... previamente en IIC2133

# Complejidad de algoritmos de ordenación

Resumimos los resultados de complejidad por caso hasta el momento

| Algoritmo      | Mejor caso              | Caso<br>promedio        | Peor caso               | Memoria<br>adicional |
|----------------|-------------------------|-------------------------|-------------------------|----------------------|
| Selection Sort | $\mathcal{O}(n^2)$      | $\mathcal{O}(n^2)$      | $\mathcal{O}(n^2)$      | $\mathcal{O}(1)$     |
| Insertion Sort | $\mathcal{O}(n)$        | $\mathcal{O}(n^2)$      | $\mathcal{O}(n^2)$      | $\mathcal{O}(1)$     |
| Merge Sort     | $\mathcal{O}(n\log(n))$ | $\mathcal{O}(n\log(n))$ | $\mathcal{O}(n\log(n))$ | $\mathcal{O}(n)$     |
| Quick Sort     | $\mathcal{O}(n\log(n))$ | $\mathcal{O}(n\log(n))$ | $\mathcal{O}(n^2)$      | $\mathcal{O}(1)$     |
| Heap Sort      | $\mathcal{O}(n\log(n))$ | $\mathcal{O}(n\log(n))$ | $\mathcal{O}(n\log(n))$ | $\mathcal{O}(1)$     |

# Ordenación lineal

Clase 7

IIC 2133 - Sección 2

Prof. Mario Droguett

# Sumario

Introducción

Ordenación lineal

Cierre

Objetivos de la clase

# Objetivos de la clase

☐ Conocer algoritmos de ordenación en tiempo lineal

#### Objetivos de la clase

- ☐ Conocer algoritmos de ordenación en tiempo lineal
- ☐ Comprender la limitación de dominio para tener tales algoritmos

# Sumario

Introducción

Ordenación lineal

Cierre

Consideremos una A secuencia de n naturales entre 0 y k

Consideremos una A secuencia de n naturales entre 0 y k

■ Para todo  $a_i \in A$ , se tiene que  $0 \le a_i \le k$ 

Consideremos una A secuencia de n naturales entre 0 y k

- Para todo  $a_i \in A$ , se tiene que  $0 \le a_i \le k$
- Notemos que no necesariamente n = k 1

Consideremos una A secuencia de n naturales entre 0 y k

- Para todo  $a_i \in A$ , se tiene que  $0 \le a_i \le k$
- Notemos que no necesariamente n = k 1
- La secuencia A puede tener elementos repetidos

Consideremos una A secuencia de n naturales entre 0 y k

- Para todo  $a_i \in A$ , se tiene que  $0 \le a_i \le k$
- Notemos que no necesariamente n = k 1
- La secuencia A puede tener elementos repetidos

Propondremos un algoritmo de ordenación que no compara



Consideremos una A secuencia de n naturales entre 0 y k

- Para todo  $a_i \in A$ , se tiene que  $0 \le a_i \le k$
- Notemos que no necesariamente n = k 1
- La secuencia A puede tener elementos repetidos

Propondremos un algoritmo de ordenación que no compara

Para cada dato, contaremos cuántos datos son menores que él

Consideremos una A secuencia de n naturales entre 0 y k

- Para todo  $a_i \in A$ , se tiene que  $0 \le a_i \le k$
- Notemos que no necesariamente n = k 1
- La secuencia A puede tener elementos repetidos

Propondremos un algoritmo de ordenación que no compara

- Para cada dato, contaremos cuántos datos son menores que él
- Esto nos indica la posición final de cada elemento

Consideremos una A secuencia de n naturales entre 0 y k

- Para todo  $a_i \in A$ , se tiene que  $0 \le a_i \le k$
- Notemos que no necesariamente n = k 1
- La secuencia A puede tener elementos repetidos

Propondremos un algoritmo de ordenación que no compara

- Para cada dato, contaremos cuántos datos son menores que él
- Esto nos indica la posición final de cada elemento

