CHAPITRE II. Systèmes linéaires libres à un degré de liberté.

2.1 Oscillateurs libres

Un système oscillant en absence de toute force d'excitation, est appelé oscillateur libre. Le nombre des grandeurs indépendantes intervenant dans le mouvement est appelé degré de liberté.

2.2 Oscillateur harmonique

En mécanique, on appelle oscillateur harmonique un oscillateur qui, dès qu'il soit écarté de sa position d'équilibre d'une distance x (ou angle θ), est soumis à une force de rappel opposée et proportionnelle à l'écartement x (ou θ):

$$F = -Cx. (2.1)$$

C: une constante **positive**.

Exemples

a) Le système masse-ressort ci-contre est un oscillateur harmonique car la force de rappel est T = -kx.

b) La force de rappel du pendule simple est $F_{\theta} = -mg \sin \theta$. Le pendule devient un oscillateur harmonique lorsque $\theta \ll 1$, car pour $\theta \ll 1$: $F_{\theta} = -mg \sin \theta \approx -mg\theta$.

2.3 Pulsation propre d'un oscillateur harmonique

l'équation du mouvement d'un oscillateur harmonique est linéaire et de la forme

$$\boxed{\ddot{q} + \omega_0^2 q = 0} \tag{2.2}$$

(En mécanique $q=x,y,z,\theta,\varphi,...$ En électricité q=i,u,q,...). L'équation horaire q(t) (solution de (2.2)) est de la forme:

$$q(t) = A\sin(\omega_0 t + \phi). \tag{2.3}$$

 ω_0 est appelée pulsation **propre** car elle ne dépend que des grandeurs propres à l'oscillateur. L'amplitude A et la phase ϕ dépendent des conditions initiales.

Remarques: • Un système physique dont l'équation est linéaire est appelé système linéaire.

• Le facteur à coté de q dans l'équation (2.2) doit être positif pour qu'il y ait oscillations.

Exemples

- a) Trouver à l'aide du PFD l'équation du mouvement du système ci-contre.
 - Calculer sa pulsation propre pour m = 1 kg et k = 3 N/m.
 - Trouver l'amplitude A et la phase ϕ sachant qu'initialement la masse est poussée 2cm vers le bas puis lancée vers le haut à une vitesse de 2cm/s.

Equilibre Mouvement

Solution

- PFD en équilibre : $\sum \overrightarrow{F} = \overrightarrow{0} \Longrightarrow m\overrightarrow{g} + \overrightarrow{T} = \overrightarrow{0} \Longrightarrow mg kz_0 = 0$. PFD en mouvement : $\sum \overrightarrow{F} = m\overrightarrow{a} \Longrightarrow m\overrightarrow{g} + \overrightarrow{T} = m\overrightarrow{a} \Longrightarrow mg - k(z + z_0) = mz$. Grâce à l'équation d'équilibre $mg - kz_0 = 0$, l'équation du mouvement se simplifie: $z + \frac{k}{m}z = 0$.

• La pulsation propre est
$$\omega_0 = \sqrt{\frac{k}{m}} = \sqrt{3} \text{rad/s}$$
.

• L'équation horaire est: $z(t) = A \sin(\sqrt{3}t + \phi)$. Utilisons les conditions initiales pour trouver A et ϕ :
$$\begin{cases} z(0) = A \sin \phi = 2 \text{cm} \\ \dot{z}(0) = A \sqrt{3} \cos \phi = -2 \text{cm/s} \end{cases} \implies \begin{cases} \tan \phi = -\sqrt{3} \Longrightarrow \phi = \frac{2\pi}{3}. \\ A = \frac{2}{\sin \phi} \approx \frac{2}{0.87} \approx 2.3 \text{cm}. \end{cases}$$

b) Trouver à l'aide de la loi des mailles l'équation du mouvement de la charge q dans le circuit ci-contre, puis déduire la pulsation propre ω_0 . Solution: La loi des mailles s'écrit:

Solution: La loi des mailles s'écrit:
$$u_C + u_L = 0 \Longrightarrow \frac{q}{C} + L \frac{di}{dt} = 0 \Longrightarrow \ddot{q} + \frac{1}{LC} q = 0.$$
 La pulsation propre est donc $\omega_0 = \frac{1}{\sqrt{LC}}$.

