Author: Smridhi Mangla

• Reference: https://mesonet.agron.iastate.edu/request/download.phtml?network=CT_ASOS

Data Preparation

```
#load file
from google.colab import drive
drive.mount('/content/drive')
    Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.moun
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings("ignore")
from sklearn.model_selection import train_test_split
#load airport weather dataset
df_airport_weather = pd.read_csv("/content/drive/My Drive/Data Science with Python Spring2020
df_airport_weather.shape
(9122, 31)
#subset the data
df subset=df airport weather[['station','valid','lon','lat','tmpf','dwpf','sknt','relh','drct
df subset
\Box
```

	station	valid	lon	lat	tmpf	dwpf	sknt	relh	drct	p01i	alt:
0	BDL	1/1/2019 0:00	-72.6825	41.9381	M	M	5	M	110	0.01	30.1
1	BDL	1/1/2019 0:05	-72.6825	41.9381	M	M	4	M	120	0.01	30.10
2	BDL	1/1/2019 0:10	-72.6825	41.9381	M	M	4	M	110	0.02	30.10
3	BDL	1/1/2019 0:15	-72.6825	41.9381	M	M	3	M	110	0.03	30.10
4	BDL	1/1/2019 0:20	-72.6825	41.9381	M	M	3	M	100	0.04	30.1
9117	BDL	1/30/2019 23:40	-72.6825	41.9381	M	M	18	M	260	M	29.8
9118	BDL	1/30/2019 23:45	-72.6825	41.9381	M	M	19	M	260	M	29.88
9119	BDL	1/30/2019 23:50	-72.6825	41.9381	M	M	23	M	260	M	29.89
9120	BDL	1/30/2019 23:51	-72.6825	41.9381	16	5	23	61.23	270	Т	29.89
9121	BDL	1/30/2019 23:55	-72.6825	41.9381	M	M	19	M	260	M	29.89

9122 rows × 13 columns

Data Preprocessing

```
#Cleaning up the tmpf, sknt and dwpf columns 'M'/'T' counts as NA values
df_subset=df_subset.replace('M',np.nan)
df_subset=df_subset.replace('T',np.nan)
df subset.isna
```

```
<bound method DataFrame.isna of</pre>
                                                         valid
                                                                    lon
                                     station
                                                                             lat
                                                                                       p0
         BDL
                1/1/2019 0:00 -72.6825 41.9381
                                                       0.01 30.17
                                                                       NaN
                                                                            NaN
1
         BDL
                                                             30.16
                1/1/2019 0:05 -72.6825 41.9381
                                                       0.01
                                                                       NaN
                                                                            NaN
2
         BDL
                1/1/2019 0:10 -72.6825 41.9381
                                                       0.02
                                                             30.16
                                                                            NaN
                                                                       NaN
3
         BDL
                1/1/2019 0:15 -72.6825 41.9381
                                                       0.03
                                                             30.16
                                                                            NaN
                                                                       NaN
4
         BDL
                1/1/2019 0:20 -72.6825 41.9381
                                                       0.04
                                                            30.15
                                                                       NaN
                                                                           NaN
         . . .
                                                        . . .
                                                               . . .
9117
         BDL 1/30/2019 23:40 -72.6825
                                        41.9381
                                                        NaN
                                                             29.87
                                                                       NaN
                                                                            NaN
9118
         BDL 1/30/2019 23:45 -72.6825
                                        41.9381
                                                        NaN
                                                             29.88
                                                                       NaN
                                                                            NaN
9119
         BDL 1/30/2019 23:50 -72.6825 41.9381
                                                            29.89
                                                                            NaN
                                                        NaN
                                                                       NaN
9120
         BDL 1/30/2019 23:51 -72.6825 41.9381
                                                        NaN 29.89
                                                                    1012.3
                                                                             31
9121
             1/30/2019 23:55 -72.6825 41.9381
         BDL
                                                        NaN 29.89
                                                                       NaN
                                                                            NaN
```

[9122 rows x 13 columns] >

```
#Droping all NA rows
df_subset = df_subset.dropna()
df_subset
```

