Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© UPI/Corbis

Termoquímica Capítulo 6

Copyright @ The McGraw-Hill Companies. Inc. Permission required for reproduction or display

Energia é a capacidade de produzir trabalho.

- Energia radiante vem do sol e é a fonte primária de energia da Terra
- Energia térmica é a energia associada ao movimento aleatório de átomos e moléculas
- Energia química é a energia armazenada dentro das ligações das substâncias químicas
- Energia nuclear é a energia armazenada dentro dos neutrões e protões no átomo
- Energia potencial é a energia disponível, em virtude da posição de um objeto

Trocas de Energia em Reações Químicas

Calor é a transferência de Energia Térmica, entre dois corpos que se encontram a diferentes temperaturas.

Temperatura é uma medida da energia térmica.

Temperatura X Energia Térmica

Termoquímica é o estudo das trocas de calor nas reações químicas.

O **sistema** é a parte específica do universo que é de interesse no estudo.

Troca: massa & energia energia nada

Processo Exotérmico é qualquer processo que liberta calor - transfere energia térmica do sistema para a vizinhança.

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(h) + energia$$

 $H_2O(g) \longrightarrow H_2O(h) + energia$

Processo Endotérmico é qualquer processo em que o calor tem que ser fornecido ao sistema a partir do meio exterior.

energia + 2HgO (s)
$$\longrightarrow$$
 2Hg (l) + O₂ (g)
energia + H₂O (s) \longrightarrow H₂O (l)

Esquema de Processos Exotérmico e Endotérmico

Termodinâmica é o estudo científico da interconversão de calor e outros tipos de energia.

Funções de Estado são propriedades que são determinadas pelo estado do sistema, independentemente de como essa condição foi alcançada.

energia, pressão, volume, temperatura

$$\Delta U = U_{final} - U_{inicial}$$

$$\Delta P = P_{final} - P_{inicial}$$

$$\Delta V = V_{final} - V_{inicial}$$

$$\Delta T = T_{final} - T_{inicial}$$

A energia potencial do escalador 1 e escalador 2 é a mesma, embora eles tenham tomado caminhos diferentes.

Primeira Lei da Termodinâmica - a energia pode ser convertida de uma forma para outra, mas não pode ser criada ou destruída.

$$\Delta U_{sistema} + \Delta U_{vizinhança} = 0$$

$$\text{OU}$$

$$\Delta U_{sistema} = -\Delta U_{vizinhança}$$

$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

Reação química exotérmica!

Outra forma da **primeira lei** para $\Delta U_{\text{sistema}}$

$$\Delta U = q + w$$

 ΔU representa a variação da energia interna de um sistema

q representa a troca de calor entre o sistema e a vizinhança

W é o trabalho realizado sobre (ou pelo) o sistema

 $W = -P\Delta V$ quando um gás se expande contra uma pressão externa constante

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 6.1

Sign Conventions for Work and Heat

Process	Sign
Work done by the system on the surroundings	_
Work done on the system by the surroundings	+
Heat absorbed by the system from the surroundings (endothermic process)	+
Heat absorbed by the surroundings from the system (exothermic process)	_

Trabalho realizado pelo Sistema na vizinhança

$$w = F \times d$$

$$W = -P \Delta V$$

$$P \times V = \frac{F}{d^2} \times d^3 = F \times d = W$$

$$\Delta V > 0$$

$$-P\Delta V < 0$$

Trabalho não uma função de estado.

$$\Delta W \not\bowtie W_{final}$$
 - $W_{inicial}$

inicial

final

Um certo gás expande-se em volume, de 2,0 L até 6,0 L a uma temperatura constante.

- (a) Calcule o trabalho realizado pelo gás ao se expandir
- (b) oposta um vácuo
- (c) oposta uma pressão constante de 1,2 atm

Estratégia Um simples esboço da situação é útil aqui:

O trabalho realizado na expansão do gás é igual ao produto da, a pressão externa oposta e a variação de volume.

Qual é o fator de conversão entre L - atm e J?

