Wavepacket propagation in D-dimensional non-adiabatic crossings

Raoul Bourquin

Dr. Vasile Grădinaru Prof. Dr. Ralf Hiptmair

Seminar for Applied Mathematics, ETH Zurich Spring semester 2012

Outline

Time-dependent Schr[Pleaseinsertintopreamble]dinger equation Introduction

Semi-classical wavepackets

Propagation of semi-classical wavepackets Advantages of wavepackets

Examples

Current and future work

End

Time-dependent Schrödinger equation

Semi-classical scaling

$$i\varepsilon^2\frac{\partial}{\partial t}\left|\psi\right\rangle=\underbrace{\left(\mathbf{T}+\mathbf{V}\right)}_{\mathbf{H}}\left|\psi\right\rangle$$

where

$$\mathbf{T} := -\frac{1}{2}\varepsilon^4\Delta \qquad \mathbf{V} := \mathbf{V}(\underline{x})$$

- ▶ Time evolution for a state $|\psi(\underline{x},t)\rangle$
- Kinetic operator **T** and potential $\mathbf{V}(\underline{x})$
- Semi-classical scaling $\varepsilon^2 \approx 10^{-2}, 10^{-3}, \dots$
- ▶ Recover classical mechanics for $\varepsilon \to 0$

The non-adiabatic potential

- ▶ Non-adiabatic potential **V** with *N* energy levels
- ▶ $\mathbf{V}(\underline{x})$ is a matrix dependent on $\underline{x} \in \mathbb{R}^D$
- Energy levels given by the eigenvalues $\lambda_i(\underline{x})$
- ▶ Levels can cross or show avoided crossings
 - ▶ There is an energy gap δ

Introduction

The non-adiabatic potential

A two-dimensional example

$$\mathbf{V}(x,y) := \begin{pmatrix} x & \sqrt{y^2 + \delta^2} \\ \sqrt{y^2 + \delta^2} & -x \end{pmatrix}$$

Time-dependent Schrödinger equation

- ightharpoonup Put a wavepacket $|\Psi\rangle$ somewhere
- Add an initial momentum (optional)
- See what happens at (and after) the avoided crossing
- Expect some *transitions*, magnitude of amplitudes?

Wavefunction

Representation of the wavefunction

- Separation of variables
- Basis set expansion
 - lacktriangle very successful idea (ightarrow Roothaan equations in Hartree-Fock)
- Parametrised basis functions

$$\psi(\underline{x}, t) = \sum_{\underline{k} \in \Re} c_{\underline{k}}(t) \phi_{\underline{k}}(\underline{x})$$
$$= \sum_{\underline{k} \in \Re} c_{\underline{k}}(t) \phi_{\underline{k}}[\Pi(t)](\underline{x})$$

Parameters:

$$\Pi(t) := \{q(t), p(t), \mathbf{Q}(t), \mathbf{P}(t)\}\$$

Expansion coefficients:

$$\underline{c}(t) := \{c_{\underline{k}}(t)\}_{k \in \mathfrak{K}}$$

Definition of the basis functions

- Basis functions: product of a Gaussian times a polynomial
- Ground state

$$\begin{split} \phi_{\underline{0}}[\Pi] \left(\underline{x} \right) := & (\pi \varepsilon^2)^{-\frac{D}{4}} (\det \mathbf{Q})^{-\frac{1}{2}} \\ & \cdot \exp \left(\frac{i}{2\varepsilon^2} \left\langle (\underline{x} - \underline{q}), \mathbf{P} \mathbf{Q}^{-1} (\underline{x} - \underline{q}) \right\rangle + \frac{i}{\varepsilon^2} \left\langle \underline{p}, (\underline{x} - \underline{q}) \right\rangle \right) \end{split}$$

- ▶ Parameters $\mathbf{Q} \in \mathbb{C}^{D \times D}$, $\mathbf{P} \in \mathbb{C}^{D \times D}$
- lacksquare Position $q \in \mathbb{R}^D$ and momentum $p \in \mathbb{R}^D$
- ▶ Construct ϕ_k by applying the raising operator \mathcal{R}
- $\{\phi_{\underline{k}}\}_{\underline{k}}$ complete basis of L^2 for fixed Π