 \Box

	station	valid	lon	lat	tmpf	dwpf	sknt	relh	drct	p01i	alt:
207	BDL	1/1/2019 15:51	-72.6825	41.9381	53.1	41	17	63.38	320	0	29.6
220	BDL	1/1/2019 16:51	-72.6825	41.9381	51.1	33.1	19	49.98	310	0	29.74
232	BDL	1/1/2019 17:51	-72.6825	41.9381	48.9	30.9	20	49.63	310	0	29.7
244	BDL	1/1/2019 18:51	-72.6825	41.9381	46	30	17	53.37	330	0	29.8
255	BDL	1/1/2019 19:51	-72.6825	41.9381	43	28.9	27	57.21	300	0	29.8
8141	BDL	1/27/2019 19:51	-72.6825	41.9381	44.1	27	14	50.73	190	0	29.9
8297	BDL	1/28/2019 7:51	-72.6825	41.9381	24.1	10	13	54.36	340	0	30.00
8950	BDL	1/30/2019 10:51	-72.6825	41.9381	25	15.1	13	65.58	330	0	29.
9053	BDL	1/30/2019 18:51	-72.6825	41.9381	27	7	14	42.11	230	0	29.7
9077	BDL	1/30/2019 20:51	-72.6825	41.9381	28	7	8	40.41	190	0	29.7

125 rows × 13 columns

```
#Converting date using proper format
df_subset.dtypes
df_subset['valid']= pd.to_datetime(df_subset['valid'])
df subset['valid']
□ 207
           2019-01-01 15:51:00
    220
           2019-01-01 16:51:00
    232
           2019-01-01 17:51:00
    244
           2019-01-01 18:51:00
    255
           2019-01-01 19:51:00
           2019-01-27 19:51:00
    8141
    8297 2019-01-28 07:51:00
    8950 2019-01-30 10:51:00
    9053
           2019-01-30 18:51:00
    9077 2019-01-30 20:51:00
    Name: valid, Length: 125, dtype: datetime64[ns]
#Creating columns for MONTH, DAY and YEAR
df_subset['day'] = pd.to_datetime(df_subset['valid']).dt.day
df_subset['month'] = pd.to_datetime(df_subset['valid']).dt.month
df_subset['year'] = pd.to_datetime(df_subset['valid']).dt.year
df_subset
```

 \Box

	station	valid	lon	lat	tmpf	dwpf	sknt	relh	drct	p01i	alti	ms
207	BDL	2019- 01-01 15:51:00	-72.6825	41.9381	53.1	41	17	63.38	320	0	29.68	1005
220	BDL	2019- 01-01 16:51:00	-72.6825	41.9381	51.1	33.1	19	49.98	310	0	29.74	1007
232	BDL	2019- 01-01 17:51:00	-72.6825	41.9381	48.9	30.9	20	49.63	310	0	29.77	1008
244	BDL	2019- 01-01 18:51:00	-72.6825	41.9381	46	30	17	53.37	330	0	29.81	1009
255	BDL	2019- 01-01 19:51:00	-72.6825	41.9381	43	28.9	27	57.21	300	0	29.88	1011

#Creating a new column called MonthDay in "MM-DD" format

df_subset['MonthDay'] = df_subset['month'].map(str) + '-' + df_subset['day'].map(str)

df_subset

$\qquad \qquad \Box \Rightarrow \qquad \qquad$		station	valid	lon	lat	tmpf	dwpf	sknt	relh	drct	p01i	alti	ms
	207	BDL	2019- 01-01 15:51:00	-72.6825	41.9381	53.1	41	17	63.38	320	0	29.68	1005
	220	BDL	2019- 01-01 16:51:00	-72.6825	41.9381	51.1	33.1	19	49.98	310	0	29.74	1007
	232	BDL	2019- 01-01 17:51:00	-72.6825	41.9381	48.9	30.9	20	49.63	310	0	29.77	1008
	244	BDL	2019- 01-01 18:51:00	-72.6825	41.9381	46	30	17	53.37	330	0	29.81	1009
	255	BDL	2019- 01-01 19:51:00	-72.6825	41.9381	43	28.9	27	57.21	300	0	29.88	1011