Solução

(a) porque a pressão externa é igual a zero, não se realiza trabalho em expansão.

$$w = -P\Delta V$$

= -(0)(6.0 - 2.0) L
= 0

(b) A pressão oposta externa é de 1,2 atm, então

$$w = -P\Delta V$$

= -(1.2 atm) (6.0 - 2.0) L
= -4.8 L · atm

Para converter a resposta para joules, escrevemos

$$w = -4.8 \text{ L} \cdot \text{atm} \times \frac{101.3 \text{ J}}{1 \text{ L} \cdot \text{atm}}$$

$$= -4.9 \times 10^2 \text{ J}$$

Verificar Porque esta é uma expansão de gás (o trabalho é feito pelo sistema sobre a vizinhança), o trabalho realizado tem um sinal negativo.

O trabalho realizado quando um gás é comprimido num cilindro como o mostrado na figura 6.5 é 462 J.

Durante este processo, existe uma transferência de calor de 128 J a partir do gás para a vizinhança.

Calcular a mudança de energia para este processo.

Estratégia

Compressão é o trabalho realizado sobre o gás, então qual é o sinal para *w*?

O calor é libertado pelo gás para a vizinhança.

É este um processo endotérmico ou exotérmico?

Qual é o sinal para *q*?

Solução Para calcular a variação da energia do gás, precisamos da equação (6.1). O trabalho de compressão é positivo e porque o calor é libertado pelo gás, q é negativo. Portanto, temos

$$\Delta U = q + w$$

= -128 J + 462 J
= 334 J

Como resultado, a energia do gás aumenta em 334 J.

Química em Ação: Fazendo Neve

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$q = 0$$

W < 0, ΔU < 0

$$\Delta U = C \Delta T$$

 ΔT < 0, **NEVE!**

Entalpia e a Primeira Lei da Termodinâmica

$$\Delta U = q + w$$

A pressão constante:

$$q = \Delta H$$
 e $w = -P\Delta V$
 $\Delta U = \Delta H - P\Delta V$
 $\Delta H = \Delta U + P\Delta V$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Entalpia (H) é utilizada para quantificar o fluxo de calor para dentro ou para fora de um sistema num processo que ocorre a uma pressão constante.

$$\Delta H = H \text{ (produtos)} - H \text{ (reagentes)}$$

 ΔH = calor libertado ou absorvido durante a reação a uma pressão constante

6,01 kJ são absorvidos por cada 1 mole de gelo que funde a 0°C e 1 atm.

$$H_2O(s) \longrightarrow H_2O(l)$$
 $\Delta H = 6.01 \text{ kJ/mol}$

890,4 kJ são libertados por cada 1 mol de metano, que é queimado a 25°C e 1 atm.

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(f) \Delta H = -890,4 \text{ kJ/mol}$$

 Os coeficientes estequiométricos sempre se referem ao número de moles de uma substância

$$H_2O(s) \longrightarrow H_2O(l)$$
 $\Delta H = 6.01 \text{ kJ/mol}$

Se reverter uma reação, o sinal de ∆H muda

$$H_2O(1) \longrightarrow H_2O(s)$$
 $\Delta H = -6.01 \text{ kJ/mol}$

 Se multiplicar ambos os lados da equação por um fator n, então ΔH deve mudar pelo mesmo fator n.

$$2H_2O(s) \longrightarrow 2H_2O(l) \quad \Delta H = 2 \times 6,01 = 12,0 \text{ kJ}$$

 Os estados físicos de todos os reagentes e os produtos devem ser especificados nas equações termoquímicas.

$$H_2O(s) \longrightarrow H_2O(h)$$
 $\Delta H = 6,01 \text{ kJ/mol}$
 $H_2O(h) \longrightarrow H_2O(g)$ $\Delta H = 44,0 \text{ kJ/mol}$

Solução Precisamos primeiro calcular o número de moles de SO₂ em 87,9 g do composto e, em seguida, encontrar o número de quilojoules produzidos a partir da reação exotérmica. A sequência de conversões é como se segue:

grams of SO_2 \longrightarrow moles of SO_2 \longrightarrow kilojoules of heat generated

Por conseguinte, a variação de entalpia para esta reação é dada por

$$\Delta H = 87.9 \text{ g SO}_2 \times \frac{1 \text{ mol SO}_2}{64.07 \text{ g SO}_2} \times \frac{-198.2 \text{ kJ}}{2 \text{ mol SO}_2}$$

= -136 kJ

e o calor libertado para a vizinhança é de 136 kJ.

