Procesos de Métrica Versión 3 y Casos de Uso

Ingeniería del Proceso Software

Mª José Suárez Cabal (cabal@uniovi.es)
Javier Tuya (tuya@uniovi.es)
Claudio de la Riva (claudio@uniovi.es)
Grupo de Investigación en Ingeniería del Software
http://giis.uniovi.es/

Curso 2022-2023

Contenido

- EVS Estudio de Viabilidad del Sistema
- ASI Análisis del Sistema de Información
 - □ Técnica: Casos de Uso
- DSI Diseño del Sistema de Información
 - Arquitecturas
 - Modelo del ASI en el diseño
- Construcción (CSI), Implantación y Aceptación (IAS)

Métrica Versión 3

- Metodología de Planificación, Desarrollo y Mantenimiento de sistemas de información
- Define Procesos que se estructuran en Actividades, y éstas en Tareas

- Objetivo: Analizar las necesidades del cliente/usuario (requisitos de usuario) para proponer una solución a corto plazo
- Resultado: definición de uno o varios proyectos
- Analizar/discutir lo que sea necesario
- El resultado de este estudio irá al Pliego de Condiciones

ASI: Análisis del Sistema de

Objetivo: obtención de una

Información

Tarea		Productos	
ASI 1.1	Determinación del Alcance del Sistema	- Catalogo de Requisitos - En estructurado - Contexto del Sistema - Modelo de datos - En Objetos - Modelo de Negocio - Modelo de Dominio	
ASI 1.2	Identificación del Entorno Tecnológico	- Catalogo de Requisitos - Descripción general del Entorno Tecnológico	
ASI 1.3	Especificación de Estándares y Normas	-Catalogo de Normas	
ASI 1.4	Identificación de Usuarios Participantes y Finales	-Catalogo de Usuarios -Planificación	

- Objetivo:
 - Efectuar una descripción del sistema
 - delimitando su alcance, interfaces con otros sistemas
 - e identificando a los usuarios representativos
- Desarrollada en parte en el Estudio de Viabilidad del Sistema
 - □ Como parte de proyecto
 - □ Como pliego técnico

Tarea		Productos
ASI 2.1	Obtención de Requisitos	- Catalogo de Requisitos - Casos de uso
ASI 2.2	Especificación de Casos de Uso	- Catalogo de Requisitos - Modelo y Especificación de Casos de Uso
ASI 2.3	Análisis de Requisitos	-Catalogo de Requisitos -Modelo y Especificación de Casos de Uso
ASI 2.4	Validación de Requisitos	-Catalogo de Requisitos -Modelo y Especificación de Casos de Uso

Objetivo:

- Definición, análisis y validación de los requisitos
- y completar el catálogo de requisitos de la actividad ASI 1

Al final:

- Catálogo detallado de requisitos
- como base a las posteriores tareas de modelización (de datos y procesos)
- Técnicas: Sesiones de Trabajo (Entrevistas) y Casos de Uso

ASI 2.2: Especificación de casos de uso – Diagramas

- El diagrama de casos de uso es una visión general, puede jerarquizarse
- Lo más importante es la descripción del escenario

- Actor: Representa un stakeholder que interacciona con el sistema (persona, rol, organización...)
- Caso de Uso: Representa una funcionalidad encaminada a conseguir un objetivo
- Descripción del Caso de Uso.
 Escenario(s): Describe detalladamente (textual) el requisito: Interacciones entre actores y el sistema que se realizan en un caso de uso
- El conjunto de casos de uso +
 escenarios representarían el
 conjunto de historias de usuario +
 criterios de aceptación

 Relación con los requisitos funcionales

Escenarios

- Caso de uso 1: Domiciliación de recibos
- Objetivo: Generar los recibos con las cuotas de los socios para su envío a la entidad bancaria
- Escenario:
 - Administración solicita al Sistema que prepare la facturación mensual de recibos, optando por generar los corrientes para todos los socios a los que les corresponde facturar el mes en curso y/o los que han de ser reemitidos.
 - Si se han de generar recibos corrientes el Sistema genera los recibos pendientes de cobro para cada socio de acuerdo con los criterios de periodicidad y cuota establecidos para cada uno.
 - □ Si se han de generar recibos reemitidos, el sistema reliquida la cuota generando un nuevo recibo para aquellos que habían sido devueltos con la cuota establecida para el socio.
 - El sistema genera un archivo de intercambio con el Banco de acuerdo con la norma CSB19. Los recibos generados se agrupan en un Lote
 - Administración enviará este archivo al Banco por e-mail

Casos de uso vs. Historias de Usuario

Caso de uso 1: Domiciliación de recibos

Objetivo: Generar los recibos con las cuotas de los socios para su envío a la entidad bancaria Escenario:

