Thumbs Up? Sentiment Classification using Machine Learning Techniques

Pang, Lee, Vaithyanathan - EMNLP 2002

Slides by: Dor Cohen, Itai Gat

IE @ Technion

October 19, 2018

Agenda

- Introduction
 - Topic classification
 - Sentiment analysis
- 2 Problem
 - Problem definition
 - Data
 - Human baseline
- Methods
 - Bag of words
 - Naive bayes
 - Maximum entropy
 - SVM
- Results
 - Results
- Reproduce results
- 6 Conclusions

Introduction

Topic classification

- Recent (2002) works sort documents according to their subject
 - e.g., sports vs. politics

Topic classification

- Recent (2002) works sort documents according to their subject
 - e.g., sports vs. politics
- Yet crucial part of online posted articles is their sentiment
 - provide useful insights for readers automatically
 - e.g., product review is negative or positive

- This work: apply topic classification techniques on sentiment analysis
 - Q: What are our expected challenges?

- This work: apply topic classification techniques on sentiment analysis
 - Q: What are our expected challenges?
 - ► A: Topics are identifiable by key words alone, while sentiment requires more **understanding**

- This work: apply topic classification techniques on sentiment analysis
 - Q: What are our expected challenges?
 - ► A: Topics are identifiable by key words alone, while sentiment requires more **understanding**
- e.g., "How could anyone sit through this movie?"
 - Can you mark any negative word?

Motivation

Should we watch this movie?

Motivation

- Should we watch this movie?
- Ideally: read each review and decide

This movie is perfect, it made me cry from the beginning to the end, it deserves several Oscar's nominations. Lady Gaga is a true astist.

Motivation

- Should we watch this movie?
- Ideally: read each review and decide

Maybe only the sound on this film is up to par...everything else is drown in mediocrity...

Problem

• Find mapping from text to binary label

- Find mapping from text to binary label
 - Supervised learning

- Find mapping from text to binary label
 - Supervised learning
- For *m* numeric features we define:

- Find mapping from text to binary label
 - Supervised learning
- For *m* numeric features we define:

Definition (Binary classifier)

$$f: X o y$$
 where $X \in \mathbb{R}^m$, $y \in \{0,1\}$

- Find mapping from text to binary label
 - Supervised learning
- For *m* numeric features we define:

Definition (Binary classifier)

$$f: X o y$$
 where $X \in \mathbb{R}^m$, $y \in \{0,1\}$

Evaluate by loss function

- Find mapping from text to binary label
 - Supervised learning
- For *m* numeric features we define:

Definition (Binary classifier)

$$f: X o y$$
 where $X \in \mathbb{R}^m$, $y \in \{0,1\}$

- Evaluate by loss function
- e.g., Zero-one loss: $L(x, y, f_w) = \mathbf{1}\{f_w(x) \neq y\}$
 - w denotes learned parameters

Data: IMDB Movie Reviews

- Lucky for us: user rating provides supervised learning
- Converted into 3 categories:
 - Positive, negative, (neutral not used)
- Avoid bias issues:
 - 20 reviews per author per sentiment
 - ▶ 752 negative vs 1301 positive
 - total of 144 reviewers

• In contrast to topics, detecting sentiment is easier for us (why?)

- In contrast to topics, detecting sentiment is easier for us (why?)
 - ▶ People tend to express strong feelings, topics can be related.

- In contrast to topics, detecting sentiment is easier for us (why?)
 - ▶ People tend to express strong feelings, topics can be related.
- Hypothesis: certain words indicate on sentiment type

- In contrast to topics, detecting sentiment is easier for us (why?)
 - ▶ People tend to express strong feelings, topics can be related.
- Hypothesis: certain words indicate on sentiment type
- Test: count positive vs. negative words

- In contrast to topics, detecting sentiment is easier for us (why?)
 - ▶ People tend to express strong feelings, topics can be related.
- Hypothesis: certain words indicate on sentiment type
- Test: count positive vs. negative words

Human	Proposed words	Accuracy	Ties ¹
1	positive (5): dazzling, brilliant negative (5): suck, terrible	58%	75%
2	positive (11): gripping, spectacular negative (6): cliched, boring	64%	39%

Table: Baseline results for human word lists, data is balanced (700 vs. 700)

¹Documents percentage where sentiments rated equally

Should we worry about high rate of ties?