Verificar

Porque 87.9 g é inferior a duas vezes a massa molar do SO_2 (2 × 64,07 g) como mostrado na equação termoquímica anterior, esperamos que o calor libertado seja inferior a 198,2 kJ.

Uma comparação de △H e △U

$$2Na(s) + 2H_2O(l) \longrightarrow 2NaOH(aq) + H_2(g) \Delta H = -367,5 \text{ kJ/mol}$$

$$\Delta U = \Delta H - P\Delta V$$
 At 25 °C, 1 mole H₂ = 24,5 L at 1 atm

$$P \triangle V = 1 \text{ atm x } 24,5 \text{ L} = 2,5 \text{ kJ}$$

$$\Delta U = -367,5 \text{ kJ/mol} - 2,5 \text{ kJ/mol} = -370,0 \text{ kJ/mol}$$

Calcular a variação da energia interna quando 2 moles de CO são convertidos em 2 moles de CO₂, a 1 atm e 25 °C:

$$2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$$
 $\Delta H = -566.0 \text{ kJ/mol}$

O monóxido de carbono queima ao ar para formar dióxido de carbono.

Estratégia

É-nos dada a variação de entalpia, ΔH , para a reação e pede-se para calcular a variação da energia interna, ΔU .

Portanto, precisamos da equação (6.10).

Qual é a alteração no número de moles de gases?

Sabendo que ΔH é dada em quilojoules, que unidades deveremos usar para R?

Solução A partir da equação química vemos que 3 moles de gases são convertidas em 2 moles de gases então,

 Δn = number of moles of product gas – number of moles of reactant gases = 2 – 3 = -1

Usando 8,314 J/K · mol para R e T = 298 K na Equação (6.10), escrevemos,

$$\Delta U = \Delta H - RT\Delta n$$

= -566.0 kJ/mol - (8.314 J/K·mol) $\left(\frac{1 \text{ kJ}}{1000 \text{ J}}\right)$ (298 K)(-1)
= -563.5 kJ/mol

O *calor específico* (*s*) de uma substância é a quantidade de calor (*q*) necessária para elevar a temperatura de um grama da substância em **um grau** Celsius.

A capacidade de calor (C) de uma substância é a quantidade de calor (q) necessária para elevar a temperatura de uma dada quantidade (m) da substância em um grau Celsius.

Table 6.2		
The Specifi	c Heats	
of Some Co	ommon	
Substances	6	

Substance	Specific Heat (J/g · °C)
Al	0.900
Au	0.129
C (graphite)	0.720
C (diamond)	0.502
Cu	0.385
Fe	0.444
Hg	0.139
Pb	0.158
H_2O	4.184
C ₂ H ₅ OH (ethanol)	2.46

$$C = m \times s$$

Calor (q) absorvido ou libertado:

$$q = m \times s \times \Delta t$$

$$q = C \times \Delta t$$

$$\Delta t = t_{\text{final}} - t_{\text{inicial}}$$

Uma amostra de 466 g de água é aquecida a partir dos 8,50 °C até aos 74,60 °C.

Calcular a quantidade de calor absorvido (em kJ) pela água.

Estratégia Sabemos a quantidade de água e o calor específico da água. Com estas informações e o aumento da temperatura, podemos calcular a quantidade de calor absorvida (q).

Solução Usando a Equação (6.12), escrevemos

$$q = ms\Delta t$$

= (466 g) (4.184 J/g·°C) (74.60°C-8.50°C)
= 1.29×10⁵ J × $\frac{1 \text{ kJ}}{1000 \text{ J}}$
= 129 kJ

Verificar As unidades g e °C cancelam, e ficamos com a unidade kJ desejada. Porque o calor é absorvido pela água da vizinhança, tem um sinal positivo.

