# Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/000730

International filing date: 26 January 2005 (26.01.2005)

Document type: Certified copy of priority document

Document details: Country/Office: DE

Number: 20 2004 004 593.1

Filing date: 22 March 2004 (22.03.2004)

Date of receipt at the International Bureau: 07 April 2005 (07.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)



### BUNDESREPUBLIK DEUTSCHLAND



## Prioritätsbescheinigung über die Einreichung einer Gebrauchsmusteranmeldung

Aktenzeichen:

20 2004 004 593.1

Anmeldetag:

22. März 2004

Anmelder/Inhaber:

Dieter Ramsauer, 58332 Schwelm/DE

Bezeichnung:

Scharnier zur Montage in einem Durchbruch

IPC:

E 05 D 5/02

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Gebrauchsmusteranmeldung.

München, den 22. Februar 2005

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Cull



DR.-ING. ERNST STRATMANN

PATENTANWALT

D-40212 DÜSSELDORF · SCHADOWPLATZ 9

22. März 2004

0413 Gm

Dieter Ramsauer 58332 Schwelm

Scharnier zur Montage in einem Durchbruch

Die Erfindung betrifft ein Scharnier, das zumindest ein in einem Durchbruch in einer dünnen Wand, wie Blechschranktür montierbares Scharnierteil aufweist, mit einem den Rand des Durchbruchs der dünnen Wand auf deren einen (äußeren) Seite überdeckenden Kopfteil, wie Flansch oder Scharnierblatt, und einen von dem Kopfteil ausgehenden, durch den Durchbruch in der dünnen Wand hindurch schiebbaren Rumpfteil, und mit einem vom Rumpfteil getragenen, auf der anderen (hinteren) Seite der dünnen Wand sich abstützenden, vom Rumpfteil getrennten Halteteil.

Ein derartiges Scharnier ist bereits aus der EP 0223871 A1 bekannt. Beim Stand der Technik besteht das Halteteil aus einem Stift 20, der durch entsprechende Bohrungen des einen Scharnierteils hindurchgeführt wird und dieses Scharnierteil im Eckbereich eines Schaltschrankes aus Blech festhält. Diese Art der Montage hat den Vorteil, daß sie auch bei relativ dünnen Blechen eine stabile Befestigung des Türblatts an einem Türrahmen ermöglicht, was bei reinen Schraubscharnieren häufig nicht der Fall ist.

Nachteil ist jedoch, daß das Scharnier nur für ganz bestimmte Blechstärken geeignet ist, abweichende Blechstärken führen zu einem Spiel oder zu einem nicht möglichen Montieren. Der Stift kann außerdem als loses Teil verloren gehen

Außerdem ist die Montage immer noch etwas umständlich, insbesondere müssen beide Seiten des Türblatts zugänglich sein.

Aufgabe der Erfindung ist es, die bekannte Anordnung weiter zu verbessern, insbesondere hinsichtlich der Vereinfachung der Montage und eine möglichst automatische Anpassung an unterschiedliche Blechstärken der dünnen Wand. Außerdem sollen nach Möglichkeit lose Teile vermieden werden.

Bestimmte beim Stand der Technik bereits vorhandene Vorteile sollen nach Möglichkeit erhalten bleiben, so die Unzugänglichkeit der Scharnierbefestigung bei geschlossenem Schrank, andererseits die Lösbarkeit bei geöffnetem Schrank, zumindest unter Benutzung eines Werkzeuges.

Gelöst wird die Aufgabe erfindungsgemäß dadurch, daß das Halteteil von Halteelementen gebildet wird, die von dem Rumpfteil in Richtung seiner Außenfläche nachgiebig vorspringen und deren freies Ende eine Schrägfläche zur spielfreien Abstützung des Rumpfteils auf dem Rand oder Kante des Durchbruchs in der dünnen Wand aufweist.

Durch diese Maßnahme wird bereits ein Großteil der Aufgaben erfüllt, die sich die Erfindung gestellt hat. Insbesondere ist die Montage stark vereinfacht, zum anderen kann auch sehr dünnes Blech sicher gehalten werden. Unterschiedliche Blechstärken, wenn sie bestimmte Bereiche nicht überschreiten, werden spielfrei gehalten. Lose Teile sind meist nicht erforderlich.

Eine derartige klipsartige Befestigung ist für das Scharnier in der hier dargestellten Form bisher nicht bekannt. Bekannt ist eine Klipsbefestigung für die Schnellmontage eines Verschlußgehäuses, wobei auf die US-PS 5435159 verwiesen wird. Dort wird beispielsweise in einem runden Durchbruch in einer dünnen Wand ein derartiges Verschlußgehäuse angeordnet. Das für einen Vorreiberverschluß gedachte Gehäuse umfaßt ein auf der einen äußeren Seite der dünnen Wand anzuordnendes, den äußeren Rand des Durchbruches überdeckendes Kopfteil, nämlich einen Flansch, von dem ein den Durchbruch in montierter Stellung durchragendes Rumpfteil ausgeht, von dem in Richtung seiner Außenfläche nachgiebige Zungenelemente vorspringen, die am freien Ende eine Schrägfläche zur spielfreien Abstützung des Rumpfteils auf dem

Rahmen des Durchbruches der anderen, inneren Seite der dünnen Wand aufweist. Nachteilig ist hier, daß die Haltekraft der mit dem Rumpfteil einstückigen Halte- oder Zungenelemente abhängig von deren Federspannung ist, die vom benutzten Kunststoffmaterial abhängt und daher nicht beliebig groß gemacht werden kann. Bei Scharnieranwendung müssen aber häufig sehr große Kräfte aufgenommen werden, so daß diese Art der Klipsbefestigung auf ein Scharnierteil nicht ohne weiteres übertragen werden kann.

Aus der EP 0258491 ist eine ähnliche Konstruktion bekannt, wie aus der US-PS 5435159, mit der ein Schließzylinder mittels einem den Schließzylinder aufnehmenden, Haltezungen bildenden Kunststoffgehäuse in dünnwandigen Türen, Schubladen od. dgl. befestigbar ist. Durch schräge Flächen an den Zungenenden wird eine erwünschte Anpassbarkeit an üblicherweise auftretende Variationen der zu verriegelnden Bauteile erreicht. In Spalte 9 der Druckschrift wird auch beschrieben, daß die federnden Zungen nach Montage des Schließzylinders in dem Gehäuse nicht mehr nach innen ausweichen können. Nachteilig ist bei diesem Stand der Technik, daß eine ganz bestimmte Konstruktion, nämlich ein rundes Gehäuse mit darin eingeführtem Schließzylinder, vorgesehen werden muß, um diese Arretierung der Zungen nach der Montage zu ermöglichen. Auch hier scheint die Übertragung dieser Zungenbefestigung auf ein Scharnier nicht naheliegend zu sein.

