

## REMARKS/ARGUMENTS

### I. General Remarks and Disposition of the Claims.

Please consider the application in view of the following remarks. Applicant thanks the Examiner for his careful consideration of this application.

At the time of the Office Action, claims 24-57 were pending. Claims 24-31, 33-48, and 50-57 are rejected. Claims 32 and 49 are objected to. Claims 24-26, 30, 32, 34, 36, 37, 39, 41-43, 47, 49, 51, 53, 54, and 56 have been amended herein. Claims 81 and 82 are new. Applicant respectfully requests that the above amendments be entered, and further requests reconsideration in light of the amendments and remarks contained herein. Antecedent basis for these amendments can be found throughout the specification, e.g. ¶[0020]-¶[0021].

### II. Remarks Regarding Information Disclosure Statement

Because the Examiner has requested that Applicant in some way narrow the number of references cited in the information disclosure statements, Applicant submits herein a listing of references in the table below. However, it is Applicant's position that all references included in the originally filed information disclosure statements may be relevant. The following references are directed to subterranean applications and may be more relevant than other references cited, although Applicant makes no representation that those references submitted in the information disclosure statements but not listed in the table below are not relevant to patentability.

| U.S. PATENT DOCUMENTS |                 |                 |       |           |             |
|-----------------------|-----------------|-----------------|-------|-----------|-------------|
| DOCUMENT NO.          | ISSUE/PUB. DATE | NAME            | CLASS | SUB CLASS | FILING DATE |
| 2,703,316             | 3/1/1955        | Schneider       | 260   | 78.3      |             |
| 3,272,650             | 9/13/1966       | MacVittie       | 134   | 7         | 2/21/1993   |
| 3,681,287             | 8/1/1972        | Brown, et al    | 260   | 67        | 3/3/1971    |
| 3,784,585             | 1/8/1974        | Schmitt et al.  | 260   | 861       | 10/21/1971  |
| 3,819,525             | 6/25/1974       | Hattenbrun      | 252   | 132       | 8/21/1972   |
| 3,912,692             | 10/14/1975      | Casey et al     | 260   | 78.3      |             |
| 4,127,173             | 11/28/1978      | Watkins, et al. | 166   | 276       | 7/28/1977   |
| 4,546,012             | 10/8/1985       | Brooks          | 427   | 213       | 4/26/1984   |
| 4,572,803             | Feb-86          | Yamazoe et al   | 534   | 16        |             |
| 4,675,140             | 6/23/1987       | Sparks et al.   | 264   | 4.3       | 5/6/1985    |

