Unsupervised Learning Analysis of Human Breast Cancer Cells

Nicole Alfonso

Preparing the Data

```
# Save your input data file into your Project directory
fna.data <- "https://bioboot.github.io/bimm143_W24/class-material/WisconsinCancer.csv"
# Complete the following code to input the data and store as wisc.df
wisc.df <- read.csv(fna.data, row.names=1)
head(wisc.df)</pre>
```

	diagnosis radius	, moon	toyturo moon	norimator maan	area mean		
	diagnosis radius			-			
842302	M	17.99	10.38	122.80	1001.0		
842517	M	20.57	17.77	132.90	1326.0		
84300903	M	19.69	21.25	130.00	1203.0		
84348301	M	11.42	20.38	77.58	386.1		
84358402	M	20.29	14.34	135.10	1297.0		
843786	M	12.45	15.70	82.57	477.1		
	smoothness_mean	compac	ctness_mean co	oncavity_mean co	oncave.poir	nts_mean	
842302	0.11840		0.27760	0.3001		0.14710	
842517	0.08474		0.07864	0.0869		0.07017	
84300903	0.10960		0.15990	0.1974		0.12790	
84348301	0.14250		0.28390	0.2414		0.10520	
84358402	0.10030		0.13280	0.1980		0.10430	
843786	0.12780		0.17000	0.1578		0.08089	
symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se							
842302	0.2419		0.0787	1.0950	0.9053	8.589	
842517	0.1812		0.0566	0.5435	0.7339	3.398	
84300903	0.2069		0.0599	99 0.7456	0.7869	4.585	
84348301	0.2597		0.0974	14 0.4956	1.1560	3.445	
84358402	0.1809		0.0588	0.7572	0.7813	5.438	

843786	0.2	2087	0.07613	0.3345	0.8902	2.217
	area_se si	moothness_se	compactness_se	concavity_se	concave.po	oints_se
842302	153.40	0.006399	0.04904	0.05373		0.01587
842517	74.08	0.005225	0.01308	0.01860		0.01340
84300903	94.03	0.006150	0.04006	0.03832		0.02058
84348301	27.23	0.009110	0.07458	0.05661		0.01867
84358402	94.44	0.011490	0.02461	0.05688		0.01885
843786	27.19	0.007510	0.03345	0.03672		0.01137
	symmetry_s	se fractal_d	imension_se rad:	ius_worst tex	ture_worst	
842302	0.0300	03	0.006193	25.38	17.33	
842517	0.0138	89	0.003532	24.99	23.41	
84300903	0.022	50	0.004571	23.57	25.53	
84348301	0.0596	63	0.009208	14.91	26.50	
84358402	0.017	56	0.005115	22.54	16.67	
843786	0.021	65	0.005082	15.47	23.75	
	perimeter	_worst area_	worst smoothness	s_worst compa	ctness_wors	st
842302	:	184.60 2	019.0	0.1622	0.665	56
842517	:	158.80 1	956.0	0.1238	0.186	36
84300903	:	152.50 1	709.0	0.1444	0.424	1 5
84348301		98.87	567.7	0.2098	0.866	33
84358402	:	152.20 1	575.0	0.1374	0.205	50
843786	:	103.40	741.6	0.1791	0.524	19
	•	_	ve.points_worst	symmetry_wor	st	
842302	(0.7119	0.2654	0.46	01	
842517	(0.2416	0.1860	0.27	50	
84300903	(0.4504	0.2430	0.36	13	
84348301	(0.6869	0.2575	0.66	38	
84358402	(0.4000	0.1625	0.23	64	
843786	(0.5355	0.1741	0.39	85	
fractal_dimension_worst						
842302		0.118				
842517		0.089				
84300903		0.087				
84348301		0.173				
84358402		0.076				
843786		0.124	40			

