Théorie spectrale

Chapitre 2 : De quelques thèmes d'analyse harmonique

Lucie Le Briquer

$12~{\rm d\acute{e}cembre}~2017$

Table des matières

1	No	yau et intégrale de Poisson sur le cercle	1
	1.1	La mesure de Lebesgue du cercle unité	1
	1.2	Le noyau de Poisson	1
	1.3	L'intégrale de Poisson	1
	1.4	Analycité des applications harmoniques	1
	1.5	Inégalités de Harnack et théorème de Harnack	1
2	Int	roduction la théorie du potentiel dans le plan	2
	2.1	Problème de Dirichlet sur les domaines de Jordan	2
	2.2	Fonctions harmoniques positives et frontière de Martin	2
	2.3	Fonctions harmoniques bornées et frontière de Poisson	3
3	Sno	ectre du laplacien des ouverts bornés de \mathbb{R}^m .	4
J	3.1	Les espaces de Sobolev $\mathcal{W}^{1,2}(\Omega)$ et $\mathcal{W}^{1,2}_0(\Omega)$	4
	0.1	Les espaces de sobolev // (42) et // ₀ (42) · · · · · · · · · · · · · · · · · · ·	_
4	Int	roduction à l'analyse harmonique des sphères	6
	4.1	Mesure de Lebesgue des sphères	6
	4.2	Décomposition spectrale du laplacien sphérique	6
	4.3	Description des harmoniques sphériques	8
5	Co	rrection des exercices	11
	5.1	Feuille I	11
	5.2	Feuille II	15
1	N	Noyau et intégrale de Poisson sur le cercle	
1.	1	La mesure de Lebesgue du cercle unité	
1			
1.	. <u>Z</u>	Le noyau de Poisson	
1.	3	L'intégrale de Poisson	
1.	4	Analycité des applications harmoniques	
1.	5	Inégalités de Harnack et théorème de Harnack	

2 Introduction la théorie du potentiel dans le plan

2.1 Problème de Dirichlet sur les domaines de Jordan

2.2 Fonctions harmoniques positives et frontière de Martin

Théorème 1 $\begin{cases} \text{ mes. borélienne positive finie sur } \mathbb{S}_1 & \longrightarrow & \{\text{fonction harmoniques positives sur } \mathbb{D}\} \\ \mu & \longmapsto & P_{\mu} \colon z \mapsto \int_{\zeta \in \mathbb{S}_1} P_z(\zeta) d\mu(\zeta) \end{cases}$ est une bijection.

Preuve.

Surjectivité. Soit $h: \mathbb{D} \longrightarrow [0, +\infty[$ harmonique positive.

$$\forall n \in \mathbb{N}, \ l_n \colon \left\{ \begin{array}{ccc} \mathcal{C}(\mathbb{S}_1, \mathbb{C}) & \longrightarrow & \mathbb{C} \\ f & \longmapsto & \frac{1}{2\pi} \int_{\xi \in \mathbb{S}_1} h\left(\frac{n-1}{n}\zeta\right) f(\zeta) d\sigma(\zeta) \end{array} \right.$$

Alors l_n est une forme linéaire, positive $(f \ge 0, \Rightarrow l_n(f) \ge 0$ par positivité de la fonction harmonique h), de norme :

$$\leqslant \frac{1}{2\pi} \int_{\mathbb{S}_1} h\left(\frac{n-1}{n}\zeta\right) d\sigma(\zeta) \underset{\text{formule de la moy}}{=} h(0)$$

Par le théorème de Banach-Alaoglu, $\exists (n_k)_{k \in \mathbb{N}}$ extraction, $\exists l \colon \mathcal{C}(\mathbb{S}_1, \mathbb{C}) \to \mathbb{C}$ une forme linéaire positive telle que :

$$\forall f \in \mathcal{C}(\mathbb{S}_1, \mathbb{C}) \quad l(f) = \lim_{n_k \to +\infty} l_{n_k}(f)$$

Par le théorème de représentation de Riesz, $\exists ! \mu$ mesure borélienne positive finie sur les compacts (donc finie sur \mathbb{S}_1) telle que :

$$\forall f \in \mathcal{C}(\mathbb{S}_1, \mathbb{C}) \quad l(f) = \int_{\mathbb{S}_1} f d\mu$$

Si $r_k = \frac{n_k - 1}{n_k}$, alors $\forall z \in \mathbb{D}$:

$$\begin{split} P_{\mu}(z) &= \int_{\mathbb{S}_{1}} P_{z}(\zeta) d\mu(\zeta) \\ &= \lim_{k \to +\infty} \frac{1}{2\pi} \int_{\mathbb{S}_{1}} P_{z}(\zeta) h(r_{k}) d\sigma(\zeta) \\ &= \lim_{k \to +\infty} h(r_{k}z) \qquad \text{formule de Poisson appliquée à } \left\{ \begin{array}{l} \overline{\mathbb{D}} & \to & \mathbb{C} \\ \omega & \mapsto & h(r_{k}\omega) \end{array} \right. \\ &= h(z) \end{split}$$

2.3 Fonctions harmoniques bornées et frontière de Poisson

- **Théorème 2** (de Fatou) -

 $\forall h\colon \mathbb{D}\to\mathbb{C} \text{ harmonique, bornée, pour } \sigma\text{-presque tout }\zeta\in\mathbb{S}_1,\,\text{on a}:$

$$\lim_{r\to 1^-} h(r\zeta) = \lim_{r\to 1^-} h(r\zeta)$$
 existe

Et,

 $\forall f \in \mathbb{L}^{\infty}(\mathbb{S}_1, \mathbb{C}), \text{ limrad}_{Pf} = f \ \sigma - \text{presque partout}$

Preuve.

Admis

Nous allons essayer de caractériser les fonctions harmoniques bornées sur \mathbb{D} .

Théorème 3

 $\left\{ \begin{array}{ccc} \mathbb{L}^{\infty}(\mathbb{S}_1,\mathbb{C}) & \longrightarrow & \left(\{ \text{fonctions harmoniques born\'ees sur } \mathbb{D} \}, \|h\|_{\infty} = \sup_{z \in \mathbb{D}} |h(z)| \right) \\ f & \longmapsto & Pf \end{array} \right.$

est un isomorphisme linéaire isométrique.

Preuve.

Par finitude de σ , $\mathbb{L}^{\infty}(\mathbb{S}_1,\mathbb{C}) \subset \mathbb{L}^1(\mathbb{S}_1,\mathbb{C})$ donc $f \mapsto Pf$ est bien définie, linéaire, et :

$$||Pf||_{\infty} = \sup_{z \in \mathbb{D}} \left| \frac{1}{2\pi} \int_{\zeta \in \mathbb{S}_1} P_z(\zeta) f(\zeta) d\sigma(\zeta) \right| \leq ||f||_{\infty} \times 1$$

Montrons la surjectivité. Soit $h: \mathbb{D} \to \mathbb{C}$ harmonique bornée, alors $\limsup_h \in \mathbb{L}^{\infty}(\mathbb{S}_1, \mathbb{C})$ et $\|\lim_h \|_{\infty} \leq \|h\|_{\infty}$ par définition.

Montrons que $P[\lim_{t\to 0} A_t] = h$. $\forall r < 1, \forall z \in \mathbb{D}$:

$$h(rz)=\frac{1}{2\pi}\int_{\zeta\in\mathbb{S}_1}P_z(\zeta)h(r\zeta)d\sigma(\zeta)\qquad\text{par le th\'eor\`eme de Poisson}$$

et quand $r \to 1^-,$ par le théorème de Fatou :

$$h(z) = \frac{1}{2\pi} \int_{\zeta \in \mathbb{S}_1} P_z(\zeta) \mathrm{limrad}_h(\zeta) d\sigma(\zeta)$$

(par convergence dominée de Lebesgue puisque toutes les fonctions sont bornées).

Donc $f \mapsto P_f$ est surjective, et isométrique.

3 Spectre du laplacien des ouverts bornés de \mathbb{R}^m .

3.1 Les espaces de Sobolev $W^{1,2}(\Omega)$ et $W_0^{1,2}(\Omega)$

Soient $m \in \mathbb{N} \setminus \{0\}$ et Ω un ouvert non vide de \mathbb{R}^m .

