Computer Vision Edge Detection

Dr. Mrinmoy Ghorai

Indian Institute of Information Technology
Sri City, Chittoor

Today's Agenda: Edge Detection

Previous classes: Image Filtering

Today's class

Detecting edges

Finding straight lines

Why finding edges is important?

Cues for 3D shape

Group pixels into objects or parts

- Shape analysis
- Recover geometry and viewpoint

Origin of Edges

surface normal discontinuity

depth discontinuity surface

color discontinuity

illumination discontinuity

Edges are caused by a variety of factors

 An edge is a place of rapid change in the image intensity function

image

 An edge is a place of rapid change in the image intensity function

 An edge is a place of rapid change in the image intensity function

 An edge is a place of rapid change in the image intensity function

Intensity profile

Intensity profile

Intensity profile

With a little Gaussian noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Where is the edge?

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Where is the edge?

The larger the noise the stronger the response

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

• What can we do about it?

• To find edges, look for peaks in

$$\frac{d}{dx}(f*g)$$

Derivative theorem of convolution

• Differentiation is convolution, and convolution is associative: d

• This saves us one operation: $\frac{-(f*g)=f*-g}{dx}$

Gaussian Kernel

Gaussian filters

Derivative of Gaussian filter

Gaussian

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}}$$

derivative of Gaussian (x)

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$

Derivative of Gaussian filter

Designing an edge detector

Criteria for a good edge detector:

Good detection:

 find all real edges, ignoring noise or other artifacts

Designing an edge detector

Criteria for a good edge detector:

Good detection:

find all real edges, ignoring noise or other artifacts

Good localization

- detect edges as close as possible to the true edges
- return one point only for each true edge point

Canny edge detector

The most widely used edge detector

A computational approach to edge detection

<u>J Canny</u> - IEEE Transactions on pattern analysis and machine ..., 1986 - ieeexplore.ieee.org Abstract: This paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal assumptions about the form of the solution. We define detection and localization criteria for a class of edges, and present mathematical forms for ... Cited by 27743 Related articles All 27 versions Import into BibTeX Save More

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Example

input image ("Lena")

Derivative of Gaussian filter

Compute Gradients (DoG)

X-Derivative of Gaussian

Input Image

Compute Gradients (DoG)

Y-Derivative of Gaussian

Compute Gradients (DoG)

Input Image

Y-Derivative of Gaussian

Gradient Magnitude

Get Orientation at Each Pixel

Get orientation

theta = atan2(gy, gx)

Non-maximum suppression for each orientation

At q, we have a maximum if the value is larger than those at both p and at r.
Interpolate to get these values.

Sidebar: Interpolation options

- 'nearest'
 - Copy value from nearest known
 - Very fast but creates blocky edges
- 'bilinear'
 - Weighted average from four nearest known pixels
 - Fast and reasonable results
- 'bicubic' (default)
 - Non-linear smoothing over larger area
 - Slower, visually appealing, may create negative

pixel values

Before Non-max Suppression

After non-max suppression

Hysteresis thresholding

- Threshold at low/high levels to get weak/strong edge pixels
- Do connected components, starting from strong edge pixels

Hysteresis thresholding

- Check that maximum value of gradient value is sufficiently large
 - drop-outs? use hysteresis
 - use a high threshold to start edge curves and a low threshold to continue them.

Final Canny Edges

1. Filter image with x, y derivatives of Gaussian

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" down to single pixel width

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" down to single pixel width
- 4. Thresholding and linking (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" down to single pixel width
- 4. Thresholding and linking (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

MATLAB: edge (image, 'canny')

Effect of σ (Gaussian kernel spread/size)

The choice of σ depends on desired behavior

- •large σ detects large scale edges
- •small σ detects fine features

Source: S. Seitz

Why edges?

Reduce dimensionality of data

Preserve content information

Useful in applications such as:
object detection
structure from motion
tracking

Why **not** edges?

Difficulties:

- 1. Modeling assumptions
- 2. Parameters
- 3. Multiple sources of information (brightness, color, texture, ...)
- 4. Real world conditions

Is edge detection even well defined?

Canny difficulties

- 1. Modeling assumptions
 Step edges, junctions, etc.
- 2. Parameters
 Scales, threshold, etc.
- 3. Multiple sources of information Only handles brightness
- 4. Real world conditions
 Gaussian iid noise? Texture...

