Честотните критерии (Найквист, Боде) се отнасят за САУ, чиято структурна схема е приведена до следния вид:

За устойчивостта на затворената система се съди по честотните характеристики на отворената система (АФЧХ – крит. на Найквист; ЛАЧХ и ЛФЧХ – крит. на Боде).

- (1) Честотните критерии дават нагледна и по-пълна представа за свойствата на САУ в сравнение с алгебричните.
- (2) Освен устойчивост, чрез тях се определят и запаси по устойчивост (доколко САУ е далече от неустойчивост).

<u>17. Честотни критерии за устойчивост</u>

1. Критерий на Найквист – използват се три формулировки:

(1) Ако *отворената система е устойчива или е на границата на устойчивост*, необходимото и достатъчно условие съответната затворена система да е устойчива е АФЧХ на отворената система да не обхваща точката с координати (—1; *j*0).

- 1 устойчива затворена система;
- 2 на границата на устойчивост;
- 3 неустойчива.

(2) Ако *отворената система* е *неустойчива* и има q корени с положителна реална част, то затворената система е устойчива, ако АФЧХ на отворената система за $\omega \in [0;\infty]$ обхваща точката с координати (-1;j0) в положителна посока q/2 пъти (т.е. с ъгъл $q\pi$). За положителна посока се счита посоката, обратна на часовниковата стрелка.

При q=2 АФЧХ на отворената система определя устойчива затворена система, защото точката (-1;j0) се обхваща в положителна посока един път (на ъгъл 2π).

(3) Обобщена формулировка: Затворената система е устойчива, ако при изменение на $\omega \in [0;\infty]$ разликата между броя на положителните и отрицателните преходи на АФЧХ на отворената система в участъка $[-\infty;-1]$ на реалната ос е равен на q/2, където q е броят на корените с положителна реална част, а положителен преход е този, при който АФЧХ пресича абсцисната ос отгоре надолу (от II към III квадрант).

АФЧХ пресича веднъж в положителна посока интервала $[-\infty;-1]$ на реалната ос, следователно разликата между "+" и "-" преходите е равна на единица. При q=2 затворената система е устойчива

2. Критерий на Боде – използват се две формулировки:

(1) За да бъде затворената система устойчива е необходимо ЛАЧХ на отворената система при $\omega \in [0;\infty]$ да пресече абсцисната ос преди ЛФЧХ да е достигнала ъгъла $-\pi$.

- 1 устойчива затворена система;
- 2 на границата на устойчивост;
- 3 неустойчива.

 ΔL и $\Delta \phi$ са запасите на устойчивост по модул и фаза.

(2) Обобщена формулировка: Затворената система е устойчива, ако разликата между положителните и отрицателните преходи на ЛФЧХ с правата $-\pi$ за интервалите, в които ЛАЧХ е положителна ($L(\omega)>0$) е равен на q/2, където q е броят на корените с положителна реална част, а положителен преход е този, при който ЛФЧХ пресича правата $-\pi$ отдолу нагоре.

При q=0 затворената система ще бъде устойчива, защото за

 $L(\omega) > 0$ има 1 "+" и 1 "-" преход през правата $-\pi$.

 ΔL_{l} и ΔL_{2} са запасите по модул;

 $\Delta arphi$ - запас по фаза.

3. Модификация на критерия на Найквист за астатическа система

 $W(p) = \frac{B(p)}{p^{\nu}A_{\rm l}(p)}$: За определяне на устойчивостта на система с астатизъм от ред $~\nu$ АФЧХ се допълва с дъга с $R \to \infty$ и ъгъл $-\nu\pi/2$, започвайки при $\omega=0$ от положителната реална ос, след което се прилага критерият на Найквист.

4. Запаси по модул и фаза

А. Критерий на Найквист

Затворената система е:

- (1) устойчива k_1 ;
- (2) на границата на устойчивост k_2 .

- запас по модул: $\Delta A > 0.5$

- запас по фаза: $\Delta \varphi \ge 30 \div 40^{0}$

Б. Критерий на Боде

