Chapter 10: Integration of Differential Forms

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 10.1. Let H be a compact convex set in \mathbb{R}^k , with nonempty interior. Let $f \in \mathcal{C}(H)$, put $f(\mathbf{x}) = 0$ in the complement of H, and define $\int_H f$ as in Definition 10.3. Prove that $\int_H f$ is independent of the order in which the k integrations are carried out. (Hint: Approximate f by functions that are continuous on \mathbb{R}^k and whose supports are in H, as was done in Example 10.4.)

Proof.

- (1)
- (2)

Exercise 10.2. For $i = 1, 2, 3, ..., let \varphi_i \in \mathscr{C}(\mathbb{R}^1)$ have support in $(2^{-i}, 2^{1-i})$, such that $\int \varphi_i = 1$. Put

$$f(x,y) = \sum_{i=1}^{\infty} [\varphi_i(x) - \varphi_{i+1}(x)]\varphi_i(y)$$

Then f has compact support in \mathbb{R}^2 , f is continuous except at (0,0), and

$$\int dy \int f(x,y)dx = 0 \qquad but \qquad \int dx \int f(x,y)dy = 1.$$

Observe that f is unbounded in every neighborhood of (0,0).

Proof.

- (1) If $f, g: \mathbb{R}^n \to \mathbb{R}^m$ are two functions, then
 - (a) $supp(fg) \subseteq supp(f) \cap supp(g)$.
 - (b) $\operatorname{supp}(f+q) \subseteq \operatorname{supp}(f) \cup \operatorname{supp}(q)$.
- (2) Note that f(x,y) is well-defined on \mathbb{R}^2 since only finitely many terms are nonzero for each fixed point $(x,y) \in \mathbb{R}^2$ (by (1)). Besides,

$$\sup_{i \in \{(x,y) : x \in \sup_{i \in [x,y]} (x) \in (x,y) : x \in \sup_{i \in [x,y]} (x) \cup \sup_{i \in [x,y]} (y) \cup \sup_{i \in [x,y]} (y) \cup \sup_{i \in [x,y]} (y) \cup (y)$$

for all $i = 1, 2, 3, \ldots$ So $\operatorname{supp}(f) \subseteq (0, 1)^2$, or $\operatorname{supp}(f)$ is bounded. As $\operatorname{supp}(f)$ is closed (by definition), $\operatorname{supp}(f)$ is compact (Theorem 2.41).

- (3) Show that f(x,y) is not continuous at (0,0).
 - (a) Note that f(0,0) = 0 since $(0,0) \notin \text{supp}(f) \subseteq (0,1)^2$. It suffices to show that there exists a sequence $\{(t_n,t_n)\}$ in \mathbb{R}^2 such that $(t_n,t_n) \neq (0,0)$, $\lim_{n\to\infty}(t_n,t_n) = (0,0)$ but $\lim_{n\to\infty}f(t_n,t_n)$ does not converge to 0 (Theorem 4.2).
 - (b) For any $n = 1, 2, 3, \ldots$,

$$1 = \int \varphi_n = \int_{2^{-n}}^{2^{-n+1}} \varphi(t)dt \le 2^{-n} \sup_{t \in [2^{-n}, 2^{-n+1}]} \varphi(t),$$

or $\sup_{t\in[2^{-n},2^{-n+1}]}\varphi(t)\geq 2^n$. By the continuity of φ_n , there exists $t_n\in[2^{-n},2^{-n+1}]$ such that $\varphi_n(t_n)\geq 2^n$ (Theorem 4.16).

(c) We construct $\{(t_n, t_n)\}$ in \mathbb{R}^2 by (b) for all $n = 1, 2, 3, \ldots$ Clearly, $(t_n, t_n) \neq (0, 0)$ and $\lim_{n \to \infty} (t_n, t_n) = (0, 0)$. However,

$$f(t_n, t_n) = [\varphi_n(t_n) - \varphi_{n+1}(t_n)]\varphi_n(t_n) = \varphi_n(t_n)^2 \ge 2^{2n}$$

does not converge to 0 as $n \to \infty$.

(4) Show that f(x,y) is continuous at $\mathbf{x}_0 = (x_0, y_0) \neq (0,0)$. Consider an open neighborhood $B(\mathbf{x}_0; r)$ of \mathbf{x}_0 with $r = \frac{\|\mathbf{x}_0\|}{64} > 0$. Hence,

$$f(x,y)|_{B(\mathbf{x}_0;r)} = \sum_{i=1}^{N} [\varphi_i(x) - \varphi_{i+1}(x)]\varphi_i(y)$$

is the sum of finitely many terms where $N = \log_2 \frac{89}{\|\mathbf{x}_0\|} \ge 1$ (since $[\varphi_i(x) - \varphi_{i+1}(x)]\varphi_i(y) = 0$ on $B(\mathbf{x}_0; r)$ whenever $i \ge N$). Therefore, $f(x, y)|_{B(\mathbf{x}_0; r)}$ is continuous by the continuous of φ_i .

(5) Show that $\int dy \int f(x,y)dx = 0$. For any fixed y, there is a positive integer N(y) such that $\varphi_{N(y)+1}(y) = \varphi_{N(y)+2}(y) = \ldots = 0$ and

$$f(x,y) = \sum_{i=1}^{N(y)} [\varphi_i(x) - \varphi_{i+1}(x)] \varphi_i(y).$$

So

$$\int f(x,y)dx = \int \sum_{i=1}^{N(y)} [\varphi_i(x) - \varphi_{i+1}(x)] \varphi_i(y) dx$$

$$= \sum_{i=1}^{N(y)} \varphi_i(y) \int [\varphi_i(x) - \varphi_{i+1}(x)] dx$$

$$= \sum_{i=1}^{N(y)} \varphi_i(y) \left(\int \varphi_i(x) dx - \int \varphi_{i+1}(x) dx \right)$$

$$= \sum_{i=1}^{N(y)} \varphi_i(y) (1-1)$$

$$= 0,$$

and thus

$$\int dy \int f(x,y)dx = \int 0dy = 0.$$

(6) Show that $\int dx \int f(x,y)dy = 0$. For any fixed x, there is a positive integer N(x) such that $\varphi_{N(x)+1}(x) = \varphi_{N(x)+2}(x) = \dots = 0$ and

$$f(x,y) = \sum_{i=1}^{N(x)} [\varphi_i(x) - \varphi_{i+1}(x)] \varphi_i(y).$$

So

$$\int f(x,y)dy = \int \sum_{i=1}^{N(x)} [\varphi_i(x) - \varphi_{i+1}(x)] \varphi_i(y)dy$$

$$= \sum_{i=1}^{N(x)} [\varphi_i(x) - \varphi_{i+1}(x)] \int \varphi_i(y)dy$$

$$= \sum_{i=1}^{N(x)} [\varphi_i(x) - \varphi_{i+1}(x)]$$

$$= \varphi_1(x),$$

and thus

$$\int dx \int f(x,y)dy = \int \varphi_1(x)dx = 1.$$

Exercise 10.3.

(a) If \mathbf{F} is as in Theorem 10.7, put $\mathbf{A} = \mathbf{F}'(\mathbf{0})$, $\mathbf{F}_1(\mathbf{x}) = \mathbf{A}^{-1}\mathbf{F}(\mathbf{x})$. Then $\mathbf{F}_1(\mathbf{0}) = \mathbf{I}$. Show that

$$\mathbf{F}_1(\mathbf{x}) = \mathbf{G}_n \circ \mathbf{G}_{n-1} \circ \cdots \circ \mathbf{G}_1(\mathbf{x})$$

in some neighborhood of $\mathbf{0}$, for certain primitive mappings $\mathbf{G}_1, \dots, \mathbf{G}_n$. This gives another version of Theorem 10.7:

$$\mathbf{F}(\mathbf{x}) = \mathbf{F}'(\mathbf{0})\mathbf{G}_n \circ \mathbf{G}_{n-1} \circ \cdots \circ \mathbf{G}_1(\mathbf{x}).$$

(b) Prove that the mapping $(x, y) \mapsto (y, x)$ of \mathbb{R}^2 onto \mathbb{R}^2 is not the composition of any two primitive mappings, in any neighborhood of the origin. (This shows that the flips B_i cannot be omitted from the statement of Theorem 10.7.)

Proof of (a).

- (1) Suppose **F** is a \mathscr{C}' -mapping of an open set $E \subseteq \mathbb{R}^n$ into \mathbb{R}^n , $\mathbf{0} \in E$, $\mathbf{F}(\mathbf{0}) = \mathbf{0}$, and $\mathbf{F}'(\mathbf{0})$ is invertible.
- (2) Similar to the proof of Theorem 10.7. Put $\mathbf{F}_1 = \mathbf{F}$.
- (3) As m = 1, there is an open neighborhood $V_1 \subseteq E$ of $\mathbf{0}$ such that $\mathbf{F}_1(\mathbf{0}) = (\mathbf{F}'(\mathbf{0}))^{-1}\mathbf{F}(\mathbf{0}) = \mathbf{0}$, $\mathbf{F}'_1(\mathbf{0}) = \mathbf{I}$ is invertible, and

$$\mathbf{F}_1(\mathbf{x}) = \sum_{i=1}^n \alpha_i(\mathbf{x}) \mathbf{e}_i,$$

where $\alpha_1, \ldots, \alpha_n$ are real \mathscr{C}' -functions in V_1 . Hence

$$\mathbf{F}_1'(\mathbf{0})\mathbf{e}_1 = \sum_{i=1}^n (D_1 \alpha_i)(\mathbf{0})\mathbf{e}_i.$$

Note that $(D_1\alpha_1)(\mathbf{0}) = 1 \neq 0$, and we might pick $B_1 = \mathbf{I}$. Thus we can define

$$\mathbf{G}_1(\mathbf{x}) = \mathbf{x} + [\alpha_1(\mathbf{x}) - x_1]\mathbf{e}_1 \qquad (\mathbf{x} \in V_1).$$

Then $G_1 \in \mathscr{C}'(V_1)$, G_1 is primitive, and $G'_1(0) = I$ is invertible.

- (4) Now we make the induction hypothesis for $1 \le m \le n-1$.
- (5) Since $\mathbf{G}'_m(\mathbf{0}) = \mathbf{I}$ is invertible, the inverse function theorem shows that there is an open set U_m , with $\mathbf{0} \in U_m \subseteq V_m$, such that \mathbf{G}_m is an injective mapping of U_m onto a neighborhood V_{m+1} of $\mathbf{0}$, in which $\mathbf{G}_m^{-1} \in \mathscr{C}'(V_{m+1})$. Define \mathbf{F}_{m+1} by

$$\mathbf{F}_{m+1}(\mathbf{y}) = \mathbf{F}_m \circ \mathbf{G}_m^{-1}(\mathbf{y}) \qquad (\mathbf{y} \in V_{m+1}).$$

Then $\mathbf{F}_{m+1} \in \mathscr{C}'(V_{m+1})$, $\mathbf{F}_m(\mathbf{0}) = \mathbf{0}$, and $\mathbf{F}'_{m+1}(\mathbf{0}) = \mathbf{I}$ is invertible by the chain rule and the inverse function theorem. So

$$\mathbf{F}_{m+1}(\mathbf{x}) = P_m \mathbf{x} + \sum_{i=m+1}^{n} \alpha_i(\mathbf{x}) \mathbf{e}_i,$$

where $\alpha_1, \ldots, \alpha_n$ are real \mathscr{C}' -functions in V_{m+1} . Hence

$$\mathbf{F}'_{m+1}(\mathbf{0})\mathbf{e}_{m+1} = \sum_{i=m+1}^{n} (D_{m+1}\alpha_i)(\mathbf{0})\mathbf{e}_i.$$

Note that $(D_{m+1}\alpha_{m+1})(\mathbf{0}) = 1 \neq 0$, and we might pick $B_{m+1} = \mathbf{I}$. Thus we can define

$$G_{m+1}(\mathbf{x}) = \mathbf{x} + [\alpha_{m+1}(\mathbf{x}) - x_{m+1}]\mathbf{e}_{m+1} \qquad (\mathbf{x} \in V_{m+1})$$

Then $\mathbf{G}_{m+1} \in \mathscr{C}'(V_{m+1})$, \mathbf{G}_{m+1} is primitive, and $\mathbf{G}'_{m+1}(\mathbf{0}) = \mathbf{I}$ is invertible. Our induction hypothesis holds therefore with m+1 in place of m.

(6) Note that

$$\mathbf{F}_m(\mathbf{x}) = \mathbf{F}_{m+1}(\mathbf{G}_m(\mathbf{x})) \qquad (\mathbf{x} \in U_m)$$

If we apply this with m = 1, ..., n - 1, we successively obtain

$$\mathbf{F}_1 = \mathbf{F}_n \circ \mathbf{G}_{n-1} \circ \cdots \circ \mathbf{G}_1$$

in some open neighborhood of **0**. Note that \mathbf{F}_n is primitive since

$$\mathbf{F}_n(\mathbf{x}) = P_{n-1}\mathbf{x} + \alpha_n(\mathbf{x})\mathbf{e}_n.$$

This completes the proof.

Proof of (b).

(1) For $(x,y) \in \mathbb{R}^2$, define

$$\mathbf{F}(x,y) = (y,x).$$

(2) (Reductio ad absurdum) If $\mathbf{F} = \mathbf{G}_2 \circ \mathbf{G}_1$ for some primitive mappings \mathbf{G}_i (i = 1, 2) in some neighborhood V_i of the origin, $\mathbf{G}_i(\mathbf{0}) = \mathbf{0}$ and \mathbf{G}'_i is invertible, then we may assume that

$$G_1(x,y) = (x, q_1(x,y))$$
 and $G_2(x,y) = (q_2(x,y), y)$.

Here the case $\mathbf{G}_1(x,y)=(g_1(x,y),y)$ and $\mathbf{G}_2(x,y)=(x,g_2(x,y))$ is similar to the above case. Besides, $\mathbf{G}_1(x,y)=(x,g_1(x,y))$ and $\mathbf{G}_2(x,y)=(x,g_2(x,y))$ implies that

$$\mathbf{G}_2 \circ \mathbf{G}_1(x, y) = (x, g_2(x, g_1(x, y))) \neq (y, x) = \mathbf{F}(x, y).$$

Same reason for $G_1(x, y) = (g_1(x, y), y)$ and $G_2(x, y) = (g_2(x, y), y)$.

(3) Note that

$$\mathbf{F}'(\mathbf{0}) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Since

$$\mathbf{F}'(\mathbf{0}) = \mathbf{G}_2'(\mathbf{G}_1(\mathbf{0}))\mathbf{G}_1'(\mathbf{0}) = \mathbf{G}_2'(\mathbf{0})\mathbf{G}_1'(\mathbf{0}),$$

we have

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} D_1 g_2(0,0) & D_2 g_2(0,0) \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ D_1 g_1(0,0) & D_2 g_1(0,0) \end{bmatrix}$$

$$= \begin{bmatrix} * & * \\ D_1 g_1(0,0) & D_2 g_1(0,0) \end{bmatrix} .$$

So $D_1g_1(0,0) = 1$ and $D_2g_1(0,0) = 0$, and thus $\mathbf{G}'_1(\mathbf{0}) = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ is not invertible, which is absurd.

Exercise 10.4. For $(x,y) \in \mathbb{R}^2$, define

$$\mathbf{F}(x,y) = (e^x \cos y - 1, e^x \sin y)$$

Prove that $\mathbf{F} = \mathbf{G}_2 \circ \mathbf{G}_1$, where

$$\mathbf{G}_1(x,y) = (e^x \cos y - 1, y)$$

$$\mathbf{G}_2(u,v) = (u, (1+u) \tan v)$$

are primitive in some neighborhood of (0,0). Compute the Jacobians of \mathbf{G}_1 , \mathbf{G}_2 , \mathbf{F} at (0,0). Define

$$\mathbf{H}_2(x,y) = (x, e^x \sin y)$$

and find

$$\mathbf{H}_1(u,v) = (h(u,v),v)$$

so that $\mathbf{F} = \mathbf{H}_1 \circ \mathbf{H}_2$ is in some neighborhood of (0,0).

Proof.

(1) By Definition 10.5,

$$\mathbf{G}_1(x,y) = (e^x \cos y - 1)\mathbf{e}_1 + y\mathbf{e}_2,$$

$$\mathbf{G}_2(u,v) = u\mathbf{e}_1 + ((1+u)\tan v)\mathbf{e}_2$$

are primitive in some neighborhood of (0,0).

(2) Show that $\mathbf{F} = \mathbf{G}_2 \circ \mathbf{G}_1$. Given any $(x, y) \in \mathbb{R}^2$, we have

$$(\mathbf{G}_2 \circ \mathbf{G}_1)(x, y) = \mathbf{G}_2(\mathbf{G}_1(x, y))$$

$$= \mathbf{G}_2(e^x \cos y - 1, y)$$

$$= (e^x \cos y - 1, (1 + (e^x \cos y - 1)) \tan y)$$

$$= (e^x \cos y - 1, e^x \sin y)$$

$$= \mathbf{F}(x, y).$$

(3) Since

$$J_{\mathbf{G}_1}(x,y) = \det \begin{bmatrix} e^x \cos y & -e^x \sin y \\ 0 & 1 \end{bmatrix} = e^x \cos y$$

$$J_{\mathbf{G}_2}(x,y) = \det \begin{bmatrix} 1 & 0 \\ \tan y & (1+x)\sec^2 y \end{bmatrix} = (1+x)\sec^2 y$$

$$J_{\mathbf{F}}(x,y) = \det \begin{bmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{bmatrix} = e^{2x},$$

$$J_{\mathbf{G}_1}(0,0) = \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1$$
$$J_{\mathbf{G}_2}(0,0) = \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1$$
$$J_{\mathbf{F}}(0,0) = \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1.$$

(4) Define $h(u, v) = \sqrt{e^{2u} - v^2} - 1$ on

$$B\left((0,0);\frac{1}{64}\right) \subseteq \mathbb{R}^2.$$

h(u,v) is well-defined since $e^{2u}-v^2>0$ for all $(u,v)\in B\left((0,0);\frac{1}{64}\right)$.

(5) Given any $(x,y) \in \mathbb{R}^2$, we have

$$(\mathbf{H}_1 \circ \mathbf{H}_2)(x, y) = \mathbf{H}_1(\mathbf{H}_2(x, y))$$

$$= \mathbf{H}_1(x, e^x \sin y)$$

$$= (\sqrt{e^{2x} - (e^x \sin y)^2} - 1, e^x \sin y)$$

$$= (e^x \cos y - 1, e^x \sin y)$$

$$= \mathbf{F}(x, y).$$

Exercise 10.5. Formulate and prove an analogue of Theorem 10.8, in which K is a compact subset of an arbitrary metric space. (Replace the functions φ_i that occur in the proof of Theorem 10.8 by functions of the type constructed in Exercise 4.22.)

Proof (Theorem 10.8).

- (1) (Partitions of unity.) Suppose K is a compact subset of a metric space X, and $\{V_{\alpha}\}$ is an open cover of K. Then there exist functions $\psi_1, \ldots, \psi_s \in \mathscr{C}(X)$ such that
 - (a) $0 \le \psi_i \le 1$ for $1 \le i \le s$.
 - (b) each ψ_i has its support in some V_{α} , and
 - (c) $\psi_1(x) + \cdots + \psi_s(x) = 1$ for every $x \in K$.
- (2) It is trivial that some $V_{\alpha} = X$ by taking s = 1 and $\psi_1(x) = 1 \in \mathcal{C}(X)$. Now we assume that all $V_{\alpha} \subseteq X$.
- (3) Associate with each $x \in K$ an index $\alpha(x)$ so that $x \in V_{\alpha(x)}$. Then there are open balls B(x) and W(x), centered at x, with

$$x \in B(x) \subseteq \overline{B(x)} \subseteq W(x) \subseteq \overline{W(x)} \subseteq V_{\alpha(x)}$$

(Since $V_{\alpha(x)}$ is open, there exists r > 0 such that $B(x;r) \subseteq V_{\alpha(x)}$. Take $B(x) = B\left(x; \frac{r}{89}\right)$ and $W(x) = B\left(x; \frac{r}{64}\right)$.)

(4) Since K is compact, there are finitely many points $x_1, \ldots, x_s \in K$ such that

$$K \subseteq B(x_1) \cup \cdots \cup B(x_s)$$
.

Note that

- (a) $\overline{B(x_i)}$ is a nonempty closed set since $x_i \in B(x_i) \subseteq \overline{B(x_i)}$.
- (b) $X W(x_i) \supseteq X V_{\alpha(x_i)}$ is a nonempty closed set by the assumption in (2).
- (c) $\overline{B(x_i)} \cap (X W(x_i)) \subseteq W(x_i) \cap (X W(x_i)) = \emptyset$.

By Exercise 4.22, there is a function

$$\varphi_i(x) = \frac{\rho_{\overline{B(x_i)}}(x)}{\rho_{\overline{B(x_i)}}(x) + \rho_{X - W(x_i)}(x)} \in \mathscr{C}(X)$$

such that $\varphi_i(x) = 1$ on $\overline{B(x_i)}$, $\varphi_i(x) = 0$ outside $W(x_i)$, and $0 \le \varphi_i(x) \le 1$ on X for $1 \le i \le s$.

(5) Define $\psi_1 = \varphi_1 \in \mathscr{C}(X)$ and

$$\psi_{i+1} = (1 - \varphi_1) \cdots (1 - \varphi_i) \varphi_{i+1} \in \mathscr{C}(X)$$

for $1 \le i \le s - 1$. Properties (a) and (b) in (1) are clear. Also,

$$\psi_1(x) + \dots + \psi_s(x) = 1 - (1 - \varphi_1(x)) \dots (1 - \varphi_s(x))$$

by the construction of ψ_i . If $x \in K$, then $x \in B(x_i)$ for some i, hence $\varphi_i(x) = 1$, and the product $(1 - \varphi_1(x)) \cdots (1 - \varphi_s(x)) = 0$. This proves property (c) in (1).

Exercise 10.6. Strengthen the conclusion of Theorem 10.8 by showing that the functions ψ_i can be made differentiable, and even infinitely differentiable. (Use Exercise 8.1 in the construction of the auxiliary functions ψ_i .)

Proof (Theorem 10.8).

- (1) It is trivial that some $V_{\alpha} = \mathbb{R}^n$ by taking s = 1 and $\psi_1(\mathbf{x}) = 1 \in \mathscr{C}^{\infty}(\mathbb{R}^n)$. Now we assume that all $V_{\alpha} \subseteq \mathbb{R}^n$.
- (2) Associate with each $\mathbf{x} \in K$ an index $\alpha(x)$ so that $\mathbf{x} \in V_{\alpha(x)}$. Then there are open *n*-cells $B(\mathbf{x})$ and $W(\mathbf{x})$ (Definition 10.1), centered at \mathbf{x} , with

$$\mathbf{x} \in B(\mathbf{x}) \subseteq \overline{B(\mathbf{x})} \subseteq W(\mathbf{x}) \subseteq \overline{W(\mathbf{x})} \subseteq V_{\alpha(\mathbf{x})}$$

(Since $V_{\alpha(\mathbf{x})}$ is open, there exists r > 0 such that $B(\mathbf{x}; r) \subseteq V_{\alpha(\mathbf{x})}$. Take

$$B(\mathbf{x}) = I\left(\mathbf{x}; \frac{r}{89\sqrt{n}}\right), \qquad W(\mathbf{x}) = I\left(\mathbf{x}; \frac{r}{64\sqrt{n}}\right)$$

where $I(\mathbf{p};r)$ is the open n-cell centered at $\mathbf{p}=(p_1,\ldots,p_n)$ defined by

$$I(\mathbf{p};r) = (p_1 - r, p_1 + r) \times \cdots \times (p_n - r, p_n + r) \subseteq \mathbb{R}^n$$
.)

