

FP

(19) Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 043 395 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication:

11.10.2000 Bulletin 2000/41

(51) Int. Cl.⁷: C12N 15/12, C12N 15/63,

C12Q 1/02, C12P 21/08,

C07K 14/705, C07K 16/28,

C12N 1/21, C12N 1/19,

C12N 5/12

(21) Application number: 98961610.7

(22) Date of filing: 25.12.1998

(86) International application number:

PCT/JP98/05967

(87) International publication number:

WO 99/33978 (08.07.1999 Gazette 1999/27)

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE

- TAKIMURA, Tetsuo,
Banyu Pharmaceutical Co., Ltd
Tsukuba-shi, Ibaraki 300-2611 (JP)

- NAKAMURA, Takao,
Banyu Pharmaceutical Co., Ltd
Tsukuba-shi, Ibaraki 300-2611 (JP)

- OHTA, Masataka,
Banyu Pharmaceutical Co., Ltd
Tsukuba-shi, Ibaraki 300-2611 (JP)

(30) Priority: 26.12.1997 JP 36118797

(71) Applicant:

BANYU PHARMACEUTICAL CO., LTD.
Chuo-ku, Tokyo 103-8416 (JP)

(72) Inventors:

- ITADANI, Hiraku,
Banyu Pharmaceutical Co., Ltd
Tsukuba-shi, Ibaraki 300-2611 (JP)

(74) Representative:

VOSSIUS & PARTNER
Siebertstrasse 4
81675 München (DE)**(54) NOVEL GUANOSINE TRIPHOSPHATE (GTP)-BINDING PROTEIN CONJUGATE TYPE RECEPTOR PROTEINS**

(57) The present invention provides a full-length cDNA encoding a rat G protein-coupled receptor protein, which was isolated by screening cDNA libraries originating from rat thalamus and hypothalamus. It also provides human cDNA corresponding to the rat cDNA. Use of these G protein-coupled receptor proteins makes it possible to screen ligands and also drug-candidate compounds capable of regulating signal transduction from receptors.

EP 1 043 395 A1

Description**Technical Field**

- 5 [0001] The present invention relates to a novel guanosine triphosphate binding protein-coupled receptor protein, a DNA encoding said protein, and a method for screening drug-candidate compounds using them.

Background Art

- 10 [0002] Many hormones and neurotransmitters regulate physiological functions through specific receptor proteins located on the cell membrane. Many of these receptor-proteins transduce signals into the cell by activating a guanosine triphosphate binding protein (occasionally referred to as "G protein" below) that is coupled to them. These receptor proteins are thereby named as G protein-coupled receptors. Since they have a common structure composed of seven transmembrane regions, they are also generally called "seven-transmembrane receptor proteins."
- 15 [0003] G protein-coupled receptors, which are expressed on the surface of cells *in vivo* and functioning cells of tissues, play an extremely important role as a target of molecules such as hormones, neurotransmitters, and biologically active compounds, which regulate the functions of these cells and tissues. Therefore, G protein-coupled receptor proteins have received great attention as targets in drug-development.
- [0004] G protein-coupled receptors reported so far include, muscarinic acetylcholine receptors M1, M2, M3, and M4 (Peralta E.G. et al., EMBO J. 6:3923-3929 (1987)), muscarinic acetylcholine receptor M5 (Bonner T. I. et al., Neuron 1:403-410 (1988)), adenosine receptor A1 (Libert F. et al., Science 244:569-572 (1989)), α 1A adrenoreceptor (Bruno J.F. et al., Biochem. Biophys. Res. Commun. 179:1485-1490 (1991)), β 1 adrenoreceptor (Frielle T. et al., Proc. Natl. Acad. Sci. USA 84:7920-7924 (1987)), angiotensin receptor AT₁ (Takayanagi R. et al., Biochem. Biophys. Res. Commun. 183:910-916 (1992)), endothelin receptor ET_A (Adachi M. et al., Biochem. Biophys. Res. Commun. 180:1265-1272 (1991)), gonadotropin releasing factor receptor (Kaker S.S. et al., Biochem. Biophys. Res. Commun. 189:289-295 (1992)), histamine receptor H₂ (Ruat M. et al., Proc. Natl. Acad. Sci. USA 87:1658-1672 (1992)), neuropeptide Y receptor Y1 (Larhammar D. et al., J. Biol. Chem. 267:10935-10938 (1992)), interleukin-8 receptor IL8R_A (Holmes W.E. et al., Science 256:1278-1280(1991)), dopamine receptor D₁ (Mahan L.C. et al., Proc. Natl. Acad. Sci. USA 87:2196-2200 (1990)), metabolic glutamate receptor mGluR1 (Masu M. et al., Nature 349:760-765 (1991)), and somatostatin receptor SS₁ (Yamada Y. et al., Proc. Natl. Acad. Sci. USA 89:251-255) (for reference, Watson S. and Arkinstall S., The G protein Linked Receptor FactsBook, Academic Press (1994)). Examples of developed medicines aimed at G protein-coupled receptors are: terazosine hydrochloride (antihypertensive agent, α 1 adrenoreceptor antagonist), atenolol (antiarrhythmia, β 1 adrenoreceptor antagonist), dicyclomine hydrochloride (antispasmodic agent, acetylcholine receptor antagonist), ranitidine hydrochloride (drug for peptic ulcers, histamine receptor H₂ antagonist), trazodone hydrochloride (antidepressant, serotonin receptor 5-HT1B antagonist), and buprenorphine hydrochloride (analgesic agent, opioid receptor κ agonist) (for reference, Stadel J.M. et al., Trends Pharm. Sci. 18:430-437 (1997); Medicine Handbook 5th edition, Yakugyo-Jiho).
- [0005] The hypothalamus, a part of the brain which governs a number of programs that trigger a particular response, contributes to the homeostasis of the internal environment by means of a variety of outputs, as the center of the autonomic nervous system. For instance, it releases hormones such as thyrotropic hormone releasing hormone, gonadotropic hormone releasing hormone, and growth hormone releasing hormone, and thereby regulates the entire endocrine system through the actions of these hormones on the specific receptors expressed in target cells. These outputs in the hypothalamus are thought to be mediated by receptors expressed in the hypothalamus and compounds reacting with them. Therefore, elucidation of the relationship between the compounds regulating the hypothalamus outputs and their specific receptors expressed in the hypothalamus is extremely important in developing novel medicines for the treatment of diseases arising from endocrine disorders.

Disclosure of the Invention

- 50 [0006] The present invention provides a novel G protein-coupled receptor protein expressed in the brain (in particular, thalamus and hypothalamus, etc.). It also provides a method for screening ligands and drug-candidate compounds using said receptor protein.
- [0007] The inventors first selected a region highly conserved in known G protein-coupled receptor proteins, then designed primers corresponding to the region, and performed reverse transcriptase-polymerase chain reaction (RT-PCR) using mRNA obtained from rat thalamus and hypothalamus. Next, amplified clones were randomly selected, and their partial nucleotide sequences were determined. To remove known clones from the nucleotide sequence determined-clones, colony-hybridization was performed using as a probe, cDNA clones judged to be encoding a known G protein-coupled receptor protein by homology search. Negative clones that failed to hybridize with any probe were

selected. Using probes prepared based on the nucleotide sequence of the negative clones, the inventors screened cDNA libraries from rat thalamus and hypothalamus, and succeeded in isolating a full-length cDNA encoding a rat G protein-coupled receptor. They also succeeded in isolating a full-length human cDNA corresponding to the rat cDNA. Furthermore, northern blot analysis of the tissue specificity of the gene expression showed that these genes are specifically expressed in the brain.

[0008] These G protein-coupled receptors would be extremely useful in screening for ligands and compounds that regulate the signal transduction from receptors, which are anticipated to be utilized as novel medicines.

[0009] Thus, the present invention relates to novel G protein-coupled receptor proteins that are expressed in the brain, DNAs encoding them, and a method for screening ligands and compounds that are drug-candidate compounds using the proteins.

[0010] Specifically, the invention relates to:

- (1) a guanosine triphosphate binding protein-coupled receptor protein comprising the amino acid sequence of SEQ ID NO: 1, or said amino acid sequence in which one or more amino acids are replaced, deleted, or added;
 - (2) a guanosine triphosphate binding protein-coupled receptor protein comprising the amino acid sequence of SEQ ID NO: 20, or said amino acid sequence in which one or more amino acids are replaced, deleted, or added;
 - (3) a guanosine triphosphate binding protein-coupled receptor protein encoded by a DNA which hybridizes with a DNA comprising the nucleotide sequence of SEQ ID NO: 2;
 - (4) a guanosine triphosphate binding protein-coupled receptor protein encoded by a DNA which hybridizes with a DNA comprising the nucleotide sequence of SEQ ID NO: 21;
 - (5) a partial peptide of the receptor protein as described in any one of (1) to (4);
 - (6) a DNA encoding the receptor protein as described in any one of (1) to (4) or the partial peptide as described in (5);
 - (7) the DNA described in (6), wherein said DNA comprising the nucleotide sequence of SEQ ID NO: 2 or NO: 21;
 - (8) a vector containing the DNA as described in any one of (5) to (7);
 - (9) a transformant carrying the vector as described in (8);
 - (10) a method of producing the receptor protein as described in any one of (1) to (4) or the partial peptide as described in (5), the method comprising culturing the transformant as described in (9);
 - (11) a method of screening for a ligand of the receptor protein as described in any one of (1) to (4), the method comprising exposing a test compound to the receptor protein as described in any one of (1) to (4) or the partial peptide as described in (5), and selecting a compound that binds to said protein or partial peptide;
 - (12) a method of screening for a compound that inhibits the binding between the receptor protein as described in any one of (1) to (4) and its ligand, the method comprising,
-
- (a) exposing a ligand to the receptor protein as described in any one of (1) to (4) or the partial peptide as described in (5) in the presence of a test compound, and detecting the binding activity between said protein or partial peptide and the ligand, and,
 - (b) comparing the binding activity detected in (a) with that in the absence of the test compound, and selecting a compound that reduces the binding activity between said protein or partial peptide and the ligand;
-
- (13) a kit for screening a compound that inhibits the binding between the receptor protein as described in any one of (1) to (4) and its ligand, the kit comprising the receptor protein as described in any one of (1) to (4) or the partial peptide as described in (5); and
 - (14) an antibody which binds to the receptor protein as described in any one of (1) to (4).

[0011] "G protein-coupled receptor protein" herein refers to a receptor protein that transduces intracellular signals by activating G proteins. "Ligand" refers to a natural compound capable of binding to a G protein-coupled receptor and inducing signal transduction. "Agonist" refers to a compound having a bioactivity similar to that of the ligands of G protein-coupled receptors, including both natural and artificially synthesized compounds. "Antagonist" refers to a compound capable of inhibiting the bioactivity of a ligand of a G protein-coupled receptor, including both natural and artificially synthesized compounds. "Protein" and "peptide" as used herein include their salts as well.

[0012] The present invention relates to a novel G protein-coupled receptor protein. The nucleotide sequence of the cDNA encoding rat G protein-coupled receptor "BG2" isolated in the present invention is shown as SEQ ID NO: 2, and the amino acid sequence of the "BG2" protein is shown as SEQ ID NO: 1. The nucleotide sequence of the cDNA encoding human G protein-coupled receptor "BG2" isolated herein is shown as SEQ ID NO: 21, and the amino acid sequence of the human "BG2" protein is shown as SEQ ID NO: 20.

[0013] Rat "BG2" protein has 26%, 25%, and 29% homology to known G protein-coupled receptors; bovine muscarinic acetylcholine receptor M3 protein (Lee P.H. et al., Biochim. Biophys. Acta 1223:151-154 (1994)), human mus-

carinic acetylcholine receptor M5 protein (Bonner T.I. et al., *Neuron* 1:403-410 (1988)), and mouse α 2A adrenoreceptor (Link R. et al., *Mol. Pharmacol.* 42:16-27 (1992)), respectively. The result of the hydrophobicity plot analysis showed that rat "BG2" protein contains hydrophobic regions (seven transmembrane regions) characteristic to G protein-coupled receptors. In addition, the coding region of the rat "BG2" cDNA has a size of approximately 1.2 kb, a size similar to that of the known G protein-coupled receptors.

[0014] Human "BG2" protein has 32%, 28%, and 27% homology to known G protein-coupled receptors; human α -2C-1 adrenoreceptor (Regan J.W. et al., *Proc. Natl. Acad. Sci. USA* 85:6301-6305 (1988)), mouse β -1 adrenoreceptor (Jasper J.R. et al., *Biochim. Biophys. Acta* 1178:307-309 (1993)), and human muscarinic acetylcholine receptor M3 protein (Peralta E.G. et al., *EMBO J* 6:3923-3929 (1987)), respectively.

