```
# importing required libraries
In [ ]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.model_selection import train_test_split
         from sklearn.linear_model import LogisticRegression
         from sklearn import metrics
         from sklearn.preprocessing import StandardScaler
         from sklearn.metrics import confusion_matrix
         from sklearn.metrics import ConfusionMatrixDisplay
         import warnings
         warnings.filterwarnings('ignore')
In [ ]: # Reading the file and checking it
         df = pd.read_csv('C:\\Users\\jeeva\\Desktop\\Git Practise\\AIDS-Virus-Infection-\rediction-\\AIDS_Classification
         df.head(5)
Out[]:
           time trt age
                              wtkg hemo
                                          homo drugs karnof oprior z30 ... str2 strat symptom treat offtrt cd40 cd420 c
           1073
                      37
                          79.46339
                                       0
                                                    0
                                                          100
                                                                                     2
                                                                                              0
                                                                                                          0
                                                                                                              322
                                                                                                                     469
                  1
                          73.02314
                                                          90
            324
                  0
                      33
                                                    0
                                                                                                              168
                                                                                                                     575
                      43
                                                    0
                                                                                                          0
                                                                                                              377
            495
                           69.47793
                                                          100
                                                                                                                     333
                  1
         3 1201
                  3
                      42
                           89.15934
                                                    0
                                                          100
                                                                                                    0
                                                                                                          0
                                                                                                              238
                                                                                                                     324
            934
                  0
                      37 137.46581
                                                    0
                                                          100
                                                                                                              500
                                                                                                                     443
        5 rows × 23 columns
```

Exploratory Data analysis - EDA

Explore, study and visualize data

5 rows × 23 columns

df.info()

In []:

```
In []: df.shape
Out[]: (50000, 23)

The shape of the dataset is 50,000 rows and 23 columns of variables.
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 23 columns):
# Column Non-Null Count Dtype
---
    -----
             -----
            50000 non-null int64
0 time
1
   trt
           50000 non-null int64
             50000 non-null int64
50000 non-null float64
2
    age
3
    wtkg
             50000 non-null int64
    hemo
5
             50000 non-null int64
    homo
             50000 non-null int64
50000 non-null int64
    drugs
6
    karnof
8 oprior
             50000 non-null int64
9 z30
             50000 non-null int64
10 preanti 50000 non-null int64
              50000 non-null int64
11 race
12 gender
             50000 non-null int64
13 str2
             50000 non-null int64
14 strat
             50000 non-null int64
15 symptom 50000 non-null int64
16 treat
             50000 non-null int64
17 offtrt 50000 non-null int64
18 cd40
              50000 non-null int64
19 cd420
             50000 non-null int64
           50000 non-null int64
20 cd80
             50000 non-null int64
21 cd820
22 infected 50000 non-null
                            int64
dtypes: float64(1), int64(22)
memory usage: 8.8 MB
```

We can find the dataset has no null values. we can understand the variable datatypes through this. No Object type variable is found.

```
In [ ]: df.columns.to_list()
Out[]: ['time',
          'trt',
          'age',
          'wtkg',
          'hemo',
          'homo',
          'drugs'
          'karnof',
          'oprior',
           'z30',
           'preanti',
          'race',
          'gender',
           'str2',
          'strat',
          'symptom',
          'treat',
           'offtrt',
          'cd40',
          'cd420',
           'cd80',
           'cd820',
          'infected']
In [ ]: df.describe().T
```

