引理 3.4.18. 如果 κ 上有一个 κ 完全的、正则的非主超滤 U ,则 κ 是马洛基数。

证明. κ 是可测的,所以它是不可达基数。我们需要证明小于 κ 的不可达基数构成一个平稳集。为此,我们需要两点: (1) 小于 κ 的强极限基数是一个无界闭集; (2) 小于 κ 的正则基数是平稳集。这两个集合的交是一个平稳集,它的元素是不可达基数。关于 (1), $f(\lambda) = 2^{\lambda}$ 是 κ 上的连续共尾函数,它的不动点是 κ 的无界闭集,而每个不动点都是强不可达的。详细证明留给读者。

对于(2),我们只需证明小于 κ 的所有正则基数属于U。否则, $\{\alpha < \kappa \mid cf(\alpha) < \alpha\} \in U$ 。由于U是正则的,所以存在 $\lambda < \kappa$, $E = \{\alpha < \kappa \mid cf(\alpha) = \lambda\} \in U$ 。对任意 $\alpha \in E$,令 $\{\alpha_{\eta} \mid \eta < \lambda\}$ 为严格递增的共尾序列,对任意 $\eta < \lambda$,存在 γ_{η} , $\chi_{\eta} = \{\alpha \in E \mid \alpha_{\eta} = \gamma_{\eta}\} \in U$ 。这是因为,对每一 $\eta < \lambda$,我们可以定义函数: $h_{\eta}: E \to \kappa$ 为 $h_{\eta}(\alpha) = \alpha_{\eta}$ 。这是一个退缩函数函数,再次应用正则性质,就得到 γ_{η} 和 χ_{η} 。

这样的话, $X=\bigcap_{\eta<\lambda}X_\eta\in U$,但是 $X=\sup\{\gamma_\eta\mid\eta<\lambda\}$ 是单点集,矛盾。

3.5 树与弱紧致基数

定义 3.5.1. 令 (T, <) 为一个偏序集, 如果对任意 $x \in T$, $Pred(x) = \{y \mid y < x\}$ 在 < 下是一个良序,就称 T 是一个树。

关于树,我们有以下术语。

定义 3.5.2. 令 (T, <) 是一棵树。

- (1) 对任意 $x \in T$, $h_T(x) = \text{ot}(\text{Pred}(x))$ 称为 x 在 T 中的高度。
- (2) 序数 $\tau = \bigcup \{h_T(x) + 1 \mid x \in T\}$ 称为树 T 的高度,记作 h_T 。它是大于所有 T 中元素高度的最小序数。
 - (3) 对任意 $\beta < h_T$,集合 $\{x \in T \mid h_T(x) = \beta\}$ 称作 T 的第 β -层。
- (3) T 的一个子集 $A \subseteq T$ 中的元素如果是两两不可比的,即对任意 $x, y \in A$,如果 $x \neq y$,则 $x \not < y$ 并且 $y \not < x$,就称 $A \not = T$ 的反链。

- (4) T 的任意线序子集都称为 T 的链。
- (5) T 的链 B 如果还是向下封闭的,即对任意 $x \in B$,任意 y < x,都有 $y \in B$,就称 B 是 T 的树枝。
- 例 3.5.3. 对任意集合 X,任意基数 κ , $X^{<\kappa}$ 在 \subset 关系下是一棵树,它的高度 是 κ 。如果 $X = \{0,1\}$, $\kappa = \omega$,则 $2^{<\omega}$ 是高度为 ω 的二叉树。

练习 3.5.4. 假设 (T, <) 是树,

- (1) T 的每一层都是反链;
- (2) 如果 $B \neq T$ 的树枝, 且 $B \neq T$ 的某一层相交至多有一个交点。

练习 3.5.5. 令 $T \subseteq \mathbb{N}^{<\omega}$, 满足对任意 $s \in T$, 任意 $n \in \text{dom}(s)$, s(n+1) < s(n)。 (T, \subset) 是一棵树。证明 T 没有无穷枝,即不存在 $B \subseteq T$,使得 $|B| = \omega$ 。

