

ALGORITMO DE LA DIVISIÓN, MDC Y MMC

ALAN REYES-FIGUEROA TEORÍA DE NÚMEROS

(AULA 03) 12.JULIO.2022

El siguiente resultado juega un papel muy importante en la teoría de números.

Teorema (Algoritmo de la División)

Para cualesquiera enteros $a,b\in\mathbb{Z}$, a>0, existe un único par (q,r) de enteros, tales que

$$b = qa + r, \quad y \quad 0 \le r < a. \tag{1}$$

En este caso, q es llamado **cociente** y r el **residuo** al dividir b entre a.

El siguiente resultado juega un papel muy importante en la teoría de números.

Teorema (Algoritmo de la División)

Para cualesquiera enteros $a,b\in\mathbb{Z}$, a>0, existe un único par (q,r) de enteros, tales que

$$b = qa + r, \quad y \quad 0 \le r < a. \tag{1}$$

En este caso, q es llamado **cociente** y r el **residuo** al dividir b entre a.

<u>Prueba</u>: La prueba consiste de dos parte: la existencia y la unicidad.

El siguiente resultado juega un papel muy importante en la teoría de números.

Teorema (Algoritmo de la División)

Para cualesquiera enteros $a,b\in\mathbb{Z}$, a>0, existe un único par (q,r) de enteros, tales que

$$b = qa + r, \quad y \quad 0 \le r < a. \tag{1}$$

En este caso, q es llamado **cociente** y r el **residuo** al dividir b entre a.

<u>Prueba</u>: La prueba consiste de dos parte: la existencia y la unicidad. Para la existencia, mostramos que el conjunto

$$S = \{b - xa : x \in \mathbb{Z}, b - xa \ge 0\},\$$

es no vacío.

El siguiente resultado juega un papel muy importante en la teoría de números.

Teorema (Algoritmo de la División)

Para cualesquiera enteros $a, b \in \mathbb{Z}$, a > o, existe un único par (q, r) de enteros, tales que

$$b = qa + r, \quad y \quad 0 \le r < a. \tag{1}$$

En este caso, q es llamado **cociente** y r el **residuo** al dividir b entre a.

<u>Prueba</u>: La prueba consiste de dos parte: la existencia y la unicidad. Para la existencia, mostramos que el conjunto

$$S = \{b - xa : x \in \mathbb{Z}, \ b - xa \ge 0\},\$$

es no vacío. Para ello, mostramos un valor de x para el cual $b - xa \ge 0$.

Como $a \ge 1$, entonces $|b|a \ge |b| \Rightarrow b - (-|b|)a = b + |b|a \ge b + |b| \ge 0$.

Como $a \ge 1$, entonces $|b|a \ge |b| \Rightarrow b - (-|b|)a = b + |b|a \ge b + |b| \ge 0$. Así, para x = -|b|, el entero $b - xa \in S$.

Aplicando el Principio de buen orden, entonces S posee un elemento mínimo r. En particular, existe $q \in \mathbb{Z}$ tal que $r = b - qa \ge o$.

Como $a \ge 1$, entonces $|b|a \ge |b| \Rightarrow b - (-|b|)a = b + |b|a \ge b + |b| \ge 0$. Así, para x = -|b|, el entero $b - xa \in S$.

Aplicando el Principio de buen orden, entonces S posee un elemento mínimo r. En particular, existe $q \in \mathbb{Z}$ tal que $r = b - qa \ge o$. Mostramos r < a.

Como $a \ge 1$, entonces $|b|a \ge |b| \Rightarrow b - (-|b|)a = b + |b|a \ge b + |b| \ge 0$. Así, para x = -|b|, el entero $b - xa \in S$.

Aplicando el Principio de buen orden, entonces S posee un elemento mínimo r. En particular, existe $q \in \mathbb{Z}$ tal que $r = b - qa \ge o$. Mostramos r < a. Si este no fuera el caso, entonces $r \ge a$ y $b - (q+1)a = (b-qa) - a = r - a \ge o$ sería un elemento de S. Pero b - (q+1)a < b - qa = r, lo que contradice la minimalidad de r.