]:		count	mean	std	min	25%	50%	75%	max
ti	ime	50000.0	877.369780	307.288688	66.00000	542.000000	1045.000000	1136.000000	1231.00000
	trt	50000.0	1.384800	1.233272	0.00000	0.000000	1.000000	3.000000	3.00000
а	age	50000.0	34.164020	7.091152	12.00000	29.000000	34.000000	39.000000	68.00000
wtkg hemo homo	tkg	50000.0	75.861991	12.028730	42.36162	68.253682	74.054115	81.142185	149.83087
	mo	50000.0	0.033480	0.179888	0.00000	0.000000	0.000000	0.000000	1.00000
	mo	50000.0	0.653540	0.475847	0.00000	0.000000	1.000000	1.000000	1.00000
dru	ugs	50000.0	0.132220	0.338733	0.00000	0.000000	0.000000	0.000000	1.00000
karı	nof	50000.0	96.831560	5.091788	76.00000	90.000000	100.000000	100.000000	100.00000
opr	rior	50000.0	0.042300	0.201275	0.00000	0.000000	0.000000	0.000000	1.00000
2	z30	50000.0	0.640880	0.479747	0.00000	0.000000	1.000000	1.000000	1.00000
prea	anti	50000.0	318.159560	402.932765	0.00000	0.000000	123.000000	503.000000	2828.00000
ra	ace	50000.0	0.293300	0.455279	0.00000	0.000000	0.000000	1.000000	1.00000
gene	der	50000.0	0.856700	0.350382	0.00000	1.000000	1.000000	1.000000	1.00000
s	str2	50000.0	0.575200	0.494318	0.00000	0.000000	1.000000	1.000000	1.00000
st	trat	50000.0	1.936420	0.895318	1.00000	1.000000	2.000000	3.000000	3.00000
sympto	om	50000.0	0.083460	0.276579	0.00000	0.000000	0.000000	0.000000	1.00000
tro	eat	50000.0	0.734160	0.441784	0.00000	0.000000	1.000000	1.000000	1.00000
off	ftrt	50000.0	0.342220	0.474458	0.00000	0.000000	0.000000	1.000000	1.00000
cd	d40	50000.0	319.079540	102.525976	0.00000	236.000000	299.000000	396.000000	930.00000
cd4	420	50000.0	438.090100	144.806831	81.00000	327.000000	415.000000	531.000000	1119.00000
co	08b	50000.0	1045.936440	488.617434	96.00000	713.000000	885.000000	1245.000000	4656.00000
cd8	820	50000.0	905.938440	339.707976	173.00000	649.000000	858.000000	1084.000000	3538.00000
infect	ted	50000.0	0.310120	0.462547	0.00000	0.000000	0.000000	1.000000	1.00000

In []: df.duplicated().sum()

Out[]: 0

In []: df.corr().style.background_gradient(cmap='inferno')

Out[]:		time	trt	age	wtkg	hemo	homo	drugs	karnof	oprior	z30	preanti
	time	1.000000	0.051746	0.006911	0.039390	-0.019287	0.056241	-0.012310	0.021562	-0.021745	-0.074956	-0.056202
	trt	0.051746	1.000000	0.040517	0.010247	0.002240	0.064000	-0.005980	-0.038132	-0.004581	-0.001674	0.001603
	age	0.006911	0.040517	1.000000	0.001856	-0.017836	0.108080	0.002495	-0.046430	0.011142	0.118811	0.093419
	wtkg	0.039390	0.010247	0.001856	1.000000	-0.034036	0.089131	-0.016851	0.008592	-0.004932	-0.106208	-0.066063
	hemo	-0.019287	0.002240	-0.017836	-0.034036	1.000000	-0.068466	0.001203	-0.002599	0.013915	0.064002	0.043161
	homo	0.056241	0.064000	0.108080	0.089131	-0.068466	1.000000	-0.051067	-0.011770	0.008095	-0.013145	0.014152
	drugs	-0.012310	-0.005980	0.002495	-0.016851	0.001203	-0.051067	1.000000	0.010188	-0.010457	-0.033090	-0.034399
	karnof	0.021562	-0.038132	-0.046430	0.008592	-0.002599	-0.011770	0.010188	1.000000	0.000356	-0.131726	-0.090110
	oprior	-0.021745	-0.004581	0.011142	-0.004932	0.013915	0.008095	-0.010457	0.000356	1.000000	0.058107	0.046862
	z30	-0.074956	-0.001674	0.118811	-0.106208	0.064002	-0.013145	-0.033090	-0.131726	0.058107	1.000000	0.425415
	preanti	-0.056202	0.001603	0.093419	-0.066063	0.043161	0.014152	-0.034399	-0.090110	0.046862	0.425415	1.000000
	race	-0.041361	-0.067184	-0.075247	-0.045631	0.008795	-0.178007	0.047854	0.034598	-0.018406	-0.092531	-0.085702
	gender	0.053726	0.039346	0.034213	0.067468	-0.015268	0.192607	-0.025554	-0.002476	0.002859	-0.024403	-0.002565
	str2	-0.078147	0.000497	0.121492	-0.104913	0.062104	-0.010187	-0.040928	-0.136562	0.065423	0.605567	0.454841
	strat	-0.068901	0.003392	0.109482	-0.092254	0.063511	0.010497	-0.045483	-0.130202	0.070862	0.573218	0.469166
	symptom	-0.019133	-0.018105	0.001566	0.004827	-0.002698	0.022002	0.000906	0.008108	0.017419	0.022249	0.021176
	treat	0.068051	0.232762	0.041837	0.001226	0.008057	0.072673	-0.009026	-0.053328	-0.011640	0.010907	0.023678
	offtrt	-0.101019	-0.027697	-0.049142	-0.029979	0.011043	-0.103003	0.037158	-0.025224	-0.008963	-0.007565	-0.011919
	cd40	0.040720	0.013352	-0.053918	0.047813	-0.034345	0.000200	0.025400	0.045776	-0.041128	-0.217151	-0.183870
	cd420	0.089658	0.028357	-0.065441	0.066893	-0.034451	-0.010264	0.027702	0.062692	-0.042355	-0.284487	-0.234264
	cd80	0.018400	-0.004262	0.005863	0.019929	-0.004844	0.025367	-0.005788	0.023325	0.006786	-0.018809	-0.020495
	cd820	0.026256	0.019198	-0.001756	-0.006143	-0.004207	-0.004070	0.006794	0.013964	-0.010503	0.001278	-0.000010
	infected	-0.102671	-0.047112	0.028718	-0.055527	0.026407	-0.007341	-0.025684	-0.025860	0.043416	0.238531	0.172826
												▶

