Patent Claims

1. Compositions, comprising compounds of the formula (I)

in which

5

10

15

20

X represents C₁-C₆-alkyl, bromine, C₁-C₆-alkoxy or C₁-C₃-haloalkyl,

Y represents hydrogen, C₁-C₆-alkyl, halogen, C₁-C₆-alkoxy, C₁-C₃-haloalkyl,

Z represents C₁-C₆-alkyl, halogen, C₁-C₆-alkoxy,

n represents a number from 0 to 3,

A represents hydrogen or in each case optionally halogen-subsituted straight-chain or branched C₁-C₁₂-alkyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, C₁-C₁₀-alkoxy-C₁-C₈-alkyl, C₁-C₈-polyalkoxy-C₂-C₈-alkyl, C₁-C₁₀-alkylthio-C₂-C₈-alkyl, cycloalkyl having 3 to 8 ring atoms which may be interrupted by oxygen and/or sulphur or represents in each case optionally halogen-, C₁-C₆-alkyl-, C₁-C₆-haloalkyl-, C₁-C₆-alkoxy-, C₁-C₆-haloalkoxy-, nitro-substituted phenyl or phenyl-C₁-C₆-alkyl,

B represents hydrogen, C₁-C₆-alkyl or C₁-C₆-alkoxy-C₁-C₄-alkyl

or in which

A and B together with the carbon atom to which they are attached form a saturated or unsaturated 3- to 8-membered ring which is optionally interrupted by oxygen and/or sulphur and optionally substituted by halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio or optionally substituted phenyl or is optionally benzofused,

G represents hydrogen (a) or represents a group

$$-CO-R^{1}$$
 (b) $O-R^{2}$ (c) $-SO_{2}-R^{3}$ (d) $-P-R^{4}$ (e) or $N-R^{6}$ (f)

represents in each case optionally halogen-substituted C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₁-C₈-alkoxy-C₁-C₈-alkyl, C₁-C₈-alkylthio-C₁-C₈-alkyl, C₁-C₈-polyalkoxy-C₂-C₈-alkyl or cycloalkyl having 3 to 8 ring atoms which may be interrupted by oxygen and/or sulphur atoms,

represents optionally halogen-, nitro-, C_1 - C_6 -alkyl-, C_1 - C_6 -alkoxy-, C_1 - C_6 -haloalkyl-, C_1 - C_6 -haloalkoxy-substituted phenyl;

represents optionally halogen-, C_1 - C_6 -alkyl-, C_1 - C_6 -alkoxy-, C_1 - C_6 -haloalkyl-, C_1 - C_6 -haloalkoxy-substituted phenyl- C_1 - C_6 -alkyl,

represents in each case optionally halogen- and/or C_1 - C_6 -alkyl-substituted pyridyl, pyrimidyl, thiazolyl or pyrazolyl,

represents optionally halogen- and/or C_1 - C_6 -alkyl-substituted phenoxy- C_1 - C_6 -alkyl,

R² represents in each case optionally halogen-substituted C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₁-C₈-alkoxy-C₂-C₈-alkyl or C₁-C₈-polyalkoxy-C₂-C₈-alkyl,

represents in each case optionally halogen-, nitro-, C_1 - C_6 -alkyl-, C_1 - C_6 -alkoxy-, C_1 - C_6 -haloalkyl-substituted phenyl or benzyl,

R³ represents optionally halogen-substituted C₁-C₈-alkyl, represents in each case optionally C₁-C₄-alkyl-, halogen-, C₁-C₄-haloalkyl-, C₁-C₄-alkoxy-, C₁-C₄-haloalkoxy-, nitro- or cyano-substituted phenyl or benzyl,

R⁴ and R⁵ independently of one another represent in each case optionally halogen-substituted C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₈-alkylamino, di-(C₁-C₈)alkylamino, C₁-C₈-alkylthio, C₂-C₅-alkynylthio, C₃-C₇-cycloalkylthio, represent in each case optionally halogen-, nitro-, cyano-, C₁-C₄-alkoxy-, C₁-C