Beim erfindungsgemäßen Scharnier, bei dem das Rumpfteil und das Halteteil zwei getrennte Teile sind, nicht wie bei den zwei zuletzt genannten Druckschriften einteilig aus Kunststoff gespritzt, ergibt sich eine wesentlich größere Belastbarkeit, da je nach Bedarf ein nicht so festes Kunststoffmaterial, das sich leicht spritzen läßt, mit festerem Material, wie mit Metall, kombiniert werden kann, so daß die gewünschte Festigkeit des Scharniers durch entsprechende Wahl des Materials erreicht wird.

Gemäß einer Weiterbildung der Erfindung sind zwei diametral zueinander angeordnete Halteelemente vorgesehen, auf die Druckelemente wie Federeinrichtungen, insbesondere eine beiden Halteelementen gemeinsame Spiralfeder oder zwei Spiralfedern oder Keileinrichtungen, wie konische Schrauben einwirken. Da die

Federeinrichtungen mit an sich frei wählbarer Federkraft vorgesehen werden können, kann die Verriegelungskraft an die jeweilige Aufgabenstellung angepaßt werden und ist nicht vom Kunststoffmaterial abhängig.

Beim Stand der Technik ist die Verriegelungskraft stark abhängig von den Materialeigenschaften des verwendeten Kunststoffes, es sei denn man verwendet einen Stift, was aber die Montage wiederum in nicht gewünschter Weise kompliziert macht, da insbesondere eine Blindmontage nicht möglich ist, was erfindungsgemäß vorgesehen werden kann.

Gemäß einer noch anderen Weiterbildung des Scharniers sind die Halteelemente im Abstand zur hinteren Fläche der dünnen Wand, um eine zur Ebene der dünnen Wand parallele Achse begrenzt drehbar angeordnete Hebel. Diese Ausführungsform vergrößert die Haltekraft bei gleicher Federstärke.

Alternativ sind die Halteelemente im Abstand zur hinteren Fläche der dünnen Wand um eine zu dieser Fläche senkrechte Achse begrenzt drehbar angeordnete Hebel. Damit können gleichzeitig vier Haltepunkte mit zwei Hebeln erreicht werden und dient somit ebenfalls einer Verstärkung der Haltekraft bei unveränderter Federspannung.

Gemäß einer noch anderen Weiterbildung der Erfindung sind die Halteelemente in einem zur Ebene der dünnen Wand parallelen, im Querschnitt rechteckigen Zylinder verschieblich angeordnete Schlitten, die durch eine zwischen ihnen selbst oder im Zylinder verrastende Hakeneinrichtung gegen Druckfederkraft gehalten werden. Der Vorteil dieser Konstruktion liegt in der relativ geringen Bauhöhe auf der hinteren Seite des Türblatts. Eine ähnliche Konstruktion ergibt sich dann, wenn die Halteelemente von in einem zur Ebene der dünnen Wand parallelen, im Querschnitt rechteckigen Zylinder verschieblich angeordnete Schlitten aus starrem Material, wie Metall sind, die durch eine zwischen ihnen angeordnete Verstiftungseinrichtung gegen Druckfederkraft gehalten werden. Hierbei handelt es sich um eine besonders tragfähige Scharnieranordnung.

Der Zylinder kann eine Teiltrennwand oder Hinterschneidung oder Durchbruchkante besitzen, an der sich der Schlitten mit einer Schulter oder Haken axial abstützen kann. Daran erkennt man die Variabilität der erfindungsgemäßen Konstruktion, was von Vorteil ist.

Eine Verkleinerung der Konstruktion ist möglich, wenn gemäß einer Weiterbildung der Erfindung das Halteelement einen Durchbruch aufweist, der eine Spiraldruckfeder mit zumindest einem Teil ihres Durchmessers aufnimmt.

In den Durchbruch können Vorsprünge ragen, um das Federelement radial festzuhalten.

Insbesondere können die Halteelemente von zwei nebeneinander liegenden flachen Metallstücken gebildet sein, die jeweils einen Durchbruch aufweisen, welche beiden Durchbrüche gemeinsam einen Raum bilden, der eine Spiraldruckfeder mit zumindest einen Teil Ihres Durchmessers aufnimmt. Mit der Konstruktion läßt sich eine günstige Vormontage ermöglichen, in der diese drei Teile derart von der Feder zusammengehalten werden, daß sie getrennt von dem übrigen Teil des Scharniers gehandhabt werden können. Das gilt auch, wenn die Halteelemente von zwei nebeneinander liegenden Metallstücken gebildet werden, die zueinander gerichtete Vor-/Rücksprünge bilden, die axiale Gleitbewegung zueinander begrenzen. Hier ist der zusätzliche Vorteil die Bewegungswegbegrenzung ohne weitere Maßnahmen an dem Zylinder.

Gemäß einer Weiterbildung dieser Konstruktion werden die Halteelemente von zwei nebeneinander liegenden Kunststoff- oder Metallstücken gebildet, die zueinander gerichtete Vor-/Rücksprünge bilden, die mit einem drehbaren Werkzeug oder Schlüssel derart in Eingriff nehmbar sind, daß bei Drehung des Werkzeugs oder Schlüssels die Kunststoff- oder Metallstücke gegen die Federkraft zueinander verschoben werden. Das ermöglicht ohne großen Fingeraufwand die beiden hier wirksamen Halteelemente zurückzuziehen und dadurch das Scharnierteil aus dem Durchbruch der dünnen Wand bei Bedarf wieder zu lösen. Da dies nur mit einem

bestimmten Werkzeug möglich ist, das nicht jedermann zur Verfügung steht, stellt dies auch einen günstigen Sicherheitsaspekt dar. Wie schon erwähnt ist ein weiterer Vorteil dadurch erreichbar, daß die Halteelemente von einem Metallstück oder von zwei nebeneinander liegenden Metallstücken gebildet werden, das oder die gemeinsam von einer Feder derart gehalten wird/werden, daß diese drei Teile eine in sich stabile, handhabbare Einheit bilden.

Statt der Verstiftungseinrichtung oder in Weiterbildung der Verstiftungseinrichtung können auch ein Fixierungsstift oder Fixierungsstopfen oder Fixierungsschraube zur Fixierung der Halteelemente nach Montage des Scharnierteils in dem Durchbruch vorgesehen sein.

Eine Konstruktion, bei der der Kopfteil im Bereich der Halteelemente ein Rücksprung aufweist, erweist sich insofern als vorteilhaft, als dabei auch Ausbeulungen der Ränder des Durchbruches unschädlich sind, wenn sie nicht zu groß werden. Sind die Ränder nur wenig ausgebeult, wird die Anlagefläche vergrößert, so daß größere Kräfte aufgenommen werden können.

