Notas de Clase

Juan Montoya

15 de julio de 2025

Resumen

El objetivo de estas notas es ilustrar los postulados fundamentales de la mecánica cuántica mediante el caso de un sistema de espín 1/2 (por ejemplo, átomos de plata) y el uso del aparato de Stern–Gerlach. Se aborda la preparación de estados, la naturaleza probabilística de las mediciones y la evolución temporal bajo un Hamiltoniano simple.

1. Operador S_z espacio de espín

Al observable S_z corresponde el operador S_z , cuyos autovalores son $\pm \hbar/2$. Denotamos por $|+\rangle$ y $|-\rangle$ los autovectores ortonormales:

$$\begin{cases} S_z |+\rangle = +\frac{\hbar}{2} |+\rangle, \\ S_z |-\rangle = -\frac{\hbar}{2} |-\rangle, \end{cases}$$
 (A-10)

con

$$\begin{cases} \langle +|+\rangle = \langle -|-\rangle = 1, \\ \langle +|-\rangle = 0, \end{cases}$$
 (A-11)

y la relación de cierre

$$|+\rangle \langle +|+|-\rangle \langle -|=\mathbb{I}.$$
 (A-12)

A-2-b. Los operadores S_x , S_y y S_u

Los operadores S_x , S_y y S_u tienen los mismos autovalores, $+\hbar/2$ y $-\hbar/2$, que S_z . Este resultado era de esperar, ya que siempre es posible girar todo el conjunto del aparato de Stern-Gerlach de modo que el eje definido por el campo magnético quede paralelo a Ox, Oy o \vec{u} . Dado que todas las direcciones del espacio son físicamente equivalentes, los fenómenos observados en la placa no cambian bajo tales rotaciones; así, la medición de S_x , S_y o S_u sólo puede dar como resultado $+\hbar/2$ o $-\hbar/2$.

En cuanto a los autovectores de S_x , S_y y S_u , los denotaremos respectivamente por $|\pm\rangle_x$, $|\pm\rangle_y$ y $|\pm\rangle_u$ (el signo en el ket coincide con el del autovalor correspondiente). Sus desarrollos en la base $\{|+\rangle, |-\rangle\}$ de S_z se escriben:

$$|\pm\rangle_x = \frac{1}{\sqrt{2}}(|+\rangle \pm |-\rangle)$$
 (A-20)

$$|\pm\rangle_y = \frac{1}{\sqrt{2}} (|+\rangle \pm i |-\rangle)$$
 (A-21)

$$\begin{cases} |+\rangle_u = \cos\frac{\theta}{2} \, e^{-i\varphi/2} \, |+\rangle + \sin\frac{\theta}{2} \, e^{i\varphi/2} \, |-\rangle \,, \\ |-\rangle_u = -\sin\frac{\theta}{2} \, e^{-i\varphi/2} \, |+\rangle + \cos\frac{\theta}{2} \, e^{i\varphi/2} \, |-\rangle \,. \end{cases} \tag{A-22a,b}$$

2. Estado general y parámetros esféricos

El estado más general en el espacio de espín es

$$|\psi\rangle = \alpha |+\rangle + \beta |-\rangle,$$
 (A-13)

sujeto a

$$|\alpha|^2 + |\beta|^2 = 1. \tag{A-14}$$

Con la parametrización

$$\alpha = \cos \frac{\theta}{2} e^{-i\varphi/2}, \quad \beta = \sin \frac{\theta}{2} e^{i\varphi/2},$$

podemos asociar cada par (α, β) a un vector unitario en la esfera de Bloch.

3. Mediciones de espín

Para ilustrar la naturaleza probabilística de las mediciones:

- **Experimento 1:** Con ambos aparatos alineados, si se prepara $|+\rangle$ siempre se obtiene $+\hbar/2$.
- Experimento 2: Si se prepara $|+\rangle_u$ (dirección \vec{u}) y se mide S_z , las probabilidades son

$$P(+\frac{\hbar}{2}) = \cos^2\frac{\theta}{2}, \quad P(-\frac{\hbar}{2}) = \sin^2\frac{\theta}{2}.$$

• Experimento 3: Al rotar el analizador, las probabilidades cambian con el ángulo relativo.

El valor medio se corresponde con el resultado clásico:

$$\langle S_z \rangle = \frac{\hbar}{2} \cos \theta.$$

4. Evolución temporal

En un campo magnético uniforme \vec{B}_0 , el Hamiltoniano es

$$\hat{H} = \omega_0 \hat{S}_z, \quad \omega_0 = -\gamma B_0.$$

Sus autoestados $|\pm\rangle$ tienen energías separadas por $\hbar\omega_0$. Si

$$|\psi(0)\rangle = \cos\frac{\theta}{2}e^{-i\varphi/2}|+\rangle + \sin\frac{\theta}{2}e^{i\varphi/2}|-\rangle,$$

entonces la evolución de Schrödinger produce una precesión de Larmor:

$$|\psi(t)\rangle = \cos\frac{\theta}{2}e^{-i(\varphi+\omega_0t)/2}|+\rangle + \sin\frac{\theta}{2}e^{i(\varphi+\omega_0t)/2}|-\rangle.$$

