

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

# SCIENCE EAGLE www.scienceeagle.com



- C.Maths
- Physics
- Chemistry

+ more





# வடமாகாணக் கல்வித் திணைக்களத்துடன் இணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

# Field Work Centre தவணைப் பரீட்சை, யூன் - 2019

**Term Examination, June - 2019** 

| காம் | :- | 13 | (2019)       |
|------|----|----|--------------|
|      | •  | 10 | $(\sim OIO)$ |

இணைந்த கணிதம் *–* I A

மூன்று மணித்தியாலம் 10 நிமிடம்

| சுட்டெண் |  |  |  |  |
|----------|--|--|--|--|
|          |  |  |  |  |

## அறிவுறுத்தல்கள்:

- பகுதிA இன் எல்லா வினாக்களுக்கும் ഖിഥെ ஒவ்வொரு வினாவுக்கும் எழுதுக. விடைகளைத் கரப்பட்ட இடத்தில் மேலதிக தേவைப்படுமெனின், எழுதுக. இடம் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- பகுதிB இல் உள்ள 7 வினாக்களில் விரும்பிய 5 வினாக்களுக்குமாத்திரம் விடைஎழுதுக.
- ஒதுக்கப்பட்டநேரம் முடிவடைந்ததும் பகுதி A ஆனது பகுதி B யிற்கு மேலே இருக்கக்கூடியதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B யை மாத்திர<mark>ம்</mark> பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வத<u>ந்கு</u> அனுமதிக்கப்படும்.

|            | இணைந்தகணி     | தம் I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| பகுதி      | வினாஎண்       | கிடைத்த புள்ளிகள்                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 3             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 4             | YATE OF THE PROPERTY OF THE PR |
| A          | 5             | 77 (60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A          | 6             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 7             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 8             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 9             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 10            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 11            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 12            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 13            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| В          | 14            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 15            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 16            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 17            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| வினாத்தாள் | I இன் மொத்தம் |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| இணைந்த கணிதம் <b>I</b> |  |
|------------------------|--|
| இணைந்த கணிதம் II       |  |
| இறுதிப் புள்ளிகள்      |  |

| สถ่งงา $n \in Z^+$        | இற்கும் கணிதத்                             | <b>பகுதி - A</b><br>கொகுக்கறிவுக்                                | கோட்பாட்டைப்              | ப் பயன்படுக்கி         |           |
|---------------------------|--------------------------------------------|------------------------------------------------------------------|---------------------------|------------------------|-----------|
| $\sum_{n=1}^{n}$          | $\frac{3}{4} - \frac{2n+3}{2(n+1)(n+2)}$ ഒ | னர் நாட்டு                                                       | 3311 <u>211</u> 2002      |                        |           |
| $\Delta r=1$ $r(r+2)$     | 4 $2(n+1)(n+2)$                            | ங்க காட்டுக்.                                                    |                           |                        |           |
|                           |                                            |                                                                  |                           |                        |           |
|                           |                                            |                                                                  |                           |                        |           |
|                           |                                            |                                                                  |                           |                        |           |
|                           |                                            |                                                                  |                           |                        |           |
|                           |                                            |                                                                  |                           |                        |           |
|                           |                                            |                                                                  |                           |                        |           |
|                           |                                            |                                                                  |                           |                        |           |
|                           |                                            |                                                                  |                           |                        |           |
|                           |                                            |                                                                  |                           |                        |           |
| •••••                     |                                            |                                                                  |                           |                        |           |
| •••••                     |                                            |                                                                  |                           |                        |           |
|                           |                                            |                                                                  |                           |                        |           |
| •••••                     |                                            |                                                                  |                           |                        | •••••     |
|                           |                                            |                                                                  |                           |                        |           |
|                           |                                            |                                                                  |                           | ·····                  |           |
|                           |                                            |                                                                  |                           |                        |           |
|                           |                                            |                                                                  |                           |                        |           |
| ஒரே வரிப்பட               | <br>த்தில் $y=5- $                         | $x - 1, y = \frac{1}{2}x$                                        |                           | வரைபுகளைப்             | பரும்படிய |
| வரைக. இதில                | த்தில் $y=5- $<br>லிருந்து சமனிலி          | $x - 1, y = \frac{1}{2} x$                                       | + 3 ஆகிய                  |                        |           |
|                           | லிருந்து சமனிலி                            | $x - 1, y = \frac{1}{2} x$                                       | + 3 ஆகிய                  |                        |           |
| வரைக. இதில                | லிருந்து சமனிலி                            | $x - 1, y = \frac{1}{2} x$                                       | + 3 ஆகிய                  |                        |           |
| வரைக. இதில<br>பெறுமானங்கன | லிருந்து சமனிலி<br>ளக் காண்க.              | $ x - 1 , y = \frac{1}{2} x$ $ x + 2  x - 1   \le \frac{1}{2} x$ | + 3 ஆகிய<br>≤ 4ஐத் திருப் | திப்படுத்தும் <i>x</i> | ் இன் மெ  |
| வரைக. இதில<br>பெறுமானங்கன | லிருந்து சமனிலி                            | $ x - 1 , y = \frac{1}{2} x$ $ x + 2  x - 1   \le \frac{1}{2} x$ | + 3 ஆகிய<br>≤ 4ஐத் திருப் | திப்படுத்தும் <i>x</i> | ் இன் மெ  |
| வரைக. இதில<br>பெறுமானங்கன | லிருந்து சமனிலி<br>ளக் காண்க.              | $x - 1 , y = \frac{1}{2} x$ $x + 2 x - 1  \le \frac{1}{2} x$     | + 3 ஆகிய<br>≤ 4ஐத் திருப் | திப்படுத்தும் <i>x</i> | ் இன் மெ  |
| வரைக. இதில<br>பெறுமானங்கன | லிருந்து சமனிலி<br>ளக் காண்க.              | $ x - 1 , y = \frac{1}{2} x$ $ x + 2  x - 1   \le \frac{1}{2} x$ | + 3 ஆகிய<br>≤ 4ஐத் திருப் | திப்படுத்தும் <i>x</i> | ் இன் மெ  |
| வரைக. இதில<br>பெறுமானங்கன | லிருந்து சமனிலி<br>ளக் காண்க.              | $ x - 1 , y = \frac{1}{2} x$ $ x + 2  x - 1   \le \frac{1}{2} x$ | + 3 ஆகிய<br>≤ 4ஐத் திருப் | திப்படுத்தும் <i>x</i> | ் இன் மெ  |
| வரைக. இதில<br>பெறுமானங்கன | லிருந்து சமனிலி<br>ளக் காண்க.              | $ x - 1 , y = \frac{1}{2} x$ $ x + 2  x - 1   \le \frac{1}{2} x$ | + 3 ஆகிய<br>≤ 4ஐத் திருப் | திப்படுத்தும் <i>x</i> | ் இன் மெ  |
| வரைக. இதில<br>பெறுமானங்கன | லிருந்து சமனிலி<br>ளக் காண்க.              | $ x - 1 , y = \frac{1}{2} x$ $ x + 2  x - 1   \le \frac{1}{2} x$ | + 3 ஆகிய<br>≤ 4ஐத் திருப் | திப்படுத்தும் <i>x</i> | ் இன் மெ  |
| வரைக. இதில<br>பெறுமானங்கன | லிருந்து சமனிலி<br>ளக் காண்க.              | $ x - 1 , y = \frac{1}{2} x$ $ x + 2  x - 1   \le \frac{1}{2} x$ | + 3 ஆகிய<br>≤ 4ஐத் திருப் | திப்படுத்தும் <i>x</i> | ் இன் மெ  |
| வரைக. இதில<br>பெறுமானங்கன | லிருந்து சமனிலி<br>ளக் காண்க.              | $ x - 1 , y = \frac{1}{2} x$ $ x + 2  x - 1   \le \frac{1}{2} x$ | + 3 ஆகிய<br>≤ 4ஐத் திருப் | திப்படுத்தும் <i>x</i> | ் இன் மெ  |
| வரைக. இதில<br>பெறுமானங்கன | லிருந்து சமனிலி<br>ளக் காண்க.              | $ x - 1 , y = \frac{1}{2} x$ $ x + 2  x - 1   \le \frac{1}{2} x$ | + 3 ஆகிய<br>≤ 4ஐத் திருப் | திப்படுத்தும் <i>x</i> | ் இன் மெ  |
| வரைக. இதில<br>பெறுமானங்கன | லிருந்து சமனிலி<br>ளக் காண்க.              | $ x - 1 , y = \frac{1}{2} x$ $ x + 2  x - 1   \le \frac{1}{2} x$ | + 3 ஆகிய<br>≤ 4ஐத் திருப் | திப்படுத்தும் <i>x</i> | ் இன் மெ  |
| வரைக. இதில<br>பெறுமானங்கன | லிருந்து சமனிலி<br>ளக் காண்க.              | $ x - 1 , y = \frac{1}{2} x$ $ x + 2  x - 1   \le \frac{1}{2} x$ | + 3 ஆகிய<br>≤ 4ஐத் திருப் | திப்படுத்தும் <i>x</i> | ் இன் மெ  |
| வரைக. இதில<br>பெறுமானங்கன | லிருந்து சமனிலி<br>ளக் காண்க.              | $ x - 1 , y = \frac{1}{2} x$ $ x + 2  x - 1   \le \frac{1}{2} x$ | + 3 ஆகிய<br>≤ 4ஐத் திருப் | திப்படுத்தும் <i>x</i> | ் இன் மெ  |
| வரைக. இதில<br>பெறுமானங்கன | லிருந்து சமனிலி<br>ளக் காண்க.              | $ x - 1 , y = \frac{1}{2} x$ $ x + 2  x - 1   \le \frac{1}{2} x$ | + 3 ஆகிய<br>≤ 4ஐத் திருப் | திப்படுத்தும் <i>x</i> | ் இன் மெ  |
| வரைக. இதில<br>பெறுமானங்கன | லிருந்து சமனிலி<br>ளக் காண்க.              | $ x - 1 , y = \frac{1}{2} x$ $ x + 2  x - 1   \le \frac{1}{2} x$ | + 3 ஆகிய<br>≤ 4ஐத் திருப் | திப்படுத்தும் <i>x</i> | ் இன் மெ  |

