# Introduction to the Theory of Coalition Games

### Tomáš Kroupa

Institute of Information Theory and Automation Academy of Sciences of the Czech Republic

www: http://staff.utia.cas.cz/kroupa e-mail: kroupa@utia.cas.cz

### **Foundations**

### Foundations laid in:

J. von Neumann, O. Morgenstern – *Theory of Games and Economic Behavior* (1944)

mathematical models of cooperation in a given social

- environment
- coalition formation goes hand in hand with payoff negotiation
- analysis of coalition games is usually based only on payoff opportunities available to each coalition

# Coalition Game: Assumptions

Players can form coalitions

Coalition is a collective decision-maker

Worth of each coalition is the total amount that the players from the coalition can jointly guarantee themselves, it is measured in abstract units of utility

## Two Fundamental Questions

- Which coalitions are likely to form?
- We will the coalitions redistribute the payoffs among the players?

- We leave the behavioral aspects aside...
- ... and the attempt to answer the second question is in that follows!

Games with transferable utilities: every coalition can divide its worth in any possible way among its members

## Examples

## Example (Horse market)

Player 1 (a **seller**) has a horse which is worthless to him (unless he can sell it). Players 2 and 3 (**buyers**) value the horse at 90 and 100, respectively.

Which contract will be accepted by all the players?

## Example (Small business)

Player 1 (an *owner*) runs the business. Each of the other players  $2, \ldots, 11$  (**employees**) contributes an amount  $10\,000$  to the total profit. No profits are generated without the owner.

What is a "fair" distribution of profit?

# Examples (ctnd.)

## Example (UNSC voting)

The United Nations Security Council consists of 5 permanent members and 10 other members. Every decision must be approved by 9 members including all the permanent members.

What is a "voting" power of the individual members?

## Example (Cost allocation game)

The players are potential customers of a public service or a public facility. The **cost function** determines the cost of serving any group of customers by the most efficient means.

Which cost allocation will be accepted by all the customers?

### Mathematical Model of Coalition Game

#### Definition

Let  $N = \{1, ..., n\}$  be a finite set of players. A coalition is any subset of N. The set of all coalitions is denoted by  $2^N$ . A (coalition) game is a mapping

$$v:2^N\to\mathbb{R}$$

such that  $v(\emptyset) = 0$ .

For any coalition  $A \subseteq N$ , the number v(A) is called the worth of A.

# Properties of Games

### **Definitions**

### A game v is

- superadditive if  $A \cap B = \emptyset \implies v(A \cup B) \geqslant v(A) + v(B)$
- convex if  $v(A \cup B) + v(A \cap B) \geqslant v(A) + v(B)$
- monotone if  $A \subseteq B \Rightarrow v(A) \leqslant v(B)$
- constant-sum if  $v(A) + v(N \setminus A) = v(N)$
- symmetric if  $v(\pi(A)) = v(A)$  for every permutation  $\pi$  of N
- inessential if it is additive:  $v(A) = \sum_{i \in A} v(\{i\})$

for every  $A, B \subseteq N$ 

# Properties of Games (ctnd.)

#### Fact

A game v is convex iff for every  $i \in N$  and every  $A \subseteq B \subseteq N \setminus \{i\}$ 

$$v(A \cup \{i\}) - v(A) \leqslant v(B \cup \{i\}) - v(B)$$

#### Fact

A game v is symmetric iff for every A,  $B \subseteq N$ 

$$|A| = |B| \Rightarrow v(A) = v(B)$$

Inessential games are trivial from a game-theoretic viewpoint: if every player  $i \in N$  demands at least  $v(\{i\})$ , then the distribution of v(N) is uniquely determined

# **Examples**

## Example (Horse market)

$$N = \{1, 2, 3\}$$

If 1 sells the horse to 2 for the price x, he will effectively make a profit x, while 2's profit is 90-x. The total profit of the coalition  $\{1,2\}$  is thus 90. Similarly for  $\{1,3\}$ . The grand coalition N should assign the horse to 3 who can eventually give side payments to 2.

$$v(\{1,2\}) = 90, \quad v(\{1,3\}) = v(N) = 100$$
  
 $v(\{i\}) = v(\{2,3\}) = 0, \quad i = 1,2,3$ 

The game v is **monotone**, **superadditive**, but **not convex**:

$$\nu(\textit{N}) + \nu(\{1\}) < \nu(\{1,2\}) + \nu(\{1,3\})$$

## Solution of Games

#### Definition

A payoff vector in a game v with a set of players  $N = \{1, ..., n\}$  is any vector  $x = (x_1, ..., x_n) \in \mathbb{R}^n$ .

