Cryptography

2017/18 Q2

Jaime Delgado *

DAC – UPC

* Part of the material comes from other sources.

Cryptography

- Private key (symmetric)
- Public key (asymmetric)
- Extended Euclidean algorithm ("magic box")
- Diffie-Hellman
- Encryption/Decryption algorithms for public key
 - RSA
 - ElGamal
- Digital signature
 - RSA

Security - Cryptography

Private key (symmetric)

```
Sender: c = E_k(m); Recipient: m = D_k(c)

E: Encryption algorithm; D: Decryption algorithm;

k: Key; c: cyphered text; m: clear text (message).
```

- Historical: Transposition, Substitution, ...
- Block cipher
 - Principles:
 Confusion (key → cipher text independence),
 Diffusion (plain text → cipher text independence)
 - DES (Data Encryption Standard), 1976
 - AES (Advanced Encryption Standard), 2001 (permutations)

SubBytes: a non-linear substitution step where each byte is replaced with another according to a lookup table

ShiftRows: a transposition step where each row of the state is shifted cyclically a certain number of steps

MixColumns: a mixing operation which operates on the columns of the state, combining the four bytes in each column

Cryptography

- Private key (symmetric)
- Public key (asymmetric)
 - Secret + Public parts of the key (Ks, Kp)
 - No need for keys distribution
 - Encryption

```
Sender: c = E_{Kp}(m); Recipient: m = D_{Ks}(c)
(Ks,Kp) from the Recipient.
```

Signature

```
Sender: s = E_{Ks}(m); Recipient: m = D_{Kp}(s)
"Sender" is the Signer. (Ks,Kp) from the Signer.
```

Cryptography

- Private key (symmetric)
- Public key (asymmetric)
- Extended Euclidean algorithm ("magic box")
- Diffie-Hellman
- Encryption/Decryption algorithms for public key
 - RSA
 - ElGamal
- Digital signature
 - RSA

Extended Euclidean algorithm

- The extended Euclidean algorithm computes the greatest common divisor (gcd) of two integers a and n
- It is particularly useful when a and n are coprime,
 (i.e. gcd (a,n) = 1), since its output is the modular multiplicative inverse of a mod n

'The Magic Box' method

The procedure finishes when $d_i = 1$ (if a,n are coprime)

Extended Euclidean algorithm

- The extended Euclidean algorithm computes the greatest common divisor (gcd) of two integers a and n
- It is particularly useful when a and n are coprime,
 (i.e. gcd (a,n) = 1), since its output is the modular multiplicative inverse of a mod n

The procedure finishes when $d_i = 1$ (if a,n are coprime)

"Magic Box" example

Compute the GCD of 120 and 23

					1.
	a	b	d	k	k_i
7	1	0	120		a _i b _i
	0	1	23	5	D_{I}
	1	-5	5	4	
	-4	21	3	1	d_3
	5	-26	2	1	th
	-9	47	1	2	a_3
					b_3

$$d_i = d_{i-2} \mod d_{i-1}$$

 k_i is the quotient of d_{i-1}/d_i
 $a_i = a_{i-2} - k_{i-1} \cdot a_{i-1}$
 $b_i = b_{i-2} - k_{i-1} \cdot b_{i-1}$

$$d_3 = 120 \mod 23 = 5 \ k_2$$
 is
the quotient of $120/23$
 $a_3 = 1 - 5 \cdot 0 = 1$
 $b_3 = 0 - 5 \cdot 1 = -5$

- 47 is the modular multiplicative inverse of 23 mod 120.
- Bézout identity in the example: 1 = 23*47 + 120*(-9)

Cryptography

- Private key (symmetric)
- Public key (asymmetric)
- Extended Euclidean algorithm ("magic box")
- Diffie-Hellman
- Encryption/Decryption algorithms for public key
 - RSA
 - ElGamal
- Digital signature
 - RSA

Diffie-Hellman

- Modular arithmetic algorithm with several uses:
 - Part of asymmetric key mechanisms.
 - Private key generation in symmetric key mechanisms.
- A: takes random element a∈G; computes α³∈G;
 B: id. with b∈G; α^b∈G
 (A: Sender; B: Recipient; G and α known by both;
 G: multiplicative finite group with generator α∈G).
- A & B interchange α^a and α^b
- A computes $(\alpha^b)^a$; B computes $(\alpha^a)^b$.
- $(\alpha^b)^a = (\alpha^a)^b$ is the private key !!! Only A & B know.

