Corso di Elettronica Applicata II (N.O.)

Prof. Ing. L. Masotti

Libri di testo

- Jacob Millman, Arvin Grabel: *Microelectronics Mc Graw Hill, 1981*
- Ulrich Tietze, Christoph Schenk:
 Electronic circuits Design and applications
 Springer Verlag Heidelberg, 1991
- John G. Kassakian, Martin F. Schlecht, George C. Verghese: Principles of power electronics Addison-Wesley Publishing Company, Inc., 1992

Reti amplificatrici elementari

Amplificatore di tensione (Convertitore tensione/tensione)

$$seR_{in} >> R_S \Rightarrow V_{in} \cong V_S$$

$$seR_{out} << R_L \Rightarrow V_{out} \cong A_v V_{in}$$

$$\Rightarrow V_{out} \cong A_v V_S$$

$$A_{v} = \lim_{R_{L} \to \infty} \frac{V_{out}}{V_{in}}$$

Amplificatore di corrente (Convertitore corrente/corrente)

$$\begin{array}{c}
seR_{in} << R_S \Rightarrow I_{in} \cong I_S \\
seR_{out} >> R_L \Rightarrow I_{out} \cong A_i I_{in}
\end{array} \Rightarrow I_{out} \cong A_i I_S$$

$$A_i = \lim_{R_L \to 0} \frac{I_{out}}{I_{in}}$$

$$seR_{in} >> R_S \Rightarrow V_{in} \cong V_S$$

$$seR_{out} >> R_L \Rightarrow I_{out} \cong G_m V_{in}$$

$$\Rightarrow I_{out} \cong G_m V_S$$

$$G_m = \lim_{R_L \to 0} \frac{I_{out}}{V_{in}}$$

Amplificatore di transresistenza (Convertitore corrente-tensione)

$$\begin{array}{c}
se R_{in} << R_S \Rightarrow I_{in} \cong I_S \\
se R_{out} << R_L \Rightarrow V_{out} \cong R_m I_{in}
\end{array} \Rightarrow V_{out} \cong R_m I_S$$

$$R_m = \lim_{R_L \to \infty} \frac{V_{out}}{I_{in}}$$

Schema di un amplificatore retroazionato

Reti di prelievo

Prelievo di tensione (parallelo)

Prelievo di corrente (serie)

Reti di miscelazione

Miscelazione (somma) di tensioni (o confronto serie)

Miscelazione (somma) di correnti (o confronto parallelo)

Grandezze tipiche di un amplificatore retroazionato

$$X_{in} = X_S - X_f$$
 $A = \frac{X_{out}}{X_{in}}$ $A_f = \frac{X_{out}}{X_S}$ $\beta = \frac{X_f}{X_{out}}$

$$X_{in} = X_S - \beta X_{out} = X_S - \beta A X_{in} \Rightarrow X_S = X_{in} (1 + \beta A)$$

$$\bigvee$$

$$A_f = \frac{X_{out}}{X_S} = \frac{X_{out}}{X_{in}(1+\beta A)} = \begin{bmatrix} \frac{A}{1+\beta A} \end{bmatrix} \stackrel{\beta A >> 1}{\cong} \frac{A}{A\beta} = \frac{1}{\beta}$$

$$\bigvee$$

 $|1 + \beta A| > 1 \Longrightarrow |A_f| < |A| \Longrightarrow reazione negativa$

$$|1 + \beta A| < 1 \Rightarrow |A_f| > |A| \Rightarrow reazione positiva$$

Sensibilità e desensibilità

$$S = \frac{\frac{dA_f}{A_f}}{\frac{dA}{A}} \quad \text{ovvero} \quad S = \frac{dA_f}{dA} \cdot \frac{A}{A_f} \qquad D = \frac{1}{S}$$

$$\frac{dA_f}{dA} = \frac{1}{1+\beta A} - \frac{\beta A}{(1+\beta A)^2} = \frac{1+\beta A - \beta A}{(1+\beta A)^2} = \frac{A}{A} \cdot \frac{1}{(1+\beta A)(1+\beta A)} = \frac{A_f}{A(1+\beta A)}$$

$$S = \frac{A_f}{A(1+\beta A)} \cdot \frac{A}{A_f} = \boxed{\frac{1}{1+\beta A}} \qquad D = \boxed{1+\beta A}$$

Esempio:
$$\beta A = 9 \implies 1 + \beta A = 10; \quad \frac{dA}{A} = 20\% \implies \frac{dA_f}{A_f} = 2\%$$
ovviamente se $A = 1000 \implies A_f = 100$

Ipotesi

- 1) Il segnale tra ingresso ed uscita è trasmesso soltanto attraverso A Quindi $A = 0 \Rightarrow X_{out} = 0$. [la rete β è unilaterale]
- 2) Il segnale tra uscita ed ingresso è trasmesso soltanto attraverso β Sono assenti sia l'effetto Early che l'effetto Miller. [la rete A è unilaterale]

Distorsione lineare

$$\begin{cases} |A(f)| = A_0 \\ \underline{/A(f)} = \varphi(f) = kf \end{cases}$$

$$|S_{out}(\omega_1)| = A_0 S_{in}(\omega_1)$$
$$|S_{out}(\omega_3)| = A_0 S_{in}(\omega_3)$$
.....

$$\varphi_1 = \omega_1 t_0$$

$$\varphi_3 = \omega_3 t_0 = 3\omega_1 t_0$$
.....

$$\tau = t_0 = -\frac{d\varphi}{d\omega} > 0$$

Principio
di causalità
$$\tau = t_0 = -\frac{d\varphi}{d\omega} > 0$$
 se $\phi_1 = \omega_1 t_0'$ $\phi_3 = \omega_3 t_0''$ con $t_0' \neq t_0'' \Rightarrow \begin{array}{c} quadripolo \\ dispersivo \end{array}$

Risposta in frequenza di un amplificatore retroazionato

Circuito passa-alto

$$V_{\rm X} = A_0 V_1$$

$$V_1 = \frac{R}{R + \frac{1}{j\omega C}} \cdot V_{in} = \frac{V_{in}}{1 + \frac{1}{j\omega RC}} = \frac{V_{in}}{1 - j\frac{\omega_L}{\omega}} \quad \textit{con } \omega_L = \frac{1}{RC}$$

$$V_{out} \cong V_{\rm X} = \frac{A_0 V_{in}}{1 - j \frac{f_L}{f}}$$
 per frequenze basse

$$A(f) = \frac{V_{out}}{V_{in}} \cong \frac{A_0}{1 - j\frac{f_L}{f}}$$

Circuito passa-basso

$$V_{out} = \frac{\frac{1}{j\omega C'} \cdot V_{X}}{R' + \frac{1}{j\omega C'}} = \frac{V_{X}}{1 + j\omega R'C'} = \frac{V_{X}}{1 + j\frac{\omega}{\omega_{H}}} \quad con \quad \omega_{H} = \frac{1}{R'C'}$$