Data visualization

```
In [ ]: sns.countplot(df,x='gender',hue='infected')
    plt.xlabel("Gender & their status")
    plt.ylabel("Count")
    plt.show()
```



```
In [ ]: ax =sns.countplot(df,x='infected')
    total = df['infected'].count()
    ax.bar_label(ax.containers[0], fmt=lambda x: f'{(x/total)*100:.1f}%')
    plt.title('Percentage of patients and their status')
    plt.xlabel("Infection status")
    plt.ylabel("Count")
    plt.show()
```


We could see that dataset is imbalanced. Infected column consists of categorical of 0 & 1. '0' is 69% registered and '1' is 31% registered.

```
In []: # Box plot
plt.figure(figsize=(20,5))
sns.boxplot(df)
plt.show()
```

```
In [ ]: # Before sampling
         X = df.drop(['infected'], axis='columns')
         y = df['infected']
         X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=5)
In [ ]: # Importing standard scler and Scaling the data
         ss = StandardScaler()
         X_train.iloc[:,:] = ss.fit_transform(X_train.iloc[:,:])
         X_test.iloc[:,:] = ss.transform(X_test.iloc[:,:])
In [ ]: lr = LogisticRegression()
         log_reg = lr.fit(X_train,y_train)
In [ ]: y_train_pred = log_reg.predict(X_train)
In [ ]: log_reg.coef_
Out[]: array([[-0.1586788 , -0.07051645 , -0.02920935 , -0.04288642 , 0.00148883 ,
                  0.01227915, \ -0.04402175, \ \ 0.02522251, \ \ 0.04151225, \ \ 0.23938347,
                  0.03238654, 0.01737807, -0.02549107, 0.16427716, 0.22879375, 0.03799094, -0.10034448, -0.08008363, -0.15012168, -0.2134787,
                 -0.00447248, -0.02991158]])
In [ ]: log_reg.intercept_
Out[ ]: array([-0.9098153])
In [ ]: # Model score
         model_score = lr.score(X_train,y_train)
         model_score
Out[ ]: 0.7071714285714286
In [ ]: # Y train probability
         y_train_prob = lr.predict_proba(X_train)
         # Y train predict
         y_train_pred = lr.predict(X_train)
         # Y test probability
         y_test_prob = lr.predict_proba(X_test)
         # Y test predict
         y_test_pred = lr.predict(X_test)
```

Confusion Matrix

```
In []: # Accuracy score for test data
    metrics.accuracy_score(y_test,y_test_pred)
Out[]: 0.7077333333333333
In []: cm = confusion_matrix(y_test,y_test_pred)
    dip = ConfusionMatrixDisplay(confusion_matrix=cm)
    dip.plot()
    plt.show()
```