• Proposed list is relatively short (usually effect is 0 vs. 0)

Should we worry about high rate of ties?

- Proposed list is relatively short (usually effect is 0 vs. 0)
 - Not necessarily the reason for low accuracy!

Should we worry about high rate of ties?

- Proposed list is relatively short (usually effect is 0 vs. 0)
 - ▶ Not necessarily the reason for low accuracy!
- Authors propose their list
 - Backed up with statistics

Should we worry about high rate of ties?

- Proposed list is relatively short (usually effect is 0 vs. 0)
 - ▶ Not necessarily the reason for low accuracy!
- Authors propose their list
 - Backed up with statistics

Human	Proposed words	Accuracy	Ties
3+Stats	positive (7): love, wonderful negative (7): bad, worst, '?', '!',	69%	16%

Table: Results where words (total 14) were chosen based on data statistics

(2018) Data analysis

We reproduced the analysis, following are example estimates

Note words occurrences were binarized

Methods

Framework details

Theorem (1)

Let $\{f_1, ... f_m\}$ denote set of m features that can appear in document.

Framework details

Theorem (1)

Let $\{f_1, ... f_m\}$ denote set of m features that can appear in document.

• d: "Audio quality rocks"

Framework details

Theorem (1)

Let $\{f_1, ... f_m\}$ denote set of m features that can appear in document.

- d: "Audio quality rocks"
- Features:
 - Unigram: {'audio', 'rocks',...}
 - $\blacktriangleright \ \, \mathsf{Bigram} \colon \, \big\{ \text{'audio quality',...} \, \big\}$
 - N-gram !

Framework details

Theorem (1)

Let $\{f_1, ... f_m\}$ denote set of m features that can appear in document.

- d: "Audio quality rocks"
- Features:
 - ▶ Unigram: {'audio', 'rocks',...}
 - ▶ Bigram: {'audio quality',...}
 - N-gram !

Theorem (2)

Let $n_i(d)$ be the number of times f_i occurs in document d.

Framework details

Theorem (1)

Let $\{f_1, ... f_m\}$ denote set of m features that can appear in document.

- d: "Audio quality rocks"
- Features:
 - Unigram: {'audio', 'rocks',...}
 - ▶ Bigram: {'audio quality',...}
 - N-gram !

Theorem (2)

Let $n_i(d)$ be the number of times f_i occurs in document d.

Definition (BOW)

Then each document d is represented by $d^{bow} := (n_1(d), ..., n_m(d))$.

Example

• d₁: "Audio rocks"

• d₂: "Act boring"

Bag of words

Example

• d₁: "Audio rocks"

• d₂: "Act boring"

	act	audio	boring	rocks
mapping	0	1	2	3
d1	0	1	0	1
d2	1	0	1	0

Bag of words

Example

• d₁: "Audio rocks"

• d₂: "Act boring"

	act	audio	boring	rocks
mapping	0	1	2	3
d1	0	1	0	1
d2	1	0	1	0

• d_3 : "Boring effects", $d_3^{bow} = ?$

Bag of words

Example

- d₁: "Audio rocks"
- d₂: "Act boring"

	act	audio	boring	rocks
mapping	0	1	2	3
d1	0	1	0	1
d2	1	0	1	0

- d_3 : "Boring effects", $d_3^{bow} = ?$
- $d_3^{bow} = (0,0,1,0)$

• Assign class which maximizes: $c^* = argmax_c P(c|d)$

- Assign class which maximizes: $c^* = argmax_c P(c|d)$
- Recap:

$$P(c|d) = \frac{P(c)P(d|c)}{P(d)}$$

- Assign class which maximizes: $c^* = argmax_c P(c|d)$
- Recap:

Definition (Bayes theorem)

$$P(c|d) = \frac{P(c)P(d|c)}{P(d)}$$

• To estimate P(d|c) we **naively** assume f_i 's are independent.