 $V_{\rm X}\cong A_0V_{in}$ per frequenze alte

$$A(f) = \frac{V_{out}}{V_{in}} \cong \frac{A_0}{1 + j\frac{f}{f_H}}$$

In bassa frequenza

$$A_{f}(f) = \frac{A(f)}{1 + \beta A(f)} = \frac{\frac{A_{0}}{1 - j\frac{f_{L}}{f}}}{1 + \beta \frac{A_{0}}{1 - j\frac{f_{L}}{f}}} = \frac{A_{0}}{1 - j\frac{f_{L}}{f}} = \frac{A_{0}}{1 - j\frac{f_{L}}{f}} = \frac{\frac{A_{0}}{1 + \beta A_{0}}}{1 - j\frac{f_{L}}{f}}$$

$$A_{0f} = \frac{A_0}{1 + \beta A_0}$$

$$\Rightarrow A_f(f) = \frac{A_{0f}}{1 - j \frac{f_{L_f}}{f}}$$

$$f_{L_f} = \frac{f_L}{1 + \beta A_0}$$

$$\varphi(f) = \operatorname{arctg} \frac{\operatorname{Im}(A_f(f))}{\operatorname{Re}(A_f(f))} = \frac{f_{L_f}}{f} \qquad -\frac{d\varphi}{d\omega} > 0$$

In alta frequenza

$$A_{f}(f) = \frac{A(f)}{1 + \beta A(f)} = \frac{\frac{A_{0}}{1 + j\frac{f}{f_{H}}}}{1 + \beta \frac{A_{0}}{1 + j\frac{f}{f_{H}}}} = \frac{A_{0}}{1 + j\frac{f}{f_{H}} + \beta A_{0}} = \frac{\frac{A_{0}}{1 + \beta A_{0}}}{1 + \beta A_{0}} = \frac{\frac{A_{0}}{1 + \beta A_{0}}}{1 + \beta A_{0}} + j\frac{f}{(1 + \beta A_{0})f_{H}}$$

$$A_{0_f} = \frac{A_0}{1 + \beta A_0}$$

$$\Rightarrow A_f(f) = \frac{A_{0_f}}{1 + j \frac{f}{f_{H_f}}}$$

$$f_{H_f} = f_H(1 + \beta A_0)$$

$$\varphi(f) = -\arctan\frac{\operatorname{Im}(A_f(f))}{\operatorname{Re}(A_f(f))} = \frac{f}{f_{H_f}} \qquad -\frac{d\varphi}{d\omega} > 0$$

Distorsione non lineare

$$\bullet 0 \le |v_{in}| \le 40 \text{mV} \implies A_v = 100 \implies |v_{out}| = 100 |v_{in}|$$

•40
$$\leq |v_{in}| \leq 60 \text{ mV} \Rightarrow A_v < 100 \Rightarrow |v_{out}| = 100 |v_{in}| - 2500 (|v_{in}| - 0.04)^2$$

$$\bullet |v_{in}| > 60 \text{mV} \Rightarrow A_v = 0 \Rightarrow |v_{out}| = \text{costante} = 5 \text{V}$$

$$v_f = 0.09 v_{out}$$

$$1 + \beta A_v = 1 + 100 \cdot 0,09 = 10$$

Tensione di ingresso:

$$v_{in} = v_S - v_f = v_S - \beta A_v v_{in} \implies v_{in} = \frac{v_S}{1 + \beta A_v}$$

Tensione di uscita:

$$v_{out} = A_v v_{in} = A_v v_S - A_v v_f = A_v v_S - \beta A_v v_{out} \implies v_{out} = \frac{A_v v_S}{1 + \beta A_v}$$

$$A_f = \frac{v_{out}}{v_S} = \frac{A_v}{1 + \beta A_v} = \frac{A_v}{10}$$

Rete senza reazione

\underline{dA} v_{out} v_{in} \boldsymbol{A} [mV][V] 100 10 1.0 0 20 2.0 100 0 30 3.0 100 0 40 4.0 100 0 45 98,6 4.44 1,4% 50 4.75 95 5% 55 4.94 89,8 10,2% 60 16,7% 83,3 5.0

Rete con reazione

	$ v_S $ [mV]	$\begin{vmatrix} v_{in} \end{vmatrix}$ [mV]	v _{out} [V]	A_f	$\frac{dA_f}{A_f}$
	100	10	1.0	10	0
	200	20	2.0	10	0
	300	30	3.0	10	0
	400	40	4.0	10	0
	444	45	4.44	10	0
	478	50	4.75	9,93	0,7%
	500	55	4.94	9,88	1,2%
1	510	60	5.0	9,8	2%

zona di non linearità

Effetti della retroazione nei confronti dei disturbi e del rumore

Per un segnale sinusoidale \implies termine quadratico (II armonica)

$$v_{in}(t) = V_{iM} \operatorname{sen} \omega t \quad \stackrel{V_{iM} > 40mV}{\Longrightarrow} \quad \operatorname{sen}^2 \omega t = \frac{1}{2} - \frac{1}{2} \cos 2\omega t$$

In generale \Rightarrow intermodulazioni

Per la sola v_d si ha:

$$v_{d_f} = v_d - v_{d_f} \beta A$$

$$v_{d_f} = \frac{v_d}{1 + \beta A}$$

$$v_{out} = Av_S + v_d$$
 (senza reazione)

$$v_{out} = A_f v_S + v_{d_f}$$
 (con reazione)

Utilizzo di un preamplificatore $\Rightarrow v_S' = A_P v_S = (1 + \beta A) v_S$

$$v_{out_{f,P}} = A_f v_S' + v_{d_f} = A_f (1 + \beta A) v_S + v_{d_f} \quad \textit{(con reazione)}$$

In presenza di rumore si ha: $v_{N_f} = \frac{v_N}{1 + \beta A}$

Ma deve risultare $v_{N_P} \ll v_N$ poichè:

$$v_{N_{totale}} = v_{Nf} + v_{NP} \cdot A_f = \frac{1}{1 + \beta A} \left(v_N + A \cdot v_{NP} \right)$$

Effetti sulla resistenza di ingresso

Reazione serie

$$V_S = V_{in} + V_f = V_{in} + \beta A V_{in} =$$
$$= V_{in} (1 + \beta A)$$

$$V_f = \beta X_{out} < X_{out} = I_{out}$$

$$X_{out} = V_{out}$$

$$X_{out} = AV_{in}$$

$$R_{if} = \frac{V_S}{I_{in}} = \frac{V_S}{\frac{V_{in}}{R_{in}}} = \frac{V_{in} (1 + \beta A)}{V_{in}} R_{in} = (1 + \beta A) R_{in}$$