|     |                                                      | ககுறிக்கப்ப(                              | டும் புள்ளியி                          | ன் ஒழுக்கு | C யின்      | பரும்படிப் | சிக்கலெண் <i>z</i><br>படத்தைவரைக.<br>ர்க. |
|-----|------------------------------------------------------|-------------------------------------------|----------------------------------------|------------|-------------|------------|-------------------------------------------|
|     |                                                      |                                           |                                        |            |             |            | •••••                                     |
|     | ••••••                                               |                                           | ••••••                                 | ••••••     | ••••••      | •••••      |                                           |
|     |                                                      |                                           |                                        |            |             |            |                                           |
|     |                                                      |                                           |                                        |            |             |            |                                           |
|     |                                                      |                                           |                                        |            |             |            |                                           |
|     |                                                      |                                           |                                        |            |             |            |                                           |
|     |                                                      |                                           |                                        |            |             |            |                                           |
|     |                                                      |                                           |                                        |            |             |            |                                           |
|     |                                                      |                                           |                                        |            |             |            |                                           |
|     |                                                      |                                           |                                        |            |             |            |                                           |
|     |                                                      |                                           |                                        |            |             |            |                                           |
|     |                                                      |                                           |                                        |            |             |            |                                           |
|     |                                                      |                                           |                                        |            |             |            |                                           |
|     |                                                      |                                           |                                        |            |             |            |                                           |
|     |                                                      |                                           |                                        |            |             |            | •••••                                     |
|     | •••••                                                |                                           | ······································ |            | ••••••••••• |            |                                           |
|     |                                                      |                                           |                                        |            |             |            |                                           |
| 04) | $\lim_{x \to 0} \frac{1 + x \tan x}{\sqrt{1 + x^2}}$ | $\frac{x - \cos 2x}{-\sqrt{1 - x^2}} = 3$ | எனக் காட்டு                            | ъ.         |             | 6          |                                           |
| 04) | $\lim_{x\to 0} \frac{1+x\tan x}{\sqrt{1+x^2}}$       | $\frac{x - \cos 2x}{-\sqrt{1 - x^2}} = 3$ | எனக் காட்டு                            | ъ.         |             | 5)         |                                           |
| 04) | $\lim_{x\to 0} \frac{1+x\tan x}{\sqrt{1+x^2}}$       | $\frac{x - \cos 2x}{-\sqrt{1 - x^2}} = 3$ |                                        | ъ.         |             | 5)/        |                                           |
| 04) | $\lim_{x\to 0} \frac{1+x\tan x}{\sqrt{1+x^2}}$       |                                           |                                        | ь.         |             |            |                                           |
| 04) |                                                      |                                           |                                        |            |             |            |                                           |
| 04) |                                                      |                                           |                                        |            |             |            |                                           |
| 04) |                                                      |                                           |                                        |            |             |            |                                           |
| 04) |                                                      |                                           |                                        |            |             |            |                                           |
| 04) |                                                      |                                           |                                        |            |             |            |                                           |
| 04) |                                                      |                                           |                                        |            |             |            |                                           |
| 04) |                                                      |                                           |                                        |            |             |            |                                           |
| 04) |                                                      |                                           |                                        |            |             |            |                                           |
| 04) |                                                      |                                           |                                        |            |             |            |                                           |
| 04) |                                                      |                                           |                                        |            |             |            |                                           |
| 04) |                                                      |                                           |                                        |            |             |            |                                           |
| 04) |                                                      |                                           |                                        |            |             |            |                                           |
| 04) |                                                      |                                           |                                        |            |             |            |                                           |

| $x$ ஐக் குறித்து $\ln \sqrt{x+\sqrt{x^2+4}}$ ஐ வகையிடுக. இதிலிருந்து அல்லது வேறு வழி                                                                                | ഖரையப்படும்                          | ் தொட்                        | ധ്വത്ത്         | சமனபாடு                                            | $\frac{-}{a}\cos \theta$                | $\alpha + \frac{1}{b}$ sir | $\alpha = 1$      | எனக்         | காட்டு | க. இங் | ப்கு  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------|-----------------|----------------------------------------------------|-----------------------------------------|----------------------------|-------------------|--------------|--------|--------|-------|
| பெறுமானத்தைக் காண்க. $x$ ஐக் குறித்து $\ln \sqrt{x+\sqrt{x^2+4}}$ ஐ வகையிடுக. இதிலிருந்து அல்லது வேறு வழி $\int \frac{x+\sqrt{x^2+4}}{\sqrt{x^2+4}}  dx$ ஐக் காண்க. | $\alpha < \pi/2$                     | இத் தெ                        | தாடலியா         | ானது (2                                            | 2a,o) (                                 | என்னும்                    | <b>പ്ര</b> ബ്ബിധി | னுடு (       | செல்லு | மெனின் | α     |
| $x$ ஐக் குறித்து $\ln \sqrt{x+\sqrt{x^2+4}}$ ஐ வகையிடுக. இதிலிருந்து அல்லது வேறு வழி $\int rac{x+4}{\sqrt{x^2+4}}  dx$ ஐக் காண்க.                                  | , =                                  |                               |                 |                                                    | . ,                                     |                            |                   |              |        |        |       |
| $x$ ஐக் குறித்து $\ln \sqrt{x+\sqrt{x^2+4}}$ ஐ வகையிடுக. இதிலிருந்து அல்லது வேறு வழி $\int rac{x+4}{\sqrt{x^2+4}} \ dx$ ஐக் காண்க.                                 | மெறுமானத்                            | ഗ്വാധ വ                       | via.            |                                                    |                                         |                            |                   |              |        |        |       |
| $x$ ஐக் குறித்து $\ln \sqrt{x+\sqrt{x^2+4}}$ ஐ வகையிடுக. இதிலிருந்து அல்லது வேறு வழி $\int rac{x+4}{\sqrt{x^2+4}} \ dx$ ஐக் காண்க.                                 | •••••                                |                               | •••••••         | •••••                                              | •••••                                   | ••••••                     |                   | ••••••       | •••••• | •••••• | ••••• |
| $x$ ஐக் குறித்து $\ln \sqrt{x+\sqrt{x^2+4}}$ ஐ வகையிடுக. இதிலிருந்து அல்லது வேறு வழி $\int rac{x+4}{\sqrt{x^2+4}} \ dx$ ஐக் காண்க.                                 | •••••                                | ••••••                        | ••••••          | •••••                                              | • • • • • • • • • • • • • • • • • • • • | ••••••                     | •••••             | ••••••       | •••••  | •••••  | ••••• |
| $x$ ஐக் குறித்து $\ln \sqrt{x+\sqrt{x^2+4}}$ ஐ வகையிடுக. இதிலிருந்து அல்லது வேறு வழி $\int rac{x+4}{\sqrt{x^2+4}} \ dx$ ஐக் காண்க.                                 | ••••••                               | ••••••                        | ••••••          | • • • • • • • • • • • • • • • • • • • •            | •••••                                   | ••••••                     | •••••             |              | •••••  | •••••  | ••••• |
| $x$ ஐக் குறித்து $\ln \sqrt{x+\sqrt{x^2+4}}$ ஐ வகையிடுக. இதிலிருந்து அல்லது வேறு வழி $\int rac{x+4}{\sqrt{x^2+4}} \ dx$ ஐக் காண்க.                                 | •••••                                | •••••                         | ••••••          | •••••                                              | •••••                                   | ••••••                     | •••••             |              | •••••  | •••••  | ••••• |
| $x$ ஐக் குறித்து $\ln \sqrt{x+\sqrt{x^2+4}}$ ஐ வகையிடுக. இதிலிருந்து அல்லது வேறு வழி $\int rac{x+4}{\sqrt{x^2+4}} \ dx$ ஐக் காண்க.                                 |                                      |                               |                 |                                                    |                                         |                            |                   | •••••        | •••••  | •••••  | ••••• |
| $x$ ஐக் குறித்து $\ln \sqrt{x+\sqrt{x^2+4}}$ ஐ வகையிடுக. இதிலிருந்து அல்லது வேறு வழி $\int rac{x+4}{\sqrt{x^2+4}} \ dx$ ஐக் காண்க.                                 |                                      |                               | •••••           |                                                    |                                         |                            |                   |              |        |        | ••••• |
| $x$ ஐக் குறித்து $\ln \sqrt{x+\sqrt{x^2+4}}$ ஐ வகையிடுக. இதிலிருந்து அல்லது வேறு வழி $\int rac{x+4}{\sqrt{x^2+4}} \ dx$ ஐக் காண்க.                                 |                                      |                               |                 |                                                    |                                         |                            |                   |              | •••••  | •••••  | ••••• |
| $x$ ஐக் குறித்து $\ln \sqrt{x+\sqrt{x^2+4}}$ ஐ வகையிடுக. இதிலிருந்து அல்லது வேறு வழி $\int rac{x+4}{\sqrt{x^2+4}} \ dx$ ஐக் காண்க.                                 |                                      |                               |                 |                                                    |                                         |                            |                   |              | •••••  |        | ••••• |
| $x$ ஐக் குறித்து $\ln \sqrt{x+\sqrt{x^2+4}}$ ஐ வகையிடுக. இதிலிருந்து அல்லது வேறு வழி $\int rac{x+4}{\sqrt{x^2+4}} \ dx$ ஐக் காண்க.                                 |                                      |                               |                 |                                                    |                                         |                            |                   |              |        |        |       |
| $x$ ஐக் குறித்து $\ln \sqrt{x+\sqrt{x^2+4}}$ ஐ வகையிடுக. இதிலிருந்து அல்லது வேறு வழி $\int rac{x+4}{\sqrt{x^2+4}} \ dx$ ஐக் காண்க.                                 |                                      |                               |                 |                                                    |                                         |                            |                   |              |        |        | ••••• |
| $x$ ஐக் குறித்து $\ln \sqrt{x+\sqrt{x^2+4}}$ ஐ வகையிடுக. இதிலிருந்து அல்லது வேறு வழி $\int rac{x+4}{\sqrt{x^2+4}} \ dx$ ஐக் காண்க.                                 |                                      |                               |                 |                                                    |                                         |                            |                   |              |        |        |       |
| $x$ ஐக் குறித்து $\ln \sqrt{x+\sqrt{x^2+4}}$ ஐ வகையிடுக. இதிலிருந்து அல்லது வேறு வழி $\int rac{x+4}{\sqrt{x^2+4}} \ dx$ ஐக் காண்க.                                 |                                      |                               |                 |                                                    |                                         |                            |                   |              |        |        |       |
| $x$ ஐக் குறித்து $\ln \sqrt{x+\sqrt{x^2+4}}$ ஐ வகையிடுக. இதிலிருந்து அல்லது வேறு வழி $\int rac{x+4}{\sqrt{x^2+4}} \ dx$ ஐக் காண்க.                                 |                                      |                               |                 |                                                    |                                         |                            |                   |              |        |        |       |
| $x$ ஐக் குறித்து $\ln \sqrt{x+\sqrt{x^2+4}}$ ஐ வகையிடுக. இதிலிருந்து அல்லது வேறு வழி $\int rac{x+4}{\sqrt{x^2+4}} \ dx$ ஐக் காண்க.                                 |                                      |                               |                 |                                                    |                                         |                            |                   |              |        |        |       |
| $\int rac{x+4}{\sqrt{x^2+4}} \ dx$ ஐக் காண்க.                                                                                                                      |                                      |                               |                 | • • • • • • • • • • • • • • • • • • • •            | •••••                                   | •••••                      | •••••••           |              | •••••  | •••••• | ••••• |
| $\int rac{x+4}{\sqrt{x^2+4}} \ dx$ ஐக் காண்க.                                                                                                                      |                                      |                               |                 |                                                    |                                         |                            |                   |              |        |        |       |
|                                                                                                                                                                     | r നുർ கേനിം                          |                               |                 | ==<br>+ 4 m                                        | ഖതക്വ                                   | പിദ്രക (                   | இகிலிருந்         | EI OI        | പ്പെടു | வேங    | ຄາກີ  |
|                                                                                                                                                                     |                                      | ந்து ln $\sqrt{x}$            | $+\sqrt{x^2}$   | <del>=</del> # 4 # # # # # # # # # # # # # # # # # | ഖതക്യ                                   | பிடுக. இ                   | இதிலிருந்         | து அ         | ல்லது  | வேறு   | ഖழി   |
|                                                                                                                                                                     |                                      | ந்து ln $\sqrt{x}$            | $+\sqrt{x^2}$   | <del></del>                                        | ഖതക്യ                                   | பிடுக. இ                   | இதிலிருந்         | <b>Б</b> Ј அ | ல்லது  | வேறு   | ഖழി   |
|                                                                                                                                                                     | $\int \frac{x+4}{\sqrt{x^2+4}} \ dx$ | ந்து ln √ <i>x</i><br>ஐக் கான | + √x² - mis.    |                                                    |                                         |                            |                   | 5            |        | வேறு   | ഖழി   |
|                                                                                                                                                                     | $\int \frac{x+4}{\sqrt{x^2+4}} \ dx$ | ந்து ln √ <i>x</i><br>ஐக் கான | + √x² - mis.    |                                                    |                                         |                            |                   | 5            |        | வேறு   | ഖழി   |
|                                                                                                                                                                     | $\int \frac{x+4}{\sqrt{x^2+4}} \ dx$ | ந்து ln √ <i>x</i><br>ஐக் கான | + √x² -<br>ṁக.  |                                                    |                                         |                            |                   |              |        | வேறு   | ഖழി   |
|                                                                                                                                                                     | $\int \frac{x+4}{\sqrt{x^2+4}} \ dx$ | ந்து ln √ <i>x</i><br>ஐக் கான | $+\sqrt{x^2}$ - |                                                    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  |                            |                   |              |        | வேறு   | ഖழി   |
|                                                                                                                                                                     | $\int \frac{x+4}{\sqrt{x^2+4}} \ dx$ | ந்து ln √ <i>x</i><br>ஐக் கான | $+\sqrt{x^2}$ - |                                                    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  |                            |                   |              |        | வேறு   | ഖழി   |
|                                                                                                                                                                     | $\int \frac{x+4}{\sqrt{x^2+4}} \ dx$ | ந்து ln √ <i>x</i><br>ஐக் கான | $+\sqrt{x^2}$ - |                                                    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  |                            |                   |              |        | வேறு   | ഖழി   |
|                                                                                                                                                                     | $\int \frac{x+4}{\sqrt{x^2+4}} \ dx$ | ந்து ln √ <i>x</i><br>ஐக் கான | $+\sqrt{x^2}$ - |                                                    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  |                            |                   |              |        | வேறு   | ഖழി   |
|                                                                                                                                                                     | $\int \frac{x+4}{\sqrt{x^2+4}} \ dx$ | ந்து ln √ <i>x</i><br>ஐக் கான | $+\sqrt{x^2}$ - |                                                    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  |                            |                   |              |        | வேறு   | வழி   |
|                                                                                                                                                                     | $\int \frac{x+4}{\sqrt{x^2+4}} \ dx$ | ந்து ln √ <i>x</i><br>ஐக் கான | $+\sqrt{x^2}$ - |                                                    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  |                            |                   |              |        | வேறு   | ഖழി   |
|                                                                                                                                                                     | $\int \frac{x+4}{\sqrt{x^2+4}} \ dx$ | ந்து ln √ <i>x</i><br>ஐக் கான | $+\sqrt{x^2}$ - |                                                    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  |                            |                   |              |        | வேறு   | ഖழി   |
|                                                                                                                                                                     | $\int \frac{x+4}{\sqrt{x^2+4}} \ dx$ | ந்து ln √ <i>x</i><br>ஐக் கான | $+\sqrt{x^2}$ - |                                                    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  |                            |                   |              |        | வேறு   | ഖழി   |
|                                                                                                                                                                     | $\int \frac{x+4}{\sqrt{x^2+4}} \ dx$ | ந்து ln √ <i>x</i><br>ஐக் கான | $+\sqrt{x^2}$ - |                                                    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  |                            |                   |              |        | வேறு   | வழி   |
|                                                                                                                                                                     | $\int \frac{x+4}{\sqrt{x^2+4}} \ dx$ | ந்து ln √ <i>x</i><br>ஐக் கான | $+\sqrt{x^2}$ - |                                                    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  |                            |                   |              |        | வேறு   | വழി   |
|                                                                                                                                                                     | $\int \frac{x+4}{\sqrt{x^2+4}} \ dx$ | ந்து ln √ <i>x</i><br>ஐக் கான | $+\sqrt{x^2}$ - |                                                    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  |                            |                   |              |        | வேறு   | ഖழി   |
|                                                                                                                                                                     | $\int \frac{x+4}{\sqrt{x^2+4}}  dx$  | ந்து ln √ <i>x</i><br>ஐக் கான | $+\sqrt{x^2}$ - |                                                    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  |                            |                   |              |        | Санд   | ഖழി   |
|                                                                                                                                                                     | $\int \frac{x+4}{\sqrt{x^2+4}} \ dx$ | ந்து ln √ <i>x</i><br>ஐக் கான | $+\sqrt{x^2}$ - |                                                    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  |                            |                   |              |        | Cangi  | வழி   |