Calorimetria Volume-Constante

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$q_{\rm sis} = q_{
m água} + q_{
m bomba} + q_{
m rxn}$$
 $q_{
m sis} = 0$
 $q_{
m rxn} = -(q_{
m água} + q_{
m bomba})$
 $q_{
m águar} = m \times \times \times \Delta t$
 $q_{
m bomba} = C_{bomba} \times \Delta t$

Reação a
$$V$$
 Constante $\Delta H \neq q_{rxn}$ $\Delta H \sim q_{rxn}$

Nenhum calor entra ou sai!

Uma quantidade de 1,435 g de naftaleno (C₁₀H₈), uma substância de cheiro pungente utilizada nos repelentes de traças, foi calcinado num calorímetro de bomba de volume constante.

Consequentemente, a temperatura da água aumentou de 20,28 °C para 25,95 °C.

Se a capacidade da bomba de calor, mais água foi de 10,17 kJ /°C, calcular o calor de combustão do naftaleno numa base molar, isto é, encontrar o calor molar de combustão.

Estratégia

Conhecendo a capacidade calorífica e o aumento da temperatura, como podemos calcular o calor absorvido pelo calorímetro?

Qual é o calor gerado pela combustão de 1,435 g de naftaleno?

Qual é o fator de conversão entre gramas e moles de naftaleno?

Solução O calor absorvido pela bomba e água é igual ao produto da capacidade calorífica e a alteração da temperatura.

A partir da Equação (6.16), assumindo que nenhum calor é perdido para a vizinhança, nós escrevemos

$$q_{cal} = C_{cal} \Delta t$$

= (10.17 kJ/°C) (25.95°C – 20.28°C)
= 57.66 kJ

Porque $q_{\rm sis} = q_{\rm cal} + q_{\rm rxn} = 0$, $q_{\rm cal} = -q_{\rm rxn}$. A troca de calor da reação é - 57,66 kJ. Este é o calor libertado pela combustão de 1,435 g de $C_{10}H_8$, portanto, podemos escrever o fator de conversão de

A massa molar do naftaleno é 128,2 g, de modo que o calor de combustão de uma mole de naftaleno é

Verificar Sabendo-se que a reação de combustão é exotérmica e que a massa molar do naftaleno é muito maior do que 1,4 g, esta resposta é razoável? Sob as condições de reação, pode a troca de calor (257,66 kJ) ser equiparada à variação de entalpia da reação?

Química em Ação:

Valores de Combustível de Alimentos e outras Substâncias

$$C_6H_{12}O_6(s) + 6O_2(g) \longrightarrow 6CO_2(g) + 6H_2O(l)$$
 $\Delta H = -2801 \text{ kJ/mol}$

1 cal = 4.184 J

1 Cal = 1000 cal = 4184 J

Substância	∆H _{combustão} (kJ/g)
Maçã	-2
Carne	-8
Cerveja	-1.5
Gasolina	-34

Nutrition Facts Serving Size 6 cookies (28g) Servings Per Container about 11		
Amount Per Serving		
Calories 120 Calories from Fat 30		
% Daily Value*		
Total Fat 4g 6%		
Saturated Fat 0.5g 4%		
Polyunsaturated Fat 0g		
Monounsaturated Fat 1g		
Cholesterol 5mg 2%		
Sodium 105mg 4%		
Total Carbohydrate 20g 7%		
Dietary Fiber Less than 1 gram 2%		
Sugars 7g		
Protein 2g	3	

Calorimetria a Pressão Constante

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$q_{\rm sis} = q_{\rm water} + q_{\rm cal} + q_{\rm rxn}$$
 $q_{\rm sis} = 0$
 $q_{\rm rxn} = -(q_{\rm água} + q_{\rm cal})$
 $q_{\rm água} = m \ x \ s \ x \ \Delta t$
 $q_{\rm cal} = C_{\it cal} \ x \ \Delta t$
Reação a P Constante

 $\Delta H = q_{\rm rxn}$

Nenhum calor entra ou sai!

Uma amostra de chumbo (Pb) com uma massa de 26,47 g a 89,98 °C, foi colocada num calorímetro de pressão constante de capacidade de calor desprezável contendo 100,0 mL de água.

A temperatura da água subiu de 22,50 °C para 23,17 °C.

