PROBABILISTIC & LANGUAGE MODELS

Chapter 7

Outline

- Probability ranking principle
- Classical probabilistic model
 - Binary Independence Model
 - •BM25
 - feedback methods

Language Models

Probability Ranking Principle

- Robertson (1977)
 - "If a reference retrieval system's response to each request is a *ranking* of the documents in the collection in order of decreasing *probability of relevance* to the user who submitted the request,
 - where the *probabilities* are *estimated* as *accurately* as possible on the basis of whatever data have been made available to the system for this purpose,
 - the overall effectiveness of the system to its user will be the best that is obtainable on the basis of those data."
- Basis for most probabilistic approaches to IR

Let's dissect the PR

- rank documents ... by probability of relevance
 - P (relevant | document) or P(R|D)
- estimated as accurately as possible
 - $P_{est}(R|D) \rightarrow P_{true}(R|D)$ in some way
- based on whatever data is available to system
 - P est (R | D, query, context, user profile, ...)
- best possible accuracy one can achieve with that data
 - recipe for a perfect IR system: just need P_{est} (R| ...)
 - strong stuff, can this really be true?

Probability of relevance

- What is: P true (relevant | doc, qry, user, context) ?
 - isn't relevance just the user's opinion?
 - user decides relevant or not, what's the "probability" thing?
- "user" does not mean the human being
 - doc, qry, user, context ... representations
 - parts of the real thing that are available to the system
 - typical case: P_{true} (R|D, query)
 - query: 2-3 keywords, user profile unknown, context not available
 - whether document is relevant is uncertain
 - depends on the factors which are not available to our system
 - think of P _{true} (R|D ,qry) as proportion of all unseen users/contexts/... for which the document would have been judged relevant

Take away ... this is a difficult problem!

IR as Classification

classes

- relevant (R) and non-relevant (NR)
- compute P(R|D) and P(NR|D)
 - retrieve if P(R|D) > P(NR|D)

How do we compute these probabilities?

Generative vs. Discriminative Classifiers

Training classifiers involves estimating f: $X \rightarrow Y$, or P(Y|X)

Discriminative classifiers (also called 'informative' by Rubinstein&Hastie):

- 1. Assume some functional form for P(Y|X)
- 2. Estimate parameters of P(Y|X) directly from training data

Generative vs. Discriminative Classifiers

Training classifiers involves estimating f: $X \rightarrow Y$, or P(Y|X)

Generative classifiers

- 1. Assume some functional form for P(X|Y), P(X)
- 2. Estimate parameters of P(X|Y), P(X) directly from training data
- 3. Model predictions based on $P(Y|X=x_i)$

Bayes Classifier

- Bayes Decision Rule
 - A document D is relevant if P(R|D) > P(NR|D)
- Estimating probabilities
 - use Bayes Rule
 - classify a document as relevant if P(R|D) > P(NR|D).

$$P(R|D) = \frac{P(D|R)P(R)}{P(D)}$$

likelihood ratio

In practice, we rank documents by

$$\frac{P(D|R)}{P(D|NR)} > \frac{P(NR)}{P(R)}$$

Now the question is how to compute P(D|R) and P(D|NR).

Maximum A Posteriori (MAP) Classifier

• Given the data feature vector ${\pmb x}$, we would like to find the class with the largest probability: $\hat{C} \triangleq \arg\max\,p(C|{\pmb x})$

• To accomplish this, we iterate through all possible classes $C_1, C_2,, C_K$ and evaluate the quantity $p(C_i|\boldsymbol{x})$, and pick the class that has the largest probability.

MAP Classifier: Bayes Rule (1/4)

· How do we compute $\;p(C_i|m{x})_{ ext{?}}\;\;$ Apply Bayes' Rule!

$$p(A|B)p(B) \Rightarrow p(B|A)p(A)() \Rightarrow \Rightarrow (p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$
evidence

 ullet Applying Bayes' rule to $\;p(C_i|oldsymbol{x})\;\;$, we obtain:

$$p(C_i|\boldsymbol{x}) = \frac{p(\boldsymbol{x}|C_i)p(C_i)}{p(\boldsymbol{x})}$$

MAP Classifier: Bayes Rule (2/4)

- $p(C_i)$ is called the prior probability of a class
- $p(\boldsymbol{x}|C_i)$ is called the likelihood of the data (what is the probability of observing \boldsymbol{x} if the class was C_i)
- p(x) is the probability of seeing the data so its simply a normalizing factor (applies to all C_i), so doesn't affect which C_i attains MAP.

