Multiple Linear Regression and Interactions

EDS 222

Tamma Carleton Fall 2021

- No more assignments before the midterm
- Tuesday 10/26: Review. Please come with questions.

- No more assignments before the midterm
- Tuesday 10/26: Review. Please come with questions.
- Assignment #2: Grades posted. Focus on interpretation!

- No more assignments before the midterm
- Tuesday 10/26: Review. Please come with questions.
- Assignment #2: Grades posted. Focus on interpretation!
- Assignment #3: Grading TBD, answer key mid-week

- No more assignments before the midterm
- Tuesday 10/26: Review. Please come with questions.
- Assignment #2: Grades posted. Focus on interpretation!
- Assignment #3: Grading TBD, answer key mid-week
- Reminder: Office hours in the Pine Room (Bren Hall 3526)

Midterm Exam

Two parts:

Midterm Exam

Two parts:

Part 1: Short answer questions (~4)

- Focus on definitions of key concepts
- You should know key definitions (e.g., expectation/mean, median, variance, \mathbb{R}^2 , OLS slope and intercept formulas for simple linear regression)
- ullet You do not need to memorize math rules (e.g., $var(ax+b)=a^2var(x)$)
- Be able to interpret probability distributions, scatter plots, QQ-plots, boxplots

Midterm Exam

Two parts:

Part 2: Long answer questions (~2)

- Each question poses a data science problem and walks you through a set of analysis steps
- Very similar to assignments but focused on interpretation of existing code and output
- May include some minimal pseudo-coding

Interpreting multiple linear regression

"All else equal", parallel slopes model

Interpreting multiple linear regression

"All else equal", parallel slopes model

Omitted-variable bias

The challenge and some solutions

Interpreting multiple linear regression

"All else equal", parallel slopes model

Omitted-variable bias

The challenge and some solutions

Adjusted R^2

Correction to coefficient of determination

Interpreting multiple linear regression

"All else equal", parallel slopes model

Omitted-variable bias

The challenge and some solutions

Adjusted R^2

Correction to coefficient of determination

Interaction effects

Implementation and interpretation

Multiple linear regression

We're moving from **simple linear regression** (one outcome variable and one explanatory variable)

$$\mathbf{y}_i = \beta_0 + \beta_1 \mathbf{x}_i + u_i$$

We're moving from **simple linear regression** (one outcome variable and one explanatory variable)

$$\mathbf{y}_i = \beta_0 + \beta_1 \mathbf{x}_i + \mathbf{u}_i$$

to the land of **multiple linear regression** (one outcome variable and multiple explanatory variables)

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_k x_{ki} + u_i$$

We're moving from **simple linear regression** (one outcome variable and one explanatory variable)

$$\mathbf{y}_i = \beta_0 + \beta_1 \mathbf{x}_i + \mathbf{u}_i$$

to the land of **multiple linear regression** (one outcome variable and multiple explanatory variables)

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_k x_{ki} + u_i$$

Why?

We're moving from **simple linear regression** (one outcome variable and one explanatory variable)

$$y_i = \beta_0 + \beta_1 x_i + u_i$$

to the land of **multiple linear regression** (one outcome variable and multiple explanatory variables)

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_k x_{ki} + u_i$$

Why? We can better explain the variation in y, improve predictions, avoid omitted-variable bias (i.e., second assumption needed for unbiased OLS estimates), ...

Multiple linear regression...

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_k x_{ki} + u_i$$

Multiple linear regression...

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_k x_{ki} + u_i$$

Multiple linear regression...

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_k x_{ki} + u_i$$

... raises many questions:

ullet Which x's should I include? This is the problem of "model selection".

Multiple linear regression...

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_k x_{ki} + u_i$$

- Which x's should I include? This is the problem of "model selection".
- How does my interpretation of β_1 change?

Multiple linear regression...

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_k x_{ki} + u_i$$

- Which x's should I include? This is the problem of "model selection".
- How does my interpretation of β_1 change?
- What if my x's interact with each other? E.g., race and gender, temperature and rainfall.

Multiple linear regression...

