Introduction to Text Mining with R

Supervised Classification

Simon Munzert | IPSDS

Supervised classification

Supervised machine learning

Goal: classify documents into pre-existing categories.

e.g. authors of documents, sentiment of tweets, ideological position of parties based on manifestos, tone of movie reviews...

Text Mining with R Simon Munz

Supervised machine learning

Goal: classify documents into pre-existing categories.

e.g. authors of documents, sentiment of tweets, ideological position of parties based on manifestos, tone of movie reviews...

What we need:

- Hand-coded dataset (labeled), to be split into:
 - Training set: used to train the classifier
 - Validation/Test set: used to validate the classifier
- Method to extrapolate from hand coding to unlabeled documents (classifier):
 - Naive Bayes, regularized regression, SVM, K-nearest neighbors, ensemble methods...
- Approach to validate classifier: cross-validation
- **Performance metric** to choose best classifier and avoid overfitting: confusion matrix, accuracy, precision, recall...

ext Mining with R Simon Mun

Supervised learning v. dictionary methods

- Dictionary methods:
 - Advantage: not corpus-specific, cost to apply to a new corpus is trivial
 - Disadvantage: not corpus-specific, so performance on a new corpus is unknown (domain shift)
- Supervised learning can be conceptualized as a generalization of dictionary methods, where features associated with each categories (and their relative weight) are learned from the data
- By construction, they will **outperform dictionary methods** in classification tasks, as long as training sample is large enough

Ext Mining with R Simon Mur

Supervised v. unsupervised methods

- The **goal** (in text analysis) is to differentiate *documents* from one another, treating them as "bags of words"
- Different approaches:
 - Supervised methods require a training set that exemplify contrasting classes, identified by the researcher
 - Unsupervised methods scale documents based on patterns of similarity from the term-document matrix, without requiring a training step
- Relative advantage of supervised methods:
 You already know the dimension being scaled, because you set it in the training stage
- Relative disadvantage of supervised methods:
 You must already know the dimension being scaled, because you have to feed it good sample documents in the training stage

ext Mining with R Simon Mun

Dictionaries vs supervised learning

Lexicons' Accuracy in Document Classification Compared to Machine-Learning Approach

Source: González-Bailón and Paltoglou (2015)

ext Mining with R Simon Munze

How to get started

7/2

Text Mining with R Simon Mur

Creating a labeled set

How do we obtain a **labeled set**?

External sources of annotation

- Self-reported ideology in users' profiles
- Gender in social security records

Expert annotation

- "Canonical" dataset: Comparative Manifesto Project
- In most projects, undergraduate students (expertise comes from training)

Crowd-sourced coding

- Wisdom of crowds: aggregated judgments of non-experts converge to judgments of experts at much lower cost (Benoit et al, 2016)
- ► Easy to implement with CrowdFlower or MTurk

ext Mining with R Simon Mun:

ext Mining with R Simon Munze

Measuring performance

- Classifier is trained to maximize in-sample performance
- But generally we want to apply method to new data
- Danger: overfitting

- Model is too complex, describes noise rather than signal (Bias-Variance trade-off)
- Focus on features that perform well in labeled data but may not generalize (e.g. unpopular hashtags)
- In-sample performance better than out-of-sample performance

- Solutions?
 - Randomly split dataset into training and test set
 - Cross-validation

ext Mining with R Simon Munz

Cross-validation

Intuition:

- Create K training and test sets ("folds") within training set.
- For each k in K, run classifier and estimate performance in test set within fold.
- Choose best classifier based on cross-validated performance

ext Mining with R Simon Munz

Types of classifiers

12/2

Fext Mining with R Simon Mu

Types of classifiers

General thoughts:

- Trade-off between accuracy and interpretability
- Parameters need to be cross-validated

Frequently used classifiers:

- Naive Bayes
- Regularized regression
- SVM
- Gradient boosting

ext Mining with R Simon Mun:

Regularized regression

Assume we have:

- i = 1, 2, ..., N documents
- Each document *i* is in **class** $y_i = 0$ or $y_i = 1$
- j = 1, 2, ..., J unique **features**
- And x_{ij} as the **count** of feature j in document i

We could build a linear regression model as a classifier, using the values of β_0 , β_1 , ..., β_J that minimize:

$$RSS = \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{J} \beta_j x_{ij} \right)^2$$

But can we?

- If J > N, OLS does not have a unique solution
- Even with N > J, OLS has low bias/high variance (overfitting)

ext Mining with R Simon Mun:

Regularized regression

What can we do? Add a penalty for model complexity, such that we now minimize:

$$\sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{J} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{J} \beta_j^2 \to \text{ridge regression}$$

or

$$\sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{J} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{J} |\beta_j| \to \text{lasso regression}$$

where λ is the **penalty parameter** (to be estimated)

Ext Mining with R Simon Mur

Regularized regression

Why the penalty (shrinkage)?