Si  $k \in \mathcal{O}(n)$ , entonces este algoritmo será  $\Theta(n)$ 

# El algoritmo CountingSort()

```
input: Arreglo A[0...n-1], natural k
   output: Arreglo B[0...n-1]
   CountingSort (A, k):
        B[0...n-1] \leftarrow \text{arreglo vac\'io de } n \text{ celdas}
       C[0...k] \leftarrow \text{arreglo vac\'io de } k+1 \text{ celdas}
      for i = 0 ... k:
3
            C[i] \leftarrow 0
       for i = 0 ... n - 1:
5
            C[A[j]] \leftarrow C[A[j]] + 1
6
      for p = 1 ... k:
7
            C[p] \leftarrow C[p] + C[p-1]
8
       for r = n - 1 ... 0:
9
            B[C[A[r]] - 1] \leftarrow A[r]
10
            C[A[r]] \leftarrow C[A[r]] - 1
11
       return B
12
```

# El algoritmo CountingSort()

```
CountingSort (A, k):
       B[0...n-1] \leftarrow \text{arreglo vacío}
       C[0...k] \leftarrow \text{arreglo vacío}
2
     for i = 0 ... k:
3
            C[i] \leftarrow 0
       for j = 0 ... n - 1:
5
            C[A[i]] \leftarrow C[A[i]] + 1
6
       for p = 1 ... k:
7
            C[p] \leftarrow C[p] + C[p-1]
       for r = n - 1 ... 0:
g
            B[C[A[r]] - 1] \leftarrow A[r]
10
            C[A[r]] \leftarrow C[A[r]] - 1
11
       return B
12
```

- La complejidad del algoritmo es  $\Theta(n+k)$
- Si  $k \in \mathcal{O}(n)$ , entonces CountingSort() es  $\Theta(n)$

# El algoritmo CountingSort()

```
CountingSort (A, k):
      B[0...n-1] \leftarrow \text{arreglo vac}
      C[0...k] \leftarrow \text{arreglo vacío}
2
     for i = 0 ... k:
3
            C[i] \leftarrow 0

    La complejidad del algoritmo

      for j = 0 ... n - 1:
5
                                                                 es \Theta(n+k)
            C[A[i]] \leftarrow C[A[i]] + 1
      for p = 1 ... k:
7
                                                              ■ Si k \in \mathcal{O}(n), entonces
            C[p] \leftarrow C[p] + C[p-1]
                                                                 CountingSort() es \Theta(n)
       for r = n - 1 ... 0:
 g
            B[C[A[r]] - 1] \leftarrow A[r]
10
            C[A[r]] \leftarrow C[A[r]] - 1
11
       return B
12
```

¡Este es un mejor tiempo que  $\mathcal{O}(n \log(n))!$ 

```
CountingSort (A, k):
       B[0...n-1] \leftarrow \text{arreglo vacío}
      C[0...k] \leftarrow \text{arreglo vacío}
2
    for i = 0 ... k:
 3
            C[i] \leftarrow 0
4
       for j = 0 ... n - 1:
5
                                                                           Α
            C[A[i]] \leftarrow C[A[i]] + 1
6
       for p = 1 ... k:
7
            C[p] \leftarrow C[p] + C[p-1]
8
       for r = n - 1 ... 0:
9
            B[C[A[r]] - 1] \leftarrow A[r]
10
            C[A[r]] \leftarrow C[A[r]] - 1
11
       return B
12
```

```
CountingSort (A, k):
       B[0...n-1] \leftarrow \text{arreglo vacío}
      C[0...k] \leftarrow \text{arreglo vacío}
2
    for i = 0 ... k:
 3
            C[i] \leftarrow 0
 5
     for j = 0 ... n - 1:
                                                                           Α
            C[A[i]] \leftarrow C[A[i]] + 1
     for p = 1 ... k:
7
            C[p] \leftarrow C[p] + C[p-1]
8
       for r = n - 1 ... 0:
9
            B[C[A[r]] - 1] \leftarrow A[r]
10
            C[A[r]] \leftarrow C[A[r]] - 1
11
       return B
12
```

