Universidade de Aveiro

Sistemas Multimédia

2018/2019

Aula Prática 01

I. Funcionalidades do MATLAB

- 1. Crie os seguintes sinais no workspace do MATLAB, usando um período de amostragem $T_a=0.01$ segundos.
 - a) $x(t) = 2\sin(4\pi t), t \in [0, 5]$
 - b) $y(t) = \cos(10\pi t), t \in [0, 5]$
 - c) z(t) = x(t)y(t)
 - d) $w(t) = 3\sin(\pi t) + 2\sin(6\pi t)$, $t \in [0; 10]$
 - e) $q(t_1, t_2) = 2\sin(2\pi(2t_1 + t_2)), \quad t_1, t_2 \in [0; 5]$
- 2. Represente cada um dos sinais da alínea 1 através de um gráfico individual. Averigue o espaço de memória que cada sinal ocupa, e comente se o período de amostragem considerado se adequa a cada sinal. Veja as diferenças que obteria se considerasse $T_a=0.1\,{\rm segundos}.$
- 3. Represente simultaneamente os quatro primeiros sinais da alínea 1 num único gráfico, atribuindo as seguintes características gráficas a cada sinal:
 - x(t) traço contínuo e fino, de cor vermelha
 - y(t) traço grosso a tracejado, de cor azul
 - z(t) traço contínuo e fino, de cor verde, com pontos em cada amostra
 - w(t) traço contínuo e grosso, de cor amarela
- 4. Represente o sinal $q(t_1,t_2)$ através de um gráfico onde o valor do sinal em cada ponto seja indicado através da cor, numa escala de cores. Averigue a forma de obter e controlar a escala de cores correspondente. Construa uma escala de cores de tons de cinzento e aplique-a ao gráfico que criou nesta alínea.
- 5. Considere agora o seguinte sinal dependente de duas variáveis, x_1 e x_2 , sendo também dependente do tempo, t:

$$r(x_1, x_2, t) = 2\sin\left(2\pi\sqrt{x_1^2 + x_2^2} - 2\pi t\right), \qquad x_1, x_2 \in [-5; +5].$$

Considerando o período de amostragem $T_a=1/25$ segundos para a variável $t\in[0;5]$ segundos, elabore um pequeno script que apresente as sucessivas "imagens" 2D que $r(x_1,x_2,t(k)),k=1,...,N$, apresenta (de forma semelhante ao efetuado na alínea 4) à medida que o tempo t vai progredindo.