2.4 L'énergie d'un oscillateur harmonique

L'énergie d'un oscillateur harmonique est la somme de ses énergies cinétiques et potentielles:

$$E = T + U. (2.5)$$

• L'énergie cinétique de translation d'un corps de masse m et de vitesse v est

$$T_{translation} = \frac{1}{2}mv^2$$
. Pour une bobine $T = \frac{1}{2}Li^2$. (2.6)

 \bullet L'énergie cinétique de rotation d'un corps de moment d'inertie I_{\triangle} autour d'un axe \triangle et de vitesse angulaire θ est

$$T_{rotation} = \frac{1}{2} I_{\triangle} \overset{\cdot}{\theta}^{2}. \tag{2.7}$$

• L'énergie potentielle d'une masse m dans un champ gravitationnel constant g est:

$$U_{masse} = mgh.$$
 (Lors d'une ascension d'une hauteur h) (2.8)

$$U_{masse} = -mgh.$$
 (Lors d'une descente d'une hauteur h) (2.9)

• L'énergie potentielle d'un ressort à boudin de raideur k lors d'une déformation d est

$$U_{ressort} = \frac{1}{2}kd^2$$
. Pour un condensateur $U = \frac{1}{2}\frac{1}{C}q^2$. (2.10)

• L'énergie potentielle d'un ressort de torsion de raideur K lors d'une déformation θ est

$$U_{ressort} = \frac{1}{2}K\theta^2. \tag{2.11}$$

Remarque: L'énergie totale E = T + U est conservée (constante) durant le mouvement:

$$\frac{dE}{dt} = 0. (2.12)$$

Cette équation de conservation donne l'équation du mouvement des systèmes conservés.

2.5 Condition d'équilibre

La condition d'équilibre est F = 0. Si l'équilibre est en $x = x_0$, on écrit $F|_{x=x_0} = 0$.

Pour une force dérivant d'un potentiel $(F = -\frac{\partial U}{\partial x})$, la **condition d'équilibre** s'écrit:

• L'équilibre d'un système est stable si, une fois écarté de sa position d'équilibre, il y retourne. Le système retourne à son équilibre si F est une force de rappel. Puisque F = -Cx, on aura une force de rappel si C > 0.

Comme $C = -\frac{\partial F}{\partial x} = \frac{\partial^2 U}{\partial x^2}$, la condition d'équilibre **stable** s'écrit:

$$\left. \frac{\partial^2 U}{\partial x^2} \right|_{x=x_0} > 0. \tag{2.14}$$

Cette condition est aussi une **condition** d'oscillation.

• L'équilibre d'un système est instable si le système ne regagne pas son équilibre lors d'un écartement, c-à-d si C < 0. La condition d'équilibre **instable** s'écrit donc:

$$\left. \frac{\partial^2 U}{\partial x^2} \right|_{x=x_0} < 0. \tag{2.15}$$

(Pour les rotations, (2.13), (2.14), et (2.15) deviennent: $\left. \frac{\partial U}{\partial \theta} \right|_{\theta = \theta_0} = 0, \left. \frac{\partial^2 U}{\partial \theta^2} \right|_{\theta = \theta_0} > 0, \left. \frac{\partial^2 U}{\partial \theta^2} \right|_{\theta = \theta_0} < 0.$)

Exemple

Trouver les positions d'équilibre et leur nature pour le système ci-contre. Solution

L'énergie potentielle lors d'un écartement θ de la verticale est:

 $U = -mgh = -mg(l - l\cos\theta)$. Les positions d'équilibre sont données par $\frac{\partial U}{\partial \theta} = 0$. $\frac{\partial U}{\partial \theta} = 0 \Longrightarrow -mgl\sin\theta = 0 \Longrightarrow \sin\theta = 0$. Les positions d'équilibres sont donc: $\theta = 0$ ou $\theta = \pi$.

- $\frac{\partial^2 U}{\partial \theta^2}\Big|_{\theta=0} = -mgl\cos\theta\Big|_{\theta=0} = -mgl < 0 : \theta = 0 \text{ est une position d'équilibre instable.}$ $\frac{\partial^2 U}{\partial \theta^2}\Big|_{\theta=\pi} = -mgl\cos\theta\Big|_{\theta=\pi} = mgl > 0 : \theta = \pi \text{ est une position d'équilibre stable.}$

L'équation de Lagrange (appelée aussi équation d'Euler-Lagrange) est

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \right) - \frac{\partial \mathcal{L}}{\partial q} = 0.$$
 (2.16)

 $\mathcal{L} = T - U$ est appelé le **Lagrangien**.

L'équation de Lagrange donne aussi directement l'équation du mouvement.

(Pour les translations q = x, y, z. Pour les rotations $q = \theta, \varphi,...$ En électricité q = q.)

Exemple
$$T = \frac{1}{2}m \dot{z}^2. \qquad U = \frac{1}{2}kz^2 + C^{te}.$$

Le Lagrangien est:
$$\mathcal{L} = T - U = \frac{1}{2}m\ \dot{z}^2 - \frac{1}{2}kz^2 + C^{te}$$
.
L'équation du mouvement est donc:
$$\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{z}}\right) - \frac{\partial \mathcal{L}}{\partial z} = 0 \Longrightarrow \frac{d}{dt}\left(m\dot{z}\right) + kz = 0 \Longrightarrow \ddot{z} + \frac{k}{m}z = 0,$$

Equilibre Mouvement

qui est bien l'équation obtenue à l'aide du PFD puis à l'aide de l'équation de conservation.