| ഖ്യബധി                 |                     |                                         |                   |                  |                      |                     |                    |                    |            |         |             |
|------------------------|---------------------|-----------------------------------------|-------------------|------------------|----------------------|---------------------|--------------------|--------------------|------------|---------|-------------|
| <u>உ</u> ள்ளன          | டக்கப்பட்           | ட பிரதே                                 | சம் S             | எனக்             | கொ                   | ள்வோம்.             | (உருன              | ഖப்                |            |         | _           |
| பார்க்க).              | S æ                 | x - அ                                   | ச்சைப்            | பந்நி            | $2\pi$               | ஆரையன்              | ரகளின <u>ு</u> ப   | _ாச்               |            |         |             |
| சுழற்றும்              | போது ப              | பிறப்பிக்கட                             | ப்படும்           | திண்மத்          | தின்                 | <b>கனவளவு</b>       | $\frac{\pi}{2}(4-$ | · π)               |            | 3       |             |
| எனக் கா                |                     |                                         |                   |                  |                      |                     | ۷                  |                    | 0          |         |             |
|                        |                     |                                         |                   |                  |                      |                     |                    |                    |            |         |             |
|                        |                     |                                         |                   |                  |                      |                     |                    |                    |            |         |             |
| •••••                  |                     |                                         |                   |                  |                      |                     |                    |                    |            |         |             |
|                        |                     |                                         |                   |                  |                      |                     |                    | •••••              |            |         | •••••       |
| •••••                  |                     |                                         |                   |                  | •••••                |                     |                    |                    |            |         | •••••       |
| •••••                  |                     |                                         |                   |                  |                      |                     |                    | •••••              |            | •••••   | •••••       |
|                        |                     |                                         |                   |                  |                      |                     |                    |                    |            |         |             |
|                        |                     |                                         |                   |                  |                      |                     |                    |                    |            |         |             |
|                        |                     |                                         |                   |                  |                      |                     |                    |                    |            |         |             |
|                        |                     |                                         |                   |                  |                      |                     |                    |                    |            |         |             |
| •••••                  |                     |                                         | ,                 |                  |                      |                     |                    |                    |            |         |             |
|                        |                     |                                         |                   |                  |                      |                     |                    |                    |            |         | •••••       |
| முக்கோ                 | ணிABCuí             |                                         | கங்கள்            | AB               | , B(                 | C, CA               | இன்                | <b></b><br><b></b> | ன்பாடுக6   | ள் மு   |             |
| x + y                  | -1 = 0              | ின் பக்<br>, <i>x</i> + 2ງ<br>ம் நேர்கே | y + 2             | = 0,32           | x - y                | + 1 =               | 0 ஆகுட             |                    |            |         |             |
| x + y                  | -1 = 0              | x + 2y                                  | y + 2             | = 0,32           | x - y                | + 1 =               | 0 ஆகுட             |                    |            |         |             |
| x + y -<br>А இனுடு<br> | - 1 = 0<br>6 செல்லு | , <i>x</i> + 2ற<br>ம் நேர்கே            | y + 2<br>எட்டின்  | = 0,32           | x – y<br>ாட்டை &<br> | + 1 = ்<br>க் காண்க | 0 ஆகுட             | b. BC              | ் யிற்குச் | ச சமாந் | <b>Б</b> БГ |
| x + y -<br>А இனூடு     | - 1 = 0<br>6 செல்லு | , <i>x</i> + 2ற<br>ம் நேர்கே            | y + 2<br>நாட்டின் | = 0,32<br>சமன்பா | x – y<br>пட்டை ғ     | + 1 = ்             | 0 ஆகுட             | b. BC              | ் யிற்குச் | ச சமாந் |             |
| x + y -<br>А இனூடு     | - 1 = 0<br>6 செல்லு | , <i>x</i> + 2ற<br>ம் நேர்கே            | y + 2<br>நாட்டின் | = 0,32<br>சமன்பா | x – y<br>пட்டை ғ     | + 1 = ்             | 0 ஆகுட             | b. BC              | ் யிற்குச் | ச சமாந் |             |
| x + y -<br>А இனூடு     | - 1 = 0<br>6 செல்லு | , <i>x</i> + 2ற<br>ம் நேர்கே            | y + 2<br>நாட்டின் | = 0,32<br>சமன்பா | x – y<br>пட்டை ғ     | + 1 = ்             | 0 ஆகுட             | b. BC              | ் யிற்குச் | ச சமாந் |             |
| x + y -<br>А இனூடு     | - 1 = 0<br>6 செல்லு | , <i>x</i> + 2ற<br>ம் நேர்கே            | y + 2<br>நாட்டின் | = 0,32<br>சமன்பா | x – y<br>пட்டை ғ     | + 1 = ்             | 0 ஆகுட             | b. BC              | ் யிற்குச் | ச சமாந் |             |
| x + y -<br>А இனூடு     | - 1 = 0<br>6 செல்லு | , <i>x</i> + 2ற<br>ம் நேர்கே            | y + 2<br>நாட்டின் | = 0,32<br>சமன்பா | x – y<br>пட்டை ғ     | + 1 = ்             | 0 ஆகுட             | b. BC              | ் யிற்குச் | ச சமாந் |             |
| x + y -<br>А இனூடு     | - 1 = 0<br>6 செல்லு | , <i>x</i> + 2ற<br>ம் நேர்கே            | y + 2<br>நாட்டின் | = 0,32<br>சமன்பா | x – y<br>пட்டை ғ     | + 1 = ்             | 0 ஆகுட             | b. BC              | ் யிற்குச் | ச சமாந் |             |
| x + y -<br>А இனூடு     | - 1 = 0<br>6 செல்லு | , <i>x</i> + 2ற<br>ம் நேர்கே            | y + 2<br>நாட்டின் | = 0,32<br>சமன்பா | x – y<br>пட்டை ғ     | + 1 = ்             | 0 ஆகுட             | b. BC              | ் யிற்குச் | ச சமாந் |             |
| x + y -<br>А இனூடு     | - 1 = 0<br>6 செல்லு | , <i>x</i> + 2ற<br>ம் நேர்கே            | y + 2<br>நாட்டின் | = 0,32<br>சமன்பா | x – y<br>пட்டை ғ     | + 1 = ்             | 0 ஆகுட             | b. BC              | ் யிற்குச் | ச சமாந் |             |
| x + y -<br>А இனூடு     | - 1 = 0<br>6 செல்லு | , <i>x</i> + 2ற<br>ம் நேர்கே            | y + 2<br>நாட்டின் | = 0,32<br>சமன்பா | x – y<br>пட்டை ғ     | + 1 = ்             | 0 ஆகுட             | b. BC              | ் யிற்குச் | ச சமாந் |             |
| x + y -<br>А இனூடு     | - 1 = 0<br>6 செல்லு | , <i>x</i> + 2ற<br>ம் நேர்கே            | y + 2<br>நாட்டின் | = 0,32<br>சமன்பா | x – y<br>пட்டை ғ     | + 1 = ்             | 0 ஆகுட             | b. BC              | ் யிற்குச் | ச சமாந் |             |
| x + y -<br>А இனூடு     | - 1 = 0<br>6 செல்லு | , <i>x</i> + 2ற<br>ம் நேர்கே            | y + 2<br>நாட்டின் | = 0,32<br>சமன்பா | x – y<br>пட்டை ғ     | + 1 = ்             | 0 ஆகுட             | b. BC              | ் யிற்குச் | ச சமாந் |             |

