

Oscillateur harmonique

Julien Cubizolles

Lycée Louis le Grand

Vendredi 15 novembre 2021

Loi de Hooke Système dynamique Considérations énergétiques QCN

les phénomènes périodiques sont omniprésents en physique

- les phénomènes périodiques sont omniprésents en physique
- en particulier dans le domaine de la propagation des ondes (mécaniques, électromagnétiques, sonores) indispensables à la transformation d'information

- les phénomènes périodiques sont omniprésents en physique
- en particulier dans le domaine de la propagation des ondes (mécaniques, électromagnétiques, sonores) indispensables à la transformation d'information
- on les décrit en utilisant des fonctions sinusoïdales, caractérisées par leur fréquence ou leur pulsation, leur amplitude, leur phase

- les phénomènes périodiques sont omniprésents en physique
- en particulier dans le domaine de la propagation des ondes (mécaniques, électromagnétiques, sonores) indispensables à la transformation d'information
- on les décrit en utilisant des fonctions sinusoïdales, caractérisées par leur fréquence ou leur pulsation, leur amplitude, leur phase
- on introduit ces concepts sur un système physique simple : le système masse ressort, illustration du modèle fondamental de l'oscillateur harmonique et son analogue électrocinétique le circuit RC

- 1. Loi de Hooke
- Système dynamique
- 3. Considérations énergétiques
- 4. QCV

- 1. Loi de Hooke
- 1.1 Observations
- 1.2 Modélisation : Loi de force
- 2. Système dynamique
- 3. Considérations énergétiques
- 4. QCM

8/58

 \blacktriangleright un ressort à spirales possède une longueur caractéristique « au repos » notée ℓ_0

- ▶ un ressort à spirales possède une longueur caractéristique « au repos » notée ℓ₀
- ▶ on peut faire varier sa longueur ℓ , on nomme élongation ou allongement le réel $\ell \ell_0$

- bun ressort à spirales possède une longueur caractéristique « au repos » notée ℓ_0
- ▶ on peut faire varier sa longueur ℓ , on nomme élongation ou allongement le réel $\ell \ell_0$
- l'élongation est positive si le ressort est allongé, négative s'il est comprimé

- bun ressort à spirales possède une longueur caractéristique « au repos » notée ℓ_0
- ▶ on peut faire varier sa longueur ℓ , on nomme élongation ou allongement le réel $\ell \ell_0$
- l'élongation est positive si le ressort est allongé, négative s'il est comprimé
- différents ressorts s'allongeront/se comprimeront différemment, ils ont des raideurs différentes

on suspend brutalement un objet :

on suspend brutalement un objet :

 il finit par atteindre une position d'équilibre, avec une élongation non nulle

on suspend brutalement un objet :

- il finit par atteindre une position d'équilibre, avec une élongation non nulle
- après des oscillations amorties

on suspend brutalement un objet :

- il finit par atteindre une position d'équilibre, avec une élongation non nulle
- après des oscillations amorties
- la position d'équilibre varie avec la masse : l'élongation croît avec la masse de l'objet suspendu

- 1. Loi de Hooke
- 1.1 Observations
- 1.2 Modélisation : Loi de force
- 2. Système dynamique
- 3. Considérations énergétiques
- 4. QCM

Description

ightharpoonup sans le ressort, l'objet chute sous l'effet d'une force, le poids \overrightarrow{P}

Description

- \triangleright sans le ressort, l'objet chute sous l'effet d'une force, le poids \overrightarrow{P}
- une force possède une direction, elle est représentée par un vecteur

- \triangleright sans le ressort, l'objet chute sous l'effet d'une force, le poids \overrightarrow{P}
- une force possède une direction, elle est représentée par un vecteur
- le ressort exerce une force, nommée tension, notée \vec{T}

- ightharpoonup sans le ressort, l'objet chute sous l'effet d'une force, le poids \overrightarrow{P}
- une force possède une direction, elle est représentée par un vecteur
- le ressort exerce une force, nommée tension, notée \vec{T}
- ightharpoonup à l'équilibre de la masse, la force \overrightarrow{T} compense la force \overrightarrow{P} :

$$\overrightarrow{T} + \overrightarrow{P} = \overrightarrow{0}$$
.

ightharpoonup c'est la norme du vecteur \overrightarrow{T}

- ightharpoonup c'est la norme du vecteur \overrightarrow{T}
- elle varie avec l'élongation, on vérifie :

- ightharpoonup c'est la norme du vecteur \overrightarrow{T}
- le lle varie avec l'élongation, on vérifie :
 - qu'elle croît linéairement avec l'élongation en faisant croître le poids de l'objet suspendu

- ightharpoonup c'est la norme du vecteur \overrightarrow{T}
- elle varie avec l'élongation, on vérifie :
 - qu'elle croît linéairement avec l'élongation en faisant croître le poids de l'objet suspendu
 - qu'elle est nulle quand aucun objet n'est suspendu (en négligeant le poids du ressort lui-même)