Reazione parallelo

$$I_S = I_{in} + I_f = I_{in} + \beta A I_{in} =$$
$$= I_{in} (1 + \beta A)$$

$$I_f = \beta X_{out} < X_{out} = I_{out}$$

$$X_{out} = V_{out}$$

$$X_{out} = AI_{in}$$

$$R_{if} = \frac{V_{in}}{I_S} = \frac{R_{in}I_{in}}{I_S} = \frac{R_{in}I_{in}}{I_{in} (1 + \beta A)} = \frac{R_{in}}{1 + \beta A}$$

Effetti sulla resistenza di uscita

Reazione di tensione (serie-parallelo, parallelo-parallelo)

Ipotesi:

- A unidirezionale
- β unidirezionale
- A non risente degli effetti di carico

$$R_{o_f} = \frac{V_{oc}}{I_{sc}}$$

 $oc = open \ circuit$

sc = short circuit

Poichè
$$X_S = X_{in} + X_f = X_{in} + \beta A X_{in} \Rightarrow X_{in} = \frac{X_S}{1 + \beta A}$$

$$V_{oc} = AX_{in} = \frac{AX_S}{1 + \beta A}$$

Se l'uscita è s.c.:
$$V_{out} = 0 \Longrightarrow X_f = 0 \Longrightarrow X_S = X_{in} \Longrightarrow I_{sc} = \frac{AX_S}{R_{out}}$$

$$\downarrow$$

$$R_{o_f} = \frac{AX_S}{1 + \beta A} \frac{R_{out}}{AX_S} = \frac{R_{out}}{1 + \beta A}$$

Reazione di corrente (serie-serie, parallelo-serie)

Ipotesi:

- A unidirezionale
- β unidirezionale
- A non risente degli effetti carico

$$R_{o_f} = \frac{V_{oc}}{I_{sc}}$$

oc = open circuit

 $sc = short \ circuit$

Poichè quando l'uscita è o.c. non scorre corrente si ha:

$$X_f = 0 \implies X_{in} = X_S$$

$$V_{oc} = -AX_{in} \cdot R_{out} = -AX_S \cdot R_{out}$$

Essendo
$$I_{sc} = -AX_{in} = -\frac{AX_S}{1+\beta A}$$

$$\downarrow \downarrow$$

$$R_{of} = \frac{-AX_S R_{out}}{-AX_S} \cdot (1 + \beta A) = R_{out} (1 + \beta A)$$

In realtà:

- la rete A non è unidirezionale e risente degli effetti di carico della rete β , del carico R_L e della resistenza interna R_S del generatore di segnale.
- la rete β non è unidirezionale, carica l'amplificatore di base A e risente del carico R_L e della resistenza interna R_S del generatore di segnale.

 A_{\square} = guadagno unidirezionale reale che tiene conto della resistenza di carico $(A_{V}, A_{I}, R_{M}, G_{M})$

A = guadagno unidirezionale ideale (A_v, A_i, R_m, G_m) dove

$$A_{V} = \lim_{\substack{R_{L} \to \infty \\ R_{L} \to 0}} A_{V} \qquad A_{i} = \lim_{\substack{R_{L} \to 0 \\ R_{L} \to 0}} A_{I} \qquad R_{m} = \lim_{\substack{R_{L} \to \infty \\ R_{L} \to \infty}} R_{M}$$

$$G_{m} = \lim_{\substack{R_{L} \to 0 \\ R_{L} \to 0}} G_{M}$$

Tabella riassuntiva

	Tipo di reazione					
Grandezza	serie di tensione (serie-parallelo)	serie di corrente (serie-serie)	parallelo di corrente (parallelo-serie)	parallelo di tensione (parallelo-parallelo)		
R_{o_f}	$\frac{R_{out}}{1 + \beta A_{v}}$	$R_{out}(1+\beta G_m)$	$R_{out}(1+\beta A_i)$	$\frac{R_{out}}{1 + \beta R_m}$		
R'_{o_f}	$\frac{R'_{out}}{1 + \beta A_V}$	$\frac{R'_{out}(1+\beta G_m)}{1+\beta G_M}$	$\frac{R'_{out}(1+\beta A_i)}{1+\beta A_I}$	$\frac{R'_{out}}{1 + \beta R_M}$		
R_{if}	$R_{in}(1+\beta A_V)$	$R_{in}(1+\beta G_M)$	$\frac{R_{in}}{1 + \beta A_I}$	$\frac{R_{in}}{1 + \beta R_M}$		

avendo posto
$$R'_{of} = R_{of} \| R_L e R'_{out} = R_{out} \| R_L$$

Analisi di circuiti in retroazione

(1) Classificazione del tipo di reazione

Anello (V_S , E-B, S-G, +/- operazionale colleg. con out)

$$X_f = V_f \iff$$
 reazione di tipo **serie**

Nodo (I_S , B, G, – operazionale colleg.con out) $X_f = I_f \iff$ reazione di tipo **parallelo**

di tensione $(V_{out} = 0 \Rightarrow ? \Rightarrow)$; $R_L = 0$

di corrente (
$$I_{out} = 0 \implies ? \implies$$
); $R_L = \infty$

reazione di serie $\Rightarrow I_i = 0$

(2) Rappresentazione dell'amplificatore di base

effetti di carico di β su A_\square sul circuito di ingresso reazione di tensione $\Rightarrow V_{out} = 0$ reazione di corrente $\Rightarrow I_{out} = 0$ effetti di carico di β su A_\square sul circuito di uscita

- (3) Sostituzione dei circuiti equivalenti al posto dei dispositivi attivi
- (4) Calcolo di X_f e X_{out}
- (5) Determinazione di $\beta = \frac{X_f}{X_{out}}$

- (6) Calcolo di A_{\square} in base alle leggi di Kirchhoff alle maglie e ai nodi
- (7) Calcolo di S, D, A_f , R_{i_f} , R_{o_f} , R'_{o_f} con le formule note

(1) reazione serie di tensione

$$v_{S} \stackrel{\mathsf{G}}{\longleftarrow} v_{in} \stackrel{\mathsf{r}_{d}}{\longleftarrow} D$$

$$+ -\mu v_{in} \stackrel{\mathsf{R}}{\longrightarrow} R \mid v_{out}$$

$$V_{in} = V_{s}$$
(4) $V_{f} = V_{out}$ **(5)** $\beta = \frac{V_{f}}{V_{out}} = 1$ **(6)** $A_{V} = \frac{V_{out}}{V_{in}} = \frac{\mu V_{in}}{V_{in}} \cdot \frac{R}{R + r_{d}}$

$$D = 1 + \beta A = \frac{r_d + R(1 + \mu)}{R + r_d} \qquad A_{v_f} = \frac{A_v}{D} = \frac{\mu R}{r_d + R(1 + \mu)}$$

- (1) reazione serie di tensione
- (2) (I' << I)

(4)
$$V_f = \frac{R_1}{R_1 + R_2} V_{out}$$

(5)
$$\beta = \frac{R_1}{R_1 + R_2}$$

Oss.:
$$A >> 1 \implies A_{V_f} \cong \frac{1}{\beta}$$

(1) reazione serie di corrente

(2)

(4)
$$V_f = -I_{out} R_{eq}$$
.

