Distortion in elementary transistor circuits

Willy Sansen

KULeuven, ESAT-MICAS Leuven, Belgium

willy.sansen@esat.kuleuven.be

Why distortion?

Mixing up channels !!!

Table of contents

- □ Definitions : HD, IM, intercept point, ..
- □ Distortion in a MOST
 - Single-ended amplifier
 - Differential amplifier
- ☐ Distortion in a bipolar transistor
- □ Reduction of distortion by feedback
- ☐ Distortion in an opamp
- □ Other cases of distortion and guide lines

Linear distortion

Linear distortion

Non-linear distortion

Soft and hard non-linearity

Non-linearity: by power series

How to find $a_0, a_1, a_2, a_3, ...$

$$y = a_0 + a_1u + a_2u^2 + a_3u^3 + ...$$

$$a_0 = y \Big|_{u = 0}$$

$$a_1 = \frac{dy}{du} \Big|_{u=0}$$

$$a_2 = \frac{1}{2} \left. \frac{d^2y}{du^2} \right|_{u=0}$$

$$a_3 = \frac{1}{6} \left. \frac{d^3y}{du^3} \right|_{u=0}$$

Definition of harmonic distortion HD

$$y = a_0 + a_1 u + a_2 u^2 + a_3 u^3 + \dots$$
With $u = U \cos \omega t$ $\cos^2 x = 1/2 (1 + \cos 2x) \cos^3 x = 1/4 (3 \cos x + \cos 3x)$

$$y = a_0 + a_1 u + a_2 u^2 + a_3 u^3 + \dots = a_0 + (a_1 + \frac{3}{4} a_3 U^2) U \cos \omega t + \frac{a_2}{2} U^2 \cos 2\omega t + \frac{a_3}{4} U^3 \cos 3\omega t$$

$$HD_2 = \frac{1}{2} \frac{a_2}{a_1} U$$

$$HD_3 = \frac{1}{4} \; \frac{a_3}{a_1} \; U^2$$

Amplitude HD versus input signal

HD of a resistor

Output spectrum

Definition of intermodulation distortion IM

$$y = a_0 + a_1u + a_2u^2 + a_3u^3 + ...$$

with $u = U$ ($\cos \omega_1 t + \cos \omega_2 t$)
 $y = a_0 + ...$
 $IM_2 \text{ at } \omega_1 \pm \omega_2$
 $IM_3 \text{ at } 2\omega_1 \pm \omega_2 \text{ and } \omega_1 \pm 2\omega_2$

$$IM_2 = 2 HD_2 = \frac{a_2}{a_1} U$$

$$IM_3 = 3 HD_3 = \frac{3}{4} \frac{a_3}{a_1} U^2$$

IM components

IM components

Output spectrum of amplifier for IM

Amplitude IM3 versus input signal

Relation IP₃ and IM₃

Relation IMFDR₃ and IP₃

The IP₃ and -1 dB compression point

Relationship exercise

Definition of crossmodulation distortion CM

$$y = a_0 + a_1 u + a_2 u^2 + a_3 u^3 + ...$$

with $u = U \cos \omega_1 t + U (1 + m_c \cos \omega_c t) \cos \omega_2 t$

$$CM_3 = \frac{3}{4} m_c \frac{a_3}{a_1} U^2 = m_c IM_3$$

Table of contents

- □ Definitions : HD, IM, intercept point, ...
- □ Distortion in a MOST
 - Single-ended amplifier
 - Differential amplifier
- ☐ Distortion in a bipolar transistor
- □ Reduction of distortion by feedback
- □ Distortion in an opamp
- □ Other cases of distortion and guide lines

Distortion in a single-MOST amplifier

$$i_{DS} = K (v_{GS} - V_T)^2$$
 $K = K' \frac{W}{L}$

$$I_{DS} + i_{ds} = K (V_{GS} + V_{gs} - V_{T})^{2}$$

I_{DS} is the DC component
i_{DS} is the DC + ac component
i_{ds} is the ac component
I_{ds} is the amplitude of the ac component