- ightharpoonup c'est la norme du vecteur \overrightarrow{T}
- elle varie avec l'élongation, on vérifie :
 - qu'elle croît linéairement avec l'élongation en faisant croître le poids de l'objet suspendu
 - qu'elle est nulle quand aucun objet n'est suspendu (en négligeant le poids du ressort lui-même)

Tension

$$T = k |\ell - \ell_0|$$

Direction, sens

 $ightharpoonup \vec{P}$ et \vec{T} sont de sens opposés

Direction, sens

- \overrightarrow{P} et \overrightarrow{T} sont de sens opposés
- de même si le ressort est comprimé par le poids

Direction, sens

- $ightharpoonup \vec{P}$ et \vec{T} sont de sens opposés
- de même si le ressort est comprimé par le poids
- on propose :

- $ightharpoonup \vec{P}$ et \vec{T} sont de sens opposés
- de même si le ressort est comprimé par le poids
- on propose :

Loi de Hooke

$$\overrightarrow{T} = -k \left(\ell - \ell_0\right) \overrightarrow{e}_{\to M}$$

- $ightharpoonup \vec{P}$ et \vec{T} sont de sens opposés
- de même si le ressort est comprimé par le poids
- on propose :

Loi de Hooke

$$\overrightarrow{T} = -k \left(\ell - \ell_0\right) \overrightarrow{e}_{\rightarrow M}$$

- k la constante de raideur, positive
- $-\ell \ell_0$ l'élongation, positive ou négative
- $\overrightarrow{e}_{\rightarrow M}$ le vecteur unitaire (sans dimension) colinéaire au ressort et dirigé de l'autre extrémité vers l'extrémité sur laquelle s'exerce \overrightarrow{T}
- on vérifie la nécessité du signe pour le sens de la force
- cette expression est valable quelle que soit la direction du ressort

Illustration

animation phet 1

https://phet.colorado.edu/sims/html/hookes-law/
latest/hookes-law_en.html

¹https://phet.colorado.edu/sims/html/hookes-law/latest/
hookes-law en.html

Caractère vectoriel de la force

on considère une masse m immobile au bout du ressort, soumise à \vec{g} :

ressort à la verticale : $\overrightarrow{T} + \overrightarrow{P} = \overrightarrow{0}$

Caractère vectoriel de la force

on considère une masse m immobile au bout du ressort, soumise à \vec{g} :

- ressort à la verticale : $\overrightarrow{T} + \overrightarrow{P} = \overrightarrow{0}$
- ressort à l'horizontale : \overrightarrow{T} et \overrightarrow{P} sont orthogonaux : la tension ne peut pas compenser le poids : le support exerce une force de réaction \overrightarrow{R} telle que :

$$\overrightarrow{T} + \overrightarrow{P} + \overrightarrow{R} = \overrightarrow{0}$$

Caractère vectoriel de la force

on considère une masse m immobile au bout du ressort, soumise à \vec{g} :

- ressort à la verticale : $\overrightarrow{T} + \overrightarrow{P} = \overrightarrow{0}$
- ressort à l'horizontale : \overrightarrow{T} et \overrightarrow{P} sont orthogonaux : la tension ne peut pas compenser le poids : le support exerce une force de réaction \overrightarrow{R} telle que :

$$\vec{T} + \vec{P} + \vec{R} = \vec{0}$$

on traduit cette égalité sur les composantes des vecteurs selon deux directions orthogonales, par projection :

$$\overrightarrow{e}_x \cdot (\overrightarrow{T} + \overrightarrow{R} + \overrightarrow{P}) = 0 \rightarrow \ell = \ell_0$$

 $\overrightarrow{e}_z \cdot (\overrightarrow{T} + \overrightarrow{R} + \overrightarrow{P}) = 0 \rightarrow R_z = mg$

Notations

on note P_x la composante du vecteur \overrightarrow{P} selon le vecteur unitaire $\overrightarrow{e_x}$: P_x peut être positive, négative ou nulle

Notations

- on note P_x la composante du vecteur \overrightarrow{P} selon le vecteur unitaire $\overrightarrow{e_x}$: P_x peut être positive, négative ou nulle
- ightharpoonup P désigne la norme du vecteur \overrightarrow{P} , toujours positive ou nulle

Forces de frottements

les oscillations sont amorties par les frottements :

Forces de frottements

les oscillations sont amorties par les frottements :

- avec l'air
- avec le support
- au sein du ressort

Mise en équation Résolution Représentation de Fresnel Autres configurations Oscillateur barmonique en électrocinétique

- 1. Loi de Hooke
- 2. Système dynamique
- 3. Considérations énergétiques
- 4. QCIV

Mise en équation
Résolution
Représentation de Fresnel
Autres configurations
Occillatour harmanique on électrocinétique