[0015] These results suggest that the "BG2" proteins belong to the G protein-coupled receptor family, which further suggests that they participate in signal transduction through the activation of G proteins upon ligand binding.

[0016] Furthermore, the result of a northern blot analysis showed that the genes encoding the "BG2" proteins are specifically expressed in the brain. *In situ* hybridization detected a strong expression of the rat "BG2" gene in the hippocampus and spinal cord, and also in the hypothalamus, thalamus, and cerebellum.

[0017] The hippocampus plays an important role in memory and learning, the cerebellum regulates the body motions, and the hypothalamus serves as the center of the autonomic nervous system. Thus, the "BG2" proteins are assumed to be involved in the regulation of these functions. Therefore, the "BG2" proteins and genes, or an agonist or antagonist that can regulate the "BG2" protein function(s) can be used in the treatment of disabilities in memory and learning, or the control of the autonomous nervous system, such as regulation of, blood pressure, digestion, body temperature, and food-intake etc.

[0018] "BG2" protein may be prepared as natural protein, and also as recombinant protein by using recombinant DNA technology. A natural protein may be prepared, for instance, by extracting tissues such as the thalamus and hypothalamus, speculated to express "BG2" protein, and performing immunoaffinity chromatography using anti-"BG2" antibody as described later on. On the other hand, the recombinant protein can be prepared by culturing transformant cells carrying DNA encoding "BG2" protein as described later on.

[0019] One skilled in the art can prepare an altered protein having a function (transduction of intracellular signals through G protein activation) equivalent to that of the natural protein by introducing modifications such as replacement of any amino acid contained in the natural rat or human "BG2" protein (SEQ ID NO: 1, or SEQ ID NO: 20, respectively) according to known methods. Mutations of amino acids in a protein may occur naturally. The G protein-coupled receptor protein of the present invention includes such mutant proteins having an amino acid sequence altered by replacement, deletion or addition, having a function equivalent to that of the natural protein. The methods of altering amino acids, known to one skilled in the art, include, the Kunkel method (Kunkel T.A. et al., *Methods Enzymol.* 154:367-382 (1987)), double primer method (Zoller M.J. and Smith M., *Methods Enzymol.* 154:329-350 (1987)), cassette mutation (Wells et al., *Gene* 34:315-323 (1985)), and megaprimer method (Sarkar G. and Sommer S.S., *Biotechniques* 8:404-407 (1990)). The number of mutated amino acids in a functionally equivalent protein is generally not more than 10% of all the amino acids, favorably not more than 10 amino acids, and more favorably not more than 3 amino acids (for instance, one amino acid).

[0020] One skilled in the art can also use hybridization techniques (Hanahan D. and Meselson M., *Methods Enzymol.* 100:333-342 (1983); Benton W.D. and Davis R.W., *Science* 196:180-182 (1977)) to isolate a highly homologous gene from various other species based on the sequence of the rat or human "BG2" cDNA (SEQ ID NO: 2, or SEQ ID NO: 21, respectively) or a part of it, and use the isolated DNA to obtain a protein a functionally equivalent to these "BG2" proteins. Thus, it is possible for one skilled in the art to prepare a protein functionally equivalent to the rat or human "BG2" proteins, which is encoded by a DNA that hybridizes to the rat or human "BG2" cDNA. The G protein-coupled receptor protein of the present invention includes these proteins as well. Species used for isolation of a functionally equivalent protein include mouse, rabbit, sheep, bovine, dog, and pig, for instance, and particularly the brain tissues such as thalamus and hypothalamus are suitable.

[0021] DNA encoding a functionally equivalent protein to the rat or human "BG2" proteins has usually high homology to the nucleotide sequence of the rat or human "BG2" cDNA (SEQ ID NO: 2, and NO: 21). High homology generally means a sequence identity of not less than 70%, favorably not less than 80%, and more favorably not less than 90% at the nucleotide level. The sequence identity can be determined by the FASTA program.

[0022] Hybridization to isolate a DNA having high homology to the rat or human "BG2" cDNA is usually performed in "6x SSC, 40% formamide, at 25°C" followed by a wash in "1x SSC at 55°C," favorably in "6x SSC, 40% formamide, at 37°C" followed by a wash in "0.2x SSC at 55°C," and more favorably in "6x SSC, 50% formamide, at 37°C" followed by a wash in "0.1x SSC at 62°C." One skilled in the art may easily obtain a hybridization condition similar to the above conditions by appropriately selecting factors such as the dilution rate of SSC, the formamide concentration, and temperature.

[0023] The present invention also includes a partial peptide of the above-described G protein-coupled receptor protein. The partial peptide of the present invention includes, for instance, those corresponding to the N-terminal region of

the G protein-coupled receptor protein, which can be utilized to prepare an antibody. The partial peptide of the invention has a length of at least 15 amino acids, and favorably 20 amino acids.

[0024] Furthermore, the present invention relates to a DNA encoding the G protein-coupled receptor protein of the invention as described above or its partial peptide. The DNA encoding the G protein-coupled receptor protein of the invention or its partial peptide includes cDNA, genomic DNA, and synthetic DNA, but is not limited as far as it encodes the protein or the peptide. cDNA encoding the G protein-coupled receptor of the invention can be obtained by screening a cDNA library from a tissue expressing the receptor (for instance, thalamus and hypothalamus) by using as a ³²P-labeled probe, the cDNA as described in SEQ ID NO: 2 or NO: 21, or a part of it, complementary RNA to the DNA, or a synthetic oligonucleotide comprising a part of the cDNA. Alternatively, cDNA may be cloned by synthesizing an oligonucleotide corresponding to the nucleotide sequence of the cDNA, and amplifying cDNA from an appropriate tissue (such as thalamus and hypothalamus) by PCR. Genomic DNA can be obtained by screening a genomic library by hybridization using as a ³²P-labeled probe, the cDNA as described in SEQ ID NO: 2 or NO: 21, or a part of it, complementary RNA to the DNA, or a synthetic oligonucleotide comprising a part of the cDNA. Alternatively, it may be cloned by synthesizing an oligonucleotide corresponding to the nucleotide sequence of the cDNA, and amplifying genome by PCR. Synthetic DNA can be prepared by chemically synthesizing oligonucleotides comprising a part of the DNA sequence of SEQ ID NO: 2 or NO: 21, annealing them into a double strand, and ligating them using DNA ligase (Khorana H.G. et al., J. Biol. Chem. 251:565-570 (1976); Goeddel D.V. et al., Proc. Natl. Acad. Sci. USA 76:106-110 (1979)).

[0025] These DNA can be used for producing recombinant proteins. Namely, it is possible to prepare the G protein-coupled receptor protein of the invention as a recombinant protein by inserting a DNA encoding the receptor protein (DNA as described in SEQ ID NO: 2 or NO: 21, for instance) into an appropriate expression vector, culturing a transformant obtained by introducing the vector into an appropriate cell, and purifying the expressed protein. Since the G protein-coupled receptor protein of the invention is a receptor protein, it is possible to prepare it in a form expressed on the cell membrane.

[0026] Specifically, if the host is *Escherichia coli*, the plasmid vectors such as pET-3 (Rosenburg A.H. et al., Gene 56:125-135 (1987)) and pGEX-1 (Smith D.B. and Johnson K.S., Gene 67:31-40 (1988)) may be used. *E.coli* can be transformed by the Hanahan method (Hanahan D., J. Mol. Biol. 166:557-580 (1983)), electroporation (Dower W.J. et al., Nucleic Acids Res. 16:6127-6145 (1988)), and such. If the host is fission yeast (*Schizosaccharomyces pombe*), a plasmid vector such as pESP-1 (Lu Q. et al., Gene 200:135-144 (1997)) is used. Yeast can be transformed by spheroplast fusion (Beach D. and Nurse P., Nature 290:140 (1981)), and lithium acetate method (Okazaki K. et al., Nucleic Acids Res. 18:6485-6489 (1990)), etc.

[0027] If the host is a mammalian cell, such as Chinese Hamster ovary-derived CHO cells and human HeLa cells, vectors such as pMSG (Clontech) are used. Recombinant DNA is introduced into mammalian cells by calcium phosphate method (Graham F.L. and van der Eb A.J., J. Virology 52:456-467 (1973)), DEAE-dextran method (Sussman D.J. and Milman G., Mol. Cell. Biol. 4:1641-1643 (1984)), lipofection (Felgner P.L. et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987)), and electroporation (Neumann E. et al., EMBO J. 1:841-845 (1982)), etc. If the host is an insect cell, a baculovirus vector such as pBacPAK8/9 (Clontech) can be used. Transformation of insect cells is done by the methods described in the literature (BioTechnology 6:47-55 (1980)).

[0028] Recombinant proteins expressed in host cells can be purified by known methods. The proteins can also be synthesized as fusion proteins tagged with histidine residues at the N-terminus, or fused to glutathione-S-transferase (GST), and purified by using their binding ability toward a metal chelating resin, or a GST affinity resin (Smith M.C. et al., J. Biol. Chem. 263:7211-7215 (1988)), respectively. For instance, when the vector pESP-1 is used, the protein of interest is synthesized as a fusion protein with GST, which can be purified using GST affinity resin. The fusion protein may be digested with thrombin, or blood coagulating factor Xa to liberate the protein of interest.

[0029] Moreover, DNA encoding the G protein-coupled receptor protein of the present invention can be used in gene therapy of diseases that arise from a mutation of the protein. When used in gene therapy, the DNA can be introduced into human cells using retrovirus vectors (Danos O. and Mulligan R.C., Proc. Natl. Acad. Sci. USA 85:6460-6464 (1988); Dranoff et al., Proc. Natl. Acad. Sci. USA 90:3539-3543 (1993)), or adenovirus vectors (Wickham T.J. et al., Cell 73:309-319 (1993)), etc. To administer the vector to patients, transplantation of bone marrow, subcutaneous injection, and intravenous injection can be used (Asano S., Protein Nucleic acid and Enzyme 40:2491-2495 (1995)).

[0030] Furthermore, the present invention relates to an antibody that is capable of binding to the G protein-coupled receptor protein of the invention. Antibodies against the G protein-coupled receptor protein can be prepared by known methods in the art (for instance, refer to Shin-Seikagaku-Jikken-Kouza I: Protein I 389-406, Tokyo-Kagaku-Doujin). For instance, polyclonal antibodies are prepared as follows. An appropriate dose of the above protein or its partial peptide is administered into immune animals such as rabbits, guinea pigs, mice, or chickens. Administration may be performed together with the adjuvant (such as FIA or FCA) that promotes antibody production, and usually performed every couple of weeks. The titer of antibodies can be increased by performing multiple immunizations. After the final immunization, antisera are obtained by withdrawing blood from immune animals. Polyclonal antibodies are purified from antisera by

ammonium sulfate precipitation, fractionation by anion exchange chromatography, or affinity chromatography with either Protein A or immobilized antigen. Monoclonal antibodies are prepared as follows. The G protein-coupled receptor proteins of the invention or its partial peptide is administered into immune animals as described above. After the final immunization, their spleens or lymph nodes are excised. Then, antigen-producing cells are recovered from the spleens or the lymph nodes, and fused with myeloma cells using polyethylene glycol etc. to produce hybridomas. Desired hybridomas are selected by screening, and their culture supernatant is used to prepare monoclonal antibodies. Monoclonal antibodies can be purified by ammonium sulfate precipitation, fractionation by anion exchange chromatography, or affinity chromatography with either Protein A or immobilized antigen. Antibodies prepared thereby can be used not only in affinity purification of the G protein-coupled receptor protein of the invention, but also for the diagnosis or antibody treatment of diseases arising from the abnormal expression of the receptors, or detection of the expression level of the receptors.

[0031] If used for antibody treatment, humanized antibodies or human antibodies are preferable. Humanized antibodies, in case of mouse-human chimeric antibodies, are prepared by isolating the gene encoding the antibody against the G protein-coupled receptor protein from the producing mouse cells, replacing the constant region of the H chain of the antibody with that of the human IgE, and introducing it into mouse myeloma J558L cells (Neuberger M.S. et al., Nature 314:268-270 (1985)). Human antibodies can be prepared by immunizing mice, whose immune system is replaced with that of human, with the G protein-coupled receptor protein.

