

실습 2강 데이터 구조와 R을 이용한 데이터 분석 기초

데이터 구조의 이해

벡터와 연산자

두 원소로 구성되는 x 벡터

x 벡터의 각 원소 값

벡터 만들기

x < - c(80, 85, 70) x

홍길동의 국어, 수학, 영어 성적을 벡터로 저장

객체명을 입력하면 객체에 할당된 데이터가 출력됨

출력 결과

[1] 80 85 70

산술 연산자

❖ 사칙연산과 응용

유형	기호	예	결과
더하기	+	2+3	5
빼기	_	10-3	7
곱하기	*	3*4	12
나누기	/	8/2	4
거듭제곱	^ 또는 **	2^3	8
나머지	%%	10%%3	1
몫	%/%	10%/%3	3

비교 연산자

❖ 값들의 크기를 비교

유형	기호	예	결과
작음	<	x <- 3 x < 10	TRUE
이하	<=	x <- 3 x <= 10	TRUE
吾	>	x <- 3 x > 10	FALSE
이상	>=	x <-3 x >= 10	FALSE
같음	==	x <- 3 x == 10	FALSE
같지 않음	!=	x <-3 x!=10	TRUE

벡터의 원소

❖ 벡터를 구성하는 특정 원소 값들을 출력하거나, 수정하는 과정

$$x < - c(1, 2, 3, 4, 5)$$

```
# 두 번째 원소
x[2]
                  # 1, 3, 5번째 원소
x[c(1, 3, 5)]
                  # 2, 4번째 제외한 원소
x[-c(2, 4)]
                  # 원소의 값이 2보다 큰 값들만 출력
x[x > 2]
                  # 원소의 값이 2 이상이고 4 이하인 값들만 출력
x[x > =2 & x < =4]
                  # 2번째 원소의 값을 20으로 수정
x[2] < -20
                  # 3, 4번째 원소들의 값을 모두 15로 수정
x[c(3, 4)] < -15
                  # 15 이하인 원소 값들을 모두 10으로 수정
x[x < =15] < -10
```


함수 이용 벡터 연산

❖ 벡터 값에 대한 함수의 활용 예

```
x < - seq(1:10)
```

```
mean(x)# x 벡터의 원소 값들의 평균var(x)# x 벡터의 원소 값들의 분산sd(x)# x 벡터의 원소 값들의 표준편차sqrt(x)# x 벡터의 원소 값들의 제곱근length(x)# x 벡터의 원소 값들의 개수abs(x)# x 벡터의 원소 값들의 절대값
```


배열과 행렬

❖ 배열: 한 개 이상의 벡터로 구성, 동일한 데이터 유형

1차원 배열: 벡터

• 2차원 배열: 행과 열, 행렬

• 함수: array()

2차원 배열

1차원 배열

1~3까지의 정수를 1행 3열의 1차원으로 표시 ☞ x <- seq(1:3)과 동일

출력 결과

[1] 1 2 3

array()

패키지	base
사용법	array(data, dim, [dimnames])
설명	배열 생성
반환 값	배열

매개변수	설명
data	벡터 자료
dim	차원을 나타내는 벡터
dimnames	각 차원의 이름을 나타내는 벡터

2차원 배열

```
x < - array(1:6, dim=c(2, 3))
x</pre>
```

1~6까지의 정수를 2행 3열의 2차원으로 표시

☞ 열 단위의 순서로 데이터를 할당

출력결과

```
[1,] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
```

```
x[1, 3]
x[, 3]
x[, -3]
x[1, 2] < - 20
names < -
list(c("1행", "2행"),
c("1열", "2열", "3열"))
```

```
# 1행 3열 값
# 3열의 모든 값들
# 3열을 제외한 모든 열의 값들
# 1행 2열의 값을 20으로 수정
# 행과 열 이름을 갖는 두 벡터로
하는 리스트 생성
```


행렬

행렬: 행과 열로 구성되는 2차원 배열

함수: matrix()

x < - matrix(1:6, nrow=2)

1~6 사이의 정수를 행의 수가 2인 행렬로 만듦

☞ 원소 값의 할당 순서는 열 기준임

출력 결과

Х

matrix()

패키지	base
사용법	<pre>matrix(data, nrow, ncol byrow, [dimnames])</pre>
설명	행렬 생성
반환 값	행렬

