

Computer Architecture Lecture 11: Parallel Processing and Multicore

Duy-Hieu Bui, PhD
AloT Laboratory

VNU Information Technology Institute
Email: hieubd@vnu.edu.vn
https://duyhieubui.github.io

Nội dung

- Môt số mô hình tổ chức đa CPU
 - SISD
 - SIMD
 - MISD
 - MIMD
- Kiến trúc hiệu năng cao: SMP và Cluster
- Mô hình tổ chức hệ thống máy tính đa lõi (multicores)
 - Core i7
 - ARM11 MPCore

12/12/2024

Xuan-Tu Tran & Duy-Hieu Bui

Y

Tổ chức đa chip CPU

- Single instruction, single data stream SISD
 - 1 CPU: một luồng lệnh và một luồng dữ liệu → một bộ nhớ
- Single instruction, multiple data stream SIMD
 - 1 CPU: một luồng lệnh, nhiều luồng dữ liệu: phục vụ các máy tính xử lý dữ liệu kiểu vector, array
- Multiple instruction, single data stream MISD
 - Nhiều CPU: nhiều luồng lệnh, một luồng dữ liệu → không được cài đặt
- · Multiple instruction, multiple data stream- MIMD
 - Nhiều CPU: nhiều luồng lệnh, nhiều luồng dữ liệu, được triển khai nhiều trong thực tế

12/12/2024

Xuan-Tu Tran & Duy-Hieu Bui

3

SISD và SIMD

• SISD CU IS PU OB MU

SIMD

12/12/2024

Xuan-Tu Tran & Duy-Hieu Bui

Symmetric Multiprocessors

- Hệ thống máy tính có những đặc trưng sau:
 - Hai hay nhiều bộ VXL giống nhau
 - Các bộ VXL chia sẻ chung MM và I/O
 - Thời gian truy cập bộ nhớ tương đương nhau đối với mỗi VXL
 - I/O được chia sẽ truy cập (cùng kênh hoặc khác kênh)
 - Các bộ VXL được kết nối riêng, bên trong
 - Các bộ VXL có cùng chức năng (cùng tập lệnh, là lý do chính của tên "symmetric")
 - Hệ thống được kiểm soát bởi OS: OS hỗ trợ tương tác giữa các bộ
 VXL

12/12/2024

Xuan-Tu Tran & Duy-Hieu Bui

a

Ưu điểm của SMP

- Performance
 - Tạo khả năng thực xử lý song song
- Availability
 - Các VXL thực hiện cùng chức năng → một VXL có lỗi thì hệ thống vẫn có thể hoạt đông
- Incremental growth
 - Hiệu năng có thể được cải thiện nếu bổ xung thêm VXL
- Scaling
 - Tạo lớp sản phẩm dựa trên số lượng VXL

12/12/2024

Xuan-Tu Tran & Duy-Hieu Bui

IBM zEnterprise System z196

- Processors
 - z196 chip: 5.2 GHz quad-core out-of-order CISC-based z/Architecture processor, maximum of 24 processors giving a total of 96 cores, 80 of which will be available to run the system's operating systems.
 - Number of cores available denoted by the model name (for example, the M15 has 15 cores).
 - Each core characterized as either a Central Processor (CP), Integrated Facility for Linux (IFL) processor, z Application Assist Processor (zAAP), z10 Integrated Information Processor (zIIP), or an Internal Coupling Facility (ICF) processor.
 - Also supports x86 or Power blades attached as a zEnterprise BladeCenter Extension (zBX).
- Memory: up to 3 TB of redundant array of independent memory (RAIM)

12/12/2024

Xuan-Tu Tran & Duy-Hieu Bui

Clusters

- Mục tiêu: tạo hệ thống tính toán hiệu năng cao (high performance), độ sẵn sàng cao (high availability) và thường phục vụ các ứng dụng phức tạp, quy mô lớn
- Tổ chức: nhóm (cụm) các máy tính (có thể là SMP, được gọi là node) kết nối với nhau tạo môi trường làm việc hợp nhất như một máy tính.
- Đặc điểm chính:
 - Absolute scalability
 - Incremental scalability
 - High availability
 - Superior price/performance

12/12/2024

Xuan-Tu Tran & Duy-Hieu Bui

Môi trường hợp nhất

- Quản lý lỗi
 - High availability
 - Fault tolerant
 - Failover: switching applications & data from failed system to alternative within cluster
 - Failback: restoration of applications and data to original system, after problem is fixed
- · Cân bằng tải
 - Incremental scalability
 - Automatically include new computers in scheduling
 - Middleware needs to recognise that processes may switch between machines
- Song song hoá
 - Cho phép thi hành song song trên các nodes của cluster

12/12/2024

Xuan-Tu Tran & Duy-Hieu Bui

Cluster Middleware

- · Unified image to user
 - Single system image
- · Single point of entry
- · Single file hierarchy
- Single control point
- · Single virtual networking
- · Single memory space
- Single job management system
- · Single user interface
- · Single I/O space
- · Single process space
- Checkpointing
- Process migration

