3-9. Rotations

길이와 각도의 보존은 Section 3.4 절에서 다룬 바와 같이, 직교 변환 행렬을 갖는 선형 변환의 두 가지 주요 특성입니다.

이제는 회전(Rotations)을 설명하는 특정한 직교 변환 행렬들을 살펴봅니다.

회전이란, 유클리드 벡터 공간에서의 선형 변환 (automorphism)으로 원점을 기준으로 평면의 각도 θ 만큼회전 시키는 동작을 말합니다.

이때 $\theta > 0$ 인 양의 각도는 일반적으로 반시계 방향 회전을 의미합니다.

예를 들어, 다음의 그림에서는 아래의 회전 행렬이 사용된 회전을 보여줍니다.

$$\mathbf{R} = \begin{bmatrix} -0.38 & -0.92 \\ 0.92 & -0.38 \end{bmatrix} . \tag{3.74}$$

3.9 Rotations 91

Figure 3.14 A rotation rotates objects in a plane about the origin. If the rotation angle is positive, we rotate counterclockwise.

회전은 컴퓨터 그래픽스, 로보틱스에서 매우 중요한 역할을 합니다. 예를 들어 밑 그림처럼 로봇 팔의 관절을 어떤 방향으로 얼마만큼 회전시켜야 물건을 집거나 놓을 수 있는 지를 알아야합니다.

Figure 3.15 The robotic arm needs to rotate its joints in order to pick up objects or to place them correctly. Figure taken from (Deisenroth et al., 2015).

3.9.1 Rotations in \mathbb{R}^2

 \mathbb{R}^2 에서 기저 벡터가 다음과 같을 때, 이 기저는 \mathbb{R}^2 에서 표준 좌표계를 정의합니다.

$$\left\{m{e}_1 = egin{bmatrix} 1 \ 0 \end{bmatrix}, \; m{e}_2 = egin{bmatrix} 0 \ 1 \end{bmatrix}
ight\} ext{ of } \mathbb{R}^2$$

이 좌표계를 그림 3.16과 같이 각도 θ 만큼 회전시키고자 합니다.

Figure 3.16 Rotation of the standard basis in \mathbb{R}^2 by an angle θ .

2

회전된 벡터들은 여전히 선형 독립이기 때문에, 이들도 \mathbb{R}^2 의 기저를 이룹니다. 즉, 회전은 기저 변환을 수행한다고 볼 수 있습니다.

회전 Φ 는 선형 변환이므로, 이를 행렬 R(heta)로 표현할 수 있습니다.

Trigonometry(삼각법)을 사용하면, 회전된 축 $(\Phi(e_1), \Phi(e_2))$ 의 좌표를 표준 기저 기준으로 계산할 수 있습니다.

$$\Phi(\mathbf{e}_1) = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}, \quad \Phi(\mathbf{e}_2) = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}.$$
(3.75)

따라서, 기저를 회전된 좌표계로 변환하는 회전 행렬 $R(\theta)$ 는 다음과 같습니다.

$$m{R}(heta) = egin{bmatrix} \Phi(m{e}_1) & \Phi(m{e}_2) \end{bmatrix} = egin{bmatrix} \cos heta & -\sin heta \\ \sin heta & \cos heta \end{bmatrix} \,.$$

3.9.2 Rotations in \mathbb{R}^3

2차원 공간 \mathbb{R}^2 에서의 회전과 달리, 3차원 공간 \mathbb{R}^3 에서는 임의의 2차원 평면을 기준으로, 1차원 축을 중심으로 회전할 수 있습니다.

일반적인 회전 행렬을 정의하는 가장 쉬운 방법은 표준 기저 e_1, e_2, e_3 가 회전 후 어떻게 변하는지를 명시하는 것입니다.

즉, 각 기저 벡터의 회전된 결과 Re_1, Re_2, Re_3 를 지정하고

벡터들이 서로 정규 직교하도록 보장하면

회전 결과들을 하나로 합쳐서 일반적이 회전 행렬 R을 구성할 수 있습니다.