Das Haltelemente kann auch von einer passend gebogenen Blattfeder gebildet werden. Gemäß einer Weiterbildung ist die Blattfeder in einem vom Rumpfteil gebildeten radial sich erstreckenden Hohlraum einschiebbar. Der Hohlraum kann einen Schlitz oder Rücksprung bilden, in den ein Vorsprung/Rücksprung der Feder diese in Arbeitsstellung fixierend einrastet. Andererseits kann die Blattfeder von einer in eine von Rumpfteil gebildeten Gewindebohrung eingeschraubten Kopfschraube gehalten sein. Alternativ kann aber die Blattfeder auch auf eine vom Rumpfteil gebildete Fläche aufgepunktet (aufgeschweißt) oder aufgeklebt sein.

Eine Alternative ergibt sich, wenn das Scharnierteil einen Durchbruch wie die dünne Wand aufweist und das Halteteil und das Rumpfteil ein eigenes Kopfteil besitzen. Kopfteil und Rumpfteil können im übrigen auch zwei miteinander verschraubte Teile sein, oder aber auch miteinander verklebt oder sonstwie nicht-lösbar oder lösbar verbundene Teile.



Es kann von Vorteil sein, mehrere Halteelemente in axialer Richtung des Scharniers nebeneinander anzuordnen. Andererseits ist es auch möglich, ein zweites Scharnierteil, das mit dem ersten Scharnierteil schwenkbar verbunden ist, einen analogen Aufbau zu geben, wie das erste Scharnierteil ihn aufweist. Je nach Bedarf kann es günstig sein, wenn ein zweites Scharnierteil, das mit dem ersten Scharnierteil schwenkbar verbunden ist, hinsichtlich seiner Befestigung an einem Rahmen, wie Türrahmen, oder an einem Türblatt, einen anderen Aufbau aufweist, als das erste Scharnierteil. So könnte das zweite Scharnierteil am Rahmen oder Türblatt verschweißt sein. Andererseits könnte das zweite Scharnierteil am Rahmen oder Türblatt verschraubt sein. Eine noch andere Alternative ist die, das zweite Scharnierteil am Rahmen oder Türblatt zu verkleben. Schließlich ist auch möglich, das zweite Scharnierteil am Rahmen oder Türblatt mittels Klemmstift zu befestigen, wie beim Stand der Technik.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert, die in den Zeichnungen dargestellt sind.

#### Es zeigt:

- Fig. 1A eine Querschnittsansicht durch den Abkantungsbereich eines Türblatts, das mittels erfindungsgemäßer Scharniereinrichtung an einem Türrahmen angelenkt ist;
- Fig. 1B eine Seitenansicht des in Fig. 1A dargestellten Scharniers;
- Fig. 1C eine Ansicht von links auf das in Fig. 1B dargestellte Scharnier, oberer Teil;
- Fig. 1D eine Ansicht von oben auf dieses Teil;
- Fig. 2 einen für das erfindungsgemäß aufgebaute Scharnier geeigneten Durchbruch im Türblatt;

8 eine Ausführungsform eines zugehörigen Halteteils; Fig. 3A Fig. 3B und 3C zwei axiale Schnittansichten durch das Halteteil gemäß Fig. 3A; eine Ansicht von oben; Fig. 4A eine Seitenansicht und Fig. 4B eine Schnittansicht, Fig. 5A eine Ansicht von der Seite und Fig. 5B eine Ansicht von unten auf eine noch andere Ausführungsform der Fig. 5C Erfindung; eine Seitenansicht, teilweise geschnitten; Fig. 6A eine Ansicht von rechts gemäß Fig. 6A in einer noch anderen Fig. 6B Ausführungsform des erfindungsgemäßen Scharniers; Blech geeignete ausbeulendes für Fig. 7A eine Seitenansicht einer Scharnieranordnung; eine Ansicht von hinten und Fig. 7B das zugehörige Blech in einer Schnittansicht; Fig. 7C eine Seitenansicht eines noch anders aufgebauten Scharniers;

Fig. 8B, 8C verschiedene Stellungen und Ansichten des Scharniers gemäß Fig. 8A

Fig. 8A

während des Befestigungsvorganges;

Fig. 8D den eckigen Kopf eines Stopfens;

Fig. 8E eine Ansicht von links auf die in Fig. 8A dargestellte Anordnung;

Fig. 8F, 8G und 8H

drei verschiedene Ansichten des zugehörigen Halteelements;

Fig. 9A eine Ansicht von oben,

Fig. 9B eine Ansicht von der Seite und

Fig. 9C den zugehörigen Durchbruch eines noch anderen Scharniers gemäß der Erfindung;

Fig. 10 eine Blechschranktür, angelenkt an einen Blechschrankrahmen mittels erfindungsgemäß ausgestatteter Scharniereinrichtungen;

Fig. 11A, 11B, 11C, 11D

verschiedene Ansichten eines mit einem Schlüssel lösbaren Scharniers gemäß der Erfindung;

Fig. 11E und 11F

eine abgewandelte Ausführungsform eines mit Schlüssel lösbaren Scharniers;

Fig. 12A, 12B und 12C

verschiedene Ansichten eines anderen mit Schlüssel lösbaren Scharniers;

Fig. 12D den zugehörigen Durchbruch in einer dünnen Wand;

Fig. 12E und 12F

ein zugehöriges Halteelement in zwei verschiedenen Darstellungen;

Fig. 12G, 12H und 12I

weitere Darstellungen dieses Halteelements während des Betriebs;

Fig. 12J, 12K, 12L

eine andere Ausführungsform eines geeigneten Halteelements;

Fig. 12M, 12N, 12O, 12P

eine noch andere Ausführungsform des Halteelements;

Fig. 13A, 13B, 13C

eine Ausführungsform mit an den Scharnierblättern angeschweißten Rumpfteil;

Fig. 13D und 13E

eine Ausführungsform mit am Rumpfteil angeschweißter Haltefeder;

Fig. 14A und 14B

eine Ausführungsform mit einschiebbarer Haltefeder;

Fig. 15A, 15B, 15C und 15D

eine Ausführungsform, bei der eine Haltefeder auf ein Rumpfteil aufgeschraubt ist;

Fig. 16A, 16B, 16C und 16D

verschiedene Ansichten eines Halteelements, das von dem Scharnierblatt getrennt ist;

Fig. 17A, 17B und 17C

eine Ausführungsform, bei der das Rumpfteil aufgeschraubt ist;

Fig. 18A, 18B und 18C

verschiedene Ansichten eines alternativen Scharniers mit erfindungsgemäßen Merkmalen;

Fig. 18D, 18E, 18F, 18G

verschiedene Ansichten des zugehörigen Halteelements;

Fig. 18H, 18I

eine andere Ausführungsform des Halteelements;

Fig. 19A, 19B, 19C und 19D

verschiedene Ansichten eines anderen Scharnierteils mit erfindungsgemäßen Merkmalen;

Fig. 19E, 19F, 19G

die zugehörigen Halteelemente als Einzelteildarstellung;

Fig. 19 H in einer Stirnansicht die T-Form des Halteelements;