Demostración de la existencia de un vector unitario u

Vamos a mostrar que existe, para todo $|\psi\rangle$, un vector unitario **u** tal que $|\psi\rangle$ es colineal con el ket $|+\rangle_n$. Elegimos por tanto dos números complejos α y β que satisfacen la relación

$$|\alpha|^2 + |\beta|^2 = 1 \tag{B-2}$$

pero que son arbitrarios en lo demás. Teniendo en cuenta (B-2), existe necesariamente un ángulo θ tal que

$$\begin{cases}
\cos\frac{\theta}{2} = |\alpha|, \\
\sin\frac{\theta}{2} = |\beta|.
\end{cases}$$
(B-3)

Si, además, imponemos

$$0 \le \theta \le \pi,\tag{B-4}$$

la ecuación

$$\tan\frac{\theta}{2} = \left|\frac{\beta}{\alpha}\right|$$

determina θ de forma única. Sabemos que sólo la diferencia de fases de α y β influye en las predicciones físicas. Definimos entonces

$$\varphi = Arg(\beta) - Arg(\alpha), \tag{B-5}$$

$$\chi = Arg(\beta) + Arg(\alpha). \tag{B-6}$$

De aquí se sigue

$$Arg(\beta) = \frac{1}{2}\chi + \frac{1}{2}\varphi, \quad Arg(\alpha) = \frac{1}{2}\chi - \frac{1}{2}\varphi.$$
 (B-7)

Con esta notación, el ket $|\psi\rangle$ puede escribirse:

$$|\psi\rangle = e^{i\chi/2} \left[\cos\frac{\theta}{2} e^{-i\varphi/2} |+\rangle + \sin\frac{\theta}{2} e^{i\varphi/2} |-\rangle\right].$$
 (B-8)

Resumen de la Figura 9: Trayectorias clásicas vs. superposición cuántica

Cuando un átomo de plata entra con espín en el estado $|+\rangle$ (Fig. 9-a) o $|-\rangle$ (Fig. 9-b), su función de onda externa está concentrada en un único paquete estrecho cuyo centro recorre una trayectoria que puede describirse clásicamente.

Sin embargo, si el estado de espín es la superposición

$$|\psi\rangle = \cos\frac{\theta}{2}|+\rangle + \sin\frac{\theta}{2}|-\rangle$$
 (B-9)

el paquete de onda inicial se divide en dos subpaquetes (Fig. 9-c), cada uno localizado cerca de los puntos 1 y 2 al llegar a la pantalla. Aunque cada subpaquete sigue siendo muy estrecho, el átomo ya no tiene una sola trayectoria clásica: la probabilidad de detección se reparte entre ambos lugares.

Estos dos subpaquetes corresponden a la misma partícula con distinta fase relativa; de hecho, si no se realiza la medición (quitan- do la pantalla) y se aplica un gradiente de campo magnético inverso, podrían recombinarse en un único paquete.

Comentario:

(i) Si el campo \mathbf{B}_0 es paralelo al vector unitario \mathbf{u} de ángulos polares θ, φ , la ecuación (B-17) debe reemplazarse por

$$H = \omega_0 S_u \tag{B-20}$$

donde $S_u = \mathbf{S} \cdot \mathbf{u}$.

(ii) Para el átomo de plata $\gamma < 0$, luego $\omega_0 > 0$ según (B-16), lo cual explica la disposición de los niveles en la figura.

B-3. Evolución de un espín 1/2 en un campo magnético uniforme

B-3-a. Hamiltoniano de interacción y ecuación de Schrödinger

Consideremos un átomo de plata en un campo magnético uniforme \mathbf{B}_0 , y tomemos el eje Oz paralelo a \mathbf{B}_0 . La energía potencial clásica del momento magnético $\mathcal{M} = \gamma \mathbf{S}$ es:

$$W = -\mathbf{M} \cdot \mathbf{B}_0 = -\mathcal{M}_z B_0 = -\gamma B_0 S_z \tag{B-15}$$

donde $B_0 = |\mathbf{B}_0|$. Definimos:

$$\omega_0 = -\gamma B_0 \tag{B-16}$$

que tiene dimensión de velocidad angular.

Al cuantizar sólo los grados internos, S_z se reemplaza por el operador \hat{S}_z y la energía (B-15) pasa a ser el Hamiltoniano

$$H = \omega_0 \, \hat{S}_z \tag{B-17}$$

Este operador es independiente del tiempo, por lo que resolver la ecuación de Schrödinger equivale a encontrar los autovalores de H. Sus autovectores son los mismos de \hat{S}_z :

$$\begin{cases} H \mid + \rangle = +\frac{\hbar \omega_0}{2} \mid + \rangle, \\ H \mid - \rangle = -\frac{\hbar \omega_0}{2} \mid - \rangle. \end{cases}$$
 (B-18)

Por tanto, existen dos niveles de energía,

$$E_{+}=+\frac{\hbar\omega_{0}}{2},\quad E_{-}=-\frac{\hbar\omega_{0}}{2},$$

y su separación $\hbar\omega_0$ define la frecuencia de Bohr

$$\nu_{+-} = \frac{1}{h} \left(E_{+} - E_{-} \right) = \frac{\omega_0}{2\pi} \,. \tag{B-19}$$

