

SEQUENCE LISTING

(1) GENERAL INFORMATION:

5

(i) APPLICANT:

10

(ii) TITLE OF INVENTION:

(iii) NUMBER OF SEQUENCES: 19

15

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: Foley, Hoag & Eliot LLP
- (B) STREET: One Post Office Square
- (C) CITY: Boston
- 20 (D) STATE: MA
- (E) COUNTRY: US
- (F) ZIP: 02109

(v) COMPUTER READABLE FORM:

- 25 (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.30

(vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Vincent, Matthew P.
- (B) REGISTRATION NUMBER: 36,709
- (C) REFERENCE/DOCKET NUMBER: SUV003.04

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: 617-832-1000
- (B) TELEFAX: 617-832-7000

45 (2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 736 base pairs
- (B) TYPE: nucleic acid
- 50 (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

AACNNCNNTN NATGGCACCC CCNCCCAACC TTTNNNCNN NTAANAAAA NNCCCCNTT 60
NATACCCCCT NTAANANTTT TCCACCNNNC NNAAANNCCN CTGNANACNA NGNAAANCCN 120
TTTTTNAACC CCCCCCACCC GGAATTCCNA NTNCCNCCC CCAAATTACA ACTCCAGNCC 180

60

AAAATTNANA	NAATTGGTCC	TAACCTAACCC	NATNGTTGTT	ACGGTTCCCC	CCCCCAAATA	240
CATGCACTGG	CCCGAACACT	TGATCGTTGC	CGTTCCAATA	AGAATAAAATC	TGGTCATATT	300
AAACAAGCCN	AAAGCTTTAC	AAACTGTTGT	ACAATTAATG	GGCGAACACG	AACTGTTCGA	360
ATTCTGGTCT	GGACATTACA	AAGTGCACCA	CATCGGATGG	AACCAGGAGA	AGGCCACAAC	420
CGTACTGAAC	GCCTGGCAGA	AGAAGTTCGC	ACAGGTTGGT	GGTTGGCGCA	AGGAGTAGAG	480
TGAATGGTGG	TAATTTTGG	TTGTTCCAGG	AGGTGGATCG	TCTGACGAAG	AGCAAGAAGT	540
CGTCGAATTA	CATCTTCGTG	ACGTTCTCCA	CCGCCAATTT	GAACAAGATG	TTGAAGGAGG	600
CGTCGAANAC	GGACGTGGTG	AAGCTGGGGG	TGGTGCTGGG	GGTGGCGGCG	GTGTACGGGT	660
GGGTGGCCCA	GTCGGGGCTG	GCTGCCCTGG	GAGTGCTGGT	CTTNGCGNGC	TNCNATT CGC	720
CCTATAGTNAG	GNCGTA					736

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 107 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

— 1 — San Jose, Calif.

Xaa Pro Pro Pro Asn Tyr Asn Ser xaa Phe Lys xaa xaa xaa Ile Val
1 5 10 15

Leu Thr Pro Xaa Val Val Thr Val Ser Pro Pro Lys Tyr Met His Trp
20 25 30

Pro Glu His Leu Ile Val Ala Val Pro Ile Arg Ile Asn Leu Val Ile
35 40 45

Leu Asn Lys Pro Lys Ala Leu Gln Thr Val Val Gln Leu Met Gly Glu
50 55 60

His Glu Leu Phe Glu Phe Trp Ser Gly His Tyr Lys Val His His Ile
65 70 75 80

Gly Trp Asn Gln Glu Lys Ala Thr Thr Val Leu Asn Ala Trp Gln Lys
85 90 95

Lys Phe Ala Gln Val Gly Gly Trp Arg Lys Glu
100 105

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5187 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GGGTCTGTCA	CCCGGAGCCG	GAGTCCCCGG	CGGCCAGCAG	CGTCCTCGCG	AGCCGAGCGC	60
CCAGGCGCGC	CCGGAGCCCG	CGGC GGCGGGC	GGCAACATGG	CCTCGGCTGG	TAACGCCGCC	120
GGGGCCCTGG	GCAGGCAGGC	CGGC GGCGGG	AGGCGCAGAC	GGACCGGGGG	ACCGCACCGC	180
GCCGCGCCGG	ACCGGGACTA	TCTGCACCAGG	CCCAGCTACT	GCGACGCCGC	CTTCGCTCTG	240
GAGCAGATT	CCAAGGGAA	GGCTACTGGC	CGGAAAGCGC	CGCTGTGGCT	GAGAGCGAAG	300
TTTCAGAGAC	TCTTATTAA	ACTGGGTTGT	TACATTAAA	AGAACTGCGG	CAAGTTTTG	360
GTTGTGGTC	TCCTCATATT	TGGGGCCTTC	GCTGTGGAT	TAAAGGCAGC	TAATCTCGAG	420
ACCAACGTGG	AGGAGCTGTG	GGTGGAAAGTT	GGTGGACGAG	TGAGTCGAGA	ATTAAATTAT	480
ACCCGTCAGA	AGATAGGAGA	AGAGGCTATG	TTTAATCCTC	AACTCATGAT	ACAGACTCCA	540
AAAGAAGAAG	GCGCTAATGT	TCTGACCACA	GAGGCTCTCC	TGCAACACCT	GGACTCAGCA	600
CTCCAGGCCA	GTCGTGTGCA	CGTCTACATG	TATAACAGGC	AATGGAAGTT	GGAACATTTG	660
TGCTACAAAT	CAGGGAACT	TATCACGGAG	ACAGGTTACA	TGGATCAGAT	AATAGAATAC	720
CTTTACCCCT	GCTTAATCAT	TACACCTTG	GACTGCTTCT	GGGAAGGGC	AAAGCTACAG	780
TCCGGGACAG	CATACCTCCT	AGGTAAGCCT	CCTTACGGT	GGACAAACTT	TGACCCCTTG	840
GAATTCTAG	AAGAGTTAAA	GAAAATAAAC	TACCAAGTGG	ACAGCTGGG	GGAAATGCTG	900
AATAAAGCCG	AAGTTGCCA	TGGGTACATG	GACCGGCCTT	GCCTCAACCC	AGCCGACCCA	960
GATTGCCCTG	CCACAGCCCC	TAACAAAAAT	TCAACCAAAC	CTCTTGATGT	GGCCCTTGT	1020
TTGAATGGTG	GATGTCAAGG	TTTATCCAGG	AAGTATATGC	ATTGGCAGGA	GGAGTTGATT	1080
GTGGGTGGTA	CCGTCAAGAA	TGCCACTGGA	AAACTTGTCA	GCGCTCACGC	CCTGCAAACC	1140
ATGTTCCAGT	TAATGACTCC	CAAGCAAATG	TATGAACACT	TCAGGGCTA	CGACTATGTC	1200
TCTCACATCA	ACTGGAATGA	AGACAGGGCA	GCCGCCATCC	TGGAGGGCTG	GCAGAGGACT	1260
TACGTGGAGG	TGGTCATCA	AA GTGTCGCC	CCAAACTCCA	CTCAAAAGGT	GCTTCCCTTC	1320
ACAACCACGA	CCCTGGACGA	CATCCTAAAA	TCCTTCTCTG	ATGTCAGTGT	CATCCGAGTG	1380
GCCAGCGGCT	ACCTACTGAT	GCTTGCTAT	GCCTGTTAA	CCATGCTGCG	CTGGGACTGC	1440
TCCAAGTCCC	AGGGTGCCGT	GGGGCTGGCT	GGCGTCCTGT	TGGTTGCGCT	GTCAGTGGCT	1500
GCAGGATTGG	GCCTCTGCTC	CTTGATTGGC	ATTCTTTA	ATGCTGCGAC	AACTCAGGTT	1560
TTGCCGTTTC	TTGCTCTTGG	TGTTGGTGTG	GATGATGTCT	TCCTCCTGGC	CCATGCATTC	1620
AGTGAAACAG	GACAGAATAA	GAGGATTCCA	TTTGAGGACA	GGACTGGGGA	GTGCCTCAAG	1680

080105-006472

CGCACCGGAG CCAGCGTGGC CCTCACCTCC ATCAGCAATG TCACCGCCTT CTTCATGGCC 1740
 GCATTGATCC CTATCCCTGC CCTGCGAGCG TTCTCCCTCC AGGCTGCTGT GGTGGTGGTA 1800
 TTCAATTTG CTATGGTTCT GCTCATTTC CCTGCAATTG TCAGCATGGA TTTATAACAGA 1860
 CGTGAGGACA GAAGATTGGA TATTTCTGC TGTTCACAA GCCCCTGTGT CAGCAGGGTG 1920
 ATTCAAGTTG AGCCACAGGC CTACACAGAG CCTCACAGTA ACACCCGGTA CAGCCCCCA 1980
 CCCCCATACA CCAGGCCACAG CTTCGCCAC GAAACCCATA TCACTATGCA GTCCACCCTT 2040
 CAGCTCCGCA CAGAGTATGA CCCTCACACG CACGTGTACT ACACCACCGC CGAGCCACGC 2100
 TCTGAGATCT CTGTACAGCC TGTTACCGTC ACCCAGGACA ACCTCAGCTG TCAGAGTCCC 2160
 GAGAGCACCA GCTCTACCAG GGACCTGCTC TCCCAGTTCT CAGACTCCAG CCTCCACTGC 2220
 CTCGAGCCCC CCTGCACCAA GTGGACACTC TCTTCGTTTG CAGAGAACCA CTATGCTCCT 2280
 TTCCTCCTGA AACCCAAAGC CAAGGTTGTG GTAATCCTTC TTTTCCTGGG CTTGCTGGGG 2340
 GTCAGCCTTT ATGGGACCAC CCGAGTGAGA GACGGGCTGG ACCTCACGGA CATTGTTCCC 2400
 CGGGAAACCA GAGAATATGA CTTCATAGCT GCCCAGTTCA AGTACTTCTC TTTCTACAAC 2460
 ATGTATATAG TCACCCAGAA AGCAGACTAC CCGAATATCC AGCACCTACT TTACGACCTT 2520
 CATAAGAGTT TCAGCAATGT GAAGTATGTC ATGCTGGAGG AGAACAAAGCA ACTTCCCCAA 2580
 ATGTGGCTGC ACTACTTAG AGACTGGCTT CAAGGACTTC AGGATGCATT TGACAGTGAC 2640
 TGGGAAACTG GGAGGATCAT GCCAAACAAT TATAAAAATG GATCAGATGA CGGGGTCTC 2700
 GCTTACAAAC TCCTGGTGCA GACTGGCAGC CGAGACAAGC CCATCGACAT TAGTCAGTTG 2760
 ACTAAACAGC GTCTGGTAGA CGCAGATGGC ATCATTAAATC CGAGCGCTTT CTACATCTAC 2820
 CTGACCGCTT GGGTCAGCAA CGACCCTGTA GCTTACGCTG CCTCCCAGGC CAACATCCGG 2880
 CCTCACCGGC CGGAGTGGGT CCATGACAAA GCCGACTACA TGCCAGAGAC CAGGCTGAGA 2940
 ATCCCAGCAG CAGAGCCCAT CGAGTACGCT CAGTTCCCTT TCTACCTCAA CGGCCTACGA 3000
 GACACCTCAG ACTTTGTGGA AGCCATAGAA AAAGTGAGAG TCATCTGTAA CAACTATAACG 3060
 AGCCTGGGAC TGTCCAGCTA CCCCAATGGC TACCCCTTCC TGTTCTGGGAA GCAATACATC 3120
 AGCCTGCGCC ACTGGCTGCT GCTATCCATC AGCGTGGTGC TGGCCTGCAC GTTTCTAGTG 3180
 TGCGCAGTCT TCCTCCTGAA CCCCTGGACG GCCGGGATCA TTGTCATGGT CCTGGCTCTG 3240
 ATGACCGTTG AGCTCTTGG CATGATGGGC CTCATTGGGA TCAAGCTGAG TGCTGTGCCT 3300
 GTGGTCATCC TGATTGCATC TGTTGGCATC GGAGTGGAGT TCACCGTCCA CGTGGCTTTG 3360
 GCCTTTCTGA CAGCCATTGG GGACAAGAAC CACAGGGCTA TGCTCGCTCT GGAACACATG 3420
 TTTGCTCCCG TTCTGGACGG TGCTGTGTCC ACTCTGCTGG GTGTACTGAT GCTTGCAGGG 3480
 TCCGAATTTG ATTCATTGT CAGATACTTC TTTGCCGTCC TGGCCATTCT CACCGTCTT 3540
 GGGGTTCTCA ATGGACTGGT TCTGCTGCCT GTCCCTTTAT CCTTCTTGG ACCGTGTCCCT 3600

