

Informe 8 Laboratorio de Maquinas: ENSAYO DE UN VENTILADOR RADIAL

José Luis Riveros

Profesores: Tomás Herrera Muñoz

Cristóbal Galleguillos Ketterer

ICM557-2

2020

indice:

- 1. Objetivos
- 2. Trabajo de laboratorio
- 3. Tabla de valores medidos
- 4. Formulas
- 5. Tablas de valores calculados
- 6. Gráficos

1. Objetivos

Determinar la curva de columna neta de succión positiva requerida, CNSPR, de una bomba centrífuga.

2. Trabajo de laboratorio

Revisar y poner en marcha la instalación, con las válvulas de aspiración y descarga totalmente abiertas. Regular la velocidad a la indicada por el profesor.

Luego de inspeccionar los instrumentos y su operación, esperar un tiempo prudente para que se estabilice la operación de la bomba, estrangular, parcialmente, la descarga para situarse en un punto de la curva característica de la bomba ligeramente separada de su extremo derecho. A continuación, tome las siguientes medidas:

- n velocidad de ensayo, [rpm].
- nx velocidad de la bomba, en [rpm].
- pax% presión de aspiración, en [%].
- pdx% presión de descarga, en [%].
- Δhx caudal de la bomba, presión diferencial en el venturímetro en [mmHg].
- Fx fuerza medidas en la balanza, en [kp].
- T temperatura de agua en el estangue, en [°C].
- Patm presión atmosférica, en [mmHg].

Finalizada esta, estrangular la válvula de aspiración haciendo disminuir la presión de aspiración y el caudal en un valor indicado por el profesor. A continuación, restablecer el caudal al valor original abriendo la válvula de descarga. Y se realizan las mediciones efectuadas anteriormente. El procedimiento se repite tantas veces como sea necesario hasta alcanzar plena cavitación.

Terminado lo anterior, se procede de igual manera para otros puntos de curva convenientemente seleccionados.

Mida los valores siguientes:

cpax altura piezométrica del manómetro de aspiración respecto del eje de la bomba, en [mm].

cpdx altura piezométrica del manómetro de descarga respecto del eje de la bomba, en [mm].

3. Tabla de valores medidos

	VALORES MEDIDOS 2900 (curva H vs Q)														
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	Patm					
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]					
1	2900	0,115	0,165	2899	91,8	5,6	140	1,19	18	757,1					
2	2900	0,115	0,165	2899	93,8	10,2	128	1,27	18	757,1					
3	2900	0,115	0,165	2898	96,3	14,6	115	1,34	18	757,1					
4	2900	0,115	0,165	2899	98,6	19,4	101	1,42	18	757,1					
5	2900	0,115	0,165	2898	100,8	24	87	1,48	18	757,1					
6	2900	0,115	0,165	2897	103,2	28,5	74	1,53	18	757,1					
7	2900	0,115	0,165	2899	104,8	32,2	63	1,53	18	757,1					
8	2900	0,115	0,165	2896	107,3	37,7	50	1,57	18	757,1					
9	2900	0,115	0,165	2897	109,7	42,2	36	1,53	18	757,1					
10	2900	0,115	0,165	2898	112,2	46,5	22	1,45	18	757,1					
11	2900	0,115	0,165	2899	115,2	50,3	9	1,21	19	757,1					
12	2900	0,115	0,165	2900	121,1	54,3	0	0,82	19	757,1					

Tabla 1

	PUNTO 1														
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}					
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]					
1	2900	0,115	0,165	2908	97,4	17,6	105	1,4	16	757,1					
2	2900	0,115	0,165	2912	79,5	12,8	105	1,4	16	757,1					
3	2900	0,115	0,165	2912	63	8,6	105	1,4	16	757,1					
4	2900	0,115	0,165	2913	53,5	5,2	105	1,38	16	757,1					
5	2900	0,115	0,165	2916	50,4	5	98	1,35	16	757,1					
6	2900	0,115	0,165	2917	39,4	4,9	89	1,4	16,5	757,1					
7	2900	0,115	0,165	2916	36,2	4,7	79	1,4	17	757,1					