DC and ac components

Distortion in a single-MOST amplifier

$$I_{DS} = K (V_{GS} - V_{T})^{2} \qquad K = K' \frac{W}{L}$$

$$I_{DS} + i_{ds} = K (V_{GS} + v_{gs} - V_{T})^{2}$$

$$i_{ds} = K (V_{GS} + v_{gs} - V_{T})^{2} - K (V_{GS} - V_{T})^{2}$$

$$i_{ds} = 2K (V_{GS} - V_{T}) v_{gs} + K v_{gs}^{2}$$

Coefficients a₁, a₂, a₃ by comparison

$$\begin{split} &i_{ds} = 2K \; (V_{GS} - V_T) \; v_{gs} + K \; v_{gs}^2 \\ &\text{or} \quad i_{ds} = g_1 v_{gs} + g_2 v_{gs}^2 + g_3 v_{gs}^3 + \dots \\ &g_1 = 2K \; (V_{GS} - V_T) \\ &g_2 = K \\ &g_3 = 0 \end{split} \qquad \qquad K = K' \; \frac{W}{L} \\ &IM_2 = \frac{g_2}{g_1} \; V_{gs} = \; \frac{V_{gs}}{2(V_{GS} - V_T)} \qquad \& \quad IM_3 = 0 \end{split}$$

Normalized current swing

$$\begin{split} i_{ds} &= 2K \left(V_{GS} - V_{T} \right) v_{gs} + K v_{gs}^{2} \quad i_{DS} = K \left(v_{GS} - V_{T} \right)^{2} \\ or \quad y &= a_{1}u + a_{2}u^{2} + a_{3}u^{3} + ... \\ y &= \frac{i_{ds}}{I_{DS}} = \frac{2 v_{gs}}{V_{GS} - V_{T}} + \frac{1}{4} \left(\frac{2 v_{gs}}{V_{GS} - V_{T}} \right)^{2} \\ y &= \frac{I_{ds}}{I_{DS}} = u + \frac{1}{4} u^{2} \qquad \qquad U = \frac{V_{gs}}{(V_{GS} - V_{T})/2} \end{split}$$

y is the relative current swing!

Numerical example

The peak value of
$$V_{gs}$$
 is $V_{gsp} = 100 \text{ mV}$

(then
$$V_{gsRMS} = 100 / \sqrt{2} = 71 \text{ mV}_{RMS}$$
)

if
$$V_{GS}-V_{T} = 0.5 \text{ V}$$
 then $V_{gsp}/[2(V_{GS}-V_{T})] = 0.1$

gives
$$IM_2 = 10 \% (HD_2 = 5 \%) & IM_3 = 0$$

The relative current swing U = 0.1/0.25 = 0.4!

More coefficients $a_1, a_2, a_3 \dots$

In general

$$\begin{split} i_{ds} &= g_{m}v_{gs} + K_{2gm}v_{gs}^{2} + K_{3gm}v_{gs}^{3} + \\ &g_{o}v_{ds} + K_{2go}v_{ds}^{2} + K_{3go}v_{ds}^{3} + \\ &g_{mb}v_{bs} + K_{2gmb}v_{bs}^{2} + K_{3gmb}v_{bs}^{3} + \\ &K_{2gm\&gmb}v_{gs}v_{bs} + K_{3,2gm\&gmb}v_{gs}^{2}v_{bs} \\ &+ K_{3,gm\&2gmb}v_{gs}v_{bs}^{2} + \\ &\dots + \\ &K_{3gm\&qmb\&qo}v_{qs}v_{ds}v_{bs} \end{split}$$

Distortion of a MOST diode

$$i_{DS} = K (v_{DS} - V_T)^2$$

$$y = \frac{i_{ds}}{I_{DS}} = \frac{2 v_{ds}}{V_{DS} - V_{T}} + \frac{1}{4} \left(\frac{2 v_{ds}}{V_{DS} - V_{T}} \right)^{2}$$

$$y = \frac{I_{ds}}{I_{DS}} = u + \frac{1}{4}u^2$$
 $U = \frac{V_{ds}}{(V_{DS} - V_T)/2}$

Same as for a MOST transistor amplifier!