Data Recoding

```
# Creating a binary flag column for rows/observations that are cold (below 32 degF)
#If below 32 degF, call it "COLD";
#otherwise, call it "HOT"
df subset['tmpf'] = df subset['tmpf'].astype(float)
df subset['tmpf b'] = df subset['tmpf'].apply(lambda x:'COLD' if x < 32 else 'HOT')</pre>
df subset['tmpf b']
    207
              HOT
     220
              HOT
     232
              HOT
     244
              HOT
     255
             HOT
             . . .
     8141
             HOT
     8297
            COLD
     8950
            COLD
     9053
            COLD
     9077
            COLD
     Name: tmpf_b, Length: 125, dtype: object
#Creating a binary flag column for rows/observations are windy.
#If above 20 miles per hour, call it "WINDY",
#otherwise call it "CALM"
df subset['sknt'] = df subset['sknt'].astype(float)
df_subset['sknt_mph'] = df_subset['sknt']*1.15078 #converting knots to miles per hour
df subset['sknt b'] = df subset['sknt mph'].apply(lambda x:'CALM' if x < 20 else 'WINDY')</pre>
df_subset['sknt_b']
     207
             CALM
     220
            WINDY
     232
            WINDY
     244
            CALM
     255
            WINDY
             . . .
     8141
             CALM
     8297
             CALM
     8950
             CALM
     9053
             CALM
     9077
              CALM
     Name: sknt b, Length: 125, dtype: object
```

Aggregation

```
#show the counts of each weather type.
freq_table = pd.crosstab(index=df_subset['sknt_b'], columns=df_subset['tmpf_b'])
freq_table
```

#A table that shows the average wind speed and average temperature per day.
df_avg=df_subset.groupby(['day','month','year']).agg({'tmpf':'mean','sknt':'mean'})
df_avg

$\stackrel{\square}{\rightarrow}$				tmpf	sknt
	day	month	year		
	1	1	2019	44.862500	17.875000
	2	1	2019	37.000000	10.000000
	3	1	2019	41.666667	15.666667
	4	1	2019	39.000000	10.000000
	6	1	2019	39.040000	14.800000
	7	1	2019	25.683333	13.833333
	9	1	2019	38.828571	15.142857
	10	1	2019	30.176471	16.000000
	11	1	2019	22.700000	13.900000
	12	1	2019	17.380000	11.400000
	17	1	2019	29.050000	13.000000
	20	1	2019	18.550000	15.500000
	21	1	2019	0.526316	16.684211
	22	1	2019	6.655556	14.333333
	24	1	2019	50.620000	14.800000
	25	1	2019	34.033333	15.888889
	26	1	2019	29.450000	9.000000
	27	1	2019	42.700000	13.666667
	28	1	2019	24.100000	13.000000
	20	A	2040	06 666667	11 666667

Data Visualization

```
#histogram plot of the wind speed
import matplotlib.pyplot as plt
df_subset.hist('sknt', color='green')
plt.title("Histogram of Wind speed")
plt.xlabel('Wind Speed')
plt.ylabel('Frequency')
```

Text(0, 0.5, 'Frequency')


```
# a histogram plot of the temperature column
import matplotlib.pyplot as plt
df_subset.hist('tmpf', color='red')
plt.title("Histogram of Temperature")
plt.xlabel('Air Speed')
plt.ylabel('Frequency')
```

 \Box

Text(0, 0.5, 'Frequency')

Text(0, 0.5, 'Wind Gust')

15

10

20

25

```
#Line plot of the sknt, tmpf and dwpf (as a 3 panel plot), each having a different color.
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
# specify dimensions of plot
sns.set(rc={'figure.figsize':(10,8)})
#3 rows and 1 columns
fig, ax = plt.subplots(3,1)
#line plot for Wind Speed
ax[0].plot(df_subset.sknt,color='green')
ax[0].set_title("Line Plot of Wind Speed")
ax[0].set xlabel('wind speed')
#line plot for Air Temperature
ax[1].plot(df_subset.tmpf,color='yellow')
ax[1].set_title("Line Plot of Air Temperature")
ax[1].set_xlabel('Air Temperature')
```

