Convolution

Matrix computation

Dr. Thanh-Sach LE LTSACH@hcmut.edu.vn

GVLab: Graphics and Vision Laboratory

Faculty of Computer Science and Engineering, HCMUT

Contents

- ❖im2col
- *kernel2row
- **❖** Notation
- Convolution as matrix multiplication

Convolution im2col

Dr. Thanh-Sach LE LTSACH@hcmut.edu.vn

GVLab: Graphics and Vision Laboratory

Faculty of Computer Science and Engineering, HCMUT

Notation:

: input image or feature map

: Matrix created by collecting all the values of X corresponding to the kernel W into columns of $\frac{1}{2}$ (illustrated in next slide)

: Filter's kernel

X11	X 12	X 13
X 21	X 22	X 23
X 31	X 32	X 33

 ∂b

X

Input image

W11	W 12
W 21	W 22

W22 W21 W12 W11

 $Rot180^{0}(W)$

Filter's kernel

W

Rotated kernel

How to create matrix X_{conv}

W22	W 21
W 12	W11

Rotate180⁰(W)

Flattened in the order corresponding to w₁₁, w₁₂, w₂₁, w₂₂

How to create matrix X_{conv}

Flattened in the order corresponding to w₁₁, w₁₂, w₂₁, w₂₂

Flattened in the order corresponding to w₁₁, w₁₂, w₂₁, w₂₂

Convolution kernel2row

Dr. Thanh-Sach LE LTSACH@hcmut.edu.vn

GVLab: Graphics and Vision Laboratory

Faculty of Computer Science and Engineering, HCMUT

Notation:

: input image or feature map

: Matrix created by collecting all the values of X corresponding to the kernel W into columns of $\frac{1}{conv}$ (illustrated in next slide)

: Filter's kernel

: Matrix created by rearranging values in the kernel into row of a matrix (illustrated in next slide)

X11	X 12	X 13
X 21	X 22	X 23
X 31	X 32	X 33

b

X

Input image

W11	W 12
W 21	W 22

Rot180⁰(**W**)

W₂₂

W12

W₂₁

W11

W

Filter's kernel

Rotated kernel

How to create matrix \mathbb{W}_{conv}

	W22 X11	W21 X12	0 *X13
	W12X 21	W 11 X 22	0 *X23
дь	0 *X31	0 *X32	0 *X33
		X	

W22	W 21
W 12	W 11

Rotate180⁰(**W**)

flattening

W22	W 21	0	W 12	W ₁₁	0	0	0	0

 \mathbb{W}_{conv}

How to create matrix \mathbb{W}_{conv}

0 *X ₁₁	W22 X12	W21 X13
0 *X ₂₁	W12X 22	W 11 X 23
0 *X31	0 *x ₃₂	0 *x ₃₃
	X	

W 22	W 21
W 12	W 11

Rotate180⁰(**W**)

W22	W 21	0	W 12	W 11	0	0	0	0
0	W ₂₂	W 21	0	W 12	W 11	0	0	0

 \mathbb{W}_{conv}

How to create matrix \mathbb{W}_{conv}

W 22	W 21
W 12	W 11

Rotate180⁰(**W**)

W ₂₂	W ₂₁	0	W 12	W 11	0	0	0	0
0	W ₂₂	W ₂₁	0	W 12	W 11	0	0	0
0	0	0	W22	W 21	0	W 12	W ₁₁	0

 \mathbb{W}_{conv}

How to create matrix \mathbb{W}_{conv}

0 *X ₁₁	0 *X ₁₂	0 *X ₁₃
0 *X21	W22 X22	W21X 23
0 *X31	W 12 X 32	W 11 X 33

W ₂₂	W 21
W 12	W ₁₁

Rotate180⁰(**W**)

