1 Varietà differenziabili e funzioni lisce

Definizione 1 (Carta). M insieme. Una carta di M è la coppia (U, x) con:

- U ⊂ M
- $x: U \to x(U) \subseteq \mathbb{R}^m$ biiezione¹ e x(U) aperto². x è chiamata parametrizzazione di U.

Definizione 2 (Carte compatibili). Le carte $(U_{\alpha}, x_{\alpha}), (U_{\beta}, x_{\beta})$ sono compatibili se $F_{\beta\alpha} = x_{\beta} \circ x_{\alpha}^{-1} : x_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \mathbb{R}^{m}$ è diffeomorfismo³.

TODO:DISEGNO 220301 Osservazioni:

- Una carta è sempre compatibile con sè stessa
- ullet l'inversa di F esiste sempre ma non è detto sia liscia

Definizione 3 (Atlante). $\mathcal{A} = \{(U_{\alpha}, x_{\alpha})\}_{\alpha \in I}$ collezione di carte di M a due a due compatibili to $M = \bigcup_{\alpha \in I} U_{\alpha}$

Definizione 4 (Varietà differenziabile). Coppia (M, \mathcal{A}) con $x_{\alpha}(U_{\alpha}) \subseteq \mathbb{R}^m$ aperto $\forall \alpha \in I$.

Esempio 1. $M = \mathbb{R}^m$.

L'unica carta è $x = id_{\mathbb{R}^m} : U = M = \mathbb{R}^m \to \mathbb{R}^m$.

id(M) aperto essendo immagine di aperto.

 $\mathcal{A} = \{(M, id_M)\}.$

Quindi \mathbb{R}^m è varietà.

Esempio 2. $M \subset \mathbb{R}^m$ aperto.

L'unica carta è $x = id_M : U = M \to \mathbb{R}^m$.

id(M) aperto essendo immagine di aperto.

 $\mathcal{A} = \{(M, id_M)\}.$

Quindi ogni aperto di \mathbb{R}^m è varietà.

Esempio 3. $M = S^n$ (sfera n-dimensionale). TODO: DA FARE 220301

Dato che esiste una definizione di mappe lisce su \mathbb{R}^m posso introdurre grazie all'atlante una definizione di mappe lisce su varietà.

Definizione 5 (Applicazione liscia). M, N varietà differenziabili di dimensione m, n. $f: M \to N$ è liscia in $p \in M$ se $\forall (U, x), (V, y)$ carte di M, N con $p \in U, f(p) \in V$ la funzione $F = y \circ f \circ x^{-1} : x(U \cap f^{-1}(V)) \to \mathbb{R}^n$ è⁴ liscia in x(p) con $x(U \cap f^{-1}(V))$ aperto di \mathbb{R}^m .

 $\operatorname{TODO:DISEGNO}$ 220308 Verificare la proprietà per ogni carta è problematico

Osservazione 1. È suffuciente effettuare la verifica per una sola coppia di carte.

 $^{^{1}\}exists x^{-1}:x(U)\to U$

 $^{{}^{2}\}forall u \in U \exists \epsilon \geq 0 \text{ tc } B_{\epsilon}(u) = \{x \in \mathbb{R}^{m} : ||x - u|| \leq \epsilon\}. \text{ Segue che } U = \bigcup_{u \in U} B_{\epsilon}(u)$

 $^{^3{\}rm Mappa}$ liscia con inversa liscia

⁴In generale $f(U) \neq V$, per questo si prende l'intersezione

Proof. Supponiamo $F = y \circ f \circ x^{-1}$ liscia, bisogna mostrare che $w \circ f \circ v^{-1}$ sia liscia. $w \circ f \circ v^{-1} = w \circ (y^{-1} \circ y) \circ f \circ (x^{-1} \circ x) \circ v^{-1} = (w \circ y^{-1}) \circ (y \circ f \circ x^{-1}) \circ (x \circ v^{-1})$ che è composizione di F (liscia per ipotesi) e di due cambi di carta che sono diffeomorfisimi e quindi lisci. TODO:DISEGNO 220301

Osservazione 2. M, N, S varietà, $f: M \to N, g: N \to S$ lisce. $g \circ f: M \to S$ liscia.

Proof. Sia $p \in M$, carte (U, x), (V, y), (W, z) di M, N, S to $p \in U, f(p) \in V, g(f(p)) \in W$. Devo mostrare che $z \circ (g \circ f) \circ x^{-1}$ è liscia su $(g \circ f)(U \cap W)$. TODO:DISEGNO $z \circ (g \circ f) \circ x^{-1} = z \circ g \circ (y^{-1} \circ y) \circ f \circ x^{-1} = (z \circ g \circ y^{-1}) \circ (y \circ f \circ x^{-1})$ composizione di funzioni lisce per l'ipotesi f, g lisce. □

Esempio 4. M varietà, $N = \mathbb{R}^n$ (l'unica carta è $(\mathbb{R}^n, id_{\mathbb{R}^n})$). $f: M \to \mathbb{R}^n$ è liscia se $id_{\mathbb{R}^n} \circ f \circ x^{-1} = f \circ x^{-1}$ è liscia.

Esempio 5. Una parametrizzazione è liscia? (U,x) carta di M. $x: U \to \mathbb{R}^m$ per quanto visto è una mappa fra le varietà U con altante $\{(U,x)\}$ e \mathbb{R}^m . Dalla quanto visto prima x è liscia se $x \circ x^{-1}$ è liscia. Ma si tratta dell'identità e quindi di una funzione liscia.

