Streptococcus, Enterococcus & other catalase-negative species

Susan M. Harrington, Ph.D. D(ABMM), MLS(ASCP)^{CM}
1/13/20

Streptococcus spp.

- Family Streptococcaceae
- GPC in pairs and chains
- Most are facultative anaerobes
- Some require enhanced CO₂
- Grow poorly w/o blood- or serum-enriched media
- Catalase negative

3 Ways to Classify

1. Hemolysis on BAP

- Beta: complete hemolysis
- Alpha: partial hemolysis
- Gamma: no hemolysis

2. Immunologic reactions with grouping sera

Lancefield antisera for cell wall carbohydrates

3. Phenotypic properties

Biochemical reactions

Hemolysis on blood agar

Lancefield Serotyping

- Developed by Rebecca Lancefield in 1930s
- Based on cell wall (C) polysaccharide Ag
- Commercially available latex agglutination
- Used to distinguish
 Streptococcal species.
 - A, B, C, (D), F, G commonly tested

https://assets.thermofisher.com/TFS-Assets/MBD/product-images/F103557~p.eps-650.jpg

Streptococci Habitat

Most species are flora:

- Gastrointestinal tract
- Vagina
- Upper respiratory tract

Sometimes transient on skin, urogenital tract

Streptococcus pyogenes

One of the most important bacterial pathogens of humans

-- always reported

Most frequent cause of bacterial pharyngitis

Also causes variety of cutaneous and systemic infections

Color Atlas of Med Bacteriology, ASM 2004

Nonsuppurative sequelae

S. pyogenes Disease Spectrum

Pharyngitis & Scarlet Fever

Spread is by droplet transmission

Pharyngitis & tonsillitis; peritonsillar abscess may occur, if not resolved.

Up to 20% of school-age children carry Group A Strep in asymptomatically.

Scarlet fever —toxin-mediated associated syndrome. Usually limited disease. Most commonly follows pharyngeal infection, but may follow others.

dangerous-comeback/

S. pyogenes skin & soft tissue infections

- Impetigo
- Erysipelas
- Cellulitis
- Necrotizing fasciitis

Sequelae of Streptococcal Infection

- <u>Suppurative</u>: cervical lymphadenitis, otitis, sinusitis, myositis, bacteremia leading to metastic infections, etc.
- Non-suppurative: AGN & rheumatic fever
 - AGN follows pharyngitis or pyoderma (skin infection)
 - Rheumatic fever follows pharyngitis

S. pyogenes – virulence factors

- Hyaluronic acid capsule
- Deoxyribonucleases (DNases A to D)
- M protein (emm gene, adhesin, >200 serotypes)

S. pyogenes – virulence factors, cont'd

- Pyrogenic exotoxins (Spe)
 - Superantigens cytokine induction
 - Syndromes:
 - -necrotizing fasciitis
 - -Toxic shock
 - Scarlet fever rash

S. pyogenes – Virulence Factors

- Hemolysins:
 - Streptolysin S oxygen stabile, nonimmunogenic
 - Streptolysin O oxygen labile, immunogenic
- Anti-Streptolysin O (ASO) test:
 - Rarely requested
 - Documents recent GAS infections (pharyngitis)
 - Cholesterol in skin inhibits Ab production
- Anti-DNAse B
 - Ab made post skin infection or pharyngitis

Detection of Group A Strep

- Rapid Antigen Tests
 - ~ 15 min
 - Commercially available
 - Only ~80-90% sensitive; good specificity
 - Must be followed by definitive method, culture or NAAT

Detection of Group A Strep

Nucleic Acid Based

- Probe method
- PCR/NAAT
- <1 hr to several hours
- NAAT very high sensitivity
- Specific for GAS
- May detect nonviable

Culture

- Detects Grp A, also Grps C and G, if needed
- Highly sensitive & specific
- Incubate up to 48 hrs in room air (or anaerobic)

