

TD EDP

ightharpoonup Exercice 1. Soit $u:[0,1] \to \mathbb{R}$ solution du problème

$$\begin{cases} -u''(x) + c(x)u(x) = f(x), & \forall x \in]0,1[,\\ u(0) = \alpha, & u(1) = \beta, \end{cases}$$
 (1)

avec $(c, f) \in \mathcal{C}^0([0, 1], \mathbb{R}) \times \mathcal{C}^0([0, 1], \mathbb{R}), \text{ et } \forall x \in [0, 1], c(x) \ge 0.$

On souhaite approcher u par la méthode des différences finies. Pour cela, on considère une discrétisation régulière de [0,1], de pas constant h. Soit $(x_i)_{i=0:N+1}$, avec $x_0=0$ et $x_{N+1}=1$, les points de discrétisation du maillage.

1.1. En utilisant un schéma centré d'ordre 2 pour la dérivée seconde de u, écrire le problème approché sous la forme d'un système linéaire

$$A_h u_h = b_h, (2)$$

avec $u_h = (u_i)_{i=1:N} \in \mathbb{R}^N$. Préciser u_0 et u_{N+1} satisfaisant les conditions aux limites du problème.

- **1.2.** Montrer que la matrice A_h est symétrique définie positive. Que pouvez-vous conclure pour le système (2)?
- **1.3.** On suppose $u \in \mathcal{C}^4([0,1],\mathbb{R})$. Soit $\xi_h(u) = A_h\Pi_h(u) b_h$ l'erreur de consistance du schéma (2), avec $\Pi_h(u) = (u(x_i))_{i=1:N} \in \mathbb{R}^N$. Montrer que

$$\|\xi_h(u)\|_{\infty} \le \frac{h^2}{12} \sup_{u \in [0,1]} |u^{(4)}(y)|,$$

avec
$$\forall y \in \mathbb{R}^N, ||y||_{\infty} = \sup_{i \in \{1, \dots, N\}} |y_i|.$$

En conclure quant à l'ordre de consistance du schéma (2) pour la norme infinie.

1.4. On suppose toujours $u \in \mathcal{C}^4([0,1],\mathbb{R})$. Montrer que

$$||u_h - \Pi_h(u)||_{\infty} \le \frac{h^2}{96} \sup_{y \in [0,1]} |u^{(4)}(y)|.$$

On admettra que $||A_h^{-1}||_{\infty} \le \frac{1}{8}$.

En conclure quant à la convergence du schéma (2) pour la norme infinie.

 \triangleright **Exercice 2.** Soit $u:\Omega=[0,1]\times[0,1]\to\mathbb{R}$ solution du problème

$$\begin{cases} -\Delta u(x) = f(x), & \forall x \in]0, 1[\times]0, 1[, \\ u(x) = 0, & \forall x \in \partial \Omega \end{cases}$$
 (3)

Optimisation-EDP TD EDP

avec
$$f \in C^0([0,1])$$
.

On souhaite approcher u par la méthode des différences finies. Pour cela, on considère une discrétisation régulière de Ω , de pas constants h_1 et h_2 dans chacune des deux directions. Soit $(x_{i,j})_{i=0:N_1+1,j=0:N_2+1}$ les points de discrétisation du maillage.

- **2.1.** En utilisant un schéma centré d'ordre 2 pour chaque dérivée partielle d'ordre 2 de u, écrire le problème approché au point de grille $x_{i,j}$, avec $i \in \{0, \dots, N_1 + 1\}$ et $j \in \{0, \dots, N_2 + 1\}$.
- **2.2.** On pose $u_h = [u_{1,1}, \cdots, u_{1,N_2}, u_{2,1}, \cdots, u_{2,N_2}, \cdots, u_{N_1,N_2}]^T \in \mathbb{R}^{N_1N_2}$. Ecrire le schéma sous la forme matricielle $A_h u_h = f_h$ en précisant A_h et f_h .