1. Loi de Hooke

- 2. Système dynamique
- 2.1 Mise en équation
- 2.2 Résolution
- 2.3 Représentation de Fresnel
- 2.4 Autres configurations
- 2.5 Oscillateur harmonique en électrocinétique
- Considérations énergétiques
- 4. QCM

Cadre

le plus simple possible

ressort horizontal idéal (sans masse entre autres)

Cadre

le plus simple possible

- ressort horizontal idéal (sans masse entre autres)
- on fixe une masse m à son extrémité

Cadre

le plus simple possible

- ressort horizontal idéal (sans masse entre autres)
- on fixe une masse *m* à son extrémité
- l'autre extrémité est fixe

Cadre

le plus simple possible

- ressort horizontal idéal (sans masse entre autres)
- on fixe une masse *m* à son extrémité
- l'autre extrémité est fixe
- frottements négligés

Mise en équation
Résolution
Représentation de Fresnel
Autres configurations
Oscillateur, harmonique, en électrocinétique.

Loi de la quantité de mouvement

(ou 2^eloi de Newton/principe fondamentale de la dynamique) on note :

- ► *M* la position de l'extrémité mobile
- m la masse qui y est fixée
- k la raideur du ressort

Loi de la quantité de mouvement

(ou 2^eloi de Newton/principe fondamentale de la dynamique) on note :

- M la position de l'extrémité mobile
- m la masse qui y est fixée
- k la raideur du ressort

la masse est soumise à :

- ightharpoonup son poids \overrightarrow{P}
- la réaction du support \vec{R}
- la force de tension du ressort \overrightarrow{T}

à tout instant :

Mise en équation
Résolution
Représentation de Fresnel
Autres configurations
Oscillateur harmonique en électrocinétique

Loi de la quantité de mouvement

(ou 2^eloi de Newton/principe fondamentale de la dynamique) la masse est soumise à :

- ightharpoonup son poids \overrightarrow{P}
- la réaction du support \vec{R}
- ightharpoonup la force de tension du ressort \overrightarrow{T}

à tout instant :

Loi de la quantité de mouvement

(ou 2^eloi de Newton/principe fondamentale de la dynamique) la masse est soumise à :

- ightharpoonup son poids \overrightarrow{P}
- la réaction du support \vec{R}
- ightharpoonup la force de tension du ressort \overrightarrow{T}

à tout instant :

$$m\overrightarrow{a}(M) = \overrightarrow{P} + \overrightarrow{T} + \overrightarrow{R}$$

Mise en equation Résolution Représentation de Fresnel Autres configurations Oscillateur barmonique en électroninátique.

Loi de Hooke

2. Système dynamique

- 2.1 Mise en équation
- 2.2 Résolution
- 2.3 Représentation de Fresnel
- 2.4 Autres configurations
- 2.5 Oscillateur harmonique en électrocinétique
- Considérations énergétiques
- 4. QCIV

Mise en equation
Refsolution
Représentation de Fresnel
Autres configurations
Oscillateur harmonique en électrocinétique

Position d'équilibre

on la recherche en écrivant que ${\it M}$ y est toujours immobile :

$$ightharpoonup \vec{a}(M) = \vec{0}$$

mise en equation
Résolution
Représentation de Fresnel
Autres configurations
Oscillateur harmonique en électrocipétique

Position d'équilibre

on la recherche en écrivant que M y est toujours immobile :

$$ightharpoonup \vec{a}(M) = \vec{0}$$

• donc
$$P_x + R_x + T_x = 0$$
 et $P_z + R_z + T_z = 0$

Position d'équilibre

on la recherche en écrivant que M y est toujours immobile :

$$ightharpoonup \vec{a}(M) = \vec{0}$$

• donc
$$P_x + R_x + T_x = 0$$
 et $P_z + R_z + T_z = 0$

▶ soit
$$R_z = mg$$
 et $\ell = \ell_0$

Position d'équilibre

on la recherche en écrivant que M y est toujours immobile :

$$ightharpoonup \vec{a}(M) = \vec{0}$$

• donc
$$P_x + R_x + T_x = 0$$
 et $P_z + R_z + T_z = 0$

▶ soit
$$R_z = mg$$
 et $\ell = \ell_0$

Caractérisation

L'élongation d'un système masse-ressort idéal horizontal et libre est nulle à l'équilibre.

Position d'équilibre

on la recherche en écrivant que M y est toujours immobile :

- $ightharpoonup \vec{a}(M) = \vec{0}$
- donc $P_x + R_x + T_x = 0$ et $P_z + R_z + T_z = 0$
- ▶ soit $R_z = mg$ et $\ell = \ell_0$

Caractérisation

L'élongation d'un système masse-ressort idéal horizontal et libre est nulle à l'équilibre.

