \deg(f_j)$ and $\deg a_i \leq \deg f_i$. Hence we have $\deg u_2 \leq \deg f \leq k + \deg g_0$ where $k = \deg f - \deg g_0 + 1$. Now let $a_0 = u_3 x^k + u_4$ where $\deg u_4 < k$. So

$$u_1 = a_0 g_0 - u_2 = u_3 (g_0 x^k) + u_4 g_0 - u_2$$

Now

$$\deg(u_4g_0) < \deg(g_0x^k) \implies \deg(u_4g_0 - u_2) < \deg(g_0x^k)$$

Since g_0 is monic, g_0x^k is also monic and $\deg(u_4g_0) < \deg(g_0x^k)$. Hence by Theorem 2.3.1 we have

$$v(u_3) \le v(u_1) \le \epsilon \delta \le \epsilon \gamma$$
 $v(u_4 g_0 - u_2) \le v(u_1) \le \epsilon \gamma$

CHAPTER 3

Newton Iteration

$_{ ext{Chapter}}~4$

Solving Differential Equations

Finding Short Vectors in Modules

CHAPTER **6**

Factorization of Polynomials

CHAPTER 7

Bibliography

[vzG84] Joachim von zur Gathen. Hensel and newton methods in valuation rings. *Mathematics of Computation*, 42(166):637–661, 1984.