Data Analytics EEE 4774 & 6777

Module 3

Clustering

Spring 2022

Clustering: K-means

K-means

- Unsupervised method for identifying groups: Clustering

ustering
Objective: Minimize the within-cluster

• Data $\{x_1, \dots, x_m\}$ where $x_n \in \mathbb{R}^m$ where $x_n \in \mathbb{R}^m$ objective: Minimize the integral $E(c_n, m_k) = \sum_{n=1}^N \sum_{k=1}^N c_{nk} \|x_n - m_k\|^2$ where $c_n = [c_{n1} \dots c_{nK}]$ and $c_{nk} \in \{0,1\}$

Iteratively minimize E over $oldsymbol{c}_n$ and $oldsymbol{m}_k$

Cluster assignment var. Initialize m_k for i=1:max iter

Step : Minimize E with respect to \boldsymbol{c}_n keeping \boldsymbol{m}_k fixed \rightarrow Update \boldsymbol{c}_n Minimize E with respect to \boldsymbol{m}_k keeping \boldsymbol{c}_n fixed \rightarrow Update \boldsymbol{m}_k \boldsymbol{c}_n $\boldsymbol{c$

 $\text{if} \frac{\left\|\boldsymbol{c}_{n}^{(i)} - \boldsymbol{c}_{n}^{(i-1)}\right\|}{\left\|\boldsymbol{c}_{n}^{(i-1)}\right\|} < \varepsilon \text{ and } \frac{\left\|\boldsymbol{m}_{k}^{(i)} - \boldsymbol{m}_{k}^{(i-1)}\right\|}{\left\|\boldsymbol{m}_{k}^{(i-1)}\right\|} < \varepsilon$ break

end end

Step 1:
$$c_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_{n} - \mathbf{m}_{j}\|^{2} & \text{1000} \\ \text{otherwise} & \text{each of the rearest cluster} \end{cases}$$

$$\mathbf{m}_{k} = \frac{\sum_{n} c_{nk} \mathbf{x}_{n}}{\sum_{n} c_{nk}} = \text{mean of points assigned to cluster } k$$

$$\mathbf{m}_{k} = \frac{\sum_{n} c_{nk} \mathbf{x}_{n}}{\sum_{n} c_{nk}} = \text{mean of points assigned to cluster } k$$

$$\mathbf{m}_{k} = \frac{\sum_{n} c_{nk} \mathbf{x}_{n}}{\sum_{n} c_{nk}} = \text{mean of points assigned to cluster } k$$

- However, it may converge to a local minimum
- (K-medoids: generalization of K-means to a general distance measure

$$E(\boldsymbol{c}_n, \boldsymbol{m}_k) = \sum_{n=1}^{N} \sum_{k=1}^{K} c_{nk} V(\boldsymbol{x}_n, \boldsymbol{m}_k)$$

Gaussian Mixture Model

$$\max_{\mu_k} \log p(X)$$

$$\frac{\partial}{\partial \boldsymbol{\mu}_k} \log p(\boldsymbol{X}) = \sum_{k=1}^{N} \frac{\partial}{\partial \boldsymbol{\mu}_k} \log$$

$$\mathcal{N}(x_n|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)$$

$$\sum_{j=1}^{K} \pi_{j} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}) \boldsymbol{\Sigma}$$

$$\frac{\partial u_{k}}{\partial x_{n} - u_{k}} = 0$$

$$\frac{\partial u_{k}}{\partial x_{n} - u_{k}} = 0$$

$$posterior prob.$$

$$posterior prob.$$

$$p(C_{nk} = 1 | x_n) = \frac{1}{2}$$

$$= \frac{p(C_{nk} = 1) p(x_n | C_{nk} = 1)}{\sum_{j=1}^{K} p(C_{nj} = 1) p(x_n | C_{nj} = 1)}$$

$$= \underbrace{\frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}} = \gamma(C_{nk})$$

$$\mu_{k} = \frac{1}{\sum_{n=1}^{N} \gamma(C_{nk})} \sum_{n=1}^{N} \gamma(C_{nk}) x_{n} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(C_{nk}) x_{n}$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(C_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^T,$$

$$Sdmpc = \frac{N_k}{N}$$
 Sdmpc ∞V . $Ma+si$

coupled equations no closed-form solution!