(5)
$$\beta = -R_{eq.} \ con \ R_{eq.} = R_1 \| R_2 \|$$

(1) reazione parallelo di tensione

(2)

(4)
$$I_f = -\frac{V_{out}}{R'}$$

$$\beta = -\frac{1}{R'}$$

Stabilità dei sistemi retroazionati

La reazione è **positiva** (rigenerativa) quando $\left|A_f\right| > \left|A\right|$

$$|1 + \beta A| < 1 \implies \beta A < 0$$

$$|1 + \beta A| < 1 \implies \beta A < 0$$

$$|1 + \beta A| < 1$$

$$|1 + \beta A| > 1$$

Con
$$X_S = 0$$
 si ha:

Con
$$X_S = 0$$
 si ha:
$$X_{in} = X_S - X_f = -X_f$$

$$X_f = \beta X_{out}$$

$$\downarrow$$

$$X_f = AX_f = -\beta AX_f$$

 $X_{out} = AX_{in} = -\beta AX_{out}$

Condizioni di Barkhausen:
$$\beta A = -1 \Leftrightarrow \begin{cases} |\beta A| = 1 \\ |\beta A| = -180^{\circ} \end{cases}$$

Nascita di una oscillazione che si autosostiene \Rightarrow vantaggioso per realizzare un oscillatore Non linearità dei dispositivi attivi ⇒ Nascita di intermodulazioni

Interessamento delle porzioni di interdizione e saturazione

Spostamento del punto di lavoro

Studio della stabilità

- Un amplificatore deve essere stabile sia in banda che fuori banda;
- Un sistema fisico stabile eccitato con un segnale limitato nel tempo non può rispondere con un segnale non limitato nel tempo, o che tende a crescere indipendentemente o, se la funzione di trasferimento del sistema non presenta poli né nel semipiano destro né Se A è stabile lo sarà anche A_f purché $1+\beta A$ abbia zeri sull'asse immaginario. solamente nel semipiano sinistro aperto.

Metodi per lo studio della stabilità di un sistema:

- Determinazione delle radici dell'equazione algebrica che si ottiene eguagliando a 0 il deno-minatore della funzione di trasferimento;
- Criterio di Nyquist (1931);
- Diagramma di Bode.

Criterio di Nyquist

Proprietà delle funzioni di trasferimento delle reti elettriche:

$$\beta A(j\omega) = \left[\beta A(-j\omega)\right]^*$$

Margini di guadagno e di fase

$$m_G = 20\log 1 - 20\log(\beta A|_{\omega = \omega_{\varphi}}) = -[\beta A(j\omega_{\varphi})]$$

$$(m_G \ge 10\text{dB})$$

$$m_{\varphi} = \Phi\left[\beta A(j\omega_G)\right] \pm 180^{\circ} \qquad (m_{\varphi} \ge 45^{\circ}) \quad \Phi\left[\beta A(j\omega_{\varphi})\right] = -180^{\circ}$$

Stabilità	Instabilità	
$\omega_{\varphi} > \omega_{G}$	$\omega_{\varphi} < \omega_{G}$	
$m_G > 0$	$m_G < 0$	
$m_{\varphi} > 0$	$m_{\varphi} < 0$	

Generazione di segnali

Generazione di segnali sinusoidali - Oscillatori

Condizioni di Barkhausen:
$$\beta A = -1 \Leftrightarrow \begin{cases} |\beta A| = 1 \\ \angle \beta A = -180^{\circ} \end{cases} \Leftrightarrow m_G = 0; \ m_{\phi} = 0^{\circ}$$

$$\beta A = -1$$

$$\downarrow \downarrow$$

$$A_f = \frac{V_{out}}{V_S} = \frac{A}{1 + \beta A} \rightarrow \infty$$

$$\downarrow \downarrow$$

$$V_{out} = A_f \cdot V_S \rightarrow \infty \cdot 0$$

Questa condizione viene soddisfatta per un determinato valore della pulsazione ($\omega = \omega_G = \omega_0$, vedi diagramma di Nyquist).

Teoricamente lo spettro del segnale generato è costituito da una sola riga. In realtà, per effetto della non costanza dei parametri nel tempo, si ha un allargamento delle righe per cui lo spettro degenera in una banda.

Oscillatore a sfasamento (100's kHz)

(a FET, config. CS)

Reazione serie di tensione

1) A_V costante al variare di $f \ \forall f \in \mathbf{B}$ Ipotesi:

2)
$$R_{in} >> R$$

3)
$$Z_{eq.} >> R_{out}$$

$$V_{out} \qquad \qquad V_{out} \qquad V_$$

$$\begin{cases} V_{out} = I_1 \left(\frac{1}{j\omega C} + R \right) - I_2 R \\ 0 = -I_1 R + I_2 \left(\frac{1}{j\omega C} + 2R \right) - I_3 R \\ 0 = -I_2 R + I_3 \left(\frac{1}{j\omega C} + 2R \right) \end{cases}$$

Posto
$$\alpha = \frac{1}{\omega RC}$$
 si trova
$$\begin{cases} \frac{V_{out}}{R} = I_1(1 - j\alpha) - I_2 \\ 0 = -I_1 + I_2(2 - j\alpha) - I_3 \Rightarrow I_3 = \frac{V_{out}}{R[1 - 5\alpha^2 + j(\alpha^3 - 6\alpha)]} \\ 0 = -I_2 + I_3(2 - j\alpha) \end{cases}$$

$$\frac{V_{in}}{V_{out}} = \frac{I_3 R}{V_{out}} \implies \frac{V_{in}}{V_{out}} = \frac{1}{1 - 5\alpha^2 + j(\alpha^3 - 6\alpha)}$$

$$\alpha^3 - 6\alpha = 0 \implies \alpha = \pm \sqrt{6} \implies \alpha = \frac{1}{\omega RC} = \sqrt{6} \implies \omega_{osc} = \frac{1}{RC\sqrt{6}}$$

Sostituendo si ottiene
$$\left(\frac{V_{in}}{V_{out}}\right)_{\omega=\omega_{osc}} = -\frac{1}{29}$$
 $V_{in} = V_S - V_f$ $V_{in} = -V_f$

$$|\beta A| = 1 \quad \Rightarrow \quad |A_V| = \frac{1}{|\beta|} = 29 \quad \text{(meglio } |A_V| = 29 \cdot 1,05 \quad (+5\%) \text{)}$$

(con a.o.)

