Modelo Preditivo Suicídio

Uma análise do modelo

Com base no resultado e na natureza dos seus dados, o principal problema parece ser o **desequilíbrio de classes**.

- Desequilíbrio de classe: Conjunto de dados altamente desequilibrado, conforme indicado pelo relatório de classificação:
 - A classe 0 (não-suicídio) tem um grande número de amostras (155.221).
 - A classe 1 (suicídio) tem um número muito menor de amostras (1.427).

Este desequilíbrio pode levar o modelo a inclinar-se para a classe maioritária (classe 0) e pode resultar num fraco desempenho de previsão para a classe minoritária (classe 1).

2. Impacto no treino do modelo:

- Precisão: A precisão global de 96,4% parece elevada, mas é distorcida pela classe dominante. É crucial olhar para além da precisão em conjuntos de dados desequilibrados.
- Precisão e recuperação: Para a classe 1 (suicídio), a precisão (0,06) e a recuperação (0,21) são baixas.

Isto sugere que o modelo identifica apenas uma pequena fração de instâncias positivas reais (baixa recuperação) e, quando prevê positivo, está frequentemente incorreto (baixa precisão).

3. Consequências potenciais:

- Misclassificação: O modelo pode classificar incorretamente os casos de suicídio (falsos negativos), perdendo potencialmente oportunidades de intervenção.
- Preconceito em relação à classe maioritária: O modelo pode ser demasiado otimista na previsão da classe maioritária (não suicida), negligenciando a classe minoritária.

4. Exploração adicional:

- Investigar a importância das características para garantir que o modelo está a concentrar-se em preditores relevantes.
- Considerar métodos de conjunto ou algoritmos diferentes que tratem melhor o desequilíbrio das classes, como o aumento do gradiente ou o conjunto de classificadores.

Resultado

Validação Parâmetros de Profundidade e Folhas

Parâmetros	Valores		
Best parameters	{'max_depth': None, 'min_samples_leaf': 1}		
Accuracy	0.9642638271794086		

Gráfico 1:

Validação Cruzada

Métricas	Valores
Accuracy	0.96
Macro avg	0.53 (Precision) / 0.59 (Recall) / 0.54 (F1-Score)
Weighted avg	0.98 (Precision) / 0.96 (Recall) / 0.97 (F1-Score)
Total Support	156648

Class	Precision	Recall	F1-Score	Support	
0	0.99	0.97	0.98	155221	* Quantidade de Não Suicídios

Class	Precision	Recall	F1-Score	Support	
1	0.06	0.21	0.09	1427	* Quantidade de Suicídios

Gráfico 2:

Em resumo, a questão principal é o desequilíbrio entre o número de amostras nas duas classes (suicidas vs. não suicidas), que afecta a capacidade do modelo para generalizar e prever eficazmente para a classe minoritária (Suicídio -> Não (0) Sim (1)). Isso é evidenciado pela baixa precisão, recall e f1-score para a classe minoritária (classe 1), enquanto a classe majoritária (classe 0) tem desempenho muito superior

O que podemos fazer?

Existe uma grande diferença no número de exemplos entre as classes preditivas – que pode levar a modelos que tendem a favorecer a classe majoritária em detrimento da classe minoritária.

- 1. Implicações nos Resultados: O modelo parece ter uma alta precisão para a classe 0 (Não Suicídio) (99%), mas uma baixa recall (21%) para a classe 1 (Suicídio). Isso significa que o modelo identifica corretamente a maioria das instâncias da classe 0, mas perde muitas instâncias da classe 1, resultando em um f1-score baixo para a classe 1 (9%).
- 2. Soluções para Desequilíbrio de Classes:
 - **Reamostragem dos Dados**: Oversampling (aumento de exemplos da classe minoritária) e undersampling (redução de exemplos da classe majoritária).

Aqui podemos pegar os outros casos de suicidio da Bahia (BA) e Paraná (PR) registrados em anos anteriores aos do dataframe utilizado nesse modelo (2022, 2021, 2020 e assim por diante)

- Peso das Classes: Atribuir pesos diferentes às classes para penalizar erros na classe minoritária durante o treinamento.
 - Consigo imaginar o que isso significa, mas preciso estudar um pouco mais a respeito de como aplicar isso técnicamente.
- Métricas Apropriadas: Além de accuracy, usar métricas como precision, recall, f1-score que são mais informativas em casos de desequilíbrio.
- 3. Seleção do Modelo: Dependendo do contexto e da importância de cada classe, pode ser necessário ajustar a métrica de avaliação ou escolher um modelo que seja mais robusto em lidar com classes desbalanceadas.

Pode ser que esse seja uma última opção

Considerando esses pontos, avaliar e ajustar o tratamento do desequilíbrio de classes pode melhorar significativamente o desempenho do seu modelo, especialmente na capacidade de detectar instâncias da classe minoritária com mais precisão e recall.