

الامتحان الوطني الموحد للبكالوريا الدورة العادية 2012 الموضوع

البرطنتيسية	
لتقويم والامتحاثات	المركز الوطني ل

7	المعامل	الفيزياء والكيمياء الفيزياء والكيمياء	المادة ٠
3	مدة الإنجاز	شعبة العلوم التجريبية مسلك العلوم الفيزيائية	الشعب(ة) أو المسلك

يسمح باستعمال الآلة الحاسبة العلمية غير القابلة للبرمجة تعطى التعابير الحرفية قبل التطبيقات العددية

يتضمن الموضوع أربعة تمارين: تمرين في الكيمياء وثلاثة تمارين في الفيزياء

الكيمياء: (7 نقط)

- ♦ تفاعل حمض الإيثانويك مع الأمونياك ومع كحول.
 - ♦ دراسة العمود نحاس زنك.

الفيزياء: (13 نقطة)

- ♦ الفيزياء النووية (3 نقط): التأريخ بواسطة الأورانيوم الرصاص.
- ♦ الكهرباء (4,5 نقط): تحديد مميزتي وشيعة ودراسة التذبذبات الحرة في دارة RLC متو الية.
 - ♦ الميكانيك (5,5 نقط): دراسة سقوط جسم صلب في سائل لزج.

سلم التثقيط

0,5

0,5

0.5

1

الكيمياء (7 نقط)

الجزءان مستقلان

الجزء الأول:

يستعمل حمض الإيثانويك ذو الصيغة الإجمالية CH3COOH في تعليب اللحوم والأسماك وتصنيع الكثير من المواد العطرية والمذيبات و دباغة الجلود وصناعة النسيج...

يتناول هذا الجزء دراسة تفاعل حمض الإيثانويك مع الأمونياك NH3 ودراسة تفاعل نفس الحمض مع اللينالول وهو كحول نرمز له بالصيغة ROH .

المعطيات

- ثابتة الحمضية للمز دوجة (CH3COOH/CH3COO) . وثابتة الحمضية للمز دوجة
- . $pK_{A2} = 9.2$: (NH_4^+/NH_3) : ثابتة الحمضية للمز دوجة
- . $M(ROH) = 154 \text{ g.mol}^{-1}$: ROH الكتلة المولية للكحول
- . $M(E) = 196 \text{ g.mol}^{-1}$: E الكتلة المولية للإستر

1- دراسة تفاعل حمض الإيثانويك مع الأمونياك

نحضر خليطا (S) حجمه V بمزج $n_1 = 10^{-3} \text{mol}$ من حمض الإيثانويك و $n_2 = 10^{-3} \text{mol}$ من الأمونياك في الماء المقطر ، فيحصل تحول كيميائي ننمذجه بالمعادلة الكيميائية التالية :

 $CH_{3}COOH_{(aq)} \quad + \quad NH_{3(aq)} \quad \xrightarrow{\frac{1}{2}} \quad CH_{3}COO_{(aq)} \quad + \quad NH_{4}^{}_{(aq)}$

- 1.1- أنشئ الجدول الوصفي لنطور هذا التفاعل.
- يمته. وجد تعبير خارج التفاعل عند التوازن $Q_{r,eq}$ بدلالة pK_{A2} و pK_{A2} ثم أحسب قيمته.
 - ا التحول كلي au وتحقق أن التحول كلي . au

2- دراسة تفاعل حمض الإيثانويك مع الكحول ROH

لتحضير إستر E (إيثانوات الليناليل)، نسخن بالارتداد خليطا متساوي المولات مكونا من حمض الإيثانويك والكحول ROH بوجود حفاز ملائم.

- 2.1- ما فائدة التسخين بالارتداد ؟
- 2.2- اكتب المعادلة الكيميائية المنمذجة للتحول الكيميائي الحاصل بين حمض الإيثانويك والكحول ROH.
 - $m_{_A} = 38,5 g$ نتكونت عند نهاية التفاعل من الكتلة من الكتلة التفاعل الكحول الكحول التفاعل التفاع
 - . E للإستر $m_{\scriptscriptstyle E}=2g$ الكتلة
 - 2.3.1- أوجد المردود r لهذا التفاعل.
 - 0,5 | 2.3.2- افترح طريقتين مختلفتين تمكّنان من الرفع من مردود هذا التفاعل.