Diffie-Hellman example

Example

- **1** A and B choose publicly $G = \mathbb{Z}_{53}^*$ and the generator $\alpha = 2$
- **2** A chooses a=29, computes $\alpha^a=2^{29}$ mod 53=45 and sends 45 to B
- **3** B chooses b=19, computes $\alpha^b=2^{19}$ mod 53=12 and sends 12 to A
- **4** A receives 12 and computes 12^{29} mod 53 = 21
- **6** B receives 45 and computes 45^{19} mod 53 = 21

The **private key** is 21

Exponentiation by squaring

Modular arithmetic allows us to compute exponentiations without managing very big numbers!

```
Exponentiation by squaring (a,z,n) x = a^z \mod n
```

begin

```
x=1;
z^1= binary representation of z;
// starting by the most significant bit

foreach bit \ z_i^1 \in z^1 \ do
x=x^2 \ mod \ n;
// multiply x by a if z_1 is equal to one
if z_i^1==1 then
x=x \cdot a \ mod \ n
return x
```

Exponentiation by squaring - Example

Example

Compute 5²⁷ mod 217

27 is 11011 in binary

$$5^{27} \bmod 217 \Rightarrow 1 \rightarrow S \rightarrow 1 \rightarrow M \rightarrow 5 \rightarrow S \rightarrow 25 \rightarrow M \rightarrow 125 \rightarrow S \rightarrow 15625 \equiv 1 \rightarrow S \rightarrow 1 \rightarrow M \rightarrow 5 \rightarrow S \rightarrow 25 \rightarrow M \rightarrow 125$$

S: squaring M: multiply

Cryptography

- Private key (symmetric)
- Public key (asymmetric)
- Extended Euclidean algorithm ("magic box")
- Diffie-Hellman
- Encryption/Decryption algorithms for public key
 - RSA
 - ElGamal
- Digital signature
 - RSA

KEYS GENERATION

- Choose 2 distinct very big prime numbers p and q.
- Compute n=p*q; n defines the multiplicative group Zn
- Compute $\Phi(n) = (p-1) * (q-1)$
- Choose an integer e such that $1 < e < \Phi(n)$, and $GCD(e, \Phi(n)) = 1$ (i.e., e and $\Phi(n)$ are coprime)
- Determine d=e⁻¹modΦ (n) using Modular multiplicative inverse (extended Euclidean algorithm)
- The public key is (n,e)
- The secret key is d or (n,d)
 p, q and \(\Phi(n) \) are also secret

ENCRYPTION

- B has keys:
 PUBLIC (n,e); SECRET (d)
- A wants to sends m to B:

$$c = m^e \mod n$$

DECRYPTION

B receives c and computes:

$$m = c^d \mod n$$

EXAMPLE

Keys generation:

- p=61, q=53; n=61*53=3223 n=p*q
- $\Phi(3233)=60*52=3120$ $\Phi(n)=(p-1)*(q-1)$
- e=17 (1<17<3120) e coprime to 3120 (i.e. e not a divisor of 3120)
- $d = 17^{-1} \mod 3120 = 2753$ $d = e^{-1} \mod \Phi(n)$ ext. Eucl. alg.

Public key: (n=3233, e=17)

Secret key: (n=3233, d=2753)

EXAMPLE

Keys generation (d calculation):

• $d = 17^{-1} \mod 3120 = 2753$ $d=e^{-1} \mod \Phi(n)$

Extended Euclidean algorithm:

3120-367=**2753**

EXAMPLE

Encryption / Decryption:

• *m=65*;

 $c = m^e \mod n$

• $c = 65^{17} \mod 3233 = 2790$

 $m = c^d \mod n$

• $m = 2790^{2753} \mod 3233 = 65$

KEYS GENERATION

- Choose a cyclic multiplicative finite group G and one element $\alpha \in G$.
- Users choose a random number a → Secret key Ks.
- Also compute $\alpha^a \in G \rightarrow$ Public key Kp.

```
(Although \alpha, G and \alpha^a (i.e. Kp) are publicly known, a (i.e. Ks) is not known)
```

ENCRYPTION

A has keys:

```
PUBLIC (Kp=\alpha^a); SECRET (Ks=a)
```

- B wants to send $m \in G$ to A
- B choses a random number v and computes $\alpha^{\vee} \in G$
- B computes

c = m * (Kp)
$$^{\text{v}} \in G$$
; i.e.:
c = m * (α^{a}) $^{\text{v}}$ mod G

• B sends to A:

$$(\alpha^{\vee}, c)$$

ENCRYPTION

A has keys:

