The Norrish Type II reaction

(γ-H abstraction)

Keiran Rowell - Group Meeting - 30th Nov 2018

Carbonyls in the atmosphere

Fig. 1. Schematic representation of the degradation of butane, showing most of the chemistry which makes up the mechanism for this compound.

NTI photochemistry

Intrinsic barriers

- $\triangleright S_1 \& T_1$ show same trends
- \triangleright S_1 shifted higher ~50 kj/mol
- ► '0-0' excitation energy diff.
- ► •H & •CH₃ NTIb basically flat
- ► SARs describe <u>all surfaces!</u>

Shaw M. "Photochemical Formation of enols from carboyls" 2017 [PhD Thesis]

O'Neal H., Miller G., Gunderson E., JACS, 1974, 96, 3351-3357

Surface(s) of NTII?

Michael J., Noyes W., JACS, 1963, 85, 1027-1032

- \triangleright Quenching studies used to distinguish between $S_4 \& T_4$ reactivity
 - Experiments conducted at 380-385 kJ/mol
- ▶ Different species showed different quenching sensitivity:
 - ▷ hexan-2-one: singlet
 - ▷ pentan-2-one: triplet
 - butanal: equal parts singlet & triplet
- ► The triplet biradical has a µs lifetime and can be trapped.

Surface is molecule-dependent

- ► Tertiary or secondary y-H stabilised by hyperconjugation.
 - P Rapid S₁ ∴ unquenchable.
 - ▶ C-H bond strength, deuteration
 - ▶ Femtosecond-MS & DFT
 - α-C radical stabilisation
 - ▶ ISC same, diff. is chemical
- ► Triplet scrambles stereochemistry
- ► Singlet has some scrambling

Rationalising NTII

energi	es
	_

TABLE 4

Values of β_s and β_T obtained at 20 °C and apparent activation

	Ketone	$\beta_{\mathbf{S}}$	E_{β_s} (kcal)	$\beta_{\mathbf{T}}$	$E_{\beta_{\mathbf{T}}}$ (kcal)
IS	2-pentanone	0.14	-	0.24	
	4-methyl-2-pentanone	0.14	0	0.23	0.6
	3-heptanone	0.11	1.0	0.21	0.6
	2-hexanone	0.15	0.8	0.28	-0.15
	2-heptanone	0.13	0.7	0.36	0.4
	2-octanone	0.11	_	0.39	_
	5-methyl-3-heptanone	0.08	1.7	0.20	1.5
	5-methyl-2-hexanone	0.13	1.5	0.38	-0.6

PHOTOCHEMISTRY OF ALKYL KETONES BEARING γ-HYDROGEN

M. V. ENCINA and E. A. LISSI

Departamento de Quimica, Universidad Técnica del Estado, Santiago (Chile)

(Received May 20, 1976)

The preceding discussion shows that the factors which determine the value of β_S are so numerous that any attempt to rationalize the data shown in Table 4 is meaningless. The most remarkable characteristic of these data is the small range of β_S values covered by all the ketones considered in the present work, and the small values of the apparent activation energies. We can only conclude that the factors which determine the singlet behaviour are extremely insensitive to both temperature and ketone structure.

The Mechanism of Photochemistry of Alkanones with \(\gamma \) Hydrogens

N. C. Yang, 11 Steven P. Elliott, 12 Bongsub Kim Department of Chemistry, The University of Chicago

The results of this investigation and our Chicago, Illinois 60637 earlier work constitute a complete analysis of the be-Received October 3, 1969 havior of photoexcited 2-alkanones with y hydrogens. 10a

The NTII conical intersection

- ightharpoonup 'Absolute reactivity of S_1 exceeds T_1 , but S_1 is chemically less efficient due to radiationless deactivation'
- \triangleright S_1 deactivation > 80%
- ► CI competitive with dissociation, H-back transfer, ISC
- ► Conical intersection following the TS common to a range of H-abstraction reactions
- ► Requires a CAS calculation (multistate optimisation)

S₁ calculations

Excited state calculations are a pain

T₁ is lowest spin-unpaired solution — can use unrestricted

TD-DFT is inaccurate (\sim ¹/₁₀ eV) — use composite procedure

<u>Issues</u> with S_1 and NTII

- \blacktriangleright Needs to distinguish close $S_1 \& T_1$ barriers
- ► NTII process has involved CI TD-DFT can fail
- ► NTII molecules C_4 + EOM-CC scales badly!
- ► H-transfer reaction need high E_x^{HF} exchange
 - ►BH&HLYP bumps E_x^{HF} up to 50% still fails
 - ⊳Meta-functionals (M06-2X) expensive for TD
 - ○Use range-separated hybrids (CAM-B3LYP)
 - ✓ TSs found! Need to use <u>same ZPVE</u> in all

NTII barriers from S₁ min

- ► Still waiting on EOM-CC calcs <u>don't have absolute energies</u>
- $ightharpoonup S_1$ intrinsic barriers are very low, > 30 kJ/mol ~20 kj/mol lower than T_1
- ► In absolute energy terms, conjugation should lower the excitation energy
 - primary γ-C ketones and aldehydes should be highest barriers
 - ▷ enones and enals should have low absolute barriers, secondary & tertiary even more so

Thank you!

State correlation diagrams

A) Thermal Reaction (S₀)

B) Photochemical Reaction (S₁)