(3) Define

$$f(y) = \begin{cases} e^{-\frac{1}{y^2}} & (y > 0), \\ 0 & (y \le 0). \end{cases}$$

 $f(y) \in \mathscr{C}^{\infty}(\mathbb{R}^1)$ by applying the similar argument in Exercise 8.1.

(4) Given any $\mathbf{x} = (x_1, \dots, x_n) \in K$ and construct $B(\mathbf{x})$ and $W(\mathbf{x})$ as in (2). Define

$$g_{x_j}(y_j) = \frac{f(y_j)}{f(y_j) + f\left(\frac{r}{64\sqrt{n}} - \frac{r}{89\sqrt{n}} - y_j\right)}$$

for $1 \leq j \leq n$. g_{x_j} is well-defined and $g_{x_j} \in \mathscr{C}^{\infty}(\mathbb{R}^1)$. So

$$g_{x_j}(y_j) = \begin{cases} 0 & \text{if } y_j \le 0, \\ \text{strictly increasing} & \text{if } 0 \le y_j \le \frac{r}{64\sqrt{n}} - \frac{r}{89\sqrt{n}}, \\ 1 & \text{if } y_j \ge \frac{r}{64\sqrt{n}} - \frac{r}{89\sqrt{n}}. \end{cases}$$

Next, define

$$h_{x_j}(y_j) = g_{x_j} \left(y_j - x_j + \frac{r}{64\sqrt{n}} \right) g_{x_j} \left(x_j + \frac{r}{64\sqrt{n}} - y_j \right)$$

for $1 \leq j \leq n$. $h_{x_j} \in \mathscr{C}^{\infty}(\mathbb{R}^1)$. So

$$h_{x_j}(y_j) = \begin{cases} 0 & \text{if } y_j \leq x_j - \frac{r}{64\sqrt{n}}, \\ \text{strictly increasing} & \text{if } x_j - \frac{r}{64\sqrt{n}} \leq y_j \leq x_j - \frac{r}{89\sqrt{n}}, \\ 1 & \text{if } x_j - \frac{r}{89\sqrt{n}} \leq y_j \leq x_j + \frac{r}{89\sqrt{n}}, \\ \text{strictly decreasing} & \text{if } x_j + \frac{r}{89\sqrt{n}} \leq y_j \leq x_j + \frac{r}{64\sqrt{n}}, \\ 0 & \text{if } y_j \geq x_j + \frac{r}{64\sqrt{n}}. \end{cases}$$

Finally we define $\mathbf{h}_{\mathbf{x}} : \mathbb{R}^n \to \mathbb{R}^1$ by

$$\mathbf{h}_{\mathbf{x}}(\mathbf{y}) = \prod_{j=1}^{n} h_{x_j}(y_j)$$

where $\mathbf{y} = (y_1, \dots, \underline{y_n}) \in \mathbb{R}^n$. Hence, $\mathbf{h_x} \in \mathscr{C}^{\infty}(\mathbb{R}^n)$ (Theorem 9.21). Also, $\mathbf{h_x}(\mathbf{y}) = 1$ on $\overline{B(\mathbf{x})}$, $\mathbf{h_x}(\mathbf{y}) = 0$ outside $W(\mathbf{x})$, and $0 \leq \mathbf{h_x}(\mathbf{y}) \leq 1$.

(5) Since K is compact, there are finitely many points $\mathbf{x}_1, \dots, \mathbf{x}_s \in K$ such that

$$K \subseteq B(\mathbf{x}_1) \cup \cdots \cup B(\mathbf{x}_s).$$

Take

$$\varphi_i(\mathbf{x}) = \mathbf{h}_{\mathbf{x}_i}(\mathbf{x}) \in \mathscr{C}^{\infty}(\mathbb{R}^n)$$

for $1 \leq i \leq s$.

(6) The rest are the same as the proof of Theorem 10.8 or Exercise 10.5.

Exercise 10.7.

- (a) Show that the simplex Q^k is the smallest convex subset of \mathbb{R}^k such that contains $\mathbf{0}, \mathbf{e}_1, \ldots, \mathbf{e}_k$.
- (b) Show that affine mappings take convex sets to convex sets.

Proof of (a).

(1) Show that Q^k contains $\mathbf{0}, \mathbf{e}_1, \dots, \mathbf{e}_k$. Recall

$$Q^k = \{(x_1, \dots, x_k) \in \mathbb{R}^k : x_1 + \dots + x_k \le 1 \text{ and } x_1, \dots, x_k \ge 0\}$$

(Example 10.14). Hence $\mathbf{0} = (0, \dots, 0) \in Q^k$ and

$$\mathbf{e}_i = (0, \dots, \underbrace{1}_{i \text{th coordinate}}, \dots, 0) \in Q^k.$$

(2) Show that Q^k is a convex subset of \mathbb{R}^k . Given any $\mathbf{x} = (x_1, \dots, x_k) \in Q^k$, $\mathbf{y} = (y_1, \dots, y_k) \in Q^k$ and $0 < \lambda < 1$. Hence

$$\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} = (\lambda x_1 + (1 - \lambda)y_1, \dots, \lambda x_k + (1 - \lambda)y_k) \in Q^k$$

since each $\lambda x_i + (1 - \lambda)y_i \ge 0$ and

$$\sum_{i=1}^{k} (\lambda x_i + (1-\lambda)y_i) = \lambda \sum_{i=1}^{k} x_i + (1-\lambda) \sum_{i=1}^{k} y_i \le \lambda + (1-\lambda) = 1.$$

- (3) Given any convex set $E \subseteq \mathbb{R}^k$ containing $\mathbf{0}, \mathbf{e}_1, \dots, \mathbf{e}_k$. Show that $E \supseteq Q^k$.
 - (a) Induction on k. Base case: k = 1. Given any $\mathbf{x} = (x_1) \in Q^1$. We have $0 \le x_1 \le 1$ by the definition of Q^1 . So that $\mathbf{x} = x_1 \mathbf{e}_1 + (1 x_1) \mathbf{0} \in E$ since $\mathbf{0}, \mathbf{e}_1 \in E$ and E is convex.
 - (b) Inductive step: suppose the statement holds for k=n. Given any $\mathbf{x}=(x_1,\ldots,x_n,x_{n+1})\in Q^{n+1}$. If $x_{n+1}=1$, then $x_1=\cdots=x_n=0$ by the definition of Q^{n+1} . So $\mathbf{x}=\mathbf{e}_{n+1}\in E$ by the assumption of E. If $0\leq x_{n+1}<1$, then $x_1+\cdots+x_n\leq 1-x_{n+1}$ or

$$\frac{x_1}{1 - x_{n+1}} + \dots + \frac{x_n}{1 - x_{n+1}} \le 1.$$

So the point

$$\left(\frac{x_1}{1-x_{n+1}}, \dots, \frac{x_n}{1-x_{n+1}}\right) \in Q^n,$$

or

$$\left(\frac{x_1}{1-x_{n+1}}, \dots, \frac{x_n}{1-x_{n+1}}, 0\right), \text{ say } \widehat{\mathbf{x}}, \in E$$

by the induction hypothesis. Note that $\mathbf{e}_{n+1} \in E$. Hence

$$\mathbf{x} = x_{n+1} \mathbf{e}_{n+1} + (1 - x_{n+1}) \hat{\mathbf{x}} \in E$$

by the convexity of E.

(c) Conclusion: Since both the base case and the inductive step have been proved as true, by mathematical induction the statement holds.

Proof of (b).

(1) Let \mathbf{f} be an affine mapping that carries a vector space X into a vector space Y such that

$$\mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{0}) + A\mathbf{x}$$

for some $A \in L(X, Y)$.

(2) Given any convex subset C of X. To show that $\mathbf{f}(C)$ is convex, it suffices to show that

$$\lambda \mathbf{y}_1 + (1 - \lambda) \mathbf{y}_2 \in \mathbf{f}(C)$$

for any $\mathbf{y}_1, \mathbf{y}_2 \in \mathbf{f}(C)$ and $0 < \lambda < 1$. Write $\mathbf{y}_1 = \mathbf{f}(\mathbf{x}_1)$, $\mathbf{y}_2 = \mathbf{f}(\mathbf{x}_2)$ for some $\mathbf{x}_1, \mathbf{x}_2 \in C$. Note that $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in C$ by the convexity of C. Hence

$$\begin{aligned} &\mathbf{f}(\lambda\mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \\ &= &\mathbf{f}(\mathbf{0}) + A(\lambda\mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \\ &= &\mathbf{f}(\mathbf{0}) + \lambda A\mathbf{x}_1 + (1 - \lambda)A\mathbf{x}_2 \\ &= &\lambda (\mathbf{f}(\mathbf{0}) + A\mathbf{x}_1) + (1 - \lambda)(\mathbf{f}(\mathbf{0}) + A\mathbf{x}_2) \\ &= &\lambda \mathbf{f}(\mathbf{x}_1) + (1 - \lambda)\mathbf{f}(\mathbf{x}_2) \\ &= &\lambda \mathbf{y}_1 + (1 - \lambda)\mathbf{y}_2 \in \mathbf{f}(C). \end{aligned} \tag{$A \in L(X, Y)$}$$

Exercise 10.8. Let H be the parallelogram in \mathbb{R}^2 whose vertices are (1,1), (3,2), (4,5), (2,4). Find the affine map T which sends (0,0) to (1,1), (1,0) to (3,2), (1,1) to (4,5), (0,1) to (2,4). Show that $J_T=5$. Use T to convert the integral

$$\alpha = \int_{H} e^{x-y} dx \, dy$$

to an integral over I^2 and thus compute α .

Proof.

(1) By Affine simplexes 10.26,

$$T(\mathbf{x}) = T(\mathbf{0}) + A\mathbf{x},$$

where $A\in L(\mathbb{R}^2,\mathbb{R}^2)$, say $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Note that $T:\begin{bmatrix} 0 \\ 0 \end{bmatrix}\mapsto \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Thus

$$T: \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 + ax + by \\ 1 + cx + dy \end{bmatrix}.$$

(2) By $T:(1,0)\mapsto (3,2)$ and $T:(0,1)\mapsto (2,4)$, we can solve A as

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}.$$

It is easy to verify such

$$T: \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{\mathbf{x}} \mapsto \underbrace{\begin{bmatrix} 1 \\ 1 \end{bmatrix}}_{T(\mathbf{0})} + \underbrace{\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{\mathbf{x}} = \begin{bmatrix} 1 + 2x + y \\ 1 + x + 3y \end{bmatrix}$$

satisfying our requirement.

$$J_T = \det \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} = 5.$$

(4) By Example 10.4 and Theorem 10.9, we have

$$\int_{H} e^{x-y} dx \, dy = \int_{I^{2}} e^{(1+2u+v)-(1+u+3v)} |J_{T}| du \, dv$$

$$= 5 \int_{I^{2}} e^{u-2v} du \, dv$$

$$= 5 \left\{ \int_{0}^{1} e^{u} du \right\} \left\{ \int_{0}^{1} e^{-2v} dv \right\} \qquad \text{(Theorem 10.2)}$$

$$= \frac{5}{2} (e-1)(1-e^{-2}).$$

Exercise 10.9. Define $(x,y) = T(r,\theta)$ one the rectangle

$$0 \le r \le a, \qquad 0 \le \theta \le 2\pi$$

by the equations

$$x = r\cos\theta, \qquad y = r\sin\theta.$$

Show that T maps this rectangle onto the closed disc D with center at (0,0) and radius a, that T is one-to-one in the interior of the rectangle, and that $J_T(r,\theta) = r$. If $f \in \mathcal{C}(D)$, prove the formula for integration in polar coordinates:

$$\int_{D} f(x,y)dx dy = \int_{0}^{a} \int_{0}^{2\pi} f(T(r,\theta))rdr d\theta.$$

(Hint: Let D_0 be the interior of D, minus the interval from (0,0) to (0,a). As it stands, Theorem 10.9 applies to continuous functions f whose support lies in D_0 . To remove this restriction, proceed as in Example 10.4.)

Proof.

- (1)
- (2)

Exercise 10.10. Let $a \to \infty$ in Exercise 10.9 and prove that

$$\int_{\mathbb{R}^2} f(x,y) dx \ dy = \int_0^\infty \int_0^{2\pi} f(T(r,\theta)) r dr \ d\theta,$$

for continuous functions f that decrease sufficiently rapidly as $|x| + |y| \to \infty$. (Find a more precise formulation.) Apply this to

$$f(x,y) = \exp(-x^2 - y^2)$$

to derive formula

$$\int_{-\infty}^{\infty} e^{-s^2} ds = \sqrt{\pi}.$$

Proof.

- (1)
- (2)

Exercise 10.11. Define (u, v) = T(s, t) on the strip

$$0 < s < \infty, \qquad 0 < t < 1$$

by setting u = s - st, v = st. Show that T is a 1-1 mapping of the strip onto the positive quadrant Q in \mathbb{R}^2 . Show that $J_T(s,t) = s$. For x > 0, y > 0, integrate

$$u^{x-1}e^{-u}v^{y-1}e^{-v}$$

over Q, use Theorem 10.9 to convert the integral to one over the strip, and derive

$$\int_{0}^{1} t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

in this way. (For this application, Theorem 10.9 has to be extended so as to cover certain improper integrals. Provide this extension.)

Proof.

- (1)
- (2)

Exercise 10.12. Let I^k be the set of all $\mathbf{u} = (u_1, \dots, u_k) \in \mathbb{R}^k$ with $0 \le u_i \le 1$ for all i; let Q^k be the set of all $\mathbf{x} = (x_1, \dots, x_k) \in \mathbb{R}^k$ with $x_i \ge 0$, $\sum x_i \le 1$. (I^k is the unit cube; Q^k is the standard simplex in \mathbb{R}^k .) Define $\mathbf{x} = T(\mathbf{u})$ by

$$x_1 = u_1$$

 $x_2 = (1 - u_1)u_2$
...
 $x_k = (1 - u_1) \cdots (1 - u_{k-1})u_k$.

Show that

$$\sum_{i=1}^{k} x_i = 1 - \prod_{i=1}^{k} (1 - u_i).$$

Show that T maps I^k onto Q^k , that T is 1-1 in the interior of I^k , and that its inverse S is defined in the interior of Q^k by $u_1 = x_1$ and

$$u_i = \frac{x_i}{1 - x_1 - \dots - x_{i-1}}$$

for i = 2, ..., k. Show that

$$J_T(\mathbf{u}) = (1 - u_1)^{k-1} (1 - u_2)^{k-2} \cdots (1 - u_{k-1}),$$

and

$$J_S(\mathbf{x}) = [(1 - x_1)(1 - x_1 - x_2) \cdots (1 - x_1 - \cdots - x_{k-1})]^{-1}.$$

Proof.

(1) Show that

$$\sum_{i=1}^{m} x_i = 1 - \prod_{i=1}^{m} (1 - u_i)$$

for all $1 \le m \le k$. Induction on m. Base case: $x_1 = 1 - (1 - u_1)$. Inductive step: Suppose the case m = h is true. Consider the the case m = h + 1:

$$\sum_{i=1}^{h+1} x_i = \left(\sum_{i=1}^h x_i\right) + x_{h+1}$$

$$= 1 - \prod_{i=1}^h (1 - u_i) + x_{h+1} \qquad \text{(Induction hypothesis)}$$

$$= 1 - \prod_{i=1}^h (1 - u_i) + u_{h+1} \prod_{i=1}^h (1 - u_i) \qquad \text{(Definition of } x_{h+1})$$

$$= 1 - (1 - u_{h+1}) \prod_{i=1}^h (1 - u_i)$$

$$= 1 - \prod_{i=1}^{h+1} (1 - u_i).$$

Since both the base case and the inductive step have been proved as true, by mathematical induction the statement is established.

(2) Show that T maps I^k onto Q^k . Given any $\mathbf{x} = (x_1, \dots, x_k) \in Q^k$. It is equivalent to solve $\mathbf{u} = (u_1, \dots, u_k)$ from

$$x_1 = u_1$$

 $x_2 = (1 - u_1)u_2$
...
 $x_k = (1 - u_1) \cdots (1 - u_{k-1})u_k$

in terms of $\mathbf{x} = (x_1, \dots, x_k)$. It is clear that $u_1 = x_1$ and

$$u_i = \begin{cases} x_i (1 - x_1 - \dots - x_{i-1})^{-1} & \text{if } x_1 + \dots + x_{i-1} \neq 1, \\ 0 & \text{if } x_1 + \dots + x_{i-1} = 1. \end{cases}$$

for i = 2, ..., k. (If $x_1 + \cdots + x_{i-1} \neq 1$, by (1) we have

$$\prod_{j=1}^{i-1} (1 - u_j) = 1 - \sum_{j=1}^{i-1} x_i \neq 0$$

and thus

$$u_i = x_i \left\{ \prod_{j=1}^{i-1} (1 - u_j) \right\}^{-1} = x_i (1 - x_1 - \dots - x_{i-1})^{-1}.$$

If $x_1 + \cdots + x_{i-1} = 1$, then $x_i = \cdots = x_k = 0$. We may take $u_i = 0$ to set the expression $x_i = (1 - u_1) \cdots (1 - u_{i-1}) u_i$ to zero.) Note that the solution $\mathbf{u} \in I^k$ is well-defined by construction, or $T(I^k) = Q^k$.

(3) Show that T is 1-1 in the interior of I^k . Suppose $T(\mathbf{u}) = T(\mathbf{v}) = \mathbf{x}$ with $\mathbf{u}, \mathbf{v} \in \text{int}(I^k)$. Then we consider the following equation:

$$x_1 = u_1 = v_1$$

$$x_2 = (1 - u_1)u_2 = (1 - v_1)v_2$$

$$\dots$$

$$x_k = (1 - u_1) \cdots (1 - u_{k-1})u_k = (1 - v_1) \cdots (1 - v_{k-1})v_k.$$

By (1),

$$\mathbf{x} \in \text{int}(Q^k) = \left\{ (x_1, \dots, x_k) \in \mathbb{R}^k : x_i > 0, \sum x_i < 1 \right\}.$$

Hence,

$$u_1 = v_1 = x_1$$

 $u_2 = v_1 = x_2(1 - x_1)^{-1}$
 \dots
 $u_k = v_k = x_k(1 - x_1 - \dots - x_{k-1})^{-1}$.

Here all $(1-x_1)^{-1}, \ldots, (1-x_1-\cdots-x_i)^{-1}$ are well-defined since $\mathbf{x} \in \operatorname{int}(Q^k)$. Therefore, T is injective on $\operatorname{int}(I^k)$.

(4) By (2)(3), T maps $\operatorname{int}(I^k)$ onto $\operatorname{int}(Q^k)$. That is, given any $\mathbf{x} = (x_1, \dots, x_k) \in \operatorname{int}(Q^k)$, we can pick

$$u_1 = x_1$$

 $u_i = x_i(1 - x_1 - \dots - x_{i-1})^{-1}$ $(i = 2, \dots, k)$

such that $\mathbf{u} \in \text{int}(I^k)$ and $T(\mathbf{u}) = \mathbf{x}$.

(5) Note that $T(\mathbf{u}) = (u_1, (1 - u_1)u_2, \dots, (1 - u_1) \cdots (1 - u_{k-1})u_k)$ on $\operatorname{int}(I^k)$. So

$$T'(\mathbf{u}) = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ * & (1-u_1) & 0 & \cdots & 0 \\ * & * & \prod_{i=1}^{2} (1-u_i) & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ * & * & * & \cdots & \prod_{i=1}^{k-1} (1-u_i) \end{bmatrix}$$

is a lower triangular matrix. Hence,

$$J_T(\mathbf{u}) = \det T'(\mathbf{u})$$

$$= 1 \cdot (1 - u_1) \cdot \prod_{i=1}^{2} (1 - u_i) \cdot \dots \cdot \prod_{i=1}^{k-1} (1 - u_i)$$

$$= \prod_{i=1}^{k-1} (1 - u_i)^{k-i}.$$

(6) Similar to (5). $S(\mathbf{x}) = (x_1, x_2(1-x_1)^{-1}, \dots, x_k(1-x_1-\dots-x_{k-1})^{-1})$ on $\operatorname{int}(Q^k)$. So

$$S'(\mathbf{x}) = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ * & (1-x_1)^{-1} & 0 & \cdots & 0 \\ * & * & (1-x_1-x_2)^{-1} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ * & * & * & \cdots & (1-x_1-\cdots-x_{k-1})^{-1} \end{bmatrix}$$

is a lower triangular matrix. Hence,

$$J_S(\mathbf{x}) = \det S'(\mathbf{x})$$

$$= 1 \cdot (1 - x_1)^{-1} \cdot (1 - x_1 - x_2)^{-1} \cdots (1 - x_1 - \dots - x_{k-1})^{-1}$$

$$= [(1 - x_1)(1 - x_1 - x_2) \cdots (1 - x_1 - \dots - x_{k-1})]^{-1}.$$

Exercise 10.13. Let r_1, \ldots, r_k be nonnegative integers, and prove that

$$\int_{Q^k} x_1^{r_1} \cdots x_k^{r_k} d\mathbf{x} = \frac{r_1! \cdots r_k!}{(k + r_1 + \dots + r_k)!}$$

(Hint: Use Exercise 10.12, Theorems 10.9 and 8.20.) Note that the special case $r_1 = \cdots = r_k = 0$ shows that the volume of Q^k is $\frac{1}{k!}$.

Proof.