C-2. Aspecto estático: efecto del acoplamiento en los estados estacionarios del sistema

C-2-a. Expresiones para los autoestados y autoenergías de H

En la base $\{|\varphi_1\rangle, |\varphi_2\rangle\}$, la matriz que representa H es:

$$H = \begin{pmatrix} E_1 + W_{11} & W_{12} \\ W_{21} & E_2 + W_{22} \end{pmatrix}$$
 (C-7)

Su diagonalización conduce a los autoenergías:

$$E_{+} = \frac{1}{2} (E_{1} + W_{11} + E_{2} + W_{22}) + \frac{1}{2} \sqrt{(E_{1} + W_{11} - E_{2} - W_{22})^{2} + 4|W_{12}|^{2}},$$

$$E_{-} = \frac{1}{2} (E_{1} + W_{11} + E_{2} + W_{22}) - \frac{1}{2} \sqrt{(E_{1} + W_{11} - E_{2} - W_{22})^{2} + 4|W_{12}|^{2}}.$$
(C-8)

(si $W_{ij} = 0$, entonces $E_{+} = E_{1}$ y $E_{-} = E_{2}$).

Los autoestados asociados son:

$$|\psi_{+}\rangle = \cos\frac{\theta}{2} e^{-i\varphi/2} |\varphi_{1}\rangle + \sin\frac{\theta}{2} e^{i\varphi/2} |\varphi_{2}\rangle,$$
 (C-9a)

$$|\psi_{-}\rangle = -\sin\frac{\theta}{2} e^{-i\varphi/2} |\varphi_{1}\rangle + \cos\frac{\theta}{2} e^{i\varphi/2} |\varphi_{2}\rangle.$$
 (C-9b)

donde los ángulos θ y φ se definen por:

$$\tan \theta = \frac{2|W_{12}|}{E_1 + W_{11} - E_2 - W_{22}}, \quad 0 \le \theta < \pi, \tag{C-10}$$

$$W_{21} = |W_{21}| e^{i\varphi}. (C-11)$$

C-3. Aspecto dinámico: oscilación del sistema entre los dos estados no perturbados C-3-a. Evolución del vector de estado

Sea el vector de estado en el instante t:

$$|\psi(t)\rangle = a_1(t) |\varphi_1\rangle + a_2(t) |\varphi_2\rangle$$
 (C-22)

La ecuación de Schrödinger es:

$$i\hbar \frac{d}{dt} |\psi(t)\rangle = (H_0 + W) |\psi(t)\rangle$$
 (C-23)

Proyectando en $|\varphi_1\rangle$ y $|\varphi_2\rangle$, con $W_{11}=W_{22}=0$, obtenemos el sistema acoplado:

$$i\hbar \frac{da_1}{dt} = E_1 a_1 + W_{12} a_2,$$

 $i\hbar \frac{da_2}{dt} = W_{21} a_1 + E_2 a_2.$ (C-24)

La solución se construye descomponiendo $|\psi(0)\rangle$ en los autoestados $|\psi_{+}\rangle$, $|\psi_{-}\rangle$ de $H=H_0+W$:

$$|\psi(0)\rangle = \lambda |\psi_{+}\rangle + \mu |\psi_{-}\rangle ,$$
 (C-25)

y asumiendo la condición inicial

$$|\psi(0)\rangle = |\varphi_1\rangle \ . \tag{C-27}$$

C-3-b. Cálculo de $\mathcal{P}_{12}(t)$: fórmula de Rabi

Expandiendo $|\psi(0)\rangle$ en la base $\{|\psi_{+}\rangle, |\psi_{-}\rangle\}$ (invertir (C-9)), se tiene:

$$|\psi(0)\rangle = |\varphi_1\rangle = e^{i\varphi/2} \left[\cos\frac{\theta}{2} |\psi_+\rangle - \sin\frac{\theta}{2} |\psi_-\rangle\right].$$
 (C-28)

Entonces la evolución temporal es

$$|\psi(t)\rangle = e^{i\varphi/2} \left[\cos\frac{\theta}{2} e^{-iE_{+}t/\hbar} |\psi_{+}\rangle - \sin\frac{\theta}{2} e^{-iE_{-}t/\hbar} |\psi_{-}\rangle\right]. \tag{C-29}$$

La amplitud de probabilidad de hallar el sistema en $|\varphi_2\rangle$ es

$$\langle \varphi_2 | \psi(t) \rangle = e^{i\varphi/2} \left[\cos \frac{\theta}{2} e^{-iE_+ t/\hbar} \langle \varphi_2 | \psi_+ \rangle - \sin \frac{\theta}{2} e^{-iE_- t/\hbar} \langle \varphi_2 | \psi_- \rangle \right], \tag{C-30}$$

y la probabilidad

$$\mathcal{P}_{12}(t) = \left| \langle \varphi_2 | \psi(t) \rangle \right|^2 = \frac{1}{2} \sin^2 \theta \left[1 - \cos((E_+ - E_-) t/\hbar) \right] = \sin^2 \theta \sin^2((E_+ - E_-) t/2\hbar). \quad (C-31)$$

Usando además las expresiones de los ángulos θ y φ [(C-12),(C-13)], se reescribe como

$$\mathcal{P}_{12}(t) = \frac{4|W_{12}|^2}{4|W_{12}|^2 + (E_1 - E_2)^2} \sin^2 \left[t/(2\hbar) \sqrt{4|W_{12}|^2 + (E_1 - E_2)^2} \right]. \tag{C-32}$$

Esta última es la conocida como fórmula de Rabi.

