Probability and Stochastic Processes Course Notes

Chia-Hao Chang, chchangkh@utexas.edu

Fall 2018

1 Convergence of Random Variables

In this chapter, we are going to discuss to the following problem: what does it mean by

$$\lim_{n\to\infty} X_n \to X$$

Namely, what do we mean by that a sequence of random variables (X_n) converges to a random variable X?

1.1 Almost Sure Convergence

Definition 1 (Almost Sure Convergence). Given a probability triplet $(\Omega, \mathcal{F}, \mathbb{P})$ and a sequence of random variables $\{X_1, X_2, X_3, \dots, X_n, \dots\}$ on $(\Omega, \mathcal{F}, \mathbb{P})$. We say a the sequence of random variables (X_n) converges almost surely (a.s.) to X^* if and only if

$$\mathbb{P}(\{\omega : \lim_{n \to \infty} X_n(\omega) = X^*(\omega)\}) = 1$$

or if we define A

$$\mathcal{A} = \{ \omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X^*(\omega) \}$$

$$X_n \to X^*$$
 a.s. iff $\mathbb{P}(\mathcal{A}) = 1$

That is, (X_n) converges to X^* almost everywhere except on a subset of \mathbb{P} -measure -0.

The almost sure convergence is defined through inspecting "one-by-one" the elements in Ω and see if it converges finally. If it does, we collect it into \mathcal{A} and calculate the probability of \mathcal{A} to see if the convergence is almost everywhere.

1.2 Convergence in Probability

Definition 2 (Convergence in Probability). Given a probability triplet $(\Omega, \mathcal{F}, \mathbb{P})$ and a sequence of random variables $\{X_1, X_2, X_3, \cdots, X_n, \cdots\}$ on $(\Omega, \mathcal{F}, \mathbb{P})$. We say that the sequence of random variables (X_n) converges in probability to X^* if

$$\forall \varepsilon > 0, \quad \lim_{n \to \infty} \mathbb{P}(\{|X_n(\omega) - X^*(\omega)| > \varepsilon\}) = 0$$

More precisely,

$$\forall \varepsilon > 0, \quad \lim_{n \to \infty} \mathbb{P}(\{\omega \in \Omega : |X_n(\omega) - X^*(\omega)| > \varepsilon\}) = 0$$

In fact, this is equivalent saying that **probability of error** should be arbitrarily small as n grows up no matter what tolerance interval is given. To see this, let's define an "event of error." Given a tolerance interval $\varepsilon > 0$, the "event of error" $B_n^{(\varepsilon)}$ is defined as

$$B_n^{(\varepsilon)} = \{\omega : |X_n(\omega) - X^*(\omega)| > \varepsilon\}$$

The probability of error at the n^{th} random variable $P_e^{(n)}(\varepsilon)$ is

$$P_e^{(n)}(\varepsilon) = \mathbb{P}(B_n^{(\varepsilon)})$$

We may view $(P_n^{(e)}(\varepsilon))$ as a sequence of "probability of error". i.e.

$$P_e^{(1)}(\varepsilon), P_e^{(2)}(\varepsilon), \cdots, P_e^{(n)}(\varepsilon), \cdots$$

Then, $X_n \to X^*$ in probability if and only if

$$\forall \varepsilon > 0, \quad \lim_{n \to \infty} P_e^{(n)}(\varepsilon) = 0$$

Convergence in probability is defined through the sequence of "probability of error" under a given tolerance (i.e. ε). That is, we look at every "cross section" of the random variable X_n and calculate the probability of error. If such probability decreases to 0 as $n \to \infty$ for every $\varepsilon > 0$. We say the sequence $(X_n) \to X^*$ in probability.