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_k x_{ki} + u_i$$

- Which x's should I include? This is the problem of "model selection".
- How does my interpretation of β_1 change?
- What if my x's interact with each other? E.g., race and gender, temperature and rainfall.
- How do I measure model fit now?

Multiple linear regression...

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_k x_{ki} + u_i$$

... raises many questions:

- Which x's should I include? This is the problem of "model selection".
- How does my interpretation of β_1 change?
- What if my x's interact with each other? E.g., race and gender, temperature and rainfall.
- How do I measure model fit now?

We will dig into each of these here, and you will see these questions in other MEDS courses

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + u_i$$
 x_1 is continuous x_2 is categorical

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + u_i$$
 x_1 is continuous x_2 is categorical

The intercept and categorical variable x_2 control for the groups' means.

With groups' means removed:

 \hat{eta}_1 estimates the relationship between y and x_1 after controlling for x_2 .

Another way to think about it:

Suppose
$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+u_i$$

Suppose
$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+u_i$$

With **many** explanatory variables, we visualizing relationships means thinking about **hyperplanes**

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + \ldots + eta_k x_{ki} + u_i$$

Math notation looks very similar to simple linear regression, but conceptually and visually multiple regression is **very different**

Interpretation of coefficients

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\ldots+eta_kx_{ki}+u_i$$

Interpretation of coefficients

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\ldots+eta_kx_{ki}+u_i$$

• β_k tells us the change in y due to a one unit change in x_k when **all** other variables are held constant

Interpretation of coefficients

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\ldots+eta_kx_{ki}+u_i$$

- β_k tells us the change in y due to a one unit change in x_k when all other variables are held constant
- This is an "all else equal" interpretation

Interpretation of coefficients

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\ldots+eta_kx_{ki}+u_i$$

- β_k tells us the change in y due to a one unit change in x_k when all other variables are held constant
- This is an "all else equal" interpretation
- E.g., how much do wages increase with one more year of education, holding gender fixed?

Interpretation of coefficients

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\ldots+eta_kx_{ki}+u_i$$

- eta_k tells us the change in y due to a one unit change in x_k when all other variables are held constant
- This is an "all else equal" interpretation
- E.g., how much do wages increase with one more year of education, holding gender fixed?
- E.g., how much does ozone increase when temperature rises, holding NOx emissions fixed?

Tradeoffs

There are tradeoffs to consider as we add/remove variables:

Fewer variables

- ullet Generally explain less variation in y
- Provide simple interpretations and visualizations (parsimonious)
- May need to worry about omitted-variable bias

More variables

- More likely to find spurious relationships (statistically significant due to chance—does not reflect a true, population-level relationship)
- More difficult to interpret the model
- You may still miss important variables—still omitted-variable bias

You will study this in much more depth in EDS 241, but here's a primer.

Omitted-variable bias (OVB) arises when we omit a variable that

- 1. affects our outcome variable y
- 2. correlates with an explanatory variable x_j

As it's name suggests, this situation leads to bias in our estimate of β_j . In particular, it violates Assumption 2 of OLS (see week 03 slides).

You will study this in much more depth in EDS 241, but here's a primer.

Omitted-variable bias (OVB) arises when we omit a variable that

- 1. affects our outcome variable y
- 2. correlates with an explanatory variable x_j

As it's name suggests, this situation leads to bias in our estimate of β_j . In particular, it violates Assumption 2 of OLS (see week 03 slides).

Note: OVB Is not exclusive to multiple linear regression, but it does require multiple variables affect y.

Example

Let's imagine a simple model for the amount individual i gets paid

$$\mathrm{Pay}_i = eta_0 + eta_1 \mathrm{School}_i + eta_2 \mathrm{Male}_i + u_i$$

where

- School_i gives i's years of schooling
- $Male_i$ denotes an indicator variable for whether individual i is male.

thus

- β_1 : the returns to an additional year of schooling (ceteris paribus)
- β_2 : the premium for being male (*ceteris paribus*)

 If $\beta_2 > 0$, then there is discrimination against women—receiving less pay based upon gender.