|           |            |                    |     |        |            |
|-----------|------------|--------------------|-----|--------|------------|
| 4,716,964 | 1/5/1988   | Erbstoesser et al. | 166 | 284    | 12/10/1986 |
| 4,789,105 | 12/6/1988  | Hosokawa et al.    | 241 | 67     | 4/16/1987  |
| 4,797,262 | 1/10/1989  | Dewitz             | 422 | 142    | 6/3/1987   |
| 4,846,118 | 6/27/1989  | Lai et al.         | 524 | 555    | 6/19/1987  |
| 4,886,354 | 12/12/1989 | Welch et al.       | 356 | 70     | 5/6/1988   |
| 5,142,023 | 8/25/1992  | Gruber et al.      | 528 | 354    | 1/24/1992  |
| 5,173,527 | 12/22/1992 | Calve              | 524 | 74     | 5/15/1992  |
| 5,216,050 | 6/1/1993   | Sinclair           | 524 | 108    |            |
| 5,247,059 | 9/21/1993  | Gruber et al.      | 528 | 354    | 8/24/1992  |
| 5,306,998 | 10/23/2001 | Kimura et al.      | 528 | 12     | 2/24/2000  |
| 5,359,026 | 10/25/1994 | Gruber             | 528 | 354    | 7/30/1993  |
| 5,368,102 | 11/29/1994 | Dewprashad et al.  | 166 | 278    | 9/9/1993   |
| 5,381,864 | 1/17/1995  | Nguyen et al       | 166 | 280    | 11/12/1993 |
| 5,422,183 | 6/6/1995   | Sinclair et al.    | 428 | 403    | 6/1/1993   |
| 5,423,381 | 6/13/1995  | Suries et al.      | 166 | 295    | 6/13/1994  |
| 5,475,080 | 12/15/1995 | Gruber et al.      | 528 | 354    | 3/22/1993  |
| 5,484,881 | 1/16/1996  | Gruber et al.      | 528 | 54     | 8/23/1993  |
| 5,498,280 | 3/12/1996  | Fistner et al      | 106 | 19     |            |
| 5,505,787 | 4/9/1996   | Yamaguchi          | 134 | 4      | 1/28/1994  |
| 5,536,807 | 7/16/1996  | Gruber et al.      | 528 | 354    | 8/23/1993  |
| 5,545,824 | 8/13/1996  | Stengel et al.     | 524 | 590    | 7/20/1995  |
| 5,594,095 | 1/14/1997  | Gruber et al.      | 528 | 354    | 7/27/1994  |
| 5,609,207 | 3/11/1997  | Dewprashad et al.  | 166 | 276    | 12/22/1995 |
| 5,670,473 | 9/23/1997  | Scepanski          | 510 | 445    | 6/6/1995   |
| 5,698,322 | 12/16/1997 | Tsai et al.        | 428 | 373    | 12/2/1996  |
| 5,732,364 | 3/24/1998  | Kalb et al         | 588 | 8      |            |
| 5,830,987 | 11/3/1998  | Smith              | 528 | 332    | 3/11/1997  |
| 5,833,361 | 11/10/1998 | Funk               | 366 | 80     | 9/7/1995   |
| 5,837,785 | 11/17/1998 | Kinsho et al.      | 525 | 527    | 7/12/1996  |
| 5,840,784 | 11/24/1998 | Funkhouser, et al. | 523 | 130    | 5/7/1997   |
| 5,849,401 | 12/15/1998 | El-Afandi et al.   | 428 | 215    | 5/13/1996  |
| 5,849,590 | 12/15/1998 | Anderson, II et al | 436 | 27     |            |
| 5,864,003 | 1/26/1999  | Qureshi et al.     | 528 | 141    | 7/23/1996  |
| 5,865,936 | 2/2/1999   | Edelman et al.     | 156 | 310    | 3/28/1997  |
| 5,960,877 | 10/5/1999  | Funkhouser, et al. | 166 | 270    | 7/3/1997   |
| 5,977,283 | 11/2/2000  | Rossitto           | 528 | 44     | 4/29/1997  |
| 5,994,785 | 11/30/1999 | Higuchi et al.     | 527 | 789    | 05/0/99    |
| 6,004,400 | 12/21/1999 | Bishop et al.      | 134 | 2      | 7/9/1997   |
| 6,028,113 | 2/22/2000  | Scepanski          | 514 | 643    | 9/27/1995  |
| 6,040,398 | 3/21/2000  | Kinsho et al.      | 525 | 527    | 9/2/1998   |
| 6,074,739 | 6/13/2000  | Katagiri           | 428 | 323    |            |
| 6,123,871 | 9/26/2000  | Carroll            | 252 | 301.36 |            |
| 6,123,965 | 9/26/2000  | Jacon et al.       | 424 | 489    | 8/18/1998  |
| 6,130,286 | 10/10/2000 | Thomas et al.      | 524 | 507    | 12/18/1998 |