1.3 Convergence in Mean Square

Definition 3 (Convergence in Mean Square). Given a probability triplet $(\Omega, \mathcal{F}, \mathbb{P})$ and a sequence of random variables $\{X_1, X_2, \dots X_n, \dots\}$ on it, we say the sequence (X_n) converges to X^* in **Mean Square** if and only if

$$\lim_{n \to \infty} \mathbb{E}[|X_n - X^*|^2] = 0$$

The mean square convergence is analogous to convergence in probability in the sense they are said to converge if and only if the probability of error decreases to 0 when $n \to \infty$.

If we define the probability of error at random variable X_n , $P_e^{(n)}$, to be

$$P_e^{(n)} = \mathbb{E}[|X_n - X^*|^2]$$

We say X_n converges to X^* in **mean square** if $P_e^{(n)} \to 0$ as $n \to \infty$.

1.4 Point-wise Convergence

Definition 4 (Point-wise Convergence). Given a probability triplet $(\Omega, \mathcal{F}, \mathbb{P})$ and a sequence of random variables $\{X_1, X_2, \dots, X_n, \dots\}$ on it. We say (X_n) converges to X^* **point** – **wise** if X_n converges to X^* on every point of Ω .

$$X_n \to X^*$$
 point – wise $\iff \forall \omega \in \Omega, \quad X_n(\omega) \to X^*(\omega)$

One might want to compare the definition of point-wise convergence in random variables with the definition of point-wise convergence in real analysis. In fact, these two definition coincides with each other as long as $X_n(\omega)$ are regarded as sequence of functions $X_n: \Omega \to \mathbb{R}$, where \mathbb{R} is a metric space with standard measure d(x,y) = |x-y|. Different from real analysis, the **point** – **wise** convergence is the "strongest" convergence condition among all types of convergence.

1.5 Convergence in Distribution

Definition 5 (Convergence in Distribution). Given a sequence of random variables $\{X_1, X_2, \dots, X_n, \dots\}$ (possibly not in the same probability space). We say X_n converges to X^* in distribution if $\lim_{n\to\infty} F_{X_n}(x) = F(x)$ for x being a point of continuity.

$$X_n \xrightarrow{\mathrm{d}} X^* \iff \forall x : \text{continuous}, \quad \lim_{n \to \infty} F_{X_n} = F_X(x)$$

2 Limit of Events and Borel-Cantelli Lemma

Let $(A_n) = \{A_1, A_2, \dots, A_n, \dots\}$ be a sequence of events. We define the upper limit and the lower limit of the sequence (A_n) in the following sense.

Definition 6 (Limit Supremum and Infimum). The limit supremum $\limsup_{n\to\infty} A_n$ is defined as

$$\lim \sup_{n \to \infty} A_n = \bigcap_{n \ge 1}^{\infty} \bigcup_{k \ge n}^{\infty} A_k$$

On the other hand, the limit infimum $\liminf_{n\to\infty} A_n$ is defined as

$$\lim \inf_{n \to \infty} A_n = \bigcup_{n > 1}^{\infty} \bigcap_{k > n}^{\infty} A_k$$

Intuitively, if x is in the limit supremum of A_n 's, $x \in \limsup_{n \to \infty} A_n$, this means

$$x \in \Lambda_n = \bigcup_{k>n}^{\infty} A_k, \quad \forall n \in \mathbb{N}$$

This means that no matter how far N we choose, we can always find an index n > N s.t. x lies in A_n , implying that x occurs **infinitely many times** or **infinitely often** in the collection A_n 's (otherwise, if x lies in A_n 's for finitely many times, then there exists $n_0 \in \mathbb{N}$ s.t. $x \notin A_n$ whenever $n > n_0$ and $x \notin \bigcup_{k > n} A_k$ for $n > n_0$). This means the

elements in $\limsup_{n\to\infty} A_n$ are those occurs infinitely many times in A_n 's.

Similarly, if y lies in the limit infimum of A_n 's, then y lies in at least one the sets $\bigcap_{k>n^*} A_k$ for some $n^* \in \mathbb{N}$.

$$y \in \bigcap_{k > n^*}^{\infty} A_k$$

implying that $y \in A_k$, $\forall k \ge n^*$. This means that for y to be in $\liminf_{n\to\infty} A_n$, y must be in all A_n 's, with finitely many exceptions. Namely, y eventually stays in A_n 's forever.