Example, continued: $\mathrm{Pay}_i = 20 + 0.5 imes \mathrm{School}_i + 10 imes \mathrm{Male}_i + u_i$

The relationship between pay and schooling.

Schooling

Biased regression estimate: $\widehat{\mathrm{Pay}}_i = 32.2 + -1.1 imes \mathrm{School}_i$

Recalling the omitted variable: Gender (**female** and **male**)

Recalling the omitted variable: Gender (**female** and **male**)

Unbiased regression estimate: $\widehat{\mathrm{Pay}}_i = 20.3 + 0.4 imes \mathrm{School}_i + 10.2 imes \mathrm{Male}_i$

Adjusted R^2

Our linearity assumption requires that **parameters enter linearly** (*i.e.*, the β_k multiplied by variables)

We allow nonlinear relationships between y and the explanatory variables x.

Our linearity assumption requires that **parameters enter linearly** (*i.e.*, the β_k multiplied by variables)

We allow nonlinear relationships between y and the explanatory variables x.

Examples

• Polynomials and interactions:

$$y_{i} = eta_{0} + eta_{1}x_{1} + eta_{2}x_{1}^{2} + eta_{3}x_{2} + eta_{4}x_{2}^{2} + eta_{5}\left(x_{1}x_{2}
ight) + u_{i}$$

- ullet Exponentials and logs: $\log(y_i) = eta_0 + eta_1 x_1 + eta_2 e^{x_2} + u_i$
- ullet Indicators and thresholds: $y_i=eta_0+eta_1x_1+eta_2\,\mathbb{I}(x_1\geq 100)+u_i$

Transformation challenge: (literally) infinite possibilities. What do we pick?

$$y_i = eta_0 + u_i$$

$$y_i = \beta_0 + \beta_1 x + u_i$$

$$y_i=eta_0+eta_1x+eta_2x^2+u_i$$

$$y_i=eta_0+eta_1x+eta_2x^2+eta_3x^3+u_i$$

$$y_i = eta_0 + eta_1 x + eta_2 x^2 + eta_3 x^3 + eta_4 x^4 + u_i$$

$$y_i = eta_0 + eta_1 x + eta_2 x^2 + eta_3 x^3 + eta_4 x^4 + eta_5 x^5 + u_i$$

Truth: $y_i = 2e^x + u_i$

Measures of *goodness of fit* try to analyze how well our model describes (*fits*) the data.

Measures of *goodness of fit* try to analyze how well our model describes (fits) the data.

Common measure: R^2 [R-squared] (a.k.a. coefficient of determination)

$$R^2 = 1 - rac{\sum_i \left(y_i - \hat{y}_i
ight)^2}{\sum_i \left(y_i - ar{y}
ight)^2} = 1 - rac{\sum_i e_i^2}{\sum_i \left(y_i - ar{y}
ight)^2}$$

Recall $\sum_i \left(y_i - \hat{y}_i\right)^2 = \sum_i e_i^2$ is the "sum of squared errors".

Measures of *goodness of fit* try to analyze how well our model describes (*fits*) the data.

Common measure: R^2 [R-squared] (a.k.a. coefficient of determination)

$$R^2 = 1 - rac{\sum_i \left(y_i - \hat{y}_i
ight)^2}{\sum_i \left(y_i - ar{y}
ight)^2} = 1 - rac{\sum_i e_i^2}{\sum_i \left(y_i - ar{y}
ight)^2}$$

Recall $\sum_i \left(y_i - \hat{y}_i\right)^2 = \sum_i e_i^2$ is the "sum of squared errors".

 R^2 literally tells us the share of the variance in y our current models accounts for. Thus $0 \leq R^2 \leq 1$.

The problem: As we add variables to our model, \mathbb{R}^2 mechanically increases.

The problem: As we add variables to our model, \mathbb{R}^2 mechanically increases.

Intuition: Even if our added variable has *no true relation to y*, it can help lower e_i by fitting to the sampling noise

The problem: As we add variables to our model, \mathbb{R}^2 mechanically increases.

