# Problem: Trigonometry In Triangles Bài Tập: Hệ Thức Lượng Trong Tam Giác

Nguyễn Quản Bá Hồng\*

Ngày 21 tháng 8 năm 2023

#### Tóm tắt nôi dung

Last updated version: GitHub/NQBH/elementary STEM & beyond/elementary mathematics/grade 9/trigonometry/problem: set  $\mathbb{Q}$  of trigonometrys  $[pdf]^{1}$   $[T_{E}X]^{2}$ .

### Muc luc

| 1  | 1 Số Hệ Thức Lượng về Cạnh & Đường Cao Trong Tam Giác Vuông | 1 |
|----|-------------------------------------------------------------|---|
| 2  | Tỷ Số Lượng Giác của Góc Nhọn                               | 3 |
| 3  | 1 Số Hệ Thức về Cạnh & Góc trong Tam Giác Vuông             | 3 |
| 4  | Miscellaneous                                               | 4 |
| Tà | i liệu                                                      | 4 |

#### 1 Số Hệ Thức Lượng về Cạnh & Đường Cao Trong Tam Giác Vuông 1

**Ký hiệu.**  $\triangle ABC$  vuông tại  $A: a \coloneqq BC, b \coloneqq CA, c \coloneqq AB, b' \coloneqq CH, c' \coloneqq BH, h \coloneqq AH.$ **Tính chất.**  $\boxed{1}$   $b^2=ab',$   $c^2=ac'.$   $\boxed{2}$  Dinh lý Pythagore thuận & dao:  $\triangle ABC$  vuông tại  $A\Leftrightarrow a^2=b^2+c^2.$   $\boxed{3}$   $h^2=b'c'.$  $ah = bc = 2S_{ABC}.$   $\boxed{5}$   $\frac{1}{h^2} = \frac{1}{b^2} + \frac{1}{c^2}.$ 

Bài toán 1 ([Bìn23], Ví dụ 1, p. 84). Tính diện tích hình thang ABCD có đường cao bằng 12 cm, 2 đường chéo AC, BD vuông góc với nhau, BD = 15 cm.

Bài toán 2 ([Bìn23], Ví du 2, p. 85). Hình thang cân ABCD có đáy lớn CD = 10 cm, đáy nhỏ bằng đường cao, đường chéo vuông góc với canh bên. Tính đường cao của hình thang.

Bài toán 3 ([Bìn23], Ví dụ 3, p. 85). Tính diện tích 1 tam giác vuông có chu vi 72 cm, hiệu giữa đường trung tuyến & đường cao ứng với cạnh huyền bằng 7 cm.

Bài toán 4 ([Bìn23], 1., p. 86). Chứng minh định lý Pythagore bằng cách đặt 2 tam giác vuông bằng nhau  $\triangle ABC = \triangle DCE$ :



Bài toán 5 ([Bìn23], 2., p. 86). Cho  $\triangle ABC$  cân có AB = AC = 9 cm, BC = 12 cm, đường cao AH, I là hình chiếu của H $tr\hat{e}n$  AC. (a) Tính độ dài CI. (b) Kẻ đường cao BK của  $\Delta ABC$ . Chứng minh điểm K nằm giữa 2 điểm A, C.

**Bài toán 6** ([Bìn23], 3., p. 86). Cho  $\triangle ABC$  có  $\widehat{A} = 120^{\circ}$ , BC = a, AC = b, AB = c. Chứng minh  $a^2 = b^2 + c^2 + bc$ .

<sup>\*</sup>Independent Researcher, Ben Tre City, Vietnam

e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

https://github.com/NQBH/elementary\_STEM\_beyond/blob/main/elementary\_mathematics/grade\_9/trigonometry/problem/NQBH\_

trigonometry\_problem.pdf.

2URL: https://github.com/NQBH/elementary\_STEM\_beyond/blob/main/elementary\_mathematics/grade\_9/rational/problem/NQBH\_trigonometry\_ problem.tex.

Bài toán 7 ([Bìn23], 4., p. 86). Tính cạnh đáy BC của  $\triangle ABC$  cân biết đường cao ứng với cạnh đáy bằng 15.6 cm & đường cao ứng với cạnh bên bằng 12 cm.

Bài toán 8 ([Bìn23], 5., p. 86). Cho  $\triangle ABC$  vuông tại A, đường phân giác AD, đường cao AH. Biết BD=7.5 cm, CD=10 cm. Tính AH, BH, DH.

