#load excel file
import pandas as pd
df_total = pd.read_excel('/content/total 5years.xlsx')
df total

		Country Name	Country Code	Series Name	Series Code	2020 [YR2020]	2021 [YR2021]	2022 [YR2022]	2023 [YR2023]	2024 [YR2024]	+4
	0	India	IND	Population, total	SP.POP.TOTL	1402617695	1414203896	1425423212	1438069596		

#load excel file
import pandas as pd
df_TF= pd.read_excel('/content/total female.xlsx')
df_TF

		Series Name	Series Code	Country Name	Country Code	2020 [YR2020]	2021 [YR2021]	2022 [YR2022]	2023 [YR2023]	2024 [YR2024]	+4
	0	Population, female	SP.POP.TOTL.FE.IN	India	IND	678442228	684279793	689891756	696186332		

#load total male
import pandas as pd
df_TM= pd.read_excel('/content/total male.xlsx')
df_TM

₹		Series Name	Series Code	Country Name	Country Code	2020 [YR2020]	2021 [YR2021]	2022 [YR2022]	2023 [YR2023]	2024 [YR2024]	+4
	0	Population, male	SP.POP.TOTL.MA.IN	India	IND	724175467	729924103	735531456	741883264		

#load male%
import pandas as pd
df_M_per= pd.read_excel('/content/male %5years.xlsx')
df_M_per

₹	Series Name	Series Code	Country Name	Country Code	2020 [YR2020]	2021 [YR2021]	2022 [YR2022]	2023 [YR2023]	2024 [YR2024]	E ·
	Population, male 0 (% of total population)	SP.POP.TOTL.MA.ZS	India	IND	51.630282	51.613781	51.600918	51.588829		-

#load percentange female
import pandas as pd
df_F_per= pd.read_excel('/content/female%5years.xlsx')
df_F_per

		Country Name	Country Code	Series Name	Series Code	2020 [YR2020]	2021 [YR2021]	2022 [YR2022]	2023 [YR2023]	2024 [YR2024]	=
	0	India	IND	Population, female (% of total population)	SP.POP.TOTL.FE.ZS	48.369718	48.386219	48.399082	48.411171		

#to combine 5 dataset into a single
df= pd.concat([df_total,df_TF,df_TM,df_M_per,df_F_per])
df

 \blacksquare

Next steps: Generate code with df View recommended plots

New interactive sheet

#remove series code and 2024 year column, country code, name and series name

df.drop(['Series Code','2024 [YR2024]','Country Name','Country Code'],axis=1,inplace=True, errors='ignore') df

→ *		Series Name	2020 [YR2020]	2021 [YR2021]	2022 [YR2022]	2023 [YR2023]	
	0	Population, total	1.402618e+09	1.414204e+09	1.425423e+09	1.438070e+09	ılı
	0	Population, female	6.784422e+08	6.842798e+08	6.898918e+08	6.961863e+08	+/
	0	Population, male	7.241755e+08	7.299241e+08	7.355315e+08	7.418833e+08	_
	0	Population, male (% of total population)	5.163028e+01	5.161378e+01	5.160092e+01	5.158883e+01	
	0	Population, female (% of total population)	4.836972e+01	4.838622e+01	4.839908e+01	4.841117e+01	

Next steps: (

Generate code with df

View recommended plots

New interactive sheet

#change column name df.columns=['Series Name','2020','2021','2022','2023']

df=df.transpose()

#to set series name as column name df.columns=df.iloc[0] df

₹	Series Name	Population, total	Population, female	Population, male	Population, male (% of total population)	Population, female (% of total population)					
	Series Name	Population, total	Population, female	Population, male	Population, male (% of total population)	Population, female (% of total population)	11. */				
	2020	1402617695.0	678442228.0	724175467.0	51.630282	48.369718					
	2021	1414203896.0	684279793.0	729924103.0	51.613781	48.386219					
	2022	1425423212.0	689891756.0	735531456.0	51.600918	48.399082					
	2023	1438069596.0	696186332.0	741883264.0	51.588829	48.411171					
Next	Next steps: Generate code with df View recommended plots New interactive sheet										

#to remove Series name df=df.iloc[1:] df

https://colab.research.google.com/drive/1fPyuUluDz-6R-rzBx8Q-BoidS53EC4my#scrollTo=AR9E7YRkLcUz&printMode=true

	eries Name	Population, total	Population, female	Population, male	Population, male (% of total population)	Population, female (% of total population)
20)20	1402617695.0	678442228.0	724175467.0	51.630282	48.369718
20)21	1414203896.0	684279793.0	729924103.0	51.613781	48.386219
20)22	1425423212.0	689891756.0	735531456.0	51.600918	48.399082
20	23	1438069596.0	696186332.0	741883264.0	51.588829	48.411171

df.head()

₹	Series Name	Population, total	Population, female	Population, male	Population, male (% of total population)	Population, female (% of total population)	
	2020	1402617695.0	678442228.0	724175467.0	51.630282	48.369718	th
	2021	1414203896.0	684279793.0	729924103.0	51.613781	48.386219	
	2022	1425423212.0	689891756.0	735531456.0	51.600918	48.399082	
	2023	1438069596.0	696186332.0	741883264.0	51.588829	48.411171	

Next steps: Generate code with df View recommended plots New interactive sheet

df.info()

```
Index: 5 entries, 0 to 0
   Data columns (total 5 columns):
    # Column
                     Non-Null Count Dtype
        Series Name
    0
                      5 non-null
                                     object
        2020 [YR2020] 5 non-null
                                     float64
    1
        2021 [YR2021] 5 non-null
                                     float64
        2022 [YR2022] 5 non-null
                                     float64
   4 2023 [YR2023] 5 non-null dtypes: float64(4), object(1)
                                     float64
```

memory usage: 412.0+ bytes

#plot bar graph of male female population for 4 years
import pandas as pd
import matplotlib.pyplot as plt
#extract total population, no. of male,female population
df_new=df.iloc[:,1:3]
df_new
df_new.plot(kind='bar',figsize=(8,7), color=['pink', 'skyblue'])
plt.xlabel('Year')
plt.ylabel('Number of Males and Females')
plt.legend()
plt.ylim(0,10000000000)
plt.title('Gender Distribution(No. of Male and Female in India) ')
plt.show()

#to draw gender distribution bar graph using number of male and female
import pandas as pd
import matplotlib.pyplot as plt
#extract total population, no. of male,female population
df_new=df.iloc[:,3:5]
df_new
df_new.plot(kind='bar',figsize=(8, 6),width=.4, color=['pink', 'skyblue'])
plt.xlabel('Year')
plt.ylabel('% of Males and Females')
plt.ylim(0,100)
plt.title('Gender Distribution in % (India)')
plt.show()

Start coding or generate with AI.

Double-click (or enter) to edit