Qual é o calor específico da amostra de chumbo?

Estratégia Um esboço da situação inicial e final é como se

segue:

Sabemos as massas de água e da amostra de chumbo, bem como as temperaturas iniciais e finais. Supondo que nenhum calor é perdido para a vizinhança, podemos igualar o calor perdido pela amostra de chumbo com o calor ganho pela água. Conhecendo o calor específico da água, podemos então calcular o calor específico do chumbo.

Solução Ao tratar o calorímetro como um sistema isolado (não há perda de calor para a vizinhança), nós escrevemos

$$q_{\mathsf{Pb}} + q_{\mathsf{H}_2\mathsf{O}} = 0$$

ou

$$q_{Pb} = -q_{H_2O}$$

O ganho de calor pela água é determinado por

$$q_{\text{H}_2\text{O}} = ms\Delta t$$

onde m e s são a massa e o calor específico e

$$\Delta t = t_{\text{final}} - t_{\text{inicial}}$$

Portanto,

$$q_{\text{H}_2\text{O}} = (100.0 \text{ g})(4.184 \text{ J/g} \cdot ^{\circ}\text{C}) (23.17 ^{\circ}\text{C} - 22.50 ^{\circ}\text{C})$$

= 280.3 J

Porque o calor perdido pela amostra de chumbo é igual ao calor ganho pela água, $q_{\rm Pb}$ = -280,3 J. Resolvendo para o calor específico do Pb, podemos escrever

$$q_{\text{Pb}} = ms\Delta t$$

-280.3 J = (26.47 g)(s)(23.17°C - 89.98°C)
s = 0.158 J/g·°C

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 6.3

Heats of Some Typical Reactions Measured at Constant Pressure

Type of Reaction	Example	Δ <i>H</i> (kJ/mol)
Heat of neutralization	$HCl(aq) + NaOH(aq) \longrightarrow NaCl(aq) + H_2O(l)$	-56.2
Heat of ionization	$H_2O(l) \longrightarrow H^+(aq) + OH^-(aq)$	56.2
Heat of fusion	$H_2O(s) \longrightarrow H_2O(l)$	6.01
Heat of vaporization	$H_2O(l) \longrightarrow H_2O(g)$	44.0*
Heat of reaction	$MgCl_2(s) + 2Na(l) \longrightarrow 2NaCl(s) + Mg(s)$	-180.2

^{*}Measured at 25°C. At 100°C, the value is 40.79 kJ.

Uma quantidade de 1,00 × 10² mL de HCI 0,500 *M* foi misturada com 1,00 × 10² mL de NaOH a 0,500 *M* num calorímetro de pressão constante de capacidade de calor desprezável. A temperatura inicial das soluções de NaOH e HCl foi a mesma, 22,50 °C e a temperatura final da solução mista era 25,86 °C. Calcular a troca de calor para a reação de neutralização numa base molar:

$$NaOH(aq) + HCI(aq) \longrightarrow NaCI(aq) + H_2O(I)$$

Assuma que as densidades e calores específicos das soluções são as mesmas que para a água (1,00 g / mL e 4,184 J / g · °C, respetivamente).

Estratégia

Como a temperatura aumentou, a reação de neutralização é exotérmica.

Como podemos calcular o calor absorvido pela solução combinada?

Qual é o calor da reação?

Qual é o fator de conversão para expressar o calor de reação numa base molar?

Solução Supondo que nenhum calor é perdido para a vizinhança, $q_{\rm sis} = q_{\rm soln} + q_{\rm rxn} = 0$, so $q_{\rm rxn} = -q_{\rm soln}$, onde $q_{\rm soln}$ é o calor absorvido pela solução combinada. Como a densidade da solução é de 1,00 g / mL, a massa de uma solução de 100 mL é de 100 g.

Assim,

$$q_{soln} = ms\Delta t$$

= $(1.00 \times 10^2 \text{ g} + 1.00 \times 10^2 \text{ g})(4.184 \text{ J/g} \cdot ^{\circ}\text{C})(25.86^{\circ}\text{C} - 22.50^{\circ}\text{C})$
= $2.81 \times 10^3 \text{ J}$
= 2.81 kJ

Porque $q_{rxn} = -q_{soln}$, $q_{rxn} = -2.81$ kJ.