| -                             | ( )          | -)                   |               | шфодюс  | எடுத்துை             | ,, шшы ш                      | JOHED GIO                               | NIO OIII |
|-------------------------------|--------------|----------------------|---------------|---------|----------------------|-------------------------------|-----------------------------------------|----------|
| இங்கு λ ஒரு                   | பரமானம். வட் | டத்தின் 🤜            | <b>ஆ</b> ரையை | λ இன்   | சார்பில்             | காண்க.                        |                                         |          |
|                               |              |                      |               |         |                      |                               |                                         |          |
|                               |              |                      |               |         |                      |                               |                                         |          |
|                               |              |                      |               |         |                      |                               |                                         |          |
|                               |              |                      |               |         |                      |                               |                                         |          |
|                               |              |                      |               |         |                      |                               |                                         |          |
|                               |              |                      |               |         |                      |                               |                                         |          |
|                               |              |                      |               |         |                      |                               |                                         |          |
|                               |              |                      |               |         |                      |                               |                                         |          |
|                               |              |                      |               |         |                      |                               |                                         |          |
|                               |              |                      |               |         |                      |                               | •                                       | •        |
|                               |              |                      |               |         |                      |                               | ••••••                                  | ••••••   |
|                               |              |                      |               |         |                      |                               | •••••                                   | •••••    |
|                               |              |                      |               |         |                      |                               | ••••••                                  | •••••    |
|                               |              |                      |               |         |                      |                               |                                         | •••••    |
|                               |              |                      |               |         |                      |                               |                                         | •••••    |
|                               |              |                      |               |         |                      |                               | • • • • • • • • • • • • • • • • • • • • | •••••    |
| <i>x ≠ nπ</i> இந்கு           | $cosec^3x +$ | 2 cosec <sup>2</sup> | $x \cot x +$  | cosec   | $x \cot^2 x$         | $= \frac{\sin x}{(1-\cos x)}$ | <u>:)²</u>                              | ாக் கார  |
|                               |              | 2 cosec <sup>2</sup> | $x \cot x +$  | cosec : | $x \cot^2 x$         | $=\frac{\sin x}{(1-\cos x)}$  | <u>ে)²</u>                              | ரக் கா   |
|                               |              | 2 cosec <sup>2</sup> | x cot x +     | cosec   | x cot <sup>2</sup> x | $= \frac{\sin x}{(1-\cos x)}$ | <del>्र)</del> 2 ठाळ                    | ாக் கா   |
|                               |              | 2 cosec <sup>2</sup> | x cot x +     | cosec   | x cot <sup>2</sup> x | $= \frac{\sin x}{(1-\cos x)}$ | <u>c)²</u> নজ                           | ரக் கா   |
|                               |              | 2 cosec <sup>2</sup> | x cot x +     | cosec   | x cot <sup>2</sup> x | $= \frac{\sin x}{(1-\cos x)}$ | <u>()</u> 2 बब                          | ்        |
| இங்கு <i>n ∈ Z</i> ஆ          | ஆகும்.       |                      |               |         |                      | 5)                            |                                         |          |
|                               | ஆகும்.       |                      |               |         |                      | 5)                            |                                         |          |
| இங்கு <i>n ∈ Z</i> ஆ          | ஆகும்.       |                      |               |         |                      | 5)                            |                                         |          |
| x ≠ nπ இந்கு<br>இங்கு n ∈ Z ஆ | ஆகும்.       |                      |               |         |                      | 5)                            |                                         |          |
| இங்கு <i>n ∈ Z</i> ஆ          | ஆகும்.       |                      |               |         |                      | 5)                            |                                         |          |
| இங்கு <i>n ∈ Z</i> ஆ          | ஆகும்.       |                      |               |         |                      | 5)                            |                                         |          |
| இங்கு <i>n ∈ Z</i> ஆ          | ஆகும்.       |                      |               |         |                      | 5)                            |                                         |          |
| இங்கு <i>n ∈ Z</i> ஆ          | ஆகும்.       |                      |               |         |                      | 5)                            |                                         |          |
| இங்கு <i>n ∈ Z</i> ஆ          | ஆகும்.       |                      |               |         |                      | 5)                            |                                         |          |
| இங்கு <i>n ∈ Z</i> ஆ          | ஆகும்.       |                      |               |         |                      | 5)                            |                                         |          |
| இங்கு <i>n ∈ Z</i> ஆ          | ஆகும்.       |                      |               |         |                      | 5)                            |                                         |          |
| இங்கு <i>n ∈ Z</i> ஆ          | ஆகும்.       |                      |               |         |                      | 5)                            |                                         |          |
| இங்கு <i>n ∈ Z</i> ஆ          | ஆகும்.       |                      |               |         |                      | 5)                            |                                         |          |
| இங்கு <i>n ∈ Z</i> ஆ          | ஆகும்.       |                      |               |         |                      | 5)                            |                                         |          |



## வடமாகாணக் கல்வித் திணைக்களத்துடன் இணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

## Field Work Centre தவணைப் பரீட்சை, யூன் - 2019

**Term Examination, June - 2019** 

## தரம் :- 13 (2019)

## இணைந்த கணிதம் -I B

#### பகுதி - B

- 11) (a)  $f(x) = (a-b)x^2 + 2ax + (a+b)$  எனக் கொள்வோம். இங்கு a > b > 0 ஆகும்.
  - (i)  $\frac{a+b}{a-b} > 1$  எனக் காட்டுக.
  - (ii) f(x)ஆனது மறையாக இருக்கும் x இன் மெய்ப்பெறுமானங்களின் வீச்சைக் காண்க.
  - f(x) = 0 இன் தன்மை காட்டியை எழுதுக. இதிலிருந்து f(x) = 0 ஆனது வேறுவேறான மெய்மூலங்களைக் கொண்டிருக்கும் எனக் காட்டுக.
  - (iv)  $\propto$ ,  $\beta$  என்பன f(x)=0 இன் மூலங்கள் எனக் கொள்வோம்.  $(\propto +1)^2$ ,  $(\beta +1)^2$  ஆகியவற்றை மூலங்களாகக் கொண்ட இருபடிச்சமன்பாட்டைக் காண்க. இதிலிருந்து  $\frac{\alpha+2}{\beta}=\frac{\beta+2}{\alpha}$  எனின் b=0 எனக் காட்டுக.
  - (b)  $P(x) = 2x^3 + x^2 + 2x 5$  இனது ஒரு காரணி x 1எனக் காட்டுக. P(x) ஐ  $x^2 5x + 6$  இனால் வகுக்கவரும் மீதியைக் காண்க.
- 12) (a)  $(1-x-x^2+x^3)^6=(1-x^2)^m(1-x)^n$ ஆகுமாறு நேர்நிறை வெண்கள் m, n ஐக் காண்க. இதிலிருந்து  $(1-x-x^2+x^3)^6$  என்பதன் விரியில் உள்ள  $x^7$  இன் குணகம் -144 எனக் காட்டுக.
  - (b) ஆறு திருமணமான தம்பதிகளில் இருந்து 3 ஆண்களையும் 3 பெண்களையும் கொண்ட குழுவொன்றைத் தெரிந்தெடுக்க வேண்டியுள்ளது. பின்வரும் ஒவ்வொரு சந்தர்ப்பத்திலும் குழு தெரிந்தெடுக்கத்தக்க விதங்களின் எண்ணிக்கைகளைக் காண்க.
    - எவரேனும் 3 ஆண்களும் 3 பெண்களும் இருக்கத் தெரிவுசெய்தல்.
    - ii. கணவன், மனைவி ஒன்றாக ஒரே குழுவில் இருக்கத் தெரிவுசெய்தல்.
    - iii. கணவரையும் மனைவியையும் ஒரே குழுவில் இல்லாது தெரிவுசெய்தல்.
  - (c)  $r \in Z^+$  இந்கு  $r^2 + 5r + 8 = A(r+2)^2 + Br \ (r+3)$  ஆகுமாறு A,B ஆகிய மாநிலிகளைக் காண்க.  $r \in Z^+$  இந்கு  $U_r = \frac{r^2 + 5r + 8}{r(r+1)(r+2)} \left(\frac{1}{2}\right)^r$  எனக் கொள்வோம்.  $U_r = f(r) f(r+1)$  ஆக இருக்கத்தக்கதாக சார்பு f(r) ஐக் காண்க. இதிலிருந்து,  $\sum_{r=1}^n U_r = \frac{3}{2} \frac{n+3}{(n+1)(n+2)} \left(\frac{1}{2}\right)^n$  எனக் காட்டுக. முடிவில் தொடர்  $\sum_1^\infty u_r$  ஒருங்கும் எனக்காட்டி அதன் கூட்டுத் தொகையையும் காண்க.

- 13) (a)  $ad \neq bc$  ஆகுமாறுள்ள மெய்யெண்கள் a,b,c,d இந்கு  $P = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$  எனக் கொள்வோம்.  $P^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$  எனக் காட்டுக. இங்கு  $P^{-1}$  என்பது தாயம் P இன் நேர்மாறு தாயமாகும். $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$  எனக் கொள்வோம்.
  - i. தாயம் A இன் நேர்மாறு தாயம்  $A^{-1}$  ஐ எழுதுக. இதிலிருந்து, A X A = B ஆகுமாறுள்ள வரிசை 2 இலுள்ள தாயம் X ஐக் காண்க. இங்கு  $B=\begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$  ஆகும்.
  - ii.  $A+A^T,$   $A-A^T$  ஆகியவற்றைக் காண்க. இங்கு  $A^T$  என்பது A இன் நிலைமாற்றுத் தாயமாகும்.  $A+A^T,$   $A-A^T$  ஆகிய தாயங்கள் பற்றி யாது கூறுவீர்? தாயம் A ஐ ஒருசமச்சீர்த் தாயத்தினதும் ஓர் ஓராயச் சமச்சீர்த் தாயத்தினதும் கூட்டலாக எழுதுக.
  - (b)  $w=\frac{1}{2}+i\frac{\sqrt{3}}{2}$  எனக் கொள்வோம்.  $w+\overline{w}$ ,  $w\overline{w}$  ஆகியவற்றைக் காண்க. இங்கு  $\overline{w}$  ஆனது சிக்கலெண் w இன் உடன்புணரியாகும். ஆகண் வரிப்படத்தில் O, P, Q என்னும் வெவ்வேறான புள்ளிகள் முறையே  $0,\ Z_1$ ,  $Z_2$  ஆகிய சிக்கலெண்களை வகை குறிக்கின்றன.  $Z_1=w\ Z_2$  அல்லது  $Z_1=\overline{w}Z_2$  ஆயின் ஆயின் மாத்திரம்  $Z_1^{\ 2}-Z_1\ Z_2+Z_2^{\ 2}=0$  எனக் காட்டுக. இதிலிருந்து முக்கோணி OPQ ஆனது ஒருசமபக்க முக்கோணி ஆயின் ஆயின் மாத்திரம்  $Z_1^{\ 2}+Z_2^{\ 2}=1$  எனக் காட்டுக.
- 14) (a)  $x \neq -1$  இற்கு  $f(x) = \frac{x+2}{(x+1)^2}$  எனக் கொள்வோம்.  $x \neq -1$  இற்கு  $f'^{(x)} = -\frac{x+3}{(x+1)^3}$  எனவும்  $f''(x) = \frac{2(x+4)}{(x+1)^4}$  எனவும் காட்டுக. இங்கு f'(x), f''(x) என்பன முறையே f(x) இன் முதலாம் இரண்டாம் பெறுதிகளாகும். அணுகுகோடுகள், திரும்பற் புள்ளி, விபத்திப் புள்ளி ஆகியவற்றைக் காட்டி y = f(x) இன் வரைபைப் பரும்படியாக வரைக.
  - (b) அரைஉச்சிக்கோணம்  $\frac{\pi}{6}$  ஐயும் உயரம் h ஐயும் உடைய கூம்பு வடிவக் கண்ணாடிப் பாத்திரம் ஒன்றினுள் உருவில் காட்டியவாறு கோளமொன்று பாத்திரத்தின் உள்மேற்பரப்பைத் தொட்டுக் கொண்டிருக்குமாறு வைக்கப்பட்டுள்ளது. பாத்திரத்திற்கு உள்ளே உள்ள கோளப்பகுதியின் வளைமேற்பரப்பளவு A ஆனது  $A=2\pi x\;(h-x)$  இனால் தரப்படுமெனக் காட்டுக. இங்கு x ஆனது கோளத்தின் ஆரையாகும்.



 $x=rac{h}{2}$  ஆகும் போது A உயர்வானதெனக் காட்டி A இன் உயர்வுப் பெறுமானத்தைக் காண்க. உதவி : பாத்திரத்திற்கு உள்ளே உள்ள கோளப்பகுதியின் வளை மேற்பரப்பளவானது அதே ஆரையையும் கோளப் பகுதியின் அதே உயரத்தையும் உடைய உருளையின் வளை மேற்பரப்பளவிற்குச் சமனாகும்.

- 15) (a)  $\frac{4x^3+x^2+4x-1}{x^4-1}$  ஐப் பகுதிப் பின்னங்களாக எடுத்துரைக்க. இதிலிருந்து  $\int \frac{4x^3+x^2+4x-1}{x^4-1} \ dx$  ஐக் காண்க.
  - (b) பிரதியீடு $t= anrac{x}{2}$  ஐப் பயன்படுத்தி  $\int_0^{rac{\pi}{2}} rac{dx}{3\sin x 4\cos x + 5}$  ஐக் காண்க.
  - (c) பகுதிகளாகத் தொகையிடும் முறையைப் பயன்படுத்தி  $\int_0^\pi \sin^4 x \ dx$  ஐக் காண்க.  $\int_0^a f(x) dx = \int_0^a f(a-x) dx$  என்பதைப் பயன்படுத்தி  $\int_0^\pi \sin^4 x \ dx$  இன் பெறுமானத்தைக் காண்க.
- 16) x அச்சில் வெட்டுத்துண்டு a ஐயும் y அச்சில் வெட்டுத்துண்டு b ஐயும் கொண்ட நேர்கோட்டின் சமன்பாடு  $\frac{x}{a} + \frac{y}{b} = 1$  எனக் காட்டுக. புள்ளிகள் A, B என்பவற்றின் ஆள்கூறுகள் முறையே (3,0) (0,4) ஆகும். PQ ஆனது AB இற்கு செங்குத்து ஆகுமாறு மாறும் புள்ளிகள் P, Q என்பன முறையே x,y அச்சுக்களில் கிடக்கின்றன. BP, AQ என்பன இடைவெட்டும் புள்ளியின் ஒழுக்கு  $S \equiv x^2 + y^2 3x 4y = 0$  எனும் வட்டம் எனக் காட்டுக. இவ்வட்டம் உற்பத்தியினூடு செல்லும் எனக் காட்டி அதன் மையத்தின் ஆள்கூறுகளைக் காண்க. உற்பத்தியிலிருந்து மிகத் தொலைவில் வட்டத்தின் பரிதியிலுள்ள புள்ளி  $C \equiv (3,4)$  எனக் காட்டி இப்புள்ளியில் வட்டத்திற்கு வரையப்பட்ட தொடலியின் சமன்பாட்டைக் காண்க. இத்தொடலி x,y அச்சுக்களை முறையே D, E எனும் புள்ளிகளில் இடைவெட்டின் D, E இன் ஆள்கூறுகளை எழுதுக. D, E ஐ விட்டத்தின் முனைகளாகக் கொண்ட வட்டத்தின் சமன்பாடு  $S_1 \equiv 12 \ x^2 + 12 \ y^2 100 \ x 75 \ y = 0$  எனக் காட்டுக.  $S_2 \equiv x^2 + y^2 + 24 \ x + 48 \ y + k = 0$  எனத் தரப்படும் போது  $S_1$  உம்  $S_2$  உம் நிமிர்கோணத்தில் இடைவெட்டினால் k இன் பெறுமானத்தைக் காண்க.
- 17) (a)  $\tan(\propto +\beta)$  இந்கான திரிகோண கணிதச் சர்வசமன்பாட்டை  $\tan \propto$  ,  $\tan \beta$  ஆகியவந்நின் சார்பில் எழுதுக. இதிலிருந்து  $\tan 2\theta$  ஐ  $\tan \theta$  சார்பில் பெற்று  $\tan 3\theta = \frac{3 \tan \theta tan^3 \theta}{1 3 \tan^2 \theta}$  எனக் காட்டுக.  $\theta = \frac{\pi}{10}$  எனின்  $\tan 3\theta = \cot 2\theta$  எனக் காட்டுக. மேலும்  $5 \tan^4 \theta 10 \tan^2 \theta + 1 = 0$  எனக் காட்டி  $\tan \frac{\pi}{10} = \sqrt{1 \frac{2}{\sqrt{5}}}$  எனக் காட்டுக.
  - வழக்கமான குறிப்பீட்டில் முக்கோணிக்குரிய சைன் நெறியைக் கூறுக. முக்கோணி ABC  $A\hat{B}C = 90^{\circ}$ இல் ஆகும். முக்கோணியின் ஒவ்வொன்றும் மூன்று பக்கங்கள் உள்ளே O எனும் முக்கோணியின் புள்ளியில் 120°எனும் ஒரே கோணத்தை அமைக்கின்றன.  $C\hat{B}O= heta$  ஆகும்.  $\Delta\,BOC$ இந்குசைன் விதியை பிரயோகித்து  $\frac{BO}{Sin(60^{\circ}-\theta)} = \frac{a}{\sin 120^{\circ}}$  எனக் காட்டுக. மேலும்  $\Delta AOB$ இந்கு சைன் ഖിதിധെ பிரயோகிப்பதன் மூலம் BO இந்கான இன்னுமோர் தொடர்பைப் பெற்று  $an heta = rac{\sqrt{3}a + c}{\sqrt{3}c + a}$ எனக் காட்டுக.
  - (c)  $tan^{-1}\left(\frac{1}{3}\right) + tan^{-1}\left(\frac{1}{4}\right) + tan^{-1}\left(\frac{11}{7}\right) = \frac{\pi}{2}$  எனக் காட்டுக.



## வடமாகாணக் கல்வித் திணைக்களத்துடன் இணைந்து தொண்டைமானாறுவெளிக்களநிலையம் நடாத்தும்

## Field Work Centre தவணைப் பரீட்சை, யூன் - 2019 Term Examination, June - 2019

தரம் :- 13 (2019) **(** 

இணைந்த கணிதம் - II A

மூன்று மணித்தியாலம் 10 நிமிடம்

| சுட்டெண் |  |  |  |  |  |  |  |
|----------|--|--|--|--|--|--|--|
|----------|--|--|--|--|--|--|--|

## அறிவுறுத்தல்கள்:

- பகுதிA இன் எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் விடைகளைத் தரப்பட்ட இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- பகுதிB இல் உள்ள 7 வினாக்களில் விரும்பிய 5 வினாக்களுக்குமாத்திரம் விடைஎழுதுக.
- ஒதுக்கப்பட்ட நேரம் முடிவடைந்ததும் பகுதி A ஆனது பகுதி B யிற்கு மேலே இருக்கக்கூடியதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி Bயை மாத்திர<mark>ம்</mark> பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வத<u>ந்கு</u> அனுமதிக்கப்படும்.

|            | இணைந்தகணி     | ிதம் <b>I</b>     |
|------------|---------------|-------------------|
| பகுதி      | வினாஎண்       | கிடைத்த புள்ளிகள் |
|            | 1             |                   |
|            | 2             |                   |
|            | 3             |                   |
|            | 4             |                   |
| A          | 5             | - 00              |
| A          | 6             |                   |
|            | 7             |                   |
|            | 8             |                   |
|            | 9             |                   |
|            | 10            |                   |
|            | 11            |                   |
|            | 12            |                   |
|            | 13            |                   |
| В          | 14            |                   |
|            | 15            |                   |
|            | 16            |                   |
|            | 17            |                   |
| வினாத்தாள் | I இன் மொத்தம் |                   |

| இணைந்த கணிதம் <b>I</b> |  |
|------------------------|--|
| இணைந்த கணிதம் II       |  |
| இறுதிப் புள்ளிகள்      |  |

|     | பகுதி - ${f A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01) | முறையே $m,M$ திணிவுகளை உடைய சமஆரையுள்ள ஒப்பமான சீரான கோளங்கள் $A,B$ என்பன. முறையே $2u,4u$ வேகங்களுடன் நேரெதிராக ஒன்றை ஒன்று மோதுகின்றன. மோதலின் பின் $A$ இன் கதி $B$ கதியின் இரு மடங்காகவும் கதிகள் எதிர்த் திசையிலும் அமையுமாயின் $m:M=5:4$ எனக் காட்டுக. இங்கு இரு கோளங்களுக்கு இடையிலான மீளமைவுக் குணகம் $\frac{1}{2}$ ஆகும்.                                                                                                                                                                          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 02) | $3$ m திணிவுள்ள ஓர் துணிக்கை $P$ ஆனது ஒரு கரடான கிடை மேசை மீது வைக்கப்பட்டு படத்தில் காட்டப்பட்டவாறு இரு இலேசான இழைகளுக்கு இணைக்கப்பட்டு மேசையின் விளிம்புகளில் நிலைப்படுத்தப்பட்ட ஒப்பமான கப்பிகளின் மேலாக சென்று $m$ , $3m$ திணிவுகளை உடைய $Q$ , $R$ என்ற துணிக்கைகளைத் தாங்கி இழையின் பகுதிகள் இறுக்கமாக இருக்க மெதுவாக விடப்படுகின்றது. மேசைக்கும் துணிக்கை $P$ க்கும் இடையில் ஆன உராய்வுக் குணகம் $\mu$ ஆகும். இழை $PR$ இன் இழுவை இழை $PQ$ இன் இழுவையின் இரு $p$ 0 இன் இழுவையின் இரு $p$ 1 இக்காண்க. |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| 03) | கிடைத்தரையில் உள்ள ஒருபுள்ளி $O$ இல் இருந்து கிடையுடன் $lpha$ கோணத்தில் $u$            |
|-----|----------------------------------------------------------------------------------------|
|     | வேகத்துடன் நிலைக்குத்து தளத்தில் எநியப்படும் துணிக்கை ஆனது தன் பறப்பு நேரத்தின்        |
|     | 2<br>3 மடங்குநேரத்தில் கீழ்முகநிலைக்குத்துடன் 45° கோணத்தை அமைக்கின்றது. எனில்          |
|     | tan ∝= 3 எனக் காட்டுக.                                                                 |
|     |                                                                                        |
|     |                                                                                        |
|     |                                                                                        |
|     |                                                                                        |
|     |                                                                                        |
|     |                                                                                        |
|     |                                                                                        |
|     |                                                                                        |
|     |                                                                                        |
|     |                                                                                        |
|     |                                                                                        |
| 04) | A, B என்னும் இரு மோட்டார் சைக்கிள்கள் மின்கம்பம் X ஐ முறையேய, 2 u வேகங்களுடன்          |
|     | ஒரேநேரத்தில் ஒரேதிசையில் கடந்து நேர்ப் பாதையில் செல்கின்றன. B ஆனது சீரான               |
|     | வேகத்துடனும் $A$ ஆனது மாறா ஆர்முடுகலுடனும் இயங்குகின்றன. $A$ ஆனது $B$ ஐ $\frac{6u}{g}$ |
|     | நேரத்தில் கடந்து செல்லுமாயின் A, B இன் இயக்கங்களுக்கான வேகநேர வரைபை                    |
|     | ஒரேவரிப்படத்தில் வரைந்து வரைபில் இருந்து ${f A}$ இன் ஆர்முடுகலைக் காண்க.               |
|     |                                                                                        |
|     |                                                                                        |
|     |                                                                                        |
|     |                                                                                        |
|     |                                                                                        |
|     |                                                                                        |
|     |                                                                                        |
|     |                                                                                        |
|     |                                                                                        |
|     |                                                                                        |
|     |                                                                                        |
|     |                                                                                        |

