Rappels de calcul différentiel en dimension finice:

Définition Soit Ω un ouvert de \mathbb{R}^m et $f \in C^{\circ}(\Omega, \mathbb{R}^m)$.

fert de clarie C^{\dagger} sur Ω si $\frac{\partial f}{\partial \mathcal{R}_i}$, $1 \leq i \leq n$ existent et sont combinues seur Ω .

Définition Soit $f \in C^1(\Omega, \mathbb{R}^m)$, Ω ouvert de \mathbb{R}^m . f ent de claise C^2 sur Ω si $\forall i=1...m$, $\frac{\partial f}{\partial x_i} \in C^1(\Omega, \mathbb{R}^m)$

(es définitions s'étendent à f: 2 CE-2 F avec E, Fesques vectoriels noumés réels de dimensions finites (identifier E à R^m et F à R^m en choisissant des bases). Exemple: si F= Mn (R) alors m=n².

Développement limité à l'ordre 1 R désigne un ouvert de RM.

- Si $f \in C^1(x, \mathbb{R}^m)$, alm trees et l'assert petit: f(x+h) = f(x) + Df(x)h + o(||h||) quand $h \to 0$ $Df(x) \in H_{m,n}(\mathbb{R})$, $(Df(x))_{ij} = \frac{\partial f_i}{\partial x_j}(x)$.
 - O(||h||):= de la france ||h||Ech) avec lin Ech)= o dans IR.

 hos
- De plus, si $f \in C^2(R, R^m)$ alos $f(x+k) = f(x) + Df(x) + O(11-k)^2$

et une certaine constante C70.

Composition d'applications:

Soit $g \in C^1(\Omega, \mathbb{R}^m)$, $f \in C^1(\overline{\Omega}, \mathbb{R}^p)$ ($g(\Omega) \subset \overline{\Omega}$ ouvert de \mathbb{R}^m)

also $f \circ g \in C^1(\Omega, \mathbb{R}^p)$ ($(f \circ g)(\alpha) := f(g(\alpha))$)

et $D(f \circ g)(\alpha) = Df(g(\alpha)) Dg(\alpha)$.