Ch. 4 - Set proofs

Saturday, July 16, 2016 10:43 AM

4.4 PROOFS INVOLVING SETS

Intersection ANB = {x: xEA and xEB}

Union AUB = {x : XEA or XEB}

Difference A-B= jx: xeA and xEB]

Ex) Prove for every 2 sets A \$ B, A-B = AnB

For A-B=AAB we must show (i) A-BSAAB and (ii) ANBSA-B.

Proof of i)

Let x∈A-B. Then x∈A and x ∉B SO XEA and XEB, thus XEANE.

Hence A-BS ANB

Proof of ii)

Let xEANB. Then XEA and XEB. So XEA and X4B, thus XEA-B

Hence ANBSA-B.

Thus by (i) and (ii), A-B=AAB

Ex) Prove for every 2 sets A & B (AUB)-(ANB)=(A-B)U(B-A)

we must prone

i) (AUB) - (AAB) = (A-B) U(B-A)

Let XE(AUB)-(ANB), then XE(AUB) and X&(ANB). So xed or xeB.

Case 1: assume XEA

Since we know x4(ANB), then × &A or × &13. But by our assumption, it must be x &B. So xeA and x &B. thus xe(A-B).

case 2. assume XEB.

WLOG frome case 1. xe(B-A)

Hence $x \in (A-B)$ or $x \in (B-A)$. So $x \in (A-B) \cup (B-A)$.

Finally, we know (AUB)-(ANB) = (A-B)U(B-A)

ii) (A-B)U(B-A) = (AUB)-(ANB)

Let xE(A-B)U(B-A), So xEA-B or xEB-A.

Case 1: XEA-B

SO XEA and X&B. Thus we can say XE(AUB) and X&(ANB). So XE(AUB)-(ANB).

Case 2: XEB-A.

WLOG from casel, again we see $\times E(AUB)-(AnB)$.

Here (A-B)U(B-A) E (AUB) - (ANB)

EX) Prove AUB = A : If 13 S A

=

- Proof by contrapositive "if B&A, then AUB#A"

 Assume B\$A, then there is an element x

 such that xEB and x&A. Since xEA,

 xEAUB. Honever, x&A. So AUB#A.
- ii) if BEA, then AUB=A

 Assume BEA, then for any XEB also XEA.
- 4.5 FUNDAMENTAL PROPERTIES OF SET OPERATIONS

Commutative AUB = BUA

Associative AU(Buc) = (AUB) UC

Distributive AU(BAC) = (AUB) N(AUC)

DeMorgans AUB = ANB

EX) Prove the version of DeMorgans law above

We will prove

i) AUBS ANB

Let $\times G$ \overline{AUB} , then $\times G$ \overline{AUB} . Then $\times G$ and $\times G$ \overline{G} , thence $\times G$ \overline{ANB} , as required.

ii) AAB S AUB

Let xEARB, then xEA and XEB. So x&A and X&B, so X&AUB. Hence xEAUB, as required.

4.6 PROOFS INVOLVING CARTESIAN PRODUCTS OF SETS

Cartesian product $A \times B = \{(-,b): a \in A \text{ and } b \in B\}$ if $A \neq \emptyset$ and $B \neq \emptyset$, then $A \times B = \emptyset$

 $A \times (B \cup C) = (A \times B) \cup (A \times C)$

Ex) Prove if ASC and BSD, then AXBSCXD

Assume ASC and BSD. Let $(\gamma, \gamma) = A \times B$. Then $x \in A$ and $\gamma \in B$, And since ASC and BSD, then $x \in C$ and $\gamma \in D$. So $(x, \gamma) \in C \times D$. Thus $A \times B \subseteq C \times D$.

Ex) Prone Ax(B-c) = (AxB) - (Axc)

i) A * (B-C) = (AxB) - (AxC)

Let (x,y) ∈ A×(B-c). Then x∈A and y∈B-c.

Then yeB and yeC. Since XEA and yEB, then (x,y) EAXB. Since yeC, then (x,y) & AXC.