매개변수	설명
data	벡터 자료
nrow	행 요소의 개수
ncol	열 요소의 개수
byrow	data를 행 단위로 배치할지에 대한 여부. 디폴트는 FALSE이며 열 단위로 배치
dimnames	행과 열의 이름 list

리스트

❖ 벡터의 각 원소: 이름, 서로 다른 데이터 유형 가능, 하나 이상의 값 가능

❖ 함수: list()


```
'흥길동'을 표현하는 리스트
x < - list("홍길동", "2016001", 20, c("IT융합", "데이터 관리"))
                                                ☞ 객체들의 값만 있는 경우
Х
출력 결과
  [1] "홍기동" 첫 번째 객체와 원소 값
  [[2]]
               두 번째 객체와 원소 값
  [1] "2016001"
  [[3]]
          세 번째 객체와 원소 값
  [1] 20
  [[4]]
  [1] "IT융합"
                 "데이터관리" 네 번째 객체와 원소 값들
v <- list("성명"="홍길동", "학번"="2016001", "나이 "=20, "수강과목"=c("IT융합",
"데이터 관리"))
             각 원소 값에 이름이 주어짐
У
             ☞ '성명' 원소는 '홍길동'의 값을 가짐
출력 결과
  s성명
  [1] "홍길 동" < 첫 번째 객체(성명)와 원소 값
```


데이터 프레임

- ❖ 동일한 속성들을 가지는 여러 개체들로 구성
- ❖ 2차원적인 데이터 구조
- ❖ 속성들 간 데이터 유형은 서로 다를 수 있음

데이터 프레임 만들기

x <- data.frame(성명=c("홍길동", "손오공"), 나이=c(20, 30), 주소=c("서울", "부산")) x

두 객체에 해당 하는 데이터 프 레임

출력 결과

성명 나이 주소 1 홍길동 20 서울 2 손오공 30 부산

흥길동 객체

손오공 객체

data,f	irame()

패키지	base
사용법	data.frame(, row.names=NULL)
설명	데이터 프레임 생성
반환 값	데이터 프레임

매개변수	설명
	값 또는 태그=값
row.names	열의 이름

행/열 추가와 요소값 보기

```
x < - cbind(x, 학과=c("전산학", "경영학")) < 데이터 프레임 x에 열(학과) 추가 x
```

출력 결과

```
성명 나이 주소 학과
1 홍길동 20 서울 전산학
2 손오공 30 부산 경영학
```

x <- rbind(x, data.frame(성명="장발장", 나이=40, 주소="파리", 학과="전산학"))
x
데이터 프레임 x에 행(장발장) 추가

출력결과

성명 나이 주소 학과 1 홍권동 20 서울 전산학 2 손오공 30 부산 경영학 3 장발장 25 파리 전산학 # 3행 2열의 요소 값 x[3, 2]

3행의 모든 값 x[3,]

2행을 제외한 모든 값 x[-2,]

"성명" 요소 # x[1]과 동일한 결과 x["성명"]

"성명" 요소값 x\$성명, x[["성명"]], x[[1]]

1열 요소 값에서 두 번째 값 x[[1]][2]

❖ 데이터 구조

❖ 벡터 (Vector)

- R에서 가장 작은 데이터 단위
- 4가지 유형의 벡터가 있음

```
      이름 [1]
      이름 [2]
      이름 [3]

      온도 [1]
      온도 [2]
      온도 [3]

      감기상태 [1]
      감기상태 [2]
      감기상태 [3]
```

데이터 구조

```
subject_name <- c("John", "Dunpy", "Steve")
temperature <- c(32.2, 33.0, 37.9)
flu_status <- c(FALSE, FALSE, TRUE)</pre>
```

R 코드

실수형 (Numeric)

```
> temperature <- c(32.2, 33.0, 37.9)
> is(temperature)
[1] "numeric" "vector"
```

논리형 (Logical)

```
> flu_status <- c(FALSE, FALSE, TRUE)
> is(flu_status)
[1] "logical" "vector"
```

문자형 (Character)

```
> subject_name <- c("John","Dunpy","Steve")
> is(subject_name)
[1] "character"
[2] "vector"
[3] "data.frameRowLabels"
[4] "SuperClassMethod"
```