#### Hacemos el llamado CountingSort(A,7)

```
CountingSort (A, k):

B[0...n-1] \leftarrow \text{arreglo vac\'io}
C[0...k] \leftarrow \text{arreglo vac\'io}
for i = 0...k :
C[i] \leftarrow 0
```





```
CountingSort (A, k):

B[0...n-1] \leftarrow \text{arreglo vac}

C[0...k] \leftarrow \text{arreglo vac}

for i = 0...k:

C[i] \leftarrow 0

for j = 0...n-1:
C[A[j]] \leftarrow C[A[j]] + 1
```





```
CountingSort (A, k):
       B[0...n-1] \leftarrow \text{arreglo vacío}
1
      C[0...k] \leftarrow \text{arreglo vacío}
2
   for i = 0 ... k :
3
           C[i] \leftarrow 0
4
   for j = 0 ... n - 1:
5
                                                                            C
           C[A[j]] \leftarrow C[A[j]] + 1
6
                                                                            C
```

Hasta aquí, C[x] contiene el número de copias de x en A

```
CountingSort (A, k):
       B[0...n-1] \leftarrow \text{arreglo vac\'io}
   C[0...k] \leftarrow \text{arreglo vacío}
2
      for i = 0 ... k:
3
           C[i] \leftarrow 0
4
   for j = 0 ... n - 1:
5
           C[A[j]] \leftarrow C[A[j]] + 1
6
       for p = 1 ... k:
7
           C[p] \leftarrow C[p] + C[p-1]
8
```





```
CountingSort (A, k):
                                                                           Α
       B[0...n-1] \leftarrow \text{arreglo vac\'io}
   C[0...k] \leftarrow \text{arreglo vacío}
2
      for i = 0 ... k:
3
           C[i] \leftarrow 0
4
   for j = 0 ... n - 1:
5
           C[A[j]] \leftarrow C[A[j]] + 1
6
       for p = 1 ... k:
7
           C[p] \leftarrow C[p] + C[p-1]
8
```

Hasta aquí, C[x] contiene cuántos elementos menores o iguales a x hay en A

9 for 
$$r = n - 1 ... 0$$
:  
10  $B[C[A[r]] - 1] \leftarrow A[r]$   
11  $C[A[r]] \leftarrow C[A[r]] - 1$ 

Para r = 9













Otro algoritmo de ordenación en tiempo lineal es RadixSort

Usado por las máquinas que ordenaban tarjetas perforadas

- Usado por las máquinas que ordenaban tarjetas perforadas
- Cada tarjeta tiene 80 columnas y 12 líneas

- Usado por las máquinas que ordenaban tarjetas perforadas
- Cada tarjeta tiene 80 columnas y 12 líneas
- Cada columna puede tener un agujero en una línea

- Usado por las máquinas que ordenaban tarjetas perforadas
- Cada tarjeta tiene 80 columnas y 12 líneas
- Cada columna puede tener un agujero en una línea

El algoritmo ordena las tarjetas revisando una columna determinada

El algoritmo ordena las tarjetas revisando una columna determinada

Si hay un agujero en la columna, se pone en uno de los 12 compartimientos

El algoritmo ordena las tarjetas revisando una columna determinada

- Si hay un agujero en la columna, se pone en uno de los 12 compartimientos
- Las tarjetas con la perforación en la primera columna quedan encima

El algoritmo ordena las tarjetas revisando una columna determinada

- Si hay un agujero en la columna, se pone en uno de los 12 compartimientos
- Las tarjetas con la perforación en la primera columna quedan encima
- La misma idea funciona para d columnas

El algoritmo ordena las tarjetas revisando una columna determinada

- Si hay un agujero en la columna, se pone en uno de los 12 compartimientos
- Las tarjetas con la perforación en la primera columna quedan encima
- La misma idea funciona para d columnas

Podemos generalizarla para un número natural de d dígitos

Consideremos un número natural de d dígitos  $n_0 n_1 \cdots n_{d-1}$ 

Podemos ordenar según el dígito más significativo n<sub>0</sub>

- Podemos ordenar según el dígito más significativo n<sub>0</sub>
- Según este dígito, separamos los números en compartimientos

