Network Security

Friday, February 23, 2018 12:56 PM

Network Layers

- Layered model, every layer built on top of a virtual connection layer
 - Every layer = header + payload
- Peer entities in same layer N communicate via protocol defined at that layer
- Attack at any layer can modify data, including header
 - o E.g. spoofing "source" ip-address

Name Resolution

Some domain names have multiple IP addresses (especially large sites)

- Need to find the name of the layer below (resolution protocol)
 - Resolver wants to resolve domain name by finding address
 - o e.g. DNS (at the application layer), Address Resolution Protocol (ARP)
- Attacks
 - DNS attack: domain name <-> ip-addr (nslookup)
 - Can be the single point of failure for the network
 - ARP attacks: ip-addr <-> mac-addr (media access control)

DNS query

- queryID (QID) must match in query and response
 - Original intention meant for matching, no mac/ encryption
- Attacker can sniff/ spoof, but cannot modify/ remove
 - Note: DNS = application layer, attack = physical layer
- Can be the single point of failure for network
- Cannot attack via https (authentication and private key required)

DoS attack

- Affects availability (prevention/ delay)
- Large numbers of attackers required (each attacker can only send requests at a low rate)
 - Distributed DoS (DDoS)

Reflection and Amplification Attacks

- Reflection: intermediate nodes involved, harder to trace
 - Reflected traffic may be amplified (a request triggers multiple responses)
 - o E.g. ICMP/ Smurf flood, ICMP PING: victim network overwhelmed with echo replies
 - Most routers now configured not to broadcast
- Amplification factors
 - Memcache (50000), NTP (556.9), CharGen (358.8)

Botnet

Bot = zombie, botnet = zombie army (communicating via covert channels)

Useful Tools

- Wireshark (link layer for packet analysis)
- Nmap (port scanner)
 - Transmission Control Protocol (TCP): IP + port (http, 81)
 - Listening: ready to process packets from port
 - Open port: processes running in server which are listening

- Port scanning: see which ports are open in network
- Network administrator can scan for vulnerabilities (and attacker can attack)

Protection

Securing Channel with Cryptography

Which key is owned at which layer? Can only protect upwards

- 1. SSL = on transport layer (TLS/SSL), used by https
 - Encrpyt-then-mac to preserve integrity (for application layer)
 - Checked again at next SSL layer
 - o Alice's data is not visible to others
 - New info added, including IP address/ mac address is not encrypted
- 2. WPA2 unclear of exact position, between physical and link layer
 - uses AES
 - WEP -> WPA -> WPA2
 - Key re-installation attack forces nonce reuse in WPA2
- 3. IPSec
 - o Integrity/ authenticity of ip-address, not confidentiality (no spoofing, but possible sniffing)
 - o Protection between network and host

Firewall and Intrusion Detection

- Controls traffic (ingress/ egress filtering)
- DMZ: sub-network which exposes external service to (untrusted) internet
- 2-firewall system

- Layered defence to drop packets
 - o Have to look through list of "rules" permit/ deny?
 - o Last line = * * * deny
 - o E.g. trying to access SQL database directly from internet
- * = any value in regex
- Types of firewalls = packet filters, stateful inspection, proxy

Management

- Monitor and adjust network characteristics
- Wireshark
 - Capturing framework is placed between the NIC driver and higher layer protocols in the

kernel (e.g. TCP/IP)

- Security Operations Center (SOC) centralised unit, for IT systems and security issues
- Security Information and Event Management (SIEM)
 - o Tools for SOC
 - o E.g. Splunk

Readings

Splunk - SIEM tool https://www.splunk.com/