Raising operators

▶ Define the raising operator ¹

$$\mathcal{R} := \begin{pmatrix} \mathcal{R}_0 \\ \vdots \\ \mathcal{R}_{D-1} \end{pmatrix} = \frac{i}{\sqrt{2\varepsilon^2}} \left(\mathbf{P}^{\mathsf{H}} \left(\underline{x} - \underline{q} \right) - \mathbf{Q}^{\mathsf{H}} \left(\left(-i\varepsilon^2 \nabla_x \right) - \underline{p} \right) \right)$$

Apply to the ground state

$$\phi_{\underline{k}} := \frac{1}{\sqrt{k!}} \mathcal{R}_0^{k_0} \mathcal{R}_1^{k_1} \cdots \mathcal{R}_{D-1}^{k_{D-1}} \phi_{\underline{0}}$$

▶ Higher order functions ϕ_k

¹for details, see [2]

Basis function example

• Example of $\phi_{4,3}(x,y)$

Basis shapes

- ► Basis shapes specify the set ℜ
- ▶ Finite subset of \mathbb{N}_0^D

Hyperbolic cut basis shape

$$\mathfrak{K}(\mathcal{K}) := \left\{ \underline{k} \in \mathbb{N}_0^D : \prod_{d=0}^{D-1} (1+k_d) \leq \mathcal{K}
ight\}$$

- ▶ Full hypercubic set grows $\mathcal{O}(K^D)$
- ▶ This one grows $\mathcal{O}(K \log(K)^{D-1})$

Definition of a wavepacket

► General wavepacket as linear combination

$$\Phi\left(\underline{x}\right) := e^{\frac{iS}{\varepsilon^2}} \sum_{k \in \mathfrak{K}} c_{\underline{k}} \phi_{\underline{k}}\left(\underline{x}\right)$$

- ▶ In theory $\mathfrak{K} = \mathbb{N}_0^D$, practically $|\mathfrak{K}| < 200$
- We need a vector of multiple Φ
 - Global parameter set $\Pi := \{q, p, \mathbf{Q}, \mathbf{P}, S\}$
 - ▶ Individual coefficients $\left\{c_{\underline{k}}^{j}\right\}_{k}$ per component Φ_{j}

$$|\Psi\left(\underline{x}\right)\rangle:=\left|\begin{pmatrix} \Phi_{0}\left(\underline{x}\right) \\ \vdots \\ \Phi_{N-1}\left(\underline{x}\right)\end{pmatrix}
ight>$$

Propagation of semi-classical wavepackets

- ► Time propagation of wavepackets ²
 - ightharpoonup propagate parameters \mathbf{Q} , \mathbf{P} , q, p and S
 - propagate all coefficients $\{c_{\underline{k}}\}_{\underline{k}}$
- Wavepackets stay in the same mathematical form

²generalised algorithm of [1]

Theorems about exact propagation

Plug $|\Psi\rangle$ into the TDSE and propagate

- Exact propagation only changes the values of Π
- We have exact propagation iff
 - ► *H* = *T*
 - ightharpoonup H = U where U is quadratic
- \triangleright Otherwise: propagation changes the values of \underline{c}
 - ▶ H = W where W = V U is the non-quadratic remainder
- ▶ Split the Schrödinger equation and propagate by T, U and W separately

Propagation of semi-classical wavepackets Update rules

► Kinetic operator *T* part

$$\underline{q}(t) = \underline{q}(0) + t \underline{p}(0)
\mathbf{Q}(t) = \mathbf{Q}(0) + t \mathbf{P}(0)
S(t) = S(0) + \frac{1}{2} t \underline{p}(0)^{\mathsf{T}} \underline{p}(0)$$

Potential part, quadratic approximation $U(\underline{x})$ $\underline{p}(t) = \underline{p}(0) - t \nabla U(\underline{q}(0))$ $\mathbf{P}(t) = \mathbf{P}(0) - t \nabla^2 U(\underline{q}(0)) \mathbf{Q}(0)$ S(t) = S(0) - t U(q(0))