Définition 1 $(\mathcal{W}^{1,2}(\Omega))$ –

Notons $\mathcal{W}^{1,2}(\Omega)$ le sous-espace vectoriel des fonctions $\mathbb{L}^2(\Omega)$ tel que :

$$\forall i \in [1, n], \ \exists \frac{\partial f}{\partial x_i} \in \mathbb{L}^2(\Omega), \ \forall \varphi \in \mathcal{C}_c^{\infty}(\Omega, \mathbb{C}) \quad \langle \frac{\partial f}{\partial x_i}, \varphi \rangle_{\mathbb{L}^2} = -\langle f, \frac{\partial \varphi}{\partial x_i} \rangle_{\mathbb{L}^2}$$

muni du produit scalaire :

$$\langle f, g \rangle_{\mathcal{W}^{1,2}} = \langle f, g \rangle_{\mathbb{L}^2} + \sum_{i=1}^m \langle \frac{\partial f}{\partial x_i}, \frac{\partial g}{\partial x_i} \rangle_{\mathbb{L}^2}$$

Remarques.

• $\frac{\partial f}{\partial x_i}$ est unique, appelée i-ème dérivée partielle au sens des distributions de f. On note :

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_m}\right) \in \mathbb{L}^1(\Omega)^m$$

le gradient de f au sens des distributions.

• $\langle .,. \rangle_{\mathcal{W}^{1,2}}$ est bien un produit scalaire sur $\mathcal{W}^{1,2}(\Omega)$, de norme :

$$||f||_{\mathcal{W}^{1,2}} = \sqrt{||f||_{\mathbb{L}^2}^2 + ||\nabla f||_{\mathbb{L}^2}^2}$$

Propriété 1 -

L'espace préhilbertien (complexe) $\mathcal{W}^{1,2}(\Omega)$ est séparable et complet.

Preuve.

$$\psi \colon \left\{ \begin{array}{ccc} \mathcal{W}^{1,2}(\Omega) & \longrightarrow & \mathbb{L}^2(\Omega)^{m+1} \\ f & \longmapsto & \left(f, \frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_m} \right) \end{array} \right.$$

est linéaire, isométrique, par construction il suffit de montrer que son image est fermée (car alors on utilise qu'un sev fermé d'un evn complet est complet et que tout sous-espace d'un espace topologique séparable est séparable).

Soit $(f_k)_{k\in\mathbb{N}}$ dans $\mathcal{W}^{1,2}(\Omega)$ telle que $(f_k, \frac{\partial f_k}{\partial x_1}, ..., \frac{\partial f_k}{\partial x_m})_{k\in\mathbb{N}}$ converge $\xrightarrow[k\to+\infty]{} (f, g_1, ..., g_m)$ dans $\mathbb{L}^2(\Omega)^{m+1}$. Alors $\forall \varphi \in \mathcal{C}_c^{\infty}(\Omega)$:

$$\langle g_i, \varphi \rangle_{\mathbb{L}^2} + \langle f, \frac{\partial \varphi}{\partial x_i} \rangle_{\mathbb{L}^2} = \lim_{k \to +\infty} \langle \frac{\partial f_k}{\partial x_i}, \varphi \rangle_{\mathbb{L}^2} + \langle f_k, \frac{\partial \varphi}{\partial x_i} \rangle_{\mathbb{L}^2}$$
 par convergence faible
$$= 0$$

Donc $f \in \mathcal{W}^{1,2}(\Omega)$ et $g_i = \frac{\partial f}{\partial x_i}$ par unicité.

Remarque. Par intégration par partie, $f \in \mathcal{C}_c^{\infty}(\Omega) \Rightarrow f \in \mathcal{W}^{1,2}(\Omega)$ et alors les dérivées partielles de f sont les dérivées partielles au sens des distributions.

Définition 2 $(\mathcal{W}^{1,2}_0(\Omega))$

On note $\mathcal{W}^{1,2}_0(\Omega)$ l'adhérence de $\mathcal{C}^{\infty}_c(\Omega)$ dans $\mathcal{W}^{1,2}(\Omega)$. C'est un espace de Hilbert séparable (complexe).

- **Théorème 4** (inégalité de Poincaré) ———

Si Ω est borné, $\exists c_{\Omega}>0$ tel que $\forall u\in\mathcal{W}^{1,2}_{0}(\Omega)$:

$$||u||_{\mathbb{L}^2} \leqslant c_{\Omega} ||\nabla u||_{\mathbb{L}^2}$$

Preuve.

Admis (démonstration dans les notes de cours).

- **Théorème 5** (de Rellich-Kondrachov) —

Si Ω est borné, alors toute suite bornée dans $\mathcal{W}^{1,2}_0(\Omega)$ admet une sous-suite convergente dans $\mathbb{L}^2(\Omega)$.

Ce théorème nous dit que :

$$\left\{ \begin{array}{ccc} \mathcal{W}_0^{1,2}(\Omega) & \underset{\text{inclusion}}{\longrightarrow} & \mathbb{L}^2(\Omega) \\ f & \longmapsto & f \end{array} \right. \quad \text{est un opérateur compact}$$

Remarque. Version \mathbb{L}^2 de Arzela-Ascoli.

4 Introduction à l'analyse harmonique des sphères

4.1 Mesure de Lebesgue des sphères

Espace de Hilbert $\mathbb{L}^1(\mathbb{S}_n) = \mathbb{L}^2(\mathbb{S}_n, \sigma_n)$ + opérateur linéaire partiellement défini, le laplacien sphérique :

$$\Delta_S f = (\Delta f)|_{\mathbb{S}_n}$$

4.2 Décomposition spectrale du laplacien sphérique

$$\forall \underline{i} = (i_0, i_1, \dots, i_n) \in \mathbb{N}^{n+1}$$
 multi-entier $\forall x = (x_0, x_1, \dots, x_n) \in \mathbb{R}^{n+1}$

Posons $|\underline{i}|=i_0+\ldots+i_n$ la longueur totale, $\underline{i}!=i_0!\ldots i_n!$ et :

$$x^{\underline{i}} = x_0^{i_0} \dots x_n^{i_n}$$

Notons \mathcal{P} l'algèbre des pôlynômes à n+1 variables réelles à coefficients complexes et $\forall m \in \mathbb{N}$, et

$$\mathcal{P}_m = \left\{ p = \sum_{\underline{i} \in \mathbb{N}^{n+1}, |\underline{i}| = m} P_{\underline{i}} x^{\underline{i}} \mid P_{\underline{i}} \in \mathbb{C} \right\}$$

le sous-espace vectoriel des polynômes homogènes de degré m.

Remarque. $\mathcal{P} = \bigoplus_{m \in \mathbb{N}} \mathcal{P}_m$ et $\forall p \in \mathcal{P}_m, \forall q \in \mathcal{P}_l, pq \in \mathcal{P}_{m+l}$.

Notons:

$$\mathcal{H}_m = \{ p \in \mathcal{P}_m \mid \Delta p = 0 \}$$

sous-espace vectoriel de \mathcal{P}_m des polynômes harmoniques, et :

$$\mathcal{HS}_m = \{P|_{\mathbb{S}_n} \mid p \in \mathcal{H}_m\}$$

espace vectoriel des harmoniques sphériques de degré m.

Remarque. La restriction $\left\{ \begin{array}{ccc} \mathcal{H}_m & \longrightarrow & \mathcal{HS}_m \\ p & \longmapsto & P|_{\mathbb{S}_n} \end{array} \right.$ est un isomorphisme linéaire.

$$\forall x \neq 0, \ p(x) = \|x\|^m p\left(\frac{x}{\|x\|}\right)$$

Le polynôme p est donc entièrement déterminé par sa restriction à la sphère, d'où l'injectivité.

