Topic of Assignment:			
	"Slicing Program"		
Student Name:			
	M. Taimoor		
	(FA22-BSE-072)		
Subject:			
Subject.	Software Re-Engineering		
Teacher Name:			
	Dr.Manzoor Ahmad		

Program no. 1

Solution:

n	Statement	REFs(n)	DEFs(n)	relevant(n)
1	b=1		b	
2	c=2		c	{b}
3	d=3		d	{b}
4	a=d	d	a	{b, d}
5	if (a=3) then	a		{b, d}
6	d=b+d	b, d	d	{b, d}
7	c=b+d	b, d	С	{b, d}
8	else			{b, c}
9	b=b+1	b	b	{b, c}
10	d=b+1	b	d	{b, c}
11	Endif			{b, c}
12	a=b+c	b, c	a	{b, c}
13	print a	a		{a}

Program Slice on <13, a>:

{12, 9, 2, 1}

n	Statement
1	b=1
2	c=2

9	b=b+1
12	a=b+c

Program #1:

Detailed Calculation of relevant(n) for Slice <13, a> Initialization:

• relevant(13) = $\{a\}$ (from the slicing criterion <13, a>)

Step 1: Calculate relevant(12)

```
Statement 12: a = b + c

DEF(12) = {a}

REF(12) = {b, c}

relevant(12) = (relevant(13) - DEF(12)) U (REF(12) if relevant(13) \cap DEF(12) \neq \emptyset

\emptyset

= ({a} - {a}) U ({b, c} if {a} \cap {a} \neq \emptyset)

= \emptyset U {b, c}

= {b, c}
```

Step 2: Calculate relevant(11)

```
Statement 11: Endif DEF(11) = \varnothing
REF(11) = \varnothing
relevant(11) = (relevant(12) - DEF(11)) \cup (REF(11) if relevant(12) \cap DEF(11) \neq \varnothing )
= \{b, c\} - \varnothing ) \cup (\varnothing if \{b, c\} \cap \varnothing \neq \varnothing )
= \{b, c\} \cup \varnothing
= \{b, c\}
```

Step 3: Calculate relevant(10)

```
Statement 10: d = b + 1

DEF(10) = \{d\}

REF(10) = \{b\}

relevant(10) = (relevant(11) - DEF(10)) \cup (REF(10) if relevant(11) \cap DEF(10) \neq \varnothing )

= \{\{b, c\} - \{d\}\} \cup (\{b\} \text{ if } \{b, c\} \cap \{d\} \neq \varnothing )

= \{b, c\} \cup \varnothing

= \{b, c\}
```

Step 4: Calculate relevant(9)

```
Statement 9: b = b + 1

DEF(9) = {b}

REF(9) = {b}

relevant(9) = (relevant(10) - DEF(9)) U (REF(9) if relevant(10) \cap DEF(9) \neq \emptyset )

= ({b, c} - {b}) U ({b} if {b, c} \cap {b} \neq \emptyset )

= {c} U {b}

= {b, c}
```

Step 5: Calculate relevant(8)

```
Statement 8: else DEF(8) = \emptyset REF(8) = \emptyset relevant(8) = (relevant(9) - DEF(8)) \cup (REF(8) \text{ if } relevant(9) \cap DEF(8) \neq \emptyset) = (\{b, c\} - \emptyset) \cup (\emptyset \text{ if } \{b, c\} \cap \emptyset \neq \emptyset) = \{b, c\}
```

Step 6: Calculate relevant(7)