Let  $x(A) = \sum_{i \in A} x_i$ , for every payoff vector x and  $A \subseteq N$ 

### **Definition**

A set  $X_v = \{x \in \mathbb{R} \mid x(N) \leq v(N)\}$  is the set of feasible payoff vectors in a game v.

#### **Definition**

Let  $\Gamma$  be a set of games with a player set N. A solution is a function  $\sigma$  that associates with each game  $v \in \Gamma$  a set  $\sigma(v) \subseteq X_v$ .

Introduction Core Shapley Value References

# Solution of Games (ctnd.)

### Questions

- Which properties should a solution  $\sigma$  satisfy?
- Is  $\sigma$  a unique solution satisfying the given axioms?
- For which class of games  $\Gamma$  holds true  $\sigma(v) \neq \emptyset$  for each  $v \in \Gamma$ ?
- Is  $\sigma(v)$  computationally tractable?
- What is the mathematical content of **rationality**, **stability** and **fairness** of a solution  $\sigma$ ?

### Two main solution concepts

- core
- Shapley value

# Properties of Solutions

#### **Definitions**

Let  $\sigma$  be a solution on  $\Gamma$ . We say that  $\sigma$  is

- nonempty on  $\Gamma$  if  $\sigma(v) \neq \emptyset$
- Pareto optimal if  $\sigma(v) \subseteq \{x \in \mathbb{R}^n \mid x(N) = v(N)\}$
- individually rational if  $x_i \ge v(\{i\})$  for every  $i \in N$
- coalitionally rational if  $x(A) \ge v(A)$  for every  $A \subseteq N$
- treating players equally if the following condition is satisfied:

$$v(A \cup \{i\}) = v(A \cup \{j\}) \Rightarrow x_i = x_j,$$

for each  $A \subseteq N \setminus \{i, j\}$ 

• additive if  $\sigma(v_1 + v_2) = \sigma(v_1) + \sigma(v_2)$ , whenever  $v_i, v_1 + v_2 \in \Gamma$ 

The above properties must be satisfied for each  $v \in \Gamma$ ,  $x \in \sigma(v)$ .

### Core of Game

## Definition (Shapley)

Let  $\Gamma$  be the set of all games with the player set  $N = \{1, \dots, n\}$ . For any  $v \in \Gamma$ , put

$$\mathcal{C}(v) = \big\{ x \in \mathbb{R}^n \mid x(N) = v(N), \ x(A) \geqslant v(A), \text{ for every } A \subseteq N \big\}.$$

The core of a game is a (possibly empty) convex polytope in  $\mathbb{R}^n$  given by the intersection of an affine hyperplane with  $2^n-2$  closed halfspaces.

Introduction Core Shapley Value References

# Properties of Core

- a payoff vector  $x \in \mathbb{R}^n$  belongs to the core if and only if no coalition can improve upon x
- members of core are thus highly stable payoff vectors
- the core solution is
  - Pareto optimal
     individually retions
  - individually rational
  - coalitionally rational
- the core solution needn't be
  - nonempty
  - treating players equally
  - additive

# Example of Core

## Example (Horse market)

 $N = \{1, 2, 3\}$ 

$$\begin{split} v(\{i\}) &= v(\{2,3\}) = 0, \quad i = 1,2,3 \\ \mathcal{C}(v) &= \{(t,0,100-t) \in \mathbb{R}^3 \mid 90 \leqslant t \leqslant 100\} \\ \text{Each payoff vector } x \in \mathcal{C}(v) \text{ must satisfy} \\ x_i &\geqslant 0, \quad i = 1,2,3 \\ x_1 + x_2 &\geqslant 90 \\ x_1 + x_3 &\geqslant 100 \end{split}$$

 $v(\{1,2\}) = 90, \quad v(\{1,3\}) = v(N) = 100$ 

Player 3 will purchase the horse at a price at least 90, player 2 is priced out of the market after bidding up the price to 90.