1.1 Fibre

La sfera è un insieme del tipo $F^{-1}(b)$ con $F = \sum x_i^2$ e b = 1. Esiste un modo semplice per capire se insiemi di questo tipo sono varietà, la cui dimostrazione sfrutta il teorema della funzione inversa⁵.

```
Teorema 1. U \subseteq \mathbb{R}^{m+n} aperto F: U \to \mathbb{R}^m liscia !!b \in \mathbb{R}^m to rkJ_aF massimale per ogni a = F^{-1}(b) allora: F^{-1}(b) = \{x \in U : F(x) = b\} è varietà di dimensione n TODO: CARTE
```

Proof. TODO: PROOF 220301

Osservazione 3. $F: \mathbb{R}^{n+m} \to \mathbb{R}^m$ sommersione su $F^{-1}(b)$, $f: \mathbb{R}^{n+m} \to \mathbb{R}$ lisca. Allora $f \big|_{M}: M = F^{-1}(b) \to \mathbb{R}$ è liscia. Infatti deve essere liscia $f \circ x^{-1}$ ma x abbiamo visto essere liscia. ???è vero???

2 Spazio tangente e differenziale

Definizioni di derivata su varietà. $p \in M$ voglio fare somma e prodotto di $f: U \to \mathbb{R}, g: V \to \mathbb{R}$ con $p \in U \cap V$ e f, g lisce. Problema: se $V \neq U$ somma e prodotto sono definite solo su $U \cap V$. Voglio togliere riferimenti al dominio. Definisco l'algebra dei germi $C^{\infty}(M,p) := \{(U,f): p \in U, f: U \to \mathbb{R} \text{ liscia}\}/_{\sim}$ con la relazione di equivalenza $(U,f) \sim (V,g)$ se f=g su $W=U \cap V, \ p \in W$. La classe di equivalenza di (U,f) è detta germe di f. In pratica mi preoccupo solo del comportamento delle funzioni molto vicino a p. Posso quindi scrivere

⁵TODO: TEOREMA FUNZIONE INVERSA

 $[(U,f)]_{\sim} + [(V,g)]_{\sim} = [(U,f) + (V,g)]_{\sim} \text{ e } [(U,f)]_{\sim} [(V,g)]_{\sim} = [(U,f)(V,g)]_{\sim}.$ Per semplicita da qui in avanti $[(U,f)]_{\sim} \equiv f.$

Posso introdurre lo spazio tangente in due modi equivalenti: tramite derivazioni e tramite cammini.

2.1 Derivazioni

Definizione 6 (Derivazione). Applicazione $v: C^{\infty}(M,p) \to \mathbb{R} \operatorname{tc}^6$

- lineare: $v(\lambda f + \mu g) = \lambda v(f) + \mu v(g) \operatorname{con} \lambda, \mu \in \mathbb{R}$
- soddisfa leibniz: v(fg) = v(f)g + fv(g)

Queste mappe esistono? Un esempio immediato:

Esempio 6. Carta (U, x) di $M, x : x(U) \to \mathbb{R}^m$. Se f è liscia x(p) è liscia in intorno di $x(p) \in x(U)$ per definizione. Posso quindi avere una derivazione sui germi di questa funzione composta. Definisco

$$\left(\left.\frac{\partial}{\partial x_i}\right|_p\right)(f) := \left(\frac{\partial f \circ x^{-1}}{\partial t_i}\right)(x(p))$$

con t_i le coord su \mathbb{R}^m . Si verifica facilmente che sono derivazioni.

L'insieme delle derivazioni su $C^{\infty}(M,p)$ è spazio vettoriale su campo $\mathbb R$ con somma tra vettori e prodotto per scalare definiti in modo naturale.

Osservazione 4. $\{\frac{\partial}{\partial x_i}|_p\}_{i=1}^m$ base di T_pM e quindi $dimT_pM=m=dimM^7$

Teorema 2. $v \in T_pM$, (x,U) carta di M $v = \sum_{i=1}^{m} a_i \frac{\partial}{\partial x_i}|_{p}$ con

$$a_i = v(x_i)$$

Proof. Osservo:

$$\left(\left.\frac{\partial}{\partial x_i}\right|_p\right)(x_j) = \left(\frac{\partial x_j \circ x^{-1}}{\partial t_i}\right)(x(p))$$

e $((x_1 \dots x_m) \circ x^{-1}) = (x \circ x^{-1})(t) = t = (t_1 \dots t_m)$. Quindi

$$\left(\left.\frac{\partial}{\partial x_i}\right|_p\right)(x_j) = \left(\frac{\partial t_j}{\partial t_i}\right)(x(p)) = \delta_{ij}$$

$$v(x_j) = \sum_{i=0}^{m} a_i \frac{\partial}{\partial x_i}|_p(x_j) = a_j$$

Teorema 3. $v \in T_pM$, (U, x), (V, y) carte di M, $v = \sum_i^m a_i \frac{\partial}{\partial x_i}|_p = \sum_i^m b_i \frac{\partial}{\partial y_i}|_p$ con

$$a = J_{y(p)}F \cdot b$$

dove $F = x \circ y^{-1}$ è il cambio di coordinate.

⁷Il concetto di dimensione per spazi vettoriali e per varietà è definito in modo diverso.

 ${\it Proof.}$ Per quanto visto nella dimostrazione prima e usando la definzione degli elementi della base:

$$a_j = \sum b_i \left(\frac{\partial}{\partial y_i} \Big|_p \right) (x_j) = \sum b_i \left(\frac{\partial x_j \circ y^{-1}}{\partial t_i} \right) (y(p))$$

che chiamando $F = x \circ y^{-1}$ è proprio il prodotto matrice-vettore.

Vgliamo legare spazi tangenti di M,N collegate da mappa liscia Φ . Problema: devo far agire sui germi di N derivazioni che agiscono sui germi di M. Devo prima di tutto introdurre un oggetto che mi faccia passare da $C^{\infty}(N,\Phi(p))$ a $C^{\infty}(M,p)$.