(1) Define $T: I^k$ onto Q^k as in Exercise 10.12, and $f: Q^k \to \mathbb{R}^1$ by

$$f(\mathbf{x}) = f(x_1, \dots, x_k) = x_1^{r_1} \cdots x_k^{r_k} = \prod_{i=1}^k x_i^{r_i}.$$

(2) By Exercise 10.12, Example 10.4 and Theorems 10.9, we have

$$\int_{Q^{k}} x_{1}^{r_{1}} \cdots x_{k}^{r_{k}} d\mathbf{x} = \int_{Q^{k}} f(\mathbf{x}) d\mathbf{x}
= \int_{I^{k}} \prod_{i=1}^{k} \left(u_{i} \prod_{j=1}^{i-1} (1 - u_{j}) \right)^{r_{i}} \prod_{i=1}^{k} (1 - u_{i})^{k-i} d\mathbf{u}
= \int_{I^{k}} \prod_{i=1}^{k} u_{i}^{r_{i}} (1 - u_{i})^{k-i+\sum_{j=i+1}^{k} r_{j}} d\mathbf{u}
= \prod_{i=1}^{k} \int_{0}^{1} u_{i}^{r_{i}} (1 - u_{i})^{k-i+\sum_{j=i+1}^{k} r_{j}} du_{i}$$
(Theorem 10.2)
$$= \prod_{i=1}^{k} \frac{r_{i}! \left(k - i + \sum_{j=i+1}^{k} r_{j} \right)!}{\left(k - i + 1 + \sum_{j=i}^{k} r_{j} \right)!}$$

$$= \frac{r_{1}! \cdots r_{k}!}{(k + r_{1} + \cdots + r_{k})!}.$$

Exercise 10.14 (Levi-Civita symbol). Prove $\varepsilon(j_1,\ldots,j_k)=s(j_1,\ldots,j_k),$ where

$$s(j_1,\ldots,j_k) = \prod_{p < q} \operatorname{sgn}(j_q - j_p).$$

It is usually to define the Levi-Civita symbol by

$$\varepsilon(j_1,\ldots,j_k) = \begin{cases} 1 & \text{if } (j_1,\cdots,j_k) \text{ is an even permutation of } J, \\ -1 & \text{if } (j_1,\cdots,j_k) \text{ is an odd permutation of } J, \\ 0 & \text{otherwise} \end{cases}$$

(Basic k-forms 10.14). Thus, it is the sign of the permutation in the case of a permutation, and zero otherwise. So $\varepsilon(j_1,\ldots,j_k)$ is equivalent to an explicit expression $s(j_1,\ldots,j_k) = \prod_{p < q} \operatorname{sgn}(j_q - j_p)$.

Proof.

(1) Induction on k. Base case: Show that $\varepsilon(j_1, j_2) = s(j_1, j_2)$. Since

$$\varepsilon(j_1, j_2) = \begin{cases} 1 & \text{if } j_1 < j_2 \\ -1 & \text{if } j_1 > j_2, \end{cases}$$

$$\varepsilon(j_1, j_2) = \operatorname{sgn}(j_2 - j_1) = s(j_1, j_2).$$

(2) Inductive step: Show that for any $s \geq 2$, if $\varepsilon(j_1, \ldots, j_s) = s(j_1, \ldots, j_s)$ holds, then $\varepsilon(j_1, \ldots, j_{s+1}) = s(j_1, \ldots, j_{s+1})$ also holds.

$$\varepsilon(j_1, \dots, j_{s+1}) = \varepsilon(j_1, \dots, j_s) \prod_{\substack{1 \le p \le s \\ q = s+1}} \operatorname{sgn}(j_q - j_p)$$

$$= s(j_1, \dots, j_s) \prod_{\substack{1 \le p \le s \\ q = s+1}} \operatorname{sgn}(j_q - j_p)$$

$$= \prod_{\substack{1 \le p < q \le s}} \operatorname{sgn}(j_q - j_p) \prod_{\substack{1 \le p \le s \\ q = s+1}} \operatorname{sgn}(j_q - j_p)$$

$$= \prod_{\substack{1 \le p < q \le s+1 \\ s \le j_1, \dots, j_{s+1}}} \operatorname{sgn}(j_q - j_p)$$

$$= s(j_1, \dots, j_{s+1})$$

(3) Conclusion: Since both the base case and the inductive step have been proved as true, by mathematical induction the statement holds for every integer $k \geq 2$.

Exercise 10.15. If ω and λ are k- and m-forms, respectively, prove that

$$\omega \wedge \lambda = (-1)^{km} \lambda \wedge \omega.$$

Proof.

(1) Write

$$\omega = \sum_{I} b_{I}(\mathbf{x}) dx_{I}, \qquad \lambda = \sum_{J} c_{J}(\mathbf{x}) dx_{J}$$

in the stardard presentations, where I and J range over all increasing k-indices and over all increasing m-indices taken from the set $\{1, \ldots, n\}$.

(2) Show that $dx_I \wedge dx_J = (-1)^{km} dx_J \wedge dx_J$.

$$dx_{I} \wedge dx_{J} = dx_{i_{1}} \wedge \dots \wedge dx_{i_{k}} \wedge dx_{J}$$

$$= (-1)^{m} dx_{i_{1}} \wedge \dots \wedge dx_{i_{k-1}} \wedge dx_{J} \wedge dx_{i_{k}}$$

$$= (-1)^{2m} dx_{i_{1}} \wedge \dots \wedge dx_{i_{k-2}} \wedge dx_{J} \wedge dx_{i_{k-1}} \wedge dx_{i_{k}}$$

$$\dots$$

$$= (-1)^{km} dx_{J} \wedge dx_{i_{1}} \wedge \dots \wedge dx_{i_{k}}$$

$$= (-1)^{km} dx_{J} \wedge dx_{I}.$$

(3)

$$\omega \wedge \lambda = \sum_{I,J} b_I(\mathbf{x}) c_J(\mathbf{x}) dx_I \wedge dx_J$$
$$= (-1)^{km} \sum_{J,I} c_J(\mathbf{x}) b_I(\mathbf{x}) dx_J \wedge dx_I$$
$$= (-1)^{km} \lambda \wedge \omega.$$

Exercise 10.16. If $k \geq 2$ and $\sigma = [\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_k]$ is an oriented affine k-simplex, prove that $\partial^2 \sigma = 0$, directly from the definition of the boundary operator ∂ . Deduce from this that $\partial^2 \Psi = 0$ for every chain Ψ . (Hint: For orientation, do it first for k = 2, k = 3. In general, if i < j, let σ_{ij} be the (k-2)-simplex obtained by deleting \mathbf{p}_i and \mathbf{p}_j from σ . Show that each σ_{ij} occurs twice in $\partial^2 \sigma$, with opposite sign.)

Proof (Brute-force).

(1) Write the boundary of the oriented affine k-simplex $\sigma = [\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_k]$ as

$$\partial \sigma = \sum_{i=0}^{k} (-1)^{i} [\mathbf{p}_{0}, \dots, \widehat{\mathbf{p}}_{i}, \dots, \mathbf{p}_{k}]$$

where where the oriented (k-1)-simplex $[\mathbf{p}_0, \dots, \widehat{\mathbf{p}_i}, \dots, \mathbf{p}_k]$ is obtained by deleting σ 's *i*-th vertex (Boundaries 10.29).

$$\partial^{2} \sigma = \partial \left(\sum_{i} (-1)^{i} [\mathbf{p}_{0}, \dots, \widehat{\mathbf{p}}_{i}, \dots, \mathbf{p}_{k}] \right)$$

$$= \sum_{i} (-1)^{i} \partial [\mathbf{p}_{0}, \dots, \widehat{\mathbf{p}}_{i}, \dots, \mathbf{p}_{k}]$$

$$= \sum_{j < i} (-1)^{i} (-1)^{j} [\mathbf{p}_{0}, \dots, \widehat{\mathbf{p}}_{j}, \dots, \widehat{\mathbf{p}}_{i}, \dots, \mathbf{p}_{k}]$$

$$+ \sum_{j > i} (-1)^{i} (-1)^{j-1} [\mathbf{p}_{0}, \dots, \widehat{\mathbf{p}}_{i}, \dots, \widehat{\mathbf{p}}_{j}, \dots, \mathbf{p}_{k}]$$

$$= \sum_{j < i} (-1)^{i+j} [\mathbf{p}_{0}, \dots, \widehat{\mathbf{p}}_{j}, \dots, \widehat{\mathbf{p}}_{i}, \dots, \mathbf{p}_{k}]$$

$$- \sum_{j > i} (-1)^{i+j} [\mathbf{p}_{0}, \dots, \widehat{\mathbf{p}}_{i}, \dots, \widehat{\mathbf{p}}_{j}, \dots, \mathbf{p}_{k}].$$

The latter two summations cancel since after switching i and j in the second sum. Therefore $\partial^2 \sigma = 0$.

(3) The boundary of a chain is the linear combination of boundaries of the simplices in the chain. Write $\Psi = \sum_{i=1}^{r} \sigma_i$, where σ_i is an oriented affine simplex. Then

$$\partial^2 \Psi = \partial \left(\partial \sum \sigma_i \right) = \partial \left(\sum \partial \sigma_i \right) = \sum \partial^2 \sigma_i = \sum 0 = 0$$

for any affine chain Ψ .

Exercise 10.17. Put $J^2 = \tau_1 + \tau_2$, where

$$\tau_1 = [\mathbf{0}, \mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2], \qquad \tau_2 = -[\mathbf{0}, \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_1].$$

Explain why it is reasonable to call J^2 the positively oriented unit square in \mathbb{R}^2 . Show that ∂J^2 is the sum of 4 oriented affine 1-simplexes. Find these. What is $\partial (\tau_1 - \tau_2)$?

Proof.

(1) Note that the unit square $I^2 \in \mathbb{R}^2$ is the union of $\tau_1(Q^2)$ and $\tau_2(Q_2)$, where

$$\tau_1(\mathbf{u}) = ([\mathbf{0}, \mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2])(\mathbf{u})$$

$$= \mathbf{0} + \alpha_1 \mathbf{e}_1 + \alpha_2 (\mathbf{e}_1 + \mathbf{e}_2)$$

$$= \mathbf{0} + (\alpha_1 + \alpha_2) \mathbf{e}_1 + \alpha_2 \mathbf{e}_2$$

$$= \mathbf{0} + \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \mathbf{u}$$

and

$$\begin{aligned} \tau_2(\mathbf{u}) &= (-[\mathbf{0}, \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_1])(\mathbf{u}) \\ &= ([\mathbf{0}, \mathbf{e}_2 + \mathbf{e}_1, \mathbf{e}_2])(\mathbf{u}) \\ &= \mathbf{0} + \alpha_1(\mathbf{e}_1 + \mathbf{e}_2) + \alpha_2\mathbf{e}_2 \\ &= \mathbf{0} + \alpha_1\mathbf{e}_1 + (\alpha_1 + \alpha_2)\mathbf{e}_2 \\ &= \mathbf{0} + \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \mathbf{u} \end{aligned}$$

where $\mathbf{u} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 \in \mathbb{R}^2$ (as in Equation (78)). Both τ_1 and τ_2 have Jacobian 1 > 0, or positively oriented (Affine simplexes 10.26). So it is reasonable to call J^2 the positively oriented unit square in \mathbb{R}^2 .

(2)

$$\begin{split} \partial \tau_1 &= [\mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2] - [\mathbf{0}, \mathbf{e}_1 + \mathbf{e}_2] + [\mathbf{0}, \mathbf{e}_1], \\ \partial \tau_2 &= [\mathbf{e}_2 + \mathbf{e}_1, \mathbf{e}_2] - [\mathbf{0}, \mathbf{e}_2] + [\mathbf{0}, \mathbf{e}_2 + \mathbf{e}_1] \\ &= [\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2] + [\mathbf{e}_2, \mathbf{0}] + [\mathbf{0}, \mathbf{e}_1 + \mathbf{e}_2]. \end{split}$$

(3) By (2),

$$\partial J^2 = \partial \tau_1 + \partial \tau_2 = [\mathbf{0}, \mathbf{e}_1] + [\mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2] + [\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2] + [\mathbf{e}_2, \mathbf{0}],$$

which is the positively oriented boundary of I^2 .

(4) By (2),

$$\begin{aligned} \partial(\tau_1 - \tau_2) &= \partial \tau_1 - \partial \tau_2 \\ &= [\mathbf{0}, \mathbf{e}_1] + [\mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2] + [\mathbf{e}_1 + \mathbf{e}_2, \mathbf{0}] \\ &+ [\mathbf{0}, \mathbf{e}_2] + [\mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_2] + [\mathbf{e}_1 + \mathbf{e}_2, \mathbf{0}]. \end{aligned}$$

Exercise 10.18. Consider the oriented affine 3-simplex

$$\sigma_1 = [\mathbf{0}, \mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3]$$

in \mathbb{R}^3 . Show that σ_1 (regarded as a linear transformation) has determinant 1. Thus σ_1 is positively oriented.

Let $\sigma_2, \ldots, \sigma_6$ be five other oriented 3-simplexes, obtained as follows: There are five permutations (i_1, i_2, i_3) of (1, 2, 3), distinct from (1, 2, 3). Associate with each (i_1, i_2, i_3) the simplex

$$s(i_1, i_2, i_3)[\mathbf{0}, \mathbf{e}_{i_1}, \mathbf{e}_{i_1} + \mathbf{e}_{i_2}, \mathbf{e}_{i_1} + \mathbf{e}_{i_2} + \mathbf{e}_{i_3}]$$

where s is the sign that occurs in the definition of the determinant. (This is how τ_2 was obtained from τ_1 in Exercise 10.17.) Show that $\sigma_2, \ldots, \sigma_6$ are positively oriented.

Put $J^3 = \sigma_1 + \cdots + \sigma_6$. Then J^3 may be called the positively oriented unit cube in \mathbb{R}^3 . Show that ∂J^3 is the sum of 12 oriented affine 2-simplexes. (These 12 triangles cover the surface of the unit cube I^3 .)

Show that $\mathbf{x} = (x_1, x_2, x_3)$ is in the range of σ_1 if and only if $0 \le x_3 \le x_2 \le x_1 \le 1$.

Show that the range of $\sigma_1, \ldots, \sigma_6$ have disjoint interiors, and that their union covers I^3 . (Compared with Exercise 10.13; note that 3! = 6.)

Proof.

(1) Show that σ_1 (regarded as a linear transformation) has determinant 1. Given any $\mathbf{u} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \alpha_3 \mathbf{e}_3 \in \mathbb{R}^3$, we have

$$\sigma_{1}(\mathbf{u}) = ([\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{1} + \mathbf{e}_{2}, \mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}])(\mathbf{u})$$

$$= \mathbf{0} + \alpha_{1}\mathbf{e}_{1} + \alpha_{2}(\mathbf{e}_{1} + \mathbf{e}_{2}) + \alpha_{3}(\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3})$$

$$= \mathbf{0} + (\alpha_{1} + \alpha_{2} + \alpha_{3})\mathbf{e}_{1} + (\alpha_{2} + \alpha_{3})\mathbf{e}_{2} + \alpha_{3}\mathbf{e}_{3}$$

$$= \mathbf{0} + \underbrace{\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}}_{\text{cov}} \mathbf{u}.$$

So

$$\det(A) = \det \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = 1.$$

(2) Show that $\sigma_2, \ldots, \sigma_6$ are positively oriented. Define the permutation matrix $P_{(i_1,i_2,i_3)}$ corresponding to a permutation (i_1,i_2,i_3) of (1,2,3) by

$$P_{(i_1,i_2,i_3)} = \begin{bmatrix} \mathbf{e}_{i_1} & \mathbf{e}_{i_2} & \mathbf{e}_{i_3} \end{bmatrix}.$$

For example,

$$P_{(2,3,1)} = \begin{bmatrix} \mathbf{e}_2 & \mathbf{e}_3 & \mathbf{e}_1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

Note that the sign $s(i_1, i_2, i_3)$ of the permutation (i_1, i_2, i_3) is exactly the same as the determinant of the permutation matrix $P_{(i_1, i_2, i_3)}$. Define a

permutation $(j_1, j_2, 3)$ of (1, 2, 3) (for swapping the first and the second coordinates of **u**) by

$$(j_1, j_2, 3) = \begin{cases} (1, 2, 3) & \text{if } s(i_1, i_2, i_3) = 1, \\ (2, 1, 3) & \text{if } s(i_1, i_2, i_3) = -1. \end{cases}$$

Write

$$\sigma_{(i_1,i_2,i_3)} = s(i_1,i_2,i_3)[\mathbf{0},\mathbf{e}_{i_1},\mathbf{e}_{i_1} + \mathbf{e}_{i_2},\mathbf{e}_{i_1} + \mathbf{e}_{i_2} + \mathbf{e}_{i_3}].$$

(So that $\sigma_1 = \sigma_{(1,2,3)}$.) Hence,

$$\sigma_{(i_1,i_2,i_3)}(\mathbf{u})$$
=0 + $\alpha_{j_1} \mathbf{e}_{i_1} + \alpha_{j_2} (\mathbf{e}_{i_1} + \mathbf{e}_{i_2}) + \alpha_3 (\mathbf{e}_{i_1} + \mathbf{e}_{i_2} + \mathbf{e}_{i_3})$
=0 + $(\alpha_{j_1} + \alpha_{j_2} + \alpha_3) \mathbf{e}_{i_1} + (\alpha_{j_2} + \alpha_3) \mathbf{e}_{i_2} + \alpha_3 \mathbf{e}_{i_3}$
=0 + $P_{(i_1,i_2,i_3)} A P_{(j_1,j_2,3)} \mathbf{u}$

where $\mathbf{u} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \alpha_3 \mathbf{e}_3 \in \mathbb{R}^3$. For example,

$$P_{(2,3,1)}AP_{(1,2,3)} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

So

$$\det(P_{(i_1,i_2,i_3)}AP_{(j_1,j_2,3)}) = \det(P_{(i_1,i_2,i_3)})\det(A)\det(P_{(j_1,j_2,3)})$$

$$= s(i_1,i_2,i_3) \cdot 1 \cdot s(i_1,i_2,i_3)$$

$$= 1.$$

(3) Show that ∂J^3 is the sum of 12 oriented affine 2-simplexes. Note that

$$\begin{split} \sum_{(i_1,i_2,i_3)} \sigma_{(i_1,i_2,i_3)} &= \sum_{\substack{(i_1,i_2,i_3)\\i_1>i_2}} \sigma_{(i_1,i_2,i_3)} + \sum_{\substack{(i_1,i_2,i_3)\\i_1< i_2}} \sigma_{(i_1,i_2,i_3)} \\ &= \sum_{\substack{(i_1,i_2,i_3)\\i_1>i_2}} s(i_1,i_2,i_3) [\mathbf{0},\mathbf{e}_{i_1} + \mathbf{e}_{i_2},\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3] \\ &+ \sum_{\substack{(i_1,i_2,i_3)\\i_2>i_1}} -s(i_2,i_1,i_3) [\mathbf{0},\mathbf{e}_{i_2} + \mathbf{e}_{i_1},\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3] \\ &= \mathbf{0} \end{split}$$

and

$$\begin{split} \sum_{(i_1,i_2,i_3)} \sigma_{(i_1,i_2,i_3)} &= \sum_{\substack{(i_1,i_2,i_3)\\i_2 > i_3}} \sigma_{(i_1,i_2,i_3)} + \sum_{\substack{(i_1,i_2,i_3)\\i_2 < i_3}} \sigma_{(i_1,i_2,i_3)} \\ &= \sum_{\substack{(i_1,i_2,i_3)\\i_2 > i_3}} s(i_1,i_2,i_3) [\mathbf{0},\mathbf{e}_{i_1},\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3] \\ &+ \sum_{\substack{(i_1,i_2,i_3)\\i_3 > i_2}} -s(i_1,i_3,i_2) [\mathbf{0},\mathbf{e}_{i_1},\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3] \\ &= \mathbf{0}. \end{split}$$

So

$$\begin{split} \partial J^3 &= \sum_{(i_1,i_2,i_3)} \partial \sigma_{(i_1,i_2,i_3)} \\ &= \sum_{(i_1,i_2,i_3)} s(i_1,i_2,i_3) [\mathbf{e}_{i_1},\mathbf{e}_{i_1} + \mathbf{e}_{i_2},\mathbf{e}_{i_1} + \mathbf{e}_{i_2} + \mathbf{e}_{i_3}] \\ &- s(i_1,i_2,i_3) [\mathbf{0},\mathbf{e}_{i_1} + \mathbf{e}_{i_2},\mathbf{e}_{i_1} + \mathbf{e}_{i_2} + \mathbf{e}_{i_3}] \\ &+ s(i_1,i_2,i_3) [\mathbf{0},\mathbf{e}_{i_1},\mathbf{e}_{i_1} + \mathbf{e}_{i_2} + \mathbf{e}_{i_3}] \\ &- s(i_1,i_2,i_3) [\mathbf{0},\mathbf{e}_{i_1},\mathbf{e}_{i_1} + \mathbf{e}_{i_2}] \\ &= \sum_{(i_1,i_2,i_3)} s(i_1,i_2,i_3) [\mathbf{e}_{i_1},\mathbf{e}_{i_1} + \mathbf{e}_{i_2},\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3] \\ &- \underbrace{\sum_{(i_1,i_2,i_3)} s(i_1,i_2,i_3) [\mathbf{0},\mathbf{e}_{i_1} + \mathbf{e}_{i_2},\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3]}_{=\mathbf{0}} \\ &+ \underbrace{\sum_{(i_1,i_2,i_3)} s(i_1,i_2,i_3) [\mathbf{0},\mathbf{e}_{i_1},\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3]}_{=\mathbf{0}} \\ &- \underbrace{\sum_{(i_1,i_2,i_3)} s(i_1,i_2,i_3) [\mathbf{0},\mathbf{e}_{i_1},\mathbf{e}_{i_1} + \mathbf{e}_{i_2}]. \end{split}$$

Thus,

$$\begin{split} \partial J^3 = & \sum_{(i_1,i_2,i_3)} s(i_1,i_2,i_3) [\mathbf{e}_{i_1},\mathbf{e}_{i_1} + \mathbf{e}_{i_2},\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3] \\ & - \sum_{(i_1,i_2,i_3)} s(i_1,i_2,i_3) [\mathbf{0},\mathbf{e}_{i_1},\mathbf{e}_{i_1} + \mathbf{e}_{i_2}] \end{split}$$

is the sum of 12 oriented affine 2-simplexes. (Note that 3! = 6.)

(4) Show that $\mathbf{x} = (x_1, x_2, x_3)$ is in the range of σ_1 if and only if $0 \le x_3 \le x_2 \le x_1 \le 1$.

(a) By (1), \mathbf{x} is in the range of σ_1 if and only if $\mathbf{x} = A\mathbf{u}$ for $\mathbf{u} = (u_1, u_2, u_3) \in Q^3$, or

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} u_1 + u_2 + u_3 \\ u_2 + u_3 \\ u_3 \end{bmatrix}.$$

- (b) Since $\mathbf{u} = (u_1, u_2, u_3) \in Q^3$, $u_1 + u_2 + u_3 \le 1$ and $u_1, u_2, u_3 \ge 0$. Hence $0 \le u_3 \le u_2 + u_3 \le u_1 + u_2 + u_3 \le 1$ or $0 \le x_3 \le x_2 \le x_1 \le 1$.
- (c) Conversely, if $0 \le x_3 \le x_2 \le x_1 \le 1$, we define

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} x_1 - x_2 \\ x_2 - x_3 \\ x_3 \end{bmatrix}.$$

Clearly, $\mathbf{v} \in Q^3$.

