

Adversarial Dictionary Learning

Jordan Frecon, Lucas Anquetil, Gilles Gasso, Stéphane Canu

Normandie Univ, INSA Rouen, LITIS, Normandie

Introduction and Proposed Framework

How to craft adversarial examples?

• Specific: for a given x_i $x_i' = x_i + \varepsilon(x_i)$ • FGSM [GSS15, KGB17] $\varepsilon(x_i) = \delta \operatorname{sign}(\nabla_{x_i} H(f(x_i; \theta), y_i)),$ • DeepFool [MFF16] $\varepsilon(x_i) = \operatorname{argmin}_{\varepsilon} \|\varepsilon\|, \text{ s.t. } \operatorname{argmax}_k f(x_i + \varepsilon; \theta) \neq \operatorname{argmax}_k f(x_i; \theta)$

• Universal [MDFFF17]: for any example $\varepsilon(x_i) = \operatorname*{argmax}_{\varepsilon} \sum_{i=1}^{N} H(f(x_j + \varepsilon; \theta), y_j) \quad \text{s.t.} \quad \|\varepsilon\|_{\rho} \le$

• Use a dictionary D: $\varepsilon(x_i) = Dv_i$

Adversarial dictionary learning: $\varepsilon(x_i) = Dv_i$ $\{x_i\}_{i=1}^{N} \quad \{\varepsilon_i\}_{i=1}^{N}$

$$\underset{[D,v]}{\text{minimize}} \ \sum_{i=1}^{N} \underbrace{\ell_i(x_i + Dv_i)}_{\text{adversary}} + \underbrace{\lambda_1 \|v_i\|_1}_{\text{sparse}} + \underbrace{\lambda_2 \|Dv_i\|_2^2}_{\varepsilon_i \text{ small}}$$

D universal, $v_i \in \mathbb{R}^M$ specific $(M \ll N)$

Algorithmic Solution

Full-batch version: ADiL

Smooth supervised fitting term

$$F(D, V) = \sum_{i=1}^{N} \lambda_2 ||Dv_i||^2 + H(f(x_i + Dv_i; \theta), t_i)$$

Non-smooth regularization

$$\Omega(D, V) = \imath_{\mathcal{C}}(D) + \sum_{i=1}^{N} \lambda_{1} ||v_{i}||_{1}, \quad \mathcal{C} = \{D \mid \forall m, ||d_{m}||_{2} \leq 1 \}$$

A sparse representation for a better dictionary

The proximal step

$$(D^{(k+1/2)}, V^{(k+1/2)}) = \underset{\substack{D \in \mathbb{R}^{P \times M} \\ V \in \mathbb{R}^{M \times N}}}{\operatorname{argmin}} F(D, V) + \Omega(D, V),$$

The proximal step

$$\begin{pmatrix} D^{(k+1/2)} \\ V^{(k+1/2)} \end{pmatrix} = \operatorname{prox}_{\gamma_k \Omega} \left(\begin{pmatrix} D^{(k)} \\ V^{(k)} \end{pmatrix} - \gamma_k \nabla F(D^{(k)}, V^{(k)}) \right),$$

 Ω being separable, it yields that

$$\begin{pmatrix} D^{(k+1/2)} \\ V^{(k+1/2)} \end{pmatrix} = \begin{pmatrix} \operatorname{Proj}_{\mathcal{C}} & \left(D^{(k)} - \gamma_k \nabla_D F(D^{(k)}, V^{(k)}) \right) \\ \operatorname{Soft}_{\gamma_k \lambda_1} \left(V^{(k)} - \gamma_k \nabla_V F(D^{(k)}, V^{(k)}) \right) \end{pmatrix},$$

Convergence

Theorem (Convergence [BLP+17])

Let $\{D^{(k)}, V^{(k)}\}_{k \in \mathbb{N}}$ be the sequence of ADiL Algorithm 1. Then, • each limit point of $\{D^{(k)}, V^{(k)}\}_{k \in \mathbb{N}}$ is a stationary point of ADiL