Wind Speed

```
#line plot for Dew Point Temperature
ax[2].plot(df_subset.dwpf,color='red')
ax[2].set_title("Line Plot of Dew Point Temperature")
ax[2].set_xlabel('Dew Point Temperature')
fig.tight_layout()
plt.show()
```



```
Y_aw = df_subset['gust']
X_aw = df_subset[['tmpf','dwpf','sknt','relh','drct','p01i','alti','mslp']]
X_aw[['dwpf','relh','drct','p01i','alti','mslp']]= X_aw[['dwpf','relh','drct','p01i','alti','
X_aw.dtypes
```

 \square

 Γ

```
tmpf float64
dwpf float64
sknt float64
relh float64
drct float64
p01i float64
alti float64
mslp float64
dtype: object
```

Polynomial Features

```
# Create polynomial features (and interactions).
from sklearn.preprocessing import PolynomialFeatures
# specify the degree of the poly fit
# the higher the degree, the weirder the fit!
# includes INTERACTIONS and Polynomials... lots of variables here...
poly features = PolynomialFeatures(degree=2)
# transforms the existing features to higher degree features.
X poly = poly features.fit transform(X aw)
X_poly = np.nan_to_num(X_poly)
tmp trans = pd.DataFrame(X poly)
print("Original Data")
print(X aw.head()) #13 columns
print("#############"")
#tmp trans= pd.DataFrame(np.nan to num(tmp trans))
print("Poly Features")
print(tmp trans.head()) #105 columns
tmp trans.shape
```

Original Data

Log Features

```
# Create log features
import numpy as np
tmp_log_a = np.log(X_aw)
tmp_log_a[np.isneginf(tmp_log_a)] = 0  #recode -inf to 0...
tmp_log = pd.DataFrame(tmp_log_a)
tmp_log = tmp_log.fillna(0)
print(tmp_log.shape) # same number of columns, but they've changed.
tmp_log
```

(125, 8)

	tmpf	dwpf	sknt	relh	drct	p 01i	alti	mslp
207	3.972177	3.713572	2.833213	4.149148	5.768321	0.0	3.390473	6.912942
220	3.933784	3.499533	2.944439	3.911623	5.736572	0.0	3.392493	6.915029
232	3.889777	3.430756	2.995732	3.904595	5.736572	0.0	3.393501	6.915823
244	3.828641	3.401197	2.833213	3.977249	5.799093	0.0	3.394844	6.917111
255	3.761200	3.363842	3.295837	4.046729	5.703782	0.0	3.397189	6.919585
8141	3.786460	3.295837	2.639057	3.926517	5.247024	0.0	3.397858	6.920375
8297	3.182212	2.302585	2.564949	3.995629	5.828946	0.0	3.403195	6.925595
8950	3.218876	2.714695	2.564949	4.183271	5.799093	0.0	3.394508	6.917210
9053	3.295837	1.945910	2.639057	3.740285	5.438079	0.0	3.393501	6.916021
9077	3.332205	1.945910	2.079442	3.699077	5.247024	0.0	3.392157	6.914532

125 rows × 8 columns

Concatenate log and polynomial features

```
# smoosh the two dataframes together
# reset index of tables
#X_aw.reset_index(inplace=True,drop=True) #drop not to make additional column for index
tmp_trans.reset_index(inplace=True,drop=True)
tmp_log.reset_index(inplace=True,drop=True)

#Join these two datasets together with the original variables.
df_resultant = pd.concat([tmp_trans,tmp_log], axis=1)
```

look at how many more columns there are

```
0
         0
1
         0
2
         0
3
         0
4
         0
5
         0
6
         0
7
         0
8
         0
9
         0
10
         0
11
         0
12
         0
13
         0
         0
14
15
         0
16
         0
17
         0
18
         0
19
         0
20
         0
21
         0
22
         0
23
         0
         0
24
25
         0
         0
26
27
         0
28
         0
29
         0
30
         0
31
         0
32
         0
33
         0
34
         0
35
         0
         0
36
37
         0
         0
38
39
         0
40
         0
41
         0
42
         0
43
         0
         0
44
tmpf
         0
dwpf
         0
sknt
         0
relh
        0
drct
         0
p01i
        0
alti
         0
mslp
        0
dtvpe: int64
```

