Tutoriel TMM

Optoélectronique GEL-4203/GEL-7041

11 octobre 2017

1 Formalisme

1.1 Propagation

Dans l'analyse d'un réseau linéaire par la méthode des matrices S ou T, on représente l'onde électromagnétique se propageant sous la forme d'une amplitude normalisée a_j , équation 1. La norme de a_j est égale à la racine carrée de la puissance et sa phase est est référence à celle d'un observable, le champ électrique dans le cas présent.

$$a_j = \frac{E_0}{\sqrt{2\eta_i}} \exp{-j\tilde{\beta}z} \tag{1}$$

$$\tilde{\beta} = \frac{2\pi}{\lambda} (n_{eff,R} + j n_{eff,Im}) \tag{2}$$

Pour plus de détails sur ces méthodes, vous devriez consulter la référence [1].

1.2 Matrice de diffusion (Scattering matrix)

On pose l'amplitude normalisée incidente au port j, a_j et réfléchie, b_j . À condition que les ports puissent être linéairement reliés entre eux, on peut utiliser un formalisme matriciel tel que :

$$\mathbf{b} = \mathbf{S}\mathbf{a} \tag{3}$$

$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$
 (4)

Pour un réseau à 2 ports, l'amplitude mise au carré d'un coefficient, $|S_{ij}|^2$ représente la fraction de puissance sortant au port j due à la puissance d'entrée au port i. Un des avantages de ce formalisme est que les paramètres S

FIGURE 1: Formalisme des ports pour la méthode des matrices de diffusion, Ref [1]

FIGURE 2: Formalisme des ports pour la méthode des matrices de tranfert, Ref [1]

ont une signification physique directe. Par exemple, on appellera souvent S_{21} le coefficient de transmission t ou S_{11} le coefficient de réflexion r.

1.3 Matrice de transfert (Transfer matrix)

Un autre formalisme permettant l'analyse de réseaux linéaires est la méthode des matrices de transfert (TMM). Son avantage par rapport au S-matrix est que l'on peut directement multiplier les matrices entres elles afin d'obtenir la matrice de transfert d'un composant plus complexe tel que montré à la figure 2. L'équation 5 présente la relation entre N composantes successives.

$$\begin{bmatrix} A_1 \\ B_1 \end{bmatrix} = \begin{bmatrix} T_{11,1} & T_{12,1} \\ T_{21,1} & T_{22,1} \end{bmatrix} \begin{bmatrix} T_{11,2} & T_{12,2} \\ T_{21,2} & T_{22,2} \end{bmatrix} \begin{bmatrix} \dots \\ \dots \end{bmatrix} \begin{bmatrix} T_{11,N} & T_{12,N} \\ T_{21,N} & T_{22,N} \end{bmatrix} \begin{bmatrix} A_2 \\ B_2 \end{bmatrix}$$
(5)

Scattering Matrix	Transmission Matrix
Definition	Definition
$\begin{array}{c c} a_1 & & b_2 \\ b_1 & & a_2 \end{array}$	$A_1 \longrightarrow A_2$ $B_1 \longrightarrow B_2$
$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$	$\begin{bmatrix} A_1 \\ B_1 \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \begin{bmatrix} A_2 \\ B_2 \end{bmatrix}$
$b_1 = S_{11}a_1 + S_{12}a_2$	$A_1 = T_{11}A_2 + T_{12}B_2$
$b_2 = S_{21}a_1 + S_{22}a_2$	$B_1 = T_{21}A_2 + T_{22}B_2$
Relation to r and t	Relation to r and t
$r_{12} = \frac{b_1}{a_1} \bigg _{a_2 = 0} = S_{11}$	$r_{12} = \frac{B_1}{A_1} \bigg _{B_2 = 0} = \frac{T_{21}}{T_{11}}$
$t_{12} = \frac{b_2}{a_1} \bigg _{a_2 = 0} = S_{21}$	$t_{12} = \frac{A_2}{A_1} \bigg _{B_2 = 0} = \frac{1}{T_{11}}$
$r_{21} = \frac{b_2}{a_2} \bigg _{a_1 = 0} = S_{22}$	$r_{21} = \frac{A_2}{B_2} \bigg _{A_1 = 0} = -\frac{T_{12}}{T_{11}}$
$t_{21} = \frac{b_1}{a_2} \bigg _{a_1 = 0} = S_{12}$	$t_{21} = \frac{B_1}{B_2} \bigg _{A_1 = 0} = \frac{\det \mathbf{T}}{T_{11}}$
$\mathbf{S} = \begin{bmatrix} r_{12} & t_{21} \\ t_{12} & r_{21} \end{bmatrix}$	$\mathbf{T} = \frac{1}{t_{12}} \begin{bmatrix} 1 & -r_{21} \\ r_{12} & t_{12}t_{21} - r_{12}r_{21} \end{bmatrix}$
$\det \mathbf{S} = S_{11}S_{22} - S_{12}S_{21} = r_{12}r_{21} - t_{12}t_{21}$	$\det \mathbf{T} = T_{11}T_{22} - T_{12}T_{21} = t_{21}/t_{12}$
Relation to T-Matrix	Relation to S-Matrix
$\mathbf{S} = \frac{1}{T_{11}} \begin{bmatrix} T_{21} & \det \mathbf{T} \\ 1 & -T_{12} \end{bmatrix}$	$\mathbf{T} = \frac{1}{S_{21}} \begin{bmatrix} 1 & -S_{22} \\ S_{11} & -\det \mathbf{S} \end{bmatrix}$