[0032] Furthermore, the present invention relates to a method of screening ligands of the G protein-coupled receptor protein of the invention. The method includes such processes as exposing a test compound to the G protein-coupled receptor protein or its partial peptide, and selecting compounds that are capable of binding to the proteins or the peptide. Compounds to be tested include known compounds such as acetylcholine, adenosine, adrenaline, noradrenaline, angiotensin, bombesin, bradykinin, C5a, anaphylatoxin, calcitonin, cannabinoids, chemokines, cholecystokinin, dopamine, endothelin, formylmethionylpeptide, GABA, galanin, glucagon, glutamate, glycopeptide hormone, histamine, 5-hydroxytryptophan, leucotriene, melanocortin, neuropeptide Y, neurotensin, odorant, opioid peptide, opsin, parathyroid hormone, platelet activating factor, prostanoid, somatostatin, tachykinin, thrombin, thyrotropin releasing hormone, vasopressin, and oxytocin (Watson S. and Arkinstall S., G protein Linked Receptor FactsBook, Academic Press (1994)), and also other purified proteins, expressed products of genes (including libraries), extracts of tissues or cells in which the ligand is stipulated to be expressed (the brain, thalamus, and hypothalamus etc.), and the culture medium of the cells. The G protein-coupled receptor proteins may be used in a form expressed in desired cells (including transformants genetically engineered to express the proteins) or on the cell surface, in a form of the membrane fractions of the cells, or in a form bound to an affinity column. If necessary, test compounds may be labeled appropriately. Methods for labeling include radioisotope labeling, and fluorescence labeling, but not limited thereto. The binding between the G protein-coupled receptor proteins and test compounds can be examined by detecting the label added to the compound (for instance, measuring the radioactivity or fluorescence intensity), or using as an index, intracellular signaling triggered by the compound binding to the G protein-coupled receptor protein (such as G protein activation, the change in the concentration of Ca^{2+} or cAMP, phospholipase C activation, and the change in pH). Specific methods can be employed as described in the literatures (Cell Calcium 14:663-671 (1993); Analytical Biochemistry 226:349-354 (1995); J. Biol. Chem. 268:5957-5964 (1993); Cell 92:573-585 (1998); Nature 393:272-273 (1998)), and unexamined published Japanese patent application (JP-A) No. Hei 9-268). Alternatively, the binding may be detected by measuring the activity of the reporter gene using two-hybrid system (Zervos et al., Cell 72:223-232 (1994); Fritz et al., Nature 376:530-533 (1995)).

[0033] The present invention also relates to a method of screening for a compound which can inhibit the binding between the G protein-coupled receptor proteins of the invention and their ligands. The method includes processes of (a) exposing the ligand to the G protein-coupled receptors or their partial peptides in the presence of test compound, and detecting the binding ability between the ligand and the proteins or peptides, and (b) comparing the ability detected in (a) with that in the absence of the compound, and selecting compounds which are capable of decreasing the binding ability. Compounds to be tested include proteins, peptides, non-peptide compounds, artificially synthesized compounds, extracts of tissues and cells, sera, but not limited thereto. The G protein-coupled receptor proteins may be used in a form expressed in desired cells (including transformants genetically engineered to express the proteins) or on the cell surface, in a form of the membrane fractions of the cells, or in a form bound to an affinity column. If necessary, tested compounds may be labeled appropriately. Methods for labeling include radioisotope labeling, and fluorescence labeling, but not limited thereto. The binding between the G protein-coupled receptor proteins and test compounds can be examined by detecting the label added to the compound (for instance, measuring the radioactivity or fluorescence intensity), or using intracellular signaling, as an index, that are triggered by the compound binding to the G protein-coupled receptor protein (such as G protein activation, the change in the concentration of Ca^{2+} or cAMP, phospholipase C activation, and the change in pH). Specific methods can be employed as described in the literatures (Cell Calcium 14:663-671 (1993); Analytical Biochemistry 226:349-354 (1995); J. Biol. Chem. 268:5957-5964 (1993); Cell 92:573-585 (1998); Nature 393:272-273 (1998)), and JR-A Hei 9-268). If the result of the detection showed that the binding

activity in the presence of a test compound is lower than that in the absence of the compound, the compound is judged to be capable of inhibiting the binding between the G protein-coupled receptors or their partial peptides and their ligands. These compounds include those capable of triggering the intracellular signaling through binding to the G protein-coupled receptor (agonist), and those not having such activity (antagonist). Agonists have similar bioactivities to those of the ligands of the G protein-coupled receptors. On the other hand, antagonists inhibit the bioactivities of the ligands. Therefore, these agonists and antagonists are useful as medicinal components for treatment of diseases arising from disorders in the signaling pathway mediated by the G protein-coupled receptors.

[0034] Furthermore, the present invention relates to a screening kit for compounds that inhibit the binding between the G protein-coupled receptor proteins and their ligands. The G protein-coupled receptor proteins or their partial peptides may be in a form expressed in desired cells (including transformants genetically engineered to express the protein) or on the cell surface, in a form of membrane fractions of the cell, or in a form bound to an affinity column. Components of the kit of the invention may include, other than the above described receptor protein samples, ligand samples (both labeled and unlabeled), and buffers for the reaction between the ligand and the receptor protein, and wash solutions. Labels to be added to the ligands include radioisotope and fluorescence, for instance. The kit of the invention can be used as described in JP-A Hei 9-268.

Brief Description of the Drawings

[0035]

Figure 1 shows the hydrophobicity plot of the mouse BG2 protein. The seven hydrophobic regions (transmembrane regions) that are characteristics of the G protein-coupled receptor proteins are indicated by the numbers from 1 to 7. The numbers in the bottom indicate those of the amino acid residues in the "BG2" protein.
 Figure 2 shows the result of northern blot analysis of the tissue specific expression of the human and mouse BG2 genes.
 Figure 3 shows the result of *in situ* hybridization analysis of the location of the mouse "BG2" gene expression in the brain.
 Figure 4 shows the result of *in situ* hybridization analysis of the location of the mouse "BG2" gene expression in the spinal cord. "Sense" and "Antisense" indicate the results using sense RNA probe (not hybridizing with mRNA; negative control), and antisense RNA probe (hybridizing with mRNA), respectively.

Best Mode for Carrying out the Invention

[0036] The present invention is illustrated in detail below with reference to examples, but is not to be construed as being limited thereto.

Example 1: Isolation of a gene encoding a rat G protein-coupled receptor

[0037] The G protein-coupled receptors share a characteristic structure composed of seven transmembrane regions, and the amino acid sequences of the transmembrane regions and the adjacent regions are well conserved. The present inventors first compared the nucleotide sequences of the second and the seventh transmembrane domains, which are highly conserved, with known G protein-coupled receptors: mouse neuropeptide Y receptor Y1 (GenBank Accession Number Z18280), rat Y1 (Z11504), human Y1 (M84755), mouse neuropeptide Y receptor Y4 (U40189), rat Y4 (Z68180), human Y4 (Z66526), and mouse neuropeptide Y receptor Y6 (U58367), and synthesized novel sense and antisense primers, as described in SEQ ID NO: 3 and NO: 4, respectively.

[0038] Next, single stranded cDNA was synthesized from poly(A)⁺RNA prepared from rat thalamus and hypothalamus using the RNA-PCR kit (TaKaRa), and PCR was performed using the two primers. Specifically, poly(A)⁺RNA was prepared from rat thalamus and hypothalamus using Fasttrack 2.0 kit (Invitrogen). Then, 75 ng of the poly(A)⁺RNA was used to synthesize complementary DNA according to the protocol accompanying the RNA-PCR kit (TaKaRa). PCR amplification was performed using all the cDNA. The reaction mixture comprising each 0.15 mM dNTPs, 1.5 mM MgCl₂, 0.025 U/ μ l rTaq polymerase (TaKaRa), each 0.5 μ M degenerated primer Fg (SEQ ID NO: 3) and Rb (SEQ ID NO: 4), and enzyme accompanying 10x PCR buffer was prepared making a total of 130 μ l, and aliquoted into six 20 μ l fractions. PCR was performed with the Perkin thermal cycler PTC200 (MJ Research) under conditions as follows: a single cycle of 94°C for 2 min, followed by 35 cycles of 94°C for 30 sec, 48°C for 1 min, 72°C for 1 min 30 sec, and then a single cycle of 72°C for 8 min. After PCR, the six reaction-solutions were combined, and the amplified products were purified using the Wizard PCR purification kit (Promega), and then eluted with 30 μ l TE. 2 μ l of the TE eluate was used for cloning into the pCR2.1 vector of the TOPO TA cloning kit (Invitrogen). XL1-Blue cells were used as the host cell and transformed using the *E.coli* pulser (BioRad). From the resulting transformants, 5,760 colonies having white or light blue

color were randomly selected using the gene library construction system BioPick (BioRobotics), and inoculated into fifteen 384-well plates containing LB media supplemented with 100 µg/ml of ampicillin. Clones were cultured at 37°C overnight, and replica plated onto a filter on top of a LB agar plate containing 100 µg/ml ampicillin and 25% glycerol, and another filter on top of a LB agar plate containing 100 µg/ml ampicillin, for preparing a glycerol stock, and colony hybridization, respectively, using a gene library replicating system BioGrid (BioRobotics).

[0039] Since the obtained PCR clones were expected to contain multiple overlapping clones of the NPY receptor cDNA, 80 clones out of the 5,760 clones were randomly selected, and their nucleotide sequences were partially determined. To determine the nucleotide sequence, plasmid DNA purified by the plasmid automatic isolating system PI100sigma (Kurabo) was used as a template. The sequence reactions were performed using the dye-primer-cycle sequencing kit FS (Perkin Elmer), and the reaction products were separated by electrophoresis using the DNA sequencer 377 (Perkin Elmer). The homology search of the obtained sequence using the blast program of the Wisconsin package (Genetic Computer Group) showed that 29 out of the 80 clones were the cDNAs encoding the coiled-coil like protein 1 (GeneBank Accession Number U79024) while 17 clones were those of the neuropeptide Y receptor Y1 (Z11504). Then, these two cDNA fragments were used as a probe for hybridization with the filters containing a library of the degenerated PCR amplified fragments. Probes were prepared by amplifying the insert of the respective clones by PCR, purifying the products using the Wizard PCR purification kit (Promega), and labeling them with [α -³²P] dCTP using the Prime-It II random primer labeling kit (Stratagene). Colony hybridization was performed according to the standard method (Sambrook et al., Molecular Cloning: A laboratory manual 2nd edition (1989)). Colonies that were negative for either the coiled-coil like protein 1 or the neuropeptide Y receptor Y1 were selected and their partial nucleotide sequences were determined. For DNA sequencing, the insert fragment of each clone was amplified by PCR from the culture medium, purified using the PCR product purification kit (Amersham), and used as a template. The sequence reactions were performed using the dye-primer-cycle sequencing kit FS (Perkin Elmer), and the reaction products were separated by electrophoresis using the DNA sequencer 377 (Perkin Elmer). The obtained sequences were analyzed by the homology search using the blast program of the Wisconsin package (Genetic Computer Group), and, as a result, a clone which has significant homology to the muscarinic acetylcholine receptor M5 (GeneBank Accession Number M22926) was found. The clone has been deposited at the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology.

Name of the depositary institution: National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, MITI.
 Address of the depositary institution: 1-1-3 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
 Date of deposit: 12/25/1997.
 Accession Number: FERM BP-6575

[0040] Next, in order to isolate the full-length cDNA of the gene, cDNA libraries were prepared from rat thalamus and hypothalamus. cDNA was synthesized according to the protocol accompanying the cDNA synthesizing kit (Stratagene), and the vector pEF1x and the host XL1-blue MRF' (Stratagene) were used. The pEF1x is a refined derivative of the pcDNA3 (Invitrogen) prepared as follows.

(1) Preparation of the human EF1a promoter (GeneBank Accession Number J04617)

[0041] PCR was performed using human genomic DNA with primers (SEQ ID NO: 6/ CGAGGATCCGTGAGGCTC-CGGTGCCCCGTC; SEQ ID NO: 7/ CGGGTAAGCTTCACGACACCTGAAATGGAAGA). The products were digested with BamHI (TaKaRa) and HindIII (TaKaRa), and subcloned into the plasmid vector pUC19 (TaKaRa). The resulting plasmid was digested with Xhol, blunt-ended with the Klenow fragment (TaKaRa), and self-ligated using the DNA ligation kit (TaKaRa). The resulting plasmid was digested with BamHI and HindIII, and the insert was recovered.

