Excitable cells as dynamical systems

Part 1: bifurcations in a simplified model of a neuron

Alexey Brazhe, Moscow State University, Russia

UNIVERSITY OF COPENHAGEN

System:

$$C\dot{V} = I - \bar{g}_K n(V - E_K) - \bar{g}_{Na} m_{\infty}(V)(V - E_{Na}) - g_l(V - E_l)$$

$$\tau_n \dot{n} = (n_{\infty}(V) - n)$$

$$x_{\infty} = \frac{1}{1 + \exp(\frac{V_x^{0.5} - V}{k_x})}$$

Nullclines:

$$\dot{V} = 0 \to n(V) = \frac{I - \bar{g}_{Na} m_{\infty} (V - E_{Na}) - g_l (V - E_l)}{\bar{g}_k (V - E_k)}$$
$$\dot{n} = 0 \to n(V) = n_{\infty}(V)$$

Bifurcations from the stable/quiescent state

- Saddle-node
- Saddle-node on invariant circle
- Supercritical Andronov-Hopf
- Subcritical Andronov-Hopf

integrators

resonators

near Andronov-Hopf bifurcation

Saddle-node bifurcations

+Iapp

Saddle-node

SNIC

Increasing applied current

Example of SNIC in $I_{Na,p}+I_{K}$ model

Resting → spiking via SNIC

Resting → spiking via saddle-node off limit cycle

Andronov-Hopf bifurcations

supercritical

subcritical

Increasing applied current

Supercritical AH bifurcation in $I_{Na,p}+I_{K}$ model

(low-threshold K current)

Supercritical AH bifurcation in $I_{Na,p}+I_{K}$ model (ramp stim)

Subcritical AH bifurcation in $I_{Na,p}+I_{K}$ model (ramp stim)

Bifurcations from the spiking state

- Saddle-node on invariant circle
- Supercritical Andronov-Hopf

- Fold limit cycle
- Saddle homoclinic orbit

"Mirrored" bifurcations: SNIC and supercritical AH

decreasing stimulation current

From spiking to rest via SNIC

From spiking to rest via supercrititical AH

Fold limit cycle

Stable and unstable limit cycles approach each other and annihilate

Homoclinic

decreasing stimulation current

Further reading

- Izhikevich E. Dynamical Systems in Neuroscience: the Geometry of Excitability and Bursting. MIT Press 2007
- Izhikevich E. Neural excitability, spiking and bursting. International journal of bifurcations and chaos. 2000; **10**:6, 1171 —1266
- Prescott SA, De Koninck Y, Sejnowski TJ Biophysical Basis for Three Distinct Dynamical Mechanisms of Action Potential Initiation. *PLoS Comput Biol* 2008 **4**(10): e1000198.
- Rinzel J, Huguet G. Nonlinear dynamics of neuronal excitability, oscillations and coincidence detection. Communications on Pure and Applied Mathematics, Vol. LXVI, 1464– 1494 (2013)

Acknowledgements

I would like to acknowledge professional assistance and friendly encouragement from Olga Sosnovtseva (Department of Biomedical Sciences, UCPH Denmark)