- Assign class which maximizes: $c^* = argmax_c P(c|d)$
- Recap:

$$P(c|d) = \frac{P(c)P(d|c)}{P(d)}$$

- To estimate P(d|c) we **naively** assume f_i 's are independent.
 - Hence $\widehat{P(d|c)} = \prod_{i=1}^m P(f_i|c)^{n_i(d)}$

- Assign class which maximizes: $c^* = argmax_c P(c|d)$
- Recap:

$$P(c|d) = \frac{P(c)P(d|c)}{P(d)}$$

- To estimate P(d|c) we **naively** assume f_i 's are independent.
 - Hence $\widehat{P(d|c)} = \prod_{i=1}^m P(f_i|c)^{n_i(d)}$
- Q: Any numeric issues you notice?

- Assign class which maximizes: $c^* = argmax_c P(c|d)$
- Recap:

$$P(c|d) = \frac{P(c)P(d|c)}{P(d)}$$

- To estimate P(d|c) we **naively** assume f_i 's are independent.
 - Hence $\widehat{P(d|c)} = \prod_{i=1}^m P(f_i|c)^{n_i(d)}$
- Q: Any numeric issues you notice?
- A₁: Estimates could be zero

- Assign class which maximizes: $c^* = argmax_c P(c|d)$
- Recap:

$$P(c|d) = \frac{P(c)P(d|c)}{P(d)}$$

- To estimate P(d|c) we **naively** assume f_i 's are independent.
 - Hence $\widehat{P(d|c)} = \prod_{i=1}^m P(f_i|c)^{n_i(d)}$
- Q: Any numeric issues you notice?
- A₁: Estimates could be zero
- A2: Short vs. long documents

	act	audio	boring	rocks
mapping	0	1	2	3
positive	1	3	1	3
negative	3	1	3	1

Assume the following Bow model with 4 documents for each class:

	act	audio	boring	rocks
mapping	0	1	2	3
positive	1	3	1	3
negative	3	1	3	1

• $d_3 =$ "Boring effects" , $d_3^{bow} = (0,0,1,0)$

	act	audio	boring	rocks
mapping	0	1	2	3
positive	1	3	1	3
negative	3	1	3	1

- $d_3 =$ "Boring effects", $d_3^{bow} = (0,0,1,0)$
- Recall $\widehat{P(d|c)} = \prod_{i=1}^m P(f_i|c)^{n_i(d)}$

	act	audio	boring	rocks
mapping	0	1	2	3
positive	1	3	1	3
negative	3	1	3	1

- $d_3 =$ "Boring effects", $d_3^{bow} = (0,0,1,0)$
- Recall $\widehat{P(d|c)} = \prod_{i=1}^m P(f_i|c)^{n_i(d)}$
- $P(d|pos) = \frac{1}{4}^0 * \frac{1}{4}^0 * \frac{1}{4}^1 * \frac{1}{4}^0 = \frac{1}{4}$

	act	audio borin		rocks
mapping	0	1	2	3
positive	1	3	1	3
negative	3	1	3	1

- ullet $d_3=$ "Boring effects" , $d_3^{bow}=(0,0,1,0)$
- Recall $\widehat{P(d|c)} = \prod_{i=1}^m P(f_i|c)^{n_i(d)}$
- $P(d|pos) = \frac{1}{4}^{0} * \frac{1}{4}^{0} * \frac{1}{4}^{1} * \frac{1}{4}^{0} = \frac{1}{4}$
- $P(d|neg) = \frac{1}{4}^0 * \frac{1}{4}^0 * \frac{3}{4}^1 * \frac{1}{4}^0 = \frac{3}{4}$