Bài toán 9 ([Bin23], 6., p. 86). Cho  $\triangle ABC$  vuông tại A, đường cao AH, AB = 20 cm, CH = 9 cm. Tính độ dài AH.

Bài toán 10 ([Bìn23], 7., p. 86). Cho ΔABC vuông tại A, đường cao AH. Tia phân giác của ĤAC cắt HC ở D. Gọi K là hình chiếu của D trên AC. Biết BC = 25 cm, DK = 6 cm. Tính AB.

Bài toán 11 ([Bìn23], 8., p. 86). Cho  $\triangle ABC$  có AB=6 cm, AC=8 cm, 2 đường trung tuyến BD, CE vuông góc với nhau. Tính BC.

**Bài toán 12** ([Bìn23], 9., p. 86). Cho  $\triangle ABC$  có  $\widehat{B} = 60^{\circ}$ , BC = 8 cm, AB + AC = 12 cm. Tính AB, AC.

Bài toán 13 ([Bìn23], 10., p. 86). Trong 1 tam giác vuông, đường cao ứng với cạnh huyền chia tam giác thành 2 phần có diện tích bằng 54 cm<sup>2</sup> & 96 cm<sup>2</sup>. Tính độ dài cạnh huyền.

Bài toán 14 ([Bìn23], 11., p. 86). Cho  $\triangle ABC$  vuông cân tại A, đường trung tuyến BM. Gọi D là hình chiếu của C trên BM, H là hình chiếu của D trên AC. Chứng minh AH = 3DH.

Bài toán 15 ([Bìn23], 12., pp. 86–87). (a) 1 tam giác vuông có tỷ số các cạnh góc vuông bằng k. Tính tỷ số các hình chiếu của 2 cạnh góc vuông trên cạnh huyền. (b) Tính độ dài hình chiếu của các cạnh góc vuông trên cạnh huyền của 1 tam giác vuông, biết tỷ số 2 cạnh góc vuông bằng 5:4 & cạnh huyền dài 82 cm.

Bài toán 16 ([Bìn23], 13., p. 87). Trong 1 tam giác vuông, đường phân giác của góc vuông chia cạnh huyền thành 2 đoạn thẳng tỷ lệ với 1:3. Đường cao ứng với cạnh huyền chia cạnh đó theo tỷ số nào?

Bài toán 17 ([Bìn23], 14., p. 87). Cho  $\triangle ABC$  có độ dài 3 cạnh AB, BC, CA là 3 số tự nhiên liên tiếp tăng dần. Kể đường cao AH, đường trung tuyến AM. Chứng minh HM=2.

Bài toán 18 ([Bìn23], 15., p. 87). 1 hình thang cân có đường chéo vuông góc với cạnh bên. Tính chu vi & diện tích hình thang biết đáy nhỏ dài 14 cm, đáy lớn dài 50 cm.

Bài toán 19 ([Bìn23], 16., p. 87). 1 hình thơi có diện tích bằng  $\frac{1}{2}$  diện tích hình vuông có cạnh bằng cạnh của hình thơi. Tính tỷ số của đường chéo dài & đường chéo ngắn của hình thơi.

Bài toán 20 ([Bìn23], 17., p. 87). Qua đỉnh A của hình vuông ABCD cạnh a, vẽ 1 đường thẳng cắt cạnh BC ở M  $\mathscr E$  cắt đường thẳng CD ở I. Chứng minh  $\frac{1}{AM^2} + \frac{1}{AI^2} = \frac{1}{a^2}$ .

Bài toán 21 ([Bìn23], 18., p. 87). Cho hình vuông ABCD có cạnh 1 dm. Tính cạnh của  $\Delta AEF$  đều có E thuộc cạnh CD E E thuộc cạnh E E0.

**Bài toán 22** ([Bìn23], 19., p. 87). Trong 2 tam giác sau, tam giác nào là tam giác vuông, nếu độ dài 3 đường cao bằng: (a) 3,4,5. (b) 12,15,20.

Bài toán 23 (Mở rộng [Bìn23], 19., p. 87). Cho tam giác ABC có 3 đường cao có độ dài lần lượt là  $h_a, h_b, h_c$ . Tìm điều kiện cần  $\mathcal{E}$  đủ theo  $h_a, h_b, h_c$  để  $\Delta ABC$  vuông.

Bài toán 24 ([Bìn23], 20., p. 87). Chứng minh  $\triangle ABC$  là tam giác vuông nếu 2 đường phân giác BD, CE cắt nhau tại I thỏa mãn  $BD \cdot CE = 2BI \cdot CI$ .