定理 3.5.6 (寇尼希无穷引理). 如果 T 是一棵高度为 ω 的树,并且 T 的每一层都是有穷的,则 T 有一个无穷枝,即序型为 ω 的枝。

证明. 任取 x_0 属于 T 的第 0 层,并且集合 $\{y \in T \mid x_0 < y\}$ 是无穷的。这样的 x_0 一定存在,否则 T 的高度就是有穷的。假设 x_n 已经选出,它位于第 n 层。取 x_{n+1} 属于第 n+1 层,使得 $x_n < x_{n+1}$ 并且 $\{y \in T \mid x_{n+1} < y\}$ 是无穷的。由于 x_{n+1} 的高度为 $n+1 < \omega$,而 n0 是 n0 所以这样 n1 必定存在。n3 是 n4 的无穷枝。(我们使用了选择公理。)

一个很自然的问题是将寇尼希无穷引理推广到大于 ω 的基数。

定义 3.5.7. 令 T 为一棵树,如果 T 的高度为 κ ,但 T 的每一层的基数都小于 κ ,就称 T 为一棵 κ -树。

所以,寇尼希无穷引理就是说每棵 ω -树都有序型为 ω 的枝。但这对第一个不可数基数 ω_1 不成立。

定理 3.5.8 (阿龙岑 (Aronszajn)). 存在一棵 ω_1 -树 T , T 没有序型为 ω_1 的树枝。

这个定理的证明有点复杂,我们略去不讲。

证明. 我们考虑 $T = \{f \in \omega^{\omega_1} \mid f \neq h\}$, 则 (T, \subset) 是高度为 ω_1 的树。同时,T 没有序型为 ω_1 的枝:这是因为,如果 B 的序型是 ω_1 ,则 $\bigcup B$ 就是 ω_1 到 ω 内的单射,而这是不可能的。所以,T 离我们的要求只差每层都是至多可数的。为了实现这个条件,我们构造 T 的一棵子树,它的层对应着 T 的层,但每层都是可数的。

- (1) 对任意 $f,g \in T$,我们定义 $f \sim_F g$ 表示 f,g 只在有穷多个点处不想等。即:dom(f) = dom(g),并且 $|\{\alpha \in \omega_1 \mid f(\alpha) \neq g(\alpha)\}| < \omega$ 。
- 事*实* 3.5.9. \sim_F 是一个等价关系, 并且, 对任意 $f \in T$, f 的等价类 $[f]_{\sim_F}$ 是可数的。请读者证明这一点。
 - (2) 我们接下来递归定义 T 中元素的序列 $(f_{\alpha})_{\alpha<\omega_1}$,令其具有如下性质:
 - (I) 对任意 α ,有无穷多自然数不在 f_{α} 的值域中,即 $|\omega \operatorname{ran}(f_{\alpha})| = \omega$ 。以保证构造总可以进行。
 - (II) 对任意 $\beta < \alpha$, $f_{\alpha} \upharpoonright \beta \sim_F f_{\beta}$ 。

假设对任意 $\beta < \alpha$, f_{β} 已经定义。如果 $\alpha = \beta + 1$,我们令 $f_{\alpha} = f_{\beta} \cup \{(\alpha, n)\}$,其中 $n \notin \text{ran}(f_{\beta})$ 。由性质 (I),这样的 n 总是存在的。

如果 α 是极限序数。由于 $\alpha < \omega_1$ 是可数的,我们取 α 中严格递增的共尾序列 $\langle \alpha_n \in \alpha \mid n < \omega \rangle$ 。为了定义 f_α ,我们递归定义序列: $\{(g_n, h_n, x_n) \mid n \in \omega \}$,使其满足:

- (i) $g_n, h_n \in T$, $g_n \subseteq h_n \subseteq g_{n+1}$;
- (ii) $x_n \subseteq \omega \wedge |x_n| < \omega$;
- (iii) $\operatorname{ran}(h_n) \cap x_n = \emptyset$;
- (iv) $g_n \sim_F h_n \sim_F f_{\alpha_n}$ \circ

令 $g_0 = h_0 = f_{\alpha_0}$, $x_0 = \emptyset$ 。首先, 定义 g_{n+1} 为:

 $g_{n+1} = h_n \cup f_{\alpha_{n+1}} \upharpoonright \{ \beta \in [\alpha_n, \alpha_{n+1}) \mid f_{\alpha_{n+1}}(\beta) \not\in \text{ran}(h_n) \cup x_n \}.$ (3.26)

