School of Information Science and Technology ShanghaiTech University

Bidirectional Transition-Based Dependency Parsing

Yunzhe Yuan

Yunzhe Yuan, Yong Jiang, Kewei Tu {yuanyzh,jiangyong,tukw}@shanghaitech.edu.cn

January 12, 2019

Overview

Background

Bidirectional Transition-Based Parsing Vanilla Joint Scoring Joint Decoding with Dual Decomposition Joint Decoding Guided by Dynamic Oracle

Experiments

Dependency Parsing

ROOT Economics news had little effect on financial markets .

Transition-Based Dependency Parsing

Arc-hybrid System

- ▶ configuration $c = (\sigma, \beta, T)$
 - σ stack
 - β buffer
 - ► T arc set
- action a

$$\begin{aligned} & \text{SHIFT}[(\sigma, b_0 | \beta, T)] = (\sigma | b_0, \beta, T) \\ & \text{LEFT}_{l}[(\sigma | s_1 | s_0, b_0 | \beta, T)] = (\sigma | s_1, b_0 | \beta, T \cup \{(b_0, s_0, l)\}) \\ & \text{RIGHT}_{l}[(\sigma | s_1 | s_0, \beta, T)] = (\sigma | s_1, \beta, T \cup \{(s_1, s_0, l)\}) \end{aligned}$$

ROOT Economics news had little effect on financial markets.

Action:

Stack:

Buffer: ROOT Economics news had little effect on financial markets .

ROOT Economics news had little effect on financial markets.

Action: SHIFT Stack: ROOT

Buffer: Economics news had little effect on financial markets.

ROOT Economics news had little effect on financial markets.

Action: SHIFT

Stack: ROOT Economics

Buffer: news had little effect on financial markets.

POOT Foonomies now

ROOT Economics news had little effect on financial markets .

Action: LEFT_ATT

Stack: ROOT

Buffer: news had little effect on financial markets.

ATT ATT ACCORDANCE NO.

ROOT Economics news had little effect on financial markets .

Action: SHIFT

Stack: ROOT news

Buffer: had little effect on financial markets .

ROOT Economics news had little effect on financial markets .

Action: LEFT_SBJ

Stack: ROOT

Buffer: had little effect on financial markets.

ROOT Economics news had little effect on financial markets .

Action: SHIFT Stack: ROOT had

Buffer: little effect on financial markets .

ROOT Economics news had little effect on financial markets .

Action: SHIFT

Stack: ROOT had little

Buffer: effect on financial markets.

Action: LEFT_ATT Stack: BOOT had

Buffer: effect on financial markets.

Action: SHIFT

Stack: ROOT had effect Buffer: on financial markets.

Action: SHIFT

Stack: ROOT had effect on Buffer: financial markets.

Action: SHIFT

Stack: ROOT had effect on financial

Buffer: markets.

Action: LEFT_ATT

Stack: ROOT had effect on

Buffer: markets.

Action: RIGHT PC Stack: ROOT had effect

Buffer: on .

Action: RIGHT_ATT Stack: ROOT had

Buffer: effect .

Action: RIGHT_OBJ

Stack: ROOT Buffer: had .

Action: SHIFT Stack: ROOT had

Buffer: .

Action: RIGHT PU

Stack: ROOT Buffer: had

Action: RIGHT PRED

Stack:

Buffer: ROOT

Action: SHIFT Stack: ROOT

Buffer:

Transition-Based Dependency Parsing

- Use the greedy algorithm
- Scoring function: MLP
- Input: Stack representation + Buffer representation
- Neural Net: BiLSTM

Input: a sentence **x**

Output: a dependency parse tree y

- 1: $c \leftarrow \text{Initial}(\mathbf{x})$
- 2: **while not** Terminal(c) **do**
- 3: $\hat{a} \leftarrow \arg \max_{a \in \text{Legal}(c)} f(c, a)$
- 4: $c \leftarrow \hat{a}(c)$
- 5: **y** ← *c*.*T*
- 6: return y

Motivation

- ► Traditionally the left-to-right manner is used $\sigma_0 = \emptyset$, $b_0 = \{\text{ROOT}, \text{Economics}, \text{news}, \cdots, \text{markets}, .\}$
- ▶ But the right-to-left manner also works $\sigma_0 = \emptyset, b_0 = \{ \text{ROOT}, ., \text{markets}, \cdots, \text{news}, \text{Economics} \}$
- ▶ These two manners give different results

Figure: Comparison between results from the two bidirectional models

Motivation

An early prediction mistake may negatively impact many future decision

ROOT Economics news had little effect on financial markets .

Wrong:

Correct:

ROOT Economics news had little effect on financial markets .