Complemento JIV: Ejercicios

Ejercicio 1

Considera una partícula de espín 1/2 de momento magnético $\mathbf{M} = \gamma \mathbf{S}$. El espacio de estados de espín está generado por los vectores $|+\rangle$ y $|-\rangle$, autovectores de S_z con autovalores $+\hbar/2$ y $-\hbar/2$. En t=0, el estado del sistema es

$$|\psi(0)\rangle = |+\rangle$$
.

- 1. Si en t=0 medimos el observable S_z , ¿qué resultados se pueden obtener y con qué probabilidades?
- 2. En lugar de realizar esa medición, dejamos que el sistema evolucione bajo la acción de un campo magnético uniforme paralelo a Oy, de módulo B_0 . Calcula, en la base $\{|+\rangle, |-\rangle\}$, el estado del sistema en tiempo t.
- 3. En ese instante medimos los observables S_x , S_y y S_z . ¿Qué valores pueden obtenerse y con qué probabilidades? ¿Qué relación debe existir entre B_0 y t para que alguno de los resultados sea absolutamente cierto? Da su interpretación física.

Ejercicio 2

Considera de nuevo una partícula de espín 1/2 (misma notación).

- 1. En t=0 medimos S_y y hallamos $+\hbar/2$. ¿Cuál es el vector de estado $|\psi(0)\rangle$ inmediatamente tras la medición?
- 2. Inmediatamente después aplicamos un campo magnético uniforme dependiente del tiempo, paralelo a Oz, de modo que

$$H(t) = \omega_0(t) S_z.$$

Supón que $\omega_0(t) = 0$ para t < 0 y t > T, y que crece linealmente de 0 a ω_0 en el intervalo 0 < t < T (siendo T un parámetro de tiempo dado). Demuestra que, en cualquier instante t, el estado puede escribirse

$$|\psi(t)\rangle = \frac{1}{\sqrt{2}} \left[e^{i\theta(t)} |+\rangle + i e^{-i\theta(t)} |-\rangle \right],$$

donde $\theta(t)$ es una función real de t (a calcular).

3. En t = T medimos S_y . ¿Qué resultados pueden hallarse y con qué probabilidades? Determina la relación entre ω_0 y T para garantizar un resultado único. Da su interpretación física.

Solución:

1. Tras medir $S_y = +\hbar/2$ el sistema queda en el autovector correspondiente,

$$|\psi(0)\rangle = |+\rangle_y = \frac{1}{\sqrt{2}} (|+\rangle + i |-\rangle).$$

2. Como [H(t), H(t')] = 0, la evolución es

$$U(t) = \exp\left(-\frac{i}{\hbar} \int_0^t H(t') dt'\right).$$

Dado que $H(t) |\pm\rangle = \pm \frac{\hbar}{2} \omega_0(t) |\pm\rangle$, definimos

$$\theta(t) = \frac{1}{2} \int_0^t \omega_0(t') dt',$$

y se obtiene

$$U(t) |+\rangle = e^{-i\theta(t)} |+\rangle, \qquad U(t) |-\rangle = e^{i\theta(t)} |-\rangle.$$

Aplicando a $|\psi(0)\rangle$:

$$|\psi(t)\rangle = \frac{1}{\sqrt{2}} \Big(e^{-i\theta(t)} |+\rangle + i e^{i\theta(t)} |-\rangle \Big).$$

Redefiniendo $\theta \to -\theta$ recuperamos la forma deseada.

3. Escribimos las proyecciones sobre $|\pm\rangle_{u}$:

$$|+\rangle_y = \tfrac{1}{\sqrt{2}}(|+\rangle + i\,|-\rangle), \quad |-\rangle_y = \tfrac{1}{\sqrt{2}}(|+\rangle - i\,|-\rangle).$$

Entonces

$$P(+\frac{\hbar}{2}) = \left| \langle +_y | \psi(T) \rangle \right|^2 = \cos^2 \theta(T), \quad P(-\frac{\hbar}{2}) = \sin^2 \theta(T).$$

Para que el resultado sea siempre $+\hbar/2$ se pide

$$\cos^2 \theta(T) = 1 \implies \theta(T) = n\pi \implies \int_0^T \omega_0(t) dt = 2n\pi.$$

Si $\omega_0(t) = \frac{\omega_0}{T}t$ en [0,T], entonces $\int_0^T \omega_0(t) dt = \frac{1}{2}\omega_0 T$, y la condición es $\frac{1}{2}\omega_0 T = 2n\pi$, esto es $\omega_0 T = 4n\pi$. Físicamente, equivale a girar el espín alrededor de Oz un número entero de vueltas completas, de modo que el autovector de S_y regresa a sí mismo.