Fig. 20A, 20B, 20C, 20D, 20E und 20F

verschiedene Darstellungen eines noch anderen Scharniers mit erfindungsgemäß ausgestatteter Befestigung;

Fig. 20G, 20H, 20I, 20J

das zugehörige Befestigungselement;

Fig. 20K und 20 L

den zugehörigen anschraubbaren Zylinder;

Fig. 21 in einer geschnittenen Draufsicht eine Ausführungsform mit Verkeilungsschraube;

- Fig. 22A in einer Teilweise geschnittenen Draufsicht eine Ausführungsform mit rundem Durchbruch;
   Fig. 22B eine Ansicht von unten gemäß Fig. 22A auf ein Scharnierteil, das zwei runde Durchbrüche erfordert;
   Fig. 22C eine Draufsicht auf ein Scharnierteil mit einem runden Durchbruch und zwei Führungslöchern;
- Fig. 23 eine Ansicht ähnlich der Fig. 21 zur Darstellung einer Keileinrichtung in Form einer konischen Kopfschraube;
- Fig. 24 in einer Querschnittsansicht den Eckbereich eines Schaltschrankes mit zwei Scharnierteilen, die mittels Stift bzw. erfindungsgemäß am Türblatt bzw. am Türrahmen befestigt sind;
- Fig. 25A eine Darstellung eines Eckbereichs eines Schaltschrankes mit schraubbefestigten Scharnierteilen;
- Fig. 25B entsprechend mit erfindungsgemäß befestigten Scharnierteilen; und
- Fig. 26 in einer Querschnittsansicht ein T-förmiges Klipselement aus gepreßtem Aluminiumprofil.

Fig. 1A, 1B, 1C und 1D zeigen in verschiedenen Ansichten ein erfindungsgemäß aufgebautes Scharnier 10, mit zumindest einem in einem Durchbruch 12, der hier rechteckig ist, siehe z. B. Fig. 2, in einer dünnen Wand 14, wie Blechschranktür 14 montierbares Scharnierteil 16 und einem weiteren Scharnierteil 18, das mit dem ersten Scharnierteil mittels eines Scharnierstiftes 20 schwenkbar verbunden ist und an einem Türrahmen 20 befestigt sein mag, siehe Fig. 1A. Das an der Blechschranktür 14 (wie auch das an dem Rahmen 22) montierbare jeweilige Scharnierteil 16 bzw. 18 umfaßt einen den Rand 24 des Durchbruchs 12 in der dünnen Wand 14 oder 22 auf deren

einen (äußeren) Seite 26 überdeckendes Kopfteil 28, wie Flansch oder hier Blatt eines Scharniers, und einen von dem Kopfteil 28 ausgehenden, durch den Durchbruch 12 in der dünnen Wand 14 hindurch schiebbaren Rumpfteil 30, und einem vom Rumpfteil getragenen, auf der anderen (hinteren) Seite 32 sich abstützenden, vom Rumpfteil 30 getrennten Halteteil 34, wobei das Halteteil 34 von Halteelementen 36 gebildet wird, welches Halteelement 36 von dem Rumpfteil 30 in Richtung seiner Außenfläche nachgiebig vorspringt und deren freies Ende eine Schrägfläche 38 spielfreien Abstützung des Rumpfteils 30 auf dem Rand oder der Kante 40 des Durchbruchs 12 in der dünnen Wand 14 (oder 22) aufweist. Wegen der Symmetrie der Kräfte ist es günstig, daß beispielsweise gemäß der Fig. 4B zwei diametral zueinander 36-2 vorgesehen Halteelemente 36-1 und angeordnete Federeinrichtungen 42 einwirken, beispielsweise eine den beiden Halteelementen 36-1 und 36-2 gemeinsame Spiralfeder 42 oder jeweils eine Spiralfeder 42-1, 42-2 in dem Sinne wirken, daß die Halteelemente 36 in Richtung auf den Rand 40 der Durchbruchöffnung 12 gedrängt werden. Wie in Fig. 4B dargestellt ist, können die Halteelemente 36-1, 36-2 in einem Abstand A zur (hinteren) Fläche 32 der dünnen Wand 14 um eine zur Ebene der dünnen Wand 14 parallele Achse 46 angeordnete Hebel 44 sein. Der Drehwinkel der Hebel 44 ist durch Anschlageinrichtungen 48 begrenzt, während bei Fig. 4B die Halteelemente 36 im Abstand A zur (hinteren) Fläche der dünnen Wand begrenzt um Achse 46 drehbar angeordnet sind.

Gemäß der Darstellung von Fig. 3A ist, die Anordnung der Halteelemente 136-1, 136-2 derart, daß sie als in einem zur Ebene der dünnen Wand 14 oder 22 parallele, im Querschnitt rechteckigen Zylindern 50 axial verschieblich angeordnete Schlitten 52 angeordnet sind, welche Schlitten 56 durch eine zwischen ihnen selbst oder im Zylinder 50 verrastende Hakeneinrichtung 54 gegen Druckfederkraft der Feder 42 gehalten werden, siehe beispielsweise Fig. 3B, mit den Haken 54, oder in Fig. 6B den Haken 154, die sich an einem Keil 56 oder an einem Stift 156 abstützen.

Gemäß Fig. 5A, 5B und 5C sind die dort dargestellten Halteelemente 236 um eine zu der dünnen Wand 214 senkrechte Achse 58 begrenzt drehbar angeordnete Hebel 236.

Der Zylinder 50 kann auch eine Teiltrennwand oder Hinterschneidung oder eine Durchbruchkante 60 besitzen, an der sich der Schlitten mit einer Schulter oder einem Haken axial abstützen kann. So zeigt Fig. 8A, einen Scharnierteil 316 mit einem Rumpfteil 330, in dem Schlitten 352 gegen die Kraft einer Feder 342 durch die Kanten des Durchbruches beim Einschieben infolge der Einschrägung 62 zurückweichen können, siehe Fig. 8A, bis die Kante die Klemmfläche 64 erreicht hat, in welcher Position die Feder 342 die beiden Befestigungselemente 352 gegen die Kanten des Durchbruches drückt und das Scharnierteil 316 mit der dünnen Wand 14 fest verbindet. Damit die Halteelemente 352 vor der Montage in einem Durchbruch nicht verlorengehen können, verhaken sie sich gegenseitig durch Haken 354, siehe Fig. 8C. Trotzdem ist ihnen möglich, beim Einschieben sich gegenseitig auszuweichen und die Stellung gemäß Fig. 8B zu erlangen. Fig. 8D zeigt, daß in dem ausgefahrenen Zustand die mittige Lage durch ein Fixierungsstopfen gesichert wird, außerdem wird der Fixierungsstopfen 66 ein Ausbauen des Scharniers verhindern, daß die Halteelemente 352 nicht wieder in das zylindrische Gehäuse zurückgeschoben werden können, siehe Fig. 8D. Das in Fig. 8F, 8G und 8H dargestellte Halteelement als Einzelteil zeigt auch den Raum 368 für die Druckfeder 342. Eine Rücksprungbahn 70 nimmt die Spitze des Fixierungsstopfens 66 auf und läßt den Halteelementen nur eine begrenzte Hubbewegung zu. Ein weiterer Rücksprung 72 ermöglicht ein Nebeneinandergleiten der beiden gegeneinander beweglichen Halteelemente.