|                 |            |                    |     |        |            |
|-----------------|------------|--------------------|-----|--------|------------|
| 6,135,987       | 10/24/2000 | Tsai et al.        | 604 | 365    | 12/22/1999 |
| 6,140,446       | 10/31/2000 | Fujiki et al.      | 528 | 15     | 11/5/1998  |
| 6,172,077       | 1/9/2001   | Curtis, et al      | 514 | 278    |            |
| 6,184,311       | 2/6/2001   | O'Keefe et al.     | 525 | 438    | 5/19/1995  |
| 6,187,834       | 2/13/2001  | Thayer et al.      | 522 | 15     | 9/8/1999   |
| 6,187,839       | 2/13/2001  | Eoff, et al.       | 523 | 130    | 3/3/1999   |
| 6,210,471       | 4/3/2001   | Craig              | 106 | 31.08  |            |
| 6,238,597       | 5/29/2001  | Yim et al.         | 252 | 512    | 2/18/2000  |
| 6,274,650       | 8/14/2001  | Cui                | 523 | 457    | 9/16/1999  |
| 6,311,773       | 11/6/2001  | Todd et al         | 166 | 280    | 1/28/2000  |
| 6,367,165       | 4/9/2002   | Huttlin            | 34  | 582    | 2/1/2000   |
| 6,376,571       | 4/23/2002  | Chawla et al.      | 522 | 64     | 3/6/1998   |
| 6,440,255       | 8/27/2002  | Kohlhammer et al.  | 156 | 283    | 11/23/1999 |
| 6,458,885       | 10/1/2002  | Stengal et al.     | 524 | 507    | 5/29/1998  |
| 6,616,320       | 9/9/2003   | Huber et al.       | 366 | 156.2  | 7/8/2002   |
| 6,648,501       | 11/8/2003  | Huber et al.       | 366 | 301    | 2/12/2001  |
| 6,978,836       | 12/27/2005 | Nguyen, et al.     | 166 | 295    | 5/23/2003  |
| 6,231,644 B1    | 5/15/2001  | Chatterji et al    | 106 | 724    | 3/8/2000   |
| 6,323,307 B1    | 11/27/2001 | Bigg et al         | 528 | 354    | 8/16/1995  |
| 6,326,458 B1    | 12/4/2001  | Gruber et al.      | 528 | 354    | 10/7/1993  |
| 6,485,947 B1    | 11/26/2002 | Rajgarhia et al.   | 435 | 139    | 5/19/2000  |
| 6,608,162 B1    | 8/19/2003  | Chiu et al.        | 528 | 129    | 3/15/2002  |
| 6,620,857B2     | 9/16/2003  | Valet              | 522 | 42     | 5/3/2001   |
| 6,632,892 B2    | 10/14/2003 | Rubinsztajn et al. | 525 | 476    | 8/21/2001  |
| 6,642,309 B2    | 11/4/2003  | Komitsu et al.     | 525 | 100    | 8/14/2002  |
| 6,664,343 B2    | 12/16/2003 | Narisawa et al.    | 525 | 474    | 2/12/2002  |
| 6,669,771 B2    | 12/30/2003 | Tokiwa et al.      | 106 | 162.7  | 12/8/2000  |
| 6,686,328 B1    | 2/3/2004   | Binder             | 510 | 446    | 7/9/1999   |
| 6,713,170 B1    | 3/30/2004  | Kaneka et al.      | 428 | 323    | 8/27/2001  |
| 2003/006036     | 1/9/2003   | Malone et al       | 166 | 250.12 |            |
| 2003/0131999A1  | 7/17/2003  | Nguyen et al.      | 166 | 280    | 6/26/2002  |
| 2003/0188766A1  | 10/9/2003  | Banerjee et al.    | 134 | 7      | 12/19/2002 |
| 2004/0149441A1  | 8/5/2004   | Nguyen et al.      | 166 | 280.1  | 1/30/2003  |
| 2005/0006095 A1 | 1/13/2005  | Justus, et al.     | 166 | 295    | 7/8/2003   |