Ejercicio 3

Considera una partícula de espín 1/2 en un campo magnético \mathbf{B}_0 con componentes

$$B_x = \frac{1}{\sqrt{2}} B_0$$
, $B_y = 0$, $B_z = \frac{1}{\sqrt{2}} B_0$.

- 1. Calcula la matriz que representa el Hamiltoniano $H = \gamma \mathbf{S} \cdot \mathbf{B}_0$ en la base $\{ |+\rangle, |-\rangle \}$ de S_z .
- 2. Halla los autovalores y autovectores de H.
- 3. Si en t=0 el sistema está en el estado $|-\rangle$, ¿qué valores de energía se obtienen y con qué probabilidades?
- 4. Determina el vector de estado $|\psi(t)\rangle$ en tiempo t. En ese instante medimos S_x : calcula el valor medio de la medición y explica su interpretación geométrica.

Ejercicio 4d)

Supón ahora que la velocidad de un átomo es una variable aleatoria, de modo que el tiempo de vuelo T sólo se conoce con una incertidumbre ΔT . Además, el campo B_0 es tan intenso que $\omega_0 \Delta T \gg 1$. Entonces el producto $\omega_0 T$ (módulo 2π) es equiprobable en $[0, 2\pi]$.

- 1. ¿Cuál es el operador densidad ρ_2 de un átomo justo al entrar en el analizador? ¿Corresponde a un estado puro?
- 2. Calcula $Tr(\rho_2 S_x)$, $Tr(\rho_2 S_y)$ y $Tr(\rho_2 S_z)$. ¿Cómo interpretas esos resultados? ¿En qué caso la densidad describe un espín totalmente polarizado? ¿Cuándo uno completamente no polarizado?
- 3. Describe cualitativamente los fenómenos observados a la salida del analizador al variar ω_0 desde 0 hasta el régimen $\omega_0 \Delta T \gg 1$.

A-3. Propiedades generales del Hamiltoniano cuántico

En mecánica cuántica, las coordenadas clásicas x y p se reemplazan por los operadores \hat{X} y \hat{P} , que cumplen la relación de conmutación:

$$[\hat{X}, \hat{P}] = i\hbar \tag{A-14}$$

Partiendo de la forma clásica

$$H = \frac{p^2}{2m} + \frac{1}{2} m\omega^2 x^2,$$

se obtiene el operador Hamiltoniano

$$\hat{H} = \frac{\hat{P}^2}{2m} + \frac{1}{2}m\omega^2 \hat{X}^2. \tag{A-15}$$

Al ser \hat{H} independiente del tiempo, resolvemos la ecuación de autovalores

$$\hat{H}|\varphi\rangle = E|\varphi\rangle \tag{A-16}$$

que en representación x toma la forma

$$\left[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m\omega^2 x^2 \right] \varphi(x) = E \varphi(x). \tag{A-17}$$

De aquí se deducen las siguientes propiedades:

1. Los valores propios de \hat{H} son positivos, pues si $V(x) \geq V_m$ entonces

$$E > V_m. (A-18)$$

2. Las autofunciones tienen paridad definida, dado que el potencial es par:

$$V(-x) = V(x). (A-19)$$

3. El espectro es discreto, ya que el movimiento queda confinado en una región limitada del eje x.

B-1. Notación y operadores adimensionales

Para simplificar la resolución, definimos los operadores adimensionales

$$\hat{X} = \sqrt{\frac{m\omega}{\hbar}} \, \hat{x}, \quad \hat{P} = \frac{1}{\sqrt{m\hbar\omega}} \, \hat{p},$$
 (B-1)

que satisfacen el conmutador canónico

$$[\hat{X}, \hat{P}] = i. \tag{B-2}$$

El Hamiltoniano se factoriza como

$$H = \hbar\omega \,\hat{H},\tag{B-3}$$

donde el operador adimensional es

$$\hat{H} = \frac{1}{2} (\hat{X}^2 + \hat{P}^2). \tag{B-4}$$

Buscamos las soluciones de la ecuación de autovalores

$$\hat{H} |\varphi_n\rangle = \varepsilon_n |\varphi_n\rangle. \tag{B-5}$$

B-1-a. Operador $a^{\dagger}a$ y Hamiltoniano adimensional

Partiendo de las definiciones

$$a = \frac{1}{\sqrt{2}}(\hat{X} + i\hat{P}), \quad a^{\dagger} = \frac{1}{\sqrt{2}}(\hat{X} - i\hat{P}),$$

calculamos primero

$$a^{\dagger} a = \frac{1}{2} (\hat{X} - i\hat{P})(\hat{X} + i\hat{P})$$

$$= \frac{1}{2} (\hat{X}^2 + \hat{P}^2 + i[\hat{X}, \hat{P}])$$

$$= \frac{1}{2} (\hat{X}^2 + \hat{P}^2 - 1)$$
(B-10)