Fig. 7C zeigt in einer Schnittansicht eine dünne Wand 14 aus Blech, bei der Bereiche der Durchbruchränder infolge starker Belastung ausgebeult sind. In diesem Fall ist es günstig, wenn der Kopfteil im Bereich der Halteelemente einen Rücksprung 74,aufweist, in den sich die ausgebeulten Randbereiche 24 aufgenommen werden können. Das ermöglicht, durch Nachschieben des Halteelements 36 weiterhin eine spielfrei Befestigung.

Fig. 9A zeigt in einer Stirnansicht und Fig. 9B in einer Seitenansicht ein Scharnierteil 434, das aus vier nebeneinander liegenden Halteelementpaaren zusammengesetzt ist. Die Konstruktion hat Ähnlichkeit mit der von Fig. 4A, 4B, jedoch ist eine gemeinsame Achse 446 für die Halterung der sich gegenüberliegenden Halteelemente 436

vorgesehen. Der Achsenstift 446 ist durch drei Stützen 74 gehalten, wobei eine Stütze eine geriffelte Oberfläche des Achsenstiftendes verpressend aufnimmt.

Die Halteelemente 436 haben an ihrem Ende einen Vorsprung 76 der in Verbindung mit einem Rücksprung im Kopfteil 428 zu einer Drehwegbegrenzung aufgrund der Federkraft 242 führt. Der Besondere Vorteil ist hier auch, daß das Kopfteil 428 und das Rumpfteil, gebildet durch die Stützen 74, auch einfach gespritzt werden kann, obwohl hier eine Nut 78 für eine Dichtung vorgesehen ist, die normalerweise Schiebeeinrichtungen mit Spritzwerkzeugen erfordern würde.

Das in Fig. 1 dargestellte Scharnier weist ein zweites Scharnierteil 18 auf, das mit dem ersten Scharnierteil 16 schwenkbar verbunden ist, und einen anderen Aufbau wie das erste Scharnierteil 16 aufweist. Demgegenüber zeigt Fig. 5A ein zweites Scharnierteil 218, das mit dem ersten Scharnierteil 214 schwenkbar verbunden ist, wobei es aber hinsichtlich seiner Befestigung an einem Rahmen, wie Türrahmen 222 oder an einem Türblatt einen anderen Aufbau als das erste Scharnierteil aufweist, hier mit ihm verschweißt ist. Das zweite Scharnierteil kann auch am Rahmen oder am Türblatt verschraubt sein, siehe Fig. 2A. Alternativ kann aber das zweite Scharnierteil auch am Rahmen oder am Türblatt verklebt sein. Schließlich ist auch eine Befestigung des zweiten Scharnierteils am Rahmen oder Türblatt mittels Klemmstift, wie beim Stand der Technik, möglich.

Gemäß Fig. 10 ist eine Tür 14 mit einem Rahmenteil 22 über ein Scharnier 10 schwenkbar verbunden, wobei die beiden Scharnierteile mittels Halteelementen 36 jeweils im Rahmen 27 bzw. Türblatt 14 gehalten sind.

Aus Symmetriegründen ist es günstig, auch die andere Seite des Schrankes mit entsprechenden Durchbrüchen zu versehen, wobei diese Durchbrüche dort für die Befestigung eines Stangenverriegelungselementes dienen. Bei der Ausführungsform gemäß Fig. 11A, 11B, 11C, 11D sind die Halteelemente 536 von zwei nebeneinander liegenden Metallstücken oder Kunststoffstücken gebildet. Sie bilden zueinander gerichtete Vor-/Rücksprünge, derart, daß mit einem drehbaren Werkzeug oder

Schlüssel 82 die beiden Halteelemente 536-1, 536-2 durch Drehen des Werkzeuges 82 gegen die Kraft der Feder 542 zurückgezogen und dadurch das Scharnier von dem Türbaltt 514 demontiert werden kann. Der Aufbau ist zweckmäßigerweise so getroffen, daß der Hebel 82 selbsttätig in der geöffneten Stellung verharrt, so daß bei mehreren Scharnieren alle gleichzeitig in die Offenstellung gebracht werden können und so alle Scharniere gleichzeitig vom Türblatt abziehbar sind.

Bei der Ausführungsform gemäß der Fig. 11E und 11F ist das Werkzeug mit einem Ritzel 84 versehen, das in entsprechende Verzahnungen 86 der beiden Halteelemente 636-1, 636-2 eingreifen und ebenfalls bei Drehung des Werkzeuges mit dem Ritzel 84 ein Zurückziehen der beiden Halteelemente in das Gehäuse ermöglicht wird, um so das Gehäuse aus dem Durchbruch in der dünnen Wand herauszuziehen.

Diese Öffnung ist von Seiten des Scharniers möglich, also von außerhalb des Türblattbereichs, man kann auch seine Blindmontage wieder lösen.

Bei der Ausführungsform gemäß Fig. 12A, 12B, 12C ist dagegen eine Lösung mit Werkzeug von der Innenseite her vorgesehen.

Die mit 45° verlaufende schräge Fläche 127 der Halteelemente 736, siehe insbesondere Fig. 12C und Fig. 12G, führt dazu, daß diese durch den Federdruck der Feder 742 nach außen in Richtung auf die Kanalwände 129 gedrängt werden, wodurch im Kanal Reibung entsteht und die Halteelemente möglicherweise bereits durch diese Reibung ausreichend fixiert werden, so daß der in Fig. 12A erkennbare Fixierungsstopfen 131 nicht benötigt wird. Ist der Stopfen 131 zur Sicherung der Halteelemente 736 nicht erforderlich, braucht der Stopfen 131 auch nicht entfernt zu werden, wenn der Löseschlüssel 133 durch die Öffnung 135 im Kanaldeckel 137 in den durch die beiden Halteelemente 736 gebildeten Rücksprungbereich 139 eingeführt werden soll. Wird der Schlüssel 133 dann gemäß Fig. 12A gegen Uhrzeigerrichtung gedreht drückt der Schlüssel mit seinen Flügeln 141 gegen die Endfläche 143 des Rücksprungbereichs 139 und verschiebt dabei das Halteelement 736 in den Kanal hinein, bis die in Fig. 12I dargestellte Stellung erreicht ist, zu

welchem Zeitpunkt der Schlüssel um 90° verdreht ist und sich selbst hält. Dann kann die ganze in Fig. 12A dargestellte Einheit aus dem Durchbruch, dargestellt in Fig. 12D, in der dünnen Wand 714 herausgezogen werden, einschließlich ggf. weiterer Scharnierelemente, die ebenfalls mit einem entsprechenden Schlüssel in die zurückgezogene Stellung gebracht worden sind.