To rephrase the above explanations,

$$\lim_{n\to\infty} \sup A_n = \{x : x \in A_n \text{ occurs infinitely often}\}$$
$$\lim_{n\to\infty} \inf A_n = \{x : x \in A_n \text{ occurs all except finitely often}\}$$

Remark 1. The following are equivalent

- (a) $A = \limsup_{n \to \infty} A_n$
- (b) event A occurs infinitely often (i.o.)
- (c) the event A "never leaves forever."

Remark 2. The following are equivalent

- (a) $B = \limsup_{n \to \infty} A_n$
- (b) event B occurs all except finitely often (a.e.f.o.)
- (c) the event A "eventually stays forever."

Having these definition in mind, we proceed to the famous **Borel – Cnatelli Lemma** in measure theory.

Theorem 1 (Borel-Cantelli Lemma). Given a probability triplet $(\Omega, \mathcal{F}, \mathbb{P})$ and a sequence of events $\{A_1, A_2, \dots, A_n, \dots\}$ over it. If

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$$

then

$$\mathbb{P}(\lim \sup_{n \to \infty} A_n) = 0$$

where
$$\limsup_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

Sometimes the Borel-Cantelli Lemma is also called the first Borel - Cantelli Lemma.

The Borel-Cantelli Lemma states that, if we have a sequence of events and we would like to determine whether " A_n 's occurs infinitely often", we can instead evaluate the infinite series sum of the probability of A_n 's.

Corollary 1. Let (Ω, \mathcal{F}) be a measurable space and μ be a measure. $\{A_1, A_2, \dots, A_n, \dots\}$ be an infinite collection of subsets of Ω such that $A_j \in \mathcal{F}$, $\forall j \in \mathbb{N}$. If $\sum_{n=1}^{\infty} \mu(A_n) < \infty$, then $\mu(\limsup_{n \to \infty} A_n) = 0$.

Theorem 2 (Second Borel-Cantelli Lemma). Suppose $\{B_1, B_2, \dots, B_n, \dots\}$ are **independent** Borel sets (i.e. events). If $\sum_{n=1}^{\infty} \mathbb{P}(B_n) = \infty$, then $\mathbb{P}(\limsup_{n \to \infty} B_n) = 1$.

Proof. The proof utilizes the property that $1-x \le e^{-x}$, for $x \ge 0$. The rest follows.

2.1 Application of Borel-Cantelli Lemma to Almost Sure Convergence

Let's define A_n^{ε} as follows,

$$A_n^{\varepsilon} = \{\omega : |X_n(\omega) - X(\omega)| > \varepsilon\}$$

If we can show that

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n^{\varepsilon}) < \infty$$

By Borel-Cantelli Lemma, we have

$$\mathbb{P}(\lim \sup_{n \to \infty} A_n^{\varepsilon}) = 0$$

That is, A_n 's can not happen **infinitely often**, implying that there exists some $n_0 \in \mathbb{N}$, s.t. A_n does not occur whenever $n > n_0$. If this holds for arbitrary $\varepsilon > 0$, then we have $X_n \to X$ almost surely.

It is noteworthy that the opposite is not true. That is, even though $\sum_{n=1}^{\infty} \mathbb{P}(A_n^{\varepsilon}) = \infty$, $\mathbb{P}(\limsup_{n \to \infty} A_n^{\varepsilon})$ might still be 0, implying almost sure convergence of $X_n \to X$.

3 Convergence and Cauchy Criteria

Proposition 1. (a) If $X_n \to X$ a.s, then $X_n \to X$ in probability.