Bài toán 25 ([Bìn23], 21., p. 87). Xét các  $\triangle ABC$  vuông có cạnh huyền BC = 2a. Gọi AH là đường cao của tam giác, D, E lần lượt là hình chiếu của H trên AC, AB. Tim GTLN của: (a) DE. (b) Diện tích tứ giác ADHE.

Bài toán 26 ([Bìn23], 22., pp. 87–88). Chứng minh trong 1 tam giác: (a) Bình phương của cạnh đối diện với góc nhọn bằng tổng các bình phương của 2 cạnh kia trừ đi 2 lần tích của 1 trong 2 cạnh ấy với hình chiếu của cạnh kia trên nó.

Bài toán 27 ([Bìn23], 23., p. 88). Cho  $\triangle ABC$  có BC = a, CA = b, AB = c. Chứng minh: (a)  $b^2 < c^2 + a^2 \Rightarrow \widehat{B} < 90^{\circ}$ . (b)  $b^2 > c^2 + a^2 \Rightarrow \widehat{B} > 90^{\circ}$ . (c)  $b^2 = c^2 + a^2 \Rightarrow \widehat{B} = 90^{\circ}$ .

Bài toán 28 ([Bìn23], 24., p. 88).  $\triangle ABC$  vuông tại A, đường phân giác BD. Tia phân giác của  $\widehat{A}$  cắt BD ở I. Biết  $BI=10\sqrt{5}$  cm,  $DI=5\sqrt{5}$  cm. Tính diện tích  $\triangle ABC$ .

Bài toán 29 ([Bìn23], 25., p. 88).  $\triangle ABC$  vuông tại A, gọi I là giao điểm của 3 đường phân giác. (a) Biết AB=5 cm, CI=6 cm. Tính BC. (b) Biết  $BI=\sqrt{5}$  cm,  $CI=\sqrt{10}$  cm. Tính AB, AC.

Bài toán 30 ([Bìn23], 26., p. 88). Cho  $\triangle ABC$  vuông tại A, gọi I là giao điểm của 3 đường phân giác, M là trung điểm của BC. (a)  $Bi\acute{e}t$  AB = 6 cm, AC = 8 cm. Tính  $\widehat{BIM}$ . (b)  $Bi\acute{e}t$   $\widehat{BIM} = 90^{\circ}$ . 3 cạnh của  $\triangle ABC$  tỷ lệ với 3 số nào?

Bài toán 31 ([Bìn23], 27., p. 88). 1 tam giác vuông có độ dài 1 cạnh bằng trung bình cộng của độ dài 2 cạnh kia. (a) ĐỘ dài 3 cạnh của tam giác vuông đó tỷ lệ với 3 số nào? (b) Nếu độ dài 3 cạnh của tam giác vuông đó là 3 số nguyên dương thì số nào trong 5 số sau có thể là đô dài 1 canh của tam giác đó: 17,13,35,41,22?

Bài toán 32 ([Bìn23], 28., p. 88). Cho  $\triangle ABC$  vuông tại A,  $BC = 3\sqrt{5}$  cm. Hình vuông ADEF cạnh 2 cm có  $D \in AB$ ,  $E \in BC$ ,  $F \in CA$ . Tính AB, AC.

Bài toán 33 ([Bìn23], 29., p. 88).  $\triangle ABC$  cân tại A, gọi I là giao điểm của 3 đường phân giác. Biết  $IA = 2\sqrt{5}$  cm, IB = 3 cm. Tính AB.

Bài toán 34 ([Bìn23], 30., p. 88).  $\triangle ABC$  cân tại A, đường cao AD, trực tâm H. Tính độ dài AD, biết AH=14 cm, BH=CH=30 cm.

Bài toán 35 ([Bìn23], 31., p. 88).  $\triangle ABC$  có BC=40 cm, đường phân giác AD dài 45 cm, đường cao AH dài 36 cm. Tính BD, CD.

# 2 Tỷ Số Lượng Giác của Góc Nhọn

Bài toán 36 ([Bìn23], Ví dụ 4, p. 89). Tính tan 15° mà không cần dùng bảng số, không dùng máy tính.

Bài toán 37 ([Bìn23], Ví dụ 4, p. 90). Xét  $\triangle ABC$  vuông tại A, AB < AC,  $\widehat{C} = \alpha < 45^{\circ}$ , đường trung tuyến AM, đường cao AH, MA = MB = MC = a. Chứng minh: (a)  $\sin 2\alpha = 2 \sin \alpha \cos \alpha$ . (b)  $1 + \cos 2\alpha = 2 \cos^2 \alpha$ . (c)  $1 - \cos 2\alpha = 2 \sin^2 \alpha$ .

