Санкт-Петербургский государственный университет
Прикладная математика и информатика
Вычислительная стохастика и статистические модели

Отчет о научно-исследовательской работе

Сенов Михаил Андреевич

Робастные варианты метода SSA для анализа комплексных временных рядов

> Научный руководитель: к. ф.-м. н., доцент Н. Э. Голяндина

Оглавление

Введен	ие		3
Глава 🛚	1. Ал	горитм SSA и L-ранги	4
1.1.	Описа	ние алгоритма SSA (CSSA)	4
	1.1.1.	Вложение	4
	1.1.2.	Сингулярное разложение	4
	1.1.3.	Группировка	5
	1.1.4.	Диагональное усреднение	5
1.2.	L-рані	ги гармоник	5
Глава 2	2. Po	бастные варианты CSSA	7
2.1.	Проек	ация по норме \mathbb{L}_1	8
2.2.	Проек	иция по взвешенной норме \mathbb{L}_2 с итеративным обновлением весов	9
2.3.	Модис	фикация метода с итеративным обновлением весов	12
2.4.	Приме	еры работы алгоритмов	14
	2.4.1.	Синтетический пример №1	14
	2.4.2.	Синтетический пример №2	17
Глава 3	3. Оп	ибка восстановления	20
3.1.	Приме	енение теории возмущений к SSA и CSSA	21
	3.1.1.	Сравнение CSSA и SSA в случае совпадающих пространств	
		сигналов	21
	3.1.2.	Случай двух зашумленных синусоид	23
	3.1.3.	Случай константных сигналов с выбросом	24
3.2.	Числе	енное сравнение первого порядка ошибки и полной ошибки оце-	
	ниван	ия сигнала	29
	3.2.1.	Случай зашумленных гармоник	29
	3.2.2.	Случай константных сигналов с выбросом	30
Заклю	чение		32
Списон	z muror	Damynt I	33

Введение

Временным рядом называется набор значений некоторой функции от времени, собранных в разные моменты времени.

Предположим, что временной ряд является суммой нескольких временных рядов, к примеру, тренда (медленно меняющейся составляющей), сезонной составляющей и шума. Для работы с таким рядом полезно выделить эти составляющие, поскольку работать с ними по отдельности может быть проще чем с исходным рядом, сделать это позволяет метод «Гусеница»-SSA (в дальнейшем просто SSA).

При подобном анализе возникает следующее затруднение. В данных часто возникают выделяющиеся ошибки, значительно большие, чем размер шума. Эти ошибки называются выбросами. Соответственно, возникает задача построения изначально устойчивых к выбросам модификаций SSA.

Решению данной задачи была посвящена работа [1]. Результаты были получены для вещественнозначных рядов. В реальности данные с многих приборов снимаются изначально в комплексном виде и, поэтому, задача анализа комплекснозначных временных рядов так же важна. Поэтому, целью данной работы является рассмотрение возможности переноса полученных ранее результатов на комплексный случай и их обобщение в случае неудачи.

В случае комплексного ряда возникает два способа решения задачи, применение комплексных методов или применение вещественных методов отдельно к вещественной и мнимой части. Исходя из этого, в работе проведено теоретическое сравнение CSSA и SSA, примененного отдельно к вещественной и мнимой части, на основе первого порядка ошибки оценки сигнала, где первый порядок рассматривается по величине возмущения.

В данной работе использовался подход к аналитическому вычислению ошибки восстановления и её дисперсии, описанный в работах [2], [3]. Для константного сигнала получен явный вид первого порядка ошибки его оценки в случае наличия в ряде выброса, на основе данного подхода.

Было проведено численной сравнение первого порядка ошибки с полной ошибкой восстановления, с целью показания осмысленности применения результатов для первого порядка к полной ошибке.

Глава 1

Алгоритм SSA и L-ранги

В этом разделе рассмотрим базовый алгоритм SSA, приведённый в [12]. Помимо этого, рассмотрим понятие L-ранга, применительно к случаю гармонических рядов.

1.1. Описание алгоритма SSA (CSSA)

Рассмотрим ненулевой ряд $X_N = (x_1, \dots, x_N)$, где N > 2. Базовый алгоритм SSA выполняет разложение исходного ряда в сумму из нескольких новых рядов и осуществляется в четыре этапа. Приведённое ниже описание так же соответствует CSSA, являющегося комплексным обобщением алгоритма SSA.

1.1.1. Вложение

Первым этапом алгоритма является построение траекторной матрицы.

Пусть L — некоторое целое число (∂ лина окна), 1 < L < N

L-траекторная матрица — это матрица:

$$\mathbf{X} = \begin{pmatrix} x_1 & x_2 & \dots & x_K \\ x_2 & x_3 & \dots & x_{K+1} \\ \vdots & \vdots & & \vdots \\ x_L & x_{L+1} & \dots & x_N \end{pmatrix}, K = N - L + 1.$$

Часто данную матрицу называют просто траекторной матрицей ряда.

1.1.2. Сингулярное разложение

Вторым этапом является сингулярное разложение (SVD) траекторной матрицы ряда, оно может быть записано как:

$$X = X_1 + \ldots + X_d$$

где $\mathbf{X}_i = \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}$, $\lambda_i - i$ -ое собственное число по убыванию матрицы $\mathbf{X}\mathbf{X}^{\mathrm{T}}$, U_i — собственный вектор матрицы $\mathbf{X}\mathbf{X}^{\mathrm{T}}$, соответствующий λ_i , V_i — собственный вектор матрицы $\mathbf{X}^{\mathrm{T}}\mathbf{X}$, соответствующий λ_i , d — ранг матрицы \mathbf{X} .

1.1.3. Группировка

Третьим этапом является объединение в группы полученных матриц \mathbf{X}_i . Матрица, соответствующая группе I:

$$\mathbf{X}_I = \mathbf{X}_{i_1} + \ldots + \mathbf{X}_{i_r}.$$

И результат группировки:

$$\mathbf{X} = \mathbf{X}_{I_1} + \ldots + \mathbf{X}_{I_l}.$$

1.1.4. Диагональное усреднение

Последним этапом является перевод каждой матрицы, соответствующей группе, в новый ряд длины N.

Пусть \mathbf{Y} — некоторая матрица $L \times K$ с элементами y_{ij} . Положим $L^* = \min(L,K)$, $K^* = \max(L,K)$, N = L + K - 1. Пусть $y^*_{ij} = y_{ij}$, если L < K, и $y^*_{ij} = y_{ji}$ иначе.

Диагональное усреднение переводит матрицу \mathbf{Y} в ряд (y_0, \dots, y_{N-1}) по формуле:

$$y_k = \begin{cases} \frac{1}{k+1} \sum_{i=1}^{k+1} y_{i,k-i+2}^* & \text{для } 0 \le i \le L^* - 1 \\ \frac{1}{L^*} \sum_{i=1}^{L^*} y_{i,k-i+2}^* & \text{для } L^* - 1 \le i \le K^* \\ \frac{1}{N-k} \sum_{i=k-K^*+2}^{N-K^*+1} y_{i,k-i+2}^* & \text{для } K^* \le i \le N-1 \end{cases}$$

Таким образом, мы разложили исходный ряд в сумму l новых рядов:

$$\mathsf{X}_N = \sum_{i=1}^l \mathsf{X}_{N_i}.$$

1.2. L-ранги гармоник

Определение. L-рангом ряда называется ранг его L-траекторной матрицы. Обозначим L-ранг ряда X как $\operatorname{rk}_L X$.

Рассмотрим ряды
$$\mathsf{S}^{(1)} = (s_1^{(1)}, \dots, s_N^{(1)})$$
 и $\mathsf{S}^{(2)} = (s_1^{(2)}, \dots, s_N^{(2)})$, вида
$$s_l^{(1)} = A\cos(2\pi\omega l + \phi_1), \, s_l^{(2)}B\cos(2\pi\omega l + \phi_2), \tag{1.1}$$

где $0 < \omega \le 0.5$ и $0 \le \phi_i < 2\pi$.