- Podemos ordenar según el dígito más significativo  $n_0$
- Según este dígito, separamos los números en compartimientos
- $lue{}$  Luego, ordenados recursivamente cada compartimiento por su segundo dígito más significativo  $n_1$

- Podemos ordenar según el dígito más significativo  $n_0$
- Según este dígito, separamos los números en compartimientos
- Luego, ordenados recursivamente cada compartimiento por su segundo dígito más significativo n<sub>1</sub>
- Finalmente, combinamos los contenidos de cada compartimiento

Consideremos un número natural de d dígitos  $n_0 n_1 \cdots n_{d-1}$ 

- Podemos ordenar según el dígito más significativo n<sub>0</sub>
- Según este dígito, separamos los números en compartimientos
- Luego, ordenados recursivamente cada compartimiento por su segundo dígito más significativo n<sub>1</sub>
- Finalmente, combinamos los contenidos de cada compartimiento

Problema: posiblemente muchos llamados recursivos

Un ingrediente fundamental para el algoritmo que plantearemos es el siguiente

Un ingrediente fundamental para el algoritmo que plantearemos es el siguiente

#### Definición

Dada una secuencia A[0...n-1], sea B[0...n-1] la secuencia resultante de ordenar A usando un algoritmo de ordenación S.

Un ingrediente fundamental para el algoritmo que plantearemos es el siguiente

#### Definición

Dada una secuencia  $A[0\dots n-1]$ , sea  $B[0\dots n-1]$  la secuencia resultante de ordenar A usando un algoritmo de ordenación  $\mathcal S.$  Sean a,a' elementos en A tales que para el algoritmo  $\mathcal A$  son equivalentes y a aparece antes que a' en A.

Un ingrediente fundamental para el algoritmo que plantearemos es el siguiente

#### Definición

Dada una secuencia  $A[0 \dots n-1]$ , sea  $B[0 \dots n-1]$  la secuencia resultante de ordenar A usando un algoritmo de ordenación S. Sean a,a' elementos en A tales que para el algoritmo A son equivalentes y a aparece antes que a' en A. Diremos que S es estable si los elementos correspondientes b y b' aparecen en el mismo orden relativo en B.

Un ingrediente fundamental para el algoritmo que plantearemos es el siguiente

#### Definición

Dada una secuencia  $A[0 \dots n-1]$ , sea  $B[0 \dots n-1]$  la secuencia resultante de ordenar A usando un algoritmo de ordenación S. Sean a,a' elementos en A tales que para el algoritmo A son equivalentes y a aparece antes que a' en A. Diremos que S es estable si los elementos correspondientes b y b' aparecen en el mismo orden relativo en B.

Si ordenamos por el segundo dígito, un orden estable dejaría elementos que comparten segundo dígito en el mismo orden en que nos llegaron

El algoritmo RadixSort ordena por dígito menos significativo

■ Ordena por dígito  $n_{d-1}$ 

- Ordena por dígito  $n_{d-1}$
- Luego, usando el mismo arreglo, ordena por dígito  $n_{d-2}$ , con un algoritmo estable

- Ordena por dígito  $n_{d-1}$
- Luego, usando el mismo arreglo, ordena por dígito  $n_{d-2}$ , con un algoritmo estable
- Luego de ordenar k dígitos, los datos están ordenados si solo miramos el fragmento  $n_{d-k} \cdots n_{d-1}$

- Ordena por dígito  $n_{d-1}$
- Luego, usando el mismo arreglo, ordena por dígito  $n_{d-2}$ , con un algoritmo estable
- Luego de ordenar k dígitos, los datos están ordenados si solo miramos el fragmento  $n_{d-k}\cdots n_{d-1}$
- Se requieren solo d pasadas para ordenar la secuencia completa

- Ordena por dígito  $n_{d-1}$
- Luego, usando el mismo arreglo, ordena por dígito  $n_{d-2}$ , con un algoritmo estable
- Luego de ordenar k dígitos, los datos están ordenados si solo miramos el fragmento  $n_{d-k}\cdots n_{d-1}$
- Se requieren solo d pasadas para ordenar la secuencia completa

```
RadixSort(A, d):

for j = 0 \dots d - 1:

StableSort(A, j) \triangleright algoritmo de ordenación estable por j-ésimo dígito menos significativo
```