注意到: g_{n+1} 是一个单射,这是因为 h_n 是单射,并且定义中将使得 $f_{\alpha_{n+1}}(\beta)$ 落入 $ran(h_n)$ 的那些大于 α_n 的 β 去除了。

另外, $f_{\alpha_{n+1}} \upharpoonright \alpha_n \sim_F f_{\alpha_n} \sim_F g_n \sim_F h_n$,所以 $f_{\alpha_{n+1}}$ 限制到 α_n 上至多有有穷个点与 f_{α_n} 不同。对于 $\beta \in [\alpha_n, \alpha_{n+1}]$,只有在这些不同的点上才可能使得 $f_{\alpha_{n+1}}(\beta)$ 可能落入 $\operatorname{ran}(h_n)$,否则 $f_{\alpha_{n+1}}$ 就不是单射了。再加上 x_n 是有穷的,所以我们在定义中至多移除有穷多个点,所以 g_{n+1} 的定义域是 α_{n+1} 减去有穷个元素。

其次,令 $h_{n+1} \supseteq g_{n+1}$,dom $(h_{n+1}) = \alpha_{n+1}$,并且 $ran(h_{n+1}) \cap x_n = \emptyset$ 。即, h_{n+1} 补足 g_{n+1} 中缺失的有穷多个 β ,同时保持值域与 x_n 不交。

最后,令 $x_{n+1} = x_n \cup \min(\omega - \operatorname{ran}(h_{n+1}))$ 。

最后的最后,令 $f_{\alpha} = \bigcup_{n \in \omega} g_n$ 。首先, f_{α} 满足性质(I):因为 $\bigcup_{n \in \omega} x_n$ 的基数为 ω ,它的元素都不在 f_{α} 的值域中,因为它们都不在任何 g_n 中。其次, f_{α} 满足(II):对任意 $\beta < \alpha$,存在 n, $f_{\alpha} \upharpoonright \beta = g_n \upharpoonright \beta \sim_F f_{\alpha_n} \upharpoonright \beta$ 。

(3) 现在定义 $S = \{g \in T \mid \exists \alpha < \omega_1(g \sim_F f_\alpha)\}$ 。我们需要证明 (S, \subset) 是树: 对任意 $g \in S$,根据性质 (II), $Pred(g) \subseteq S$,显然是个良序。由于对任意 $\alpha < \omega_1$, $h_S(f_\alpha) = \alpha$,所以 S 的高度是 ω_1 。同时,对任意 $\alpha < \omega_1$,S 的第 α 层 G 层 G 是可数的。因为 G 中的元素都是单射,G 没有序型为 G 的树枝。

定义 **3.5.10.** 对任意基数 κ , 如果任意 κ -树都有序型为 κ 的树枝,就称 κ 有树性质。

注记 3.5.11. 寇尼希无穷引理是说 ω 有树性质。阿龙岑定理 3.5.8则说 ω₁ 没有树性质,定理中构造的反例,即一个没有序型为 ω₁ 的树枝的 ω₁-树,被称为阿龙岑树。事实证明,具有树性质是一个大基数性质。

定义 3.5.12. 如果一个不可达基数 κ 有树性质, 就称 κ 是弱紧致基数。

注记 3.5.13. 定义中我们要求 κ 是不可达的。事实上,像树性质这样的"紧致"性不能蕴涵不可达。不过如果 κ 有树性质,那么它在哥德尔的可构成集的宇宙 L 中是不可达的。

事实 3.5.14. 如果 κ 是弱紧致基数,则 κ 是不可达基数,也是马洛基数。

引理 3.5.15. 如果 κ 是可测基数,则 κ 是弱紧致基数。

证明. 我们已经知道 κ 是不可达基数了。现在证明 κ 有树性质。证明的方法与 寇尼希无穷引理类似。令 (T,<) 为 κ -树,显然 $|T|=\kappa$,所以不妨设 $T=\kappa$ 。为 了区分 k 作为序数上的序和作为树的序,我们将 κ -树记作 $T=(\kappa,\prec)$,现在证明 T 有序型为 κ 的树枝。对任意 $\alpha \in \kappa$,我们令 $Succ(\alpha) = \{x \in T \mid \alpha \leq x\}$,令 $B=\{\alpha \in \kappa \mid Succ(\alpha) \in U\}$,其中 U 是 κ -完全的非主超滤。