Утверждение 1 ([13]). Пусть $S = S^{(1)} + iS^{(2)}$. Тогда

- 1. $\operatorname{rk}_L \mathcal{S}^{(i)} = 2$, $\operatorname{rk}_L \mathcal{S} = 1$, $\operatorname{echu} A = B \ u \ |\phi_1 \phi_2| = \pi/2 (\mod \pi)$, в остальных случаях $\operatorname{rk}_L \mathcal{S} = 2$.
- 2. Если ${\rm rk}_L=2,\ mo\ npocmpaнcmso\ cmoлбцов\ mpaeкmopнoй\ матрицы\ натянуто$ на вектора

$$(1, \cos(2\pi\omega), \dots, \cos(2\pi(L-1)\omega))^{\mathrm{T}}, (0, \sin(2\pi\omega), \dots, \sin(2\pi(L-1)\omega))^{\mathrm{T}}.$$

Пространство строк траекторной матрицы натянуто на вектора

$$(1, \cos(2\pi\omega), \dots, \cos(2\pi(K-1)\omega))^{\mathrm{T}}, (0, \sin(2\pi\omega), \dots, \sin(2\pi(K-1)\omega))^{\mathrm{T}}.$$

3. Если ${\rm rk}_L\,{\cal S}=1,$ то пространство столбцов траекторной матрицы ${\cal S}$ и пространство строк натянуты соответственно на вектора

$$(1, e^{i2\pi\omega}, \dots, e^{i2\pi(L-1)\omega})^{\mathrm{T}} u (1, e^{i2\pi\omega}, \dots, e^{i2\pi(K-1)\omega})^{\mathrm{T}}.$$

Замечание 1. В случае $\omega=0$ ${\rm rk}_L=1$, пространство столбцов траекторной матрицы и пространство строк натянуты на вектора

$$(1,\ldots,1)^{\mathrm{T}} \ u \ (1,\ldots,1)^{\mathrm{T}}.$$

В дальнейшем L-ранг будет рассматриваться в задаче выделения сигнала и будет выполнять роль одного из параметров алгоритма SSA (CSSA).

Глава 2

Робастные варианты CSSA.

В данном разделе мы рассмотрим устойчивые к выбросам (робастные) модификации CSSA.

В терминах, рассмотренных ниже, CSSA и SSA эквивалентны, поэтому, для простоты, будем рассматривать базовый метод, SSA. Рассматриваем вариант метода SSA для выделения сигнала, когда группировка заключается в выборе первых r компонент. Для стандартного метода SSA это эквивалентно проекции по норме Фробениуса траекторной матрицы ряда на множество матриц ранга, не превосходящего r.

Пусть имеется временной ряд $X_N = (x_1, ..., x_N)$.

 $\mathcal{M}_{\mathcal{H}}$ — пространство ганкелевых матриц $L \times K$,

 \mathcal{M}_r — пространство матриц ранга, не превосходящего r, размера $L \times K$.

Оператор вложения $\mathcal{T}: \mathbb{R}^N(\mathbb{C}^N) \to \mathcal{M}_{\mathcal{H}}: \mathcal{T}(\mathsf{X}_N) = \mathbf{X},$

 $\Pi_r: \mathcal{M} \to \mathcal{M}_r$ — проектор на множество матриц ранга, не превосходящего r, по некоторой норме в пространстве матриц,

 $\Pi_{\mathcal{H}}: \mathcal{M} \to \mathcal{M}_{\mathcal{H}}$ — проектор на пространство ганкелевых матриц по некоторой норме в пространстве матриц.

В результате применения данных операторов получаем оценку сигнала:

$$\tilde{\mathsf{S}} = \mathcal{T}^{-1} \Pi_{\mathcal{H}} \Pi_r \mathcal{T}(\mathsf{X}_N).$$

В случае, когда проекторы Π_r и $\Pi_{\mathcal{H}}$ берутся по норме в пространстве \mathbb{L}_2 , оценка сигнала соответствует алгоритму SSA, для случая, когда восстановление производится по одной группе, состоящей из первых r компонент.

Существует два известных подхода к построению устойчивых к выбросам модификаций SSA:

- Проекторы Π_r и $\Pi_{\mathcal{H}}$ строятся по норме в пространстве \mathbb{L}_1 ,
- Проекторы Π_r и $\Pi_{\mathcal{H}}$ строятся по взвешенной норме в пространстве \mathbb{L}_2 .

В работе [1] были предложены реализации обоих подходов, приведём адаптированные на комплексный случай алгоритмы ниже.

2.1. Проекция по норме \mathbb{L}_1

Пусть $\mathbf{Y} \in \mathbb{C}^{L \times K}$ — траекторная матрица ряда. Необходимо решить задачу

$$\left\|\mathbf{Y} - \mathbf{U}\mathbf{V}^{\mathrm{H}}\right\|_{1} \longrightarrow \min_{\mathbf{U}, \mathbf{V}}, \, \mathbf{U} \in \mathbb{C}^{L \times r}, \mathbf{V} \in \mathbb{C}^{K \times r}.$$

Алгоритм 1: Последовательный метод построения \mathbb{L}_1 -проектора на множество матриц ранга, не превосходящего r

Входные данные: $\mathbf{Y} \in \mathbb{C}^{L \times K}$ — траекторная матрица ряда, r — ранг сигнала; параметры критерия остановки: $\varepsilon = 10^{-4}$, максимальное число итераций $N_{iter} = 10$

Выходные данные: $\hat{\mathbf{Y}} = \mathbf{U}\mathbf{V}^{\mathrm{H}}$ — проекция траекторной матрицы на множество матриц ранга, не превосходящего r

Инициализация $\mathbf{V}(0) \in \mathbb{C}^{L \times r}$, нормировка столбцов $\mathbf{V}(0)$;

$$t := 0$$

до тех пор, пока $\max_{\substack{i=1,\dots,L\\j=1,\dots,r}} |u_{ij}(t)-u_{ij}(t-1)|>\varepsilon\ u\ t< N_{iter}$ выполнять

$$\begin{split} t := t + 1; \\ \mathbf{U}(\mathbf{t}) &= \mathop{\mathrm{argmin}}_{\mathbf{U} \in \mathbb{C}^{L \times r}} ||\mathbf{Y} - \mathbf{U}\mathbf{V}^{\mathrm{H}}(t - 1)||_{1}; \\ \mathbf{V}(\mathbf{t}) &= \mathop{\mathrm{argmin}}_{\mathbf{V} \in \mathbb{C}^{K \times r}} ||\mathbf{Y} - \mathbf{U}(t)\mathbf{V}^{\mathrm{H}}||_{1}; \end{split}$$

Нормировка столбцов $\mathbf{V}(t)$;

конец

$$\mathbf{U} := \mathbf{U}(t) : \mathbf{V} := \mathbf{V}(t)$$

В приведённой реализации $\mathbf{V}(0)$ инициализируется при помощи сингулярного разложения, но, согласно [4], инициализация может быть произведена при помощи любой матрицы требуемого размера с сохранением сходимости.

Рассмотрим подробнее решение задачи

$$\mathbf{U}(t) = \underset{\mathbf{U} \in \mathbb{C}^{K \times r}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{U}\mathbf{V}^{\mathrm{H}}(t-1)\|_{1}. \tag{2.1}$$

Целевую функцию можно представить в виде

$$\|\mathbf{Y} - \mathbf{U}\mathbf{V}^{\mathrm{H}}(t-1)\|_{1} = \sum_{i=1}^{L} \|\mathbf{y}_{i}^{\mathrm{H}} - \mathbf{V}(t-1)\mathbf{u}_{i}^{\mathrm{H}}\|_{1},$$

где $\mathbf{y}_i \in \mathbb{C}^K$ — строки $\mathbf{Y},\, \mathbf{v}_i \in \mathbb{C}^r$ — строки \mathbf{U} . Согласно [4], задача (2.1) может быть

разбита на L независимых подзадач

$$\mathbf{u}_i(t) = \underset{u}{\operatorname{argmin}} \|\mathbf{y}_i^{\mathsf{H}} - \mathbf{V}(t-1)\mathbf{u}^{\mathsf{H}}\|_1.$$
 (2.2)

Подзадача (2.3) в свою очередь может быть разбита на r подзадач

$$\mathbf{u}_{ic}(t) = \underset{u_c}{\operatorname{argmin}} \|\mathbf{y}_i^{\mathsf{H}} - \mathbf{v}_c(t-1)\mathbf{u_c}^{\mathsf{H}}\|_1.$$
 (2.3)

Решение каждой из которых является взвешенной медианой вектора $\frac{\mathbf{y}_i}{\mathbf{v}_c(t-1)}$ с вектором весов $|\mathbf{v}_c(t-1)|$.

