4.9.3(c)

Wir betrachten die Abbildung $\psi: L(V,W) \to L(W^*,V^*)$, die durch $\psi(f) = f^T$ definiert ist. Der Fall $V = \{o\}$ ist leicht $(L(W^*,V^*) = ?)$, also betrachaten wir gleich den Fall $\dim(W) < \infty$. Ist ψ dann surjektiv?

- Sei $\dim(W) < \infty$. Zu zeigen ist, dass ψ surjektiv ist.
- Zunächst geben wir den Objekten, die wir schon haben, Namen: Sei $n := \dim(W)$, und sei (w_1, \ldots, w_n) Basis von w, und sei (w_1^*, \ldots, w_n^*) die zugehörige duale Basis. Sei weiters $B = (b_i : i \in I)$ eine Basis für V.
- Sei nun $\ell: W^* \to V^*$ eine beliebige lineare Abbildung von W^* nach V^* . Gesucht ist $f \in L(V, W)$ mit $f^T = \ell$.
- Um die Abbildung ℓ zu verstehen, müssen wir die Werte $\ell(w_k^*)$ verstehen; diese Werte sind selbst Linearformen auf V, also daduch festgelegt, wohin sie die Basisvektoren b_i abbilden. Dies legt es nahe, diese Familie $(y_{k,i})_{1 \leq k \leq n, i \in I}$ von Skalaren zu definieren:

$$\forall k \in \{1, \dots, n\} \ \forall i \in I : y_{k,i} := \langle \ell(w_k^*), b_i \rangle.$$

- Es genügt, eine lineare Abbildung f zu finden, die $\forall k \in \{1, ..., n\} : f^T(w_k^*) = \ell(w_k^*)$ erfüllt. (Warum?) (Andererseits ist es nicht nur hinreichend sondern auch notwendig.)
- Mit anderen Worten: (warum ist das äquivalent?) Es genügt, eine Abbildung $f \in L(V, W)$ zu finden, die die Aussage

$$\forall v \in V \ \forall k \in \{1, \dots, n\} : \langle f^T(w_k^*), v \rangle = \langle \ell(w_k^*), v \rangle$$

erfüllt, oder äquivalent

$$\forall v \in V \ \forall k \in \{1, \dots, n\} : \langle w_k^*, f(v) \rangle = \langle \ell(w_k^*), v \rangle.$$

- Statt "für alle $v \in V$ " genügt es, die obige Aussage für alle $v \in B$ zu verlangen.
- Wir suchen also eine lineare Abbildung $f: V \to W$, die

(*)
$$\forall k < n \ \forall i \in I : \langle w_k^*, f(b_i) \rangle = y_{k,i}$$

- Bis jetzt haben wir nur eine notwendige und hinreichende Bedingung umgeformt. Die letztgenannte Formulierung legt nun nahe, für jedes i den Vektor $c_i := \sum_{j=1}^n y_{j,i} w_j \in W$ zu betrachten.
- Es gibt nun (genau) eine Abbildung $f \in L(V, W)$, die

$$\forall i \in I : f(b_i) = c_i$$

erfüllt ... (Warum?)

• ... und diese Abbildung erfüllt (*). (Warum? Nachrechnen.)