(5) Show that the range of $\sigma_1, \ldots, \sigma_6$ have disjoint interiors, and that their union covers I^3 . Similar to (4). By (2), $\mathbf{x} = P_{(i_1,i_2,i_3)}AP_{(j_1,j_2,3)}\mathbf{u}$, or $P_{(i_1,i_2,i_3)^{-1}}\mathbf{x} = AP_{(j_1,j_2,3)}\mathbf{u}$, or

$$\begin{bmatrix} x_{i_1} \\ x_{i_2} \\ x_{i_3} \end{bmatrix} = \begin{bmatrix} u_1 + u_2 + u_3 \\ u_{j_2} + u_3 \\ u_3 \end{bmatrix}.$$

In any case, we always have $0 \le u_3 \le u_{j_2} + u_3 \le u_1 + u_2 + u_3 \le 1$. Hence $\mathbf{x} = (x_1, x_2, x_3)$ is in the range of $\sigma_{(i_1, i_2, i_3)}$ if and only if

$$0 \le x_{i_3} \le x_{i_2} \le x_{i_1} \le 1.$$

The interior of $\sigma_{(i_1,i_2,i_3)}$ is

$$\{\mathbf{x} \in \mathbb{R}^3 : 0 < x_{i_3} < x_{i_2} < x_{i_1} < 1\},\$$

and thus the range of $\sigma_1, \ldots, \sigma_6$ have disjoint interiors. Also, any $\mathbf{x} \in I^3$ has the relation

$$0 \le x_{i_3} \le x_{i_2} \le x_{i_1} \le 1$$

for some permutation (i_1, i_2, i_3) of (1, 2, 3). Hence

$$I^{3} = \bigcup_{(i_{1}, i_{2}, i_{3})} \sigma_{(i_{1}, i_{2}, i_{3})}(Q^{3}) = \bigcup_{i=1}^{6} \sigma_{i}(Q^{3}).$$

Exercise 10.19. Let J^2 and J^3 be as in Exercise 10.17 and Exercise 10.18. Define

$$B_{01}(u,v) = (0, u, v),$$
 $B_{11}(u,v) = (1, u, v),$
 $B_{02}(u,v) = (u, 0, v),$ $B_{12}(u,v) = (u, 1, v),$
 $B_{03}(u,v) = (u, v, 0),$ $B_{13}(u,v) = (u, v, 1).$

These are affine, and map \mathbb{R}^2 into \mathbb{R}^3 . Put $\beta_{ri} = B_{ri}(J^2)$, for r = 0, 1, i = 1, 2, 3. Each β_{ri} is an affine-oriented 2-chain. (See Section 10.30.) Verify that

$$\partial J^3 = \sum_{i=1}^3 (-1)^i (\beta_{0i} - \beta_{1i}),$$

in agreement with Exercise 10.18.)

Proof.

(1) A direct calculation shows that

$$B_{01}(\tau_1) - B_{11}(\tau_1) = [\mathbf{0}, \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3] - [\mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3]$$

$$B_{02}(\tau_1) - B_{12}(\tau_1) = [\mathbf{0}, \mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_3] - [\mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3]$$

$$B_{03}(\tau_1) - B_{13}(\tau_1) = [\mathbf{0}, \mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2] - [\mathbf{e}_3, \mathbf{e}_1 + \mathbf{e}_3, \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3]$$

$$B_{01}(\tau_2) - B_{11}(\tau_2) = -[\mathbf{0}, \mathbf{e}_3, \mathbf{e}_2 + \mathbf{e}_3] + [\mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_3, \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3]$$

$$B_{02}(\tau_2) - B_{12}(\tau_2) = -[\mathbf{0}, \mathbf{e}_3, \mathbf{e}_1 + \mathbf{e}_3] + [\mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_3, \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3]$$

$$B_{03}(\tau_2) - B_{13}(\tau_2) = -[\mathbf{0}, \mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_2] + [\mathbf{e}_3, \mathbf{e}_2 + \mathbf{e}_3, \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3]$$

(2) To express the formula in (1) clearly, we define

$$\omega_{(i_1,i_2,i_3)} = [\mathbf{e}_{i_1},\mathbf{e}_{i_1} + \mathbf{e}_{i_2},\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3] - [\mathbf{0},\mathbf{e}_{i_2},\mathbf{e}_{i_2} + \mathbf{e}_{i_3}],$$

and thus

$$-(B_{01}(\tau_1) - B_{11}(\tau_1)) = s(1, 2, 3)\omega_{(1,2,3)}$$

$$B_{02}(\tau_1) - B_{12}(\tau_1) = s(2, 1, 3)\omega_{(2,1,3)}$$

$$-(B_{03}(\tau_1) - B_{13}(\tau_1)) = s(3, 1, 2)\omega_{(3,1,2)}$$

$$-(B_{01}(\tau_2) - B_{11}(\tau_2)) = s(1, 3, 2)\omega_{(1,3,2)}$$

$$B_{02}(\tau_2) - B_{12}(\tau_2) = s(2, 3, 1)\omega_{(2,3,1)}$$

$$-(B_{03}(\tau_2) - B_{13}(\tau_2)) = s(3, 2, 1)\omega_{(3,2,1)}.$$

(3) Note that

$$\beta_{0i} - \beta_{1i} = B_{0i}(J^2) - B_{1i}(J^2)$$

$$= B_{0i}(\tau_1 + \tau_2) - B_{1i}(\tau_1 + \tau_2)$$

$$= B_{0i}(\tau_1) + B_{0i}(\tau_2) - B_{1i}(\tau_1) - B_{1i}(\tau_2)$$

$$= (B_{0i}(\tau_1) - B_{1i}(\tau_1)) + (B_{0i}(\tau_2) - B_{1i}(\tau_2)).$$

Thus,

$$\sum_{i=1}^{3} (-1)^{i} (\beta_{0i} - \beta_{1i})$$

$$= \sum_{i=1}^{3} (-1)^{i} (B_{0i}(\tau_{1}) - B_{1i}(\tau_{1})) + \sum_{i=1}^{3} (-1)^{i} (B_{0i}(\tau_{2}) - B_{1i}(\tau_{2}))$$

$$= \sum_{(i_{1}, i_{2}, i_{3})} s(i_{1}, i_{2}, i_{3}) \omega_{(i_{1}, i_{2}, i_{3})}$$

$$= \sum_{(i_{1}, i_{2}, i_{3})} s(i_{1}, i_{2}, i_{3}) [\mathbf{e}_{i_{1}}, \mathbf{e}_{i_{1}} + \mathbf{e}_{i_{2}}, \mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}]$$

$$- \sum_{(i_{1}, i_{2}, i_{3})} s(i_{1}, i_{2}, i_{3}) [\mathbf{0}, \mathbf{e}_{i_{1}}, \mathbf{e}_{i_{1}} + \mathbf{e}_{i_{2}}]$$

$$= \partial J^{3}.$$

Exercise 10.20. State conditions under which the formula

$$\int_{\Phi} f d\omega = \int_{\partial \Phi} f \omega - \int_{\Phi} (df) \wedge \omega$$

is valid, and show that it generalizes the formula for integration by parts. (Hint: $d(f\omega)=(df)\wedge\omega+fd\omega$.)

Proof.

- (1) If
 - (a) Φ is a k-chain of class \mathscr{C}'' in an open set $V \subseteq \mathbb{R}^m$,
 - (b) ω is a (k-1)-form of class \mathscr{C}' in V,
 - (c) f is a 0-form of class \mathscr{C}' in V,

then

$$\int_{\Phi} f d\omega = \int_{\partial \Phi} f \omega - \int_{\Phi} (df) \wedge \omega$$

(2) Theorem 10.20(a) implies that

$$d(f\omega) = (df) \wedge \omega + fd\omega.$$

(3) The Stokes' theorem (Theorem 10.33) shows that

$$\int_{\Phi} d(f\omega) = \int_{\partial \Phi} f\omega.$$

Hence

$$\int_{\Phi} f d\omega = \int_{\Phi} d(f\omega) - \int_{\Phi} (df) \wedge \omega = \int_{\partial \Phi} f\omega - \int_{\Phi} (df) \wedge \omega.$$

(4) Define $\Phi: Q^1 = [0,1] \rightarrow [a,b]$ by

$$\Phi(\alpha) = a + \alpha(b - a).$$

 Φ is a 1-simplex of class \mathscr{C}'' in an open set $V\supseteq [a,b].$ Also,

$$\partial \Phi = [b] - [a].$$

Let $\omega = g$ be a 0-form of class $\mathscr{C}'(V)$.

(5) Note that

$$\begin{split} \int_{\Phi} f d\omega &= \int_{\Phi} f dg = \int_{0}^{1} f(\Phi(t))g'(\Phi(t))\Phi'(t)dt = \int_{a}^{b} f(u)g'(u)du, \\ \int_{\partial\Phi} f\omega &= \int_{[b]} fg + \int_{-[a]} fg = f(b)g(b) + (-1)f(a)f(a), \\ \int_{\Phi} (df) \wedge \omega &= \int_{\Phi} (df)g = \int_{0}^{1} f'(\Phi(t))g(\Phi(t))\Phi'(t)dt = \int_{a}^{b} f'(u)g(u)du. \end{split}$$

Hence

$$\int_{a}^{b} f(u)g'(u)du = f(b)g(b) - f(a)f(a) - \int_{a}^{b} f'(u)g(u)du,$$

which is the same as the integration by parts (Theorem 6.22).

Exercise 10.21. As in Example 10.36, consider the 1-form

$$\eta = \frac{xdy - ydx}{x^2 + y^2}$$

in $\mathbb{R}^2 - \{ \mathbf{0} \}$.

(a) Carry out the computation that leads to

$$\int_{\gamma} \eta = 2\pi \neq 0,$$

and prove that $d\eta = 0$.

(b) Let $\gamma(t) = (r \cos t, r \sin t)$, for some r > 0, and let Γ be a \mathscr{C}'' -curve in $\mathbb{R}^2 - \{\mathbf{0}\}$, with parameter interval $[0, 2\pi]$, with $\Gamma(0) = \Gamma(2\pi)$, such that the intervals $[\gamma(t), \Gamma(t)]$ do not contain $\mathbf{0}$ for any $t \in [0, 2\pi]$. Prove that

$$\int_{\Gamma} \eta = 2\pi.$$

(Hint: For $0 \le t \le 2\pi$, $0 \le u \le 1$, define

$$\Phi(t, u) = (1 - u)\Gamma(t) + u\gamma(t).$$

Then Φ is a 2-surface in $\mathbb{R}^2 - \{\mathbf{0}\}$ whose parameter domain is the indicated rectangle. Because of cancellations (as in Example 10.32),

$$\partial \Phi = \Gamma - \gamma$$
.

Use Stokes' theorem to deduce that

$$\int_{\Gamma} \eta = \int_{\gamma} \eta$$

because $d\eta = 0$.)

(c) Take $\Gamma(t)=(a\cos t,b\sin t)$ where $a>0,\ b>0$ are fixed. Use part (b) to show that

$$\int_0^{2\pi} \frac{ab}{a^2 \cos^2 t + b^2 \sin^2 t} dt = 2\pi.$$

(d) Show that

$$\eta = d \left(\arctan \frac{y}{x} \right)$$

in any convex open set in which $x \neq 0$, and that

$$\eta = d\left(-\arctan\frac{x}{y}\right)$$

in any convex open set in which $y \neq 0$. Explain why this justifies the notation $\eta = d\theta$, in spite of the fact that η is not exact in $\mathbb{R}^2 - \{0\}$.

- (e) Show that (b) can be derived from (d).
- (f) If Γ is any closed \mathscr{C}' -curve in $\mathbb{R}^2 \{\mathbf{0}\}$, prove that

$$\frac{1}{2\pi} \int_{\Gamma} \eta = \operatorname{Ind}(\Gamma).$$

(See Exercise 8.23 for the definition of the index of a curve.)

Proof of (a).

(1)
$$\int_{\gamma} \eta = \int_{0}^{2\pi} \frac{(r\cos t)d(r\sin t) - (r\sin t)d(r\cos t)}{(r\cos t)^{2} + (r\sin t)^{2}}$$
$$= \int_{0}^{2\pi} \frac{(r\cos t)(r\cos t) - (r\sin t)(-r\sin t)}{(r\cos t)^{2} + (r\sin t)^{2}} dt$$
$$= \int_{0}^{2\pi} dt$$

 $=2\pi$.

(2) $d\eta = d\left(\frac{xdy - ydx}{x^2 + y^2}\right)$ $= d\left(\frac{x}{x^2 + y^2}\right) \wedge dy - d\left(\frac{y}{x^2 + y^2}\right) \wedge dx \qquad (d^2 = 0)$ $= D_1\left(\frac{x}{x^2 + y^2}\right) dx \wedge dy \qquad (dy \wedge dy = 0)$ $- D_2\left(\frac{y}{x^2 + y^2}\right) dy \wedge dx \qquad (dx \wedge dx = 0)$ $= \left(\frac{1}{x^2 + y^2} - \frac{2x^2}{(x^2 + y^2)^2}\right) dx \wedge dy$ $+ \left(\frac{1}{x^2 + y^2} - \frac{2y^2}{(x^2 + y^2)^2}\right) dx \wedge dy$

Note.

- (1) η is closed and locally exact, that is, $\eta=dt$ on \mathbb{R}^2-L where L is any line passing through $\mathbf{0}$. η is not exact since $\int_{\gamma}\eta=2\pi\neq0$. (See Exercise 10.22(g).)
- (2) (Poincaré's Lemma for 1-form.) Let $\omega = \sum a_i dx_i$ be defined in an open set $U \subseteq \mathbb{R}^n$. Then $d\omega = 0$ if and only if for each $p \in U$ there is a neighborhood $V \subseteq U$ of p and a differentiable function $f: V \to \mathbb{R}^1$ with $df = \omega$ (i.e., ω is locally exact).

Proof of (b).

(1) For $0 \le t \le 2\pi$, $0 \le u \le 1$, define

$$\Phi(t, u) = (1 - u)\Gamma(t) + u\gamma(t).$$

Then Φ is a 2-surface in $\mathbb{R}^2 - \{\mathbf{0}\}$ whose parameter domain $D = \{(t, u) : 0 \le t \le 2\pi, 0 \le u \le 1\}$ is the indicated rectangle.

(2) Similar to Example 10.32,

$$\partial \Phi = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4$$

where

$$\gamma_1(t) = \Phi(t,0) = \Gamma(t),$$

$$\gamma_2(u) = \Phi(2\pi, u) = (1 - u)\Gamma(2\pi) + u\gamma(2\pi),$$

$$\gamma_3(t) = \Phi(2\pi - t, 1) = \gamma(2\pi - t),$$

$$\gamma_4(u) = \Phi(0, 1 - u) = u\Gamma(0) + (1 - u)\gamma(0).$$

Because of cancellations (as in Example 10.32), $\gamma(0) = \gamma(2\pi)$ and $\Gamma(0) = \Gamma(2\pi)$, $\gamma_4 = -\gamma_2$ and $\gamma_3 = -\gamma$. Hence,

$$\partial \Phi = \Gamma - \gamma$$
.

(3) The Stokes' theorem (Theorem 10.33) implies that

$$\int_{\Phi} d\eta = \int_{\partial \Phi} \eta = \int_{\Gamma - \gamma} \eta = \int_{\Gamma} \eta - \int_{\gamma} \eta.$$

Hence,

$$\int_{\Gamma} \eta = \int_{\gamma} \eta$$

(since $d\eta = 0$ by (a)).

Proof of (c).

(1) Γ satisfies all conditions described in (b). So

$$\int_{\Gamma} \eta = 2\pi.$$

(2) A direct calculation shows that

$$\begin{split} 2\pi &= \int_{\Gamma} \eta = \int_{\Gamma} \frac{x dy - y dx}{x^2 + y^2} \\ &= \int_{0}^{2\pi} \frac{a \cos(t) d(b \sin(t)) - b \sin(t) d(a \cos(t))}{(a \cos(t))^2 + (b \sin(t))^2} \\ &= \int_{0}^{2\pi} \frac{a b (\cos^2 t + \sin^2 t)}{a^2 \cos^2 t + b^2 \sin^2 t} \\ &= \int_{0}^{2\pi} \frac{a b}{a^2 \cos^2 t + b^2 \sin^2 t}. \end{split}$$

Proof of (d).

(1) In any convex open set in which $x \neq 0$, we have

$$d\left(\arctan\frac{y}{x}\right) = \left(D_1 \arctan\frac{y}{x}\right) dx + \left(D_2 \arctan\frac{y}{x}\right) dy$$
$$= -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$
$$= \eta.$$

(2) In any convex open set in which $y \neq 0$, we have

$$d\left(-\arctan\frac{x}{y}\right) = \left(D_1\left(-\arctan\frac{x}{y}\right)\right)dx + \left(D_2\left(-\arctan\frac{x}{y}\right)\right)dy$$
$$= -\frac{y}{x^2 + y^2}dx + \frac{x}{x^2 + y^2}dy$$
$$= n.$$

(3) By (1)(2), η is locally exact. Note that $\theta_1 = \arctan \frac{y}{x}$ and $\theta_2 = -\arctan \frac{x}{y}$ cannot be patched together to defined a global 0-form θ on $\mathbb{R}^2 - \{\mathbf{0}\}$.

Proof of (e).

(1) Partition $[0, 2\pi]$ into five subintervals

$$I_i = \left\lceil \frac{(2i-3)\pi}{4}, \frac{(2i-1)\pi}{4} \right\rceil \cap [0, 2\pi].$$

for i = 1, 2, 3, 4, 5. Hence

$$\begin{split} \int_{\gamma} \eta &= \sum_{i=1}^{5} \int_{\gamma(I_{i})} \eta \\ &= \sum_{i=1,3,5} \int_{\gamma(I_{i})} d\left(\arctan \frac{y}{x}\right) + \sum_{i=2,4} \int_{\gamma(I_{i})} d\left(-\arctan \frac{x}{y}\right). \end{split}$$

(2) The Stokes' theorem (Theorem 10.33) implies that

$$\int_{\gamma(I_1)} d\left(\arctan \frac{y}{x}\right) = \int_{\partial \gamma(I_1)} \arctan \frac{y}{x}$$

$$= \left[\arctan \frac{r \cos t}{r \sin t}\right]_{t=0}^{t=\frac{\pi}{4}}$$

$$= \left[\arctan(\tan(t))\right]_{t=0}^{t=\frac{\pi}{4}}$$

$$= \frac{\pi}{4},$$

and

$$\begin{split} \int_{\gamma(I_2)} d\left(-\arctan\frac{x}{y}\right) &= \int_{\partial\gamma(I_2)} -\arctan\frac{x}{y} \\ &= \left[\arctan\frac{r\sin t}{r\cos t}\right]_{t=\frac{\pi}{4}}^{t=\frac{3\pi}{4}} \\ &= \left[\arctan(\cot(t))\right]_{t=\frac{\pi}{4}}^{t=\frac{3\pi}{4}} \\ &= \frac{\pi}{2}. \end{split}$$

Similarly,

$$\begin{split} \int_{\gamma(I_3)} d\left(\arctan\frac{y}{x}\right) &= \frac{\pi}{2} \\ \int_{\gamma(I_4)} d\left(-\arctan\frac{x}{y}\right) &= \frac{\pi}{2} \\ \int_{\gamma(I_5)} d\left(\arctan\frac{y}{x}\right) &= \frac{\pi}{4}. \end{split}$$

(3) Therefore,

$$\int_{\gamma} \eta = \left(\frac{\pi}{4} + \frac{\pi}{2} + \frac{\pi}{4}\right) + \left(\frac{\pi}{2} + \frac{\pi}{2}\right) = 2\pi.$$

Proof of (f).

(1) Regard $\Gamma(t)$ as a plane curve $(\Gamma_1(t), \Gamma_2(t))$ over \mathbb{R}^2 or $\Gamma_1(t) + i\Gamma_2(t)$ over \mathbb{C}^1 . Note that

$$\begin{split} \frac{\Gamma'(t)}{\Gamma(t)} &= \frac{\Gamma'_1(t) + i\Gamma'_2(t)}{\Gamma_1(t) + i\Gamma_2(t)} \\ &= \frac{\Gamma'_1(t)\Gamma'_1(t) + \Gamma'_2(t)\Gamma'_2(t)}{\Gamma_1(t)^2 + \Gamma_2(t)^2} + i\frac{\Gamma_1(t)\Gamma'_2(t) - \Gamma_2(t)\Gamma'_1(t)}{\Gamma_1(t)^2 + \Gamma_2(t)^2}. \end{split}$$

So

$$\operatorname{Im}\left(\frac{\Gamma'(t)}{\Gamma(t)}\right) = \frac{\Gamma_1(t)\Gamma_2'(t) - \Gamma_2(t)\Gamma_1'(t)}{\Gamma_1(t)^2 + \Gamma_2(t)^2}.$$

(2) By Exercise 8.23,

$$\operatorname{Ind}(\Gamma) = \frac{1}{2\pi i} \int_0^{2\pi} \frac{\Gamma'(t)}{\Gamma(t)} dt$$

is always an integer. That is,

$$\operatorname{Ind}(\Gamma) = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Im}\left(\frac{\Gamma'(t)}{\Gamma(t)}\right) dt$$
$$= \frac{1}{2\pi} \int_0^{2\pi} \frac{\Gamma_1(t)\Gamma_2'(t) - \Gamma_2(t)\Gamma_1'(t)}{\Gamma_1(t)^2 + \Gamma_2(t)^2} dt$$
$$= \frac{1}{2\pi} \int_{\Gamma} \frac{xdy - ydx}{x^2 + y^2}$$
$$= \frac{1}{2\pi} \int_{\Gamma} \eta.$$

(Note that $\operatorname{Ind}(\Gamma) = 1$ if Γ is defined as in (c). Hence the integral in (c) is equal to $2\pi\operatorname{Ind}(\Gamma) = 2\pi$.)

Exercise 10.22. As in Example 10.37, define ζ in $\mathbb{R}^3 - \{\mathbf{0}\}$ by

$$\zeta = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{r^3}$$

where $r=(x^2+y^2+z^2)^{\frac{1}{2}}$, let D be the rectangle given by $0 \le u \le \pi$, $0 \le v \le 2\pi$, and let Σ be the 2-surface in \mathbb{R}^3 , with parameter domain D, given by

$$x = \sin u \cos v,$$
 $y = \sin u \sin v,$ $z = \cos u$

- (a) Prove that $d\zeta = 0$ in $\mathbb{R}^3 \{\mathbf{0}\}$.
- (b) Let S denote the restriction of Σ to a parameter domain $E\subseteq D$. Prove that

$$\int_{S} \zeta = \int_{E} \sin u \, du \, dv = A(S),$$

where A denotes area, as in Section 10.46. Note that this contains

$$\int_{\Sigma} \zeta = \int_{D} \sin u \, du \, dv = 4\pi \neq 0$$

as a special case.

(c) Suppose g, h_1, h_2, h_3 , are \mathscr{C}'' -functions on [0,1], g > 0. Let $(x, y, z) = \Phi(s,t)$ define a 2-surface Φ , with parameter domain I^2 , by

$$x = g(t)h_1(s),$$
 $y = g(t)h_2(s),$ $z = g(t)h_3(s).$

Prove that

$$\int_{\Phi}\zeta=0,$$

directly from Equation (35) in Chapter 10. Note the shape of the range of Φ : For fixed s, $\Phi(s,t)$ runs over an interval on a line through $\mathbf{0}$. The range of Φ thus lies in a "cone" with vertex at the origin.