#### FOREIGN PATENT DOCUMENTS

| DOCUMENT NO.   | DATE       | COUNTRY        | CLASS | SUBCLASS | TRANSLATION |    |
|----------------|------------|----------------|-------|----------|-------------|----|
|                |            |                |       |          | Yes         | No |
| EP0510762 A2   | 11/28/1992 | Europe         | C11D  | 17/00    | X           |    |
| GB 1,292,718   | 10/11/1972 | United Kingdom | C05G  | Mar-00   | X           |    |
| WO 03/027431A1 | 4/3/2003   | PCT            | E21B  | 43/26    | X           |    |
| WO 93/15127    | 8/5/1993   | PCT            | Co8G  | 63/06    | X           |    |
| WO 94/07949    | 4/14/1994  | PCT            | CO8G  | Nov-00   | X           |    |
| WO 94/08078    | 4/14/1994  | PCT            | D01F  | Jun-62   | X           |    |
| WO 94/08090    | 4/14/1994  | PCT            | D21H  | 19/28    | X           |    |

|                                                                                                                                                               |           |     |      |       |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|------|-------|-------------|
| WO 95/09879                                                                                                                                                   | 4/13/1995 | PCT | CO8G | 63/08 | X           |
| WO 97/11845                                                                                                                                                   | 4/3/1997  | PCT | B32B | 27/08 | X           |
| <b>NON-PATENT DOCUMENTS</b>                                                                                                                                   |           |     |      |       |             |
| <b>DOCUMENT (Including Author, Title, Source, and Pertinent Pages)</b>                                                                                        |           |     |      |       | <b>Date</b> |
| Advances in Polymer Science, Vol. 157, "Degradable Aliphatic Polyesters" edited by A.-C. Alberston, pages 1-138                                               |           |     |      |       | 2001        |
| Albertsson et al., <i>Aliphatic Polyesters: Synthesis, Properties and Applications</i> , Advances in Polymer Science, vol. 57 Degradable Aliphatic Polyesters |           |     |      |       | 2002        |
| Almond et al., <i>Factors Affecting Proppant Flowback With Resin Coated Proppants</i> , SPE 30096, pages 171-186                                              |           |     |      |       | May-95      |
| Cantu et al., "Laboratory and Field Evaluation of a Combined Fluid-Loss Control Additive and Gel Breaker for Fracturing Fluids," SPE 18211                    |           |     |      |       | 1990        |
| CDX Gas, "What is Coalbed Methane?" CDX, LLC. Available @ <a href="http://www.cdxgas.com/what.html">www.cdxgas.com/what.html</a> , printed page 1             |           |     |      |       |             |
| CDX Gas, CDX Solution, 2003, CDX, LLC, Available @ <a href="http://www.cdxgas.com/solution.html">www.cdxgas.com/solution.html</a> , printed pp 1-2.           |           |     |      |       |             |
| <i>Chelating Agents</i> , Encyclopedia of Chemical Technology, Vol. 5 (764-795)                                                                               |           |     |      |       |             |
| Dechy-Cabaret et al., "Controlled Ring-Operated Polymerization of Lactide and Glycolide" American Chemical Society, Chemical Reviews, A-Z, AA-AD              |           |     |      |       | 2004        |
| Dusseault et al, "Pressure Pulse Workovers in Heavy Oil", SPE 79033                                                                                           |           |     |      |       | 2002        |
| Felsenthal et al., <i>Pressure Pulsing – An Improved Method of Waterflooding Fractured Reservoirs</i> " SPE 1788                                              |           |     |      |       | 1957        |
| Foreign Search Report and Opinion (PCT Appl. No. GB2004/004242)                                                                                               |           |     |      |       | 6/10/2004   |
| Funkhouser et al., "Synthetic Polymer Fracturing Fluid For High-Temperature Applications", SPE 80236                                                          |           |     |      |       | 2003        |
| Gidley et al., "Recent Advances in Hydraulic Fracturing," Chapter 6, pages 109-130                                                                            |           |     |      |       | 1989        |
| Gorman, <i>Plastic Electric: Lining up the Future of Conducting Polymers</i> Science News, Volume 163                                                         |           |     |      |       | 5/17/2003   |
| Halliburton "CobraFrac <sup>SM</sup> Service, Coiled Tubing Fracturing – Cost-Effective Method for Stimulating Untapped Reserves", 2 pages                    |           |     |      |       | 2004        |
| Halliburton "CobraJetFrac <sup>SM</sup> Service, Cost-Effective Technology That Can Help Reduce Cost per BOE Produced, Shorten Cycle time and Reduce Capex"   |           |     |      |       |             |
| Halliburton "SurgiFrac <sup>SM</sup> Service, a Quick and cost-Effective Method to Help Boost Production From Openhole Horizontal Completions"                |           |     |      |       | 2002        |
| Halliburton brochure entitled "INJECTROL® A Component:                                                                                                        |           |     |      |       | 1999        |
| Halliburton brochure entitled "H2Zero™ Service Introducing The Next Generation of cost-Effective Conformance Control Solutions".                              |           |     |      |       | 2002        |
| Halliburton brochure entitled "INJECTROL® G Sealant"                                                                                                          |           |     |      |       | 1999        |
| Halliburton brochure entitled "INJECTROL® IT Sealant"                                                                                                         |           |     |      |       | 1999        |
| Halliburton brochure entitled "INJECTROL® Service Treatment"                                                                                                  |           |     |      |       | 1999        |
| Halliburton brochure entitled "INJECTROL® U Sealant"                                                                                                          |           |     |      |       | 1999        |
| Halliburton brochure entitled "Pillar Frac Stimulation Technique" Fracturing Services Technical Data Sheet, 2 pages                                           |           |     |      |       |             |
| Halliburton brochure entitled "Sanfix® A Resin"                                                                                                               |           |     |      |       | 1999        |
| Halliburton Cobra Frac Advertisement                                                                                                                          |           |     |      |       | 2001        |
| Halliburton Technical Flier – Multi Stage Frac Completion Methods, 2 pages                                                                                    |           |     |      |       |             |