The zero HD3 point for smaller L

Derivatives of gm

 $W = 60 \ \mu m$ $L = 0.6 \ \mu m$ $V_{DS} = 2 \ V$

Ref. Fager JSSC Jan. 2004, 24-33

A differential pair is symmetrical

Distortion in MOST differential pair

$$y = \frac{i_{Od}}{I_B} = \frac{v_{Id}}{v_{GS}-v_T} \sqrt{1 - \frac{1}{4} (\frac{v_{Id}}{v_{GS}-v_T})^2}$$

 $m v_{ld}$ is the differential input voltage $m i_{Od}$ is the differential output current ($m g_m v_{ld}$) or twice the circular current $m g_m v_{ld}$ /2 $m I_B$ is the total DC current in the pair

Note that
$$g_m = \frac{I_B}{V_{GS} - V_T} = K' \frac{W}{L} (V_{GS} - V_T)$$

Distortion in MOST differential amplifier

$$y = \frac{i_{Od}}{I_{B}} = \frac{v_{Id}}{v_{GS}-v_{T}} \sqrt{1 - \frac{1}{4} \left(\frac{v_{Id}}{v_{GS}-v_{T}}\right)^{2}}$$

$$y = \frac{I_{Od}}{I_{B}} = U\sqrt{1 - \frac{1}{4} U^{2}} \approx U - \frac{1}{8}U^{3}$$

$$U = \frac{v_{Id}}{v_{GS}-v_{T}}$$

$$U = \frac{v_{Id}}{v_{GS}-v_{T}}$$
U is the relative current swing

$$IP_3 = 4\sqrt{\frac{2}{3}} (V_{GS} - V_T) \approx 3.3 (V_{GS} - V_T)$$

Distortion in linear region

Table of contents

- □ Definitions : HD, IM, intercept point, ...
- Distortion in a MOST
 - Single-ended amplifier
 - Differential amplifier
- □ Distortion in a bipolar transistor
- □ Reduction of distortion by feedback
- □ Distortion in an opamp
- Other cases of distortion and guide lines

Distortion in a bipolar transistor amplifier

$$\begin{split} I_{CE} &= I_{S} \exp(\frac{V_{BE}}{kT_{e}/q}) & I_{CE} \text{ DC component} \\ I_{CE} + I_{ce} &= I_{S} \exp(\frac{V_{BE} + V_{be}}{kT_{e}/q}) & I_{ce} \text{ ac component} \\ I_{ce} \text{ amplitude of the ac component} \\ 1 + y &= \exp(\frac{V_{be}}{kT_{e}/q}) & \text{the ac component} \\ \approx \exp(u) = 1 + u + \frac{u^{2}}{2} + \frac{u^{3}}{6} + \dots & \text{if } u << 1 \end{split}$$

Distortion in a bipolar transistor amplifier

$$y \approx u + \frac{u^2}{2} + \frac{u^3}{6} + ...$$
 $U = \frac{V_{be}}{kT_e/q}$

is the non-linear equation

y is the relative current swing!

$$a_1 = 1$$
 $a_2 = 1/2$
 $a_3 = 1/6$
 $IM_2 = \frac{a_2}{a_1} U = \frac{1}{2} \frac{V_{be}}{kT_e/q}$
 $IM_3 = \frac{3}{4} \frac{a_3}{a_1} U^2 = \frac{1}{8} (\frac{V_{be}}{kT_e/q})^2$

Numerical example

1. Relative current swing is 10 %

$$y_p = 0.1 \quad \text{gives} \quad IM_2 = 5 \; \% \; (\text{HD}_2 = 2.5\%) \\ IM_3 = 0.125 \; \% \; (\text{HD}_3 = 0.04 \; \%) \\ \text{As a result V}_{bep} = y_p (kT_e/q) = 2.6 \; \text{mV}_p \; (1.8 \; \text{mV}_{RMS}) \\ IP_3 = \sqrt{8} \; (kT_e/q) = 74 \; \text{mV}_p \; \text{or 50 mV}_{RMS} \; \text{or -13 dBm}$$

2.
$$V_{bep} = 100 \text{ mV}$$

then $y_p = 0.1/0.026 \approx 4 \text{ (must be << 1 !!)}$
gives $IM_2 = ??$ Too high distortion !!

Distortion in a diode

$$i_D = I_S \exp(\frac{v_D}{kT_e/q})$$
 $y \approx u + \frac{u^2}{2} + \frac{u^3}{6} + ...$

$$y = \frac{I_d}{I_D} = u + \frac{u^2}{2} + \frac{u^3}{6}$$
 $U = \frac{V_d}{kT_e/q}$

Same as for a Bipolar transistor amplifier!