首先, $B \not\in T$ 中的一个链。假设 $\alpha, \beta \in B$,如果 $\alpha \not\prec \beta$ 并且 $\beta \not\prec \alpha$,则 $Succ(\alpha) \cap Succ(\beta) = \emptyset$,这与它们都属于 U 矛盾。

其次,对于任意 $\beta < \kappa$, β 与 T 的第 β 层相交不空。注意到树 T 可以分为两部分。 β 以下的部分,可以表示为 $T_{<\beta} = \{x \in T \mid h_T(x) < \beta\}$ 。由于 T 是 κ -树,这是小于 κ 个基数小于 κ 的集合的并,所以 $T_{<\beta} \notin U$ 。另一部分是 β 层及其以上的部分,可以表示为: $T_{\geq \beta} = \bigcup_{h_T(x)=\beta} \operatorname{Succ}(x)$ 。 $T_{\geq \beta}$ 作为 $T_{<\beta}$ 的补集,一定属于超滤 U。同时,它是小于 κ 个集合的并,所以必有一个 x 属于 β 层, $\operatorname{Succ}(x) \in U$,即 $x \in B$ 。

但从树性质看不出为什么弱紧致基数是紧致的。我们讨论弱紧致基数的一些等价的定义。

定理 3.5.16 (兰姆塞). 令 n,k 都是自然数,对任意函数 $f: [\omega]^n \to k$,称作对自然数 n 元组的 k 染色,都存在一个无穷的集合 $H \subseteq \omega$,使得 $[H]^n$ 的元素在 f 下被染成同一种颜色,即 $f \upharpoonright [H]^n$ 上是常值函数。这样的 H 常被称为是齐次的 (homogeneous)。

证明. 我们对n做归纳。当n=1时,这就是鸽笼原理。

现在令 $f: [\omega]^{n+1} \to k$ 为一个 k 染色。对任意自然数 $x \in \omega$,我们定义 $f_x: [\omega - \{x\}]^n \to k$ 为: 对任意 $Y \subseteq \omega - \{x\}$ 并且 |Y| = n, $f_x(Y) = f(Y \cup \{x\})$ 。 对任意 $x \in \omega$, f_x 是一个 n 元组的 k 染色。由于显然存在 ω 与 $\omega - \{x\}$ 的双 射,所以我们可以将 f_x 看做 $[\omega]^n$ 上的染色。根据归纳假设,存在一个无穷的 $H_x \subseteq \omega - \{x\}$, H_x 在 f_x 下是齐次的。

接下来我们递归定义一个序列 (A_i, x_i) ,使得对任意 $i \in \omega$, $A_{i+1} \subseteq A_i$, $x_i < x_{i+1}$ 。

首先,令 $x_0 = 0$, $A_0 = \omega$ 。假设 x_i , A_i 已经定义。将 $f_{x_i}: [A_i - \{x_i\}]^n \to k$ 视为 $[\omega]^n$ 上的 k 染色,令 H_{x_i} 为它的无穷齐次集,则定义 $A_{i+1} = H_{x_i}$, $x_{i+1} = \min\{x \in H_{x_i} \mid x > x_i\}$ 。

注意到对任意 $i < \omega$,任意 j < i, $x_i \in A_{j+1}$,而后者是 f_{x_j} 的无穷齐次集,所以 $f_{x_i}: [\{x_i \mid j > i\}]^n \to k$ 是常值函数,令其函数值为 $c_i \in k$ 。

定义 $h: \{x_i \mid i \in \omega\} \to k$ 为 $h(x_i) = c_i$,这是一个 k 染色,因此有一个 无穷的齐次集 H,即对任意 $x_i \in H$, $h(x_i) = c \in k$ 。接下来证明 $f \upharpoonright [H]^{n+1}$ 是一个常值函数。

对任意
$$(x_i, \dots, x_{i+n}) \in [H]^n$$
, $f(x_i, \dots, x_{i+n}) = f_{x_i}(x_{i+1}, \dots, x_{i+n}) = h(x_i) = c$ 。