Bài toán 38 ([Bìn23], 32., p. 91). Tính sai số của 2 phép dựng: (a) Dựng góc 72° bằng cách dựng góc nhọn của tam giác vuông có 2 cạnh góc vuông bằng 1 cm & 3 cm. (b) Dựng góc 20° bằng cách dựng góc ở đỉnh của tam giác cân có đáy 2 cm, cạnh bên 6 cm.

Bài toán 39 ([Bìn23], 33., p. 91).  $\triangle ABC$  có đường trung tuyến AM bằng cạnh AC. Tính  $\frac{\tan B}{\tan C}$ .

Bài toán 40 ([Bìn23], 34., p. 91). Cho  $\tan \alpha = \frac{1}{2}$ . Tính  $\frac{\cos \alpha + \sin \alpha}{\cos \alpha - \sin \alpha}$ 

Bài toán 41 ([Bìn23], 35., p. 91). Cho hình vuông ABCDN. M, N lần lượt là trung điểm của BC, CD. Tính  $\cos \widehat{MAN}$ .

Bài toán 42 ([Bìn23], 36., p. 91). Cho  $\triangle ABC$  vuông tại A, đường cao AH. Gọi D là điểm đối xứng với A qua B. Gọi E là điểm thuộc tia đối của tia AH sao cho HE=2HA. Chứng minh  $\widehat{DEC}=90^{\circ}$ .

Bài toán 43 ([Bìn23], 37., p. 91). Chứng minh trong 1 tam giác, đường phân giác ứng với cạnh lớn nhất nhỏ hơn hoặc bằng đường cao ứng với cạnh nhỏ nhất.

Bài toán 44 ([Bìn23], 38., p. 91). Tính tan 22°30′ mà không dùng bảng số hay máy tính.

**Bài toán 45** ([Bìn23], 39., p. 91). Chứng minh  $\cos 15^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$ ,  $\sin 15^{\circ} = \frac{\sqrt{6} - \sqrt{2}}{4}$  mà không dùng bảng số hay máy tính.

Bài toán 46 ([Bìn23], 40., p. 91). Tính cos 36°, cos 72° mà không dùng bảng số hay máy tính.

# 3 1 Số Hệ Thức về Cạnh & Góc trong Tam Giác Vuông

**Bài toán 47** ([Bìn23], Ví dụ 6, p. 92). Chứng minh diện tích của 1 tam giác không vuông bằng  $\frac{1}{2}$  tích của 2 cạnh nhân với sin của góc nhọn tạo bởi 2 đường thẳng chứa 2 cạnh ấy.

Chứng minh. Gọi  $\alpha$  là góc nhọn tạo bởi 2 đường thẳng AB,AC của  $\Delta ABC$   $(\alpha=\widehat{A}$  nếu  $\widehat{A}<90^\circ$  &  $\alpha=180^\circ-\widehat{A}$  nếu  $\widehat{A}>90^\circ).$  Vẽ đường cao BH, có  $BH=AB\sin\alpha,$  suy ra  $S_{ABC}=\frac{1}{2}AC\cdot BH=\frac{1}{2}AC\cdot AB\sin\alpha=\frac{1}{2}bc\sin\alpha.$ 

Bài toán 48 (Mở rộng [Bìn23], Ví dụ 6, p. 91). Chứng minh diện tích của 1 tam giác bằng  $\frac{1}{2}$  tích của 2 cạnh nhân với sin của góc tạo bởi 2 cạnh ấy.

Chứng minh. Ta xét 3 trường hợp ứng với  $\widehat{A}$ , chứng minh công thức ứng với  $\widehat{B}$ ,  $\widehat{C}$  hoàn toàn tương tự.

- Trường hợp  $\widehat{A}=90^\circ$ . Vì  $\sin 90^\circ=1$  nên  $S_{ABC}=\frac{1}{2}bc=\frac{1}{2}bc\sin 90^\circ=\frac{1}{2}bc\sin A$ .
- Trường hợp  $\widehat{A} < 90^{\circ}$ . Đã chứng minh ở bài toán ngay trên.
- Trường hợp  $\widehat{A} > 90^{\circ}$ . Vì  $\sin x = \sin(180^{\circ} x)$ ,  $\forall x \in [0^{\circ}, 180^{\circ}]$  nên theo bài toán ngay trên:  $S_{ABC} = \frac{1}{2}bc\sin(180^{\circ} A) = \frac{1}{2}bc\sin A$ .

