CSC4200/5200 - COMPUTER NETWORKING

NETWORK FUNDAMENTALS

Instructor: Susmit Shannigrahi sshannigrahi@tntech.edu

Chapter 1: Fundamentals

- Networking is ubiquitous
 - What did you use it for today?
- First things first:
 - Terminology
 - Basic tools
 - What does it take to build an Internet?

Links, Nodes, Network, Internet

- You can view the network as a graph
- Each device (a phone, a computer) is a node
- Each connection is a link
 - Wires = real links
 - Bluetooth, Radio, Infrared = virtual links
- Nodes + links = a network
 - Many connected networks = Internet

A Network and the Internet

Links, Nodes, Routers, Switches

Client and Server

- My laptop with a browser = client
 - It requests a service
 - Email, chat, video, youtube
- A node running a program that serves the requests = server
 - Runs a service
 - Chat, video, messaging
- A node can both be a client and a server

Connectivity

- Point-to-Point
- Multiple access
- Wireless

Circuit Switching – Old telephone networks

- Build physical wire:
 - Guaranteed resources

Circuit Switching

• What are the problems?

Frequency Division Multiplexing for Circuit Switching

Time Division Multiplexing for Circuit Switching

wikipedi a

Circuit Switching – TDM and FDM

Problems solved? Or do they still exist?

Support for Common Services

- Logical Channels
 - Application-to-Application communication path or a pipe

Process communicating over an abstract channel

Packet Switching

- Packets are low level components
- Multiple kind of traffic with different requirements
 - Gaming vs Phone
- Dumb network How do you ensure quality of service?
- End points must be smart

Packet Switching

Analogy?

Statistical Multiplexing for Packet Switching

How many users can you support?

https://math.stackexchange.com/questions/918861/probability-problem-in-networking

Circuit vs Packet Switching

- Circuit Switching
 - Dedicated resource divided among participants
 - Requires setup, guaranteed performance (unless the link breaks)

- Packet Switching
 - Shared resource
 - Use small chunks of data (packets), send as soon as possible
 - Store-and-forward packets

Internet Topology Zoo

http://www.topology-zoo.org

But What is a Packet?

- Self-contained data unit
- Has two parts (generally)
 - Control information
 - Payload
- How do we transmit "Hello World?"
- How do we transmit a dictionary?

Network Architecture

- What are the requirements from a network?
- Architecture = High-level blueprint
 - Protocols = Building blocks of the architecture
 - Layering = Break down the problem in smaller pieces

Application programs

Process-to-process channels

Host-to-host connectivity

Hardware

Interfaces

Service and Peer Interfaces

Protocol Graph

Example of a protocol graph nodes are the protocols and links the "depends-on" relation

OSI Architecture

Description of Layers

- Physical Layer
 - Handles the transmission of raw bits over a communication link
- Data Link Layer
 - Collects a stream of bits into a larger aggregate called a frame
 - Network adaptor along with device driver in OS implement the protocol in this layer
 - Frames are actually delivered to hosts
- Network Layer
 - Handles routing among nodes within a packet-switched network
 - Unit of data exchanged between nodes in this layer is called a packet

The lower three layers are implemented on all network nodes

Description of Layers

- Transport Layer
 - Implements a process-to-process channel
 - Unit of data exchanges in this layer is called a message
- Session Layer
 - Provides a name space that is used to tie together the potentially different transport streams that are part of a single application
- Presentation Layer
 - Concerned about the format of data exchanged between peers
- Application Layer
 - Standardize common type of exchanges

The transport layer and the higher layers typically run only on end-hosts and not on the intermediate switches and routers

Network Layers

- Makes it easier to divide functionality
- Hides implementation details
- Few other reasons?

IP Suite

Network Topology

Data Flow

We reject kings, presidents, and voting. We believe in rough consensus and running code. (David Clark, IETF, July 1992)

wikipedia

Reading Assignment

- Read the overview of Chapter 1 "Problem: Building a Network"
 - https://book.systemsapproach.org/foundation/problem.html#problem-building-a-network
 - About 5 minutes
- Read Chapter 1.2
 - https://book.systemsapproach.org/foundation/architecture.html#architecture
 ure
 - About 45 minutes

1 h --- 1 / F --- 1 --- --

- Reach Chapter 1.3
 - https://book.systemsapproach.org/foundation/architecture.html#architecture
 ure