PUBLIC (Kp=
$$\alpha^a$$
); SECRET (Ks= a)

- B wants to send $m \in G$ to A
- B choses a random number v and computes $\alpha^{\vee} \in G$
- B computes

$$c = m * (Kp)^{\vee} \in G$$
; i.e.:

$$c = m * (\alpha^a)^v \mod G$$

• B sends to A:

DECRYPTION

- A receives (α^{\vee}, c)
- A computes

```
(\alpha^{\vee})^{Ks} \in G; i.e:

(\alpha^{\vee})^a \in G = (\alpha^{\vee a}) \mod G
```

A computes

m = c *
$$(\alpha^{va})^{-1} \in G$$
; i.e.:
m = c * $(\alpha^{va})^{-1} \mod G$

 $(\alpha^{\text{va}})^{-1}$ is the modular multiplicative inverse of (α^{va}) mod G

 $\alpha^a \in G$

EXAMPLE

Keys generation:

- G=13; $\alpha=2$; $\alpha=9$
- Kp = $\alpha^a = 2^9 \mod 13 = 5$

Secret key: Ks=9

Public key: Kp=5

EXAMPLE

Encryption:

• m=11; v=10; $(G=13; \alpha=2)$; (Ks=9, Kp=5)

• $\alpha^{\text{v}} = 2^{10} \mod 13 = 10$

$$\alpha^{\vee} \in G$$

 $c = m*(Kp)^{\vee} \mod G$

• $c = 11 * 5^{10} \mod 13 = 11 * 12 \mod 13 = 2$

 $Kp=\alpha^a$

• Sends (10, 2)

EXAMPLE

Encryption:

• m=11; v=10; $(G=13; \alpha=2)$; (Ks=9, Kp=5)

•
$$\alpha^{\vee} \neq 2^{10} \mod 13 = 10$$
 $\alpha^{\vee} \in G$

• c = 11 * 5^{10} mod 13 = 11 * 12 mod 13 = 2

 $c = m*(Kp)^v \mod G$

 $Kp=\alpha^a$

• Sends (10, 2)

EXAMPLE

Decryption:

- Receives $(\alpha^{v},c)=(10,2)$. Ks=9; (G=13; $\alpha=2$)
- m = $(2 * ((10^9 \text{ mod } 13))^{-1} \text{ mod } 13)) \text{ mod } 13$ $(\alpha^{\text{v}})^{\text{a}} = 10^9 \text{ mod } 13 = 12$
- m = (2 * (12⁻¹ mod 13)) mod 13 "magic box"

EXAMPLE

Decryption ("magic box" calculation):

• Ks=9; (G=13; $\alpha=2$). Receives (α^{\vee} , c) = (10, 2)

• $(\alpha^{\text{va}})^{-1} \mod G = 12^{-1} \mod 13 = 12$ ("magic box")

EXAMPLE

Decryption:

- Receives $(\alpha^{v},c)=(10,2)$. Ks=9; (G=13; $\alpha=2$)
- $m = (2 * ((10^9 \mod 13))^{-1} \mod 13)) \mod 13$

• $m = (2 * (12^{-1} \mod 13)) \mod 13$

$$m = (2 * 12) \mod 13 = 11$$

Cryptography

- Private key (symmetric)
- Public key (asymmetric)
- Extended Euclidean algorithm ("magic box")
- Diffie-Hellman
- Encryption/Decryption algorithms for public key
 - RSA
 - ElGamal
- Digital signature
 - RSA

(Public key) Digital signature

Encryption

```
Sender: c = E_{Kp}(m); Recipient: m = D_{Ks}(c)
(Ks,Kp) from the Recipient.
```

Signature

```
Sender: \mathbf{s} = \mathbf{E}_{Ks}(\mathbf{m}); Recipient: \mathbf{m} = \mathbf{D}_{Kp}(\mathbf{s})
"Sender" is the Signer. (Ks,Kp) from the Signer.
```

- To reduce computational cost,
 sign Hash(m) instead of m
 (Hash: unidirectional; large variable-size → small fixed-size)
- Signature is distributed with message (encrypted or not).
- RSA algorithm. There are many.

RSA signature

SIGNATURE

- A has keys:
 PUBLIC (n,e); SECRET (d)
- A signs a message (or its Hash) m:

```
s = m^d \mod n
```

VERIFICATION

B receives s and m (encrypted or not):

```
m = s^e \mod n
m should be equal to
```