Estatística e Probabilidade

ADO 02

Nome: Matheus Cavalcanti de Arruda

Data: 29/10/2022

Exercício 1) (2,0 pontos) Uma moeda e um dado são lançados. Os resultados possíveis do lançamento da moeda são representados por **C**, para cara, ou **R** para coroa. Os resultados possíveis do lançamento do dado são representados por **1**, **2**, **3**, **4**, **5**, **6**. Descreva o espaço amostral deste experimento apresentando todos os pontos amostrais que o compõem.

Resposta:

Moeda

Pontos amostrais =
$$Cara, Coroa$$

 $S = \{C, R\}$

Dado

Pontos amostrais =
$$1, 2, 3, 4, 5, 6$$

 $S = \{1, 2, 3, 4, 5, 6\}$

$$\Omega = \{(C, 1), (C, 2), (C, 3), (C, 5), (C, 5), (C, 6), (R, 1), (R, 2), (R, 3), (R, 5), (R, 5), (R, 6)\}$$

Exercício 2) (2,0 pontos) Em uma rifa há bilhetes numerados de 1 a 100. Qual a probabilidade de que o bilhete sorteado seja de um número menor que 30 ou um número ímpar.

Resposta:

Total de rifas =
$$100$$

Números menores que $30 = \frac{30}{100}$
Números ímpares = $\frac{50}{100}$
 $P = \frac{30}{100} + \frac{50}{100} = \frac{80}{100}$ $\therefore P = 80\%$

Exercício 3) (2,0 pontos) Suponha que uma certa moeda é viciada, ou seja, que ela foi feita de modo que a probabilidade de sair cara seja duas vezes menor que a probabilidade de sair coroa. Ainda assim, em todas as jogadas sai cara ou coroa (não há outro resultado possível). Nessa situação, qual a probabilidade de sair coroa?

Resposta:

Cara =
$$C$$

Coroa = R
 $R = 2C$
 $C + R = 1$
 $C + 2C = 1$ \therefore $C = \frac{1}{3}$ ou $C = 0.333...$
Então podemos concluir que $R = \frac{2}{3}$ ou $R = 0.666...$

Exercício 4) (2,0 pontos) Dois números naturais distintos são sorteados no intervalo de 1 a 30. Qual a probabilidade de que o produto desses dois número seja ímpar?

Resposta:

Números impares =
$$\frac{15!}{2! (15-2)} = 105$$

Todos os números = $\frac{30!}{2! (30-2)} = 435$
 $P = \frac{105}{435} = \frac{21}{87} = 0.24$ ou 24%

Exercício 5) (2,0 pontos) Uma companhia produz circuitos integrados em três fábricas, I, II e III. A fábrica I produz 40% dos circuitos, a II produz 35% dos circuitos e a III produz 25% dos circuitos. As probabilidades de que um circuito integrado produzido por estas fábricas não funcione são 0,01, 0,04 e 0,03, respectivamente. Escolhido um circuito da produção conjunta das três fábricas, qual a probabilidade de que ele não funcione?

Resposta:

$$F_1 = 0.4 \times 0.01 = 0.004$$

 $F_2 = 0.35 \times 0.04 = 0.014$
 $F_3 = 0.25 \times 0.03 = 0.0075$

$$P = F_1 + F_2 + F_3$$

 $P = 0.0255$ ou 2.55 %