# Ejemplo de ejecución

|   | Arreglo | Ordenado     | Ordenado     | Ordenado     |
|---|---------|--------------|--------------|--------------|
|   | inicial | por unidad   | d por decena | por centena  |
| 0 | 0 6 4   | 0 0 <b>0</b> | 0 <b>0</b> 0 | <b>0</b> 0 0 |
| 1 | 0 0 8   | 0 0 1        | 0 <b>0</b> 1 | <b>0</b> 0 1 |
| 2 | 2 1 6   | 5 1 <b>2</b> | 0 <b>0</b> 8 | <b>0</b> 0 8 |
| 3 | 5 1 2   | 3 4 <b>3</b> | 5 <b>1</b> 2 | <b>0</b> 2 7 |
| 4 | 0 2 7   | 064          | 2 <b>1</b> 6 | <b>0</b> 6 4 |
| 5 | 7 2 9   | 1 2 <b>5</b> | 1 <b>2</b> 5 | 1 2 5        |
| 6 | 0 0 0   | 2 1 <b>6</b> | 0 <b>2</b> 7 | <b>2</b> 1 6 |
| 7 | 0 0 1   | 0 2 <b>7</b> | 7 <b>2</b> 9 | <b>3</b> 4 3 |
| 8 | 3 4 3   | 0 0 8        | 3 4 3        | <b>5</b> 1 2 |
| 9 | 1 2 5   | 7 2 <b>9</b> | 0 <b>6</b> 4 | <b>7</b> 2 9 |
|   |         |              |              |              |

```
RadixSort(A,d):

for j = 0 \dots d - 1:

StableSort(A,j) \triangleright algoritmo de ordenación estable por j-ésimo dígito menos significativo
```

```
\begin{aligned} & \mathtt{RadixSort}(A,d) \colon \\ & \textbf{for } j = 0 \dots d - 1 \colon \\ & \mathtt{StableSort}(A,j) & \rhd & \mathsf{algoritmo \ de \ ordenaci\'on \ estable \ por} \\ & & j\text{-\'esimo \ d\'igito \ menos \ significativo} \end{aligned}
```

Supongamos que A tiene n datos naturales con d dígitos y se usa algoritmo estable lineal

```
\begin{aligned} & \mathtt{RadixSort}(A,d) \colon \\ & \textbf{for } j = 0 \dots d - 1 \colon \\ & \mathtt{StableSort}(A,j) & \rhd & \mathsf{algoritmo \ de \ ordenaci\'on \ estable \ por} \\ & & j\text{-\'esimo \ d\'igito \ menos \ significativo} \end{aligned}
```

Supongamos que A tiene n datos naturales con d dígitos y se usa algoritmo estable lineal

■ Si cada dígito puede tomar k valores distintos. . .

```
\begin{aligned} & \mathtt{RadixSort}(A,d) \colon \\ & \textbf{for } j = 0 \dots d - 1 \colon \\ & \mathtt{StableSort}(A,j) & \rhd & \mathsf{algoritmo \ de \ ordenaci\'on \ estable \ por} \\ & & j\text{-\'esimo \ d\'igito \ menos \ significativo} \end{aligned}
```

Supongamos que A tiene n datos naturales con d dígitos y se usa algoritmo estable lineal

- Si cada dígito puede tomar k valores distintos. . .
- Entonces RadixSort toma tiempo  $\Theta(d \cdot (n+k))$

```
\begin{aligned} & \mathtt{RadixSort}(A,d) \colon \\ & \textbf{for } j = 0 \dots d - 1 \colon \\ & \mathtt{StableSort}(A,j) & \rhd & \mathsf{algoritmo \ de \ ordenaci\'on \ estable \ por} \\ & & j\text{-\'esimo \ d\'igito \ menos \ significativo} \end{aligned}
```

Supongamos que A tiene n datos naturales con d dígitos y se usa algoritmo estable lineal