|                                                                                                                                                                                                                                                          |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Halliburton, <i>CoalStim<sup>SM</sup> Service, Helps Boost Cash Flow From CBM Assets</i> , Stimulation, HO3679 10/03, 2003, Halliburton Communications                                                                                                   | 2003     |
| Halliburton, <i>Conductivity Endurance Technology For High Permeability Reservoirs, Helps Prevent Intrusion of Formation Material Into the Proppant Pack for Improved Long-term Production</i> , Stimulation, 2003, Halliburton Communications           | 2003     |
| Halliburton, <i>Expedite® Service, A Step-Change Improvement Over Conventional Proppant Flowback Control Systems. Provides Up to Three Times the Conductivity of RCPs.</i> , Stimulation, HO3296 05/04, 2004, Halliburton Communications                 | 2004     |
| Halliburton, <i>SandWedge® NT Conductivity Enhancement System, Enhances Proppant Pack Conductivity and Helps Prevent Intrusion of Formation Material for Improved Long-Term Production</i> , Stimulation, HO2289 05/04, 2004, Halliburton Communications | 2004     |
| International Search Report, PCT/GB2005/000637, corresponding to U.S. Serial No. 10/791,944                                                                                                                                                              | 6/2/2005 |
| Kazakov et al., "Optimizing and Managing Coiled Tubing Frac Strings" SPE 60747                                                                                                                                                                           | 2000     |
| Love et al., "Selectively Placing Many Fractures in Openhole Horizontal Wells Improves Production", SPE 50422                                                                                                                                            | 1998     |
| McDaniel et al. "Evolving New Stimulation Process Proves Highly Effective In Level 1 Dual-Lateral Completion" SPE 78697                                                                                                                                  | 2002     |
| Nguyen et al., <i>A Novel Approach For Enhancing Proppant Consolidation: Laboratory Testing And Field Applications</i> , SPE Paper Number 77748                                                                                                          | 2002     |
| Nguyen et al., <i>New Guidelines For Applying Curable Resin-Coated Proppants</i> , SPE Paper Number 39582                                                                                                                                                | 1997     |
| Owens et al., <i>Waterflood Pressure Pulsing for Fractured Reservoirs</i> " SPE 1123                                                                                                                                                                     | 1966     |
| Peng et al., "Pressure Pulsing Waterflooding in Dual Porosity Naturally Fractured Reservoirs" SPE 17587                                                                                                                                                  | 1988     |
| Raza, "Water and Gas Cyclic Pulsing Method for Improved Oil Recovery", SPE 3005                                                                                                                                                                          | 1971     |
| Simmons et al., "Poly(phenyllactide): Synthesis, Characterization, and Hydrolytic Degradation, Biomacromolecules", Vol. 2, No. 2, pages 658-663                                                                                                          | 2001     |
| SPE 15547, <i>Field Application of Lignosulfonate Gels To Reduce Channeling</i> , South Swan Hills Miscible Unit, Alberta, Canada, by O.R. Wagner et al.                                                                                                 | 1986     |
| Vichaibun et al., "A New Assay for the Enzymatic Degradation of Polylactic Acid, Short Report", ScienceAsia, Vol. 29, pages 297-300                                                                                                                      | 2003     |
| Yang et al., "Experimental Study on Fracture Initiation By Pressure Pulse", SPE 63035                                                                                                                                                                    | 2000     |
| Yin et al., "Preparation and Characterization of Substituted Polylactides", Americal Chemical Society, Vol. 32, No. 23, Pages 7711-7718                                                                                                                  | 1999     |
| Yin et al., "Synthesis and Properties of Polymers Derived from Substituted Lactic Acids", American Chemical Society, Ch.12, pages 147-159                                                                                                                | 2001     |