- Administración solicita al Sistema que prepare la facturación mensual de recibos, optando por generar los corrientes para todos los socios a los que les corresponde facturar el mes en curso y/o los que han de ser reemitidos.
- Si se han de generar recibos corrientes el Sistema genera los recibos pendientes de cobro para cada socio de acuerdo con los criterios de periodicidad y cuota establecidos para cada uno.
- Si se han de generar recibos reemitidos, el sistema reliquida la cuota generando un nuevo recibo para aquellos que habían sido devueltos con la cuota establecida para el socio.
- El sistema genera un archivo de intercambio con el Banco de acuerdo con la norma CSB19.
 Los recibos generados se agrupan en un Lote
- Administración enviará este archivo al Banco por e-mail
 M.I. Suárez Cabal

MJ.Suárez Cabal, J.Tuya(2012,2022)

- Como administrador quiero generar lotes de recibos domiciliados a pagar por los socios
- Como administrador quiero generar recibos de cobro al contado
- Estudiar el funcionamiento del cuaderno CSB19
- Como administrador quiero enviar el archivo de intercambio CSB19 para un lote de recibos
- Como administrador quiero actualizar el estado de cobro recibido del banco en el fichero de intercambio CSB19 (para ficheros correctos)
- Como administrador quiero validar los ficheros de intercambio CSB19 recibidos por el banco
- 7. Como Administrador quiero reclamar recibos impagados de los socios
- Como Administrador quiero reemitir recibos impagados tras ser reclamados
- Como Administrador quiero gestionar los datos de mis socios (CRUD)
- Como administrador quiero cancelar socios que tengan recibos ya emitidos
- Como Contable quiero registrar la actividad de la facturación de cuotas a los socios

Casos de uso vs. Historias de Usuario

Caso de uso 1: Domiciliación de recibos

Objetivo: Generar los recibos con las cuotas de los socios para su envío a la entidad bancaria

Escenario:

- Administración solicita al Sistema que prepare la facturación mensual de recibos, optando por generar los corrientes para todos los socios a los que les corresponde facturar el mes en curso y/o los que han de ser reemitidos.
- Si se han de generar recibos corrientes el Sistema genera los recibos pendientes de cobro para cada socio de acuerdo con los criterios de periodicidad y cuota establecidos para cada uno.
- Si se han de generar recibos reemitidos, el sistema reliquida la cuota generando un nuevo recibo para aquellos que habían sido devueltos con la cuota establecida para el socio.
- El sistema genera un archivo de intercambio con el Banco de acuerdo con la norma CSB19.
 Los recibos generados se agrupan en un Lote
- Administración enviará este archivo al Banco por e-mail MJ.Suárez Cabal,

MJ.Suárez Cabal, J.Tuya(2012,2022)

- 1. Como administrador quiero generar lotes de recibos domiciliados a pagar por los socios
- Como administrador quiero generar recibos de cobro al contado
- Estudiar el funcionamiento del cuaderno / CSB19
- Como administrador quiero enviar el archivo de intercambio CSB19 para un lote de recibos
- 5. Como administrador quiero actualizar el estado de cobro recibido del banco en el fichero de intercambio CSB19 (para ficheros correctos)
- Como administrador quiero validar los ficheros de intercambio CSB19 recibidos por el banco Como Administrador quiero reclamar recibos impagados de los socios
- Como Administrador quiero reemitir recibos impagados tras ser reclamados
- Como Administrador quiero gestionar los datos de mis socios (CRUD)
- 10. Como administrador quiero cancelar socios que tengan recibos ya emitidos
- Como Contable quiero registrar la actividad de la facturación de cuotas a los socios

- ASI 3: Identificación de Subsistemas de Análisis
 - □ Descomponer el sistema en subsistemas para facilitar el análisis
 - División en base de procesos similares o que trabajan sobre los mismos datos
- ASI 4: Análisis de los casos de uso:
 - Identificar las clases cuyos objetos se necesitan para realizar un caso de uso y describir su comportamiento mediante interacción de dichos objetos
 - Se hace para cada uno de los casos de uso
- ASI 5: Análisis de clases
 - Describir cada una de las clases
 - Analizar las asociaciones para determinar su tipo (agregacion, composición...)
 - Añadir a las asociaciones su cardinalidad correcta, nombres de rol, navegación, etc.
 - Analizar las clases en busca de generalizaciones o especializaciones -> Herencia
 - El resultado es el modelo de clases del dominio

