8. Részletes tervek

54 – Override

Konzulens:

dr. László Zoltán

Csapattagok:

Kriván Bálint	CBVOEN	balint@krivan.hu
Jákli Gábor	ONZ5G1	j_gab666@hotmail.com
Dévényi Attila	L1YRH0	devenyiat@gmail.com
Apagyi Gábor	X8SG3T	apagyi.gabooo@gmail.com
Péter Tamás Pál	N5ZLEG	falconsaglevlist@gmail.com

Tartalomjegyzék

8	Rés	szletes tervek					
	8.1.	Osztályok és metódusok tervei	4				
		8.1.1. Osztály1	4				
		8.1.2. Osztály2					
	8.2.	A tesztek részletes tervei, leírásuk a teszt nyelvén	5				
		8.2.1. Alap áramkör	5				
		8.2.2. MPX-es áramkör	6				
		8.2.3. Visszacsatolt stabil áramkör	8				
		8.2.4. Visszacsatolt nem stabil áramkör					
		8.2.5. Flip-flop-os áramkör					
		8.2.6. Kompozitos áramkör	11				
		8.2.7. Kompoziton belüli kompozitos áramkör	14				
	8.3.	A tesztelést támogató programok tervei					
		Napló					

Ábrák jegyzéke

8. Részletes tervek

8.1. Osztályok és metódusok tervei

8.1.1. Osztály1

• Felelősség

[Mi az osztály felelőssége. Kb 1 bekezdés. Ha szükséges, akkor state-chart is.]

Ősosztályok

[Mely osztályokból származik (öröklési hierarchia) Legősebb osztály → Ősosztály2 → Ősosztály3...]

Interfészek

[Mely interfészeket valósítja meg.]

• Attribútumok

[Milyen attribútumai vannak]

- attribútum1: attribútum jellemzése: mire való, láthatósága (UML jelöléssel), típusa
- attribútum2: attribútum jellemzése: mire való, láthatósága (UML jelöléssel), típusa
- Metódusok

[Milyen publikus, protected és privát metódusokkal rendelkezik. Metódusonként precíz leírás, ha szükséges, activity diagram is a metódusban megvalósítandó algoritmusról.]

- int foo(Osztály3 o1, Osztály4 o2): metódus leírása, láthatósága (UML jelöléssel)
- int bar(Osztály5 o1): metódus leírása, láthatósága (UML jelöléssel)

8.1.2. Osztály2

• Felelősség

[Mi az osztály felelőssége. Kb 1 bekezdés. Ha szükséges, akkor state-chart is.]

Ősosztályok

[Mely osztályokból származik (öröklési hierarchia) Legősebb osztály \to Ősosztály $2 \to$ Ősosztály3...]

Interfészek

[Mely interfészeket valósítja meg.]

Attribútumok

[Milyen attribútumai vannak]

- attribútum1: attribútum jellemzése: mire való, láthatósága (UML jelöléssel), típusa
- attribútum2: attribútum jellemzése: mire való, láthatósága (UML jelöléssel), típusa
- Metódusok

[Milyen publikus, protected és privát metódusokkal rendelkezik. Metódusonként precíz leírás, ha szükséges, activity diagram is a metódusban megvalósítandó algoritmusról.]

- int foo(Osztály3 o1, Osztály4 o2): metódus leírása, láthatósága (UML jelöléssel)
- int bar(Osztály5 o1): metódus leírása, láthatósága (UML jelöléssel)

8.2. A tesztek részletes tervei, leírásuk a teszt nyelvén

[A tesztek részletes tervei alatt meg kell adni azokat a bemeneti adatsorozatokat, amelyekkel a program működése ellenőrizhető. Minden bemenő adatsorozathoz definiálni kell, hogy az adatsorozat végrehajtásától a program mely részeinek, funkcióinak ellenőrzését várjuk és konkrétan milyen eredményekre számítunk, ezek az eredmények hogyan vethetők össze a bemenetekkel.]

8.2.1. Alap áramkör

- Leírás
 Olyan áramkör, melyben 2 kapcsolóval állíthatjuk egy ÉS kapu bemeneteit, melyet egy LED jelenít meg.
- Ellenőrzött funkcionalitás, várható hibahelyek
 Ellenőrizzük a kapcsoló helyes váltását, az ÉS kapu kimenetének helyes kiszámítását és a LED működését
- Áramkör létrehozása

```
kapcs1=TOGGLE()
kapcs2=TOGGLE()
es=AND(kapcs1,kapcs2)
led=LED(es)
```

• Bemenet és kimenet

Bemenet	Kimenet
loadCircuit test1.ovr step switch kapcs1	simulation successful kapcs1: 0 kapcs2: 0
step check -all	led: 0
switch kapcs2 step	kapcs1: 1
	<pre>simulation successful kapcs1: 1 kapcs2: 0 led: 0</pre>
	<pre>led: in: 0 out: kapcs1: in:</pre>
	<pre>out: 1 kapcs2: in: out: 0</pre>
	es: in: 1, 0 out: 0
	kapcs2: 1
	simulation successful kapcs1: 1 kapcs2: 1 led: 1

8.2.2. MPX-es áramkör

• Leírás

Olyan áramkört hozunk létre, melyben egy 7 szegmenses kijelzőt hajtunk meg kapcsolókkal és egy MPX-xel. A 7szegmenses kijelző [2]-[7] bemeneteire kapcsolókat kötünk, a [1] bemenetét egy MPX adja, mely 4 kapcsolóból választja ki az egyiket, tehát egy 4/1-es MPX.