Distortion in bipolar differential amplifier

$$y = \frac{i_{Od}}{I_B} = \tanh \frac{V_{Id}}{2kT_e/q}$$

$$tanh x = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
$$\approx x - \frac{1}{3} x^{3}$$

$$y = \frac{I_{Od}}{I_{B}} \approx U - \frac{1}{3} U^{3}$$

$$U = \frac{V_{ld}}{2kT_e/c}$$

$$IM_2 = 0$$

$$IM_3 = \frac{1}{4} U^2$$

U is the relative current swing

$$IP_3 = 4 kT_e/q$$

Distortion in a resistor or capacitor

$$R = R_0 (1 + a_1 V + a_2 V^2 + ...)$$
 [\approx JFET with large V_P]

For diffused resistors : $a_1 \approx 5 \text{ ppm/V}$ $a_2 \approx 1 \text{ ppm/V}^2$

$$C = C_0 (1 + a_1 V + a_2 V^2 + ...)$$

For poly-poly caps : $a_1 \approx 20 \text{ ppm/V}$ $a_2 \approx 2 \text{ ppm/V}^2$

Non-linearity depletion capacitance

$$C_{j} = \frac{C_{0}}{\sqrt{1 - \frac{v_{IN}}{\Phi}}} \quad v_{IN} = V_{B} + v_{in}$$

$$C_{j} = \frac{C_{0}}{\sqrt{1 + \frac{v_{B}}{\Phi}}} \frac{1}{\sqrt{1 + \frac{v_{in}}{V_{B} + \Phi}}}$$

$$x$$

$$C_j = C_{0B} (1 + x)^{-1/2} = C_{0B} (1 - 1/2 x + 3/8 x^2 - 5/16 x^3 + ..)$$

Table of contents

- □ Definitions : HD, IM, intercept point, ...
- □ Distortion in a MOST
 - Single-ended amplifier
 - Differential amplifier
- ☐ Distortion in a bipolar transistor
- ☐ Reduction of distortion by feedback
- Distortion in an opamp
- □ Other cases of distortion and guide lines

Distortion reduction by feedback

Distortion reduction by feedback

Loop gain 1+T = 1+a₁F u is (1+T) times smaller than v : $d_3 = \frac{a_3 (1 + T) - 2}{(1 + T)^2}$ v is reduced by loop gain (1+T)

Distortion components with feedback

$$IM_{2f} = \frac{d_2}{d_1}V = \frac{a_2}{a_1} \frac{V}{(1+T)^2} = \frac{a_2}{a_1} \frac{1}{(1+T)} \frac{V}{(1+T)}$$

$$reduction by loop gain$$

$$IM_{3f} = \frac{3}{4} \frac{d_3}{d_1} V^2 = \frac{3}{4} \left[\frac{a_3}{a_1} \frac{1}{(1+T)} - \left(\frac{a_2}{a_1} \right)^2 \frac{2T}{(1+T)^2} \right] \frac{V^2}{(1+T)^2}$$
compression
expansion
reduction in current swing

current swing

Distortion components with feedback: examples

$$IM_{3f} = \frac{3}{4} \frac{d_3}{d_1} V^2 = \frac{3}{4} \left[\underbrace{\frac{a_3}{a_1} \frac{1}{(1+T)} - \left(\frac{a_2}{a_1}\right)^2 \frac{2T}{(1+T)^2}}_{=\frac{a_3}{a_1} \left(1 - \frac{2a_2^2}{a_1 a_3}\right) \frac{1}{T}} \right] \frac{V^2}{(1+T)^2}$$
For large T:
$$\underbrace{\frac{a_3 a_1 - 2a_2^2}{a_1^2} \frac{1}{T}}_{=\frac{a_3}{a_1} \left(1 - \frac{2a_2^2}{a_1 a_3}\right) \frac{1}{T}}_{=\frac{a_3}{a_1} \left(1 - \frac{2a_2^2}{a_1 a_3}\right) \frac{1}{T}}$$

