

จุดประสงค์เชิงพฤติกรรม

- 1. บอกขั้นตอนของวงจรการพัฒนาระบบฐานข้อมูลได้
- 2. อธิบายขั้นตอนการศึกษาข้อมูลเบื้องต้นได้
- 3. อธิบายขั้นตอนการออกแบบฐานข้อมูลได้
- 4. อธิบายขั้นตอนการนำฐานข้อมูลไปใช้งานได้
- 5. อธิบายวิธีการทดสอบและประเมินผลระบบฐานข้อมูลได้
- 6. อธิบายขั้นตอนการปฏิบัติงานได้
- 7. อธิบายวิธีการบำรุงรักษาระบบฐานข้อมูลได้
- 8. วิเคราะห์และออกแบบฐานข้อมูลได้

56

บทน้ำ

ฐานข้อมูลเป็นส่วนประกอบพื้นฐานของระบบสารสนเทศขององค์กร เป็นพื้นที่เก็บข้อมูล และช่วยในการแปลงข้อมูลให้เป็นสารสนเทศกับองค์กร ออกแบบฐานข้อมูลที่ดีและเหมาะสมกับ ความต้องการขององค์กร ก็จะทำให้ได้สารสนเทศที่ครบถ้วนเพื่อนำไปใช้งานต่อไป การออกแบบ ฐานข้อมูลต้องมีขั้นตอนในการปฏิบัติเพื่อให้ได้ฐานข้อมูลไปใช้งาน การออกแบบฐานข้อมูลจะมี ขั้นตอนการทำงานคล้ายกับ วงจรการพัฒนาระบบสารสนเทศ (System Development Life Cycle: SDLC) เพราะการออกแบบฐานข้อมูลจะเป็นส่วนย่อยของการพัฒนาระบบสารสนเทศ เมื่อ ได้ฐานข้อมูลแล้วก็จะไปเชื่อมต่อกับการพัฒนาระบบสารสนเทศนั้นเอง การออกแบบฐานข้อมูลจะมี วงจรการพัฒนาระบบฐานข้อมูล (Database Development Life Cycle :DSDLC) ใกล้เคียงกับ การพัฒนาระบบสารสนเทศ มีผู้เชี่ยวชาญหลายท่านแบ่งระยะของการพัฒนาระบบฐานข้อมูลดังนี้ Alan Dennis, Barbara Haley Wixom and David Tegarden (2010, P.3) ได้แบ่งระยะการ พัฒนาออกเป็น 4 ระยะ คือ 1) ระยะของการวางแผน 2) ระยะของการวิเคราะห์ 3) ระยะของการ ออกแบบ และ 4) ระยะของการนำไปใช้งาน ส่วน เกรียงศักดิ์ หงส์ชุมแพ (2549, หน้า 159) ได้แบ่ง ออกเป็น 8 ระยะคือ 1) การวางแผน 2) การรวบรวมความต้องการ 3) การออกแบบชั้นแนวคิด การออกแบบชั้นตรรกะ 5) การออกแบบชั้นกายภาพ 6) การสร้าง 7) การติดตั้งและขยายงาน และ 8) การสนับสนุนการทำงาน และ โอกาส เอี่ยวสิริวงศ์ (2558, หน้า 146) แบ่งระยะของการ ออกแบบเป็น 6 ระยะ คือ 1) การศึกษาเบื้องต้น 2) การออกแบบฐานข้อมูล 3) การนำไปใช้ 4) การ ทดสอบและประเมินผล 5) การปฏิบัติงาน และ 6) การบำรุงรักษาและสนับสนุนระบบ ถึงแม้จะมี การแบ่งระยะของการพัฒนาตามแนวทางของ DSDLC ที่มีระยะไม่เท่ากันก็ตามแต่ทุกแนวคิดของ ผู้เชี่ยวชาญจะมีส่วนประกอบพื้นฐานที่คล้ายกันและมีการแตกรายละเอียดออกไปที่ต่างกันเท่านั้น ขึ้นอยู่กับความเหมาะสมที่นักออกแบบระบบฐานข้อมูลจะนำไปใช้ จากที่กล่าวมาเบื้องต้นจะได้ อธิบายรายละเอียดในบทที่ 3 ซึ่งมีเนื้อหาเกี่ยวกับ การออกแบบฐานข้อมูลตามแนวทางของ DSDLC ได้แบ่งออกเป็น 6 ระยะประกอบด้วย 1) การศึกษาข้อมูลเบื้องต้น 2) การออกแบบฐานข้อมูล 3) การนำไปใช้ 4) การทดสอบและประเมิน 5) การปฏิบัติงาน และ 6) การบำรุงรักษาระบบและ สนับสนุนระบบ ซึ่งมีขั้นตอนการออกแบบฐานข้อมูลดังภาพที่ 3.1

ภาพที่ 3.1 วงจรการพัฒนาระบบฐานข้อมูล ที่มา (Peter Rob and Carlos Coronel, 2009, P. 379)

3.1 การศึกษาข้อมูลเบื้องต้น (Database Initial Study)

การศึกษาข้อมูลเบื้องต้น เป็นขั้นตอนแรกของการออกแบบระบบฐานข้อมูล ซึ่งขั้นตอนนี้ ผู้ออกแบบฐานข้อมูลจะศึกษาการทำงานของหน่วยงานเพื่อให้เข้าใจถึงการเกิดสารสนเทศและความ ต้องการของสารสนเทศของหน่วยงาน จากผู้บริหารจนถึงผู้ที่เกี่ยวข้องในการใช้งานหรือพนักงานที่ ปฏิบัติงาน ที่ต้องใช้งานในระบบที่จะพัฒนา ซึ่งมีขั้นตอนการศึกษาดังนี้

- 3.1.1 วิเคราะห์สถานการณ์ของบริษัท (Analyze the Company Situation)
- 3.1.2 การกำหนดปัญหา (Define Problems and Constraints)
- 3.1.3 การกำหนดวัตถุประสงค์ (Define Objectives)
- 3.1.4 การกำหนดขอบเขตของระบบ (Define Scope and Boundaries)

3.1.1 วิเคราะห์สถานการณ์ของบริษัท (Analyze the Company Situation)

การวิเคราะห์สถานการณ์ของบริษัท นักวิเคราะห์และออกแบบฐานข้อมูลจะ ทำการศึกษาระบบการทำงานเดิมของหน่วยงานเพื่อทำความเข้าใจเกี่ยวกับ โครงสร้างขององค์กรมี ใครเกี่ยวข้องกับการปฏิบัติงาน มีหน้าที่รับผิดชอบงานอะไร งานที่รับผิดชอบต้องทำอะไรบ้าง และ ความต้องการของระบบมีอะไรบ้าง ซึ่งการศึกษาดังกล่าว จะจำเป็นต้องมีการใช้เครื่องมือในการ ค้นหาข้อเท็จจริงที่จะต้องมีการเก็บรวบรวมข้อมูลต่าง ๆ ซึ่ง เกรียงศักดิ์ หงษ์ชุมแพ (2549, หน้า 161- 163) ได้แบ่งประเภทการเก็บรวบรวมข้อมูลไว้ดังนี้

