

Characterizing Physical Properties of Hierarchical Structure in Star-Forming Regions

Jimmy Lilly¹, Yancy Shirley¹ Steward Observatory, University of Arizona¹

Question(s): How do the derived physical properties of structures in star-forming regions depend upon the data and hierarchical structure analysis technique used to identify them? What biases and uncertainties underlie these methods?

Our Data:

- NH_3 integrated-intensity, $I(NH_3)$, maps^{1,2} of Gould Belt star-forming regions
 - Resolution: 31" & 6.10 kHz
- 2. N_{H_2} column density maps³ of Gould Belt
 - Resolution: 36.4"
 - Herschel pixel-by-pixel SED fitting

Dendrograms: The Basics

- Tree-like diagrams that divide data into structures
- 2 critical parameters of astrodendro Python package
 - min_value: Minimum flux value to be considered "real"
- min_delta: Minimum flux difference for neighboring structures to be independent

Sample Structure Decomposition

Figure 1. Sample molecular cloud structure (left) Decomposition of sample structure into dendrogram with trunk, branch, and three leaves (right)

Example Structure

Decomposition

What Did We Find?:

- Different techniques measure similar radii
- Different datasets yield different radii -

Figure 5. From left to right. A) Comparison of leaf size between astrodendro and CSAR B) Comparison of astrodendro leaf size between $I(NH_3)^1$ and $N_{H_2}^3$ C) Tracking of structure decomposition as function of min_delta parameter (3-8 σ) for constant min value in $I(NH_3)^1$

Comparing Structures:

- Different structures identified for different datasets (see below)
- Shared structures not identical

Astrodendro of $I(NH_3)$ Astrodendro of N_{H_2}

Figure 4. From left to right. A) Leaves identified in B10 at 3σ level for $I(NH_3)$ map¹. B) Leaves identified in B10 at 3σ level for N_{H_2} map³

30 29:00 30 3:28:00

Figure 3. **Dendrogram of NGC1333**. Structure intensity plotted on y-axis. Structure ID plotted on x-axis. Densest components are leaves. Diffuse components are branches/trunks.

References:

- 1. Seo et al., 2015, ApJ, 805, 2
- Friesen et al., 2017, ApJ, 843, 1
- Singh et al. (in prep)

What's Next?: We shall measure the virial parameters of the leaves in Gould Belt clouds found with astrodendro in both the $I(NH_3)$ and N_{H_2} maps to conduct a one-to-one comparison of astrodendro structures and quantify uncertainties of their physical parameters.