Como $a \ge 1$, entonces $|b|a \ge |b| \Rightarrow b - (-|b|)a = b + |b|a \ge b + |b| \ge 0$. Así, para x = -|b|, el entero $b - xa \in S$.

Aplicando el Principio de buen orden, entonces S posee un elemento mínimo r. En particular, existe $q \in \mathbb{Z}$ tal que $r = b - qa \ge o$. Mostramos r < a. Si este no fuera el caso, entonces $r \ge a$ y $b - (q+1)a = (b-qa) - a = r - a \ge o$ sería un elemento de S. Pero b - (q+1)a < b - qa = r, lo que contradice la minimalidad de r. Por lo tanto, r < a, y hemos probado que existen $q, r \in \mathbb{Z}$, con la propiedad (1).

Como $a \ge 1$, entonces $|b|a \ge |b| \Rightarrow b - (-|b|)a = b + |b|a \ge b + |b| \ge 0$. Así, para x = -|b|, el entero $b - xa \in S$.

Aplicando el Principio de buen orden, entonces S posee un elemento mínimo r. En particular, existe $q \in \mathbb{Z}$ tal que $r = b - qa \ge 0$. Mostramos r < a. Si este no fuera el caso, entonces $r \ge a$ y $b - (q+1)a = (b-qa) - a = r - a \ge 0$ sería un elemento de S. Pero b - (q+1)a < b - qa = r, lo que contradice la minimalidad de r. Por lo tanto, r < a, y hemos probado que existen $q, r \in \mathbb{Z}$, con la propiedad (1).

Para mostrar la unicidad, suponga que existen dos representaciones en la forma deseada

$$b = qa + r = q'a + r'$$
, con $o \le r < a$, $o \le r' < a$.

Como $a \ge 1$, entonces $|b|a \ge |b| \Rightarrow b - (-|b|)a = b + |b|a \ge b + |b| \ge 0$. Así, para x = -|b|, el entero $b - xa \in S$.

Aplicando el Principio de buen orden, entonces S posee un elemento mínimo r. En particular, existe $q \in \mathbb{Z}$ tal que $r = b - qa \ge 0$. Mostramos r < a. Si este no fuera el caso, entonces $r \ge a$ y $b - (q+1)a = (b-qa) - a = r-a \ge 0$ sería un elemento de S. Pero b - (q+1)a < b - qa = r, lo que contradice la minimalidad de r. Por lo tanto, r < a, y hemos probado que existen $q, r \in \mathbb{Z}$, con la propiedad (1).

Para mostrar la unicidad, suponga que existen dos representaciones en la forma deseada

$$b = qa + r = q'a + r'$$
, con $o \le r < a$, $o \le r' < a$.

Entonces, r' - r = (q - q')a. En particular, |r' - r| = |q - q'|a.

Por otro lado, como o $\leq r < a$ entonces $-a < -r \leq$ o. Sumándola con la otra desigualdad o $\leq r' < a$, obtenemos que la diferencia de residuos satisface $-a < r' - r < a \Rightarrow |r' - r| < a$.

Por otro lado, como o $\leq r < a$ entonces $-a < -r \leq$ o. Sumándola con la otra desigualdad o $\leq r' < a$, obtenemos que la diferencia de residuos satisface $-a < r' - r < a \implies |r' - r| < a$. Entonces

$$0 \le |q - q'| a = |r' - r| < a$$

Por otro lado, como o $\leq r < a$ entonces $-a < -r \leq$ o. Sumándola con la otra desigualdad o $\leq r' < a$, obtenemos que la diferencia de residuos satisface $-a < r' - r < a \Rightarrow |r' - r| < a$. Entonces

$$0 \le |q - q'| a = |r' - r| < a \text{ implica que } 0 \le |q - q'| < 1.$$

Por otro lado, como o $\leq r < a$ entonces $-a < -r \leq$ o. Sumándola con la otra desigualdad o $\leq r' < a$, obtenemos que la diferencia de residuos satisface $-a < r' - r < a \implies |r' - r| < a$. Entonces

$$0 \le |q - q'| a = |r' - r| < a \text{ implica que } 0 \le |q - q'| < 1.$$

Siendo q, q' ambos enteros, entonces q - q' es también un entero.