MAP Classifier: Bayes Rule (3/4)

To compute the normalizing factor, we use:

$$y(x) = \sum_{i=1}^{k} y(x_i(C_i)x_i(C_i))$$
 So that
$$\sum_{i=1}^{k} D(C_i|x_i) = 1$$

Hence,
$$p(C_i|m{x}) = \frac{p(m{x}|C_i)p(C_i)}{\sum_{\ell=1}^K p(m{x}|C_\ell)p(C_\ell)}$$

But really, we don't need to calculate the denominator p(x), so we can simply write it as

$$(p(C_i|x) = p(x|C_i)p(C_i)$$

$$\sum_{i=1}^{K} p(C_i|x) = 1$$

MAP Classifier: Bayes Rule (4/4)

- Usually, the likelihood $p(x|C_i)$ is difficult to compute because it is N-dimensional (length of feature vector).
- This is because the distribution considers correlations between the features when computing the likelihood.
- We can write $p(\boldsymbol{x}|C_i)$ equivalently as:

$$p(\boldsymbol{x}|C_i) = p(x_1, x_2, \dots, x_N|C_i)$$

which makes the dependence on individual features explicit.

Naive Bayes Classifier

- So, P(c) is easy to compute...
- What about $P(x_1, x_2, ..., x_n \mid c)$?
 - The probability of the class given the features.

- This is hard to compute given that there are many features.
 - O(|X|^{n*}|C|) parameters
- Also, its hard to generate this unless we have a large training dataset.

Naive Bayes Classifier

- Bag of Words assumption : order of the words don't matter
- Conditional independence: Assume the feature probability P(xi|c) are independent given the class c.

$$P(x_1, x_2, \dots, x_n \mid c) = P(x_1 \mid c) \cdot P(x_2 \mid c) \cdot \dots \cdot P(x_n \mid c)$$

Obviously this assumption may not always be true, but this simplification allows us to solve the more easily.

Naïve Bayes Classifier: Independence Assumption

- The Naïve Bayes classifier introduces one major assumption regarding the features: independence
- That is, the Naïve Bayes classifier assumes:

$$p(\mathbf{x}|C_i) = p(x_1, x_2, \dots, x_N|C_i) = \prod_{n=1}^{N} p(x_n|C_i)$$

- That is, the complicated likelihood $p(x|C_i)$ can now be factored into a product of N 1-dimensional likelihoods, which are easy to compute.
- It is good to note that independence implies that the features are not correlated (but generally not the other way around---so independence is a stronger assumption).

Binary independence model

- Objective: Need to compute P(D|R) and P(D|NR)
- Assumptions
 - In this model, documents are represented as a *vector of binary features*
 - D = (d_1, d_2, \ldots, d_t) , where d_i = 1 if term i is present in the document, and 0 otherwise.
 - Also assume term independence (also known as the Naïve Bayes assumption).
- Hence, P(D|R) is computed as the product of the individual term probabilities and similarly for P(D|NR)).

$$P(D|R) = \prod_{i=1}^{t} P(d_i|R)$$

Binary Independence Model

$$\frac{P(D|R)}{P(D|NR)} = \prod_{i:d_i=1} \frac{p_i}{s_i} \cdot \prod_{i:d_i=0} \frac{1-p_i}{1-s_i}$$

$$= \prod_{i:d_i=1} \frac{p_i}{s_i} \cdot \left(\prod_{i:d_i=1} \frac{1-s_i}{1-p_i} \cdot \prod_{i:d_i=1} \frac{1-p_i}{1-s_i} \right) \cdot \prod_{i:d_i=0} \frac{1-p_i}{1-s_i}$$

$$= \prod_{i:d_i=1} \frac{p_i(1-s_i)}{s_i(1-p_i)} \cdot \prod_i \frac{1-p_i}{1-s_i}$$

Documentindependent

- p_i is probability that term i occurs in relevant document,
- s; is probability that term i occurs in non-relevant document

Binary Independence Model

$$= \prod_{i:d_i=1} \frac{p_i(1-s_i)}{s_i(1-p_i)} \cdot \prod_i \frac{1-p_i}{1-s_i}$$

Second term is the same for all documents, so we can drop it for purpose of ranking.

Scoring function is

$$\sum_{i:d_i=1} \log \frac{p_i(1-s_i)}{s_i(1-p_i)}$$

Binary Independence Model

Scoring function is

$$\sum_{i:d_i=1} \log \frac{p_i(1-s_i)}{s_i(1-p_i)}$$

- Query provides information about relevant documents
- If we assume p_i constant for terms in query, s_i approximated by entire collection, get idf-like weight

$$\log \frac{0.5(1-\frac{n_i}{N})}{\frac{n_i}{N}(1-0.5)} = \log \frac{N-n_i}{n_i}$$
 N number of documents in collection

N_i is the number of documents that contain term i

Similar to idf weight, where there is no tf component since documents have binary features

Contingency Table

What if we had some kind of relevance feedback from users?