10

5

15

20

haloalkoxy-, C₁-C₄-alkylthio-, C₁-C₄-haloalkylthio-, C₁-C₄-alkyl-, C₁-C₄-haloalkyl-substituted phenyl, phenoxy or phenylthio,

R⁶ and R⁷ independently of one another represent in each case optionally halogen-substituted C₁-C₁₀-alkyl, C₁-C₁₀-alkoxy, C₃-C₈-alkenyl, C₁-C₈-alkoxy-C₁-C₈-alkyl, represent optionally halogen-, C₁-C₆-haloalkyl-, C₁-C₆-alkyl- or C₁-C₆-alkoxy-substituted phenyl, represent optionally halogen-, C₁-C₆-alkyl-, C₁-C₆-haloalkyl- or C₁-C₆-alkoxy-substituted benzyl or together represent a 5- or 6-membered ring which is optionally interrupted by oxygen or sulphur and which may optionally be substituted by C₁-C₆-alkyl,

and at least one phthalic diamide of the formula (II)

in which

K represents halogen, cyano, alkyl, haloalkyl, alkoxy or haloalkoxy,

 ${
m Re^1, Re^2, Re^3}$ each independently of one another represent hydrogen, cyano, represent optionally halogen-substituted C₃-C₈-cycloalkyl or represent a group of the formula

$$M^1$$
- Q_k

in which

M¹ represents optionally substituted alkylene, alkenylene or alkynylene,

Q represents hydrogen, halogen, cyano, nitro, haloalkyl, in each case optionally substituted C3-C8-cycloalkyl, alkylcarbonyl or alkoxycarbonyl, in each case optionally substituted phenyl, hetaryl or represents a group

$$T-Re^4$$
,

in which

15

5

T represents -O-, -S(O)_m- or
$$-N$$
Re⁵

- Re⁴ represents hydrogen, in each case optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, alkoxyalkyl, alkylcarbonyl, alkoxycarbonyl, phenyl, phenylalkyl, phenylalkoxy, hetaryl, hetarylalkyl,
- Re⁵ represents hydrogen, represents in each case optionally substituted alkylcarbonyl, alkoxycarbonyl, phenylcarbonyl or phenylalkoxycarbonyl,
 - k represents the numbers 1 to 4,
 - m represents the numbers 0 to 2,
 - Re¹ and Re² together form an optionally substituted four- to seven-membered ring which may optionally be interrupted by heteroatoms,
 - L^1 and L^3 independently of one another represent hydrogen, halogen, cyano or in each case optionally substituted alkyl, alkoxy, alk-S(O)_m-, phenyl, phenoxy or hetaryloxy,
 - L² represents hydrogen, halogen, cyano, in each case optionally substituted alkyl, alkenyl, alkynyl, haloalkyl, cycloalkyl, phenyl, hetaryl or represents the group

$$M^2$$
-Re⁶.

 M^2 represents -O- or $-S(O)_{m^2}$,

and

10

- 20 Re⁶ represents in each case optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, phenyl or hetaryl,
 - L^1 and L^3 or
 - L¹ and L² together form an optionally substituted five- or six-membered ring which may optionally be interrupted by heteroatoms.
- 25 2. Compositions according to Claim 1, comprising compounds of the formula (II)

K represents fluorine, chlorine, bromine, iodine, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy or C₁-C₆-haloalkoxy,

Re¹, Re² and Re³ each independently of one another represent hydrogen, cyano, represent optionally halogen-substituted C₃-C₆-cycloalkyl or represent a group of the formula

$$M^1-Q_k$$

in which

5

 M^1 represents C_1 - C_8 -alkylene, C_3 - C_6 -alkenylene or C_3 - C_6 -alkynylene,