12/12/2024

Xuan-Tu Tran & Duy-Hieu Bui

Y

Blade Servers

- · Hệ thống cài đặt thông dụng kiểu cluster
- Mô đun hoá các servers (được gọi là blade), tích hợp trong hệ thống tủ rack
 - Tiết kiệm không gian vật lý
 - Cải thiện việc cài đặt, vận hành, bảo trì hệ thống cluster
 - Mỗi blade hoạt động như một server (có processor, memory, disk)

12/12/2024

Xuan-Tu Tran & Duy-Hieu Bui

Cluster <> SMP

- Cả hai đều hỗ trợ kiến trúc đa VXL theo yêu cầu thực tiễn
- · SMP:
 - Dễ quản lý và kiểm soát hơn
 - Gần với hệ thống đơn VXL hơn
 - · Chỉ khác chính ở phần lập lịch
 - Không gian vật lý bé hớn
 - Tiêu thụ năng lượng ít hơn
- Clustering:
 - Superior incremental & absolute scalability
 - Superior availability
 - Redundancy

12/12/2024

Xuan-Tu Tran & Duy-Hieu Bui

21

Nonuniform Memory Access (NUMA)

- Alternative to SMP & clustering
- · Uniform memory access
 - All processors have access to all parts of memory
 - Using load & store
 - Access time to all regions of memory is the same
 - Access time to memory for different processors same
 - As used by SMP
- Nonuniform memory access
 - All processors have access to all parts of memory
 - Using load & store
 - Access time of processor differs depending on region of memory
 - Different processors access different regions of memory at different speeds
- · Cache coherent NUMA
 - Cache coherence is maintained among the caches of the various processors
 - Significantly different from SMP and clusters

12/12/2024

Xuan-Tu Tran & Duy-Hieu Bui

NUMA Pros & Cons

- Effective performance at higher levels of parallelism than SMP
- · No major software changes
- Performance can breakdown if too much access to remote memory
 - Can be avoided by:
 - L1 & L2 cache design reducing all memory access
 - Need good temporal locality of software
 - · Good spatial locality of software
 - Virtual memory management moving pages to nodes that are using them most
- Not transparent
 - Page allocation, process allocation and load balancing changes needed
- · Availability?

12/12/2024

Xuan-Tu Tran & Duy-Hieu Bui

Độ phức tạp ngày càng tăng

- Power requirements grow exponentially with chip density and clock frequency
 - Can use more chip area for cache
 - Smaller
 - Order of magnitude lower power requirements
- By 2015
 - 100 billion transistors on 300mm² die
 - Cache of 100MB
 - 1 billion transistors for logic
- Pollack's rule:
 - Performance is roughly proportional to square root of increase in complexity
 - · Double complexity gives 40% more performance
- · Multicore has potential for near-linear improvement
- Unlikely that one core can use all cache effectively

12/12/2024

Xuan-Tu Tran & Duy-Hieu Bui

Intel x86 Multicore Organization - Core Duo (1)

- 2006
- · Two x86 superscalar, shared L2 cache
- Dedicated L1 cache per core
 - 32KB instruction and 32KB data
- Thermal control unit per core
 - Manages chip heat dissipation
 - Maximize performance within constraints
 - Improved ergonomics
- Advanced Programmable Interrupt Controlled (APIC)
 - Inter-process interrupts between cores
 - Routes interrupts to appropriate core
 - Includes timer so OS can interrupt core

12/12/2024

Xuan-Tu Tran & Duy-Hieu Bui

Y

Intel x86 Multicore Organization - Core Duo (2)

- Power Management Logic
 - Monitors thermal conditions and CPU activity
 - Adjusts voltage and power consumption
 - Can switch individual logic subsystems
- · 2MB shared L2 cache
 - Dynamic allocation
 - MESI support for L1 caches
 - Extended to support multiple Core Duo in SMP
 - · L2 data shared between local cores or external
- Bus interface

12/12/2024

Xuan-Tu Tran & Duy-Hieu Bui

31

Intel x86 Multicore Organization - Core i7

- November 2008
- Four x86 SMT processors
- Dedicated L2, shared L3 cache
- Speculative pre-fetch for caches
- On chip DDR3 memory controller
 - Three 8 byte channels (192 bits) giving 32GB/s
 - No front side bus
- QuickPath Interconnection
 - Cache coherent point-to-point link
 - High speed communications between processor chips
 - 6.4G transfers per second, 16 bits per transfer
 - Dedicated bi-directional pairs
 - Total bandwidth 25.6GB/s

12/12/2024

Xuan-Tu Tran & Duy-Hieu Bui

Operating Parameters of AMD 5100K Heterogeneous Multicore Processor GPU CPU Clock frequency (GHz) 3.8 0.8 4 384 Cores FLOPS/core 8 2 **GFLOPS** 121.6 614.4 FLOPS = floating point operations per second FLOPS/core = number of parallel floating point operations that can be performed

Tổng kết

- Cần nắm vững bốn mô hình tổ chức đa CPU: SISD, SIMD, MISD và MIMD.
- Một số kiến trúc hệ thống tính toán hiệu năng cao điển hình : SMP và Cluster
- Khuynh hướng và những ưu điểm kiến trúc đa lõi (multicores)
 - Core i7
 - ARM11 MPCore

12/12/2024

Xuan-Tu Tran & Duy-Hieu Bui