Intuition: Even if our added variable has *no true relation to* y, it can help lower e_i by fitting to the sampling noise

One solution: Penalize for the number of variables, e.g., adjusted \mathbb{R}^2 :

$$\overline{R}^2 = 1 - rac{\sum_i {(y_i - \hat{y}_i)}^2/(n-k-1)}{\sum_i {ig(y_i - \overline{y}ig)}^2/(n-1)}$$

Note: Adjusted \mathbb{R}^2 need not be between 0 and 1.

We often use measures of model fit (or model "performance") to help choose a regression model from among multiple possibilities

• Adjusted \mathbb{R}^2 is just one of many possible performance metrics

We often use measures of model fit (or model "performance") to help choose a regression model from among multiple possibilities

- Adjusted \mathbb{R}^2 is just one of many possible performance metrics
- For example, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Mean Squared Error (MSE), ...

We often use measures of model fit (or model "performance") to help choose a regression model from among multiple possibilities

- Adjusted \mathbb{R}^2 is just one of many possible performance metrics
- For example, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Mean Squared Error (MSE), ...
- Lots more on the topic of model selection in EDS 232 €€

We often use measures of model fit (or model "performance") to help choose a regression model from among multiple possibilities

- Adjusted \mathbb{R}^2 is just one of many possible performance metrics
- For example, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Mean Squared Error (MSE), ...
- Lots more on the topic of model selection in EDS 232 €€
- Don't forget the theory behind your data science!

Interactions

Interactions allow the effect of one variable to change based upon the level of another variable.

Examples

- 1. Does the effect of schooling on pay change by gender?
- 2. Does the effect of gender on pay change by race?
- 3. Does the effect of schooling on pay change by experience?

Previously, we considered a model that allowed women and men to have different wages, but the model assumed the effect of school on pay was the same for everyone:

$$\mathrm{Pay}_i = eta_0 + eta_1 \, \mathrm{School}_i + eta_2 \, \mathrm{Male}_i + u_i$$

but we can also allow the effect of school to vary by gender:

$$\mathrm{Pay}_i = eta_0 + eta_1 \, \mathrm{School}_i + eta_2 \, \mathrm{Male}_i + eta_3 \, \mathrm{School}_i imes \mathrm{Male}_i + u_i$$

The model where schooling has the same effect for everyone (**F** and **M**):

$$\text{Pay}_i = \beta_0 + \beta_1 \operatorname{School}_i + \beta_2 \operatorname{Male}_i + u_i$$

The model where schooling's effect can differ by gender (**F** and **M**):

$$\mathrm{Pay}_i = eta_0 + eta_1 \, \mathrm{School}_i + eta_2 \, \mathrm{Male}_i + eta_3 \, \mathrm{School}_i imes \mathrm{Male}_i + u_i$$

Interpreting coefficients can be a little tricky -- carefully working through the math helps.

$$\mathrm{Pay}_i = eta_0 + eta_1 \, \mathrm{School}_i + eta_2 \, \mathrm{Female}_i + eta_3 \, \mathrm{School}_i imes \mathrm{Female}_i + u_i$$

Expected returns for an additional year of schooling for **women**:

$$m{E}[ext{Pay}_i| ext{Female} \wedge ext{School} = \ell+1] - m{E}[ext{Pay}_i| ext{Female} \wedge ext{School} = \ell] = m{E}[eta_0 + eta_1(\ell+1) + eta_2 + eta_3(\ell+1) + u_i] - m{E}[eta_0 + eta_1\ell + eta_2 + eta_3\ell + u_i] = m{\beta}_1 + eta_3$$

Interpreting coefficients can be a little tricky -- carefully working through the math helps.

$$\mathrm{Pay}_i = eta_0 + eta_1 \, \mathrm{School}_i + eta_2 \, \mathrm{Female}_i + eta_3 \, \mathrm{School}_i imes \mathrm{Female}_i + u_i$$

Expected returns for an additional year of schooling for **men**:

$$m{E}[ext{Pay}_i| ext{Male} \wedge ext{School} = \ell+1] - m{E}[ext{Pay}_i| ext{Male} \wedge ext{School} = \ell] = m{E}[eta_0 + eta_1(\ell+1) + u_i] - m{E}[eta_0 + eta_1\ell + u_i] = m{eta}_1$$