Shuffle the data, then do an 80/20 split on the data

```
Y_aw.reset_index(inplace=True,drop=True)
X_train ,X_test, y_train, y_test = train_test_split(df_resultant, Y_aw, test_size=0.2, random_
# ensure the split worked - checked how many rows there are!
print('X_train', X_train.shape,'y_train', y_train.shape)
print('X_test ', X_test.shape, 'y_test ', y_test.shape)

\[
\tilde{\text{Y}} \text{ X_train (100, 53) y_train (100,)} \\
X_test (25, 53) y_test (25,)
\]
```

Linear Regression

```
#Linear Regression
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean absolute error
# fit the training data to Linear Regression
LR_model = LinearRegression() # specifies an empty model
LR model.fit(X train, y train)
# predicting on training data-set
y train predict = LR model.predict(X train)
# predicting on test data-set
y_test_predict = LR_model.predict(X_test)
df linear reg pred = pd.DataFrame(y test predict)
df_linear_reg_pred
# the Linear regression model results
score_test = LR_model.score(X_test, y_test)
mae test = mean absolute error(y test,y test predict)
print("R2:{0:.4f}, MAE:{1:.2f}".format(score test, mae test))
R2:-0.2335, MAE:3.38
```

Lasso Regression

```
#Fitting an lasso on your concatenated dataset (the polynomial features and
#interactions, and the log features)
#with varying alpha values (0.01, 0.1, 1, 10, 100, 1000),
#observing model best fit in terms of R2 and MAE
from sklearn.linear_model import Lasso
from sklearn.metrics import mean_absolute_error

df_model_results = []

alphas = [0.01, 0.1, 1, 10, 100, 1000]  # this is essentially alpha values
# the Lasso on Training data set
```

```
for a in alphas:
 model = Lasso(alpha=a).fit(X train, y train)
 score train = model.score(X_train, y_train)
 pred y = model.predict(X train)
 mae = mean absolute error(y train,pred y)
# the Lasso on Test data set
 score test = model.score(X test, y test)
 pred_y_test = model.predict(X_test)
 mae test = mean absolute error(y test,pred y test)
#Show results in a table for training and validation results.
 df model results.append([a, score train, score test, mae, mae test])
df model results = pd.DataFrame(data=df model results, columns=['Alpha', 'Training R2', 'Test
print(df model results)
         Alpha Training R2
                            Test R2 Training MAE Test MAE
                                          1.876754 1.630231
          0.01
                   0.708028 0.738219
    1
          0.10
                   0.702573 0.747352
                                          1.912473 1.628341
                   0.698641 0.748369
    2
         1.00
                                         1.921989 1.615872
        10.00 0.690043 0.758812
    3
                                          1.973353 1.573544
    4 100.00
                 0.659944 0.756681
                                          2.110637 1.479246
    5 1000.00
                  0.622187 0.703419
                                          2.245159 1.758379
```

Ridge Regression

```
#Fitting an ridge on your concatenated dataset (the polynomial features and
#interactions, and the log features)
#with varying alpha values (0.01, 0.1, 1, 10, 100, 1000),
#observing model best fit in terms of R2 and MAE
from sklearn.linear model import Ridge
from sklearn.metrics import mean_absolute_error
df model results = []
alphas = [0.01, 0.1, 1, 10, 100, 1000]
                                            # this is essentially alpha values
# the ridge on Training data set
for a in alphas:
 model = Lasso(alpha=a).fit(X train, y train)
 score train = model.score(X train, y train)
 pred_y = model.predict(X_train)
 mae = mean absolute error(y train,pred y)
# the Lasso on Test data set
 score test = model.score(X test, y test)
 pred y test = model.predict(X test)
 mae test = mean absolute error(y test,pred y test)
#Show results in a table for training and validation results.
```

```
df_model_results.append([a, score_train, score_test, mae, mae_test])
df_model_results = pd.DataFrame(data=df_model_results, columns=['Alpha', 'Training R2', 'Test
print(df_model_results)
```

```
Alpha Training R2
                        Test R2 Training MAE Test MAE
0
     0.01
              0.708028 0.738219
                                     1.876754
                                              1.630231
1
     0.10
              0.702573 0.747352
                                     1.912473 1.628341
2
              0.698641 0.748369
     1.00
                                    1.921989 1.615872
3
    10.00
              0.690043 0.758812
                                     1.973353
                                              1.573544
4 100.00
              0.659944 0.756681
                                     2.110637 1.479246
5 1000.00
              0.622187 0.703419
                                     2.245159 1.758379
```