Das molaridades dadas, o número de moles de ambos HCI e NaOH em 1,00 x 10² mL solução é

$$\frac{0.500 \text{ mol}}{1 \text{ L}} \times 0.100 \text{ L} = 0.0500 \text{ mol}$$

Por conseguinte, o calor de neutralização, quando 1,00 moles de HCl reagem com 1,00 mole de NaOH é

heat of neutralization =
$$\frac{-2.81 \text{ kJ}}{0.0500 \text{ mol}}$$
 = -56.2 kJ/mol

Verificar O sinal está de acordo com a natureza da reação? Sob a condição de reação, pode a troca de calor ser equiparada à variação de entalpia?

Porque não há nenhuma maneira de medir o valor absoluto da entalpia de uma substância, devo medir a variação de entalpia para cada reação de interesse?

Estabelecer uma escala arbitrária com a *entalpia de formação* $padrão (\Delta H^0)_f$ como um ponto de referência para todas as expressões de entalpia.

Entalpia de formação padrão (ΔH^0)_f consiste na troca de calor, que resulta quando **um mole** de um composto é formada a partir dos seus **elementos** a uma pressão de 1 atm.

A entalpia de formação de um elemento na sua forma mais estável é zero.

$$\Delta H_{\rm f}^0 ({\rm O_2}) = 0$$

$$\Delta H_{\rm f}^0 ({\rm O_3}) = 142 \text{ kJ/mol}$$

$$\Delta H_{\rm f}^0 ({\rm O_3}) = 142 \text{ kJ/mol}$$

$$\Delta H_{\rm f}^0 ({\rm C, diamante}) = 1,90 \text{ kJ/mol}$$

Table 6.4

Standard Enthalpies of Formation of Some Inorganic Substances at 25°C

Substance	$\Delta H_{\mathrm{f}}^{\circ}(\mathrm{kJ/mol})$	Substance	$\Delta H_{\mathrm{f}}^{\circ}(\mathrm{kJ/mol})$
$\overline{\mathrm{Ag}(s)}$	0	$H_2O_2(l)$	-187.6
AgCl(s)	-127.0	Hg(l)	0
Al(s)	0	$I_2(s)$	0
$Al_2O_3(s)$	-1669.8	HI(g)	25.9
$\mathrm{Br}_2(l)$	0	Mg(s)	0
HBr(g)	-36.2	MgO(s)	-601.8
C(graphite)	0	$MgCO_3(s)$	-1112.9
C(diamond)	1.90	$N_2(g)$	0
CO(g)	-110.5	$NH_3(g)$	-46.3
$CO_2(g)$	-393.5	NO(g)	90.4
Ca(s)	0	$NO_2(g)$	33.85
CaO(s)	-635.6	$N_2O(g)$	81.56
$CaCO_3(s)$	-1206.9	$N_2O_4(g)$	9.66
$\text{Cl}_2(g)$	0	O(g)	249.4
HCl(g)	-92.3	$O_2(g)$	0
Cu(s)	0	$O_3(g)$	142.2
CuO(s)	-155.2	S(rhombic)	0
$F_2(g)$	0	S(monoclinic)	0.30
HF(g)	-271.6	$SO_2(g)$	-296.1
H(g)	218.2	$SO_3(g)$	-395.2
$H_2(g)$	0	$H_2S(g)$	-20.15
$H_2O(g)$	-241.8	Zn(s)	0
$H_2O(l)$	-285.8	ZnO(s)	-348.0

A entalpia de reação padrão (ΔH^0_{rxn}) é a entalpia de uma reação realizada a 1 atm.

$$aA + bB \longrightarrow cC + dD$$

$$\Delta H_{\text{rxn}}^{0} = \left[c\Delta H_{\text{f}}^{0} \left(C \right) + d\Delta H_{\text{f}}^{0} \left(D \right) \right] - \left[a\Delta H_{\text{f}}^{0} \left(A \right) + b\Delta H_{\text{f}}^{0} \left(B \right) \right]$$

$$\Delta H_{\text{rxn}}^0 = \sum n \Delta H_f^0 \text{ (produtos)} - \sum m \Delta H_f^0 \text{ (reagentes)}$$

Lei de Hess: Quando os reagentes são convertidos em produtos, a variação da entalpia é a mesma se a reação tem lugar num único passo ou numa série de etapas.

