Segunda entrega de de Cálculo Avanzado

Resolver y entregar uno de los siguientes ejercicios.

Ejercicio 1. Sea X un espacio métrico. Una familia \mathcal{A} de subconjuntos de X se dice *localmente finita* si para cada $x \in X$ existe un abierto $U \ni x$ de X que interseca sólo a finitos elementos de \mathcal{A} .

1. Sea X un espacio métrico t
 sea $\mathcal A$ una familia localmente finita en X. Probar que

$$\overline{\bigcup_{A\in\mathcal{A}}A}=\bigcup_{A\in\mathcal{A}}\overline{A}.$$

2. Sea X un espacio métrico y sea $\mathcal A$ una familia localmente finita en X tal que A es cerrado en X para cada $A \in \mathcal A$ y $\bigcup_{\alpha \in \mathcal A} = X$. Sea Y otro espacio métrico y sea $f: X \to Y$ tal que $f|_A: A \to Y$ es continua para cada $A \in \mathcal A$. Probar que f es continua.

Ejercicio 2. Sean X e Y espacios métricos, y sea $f: X \to Y$. Probar que f es uniformemente continua si y sólo si dadas dos sucesiones $\{x_n\}_{n\in\mathbb{N}}$ y $\{z_n\}_{n\in\mathbb{N}}$ tales que $\lim_{n\to\infty} d(x_n,z_n)=0$, entonces $\lim_{n\to\infty} d(f(x_n),f(z_n))=0$.