High Spin-Orbit Misalignment as an Attractor in Cassini State Systems with Weak Tidal Friction Group Meeting XX/XX/XXXX

Yubo Su

Some day

Introduction

- Close-in planet to a star w/ \vec{l} gstarts with random spin \hat{s} (e.g. collision). Evolves under tides + precession around perturber \hat{l}_p .
- Toy Problem: Assume constant tidal dissipation, fate?
- Cassini States: $H^{(0)} = \frac{\left(\hat{s} \cdot \hat{l}\right)^2}{2} + \eta \hat{s} \cdot \hat{l}_p$. CS4 is saddle point, separatrix.

Constant Tides

• Constant tides $\frac{d\theta}{dt} = \epsilon \sin \theta$, EOM $(\mu = \cos \theta)$:

$$\begin{split} \frac{\mathrm{d}\hat{s}}{\mathrm{d}\tau} &= \big(\hat{s}\cdot\hat{l}\big)\big(\hat{s}\times\hat{l}\big) - \eta\hat{s}\times\hat{l}_p + \epsilon\hat{s}\times\big(\hat{l}\times\hat{s}\big),\\ \frac{\partial\phi}{\partial t} &= \mu - \eta\bigg(\cos I + \sin I \frac{\mu}{\sqrt{1-\mu^2}}\cos\phi\bigg),\\ \frac{\partial\mu}{\partial t} &= -\eta\sin I\sin\phi + \epsilon\big(1-\mu^2\big), \end{split}$$

• Review: Last meeting, found probability that initial state $\cos\theta < 0$ jumps into separatrix $\propto \eta^{3/2} \epsilon^0$.

Flow Boundaries

- Notation: subscripts stable, unstable manifolds, superscripts are left/right copy of CS4.
 - Below black, continues orbit $\mu < \mu_4$.
 - Black/green, escapes.
 - Green/red, captures.
- Evaluate $\Delta\mu$ at $\phi=\pi$ reproduces probability (numerical was $P_{hop}(\eta=0.2)=0.251$).

Melnikov's Method (coarsely)

- Goal: Under weak perturbation, how much does trajectory deviate from level curve of H?
- Procedure:
 - Compute $\Delta H^{(0)}$ unperturbed over trajectory.
 - Locate new level curve to find Δq along coordinate: $\Delta H^{(0)} = \frac{\partial H^{(0)}}{\partial q} \Delta q.$
- So looks something like:

$$\frac{\mathrm{d}H^{(0)}}{\mathrm{d}t} = \underbrace{\frac{\partial H^{(0)}}{\partial \mu} \frac{\mathrm{d}\mu^{(0)}}{\mathrm{d}t} \frac{\partial H^{(0)}}{\partial \phi} \frac{\mathrm{d}\phi^{(0)}}{\mathrm{d}t}}_{\phi^{(0)}\mu^{(0)} - \mu^{(0)}\dot{\phi}^{(0)}} + \frac{\partial H^{(0)}}{\partial \mu} \frac{\mathrm{d}\mu^{(1)}}{\mathrm{d}t}.$$

- Gives rise to Melnikov distance:
 - $\Delta\mu(\phi) = \frac{1}{\dot{\phi}(\phi)} \oint \dot{\phi}^{(0)} \epsilon \left(1 \mu^2\right) dt$.
 - $\mu(\phi) \approx \eta \cos I \pm \mathcal{O}(\sqrt{\eta})$.
 - $W_{s_0}^{(1)}, W_{u_0}^{(0)}$: dominated by 1.
 - $W_s^{(0)}$, $W_u^{(0)}$: dominated by $\eta^{3/2}$!

Realistic Tides

- In realistic tides, η can evolve as s spins down.
- $\eta = \frac{s_c}{s}$, full expression below.
- First, consider tides alone, phase portrait at right:
 - Like ignoring $\frac{d\mu}{d\phi}$ over precession orbit.
 - Breaks down near μ_4 !

$$\frac{\mathrm{d}\hat{s}}{\mathrm{d}\tau} = \frac{s}{s_c} (\hat{s} \cdot \hat{l}) (\hat{s} \times \hat{l}) - \hat{s} \times \hat{l}_p + \frac{\epsilon 2\Omega}{s} (1 - \frac{s}{2\Omega} (\hat{l} \cdot \hat{s})) \hat{s} \times (\hat{l} \times \hat{s}), \tag{1}$$

$$\frac{\mathrm{d}s}{\mathrm{d}\tau} = \epsilon 2\Omega \left(\hat{s} \cdot \hat{l} - \frac{s}{2\Omega} \left(1 + \left(\hat{s} \cdot \hat{l} \right)^2 \right) \right). \tag{2}$$

6/7

Near CS4

• Reason 2

- Actually, $\mu_0 \equiv \mu(\phi = 0)$ sets when encounters CS4.
 - $\left|\mu_0-\mu_4\right|\gtrsim\sqrt{\eta\sin I}$, then $\mu(\phi)pprox\mu_0$.