(Entalpia é uma função de estado. Não importa como se vai chegar lá, apenas quando começa e termina.)

52

Química em ação: Defesa do Escaravelho Bombardeiro

$$C_6H_4(OH)_2(aq) + H_2O_2(aq) \longrightarrow C_6H_4O_2(aq) + 2H_2O(l) \Delta H^0 = ?$$

$$C_6H_4(OH)_2 (aq) \longrightarrow C_6H_4O_2 (aq) + H_2 (g) \Delta H^0 = 177 \text{ kJ/mol}$$

$$H_2O_2(aq) \longrightarrow H_2O(l) + \frac{1}{2}O_2(g) \Delta H^0 = -94,6 \text{ kJ/mol}$$

$$H_2(g) + \frac{1}{2} O_2(g) \longrightarrow H_2O(I) \Delta H^0 = -286 \text{ kJ/mol}$$

©Courtesy of T. Eisner and Daniel Aneshansley/Cornell Universit

C (grafite) +
$$1/2O_2(g)$$
 \longrightarrow CO (g)
CO (g) + $1/2O_2(g)$ \longrightarrow CO₂ (g)
C (grafite) + O₂ (g) \longrightarrow CO₂ (g)

Calcule a entalpia de formação do acetileno (C₂H₂) a partir dos seus elementos:

$$2C(graphite) + H_2(g) \longrightarrow C_2H_2(g)$$

As equações para cada etapa, assim como as correspondentes modificações são entalpia

(a)
$$C(graphite) + O_2(g) \longrightarrow CO_2(g)$$
 $\Delta H_{rxn}^{\circ} = -393.5 \text{ kJ/mol}$

(b)
$$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(I)$$
 $\Delta H_{rxn}^{\circ} = -285.8 \text{ kJ/mol}$

(c)
$$2C_2H_2(g)+5O_2(g) \longrightarrow 4CO_2(g)+2H_2O(I)$$
 $\Delta H_{rxn}^{\circ} = -2598.8 \text{ kJ/mol}$

Estratégia O nosso objetivo aqui é para calcular a variação de entalpia para a formação do C_2H_2 a partir dos seus elementos C e H_2 . A reação não ocorre diretamente, no entanto, por isso, tem de utilizar uma via indireta utilizando a informação dada pelas equações (a), (b), e (c).

Solução Olhando para a síntese do C₂H₂, que necessita de 2 moles de grafite como reagente. Então, nós multiplicamos a equação (a) por 2 para obter:

(d)
$$2C(graphite) + 2O_2(g) \longrightarrow 2CO_2(g)$$
 $\Delta H_{rxn}^{\circ} = 2(-393.5 \text{ kJ/mol})$
= -787.0 kJ/mol

Em seguida, temos um mol de H_2 como reagente e isso é fornecido pela Equação (b). Por último, é necessário 1 mole de C_2H_2 como produto.

 $2C(graphite) + H_2(g) \longrightarrow C_2H_2(g)$

A equação (c) tem 2 moles de C₂H₂ como reagente para isso precisamos de inverter a equação e dividi-la por 2:

(e)
$$2CO_2(g) + H_2O(I) \longrightarrow C_2H_2(g) + \frac{5}{2}O_2(g)$$
 $\Delta H_{\text{rxn}}^{\circ} = \frac{1}{2}(2598.8 \text{ kJ/mol})$
= 1299.4 kJ/mol

Adicionando as equações (d), (b) e (e) juntando, ficamos

$$2C(\text{graphite}) + 2O_2(g) \longrightarrow 2CO_2(g) \qquad \Delta H_{\text{rxn}}^{\circ} = -787.0 \text{ kJ/mol}$$

$$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(I) \qquad \Delta H_{\text{rxn}}^{\circ} = -285.8 \text{ kJ/mol}$$

$$2CO_2(g) + H_2O(I) \longrightarrow C_2H_2(g) + \frac{5}{2}O_2(g) \qquad \Delta H_{\text{rxn}}^{\circ} = 1299.4 \text{ kJ/mol}$$