2.2. Проекция по взвешенной норме \mathbb{L}_2 с итеративным обновлением весов

Пусть $\mathbf{Y} \in \mathbb{C}^{L \times K}$ — траекторная матрица ряда. Необходимо решить задачу

$$\left\|\mathbf{W}^{1/2}\odot(\mathbf{Y}-\mathbf{U}\mathbf{V}^{\mathrm{H}})\right\|_F^2\longrightarrow \min_{\mathbf{U},\mathbf{V}},\,\mathbf{U}\in\mathbb{C}^{L\times r},\mathbf{V}\in\mathbb{C}^{K\times r}.$$

Для начала рассмотрим алгоритм с фиксированной матрицей весов.

Алгоритм 2: Алгоритм решения задачи взвешенной аппроксимации для фиксированной матрицы весов **W**

Входные данные: $\mathbf{Y} \in \mathbb{C}^{L \times K}$ — траекторная матрица ряда, r — ранг сигнала, $\mathbf{W} \in \mathbb{R}^{L \times K}$ — матрица весов; параметры критерия остановки: $\varepsilon = 10^{-4}$, максимальное число итераций $N_{\alpha} = 5$

Выходные данные: $\widehat{\mathbf{Y}} = \mathbf{U}\mathbf{V}^{\mathrm{H}}$ — решение задачи взвешенной аппроксимации при фиксированной матрице весов \mathbf{W}

- 1. t := 0;
- 2. до тех пор, пока $\|\mathbf{W}^{1/2} \odot (\mathbf{Y} \mathbf{U}\mathbf{V}^{\mathrm{H}})\|_F^2 > \varepsilon \ u \ t < N_{\alpha}$ выполнять а. Вычисление матрицы $\mathbf{U} \in \mathbb{C}^{L \times r}$ с помощью решения задачи

$$(y_i^{\rm H} - \mathbf{V} u_i^{\rm H})^{\rm H} \mathbf{W}_i (y_i^{\rm H} - \mathbf{V} u_i^{\rm H}) \to \min_{u_i}, \quad i = 1, \dots L,$$
 (2.4)

где $\mathbf{W}_i = \mathrm{diag}(w_i) \in \mathbb{R}^{K \times K}$ — матрица, составленная из i-ой строки \mathbf{W} ; b. Вычисление матрицы $\mathbf{V} \in \mathbb{C}^{K \times r}$ с помощью решения задачи

$$(y_j - \mathbf{U}v_j^{\mathrm{H}})^{\mathrm{H}}\mathbf{W}^j(y_j - \mathbf{U}v_j^{\mathrm{H}}) \to \min_{v_j}, \quad j = 1, \dots K,$$
 (2.5)

где $\mathbf{W}^j=\mathrm{diag}(W_j)\in\mathbb{R}^{L\times L}$ — матрица, составленная из j-го столбца $\mathbf{W};$ с. t:=t+1.

конец

Задачи (2.4), (2.5) решаются при помощий QR-разложения матриц $\mathbf{V}^{\mathrm{H}}\mathbf{W}_{i}\mathbf{V}$ и $\mathbf{U}^{\mathrm{H}}\mathbf{W}^{j}\mathbf{U}$ соответственно, алгоритм решения представлен в [5].

У авторов этого алгоритма в [6] допущена ошибка в его описании. Дело в том, что в задаче 2.4 решение линейного уравнения ищется по эрмитово-сопряжённой системе, а не изначальной, а в задаче 2.5 находится сразу \mathbf{V}^{H} , а не \mathbf{V} . Эта ошибка была несущественной в случае вещественной реализации в [1], так как вещественный аналог эрмитового сопряжения — транспонирование, не меняет элементы, но оказалась существенной в комплексном случае.

Теперь рассмотрим алгоритм с итеративным обновлением весов.

Алгоритм 3: Метод с итеративным обновлением весов для нахождения

про- екции на множество матриц ранга, не превосходящего r

Входные данные: $\mathbf{Y} \in \mathbb{C}^{L \times K}$ — траекторная матрица ряда, r — ранг сигнала; параметр весовой функции $\alpha = 4.685$; параметры критерия остановки: $\varepsilon = 10^{-4}$, максимальное число итераций $N_{iter} = 10$

Выходные данные: $\hat{\mathbf{Y}} = \mathbf{U}\mathbf{V}^{\mathrm{H}}$ — проекция траекторной матрицы на множество матриц ранга, не превосходящего r

Инициализация $\mathbf{U} \in \mathbb{C}^{L \times r}$ и $\mathbf{V}(0) \in \mathbb{C}^{K \times r}$ (например, с помощью сингулярного разложения матрицы \mathbf{Y});

t := 0;

до тех пор, пока $||\mathbf{W}^{\frac{1}{2}} \odot (\mathbf{Y} - \mathbf{U}\mathbf{V}^{\mathrm{H}})||_F^2 > \varepsilon \ u \ t < N_{iter}$ выполнять

Вычисление матрицы остатков $\mathbf{R} = \{r_{ij}\}_{i,j=1}^{n,p} = \mathbf{Y} - \mathbf{U}\mathbf{V}^{\mathrm{H}};$

Обновление матрицы $\Sigma = \{\sigma_{ij}\}_{i,j=1}^{L,K};$

Вычисление матрицы весов $\mathbf{W} = \{w_{ij}\}_{i,j=1}^{L,K} = \{w(\frac{r_{ij}}{\sigma_{ij}})\}_{i,j=1}^{L,K}$, используя

$$w(x) = \begin{cases} (1 - (\frac{|x|}{\alpha})^2)^2 & |x| \le \alpha \\ 0 & |x| > \alpha \end{cases};$$

Решение задачи взвешенной аппроксимации (обновление матриц U, V)

$$||\mathbf{W}^{\frac{1}{2}}\odot(\mathbf{Y}-\mathbf{U}\mathbf{V}^{\mathrm{H}})||_{F}^{2}\longrightarrow\min_{\mathbf{U},\mathbf{V}},$$

при помощи алгоритма 2;

конец

Данный алгоритм был предложен в [6], авторы предложили взять $\alpha=4.685,$ $N_{\alpha}=5$ и $N_{iter}=10,$ ссылаясь на численные эксперименты.

Параметр сигма предлагается взять равным $\sigma_{ij} = \sigma = 1.4826 \,\mathrm{med}\,|\mathsf{X}R - \mathrm{med}\,|\mathsf{X}R||,$ где $\mathsf{X}R - \mathsf{это}$ вектор, составленный из всех элементов матрицы остатков $\mathbf{R} = \{r_{ij}\}_{i,j=1}^{L,K},$ то есть

$$XR = (r_{11}, \dots, r_{1K}; r_{21}, \dots r_{2K}; \dots; r_{L1}, \dots, r_{LK}).$$

Данная оценка предлагается авторами ввиду её робастности.

2.3. Модификация метода с итеративным обновлением весов

У представленного выше алгоритма есть одна важная проблема, а именно, выбор параметра σ_{ij} не зависящим от i и j. В случае не стационарных рядов выявление выбросов может происходить неверно. Например, если шум растёт к концу ряда, то выбросы в начале ряда могут получить больший вес, чем не выбросы в конце ряда. В [1] была приведена модификация алгоритма, призванная решить эту проблему. Здесь же мы рассмотрим её комплексную адаптацию.

Ключевая задача параметра σ_{ij} — приписывание определённого веса определённому элементу ряда, чем элемент больше похож на выброс, тем больше сигма и наоборот. Ввиду такой интерпретации логично рассматривать сигмы как ряд, идущий дополнением к данному $\boldsymbol{\sigma} = (\sigma_1, \dots, \sigma_N)$, а после, ганкелизацией привести этот ряд к матричному виду $\boldsymbol{\Sigma} = \{\sigma_{ij}\}_{i,j=1}^{L,K}$. Сам же ряд $\boldsymbol{\sigma}$ автор [1] предлагает взять равным тренду (математическому ожиданию) ряда из модулей остатков. Это предложение справедливо и для комплексного случая, так как в комплексном случае выброс характеризуется величиной модуля.

Теперь рассмотрим сам алгоритм.

