Package 'CVThresh'

October 12, 2022

Title Level-Dependent Cross-Validation Thresholding						
Version 1.1.2						
Date 2022-05-02						
Author Donghoh Kim <donghoh.kim@gmail.com>, Hee-Seok Oh <heeseok@stats.snu.ac.kr></heeseok@stats.snu.ac.kr></donghoh.kim@gmail.com>						
Maintainer Donghoh Kim <donghoh.kim@gmail.com></donghoh.kim@gmail.com>						
Depends R (>= 2.15.1), wavethresh (>= 4.6.1), EbayesThresh (>= 1.3.2)						
Description The level-dependent cross-validation method is implemented for the selection of thresholding value in wavelet shrinkage. This procedure is implemented by coupling a conventional cross validation with an imputation method due to a limitation of data length, a power of 2. It can be easily applied to classical leave-one-out and k-fold cross validation. Since the procedure is computationally fast, a level-dependent cross validation can be performed for wavelet shrinkage of various data such as a data with correlated errors.						
License GPL (>= 2)						
NeedsCompilation no						
Repository CRAN						
Date/Publication 2022-05-02 03:20:02 UTC						
R topics documented:						
cvimpute.by.wavelet2cvimpute.image.by.wavelet3CVThresh5cvtype5cvtype.image6cvwavelet7cvwavelet.after.impute8						

2 cvimpute.by.wavelet

Index																										17
	ppoly							•			 ٠	٠				 •		•		•	٠	 •	٠	•	•	15
	ipd																									
	heav																									
	fg1																									
	dopp																									12
	cvwavelet.im	age.a	fter.i	mp	oute																					11
	cvwavelet.im	age				•	•	•	 •	•	 •	•	 •	•	•	•)									

Description

This function performs imputation for test dataset of cross-validation given test dataset index and initial values.

Usage

```
cvimpute.by.wavelet(y, impute.index, impute.tol=0.1^3,
    impute.maxiter=100, impute.vscale="independent",
    filter.number=10, family="DaubLeAsymm", ll=3)
```

Arguments

У	observation
impute.index	test dataset index for cross-validation
impute.tol	tolerance for imputation
${\tt impute.maxiter}$	maximum iteration for imputation
impute.vscale	specifies whether variance is adjusted level-by-level or not. "level" or "independent"
filter.number	specifies the smoothness of wavelet in the decomposition (argument of WaveThresh)
family	specifies the family of wavelets "DaubExPhase" or "DaubLeAsymm" (argument of WaveThresh)
11	specifies the lowest level to be thresholded

Details

In wavelet context, test dataset of cross-validation is missing values. Based on h-likelihood concept and penalized least squares, this function performs imputation by wavelet for missing dataset, given the missing dataset. Lee and Nelder (1996, 2001) introduced the hierarchical likelihood as an extended likelihood for general models that include unobserved random variables such as missing. Following Lee and Nelder (1996, 2001), treat the missing values as random parameters and it has been known that a wavelet shrinkage estimator can be formulated by penalized least squares problem (Antoniadis and Fan, 2001). This arguments lead to the iterative algorithm for imputing the missing values based on wavelet shrinkage.

Value

Imputed values according to cross-validation scheme.

References

Antoniadis, A. and Fan, J. (2001) Regularization of wavelet approximations. *Journal of the American Statistical Association*, **96**, 939–962.

Lee, Y. and Nelder, J.A. (1996) Hierarchical generalised linear models (with discussion). *Journal of the Royal Statistical Society Ser. B*, **58**, 619–678.

Lee, Y. and Nelder, J.A. (2001) Hierarchical generalised linear models: A synthesis of generalised linear models, random-effect models and structured dispersions. *Biometrika*, **88**, 987–1006.

See Also

```
cvwavelet, cvtype, cvwavelet.after.impute.
```

Examples

cvimpute.image.by.wavelet

Imputation for two-dimensional data by wavelet

Description

This function performs imputation for two-dimensional test dataset of cross-validation given test dataset index and initial values.