Reazione positiva serie di tensione

Reazione negativa parallelo di tensione

In questo caso risulta
$$A_{V_f} = \frac{A'_{V_f}}{1 + \beta A'_{V_f}}$$
 dove $A'_{V_f} = -\frac{R}{R} = -29$

(con FET in config. CD)

Procedendo come nel caso precedente:

$$\frac{V'}{V_{out}} = \frac{1}{1 - 5\alpha^2 + j(\alpha^3 - 6\alpha)}$$

$$V' = \frac{V_{out}}{1 - 5\alpha^2 + j(\alpha^3 - 6\alpha)}$$

Quindi $\omega_{osc} = \frac{1}{RC\sqrt{6}}$. Essendo però $V_{out} = V_{in} + V'$, dividendo per V_{out} si ha:

$$\beta = \frac{V_{in}}{V_{out}} = 1 - \frac{V'}{V_{out}} = 1 - \left(-\frac{1}{29}\right) = 1 + \frac{1}{29} = \frac{30}{29} \cong 1,034$$

Pur essendo $A_V < 1$ si riesce ad avere $|\beta A_V| > 1$ per un valore di μ sufficientemente elevato. Ad esempio, per $\mu = 50 \implies |\beta A_V| = 1,034 \cdot \frac{50}{50+1} \cong 1,014$.

Oscillatore a ponte di Wien

Reazione positiva (sfasamento e ampiezza)

$$V_{in} = V_{1} = V_{2} = \frac{R}{R} \frac{1}{1 + R} V_{out} \Rightarrow V_{out} = \left(1 + \frac{R}{R} \frac{2}{1}\right) V_{in}$$

$$Ma: V_{in} = \left(\frac{Z}{Z} \frac{2}{1 + Z}\right) V_{out} \Rightarrow V_{out} = \left(\frac{Z}{Z} \frac{2}{1 + Z}\right) \left(1 + \frac{R}{R} \frac{2}{1}\right) V_{out}$$

$$\downarrow \downarrow$$

$$\left(\frac{Z}{Z} \frac{2}{1 + Z} \frac{2}{2}\right) \left(1 + \frac{R}{R} \frac{2}{1}\right) = 1$$

Posto $\alpha' = \omega RC$ si trova:

$$\frac{Z_{2}}{Z_{1}+Z_{2}} = \frac{\frac{R}{1+j\alpha'}}{\frac{1+j\alpha'}{j\omega C} + \frac{R}{1+j\alpha'}} = \frac{\frac{R}{1+j\alpha'}}{\frac{(1+j\alpha')^{2}+j\alpha'}{j\omega C}(1+j\alpha')} = \frac{j\alpha'}{1-\alpha'^{2}+2j\alpha'+j\alpha'} =$$

$$= \frac{j\alpha'}{1-\alpha'^{2}+3j\alpha'} \cdot \frac{j}{j} = \frac{-\alpha'}{j-j\alpha'^{2}-3\alpha'} = \frac{\alpha'}{3\alpha'+j(\alpha'^{2}-1)}$$

$$\downarrow \downarrow$$

$$\alpha'^{2}-1=0 \implies \alpha' = \omega RC = 1 \implies \omega_{osc} = \frac{1}{RC}$$

$$\downarrow \downarrow$$

$$\frac{Z_{2}}{Z_{1}+Z_{2}} = \frac{1}{3} \implies 1+\frac{R_{2}}{R_{1}} = 3 \implies R_{2} = 2R_{1}$$

Problema della stabilizzazione dell'ampiezza della tensione di uscita. Soluzioni:

Al posto di R_1 si può inserire un sensistor (coefficiente termico positivo) Al posto di R_2 si può inserire un termistor (coefficiente termico negativo)

Oscillatori a tre punti

Schematizzazione adottata per l'analisi del circuito

dove
$$Z_L = Z_2 ||(Z_1 + Z_3)| = \frac{(Z_1 + Z_3) Z_2}{Z_1 + Z_2 + Z_3}$$

$$V_{out} = ?$$

$$V_{out} = -A_{v}V_{13} \cdot \frac{Z_{L}}{R_{out} + Z_{L}} \implies V_{out} = -A_{v} \cdot \frac{Z_{L}}{R_{out} + Z_{L}} \cdot V_{out} \frac{Z_{1}}{Z_{1} + Z_{3}}$$

$$\downarrow \downarrow$$

$$-A_{v} \cdot \frac{Z_{L}}{R_{out} + Z_{L}} \cdot \frac{Z_{1}}{Z_{1} + Z_{3}} = 1$$

$$\downarrow \downarrow$$

$$-A_{v} \cdot \frac{(Z_{1} + Z_{3}) \cdot \frac{Z_{2}}{Z_{1} + Z_{2} + Z_{3}}}{R_{out} + (Z_{1} + Z_{3}) \cdot \frac{Z_{2}}{Z_{1} + Z_{2} + Z_{3}}} \cdot \frac{Z_{1}}{Z_{1} + Z_{3}} = \frac{-A_{v} Z_{1} Z_{2}}{R_{out}(Z_{1} + Z_{2} + Z_{3}) + Z_{2}(Z_{1} + Z_{3})} = 1$$

$$Z_{i} = jX_{i}$$

$$\downarrow \frac{1}{j\omega C}$$

$$\downarrow \frac{-A_{v} jX_{1} \cdot jX_{2}}{jR_{out}(X_{1} + X_{2} + X_{3}) + jX_{2}(jX_{1} + jX_{3})} =$$

$$= \frac{A_{v} X_{1}X_{2}}{jR_{out}(X_{1} + X_{2} + X_{3}) - X_{2}(X_{1} + X_{3})} = 1$$

$$\downarrow \downarrow$$

$$X_1 + X_2 + X_3 = 0 \qquad \Rightarrow \qquad X_1 + X_3 = -X_2$$

$$\downarrow \downarrow$$

$$\frac{A_{\nu} X_1 X_2}{-X_2(-X_2)} = \frac{A_{\nu} X_1}{X_2} = 1 \quad \Rightarrow \qquad A_{\nu} = \frac{X_2}{X_1} \qquad \text{P} \quad X_1 \ e \ X_2 \ dello \ stesso \ segno$$

Oscillatore Hartley	Oscillatore Colpitts
$X_1 = \omega L_1$	$X_1 = -\frac{1}{\omega C_1}$
$X_2 = \omega L_2$	$X_2 = -\frac{1}{\omega C_2}$
$X_3 = -\frac{1}{\omega C_3}$	$X_3 = \omega L_3$
$\omega L_1 + \omega L_2 - \frac{1}{\omega C_3} = 0 \bigg _{\omega = \omega_{osc}}$	$-\frac{1}{\omega C_1} - \frac{1}{\omega C_2} + \omega L_3 = 0 \bigg _{\omega = \omega_{osc}}$
$\omega_{osc} = \sqrt{\frac{1}{C_3} \left(\frac{1}{L_1 + L_2} \right)}$	$\omega_{osc} = \sqrt{\frac{1}{L_3} \left(\frac{1}{C_1} + \frac{1}{C_2} \right)}$
$A_V = \frac{L_2}{L_1}$	$A_V = \frac{C_1}{C_2}$

Oscillatore Hartley

Oscillatore Colpitts

Utilizzo di stub alle alte frequenze

Parametri parassiti: tempo, temperatura, pressione, dispersione dei parametri, ecc.