- Reduces the variance
- Identifies the model if J > N
- Some coefficients become zero (feature selection)

The penalty can take different forms:

- Ridge regression: $\lambda \sum_{j=1}^{J} \beta_j^2$ with $\lambda > 0$; and when $\lambda = 0$ becomes OLS
- Lasso $\lambda \sum_{j=1}^{J} |\beta_j|$ where some coefficients become zero.
- Elastic Net: $\lambda_1 \sum_{j=1}^{J} \beta_j^2 + \lambda_2 \sum_{j=1}^{J} |\beta_j|$ (best of both worlds?)

How to find best value of λ **?** Cross-validation.

Evaluation: regularized regression is easy to interpret, but often outperformed by more complex methods.

Ext Mining with R Simon Mur

Example

Text Mining with R Simon Mur

Example: Theocharis et al (2016 JOC)

Why do politicians not take full advantage of interactive affordances of social media?

A politician's incentive structure

```
Democracy → Dialogue > Mobilisation > Marketing
```

Politician → Marketing > Mobilisation > Dialogue*

- H1: Politicians make broadcasting rather than engaging use of Twitter
- H2: Engaging style of tweeting is positively related to impolite or uncivil responses

ext Mining with R Simon Mu

Data collection and case selection

Data: European Election Study 2014, Social Media Study

- List of all candidates with Twitter accounts in 28 EU countries
 - 2,482 out of 15,527 identified MEP candidates (16%)
- Collaboration with TNS Opinion to collect all tweets by candidates and tweets mentioning candidates (tweets, retweets, @-replies), May 5th to June 1st 2014.

Case selection: expected variation in politeness/civility

	Received bailout	Did not receive bailout
High support for EU	Spain (55.4%)	Germany (68.5%)
Low support for EU	Greece (43.8%)	UK (41.4%)

(% indicate proportion of country that considers the EU to be "a good thing")

ext Mining with R Simon Munz

Coding tweets

Coded data: random sample of ~7,000 tweets from each country, labeled by undergraduate students:

1. Politeness

- Polite: tweet adheres to politeness standards.
- ► Impolite: ill-mannered, disrespectful, offensive language...

2. Communication style

- Broadcasting: statement, expression of opinion
- Engaging: directed to someone else/another user

3. Political content: moral and democracy

 Tweets make reference to: freedom and human rights, traditional morality, law and order, social harmony, democracy...

Incivility = impoliteness + moral and democracy

Ext Mining with R Simon Mur

Machine learning classification of tweets

Coded tweets as training dataset for a machine learning classifier:

- 1. **Text preprocessing**: lowercase, remove stopwords and punctuation (except # and @), transliterating to ASCII, stem, tokenize into unigrams and bigrams. Keep tokens in 2+ tweets but <90%.
- 2. **Train classifier:** logistic regression with L2 regularization (ridge regression), one per language and variable
- 3. **Evaluate classifier:** compute accuracy using 5-fold crossvalidation

ext Mining with R Simon Mun

Machine learning classification of tweets

Classifier performance (5-fold cross-validation)

		UK	Spain	Greece	Germany
Communication	Accuracy	0.821	0.775	0.863	0.806
Style	Precision	0.837	0.795	0.838	0.818
	Recall	0.946	0.890	0.894	0.832
Polite vs.	Accuracy	0.954	0.976	0.821	0.935
impolite	Precision	0.955	0.977	0.849	0.938
	Recall	0.998	1.000	0.953	0.997
Morality and	Accuracy	0.895	0.913	0.957	0.922
Democracy	Precision	0.734	0.665	0.851	0.770
	Recall	0.206	0.166	0.080	0.061

ext Mining with R Simon Mur

Top predictive n-grams

	rop promotito ii graino
Broadcasting	just, hack, #votegreen2014, :, and, @ ', tonight, candid, up,
	tonbridg, vote @, im @, follow ukip, ukip @, #telleurop, angri,
	#ep2014, password, stori, #vote2014, team, #labourdoorstep,
	crimin, bbc news
Engaging	@ thank, @ ye, you'r, @ it', @ mani, @ pleas, u, @ hi, @ congratul,
	:), index, vote # skip, @ good, fear, cheer, haven't, lol, @ i'v,
	you'v, @ that', choice, @ wa, @ who, @ hope
Impolite	cunt, fuck, twat, stupid, shit, dick, tit, wanker, scumbag, moron,
	cock, foot, racist, fascist, sicken, fart, @ fuck, ars, suck, nigga,
	nigga ?, smug, idiot, @arsehol, arsehol
Polite	@ thank, eu, #ep2014, thank, know, candid, veri, politician,
	today, way, differ, europ, democraci, interview, time, tonight, @
	think, news, european, sorri, congratul, good, :, democrat, seat
Moral/Dem.	democraci, polic, freedom, media, racist, gay, peac, fraud, dis-
	crimin, homosexu, muslim, equal, right, crime, law, violenc, con-
	stitut, faith, bbc, christian, marriag, god, cp, racism, sexist
Others	@ ha, 2, snp, nice, tell, eu, congratul, campaign, leav, alreadi,
	wonder, vote @, ;), hust, nh, brit, tori, deliv, bad, immigr,
	#ukip, live, count, got, roma

ext Mining with R Simon Mun: