Guía 2

Preliminares y notación

- 1. Sean \mathcal{X} e \mathcal{Y} dos conjuntos. Una aplicación (o función) $f: \mathcal{X} \to \mathcal{Y}$ de \mathcal{X} en \mathcal{Y} , es una relación entre \mathcal{X} e \mathcal{Y} que a cada elemento $x \in \mathcal{X}$ le asigna un único elemento del conjunto \mathcal{Y} que se denota mediante f(x).
- 2. Con $\mathrm{id}_{\mathfrak{X}}: \mathfrak{X} \to \mathfrak{X}$ se denota la aplicación identidad de \mathfrak{X} :

$$id_{\mathfrak{X}}(x) = x$$
 cualquiera sea $x \in \mathfrak{X}$.

- 3. Sea $f: \mathfrak{X} \to \mathfrak{Y}$ una aplicación de \mathfrak{X} en \mathfrak{Y} .
 - Dados $x \in \mathcal{X}$ e $y \in \mathcal{Y}$, si f(x) = y se dice que y es la imagen de x por f y que x es imagen inversa de y. El conjunto de todas las imágenes inversas de y por f, se denomina la preimagen de y en \mathcal{X} y se designa con $f^{-1}(y)$

$$f^{-1}(y) := \{x \in \mathcal{X} : f(x) = y\}.$$

- Se dice que f es inyectiva si $f(x_1) = f(x_2)$ implica que $x_1 = x_2$ cualesquiera sean $x_1, x_2 \in \mathcal{X}$, o equivalentemente si $f(x_1) \neq f(x_2)$ cada vez que $x_1 \neq x_2$. Notar que f es inyectiva si, y sólo si para cualquier $g \in \mathcal{Y}$, la ecuación f(x) = g admite como máximo una solución en \mathcal{X} .
- Se dice que f es sobreyectiva si para todo $y \in \mathcal{Y}$ existe $x \in \mathcal{X}$ tal que f(x) = y. Notar que f es sobreyectiva si, y sólo si para cualquier $y \in \mathcal{Y}$, la ecuación f(x) = y admite como mínimo una solución en \mathcal{X} .
- Se dice que f es biyectiva si f es inyectiva y sobreyectiva. Notar que f es biyectiva si, y sólo si para cualquier $y \in \mathcal{Y}$, la ecuación f(x) = y admite exactamente una solución en \mathcal{X} .
- Si $X \subseteq \mathfrak{X}$, el conjunto de todas las imágenes de elementos de X por f se designa por f(X)

$$f(X) := \{ f(x) : x \in X \} = \{ y \in \mathcal{Y} : \text{ existe } x \in X \text{ tal que } f(x) = y \}$$

y se denomina el conjunto imagen de X por f.

- La imagen de f es el conjunto $f(\mathfrak{X})$. Notar que f es sobreyectiva si, y sólo si $f(\mathfrak{X}) = \mathfrak{Z}$.
- Si $Y \subseteq \mathcal{Y}$, el conjunto de todos aquellos elementos de \mathcal{X} cuyas imágenes pertenecen a Y se designa con $f^{-1}(Y)$

$$f^{-1}(Y):=\{x\in \mathfrak{X}: f(x)\in Y\}$$

y se denomina la preimagen de Y en \mathfrak{X} .

4. Sean $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ conjuntos. Sean $f: \mathcal{X} \to \mathcal{Y}$ y $g: \mathcal{Y} \to \mathcal{Z}$ dos aplicaciones. La composición de g con f es la aplicación

$$g \circ f : \mathfrak{X} \to \mathfrak{Z}$$

definida por $(g \circ f)(x) := g(f(x))$ para todo $x \in \mathfrak{X}$.

5. Los símbolos $\mathbb V$ y $\mathbb W$ están reservados para designar $\mathbb K$ -espacios vectoriales.

6. Sea \mathbb{V} un \mathbb{R} espacio vectorial y sea $\mathcal{V} = \{v_i : i \in \mathbb{I}_n\} \subset \mathbb{V}$ un conjunto de n puntos de \mathbb{V} . Se dice que $v \in \mathbb{V}$ es una combinación lineal convexa de elementos de \mathcal{V} si

$$v = \sum_{i=1}^{n} p_i v_i$$

para algunos $p_1, p_2, \dots p_n \in \mathbb{R}^+$ tales que $\sum_{i=1}^n p_i = 1$.

Combinaciones lineales convexas de $\{v_1, v_2\}$. Los puntos de la forma $v = p_1v_1 + p_2v_2$, con $p_1 \ge 0$, $p_2 \ge 0$ y $p_1 + p_2 = 1$ constituyen los puntos del segmento de recta que unen a los puntos v_1 y v_2 . En el ejemplo, $p_1 = p_2 = \frac{1}{2}$.

7. El conjunto $C(\mathcal{V})$ de todas las combinaciones lineales convexas de elementos de \mathcal{V}

$$C(\mathcal{V}) := \left\{ \sum_{i=1}^{n} p_i v_i : p_1, p_2, \dots, p_n \in \mathbb{R}^+ \ y \ \sum_{i=1}^{n} p_i = 1 \right\}$$

se llama la $c\acute{a}psula$ convexa del conjunto \mathcal{V} .

Forma de la cápsula convexa $C(\mathcal{V})$ de un conjunto de puntos \mathcal{V} contenidos en un plano: se trata de la región encerrada por un polígono cuyos vértices son algunos de los puntos de \mathcal{V} .

8. El conjunto de todas las transformaciones lineales de \mathbb{V} en \mathbb{W} se denota por $\mathcal{L}(\mathbb{V}, \mathbb{W})$. Cuando $\mathbb{W} = \mathbb{V}$, escribimos $\mathcal{L}(\mathbb{V})$ en lugar de $\mathcal{L}(\mathbb{V}, \mathbb{V})$.

- 9. Con $\mathbf{0}: \mathbb{V} \to \mathbb{W}$ denotamos la transformación lineal nula de \mathbb{V} en \mathbb{W} .
- 10. Con $I_{\mathbb{V}}: \mathbb{V} \to \mathbb{V}$ denotamos la transformación lineal identidad de \mathbb{V} . Cuando el contexto sea inequívoco escribiremos I en lugar de $I_{\mathbb{V}}$.
- 11. Sea $T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$ se dice que
 - \blacksquare T es un monomorfismo cuando T es inyectiva,
 - \blacksquare T es un epiformismo cuando T es sobreyectiva,
 - lacktriangledown T es un isomorfismo cuando T es biyectiva.
- 12. \mathbb{V} y \mathbb{W} se dicen *isomorfos* cuando existe un isomorfismo de \mathbb{V} en \mathbb{W} .
- 13. Sea $T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$.
 - La preimagen de $0_{\mathbb{W}}$ en \mathbb{V} se llama el núcleo de T y se denota por Nu(T)

$$Nu(T) := \{ v \in \mathbb{V} : T(v) = 0_{\mathbb{W}} \}.$$

• La imagen de T se denota por Im(T)

$$Im(T) := \{ T(v) : v \in \mathbb{V} \}.$$

- 14. Sea $T \in \mathcal{L}(\mathbb{V})$. Los símbolos T^k con $k \in \mathbb{N}_0$ se utilizan para denotar las transformaciones lineales definidas por: $T^0 := I$, $T^1 := T$, $T^2 := T \circ T$, $T^3 := T \circ T^2$, etcétera.
- 15. Cuando las letras del abecedario no son suficientes se recurre a las letras griegas. He aquí la equivalencia con el abecedario de las letras griegas que usamos a lo largo de esta guía.

Figura	Nombre	Equivalencia	Figura	Nombre	Equivalencia
$A \alpha$	Alfa	A	Ππ	Pi	P
$B \beta$	Beta	В	Σσ	Sigma	S
Δδ	Delta	D	$\Phi \phi$	Phi	Ph (f)
Θθ	Theta	Th (t)	Ωω	Omega	O larga
Λ λ	Lambda	L			

- 16. La expresión ϕ es una funcional lineal de \mathbb{V} significa que $\phi \in \mathcal{L}(\mathbb{V}, \mathbb{K})$.
- 17. Dado $k \in \mathbb{N}$, [0:k] denota el conjunto $\{0,1,\ldots,k\} \subset \mathbb{N}_0$.
- 18. En todo lo que sigue \mathbb{K} es \mathbb{R} o \mathbb{C} .
- 19. Dado $v \in \mathbb{K}^n$, v^* es el traspuesto conjugado del vector v. Esto es, $v^* = \overline{v^T}$. Observar que cuando $\mathbb{K} = \mathbb{R}$, $v^* = v^T$.
- 20. Dada $A \in \mathbb{K}^{m \times n}$, $A^* \in \mathbb{K}^{n \times m}$ es la matriz traspuesta conjugada de A. Esto es, $A^* = \overline{A^T}$. Observar que cuando $\mathbb{K} = \mathbb{R}$, $A^* = A^T$.
- 21. Dados $i \in \mathbb{I}_m$ y $j \in I_n$, la matriz de $\mathbb{K}^{m \times n}$ con 1 en la entrada ij y ceros en cualquier otra entrada, $E_{ij} := [\delta_{pi}\delta_{qj}]_{p \in \mathbb{I}_m}$ se llama $la \ matriz \ ij \ de \ la$

base canónica de $\mathbb{K}^{m \times n}$. Por ejemplo, las matrices E_{ij} de la base canónica de $\mathbb{K}^{2 \times 2}$ son

$$E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

- 22. El conjunto $\{E_{ij}:i\in\mathbb{I}_m,j\in\mathbb{I}_n\}\subset\mathbb{K}^{m\times n}$ se llama la base canónica de $\mathbb{K}^{m\times n}$
- 23. Dada $A \in \mathbb{K}^{n \times n}$, su traza es el número $\operatorname{tr}(A) := \sum_{i=1}^{n} A_{ii}$ que se obtiene de sumar todos los elementos de la diagonal principal de A.

- 24. El conjunto $\{x^j: j \in [0:n]\} \subset \mathbb{K}_n[x]$ se llama la base canónica de $\mathbb{K}_n[x]$, y el conjunto $\{x^j: j \in \mathbb{N}_0\} \subset \mathbb{K}[x]$ se llama la base canónica de $\mathbb{K}[x]$.
- 25. El símbolo $C^{\infty}(\mathbb{R}, \mathbb{K})$ se utiliza para designar al conjunto de las funciones infinitamente derivables de \mathbb{R} en \mathbb{K} .
- 26. La letra D está reservada para designar el operador de derivación D: $C^{\infty}(\mathbb{R}, \mathbb{K}) \to C^{\infty}(\mathbb{R}, \mathbb{K})$ definido por

$$D[y] := \frac{dy}{dx}.$$

- 27. **Principio de inducción.** Sea $\mathcal{P}(k)$ una función proposicional con $k \in \mathbb{N}$. Si
 - (1) La primera proposición $\mathcal{P}(1)$ es verdadera; y
 - (H.I.) para cada $k \in \mathbb{N}$, bajo la hipótesis de la validez de $\mathcal{P}(k)$ puede deducirse la validez de la proposición $\mathcal{P}(k+1)$,

entonces, $\mathcal{P}(k)$ es verdadera para todo $k \in \mathbb{N}$.

28. Toda $L \in \mathcal{L}(C^{\infty}(\mathbb{R}, \mathbb{K}))$ que tenga la forma

$$L = D^{n} + a_{n-1}D^{n-1} + \dots + a_{1}D + a_{0}I,$$

con $a_0, a_1, \ldots, a_{n-1} \in \mathbb{K}$ se denomina operador diferencial lineal de orden n con coeficientes constantes. El polinomio $p \in \mathbb{K}_n[x]$ que se obtiene de L intercambiando papeles entre D y x

$$p(x) = x^n + \sum_{k=1}^n a_{n-k} x^{n-k},$$

se denomina el polinomio característico del operador L. Se puede demostrar que: si p se factoriza en la forma

$$p(x) = \prod_{i=1}^{r} (x - \lambda_i)^{k_i},$$

donde $\lambda_1,\ldots,\lambda_r\in\mathbb{C}$ y $k_1,\ldots,k_r\in\mathbb{N}$ son tales que $\sum_{i=1}^r k_i=n$, entonces L se factoriza de manera análoga

$$L = \prod_{i=1}^{r} (D - \lambda_i I)^{k_i}.$$

La prueba está basada sobre el principio de inducción y en la propiedad conmutativa de los operadores diferenciales de la forma $D-\lambda I$, $\lambda\in\mathbb{C}$, con respecto a la composición.²

¹Este principio deberá ponerse en práctica en el **Ejercicio 2.27**.

²Este hecho será utilizado desde el **Ejercicio 2.30** hasta el **Ejercicio 2.34**.

EJERCICIOS

2.1 Verificar que las siguientes aplicaciones son transformaciones lineales.

(a)
$$T_1: \mathbb{R}^3 \to \mathbb{R}$$
 definida por $T_1\left(\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T\right) := -3x_2 + 2x_3$.

(b)
$$T_2 : \mathbb{R}^3 \to \mathbb{R}^2$$
 definida por $T_2 (\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T) := \begin{bmatrix} -3x_2 + 2x_3 & 3x_1 - x_3 \end{bmatrix}^T$.

(c)
$$T_3: \mathbb{R}^3 \to \mathbb{R}^3$$
 definida por

$$T_3\left(\begin{bmatrix}x_1 & x_2 & x_3\end{bmatrix}^T\right) := \begin{bmatrix}-3x_2 + 2x_3 & 3x_1 - x_3 & -2x_1 + x_2\end{bmatrix}^T.$$

2.2 Usando que toda transformación lineal $T: \mathbb{K}^n \to \mathbb{K}^m$ verifica que

$$T(a_1v_1 + \dots + a_kv_k) = a_1T(v_1) + \dots + a_kT(v_k)$$

para cualquier cantidad k de vectores $v_1, \ldots, v_k \in \mathbb{K}^n$ y escalares $a_1, \ldots, a_k \in \mathbb{K}$, comprobar que

$$T\left(\begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^T\right) = \begin{bmatrix} T(e_1) & \cdots & T(e_n) \end{bmatrix} \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^T.$$

Concluir que todas las transformaciones lineales de \mathbb{K}^n en \mathbb{K}^m son de la forma $T(x) = A_T x$, donde $A_T \in \mathbb{K}^{m \times n}$ es la matriz definida por

$$A_T := \begin{bmatrix} T(e_1) & \cdots & T(e_n) \end{bmatrix}.$$

S:¿cuáles son las matrices A_{T_1} , A_{T_2} , A_{T_3} de las transformaciones lineales T_1, T_2, T_3 definidas en el **Ejercicio 2.1**?

$$T\left(\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix}^T\right) = \begin{bmatrix} -x_1 + x_2 + x_3 - 2x_4 + x_5 \\ -x_1 + 3x_3 - 4x_4 + 2x_5 \\ -x_1 + 3x_3 - 5x_4 + 3x_5 \\ -x_1 + 3x_3 - 6x_4 + 4x_5 \\ -x_1 + 3x_3 - 6x_4 + 4x_5 \end{bmatrix}.$$

- (a) Hallar una base del núcleo de T.
- (\mathbf{b}) Hallar una base de la imagen de T.
- (c) Comprobar que el vector $b=\begin{bmatrix}1&2&2&2&2\end{bmatrix}^T$ pertenece a la imagen de T y resolver la ecuación T(x)=b.
- **2.4** Sea $T: \mathbb{R}_3[x] \to \mathbb{R}^3$ la aplicación definida por

$$T(p) = \begin{bmatrix} p(0) & p(1) & p(2) \end{bmatrix}^T$$
.

- (a) Explicar por qué T es una transformación lineal.
- (\mathbf{b}) Hallar una base del núcleo de T.
- (c) Mostrar que para cada $j\in\mathbb{I}_3$, la ecuación $T(p)=e_j$ admite solución y hallar todas las soluciones de la misma.
- (d) Resolver la ecuación $T(p) = \begin{bmatrix} 3 & 6 & 36 \end{bmatrix}^T$.
- **2.5** Sea $T: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ la aplicación definida por

$$T(p) = p + (1 - x)p'.$$

- (a) Explicar por qué T está bien definida y es una transformación lineal.
- (b) Hallar una base del núcleo de T.
- (c) Hallar una base de la imagen de T.
- (d) Comprobar que el polinomio $q=1+x+x^2-x^3$ pertenece a la imagen de T y resolver la ecuación T(p)=q.
- ${\bf 2.6}$ © Sea $T:\mathbb{R}^3\to\mathbb{R}^3$ la transformación lineal definida por

$$T\left(\begin{bmatrix} x_1 & x_2 & x_3\end{bmatrix}^T\right) = \begin{bmatrix} bx_3 - x_2 & x_1 - ax_3 & ax_2 - bx_1\end{bmatrix}^T$$

donde $a, b \in \mathbb{R}$ son tales que

$$\operatorname{Im}(T) = \operatorname{gen}\left\{\begin{bmatrix}0 & 1 & -1\end{bmatrix}^T, \begin{bmatrix}-1 & 0 & 1\end{bmatrix}^T\right\}.$$

Comprobar que $y = \begin{bmatrix} 2 & 2 & -4 \end{bmatrix}^T \in \text{Im}(T)$ y resolver la ecuación T(x) = y.

- **2.7** Sean \mathbb{V} y \mathbb{W} dos \mathbb{R} -espacios vectoriales, $T: \mathbb{V} \to \mathbb{W}$ una transformación lineal, y $\mathcal{V} = \{v_i : i \in \mathbb{I}_n\} \subset \mathbb{V}$ un conjunto de n puntos de \mathbb{V} . Comprobar que la imagen de la cápsula convexa de \mathcal{V} por T es la capsula convexa de la imagen de \mathcal{V} por T. En símbolos, $T(C(\mathcal{V})) = C(T(\mathcal{V}))$.
 - 🖒: leer los puntos 6. y 7. de preliminares y notación.
- **2.8** Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ la transformación lineal definida por T(x) := Ax, donde

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix},$$

y sean e_1, e_2 los vectores de la base canónica \mathbb{R}^2 : $e_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$, $e_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$. Hallar y graficar la imagen por T del conjunto $\mathcal{R} \subset \mathbb{R}^2$ definido por

(a)
$$\mathcal{R} = \{e_1, e_2, e_1 + e_2\}.$$

- (b) \mathcal{R} es el segmento de recta que une a los puntos e_1 y e_2 , es decir, $\mathcal{R} = C(\{e_1, e_2\})$.
- (c) \mathcal{R} es el triángulo de vértices $0, e_1, e_2$, es decir, $\mathcal{R} = C(\{0, e_1, e_2\})$.
- (d) \mathcal{R} es el cuadrado de vértices $0, e_1, e_2, e_1 + e_2$, es decir, $\mathcal{R} = C(\{0, e_1, e_2, e_1 + e_2\})$.
- (e) \mathcal{R} es el paralelogramo de vértices $0, e_1 + e_2, e_1 e_2, 2e_1$, es decir,

$$\mathcal{R} = C(\{0, e_1 + e_2, e_1 - e_2, 2e_1\}).$$

2.9 $^{\diamondsuit}$ Hallar todos los $a\in\mathbb{R}$ para los cuales existe una transformación lineal $T:\mathbb{R}^3\to\mathbb{R}^3$ tal que

$$T\left(\begin{bmatrix}1&1&1\end{bmatrix}^T\right) = \begin{bmatrix}1&a&1\end{bmatrix}^T,$$

$$T\left(\begin{bmatrix}1&0&-1\end{bmatrix}^T\right) = \begin{bmatrix}1&0&1\end{bmatrix}^T,$$

$$T\left(\begin{bmatrix}-1&-1&0\end{bmatrix}^T\right) = \begin{bmatrix}1&2&3\end{bmatrix}^T,$$

$$T\left(\begin{bmatrix}1&-1&-1\end{bmatrix}^T\right) = \begin{bmatrix}5&1&a^2\end{bmatrix}^T.$$

2.10 Sea \mathcal{B} la base de \mathbb{R}^3 definida por

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}^T, \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T \right\},$$

y sea $T:\mathbb{R}^3\to\mathbb{R}^3$ una transformación lineal que actúa sobre la base ${\mathcal B}$ de la siguiente manera

$$T\left(\begin{bmatrix}1 & 1 & 0\end{bmatrix}^T\right) = \begin{bmatrix}1 & -\frac{3}{2} & 2\end{bmatrix}^T,$$

$$T\left(\begin{bmatrix}1 & -1 & 0\end{bmatrix}^T\right) = \begin{bmatrix}-3 & \frac{9}{2} & -6\end{bmatrix}^T,$$

$$T\left(\begin{bmatrix}0 & 0 & 1\end{bmatrix}^T\right) = \begin{bmatrix}2 & -3 & 4\end{bmatrix}^T.$$

- (a) Hallar una base del núcleo de T y describirlo geométricamente.
- (b) Hallar una base de la imagen de T y describirla geométricamente.
- (c) Hallar $T\left(\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T\right)$ y usar ese resultado para calcular $T\left(\begin{bmatrix} 2 & 3 & 5 \end{bmatrix}^T\right)$.
- **2.11** Sea \mathcal{B} la base de \mathbb{R}^3 definida por

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & -1 \end{bmatrix}^T \right\},$$

y sea $T:\mathbb{R}^3\to\mathbb{R}_2[x]$ una transformación lineal que actúa sobre la base \mathcal{B} de la siguiente manera

$$T\left(\begin{bmatrix}1 & 0 & 0\end{bmatrix}^T\right) = 1 - x,$$

$$T\left(\begin{bmatrix}0 & 1 & 1\end{bmatrix}^T\right) = 1 + x^2,$$

$$T\left(\begin{bmatrix}0 & 1 & -1\end{bmatrix}^T\right) = x + x^2.$$

Comprobar que el polinomio $p=2+x+3x^2$ pertenece a la imagen de T y determinar $T^{-1}(p):=T^{-1}(\{p\}).$

2.12 Sea \mathcal{B} la base de \mathbb{R}^3 definida por

$$\mathcal{B} = \left\{ \begin{bmatrix} 2 & 2 & 1 \end{bmatrix}^T, \begin{bmatrix} -2 & 1 & 2 \end{bmatrix}^T, \begin{bmatrix} 1 & -2 & 2 \end{bmatrix}^T \right\},$$

y sea $T:\mathbb{R}^3\to\mathbb{R}^3$ una transformación lineal que actúa sobre la base ${\mathcal B}$ de la siguiente manera

$$T\left(\begin{bmatrix}2 & 2 & 1\end{bmatrix}^T\right) = \begin{bmatrix}2 & -1 & -1\end{bmatrix}^T,$$

$$T\left(\begin{bmatrix}-2 & 1 & 2\end{bmatrix}^T\right) = \begin{bmatrix}-1 & 2 & -1\end{bmatrix}^T,$$

$$T\left(\begin{bmatrix}1 & -2 & 2\end{bmatrix}^T\right) = \begin{bmatrix}-1 & -1 & 2\end{bmatrix}.$$

- $\textbf{(a) Hallar la imagen por } T \text{ del subespacio gen} \left\{ \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T, \begin{bmatrix} 1 & 1 & 5 \end{bmatrix}^T \right\}.$
- (b) Hallar la preimagen por T del subespacio $\{y \in \mathbb{R}^3 : y_1 y_3 = 0, y_1 + y_2 + y_3 = 0\}.$
- **2.13** Sea $T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$ con \mathbb{V} y \mathbb{W} de dimensión finita. Sea $[T]_{\mathcal{B}}^{\mathbb{C}}$ la matriz de T con respecto a las bases \mathcal{B} de \mathbb{V} y \mathcal{C} de \mathbb{W} . Verificar las siguientes afirmaciones.
- (a) T es monomorfismo si, y sólo si, nul $([T]_{\mathcal{B}}^{\mathcal{C}}) = \{0\}.$
- (b) T es epimorfismo si, y sólo si, col $([T]_{\mathcal{B}}^{\mathcal{C}}) = \mathbb{K}^{\dim(\mathbb{W})}$.
- (c) T es isomorfismo si, y sólo si, $[T]_{\mathcal{B}}^{\mathfrak{C}}$ es inversible.
- **2.14** Sea $T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$, donde \mathbb{V} y \mathbb{W} son algunos de los siguientes \mathbb{R} -espacios vectoriales: \mathbb{R}^n , $\mathbb{R}^{m \times n}$, $\mathbb{R}_n[x]$. Hallar, para cada uno de los siguientes casos, la matriz de T con respecto a las bases canónicas de \mathbb{V} y \mathbb{W} , y analizando las propiedades de dicha matriz determinar las propiedades de T.
- (a) $T: \mathbb{R}^2 \to \mathbb{R}^3$ es la transformación lineal definida por T(x) := Ax, donde

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}.$$

(b) $T: \mathbb{R}^3 \to \mathbb{R}^2$ es la transformación lineal definida por T(x) := Ax, donde

$$A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}.$$

(c) $T: \mathbb{R}_3[x] \to \mathbb{R}^4$ es la transformación lineal definida por

$$T(p) := [p(0) \quad p(1) \quad p(10) \quad p(100)]^T.$$

(d) $T: \mathbb{R}_2[x] \to \mathbb{R}^{2 \times 2}$ es la transformación lineal definida por

$$T(p) := \begin{bmatrix} p(0) & p(1) \\ p'(0) & p'(1) \end{bmatrix}.$$

 ${\bf 2.15}~{\rm Sea}~T\in\mathcal{L}(\mathbb{R}_2[x],\mathbb{R}^3)$ la transformación lineal definida por

$$[T]_{\mathcal{B}}^{\mathcal{C}} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix},$$

donde \mathcal{B} y \mathcal{C} son las bases de $\mathbb{R}_2[x]$ y \mathbb{R}^3 , respectivamente, definidas por

$$\begin{split} \mathcal{B} &= \left\{1 + x^2, 1 + x, x + x^2\right\},\\ \mathcal{C} &= \left\{\begin{bmatrix}1 & 1 & 0\end{bmatrix}^T, \begin{bmatrix}1 & 0 & 1\end{bmatrix}^T, \begin{bmatrix}0 & 1 & 1\end{bmatrix}^T\right\}. \end{split}$$

- (a) Analizar las propiedades de T.
- (b) Hallar $T^{-1} \begin{pmatrix} \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T \end{pmatrix}$.

2.16 Sean $\mathbb{V} = \{A \in \mathbb{R}^{2 \times 2} : A^T = A\}$ el \mathbb{R} -espacio vectorial de las matrices simétricas de $\mathbb{R}^{2 \times 2}$, y $T \in \mathcal{L}(\mathbb{V}, \mathbb{R}^3)$ tal que

$$[T]_{\mathcal{B}}^{\mathcal{C}} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix},$$

donde es la matriz de T con respecto a las bases $\mathcal{B} = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\}$ de \mathbb{V} y $\mathcal{C} = \left\{ \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T \right\}$ de \mathbb{R}^3 . Hallar el conjunto solución de la ecuación $T(A) = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$.

$$[T]_{\mathcal{B}}^{\mathcal{C}} = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -2 & 2 & 3 \end{bmatrix},$$

donde \mathcal{B} y \mathcal{C} son las bases de $\mathbb{R}_2[x]$ y \mathbb{R}^3 , respectivamente, definidas por

$$\mathcal{B} = \left\{ \frac{1}{2}x(x-1), -x(x-2), \frac{1}{2}(x-1)(x-2) \right\},\$$

$$\mathcal{C} = \left\{ \begin{bmatrix} 2 & 2 & 1 \end{bmatrix}^T, \begin{bmatrix} -2 & 1 & 2 \end{bmatrix}^T, \begin{bmatrix} 1 & -2 & 2 \end{bmatrix}^T \right\}.$$

- (a) Analizar las propiedades de T.
- (b) Hallar la matriz de T con respecto a la base canónica de $\mathbb{R}_2[x]$ y la base \mathbb{C} de \mathbb{R}^3 .
- (c) Hallar la matriz de T con respecto a la base \mathcal{B} de $\mathbb{R}_2[x]$ y la base canónica de \mathbb{R}^3 .
- (d) Hallar la matriz de T con respecto a las bases canónicas de $\mathbb{R}_2[x]$ y \mathbb{R}^3 .
- (e) Hallar la imagen por T del subespacio gen $\{2+3x+2x^2,5+5x+4x^2\}$.
- **2.18** Sea $T_1 \in \mathcal{L}(\mathbb{R}^3)$ la transformación lineal definida en el **Ejercicio 2.10**, y sea $T_2 \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}_2[x])$ la transformación lineal definida por

$$T_2\left(\begin{bmatrix} a & b & c\end{bmatrix}^T\right) := (a+b) + (a+c)x + (b+c)x^2.$$

- (a) Hallar las matrices de T_1 , T_2 y T_2^{-1} con respecto a las bases canónicas que correspondan.
- (b) Hallar la matriz de $T_1 \circ T_2^{-1}$ con respecto a las mismas bases y utilizarla para hallar una base de $\text{Nu}(T_1 \circ T_2^{-1})$.
- **2.19** Sea \mathbb{V} un \mathbb{K} -espacio vectorial y sean $\mathbb{S}_1, \mathbb{S}_2$ dos subespacios suplementarios de \mathbb{V} , esto es, todo vector $v \in \mathbb{V}$ se escribe de manera única como $v = v_1 + v_2$ con $v_1 \in \mathbb{S}_1$ y $v_2 \in \mathbb{S}_2$.

La proyección de \mathbb{V} sobre \mathbb{S}_1 en la dirección de \mathbb{S}_2 , denotada por $\Pi_{\mathbb{S}_1\mathbb{S}_2}$, es la transformación lineal de \mathbb{V} en \mathbb{V} definida por

$$\Pi_{\mathbb{S}_1\mathbb{S}_2}(v) := v_1.$$

Análogamente, se define $\Pi_{\mathbb{S}_2\mathbb{S}_1}$ por $\Pi_{\mathbb{S}_2\mathbb{S}_1}(v) := v_2$.

(a) Explicar por qué $\Pi_{\mathbb{S}_1\mathbb{S}_2}$ es la única transformación lineal de $\mathbb V$ en $\mathbb V$ tal que

$$\Pi_{\mathbb{S}_1\mathbb{S}_2}(v) = \left\{ \begin{array}{ll} v & \text{si } v \in \mathbb{S}_1, \\ 0 & \text{si } v \in \mathbb{S}_2, \end{array} \right.$$

y comprobar que $\mathbb{V} = \operatorname{Im} (\Pi_{\mathbb{S}_1 \mathbb{S}_2}) \oplus \operatorname{Nu} (\Pi_{\mathbb{S}_1 \mathbb{S}_2}).$

- (b) Comprobar que $\Pi_{\mathbb{S}_1\mathbb{S}_2}$ posee la propiedad de $idempotencia: \Pi^2_{\mathbb{S}_1\mathbb{S}_2} = \Pi_{\mathbb{S}_1\mathbb{S}_2}$.
- (c) Observar que $\Pi_{\mathbb{S}_1\mathbb{S}_2} + \Pi_{\mathbb{S}_2\mathbb{S}_1} = I_{\mathbb{V}}$.
- (d) Mostrar que $\Sigma_{\mathbb{S}_1\mathbb{S}_2}:=I_{\mathbb{V}}-2\Pi_{\mathbb{S}_2\mathbb{S}_1}$ es la única transformación lineal de \mathbb{V} en \mathbb{V} tal que

$$\Sigma_{\mathbb{S}_1\mathbb{S}_2}(v) = \begin{cases} v & \text{si } v \in \mathbb{S}_1, \\ -v & \text{si } v \in \mathbb{S}_2, \end{cases}$$

razón por la cual $\Sigma_{\mathbb{S}_1\mathbb{S}_2}$ de denomina la simetría de \mathbb{V} con respecto a \mathbb{S}_1 en la dirección de \mathbb{S}_2 .

(e) Explicar por qué $\Sigma^2_{\mathbb{S}_1\mathbb{S}_2}=I_{\mathbb{V}}.$

Proyecciones y simetrías inducidas por una partición de $\mathbb V$ en suma directa de dos subespacios $\mathbb S_1$ y $\mathbb S_2$.

2.20 Sean \mathbb{V} un \mathbb{R} -espacio vectorial de dimensión 3, $\mathcal{B} = \{v_1, v_2, v_3\}$ una base de \mathbb{V} , \mathbb{S}_1 y \mathbb{S}_2 los subespacios de \mathbb{V} definidos por

$$S_1 = \operatorname{gen}\{v_1 - 2v_2, v_1 + v_3\}, \quad S_2 = \operatorname{gen}\{v_2 - v_3\}.$$

- (a) Comprobar que $\mathbb{V} = \mathbb{S}_1 \oplus \mathbb{S}_2$.
- (b) Hallar las matrices con respecto a la base \mathcal{B} de las proyecciones y simetrías inducidas por la partición $\mathbb{V} = \mathbb{S}_1 \oplus \mathbb{S}_2$.
- $\mathbf{2.21}$, Sea $A \in \mathbb{R}^{3 \times 3}$ a matriz definida por

$$A = \begin{bmatrix} 8 & 16 & 11 \\ 5 & 9 & 6 \\ 0 & 16 & 14 \end{bmatrix}$$

- (a) Comprobar que $\mathbb{R}^3 = \text{nul}(A) \oplus \text{fil}(A)$.
- (b) Hallar las matrices con respecto a la base canónica de las proyecciones y simetrías inducidas por la partición $\mathbb{R}^3 = \text{nul}(A) \oplus \text{fil}(A)$.
- 2.22 Sea $T \in \mathcal{L}(\mathbb{R}^3)$ la transformación lineal definida por

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

Hallar la matriz con respecto a la base canónica de la proyección de \mathbb{R}^3 sobre Im(T) en la dirección de Nu(T).

- 2.23 Verificar las siguientes afirmaciones.
- (a) Si $T \in \mathcal{L}(\mathbb{V})$ es tal que $T^2 = T$, entonces T es la proyección de \mathbb{V} sobre $\mathrm{Im}(T)$ en la dirección de $\mathrm{Nu}(T)$.
- (b) Si $T \in \mathcal{L}(\mathbb{V})$ es tal que $T^2 = T$, entonces $S = I_{\mathbb{V}} 2T$ es tal que $S^2 = I_{\mathbb{V}}$.
- (c) Si $S \in \mathcal{L}(\mathbb{V})$ es tal que $S^2 = I_{\mathbb{V}}$, entonces $T = \frac{1}{2} (I_{\mathbb{V}} S)$ es tal que $T^2 = T$.
- (d) Si $S \in \mathcal{L}(\mathbb{V})$ es tal que $S^2 = I_{\mathbb{V}}$, entonces S es la simetría de \mathbb{V} con respecto a Nu $(\frac{1}{2}(I_{\mathbb{V}} S))$ en la dirección de Im $(\frac{1}{2}(I_{\mathbb{V}} S))$.
- (e) Si $S \in \mathcal{L}(\mathbb{V})$ es tal que $S^2 = I_{\mathbb{V}}$, entonces $\mathbb{V} = \text{Nu}(S I_{\mathbb{V}}) \oplus \text{Nu}(S + I_{\mathbb{V}})$.
- **2.24** Sean $T,S\in\mathcal{L}(\mathbb{R}^3)$ las transformaciones lineales definidas por

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) := \begin{bmatrix} 1/2 & 0 & -1/2 \\ 0 & 0 & 0 \\ -1/2 & 0 & 1/2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \text{ y } S\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) := \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