Comparando con la forma adimensional del Hamiltoniano $\hat{H} = \frac{1}{2}(\hat{X}^2 + \hat{P}^2)$ (Ecuación (B-4)), obtenemos

$$\hat{H} = a^{\dagger} a + \frac{1}{2} = \frac{1}{2} (\hat{X} - i\hat{P})(\hat{X} + i\hat{P}) + \frac{1}{2}$$
 (B-11)

y, de manera análoga,

$$\hat{H} = a a^{\dagger} - \frac{1}{2}.$$
 (B-12)

Introducimos entonces el operador número

$$N = a^{\dagger} a, \tag{B-13}$$

que es hermítico, pues

$$N^{\dagger} = (a^{\dagger}a)^{\dagger} = a^{\dagger}a = N. \tag{B-14}$$

Por tanto, de (B-11) se sigue

$$\hat{H} = N + \frac{1}{2}.$$
 (B-15)

B-1-b. Operadores $a, a^{\dagger} y N$

Si intentáramos factorizar $\hat{X}^2+\hat{P}^2$ como si \hat{X},\hat{P} fuesen números, fallaríamos por la no conmutatividad. En su lugar, definimos

$$a = \frac{1}{\sqrt{2}}(\hat{X} + i\hat{P}),\tag{B-6a}$$

$$a^{\dagger} = \frac{1}{\sqrt{2}}(\hat{X} - i\hat{P}). \tag{B-6b}$$

Invertir estas relaciones da

$$\hat{X} = \frac{1}{\sqrt{2}}(a^{\dagger} + a),\tag{B-7a}$$

$$\hat{P} = \frac{i}{\sqrt{2}}(a^{\dagger} - a). \tag{B-7b}$$

Su conmutador se calcula con (B-6) y la relación canónica $[\hat{X},\hat{P}]=i$:

$$[a, a^{\dagger}] = \frac{1}{2} [\hat{X} + i\hat{P}, \hat{X} - i\hat{P}]$$

= $\frac{i}{2} [\hat{P}, \hat{X}] - \frac{i}{2} [\hat{X}, \hat{P}] = 1.$ (B-8)

Es decir,

$$[a, a^{\dagger}] = 1, \tag{B-9}$$

que es equivalente a la conmutación canónica $[\hat{X}, \hat{P}] = i\hbar$."

B-1-a. Operador $a^{\dagger}a$ y Hamiltoniano adimensional

Partiendo de las definiciones

$$a = \frac{1}{\sqrt{2}}(\hat{X} + i\hat{P}), \quad a^{\dagger} = \frac{1}{\sqrt{2}}(\hat{X} - i\hat{P}),$$

calculamos primero

$$a^{\dagger} a = \frac{1}{2} (\hat{X} - i\hat{P})(\hat{X} + i\hat{P})$$

$$= \frac{1}{2} (\hat{X}^2 + \hat{P}^2 + i[\hat{X}, \hat{P}])$$

$$= \frac{1}{2} (\hat{X}^2 + \hat{P}^2 - 1)$$
(B-10)

Comparando con la forma adimensional del Hamiltoniano $\hat{H} = \frac{1}{2}(\hat{X}^2 + \hat{P}^2)$ (Ecuación (B-4)), obtenemos

$$\hat{H} = a^{\dagger} a + \frac{1}{2} = \frac{1}{2} (\hat{X} - i\hat{P})(\hat{X} + i\hat{P}) + \frac{1}{2}$$
(B-11)

y, de manera análoga,

$$\hat{H} = a \, a^{\dagger} - \frac{1}{2}.$$
 (B-12)

Introducimos entonces el operador número

$$N = a^{\dagger} a, \tag{B-13}$$

que es hermítico, pues

$$N^{\dagger} = (a^{\dagger}a)^{\dagger} = a^{\dagger}a = N. \tag{B-14}$$

Por tanto, de (B-11) se sigue

$$\hat{H} = N + \frac{1}{2}.$$
 (B-15)

B-1-b. Operadores $a, a^{\dagger} y N$

Si intentáramos factorizar $\hat{X}^2+\hat{P}^2$ como si \hat{X},\hat{P} fuesen números, fallaríamos por la conmutatividad. En su lugar, definimos

$$a = \frac{1}{\sqrt{2}}(\hat{X} + i\hat{P}),\tag{B-6a}$$

$$a^{\dagger} = \frac{1}{\sqrt{2}}(\hat{X} - i\hat{P}). \tag{B-6b}$$

Invertir estas relaciones da

$$\hat{X} = \frac{1}{\sqrt{2}}(a^{\dagger} + a),\tag{B-7a}$$

$$\hat{P} = \frac{i}{\sqrt{2}}(a^{\dagger} - a). \tag{B-7b}$$

Su conmutador se calcula con (B-6) y la relación canónica $[\hat{X}, \hat{P}] = i$:

$$[a, a^{\dagger}] = \frac{1}{2} [\hat{X} + i\hat{P}, \hat{X} - i\hat{P}]$$

= $\frac{i}{2} [\hat{P}, \hat{X}] - \frac{i}{2} [\hat{X}, \hat{P}] = 1.$ (B-8)

Es decir,

$$[a, a^{\dagger}] = 1, \tag{B-9}$$

que es equivalente a la conmutación canónica $[\hat{X}, \hat{P}] = i\hbar$.