We want to exclude the first column, which is a pathologist provided expert diagnosis, which assigns whether the cancer is malignant or benign.

```
# Creating a new data frame that omits the first column with the diagnosis wisc.data <- wisc.df[,-1]
```

head(wisc.data)

	radius_mean t	exture_mean	perimete	er_mean	area_mean	smoothn	.ess_mean
842302	_ 17.99	10.38	•	122.80	1001.0		0.11840
842517	20.57	17.77		132.90	1326.0		0.08474
84300903	19.69	21.25		130.00	1203.0		0.10960
84348301	11.42	20.38		77.58	386.1		0.14250
84358402	20.29	14.34		135.10	1297.0		0.10030
843786	12.45	15.70		82.57	477.1		0.12780
	compactness_m	ean concavit	y_mean o	concave.	points_me	an symme	try_mean
842302	0.27	760	0.3001		0.147	10	0.2419
842517	0.07	864	0.0869		0.070	17	0.1812
84300903	0.15	990	0.1974		0.127	90	0.2069
84348301	0.28	390	0.2414		0.105	20	0.2597
84358402	0.13	280	0.1980		0.104	30	0.1809
843786	0.17	000	0.1578		0.080	89	0.2087
	fractal_dimen	sion_mean ra	dius_se	texture	e_se perim	eter_se	area_se
842302		0.07871	1.0950	0.9	9053	8.589	153.40
842517		0.05667	0.5435	0.7	7339	3.398	74.08
84300903		0.05999	0.7456	0.7	7869	4.585	94.03
84348301		0.09744	0.4956	1.1	1560	3.445	27.23
84358402		0.05883	0.7572	0.7	7813	5.438	94.44
843786		0.07613	0.3345	0.8	3902	2.217	27.19
	smoothness_se	compactness	s_se cond	cavity_s	se concave	.points_	se
842302	0.006399	0.04	904	0.0537	' 3	0.015	87
842517	0.005225	0.01	.308	0.0186	30	0.013	40
84300903	0.006150	0.04	006	0.0383	32	0.020	58
84348301	0.009110	0.07	458	0.0566	31	0.018	67
84358402	0.011490	0.02	2461	0.0568	38	0.018	85
843786	0.007510	0.03	345	0.0367	72	0.011	37
symmetry_se fractal_dimension_se radius_worst texture_worst							
842302	0.03003	C	.006193		25.38	17.	33
842517	0.01389	C	.003532		24.99	23.	41
84300903	0.02250	C	.004571		23.57	25.	53
84348301	0.05963	C	.009208		14.91	26.	50
84358402	0.01756	C	.005115		22.54	16.	67
843786	0.02165	C	.005082		15.47	23.	75
perimeter_worst area_worst smoothness_worst compactness_worst							
842302	184.	60 2019.	0	0.1	1622	0.	6656
842517	158.	80 1956.	0	0.1	1238	0.	1866
84300903	152.	50 1709.	0	0.1	1444	0.	4245
84348301	98.	87 567.	7	0.2	2098	0.	8663

84358402	152.20	1575.0	0.1374	0.2050
843786	103.40	741.6	0.1791	0.5249
	concavity_worst	${\tt concave.points_worst}$	symmetry_worst	
842302	0.7119	0.2654	0.4601	
842517	0.2416	0.1860	0.2750	
84300903	0.4504	0.2430	0.3613	
84348301	0.6869	0.2575	0.6638	
84358402	0.4000	0.1625	0.2364	
843786	0.5355	0.1741	0.3985	
	fractal_dimension	on_worst		
842302		0.11890		
842517		0.08902		
84300903		0.08758		
84348301		0.17300		
84358402		0.07678		
843786		0.12440		

```
#Creating a diagnosis vector for later
diagnosis <- wisc.df[,"diagnosis"]
head(diagnosis)</pre>
```

```
[1] "M" "M" "M" "M" "M" "M"
```

Exploratory Data Analysis

Useful functions for Q1-Q3: dim(), nrow(), table(), length(), and grep()

Q1. How many observations are in this data set?