S. pyogenes - Culture

- Catalase negative
- Large zones of β-hemolysis
- Bacitracin S
- PYR+ (L-pyrrolidonyl arylamidase)
- Lancefield Grp A Ag
- MALDI TOF

Med Microbiology, Harcourt 2000

Streptococcus pyogenes therapy

- Penicillin drug of choice
- Pen allergic
 - Erythromycin
 - 1st gen oral cephalosporins
- Serious soft tissue infections
 - Pen + clindamycin (disrupts protein synthesis of toxin)

S. agalactiae

- Colonization
 - Gastrointestinal tract
 - Vagina
 - Genitourinary
 Transiently on skin, respiratory tract
 - Lancefield Group B
- Capsule is major virulence factor

GBS, Pregnancy & Neonatal Infection

- Transient vaginal carriage in 10-30% pregnant women
- Newborns acquire during pregnancy or at delivery
 - pneumonia, bacteremia, meningitis,
- Screen at 35-37 wks gestation
 - vag/rectal swab
 - Todd-Hewitt/LIM broth cx
 - colistin/nalidixic acid or gent/nalidixic acid
 - Culture or PCR

Early-onset GBS Disease in the U.S.

S. agalactiae clinical disease

Late-onset neonatal

- Bacteremia
- Meningitis

Pregnant women

- UTIs
- Amnionitis, endometritis

Other adults

- Bacteremia
- Urosepsis
- SSTI
- Pneumonia
- Bone and joint infections

Medical Microbiology, Harcourt 2000

Colony Morphology Comparison

Group A

Group B

S. agalactiae - lab diagnosis

- Culture
- Lancefield gp B Ag detection
- Pos CAMP
- Hippurate hydrolysis
- MALDI TOF

Color Atlas and Textbook of Diag Microbiol, Lippincott-Raven 1997

Photo courtesy of Dr. Richard Facklam, CI

S. agalactiae therapy

Infections

- Penicillin drug of choice
- Pen + aminoglycoside for serious infections
- Vancomycin if pen allergic

S. dysgalactiae subsp. equisimilis

- Lancefield grp C or G antigen
- Large colonies
 - \geq 0.5 mm with large zone of β hemolysis
- Beta-glucuronidase pos
- Oral flora
- Wide range of pyogenic infections:
 - pharyngitis
 - skin
 - bacteremia
 - endocarditis
 - meningitis
 - septic arthritis
 - rare post-strep GN

S. anginosus group (S. milleri)

- Oral or GI flora
- May possess A, C, F, or G capsular polysaccharide
- Small colonies (<0.5 mm)
- Narrow zone of β-hemolysis (may be α or non-hemol)
- BGUR neg; Voges-Proskauer (VP) test for acetoin prod pos
- Abscess formation
- Endocarditis

Viridans Grp Streptococci

Colonize oropharynx, GI, GU tract

Heterogeneous collection of α

and γ hemolytic Strep

- Optochin R
- Bile insoluble
- >30 species
- 5 subgroups
- Precise classification problematic

Medical Microbiology, Harcourt 2000

Viridans gp streptococci

Anginosus ("S. milleri") gp

- Most α , γ
- Small colony β-hemolytic strains with A, C, F or G ag different from pyogenic strains
- S. anginosus
- S. constellatus
- S. intermedius

Mutans gp

- S. mutans
- S. sobrinus

Salivarius gp

- S. salivarius
- S. vestibularis
- S. thermophilus

Mitis gp

- S. mitis
- S. sanguis
- S. parasanguis
- S. gordonii
- S. cristatus
- S, infantis
- S. oralis
- S. peroris
- S. pneumoniae

Bovis gp

- S. equinus
- S. gallolyticus subsp. gallolyticus
- S. gallolyticus subsp. pasteurianus
- S. infantarius
- S. alactolyticus