- (b) If $X_n \to X$ m.s., then $X_n \to X$ in probability.
- (c) If $\mathbb{P}(|X_n| \leq Y) = 1$, $\forall n \text{ for some fixed random variable } Y \text{ with } \mathbb{E}[|Y|^2] \leq \infty \text{ and if } X_n \to X \text{ in probability, then } X_n \to X \text{ m.s.}$
- (d) If $X_n \to X$ in probability, then $X_n \to X$ in distribution.
- (e) Suppose $X_n \to X$ in probability/ mean square/ almost sure sense and $X_n \to Y$ in probability/ mean square/ almost sure sense. Then $\mathbb{P}(\{X = Y\}) = 1$. That is, the measure of $\{X \neq Y\}$ is 0. i.e. the limit of a sequence of random variables (if exists) is **unique**. Thus, we say X (or equivalently Y) is "the" limit of the sequence.
- (f) Suppose $X_n \to X$ in distribution and $X_n \to Y$ in distribution. Then X and Y have the same distribution $(F_x(c) = F_Y(c), \forall c)$.

Theorem 3 (Monotone Convergence Theorem for Random Variables). Let $\{X_1, X_2, \dots, X_n, \dots\}$ be a sequence of random variables. If $\mathbb{P}(\{X_n \leq X_{n+1}\}) = 1$, $\forall n$ and if \exists a fixed random variable Y s.t. $\mathbb{P}(\{X_n \leq Y\}) = 1$, $\forall n$, then the sequence (X_n) converges almost surely.

Proposition 2 (Cauchy Criteria for Random Variables). Let (X_n) be a sequence of random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

(a) (X_n) converges almost surely (to some random variable X) if and only if

$$\mathbb{P}(\{\omega \in \Omega : \lim_{n \to \infty} |X_n(\omega) - X_m(\omega)| = 0\}) = 1$$

or, equivalently

$$\mathbb{P}(\{\omega \in \Omega : \forall \epsilon > 0, \exists N \in \mathbb{N}, \text{ s.t. } |X_n(\omega) - X_m(\omega)| < \epsilon \text{ whenever } n, m > N\}) = 1$$

(b) (X_n) converges (to some random variable) in mean square if and only if (X_n) is a Cauchy sequence in mean square sense. i.e.

$$\mathbb{E}[X_n^2] < \infty, \forall n$$

and

$$\lim_{n,m\to\infty} \mathbb{E}[|X_n - X_m|^2] = 0$$

(c) (X_n) converges in probability (to some random variable) if and only if

$$\forall \varepsilon > 0, \quad \lim_{n,m \to \infty} \mathbb{P}(\{|X_n - X_m| > \varepsilon\}) = 0$$

Proposition 3. The following statements are equivalent

- 1. The sequence $X_n \to X$ in distribution.
- 2. $\lim_{n\to\infty} \mathbb{E}[f(X_n)] = \mathbb{E}[f(X)]$ for any bounded continuous function f.
- 3. $\lim_{n\to\infty} \phi_{X_n}(u) = \phi_X(u)$

where $\phi_X(u) = \mathbb{E}[e^{juX}]$ is the characteristic function of the random variable X

Appendix I: Useful Lemmas

Lemma 1 (Triangular Inequality in $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$). Let X and Y be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Define the \mathcal{L}^2 norm $||X||_2$ as

$$||X||_2 := (\mathbb{E}[|X|^2])^{1/2}$$

The \mathcal{L}^2 triangular inequality is

$$||X + Y||_2 \le ||X||_2 + ||Y||_2$$

or equivalently,

$$\mathbb{E}[|X+Y|^2]^{1/2} \leq \mathbb{E}[|X|^2]^{1/2} + \mathbb{E}[|Y|^2]^{1/2}$$

In fact, the *p*-norm $||\cdot||_p$ of a random variable X is defined as

$$||X||_p := (\mathbb{E}[|X|^p])^{1/p}$$

Lemma 2 (Probability of Infinite Intersection of Events). Let $\{A_1, A_2, \dots, A_n, \dots\}$ be a collection of events on $(\Omega, \mathcal{F}, \mathbb{P})$. s.t.