MOST: $a_3 = 0$: a_2 dominant

Bipolar: $a_1 = 1$ $a_2 = 1/2$ $a_3 = 1/6$: a_2 dominant

Diff. pair : $a_2 = 0$: a_3 dominant

Emitter resistor to reduce distortion IM_{2f}

$$T = g_m R_E = \frac{V_{RE}}{kT_e/q}$$
 $\frac{a_2}{a_1} = \frac{1}{2}$

$$IM_{2f} = \frac{1}{2} \frac{1}{(1+T)^2} \frac{V_{in}}{kT_e/q} = \frac{1}{(1+T)} \frac{U}{2}$$

$$U = \frac{1}{(1 + T)} \frac{V_{in}}{kT_e/q}$$
 is the relative current swing

IM_{2f} decreases linearly with T for constant U!

Emitter resistor to reduce distortion IM_{3f}

$$IM_{3f} = \frac{1 - 2T}{(1 + T)^2} \frac{U^2}{8}$$

$$U = \frac{1}{(1 + T)} \frac{V_{in}}{kT_e/q}$$
 is the relative current swing

Null for T = 0.5

IM_{3f} also decreases with T for constant U for large T !!

Null in IM₃ by R_E (Bipolar trans. $I_{CE} = 1$ mA)

Emitter resistor R_E reduces distortion for large T

$$U = \frac{1}{T} \frac{V_{in}}{kT_e/q} = \frac{V_{in}}{R_E I_{CE}}$$

$$IM_{2fT} = \frac{U}{2T} = \frac{V_{in}}{kT_e/q} \frac{1}{2 T^2} = \frac{V_{in} kT_e/q}{2 (R_E I_{CE})^2}$$

$$IM_{3fT} = \frac{U^2}{4T} = (\frac{V_{in}}{kT_e/q})^2 \frac{1}{4T^3} = \frac{V_{in}^2 kT_e/q}{4 (R_E I_{CE})^3}$$

Source resistor R_S to reduce distortion

$$T = g_m R_S = \frac{V_{RS}}{(V_{GS}-V_T)/2}$$

$$\frac{a_2}{a_1} = \frac{1}{4}$$
 $a_3 = 0$

$$U = \frac{1}{(1 + T)} \frac{V_{in}}{(V_{GS}-V_T)/2}$$
 is the relative current swing

$$IM_{2f} = \frac{1}{(1+T)} \frac{U}{4} \approx \frac{V_{in}}{(V_{GS}-V_T)/2} \frac{1}{4 T^2} = \frac{V_{in} (V_{GS}-V_T)/2}{4 (R_S I_{DS})^2}$$

$$IM_{3f} = \frac{T}{(1+T)^2} \frac{3U^2}{32} \approx \frac{V_{in}^2}{(V_{GS}-V_T)^2/4} \frac{3}{32T^3} = \frac{3V_{in}^2 (V_{GS}-V_T)/2}{32 (R_S I_{DS})^3}$$

Current source with series R

Same I_{out} & same V_G:

Same gain!
Same output noise!

Same distortion?

$$\frac{IM_{2f}}{IM_{2}} = \frac{1 - \frac{V_{R}}{V_{GST1}}}{(1 + \frac{V_{R}}{V_{GST1}})^{2}}$$

Source & Emitter Follower

Distortion Source follower with substrate effect

Distortion Source follower - Example

$$\begin{aligned} v_{IN} &= u^2 + \gamma \ u + B \\ u^2 &= v_{OUT} + |2\Phi_F| \\ B &= V_{GS0} - |2\Phi_F| - \gamma \sqrt{|2\Phi_F|} \\ V_{GS0} &= V_{T0} + \sqrt{\frac{I_B}{K'W/L}} \end{aligned} \qquad \begin{matrix} V & V_{OUT} & \gamma = 0 \\ 1.37 & 1.37 & 1.37 \\ 1 & 1.37 &$$

$$V_{T0} = 0.6 \text{ V}$$
; $V_{GS0} = 0.9 \text{ V}$; $2\Phi_F = 0.7 \text{ V}$; $B = -0.47 \text{ V}$; $1/n = 0.73$ $a_1 = 0.765$; $a_2 = 0.02$; $a_3 = -0.0035$ $V_{INp} = 1 V_p$; $HD_2 = 1.32 \%$; $HD_3 = -0.114 \%$

Increasing the IP₃ by feedback

$$IP_3 \approx 3.3 (V_{GS}-V_T)(1+g_{m1}R)^2 HD_3/n^2 n= 1+g_{m1}R$$

 $HD_3 = -60$ dB for $V_{id} = 1$ V requires $V_{GS}-V_T = 0.38$ V and $g_{m1}R = 3$!!!