(a) Comprobar que T es una proyección y hallar una base $\mathcal B$ de $\mathbb R^3$ tal que

$$[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

(b) Comprobar que S es una simetría y hallar una base $\mathcal B$ de $\mathbb R^3$ tal que

$$[S]_{\mathcal{B}}^{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

2.25 Sea $O(2,\mathbb{R}) := \{R_{\theta}, S_{\theta} : \theta \in \mathbb{R}\} \subset \mathcal{L}(\mathbb{R}^2)$ el conjunto de todas las transformaciones lineales de \mathbb{R}^2 en \mathbb{R}^2 definidas por

$$R_{\theta} \begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{pmatrix} := \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix},$$

$$S_{\theta} \begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{pmatrix} := \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

- (a) Hallar y graficar la imagen de la base canónica de \mathbb{R}^2 por $R_{\pi/3}$ y explicar el significado geométrico de la acción de $R_{\pi/3}$ sobre los vectores de \mathbb{R}^2 .
- (b) Hallar y graficar la imagen de la base

$$\left\{ \begin{bmatrix} \sqrt{3}/2\\1/2 \end{bmatrix}, \begin{bmatrix} -1/2\\\sqrt{3}/2 \end{bmatrix} \right\}$$

por $S_{\pi/3}$ y explicar el significado geométrico de la acción de $S_{\pi/3}$ sobre los vectores de \mathbb{R}^2 .

- (c) Hallar y graficar la imagen de la base canónica de \mathbb{R}^2 por R_{θ} y explicar el significado geométrico de la acción de R_{θ} sobre los vectores de \mathbb{R}^2 .
- (d) Comprobar que

$$\left\{ \begin{bmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{bmatrix}, \begin{bmatrix} -\sin(\theta/2) \\ \cos(\theta/2) \end{bmatrix} \right\}$$

es una base de \mathbb{R}^2 y hallar su imagen por S_{θ}

- (e) ¿Cuál es el signficado geométrico de la acción de S_{θ} sobre los vectores de \mathbb{R}^2 ?
- (f) Dados $\alpha, \beta \in \mathbb{R}$, hallar las matrices respecto a la base canónica de las siguientes transformaciones lineales, y en cada caso explicar su significado geométrico:

$$R_{\alpha} \circ R_{\beta}$$
; $S_{\alpha} \circ S_{\beta}$, $S_{\alpha} \circ R_{\beta}$, $R_{\beta} \circ S_{\alpha}$.

- (g) Concluir que el conjunto $O(2,\mathbb{R})$ es cerrado por composiciones.
- (h) Observar que $R_0 = I_{\mathbb{R}^2}$.

- (i) Comprobar que R_{θ} y S_{θ} son isomorfismos y hallar R_{θ}^{-1} y S_{θ}^{-1} .
- **2.26** Observar que la transformación lineal $R: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$\begin{split} R\left(\begin{bmatrix}1 & 0 & 0\end{bmatrix}^T\right) &:= \begin{bmatrix}\cos\theta & \sin\theta & 0\end{bmatrix}^T, \\ R\left(\begin{bmatrix}0 & 1 & 0\end{bmatrix}^T\right) &:= \begin{bmatrix}-\sin\theta & \cos\theta & 0\end{bmatrix}^T, \\ R\left(\begin{bmatrix}0 & 0 & 1\end{bmatrix}^T\right) &:= \begin{bmatrix}0 & 0 & 1\end{bmatrix}^T, \end{split}$$

es la rotación de ángulo θ en sentido antihorario del plano xy alrededor del eje z.

(a) Hallar y graficar la imagen de los siguientes vectores por la rotación de ángulo $\pi/4$ en sentido antihorario del plano xy alrededor del eje z:

$$v_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$$
, $v_1 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$, $v_3 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$.

- (b) Hallar la matriz respecto de la base canónica de la rotación de ángulo θ en sentido antihorario del plano yz alrededor del eje x.
- (c) Hallar la matriz respecto de la base canónica de la rotación de ángulo θ en sentido antihorario zx alrededor del eje y.
- **2.27** Sea $D: C^{\infty}(\mathbb{R}, \mathbb{C}) \to C^{\infty}(\mathbb{R}, \mathbb{C})$ el operador de derivación
- (a) Sea $\lambda \in \mathbb{C}$. Verificar que para todo $k \in \mathbb{N}$ vale que

$$(D - \lambda I)^k \left[f(x)e^{\lambda x} \right] = f^{(k)}(x)e^{\lambda x}$$

para toda $f \in C^{\infty}(\mathbb{R}, \mathbb{C})$.

- (**b**) Comprobar que Nu $(D \lambda I) = \text{gen } \{e^{\lambda x}\}.$
- (c) Para cada $k \in \mathbb{N}$ verificar que si

$$\operatorname{Nu}\left(\left(D-\lambda I\right)^{k}\right)=\left\{ p(x)e^{\lambda x}:p\in\mathbb{C}_{k-1}[x]\right\} ,$$

entonces

$$\operatorname{Nu}\left(\left(D - \lambda I\right)^{k+1}\right) = \left\{p(x)e^{\lambda x} : p \in \mathbb{C}_k[x]\right\}.$$

 $\stackrel{\textstyle \smile}{\odot}$: escribir la ecuación $(D-\lambda I)^{k+1}[y]=0$ en la forma $(D-\lambda I)^k[z]=0$, donde $z=(D-\lambda I)[y]$.

- (d) Utilizar los incisos (b) y (c) junto al principio de inducción para demostrar que para todo $k \in \mathbb{N}$, el conjunto $\{x^i e^{\lambda x} : i \in [0:k-1]\}$ es una base $\operatorname{Nu}\left(\left(D \lambda I\right)^k\right)$.
- (e) Sea $g \in C^{\infty}(\mathbb{R}, \mathbb{C})$. Comprobar que la ecuación

$$(D - \lambda I)^k [y] = q,$$

admite una solución particular de la forma $y_p = f(x)e^{\lambda x}$, donde $f^{(k)}(x) = g(x)e^{-\lambda x}$.