|                      |                                           |                                        |                    |                      |                    |                          | ഖல്വതെ                   |                |
|----------------------|-------------------------------------------|----------------------------------------|--------------------|----------------------|--------------------|--------------------------|--------------------------|----------------|
| கிடையுடன்            | $\sin Sin^{-1} \left(\frac{1}{25}\right)$ | •) சாய்வா6                             | <b>ர பாதை</b> ப    | பில் கீழ்            | நோக்கி             | அதே த                    | நடைக்கெத                 | நிராக சீ       |
|                      | ன் பயணிப்பி                               |                                        |                    |                      |                    |                          |                          |                |
|                      |                                           |                                        |                    |                      |                    |                          |                          |                |
|                      |                                           |                                        |                    |                      |                    |                          |                          |                |
|                      |                                           |                                        |                    |                      |                    |                          |                          |                |
|                      |                                           |                                        |                    |                      |                    |                          |                          |                |
| •••••                |                                           |                                        |                    |                      |                    |                          |                          | •••••          |
|                      |                                           |                                        |                    |                      |                    |                          |                          |                |
|                      |                                           |                                        |                    |                      |                    |                          |                          |                |
|                      |                                           |                                        |                    |                      |                    |                          |                          |                |
|                      |                                           |                                        |                    |                      |                    |                          |                          |                |
|                      |                                           |                                        |                    |                      |                    |                          |                          |                |
|                      |                                           |                                        |                    |                      |                    |                          |                          |                |
|                      |                                           |                                        |                    |                      |                    |                          |                          |                |
|                      |                                           | ······································ |                    | // //                |                    |                          |                          | •••••          |
| •••••                |                                           |                                        |                    |                      |                    |                          |                          |                |
|                      |                                           |                                        |                    |                      |                    |                          |                          |                |
|                      |                                           |                                        | <u></u>            |                      |                    |                          |                          |                |
|                      | 19                                        |                                        |                    |                      |                    |                          |                          |                |
|                      | pம் w நிரை                                | றயுமுள்ள                               | AB என்ற            | த <b>சீ</b> ரானசே    | கால் நி            | <br><br>லைக்குத்         | து சுவருட                | _ன் A          |
|                      | pம் w நிரை<br>பிணைக்கு                    |                                        |                    |                      |                    |                          |                          |                |
| ஒப்பமாகப்            | பிணைக்க                                   | ப்பட்டும் A                            | .B கிடை            | பாக இரு              | க்குமாறு           | B <sub>i</sub>           | கட்டப்பட்ட               | இழை            |
| ஒப்பமாகப்<br>மறுமுனை | பிணைக்க<br>A இற்கு                        | ப்பட்டும் A<br>நிலைக்குத்              | .B கிடைம<br>தாக மே | பாக இரு<br>மலே சுவர் | க்குமாறு<br>ரில் C | <b>B</b> ல் க<br>இல் கட் | கட்டப்பட்ட<br>டப்பட்டும் | இழை<br>நாப்பத் |
| ஒப்பமாகப்<br>மறுமுனை | பிணைக்க                                   | ப்பட்டும் A<br>நிலைக்குத்              | .B கிடைம<br>தாக மே | பாக இரு<br>மலே சுவர் | க்குமாறு<br>ரில் C | <b>B</b> ல் க<br>இல் கட் | கட்டப்பட்ட<br>டப்பட்டும் | இழை<br>நாப்பத் |
| ஒப்பமாகப்<br>மறுமுனை | பிணைக்க<br>A இற்கு                        | ப்பட்டும் A<br>நிலைக்குத்              | .B கிடைம<br>தாக மே | பாக இரு<br>மலே சுவர் | க்குமாறு<br>ரில் C | <b>B</b> ல் க<br>இல் கட் | கட்டப்பட்ட<br>டப்பட்டும் | இழை<br>நாப்பத் |
| ஒப்பமாகப்<br>மறுமுனை | பிணைக்க<br>A இற்கு                        | ப்பட்டும் A<br>நிலைக்குத்              | .B கிடைம<br>தாக மே | பாக இரு<br>மலே சுவர் | க்குமாறு<br>ரில் C | <b>B</b> ல் க<br>இல் கட் | கட்டப்பட்ட<br>டப்பட்டும் | இழை<br>நாப்பத் |
| ஒப்பமாகப்<br>மறுமுனை | பிணைக்க<br>A இற்கு                        | ப்பட்டும் A<br>நிலைக்குத்              | .B கிடைம<br>தாக மே | பாக இரு<br>மலே சுவர் | க்குமாறு<br>ரில் C | <b>B</b> ல் க<br>இல் கட் | கட்டப்பட்ட<br>டப்பட்டும் | இழை<br>நாப்பத் |
| ஒப்பமாகப்<br>மறுமுனை | பிணைக்க<br>A இற்கு                        | ப்பட்டும் A<br>நிலைக்குத்              | .B கிடைம<br>தாக மே | பாக இரு<br>மலே சுவர் | க்குமாறு<br>ரில் C | <b>B</b> ல் க<br>இல் கட் | கட்டப்பட்ட<br>டப்பட்டும் | இழை<br>நாப்பத் |
| ஒப்பமாகப்<br>மறுமுனை | பிணைக்க<br>A இற்கு                        | ப்பட்டும் A<br>நிலைக்குத்              | .B கிடைம<br>தாக மே | பாக இரு<br>மலே சுவர் | க்குமாறு<br>ரில் C | <b>B</b> ல் க<br>இல் கட் | கட்டப்பட்ட<br>டப்பட்டும் | இழை<br>நாப்பத் |
| ஒப்பமாகப்<br>மறுமுனை | பிணைக்க<br>A இற்கு                        | ப்பட்டும் A<br>நிலைக்குத்              | .B கிடைம<br>தாக மே | பாக இரு<br>மலே சுவர் | க்குமாறு<br>ரில் C | <b>B</b> ல் க<br>இல் கட் | கட்டப்பட்ட<br>டப்பட்டும் | இழை<br>நாப்பத் |
| ஒப்பமாகப்<br>மறுமுனை | பிணைக்க<br>A இற்கு                        | ப்பட்டும் A<br>நிலைக்குத்              | .B கிடைம<br>தாக மே | பாக இரு<br>மலே சுவர் | க்குமாறு<br>ரில் C | <b>B</b> ல் க<br>இல் கட் | கட்டப்பட்ட<br>டப்பட்டும் | இழை<br>நாப்பத் |
| ஒப்பமாகப்<br>மறுமுனை | பிணைக்க<br>A இற்கு                        | ப்பட்டும் A<br>நிலைக்குத்              | .B கிடைம<br>தாக மே | பாக இரு<br>மலே சுவர் | க்குமாறு<br>ரில் C | <b>B</b> ல் க<br>இல் கட் | கட்டப்பட்ட<br>டப்பட்டும் | இழை<br>நாப்பத் |
| ஒப்பமாகப்<br>மறுமுனை | பிணைக்க<br>A இற்கு                        | ப்பட்டும் A<br>நிலைக்குத்              | .B கிடைம<br>தாக மே | பாக இரு<br>மலே சுவர் | க்குமாறு<br>ரில் C | <b>B</b> ல் க<br>இல் கட் | கட்டப்பட்ட<br>டப்பட்டும் | இழை<br>நாப்பத் |