- Due to the imbalance Dataset the target class has low True positive rate
- Further we can evaluate by Oversampling the data to Balance the dataset

```
In [ ]: from sklearn.utils import resample
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.metrics import confusion_matrix,classification_report, ConfusionMatrixDisplay
In [ ]: # Now Oversampling data to match value counts of two classification
         # separate majority and minority classes
         majority = df[df.infected == 0]
minority = df[df.infected == 1]
         # oversample the minority class
         minority_oversampled = resample(minority,
                                          replace=True,
                                          n_samples=len(majority),
                                          random_state=42)
         # combine majority class with oversampled minority class
         oversampled_data = pd.concat([majority, minority_oversampled])
         # check the distribution of undersampled and oversampled datasets
         oversampled_distribution = oversampled_data.infected.value_counts()
         oversampled_distribution
        infected
Out[]:
             34494
             34494
        Name: count, dtype: int64
```

• By Oversampling we matched the Two classes with same level of data values

```
In []: # Count the occurrences of each category
    category_counts = oversampled_data['infected'].value_counts()

# Extract Labels and sizes for the pie plot
    labels = category_counts.index.tolist()
    sizes = category_counts.values.tolist()

# Plotting the pie chart
    plt.figure(figsize=(6, 6))
    plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90)
    plt.title('Virus infected Distribution percentage')
    plt.show()
```

Virus infected Distribution percentage

• Visual representation of two classes value counts

	precision	recall	f1-score	support
0	0.88	0.84	0.86	6807
1	0.85	0.89	0.87	6991
accuracy			0.86	13798
macro avg	0.86	0.86	0.86	13798
weighted avg	0.86	0.86	0.86	13798

- By oversampling the dataset we have achieved 16% of accuracy increase
- We used Random forest classifier

```
In [ ]: cm = confusion_matrix(y_test,y_pred)

dip = ConfusionMatrixDisplay(confusion_matrix=cm)
    dip.plot()
    plt.show()
```


· This confusion matrix shows very good amount of True positives compared to True negative

```
In [ ]: # Calculate AUC-ROC score:
        from sklearn.metrics import confusion_matrix,roc_auc_score,roc_curve
         auc_roc = roc_auc_score(y_test,y_pred)
         print(f'AUC-ROC Score:{auc_roc}')
         # step 6 : plot ROC curve
         fpr,tpr,_ = roc_curve(y_test,y_pred)
         # Calculates the FPR and TPR
         # at various threshold settings for the given y_test(actual)
        # and y_predict(predicted probabilities or scores).
         plt.figure()
         # creates a new figure for the plot
        plt.plot(fpr,tpr,color='darkorange',lw=2,label='ROC curve(area= %0.2f)'%auc_roc)
        # plots the roc curve using the FPR (x-axis) and TPR(y-axis) values
         # color
        #Lw = line width = 2
         # label = auc-roc adds a label to the curve
         # showing the AUC -ROC score.
         plt.plot([0,1],[0,1],color='navy',lw=2,linestyle='--')
         \# plot a diagonal line from(0,0), to (1,1)representing
         # the roc curve of a purely random classifier.
         plt.xlim([0.0,1.0])
         plt.ylim([0.0,1.05])
         #sets the limits for the x-axis and y-axis representively.
        plt.xlabel('False Positive Rate')
         plt.ylabel('True Positive Rate')
         plt.title('Receiver Operating Characteristic')
         plt.legend(loc='lower right')
        plt.show()
```