Definizione 7 (Pull-back).

$$\Phi^*:C^\infty(N,\Phi(p))\to C^\infty(M,p):g\mapsto \Phi^*(g):=g\circ\Phi$$

Osservazione 5. Φ^* è lineare: $\Phi^*(\lambda g + \mu h) = \lambda \Phi^*(g) + \mu \Phi^*(h)$

Proof. Devo mostrare che l'identità vale $\forall x \in M$. $\Phi^*(\lambda g + \mu h)(x) = (\lambda g + \mu h)(\Phi(x)) = \lambda g(\Phi(x)) + \mu h(\Phi(x)) = \lambda \Phi^*(g)(x) + \mu \Phi^*(h)(x)$

Definizione 8 (Differenziale). $(d\Phi)_p: T_pM \to T_{\Phi(p)}N: v \mapsto (d\Phi)_p(v) := v(\Phi^*(g))(=v(g\circ\Phi))$

Proprietà.

• È mappa fra spazi vettoriali: vogliamo sia lineare

Proprietà 1.
$$(d\Phi)_p(\lambda v + \mu u) = (d\Phi)_p(v) + (d\Phi)_p(u)$$

Proof. L'ugugaglianza vale iff $((d\Phi)_p(\lambda v + \mu u))(g) = ((d\Phi)_p(v))(g) + ((d\Phi)_p(u))(g)$ $\forall g \in C^{\infty}(N, \Phi(p))$. Dalla definizione di spazio tangente $((d\Phi)_p(\lambda v + \mu u))(g) = (\lambda v + \mu u)(g \circ \Phi) = \lambda v(g \circ \Phi) + \mu u(g \circ u) = ((d\Phi)_p(v))(g) + ((d\Phi)_p(u))(g)$.

• differenziale dell'identità

Proprietà 2. $(did_M)_p = id_{T_pM}$

Proof.
$$v(g \circ id_M) = v(g) \quad \forall g$$

• Composizione di differenziali

Proprietà 3. $\Phi: M \to N, \Psi: N \to S$ lisce, $p \in M$ allora $(d\Psi)_{\Phi(p)} \circ (d\Phi)_p = (d(\Psi \circ \Phi))_p: T_pM \to T_{\Psi(\Phi(p))}S$

Proof. Vale iff $(d(\Psi \circ \Phi))_p(v) = ((d\Psi)_{\Phi(p)} \circ (d\Phi)_p)(v) \quad \forall v \in T_pM$. Fissata v vale iff $((d(\Psi \circ \Phi))_p(v))(h) = (((d\Psi)_{\Phi(p)} \circ (d\Phi)_p)(v))(h) \quad \forall h \in C^{\infty}(S, \Psi(\Phi(p)))$. $((d(\Psi \circ \Phi))_p(v)) = v(h \circ (\Psi \circ \Phi)) = v((h \circ \Psi) \circ \Phi) = ((d\Phi)_p(v))(h \circ \psi) = (((d\Psi)_{\Phi(p)}((d\Psi)_p)(v))(h)$.

• Differenziale dell'inversa

Proprietà 4. Se $\Phi: M \to N$ diffeo con inversa Ψ allora $(d\Psi)_{\Phi}p: T_pM \to$ $T_{\Phi(p)}N$ è isomorfismo con inversa $(d\Psi)_{\Phi(p)}$.

Proof.
$$\Psi \circ \Phi = id_M$$
. Per la p2 $(d(\Psi \circ \Phi))_p = id_{T_pM}$. Per la p3 $(d\Psi)_{\Phi(p)} \circ (d\Phi)_p = id_{T_pM}$. Analogamente per la composizione inversa.

Siccome il differenziale è lineare vogliamo ottenerne la forma matriciale

Teorema 4. (U,x),(V,y) carte di M,N. $\Phi_M \to N$ liscia. Su questa base

$$(\mathrm{d}\Phi)_p = J_{x(p)}F$$

 $con F = y \circ \Phi \circ x^{-1}$

Proof. Il differenziale applicato a un elemento della base di T_pM è un elemento della base di $T_{\Phi(p)}N$, quindi $(\mathrm{d}\Phi)_p(\frac{\partial}{\partial x_j})|_p = \sum^n v_{ij} \frac{\partial}{\partial y_i}|_{\Phi(p)}$ con $v_{ij} \in \mathbb{R}$. Per quanto visto $v_{ij} = (d\Phi)_p(\frac{\partial}{\partial x_j})|_p(y_i) = (\frac{\partial}{\partial x_j})(y_i \circ \Phi) = \frac{\partial y_i \circ \Phi \circ x^{-1}}{\partial t_j}$. Ponendo $F = (F_1 \dots F_n)$ con $F_i = y_i \circ \Phi \circ x^{-1}$ la tesi.

2.2 Cammini

 $\gamma: (-\varepsilon, \varepsilon) \to M, \ \gamma(0) = p \text{ cammino.}$

Definizione 9 (Vettore tangente). $\gamma_*(f) := \frac{\mathrm{d}f \circ \gamma}{\mathrm{d}\tau}(0) \text{ con } \tau \in (-\varepsilon, \varepsilon).$

 $f \circ \gamma : \mathbb{R} \to \mathbb{R}$: ho una derivata nel senso comune del termine.

Definizione 10 (Differenziale). γ cammino, $\Phi: M \to N$ liscia.

$$(\mathrm{d}\Phi)_{\gamma_*} := (\Phi \circ \gamma)_*$$

cioè il vettore tangente ottenuto mappando il cammino su N mediante Φ .

Ogni $v \in T_pM$ è del tipo γ_* per un certo γ .

Esempio 7. $T_p\mathbb{R}^m = \mathbb{R}^m$ infatti:

Carta
$$(\mathbb{R}^m, id_{\mathbb{R}^m})$$
. $v = \sum_{i=1}^m a_i \frac{\partial}{\partial x_i}|_{n} \leftrightarrow a = (a_1 \dots a_m)$

Carta
$$(\mathbb{R}^m, id_{\mathbb{R}^m})$$
. $v = \sum_i^m a_i \frac{\partial}{\partial t_i}|_p \leftrightarrow a = (a_1 \dots a_m)$
Preso $\gamma : (-\varepsilon, \epsilon) \to \mathbb{R}^m$, con $p = \gamma(0) \gamma_*(f) = (\frac{\mathrm{d}f(\gamma_1(\tau) \dots \gamma_m(\tau))}{\mathrm{d}\tau})|_{\tau=0} = \sum \frac{\partial f}{\partial t_i} \gamma_i'(0)$ e quindi per confronto $\gamma_i'(0) = a_i$.

