Álgebra Linear para Computação Suzana M. F. de Oliveira

Índice

- Revisão
- Semelhança
 - Matrizes simples de operadores lineares
 - Matrizes de transição
 - Efeito da mudança de bases nas matrizes de operadores lineares
 - Invariantes de semelhança
- Resumo
- Bibliografia

Revisão

Revisão

- Matrizes de transformações lineares
 - Tenta achar uma matriz que corresponde a transformação
 - Procedimento indireto

Matrizes de composições e de inversas

$$[T_2 \circ T_1]_{B',B} = [T_2]_{B',B''} [T_1]_{B'',B}$$

$$[T^{-1}]_B = [T]_B^{-1}$$

- Matrizes simples de operadores lineares
 - Nem sempre a base canônica é a que faz com que a matriz de T seja a mais simples possível
 - Ideal é ter uma matriz triangular ou diagonal

- Matrizes simples de operadores lineares
 - Exemplo:
 - Considere o operador matricial T : $\mathbb{R}^2 \to \mathbb{R}^2$ de matriz na base canônica $[T] = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$ escala o

onde [T] é a matriz de T em relação à base canônica B = $\{\mathbf{e}_1, \mathbf{e}_2\}$ de \mathbb{R}^2

Muda a escala de u'₁ pelo fator 2 e a de u'₂ pelo fator 3

• Matriz de T em relação a base B' = $\{\mathbf{u'}_1, \mathbf{u'}_2\}$ de \mathbb{R}^2

$$\mathbf{u}_{1}' = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_{2}' = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad [T]_{B'} = \begin{bmatrix} T(\mathbf{u}_{1}')_{B'} \mid T(\mathbf{u}_{2}')_{B'} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

$$T(\mathbf{u}_1') = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 2\mathbf{u}_1' \quad \text{e} \quad T(\mathbf{u}_2') = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3\mathbf{u}_2'$$

- Matrizes simples de operadores lineares
 - O problema de encontrar uma base que produza a matriz mais simples possível de um operador linear T: V → V pode ser atacado encontrando primeiro uma matriz de T em relação a uma base qualquer (ex: canônica), e em seguida modificando a base de uma maneira que simplifique a matriz.

- Matrizes de transição (novo ponto de vista)
 - Se B = $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ e B'= $\{\mathbf{u}'_1, \mathbf{u}'_2, ..., \mathbf{u}'_n\}$ forem bases de um espaço vetorial V, então tem-se

$$P_{B\rightarrow B'}=\left[\left[\mathbf{u}_{1}\right]_{B'}\mid\left[\mathbf{u}_{2}\right]_{B'}\mid\cdots\mid\left[\mathbf{u}_{n}\right]_{B'}\right]$$

$$P_{B'\to B} = \left[\left[\mathbf{u}_1' \right]_B \mid \left[\mathbf{u}_2' \right]_B \mid \cdots \mid \left[\mathbf{u}_n' \right]_B \right]$$

em que as matrizes $P_{B \to B'}$ e $P_{B' \to B}$ são inversas uma da outra.

Assim, para um vetor v de V, tem-se

$$P_{B\to B'}\left[\mathbf{v}\right]_{B}=\left[\mathbf{v}\right]_{B'}$$

$$P_{B'\to B}\left[\mathbf{v}\right]_{B'}=\left[\mathbf{v}\right]_{B}$$

Podem ser vistos como operadores identidades

- Matrizes de transição (novo ponto de vista)
 - Teorema 1:
 - Se B e B' forem bases de um espaço vetorial V de dimensão finita e se I : V → V for o operador identidade de V, então

$$P_{B\to B'} = [I]_{B',B}$$
 e $P_{B'\to B} = [I]_{B,B'}$

- Demonstração
 - Suponha que B = $\{u_1, u_2, ..., u_n\}$ e B' = $\{u'_1, u'_2, ..., u'_n\}$ sejam bases de V.
 - Sendo I(v) = v para qualquer v, então

