EduElevators with Standard Bank

Advertise with Us!

Your Brand, Front and Center –

Right Here on Page 1!

.Contact us today to secure

your spotlight!"

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

MATHEMATICS P1/WISKUNDE V1

NOVEMBER 2022

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 21 pages. *Hierdie nasienriglyne bestaan uit 21 bladsye.*

NSC/NSS – Marking Guidelines/Nasienriglyne

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent Accuracy applies in all aspects of the marking guidelines.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, sien slegs die EERSTE poging na.
- Volgehoue akkuraatheid is DEURGAANS op ALLE aspekte van die nasienriglyne van toepassing.

QUESTION1/VRAAG 1

1.1.1	(3x-6)(x+2)=0	$\checkmark x = 2$
	x = 2 or $x = -2$	$\checkmark x = -2 \tag{2}$
1.1.2	$2x^2 - 6x + 1 = 0$	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$x = \frac{6 \pm \sqrt{(-6)^2 - 4(2)(1)}}{2(2)}$	✓ correct substitution into
	$x = {2(2)}$	correct formula
		√ 2,82
	x = 2.82 or $x = 0.18$	✓ 0,18 (3)
1.1.3	$x^2 - 90 > x$	
	$x^2 - x - 90 > 0$	✓ standard form
	(x+9)(x-10) > 0	
	CV: $x = -9$ or $x = 10$	✓ critical values
	-9 10	
	x < -9 or $x > 10$	$\checkmark \checkmark x < -9 \text{ or } x > 10$
	OR/OF	(4)
	$(-\infty; -9)$ or $(10; \infty)$	

NSC/NSS – Marking Guidelines/Nasienriglyne

1.1.4	$x - 7\sqrt{x} = -12$		
	$x + 12 = 7\sqrt{x}$	✓ isolating the root	
	$\left(x+12\right)^2 = \left(7\sqrt{x}\right)^2$	✓ squaring both sides	
	$x^2 + 24x + 144 = 49x$		
	$x^2 - 25x + 144 = 0$	✓ standard form	
	(x-16)(x-9) = 0		
	x = 16 or x = 9	✓ both answers	(4)
	OR/OF	OR/OF	
	$x - 7\sqrt{x} + 12 = 0$	✓ standard form	
	$(\sqrt{x}-3)(\sqrt{x}-4)=0$ or let $\sqrt{x}=k$	✓ factors	
	$\sqrt{x} = 3 \text{ or } \sqrt{x} = 4$	✓ answers	
	x = 9 or $x = 16$	\checkmark both answers for x	(4)
1.2	2x - y = 2		
	$y = 2x - 2 \qquad \dots (1)$	✓ eq 1	
	$xy = 4 \qquad \dots (2)$		
	(1) in (2):		
	x(2x-2)=4	✓ substitution	
	$2x^2 - 2x - 4 = 0$	✓ standard form	
	$\begin{cases} x^2 - x - 2 = 0\\ (x - 2)(x + 1) = 0 \end{cases}$		
	x = 2 or $x = -1$	✓ x-values	
	$y = 2 \qquad y = -4$	✓ y-values	(5)

NSC/NSS – Marking Guidelines/Nasienriglyne

OR/OF	OR/OF
2x - y = 2	
$x = \frac{1}{2}y + 1$ (1)	✓ eq 1
$xy = 4 \qquad \dots (2)$	
(1) in (2):	
$y\left(\frac{1}{2}y+1\right)=4$	✓ substitution
$\frac{1}{2}y^2 + y - 4 = 0$	✓ standard form
$y^{2} + 2y - 8 = 0$ $(y+4)(y-2) = 0$	
(y+4)(y-2)=0	
y = -4 or $y = 2$	✓ y-values
x = -1 $x = 2$	\checkmark x-values (5)
OR/OF	OR/OF
$2x - y = 2 \dots (1)$	
$y = \frac{4}{x} \qquad \dots (2)$	✓ eq 2
(2) in (1):	
$2x - \frac{4}{x} = 2$	✓ substitution
$2x^{2} - 2x - 4 = 0$ $x^{2} - x - 2 = 0$	✓ standard form
(x-2)(x+1) = 0	
x = 2 or x = -1 $y = 2 y = -4$	✓ x -values \checkmark y -values (5)

	OR/OF	OR/OF
	$2x - y = 2 \dots (1)$	
	$x = \frac{4}{y} \qquad \dots (2)$	✓ eq 2
	(2)in (1): $2\left(\frac{4}{y}\right) - y = 2$	✓ substitution
	$8-y^{2}-2y=0$ $y^{2}+2y-8=0$ $(y+4)(y-2)=0$	✓ standard form
	y = -4 or $y = 2$	✓ y-values
	x = -1 $x = 2$	\checkmark x-values (5)
1.3	$2.5^{n} - 5^{n+1} + 5^{n+2} = 2.5^{n} - 5^{n}.5^{1} + 5^{n}.5^{2}$	✓ exp law
	$= 5^{n} (2 - 5 + 25)$ $= 5^{n} (22)$	✓ common factor
	$2(5^n(11))$	✓answer/explanation (3)
	OR/OF	
	Any integer multiplied by an even number will be even	
1.4	$\frac{3^{y+1}}{32} = \sqrt{96^x}$	
	$\frac{3^{y+1}}{2^5} = (96)^{\frac{x}{2}}$	$\checkmark \frac{3^{y+1}}{2^5} = (96)^{\frac{x}{2}}$
	$3^{y+1}.2^{-5} = 2^{\frac{5x}{2}}.3^{\frac{x}{2}}$	$\checkmark 3^{y+1}.2^{-5} = 2^{\frac{5x}{2}}.3^{\frac{x}{2}}$
	$-5 = \frac{5x}{2}$	
	$\therefore x = -2$	$\checkmark x = -2$
	$y+1=\frac{x}{2}$	
	$y+1=\frac{-2}{2}$	
	$\therefore y = -2$	$\checkmark y = -2 \tag{4}$

NSC/NSS – Marking Guidelines/Nasienriglyne

OR/OF	OR/OF
$\frac{3^{y+1}}{32} = \sqrt{96^x}$	
$\left(\frac{3^{y+1}}{2^5}\right)^2 = \left(\sqrt{(96)^x}\right)^2$	$\checkmark \left(\frac{3^{y+1}}{2^5}\right)^2 = \left(\sqrt{(96)^x}\right)^2$
$\frac{3^{2y+2}}{2^{10}} = 2^{5x} \cdot 3^x$	
$3^{2y+2}.2^{-10} = 2^{5x}.3^x$	$\checkmark 3^{2y+2}.2^{-10} = 2^{5x}.3^x$
-10=5x	
$\therefore x = -2$	$\checkmark x = -2$
2y + 2 = -2	
$\therefore y = -2$	$\checkmark y = -2 \tag{4}$
	[25]

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2022

QUESTION 2/VRAAG 2

	,	
2.1.1	a=14	
	$T_6 = 14r^5 = 448$	$\checkmark T_6 = 14r^5 = 448$
	$r^5 = 32$ Answer only: full marks	
	$\therefore r = 2$ $T_n = 14(2)^{n-1}$	$\checkmark r = 2 \tag{2}$
2.1.2	$T_n = 14(2)^{n-1}$	
		✓ substitution into correct
	$S_n = \frac{14(2^6 - 1)}{2 - 1}$	formula
	$S_6 = 882$	$\checkmark S_6 = 882$
	114 674 – 882 = 113 792	
	$113792 = 896(2^n - 1)$	
	$128 = 2^n$	$\checkmark 128 = 2^n$
	n = 7	√ 7 (4)
	OR/OF	OR/OF
	$a(r^n-1)$	
	$S_n = \frac{a(r^n - 1)}{r - 1}$	
	$114\ 674 = \frac{14(2^n - 1)}{2 - 1}$	✓ substitution into correct formula
	$8191 = 2^n - 1$	
	$2^n = 8192$	$\checkmark 2^n = 8192$
	$n = \log_2 8192$	
	n = 13	$\checkmark n = 13$
	.: 7 more terms must be added to the first 6 terms.	√ 7 (4)
2.1.3	$r = \frac{1}{2}$ OR $448r^5 = 14$	$\checkmark r = \frac{1}{2}$
		2
	$\therefore r = \frac{1}{2}$	
	$S_{\infty} = \frac{a}{1 - r}$ $S_{\infty} = \frac{448}{1 - \frac{1}{2}}$	
	448	
	$S_{\infty} = \frac{1}{1}$	✓ substitution
	$1-\frac{1}{2}$	
	$S_{\infty} = 896$	✓ answer (3)

NSC/NSS – Marking Guidelines/Nasienriglyne

		Г	
2.2	$\sum_{p=0}^{k} \left(\frac{1}{3} p + \frac{1}{6} \right) = 20 \frac{1}{6}$		
	$T_1 = \frac{1}{6}$ $T_2 = \frac{1}{3} + \frac{1}{6} = \frac{3}{6}$	$\checkmark T_1 = \frac{1}{6}$ $\checkmark d$	
	$d = \frac{3}{6} - \frac{1}{6} = \frac{1}{3}$	✓ d	
	$\frac{121}{6} = \frac{n}{2} \left[2 \left(\frac{1}{6} \right) + \left(n - 1 \right) \left(\frac{1}{3} \right) \right]$	✓ substitution	
	$\frac{121}{3} = n \left[\frac{1}{3} + \frac{1}{3}n - \frac{1}{3} \right]$		
	$\frac{121}{3} = \frac{1}{3}n^2$ $121 = n^2$		
	$n = 11$ $\therefore k = 10$	✓ value of n ✓ value of k	(5)
	OR/OF	OR/OF	
	$\sum_{p=0}^{k} \left(\frac{1}{3} p + \frac{1}{6} \right) = 20 \frac{1}{6}$		
	$a = \frac{1}{6}$	$\checkmark a = \frac{1}{6}$	
	$l = \frac{1}{3}k + \frac{1}{6}$	$\checkmark a = \frac{1}{6}$ $\checkmark l$	
	n = k + 1	$\checkmark n = k + 1$	
	$S_n = \frac{n}{2} \big[a + l \big]$		
	$\frac{121}{6} = \frac{k+1}{2} \left[\frac{1}{6} + \frac{1}{3}k + \frac{1}{6} \right]$		
	$\frac{121}{6} = \frac{k+1}{2} \left[\frac{1}{3}k + \frac{1}{3} \right]$		
	$\frac{121}{6} = \frac{k+1}{2} \left[\frac{k+1}{3} \right]$		
	$\frac{121}{6} = \frac{(k+1)^2}{6}$	$(k+1)^2$	
	$k+1=\pm\sqrt{121}$	$\checkmark \frac{121}{6} = \frac{(k+1)^2}{6}$	
	k+1=11 $k=10$	✓ value of k	(5)
			[14]

QUESTION 3/VRAAG 3

3.1	3a + b = 7	$\checkmark 3a+b=7$	
3.1			
	3+b=7	✓ $3 + b = 7$	(2)
	b=4		
	OR/OF	OR/OF	
	$T_2 - T_1 = 7$	$\checkmark T_2 - T_1 = 7$	
	4+2b+9-(1+b+9)=7	✓ substitution	(2)
	b=4		
3.2	$T_n = n^2 + 4n + 9$		
	$T_{60} = (60)^2 + 4(60) + 9$	✓ substitution	
	= 3849 Answer only: full marks	✓ answer	(2)
3.3	14; 21; 30; 41;		· /
	First difference: 7; 9; 11;	✓ first difference	
	Common 2 nd difference: 2	✓ 2	
	$T_{-} = 2p + 5$ Answer only: full marks	$\checkmark 2p+5$	(3)
	$T_p = 2p + 5$ Answer only: full marks	2p+3	(3)
	OR/OF	OR/OF	
	First difference: 7; 9; 11;	✓ first difference	
	$T_n = a + (n-1)d$		
	$T_p = 7 + (p-1)(2)$	✓ 2	
	$T_p = 2p + 5$	$\checkmark 2p+5$	(3)
3.4	157 = 2p + 5	$\checkmark 157 = 2p + 5$	
	p = 76	✓ p = 76	
	\therefore Between T_{76} and T_{77}	$\checkmark T_{76}$ and T_{77}	(3)
	OR/OF	OR/OF	
	$T_{n+1} - T_n = 157$	$\checkmark T_{n+1} - T_n = 157$	
	$(n+1)^2 + 4(n+1) + 9 - (n^2 + 4n + 9) = 157$	11.12 11	
	$n^2 + 2n + 1 + 4n + 4 + 9 - n^2 - 4n - 9 = 157$		
	2n = 152		
	n = 76	✓ n = 76	
	\therefore Between T_{76} and T_{77}	$\checkmark T_{76}$ and T_{77}	(3)
			[10]

QUESTION 4/VRAAG 4

111	n=1 and $a=2$	1 1 1 a 2	(2)
4.1.1	p = -1 and $q = 2$	$\checkmark p = -1 \checkmark q = 2$	(2)
4.1.2	$\frac{1}{x-1} + 2 = 0$	✓ = 0	
	$\begin{vmatrix} x-1 \\ -2x+2=1 \end{vmatrix}$	_ 0	
	$x = \frac{1}{2}$		
	_		
	$\left(\frac{1}{2};0\right)$	✓ answer	(2)
4.1.3	$x = \frac{1}{2} - 3$	√ -3	
	2	_5	
	$= \frac{-5}{2}$ Answer only: full marks $y = x + t$	$\checkmark x = \frac{-5}{2}$ $\checkmark \text{ subst } (1; 2)$	(2)
4.1.4		✓ subst (1; 2)	
	2=1+t	$\checkmark t = 1$	(2)
	t = 1	∀ <i>l</i> = 1	(2)
4.1.5	$-2 \le \frac{1}{x-1}$ Answer only: full marks		
		1	
	$\frac{1}{x-1} + 2 \ge 0$	$\checkmark \frac{1}{x-1} + 2 \ge 0$	
	x-1	$ \begin{array}{c} x & 1 \\ \checkmark x \le \frac{1}{2} \\ \checkmark x > 1 \end{array} $	
	1	$\frac{1}{2}$	
	$\therefore x \le \frac{1}{2}$ or $x > 1$	$\checkmark x > 1$	(3)
	OR/OF		
	$x \in \left(-\infty; \frac{1}{2}\right] \text{ or } (1; \infty)$		
4.2.1	y = -5	✓ answer	(1)
4.2.2	$x = \frac{-b}{2a} = \frac{-(-4)}{2(1)} = 2$	$\checkmark x = 2$	
	$f(2) = 2^2 - 4(2) - 5 = -9$	$\checkmark y = -9$	(2)
	$\therefore D(2;-9)$		(-)
	OR/OF	OR/OF	
	f'(x) = 2x - 4		
	2x - 4 = 0		
	x = 2	$\checkmark x = 2$	
	$f(2) = 2^2 - 4(2) - 5 = -9$	✓ y = -9	(2)
	$\therefore D(2;-9)$		

Need an amazing tutor? www.teachme2.com/matric

Mathematics P1/Wiskunde V1

NSC/NSS – Marking Guidelines/Nasienriglyne

4.2.3	q = -5	✓ q = -5
	$-9 = a(2)^2 - 5$ - 4 = 4a	✓ substitution of $(2; -9)$
	-4 = 4a	
	a = -1	$\checkmark a = -1$
	$\therefore g(x) = -2^x - 5$	(3)
4.2.4	$y \in (-\infty; -5)$ OR $y < -5; y \in R$	✓answer (1)
4.2.5	k < -9	$\begin{array}{c} \checkmark - 9 \\ \checkmark k < -9 \end{array} \tag{2}$
		$\checkmark k < -9 \tag{2}$
		[20]

QUESTION 5/VRAAG 5

7 1		1	
5.1	g(x) = 2x + 6	✓ <i>y</i> = 6	(1)
	y = 6	v y = 0	(1)
5.2	y = 2x + 6	/ 1 ·	
	x = 2y + 6 Answer only: Full marks	\checkmark swop x and y	
	$y = \frac{1}{2}x - 3$	✓ equation	(2)
<i>5</i> 2			
5.3	$\frac{1}{2}x - 3 = 2x + 6$	✓ equating	
	x - 6 = 4x + 12		
	3x = -18	$\checkmark x = -6$ $\checkmark y = -6$	
	x = -6	/ w = 6	(2)
	A(-6;-6)	y = -0	(3)
	OR/OF	OR/OF	
	2x + 6 = x	✓equating	
	x = -6	$\checkmark x = -6$	
	y = -6	$\checkmark y = -6 $	(3)
5.4	$AB = \sqrt{(6)^2 + (12)^2}$	✓substitution	
	$=\sqrt{180}=6\sqrt{5}=13,42$	✓answer	(2)
	B(0;6) C(6;0) x		

F		
5.5	$BC = \sqrt{6^2 + 6^2} = \sqrt{72} = 6\sqrt{2}$	✓ BC
	$AB = AC = \sqrt{180}$ symmetry of g and g^{-1}	✓ $AB = AC / midpoint (3; 3)$
		$\checkmark \perp h \text{ (A)}$
	area of $\triangle ABC = \frac{1}{2}BC \times h$	✓ substitution
	$= \frac{1}{2} \times \sqrt{72} \times \sqrt{162} = 54 \text{ units}^2$	✓ answer (A) (5)
	OR/OF	OR/OF
	$\tan \hat{BDC} = 2$ $\therefore \hat{BDC} = 63,43^{\circ}$	✓ BDC = 63,43°
	tan DĈA = $\frac{1}{2}$ \therefore DĈA = 26,57° \therefore DÂC = 36,86° (ext angle triangle) Area of \triangle ABC = $\frac{1}{2} (\sqrt{180}) (\sqrt{180}) \sin 36,86°$ = 53,99 units ²	✓ DÂC = 36,86° ✓ AC = √180 ✓ substitution into the correct formula ✓ answer (A) (5)
	OR/OF Area of $\triangle ABC$ = Area of $\triangle BDC$ + Area of $\triangle ADC$ = $\frac{1}{2}DC.BO + \frac{1}{2}DC.height$ = $\frac{1}{2}(9)(6) + \frac{1}{2}(9)(6)$	OR/OF $\checkmark \text{ Areas } (\Delta \text{BDC} + \Delta \text{ADC})$ $\checkmark \frac{1}{2}DC.BO$ $\checkmark \frac{1}{2}DC.height$
	$=54 \text{ units}^2$	✓ substitution
		\checkmark answer (A) (5)
		[13]

QUESTION 6/VRAAG 6

	T	1
6.1	$A = P(1+i)^n$	
	$13459 = 12000 \left(1 + \frac{m}{400}\right)^8$	✓ 8
		✓ subst into correct
	$\left(1 + \frac{m}{400}\right)^8 = 1,121$	formula
	(1,400)	
	$1 + \frac{m}{400} = \sqrt[8]{1,121}$	$\checkmark 1 + \frac{m}{400} = \sqrt[8]{1,121}$
		400
	$\frac{m}{400} = 0.0144$	
	$\therefore m = 5,78\%$	✓ 5,78 %
6.2	[4 07 4]	(4)
0.2	$F = \frac{x \left[(1+i)^n - 1 \right]}{i}$	
	$\begin{bmatrix} l & 0.075 \\ 0.075 \end{bmatrix}^{12}$	$\sqrt{0.075}$
	$1000 \left[1 + \frac{0.073}{12} \right] - 1$	$\begin{array}{c} \checkmark \frac{0,075}{12} \\ \checkmark 12 \end{array}$
	$F = \frac{1000 \left[\left(1 + \frac{0,075}{12} \right)^{12} - 1 \right]}{\frac{0,075}{12}}$	v 12
	$\frac{6,675}{12}$	
	= R12 421,22	✓ answer
		./ complusion
	He won't be able to buy the computer because R13 000 – R12 421,22 = R578,78	✓ conclusion (4)
	OR/OF	
	He won't be able to buy the computer because R12 421,22 < R13 000	
6.3.1	Loan amount = 85% × R250 000	
	= R212 500	✓ answer (1)
	OR/OF	OR/OF
	Loan amount = $R250\ 000 - (15\% \times R250\ 000)$	(4)
6.3.2	= R212500	\checkmark answer (1)
0.3.2	$A = 212500 \left(1 + \frac{0.13}{12}\right)^5$	$\checkmark A = 212500 \left(1 + \frac{0,13}{12} \right)^5$
	$A = 224\ 262,53$	✓ answer
	$P = \frac{x \left[1 - \left(1 + i\right)^{-n}\right)}{i}$	
	$224\ 262,53 = \frac{x \left[1 - \left(1 + \frac{0,13}{12}\right)^{-67}\right]}{0,13}$	
	$224\ 262,53 = \frac{12}{0.13}$	✓ substitution into correct formula
	$\frac{6,13}{12}$	✓ -67
	$\therefore x = R4724,96$	✓ answer (5)
		[14]

QUESTION 7/VRAAG 7

7.1	$f(x) = x^2 + x$	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
	**	
	$f'(x) = \lim_{h \to 0} \frac{(x+h)^2 + (x+h) - (x^2 + x)}{h}$	✓ substitution into
	·	the formula $\checkmark x^2 + 2xh + h^2 + x + h$
	$f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 + x + h - x^2 - x}{h}$	\downarrow $\chi + 2\lambda n + n + \lambda + n$
	$=\lim_{h\to 0}\frac{2xh+h^2+h}{h}$	$\checkmark 2xh + h^2 + h$
		$\sim 2M + n + n$
	$=\lim_{h\to 0}\frac{h(2x+h+1)}{h}$	✓ common factor
	$\therefore f'(x) = 2x + 1$	✓answer (5)
	OR/OF	OR/OF
	$f(x) = x^2 + x$	$\checkmark x^2 + 2xh + h^2 + x + h$
	$f(x+h) = (x+h)^2 + (x+h) = x^2 + 2xh + h^2 + x + h$ $f(x+h) - f(x) = x^2 + 2xh + h^2 + x + h - x^2 - x$	$\lambda + 2\lambda n + n + \lambda + n$
	$\int (x+h) - \int (x) - x + 2xh + h + x + h - x - x$ $= 2xh + h^2 + h$	$\checkmark 2xh + h^2 + h$
		$\bigvee 2xn+n+n$
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
	$= \lim_{h \to 0} \frac{2xh + h^2 + h}{h}$	✓ substitution into the formula
	16	101111010
	$=\lim_{h\to 0}\frac{h(2x+h+1)}{h}$	✓ common factor
	$\therefore f'(x) = 2x + 1$	✓answer (5)
7.2	$f(x) = 2x^5 - 3x^4 + 8x$	$\checkmark 10x^4$
	$f'(x) = 10x^4 - 12x^3 + 8$	\checkmark -12 x^3
7.2		√ 8 (3)
7.3	$g(x) = ax^3 + 3x^2 + bx + c$	$\checkmark g'(x) = 3ax^2 + 6x + b$
	$g'(x) = 3ax^2 + 6x + b$	✓
	g''(x) = 6ax + 6	g''(-1) = 6a(-1) + 6 = 0
	g''(-1) = 6a(-1) + 6 = 0	$\checkmark a = 1$
	$\therefore a = 1$	
	For concave up $g''(x) > 0$ 6x + 6 > 0	$\checkmark x > -1 \tag{4}$
	$\begin{vmatrix} 6x + 6 > 0 \\ x > -1 \end{vmatrix}$	$\checkmark x > -1 \tag{4}$

OR/OF Min gradient at (-1; -7) implies: at x = -1 - point of inflection and g will be positive cubic hence a > 0Since g is concave up x > -1OR/OF (-1; y)Since *g* is concave up x > -1Since g is concave up x > -1Answer only: OR/OF Min gradient at (-1; -7) implies: at x = -1 - point of inflection and g will be positive cubic hence a > 0Since g is concave up x > -1OR/OF (-1; y)Since g is concave up Since g is concave up x > -1x > -1Answer only:

17 NSC/NSS – Marking Guidelines/Nasienriglyne

OR/OF		OR/OF
Min gradient at $(-1; -7]$ Since g is concave up $x > -1$	at $x = -1$ - point of inflection and g will be positive cubic hence $a > 0$	✓ point of inflection $\checkmark \checkmark a > 0$
OR/OF		$ \begin{array}{c} \checkmark x > -1 \\ \mathbf{OR/OF} \end{array} \tag{4} $
Since g is concave up $x > -1$	(-1; y) Since g is concave up	✓✓ pos graph ✓ point of inflection
Answer o	$x > -1$ only: $\frac{1}{4}$	$\checkmark x > -1 \tag{4}$
		[12]

QUESTION 8/VRAAG 8

8.1	$\int f'(x) = mx^2 + nx + k$	
	$f'(x) = m\left(x + \frac{1}{3}\right)(x - 1)$	\checkmark substitution of $\left(-\frac{1}{3};0\right)$
	$1 = m\left(0 + \frac{1}{3}\right)(0 - 1)$	and $(1;0)$ \checkmark substitution of $(0;1)$
	$1 = -\frac{1}{3}m$	
	$\therefore m = -3$	$\checkmark m = -3$
	$f'(x) = -3\left(x + \frac{1}{3}\right)(x-1)$	
	$f'(x) = -3\left(x^2 - \frac{2}{3}x - \frac{1}{3}\right)$	$f'(x) = -3\left(x^2 - \frac{2}{3}x - \frac{1}{3}\right)$
	$f'(x) = -3x^2 + 2x + 1$ $\therefore n = 2$	$\checkmark n = 2$
	$\therefore k = 1$	$\checkmark k = 1 \tag{6}$
	OR/OF	OR/OF
	k=1	$\checkmark k = 1$
	$0 = m + n + 1$ and $\frac{1}{9}m - \frac{1}{3}n + 1 = 0$	
	$m+n=-1 \qquad (1)$	$\checkmark m+n=-1$
	$m - 3n = -9 \tag{2}$	$\checkmark m-3n=-9$
	(1) - (2)	
	$4n = 8$ $\therefore n = 2$	$\checkmark 4n = 8$ $\checkmark n = 2$
	m+2=-1	n-2
	$\therefore m = -3$	$\checkmark m = -3 \tag{6}$
8.2.1	$f(x) = -x^3 + x^2 + x + 2$	
	$f\left(-\frac{1}{3}\right) = \frac{49}{27} = 1,81$	\checkmark x-coordinates of the TP
	$T.P\left(-\frac{1}{3}; \frac{49}{27}\right)$ $f(1) = 3$	$\checkmark \text{T.P}\left(-\frac{1}{3}; \frac{49}{27}\right)$
	f(1) = 3	
	T.P(1; 3)	$\checkmark T.P(1;3) $ (3)

8.2.2	$f(x) = -x^3 + x^2 + x + 2$		
	$-x^3 + x^2 + x + 2 = 0$		
	$(x-2)(-x^2-x-1)=0$		
	x = 2 or no solution	$\checkmark x = 2$	
	$ \begin{array}{c c} \hline & 1 \\ \hline & 1 \\ \hline & 1 \\ \hline & 2 \end{array} $	✓ one <i>x</i> -intercept ✓ two turning points ✓ <i>y</i> -intercept ✓ shape: neg cubic	
			(5)
8.3.1	$a = \frac{-\frac{1}{3} + 1}{2}$		
	$=\frac{1}{3}$	✓ answer	(1)
	3 OR/OF	OR/OF	` /
	$f'(x) = -3x^2 + 2x + 1$	OR/OF	
	$\int_{0}^{\pi} \frac{f''(x)}{f''(x)} = -6x + 2$		
	$f^{\prime\prime}(a) = -6a + 2 = 0$		
	-6a = -2		
	$a = \frac{1}{3}$	✓ answer	(1)
8.3.2	$b < \frac{4}{3}$ units	$\checkmark \frac{4}{3}$ $\checkmark b < \frac{4}{3}$	
		$\checkmark b < \frac{4}{3}$	(2)
			[17]