• $\{\mathcal{L}(D^{(k)}, V^{(k)})\}_{k \in \mathbb{N}}$ converges to the limit point objective value

In addition, if L satisfies the Kurdyka-Łojasiewicz property at any point, then the sequence converges to a stationary point of ADiL

Stochastic version: SADiL

Two ingredients: an alternating scheme

$$\begin{cases} V^{(k+1)} &= \operatorname{Soft}_{\gamma_k \lambda_1} \left(V^{(k)} - \gamma_k \widetilde{\nabla} F(D^{(k)}, V^{(k)}) \right), \\ D^{(k+1)} &= \operatorname{Proj}_{\mathcal{C}} \left(D^{(k)} - \gamma_k \widetilde{\nabla} F(D^{(k)}, V^{(k+1)}) \right), \end{cases}$$

 ∇F : random estimate of the gradient on a mini-batch $\mathcal{B}_k \sim \{1, \dots, N\}$

$$\widetilde{\nabla} F(D, V) = \frac{N}{|\mathcal{B}_k|} \sum_{i \in \mathcal{B}_k} \nabla F_i(D, V).$$

For $|\mathcal{B}_k| = N$, we recover PALM

Attack

Generation of adversary examples

Design of adversarial perturbations to unseen examples.

- Use ADiL with fixed D to find $v^{(K)}$
- ② Project onto the input manifold $\mathcal{X} \subseteq \mathbb{R}^P$ $x' = \operatorname{Proj}_{\mathcal{X}} \left(x + Dv^{(K)} \right)$

Two examples of ADiL attacks for LeNet on CIFAR-10

Defense mechanism

Problem (Defense mechanism) $\min_{\theta \in \Theta} \mathbb{E}_{\{x,y\} \sim \mathcal{D} \cup \mathcal{A}} H(f(x;\theta),y) \;, \qquad (1)$ where $\mathcal{D} \cup \mathcal{A}$ is the augmented training set Two manners of constructing the adversarial set with correct labeling. $(Adversarial \, training) \, \mathcal{A} = \{x_i + \hat{D}\hat{v}_i, y_i\}_{i=1}^N \;,$ $(Noise \, injection) \, \mathcal{A} = \{x_i + \hat{D}z_i, y_i\}_{i=1}^N \; \text{with } z_i \sim \text{Laplace}(0, b) \;,$

where b is estimated by fitting a Laplacian distribution to the \hat{v}_i 's.

Defense

Defense mechanism for LeNet on CIFAR-10

M _{attacker}	2 atoms	5 atoms	10 atoms	15 atoms	20 atoms
No Defense	25.78%	56.25%	60.15%	46.09%	57.81%
With Defense	15.62%	30.46%	53.90%	44.53%	56.25%

Numerical Results

Dictionary of ADiL attacks for LeNet on CIFAR-10

Experimental results: LeNet classifier on CIFAR-10

rMSE: $(1/|\mathcal{T}_2|) \sum_{i=1}^{|\mathcal{T}_2|} ||Dv_i||^2 / ||x_i||^2$

Experimental results on ResNet18 classifier

		PGD	DeepFool	C&W	ADIL	UAP
CIFAR-10 -	Fool. Rate	54.69%	74.22%	74.22%	90.63%	77.34%
	rMSE	0.0091	0.0056	0.032	0.071	0.747
ImageNet -	Fool. Rate	22.66%	17.19%	3.91%	38.28%	100%
	rMSE	0.00054	0.00022	0.00025	0.0458	1.52

Conclusion

- A new way to generate adversarial examples
- with a universal component D
 - interpretable?
 transferable?
- efficient way to compute specific components v_i
- improve the defence mechanism to train robust NN

References

50 atoms

rMSF

[BLP+17]

[GSS15]