Statement 7:
$$c = b + d$$

DEF(7) = {c}
REF(7) = {b, d}

```
relevant(7) = (relevant(11) - DEF(7)) \cup (REF(7) if relevant(11) \cap DEF(7) \neq \emptyset)
= (\{b, c\} - \{c\}) \cup (\{b, d\} \text{ if } \{b, c\} \cap \{c\} \neq \emptyset)
= \{b\} \cup \{b, d\}
= \{b, d\}
Step 7: Calculate relevant(6)
Statement 6: d = b + d
DEF(6) = \{d\}
REF(6) = \{b, d\}
relevant(6) = (relevant(7) - DEF(6)) \cup (REF(6) if relevant(7) \cap DEF(6) \neq \emptyset)
= (\{b, d\} - \{d\}) \cup (\{b, d\} \text{ if } \{b, d\} \cap \{d\} \neq \emptyset)
= \{b\} \cup \{b, d\}
= \{b, d\}
Step 8: Calculate relevant(5)
Statement 5: if (a=3) then
DEF(5) = \emptyset
REF(5) = \{a\}
relevant(5) = (relevant(6) - DEF(5)) \cup (REF(5) if relevant(6) \cap DEF(5) \neq \emptyset)
= (\{b, d\} - \emptyset) \cup (\{a\} \text{ if } \{b, d\} \cap \emptyset \neq \emptyset)
= \{b, d\}
Step 9: Calculate relevant(4)
Statement 4: a = d
DEF(4) = \{a\}
REF(4) = \{d\}
relevant(4) = (relevant(5) - DEF(4)) \cup (REF(4) if relevant(5) \cap DEF(4) \neq \emptyset
```

Step 10: Calculate relevant(3)

 $= \{b, d\}$

 $= (\{b, d\} - \{a\}) \cup (\{d\} \text{ if } \{b, d\} \cap \{a\} \neq \emptyset)$

```
Statement 3: d = 3

DEF(3) = \{d\}

REF(3) = \emptyset

relevant(3) = (relevant(4) - DEF(3)) \cup (REF(3) if relevant(4) \cap DEF(3) \neq \emptyset )

= (\{b, d\} - \{d\}) \cup (\emptyset) if \{b, d\} \cap \{d\} \neq \emptyset )

= \{b\}
```

Step 11: Calculate relevant(2)

```
Statement 2: c = 2

DEF(2) = {c}

REF(2) = \varnothing

relevant(2) = (relevant(3) - DEF(2)) \cup (REF(2) if relevant(3) \cap DEF(2) \neq \varnothing )

= ({b} - {c}) \cup (\varnothing if {b} \cap {c} \neq \varnothing )

= {b}
```

Step 12: Calculate relevant(1)

```
Statement 1: b = 1
DEF(1) = \{b\}
REF(1) = \emptyset
relevant(1) = (relevant(2) - DEF(1)) \cup (REF(1) \text{ if relevant}(2) \cap DEF(1) \neq \emptyset)
= (\{b\} - \{b\}) \cup (\emptyset \text{ if } \{b\} \cap \{b\} \neq \emptyset)
= \emptyset
```

Program #2

Solution:

n	Statement	REFs(n)	DEFs(n)	relevant(n)
1	#include <stdio.h></stdio.h>			
2	#include <math.h></math.h>			
3				
4	int main(void)			
5	{			
6	Double a, b, c, d, x1, x2;			
7	// Read input data			
8	printf("Enter the variables for the quadratic")			{a, b, c}
9	scanf("%lf%lf%lf", &a, &b, &c);	a, b, c	a, b, c	{a, b, c}
10				{a, b, c}
11	//Perform calculation			{a, b, c}
12	d=sqrt(b * b - 4. * a * c);	a, b, c	d	{a, b, c}
13	x1=(-b + d) / (2. * c);	b, d, c	x1	{b,d, a}
14	x2=(-b-d)/(2.*a);	b, d, a	x2	{b, d, a}
15				{x2}
16	//Display output			{x2}
17	printf("\nx1=%12.3e x2=%12.3e\n", x1,	x1, x2		{x2}

	x2);		
18	return 0;		
19	}		

Program Slice on <17, x2>:

{14, 12, 9}

n	Statement
9	scanf("%lf%lf", &a, &b, &c);
12	d=sqrt(b * b - 4. * a * c);
14	x2=(-b-d)/(2.*a);

Program #2:

Detailed Calculation of relevant(n) for Slice <17, x2>

Initialization:

• relevant(17) = $\{x2\}$ (from the slicing criterion <17, x2>)

Step 1: Calculate relevant(16)

Statement 16: //Display output

 $DEF(16) = \emptyset$

 $REF(16) = \emptyset$

relevant(16) = (relevant(17) - DEF(16)) U (REF(16) if relevant(17) \cap DEF(16) \neq \varnothing)

```
= (\{x2\} - \emptyset) \cup (\emptyset \text{ if } \{x2\} \cap \emptyset \neq \emptyset)
= \{x2\} \cup \emptyset
= \{x2\}
```

Step 2: Calculate relevant(15)

```
Statement 15: (empty line) 

DEF(15) = \varnothing

REF(15) = \varnothing

relevant(15) = (relevant(16) - DEF(15)) \cup (REF(15) if relevant(16) \cap DEF(15) \neq \varnothing )

= (\{x2\} - \varnothing ) \cup (\varnothing if \{x2\} \cap \varnothing \neq \varnothing )

= \{x2\}
```

Step 3: Calculate relevant(14)

```
Statement 14: x2 = (-b - d) / (2. * a)

DEF(14) = {x2}

REF(14) = {b, d, a}

relevant(14) = (relevant(15) - DEF(14)) U (REF(14) if relevant(15) \cap DEF(14) \neq \emptyset

\emptyset )

= ({x2} - {x2}) U ({b, d, a} if {x2} \cap {x2} \neq \emptyset )

= \emptyset U {b, d, a}

= {b, d, a}
```

Step 4: Calculate relevant(13)

```
Statement 13: x1 = (-b + d) / (2. * c)

DEF(13) = \{x1\}

REF(13) = \{b, d, c\}

relevant(13) = (relevant(14) - DEF(13)) \cup (REF(13) if relevant(14) \cap DEF(13) \neq \varnothing )

= (\{b, d, a\} - \{x1\}) \cup (\{b, d, c\} \text{ if } \{b, d, a\} \cap \{x1\} \neq \varnothing )
```

```
= \{b, d, a\} \cup \emptyset= \{b, d, a\}
```

Step 5: Calculate relevant(12)

```
Statement 12: d = sqrt(b * b - 4. * a * c)

DEF(12) = {d}

REF(12) = {a, b, c}

relevant(12) = (relevant(14) - DEF(12)) \cup (REF(12) if relevant(14) \cap DEF(12) \neq \varnothing )

= ({b, d, a} - {d}) \cup ({a, b, c} if {b, d, a} \cap {d} \neq \varnothing )

= {b, a} \cup {a, b, c}

= {a, b, c}
```

Step 6: Calculate relevant(11)

```
Statement 11: //Perform calculation DEF(11) = \varnothing REF(11) = \varnothing relevant(11) = (relevant(12) - DEF(11)) \cup (REF(11) if relevant(12) \cap DEF(11) \neq \varnothing ) = \{a, b, c\} - \varnothing ) \cup (\varnothing if \{a, b, c\} \cap \varnothing \neq \varnothing ) = \{a, b, c\}
```

Step 7: Calculate relevant(10)

```
Statement 10: (empty line)  DEF(10) = \emptyset   REF(10) = \emptyset   relevant(10) = (relevant(11) - DEF(10)) \cup (REF(10) \text{ if relevant}(11) \cap DEF(10) \neq \emptyset  )  = (\{a, b, c\} - \emptyset) \cup (\emptyset \text{ if } \{a, b, c\} \cap \emptyset \neq \emptyset)   = \{a, b, c\}
```

Step 8: Calculate relevant(9)

```
Statement 9: scanf("%lf%lf%lf", &a, &b, &c) 

DEF(9) = {a, b, c} 

REF(9) = {a, b, c} 

relevant(9) = (relevant(10) - DEF(9)) \cup (REF(9) if relevant(10) \cap DEF(9) \neq \varnothing ) 

= ({a, b, c} - {a, b, c}) \cup ({a, b, c} if {a, b, c} \cap {a, b, c} \neq \varnothing ) 

= \varnothing \cup {a, b, c} 

= {a, b, c}
```