There are 569 cases that were observed in the data set. This can solved using the dim() function or the nrow() function.

```
# The dim() function returns the dimensions of the data frame
dim(wisc.data)
```

[1] 569 30

The length() function returns the number of columns that are in the data frame length(wisc.data)

```
[1] 30
```

```
# The nrow() function returns the number of rows that are in the data frame
nrow(wisc.data)
```

[1] 569

Q2. How many of the observations have a malignant diagnosis?

There are 212 observations with a malignant diagnosis.

```
# Using the table() function, I am able to extract the frequency of the two variables, M a
table(wisc.df$diagnosis)
```

B M 357 212

Q3. How many variables/features in the data are suffixed with "mean"?

There are 10 variables/features with the suffix "_mean", which was solved with the col.names() function, grep() function, and the length() function.

```
# Retrives all of the column names of the data frame, within a new vector
column_names <- colnames(wisc.data)
# Retrieves all of the column names with "_mean" in the title
mean_columns <- grep("_mean", column_names, value = TRUE)
# Calculates the number of columns with "_mean" in the title
total_mean_columns <- length(mean_columns)
# Returns the number of columns with the phrase "_mean" in the title
total_mean_columns</pre>
```

[1] 10

If I were to makes this a function:

```
phrase_appearance_calc <- function(dataset, PhraseOfInterest) {
   column_names <- colnames(dataset)</pre>
```

```
mean_columns <- grep(PhraseOfInterest, column_names, value = TRUE)
total_mean_columns <- length(mean_columns)
total_mean_columns
}

phrase_appearance_calc(wisc.data, "_mean")</pre>
```

[1] 10

Principle Component Analysis

We will first see if the data needs to be scaled before PCA

Check column means and standard deviations
colMeans(wisc.data)

```
radius_mean
                                   texture_mean
                                                          perimeter_mean
          1.412729e+01
                                   1.928965e+01
                                                            9.196903e+01
                                smoothness_mean
             area_mean
                                                        compactness_mean
          6.548891e+02
                                   9.636028e-02
                                                            1.043410e-01
        concavity_mean
                            concave.points_mean
                                                           symmetry_mean
          8.879932e-02
                                   4.891915e-02
                                                            1.811619e-01
fractal_dimension_mean
                                      radius se
                                                              texture se
          6.279761e-02
                                   4.051721e-01
                                                            1.216853e+00
          perimeter_se
                                                           smoothness_se
                                        area_se
          2.866059e+00
                                   4.033708e+01
                                                            7.040979e-03
        compactness_se
                                   concavity_se
                                                       concave.points_se
          2.547814e-02
                                   3.189372e-02
                                                            1.179614e-02
                                                            radius_worst
           symmetry_se
                          fractal_dimension_se
          2.054230e-02
                                   3.794904e-03
                                                            1.626919e+01
         texture_worst
                                perimeter_worst
                                                              area_worst
          2.567722e+01
                                   1.072612e+02
                                                            8.805831e+02
      smoothness_worst
                              compactness_worst
                                                         concavity_worst
                                   2.542650e-01
          1.323686e-01
                                                            2.721885e-01
  concave.points_worst
                                 symmetry_worst fractal_dimension_worst
          1.146062e-01
                                   2.900756e-01
                                                            8.394582e-02
```