Алгоритм 4: Модификация метода с итеративным обновлением весов для нахождения проекции на множество матриц ранга, не превосходящего r

Входные данные: $\mathbf{Y} \in \mathbb{C}^{L \times K}$ — траекторная матрица ряда, r — ранг сигнала; параметр весовой функции $\alpha = 4.685$; параметры критерия остановки: $\varepsilon = 10^{-4}$, максимальное число итераций $N_{iter} = 10$

Выходные данные: $\widehat{\mathbf{Y}} = \mathbf{U}\mathbf{V}^{\mathrm{T}}$ — проекция траекторной матрицы на множество матриц ранга, не превосходящего r

- 1. Инициализация $\mathbf{U} \in \mathbb{C}^{L \times r}$ и $\mathbf{V} \in \mathbb{C}^{K \times r}$ (например, с помощью сингулярного разложения матрицы \mathbf{Y});
- 2. t := 0;

3. повторять

- а. Вычисление матрицы остатков $\mathbf{R} = \{r_{ij}\}_{i,j=1}^{n,p} = \mathbf{Y} \mathbf{U}\mathbf{V}^{\mathrm{H}};$
- b. Ганкелизация матрицы ${f R}$ и получение ряда длины N из остатков:

$$\mathsf{R} = \mathcal{T}^{-1}\Pi_{\mathcal{H}}(\mathbf{R}) = (r_1, \dots, r_N);$$

с. Пусть $\mathsf{R}_+ = (|r_1|, \dots, |r_N|)$ — ряд из модулей остатков. Вычисление

 $\sigma = (\sigma_1, \dots, \sigma_N)$ как оценки мат. ожидания $\mathbb{E}(\mathsf{X}R_+)$ некоторым методом;

- d. Получение матрицы $\Sigma = \{\sigma_{ij}\}_{i,j=1}^{L,K} = \mathcal{T}(\sigma);$
- е. Вычисление матрицы весов $\mathbf{W}=\{w_{ij}\}_{i,j=1}^{L,K}=\{w(\frac{r_{ij}}{\sigma_{ij}})\}_{i,j=1}^{L,K}$, используя

$$w(x) = \begin{cases} (1 - (\frac{|x|}{\alpha})^2)^2, & |x| \le \alpha \\ 0, & |x| > \alpha \end{cases}$$

f. Решение задачи взвешенной аппроксимации (обновление матриц ${\bf U}$ и ${\bf V}$)

$$\left\|\mathbf{W}^{1/2}\odot(\mathbf{Y}-\mathbf{U}\mathbf{V}^{\mathrm{H}})\right\|_{F}^{2}\longrightarrow\min_{\mathbf{U},\mathbf{V}}$$

g. t := t + 1.

до тех пор, пока
$$\left\|\mathbf{W}^{1/2}\odot(\mathbf{Y}-\mathbf{U}\mathbf{V}^{\mathrm{H}})\right\|_{F}^{2}>\varepsilon\ u\ t< N_{IRLS};$$

Преимуществом данного алгоритма, является то, что пользователь сам может выбрать, каким методом он хочет вычислять матожидание ряда. В приведённой реализации представлены три метода: локальная регрессия loess, скользящая медиана и взвешенная локальная регрессия lowess.

2.4. Примеры работы алгоритмов

В данном разделе мы приведём несколько примеров комплексных временных рядов и сравним результаты работы методов.

Сравнение будет проводиться по величине среднеквадратичной ошибки, согласованной с \mathbb{L}_2 , которая вычисляется по формуле

$$MSE = \mathbb{E}\left(\frac{1}{N}\sum_{i=1}^{N}(s_i - \hat{s}_i)^2\right), \qquad (2.6)$$

где $\mathsf{X}S=(s_1,\ldots,s_N)^\mathrm{T}$ — сигнал, $\hat{\mathsf{X}S}=(\hat{s}_1,\ldots,\hat{s}_N)^\mathrm{T}$ — его оценка. Будем вычислять

$$RMSE = \sqrt{MSE}.$$

Так же будем проверять значимость сравнения, для этого будем использовать гипотезу, что MSE для некоторых методов равны между собой.

 $H_0: \mathbb{E}(\xi_1-\xi_2)=0$. Имеем две выборки $X=(x_1,\ldots,x_M)$ и $Y=(y_1,\ldots,y_M)$ объема M. Обозначим \bar{X} и \bar{Y} — их выборочные средние, s_x^2 и s_y^2 — выборочные дисперсии, $\hat{\rho}$ — коэффициент корреляции. Статистика критерия

$$t = \frac{\sqrt{M}(\bar{X} - \bar{Y})}{\sqrt{s_x^2 + s_y^2 - 2s_x s_y \hat{\rho}}}$$

имеет асимптотически нормальное распределение.

Шум в примерах будет иметь стандартное комплексное нормальное распределение. Определим, что это значит.

Определение. Комплексная случайная величина Z имеет стандартное комплексное нормальное распределение, если

- 1. Re(Z) и Im(Z) независимы,
- 2. Re(Z), $Im(Z) \sim N(0, 1/2)$.

U обозначается $Z \sim CN(0,1)$.

2.4.1. Синтетический пример №1

Рассмотрим ряд с постоянной амплитудой и шумом постоянной дисперсии. Длину ряда возьмём N=240

$$x_n = e^{2n\pi/30i} + \varepsilon_n, \ \varepsilon_n \sim CN(0, 1).$$

Рассмотрим результаты работы методов для такого ряда (2.1). В таблице 2.2 представлены p-value для сравнения методов с лучшим. Ранг ряда равен 1.

Таблица 2.1. Оценки RMSE различных методов для M=30 реализаций ряда без выбросов.

Method	CSSA	L1	weighted L2	loess L2	median L2	lowess L2
RMSE	0.1016	0.125	0.1017	0.103	0.105	0.104

Таблица 2.2. p-value для сравнения различных методов с наилучшим без выбросов.

Method	L1	weighted L2	loess L2	median L2	lowess L2
CSSA	1.5e-06	0.91	0.69	0.24	0.43

В случае отсутствия выбросов лучший результат показывают метод Complex SSA, но сравнение значимо только с методом проекции на \mathbb{L}_1 .

Теперь добавим к ряду 5% выбросов с величиной выброса $5x_i$. Графики ряда представлены на Рис. 2.1, 2.2.

Рис. 2.1. График вещественной части ряда.

Рис. 2.2. График мнимой части ряда.

Графики результатов анализа представлены в Рис. 2.3, 2.4. В таблице 2.3 представлены сравнения ошибок для различных методов. В таблице 2.4 представлены p-value для сравнения методов с лучшим. Длина окна взята L=120.

Рис. 2.3. Вещественная часть выделения тренда несколькими способами.

Рис. 2.4. Мнимая часть выделения тренда несколькими способами.

Таблица 2.3. Оценки RMSE различных методов для M=30 реализаций ряда с выбросами.

Method	CSSA	L1	weighted L2	loess L2	median L2	lowess L2
RMSE	0.285	0.147	0.158	0.112	0.114	0.114

Таблица 2.4. p-value для сравнения различных методов с наилучшим с выбросами.

Method	CSSA	L1	weighted L2	median L2	lowess L2
loess L2	0	7.7e-13	4.1e-10	0.134	0.262

В случае наличия выбросов метод loess проекции на \mathbb{L}_2 показал наилучший результат, за исключением того, что сравнения с другими вариациями модифицированной взвешенной проекции незначимы.

2.4.2. Синтетический пример №2

Рассмотрим ряд с растущей амплитудой и шумом непостоянной дисперсии. Длину ряда возьмём N=240

$$x_n = e^{4n/N} e^{2n\pi/30i} + \frac{1}{2} e^{4n/N} \varepsilon_n, \ \varepsilon_n \sim CN(0, 1).$$

Рассмотрим результаты работы методов для такого ряда (2.5). В таблице 2.6 представлены p-value для сравнения методов с лучшим. Ранг ряда равен 1.

Таблица 2.5. Оценки RMSE различных методов для M=30 реализаций ряда без выбросов.

Method	CSSA	L1	weighted L2	loess L2	median L2	lowess L2
RMSE	1.28	1.52	1.90	1.36	1.43	1.37

Таблица 2.6. p-value для сравнения различных методов с наилучшим без выбросов.