Bei der Ausführungsform gemäß Fig. 12J, K, L, M, N, O, P dient als Halteelement ein flaches Metallstück, das einen Durchbruch 84 zur Aufnahme der Feder 42 aufweist, sowie zwei sich gegenüberliegende Vorsprünge 86, die sich an der Feder 842 diese sichernd aufnehmen, so daß hier eine Handhabeeinheit von Halteelement und Feder gegeben ist.

Diese Einheit kann in die entsprechend geformte Öffnung 88 im Rumpfteil 38 aufgenommen werden, siehe die Fig. 12K, die für die Feder vorgesehene Aussparung 90 ist kürzer als die entsprechende Aussparung 92 für das Halteelement 836, wodurch die Feder 842 eine Anlagefläche bekommt, wenn das Halteelement 836 in Stellung gemäß Fig. 12J geschoben wird.

Bringt man am Ende der Aussparung 90 für die Feder einen Noppen 94 an, kann sich die Feder dort festhalten und wird ein Herausfallen des Halteelements 836 mit der Feder 842 verhindert. Ähnlich gestaltet ist die Ausführungsform gemäß der Fig. 18A, 18B, 18C, wobei das Befestigungselement in Fig. 18D und die Feder in Fig. 18E als fest zusammengebaute Teile in Fig. 18F und 18G dargestellt sind. Halterungsvorsprünge sind in Fig. 18H vorgesehen, wobei hier noch hinzukommt, daß das Halteelement aus Stabilitätsgründen eine von der flachen Form abweichende Gestalt hat, siehe Fig. 18I.

Bei der Ausführungsform der Fig. 19A, 19B, 19C sind zwei Federn vorgesehen, die jeweils seitlich in das zugehörige Halteelement 36 eingelegt ist. Die andere Hälfte des Federelements wird vom Rumpfteil 1030 aufgenommen. Fig. 19A zeigt noch die Besonderheit, daß im Falle von sehr dünnem Wandmaterial beidseitig Verstärkungsbleche 94, 96 vorgesehen sind, die von den Halteelementen eingeklemmt

werden und damit auch das dünne Türblatt 1014 festhalten und stützen.

Bei der Ausführungsform gemäß Fig. 19D, E, F, G und H sind zwei nebeneinanderliegende Metallstücke 136 vorgesehen, die gemeinsam von einer Feder 1144 derart gehalten werden, daß diese drei Teile eine in sich stabile Handhabeeinheit bilden, also getrennt gehandhabt und bei Bedarf dann in eine entsprechende Ausnehmung im Rumpfteil 1130 eingeschoben werden kann, wie in Fig. 19E erkennbar wird.

Durch hier angebrachten Noppen 1192 kann auch hier erreicht werden, daß sich die Konstruktion in Stellung hält.

Gemäß Fig. 19H sind die beiden Metallteile stärken, so daß sie insgesamt die Feder aufnehmen können.

In den Fig. 13A, 13B und 13C ist eine Ausführungsform dargestellt, bei der das Halteteil 1234 am Kopfteil 1228 mittels Punktschweißung 94 befestigt ist. In den Fig. 13E, 13D ist eine passend gestaltete Blattfeder als Halteelement an dem Rumpfteil 328 punktverschweißt, siehe die Schweißpunkte 1398.

Die Fig. 14A und 14B zeigen ein Scharnier, bei dem die Blattfeder 1436 in einen von dem Rumpfteil gebildeten, radial sich erstreckenden Hohlraum 100 eingeschoben ist. Dieser Hohlraum bildet einen Schlitz 102 oder einen Vor-/Rücksprung, in den ein Vorsprung oder Rücksprung 104 der Feder 100 diese in Stellung fixierend einrasten läßt.

Bei der in den Fig. 15A, 15B, 15C und 15D dargestellten Scharnieranordnung ist die Blattfeder 1536 von einer in eine vom Rumpfteil 1530 gebildete Gewindebohrung 106 eingeschraubten Kopfschraube 108 gehalten. Zur besseren Führung kann ein Deckel 111 vorgesehen werden, der U-förmig ist und mit seinen Schenkelenden in Rücksprünge 113 im Kopfteil 1528 eingreift, welcher Rücksprung 113 außerdem Anschlagflächen 115 und 117 für die Enden der Feder 1536 bilden.

In den Fig. 16A, 16B, 16C und 16D ist ein Scharnier dargestellt, bei dem das Scharnierteil einen Durchbruch 119 wie die dünne Wand 1614 aufweist, wobei das Halteteil 1634 und das Rumpfteil 1630 ihr eigenes Kopfteil 1628 besitzen. Das in Fig. 16D dargestellte Scharnierteil weist außerdem Bohrungen 145 für eine alternative Befestigung mittels Kopfschrauben auf.

Bei der in den Fig. 17A, 17B und 17C dargestellten Ausführungsform sind Kopfteil 1738 und Rumpfteil 130 zwei miteinander verschraubte Teile, wobei hier zwei Schrauben 17108 verwendet sind. Zur Erhöhung der Stabilität sind die Halteelementpaare 1736 doppelt vorhanden, und symmetrisch rechts und links von der Verschraubung 17108 angeordnet.

Auch bei der in den Fig. 20A bis 20L dargestellten Ausführungsform sind Kopfteil 1828 und Rumpfteil1830 zwei verschiedene, miteinander verschraubte, 18107, Bauteile. Die Halteelemente 1836 besitzen ein Langloch 121, durch das die Schraube 18107 geführt ist und dadurch die Axialbewegung des Halteelementes 1836 begrenzt. Das Scharnier bildende Kopfteil 1828 besitzt eine Nut 123 für eine umlaufende Ringdichtung 125.

In Fig. 21 ist in einer Querschnittsansicht, teilweise geschnitten, ein Scharnierteil dargestellt, dessen Halteelemente 1936 durch eine Schraube mit konischem Fuß 147 gespreizt werden. Bei der in Fig. 23 dargestellten Ausführungsform ist der Kopf der Schraube 149 konisch und drückt die beiden Halteelemente 2136 auseinander.

Gegenüber einer Konstruktion gemäß Fig. 22A, bei der eine Feder die beiden Halteelemente 2036 spreizt, haben die Ausführungsformen mit konischer Schraube den Nachteil, daß dann, wenn bei Belastung später die Blechkanten verrunden oder sich ausbeulen, die Schraube von Hand nachgezogen werden muß. Eine Feder schiebt automatisch nach und gleicht automatisch aus.

Der Durchbruch in der dünnen Wand muß nicht unbedingt rechteckig sein, wie er beispielsweise in Fig. 2 dargestellt ist. Er kann auch an sich jede beliebige andere Form haben, beispielsweise oval oder rund. Eine runde Ausführungsform ist in Fig.

