Вопрос 1

Оптимальный прием сигналов. Согласованный фильтр.

2. Оптимальный прием сигналов.

- 2.1. Задача обнаружения сигналов.
- 2.1.1. Постановка задачи обнаружения.

Пусть на вход устройства обнаружения поступает аддитивная смесь: сигнал + шум:

$$y_i = S_i + \eta_i \tag{2.1}$$

i —дискретное время $y_i=y(t_i),\ S_i=S(t_i),\ \eta_i=\eta(t_i),\ t_i=\Delta t i,\ \Delta t$ — шаг дискретизации, η_i — аддитивный шум , S_i — полезный сигнал, причем, $\mathrm{E}\eta_i=0$, $\mathrm{E}\eta_i^{\ 2}=\sigma_\eta^{\ 2}$, E — оператор математического ожидания.

Задача обнаружения – это задача проверки двух статистических гипотез:

 H_1 : на входе приёмника присутствует сигнал в смеси с шумом $y_i = S_i + \eta_i$,

 H_0 : на входе приёмника есть только шум $y_i = \eta_i$;

$$i=\overline{l;n}$$
 п-объём выборки. $y_1, y_2, ..., y_n$. Обозначим $\vec{y}_n = (y_1, y_2, ..., y_n)$.

Требуется синтезировать оптимальный (по какому-нибудь критерию) алгоритм обработки выборки \vec{y}_n с целью принять решение γ_1 - о верности гипотезы H_1 или решение γ_0 - о верности гипотезы H_0 .

- Т. к. полезный сигнал наблюдается в шумах, то при принятии решения неизбежны ошибки. Возможны ошибки двух родов:
- 1. α вероятность ложной тревоги. Принимается решение γ_1 , в то время как имеет место гипотеза H_0 .
- 2. β —вероятность пропуска сигнала. Принимается решение γ_0 , а на самом деле имеет место гипотеза H_1 .

Согласованный фильтр — линейный фильтр, на выходе которого получается максимально возможное пиковое отношение сигнал/шум при приёме полностью известного сигнала на фоне БГШ.

Критерий оптимальности согласованного фильтра:

$$q_{\rm B} = q_{\rm Bmax} \,, \tag{2.16}$$

т. е. на выходе согласованного фильтра должно реализоваться максимальное отношение сигнал/шум.