(d) Let E be a closed rectangle in D, with edges parallel to those of D. Suppose $f \in \mathscr{C}''(D), \ f > 0$. Let Ω be the 2-surface with parameter domain E, defined by

$$\Omega(u, v) = f(u, v)\Sigma(u, v).$$

Define S as in (b) and prove that

$$\int_{\Omega} \zeta = \int_{S} \zeta = A(S).$$

(Since S is the "radical projection" of Ω into the unit sphere, this result makes it reasonable to call $\int_{\Omega} \zeta$ the "solid angle" subtended by the range of Ω at the origin.) (Hint: Consider the 3-surface Ψ given by

$$\Psi(t, u, v) = [1 - t + t f(u, v)] \Sigma(u, v),$$

where $(u,v) \in E$, $0 \le t \le 1$. For fixed v, the mapping $(t,u) \mapsto \Psi(t,u,v)$ is a 2-surface Φ to which (c) can be applied to show that $\int_{\Phi} \zeta = 0$. The same thing holds when u is fixed. By (a) and Stokes' theorem,

$$\int_{\partial \Psi} \zeta = \int_{\Psi} d\zeta = 0.$$

(e) Put $\lambda = -\frac{z}{r}\eta$, where

$$\eta = \frac{xdy - ydx}{x^2 + y^2},$$

as in Exercise 10.21. Then λ is a 1-form in the open set $V \subseteq \mathbb{R}^3$ in which $x^2 + y^2 > 0$. Show that ζ is exact in V by showing that

$$\zeta = d\lambda$$
.

(f) Derive (d) from (e), without using (c). (Hint: To begin with, assume $0 < u < \pi$ on E. By (e),

$$\int_{\Omega} \zeta = \int_{\partial \Omega} \lambda \quad and \quad \int_{S} \zeta = \int_{\partial S} \lambda.$$

Show that the two integrals of λ are equal, by using part (d) of Exercise 10.21, and by noting that $\frac{z}{r}$ is the same at $\Sigma(u,v)$ as at $\Omega(u,v)$.)

(g) Is ζ exact in the complement of every line through the origin?

Proof of (a).

(1) Note that ζ is well-defined on $\mathbb{R}^3 - \{0\}$. Hence,

$$\begin{split} d\zeta &= d\left(\frac{xdy\wedge dz + ydz\wedge dx + zdx\wedge dy}{r^3}\right) \\ &= d\left(\frac{x}{r^3}\right)\wedge dy\wedge dz + d\left(\frac{y}{r^3}\right)\wedge dz\wedge dx + d\left(\frac{z}{r^3}\right)\wedge dx\wedge dy \\ &= D_1\left(\frac{x}{r^3}\right)dx\wedge dy\wedge dz + D_2\left(\frac{y}{r^3}\right)dy\wedge dz\wedge dx + D_3\left(\frac{z}{r^3}\right)dz\wedge dx\wedge dy \\ &= \frac{r^3 - 3rx^2}{r^6}dx\wedge dy\wedge dz + \frac{r^3 - 3ry^2}{r^6}dy\wedge dz\wedge dx + \frac{r^3 - 3rz^2}{r^6}dz\wedge dx\wedge dy \\ &= \left(\frac{r^3 - 3rx^2}{r^6} + \frac{r^3 - 3ry^2}{r^6} + \frac{r^3 - 3rz^2}{r^6}\right)dx\wedge dy\wedge dz \\ &= 0dx\wedge dy\wedge dz \\ &= 0 \end{split}$$

in $\mathbb{R}^3 - \{\mathbf{0}\}$.

(2) Or write

$$\mathbf{F} = \frac{x}{r^3}\mathbf{e}_1 + \frac{y}{r^3}\mathbf{e}_2 + \frac{z}{r^3}\mathbf{e}_3$$

as in Vector fields 10.42. So

$$\omega_{\mathbf{F}} = \zeta$$

and

$$d\omega_{\mathbf{F}} = (\nabla \cdot \mathbf{F})dx \wedge dy \wedge dz$$

as in the proof of the divergence theorem (Theorem 10.51). Note that the divergence of ${\bf F}$ is zero.

Proof of (b).

(1) By Area elements in \mathbb{R}^3 10.46,

$$\mathbf{N}(u,v) = \frac{\partial(y,z)}{\partial(u,v)} \mathbf{e}_1 + \frac{\partial(z,x)}{\partial(u,v)} \mathbf{e}_2 + \frac{\partial(x,y)}{\partial(u,v)} \mathbf{e}_3$$
$$= (\sin^2 u \cos v) \mathbf{e}_1 + (\sin^2 u \sin v) \mathbf{e}_2 + (\sin u \cos u) \mathbf{e}_3.$$

Here $|\mathbf{N}(u,v)| = \sin u \ge 0$ (by noting that $u \in [0,\pi]$), and

$$\mathbf{n}(u,v) = \frac{\mathbf{N}(u,v)}{|\mathbf{N}(u,v)|} = (\sin u \cos v, \sin u \sin v, \cos u).$$

(2) Note that $\zeta = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy$ on $S \subseteq \Sigma$. Hence, by Integrals

of 2-forms in \mathbb{R}^3 10.49,

$$\begin{split} \int_S \zeta &= \int_S x dy \wedge dz + y dz \wedge dx + z dx \wedge dy \\ &= \int_E (\sin u \cos v, \sin u \sin v, \cos u) \cdot \mathbf{N}(u, v) \, du \, dv \\ &= \int_E \mathbf{n}(u, v) \cdot \mathbf{n}(u, v) |\mathbf{N}(u, v)| \, du \, dv \\ &= \int_E |\mathbf{N}(u, v)| \, du \, dv \\ &= A(S). \end{split}$$

(3) In particular,

$$\int_{\Sigma} \zeta = \int_{D} \sin u \, du \, dv$$

$$= \int_{0}^{\pi} \int_{0}^{2\pi} \sin u \, du \, dv$$

$$= \left(\int_{0}^{\pi} \sin u \, du \right) \left(\int_{0}^{2\pi} dv \right)$$

$$= 2 \cdot 2\pi$$

$$= 4\pi.$$

Proof of (c).

(1) Similar to (b).

$$\mathbf{N}(s,t) = \frac{\partial(y,z)}{\partial(s,t)}\mathbf{e}_1 + \frac{\partial(z,x)}{\partial(s,t)}\mathbf{e}_2 + \frac{\partial(x,y)}{\partial(s,t)}\mathbf{e}_3$$

$$= g(t)g'(t)[(h_1(s),h_2(s),h_3(s)) \times (h'_1(s),h'_2(s),h'_3(s))]$$

$$= g(t)g'(t)[\mathbf{h}(s) \times \mathbf{h}'(s)],$$

where $\mathbf{h}(s)=(h_1(s),h_2(s),h_3(s))$ and $\mathbf{h}'(s)=(h_1'(s),h_2'(s),h_3'(s))$. (Here "×" is the cross product in \mathbb{R}^3 .)

(2) Assume ζ is well-defined, i.e., $\mathbf{h}(s) \neq \mathbf{0}$ for all $s \in [0,1]$. By Integrals of

2-forms in \mathbb{R}^3 10.49,

$$\begin{split} \int_{\Phi} \zeta &= \int_{\Phi} \frac{x dy \wedge dz + y dz \wedge dx + z dx \wedge dy}{r^3} \\ &= \int_{I^2} \frac{g(t)}{g(t)^3 |\mathbf{h}(s)|^3} \mathbf{h}(s) \cdot \mathbf{N}(s,t) \, ds \, dt \\ &= \int_{I^2} \frac{g(t)}{g(t)^3 |\mathbf{h}(s)|^3} \mathbf{h}(s) \cdot g(t) g'(t) [\mathbf{h}(s) \times \mathbf{h}'(s)] \, ds \, dt \\ &= \int_{I^2} \frac{g'(t)}{g(t) |\mathbf{h}(s)|^3} \mathbf{h}(s) \cdot [\mathbf{h}(s) \times \mathbf{h}'(s)] \, ds \, dt \\ &= 0 \end{split}$$

(since $\mathbf{h}(s) \cdot [\mathbf{h}(s) \times \mathbf{h}'(s)] = 0$.)

(3) Note that Σ in spherical coordinate system cannot be parameterized as $(x, y, z) = g(t)\mathbf{h}(s)$, and thus $\int_S \zeta$ could be nonzero as shown in (b).

Proof of (d) (Hint).

(1) Consider the 3-surface Ψ given by

$$\Psi(t, u, v) = [1 - t + tf(u, v)]\Sigma(u, v),$$

where $(u, v) \in E$, $0 \le t \le 1$. Write

$$E = [a_1, b_1] \times [a_2, b_2] \subseteq D = [0, \pi] \times [0, 2\pi].$$

Note that $\Psi(t, u, v) \subseteq \mathbb{R}^3 - \{0\}$. So the boundary of Ψ is

$$\begin{split} \partial \Psi &= \Psi(0, u, v) - \Psi(1, u, v) \\ &+ \Psi(t, a_1, v) - \Psi(t, b_1, v) \\ &+ \Psi(t, u, a_2) - \Psi(t, u, b_2) \\ &= S(u, v) - \Omega(u, v) \\ &+ \Psi|_{u=a_1}(t, v) - \Psi|_{u=b_1}(t, v) \\ &+ \Psi|_{v=a_2}(t, u) - \Psi|_{v=b_2}(t, u), \end{split}$$

where $\Psi|_{u=u_0}(t,v) = \Psi(t,u_0,v)$ and $\Psi|_{v=v_0}(t,u) = \Psi(t,u,v_0)$.

(2) Show that

$$\int_{\Psi|_{v=v_0}} \zeta = 0$$

for any fixed $v=v_0\in [a_2,b_2]$. Note that ζ is well-defined on $\Psi|_{v=v_0}$. Write $\Psi|_{v=v_0}(t,u)=(x,y,z)=(x(t,u),y(t,u),z(t,u))$. By definition of

 Ψ , we have

$$x = g(t, u) \sin u \cos v_0$$

$$y = g(t, u) \sin u \sin v_0$$

$$z = g(t, u) \cos u,$$

where $g(t, u) = 1 - t + t f(u, v_0)$. Similar to (c),

$$\mathbf{N}(t, u) = \frac{\partial(y, z)}{\partial(t, u)} \mathbf{e}_1 + \frac{\partial(z, x)}{\partial(t, u)} \mathbf{e}_2 + \frac{\partial(x, y)}{\partial(t, u)} \mathbf{e}_3$$
$$= g(t, u) D_1 g(t, u) (-\sin v_0, \cos v_0, 0).$$

Note that

$$(x(t,u), y(t,u), z(t,u)) \cdot \mathbf{N}(t,u) = 0.$$

So

$$\int_{\Psi|_{v=v_0}} \zeta = \int_{\Psi|_{v=v_0}} r^{-3} (x dy \wedge dz + y dz \wedge dx + z dx \wedge dy)
= \int_{[0,1] \times [a_1,b_1]} r^{-3} (x(t,u), y(t,u), z(t,u)) \cdot \mathbf{N}(t,u) dt du
= \int_{[0,1] \times [a_1,b_1]} 0 dt du
= 0.$$

(3) Show that

$$\int_{\Psi|_{u=u_0}} \zeta = 0$$

for any fixed $u = u_0 \in [a_1, b_1]$. Similar to (2).

$$\mathbf{N}(t,v) = \frac{\partial(y,z)}{\partial(t,v)}\mathbf{e}_1 + \frac{\partial(z,x)}{\partial(t,v)}\mathbf{e}_2 + \frac{\partial(x,y)}{\partial(t,v)}\mathbf{e}_3$$
$$= \sin u_0 g(t,v) D_1 g(t,v) (-\cos u_0 \cos v, -\cos u_0 \sin v, \sin u_0).$$

where $g(t,v) = 1 - t + t f(u_0,v)$. So $(x(t,v), y(t,v), z(t,v)) \cdot \mathbf{N}(t,v) = 0$ and thus $\int_{\Psi|_{u=u_0}} \zeta = 0$.

(4) So

$$0 = \int_{\Psi} d\zeta \qquad (d\zeta = 0 \text{ on } \mathbb{R}^3 - \{\mathbf{0}\})$$

$$= \int_{\partial \Psi} \zeta \qquad (\text{Theorem 10.33})$$

$$= \int_{S} \zeta - \int_{\Omega} \zeta$$

$$+ \underbrace{\int_{\Psi|_{u=a_1}} \zeta - \int_{\Psi|_{u=b_1}} \zeta}_{\text{all are zero by (2)}}$$

$$+ \underbrace{\int_{\Psi|_{v=a_2}} \zeta - \int_{\Psi|_{v=b_2}} \zeta}_{\text{all are zero by (3)}} \qquad ((1))$$

$$= \int_{S} \zeta - \int_{\Omega} \zeta.$$

Hence

$$\int_{\Omega} \zeta = \underbrace{\int_{S} \zeta = A(S)}_{\text{by (b)}}.$$

Proof of (e).

(1) Note that

$$\begin{split} d\left(-\frac{z}{r}\right) &= \frac{xz}{r^3} dx + \frac{yz}{r^3} dy - \frac{r^2 - z^2}{r^3} dz = \frac{xz}{r^3} dx + \frac{yz}{r^3} dy - \frac{x^2 + y^2}{r^3} dz \\ \text{since } r^2 &= x^2 + y^2 + z^2. \end{split}$$

(2)

$$\begin{split} d\lambda &= d\left(-\frac{z}{r}\eta\right) \\ &= \underbrace{d\left(-\frac{z}{r}\right)}_{\text{apply (1)}} \wedge \eta + (-1)^1 \left(-\frac{z}{r}\right) \wedge \underbrace{d\eta}_{=0} \\ &= \left(\frac{xz}{r^3} dx + \frac{yz}{r^3} dy - \frac{x^2 + y^2}{r^3} dz\right) \wedge \left(\frac{-y dx + x dy}{x^2 + y^2}\right) \\ &= \left(\frac{x(x^2 + y^2)}{r^3(x^2 + y^2)}\right) dy \wedge dz + \left(\frac{y(x^2 + y^2)}{r^3(x^2 + y^2)}\right) dz \wedge dx + \left(\frac{x^2z + y^2z}{r^3(x^2 + y^2)}\right) dx \wedge dy \\ &= \left(\frac{x}{r^3}\right) dy \wedge dz + \left(\frac{y}{r^3}\right) dz \wedge dx + \left(\frac{z}{r^3}\right) dx \wedge dy \\ &= \zeta. \end{split}$$

Proof of (f).

- (1) To ensure that η is well-defined on E, we might assume $x^2+y^2=\sin^2 u\neq 0$ or $0< u<\pi$ on E. It is fine since $\int_\Omega \zeta$ and $\int_S \zeta$ is well-defined on any closed rectangle in D and we can apply the argument in Exercise 6.7 to remove the additional restriction.
- (2) By the Stokes' theorem (Theorem 10.33) and (e),

$$\int_{\Omega} \zeta = \int_{\partial \Omega} \lambda$$
 and $\int_{S} \zeta = \int_{\partial S} \lambda$.

So it suffices to show that

$$\int_{\partial\Omega}\lambda=\int_{\partial S}\lambda.$$

Note that $\lambda = -\frac{z}{r}\eta$, and thus it suffices to show that $\frac{z}{r}\Big|_{\partial\Omega} = \frac{z}{r}\Big|_{\partial\Sigma}$ and $\eta|_{\partial\Omega} = \eta|_{\partial S}$.

(3) Show that $\frac{z}{r}\Big|_{\partial\Omega} = \frac{z}{r}\Big|_{\partial\Sigma}$. For any $(x_{\Omega}, y_{\Omega}, z_{\Omega}) \in \partial\Omega$,

$$(x_{\Omega}, y_{\Omega}, z_{\Omega}) = f(u, v)(x_{\Sigma}, y_{\Sigma}, z_{\Sigma})$$

where $(x_{\Sigma}, y_{\Sigma}, z_{\Sigma}) \in \partial S$. So

$$\begin{split} \frac{z}{r}\Big|_{\partial\Omega} &= \frac{z_{\Omega}}{(x_{\Omega}^2 + y_{\Omega}^2 + z_{\Omega}^2)^{\frac{1}{2}}} \\ &= \frac{f(u, v)z_{\Sigma}}{f(u, v)(x_{\Sigma}^2 + y_{\Sigma}^2 + z_{\Sigma}^2)^{\frac{1}{2}}} \\ &= \frac{z_{\Sigma}}{(x_{\Sigma}^2 + y_{\Sigma}^2 + z_{\Sigma}^2)^{\frac{1}{2}}} \\ &= \frac{z}{r}\Big|_{\partial S} \,. \end{split}$$

(Note that f > 0.)

(4) Show that $\eta|_{\partial\Omega} = \eta|_{\partial S}$. Similar to (3). If $x_{\Omega} \neq 0$ (or $x_{\Sigma} \neq 0$), then by Exercise 10.21(d)

$$\begin{split} \eta|_{\partial\Omega} &= d \left(\arctan \frac{y_{\Omega}}{x_{\Omega}}\right) \\ &= d \left(\arctan \frac{f(u,v)y_{\Sigma}}{f(u,v)x_{\Sigma}}\right) \\ &= d \left(\arctan \frac{y_{\Sigma}}{x_{\Sigma}}\right) \\ &= \eta|_{\partial S}. \end{split}$$

Similarly, $\eta|_{\partial\Omega} = \eta|_{\partial S}$ is also true if $y_{\Omega} \neq 0$. Note that $(x_{\Omega}, y_{\Omega}) \neq (0, 0)$ by assumption. Therefore the result is established.

Proof of (g).

(1) Yes. Given any line L passing through $\mathbf{0}$, say

 $(r \sin u \cos v, r \sin u \sin v, r \cos u) \in L \qquad (r \in \mathbb{R}^1),$

for some $u \in [0,\pi]$ and $v \in [0,2\pi].$ We will show that ζ is exact in $U = \mathbb{R}^3 - L.$

(2) Linear algebra says that all rotation matrices $T \in SO(3)$ can be obtained from

$$R_x(u) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos u & -\sin u \\ 0 & \sin u & \cos u \end{bmatrix}$$

$$R_y(v) = \begin{bmatrix} \cos v & 0 & -\sin v \\ 0 & 1 & 0 \\ \sin v & 0 & \cos v \end{bmatrix}$$

$$R_z(w) = \begin{bmatrix} \cos w & -\sin w & 0 \\ \sin w & \cos w & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

using matrix multiplication, say $T = R_x(u)R_y(v)R_z(w)$. For example, the rotation

 $T = R_y \left(u - \frac{\pi}{2} \right) R_z(-v)$

maps L to the z-axis (by showing that $T(r\sin u\cos v, r\sin u\sin v, r\cos u) = (0,0,r)$). By Theorem 10.22 it suffices to show that ζ is invariant under $R_x(u)$, $R_x(v)$ and $R_z(w)$. By the symmetricity of ζ , it suffices to show that ζ is invariant under $T = R_x(u)$.

(3) Show that ζ is invariant under $T = R_x(u)$. By

 $T: (x, y, z) \mapsto (x, y \cos u - z \sin u, y \sin u + z \cos u),$

we have

$$r \mapsto r$$

$$dx \mapsto dx$$

$$dy \mapsto \cos u dy - \sin u dz$$

$$dz \mapsto \sin u dy + \cos u dz.$$

So

$$\begin{aligned} dy \wedge dz &\mapsto (\cos u dy - \sin u dz) \wedge (\sin u dy + \cos u dz) \\ &= dy \wedge dz, \\ dz \wedge dx &\mapsto (\sin u dy + \cos u dz) \wedge dx \\ &= -\sin u dx \wedge dy + \cos u dz \wedge dx, \\ dx \wedge dy &\mapsto dx \wedge (\sin u dy + \cos u dz) \\ &= \cos u dx \wedge dy + \sin u dz \wedge dx. \end{aligned}$$

Thus

$$\zeta \mapsto r^{-3} \{ x dy \wedge dz$$

$$+ (y \cos u - z \sin u)(-\sin u dx \wedge dy + \cos u dz \wedge dx)$$

$$+ (y \sin u + z \cos u)(\cos u dx \wedge dy + \sin u dz \wedge dx) \}$$

$$= r^{-3} \{ x dy \wedge dz$$

$$+ [\cos u(y \cos u - z \sin u) + \sin u(y \sin u + z \cos u)] dz \wedge dx$$

$$+ [-\sin u(y \cos u - z \sin u) + \cos u(y \sin u + z \cos u)] dx \wedge dy \}$$

$$= r^{-3} \{ x dy \wedge dz + y dz \wedge dx + z dx \wedge dy \}$$

$$= \zeta.$$

(4) Let $V = \mathbb{R}^3 - z$ -axis. Since $\zeta_T = \zeta$ (by (3)) is well-defined in V, $\zeta_T = \zeta = d\lambda$ by (e). Here λ is in V, not necessary in U (if $L \neq z$ -axis). Luckily, we can use T^{-1} to pullback λ in U. Thus

$$\zeta = (\zeta_T)_{T^{-1}} = (d\lambda)_{T^{-1}} = d(\lambda_{T^{-1}})$$

by Theorems 10.22 and 10.23. That is, ζ is exact in $U = \mathbb{R}^3 - L$. (Or ζ is locally exact in $\mathbb{R}^3 - \{\mathbf{0}\}$.)

Exercise 10.23. Fix n. Define $r_k = (x_1^2 + \cdots + x_k^2)^{\frac{1}{2}}$ for $1 \le k \le n$, let E_k be the set of all $\mathbf{x} \in \mathbb{R}^n$ at which $r_k > 0$, and let ω_k be the (k-1)-form defined in E_k by

$$\omega_k = (r_k)^{-k} \sum_{i=1}^k (-1)^{i-1} x_i dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_k$$

Note that $\omega_2=\eta$, $\omega_3=\zeta$ in the terminology of Exercise 10.21 and Exercise 10.22. Note also that

$$E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n = \mathbb{R}^n$$
.

(a) Prove that $d\omega_k = 0$ in E_k .

(b) For k = 2, ..., n, prove that ω_k is exact in E_{k-1} , by showing that

$$\omega_k = d(f_k \omega_{k-1}) = df_k \wedge \omega_{k-1}$$

where $f_k(\mathbf{x}) = (-1)^k g_k \left(\frac{x_k}{r_k}\right)$ where

$$g_k(t) = \int_{-1}^{t} (1 - s^2)^{\frac{k-3}{2}} ds$$
 $(-1 < t < 1).$

(Hint: f_k satisfies the differential equations

$$\mathbf{x} \cdot (\nabla f_k)(\mathbf{x}) = 0$$

and

$$(D_k f_k)(\mathbf{x}) = \frac{(-1)^k (r_{k-1})^{k-1}}{(r_k)^k}.$$

- (c) Is ω_n exact in E_n ?
- (d) Note that (b) is a generalization of part (e) of Exercise 10.22. Try to extend some of the other assertions of Exercise 10.21 and Exercise 10.22 to ω_n , for arbitrary n.

Proof of (a).