Increasing the IP₃ by feedback

Additional local FB

More FB with opamps

Distortion cancellation

Distortion cancellation

$$i_{out} = 2 (i_{DS1} - i_{DS2})$$

$$\frac{i_{DS}}{I_{B}} = U - \frac{1}{8} U^{3}$$
 $U = \frac{V_{id}}{V_{GS} - V_{T}}$ $IM_{3} = \frac{3}{32} U^{2}$

$$IM_3 \approx \frac{3}{32} \left(\frac{V_{id}}{V_{GS1} - V_T} \right)^2 \frac{1 - \alpha v^3}{1 - \alpha v}$$

$$IM_3 \approx 0$$
 if $v_{00} = \alpha^{-1/3}$

at which point
$$i_{out} = g_{m1} V_{id} (1 - \alpha^{2/3})$$

Compensation of IM3

1 -
$$\alpha$$
 v³

1 - α v

$$\alpha = 0.20$$
 $v_{00} = 1.71$

$$\alpha = 0.25$$
 $v_{00} = 1.6$

$$\alpha = 0.33$$
 $v_{00} = 1.44$

V

Output signal vs current ratio

Table of contents

- □ Definitions : HD, IM, intercept point, ...
- □ Distortion in a MOST
 - Single-ended amplifier
 - Differential amplifier
- ☐ Distortion in a bipolar transistor
- □ Reduction of distortion by feedback
- □ Distortion in an opamp
- □ Other cases of distortion and guide lines

Miller CMOS opamp with Feedback

Distortion in input stage

Distortion in input stage

$$IM_{2f} = \frac{d_2}{d_1}V = \frac{a_2}{a_1} \frac{V}{(1+T)^2} = \frac{a_2}{a_1} \frac{1}{(1+T)} \frac{V}{(1+T)}$$

$$IM_{3f} = \frac{3}{4} \frac{d_3}{d_1} V^2 = \frac{3}{4} \left[\frac{a_3}{a_1} \frac{1}{(1+T)} - \left(\frac{a_2}{a_1} \right)^2 \frac{2T}{(1+T)^2} \right] \frac{V^2}{(1+T)^2}$$

Same as before but with different Loop gain:

$$1+T = 1 + B_1a_1F$$

Distortion in input stage with LPF

Distortion in input stage with LPF

$$\begin{split} \text{IM}_{2f} &= \frac{a_2}{a_1} \frac{\text{V}}{(1+\text{T})^2} = \frac{a_2}{a_1} \frac{1}{(\text{B}_{1p}a_1\text{F})^2} \text{V} \\ \\ \text{IM}_{3f} &= \frac{3}{4} \frac{a_3}{a_1} \frac{1}{(1+\text{T})} \frac{\text{V}^2}{(1+\text{T})^2} = \frac{3}{4} \frac{a_3}{a_1} \frac{1}{(\text{B}_{1p}a_1\text{F})^3} \text{V}^2 \\ \\ \text{diff.pair} \\ \\ \text{IM}_{3f} &= \frac{3}{4} \frac{a_2^2}{a_1^2} \frac{2}{(\text{B}_{1p}a_1\text{F})^3} \text{V}^2 \\ \\ \text{Single trans.} \end{split}$$

Distortion in output stage

Distortion in output stage

$$IM_{2f} = \frac{b_2}{b_1} \frac{V}{(1+T)^2} = \frac{b_2}{b_1} \frac{A_1}{(A_1b_1F)^2} V$$

$$|\mathbf{IM}_{3f}| = \frac{3}{4} \left(\frac{b_2}{b_1}\right)^2 \frac{2T}{(1+T)^2} \frac{V^2}{(1+T)^2}$$
Single trans.

$$= \frac{3}{4} \frac{b_2^2}{b_1^2} \frac{2 A_1^2}{(A_1 b_1 F)^3} V^2$$

Two-stage opamp a & b

Three-stage opamp a & b & c

Distortion in an opamp at low frequencies

Low-distortion amplifier

Distortion in an opamp at low frequencies

Distortion in an opamp at low frequencies

Distortion generation by nonlinear output stage:

$$U_3 = g_{m3}V_m/I_{DS3} = 0.1$$

$$IM_2 = U_3/4 = 0.25 \ 0.1 = 2.5 \%$$

Distortion reduction by feedback:

$$T = 1000$$
 $IM_{2f} = 2.5 \%/1000 = 0.0025 \%$ Negligible!