Oscillatori a quarzo

Piezoelettricità (Curie, 1880)

$$X_{2} + X_{3} = -X_{1}$$

$$\Delta X_{2} + \Delta X_{3} = -\Delta X_{1}$$

$$\frac{\Delta X_{1}}{\Delta \omega} = S_{f} \implies \Delta \omega = \frac{\Delta X_{1}}{S_{f}}$$

Simboli circuitali e modello di un quarzo (Mason)

$$=\frac{\frac{1}{s^2CC'}(sRC+s^2LC+1)}{\frac{1}{sCC'}(C+sRCC'+s^2LCC'+C')} = \frac{1-\omega^2LC+j\omega R}{j\omega[(C+C')-\omega^2LCC'-RC]}$$

Per $R \cong 0$ si ha:

$$Z_{eq.} = \frac{1 - \omega^2 LC}{j\omega \left[(C + C') - \omega^2 LCC' \right]} = \frac{LC \left(\frac{1}{LC} - \omega^2 \right)}{j\omega LCC' \left[\frac{C + C'}{LCC'} - \omega^2 \right]} = \frac{\omega^2 - \frac{1}{LC}}{j\omega C' \left[\omega^2 - \frac{1}{L} \frac{C + C'}{CC'} \right]}$$

Posto
$$\omega_S = \frac{1}{\sqrt{LC}}$$
 e $\omega_P = \sqrt{\frac{1}{L} \left(\frac{C + C'}{CC'} \right)}$ si ottiene:

$$Z_{eq.} = \frac{1}{j\omega C'} \frac{\omega^2 - \omega_S^2}{\omega^2 - \omega_P^2}$$

$$C' >> C \implies \omega_S \cong \omega_P$$

$$Q = \frac{\omega_0}{\omega_P - \omega_S} = 1000 \div 10000$$

$$con \ \omega_0 = \frac{\omega_P + \omega_S}{2}$$

$$f = decine...di...MHz$$

$$\downarrow \downarrow$$

$$d = \frac{\lambda}{2} = decimi...di...mm$$

$$\downarrow \downarrow$$

Quarzi.in."overtone"

Oscillatore Hartley a quarzo

Tipi di disturbi e metodi per la loro riduzione

	o Interni ai dispositivi attivi	Rumore termico Rumore flicker	
	• Interni ai dispositivi passivi	Rumore di ricombinazione Rumore rosa	
DISTURBI INTERNI	• Accoppiamenti all'interno del	circuito - galvanico - capacitivo - induttivo	
	• Piezoelettrici		

- Potenziali di contatto tra metalli diversi e/o con temperature diverse delle giunzioni bimetallo
 Sporco (genera correnti di dispersione confrontabili con le correnti in ingresso di dispositivi ad effetto di campo)

Problema della Compatibilità Elettromagnetica (e.m.c.=electromagnetic compatibility)

Accoppiamento galvanico

Suggerimenti per la realizzazione di un circuito stampato

- Tutte le masse locali sono da connettersi ad un unico grande piano di massa;
- Le capacità di by-pass (10÷100nF) sono da collegarsi il più vicino possibile ai circuiti integrati;
- Le aree libere da componenti e piste vanno collegate al piano di massa;
- Si deve cercare di realizzare circuiti con minime dimensioni.

Esempi

Amplificatore differenziale

$$I_{C_{1}}\left(1+\frac{I_{C_{2}}}{I_{C_{1}}}\right) = \alpha_{F}I_{EE} \Rightarrow I_{C} \quad = \frac{\alpha_{F}I_{EE}}{1+\frac{I_{C_{2}}}{I_{C_{1}}}}$$

$$I_{E_{1}}+I_{E_{2}}=I_{EE} \Rightarrow I_{C_{1}}\left(1+\frac{I_{C_{1}}}{I_{C_{2}}}\right) = \alpha_{F}I_{EE} \Rightarrow I_{C} \quad = \frac{\alpha_{F}I_{EE}}{1+\frac{I_{C_{1}}}{I_{C_{1}}}}$$

$$1 + \frac{I_{C_{1}}}{I_{C_{2}}}$$

$$V_1 = V_{BE_1} + V_E; \quad V_2 = V_{BE_2} + V_E \quad \Rightarrow \quad V_1 - V_2 = V_{BE_1} + V_{BE_2} = V_d$$

$$I_C = \alpha_F I_{E_S} \ (e^{-\frac{V_{BE}}{\eta V_T}} - 1) - I_{C_S} \ (e^{-\frac{V_{CB}}{\eta V_T}} - 1)$$

$$\downarrow \quad \text{(regione attiva)}$$

$$I_{C_1} = \alpha_F I_{E_S} e^{-\frac{V_{BE1}}{V_T}}$$
 $I_{C_2} = \alpha_F I_{E_S} e^{-\frac{V_{BE2}}{V_T}}$

Supposti uguali i guadagni di corrente si ha:

$$\frac{I_{C_1}}{I_{C_2}} = e^{\frac{V_{BE1} - V_{BE2}}{V_T}} = e^{\frac{V_d}{V_T}} \implies \frac{I_{C_2}}{I_{C_1}} = e^{-\frac{V_d}{V_T}}$$

$$\downarrow \qquad \qquad \downarrow$$

$$I_{C_1} = \frac{\alpha_F I_{EE}}{I_{C_2}} \qquad \qquad I_{C_2} = \frac{\alpha_F I_{EE}}{I_{C_1}}$$

$$I_{C_1} = \frac{\alpha_F I_{EE}}{1 + e^{-\frac{V_d}{V_T}}}$$

$$I_{C_2} = \frac{\alpha_F I_{EE}}{1 + e^{\frac{V_d}{V_T}}}$$

$$1 + e^{\frac{V_d}{V_T}}$$

Graficamente

Comparatori

Caratteristiche a confronto

Modelli di comparatori (ΔV_i fino a 15 μV e ritardi di 20 ÷ 200 ns):

Fairchild µA710 National LM111 Analog Devices AD604 Harris HA2111

Funzionamento non invertente

Funzionamento invertente

Zero crossing detector

Altri circuiti con comparatori

$$V_{R,1} = \frac{R_V}{R + R_V} (V_{AA} - V_Z)$$

$$V_{R,2} = \frac{R_V}{R + R_V} (V_{AA} - V_Z) + \frac{R_2}{R_1 + R_2} V_Z$$

$$W = V_{R,2} - V_{R,1} = \frac{R_2}{R_1 + R_2} \cdot V_Z$$

$$W = V_{R,2} - V_{R,1} = \frac{R_2}{R_1 + R_2} \cdot V_Z$$

$$\overline{V_R} = \frac{2\left[\frac{R_V}{R + R_V}(V_{AA} - V_Z)\right] + \frac{R_2}{R_1 + R_2}V_Z}{2} = V_{R,1} + \frac{W}{2}$$