Propriété 2

Si
$$Q = x_0^2 + x_1^2 + \ldots + x_n^2$$
, alors $\forall p \in \mathcal{P}_m, \forall 0 \leqslant k \leqslant \lfloor \frac{m}{2} \rfloor, \ \exists h_k \in \mathcal{H}_{m-2k} \text{ tel que :}$

$$p = \sum_{k=0}^{\lfloor \frac{m}{2} \rfloor} Q^k h_k$$

Preuve.

Considérons un produit scalaire auxiliaire sur les polynômes :

$$\ll p, q \gg = \sum \underline{i}! p_{\underline{i}} \overline{q_{\underline{i}}}$$

C'est clairement un produit scalaire sur \mathcal{P} . Montrons que l'adjoint de Δ est la multiplication par Q. C'est-à-dire :

$$\forall p, q \in \mathcal{P}, \ll \Delta p, q \gg = \ll p, Qq \gg$$

Il suffit de montrer que l'adjoint de $\frac{\partial}{\partial x_k}$ est la multiplication par x_k par itération et linéarité, ce qui se vérifie sur les monômes.

Montrons que $\mathcal{P}_m = \mathcal{H}_m \oplus Q\mathcal{P}_{m-2}$ si $m \geqslant 2$, le résultat en découle par récurrence (en remarquant que $\mathcal{H}_0 = \mathcal{P}_0$ et $\mathcal{H}_1 = \mathcal{P}_1$).

Il suffit de montrer que $(Q\mathcal{P}_{m-2})^{\perp_{\mathcal{P}_m}} = \mathcal{H}_m$. Or $\forall p \in \mathcal{P}_m$:

$$\forall q \in \mathcal{P}_{m-2}, \ll p, Qq \gg = 0 \Leftrightarrow \forall q \in \mathcal{P}_{m-2} \ll \Delta p, q \gg = 0 \Leftrightarrow \Delta p = 0$$

 $\textbf{-Th\'eor\`eme 6} \ (\text{de d\'ecomposition spectrale du laplacien sph\'erique})$

 $\mathcal{L}^2(\mathbb{S}_n)$ est somme hilbertienne des \mathcal{HS}_m pour $m \in \mathbb{N}$ et $\forall f \in \mathcal{HS}_m$,

$$-\Delta_S f = m(m+n-1)f$$

Preuve.

• $\mathcal{HS}_m \perp \mathcal{HS}_l$ si $m \neq l$. Formule de Green : $\forall u, v \colon \mathbb{R}^{n+1} \longrightarrow \mathbb{C} \mathcal{C}^2$, $\forall x \in \mathbb{S}_n$, notons $\frac{\partial u}{\partial \nu}(x) = du_x(x)$ la dérivée radiale, alors :

$$\int_{\mathcal{B}_{n+1}} (u\Delta v - v\Delta u) d\lambda_{n+1} = \underbrace{\omega_{n+1}}_{\lambda_{n+1}(\mathcal{B}_{n+1})} \int_{\mathbb{S}_n} u \left(\frac{\partial u}{\partial \nu} - v \frac{\partial u}{\partial n} \right) d\sigma_n$$

Formule d'Euler : $\forall p \in \mathcal{P}_m, \ \forall x \in \mathbb{R}^{n+1}, \ dp_x(x) = mp(x)$ (dériver en $t = 1, \ p(tx) = t^m p(x)$ car $t \in \mathbb{R}$).

 $\forall p \in \mathcal{H}_m, \, \forall q \in \mathcal{H}_l :$

$$\begin{split} (m-l)\langle p|_{\mathbb{S}_n}, q|_{\mathbb{S}_n}\rangle_{\mathbb{L}^2} &= \int_{\mathbb{S}_n} \left((mp)\overline{q} - p(\overline{lq}) \right) d\sigma_n \\ & \stackrel{=}{\underset{\text{Green}}{=}} \int_{\mathbb{S}_n} \left(\overline{q} \frac{\partial p}{\partial \nu} - p \frac{\partial \overline{q}}{\partial \nu} \right) d\sigma_n \\ & \stackrel{=}{\underset{\text{Green}}{=}} \frac{1}{\omega_{n+1}} \int_{\mathcal{B}_{n+1}} (\overline{q} \Delta p - p \overline{\Delta q}) d\lambda_{n+1} = 0 \end{split}$$

- $\bigoplus_{m\in\mathbb{N}} \mathcal{HS}_m$ est dense dans $\mathbb{L}^2(\mathbb{S}_n)$. Par densité de $\mathcal{C}(\mathbb{S}_n,\mathbb{C})$ dans $\mathbb{L}^2(\mathbb{S}_n)$, puisque convergence uniforme implique convergence \mathbb{L}^2 , il suffit de montrer que $\bigoplus_{m\in\mathbb{N}} \mathcal{HS}_m$ est dense dans $\mathcal{C}(\mathbb{S}_n,\mathbb{C})$ pour la norme uniforme. Puisque $\mathcal{P}|_{\mathbb{S}_n}$ est dense dans $\mathcal{C}(\mathbb{S}_n,\mathbb{C})$ par Stone-Weirtrass, il suffit de montrer que tout élément de \mathcal{P}_m coïncide sur \mathbb{S}_n avec une somme finie de polynômes harmoniques, OK par la proposition initiale.
- $\forall f \in \mathcal{HS}_m$, f est un vecteur propre de $-\Delta_S$ de valeur propre m(m+n-1). Formule de Leibniz. $\forall u, v \colon U \subset \mathbb{R}^{n+1} \longrightarrow \mathbb{C}, C^2$,

$$\Delta(uv) = (\Delta u)v + 2\sum_{i=0}^{n} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_i} + u(\Delta v)$$

Posons $r = ||x|| = \sqrt{\sum_{i=0}^n x_i^2}$, $u: x \mapsto \frac{1}{r^m}$, $v = p \in \mathcal{H}_m$ tel que $p|_{\mathbb{S}_n} = f$. Alors:

$$\sum_{i=0}^{n} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_i} = \sum_{i=0}^{n} -\frac{mx_i}{r^{m+2}} \frac{\partial v}{\partial x_i} = -\frac{m}{r^{m+2}} \sum_{i=0}^{n} x_i \frac{\partial p}{\partial x_i} = -\frac{m}{r^{m+2}} dp_x(x) \underset{\text{Euler}}{=} -\frac{m^2}{r^{m+2}} p(x)$$

De plus,

$$\Delta u = \frac{m(m+1-n)}{r^{m+2}}$$
 et $\underline{f}(x) = p\left(\frac{x}{r}\right) = \frac{p(x)}{r^m} = u(x)v(x)$

Donc:

$$-\Delta \underline{f} = \underbrace{\left(\frac{-m(m+1-n)+2m^2}{r^{m+2}}\right)} p(x)$$

D'où,

$$-\Delta_S f = m(m+n-1)f$$

4.3 Description des harmoniques sphériques

Soit $m \in \mathbb{N}$. Le but de cette partie est de décrire :

 $\mathcal{HS}_m = \{p|_{\mathbb{S}_n} \mid p \text{ polynôme en } n+1 \text{ variables réelles, à coefficient complexes, homogène de degré } m, harmonique\}$

Définition 3 (invariance par sous-groupe de O(n+1)) -

 $\forall G$ sous-groupe de $O(n+1), f: \mathbb{S}_n(\mathbb{R}^{n+1}) \longrightarrow \mathbb{C}$ est invariante par G si $\forall g \in G \ f \circ g = f$. Un ensemble de telles applications est invariant par G si $\forall f \in E, \ \forall g \in G, \ f \circ g \in E$.

Exemples.

1. Soit:

$$K = \left\{ \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix} \mid A \in O(n) \right\}$$

C'est un sous-groupe de O(n+1). Alors $f \colon \left\{ \begin{array}{l} \mathbb{R}^{n+1} \longrightarrow \mathbb{C} \\ \mathbb{S}_n \end{array} \right.$ est invariante par $K \Leftrightarrow \forall x \in \mathbb{R}^{n+1}, \mathbb{S}_n$ f(x) ne dépend que de la dernière coordonnée de x.

2. $\forall p \in \mathcal{P}_m$, p invariant par $O(n+1) \Leftrightarrow p|_{\mathbb{S}_n}$ invariant par O(n+1).