Method	L1	weighted L2	loess L2	median L2	lowess L2
CSSA	0.005	0.0001	0.001	7.6e-5	0.0007

В случае отсутствия выбросов лучший результат показывает Complex SSA. Здесь же видно, что модифицированный метод взвешенной проекции справляется с не стационарным рядом куда лучше чем классический, к примеру, сравнивая классический и loess, сравнение является значимым с p-value = 0.0005.

Теперь добавим к ряду 5% выбросов с величиной выброса $5x_i$. Графики ряда представлены на Рис. 2.5, 2.6.

Рис. 2.5. График вещественной части ряда.

Рис. 2.6. График мнимой части ряда.

Графики результатов анализа представлены на Рис. 2.7, 2.8. В таблице 2.7 представлены сравнения ошибок для различных методов. В таблице 2.8 представлены p-value для сравнения методов с лучшим. Длина окна взята L=120.

Рис. 2.7. Вещественная часть выделения тренда несколькими способами.

Рис. 2.8. Мнимая часть выделения тренда несколькими способами.

Таблица 2.7. Оценки RMSE различных методов для M=30 реализаций ряда с выбросами.

Method	CSSA	L1	weighted L2	loess L2	median L2	lowess L2
RMSE	6.14	1.78	1.66	1.48	1.50	1.49

Таблица 2.8. p-value для сравнения различных методов с наилучшим с выбросами.

Method	CSSA	L1	weighted L2	median L2	lowess L2
loess L2	3.5e-16	0.005	0.13	0.387	0.28

В случае присутствия выбросов метод loess проекции на \mathbb{L}_2 показывает себя наилучшим образом на данном примере, однако сравнения с взвешенным \mathbb{L}_2 , median \mathbb{L}_2 и lowess \mathbb{L}_2 не являются значимыми.

Глава 3

Ошибка восстановления

В работе были рассмотрены комплексные обобщения методов, приведённых в [1]. Комплексный временной ряд представляется через свою вещественную и мнимую части, к каждой из которых можно применить вещественный метод и, таким образом, получить оценку комплексного сигнала. Исходя из этого, возникает вопрос, насколько осмыслены комплексные обобщения методов? В данном разделе мы постараемся ответить на данный вопрос, с точки зрения ошибки восстановления, на примере сравнения CSSA с SSA.

Пусть наблюдаемый комплексный временной ряд имеет вид X = S + R. Для получения оценки сигнала будем использовать метод CSSA. Кроме применения CSSA ко всему ряду, будем также применять метод SSA отдельно к вещественной и мнимой части ряда X.

Для анализа ошибки оценивания сигнала используется теория возмущений [14], которая была применена для случая выделения сигнала методом SSA в ряде работ, см., например, [16].

Хотя теория возмущения Като дает вид полной ошибки, однако ее исследование представляется сложной задачей. Поэтому мы будем рассматривать только первый порядок ошибки в разложении ошибки по величине возмущения.

При этом проведем численное сравнение первого порядка ошибки и полной ошибки для выявления случаев, когда анализ первого порядка ошибки плохо описывает полную ошибку и поэтому его анализ не представляет интереса.

Даже для первого порядка ошибки получение его явного вида — довольно трудоемкая задача. Нам удалось его получить для случая константного сигнала и возмущения в виде выброса. В общем случае результаты касаются сравнения MSE ошибок оценки сигнала методом CSSA и суммарного MSE при применении SSA отдельно к мнимой и вещественной частям.

3.1. Применение теории возмущений к SSA и CSSA

Наблюдаем комплексный временной ряд X длины N, данный ряд представляется как X=S+R, где S — сигнал ранга r, R — возмущение. Возьмем некоторую длину окна L, L>r.

В [16] вводится разложение восстановления сигнала в модели $S(\delta) = S + \delta R$, что соответствует $H(\delta) = H + \delta E$, где $H(\delta) = \mathcal{T}_L S(\delta)$, $H = S(\delta)S$, $\delta E = \delta R$, и рассматривается линейный по δ член ошибки восстановления, называемый первым порядком ошибки восстановления.

Рассмотрим возмущение ряда R с $\delta=1$, его траекторная матрица **E**. Первый порядок ошибки восстановления обозначим как $\mathsf{F}^{(1)}=\mathcal{H}(\mathbf{H}^{(1)}).$

На основе результатов из [17, стр.12] и теоремы 2.1 из [16] была получена следующая формула для $\mathbf{H}^{(1)}$ в случае достаточно маленького возмущения.

$$\mathbf{H}^{(1)}(\mathsf{R},\mathsf{S}) = \mathbf{P}_0^{\perp} \mathbf{E} \mathbf{Q}_0 + \mathbf{P}_0 \mathbf{E},\tag{3.1}$$

где ${f P}_0$ — проектор на пространство столбцов ${f H},\,{f Q}_0$ — проектор на пространство строк ${f H},\,{f P}_0^\perp={f I}-{f P}_0,\,{f I}$ — единичная матрица.

3.1.1. Сравнение CSSA и SSA в случае совпадающих пространств сигналов

Обозначим за:

 $\mathsf{F}^{(1)} = \mathcal{H}(\mathbf{H}^{(1)}(\mathsf{R},\mathsf{S}))$ первый порядок ошибки восстановления S с возмущением R метода CSSA,

 $\mathsf{F}_{\mathrm{Re}}^{(1)} = \mathcal{H}(\mathbf{H}^{(1)}(\mathrm{Re}(\mathsf{R}),\mathrm{Re}(\mathsf{S})))$ первый порядок ошибки восстановления $\mathrm{Re}(\mathsf{S})$ с возмущением $\mathrm{Re}(\mathsf{R})$ метода SSA,

 $\mathsf{F}^{(1)}_{\mathrm{Im}} = \mathcal{H}(\mathbf{H}^{(1)}(\mathrm{Im}(\mathsf{R}),\mathrm{Im}(\mathsf{S})))$ первый порядок ошибки восстановления $\mathrm{Im}(\mathsf{S})$ с возмущением $\mathrm{Im}(\mathsf{R})$ метода SSA.

Теорема 1. Пусть пространства столбцов траекторных матриц рядов S, Re(S) u Im(S) совпадают u то же самое верно для пространств строк. Тогда при любом достаточно малым возмущении R

$$F^{(1)} = F_{\text{Re}}^{(1)} + i F_{\text{Im}}^{(1)}.$$

Доказательство. Рассмотрим матрицу возмущения $\mathbf{E} = \mathrm{Re}(\mathbf{E}) + \mathrm{i}\,\mathrm{Im}(\mathbf{E})$.

Заметим, что в (3.1) **E** входит линейно, это означает, что

$$\mathbf{H}^{(1)}(\mathsf{R},\mathsf{S}) = \mathbf{H}^{(1)}(\mathrm{Re}(\mathsf{R}),\mathsf{S}) + i\mathbf{H}^{(1)}(\mathrm{Im}(\mathsf{R}),\mathsf{S}). \tag{3.2}$$

Тогда, из (3.2), линейности диагонального усреднения и совпадения траекторных пространств, получаем