 $\Delta H_{ryn}^{\circ} = 226.6 \text{ kJ/mol}$

Portanto,

$$\Delta H_{\rm f}^{\circ} = 226.6 \text{ kJ/mol}$$

Este valor significa que, quando uma mole de C_2H_2 é sintetizada a partir de 2 moles de C (grafite) e 1 mole de H_2 , são absorvidos pelo sistema de reação 226,6 kJ de calor a partir da vizinhança. Assim, este é um processo endotérmico.

A reação termite envolve alumínio e óxido de ferro (III)

$$2AI(s) + Fe_2O_3(s) \longrightarrow AI_2O_3(s) + 2Fe(I)$$

Esta reação é altamente exotérmica, e o ferro líquido formado é usado para soldar metais.

Calcule o calor libertado em quilojoules por grama de Al que reagiu com Fe_2O_3 . $O_{\Delta H_f}^{\circ}$ para o Fe(I) é 12,40 kJ/mol.

O ferro fundido formado numa reação termite é derramado num molde entre as extremidades de dois carris da ferrovia. No arrefecimento, os carris ficam soldados.

Estratégia

A entalpia de reação é a diferença entre a soma das entalpias dos produtos bem como a soma das entalpias dos reagentes.

A entalpia de cada espécie (reagente ou produto) é dada pelos seus coeficientes estequiométricos da entalpia de formação das espécies.

Solução Usando o valor de ΔH_f° para o Fe(*I*) e outros valores de ΔH_f° no Apêndice 3 e a Equação (6.18), escrevemos

$$\Delta H_{\text{rxn}}^{\circ} = \left[\Delta H_{\text{f}}^{\circ} \left(\text{Al}_{2} \text{O}_{3} \right) + 2\Delta H_{\text{f}}^{\circ} \left(\text{Fe} \right) \right] - \left[2\Delta H_{\text{f}}^{\circ} \left(\text{Al} \right) + \Delta H_{\text{f}}^{\circ} \left(\text{Fe}_{2} \text{O}_{3} \right) \right]$$

$$= \left[\left(-1669.8 \text{ kJ/mol} \right) + 2\left(12.40 \text{ kJ/mol} \right) \right] - \left[2\left(0 \right) + \left(-822.2 \text{ kJ/mol} \right) \right]$$

$$= -822.8 \text{ kJ/mol}$$

Esta é a quantidade de calor libertado por 2 moles de Al que reagiu. Usamos a seguinte proporção

para converter em kJ/g de Al.

A massa molar do Al é 26,98 g, então

heat released per gram of AI =
$$\frac{-822.8 \text{ kJ}}{2 \text{ mol AI}} \times \frac{1 \text{ mol AI}}{26.98 \text{ g AI}}$$

= 15.25 kJ/g

Verificar É o sinal negativo consistente com a natureza exotérmica da reação? Como verificação rápida, vemos que 2 moles de Al pesam cerca de 54 g e emitem cerca de 823 kJ de calor quando reagem com Fe₂O₃. Assim, o calor emitido por grama de Al que reagiu é aproximadamente -830 kJ/54 g ou -15,4 kJ / g.

A *entalpia de solução* (ΔH_{soln}) é o calor gerado ou absorvido quando uma certa quantidade de soluto se dissolve numa certa quantidade de solvente.

$$\Delta H_{\text{soln}} = H_{\text{soln}} - H_{\text{componentes}}$$

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 6.5				
Heats of Solution of Some Ionic Compounds				
Compound	ΔH _{soln} (kJ/mol)			
LiCl	-37.1			
CaCl ₂	-82.8			
NaCl	4.0			
KC1	17.2			
NH ₄ Cl	15.2			
NH_4NO_3	26.6			

O Processo Solução para NaCl

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Hydrated Na⁺ and Cl⁻ ions

 $\Delta H_{\text{soln}} = \text{Passo 1 + Passo 2} = 788 - 784 = 4 \text{ kJ/mol}$