• Ellenőrizzük a MPX helyes működését, és a 7 szegmenses kijelzőt. Hiba a MPX kiválasztása során történhet, hogy rossz jelet juttat a kimenetére.

• Áramkör létrehozása

```
inmpx1=TOGGLE()
inmpx2=TOGGLE()
inmpx3=TOGGLE()
inmpx4=TOGGLE()
selmpx1=TOGGLE()
```

```
selmpx2=TOGGLE()
mux=MPX(inmpx1,inmpx2,inmpx3,inmpx4,selmpx1,selmpx2)
seg=TOGGLE()
display=7SEG(mux,seg,0,0,0,0,0)
```

• Bemenet és kimenet

Bemenet	Kimenet
loadCircuit test2.ovr	load successful
switch inmpx1	
switch inmpx3	inmpx1: 1
step	
switch selmpx2	inmpx3: 1
switch seg2	
step	simulation successful
switch selmpx2	inmpx1: 1
switch selmpx1	inmpx2: 0
step	inmpx3: 1
	inmpx4: 0
	selmpx1: 0
	selmpx2: 0
	seg: 0
	display: 1, 0, 0, 0, 0, 0, 0
	selmpx2: 1
	seg: 1
	simulation successful
	inmpx1: 1
	inmpx2: 0
	inmpx3: 1
	inmpx4: 0
	selmpx1: 0
	selmpx2: 1
	seg: 1
	display: 1, 1, 0, 0, 0, 0, 0
	selmpx2: 0
	selmpx1: 1
	simulation successful
	inmpx1: 1
	inmpx2: 0
	inmpx3: 1
	inmpx4: 0
	selmpx1: 1
	selmpx2: 0
	seg: 1
	display: 0, 1, 0, 0, 0, 0

8.2.3. Visszacsatolt stabil áramkör

Leírás

Egy olyan áramkört hozunk létre, melyben egy VAGY kapu szerepel, aminek egyik bemenete egy kapcsoló, kimenetét pedig visszakötjük a második bemenetére, illetve egy csomóponton keresztül egy LED-

re is eljuttatjuk.

 Ellenőrzött funkcionalitás, várható hibahelyek
 Ellenőrizzük, hogy az áramkör helyesen stabilnak érzékeli-e a kapcsolást, illetve a VAGY kapu helyes működését is ellenőrizzük. Hibát a visszakötés okozhat.

• Áramkör létrehozása

```
kapcs=TOGGLE()
vagy=OR(kapcs, node[2])
node=NODE(vagy, 2)
led=LED(node[1])
```

• Bemenet és kimenet

Bemenet	Kimenet
loadCircuit test3.ovr	load successful
step	
switch kapcs	simulation successful
step	kapcs: 0
	led: 0
	kapcs: 1
	simulation successful
	kapcs: 1
	led: 1

8.2.4. Visszacsatolt nem stabil áramkör

• Leírás

Egy olyan áramkört hozunk létre, melyben egy ÉS kapu szerepel, aminek egyik bemenete egy kapcsoló, kimenetét pedig visszakötjük egy inverteren keresztül a második bemenetére, illetve egy csomóponton keresztül egy LED-re is eljuttatjuk.

• Ellenőrzött funkcionalitás, várható hibahelyek Ellenőrizzük, hogy az áramkör helyesen instabilnak érzékeli-e a kapcsolást. Hibás működést ez okozhat, tehát ha az áramkör ezt rosszul állapítja meg, és nem jelzi.

• Áramkör létrehozása

```
kapcs=TOGGLE()
inv=INV(node[2])
es=AND(kapcs,inv)
node=NODE(es,2)
led=LED(node[1])
```

• Bemenet és kimenet

Bemenet	Kimenet
loadCircuit test4.ovr switch kapcs step	load successful kapcs: 1 simulation failed

8.2.5. Flip-flop-os áramkör

• Leírás

Egy olyan áramkört hozunk létre, melyben egy JK flipflop szerepel, J és K bemenetére kapcsolókat kötünk, órajelét egy jelgenerátorból kapja, és a kimenetét egy oszcilloszkóp kapja meg.

Ellenőrizött funkcionalitás, várható hibahelyek
 Ellenőrizzük a jelgenerátort, hogy megfelelő jelet adja-e ciklikusan, ellenőrizzük a JK flipflop működését, illetve, hogy megfelelelően lép-e az órajelre, továbbá ellenőrizzük, hogy az oszcilloszkóp helyesen működik-e. Hiba lehetséges a jelgenerátor működésében, a JK flipflop működésében illetve számolásában, és az oszcilloszkóp működésében.