(2) Alteration of the pcDNA3

[0042] The pcDNA3 was digested with MluI (TaKaRa), blunt-ended with the Klenow fragment (TaKaRa), and self-ligated using the DNA ligation kit. The resulting plasmid was digested with AfIII (New England Biolabs) and SmaI (TaKaRa), blunt-ended with the Klenow fragment (TaKaRa), and self-ligated using the DNA ligation kit. Then, the obtained plasmid was digested with BglII (TaKaRa) and HindIII, and the fragment depleted of the CMV promoter was recovered, and ligated with the insert fragment as described in (1) using the DNA ligation kit to construct the pEF1x.

[0043] Next, the nucleotide sequence of the cDNA fragment was used to synthesize oligonucleotide probe (SEQ ID NO: 8/ CCTTCTGCATCCCATTGTACGTACC), and multiple clones were obtained from the above cDNA libraries from rat thalamus and hypothalamus according to the protocol of the gene trapper cDNA positive selection system (GIBCO BRL). Then, colony hybridization was performed using the cDNA insert of the above isolated clone (FERM BP-6574)

as a probe, and a positive clone was obtained. This clone has been deposited at the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology.

5 Name of the depositary institution: National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, MITI.

Address of the depositary institution: 1-1-3 Higashi, Tsukuba, Ibaraki 305-8566, Japan.

Date of deposit: 12/25/1997.

Accession Number: FERM BP-6574

10 [0044] The insert fragment of the clone was of 2.7 kb. Plasmid DNA was prepared by the QIAprep Midi Kit (QIA-GEN), and the complete nucleotide sequence was determined using the shotgun cloning method (Sambrook et al., Molecular Cloning: A laboratory manual 2nd edition (1989)). cDNA fragmentation was performed using the closed sonifier biomaterial treating system Biorupter (Tousou Denki), and the DNA fragments were separated by electrophoresis on a 2% agarose gel. Fragments of around 0.6 kb were purified using the gene clean spin kit (bio101), blunt-ended with
15 T4 DNA polymerase (TaKaRa), and cloned into the HindIII-BAP treated pUC118 vector, XL1-Blue was used as a host cell, and transformed using the *E.coli* pulser (BioRad). The obtained shotgun clones were sequenced using the dye-primer cycle sequencing kit FS (Perkin Elmer), or the dye-terminator cycle sequencing kit (Perkin Elmer). The resulting sequences were combined and edited to get the complete nucleotide sequence using the DNA sequencing software Sequencher (Hitachi Software). The complete nucleotide sequence is composed of 2700 bp, and turned out to be
20 encoding a protein of 413 amino acids (SEQ ID NO: 5). Because there is a stop codon in the 5' region of the open reading frame, the cDNA is supposed to include the entire coding region (SEQ ID NO: 2). When this sequence was translated into the amino acid sequence, the hydrophobicity plot identified seven transmembrane regions from 1 to 7 (Figure 1).

[0045] In addition, the open reading frame size was approximately 1.2 kb, which is similar to that of the known G protein-coupled receptors. G protein-coupled receptor proteins have common features in their amino acid sequences, and thus form a protein family. As a result of the homology search using the amino acid sequence encoded by the isolated cDNA, the encoded protein was found to be a novel receptor protein having a homology of 26%, 25%, and 29% to known G protein-coupled receptors: bovine muscarinic acetylcholine receptor M3 protein (Lee P.H. et al., Biochim. Biophys. Acta 1223:151-154 (1994)), human muscarinic acetylcholine receptor M5 protein (Bonner T.I. et al., Neuron 1:403-410 (1988)), and mouse a2A adrenoreceptor (Link R. et al., Mol. Pharmacol. 42:16-27 (1992)), respectively.
30

Example 2: The isolation of the human G protein-coupled receptor gene

35 [0046] The obtained rat sequence was subjected to EST search to reveal a fragment of the human homologue (gene bank NID: 946030 and NID: 901756). Human fetal brain cDNA was amplified by PCR using the specific primers IF01 (SEQ ID NO: 9/ CTTCCGCCGGGCCTTCACCAA) and IR02 (SEQ ID NO: 10/ ACAGACACGGCGGGGCTCAC) (probe 1). A human λ EMBL3 SP6/T7 genomic library (Clontech) of a size of 1.2x10⁶ pfu was screened using probe 1 according to standard procedure plaque hybridization procedures. Two positive clones were thus isolated. The obtained phage-clones were digested with SacI, and three bands of a clone were subcloned. These fragments, termed I1 (SEQ ID No: 11), I3 (SEQ ID No: 12) and I5 (SEQ ID No: 13), were sequenced and a hypothetical sequence was speculated by comparing with the rat homologue. I1 and I3 were subjected to PCR amplification using specific primers YS03 (SEQ ID NO: 14/ TGAACGCTTCGGGGCGCTG) and YS05 (SEQ ID NO: 15/ GAGATGGCGAGGTTGAGCAGG), YS12 (SEQ ID NO: 16/ GGCTCCAAGCCATCGGCGTC) and YS14(SEQ ID NO: 17/ CTCACTTCCAGCAGTGCTCC) and the PCR products were termed probe 2 and probe 3, respectively. Human hypothalamus cDNA (1.3 x 10⁶ phage) was plated at a density of 5.6 x 10⁴ pfu/150mm plate. The obtained sub-pools were checked by PCR using the primers YS03 and YS05. One positive sub-clone was screened in the same method as the screening of the genomic library, using probe 2. One cDNA clone containing 5'UTR to TM5 was obtained and named cDNA clone 1.
40

[0047] Probe 4 was amplified by PCR from cDNA clone 1 using the primers YS07 (SEQ ID NO: 18/ GCCTCCG-CACCCAGAACAAAC) and YS10 (SEQ ID NO: 19/ TGCGCCTCTGGATGTTTAG). Phase screening of the human hippocampus library (3x10⁶ pfu) was done in the same method as the genomic library, using probe 3 and probe 4. A few clones were obtained and the longest one, termed cDNA clone 2, was sequenced. It has the region between TM2 and 3'UTR. cDNA clone 1 was digested by SacII, and the 3.3kb band, which contained vector and the 5'-end region, was treated by shrimp alkaline phosphatase. cDNA clone 2 was also digested by SacII, and the 1.7kb fragment was ligated into the 3.3kb fragment from cDNA clone 1. The clone into which this ligated fragment was inserted has been deposited at the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology.
55

Name of the depositary institution: National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, MITI.

Address of the depositary institution: 1-1-3 Higashi, Tsukuba, Ibaraki 305-8566, Japan.

Date of deposit: 12/17/1998.

Accession Number: FERM BP-6609

- 5 [0048] Human "BG2" cDNA nucleotide sequence is shown in SEQ ID NO: 21, and the amino acid sequence of the protein encoded by the said cDNA in SEQ ID NO: 20.
 10 [0049] Human "BG2" protein had 32%, 28%, and 27% homology to known G protein-coupled receptors; human α -2C-1 adrenoreceptor (Regan J.W. et al., Proc. Natl. Acad. Sci. USA 85:6301-6305 (1988)), mouse β -1 adrenoreceptor (Jasper J.R. et al., Biochim. Biophys. Acta 1178:307-309 (1993)), and human muscarinic acetylcholine receptor M3 protein (Peralta E.G. et al., EMBO J. 6:3923-3929 (1987)), respectively.

Example 3: Northern blot analysis

- 15 [0050] Probe 4 was labeled with ^{32}P -dCTP (Amersham, Prime It II) and used as cDNA probe for the detection of human "BG2". Human Multiple Tissue Northern (MTN) Blots Membrane with Express HybriTM was purchased from Clontech. After prehybridization of the membrane at 68°C for 30 min, it was hybridized with the probe at 68°C for 1 hr (final concentration of the probe was 1.5×10^6 cpm/ml.) The blot was rinsed with 2 x SSC containing 0.1% SDS at 42°C for 30 min, and the final wash was done at 50°C for 30 min in 0.1 x SSC containing 0.1% SDS. The blot was then exposed at -80°C for 2.5 days to Kodak autoradiographic film.
 20 [0051] For the detection of the mouse "BG2," probe was prepared by PCR amplifying using the rat "BG2" cDNA as a template with sense primer MF2 (SEQ ID NO: 22/ TGCATCCCATTGTACGTNCC), and antisense primer MR1 (SEQ ID NO: 24/ TGCTCTGGGACACCATCTTC), purifying the amplified products by electrophoresis on an agarose gel, and labeling them as above described for human gene.
 25 [0052] Blotting membrane used was the Rat MTN (Multiple Tissue Northern) blot (Clontech). Hybridization was performed at 42°C overnight in hybridization buffer (50% formamide, 4x SSPE, 1% SDS, 0.5% BLOTTO, and 100 $\mu\text{g}/\text{ml}$ salmon sperm DNA). The membrane was washed at 65°C in 0.1x SSC containing 0.1% SDS, and then exposed to the Kodak autoradiography film at -80°C overnight.
 30 [0053] The result showed that the human and rat "BG2" genes are strongly expressed particularly in the brain (Fig. 2).

Example 4: *In situ* Hybridization

- 35 [0054] Adult male Sprague-Dawley rats (Charles River Japan) aged 13-18 weeks were anesthetized with inhalation of ether, connected to a rotary pump and infused with chilled 4% paraformaldehyde in phosphate buffer (pH7.2) via a cannula inserted into the left ventricle. After perfusion, brain, pituitary and spinal cord were removed and dissected to sagittal or coronal sections. The tissue specimens were postfixed with the same fixative overnight at 4°C. The following process was carefully done to avoid RNA contamination. Tissue specimens were embedded in paraffin wax in a routine manner, then paraffin sections were cut into a thickness of 6 μm by rotary microtome (Model HM 355; MICROM Laborgerate GmbH). The sections were stored in moisture free condition at -20°C until proceeded to *in situ* hybridization.
 40 [0055] For preparation of rat BG2 sense and antisense RNA probes, the cDNA fragment, amplified by PCR from MP-21 plasmid DNA using a sense primer MF2 (SEQ ID NO:22/ TGCATCCCATTGTACGTNCC) and antisense primer MR3 (SEQ ID NO:23/ ATCATTAGGAGCGTGTANGG), was cloned into pZErO-2 vector (Invitrogen). The RNA probes were labeled with digoxigenin using DIG RNA Labeling Kit (Boehringer Mannheim). Paraffin sections were de-paraffinized with xylene and transferred to distilled water after rinsing with graded ethyl alcohol. *In situ* Hybridization Reagents (ISHR, Code No. 316-01951; Nippon Gene) were used as reagents without digoxigenin-labeled RNA. The sections were incubated with two changes of phosphate buffer saline(PBS:ISHR 1) for 1 min and 10 min. The sections were treated with proteinase K (ISHR 6) for 10 min at 37°C . Acetylation was done with acetylation buffer (ISHR 3) containing acetic anhydride (ISHR 4) for 15 min, followed by quenching with PBS/glycine buffer (ISHR 2) for 20 min at room temperature. rinsed twice with 4 x SSC (ISHR 5) for 10 min and then rinsed with PBS buffer for 10 min. After pre-hybridization with 50% formamide/2 x SSC for 30 min at room temperature, hybridization was performed for 16 hr at 42 °C using digoxigenin-labeled RNA probe (1 $\mu\text{g}/\text{ml}$).
 50 [0056] Post hybridization washing was performed twice 50% formamide/2 x SSC for 10 min at 42°C . Then the sections were treated with RNase A (ISHR10)/NET buffer (ISHR 9) for 30 min at 37°C after rinsing with NET buffer (ISHR 9) for 5 min at 37°C . After washing twice with 0.1 x SSC buffer (ISHR 11) for 20 min, the sections were transferred and labeled digoxigenin was detected using the Digoxigenin Detection Kit (Boehringer Manheim). Then the sections were rinsed with 100 mM Tris-HCl, 150 mM NaCl containing buffer (Buffer 1) for 1 min at room temperature then incubated with blocking reagent (Buffer 2) for 30 min at room temperature. The sections were incubated with anti-digoxigenin alka-

line phosphatase-labeled antibody for 60 min at room temperature. After washing with Buffer 1 for 15 min and Buffer 3 for 2 min at room temperature, the solutions were incubated with NBT/X-phosphate solution diluted with Buffer 3 for 12-14 hr at room temperature. The sections were mounted with glycerol or Permount after washing with Buffer 4.

[0057] As a result, as shown in Figures 3 and 4, BG2 cDNA probe was strongly hybridized to the hippocampus and the spinal cord. Hybridization of a medium extent was also detected in hypothalamus and cerebellum.