T	7
1	

W ₂₂	W 21	0	W 12	W ₁₁	0	0	0	0
0	W ₂₂	W 21	0	W 12	W ₁₁	0	0	0
0	0	0	W22	W 21	0	W 12	W 11	0
0	0	0	0	W ₂₂	W ₂₁	0	W 12	W 11

Notation

			X_{flat}	X11	X 12	X 13	X 21	X 22	X 23	X 31	X 32	X 33
X 11	X12	X 13										
X 21	X 22	X23		X22	X23	X 32	X 33					
			lacktriangle	X 21	X22	X 31	X 32					
X 31	X 32	X 33	X_{conv}	X12	X 13	X22	X23					
∂b	X			X ₁₁	X ₁₂	X 21	X22					

	W11	W 12	W 21	W ₂₂
--	-----	-------------	-------------	-----------------

W22	W ₂₁	0	W 12	W ₁₁	0	0	0	0
0	W ₂₂	W ₂₁	0	W ₁₂	W ₁₁	0	0	0
0	0	0	W ₂₂	W 21	0	W 12	W ₁₁	0
0	0	0	0	W ₂₂	W ₂₁	0	W 12	W ₁₁

$$\mathbf{X} * \mathbf{W} = \mathbf{Reshape}_{o_1 \times o_2} (\mathbb{W}_{flat} \times \mathbb{X}_{conv})$$

$$= \mathbf{Reshape}_{o_1 \times o_2} (\mathbb{W}_{conv} \times \mathbb{X}_{flat})$$

$$\Delta \mathbf{W} = \mathbf{Reshape}_{k_1 \times k_2} (\Delta \mathbb{Y}_{flat} \times \mathbb{X}_{conv}^T)$$

$$\Delta \mathbf{X} = \mathbf{Reshape}_{i_1 \times i_2} (\mathbb{W}_{conv}^T \times \Delta \mathbb{Y}_{flat})$$

*: Convolution, NOT matrix multiplication

x: Matrix multiplication

 $o_1 \times o_2$: size of $\mathbf{Y} = \mathbf{X}^* \mathbf{W}$

k₂ x k₂: size of W

i₁ x i₂: size of X

21.

$$\mathbb{Y}_{flat} = \mathbb{W}_{flat} * \mathbb{X}_{conv} = \begin{bmatrix} y_{11} & y_{12} & y_{21} & y_{22} \end{bmatrix}$$

$$y_{11} = w_{22}x_{11} + w_{21}x_{12} + y_{12} = w_{22}x_{12} + w_{21}x_{13} + w_{12}x_{21} + w_{11}x_{22}$$

$$w_{12}x_{21} + w_{11}x_{22} + w_{11}x_{23}$$

$$y_{21} = w_{22}x_{21} + w_{21}x_{22} + y_{22} = w_{22}x_{22} + w_{21}x_{23} + w_{12}x_{31} + w_{11}x_{32}$$

$$w_{12}x_{31} + w_{11}x_{32} + w_{11}x_{33}$$

Reshape to 2x2:
$$Y = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}$$

$$X_{22}$$
 X_{21} X_{12} X_{11}
 X_{23} X_{22} X_{13} X_{12}
 X_{32} X_{31} X_{22} X_{21}
 X_{33} X_{32} X_{23} X_{22}

$$\Delta Y_{flat} = \left| \delta y_{11} \right| \delta y_{12} \left| \delta y_{21} \right| \delta y_{22}$$

 ∂t

$$\Delta \mathbb{W}_{flat} = \Delta \mathbb{Y}_{flat} \times \mathbb{X}^T:$$

$$\delta w_{11} = \delta y_{11} x_{22} + \delta y_{12} x_{23} + \delta y_{21} x_{32} + \delta y_{22} x_{33}$$

$$\delta w_{12} = \delta y_{11} x_{21} + \delta y_{12} x_{22} + \delta y_{21} x_{31} + \delta y_{22} x_{32}$$

$$\delta w_{21} = \delta y_{11} x_{12} + \delta y_{12} x_{13} + \delta y_{21} x_{22} + \delta y_{22} x_{23}$$

$$\delta w_{22} = \delta y_{11} x_{11} + \delta y_{12} x_{12} + \delta y_{21} x_{21} + \delta y_{22} x_{22}$$

