lineare Abbildung

V, W K-Vektorräume

Eine Abbildung $f: v \to w$ heißt Homomorphismus

falls gilt: $\forall \lambda \in K \ \forall v, w \in V$:

$$\left. \begin{array}{rcl} f(\lambda v) & = & \lambda f(v) \\ f(v+w) & = & f(v)+f(w) \end{array} \right\} \Leftrightarrow f(\lambda v+w) = \lambda f(v)+f(w)$$

- $f: v \to w$ linear, $f: w \to u$ linear $\Rightarrow g \circ f$ linear
- $f: v \to w \text{ linear } \Rightarrow f(0) = 0$
- $f: v \to w$ linear und bijektiv $\Rightarrow f^{-1}: w \to v$

Bild und Kern

 $f:V\to W$ linear.

Dimensionsformel

 $f: v \to w$ linear

$$dim(V) = def(f) + rg(f)$$

$$f$$
 injektiv $\Leftrightarrow ker(f) = \{0\}$

f injektiv $\Leftrightarrow f$ surjektiv $\Leftrightarrow f$ bijektiv

Koordinatenvektoren

V endlich dimensionaler K-Vektorraum mit geordneter Basis $B=(v_1,\ldots,v_n)$ $v\in V\Rightarrow \exists_1$ Darstellung

$$v = \underbrace{\lambda_1 v_1 + \ldots + \lambda_n v_n}_{v_1, \ldots, v_n} \to_B v = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$