- 1. การสัมภาษณ์ เป็นการสอบถามผู้ทำงานหลัก ๆ ในองค์กรเพื่อให้ทราบความ ต้องการ สภาพแวดล้อมการทำงานและเข้าใจในปัญหาจากการปฏิบัติงานอย่างละเอียด การ สัมภาษณ์เป็นวิธีการเก็บข้อมูลที่ได้รับความนิยมเพราะได้ข้อมูลการทำงานในเชิงลึก
- 2. การสำรวจ เป็นการสร้างแบบสำรวจหรือแบบสอบถามเพื่อขอคำตอบให้กับ คำถามที่บรรจุคำถามต่าง ๆ เกี่ยวกับโครงการไว้หลาย ๆ หัวข้อ มีทั้งคำถามที่เป็นแบบปลายเปิด และปลายปิด แบบสอบถามนี้จะส่งไปยังผู้เกี่ยวข้องในการตัดสินใจ การค้นหาความต้องการแบบนี้ เหมาะกับกลุ่มคนจำนวนมาก
- 3. การสังเกต เป็นเทคนิคในการรวบรวมความต้องการจากการสังเกตคนและ กิจกรรมต่าง ๆ ที่เกี่ยวข้องกับระบบการปฏิบัติงานประจำวันที่ดำเนินการอยู่ ทำให้รู้ขั้นตอนการ ปฏิบัติงานและรู้เส้นทางการเดินทางของข้อมูลที่ส่งไปตามหน่วยงานต่าง ๆ
- 4. การทบทวนเอกสาร เป็นการค้นหาและทบทวนเอกสารที่มีอยู่ทั้งหมดของ องค์กร เพื่อให้เข้าใจระบบงานเดิม และเห็นภาพรวมของการทำงานได้ดี เอกสารที่นำมาวิเคราะห์ ได้แก่ แบบฟอร์มการบันทึกข้อมูลต่าง ๆ รายงาน บันทึกช่วยจำ คู่มือนโยบายและผังโครงสร้าง องค์กร

ตัวอย่างกรณีศึกษา ระบบยืม-คืนครุภัณฑ์ ออนไลน์ของ ศูนย์การเรียนรู้ด้วย ตนเอง

นักวิเคราะห์และออกแบบฐานข้อมูล ได้ทำการศึกษาและค้นหาข้อเท็จจริงเกี่ยวกับ การทำงานของระบบงานเก่าจากฟอร์มเอกสารการทำงานในระบบเดิม เช่น เอกสารเกี่ยวกับการยืม-คืนครุภัณฑ์ ข้อมูลครุภัณฑ์ที่มี ข้อมูลประวัติอาจารย์ เจ้าหน้าที่และนักศึกษา นอกจากศึกษาเอกสาร งานเดิมแล้วยังใช้วิธีการสัมภาษณ์ผู้เกี่ยวข้องกับการปฏิบัติงานคือ เจ้าหน้าที่ดูแลครุภัณฑ์อาจารย์ เจ้าหน้าที่ เพื่อให้ทราบการปฏิบัติงานและความต้องการการทำงานของระบบที่จะทำการพัฒนาขึ้น มาเพื่อใช้งาน

ตัวอย่างเอกสารใบยืมครุภัณฑ์

ใบยืมครุภัณฑ์					
เรื่อง ขออนุมัติการยืมครุภัณฑ์	วันที่ เดือนพ.ศ. พ.ศ				
	สาวโทรศัพท์ภายใน				
มีความประสงค์ที่จะขออนุญาตยืมครุภัณฑ์คอมพิว	เตอร์ ประเภท 🗌 Computer PC 🔲 Notebook				
	พร้อมด้วยอุปกรณ์ต่อพ่วง จำนวนเครื่อง สถานที่สถานที่				
ตั้งแต่วันที่ถึงวันที่	วัน				
โดยจะขอรับมอบอุปกรณ์ในวันที่จึงเรียนมาเพื่อโปรดพิจารณาอนุ					
ลงชื่อ					
	//				
คำอนุมัติ ☐ อนุญาต ☐ ไม่อนุญาต เนื่องจาก					
	ลงชื่อ () วันที่ / /				

ภาพที่ 3.2 ตัวอย่างเอกสารใบยืมครุภัณฑ์

3.1.2 การกำหนดปัญหาและเงื่อนไข (Define Problems and Constraints)

ในขั้นตอนนี้ นักออกแบบระบบฐานข้อมูลจะกำหนดปัญหาที่ค้นพบในการ ปฏิบัติงานจากข้อมูลที่ได้จากการศึกษาเอกสารการทำงานของระบบงานเดิม การสัมภาษณ์ความ ต้องการของระบบงานจากกลุ่มผู้ใช้ที่เกี่ยวข้อง ทั้งผู้บริหารและพนักงานในระดับปฏิบัติ ดังนั้น ผู้ออกแบบระบบฐานข้อมูล จะต้องทำการวิเคราะห์และค้นหาเพื่อให้ทราบรายละเอียดดังนี้

- 1. ค้นหาการทำงานระบบเดิมเพื่อให้ทราบว่ามีการทำงานอะไรบ้าง มีใคร เกี่ยวข้องกับงานนั้นและแต่ละคนมีหน้าที่ทำงานเกี่ยวกับข้อมูลอะไร
- 2. เพื่อให้ทราบถึงข้อมูลที่จะถูกบันทึกเข้ามาเพื่อนำไปประมวลผลในระบบมี ข้อมูลอะไรบ้าง มีรายละเอียดของข้อมูลอย่างไร และข้อมูลที่นำเข้ามาเป็นหน้าที่ของใคร
- 3. เพื่อให้ทราบถึงระบบจะต้องจัดทำเอกสารอะไรบ้าง ใครมีส่วนเกี่ยวข้องในการ สร้างเอกสารและใครเป็นคนที่ต้องใช้งานเอกสารนั้น
- 4. เพื่อให้ทราบว่า จะต้องมีการจัดทำรายงานอะไรบ้าง ใครบ้างจะต้องจัดทำ รายงานและใครจะใช้รายงานนั้น

ในขั้นตอนนี้ผู้ออกแบบระบบฐานข้อมูลจะต้องศึกษาเพื่อให้ทราบถึงรายละเอียด ของข้อมูลที่จะถูกจัดเก็บ มีข้อมูลเกี่ยวกับเรื่องอะไรบ้างที่จะต้องถูกนำเข้า ขอบเขตหน้าที่การ ทำงานของผู้ใช้ที่เกี่ยวข้องกับการปฏิบัติงาน จะต้องสามารถกำหนดปัญหาและเงื่อนไขเกี่ยวกับการ ปฏิบัติงานในระบบได้ หลังจากนั้นผู้ออกแบบต้องทำการตรวจสอบสิ่งที่วิเคราะห์ได้อย่างรอบคอบ เพื่อให้ฐานข้อมูลที่ออกแบบมีความถูกต้องและตรงกับความต้องการของการทำงานของหน่วยงาน จริง ๆ

จากกรณีศึกษา ระบบยืม-คืนครุภัณฑ์ ออนไลน์ศูนย์การเรียนรู้ด้วยตนเอง ใน ขั้นตอนนี้พบว่า

การทำงานของระบบงานเดิม เจ้าหน้าที่จะจัดเก็บข้อมูลของครุภัณฑ์ที่มีทั้งหมด ตามฟอร์มเอกสารที่ได้ออกแบบไว้ ถ้าอาจารย์ เจ้าหน้าที่หรือนักศึกษาท่านใดต้องการยืมครุภัณฑ์ก็ จะทำการกรอกข้อมูลในฟอร์มการยืมกับเจ้าหน้าที่ และเมื่อใช้งานเสร็จก็จะนำครุภัณฑ์ส่งคืน เจ้าหน้าที่ตามวันเวลาที่กำหนดพร้อมตรวจสอบสภาพครุภัณฑ์ที่ยืมอยู่ในสภาพใด เจ้าหน้าที่จะทำ การบันทึกการคืนในเอกสารการยืม-คืน และการชำระค่าปรับครุภัณฑ์ที่เสียหาย จากการทำงานด้วย การบันทึกลงในเอกสารจึงเกิดปัญหาในการปฏิบัติคือ เจ้าหน้าที่ไม่เคยทำงานรายงานเกี่ยวกับการ ให้บริการการยืม-คืนครุภัณฑ์ จำนวนครุภัณฑ์ที่มีทั้งหมด มีสภาพการใช้งานอย่างไร ไม่เคยมีการเก็บ สถิติการยืม-คืนครุภัณฑ์

3.1.3 การกำหนดวัตถุประสงค์ (Define Objectives)