2.28 Resolver las siguientes ecuaciones diferenciales:

- (a) y' y = 0,
- **(b)** $y' y = e^{2x}$,
- (c) $y' y = xe^{2x}$,
- (d) $y' y = (3 + 5x)e^{2x}$,
- (e) $y'' 2y' + y = (3 + 5x)e^{2x}$,
- (f) $(D-I)^3[y] = (3+5x)e^{2x}$.

2.29 Sea $\mathbb V$ un $\mathbb K$ -espacio vectorial y sean L y A dos transformaciones lineales de $\mathbb V$ en $\mathbb V$ que satisfacen las siguientes propiedades

- (i) $L \circ A = A \circ L$,
- (ii) $Nu(A \circ L)$ es de dimensión finita.

Verificar que

- (a) $\operatorname{Nu}(L) + \operatorname{Nu}(A) \subseteq \operatorname{Nu}(A \circ L)$;
- (b) si $w \in \text{Nu}(A) \cap \text{Im}(L)$, entonces toda solución de la ecuación L(v) = w pertenece a $\text{Nu}(A \circ L)$;
- (c) si $w \in \text{Nu}(A) \cap \text{Im}(L)$ y si \mathbb{S} es un subespacio de $\text{Nu}(A \circ L)$ tal que $\text{Nu}(L) \oplus \mathbb{S} = \text{Nu}(A \circ L)$, entonces existe un único $v \in \mathbb{S}$ tal que L(v) = w;

: repasar la demostración del teorema de la dimensión para las transformaciones lineales definidas en dominios de dimensión finita.

- (d) si además $Nu(L) \cap Nu(A) = \{0\}$, entonces
 - para cada $w \in Nu(A) \cap Im(L)$ existe un único $v \in Nu(A)$ tal que L(v) = w,
 - $Nu(A \circ L) = Nu(A) \oplus Nu(L)$.

2.30 Se considera el operador diferencial $L: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ definido por

$$L := (D-2)(D-4)(D+3)^2,$$

y la ecuación diferencial L[y] = p, donde $p(x) = 5x^3e^{-3x}$.

- (a) Hallar una base \mathcal{B}_L de $\mathrm{Nu}(L).$
- (b) Comprobar que el operador $A = (D+3I)^4$ es un aniquilador de p: A[p] = 0.
- (c) Hallar una base \mathcal{B}_{AL} de Nu($A \circ L$) que contenga a la base \mathcal{B}_{L} .

- (d) Comprobar que existe una solución particular y_p de la ecuación L[y] = p perteneciente al subespacio gen $(\mathcal{B}_{AL} \setminus \mathcal{B}_L)$.
- (e) Hallar la solución general de la ecuación diferencial L[y] = p.
- **2.31** Para cada $\omega \in \{1, 7/4, 2\}$, hallar y graficar la solución del problema

$$y'' + 4y = \cos(\omega t)$$

con las condiciones iniciales y(0) = 1/2, y'(0) = 0

2.32 [ver Ejercicio 1.17 y Ejercicio 1.18] Se considera la ecuación diferencial general

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = 0,$$

donde m, b y k son constantes positivas. Esta ecuación representa la dinámica de un sistema masa-resorte-amortiguador como el que se muestra en la figura

Sistema masa-resorte-amortiguador: m es la masa del objeto, k es la constante elástica del resorte y b es el coeficiente de roce viscoso del amortiguador.

(a) Mostrar que las raíces del polinomio característico de la ecuación (1) son

$$\lambda = -\frac{b}{2m} \pm \sqrt{\left(\frac{b}{2m}\right)^2 - \frac{k}{m}}.$$

- (b) En cada uno de los siguientes casos, hallar la solución general x_h de la ecuación
- (1) en términos de las constantes $b, m y \Omega := \sqrt{\left|\left(\frac{b}{2m}\right)^2 \frac{k}{m}\right|}$ y explicar por qué $\lim_{t \to +\infty} x_h(t) = 0.$

 - $\begin{array}{l} 1. \ \ Sobreamortiguado: \left(\frac{b}{2m}\right)^2 > \frac{k}{m}. \\ 2. \ \ Críticamente \ amortiguado: \left(\frac{b}{2m}\right)^2 = \frac{k}{m} \\ 3. \ \ Subamortiguado: \left(\frac{b}{2m}\right)^2 < \frac{k}{m} \end{array}$

- (c) Para cada $b \in \{15, 20, 25, 30\}$ hallar y graficar la solución de la ecuación diferencial 4x'' + bx' + 25x = 0 sujeta a las condiciones iniciales x(0) = 1/2, x'(0) = 0.
- 2.33 En cada uno de los siguientes casos construir una ecuación diferencial

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = 0,$$

con $a_0, a_1, \ldots, a_{n-1} \in \mathbb{R}$, del menor orden posible que tenga como soluciones a las funciones indicadas.

- (a) $y_1 = e^t$, $y_2 = e^{2t}$;
- **(b)** $y_1 = te^t$;
- (c) $y_1 = t^2 e^{2t}$;
- (**d**) $y_1 = te^{4t} \operatorname{sen}(t);$
- (e) $y_1 = t$, $y_2 = \cos(3t)$, $y_3 = e^{-t}$.

$$L[y] := y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y,$$

de orden mínimo tal que la ecuación diferencial L[y]=0 tiene como soluciones a las funciones $y_1=t,\ y_2=e^{-2t}\ y_3=\cos(3t).$

- (a) Hallar la solución general de la ecuación diferencial homogénea L[y]=0.
- (b) Hallar una solución particular de la ecuación diferencial $L[y] = te^t$.
- (c) Hallar una solución particular de la ecuación diferencial L[y] = t.
- (d) Hallar la solución general de la ecuación diferencial $L[y] = t (5 + 8e^t)$.
- (e) Resolver el problema L[y]=0 con las condiciones iniciales $y^{(i)}(0)=c_i$ para todo $i\in[0:n-1].$
- (f) ¿Cómo deben ser las condiciones iniciales, $(y^{(i)}(0): i \in [0:n-1])$ para que la solución del problema L[y] = 0 satisfaga que $\lim_{t \to \infty} y(t) = 0$?