Propriété 3 -

 \exists unique mesure de probabilité μ_K sur K invariante à droite à K i.e. $\forall f \in \mathcal{C}(K,\mathbb{C}), \forall k_0 \in K$,

$$\int_{K} f(kk_0)d\mu_K(k) = \int_{K} f(k)d\mu_K(k)$$

- Définition 4 -

$$q_m \colon \left\{ \begin{array}{ccc} \mathbb{R}^{n+1} & \longrightarrow & \mathbb{C} \\ x & \longmapsto & (x_n + ix_0)^m \end{array} \right. \in \mathcal{P}_m \qquad p_m \colon \left\{ \begin{array}{ccc} \mathbb{R}^{n+1} & \longrightarrow & \mathbb{C} \\ x & \longmapsto & \int_K q_m(kx) d\mu_K(k) \end{array} \right.$$

$$\Pi_m \colon \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & p_m(te_n) \end{array} \right.$$

Théorème 7

- 1. $p_m \in \mathcal{H}_m$, invariant par K et $p_m(e_n) = 1$. En particulier $\Pi_m \in \mathbb{C}[X]$ et $p_m(x) = \Pi_m(x_n)$.
- 2. Si $\mathcal{HS}_m^K = \{ f \in \mathcal{HS}_m \mid f \text{ invariante par } K \}$ alors :

$$\mathcal{HS}_m^K = \mathbb{C}p_m|_{\mathbb{S}_m}$$

3. Si E sev de \mathcal{HS}_m invariant par O(n+1) alors $E=\{0\}$ ou $E=\mathcal{HS}_m$. En particulier,

$$\mathcal{HS}_m = \left\{ \sum_{\text{finic}} \lambda_i p_m \circ g_i|_{\mathbb{S}_n} \text{ où } g_i \in O(n+1), \ \lambda_i \in \mathbb{C} \right\}$$

4. Formule de Rodriguez

$$\Pi_m(t) = \frac{(-1)^m \Gamma\left(\frac{n}{2}\right)}{2^m \Gamma\left(\frac{n}{2} + m\right)} \frac{1}{(1 - t^2)^{\frac{n}{2} - 1}} \frac{d^m}{dt^m} (1 - t^2)^{\frac{n}{2} - 1 + m}$$

où Γ est la célébrissime fonction Gamma d'euler $\forall x>0$ $\Gamma(x)=\int_0^{+\infty}t^{x-1}e^{-t}dt$ qui vérifie $\Gamma(x+1)=x\Gamma(x)$.

- Lemme 1 (invariance du laplacien par les rotations)

 $\forall f : \mathbb{R}^{n+1} \longrightarrow \mathbb{C} \text{ de classe } \mathcal{C}^2, \forall g \in O(n+1) :$

$$\Delta(f \circ g) = (\Delta f) \circ g$$

Preuve.

Soit $(a_{i,j})_{0 \leq i,j \leq n}$ la marice de g dans la base (e_0,\ldots,e_n) .

$$\forall i = 0, \dots, n \quad \frac{\partial f \circ g}{\partial x_i} = \sum_{j=0}^n a_{j,i} \frac{\partial f}{\partial x_j} \circ g$$

Donc:

$$\Delta(f\circ g) = \sum_{i=0}^n \sum_{j=0}^n a_{j,i} \sum_{k=0}^n a_{k,i} \frac{\partial f}{\partial x_k \partial x_j} \circ g = \sum_{k,j=0}^n \frac{\partial f}{\partial x_k \partial x_j} \circ g \Big(\underbrace{\sum_{i=0}^n a_{j,i} a_{k,i}}_{=\delta_{j,k} \text{ car } g \in O(n+1)} \Big) = (\Delta f) \circ g$$

5 Correction des exercices

5.1 Feuille I

 $\mathbb{H} = \{ z \in \mathbb{C}, \ \Im(z) > 0 \}$

$$\begin{cases}
\mathbb{H} \times \mathbb{R} & \longrightarrow \\
(z,t) & \longrightarrow \\
Q_z(t) = \frac{\Im(z)}{|z-t|^2}
\end{cases}$$

1. (a) Montrons que $Q_z(t)$ est continue, vérifie $\int_{t\in\mathbb{R}} Q_z(t)dt = \pi$ et

$$Q_z(t) = \Im\left(\frac{1+tz}{t-z}\right) \frac{1}{1+t^2}$$

En déduire que $(z,t)\mapsto Q_z(t)$ est harmonique, strictement positive.

 $(z,t)\mapsto \Im(z)$ est continue sur $\mathbb{H}\times\mathbb{R},\ (z,t)\mapsto |z-t|^2$ aussi, et $\Im(z-t)>0$, donc $|z-t|^2$ ne s'annule pas sur $\mathbb{H}\times\mathbb{R}$ et $(z,t)\mapsto Q_z(t)$ est continue.

$$\int_{t \in \mathbb{R}} Q_z(t) = \int_{t \in \mathbb{R}} \frac{\Im(z)}{\Re(z - t)^2 + \Im(z)^2} dt$$
$$= \int_{t \in \mathbb{R}} \frac{1/\Im(z)}{\left(\frac{\Re(z - t)}{\Im(z)}\right)^2 + 1} dt$$

En faisant le changement de variable $u=\frac{\Re(z)-t}{\Im(z)},$ $du=-dt/\Im(z),$ on obtient :

$$\int_{u \in \mathbb{R}} \frac{1}{1 + u^2} du = [\arctan(u)]_{-\infty}^{+\infty} = \pi$$

Comme,

$$\frac{1+tz}{t-z} = \frac{1+tz(t-\bar{z})}{|t-z|^2} = \frac{t-t|z|^2 - \bar{z} + t^2z}{|t-z|^2}$$

On a:

$$\Im\left(\frac{1+tz}{t-z}\right) = \frac{-\Im(\bar{z}) + t^2\Im(z)}{|t-z|^2} = (1+t^2)\left(\frac{\Im(z)}{|t-z|^2}\right) = (1+t^2)Q_z(t)$$

L'application $z \mapsto \left(\frac{1+tz}{t-z}\right)$ est holomorphe $\forall t \in \mathbb{R}$. Et donc $Q_z(t)$ est harmonique comme partie imaginaire d'une fonction holomorphe. $\Im(z) > 0 \ \forall z \in H$. Donc $Q_z(t) > 0 \ \forall z \in \mathbb{H}$ et $\forall t \in \mathbb{R}$.

(b) (*) $\forall t_0 \in \mathbb{R}$ montrer que $Q_z(t) \xrightarrow[z \to t_0 \neq t]{} 0$ uniformément pour t en dehors de tout voisinage de t_0 .

Soit $t_0 \in \mathbb{R}$, soit $\varepsilon > 0$ et $t \in \mathbb{R}$ tel que $|t - t_0| > 2\varepsilon$. Alors pour z suffisamment proche de t_0 , i.e. $|z - t_0| < \varepsilon$, on a $|z - t| > \varepsilon$ et donc $|Q_z(t)| \leqslant \frac{\Im(z)}{\varepsilon}$. Ainsi :

$$\sup_{t \text{ tq } |t-t_0|>2\varepsilon} |Q_z(t)| \leqslant \frac{\Im(z)}{\varepsilon} \xrightarrow[z \to t_0]{} 0 \qquad \text{par continuit\'e de } z \mapsto \Im(z)$$

(*) Montrer que $Q_z(t) \to 0$ lorsque $|z| \to +\infty$ uniformément pour t dans un compact de $\mathbb R$

Soit K un compact de \mathbb{R} , $\exists R > 0$ tel que $K \subset [-R, R]$. Soit $t \in K$.

$$Q_z(t) = \frac{\Im(z-t)}{|z-t|^2} \leqslant \frac{1}{|z-t|} \leqslant \frac{1}{|z|-R} \xrightarrow{|z|\to +\infty} 0$$

2. Soit $f \in \mathbb{L}^1(\mathbb{R}, \lambda, \mathbb{C})$. Considérons :

$$P_{\mathbb{H}}f \colon \left\{ \begin{array}{ccc} \mathbb{H} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & \frac{1}{\pi} \int_{t \in \mathbb{R}} Q_z(t) f(t) dt \end{array} \right.$$

Montrons que $P_{\mathbb{H}}f$ est harmonique.