### III. Remarks Regarding Rejections Under 35 U.S.C. § 102.

Claims 24-28, 30, 31, 34, 36-45, 47, 48, 51, and 53-57 stand rejected under § 102(b) as being anticipated by U.S. Patent No. 5,368,102 issued to Dewprashad *et al.* (hereinafter "Dewprashad"). Applicant respectfully disagrees because *Dewprashad* does not disclose every element of claims 24-28, 30, 31, 34, 36-45, 47, 48, 51, and 53-57 as required to anticipate these claims under 35 U.S.C. § 102(b). *See MPEP § 2131.*

In particular, *Dewprashad* fails to disclose a “hydrolytically degradable material,” as recited in amended independent claims 24 and 41. Rather than disclosing a material that degrades via hydrolytic degradation, *Dewprashad* is directed to a hardening agent that dissolves when exposed to the elevated temperatures of a subterranean formation. (*Dewprashad*, 9:1-7) *Dewprashad* teaches a material that *dissolves* rather than one that *hydrolytically degrades*. Applicant respectfully submits that hydrolytic degradation, or hydrolysis, differs from dissolution. Specifically, in hydrolytic degradation, a chemical reaction or process takes place in which a molecule is split into two parts by *reacting* with a molecule of *water*. However, when a solute dissolves in a solvent, the solute ions simply disperse in the solvent (which is *not* necessarily water) and *no reaction* takes place. WEBSTER’S THIRD NEW INTERNATIONAL DICTIONARY 657, 1109 (1981); RANDOM HOUSE COMPACT UNABRIDGED DICTIONARY 570, 938 (2d ed. 1996). For example, as is well known in the art, adding weak base ammonia to water would be a hydrolysis reaction because ammonia would react with water to form an ammonium ion and a hydroxide ion. However, adding sodium chloride to water would be classified as dissolving because a solution of sodium ions and chloride ions would result and no reaction would have taken place in the process.

Therefore, Applicant respectfully asserts that independent claims 24 and 41 are not anticipated by *Dewprashad*. Accordingly, independent claims 24 and 41, and the claims that depend therefrom, claims 25-28, 30, 31, 34, 36-40, 42-45, 47, 48, 51, and 53-57, should be allowed.

#### **IV. Remarks Regarding Rejections Under 35 U.S.C. § 103.**

##### **A. Dewprashad.**

Claims 24, 29, 35, 41, 46, and 52 stand rejected under 35 U.S.C. § 103(a) as being unpatentable over *Dewprashad*. Applicant respectfully disagrees because the Examiner has not established a *prima facie* case of obviousness as to the claims, in that the cited references do not teach or suggest all the claim limitations. *See MPEP* § 2142.

