

## Optimizing the corrected alignment procedure

Jim Pivarski

Texas A&M University

20 November, 2007



#### In this talk

- 1. New three-pass procedure
- Optimizing Alignment Parameter Errors (APEs) in a 1-dimensional setting
- Optimizing degrees of freedom in a 6-dof setting, with application to TeV muons

This is a work-in-progress talk: how things are going, rather than final results





# Why not align everything at once?

Problem: tracks emerge from calorimeter/solenoid with more uncertainty than they do when passing through the iron between stations, so we get a poor alignment if we let everything float at once



Solution: align the outer stations only after the inner stations are well-placed: at least two passes





# The current procedure

1. Align muon barrel station 1 (MB1) and endcap stations ME1/1 and ME1/2 with 2 cm APEs (loose), all other muon stations have 5 cm (very loose).

At this point, the inner stations are aligned to 400–500  $\mu$ m.)

2. Align all other stations (MB1, ME1/1, and ME1/2 are now fixed) with 5 mm APEs.

At this point, the outer stations are aligned to 400–800  $\mu$ m, with MB4 and ME4/1 having the worst resolution: 1.5 cm. Chambers probably have better relative alignments than global alignments.

3. Try to align groups of internally-aligned chambers to the tracker by re-aligning everything with 500  $\mu$ m APEs.



## How APEs were optimized

Start with artificial misalignments: all chambers in a station (MB1 here) are moved 1 cm, chambers in other stations are Gaussian-distributed.

Each chamber is realigned independently: plot mean and stdev





### Alignment results: general 1-dimensional

Now we do more a realistic alignment with all chambers randomly distributed  $\pm 5$  mm, but still 1-dimensional (local x).

Alignment resolution of x in microns (stages 1&2 only): MB4 MB1 430 MB2 400 MB3 700 1174 ME1/2 380 ME1/3 340 ME2/2 510 ME3/2 730 ME1/1 520 ME2/1ME3/1 ME4/1620 850 1030

Alignment resolution if inner chambers were perfectly aligned MB1 430 MB2 70 MB3 120 MB4 160 ME1/2 ME1/3 190 ME2/2 ME3/2 380 200 230 ME1/1520 ME2/1 270 ME3/1 120 ME4/1130

(There's still a significant problem with propagating errors through the system, mostly at the third step: maybe I should revisit the idea of one pass for each station...)

Jim Pivarski





## More general misalignments:

- ▶ Misalign chambers uniformly  $\pm 5$  mm,  $\pm 5$  mrad in all directions (very messy starting point!)
- No wheel/disk misalignments yet (I expect that to be easy)
- Assume that the optimal 1-dof APEs optimize the 6-dof problem
- Allow various parameters to float
  - ▶ MB1–3 (good y measurement): drop all combinations of z and  $\phi_x$
  - ▶ MB4 (no y measurement): certainly drop y and  $\phi_x$ , maybe drop z
  - ▶ ME (poor y measurement): probably drop z,  $\phi_x$ , and maybe even  $\phi_{\nu}$
- Determine alignment quality from TeV  $p_T$  resolution