Step 9: Calculate relevant(8)

```
Statement 8: printf("Enter the variables...")
DEF(8) = \emptyset
REF(8) = \emptyset
relevant(8) = (relevant(9) - DEF(8)) \cup (REF(8) \text{ if relevant}(9) \cap DEF(8) \neq \emptyset)
= (\{a, b, c\} - \emptyset) \cup (\emptyset \text{ if } \{a, b, c\} \cap \emptyset \neq \emptyset)
= \{a, b, c\}
```

Steps 7-1: Earlier statements (1-7)

These are declarations and comments that don't affect the relevant sets.

Complete relevant sets for Program no. 2:

n	relevant(n)
17	{x2}
16	{x2}
15	{x2}
14	{b, d, a}
13	{b, d, a}

12	{a, b, c}
11	{a, b, c}
10	{a, b, c}
9	{a, b, c}
8	{a, b, c}
1-7	Ø

Program no.3

Solution:

n	Statement	REFs(n)	DEFs(n)	relevant(n)
1	b=1		b	
2	c=2		С	b
3	d=5		d	b, c
4	a=3		a	b, c
5	While (a < 10)	a		b, c
6	b=b+c	b, c	b	b, c
7	c=c+1	c	С	b
8	a=b	b	a	b
9	EndWhile			a
10	print a	a		a

Program Slice on <10, a>:

n	Statement
1	b=1
2	c=2
6	b=b+c
7	c=c+1
8	a=b

Program no. 3: Detailed Calculation of relevant(n) for Slice <10, a> Initialization:

• relevant(10) = $\{a\}$ (from the slicing criterion <10, a>)

Step 1: Calculate relevant(9)

```
Statement 9: EndWhile DEF(9) = \varnothing REF(9) = \varnothing relevant(9) = (relevant(10) - DEF(9)) \cup (REF(9) if relevant(10) \cap DEF(9) \neq \varnothing ) = ({a} - \varnothing ) \cup (\varnothing if {a} \cap \varnothing \neq \varnothing ) = {a}
```

Step 2: Calculate relevant(8)

Statement 8:
$$a = b$$

DEF(8) = $\{a\}$
REF(8) = $\{b\}$

```
relevant(8) = (relevant(9) - DEF(8)) \cup (REF(8) if relevant(9) \cap DEF(8) \neq \emptyset ) = ({a} - {a}) \cup ({b} if {a} \cap {a} \neq \emptyset ) = \emptyset \cup {b} = {b} Step 3: Calculate relevant(7)
```

```
Statement 7: c = c + 1

DEF(7) = {c}

REF(7) = {c}

relevant(7) = (relevant(8) - DEF(7)) \cup (REF(7) if relevant(8) \cap DEF(7) \neq \emptyset )

= ({b} - {c}) \cup ({c} if {b} \cap {c} \neq \emptyset )

= {b} \cup \emptyset

= {b}
```

Step 4: Calculate relevant(6)

```
Statement 6: b = b + c

DEF(6) = {b}

REF(6) = {b, c}

relevant(6) = (relevant(7) - DEF(6)) \cup (REF(6) if relevant(7) \cap DEF(6) \neq \varnothing )

= ({b} - {b}) \cup ({b, c} if {b} \cap {b} \neq \varnothing )

= \varnothing \cup {b, c}

= {b, c}
```

Step 5: Calculate relevant(5)

```
Statement 5: While (a < 10) 

DEF(5) = \varnothing

REF(5) = {a}

relevant(5) = (relevant(6) - DEF(5)) \cup (REF(5) if relevant(6) \cap DEF(5) \neq \varnothing )

= ({b, c} - \varnothing ) \cup ({a} if {b, c} \cap \varnothing \neq \varnothing )

= {b, c}
```