GAGGTGTCTC CAGCCAATGG CCTAAACCGA CTGCCCACTC CTTCGCCTGA GCCGCCTCCA 3660
 AGTGTGTC GCCTTGCCGT GCCTCCTGGT CACACGAACA ATGGGTCTGA TTCCCTCCGAC 3720
 TCGGAGTACA GCTCTCAGAC CACGGTGTCT GGCATCAGTG AGGAGCTCAG GCAATACGAA 3780
 GCACAGCAGG GTGCCGGAGG CCCTGCCAC CAAGTGATTG TGGAAGCCAC AGAAAACCT 3840
 GTCTTGCCC GGTCCACTGT GGTCCATCCG GACTCCAGAC ATCAGCCTCC CTTGACCCCT 3900
 CGGCAACAGC CCCACCTGGA CTCTGGCTCC TTGTCCCCTG GACGGCAAGG CCAGCAGCCT 3960
 CGAAGGGATC CCCCTAGAGA AGGCTTGCAG CCACCCCCCT ACAGACCGCG CAGAGACGCT 4020
 TTTGAAATT CTACTGAAGG GCATTCTGGC CCTAGCAATA GGGACCGCTC AGGGCCCCGT 4080
 GGGGCCCCGT TCTACAACCC TCGGAACCCA ACGTCCACCG CCATGGGCAG CTCTGTGCC 4140
 AGCTACTGCC AGCCCCATCAC CACTGTGACG GCTTCTGCTT CGGTGACTGT TGCTGTGCAT 4200
 CCCCCGCCTG GACCTGGCG CAACCCCCGA GGGGGCCCT GTCCAGGCTA TGAGAGCTAC 4260
 CCTGAGACTG ATCACGGGT ATTTGAGGAT CCTCATGTGC CTTTCATGT CAGGTGTGAG 4320
 AGGAGGGACT CAAAGGTGGA GGTCATAGAG CTACAGGACG TGGAATGTGA GGAGAGGCCG 4380
 TGGGGGAGCA GCTCCAATG AGGGTAATTA AAATCTGAAG CAAAGAGGCC AAAGATTGGA 4440
 AAGCCCCGCC CCCACCTCTT TCCAGAACTG CTTGAAGAGA ACTGCTTGGAA ATTATGGGAA 4500
 GGCAGTTCAT TGTTACTGTA ACTGATTGTA TTATTKKGTG AAATATTTCT ATAAATATTT 4560
 AARAGGTGTA CACATGTAAT ATACATGGAA ATGCTGTACA GTCTATTCC TGGGGCCTCT 4620
 CCACTCCTGC CCCAGAGTGG GGAGACCACA GGGGCCCTT CCCCTGTGTA CATTGGTCTC 4680
 TGTGCCACAA CCAAGCTAA CTTAGTTTA AAAAAAATCT CCCAGCATAT GTCGCTGCTG 4740
 CTTAAATATT GTATAATTAA CTTGTATAAT TCTATGCAA TATTGCTTAT GTAATAGGAT 4800
 TATTGTAAA GGTTCTGTT TAAAATATT TAAATTTGCA TATCACAACC CTGTGGTAGG 4860
 ATGAATTGTT ACTGTTAACT TTTGAACACG CTATGCGTGG TAATTGTTA ACGAGCAGAC 4920
 ATGAAGAAAA CAGGTTAAC CCAAGTGGCTT CTCTAGGGGT AGTTGTATAT GGTCGCATG 4980
 GGTGGATGTG TGTGTGCATG TGACTTTCCA ATGTACTGTA TTGTGGTTG TTGTTGTTGT 5040
 TGCTGTTGTT GTTCATTTG GTGTTTTGG TTGCTTGTG TGATCTTAGC TCTGGCCTAG 5100
 GTGGGCTGGG AAGGTCCAGG TCTTTTCTG TCGTGATGCT GGTGGAAAGG TGACCCCAAT 5160
 CATCTGTCC ATTCTCTGGG ACTATTC 5187

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1311 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met	Val	Ala	Pro	Asp	Ser	Glu	Ala	Pro	Ser	Asn	Pro	Arg	Ile	Thr	Ala
1				5					10				15		
Ala	His	Glu	Ser	Pro	Cys	Ala	Thr	Glu	Ala	Arg	His	Ser	Ala	Asp	Leu
							20		25				30		
Tyr	Ile	Arg	Thr	Ser	Trp	Val	Asp	Ala	Ala	Leu	Ala	Leu	Ser	Glu	Leu
							35		40			45			
Glu	Lys	Gly	Asn	Ile	Glu	Gly	Gly	Arg	Thr	Ser	Leu	Trp	Ile	Arg	Ala
					50		55			60					
Trp	Leu	Gln	Glu	Gln	Leu	Phe	Ile	Leu	Gly	Cys	Phe	Leu	Gln	Gly	Asp
						65		70		75			80		
Ala	Gly	Lys	Val	Leu	Phe	Val	Ala	Ile	Leu	Val	Leu	Ser	Thr	Phe	Cys
						85			90			95			
Val	Gly	Leu	Lys	Ser	Ala	Gln	Ile	His	Thr	Arg	Val	Asp	Gln	Leu	Trp
						100			105			110			
Val	Gln	Glu	Gly	Gly	Arg	Leu	Glu	Ala	Glu	Leu	Lys	Tyr	Thr	Ala	Gln
						115		120			125				
Ala	Leu	Gly	Glu	Ala	Asp	Ser	Ser	Thr	His	Gln	Leu	Val	Ile	Gln	Thr
						130		135			140				
Ala	Lys	Asp	Pro	Asp	Val	Ser	Leu	Leu	His	Pro	Gly	Ala	Leu	Leu	Glu
						145		150		155			160		
His	Leu	Lys	Val	Val	His	Ala	Ala	Thr	Arg	Val	Thr	Val	His	Met	Tyr
						165			170			175			
Asp	Ile	Glu	Trp	Arg	Leu	Lys	Asp	Leu	Cys	Tyr	Ser	Pro	Ser	Ile	Pro
						180			185			190			
Asp	Phe	Glu	Gly	Tyr	His	His	Ile	Glu	Ser	Ile	Ile	Asp	Asn	Val	Ile
						195		200			205				
Pro	Cys	Ala	Ile	Ile	Thr	Pro	Leu	Asp	Cys	Phe	Trp	Glu	Gly	Ser	Lys
						210			215		220				
Leu	Leu	Gly	Pro	Asp	Tyr	Pro	Ile	Tyr	Val	Pro	His	Leu	Lys	His	Lys
						225		230		235			240		
Leu	Gln	Trp	Thr	His	Leu	Asn	Pro	Leu	Glu	Val	Val	Glu	Val	Lys	
						245			250			255			
Lys	Leu	Lys	Phe	Gln	Phe	Pro	Leu	Ser	Thr	Ile	Glu	Ala	Tyr	Met	Lys
						260			265			270			
Arg	Ala	Gly	Ile	Thr	Ser	Ala	Tyr	Met	Lys	Lys	Pro	Cys	Leu	Asp	Pro
						275		280			285				
Thr	Asp	Pro	His	Cys	Pro	Ala	Thr	Ala	Pro	Asn	Lys	Lys	Ser	Gly	His
						290		295			300				

PDR161014092349

DRAFT - 1995

50

Ile Pro Asp Val Ala Ala Glu Leu Ser His Gly Cys Tyr Gly Phe Ala
305 310 315 320

Ala Ala Tyr Met His Trp Pro Glu Gln Leu Ile Val Gly Gly Ala Thr
325 330 335

Arg Asn Ser Thr Ser Ala Leu Arg Lys Ala Arg Xaa Leu Gln Thr Val
340 345 350

Val Gln Leu Met Gly Glu Arg Glu Met Tyr Glu Tyr Trp Ala Asp His
355 360 365

Tyr Lys Val His Gln Ile Gly Trp Asn Gln Glu Lys Ala Ala Ala Val
370 375 380

Leu Asp Ala Trp Gln Arg Lys Phe Ala Ala Glu Val Arg Lys Ile Thr
385 390 395 400

Thr Ser Gly Ser Val Ser Ser Ala Tyr Ser Phe Tyr Pro Phe Ser Thr
405 410 415

Ser Thr Leu Asn Asp Ile Leu Gly Lys Phe Ser Glu Val Ser Leu Lys
420 425 430

Asn Ile Ile Leu Gly Tyr Met Phe Met Leu Ile Tyr Val Ala Val Thr
435 440 445

Leu Ile Gln Trp Arg Asp Pro Ile Arg Ser Gln Ala Gly Val Gly Ile
450 455 460

Ala Gly Val Leu Leu Leu Ser Ile Thr Val Ala Ala Gly Leu Gly Phe
465 470 475 480

Cys Ala Leu Leu Gly Ile Pro Phe Asn Ala Ser Ser Thr Gln Ile Val
485 490 495

Pro Phe Leu Ala Leu Gly Leu Gly Val Gln Asp Met Phe Leu Leu Thr
500 505 510

His Thr Tyr Val Glu Gln Ala Gly Asp Val Pro Arg Glu Glu Arg Thr
515 520 525

Gly Leu Val Leu Lys Lys Ser Gly Leu Ser Val Leu Leu Ala Ser Leu
530 535 540

Cys Asn Val Met Ala Phe Leu Ala Ala Leu Leu Pro Ile Pro Ala
545 550 555 560

Phe Arg Val Phe Cys Leu Gln Ala Ala Ile Leu Leu Leu Phe Asn Leu
565 570 575

Gly Ser Ile Leu Leu Val Phe Pro Ala Met Ile Ser Leu Asp Leu Arg
580 585 590

Arg Arg Ser Ala Ala Arg Ala Asp Leu Leu Cys Cys Leu Met Pro Glu
595 600 605

Ser Pro Leu Pro Lys Lys Lys Ile Pro Glu Arg Ala Lys Thr Arg Lys
610 615 620

Asn Asp Lys Thr His Arg Ile Asp Thr Thr Arg Gln Pro Leu Asp Pro
625 630 635 640

Asp Val Ser Glu Asn Val Thr Lys Thr Cys Cys Leu Ser Val Ser Leu
 645 650 655
 Thr Lys Trp Ala Lys Asn Gln Tyr Ala Pro Phe Ile Met Arg Pro Ala
 660 665 670
 Val Lys Val Thr Ser Met Leu Ala Leu Ile Ala Val Ile Leu Thr Ser
 675 680 685
 Val Trp Gly Ala Thr Lys Val Lys Asp Gly Leu Asp Leu Thr Asp Ile
 690 695 700
 Val Pro Glu Asn Thr Asp Glu His Glu Phe Leu Ser Arg Gln Glu Lys
 705 710 715 720
 Tyr Phe Gly Phe Tyr Asn Met Tyr Ala Val Thr Gln Gly Asn Phe Glu
 725 730 735
 Tyr Pro Thr Asn Gln Lys Leu Leu Tyr Glu Tyr His Asp Gln Phe Val
 740 745 750
 Arg Ile Pro Asn Ile Ile Lys Asn Asp Asn Gly Gly Leu Thr Lys Phe
 755 760 765
 Trp Leu Ser Leu Phe Arg Asp Trp Leu Leu Asp Leu Gln Val Ala Phe
 770 775 780
 Asp Lys Glu Val Ala Ser Gly Cys Ile Thr Gln Glu Tyr Trp Cys Lys
 785 790 795 800
 Asn Ala Ser Asp Glu Gly Ile Leu Ala Tyr Lys Leu Met Val Gln Thr
 805 810 815
 Gly His Val Asp Asn Pro Ile Asp Lys Ser Leu Ile Thr Ala Gly His
 820 825 830
 Arg Leu Val Asp Lys Asp Gly Ile Ile Asn Pro Lys Ala Phe Tyr Asn
 835 840 845
 Tyr Leu Ser Ala Trp Ala Thr Asn Asp Ala Leu Ala Tyr Gly Ala Ser
 850 855 860
 Gln Gly Asn Leu Lys Pro Gln Pro Gln Arg Trp Ile His Ser Pro Glu
 865 870 875 880
 Asp Val His Leu Glu Ile Lys Lys Ser Ser Pro Leu Ile Tyr Thr Gln
 885 890 895
 Leu Pro Phe Tyr Leu Ser Gly Leu Ser Asp Thr Xaa Ser Ile Lys Thr
 900 905 910
 Leu Ile Arg Ser Val Arg Asp Leu Cys Leu Lys Tyr Glu Ala Lys Gly
 915 920 925
 Leu Pro Asn Phe Pro Ser Gly Ile Pro Phe Leu Phe Trp Glu Gln Tyr
 930 935 940
 Leu Tyr Leu Arg Thr Ser Leu Leu Leu Ala Leu Ala Cys Ala Leu Ala
 945 950 955 960
 Ala Val Phe Ile Ala Val Met Val Leu Leu Leu Asn Ala Trp Ala Ala
 965 970 975