N / I





MD1

#### What was allowed to float

NADA

2 TeV track resolutions through  $\eta$  ranges (in % of  $p_T$ )

NAC1 /2

Jim Pivarski

| IVID4              | IVI⊏                                                                                                                                                                                                                                                                         | barrei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MET/2                                                  | IVIE1/2                                                | INIET/T                                               |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
| ideal              | ideal                                                                                                                                                                                                                                                                        | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.9                                                    | 5.0                                                    | 5.9                                                   |
| $x\phi_y\phi_z$    | $xyz\phi_x\phi_y\phi_z$                                                                                                                                                                                                                                                      | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.1                                                    | 6.1                                                    | 6.7                                                   |
| $x.z.\phi_y\phi_z$ | $xyz\phi_x\phi_y\phi_z$                                                                                                                                                                                                                                                      | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.1                                                    | 6.1                                                    | 6.6                                                   |
| $x\phi_y\phi_z$    | $xyz\phi_x\phi_y\phi_z$                                                                                                                                                                                                                                                      | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.2                                                    | 6.0                                                    | 6.5                                                   |
| $x\phi_y\phi_z$    | $xyz\phi_x\phi_y\phi_z$                                                                                                                                                                                                                                                      | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.8                                                    | 6.2                                                    | 6.4                                                   |
| $x.z.\phi_y\phi_z$ | $xyz\phi_x\phi_y\phi_z$                                                                                                                                                                                                                                                      | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.8                                                    | 6.2                                                    | 6.2                                                   |
| $x\phi_y\phi_z$    | $xyz\phi_x\phi_y\phi_z$                                                                                                                                                                                                                                                      | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.8                                                    | 6.0                                                    | 6.2                                                   |
| $x.z.\phi_y\phi_z$ | $xyz\phi_x\phi_y\phi_z$                                                                                                                                                                                                                                                      | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.8                                                    | 6.0                                                    | 6.2                                                   |
| $x.z.\phi_y\phi_z$ | $xyz\phi_x\phi_y\phi_z$                                                                                                                                                                                                                                                      | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.8                                                    | 6.0                                                    | 6.2                                                   |
| $x.z.\phi_y\phi_z$ | $xy\phi_z$                                                                                                                                                                                                                                                                   | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.7                                                    | 6.0                                                    | 6.6                                                   |
| $x.z.\phi_y\phi_z$ | $xy\phi_y\phi_z$                                                                                                                                                                                                                                                             | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.7                                                    | 5.9                                                    | 6.5                                                   |
| $x.z.\phi_y\phi_z$ | $xy.\phi_x\phi_y\phi_z$                                                                                                                                                                                                                                                      | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.8                                                    | 5.9                                                    | 6.6                                                   |
|                    | $\begin{array}{c} x\phi_y\phi_z\\ x.z.\phi_y\phi_z\\ x\phi_y\phi_z\\ x\phi_y\phi_z\\ x.z.\phi_y\phi_z\\ x.z.\phi_y\phi_z\\ x.z.\phi_y\phi_z\\ x.z.\phi_y\phi_z\\ x.z.\phi_y\phi_z\\ x.z.\phi_y\phi_z\\ x.z.\phi_y\phi_z\\ x.z.\phi_y\phi_z\\ x.z.\phi_y\phi_z\\ \end{array}$ | $\begin{array}{c cccc} ideal & ideal \\ x\phi_y\phi_z & xyz\phi_x\phi_y\phi_z \\ x.z.\phi_y\phi_z & xyz\phi_x\phi_y\phi_z \\ x\phi_y\phi_z & xyz\phi_x\phi_y\phi_z \\ x\phi_y\phi_z & xyz\phi_x\phi_y\phi_z \\ x.z.\phi_y\phi_z & xy\phi_z \\ x.z.\phi_y\phi_z & xy\phi_z \\ x.z.\phi_y\phi_z & xy\phi_y\phi_z \end{array}$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Conclusion: it doesn't make much difference, but allowing more to float is slightly better.





### Results for best scenario (MB1-3 $xyz\phi_x\phi_y\phi_z$ MB4 $x.z.\phi_y\phi_z$ ME $xyz\phi_x\phi_y\phi_z$ )

#### Stages 1&2 only (mm and mrad):

|        | X    | y   |     | $\varphi_{X}$ | $\varphi_{\mathbf{y}}$ | $\varphi_{z}$ |
|--------|------|-----|-----|---------------|------------------------|---------------|
| barrel | 0.94 | 2.1 | 2.6 | 2.0           | 0.87                   | 0.78          |
| endcap | 0.91 | 3.5 | 4.0 | flat 5 mm     | 1.5                    | 1.2           |

Degree of freedom optimization

### Stage 3 (small APE align everything):

|        | X    | У   | Z   | $\phi_{X}$ | $\phi_{m{y}}$ | $\phi_{z}$ |
|--------|------|-----|-----|------------|---------------|------------|
| barrel | 0.81 | 2.0 | 2.4 | 2.0        | 0.70          | 0.63       |
| endcap | 0.85 | 3.5 | 4.0 | flat 5 mm  | 1.1           | 1.1        |

- ▶ Stage 3 does help in x and  $\phi_z$  (the most important parameters)
- Let's not align endcap z or  $\phi_x$ ; they're not really converging in  $10 \text{ pb}^{-1}$





# The Bottom Line!

Reconstructed 2 TeV Z' from scratch using the new alignments: this is our latest  $10 \text{ pb}^{-1}$  scenario





#### Comments on the bottom line



- Still much better than standard muon alignment scenario (which has about  $\frac{1}{2}$  the resolution of ideal)
- ▶ Standard scenario has 500  $\mu$ m chamber errors and 2–5 mm wheel/disk errors; our simulation had no wheel/disk misalignments
- ▶ Time to try wheel/disk alignments in the new procedure!
- ▶ The track-finding efficiency is 2% lower with misalignment
- Baseline track-finding efficiency is 94% (Dubna group)