❖ 팩터 (factor)

- 명목형 변수를 대표하기 위해 사용되는 특별한 용도의 벡터 (순서형도 가능)
- 범주형 라벨을 한번만 저장하여 사용
- "Levels=" 구문을 통하여 명시 가능

```
> gender <- factor(c("MALE","FEMALE","MALE"))
> gender
[1] MALE FEMALE MALE
Levels: FEMALE MALE

R 코드 (명목형)

> gender <- factor(gender, ordered=T)
> gender
[1] MALE FEMALE MALE
Levels: FEMALE MALE

R 코드 (문서형)
```

```
> blood <- factor(c("0","AB","A"),
+ levels = c("A","B","AB","O"))
> blood
[1] O AB A
Levels: A B AB O
```

❖ 데이터 구조

❖ 리스트 (list)

- 벡터의 특별한 다른 형태로써, 자유로운 객체 사용 가능
- 모든 원소가 같은 타입이어야 하는 벡터와 달리 타입이 달라도 되는 유연성 있음
- 기계 학습 모델의 설정 매개변수의 집합 사용

List 데이터 구조

❖ 리스트 (list)

R 코드 (아이템 순서에 따른 list 만들기)

❖ 리스트 (list)

```
> John
                                     > John[1]
$fullname
                                      $fullname
                                      [1] "John"
![1] "John"
                                     > John[2]
$temperature
                                      $temperature
[1] 32.2
                                      [1] 32.2
                                     > John[3]
$flu_status
                                      $flu_status
[1] FALSE
                                      [1] FALSE
                                     > John[4]
ı$gender
                                      $gender
[1] MALE
                                      [1] MALE
Levels: FEMALE < MALE
                                     Levels: FEMALE < MALE
                                     > John[5]
i$bTood
                                     $blood
![1] o
                                      [1] 0
Levels: A B AB O
                                     Levels: A B AB O
```

R 코드 결과

❖ 데이터 프레임 (data frame)

- 여러 개의 벡터가 모여서 만든 구조
- 벡터와 리스트의 측면을 둘 다 갖고 있음

DataFrame 데이터 구조

❖ 데이터 프레임 (data frame)

```
속성값 (Attribute Value)
subject_name temperature flu_status gender blood
         John
                      32.2
                                  FALSE
                                          MALE
                      33.0
        Dunpy
                                  FALSE FEMALE
                                                   AB
        Steve
                      37.9
                                   TRUE
                                          MALE
                                                     А
                                                     예제
                                                   (example)
```


❖ 데이터 프레임 (data frame)

R 코드

*	subject_name	temperature $^{\scriptsize \scriptsize $	flu_status [‡]	gender [‡]	blood [‡]
1	John	32.2	FALSE	MALE	0
2	Dunpy	33.0	FALSE	FEMALE	AB
3	Steve	37.9	TRUE	MALE	Α

R 코드 결과

❖ 데이터 프레임 실습 1

```
people$subject_name
people[c("temperature", "flu_status")]
people[2:3] # 2번째 열과 3번째 열의 예제 출력
people[1,2] # 1번째 행과 2번째 열
people[c(1,3), c(2,4)] # 1,3번째 행/2,4번째 열
people[1, ] # 1행에 대한 모든 정보 출력
people[, 1] # 1열에 대한 모든 정보 출력
people[, 1] # 모든 행과 열
```

R 코드 (각각 행과 열을 어떻게 처리하는 지 보여주는 데이터 프레임 실습예제)

❖ 데이터 프레임 실습 2

```
# 2행과 3, 5열 정보 빼기 (Console)
people[-2, c(-3, -5)]
# 2행과 3, 5열 정보 빼기 (View)
View(people[-2, c(-3, -5)])
```

R 코드 (각각 행과 열을 어떻게 처리하는 지 보여주는 데이터 프레임 실습예제)

Vector

flu_status	logi	[1:3]	FALSE	FALSE T	RUE
subject_name	chr [1:3]	"John"	"Dunpy"	"Steve"
temperature	num [1:3]	32.2 33	37.9	

Factor

blood	Factor w/	/ 4 le	vels "A",	"B","AB","
gender	Factor w/	/ 2 le	vels "FEM	ALE","MALE