ElasticNet Regression

```
#Fitting an elasticNet on your concatenated dataset (the polynomial features and
#interactions, and the log features)
#with varying alpha values (0.01, 0.1, 1, 10, 100, 1000), observing model best fit in terms o
from sklearn.linear model import ElasticNet
from sklearn.metrics import mean absolute error
df model results = []
alphas = [0.01, 0.1, 1, 10, 100, 1000]
                                       # this is essentially alpha values
# the ElasticNet on Training data set
for a in alphas:
 model = ElasticNet(alpha=a).fit(X train, y train)
 score train = model.score(X_train, y_train)
 pred y = model.predict(X train)
 mae = mean absolute error(y train,pred y)
# the ElasticNet on Test data set
 score_test = model.score(X_test, y_test)
 pred y test = model.predict(X test)
 mae test = mean absolute error(y test,pred y test)
#Show results in a table for training and validation results.
  df model results.append([a, score train, score test, mae, mae test])
df model results = pd.DataFrame(data=df model results, columns=['Alpha', 'Training R2', 'Test
print(df model results)
         Alpha Training R2
                             Test R2 Training MAE Test MAE
          0.01
                                                     1.630985
    0
                   0.707933 0.737560
                                           1.877783
                   0.702803 0.747741
    1
          0.10
                                           1.911686
                                                     1.626407
     2
          1.00
                   0.699798 0.746914
                                           1.916014 1.623505
    3
         10.00
                   0.692084 0.754303
                                           1.957291 1.586926
    4
        100.00
                   0.676581 0.775164
                                           2.033666
                                                     1.464900
    5 1000.00
                   0.626251 0.693646
                                           2.235905 1.776960
```

#Scatterplot of actual vs. predicted for your best fitting model.

```
import seaborn
model = ElasticNet(alpha=100.00).fit(X_train, y_train)
score_train = model.score(X_train, y_train)
pred_y = model.predict(X_train)
seaborn.regplot(y_train,pred_y)
plt.title("Actual V/S Predicted Training Data")
plt.xlabel("Actual")
plt.ylabel("Predicted")
```

Text(0, 0.5, 'Predicted')


```
#Scatterplot of actual vs. test for your best fitting model.
score_test = model.score(X_test, y_test)
pred_y_test = model.predict(X_test)
mae_test = mean_absolute_error(y_test,pred_y_test)
seaborn.regplot(y_test,pred_y_test)
plt.title("Actual V/S Test Data")
plt.xlabel("Actual")
plt.ylabel("Test")
```

 Γ

Text(0, 0.5, 'Test')

Baseline ElsticNet Regression

```
# the ElasticNet on original dataset
# training dataset
for a in alphas:
 model = ElasticNet(alpha=a).fit(X train subset, Y train subset)
 score train = model.score(X train subset, Y train subset)
 pred y simple train = model.predict(X train subset)
 mae = mean absolute error(Y train subset,pred y simple train)
 score test = model.score(X test subset, Y test subset)
 pred y simple test = model.predict(X test subset)
 mae_test = mean_absolute_error(Y_test_subset,pred_y_simple_test)
#Show results in a table for training and validation results.
 df model results s.append([a, score train, score test, mae, mae test])
df_model_results_s = pd.DataFrame(data=df_model_results_s, columns=['Alpha', 'Training R2', '
print(df model results s)
         Alpha Training R2
                            Test R2 Training MAE Test MAE
          0.01
                   0.640694 0.672966
                                           2.201683 1.804642
    1
          0.10
                   0.638061 0.680525
                                           2.202587 1.793387
     2
          1.00
                   0.623941 0.702218
                                           2.240013 1.760866
     3
         10.00
                 0.413763 0.525454
                                           2.701517 2.230617
    4
        100.00
                  0.000000 -0.003528
                                          3.480000 3.170400
      1000.00
                   0.000000 -0.003528
                                           3.480000 3.170400
```