Val Leu Val Thr Leu Ala Leu Ala Thr Leu Val Leu Gln Leu Leu Gly
 980 985 990
 Val Met Ala Leu Leu Gly Val Lys Leu Ser Ala Met Pro Ala Val Leu
 995 1000 1005
 Leu Val Leu Ala Ile Gly Arg Gly Val His Phe Thr Val His Leu Cys
 1010 1015 1020
 Leu Gly Phe Val Thr Ser Ile Gly Cys Lys Arg Arg Arg Ala Ser Leu
 1025 1030 1035 1040
 Ala Leu Glu Ser Val Leu Ala Pro Val Val His Gly Ala Leu Ala Ala
 1045 1050 1055
 Ala Leu Ala Ala Ser Met Leu Ala Ala Ser Glu Cys Gly Phe Val Ala
 1060 1065 1070
 Arg Leu Phe Leu Arg Leu Leu Asp Ile Val Phe Leu Gly Leu Ile
 1075 1080 1085
 Asp Gly Leu Leu Phe Phe Pro Ile Val Leu Ser Ile Leu Gly Pro Ala
 1090 1095 1100
 Ala Glu Val Arg Pro Ile Glu His Pro Glu Arg Leu Ser Thr Pro Ser
 1105 1110 1115 1120
 Pro Lys Cys Ser Pro Ile His Pro Arg Lys Ser Ser Ser Ser Gly
 1125 1130 1135
 Gly Gly Asp Lys Ser Ser Arg Thr Ser Lys Ser Ala Pro Arg Pro Cys
 1140 1145 1150
 Ala Pro Ser Leu Thr Thr Ile Thr Glu Glu Pro Ser Ser Trp His Ser
 1155 1160 1165
 Ser Ala His Ser Val Gln Ser Ser Met Gln Ser Ile Val Val Gln Pro
 1170 1175 1180
 Glu Val Val Val Glu Thr Thr Tyr Asn Gly Ser Asp Ser Ala Ser
 1185 1190 1195 1200
 Gly Arg Ser Thr Pro Thr Lys Ser Ser His Gly Gly Ala Ile Thr Thr
 1205 1210 1215
 Thr Lys Val Thr Ala Thr Ala Asn Ile Lys Val Glu Val Val Thr Pro
 1220 1225 1230
 Ser Asp Arg Lys Ser Arg Arg Ser Tyr His Tyr Tyr Asp Arg Arg Arg
 1235 1240 1245
 Asp Arg Asp Glu Asp Arg Asp Arg Asp Arg Glu Arg Asp Arg Asp Arg
 1250 1255 1260
 Asp Arg
 1265 1270 1275 1280
 Glu Arg Ser Arg Glu Arg Asp Arg Arg Asp Arg Tyr Arg Asp Glu Arg
 1285 1290 1295
 Asp His Arg Ala Ser Pro Arg Glu Lys Arg Gln Arg Phe Trp Thr
 1300 1305 1310

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4434 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

CGAAACAAAGA GAGCGAGTGA GAGTAGGGAG AGCGTCTGTG TTGTGTGTTG AGTGTGCC	60
ACGCACACAG GCGCAAAACA GTGCACACAG ACGCCCGCTG GGCAAGAGAG AGTGAGAGAG	120
AGAAAACAGCG GCGCGCGCTC GCCTAATGAA GTTGTGGCC TGGCTGGCGT GCCGCATCCA	180
CGAGATAACAG ATACATCTCT CATGGACCAG GACAGCCTCC CACGCCTTC GGACACACAC	240
GGCGATGTGG TCGATGAGAA ATTATTCTCG GATCTTACA TACGCACCAG CTGGGTGGAC	300
GCGCAAGTGG CGCTCGATCA GATAGATAAG GGCAAAGCGC GTGGCAGCCG CACGGCGATC	360
TATCTGCGAT CAGTATTCCA GTCCCACCTC GAAACCCCTCG GCAGCTCCGT GCAAAAGCAC	420
GCAGGGCAAGG TGCTATTCGT GGCTATCCTG GTGCTGAGCA CCTTCTGCGT CGGCCTGAAG	480
AGCGCCCAGA TCCACTCCAA GGTGCACCAG CTGTGGATCC AGGAGGGCGG CCGGCTGGAG	540
GCAGGAACTGG CCTACACACA GAAGACGATC GGCGAGGACG AGTCGGCCAC GCATCAGCTG	600
CTCATTCAAGA CGACCCACGA CCCGAACGCC TCCGTCCTGC ATCCGCAGGC GCTGCTTGCC	660
CACCTGGAGG TCCTGGTCAA GGCCACCGCC GTCAAGGTGC ACCTCTACGA CACCGAATGG	720
GGGCTGCGCG ACATGTGCAA CATGCCGAGC ACGCCCTCCT TCGAGGGCAT CTACTACATC	780
GAGCAGATCC TGCGCCACCT CATTCCGTGC TCGATCATCA CGCCGCTGGA CTGTTCTGG	840
GAGGGAAAGCC AGCTGTTGGG TCCGGAATCA GCGGTCGTTA TACCAGGCCT CAACCAACGA	900
CTCCTGTGGA CCACCCCTGAA TCCCGCCTCT GTGATGCAGT ATATGAAACA AAAGATGTCC	960
GAGGAAAAGA TCAGCTTCGA CTTCGAGACC GTGGAGCAGT ACATGAAGCG TGCGGCCATT	1020
GGCAGTGGCT ACATGGAGAA GCCCTGCCTG AACCCACTGA ATCCCAATTG CCCGGACACG	1080
GCACCGAACCA AGAACAGCAC CCAGCCGCCG GATGTGGGAG CCATCCTGTC CGGAGGCTGC	1140
TACGGTTATG CCGCGAACGCA CATGCACTGG CCGGAGGAGC TGATTGTGGG CGGACGGAAG	1200
AGGAACCGCA GCGGACACTT GAGGAAGGCC CAGGCCCTGC AGTCGGTGGT GCAGCTGATG	1260
ACCGAGAAGG AAATGTACGA CCAGTGGCAG GACAACATACA AGGTGCACCA TCTTGGATGG	1320
ACGCAGGAGA AGGCAGCGGA GGTTTGAAAC GCCTGGCAGC GCAACTTTTC GCAGGGAGGTG	1380
GAACAGCTGC TACGTAAACA GTCGAGAATT GCCACCAACT ACGATATCTA CGTGTTCAGC	1440

TCGGCTGCAC TGGATGACAT CCTGGCCAAG TTCTCCCATC CCAGCGCCTT GTCCATTGTC	1500
ATCGGCGTGG CCGTCACCGT TTTGTATGCC TTTTGACGC TCCTCCGCTG GAGGGACCCC	1560
GTCCGTGGCC AGAGCAGTGT GGGCGTGGCC GGAGTTCTGC TCATGTGCTT CAGTACCGCC	1620
GCCGGATTGG GATTGTCAGC CCTGCTCGGT ATCGTTTCA ATGCGCTGAC CGCTGCCTAT	1680
GCGGAGAGCA ATCGGGGGGA GCAGACCAAG CTGATTCTCA AGAACGCCAG CACCCAGGTG	1740
GTTCCGTTT TGGCCCTTGG TCTGGCGTC GATCACATCT TCATAGTGGG ACCGAGCATC	1800
CTGTTCACTG CCTGCAGCAC CGCAGGATCC TTCTTGCGG CCGCCTTAT TCCGGTGCAG	1860
GCTTTGAAGG TATTCTGTCT GCAGGCTGCC ATCGTAATGT GCTCCAATTT GGCAGCGGCT	1920
CTATTGGTTT TTCCGGCCAT GATTCGTTG GATCTACGGA GACGTACCGC CGGCAGGGCG	1980
GACATCTTCT GCTGCTGTT TCCGGTGTGG AAGGAACAGC CGAAGGTGGC ACCTCCGGTG	2040
CTGCCGCTGA ACAACAACAA CGGGCGCGGG GCCCGGCATC CGAAGAGCTG CAACAACAAC	2100
AGGGTGCCGC TGCCCGCCCA GAATCCTCTG CTGGAACAGA GGGCAGACAT CCCTGGGAGC	2160
AGTCACTCAC TGGCGTCCTT CTCCCTGGCA ACCTTCGCCT TTCAGCACTA CACTCCCTTC	2220
CTCATGCGCA GCTGGGTGAA GTTCCTGACC GTTATGGGTT TCCTGGCGGC CCTCATATCC	2280
AGCTTGTATG CCTCCACGCG CCTTCAGGAT GGCTGGACA TTATTGATCT GGTGCCCAAG	2340
GACAGCAACG AGCACAAGTT CCTGGATGCT CAAACTCGGC TCTTGCGCTT CTACAGCATG	2400
TATGCCGTTA CCCAGGGCAA CTTTGAATAT CCCACCCAGC AGCAGTTGCT CAGGGACTAC	2460
CATGATTCCCT TTGTGGGGT GCCACATGTG ATCAAGAATG ATAACGGTGG ACTGCCGGAC	2520
TTCTGGCTGC TGCTCTTCAG CGAGTGGCTG GGTAACTCTGC AAAAGATATT CGACGAGGAA	2580
TACCGCGACG GACGGCTGAC CAAGGAGTGC TGGTTCCCAA ACGCCAGCAG CGATGCCATC	2640
CTGGCCTACA AGCTAATCGT GCAAACCGGC CATGTGGACA ACCCCGTGGA CAAGGAACTG	2700
GTGCTCACCA ATCGCCTGGT CAACAGCGAT GGCATCATCA ACCAACCGCGC CTTCTACAAC	2760
TATCTGTCGG CATGGGCCAC CAACGACGTC TTCGCCTACG GAGCTTCTCA GGGCAAATTG	2820
TATCCGGAAC CGCGCCAGTA TTTTCACCAA CCCAACGAGT ACGATCTTAA GATAACCAAG	2880
AGTCTGCCAT TGGTCTACGC TCAGATGCCCT TTTTACCTCC ACGGACTAAC AGATAACCTCG	2940
CAGATCAAGA CCCTGATAGG TCATATTCGC GACCTGAGCG TCAAGTACGA GGGCTTCGGC	3000
CTGCCCAACT ATCCATCGGG CATTCCCTTC ATCTTCTGGG AGCAGTACAT GACCCCTGCAG	3060
TCCTCACTGG CCATGATCCT GGCGCTGCGTG CTACTCGCCG CCCTGGTGCT GGTCTCCCTG	3120
CTCCTGCTCT CCGTTGGGC CGCCGTTCTC GTGATCCTCA GCGTTCTGGC CTCGCTGGCC	3180
CAGATCTTG GGGCCATGAC TCTGCTGGC ATCAAACCTCT CGGCCATTCC GGCAGTCATA	3240
CTCATCCTCA CGGTGGGCAT GATGCTGTGC TTCAATGTGC TGATATCACT GGGCTTCATG	3300
ACATCCGTTG GCAACCGACA GCGCCCGCGTC CAGCTGAGCA TGCAGATGTC CCTGGGACCA	3360

CTTGTCCACG GCATGCTGAC CTCCGGAGTG GCCGTGTTCA TGCTCTCCAC GTCGCCCTTT 3420
 GAGTTTGTGA TCCGGCACTT CTGCTGGCTT CTGCTGGTGG TCTTATGCGT TGGCGCCTGC 3480
 AACAGCCTTT TGGTGTTCCTT CATCCTACTG AGCATGGTGG GACC GGAGCTGGTGG 3540
 CCGCTGGAGC ATCCAGACCG CATA TCCACG CCCTCTCCGC TGCCC GTGCG CAGCAGCAAG 3600
 AGATCGGGCA AATCCTATGT GGTGCAGGGA TCGCGATCCT CGCGAGGCAG CTGCCAGAAG 3660
 TCGCATTACCC ACCACCACAA AGACCTTAAT GATCCATCGC TGACGACGAT CACCGAGGAG 3720
 CCGCAGTCGT GGAAGTCCAG CAACTCGTCC ATCCAGATGC CCAATGATTG GACCTACCAG 3780
 CCGCGGGAAC AGCGACCCGC CTCCTACGCG GCCCGCCCCC CCGCCTATCA CAAGGCCGCC 3840
 GCCCAGCAGC ACCACCAGCA TCAGGGCCCG CCCACAACGC CCCCGCCTCC CTTCCCGACG 3900
 GCCTATCCGC CGGAGCTGCA GAGCATCGT GTGCAGCCGG AGGTGACGGT GGAGACGACG 3960
 CACTCGGACA GCAACACCCAC CAAGGTGACG GCCACGGCCA ACATCAAGGT GGAGCTGGCC 4020
 ATGCCCGGCA GGGCGGTGCG CAGCTATAAC TTTACGAGTT AGCACTAGCA CTAGTTCTG 4080
 TAGCTATTAG GACGTATCTT TAGACTCTAG CCTAAGCCGT AACCTATTT GTATCTGTAA 4140
 AATCGATTTG TCCAGCGGGT CTGCTGAGGA TTTCGTTCTC ATGGATTCTC ATGGATTCTC 4200
 ATGGATGCTT AAATGGCATG GTAATTGGCA AAATATCAAT TTTGTGTCT CAAAAAGATG 4260
 CATTAGCTTA TGGTTCAAG ATACATTTT AAAGAGTCCG CCAGATATTT ATATAAAAAAA 4320
 AATCCAAAAT CGACGTATCC ATGAAAATTG AAAAGCTAAG CAGACCCGTA TGTATGTATA 4380
 TGTGTATGCA TGTTAGTTAA TTTCCCGAAG TCCGGTATTT ATAGCAGCTG CCTT 4434