La definizione di differenziale ottenuta a partire dalle derivazioni deve essere la stessa di quella ottenuta a partire dai cammini.

Osservazione 6. Le due definizioni di differenziale sono equivalenti

Proof. Per la definizione data usando le derivazioni
$$((d\gamma_*)_p)(g) = \gamma_*(g \circ \Phi) = \frac{dg \circ \Phi \gamma}{d\tau}|_{\tau=0} = \frac{dg \circ (\Phi \gamma)}{d\tau}|_{\tau=0} = (\Phi \circ \gamma)_*(g)$$
 e questo vale per tutte le g .

2.3 Fibre

Teorema 5. $M = F^{-1}(b) \subseteq \mathbb{R}^{n+m} \ con \ F : \mathbb{R}^{n+m} \to \mathbb{R}^n \ allora \ \forall a \in M \ T_a M \equiv ker((dF)_a) \cong ker(J_a F) \ dove \ (dF)_a : T_a \mathbb{R}^{n+m} \to T_b \mathbb{R}^n \ e \ J_a F : \mathbb{R}^{n+m} \to \mathbb{R}^n.$

Proof. $rk(J_aF)$ è massimo e quindi uguale a n. Per il teorema di nullità+rango $dim(ker(F_aF)) = n + m - n = m = dim(T_aM)$. Resta da mostrare che $T_aM \subseteq ker(J_aF) \cong ker((dF)_a)$. Sia $v \in T_aM$, prendo $\gamma : (-\epsilon, \epsilon) \to M : 0 \mapsto a$ to $\gamma_* = v \ (\gamma_*(f) = \frac{\partial f \circ \gamma}{\partial \tau}|_{\tau=0})$ allora $((dF)_a\gamma_*)(g) = \gamma_*(g \circ F)$ con $g \in C^{\infty}(\mathbb{R}^n, b)$. Su M F(a) = b costante e quindi $((dF)_av)(g) = ((dF)_a\gamma_*)(g) = \gamma_*(g \circ F) = \gamma_*(g(b)) = 0$ ovvero $v \in ker((dF)_a)$

Esempio 8 (Spazio tangente a S^n). $S^n = F^{-1}(1)$ con $F: \mathbb{R}^{n+1} \to \mathbb{R}: (x_0 \dots x_n) \mapsto \langle x, x \rangle$. $T_x S^n = \ker(J_x F) = \{y \in \mathbb{R}^{n+1}: \langle x, y \rangle = 0\}$ (dato che $J_x F = 2(x_0, \dots x_n)$ ovvero il fatto noto che i tangenti alla sfera sono ortogonali al raggio.

3 Fibrato tangente e campi vettoriali

Idea: considerare tutti gli spazi tangenti a una varietà M.

Definizione 11 (Fibrato tangente).

$$TM := \bigsqcup_{p \in M} T_p M$$

unione disgiunta dei tangenti cioè se $v \in TM$ allora $v \in T_pM$ per un unico p.

L'unione disgiuta è necessaria perchè non saprei dare significato ai punti di intersezione fra due tangenti considerati contemporaneamente. L'unione disgiunta mi permette di considerare la mappa proiettiva $\pi:TM\to M:v\mapsto \pi(v)=p$ se $v\in T_pM$.

Osservazione 7. TM è varietà, dimTM = 2dimM

Proof. Cerco carte compatibili di TM costruite a partire da carte di M. Data $(U,x) \ \forall p \in U \ \left\{ \left. \frac{\partial}{\partial x_i} \right|_p \right\}_i$ è base di $T_p M$. Considero l'isomorfismo tra $T_p M$ e \mathbb{R}^m che associa ad ogni derivazione il vettore delle coordinate nella sua base a. Posso quindi costruire la biiezione (la carta)

$$\tilde{x}: TU \to \mathbb{R}^m \times \mathbb{R}^m : v \mapsto (x(p), a)$$

dove: $TU \equiv \pi^{-1}(U) \equiv \sqcup_{p \in U} T_p M$; $x(U) \times \mathbb{R}^m \subseteq \mathbb{R}^m \times \mathbb{R}^m$ aperto perchè x(U) aperto per definizione di carta.

Resta compatibilità. $(TU, \tilde{x}), (TV, \tilde{y})$ carte di TM. Cambiando base $(\tilde{y} \circ \tilde{x}^{-1}) = \tilde{y}(\sum a_i \frac{\partial}{\partial x_i}\Big|_p) = \tilde{y}(\sum b_i \frac{\partial}{\partial y_i}\Big|_p) = (y(p), b)$. Ma y(p) liscia essendo parametrizzazione di V; $b = J_{x(p)}(y \circ x^{-1})a$ è matrice con entrate lisce dato che $y \circ x^{-1}$ deve essere lisca per la compatibilità di x, y. Allo stesso modo $\tilde{x} \circ \tilde{y}$ è liscia e quindi le carte sono compatibili.

Osservazione 8. $\pi:TM\to M$ è liscia

Esempio 9. $M = \mathbb{R}^m$ con atlante $(\mathbb{R}^m, id_{\mathbb{R}^m})$. TM è diffeomorfo a $\mathbb{R}^m \times \mathbb{R}^m$ ovvero a $M \times M$.

Idea: grazie a fibrato tangente posso definire applicazione che associa a $p \in M$ un vettore tangente.

Definizione 12 (Campo vettoriale). M varietà, $\pi:TM\to M$. Un campo vettoriale X su $V\subseteq M$ aperto è l'applicazione **liscia** $X:V\to TV=\pi^{-1}V\subseteq TM$ to $\pi\circ X=id_V$

La richiesta equivale a dire $\pi(X(p)) = p \forall p \in V$, ovvero $X(p) \in \pi^{-1}(p) = T_p M$ (il campo vettoriale valutato in p è un elemento del tangente in p, ovvero è una derivazione). Notazione: $X(p) = X_p$.