Tabla 2

				P	PUNTO	2				
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2900	0,115	0,165	2917	102,3	27,8	78	1,52	17	757,1
2	2900	0,115	0,165	2917	74	20,5	78	1,52	17	757,1
3	2900	0,115	0,165	2917	48,4	10,6	78	1,48	17	757,1
4	2900	0,115	0,165	2917	37,7	4,7	78	1,41	17,5	757,1
5	2900	0,115	0,165	2915	35,9	4,6	73	1,4	17,5	757,1
6	2900	0,115	0,165	2917	35,8	4,7	69	1,38	18	757,1
7	2900	0,115	0,165	2916	36,1	4,4	64	1,35	18	757,1

Tabla 3

				P	UNTO	3				
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2900	0,115	0,165	2916	109,8	43,8	35	1,49	18	757,1
2	2900	0,115	0,165	2917	86,1	36,8	35	1,55	18	757,1
3	2900	0,115	0,165	2918	26,8	4	35	1,28	18	757,1
4	2900	0,115	0,165	2918	27,8	3,7	34	1,25	18,5	757,1
5	2900	0,115	0,165	2917	29,3	3,6	31	1,2	18,5	757,1

Tabla 4

4. Formulas

Velocidad:

$$V = \frac{4 Q}{3600 \pi D_A^2} \qquad \left[\frac{m}{s} \right]$$

$$D_A = 0,1023 \text{ [m]}$$

Columna neta de succión positiva disponible, CNSPD.

$$CNSPD = pax + \frac{13,54Patm}{1000} + \frac{V^{2}}{2g} - Pv \quad [m_{ca}]$$

Pv = presión de vapor del líquido bombeado en [mca]

Columna neta de succión positiva requerida ,CNSPR.

CNSPR = CNSPD CRITICA

5. Tabla de valores calculados

Valores medidso de la bomba a 2900 rpm

Qx		Q	pax	pdx	Нх	Н	Nex	Ne	Nh	rend gl	٧	CNSDP	CNSDR
(m3/s)*10^-2	m3/h	m3/h	mca	mca	mca	mca	kW	kW	kW	(-)	m/s	mca	mca

1	3,5	126	126	-0,82	2,24	3,0603	3,06	2,538	2,5382	1,0497	41,35	4,2604	9,366	9,366
2	3	108	108	-0,62	4,08	4,7003	4,7	2,709	2,7088	1,3819	51,01	3,6517	9,535	9,366
3	2,8	100,8	100,8	-0,37	5,84	6,2103	6,21	2,858	2,8582	1,7041	59,62	3,4083	9,773	9,366
4	2,6	93,6	93,6	-0,14	7,76	7,9003	7,9	3,029	3,0288	2,013	66,46	3,1648	9,99	9,366
5	2,5	90	90	0,0799	9,6	9,5203	9,52	3,157	3,1568	2,3325	73,89	3,0431	10,2	9,366
6	2,25	81	81	0,3199	11,4	11,08	11,08	3,263	3,2634	2,4432	74,87	2,7388	10,43	9,366
7	2,15	77,4	77,4	0,4799	12,88	12,4	12,4	3,263	3,2634	2,6127	80,06	2,6171	10,58	9,366
8	1,8	64,8	64,8	0,7299	15,08	14,35	14,35	3,349	3,3487	2,5314	75,59	2,191	10,81	9,366
9	1,6	57,6	57,6	0,9699	16,88	15,91	15,91	3,263	3,2634	2,4947	76,45	1,9476	11,04	9,366
10	1,3	46,8	46,8	1,2199	18,6	17,38	17,38	3,093	3,0928	2,2142	71,59	1,5824	11,27	9,366
11	0,9	32,4	32,4	1,5199	20,12	18,6	18,6	2,581	2,5809	1,6405	63,57	1,0955	11,54	9,366
12	0	0	0	2,1099	21,72	19,61	19,61	1,749	1,749	0	0	0	12,08	9,366

Tabla 5

Punto 1

	Qx		Q	pax	pdx	Нх	Н	Nex	Ne	Nh	rend gl	V	CNSDP	CNSDR
	(m3/s)*10^-2	m3/h	m3/h	mca	mca	mca	mca	kW	kW	kW	(-)	m/s	mca	mca
1	2,65	95,4	95,4	-0,26	7,04	7,3003	7,3	2,986	2,9861	1,8959	63,49	3,2257	9,873	3,732
2	2,65	95,4	95,4	-2,05	5,12	7,1703	7,17	2,986	2,9861	1,8621	62,36	3,2257	8,083	3,732
3	2,65	95,4	95,4	-3,7	3,44	7,1403	7,14	2,986	2,9861	1,8543	62,1	3,2257	6,433	3,732
4	2,65	95,4	95,4	-4,65	2,08	6,7303	6,73	2,943	2,9435	1,7479	59,38	3,2257	5,483	3,732
5	2,62	94,32	94,32	-4,96	2	6,9603	6,96	2,879	2,8795	1,7871	62,06	3,1892	5,171	3,732
6	2,5	90	90	-6,06	1,96	8,0203	8,02	2,986	2,9861	1,965	65,8	3,0431	4,064	3,732
7	2,3	82,8	82,8	-6,38	1,88	8,2603	8,26	2,986	2,9861	1,8619	62,35	2,7997	3,732	3,732