Interpreting coefficients can be a little tricky -- carefully working through the math helps.

$$\text{Pay}_i = \beta_0 + \beta_1 \, \text{School}_i + \beta_2 \, \text{Female}_i + \beta_3 \, \text{School}_i \times \text{Female}_i + u_i$$

Expected returns for an additional year of schooling for **men**:

$$m{E}[ext{Pay}_i| ext{Male} \wedge ext{School} = \ell+1] - m{E}[ext{Pay}_i| ext{Male} \wedge ext{School} = \ell] = m{E}[eta_0 + eta_1(\ell+1) + u_i] - m{E}[eta_0 + eta_1\ell + u_i] = m{eta}_1$$

Thus, β_3 gives the **difference in the returns to schooling** for women and men.

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + eta_3 x_{1i} imes x_{2i} + u_i$$

In general, interaction models should be used when the level of one variable influences the relationship between the outcome and another variables

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + eta_3 x_{1i} imes x_{2i} + u_i$$

In general, interaction models should be used when the level of one variable influences the relationship between the outcome and another variables

For example:

• Income changes the relationship between extreme heat and mortality (Carleton et al., 2021)

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + eta_3 x_{1i} imes x_{2i} + u_i$$

In general, interaction models should be used when the level of one variable influences the relationship between the outcome and another variables

For example:

- Income changes the relationship between extreme heat and mortality (Carleton et al., 2021)
- Gender changes the relationship between air pollution and labor productivity (Graff-Zivin and Neidell, 2021)

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + eta_3 x_{1i} imes x_{2i} + u_i$$

In general, interaction models should be used when the level of one variable influences the relationship between the outcome and another variables

For example:

- Income changes the relationship between extreme heat and mortality (Carleton et al., 2021)
- Gender changes the relationship between air pollution and labor productivity (Graff-Zivin and Neidell, 2021)
- Other examples?

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + eta_3 x_{1i} imes x_{2i} + u_i$$

Interpreting interaction models means you have to consider the interaction term when computing slopes.

For example: What is the "slope" of the relationship between y and x_1 ?

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + eta_3 x_{1i} imes x_{2i} + u_i$$

Interpreting interaction models means you have to consider the interaction term when computing slopes.

For example: What is the "slope" of the relationship between y and x_1 ?

$$m{E}[y_i|x_{i2},x_{i1}=\ell+1] - m{E}[y_i|x_{i2},x_{i1}=\ell] = \ m{E}[eta_0 + eta_1(\ell+1) + eta_3(\ell+1) imes x_{i2} + u_i] - m{E}[eta_0 + eta_1\ell + eta_3(\ell) imes x_{i2} + u_i] = \ eta_1 + eta_3 x_{i2}$$

Note: higher x_{i2} increases the slope of the relationship between y and x_1 !

The inverse is also true.

For two continous random variables, we now have infinitely many slopes for each variable, depending on the level of the other independent variable.

41 / 47

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\cdots+eta_kx_{ki}+u_i$$

What is it?

• When 2 (collinearity) or more (multicollinearity) of your independent variables are highly correlated with one another

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\cdots+eta_kx_{ki}+u_i$$

What is it?

• When 2 (collinearity) or more (multicollinearity) of your independent variables are highly correlated with one another

What is the problem?

- Coefficients change *substantially* with small changes in independent variables
- Illogical/unexpected coefficients

Why might it happen?

- Too many independent variables ("overspecified" model)
- Including dummy variable for your reference group
- True population correlation between variables is high

Easy check: ggpairs(), pairs(), etc.

What to do about it?

- More data helps, if possible
- Check if some variables should be omitted based on theory/conceptual model (e.g., reference group dummy)?
- Eliminate highly correlated variables (ensure your interpretation changes accordingly)
 - E.g., temperature and humidity

Slides created via the R package **xaringan**.

Some slides and slide components were borrowed from Ed Rubin's awesome course materials.