

规约算法

Hui Liu Email: hui.sc.liu@gmail.com

Reduction #3: Sequential Accesses

Reduction #4: Read two elements and do the first step

Original: Each thread reads one element

```
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
__syncthreads();
```

Read two and do the first reduction step:

```
// each thread loads two elements from global to shared mem
// end performs the first step of the reduction
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x* blockDim.x * 2 + threadldx.x;
sdata[tid] = g_idata[i] + g_idata[i + blockDim.x];
__syncthreads();
```

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing non-divergent branching	3.456 ms	4.854 GB/s	2.33x	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x
Kernel 4: first step during global load	0.965 ms	17.377 GB/s	1.78x	8.34x

THANK YOU