Teorema 6. Se (U,x) è carta di M la rappresentazione di un campo vettoriale è $X_p = \sum_{i=1}^m a_i(p) \frac{\partial}{\partial x_i}|_p$ con $a_i : U \to \mathbb{R}$ lisce.

Proof. la carta di M induce: carta (TU, \tilde{x}) di TM e base $\frac{\partial}{\partial x}|_p$ di T_pM . Quindi $X_p = \sum a_i(p) \frac{\partial}{\partial x_i}|_p$ e la richiesta che X sia liscia significa richiedere $\tilde{x} \circ X \circ x^{-1}$ liscia. Indicando con t le coordiate di \mathbb{R}^m $(\tilde{x} \circ X \circ x^{-1}) = \tilde{x}(X(x^{-1}(t))) = \tilde{x}(X_p) = (x(p), (a_1(p) \dots a_m(p)) = (t, [(a_1 \circ x^{-1})(t), \dots (a_m \circ x^{-1})(t)])$. La prima coordinata è a funzione identità che è liscia. Le altre sono $a_i \circ x^{-1} = id_{\mathbb{R}} \circ a_i \circ x^{-1}$. La rischiesta che siano lisce è per definizione a_i lisce.

2 modi per costruire oggetti a partire da cv e funioni lisce:

• Un nuovo campo vettoriale

Definizione 13. X, Y cv su $U \subseteq M$, $f, g : U \to \mathbb{R}$ lisce (!!). $(fX + gY)(p) := f(p)X_p + g(p)Y_p \in T_pM$ (scalari per derivazioni).

È importante che f,g lisce perchè così fX+gY è liscio e quindi è un campo vettoriale.

• Una nuova funzione lscia

Definizione 14. X cv su $U \subseteq M$, $f: V \to \mathbb{R}$. $(Xf)(p): X_p(f)$

Questa è liscia infatti: $(Xf)(p) = \sum (a_i(p) \frac{\partial}{\partial x_i}|_p)(f) = \sum a_i(p) \frac{\partial f \circ x^{-1}}{\partial t_i}$ (con t_i le coordinate di \mathbb{R}^m) e abbiamo a_i lisce per ipotesi di cv, x(p) liscia siccome parametrizzazione, la derivata di $f \circ x^{-1}$ liscia perchè $f \circ x^{-1} \in C^\infty(x(U))$. Notazione pesante: per semplicità scriviamo $Xf = \sum a_i \frac{\partial f}{\partial x_i}$ in modo analogo a come faremmo in \mathbb{R}^m .

Osservazione 9. Vale leibnitz X(fg) = X(f)g + fX(g)

Definizione 15. (Uguaglianza fra campi) X,Y cv su $U\subseteq M$. $X=Y\iff X_p=Y_p\forall p\in U\iff X(f)=Y(f)\forall W\in U$ aperti $,\forall f:W\to\mathbb{R}$

Una domanda naturale: X(f) è liscia, ma allora dato Y cv, l'applicazione $f\mapsto Y(X(f))$ è un campo vettoriale? In generale no, infatti se $M=\mathbb{R}, X=Y=\frac{\mathrm{d}}{\mathrm{d}t}$ si ha $Y(X(fg))=X(f'g+fg')=f''g+fg''+2f'g'\neq f''g+fg''=Y(X(f))g+fY(X(g))$ ovvero non vale leibnitz e quindi non ho una derivazione. Vogliamo quindi un'operazione che combini due cv a produrre un cv.

Definizione 16 (Parentesi di Lie). [X,Y](f) := X(Y(f)) - Y(X(f))

Proprietà (si vedono con semplici conti)

- [X,Y] = -[Y,X]
- [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0

Teorema 7. (U,x) carta di M, $X = \sum X_i \frac{\partial}{\partial x_i}$, $Y = \sum Y_i \frac{\partial}{\partial x_i}$ allora $[X,Y] = \sum_i \left(\sum_j (X_j \frac{\partial Y_i}{\partial x_j} - \frac{\partial X_i}{\partial x_j} Y_j)\right) \frac{\partial}{\partial x_i}$

Proof.
$$X(Y(f)) = X(\sum_j Y_j \frac{\partial f}{\partial x_j}) = \sum_i X_i (\sum_j \frac{\partial Y_j}{\partial x_i} \frac{\partial f}{\partial x_j} + Y_j \frac{\partial^2 f}{\partial x_i \partial x_j}).$$
 $Y(X(f)) = Y(\sum_i X_i \frac{\partial f}{\partial x_i}) = \sum_j Y_j (\sum_i \frac{\partial X_i}{\partial x_j} \frac{\partial f}{\partial x_i} + X_i \frac{\partial^2 f}{\partial x_j \partial x_i}).$ Per schwarz in entrambi i termini compare $X_i Y_j \frac{\partial^2 f}{\partial x_i \partial x_j}$ e quindi nelle parentesi di Lie si cancella (ovvero non compaiono derivate seconde, come dev'essere). I coefficienti di $[X,Y]$ sono lisci essendo X,Y campi vettoriali.