Comme $Q_z(t) \leqslant \frac{1}{\Im(z)}$ (z fixé), on a l'existence de l'intégrale. L'application $f \in \mathbb{L}^1(\mathbb{R}, \lambda, \mathbb{C}) \mapsto P_{\mathcal{H}}f$ est linéaire, donc par linéarité, on peut supposer f réelle. $\forall z \in \mathbb{H}$,

$$\begin{split} P_{\mathbb{H}}f(z) &= \frac{1}{\pi}\Im\left(\int_{t\in\mathbb{R}}\frac{1+tz}{t-z}\frac{f(t)}{1+t^2}dt\right) \qquad \text{par la question 1.a)} \\ &= \frac{1}{\pi}\left[\Im\left(\int_{t\in\mathbb{R}}\frac{1}{t-z}\frac{f(t)}{1+t^2}dt\right) + \Im\left(z\int_{t\in\mathbb{R}}\frac{1}{t-z}\frac{tf(t)}{1+t^2}dt\right)\right] \\ &= \frac{1}{\pi}\left[\Im\left(\int_{t\in\mathbb{R}}\frac{1}{t-z}g_1(t)dt\right) + \Im\left(z\int_{t\in\mathbb{R}}\frac{1}{t-z}g_2(t)dt\right)\right] \end{split}$$

Puisque $g_1, g_2 \in \mathbb{L}^1(\mathbb{R})$, les deux intégrales sont holomorphes en $x \in \mathbb{H}$ par un résultat du cours (proposition B.1). Alors

$$P_{\mathbb{H}}f(z) = \frac{1}{\pi} \left[\Im\left(\underbrace{\int_{t \in \mathbb{R}} \frac{1}{t - z} g_1(t) dt}_{\text{holomorphe}}\right) + \Im\left(z \underbrace{\int_{t \in \mathbb{R}} \frac{1}{t - z} g_2(t) dt}_{\text{holomorphe}} dt\right) \right]$$

Donc $P_{\mathbb{H}}f$ est harmonique comme combinaison linéaire de parties imaginaires de fonctions holomorphes.

- Si f réelle, on a $P_{\mathbb{H}}f(z) = \int_{t \in \mathbb{P}} \frac{1+tz}{t-z} \frac{f(t)}{1+t^2} dt \in \mathbb{R}$
- Si f positive, puisque $\forall z \in \mathbb{H}, \ \forall t \in \mathbb{R}, \ Q_z(t) \geq 0$, on a $P_{\mathbb{H}}f(z) \geq 0$
- Si f nulle, $P_{\mathbb{H}}f = 0$
- 3. $f \in \mathbb{L}^1 \cap \mathcal{C}^0$. Soit $u \colon \mathbb{H} \cup \mathbb{R} \to \mathbb{C}$ qui coïncide avec $P_{\mathbb{H}}f$ sur \mathbb{H} et f sur \mathbb{R} . Montrons que $u \in \mathcal{C}^0$.

$$\begin{split} \psi(t) &= Q_z(t)|f(t) - f(t_0)| \leqslant Q_z(t)(|f(t)| + |f(t_0)|) \\ &\leqslant \frac{\Im(z - t_0)}{|(z - t_0) - (t - t_0)|^2}(|f(t)| + |f(t_0)|) \\ &\leqslant \frac{\frac{\delta}{2}(|f(t)| + |f(t_0)|)}{\left(|t - t_0|^2 + \frac{\delta}{2}\right)^2} \quad \text{si } |z - t_0| \leqslant \frac{\delta}{2} \quad \mathbb{L}^1 \text{ et idp de } z \end{split}$$

Donc $\int_{|t-t_0|>\delta}\psi\xrightarrow[z\to t_0]{}0$ par convergence dominée de Lebesgue.

Montrons que si f nulle à l'infinie alors u est nulle à l'infini.

f nulle à l'infini $\Rightarrow \lim_{|t| \to +\infty} f(t) = 0$,

$$\Rightarrow \forall \varepsilon > 0, \exists R > 0, \forall \mathbb{H} \geqslant R |f(t)| \leqslant \varepsilon$$

Soit $z \in \mathbb{H} \cup \mathbb{R}$ tel que $|z| \geqslant R$.

- Si $z \in \mathbb{R}$, $|u(z)| = |f(z)| \leq \varepsilon$.
- Si $z \in \mathbb{H}$,

$$\begin{split} |u(z)| &= |P_{\mathbb{H}}f(z)| = \left|\frac{1}{\pi}\int_{t\in\mathbb{R}}Q_z(t)f(t)dt\right| \\ &= \left|\frac{1}{\pi}\int_{t\in[-R,R]}Q_z(t)f(t)dt + \frac{1}{\pi}\int_{|t|\geqslant R}Q_z(t)f(t)dt\right| \\ &= \frac{1}{\pi}\int_{t\in[-R,R]}Q_z(t)|f(t)|dt + \frac{1}{\pi}\int_{|t|\geqslant R}Q_z(t)\varepsilon dt \\ &= \frac{M}{\pi}\int_{t\in[-R,R]}Q_z(t)dt + \varepsilon\underbrace{\frac{1}{\pi}\int_{|t|\geqslant R}Q_z(t)\varepsilon dt}_{\leqslant 1} \quad \text{ où } M = \sup_{[-R,R]}|f(t)| \end{split}$$

Par la question 1.b), $Q_z(t) \xrightarrow[|z| \to +\infty]{} 0$ uniformément pour t dans [-R, R]:

$$\exists R' > 0, \ \forall |z| \geqslant R', \ \forall t \in [-R, R] \quad |Q_z(t)| \leqslant \frac{\varepsilon}{RM}$$

Donc $\forall |z| \ge \max(R, R'), |u(z)| \le \left(\frac{2}{\pi} + 1\right) \varepsilon$. Donc $u(z) \xrightarrow{|z| \to +\infty} 0$.

4. On définit :

$$h = h_{z_0} \colon \left\{ \begin{array}{ccc} \Omega = \{z \in \mathbb{C} \mid \Im z > -1\} & \longrightarrow & [0, +\infty[\\ & z & \longmapsto & \left(\Im \frac{z - z_0}{(z + i)(z_0 + i)}\right)^2 \end{array} \right.$$

 $h(z)=(F(z))^2$ où $F(z)=\Im g(z)$ et $g(z)=\frac{z-z_0}{(z+i)(z_0+i)}.$ On a g holomorphe $\Rightarrow\in\mathcal{C}^\infty(\Omega)\Rightarrow F\in\mathcal{C}^\infty(\Omega),\ z\to z^2$ est aussi $\mathcal{C}^\infty,$ on a donc $h\in\mathcal{C}^\infty(\Omega).$

Montrons que $\forall z \in \mathbb{H}, h(z) \leq 4$.

$$h(z) = |h(z)| \le \left| \frac{z - z_0}{(z+i)(z_0+i)} \right|^2$$

Or:

$$\frac{|z-z_0|}{|z-z_0||z_0+i|} \leqslant \frac{|z+i|+|z_0+i|}{|z+i||z_0+i|} \leqslant 2$$

Car comme |z+i|>1 et $|z_0+i|>1$ puisque $z,z_0\in\mathbb{H}$ on a $|z_0+i|+|z+i|\leqslant 2|z+i||z_0+i|$. D'où $h(z)\leqslant 4$ $\forall z\in\mathbb{H}$

$$h(z) = |h(z)| \leqslant \underbrace{\frac{|z|^2 \left| 1 - \frac{|z_0|}{|z|} \right|^2}{\leqslant 1}}_{\geqslant 1} < 1$$

Alors:

$$\lim_{z\to +\infty} |h(z)| = \lim_{z\to +\infty} \left(\Im\left(\frac{1-\frac{z_0}{z}}{\left(1+\frac{1}{z}\right)(z_0+i)}\right)\right)^2 = \Im\left(\frac{1}{z_0+i}\right)^2 \leqslant \frac{1}{|z_0+i|^2} < 1$$

Notons:

$$g(z) = (\Im(z))^2$$
 $\Delta g = 2$ et $f(z) = \frac{z - z_0}{(z+i)(z_0+i)}$

f holomorphe de dérivée $f'(z) = \frac{1}{(z+i)^2}$.