Tabla 6

Punto 2

	0		_			1.1.		Nan	Nia	NIL		.,,	CNCDD	CNICDD
	Qx		Q	pax	pdx	Hx	Н	Nex	Ne	Nh	rend gl	V	CNSDP	CNSDR
	(m3/s)*10^-2	m3/h	m3/h	mca	mca	mca	mca	kW	kW	kW	(-)	m/s	mca	mca
1	2,3	82,8	82,8	0,2299	11,12	10,89	10,89	3,242	3,2421	2,4547	75,71	2,7997	10,34	3,709
2	2,3	82,8	82,8	-2,6	8,2	10,8	10,8	3,242	3,2421	2,4344	75,09	2,7997	7,512	3,709
3	2,3	82,8	82,8	-5,16	4,24	9,4003	9,4	3,157	3,1568	2,1188	67,12	2,7997	4,952	3,709
4	2,3	82,8	82,8	-6,23	1,88	8,1103	8,11	3,007	3,0075	1,8281	60,78	2,7997	3,882	3,709
5	2,25	81	81	-6,41	1,84	8,2503	8,25	2,986	2,9861	1,8192	60,92	2,7388	3,698	3,709
6	2,1	75,6	75,6	-6,42	1,88	8,3003	8,3	2,943	2,9435	1,7082	58,03	2,5562	3,679	3,709
7	2,1	75,6	75,6	-6,39	1,76	8,1503	8,15	2,879	2,8795	1,6773	58,25	2,5562	3,709	3,709

Punto 3

	Qx		Q	pax	pdx	Нх	Н	Nex	Ne	Nh	rend gl	V	CNSDP	CNSDR
	(m3/s)*10^-2	m3/h	m3/h	mca	mca	mca	mca	kW	kW	kW	(-)	m/s	mca	mca
1	1,5	54	54	0,9799	17,52	16,54	16,54	3,178	3,1781	2,4314	76,51	1,8259	11,04	2,742
2	1,5	54	54	-1,39	14,72	16,11	16,11	3,306	3,3061	2,3682	71,63	1,8259	8,672	2,742
3	1,5	54	54	-7,32	1,6	8,9203	8,92	2,73	2,7302	1,3113	48,03	1,8259	2,742	2,742
4	1,48	53,28	53,28	-7,22	1,48	8,7003	8,7	2,666	2,6662	1,2619	47,33	1,8015	2,841	2,742
5	1,4	50,4	50,4	-7,07	1,44	8,5103	8,51	2,56	2,5595	1,1676	45,62	1,7041	2,986	2,742

6. Gráficos

Con los valores del ensayo anterior, trace la curva característica de la bomba para la velocidad ensayada y sobreponga los nuevos valores de altura y caudal obtenidos.

¿Qué significan las desviaciones que se producen?

Las desviaciones significan perdidas de altura producidas por la cavitación, también se ve como se reduce el caudal producte de esta perdida de energia

Trace tantos gráficos como series de mediciones se hayan realizado. En la ordenada H, Ne en [%] respecto al valor sin cavitación y rendimientogl, y en la abscisa la CNSPD.

¿Cómo determina la CNSPD crítica y qué representa?

Para determinarlo hay que buscar en el grafico el punto de inflexión de CNSPD, ese en el punto critico y el punto de CNSPR

Grafique la CNSPR en función del caudal.

¿La curva obtenida tiene la forma característica?

La curva característica de CNSPR es ascendente, a pesar de que hay pocos punto se pude apreciar un poco, por lo que diría que si cumple con su curva característica.

¿De acuerdo a la velocidad específica de esta bomba los valores de la CNSPR son apropiados?

Si, por la experiencia que tuve en el laboratorio diría que esta dentro de los valores esperados