Idea: siccome $(\mathrm{d}\phi)_p:T_pM\to T_{\phi(p)}N$, dato X cv su M voglio trovare " $\mathrm{d}\phi\,X$ " su N. Non posso semplicemente applicare il differenziale eprchè se ϕ non è iniettiva ci sono $p\neq q\in M$ tc $\phi(p)=\phi(q)\in N$ ma d'altro canto nulla garantisce che $(\mathrm{d}\phi)_pX_p=(\mathrm{d}\phi)_qX_q$ dove il primo sta in $T_{\phi(p)}N$ e il secondo in $T_{\phi(q)}N$ che coincidono. Quindi l'operazione non è ben definita in questo punto. TODO:DISEGNO 220329

Definizione 17 (Campi correlati(1)). $\phi: M \to N, X, X'$ cv su M, N sono ϕ -correlati se $X'_{\phi(p)} = (\mathrm{d}\phi)_p X_p \forall p \in M$

Definizione 18 (Campi correlati(2)). $\phi: M \to N, X, X'$ cv su M, N sono ϕ -correlati se $X'(g) \circ \phi = X(g \circ \phi) \forall g: V \to \mathbb{R}, \forall V$ aperti di N

Osservazione 10. Le due definizioni sono equivalenti

Proof. $(X'(g) \circ \phi)(p) = (X'(g))(\phi(p)) = X'_{\phi(p)}(g)$. Se X' correlato a X secondo la prima definizione questo è uguale a $((d\phi)_p X_p)(g) = X_p(g \circ \phi) = (X(g \circ \phi))(p)$ ovvero la seconda definizone. Ho una catena di uguaglianze e quindi posso permutare i termini fino a ottenere che la seconda definizione implica la prima.

Le parentesi di Lie si comportano bene rispetto alla correlazione, ovvero

Teorema 8. X ϕ -correlato a X', Y ϕ -correlato a Y' allora [X,Y] ϕ -correlato a [X',Y'].

$$\begin{array}{l} \textit{Proof.} \ [X,Y](g \circ \phi) = X(Y(g \circ \phi)) - Y(X(g \circ \phi)) = X(Y'(g) \circ \phi) - Y(X'(g) \circ \phi) = \\ X'(Y'(g)) \circ \phi - Y'(X'(g)) \circ \phi = [X',Y'](g) \circ \phi \end{array} \quad \Box$$

Chiarite le problematiche per comodità si può scrivere $X' = \mathrm{d}\phi X$ se i due campi sono correlati e la proprietà delle parentesi di Lie assume la forma suggestiva $[\mathrm{d}\phi X,\mathrm{d}\phi Y] = \mathrm{d}\phi [X,Y]$.

3.1 Fibre

Teorema 9. Se $M = F^{-1}(b)$ con $F : \mathbb{R}^{n+m} \to \mathbb{R}^n$ allora $TM = G^{-1}(b,0)$ con $G : (\mathbb{R}^{n+m})^2 \to (\mathbb{R}^n)^2 : (x,y) \mapsto (F(x),J_xF(y)).$

Proof. La jacobiana di G in (B,0) ha rango massimo dato che può essere scritta a blocchi come

$$J_{(x,y)}G(b,0) = \begin{pmatrix} J_x F(b) & O \\ * & J_x F(b) \end{pmatrix}$$

Siccome la jacobiana di F in b ha rango n allora la jacobiana di G ha rango 2n ovvero rango massimo. Quindi TM così definito è una varietà descritto da una carta che ha la struttura delle carte del fibrato tangente.

Esempio 10. (Fibrato tangente di S^n) S^n caratterizzata da $\langle x, x \rangle = 1$; $T_x S^n$ caratterizzato da $\langle x, y \rangle = 0$. Sono equazioni quadratiche quindi molto semplici. Il fibrato tangente sarà allora $TS^n = G^{-1}(1,0)$ con $G: \mathbb{R}^{n+1} \times R^{n+1} \to \mathbb{R}^2: (x,y) \mapsto (\langle x, x \rangle, \langle x, y \rangle)$ (si può verificare facilmente il risultato del teorema precedente in questo caso).

Nel caso n=1 la condizione $\langle x,y\rangle=0$ è soddisfatta prendendo $y=t(-x_2,x_1)\forall t\in\mathbb{R}$ Per n=1 $TS^1\cong S^1\times\mathbb{R}$ e quindi un punto del fibrato (x_1,x_2,y_1,y_2) dove $(x_1,x_2)\in S^1$ è descritto da (x_1,x_2,t) ovvero il cilindro. Segue inoltre che $TS^1\cong S^1\times\mathbb{R}$ ("\cong "= diffeomorfo).

Esempio 11. (Campi vettoriali su S^n) Consideriamo campi mai nulli (ovvero campi del tipo $p \in M \mapsto (x(p), y(p)) \in TS^n tcy \neq 0 \forall p$. Su S^{2n+1} è sempre possibile costruire campi di questo tipo costruire un campo di questo tipo prendendo $y(x) = (-x_2, x_1, \dots, -x_{2n+2}, x_{2n+1})$. Ovviamente questa costruzione non funziona per S^{2n} e in effetti si dimostra che quando la dimensione della sfera è pari ogni campo vettoriale sulla sfera ha almeno un punto in cui è nullo (pettinare la sfera).

4 Gruppi e algebre di Lie

Definizione 19 (Gruppo di Lie). G è gruppo di Lie se è varietà differenziabile dotata di due applicazioni lisce $\mu: G \times G \to G$, $\nu: G \to G$ e un elemento e to G sia gruppo con operazioni $g_1g_2 := \mu(g_1, g_2), g^{-1} = \nu(g), gg^{-1} = e$

Definizione 20 (Omomorfismo tra gruppi di Lie). $\phi: G \to G$ tc sia omomorfismo tra gruppi e sia liscia.

Definizione 21 (Sottogruppo di Lie). $H \subseteq G$ sottogruppo è sottogruppo di Lie se è anche sottovarietà.

Esempio 12. (Gruppi su \mathbb{R})

 $(\mathbb{R}, +) \text{ con } \mu(x, y) = x + y, \ \nu(x) = -x.$

 $(\mathbb{R}^{\times},\dot{})$ con $\mu(x,y)=xy,\,\nu(x)=1/x.$

 $\exp: \mathbb{R} \to \mathbb{R}^{\times}$ è omomorfismo fra questi due gruppi.

Definizione 22 (Traslazione a sinistra). $g \in G$ definisco traslazione a sinistra $L_q: G \to G: h \mapsto \mu(g,h) = gh$

Proprietà:

• Continuità

Proprietà 5. L_g è liscia

Proof. Siccome μ liscia per definizione.