- g ce sera différent pour un ressort vertical
- g ce n'est pas parce que l'élongation est nulle à un instant que le ressort va demeurer immobile
- g ce sera différent si le système n'est pas libre ie si on applique une force horizontale

Équation différentielle d'évolution de l'élongation

Équation différentielle d'évolution de l'élongation

cas général : M peut être en mouvement

ightharpoonup on oriente $\overrightarrow{e_x}$ dans le sens du ressort

Équation différentielle d'évolution de l'élongation

- on oriente $\overrightarrow{e_x}$ dans le sens du ressort
- ▶ on choisit l'origine x = 0 quand $\ell = \ell_0$: soit $x = \ell \ell_0$

Résolution
Représentation de Fresnel
Autres configurations
Oscillateur harmonique en a

Équation différentielle d'évolution de l'élongation

- on oriente $\overrightarrow{e_x}$ dans le sens du ressort
- ▶ on choisit l'origine x = 0 quand $\ell = \ell_0$: soit $x = \ell \ell_0$
- ▶ le support impose $a_z = 0$: on a toujours $R_z = mg$

Mise en équation

Résolution

Représentation de Fresnel

Autres configurations

Oscillateur harmonique en l

Équation différentielle d'évolution de l'élongation

- on oriente $\overrightarrow{e_x}$ dans le sens du ressort
- ▶ on choisit l'origine x = 0 quand $\ell = \ell_0$: soit $x = \ell \ell_0$
- ▶ le support impose $a_z = 0$: on a toujours $R_z = mg$
- on a maintenant :

Équation différentielle d'évolution de l'élongation

Équation fondamentale

$$ma_x = -k(\ell - \ell_0) = -kx = m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} \longrightarrow \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{k}{m}x = 0$$

Résolution
Représentation de Fresnel
Autres configurations
Oscillateur harmonique en électrocinétique

Résolution de l'équation différentielle

- ightharpoonup c'est une équation vérifiée par la fonction x(t)
- elle fait intervenir x(t) et ses dérivées
- une même équation différentielle aura souvent une infinité de solutions ayant la même forme

Résolution de l'équation différentielle

- ightharpoonup c'est une équation vérifiée par la fonction x(t)
- ightharpoonup elle fait intervenir x(t) et ses dérivées
- une même équation différentielle aura souvent une infinité de solutions ayant la même forme

Méthode

- reconnaître une équation différentielle connue
- chercher parmi toutes ses solutions celle qui correspond aux conditions initiales du phénomène physique, valeurs de $x(t_0)$ et $\frac{\mathrm{d}x}{\mathrm{d}t}(t_0)$ à l'instant t_0 par exemple

Solution générale

Théorème (Solution canonique)

Les solutions de l'équation différentielle

$$\frac{\mathrm{d}^2 X}{\mathrm{d}t^2} + \omega^2 X = 0$$

sont les fonctions sinusoïdales de pulsation ω :

$$X(t) = X_m \cos(\omega t + \varphi)$$

On définit également la fréquence $f=\omega/(2\pi)$ (parfois écrite v) et la période $T=1/f=2\pi/\omega$. Un système régi par cette équation différentielle est un oscillateur harmonique. La pulsation d'un système masse-ressort est en particulier $\omega=\sqrt{\frac{k}{m}}$.

Loi de Hooke Système dynamique Considérations énergétiques

Résolution

Representation de Fres

itres configurations

Solution générale

Mise en equation
Résolution
Représentation de Fresnel
Autres configurations
Oscillateur harmonique en électrocinétique

Solution générale

ici $X = x - \ell_{eq}$ décrit l'écart à la position d'équilibre

mise en equation
Résolution
Représentation de Fresnel
Autres configurations
Oscillateur harmonique en électrocinétique

Solution générale

- ici $X = x \ell_{eq}$ décrit l'écart à la position d'équilibre
- ω est caractéristique du système physique : il faut changer le ressort ou la masse pour la modifier

mise en equation
Résolution
Représentation de Fresnel
Autres configurations
Oscillateur harmonique en électrocinétique

Solution générale

- ici $X = x \ell_{eq}$ décrit l'écart à la position d'équilibre
- ω est caractéristique du système physique : il faut changer le ressort ou la masse pour la modifier
- en revanche, l'élongation maximale et les instants où elle est atteinte_, dépendent de l'excitation qu'on a donnée initialement

Courbe

- x_m est l'amplitude ie l'élongation maximale atteinte au cours du mouvement
- la phase φ caractérise le décalage entre l'instant t = 0 et l'instant du premier passage par le maximum
- φ représente l'avance du signal par rapport à un signal de phase nulle

phases remarquables

• $\varphi = 0$: signaux en phase

phases remarquables

- $\phi = 0$: signaux en phase
- $\varphi = \pi/2$: signal en quadrature avance (vitesse / position)

phases remarquables

- $\varphi = 0$: signaux en phase
- $\varphi = \pi/2$: signal en quadrature avance (vitesse / position)
- $\varphi = -\pi/2$: signal en quadrature retard

phases remarquables

- $\varphi = 0$: signaux en phase
- $\varphi = \pi/2$: signal en quadrature avance (vitesse / position)
- $\varphi = -\pi/2$: signal en quadrature retard
- $\varphi = \pm \pi$: signal en opposition de phase (accélération / position)

