PROCESO CON ENFOQUE ADD Y CLEAN ARCHITECTURE

Jesús Estenllos Loaiza Serrano 2313021

Desarrollo de Software III

Docente: Ing. Álvaro Salazar

Grupo 50

Sede Tuluá

17/06/2025

1. ¿Qué es Attribute-Driven Design (ADD) y cuál es su propósito en el diseño de software?

Attribute-Driven Design (ADD) es un método estructurado para diseñar arquitecturas de software basándose en los **atributos de calidad** del sistema (como rendimiento, disponibilidad, seguridad, escalabilidad, etc.), así como en **requisitos funcionales y restricciones**. El propósito de ADD es tomar decisiones arquitectónicas que aseguren que la arquitectura cumpla con los objetivos del sistema desde el principio del desarrollo.

2. ¿Cómo se relaciona ADD con Clean Architecture en el proceso de diseño de sistemas?

ADD define **qué decisiones** arquitectónicas deben tomarse en función de los atributos de calidad. **Clean Architecture**, por su parte, proporciona un **modelo de capas** que guía **cómo estructurar** el código para mantener la independencia entre lógica de negocio, infraestructura y frameworks.

ADD ayuda a establecer los requisitos y prioridades arquitectónicas, mientras que Clean Architecture los implementa de manera ordenada y sostenible.

3. ¿Cuáles son los pasos principales del método ADD para definir una arquitectura de software?

- 1. Recolección de requisitos: funcionales, no funcionales y restricciones.
- 2. Selección de módulos y patrones arquitectónicos basados en atributos de calidad.
- 3. Asignación de responsabilidades a módulos y componentes.
- 4. **Identificación de relaciones** entre componentes.
- 5. **Refinamiento de módulos** y evaluación de decisiones previas.
- 6. Validación contra atributos de calidad y posibles escenarios.
- 7. Documentación de decisiones arquitectónicas.

4. ¿Cómo se identifican los atributos de calidad en ADD y por qué son importantes?

Se identifican mediante:

- Análisis de requisitos del cliente.
- Escenarios de uso críticos.
- Consultas a stakeholders clave (usuarios, clientes, negocio, devs).

Son importantes porque **guían las decisiones arquitectónicas** y garantizan que el sistema no solo cumpla funciones, sino que lo haga con características como rendimiento adecuado, facilidad de mantenimiento o seguridad robusta.

5. ¿Por qué Clean Architecture complementa ADD en la implementación de una solución?

Porque mientras ADD se enfoca en el **qué y por qué** de la arquitectura (atributos y decisiones), Clean Architecture se enfoca en el **cómo**, ofreciendo:

- Separación clara de responsabilidades.
- Independencia de frameworks y bases de datos.
- Facilidad para aplicar pruebas, cambiar tecnologías, y escalar el sistema.

6. ¿Qué criterios se deben considerar al definir las capas en Clean Architecture dentro de un proceso ADD?

- Aislamiento de lógica de negocio respecto a frameworks o bases de datos.
- Facilidad de prueba y mantenimiento.
- **Cumplimiento de atributos de calidad** (por ejemplo, capas separadas pueden mejorar seguridad y escalabilidad).
- Dependencias unidireccionales (de afuera hacia adentro).
- Adaptabilidad a cambios tecnológicos.

7. ¿Cómo ADD ayuda a tomar decisiones arquitectónicas basadas en necesidades del negocio?

ADD obliga a considerar los **atributos de calidad que más valoran los stakeholders**, y a diseñar la arquitectura para satisfacerlos. Esto alinea la estructura del software con los **objetivos estratégicos del negocio**, como mejorar la experiencia de usuario, reducir tiempo de respuesta o permitir despliegues frecuentes.

8. ¿Cuáles son los beneficios de combinar ADD con Clean Architecture en un sistema basado en microservicios?

- Alineación con requisitos de negocio y calidad desde el diseño.
- Independencia entre servicios, mejorando el mantenimiento y escalabilidad.
- Claridad en los límites de contexto, lo cual es clave en microservicios.
- Facilidad de prueba e implementación continua.
- Robustez frente a cambios tecnológicos, gracias a la separación de capas.

9. ¿Cómo se asegura que la arquitectura resultante cumpla con los atributos de calidad definidos en ADD?

- **Escenarios de validación**: se evalúan contra atributos de calidad con pruebas, revisiones o simulaciones.
- Revisión arquitectónica periódica.

- Prototipos (spikes) para probar decisiones críticas.
- Monitoreo y métricas en ejecución para validar rendimiento, disponibilidad, etc.

10. ¿Qué herramientas o metodologías pueden ayudar a validar una arquitectura diseñada con ADD y Clean Architecture?

- ATAM (Architecture Tradeoff Analysis Method).
- ADR (Architectural Decision Records).
- Modelado con C4 o UML.
- Pruebas automatizadas por capa.
- Herramientas de análisis estático (SonarQube, ArchUnit).
- Simulación de cargas (JMeter, Gatling).
- Monitoreo de atributos en producción (Prometheus, Grafana).