IC272 project

Batch 8

Thursday Batch

Agenda

The goal of this project is to do descriptive analysis to understand and infer from data of performance of BNS device and then performing the regressive analysis on predicting the "InBandwidth" of the device using different regression techniques.

What did we do with the data?

1. Import all the required libraries

For reference these were the libraries that we used for our data analysis:

Statistics, pandas, numpy, scipy.stats, sklearn.decomposition, matplotlib.pyplot, sklearn, sklearn.model_selection, math, sklearn.linear_model, sklearn.preprocessing, sklearn.metrics

2. Data Cleaning

- Checked for any missing values. (there were none in our data)
- Outlier detection (there were 2178 outliers in our data)
- ❖ We replaced the outliers with median (after replacing 545)
- Calculated the statistics of data (mean, median etc.)

3. Data Preprocessing

The data is preprocessed by various methods like:

- Normalisation
- Standardisation
- > Feature Selection
- > PCA.

INFERENCES AND RESULTS FROM ANALYSIS

Correlation plot of each attributes

The inbandwidth is highly correlated to the OutBandwidth, InTotalPPS, OutTotalPPS, ActiveCount attributes.
Part of the reason can be because the number of active users determine the InBandwidth used for data

transmission, more users

would need more data

bandwidth.

-00

- -0.4

- -0.8

Box-plot of outliers

Actual normalised data with outliers Total outliers: 2178

After outlier-removal with median the normalised data boxplot Total outliers: 545

Results seen from box-plots

After replacing outliers with median more data comes under the IQR, so more data can be used for proper data analysis.

So a lot of data which would have been useless before can be of use now.

Target attribute variations on different months

August

September

October

November

December

Inferences from variation of Inbandwidth with time

We see that when the device start working on a particular day the inbandwidth of the device mainly decreases at first and then it increases to a maximum and then decreases.

The reason for this is that the Inbandwidth depends on the number of active users, input packets at that time so at the no. of users connected to the device is less and after sometimes it increases so inbandwidth also increases.

Auto Regression

Here we have 70% data as training data and 30% as test data

The optimal lag value which we obtain is 36

R_squared_score we get is 0.02476

data	Rmse values	R2-score
Actual data	95353821.3	0.0247
Normalise data	0.2099	0.0247
Standardised data	0.9506	0.0247

In this case we take last 250 data as test data and predict the values using autocorrelation analysis.

The optimal lag value which we obtain is 39.

The rmse values obtained are:

data	RMSE values	R2-score
Actual data	69412366.069	0.33947
Normalised Data	0.15281	0.33947
Standardised Data	0.69204	0.33947

POLYNOMIAL CURVE FITTING (degree 2)

MULTIPLE LINEAR REGRESSION

On untreated data

On data without ouliers

On standardised data

On normalised data

After feature selection

After PCA

POLYNOMIAL CURVE FITTING (degree 3)

On untreated data

On data without ouliers

On standardised data

On normalised data

After feature selection

RMSE vs degree of polynomial

For feature selection

Feature selection

No outliers

No outliers

normalisation

normalisation

RMSE vs degree of polynomials

PCA Test

Normalisation Test

Original Data Test

PCA Train

Normalisation Train

Original Data Train

RMSE of test data comparison table

data	Linear regression	Polynomial regression (best degree=2)	auto-regression
Preprocessed data	1426613.40	1005208.07	69412366.069
Normalised data	0.0031	0.0022	0.15281
Standardised data	0.0142	0.0100	0.69204

Polynomial regression is the best regression model among these as per given data.

R2_score of test data comparison table

data	Linear regression	Polynomial regression (best degree=2)	auto-regression
Preprocessed data	0.99979	0.99990	0.33947
Normalised data	0.99979	0.99990	0.33947
Standardised data	0.99979	0.99990	0.33947

Polynomial regression is the best regression model among these as per given data.

CONCLUSIONS

- Normalised data gave the better results.
- Polynomial curve fitting was better regressive analysis
- Feature Selection and PCA improved RMSE (but order is same), reduced processing time significantly.