www. tremepaders.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2007 question paper

9702 PHYSICS

9702/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9702	04

Section A

1	(a)	(i)	angle subtended at centre of circle	[2]
		(ii)	arc = $r\theta$ and for one revolution, arc = $2\pi r$	[1]
	(b)	(i)	either weight provides/equals the centripetal force or acceleration of free fall is centripetal acceleration	[2]
		(ii)	force in cord = weight + centripetal force (can be an equation)	[4]
2	(a)	(i)	pV = nRT $V = (8.31 \times 300)/(1.02 \times 10^5)$	[2]
		(ii)	volume occupied by one atom = 0.0244 / (6.02×10^{23}) = 4.06 × 10 ⁻²⁶ m ³ M1 separation $\approx \sqrt[3]{(4.06 \times 10^{-26})}$	[2]
	(b)	(i)	$F = GMm / r^{2}$ = $(6.67 \times 10^{-11} \times \{4 \times 1.66 \times 10^{-27}\}^{2}) / (3.44 \times 10^{-9})^{2}$ = $2.49 \times 10^{-46} \text{ N}$ A1	[3]
		(ii)	ratio = $(4 \times 1.66 \times 10^{-27} \times 9.8) / 2.49 \times 10^{-46}$	[2]
	(c)		umption that forces between atoms are negligible	
			e.g. if there are forces, they are not gravitationalB1	[2]

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9702	04

3	(a)	(i)	0.8 cmB1	[1]
		(ii)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	[6]
	(b)	(i)	line parallel to x-axis at 2.56 mJB1	[1]
		(ii)	1 4.0 HzB1	
			2 0.50 cm (<i>allow</i> ±0.03 cm)B1	[2]
4	(a)	(i)	either lines directed away from sphere or lines go from positive to negative or line shows direction of force on positive charge M1 so positively charged A1	[2]
		(ii)	either all lines (appear to) radiate from centre or all lines are normal to surface of sphere	[1]
	(b)	tan in c	gent to curveB1 correct position and directionB1	[2]
	(c)	(i)	$V = (0.76 \times 10^{-9}) / (4\pi \times 8.85 \times 10^{-12} \times 0.024)$	[2]
		(ii)	negative charge is induced on (inside of) box	[3]
	(d)	eith or	ner gravitational field is <u>always</u> attractive field lines must be directed towards both box and sphere	[1]

Page 4	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9702	04

5	(a)		separate charges, store energy, smoothing circuit. etc	[1]
	(b)	(i)	charge = current × timeB1	[1]
		(ii)	area is 21.2 cm ² (allow ± 0.5 cm ²)	
			charge = 3300 μC	[4]
		(iii)	capacitance = Q/V	
			= 220 µF	[2]
	(c)	1/ ₂ ×	er energy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and $C = Q/V$	[3]
6	(a)	(i)	$BI\sin\theta$	[1]
		(ii)	(downwards) into (the plane of) the paperB1	[1]
	(b)	(i)	magnetic field (due to current) in one loop OR each loop acts as a coil	[4]
		(ii)	B = $2 \times 10^{-7} I/0.75 \times 10^{-2}$ (= $2.67 \times 10^{-5} I$)	
			$2.55 \times 10^{-3} = 2.67 \times 10^{-5} \times I^2 \times 2\pi \times 4.7 \times 10^{-2}$	[4]

Page 5	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9702	04

(a) energy required to (completely) separate the nucleons (in a nucleus)B1 7 [1] (b) (i) U labelled near right-hand end of lineB1 Ba and Kr in approximately correct positionsB1 [2] either binding energy of U < binding energy of (Ba + Kr) [2] or in 9 s, very little decay of Barium-141M1 so, approximately 9 sA1 [3] OR $\lambda_{\rm Kr} = 0.231$ or $\lambda_{\rm Ba} = 6.42 \times 10^{-4}$ (M1) $8 = e^{-\lambda B \times t} / e^{-\lambda K \times t}$ (C1)

(A1)

t = 9.0 s

Page 6	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9702	04

Section B

8	(a)	(i)	- 9 V	
		(ii)	+ 9 V (both (i) and (ii) correct for the mark)	[1]
	(b)	>	X	[3]
	(c)	(i)	cct: thermistor and resistor in series	[2]
		(ii)	as temperature decreases, thermistor resistance increases	[3]
9	(a)	pro	duct of density (of medium) and speed of <u>sound</u> (in medium)B1	[1]
	(b)	det	erence in acoustic impedance	[2]
	(c)	refle (ref	se of ultrasound (directed into body)	[5]
10	(a)	(i)	amplitude (modulated) (allow 'AM')B1	[1]
		(ii)	carrier (frequency / wave)B1	[1]
		(iii)	sideband (frequency)B1	[1]
	(b)	10	kHzB1	[1]
	(c)	cor	tch: general shape i.e. any wave that is amplitude modulated	[3]

11	(a)	carrier frequencies can be re-used (simultaneously without interference)so that number of handsets possible is increasedOR anything sensible e.g. UHF used so 'line of sight' (B1)		[2]
	(b)	handset sends out an (identifying) signal communicated by base stations to (computer at) exchange computer selects base station with strongest signal	A1	

and allocates a (carrier) frequencyB1

Syllabus

9702

Paper

04

[4]

Mark Scheme

GCE A/AS LEVEL - October/November 2007

Page 7