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1285 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met	Asp	Arg	Asp	Ser	Leu	Pro	Arg	Val	Pro	Asp	Thr	His	Gly	Asp	Val
1				5					10					15	
Val	Asp	Glu	Lys	Leu	Phe	Ser	Asp	Leu	Tyr	Ile	Arg	Thr	Ser	Trp	Val
									25					30	
Asp	Ala	Gln	Val	Ala	Leu	Asp	Gln	Ile	Asp	Lys	Gly	Lys	Ala	Arg	Gly
									40					45	
Ser	Arg	Thr	Ala	Ile	Tyr	Leu	Arg	Ser	Val	Phe	Gln	Ser	His	Leu	Glu
									55					60	

Thr Leu Gly Ser Ser Val Gln Lys His Ala Gly Lys Val Leu Phe Val
 65 70 75 80
 Ala Ile Leu Val Leu Ser Thr Phe Cys Val Gly Leu Lys Ser Ala Gln
 85 90 95
 Ile His Ser Lys Val His Gln Leu Trp Ile Gln Glu Gly Arg Leu
 100 105 110
 Glu Ala Glu Leu Ala Tyr Thr Gln Lys Thr Ile Gly Glu Asp Glu Ser
 115 120 125
 Ala Thr His Gln Leu Leu Ile Gln Thr Thr His Asp Pro Asn Ala Ser
 130 135 140
 Val Leu His Pro Gln Ala Leu Leu Ala His Leu Glu Val Leu Val Lys
 145 150 155 160
 Ala Thr Ala Val Lys Val His Leu Tyr Asp Thr Glu Trp Gly Leu Arg
 165 170 175
 Asp Met Cys Asn Met Pro Ser Thr Pro Ser Phe Glu Gly Ile Tyr Tyr
 180 185 190
 Ile Glu Gln Ile Leu Arg His Leu Ile Pro Cys Ser Ile Ile Thr Pro
 195 200 205
 Leu Asp Cys Phe Trp Glu Gly Ser Gln Leu Leu Gly Pro Glu Ser Ala
 210 215 220
 Val Val Ile Pro Gly Leu Asn Gln Arg Leu Leu Trp Thr Thr Leu Asn
 225 230 235 240
 Pro Ala Ser Val Met Gln Tyr Met Lys Gln Lys Met Ser Glu Glu Lys
 245 250 255
 Ile Ser Phe Asp Phe Glu Thr Val Glu Gln Tyr Met Lys Arg Ala Ala
 260 265 270
 Ile Gly Ser Gly Tyr Met Glu Lys Pro Cys Leu Asn Pro Leu Asn Pro
 275 280 285
 Asn Cys Pro Asp Thr Ala Pro Asn Lys Asn Ser Thr Gln Pro Pro Asp
 290 295 300
 Val Gly Ala Ile Leu Ser Gly Gly Cys Tyr Gly Tyr Ala Ala Lys His
 305 310 315 320
 Met His Trp Pro Glu Glu Leu Ile Val Gly Gly Arg Lys Arg Asn Arg
 325 330 335
 Ser Gly His Leu Arg Lys Ala Gln Ala Leu Gln Ser Val Val Gln Leu
 340 345 350
 Met Thr Glu Lys Glu Met Tyr Asp Gln Trp Gln Asp Asn Tyr Lys Val
 355 360 365
 His His Leu Gly Trp Thr Gln Glu Lys Ala Ala Glu Val Leu Asn Ala
 370 375 380
 Trp Gln Arg Asn Phe Ser Arg Glu Val Glu Gln Leu Leu Arg Lys Gln
 385 390 395 400

Ser Arg Ile Ala Thr Asn Tyr Asp Ile Tyr Val Phe Ser Ser Ala Ala
 405 410 415
 Leu Asp Asp Ile Leu Ala Lys Phe Ser His Pro Ser Ala Leu Ser Ile
 420 425 430
 Val Ile Gly Val Ala Val Thr Val Leu Tyr Ala Phe Cys Thr Leu Leu
 435 440 445
 Arg Trp Arg Asp Pro Val Arg Gly Gln Ser Ser Val Gly Val Ala Gly
 450 455 460
 Val Leu Leu Met Cys Phe Ser Thr Ala Ala Gly Leu Gly Leu Ser Ala
 465 470 475 480
 Leu Leu Gly Ile Val Phe Asn Ala Leu Thr Ala Ala Tyr Ala Glu Ser
 485 490 495
 Asn Arg Arg Glu Gln Thr Lys Leu Ile Leu Lys Asn Ala Ser Thr Gln
 500 505 510
 Val Val Pro Phe Leu Ala Leu Gly Leu Gly Val Asp His Ile Phe Ile
 515 520 525
 Val Gly Pro Ser Ile Leu Phe Ser Ala Cys Ser Thr Ala Gly Ser Phe
 530 535 540
 Phe Ala Ala Ala Phe Ile Pro Val Pro Ala Leu Lys Val Phe Cys Leu
 545 550 555 560
 Gln Ala Ala Ile Val Met Cys Ser Asn Leu Ala Ala Ala Leu Leu Val
 565 570 575
 Phe Pro Ala Met Ile Ser Leu Asp Leu Arg Arg Arg Thr Ala Gly Arg
 580 585 590
 Ala Asp Ile Phe Cys Cys Cys Phe Pro Val Trp Lys Glu Gln Pro Lys
 595 600 605
 Val Ala Pro Pro Val Leu Pro Leu Asn Asn Asn Asn Gly Arg Gly Ala
 610 615 620
 Arg His Pro Lys Ser Cys Asn Asn Asn Arg Val Pro Leu Pro Ala Gln
 625 630 635 640
 Asn Pro Leu Leu Glu Gln Arg Ala Asp Ile Pro Gly Ser Ser His Ser
 645 650 655
 Leu Ala Ser Phe Ser Leu Ala Thr Phe Ala Phe Gln His Tyr Thr Pro
 660 665 670
 Phe Leu Met Arg Ser Trp Val Lys Phe Leu Thr Val Met Gly Phe Leu
 675 680 685
 Ala Ala Leu Ile Ser Ser Leu Tyr Ala Ser Thr Arg Leu Gln Asp Gly
 690 695 700
 Leu Asp Ile Ile Asp Leu Val Pro Lys Asp Ser Asn Glu His Lys Phe
 705 710 715 720
 Leu Asp Ala Gln Thr Arg Leu Phe Gly Phe Tyr Ser Met Tyr Ala Val
 725 730 735
 Thr Gln Gly Asn Phe Glu Tyr Pro Thr Gln Gln Leu Leu Arg Asp

740

745

750

Tyr His Asp Ser Phe Arg Val Pro His Val Ile Lys Asn Asp Asn Gly
 755 760 765

Gly Leu Pro Asp Phe Trp Leu Leu Leu Phe Ser Glu Trp Leu Gly Asn
 770 775 780

Leu Gln Lys Ile Phe Asp Glu Glu Tyr Arg Asp Gly Arg Leu Thr Lys
 785 790 795 800

Glu Cys Trp Phe Pro Asn Ala Ser Ser Asp Ala Ile Leu Ala Tyr Lys
 805 810 815

Leu Ile Val Gln Thr Gly His Val Asp Asn Pro Val Asp Lys Glu Leu
 820 825 830

Val Leu Thr Asn Arg Leu Val Asn Ser Asp Gly Ile Ile Asn Gln Arg
 835 840 845

Ala Phe Tyr Asn Tyr Leu Ser Ala Trp Ala Thr Asn Asp Val Phe Ala
 850 855 860

Tyr Gly Ala Ser Gln Gly Lys Leu Tyr Pro Glu Pro Arg Gln Tyr Phe
 865 870 875 880

His Gln Pro Asn Glu Tyr Asp Leu Lys Ile Pro Lys Ser Leu Pro Leu
 885 890 895

Val Tyr Ala Gln Met Pro Phe Tyr Leu His Gly Leu Thr Asp Thr Ser
 900 905 910

Gln Ile Lys Thr Leu Ile Gly His Ile Arg Asp Leu Ser Val Lys Tyr
 915 920 925

Glu Gly Phe Gly Leu Pro Asn Tyr Pro Ser Gly Ile Pro Phe Ile Phe
 930 935 940

Trp Glu Gln Tyr Met Thr Leu Arg Ser Ser Leu Ala Met Ile Leu Ala
 945 950 955 960

Cys Val Leu Leu Ala Ala Leu Val Leu Val Ser Leu Leu Leu Ser
 965 970 975

Val Trp Ala Ala Val Leu Val Ile Leu Ser Val Leu Ala Ser Leu Ala
 980 985 990

Gln Ile Phe Gly Ala Met Thr Leu Leu Gly Ile Lys Leu Ser Ala Ile
 995 1000 1005

Pro Ala Val Ile Leu Ile Leu Ser Val Gly Met Met Leu Cys Phe Asn
 1010 1015 1020

Val Leu Ile Ser Leu Gly Phe Met Thr Ser Val Gly Asn Arg Gln Arg
 1025 1030 1035 1040

Arg Val Gln Leu Ser Met Gln Met Ser Leu Gly Pro Leu Val His Gly
 1045 1050 1055

Met Leu Thr Ser Gly Val Ala Val Phe Met Leu Ser Thr Ser Pro Phe
 1060 1065 1070

Glu Phe Val Ile Arg His Phe Cys Trp Leu Leu Val Val Leu Cys

DEPARTMENT OF BIOCHEMISTRY

1075	1080	1085
Val Gly Ala Cys Asn Ser	Leu Leu Val Phe Pro Ile	Leu Leu Ser Met
1090	1095	1100
Val Gly Pro Glu Ala Glu	Leu Val Pro Leu Glu His	Pro Asp Arg Ile
1105	1110	1115
His Pro Asp Arg Ile	Glu His Pro Asp Arg Ile	1120
Ser Thr Pro Ser Pro Leu Pro Val Arg Ser Ser Lys Arg Ser Gly Lys		
1125	1130	1135
Ser Tyr Val Val Gln Gly Ser Arg Ser Arg Gly Ser Cys Gln Lys		
1140	1145	1150
Ser His His His His Lys Asp	Leu Asn Asp Pro Ser Leu Thr Thr	
1155	1160	1165
Ile Thr Glu Glu Pro Gln Ser Trp Lys Ser Ser Asn Ser Ser Ile Gln		
1170	1175	1180
Met Pro Asn Asp Trp Thr Tyr Gln Pro Arg Glu Gln Arg Pro Ala Ser		
1185	1190	1195
Tyr Ala Ala Pro Pro Ala Tyr His Lys Ala Ala Ala Gln Gln His		
1205	1210	1215
His Gln His Gln Gly Pro Pro Thr Thr Pro Pro Pro Pro Phe Pro Thr		
1220	1225	1230
Ala Tyr Pro Pro Glu Leu Gln Ser Ile Val Val Gln Pro Glu Val Thr		
1235	1240	1245
Val Glu Thr Thr His Ser Asp Ser Asn Thr Thr Lys Val Thr Ala Thr		
1250	1255	1260
Ala Asn Ile Lys Val Glu Leu Ala Met Pro Gly Arg Ala Val Arg Ser		
1265	1270	1275
Tyr Asn Phe Thr Ser		
1285		

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 345 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

AAGGTCCATC AGCTTGGAT ACAGGAAGGT GGTTGCTCG AGCATGAGCT AGCCTACACG	60
CAGAAATCGC TCGGCGAGAT GGACTCCTCC ACGCACCAAGC TGCTAATCCA AACNCCAAA	120
GATATGGACG CCTCGATACT GCACCCGAAC GCGCTACTGA CGCACCTGGA CGTGGTGAAG	180
AAAGCGATCT CGGTGACGGT GCACATGTAC GACATCACGT GGAGNCTCAA GGACATGTGC	240

TACTCGCCCA GCATACCGAG NTTCGATACT CACTTTATCG AGCAGATCTT CGAGAACATC 300
ATACC GTGCG CGATCATCAC GCCGCTGGAT TGCTTTGGG AGGGGA 345

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 115 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Lys Val His Gln Leu Trp Ile Gln Glu Gly Gly Ser Leu Glu His Glu
 1 5 10 15