Isso vai servir para usar a ideia de composição

$$[I]_{B',B} = [[I(\mathbf{u}_1)]_{B'} | [I(\mathbf{u}_2)]_{B'} | \cdots | [I(\mathbf{u}_n)]_{B'}]$$

$$= [[\mathbf{u}_1]_{B'} | [\mathbf{u}_2]_{B'} | \cdots | [\mathbf{u}_n]_{B'}]$$

$$= P_{B \to B'}$$

- Efeito da mudança de bases nas matrizes de operadores lineares
 - Se B e B' forem duas bases de um espaço vetorial V de dimensão finita e T : V → V for um operador linear.
 - Qual é a relação, se houver alguma, entre as matrizes [T]_B e [T]_B?

- Efeito da mudança de bases nas matrizes de operadores lineares
 - Se B e B' forem duas bases de um espaço vetorial V de dimensão finita e T : V → V for um operador linear.

Os espaços

vetoriais envolvidos na composição são

o mesmo (V), mas as bases desses

espaços variam

- Qual é a relação, se houver alguma, entre as matrizes [T]_B e [T]_{B'}?
 - Considere a composição, onde se tem o operador na base B e se quer na base B'.

 $[T]_{B',B'} = [I \circ T \circ I]_{B',B'} = [I]_{B',B} [T]_{B,B} [I]_{B,B'}$

- Efeito da mudança de bases nas matrizes de operadores lineares
 - Se B e B' forem duas bases de um espaço vetorial V de dimensão finita e T : V → V for um operador linear.
 - Qual é a relação, se houver alguma, entre as matrizes [T]_B e [T]_{B'}?
 - Considere a composição, onde se tem o operador na base B e se quer na base B'.

$$[T]_{B',B'} = [I \circ T \circ I]_{B',B'} = [I]_{B',B} [T]_{B,B} [I]_{B,B'}$$

$$[T]_{B'} = [I]_{B',B} [T]_{B} [I]_{B,B'}$$
 Simplificando
$$[T]_{B'} = P_{B \rightarrow B'} [T]_{B} P_{B' \rightarrow B}$$

- Efeito da mudança de bases nas matrizes de operadores lineares
 - Teorema:
 - Sejam T : V → V um operador linear do espaço vetorial V de dimensão finita e B e B' bases de V. Então

$$[T]_{B'} = P^{-1}[T]_{B}P$$

sendo P =
$$P_{B' \to B}$$
 e $P^{-1} = P_{B \to B'}$

Transformação de semelhança

- Efeito da mudança de bases nas matrizes de operadores lineares
 - Teorema:
 - Sejam T : V → V um operador linear do espaço vetorial V de dimensão finita e B e B' bases de V. Então

$$[T]_{B'} = P^{-1}[T]_B P$$

sendo P = P_{B' \to B} e P-1 = P_{B \to B'}

Transformação de semelhança

- Advertência:
 - Os índices externos das matrizes de transição coincidem com o índice da matriz que fica ao meio

$$[T]_{B'} = P_{B \to B'} [T]_B P_{B' \to B}$$
Indices externos

- Efeito da mudança de bases nas matrizes de operadores lineares
 - Teorema
 - Duas matrizes A e B de tamanho n×n são semelhantes se, e só se, existem duas bases de Rn (uma para A e uma para B) relativas às quais as matrizes A e B representam o mesmo operador linear.
 - Além disso, se B = P-1AP, então P é a matriz de transição da base que dá a matriz B para a base que dá a matriz A.

- Efeito da mudança de bases nas matrizes de operadores lineares
 - Exercício: As matrizes representam o mesmo operador linear T : R² → R²

$$C = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} \quad \text{e} \quad D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

onde a base usada em C é a canônica e em D é

$$\mathbf{u}_1' = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2' = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

 Verifique se são semelhantes encontrando P tal que D = P-1CP

Do começo da aula

- Efeito da mudança de bases nas matrizes de operadores lineares
 - Exercício: As matrizes representam o mesmo operador linear T : R² → R²

$$C = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} \quad \text{e} \quad D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

Do começo da aula

onde a base usada em C é a canônica e em D é

$$\mathbf{u}_1' = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2' = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