การกำหนดวัตถุประสงค์เป็นขั้นตอนที่ทำงานต่อจากการทำงานในขั้นตอนการ กำหนดปัญหาและความต้องการของผู้ใช้ เมื่อผู้ออกแบบฐานข้อมูลได้ทำการวิเคราะห์ปัญหาและ ความต้องการของระบบ ซึ่งอาจมีการกำหนดปัญหาและความต้องการออกมาได้หลาย ๆ ข้อ นักวิเคราะห์ออกแบบฐานข้อมูลจะต้องกำหนดวัตถุประสงค์ของสิ่งที่จะทำให้ชัดเจน สอดคล้องตรง ตามความต้องการของผู้ใช้และสามารถจัดการกับปัญหาที่ค้นพบจากการศึกษาปัญหาของระบบได้ การกำหนดวัตถุประสงค์ของระบบเพื่อบอกถึงสิ่งที่ระบบจะต้องทำว่ามีการจัดเก็บ ข้อมูลอะไรบ้าง แบ่งบันข้อมูลไปใช้งานร่วมกับระบบอื่น ๆ อย่างไรและต้องทำอะไรได้บ้าง และ สอดคล้องตรงกับความต้องการของผู้ใช้ ฐานข้อมูลถึงจะเป็นแค่ส่วนย่อยของการพัฒนาระบบก็ตาม แต่ก็ถือว่าเป็นส่วนสำคัญที่จะทำให้ได้ฐานข้อมูลสำหรับการทำงานของระบบ ดังนั้นการกำหนด วัตถุประสงค์ก็จะต้องสอดคล้องกับการพัฒนาระบบ เพราะเมื่อออกแบบฐานข้อมูลเสร็จก็จะถูก นำไปใช้ในการเขียนโปรแกรมเพื่อพัฒนาระบบต่อไป

จากกรณีศึกษา ระบบยืม-คืนครุภัณฑ์ ออนไลน์ศูนย์การเรียนรู้ด้วยตนเอง ได้ กำหนดวัตถุประสงค์เพื่อ

- 1. วิเคราะห์และออกแบบฐานข้อมูลระบบยืม คืนครุภัณฑ์ ออนไลน์ศูนย์เรียนรู้ ด้วยตนเอง
 - 2. เพื่อพัฒนาระบบยืม-คืนครุภัณฑ์ ออนไลน์ศูนย์เรียนรู้ด้วยตนเอง

3.1.4 การกำหนดขอบเขตของระบบ (Define Scope and Boundaries)

ในขั้นตอนนี้เป็นการการกำหนดขอบเขต (Scope) และเส้นแบ่งเขตของระบบ (Boundaries) โดยขอบเขตของระบบ คือ การออกแบบขอบเขตที่ระบบจะทำงานได้ซึ่งจะต้อง ครอบคลุมการปฏิบัติงานหน่วยงาน เช่น จากกรณีศึกษา ระบบยืม-คืนครุภัณฑ์ ออนไลน์ศูนย์การ เรียนรู้ด้วยตนเอง นักออกแบบฐานข้อมูลจะต้องออกแบบเพื่อรองรับการทำงานของระบบ ได้แก่

- 1. แสดงรายละเอียดครุภัณฑ์ที่มี และสามารถตรวจสอบสถานะของครุภัณฑ์ได้ ว่ามีสถานะใด สามารถยืมได้หรือถูกยืมไปแล้ว
- 2. สามารถทำการการยืม คืน ครุภัณฑ์
- 3. ดูประวัติการยืม คืน รายบุคคลหรือทั้งหมดได้
- 4. ตรวจสอบสถานะการยืม เช่น สถานะการคืนแล้ว ยังไม่คืน รออนุมัติ ฯลฯ

ส่วนเส้นแบ่งขอบเขต คือ การกำหนดปัจจัยภายนอกที่เกี่ยวข้องกับการพัฒนา ระบบฐานข้อมูล หรือส่วนประกอบที่อยู่ภายนอกระบบ เช่น งบประมาณที่มีสำหรับการพัฒนาระบบ ฮาร์ดแวร์และซอฟต์แวร์ขั้นต่ำที่จำเป็นต้องใช้กับระบบที่จะพัฒนาเพราะบางครั้งอาจใช้ฮาร์ดแวร์ที่มี อยู่เดิมไม่ต้องจัดซื้อใหม่ ตลอดจนระยะที่มีสำหรับการออกแบบและพัฒนาระบบ โดยนักออกแบบ ระบบฐานข้อมูลจะต้องพัฒนาระบบขึ้นมาให้สอดคล้องกับขอบเขตและเส้นแบ่งขอบเขตดังกล่าวได้ อย่างเหมาะสม

3.2 การออกแบบฐานข้อมูล (Database Design)

การออกแบบฐานข้อมูล เป็นระยะที่สำคัญที่สุดของวงจรการพัฒนาระบบฐานข้อมูล (DSDLC) เนื่องจากเป็นระยะที่จะได้ฐานข้อมูลจริงเพื่อนำไปใช้ และฐานข้อมูลจะต้องสอดคล้องกับ วัตถุประสงค์ของหน่วยงานจริง ๆ และได้ฐานข้อมูลที่ออกแบบมาตรงตามความต้องการของผู้ใช้ โดยขั้นตอนนี้จะเน้นโครงสร้างของการจัดเก็บข้อมูลสนับสนุนงานที่ตรงตามลักษณะของหน่วยงาน จึงมีคำถามในลักษณะ อะไร (What) และอย่างไร (How) เกิดขึ้นจาก 2 มุมมอง ดังนี้

- 1. คำถาม What จากมุมมองทางธุรกิจ (Business View) ซึ่งเป็นมุมมองของหน่วยงานที่ ต้องการพัฒนาระบบงานขึ้นมาใช้งาน ซึ่งจะมีคำถามเกี่ยวกับระบบที่นักออกแบบจะต้องตอบคำถาม เช่น ปัญหาที่เกิดขึ้นจากการทำงานคืออะไร มีแนวทางการแก้ไขปัญหานั้นอย่างไรบ้าง และ สารสนเทศที่ต้องการคืออะไร มีข้อมูลที่ต้องการมีอะไรบ้าง ฯลฯ
- 2. คำถาม How เป็นคำถามที่นักออกแบบ (Designer's View) จะถามและหาคำตอบ เกี่ยวกับระบบที่จะพัฒนา เช่น โครงสร้างข้อมูลที่ออกแบบเพื่อรองรับการจัดเก็บข้อมูลจะออกแบบ อย่างไรเพื่อจะให้จัดเก็บข้อมูลได้ครบถ้วน การเข้าถึงข้อมูลจะมีวิธีการเข้าถึงข้อมูลได้อย่างไร ใคร ้บ้างที่มีสิทธิ์เข้าในการใช้งานฐานข้อมูลนั้นบ้าง ผู้ใช้คนไหนทำงานอะไรบ้าง ทำอย่างไร หรือมีการ นำเข้าข้อมูลจากระบบงานเก่าอย่างไร ฯลฯ

ดังนั้น ในการออกแบบฐานข้อมูลจะต้องสามารถตอบคำถามใน 2 มุมมอง ทั้งคำถามของ หน่วยงานและนักออกแบบฐานข้อมูล ขั้นตอนนี้จึงถือว่าเป็นขั้นตอนที่สำคัญ เนื่องจากจะต้องตอบ คำถามให้ได้ว่า ปัญหาที่ค้นพบและประโยชน์ที่ได้จากการพัฒนา ผู้มีอำนาจของหน่วยงานจะเห็น ด้วยกับการพัฒนาระบบนี้หรือไม่ แบบจำลองข้อมูล (E-R Model) เป็นเครื่องมือที่นักออกแบบ ฐานข้อมูลใช้อธิบายถึงโครงสร้างของฐานข้อมูลที่ได้ออกแบบไว้ ในรูปแบบแผนภาพเพื่อสื่อสารให้ ผู้ใช้ได้เข้าใจตรงกันเกี่ยวกับโครงสร้างของการจัดเก็บ และทำความตกลงกันว่าฐานข้อมูลที่ได้ ออกแบบไว้ตรงกับความต้องการของผู้ใช้หรือไม่ ดังนั้นในขั้นตอนการออกแบบฐานข้อมูล ได้แบ่ง ขั้นตอนการออกแบบไว้ดังภาพที่ 3.3