- Si cada dígito puede tomar k valores distintos...
- Entonces RadixSort toma tiempo  $\Theta(d \cdot (n+k))$
- Si d es constante y  $k \in \mathcal{O}(n)$ , entonces RadixSort es  $\Theta(n)$

Estas ideas tiene dos implementaciones

Estas ideas tiene dos implementaciones

LSD string sort (Least Significant Digit)

Estas ideas tiene dos implementaciones

LSD string sort (Least Significant Digit)

■ Si todos los strings son del mismo largo (patentes, IP's, teléfonos)

Estas ideas tiene dos implementaciones

LSD string sort (Least Significant Digit)

- Si todos los strings son del mismo largo (patentes, IP's, teléfonos)
- Funciona bien si el largo es pequeño

Estas ideas tiene dos implementaciones

LSD string sort (Least Significant Digit)

- Si todos los strings son del mismo largo (patentes, IP's, teléfonos)
- Funciona bien si el largo es pequeño
- No recursivo

Estas ideas tiene dos implementaciones

LSD string sort (Least Significant Digit)

- Si todos los strings son del mismo largo (patentes, IP's, teléfonos)
- Funciona bien si el largo es pequeño
- No recursivo

MSD string sort (Most Significant Digit)

Estas ideas tiene dos implementaciones

LSD string sort (Least Significant Digit)

- Si todos los strings son del mismo largo (patentes, IP's, teléfonos)
- Funciona bien si el largo es pequeño
- No recursivo

MSD string sort (Most Significant Digit)

■ Si los strings tienen largo diferente

Estas ideas tiene dos implementaciones

LSD string sort (Least Significant Digit)

- Si todos los strings son del mismo largo (patentes, IP's, teléfonos)
- Funciona bien si el largo es pequeño
- No recursivo

- Si los strings tienen largo diferente
- Ordenamos con CountingSort() por primer caracter

Estas ideas tiene dos implementaciones

LSD string sort (Least Significant Digit)

- Si todos los strings son del mismo largo (patentes, IP's, teléfonos)
- Funciona bien si el largo es pequeño
- No recursivo

- Si los strings tienen largo diferente
- Ordenamos con CountingSort() por primer caracter
- Recursivamente ordenamos subarreglos correspondientes a cada caracter (excluyendo el primero, que es común en cada subarreglo)

Estas ideas tiene dos implementaciones

LSD string sort (Least Significant Digit)

- Si todos los strings son del mismo largo (patentes, IP's, teléfonos)
- Funciona bien si el largo es pequeño
- No recursivo

- Si los strings tienen largo diferente
- Ordenamos con CountingSort() por primer caracter
- Recursivamente ordenamos subarreglos correspondientes a cada caracter (excluyendo el primero, que es común en cada subarreglo)
- Como Quicksort, puede ordenar de forma independiente

Estas ideas tiene dos implementaciones

LSD string sort (Least Significant Digit)

- Si todos los strings son del mismo largo (patentes, IP's, teléfonos)
- Funciona bien si el largo es pequeño
- No recursivo

- Si los strings tienen largo diferente
- Ordenamos con CountingSort() por primer caracter
- Recursivamente ordenamos subarreglos correspondientes a cada caracter (excluyendo el primero, que es común en cada subarreglo)
- Como Quicksort, puede ordenar de forma independiente
- Pero particiona en tantos grupos como valores del primer caracter

# MSD en acción

| she       | <b>a</b> re       | are                | are                | <br>are   |
|-----------|-------------------|--------------------|--------------------|-----------|
| sells     | by                | by                 | by                 | by        |
| seashells | <b>s</b> he       | sells              | se <b>a</b> shells | sea       |
| by        | <b>s</b> ells     | s <b>e</b> ashells | se <b>a</b>        | seashells |
| the       | <b>s</b> eashells | s <b>e</b> a       | se <b>a</b> shells | seashells |
| sea       | <b>s</b> ea       | s <b>e</b> lls     | sells              | sells     |
| shore     | <b>s</b> hore     | s <b>e</b> ashells | sells              | sells     |
| the       | <b>s</b> hells    | s <b>h</b> e       | she                | she       |
| shells    | <b>s</b> he       | shore              | shore              | she       |
| she       | <b>s</b> ells     | s <b>h</b> ells    | shells             | shells    |
| sells     | <b>s</b> urely    | s <b>h</b> e       | she                | shore     |
| are       | <b>s</b> eashells | surely             | surely             | surely    |
| surely    | the               | the                | the                | the       |
| seashells | the               | the                | the                | the       |