 Verifique se são semelhantes encontrando P tal que D = P-1CP

$$\mathbf{u}_{1}' = \mathbf{e}_{1} + \mathbf{e}_{2}$$

$$\mathbf{u}_{1}' = \mathbf{e}_{1} + 2\mathbf{e}_{2}$$

$$P = P_{B' \to B} = \begin{bmatrix} \mathbf{u}_{1}' \end{bmatrix}_{B} \mid [\mathbf{u}_{2}']_{B} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

$$P^{-1} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$

- Efeito da mudança de bases nas matrizes de operadores lineares
 - Exercício: As matrizes representam o mesmo operador linear T : R² → R²

$$C = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} \quad \text{e} \quad D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

onde a base usada em C é a canônica e em D é

$$\mathbf{u}_1' = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2' = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

 Verifique se são semelhantes encontrando P tal que D = P-1CP

$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

$$D = P^{-1} \qquad C \qquad P$$

Do começo da aula

• Invariantes de semelhança

Propriedade	Descrição
Determinante	$A e P^{-1}AP$ têm o mesmo determinante.
Invertibilidade	A é invertível se, e só se, $P^{-1}AP$ é invertível.
Posto	$A e P^{-1}AP$ têm o mesmo posto.
Nulidade	$A e P^{-1}AP$ têm a mesma nulidade.
Traço	$A e P^{-1}AP$ têm o mesmo traço.
Polinômio característico	$A e P^{-1}AP$ têm o mesmo polinômio característico.
Autovalores	$A e P^{-1}AP$ têm os mesmos autovalores.
Dimensão de autoespaço	Se λ for um autovalor de A e, portanto, de $P^{-1}AP$, então o autoespaço de A associado a λ e o autoespaço de $P^{-1}AP$ associado a λ têm a mesma dimensão.

- Invariantes de semelhança
 - Segue que se B e B' forem bases de V, então cada propriedade invariante por semelhança de $[T]_B$ também é um invariante de semelhança de $[T]_{B'}$
 - Isso é, o determinante depende da transformação T e não da base utilizada
 - Se V for um espaço vetorial de dimensão finita, então o determinante do operador linear T é

$$\det(T) = \det([T]_{R})$$

em que B é uma base qualquer de V

- Invariantes de semelhança
 - Exercício: Qual o determinante do operador T, sabendo que [T]_B, é o mesmo operador definido para uma base B'?

$$[T] = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} \quad \text{e} \quad [T]_{B'} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

- Invariantes de semelhança
 - Exercício: Qual o determinante do operador T, sabendo que [T]_B, é o mesmo operador definido para uma base B'?

$$[T] = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} \quad \text{e} \quad [T]_{B'} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

 Como o determinante é uma uma propriedade invariante por semelhança, então:

$$\det[T] = \begin{vmatrix} 1 & 1 \\ -2 & 4 \end{vmatrix} = 6 \quad e \quad \det[T]_{B'} = \begin{vmatrix} 2 & 0 \\ 0 & 3 \end{vmatrix} = 6$$

 Exercício: Encontre os autovalores e bases dos autoespaços do operador linear T : P₂ → P₂ definido por

 $T(a + bx + cx^2) = -2c + (a + 2b + c)x + (a + 3c)x^2$

Como isso é possível?

 Exercício: Encontre os autovalores e bases dos autoespaços do operador linear T : P₂ → P₂ definido por

$$T(a + bx + cx^{2}) = -2c + (a + 2b + c)x + (a + 3c)x^{2}$$

Como isso é possível?

Descubra uma matriz relativa ao operador na base canônica

Descubra os autovalores e autovetores.

 Exercício: Encontre os autovalores e bases dos autoespaços do operador linear T : $P_2 \rightarrow P_2$ definido por

$$T(a + bx + cx^2) = -2c + (a + 2b + c)x + (a + 3c)x^2$$

 A matriz do operador relativo a base canônica $B=\{1, x, x^2\} \acute{e}$

$$[T]_B = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

- Auto valores: $\lambda=2$ (multiplicidade 2), $\lambda=1$
- Bases do autoespaços

relação a base?