Step 6: Calculate relevant(4)

```
Statement 4: a = 3

DEF(4) = \{a\}

REF(4) = \varnothing

relevant(4) = (relevant(5) - DEF(4)) \cup (REF(4) if relevant(5) \cap DEF(4) \neq \varnothing )

= (\{b, c\} - \{a\}) \cup (\varnothing \text{ if } \{b, c\} \cap \{a\} \neq \varnothing)

= \{b, c\}
```

Step 7: Calculate relevant(3)

```
Statement 3: d = 5

DEF(3) = \{d\}

REF(3) = \emptyset

relevant(3) = (relevant(4) - DEF(3)) \cup (REF(3) if relevant(4) \cap DEF(3) \neq \emptyset )

= (\{b, c\} - \{d\}) \cup (\emptyset if \{b, c\} \cap \{d\} \neq \emptyset )

= \{b, c\}
```

Step 8: Calculate relevant(2)

```
Statement 2: c = 2

DEF(2) = {c}

REF(2) = \varnothing

relevant(2) = (relevant(3) - DEF(2)) \cup (REF(2) if relevant(3) \cap DEF(2) \neq \varnothing )

= ({b, c} - {c}) \cup (\varnothing if {b, c} \cap {c} \neq \varnothing )

= {b}
```

Step 9: Calculate relevant(1)

```
Statement 1: b = 1

DEF(1) = \{b\}

REF(1) = \emptyset
```

relevant(1) = (relevant(2) - DEF(1))
$$\cup$$
 (REF(1) if relevant(2) \cap DEF(1) $\neq \emptyset$) = ({b} - {b}) \cup (\emptyset if {b} \cap {b} $\neq \emptyset$) = \emptyset

Program no. 4

Solution:

n	Statement	REFs(n)	DEFs(n)	relevant(n)
1	read(text);	text		text
2	read(n);		n	text
3	lines=1;		lines	n, text
4	chars=1;		chars	n, text
5	subtext = ""		subtext	n, text
6	c= getChar(text);	text	С	Subtext ,n, text
7	while (c!= '\eof')	С		subtext,c,n
8	If (c== '\n') then	С		subtext,c,n

9	lines = lines + 1;	lines	lines	subtext,c,n
10	chars = chars + 1;	chars	chars	subtext,c,n
11	else chars=chars +1	chars	chars	subtext,c,n
12	if(n!=0) then	n		subtext,c,n
13	subtext = subtext ++ c	subtext, c	subtext	subtext,c,n
14	n=n-1	n	n	subtext, n
15	c= getChar(text);	text	С	subtext
16	write(lines);	lines		subtext
17	write(chars);	chars		subtext
18	write(subtext);	subtext		subtext

Program Slice on <18, subtext>:

{13, 12, 14, 6, 2, 1, 5, 15}

n	Statement
1	read(text);
2	read(n);
5	subtext = ""
6	c= getChar(text);

12	if(n!=0) then
13	subtext = subtext ++ c
14	n=n-1
15	c= getChar(text);

Program 4:

Detailed Calculation of relevant(n) for Slice <18, subtext>

Initialization:

• relevant(18) = {subtext} (from the slicing criterion <18, subtext>)

Step 1: Calculate relevant(17)

```
Statement 17: write(chars) 

DEF(17) = \varnothing

REF(17) = {chars}

relevant(17) = (relevant(18) - DEF(17)) \cup (REF(17) if relevant(18) \cap DEF(17) \ne \varnothing )

= ({subtext} - \varnothing ) \cup (\varnothing if {subtext} \cap \varnothing \ne \varnothing )

= {subtext}
```

Step 2: Calculate relevant(16)

```
Statement 16: write(lines) 

DEF(16) = \varnothing

REF(16) = {lines}

relevant(16) = (relevant(17) - DEF(16)) \cup (REF(16) if relevant(17) \cap DEF(16) \neq \varnothing )

= ({subtext} - \varnothing ) \cup (\varnothing if {subtext} \cap \varnothing \neq \varnothing )

= {subtext}
```

