МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Юго-Западный государственный университет» (ЮЗГУ)

Кафедра механики, мехатроники и робототехнике

ПОСТРОЕНИЕ ТРЕХМЕРНОЙ МОДЕЛИ ВТУЛКИ И ЕЕ ЧЕРТЕЖА В ПРОГРАММНОМ ПАКЕТЕ КОМПАС

Методические указания по выполнению лабораторной и самостоятельной работ по курсу «Проектирование мехатронных систем» для студентов направления 221000.62 «Мехатроника и робототехника»

УДК 62.231

Составители Е.Н. Политов, Л.Ю. Ворочаева

Рецензент Кандидат технических наук, доцент В.Я. Мищенко

Построение трехмерной модели втулки и ее чертежа в программном пакете Компас: методические указания по выполнению лабораторной и самостоятельной работ по курсу «Проектирование мехатронных систем» / Юго-Зап. гос. ун-т; сост. Е.Н. Политов, Л.Ю. Ворочаева. Курск, 2015. 15 с.

Методические указания содержат сведения по построению трехмерной модели втулки и ее чертежа в программном пакете Компас. Приведены варианты задания, пример проектирования модели втулки.

Методические указания соответствуют требованиям программы, утверждённой учебно-методическим объединением (УМО).

Текст печатается в авторской редакции

Подписано в печать . Формат 60х84 1/16. Усл.печ.л. 1,4. Уч.-изд.л. 1,3. Тираж 30 экз. Заказ. Бесплатно. Юго-Западный государственный университет. 305040 Курск, ул. 50 лет Октября, 94.

Содержание

Задание	4
Ход выполнения работы	5
Построение трехмерной модели втулки	5
Построение чертежа втулки	8
Рекомендательный список литературы	14

Задание

- 1 Построить трехмерную модель втулки в соответствии с данными таблицы 1, где L_v длина, d_v внутренний диаметр. Внешний диаметр втулки D_v выбирается таким образом, чтобы втулка не соприкасалась с внешним кольцом подшипника качения.
 - 2 Построить чертеж втулки с ее трехмерной модели.
- 3 Проставить необходимые размеры, посадочные и присоединительные размеры указать с учетом отклонений, остальные размеры выполнить по 14 квалитету.
- 4 Указать шероховатость посадочных поверхностей, неуказанная шероховатость для остальных поверхностей Ra 6,3.

Табл. 1 - Геометрические размеры параметров втулки

$N_{\underline{0}}$	d_v	L_{v}
1	8	8
2	12	10
3	10	6
4	15	5
5	17	7
6	10	9
7	9	10
8	20	12
9	25	11
10	12	10
11	15	12
12	9	7
13	20	8
14	17	9
15	20	6
16	10	10
17	15	9
18	12	6
19	9	7
20	8	10
21	25	12
 № 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 	d_{v} 8 12 10 15 17 10 9 20 25 12 15 9 20 17 20 10 15 12 9 8 25 30 17 12	$ \begin{array}{c c} L_{v} \\ 8 \\ 10 \\ 6 \\ 5 \\ 7 \\ 9 \\ 10 \\ 12 \\ 11 \\ 10 \\ 12 \\ 7 \\ 8 \\ 9 \\ 6 \\ 10 \\ 9 \\ 6 \\ 7 \\ 10 \\ 12 \\ 11 \\ 9 \\ 10 \end{array} $
23	17	9
24	12	10

Ход выполнения работы

Необходимо построить втулку для закрепления зубчатого колеса на валу. Параметры втулки:

L_{ν} , MM	d_{v} , MM	D_{v} , MM
5	30	48

 L_{v} – длина, d_{v} – внутренний диаметр, D_{v} - внешний диаметр.

Построение трехмерной модели втулки

Создайте и сохраните файл детали. Выберите плоскость, в которой будете делать эскиз, в Дереве модели, например, Плоскость XY.

При этом она выделится, как показано на рисунке.