Quais esses vetores em lação a base?
$$\mathbf{u}_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \quad \mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \mathbf{u}_3 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

Vetores de coordenadas

 Exercício: Encontre os autovalores e bases dos autoespaços do operador linear T : P₂ → P₂ definido por

$$T(a + bx^{2} + cx^{2}) = -2c + (a + 2b + c)x + (a + 3c)x^{2}$$

• Rescrevendo \mathbf{u}_1 , \mathbf{u}_2 e \mathbf{u}_3 , a partir da base B $\mathbf{p}_1 = -1 + x^2$, $\mathbf{p}_2 = x$, $\mathbf{p}_3 = -2 + x + x^2$

• O autoespaço de T associado a λ = 2 tem a base

$$\{\mathbf{p}_1, \mathbf{p}_2\} = \{-1 + x^2, x\}$$

e o associado a $\lambda = 1$ tem a base

$$\{\mathbf{p}_3\} = \{-2 + x + x^2\}$$

 Exercício: Encontre os autovalores e bases dos autoespaços do operador linear T : P₂ → P₂ definido por

$$T(a + bx^{2} + cx^{2}) = -2c + (a + 2b + c)x + (a + 3c)x^{2}$$

• Rescrevendo \mathbf{u}_1 , \mathbf{u}_2 e \mathbf{u}_3 , a partir da base B $\mathbf{p}_1 = -1 + x^2$, $\mathbf{p}_2 = x$, $\mathbf{p}_3 = -2 + x + x^2$

• O autoespaço de T associado a λ = 2 tem a base

$$\{\mathbf{p}_1, \mathbf{p}_2\} = \{-1 + x^2, x\}$$

e o associado a $\lambda = 1$ tem a base

$$\{\mathbf{p}_3\} = \{-2 + x + x^2\}$$

Verificando

$$T(\mathbf{p}_1) = 2\mathbf{p}_1$$
, $T(\mathbf{p}_2) = 2\mathbf{p}_2$ e $T(\mathbf{p}_3) = \mathbf{p}_3$

Resumo

• Matrizes de transição

$$\begin{split} P_{B \to B'} &= \begin{bmatrix} [\mathbf{u}_1]_{B'} \mid [\mathbf{u}_2]_{B'} \mid \cdots \mid [\mathbf{u}_n]_{B'} \end{bmatrix} \\ P_{B' \to B} &= \begin{bmatrix} [\mathbf{u}_1']_{B} \mid [\mathbf{u}_2']_{B} \mid \cdots \mid [\mathbf{u}_n']_{B} \end{bmatrix} \end{split} \qquad \begin{aligned} &= \begin{bmatrix} [I(\mathbf{u}_1)]_{B'} \mid [I(\mathbf{u}_2)]_{B'} \mid \cdots \mid [I(\mathbf{u}_n)]_{B'} \end{bmatrix} \\ &= \begin{bmatrix} [\mathbf{u}_1]_{B'} \mid [\mathbf{u}_2]_{B'} \mid \cdots \mid [\mathbf{u}_n]_{B'} \end{bmatrix} \\ &= P_{B \to B'} \qquad \text{[Fórmula (3) acima]} \end{aligned}$$

Efeito da mudança de bases nas matrizes de operadores lineares

$$[T]_{B'} = P^{-1}[T]_{B}P$$

- Invariantes de semelhança
 - Os invariantes podem ser calculados de forma mais simples

Resumo

- Exercícios de fixação:
 - Anton seção 8.5
 - 1-2
 - 4
 - 8
 - 14

Resumo

- Próxima aula:
 - Revisão

Bibliografia

Bibliografia

- Bibliografia básica:
 - ANTON, Howard; RORRES, Chris. Álgebra Linear com Aplicações. 10 ed. Porto Alegre: Bookman, 2012.
 - Seção 8.5
 - DE ARAUJO, Thelmo. Álgebra Linear: Teoria e Aplicações. Rio de Janeiro: SBM, 2014.
 - Capítulo 6