(1) Note that

$$D_i r_k = \frac{1}{2r_k} \cdot (2x_i) = \frac{x_i}{r_k}.$$

(2)

$$d\omega_k = \sum_{i=1}^k d\left((-1)^{i-1}(r_k)^{-k}x_i dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_k\right)$$

$$= \sum_{i=1}^k D_i\left((-1)^{i-1}(r_k)^{-k}x_i\right) dx_i \wedge dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_k$$

$$= \sum_{i=1}^k (-1)^{i-1} \left((r_k)^{-k} \cdot 1 + \underbrace{(-k)(r_k)^{-k-1} \frac{x_i}{r_k}}_{\text{chain rule}} \cdot x_i\right) \underbrace{(-1)^{i-1} dx_1 \wedge \dots \wedge dx_k}_{\text{anticommutative relation}}$$

$$= (r_k)^{-k-2} \sum_{i=1}^k \left((r_k)^2 - kx_i^2\right) dx_1 \wedge \dots \wedge dx_k$$

Proof of (b).

(1) Note that

$$D_i\left(\frac{x_k}{r_k}\right) = \frac{\delta_{ik}(r_k)^2 - x_i x_k}{(r_k)^3}$$

where δ_{ik} is the Kronecker delta. So

$$(D_i f_k)(\mathbf{x}) = D_i \left((-1)^k g_k \left(\frac{x_k}{r_k} \right) \right)$$

$$= D_i \left((-1)^k \int_{-1}^{\frac{x_k}{r_k}} (1 - s^2)^{\frac{k-3}{2}} ds \right)$$

$$= (-1)^k D_i \left(\frac{x_k}{r_k} \right) \left(1 - \left(\frac{x_k}{r_k} \right)^2 \right)^{\frac{k-3}{2}}$$

$$= (-1)^k \frac{\delta_{ik} (r_k)^2 - x_i x_k}{(r_k)^3} \frac{(r_{k-1})^{k-3}}{(r_k)^{k-3}}$$

$$= (-1)^k \frac{(r_{k-1})^{k-3}}{(r_k)^k} (\delta_{ik} (r_k)^2 - x_i x_k).$$

In particular,

$$(D_k f_k)(\mathbf{x}) = (-1)^k \frac{(r_{k-1})^{k-3}}{(r_k)^k} ((r_k)^2 - (x_k)^2) = (-1)^k \frac{(r_{k-1})^{k-1}}{(r_k)^k}$$
(since $(r_k)^2 - (x_k)^2 = (r_{k-1})^2$).

(2) Since

$$\sum_{i} x_{i} (\delta_{ik}(r_{k})^{2} - x_{i}x_{k}) = (r_{k})^{2} \underbrace{\sum_{i} x_{i} \delta_{ik}}_{=x_{k}} - x_{k} \underbrace{\sum_{i} x_{i}^{2}}_{=(r_{k})^{2}} = 0,$$

we have

$$\mathbf{x} \cdot (\nabla f_k)(\mathbf{x}) = \sum_{i} x_i (D_i f_k)(\mathbf{x})$$

$$= \sum_{i} x_i (-1)^k \frac{(r_{k-1})^{k-3}}{(r_k)^k} (\delta_{ik} (r_k)^2 - x_i x_k)$$

$$= (-1)^k \frac{(r_{k-1})^{k-3}}{(r_k)^k} \sum_{i} x_i (\delta_{ik} (r_k)^2 - x_i x_k)$$

$$= 0.$$

(3) On
$$E_{k-1} \subsetneq E_k$$
, we write

$$d(f_k\omega_{k-1}) = (df_k) \wedge \omega_{k-1} + (-1)^0 f_k \wedge \underbrace{(d\omega_{k-1})}_{=0}$$

$$= (df_k) \wedge \omega_{k-1}$$

$$= \left\{ \sum_{i=1}^k D_i f_k(\mathbf{x}) dx_i \right\} \wedge \left\{ \frac{1}{(r_{k-1})^{k-1}} \sum_{j=1}^{k-1} (-1)^{j-1} x_j dx_1 \wedge \cdots \wedge \widehat{dx_j} \wedge \cdots \wedge dx_{k-1} \right\}$$

$$= \frac{1}{(r_{k-1})^{k-1}} \sum_{1 \le i \le k \atop 1 \le j \le k-1} (-1)^{j-1} x_j D_i f_k(\mathbf{x}) dx_i \wedge dx_1 \wedge \cdots \wedge \widehat{dx_j} \wedge \cdots \wedge dx_{k-1}$$

$$= \frac{1}{(r_{k-1})^{k-1}} \sum_{j=1}^{k-1} (-1)^{j-1} x_j D_j f_k(\mathbf{x}) dx_j \wedge dx_1 \wedge \cdots \wedge \widehat{dx_j} \wedge \cdots \wedge dx_{k-1}$$

$$+ \frac{1}{(r_{k-1})^{k-1}} \sum_{i=1}^{k-1} (-1)^{j-1} x_j D_k f_k(\mathbf{x}) dx_k \wedge dx_1 \wedge \cdots \wedge \widehat{dx_j} \wedge \cdots \wedge dx_{k-1}.$$

(4) By (2),

$$\frac{1}{(r_{k-1})^{k-1}} \sum_{j=1}^{k-1} (-1)^{j-1} x_j D_j f_k(\mathbf{x}) dx_j \wedge dx_1 \wedge \dots \wedge \widehat{dx_j} \wedge \dots \wedge dx_{k-1}$$

$$= \frac{1}{(r_{k-1})^{k-1}} \sum_{j=1}^{k-1} x_j D_j f_k(\mathbf{x}) dx_1 \wedge \dots \wedge dx_{k-1}$$

$$= \frac{1}{(r_{k-1})^{k-1}} (-D_k f_k(x) x_k) dx_1 \wedge \dots \wedge dx_{k-1}$$

$$= \frac{-D_k f_k(\mathbf{x})}{(r_{k-1})^{k-1}} x_k dx_1 \wedge \dots \wedge dx_{k-1} \wedge \widehat{dx_k}$$

$$= (r_k)^{-k} (-1)^{k-1} x_k dx_1 \wedge \dots \wedge dx_{k-1} \wedge \widehat{dx_k}$$
((1)).

Also,

$$\frac{1}{(r_{k-1})^{k-1}} \sum_{j=1}^{k-1} (-1)^{j-1} x_j D_k f_k(\mathbf{x}) dx_k \wedge dx_1 \wedge \dots \wedge \widehat{dx_j} \wedge \dots \wedge dx_{k-1}$$

$$= \frac{(-1)^k D_k f_k(\mathbf{x})}{(r_{k-1})^{k-1}} \sum_{j=1}^{k-1} (-1)^{j-1} x_j dx_1 \wedge \dots \wedge \widehat{dx_j} \wedge \dots \wedge dx_k$$

$$= (r_k)^{-k} \sum_{j=1}^{k-1} (-1)^{j-1} x_j dx_1 \wedge \dots \wedge \widehat{dx_j} \wedge \dots \wedge dx_k \tag{(1)}.$$

(5) Hence,

$$d(f_k \omega_{k-1})$$

$$= (r_k)^{-k} (-1)^{k-1} x_k dx_1 \wedge \dots \wedge dx_{k-1} \wedge \widehat{dx_k}$$

$$+ (r_k)^{-k} \sum_{j=1}^{k-1} (-1)^{j-1} x_j dx_1 \wedge \dots \wedge \widehat{dx_j} \wedge \dots \wedge dx_k$$

$$= (r_k)^{-k} \sum_{j=1}^{k} (-1)^{j-1} x_j dx_1 \wedge \dots \wedge \widehat{dx_j} \wedge \dots \wedge dx_k$$

$$= \omega_k.$$

Proof of (c).

- (1) ω_n is not exact in E_n (though it is locally exact).
- (2) Let

$$\mathbb{S}^{n-1} = \{ (x_1, \dots, x_n) \in \mathbb{R}^n : x_1^2 + \dots + x_n^2 = 1 \}$$
$$\mathbb{B}^n = \{ (x_1, \dots, x_n) \in \mathbb{R}^n : x_1^2 + \dots + x_n^2 < 1 \}.$$

It suffices to show that

$$\int_{\mathbb{S}^{n-1}} \omega_n = \frac{n\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)} \neq 0.$$

Therefore, ω_n is not exact in E_n .

(3) Define

$$\omega = \frac{1}{n} \sum_{i=1}^{n} (-1)^{i-1} x_i dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_n$$

on \mathbb{S}^{n-1} . Note that

$$\omega = \frac{1}{n}\omega_n$$

on \mathbb{S}^{n-1} (and that's why we pick \mathbb{S}^{n-1}). The Stokes' theorem (Theorem 10.33) implies that

$$\int_{\mathbb{S}^{n-1}} \frac{1}{n} \omega_n = \int_{\partial \mathbb{B}^n} \omega = \int_{\mathbb{B}^n} d\omega = \int_{\mathbb{B}^n} dx_1 \wedge \dots \wedge dx_n = \operatorname{vol}(\mathbb{B}^n),$$

where $vol(\mathbb{B}^n)$ is the volume of \mathbb{B}^n . Thus it suffices to show that

$$\operatorname{vol}(\mathbb{B}^n) = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2} + 1)} \neq 0.$$

There are many proofs for this. We give a direct integration in spherical coordinates.

(4) Similar to Exercise 10.9. The spherical coordinate system has a radial coordinate r and angular coordinates $\varphi = (\varphi_1, \dots, \varphi_{n-1})$, where the domain of each $\varphi_1, \dots, \varphi_{n-2}$ is $[0, \pi]$ and the domain of φ_{n-1} is $[0, 2\pi]$. That is,

$$x_1 = \cos \varphi_1$$

$$x_2 = \sin \varphi_1 \cos \varphi_2$$

$$x_3 = \sin \varphi_1 \sin \varphi_2 \cos \varphi_3$$

$$\dots$$

$$x_{n-1} = \sin \varphi_1 \cdots \sin \varphi_{n-2} \cos \varphi_{n-1}$$

$$x_n = \sin \varphi_1 \cdots \sin \varphi_{n-2} \sin \varphi_{n-1}.$$

(It is different from Exercise 10.22.) The spherical volume element is

$$r^{n-1}\sin(\varphi_1)^{n-2}\sin(\varphi_2)^{n-3}\cdots\sin(\varphi_{n-2})dr\,d\varphi.$$

Thus by Some consequences 8.21,

$$\operatorname{vol}(\mathbb{B}^{n}) = \int_{\mathbb{B}^{n}} d\mathbf{x}$$

$$= \int_{0}^{1} \int_{0}^{\pi} \cdots \int_{0}^{2\pi} r^{n-1} \sin(\varphi_{1})^{n-2} \cdots \sin(\varphi_{n-2}) dr \, d\varphi$$

$$= \left(\int_{0}^{1} r^{n-1} dr \right) \left(\int_{0}^{\pi} \sin(\varphi_{1})^{n-2} d\varphi_{1} \right) \cdots \left(\int_{0}^{2\pi} d\varphi_{n-1} \right)$$

$$= \frac{1}{n} \cdot \frac{\Gamma(\frac{n-1}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{n}{2})} \cdot \frac{\Gamma(\frac{n-2}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{n-1}{2})} \cdots \frac{\Gamma(1)\Gamma(\frac{1}{2})}{\Gamma(\frac{3}{2})} \cdot 2\pi$$

$$= \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2} + 1)}.$$

(5) Note that we can apply the spherical coordinate system to $\int_{\mathbb{S}^{n-1}} \omega_n$ directly (without the Stokes' theorem). The area element of the 2-sphere, is given by

$$\sin(\varphi_1)^{n-2}\sin(\varphi_2)^{n-3}\cdots\sin(\varphi_{n-2})d\varphi.$$

A tedious calculation (in the proof of (d)) shows that

$$\int_{\mathbb{S}^{n-1}} \omega_n$$

$$= \int_0^{\pi} \cdots \int_0^{2\pi} \sin(\varphi_1)^{n-2} \sin(\varphi_2)^{n-3} \cdots \sin(\varphi_{n-2}) d\varphi$$

$$= \left(\int_0^{\pi} \sin(\varphi_1)^{n-2} d\varphi_1 \right) \cdots \left(\int_0^{2\pi} d\varphi_{n-1} \right)$$

$$= \frac{\Gamma(\frac{n-1}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{n}{2})} \cdot \frac{\Gamma(\frac{n-2}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{n-1}{2})} \cdots \frac{\Gamma(1)\Gamma(\frac{1}{2})}{\Gamma(\frac{3}{2})} \cdot 2\pi$$

$$= \frac{n\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}.$$

Outline of (d).

- (i) One generalization of Exercise 10.21(a) and 10.22(a). See Exercise 10.23(a).
- (ii) One generalization of Exercise 10.22(b). Let $\Sigma = \mathbb{S}^{n-1}$ be the (n-1)-surface in \mathbb{R}^n , with parameter domain $D = [0,\pi]^{n-2} \times [0,2\pi]$, given by

$$x_1 = \cos \varphi_1$$

$$x_2 = \sin \varphi_1 \cos \varphi_2$$

$$x_3 = \sin \varphi_1 \sin \varphi_2 \cos \varphi_3$$

$$\dots$$

$$x_{n-1} = \sin \varphi_1 \cdots \sin \varphi_{n-2} \cos \varphi_{n-1}$$

$$x_n = \sin \varphi_1 \cdots \sin \varphi_{n-2} \sin \varphi_{n-1}.$$

Let S denote the restriction of Σ to a parameter domain $E \subseteq D$. Prove that

$$\int_{S} \omega_{n} = \int_{E} \sin(\varphi_{1})^{n-2} \sin(\varphi_{2})^{n-3} \cdots \sin(\varphi_{n-2}) d\varphi$$
$$= A(S),$$

where A denotes surface area.

(iii) One generalization of Exercise 10.22(c). Suppose $g \in \mathscr{C}''([0,1])$, $\mathbf{h} = (h_1, \ldots, h_n) \in \mathscr{C}''([0,1]^{n-2})$, and g > 0. Write $\mathbf{x} = (x_1, \ldots, x_n)$ and $\mathbf{s} = (s_1, \ldots, s_{n-2})$. Let

$$\mathbf{x} = \Phi(\mathbf{s}, t)$$

define a (n-1)-surface Φ , with parameter domain $[0,1]^{n-1}$, by

$$\mathbf{x} = g(t)\mathbf{h}(\mathbf{s}).$$

Prove that

$$\int_{\Phi} \omega_n = 0.$$

(iv) One generalization of Exercise 10.21(b) and 10.22(d). Let E be a closed cell in D, with edges parallel to those of D. Suppose $f \in \mathscr{C}''(D)$, f > 0. Let Ω be the (n-1)-surface with parameter domain E, defined by

$$\Omega(\boldsymbol{\varphi}) = f(\boldsymbol{\varphi}) \Sigma(\boldsymbol{\varphi}).$$

Define S as in (ii) and prove that

$$\int_{\Omega} \omega_n = \int_{S} \omega_n = A(S).$$

- (v) One generalization of Exercise 10.21(d) and 10.22(e). See Exercise 10.23(b).
- (vi) One generalization of Examples 10.36 and 10.37. See Exercise 10.23(c).
- (vii) One generalization of Exercise 10.21(e) and 10.22(f). Derive (iv) from Exercise 10.23(b), without using (iii).
- (viii) One generalization of Exercise 10.21(f). $\pi_{n-1}(\mathbb{S}^{n-1}) = \mathbb{Z}$ (without proof).
- (ix) One generalization of Exercise 10.22(g). Show that ω_n is exact in the complement of every line L passing through the origin.

Proof of (d)(ii).

(1) On $S \subseteq \mathbb{S}^{n-1}$, we have

$$\int_{S} \omega_{n} = \int_{S} \sum_{i=1}^{n} (-1)^{i-1} x_{i} dx_{1} \wedge \cdots \wedge \widehat{dx_{i}} \wedge \cdots \wedge dx_{n}$$

$$= \int_{S} \sum_{i=1}^{n} (-1)^{i-1} x_{i} (\varphi) \frac{\partial (x_{1}, \dots, \widehat{x_{i}}, \dots, x_{n})}{\partial (\varphi_{1}, \dots, \varphi_{n-1})} d\varphi_{1} \wedge \cdots \wedge d\varphi_{n-1}$$

$$= \int_{S} \sum_{i=1}^{n} (-1)^{i-1} x_{i} (\varphi) \det \begin{bmatrix} \frac{\partial x_{1}}{\partial \varphi_{1}} & \cdots & \frac{\partial x_{1}}{\partial \varphi_{n-1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_{n}}{\partial \varphi_{1}} & \cdots & \frac{\partial x_{n}}{\partial \varphi_{n-1}} \end{bmatrix} d\varphi_{1} \wedge \cdots \wedge d\varphi_{n-1}$$

$$= \int_{S} \det \begin{bmatrix} x_{1} & \frac{\partial x_{1}}{\partial \varphi_{1}} & \cdots & \frac{\partial x_{1}}{\partial \varphi_{n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ x_{i} & \frac{\partial x_{i}}{\partial \varphi_{1}} & \cdots & \frac{\partial x_{n}}{\partial \varphi_{n-1}} \end{bmatrix} d\varphi_{1} \wedge \cdots \wedge d\varphi_{n-1}.$$

$$= \int_{S} \det \begin{bmatrix} x_{1} & \frac{\partial x_{1}}{\partial \varphi_{1}} & \cdots & \frac{\partial x_{1}}{\partial \varphi_{n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n} & \frac{\partial x_{n}}{\partial \varphi_{1}} & \cdots & \frac{\partial x_{n}}{\partial \varphi_{n-1}} \end{bmatrix} d\varphi_{1} \wedge \cdots \wedge d\varphi_{n-1}.$$

$$= \int_{S} \det \begin{bmatrix} x_{1} & \frac{\partial x_{1}}{\partial \varphi_{1}} & \cdots & \frac{\partial x_{1}}{\partial \varphi_{n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n} & \frac{\partial x_{n}}{\partial \varphi_{1}} & \cdots & \frac{\partial x_{n}}{\partial \varphi_{n-1}} \end{bmatrix}$$

$$= \int_{S} \det \begin{bmatrix} x_{1} & \frac{\partial x_{1}}{\partial \varphi_{1}} & \cdots & \frac{\partial x_{1}}{\partial \varphi_{n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n} & \frac{\partial x_{n}}{\partial \varphi_{1}} & \cdots & \frac{\partial x_{n}}{\partial \varphi_{n-1}} \end{bmatrix}$$

$$= \int_{S} \det \begin{bmatrix} x_{1} & \frac{\partial x_{1}}{\partial \varphi_{1}} & \cdots & \frac{\partial x_{1}}{\partial \varphi_{n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n} & \frac{\partial x_{n}}{\partial \varphi_{1}} & \cdots & \frac{\partial x_{n}}{\partial \varphi_{n-1}} \end{bmatrix}$$

Hence, it suffices to show that

$$\det(A_n) = \sin^{n-2} \varphi_1 \sin^{n-3} \varphi_2 \cdots \sin \varphi_{n-2}.$$

(2) Induction on n.

Proof of (d)(iii).

(1) Similar to Exercise 10.22(c). Assume that ω_n is well-defined, i.e., $\mathbf{h}(\mathbf{s}) \neq 0$

for all $\mathbf{s} \in [0, 1]^{n-2}$.

$$\frac{\partial(x_1, \dots, \widehat{x}_i, \dots, x_n)}{\partial(s_1, \dots, s_{n-2}, t)} = \det \begin{bmatrix}
\frac{\partial x_1}{\partial s_1} & \dots & \frac{\partial x_1}{\partial s_{n-2}} & \frac{\partial x_1}{\partial t} \\
\vdots & \ddots & \vdots & \vdots \\
\frac{\partial x_i}{\partial s_1} & \dots & \frac{\partial x_n}{\partial s_{n-2}} & \frac{\partial x_n}{\partial t}
\end{bmatrix}$$

$$= \det \begin{bmatrix}
g \frac{\partial h_1}{\partial s_1} & \dots & g \frac{\partial h_1}{\partial s_{n-2}} & g'h_1 \\
\vdots & \ddots & \vdots & \vdots \\
g \frac{\partial h_n}{\partial s_1} & \dots & g \frac{\partial h_n}{\partial s_{n-2}} & g'h_n
\end{bmatrix}$$

$$= g^{n-2}g' \det \begin{bmatrix}
\frac{\partial h_1}{\partial s_1} & \dots & \frac{\partial h_1}{\partial s_{n-2}} & g'h_n \\
\vdots & \ddots & \vdots & \vdots \\
g \frac{\partial h_n}{\partial s_1} & \dots & g \frac{\partial h_n}{\partial s_{n-2}} & g'h_n
\end{bmatrix}$$

$$= g^{n-2}g' \det \begin{bmatrix}
\frac{\partial h_1}{\partial s_1} & \dots & \frac{\partial h_1}{\partial s_{n-2}} & h_1 \\
\vdots & \ddots & \vdots & \vdots \\
\frac{\partial h_n}{\partial s_1} & \dots & \frac{\partial h_n}{\partial s_{n-2}} & h_n
\end{bmatrix}$$
say A

(2) So

$$\int_{\Phi} \omega_{n} = \int_{[0,1]^{n-1}} \frac{1}{g(t)^{n} |\mathbf{h}(\mathbf{s})|^{n}} \sum_{i=1}^{n} (-1)^{i-1} g(t) h_{i} g(t)^{n-2} g'(t) \det(A) d\mathbf{s} dt$$

$$= \int_{[0,1]^{n-1}} \frac{g'(t)}{g(t) |\mathbf{h}(\mathbf{s})|^{n}} \sum_{i=1}^{n} (-1)^{i-1} h_{i} \det \begin{bmatrix} \frac{\partial h_{1}}{\partial s_{1}} & \cdots & \frac{\partial h_{1}}{\partial s_{n-2}} & h_{1} \\ \vdots & \ddots & \vdots & \vdots \\ \frac{\partial h_{i}}{\partial s_{1}} & \cdots & \frac{\partial h_{i}}{\partial s_{n-2}} & \hat{h_{i}} \\ \vdots & \ddots & \vdots & \vdots \\ \frac{\partial h_{n}}{\partial s_{1}} & \cdots & \frac{\partial h_{n}}{\partial s_{n-2}} & h_{n} \end{bmatrix} d\mathbf{s} dt$$

$$= \int_{[0,1]^{n-1}} \frac{g'(t)}{g(t) |\mathbf{h}(\mathbf{s})|^{n}} \det \begin{bmatrix} h_{1} & \frac{\partial h_{1}}{\partial s_{1}} & \cdots & \frac{\partial h_{1}}{\partial s_{n-2}} & h_{1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ h_{n} & \frac{\partial h_{n}}{\partial s_{1}} & \cdots & \frac{\partial h_{n}}{\partial s_{n-2}} & h_{n} \end{bmatrix} d\mathbf{s} dt.$$

Since the first column is the same as the last column in B, $\det(B)=0$ (Theorem 9.34(d)). Therefore, $\int_{\Phi} \omega_n = \int_{[0,1]^{n-1}} 0 \, d\mathbf{s} \, dt = 0$.

Proof of (d)(iv).

(1) Consider the *n*-surface Ψ given by

$$\Psi(t, \varphi) = [1 - t + t f(\varphi)] \Sigma(\varphi),$$

where $\varphi \in E \subseteq D$, $0 \le t \le 1$.