 $x_1 + x_2 + x_3 = 100$ 

# Superadditive Game with Empty Core

## Example (Voting)

Three friends want to decide whether to go for a joint dinner. The decision is made by a simple majority of votes.

$$N = \{1, 2, 3\}$$
  
 $v(\{i\}) = 0, \quad i = 1, 2, 3$   
 $v(A) = 1, \text{ whenever } |A| \geqslant 2$ 

The game v is superadditive, yet  $\mathcal{C}(v) = \emptyset$ .

## Core Questions

- ullet Which class of games  $\Gamma$  possess nonemptiness of core?
- Can nonemptiness of core be efficiently decided?
- Provided the core of a game is nonempty
  - find its representation
  - · recover at least one core element

### **Balanced Games**

Notation:

$$\chi_{\mathcal{A}}(i) = egin{cases} 1, & i \in \mathcal{A}, \\ 0, & ext{otherwise,} \end{cases}$$
 for each  $\mathcal{A} \subseteq \mathcal{N}$ .

#### Definition

A collection of coalitions  $\mathcal{B} \subseteq 2^N$  with  $\emptyset \notin \mathcal{B}$  is balanced if there are balancing weights  $\delta_A \in (0,1]$ ,  $A \in \mathcal{B}$  such that  $\sum_{A \in \mathcal{B}} \delta_A \chi_A = \chi_N$ .

## Example

Any partition  $A_1,\ldots,A_k$  of N with  $A_i\neq\emptyset$  is a balanced collection: put  $\delta_{A_i}=1.$ 

# Balanced Games (ctnd.)

## Example

Let  $N = \{1, 2, 3\}$  and  $\delta_{\{1\}} = 1$ ,  $\delta_{\{2,3\}} = \frac{2}{3}$ ,  $\delta_{\{2\}} = \delta_{\{3\}} = \frac{1}{3}$ . Then the set  $\{\{1\}, \{2, 3\}, \{2\}, \{3\}\}$  is balanced.

Every balanced collection can be viewed as a generalized partition: each  $i \in N$  devotes the fraction  $\delta_A$  of his time to each coalition  $A \in \mathcal{B}$  that contains him. This means  $\sum_{A \in \mathcal{B}: i \in A} \delta_A = 1$ .

## Definition

A game with nonempty core is called balanced.

# Balanced Games (ctnd.)

## Theorem (Bondareva-Shapley)

A game v is balanced if and only if for each balanced collection  $\mathcal{B}$  and each system of balancing weights  $\delta_A$ ,  $A \in \mathcal{B}$  we have

$$v(N) \geqslant \sum_{A \in \mathcal{B}} \delta_A v(A).$$

Proof Use duality theorem in LP.

Balancedness of a game can be effectively tested:

- find all "minimal" balanced collections (Peleg, 1965)
- use an iterative projection algorithm

# Representation of Core

#### **Definition**

Let C be a convex set in  $\mathbb{R}^n$ . A point  $x \in C$  is an extreme point (vertex) of C if it does not lie in any open line segment joining two points of C.

# Theorem (Main theorem for polytopes)

The following are equivalent:

- P is an intersection of finitely many halfspaces
- P is a convex hull of finitely many of its points
- P is a convex hull of its extreme points

# Representation of Core (ctnd.)

The core  $\mathcal{C}(v)$  is the intersection of halfspaces

$$x(A) \geqslant v(A)$$
,  $A \subseteq N$  and  $x(N) \leqslant v(N)$ .

Given 
$$x \in \mathcal{C}(v)$$
, define  $S(x) = \{A \subseteq N \mid x(A) = v(A)\}$ 

#### **Theorem**

A payoff vector  $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{C}(\mathbf{v})$  is an extreme point of  $\mathcal{C}(\mathbf{v})$  if and only if the system of linear equations

$$x(A) = v(A)$$
, for each  $A \in S(x)$ 

 $has \times as its unique solution.$ 

### Core of Convex Games

# Theorem (Shapley; 1972)

Let v be a nonzero convex game. Then:

- v is balanced
- there are at most n! extreme points of  $\mathbb{C}(v)$  and they coincide with the payoff vectors  $x^{\pi} \in \mathbb{R}^{n}$  defined by

$$x_i^{\pi} = v(\{j \in N \mid \pi(j) < \pi(i)\} \cup \{i\}) - v(\{j \in N \mid \pi(j) < \pi(i)\})$$

for each  $i \in N$  and each permutation  $\pi$  of N

# Simple Games

#### Definition

- A game v is called simple if it is monotone,  $v(A) \in \{0, 1\}$  for each  $A \subseteq N$ , and v(N) = 1.
- A player i ∈ N is said to be a veto player if he belongs to each winning coalition.