• Traslazione per l'elemento neutro

Proprietà 6. $L_e = id_G$

• Composizione

Proprietà 7. $L_g \circ L_{g'} = L_{gg'}$

Proof. $(L_g \circ L_{g'})(h) = L_g(L_{g'}(h)) = g(g'h) = gg'(h) = L_{gg'}h$ dove ho usato l'associatività del gruppo.

• Inversa

Proprietà 8. L_q è diffeomorfismo

Proof. Dalle precedenti proprietà segue che $L_g \circ L_{g^{-1}} = L_e = id_G = L_{g'} \circ L_g$ ovvero esiste l'inversa che è ancora una traslazione a sinistra e quindi è liscia

• Differenziale

Proprietà 9. $(dL_q)_h$ è isomorfismo

Proof. Dalle proprietà del differenziale siccome L_q è diffeomorfismo. \square

Definizione 23 (Campi X^v). $v \in T_eG$ fissato X^v campo vettoriale su G è definito da $(X^v)g := (\mathrm{d} L_g)_e v \in T_g G$

Osservazione: $X_e^v = (X^v)_e = (dL_e)_e v = id_{t_G} v$.

Definizione 24 (Campi invarianti a sinistra). X campo vettoriale su G è invariante a sinistra se $(dL_g)_h X_h = X_{L_g(h)} = X_{gh} \in T_{gh}G, \ \forall g,h \in G.$

In altre parole significa che X è $L_g\text{-correlato}$ con sè stesso. Esistono campi così?

Teorema 10. X è invariante a sinistra iff è nella forma X^v per un certo $v \in T_eG$.

Proof. Dimostro che ogni X^v è invariante a sinistra ovvero che vale $(\mathrm{d}L_g)_h X^v_h = X^v_{gh}$. Usando le proprietà del differenziale e della tralsazione a sinistra $(\mathrm{d}L_g)_h X^v_h = (\mathrm{d}L_g)_h ((\mathrm{d}L_h)_e(v)) = (\mathrm{d}L_g \circ L_h)_e(v) = (\mathrm{d}L_{gh})_v = X^v_{gh}$. Dimostro che ogni campo invariante a sinistra (cioè $(\mathrm{d}L_g)_h X_h = X_{gh}$) è

Dimostro che ogni campo invariante a sinistra (cioè $(dL_g)_h X_h = X_{gh}$) è del tipo X^v per un certo $v \in T_e G$. Prendo nella definizione h = e, allora $(dL_g)_e X_e = X_{ge} = X_g$ ma $X_e \in T_e G$ e quindi $X_g = X_g^v$ con $v = X_e$.

10

Da quanto detto abbiamo il seguente ragionamento. G gruppo di Lie su cui sono definiti X,Y campi vettoriali invarianti a sinistra, ovvero to X,Y sono L_g -correlati con loro stessi $\forall g \in G$. Ma allora [X,Y] è L_g -correlato con sè stesso e quindi è invariante a sinistra.

- X invariante a sinistra $\iff X = X^v$ per un certo $v \in T_eG$
- Y invariante a sinistra \iff $Y = X^w$ per un certo $w \in T_eG$
- [X,Y] invariante a sinistra \iff $[X,Y]=X^z$ per un certo $z\in T_eG$

Le parentesi di Lie inducono un'operazione che associa a due elementi di T_eG un elemento di T_eG .

Definizione 25 (Prodotto di Lie o commutatore). $x, y, z \in T_eG$, il prodotto di Lie [v, w] = z iff le parentesi di Lie $[X^v, X^w] = X^z$

Definizione 26 (Algebra di Lie). Spazio vettoriale \mathfrak{g} dotato di applicazione bilineare $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g} : (a,b) \mapsto [a,b]$ che goda delle proprietà

- [a, b] = -[b, a]
- identità di Jacobi.

4.1 Gruppi matriciali

 $GL(n,\mathbb{R})=\{A\in M_n(\mathbb{R}): det A\neq 0\}$ è un gruppo di Lie con sottogruppi di Lie, ad esempio, $SO(n)=\{A\in M_n(\mathbb{R}): AA^t=id, det A=1\}$ e $SL(n)=\{A\in M_n(\mathbb{R}): det A=1\}$. Vediamo prima di tutto che $GL(n,\mathbb{R})$ è un gruppo di Lie. $GL(n,\mathbb{R})\in M_n(\mathbb{R})\cong \mathbb{R}^{n^2}$ e in particolare è un aperto: essendo diffeomorfo ad un aperto di \mathbb{R}^k è una varietà con atlante $\{id_{GL(n,\mathbb{R})}\}$. Prendo come μ il prodotto tra matrici, che è liscio in quanto polinomiale, e come ν l'operazione che ad una matrice associa la sua inversa rispetto al prodotto. $A^{-1}=\frac{1}{det A}A^\#$ con $A^\#_{ij}=(-)^{i+j}$ per il determinante della sottomatrice ottenuta cancellando da A la j-esima riga e la i-esima colonna. Siccome in $GL(n,\mathbb{R})$ il determinante è sempre diverso da zero questa operazione non da problemi ed è liscia.

5 Algebra multilineare

Definizione 27 (k-forme alternanti). V sv su \mathbb{R} . Una k-forma alternante è un'applicazione $f: V \times V \times ... \times V \equiv V^k \to \mathbb{R}$ lineare in ogni variabile e to $f(v_1, \ldots, v_k) = 0$ se $v_i = v_j$ per $i \neq j$.

Osservazione 11. $f(v_1, \ldots, v_k) = 0$ se $v_i = v_j$ per $i \neq j$ equivale a $f(v_1, \ldots, v_k) = \epsilon(\sigma) f(v_{\sigma_1}, \ldots, v_{\sigma_k})$.

Proof. Verifico doppia implicazione.