22B zu erkennen, wobei jedoch für eine Drehsicherung gesorgt werden muß, die die runde Durchbruchform im Gegensatz zur rechteckigen Durchbruchform nicht liefert. Eine Sicherung des ersten Scharnierteils (z.B. an der Tür befestigt) kann beispielsweise durch das zweite Scharnierteil erfolgen, falls dieses (z. B. am Rahmen) fest genug angebracht ist, oder durch die Anordnung von, wie in Fig. 22B zu erkennen, zwei im Abstand zueinander angeordnete runde Durchbrüche 2012, oder auch durch zusätzliche am Scharnierteil angegossene Stifte 151, die eine Verdrehung verhindern, siehe Fig. 22C, sofern entsprechende Bohrungen im Türblatt vorhanden sind, die diese Stifte aufnehmen.

Fig. 25A zeigt demgegenüber ein herkömmliches Scharnier für flächenbündige Anwendung. Die beiden Scharnierteile sind mit dem Türblatt 2314 bzw. im Türrahmen 2322 verschraubt. Da beide Scharnierteile 2318, 2316 verschraubt werden und die Löcher im Rahmenteil 2318 nur im demontierten Zustand des Scharniers zugänglich sind, muß der Kunde am Schrank die Scharnierteile selbst montieren und den Scharnierstift 2320 einschlagen oder mit Sicherungsringen halten, was für den Kunden sehr aufwendig ist. Besser ist die Lösung gemäß Fig. 25B: Das am Rahmen 2422 zu befestigende Scharnierteil 2418 läßt sich infolge seiner Ausstattung mit einem erfindungsgemäßen Halteteil 2234 als bereits vormontiertes Scharnier einklipsen und dann das mit dem Türblatt zu verbindende Scharnierteil 2416 mit der Tür verschrauben oder auch ggf. verklipsen.

Fig. 26 zeigt in einer Querschnittsansicht einen Fensterrahmen 2514, mit einem langgestreckten Durchbruch 2512, in dem ein aus gepreßtem Aluprofil bestehendes Scharnierteil 2516 eingeschoben werden kann, um es anschließend mit einem T-förmigen Keilelement 2536 festzulegen. Da das Preßwerkzeug und Produktion einfacher sind, ist die Herstellung billiger. Auch das Auge für einen Stift 2520 kann offengelassen werden und ist dadurch im Preßverfahren herstellbar.

### <u>Bezugszeichenliste</u>

| 10                 | Scharnier                                |
|--------------------|------------------------------------------|
| 12, 2012           | rechteckiger, runder Durchbruch          |
| 14                 | dünne Wand, Türblatt                     |
| 16                 | Scharnierteil (mit Tür verbunden)        |
| 18                 | Scharnierteil (mit Rahmen verbunden)     |
| 20                 | Scharnierstift                           |
| 22                 | dünne Wand, Türrahmen                    |
| 24                 | Rand des Durchbruchs                     |
| 26                 | vordere, äußere Seite der dünnen Wand 14 |
| 28                 | Kopfteil                                 |
| 30                 | Rumpfteil                                |
| 32                 | hintere, innere Seite der dünnen Wand 14 |
| 34                 | Halteteil                                |
| 36, 36-1, 36-2, 23 | 6 Halteelement                           |
| 38                 | Schrägfläche                             |

| 40       | Kante                                |
|----------|--------------------------------------|
| 42       | Federeinrichungen                    |
| 44       | Hebel                                |
| 46       | Achse                                |
| 48       | Anschlageinrichtungen                |
| 50       | rechteckiger Zylinder,               |
| 52       | Schlitten                            |
| 54<br>56 | verrastende Hakeneinrichtung<br>Keil |
| 58       | Achse                                |
| 60       | Durchbruchkante                      |
| 62       | Anschrägung                          |
| 64       | Klemmfläche                          |
| 66       | Flxierungsstopfen                    |
| 368      | Federraum                            |
| 70       | Rücksprung                           |
| 72       | Rücksprung                           |

| 74         | Stütze                                  |
|------------|-----------------------------------------|
| 76         | Vorsprung,                              |
| 78         | Nut                                     |
| 80         | Stangenverriegelung                     |
| 82         | Werkzeug, Schlüssel                     |
| 84         | Durchbruch                              |
| 86         | Vorsprünge                              |
| 88         | Ausnehmung für Halteelement             |
| 90         | Aushehmung für Feder                    |
| 92         | Noppen                                  |
| 94         | Verstärkungsblech                       |
| 96         | Verstärkungsblech                       |
| 98         | Punktschweißung                         |
| 100        | Hohlraum                                |
| 102        | Schlitz, Rücksprung                     |
| 104<br>106 | Rücksprung, Vorsprung<br>Gewindebohrung |

| 108 | Kopfschraube      |
|-----|-------------------|
| 111 | Deckel            |
| 113 | Rücksprung        |
| 115 | Anschlagfläche    |
| 117 | Anschlagfläche    |
| 119 | Durchbruch        |
| 123 | Nut               |
| 125 | Ringdichtung      |
| 127 | Schrägfläche      |
| 129 | Kanalwand         |
| 131 | Fixierungsstopfen |
| 133 | Löseschlüssel     |
| 135 | Öffnung           |
| 137 | Kanaldeckel       |
| 139 | Rücksprungbereich |
| 141 | Flügel            |

| 143 | Fläche                      |
|-----|-----------------------------|
| 145 | Bohrungen                   |
| 147 | Schraube mit konischem Fuß  |
| 149 | Schraube mit konischem Kopf |
| 151 | Stift                       |

#### DR.-ING. ERNST STRATMANN

PATENTANWALT
D-40212 DÜSSELDORF · SCHADOWPLATZ 9

22. März 2004

0413 Gm

Dieter Ramsauer 58332 Schwelm

#### Schutzansprüche:

- 1. Scharnier (10), das zumindest ein in einem Durchbruch (12) in einer dünnen Wand (14), wie Blechschranktür montierbares Scharnierteil (16) aufweist, mit einem den Rand (24) des Durchbruchs (12) der dünnen Wand (14) auf deren einen (äußeren) Seite (26) überdeckenden Kopfteil (28), wie Flansch oder Scharnierblatt, und einen von dem Kopfteil (28) ausgehenden, durch den Durchbruch (12) in der dünnen Wand (14) hindurch schiebbaren Rumpfteil (30), und mit einem vom Rumpfteil (30) getragenen, auf der anderen (hinteren) Seite (32) der dünnen Wand (14) sich abstützenden, vom Rumpfteil getrennten Halteteil (34), dadurch gekennzeichnet, daß das Halteteil (34) von Halteelementen (36) gebildet wird, die von dem Rumpfteil (30) in Richtung seiner Außenfläche nachgiebig vorspringen und deren freies Ende eine Schrägfläche (38) zur spielfreien Abstützung des Rumpfteils (30) auf dem Rand oder Kante (40) des Durchbruchs (12) aufweist.
- 2. Scharnier nach Anspruch 1, dadurch gekennzeichnet, daß zwei diametral zueinander angeordnete Halteelemente (36-1, 36-2) vorgesehen sind, auf die Druckelemente, wie Federeinrichtungen (42), insbesondere eine beiden Halteelementen (36-1, 36-2) gemeinsame Spiralfeder oder zwei Spiralfedern (42-1, 42-2), oder Keileinrichtungen, wie konische Schrauben (147, 149), einwirken.