B-2. Determinación del espectro

Cuando se resuelve la ecuación de autovalores de N,

$$N |\varphi_{\nu}\rangle = \nu |\varphi_{\nu}\rangle,$$
 (B-18)

se demuestra que $|\varphi_{\nu}\rangle$ es también autovector de \hat{H} con autovalor

$$E_{\nu} = (\nu + \frac{1}{2})\hbar,$$
 (B-19)

pues $\hat{H}=N+\frac{1}{2}$ [Ecuaciones (B-3) y (B-15)].

B-2-a. Lemas

Lema I (propiedad de los autovalores de N). Los autovalores ν de $N=a^{\dagger}a$ son no negativos. De hecho, para cualquier autovector $|\varphi_{\nu}\rangle$ de N:

$$\|a|\varphi_{\nu}\rangle\|^{2} = \langle \varphi_{\nu}|a^{\dagger}a|\varphi_{\nu}\rangle = \langle \varphi_{\nu}|N|\varphi_{\nu}\rangle = \nu\,\langle \varphi_{\nu}|\varphi_{\nu}\rangle \ge 0.$$
 (B-20,B-21)

Como $\langle \varphi_{\nu} | \varphi_{\nu} \rangle > 0$, se obtiene $\nu \geq 0$.

Lema II (propiedades de $a |\varphi_{\nu}\rangle$). Sea $|\varphi_{\nu}\rangle \neq 0$ autovector de N con autovalor ν ; definamos $|\chi\rangle = a |\varphi_{\nu}\rangle$. Entonces: (i) Si $\nu = 0$, $||\chi\rangle||^2 = \nu||\varphi_{\nu}||^2 = 0$ y $|\chi\rangle = 0$. (ii) Si $\nu > 0$, $||\chi\rangle||^2 > 0$ y, usando [N, a] = -a [(B-17a)],

$$N|\chi\rangle = (aN + [N, a])|\varphi_{\nu}\rangle = (\nu - 1)|\chi\rangle$$
, (B-27)

de modo que $|\chi\rangle$ es un autovector de N con autovalor $\nu-1$.

Lema III (propiedades de $a^{\dagger} |\varphi_{\nu}\rangle$ **).** Sea $|\varphi_{\nu}\rangle \neq 0$ autovector de N con $\nu \geq 0$; definamos $|\chi'\rangle = a^{\dagger} |\varphi_{\nu}\rangle$. Entonces: (i) $||\chi'\rangle||^2 = \langle \varphi_{\nu}| a a^{\dagger} |\varphi_{\nu}\rangle = (\nu + 1) ||\varphi_{\nu}||^2 > 0$, luego $|\chi'\rangle \neq 0$. (ii) Con $[N, a^{\dagger}] = a^{\dagger}$ [(B-17b)] se halla

$$N |\chi'\rangle = (a^{\dagger}N + [N, a^{\dagger}]) |\varphi_{\nu}\rangle = (\nu + 1) |\chi'\rangle .$$
 (B-29)

B-2-b. El espectro de N son enteros no negativos

Sea ν un autovalor de N y $|\varphi_{\nu}\rangle$ su autovector.

– Si $\nu \notin \mathbb{Z}$, existe $k \in \mathbb{Z}$ tal que $\nu - k < 0$ (). Aplicando sucesivamente a a $|\varphi_{\nu}\rangle$, por el lema II se obtienen autovectores de autovalores $\nu - 1, \nu - 2, \dots, \nu - k < 0$, lo cual contradice el lema I.

- Si
$$\nu = n \in \{0, 1, 2, \dots\}$$
, la cadena

$$|\varphi_n\rangle, \ a |\varphi_n\rangle, \dots, \ a^n |\varphi_n\rangle, \ a^{n+1} |\varphi_n\rangle = 0$$
 (B-31,B-33)

termina en cero y no produce autovalores negativos.

Por tanto, los únicos autovalores posibles son los enteros $\nu = 0, 1, 2, \dots$

B-2-c. Interpretación de los operadores a y a^{\dagger}

Partiendo de un autovector $|\varphi_n\rangle$ de N (y por tanto de \hat{H}) con

$$\hat{H} |\varphi_n\rangle = (n + \frac{1}{2})\hbar |\varphi_n\rangle,$$

la acción de a y a^{\dagger} satisface:

$$a |\varphi_n\rangle \propto |\varphi_{n-1}\rangle, \qquad a^{\dagger} |\varphi_n\rangle \propto |\varphi_{n+1}\rangle.$$

Así, a "aniquila" un quantum \hbar de energía y a^{\dagger} lo "crea", de ahí su nombre de operadores de destrucción y creación.

B-2-d. Niveles de energía

De lo anterior y la relación (B-19) se concluye que los niveles de energía del oscilador armónico 1-D son

$$E_n = \hbar\omega \left(n + \frac{1}{2}\right), \quad n = 0, 1, 2, \dots$$
 (B-34)

con separación $\Delta E = \hbar \omega$ y nivel de cero punto $E_0 = \frac{1}{2} \hbar \omega$.""