На верхней панели нажмите кнопку Cosdamb эскиз \square . Плоскость XY примет вид:

На панели *Геометрия* Выберите команду *Окружность* и постройте две окружности произвольных радиусов с центром в начале координат.

Проставьте внешний D_v и внутренний d_v диаметры окружности, выбрав на панели инструментов Pазмеры подпункт Диаметральный размер .

Нажмите кнопку Операция выдавливания \blacksquare на панели Редактирование детали \blacksquare . В поле Расстояние на панели свойств введите численное значение длины втулки (L_v) .

Нажмите кнопку Создать объект ┵.

Постройте фаску на внутреннем диаметре втулки, используя команду *Фаска* вкладки *Редактирование детали*. На Панели свойств указывается значения длины фаски и ее угла.

Подтверждаем ввод объекта -

Задайте свойства детали, ее наименование, обозначение и укажите материал, из которого она изготовлена, вызвав панель *Свойства модели* нажатием правой клавиши мыши по окну детали.

Построение чертежа втулки

Создайте файл чертежа и сохраните его. Выберите формат и его ориентацию для изображения детали в нужном масштабе.

Используя кнопку Стандартные виды на инструментальной панели Виды \square , постройте три вида детали, предварительно выбрав масштаб на панели свойств.

Для втулки не требуется трех видов, достаточно построить местный разрез и указать на нем все необходимые размеры. На панели инструментов *Геометрия* выберите *Прямоугольник* и нарисуйте прямоугольник так, чтобы вид слева располагался внутри этого прямоугольника. Вид слева при этом должен быть активным.

На панели инструментов $Bu\partial \omega$ выберите вкладку $Mecmh\omega u$ paspes Укажите левой клавишей мыши замкнутый контур и покажите положение оси секущей плоскости местного разреза — вертикальную осевую линию на виде спереди. Система автоматически построит местный разрез.

Удалите остальные виды.

Для построения осевой линии на панели инструментов Обозначения № выберите Осевая линия по двум точкам. Укажите начальную и конечную точки построения осевой (то есть крайние левую и правую точки вида).

Укажите внешний и внутренний диаметры втулки, причем внутренний задается по посадке H (H11), а внешний — по посадке h (h11). Для задания размера используется команда *Линейный размер* вкладки *Размеры*, в окне *Задание размерной надписи* выбирается значок диаметра и квалитет в системе вала или отверстия.

Задайте ширину втулки, указывая предельные отклонения размера по h11.

Задайте значения фасок и их число в окне Задание размерной надписи.

Укажите шероховатость поверхности втулки, взаимодействующей с валом.

Неуказанную шероховатость задайте равной Ra 6,3. Технические требования можно не указывать, т.к. все размеры и их отклонения заданы на чертеже.

Для заполнения основной надписи выполните по ней двойной щелчок левой клавишей мыши.

Графы *Наименование*, *Обозначение*, *Материал*, *Масса* заполняются системой автоматически, требуемые данные берутся из трехмерной модели детали.

Заполните графы *Разраб*. и *Пров*., а также при изменении масштаба изображения детали графу *Масштаб*.

После заполнения штампа нажмите кнопку *Создать объект* Чертеж втулки имеет вид.

Рекомендательный список литературы

- 1. Большаков В.П., Бочков А.Л. Основы 3D-моделирования. Питер. 2012. 304 с.
- 2. Большаков В.П., Тозик В.Т., Чагина А.В. Инженерная и компьютерная графика. БХВ-Петербург. 2012. 208 с.
- 3. КОМПАС 3D V15. Руководство пользователя. АСКОН. 2014. 526 с.
- 4. Ганин Н.Б. Трехмерное проектирование в КОМПАС-3D. ДМК-Пресс. 2012. 784 с.
- 5. Герасимов А.А. Новые возможности КОМПАС-3D V13. Самоучитель. БХВ-Петербург. 2011. 288с.