apply(wisc.data, 2, sd)

```
radius_mean
                                                          perimeter_mean
                                   texture_mean
          3.524049e+00
                                   4.301036e+00
                                                            2.429898e+01
             area mean
                                smoothness_mean
                                                        compactness_mean
                                                            5.281276e-02
          3.519141e+02
                                   1.406413e-02
        concavity mean
                            concave.points mean
                                                           symmetry mean
          7.971981e-02
                                                            2.741428e-02
                                   3.880284e-02
fractal dimension mean
                                      radius se
                                                              texture se
          7.060363e-03
                                   2.773127e-01
                                                            5.516484e-01
          perimeter_se
                                                           smoothness se
                                        area_se
          2.021855e+00
                                   4.549101e+01
                                                            3.002518e-03
        compactness_se
                                   concavity_se
                                                       concave.points_se
          1.790818e-02
                                   3.018606e-02
                                                            6.170285e-03
                                                            radius_worst
           symmetry_se
                           fractal_dimension_se
          8.266372e-03
                                   2.646071e-03
                                                            4.833242e+00
         texture_worst
                                perimeter_worst
                                                              area_worst
                                                            5.693570e+02
          6.146258e+00
                                   3.360254e+01
      smoothness_worst
                              compactness_worst
                                                         concavity_worst
                                   1.573365e-01
          2.283243e-02
                                                            2.086243e-01
  concave.points_worst
                                 symmetry_worst fractal_dimension_worst
          6.573234e-02
                                   6.186747e-02
                                                            1.806127e-02
```

Perform PCA on wisc.data by completing the following code
wisc.pr <- prcomp(wisc.data, scale = TRUE)</pre>

summary(wisc.pr)

Importance of components:

PC4 PC5 PC6 PC7 PC1 PC2 PC3 3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172 Standard deviation Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251 Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010 PC8 PC9 PC10 PC11 PC12 PC13 Standard deviation 0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624 Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523 Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335 PC17 PC15 PC16 PC18 PC19 PC20 PC21 0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731 Standard deviation Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010 Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966 PC22 PC23 PC24 PC25 PC26 PC27 PC28 Standard deviation 0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987 Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005 Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997 PC29 PC30 Standard deviation 0.02736 0.01153 Proportion of Variance 0.00002 0.00000 Cumulative Proportion 1.00000 1.00000

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

0.4427

Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

At least 3 principal components are required - PC1, PC2, and PC3

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

At least 6 principal components (PCs) are required to describe at least 90% of the original variance – PC1, PC2, PC3, PC4, PC5, and PC6

Interpreting PCA Results

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

The plot seems very cluttered and crowded, so much so that is it almost impossible to discern the different points and words.

biplot(wisc.pr)

Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

The plot points for PC1 and PC2, as shown in the graph above, are much more 'intertwined' and overlapping with one another, compared to PC1 vs PC3. This is due to greater variance found in PC2.


```
# Using ggplot2
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis
library(ggplot2)

ggplot(df) +
  aes(PC1, PC2, col = diagnosis) +
  geom_point()</pre>
```


Variance Explained

```
# Calculating the variance of each component
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357

library(factoextra)

Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa

```
fviz_eig(wisc.pr, addlabels = TRUE)
```


Communicating PCA Results

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

-0.2608538

```
loading_vector <- wisc.pr$rotation[,1]
concave.points_mean.com <- loading_vector["concave.points_mean"]
concave.points_mean.com</pre>
```

concave.points_mean -0.2608538

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

The minimum number of PCs needed to cover 80% of variance is 5-PC1, PC2, PC3, PC4, & PC5

Hierarchical Clustering

Hierarchical clustering does not assume the number of natural groups that exist in the data – so it would not know that we are looking at two groups: benign and malignant.

```
# Scaling the data using scale()
data.scaled <- scale(wisc.data)

# Calculating the Euclidean distance between all pairs of observations of scaled data set
data.dist <- dist(data.scaled)</pre>
Complete linkage:
```

Results of Hierarchical Clustering

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

Creating a hierarchical clustering model using complete linkage.

wisc.hclust <- hclust(data.dist, method = "complete")</pre>

```
h = 19
```

```
plot(wisc.hclust)
abline(h=19, col="red", lty=2)
```


data.dist hclust (*, "complete")

Selecting Number of Clusters

```
wisc.hclust.clusters <- cutree(wisc.hclust, k = 4)
table(wisc.hclust.clusters, diagnosis)</pre>
```