Viridans gp Streptococcus infections

Endocarditis

- S. mitis gp
- S. salivarius gp

Dental caries

S. mutans gp

Abscess formation

S. anginosus gp

Septicemia in neutropenic pts with mucositis

• S. mitis gp

Malignancies of GI tract

 S. bovis gp
 (S. gallolyticus subsp gallolyticus)

Viridans gp streptococci therapy

Penicillin

- Penicillin + aminoglycoside
- Cephalosporins
- Vancomycin

Streptococcus pneumoniae

Considered member of *S. mitis* gp Lancet-shaped diplococcic, pairs & short chains

Colonizes nasopharynx

- 5-10% healthy adults
- 20-40% healthy children

Diseases

- Pneumonia
- Sinusitis and otitis media
- Meningitis
- Bacteremia

COPD, alcoholism, DM, CRF

Invasive Disease Prevalence

	Cases		Deaths	
Age (years)	No.	(Rate*)	No.	(Rate*)
< 1	48	(11.6)	3	(0.72)
1	33	(7.9)	2	(0.48)
2-4	66	(5.2)	4	(0.32)
5-17	86	(1.5)	6	(0.11)
18-34	203	(2.5)	14	(0.17)
35-49	411	(6.1)	30	(0.44)
50 64	1,116	(16.6)	125	(1.86)
65-74	618	(20.8)	82	(2.76)
75-84	407	(29.3)	44	(3.16)
≥ 85	267	(41.8)	61	(9.56)
Total	3,255	(9.5)	371	(1.08)
*Per 100,000 population for ABCs areas				

S. pneumoniae Identification

- Capsule (major virulence factor)
- >90 serotypes
- Autolysis
- Optochin susceptible
- Bile soluble

S. pneumoniae Urine Antigen Test

- Direct detection in urine; non-invasive specimen collection
- May be useful if pneumonia, bacteremia, meningitis
- FP in colonized, esp children <6 yrs
- Sensitivity varies, 50 80%

Pneumococcal Therapy

- 1936 type-specific antiserum reduced pneumonia fatality from 33% to 18%
- 1941 sulfadiazine reduced mortality to 8%
- Mid 1940s penicillin
- WWI 18% of soldiers w/ pneumonia died
- WWII <1%

Emergence of Antimicrobial Resistance in *S. pneumoniae*

- 1967 1st penicillin^R strain, Australia
- 1977 1st multidrugresistant isolates, South Africa (tet, macr, chlor)

Vaccination against S. pneumoniae

- Polysaccharide vaccine
 - Available since 1977 for age 2 and older
 - 23 serotypes
 - Elderly or if increased risk of infection
 - Limited efficacy
- In 2000, 7-valent conjugate vaccine (PCV7) for kids
 - Serotypes: 4, 6B, 9V, 14, 18C, 19F, 23F
 - 78-89% of penicillin-resistant *S. pneumoniae*
- In 2010, PCV13
 - Serotypes: PCV7 types plus 1, 3, 5, 76A, 7F, 19A
 - 4-dose series 2, 4, 6, 12-15 months

Invasive Disease – Post PCV7

Pneumococcal Vaccine

Figure 2. Rates of invasive pneumococcal disease among U.S. adults >65 years of age, 1998–20153

S. pneumoniae Therapy

- First choice for non-invasive infection:
 - Penicillin, amoxicillin, augmentin (5-10% R)
- Macrolide e.g. erythromycin (up to 30% R)
- Quinolone e.g. levofloxacin

Meningitis or septicemia:

- Penicillin
- Ceftriaxone
- Vancomycin

New CLSI* Penicillin Breakpoints for Pneumococci - 2008

Minimum Inhibitory Concentration

Penicillin	S		R
Oral	≤ 0.06	0.12-1	≥ 2
Parenteral Meningitis	≤ 0.06	-	≥ 0.12
Parenteral Nonmeningitis	≤ 2	4	≥ 8