Por otro lado, como o $\leq r < a$ entonces $-a < -r \leq$ o. Sumándola con la otra desigualdad o $\leq r' < a$, obtenemos que la diferencia de residuos satisface $-a < r' - r < a \ \Rightarrow \ |r' - r| < a$. Entonces

$$0 \le |q - q'| a = |r' - r| < a \text{ implica que } 0 \le |q - q'| < 1.$$

Siendo q,q' ambos enteros, entonces q-q' es también un entero. La desigualdad o $\leq |q-q'| <$ 1 implica que la única posibilidad es que $q-q'=0 \Rightarrow q'=q$.

Por otro lado, como o $\leq r < a$ entonces $-a < -r \leq$ o. Sumándola con la otra desigualdad o $\leq r' < a$, obtenemos que la diferencia de residuos satisface $-a < r' - r < a \implies |r' - r| < a$. Entonces

$$0 \le |q - q'| \, a = |r' - r| < a \, \text{ implica que } 0 \le |q - q'| < 1.$$

Siendo q,q' ambos enteros, entonces q-q' es también un entero. La desigualdad o $\leq |q-q'| <$ 1 implica que la única posibilidad es que $q-q'=0 \Rightarrow q'=q$. De ahí que $r'-r=(q-q')a=0 \cdot a=0$ y r'=r. Esto muestra la unicidad de la representación. \square

Una versión más general del algoritmo es la siguiente:

Corolario (Algoritmo de la División)

Para cualesquiera enteros $a,b\in\mathbb{Z}$, $a\neq o$, existe un único par (q,r) de enteros, tales que

$$b = qa + r, \quad y \quad 0 \le r < |a|.$$
 (2)

Una versión más general del algoritmo es la siguiente:

Corolario (Algoritmo de la División)

Para cualesquiera enteros $a,b\in\mathbb{Z}$, $a\neq o$, existe un único par (q,r) de enteros, tales que

$$b = qa + r, \quad y \quad 0 \le r < |a|.$$
 (2)

<u>Prueba</u>: Basta considerar el caso a < o. Entonces |a| > o y el algoritmos de la división en (1) establece que existen únicos $q, r \in \mathbb{Z}$ tales que b = q|a| + r, con $o \le r < |a|$.

Una versión más general del algoritmo es la siguiente:

Corolario (Algoritmo de la División)

Para cualesquiera enteros $a,b\in\mathbb{Z}$, $a\neq o$, existe un único par (q,r) de enteros, tales que

$$b = qa + r, \quad y \quad 0 \le r < |a|.$$
 (2)

<u>Prueba</u>: Basta considerar el caso a < o. Entonces |a| > o y el algoritmos de la división en (1) establece que existen únicos $q, r \in \mathbb{Z}$ tales que b = q|a| + r, con $o \le r < |a|$.

Como
$$a<$$
 o, entonces $b=q|a|+r=(-q)a+r$, o $\leq r<|a|$ satisface (2). $_{\square}$

Una versión más general del algoritmo es la siguiente:

Corolario (Algoritmo de la División)

Para cualesquiera enteros $a,b\in\mathbb{Z}$, $a\neq o$, existe un único par (q,r) de enteros, tales que

$$b = qa + r, \quad y \quad 0 \le r < |a|.$$
 (2)

<u>Prueba</u>: Basta considerar el caso a < o. Entonces |a| > o y el algoritmos de la división en (1) establece que existen únicos $q, r \in \mathbb{Z}$ tales que b = q|a| + r, con $o \le r < |a|$. Como a < o, entonces b = q|a| + r = (-q)a + r, $o \le r < |a|$ satisface (2).

Ejemplo: Para ilustrar el algoritmo de la división, tome a = 13, b = 61.

Tenemos que

$$61 = 4 \cdot 13 + 9$$
, con $0 \le 9 < 13$.

Tenemos que

$$61 = 4 \cdot 13 + 9$$
, con $0 \le 9 < 13$.

Observe que el algoritmo de la división equivale a hacer la "división tradicional" de $\frac{61}{13}$ a mano: q=4 resulta el cociente, y 9 resulta ser el residual.

Tenemos que

$$61 = 4 \cdot 13 + 9$$
, con $0 \le 9 < 13$.