Trigger di Schmitt

Fenomeno del chattering

$$V_1^+ = \frac{R_2}{R_1 + R_2} V_{out} + \frac{R_1}{R_1 + R_2} V_{AA}$$

$$V_1^- = -\frac{R_2}{R_1 + R_2} V_{out} + \frac{R_1}{R_1 + R_2} V_{AA}$$

$$\downarrow V_1^- < V_1^+$$

$$V_1^+ - V_1^- = \frac{2R_2}{R_1 + R_2} V_{out} \implies se R_2 \to 0 \implies V_1^+ - V_1^- \to 0$$

 $\frac{V_1^+ - V_1^-}{2} = \frac{R_1}{R_1 + R_2} V_{AA} \implies se V_{AA} = 0 \text{ la curva di isteresi si pone a cavallo dello } 0$

Trigger di Schmitt realizzato a BJT

T₁ interdetto, T₂ saturo

$$\begin{pmatrix}
I_{C_1} = I_{B_2} \ge \frac{I_{C_{2,sat}}}{h_{fe_2}}
\end{pmatrix}$$

$$\downarrow V_{out} = V_{CC} - R_{C_2}I_{C_{2,sat}} \text{ (bassa)}$$

Quando

$$V_{out}$$
 $V_{in}^+ = V_E + V_{BE_{1,ON}} = R_E I_{C_{2,sat}} + V_{BE_{1,ON}}$

$$V_{out} \cong V_{CC} \quad (alta)$$

$$\downarrow \downarrow$$

Quando

$$V_{in}^- = V_E' + V_{BE_{2,ON}} = R_E I_{C_{1,sat}} + V_{BE_{2,ON}}$$

$$\bigvee_{out} = V_{CC} - R_{C_2} I_{C_{2,sat}}$$

(bassa)

$$V_H = V_{in}^+ - V_{in}^- = R_E \left(I_{C_{2,sat}} - I_{C_{1,sat}} \right)$$

Generatori di onda quadra e triangolare (10÷10⁴ Hz)

$$V(1) = V_{\gamma} + V_{Z}$$

$$V(0) = -V_{\gamma} - V_{Z}$$

$$\beta = \frac{R_2}{R_1 + R_2}$$

$$V_d = V_C - \beta V_{out}$$

$$V_C(t) = \mathbf{A} + \mathbf{B} \, e^{-\frac{t}{\tau}} \qquad \tau = R_3 C$$

$$V_C(0) = -\beta V_{out} = A + B$$

$$V_C(+\infty) = V_{out} = A$$

$$V_C(t) = V_{out} - V_{out}(1+\beta) e^{-\frac{t}{\tau}}$$

Poichè

$$V_{C}\left(\frac{\mathbf{T}}{2}\right) = \beta V_{out} = V_{out}\left[1 - (1+\beta)e^{-\frac{\mathbf{T}}{2\tau}}\right]$$

dividendo per V_{out} si trova:

$$(1+\beta) e^{-\frac{T}{2\tau}} = 1-\beta \implies$$

$$(1+\beta) e^{-\frac{T}{2\tau}} = 1-\beta \implies T = 2\tau \left[\ln \left(\frac{1+\beta}{1-\beta} \right) \right] = 2\tau \ln \left(1 + \frac{2R_1}{R_2} \right)$$

In generale $T = T_1 + T_2$ dove:

$$T_1 = R_3 C \ln \left(\frac{V(1) + \beta V(0)}{V(1) - \beta V(1)} \right)$$

$$T_2 = R_4 C \ln \left(\frac{V(\theta) + \beta V(1)}{V(\theta) - \beta V(\theta)} \right)$$

$$I_D \uparrow \Rightarrow V_{R_{S_1}} \uparrow \Rightarrow V_{SG_1} \uparrow \Rightarrow I_D \downarrow$$

Utilizzo di un integratore di Miller

$$A_{V} = \frac{V_{out}}{V_{1}} = -\frac{Z_{2}}{Z_{1}} = -\frac{1}{j\omega RC}$$

$$V_{out} \quad \frac{V_{1}}{R} = I_{1} = i_{C}$$

$$i_C = C\frac{dV_C}{dt} = -C\frac{dV_{out}}{dt} = \frac{V_1}{R}$$

$$V_{out} = -\frac{1}{RC} \int_0^t V_1 dt + V_{out}(0)$$

$$V(1) = V_{\gamma} + V_{Z}$$

$$V(0) = -V_{\gamma} - V_{Z}$$

Hp:
$$V_S = 0 \Rightarrow T_1 = T_2 = \frac{T}{2}$$

$$I_C = \frac{V_{out}}{R}$$
 $V_1 = \frac{R_1}{R_1 + R_2} V_t + \frac{R_2}{R_1 + R_2} V_{out}$

$$V_C = \frac{I_C}{C} t + K = \frac{V_{out}}{R_C} t + K$$

$$V_{1}(t_{2}) = \frac{R_{1}}{R_{1} + R_{2}} V_{t_{\min}} + \frac{R_{2}}{R_{1} + R_{2}} V_{out} = V_{R} \Rightarrow V_{t_{\min}} = \frac{R_{1} + R_{2}}{R_{1}} V_{R} - \frac{R_{2}}{R_{1}} V_{out}$$

$$V_1(t_1) = \frac{R_1}{R_1 + R_2} V_{t_{\text{max}}} - \frac{R_2}{R_1 + R_2} V_{out} = V_R \implies V_{t_{\text{max}}} = \frac{R_1 + R_2}{R_1} V_R + \frac{R_2}{R_1} V_{out}$$

$$\Delta V_t = V_{t_{\text{max}}} - V_{t_{\text{min}}} = 2 V_{out} \frac{R_2}{R_1}$$

$$\frac{V_{t_{\text{max}}} + V_{t_{\text{min}}}}{2} = \frac{R_1 + R_2}{R_1} V_R$$

$$\frac{V_{t_{\text{max}}} - V_{t_{\text{min}}}}{T/2} = \left| \frac{dV_C}{dt} \right| = \frac{V_{out}}{RC} \implies 2V_{out} \frac{R_2}{R_1} = \frac{V_{out}}{RC} \frac{T}{2} \implies$$

$$T = 4RC \frac{R_2}{R_1}$$

$$V_S \neq 0 \implies T_1 \neq T_2$$

$$I_R = I_C = \frac{V_{out} - V_S}{R} \Longrightarrow V_t \downarrow \Longrightarrow T_2$$