ภาพที่ 3.3 ขั้นตอนการออกแบบฐานข้อมูล ที่มา (Peter Rob and Carlos Coronel, 2009, P. 385)

จากภาพที่ 3.3 ได้แบ่งขั้นตอนของการออกแบบฐานข้อมูล ไว้ 4 ขั้นตอนดังนี้

- 3.2.1 การออกแบบแนวคิด (Conceptual Design)
- 3.2.2 การเลือกโปรแกรมจัดการฐานข้อมูล (Database Management System Software Selection)
 - 3.2.3 การออกแบบเชิงตรรกะ (Logical Design)
 - 3.2.4 การออกแบบเชิงกายภาพ (Physical Design)

3.2.1 การออกแบบแนวคิด (Conceptual Design)

เป็นขั้นตอนในการสร้างแบบจำลองข้อมูลที่แสดงโครงสร้างของฐานข้อมูลในรูปแบบ แผนภาพแบบจำลองอี อาร์ โมเดล (E-R Model) ที่อธิบายโครงสร้างของฐานข้อมูล ว่าการจัดเก็บ ข้อมูลอะไรบ้างในฐานข้อมูลนั้น ในแผนภาพอี อาร์ จะประกอบด้วย เอนทิตี (Entity) แอตทริบิวต์ (Attribute) และความสัมพันธ์ของข้อมูล (Relationship) ขั้นตอนในการเขียนแผนภาพอี อาร์ ขั้นตอนดังนี้

1. การวิเคราะห์ฐานข้อมูลและความต้องการ (Database Analysis and Requirements)

การวิเคราะห์ฐานข้อมูลและความต้องการ ในขั้นตอนนี้ นักออกแบบฐานข้อมูล จะรวบรวมปัญหาและความต้องการของระบบของผู้ที่เกี่ยวข้องจากขั้นตอนที่ 1 คือ การศึกษาข้อมูล เบื้องต้นของหน่วยงานมาแล้ว ดังนั้นนักออกแบบฐานข้อมูลจะทราบรายละเอียดเกี่ยวกับปัญหาการ ทำงาน วิธีการทำงานของระบบ ข้อมูลนำเข้าและรายงานที่จะต้องจัดทำ ตลอดจนทราบถึงหน้าที่ การปฏิบัติงานของผู้ใช้แต่ละคนมาแล้ว โดยการรวบรวมความต้องการของผู้ใช้จากการศึกษา เอกสารการทำงานเดิม คู่มือการปฏิบัติงานหรือการสัมภาษณ์ผู้เกี่ยวข้อง เพื่อใช้ประกอบการ ออกแบบฐานข้อมูลตามแนวคิด ซึ่งจะทำการออกแบบฐานข้อมูลตามเงื่อนไขและรายละเอียดที่ได้ จากศึกษาข้อมูลเบื้องต้นของหน่วยงาน จะขอยกตัวอย่างของกรณีศึกษาต่อไปนี้

จากกรณีศึกษา ระบบยืม-คืนครุภัณฑ์ ออนไลน์ศูนย์การเรียนรู้ด้วยตนเอง การ วิเคราะห์ฐานข้อมูลและความต้องการของระบบ พบว่า

การทำงานของระบบงานเดิม เจ้าหน้าที่จะจัดเก็บข้อมูลของครุภัณฑ์ที่มีทั้งหมด ตามฟอร์มเอกสารที่ได้ออกแบบไว้ โดยการแยกครุภัณฑ์ออกเป็นหมวดหมู่ประกอบด้วย ครุภัณฑ์ที่ เป็นเครื่อง Computer PC, Notebook, IPad ๆ บุคลากรที่สามารถยืมครุภัณฑ์ได้แบ่งเป็น อาจารย์ เจ้าหน้าที่และนักศึกษา การยืมครุภัณฑ์ก็จะทำการกรอกข้อมูลในแบบฟอร์มการยืมกับเจ้าหน้าที่ ใน การยืมแต่ละครั้งผู้ยืมจะยืมได้ทีละอุปกรณ์แต่หลายตัวและต้องระบุวันเวลาในการส่งคืน เจ้าที่หน้า จะทำการตรวจสอบครุภัณฑ์ที่ถูกยืมมีสถานะว่างหรือไม่ หรือถูกยืมโดยใคร ถ้าว่างก็จะอนุมัติให้ผู้ใช้ สามารถยืมใช้ครุภัณฑ์ตามที่ระบุได้ เมื่อครบกำหนดผู้ใช้จะส่งคืนครุภัณฑ์ ซึ่งครุภัณฑ์ที่ส่งคืนจะต้อง อยู่ในสภาพการเรียบร้อย และไม่เกินกำหนดส่ง หากเกินกำหนดวันที่คืนหรือชำรุด ผู้ยืมจะต้องชำระ ค่าเสียหาย โดยการชดใช้เป็นเงินหรือจัดซื้อครุภัณฑ์ทดแทนหรือรับผิดชอบการซ่อมให้อยู่ในสภาพ เดิม เมื่อผู้ใช้นำครุภัณฑ์ส่งคืนเจ้าหน้าที่ก็จะทำการบันทึกการคืนในเอกสารการยืม-คืน จากการ ทำงานด้วยการบันทึกลงในเอกสารจึงเกิดปัญหาในการปฏิบัติคือ เจ้าหน้าที่ไม่เคยทำงานรายงาน เกี่ยวกับการให้บริการการยืม-คืนครุภัณฑ์ จำนวนครุภัณฑ์ที่มีทั้งหมด มีสภาพการใช้งานอย่างไร ไม่ เคยมีการเก็บสถิติการยืม-คืนครุภัณฑ์ และการชำระค่าเสียหายจากผู้ใช้

2. การเขียนแผนภาพอี อาร์ และการทำบรรทัดฐาน (Entity Relationship Modeling and Normalization)

เมื่อทำการวิเคราะห์ข้อมูลและความต้องการของระบบเดิมแล้ว นักออกแบบ ฐานข้อมูลจะทำการเขียนแผนภาพ อี อาร์ เพื่อเป็นเครื่องมือสำหรับการสื่อสารระหว่างนักออกแบบ ฐานข้อมูลกับผู้ใช้ ให้เข้าใจเกี่ยวกับฐานข้อมูลที่ได้ออกแบบไว้ตรงกัน ในการเขียนแผนภาพอี อาร์ นักออกแบบฐานข้อมูลจะใช้สัญลักษณ์ที่เป็นมาตรฐานในการเขียนแผนภาพอี อาร์ ไม่ว่าจะเป็นของ Chen Model, Crow's Foot Model, Rein 85 หรือ IDEF1X เป็นต้น โดยในแต่ละโมเดลก็จะมี สัญลักษณ์ที่ใช้แทนความหมายของส่วนประกอบของโครงสร้างฐานข้อมูลของแบบจำลองฐานข้อมูล ที่เป็นมาตรฐานของตัวเอง ซึ่งก็ขึ้นอยู่กับนักออกแบบฐานข้อมูลจะใช้แผนภาพอี อาร์ แบบใด ซึ่งใน ที่นี้จะใช้แผนภาพอี อาร์ แบบ Chen Model

ขั้นตอนในเขียน E-R Model มีขั้นตอนดังนี้

กำหนดเอนทิตีหลักที่จะใช้เพื่อจัดเก็บข้อมูล ที่ได้จากการวิเคราะห์ในข้อที่ 1
 โดยเอนทิตีจะหมายถึง กลุ่มของสิ่งที่ต้องการจัดเก็บในฐานข้อมูล