Scalar (Vector)

1

flu_status	FALSE
subject_name	"John Doe"
temperature	32.2

Data Frame

List

❖ 매트릭스 (matrix)

- 데이터프레임과 달리 한가지 유형으로 2차원테이블 표현
- 수학적인 연산에 주로 사용

Matrix 데이터 구조

❖ 데이터 구조

❖ 매트릭스 실습

```
#nrow : 2행 나누기
m1 \leftarrow matrix(c('a', 'b', 'c', 'd'), nrow = 2)
#ncol : 2열 나누기
m2 \leftarrow matrix(c('a', 'b', 'c', 'd'), ncol = 2)
#nrow : 3행 나누기
m3 \leftarrow matrix(c('a', 'b', 'c', 'd', 'e', 'f'), nrow = 3)
#ncol : 3열 나누기
m4 \leftarrow matrix(c('a', 'b', 'c', 'd', 'e', 'f'), ncol = 3)
m4[1,1] # m4변수 1행 1열 출력
m4[2,3] # m4변수 2행 3열 출력
m3[1,] # m3변수 1행 전체 출력
m3[,1] # m3변수 1열 전체 출력
```

R 코드 (각각 행과 열을 어떻게 처리하는 지 보여주는 실습예제)

RData 저장하기 (R 작업상태 저장)

❖ RData 저장하고 로드하기

```
# 지금의 변수들을 저장 save(m1,m2,m3,m4, file = "mydata.RData")
# 데이터 변수 출력 load("mydata.RData")

R 코드

R 코드

R Studio에 저장된 파일
```

R 데이터를 CSV에 저장하고 불러오기

❖ people 데이터프레임을 "first.csv" 파일로 저장

```
write.csv(people, file = "first.csv")
```


❖ "first.csv" 파일을 first로 불러오기 ("file="은 생략 가능)

```
first <- read.csv(file = "first.csv")

Data

ofirst
3 obs. of 6 variables

X: int 1 2 3

subject_name: Factor w/ 3 levels "Dunpy", "John",..: 2 1 3

temperature: num 32.2 33 37.9

flu_status: logi FALSE FALSE TRUE

gender: Factor w/ 2 levels "FEMALE", "MALE": 2 1 2

blood: Factor w/ 3 levels "A", "AB", "O": 3 2 1
```

R 데이터를 CSV에 저장하고 불러오기

❖ CSV 파일을 factor 구조로 불러오지 않음

```
first <- read.csv("first.csv", stringsAsFactors = FALSE)
 first <- first[ ,-1]
R 코드
                                     Data
                                     first
                                                          3 obs. of 6 variables
                                        X: int 1 2 3
                                        subject_name: chr "John" "Dunpy" "Steve"
                                        temperature : num 32.2 33 37.9
                                        flu_status : logi FALSE FALSE TRUE
                                        gender : chr "MALE" "FEMALE" "MALE"
                                        blood : chr "0" "AB" "A"
Data
                    3 obs. of 6 variables
first
   X: int 1 2 3
   subject_name: Factor w/ 3 levels "Dunpy", "John", ...: 2 1 3
   temperature : num 32.2 33 37.9
   flu_status : logi FALSE FALSE TRUE
   gender : Factor w/ 2 levels "FEMALE", "MALE": 2 1 2
   blood : Factor w/ 3 levels "A", "AB", "O": 3 2 1
```

R 데이터를 CSV에 저장하고 불러오기

❖ read.csv의 header 비교

```
first1 <- read.csv("first.csv", stringsAsFactors = FALSE, header = TRUE) first2 <- read.csv("first.csv", stringsAsFactors = FALSE, header = FALSE)
```

R 코드

header = TRUE 인 경우

header = FALSE 인 경우

```
first
                   3 obs. of 6 variables
  X: int 1 2 3
   subject_name: chr "John" "Dunpy" "Steve"
   temperature : num 32.2 33 37.9
   flu_status : logi FALSE FALSE TRUE
   gender : chr "MALE" "FEMALE" "MALE"
   blood : chr "d" "AB" "A"
☐ first
                   4 obs. of 6 variables
   V1: int NA 1 2 3
   v2: chr "subject_name" "John" "Dunpy" "Steve"
   V3: chr "temperature" "32.2" "33" "37.9"
   V4: chr "flu_status" "FALSE" "FALSE" "TRUE"
   V5: chr "gender" "MALE" "FEMALE" "MALE"
   V6: chr "blood" "0" "AB" "A"
```