$$\begin{split} F^{(1)} &= \mathcal{H}(\mathbf{H}^{(1)}(\mathsf{R},\mathsf{S})) = \mathcal{H}(\mathbf{H}^{(1)}(\mathrm{Re}(\mathsf{R}),\mathsf{S})) + \mathrm{i} \mathcal{H}(\mathbf{H}^{(1)}(\mathrm{Im}(\mathsf{R}),\mathsf{S})) = \\ & \mathcal{H}(\mathbf{H}^{(1)}(\mathrm{Re}(\mathsf{R}),\mathrm{Re}(\mathsf{S}))) + \mathrm{i} \mathcal{H}(\mathbf{H}^{(1)}(\mathrm{Im}(\mathsf{R}),\mathrm{Im}(\mathsf{S}))) = \mathsf{F}_{\mathrm{Re}}^{(1)} + \mathrm{i} \mathsf{F}_{\mathrm{Im}}^{(1)}(\mathrm{Im}(\mathsf{R}),\mathrm{Im}(\mathsf{S})) + \mathrm{i} \mathcal{H}(\mathsf{H}^{(1)}(\mathsf{Re}(\mathsf{R}),\mathsf{Re}(\mathsf{S}))) = \mathsf{F}_{\mathrm{Re}}^{(1)} + \mathrm{i} \mathsf{F}_{\mathrm{Im}}^{(1)}(\mathsf{Re}(\mathsf{R}),\mathsf{Re}(\mathsf{S})) + \mathrm{i} \mathcal{H}(\mathsf{H}^{(1)}(\mathsf{Re}(\mathsf{R}),\mathsf{Re}(\mathsf{S}))) = \mathsf{F}_{\mathrm{Re}}^{(1)} + \mathrm{i} \mathsf{F}_{\mathrm{Im}}^{(1)}(\mathsf{Re}(\mathsf{R}),\mathsf{Re}(\mathsf{S})) + \mathrm{i} \mathcal{H}(\mathsf{H}^{(1)}(\mathsf{Re}(\mathsf{R}),\mathsf{Re}(\mathsf{S}))) = \mathsf{F}_{\mathrm{Re}}^{(1)} + \mathrm{i} \mathsf{F}_{\mathrm{Im}}^{(1)}(\mathsf{Re}(\mathsf{Re}),\mathsf{Re}(\mathsf{S})) + \mathrm{i} \mathcal{H}(\mathsf{H}^{(1)}(\mathsf{Re}(\mathsf{Re}),\mathsf{Re}(\mathsf{S}))) = \mathsf{F}_{\mathrm{Re}}^{(1)} + \mathrm{i} \mathsf{F}_{\mathrm{Im}}^{(1)}(\mathsf{Re}(\mathsf{Re}),\mathsf{Re}(\mathsf{S})) + \mathrm{i} \mathsf{F}_{\mathrm{Im}}^{(1)}(\mathsf{Re}(\mathsf{Re}),\mathsf{Re}(\mathsf{Se}))) + \mathrm{i} \mathsf{F}_{\mathrm{Im}}^{(1)}(\mathsf{Re}(\mathsf{Re}),\mathsf{Re}(\mathsf{Se})) + \mathrm{i} \mathsf{F}_{\mathrm{Im}}^{(1)}(\mathsf{Re}),\mathsf{Re}(\mathsf{Se})) + \mathrm{i} \mathsf{F}_{\mathrm{Im}}^{(1)}(\mathsf{Re}(\mathsf{Re}),\mathsf{Re}(\mathsf{Se})) + \mathrm{i} \mathsf{F}_{\mathrm{Im}}^{(1)}(\mathsf{Re}),\mathsf{Re}(\mathsf{Se})) + \mathrm{i} \mathsf{F}_{\mathrm{Im}}^{(1)}(\mathsf{Re}(\mathsf{Re}),\mathsf{Re}(\mathsf{Se})) + \mathrm{i} \mathsf{F}_{\mathrm{Im}}^{(1)}(\mathsf{Re}(\mathsf{Re}),\mathsf{Re}(\mathsf{Se})) + \mathrm{i} \mathsf{F}_{\mathrm{Im}}^{(1)}(\mathsf{Re}),\mathsf{Re}(\mathsf{Se})) + \mathrm{i} \mathsf{F}_{\mathrm{Im}}^{(1)}(\mathsf{Re}(\mathsf{Re}),\mathsf{Re}(\mathsf{Se})) + \mathrm{i} \mathsf{F}_{\mathrm{Im}}^{(1)}(\mathsf{Re}),\mathsf{Re}(\mathsf{Se})) + \mathrm{i}$$

Заметим, что хотя в утверждении теоремы возмущение R может быть любым по форме, однако теорема имеет практическое применение только если первый порядок ошибки адекватно описывает полную ошибку.

Случайное возмущение

Рассмотрим случайное возмущение R.

Для дальнейших рассуждений приведём известный результат.

Лемма 1. Пусть $\zeta = \xi + i\eta$. Тогда $\mathbb{D}\zeta = \mathbb{D}\xi + \mathbb{D}\eta$.

Доказательство.

$$\mathbb{D}\zeta = \mathbb{E}(|\zeta - \mathbb{E}\zeta|^2) = \mathbb{E}(|(\xi - \mathbb{E}\xi) + i((\eta - \mathbb{E}\eta))|^2) =$$

$$= \mathbb{E}((\xi - \mathbb{E}\xi)^2 + (\eta - \mathbb{E}\eta)^2) = \mathbb{E}(\xi - \mathbb{E}\xi)^2 + \mathbb{E}(\eta - \mathbb{E}\eta)^2 = \mathbb{D}\xi + \mathbb{D}\eta.$$

Рассмотрим первые порядки ошибок восстановления:

$$\mathsf{F}^{(1)} = (f_1^{(1)}, \dots, f_N^{(1)}), \ \mathsf{F}_{\mathrm{Re}}^{(1)} = (f_{\mathrm{Re},1}^{(1)}, \dots, f_{\mathrm{Re},N}^{(1)}), \ \mathsf{F}_{\mathrm{Im}}^{(1)} = (f_{\mathrm{Im},1}^{(1)}, \dots, f_{\mathrm{Im},N}^{(1)}).$$

Следствие 1 (из теоремы 1). Пусть выполнены условия теоремы 1. Тогда для любого $l,\ 1\leq l\leq N,$

$$\mathbb{D}f_l^{(1)} = \mathbb{D}f_{\text{Re},l}^{(1)} + \mathbb{D}f_{\text{Im},l}^{(1)}.$$
(3.3)

Утверждение получается автоматически из теоремы 1 и леммы 1.

3.1.2. Случай двух зашумленных синусоид

Пусть сигнал $S = (s_1, \ldots, s_N)$ имеет вид

$$s_l = A\cos(2\pi\omega l + \phi_1) + iB\cos(2\pi\omega l + \phi_2), \tag{3.4}$$

где $0 < \omega \le 0.5$ и $0 \le \phi_i < 2\pi$. Заметим, что случай $|\phi_1 - \phi_2| = \pi/2 \pmod{\pi}$ и A = B соответствует комплексной экспоненте.

Пусть возмущение R — шум, т.е. случайный вектор с нулевым матожиданием и достаточно малой дисперсией.

Следствие 2 (из теоремы 1). Для комплексного ряда вида (3.4), кроме случая $|\phi_1 - \phi_2| = \pi/2 \pmod{\pi}$ и A = B, выполняется формула (3.3).

Выполнение условий теоремы 1 (совпадение столбцовых и строковых траекторных пространств сигналов) для ряда вида (3.4) следует из результатов [13] (утверждение 1).

Замечание 2. Численные эксперименты, проведённые в [11], показывают, что для сигнала в виде комплексной экспоненты суммарная MSE CSSA-оценки сигнала равна полусумме суммарных MSE SSA-оценок сигнала его вещественной и мнимой частей. Следствие 2 является теоретическим обоснованием данного результата.

Наиболее распространённым видом сигналов в случае реальных комплексных временных рядов, является комплексная экспонента. Однако, по утверждению 1 условия теоремы 1 для такого сигнала не выполняются. А, соответственно, и формула (3.3) неприменима.

Утверждение 2. Для сигнала случая комплексной экспоненты, с возмущением R выполняется 1

$$\mathbb{D}(f_l^{(1)}) \stackrel{?}{=} \frac{1}{2} [\mathbb{D}(f_{\text{Re},l}^{(1)}) + \mathbb{D}f_{\text{Im},l}^{(1)})]. \tag{3.5}$$

Формула (3.5) была проверена числено.²

¹ утверждение ли?

² надо ли приводить численный эксперимент? если надо, то как оформлять, непонятно.

3.1.3. Случай константных сигналов с выбросом

Рассматриваем сигнал $S = (c_1 + \mathrm{i} c_2, \dots, c_1 + \mathrm{i} c_2)$, возмущённый выбросом $a_1 + \mathrm{i} a_2$ на позиции k, т.е. ряд R состоит из нулей кроме значения $a_1 + \mathrm{i} a_2$ на k-м месте. Исходя из теоремы 1, достаточно уметь вычислять первый порядок ошибки восстановления сигнала $S = (c, \dots, c)$, возмущённого выбросом a на позиции k.