| காட்டுக.                                |             |                      |                       |                                    |                                    |                |                    |
|-----------------------------------------|-------------|----------------------|-----------------------|------------------------------------|------------------------------------|----------------|--------------------|
|                                         |             |                      |                       |                                    |                                    |                |                    |
|                                         |             |                      |                       |                                    |                                    | •••••          |                    |
|                                         |             |                      |                       |                                    |                                    |                | •••••              |
|                                         | •••••       |                      |                       |                                    |                                    |                |                    |
|                                         |             |                      |                       |                                    |                                    |                |                    |
|                                         | ••••••      |                      | ••••••                | •••••                              |                                    | •••••          | ••••••             |
| •••••                                   | ••••••••••  |                      |                       | ••••••                             |                                    | •••••          | ••••••             |
|                                         | ••••••••••• |                      |                       | ••••••                             |                                    | ••••••         | •                  |
| •••••                                   | ••••••••••• |                      |                       | ••••••                             | ••••••                             | •••••          | ••••••             |
|                                         |             |                      |                       |                                    |                                    |                |                    |
|                                         |             |                      |                       |                                    |                                    |                |                    |
|                                         |             |                      |                       |                                    |                                    |                |                    |
|                                         |             |                      |                       |                                    |                                    |                |                    |
|                                         |             |                      |                       |                                    |                                    |                |                    |
|                                         |             |                      |                       |                                    |                                    |                |                    |
| a நீளமுள்ள<br>நிலைப்படுத்த<br>அமையுமாறு | ப்பட்ட அ6   | ரைக்கோள              |                       | ஓட்டினுள்                          | பூரையுள்ள<br>கோளத்தின்<br>5 குணகம் | அதிதா          | ழ் புள்ளி          |
| நிலைப்படுத்து                           | ப்பட்ட அ6   | ரைக்கோள              | கரடான ஒ               | ஓட்டினுள்                          | கோளத்தின்                          | அதிதா          | ழ் புள்ளி          |
| நிலைப்படுத்து<br>அமையுமாறு              | ப்பட்ட அ6   | ரைக்கோள              | கரடான ஒ               | ஓட்டினுள்                          | கோளத்தின்                          | அதிதா          | ழ் புள்ளி          |
| நிலைப்படுத்து<br>அமையுமாறு              | ப்பட்ட அ6   | ரைக்கோள              | கரடான ஒ               | ஓட்டினுள்                          | கோளத்தின்                          | அதிதா          | ழ் புள்ளி          |
| நிலைப்படுத்து<br>அமையுமாறு              | ப்பட்ட அ6   | ரைக்கோள்<br>சமநிலைய  | கரடான ஒ<br>பிலுள்ளது. | ஓட்டினுள்<br>உராய்வுச்             | கோளத்தின்<br>தணகம்                 | அதிதா<br>√15 — | ழ் புள்ளி<br>2√3 எ |
| நிலைப்படுத்து<br>அமையுமாறு<br>காட்டுக.  | ப்பட்ட அ6   | ரைக்கோள்<br>சமநிலைய  | கரடான ஏ<br>பிலுள்ளது. | ஓட்டினுள்<br>உராய்வு <del>க்</del> | கோளத்தின்<br>5 குணகம்              | அதிதா<br>√15 — | ழ் புள்ளி<br>2√3 எ |
| நிலைப்படுத்து<br>அமையுமாறு<br>காட்டுக.  | ப்பட்ட அ6   | ரைக்கோள்<br>சமநிலைய  | கரடான ஒ<br>ிலுள்ளது.  | ஓட்டினுள்<br>உராய்வுச்             | கோளத்தின்<br>தணகம்                 | அதிதா<br>√15 — | ழ் புள்ளி<br>2√3 6 |
| நிலைப்படுத்து<br>அமையுமாறு<br>காட்டுக.  | ப்பட்ட அ6   | ரைக்கோள்<br>சமநிலைய  | கரடான ஒ<br>ிலுள்ளது.  | ஓட்டினுள்<br>உராய்வுச்             | கோளத்தின்<br>தணகம்                 | அதிதா<br>√15 — | ழ் புள்ளி<br>2√3 6 |
| நிலைப்படுத்து<br>அமையுமாறு<br>காட்டுக.  | ப்பட்ட அ6   | ரைக்கோள்<br>சமநிலைய  | கரடான ஒ<br>ிலுள்ளது.  | ஓட்டினுள்<br>உராய்வுச்             | கோளத்தின்<br>தணகம்                 | அதிதா<br>√15 — | ழ் புள்ளி<br>2√3 6 |
| நிலைப்படுத்து<br>அமையுமாறு<br>காட்டுக.  | ப்பட்ட அ6   | ரைக்கோள்<br>சமநிலைய  | கரடான ஒ<br>ிலுள்ளது.  | ஓட்டினுள்<br>உராய்வுச்             | கோளத்தின்<br>தணகம்                 | அதிதா<br>√15 — | ழ் புள்ளி<br>2√3 6 |
| நிலைப்படுத்து<br>அமையுமாறு<br>காட்டுக.  | ப்பட்ட அ6   | ரைக்கோள்<br>சமநிலைய  | கரடான ஒ<br>ிலுள்ளது.  | ஓட்டினுள்<br>உராய்வுச்             | கோளத்தின்<br>தணகம்                 | அதிதா<br>√15 — | ழ் புள்ளி<br>2√3 6 |
| நிலைப்படுத்து<br>அமையுமாறு<br>காட்டுக.  | ப்பட்ட அ6   | ரைக்கோள்<br>சமநிலைய  | கரடான ஒ<br>ிலுள்ளது.  | ஓட்டினுள்<br>உராய்வுச்             | கோளத்தின்<br>தணகம்                 | அதிதா<br>√15 — | ழ் புள்ளி<br>2√3 6 |
| நிலைப்படுத்து<br>அமையுமாறு<br>காட்டுக.  | ப்பட்ட அ6   | ரைக்கோள்<br>சமநிலைய  | கரடான ஒ<br>ிலுள்ளது.  | ஓட்டினுள்<br>உராய்வுச்             | கோளத்தின்<br>தணகம்                 | அதிதா<br>√15 — | ழ் புள்ளி<br>2√3 6 |
| நிலைப்படுத்து<br>அமையுமாறு<br>காட்டுக.  | ப்பட்ட அ6   | ரைக்கோள்<br>சமநிலைப  | கரடான ஏ               | ஓட்டினுள்<br>உராய்வுச்             | கோளத்தின்<br>5 குணகம்              | அதிதா<br>√15 — | ழ் புள்ளி<br>2√3 எ |
| நிலைப்படுத்து                           | ப்பட்ட அ6   | ரைக்கோள்<br>சமநிலைப  | கரடான ஏ               | ஓட்டினுள்<br>உராய்வுச்             | கோளத்தின்<br>5 குணகம்              | அதிதா<br>√15 — | ழ் புள்ளி<br>2√3 எ |
| நிலைப்படுத்து                           | ப்பட்ட அ6   | ரைக்கோள்<br>சமநிலைப் | கரடான எ               | ஓட்டினுள்<br>உராய்வுச்             | கோளத்தின்<br>5 குணகம்              | அதிதா<br>√15 — | ழ் புள்ளி<br>2√3 எ |

| •••••       |                                                         |                                                                                |                                                                                                    | •••••                                                                                                                     |
|-------------|---------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|             | •••••                                                   | •••••                                                                          | •••••                                                                                              |                                                                                                                           |
|             |                                                         |                                                                                |                                                                                                    |                                                                                                                           |
| <br>        |                                                         |                                                                                |                                                                                                    |                                                                                                                           |
|             |                                                         |                                                                                |                                                                                                    |                                                                                                                           |
|             |                                                         |                                                                                |                                                                                                    | ••••••                                                                                                                    |
|             |                                                         |                                                                                |                                                                                                    | ••••••                                                                                                                    |
|             |                                                         |                                                                                |                                                                                                    |                                                                                                                           |
|             |                                                         |                                                                                |                                                                                                    | ••••••                                                                                                                    |
|             |                                                         |                                                                                |                                                                                                    |                                                                                                                           |
|             |                                                         |                                                                                |                                                                                                    |                                                                                                                           |
|             |                                                         |                                                                                |                                                                                                    |                                                                                                                           |
|             |                                                         |                                                                                |                                                                                                    |                                                                                                                           |
|             |                                                         |                                                                                |                                                                                                    |                                                                                                                           |
|             |                                                         |                                                                                |                                                                                                    |                                                                                                                           |
| <br>        |                                                         |                                                                                |                                                                                                    |                                                                                                                           |
|             |                                                         |                                                                                |                                                                                                    |                                                                                                                           |
|             |                                                         |                                                                                |                                                                                                    |                                                                                                                           |
| <br>        |                                                         |                                                                                | •••••                                                                                              |                                                                                                                           |
| <br>        |                                                         |                                                                                |                                                                                                    |                                                                                                                           |
|             |                                                         |                                                                                |                                                                                                    |                                                                                                                           |
|             |                                                         |                                                                                |                                                                                                    |                                                                                                                           |
|             |                                                         |                                                                                |                                                                                                    |                                                                                                                           |
|             |                                                         |                                                                                |                                                                                                    |                                                                                                                           |
|             |                                                         |                                                                                |                                                                                                    |                                                                                                                           |
| > y > z > 7 | 5, 7, 9 எனும் ஆறு நேர்நின<br>> y > z > 7 ஆகும். x, y, z | 5, 7, 9 எனும் ஆறு நேர்நிறையெண்களின்<br>> y > z > 7 ஆகும். x, y, z இன் சாத்தியம | 5, 7, 9 எனும் ஆறு நேர்நிறையெண்களின் இடை, இடைய<br>> y > z > 7 ஆகும். x, y, z இன் சாத்தியமான பெறுமான | 5, 7, 9 எனும் ஆறு நேர்நிறையெண்களின் இடை, இடையம், ஆகாரம் ச<br>> y > z > 7 ஆகும். x, y, z இன் சாத்தியமான பெறுமானங்களைக் கான |



# வடமாகாணக்கல்வித் திணைக்களத்துடன் இணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

## Field Work Centre தவணைப் பரீட்சை, யூன் - 2019

**Term Examination, June - 2019** 

தரம் :- 13 (2019)

இணைந்த கணிதம்  $extstyle
olimits_{-II} B$ 

#### பகுதி – B

- 11) (a) கிடைத்தரையில் உள்ள ஒருபுள்ளி O இலிருந்து நிலைக்குத்தாக மேல்நோக்கி புவியீர்ப்பின் கீழ் 2u வேகத்துடன் ஒருதுணிக்கை A எறியப்படும் கணத்தில் இன்னோர் துணிக்கை B ஆனது O இற்கு நேர் மேலே h உயரத்தில் உள்ள ஒருகோபுரத்தின் உச்சியில் இருந்து மேல்நோக்கிய u வேகத்துடன் எறியப்படுகின்றது.
  - (i) இரு துணிக்கைகளின் கிடைத்தரை வரையான இயக்கங்களுக்கான வேகநேர வரைபுகளை ஒரேவரிப்படத்தில் வரைக.
  - (ii) வரைபில் இருந்து இரு துணிக்கைகளும் தமது அதிஉயர் உயரத்தை அடைவதற்கு எடுக்கும் நேரங்கள் ஒருபோதும் சமனாகாது என்பதை காரணத்துடன் விளக்குக.
  - (iii) தரையில் இருந்து இரு துணிக்கைகளுக்குமான அதிஉயர் உயரங்கள் சமன் எனில் u ஐ h சார்பில் தருக.
  - (iv) துணிக்கை B தரையை அ<mark>டிக்கும் வேகத்தை</mark>க் காண்க.
  - (b) ஒரு விமான நிலையம் X இல் இருந்து காற்று சார்பாக சீரான கதி v உடைய A, B என்னும் இரு விமானங்கள் சீரான கதிகளுடன் முறையே மேற்கு, வடக்கு நோக்கி உள்ள நிலையங்களுக்குப் பயணிக்கின்றன. காற்றானது வடகிழக்கு திசையில் இருந்து u வேகத்துடன் வீசுகின்றது.
    - (i) A, B இன் இயக்கங்களுக்கான வேகமுக்கோணிகளை ஒருவரிப்படத்தில் வரைக
    - (ii) வரைபில் இருந்து
      - i.  $V_{AE}$ ,  $V_{BE}$  என்பவற்றைக் காண்க.
      - $V_{AB}$  ஐக் காண்க.
      - iii. *B* சார்பாக A இயங்கும் திசையைக் காண்க.

12) (a)



ABC ஆனது  $B\hat{A}C = \frac{\pi}{2}$ ,  $A\hat{B}C = \infty$ , BC = h ஆக உள்ள M திணிவுள்ள ஓர் ஆப்பின் திணிவு மையத்தின் ஊடான குறுக்குவெட்டாகும். முகம் BC ஆனது ஓர் ஒப்பமான நீளமான கிடை மேசை மீது படத்தில் காட்டப்பட்டவாறு வைக்கப்பட்டு B இல் இருந்து