(\$\Rightarrow\$) Suppongo $v_i = v_j = v + w$ per certe $i \neq j$. Per la multilinearità $0 = f(\ldots v + w \ldots v + w \ldots) = f(\ldots v \ldots v \ldots) + f(\ldots v \ldots w \ldots) + f(\ldots w \ldots v \ldots) + f(\ldots w \ldots v \ldots) + f(\ldots w \ldots v \ldots) = f(\ldots v \ldots w \ldots) + f(\ldots w \ldots v \ldots)$ ovvero $f(\ldots v \ldots w \ldots) = -f(\ldots w \ldots v \ldots)$: lo scambio porta un -. S_k gruppo permutazioni è generato dagli scambi e $\epsilon: S_k \to \{\pm 1\}$ è omomorfismo, quindi la tesi.

 (\Leftarrow) $f(\ldots v\ldots v\ldots) = -f(\ldots v\ldots v\ldots)$ dato che lo scambio lascia inalterata f, ma quindi se due elementi sono uguali f=0.

Esempio 13. $V = \mathbb{R}^n$, $det : \mathbb{R}^{n^2} \to \mathbb{R} : (v_1 \dots v_n) \mapsto det(v_1, \dots v_n) = det(v_1|v_2 \dots |v_n)$ è una n-forma alternante.

Definizione 28. $Alt^k(V)$ insieme delle k-forme alternanti su V

Con le operazioni $(\lambda f + \mu g)(v_1, \dots v_k) = \lambda f(v_1 \dots v_k) + \mu g(v_1 \dots v_k)$, $Alt^k(V)$ è sv. Ha quindi senso studiarne la dimensione e cercarne una base. Alcune osservazioni.

- $Alt^0(V) = \mathbb{R}$ per definizione
- $Alt^1(V) = V^*$ (duale: tutte le mappe lineari $V \to \mathbb{R}$)
- $Alt^k(V) = \{0\}$ se k > dimV = n, infatti: siccome k > n $v_1 \dots v_k$ sono necessariamente linearmente dipendenti. Supponiamo $v_k = \sum_{i=1}^{k-1} c_i v_i$, allora per ogni k-forma si ha $f(v_1 \dots v_k) = \sum_{i=1}^{k-1} c_i f(\dots v_i \dots v_i) = 0$

Lemma 1. $dim(Alt^k(V)) \leq \binom{n}{k}$ so $k \leq n$.

Proof. scelta $e_1, \ldots e_n$ base di $V, v_1, \ldots v_k \in V$ si scrivono $v_j = \sum_{i_j=1}^n v_{ji_j} e_{i_j}$ (il pedice alle i serve solo a ricordare a quale vettore sto facendo riferimento ed è utile nel prossimo passaggio). $f(v_1, \ldots v_k) = \sum_{i_1}^n v_{1,i_1} f(e_{i_1}, v_2 \ldots v_k) = \sum_{i_1,i_2}^n v_{1,i_1} v_{2,i_2} f(e_{i_1}, e_{i_2}, v_3 \ldots v_k) = \cdots = \sum_{i_1,\ldots,i_k}^n v_{1,i_1} \ldots v_{k,i_k} f(e_{i_1}, \ldots e_{i_k}).$ Posso considerare solo i termini della sommatoria in cui tutti gli e_{i_j} sono diversi (negli altri casi f si annulla) e posso quindi riordinarli con una permutazione σ to $i \leq i_{\sigma_1} < i_{\sigma_2} < \cdots < i_{\sigma_k} \leq n$. Perciò f è determinata da al massimo $\binom{n}{k}$ costanti.

Se trovo un insieme di $\binom{n}{k}$ k-forme linearmente indipendenti ho base e dimensione. Per farlo introduco l'operazione:

Definizione 29 (Prodotto esterno o wedge). $\wedge: Alt^r(V) \times Alt^s(V) \to Alt^{r+s}(V): (f,g) \mapsto f \wedge g$ to

- $f \wedge g = (-)^{rs} g \wedge f$
- $f \wedge (g \wedge h) = (f \wedge g) \wedge h$.

Osservazione 12. $f \in Alt^1(V)$ allora $f \wedge f = 0$

Osservazione 13. $f_1, \ldots f_k \in Alt^1(V)$ allora $f_1 \wedge \cdots \wedge f_k = \epsilon(\sigma) f_{\sigma_1} \wedge \cdots \wedge f_{\sigma_k}$

Osservazione 14. $f_1, \ldots f_k \in Alt^1(V) = V^*$ allora il prodotto esterno è una k-forma e in particolare $(f_1 \wedge \cdots \wedge f_k)(v_1, \ldots v_k) = det(f_j(v_i))$

Prendo $I=\{i_1,\ldots i_k\}\subseteq \{1,\ldots n\}$ ordinato e $v_1\ldots v_k\in V$. Prendo poi $e_1\ldots e_n$ e $\epsilon_1\ldots \epsilon_n$ basi di V,V^* (cioè $\epsilon_i(e_j)=\delta_{ij}$) e definisco $\epsilon_I=e_{i_1}\wedge\cdots\wedge e_{i_k}$. Ho che $v_j=\sum_{i_j=1}^n v_{ji_j}e_{i_j}$ e $\epsilon_{i_j}(v_j)=v_{ji_j}$. Ne segue che, definite $\epsilon_I=e_{i_1}\wedge\cdots\wedge e_{i_k}$ al variare di I, queste hanno la forma

$$\epsilon_I(v_1, \dots v_k) = \det \begin{pmatrix} \epsilon_{i_1}(v_1) & \dots & \epsilon_{i_1}(v_k) \\ \vdots & & \vdots \\ \epsilon_{i_k}(v_1) & \dots & \epsilon_{i_k}(v_k) \end{pmatrix} = \det \begin{pmatrix} v_{1i_1} & \dots & v_{ki_1} \\ \vdots & & \vdots \\ v_{1i_k} & \dots & v_{ki_k} \end{pmatrix}$$

Ho $\binom{n}{k}$ possibili scelte di I: ho costruito una famiglia di $\binom{n}{k}$ k-forme. DEVO MOSTRARE SONO LI

Si scrive $Alt^k(V) = \bigwedge^k V^*$

6 Forme differenziali

ciao