(2) Write

$$E = [a_1, b_1] \times \cdots \times [a_{n-1}, b_{n-1}] \subseteq D.$$

Note that $\Psi(t, \varphi) \subseteq \mathbb{R}^n - \{0\}$. So the boundary of Ψ is

$$\partial \Psi = \Psi(0, \boldsymbol{\varphi}) - \Psi(1, \boldsymbol{\varphi}) + \sum_{i=1}^{n-1} (\Psi|_{\varphi_i = a_i} - \Psi|_{\varphi_i = b_i}),$$

where $\Psi|_{\varphi_i=\theta}: [a_1,b_1] \times \cdots \times \widehat{[a_i,b_i]} \times \cdots \times [a_{n-1},b_{n-1}] \to \Omega$ is a mapping defined by

$$\Psi|_{\varphi_i=\theta}(t,\varphi_1,\ldots,\widehat{\varphi_i},\ldots,\varphi_{n-1}) = \Psi(t,\varphi_1,\ldots,\varphi_{i-1},\theta,\varphi_{i+1},\ldots,\varphi_{n-1})$$
$$= \Psi(t,\varphi + (\theta - \varphi_i)\mathbf{e}_i).$$

(3) Show that

$$\int_{\Psi|_{\omega_1=\theta}} \omega_n = 0$$

for any fixed $\varphi_1 = \theta \in [a_1, b_1]$. Note that ω_n is well-defined on $\Psi|_{\varphi_1 = \theta}$. Write

$$\Psi|_{\varphi_1=\theta}(t,\widehat{\varphi_1},\varphi_2,\ldots,\varphi_{n-1})=\mathbf{x}(t,\widehat{\varphi_1},\varphi_2,\ldots,\varphi_{n-1}).$$

By definition of Ψ , we have

$$x_1 = g(t, \varphi + (\theta - \varphi_1)\mathbf{e}_1)\cos\theta$$

$$x_2 = g(t, \varphi + (\theta - \varphi_1)\mathbf{e}_1)\sin\theta\cos\varphi_2$$

...

$$x_{n-1} = g(t, \varphi + (\theta - \varphi_1)\mathbf{e}_1)\sin\theta \cdots \sin\varphi_{n-2}\cos\varphi_{n-1}$$
$$x_n = g(t, \varphi + (\theta - \varphi_1)\mathbf{e}_1)\sin\theta \cdots \sin\varphi_{n-2}\sin\varphi_{n-1},$$

where $g(t, \varphi + (\theta - \varphi_1)\mathbf{e}_1) = 1 - t + tf(\varphi + (\theta - \varphi_1)\mathbf{e}_1)$.

(4) Note that $r_n = g > 0$. Since

$$\frac{\partial x_i}{\partial t} = \frac{\partial g}{\partial t} g^{-1} x_i,$$

$$\frac{\partial(x_1, \dots, \widehat{x_i}, \dots, x_n)}{\partial(t, \widehat{\varphi_1}, \varphi_2, \dots, \varphi_{n-1})} = \det \begin{bmatrix} \frac{\partial x_1}{\partial t} & \frac{\partial x_1}{\partial \varphi_2} & \dots & \frac{\partial x_1}{\partial \varphi_{n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_i}{\partial t} & \frac{\partial x_i}{\partial \varphi_2} & \dots & \frac{\partial x_i}{\partial \varphi_{n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial t} & \frac{\partial x_n}{\partial \varphi_2} & \dots & \frac{\partial x_n}{\partial \varphi_{n-1}} \end{bmatrix}$$

$$= \det \begin{bmatrix} \frac{\partial g}{\partial t} g^{-1} x_1 & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g}{\partial t} g^{-1} x_i & \widehat{*} & \dots & \widehat{*} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g}{\partial t} g^{-1} x_n & * & \dots & * \end{bmatrix}$$

$$= \frac{\partial g}{\partial t} g^{-1} \det \begin{bmatrix} x_1 & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ \widehat{x_i} & \widehat{*} & \dots & \widehat{*} \\ \vdots & \vdots & \ddots & \vdots \\ x_n & * & \dots & * \end{bmatrix}$$

$$= \underbrace{\operatorname{add}}_{say} A$$

So

$$\int_{\Psi|_{\varphi_1=\theta}} \omega_n = \int_E g^{-n} \sum_{i=1}^n (-1)^{i-1} x_i \frac{\partial g}{\partial t} g^{-1} \det(A) dt d\varphi_2 \cdots d\varphi_{n-1}$$

$$= \int_E \frac{\partial g}{\partial t} g^{-n-1} \sum_{i=1}^n (-1)^{i-1} x_i \det \begin{bmatrix} x_1 & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ \widehat{x_i} & \widehat{*} & \cdots & \widehat{*} \\ \vdots & \vdots & \ddots & \vdots \\ x_n & * & \cdots & * \end{bmatrix} dt d\varphi_2 \cdots d\varphi_{n-1}$$

$$= \int_E \frac{\partial g}{\partial t} g^{-n-1} \det \underbrace{\begin{bmatrix} x_1 & x_1 & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_i & x_i & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_n & x_n & * & \cdots & * \end{bmatrix}}_{\text{say } B} dt d\varphi_2 \cdots d\varphi_{n-1}.$$

Since the first column is the same as the second column in B, $\det(B) = 0$ (Theorem 9.34(d)). Therefore, $\int_{\Psi|_{\varphi_1=\theta}} \omega_n = 0$.

(5) $\int_{\Psi|_{\alpha_i=\theta}} \omega_n = 0$ is also true for all $i=1,\ldots,n-1$ by the same argument

in (3)(4). Hence,

$$0 = \int_{\Psi} d\omega_n$$

$$= \int_{\partial \Psi} \omega_n$$

$$= \int_{S} \omega_n - \int_{\Omega} \omega_n + \sum_{i=1}^{n-1} \left(\int_{\Psi|_{\varphi_i = a_i}} \omega_n - \int_{\Psi|_{\varphi_i = b_i}} \omega_n \right)$$

$$= \int_{S} \omega_n - \int_{\Omega} \omega_n$$

by (a) and the Stokes' theorem (Theorem 10.33), or

$$\int_{\Omega} \omega_n = \underbrace{\int_{S} \omega_n = A(S)}_{\text{by (d)(ii)}}.$$

Proof of (d)(vii).

- (1)
- (2)

Proof of (d)(ix). Similar to Exercise 10.22(g).

(1) Given any line L passing through $\mathbf{0}$, say

$$(r\cos\varphi_1,\cdots,\sin\varphi_1\cdots\sin\varphi_{n-2}\sin\varphi_{n-1})\in L\subseteq\mathbb{R}^n$$

where $r \in \mathbb{R}^1$ for some $\varphi \in [0,\pi]^{n-2} \times [0,2\pi]$. We will show that ω_n is exact in $U = \mathbb{R}^n - L$.

(2) Linear algebra says that all rotation matrices $T \in SO(n)$ can be obtained from

$$R_{i}(u) = \begin{bmatrix} 1 & & & & & & & & \\ & \ddots & & & & & & \\ & & 1 & & & & \\ & & & R(u) & & & \\ & & & & 1 & & \\ & & & & \ddots & & \\ & & & & & 1 \end{bmatrix}$$

using matrix multiplication. Here

$$R(u) = \begin{bmatrix} \cos u & -\sin u \\ \sin u & \cos u \end{bmatrix}$$

is a 2-by-2 rotation matrix at the ith row and ith column. For example, the rotation

$$T = R_1(-\varphi_1)R_2(-\varphi_2)\cdots R_{n-2}(-\varphi_{n-2})R_{n-1}(-\varphi_{n-1})$$

maps L to the x_n -axis. Similar to Exercise 10.22(g), it suffices to show that ω_n is invariant under $T = R_1(u)$.

(3) Show that ω_n is invariant under $T = R_1(u)$. By

$$T: \mathbf{x} \mapsto (x_1 \cos u - x_2 \sin u, x_1 \sin u + x_2 \cos u, x_3, \dots, x_n),$$

we have

$$r_n \mapsto r_n$$

$$dx_1 \mapsto \cos u dx_1 - \sin u dx_2$$

$$dx_2 \mapsto \sin u dx_1 + \cos u dx_2$$

$$dx_3 \mapsto dx_3$$

$$\dots$$

$$dx_n \mapsto dx_n.$$

So $dx_1 \wedge \cdots \wedge \widehat{dx_i} \wedge \cdots \wedge dx_n$ maps to

$$\begin{cases} \cos u \, \widehat{dx_1} \wedge \dots \wedge dx_n + \sin u \, dx_1 \wedge \widehat{dx_2} \wedge \dots \wedge dx_n & \text{if } i = 1 \\ -\sin u \, \widehat{dx_1} \wedge \dots \wedge dx_n + \cos u \, dx_1 \wedge \widehat{dx_2} \wedge \dots \wedge dx_n & \text{if } i = 2 \\ dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_n & \text{otherwise.} \end{cases}$$

Thus

$$\omega_n \mapsto (r_n)^{-n} (x_1 \cos u - x_2 \sin u)$$

$$\left(\cos u \, \widehat{dx_1} \wedge \dots \wedge dx_n + \sin u \, dx_1 \wedge \widehat{dx_2} \wedge \dots \wedge dx_n\right)$$

$$+ (r_n)^{-n} (x_1 \sin u + x_2 \cos u)$$

$$\left(-\sin u \, \widehat{dx_1} \wedge \dots \wedge dx_n + \cos u \, dx_1 \wedge \widehat{dx_2} \wedge \dots \wedge dx_n\right)$$

$$+ (r_n)^{-n} \sum_{i=3}^{n} (-1)^{i-1} x_i dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_n$$

$$= (r_n)^{-n} x_1 \widehat{dx_1} \wedge \dots \wedge dx_n$$

$$- (r_n)^{-n} x_2 \, dx_1 \wedge \widehat{dx_2} \wedge \dots \wedge dx_n$$

$$+ (r_n)^{-n} \sum_{i=3}^{n} (-1)^{i-1} x_i dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_n$$

$$= (r_n)^{-n} \sum_{i=3}^{n} (-1)^{i-1} x_i dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_n$$

$$= (r_n)^{-n} \sum_{i=1}^{n} (-1)^{i-1} x_i dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_n$$

$$= \omega_n.$$

(4) Similar to Exercise 10.22(g), ω_n is exact in $\mathbb{R}^n - L$. (Or ω_n is locally exact in $\mathbb{R}^n - \{\mathbf{0}\}$.)

Exercise 10.24. Let $\omega = \sum a_i(\mathbf{x}) dx_i$ be a 1-form of class \mathscr{C}'' in a convex open set $E \subseteq \mathbb{R}^n$. Assume $d\omega = 0$ and prove that ω is exact in E, by completing the following outline:

Fix $\mathbf{p} \in E$. Define

$$f(\mathbf{x}) = \int_{[\mathbf{p}, \mathbf{x}]} \omega \qquad (\mathbf{x} \in E).$$

Apply Stokes' theorem to affine-oriented 2-simplexs $[\mathbf{p}, \mathbf{x}, \mathbf{y}]$ in E. Deduce that

$$f(\mathbf{y}) - f(\mathbf{x}) = \sum_{i=1}^{n} (y_i - x_i) \int_0^1 a_i((1-t)\mathbf{x} + t\mathbf{y})dt$$

for $\mathbf{x} \in E$, $\mathbf{y} \in E$. Hence $(D_i f)(\mathbf{x}) = a_i(\mathbf{x})$.

Proof.

(1) Fix $\mathbf{p} \in E$. Define

$$f(\mathbf{x}) = \int_{[\mathbf{p}, \mathbf{x}]} \omega \qquad (\mathbf{x} \in E).$$

- (2) Given any $\mathbf{x} \in E$, $\mathbf{y} \in E$, and $\mathbf{x} \neq \mathbf{y}$. The affine-oriented 2-simplexs $\Psi = [\mathbf{p}, \mathbf{x}, \mathbf{y}]$ is in E by the convexity of E. (If E is open but not convex, we can show that $\omega = df$ **locally** as the note in Exercise 10.21(a). That is why we say that ω is locally exact. The proof is exactly the same.)
- (3) Note that

$$\partial \Psi = \partial [\mathbf{p}, \mathbf{x}, \mathbf{y}] = [\mathbf{x}, \mathbf{y}] - [\mathbf{p}, \mathbf{y}] + [\mathbf{p}, \mathbf{x}].$$

The Stokes' theorem (Theorem 10.33) implies that

$$\int_{\Psi} d\omega = \int_{\partial \Psi} \omega \iff \int_{\Psi} 0 = \int_{[\mathbf{x}, \mathbf{y}]} \omega - \int_{[\mathbf{p}, \mathbf{y}]} \omega + \int_{[\mathbf{p}, \mathbf{x}]} \omega$$

$$\iff 0 = \int_{[\mathbf{x}, \mathbf{y}]} \omega - f(\mathbf{y}) + f(\mathbf{x})$$

$$\iff f(\mathbf{y}) - f(\mathbf{x}) = \int_{[\mathbf{x}, \mathbf{y}]} \omega.$$

(4) Define $\gamma:[0,1]\to E$ by

$$\gamma(t) = \mathbf{x} + t(\mathbf{y} - \mathbf{x})$$
$$= \sum_{i=1}^{n} x_i + t(y_i - x_i)$$

(where $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$). Hence [0, 1] is the parameter domain of $[\mathbf{x}, \mathbf{y}]$ with respect to γ . So

$$\int_{[\mathbf{x},\mathbf{y}]} \omega = \int_0^1 \sum_{i=1}^n a_i(\gamma(t)) \frac{\partial (x_i + t(y_i - x_i))}{\partial t} dt$$
$$= \int_0^1 \sum_{i=1}^n a_i(\mathbf{x} + t(\mathbf{y} - \mathbf{x}))(y_i - x_i) dt$$
$$= \sum_{i=1}^n (y_i - x_i) \int_0^1 a_i(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) dt.$$

Thus,

$$f(\mathbf{y}) - f(\mathbf{x}) = \sum_{i=1}^{n} (y_i - x_i) \int_0^1 a_i(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) dt.$$

(5) Note that

$$f(\mathbf{x} + h\mathbf{e}_j) - f(\mathbf{x}) = \sum_{i=1}^n ((x_i + h\delta_{ij}) - x_i) \int_0^1 a_i (\mathbf{x} + t((\mathbf{x} + h\mathbf{e}_j) - \mathbf{x})) dt$$
$$= \sum_{i=1}^n h\delta_{ij} \int_0^1 a_i (\mathbf{x} + th\mathbf{e}_j) dt$$
$$= h \int_0^1 a_j (\mathbf{x} + th\mathbf{e}_j) dt.$$

(Here δ_{ij} is the Kronecker delta.) So

$$(D_j f)(\mathbf{x}) = \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{e}_j) - f(\mathbf{x})}{h}$$

$$= \lim_{h \to 0} \int_0^1 a_j(\mathbf{x} + th\mathbf{e}_j) dt$$

$$= \int_0^1 a_j(\mathbf{x}) dt \qquad (a_j \in \mathscr{C}'')$$

$$= a_j(\mathbf{x}).$$

Thus,

$$df = \sum_{j=1}^{n} (D_j f)(\mathbf{x}) dx_j = \sum_{j=1}^{n} a_j(\mathbf{x}) dx_j = \omega,$$

or ω is exact in E.

Exercise 10.25. Assume ω is a 1-form in an open set $E \subseteq \mathbb{R}^n$ such that

$$\int_{\gamma} \omega = 0$$

for every closed curve γ in E, of class \mathscr{C}' . Prove that ω is exact in E, by imitating part of the argument sketched in Exercise 10.24.

Proof.

- (1) Assume that E is a **connected** open subset of \mathbb{R}^n . Show that ω is exact in E if $\int_{\gamma} \omega = 0$ for every closed curve γ in E, of class \mathscr{C}' .
- (2) Fix $\mathbf{p} \in E$. Define

$$f(\mathbf{x}) = \int_{[\mathbf{p}, \mathbf{x}]} \omega \qquad (\mathbf{x} \in E).$$

It is well-defined since E is connected and $\int_{\gamma}\omega=0$ for every closed curve γ in E.

(3) Given any $\mathbf{x} \in E$, $\mathbf{y} \in E$, and $\mathbf{x} \neq \mathbf{y}$. Let

$$\gamma = [\mathbf{x}, \mathbf{y}] - [\mathbf{p}, \mathbf{y}] + [\mathbf{p}, \mathbf{x}]$$

be a closed curve in E. Hence,

$$0 = \int_{\gamma} \omega$$

$$= \int_{[\mathbf{x}, \mathbf{y}]} \omega - \int_{[\mathbf{p}, \mathbf{y}]} \omega + \int_{[\mathbf{p}, \mathbf{x}]} \omega$$

$$= \int_{[\mathbf{x}, \mathbf{y}]} \omega - f(\mathbf{y}) + f(\mathbf{x}).$$
(Assumption)

So

$$f(\mathbf{y}) - f(\mathbf{x}) = \int_{[\mathbf{x}, \mathbf{y}]} \omega$$

(4) Similar to (4)(5) in the proof of Exercise 10.24, we have $df = \omega$. So the statement in (1) is proved. In general, we can define each f_{α} on each connected component E_{α} (which is open) of E such that $df_{\alpha} = \omega$ on E_{α} . Take

$$f|_{E_{\alpha}} = f_{\alpha}$$

on E. Hence, $df = \omega$ on the whole E.

Exercise 10.26. Assume ω is a 1-form in $\mathbb{R}^3 - \{\mathbf{0}\}$, of class \mathscr{C}' and $d\omega = 0$. Prove that ω is exact in $\mathbb{R}^3 - \{\mathbf{0}\}$. (Hint: Every closed continuously differentiable curve in $\mathbb{R}^3 - \{\mathbf{0}\}$ is the boundary of a 2-surface in $\mathbb{R}^3 - \{\mathbf{0}\}$. Apply Stokes' theorem and Exercise 10.25.)

Proof.

(1) Let $E = \mathbb{R}^3 - \{0\}$. By Exercise 10.25, it suffices to show that

$$\int_{\gamma} \omega = 0$$

for every closed curve γ in E, of class \mathscr{C}' .

(2) Intuitively, every closed continuously differentiable curve in $\mathbb{R}^3 - \{\mathbf{0}\}$ is the boundary of a 2-surface in $\mathbb{R}^3 - \{\mathbf{0}\}$. So there is some 2-surface Ψ such that $\partial \Psi = \gamma$. The Stokes' theorem (Theorem 10.33) implies that

$$\int_{\gamma} \omega = \int_{\partial \Psi} \omega = \int_{\Psi} d\omega = \int_{\Psi} 0 = 0.$$

Exercise 10.27. Let E be an open 3-cell in \mathbb{R}^3 , with edges parallel to the coordinate axes. Suppose $(a, b, c) \in E$, $f_i \in \mathscr{C}'(E)$ for i = 1, 2, 3,

$$\omega = f_1 dy \wedge dz + f_2 dz \wedge dx + f_3 dx \wedge dy,$$

and assume that $d\omega = 0$ in E. Define

$$\lambda = q_1 dx + q_2 dy$$

where

$$g_1(x, y, z) = \int_c^z f_2(x, y, s) ds - \int_b^y f_3(x, t, c) dt$$
$$g_2(x, y, z) = -\int_c^z f_1(x, y, s) ds,$$

for $(x, y, z) \in E$. Prove that $d\lambda = \omega$ in E. Evaluate these integrals when $\omega = \zeta$ and thus find the form λ that occurs in part (e) of Exercise 10.22.

Proof.

(1) Let $\mathbf{F} = f_1 \mathbf{e}_1 + f_2 \mathbf{e}_2 + f_3 \mathbf{e}_3$ as in Vector fields 10.42. Then

$$d\omega = (\nabla \cdot F)dx \wedge dy \wedge dz.$$

As $d\omega = 0$ by assumption, $\nabla \cdot F = D_1 f_1 + D_2 f_2 + D_3 f_3 = 0$.

(2) As

$$d\lambda = d(g_1 dx + g_2 dy)$$

$$= (D_1 g_1 dx + D_2 g_1 dy + D_3 g_1 dz) \wedge dx$$

$$+ (D_1 g_2 dx + D_2 g_2 dy + D_3 g_2 dz) \wedge dy$$

$$= (-D_3 g_2) dy \wedge dz + (D_3 g_1) dz \wedge dx + (D_1 g_2 - D_2 g_1) dx \wedge dy,$$

it suffices to show that

$$f_1 = -D_3 g_2,$$

$$f_2 = D_3 g_1,$$

$$f_3 = D_1 g_2 - D_2 g_1$$

on E.

(3) Theorem 6.20 implies that

$$-D_3g_2 = D_3 \int_c^z f_1(x, y, s) ds = f_1(x, y, z)$$

and

$$D_3g_1 = D_3 \int_c^z f_2(x, y, s) ds - D_3 \int_b^y f_3(x, t, c) dt = f_2(x, y, z).$$

Also,

$$\begin{split} &D_{1}g_{2}-D_{2}g_{1}\\ &=D_{1}\left(-\int_{c}^{z}f_{1}(x,y,s)ds\right)\\ &-D_{2}\left(\int_{c}^{z}f_{2}(x,y,s)ds-\int_{b}^{y}f_{3}(x,t,c)dt\right)\\ &=-\int_{c}^{z}D_{1}f_{1}(x,y,s)ds \qquad (f_{1}\in\mathscr{C}')\\ &-\int_{c}^{z}D_{2}f_{2}(x,y,s)ds+f_{3}(x,y,c) \qquad (f_{2}\in\mathscr{C}',\,\text{Theorem 6.20})\\ &=\int_{c}^{z}D_{3}f_{3}(x,y,s)ds+f_{3}(x,y,c) \qquad ((1))\\ &=f_{3}(x,y,z) \qquad (\text{Theorem 6.21}). \end{split}$$

Therefore, $d\lambda = \omega$ in E.

(4) When
$$\omega = \zeta = r^{-3}(xdy \wedge dz + ydz \wedge dx + zdx \wedge dy)$$
, we get

$$f_1(x, y, z) = x(x^2 + y^2 + z^2)^{-\frac{3}{2}},$$

$$f_2(x, y, z) = y(x^2 + y^2 + z^2)^{-\frac{3}{2}},$$

$$f_3(x, y, z) = z(x^2 + y^2 + z^2)^{-\frac{3}{2}}.$$

So,

$$\int_{c}^{z} f_{2}(x, y, s) ds = \left[ys(x^{2} + y^{2})^{-1}(x^{2} + y^{2} + s^{2})^{-\frac{1}{2}} \right]_{s=c}^{s=z},$$

$$\int_{b}^{y} f_{3}(x, t, c) dt = \left[ct(x^{2} + c^{2})^{-1}(x^{2} + t^{2} + c^{2})^{-\frac{1}{2}} \right]_{t=b}^{t=y},$$

$$\int_{c}^{z} f_{1}(x, y, s) ds = \left[xs(x^{2} + y^{2})^{-1}(x^{2} + y^{2} + s^{2})^{-\frac{1}{2}} \right]_{s=c}^{s=z}.$$

Hence,

$$\lambda = g_1 dx + g_2 dy$$

$$= \left[y s (x^2 + y^2)^{-1} (x^2 + y^2 + s^2)^{-\frac{1}{2}} \right]_{s=c}^{s=z} dx$$

$$- \left[c t (x^2 + c^2)^{-1} (x^2 + t^2 + c^2)^{-\frac{1}{2}} \right]_{t=b}^{t=y} dx$$

$$+ \left[x s (x^2 + y^2)^{-1} (x^2 + y^2 + s^2)^{-\frac{1}{2}} \right]_{s=c}^{s=z} dy$$

$$= - \left[z r^{-1} - c (x^2 + y^2 + c^2)^{-\frac{1}{2}} \right] \eta \qquad \text{(Definition of } \eta)$$

$$- c (x^2 + c^2)^{-1} \left[y (x^2 + y^2 + c^2)^{-\frac{1}{2}} - b (x^2 + b^2 + c^2)^{-\frac{1}{2}} \right] dx.$$

As we pick $(a, b, c) = (a, 0, 0) \in \mathbb{R}^3 - \{\mathbf{0}\}$ (or $a \neq 0$), we have $\lambda = -zr^{-1}\eta$ such that $d\lambda = \omega = \zeta$, which is the same as part (e) in Exercise 10.22.