Summary of Streptococci

Species	Lancefield	Hemolysis	
	Antigen	Pttn(s)	
S. pyogenes	A	β	Relatively Ig col
S. agalactiae	В	β (γ)	Weak hemolysis
S. dysgalactiae	C, G	β	Relatively Ig col
S. anginosus gp	A, C, F, G, none	β, α, γ	β sm col, VP+
S. bovis gp	D	α, γ	nonenterococcal
S. mutans gp	Not useful	α, γ (β)	S. sobrinus
S. salivarius gp	Not useful (K)	α, γ	S. vestibularis
S. mitis gp	Not useful (H)	α	S. gordonii,
			S. sanguis,
			S. oralis
S. pneumoniae	Not detectable	α	Related to ratis

Enterococcus spp.

- Gram-positive cocci in pair & short chains
- Lancefield group D antigen
 - Classified as "group D streptococci" until 1984
- Facultative anaerobe,
 †CO₂ not required
- 40 species
 - E. faecalis (most common)
 - E. faecium

Enterococcus spp.- Epidemiology

 Colonizes GI tract of humans, animals (less common GU, oral flora)

- Widespread in nature; able to survive in harsh environments for extended periods
- Opportunistic pathogen (10% of nosocomial infections)
 - Most acquired from pt's intestinal flora
 - Some patient to patient transmission

Enterococcus spp.

- Commensal organisms
- Limited potential for causing disease
- Virulence factors
 - Surface adhesin proteins
 - Cytolysin
 - Extracellular protease
 - Gelatinase

Enterococcus spp.- Clinical disease

Increased risk

- Prolonged hospitalization
- Broad spectrum abx rx (cephalosporins natural R)
- Urinary, IV catheters
- Urinary tract infections
- Bacteremia
- Endocarditis
- Peritonitis (post trauma or surgery)
- Wound infections and intra-abdominal abscesses (usually polymicrobic)

Enterococcus spp.- Lab diagnosis

- Grows readily on nonselective media
- Nonhemolytic or α -hemolytic (rarely β) colonies on BAP

E. faecalis and E. faecium

Enterococcus Identification

- Catalase negative
- PYR (L-pyrrolidonyl arylamidase) positive
- Bile resistant
- Optochin resistant

Enterococcus spp.

- Grow in 6.5% NaCl
- Growth in 40% bile an hydrolyze esculin
- PYR positive
- Leucine arylamidase positive

Enterococcus spp.

- Arabinose utilization
 - E. faecium pos (yellow)
 - E. gallinarum/E. casseliflavus pos
 - E. faecalis neg
- Acidification of 1%
 methyl-α-Dglucopyranoside (MGP)
 - E. faecium neg
 - E. gallinarum/E. casseliflavus pos

E. casseliflavus vs. E. gallinarum

- Both motile
- E. casseliflavus is yellow
- Intrinsic low level vanc R (constitutive, chromosomal, vanC)

Motility Test Neg Pos

S. bovis vs. Enterococcus

- Both Group D Antigen pos
- Both α or non-hemolytic colonies
- Both grow in 40% bile and hydrolyze esculin
- Only Enterococcus can grow in 6.5% NaCl

Enterococcus spp. - therapy

- Pen or amp for UTI, peritonitis, wound infection (if S)
- Serious infection: amp/pen + vancomycin
- Resistance
 - Most E. faecium ampicillin R; E. faecalis amp S
 - Most E. faecium vancomycin R (termed VRE)
 - E. faecalis R to Synercid (Quinuprisitin/Dalfopristin)
- Newer agents
 - Linezolid
 - Daptomycin
- Not active: cephalosporins, Bactrim, clindamycin, macrolides, aminoglycosides