الجزء الثاني: دراسة العمود نحاس- زنك

بجرة الحين التامن عشر ، وذلك تم المالي من طرف العالم فولطا Volta في نهاية القرن الثامن عشر ، وذلك باستعمال النحاس والزنك وورق مبلل بالماء المالح؛ منذ ذلك الحين تم تصنيع وتطوير أنواع مختلفة من الأعمدة الكهركيميائية .

نقترح ، في هذا الجزء، دراسة مبسطة للعمود نحاس - زنك .

الامتحان الوطني الموحد للبكالوريا -الدورة العادية كـ2012 - الموضوع - مادة: الفيزياء والكيمياء - شعبة العلوم التجريبية مسلك العلوم الفيزيائية

ننجز العمود المُكون من المزدوجتين $\operatorname{Cu}_{(aq)}^{2+}/\operatorname{Cu}_{(s)}$ و $\operatorname{Cu}_{(aq)}^{2+}/\operatorname{Cu}_{(s)}$ و $\operatorname{Cu}_{(aq)}^{2+}/\operatorname{Cu}_{(aq)}$ المخرود النحاس في الحجم $\operatorname{Cu}_{(aq)}^{2+}+\operatorname{SO}_{(aq)}^{2-}$ النحاس في الحجم $\operatorname{Cu}_{(aq)}^{2+}+\operatorname{SO}_{(aq)}^{2-}+\operatorname{SO}_{(aq)}^{2-}=\operatorname{ID}_{(aq)}$

 $Zn_{(s)} + Cu_{(aq)}^{2+} \xrightarrow{\frac{1}{2}} Zn_{(aq)}^{2+} + Cu_{(s)}$: it is it.

- $K = 5.10^{36}$: ثابتة التوازن المقرونة بالتحول الكيميائي المدروس هي
 - $F = 9,65.10^4 \ C.mol^{-1}$: ثابتة فرادي
- 1- حدد ، معللا جوابك ، منحى التطور التلقائي للمجموعة الكيميائية المكوِّنة للعمود .
 - 2- مثل التبيانة الاصطلاحية للعمود المدروس.
- Δt_{\max} المدة الزمنية Δt_{\max} المدة الذارة تيار كهربائي شدته ثابتة $I=75\,mA$ خلال اشتغال العمود؛ أوجد تعبير المدة الزمنية القصوى لاشتغال العمود بدلالة $[Cu^{2+}_{(aq)}]_i$ و V و

الفيزياء (13 نقطة)

الفيزياء النووية (3 نقط):

لتأريخ أو تتبع تطور بعض الظواهر الطبيعية ، يلجأ العلماء إلى طرائق وتقنيات مختلفة تعتمد اساسا على قانون التناقص الإشعاعي.

من بين هذه التقنيات تقنية التأريخ بواسطة الأورانيوم - الرصاص .

المعطيات:

0,5

0,5

-

- $m(^{238}U) = 238,00031 u$: 238 عَلَمْ نُواةَ الأورانيوم
- $.m(^{206}Pb) = 205,92949 u$: 206 ألرصاص كتلة نواة الرصاص :
 - $m_p = 1,00728 u$: ختلة البروتون :
 - $m_n = 1,00866 u$: ختلة النوترون :
 - $-1 \, u = 931,5 \, \text{MeV.c}^{-2}$: ناكتلة الذرية :
 - . $M(^{238}U) = 238 g.mol^{-1}$: 238 الكتلة المولية للأورانيوم : 238
- . $M(^{206}Pb) = 206g.mol^{-1}$: 206 الكتلة المولية للرصاص
- $\xi(Pb) = 7.87 \, MeV \, / \, nucleon$: 206 الربط بالنسبة لنوية الرصاص : 206 الربط بالنسبة النوية الرصاص
 - . $t_{1/2} = 4,5.10^9 ans$: 238 عمر النصف لعنصر الأورانيوم

lpha تتحول نويدة الأورانيوم 238 الإشعاعية النشاط إلى نويدة الرصاص 206 عبر سلسلة متتالية من إشعاعات وإشعاعات eta.