จากกรณีศึกษา ระบบยืม-คืนครุภัณฑ์ ออนไลน์ศูนย์การเรียนรู้ด้วยตนเอง มี เอนทิตี ดังนี้

- 1) Entity ผู้ใช้ (User) ซึ่งเก็บรายละเอียดของผู้ใช้ คือ อาจารย์ เจ้าหน้าที่ และนักศึกษา
- 2) Entity ครุภัณฑ์ (Equipment) เก็บรายละเอียดเกี่ยวกับครุภัณฑ์ที่มี
- 3) Entity เจ้าหน้าที่ (Employee) เก็บรายละเอียดของเจ้าหน้าที่ดูแลการ ยืม-คืนครุภัณฑ์
- 4) Entity การยืมครุภัณฑ์ (Borrow) เก็บรายละเอียดการยืมครุภัณฑ์
- 5) Entity การคืนครุภัณฑ์ (Return) เก็บรายละเอียดการคืน
- 6) Entity การชำระค่าเสียหาย (Damages) เก็บรายละเอียดการชำระ ค่าเสียหายในแต่ละประเภท
- 2. กำหนดความสัมพันธ์ระหว่างเอนทิตี เป็นการกำหนดความสัมพันธ์ระหว่าง เอนทิตีในฐานข้อมูลว่ามีเอนทิตีใดมีความสัมพันธ์กันบ้างและมีความสัมพันธ์กันแบบ หนึ่งต่อหนึ่ง (1:1) หนึ่งต่อกลุ่ม (1:M) และ กลุ่มต่อกลุ่ม (M:N) ตัวอย่างเช่น

ความสัมพันธ์ระหว่าง Entity ผู้ใช้กับการยืมครุภัณฑ์ เป็นความสัมพันธ์แบบ 1:M หมายถึง ผู้ใช้สามารถยืมครุภัณฑ์ได้หลายครั้ง แต่เลขที่การยืมครุภัณฑ์แต่ละครั้งจะมีผู้ใช้เพียง 1 คน ความสัมพันธ์ระหว่าง การยืมกับครุภัณฑ์ เป็นความสัมพันธ์แบบ 1:M หมายถึง

เลขที่การยืม 1 จะยืมครุภัณฑ์ได้เพียง 1 ครุภัณฑ์ แต่ครุภัณฑ์ 1 ครุภัณฑ์จะถูกยืมได้หลายครั้ง
ความสัมพันธ์ระหว่าง เจ้าหน้าที่กับการยืม เป็นความสัมพันธ์แบบ 1:M
ความสัมพันธ์ระหว่าง ผู้ใช้กับการคืน เป็นความสัมพันธ์แบบ 1:M
ความสัมพันธ์ระหว่าง เจ้าหน้าที่กับการคืนเป็นความสัมพันธ์แบบ 1:M
ความสัมพันธ์ระหว่าง ครุภัณฑ์กับการคืนเป็นความสัมพันธ์แบบ 1:M

3. กำหนดแอตทริบิวต์ที่เป็นคุณลักษณะหรือรายละเอียดที่ต้องมีในแต่ละเอนทิตี กำหนดคีย์หลัก (Primary Key) กำหนดคีย์นอก (Foreign Key) ตัวอย่างเช่น

Entity ผู้ใช้ (User) จะประกอบด้วย <u>รหัสผู้ใช้</u> ล็อกอิน พาสเวิร์ด ชื่อ-สกุล ตำแหน่ง สังกัด เบอร์โทร โดยมี รหัสผู้ใช้เป็นคีย์หลัก ดังภาพที่

ภาพที่ 3.4 Entity ผู้ใช้

Entity ครุภัณฑ์ (Equipment) ประกอบด้วย <u>รหัสครุภัณฑ์</u> ชื่อครุภัณฑ์ รายละเอียดครุภัณฑ์ ประเภทครุภัณฑ์ สถานะ

ภาพที่ 3.5 Entity ครุภัณฑ์

Entity เจ้าหนาที่ (Employee) ประกอบด้วย <u>รหัส</u> ชื่อ-สกุล ตำแหน่ง เบอร์โทร

ภาพที่ 3.6 Entity เจ้าหน้าที่

Entity การยืมครุภัณฑ์ ประกอบด้วย <u>รหัสการยืม</u> วันที่ยืม กำหนดส่ง

ภาพที่ 3.7 Entity การยืมครุภัณฑ์

Entity การคืนครุภัณฑ์ <u>เลขที่การคืน</u> วันที่คืน ชนิดการปรับ ค่าปรับ

ภาพที่ 3.8 Entity การคืนครุภัณฑ์

การกำหนดคีย์นอก (Foreign Key) สำหรับแผนภาพอี อาร์ แบบ Chen Model จะกำหนดคีย์นอกเมื่อแปลงแผนภาพอี อาร์ ไปเป็นตาราง

4. เขียนแผนภาพ อี อาร์ จากผลที่ได้ในขั้นตอนที่ 2, 3 และ 4 มาเขียนเป็น แผนภาพ อี อาร์ โมเดล ตัวอย่างเช่น

ภาพที่ 3.9 แผนภาพอี อาร์ ระบบฐานข้อมูลระบบการยืม-คืน ครุภัณฑ์ออนไลน์ศูนย์การ เรียนรู้ด้วยตนเอง

3. การตรวจสอบแบบจำลองข้อมูล (Data Model Verification)

เป็นขั้นตอนที่นักออกแบบฐานข้อมูลนำแผนภาพ อี อาร์ ไปทบทวนและ ตรวจสอบร่วมกันกับผู้ใช้ เพื่อตรวจสอบความถูกต้องของข้อมูลที่ถูกจัดเก็บในฐานข้อมูล และหากมี ข้อผิดพลาดหรือมีข้อมูลที่ถูกจัดเก็บไม่ครบถ้วน ก็จะทำการแก้ไข ซึ่งในขั้นตอนนี้อาจจะมีการแก้ไข ได้หลาย ๆ รอบเพื่อให้ฐานข้อมูลที่ออกแบบมีความถูกต้องตรงกับความต้องการของผู้ใช้ หลังจาก นั้นจะนำไปทดสอบจากการใช้คำสั่งเอสคิวแอล (SQL) ในการจัดการกับข้อมูล เช่น คำสั่ง เรียกดู ข้อมูล (Select) คำสั่งเพิ่มข้อมูล (Insert) คำสั่ง ปรับปรุงข้อมูล (Update) และคำสั่งลบข้อมูล (Delete) เป็นต้น เพื่อดูการแสดงผลจากคำสั่งว่าถูกต้องหรือไม่ หรือได้ข้อมูลส่วนใดไม่ครบถ้วน

ในการตรวจสอบแบบจำลองข้อมูล จะเป็นขั้นตอนที่กลับมาตรวจสอบเอนทิตีที่ จัดเก็บว่ามีเอนทิตีครบถ้วนและครอบคลุมกับการจัดเก็บข้อมูลในฐานข้อมูลหรือไม่ และตรวจสอบ แอตทริบิวต์ที่เป็นรายละเอียดของเอนทิตี และแอตทริบิวต์นั้นเป็นของเอนทิตีจริง ๆ ไม่ใช่เป็น แอตทริบิวต์ของเอนทิตีอื่น หรืออาจจะได้เอนทิตีใหม่จากแอตทริบิวต์ และตรวจสอบถึงการกำหนด คีย์หลักว่าได้กำหนดถูกต้อง คีย์นอกที่จะมาเชื่อมความสัมพันธ์ระหว่างเอนทิตีเป็นไปตามกฎ ความสัมพันธ์หรือไม่ มีข้อมูลที่มีการจัดเก็บซ้ำซ้อนกันหรือไม่ ซึ่งการตรวจสอบนี้จะใช้หลักการของ การทำบรรทัดฐาน (Normalization) เข้ามาช่วย

3.2.2 การเลือกโปรแกรมจัดการฐานข้อมูล (Database Management System Software Selection)