Résolution
Représentation de Fresnel
Autres configurations
Oscillateur harmonique en électrocinétique

Validation du modèle

on vérifie que le mouvement est bien sinusoïdal, en particulier

la vitesse est bien en quadrature avance par rapport à la position

Mise en equation

Résolution

Représentation de Fresnel

Autres configurations

Oscillateur harmonique en électrocine

Validation du modèle

on vérifie que le mouvement est bien sinusoïdal, en particulier

- la vitesse est bien en quadrature avance par rapport à la position
- l'accélération est bien en opposition de phase

Loi de Hooke Système dynamique Considérations énergétiques Mise en equation

Résolution

Représentation de Fresnel

Autres configurations

Illustration

animation univ-nantes animation phet 2 3

sous licence http://creativecommons.org/licenses/bv-nc-nd/2.0/fr/

²http://www.sciences.univ-nantes.fr/sites/genevieve_tulloue/ Meca/Oscillateurs/oscillateur_horizontal.php

https://phet.colorado.edu/en/simulation/masses_and_springs

Mise en équation

Résolution

Représentation de Fresnel

Autres configurations

Conditions initiales

pour un même système (*ie* une même pulsation), il existe une infinité de solutions de même pulsation, elles diffèrent par :

Résolution
Représentation de Fresnel
Autres configurations
Oscillateur harmonique en électrocinétique.

Conditions initiales

pour un même système (*ie* une même pulsation), il existe une infinité de solutions de même pulsation, elles diffèrent par :

leur amplitude $|X_m|$ (on choisira $X_m > 0$)

Résolution
Représentation de Fresnel
Autres configurations
Oscillateur harmonique en électrocinétique.

Conditions initiales

pour un même système (*ie* une même pulsation), il existe une infinité de solutions de même pulsation, elles diffèrent par :

- leur amplitude $|X_m|$ (on choisira $X_m > 0$)
- ightharpoonup leur phase φ

Conditions initiales

pour un même système (*ie* une même pulsation), il existe une infinité de solutions de même pulsation, elles diffèrent par :

- leur amplitude $|X_m|$ (on choisira $X_m > 0$)
- leur phase φ
- ces paramètres peuvent être quelconques, ils dépendent des conditions initiales $x(t_0)$ et $\frac{\mathrm{d}x}{\mathrm{d}t}(t_0)$, aussi notée $\dot{x}(t_0)$

Mise en équation
Résolution
Représentation de Fresnel
Autres configurations

Conditions initiales

Résolution
Représentation de Fresnel
Autres configurations
Oscillateur harmonique, en électrocinétique.

Conditions initiales

on prend $t_0 = 0$ pour simplifier :

• on détermine X_m et φ à l'aide de x(0) et $\frac{\mathrm{d}x}{\mathrm{d}t}(0)$

Résolution
Représentation de Fresnel
Autres configurations
Oscillateur harmonique en électrocinétique.

Conditions initiales

- on détermine X_m et φ à l'aide de x(0) et $\frac{\mathrm{d}x}{\mathrm{d}t}(0)$
- cas simples :

Conditions initiales

- on détermine X_m et φ à l'aide de x(0) et $\frac{dx}{dt}(0)$
- cas simples :

$$X(0) = u_0 \neq 0 \text{ et } \frac{dX}{dt}(0) = 0$$

Conditions initiales

- ▶ on détermine X_m et φ à l'aide de x(0) et $\frac{dx}{dt}(0)$
- cas simples :

►
$$X(0) = u_0 \neq 0$$
 et $\frac{dX}{dt}(0) = 0$
► $X(0) = 0$ et $\frac{dX}{dt}(0) = v_0 \neq 0$

$$X(0) = 0$$
 et $\frac{dX}{dt}(0) = v_0 \neq 0$

Expression générale

Conditions initiales

Les variations de l'écart *X* à la position d'équilibre d'un oscillateur harmonique peuvent s'écrire de manière équivalente :

$$X(t) = X_m \cos(\omega t + \varphi) = X_0 \cos(\omega t) + \frac{V_0}{\omega} \sin(\omega t)$$

avec:

- $ightharpoonup X_0$ l'écart initial à la position d'équilibre,
- $ightharpoonup V_0$ la vitesse initiale.
- les constantes X_0 et V_0 sont algébriques (≥ 0)
- elles sont reliées à l'amplitude et à la phase par : $X_m = \sqrt{X_0^2 + (V_0/\omega_0)^2}$, $\tan(\varphi) = -V_0/(\omega_0 X_0)$ (à établir avec la construction de Fresnel)

Résolution
Représentation de Fresnel
Autres configurations
Oscillateur barmonique en électrodinétique

Loi de Hooke

2. Système dynamique

- 2.1 Mise en équation
- 2.2 Résolution

2.3 Représentation de Fresnel

- 2.4 Autres configurations
- 2.5 Oscillateur harmonique en électrocinétique
- Considérations énergétiques
- 4. QCM