Donc
$$\Delta h = \Delta(g \circ f) = (\Delta g) \circ f \circ |f'|^2 = \frac{2}{|z+i|^4} > 0$$

5. Soit $u \in \mathcal{C}^0(\mathbb{H} \cup \mathbb{R})$, harmonique et nulle à l'infini. On veut montrer que $\forall x \in \mathbb{H}$,

$$u(z) = \frac{1}{\pi} \int_{\mathbb{R}} Q_z(t) u(t) dt = P_{\mathbb{H}} u(z)$$

Remarque. $z \mapsto \Im(z)$ est un contre-exemple lorsqu'on enlève l'hypothèse nulle à l'infini.

Soit $f = u - P_{\mathbb{H}}u$. f est harmonique sur \mathbb{H} , par la question 3 continue sur $\mathbb{H} \cup \mathbb{R}$, nulle sur \mathbb{R} et à l'infini (car somme de fonctions nulles à l'infini question 3).

Montrons que f = 0. Par l'absurde, supposons que $\exists z \in \mathbb{H}$ tel que $f(z) \neq 0$ (on sait que sur \mathbb{R} f est nulle). $\exists R > |z_0|, \ \forall |z| \geqslant R, \ |f(z)| \leqslant \frac{|f(z_0)|}{2}$. $f|_{(\mathbb{H} \cup \mathbb{R}) \cap \mathcal{B}(0,R)}$ est harmonique sur $\mathbb{H} \cap \mathcal{B}(0,R)$ et \mathcal{C}^0 sur $(\mathbb{H} \cup \mathbb{R}) \cap \overline{\mathcal{B}}(0,R)$. Par le corollaire

 $f|_{(\mathbb{H} \cup \mathbb{R}) \cap \mathcal{B}(0,R)}$ est harmonique sur $\mathbb{H} \cap \mathcal{B}(0,R)$ et \mathcal{C}^0 sur $(\mathbb{H} \cup \mathbb{R}) \cap \mathcal{B}(0,R)$. Par le corollaire du principe du maximum f doit atteindre son maximum sur le bord de cet ensemble i.e. sur $[-R,R] \cup \partial \mathcal{B}_+(0,R)$ (demi-cercle supérieur).

Donc on sait que:

$$|\sup f|_{\mathbb{H}\cap\mathcal{B}(0,R)}| \leqslant \left|\frac{f(z)}{2}\right|$$

On doit avoir aussi sup $|f|_{\mathbb{H}\cap\mathcal{B}(0,R)}|\geqslant f(z)$. Absurde.

5.2 Feuille II

$$u \in \mathcal{H}^1 \iff u \in \mathbb{L}^2, \ \exists u' \in \mathbb{L}^2 \text{ telle que } \forall \varphi \in \mathcal{C}_c^{\infty}(\mathbb{R}), \ \langle u', \varphi \rangle_{\mathbb{L}^2} = -\langle u, \varphi' \rangle_{\mathbb{L}^2}$$

$$\text{et } t \longrightarrow \sqrt{1 + t^2} u(t) \in \mathbb{L}^2$$

$$\langle u, v \rangle_{\mathcal{H}^1} = \langle u', v' \rangle_2 + \langle \beta u, \beta v \rangle_2$$

où
$$\beta(t) = \sqrt{t^2 + 1}$$
.

1. Montrons que $(\mathcal{H}_1, \langle ., . \rangle_{\mathcal{H}^1})$ est une espace de Hilbert séparable de dimension infinie. On note :

$$\alpha \colon \left\{ \begin{array}{ccc} \mathcal{H}^1 & \longrightarrow & \mathbb{L}^2 \times \mathbb{L}^2 \\ u & \longmapsto & (\beta u, u') \end{array} \right.$$

 α est bien définie car u' (qui existe) est unique : en effet si u_1 et u_2 sont deux applications qui vérifie :

$$\langle u_1, \varphi \rangle_2 = -\langle u, \varphi' \rangle_2 = \langle u_2, \varphi \rangle_2 \quad \forall \varphi \in \mathcal{C}_c^{\infty}$$

alors $u_1 = u_2$ p.p. par densité de \mathcal{C}_c^{∞} dans \mathbb{L}^2 et par continuité du produit scalaire.

Montrons que α est linéaire : $u \mapsto \beta u$ l'est, par unicité de la dérivée au sens des distributions et par linéarité du produit scalaire par rapport à la première variable on a que $u \mapsto u'$ est linéaire. De plus, α est injective car $\beta \neq 0$. Et par définition de $\|.\|_{\mathcal{H}^1}$, α est isométrique.

On plonge alors \mathcal{H}^1 dans un sous-espace de $\mathbb{L}^2 \times \mathbb{L}^2$. Ainsi \mathcal{H}^1 est isométriquement isomorphe à $\operatorname{Im}(\alpha)$. Il reste à montrer que \mathcal{H}^1 est complet, i.e. $\operatorname{Im}(\alpha)$ est fermée.

Soit donc $(\beta u_n, u_n')_{n \in \mathbb{N}} \in \operatorname{Im}(\alpha)^{\mathbb{N}}$ qui tend vers $(\beta w_1, w_2)$ dans $\mathbb{L}^2 \times \mathbb{L}^2$. En particulier :

$$||u_n - w_1||_2 \leqslant ||\beta u_n - \beta w_1|| \xrightarrow[n \to +\infty]{} 0$$

donc $u_n \xrightarrow[n \to +\infty]{} w_1$ dans \mathbb{L}^2 . Il reste à montrer que $w_2 = w_1'$. Soit $\varphi \in \mathcal{C}_c^{\infty}$,

$$\begin{array}{cccc} \langle u',\varphi\rangle_2 & = & -\langle u_n,\varphi'\rangle_2 \\ \xrightarrow[n\to+\infty]{} \langle w_2,\varphi\rangle_2 & \xrightarrow[n\to+\infty]{} -\langle w_1,\varphi'\rangle_2 & \text{par continuit\'e du p.s.} \end{array}$$

Par unicité, $w_2 = w'_1$. L'image est donc fermée.

Comm tout sous-espace d'un espace métrique séparable est séparable, \mathcal{H}^1 est séparable. Par IPP $\mathcal{C}_c^{\infty} \subset \mathcal{H}^1$ donc \mathcal{H}^1 est de dimension ∞ .

Montrons que $\mathcal{C}_c^{\infty}(\mathbb{R})$ est dense dans $\mathcal{H}^1(\mathbb{R})$.

- (a) Tout élément de $\mathcal{H}^1(\mathbb{R})$ est approchable par des fonctions de $\mathcal{H}^1(\mathbb{R})$ support compact.
- (b) Tout élément de $\mathcal{H}^1(\mathbb{R})$ à support compact est approchable par des fonctions de $\mathcal{C}_c^{\infty}(\mathbb{R})$.
- (a) Soit $u \in \mathcal{H}^1(\mathbb{R})$. Soit $\chi_n \in \mathcal{C}_c^{\infty}(\mathbb{R})$ plateau, valant 1 sur [-n, n] et 0 en dehors de [-n-1, n+1] avec :

$$\exists M \in \mathbb{R}, \ \forall n, \ \|\chi_n'\|_{\infty} \leqslant M$$

Soit $u_n = u \times \chi_n$. $\chi_n \in \mathbb{L}^{\infty}$ et $u \in \mathbb{L}^2 \Rightarrow u_n \in \mathbb{L}^2$. u_n est dérivable au sens des distributions et $u'_n = u'\chi_n + u\chi'_n$.