Industrial Applicability

[0058] The present invention has provided novel G protein-coupled receptor proteins specifically expressed in the brain, and their genes. Use of the receptors makes it possible to screen their ligands and compounds that are candidates for medicines. These ligands and candidate compounds would be useful in the diagnosis and treatment of diseases arising from disorders of signal transduction pathway mediated by the G protein-coupled receptor of the invention.

15

20

25

30

35

40

45

50

55

SEQUENCE LISTING

5

<110> BANYU PHARMACEUTICAL CO., LTD.

10

<120> GUANOSINE TRIPHOSPHATE (GTP) BINDING PROTEIN-COUPLED RECEPTOR
PROTEIN

15

<130> B1-902PCT

<140>

<141>

20

<150> JP 1997-361187

<151> 1997-12-26

<160> 24

25

<170> PatentIn Ver. 2.0

30

<210> 1

<211> 413

<212> PRT

<213> Rattus norvegicus

35

<400> 1

Met Glu Arg Ala Pro Pro Asp Gly Leu Met Asn Ala Ser Gly Thr Leu

1

5

10

15

40

Ala Gly Glu Ala Ala Ala Ala Gly Gly Ala Arg Gly Phe Ser Ala Ala

20

25

30

45

Trp Thr Ala Val Leu Ala Ala Leu Met Ala Leu Leu Ile Val Ala Thr

35

40

45

50

Val Leu Gly Asn Ala Leu Val Met Leu Ala Phe Val Ala Asp Ser Ser

50

55

60

55

Leu Arg Thr Gln Asn Asn Phe Phe Leu Leu Asn Leu Ala Ile Ser Asp

65

70

75

80

Phe Leu Val Gly Ala Phe Cys Ile Pro Leu Tyr Val Pro Tyr Val Leu
 85 90 95

5 Thr Gly Arg Trp Thr Phe Gly Arg Gly Leu Cys Lys Leu Trp Leu Val
 100 105 110

10 Val Asp Tyr Leu Leu Cys Ala Ser Ser Val Phe Asn Ile Val Leu Ile
 115 120 125

15 Ser Tyr Asp Arg Phe Leu Ser Val Thr Arg Ala Val Ser Tyr Arg Ala
 130 135 140

20 Gln Gln Gly Asp Thr Arg Arg Ala Val Arg Lys Met Ala Leu Val Trp
 145 150 155 160

25 Val Leu Ala Phe Leu Leu Tyr Gly Pro Ala Ile Leu Ser Trp Glu Tyr
 165 170 175

30 Leu Ser Gly Gly Ser Ser Ile Pro Glu Gly His Cys Tyr Ala Glu Phe
 180 185 190

35 Phe Tyr Asn Trp Tyr Phe Leu Ile Thr Ala Ser Thr Leu Glu Phe Phe
 195 200 205

40 Thr Pro Phe Leu Ser Val Thr Phe Asn Leu Ser Ile Tyr Leu Asn
 210 215 220

45 Ile Gln Arg Arg Thr Arg Leu Arg Leu Asp Gly Gly Arg Glu Ala Gly
 225 230 235 240

50 Pro Glu Pro Pro Pro Asp Ala Gln Pro Ser Pro Pro Pro Ala Pro Pro
 245 250 255

55 Ser Cys Trp Gly Cys Trp Pro Lys Gly His Gly Glu Ala Met Pro Leu
 260 265 270

His Ser Ser Gly Ser Ser Ser Arg Gly Thr Glu Arg Pro Arg Ser Leu
 275 280 285

60 Lys Arg Gly Ser Lys Pro Ser Ala Ser Ser Ala Ser Leu Glu Lys Arg
 290 295 300

EP 1 043 395 A1

Met Lys Met Val Ser Gln Ser Ile Thr Gln Arg Phe Arg Leu Ser Arg
305 310 315 320

5 Asp Lys Lys Val Ala Lys Ser Leu Ala Ile Ile Val Ser Ile Phe Gly
325 330 335

10 Leu Cys Trp Ala Pro Tyr Thr Leu Leu Met Ile Ile Arg Ala Ala Cys
340 345 350

15 His Gly Arg Cys Ile Pro Asp Tyr Trp Tyr Glu Thr Ser Phe Trp Leu
355 360 365

20 Leu Trp Ala Asn Ser Ala Val Asn Pro Val Leu Tyr Pro Leu Cys His
370 375 380

25 Tyr Ser Phe Arg Arg Ala Phe Thr Lys Leu Leu Cys Pro Gln Lys Leu
385 390 395 400

30 Lys Val Gln Pro His Gly Ser Leu Glu Gln Cys Trp Lys
405 410

35 <210> 2
<211> 1239
<212> DNA
<213> Rattus norvegicus

40 <220>
<221> CDS
<222> (1)...(1239)

45 <400> 2
atg gag cgc gcg ccc gac ggg ctg atg aac gcg tcg ggc act ctg 48
Met Glu Arg Ala Pro Pro Asp Gly Leu Met Asn Ala Ser Gly Thr Leu
1 5 10 15

50 gcc gga gag gcg gct gca ggc ggg gcg cgc ggc ttc tcg gct gcc 96
Ala Gly Glu Ala Ala Ala Ala Gly Gly Ala Arg Gly Phe Ser Ala Ala
20 25 30

55

EP 1043 395 A1

	tgg acc gct gtc ctg gct gcg ctc atg gcg ctg ctc atc gtg gcc aca	144
5	Trp Thr Ala Val Leu Ala Ala Leu Met Ala Leu Leu Ile Val Ala Thr	
	35 40 45	
	gta ctg ggc aac gcg ctg gtc atg ctc gec ttc gtg gcg gat tcc agc	192
10	Val Leu Gly Asn Ala Leu Val Met Leu Ala Phe Val Ala Asp Ser Ser	
	50 55 60	
	ctc cgc acc cag aac aac ttctttt ctg ctc aac ctc gcc atc tcc gac	240
15	Leu Arg Thr Gln Asn Asn Phe Phe Leu Leu Asn Leu Ala Ile Ser Asp	
	65 70 75 80	
	tcc ctc gtg ggt gcc ttc tgc atc cca ttg tac gta ccc tat gtg ctg	288
20	Phe Leu Val Gly Ala Phe Cys Ile Pro Leu Tyr Val Pro Tyr Val Leu	
	85 90 95	
	acc ggc cgt tgg acc ttc ggc cgg ggc ctc tgc aag ctg tgg ctg gtg	336
25	Thr Gly Arg Trp Thr Phe Gly Arg Gly Leu Cys Lys Leu Trp Leu Val	
	100 105 110	
	gta gac tac cta ctg tgt gcc tcc tcc gtc atc aac atc gta ctc atc	384
30	Val Asp Tyr Leu Leu Cys Ala Ser Ser Val Phe Asn Ile Val Leu Ile	
	115 120 125	
	agc tat gac cga ttc ctg tca gtc act cga gct gtc tcc tac agg gcc	432
35	Ser Tyr Asp Arg Phe Leu Ser Val Thr Arg Ala Val Ser Tyr Arg Ala	
	130 135 140	
	cag cag ggg gac acg aga cgg gcc gtt cgg aag atg gca ctg gtg tgg	480
40	Gln Gln Gly Asp Thr Arg Arg Ala Val Arg Lys Met Ala Leu Val Trp	
	145 150 155 160	
	gtg ctg gcc ttc ctg ctg tat ggg cct gcc atc ctg agt tgg gag tac	528
45	Val Leu Ala Phe Leu Leu Tyr Gly Pro Ala Ile Leu Ser Trp Glu Tyr	
	165 170 175	
	ctg tcg ggt ggc agt tcc atc ccc gag ggc cac tgc tat gct gag ttc	576
50	Leu Ser Gly Gly Ser Ser Ile Pro Glu Gly His Cys Tyr Ala Glu Phe	
	180 185 190	
	tcc tac aac tgg tac ttt ctc atc acg gcc tcc acc ctc gag ttc ttc	624

55

EP 1 043 395 A1

	Phe	Tyr	Asn	Trp	Tyr	Phe	Leu	Ile	Thr	Ala	Ser	Thr	Leu	Glu	Phe	Phe	
5																	
	195														205		
	acg	ccc	tcc	ctc	agc	gtt	acc	tcc	ttc	aac	ctc	agc	atc	tac	ctg	sac	
10																672	
	Thr	Pro	Phe	Leu	Ser	Val	Thr	Phe	Phe	Asn	Leu	Ser	Ile	Tyr	Leu	Asn	
15																	
	210														220		
	atc	cag	agg	cgc	acc	cgc	ctt	cgg	ctt	gat	ggg	ggc	cgt	gag	gct	ggc	
20																720	
	Ile	Gln	Arg	Arg	Thr	Arg	Leu	Arg	Leu	Asp	Gly	Gly	Arg	Glu	Ala	Gly	
25																	
	225														235		
															240		
	cca	gaa	ccc	cca	cca	gat	gcc	cag	ccc	tcc	cca	cct	cca	gct	ccc	ccc	
30																768	
	Pro	Glu	Pro	Pro	Pro	Asp	Ala	Gln	Pro	Ser	Pro	Pro	Pro	Ala	Pro	Pro	
35																	
	245														250		
															255		
	260														265		
															270		
	agc	tgc	tgg	ggc	tgc	tgg	cca	aaa	ggg	cat	ggc	gag	gcc	atg	ccg	ttg	
40																816	
	Ser	Cys	Trp	Gly	Cys	Trp	Pro	Lys	Gly	His	Gly	Glu	Ala	Met	Pro	Leu	
45																	
	265														270		
	275														280		
															285		
	290														295		
															300		
	305														310		
															315		
															320		
	atg	aag	atg	gtg	tcc	cag	agc	atc	acc	cag	cgc	ttc	cg	ctg	tgc	egg	
45																960	
	Met	Lys	Met	Val	Ser	Gln	Ser	Ile	Thr	Gln	Arg	Phe	Arg	Leu	Ser	Arg	
50																	
	325														330		
															335		
	340														345		
															350		
	cat	ggc	cgc	tgc	atc	ccc	gat	tac	tgg	tac	gag	acg	tcc	ttc	tgg	ctt	
55																1104	
	His	Gly	Arg	Cys	Ile	Pro	Asp	Tyr	Tyr	Leu	Met	Ile	Ile	Arg	Ala	Ala	Cys

	355	360	365	
5	ctg tgg gcc aac tcg gcc gtc aac ccc gtc ctc tac cca ctg tgc cac Leu Trp Ala Asn Ser Ala Val Asn Pro Val Leu Tyr Pro Leu Cys His			1152
	370	375	380	
10	tac agc ttc cgc aga gcc ttc acc aag ctc ctc tgc ccc cag aag ctc Tyr Ser Phe Arg Arg Ala Phe Thr Lys Leu Leu Cys Pro Gln Lys Leu			1200
	385	390	395	400
15	aag gtc cag ccc cac ggc tcc ctg gag cag tgc tgg aag Lys Val Gln Pro His Gly Ser Leu Glu Gln Cys Trp Lys			1239
	405	410		
20	<210> 3			
	<211> 21			
	<212> DNA			
25	<213> Artificial Sequence			
	<220>			
	<223> Description of Artificial Sequence: Artificially synthesized primer sequence			
30	<400> 3 batngccaaac ctbkccttct c			
				21
35	<210> 4			
	<211> 20			
	<212> DNA			
40	<213> Artificial Sequence			
	<220>			
	<223> Description of Artificial Sequence: Artificially synthesized primer sequence			
45	<400> 4 ccataaaaagn nggggtttgac			
				20
50	<210> 5			
	<211> 2700			
	<212> DNA			
55				