В работе [2] была получен частный случай формулы (3.1) для вещественных сигналов единичного ранга:

$$\mathbf{H}^{(1)}(\mathsf{R},\mathsf{S}) = -U^{\mathsf{T}}\mathbf{E}VUV^{\mathsf{T}} + UU^{\mathsf{T}}\mathbf{E} + \mathbf{E}VV^{\mathsf{T}},\tag{3.6}$$

где U, V — сингулярные вектора матрицы ${\bf H}.$

Матрица возмущения для выброса а

$$\mathbf{E}^{\mathrm{T}} = \begin{pmatrix} 0 & 0 & 0 & \dots & a & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & a & \dots & 0 & \dots & 0 \\ 0 & a & 0 & \dots & 0 & \dots & 0 \\ a & 0 & 0 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & 0 & \dots & 0 \end{pmatrix} \in \mathbb{R}^{K \times L}.$$

Для сигнала $S = (c, \ldots, c)$

$$U = \{1/\sqrt{L}\}_{i=1}^L, \, V = \{1/\sqrt{K}\}_{i=1}^K, \, K = N-L+1,$$

Не умаляя общности, будем считать, что $L \leq K$.

Случай $1 \le k < L$

Рассмотрим члены суммы из формулы (3.6) покомпонентно.

Часть первого слагаемого

$$U^{\mathrm{T}}\mathbf{E} = \begin{pmatrix} a/\sqrt{L} & \dots & a/\sqrt{L} & 0 & \dots & 0 \end{pmatrix}$$

Часть первого слагаемого

$$U^{\mathrm{T}}\mathbf{E}V = ka/\sqrt{LK}$$

Часть первого слагаемого

$$UV^{\mathrm{T}} = \begin{pmatrix} 1/\sqrt{LK} & \dots & 1/\sqrt{LK} \\ \vdots & & \vdots \\ 1/\sqrt{LK} & \dots & 1/\sqrt{LK} \end{pmatrix} \in \mathbb{R}^{L \times K}$$

Теперь первое слагаемое целиком

$$U^{\mathrm{T}}\mathbf{E}VUV^{\mathrm{T}} = \begin{pmatrix} ka/LK & \dots & ka/LK \\ \vdots & & \vdots \\ ka/LK & \dots & ka/LK \end{pmatrix}$$

Часть второго слагаемого

$$UU^{\mathrm{T}} = \begin{pmatrix} 1/L & \dots & 1/L \\ \vdots & & \vdots \\ 1/L & \dots & 1/L \end{pmatrix} \in \mathbb{R}^{L \times L}$$

Теперь второе слагаемое целиком

$$UU^{\mathrm{T}}\mathbf{E} = \begin{pmatrix} a/L & \dots & a/L & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ a/L & \dots & a/L & \dots & 0 \end{pmatrix}$$

Часть третьего слагаемого

$$VV^{\mathrm{T}} = \begin{pmatrix} 1/K & \dots & 1/K \\ \vdots & & \vdots \\ 1/K & \dots & 1/K \end{pmatrix} \in \mathbb{R}^{K \times K}$$

Теперь третье слагаемое целиком

$$\mathbf{E}VV^{\mathrm{T}} = \begin{pmatrix} a/K & \dots & a/K \\ \vdots & & \vdots \\ a/K & \dots & a/K \\ \vdots & & \vdots \\ 0 & \dots & 0 \end{pmatrix}$$

Итоговая матрица

$$\mathbf{H}^{(1)}(\mathsf{R},\mathsf{S}) = \frac{a}{LK} \begin{pmatrix} (L+K-k) & \dots & (L+K-k) & \dots & (L-k) \\ \vdots & & \vdots & & \vdots \\ (L+K-k) & \dots & (L+K-k) & \dots & (L-k) \\ \vdots & & \vdots & & \vdots \\ (K-k) & \dots & (K-k) & \dots & -k \end{pmatrix}$$

$$\mathsf{F}^{(1)} = \mathcal{H}(\mathbf{H}^{(1)}(\mathsf{R},\mathsf{S}))$$

$$k \le L/2$$
$$k \le K - L$$

$$f_l^{(1)} = \frac{a}{LK} \begin{cases} (L+K-k), & 1 \le l \le k \\ \frac{1}{l}(L+K-l)k, & k < l \le L \\ \frac{1}{L}K(L+k-l), & L < l < L+k \\ 0, & L+k \le l \le K \end{cases}.$$

$$\frac{1}{N-l+1}(K-l)(L-k), & K < l < K+k \\ -k, & K+k \le l \le N \end{cases}$$

 $k \le L/2$ k > K - L

$$f_{l}^{(1)} = \frac{a}{LK} \begin{cases} (L+K-k), & 1 \le l \le k \\ \frac{1}{l}(L+K-l)k, & k < l \le L \\ \frac{1}{L}K(L+k-l), & L < l < K \\ \frac{1}{N-l+1}(2KL-l(L+K-k)), & K \le l \le L+k \\ \frac{1}{N-l+1}(K-l)(L-k), & L+k < l < K+k \\ -k, & K+k \le l \le N \end{cases}$$

k > L/2 $k \le K - L$

$$f_l^{(1)} = \frac{a}{LK} \begin{cases} (L+K-k), & 1 \le l \le k \\ \frac{1}{l}(L+K-l)k, & k < l < L \\ \frac{1}{L}K(L+k-l), & L \le l < L+k \\ 0, & L+k \le l \le K \end{cases}.$$

$$\frac{1}{N-l+1}(L-K)(L-k), & K < l < K+k \\ -k, & K+k \le l \le N \end{cases}$$

$$k > \max(L/2, K - L)$$
$$k \le K/2$$

$$f_{l}^{(1)} = \frac{a}{LK} \begin{cases} (L+K-k), & 1 \le l \le k \\ \frac{1}{l}(L+K-l)k, & k < l < L \\ \frac{1}{L}K(L+k-l), & L \le l < K \\ \frac{1}{N-l+1}(2KL-l(L+K-k)), & K \le l \le L+k \\ \frac{1}{N-l+1}(L-K)(L-k), & L+k < l < K+k \\ -k, & K+k \le l \le N \end{cases}$$

k > K/2

$$f_l^{(1)} = \frac{1}{LK} \begin{cases} (L+K-k), & 1 \le l \le k \\ \frac{1}{l}(L+K-l)k, & k < l < L \\ \frac{1}{L}K(L+k-l), & L \le l < K \\ \frac{1}{N-l+1}(2KL-l(L+K-k)), & K \le l \le L+k \\ \frac{1}{N-l+1}(K-l)(L-k), & L+k < l < K+k \\ -k, & K+k \le l \le N \end{cases}.$$

\mathbf{C} лучай $L \leq k \leq K$

Первое слагаемое

$$U^{\mathrm{T}}\mathbf{E}VUV^{\mathrm{T}} = \begin{pmatrix} a/K & \dots & a/K \\ \vdots & & \vdots \\ a/K & \dots & a/K \end{pmatrix}$$

Второе слагаемое

$$UU^{\mathrm{T}}\mathbf{E} = \begin{pmatrix} 0 & \dots & a/L & \dots & a/L & \dots & 0 \\ \vdots & & \vdots & & \vdots & & \vdots \\ 0 & \dots & a/L & \dots & a/L & \dots & 0 \end{pmatrix}$$

Третье слагаемое

$$\mathbf{E}VV^{\mathrm{T}} = \begin{pmatrix} a/K & \dots & a/K \\ \vdots & & \vdots \\ a/K & \dots & a/K \end{pmatrix}$$

Итоговая матрица

$$\mathbf{H}^{(1)}(\mathsf{R},\mathsf{S}) = \frac{a}{L} \begin{pmatrix} 0 & \dots & 1 & \dots & 1 & \dots & 0 \\ \vdots & & \vdots & & \vdots & & \vdots \\ 0 & \dots & 1 & \dots & 1 & \dots & 0 \end{pmatrix}$$

$$f_l^{(1)} = rac{a}{L} egin{cases} rac{1}{\min(L,l)}(l-k+L), & k-L \leq l \leq k \ rac{1}{\min(L,N-l+1)}(L+k-l), & k < l < L+k \end{cases}$$
 иначе

Случай $K < k \le N$

Данный случай полностью аналогичен инвертированному первому случаю, то есть строим ряд для N-k+1 и разворачиваем его.

Полученные формулы были численно проверены для частного случая.

Замечание 3. Из полученных формул видно, что при фиксированном L первый порядок ошибки не стремится κ 0 c ростом N, тогда как численные эксперименты показывают, что полная ошибка восстановления стремится κ 0 c ростом N. Как показано в разделе 3.2, это следствие того, что полная ошибка не описывается ее первым порядком. Если же L и K пропорциональны N, то первый порядок ошибки стремится κ нулю.