Usage

```
cvimpute.image.by.wavelet(images, impute.index1, impute.index2,
  impute.tol=0.1^3, impute.maxiter=100, filter.number=2, ll=3)
```

Arguments

images noisy image
impute.index1 test dataset row index according to cross-validation scheme
impute.index2 test dataset column index according to cross-validation scheme
impute.tol tolerance for imputation
impute.maxiter maximum iteration for imputation
filter.number specifies the smoothness of wavelet in the decomposition (argument of WaveThresh)
specifies the lowest level to be thresholded

Details

In wavelet context, test dataset of cross-validation is missing values. Based on h-likelihood concept and penalized least squares, this function performs imputation by wavelet for missing dataset, given the missing dataset. Lee and Nelder (1996, 2001) introduced the hierarchical likelihood as an extended likelihood for general models that include unobserved random variables such as missing. Following Lee and Nelder (1996, 2001), treat the missing values as random parameters and it has been known that a wavelet shrinkage estimator can be formulated by penalized least squares problem (Antoniadis and Fan, 2001). This arguments lead to the iterative algorithm for imputing the missing values based on wavelet shrinkage.

Value

Imputed values according to cross-validation scheme.

References

Antoniadis, A. and Fan, J. (2001) Regularization of wavelet approximations. *Journal of the American Statistical Association*, **96**, 939–962.

Lee, Y. and Nelder, J.A. (1996) Hierarchical generalised linear models (with discussion). *Journal of the Royal Statistical Society Ser. B*, **58**, 619–678.

Lee, Y. and Nelder, J.A. (2001) Hierarchical generalised linear models: A synthesis of generalised linear models, random-effect models and structured dispersions. *Biometrika*, **88**, 987–1006.

See Also

```
cvtype.image, cvwavelet, cvimpute.by.wavelet,
cvwavelet.after.impute, cvwavelet.image,
cvwavelet.image.after.impute
```

CVThresh 5

	CVThresh	Level-Dependent Cross-Validation Approach for Wavelet Threshold- ing
--	----------	---

Description

This package carries out level-dependent cross-validation method for the selection of thresholding value in wavelet shrinkage. This procedure is implemented by coupling a conventional cross validation with an imputation method due to a limitation of data length, a power of 2. It can be easily applied to classical leave-one-out and k-fold cross validation. Since the procedure is computationally fast, a level-dependent cross validation can be performed for wavelet shrinkage of various data such as a data with correlated errors.

cvtype	Generating test dataset index for cross-validation
3 1	- · · · · · · · · · · · · · · · · · · ·

Description

This function generates test dataset index for cross-validation.

Usage

```
cvtype(n, cv.bsize=1, cv.kfold, cv.random=TRUE)
```

Arguments

n	the number of observation
cv.bsize	block size of cross-validation
cv.kfold	the number of fold of cross-validation
cv.random	whether or not random cross-validation scheme should be used. Set cv.random=TRUE for random cross-validation scheme

Details

This function provides index of test dataset according to various cross-validation scheme. One may construct K test datasets in a way that each testset consists of blocks of b consecutive data. Set cv.bsize = b for this. To select each fold at random, set cv.random = TRUE.

Value

matrix of which row is test dataset index for cross-validation.

See Also

```
cvwavelet, cvimpute.by.wavelet, cvwavelet.after.impute.
```

6 cvtype.image

Examples

```
# Traditional 4-fold cross-validation for 100 observations
cvtype(n=100, cv.bsize=1, cv.kfold=4, cv.random=FALSE)
# Random 4-fold cross-validation with block size 2 for 100 observations
cvtype(n=100, cv.bsize=2, cv.kfold=4, cv.random=TRUE)
```

cvtype.image Generating test dataset index of two-dimensional data for cross-validation

Description

This function generates test dataset index of two-dimensional data for cross-validation

Usage

```
cvtype.image(n, cv.bsize=c(1,1), cv.kfold)
```

Arguments

n the size of image

cv.bsize two-dimensional block size of cross-validation

cv.kfold the number of fold of cross-validation

Details

This function provides indexes of two-dimensional cross-validation scheme. Only random cross-validation scheme is provided.