AUC-ROC Score:0.8634244784533461

Using Cross validation method to evaluate the parameters we could change to obtain best fit

```
In [ ]: n_estimators = [5,20,50,100] # number of trees in the random forest
        max_features = ['auto', 'sqrt'] # number of features in consideration at every split
        max_{depth} = [int(x) for x in np.linspace(10, 100, num = 10)] # maximum number of levels allowed in each deci
        min_samples_split = [2, 6, 10] # minimum sample number to split a node
        min_samples_leaf = [1, 3, 4] # minimum sample number that can be stored in a leaf node
        bootstrap = [True, False] # method used to sample data points
        random_grid = {'n_estimators': n_estimators,
         'max_features': max_features,
         'max_depth': max_depth,
         'min_samples_split': min_samples_split,
         'min_samples_leaf': min_samples_leaf,
         'bootstrap': bootstrap}
In [ ]: # Importing randomized CV
        from sklearn.model_selection import RandomizedSearchCV
        rf = RandomForestClassifier(random_state=2)
        rf_random = RandomizedSearchCV(estimator = rf,param_distributions = random_grid,
                       n_iter = 50, cv = 3, verbose=2, random_state=35, n_jobs = -1)
In [ ]: rf_random.fit(X_train, y_train)
        Fitting 3 folds for each of 50 candidates, totalling 150 fits
Out[ ]:
                    RandomizedSearchCV
         ▶ best_estimator_: RandomForestClassifier
                   RandomForestClassifier
In [ ]: print ('Random grid: ', random_grid, '\n')
        # print the best parameters
        print ('Best Parameters: ', rf_random.best_params_, ' \n')
```

```
Random grid: {'n_estimators': [5, 20, 50, 100], 'max_features': ['auto', 'sqrt'], 'max_depth': [10, 20, 3 0, 40, 50, 60, 70, 80, 90, 100], 'min_samples_split': [2, 6, 10], 'min_samples_leaf': [1, 3, 4], 'bootstra p': [True, False]}

Best Parameters: {'n_estimators': 100, 'min_samples_split': 2, 'min_samples_leaf': 1, 'max_features': 'sqrt', 'max_depth': 50, 'bootstrap': False}
```

The best parameter is obtained now we need to impute this in RFclassifier to fit the model

```
In [ ]: randmf = RandomForestClassifier(n_estimators = 100, min_samples_split = 2, min_samples_leaf= 1, max_features
        randmf.fit( X_train, y_train)
Out[ ]:
                       RandomForestClassifier
        RandomForestClassifier(bootstrap=False, max_depth=50)
In [ ]: # predictions
        y_pred = randmf.predict(X_test)
        print(classification_report(y_test, y_pred))
                     precision recall f1-score
                                                   support
                  0
                          0.87
                                   0.91
                                             0.89
                                                       6807
                          0.90
                                   0.86
                                             0.88
                                                       6991
                                             0.89
                                                     13798
           accuracy
                                 0.89
           macro avg
                          0.89
                                             0.89
                                                      13798
                                   0.89
                                             0.89
        weighted avg
                          0.89
                                                      13798
```

Increase in 3% of accuracy from already fitted model

```
In [ ]: cm = confusion_matrix(y_test,y_pred)
         dip = ConfusionMatrixDisplay(confusion_matrix=cm)
         dip.plot()
         plt.show()
                                                                          6000
                                                                          5000
            0
                         6186
                                                    621
                                                                         4000
                                                                         - 3000
                          929
                                                   6062
            1 .
                                                                         2000
                                                                          1000
                           0
                                                     1
                                 Predicted label
```

```
In [ ]: auc_roc = roc_auc_score(y_test,y_pred)
print(f'AUC-ROC Score:{auc_roc}')

# step 6 : plot ROC curve
fpr,tpr,_ = roc_curve(y_test,y_pred)
```

```
# Calculates the FPR and TPR
# at various threshold settings for the given y_test(actual)
# and y_predict(predicted probabilities or scores).
plt.figure()
# creates a new figure for the plot
plt.plot(fpr,tpr,color='darkorange',lw=2,label='ROC curve(area= %0.2f)'%auc_roc)
# plots the roc curve using the FPR (x-axis) and TPR(y-axis) values
# color
\#lw = line \ width = 2
# label = auc-roc adds a label to the curve
# showing the AUC -ROC score.
plt.plot([0,1],[0,1],color='navy',lw=2,linestyle='--')
\# plot a diagonal line from(0,0), to (1,1)representing
# the roc curve of a purely random classifier.
plt.xlim([0.0,1.0])
plt.ylim([0.0,1.05])
#sets the limits for the x-axis and y-axis representively.
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic')
plt.legend(loc='lower right')
plt.show()
```

AUC-ROC Score:0.8879426226971037

- Key things to note
- Even the new CV model has increase in accuracy score
- The True positive count is reduced.
- Even increase in overall prediction is statisfies 89%.
- We need to predict the target variable with max accuracy
- So I will go with previous model or retry with different range of parameters.
- This could help the clients to reach good prediction acuuracy.
- Because infected patient predictability is the need of this dataset