FIGURE 3: Relations importantes des matrices S et T, Ref [1]

Récapitulatif 1.4

Le tableau 3 résume les équations importantes pour le formalisme matricielle. Il présente aussi comment passer d'un formalisme à l'autre. Le tableau 4 présente les matrices S et T pour certains composants fondamentaux, avec r et t définis à l'équation 7 pour une onde place à incidence normale.

$$r_1 = \frac{n_1 - n_2}{n_1 + n_2} = S_{11} \tag{6}$$

$$r_1 = \frac{n_1 - n_2}{n_1 + n_2} = S_{11}$$

$$t_1 = 2\frac{\sqrt{n_1 n_2}}{n_1 + n_2} = S_{21}$$

$$(6)$$

$$(7)$$

Scattering Matrix	Structure	Transmission Matrix
$\begin{bmatrix} r_{12} & t_{12} \\ t_{12} & -r_{12} \end{bmatrix}$	1 2	$\frac{1}{t_{12}} \begin{bmatrix} 1 & r_{12} \\ r_{12} & 1 \end{bmatrix}$
	$r_{21} = -r_{12} \ t_{21} = t_{12}$	$r_{12}^2 + t_{12}^2 = 1$
$\begin{bmatrix} 0 & e^{-j\phi} \\ e^{-j\phi} & 0 \end{bmatrix}$	2 2 2 L	$\begin{bmatrix} e^{j\phi} & 0 \\ 0 & e^{-j\phi} \end{bmatrix}$
	$\phi = \tilde{eta}_2 L$	
$\begin{bmatrix} r_{12} & t_{12}e^{-j\phi} \\ t_{12}e^{-j\phi} & -r_{12}e^{-j2\phi} \end{bmatrix}$	1 2 2	$\frac{1}{t_{12}} \begin{bmatrix} e^{j\phi} & r_{12}e^{-j\phi} \\ r_{12}e^{j\phi} & e^{-j\phi} \end{bmatrix}$
		$r_{12}^2 + t_{12}^2 = 1$

FIGURE 4: Matrices S et T de certains composants fondamentaux, Ref [1]

2 Exemple : Résonateur Fabry-Perot

Considérons un bloc diélectrique d'indice n_2 borné par un milieu n_1 et un milieu n_3 tel que présenté à la figure 5.

3 Réseau de Bragg

On peut utiliser la méthode des matrices de transfert afin d'obtenir la réponse d'un réseau de Bragg intégré tel que celui montré à la figure 6. Pour ce

FIGURE 5: Schéma du bloc diélectrique à l'étude, Ref [1]

FIGURE 6: Géométrie d'un réseau de Bragg intégré, Ref [2]

faire, on considère le réseau comme un empilement diélectrique de matériau d'indice égal à l'indice effectif du mode fondamental du chaque segment de réseau. La longueur d'onde centrale d'un réseau de Bragg peut être estimé avec l'équation 8 où $\overline{n_{eff}}$ est la moyenne entre l'indice effectif de la section avec corrugation et celle sans corrugation.

$$\lambda_{Bragg} = 2\Lambda \overline{n_{eff}} \tag{8}$$

4 Référence

- [1] Diode lasers and photonics integrated circuits, L. A. Coldrine, S.W. Corzine, WILEY
- [2] Silicon Photonics Design, L. Chrostowski, M. Hochberg, Cambridge University Press