Value

Two matrix representing test dataset index of each dimension for cross-validation.

cv.index1 each row is test dataset index of one dimension cv.index2 each row is test dataset index of the other dimension

See Also

```
cvtype, cvwavelet, cvimpute.by.wavelet,
cvwavelet.after.impute, cvwavelet.image,
cvimpute.image.by.wavelet, cvwavelet.image.after.impute
```

```
# Two-dimensional 4-fold cross-validation with block size 2*2
out <- cvtype.image(n=c(256,256), cv.bsize=c(2,2), cv.kfold=4)</pre>
```

cvwavelet 7

cvwavelet Wavelet reconstruction by level-dependent Cross-Validation	
--	--

Description

This function reconstructs the noise data by level-dependent cross-validation wavelet shrinkage.

Usage

Arguments

у	observation
ywd	DWT object
cv.optlevel	thresholding levels
cv.bsize	block size of cross-validation
cv.kfold	the number of fold of cross-validation
cv.random	whether or not random cross-validation scheme should be used. Set cv.random=TRUE for random cross-validation scheme
cv.tol	tolerance for cross-validation
cv.maxiter	maximum iteration for cross-validation
impute.vscale	specifies whether variance is adjusted level-by-level or not. "level" or "independent"
impute.tol	tolerance for imputation
impute.maxiter	maximum iteration for imputation
filter.number	specifies the smoothness of wavelet in the decomposition (argument of WaveThresh)
family	specifies the family of wavelets "DaubExPhase" or "DaubLeAsymm" (argument of WaveThresh)
thresh.type	specifies the type of thresholding "hard" or "soft" (argument of WaveThresh)
11	specifies the lowest level to be thresholded

Details

This function performs level-dependent cross-validation wavelet shrinkage.

Value

у	observations
yimpute	imputed values by provided cross-validation scheme
ус	reconstruction by level-dependent cross-validation wavelet shrinkage
cvthresh	threshold values by level-dependent cross-validation

See Also

```
cvtype, cvimpute.by.wavelet, cvwavelet.after.impute.
```

Examples

cvwavelet.after.impute

Cross-Validation Wavelet Shrinkage after imputation

Description

This function performs level-dependent cross-validation wavelet shrinkage given the cross-validation scheme and imputation values.

Usage

```
cvwavelet.after.impute(y, ywd, yimpute,
    cv.index, cv.optlevel, cv.tol=0.1^3, cv.maxiter=100,
    filter.number=10, family="DaubLeAsymm", thresh.type="soft", ll=3)
```

observation

Arguments

У

•	
ywd	DWT object
yimpute	imputed values according to cross-validation scheme
cv.index	test dataset index according to cross-validation scheme
cv.optlevel	thresholding levels
cv.tol	tolerance for cross-validation
cv.maxiter	maximum iteration for cross-validation
filter.number	specifies the smoothness of wavelet in the decomposition (argument of WaveThresh)
family	specifies the family of wavelets "DaubExPhase" or "DaubLeAsymm" (argument of WaveThresh)
thresh.type	specifies the type of thresholding "hard" or "soft" (argument of WaveThresh)
11	specifies the lowest level to be thresholded

cvwavelet.image 9

Details

Calculating the threshold values and reconstructing noisy data y, given the index of each testdata, imputed values according to cross-validation scheme and discrete wavelet transform of y.

Value

Reconstruction and thresholding values by level-dependent cross-validation

yc reconstruction

cvthresh thresholding values by level-dependent cross-validation

See Also

```
cvwavelet, cvtype, cvimpute.by.wavelet.
```

Examples

cvwavelet.image

Wavelet reconstruction of image by level-dependent Cross-Validation

Description

This function reconstructs image by level-dependent cross-validation wavelet shrinkage.

Usage

10 cvwavelet.image

Arguments

images noisy image imagewd two-dimensional wavelet transform

cv.optlevel thresholding level

cv.bsize block size of cross-validation

cv.kfold the number of fold of cross-validation

cv.tol tolerance for cross-validation

cv.maxiter maximum iteration for cross-validation

impute.tol tolerance for imputation

impute.maxiter maximum iteration for imputation

filter.number specifies the smoothness of wavelet in the decomposition (argument of WaveThresh)

specifies the lowest level to be thresholded

Details

This function performs level-dependent cross-validation wavelet shrinkage for two-dimensional data.