Reshape to 2x2:

$$\Delta \mathbf{W} = \begin{bmatrix} \delta y_{11} & \delta y_{12} \\ \delta y_{21} & \delta y_{22} \end{bmatrix}$$

$$\mathbb{W}_{conv} =$$

W ₂₂	W ₂₁	0	W ₁₂	W ₁₁	0	0	0	0
0	W ₂₂	W 21	0	W 12	W 11	0	0	0
0	0	0	W ₂₂	W ₂₁	0	W ₁₂	W ₁₁	0
0	0	0	0	W ₂₂	W ₂₁	0	W ₁₂	W ₁₁

$$\mathbb{W}_{conv}^{T} =$$

W22	0	0	0
W 21	W ₂₂	0	0
0	W 21	0	0
W 12	0	W ₂₂	0
W ₁₁	W 12	W 21	W ₂₂
0	W 11	0	W 21
0	0	W 12	0
0	0	W 11	W ₁₂
0	0	0	W ₁₁

$\mathbb{W}^{T}_{c\partial nv}$	_
conv	

W22	0	0	0
W ₂₁	W ₂₂	0	0
0	W21	0	0
W 12	0	W ₂₂	0
W ₁₁	W 12	W 21	W ₂₂
0	W 11	0	W 21
0	0	W 12	0
0	0	W 11	W ₁₂
0	0	0	W 11

$$\Delta Y_{flat} = \left[\delta y_{11} \middle| \delta y_{12} \middle| \delta y_{21} \middle| \delta y_{22} \right]$$

$\mathbb{W}^{T}_{c\partial nv}$	_
u conv	

W22	0	0	0
W 21	W ₂₂	0	0
0	W 21	0	0
W 12	0	W ₂₂	0
W ₁₁	W ₁₂	W ₂₁	W ₂₂
0	W ₁₁	0	W ₂₁
0			
	W 11	0	W 21

$$\Delta Y_{flat} = \left| \delta y_{11} \right| \delta y_{12} \left| \delta y_{21} \right| \delta y_{22}$$

$$\Delta X_{flat} = W_{conv}^T \times \Delta Y_{flat} :$$

$$\delta x_{11} = \delta y_{11} w_{22}$$

$$\delta x_{12} = \delta y_{11} w_{21} + \delta y_{12} w_{22}$$

$$\delta x_{13} = \delta y_{12} w_{21}$$

$$\delta x_{21} = \delta y_{11} w_{12} + \delta y_{21} w_{22}$$

$$\delta x_{22} = \delta y_{11} w_{11} + \delta y_{12} w_{12} + \delta y_{21} w_{21} + \delta y_{11} w_{22}$$

$$\delta x_{23} = \delta y_{12} w_{11} + \delta y_{22} w_{21}$$

$$\delta x_{31} = \delta y_{21} w_{12}$$

$$\delta x_{32} = \delta y_{21} w_{11} + \delta y_{22} w_{12}$$

$$\delta x_{33} = \delta y_{22} w_{11}$$

$$\Delta X_{flat} = W_{conv}^T \times \Delta Y_{flat} :$$

$$\delta x_{11} = \delta y_{11} w_{22}$$

$$\delta x_{12} = \delta y_{11} w_{21} + \delta y_{12} w_{22}$$

$$\delta x_{13} = \delta y_{12} w_{21}$$

$$\delta x_{21} = \delta y_{11} w_{12} + \delta y_{21} w_{22}$$

$$\delta x_{22} = \delta y_{11} w_{11} + \delta y_{12} w_{12} + \delta y_{21} w_{21} + \delta y_{11} w_{22}$$

$$\delta x_{23} = \delta y_{12} w_{11} + \delta y_{22} w_{21}$$

$$\delta x_{31} = \delta y_{21} w_{12}$$

$$\delta x_{32} = \delta y_{21} w_{11} + \delta y_{22} w_{12}$$

$$\delta x_{33} = \delta y_{22} w_{11}$$

δx_{11}	δx_{12}	δx_{13}
δx_{21}	δx_{22}	δx_{23}
δx_{31}	δx_{31}	δx_{33}

ΔΧ