Leu Ala Tyr Thr Gln Lys Ser Leu Gly Glu Met Asp Ser Ser Thr His
 20 25 30

Gln Leu Leu Ile Gln Thr Pro Lys Asp Met Asp Ala Ser Ile Leu His
 35 40 45

Pro Asn Ala Leu Leu Thr His Leu Asp Val Val Lys Lys Ala Ile Ser
 50 55 60

Val Thr Val His Met Tyr Asp Ile Thr Trp Xaa Leu Lys Asp Met Cys
 65 70 75 80

Tyr Ser Pro Ser Ile Pro Xaa Phe Asp Thr His Phe Ile Glu Gln Ile
 85 90 95

Phe Glu Asn Ile Ile Pro Cys Ala Ile Ile Thr Pro Leu Asp Cys Phe
 100 105 110

Trp Glu Gly
 115

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5187 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GGGTCTGTCA CCCGGAGCCG GAGTCCCCGG CGGCCAGCAG CGTCCTCGCG AGCCGAGCGC 60
 CCAGGCGCGC CCGGAGCCCG CGGCAGCGGC GGCAACATGG CCTCGGCTGG TAACGCCGCC 120

GGGGCCCTGG GCAGGCAGGC CGGC GGCGGG AGGCGCAGAC GGACCGGGGG ACCGCACCGC 180
 GCCGCGCCGG ACCGGGACTA TCTGCACCGG CCCAGCTACT GCGACGCCGC CTTCGCTCTG 240
 GAGCAGATTT CCAAGGGAA GGCTACTGGC CGGAAAGCGC CGCTGTGGCT GAGAGCGAAG 300
 TTTCAGAGAC TCTTATTTAA ACTGGGTTGT TACATTCAAA AGAACTGCGG CAAGTTTG 360
 GTTGTGGGTC TCCTCATATT TGGGGCCTTC GCTGTGGGAT TAAAGGCAGC TAATCTCGAG 420
 ACCAACGTGG AGGAGCTGTG GGTGGAAGTT GGTGGACGAG TGAGTCGAGA ATTAAATTAT 480
 ACCCGTCAGA AGATAGGAGA AGAGGCTATG TTTAACCTTC AACTCATGAT ACAGACTCCA 540
 AAAGAAGAAG GCGCTAATGT TCTGACCACA GAGGCTCTCC TGCAACACCT GGACTCAGCA 600
 CTCCAGGCCA GTCGTGTGCA CGTCTACATG TATAACAGGC AATGGAAGTT GGAACATTTG 660
 TGCTACAAAT CAGGGGAAC TATCACGGAG ACAGGTTACA TGGATCAGAT AATAGAATAC 720
 CTTTACCCCT GCTTAATCAT TACACCTTG GACTGCTTCT GGGAAAGGGC AAAGCTACAG 780
 TCGGGACAG CATAACCTCCT AGGTAAGCCT CCTTACGGT GGACAAACTT TGACCCCTTG 840
 GAATTCCTAG AAGAGTTAAA GAAAATAAAC TACCAAGTGG ACAGCTGGGA GGAAATGCTG 900
 AATAAAGCCG AAGTTGGCCA TGGGTACATG GACCGGCCTT GCCTCAACCC AGCCGACCCA 960
 GATTGCCCTG CCACAGCCCC TAACAAAAAT TCAACCAAAC CTCTTGATGT GGCCCTTGTT 1020
 TTGAATGGTG GATGTCAAGG TTTATCCAGG AAGTATATGC ATTGGCAGGA GGAGTTGATT 1080
 GTGGGTGGTA CCGTCAAGAA TGCCACTGGA AAACCTGTCA GCGCTCACGC CCTGCAAACC 1140
 ATGTTCCAGT TAATGACTCC CAAGCAAATG TATGAACACT TCAGGGCTA CGACTATGTC 1200
 TCTCACATCA ACTGGAATGA AGACAGGGCA GCCGCCATCC TGGAGGCCTG GCAGAGGACT 1260
 TACGTGGAGG TGGTCATCA AAGTGTGCC CCAAACCTCA CTCAAAAGGT GCTTCCCTTC 1320
 ACAACCACGA CCCTGGACGA CATCCTAAAA TCCTCTCTG ATGTCAGTGT CATCCGAGTG 1380
 GCCAGCGGCT ACCTACTGAT GCTTGCCTAT GCCTGTTAA CCATGCTGCG CTGGGACTGC 1440
 TCCAAGTCCC AGGGTGGCGT GGGGCTGGCT GGCGTCCTGT TGGTTGCCT GTCAAGTGGCT 1500
 GCAGGATTGG GCCTCTGCTC CTTGATTGGC ATTTCTTTA ATGCTGCGAC AACTCAGGTT 1560
 TTGCCGTTTC TTGCTCTTGG TGTGTTGTG GATGATGTCT TCCTCCTGGC CCATGCATTC 1620
 AGTGAACAG GACAGAATAA GAGGATTCCA TTTGAGGACA GGACTGGGA GTGCCTCAAG 1680
 CGCACCGGAG CCAGCGTGGC CCTCACCTCC ATCAGCAATG TCACCGCCTT CTTCATGGCC 1740
 GCATTGATCC CTATCCCTGC CCTGCGAGCG TTCTCCCTCC AGGCTGCTGT GGTGGTGGTA 1800
 TTCAATTG CTATGGTTCT GCTCATTTC CCTGCAATT TCAGCATGGA TTTATACAGA 1860
 CGTGAGGACA GAAGATTGGA TATTTCTGC TGTTTCACAA GCCCCTGTGT CAGCAGGGTG 1920
 ATTCAAGTTG AGCCACAGGC CTACACAGAG CCTCACAGTA ACACCCGGTA CAGCCCCC 1980
 CCCCCATACA CCAGCCACAG CTTGCCAC GAAACCCATA TCACTATGCA GTCCACCGTT 2040

CAGCTCCGCA CAGAGTATGA CCCTCACACG CACGTGTACT ACACCACCGC CGAGCCACGC 2100
 TCTGAGATCT CTGTACAGCC TGTTACCGTC ACCCAGGACA ACCTCAGCTG TCAGAGTCCC 2160
 GAGAGCACCA GCTCTACCAAG GGACCTGCTC TCCCAGTTCT CAGACTCCAG CCTCCACTGC 2220
 CTCGAGCCCC CCTGCACCAA GTGGACACTC TCTTCGTTTG CAGAGAAGCA CTATGCTCCT 2280
 TTCCTCCTGA AACCCAAAGC CAAGGTTGTG GTAATCCTTC TTTTCCTGGG CTTGCTGGGG 2340
 GTCAGCCTTT ATGGGACAC CCGAGTGAGA GACGGGCTGG ACCTCACCGA CATTGTTCCC 2400
 CGGGAAACCA GAGAATATGA CTTCATAGCT GCCCAGTTCA AGTACTTCTC TTTCTACAAC 2460
 ATGTATATAG TCACCCAGAA AGCAGACTAC CCGAATATCC AGCACCTACT TTACGACCTT 2520
 CATAAGAGTT TCAGCAATGT GAAGTATGTC ATGCTGGAGG AGAACAAAGCA ACTTCCCCAA 2580
 ATGTGGCTGC ACTACTTAG AGACTGGCTT CAAGGACTTC AGGATGCATT TGACAGTGAC 2640
 TGGGAAACTG GGAGGATCAT GCCAAACAAT TATAAAAATG GATCAGATGA CGGGGTCTC 2700
 GCTTACAAAC TCCTGGTGCA GACTGGCAGC CGAGACAAGC CCATCGACAT TAGTCAGTTG 2760
 ACTAAACAGC GTCTGGTAGA CGCAGATGGC ATCATTAAATC CGAGCGCTTT CTACATCTAC 2820
 CTGACCGCTT GGGTCAGCAA CGACCCGTGA GCTTACGCTG CCTCCCAGGC CAACATCCGG 2880
 CCTCACCGGC CGGAGTGGGT CCATGACAAA GCCGACTACA TGCCAGAGAC CAGGCTGAGA 2940
 ATCCCAGCAG CAGAGCCAT CGAGTACGCT CAGTTCCCTT TCTACCTCAA CGGCCTACGA 3000
 GACACCTCAG ACTTTGTGGA AGCCATAGAA AAAGTGAGAG TCATCTGTAA CAACTATACG 3060
 AGCCTGGGAC TGTCCAGCTA CCCCAATGGC TACCCCTTCC TGTTCTGGGA GCAATACATC 3120
 AGCCTGCGCC ACTGGCTGCT GCTATCCATC AGCGTGGTGC TGGCCTGCAC GTTTCTAGTG 3180
 TGCGCAGTCT TCCTCCTGAA CCCCTGGACG GCCGGGATCA TTGTATGGT CCTGGCTCTG 3240
 ATGACCGTTG AGCTTTGG CATGATGGC CTCATTGGG TCAAGCTGAG TGCTGTGCCT 3300
 GTGGTCATCC TGATTGCATC TGTTGGCATC GGAGTGGAGT TCACCGTCCA CGTGGCTTG 3360
 GCCTTCTGA CAGCCATTGG GGACAAGAAC CACAGGGCTA TGCTCGCTCT GGAACACATG 3420
 TTTGCTCCCG TTCTGGACGG TGCTGTGTCC ACTCTGCTGG GTGTACTGAT GCTTGCAGGG 3480
 TCCGAATTG ATTCATTGT CAGATACTTC TTTGCCGTCC TGGCCATTCT CACCGTCTTG 3540
 GGGGTTCTCA ATGGACTGGT TCTGCTGCCT GTCCCTTTAT CCTTCTTTGG ACCGTGTCCT 3600
 GAGGTGTCTC CAGCCAATGG CCTAAACCGA CTGCCCACTC CTTGCCGTGA GCCGCCTCCA 3660
 AGTGTGTCGTC GGTTGCCGT GCCTCCTGGT CACACGAACA ATGGGTCTGA TTCCTCCGAC 3720
 TCGGAGTACA GCTCTCAGAC CACGGTGTCT GGCATCAGTG AGGAGCTCAG GCAATACGAA 3780
 GCACAGCAGG GTGCCGGAGG CCCTGCCAC CAAGTGATTG TGGAAGCCAC AGAAAACCCCT 3840
 GTCTTGCCCC GGTCCACTGT GGTCCATCCG GACTCCAGAC ATCAGCCTCC CTTGACCCCT 3900

CGGCAACAGC CCCACCTGGA CTCTGGCTCC TTGTCCCCCTG GACGGCAAGG CCAGCAGCCT	3960
CGAAGGGATC CCCCTAGAGA AGGCTTGCAG CCACCCCCCT ACAGACCGCG CAGAGACGCT	4020
TTTGAATTT CTACTGAAGG GCATTCTGGC CCTAGCAATA GGGACCGCTC AGGGCCCCGT	4080
GGGGCCCGTT CTCACAACCC TCGGAACCCA ACGTCCACCG CCATGGGCAG CTCTGTGCC	4140
AGCTACTGCC AGCCCATCAC CACTGTGACG GCTTCTGCTT CGGTGACTGT TGCTGTGCAT	4200
CCCCCGCCTG GACCTGGCG CAACCCCCGA GGGGGGCCCT GTCCAGGCTA TGAGAGCTAC	4260
CCTGAGACTG ATCACGGGT ATTTGAGGAT CCTCATGTGC CTTTCATGT CAGGTGTGAG	4320
AGGAGGGACT CAAAGGTGGA GGTCA TAGAG CTACAGGACG TGGAA TGTGA GGAGAGGCCG	4380
TGGGGGAGCA GCTCCA ACTG AGGGTA ATTAA AATCTGAAG CAAAGAGGCC AAAGATTGGA	4440
AAGCCCCGCC CCCACCTCTT TCCAGAACTG CTTGAAGAGA ACTGCTTGGA ATTATGGAA	4500
GGCAGTTCAT TGTTACTGTA ACTGATTGTA TTATTGGTAA AATATTTCT ATAAATATT	4560
AARAGGTGTA CACATGTAAT ATACATGGAA ATGCTGTACA GTCTATTCC TGGGGCCTCT	4620
CCACTCCTGC CCCAGAGTGG GGAGACCACA GGGGCCCTT CCCCTGTGTA CATTGGTCTC	4680
TGTGCCACAA CCAAGCTAA CTTAGTTTA AAAAAATCT CCCAGCATAT GTGCGTGCTG	4740
CTTAAATATT GTATAATTAA CTTGTATAAT TCTATGCAA TATTGCTTAT GTAATAGGAT	4800
TATTGTAAA GGTTCTGTT TAAATATTAA TAAATTGCA TATCACAACC CTGTGGTAGG	4860
ATGAATTGTT ACTGTTAACT TTTGAACACG CTATGCGTGG TAATTGTTA ACGAGCAGAC	4920
ATGAAGAAAA CAGGTTAACCC CAGTGGCTT CTCTAGGGGT AGTTGTATAT GGTCGCATG	4980
GGTGGATGTT TGTGTGCATG TGACTTTCCA ATGACTGTA TTGTGGTTG TTGTTGTTGT	5040
TGCTGTTGTT GTTCATTTG GTGTTTTGG TTGCTTGTA TGATCTTAGC TCTGGCCTAG	5100
GTGGGCTGGG AAGGTCCAGG TCTTTTCTG TCGTGATGCT GGTGGAAAGG TGACCCCCAAT	5160
CATCTGTCCT ATTCTCTGGG ACTATTG	5187

