

Contrôle Continu INFO1 - P3

Ressource R2.07

Nom Responsable	Godin Thibault
Date contrôle	11/03/2022
Durée contrôle	45 min
Nombre total de pages	5
Impression	recto/verso
Documents autorisés	cours
Calculatrice autorisée	NON
Réponses	sur le sujet

NOM Prénom:

Groupe:

Les graphes considérés seront, sauf mention contraire, simples et non-orientés

Exercice 1 : QCM Entourer la ou les bonnes réponses en cas de choix multiples. Il peut y avoir plusieurs bonnes réponses. Pour chaque question, une bonne réponse vaut 0,5 point, et une mauvaise -0,25 point (le barème sera ensuite pondéré selon les questions).

- 1. Soit G_1 le graphe dessiné ci-contre :
 - a. G est d'ordre 7
 - b. G est de taille 7
 - c. G est fortement connexe
- d. La liste des degrés (ordre alphabétique) de G est (2, 3, 2, 2, 3, 2)

- 2. (compléter la phrase suivante en remplissant les pointillés) Soit G_1 le graphe dessiné question 1, où toutes les arêtes sont de poids 1. La distance entre les sommets d et c vaut L'excentricité de d vaut, le rayon de G_1 vaut et son diamètre vaut
- 3. Soit G_1 le graphe dessiné à la question 1. Alors sa matrice d'adjacence est : (on suppose les sommets classés par ordre alphabétique dans cette matrice).

a.
$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

c.
$$\begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

b.
$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{d}. \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

4. Soit G_1 le graphe dessiné à la question 1. Alors une matrice d'incidence est :

a.
$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

c.
$$\begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

b.
$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{d}. \begin{tabular}{llll} & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ \end{tabular}$$

NOM Prénom:

Groupe:

5.

On souhaite appliquer l'algorithme de Prim à partir du sommet a dans le graphe G_2 dessiné ci-dessus.

Donner, dans l'ordre, les 3 premières arêtes ajoutées par l'algorithme.

a. Première arête : b. Deuxième arête: c. Troisième arête:...

6. Soit G un graphe dont la liste des degrés est (5,3,3,3,3,3,2,2,2)

a. G est d'ordre 7 b. G est d'ordre 5 c. G est d'ordre 9 d. G est d'ordre 2

7. Soit G un graphe dont la liste des degrés est (5,3,3,3,3,3,2,2,2)

a. Gest taille 13

de b. Gest taille 26

de c. Gest

taille 52

de d. G est de taille 9

def CAdj(n): A = np.zeros((2*n, 2*n))for i in range(n): for j in range(n): if not(i==j): A[i][n+j]=1A[n+j][i]=1return A

On donne le programme Python suivant. Quelle matrice est renvoyée par Cadj(3)?

0 0 0 0 1 1 1 1 0 1 1 0 $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 $\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$ 1 0 1 0 0 0 $\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$ 0 0 0 0 0 0

9.	(compléter la phrase suivante en remplissant les pointillés) Soit G_p le graphe	re-
	présenté par la matrice CAdj(4). Alors la taille de G_p vaut,	son
	ordre vaut, et son nombre chromatique vaut	

NOM Prénom:

Groupe:

Exercice 2:BFS

Appliquer l'algorithme du BFS au graphe G_1 . Bien noter et détailler toutes les étapes, le sommet courant, ainsi que les sommets en attente dans la structure de donnée adaptée.