Vậy công thức  $S_{ABC} = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C$  đúng cho mọi  $\Delta ABC$ .

★ Công thức tính diện tích tam giác tổng quát:

$$S_{ABC} = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C, \ \forall \Delta ABC.$$

Bài toán 49 ([Bìn23], Ví dụ 7, p. 92).  $\triangle ABC$  có  $\widehat{A} = \widehat{B} + 2\widehat{C}$  & độ dài 3 cạnh là 3 số tự nhiên liên tiếp. (a) Tính độ dài 3 cạnh của  $\triangle ABC$ . (b) Tính  $\widehat{A}, \widehat{B}, \widehat{C}$ .

**Bài toán 50** (Tổng quát [Bìn23], Ví dụ 7, p. 92). Nếu  $\triangle ABC$  có  $\widehat{A}$  từ & độ dài 3 cạnh là 3 số tự nhiên liên tiếp thì 3 độ dài đó bằng 2, 3, 4.

Bài toán 51 ([Bìn23], 41., p. 94). Tính: (a) Chiều cao ứng với cạnh 40 cm của 1 tam giác, biết 2 góc kề với cạnh này bằng  $40^{\circ}, 55^{\circ}$ . (b) Góc tạo bởi đường cao & đường trung tuyến kẻ từ 1 đỉnh của tam giác, biết 2 góc ở 2 đỉnh kia bằng  $60^{\circ}, 80^{\circ}$ .

Bài toán 52 ([Bìn23], 42., p. 94).  $\triangle ABC$  có  $\widehat{A} = 105^{\circ}$ ,  $\widehat{B} = 45^{\circ}$ , BC = 4 cm. Tính AB, AC.

Bài toán 53 ([Bìn23], 43., p. 94).  $\triangle ABC$  có  $\widehat{A}=60^{\circ}$ , AB=28 cm, AC=35 cm. Tính BC.

Bài toán 54 ([Bìn23], 44., p. 94). Cho 1 hình vuông có cạnh 1 dm. Cắt đi ở mỗi góc của hình vuông 1 tam giác vuông cân để được 1 bát giác đều. Tính tổng diện tích của 4 tam giác vuông cân bị cắt đi.

Bài toán 55 ([Bìn23], 45., p. 94).  $\triangle ABC$  đều có cạnh 60 cm. Trên cạnh BC lấy điểm D sao cho BD = 20 cm. Đường trung trực của AD cắt 2 cạnh AB, AC theo thứ tự ở E, F. Tính độ dài 3 cạnh của  $\triangle DEF$ .

Bài toán 56 ([Bìn23], 46., p. 94). Cho  $\triangle ABC$  có AB=c, CA=b, đường phân giác AD, đường trung tuyến AM. Đường thẳng đối xứng với AM qua AD cắt BC ở N. Tính  $\frac{BN}{CN}$ .

Bài toán 57 ([Bìn23], 47., p. 94). Độ dài 2 đường chéo của 1 hình bình hành tỷ lệ với độ dài 2 cạnh liên tiếp của nó. Chứng minh các góc tạo bởi 2 đường chéo bằng các góc của hình bình hành.

Bài toán 58 ([Bìn23], 48., p. 94). Tứ giác ABCD có 2 đường chéo cắt nhau ở O & không vuông góc với nhau. Gọi H & K lần lượt là trực tâm của  $\Delta AOB$ ,  $\Delta COD$ . Gọi G, I lần lượt là trọng tâm của  $\Delta BOC$ ,  $\Delta AOD$ . (a) Gọi E là trọng tâm của  $\Delta AOB$ , F là giao điểm của AH & DK. Chứng minh  $\Delta IEG \hookrightarrow \Delta HFK$ . (b) Chứng minh  $IG \bot HK$ .

Bài toán 59 ([Bìn23], 49., p. 94). Cho  $\triangle ABC$  nhọn, 3 điểm D, E, F lần lượt thuộc 3 cạnh AB, BC, CA. Chứng minh trong 3  $\triangle ADF$ ,  $\triangle BDE$ ,  $\triangle CEF$ , tồn tại 1 tam giác có diện tích  $\le \frac{1}{4}$  diện tích  $\triangle ABC$ . Khi nào cả 3 tam giác đó cùng có diện tích bằng  $\frac{1}{4}$  diện tích  $\triangle ABC$ ?

### 4 Miscellaneous

## Tài liệu

[Bìn23] Vũ Hữu Bình. Nâng Cao & Phát Triển Toán 9 Tập 1. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 275.