10 Q represents hydrogen, halogen, cyano, nitro, haloalkyl or represents optionally fluorine-, chlorine-, C₁-C₆-alkyl- or C₁-C₆-alkoxy-substituted C₃-C₈-cycloalkyl in which optionally one or two not directly adjacent ring members are replaced by oxygen and/or sulphur or represents in each case optionally halogen-substituted C₁-C₆-alkylcarbonyl or C₁-C₆-alkoxycarbonyl or represents in each case optionally halogen-, C₁-C₆-alkoxycarbonyl or represents in each case optionally halogen-, C₁-C₆-alkyl-, C₁-C₆-haloalkyl-, C₁-C₆-alkoxy-, C₁-C₆-haloalkoxy-, cyano- or nitro-substituted phenyl or hetaryl having 5 or 6 ring atoms (for example furanyl, pyridyl, imidazolyl, triazolyl, pyrazolyl, pyrimidyl, thiazolyl or thienyl) or represents a group

in which

25

T represents -O-, -S(O)_m- or
$$-N-$$
, Re⁵

represents hydrogen, represents in each case optionally fluorine- and/or chlorine-substituted C₁-C₈-alkyl, C₃-C₈-alkenyl, C₃-C₈-alkynyl, C₃-C₈-cycloalkyl, C₃-C₈-cycloalkyl-C₁-C₂-alkyl, C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, represents phenyl, C₁-C₄-phenylalkyl, C₁-C₄-phenylalkyloxy, hetaryl or hetarylalkyl, hetaryl having 5 or 6 ring atoms, each of which radicals is optionally monoto tetrasubstituted by halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, nitro or cyano,

5

20

Re⁵ represents hydrogen, represents in each case optionally fluorine- and/or chlorine-substituted C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, represents phenylcarbonyl or phenyl-C₁-C₄-alkyloxycarbonyl, each of which is optionally mono- to tetrasubstituted by halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, nitro or cyano,

k represents the numbers 1 to 3,

m represents the numbers 0 to 2,

Re¹ and Re² form a five- or six-membered ring which may optionally be interrupted by an oxygen or sulphur atom,

10 L¹ and L³ independently of one another represents hydrogen, cyano, fluorine, chlorine, bromine, iodine, C¹-C6-alkyl, C¹-C4-haloalkyl, C¹-C6-alkoxy, C¹-C4-haloalkoxy, C¹-C4-alkyl-S(O)m⁻, C¹-C4-haloalkyl-S(O)m⁻, represent phenyl, phenoxy, pyridinyloxy, thiazolyloxy or pyrimidyloxy, each of which is optionally mono- to trisubstituted by fluorine, chlorine, bromine, C¹-C6-alkyl, C¹-C6-alkoxy, C¹-C4-haloalkyl, C¹-C4-haloalkoxy, cyano or nitro,

L² represents hydrogen, fluorine, chlorine, bromine, iodine, cyano, represents in each case optionally fluorine- and/or chlorine-substituted C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₂-C₆-alkynyl, represents in each case optionally fluorine-, chlorine-substituted C₃-C₆-cycloalkyl, represents phenyl, pyridyl, thienyl, pyrimidyl or thiazolyl, each of which is optionally mono- to trisubstituted by fluorine, chlorine, bromine, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, cyano or nitro,

or represents a group

 M^2-R^6

25 in which

M² represents -O- or -S(O)_m- and

Re⁶ represents in each case optionally fluorine- and/or chlorine-substituted C₁-C₈-alkyl, C₂-C₈-alkenyl, C₃-C₆-alkynyl or C₃-C₆-cycloalkyl, represents phenyl, pyridyl, pyrimidyl or thiazolyl, each of which is optionally mono- to trisubstituted

by fluorine, chlorine, bromine, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, cyano or nitro,