B-2. Determinación del espectro

Cuando se resuelve la ecuación de autovalores de N,

$$N |\varphi_{\nu}\rangle = \nu |\varphi_{\nu}\rangle,$$
 (B-18)

se demuestra que $|\varphi_{\nu}\rangle$ es también autovector de \hat{H} con autovalor

$$E_{\nu} = (\nu + \frac{1}{2})\hbar,$$
 (B-19)

pues $\hat{H}=N+\frac{1}{2}$ [Ecuaciones (B-3) y (B-15)].

B-2-a. Lemas

Lema I (propiedad de los autovalores de N). Los autovalores ν de $N=a^{\dagger}a$ son no negativos. De hecho, para cualquier autovector $|\varphi_{\nu}\rangle$ de N:

$$\|a|\varphi_{\nu}\rangle\|^{2} = \langle \varphi_{\nu}|a^{\dagger}a|\varphi_{\nu}\rangle = \langle \varphi_{\nu}|N|\varphi_{\nu}\rangle = \nu \langle \varphi_{\nu}|\varphi_{\nu}\rangle \ge 0.$$
 (B-20,B-21)

Como $\langle \varphi_{\nu} | \varphi_{\nu} \rangle > 0$, se obtiene $\nu \geq 0$.

Lema II (propiedades de $a |\varphi_{\nu}\rangle$). Sea $|\varphi_{\nu}\rangle \neq 0$ autovector de N con autovalor ν ; definamos $|\chi\rangle = a |\varphi_{\nu}\rangle$. Entonces: (i) Si $\nu = 0$, $||\chi\rangle||^2 = \nu||\varphi_{\nu}||^2 = 0$ y $|\chi\rangle = 0$. (ii) Si $\nu > 0$, $||\chi\rangle||^2 > 0$ y, usando [N, a] = -a [(B-17a)],

$$N|\chi\rangle = (aN + [N, a])|\varphi_{\nu}\rangle = (\nu - 1)|\chi\rangle$$
, (B-27)

de modo que $|\chi\rangle$ es un autovector de N con autovalor $\nu-1$.

Lema III (propiedades de $a^{\dagger} |\varphi_{\nu}\rangle$ **).** Sea $|\varphi_{\nu}\rangle \neq 0$ autovector de N con $\nu \geq 0$; definamos $|\chi'\rangle = a^{\dagger} |\varphi_{\nu}\rangle$. Entonces: (i) $||\chi'\rangle||^2 = \langle \varphi_{\nu}| a a^{\dagger} |\varphi_{\nu}\rangle = (\nu + 1) ||\varphi_{\nu}||^2 > 0$, luego $|\chi'\rangle \neq 0$. (ii) Con $[N, a^{\dagger}] = a^{\dagger}$ [(B-17b)] se halla

$$N |\chi'\rangle = (a^{\dagger}N + [N, a^{\dagger}]) |\varphi_{\nu}\rangle = (\nu + 1) |\chi'\rangle . \tag{B-29}$$

B-2-b. El espectro de N son enteros no negativos

Sea ν un autovalor de N y $|\varphi_{\nu}\rangle$ su autovector.

– Si $\nu \notin \mathbb{Z}$, existe $k \in \mathbb{Z}$ tal que $\nu - k < 0$ (). Aplicando sucesivamente a a $|\varphi_{\nu}\rangle$, por el lema II se obtienen autovectores de autovalores $\nu - 1, \nu - 2, \dots, \nu - k < 0$, lo cual contradice el lema I.

- Si
$$\nu = n \in \{0, 1, 2, ...\}$$
, la cadena

$$|\varphi_n\rangle$$
, $a|\varphi_n\rangle$, ..., $a^n|\varphi_n\rangle$, $a^{n+1}|\varphi_n\rangle = 0$ (B-31,B-33)

termina en cero y no produce autovalores negativos.

Por tanto, los únicos autovalores posibles son los enteros $\nu = 0, 1, 2, \dots$

B-2-c. Interpretación de los operadores a y a^{\dagger}

Partiendo de un autovector $|\varphi_n\rangle$ de N (y por tanto de \hat{H}) con

$$\hat{H} |\varphi_n\rangle = (n + \frac{1}{2})\hbar |\varphi_n\rangle,$$

la acción de a y a^{\dagger} satisface:

$$a |\varphi_n\rangle \propto |\varphi_{n-1}\rangle, \qquad a^{\dagger} |\varphi_n\rangle \propto |\varphi_{n+1}\rangle.$$

Así, a "aniquila" un quantum \hbar de energía y a^{\dagger} lo "crea", de ahí su nombre de operadores de destrucción y creación.

B-2-d. Niveles de energía

De lo anterior y la relación (B-19) se concluye que los niveles de energía del oscilador armónico 1-D son

$$E_n = \hbar\omega \left(n + \frac{1}{2}\right), \quad n = 0, 1, 2, \dots$$
 (B-34)

con separación $\Delta E = \hbar \omega$ y nivel de cero punto $E_0 = \frac{1}{2}\hbar \omega$.

Conclusión

El estudio del espín 1/2 ejemplifica claramente los postulados de la mecánica cuántica: preparación de estados, probabilidades de medición y evolución temporal gobernada por el Hamiltoniano.