 $^{238}_{92}$ U ightarrow $^{206}_{82}$ Pb + $x_{-1}^{}e$ + $y_{2}^{}$ He : ننمذج هذه التحولاتُ النووية بالمعادلة الحصيلة

$^{238}_{92}U$ دراسة نواة الأورانيوم $^{238}_{92}$ - 1

- 1.1- بتطبيق قانوني الانحفاظ ، حدد كل من العددين الصحيحين x و y المشار إليهما في المعادلة الحصيلة.
 - 1.2- أعط تركيب نواة الأورانيوم 238.
 - ^{238}U النواة الربط بالنسبة لنوية ^{238}U ثم تحقق أن نواة ^{206}Pb أكثر استقرارا من النواة ^{238}U .

0,5

0,5

2- تاريخ صخرة معدنية بواسطة الأورانيوم - الرصاص:

نجد الرصاص والأورانيوم بنسب مختلفة في الصخور المعدنية حسب تاريخ تكونها .

نعتبر أن تواجد الرصاص في بعض الصخور المعدنية ينتج فقط عن التفتت التلقائي للأورانيوم 238 خلال الزمن. نتوفر على عينة من صخرة معدنية تحتوي عند لحظة تكونها ، التي نعتبرها أصلا للتواريخ (t=0) ، على عدد من نوى الأورانيوم U^{238} .

تحتوي هذه العينة المعدنية ، عند لحظة t ، على الكتلة $m_{\rm U}(t)$ = 10 من الأور انيوم $m_{\rm pb}(t)$ من الرصاص $m_{\rm pb}(t)$.

.
$$t = \frac{t_{1/2}}{\ln 2} . \ln \left(1 + \frac{m_{pb}(t).M(^{238}U)}{m_{H}(t).M(^{206}Pb)} \right)$$
 عمر الصخرة المعدنية هو: 0,75

2.2 احسب t بالسنة .

الكهرباء (4,5 نقط) :

في إطار إنجاز مشروع علمي ، طالبت استاذة موطرة بنادي علمي مجموعة من التلاميذ أن يتحققوا من معامل التحريض L و المقاومة r لوشيعة (b) ومن مدى تأثير هذه المقاومة على الطاقة الكهربائية الكلية لدارة متوالية RLC حرة .

الجزء الأول: استجابة ثنائي القطب RL لرتبة توتر صاعدة أنجزت المجموعة التركيب الممثل في الشكل 1 والمكوّن من:

- الوشيعة (b) ؛
- $R = 92\Omega$ موصل أومى مقاومته
- مولد قوته الكهر محركة E = 12 V ومقاومته الداخلية مهملة ؛
 - قاطع التيار K.

رم القل على ورقة التحرير الشكل 1 ومثل عليه التوتر u_R بين مربطي الموصل الأومي والتوتر u_b بين مربطي الوشيعة في الاصطلاح مستقبل . 2- استعان التلاميذ بعدة معلوماتية ملائمة ، فحصلوا تجريبيا على منحنى الشكل2 الذي يمثل تغيرات شدة التيار

- $i\left(t
 ight)$. $i\left(t
 ight)$ أثبت المعادلة التفاضلية التي تحققها شدة التيار 0,5
- 0,5 من المعادلة التفاضلية هو $i(t) = A(1 e^{-\frac{t}{\tau}})$ ؛ أوجد تعبيري الثابتتين A و τ بدلالة برامترات الدارة. L و r حدد قيمتى r و r .

سائل لزج

الامتحان الوطني الموحد للبكالوريا -الدورة العادية كلاك — الموضوع - مادة: الفيزياء والكيمياء — شعبة العلوم التجريبية مسلك العلوم القيزيائية

الجزء الثاني: تأثير المقاومة الكهربانية على الطاقة الكلية لدارة متوالية RLC حرة

للتعرف على تأثير المقاومة r للوشيعة (b) على الطاقة الكلية لدارة متوالية RLC حرة ، ركّب التلاميذ ، عند لحظة نعتبرها أصلا للتواريخ ، مكثفا سعته C مشحونا كليا مع هذه الوشيعة كما هو مبين في الشكل 3. بواسطة عدة معلوماتية ملائمة ، تمت معاينة التغيرات الممثلة في الشكل 4 لكل من الطاقة الكهربائية المخزونة في المكثف والطاقة الكهربائية المخزونة في المكثف والطاقة الكهربائية المخزونة في المكثف والطاقة الكهربائية المخزونة في المكثف على الوشيعة بدلالة الزمن.

1- أثبت المعادلة التفاضلية التي تحققها الشحنة q(t) للمكثف.

