

Overview

Conducted model performance analysis for two sets of models built using Seattle-Tacoma-Bellevue CBSA housing data:

- 1) Comparison of Regression Models
- 2) Comparison of LSTM Models

Regression Analysis: King County Home Sales

- Used dataset consisting of home sales and characteristics data for roughly 21,000 King County, WA properties to build regression models to predict home sales price
- Regression Methods:
 - Linear Regression
 - Multiple Linear Regression
 - Logistic Regression
 - Polynomial Regression
 - Random Forest Regression
- Compared performance of regression models to determine most effective method of regression

Linear Regression: Seattle CBSA Housing Inventory Data

Linear Regression: Model Results

Coefficient = 207.69

Intercept = 4756.36

$$R^2 = 0.446$$

$$y = mx + b$$

$$y = 207.69x + 4756.36$$

Multiple Linear Regression: Definition & Results

Multiple linear regression is an extension of linear regression, but uses several variables (features) to predict the outcome.

Feature	Coefficient
bedrooms	-32878.696
bathrooms	25568.4758
sqft_living	-5.63E+18
sqft_lot	5799.76948
floors	-894.31225
waterfront	50526.919
view	36372.747
condition	21339.765
grade	115739.431
sqft_above	5.09E+18
sqft_basement	2.70E+18
yr_built	-74545.421
yr_renovated	6656.71045
lat	77616.1179
long	-17532.358
sqft_living15	17353.9688
sqft_lot15	-9729.2511

Mean Squared Error (MSE) = 40926641382.97 Root Mean Squared Error (RMSE) = 202303.34 Variance Score = 0.7016

Logistic Regression: N	Model Results
------------------------	----------------------

Training Data Score: 0.010117835770251096

Testing Data Score: 0.007772020725388601

0 650000.0 459000.0 1 350000.0 445000.0 2 590000.0 1057000.0

Actual

Prediction

3 550000.0 732350.0 4 350000.0 235000.0

5 550000.0 555000.0 6 550000.0 365000.0

7 750000.0 685000.0 8 350000.0 525000.0

9 550000.0 449950.0

10 190000.0 280000.0 11 350000.0 428000.0

12 325000.0 575000.0

13 35000.0 373000.0

14 690000.0 637500.0 15 690000.0 732000.0

16 350000.0 400000.0

17 550000.0 829000.0

18 350000.0 469500.0

19 350000.0 537000.0

Polynomial Regression: Set-up

- Target variable: "price"
- Feature variables: all variables except "id", "date", "zipcode", "long", "condition", "yr_built", "sqft_lot15", "sqft_lot"
- Used **PolynomialFeatures** from sklearn.preprocessing to scale data
- Model used:
 - LinearRegression model from sklearn.linear_model
- Model parameters:
 - PolynomialFeatures(Degree = 3)

```
poly_reg = PolynomialFeatures(degree=3)
X_train_scaled = poly_reg.fit_transform(X_train)
X_test_scaled = poly_reg.fit_transform(X_test)
polynomial_reg = LinearRegression()
```

Polynomial Regression: Model Performance

```
Polynomial Regression Out-of-Sample Results, Refined Features:
Polynomial Regression Out-of-Sample R2 Score: 66.6%
Polynomial Regression Out-of-Sample Root Mean Squared Error: $201339.04
Polynomial Regression Out-of-Sample Mean Absolute Error: $110501.39
Polynomial Regression Out-of-Sample Mean Absolute Percentage Error: 21.48%
Polynomial Regression Out-of-Sample Accuracy: 78.52%

Polynomial Regression In-Sample Results, Refined Features:
Polynomial Regression In-Sample R2 Score: 81.05%
Polynomial Regression In-Sample Root Mean Squared Error: $162424.9
Polynomial Regression In-Sample Mean Absolute Error: $105945.11
Polynomial Regression In-Sample Mean Absolute Percentage Error: 21.16%
Polynomial Regression In-Sample Accuracy: 78.84%
```

Random Forest Regression: Set-up

- Target variable: "price"
- Feature variables: all variables except "id" and "date"
- No scaling required for Random Forest Regressor
- Model(s) used: **RandomForestRegressor** from sklearn.ensemble
- Model parameters:
 - $n_{estimators} = 1000$

```
# Initiate Random Forest Regressor Model
rf_model = RandomForestRegressor(n_estimators=1000, random_state=23)
```

Random Forest Regression: Model Performance

```
Random Forest Regression Out-of-Sample Results:
RF Regression Out-of-Sample R2 Score: 87.1%
  Regression Out-of-Sample Root Mean Squared Error: $125130.65
  Regression Out-of-Sample Mean Absolute Error: $67752.31
RF Regression Out-of-Sample Mean Absolute Percentage Error: 12.82%
RF Regression Out-of-Sample Accuracy: 87.18%
Random Forest Regression In-Sample Results:
RF Regression In-Sample R2 Score: 98.31%
  Regression In-Sample Root Mean Squared Error: $48472.69
  Regression In-Sample Mean Absolute Error: $25692.84
RF Regression In-Sample Mean Absolute Percentage Error: 4.89%
RF Regression In-Sample Accuracy: 95.11%
```