Distortion in an opamp at high frequencies

Distortion in an opamp at high frequencies

Distortion generation by nonlinear output stage:

$$U_3 = g_{m3}V_m/I_{DS3} = 0.1$$

$$IM_2 = U_3/4 = 0.25 \ 0.1 = 2.5 \%$$

Distortion generation by nonlinear input stage:

$$U_1 = g_{m1}V_m/I_{DS1} = 0.05$$

$$IM_3 = U_1^2/10 = 0.0025/10 = 0.025 \%$$
 Negligible!

Distortion reduction by feedback:

$$T = 10$$
 $IM_{2f} = 2.5 \%/100 = 0.25 \%$

Miller CMOS OTA Measured Distortion

1.8 V Low distortion CMOS Opamp

GBW≈3 GHz

 $C_L = 8 pF$

SR ≈ 900 V/μs

$$f_P = \frac{SR}{2\pi \text{ Vpeak}}$$

f_P = 380 MHz at 0.38 Vpeak

Large V_{GS4}-V_T

Ref.Hernes Kluwer 2003

HD2 & HD3 vs Amplitude

HD2 & HD3 vs Frequency

Table of contents

- □ Definitions : HD, IM, intercept point, ...
- □ Distortion in a MOST
 - Single-ended amplifier
 - Differential amplifier
- ☐ Distortion in a bipolar transistor
- □ Reduction of distortion by feedback
- ☐ Distortion in an opamp
- □ Other cases of distortion and guide lines

Other cases of distortion and guide lines

- Distortion caused by limited SR
- Distortion of a switch
- Distortion at high frequencies :

Volterra series instead of power series

- Distortion in continuous-time filters
- Guide lines

Guide lines for low distortion

- Scaling such that voltage amplitudes are limited
- Scaling such that relative current swings are limited
- Feedback
- All fully differential

Distortion components

Distortion comp.	IM ₂ x U _p	IM ₃ x U _p ² U _p	$= \frac{V_{ip}}{V_{ref}} V_{ref} =$
Bipolar	1/2	1/8	kT _e /q
MOST	1/4	0	(V _{GS} -V _T)/2
Bip. diff.pair	0	1/4	2kT _e /q
MOST diff.pair	0	3/32	$(V_{GS}V_{T})$

Distortion components with Feedback (T > 5)

Distortion comp.	IM ₂ x U _p	$-IM_3 \times U_p^2 U_p =$	$\frac{V_{ip}}{V_{ref}}$ $V_{ref} =$
Bipolar	1/2T	1/4T	kT _e /q x T
MOST	1/4T	3/32T	$(V_{GS}-V_T)/2 \times T$
Bip. diff.pair	0	1/4T	2kT _e /q x T
MOST diff.pair	0	3/32T	$(V_{GS}-V_T) \times T$

References

- P.Wambacq, W.Sansen: Distortion analysis of analog Integrated Circuits, Kluwer Ac. Publ. 1998
- W.Sansen: "Distortion in elementary transistor circuits" IEEE Trans. CAS II Vol 46, No 3, March 1999, pp.315-324
- J. Silva-Martinez, etal: High-performance CMOS continuous-time filters, Kluwer Ac. Publ. 1993
- B. Hernes, T. Saether: Design criteria for low-distortion in feedback opamp circuits, Kluwer Ac. Publ. 2003
- G. Palumbo, S. Pennisi: Feedback amplifiers, Kluwer Ac. Publ. 2002

Table of contents

- □ Definitions : HD, IM, intercept point, ...
- □ Distortion in a MOST
 - Single-ended amplifier
 - Differential amplifier
- ☐ Distortion in a bipolar transistor
- □ Reduction of distortion by feedback
- □ Distortion in an opamp
- □ Other cases of distortion and guide lines