PRINCIPAL COMPONENT ANALYSIS (PCA)

WHAT IS PCA?

Principal Component Analysis (PCA) is a statistical technique used to reduce the dimensionality of a data set while retaining as much of the original information as possible. This is a very popular preprocessing step for other analyses.

This is done by linearly transforming the initial data into a new coordinate system where most of the variation in the data can be described by fewer dimensions than the initial data.

When to use PCA?

PCA is used when analyzing data sets with many correlated variables. By reducing the dimensionality, PCA can:

- Make it easier to visualize and analyze data
- Decrease computation time in code
- Reduce noise and detect outliers in the dataset
- Help mitigate the problem of overfitting

<u>Popular places where PCA is used:</u> Computer Vision, bioinformatics, machine learning, speech processing, and many more!

What are the data requirements and assumptions for PCA?

- Data must be numeric
- Data must have at least three features / variables
- Data must be linear (assess visually with pairwise plots or matrix scatter plots)
- Data must be standardized and continuous
- Data with missing values must be removed
- Data set should be highly correlated (assess with Pearson correlation)

How PCA works:

NOTE: This is the Singular Value Decomposition (SVD) method of performing PCA.

- 1. Standardize the data! Data must be on the same scale.
- 2. **Find the first principal component (PC1)!** Find the best fit multiple regression line through the data.
- 3. Find the second principal component (PC2)! Find the best line of fit that is perpendicular to PC1.
- 4. Repeat for each variable! Find the PCs for each variable.
- 5. **Interpret the results!** Analyze the relationship between variables using the PCs.

Figure 2: Image of Scree plot to
help determine how many PCs are
necessary to explain a percentage
of variance in the data.

Look for the "elbow" or point where the curve flattens for the optimal number of components to retain

Figure 1: Plot 1A is a scatterplot with identified principal components; Plot 1B is reduced data by projecting each sample onto the first PC

COMP-4442 | Marina Garceau, Sammantha Firestone, Bradley Robasky

Resources:

StatQuest: Principal Component Analysis (PCA), Step-by-Step

<u>Data Camp: Principal Component Analysis in R Tutorial</u>

Toward Data Science: Principal Component Analysis (PCA) 101, using R

BuiltIn: Principal Component Analysis

UC business Analytics R Programming Guide: Principal Component Analysis

STHDA: Principal Component Methods in R: Practical Guide

Statology: Principal Component Analysis in R: Step-by-Step Example

Keboola: A Guide to Principal Component Analysis (PCA) for Machine Learning

Geeks for Geeks: Principal Component Analysis with R Programming

CRAN: Step-by-Step PCA