Value

imagecv reconstruction of image by level-dependent cross-validation wavelet shrinkage

cvthresh threshold values by level-dependent cross-validation

See Also

```
cvtype.image, cvimpute.image.by.wavelet,
cvwavelet.image.after.impute.
```

```
# Generate Noisy Lennon Image
data(lennon)
sdimage <- sd(as.numeric(lennon))
nlennon <- ncol(lennon); nlevel <- log2(ncol(lennon))
optlevel <- c(3:(nlevel-1))
set.seed(55)
lennonnoise <- lennon+matrix(rnorm(nlennon^2, 0, sdimage), nlennon, nlennon)
# Level-dependent Cross-validation Thresholding
lennonwd <- imwd(lennonnoise)
#lennoncv <- cvwavelet.image(images=lennonnoise, imagewd=lennonwd,
# cv.optlevel=optlevel, cv.bsize=c(1,1), cv.kfold=10)$imagecv
#image(lennoncv, axes=FALSE, col=gray(100:0/100),
# main="Level-dependent CV")</pre>
```

```
cvwavelet.image.after.impute
```

Cross-Validation Wavelet Shrinkage for two-dimensional data after imputation

Description

This function performs level-dependent cross-validation wavelet shrinkage for two-dimensional data given the cross-validation scheme and imputation values.

Usage

```
cvwavelet.image.after.impute(images, imagewd, imageimpute,
    cv.index1=cv.index1, cv.index2=cv.index2,
    cv.optlevel=cv.optlevel, cv.tol=cv.tol, cv.maxiter=cv.maxiter,
    filter.number=2, ll=3)
```

Arguments

images	noisy image
imagewd	two-dimensional wavelet transform
imageimpute	two-dimensional imputed values according to cross-validation scheme
cv.index1	test dataset row index according to cross-validation scheme
cv.index2	test dataset column index according to cross-validation scheme
cv.optlevel	thresholding levels
cv.tol	tolerance for cross-validation
cv.maxiter	maximum iteration for cross-validation
filter.number	specifies the smoothness of wavelet in the decomposition (argument of WaveThresh)
11	specifies the lowest level to be thresholded

Details

Calculating thresholding values and reconstructing noisy image given cross-validation scheme and imputation.

Value

Reconstruction of images and thresholding values by level-dependent cross-validation

imagecv reconstruction of images

cvthresh thresholding values by level-dependent cross-validation

See Also

```
cvwavelet.image, cvtype.image, cvimpute.image.by.wavelet.
```

12 dopp

dopp

Doppler function

Description

This function generates Doppler function values for n equally spaced points in [0, 1].

Usage

```
dopp(norx=1024)
```

Arguments

norx

the number of data or x values in [0, 1]

Details

Doppler function is introduced by Donoho and Johnstone (1994) and is useful test function evaluating a wavelet shrinkage method.

Value

```
Doppler function values f(\frac{i}{n}), i=1,\ldots,n and its variability ||f||=\frac{\sum_{i=1}^n(f_i-\bar{f})^2}{n-1} where \bar{f}=\frac{\sum_{i=1}^nf_i}{n}.
```

References

Donoho, D.L. and Johnstone, I.M. (1994) Ideal spatial adaptation by wavelet shrinkage. *Biometrika*, **81**, 425–455.

See Also

```
heav, ppoly, fg1.
```

```
testdopp <- dopp(1024)
plot(testdopp$x, testdopp$meanf, xlab="", ylab="",
    main="Plot of Doppler function", type="1")</pre>
```

fg1 13

fg1

fg1 function

Description

This function generates fg1 function values for n equally spaced points in [0, 1].

Usage

```
fg1(norx=1024)
```

Arguments

norx

the number of data or x values in [0, 1]

Details

A smooth function fg1 is introduced by Fan and Gijbels (1995) and is useful test function evaluating a wavelet shrinkage method.

Value

```
fg1 function values f(\frac{i}{n}), i=1,\ldots,n and its variability ||f|| = \frac{\sum_{i=1}^n (f_i - \bar{f})^2}{n-1} where \bar{f} = \frac{\sum_{i=1}^n f_i}{n}.
```

References

Fan, J. and Gijbels, I. (1995) Data-driven bandwidth selection in local polynomial fitting: Variable bandwidth and spatial adaptation. *Journal of the Royal Statistical Society Ser. B* **57**, 371–394.

