

 $T(n) = \frac{1}{n} \left[T(n-i) + T(n-2) + \dots + T(\frac{n}{2}+1) + T(\frac{n}{2}) + T(\frac{n}{2}+1) + T(\frac{n}{2}+1) + T(\frac{n}{2}+2) + \dots + T(n-i) \right] + O(n)$ $\leq \frac{1}{n} \sum_{i=1}^{n-1} T(i) + O(n)$

 $T(n) = \frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-i)) + (n-1)$ $= \frac{2}{n} \sum_{i=0}^{n-1} T(i) + (n-1)$

随机算法

Las Vegas型随机算法 $= \frac{1}{n} \left(\frac{\frac{n}{n} + \frac{n}{n} + \frac{n$

问题	算法 = (三かつ) + の(期望运行时间
排序问题	ざ c'n, 随机快速排序	$T(n) \leq 2nlnn$
选择问题	RandSelect	$T(n) \leq cn$
n皇后问题	BoolQueen -> QueenLV + 回溯	$t=s+erac{1-p}{p}$

 $n = k+1 \cdot T(k+1) = \frac{1}{n} \sum_{i=1}^{k} 2i \ln i + k$ $\leq \frac{1}{n} \int_{1}^{k+1} 2i \ln x \, dx + k$ $= \frac{1}{n} \int_{1}^{k+1} \ln x \, dx^{2} + k$ $= \frac{1}{n} \left(x^{2} \ln x \right)_{1}^{k+1} - \int_{1}^{k+1} x^{2} d \ln x \right) + k$ $= \frac{1}{n} \left(n^{2} \ln n - \frac{1}{2} x^{2} \right)_{1}^{k+1} + k$ $= \frac{1}{n} \left(n^{2} \ln n - \frac{1}{2} n^{2} + \frac{1}{2} \right) + n - 1$ $\leq 2n \ln n$

Monte Carlo型随机算法

 $\Rightarrow t = s + e \frac{1-p}{p}$

t=ps+(1-p)(e+t)

问题	算法	正确概率	时间复杂 度	错误类型
主元素测试	Majority -> BoolMajority -> MCMajority	$> rac{1}{2}$ 尽? $> rac{3}{4}$ 两次 $> 1 - \epsilon$ 前	P+(1-p)p>===(p>== 文 (3)	弃真型单 侧错误
串相等测 试	StringEqualityTest -> StringTest	$> 1 - \left(rac{1}{n} ight)$ $\geq 1 - rac{1}{n^k}$	k が \overline{x} $\in \mathbb{Z}$ $k = \overline{Ly} \in \mathbb{Z}$ $k = \overline{Ly} \in \mathbb{Z}$ A \overline{h} $\Rightarrow : x5 y \in \mathbb{Z}$ A \overline{h} $\Rightarrow : x5 y \in \mathbb{Z}$ A \overline{h} $\Rightarrow : x5 y \in \mathbb{Z}$ $\Rightarrow x = y (\overline{x} \overline{x} \times \overline{x} + y)$ $Oft(t) \Rightarrow \frac{t}{L_{1}t} \odot k \leq 1$ \overline{h}	同康伪型 modp so, 超际上的专家下数
模式匹配	PatternMatching	$>1-\frac{1}{n}$	O(m+n)	$\frac{T(h)}{T(M)} = \frac{h}{L_h h} \frac{L_h}{2h}$ 取伪型
素数测试 [×]	PremalityTest	$\geq 1 - \frac{1}{n}$	$O(log^4n)$	取伪型单 侧错误

两种算法的比较

- · Las Vegas型随机算法
 - 如果得到解,总是给出正确的结果,区别只在于<mark>运行时间的长短. 不是一次发出答案</mark>
 - 拉斯维加斯型随机算法的运行时间本身是一个随机变量
 - 期望运行时间是输入规模的多项式且总是给出正确答案的 随机算法称为有效的拉斯维加斯型算法.
- Monte Carlo型随机算法
 - 这种算法有时会给出错误的答案. 泛远后山神, 但不 这对,
 - 其运行时间和出错概率都是随机变量,通常需要分析算法的出错概率. △ Los Vegos 沒有
 - 多项式时间内运行且出错概率不超过1/3的随机算法称为 有效的蒙特卡洛型算法

随机算法的分类与局限性

- 拉斯维加斯型随机算法
 - 零错误概率多项式时间算法(有效的),ZPP
- 蒙特卡洛型随机算法
 - 错误概率有界的有效算法(多项式时间),BPP
 - <mark>弃真型</mark>单侧错误概率有界的有效算法,RP
 - 取伪型单侧错误概率有界的有效算法,coRP
- 随机算法的局限性
 - 错误概率有界的多项式时间随机算法<u>不太可能解决NP</u> 完全问题

可应用

る研