การเลือกใช้ซอฟต์แวร์จัดการฐานข้อมูล (DBMS) เป็นสิ่งสำคัญต่อการดำเนินงาน ด้านระบบสารสนเทศ แนะนำให้ศึกษาถึงข้อดีและข้อเสียของ DBMS ซึ่งในปัจจุบันมีหลายค่าย ด้วยกัน โดยให้ศึกษาจาก (โอภาส เอี่ยมสิริวงศ์, 2558, หน้า 155-156)

- 1. ต้นทุนและค่าใช้จ่ายของโปรแกรมจัดการฐานข้อมูล ไม่ว่าจะเป็นราคาของการ จัดซื้อ ค่าดูแลบำรุงรักษาและระยะเวลาในการดูแลรักษา ค่าลิขสิทธิ์บางโปรแกรม ซึ่งบางโปรแกรม อาจจะจำกัดจำนวนการเข้าใช้ฐานข้อมูล ค่าจัดอบรมให้ความรู้กับพนักงาน เป็นต้น ซึ่งบาง ผลิตภัณฑ์อาจจะมีราคาไม่สูง หรือบางผลิตภัณฑ์อาจจะมีราคาสูง แต่บางผลิตภัณฑ์อาจให้ใช้ฟรีก็มี
- 2. คุณสมบัติของโปรแกรมจัดการฐานข้อมูลและเครื่องมือที่มีเพื่ออำนวยความ สะดวกในการใช้งานและพัฒนาโปรแกรม เพราะบางโปรแกรมจะรวมเครื่องมือช่วยในการพัฒนา โปรแกรมเข้ามาด้วย เช่นเครื่องมือช่วยในการออกแบบหน้าจอ เครื่องมือสร้างฟอร์มการบันทึก ข้อมูล ปุ่มคำสั่งทำงาน การสร้างรายงาน เครื่องมือสร้างพจนานุกรมข้อมูล และเครื่องมืออื่น ๆ ซึ่ง จะช่วยให้ผู้บริหารฐานข้อมูลและโปรแกรมเมอร์ทำงานได้สะดวกขึ้น และความสามารถในการ จัดการผู้ใช้ การรักษาความปลอดภัยของข้อมูล การควบคุมสภาวะการทำงานพร้อมกันและจัดการ กับทรานแซกชันต่าง ๆ
- 3. แบบจำลองของฐานข้อมูลที่ใช้จะมีผลต่อการเลือกโปรแกรมจัดการฐานข้อมูล เช่น ถ้าออกแบบฐานข้อมูลตามแบบจำลองฐานข้อมูลเชิงสัมพันธ์ก็จะต้องเลือกโปรแกรมจัดการ ฐานข้อมูลที่รองรับการทำงานแบบเชิงสัมพันธ์ เช่น MS Access, MySQL, Oracle เป็นต้น
- 4. ความสามารถของโปรแกรมจัดการฐานข้อมูลที่จะรองรับการขยายการจัดเก็บ ข้อมูลที่จะเกิดขึ้นในอนาคต การแปลงข้อมูลเพื่อเชื่อมต่อกับฐานข้อมูลอื่น
- 5. ความสามารถของฮาร์ดแวร์ที่จะรองรับกับโปรแกรมจัดการฐานข้อมูลนั้น เพราะ โปรแกรมจัดการฐานข้อมูลแต่ละโปรแกรมจะกำหนดความต้องการขั้นต่ำของฮาร์ดแวร์ที่จะสามารถ ทำงานกับโปรแกรมได้ไม่ว่าจะเป็น ความเร็วของซีพียู หน่วยความจำแรม พื้นที่ว่างของฮาร์ดดิสก์ ดังนั้นองค์กรจึงต้องพิจารณาถึงข้อนี้เช่นกันว่าฮาร์ดแวร์ที่องค์กรมีปัจจุบันสามารถรองรับได้หรือไม่ หรืออาจจะมีการจัดซื้อฮาร์ดแวร์ใหม่ เป็นต้น

3.2.3 การออกแบบเชิงตรรกะ (Logical Design)

เป็นขั้นตอนของการแปลงการออกแบบแนวคิดที่อยู่ในรูปแบบของแผนภาพอี อาร์ ให้เป็นรีเลชัน (Relation) การแปลงแผนภาพอี อาร์ ไปเป็นตาราง จะแปลงตามเงื่อนไขของ Chen Model และในขั้นตอนนี้จะได้คีย์นอก (Foreign Key) ที่เกิดจากตารางที่มีความสัมพันธ์กัน โดยสิ่ง ที่ได้ในขั้นตอนนี้คือ ตารางเก็บข้อมูล แอตทริบิวต์ ขอบเขตข้อมูล คีย์หลัก และคีย์นอก หลักจากนั้น จะนำตารางข้อมูลไปตรวจสอบหาความซ้ำซ้อนของการจัดเก็บข้อมูลด้วยกระบวนการที่เรียกว่า การ ทำบรรทัดฐาน (Normalization) เพื่อทำการลดความซ้ำซ้อน แล้วจัดทำพจนานุกรมข้อมูล (Data Dictionary) สำหรับการใช้งานกับโปรแกรมฐานข้อมูลที่เลือกใช้งาน ซึ่งจะขอแสดงตัวอย่างข้อ พจนานุกรมฐานข้อมูล ซึ่งได้จากแผนภาพ อี อาร์ ในภาพที่ 3.9 จะได้พจนานุกรม ในที่นี้ขอ ยกตัวอย่าง 3 ตาราง ดังภาพที่ 3.10

ตาราง Equipment (ครูภัณฑ์) เป็นตารางจัดเก็บรายละเอียดของครูภัณฑ์

Field name	Data type	Field size	Null	PK	Description
machine_id	char	6	No	PK	รหัสครุภัณฑ์
E_name	Varchar2	50	No		ชื่อครุภัณฑ์
Detail	Varchar2	100	No		รายละเอียดครุภัณฑ์
Status	Number	1	No		สถานะ

ตาราง User (ผู้ใช้) เป็นตารางสำหรับจัดเก็บข้อมูลผู้ใช้

Field name	Data type	Field size	Null	PK/FK	Description
User_id	char	6	No	PK	รหัสผู้ใช้
User_name	Varchar2	15	No		ชื่อล็อกอิน
Pass	Varchar2	15	No		พาสเวิร์ด
name	Varchar2	100			ชื่อ-สกุล
Position	Varchar2	30			ตำแหน่ง
Phone	Varchar2	11			เบอร์โทร

ตาราง Rental (การยืม) เป็นตารางสำหรับบันทึกการยืม

Field name	Data type	Field size	Null	PK/FK	Description
Ren_id	char	10	No	PK	รหัสการยืม
User_id	number	5	No	FK	รหัสผู้ใช้
Book_id	Number	5	No	Yes	รหัสครุภัณฑ์
Rent_date	date	=	No		วันที่ยืม
Return_date	date	-			กำหนดส่ง

ภาพที่ 3.10 ภาพการแปลง E-R Model ของระบบฐานข้อมูลยืม-คืนหนังสือเป็นตาราง เก็บข้อมูลตามประเภทข้อมูลของโปรแกรมจัดการฐานข้อมูล MySQL

3.2.4 การออกแบบเชิงกายภาพ (Physical Design)