Logistic regression vs. SVM

Parametric view

Definition (Score function)

$$f(x_i, W) = Wx_i + b$$

Definition (SVM loss)

$$L_i = \sum_{j \neq i} (0, s_j - s_{yi} + \delta)$$

Definition (Softmax loss)

$$L_i = -\log(\frac{e_{yi}^f}{\sum_j e_j^f})$$

Definition (Gradient descent)

$$w = w - \alpha * \frac{\partial L(X,w)}{\partial w}$$
 , Update till convergence

aka logistic regression

$$P(c|d) = \frac{1}{Z(d)} exp(\sum_{i} \lambda_{i,c} F_{i,c}(d,c))$$

aka logistic regression

Definition (MaxEnt estimator)

$$P(c|d) = \frac{1}{Z(d)} exp(\sum_{i} \lambda_{i,c} F_{i,c}(d,c))$$

• Z(d) - normalization function

aka logistic regression

$$P(c|d) = \frac{1}{Z(d)} exp(\sum_{i} \lambda_{i,c} F_{i,c}(d,c))$$

- Z(d) normalization function
- $F_{i,c}$ is a feature/class function

aka logistic regression

$$P(c|d) = \frac{1}{Z(d)} exp(\sum_{i} \lambda_{i,c} F_{i,c}(d,c))$$

- Z(d) normalization function
- $F_{i,c}$ is a feature/class function
 - ▶ Defined: $F_{i,c}(d,c') = 1$ if feature i appears on document d and its estimated class is c, o.w. $F_{i,c}(d,c) = 0$

aka logistic regression

$$P(c|d) = \frac{1}{Z(d)} exp(\sum_{i} \lambda_{i,c} F_{i,c}(d,c))$$

- Z(d) normalization function
- $F_{i,c}$ is a feature/class function
 - ▶ Defined: $F_{i,c}(d,c') = 1$ if feature i appears on document d and its estimated class is c, o.w. $F_{i,c}(d,c) = 0$
- $\lambda_{i,c}$ feature-weight parameters
 - ▶ large values imply f_i is a strong indicator for class c

aka logistic regression

Definition (MaxEnt estimator)

$$P(c|d) = \frac{1}{Z(d)} exp(\sum_{i} \lambda_{i,c} F_{i,c}(d,c))$$

- Z(d) normalization function
- $F_{i,c}$ is a feature/class function
 - ▶ Defined: $F_{i,c}(d,c') = 1$ if feature *i* appears on document *d* and its estimated class is c, o.w. $F_{i,c}(d,c) = 0$
- $\lambda_{i,c}$ feature-weight parameters
 - ightharpoonup large values imply f_i is a strong indicator for class c

Fit procedure

- Training data used to estimate distribution F
- ullet λ 's are set to maximize entropy of induced distribution

Support vector machines

• Goal: Find hyperplane w which separates classes with margin large as possible

Support vector machines

- Goal: Find hyperplane w which separates classes with margin large as possible
- In this setting we define w as:

Definition (SVM hyperplane)

Let $c_j \in \{1, -1\}$ be the class of document d_j then:

$$w := \sum_{j} \alpha_{j} c_{j} \overrightarrow{d_{j}}, \ \alpha_{j} \geq 0$$

• α_i are obtained by solving dual optimization problem.

Support vector machines

- Goal: Find hyperplane w which separates classes with margin large as possible
- In this setting we define w as:

Definition (SVM hyperplane)

Let $c_j \in \{1, -1\}$ be the class of document d_j then:

$$w := \sum_{j} \alpha_{j} c_{j} \overrightarrow{d_{j}}, \ \alpha_{j} \geq 0$$

ullet α_j are obtained by solving dual optimization problem.

Alternative fitting procedure:

Definition (Gradient descent)

$$w = w - \alpha * \frac{\partial L(X,w)}{\partial w}$$
 , Update till convergence

Results

ID	Features	count	freq/pres	NB	ME	SVM
1	unigrams	16165	freq	78.7%	NA	72.8%
2	unigrams	16165	pres	81.0%	80.4%	82.9%

ID	Features	count	freq/pres	NB	ME	SVM
1	unigrams	16165	freq	78.7%	NA	72.8%
2	unigrams	16165	pres	81.0%	80.4%	82.9%

Table: 3-fold average accuracies, unigrams appear at least 4 times on corpus.

ullet Recall human baseline ranges between 50%-69%

ID	Features	count	freq/pres	NB	ME	SVM
1	unigrams	16165	freq	78.7%	NA	72.8%
2	unigrams	16165	pres	81.0%	80.4%	82.9%