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1434 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Ala Ser Ala Gly Asn Ala Ala Gly Ala Leu Gly Arg Gln Ala Gly
1 5 10 15

Gly Gly Arg Arg Arg Arg Thr Gly Gly Pro His Arg Ala Ala Pro Asp

20

25

30

Arg Asp Tyr Leu His Arg Pro Ser Tyr Cys Asp Ala Ala Phe Ala Leu
 35 40 45
 Glu Gln Ile Ser Lys Gly Lys Ala Thr Gly Arg Lys Ala Pro Leu Trp
 50 55 60
 Leu Arg Ala Lys Phe Gln Arg Leu Leu Phe Lys Leu Gly Cys Tyr Ile
 65 70 75 80
 Gln Lys Asn Cys Gly Lys Phe Leu Val Val Gly Leu Leu Ile Phe Gly
 85 90 95
 Ala Phe Ala Val Gly Leu Lys Ala Ala Asn Leu Glu Thr Asn Val Glu
 100 105 110
 Glu Leu Trp Val Glu Val Gly Gly Arg Val Ser Arg Glu Leu Asn Tyr
 115 120 125
 Thr Arg Gln Lys Ile Gly Glu Glu Ala Met Phe Asn Pro Gln Leu Met
 130 135 140
 Ile Gln Thr Pro Lys Glu Glu Gly Ala Asn Val Leu Thr Thr Glu Ala
 145 150 155 160
 Leu Leu Gln His Leu Asp Ser Ala Leu Gln Ala Ser Arg Val His Val
 165 170 175
 Tyr Met Tyr Asn Arg Gln Trp Lys Leu Glu His Leu Cys Tyr Lys Ser
 180 185 190
 Gly Glu Leu Ile Thr Glu Thr Gly Tyr Met Asp Gln Ile Ile Glu Tyr
 195 200 205
 Leu Tyr Pro Cys Leu Ile Ile Thr Pro Leu Asp Cys Phe Trp Glu Gly
 210 215 220
 Ala Lys Leu Gln Ser Gly Thr Ala Tyr Leu Leu Gly Lys Pro Pro Leu
 225 230 235 240
 Arg Trp Thr Asn Phe Asp Pro Leu Glu Phe Leu Glu Glu Leu Lys Lys
 245 250 255
 Ile Asn Tyr Gln Val Asp Ser Trp Glu Glu Met Leu Asn Lys Ala Glu
 260 265 270
 Val Gly His Gly Tyr Met Asp Arg Pro Cys Leu Asn Pro Ala Asp Pro
 275 280 285
 Asp Cys Pro Ala Thr Ala Pro Asn Lys Asn Ser Thr Lys Pro Leu Asp
 290 295 300
 Val Ala Leu Val Leu Asn Gly Gly Cys Gln Gly Leu Ser Arg Lys Tyr
 305 310 315 320
 Met His Trp Gln Glu Glu Leu Ile Val Gly Gly Thr Val Lys Asn Ala
 325 330 335
 Thr Gly Lys Leu Val Ser Ala His Ala Leu Gln Thr Met Phe Gln Leu
 340 345 350
 Met Thr Pro Lys Gln Met Tyr Glu His Phe Arg Gly Tyr Asp Tyr Val
 355 360 365

089163450 089163451

Ser His Ile Asn Trp Asn Glu Asp Arg Ala Ala Ile Leu Glu Ala
 370 375 380
 Trp Gln Arg Thr Tyr Val Glu Val Val His Gln Ser Val Ala Pro Asn
 385 390 395 400
 Ser Thr Gln Lys Val Leu Pro Phe Thr Thr Thr Leu Asp Asp Ile
 405 410 415
 Leu Lys Ser Phe Ser Asp Val Ser Val Ile Arg Val Ala Ser Gly Tyr
 420 425 430
 Leu Leu Met Leu Ala Tyr Ala Cys Leu Thr Met Leu Arg Trp Asp Cys
 435 440 445
 Ser Lys Ser Gln Gly Ala Val Gly Leu Ala Gly Val Leu Leu Val Ala
 450 455 460
 Leu Ser Val Ala Ala Gly Leu Gly Leu Cys Ser Leu Ile Gly Ile Ser
 465 470 475 480
 Phe Asn Ala Ala Thr Thr Gln Val Leu Pro Phe Leu Ala Leu Gly Val
 485 490 495
 Gly Val Asp Asp Val Phe Leu Leu Ala His Ala Phe Ser Glu Thr Gly
 500 505 510
 Gln Asn Lys Arg Ile Pro Phe Glu Asp Arg Thr Gly Glu Cys Leu Lys
 515 520 525
 Arg Thr Gly Ala Ser Val Ala Leu Thr Ser Ile Ser Asn Val Thr Ala
 530 535 540
 Phe Phe Met Ala Ala Leu Ile Pro Ile Pro Ala Leu Arg Ala Phe Ser
 545 550 555 560
 Leu Gln Ala Ala Val Val Val Val Phe Asn Phe Ala Met Val Leu Leu
 565 570 575
 Ile Phe Pro Ala Ile Leu Ser Met Asp Leu Tyr Arg Arg Glu Asp Arg
 580 585 590
 Arg Leu Asp Ile Phe Cys Cys Phe Thr Ser Pro Cys Val Ser Arg Val
 595 600 605
 Ile Gln Val Glu Pro Gln Ala Tyr Thr Glu Pro His Ser Asn Thr Arg
 610 615 620
 Tyr Ser Pro Pro Pro Pro Tyr Thr Ser His Ser Phe Ala His Glu Thr
 625 630 635 640
 His Ile Thr Met Gln Ser Thr Val Gln Leu Arg Thr Glu Tyr Asp Pro
 645 650 655
 His Thr His Val Tyr Tyr Thr Thr Ala Glu Pro Arg Ser Glu Ile Ser
 660 665 670
 Val Gln Pro Val Thr Val Thr Gln Asp Asn Leu Ser Cys Gln Ser Pro
 675 680 685
 Glu Ser Thr Ser Ser Thr Arg Asp Leu Leu Ser Gln Phe Ser Asp Ser
 690 695 700

Ser Leu His Cys Leu Glu Pro Pro Cys Thr Lys Trp Thr Leu Ser Ser
 705 710 715 720
 Phe Ala Glu Lys His Tyr Ala Pro Phe Leu Leu Lys Pro Lys Ala Lys
 725 730 735
 Val Val Val Ile Leu Leu Phe Leu Gly Leu Leu Gly Val Ser Leu Tyr
 740 745 750
 Gly Thr Thr Arg Val Arg Asp Gly Leu Asp Leu Thr Asp Ile Val Pro
 755 760 765
 Arg Glu Thr Arg Glu Tyr Asp Phe Ile Ala Ala Gln Phe Lys Tyr Phe
 770 775 780
 Ser Phe Tyr Asn Met Tyr Ile Val Thr Gln Lys Ala Asp Tyr Pro Asn
 785 790 795 800
 Ile Gln His Leu Leu Tyr Asp Leu His Lys Ser Phe Ser Asn Val Lys
 805 810 815
 Tyr Val Met Leu Glu Glu Asn Lys Gln Leu Pro Gln Met Trp Leu His
 820 825 830
 Tyr Phe Arg Asp Trp Leu Gln Gly Leu Gln Asp Ala Phe Asp Ser Asp
 835 840 845
 Trp Glu Thr Gly Arg Ile Met Pro Asn Asn Tyr Lys Asn Gly Ser Asp
 850 855 860
 Asp Gly Val Leu Ala Tyr Lys Leu Leu Val Gln Thr Gly Ser Arg Asp
 865 870 875 880
 Lys Pro Ile Asp Ile Ser Gln Leu Thr Lys Gln Arg Leu Val Asp Ala
 885 890 895
 Asp Gly Ile Ile Asn Pro Ser Ala Phe Tyr Ile Tyr Leu Thr Ala Trp
 900 905 910
 Val Ser Asn Asp Pro Val Ala Tyr Ala Ala Ser Gln Ala Asn Ile Arg
 915 920 925
 Pro His Arg Pro Glu Trp Val His Asp Lys Ala Asp Tyr Met Pro Glu
 930 935 940
 Thr Arg Leu Arg Ile Pro Ala Ala Glu Pro Ile Glu Tyr Ala Gln Phe
 945 950 955 960
 Pro Phe Tyr Leu Asn Gly Leu Arg Asp Thr Ser Asp Phe Val Glu Ala
 965 970 975
 Ile Glu Lys Val Arg Val Ile Cys Asn Asn Tyr Thr Ser Leu Gly Leu
 980 985 990
 Ser Ser Tyr Pro Asn Gly Tyr Pro Phe Leu Phe Trp Glu Gln Tyr Ile
 995 1000 1005
 Ser Leu Arg His Trp Leu Leu Leu Ser Ile Ser Val Val Leu Ala Cys
 1010 1015 1020
 Thr Phe Leu Val Cys Ala Val Phe Leu Leu Asn Pro Trp Thr Ala Gly
 1025 1030 1035 1040

DEPARTMENT OF MEDICAL SCIENCES
 26

Ile Ile Val Met Val Leu Ala Leu Met Thr Val Glu Leu Phe Gly Met
 1045 1050 1055
 Met Gly Leu Ile Gly Ile Lys Leu Ser Ala Val Pro Val Val Ile Leu
 1060 1065 1070
 Ile Ala Ser Val Gly Ile Gly Val Glu Phe Thr Val His Val Ala Leu
 1075 1080 1085
 Ala Phe Leu Thr Ala Ile Gly Asp Lys Asn His Arg Ala Met Leu Ala
 1090 1095 1100
 Leu Glu His Met Phe Ala Pro Val Leu Asp Gly Ala Val Ser Thr Leu
 1105 1110 1115 1120
 Leu Gly Val Leu Met Leu Ala Gly Ser Glu Phe Asp Phe Ile Val Arg
 1125 1130 1135
 Tyr Phe Phe Ala Val Leu Ala Ile Leu Thr Val Leu Gly Val Leu Asn
 1140 1145 1150
 Gly Leu Val Leu Leu Pro Val Leu Leu Ser Phe Phe Gly Pro Cys Pro
 1155 1160 1165
 Glu Val Ser Pro Ala Asn Gly Leu Asn Arg Leu Pro Thr Pro Ser Pro
 1170 1175 1180
 Glu Pro Pro Pro Ser Val Val Arg Phe Ala Val Pro Pro Gly His Thr
 1185 1190 1195 1200
 Asn Asn Gly Ser Asp Ser Ser Asp Ser Glu Tyr Ser Ser Gln Thr Thr
 1205 1210 1215
 Val Ser Gly Ile Ser Glu Glu Leu Arg Gln Tyr Glu Ala Gln Gln Gly
 1220 1225 1230
 Ala Gly Gly Pro Ala His Gln Val Ile Val Glu Ala Thr Glu Asn Pro
 1235 1240 1245
 Val Phe Ala Arg Ser Thr Val Val His Pro Asp Ser Arg His Gln Pro
 1250 1255 1260
 Pro Leu Thr Pro Arg Gln Gln Pro His Leu Asp Ser Gly Ser Leu Ser
 1265 1270 1275 1280
 Pro Gly Arg Gln Gly Gln Gln Pro Arg Arg Asp Pro Pro Arg Glu Gly
 1285 1290 1295
 Leu Arg Pro Pro Pro Tyr Arg Pro Arg Arg Asp Ala Phe Glu Ile Ser
 1300 1305 1310
 Thr Glu Gly His Ser Gly Pro Ser Asn Arg Asp Arg Ser Gly Pro Arg
 1315 1320 1325
 Gly Ala Arg Ser His Asn Pro Arg Asn Pro Thr Ser Thr Ala Met Gly
 1330 1335 1340
 Ser Ser Val Pro Ser Tyr Cys Gln Pro Ile Thr Thr Val Thr Ala Ser
 1345 1350 1355 1360
 Ala Ser Val Thr Val Ala Val His Pro Pro Pro Gly Pro Gly Arg Asn
 1365 1370 1375

DECODED - DECODED

Pro Arg Gly Gly Pro Cys Pro Gly Tyr Glu Ser Tyr Pro Glu Thr Asp
 1380 1385 1390

His Gly Val Phe Glu Asp Pro His Val Pro Phe His Val Arg Cys Glu
 1395 1400 1405

Arg Arg Asp Ser Lys Val Glu Val Ile Glu Leu Gln Asp Val Glu Cys
 1410 1415 1420

Glu Glu Arg Pro Trp Gly Ser Ser Ser Asn
 1425 1430

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Ile Ile Thr Pro Leu Asp Cys Phe Trp Glu Gly
 1 5 10