	Relevant	Non-relevant	Total
$d_i = 1$	r_i	$n_i - r_i$	n_i
$d_i = 0$	$R-r_i$	$N-n_i-R+r_i$	$N-r_i$
Total	R	N-R	N

n_i: # of docs that contain term i

N: total # of docs in collection

r_i: # of relevant docs containing term i

R: # relevant docs

Contingency Table

	Relevant	Non-relevant	Total
$d_i = 1$	r_i	$n_i - r_i$	n_i
$d_i = 0$	$R-r_i$	$N-n_i-R+r_i$	$N-r_i$
Total	R	N-R	N

$$p_i \equiv \frac{r_i}{R}$$

The number of relevant documents that contain a term divided by the number of relevant documents)

$$s_i = \frac{((n_i - r_i))}{(N - R)}$$

 $s_i = \frac{(n_i - r_i)}{(N = R)}$ The number of non-relevant documents that contain a term divided by the total number of non-relevant documents) divided by the total number of non-relevant documents)

Binary Independence Model (Cont.)

$$p_i = (r_i + 0.5)/(R+1)$$

$$s_i = (n_i - r_i + 0.5)/(N - R + 1)$$

Gives scoring function:

$$\sum_{i:d_i=q_i=1} \log \frac{(r_i+0.5)/(R-r_i+0.5)}{(n_i-r_i+0.5)/(N-n_i-R+r_i+0.5)}$$

BM25 Ranking Algorithm

- BM25 is a scoring function based on the binary independence model
 - Stands for Best Match & 25 is a numbering scheme used by its director Robertson.
 - It includes document and query term weights.
 - It has performed very well in TREC experiments, although it does not exactly a formal model.

BM25

- N: total number of documents in the collection
- R: number of relevant documents
- ni: number of documents with term i
- ri: number of relevant documents with term i
- f_i: frequency of term i in the document
- qf; : frequency of term i in the query
- k₁, k₂, K : parameters whose values are set empirically

$$\sum_{i \in Q} \log \frac{(r_i + 0.5)/(R - r_i + 0.5)}{(n_i - r_i + 0.5)/(N - n_i - R + r_i + 0.5)} \cdot \frac{(k_1 + 1)f_i}{K + f_i} \cdot \frac{(k_2 + 1)qf_i}{k_2 + qf_i}$$

same as before

BM25 Example

- Query with two terms, "president" & " lincoln", (qf = 1)
- No relevance information (*r and R are* zero)
- N = 500,000 documents
- "president" occurs in 40,000 documents (n_1 = 40, 000)
- "lincoln" occurs in 300 documents ($n_2 = 300$)
- "president" occurs 15 times in doc ($f_1 = 15$)
- "lincoln" occurs 25 times ($f_2 = 25$)
- document length is 90% of the average length (dl/avdl = .9)
- k_1 = 1.2, b = 0.75, and k_2 = 100
- $K = 1.2 \cdot (0.25 + 0.75 \cdot 0.9) = 1.11$

BM25 Example

$$BM25(Q,D) =$$

$$\log \frac{(0+0.5)/(0-0+0.5)}{(40000-0+0.5)/(500000-40000-0+0+0.5)} \times \frac{(1.2+1)15}{1.11+15} \times \frac{(100+1)1}{100+1} + \log \frac{(0+0.5)/(0-0+0.5)}{(300-0+0.5)/(500000-300-0+0+0.5)} \times \frac{(1.2+1)25}{1.11+25} \times \frac{(100+1)1}{100+1}$$

$$= \log 460000.5/40000.5 \cdot 33/16.11 \cdot 101/101$$

$$+ \log 499700.5/300.5 \cdot 55/26.11 \cdot 101/101$$

$$= 2.44 \cdot 2.05 \cdot 1 + 7.42 \cdot 2.11 \cdot 1$$

$$= 5.00 + 15.66 = 20.66$$

BM25 Example

• Effect of term frequencies

Frequency of	Frequency of	BM25
"president"	"lincoln"	score
15	25	20.66
15	1	12.74
15	0	5.00
1	25	18.2
0	25	15.66

Language Model

- Language Models (LMs) assign a probability distribution over sequences of words.
- Unigram language model
 - probability distribution over the words in a language
 - generation of text consists of pulling words out of a "bucket" according to the probability distribution and replacing them
- N-gram language model
 - some applications use bigram and trigram language models where probabilities depend on previous words
- LMs are popular in a variety of applications, such as:
 - Speech recognition, machine translation, and handwriting recognition

Language Modeling Approach

- Probability distribution over strings of text
 - · How likely is a given string (observation) in a given "language"
 - For example, consider probability for the following four strings

$$p_1 > p_2 > p_3 > p_4$$

P1 = P("a quick brown dog")

P2 = P("dog quick a brown")

P3 = P("un chien quick brown")

P4 = P("un chien brun rapide")

In IR, most likely P₁ = P2

How can we use LMs in IR?