 L^1 and L^3

or

- 5 L² and L³ together form an in each case optionally fluorine- and/or C₁-C₂-alkyl-substituted five- or six-membered ring which may optionally be interrupted by one or two oxygen atoms.
 - 3. Compositions according to Claim 1, comprising compounds of the formula (II), in which
 - K represents chlorine, bromine or iodine,
- Re¹, Re² and Re³ each independently of one another represent hydrogen or represent a group of the formula

$$M^1-Q_k$$

in which

- M¹ represents C₁-C₈-alkylene, C₃-C₆-alkenylene or C₃-C₆-alkynylene,
- 15 Q represents hydrogen, fluorine, chlorine, cyano, trifluoromethyl, C₃-C₆-cycloalkyl or represents a group

in which

- T represents -O- or $-S(O)_{m}$ -,
- 20 Re⁴ represents hydrogen, represents C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl or C₃-C₆-cycloalkyl, each of which is optionally mono- to trisubstituted by fluorine and/or chlorine,
 - k represents the numbers 1 to 3,
 - m represents the numbers 0 to 2,
- 25 L¹ and L³ independently of one another represent hydrogen, fluorine, chlorine, bromine, iodine, cyano, C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₄-alkoxy, C₁-C₂-

haloalkoxy, represent phenyl or phenoxy, each of which is optionally mono- or disubstituted by fluorine, chlorine, bromine, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_2 -haloalkyl, C_1 - C_2 -haloalkoxy, cyano or nitro,

L² represents hydrogen, fluorine, chlorine, bromine, iodine, cyano, represents C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, each of which is optionally mono- to tridecasubstituted by fluorine and/or chlorine, or represents a group

 M^2 -Re6

in which

5

15

10 M^2 represents -O- or -S(O)_m-,

and

Re⁶ represents C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl or C₃-C₆-cycloalkyl, each of which is optionally mono- to tridecasubstituted by fluorine and/or chlorine, represents phenyl or pyridyl, each of which is optionally mono- or disubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, trifluoromethyl, difluoromethoxy, trifluoromethoxy, cyano or nitro.

4. Compositions according to Claim 1, comprising compounds of the formula (II), in which

K represents iodine,

Re¹ and Re² represent hydrogen,

20 Re³ represents a group of the formula

 $M^{1}-O$

in which

25 Q represents hydrogen, fluorine, chlorine, cyano, trifluoromethyl, C₃-C₆-cycloalkyl or represents a group

T-Re4,

in which

5

20

T represents -S-, -SO- or -SO₂-,

Re⁴ represents methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl or tert-butyl, allyl, butenyl or isoprenyl, each of which is optionally monoto trisubstituted by fluorine and/or chlorine,

L¹ and L³ independently of one another represent hydrogen, fluorine, chlorine, bromine, iodine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, methoxy, ethoxy, trifluormethyl, difluoromethoxy or trifluoromethoxy,

10 L² represents hydrogen, fluorine, chlorine, bromine, iodine, cyano, represents methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, allyl, butenyl or isoprenyl, each of which is optionally mono- to nonasubstituted by fluorine and/or chlorine, or represents a group

 M^2 -Re⁶.

15 M² represents oxygen or sulphur,

and

Re⁶ represents methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, allyl, butenyl or isoprenyl, each of which is optionally mono- to nonasubstituted by fluorine and/or chlorine, represents phenyl which is optionally mono- or disubstituted by fluorine, chlorine, bromine, methyl, ethyl, methoxy, trifluoromethyl, difluoromethoxy, trifluoromethoxy, cyano or nitro.