注记 3.5.17. 事实上,我们证明的结论略强于定理的表述: 对任意无穷集 $X \subseteq \omega$,任意 $[X]^n$ 上的 k 染色,都存在一个齐次集。所以在一定意义上我们的证明不完全严格,因为在归纳假设中我们使用了这种更强的形式。这带来的好处是我们大幅减少了符号的复杂度,使证明的思想更为清楚。

兰姆塞定理是否可以推广到更大的基数也是一个自然的问题。事实再次证明这也是一个大基数性质。我们先证明一个引理。这个结果是定理 2.1.16的推广。那个定理是说,如果按照实数 \mathbb{R} 上的大小关系 < 排序,则 \mathbb{R} 中不可能有序型为 ω_1 的序列。由于 (\mathbb{R} , <) 作为拓扑空间与 (2^ω , <c) 是同胚的(其中 <c 是 2^ω 上的字典序),所以这实际上是说 2^ω 在字典顺序下不能有不可数的序列。

引理 3.5.18. 对任意基数 λ ,如果 $<_c$ 是 2^{λ} 上的字典序,则 2^{λ} 在这个序下没有序型为 λ^+ 的严格递增或严格递减序列。

证明. 反设 $A = \{x_{\alpha} \in 2^{\lambda} \mid \alpha < \lambda^{+}\}$ 为严格递增的序列,即 $x_{\alpha} <_{c} x_{\beta}$ 当且仅 当 $\alpha < \beta$ 。(递减的情形类似。)

对任意 $\alpha < \lambda^+$, 由于 $x_{\alpha} < x_{\alpha+1}$, 所以存在 $\bar{\alpha} < \lambda$ 满足:

- $(1) x_{\alpha} \upharpoonright \bar{\alpha} = x_{\alpha+1} \upharpoonright \bar{\alpha},$
- (2) $x_{\alpha}(\bar{\alpha}) = 0$ 并且 $x_{\alpha+1}(\bar{\alpha}) = 1$ 。

即 $\bar{\alpha}$ 是 x_{α} 与 $x_{\alpha+1}$ 的分叉点。对任意 $\gamma < \lambda$,我们令 $A_{\gamma} = \{x_{\alpha} \in A \mid \bar{\alpha} = \gamma\}$ 。 A_{γ} 是两两不交的,而且它们的并是 A。所以,必定有一个 $\gamma < \lambda$, $|A_{\gamma}| = \lambda^{+}$ 。 令 $B = \{y_{\beta} \mid \beta < \lambda^{+}\}$ 为 A_{γ} 的一个枚举,并且 $y_{\beta} <_{c} y_{\delta}$ 当且仅当 $\beta < \delta$ 。B 中的元素为长度为 γ 的 0-1 序列。以上论证可以重复应用于 B,得到 $\eta < \gamma < \lambda$ 使得 $B_{\eta} = \{y_{\beta} \mid \bar{\beta} = \eta\}$ 的基数为 λ^{+} 。这样就定义了序数上的无穷下降链,矛盾。

引理 3.5.19. 对任意基数 $\kappa > \omega_1$,如果任意 $[\kappa]^2$ 上的 2 染色 $f: [\kappa]^2 \to 2$,都存在基数为 κ 的齐次集,则 κ 是不可达基数。

记法 3.5.20. 以上性质通常会记作 $\kappa \to (\kappa)^2$ 。更一般地,如果 κ 的 n 元组的 k 染色存在一个基数 λ 的齐次集,就记作

$$\kappa \to (\lambda)_k^n. \tag{3.27}$$

如果 k=2,则下标可以省略。

证明. (1) κ 是正则几乎是显然的。如果 κ 可以划分为 λ 个互不相交的集合 $\{X_{\beta} \mid \beta < \lambda\}$, $\lambda < \kappa$ 并且所有 X_{β} 的基数都小于 κ 。我们可以定义 $[\kappa]^2$ 上的染色 f 为: $f(\{\gamma,\delta\}) = 0$ 当且仅当它们属于同一个 X_{β} 。这个染色的齐次集或者是某个 X_{β} ,或者不包含于任何 X_{β} 并且与每个 X_{β} 至多有一个交点,基数都小于 κ 。