<213> Rattus norvegicus

5	<220>		
	<221> CDS		
	<222> (351) .. (1589)		
10	<400> 5		
	aattcggcac gagcgggcag atcgcggggc gcaactcggtt gcgcgctgag ctaggggtgc	60	
15	accgacgcac cgccggcggc tggagctcggttttgccttc gctgcagcag ccgcggccgc	120	
	cgcggccatc cgctcagatt ccgacaccag cccccctctgg atcgcgcctcc tggactctag	180	
20	cccgggctct tgctccgacc ccgcggacca tgctccggc gccccccgga aaaccgggct	240	
	gggcgaagag ccggcaaaga ttaggctcac gagcgggggc cccacccggc caccagctc	300	
25	tccgcccgtg ccctgcccgg tgtccccgag ccgtgtgagc ctgctggcc atg gag	356	
	Met Glu		
	1		
30	cgcgccgccc gac ggg ctg atg aac gcg tcg ggc act ctg gcc gga	404	
	Arg Ala Pro Pro Asp Gly Leu Met Asn Ala Ser Gly Thr Leu Ala Gly		
	5 10 15		
35	gag gcg gct gca ggc ggg gcg cgc ggc ttc tcg gct gcc tgg acc	452	
	Glu Ala Ala Ala Ala Gly Gly Ala Arg Gly Phe Ser Ala Ala Trp Thr		
	20 25 30		
40	gct gtc ctg gct gcg ctc atg gcg ctg ctc atc gtg gcc aca gta ctg	500	
	Ala Val Leu Ala Ala Leu Met Ala Leu Leu Ile Val Ala Thr Val Leu		
	35 40 45 50		
45	ggc aac gcg ctg gtc atg ctc gcc ttc gtg gcg gat tcg agc ctc cgc	548	
	Gly Asn Ala Leu Val Met Leu Ala Phe Val Ala Asp Ser Ser Leu Arg		
	55 60 65		
50	acc cag aac aac ttc ttt ctg ctc aac ctc gcc atc tcc gac ttc ctc	596	
	Thr Gln Asn Asn Phe Phe Leu Leu Asn Leu Ala Ile Ser Asp Phe Leu		
	70 75 80		

EP 1043 395 A1

	gtg ggt gcc ttc tgc atc cca ttg tac gta ccc tat gtg ctg acc ggc	644
5	Val Gly Ala Phe Cys Ile Pro Leu Tyr Val Pro Tyr Val Leu Thr Gly	
	85 90 95	
	cgt tgg acc ttc ggc cgg ggc ctc tgc aag ctg tgg ctg gtg gta gac	692
10	Arg Trp Thr Phe Gly Arg Gly Leu Cys Lys Leu Trp Leu Val Val Asp	
	100 105 110	
15	tac cta ctg tgt gcc tcc tcg gtc ttc aac atc gta ctc atc agc tat	740
	Tyr Leu Leu Cys Ala Ser Ser Val Phe Asn Ile Val Leu Ile Ser Tyr	
	115 120 125 130	
20	gac cga ttc ctg tca gtc act cga gct gtc tcc tac agg gcc cag cag	788
	Asp Arg Phe Leu Ser Val Thr Arg Ala Val Ser Tyr Arg Ala Gln Gln	
	135 140 145	
25	ggg gac acg aga cgg gcc gtt cgg aag atg gca ctg gtg tgg gtg ctg	836
	Gly Asp Thr Arg Arg Ala Val Arg Lys Met Ala Leu Val Trp Val Leu	
	150 155 160	
30	gcc ttc ctg ctg tat ggg cct gcc atc ctg agt tgg gag tac ctg tct	884
	Ala Phe Leu Leu Tyr Gly Pro Ala Ile Leu Ser Trp Glu Tyr Leu Ser	
	165 170 175	
35	ggt ggc agt tcc atc ccc gag ggc cac tgc tat gct gag ttc ttc tac	932
	Gly Gly Ser Ser Ile Pro Glu Gly His Cys Tyr Ala Glu Phe Phe Tyr	
	180 185 190	
40	aac tgg tac ttt ctc atc acg gcc tcc acc ctc gag ttc ttc acg ccc	980
	Asn Trp Tyr Phe Leu Ile Thr Ala Ser Thr Leu Glu Phe Phe Thr Pro	
	195 200 205 210	
45	ttc ctc agc gtt acc ttc aac ctc agc atc tac ctg aac atc cag	1028
	Phe Leu Ser Val Thr Phe Asn Leu Ser Ile Tyr Leu Asn Ile Gln	
	215 220 225	
50	agg cgc acc cgc ctt cgg ctt gat ggg ggc cgt gag gct ggc cca gaa	1076
	Arg Arg Thr Arg Leu Arg Leu Asp Gly Gly Arg Glu Ala Gly Pro Glu	
	230 235 240	
	ccc cca cca gat gcc cag ccc tcc cca cct cca gct ccc ccc agc tgc	1124

55

EP 1043 395 A1

	Pro Pro Pro Asp Ala Gln Pro Ser Pro Pro Ala Pro Pro Ser Cys			
5	245	250	255	
	tgg ggc tgc tgg cca aaa ggg cat ggc gag gcc atg ccg ttg cac agc		1172	
	Trp Gly Cys Trp Pro Lys Gly His Glu Ala Met Pro Leu His Ser			
10	260	265	270	
	tct ggc agc tcc tca agg ggc act gag agg cca cgc tca ctc aaa agg		1220	
	Ser Gly Ser Ser Arg Gly Thr Glu Arg Pro Arg Ser Leu Lys Arg			
15	275	280	285	290
	ggc tcc aag cca tca gca tct tca gca tcc ctg gag aag cgc atg aag		1268	
	Gly Ser Lys Pro Ser Ala Ser Ser Ala Ser Leu Glu Lys Arg Met Lys			
20	295	300	305	
	atg gtg tcc cag agc atc acc cag cgc ttc cgg ctg tcg cg gac aag		1316	
	Met Val Ser Gln Ser Ile Thr Gln Arg Phe Arg Leu Ser Arg Asp Lys			
25	310	315	320	
	aag gtg gcc aag tcg ctg gcc atc atc gtg agc atc ttt ggg ctc tgc		1364	
	Lys Val Ala Lys Ser Leu Ala Ile Ile Val Ser Ile Phe Gly Leu Cys			
30	325	330	335	
	tgg gcg ccg tac acg ctc cta atg atc atc cga gct gct tgc cat ggc		1412	
	Trp Ala Pro Tyr Thr Leu Leu Met Ile Ile Arg Ala Ala Cys His Gly			
35	340	345	350	
	cgc tgc atc ccc gat tac tgg tac gag acg tcc ttc tgg ctt ctg tgg		1460	
	Arg Cys Ile Pro Asp Tyr Trp TyrGlu Thr Ser Phe Trp Leu Leu Trp			
40	355	360	365	370
	gcc aac tcg gcc gtc aac ccc gtc ctc tac cca ctg tgc cac tac agc		1508	
	Ala Asn Ser Ala Val Asn Pro Val Leu Tyr Pro Leu Cys His Tyr Ser			
45	375	380	385	
	ttc cgc aga gcc ttc acc aag ctc ctc tgc ccc cag aag ctc aag gtc		1556	
	Phe Arg Arg Ala Phe Thr Lys Leu Leu Cys Pro Gln Lys Leu Lys Val			
50	390	395	400	
	cag ccc cac ggc tcc ctg gag cag tgc tgg aag tgagcagctg ccccacccctt		1609	
	Gln Pro His Gly Ser Leu Glu Gln Cys Trp Lys			

55

405 410

5	ctgaggccag gcccattgtac ttgtttgagt gggcagccgg agcgtggcg gggccctgg 1669
10	ccatgctccg ctccaaatgc catggggcc tcttagatca tcaaccccg 1729
15	catggcaggt gggcaagag ccctagttgg tggagctaga gtgtgctgg tagctctgcc 1789
20	gccacatctt ctttaccac acagaagaga caatccagga-gtccccaggca tgcccttcac 1849
25	ctacacacac acacacacac acacacacac acacaccaca gtgcagtgcc agtgatgtcc 1909
30	ccttttgcat attttagtggt tggtgcttc cctaattgcaa acctcggtgt gtgtcccg 1969
35	ctccggccct ggcaatgcgt gcgtgcggcc tgcattgtct cacacccggc acacacccgc 2029
40	ccgcccacaca cttgcaacac ctccctcttc ccagaagagc tggggacgat gccctttgct 2089
45	gccactgtct cttgcttaat cccagagcct ggctccttat cccccactct cccttcaact 2149
50	ctgccccaca aagtgtcgag cgccctcgga aacttgaagc ttctctgtct ctccactct 2209
55	ggatgttttc aggaagatgg aggagaagaa aacacgtctg tgaacttgat gttccttgaa 2269
	tgtttaatca agagagacaa aattgccgag gagctcgaaa ctggattggc aggtgtggc 2329
	tcccacgccc tcctccctca gtgtgcagc ttccggctga gccgcgcag ctgctctgc 2389
	ctgccccccc cccaggcttg ggacgatggc cctgcctgc ttgccccgtc tgtacaatca 2449
	gaatttgggg gtgggtggtt atgggtaga gcggctttt actgtgcctt aaagggtctg 2509
	aggctcacag gacagtcagc aggagagcag gcaggcccgc gacacctggg aggaatgttt 2569
	tgcctcgccc tgcattgtctt cctcaggctt ctgcattgtct tgctgcctt gtgcctgg 2629
	gtgctgcctc tgccaaatgtg aaaacacaat aaagtgtatt ttttacgga aaaaaaaaana 2689
	aaaaaaaaaa a 2700

55

5 <210> 6
<211> 29
<212> DNA
<213> Artificial Sequence

10 <220>
<223> Description of Artificial Sequence: Artificially
synthesized primer sequence

15 <400> 6
cgaggatccg tgaggctccg gtgccccgtc 29

20 <210> 7
<211> 32
<212> DNA
<213> Artificial Sequence

25 <220>
<223> Description of Artificial Sequence: Artificially
synthesized primer sequence

30 <400> 7
cgggtaagct tcacgacacc tgaaatggaa ga 32

35 <210> 8
<211> 24
<212> DNA
<213> Artificial Sequence

40 <220>
<223> Description of Artificial Sequence: Artificially
synthesized primer sequence

45 <400> 8
ccttctgcat cccattgtac gtacc 24

50 <210> 9
<211> 21
<212> DNA
<213> Artificial Sequence

5 <220>

10 <223> Description of Artificial Sequence: Artificially
synthesized primer sequence

15 <400> 9
cttccggccgg gccttcacca a

20 <210> 10
<211> 24
<212> DNA
<213> Artificial Sequence

25 <220>
<223> Description of Artificial Sequence: Artificially
synthesized primer sequence

30 <400> 10
acagacacgg cggggctcac

35 <210> 11
<211> 1350
<212> DNA
<213> Homo sapiens

40 <220>
<221> exon
<222> (280)...(557)

45 <400> 11
gcactcggt ggcgttgcn tccggctgca cggtcgcacc ggcagcggct caggctccgg 60
ctctctccc gctgcagcag ccgegctgcc ggccccactg ggctcgatc ggccccggc 120
ccccctcgcca ccycctgctc tggccccggc cccggccccg cggaccatgc gctggccgccc 180
ccccaggggaa cccgacccgg ccaagggccc gcaaagacga ggctcccggg ccggggcccc 240
tcccgccgc ccagctctcg gccggcgcgg tgcccccggt cccggagccg cgtgagcctg 300
cgggggccatg gagcgccgcg cggccgacgg gcccgtgaac gtttcgggggg cgctggccgg 360

cgaggcggcg gcggcggcg gggcgccgg cttctcgca gcctggaccg cggtgctggc 420
 5
 cgcgctcatg ggcgtgtca tcgtggccac ggtgctggc aacgcgtgg tcatgtcgc 480

 ctctgtggcc gactcgagcc tccgcaccca gaacaacttc ttccgtgtca acctcgccat 540
 10
 ctccgacttc ctgcgtggta aatccccagc ccctggccgc tggggaccca ggggcgccc 600

 gcgtggccgg gccagcgggg actggAACAC ggacctgggt ggctcccgca ggcacacgccc 660
 15
 ccaccaggggg accccggcctg ggaaggggggc gtccggagcc catgggtgg gggcacagg 720

 cgaagttcct tgccactcag gcctcgggac aggggctggg gagagatgtc cccggaaagg 780
 20
 gacacgggca ctggcgagg cgcaaggcgc aaaggcagcg ggtgcagctc tggctcctgc 840

 gctgttagcca aacaaaggct gctgcggact taggacgcgc ggagggcgca gtggggcggt 900
 25
 ttagagaagg tctgggggag gggacatgga agggggattt ttagagctgt gttgggggaa 960

 gggacgggtgg ggaagggtggg gttgggggaa gacgctcgga ggagcgtgt ctcacgtgtc 1020
 30
 caggctctgc tgccggctgg ggggccccggc acgcggaggg ggctggagcg ccagacacct 1080

 gttggggctg tgaggtgcgt ctcccagacg ctccaagccc gttggcagt agtagtagcg 1140
 35
 gctggccgct ggccgcgtca accaagtgcc ctttcagccca ggagaaaggc ttttccttg 1200

 tctaagctga gaccgagggt tgtccagcgc cagggtaggg gctggagtc agcgggggag 1260
 40
 gggagaagga aattgtcttc tttccctctt tgagggctgg gagggtggc cagaagtcca 1320

 gggaaatccccg actccaggtt ctccgggggtc 1350
 45

<210> 12
 <211> 448
 50
 <212> DNA
 <213> Homo sapiens

EP 1 043 395 A1

5 <220>
<221> exon
<222> (259)..(425)