5. Compositions according to Claim 1, comprising the compound of the formula (II-1)

$$H_3C$$
 CH_3
 SO_2
 CH_3
 CF_3
 CF_3
 CF_3
 CF_3

5

10

20

- 6. Compositions according to Claim 1, comprising compounds of the formula (I) in which
 - X represents C₁-C₄-alkyl, bromine, C₁-C₄-alkoxy or C₁-C₃-haloalkyl,
 - Y represents hydrogen, C₁-C₄-alkyl, fluorine, chlorine, bromine, C₁-C₄-alkoxy, C₁-C₃-haloalkyl,
- Z represents C₁-C₄-alkyl, chlorine, bromine, C₁-C₄-alkoxy,
 - n represents a number from 0 to 2,
- A represents hydrogen or represents C₁-C₆-alkyl, C₂-C₆-alkenyl, C₁-C₄-alkoxy-C₁-C₂-alkyl, cycloalkyl having 3 to 8 ring atoms which may optionally be interrupted by oxygen and/or sulphur, each of which radicals is optionally mono- to trisubstituted by fluorine, or represents phenyl or benzyl, each of which is optionally mono- or disubtituted by fluorine, chlorine, bromine, C₁-C₂-alkyl, C₁-C₂-haloalkyl, C₁-C₂-alkoxy, C₁-C₂-haloalkoxy, nitro,
 - B represents hydrogen, C_1 - C_2 -alkyl or C_1 - C_2 -alkoxy- C_1 - C_2 -alkyl or in which
- A and B together with the carbon atom to which they are attached form a saturated or unsaturated 3- to 7-membered ring which is optionally interrupted by oxygen and/or sulphur and is optionally mono- or disubstituted by fluorine, chlorine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or C₁-C₂-alkylthio,
 - G represents hydrogen (a) or represents the groups

$$-\text{CO-R}^{1}$$
 (b) $O-R^{2}$ (c) $-\text{SO}_{2}-R^{3}$ (d) $-\text{P}_{0} R^{4}$ (e) or $N R^{6}$ (f)

in which

R¹ represents C₁-C₁₆-alkyl, C₂-C₁₆-alkenyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkyl or cycloalkyl having 3 to 6 ring atoms which may be

interrupted by oxygen and/or sulphur atoms, each of which radicals is optionally mono- to pentasubstituted by fluorine or chlorine,

represents phenyl which is optionally mono- or disubstituted by fluorine, chlorine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄bromine, halogenalkoxy,

represents benzyl which is optionally mono- or disubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy,

represents pyridyl, pyrimidyl, thiazolyl or pyrazolyl, each of which is optionally mono- or disubstituted by chlorine, bromine and/or C₁-C₄-alkyl,

 \mathbb{R}^2 10 represents C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_1 - C_6 -alkoxy- C_2 - C_6 -alkyl, C_1 - C_6 polyalkoxy-C2-C6-alkyl, each of which is optionally mono- to pentasubstituted by fluorine or chlorine,

> represents phenyl or benzyl, each of which is optionally mono- or disubstituted by fluorine, chlorine, bromine, nitro, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-haloalkyl,

 \mathbb{R}^3 represents C1-C4-alkyl which is optionally mono- to pentasubstituted by fluorine or chlorine, represents phenyl or benzyl, each of which is optionally mono- or disubstituted by C₁-C₄-alkyl, fluorine, chlorine, bromine, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, nitro or cyano,

R4 and R5 independently of one another represent C1-C4-alkyl, C1-C4-alkoxy, C1-C4-alkylamino, di-(C1-C4)-alkylamino, C1-C4-alkylthio, C2-C4-alkenylthio, C3-C₆-cycloalkylthio, each of which is optionally mono- to trisubstituted by fluorine or chlorine, represent phenyl, phenoxy or phenylthio, each of which is optionally mono- or disubstituted by fluorine, chlorine, bromine, nitro, cyano, C₁-C₂-alkoxy, C₁-C₂-haloalkoxy, C₁-C₂-alkylthio, C₁-C₂-haloalkylthio, C₁-C₂-alkyl, C₁-C₂haloalkyl,

R6 and R7 independently of one another represent C1-C6-alkyl, C1-C6-alkoxy, C3-C₆-alkenyl, C₁-C₄-alkoxy-C₁-C₂-alkyl, each of which is optionally monoto trisubstituted by fluorine or chlorine, represent benzyl which is optionally mono- or disubstituted by fluorine, chlorine, bromine, C₁-C₂haloalkyl, C1-C4-alkyl or C1-C4-alkoxy or together represent a 5- or

5

15

20

25

6-membered ring which is optionally interrupted by oxygen or sulphur and which may optionally be substituted by C₁-C₂-alkyl.