```
diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

I don't think there is a better cluster because at 4 clusters there are two distinct groups of benign and malignant classifications at cluster 3 and cluster 1 respectively. By adding more clusters, the algorithm is splitting up those classifications into more separate groups, thereby making the classification of malignant vs benign harder to interpret.

```
wisc.hclust.clusters.2 <- cutree(wisc.hclust, k = 2)</pre>
  table(wisc.hclust.clusters.2, diagnosis)
                      diagnosis
wisc.hclust.clusters.2
                       B M
                     1 357 210
                     2 0 2
  wisc.hclust.clusters.3 \leftarrow \text{cutree}(\text{wisc.hclust}, k = 3)
  table(wisc.hclust.clusters.3, diagnosis)
                      diagnosis
                         В
wisc.hclust.clusters.3
                     1 355 205
                         2 5
                     3
                         0 2
  wisc.hclust.clusters.5 <- cutree(wisc.hclust, k = 5)</pre>
  table(wisc.hclust.clusters.5, diagnosis)
                      diagnosis
wisc.hclust.clusters.5
                        В
                             Μ
                     1 12 165
                        0
                     3 343 40
                       2
                            0
                     5
                         0 2
  wisc.hclust.clusters.6 <- cutree(wisc.hclust, k = 6)
  table(wisc.hclust.clusters.6, diagnosis)
                      diagnosis
wisc.hclust.clusters.6
                     1 12 165
                     3 331 39
                        2
                            0
                     5 12
                            1
                     6
                       0
                            2
```

```
wisc.hclust.clusters.7 <- cutree(wisc.hclust, k = 7)</pre>
  table(wisc.hclust.clusters.7, diagnosis)
                      diagnosis
wisc.hclust.clusters.7
                         В
                     1 12 165
                     2
                        0
                     3 331 39
                     4
                        2
                            0
                     5 12
                            1
                            2
                     6
                        0
                     7
                         0
                            2
  wisc.hclust.clusters.8 <- cutree(wisc.hclust, k = 8)
  table(wisc.hclust.clusters.8, diagnosis)
                      diagnosis
wisc.hclust.clusters.8
                         В
                             Μ
                     1 12 86
                         0 79
                         0
                            3
                     4 331 39
                     5
                        2
                            0
                     6 12
                            1
                     7
                            2
                        0
                         0
                             2
  wisc.hclust.clusters.9 \leftarrow \text{cutree}(\text{wisc.hclust}, k = 9)
  table(wisc.hclust.clusters.9, diagnosis)
                      diagnosis
wisc.hclust.clusters.9
                         В
                             М
                       12 86
                         0 79
                     3
                         0
                            3
                     4 331
                            39
                     5
                        2
                            0
                     6 12
                            0
                     7
                        0
                            2
```

```
8 0 2
9 0 1
```

```
wisc.hclust.clusters.10 <- cutree(wisc.hclust, k = 10)
table(wisc.hclust.clusters.10, diagnosis)</pre>
```

diagnosis wisc.hclust.clusters.10 В М

Using Different Methods

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

I think the best methods for analyzing the data set, in my opinion, would be there "complete" and "ward.D2" approaches. As someone who is not an expert in PC analysis, the plots generated by these two approaches are easiest to read and interpret, as the first layers which separate the data into two clusters are most distinct. The lineages and sizes of the clusters are more comparable as they are evenly sized. With the "single" method, the data is grouped too closely together, so it is difficult to understand the distinctions/classifications of the data points.

```
wisc.hclust <- hclust(data.dist, method = "complete")
plot(wisc.hclust)</pre>
```


data.dist hclust (*, "complete")

wisc.hclust.ward <- hclust(data.dist, method = "ward.D2")
plot(wisc.hclust.ward)</pre>

Cluster Dendrogram

data.dist hclust (*, "ward.D2")

```
wisc.hclust.single <- hclust(data.dist, method = "single")
plot(wisc.hclust.single)</pre>
```


data.dist hclust (*, "single")

wisc.hclust.avg <- hclust(data.dist, method = "average")
plot(wisc.hclust.avg)</pre>

data.dist hclust (*, "average")