Random Forest Regression: Model Performance

Random Forest Regression: Model Performance

Regression Analysis: Conclusion

- Random Forest Regression appears to build best model for predicting property sales price
 - Highest R-squared score & accuracy
 - Lowest MAPE & RMSE
- Multiple Linear Regression and Polynomial Regression produced strong models as well

LSTM Analysis: Seattle CBSA Housing Inventory Data

- Used Seattle-Tacoma-Bellevue CBSA housing inventory data to build LSTM models to predict monthly median home listing price
- Housing Inventory Data consisted of:
 - Monthly Median Home Listing Price
 - Monthly Active Listings Count
 - Monthly Median Days on Market
- LSTM Methods:
 - LSTM using median listing price as predictor
 - LSTM using active listings count as predictor
 - LSTM using median days on market as predictor
- Compared performance of LSTM models to determine which inventory statistic is best predictor of median home listing price

1) Active Listings Count LSTM: Set-up

- Target variable: "median_listing_price"
- Feature variable: "active listings count"
- Used MinMaxScaler from sklearn.preprocessing to scale data
- Model(s) used:
 - Sequential from tensorflow.keras.models
 - LSTM, Dense, Dropout from tensorflow.keras.layers
- Model / Run parameters:
 - Lookback window = 7 months
 - Dropout_fraction = 0.2
 - Used 3 layers
 - Optimizer / loss = "adam", "mean_squared_error"
 - epochs = 100
 - Batch_size = 50

```
# Train the model
model.fit(X_train, y_train, epochs=100, shuffle=False, batch_size=50, verbose=1)
```

Active Listings Count LSTM: Model Performance

Mean Squared Error = 0.2258

Performance on Testing Data after re-scaling:

```
Active Listings Count LSTM Model Performance:

Active Listings Count LSTM Model RMSE: $110947.78125

Active Listings Count LSTM Model Mean Absolute Error: $104240.6875

Active Listings Count LSTM Model Mean Absolute Percentage Error: 15.916642189025879%
```

Active Listings Count LSTM: Model Performance

2) Time on Market LSTM: Set-up

- Target variable: "median listing price"
- Feature variable: "median days on mkt"
- Used MinMaxScaler from sklearn.preprocessing to scale data
- Model(s) used:
 - **Sequential** from tensorflow.keras.models
 - LSTM, Dense, Dropout from tensorflow.keras.layers
- Model / Run parameters:
 - Lookback window = 7 months
 - Dropout fraction = 0.2
 - Used 3 layers
 - Optimizer / loss = "adam", "mean_squared_error"
 - epochs = 100
 - Batch_size = 30

```
# Train the model
model.fit(X_train, y_train, epochs=100, shuffle=False, batch_size=30, verbose=1)
```

Time on Market LSTM: Model Performance

Mean Squared Error = 0.1137

Performance on Testing Data after re-scaling:

```
Time on Market LSTM Model Performance:

Time on Market LSTM Model RMSE: $78726.7265625

Time on Market LSTM Model Mean Absolute Error: $70213.609375

Time on Market LSTM Model Mean Absolute Percentage Error: 10.652839660644531%
```

Time on Market LSTM: Model Performance

3) Median Listing Price LSTM: Set-up

- Target variable: "median listing price"
- Feature variable: "median listing price"
- Used MinMaxScaler from sklearn.preprocessing to scale data
- Model(s) used:
 - **Sequential** from tensorflow.keras.models
 - LSTM, Dense, Dropout from tensorflow.keras.layers
- Model / Run parameters:
 - Lookback window = 9 months
 - Dropout_fraction = 0.2
 - Used 3 layers
 - Optimizer / loss = "adam", "mean_squared_error"
 - epochs = 100
 - Batch_size = 50

```
# Train the model
model.fit(X_train, y_train, epochs=100, shuffle=False, batch_size=50, verbose=1)
```

Median Listing Price LSTM: Model Performance

Mean Squared Error = 0.0509

Performance on Testing Data after re-scaling:

```
Median Listing Price LSTM Model Performance:

Median Listing Price LSTM Model RMSE: $46799.2734375

Median Listing Price LSTM Model Mean Absolute Error: $41038.9921875

Median Listing Price LSTM Model Mean Absolute Percentage Error: 6.193641662597656%
```

Median Listing Price LSTM: Model Performance

LSTM Analysis: Conclusion

- LSTM model using median listing prices is best predictor for median listing prices, unsurprisingly
 - Lowest MSE (0.05)
 - Lowest RMSE (~\$47k)
 - Lowest MAE (~\$41k)
 - Lowest MAPE (~6%)
- Time on market LSTM is next best, active listings count LSTM comes in last
- Future considerations:
 - Find larger datasets of housing inventory statistics
 - Switch up target and feature variables:
 - Use median listing price and active listings count to predict median days on market