2024 秋线代 B2 期中

Problem 1 (10 points)

设多项式 $3x^3 + 2x^2 - 1 = 0$ 的三个复根分别为 r_1, r_2, r_3 , 求复系数多项式 f(x), 使得它的根为 r_1^3, r_2^3, r_3^3

Problem 2 (10 points)

设

$$A = \begin{pmatrix} 4 & 3 & -4 \\ -1 & 0 & 2 \\ 1 & 1 & 0 \end{pmatrix}$$

求矩阵 xI - A 的 Smith 标准型

Problem 3 (10 points)

设 \mathcal{F} 是域, 矩阵 $A, B \in \mathcal{F}^{m \times n}$, 证明

$$rank \begin{pmatrix} A & B \\ B & A \end{pmatrix} = rank(A+B) + rank(A-B)$$

Problem 4 (25 points)

设
$$V = \mathbb{R}^{2 \times 2}$$
 是实线性空间, $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

(1) 试求 V 的一组基,使得线性变换 $\mathscr{A}:V\longrightarrow V, \mathscr{A}(X)=AX-XA$ 在此基下的矩阵是形如

$$\begin{pmatrix} O & \star \\ O & B \end{pmatrix}$$

的矩阵, 其中 B 可逆, O 是零矩阵

(2) 试将线性变换 f(X) = Tr(AXA) 表示为 V 的基

$$\left\{e_1 = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad e_3 = \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix}, \quad e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right\}$$

的对偶基 $\{e_1^*, e_2^*, e_3^*, e_4^*\}$ 的线性组合

Problem 5 (15 points)

设 V 是线性空间, $V_i(i \in I)$ 是它的子空间, 这里 V 的维数和指标集 I 的阶数均可能无限

- (1)令 $\sum\limits_{i\in I}V_i$ 表示形如 $\sum\limits_{i\in I}\alpha_i$ (其中 $\alpha_i\in V_i$ 且只有有限多个 $\alpha_i\neq 0$)的向量组成的集合,证明: $\sum\limits_{i\in I}V_i$ 是 V 的子字间
- (2)若对于任意 $\alpha\in\sum_{i\in I}V_i$,均存在唯一的分解 $\alpha=\sum_{i\in I}\alpha_i(\alpha_i\in V_i)$,则称 $\sum_{i\in I}V_i$ 为直和,证明: $\sum_{i\in I}V_i$ 为直和当且仅当对 I 的任意**有限**子集合 J, $\sum_{i\in I}V_i$ 均为直和

Problem 6 (20 points)

设 \mathcal{F} 是域, $A = \left(a_{ij}\right) \in \mathcal{F}^{n \times n}$, 证明:

- (1) 若 A 可逆,矩阵 $B \in \mathcal{F}^{n \times m}$ 和 $C \in \mathcal{F}^{m \times n}$,则 $\det(A + BC) = \det(A) \det(I_m + CA^{-1}B)$
- (2) 以 A_{ij} 表示 a_{ij} 的代数余子式,则

$$\begin{vmatrix} a_{11} + x_1 y_1 & a_{12} + x_1 y_2 & \cdots & a_{1n} + x_1 y_n \\ a_{21} + x_2 y_1 & a_{22} + x_2 y_2 & \cdots & a_{2n} + x_2 y_n \\ \vdots & \vdots & & \vdots \\ a_{n1} + x_n y_1 & a_{n2} + x_n y_2 & \cdots & a_{nn} + x_n y_n \end{vmatrix} = \det(A) + \sum_{i,j=1}^n A_{ij} x_i y_j$$

1

Problem 7 (10 points)

 \mathbf{DDiem} $\mathbf{7}$ (10 points) 设 $S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, 证明: 行列式等于 1 的二阶整数方阵 A 均可以表示为有限个 S,T 以及 T^{-1}