Résolution
Représentation de Fresnel
Autres configurations
Oscillateur harmonique en électrocinétique

Somme de sinusoïdes synchrones

la somme de deux sinusoïdes synchrones (ie de même fréquence ω et dont la phase relative est constante), est une sinusoïde de même fréquence dont l'amplitude et la phase peuvent être déterminées graphiquement somme sinusoïdes

Principe

- on a une oscillation $x = X_m \cos(\omega t)$
- on lui associe un complexe de module X_m et d'argument ωt : x = X_m exp(iωt) : c'est sa représentation de Fresnel
- l'évolution temporelle de x correspond à une rotation du vecteur d'affixe x dans le plan complexe
- on a à chaque instant $x = \text{Re}(\underline{x}), x$ est l'abscisse du complexe \underline{x}
- Si $x = X_m \cos(\omega t + \varphi)$, $\underline{x} = X_m \exp(i(\omega t + \varphi))$: le vecteur d'affixe x est tourné de φ

Représentation de Fresnel: Utilisation

• on cherche Y_s et φ_s tels que :

$$Y_1 \cos(\omega t + \varphi_1) + Y_2 \cos(\omega t + \varphi_2)$$

= $Y_s \cos(\omega t + \varphi_s)$

- on utilise les complexes $\underline{\xi_1}$ et $\underline{\xi_2}$ et $\underline{\xi_3} = \underline{\xi_1} + \underline{\xi_2}$
- on lit graphiquement $Y_s = \left| \frac{\xi_s}{\xi_s} \right|$ et $\varphi_s = \arg(\xi_s)$ à t = 0
- \triangleright Y_s et φ_s sont indépendantes du temps
- aucun sens pour des sinusoïdes de fréquences différentes

Détermination graphique

on peut calculer :

$$\frac{Y_s^2 = Y_1^2 + Y_2^2 + 2Y_1Y_2\cos(\varphi_d)}{\frac{\sin(\varphi_d)}{Y_s}} = \frac{\sin(\varphi_s - \varphi_1)}{Y_2}$$

- c'est la phase relative, le déphasage $\varphi_d = \varphi_2 \varphi_1$ qui importe
- à refaire à chaque fois, la plupart du temps, l'étude du schéma suffira pour tirer des conclusions qualitatives intéressantes

Mise en équation
Résolution
Représentation de Fresnel
Autres configurations

1. Loi de Hooke

2. Système dynamique

- 2.1 Mise en équation
- 2.2 Résolution
- 2.3 Représentation de Fresnel

2.4 Autres configurations

- 2.5 Oscillateur harmonique en électrocinétique
- Considérations énergétiques
- 4. QCM

Mise en équation Résolution Représentation de Fresn Autres configurations

Changement d'origine

choisir une autre origine pour x rajoute une constante dans l'expression : la position d'équilibre x_e dans les nouvelles coordonnées :

$$x(t) = x_e + X_0 \cos(\omega t + \varphi)$$
 avec $x_e = \ell_0$

l'élongation est toujours nulle à l'équilibre pour un ressort horizontal

Mise en équation Résolution Représentation de Fresr Autres configurations

scillateur harmonique en électrocinétique

Ressort vertical

pour un ressort vertical, l'élongation à l'équilibre est non nulle

$$y(t) = \ell_e + Y_m \cos(\omega t + \varphi)$$

avec
$$\ell_e = \ell_0 + \frac{mg}{k}$$

Mise en équation Résolution Représentation de Fresn Autres configurations

Ressort vertical

pour un ressort vertical, l'élongation à l'équilibre est non nulle

$$y(t) = \ell_e + Y_m \cos(\omega t + \varphi)$$

avec
$$\ell_e = \ell_0 + \frac{mg}{k}$$
 la pulsation reste indépendante de \overrightarrow{g} (mais pas de m)

Exercice: conditions initiales

On considère un système masse-ressort

On considère une masse m attachée en M à l'extrémité d'un ressort de constante de raideur k et de longueur à vide ℓ_0 dont l'autre extrémité O est immobile. La masse est en mouvement sans frottement sur un support horizontal. On note x la mesure algébrique de son abscisse par rapport à O.