(2) 现在证明 κ 是强极限的。反设不是,令 $\lambda < \kappa$ 并且 $2^{\lambda} \ge \kappa$ 。所以存在 κ 到 2^{λ} 内的一一映射。令 $A = \{x_{\alpha} \in 2^{\lambda} \mid \alpha < \kappa\}$ 为这个映射的值域。我们如下定义 $[A]^2$ 上的一个 2-染色。对任意 $\alpha, \beta \in \kappa$,如果 $\alpha < \beta$ 蕴涵 $x_{\alpha} <_{c} x_{\beta}$,即对于最小的见证 $x_{\alpha} \ne x_{\beta}$ 的 $\delta < \lambda$, $x_{\alpha}(\delta) = 0$ 且 $x_{\beta}(\delta) = 1$,就令 $f(\{\alpha, \beta\}) = 0$ 。反之,如果 x_{α} 与 x_{β} 的字典序与 α, β 作为序数的序相反,即 $x_{\alpha}(\delta) = 1$ 且 $x_{\beta}(\delta) = 0$,则令 $f(\{\alpha, \beta\}) = 1$ 。

由题设 $\kappa \to (\kappa)^2$,令 H 为齐次集, $|H| = \kappa$,H 在 $<_c$ 下是 2^{λ} 的一个严格递增或严格递减的序列,其长度为 $\kappa > \lambda$,与引理3.5.18矛盾。

引理 3.5.21. 令 κ 是不可数基数,则以下命题等价:

(1) K 是弱紧致基数;

(2) $\kappa \to (\kappa)^2$ o

证明.(略) □

3.6 习题

- **3.6.1.** 如果 \mathcal{F} 是 S 上的滤构成的一个 \subseteq -链,则 $\bigcup \mathcal{F}$ 是 S 上的滤。
- **3.6.2.** 如果 F 是非主超滤,则任意 $X \in F$ 都是无穷的。因此任何非主超滤必是弗雷歇滤的扩张。
- **3.6.3.** 如果 F 是 S 上的滤,而 $F' = \{X \subseteq S \mid S X \not\in F\}$,则 $F \subseteq F'$,并且 F = F' 当且仅当 F 是超滤。
- **3.6.4.** 假设 *X* ⊆ *S* , 证明:
 - (1) 如果 $F \in S$ 上的滤且 $X \in F$,则 $F \cap \mathcal{P}(X)$ 是 X 上的滤;
 - (2) 如果 $F \in S$ 上的超滤且 $X \in F$, 则 $F \cap \mathcal{P}(X)$ 是 X 上的超滤;
 - (3) 如果 $F \neq X$ 上的滤,则 F 能扩张为 S 上的超滤。
- **3.6.5.** 假设 S 是无穷的,则
- (1) 存在 S 上的超滤 F , 对任意 $X \in F$, |X| = |S| 。这样的滤称为 S 上的均匀超滤(uniform ultrafilter);
- (2) $\{F \mid F \neq S \perp$ 的均匀超滤 $\} = \{F \mid F \neq S \perp$ 的非主超滤 $\}$ 当且仅当 $S \neq S$ 是可数的。
- **3.6.6.** 令 κ 为不可数正则基数,举出一个例子,使得 $X = \{C_{\alpha} \mid \alpha < \kappa\}$ 是 κ 上的无界闭集的族,而 $\bigcap X = \emptyset$,但是 $\bigwedge_{\alpha < \kappa} C_{\alpha} = \kappa$ 。
- **3.6.7.** 如果令 $Y_{\alpha} = \{ \xi \in X_{\alpha} \mid \xi > \alpha \}, \ \bigcup \Delta_{\alpha < \kappa} X_{\alpha} = \Delta_{\alpha < \kappa} Y_{\alpha}$ 。
- **3.6.8.** $\triangle_{\alpha < \kappa} X_{\alpha} = \bigcap_{\alpha < \kappa} (X_{\alpha} \cup \{\xi \mid \xi \leq \alpha\})_{\circ}$
- **3.6.9.** 证明不存在 ω 上非主超滤 F 使得 F 对对角线交封闭。
- **3.6.10.** 如果 S 是无穷的, F 是 S 上的超滤,则以下命题等价:

- (1) *F* 是非主滤;
- (2) $\{X \subset S \mid S X$ 是有穷的 $\} \subset F$;
- (3) F 的元素都是无穷的。
- **3.6.11.** 如果 S 是无穷的,则 S 上的任何非主超滤都不是 $|S|^+$ 完全的。所以 ω 上的任何非主超滤都不是 σ -完全的。
- **3.6.12.** 如果 $F \in S$ 上的非主超滤, 并且是 |S|-完全的, 则 F 是均匀超滤。
- **3.6.13.** 一个不可数基数 κ 是可测的当且仅当 κ 上存在 κ 完全的非主超滤。证明任何可测基数都是不可达基数,即,都是正则和强极限的。
- **3.6.14.** 如果 $F \in S$ 上的滤,并且令 $\mu = \sup\{\kappa \mid F \in \kappa \text{ 完全的}\}$,则 μ 是正则基数,并且 $F \in \mu$ -完全的。
- **3.6.15.** 假设 S 是无穷的,F 是 S 上的超滤。证明 F 是 κ -完全的当且仅当对任意 $\tau < \kappa$ 和任意划分 $\langle X_{\xi} \mid \xi < \tau \rangle$,总存在 $X_{\xi} \in F$ 。
- **3.6.16.** 如果 $\alpha > \aleph_0$ 是正则基数,并且 $f : \alpha \to \alpha$ 是函数,则集合 $C = \{\beta < \alpha \mid f[\beta] \subseteq \beta\}$ 是 α 上的无界闭集。
- **3.6.17.** 假设 α 为极限序数,则:
 - (1) α 上存在一个序型为 $cf(\alpha)$ 的无界闭集。
- (2) 如果 A 是一集极限序数,则用选择公理可以证明:存在序列 $\langle C_{\alpha} \rangle_{\alpha \in A}$ 满足: C_{α} 是 α 上的序型为 $\mathrm{cf}(\alpha)$ 的无界闭集。
- **3.6.18.** $\{\alpha < \omega_1 \mid \omega^{\alpha} = \alpha\}$ 是 ω_1 上的无界闭集。
- **3.6.19.** κ 上的无界闭集都是平稳集。
- **3.6.20.** 令 κ 为不可数正则基数, $S \subseteq \kappa$, 证明以下命题等价:
 - (1) S 是平稳集;
- (2) 对任意递减函数 $f: S \to \kappa$,存在序数 $\alpha < \kappa$,使得 $f^{-1}[\alpha]$ 在 κ 中无界。

- **3.6.21.** 如果 κ 是不可达基数(它当然是不可数正则的),则集合 $\{\lambda < \kappa \mid \lambda \in \mathbb{R} \}$ 是强极限基数 $\{\lambda \in \mathbb{R} \}$ 是强极限基本数 $\{\lambda \in \mathbb{R} \}$ 是强极限基本数 $\{\lambda \in \mathbb{R} \}$
- **3.6.22.** 如果 κ 是最小的不可达基数,则集合 $\{\lambda < \kappa \mid \lambda$ 是强极限的奇异基数 $\}$ 是 κ 上的无界闭集。
- **3.6.23.** 假设 κ 是第 α 个不可达基数,而 $\alpha < \kappa$,证明 $X = \{\lambda < \kappa \mid \lambda$ 是正则的} 不是 κ 上的平稳集。
- **3.6.24.** 一个无穷基数 κ 是**马洛基数**(Mahlo cardinal)当且仅当 κ 是不可达的并且 $\{\lambda < \kappa \mid \lambda$ 是正则基数} 是 κ 上的平稳集。如果 κ 是马洛基数,则 $\{\lambda < \kappa \mid \lambda$ 是不可达基数} 是 κ 上的平稳集,因此 κ 是第 κ 个不可达基数。
- **3.6.25.** 如果 $\kappa = \min\{\lambda \mid \lambda \in \mathbb{A} \setminus \mathbb{A} \in \mathbb{A} \setminus \mathbb{A} \in \mathbb{A} \in \mathbb{A} \in \mathbb{A} \}$,证明 κ 不是马洛基数。
- **3.6.26.** 如果 κ 是马洛基数,则集合 $\{\lambda < \kappa \mid \lambda$ 是第 λ 个不可达基数} 在 κ 中无界。