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Leu Ile Val Gly Gly
 1 5

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Pro Phe Phe Trp Glu Gln Tyr

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 28 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "primer"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GGACGAATTC AARGTNCAYC ARYTNTGG

28

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 26 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "primer"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GGACGAATTC CYTCCCARAA RCANTC

26

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 27 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "primer"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
GGACGAATTC YTNGANTGYT TYTGGGA

27

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 31 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "primer"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

CATACCAGCC AAGCTTGTCT GGCCARTGCA T

31

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 5288 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

GAATTCCGGG GACCGCAAGG AGTGCCGCGG AAGCGCCCGA AGGACAGGCT CGCTCGGCGC	60
GCCGGCTCTC GCTCTTCCGC GAACTGGATG TGGGCAGCGG CGGCCGCAGA GACCTCGGGGA	120
CCCCCGCGCA ATGTGGCAAT GGAAGGCGCA GGGTCTGACT CCCCAGGCAGC GGCGCGGGCC	180
GCAGCGGCAG CAGCGCCCGC CGTGTGAGCA GCAGCAGCGG CTGGTCTGTC AACCGGAGCC	240
CGAGCCCGAG CAGCCTGCGG CCAGCAGCGT CCTCGCAAGC CGAGCGCCCA GGCGCGGCCAG	300
GAGCCCGCAG CAGCGGCAGC AGCGCGCCGG GCCGCCCGGG AAGCCTCCGT CCCCAGGGCG	360
GCGGCGGGCGG CGGCAGCGGC AACATGGCCT CGGCTGGTAA CGCCGCGAG CCCCAGGACC	420
GCGGCGGGCGG CGGCAGCGGC TGTATCGGTG CCCCAGGAGC GCCGGCTGGA GGCGGGAGGC	480
GCAGACGGAC GGGGGGGCTG CGCCGTGCTG CCGCGCCGGA CCGGGACTAT CTGCACCGGC	540
CCAGCTACTG CGACGCCGCC TTGCTCTGG AGCAGATTTC CAAGGGGAAG GCTACTGGCC	600
GGAAAGCGCC ACTGTGGCTG AGAGCGAAGT TTCAGAGACT CTTATTAAA CTGGGTTGTT	660
AATTCAAAAA AAAC TGCGGC AAGTTCTTGG TTGTGGCCT CCTCATATT GGGGCCTTCG	720
CGGTGGGATT AAAAGCAGCG AACCTCGAGA CCAACGTGGA GGAGCTGTGG GTGGAAGTTG	780
GAGGACGAGT AAGTCGTGAA TTAAATTATA CTCGCCAGAA GATTGGAGAA GAGGCTATGT	840
TTAACCTCA ACTCATGATA CAGACCCCTA AAGAAGAAGG TGCTAATGTC CTGACCACAG	900
AAGCGCTCCT ACAACACCTG GACTCGGCAC TCCAGGCCAG CCGTGTCCAT GTATACATGT	960
ACAACAGGCA GTGGAAATTG GAACATTGT GTTACAAATC AGGAGAGCTT ATCACAGAAA	1020
CAGGTTACAT GGATCAGATA ATAGAATATC TTTACCCCTTG TTTGATTATT ACACCTTTGG	1080
ACTGCTTCTG GGAAGGGCG AAATTACAGT CTGGGACAGC ATACCTCCTA GGTAAACCTC	1140

DRAFT DRAFT DRAFT

CTTGCGGTG GACAAACTTC GACCCTTGG AATTCCCTGGA AGAGTTAAAG AAAATAAACT	1200
ATCAAGTGG A CAGCTGGGAG GAAATGCTGA ATAAGGCTGA GGTTGGTCAT GGTTACATGG	1260
ACCGCCCCCTG CCTCAATCCG GCCGATCCAG ACTGCCCGC CACAGCCCC AACAAAAATT	1320
CAACCAAACC TCTTGATATG GCCCTTGT TT TGAATGGTGG ATGTCATGGC TTATCCAGAA	1380
AGTATATGCA CTGGCAGGAG GAGTTGATTG TGGGTGGCAC AGTCAAGAAC AGCACTGGAA	1440
AACTCGTCAG CGCCCAGGCC CTGCAGACCA TGTTCCAGTT AATGACTCCC AAGCAAATGT	1500
ACGAGCACTT CAAGGGGTAC GAGTATGTCT CACACATCAA CTGGAACGAG GACAAAGCGG	1560
CAGCCATCCT GGAGGCCTGG CAGAGGACAT ATGTTGGAGGT GGTTCATCAG AGTGTGCGCAC	1620
AGAACTCCAC TCAAAAGGTG CTTTCCTTCA CCACCACGAC CCTGGACGAC ATCCTGAAAT	1680
CCTTCTCTGA CGTCAGTGTC ATCCCGTGG CCAGCGGCTA CTTACTCATG CTCGCCTATG	1740
CCTGTCTAAC CATGCTGCGC TGGGACTGCT CCAAGTCCC GGTTGCCGTG GGCTGGCTG	1800
GGGTCCCTGCT GGTTGCACTG TCAGTGGCTG CAGGACTGGG CCTGTGCTCA TTGATCGGAA	1860
TTTCCTTTAA CGCTGCAACA ACTCAGGTT TGCCATTCT CGCTCTTGGT GTTGGTGTGG	1920
ATGATGTTTT TCTTCTGGCC CACGCCTTCA GTGAAACAGG ACAGAATAAA AGAATCCCTT	1980
TTGAGGACAG GACGGGGAG TGCCCTGAAGC GCACAGGAGC CAGCGTGGCC CTCACGTCCA	2040
TCAGCAATGT CACAGCCTTC TTCATGGCCG CGTTAATCCC AATTCCCGCT CTGCGGGCGT	2100
TCTCCCTCCA GGCAGCGGT A GTAGTGGTGT TCAATTTCGC CATGGTCTG CTCATTTTC	2160
CTGCAATTCT CAGCATGGAT TTATATCGAC GCGAGGACAG GAGACTGGAT ATTTCTGCT	2220
GTTTTACAAG CCCCTGCGTC AGCAGAGTGA TTCAGGTTGA ACCTCAGGCC TACACCGACA	2280
CACACGACAA TACCCGCTAC AGCCCCCAC CTCCCTACAG CAGCCACAGC TTTGCCATG	2340
AAACGCAGAT TACCATGCAG TCCACTGTCC AGCTCCGCAC GGAGTACGAC CCCCACACGC	2400
ACGTGTACTA CACCACCGCT GAGCCCGCGT CCGAGATCTC TGTGCAGCCC GTCACCGTGA	2460
CACAGGACAC CCTCAGCTGC CAGAGCCCAG AGAGCACCAG CTCCACAAAGG GACCTGCTCT	2520
CCCAGTTCTC CGACTCCAGC CTCCACTGCC TCGAGCCCC CTGTACGAAG TGGACACTCT	2580
CATCTTTGC TGAGAAGCAC TATGCTCCTT TCCTCTTGAA ACCAAAAGCC AAGGTAGTGG	2640
TGATCTTCCCT TTTCTGGGC TTGCTGGGG TCAGCCTTTA TGGCACCAAC CGAGTGAGAG	2700
ACGGGCTGGA CCTTACGGAC ATTGTACCTC GGGAAACCAAG AGAATATGAC TTTATTGCTG	2760
CACAATTCAA ATACTTTCT TTCTACAACA TGTATATAGT CACCCAGAAA GCAGACTACC	2820
CGAATATCCA GCACTTACTT TACGACCTAC ACAGGAGTTT CAGTAACGTG AAGTATGTCA	2880
TGTTGGAAGA AAACAAACAG CTTCCAAAAA TGTGGCTGCA CTACTCAGA GACTGGCTTC	2940
AGTCAACTCA GGATGCATTT GACAGTGAAT GGGAAACCGG GAAAATCATG CCAAACAATT	3000
ACAAGAATGG ATCAGACGAT GGAGTCCTTG CCTACAAACT CCTGGTGCAA ACCGGCAGCC	3060

GCGATAAGCC CATCGACATC AGCCAGTTGA CTAACAGCG TCTGGTGGAT GCAGATGGCA 3120
 TCATTAATCC CAGCGCTTTC TACATCTACC TGACGGCTTG GGTCAAGAAC GACCCCGTCG 3180
 CGTATGCTGC CTCCCAGGCC AACATCCGGC CACACCGACC AGAATGGGTC CACGACAAAG 3240
 CCGACTACAT GCCTGAAACA AGGCTGAGAA TCCCCGCAGC AGAGCCCATC GAGTATGCC 3300
 AGTTCCCTT CTACCTCAAC GGGTTGCGGG ACACCTCAGA CTTTGTGGAG GCAATTGAAA 3360
 AAGTAAGGAC CATCTGCAGC AACTATACGA GCCTGGGCT GTCCAGTTAC CCCAACGGCT 3420
 ACCCCTTCCT CTTCTGGGAG CAGTACATCG GCCTCCGCCA CTGGCTGCTG CTGTTCATCA 3480
 GCGTGGTGTGTT GGCCTGCACA TTCCCTCGTGT GCGCTGTCTT CCTTCTGAAC CCCTGGACGG 3540
 CCGGGATCAT TGTGATGGTC CTGGCGCTGA TGACGGTCGA GCTGTTCGGC ATGATGGGCC 3600
 TCATCGGAAT CAAGCTCAGT GCCGTGCCCG TGGTCATCCT GATCGCTTCT GTTGGCATAG 3660
 GAGTGGAGTT CACCGTTCAC GTTGCTTGG CCTTCTGAC GGCCATCGGC GACAAGAAC 3720
 GCAGGGCTGT GCTTGCCTG GAGCACATGT TTGCACCCGT CCTGGATGGC GCCGTGTCCA 3780
 CTCTGCTGGG AGTGCTGATG CTGGCGGGAT CTGAGTTCGA CTTCATTGTC AGGTATTCT 3840
 TTGCTGTGCT GGCGATCCTC ACCATCCTCG GCGTTCTCAA TGGGCTGGTT TTGCTTCCCG 3900
 TGCTTTGTC TTTCTTGGA CCATATCCTG AGGTGTCTCC AGCCAACGGC TTGAACCGCC 3960
 TGCCCCACACC CTCCCCTGAG CCACCCCCCA GCGTGGTCCG CTTCGCCATG CCGCCCGGCC 4020
 ACACGCACAG CGGGTCTGAT TCCTCCGACT CGGAGTATAG TTCCCAGACG ACAGTGTCA 4080
 GCCTCAGCGA GGAGCTTCGG CACTACGAGG CCCAGCAGGG CGCGGGAGGC CCTGCCACC 4140
 AAGTGATCGT GGAAGCCACA GAAAACCCCG TCTTCGCCCA CTCCACTGTG GTCCATCCCG 4200
 AATCCAGGCA TCACCCACCC TCGAACCGA GACAGCAGCC CCACCTGGAC TCAGGGTCCC 4260
 TGCCTCCCGG ACGGCAAGGC CAGCAGCCCC GCAGGGACCC CCCCAGAGAA GGCTTGTGGC 4320
 CACCCCTCTA CAGACCGCGC AGAGACGCTT TTGAAATTTC TACTGAAGGG CATTCTGGCC 4380
 CTAGCAATAG GGCCCGCTGG GGCCCTCGCG GGGCCCGTTC TCACAACCCCT CGGAACCCAG 4440
 CGTCCACTGC CATGGGCAGC TCCGTGCCCG GCTACTGCCA GCCCATCACC ACTGTGACGG 4500
 CTTCTGCCTC CGTACTGTC GCCGTGCACC CGCCGCCTGT CCCTGGGCCT GGGCGGAACC 4560
 CCCGAGGGGG ACTCTGCCCA GGCTACCCCTG AGACTGACCA CGGCCTGTT GAGGACCCCC 4620
 ACGTGCCTT CCACGTCCGG TGTGAGAGGA GGGATTGAA GGTGGAAGTC ATTGAGCTGC 4680
 AGGACGTGGA ATGCGAGGAG AGGCCCCGGG GAAGCAGCTC CAACTGAGGG TGATTAAAAT 4740
 CTGAAGCAAAG GAGGCCAAAG ATTGGAAACC CCCCACCCCC ACCTCTTCC AGAACTGCTT 4800
 GAAGAGAACT GGTTGGAGTT ATGGAAAAGA TGCCCTGTGC CAGGACAGCA GTTCATTGTT 4860
 ACTGTAACCG ATTGTATTAT TTTGTTAAAT ATTTCTATAA ATATTAAGA GATGTACACA 4920