- BA வழியே m திணிவுடைய துணிக்கை P ஆனது ஆப்பின் உச்சி A ஐ மட்டுமட்டாக அடையுமாறு 2v வேகத்துடன் எறியப்படுகின்றது. துணிக்கை ஆப்பின் உச்சியை மட்டுமட்டாக அடையும் கணத்தில் ஆப்பானது h தூரம் இயங்கி v என்னும் வேகத்தைபெற்று இருப்பின் துணிக்கை ஆப்பின் மீது உள்ளபோது
- (i) ஆப்பின் ஆர்முடுகல் துணிக்கையின் ஆப்பு சார்பான ஆர்முடுகல் என்பன முறையே  $F,\,f$  எனில்  $F=rac{f\coslpha}{4}$  எனக் காட்டுக.
- (ii) ஆப்பு, துணிக்கையின் ஆர்முடுகல்களை துணிவதற்கு பொருத்தமான சமன்பாட்டை பெற்று ஆப்பு, துணிக்கையின் ஆப்பு சார்பான ஆர்முடுகல்களைப் பெறுக.
- (iii) M=3 m எனக் காட்டி  $V^2=\frac{2gh\,\tan\alpha}{3+4\,\tan^2\alpha}$  எனக் காட்டுக.
- (b) நிலைப்படுத்தப்பட்ட a ஆரையுடைய ஓர் ஒப்பமான பொட்கோளம் ஒன்றின் வெளிமேற்பரப்பின் உச்சியில் m திணிவுடைய துணிக்கை P வைக்கப்பட்டு மெதுவாக விடப்படுகின்றது. அதேகணத்தில் கோளத்தின் உள்மேற்பரப்பின் அதிதாழ் புள்ளியில் இருந்து கிடையாகu வேகத்துடன் அதேதிணிவுள்ள துணிக்கைQ எறியப்படுகின்றது. இரு துணிக்கைகளும் ஒரேபுள்ளியில் கோளமேற்பரப்பை விட்டு நீங்கின்  $u=2\sqrt{ag}$  எனக் காட்டுக. துணிக்கைP விலகும்போது கோணவேகம் யாது?
- 13) இயற்கை நீளம் a ஆகவுள்ள ஓர் இலேசான மீள் தன்மையுள்ள சுருள் வில் ஒன்றின் ஒரு முனை உயரமான நிலைத்த புள்ளி O இந்கு இணைக்கப்பட்டு மறுமுனையில் 2m திணிவுள்ள துணிக்கை இணைக்கப்பட்டு சமநிலையில் தொங்கும் போது O இந்கு கீழே 2a தூரத்தில் உள்ளது. சுருள் வில்லின் மீள்தன்மை மட்டு 2 mg எனக் காட்டுக. சமநிலையில் உள்ள போது துணிக்கை ஆனது O இற்கு கீழே 4a ஆழத்திற்கு மட்டுமட்டாக செல்லக்கூடியவாறு துணிக்கைக்கு நிலைக்குத்தாக கீழ்நோக்கி ஓர் கணத்தாக்கு I கொடுக்கப்படுகிறது.
  - i. சக்திக் காப்புகோட்பாட்டைப் பயன்படுத்தி கணத்தாக்குக்கு சற்றுப் பின் துணிக்கையின் வேகத்தைக் காண்க.
  - ii. கணத்தாக்கு I ஐ காண்க.
  - iii. துணிக்கையின் இயக்கச் சமன்பாடு  $\ddot{x} = \frac{-g}{a} (x 2a)$  என்னும் சமன்பாட்டை திருப்தி ஆக்குகின்றது எனக் காட்டுக. இங்கு x ஆனது O இல் இருந்து துணிக்கையில் ஆழம் ஆகும்.
  - iv. y = x 2a எனப் பிரதியிடுவதன் மூலம் துணிக்கையின் இயக்கச் சமன்பாடு  $\ddot{y} = \frac{-g}{a} y$  என்னும் எ.இ. இயக்கச் சமன்பாட்டை திருப்தி செய்கிறது எனக் காட்டுக.
  - v. ivஇல் சமன்பாட்டின் தீர்வு $y = A\cos wt + B\sin wt$  எனில் A, B, W ஐ காண்க.
  - vi. எளிமை இசை இயக்கத்தின் அலைவு மையம், வீச்சம் என்பவற்றைக் காண்க.
  - vii. துணிக்கை அதன் அதிதாழ் புள்ளியில் உள்ள போது m திணிவுடைய வேநோர் துணிக்கை 2m திணிவுடன் மெதுவாக ஒட்டிக்கொள்கிறது எனில் தொடரும் இயக்கத்தில் துணிக்கைக்கும் O இற்கும் இடையிலான மிகக் குறுகிய தூரம் OC எனின் OC ஐ காண்க.
- 14) (a) O என்ற புள்ளி குறித்து A, B என்ற புள்ளிகளின் தானக் காவிகள்  $\underline{a}$ ,  $\underline{b}$  ஆகும். 
  3  $\overline{AB} = 2 \,\overline{AC}$  ஆகுமாறு C என்ற புள்ளி உள்ளது.  $\overline{OD} = \underline{a} + \underline{b}$  ஆகுமாறு D அமைந்துள்ளது. BD இல் BM: MD = 2:1 ஆகுமாறு M உள்ளது. நீட்டப்பட்ட CM, AD ஐ N இல் சந்திக்கிறது.
  - i.  $\overrightarrow{OC}$ ,  $\overrightarrow{BD}$ ,  $\overrightarrow{AD}$ என்பவற்றை  $\underline{a}$  ,  $\underline{b}$  சார்பாகக் காண்க.
  - ii.  $AN=\lambda\,ND$ எனக் கொண்டு  $\overrightarrow{ON}$  ஐ  $\lambda,\alpha$ , b சார்பாக காண்க.

- iii.  $\overrightarrow{CM},\overrightarrow{CN}$  என்பவற்றை  $\lambda,\underline{a}$  ,  $\underline{b}$  சார்பாக காண்க.
- iv. iii இலிருந்து  $\lambda$  ஐக் கண்டு N,AD ஐப் பிரிக்கும் விகிதத்தைக் காண்க.
- (b) i,j என்பன முறையே OX, OY அச்சுக்களின் வழியே ஆன அலகுக் காவிகள் ஆகும். விசைகள்  $\underline{F_1} = 3\underline{i} + 4\underline{j}$ ,  $\underline{F_2} = -2\underline{i} + 2\underline{j}$ ,  $\underline{F_3} = 3\underline{i} + 6\underline{j}$ ,  $\underline{F_4} = 2\underline{i} 4\underline{j}$  என்பன முறையே  $\underline{r_1} = 3\underline{i} + 2\underline{j}$ ,  $\underline{r_2} = -2\underline{i} + 3\underline{j}$ ,  $\underline{r_3} = -2\underline{i} 2\underline{j}$ ,  $\underline{r_4} = 2\underline{i} 3\underline{j}$  என்பவற்றை தானக் காவிகளாகக் கொண்ட புள்ளிகளில் தாக்குகின்றன.
  - (i) விசைத் தொகுதியின் விளையுளைக் காண்க.
  - (ii) O பற்றி விசைத்தொகுதியின் திருப்பத்தைக் கண்டு, அதில் இருந்து விளையுளின் தாக்கக் கோட்டின் சமன்பாட்டைப் பெறுக.
  - (iii) விசைத் தொகுதிக்கு மேலதிகமாக (2, 3) என்னும் புள்ளியில் தாக்கும் புதிய விசையினால் விளையுள் ஆனது15~N ஆல் அதிகரிப்பின் விளையுளின் திசைநேர் X அச்சுடன்  $tan^{-1}\left(\frac{24}{7}\right)$  என்னும் திசையில் இருப்பின் புதிதாக சேர்க்கப்பட்ட விசையையும் விளையுளின் தாக்கக்கோட்டின் சமன்பாட்டையும் காண்க.
- 15) (a) m W நிறையுடைய இரு சமனான சீரான கோல்கள் m AB, m BC என்பன m B இல் ஒப்பமாக மூட்டப்பட்டுபடத்தில் காட்டப்பட்டவாறு m A இல் பிணைக்கப்பட்டு m C இல் தாக்கும் கிடைவிசை  $m \frac{\sqrt{3}\,\it w}{\it 2}$  இனால் சமநிலையில் பேணப்படுகின்றது.



- (ii) AB மேல் முகநிலைக்குத்துட<mark>ன்</mark> ஆக்கும் கோணத்தைக் காண்க.
- (iii) மூட்டு B இல் உள்ள மறுதாக்கத்தின் பருமனைக் காண்க.



(b) A, B, C, D, E ஆகியவற்றில் சுயாதீனமாக மூட்டப்பட்ட இலேசான 7 கோல்களால் ஆனசட்டப்படல் உருவில் காட்டப்பட்டுள்ளது. அது A இல் சுயாதீனமாக பிணைக்கப்பட்டும் C யில் தொங்கவிடப்பட்ட 2w நிறையினாலும் B யில் உள்ள தூங்கியினாலும் AB கிடையாக இருக்க சமநிலையில் உள்ளது. இங்கு AB = BD = DC,  $A\hat{B}D = \frac{\pi}{2}$ , E ஆனது BC யின் நடுப்புள்ளி.



- (i) A இலுள்ள மறுதாக்கத்தின் திசையைக் கூறுக.
- (ii) போவின் குறிப்பீட்டைப் பயன்படுத்தி C, E, D, B ஆகிய மூட்டுக்களுக்கு தகைப்பு வரிப்படம் வரைக.
- (iii) தகைப்பு வரிப்படத்தில் இருந்து கோல்களில் உள்ள தகைப்புக்களை கண்டு அவை இழுவையா உதைப்பா என வேறுபடுத்திக் காட்டுக.

- (iv) பிணையல் A யில் மறுதாக்கத்தையும், B இல் தாங்கியால் ஏற்படுத்தப்படும் மறுதாக்கத்தையும் காண்க.
- a ஆரையும் அலகு நீளதிணிவு m உம் கொண்டமையம் O வில்  $a \propto C$  கோணம் எதிரமைக்கும் சீரான வட்ட வில்வடிவ  $a \propto C$  என்னும் மெல்லிய கம்பியின் திணிவுமையம் O வில் இருந்து  $\frac{a \sin \alpha}{\alpha}$  என்ற தூரத்தில் உள்ளதெனக் காட்டுக.

AB என்னும் கம்பியுடன் OA, OB என்னும் அலகு நீளதிணிவு M கொண்ட இரு கம்பிகள் பொருத்தப்பட்டு ஓர் உடல் உருவாக்கப்படுகிறது. இவ்வுடலின் திணிவுமையம் O வில் இருந்து  $\frac{a(3m\sin x + M\cos x)}{2(M+xm)}$  எனக் காட்டுக. / உடலின் திணிவுமையம் OAB இனுள் அமையின்  $x=\frac{\pi}{4}$  எனத் தரப்படின் இவ்வுடல் B யில் இருந்துகட்டித் தொங்கவிடப்படின் BA ஆனது கீழ்முக நிலைக்குத்துடன்  $x=\frac{\pi}{4}$  கொணம் அமைப்பின்  $x=\frac{\pi}{4}$  எனக் காட்டுக.

இதிலிருந்து $2\ M=m$  எனின்  $an heta=rac{\pi-3}{\pi+2}$  எனக் காட்டுக.

17) (a) A, B, C என்ற முன்று உதைகளில் முறையே பின்வருமாறு நிறமாபிள்கள் உள்ளன.

| உறை | கறுப்பு | வெள்ளை | சிவப்பு |
|-----|---------|--------|---------|
| A   | 1       | 2      | 3       |
| В   | 2       | 4      | 1       |
| C   | 4       | 5      | 3       |

முதலில் ஒருஉறை தெரியப்பட்டு அதிலிருந்து இரு மாபிள்கள் எழுமாறாக எடுக்கப்படுகின்றது.

- i. எடுக்கப்பட்ட மாபிள் ஒன்று சிவப்பாகவும் ஒன்று கறுப்பாகவும் இருக்கும் நிகழ்தகவு யாது?
- ii. எடுக்கப்பட்ட மாபிள் ஒன்று சிவப்பு ஒன்று கறுப்பு எனத்தரப்படின் அவை Aயில் இருந்து வந்திருப்பதற்கான நிகழ்தகவு யாது?
- (b) நாளாந்த செலவீட்டிற்கு அமைய குறித்த எண்ணிக்கையான குடும்பங்களின் செலவுப் பரம்பலைப் பின்வரும் அட்டவணை காட்டுகிறது. இப் பரம்பலுக்கான இடையம், ஆகாரம் என்பன முறையே ரூ 250,ரூ 260 ஆகும்.

| செலவீடு        | 0 - 100 | 100 - 200 | 200 - 300 | 300 - 400 | 400 - 500 |
|----------------|---------|-----------|-----------|-----------|-----------|
| குடும்பங்களின் | 15      | a         | 27        | b         | 14        |
| எண்ணிக்கை (f)  |         |           |           |           |           |

- (i) a, b இன் பெறுமானங்களைக் கணிக்குக.
- $d=rac{x-250}{100}$  என்னும் உரு மாந்நத்தைப் பயன்படுத்தி இடை, நியம விலகலைக் காண்க. (இங்கு x ஆனது வகுப்பாயிடையின் நடுப்பெறுமானமாகும்).
- (iii) ஆகாரத்தைப் பயன்படுத்தாமல் ஓராயக் குணகத்தை கண்டுபரம்பலின் வடிவத்தை உய்த்தறிக.



ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

# SCIENCE EAGLE www.scienceeagle.com

- Biology
- C.Maths
- Physics
- Chemistry
  - + more

