ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION

SUMMER SEMESTER, 2020-2021

DURATION: 1 Hour 30 Minutes

FULL MARKS: 75

CSE 4205: Digital Logic Design

Answer all 3 (three) questions. Marks of each question and corresponding CO and PO are written in the right margin with brackets.

Write examination information on the **top page** and write **studentID** and **page number** in every page of the answer script. Submission pdf should be renamed as studentID CourseCode MID.pdf The use of pencil is recommended to discourage any writing from being crossed

- 10 According to the design procedure of combinational circuit, implement a circuit that will take a 4-bit binary number as input and its output will be the 2's complement of the input number. (CO5) Design the circuit with **minimum number** of basic logic gates. (PO3)
 - 10 Implement the following Boolean function, F with the different 2-level forms listed below:

$$F(x, y, z) = ((x \oplus y) + z)$$
 (CO1)

i.
$$AND - NOR$$
 (PO1)

- ii. OR - NAND
- iii. NAND - AND
- iv. NOR - OR

Note: Assume that both the normal and complement inputs are available.

- 5 Implement the Boolean function F = abcd using only two-input NAND gates. (CO1)
 - (PO1)

10

Simplify the following Boolean function, F into product of sums form by means of tabulation 10 2. a) method stating the lists of all prime implicants and essential prime implicants: (CO4)

$$F(a, b, c, d) = b'd + a'b + b'c' + a'c'd'$$
 (PO2)

- Assume that we consider two decimal digits in BCD for arithmetic addition and subtraction, together with any carry from a previous stage. The decimal digits in the output must be (CO₅) expressed in BCD. Now design a block diagram that addresses the aforementioned scenario by (PO3) incorporating the relevant function tables and simplification processes.
- The adder-subtractor circuit designed in question 2(c) has a mode input M to control their 5 operations and data inputs A and B. If M, A and B have the following values, determine the (CO1) values of the *sum* outputs and the *carry*: (PO1)

	M	\boldsymbol{A}	В
i.	0	0111	0110
ii.	0	1000	1001
iii.	1	0111	1000
iv.	1	0101	0111
v.	1	0000	0001

Consider the following Boolean function F, together with the don't-care conditions d. 10 3. a) (CO4) Implement the simplified function using: i. 2 level NAND gates (PO3) ii. 2 level NOR gates F(A, B, C, D) = ABC + A'B'CD' + A'BC'Dd = B'D + A'BD' + AB'D'**Note:** Assume that both the normal and complement inputs are available. A limited number system of base 12 is adopted at Central Departmental Shop (CDS) in IUT to 6 count beverage cans. They will allow at most four integer digits in their numbers. The weights (CO1) of the digits in their significant positions are 12³, 12², 12, and 1. Special names are given to the (PO1) weights as follows: 12 = 1 dozen, $12^2 = 1$ gross, and $12^3 = 1$ great gross. Answer the followings: (6 great gross + 8 gross + 7 dozen + 4) + (1 gross + 7 dozen + 9) = ?ii. Find the representation in base 12 (adopted by CDS, IUT) for 7569₁₀ beverage cans. 4 What is self-complementary code? What are the advantages of these codes over Binary Coded Decimals? Justify your answer with proper examples. (CO3) (PO2) Design a combinational circuit of a four-bit Gray code to binary number converter with 5 exclusive-OR gates (CO1) (PO1)