Homework 4

ECON 8050: Macroeconomics II Tate Mason

The process for y = log(income) is:

$$y_{t+1} = \mu + \rho y_t + \sigma \varepsilon_{t+1}$$

where $\varepsilon \sim N(0,1)$

- (1) Set $\mu=0$, $\rho=0.9$ and $\sigma=0.0242$. Discretize the process for y with 9 points. Download the Matlab code ghquad.m to compute Gauss-Hermit grids and weights. Use 10,000 as maxit input. As an output, print out the vector of discretized y and the transition matrix.
- (2) Simulate the Markov chain and compute the implied autocorrelation coefficient $(\hat{\rho})$. Note: use 1 million observations to simulate a persistent AR process. Disregard first 1000 observations. Report both $\hat{\rho}$ and $\hat{\sigma}$ computed from the simulated data.

Solution 1

y - vector:

```
\begin{pmatrix} -0.1092 & -0.776 & -0.503 & -0.0248 & 0.0000 & 0.0248 & 0.0503 & 0.0776 & 0.1092 \end{pmatrix}
```

Transition Matrix:

[0.5755]	0.3551	0.0649	0.0044	0.0001	0.0000	0.000	0.0000	[00000]
0.1572	0.4517	0.3116	0.0729	0.0063	0.0002	0.0000	0.0000	0.0000
0.0179	0.1945	0.4222	0.2881	0.0708	0.0063	0.0002	0.0000	0.0000
0.0009	0.0349	0.2212	0.4099	0.2669	0.0623	0.0048	0.0001	0.0000
0.0000	0.0028	0.0499	0.2441	0.4063	0.2441	0.0499	0.0028	0.0000
0.0000	0.0001	0.0048	0.0623	0.2659	0.4099	0.2212	0.0349	0.0009
0.0000	0.0000	0.0002	0.0063	0.0708	0.2881	0.4222	0.1945	0.0179
0.0000	0.0000	0.0000	0.0002	0.0063	0.0729	0.3116	0.4517	0.1572
[0.0000]	0.0000	0.0000	0.0000	0.0001	0.0044	0.0649	0.3551	0.5755

Solution 2

$$\hat{\rho} = 0.8857$$

$$\hat{\sigma} = 0.0239$$

%% PS4 - Tauchen-Hussey
clear;
clc;

%% Setting parameters

ECON - 8050 Tate Mason

```
mu = 0;
  rho = 0.9;
  sigma = 0.0242;
  n = 9;
  maxit = 10000;
 % Calling GHQuad
  [x,w] = ghquad(n, maxit);
 %% Problem 1
 %Calculating Unconditional Distribution
  uncon_mean = mu / (1-\text{rho});
  uncon_sd = sigma / sqrt(1-rho^2);
 %Calculate Steps and Discretize Space
 m = 3;
  y_state = zeros(n,1);
  for i = 1:n
    y_state(i) = uncon_mean + sqrt(2)*sigma*x(i);
  end
 % Transition Probability
 P = zeros(n, n);
  for i = 1:n
    mean_next = mu + rho*y_state(i);
    for j = 1:n
      P(i,j) = w(j)/sqrt(pi)*exp(-(0.5)*((y_state(j) - rho*y_state(i))/sigma)^2)/ex
    dens = sum(P(i,:));
   P(i,:) = P(i,:) / dens;
  end
 %Print results
  disp('Discretized State Space for y: ');
  disp(y_state);
  disp('Transition Matrix: ');
  \mathrm{disp}\left( P\right) ;
 %% Problem 2
n = 1000000;
dis = 1000;
y_sim = zeros(n, 1);
init = randi(length(y_state));
y_sim(1) = y_state(init);
```

ECON - 8050 Tate Mason

```
current_state = init;
for \ t = 2:n
 cum_prob = cumsum(P(current_state, :));
 r = rand();
 next_state = find(r <= cum_prob, 1, 'first');</pre>
 y_sim(t) = y_state(next_state);
  current_state = next_state;
end
y_sim_final = y_sim(dis+1:end);
y_t = y_sim_final(1:end-1);
y_tp1 = y_sim_final(2:end);
y_mean = mean(y_sim_final);
y_demean = y_t - y_mean;
y_tp1_demean = y_tp1 - y_mean;
rho_hat = (y_demean' * y_tp1_demean)/(y_demean'*y_demean);
e_hat = y_tp1 - (mu + rho_hat*y_t);
sigma_hat = sqrt(mean(e_hat.^2));
fprintf('Estimated autocorrelation coefficient (rho_hat): %.6f\n', rho_hat);
fprintf('Estimated variance (sigma_hat): %.6f\n', sigma_hat);
```