데이터 이해와 탐구

❖ 데이터 구조 살펴보기

 str (변수명): 데이터 프레임의 구조나 벡터, 리스트를 포함한 R 데이터 구조를 표시하는 방법

```
> usedcars <- read.csv("usedcars.csv", stringsAsFactors = FALSE)
> str(usedcars)
'data.frame': 150 obs. of 6 variables:
$ year : int 2011 2011 2011 2012 2010 2011 2010 2011 2010 ...
$ model : chr "SEL" "SEL" "SEL" "...
$ price : int 21992 20995 19995 17809 17500 17495 17000 16995 16995 16995 ...
$ mileage : int 7413 10926 7351 11613 8367 25125 27393 21026 32655 36116 ...
$ color : chr "Yellow" "Gray" "Silver" "Gray" ...
$ transmission: chr "AUTO" "AUTO" "AUTO" ...
```

R 코드

수치 변수 살펴보기

❖ 요약 통계 값

• summary (변수명) : 일반적인 요약 통계를 보여주는 코드

```
> summary(usedcars$year)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
    2000 2008 2009 2009 2010 2012
> summary(usedcars[c("price", "mileage")])
    price mileage
Min. : 3800 Min. : 4867
1st Qu.:10995 1st Qu.: 27200
Median :13592 Median : 36385
Mean :12962 Mean : 44261
3rd Qu.:14904 3rd Qu.: 55125
Max. :21992 Max. :151479
```


중심 경향 측정 : 평균과 중앙값

❖ 평균과 중앙값

- 평균은 데이터의 중심을 측정하기 위해 사용되는 통계
- 중앙값은 값의 리스트에서 중앙에 있는 값 (median)

```
> (36000 + 44000 + 56000) / 3
[1] 45333.33
> mean(c(36000, 44000, 56000))
[1] 45333.33
```

```
> median(c(36000, 44000, 56000))
[1] 44000
R 코드 (중앙값)
```


퍼짐 측정: 사분위수와 다섯수치요약

❖ 사분위수 나타내기

- 범위(range)는 최대값과 최소값의 공간이라고 함
- range()와 차이 함수 diff()를 결합해 하나의 명령으로 데이터 범위 나타냄

- > range(usedcars\$price)
 [1] 3800 21992
- R 코드 (최소값과 최대값 범위 표현)
- > diff(range(usedcars\$price))
 [1] 18192
- R 코드 (range의 차이 값을 알아보기 위한 코드)

퍼짐 측정: 사분위수와 다섯수치요약

❖ IQR 나타내기

- 1.5 IQR 이상인 Upper fence 위의 값을 보통 의심되는 이상값 혹은 극단값이라 함
- 보통 2.0 IQR이상이면 *로 표시하고, 보통 IQR = Q3 Q1으로 3사분위수에서
 1사분위수를 뺀 사분위수 범위 (Inter-Quartile Range : IQR)를 의미

퍼짐 측정: 사분위수와 다섯수치요약

❖ IQR 나타내기

```
> IQR(usedcars$price)
[1] 3909.5
> quantile(usedcars$price)
    0% 25% 50%
                       75% 100%
3800.0 10995.0 13591.5 14904.5 21992.0
> quantile(usedcars$price, probs = c(0.01, 0.99))
     1%
             99%
 5428.69 20505.00
> quantile(usedcars$price, seq(from = 0, to = 1, by = 0.20))
    0%
           20%
                  40%
                        60%
                               80%
                                        100%
3800.0 10759.4 12993.8 13992.0 14999.0 21992.0
● R 코드 (IQR)
```


수치 변수 시각화: boxplots

❖ Boxplots 1 (중고차의 가격 boxplots)

```
> boxplot(usedcars$price,
+ main="Boxplot of Used Car Prices",
+ ylab="Price ($)")
- R코드
```


수치 변수 시각화: boxplots

❖ Boxplots 2 (중고차 주행거리에 대한 boxplots)

```
> boxplot(usedcars$mileage,
+ main="Boxplot of Used Car Mileage",
+ ylab="Odometer (mi.)")
• R코드
```