See Also

```
dopp, heav, ppoly.
```

14 heav

heav

Heavisine function

Description

This function generates Heavisine function values for n equally spaced points in [0, 1].

Usage

```
heav(norx=1024)
```

Arguments

norx

the number of data or x values in [0, 1]

Details

Heavisine function is introduced by Donoho and Johnstone (1994) and is useful test function evaluating a wavelet shrinkage method.

Value

```
Heavisine function values f(\frac{i}{n}), i=1,\ldots,n and its variability ||f||=\frac{\sum_{i=1}^n (f_i-\bar{f})^2}{n-1} where \bar{f}=\frac{\sum_{i=1}^n f_i}{n}.
```

References

Donoho, D.L. and Johnstone, I.M. (1994) Ideal spatial adaptation by wavelet shrinkage. *Biometrika*, **81**, 425–455.

See Also

```
dopp, ppoly, fg1.
```

```
testheav <- heav(1024)
plot(testheav$x, testheav$meanf, xlab="", ylab="",
    main="Plot of Heavisine function", type="l")</pre>
```

ipd 15

ipd

Inductance plethysmography data

Description

4,096 observations of inductance plethysmography data regularly sampled at 50Hz starting at 1229.98 seconds.

Usage

data(ipd)

Format

time series.

Source

This data set contains 4,096 observations of inductance plethysmography data regularly sampled at 50Hz starting at 1229.98 seconds. The data were collected in an investigation of the recovery of patients after general anesthesia.

The data set was used in Nason (1996) to illustrate cross-validation method for threshold selection. See the reference; Nason, G.P. (1996) Wavelet shrinkage by cross-validation. *Journal of the Royal Statistical Society Ser. B* **58**, 463–479.

ppoly

Piecewise polynomial function

Description

This function generates Piecewise polynomial function values for n equally spaced points in [0, 1].

Usage

```
ppoly(norx=1024)
```

Arguments

norx

the number of data or x values in [0, 1]

Details

Piecewise polynomial function with the discontinuity is introduced by Nason and Silverman (1994) and is useful test function evaluating a wavelet shrinkage method.

16 ppoly

Value

```
Piecewise polynomial function values f(\frac{i}{n}), i=1,\ldots,n and its variability ||f||=\frac{\sum_{i=1}^n(f_i-\bar{f})^2}{n-1} where \bar{f}=\frac{\sum_{i=1}^nf_i}{n}.
```

References

Nason, G.P. and Silverman, B.W. (1994) The discrete wavelet transform in S. *Journal of Computational and Graphical Statistics*, **3**, 163–191.

See Also

```
dopp, heav, fg1.
```

```
testpoly <- ppoly(1024)
plot(testpoly$x, testpoly$meanf, xlab="", ylab="",
    main="Plot of Piecewise polynomial function", type="l")</pre>
```

Index

```
* datasets
    ipd, 15
*\ nonparametric
    cvimpute.by.wavelet, 2
    cvimpute.image.by.wavelet, 3
    CVThresh, 5
    cvtype, 5
    cvtype.image, 6
    cvwavelet, 7
    cvwavelet.after.impute, 8
    cvwavelet.image, 9
    cvwavelet.image.after.impute, 11
    dopp, 12
    fg1, 13
    heav, 14
    ppoly, 15
cvimpute.by.wavelet, 2, 4-6, 8, 9
cvimpute.image.by.wavelet, 3, 6, 10, 11
CVThresh, 5
CVThresh-package (CVThresh), 5
cvtype, 3, 5, 6, 8, 9
cvtype.image, 4, 6, 10, 11
cvwavelet, 3-6, 7, 9
cvwavelet.after.impute, 3-6, 8, 8
cvwavelet.image, 4, 6, 9, 11
cvwavelet.image.after.impute, 4, 6, 10,
         11
dopp, 12, 13, 14, 16
fg1, 12, 13, 14, 16
heav, 12, 13, 14, 16
ipd, 15
poly (ppoly), 15
ppoly, 12–14, 15
```