

SCHEMATIC DESIGN. Broke down the schematic in multiple screenshots for visibility.

2. Sizing calculations

Figure 1 Simulation for Q1 schematic

Figure 2 Power for Q1 schematic

R average(IT("/V0/MINUS")*0.7) ×		
Expression	Value	
1 average(IT("/V0/	111.6E-3	

Figure 3 Power consumption

Expression	Value	
1 delay(?wf1 VT("/	-49.65E-9	

Figure 4 Delay

Expression	Value
average(IT("/V0/	128.9E-3

From the simulation and graph, the average power is calculated using the AVERAGE function from the calculator. (Q1 schematic)

Figure 5 Current waveform of schematic in Q1

6. To resolve or minimize glitches caused by unequal arrival times of input waveforms in downstream decode stages for a low power design,

- The signal paths should have equal length to synchronize signal arrival.
- Symmetric design/ layout can help minimise delay.
- Buffer insertion for signal synchronization.

Figure 6 Current waveform of schematic in Q1

Figure 7 Current waveform of 4-input AND 8b decoder (Q4 schematic)