En la ejecución de MSD string sort se debe considerar

■ Si un string  $s_1$  es prefijo de otro  $s_2$ ,  $s_1$  es menor que  $s_2$  she  $\leq$  shells

En la ejecución de MSD string sort se debe considerar

■ Si un string  $s_1$  es prefijo de otro  $s_2$ ,  $s_1$  es menor que  $s_2$  she  $\leq$  shells

■ Pueden usarse diferentes alfabetos

- Si un string  $s_1$  es prefijo de otro  $s_2$ ,  $s_1$  es menor que  $s_2$  she  $\leq$  shells
- Pueden usarse diferentes alfabetos
  - binario (2)

- Si un string  $s_1$  es prefijo de otro  $s_2$ ,  $s_1$  es menor que  $s_2$  she  $\leq$  shells
- Pueden usarse diferentes alfabetos
  - binario (2)
  - minúsculas (26)

- Si un string  $s_1$  es prefijo de otro  $s_2$ ,  $s_1$  es menor que  $s_2$ she  $\leq$  shells
- Pueden usarse diferentes alfabetos
  - binario (2)
  - minúsculas (26)
  - minúsculas + mayúsculas + dígitos (64)

- Si un string  $s_1$  es prefijo de otro  $s_2$ ,  $s_1$  es menor que  $s_2$ she  $\leq$  shells
- Pueden usarse diferentes alfabetos
  - binario (2)
  - minúsculas (26)
  - minúsculas + mayúsculas + dígitos (64)
  - ASCII (128)

- Si un string  $s_1$  es prefijo de otro  $s_2$ ,  $s_1$  es menor que  $s_2$ she < shells
- Pueden usarse diferentes alfabetos
  - binario (2)
  - minúsculas (26)
  - minúsculas + mayúsculas + dígitos (64)
  - ASCII (128)
  - Unicode (65.536)

- Si un string  $s_1$  es prefijo de otro  $s_2$ ,  $s_1$  es menor que  $s_2$ she  $\leq$  shells
- Pueden usarse diferentes alfabetos
  - binario (2)
  - minúsculas (26)
  - minúsculas + mayúsculas + dígitos (64)
  - ASCII (128)
  - Unicode (65.536)
- Para subarreglos pequeños (e.g.  $|A| \le 10$ )

#### En la ejecución de MSD string sort se debe considerar

Si un string  $s_1$  es prefijo de otro  $s_2$ ,  $s_1$  es menor que  $s_2$ 

she ≤ shells

- Pueden usarse diferentes alfabetos
  - binario (2)
  - minúsculas (26)
  - minúsculas + mayúsculas + dígitos (64)
  - ASCII (128)
  - Unicode (65.536)
- Para subarreglos pequeños (e.g.  $|A| \le 10$ )
  - cambiar a InsertionSort que sepa que los primeros k caracteres son iguales

# Counting & Radix Sort

- Atributos generales
  - O(n)
- Harold H. Seward
  - July 24, 1930 June 19, 2012
- Was a computer scientist, engineer, and inventor.
- Seward developed the radix sort and counting sort algorithms in 1954 at MIT.
- Also worked on the Whirlwind Computer and developed instruments that powered the guidance systems for the Apollo spacecraft and Polaris missile.



# Sumario

Introducción

Ordenación lineal

Cierre

Objetivos de la clase

# Objetivos de la clase

☐ Conocer algoritmos de ordenación en tiempo lineal

# Objetivos de la clase

- ☐ Conocer algoritmos de ordenación en tiempo lineal
- ☐ Comprender la limitación de dominio para tener tales algoritmos