Exercise 10.28. Fix b > a > 0, define

$$\Phi(r,\theta) = (r\cos\theta, r\sin\theta)$$

for $a \le r \le b$, $0 \le \theta \le 2\pi$. (The range of Φ is an annulus in \mathbb{R}^2 .) Put $\omega = x^3 dy$, and compute both

$$\int_{\Phi} d\omega \qquad and \qquad \int_{\partial \Phi} \omega$$

to verify that they are equal.

Proof.

(1) Note that

$$\frac{\partial(x,y)}{\partial(r,\theta)} = \det\begin{bmatrix} \cos\theta & -r\sin\theta\\ \sin\theta & r\cos\theta \end{bmatrix} = r.$$

So

$$\int_{\Phi} d\omega = \int_{\Phi} 3x^2 dx \wedge dy \qquad (dy \wedge dy = 0)$$

$$= \int_{[a,b] \times [0,2\pi]} 3(r\cos\theta)^2 \frac{\partial(x,y)}{\partial(r,\theta)} dr d\theta$$

$$= \int_a^b \int_0^{2\pi} 3r^3 (\cos\theta)^2 dr d\theta$$

$$= \frac{3\pi}{4} (b^4 - a^4).$$

(2) Similar to Exercise 10.21(b), write

$$\partial \Phi = \Gamma - \gamma$$
.

where $\Gamma(t)=(b\cos t,b\sin t)$ on $[0,2\pi]$ and $\gamma(t)=(a\cos t,a\sin t)$ on $[0,2\pi].$ Hence

$$\begin{split} \int_{\partial\Phi} \omega &= \int_{\Gamma} \omega - \int_{\gamma} \omega \\ &= \int_{\Gamma} x^3 dy - \int_{\gamma} x^3 dy \\ &= \int_{[0,2\pi]} (b\cos\theta)^3 \frac{\partial y}{\partial \theta} d\theta - \int_{[0,2\pi]} (a\cos\theta)^3 \frac{\partial y}{\partial \theta} d\theta \\ &= \int_0^{2\pi} b^4 (\cos\theta)^4 d\theta - \int_0^{2\pi} a^4 (\cos\theta)^4 d\theta \\ &= \frac{3\pi}{4} (b^4 - a^4). \end{split}$$

(3)
$$\int_{\Phi} d\omega = \int_{\partial \Phi} \omega = \frac{3\pi}{4} (b^4 - a^4).$$

Exercise 10.29. Prove the existence of a function α with the properties needed in the proof of Theorem 10.38, and prove that the resulting function F is of class \mathscr{C}' . (Both assertions become trivial if E is an open cell or an open ball, since α can then be taken to be a constant. Refer to Theorem 9.42.)

Proof.

- (1)
- (2)

Exercise 10.30. If N is the vector given by

$$\mathbf{N} = (\alpha_2 \beta_3 - \alpha_3 \beta_2) \mathbf{e}_1 + (\alpha_3 \beta_1 - \alpha_1 \beta_3) \mathbf{e}_2 + (\alpha_1 \beta_2 - \alpha_2 \beta_1) \mathbf{e}_3$$

(Equation (135)), prove that

$$\det\begin{bmatrix} \alpha_1 & \beta_1 & \alpha_2\beta_3 - \alpha_3\beta_2\\ \alpha_2 & \beta_2 & \alpha_3\beta_1 - \alpha_1\beta_3\\ \alpha_3 & \beta_3 & \alpha_1\beta_2 - \alpha_2\beta_1 \end{bmatrix} = |\mathbf{N}|^2$$

Also, verify

$$\mathbf{N} \cdot (T\mathbf{e}_1) = \mathbf{N} \cdot (T\mathbf{e}_2)$$

(Equation (137)).

Proof.

(1) By Laplace's expansion along the third column,

$$\det\begin{bmatrix} \alpha_1 & \beta_1 & \alpha_2\beta_3 - \alpha_3\beta_2 \\ \alpha_2 & \beta_2 & \alpha_3\beta_1 - \alpha_1\beta_3 \\ \alpha_3 & \beta_3 & \alpha_1\beta_2 - \alpha_2\beta_1 \end{bmatrix}$$

$$= (-1)^{1+3}(\alpha_2\beta_3 - \alpha_3\beta_2) \det\begin{bmatrix} \alpha_2 & \beta_2 \\ \alpha_3 & \beta_3 \end{bmatrix}$$

$$+ (-1)^{2+3}(\alpha_3\beta_1 - \alpha_1\beta_3) \det\begin{bmatrix} \alpha_1 & \beta_1 \\ \alpha_3 & \beta_3 \end{bmatrix}$$

$$+ (-1)^{3+3}(\alpha_1\beta_2 - \alpha_2\beta_1) \det\begin{bmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{bmatrix}$$

$$= (\alpha_2\beta_3 - \alpha_3\beta_2)^2 + (\alpha_3\beta_1 - \alpha_1\beta_3)^2 + (\alpha_1\beta_2 - \alpha_2\beta_1)^2$$

$$= |\mathbf{N}|^2.$$

(2)

$$\mathbf{N} \cdot (T\mathbf{e}_1) = (\alpha_2\beta_3 - \alpha_3\beta_2, \alpha_3\beta_1 - \alpha_1\beta_3, \alpha_1\beta_2 - \alpha_2\beta_1) \cdot (\alpha_1, \alpha_2, \alpha_3)$$

$$= (\alpha_2\beta_3 - \alpha_3\beta_2)\alpha_1 + (\alpha_3\beta_1 - \alpha_1\beta_3)\alpha_2 + (\alpha_1\beta_2 - \alpha_2\beta_1))\alpha_3$$

$$= (\alpha_3\alpha_2 - \alpha_2\alpha_3)\beta_1 + (\alpha_1\alpha_3 - \alpha_3\alpha_1)\beta_2 + (\alpha_2\alpha_1 - \alpha_1\alpha_2)\beta_3$$

$$= 0.$$

(3)

$$\begin{aligned} \mathbf{N} \cdot (T\mathbf{e}_{2}) &= (\alpha_{2}\beta_{3} - \alpha_{3}\beta_{2}, \alpha_{3}\beta_{1} - \alpha_{1}\beta_{3}, \alpha_{1}\beta_{2} - \alpha_{2}\beta_{1}) \cdot (\beta_{1}, \beta_{2}, \beta_{3}) \\ &= (\alpha_{2}\beta_{3} - \alpha_{3}\beta_{2})\beta_{1} + (\alpha_{3}\beta_{1} - \alpha_{1}\beta_{3})\beta_{2} + (\alpha_{1}\beta_{2} - \alpha_{2}\beta_{1}))\beta_{3} \\ &= (\beta_{2}\beta_{3} - \beta_{3}\beta_{2})\alpha_{1} + (\beta_{3}\beta_{1} - \beta_{1}\beta_{3})\alpha_{2} + (\beta_{1}\beta_{2} - \beta_{2}\beta_{1})\alpha_{3} \\ &= 0. \end{aligned}$$

Exercise 10.31. Let $E \subseteq \mathbb{R}^3$ be open, suppose $g \in \mathscr{C}''(E)$, $h \in \mathscr{C}''(E)$, and consider the vector field

$$\mathbf{F} = g\nabla h$$

(a) Prove that

$$\nabla \cdot \mathbf{F} = g \nabla^2 h + (\nabla g) \cdot (\nabla h)$$

where $\nabla^2 h = \nabla \cdot (\nabla h) = \sum \frac{\partial^2 h}{\partial x_i^2}$ is the so-called "Laplacian" of h.

(b) If Ω is a closed subset of E with positively oriented boundary $\partial\Omega$ (as in Theorem 10.51), prove that

$$\int_{\Omega}[g\nabla^2 h + (\nabla g)\cdot(\nabla h)]dV = \int_{\partial\Omega}g\frac{\partial h}{\partial n}dA$$

where (as is customary) we have written $\frac{\partial h}{\partial n}$ in place of $(\nabla h) \cdot \mathbf{n}$. (Thus $\frac{\partial h}{\partial n}$ is the directional derivative of h in the direction of the outward normal to $\partial \Omega$, the so-called **normal derivative** of h.) Interchange g and h, substract the resulting formula from the first one, to obtain

$$\int_{\Omega} (g\nabla^2 h - h\nabla^2 g) dV = \int_{\partial\Omega} \left(g \frac{\partial h}{\partial n} - h \frac{\partial g}{\partial n} \right) dA.$$

These two formulas are usually called Green's identities.

(c) Assume that h is **harmonic** in E; this means that $\nabla^2 h = 0$. Take g = 1 and conclude that

 $\int_{\partial\Omega} \frac{\partial h}{\partial n} dA = 0.$

Take g = h, and conclude that h = 0 in Ω if h = 0 on $\partial\Omega$.

(d) Show that Green's identities are also valid in \mathbb{R}^2 .

Proof of (a).

(1) Since

$$\mathbf{F} = g\nabla h = g\left(\sum (D_i h)\mathbf{e}_i\right) = \sum g(D_i h)\mathbf{e}_i,$$

we have

$$\nabla \cdot \mathbf{F} = \nabla \cdot \left(\sum_{i} g(D_{i}h) \mathbf{e}_{i} \right)$$

$$= \sum_{i} D_{i}(g(D_{i}h))$$

$$= \sum_{i} \{ (D_{i}g)(D_{i}h) + gD_{i}(D_{i}h) \}$$

$$= \sum_{i} (D_{i}g)(D_{i}h) + g\sum_{i} D_{i}(D_{i}h).$$

(2) Also,

$$g\nabla^{2}h + (\nabla g) \cdot (\nabla h) = g\nabla \cdot (\nabla h) + (\nabla g) \cdot (\nabla h)$$
$$= g\nabla \cdot \left(\sum (D_{i}h)\mathbf{e}_{i}\right) + \left(\sum (D_{i}g)\mathbf{e}_{i}\right) \cdot \left(\sum (D_{i}h)\mathbf{e}_{i}\right)$$
$$= g\sum D_{i}(D_{i}h) + \sum (D_{i}g)(D_{i}h).$$

(3) By (1)(2), the result is established.

Proof of (b).

(1) The divergence theorem (Theorem 10.51) implies that

$$\int_{\Omega} (\nabla \cdot \mathbf{F}) dV = \int_{\partial \Omega} (\mathbf{F} \cdot \mathbf{n}) dA$$

$$\Longrightarrow \int_{\Omega} [g \nabla^2 h + (\nabla g) \cdot (\nabla h)] dV = \int_{\partial \Omega} g \underbrace{\nabla h \cdot \mathbf{n}}_{=\frac{\partial h}{\partial n}} dA.$$

(2) Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. (Green's third identity.) Assume that h is harmonic in E. If $G(\mathbf{x}, \mathbf{x}_0)$ is the Green's function, then

$$h(\mathbf{x}_0) = \int_{\partial \Omega} \left[h(\mathbf{x}) \frac{\partial G(\mathbf{x}, \mathbf{x}_0)}{\partial n} - G(\mathbf{x}, \mathbf{x}_0) \frac{\partial h(\mathbf{x})}{\partial n} \right] dA.$$

For example, in \mathbb{R}^3

$$G(\mathbf{x}, \mathbf{x}_0) = -\frac{1}{4\pi \|\mathbf{x} - \mathbf{x}_0\|}.$$

Proof of (c). Assume $\nabla^2 h = 0$.

(1) Take g = 1 in

$$\int_{\Omega} [g\nabla^2 h + (\nabla g) \cdot (\nabla h)] dV = \int_{\partial \Omega} g \frac{\partial h}{\partial n} dA$$

to get the conclusion. (Here $\nabla g = \mathbf{0}$ as g = 1.)

(2) Assume h = 0 on $\partial \Omega$. Take g = h in

$$\int_{\Omega} [g\nabla^2 h + (\nabla g) \cdot (\nabla h)] dV = \int_{\partial \Omega} g \frac{\partial h}{\partial n} dA$$

to get

$$\int_{\Omega} |\nabla h|^2 dV = \int_{\partial \Omega} h \frac{\partial h}{\partial n} dA = 0$$

(since h = 0 on $\partial\Omega$). Since $h \in \mathscr{C}'(\Omega)$, Exercise 6.2 implies that $|\nabla h|^2 = 0$ on Ω . So $D_1 h = D_2 h = D_3 h = 0$ on Ω . Since $h \in \mathscr{C}'(\Omega)$, Theorem 9.21 implies that h = 0 on Ω , or h is locally constant in Ω (Exercise 9.9). Note that h = 0 globally on $\partial\Omega$, and thus h = 0 globally on Ω .

Proof of (d).

(1) (The divergence theorem in \mathbb{R}^2 .) If $\mathbf{F} = F_1\mathbf{e}_1 + F_2\mathbf{e}_2$ is a vector field of class \mathscr{C}' in an open set $E \subseteq \mathbb{R}^2$, and if Ω is a closed subset of E with positively oriented boundary $\partial\Omega$ then

$$\int_{\Omega} (\nabla \cdot \mathbf{F}) dA = \int_{\partial \Omega} (\mathbf{F} \cdot \mathbf{n}) ds.$$

Define a 1-form by

$$\omega_{\mathbf{F}} = F_1 dy - F_2 dx.$$

So

$$d\omega_{\mathbf{F}} = (\nabla \cdot \mathbf{F})dx \wedge dy = (\nabla \cdot \mathbf{F})dA.$$

Hence the Stokes' theorem (Theorem 10.33) implies that

$$\int_{\Omega} (\nabla \cdot \mathbf{F}) dA = \int_{\Omega} d\omega_{\mathbf{F}} = \int_{\partial \Omega} \omega_{\mathbf{F}} = \int_{\partial \Omega} (\mathbf{F} \cdot \mathbf{n}) ds.$$

(2) Note that

$$\nabla \cdot \mathbf{F} = g \nabla^2 h + (\nabla g) \cdot (\nabla h)$$

is also true in \mathbb{R}^2 . Similar to (b), two Green's identities are also true in \mathbb{R}^2 . (In \mathbb{R}^1 , the Green's first identity is the integration by parts (Theorem 6.22).)

Exercise 10.32 (Möbius band). Fix δ , $0 < \delta < 1$. Let D be the set of all $(\theta, t) \in \mathbb{R}^2$ such that $0 \le \theta \le \pi$, $-\delta \le t \le \delta$. Let Φ be the 2-surface in \mathbb{R}^3 , with parameter domain D, given by

$$x = (1 - t\sin\theta)\cos(2\theta)$$

$$y = (1 - t\sin\theta)\sin(2\theta)$$

$$z = t \cos \theta$$

where $(x, y, z) = \Phi(\theta, t)$. Note that $\Phi(\pi, t) = \Phi(0, -t)$, and that Φ is one-to-one on the rest of D.

The range $M = \Phi(D)$ of Φ is known as a **Möbius band**. It is the simplest example of a nonorientable surface.

Prove the various assertions made in the following description: Put $\mathbf{p}_1 = (0, -\delta)$, $\mathbf{p}_2 = (\pi, -\delta)$, $\mathbf{p}_3 = (\pi, \delta)$, $\mathbf{p}_4 = (0, \delta)$, $\mathbf{p}_5 = \mathbf{p}_1$. Put $\gamma_i = [\mathbf{p}_i, \mathbf{p}_{i+1}]$, $i = 1, \ldots, 4$, and put $\Gamma_i = \Phi \circ \gamma_i$. Then

$$\partial \Phi = \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4.$$

Put $\mathbf{a} = (1, 0, -\delta), \ \mathbf{b} = (1, 0, \delta).$ Then

$$\Phi(\mathbf{p}_1) = \Phi(\mathbf{p}_3) = \mathbf{a}, \qquad \Phi(\mathbf{p}_2) = \Phi(\mathbf{p}_4) = \mathbf{b},$$

and $\partial\Phi$ can be described as follows.

- (1) Γ_1 spirals up from **a** to **b**; its projection into the (x, y)-plane has winding number +1 around the origin. (See Exercise 8.23.)
- (2) $\Gamma_2 = [\mathbf{b}, \mathbf{a}].$
- (3) Γ_3 spirals up from **a** to **b**; its projection into the (x, y)-plane has winding number -1 around the origin.
- (4) $\Gamma_4 = [\mathbf{b}, \mathbf{a}].$

Thus $\partial \Phi = \Gamma_1 + \Gamma_3 + 2\Gamma_2$.

If we go from \mathbf{a} to \mathbf{b} along Γ_1 and continue along the "edge" of M until we return to \mathbf{a} , the curve traced out is

$$\Gamma = \Gamma_1 - \Gamma_3$$
,

which may also be represented on the parameter interval $[0, 2\pi]$ by the equations

$$\begin{split} x &= (1 + \delta \sin \theta) \cos(2\theta) \\ y &= (1 + \delta \sin \theta) \sin(2\theta) \\ z &= -\delta \cos \theta. \end{split}$$

It should be emphasized that $\Gamma \neq \partial \Phi$: Let $\eta = \frac{xdy - ydx}{x^2 + y^2}$ be the 1-form discussed in Exercise 10.21 and Exercise 10.22. Since $d\eta = 0$, Stokes' theorem shows that

$$\int_{\partial \Phi} \eta = 0.$$

But although Γ is the "geometric" boundary of M, we have

$$\int_{\Gamma} \eta = 4\pi.$$

In order to avoid this possible source of confusion, Stokes' formula (Theorem 10.50) is frequently stated only for orientable surfaces Φ .

Proof.

(1) Show that $\partial \Phi = \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4$.

$$\begin{split} \partial \Phi &= \Phi \circ (\partial D) \\ &= \Phi \circ (\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4) \\ &= \Phi \circ \gamma_1 + \Phi \circ \gamma_2 + \Phi \circ \gamma_3 + \Phi \circ \gamma_4 \\ &= \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4. \end{split}$$

(2) It is trivial that $\Phi(\mathbf{p}_1) = \Phi(\mathbf{p}_3) = \mathbf{a} = (1, 0, -\delta)$ and $\Phi(\mathbf{p}_2) = \Phi(\mathbf{p}_4) = \mathbf{b} = (1, 0, \delta)$ by the definition of Φ .

(3) Show that Γ_1 spirals up from \mathbf{a} to \mathbf{b} ; its projection into the (x,y)-plane has winding number +1 around the origin. By definition, $\Gamma_1 = \Phi \circ \gamma_1 = \Phi([\mathbf{p}_1, \mathbf{p}_2])$. That is, Γ_1 spirals up from $\Phi(\mathbf{p}_1) = \mathbf{a}$ to $\Phi(\mathbf{p}_2) = \mathbf{b}$. Besides, the projection P_{Γ_1} of Γ_1 into the (x, y)-plane (z = 0) can be parameterized as

$$x = \left(1 + \delta \sin \frac{t}{2}\right) \cos t$$
$$y = \left(1 + \delta \sin \frac{t}{2}\right) \sin t$$

for $0 \le t \le 2\pi$. Note that P_{Γ_1} satisfies the condition in Exercise 10.21(b). Hence $\int_{P_{\Gamma_1}} \eta = 2\pi$. (Here η is well-defined.) Apply Exercise 10.21(f) to get

$$\operatorname{Ind}(P_{\Gamma_1}) = \frac{1}{2\pi} \int_{P_{\Gamma_1}} \eta = \frac{1}{2\pi} \cdot 2\pi = 1.$$

- (4) Show that $\Gamma_2 = [\mathbf{b}, \mathbf{a}]$. By definition, $\Gamma_2 = \Phi \circ \gamma_2 = \Phi([\mathbf{p}_2, \mathbf{p}_3])$ is $[\mathbf{b}, \mathbf{a}]$ exactly.
- (5) Show that Γ_3 spirals up from **a** to **b**; its projection into the (x, y)-plane has winding number -1 around the origin. Similar to (3), Γ_3 spirals up from $\Phi(\mathbf{p}_3) = \mathbf{a}$ to $\Phi(\mathbf{p}_4) = \mathbf{b}$. Now we consider $-\Gamma_3$ instead of Γ_3 . The projection $P_{-\Gamma_3}$ of $-\Gamma_3$ into the (x, y)-plane (z = 0) can be parameterized as

$$x = \left(1 - \delta \sin \frac{t}{2}\right) \cos t$$
$$y = \left(1 - \delta \sin \frac{t}{2}\right) \sin t$$

for $0 \le t \le 2\pi$. Similar to (3), $\operatorname{Ind}(P_{-\Gamma_3}) = 1$. Therefore,

$$\operatorname{Ind}(P_{\Gamma_3}) = -\operatorname{Ind}(-P_{\Gamma_3}) = -\operatorname{Ind}(P_{-\Gamma_3}) = -1.$$

- (6) Show that $\Gamma_4 = [\mathbf{b}, \mathbf{a}]$. Similar to (4).
- (7) Show that $\Gamma = \Gamma_1 \Gamma_3$ is the trace of from **a** to **b** along Γ_1 and continue along the "edge" of M until we return to **a**. By definition, Γ can be parameterized as

$$x = (1 + \delta \sin t) \cos(2t)$$
$$y = (1 + \delta \sin t) \sin(2t)$$
$$z = -\delta \cos t$$

for $t \in [0, 2\pi]$. Thus, Γ is Γ_1 if $t \in [0, \pi]$ and Γ is $-\Gamma_3$ if $t \in [\pi, 2\pi]$ by (3)(5). So $\Gamma = \Gamma_1 - \Gamma_3$.

(8) Show that $\int_{\partial\Phi}\eta=0$. Note that η is well-defined since M does not intersect the z-axis. So the Stokes' theorem (Theorem 10.33) and $d\eta=0$ on M implies that

$$\int_{\partial\Phi}\eta=\int_{\Phi}d\eta=0.$$

(9) Show that $\int_{\Gamma} \eta = 4\pi$.

$$\int_{\Gamma} \eta = \int_{\Gamma} \frac{x dy - y dx}{x^2 + y^2}
= \int_{0}^{2\pi} \frac{x(t)y'(t) - y(t)x'(t)}{x(t)^2 + y(t)^2} dt
= \int_{0}^{2\pi} 2 dt
= 4\pi.$$
((7))

(So the winding number of Γ around of $\mathbf{0}$ is 2.)

(10) By (8)(9), $\Gamma \neq \partial \Phi$.