 $u'\in\mathbb{L}^2,\ \chi_n\in\mathbb{L}^\infty\ \Rightarrow\ u'\chi_n\in\mathbb{L}^2\ \text{et}\ u\in\mathbb{L}^2,\ \chi_n'\in\mathbb{L}^\infty\ \Rightarrow\ u\chi_n'\in\mathbb{L}^2,\ \text{ainsi}\ u_n'\in\mathbb{L}^2.$

$$\beta u_n = \underbrace{\beta u}_{\in \mathbb{L}^2} \underbrace{\chi_n}_{\in \mathbb{L}^\infty} \in \mathbb{L}^2$$

Donc $u_n \in \mathcal{H}^1(\mathbb{R})$. Et supp $u_n \subset \text{supp}\chi_n$ compact.

Montrons que $||u_n - u||_{\mathcal{H}^1}^2 \xrightarrow[n \to +\infty]{} 0.$

$$||u_n - u||_{\mathcal{H}^1}^2 = ||u_n' - u'||_2^2 + ||\beta(u_n - u)||_2^2$$

Terme 1.

$$||u'_n - u'||_2^2 \leqslant \int |u'(\chi_n - 1) + u\chi'_n|^2$$

$$\leqslant \int_{\mathbb{R}\setminus[-n,n]} 2|u'|^2 + 2|u|^2 M^2$$

$$\xrightarrow[n \to +\infty]{} 0 \quad \text{car } u' \text{ et } u \text{ sont } \mathbb{L}^2$$

Terme 2.

$$\|\beta(u_n - u)\|_2^2 = \int (t^2 - 1)|u(t)|^2 \underbrace{|\chi_n(t) - 1|^2}_{\leqslant 2} dt$$

$$\leqslant \int_{\mathbb{R}\setminus[-n,n]} 2(t^2 + 1)|u(t)|^2 dt$$

$$\xrightarrow[n \to +\infty]{} 0$$

(b) Soit $u \in \mathcal{H}^1(\mathbb{R})$ à support compact. Soit $\varphi \in \mathcal{C}_c^{\infty}(\mathbb{R}, [0, 1])$, supp $\varphi \subset [-1, 1]$, $\int \varphi = 1$. $\forall n, \ \forall t \in \mathbb{R}, \ \varphi_n(t) = 2^n \varphi(2^n t). \ \varphi_n \in \mathcal{C}_c^{\infty}, \ \operatorname{supp} \varphi_n \subset \left[-\frac{1}{2^n}, \frac{1}{2^n}\right], \ \int \varphi_n = 1$. Soit $u_n = u * \varphi_n$, on sait que $u_n \in \mathcal{C}_c^{\infty}$. On vérifie que $u'_n = (u') * \varphi_n$. Montrons que $\|u'_n - u'\|_{\mathcal{H}^1} \xrightarrow[n \to +\infty]{} 0$.

Montrons que $\|u_n' - u'\|_2^2 + \|\beta(u_n - u)\|_2^2 \xrightarrow[n \to +\infty]{} 0$. On sait que si $g \in \mathbb{L}^2$, $g * \varphi_n \xrightarrow[n \to +\infty]{} g$ dans \mathbb{L}^2 , ce qui conclut pour le premier terme.

Pour le second terme, comme supp $(u_n - u) \subset [-N, N]$, sur ce support $\beta \leqslant \sqrt{N^2 + 1}$, alors:

$$\|\beta(u_n - u)\|_2^2 \le \beta^2 \|u_n - u\|_2^2 \le (N^2 + 1) \|u_n - u\|_2^2$$

Montrons que l'inclusion de $\mathcal{H}^1(\mathbb{R})$ dans $\mathbb{L}^2(\mathbb{R})$ est compacte. $K_n = [-n, n]$ $f \in \mathcal{H}^1(K_n), h(x) = \int_0^x f(t)dt$, on montrer que h' = f' au sens des distributions. Alors :

$$\exists c \in \mathbb{R}, \ f(x) = c + h(x) \text{ p.p.}$$

 $(f_n) \in \mathcal{H}^1(K_n)$ bornée.

$$\left| \int_{y}^{x} f'_{n}(t)dt \right| \leqslant \sqrt{x-y} \|f_{n}\|_{\mathbb{L}^{2}} \leqslant \sqrt{x-y}M \quad \text{par C.S.}$$

 \Rightarrow les f_n sont "équi-hölderiennes" et $\overline{(f_n(x))_n}$ compact $\forall n \Rightarrow$ Ascoli \Rightarrow on peut extraire de (f_n) une suite qui converge sur le compact pour $\|.\|_{\infty} = \|.\|_{\mathbb{L}^{\infty}} \Rightarrow$ convergence pour

 $(f_i)_i \in \mathcal{H}^1(\mathbb{R})$ bornée, $\forall n, f_i|_{K_n} \in \mathcal{H}^1(K_n)$ et la suite est bornée. $\exists f_1 \in \mathbb{L}^2([-1,1]), \ f_i|_{[-1,1]} \xrightarrow[n \to +\infty]{\mathcal{L}^1} 2f_1 \text{ etc. On effectue une extraction successive :}$

$$\phi_1 \dots \phi_n, \ f_{\phi_1 \dots \phi_n(j)}|_{K_n} \xrightarrow[j \to +\infty]{} f_n \text{ dans } \mathbb{L}^2[K_n]$$

 $f_{n+1}|_{K_n} = f_n$. Soit $f = f_n|_{K_n}$ définie sur \mathbb{R} .

$$\underbrace{f_{\phi_1...\phi_n(n)}}_{q_n} \xrightarrow[n \to +\infty]{} f \text{ dans } \mathbb{L}^2 \text{ sur tous les } [-n,n]$$

$$\int_{K_n} |f|^2 \leqslant \underbrace{\int_{K_n} |f - f_i|^2}_{\leqslant 1} + \underbrace{\int_{K_n} |f_i|^2}_{\leqslant M} \quad \forall i$$

 $\exists i \text{ tel qu'on ait } \leqslant 1 \text{ donc} \Rightarrow f \in \mathbb{L}^2(\mathbb{R}).$

$$\int_{\mathbb{R}\setminus[-i,i]} g_n^2 = \int_{\mathbb{R}\setminus[-i,i]} \frac{(t^2+1)|g_n|^2}{t^2+1} \leqslant \frac{1}{i^2+1} \underbrace{\int (1+t^2)|g_n|^2}_{\leqslant M'}$$

Soit $\varepsilon > 0$, $\exists i$ tel que $\forall n \int_{\mathbb{R} \setminus [-i,i]} |g_n|^2 \leqslant \varepsilon$ et $\int_{\mathbb{R} \setminus [-i,i]} |f|^2$.

$$\int_{\mathbb{R}} |g_n - f|^2 = \underbrace{\int_{\mathbb{R} \setminus [-i,i]} |g_n - f|^2}_{\leq 4\varepsilon} + \int_{-i,i} |g_n - f|^2 \xrightarrow[n \to +\infty]{} \overline{\lim} \int_{\mathbb{R}} |g_n - g|^2 \leqslant 4\varepsilon \ \forall \varepsilon > 0$$

(a) Soit $u \in \mathcal{H}^1(\mathbb{R})$, on a $1 \leq \beta$ donc :

$$||u||_2 \le ||u\beta||_2 \le ||u\beta||_2 + ||u'||_2 = ||u||_{\mathcal{H}^1}$$

(b) Soit $f \in \mathbb{L}^1(\mathbb{R})$, posons :

$$Q_f \colon \left\{ \begin{array}{ccc} \mathcal{H}^1(\mathbb{R}) & \longrightarrow & \mathbb{R} \\ u & \longmapsto & \frac{1}{2} \|u\|_{\mathcal{H}^1}^2 - \Re(\langle f, u \rangle_2) \end{array} \right.$$

On pose:

$$a\colon \left\{ \begin{array}{ccc} \mathcal{H}^1(\mathbb{R})\times\mathcal{H}^1(\mathbb{R}) & \longrightarrow & \mathbb{C} \\ (u,v) & \longmapsto & \langle u,b\rangle_{\mathcal{H}^1} \end{array} \right.$$

a est sesquilinéaire et hermitienne, a continue par Cauchy-Schwarz et est trivialement coercive. On pose $\varphi(u) = \langle f, u \rangle_2$, φ antilinéaire, continue car :

 $|\varphi(u)| = |\langle f, u \rangle_2| \leqslant ||f||_2 \times ||u||_2 \leqslant ||f||_2 \times ||u||_{\mathcal{H}^1}$ par la question 2)a.

$$Q_f(u) = \frac{1}{2}a(u, u) - \Re(\varphi(u))$$

Par Lax-Milgram $\Rightarrow Q_f$ admet un unique minimum.