 $20 \\ NSC/\textit{NSS}-Marking Guidelines/\textit{Nasienriglyne}$

DBE/November 2022

QUESTION9/VRAAG 9

9.1	Any point on $f:(x;x^2)$	$\checkmark(x;x^2)$
	distance = $\sqrt{(x-10)^2 + (x^2-2)^2}$	✓ substitution
	$= \sqrt{x^2 - 20x + 100 + x^4 - 4x^2 + 4}$	✓ simplification
	$=\sqrt{x^4 - 3x^2 - 20x + 104}$	✓ answer
	For min distance	
	$\frac{d}{dx}\left(x^4 - 3x^2 - 20x + 104\right) = 0$	
	$4x^3 - 6x - 20 = 0$	$\checkmark 4x^3 - 6x - 20$
	$(x-2)(4x^2+8x+10)=0$	✓ derivative = 0
	$\Delta = 8^2 - 4(4)(10) = -96$: no roots	
	$\therefore x = 2$	$\checkmark x = 2$
	$d = \sqrt{2^4 - 3(2)^2 - 20(2) + 104} = 2\sqrt{17} = 8,25$	✓answer (A) (8)

9.2	$m_{AB} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{x^2 - 2}{x - 10}$	$\checkmark m_{AB}$
	$\therefore m_{\tan g} = -\frac{x - 10}{x^2 - 2}$	$\checkmark m_{\tan g} = -\frac{x-10}{x^2-2}$
	f'(x) = 2x	f'(x) = 2x
	$\therefore 2x = -\frac{x - 10}{x^2 - 2}$	✓ equating
	$-2x^3 + 4x = x - 10$	
	$ \begin{aligned} 2x^3 - 3x - 10 &= 0 \\ x &= 2 \end{aligned} $	✓ standard form $\checkmark x = 2$
	$y = (2)^2 = 4$	
	$\therefore AB = \sqrt{(2-10)^2 + (4-2)^2}$	✓ substitute into distance
	$=2\sqrt{17}=8,25$	✓answer (A) (8)
		[8]

QUESTION 10/VRAAG 10

10.1.1(a)	y = 1 - 0.893 = 0.107 (0.11)	$\checkmark y = 1 - 0.893$
		(1)
10.1.1(b)	x = 0.893 - 0.733	$\checkmark x = 0.893 - 0.733$
	= 0,16	(1)
10.1.2	P(at least 2 events) = $0.1 + 0.15 + 0.16 + 0.2$	✓ values
	= 0,61 Answer only: Full Marks	✓ answer
10.1.2		(2)
10.1.3	P(B) = 0.643	$\checkmark P(B) = 0.643$
	P(C) = 0.56	\checkmark P(C) = 0.56
	P(B and C) = 0.36	✓ $P(B \text{ and } C) = 0.36$
	$P(B) \times P(C) = 0.643 \times 0.56 = 0.36$	\checkmark P(B) × P(C) = 0.36
	$P(B \text{ and } C) = P(B) \times P(C)$	✓ independent because $P(B \text{ and } C) = P(B) \times P(C)$
	∴ B and C are independent	$P(\mathbf{B} \text{ and } \mathbf{C}) = P(\mathbf{B}) \times P(\mathbf{C}) $ (5)
10.2.1	$7\times6\times5\times4=840$	✓ 4✓ 7
10.2.1	/ NONSKI OIG	$\checkmark 7 \times 6 \times 5 \times 4 = 840$
		(3)
10.2.2	start with 5, 7, 9 or start with 6 or start with 8	$\checkmark (3 \times 5 \times 1 \times 3) = 45$
	$(3\times5\times1\times3)+(1\times5\times1\times2)+(1\times5\times1\times2)$	$\checkmark (1 \times 5 \times 1 \times 2) = 10$
	=45+10+10	$\checkmark (1 \times 5 \times 1 \times 2) = 10$
	= 65	√ 65
	B 65 13 0.00	✓ answer
	$P = \frac{65}{840} = \frac{13}{168} = 0.08$	(5)
	OR/OF	OR/OF
	ends in 4 or ends in 6 or ends in 8	$\checkmark (5 \times 5 \times 1 \times 1) = 25$
	$(5\times5\times1\times1)+(4\times5\times1\times1)+(4\times5\times1\times1)$	$\checkmark (4 \times 5 \times 1 \times 1) = 20$
	=25+20+20	$\checkmark (4 \times 5 \times 1 \times 1) = 20$
	= 65	√ 65
	65 13	✓ answer
	$P = \frac{65}{840} = \frac{13}{168} = 0.08$	(5)
		[17]

TOTAL/TOTAAL: 150