$$I_R = I_C^* = \frac{-V_{out} - V_S}{R} \Rightarrow V_t \uparrow \Rightarrow T_1$$

$$T_1 = 2V_{out} \frac{RC}{V_{out} + V_S} \frac{R_2}{R_1}$$
 $T_2 = 2V_{out} \frac{RC}{V_{out} - V_S} \frac{R_2}{R_1}$

$$T_2 = 2V_{out} \frac{RC}{V_{out} - V_S} \frac{R_2}{R_1}$$

$$T = T_1 + T_2 = 2V_{out}RC\frac{R_2}{R_1}\left[\frac{1}{V_{out} + V_S} + \frac{1}{V_{out} - V_S}\right] = 4RC\frac{R_2}{R_1}\frac{1}{1 - \left(\frac{V_S}{V_{out}}\right)^2}$$

$$f = \frac{R_1}{4RCR_2} \left(1 - \left(\frac{V_S}{V_{out}} \right)^2 \right)$$

$$f = \frac{R_1}{4RCR_2} \left(1 - \left(\frac{V_S}{V_{out}} \right)^2 \right) \qquad \frac{T_1}{T_1 + T_2} = \delta = \dots = \frac{1}{2} \left(1 - \frac{V_S}{V_{out}} \right)$$

$$V_S = 0 \Rightarrow \delta = 0,5$$

$$V_S = V_{out} \Rightarrow \delta = 0$$

$$V_S = 0 \Rightarrow \delta = 0.5$$
 $V_S = V_{out} \Rightarrow \delta = 0$ $V_S = -V_{out} \Rightarrow \delta = 1$

S.P.D.T. = Single Pole Double Throw

Ipotesi: $|V_{out}| > |V_m|$

 V_m lentamente variabile $\Rightarrow P.F.M.$ (Pulse Frequency Modulation)

$$V_{out} = V(1) \implies V'_{out} = -V_m \implies V_t \text{ sale}$$

$$V_{out} = V(0) \implies V'_{out} = V_m \implies V_t \text{ scende}$$

$$\frac{2\beta V_{out}}{T/2} = \frac{V_m}{RC}$$

$$\downarrow \downarrow$$

$$f_{osc} = \frac{1}{4\beta V_{out}RC} V_m$$

Amplificatore bifase

Multivibratori monostabili

Funzionamento

Monostabile non risincronizzabile

Ipotesi:

$$V_{\gamma} << \frac{R_2}{R_1+R_2} V(1)$$

$$|V_T| > |\beta V_{out} - V_{\gamma}|$$

$$R, C = ? V_c(t) = -V_o + (V_{\gamma} + V_o)e^{-\frac{t}{RC}} V_c(t) = -\beta V_o$$

$$T = RC \ln \frac{1 + \frac{V_{\gamma}}{V_{out}}}{1 - \beta} \quad con \quad \beta = \frac{R_2}{R_1 + R_2}$$

$$R_1 = R_2 \quad \Rightarrow \quad \beta = \frac{1}{2}; \qquad V_{\gamma} << V_{out} \quad \Rightarrow \qquad T = RC \ln 2 = 0,69 RC$$

Monostabile risincronizzabile

$$V_C = V_{DD} \left(1 - e^{-\frac{t'}{RC}} \right)$$

Carica di C:

$$\tau = CR$$

Scarica di C:

$$\tau = C \cdot r_{d_{ON}}$$

$$T = RC \ln \left(\frac{1}{1-\beta}\right) =$$

$$= RC \ln \left(1 + \frac{R_2}{R_1}\right)$$

$$R_1 = R_2$$

$$\downarrow \downarrow$$

$$T=0,69~RC$$

Monostabile con NE555

$$V_1 = \frac{2}{3} V_{CC}$$

$$V_2 = \frac{1}{3} V_{CC}$$

$$V_C(t) = V_{CC}(1 - e^{-\frac{t^*}{RC}})$$

$$V_C(T) = \frac{2}{3}V_{CC} = V_{CC}(1 - e^{-\frac{T}{RC}})$$

$$T = RC \ln 3 = 1.1 RC$$

Astabile con NE555

$$V_{C}(t) = V_{CC} - \left[(V_{CC} - V_{2}) \exp\left(\frac{-t}{(R_{A} + R_{B})C}\right) \right] = V_{CC} - (V_{2} - V_{CC}) \exp\left(\frac{-t}{(R_{A} + R_{B})C}\right)$$

$$V_{C}(t_{1}) = V_{C}(T_{1}) = V_{1} \implies \dots \implies T_{1} = (R_{A} + R_{B}) C \ln 2; \quad T_{2} = R_{B}C \ln 2$$

Tecniche di modulazione con portante armonica

Con portante sinusoidale

- Modulazione di ampiezza o AM (Amplitude Modulation)
- Modulazione di frequenza o FM (Frequency Modulation)
- Modulazione di fase o PM (Phase Modulation)

Con portante ad impulsi

- Modulazione di ampiezza di impulsi o PAM (Pulse Amplitude Modulation)
- Modulazione di larghezza di impulsi o PWM (Pulse Width Modulation)
- Modulazione di posizione di impulsi o **PPM** (Pulse Position Modulation)
- Modulazione di frequenza di impulsi o **PFM** (Pulse Frequency Modulation)

Amplificatore stabilizzato a chopper

AMPLIFICATORE STABILIZZATO A CHOPPER

Modulazione PAM

Modulatori e demodulatori

AMPLIFICATORE STABILIZZATO A CHOPPER

Ricostruzione del segnale modulato:

$$V_{out} = V(1) \Rightarrow JFET = ON \Rightarrow V'_{out} \approx 0$$

Ipotesi: Interruttore = JFET a canale $n \Rightarrow$

$$V_{out} = V(0) \Rightarrow JFET = OFF \Rightarrow V'_{out} \approx V_m$$

durante
$$T_1 \Rightarrow JFET = ON \Rightarrow V'''_{out} \Rightarrow V_I = V_C$$

durante
$$T_2 \Rightarrow JFET = OFF \Rightarrow V'''_{out} \Rightarrow V_{II} = V_C$$

Modulatore PWM

Ipotesi: V_m varia lentamente rispetto a V_t ;

$$|V| > |V_m|$$

$$\begin{vmatrix} V_{t_{\min}} \end{vmatrix} = \begin{vmatrix} V_{t_{\max}} \end{vmatrix} = V \Longrightarrow \frac{2V}{\frac{T}{2}} = \frac{V - V_{m}}{\frac{T}{2}}$$

$$\downarrow \downarrow$$

$$\delta = \frac{\tau}{T} = \frac{1}{2} \left(1 - \frac{V_m}{V_{t_{\text{max}}}} \right)$$

$$V_m = 0 \Rightarrow \delta = 0,5;$$
 $V_m = V_{out} \Rightarrow \delta = 0;$ $V_m = -V_{out} \Rightarrow \delta = 1$