### Fact

Let v be a simple game. If there exists a veto player in v, then v is balanced.

Proof Let S be the set of all veto players. Take a payoff vector  $x \in \mathbb{R}^n$  with  $x_i = \frac{1}{|S|}$ ,  $i \in S$ , and  $x_i = 0$ ,  $i \notin S$ . Then  $x \in \mathcal{C}(v)$ .

# Assignment Games

(Shapley, Shubik; 1971): "The assignment game is a model for a two-sided market in which a product that comes in large, indivisible units (e.g., houses, cars, etc.) is exchanged for money, and in which each participant either supplies or demands exactly one unit."

- $N = S \cup B$ ,  $S, B \neq \emptyset$  and  $S \cap B = \emptyset$
- each  $i \in S$  is a seller who has a house of worth  $a_i$ , each  $j \in B$  is a potential buyer whose reservation price for i's house is  $b_{ij}$
- define the joint net profit of  $\{i, j\}$  as  $w(\{i, j\}) = \max\{b_{ij} a_i, 0\}$
- an assignment for  $A \subseteq N$  is a set  $\mathfrak{T} \subseteq 2^A$  such that for every  $P, Q \in \mathfrak{T}$  with  $P \neq Q$  we have

$$P \cap Q = \emptyset$$
 and  $|P \cap S| = |P \cap B| = 1$ 

# Assignment Games (ctnd.)

#### Definition

The assignment game v with respect to  $(a_i)_{i \in S}$  and  $(b_{ij})_{i \in S, j \in B}$  is defined by

$$v(A) = \max \Big\{ \sum_{P \in \mathfrak{T}} w(P) \mid \mathfrak{T} \text{ is an assignment for } A \ \Big\}, \quad A \subseteq \textit{N}.$$

#### **Theorem**

Every assignment game is balanced.

## Example (Horse market)

$$\begin{split} \textit{N} = & \{1,2,3\}, \, \textit{S} = \{1\}, \, \textit{B} = \{2,3\} \\ & \text{Assignments for } \textit{N} \text{ are } \mathfrak{T}_1 = \big\{\{1,2\}\big\} \text{ and } \mathfrak{T}_2 = \big\{\{1,3\}\big\}. \end{split}$$

# Minimum Cost Spanning Tree Games

- customers in N must be connected to a supplier of energy 0
- the complete undirected graph  $\mathcal G$  with the vertex set  $N \cup \{0\}$  captures all connections
- $c_{ij}$  is the cost of connecting  $i, j \in N \cup \{0\}, i \neq j$  by an edge  $e_{ij}$

### Definition

Let  $A \subseteq N$ . A minimum cost spanning tree for A is a tree with vertices  $(A \cup \{0\})$  and a set of edges  $\mathcal{E}_A$  that connects the members of A to 0 such that the total cost of all connections is minimal.

# Definition (MCST game)

The cost function c is a game defined by  $c(A) = \sum_{e_{ij} \in \mathcal{E}_A} c_{ij}$  for every  $A \subset N$ .

# MCST Games (ctnd.)

The core of the cost game *c* is the set of cost allocations

$$\{x \in \mathbb{R} \mid x(N) = c(N), \ x(A) \leqslant c(A), \ \text{for every } A \subseteq N\}.$$

### Fact

Every MCST game has the nonempty core.

