Movie Rating Prediction based on Netflix Prize Data

CSC 522 ALDA Fall 2017
Advisor: Dr. Chi Min
Group ID 01
Junhua Ma
Zhangqi Zha
Gang Zhang

Overview

- **□** Motivation
- **□** Introduction
- **□** Dataset
- **□** Methods
- ☐ Experiments & Results

Motivation

Netflix problem is type type of recommender system problem

- Recommender systems
 - A subclass of information filtering system
 - To predict the "rating" or "preference" that a user would give to an item.
- Recommender systems have become increasingly popular in recent years.
 - Movies
 - Music
 - News

Introduction – Netflix Prize

- Netflix Prize a contest Netflix sponsored.
- In 2009, the award was grant to team "BellKor's Pragmatic Chaos" with the improvement of 10% on RMSE.

Dataset Overview

		Movies							
		1	2	3	4	5	6	7	8
	1		5		2	4			
	2	4		3	1			3	
Users	3		5	4		5		4	

- 100 Million data points "user X rated movie Y a 4.0 on 2/12/05"
- 4 attributes: user ID, movie ID, movie title and date
- 5 classes: rating 1, 2, 3, 4, and 5
- 480,189 users rate the 17,770 movies
- Custom data: crawled online movie information: genre, director, actor

Methods - Preprocessing

Data Prepressing

- Each User does not rate much on all movies (data sparsity), can not do random sampling on data.
- Stratify sampling: pick fewer movies and fewer user.
- Data transform to useable format.

Methods - Models

Models - Baseline

Baseline predictor:

mean rate with bias on specific movie and specific user

$$r_{ui} = \mu + b_i + b_\mu$$

		Movies							
		1	2	3	4	5	6	7	8
	1		5		2	4			
	2	4		3	1			3	
Users	3		5	4		5		4	
	4						1	1	2
	5	3		?		?	3		
	6		?	2		4		?	

Models - SVDpp

SVDpp predictor:

• SVD approximates matrix A by:

$$A = U\Sigma V^*$$

- In recommender system, user-movie interactions are modeled as inner products in the latent factor space.
- Movie is associated with a vector q_i
- User is associated with a vector p_{μ}
- Inner product of approximates the rating
- Adding the basel $q_i^* p_u$ rediction would be:

$$r_{ui} = \mu + b_i + b_\mu + q_i^* p_u$$

Models - Deep Learning

Deep Learning predictor:

Models - Vector Based Algorithm

Vector Based Algorithm Predictor:

- Inspired by transE
- Data we have is triplets as (movie, user, rate)
- We train embedding for each movies, users and rates(1 to 5), and want to minimize the distance between movie + user and rate

$$\sum_{(m,u,r)\in S(m',u',r')\in S'} [\alpha + d(m+u,r) - d(m+u,r)]_{+}$$

Models – KNN and Other Methods

K-Nearest-Neighbors predictor:

User based kNN and movie based kNN

How to measure distance?

Calculate mean and variance for each user's rate then use KL divergence as distance or just use correlation coefficient

ANN based Clustering and Visualization

- Use movie and user embedding trained by ANN for k-means clustering
- Use t-SNE for visualization result in 2D space.

Experiments & Results

Experiments & Results

Experiments & Results

Visualized trained movies (500) and users (200,000) embedding using t-SNE