Observe que el algoritmo de la división equivale a hacer la "división tradicional" de $\frac{61}{13}$ a mano: q=4 resulta el cociente, y 9 resulta ser el residual.

Esto también equivale a hacer $\frac{61}{13} = 4 + \frac{9}{13}$: pues

$$b = qa + r \Leftrightarrow \frac{b}{a} = q + \frac{r}{a}$$
.

Tenemos que

$$61 = 4 \cdot 13 + 9$$
, con $0 \le 9 < 13$.

Observe que el algoritmo de la división equivale a hacer la "división tradicional" de $\frac{61}{13}$ a mano: q=4 resulta el cociente, y 9 resulta ser el residual.

Esto también equivale a hacer $\frac{61}{13} = 4 + \frac{9}{13}$: pues

$$b = qa + r \Leftrightarrow \frac{b}{a} = q + \frac{r}{a}$$
.

Ejemplo: Para ilustrar el algoritmo con a < o, tomemos a = -7:

- Con b = 1: $1 = (0)(-7) + 1 \Rightarrow q = 0, r = 1$.
- Con b = -2: $-2 = 1(-7) + 5 \Rightarrow q = 1, r = 5$.
- Con b = 60: $60 = (-8)(-7) + 4 \Rightarrow q = -8, r = 4$.
- Con b = -60: $-60 = 9(-7) + 3 \Rightarrow q = 9$, r = 3.

Ejemplo: Sea $n \in \mathbb{Z}^+$. Probar que $3^{2^n} + 1$ es divisible por 2, pero no por 4.

Ejemplo: Sea $n \in \mathbb{Z}^+$. Probar que $3^{2^n} + 1$ es divisible por 2, pero no por 4.

Solución: 3^{2^n} es impar y $3^{2^n} + 1$ es par.

Ejemplo: Sea $n \in \mathbb{Z}^+$. Probar que $3^{2^n} + 1$ es divisible por 2, pero no por 4.

Solución: 3^{2^n} es impar y $3^{2^n} + 1$ es par. Observe que

$$3^{2^n} = (3^2)^{2^{n-1}} = 9^{2^{n-1}} = (8+1)^{2^{n-1}}.$$

Ejemplo: Sea $n \in \mathbb{Z}^+$. Probar que $3^{2^n} + 1$ es divisible por 2, pero no por 4.

Solución: 3^{2^n} es impar y $3^{2^n} + 1$ es par. Observe que

$$3^{2^n} = (3^2)^{2^{n-1}} = 9^{2^{n-1}} = (8+1)^{2^{n-1}}.$$

Por el Teorema del Binomio, tenemos

$$(x+y)^m = x^m + {m \choose 1} x^{m-1} y + {m \choose 2} x^{m-2} y^2 + \ldots + {m \choose m-1} x y^{m-1} + y^m.$$

Ejemplo: Sea $n \in \mathbb{Z}^+$. Probar que $3^{2^n} + 1$ es divisible por 2, pero no por 4.

Solución: 3^{2^n} es impar y $3^{2^n} + 1$ es par. Observe que $3^{2^n} = (3^2)^{2^{n-1}} = 9^{2^{n-1}} = (8+1)^{2^{n-1}}$.

Por el Teorema del Binomio, tenemos

$$(x+y)^m = x^m + {m \choose 1} x^{m-1} y + {m \choose 2} x^{m-2} y^2 + \ldots + {m \choose m-1} x y^{m-1} + y^m.$$

En particular, para x=8, y=1 y $m=2^{n-1}$, cada sumando de lado derecho de la ecuación anterior, excepto el último término $y^m=1$, es un múltiplo de 8, en particular, múltiplo de 4. Luego $3^{2^n}=4q+1$, $q\in\mathbb{Z}$.

Ejemplo: Sea $n \in \mathbb{Z}^+$. Probar que $3^{2^n} + 1$ es divisible por 2, pero no por 4.

Solución: 3^{2^n} es impar y $3^{2^n} + 1$ es par. Observe que $3^{2^n} = (3^2)^{2^{n-1}} = 9^{2^{n-1}} = (8+1)^{2^{n-1}}$.