Propagation of semi-classical wavepackets Galerkin approximation

Galerkin approximation

$$\forall \underline{k} \in \mathfrak{K} \quad \langle \phi_{\underline{k}}, (i\varepsilon^2 \partial_t - W)u \rangle = 0$$

Non-quadratic remainder $W(\underline{x})$ part

$$\underline{c}(t) = \exp\left(-\frac{i}{\varepsilon^2}t\mathbf{F}\right)\underline{c}(0)$$

with

$$\mathbf{F} = \begin{pmatrix} \vdots \\ \vdots \\ \langle \phi_{\underline{k}}, W \phi_{\underline{l}} \rangle & \cdots \\ \vdots \end{pmatrix}$$

Some final remarks

- ► Wavepackts work very well for simpler potentials
- Some open issues for more complex potentials
 - Several parameters to choose, for example the basis size
- Gridless method
 - but we need very high order quadrature
 - and the matrix exponential of a full matrix
 - Iterative methods like Arnoldi
- ▶ Unbounded domains possible

Missed conic crossing

▶ Take the potential

$$\mathbf{V}(x,y) := \begin{pmatrix} x & \sqrt{y^2 + \delta^2} \\ \sqrt{y^2 + \delta^2} & -x \end{pmatrix}$$

- ▶ Set $\delta = 0$ and $\varepsilon = 0.01$
- Initial parameters Π

$$\underline{q} = \begin{pmatrix} -0.1 \\ \alpha \varepsilon \end{pmatrix}$$
 $\underline{p} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\mathbf{Q} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\mathbf{P} = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}$ $S = 0$

- ▶ Timestep $\tau = 0.001$
- Start with a Gaussian ϕ_0
- Vary α

Missed conic crossing, $\alpha = 1.0$

(b)

Missed conic crossing, $\alpha = 1.5$

Missed conic crossing, $\alpha = 2.0$

Another simulation example

An avoided crossing

► Take the potential

$$\mathbf{V}(x,y):=egin{pmatrix} rac{1}{2}\xi & \delta \ \delta & -rac{1}{2}\xi \end{pmatrix}$$
 where $\xi:= anh\left(\sqrt{x^2+y^2}
ight)$

Initial parameters Π

$$\underline{q} = \begin{pmatrix} -3 \\ 0 \end{pmatrix}$$
 $\underline{p} = \begin{pmatrix} 0.5 \\ 0 \end{pmatrix}$ $\mathbf{Q} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\mathbf{P} = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}$ $S = 0$

- ▶ Timestep $\tau = 0.01$
- Start with a Gaussian ϕ_0
- ightharpoonup Vary arepsilon and δ

Another simulation example

An avoided crossing with $\varepsilon=0.01$ and $\delta=0.05$

Another simulation example

An avoided crossing with $\varepsilon=0.01$ and $\delta=0.5$

Current and future work

- Apply the algorithms to real chemical problems
 - ► For example Pyrazine (C₄H₄N₂), see [3]
 - ▶ or Methyl iodide (ICH₃), see [4]
- Use code to simulate
 - ▶ In even higher dimensions D > 3
 - More than 2 energy levels
- ▶ Improve propagation for very small ε

Thanks for your attention

More information on the topic

► The full thesis:

http://www.sam.math.ethz.ch/~raoulb/research/master_thesis/tex/main.pdf

E. Faou, V. Gradinaru, and C. Lubich.

Computing semiclassical quantum dynamics with Hagedorn wavepackets. *SIAM Journal on Scientific Computing*, 31(4):3027–3041, 2009.

G. A. Hagedorn.

Raising and lowering operators for semiclassical wave packets. *Annals of Physics*, 269(1):77–104, 1998.

Allilais Of T Hysics, 209(1).11 10

Single switch surface hopping for a model of pyrazine.

The Journal of Chemical Physics, 129(3):034302, 2008.

S.-Y. Lee and E. J. Heller.

C. Lasser and T. Swart.

Exact time-dependent wave packet propagation: Application to the photodissociation of methyl iodide.

The Journal of Chemical Physics, 76(6):3035-3044, 1982.