(c) Montrons que $u \in \mathcal{H}^1$ minimum de $Q_f \Leftrightarrow \forall \varphi \in \mathcal{C}_c^{\infty}$, $\langle u, \varphi \rangle = \langle f, \varphi \rangle_2$. Supposons $u \in \mathcal{H}^1$ minimum de Q_f :

$$\frac{d}{dt}|_{t=0}(Q_f(u+t\varphi)) = \Re(\langle u, \varphi \rangle_{\mathcal{H}^1}) + \Re(\langle f, \varphi \rangle_2) = 0$$

Quitte à remplacer φ ar $i\varphi$ on a le même résultat avec $\Im\langle u, \varphi \rangle_{\mathcal{H}^1}$.

Supposons que $\forall \varphi \in \mathcal{C}_c^{\infty} \langle u, \varphi \rangle_{\mathcal{H}^1} = \Re(\langle f, \varphi \rangle_2)$:

$$t \longmapsto Q_f(u + t\varphi)$$
 strictement convexe

cf. argument du cours donc $t \mapsto Q_f(u + t\varphi)$ admet un unique minimum en t = 0. Et comme les fonctions \mathcal{C}_c^{∞} à support compact sont denses dans \mathcal{H}^1 , u est l'unique minimum de Q_f , par 2)b..

3. Montrons que:

$$G \colon \left\{ \begin{array}{ccc} \mathbb{L}^2(\mathbb{R}) & \longrightarrow & \mathbb{L}^2(\mathbb{R}) \\ f & \longmapsto & G(f) = u \end{array} \right.$$

est l'unique minimum de Q_f .

- (a) G est bien défini. Soit $f \in \mathbb{L}^2(\mathbb{R})$, $G(f) = u \in \mathcal{H}^1(\mathbb{R}) \subset \mathbb{L}^2(\mathbb{R})$ de plus u est unique.
- (b) Linéarité. Soient $f, g \in \mathbb{L}^2(\mathbb{R}), \ \lambda \in \mathbb{C}$, montrons que $G(f + \lambda g) = G(g) + \lambda G(g)$. On pose u = G(f) et $\theta = G(g)$. Et on a :

$$\forall \varphi \in \mathcal{C}_{c}^{\infty}(\mathbb{R}), \ \langle u, \varphi \rangle_{\mathcal{H}^{1}} = \langle f, \varphi \rangle_{\mathbb{L}^{2}}$$

$$\forall \varphi \in \mathcal{C}_{c}^{\infty}(\mathbb{R}), \ \langle v, \varphi \rangle_{\mathcal{H}^{1}} = \langle g, \varphi \rangle_{\mathbb{L}^{2}}$$

$$\Rightarrow \ \langle u + \lambda \theta, \varphi \rangle_{\mathcal{H}^{1}} = \langle f + \lambda g, \varphi \rangle_{\mathbb{L}^{2}}$$

$$\Rightarrow \ \langle G(f) + \lambda G(g), \varphi \rangle_{\mathcal{H}^{1}} = \langle G(f + \lambda g), \varphi \rangle_{\mathcal{H}^{1}}, \ \forall \varphi \in \mathcal{C}_{c}^{\infty}(\mathbb{R})$$

Comme $\mathcal{C}_c^{\infty}(\mathbb{R})$ est dense dans $\mathcal{H}^1(\mathbb{R})$ et par unicité on a $G(f) + \lambda G(g) = G(f + \lambda g)$.

(c) Continuité de G. Soit $f \in \mathbb{L}^2(\mathbb{R})$.

$$||G(f)||_2^2 \leq ||G(f)||_{\mathcal{U}^1}^2 = \langle G(f), G(f) \rangle_{\mathcal{U}^1} = \langle f, G(f) \rangle_{\mathbb{L}^2} \leq ||f||_2 ||G(f)||_2$$

En simplifiant $||G(f)||_2 \leq ||f||_2$

(d) G auto-adjoint. Soient $f, g \in \mathbb{L}^2(\mathbb{R})$.

$$\langle G(f), g \rangle_2 = \overline{\langle g, \underline{G(f)} \rangle_2}$$

$$= \overline{\langle G(g), G(f) \rangle_{\mathcal{H}^1}}$$

$$= \langle G(f), G(g) \rangle_{\mathcal{H}^1}$$

$$= \langle f, G(g) \rangle_2$$

(e) Montrons que G est positif. Soit $f \in \mathbb{L}^2(\mathbb{R})$.

$$\langle G(f), f \rangle_2 = \langle f, G(f) \rangle_2 = \langle G(f), G(f) \rangle_{\mathcal{H}^1} = ||G(f)||_{\mathcal{H}^1}^2 \geqslant 0$$

(f) Montrons que G est compact. Soit $(f_n)_{n\in\mathbb{N}}$ une suite bornée de $\mathbb{L}^2(\mathbb{R})$. G continue \Rightarrow $(G(f_n))_{n\in\mathbb{N}}$ est bornée dans $\mathbb{L}^2(\mathbb{R})$. Montrons que $(G(f_n))_{n\in\mathbb{N}}$ est bornée pour $\|\cdot\|_{\mathcal{H}^1}$.

$$||G(f_n)||_{\mathcal{H}^1}^2 = \langle G(f_n), G(f_n) \rangle_{\mathcal{H}^1} = \langle f_n, G(f_n) \rangle_2 \leqslant ||f_n||_2 ||G(f_n)||_2$$

Comme (f_n) et $(G(f_n))$ sont bornées sur $\mathbb{L}^2(\mathbb{R})$ alors $(G(f_n))$ est bornée pour la norme \mathcal{H}^1 . Par compacité $(G(f_n))_{n\in\mathbb{N}}$ admet une sous-suite convergente dans $\mathcal{H}^1(\mathbb{R}) \subset \mathbb{L}^2(\mathbb{R})$. Et donc $(G(f_n))_{n\in\mathbb{N}}$ admet une sous-suite convergente dans $\mathbb{L}^2(\mathbb{R})$.

- \Rightarrow G compacte.
- 4. G auto-adjoint, (strictement) positif, compact $\Rightarrow \exists (f_i)_{i \in \mathbb{N}}$ base de $\mathbb{L}^2(\mathbb{R})$ et (ε_i) tels que $\forall i, \ \varepsilon_i < 0, \ \varepsilon \downarrow 0$ tel que l'on ait $G(f_i) = \varepsilon_i f_i$. $\forall \varphi \in \mathcal{C}_c^{\infty}(\mathbb{R})$:

$$\langle \varepsilon_i f_i, \varphi \rangle_{\mathcal{H}^1} = \langle f_i, \varphi \rangle_2$$
$$\langle f_i, \varphi \rangle_{\mathcal{H}^1} = \frac{1}{\varepsilon_i} \langle f_i, \varphi \rangle_2$$

On pose $\lambda_i = \frac{1}{\varepsilon_i}$. On a bien $\lambda_i > 0$ et $\lambda_i \uparrow +\infty$ donc :

$$\langle f_i, \varphi \rangle_{\mathcal{H}^1} = \lambda_i \langle f_i, \varphi \rangle_2$$

Or,

$$\langle f_i, \varphi \rangle_{\mathcal{H}^1} = \langle f', \varphi' \rangle_2 + \langle \beta f, \beta \varphi \rangle_2$$
$$= \langle f, -\varphi'' \rangle + \langle f, \beta^2 \varphi \rangle_2$$
$$= \langle f, -\varphi'' + (t^2 + 1)\varphi \rangle$$

On a bien:

$$\langle f, \varphi'' + (t^2 + 1)\varphi \rangle_2 = \lambda_i \langle f_i, \varphi \rangle_2$$