In particular, as to independent claims 24 and 41, *Dewprashad* does not teach or suggest the recited limitation of a “hydrolytically degradable material.” Rather than disclosing a material that hydrolytically degrades, *Dewprashad* is directed to a material that dissolves in a subterranean formation. As discussed previously in Section III, hydrolytic degradation is

different from dissolution. Accordingly, *Dewprashad* does not teach or suggest a hydrolytically degradable material.

For at least the foregoing reasons, independent claims 24 and 41 are not obviated by *Dewprashad*. Accordingly, Applicant respectfully requests withdrawal of this rejection with respect to independent claims 24 and 41, and correspondingly, as to dependent claims 29, 35, 46, and 52.

**B. Dewprashad in view of Murphey.**

Claims 24, 33, 41, and 50 stand rejected under 35 U.S.C. § 103(a) as being unpatentable over *Dewprashad* in view of U.S. Patent No. 5,128,390 issued to Murphey *et al.* (hereinafter “*Murphey*”). Applicant respectfully disagrees because the Examiner has not established a *prima facie* case of obviousness as to the claims, in that the cited references do not teach or suggest all the claim limitations. *See MPEP* § 2142.

In particular, as to independent claims 24 and 41, *Dewprashad* does not teach or suggest the recited limitation of a “hydrolytically degradable material.” Rather than disclosing a material that hydrolytically degrades, *Dewprashad* is directed to a material that dissolves in a subterranean formation. As discussed previously in Section III, hydrolytic degradation is different from dissolution. Accordingly, *Dewprashad* does not teach or suggest a hydrolytically degradable material.

Additionally, *Murphey* also fails to supply this missing recitation. Consequently, neither *Dewprashad* nor *Murphey* teach or suggest each and every limitation of independent claims 24 and 41. Accordingly, Applicant respectfully requests withdrawal of this rejection with respect to independent claims 24 and 41, and correspondingly, as to dependent claims 33 and 50.

**V. Allowable Subject Matter.**

The Examiner has objected to claims 32 and 49 as being dependent upon a rejected base claim, but indicated that such claims would be allowable if rewritten in independent form. (Office Action at 4.) The Applicant gratefully acknowledges the Examiner’s indication of the allowability of these claims.

In light of the above remarks with respect to independent claims 24 and 41, such independent claims are patentable in view of the cited references. Claims 32 and 49 depend either directly or indirectly on their corresponding independent claims. These dependent claims, which include all the limitations of their corresponding independent claims, are allowable for at

least the reasons cited above with respect to independent claims 24 and 41. Accordingly, the Applicants respectfully request withdrawal of this objection with respect to claims 32 and 49.

**VI. No Waiver.**

All of Applicant's arguments and amendments are without prejudice or disclaimer. Additionally, Applicant has merely discussed example distinctions from the cited references. Other distinctions may exist, and Applicant reserves the right to discuss these additional distinctions in a later Response or on Appeal, if appropriate. By not responding to additional statements made by the Examiner, Applicant does not acquiesce to the Examiner's additional statements, such as, for example, any statements relating to what would be obvious to a person of ordinary skill in the art. The example distinctions discussed by Applicant are sufficient to overcome the anticipation and obviousness rejections.

**SUMMARY**

In light of the above remarks, Applicant respectfully submits that the application is now in condition for allowance, and earnestly solicit timely notice of the same. Should the Examiner have any questions, comments or suggestions in furtherance of the prosecution of this application, the Examiner is invited to contact the attorney of record by telephone, facsimile, or electronic mail.

Applicant believes that there are no fees due in association with the filing of this Response. However, should the Commissioner deem that any fees are due, including any fees for extensions of time, the Commissioner is authorized to debit Halliburton Energy Services, Inc., No. 08-0300 for any underpayment of fees that may be due in association with this filing.

Respectfully submitted,



Robert A. Kent  
Registration No. 28,626  
Halliburton Energy Services, Inc.  
2600 South Second Street  
P.O. Drawer 1431  
Duncan, OK 73536-0440  
Telephone: 580-251-3125

Date: December 7, 2006