Step 3: Calculate relevant(15)

```
Statement 15: c = getChar(text)

DEF(15) = {c}

REF(15) = {text}

relevant(15) = (relevant(16) - DEF(15)) \cup (REF(15) if relevant(16) \cap DEF(15) \neq

\varnothing )

= ({subtext} - {c}) \cup ({text} if {subtext} \cap {c} \neq \varnothing )

= {subtext} \cup \varnothing

= {subtext}
```

Step 4: Calculate relevant(14)

```
Statement 14: n = n - 1

DEF(14) = \{n\}

REF(14) = \{n\}

relevant(14) = (relevant(15) - DEF(14)) \cup (REF(14) if relevant(15) \cap DEF(14) \neq \varnothing )

= (\{\text{subtext}\} - \{n\}) \cup (\{n\} if \{\text{subtext}\} \cap \{n\} \neq \varnothing )

= \{\text{subtext}\} \cup \{n\} (because subtext depends on n)

= \{\text{subtext}, n\}
```

Step 5: Calculate relevant(13)

```
Statement 13: subtext = subtext ++ c 

DEF(13) = {subtext} 

REF(13) = {subtext, c} 

relevant(13) = (relevant(14) - DEF(13)) \cup (REF(13) if relevant(14) \cap DEF(13) \neq \varnothing ) 

= ({subtext, n} - {subtext}) \cup ({subtext, c} if {subtext, n} \cap {subtext} \neq \varnothing ) 

= {n} \cup {subtext, c} 

= {subtext, c, n}
```

Step 6: Calculate relevant(12)

```
Statement 12: if (n != 0) then
DEF(12) = \emptyset
REF(12) = \{n\}
relevant(12) = (relevant(13) - DEF(12)) \cup (REF(12) \text{ if } relevant(13) \cap DEF(12) \neq 0
\emptyset )
= ({subtext, c, n} - \emptyset ) U ({n} if {subtext, c, n} \cap \emptyset \neq \emptyset )
= \{ \text{subtext, c, n} \}
Step 7: Calculate relevant(11)
Statement 11: else chars = chars + 1
DEF(11) = \{chars\}
REF(11) = \{chars\}
relevant(11) = (relevant(12) - DEF(11)) U (REF(11) if relevant(12) \cap DEF(11) \neq
= ({subtext, c, n} - {chars}) \cup (\varnothing if {subtext, c, n} \cap {chars} \neq \varnothing)
= \{ \text{subtext, c, n} \}
Step 8: Calculate relevant(10)
Statement 10: chars = chars + 1
DEF(10) = \{chars\}
REF(10) = \{chars\}
relevant(10) = (relevant(11) - DEF(10)) \cup (REF(10) \text{ if } relevant(11) \cap DEF(10) \neq 0
\emptyset
= ({subtext, c, n} - {chars}) \cup (\varnothing if {subtext, c, n} \cap {chars} \neq \varnothing)
= \{ \text{subtext, c, n} \}
Step 9: Calculate relevant(9)
Statement 9: lines = lines + 1
DEF(9) = \{lines\}
REF(9) = \{lines\}
```

```
relevant(9) = (relevant(10) - DEF(9)) \cup (REF(9) if relevant(10) \cap DEF(9) \neq \emptyset)
= ({subtext, c, n} - {lines}) \cup (\varnothing if {subtext, c, n} \cap {lines} \neq \varnothing)
= \{ \text{subtext, c, n} \}
Step 10: Calculate relevant(8)
Statement 8: If (c == '\n') then
DEF(8) = \emptyset
REF(8) = \{c\}
relevant(8) = (relevant(9) - DEF(8)) \cup (REF(8) if relevant(9) \cap DEF(8) \neq \emptyset)
= ({subtext, c, n} - \emptyset ) U ({c} if {subtext, c, n} \cap \emptyset \neq \emptyset )
= \{ \text{subtext, c, n} \}
Step 11: Calculate relevant(7)
Statement 7: while (c != '\eof')
DEF(7) = \emptyset
REF(7) = \{c\}
relevant(7) = (relevant(8) - DEF(7)) \cup (REF(7) if relevant(8) \cap DEF(7) \neq \emptyset)
= ({subtext, c, n} - \emptyset ) U ({c} if {subtext, c, n} \cap \emptyset \neq \emptyset )
= \{ \text{subtext}, c, n \}
Step 12: Calculate relevant(6)
Statement 6: c = getChar(text)
DEF(6) = \{c\}
REF(6) = \{text\}
relevant(6) = (relevant(7) - DEF(6)) \cup (REF(6) if relevant(7) \cap DEF(6) \neq \emptyset)
= (\{\text{subtext}, c, n\} - \{c\}) \cup (\{\text{text}\}\ \text{if}\ \{\text{subtext}, c, n\} \cap \{c\} \neq \emptyset)
= {subtext, n} U {text}
```