- ullet Recall human baseline ranges between 50%-69%
- \bullet Topic-based classification reached 90%+ accuracy

ID	Features	count	freq/pres	NB	ME	SVM
1	unigrams	16165		78.7%		72.8%
2	unigrams	16165	pres	81.0%	80.4%	82.9%

- ullet Recall human baseline ranges between 50%-69%
- Topic-based classification reached 90%+ accuracy
 - Settings were multi-class
 - We conclude that sentiment analysis is harder

ID	Features	count	freq/pres	NB	ME	SVM
1	unigrams	16165	freq	78.7%	NA	72.8%
2	unigrams	16165	pres	81.0%	80.4%	82.9%

- ullet Recall human baseline ranges between 50%-69%
- Topic-based classification reached 90%+ accuracy
 - Settings were multi-class
 - We conclude that sentiment analysis is harder
- The frequency vs. presence of features seems to make the difference

ID	Features	count	freq/pres	NB	ME	SVM
1	unigrams	16165		78.7%		72.8%
2	unigrams	16165	pres	81.0%	80.4%	82.9%

- ullet Recall human baseline ranges between 50%-69%
- Topic-based classification reached 90%+ accuracy
 - Settings were multi-class
 - ▶ We conclude that sentiment analysis is harder
- The frequency vs. presence of features seems to make the difference
 - ► Hence from this point authors use presence (binarized occurrences)

ID	Features	count	NB	ME	SVM
2	unigrams	16165	81.0%	80.4%	82.9%
3	uni+bigrams		80.6%		82.7%
4	bigrams	16165	77.3%	77.4%	77.1%

ID	Features	count	NB	ME	SVM
2	unigrams	16165	81.0%	80.4%	82.9%
3	uni+bigrams	32330	80.6%	80.8	82.7%
4	bigrams	16165	77.3%	77.4%	77.1%
5	unigrams+POS	16695	81.5%	80.4%	81.9%

ID	Features	count	NB	ME	SVM
2	unigrams	16165	81.0%	80.4%	82.9%
3	uni+bigrams	32330	80.6%	80.8	82.7%
4	bigrams	16165	77.3%	77.4%	77.1%
5	unigrams+POS	16695	81.5%	80.4%	81.9%
6	adjectives	2633	77.0%	77.7%	75.1%

ID	Features	count	NB	ME	SVM
2	unigrams	16165	81.0%	80.4%	82.9%
3	uni+bigrams	32330	80.6%	80.8	82.7%
4	bigrams	16165	77.3%	77.4%	77.1%
5	unigrams+POS	16695	81.5%	80.4%	81.9%
6	adjectives	2633	77.0%	77.7%	75.1%
7	top 2633 unigrams	2633	80.3%	81.0%	81.4%

Using feature presence

ID	Features	count	NB	ME	SVM
2	unigrams	16165	81.0%	80.4%	82.9%
3	uni+bigrams	32330	80.6%	80.8	82.7%
4	bigrams	16165	77.3%	77.4%	77.1%
5	unigrams+POS	16695	81.5%	80.4%	81.9%
6	adjectives	2633	77.0%	77.7%	75.1%
7	top 2633 unigrams	2633	80.3%	81.0%	81.4%
8	unigram+position	22430	81.0%	80.1%	81.6%

Table: 3-fold average accuracies, bigrams appear at least 7 times on corpus.

Using feature presence

ID	Features	count	NB	ME	SVM
2	unigrams	16165	81.0%	80.4%	82.9%
3	uni+bigrams	32330	80.6%	80.8	82.7%
4	bigrams	16165	77.3%	77.4%	77.1%
5	unigrams+POS	16695	81.5%	80.4%	81.9%
6	adjectives	2633	77.0%	77.7%	75.1%
7	top 2633 unigrams	2633	80.3%	81.0%	81.4%
8	unigram+position	22430	81.0%	80.1%	81.6%

Table: 3-fold average accuracies, bigrams appear at least 7 times on corpus.