Por el Teorema del Binomio, tenemos

$$(x+y)^m = x^m + {m \choose 1} x^{m-1} y + {m \choose 2} x^{m-2} y^2 + \ldots + {m \choose m-1} x y^{m-1} + y^m.$$

En particular, para x=8, y=1 y $m=2^{n-1}$, cada sumando de lado derecho de la ecuación anterior, excepto el último término $y^m=1$, es un múltiplo de 8, en particular, múltiplo de 4. Luego $3^{2^n}=4q+1$, $q\in\mathbb{Z}$.

De ahí, el residuo de $3^{2^n} + 1 = 4q + 2$ y el residuo de $3^{2^n} + 1$ al dividirlo entre 4 es 2, lo que muestra que no es múltiplo de 4.

Dados $a, b \in \mathbb{Z}$, a cada uno les podemos asociar su conjunto de divisores no-negativos D_a y D_b respectivamente.

Dados $a, b \in \mathbb{Z}$, a cada uno les podemos asociar su conjunto de divisores no-negativos D_a y D_b respectivamente.

Por la propiedad de limitación, estos conjuntos son finitos, y su intersección $D_a \cap D_b$ es finita.

Dados $a, b \in \mathbb{Z}$, a cada uno les podemos asociar su conjunto de divisores no-negativos D_a y D_b respectivamente.

Por la propiedad de limitación, estos conjuntos son finitos, y su intersección $D_a \cap D_b$ es finita. Luego, $D_a \cap D_b$ posee un elemento máximo, llamado el máximo divisor común (MDC) de a y b.

Dados $a, b \in \mathbb{Z}$, a cada uno les podemos asociar su conjunto de divisores no-negativos D_a y D_b respectivamente.

Por la propiedad de limitación, estos conjuntos son finitos, y su intersección $D_a \cap D_b$ es finita. Luego, $D_a \cap D_b$ posee un elemento máximo, llamado el máximo divisor común (MDC) de a y b.

De forma similar, los conjuntos de los M_a y M_b de múltiplos no-negativos de a y de b, respectivamente. Ahora $M_a \cap M_b$ es no vacío y limitado inferiormente por o. Este conjunto posee un elemento mínimo, llamado el mínimo múltiplo común (MMC) de a y b.

Definición

Dados $a,b \in \mathbb{N}$, un **máximo divisor común (MDC)** de a y b es un entero positivo d que satisface

- 1. d | a y d | b,
- 2. $k \mid d$, para todo $k \in \mathbb{N}$ tal que $k \mid a \ y \ k \mid b$.

Definición

Dados $a,b \in \mathbb{N}$, un **máximo divisor común (MDC)** de a y b es un entero positivo d que satisface

- 1. d | a y d | b,
- 2. $k \mid d$, para todo $k \in \mathbb{N}$ tal que $k \mid a \ y \ k \mid b$.

Similarmente, un **mínimo múltiplo común (MMC)** de a y b es un entero positivo m que satisface

- 1. $a \mid m \ y \ b \mid m$,
- 2. $m \mid k$, para todo $k \in \mathbb{N}$ tal que $a \mid k y b \mid k$.

Definición

Dados $a,b \in \mathbb{N}$, un **máximo divisor común (MDC)** de a y b es un entero positivo d que satisface

- 1. d | a y d | b,
- 2. $k \mid d$, para todo $k \in \mathbb{N}$ tal que $k \mid a \ y \ k \mid b$.

Similarmente, un **mínimo múltiplo común (MMC)** de a y b es un entero positivo m que satisface

- 1. $a \mid m \ y \ b \mid m$,
- 2. $m \mid k$, para todo $k \in \mathbb{N}$ tal que $a \mid k \ y \ b \mid k$.

De las definiciones anteriores, se sigue que el MDC y el MMC son únicos:

<u>Prueba</u>: Sean d_1 y d_2 dos MDC para a y b. Entonces $d_1 \mid a$, $d_1 \mid b$, $d_2 \mid a$, $2 \mid b$. Como d_1 es MDC de a y b, y $d_2 \mid a$, $d_2 \mid b \Rightarrow d_1 \mid d_2$. Como d_2 es MDC de a y b, y $d_1 \mid a$, $d_1 \mid b \Rightarrow d_2 \mid d_1$. Entonces $|d_1| = |d_2|$, pero siendo d_1 , d_2 no negativos, se concluye que $d_1 = d_2$. La prueba es similar en el caso del MMC.