- Use LMs to model the process of query generation:
 - User thinks of some relevant document
 - Picks some keywords to use as the query

Relevant Docs

Forecasters are watching two tropical storms that could pose hurricane threats to the southern United States. One is a downgraded

Retrieval with Language Model

- Each document D in the collection defines a "language"
 - All possible sentences the author of D could have written
 - P(S|MD) is the probability that author would write string s
 - Intuition: write a billion variants of D, count how many times we get "s"
 - Language model of what the author of D was trying to say
 - Retrieval: rank documents by P(q|MD)
 - Probability that the author would write "q" while creating D

Unigram Language Models

- Words are "sampled" independently of each other
 - Metaphor: randomly pulling out words from a jar (with replacement)
 - Joint probability decomposes into a product of marginals
 - Estimation of probabilities: simple counting

$$P(\bullet \circ \bullet \bullet) = P(\bullet) P(\circ) P(\bullet) P(\bullet)$$

Estimation of Language Models

- Usually we don't know the model M
 - But we may have a sample of text representative of that model
 - Estimate a language model from that sample
- Maximum likelihood estimator:
 - Count relative frequency of each word

The zero-frequency problem

- Suppose some event not in our example
 - Language is sparse, so not every event will be present in our document.
 - Model will assign zero probability to that event (and any set of events involving the unseen event)
- It is incorrect to infer zero probabilities
 - Especially when dealing with incomplete samples

Simple Discounting Methods

- Laplace correction:
 - Add 1 to every count, normalize
 - Problematic for large vocabularies
- •Lindstone correction:
 - Add a small constant epsilon to every count
- Absolute Discounting
 - Subtract a constant epsilon from non-zero values, and re-distribute the probability mass

P(•) =
$$(1 + ε) / (3+5ε)$$

P(•) = $(1 + ε) / (3+5ε)$
P(•) = $(1 + ε) / (3+5ε)$
P(•) = $(1 + ε) / (3+5ε)$
P(•) = $(0 + ε) / (3+5ε)$
P(•) = $(0 + ε) / (3+5ε)$

How to set Epsilon?

- How to set the discounting parameter epsilon
- Leave-one-out discounting
 - Remove some word w, compute P(D | D_{-w})
 - Repeat for every word in the document
 - Iteratively adjust epsilon to maximize P(D|D-w)
 - Intuitively: increase if word w occurs once, decrease if more than once

Step 1 - as is epsilon is zero

Step 2 – drop blue from document, then epsilon need to be updated to a value > 0

Step 3 –drop red from document, since we have two reds, then epsilon will need to be updated again

. . .

Interpolation Methods

- Problem with all discounting methods:
 - Discounting treats unseen words equally (add or subtract epsilon)
 - Some words are more frequent than others
- Idea instead of a fixed epsilon for all terms, lets use probability of terms in the collection
 - Plays a similar role as IDF measure

Jelinek-Mercer Smoothing

- Correctly setting lamda is very important
- Start simple
 - Set lambda to be a constant (independent of the document and query)
- Tune
 - Tune to optimize retrieval performance

Dirichlet Smoothing

- Problem with Jelinek-Mercer
 - Issue Using the same smoothing for documents of different length
 - Hence, longer documents will provide better estimates
- Make smoothing depend of sample size
- Formal derivation from Bayesian (Dirichlet) prior on LMs
- Best out-of-the-box choice for short queries
 - Tune u to optimize effectiveness

$$N/(N + \mu)$$
 + $\mu/(N + \mu)$ (1- λ)

Role of smoothing as IDF

$$\lambda = + (1-\lambda)$$

$$tf_{w,D}/|D|$$

$$cf_w/|C|$$

$$P(Q \mid D) = \prod_{w \in Q} \left(\lambda \frac{tf_{w,D}}{\mid D \mid} + (1 - \lambda) \frac{cf_w}{\mid C \mid} \right)$$

Probability of drawing a query Q from model D

Rank documents using this probability

Major issues in applying LMs

- What kind of language model should we use?
 - Unigram or higher-order models?
 - Multinomial or multiple-Bernoulli?
- How can we estimate model parameters?
 - Maximum likelihood and zero frequency problem
 - Discounting methods: Laplace, Lindstone, ...
 - Interpolation methods: Jelinek-Mercer, Dirichlet prior
 - Leave-one-out method
- Ranking methods
 - Query likelihood, document likelihood, model comparison

Why unigram models?

- Unigram = word independence
 - Best for information retrieval
- What about higher-order models?
 - N-gram models critical in other fields like speech recognition
 - But don't really seem to work out well in IR
 - Must produce grammatical sequences of words that match documents and queries, and the probabilities are low