Figure 3.17 Rotation of a vector (gray) in \mathbb{R}^3 by an angle θ about the e_3 -axis. The rotated vector is shown in blue.

위 그림은 3차원 \mathbb{R}^3 에서 기저 벡터 중 하나인 e_3 을 축으로 heta만큼 반시계 방향으로 회전하는 것을 보여줍니다.

- e_1 에 대한 회전 행렬은 다음과 같습니다.
 - 여기서 e_1 (축)은 고정되며, 반시계 방향의 회전은 e_2e_3 평면에서 수행됩니다.

$$\mathbf{R}_1(\theta) = \begin{bmatrix} \Phi(\mathbf{e}_1) & \Phi(\mathbf{e}_2) & \Phi(\mathbf{e}_3) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}. \quad (3.77)$$

 \bullet e_2

$$\mathbf{R}_{2}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}. \tag{3.78}$$

 \bullet e_3

$$\mathbf{R}_{3}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix} . \tag{3.79}$$

3.9.3 Rotations in *n* Dimensions

2차원 및 3차원에서의 회전을 n차원 유클리드 벡터 공간으로 일반화하는 것은 다음과 같이 직관적으로 설명할 수 있습니다.

- 전체 n차원 중에서 n-2개의 차원은 고정시키고
- 나머지 2차원 평면 상에서만 회전을 수행하는 방식

즉, 고차원 공간 \mathbb{R}^n 에서도 임의의 2차원 부분공간(평면)을 선택해서 그 위에서 회전을 수 행할 수 있습니다.

Definition 3.11 (Givens Rotation). Let V be an n-dimensional Euclidean vector space and $\Phi: V \to V$ an automorphism with transformation ma-

trix

$$m{R}_{ij}(heta) := egin{bmatrix} m{I}_{i-1} & m{0} & \cdots & \cdots & m{0} \ m{0} & \cos heta & m{0} & -\sin heta & m{0} \ m{0} & m{0} & m{I}_{j-i-1} & m{0} & m{0} \ m{0} & \sin heta & m{0} & \cos heta & m{0} \ m{0} & \cdots & \cdots & m{0} & m{I}_{n-i} \end{bmatrix} \in \mathbb{R}^{n imes n}, \quad (3.80)$$

for $1 \le i < j \le n$ and $\theta \in \mathbb{R}$. Then $\mathbf{R}_{ij}(\theta)$ is called a *Givens rotation*. Essentially, $\mathbf{R}_{ij}(\theta)$ is the identity matrix \mathbf{I}_n with

$$r_{ii} = \cos \theta$$
, $r_{ij} = -\sin \theta$, $r_{ji} = \sin \theta$, $r_{jj} = \cos \theta$. (3.81)

In two dimensions (i.e., n = 2), we obtain (3.76) as a special case.

3.9.4 Properties of Rotations

회전은 직교 행렬(orthogonal matrix)로부터 유도되는 몇 가지 성질이 있습니다.

- 거리 보존 $||x-y||=||R_{ heta}(x)-R_{ heta}(y)||$
- 각도 보존 회전된 벡터 $R_{ heta}(x),\ R_{ heta}(y)$ 사이의 각도는 원래 벡터 x,y 사이의 각도와 동일
- 고차원 회전은 일반적으로 교환 법칙을 만족 X $R_{\phi}R_{ heta}
 eq R_{ heta}R_{\phi}$
 - 반면 2차원 공간에서는 교환 법칙이 성립합니다.

$$R(\phi)R(heta)=R(heta)R(\phi)\quad ext{for all }\phi, heta\in[0,2\pi)$$

출처

- Mathmatics for Machine Learning (https://github.com/mml-book/mml-book.github.io)
- https://junstar92.github.io/mml-study-note/2022/07/10/ch3-9.html