Ch 9: Nombres complexes (partie 1)

I. <u>Définition et propriétés</u>

1) <u>Définition et vocabulaire</u>

<u>Définition</u>: Il existe un ensemble de nombres, noté $\mathbb C$, appelé **ensemble des nombres complexes** qui possède les propriétés suivantes :

- C contient IR.
- Dans C, on définit une addition et une multiplication qui suivent les mêmes règles de calcul que dans IR.
- Il existe dans \mathbb{C} un nombre *i* tel que $i^2 = -1$.
- Tout élément z de $\mathbb C$ s'écrit de manière unique sous la forme z=a+ib avec a et b réels.

Vocabulaire:

- L'écriture a+ib d'un nombre complexe z est appelée la forme algébrique de z.
- Le nombre a s'appelle la partie réelle et la nombre b s'appelle la partie imaginaire.

Exemples:

Les nombres suivants sont des nombres complexes :

- 3+4i: 3 est la partie réelle et 4 est la partie imaginaire
- -2-i: -2 est la partie réelle et -1 est la partie imaginaire
- $\frac{i}{3}$: 0 est la partie réelle et $\frac{1}{3}$ est la partie imaginaire.

Remarques:

- Si b=0 alors z est un nombre réel.
- Si a=0 alors z est un nombre imaginaire pur.

2) Plan complexe

Dans la suite du chapitre, on munit le plan d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$.

Définition:

A tout point M(a;b) et à tout vecteur $\vec{w}(a;b)$, on associe le nombre complexe z=a+ib appelé **affixe** du point M et **affixe** du vecteur \vec{w} . On note M(z) et $\vec{w}(z)$.

Exemples:

II. Conjugué d'un complexe

<u>Définition</u>: Soit un nombre complexe z=a+ib.

On appelle nombre complexe conjugué de z, le nombre, noté \overline{z} , égal à a-ib.

Exemples:

$$-z = 4 + 5i$$
 et $\bar{z} = 4 - 5i$

- On peut également noter :

$$\overline{7-3i}=7+3i$$
; $\overline{i}=-i$; $\overline{5}=5$

Les points d'affixes z et \overline{z} sont symétriques par rapport à l'axe des réels.

<u>Propriétés</u>:

a)
$$\overline{z+z'}=\overline{z}+\overline{z'}$$

b)
$$\overline{z \times z'} = \overline{z} \times \overline{z'}$$

c)
$$\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$$
 avec $z' \neq 0$

<u>Propriété</u>: Soit z=a+ib un nombre complexe alors $z \overline{z}=a^2+b^2$.

III. Forme trigonométrique d'un complexe

1) Module d'un nombre complexe

<u>Définition</u>: Soit un nombre complexe z=a+ib.

On appelle **module** de z, le nombre réel positif, noté |z|, égal à $\sqrt{a^2+b^2}$.

M est un point d'affixe z. Alors le module de z est égal à la longueur OM.

la distance

Propriétés: a) |zz'| = |z||z'| b) $\frac{z}{z'}$

b)
$$\left| \frac{z}{z} \right| = \frac{|z|}{|z|}$$

2) Argument d'un nombre complexe

<u>Définition</u>: Soit un point M d'affixe z non nulle.

On appelle **argument** de z, noté arg(z) une mesure, en radians, de l'angle $(\vec{u}: \overrightarrow{OM})$.

Remarques:

- Un nombre complexe non nul possède une infinité d'arguments de la forme $arg(z)+2k\pi$, $k \in \mathbb{Z}$.

On note : $arg(z)[2\pi]$

- O n'a pas d'argument car dans ce cas l'angle $(\vec{u}:\overline{OM})$ n'est pas défini.

Exemple:

Soit
$$z=3+3i$$
.
Alors $|z|=|3+3i|=\sqrt{3^2+3^2}=3\sqrt{2}$ et $arg(z)=\frac{\pi}{4}[2\pi]$

3) Forme trigonométrique d'un nombre complexe

<u>Définition</u>: On appelle forme trigonométrique d'un nombre complexe z non nul l'écriture $z = |z|(\cos\theta + i\sin\theta)$ avec $\theta = arg(z)$.

Exemple: Le nombre complexe z=3+3i s'écrit sous forme trigonométrique:

$$z = 3\sqrt{2} \left(\cos\left(\frac{\pi}{4}\right) + i \sin\left(\frac{\pi}{4}\right) \right)$$

Méthode : Passer de la forme trigonométrique à la forme algébrique

Écrire le nombre complexe $z=3\left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)$ sous sa forme algébrique.

$$\begin{vmatrix} z = 3 \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) \\ = 3 \left(0 + i \times 1 \right) = 3i \end{vmatrix}$$

Méthode: Passer de la forme algébrique à la forme trigonométrique

Écrire le nombre complexe $z=\sqrt{3}+i$ sous sa forme trigonométrique.

$$|z| = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{3 + 1} = 2$$

- En calculant $\frac{z}{|z|}$, on peut identifier plus facilement -

la partie réelle de z et sa partie imaginaire :

$$\frac{z}{|z|} = \frac{\sqrt{3} + i}{2} = \frac{\sqrt{3}}{2} + \frac{1}{2}i$$

On cherche donc un argument θ de z tel que : $\cos \theta = \frac{\sqrt{3}}{2}$ et $\sin \theta = \frac{1}{2}$.

Comme $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$ et $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$, on a :

$$\frac{z}{|z|} = \frac{z}{2} = \cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)$$

Donc:

$$z = 2 \left(\cos \left(\frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{6} \right) \right)$$