TGTGTAATAT AGGAAGGAAG GATGTAAAGT GGTATGATCT GGGGCTTCTC CACTCCTGCC	4980
CCAGAGTGTG GAGGCCACAG TGGGGCCTCT CCGTATTGT GCATTGGGCT CCGTGCCACA	5040
ACCAAGCTTC ATTAGTCTTA AATTCAGCA TATGTTGCTG CTGCTTAAAT ATTGTATAAT	5100
TTACTTGTAT AATTCTATGC AAATATTGCT TATGTAATAG GATTATTTG TAAAGGTTTC	5160
TGTTTAAAAT ATTTAAATT TGCATATCAC AACCTGTGG TAGTATGAAA TGTTACTGTT	5220
AACTTCAAA CACGCTATGC GTGATAATTT TTTGTTAA TGAGCAGATA TGAAGAAAGC	5280
CCGGAATT	5288

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1447 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Met Ala Ser Ala Gly Asn Ala Ala Glu Pro Gln Asp Arg Gly Gly Gly	
1 5 10 15	
Gly Ser Gly Cys Ile Gly Ala Pro Gly Arg Pro Ala Gly Gly Gly Arg	
20 25 30	
Arg Arg Arg Thr Gly Gly Leu Arg Arg Ala Ala Ala Pro Asp Arg Asp	
35 40 45	
Tyr Leu His Arg Pro Ser Tyr Cys Asp Ala Ala Phe Ala Leu Glu Gln	
50 55 60	
Ile Ser Lys Gly Lys Ala Thr Gly Arg Lys Ala Pro Leu Trp Leu Arg	
65 70 75 80	
Ala Lys Phe Gln Arg Leu Leu Phe Lys Leu Gly Cys Tyr Ile Gln Lys	
85 90 95	
Asn Cys Gly Lys Phe Leu Val Val Gly Leu Leu Ile Phe Gly Ala Phe	
100 105 110	
Ala Val Gly Leu Lys Ala Ala Asn Leu Glu Thr Asn Val Glu Glu Leu	
115 120 125	
Trp Val Glu Val Gly Gly Arg Val Ser Arg Glu Leu Asn Tyr Thr Arg	
130 135 140	
Gln Lys Ile Gly Glu Glu Ala Met Phe Asn Pro Gln Leu Met Ile Gln	
145 150 155 160	
Thr Pro Lys Glu Glu Gly Ala Asn Val Leu Thr Thr Glu Ala Leu Leu	
165 170 175	
Gln His Leu Asp Ser Ala Leu Gln Ala Ser Arg Val His Val Tyr Met	

180	185	190
Tyr Asn Arg Gln Trp Lys Leu Glu His Leu Cys Tyr Lys Ser Gly Glu		
195	200	205
Leu Ile Thr Glu Thr Gly Tyr Met Asp Gln Ile Ile Glu Tyr Leu Tyr		
210	215	220
Pro Cys Leu Ile Ile Thr Pro Leu Asp Cys Phe Trp Glu Gly Ala Lys		
225	230	235
Leu Gln Ser Gly Thr Ala Tyr Leu Leu Gly Lys Pro Pro Leu Arg Trp		
245	250	255
Thr Asn Phe Asp Pro Leu Glu Phe Leu Glu Glu Leu Lys Lys Ile Asn		
260	265	270
Tyr Gln Val Asp Ser Trp Glu Glu Met Leu Asn Lys Ala Glu Val Gly		
275	280	285
His Gly Tyr Met Asp Arg Pro Cys Leu Asn Pro Ala Asp Pro Asp Cys		
290	295	300
Pro Ala Thr Ala Pro Asn Lys Asn Ser Thr Lys Pro Leu Asp Met Ala		
305	310	315
Leu Val Leu Asn Gly Gly Cys His Gly Leu Ser Arg Lys Tyr Met His		
325	330	335
Trp Gln Glu Glu Leu Ile Val Gly Gly Thr Val Lys Asn Ser Thr Gly		
340	345	350
Lys Leu Val Ser Ala His Ala Leu Gln Thr Met Phe Gln Leu Met Thr		
355	360	365
Pro Lys Gln Met Tyr Glu His Phe Lys Gly Tyr Glu Tyr Val Ser His		
370	375	380
Ile Asn Trp Asn Glu Asp Lys Ala Ala Ile Leu Glu Ala Trp Gln		
385	390	395
Arg Thr Tyr Val Glu Val Val His Gln Ser Val Ala Gln Asn Ser Thr		
405	410	415
Gln Lys Val Leu Ser Phe Thr Thr Thr Leu Asp Asp Ile Leu Lys		
420	425	430
Ser Phe Ser Asp Val Ser Val Ile Arg Val Ala Ser Gly Tyr Leu Leu		
435	440	445
Met Leu Ala Tyr Ala Cys Leu Thr Met Leu Arg Trp Asp Cys Ser Lys		
450	455	460
Ser Gln Gly Ala Val Gly Leu Ala Gly Val Leu Leu Val Ala Leu Ser		
465	470	475
Val Ala Ala Gly Leu Gly Leu Cys Ser Leu Ile Gly Ile Ser Phe Asn		
485	490	495
Ala Ala Thr Thr Gln Val Leu Pro Phe Leu Ala Leu Gly Val Gly Val		
500	505	510
Asp Asp Val Phe Leu Leu Ala His Ala Phe Ser Glu Thr Gly Gln Asn		

515	520	525
Lys Arg Ile Pro Phe Glu Asp Arg Thr Gly Glu Cys Leu Lys Arg Thr 530	535	540
Gly Ala Ser Val Ala Leu Thr Ser Ile Ser Asn Val Thr Ala Phe Phe 545	550	555
Met Ala Ala Leu Ile Pro Ile Pro Ala Leu Arg Ala Phe Ser Leu Gln 565	570	575
Ala Ala Val Val Val Val Phe Asn Phe Ala Met Val Leu Leu Ile Phe 580	585	590
Pro Ala Ile Leu Ser Met Asp Leu Tyr Arg Arg Glu Asp Arg Arg Leu 595	600	605
Asp Ile Phe Cys Cys Phe Thr Ser Pro Cys Val Ser Arg Val Ile Gln 610	615	620
Val Glu Pro Gln Ala Tyr Thr Asp Thr His Asp Asn Thr Arg Tyr Ser 625	630	635
Pro Pro Pro Tyr Ser Ser His Ser Phe Ala His Glu Thr Gln Ile 645	650	655
Thr Met Gln Ser Thr Val Gln Leu Arg Thr Glu Tyr Asp Pro His Thr 660	665	670
His Val Tyr Tyr Thr Thr Ala Glu Pro Arg Ser Glu Ile Ser Val Gln 675	680	685
Pro Val Thr Val Thr Gln Asp Thr Leu Ser Cys Gln Ser Pro Glu Ser 690	695	700
Thr Ser Ser Thr Arg Asp Leu Leu Ser Gln Phe Ser Asp Ser Ser Leu 705	710	715
His Cys Leu Glu Pro Pro Cys Thr Lys Trp Thr Leu Ser Ser Phe Ala 725	730	735
Glu Lys His Tyr Ala Pro Phe Leu Leu Lys Pro Lys Ala Lys Val Val 740	745	750
Val Ile Phe Leu Phe Leu Gly Leu Leu Gly Val Ser Leu Tyr Gly Thr 755	760	765
Thr Arg Val Arg Asp Gly Leu Asp Leu Thr Asp Ile Val Pro Arg Glu 770	775	780
Thr Arg Glu Tyr Asp Phe Ile Ala Ala Gln Phe Lys Tyr Phe Ser Phe 785	790	795
Tyr Asn Met Tyr Ile Val Thr Gln Lys Ala Asp Tyr Pro Asn Ile Gln 805	810	815
His Leu Leu Tyr Asp Leu His Arg Ser Phe Ser Asn Val Lys Tyr Val 820	825	830
Met Leu Glu Glu Asn Lys Gln Leu Pro Lys Met Trp Leu His Tyr Phe 835	840	845
Arg Asp Trp Leu Gln Gly Leu Gln Asp Ala Phe Asp Ser Asp Trp Glu 850	855	860

Thr Gly Lys Ile Met Pro Asn Asn Tyr Lys Asn Gly Ser Asp Asp Gly
 865 870 875 880
 Val Leu Ala Tyr Lys Leu Leu Val Gln Thr Gly Ser Arg Asp Lys Pro
 885 890 895
 Ile Asp Ile Ser Gln Leu Thr Lys Gln Arg Leu Val Asp Ala Asp Gly
 900 905 910
 Ile Ile Asn Pro Ser Ala Phe Tyr Ile Tyr Leu Thr Ala Trp Val Ser
 915 920 925
 Asn Asp Pro Val Ala Tyr Ala Ala Ser Gln Ala Asn Ile Arg Pro His
 930 935 940
 Arg Pro Glu Trp Val His Asp Lys Ala Asp Tyr Met Pro Glu Thr Arg
 945 950 955 960
 Leu Arg Ile Pro Ala Ala Glu Pro Ile Glu Tyr Ala Gln Phe Pro Phe
 965 970 975
 Tyr Leu Asn Gly Leu Arg Asp Thr Ser Asp Phe Val Glu Ala Ile Glu
 980 985 990
 Lys Val Arg Thr Ile Cys Ser Asn Tyr Thr Ser Leu Gly Leu Ser Ser
 995 1000 1005
 Tyr Pro Asn Gly Tyr Pro Phe Leu Phe Trp Glu Gln Tyr Ile Gly Leu
 1010 1015 1020
 Arg His Trp Leu Leu Leu Phe Ile Ser Val Val Leu Ala Cys Thr Phe
 1025 1030 1035 1040
 Leu Val Cys Ala Val Phe Leu Leu Asn Pro Trp Thr Ala Gly Ile Ile
 1045 1050 1055
 Val Met Val Leu Ala Leu Met Thr Val Glu Leu Phe Gly Met Met Gly
 1060 1065 1070
 Leu Ile Gly Ile Lys Leu Ser Ala Val Pro Val Val Ile Leu Ile Ala
 1075 1080 1085
 Ser Val Gly Ile Gly Val Glu Phe Thr Val His Val Ala Leu Ala Phe
 1090 1095 1100
 Leu Thr Ala Ile Gly Asp Lys Asn Arg Arg Ala Val Leu Ala Leu Glu
 1105 1110 1115 1120
 His Met Phe Ala Pro Val Leu Asp Gly Ala Val Ser Thr Leu Leu Gly
 1125 1130 1135
 Val Leu Met Leu Ala Gly Ser Glu Phe Asp Phe Ile Val Arg Tyr Phe
 1140 1145 1150
 Phe Ala Val Leu Ala Ile Leu Thr Ile Leu Gly Val Leu Asn Gly Leu
 1155 1160 1165
 Val Leu Leu Pro Val Leu Leu Ser Phe Phe Gly Pro Tyr Pro Glu Val
 1170 1175 1180
 Ser Pro Ala Asn Gly Leu Asn Arg Leu Pro Thr Pro Ser Pro Glu Pro
 1185 1190 1195 1200

Pro Pro Ser Val Val Arg Phe Ala Met Pro Pro Gly His Thr His Ser
 1205 1210 1215
 Gly Ser Asp Ser Ser Asp Ser Glu Tyr Ser Ser Gln Thr Thr Val Ser
 1220 1225 1230
 Gly Leu Ser Glu Glu Leu Arg His Tyr Glu Ala Gln Gln Gly Ala Gly
 1235 1240 1245
 Gly Pro Ala His Gln Val Ile Val Glu Ala Thr Glu Asn Pro Val Phe
 1250 1255 1260
 Ala His Ser Thr Val Val His Pro Glu Ser Arg His His Pro Pro Ser
 1265 1270 1275 1280
 Asn Pro Arg Gln Gln Pro His Leu Asp Ser Gly Ser Leu Pro Pro Gly
 1285 1290 1295
 Arg Gln Gly Gln Gln Pro Arg Arg Asp Pro Pro Arg Glu Gly Leu Trp
 1300 1305 1310
 Pro Pro Leu Tyr Arg Pro Arg Arg Asp Ala Phe Glu Ile Ser Thr Glu
 1315 1320 1325
 Gly His Ser Gly Pro Ser Asn Arg Ala Arg Trp Gly Pro Arg Gly Ala
 1330 1335 1340
 Arg Ser His Asn Pro Arg Asn Pro Ala Ser Thr Ala Met Gly Ser Ser
 1345 1350 1355 1360
 Val Pro Gly Tyr Cys Gln Pro Ile Thr Thr Val Thr Ala Ser Ala Ser
 1365 1370 1375
 Val Thr Val Ala Val His Pro Pro Val Pro Gly Pro Gly Arg Asn
 1380 1385 1390
 Pro Arg Gly Gly Leu Cys Pro Gly Tyr Pro Glu Thr Asp His Gly Leu
 1395 1400 1405
 Phe Glu Asp Pro His Val Pro Phe His Val Arg Cys Glu Arg Arg Asp
 1410 1415 1420
 Ser Lys Val Glu Val Ile Glu Leu Gln Asp Val Glu Cys Glu Glu Arg
 1425 1430 1435 1440
 Pro Arg Gly Ser Ser Ser Asn
 1445

08916446 * 08916447