<u>Prueba</u>: Sean d_1 y d_2 dos MDC para a y b. Entonces $d_1 \mid a$, $d_1 \mid b$, $d_2 \mid a$, $2 \mid b$. Como d_1 es MDC de a y b, y $d_2 \mid a$, $d_2 \mid b \Rightarrow d_1 \mid d_2$. Como d_2 es MDC de a y b, y $d_1 \mid a$, $d_1 \mid b \Rightarrow d_2 \mid d_1$. Entonces $|d_1| = |d_2|$, pero siendo d_1 , d_2 no negativos, se concluye que $d_1 = d_2$. La prueba es similar en el caso del MMC.

Notación. Como son únicos, denotamos por d = (a, b) y por m = [a, b] al MDC y MMC de a y b, respectivamente.

<u>Prueba</u>: Sean d_1 y d_2 dos MDC para a y b. Entonces $d_1 \mid a$, $d_1 \mid b$, $d_2 \mid a$, $2 \mid b$. Como d_1 es MDC de a y b, y $d_2 \mid a$, $d_2 \mid b \Rightarrow d_1 \mid d_2$. Como d_2 es MDC de a y b, y $d_1 \mid a$, $d_1 \mid b \Rightarrow d_2 \mid d_1$. Entonces $|d_1| = |d_2|$, pero siendo d_1 , d_2 no negativos, se concluye que $d_1 = d_2$. La prueba es similar en el caso del MMC.

Notación. Como son únicos, denotamos por d = (a, b) y por m = [a, b] al MDC y MMC de a y b, respectivamente.

Otra forma de entender a d = (a, b) y m = [a, b] es que son el **ínfimo** y el **supremo**, respectivamente, de a y b, en la relación de divisibilidad |:

$$d = (a, b) = a \wedge b,$$
 $m = [a, b] = a \vee b.$

Ejemplo: Calcular el MDC y MMC de 360 y 84.

Ejemplo: Calcular el MDC y MMC de 360 y 84.

Solución: Factoramos los números 360 y 84 (en factores primos):

360 180	2	84	2
180	2	42	2
90	2	21	3
45 15	3	7	7
	3	1	
5	5		
1			

Los divisores coumnes para 360 y 84 son 2, 2, 3. Entonces $(360, 84) = 2^2 \cdot 3 = 12$. Por otro lado, $[360, 84] = 2^3 \cdot 3^2 \cdot 5 \cdot 7 = 2520$.

Propiedades (Propiedades MDC y MMC)

Sean $a, b, c \in \mathbb{N}$. Entonces

1.
$$(a,b) = a \Leftrightarrow [a,b] = b \Leftrightarrow a \mid b$$
.

2.
$$(ca, cb) = c(a, b) y [ca, cb] = c[a, b]$$
.

3.
$$(a,b) = (b,a) y [a,b] = [b,a]$$
.

4.
$$((a,b),c)=(a,(b,c))$$
 y $[[a,b],c]=[a,[b,c]]$.

5.
$$[(a,c),(b,c)] = ([a,b],c)$$
.

6.
$$([a,c],[b,c]) = [(a,b),c]$$
.

7.
$$(a,b)[a,b] = ab$$
.

Propiedades (Propiedades MDC y MMC)

Sean $a, b, c \in \mathbb{N}$. Entonces

- 1. $(a,b) = a \Leftrightarrow [a,b] = b \Leftrightarrow a \mid b$.
- 2. (ca, cb) = c(a, b) y [ca, cb] = c[a, b].
- 3. (a,b) = (b,a) y [a,b] = [b,a].
- 4. ((a,b),c)=(a,(b,c))y[[a,b],c]=[a,[b,c]].
- 5. [(a,c),(b,c)] = ([a,b],c).
- 6. ([a,c],[b,c]) = [(a,b),c].
- 7. (a,b)[a,b] = ab.

Prueba: 1 a 6, Ejercicio!