Learning to detect boundaries

image

human segmentation

gradient magnitude

Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

pB boundary detector

pB Boundary Detector

- Estimate Posterior probability of boundary passing through centre point based on local patch based features
- Using a Supervised Learning based framework

Features

Brightness oriented energy,

$$\mathrm{OE}_{ heta,\sigma} = (I * f^e_{ heta,\sigma})^2 + (I * f^o_{ heta,\sigma})^2$$
Gaussian second derivative

Gradients computed from two disc halves:

Brightness gradient Color gradient Texture gradient

Texture features

Localization

- edges (due to large filters) are poorly localized; double peaks
- Improve Localization by using derived feature
- Divide by distance to nearest maximum

$$\hat{f}(x) = \tilde{f}(x) \cdot \left(\frac{-f''(x)}{|f'(x)| + \epsilon}\right)$$

where f(x) is feature and the estimated distance to the nearest maximum of f(x) is d(x) = -|f'(x)|/f''(x)

Results

Results

For more:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html

State of edge detection

- Local edge detection is mostly solved
 - Intensity gradient, color, texture

 Often used in combination with object detectors or region classifiers

Deep learning approach is more common nowadays

Finding straight lines

- 1. Compute canny edges
 - Compute: gx, gy (DoG in x,y directions)
 - Compute: theta = atan(gy / gx)

- 1. Compute canny edges
 - Compute: gx, gy (DoG in x,y directions)
 - Compute: theta = atan(gy / gx)
- 2. Assign each edge to one of 8 directions

- 1. Compute canny edges
 - Compute: gx, gy (DoG in x,y directions)
 - Compute: theta = atan(gy / gx)
- 2. Assign each edge to one of 8 directions
- 3. For each direction d, get edgelets:
 - find connected components for edge pixels with directions in {d-1, d, d+1}

- 1. Compute canny edges
 - Compute: gx, gy (DoG in x,y directions)
 - Compute: theta = atan(gy / gx)
- 2. Assign each edge to one of 8 directions
- 3. For each direction d, get edgelets:
 - find connected components for edge pixels with directions in {d-1, d, d+1}
- Compute straightness and theta of edgelets using eig of x,y
 2nd moment matrix of their points

- 1. Compute canny edges
 - Compute: gx, gy (DoG in x,y directions)
 - Compute: theta = atan(gy / gx)
- 2. Assign each edge to one of 8 directions
- 3. For each direction d, get edgelets:
 - find connected components for edge pixels with directions in {d-1, d, d+1}
- Compute straightness and theta of edgelets using eig of x,y
 2nd moment matrix of their points

$$\mathbf{M} = \begin{bmatrix} \sum_{x = \mu_{x}} (x - \mu_{x})^{2} & \sum_{y = \mu_{y}} (x - \mu_{x})(y - \mu_{y}) \\ \sum_{y = \mu_{y}} (y - \mu_{y})^{2} & \sum_{y = \mu_{y}} (y - \mu_{y})^{2} \end{bmatrix}$$
 [v, λ] = eig(\mathbf{M})
$$\theta = \text{atan } 2(v(2, 2), v(1, 2))$$
$$conf = \lambda_{2} / \lambda_{1}$$

- 1. Compute canny edges
 - Compute: gx, gy (DoG in x,y directions)
 - Compute: theta = atan(gy / gx)
- 2. Assign each edge to one of 8 directions
- 3. For each direction d, get edgelets:
 - find connected components for edge pixels with directions in {d-1, d, d+1}
- Compute straightness and theta of edgelets using eig of x,y
 2nd moment matrix of their points

$$\mathbf{M} = \begin{bmatrix} \sum_{x=\mu_{x}} (x - \mu_{x})^{2} & \sum_{y=\mu_{y}} (x - \mu_{x})(y - \mu_{y}) \\ \sum_{y=\mu_{y}} (y - \mu_{y})^{2} & \sum_{y=\mu_{y}} (y - \mu_{y})^{2} \end{bmatrix} \quad [v, \lambda] = \operatorname{eig}(\mathbf{M})$$

$$\theta = \operatorname{atan} 2(v(2, 2), v(1, 2))$$

$$\operatorname{conf} = \lambda_{2} / \lambda_{1}$$

5. Threshold on straightness, store segment

Canny lines → ... → straight edges

Things to remember

Canny edge detector =
 smooth → derivative → thin → threshold → link

 Pb: learns weighting of gradient, color, texture differences

Straight line detector =
 canny + gradient orientations → orientation binning
 → linking → check for straightness

Acknowledgements

- Thanks to the following researchers for making their teaching/research material online
 - Forsyth
 - Steve Seitz
 - Noah Snavely
 - J.B. Huang
 - Derek Hoiem
 - D. Lowe
 - A. Bobick
 - S. Lazebnik
 - K. Grauman
 - R. Zaleski

Thank you: Question?