Step 13: Calculate relevant(5)

 $= \{ \text{subtext}, n, \text{text} \}$

```
Statement 5: subtext = ""
DEF(5) = \{subtext\}
REF(5) = \emptyset
relevant(5) = (relevant(6) - DEF(5)) \cup (REF(5) if relevant(6) \cap DEF(5) \neq \emptyset)
= (\{\text{subtext}, n, \text{text}\} - \{\text{subtext}\}) \cup (\emptyset if \{\text{subtext}, n, \text{text}\} \cap \{\text{subtext}\} \neq \emptyset)
= \{n, text\}
Step 14: Calculate relevant(4)
Statement 4: chars = 1
DEF(4) = \{chars\}
REF(4) = \emptyset
relevant(4) = (relevant(5) - DEF(4)) \cup (REF(4) if relevant(5) \cap DEF(4) \neq \emptyset
= (\{n, \text{text}\} - \{\text{chars}\}) \cup (\emptyset \text{ if } \{n, \text{text}\} \cap \{\text{chars}\} \neq \emptyset)
= \{n, text\}
Step 15: Calculate relevant(3)
Statement 3: lines = 1
DEF(3) = \{lines\}
REF(3) = \emptyset
relevant(3) = (relevant(4) - DEF(3)) \cup (REF(3) if relevant(4) \cap DEF(3) \neq \emptyset)
= (\{n, \text{text}\} - \{\text{lines}\}) \cup (\emptyset \text{ if } \{n, \text{text}\} \cap \{\text{lines}\} \neq \emptyset)
= \{n, text\}
Step 16: Calculate relevant(2)
Statement 2: read(n)
DEF(2) = \{n\}
REF(2) = \emptyset
relevant(2) = (relevant(3) - DEF(2)) \cup (REF(2) if relevant(3) \cap DEF(2) \neq \emptyset)
= (\{n, \text{text}\} - \{n\}) \cup (\emptyset \text{ if } \{n, \text{text}\} \cap \{n\} \neq \emptyset)
= \{text\}
```

Step 17: Calculate relevant(1)

```
Statement 1: read(text)  DEF(1) = \{text\}   REF(1) = \{text\}   relevant(1) = (relevant(2) - DEF(1)) \cup (REF(1) \text{ if } relevant(2) \cap DEF(1) \neq \varnothing )   = (\{text\} - \{text\}) \cup (\{text\} \text{ if } \{text\} \cap \{text\} \neq \varnothing )   = \varnothing \cup \{text\}   = \{text\}
```

Program no. 5

Solution:

n	Statement	REFs(n)	DEFs(n)	relevant(n)
1	read(n);		n	
2	i=1;		i	
3	sum=0;		sum	i
4	product=1;		product	i
5	while (i < n) do	i, n		product, i
6	sum= sum +i;	sum, i	sum	Product, i
7	product= product *i	product, i	product	product, i
8	i=i+1;	i	i	Product

9	write(sum);	sum	product
10	write(product);	product	product

Program Slice on <10, product>:

{7, 5, 8, 4, 2, 1}

n	Statement
1	read(n);
2	i=1;
4	product=1;
5	while (i < n) do
7	product= product *i
8	i=i+1;

Program no. 5:
Detailed Calculation of relevant(n) for Slice <10,product>
Initialization:

• relevant(10) = {product} (from the slicing criterion <10, product>)

Step 1: Calculate relevant(9)

Statement 9: write(sum) DEF(9) = \emptyset REF(9) = {sum}

```
relevant(9) = (relevant(10) - DEF(9)) \cup (REF(9) \text{ if } relevant(10) \cap DEF(9) \neq \emptyset)
= ({product} - \emptyset ) \bigcup (\emptyset if {product} \bigcap \emptyset \neq \emptyset )
= \{product\}
Step 2: Calculate relevant(8)
Statement 8: i = i + 1
DEF(8) = \{i\}
REF(8) = \{i\}
relevant(8) = (relevant(9) - DEF(8)) \cup (REF(8) if relevant(9) \cap DEF(8) \neq \emptyset)
= ({product} - {i}) \cup ({i} if {product} \cap {i} \neq \emptyset)
= \{ product \} \cup \emptyset
= {product}
Step 3: Calculate relevant(7)
Statement 7: product = product * i
DEF(7) = \{product\}
REF(7) = \{product, i\}
relevant(7) = (relevant(8) - DEF(7)) \cup (REF(7) if relevant(8) \cap DEF(7) \neq \emptyset
= ({product} - {product}) \cup ({product, i} if {product} \cap {product} \neq \emptyset)
=\emptyset U {product, i}
= {product, i}
Step 4: Calculate relevant(6)
Statement 6: sum = sum + i
DEF(6) = \{sum\}
REF(6) = \{sum, i\}
relevant(6) = (relevant(7) - DEF(6)) \cup (REF(6) if relevant(7) \cap DEF(6) \neq \emptyset)
= ({product, i} - {sum}) \cup ({sum, i} if {product, i} \cap {sum} \neq \emptyset)
= {product, i} U \emptyset
= \{ product, i \}
```

```
Step 5: Calculate relevant(5)
Statement 5: while (i \le n) do
DEF(5) = \emptyset
REF(5) = \{i, n\}
relevant(5) = (relevant(6) - DEF(5)) \cup (REF(5) if relevant(6) \cap DEF(5) \neq \emptyset
= ({product, i} - \varnothing ) \cup ({i, n} if {product, i} \cap \varnothing \neq \varnothing )
= {product, i} U \emptyset
= {product, i}
Step 6: Calculate relevant(4)
Statement 4: product = 1
DEF(4) = \{product\}
REF(4) = \emptyset
relevant(4) = (relevant(5) - DEF(4)) \cup (REF(4) if relevant(5) \cap DEF(4) \neq \emptyset
= ({product, i} - {product}) \cup (\varnothing if {product, i} \cap {product} \neq \varnothing)
= {i} U Ø
= \{i\}
Step 7: Calculate relevant(3)
Statement 3: sum = 0
```

```
DEF(3) = {sum}
REF(3) = \emptyset
relevant(3) = (relevant(4) - DEF(3)) \cup (REF(3) if relevant(4) \cap DEF(3) \neq \emptyset
= (\{i\} - \{sum\}) \cup (\emptyset \text{ if } \{i\} \cap \{sum\} \neq \emptyset)
= \{i\}
```

Step 8: Calculate relevant(2)

```
Statement 2: i = 1
DEF(2) = \{i\}
REF(2) = \emptyset
```

```
relevant(2) = (relevant(3) - DEF(2)) \cup (REF(2) if relevant(3) \cap DEF(2) \neq \varnothing ) = ({i} - {i}) \cup (\varnothing if {i} \cap {i} \neq \varnothing ) = \varnothing \cup \varnothing = \varnothing
```

Step 9: Calculate relevant(1)