10 <400> 12
gagctccccca tgccctggatc atccctctcg cccccaggcc caggggacac agatagtgtc 60

15 gggagctatg tgggggtgaa ggctggcgcc agggcagagt ttgtggctga caccaggtgg 120
aggggtggta agatgaggat ggcttagttcc agaaaagcag ccaccatgtg accccaggtc 180

20 cccgcgggtgt ctgcgcgttag gtcccgctgtc cccctggccc ctggctgtcat ggtccccactg 240
tggccctact cccccacagggc gccttctgca tcccactgtt agtaccctac gtgtgtgac 300

25 gcccgtggac ctccggccgg ggcctctgca agctgtggct ggttagtggac tacctgttgt 360
gcaccccttc tgccttcaac atcgtgttca tcagctacga ccgccttctg tcggtcaccc 420
30 gagcggttgag tcctgggctg cggagctc 448

35 <210> 13
<211> 1893
<212> DNA
<213> Homo sapiens

40 <220>
<221> exon
<222> (293)..(1209)

45 <400> 13
gagctcacag ctggtaggggg gtggtaaaca ggcagcctag cagagagtga gggttcaggt 60
tggtcccagg gagcttctga ggctctcaact gagggtggca gggcaccagt ccgggacccc 120
agtggggagg gtttagaggaa gggaggggaa agagggaggg agggaggaca ggaggggaaa 180
50 ggaggagcat tgctgttgag ggaaggggccc acataggggc ccacaggcta cggggcgcga 240
cccagcccaa tattccctcc gccccggccc tgaccagcct ggccttctgc aggtctcata 300

ccggggccag cagggtgaca cgccgcggc agtgcggaag atgctgctgg tgtgggtgct 360
 5
 ggcccttcctg ctgtacggac cagccatcct gagctggag tacctgtccg ggggcagctc 420
 catccccgag gcccaactgct atgccgagtt ctttataaac tggtaattcc tcatacggc 480
 10
 ttccaccctg gagttttta cgcccttcct cagcgtaacc ttctttaaacc tcagcatcta 540
 cctgaacatc cagaggcgca cccgcctccg gctggatggg gctcgagagg cagccggccc 600
 15
 cgagccccct cccgagggccc agcctcacc acccccaccc cctggctgct ggggctgctg 660
 gcagaagggg cacggggagg ccatgcgcgt gcacaggtat ggggtgggtg aggcggccgt 720
 20
 aggcgctgag gccggggagg cgaccctcg gggtggcggt gggggcgct ccgtggcttc 780
 acccacctcc agctccggca gctctcgag gggcactgag aggccgcgt cactcaagag 840
 25
 gggctccaag ccatcgccgt ctcggcctc actggagaag cgcatgaaga tggtgtccca 900
 gagtttacc cagcgcttc ggctgtctcg ggacaggaaa gtggccaagt cgctggccgt 960
 30
 catcgatgac atctttgggc tctgctggc cccataacacg ctgctgatga tcataccggc 1020
 cgccctgcacat ggccactgac tccctgacta ctggtaacaa acctccttct ggctcctgtg 1080
 35
 ggccaaactcg gctgtcaacc ctgtcctcta ccctctgtgc caccacagct tccggccggc 1140
 cttcaccaag ctgctctgcc cccagaagct caaaatccag ccccacagct ccctggagca 1200
 40
 ctgcgtggaaag tgagtggccc accagagcct ccctcagcca cgcctctctc agcccaggc 1260
 tcctggccat ctggccctgc tgccccctac cccggctcggt cccccagggg tgagccccgc 1320
 45
 cgtgtctgtg gcccctcttt aatgccacgg cagccaccct gccatggagg cgccttcctg 1380
 ggccggccag agggcccccactggctgga ctggaggctg ggtggccggc cctggccccc 1440
 50
 acattctggc tccaccggaa gggacagtct ggaggtccca gacatgctgc ccacccctg 1500

ctgggtgccta cccttcgcag ttactggttg gtgttcttcc caaagcaagc acctgggtgt 1560
 5 gctccaggct tcctgcctta gcagtttgc tctgcacgtg cacacacctg cacaccctg 1620
 cacacacctg cacaccgtcc ctctccccgg acaagcccag gacactgcct ttgctgcctt 1680
 10 ctgtctcttg cataaggcctc aggectggcc ctttcacccc ttttccacc aactctctct 1740
 gcccccaaaa gtgtcaaggg gcccttaggaa cctcgaagct gttctctgct tttccattct 1800
 15 gggtgttttc agaaagatga agaagaaaac atgtctgtga acttgatgtt cctggatgt 1860
 ttaatcaaga gagacaaaat tgctgaggag ctc 1893
 20 <210> 14
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 25 <220>
 <223> Description of Artificial Sequence: Artificially synthesized primer sequence
 30 <400> 14
 tgaacgcttc gggggcgctg 20
 <210> 15
 <211> 21
 <212> DNA
 <213> Artificial Sequence
 40 <220>
 <223> Description of Artificial Sequence: Artificially synthesized primer sequence
 45 <400> 15
 gagatggcga ggtttagcag g 21
 <210> 16
 <211> 20
 <212> DNA
 55

5 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Artificially
 synthesized primer sequence

15 <400> 16
 ggctccaaggc catcgccgtc 20

20 <210> 17
 <211> 20
 <212> DNA
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Artificially
 synthesized primer sequence

30 <400> 17
 c:cacttcca gcagtgcgcc 20

35 <210> 18
 <211> 20
 <212> DNA
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Artificially
 synthesized primer sequence

45 <400> 18
 gcctccgcac ccagaacaac 20

50 <210> 19
 <211> 19
 <212> DNA
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Artificially
 synthesized primer sequence

<400> 19
 tgccgcctcg gatgttcag 19

 <210> 20
 <211> 453
 <212> PRT
 <213> Homo sapiens

 <400> 20
 Met Glu Arg Ala Pro Pro Asp Gly Pro Leu Asn Ala Ser Gly Ala Leu
 1 5 10 15

 Ala Gly Glu Ala Ala Ala Gly Gly Ala Arg Gly Phe Ser Ala Ala
 20 25 30

 Trp Thr Ala Val Leu Ala Ala Leu Met Ala Leu Leu Ile Val Ala Thr
 35 40 45

 Val Leu Gly Asn Ala Leu Val Met Leu Ala Phe Val Ala Asp Ser Ser
 50 55 60

 Leu Arg Thr Gln Asn Asn Phe Phe Leu Leu Asn Leu Ala Ile Ser Asp
 65 70 75 80

 Phe Leu Val Gly Ala Phe Cys Ile Pro Leu Tyr Val Pro Tyr Val Leu
 85 90 95

 Thr Gly Arg Trp Thr Phe Gly Arg Gly Leu Cys Lys Leu Trp Leu Val
 100 105 110

 Val Asp Tyr Leu Leu Cys Thr Ser Ser Ala Phe Asn Ile Val Leu Ile
 115 120 125

 Ser Tyr Asp Arg Phe Leu Ser Val Thr Arg Ala Val Ser Tyr Arg Ala
 130 135 140

 Gln Gln Gly Asp Thr Arg Arg Ala Val Arg Lys Met Leu Leu Val Trp
 145 150 155 160

 Val Leu Ala Phe Leu Leu Tyr Gly Pro Ala Ile Leu Ser Trp Glu Tyr

EP 1 043 395 A1

	165	170	175	
5	Leu Ser Gly Gly Ser Ser Ile Pro Glu Gly His Cys Tyr Ala Glu Phe 180	185	190	
10	Phe Tyr Asn Trp Tyr Phe Leu Ile Thr Ala Ser Thr Leu Glu Phe Phe 195	200	205	
15	Thr Pro Phe Leu Ser Val Thr Phe Phe Asn Leu Ser Ile Tyr Leu Asn 210	215	220	
20	Ile Gln Arg Arg Thr Arg Leu Arg Leu Asp Gly Ala Arg Glu Ala Ala 225	230	235	240
25	Gly Pro Glu Pro Pro Pro Glu Ala Gln Pro Ser Pro Pro Pro Pro Pro 245	250	255	
30	Gly Cys Trp Gly Cys Trp Gln Lys Gly His Gly Glu Ala Met Pro Leu 260	265	270	
35	His Arg Tyr Gly Val Gly Glu Ala Ala Val Gly Ala Glu Ala Gly Glu 275	280	285	
40	Ala Thr Leu Gly Gly Gly Gly Gly Ser Val Ala Ser Pro Thr 290	295	300	
45	Ser Ser Ser Gly Ser Ser Ser Arg Gly Thr Glu Arg Pro Arg Ser Leu 305	310	315	320
50	Lys Arg Gly Ser Lys Pro Ser Ala Ser Ser Ala Ser Leu Glu Lys Arg 325	330	335	
55	Met Lys Met Val Ser Gln Ser Phe Thr Gln Arg Phe Arg Leu Ser Arg 340	345	350	
60	Asp Arg Lys Val Ala Lys Ser Leu Ala Val Ile Val Ser Ile Phe Gly 355	360	365	
65	Leu Cys Trp Ala Pro Tyr Thr Leu Leu Met Ile Ile Arg Ala Ala Cys 370	375	380	

EP 1043 395 A1

His Gly His Cys Val Pro Asp Tyr Trp Tyr Glu Thr Ser Phe Trp Leu
 385 390 395 400

5
 Leu Trp Ala Asn Ser Ala Val Asn Pro Val Leu Tyr Pro Leu Cys His
 405 410 415

10 His Ser Phe Arg Arg Ala Phe Thr Lys Leu Leu Cys Pro Gln Lys Leu
 420 425 430

15 Lys Ile Gln Pro His Ser Ser Leu Glu His Cys Trp Lys Lys Met Lys
 435 440 445

Lys Lys Thr Cys Leu
 450

20 <210> 21
 <211> 2050
 <212> DNA

25 <213> Homo sapiens

<220>
 <221> CDS

30 <222> (271)..(1629)

<400> 21
 agagatgttag ggcgc(ccttt) ttagctgcgc acagaacgaa agaactcg(tttt)tttaa 60

35 gtgagtggtgc ttgggtgacg ctttagggcgc cctccgcagt gcgcgcagga aagcgcactg 120
 aggctgcgga ggcagagctg catgctgggt gcgggaagag gtgggctccg tcgcggagtc 180

40 gctgagtcgg tgccctttta gtttagttctg cagtc tagta tggcccccatttgccttcc 240

45 actccccggag ccgcgtgagc ctgcggggcc atg gag cgc gcg ccg gac ggg 294
 Met Glu Arg Ala Pro Pro Asp Gly
 1 5

50 ccg ctg aac gct tcg ggg gcg ctg gcg ggc gag gcg gcg gcg ggc 342
 Pro Leu Asn Ala Ser Gly Ala Leu Ala Gly Glu Ala Ala Ala Gly