- All arcs after the third can be wrong
- Solution
 - Train parsers in both directions
 - Use the two parsers to do joint decoding

Bidirectional Parsing

Figure: The structure of the bidirectional model

Vanilla Joint Scoring

Simply add scores of two models together

$$s(t) = F(t) + G(t)$$

Get two trees from the models respectively

 \mathbf{y},\mathbf{z}

Select a better one according to the joint score

$$\underset{t \in \{y,z\}}{\text{arg max }} s(t)$$

Joint Decoding with Dual Decomposition

▶ The joint score can be written as

$$\mathop{\arg\max}_{\mathbf{y},\mathbf{z}} F(\mathbf{y}) + G(\mathbf{z})$$

where $\mathbf{y} = \mathbf{z}$

- Use the iterative algorithm
 - ▶ Modify F and G to penalize dependencies of disagreement

Joint Decoding Guided by Dynamic Oracle

Static oracle (SO) and Dynamic oracle (DO)

- black circles: configurations
- gray arrows: actions chosen when training
- red arrows: actions chosen when decoding

Benefit

- Provide optimal actions for almost any configurations
- ▶ Help the parser return to the gold parse in the fastest possible way

Joint Decoding Guided by Dynamic Oracle Algorithm

- Joint decoding
 - Use the iterative algorithm
 - In each iteration, use the parse of one parser to construct a dynamic oracle that guides the other parser

- Modify the scoring function to encourage the parse tree to approach to its guide
- Comparison with dual decomposition
 - At least one action in each valid configuration would have its score modified
 - Dynamic oracles have more changes to the scoring function

Joint Decoding Guided by Dynamic Oracle Example

Iteration 0

Joint Decoding Guided by Dynamic Oracle Example

Iteration 1

Joint Decoding Guided by Dynamic Oracle Example

Iteration 2

Right to left

Result PTB and CTB

Method	P	ГВ	СТВ			
Method	UAS	LAS	UAS	LAS		
L2R	93.54 ± 0.12	92.22± 0.17	86.21± 0.14	85.02± 0.13		
R2L	93.56 ± 0.18	93.27 ± 0.25	86.44± 0.07	85.22 ± 0.07		
Vanilla	94.35 ± 0.05	92.91 ± 0.11	87.36 ± 0.07	86.07 ± 0.06		
DD	94.35 ± 0.05	93.01 ± 0.09	87.41 ± 0.09	86.18 ± 0.09		
DO	94.60 ± 0.04	94.02 ± 0.13	88.07 ± 0.07	87.54 \pm 0.14		
DD + DO	94.60 ± 0.04	$\textbf{94.02} \!\pm \textbf{0.13}$	88.09 ± 0.08	87.52 ± 0.10		
C&M14	91.80	89.60	83.90	82.40		
Dyer15	93.10	90.90	87.20	85.70		
Weiss15	93.99	92.05	-	-		
Andor16	94.61	92.79	-	-		
Ballesteros16	93.56	91.42	87.65	86.21		
K&G16	93.90	91.90	87.60	86.10		
Zhang16	94.10	91.90	87.84	86.15		
Shi17	94.53 ± 0.05	-	88.62 \pm 0.09	-		

Table: Results on PTB and CTB

Method	D	E	E	N	E	S	F	R
	UAS	LAS	UAS	LAS	UAS	LAS	UAS	LAS
L2R	81.62	76.14	88.87	86.79	86.52	82.90	87.33	83.17
R2L	81.54	76.03	89.13	87.10	86.78	83.05	87.63	83.57
Vanilla	82.62	76.90	90.20	88.02	87.49	83.60	88.25	84.04
DD	82.64	77.12	90.23	88.24	87.52	83.78	88.30	84.77
DO	83.02	79.58	90.56	89.48	87.83	85.69	88.81	87.82
Mothod	IT		NL		PL		ZH	
Mothod	ľ	Т	N	IL	P	L	Z	H
Method	UAS	T LAS	UAS	I L LAS	UAS	LAS	Z UAS	H LAS
Method L2R		-		_	-	_	_	
	UAS	LAS	UAS	LAS	UAS	LAS	UAS	LAS
L2R	UAS 91.41	LAS 89.25	UAS 87.07	LAS 83.43	UAS 94.77	LAS 92.98	UAS 85.16	LAS 82.64
L2R R2L	UAS 91.41 91.46	LAS 89.25 89.33	UAS 87.07 87.74	LAS 83.43 84.44	UAS 94.77 95.39	LAS 92.98 93.81	UAS 85.16 86.01	LAS 82.64 83.26

Table: Results on UD

Hyperparameter Tuning

Statistics

Error distribution

Figure: I2r and r2l

Figure: I2r and DO

Figure: r2l and DO