$$\mathbb{P}(A_n) = 1, \quad \forall n \in \mathbb{N}$$

Then, the infinite union of the events has probability 1. i.e.

$$\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) = 1$$

Also, the probability of infinite intersection of events has probability 1. i.e.

$$\mathbb{P}(\bigcap_{n=1}^{\infty} A_n) = 1$$

Appendix: Limit Supremum and Infimum of Sets

Let $\{A_1, A_2, \dots, A_n, \dots\}$ be a sequence of sets on Ω . The supremum of (A_n) sup $_{k \ge n} A_k$ is defined as

$$\sup_{k \ge n} A_k = \bigcup_{k=n}^{\infty} A_k$$

which is the union of A_j 's from n. On the other hand, the infimum of (A_n) , $\inf_{k\geq n} A_k$ is

$$\inf_{k \ge n} A_k = \bigcap_{k=n}^{\infty} A_k$$

which is the intersection of A_k 's from n. As an analogy to the sequence on \mathbb{R} , one might think of $\sup_{k\geq n} A_k$ as the **smallest** set covering $\{A_n, A_{n+1}, A_{n+2}, \cdots\}$. On the other hand, $\inf_{k\geq n} A_k$ can be thought of as the **greatest** set that is contained in $\{A_n, A_{n+1}, A_{n+2}, \cdots\}$. i.e. "Least Upper Bound" and "Greatest Lower Bound" for "sets."

Definition 7 (Limit Supremum). The **Limit Supremum** of $(A_n) \lim \sup_{n \to \infty} A_n$ is defined as

$$\limsup_{n \to \infty} A_n \coloneqq \inf_{n \ge 1} \sup_{k \ge n} A_k = \lim_{n \to \infty} \sup_{k \ge n} A_k$$

On the other hand, the limit infimum is defined similarly

Definition 8 (Limit Infimum). The **Limit Infimum** of (A_n) $\liminf_{n\to\infty} A_n$ is defined as

$$\liminf_{n \to \infty} A_n := \sup_{n \ge 1} \inf_{k \ge n} A_k = \lim_{n \to \infty} \inf_{k \ge n} A_k$$

The definition of the upper limit and the lower limit of the sets is rather similar to that of a sequence in \mathbb{R} . Applying the definition of supremum and infimum of sets, we have

$$\limsup_{n \to \infty} = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

and

$$\liminf_{n \to \infty} = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$

Recall that for a sequence $(x_n : n \ge 1)$ in \mathbb{R} , the limit of (x_n) exists if and only if its upper limit and lower limit exists and equal. Similarly,

Definition 9 (Limit of Sets). The limit of a sequence of sets $\lim_{n\to\infty} A_n$ exists if and only if

$$\lim\sup_{n\to\infty} A_n = \liminf_{n\to\infty} A_n := \lim_{n\to\infty} A_n$$

3.1 Monotone Sequence

Definition 10 (Monotonicity). A sequence of sets (A_n) is said to be **monotonically increasing** if $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots \subseteq A_n \subseteq \cdots$. If (A_n) is monotonically increasing we write $A_n \uparrow$. On the other hand, if $A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots \supseteq A_n \supseteq \cdots$, we (A_n) is **monotonically decreasing** and denote it as $A_n \downarrow$.

Proposition 4 (Limit of Monotone Sequence). 1. If $A_n \uparrow$, then $\lim_{n\to\infty} A_n$ exists and $\lim_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} A_n$.

2. If
$$A_n \downarrow$$
, then $\lim_{n\to\infty} A_n$ exists and $\lim_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} A_n$

That is, if a sequence of sets is monotonic, then its *limit* always exists.

Proposition 5 (Properties). The following are some properties regarding the limit of sets. [1]

(a)
$$\liminf_{n\to\infty} A_n \subseteq \limsup_{n\to\infty} A_n$$
.

References

[1] S. Resnick: A Probability Path, Birkhauser, 1999.