$$N_k = \sum_{k=1}^{N} \gamma(C_{nk}),$$

as we have multiple gaussian here and we don't know to which gauss. our data point belongs to

ttective gauss. our as

Iterative Solution: EM for GMM

- Expectation-Maximization for iteratively computing ML in GMM

• Expectation-Maximization for iteratively computing ML in GMM

1. Initialize
$$\mu_k$$
, Σ_k , π_k and compute the initial value of $\log p(X)$

2. E step: Compute the posteriors using the current parameter values
$$\gamma(C_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

M step: Re-estimate the parameters using the current posteriors

$$\mu_k^{new} = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(C_{nk}) \, x_n \,, \quad \Sigma_k^{new} = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(C_{nk}) \, (x_n - \mu_k^{new}) (x_n - \mu_k^{new})^T \,, \quad \pi_k^{new} = \frac{N_k}{N}, \quad \text{where} \quad N_k = \sum_{n=1}^{N} \gamma(C_{nk}) (x_n - \mu_k^{new})^T \,.$$

Compute the log-likelihood and check for convergence of either the parameters or the log-likelihood.

If no convergence, return to step 2.

- Many more iterations than K-means, and each iteration much more expensive,
- But provides probabilistic modeling with soft assignments and covariance
- Run K-means to initialize
 EM for GMM
- Converges to a local maximum

Expectation-Maximization (EM) Algorithm

Objective: find ML for models with latent variables C (e.g., missing values in the dataset), observed data X, and parameters $oldsymbol{ heta}$

$$\log p(X|\boldsymbol{\theta}) = \log \sum_{\boldsymbol{C}} p(X, \boldsymbol{C}|\boldsymbol{\theta})$$

- Assume maximization of the complete-data log-likelihood $\log p(X, C|\theta)$ is easy
 - 1. Initialize $oldsymbol{ heta}^{old}$

posterior of latent var.
$$C$$
 given clotta (X, θ^{old}) and complete data

2. E step: Evaluate $p(\mathbf{C}|\mathbf{X}, \boldsymbol{\theta}^{old})$ and

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{old}) = E_{p(\boldsymbol{C}|\boldsymbol{X}, \boldsymbol{\theta}^{old})} [\log p(\boldsymbol{X}, \boldsymbol{C}|\boldsymbol{\theta})] = \sum_{\boldsymbol{C}} p(\boldsymbol{C}|\boldsymbol{X}, \boldsymbol{\theta}^{old}) \log p(\boldsymbol{X}, \boldsymbol{C}|\boldsymbol{\theta})$$
3. M step: $\boldsymbol{\theta}^{new} = \arg \max_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{old})$ {maximize $Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{old}) + \log p(\boldsymbol{\theta})$ for MAP}

{maximize
$$Q(\theta, \theta^{old}) + \log p(\theta)$$
 for MAP}

4. If no convergence, then $\boldsymbol{\theta}^{old} \leftarrow \boldsymbol{\theta}^{new}$ and return to step 2 used for solving sold inter-locked inter-locked equations of equations of latent variable latent models

GMM by EM vs. K-means

• EM soft assigns data points **softly** to a cluster using posterior $p(C_{nk} = 1 | x_n)$,

whereas K-means performs *hard* assignment

• Consider a GMM with covariance ϵI for all clusters, where ϵ is a fixed constant, not a parameter to be re-estimated

$$p(C_{nk} = 1 | \mathbf{x}_n) = \frac{\pi_k \exp\{-\|\mathbf{x}_n - \mathbf{\mu}_k\|^2 / 2\epsilon\}}{\sum_{j=1}^K \pi_j \exp\{-\|\mathbf{x}_n - \mathbf{\mu}_j\|^2 / 2\epsilon\}}$$

• (As $\epsilon \to 0$) in the denominator the smallest $\|x_n - \mu_j\|^2$ will go to 0 most slowly,

hence posterior for that cluster will go to 1 and the others will go to 0 \longrightarrow Hard assignment to the closest cluster

- Update for the mean μ_k also reduces to that of K-means
- K-means does not estimate the covariances of the clusters

Evaluation of Clustering Results

- Several similarity measures for clusters can be used to evaluate the performance of clustering algorithms
- Can be used to determine the optimum number of clusters
- Internal Evaluation: based on the clustered data itself
 - typically assigns good score if high similarity within clusters and low similarity between clusters
 - e.g., Silhouette value (works well with K-means), Dunn index, Davies-Bouldin index
- External Evaluation: based on data that was not used for clustering, e.g., ground truth
 - measures how close clustering is to the benchmark classes
 - e.g., Rand index, F-measure, Mutual information, Confusion matrix adjusted Rand index