### Proof

- let  $\mathcal{G}_N = (N \cup \{0\}, \mathcal{E}_N)$  be the m.c.s.t. for N
- for each  $i \in N$ , there is a unique path  $(0, i_1, ..., i_r)$  in  $\mathcal{G}_N$  with  $i_r = i$
- the cost allocation  $x \in \mathbb{R}^n$  such that  $x_i = c_{i_{r-1}i_r}$  for all  $i \in N$  belongs to the core

### Core Issues

## Example (Voting)

$$N = \{1, 2, 3\}$$
  
 $v(A) = 0, |A| < 2$   
 $v(A) = 1, |A| \ge 2$   
 $C(v) = \emptyset$ 

## Example

$$\begin{split} M &= \{1,2,3,4\} \\ u(A) &= v(A), \quad A \subseteq N \\ u(A) &= 0, \quad A \subset M \\ u(M) &= \frac{3}{2} \\ \text{Then } \mathcal{C}(v) &= \left\{ \left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{0}\right) \right\} \end{split}$$

### Core of Games with Coalition Structures

#### Definition

A coalition structure for the player set N is a partition  $\Re$  of N.

#### **Definition**

Let v be a game and  $\mathcal R$  be a coalition structure. The core  $\mathcal C(v,\mathcal R)$  is a set

$$\{x \in \mathbb{R}^n \mid x(R) = v(R), R \in \mathbb{R}, x(A) \geqslant v(A), A \subseteq N\}.$$

- observe that  $\mathcal{C}(v) = \mathcal{C}(v, \{N\})$
- checking nonemptiness of the core with coalition structures amounts to verifying balancedness for some game with the coalition structure {N}

### Motivation

- the need for a solution which is
  - single-valued
  - ullet defined on the whole space of games  $\Gamma$
- Shapley value (1953)  $\varphi: \Gamma \to \mathbb{R}^n$
- it provides an a priori evaluation of every coalition game based on a set of axioms

### **Axioms**

Let  $\Gamma$  be the set of all games with n players.

#### Definition

Let  $v \in \Gamma$ . A player  $i \in N$  is a null player if  $v(A) = v(A \cup \{i\})$  for every  $A \subseteq N$ . A single-valued solution  $\varphi : \Gamma \to \mathbb{R}^n$  has the null player property if  $\varphi_i(v) = 0$  for every  $v \in \Gamma$  and each null player  $i \in N$ .

## Theorem (Axiomatic characterization of Shapley value)

There is a unique single-valued solution (Shapley value)  $\phi$  on  $\Gamma$  that satisfies the equal treatment property, the null player property, and the additivity.

See properties of solutions.

### **Formula**

#### **Theorem**

The **Shapley value**  $\varphi$  on  $\Gamma$  is given by

$$\varphi_i(v) = \sum_{A \subset N \setminus \{i\}} \frac{|A|!(n-|A|-1)!}{n!} (v(A \cup \{i\}) - v(A))$$

for every  $v \in \Gamma$  and for every  $i \in N$ .

## Fact (Main ingredient of the proof)

For each  $\emptyset \neq B \subseteq N$ , let

$$u_B(A) = \begin{cases} 1, & A \supseteq B \\ 0, & otherwise, \end{cases} A \subseteq N.$$

The set of all games  $\{u_B \mid \emptyset \neq B \subseteq N\}$  is a **linear basis** of  $\Gamma$ .

## Example

## Example (Small business)

Player 1 (the **owner**) runs the business. Each of the other players  $2, \ldots, 11$  (the **workers**) contributes an amount 10 000 to the total profit. No profits are generated without the owner.

$$N = \{1, \ldots, 11\}$$

$$v(A) = \begin{cases} 0, & 1 \notin A, \\ 10\ 000(|A|-1), & 1 \in A, \end{cases} A \subseteq N.$$

$$\varphi_1(v) = 50\ 000, \quad \varphi_i(v) = 5\ 000, \quad i = 2, ..., 11$$

# Example (ctnd.)

The **workers** cannot object to the payoff distribution  $\varphi(v)$  since  $v(N \setminus \{1\}) = 0$ . However, the **workers** may form a labor union to reduce the original game to the two-person symmetric game:

Example (Small business vs. labor unions)

$$\widehat{N}=\{1,2\}$$
 
$$\widehat{v}(A)=\begin{cases} 1, & A=\widehat{N}, \\ 0, & \text{otherwise,} \end{cases} \quad A\subseteq \widehat{N}.$$

$$\varphi_1(\hat{\mathbf{v}}) = \varphi_2(\hat{\mathbf{v}}) = \frac{1}{2}$$

# **Properties**

#### **Fact**

The Shapley value  $\phi$  is

- Pareto optimal
- individually rational on the class of superadditive games
- mapping each convex game into its core