_			
⊢ei	rıı	∩ tı	ıra
_ 0	uu	c_{i}	ai a

ESITU		Clura		
Tarea		Productos		
ASI 8.1	Especificación Principios Generales de la Interfaz		-Espe Usuar	cificación de la Interfaz de io
ASI 8.2	Identificación d Perfiles y Diálo		-Espe Usuar	cificación de la Interfaz de io
ASI 8.3	Especificación Formatos Individuales de Interfaz		Usuar	cificación de la Interfaz de io (controles, formatos luales de pantallas, etc.)
ASI 8.4	Especificación del Comportamiento Dinámico de la Interfaz		Panta	elo de Navegación (Mapa de Ilas) tipo Interactivo
ASI 8.5	Especificación Formatos de Impresión	de		atos de Impresión tipo de la Interfaz de sión

- Objetivo: Especificación de las interfaces entre el usuario y el sistema: pantallas, diálogos e informes
 - ☐ IMPORTANTE: Identificar grupos de usuarios
- Técnicas: Prototipado, Diagrama de Transición de Estados (para la navegación).
- Similar a los prototipos realizados para apoyar la definición de las HU

DSI: Diseño del Sistema de Información

Objetivo (Partiendo de la especificación detallada del ASI): Definir la arquitectura del sistema Definir el entorno tecnológico de soporte DSI₁ Describir (especificar) los componentes del sistema Definición de la Arquitectura del Sistema Estructura modular. Modelo físico de datos Especificaciones de construcción, migración, entorno de DSI₂ Diseño Arquitectura pruebas ... de Soporte DSI 3 **DSI 8** DSI 7 Generación Especificac. Diseño de Casos de Verificación y **Uso Reales** de Construcción Aceptación **Arquitectura** DSI9 DSI 4 Sistema Diseño de Migración y Diseño de Clases Carga Inicial De Datos DSI 5 **DSI 10** Diseño Arquitect. De **Especificación Técnica DSI 12** ódulos del Sistema del Plan de Pruebas Aprobación del Diseño del Sistema **DSI 11** de Información ASI 6 **Establecimiento** Diseño Físico de Requisitos Implantación

MJ.Suárez Cabal, J.Tuya(2012,2022)

Datos

	Tareas	Ejemplos
DSI 1.1	Definición de niveles de arquitectura	Nodos y comunicaciones entre nodos. Protocolos. Arquitectura N-Tier
DSI 1.2	Identificación de requisitos de diseño y construcción	Lenguajes, criterios de ubicación de nodos y datos. Redundancias.
DSI 1.3	Especificación de excepciones	Comportamientos no habituales. Nodos y comunicaciones (p.e. caídas)
DSI 1.4	Especificación de estándares y normas de diseño y construcción	Nomenclatura, guías de estilo
DSI 1.5	Identificación de subsistemas de diseño	Subsistemas específicos (proveen de la espec.) Subsistemas de soporte (generales, reutilización, gestión de errores, control de seguridad)
DSI 1.6	Especificación del entorno tecnológico	Detalle (HW, SW y comunicaciones). Estimar capacidades (almacenamiento, procesamiento y comunicaciones)
DSI 1.7	Especificación de requisitos de operación y seguridad	Definir procedimientos: integridad y confidencialidad, logs, backup, disaster recovery

Modelos del ASI en el diseño

MJ.Suárez Cabal, J.Tuya(2012,2022) Paso a

-Fecha Emision

-Recibido

0..1

-Repeticion de

-Fecha Recepcion -Cerrado -Enviado

Contabilidad

CSI - Construcción

IAS – Implantación y Aceptación

м

Resumen/Discusión

- Enfoque orientado al proceso, basado en ISO/IEC 12207 "Information technology – Software life cycle processes"
 - El orden asignado a las actividades no debe interpretarse como secuencia en su realización. No es un plan
 - La estructura de la metodología responde a un máximo y deberá adaptarse y dimensionarse en cada momento de acuerdo a las características particulares de cada proyecto
 - Define un conjunto de técnicas recomendadas e interfaces con otros procesos
- Casos de uso:
 - □ El diagrama de casos de uso es básicamente un "índice"
 - □ Lo más importante es la definición precisa del proceso en el escenario
 - □ Tamaño: El necesario para especificar el proceso, no restringido por el tiempo de implementación
- ☐ Existen **múltiples formas de representar los escenarios**MJ.Suárez Cabal.

Bibliografía

- MAP (2001). Metodología de Planificación, Desarrollo y Mantenimiento de sistemas de información: Guía de Referencia. Ministerio para las Administraciones Públicas. http://administracionelectronica.gob.es; https://administracionelectronica.gob.es/pae_Home/pae_Documentacion/pae_Metodolog/pae_Metrica_v3.html
- Stumpf RV, Teague LC (2005). Object-Oriented Systems Analysis and Design with UML. Pearson-Prentice Hall 2005.
- Stevens P, Using UML: Software Engineering with Objects and Components (2nd edition)", Addison-Wesley, 2006.
- Larman C (2003). UML y Patrones: Una introducción al análisis y diseño orientado a objetos y al proceso unificado (2ª edición). Prentice Hall 2003.