(b) . حدد ، من بين المنحنيين (أ) و (ب) ، المنحنى الموافق للطاقة الكهربائية المخزونة في الوشيعة (b) . E_T . E_T ويمثل مجموع الطاقة الكهربائية المخزونة في الدارة عند لحظة t بالرمز E_T ويمثل مجموع الطاقة الكهربائية المخزونة في الوشيعة عند نفس اللحظة t .

 $\frac{dq}{dt}$ و Q و C بدلالة C و الطاقة الكلية E_{T} بدلالة C و الطاقة الكلية C

. 3.2- بيّن أن الطاقة الكلية E_{T} تتناقص مع الزمن حسب العلاقة $dE_{T}=-\mathrm{ri}^{2}\mathrm{dt}$ ثم فسّر سبب هذا التناقص .

. $t_2=3ms$ و $t_1=2ms$ و الدارة بين اللحظتين $t_1=2ms$ و المبددة في الدارة بين اللحظتين

الميكانيك (5,5 نقط):

0,25

تُمكّن دُراسة سقوط جسم صلب متجانس في سائل لزج من تحديد بعض المقادير الحركية ولزوجة السائل المستعمل.

نملأ أنبوبا مدرجا بسائل لزج وشفاف كتلته الحجمية ρ ثم نُسقط فيه كرية متجانسة كتلتها m ومركز قصورها θ بدون سرعة بدئية عند اللحظة t=0 ندرس حركة θ بالنسبة لمعلم أرضى نعتبره غاليليا .

نمعلم موضع G عند لحظة f بالأنسوب Z على محور G رأسي موجّه نحو الأسفل (الشكل I).

نعتبر أن موضع G منطبق مع أصل المحور OZ عند أصل التواريخ وأن دافعة أرخميدس F غير مهملة بالنسبة لباقي القوى المطبقة على الكرية.

الشكل 1 الشكل \rightarrow \rightarrow \rightarrow ننمذج تأثیر السائل علی الكریة أثناء الحركة بقوة احتكاك $f=-kv_G$ متجهة سرعة g عند لحظة g معامل ثابت موجب .

المعطيات:

0, 5

1

0,25

 $r = 6,00.10^{-3} m$: شعاع الكرية

. $m=4,10.10^{-3} kg$: عتلة الكرية

نذكر أن شدة دافعة أرخميدس تساوي شدة وزن الحجم المزاح للسائل.

 $\frac{dv_G}{dt} + A.v_G = B$ الشكل على الشكل و المعادلة التفاضلية لحركة و تكتب على الشكل الشكل $V_G = B$ المحدّدا تعبير $V_G = B$ بدلالة شدة الثقالة و $V_G = B$ و

. حَدَقَقَ أَن التّعبير $au = rac{1}{A}$ الزمن المميز للحركة $v_G(t) = rac{B}{A} (1 - e^{-rac{t}{ au}})$ الزمن المميز للحركة . 2- تحقق أن التّعبير

. B و A المركز قصور الكرية بدلالة V_{lim} المركز قصور الكرية بدلالة A

4- نحصل بو اسطة عدة معلوماتية ملائمة على منحنى الشكل 2 ، الذي يمثل تغير السرعة v_G بدلالة الزمن ؛

au حدد مبیانیا قیمتی $V_{
m lim}$ و au

k أوجد قيمة المعامل k.

. $k=6\pi\eta r$: يتغير المعامل k مع شعاع الكرية و معامل اللزوجة η للسائل وفق العلاقة التالية $k=6\pi\eta r$

حدد قيمة η للسائل المستعمل في هذه التجربة .

7- تكتب المعادلة التفاضلية لحركة $\frac{dv_G}{dt} = 7,57 - 5$ $v_G : 0$ كالتالي $v_G : 0$ كالتالي $v_G : 0$ كالتالي $v_G : 0$ كالتالي $v_G : 0$ أوجد قيمتي $v_G : 0$ و $v_G : 0$ كالتالي $v_G : 0$ كالتالي $v_G : 0$ كالتالي $v_G : 0$ كالتالي $v_G : 0$ كالتالي أوجد قيمتي $v_G : 0$ كالتالي أوجد قيمتي أو كالتالي أو

t(s)	v (m.s ⁻¹)	a (m.s ⁻²)
0	0	7,57
0,033	0,25	a_1
0,066	V ₂	5,27

annamanaman annaman an