Enterococcus - Vancomycin R genes

vanA

- high level R to vanc (often ≥128)
- teicoplanin R
- Transferable (usually plasmid)

vanB

- mod to high level vanc R (≥32)
- teicoplanin S
- transferable

vanC

- low level vanc R (2-16)
- NOT transferable

E test for Susceptibility

Mechanism - VRE

Peptidoglycan Cross-linking

VRE: D-Ala-D-Ala replaced by D-Ala-D-Lac

Murray, BE NEJM (2000) 342:10

https://www.researchgate.net/figure/Basic-structure-of-the-bacterial-cell-wall-peptidoglycan-The-possible-enzymatic_fig1_323953149

Controlling spread of VRE

- Rapid ID of colonized pts
- Placement of colonized pts in separate room or room with another VRE pt
- If patient contact wear gloves and gown
- Handwashing
- Terminal cleaning and disinfection of room
- Avoid inappropriate vancomycin use

Other Catalase-Negative GP Cocci:

(relatively avirulent, opportunistic pathogens)

- Abiotrophia and Granulicatella
 - Nutritionally variant streptococci
 - Require pyridoxal
- Leuconostoc and Pediococcus
 - Resistant to vancomycin
- Aerococcus
- Gemella
- Lactococcus

Abiotrophia & Granulicatella

- "Nutritionally variant streptococci" (NVS)
- Require either pyridoxal or L-cysteine for growth
- May display pleomorphic cell morphologies under suboptimal growth conditions

Abiotrophia & Granulicatella

Growth in Culture:

Grow on most Choc formulations, but not BAP

Supplement media with pyridoxal

BAP near Staph streak

Identify w/MALDI TOF; some commercial systems

Abiotrophia & Granulicatella

- Flora of upper respiratory tract
- 4-8% of endocarditis
- Rare cases of meningitis, osteomyelitis, brain abscess...other
- Therapy:
 - Penicillin
 - Ceftriaxone
 - Vancomycin

Lactococcus spp.

- GPC pairs and chains,
- Catalase neg
- PYR and LAP positive
- Grow in presence of 6.5% NaCl
- Non-motile
- Produce lactic acid from fermentation of carbohydrates.
- Formerly lactic group of streptococci (*Streptococcus lactis, S. garvieae, S. cremoris*) transferred in 1985

Lactococcus spp.

- Human infections rare
- L. garvieae fish pathogen (zoonotic infections)
- L. lactis used in dairy industry
- Human infection examples (first report in 1991)
 - Infective endocarditis
 - UTI
 - Bacteremia
 - Osteomyelitis
 - Prosthetic joint infection

Aerococcus spp.

- Gram-positive cocci in tetrads & clusters
- Catalase negative
- Alpha hemolytic
- PYR, LAP, 6.5% NaCl, β-GUR may help ID
- MALDI TOF, 16S sequencing

Aerococus spp. Clinical Significance

- Vaginal & urogenital commensals; transient on skin
- Common contaminants in cultures
- Reported as urinary pathogen if in significant amounts
- A. urinae & A. sanguinicola UTI, bacteremia, endocarditis
- A. viridans bacteremia, endocarditis

Leuconostoc, Pediococcus & Weisella spp.

- Catalase neg
- Alpha or non-hemolytic
- Vancomycin resistant
- Leuconostoc & Weisella are cocci in pairs, chains
- Pediococcus cocci in tetrads, clusters
- PYR neg
- Distinguishing biochemical: PYR, LAP, esculin hydrolysis, 6.5% NaCl, gas from glucose, growth at 45°C.

Leuconostoc, Pediococcus & Weisella spp.

- Leuconostoc found in nature on plants, foods
- Commensal of human GI tract
- Transient on human skin, mucous membranes.
- Rare cause of invasive infection in immunocompromised

Gemella spp.

- Alpha or non-hemolytic
- Catalase neg
- Gram-positive cocci in pairs, tetrads, clusters
- Oral flora, transient on skin
- Infections: Bacteremia, endocarditis, brain abscess, osteomyelitis, joint infections, etc.
- Isolation from wounds, abscesses of uncertain significance.

Acknowledgements

- Dr. Sandra Richter
- Jessica Alban, MLS(ASCP)^{CM}