OPTIONAL: K-means clustering

Combining Methods: Clustering on PCA Results

```
wisc.pr.hclust <- hclust(data.dist, method = "ward.D2")
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "ward.D2")

plot(wisc.pr\$x[,1:2], col=as.factor(diagnosis))


```
g <- as.factor(grps)
levels(g)

[1] "1" "2"

g <- relevel(g, 2)
levels(g)

[1] "2" "1"

#Plot using re-ordered factor
plot(wisc.pr$x[,1:2], col=g)</pre>
```



```
sc.pr.hclust.clusters <- hclust(data.dist, method = "ward.D2")
wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k=2)
table(wisc.pr.hclust.clusters, diagnosis)</pre>
```

```
diagnosis
wisc.pr.hclust.clusters B M
1 20 164
2 337 48
```

Q16. How well do the k-means and hierarchical clustering models you created in previous sections (i.e. before PCA) do in terms of separating the diagnoses? Again, use the table() function to compare the output of each model (wisc.hclust.clusters) with the vector containing the actual diagnoses.

I think the clustering models are relatively comparable, in the sense that I think for both the data points all seem to be pretty spread out from one another into distinct benign vs malignant clusters (which we can see when compared with the actual diagnoses). I think either could be used, both may just require some trial and error with the number of clusters.

```
table(wisc.hclust.clusters, diagnosis)
```

```
diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

Sensitivity/Specificity

Q17. Which of your analysis procedures resulted in a clustering model with the best specificity? How about sensitivity? Sensitivity = malignant, Specificity = Benign

True values: Benign: 357, Malignant: 212

Sensitivity: Combined PCA with hierarchical clustering performed the best, with 188/212

Specificity: K means and hierarchical clustering performed equally well, with 343/357

```
kmeans_specificty <- 175/212
kmeans_specificty</pre>
```

[1] 0.8254717

```
kmeans_selectivity <- 343/357
kmeans_selectivity</pre>
```

[1] 0.9607843

```
hcluster_specificity <- 165/212
hcluster_specificity
```

[1] 0.7783019

```
hcluster_sensitivity <- 343/357 hcluster_sensitivity
```

[1] 0.9607843

```
combined_specificity <- 188/212</pre>
  combined_specificity
[1] 0.8867925
  combined_selectivity <- 329/357</pre>
  combined_selectivity
[1] 0.9215686
Prediction
  #url <- "new_samples.csv"</pre>
  url <- "https://tinyurl.com/new-samples-CSV"</pre>
  new <- read.csv(url)</pre>
  npc <- predict(wisc.pr, newdata=new)</pre>
  npc
           PC1
                     PC2
                                 PC3
                                            PC4
                                                       PC5
                                                                  PC6
                                                                              PC7
[1,] 2.576616 -3.135913 1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945 0.8193031
            PC8
                      PC9
                                 PC10
                                                     PC12
                                           PC11
                                                                PC13
                                                                         PC14
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
                                  PC17
                                                           PC19
          PC15
                     PC16
                                              PC18
                                                                      PC20
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
[2,] 0.1299153 0.1448061 -0.40509706 0.06565549 0.25591230 -0.4289500
           PC21
                      PC22
                                  PC23
                                             PC24
                                                          PC25
                                                                       PC26
[1,] 0.1228233 0.09358453 0.08347651 0.1223396 0.02124121 0.078884581
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
             PC27
                         PC28
                                       PC29
                                                     PC30
[1,] 0.220199544 -0.02946023 -0.015620933 0.005269029
[2,] -0.001134152  0.09638361  0.002795349 -0.019015820
  plot(wisc.pr$x[,1:2], col=g)
  points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
```

text(npc[,1], npc[,2], c(1,2), col="white")

Q18. Which of these new patients should we prioritize for follow up based on your results?

Assuming the red and black are still associated with malignant and benign diagnoses, respectively, I think patient 1 should be prioritized, as it is clustered together with other malignant cells.