- Compositions according to Claim 1, comprising compounds of the formula (I),
 in which
- 5 X represents C₁-C₄-alkyl, C₁-C₄-alkoxy or trifluoromethyl,
 - Y represents hydrogen, C₁-C₄-alkyl, chlorine, bromine, C₁-C₄-alkoxy, C₁-C₂-haloalkyl,
 - Z represents C₁-C₄-alkyl, chlorine, bromine, C₁-C₄-alkoxy,
 - n represents 0 or 1,
- A and B together with the carbon atom to which they are attached form a saturated 5- or 6-membered ring which is optionally monosubstituted by C₁-C₄-alkyl or C₁-C₄-alkoxy,
 - G represents hydrogen (a) or represents the groups

—CO-
$$R^1$$
 (b) $O-R^2$ (c)

in which

20

R¹ represents C₁-C₁₂-alkyl, C₂-C₁₂-alkenyl, C₁-C₄-alkoxy-C₁-C₂-alkyl or cycloalkyl having 3 to 6 ring atoms which may be interrupted by 1 or 2 oxygen atoms, each of which radicals is optionally mono- to trisubstituted by fluorine or chlorine,

or represents phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, trifluoromethyl or trifluoromethoxy;

- $R^2 \qquad \text{represents C_1-C_{12}-alkyl, C_2-C_{12}-alkenyl, C_1-C_4-alkoxy-C_2-C_4-alkyl,} \\ \\ \qquad \text{represents phenyl or benzyl, each of which is optionally monosubstituted by } \\ \\ \text{fluorine, chlorine, bromine, nitro, C_1-C_4-alkyl, C_1-C_4-alkoxy or trifluoromethyl.} \\$
- 8. Compositions according to Claim 1, comprising compounds of the formula (I)
- 25 in which

- X represents methyl, ethyl, methoxy, ethoxy or trifluoromethyl,
- Y represents hydrogen, methyl, ethyl, chlorine, bromine, methoxy or trifluoromethyl,
- Z represents methyl, ethyl, chlorine, bromine or methoxy,
- 5 n represents 0 or 1,
 - A and B together with the carbon atom to which they are attached form a saturated 5- or 6-membered ring which is optionally monosubstituted by methyl, ethyl, propyl, methoxy, ethoxy, propoxy, butoxy or isobutoxy,
 - G represents hydrogen (a) or represents the groups

$$-\text{CO-R}^1$$
 (b) $O_{\text{O-R}^2}$ (c)

- R¹ represents C₁-C₈-alkyl, C₂-C₈-alkenyl, C₁-C₃-alkoxy-C₁-C₂-alkyl or cycloalkyl having 3 to 6 ring atoms which may be interrupted by 1 or 2 oxygen atoms, each of which radicals are optionally mono- to trisubstituted by fluorine or chlorine,
- represents phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, methyl, methoxy, trifluoromethyl or trifluoromethoxy;
 - R² represents C₁-C₈-alkyl, C₂-C₈-alkenyl, C₁-C₄-alkoxy-C₂-C₃-alkyl,

 represents phenyl or benzyl, each of which is optionally monosubstituted by fluorine, chlorine, bromine, nitro, methyl, methoxy or trifluoromethyl.
- 20 9. Compositions according to Claim 1, comprising the compound of the formula (I-b-1)

- 10. Compositions according to Claim 1, comprising the compounds of the formulae (I-b-1) and (II-1).
- 11. The use of mixtures as defined in Claim 1 for controlling animal pests.
- 5 12. A method for controlling animal pests, characterized in that mixtures as defined in Claim 1 are allowed to act on animal pests and/or their habitat.
 - 13. A process for preparing insecticidal and acaridical compositions, characterized in that mixtures as defined in Claim 1 are mixed with extenders and/or surfactants.