The Shapley value  $\varphi(v)$  can be viewed as a

- ullet fair allocation of the profit generated by the grand coalition N
- voting power in simple games

## Shapley Value for Simple Games

#### **Fact**

Let v be a simple game. Then the Shapley value is

$$\varphi_i(v) = \sum_{\substack{A \subseteq N \setminus \{i\}: \\ v(A \cup \{i\}) - v(A) = 1}} \frac{|A|!(n - |A| - 1)!}{n!}, \quad i \in N.$$

- the simple game  $\nu$  represents a vote on some issue
- the number  $\varphi_i(v)$  is a probability that the player  $i \in N$  determines an outcome of the vote

## Examples

## Example (Stockholders)

A company has 4 stockholders, each of them having 10, 25, 35, and 40 shares of the company's stock. A decision is approved by a simple majority of all the shares.

$$N = \{1, 2, 3, 4\}$$

v is a **simple game** in which the only winning coalitions are:

$$\{2,3\},\{2,4\},\{3,4\},\{{\color{red}1},2,3\},\{{\color{red}1},2,4\},\{{\color{red}1},3,4\},\{2,3,4\},\textit{N}$$

The Shapley value:

$$\varphi_1(v) = 0$$
,  $\varphi_i(v) = \frac{1}{3}$ ,  $i = 2, 3, 4$ 

Introduction Core Shapley Value References

# Computational Issues

- computation of the Shapley value for real-world problems requires a prohibitive number of calculations
- for example, in a game v with n=100 players the number of summands in  $\varphi_i(v)$  is at most  $2^{99}\approx 10^{29}$

## Speeding up the computations

- multilinear extension
- statistical estimation of the Shapley value based on random sampling

#### Multilinear Extension

The set of all coalitions  $2^N$  can be identified with the **vertices** of the unit n-cube  $[0,1]^n$ . Can a game  $v:2^N\to\mathbb{R}$  be extended to an n-variable function

$$\overline{v}:[0,1]^n \to \mathbb{R}$$

with "nice" properties?

## Theorem (Owen (1972))

There exists a unique multilinear function  $\overline{v}:[0,1]^n\to\mathbb{R}$  that coincides with v on  $2^N$ . We have

$$\overline{v}(x_1,\ldots,x_n) = \sum_{A\subseteq N} \left(\prod_{i\in A} x_i \prod_{i\notin A} (1-x_i)\right) v(A)$$

for every  $(x_1, ... x_n) \in [0, 1]^n$ .

# Example of Multilinear Extension

# Example (Voting)

$$N = \{1, 2, 3\}$$
  
 $v(\{i\}) = 0, \quad i = 1, 2, 3$   
 $v(S) = 1, \text{ whenever } |S| \ge 2$ 

The multilinear extension of v is

$$\overline{v}(x) = x_1 x_2 (1 - x_3) + x_1 x_3 (1 - x_2) + x_2 x_3 (1 - x_1) + x_1 x_2 x_3$$

# Stochastic Interpretation of Multilinear Extension

- $2^N$  can be identified with  $\{0, 1\}^N$
- every  $x \in [0, 1]^n$  defines a **product probability** on  $\{0, 1\}^N$  by

$$p_X(\chi_A) = \prod_{i \in A} x_i \prod_{i \notin A} (1 - x_i),$$
 for each  $A \subseteq N$ 

- $p_x(\chi_A)$  can be considered as the probability of the formation of a random coalition according to x and v as a real random variable on  $\{0,1\}^N$
- hence  $\overline{v}(x)$  is the **expected value** of worth of the random coalition:

$$\overline{v}(x) = \sum_{A \subseteq N} p_X(\chi_A) v(A) = E_{p_X}(v)$$

# Multilinear Extension and Shapley Value

## Theorem (Diagonal formula)

Let v be a game with the multilinear extension  $\overline{v}$ . Then, for every player  $i \in N$ ,

$$\varphi_i(v) = \int_0^1 \frac{\partial \overline{v}}{\partial x_i}(t,\ldots,t) dt$$

• Shapley value is thus completely determined by behavior of the function  $\overline{v}(x)$  in the neighborhood of the **diagonal**  $\{(t,\ldots,t)\in[0,1]^n\mid t\in[0,1]\}$ 