- 3. Scharnier nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Halteelemente (36) im Abstand (A) zur (hinteren) Fläche der dünnen Wand (14) um eine zur Ebene der dünnen Wand (14) parallele Achse (46) begrenzt drehbar angeordnete Hebel (44) sind.
- 4. Scharnier nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Halteelemente (236) um eine zur hinteren Fläche der dünnen Wand senkrechte Achse (58) drehbar angeordnete Hebel (236) sind.
- 5. Scharnier nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Halteelemente (36,) in einem zur Ebene der dünnen Wand parallelen, im Querschnitt rechteckigen Zylinder (50) verschieblich angeordnete Schlitten (52) sind, die durch eine zwischen ihnen selbst oder im Zylinder verrastende Hakeneinrichtung gegen Druckfederkraft gehalten werden.
- 6. Scharnier nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Halteelemente (36) von in einem zur Ebene der dünnen Wand parallelen, im Querschnitt rechteckigen Zylinder verschieblich angeordnete Schlitten aus starrem Material, wie Metall sind, die durch eine zwischen ihnen angeordnete Verstiftungseinrichtung (56, 156) gegen Druckfederkraft gehalten werden.
- 7. Scharnier nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß der Zylinder (50) eine Teiltrennwand oder Hinterschneidung oder Durchbruchkante besitzt, an der sich die Schlitten mit einer Schulter oder Haken axial abstützen.
- 8. Scharnier nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das Halteelement einen Durchbruch aufweist, der eine Spiraldruckfeder mit zumindest einem Teil ihres Durchmessers aufnimmt.
- 9. Scharnier nach Anspruch 8, dadurch gekennzeichnet, daß in den Durchbruch Vorsprünge ragen, die die Federenden radial halten.

- 10. Scharnier nach einem der Ansprüche 8 bis 9, dadurch gekennzeichnet, daß die Halteelemente von zwei nebeneinander liegenden flachen Metallstücken gebildet werden, die jeweils einen Durchbruch aufweisen, welche beiden Durchbrüche gemeinsam einen Raum bilden, der eine Spiraldruckfeder mit zumindest einen Teil Ihres Durchmessers aufnimmt.
- 11. Scharnier nach einem der Ansprüche 8 bis 9, dadurch gekennzeichnet, daß die Halteelemente von zwei nebeneinander liegenden Metallstücken gebildet werden, die zueinander gerichtete Vor-/Rücksprünge bilden, die axiale Gleitbewegung zueinander begrenzen.
- 12. Scharnier nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß die Halteelemente von zwei nebeneinander liegenden Kunststoff oder Metallstücken gebildet werden, die zueinander gerichtete Vor-/Rücksprünge bilden, die mit einem drehbarem Werkzeug oder Schlüssel derart in Eingriff nehmbar sind, daß bei Drehung des Werkzeugs oder Schlüssels die Kunststoffoder Metallstücke gegen die Federkraft zueinander verschoben werden.
- 13. Scharnier nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, daß die Halteelemente von einem Metallstück oder von zwei nebeneinander liegenden Metallstücken gebildet werden, das oder die gemeinsam von einer Feder derart gehalten wird/werden, daß diese zwei/drei Teile eine in ich stabile, handhabbare Einheit bilden.
- 14. Scharnier nach Anspruch 6, dadurch gekennzeichnet, daß ein Fixierungsstift oder -stopfen oder -schraube zur Fixierung der Haltelemente nach Montage des Scharnierteils in dem Durchbruch vorgesehen ist.
- 15. Scharnier nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß der Kopfteil im Bereich der Halteelemente einen Rücksprung aufweist.

- 16. Scharnier nach Anspruch 1, dadurch gekennzeichnet, daß die Halteelemente von einer passend gebogenen Blattfeder gebildet werden.
- 17. Scharnier nach Anspruch 16, dadurch gekennzeichnet, daß die Blattfeder in einem vom Rumpfteil gebildeten radial sich erstreckenden Hohlraum eingeschoben ist.
- 18. Scharnier nach Anspruch 17, dadurch gekennzeichnet, daß der Hohlraum einen Schlitz oder Rücksprung bildet, in den ein Vorsprung/Rücksprung der Feder diese in Arbeitsstellung fixierend einrastet.
- 19. Scharnier nach Anspruch 16, dadurch gekennzeichnet, daß die Blattfeder von einer in eine vom Rumpfteil gebildeten Gewindebohrung eingeschraubten Kopfschraube gehalten ist.
- 20. Scharnier nach Anspruch 16, dadurch gekennzeichnet, daß die Blattfeder auf eine vom Rumpfteil gebildeten Fläche aufgepunktet (aufgeschweißt) oder aufgeklebt ist.
- 21. Scharnier nach Anspruch 1, dadurch gekennzeichnet, daß das Scharnierteil einen Durchbruch wie die dünne Wand aufweist und das Halteteil und Rumpfteil ihr eigenes Kopfteil besitzen.
- 22. Scharnier nach Anspruch 21, dadurch gekennzeichnet, daß Kopfteil und Rumpfteil zwei miteinander verschraubte Teile sind.
- 23. Scharnier nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, daß mehrere Halteelemente in axialer Richtung des Scharniers nebeneinander angeordnet sind.
- 24. Scharnier nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, daß ein zweites Scharnierteil, das mit dem ersten Scharnierteil schwenkbar

verbunden ist, einen analogen Aufbau wie das erste Scharnierteil aufweist.

- 25. Scharnier nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, daß ein zweites Scharnierteil, das mit dem ersten Scharnierteil schwenkbar verbunden ist, hinsichtlich seiner Befestigung an einem Rahmen, wie Türrahmen, oder an einem Türblatt einen anderen Aufbau als das erste Scharnierteil aufweist.
- 26. Scharnier nach Anspruch 25, dadurch gekennzeichnet, daß das zweite Scharnierteil am Rahmen oder Türblatt verschweißt ist.
- 27. Scharnier nach Anspruch 25, dadurch gekennzeichnet, daß das zweite Scharnierteil am Rahmen oder Türblatt verschraubt ist.
- 28. Scharnier nach Anspruch 25, dadurch gekennzeichnet, daß das zweite Scharnierteil am Rahmen oder Türblatt verklebt ist.
- 29. Scharnier nach Anspruch 25, dadurch gekennzeichnet, daß das zweite Scharnierteil am Rahmen oder Türblatt mittels Klemmstift befestigt ist.







·.











10/10