Сохранение RMSE

Обозначим
$$RMSE = \sqrt{\frac{1}{N}\sum_{l=1}^{N}(f_l^{(1)})^2}$$
 для ряда $\mathsf{X} = \mathsf{S} + \mathsf{R}.^3$

Возмущение для выброса $a+\mathrm{i}b$ можно записать как $\mathsf{R}=a\mathsf{G}+\mathrm{i}b\mathsf{G}$, где $\frac{1}{a}\operatorname{Re}(\mathsf{R})=\frac{1}{b}\operatorname{Im}(\mathsf{R})=\mathsf{G}.$

Утверждение 3. Пусть сигнал S удовлетворяет условиям теоремы 1.

 $^{^{3}}$ не уверен, что этот раздел вообще нужен

Тогда RMSE для ряда с сигналом S и выбросом a+ib, и ряда с сигналом S и выбросом a^*+ib^* , m.ч. $|a^*+ib^*|=|a+ib|$, совпадают.

Доказательство. R = aG + ibG

По теореме 1 и формуле (3.1)

$$f_l^{(1)} = a\mathcal{H}(\mathsf{G}, \operatorname{Re}(\mathsf{S})) + ib\mathcal{H}(\mathsf{G}, \operatorname{Im}(S)) = c_l(a + \mathrm{i}b).$$

Для ряда с сигналом S и выбросом a+ib

$$RMSE = |a + ib| \sqrt{\frac{1}{N} \sum_{l=1}^{N} c_l^2}$$

Рассмотрим $a^* + ib^*$, такое что $|a^* + ib^*| = |a + ib|$.

Для ряда с сигналом S и выбросом $a^* + ib^*$

$$RMSE = |a^* + ib^*| \sqrt{\frac{1}{N} \sum_{l=1}^{N} c_l^2} = |a + ib| \sqrt{\frac{1}{N} \sum_{l=1}^{N} c_l^2}.$$

3.2. Численное сравнение первого порядка ошибки и полной ошибки оценивания сигнала

3.2.1. Случай зашумленных гармоник

Сигнал

$$s_l = \cos(2\pi l/10) + i\cos(2\pi l/10 + \pi/4),$$

параметры $\sigma^2 = 0.01, N = 9, L = 5.$

Результат для одной из реализаций шума представлен на рис. 3.1.

Рис. 3.1. Вещественные части первого порядка и полной ошибок.

Из графика видно, что ошибки практически совпадают даже при маленьких L и N. Аналогичные численные эксперименты подтверждают, что для комплексной экспоненты также есть такое совпадение⁴.

3.2.2. Случай константных сигналов с выбросом

Был рассмотрен пример с сигналом $s_l=1+\mathrm{i}1,$ с возмущением в виде выброса $a_1+\mathrm{i}a_2=10+\mathrm{i}10$ на позиции k=L-1.

Результаты представлены в таблице 3.1.

Таблица 3.1. Максимальное различие первого порядка и полной ошибок.

N	50	100	400	1600
L = N/2	0.1313	0.0419	0.0033	0.0002
L=20	0.3074	0.1965	0.5655	0.6720

Аналогичные численные эксперименты показывают, что при расположении выброса в середине ряда результаты качественно совпадают, при L=N/2 различие стремится к 0, при L=20 не стремится к 0^5 .

Численные результаты показывают, что для случая зашумленных гармоник первый порядок адекватно оценивает полную ошибку восстановления сигнала в каждой

⁴ надо ли приводить?

⁵ надо ли приводить?

точке при любых рассматриваемых параметрах сигналов.

Однако для случая возмущения в виде выброса это верно, только когда L и K пропорциональны N.

Все численные результаты были получены при помощи пакета [15].

Заключение

В работе были приведены и исследованы два обобщения робастных вариантов метода SSA на комплексно-значный случай.

Был проведён обзор двух известных подходов к построению робастных версий SSA: замена проекции по норме \mathbb{L}_2 на проекцию по норме \mathbb{L}_1 и на взвешенную проекцию по норме \mathbb{L}_2 и их имплементация на комплексный случай.

Работа методов была показана на нескольких примерах, подтверждающих эффективность робатсных модификаций, в сравнении с Complex SSA для рядов с выбросами. Все рассматриваемые модификации были реализованы на R.

В работе удалось подвести теоретическую базу под имеющиеся ранее численные результаты ([11]) по сравнению CSSA и SSA для двух зашумленных гармоник с одинаковой частотой и сдвигом, не кратным $\pi/2$. Для зашумленной комплексной экспоненты был получен более общий, нежели имеющиеся ранее, численный результат. Результаты показывают, что только в случае сигнала в виде комплексной экспоненты применение CSSA имеет смысл с точки зрения уменьшения ошибки восстановления сигнала.

Для константного ряда с выбросами был получен явный вид первого порядка ошибок оценки сигнала в каждой точке.

Для обоих случаев было численно исследовано соотношение между первым порядком ошибки и полной ошибкой. В случае случайного возмущения оказалось, что первый порядок ошибки практически совпадает с полной ошибкой. Однако в случае неслучайного возмущения выбросом это не так и требуются дополнительные условия на пропорциональность длины окна L длине ряда N.

Список литературы

- 1. А. Третьякова. Робастные варианты метода анализа сингулярного спектра : магистерская работа ; Санкт-Петербургский Государственный Университет. Санкт-Петербург, 2020.
- 2. V. Nekrutkin. Perturbations in SSA. 2008. Manuscript.
- 3. Е. Власьева. Исследование ошибок восстановления в методе «Гусеница» с помощью теории возмущений : дипломная работа ; Санкт-Петербургский Государственный Университет. Санкт-Петербург, 2008.
- 4. K. Qifa, K. Takeo. Robust L1 Norm Factorization in the Presence of Outliers and Missing Data by Alternative Convex Programming // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2005).—2005.—June.
- 5. Solving Weighted Least Squares (WLS) problems on ARM-based architectures / J. Belloch, B. Bank, F. Igual, E. Quintana-Ortí, and A. Vidal // The Journal of Supercomputing. 2017. 01. Vol. 71. P. 530–542.
- 6. K. Chen, M. Sacchi. Robust reduced-rank filtering for erratic seismic noise attenuation // GEOPHYSICS. 2015. 01. Vol. 80. P. V1–V11.
- N. Golyandina, A. Korobeynikov, A. Zhigljavsky. Singular spectrum analysis with R. — Springer-Verlag Berlin Heidelberg, 2018.
- 8. Н. Голяндина. Метод «Гусеница»-SSA: анализ временных рядов: Учеб. пособие. Санкт-Петербург: ВММ, 2004.
- 9. J. P. Brooks, S. Jot. pcaL1: An Implementation in R of Three Methods for L1-Norm Principal Component Analysis. 2012. unpublished.
- L1-Norm Principal-Component Analysis of Complex Data / N. Tsagkarakis,
 P. Markopoulos, G. Sklivanitis, and D. Pados // IEEE Transactions on Signal Processing. 2018. 06.
- 11. Multivariate and 2D extensions of singular spectrum analysis with the Rssa package / N. Golyandina, A. Korobeynikov, A. Shlemov, and K. Usevich // Journal of Statistical Software. 2015. Vol. 67(2). P. 1–78.
- 12. N. Golyandina, V. Nekrutkin, A. Zhigljavsky. Analysis of Time Series Structure: SSA and Related Techniques // Chapman&Hall/CRC. 2011. P. 1–78.
- 13. Д. Степанов, Н. Голяндина. Варианты метода "Гусеница"-SSA для прогноза

- многомерных временных рядов. // Труды IV Международной конференции "Идентификация систем и задачи управления" SICPRO'05. Москва. 2005. С. 1831-1848.
- 14. T. Kato. Perturbation theory for linear operators. Springer-Verlag, 1966.
- 15. Rssa: A collection of methods for singular spectrum analysis.
- 16. V. Nekrutkin. Perturbation expansions of signal subspaces for long signals // Statistics and Its Interface. 2010. Vol. 3. P. 297–319.
- А. Константинов. Некоторые задачи анализа временных рядов (теория методов "Singal Subspace") : курсовая работа ; Санкт-Петербургский Государственный Университет. — Санкт-Петербург, 2018.