## Example

## Example (Voting)

$$N = \{1, 2, 3\}$$
  $v(\{i\}) = 0, \quad i = 1, 2, 3$   $v(S) = 1, \text{ whenever } |S| \geqslant 2$   $\overline{v}(x) = x_1x_2(1-x_3) + x_1x_3(1-x_2) + x_2x_3(1-x_1) + x_1x_2x_3$  We have 
$$\frac{\partial \overline{v}}{\partial x_1}(x) = x_2 + x_3 - 2x_2x_3$$

so that  $\frac{\partial \overline{v}}{\partial x_1}(t, t, t) = 2t - 2t^2$  and thus

$$\varphi_1[v] = \int_0^1 2t - 2t^2 dt = \left[t^2 - \frac{2t^3}{3}\right]_0^1 = \frac{1}{3}$$

# Weighted Majority Games

#### **Definition**

A simple game v is a weighted majority game if there exist weights  $\omega_1, \ldots, \omega_n \geqslant 0$  and a quota q > 0 such that for all  $A \subseteq N$ 

$$v(A) = 1$$
 iff  $\sum_{i \in A} \omega_i \geqslant q$ .

# Example (Simple majority game)

$$N = \{1, 2, 3\}$$
  
 $\omega_1 = \omega_2 = \omega_3 = 1, \quad q = 2$   
 $A \text{ is winning iff } \omega(A) \geqslant 2$ 

# The UNSC Voting (1)

## Example

The United Nations Security Council consists of 5 permanent members and 10 other members. Every decision must be approved by 9 members including all the permanent members.

$$N = \{1, \ldots, 15\}$$

Representation as a weighted majority game with quota=39:

$$\omega_i = \begin{cases} 7, & i = 1, \dots, 5 \\ 1, & i = 6, \dots, 15 \end{cases}, \quad v(A) = \begin{cases} 1, & \sum_{i \in A} \omega_i \geqslant 39, \\ 0, & \text{otherwise,} \end{cases} \quad A \subseteq N.$$

Finding a weighted voting game representation for a simple game is equivalent to solving a system of linear inequalities! Every permanent member is a veto player.

# The UNSC Voting (2)

Representation as a compound game:  $N=N_1\cup N_2$ , where  $N_1=\{1,\ldots,5\},\ N_2=\{6,\ldots,15\}$  Define:

$$w_1(A) = \begin{cases} 1, & A = N_1, \\ 0, & A \neq N_1, \end{cases}$$
  $w_2(B) = \begin{cases} 1, & |B| \geqslant 4, \\ 0, & |B| \leqslant 3, \end{cases}$   $A \subseteq N_1, B \subseteq N_2$ 

and

$$u(C) = \begin{cases} 1, & C = \{1, 2\} \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$v(A) = u(\{i \in \{1, 2\} \mid w_i(A \cap N_i) = 1\}), \quad A \subseteq N$$

# The UNSC Voting (3)

The multilinear extension  $\overline{v}:[0,1]^{15}\to\mathbb{R}$  is composed in the same way as the game v. Defining  $\overline{w}:\mathbb{R}^{15}\to\mathbb{R}^2$  as

$$\overline{w}(x_1,\ldots,x_{15})=(\overline{w_1}(x_1,\ldots x_5),\overline{w}_2(x_6,\ldots x_{15})),$$

we have  $\overline{\mathbf{v}} = \overline{\mathbf{u}} \circ \overline{\mathbf{w}}$ 

Due to equal treatment property and Pareto optimality axioms, it suffices to calculate the Shapley value of one player (say  $i \in N_2$ ). We get

$$\varphi_i(v) = \int_0^1 \frac{\partial \overline{u}}{\partial y_2} (\overline{w}(\underbrace{t, \dots, t}_{15 \times})) \frac{\partial \overline{w}_2}{\partial x_i} (\underbrace{t, \dots, t}_{10 \times}) dt$$

# The UNSC Voting (4)

- $\bullet \ \overline{w}_1(x_1,\ldots,x_5) = x_1x_2x_3x_4x_5$
- $\frac{\partial \overline{w}_2}{\partial x_i}(t,\ldots,t)=\sum\limits_A t^{|S|}(1-t)^{9-|S|}=\binom{9}{3}t^3(1-t)^6$ , where the first sum runs over all  $A\subseteq N_2\setminus\{i\}$  such that A loses but  $A\cup\{i\}$  wins
- $\overline{u}(y_1, y_2) = y_1 y_2$