เป็นขั้นตอนของการเลือกการจัดเก็บข้อมูลและลักษณะการเข้าถึงข้อมูลใน ฐานข้อมูล ซึ่งลักษณะของการจัดเก็บข้อมูลจะขึ้นอยู่กับสื่อบันทึกข้อมูลที่เลือกใช้ การออกแบบทาง กายภาพไม่ได้ส่งผลกระทบแค่เพียงตำแหน่งของข้อมูลแต่ยังมีผลกระทบต่อประสิทธิภาพของระบบ ด้วย การออกแบบเชิงกายภาพจะมีความซับซ้อนมากขึ้นเมื่อมีการจัดเก็บข้อมูลบนไคลเอ็นต์ เซิร์ฟเวอร์ บนเครื่องเมนเฟรม หรือฐานข้อมูลแบบกระจายมากกว่าบนพีซี ที่มีข้อมูลกระจายไปอยู่ คนละพื้นที่ แต่การทำงานทั้งหมดจะทำงานผ่านโปรแกรมจัดการฐานข้อมูลที่ผู้ใช้ไม่สามารถมองเห็น โครงสร้างของข้อมูลที่จัดเก็บข้อมูลในฐานข้อมูลจะอยู่ในรูปแบบ โครงสร้างแบบลิงค์ลิสต์ หรือ โครงสร้างแบบต้นไม้ นักออกแบบจึงเกี่ยวข้องกับกระบวนการเลือกสื่อที่ใช้จัดเก็บฐานข้อมูลซึ่งจะ ขึ้นอยู่กับขนาด และความซับซ้อนของโครงสร้างฐานข้อมูล

3.3 การนำไปใช้ (Implementation)

การนำไปใช้ เป็นขั้นตอนของการติดตั้งและสร้างฐานข้อมูลลงไปในโปรแกรมจัดการ ฐานข้อมูลที่ได้เลือกใช้ลงไปในระบบคอมพิวเตอร์ และพัฒนาโปรแกรมประยุกต์ด้วย ภาษาคอมพิวเตอร์ติดต่อกับฐานข้อมูล ซึ่งมีขั้นตอนการทำงานดังนี้

3.3.1 การติดตั้งโปรแกรมจัดการฐานข้อมูล

เมื่อเลือกโปรแกรมจัดการฐานข้อมูลที่เหมาะสมกับการนำไปใช้ในการทำงานแล้ว ก็จะทำการติดตั้งโปรแกรมจัดการฐานข้อมูลลงในเครื่องคอมพิวเตอร์ที่ทำหน้าที่จัดเก็บฐานข้อมูล นักออกแบบระบบฐานข้อมูลได้เลือกใช้โปรแกรมจัดการฐานข้อมูลด้วย MySQL ซึ่งเป็นโปรแกรมที่ อยู่ในกลุ่มของ XAMPP ที่รองรับการทำงานแบบเว็บเซิร์ฟเวอร์ (Web Sever) ประกอบด้วย Apache, PHP, MySQL, phpMyAdmin, Perl เป็นต้น และเป็นโปรแกรมแบบให้ใช้ฟรี

3.3.2 การสร้างฐานข้อมูล

ขั้นตอนในการสร้างฐานข้อมูล ผู้ที่ทำหน้าที่สร้างฐานข้อมูลคือผู้บริหารฐานข้อมูล (DBA) จะดำเนินการสร้างโครงสร้างฐานข้อมูล ผ่านโปรแกรมจัดการฐานข้อมูล ด้วยคำสั่งในการ นิยามฐานข้อมูล (DDL: Data Definition Language) มีขั้นตอนการทำงานดังนี้

1. สร้างฐานข้อมูลใหม่ เปล่า เช่น ต้องการสร้างฐานข้อมูลการยืม-คืน ครุภัณฑ์ ชื่อ Rental ด้วยคำสั่ง

Create database rental;

2. การสร้างตารางเก็บข้อมูลในฐานข้อมูล ซึ่งจะประกอบด้วยตารางและแอตทรบิวต์ และคีย์ต่าง ๆ ด้วยคำสั่งสร้างตาราง เช่น ต้องการสร้างตาราง Equipment ด้วยคำสั่ง

Create table Equipment (
E_id char(6) NOT NULL,
B_name varchar2(50),
Detail varchar2(100),
Status number,
Primary key(E id));

- 3. การเพิ่มข้อมูลลงในฐานข้อมูลที่สร้างไว้ จะเป็นการใช้คำสั่งเพื่อเริ่มข้อมูลลงใน โครงสร้างของตารางที่ได้สร้างไว้ ด้วยการใช้คำสั่ง จัดการกับข้อมูล (Data Manipulation Language :DML) ดังนี้
- 4. การกำหนดสิทธิ์ในการเข้าใช้ฐานข้อมูลสำหรับผู้ใช้ในแต่ละระดับ ซึ่งผู้ใช้อาจมีการ แบ่งการใช้เป็นกลุ่มหรือเป็นรายคนขึ้นอยู่กับผู้ดูแลฐานข้อมูลจะกำหนด ซึ่งแต่ละกลุ่มหรือแต่ละคน ที่เข้ามาใช้งานข้อมูลในฐานข้อมูลอาจได้รับสิทธิ์ในการเข้าถึงข้อมูลแตกต่างกัน

3.3.3 การเรียกใช้ข้อมูลในฐานข้อมูล

การเรียกใช้ข้อมูลในฐานข้อมูล จะเรียกใช้ด้วยภาษาคิวรี (Query Language) ซึ่ง เป็นภาษาในการทำงานกับฐานข้อมูล ด้วยชุดคำสั่ง SQL ในกลุ่มของคำสั่งจัดการกับข้อมูล (Data Manipulation Language :DML) เช่น คำสั่ง เพิ่มข้อมูล แก้ไขข้อมูล ลบข้อมูลและเรียกดูข้อมูล นอกจากนี้อาจจะใช้คำสั่ง SQL ไปผูกติดกับภาษาคอมพิวเตอร์ เช่น ภาษา PHP, Perl, J## และ Java เป็นต้น เพื่อพัฒนาให้เป็นโปรแกรมประยุกต์สำหรับให้ผู้ใช้สามารถใช้งานข้อมูลได้สะดวก ยิ่งขึ้นไม่ว่าจะเป็นการเพิ่มข้อมูลผ่านฟอร์ม การสร้างรายงานต่าง ๆ ดังภาพที่ 3.11 และ 3.12

ภาพที่ 3.11 หน้าจอของการบันทึกการยืมครุภัณฑ์

ภาพที่ 3.12 หน้าจอรายงานประวัติการยืมครุภัณฑ์

จากภาพที่ 3.11 และ 3.12 เป็นตัวอย่างหน้าจอของการสร้างฟอร์มของการบันทึก ข้อมูลการยืมครุภัณฑ์ และแสดงรายงานประวัติการยืมครุภัณฑ์

3.3.4 การบรรจุหรือแปลงข้อมูล

การบรรจุข้อมูลลงในฐานข้อมูล เป็นการบันทึกข้อมูลลงไปในโครงสร้างของตาราง การจัดเก็บนั้นเอง หรือในบางองค์กรอาจจะมีฐานข้อมูลเดิมอยู่แล้วก็จะทำการย้ายข้อมูลจาก ฐานข้อมูลเก่าไปจัดเก็บในฐานข้อมูลใหม่ ซึ่งปัจจุบันโปรแกรมจัดการฐานข้อมูลจะมีเครื่องมือเพื่อ ช่วยอำนวยการในการแปลงข้อมูลจากโปรแกรมจัดการฐานข้อมูลอื่นมาจัดเก็บไว้ในฐานข้อมูลใหม่ ด้วย

3.3.5 การสำรองข้อมูลและการกู้คืนข้อมูล

เพื่อเป็นการป้องกันข้อผิดพลาดของการทำงานกับฐานข้อมูลที่จะเกิดขึ้น เช่น ข้อผิดพลาดจาก ไวรัส ความเสียหายที่เกิดจากสื่อบันทึกข้อมูลเป็นต้น ดังนั้นโปรแกรมจัดการ ฐานข้อมูลจะมีเครื่องมือเพื่อช่วยให้ทำการสำรองข้อมูลไว้และสามารถกู้คืนข้อมูลเมื่อเกิด ข้อผิดพลาดต่าง ๆ เกิดขึ้น

3.4 การทดสอบและประเมิน (Testing and Evaluation)