10 15 20

55

EP 1 043 395 A1

ggg gcg cgc ggc ttc tcg gca gcc tgg acc gcg gtg ctg gcc gcg ctc 390
 Gly Ala Arg Gly Phe Ser Ala Ala Trp Thr Ala Val Leu Ala Ala Leu
 5 25 30 35 40

 atg gcg ctg ctc atc gtg gcc acg gtg ctg ggc aac gcg ctg gtc atg 438
 Met Ala Leu Leu Ile Val Ala Thr Val Leu Gly Asn Ala Leu Val Met
 10 45 50 55

 ctc gcc ttc gtg gcc gac tcg agc ctc cgc acc cag aac aac ttc ttc 486
 Leu Ala Phe Val Ala Asp Ser Ser Leu Arg Thr Gln Asn Asn Phe Phe
 15 60 65 70

 ctg ctc aac ctc gcc atc tcc gac ttc ctc gtc ggc gcc ttc tgc atc 534
 Leu Leu Asn Leu Ala Ile Ser Asp Phe Leu Val Gly Ala Phe Cys Ile
 20 75 80 85

 cca ctg tat gta ccc tac gtg ctg aca ggc cgc tgg acc ttc ggc cgg 582
 Pro Leu Tyr Val Pro Tyr Val Leu Thr Gly Arg Trp Thr Phe Gly Arg
 25 90 95 100

 ggc ctc tgc aag ctg tgg ctg gta gtg gac tac ctg ctg tgc acc tcc 630
 Gly Leu Cys Lys Leu Trp Leu Val Val Asp Tyr Leu Leu Cys Thr Ser
 30 105 110 115 120

 tct gcc ttc aac atc gtg ctc atc agc tac gac cgc ttc ctg tgg gtc 678
 Ser Ala Phe Asn Ile Val Leu Ile Ser Tyr Asp Arg Phe Leu Ser Val
 35 125 130 135

 acc cga gcg gtc tca tac cgg gcc cag cag ggt gac acg cgg cgg gca 726
 Thr Arg Ala Val Ser Tyr Arg Ala Gln Gln Gly Asp Thr Arg Arg Ala
 40 140 145 150

 gtg cgg aag atg ctg ctg gtg tgg gtg ctg gcc ttc ctg ctg tac gga 774
 Val Arg Lys Met Leu Leu Val Trp Val Leu Ala Phe Leu Leu Tyr Gly
 45 155 160 165

 cca gcc atc ctg agc tgg gag tac ctg tcc ggg ggc agc tcc atc ccc 822
 Pro Ala Ile Leu Ser Trp Glu Tyr Leu Ser Gly Gly Ser Ser Ile Pro
 50 170 175 180

 qaq ggc cac tgc tat gcc qag ttc ttc tac aac tgg tac ttc ctc atc 870

EP 1043 395 A1

	Glu	Gly	His	Cys	Tyr	Ala	Glu	Phe	Phe	Tyr	Asn	Trp	Tyr	Phe	Leu	Ile	
5	185						190				195			200			
	acg	gct	tcc	acc	ctg	gag	tcc	ttt	acg	ccc	tcc	ctc	acg	gtc	acc	tcc	918
	Thr	Ala	Ser	Thr	Leu	Glu	Phe	Phe	Thr	Pro	Phe	Leu	Ser	Val	Thr	Phe	
10							205				210			215			
	ttt	aac	ctc	agc	atc	tac	ctg	aac	atc	cag	agg	cgc	acc	cgc	ctc	cgg	966
	Phe	Asn	Leu	Ser	Ile	Tyr	Leu	Asn	Ile	Gln	Arg	Arg	Thr	Arg	Leu	Arg	
15							220			225			230				
	ctg	gat	ggg	gct	cga	gag	gca	gcc	ggc	ccc	gag	ccc	cct	ccc	gag	gcc	1014
	Leu	Asp	Gly	Ala	Arg	Glu	Ala	Ala	Gly	Pro	Glu	Pro	Pro	Pro	Glu	Ala	
20							235			240			245				
	cag	ccc	tca	cca	ccc	cca	ccg	cct	ggc	tgc	tgg	ggc	tgc	tgg	cag	aag	1062
	Gln	Pro	Ser	Pro	Pro	Pro	Pro	Pro	Gly	Cys	Trp	Gly	Cys	Trp	Gln	Lys	
25							250			255			260				
	ggg	cac	ggg	gag	gcc	atg	ccg	ctg	cac	agg	tat	ggg	gtg	ggt	gag	gcg	1110
	Gly	His	Gly	Glu	Ala	Met	Pro	Leu	His	Arg	Tyr	Gly	Val	Gly	Glu	Ala	
30							265			270			275			280	
	gcc	gta	ggc	gct	gag	gcc	ggg	gag	gct	acc	ctc	ggg	ggt	ggc	ggt	ggg	1158
	Ala	Val	Gly	Ala	Glu	Ala	Gly	Glu	Ala	Thr	Leu	Gly	Gly	Gly	Gly	Gly	
35							285			290			295				
	ggc	ggc	tcc	gtg	gct	tca	ccc	acc	tcc	agc	tcc	ggc	agc	tcc	tgc	agg	1206
	Gly	Gly	Ser	Val	Ala	Ser	Pro	Thr	Ser	Ser	Ser	Gly	Ser	Ser	Ser	Arg	
40							300			305			310				
	ggc	act	gag	agg	ccg	ccg	tca	ctc	aag	agg	ggc	tcc	aag	ccg	tgc	gct	1254
	Gly	Thr	Glu	Arg	Pro	Arg	Ser	Leu	Lys	Arg	Gly	Ser	Lys	Pro	Ser	Ala	
45							315			320			325				
	tcc	tcc	gcc	tcg	ctg	gag	aag	ccg	atg	aag	atg	gtg	tcc	cag	agc	tcc	1302
	Ser	Ser	Ala	Ser	Leu	Glu	Lys	Arg	Met	Lys	Met	Val	Ser	Gln	Ser	Phe	
50							330			335			340				
	acc	cag	ccg	ttt	ccg	ctg	tct	ccg	gac	agg	aaa	gtg	gcc	aag	tcc	ctg	1350
	Thr	Gln	Arg	Phe	Arg	Leu	Ser	Arg	Asp	Arg	Lys	Val	Ala	Lys	Ser	Leu	
55																	

EP 1043 395 A1

	345	350	355	360	
5	gcc gtc atc gtg agc atc ttt ggg ctc tgc tgg gcc cca tac acg ctg Ala Val Ile Val Ser Ile Phe Gly Leu Cys Trp Ala Pro Tyr Thr Leu				1398
	365	370	375		
10	ctg atg atc atc cgg gcc gcc tgc cat ggc cac tgc gtc cct gac tac Leu Met Ile Ile Arg Ala Ala Cys His Gly His Cys Val Pro Asp Tyr				1446
	380	385	390		
15	tgg tac gaa acc tcc ttc tgg ctc ctg tgg gcc aac tcg gct gtc aac Trp Tyr Glu Thr Ser Phe Trp Leu Leu Trp Ala Asn Ser Ala Val Asn				1494
	395	400	405		
20	cct gtc ctc tac cct ctg tgc cac cac agc ttc cgc cgg gcc ttc acc Pro Val Leu Tyr Pro Leu Cys His His Ser Phe Arg Arg Ala Phe Thr				1542
	410	415	420		
25	aag ctg ctc tgc ccc cag aag ctc aaa atc cag ccc cac agc tcc ctg Lys Leu Leu Cys Pro Gln Lys Leu Lys Ile Gln Pro His Ser Ser Leu				1590
	425	430	435	440	
30	gag cac tgc tgg aaa aag atg aag aag aaa aca tgt ctg tgaaccttat Glu His Cys Trp Lys Lys Met Lys Lys Thr Cys Leu				1639
	445	450			
35	gttccctggga tgtttaatca agagagacaa aatttgtgag gagctcaggc ctggattggc 1699				
	aggtgtggc tccccacgccc tcctccctcc gctaaggctt ccggctgagc tgtgccagct 1759				
40	gttctgtccc accccgcctc tgggctcaca ccagccctgg tggccaagcc tgccccggcc 1819				
	actctgttttgc ttcacccagg acctctgggg gttgttggga ggagggggcc cggctgggccc 1879				
45	cgagggtccc aaggcgtgca gggcggtcc agaggagggtg cccggcagg ggccgcttcg 1939				
	ccatgtgttg tgcacccgtg ccacgcgttc tgcgtgttgc tctgcgtgtg cccgtgcgc 1999				
50	tgccctgcaa accgtgaggt cacaataaag tgtatTTTT tattgggtgt g				2050

<210> 22

5 <211> 20
<212> DNA
<213> Artificial Sequence

10 <220>
<223> Description of Artificial Sequence: Artificially
synthesized primer sequence

15 <400> 22
tgcatccat tgtacgttcc

20 <210> 23
<211> 20
<212> DNA
<213> Artificial Sequence

25 <220>
<223> Description of Artificial Sequence: Artificially
synthesized primer sequence

30 <400> 23
atcattagga gcgtgtangg

35 <210> 24
<211> 20
<212> DNA
<213> Artificial Sequence

40 <220>
<223> Description of Artificial Sequence: Artificially
synthesized primer sequence

45 <400> 24
tgtctggga caccatttc

1

55

Claims

1. A guanosine triphosphate binding protein-coupled receptor protein comprising the amino acid sequence of SEQ ID NO: 1, or said amino acid sequence in which one or more amino acids are replaced, deleted, or added.
- 5 2. A guanosine triphosphate binding protein-coupled receptor protein comprising the amino acid sequence of SEQ ID NO: 20, or said amino acid sequence in which one or more amino acids are replaced, deleted, or added.
- 10 3. A guanosine triphosphate binding protein-coupled receptor protein encoded by a DNA which hybridizes with a DNA comprising the nucleotide sequence of SEQ ID NO: 2.
4. A guanosine triphosphate binding protein-coupled receptor protein encoded by a DNA which hybridizes with a DNA comprising the nucleotide sequence of SEQ ID NO: 21.
- 15 5. A partial peptide of the receptor protein as described in any one of claims 1 to 4.
6. A DNA encoding the receptor protein as described in any one of claims 1 to 4 or the partial peptide as described in claim 5.
- 20 7. The DNA described in claim 6, wherein said DNA comprising the nucleotide sequence of SEQ ID NO: 2 or NO: 21.
8. A vector containing the DNA as described in any one of claims 5 to 7.
9. A transformant carrying the vector as described in claim 8.
- 25 10. A method of producing the receptor protein as described in any one of claims 1 to 4 or the partial peptide as described in claim 5, the method comprising culturing the transformant as described in claim 9.
11. A method of screening for a ligand of the receptor protein as described in any one of claims 1 to 4, the method comprising exposing a test compound to the receptor protein as described in any one of claims 1 to 4 or the partial peptide as described in claim 5, and selecting a compound that binds to said protein or partial peptide.
- 30 12. A method of screening for a compound that inhibits the binding between the receptor protein as described in any one of claims 1 to 4 and its ligand, the method comprising,
35 (a) exposing a ligand to the receptor protein as described in any one of claims 1 to 4 or the partial peptide as described in claim 5 in the presence of a test compound, and detecting the binding activity between said protein or partial peptide and the ligand, and,
40 (b) comparing the binding activity detected in (a) with that in the absence of the test compound, and selecting a compound that reduces the binding activity between said protein or partial peptide and the ligand.
13. A kit for screening a compound that inhibits the binding between the receptor protein as described in any one of claims 1 to 4 and its ligand, the kit comprising the receptor protein as described in any of claims 1 to 4 or the partial peptide as described in claim 5.
- 45 14. An antibody which binds to the receptor protein as described in any one of claims 1 to 4.

50

55

Figure 1

Figure 2

Figure 3

Figure 4

INTERNATIONAL SEARCH REPORT		International application No. PCT/JP98/05967
A. CLASSIFICATION OF SUBJECT MATTER Int.Cl' C12N15/12, C12N15/63, C12Q1/02, C12P21/08, C07K14/705, C07K16/28, C12N1/21, C12N1/19, C12N5/12 According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl' C12N15/12, C12N15/63, C12Q1/02, C12P21/08, C07K14/705, C07K16/28, C12N1/21, C12N1/19, C12N5/12		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) WPI (DIALOG), BIOSIS (DIALOG), EMBL/DDBJ/GenBank/Geneseg		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	Bonner, T.I. et al., "Identification of a Family of Muscarinic Acetylcholine Receptor Genes" Science (1987) Vol. 237 p.527-532	1, 3, 5-14
Y	Dewan, Z. et al., "Molecular characterization of a rat arufa2B-adrenergic receptor" Proc. Natl. Acad. Sci. USA (1990) Vol. 87, No. 8 p.3102-3106	1, 3, 5-14
Y	JP..7-67654, A (Mitsubishi Kagaku Bio-Chemical Laboratories, Inc.), 14 March, 1995 (14. 03. 95) (Family: none)	2, 4, 5-14
Y	Ernest, G.P. et al., "Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors" The ENBO J. (1987) Vol. 6, No. 13 p.3923-3929	2, 4-14
<input checked="" type="checkbox"/> Further documents are listed in the continuation of Box C. <input type="checkbox"/> See patent family annex.		
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed		
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family		
Date of the actual completion of the international search 12 March, 1999 (12. 03. 99)	Date of mailing of the international search report 30 March, 1999 (30. 03. 99)	
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer	
Facsimile No.	Telephone No.	

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP98/05967

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	Thomas, B. et al., "A Novel Subtype of Muscarinic Receptor Identified by Homology Screening" Biochim. Biophys. Res. Commun. (1987) Vol. 149, No. 1 p.125-132	1-14
A	Maria, F.B. et al., "Normalization and Subtraction: Two Approaches to Facilitate Gene Discovery" Genome Res. (1996) Vol. 6, No. 9 p.791-806	1-14

Form PCT/ISA/210 (continuation of second sheet) (July 1992)