#### Hence

$$\varphi_i(v) = \int_0^1 \overline{w}_1(t, \dots, t) \frac{\partial \overline{w}_2}{\partial x_i}(t, \dots, t) dt = \int_0^1 t^5 \cdot 84t^3 (1-t)^6 dt = \frac{4}{2145}$$

# The UNSC Voting (5)

Since there are 10 players in  $N_2$ , each player from the set  $N_1$  has the Shapley value

$$\frac{1}{5} \cdot \left(1 - 10 \cdot \frac{4}{2145}\right) = \frac{1}{5} \cdot \frac{2105}{2145} = \frac{421}{2145}$$

The UNSC game has the Shapley value

$$\varphi_j(v) = 
\begin{cases}
0.1963, & \text{if } j \text{ is a permanent member,} \\
0.0019, & \text{otherwise.} 
\end{cases}$$

These values suggest that the permanent members of the UNSC have immense power in the voting!

#### U.S. Presidential Election Game

Two-stage procedure for electing a president can be modeled as a compound game:

- voters from each state select Great Electors for Electoral College (51 simple majority games)
- 2 the **Great Electors** elect the president by a "weighted majority rule" (weighted majority game with 51 players)

A very thin majority for one candidate in a state with a large number of electoral votes can more than annul large majorities in several small states. Is this game in some sense "fair"?

# Airport Game

(Littlechild, Owen; 1973)

- a runway needs to be built for m different types of aircrafts
- **costs**  $c_1 \leqslant \cdots \leqslant c_m$  of building the runway to accomodate each aircraft
- let  $N_k$  be the set of aircraft landings of type k
- the player set is  $N = \bigcup_k N_k$

#### **Definition**

An airport game is a cost-sharing game given by

$$c(A) = \max\{c_k \mid A \cap N_k \neq \emptyset\}, \quad c(\emptyset) = 0,$$

for each  $A \subseteq N$ .

## Aumann-Drèze Value

#### Definition

Let v be a game and  $\mathcal R$  be a coalition structure. The Aumann-Drèze value  $\phi^*(v,\mathcal R)$  is given by

$$\varphi_i^*(v, \mathcal{R}) = \varphi_i(v_{\uparrow R}),$$

where R is the unique set  $R \in \mathcal{R}$  with  $i \in R$  and  $\varphi(v_{\uparrow R})$  is the Shapley value of the **subgame**  $v_{\uparrow R}$ .

- if v is any game, then  $\varphi(v) = \varphi^*(v, \{N\})$
- the Aumann-Drèze value can be characterized as a unique value satisfying certain axioms

## Banzhaf Value

#### Definition

The (non-normalized) Banzhaf index  $\beta'$  on  $\Gamma$  is given by

$$\beta_i'(v) = \frac{1}{2^{n-1}} \sum_{A \subseteq N \setminus \{i\}} v(A \cup \{i\}) - v(A)$$

for every  $v \in \Gamma$  and for every  $i \in N$ .



# The UNSC Voting (ctnd.)

#### **Theorem**

If v is a game, then  $\beta'_i(v) = \frac{\partial \overline{v}}{\partial x_i}(\frac{1}{2}, \dots, \frac{1}{2}).$ 



## Example

The UNSC game has the Banzhaf value

$$\beta_i'(v) = \begin{cases} 0.0518, & \text{if } i \text{ is a permanent member,} \\ 0.0051, & \text{otherwise.} \end{cases}$$

#### Literature

- Introduction to the Theory of Cooperative Games B. Peleg, P. Sudhölter Springer (2nd edition), 2007
- G. Owen
  Game Theory
  3rd edition, Academic Press, 1995
- Handbook of Game Theory with Economic Applications R.J. Aumann, S. Hart (editors)
  Elsevier Science Publishers (North-Holland), 2002

## Literature in Czech



Principy strategického chování Skriptum FSV. Nakladatelství University Karlovy Carolinum, Praha 2003



M. Maňas Teorie her a její aplikace SNTL, Praha, 1991