เมื่อสร้างโครงสร้างของฐานข้อมูลและบรรจุข้อมูลลงไปในฐานข้อมูลเสร็จแล้ว ผู้บริหาร ฐานข้อมูลก็จะทำการทดสอบและประเมินระบบฐานข้อมูล เพื่อปรับปรุงฐานข้อมูลให้มีความ สมบูรณ์มากขึ้น โดยจะทดสอบและประเมินผลเกี่ยวกับ ประสิทธิภาพการทำงาน ความปลอดภัย ของข้อมูล กฎความคงสภาพของข้อมูลที่ได้กำหนดไว้ การควบคุมสภาวะการทำงานพร้อม ๆ กัน ของผู้ใช้ ซึ่งขั้นตอนนี้ ก็จะนำระบบที่พัฒนาขึ้นมาไปติดไว้ในเชิร์ฟเวอร์ และให้ผู้ใช้งานเริ่มทดสอบ

การใช้งานเพื่อดูการทำงานว่ามีข้อผิดพลาดอะไรเกิดขึ้น และทำการแก้ไขข้อผิดพลาดนั้น หรือมี รายงานส่วนไหนที่ต้องการเพิ่มเติม เป็นต้น

3.5 การปฏิบัติงาน (Operation)

เป็นขั้นตอนที่นำเอาระบบการยืม-คืนครุภัณฑ์ไปติดตั้งบนเซิร์ฟเวอร์เพื่อใช้งานจริง ๆ โดย การติดตั้งฐานข้อมูลที่ได้ออกแบบไว้ และโปรแกรมระบบการยืม – คืนครุภัณฑ์ออนไลน์ที่พัฒนามา เพื่อใช้งาน หลังจากนั้นก็เริ่มให้ผู้ใช้เริ่มใช้เพื่อทำการยืม – คืนครุภัณฑ์ออนไลน์ผ่านเว็บเพจจริง และ เมื่อใช้งานไปสักระยะอาจจะพบปัญหาในการทำงาน ในการยืม – คืนครุภัณฑ์เกิดขึ้นได้ เนื่องจากมี ข้อมูลในการทำงานมีจำนวนมากขึ้น นักพัฒนาระบบจะต้องทำการแก้ไขหรือปรับปรุงระบบให้ ทำงานได้

3.6 การบำรุงรักษาระบบและสนับสนุนระบบ (Maintenance and Support)

เมื่อฐานข้อมูลถูกติดตั้งและนำไปใช้งานจริงแล้ว ขั้นตอนต่อไปก็จะเป็นขั้นตอนของการ บำรุงรักษาระบบฐานข้อมูล เพื่อให้ฐานข้อมูลสามารถใช้งานได้อย่างมีประสิทธิภาพ โดยการกำหนด แผนของการทำสำรองข้อมูล การกำหนดระยะเวลาในการตรวจสอบประสิทธิภาพของระบบ และ พัฒนาให้ระบบมีประสิทธิภาพมากยิ่งขึ้น

สรุป

การวิเคราะห์และออกแบบฐานข้อมูลมีขั้นตอนในการออกแบบเรียกว่า วงจรการพัฒนา ระบบฐานข้อมูล (Database Development Life Cycle) มีอยู่ 7 ระยะของการพัฒนา ดังนี้

- 1. ระยะการศึกษาข้อมูลเบื้องต้น จะเป็นการวิเคราะห์สถานการณ์ของบริษัทเพื่อให้รู้ ขั้นตอนและวิธีการปฏิบัติงานของระบบงานเดิม รู้ถึงปัญหาเพื่อหาแนวทางการแก้ไขปัญหา กำหนด วัตถุประสงค์และขอบเขตสำหรับการพัฒนาและออกแบบฐานข้อมูล การวิเคราะห์เพื่อให้ทราบถึง ปัญหาระบบงานเดิม จะใช้เครื่องมือที่ใช้เก็บรวบรวมข้อมูล อาทิ การใช้การสัมภาษณ์ผู้ใช้ที่เกี่ยวข้อง การสังเกตการปฏิบัติงาน การสำรวจความต้องการโดยใช้แบบสอบถาม และการศึกษาจากเอกสาร การทำงานของระบบงานเดิม
- 2. ระยะการออกแบบฐานข้อมูล เป็นขั้นตอนที่ได้ทำการออกแบบฐานข้อมูล ในระยะนี้จะ มีการออกแบบแนวคิด การเลือกใช้โปรแกรมจัดการฐานข้อมูล การออกแบบเชิงตรรกะ และการ ออกแบบเชิงกายภาพ
- 3. ระยะของการนำไปใช้ เป็นขั้นตอนของการนำฐานข้อมูลที่ได้ออกแบบไว้ไปใช้งานจริง โดยการสร้างฐานข้อมูลจากพจนานุกรมที่ได้ออกแบบไว้ลงไปในโปรแกรมจัดการฐานข้อมูล ด้วยการ

ใช้คำสั่งภาษาในการนิยามข้อมูลและทำการเพิ่มข้อมูลลงในฐานข้อมูลด้วยภาษาในการจัดการ ฐานข้อมูล การกำหนดผู้ใช้และการกำหนดสิทธิ์ให้ผู้ใช้แต่ละคนเพื่อให้ฐานข้อมูล

- 4. ระยะทดสอบและประเมินผล เป็นขั้นตอนของการทดสอบการทำงานของฐานข้อมูล ผู้ใช้จะทำการทดสอบการใช้งานเพื่อดูการทำงานว่ามีข้อผิดพลาดเกิดขึ้นหรือไม่ และทำการแก้ไขให้ ถูกต้อง
- 5. การปฏิบัติงาน เป็นระยของการนำฐานข้อมูลไปใช้งานจริง โดยการติดตั้งไว้บนเครื่อง เซิร์ฟเวอร์ หลังจากนั้นก็เริ่มให้ผู้ใช้ได้เริ่มใช้งานจริงผ่านโปรแกรมที่พัฒนาขึ้นมา
- 6. ระยะบำรุงรักษาระบบและสนับสนุนระบบ เมื่อฐานข้อมูลทำงานไปได้สักระยะ ผู้บริหาร ฐานข้อมูลก็จะมีการกำหนดแผนการบำรุงรักษาฐานข้อมูล เช่น กำหนดการสำรองข้อมูล กำหนด ระยะเวลาตรวจสอบประสิทธิภาพของระบบ เป็นต้น

แบบฝึกหัดท้ายบท

- 1. วงจรการพัฒนาระบบฐานข้อมูล (DSDLC) ประกอบด้วยกิจกรรมกี่ระยะ อะไรบ้าง อธิบาย
- 2. ถ้านักศึกษาต้องเลือก 2 เครื่องมือเพื่อในการวิเคราะห์สถานการณ์ การทำงานภายในบริษัท ที่นักศึกษาต้องไปออกแบบระบบฐานข้อมูล นักศึกษาจะเลือกใช้เครื่องมืออะไร เพราะอะไร ให้บอกเหตุเหตุผลที่เลือก
- 3. การกำหนดวัตถุประสงค์ของการออกแบบระบบคืออะไร
- 4. ในกิจกรรมของการออกแบบฐานข้อมูลแบ่งเป็นกี่ขั้นตอน อะไรบ้าง อธิบาย
- 5. การเขียน E-R Model มีกี่ขั้นตอน อะไรบ้าง อธิบาย
- 6. ให้อธิบายวิธีการในการเลือกใช้โปรแกรมจัดการฐานข้อมูล และยกตัวอย่างโปรแกรมจัดการ ฐานข้อมูลที่นักศึกษาเลือกใช้มา 1 โปรแกรมพร้อมเหตุที่เลือกใช้โปรแกรมนั้น
- 7. Logical Design หมายถึงอะไร
- 8. กิจกรรมในการนำฐานข้อมูลไปใช้และการทำโหลดดิ้ง มีขั้นตอนอะไรบ้าง อธิบาย
- 9. ให้นักศึกษาสรุปกิจกรรมที่ทำในขั้นตอนของการสร้างฐานข้อมูล
- 10. การบำรุงรักษาระบบและการสนับสนุนระบบ คืออะไร อธิบาย