통계분석 Statistical Analysis

Hypothesis Testing with Normal Distribution

Case I. z-test

Normal Distribution with known variance

population is normal, $\sim N(\mu, \sigma^2)$

Standard deviation σ is known.

 $\bar{X} = \text{Sample mean from random sample of n elements}$

• Setting up hypotheses

Null hypothesis: $\mu = \mu_0$

Alternative hypothesis: $\mu \neq \mu_0$ $\mu > \mu_0$ $\mu < \mu_0$

• Designing hypothesis test: test statistic and significance level

Standardized test statistic =
$$Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$$

Significance Level = α

Two-sided z-Test

• Alternative hypothesis: $\mu \neq \mu_0$

Rejection region for level α test (two-sided test)

$$z \le -z_{\alpha/2}$$
 or $z \ge z_{\alpha/2}$

Upper-tailed z-Test

Alternative hypothesis: $\mu > \mu_0$

Rejection region for level α test (upper-tailed test)

$$z \geq z_{\alpha}$$

Lower-tailed z-Test

Alternative hypothesis: $\mu < \mu_0$

Rejection region for level α test (lower-tailed test)

$$z \leq -z_{\alpha}$$

Case II. z-Test for Large Sample

The sample size is <u>large enough</u> to apply <u>Central limit theorem</u>.

It is not required that the population distribution is normal.

 $\bar{X} = \text{Sample mean from n random samples}$

 $S^2 =$ Sample variance from n random samples

Null hypothesis: $\mu = \mu_0$

Alternative hypothesis: $\mu \neq \mu_0$ $\mu > \mu_0$ $\mu < \mu_0$

$$\mu > \mu_0 \quad \mu < \mu_0$$

Standardized test statistic =
$$Z = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim N(0, 1)$$

Significance Level = α

z-test for a large sample

Case III. t-Test

The sample size is <u>not large enough</u> for Central limit theorem.

The population distribution is normal $V(\mu,\sigma^2)$

The population variance is unknown.

 $\bar{X} = \text{Sample mean from n random samples}$

 $S^2 =$ Sample variance from n random samples

Null hypothesis: $\mu = \mu_0$

Alternative hypothesis: $\mu \neq \mu_0$ $\mu > \mu_0$ $\mu < \mu_0$

Test statistic =
$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1)$$

Significance Level = α

This is called *t*-test.

Two-tailed t-Test

Alternative hypothesis: $\mu \neq \mu_0$

Rejection region for level α test (two-tailed test)

$$t \le -t_{\alpha/2}(n-1) \text{ or } t \ge t_{\alpha/2}(n-1)$$

Upper-tailed t-Test

Alternative hypothesis: $\mu > \mu_0$

Rejection region for level α test (upper-tailed test)

$$t \ge t_{\alpha}(n-1)$$

Lower-tailed t-Test

Alternative hypothesis: $\mu < \mu_0$

Rejection region for level α test (lower-tailed test)

$$t \leq -t_{\alpha}(n-1)$$