수치 변수 시각화: 히스토그램

❖ Histogram 1 (중고차 가격의 히스토그램)

```
> hist(usedcars$price,
+ main = "Histogram of Used Car Prices",
+ xlab = "Price ($)")
• R코드
```


수치 변수 시각화: 히스토그램

❖ Histogram 2 (중고차 주행거리의 히스토그램)

```
> hist(usedcars$mileage,
+ main = "Histogram of Used Car Mileage",
+ xlab = "Odometer (mi.)")
- R코드
```


수치 데이터의 이해 : 분산과 표준 편차

❖ 분산과 표준편차

```
> var(usedcars$price)
[1] 9749892
> sd(usedcars$price)
[1] 3122.482
> var(usedcars$mileage)
[1] 728033954
> sd(usedcars$mileage)
[1] 26982.1
```


범주형 변수 살펴보기 : 일원배치

❖ 일원배치

```
> table(usedcars$vear)
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
                       3
                            2
                                 Fi
                                               42
                                     11
                                          14
                                                          16
> table(usedcars$model)
SE SEL SES
 78 23 49
> table(usedcars$color)
                                      Red Silver
 Black
         Blue
                Gold
                       Grav Green
                                                 - ₩hite Yellow
    35
           17
                         16
                                 5
                                       25
                                              32
                                                      16
R 코드
```


범주형 변수 살펴보기

표의 비율 알아보기

```
> mt <- table(usedcars$model)
> prop.table(mt)

SE SEL SES
0.5200000 0.1533333 0.3266667
```

❖ 데이터 반올림

```
> rmt <- prop.table(mt)
> rmt <- prop.table(mt) * 100
> round(rmt, digits = 1)

SE SEL SES
52.0 15.3 32.7
```

관계 시각화: 산포도

❖ 관계 시각화 : 산포도

```
> plot(x = usedcars$mileage, y = usedcars$price,
+ main = "Scatterplot of Price vs. Mileage",
+ xlab = "Used Car Odometer (mi.)",
+ ylab = "Used Car Price ($)")
```


이원배치표 패키지 설치

❖ 패키지 설치

- install.packages("gmodels") #gmodels 패키지 설치
- library (gmodels) #gmodels 불러오기

관계 살펴보기: 이원배치표

❖ 변수 넣기

- 보수적인 "Black", "Gray", "Silver", "White " 색을 사용하는 사용자들만 나타내기 위해, 이 부분을 새로운 변수로 추가
- 150명 중 99명이 보수적인 차를 구매

```
> usedcars$conservative <-
+ usedcars$color %in% c("Black", "Gray", "Silver", "White")
> table(usedcars$conservative)

FALSE TRUE
51 99
```

관계 살펴보기: 이원배치표

❖ 이원배치표 결과

R 코드 결과 - 1

usedcars\$conservative			
usedcars\$model	FALSE	TRUE	Row Total
SE	27	51	78
	0.009	0.004	i i
	0.346	0.654	0.520
	0.529	0.515	
	0.180	0.340	
SEL	7	16	23
	0.086	0.044	
	0.304	0.696	0.153
	0.137	0.162	
	0.047	0.107	
SES	17	32	49
	0.007	0.004	
	0.347	0.653	0.327
	0.333	0.323	
	0.113	0.213	
Column Total	51	99	150
	0.340	0.660	

[•] R 코드 결과 - 2

함수 만들기

❖ 함수: 하나 이상의 명령어로 반복 사용 가능한 기능을 구현한 것

```
함수명<-function(···) {
                                    반지름의 길이를 매개변수(parameter)로 함
                       함수명
함수 호출
                                    ☞ 매개변수가 없거나, 1개 이상도 가능함, 1개 이상의 경우, 쉼표(,)로 구분함
                     getCircleArea < - function(r)</pre>
.....
                        area = 3.14 * r^2
함수 호출
                                                                                  함수의 정의
                        return(area)  반환 값(반환 값이 없을 경우, 생략)
                     getCircleArea(3)
                                                                                  함수의 호출
                                    인자 또는 인수(argument)
                      함수명
                                    ☞ 정의된 함수의 매개변수 수와 같게 함
                     출력 결과
                        [1] 28.26
```