- 1 La masse est lâchée sans vitesse initiale en $x_0 = 3\ell_0/2$. Déterminer l'expression de x(t) et de l'écart X entre x et la position d'équilibre. Préciser l'amplitude et la phase du mouvement et tracer l'allure de x(t).
- 2 On communique désormais une vitesse \dot{x}_0 à la masse quand elle est en x_0 . Déterminer la nouvelle expression de x(t), et en déduire l'amplitude et la phase du mouvement par une construction de Fresnel.
- 3 On a $k = 5 \,\mathrm{N \cdot m^{-1}}$, $\ell_0 = 30 \,\mathrm{cm}$ et $m = 200 \,\mathrm{g}$. Calculer la pulsation des oscillations de la masse. Déterminer la norme minimale $|\dot{x}_0|$ de la vitesse pour laquelle la masse atteint le point O et le premier

Mise en equation
Représentation de Fresnel
Autres configurations
Oscillateur harmonique en électrocinétique

Loi de Hooke

2. Système dynamique

- 2.1 Mise en équation
- 2.2 Résolution
- 2.3 Représentation de Fresne
- 2.4 Autres configurations
- 2.5 Oscillateur harmonique en électrocinétique
- Considérations énergétiques
- 4. QCM

Résolution Représentation de Fresnel Autres configurations Oscillateur harmonique en électrocinétique

Exercice: circuit LC

On considère un circuit électrique formé d'un condensateur de capacité C branché aux bornes d'une bobine d'auto-inductance L. On note u_c la tension aux bornes du condensateur, $q = Cu_c$ sa charge et i_c le courant (en convention récepteur pour le condensateur).

- 1 Établir les équations différentielles vérifiées par la charge du condensateur et par l'intensité du courant dans le circuit. Les mettre sous la forme canonique d'un oscillateur harmonique de pulsation ω dont on donnera l'expression.
- 2 On a $L=15\,\mathrm{mH}$ et $C=5\,\mu\mathrm{F}$. Quel sera le courant maximal au cours des oscillations si à l'instant initial on a $u_C=5\,\mathrm{V}$ et $i_C=-50\,\mathrm{mA}$.

Mise en équation
Résolution
Représentation de Fresnel
Autres configurations
Oscillateur harmonique en électrocinétique

Analogie électromécanique

Analogie électromécanique

On peut établir une analogie mécanique/électrocinétique entre un oscillateur harmonique mécanique et un oscillateur harmonique :

grandeur	mécanique	électrocinétique
élongation	X	q_{\perp}
vitesse	$\frac{\mathrm{d}X}{\mathrm{d}t}$	$i = \frac{\mathrm{d}q}{\mathrm{d}t}$
\mathscr{E}_{pot}	$\frac{1}{2}kx^2$	$\frac{1}{2}\frac{q^2}{C}$
raideur	\bar{k}	$\frac{1}{C}$
\mathscr{E}_{cin}	$\frac{1}{2}mv^2$	$\frac{1}{2}Li^2$
masse inertielle	\tilde{m}	\tilde{L}
pulsation √raideur/inertie	$\sqrt{k/m}$	$\sqrt{1/(LC)}$
PFD	$F = -kX = m\dot{V}$	$-\frac{q}{C} = L\frac{\mathrm{d}i}{\mathrm{d}t}$

- 1. Loi de Hooke
- 2. Système dynamique
- 3. Considérations énergétiques
- 4. QCIV

- 1. Loi de Hooke
- 2. Système dynamique
- 3. Considérations énergétiques
- 3.1 Énergies cinétique et potentielle élastique
- 3.2 Variations temporelles
- 4. QCV

Deux formes d'énergie

On connaît les énergies en électrocinétique :

- énergie électrostatique associée à la déformation du système par rapport à son état d'équilibre,
- énergie magnétique associée au « mouvement » ramenant vers cet état d'équilibre

On définit leurs analogues en pour un oscillateur mécanique.

Énergies d'un système masse-ressort

On associe à un système masse-ressort

- ▶ l'énergie cinétique : $\mathscr{E}_c = \frac{1}{2}\dot{x}^2$, associée à la vitesse*
- ▶ l'énergie potentielle élastique : $\mathscr{E}_{pot} = \frac{1}{2}kx^2$, associée à l'élongation du ressort

Deux formes d'énergie

On connaît les énergies en électrocinétique :

- énergie électrostatique associée à la déformation du système par rapport à son état d'équilibre,
- énergie magnétique associée au « mouvement » ramenant vers cet état d'équilibre

On définit leurs analogues en pour un oscillateur mécanique.

Énergies d'un système masse-ressort

On associe à un système masse-ressort

- ► l'énergie cinétique : $\mathscr{E}_{c} = \frac{1}{2}\dot{x}^{2}$, associée à la vitesse*
- l'énergie potentielle élastique : $\mathscr{E}_{pot} = \frac{1}{2}kx^2$, associée à l'élongation du ressort
- on admet pour l'instant ces définitions
- on les définira plus généralement dans le cours de mécanique
- les résultats suivants se transposent immédiatement au cas de

- 1. Loi de Hooke
- 2. Système dynamique
- 3. Considérations énergétiques
- 3.1 Énergies cinétique et potentielle élastique
- 3.2 Variations temporelles
- 4. QCM

Équipartition de l'énergie

On considère un oscillateur harmonique

Les énergies \mathscr{E}_{c} et \mathscr{E}_{pot} oscillent à 2ω , avec la même amplitude. Elles sont en opposition de phase : l'une est maximale quand l'autre

est minimale.