• Áramkör létrehozása

```
j=TOGGLE()
k=TOGGLE()
seqgen=SEQGEN()
jk=FFJK(seqgen,j,k)
scope=SCOPE(jk, 3)
```

• Bemenet és kimenet

Bemenet	Kimenet
loadCircuit test5.ovr	load successful
switch k	
step	k: 1
step	
switch j	simulation successful
step	j: 0
step	k: 1
switch j	seqgen: 0
switch k	scope: 0
step	
step	simulation successful
	j: 0
	k: 1
	seggen: 1
	scope: 00
	j: 1
	 simulation successful
	j: 1
	k: 1
	seqgen: 0
	scope: 000
	simulation successful
	j: 1
	k: 1
	seqgen: 1
	scope: 001
	j: 0
	k: 0
	N. 0
	 simulation successful
	j: 0
	k: 0
	seqgen: 0
	scope: 011
	simulation successful
	j: 0
	k: 0
	seqgen: 1
	scope: 111

8.2.6. Kompozitos áramkör

Leírás

Egy olyan áramkört valósítunk meg, melyben egy kompozit szerepel. Ez a kompozit egy 2 bites balról 2011. április 4.

tölthető shiftregisztert valósít meg. A kompozitnak két bemenete van egy kapcsoló ami a balról bejövő értéket adja, és egy jelgenerátor, amely az órajelet. Belül 2 db D flipflop található összekötve. Az első flipflop kimenetét kiadja a kompozit kimenetén is, és a második flipflop bemenetére is ráadja, ezért NODE is kell. A kompozit kimenete a 2 bit és a carry.

- Ellenőrzött funkcionalitás, várható hibahelyek Kompozit helyes működését ellenőrizzük.
- Áramkör létrehozása

```
input=TOGGLE()
seqgen=SEQGEN()
composite SHR(clk, in) {
   in2 = NODE(in, 1)
   d1 = FFD(clk, in)
   node1 = NODE(d1,2)
   d2 = FFD(clk,node1[1])
} (in2, node1[2], d2)
myshr = SHR(seqgen, input)
led1=LED(myshr[1])
led2=LED(myshr[2])
ledcarry=LED(myshr[3])
```

• Bemenet és kimenet

Bemenet	Kimenet
loadCircuit test6.ovr	load successful
switch input	
step	input: 1
step	
switch input	simulation successful
step	input: 1
step	seggen: 0
step	led1: 1
step	led2: 0
	ledcarry: 0
	simulation successful
	input: 1
	seqgen: 1
	led1: 1
	led2: 0
	ledcarry: 0
	input: 0
	simulation successful
	input: 0
	seqgen: 0
	led1: 0
	led2: 1
	ledcarry: 0
	simulation successful
	input: 0
	seggen: 1
	led1: 0
	led2: 1
	ledcarry: 0
	simulation successful
	input: 0
	seqgen: 0
	led1: 0
	led2: 0
	ledcarry: 1
	simulation successful
	input: 0
	seggen: 1
	led1: 0
	led2: 0
	ledcarry: 1

8.2.7. Kompoziton belüli kompozitos áramkör

• Leírás

Egy olyan áramkört hozunk létre melyben egy kompozit szerepel, ami egy másik kompozitot foglal magába. A belső kompozit egyetlen invertert tartalmaz. A külső kompozit tartalmaz még egy VAGY kaput, melynek egyik bementére a belső kompozit kimenetét, másik bemenetére pedig a külső kompozit bemenetére érkező jelet kötjük. A külső kompozit bemenetére egy kapcsolót, kimenetére egy LED-et kötünk.

• Ellenőrzött funkcionalitás, várható hibahelyek Leteszteljük, hogy működik-e a kompozit elem, ha belül bonyolultabb áramköri hálózat szerepel, jelen esetben egy kompozit, illetve egy VAGY kapu.

• Áramkör létrehozása

```
tog = TOGGLE()
composite innerComp(in) {
  inv = INV(in)
} (inv)
composite Main(in) {
  inC = innerComp(in)
  or = OR(in, inC)
} (or)
m = Main(tog)
led = LED(m)
```

• Bemenet és kimenet

Bemenet	Kimenet
loadCircuit test7.ovr	load successful
step	
step	simulation successful
switch tog	tog: 0
step	led: 1
step	
	simulation successful
	tog: 0
	led: 1
	tog: 1
	simulation successful
	tog: 1
	led: 1
	simulation successful
	tog: 1
	led: 1

8.3. A tesztelést támogató programok tervei

[A tesztadatok előállítására, a tesztek eredményeinek kiértékelésére szolgáló segédprogramok részletes terveit kell elkészíteni.]

8.4. Napló

Kezdet	Időtartam	Résztvevők	Leírás
2011.04.01. 15:00	2,5 óra	Péter T.	Tesztesetek megtervezése, leírása, felépítésük
			megadása a bemeneti nyelvnek megfelelően
2011.04.02. 10:00	3 óra	Apagyi G.	Tesztesetek felhasználói interakciójának, il-
			letve várt kimeneteinek megtervezése.
		•••	