Thus (x,y) & (AxB) - (AxC), as required.

ii) (AxB)-(AxC) = Ax(B-C)

Let (x,y) ∈ (AxB)-(Axc). Then (x,y) ∈ AxB and (x,y) & AxC. So xEA and yEB, but y&C. Since yeB and yeC, yeB-C. Thus because $x \in A$, $(x,y) \in A \times (B-C)$.

4.1 PROOFS INVOLVING DIVISIBILITY OF INTEGERS

a divides b, alb if $c = \frac{b}{a}$ for some $c \in \mathbb{Z}$

Ex) Prove if alc and bld then abled

Assume a c and b|d. Then there exist integers n and m, s.t. n= and m= t Then nm= ab Since mn e Z, ab | cd.

Ex) Prove if all and alc, then al(bn+cm) n, me Z

 $\rho = \frac{b}{a}$, $q = \frac{c}{a}$ for some $\rho, q \in \mathbb{Z}$

Then butcm = apn + aqm = a (pn+qm) pr+qm = bn+cm, pr+qm eZ, so al (bn+cm)

 $E_{\underline{x}}$) Prove if $2|(x^2+1)$, then $4|(x^2-1)$ $\times e^{\underline{x}}$

Assume $2((x^2+1), \text{ then } 2k=x^2+1 \text{ for some } k \in \mathbb{Z}$ $x^2 = 2k - 1 = 2(k - 1) + 1$, since $k - 1 \in \mathbb{Z}$ x^2 is odd.

By theorem 3.12, if xe is odd, then x is odd too.

So x=2n+1, neZ thus $x^2=(4n^2+4n+1)$.

So $x^2-1=4n^2+4n$, $n^2+n=\frac{x^2-1}{4}$. Since $n^2+n\in\mathbb{Z}$ $4|(x^2-1)$

Ex) Prove if $3/(x^2-1)$, then 3/x

Assume to the contrapositive that 3/x. Then 3n \$ X for some ne Z. Then Br=X+1 or Bn=x+2.

Case 1) 3n=x+1

50
$$x=3n-1$$

 $x^2=9n^2-6n+1$
 $x^2-1=9n^2-6n=3(3n^2-6n)$
Since $3n^2-6n \in \mathbb{Z}$, $3|(x^2-1)$ as required
Case 2) $3n=x+2$
So $x=3n-2$
 $x^2=9n^2-12n+4$
 $x^2-1=9n^2-12n+3=3(3n^2-4n+1)$
 $3n^2-4n+1 \in \mathbb{Z}$, $3|(x^2-1)$ as required.

4.2 PROOFS INVOLVING CONGRUENCE OF INTEGERS

For integers a, b, and n? 2. We say a is congruent to b modulo n, $a \equiv b \pmod{n}$, if $n \mid (a-b)$.

$$a \equiv b \pmod{n} \rightarrow k = \frac{a-b}{n}, k \in \mathbb{Z}$$

Ex] Let a,b,k,n $\in \mathbb{Z}$ where n72. Prove if a = b(mod n) and c = d(mod n), then a+c = (b+d)(mod n).

Assume
$$p = \frac{a-b}{n}$$
 and $q = \frac{c-d}{n}$, $p,q \in \mathbb{Z}$
Then $p+q = \underbrace{a+c-b-d}_{n} = \underbrace{(a+c)-(b+d)}_{n}$

And since $p+q\in\mathbb{Z}$, $a+c=(b+d)(m \cdot d \cdot n)$

4.3 PROOFS INVOLVING REAL NUMBERS

a²70 for all a ER

Assume xy=0. Then consider cases case 1: x=0, as required case 2: $x\neq 0$, then y=0, as required.

Ex) Prove if
$$x^3 - 5x^2 + 3x = 15$$
, then $x = 5$ where $x \in \mathbb{R}$

$$x^{3}-5x^{2}+3x-15=0$$
 $(x-5)(x^{2}+3)=0$

Since $x \in \mathbb{R}$, $x^{2} \neq 0$, so $x^{2}+3 \neq 0$

Thus $(x-5)=0$, so $x=5$ as required