Adding bigrams doesn't improve results; Bigrams alone is worse

Using feature presence

ID	Features	count	NB	ME	SVM
2	unigrams	16165	81.0%	80.4%	82.9%
3	uni+bigrams	32330	80.6%	80.8	82.7%
4	bigrams	16165	77.3%	77.4%	77.1%
5	unigrams+POS	16695	81.5%	80.4%	81.9%
6	adjectives	2633	77.0%	77.7%	75.1%
7	top 2633 unigrams	2633	80.3%	81.0%	81.4%
8	unigram+position	22430	81.0%	80.1%	81.6%

Table: 3-fold average accuracies, bigrams appear at least 7 times on corpus.

- Adding bigrams doesn't improve results; Bigrams alone is worse
- Part-of-speech: "I love this movie" vs. "This is a love story"

Using feature presence

ID	Features	count	NB	ME	SVM
2	unigrams	16165	81.0%	80.4%	82.9%
3	uni+bigrams	32330	80.6%	80.8	82.7%
4	bigrams	16165	77.3%	77.4%	77.1%
5	unigrams+POS	16695	81.5%	80.4%	81.9%
6	adjectives	2633	77.0%	77.7%	75.1%
7	top 2633 unigrams	2633	80.3%	81.0%	81.4%
8	unigram+position	22430	81.0%	80.1%	81.6%

Table: 3-fold average accuracies, bigrams appear at least 7 times on corpus.

- Adding bigrams doesn't improve results; Bigrams alone is worse
- Part-of-speech: "I love this movie" vs. "This is a love story"
- Position based on dividing text into quarters.

Reproduce results

Reproduce results (2018)

 We have tried to reproduce the experiment for the best setting reported

Features	count	NB	ME	SVM	MLP
unigrams	16165	81.0%	80.4%	82.9%	NA

Reproduce results (2018)

 We have tried to reproduce the experiment for the best setting reported

Features	count	NB	ME	SVM	MLP
unigrams unigrams	16165	81.0%	80.4%	82.9%	NA
unigrams	16165	77.48%	81.52%	80.66%	82.75%

Table: Original vs. our results

Reproduce results (2018)

 We have tried to reproduce the experiment for the best setting reported

Features	count	NB	ME	SVM	MLP
unigrams unigrams	16165	81.0%	80.4%	82.9%	NA
unigrams	16165	77.48%	81.52%	80.66%	82.75%

Table: Original vs. our results

- MLP is 2-layer neural network with 100 Relu neurons
- No tuning was used (sklearn 0.19.2 default parameters)
 - Plus not all described processing steps applied
- Notebook is available here

Classifier comparison (2018)

• Let's observe our classifiers decision boundaries for some toy datasets

Classifier comparison (2018)

• Let's observe our classifiers decision boundaries for some toy datasets

Accuracy is reported

- Unigrams presence setting achieves the best performance
 - ► Apply feature selection algorithms

- Unigrams presence setting achieves the best performance
 - Apply feature selection algorithms
- Contrarily, performance isn't comparable to topic classification

- Unigrams presence setting achieves the best performance
 - Apply feature selection algorithms
- Contrarily, performance isn't comparable to topic classification

Review example

"This film should be brilliant. It sounds like a great plot, the actors are first grade, and the supporting cast is good as well, and Stallone is attempting to deliver a good performance. However, it can't hold up."

- Unigrams presence setting achieves the best performance
 - Apply feature selection algorithms
- Contrarily, performance isn't comparable to topic classification

Review example

"This film should be brilliant. It sounds like a great plot, the actors are first grade, and the supporting cast is good as well, and Stallone is attempting to deliver a good performance. However, it can't hold up."

• Difficult for bag-of-words classifiers.

- Unigrams presence setting achieves the best performance
 - Apply feature selection algorithms
- Contrarily, performance isn't comparable to topic classification

Review example

"This film should be brilliant. It sounds like a great plot, the actors are first grade, and the supporting cast is good as well, and Stallone is attempting to deliver a good performance. However, it can't hold up."

- Difficult for bag-of-words classifiers.
- Authors suggest determining the focus of each sentence, if is on/off topic.

Thank you for participating! Questions?