Leur somme est constante : l'énergie mécanique \mathscr{E}_m est conservée, L'énergie est alternativement sous formes cinétique et potentielle Pour $X(t) = X_m \cos(\omega t)$, on peut écrire $\mathscr{E}_m = \frac{1}{2}kX_m^2 = \frac{1}{2}mv_{\max}^2$ Les valeurs moyennes temporelles des énergies cinétique et potentielle sont égales. On dit qu'il y a équipartition de l'énergie totale entre ces deux formes.

Équipartition de l'énergie

On considère un oscillateur harmonique

Les énergies \mathscr{E}_{c} et \mathscr{E}_{pot} oscillent à 2ω , avec la même amplitude. Elles sont en opposition de phase : l'une est maximale quand l'autre

est minimale.

Leur somme est constante : l'énergie mécanique \mathscr{E}_m est conservée, L'énergie est alternativement sous formes cinétique et potentielle Pour $X(t) = X_m \cos(\omega t)$, on peut écrire $\mathscr{E}_m = \frac{1}{2}kX_m^2 = \frac{1}{2}mv_{\max}^2$ Les valeurs moyennes temporelles des énergies cinétique et potentielle sont égales. On dit qu'il y a équipartition de l'énergie totale entre ces deux formes.

Portrait de phase

Trajectoires dans l'espace des phases

Les trajectoires dans l'espace des phases sont des cercles en coordonnées $(X; \dot{X}/\omega_0)$.

Portrait de phase

Trajectoires dans l'espace des phases

Les trajectoires dans l'espace des phases sont des cercles en coordonnées $(X; \dot{X}/\omega_0)$.

La trajectoire est :

- ightharpoonup q, i en électrocinétique, x, v en mécanique
- parcourue dans le sens horaire
- symétrique : le mouvement est réversible (le film en sens inverse est aussi possible)
- fermée : le mouvement est périodique
- l'énergie mécanique (ou électrocinétique) est proportionnelle au carré de la distance au centre : constante en l'absence de dissipation

Indispensable

- établir l'équation différentielle, en déduire la pulsation
- déterminer amplitude et phase à l'aide des conditions initiales ou par lecture graphique
- tracer les évolutions temporelles de la position, de la vitesse, de l'accélération
- connaître les expressions et savoir tracer les évolutions temporelles des énergies potentielle et cinétique
- savoir transposer les résultats mécanique en électrocinétique et inversement

- 1. Loi de Hooke
- 2. Système dynamique
- Considérations énergétiques
- 4. QCM

Pour un système masse ressort (sans frottement) de masse m et de raideur k

- 1 la fréquence des oscillations est v = k/m
- 2 la pulsation des oscillations est $\omega = \sqrt{k/m}$
- 3 la norme de l'accélération est constante
- 4 la norme de la vitesse varie périodiquement

Pour un système masse ressort (sans frottement) de masse m et de raideur k

- 2 la pulsation des oscillations est $\omega = \sqrt{k/m}$
- 4 la norme de la vitesse varie périodiquement

Quelle la période d'un système masse-ressort de raideur k et de masse m?

1
$$T = 2\pi \sqrt{k/m}$$

$$T = 2\pi \sqrt{m/k}$$

3
$$T = \sqrt{m/k}$$

4
$$T = \sqrt{k/m}$$

Quelle la période d'un système masse-ressort de raideur k et de masse m?

$$2 T = 2\pi \sqrt{m/k}$$

Pour un système masse ressort (sans frottement) de masse m et de raideur k, dont on note x la position et \dot{x} la vitesse :

- 1 l'énergie cinétique est $m\dot{x}^2/2$
- 2 l'énergie mécanique est $kx^2/2$
- 3 l'énergie mécanique est constante
- 4 l'énergie cinétique est constante

Pour un système masse ressort (sans frottement) de masse m et de raideur k, dont on note x la position et \dot{x} la vitesse :

- 1 l'énergie cinétique est $m\dot{x}^2/2$
- 3 l'énergie mécanique est constante

Pour un système masse-ressort de raideur k et de masse m:

- 1 la pulsation dépend des conditions initiales
- 2 l'amplitude dépend des conditions initiales
- 3 la phase dépend des conditions initiales
- 4 la position d'équilibre dépend des conditions initiales

Pour un système masse-ressort de raideur k et de masse m:

- 2 l'amplitude dépend des conditions initiales
- 3 la phase dépend des conditions initiales

Oscillations verticales

Un système masse ressort dont l'extrémité supérieure est fixe oscille verticalement dans le champ de pesanteur. La force exercée par le support sur le ressort :

- 1 égale au poids de l'objet
- 2 est toujours dirigée vers le haut
- 3 peut être égale en norme à 2× le poids de l'objet
- 4 s'annule toujours au moins une fois au cours du mouvement

Oscillations verticales

Un système masse ressort dont l'extrémité supérieure est fixe oscille verticalement dans le champ de pesanteur. La force exercée par le support sur le ressort :

3 peut être égale en norme à 2× le poids de l'objet