Algebrske strukture - zapiski predavanj prof. Klavžarja

Yon Ploj

2. semester 2021

0.1 Lastnosti operacij

Definicija 0.1 (Asociativnost).

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

Definicija 0.2 (Komutativnost).

$$a \cdot b = b \cdot a$$

Definicija 0.3 (Enota).

$$a \cdot e = e \cdot a = a$$

Izrek 0.1. Enota je enolična.

Dokaz. Predpostavimo, da obstajata dve enoti e_1 in e_2 . Ker je e_1 enota, je $e_1 \cdot e_2 = e_2$. Ker je e_2 enota, je $e_1 \cdot e_2 = e_1$. Sledi, da je $e_1 = e_2$.

Definicija 0.4 (Inverz / Obratna vrednost a).

$$a \cdot a^{-1} = a^{-1} \cdot a = e$$

Opomba. Inverz abstraktnega množenja označujemo z a^{-1} , inverz abstraktnega seštevanja pa z -a.

Izrek 0.2. Inverz je enoličen.

Dokaz. Predpostavimo, da obstajata dva inverza b_1 in b_2 .

$$b_1 = b_1 \cdot e = b_1 \cdot (a \cdot b_2) = (b_1 \cdot a) \cdot b_2 = e \cdot b_2 = b_2$$

1 Algebrske strukture

Definicija 1.1 (Notranja operacija množice A).

$$f: A \times A \to A$$

Z infiksno notacijo označujemo f(a, b) kot $a \cdot b$ ali ab

Definicija 1.2 (Algebrska struktura). Množica z vsaj eno notrajno operacijo

Definicija 1.3 (Grupoid). Množica z notrajno operacijo. (M, \cdot)

Definicija 1.4 (Polgrupa). Asociativen grupoid.

Definicija 1.5 (Monoid). Polgrupa z enoto.

Definicija 1.6 (Grupa). Monoid, kjer je vsak element obrnljiv.

Definicija 1.7 (Abelova grupa). Komutativna grupa.

1.1 Množica \mathbb{Z}_n

Definicija 1.8 (Kongruenca). a in b sta kongruentna po modulu m ntk. obstajajo $p,q,r\in\mathbb{Z}_n,$ da velja:

$$a = p * m + r$$

$$b = q * m + r$$

$$r$$

Relacija kongruence je ekvivalenčna, zato razdeli \mathbb{Z}_n na ekvivalenčne razrede ostankov: $\{0,1,\ldots,n-1\}$

Opomba. V nadaljevanju bomo uporabljali operaciji $+_n$ in \cdot_n kot seštevanje/množenje po modulu n.

Trditev 1.1. $(\mathbb{Z}_n, +_n)$ je grupa

Trditev 1.2. (\mathbb{Z}_n, \cdot_n) je monoid

 $x \in \mathbb{Z}_n$ je obrnljivi $\iff x \perp m$. Zato velja, da so vsi elementi v \mathbb{Z}_p (kjer je p praštevilo) obrnljivi. \mathbb{Z}_p je torej grupa.

2 Grupe

Definicija 2.1 (Cayleyeva tabela). Tabela, ki prikazuje definicijo operacije v končnem monoidu.

Opomba. V Cayleyevi tabeli grupe so vsi elementi v vsakem stolpcu in vsaki vrstici med seboj različni (Cayleyeva tabela je latinski kvadrat reda n). To sledi iz izreka 2.1

Izrek 2.1 (Pravilo krajšanja). Če je (G,\cdot) grupa in $a,b,c\in G$, potem velja:

$$ba = ca \implies b = c$$

 $ab = ac \implies b = c$

Dokaz. Naj bo ba = ca. Na desni pomnožimo z a^{-1} in zaradi asociativnosti dobimo:

$$(ba)a^{-1} = (ca)a^{-1}$$
$$b(aa^{-1}) = c(aa^{-1})$$
$$be = ce$$
$$b = c$$

Definicija 2.2 (Red elementa). Naj bo (G, \cdot) končna grupa. Tedaj je red elementa $a \in G$ najmanjše naravno število n, za katerega velja

$$a^n = e$$

Trditev 2.1. Red elementa je dobro definiran

Dokaz. Poglejmo zaporedje: $a^1, a^2, \cdots, a^{k+1}$, kjer je k = |G|. Zaporedje ima k + 1 elementov, naša grupa pa jih ima k. Po dirichletovem načelu

$$\exists p, q : (p \neq q \land (B\check{S}S \ p < q) \land a^p = a^q)$$

Tedaj

$$e = (a^p)(a^p)^{-1} = (a^q)(a^p)^{-1} = a^q a^{-p} = a^{q-p}$$

Sledi $a^{q-p} = e$, kar smo želeli pokazati.

Opomba. Red enote je 1 in ker je enota enolična, je enota edini element reda 1.

3 Podgrupe

Definicija 3.1 (Podgrupa). Naj bo (G,\cdot) grupa. Tedaj je $H\subseteq G$ podgrupa, če je (H,\cdot) tudi grupa. Pri tem je operacija obakrat ista. Označimo $H\subseteq G$.

Definicija 3.2 (Prava podgrupa). Naj bo (H, \cdot) podrgupa (G, \cdot) . Če je $H \subset G$ (torej $H \neq G$), je H prava podgrupa G. Označimo H < G.

Primer (Trivialna podgrupa). Za vsako grupo G velja $G \leq G$ in $\{e\} \leq G$.

Primer. $(\mathbb{Q}^+,\cdot)<(\mathbb{R}^+,\cdot)$

Primer. $F := \{f : \mathbb{R} \to \mathbb{R}\}.$ (F, +) je grupa.

 $C:=\{f:\mathbb{R}\to\mathbb{R}; f \text{ je zvezna}\}.$ (C,+) je grupa.

(C,+) < (F,+)

Izrek 3.1 (Glavni izrek o podgrupah). Naj bo (G,\cdot) grupa in $\emptyset \neq H \subseteq G$. Tedaj je (H,\cdot) podgrupa v (G,\cdot) natanko tedaj, ko

$$\forall x, y \in H : (x^{-1}y \in H)$$

Dokaz. (\Rightarrow) Naj bosta $x,y\in H.$ Ker je (H,\cdot) podgrupa in s tem sama zase grupa, je tudi $x^{-1}\in H.$ Zato je tudi $x^{-1}y\in H.$

 (\Leftarrow) Naj $\forall x, y \in H : (x^{-1}y \in H)$.

- asociativnost če so $x,y,z\in H$, potem so tudi $x,y,z\in G$. Ker vG velja asociativnost, velja tudi vH.
- enota Ker je $H \neq \emptyset$, $\exists x \in H$. Postavimo y = x. Potem je tudi $x^{-1}x = e \in H$.
- inverz Vemo, da je $e \in H$. Naj bo $x \in H$. Postavimo y = e: $x^{-1}y \in H \implies x^{-1}e \in H \implies x^{-1} \in H$.
- zaprtost $x, y \in H$. Vemo že, da je $x^{-1} \in H$, zato je tudi $(x^{-1})^{-1} \in H$. Zato je $xy = (x^{-1})^{-1}y \in H$.

Za končne grupe je kriterij še enostavnejši:

Izrek 3.2. Naj bo (G,\cdot) končna grupa in $\emptyset \neq H \subseteq G$. Tedaj je $(H,\cdot) \leq (G,\cdot) \iff (x,y \in H \implies xy \in H)$

Dokaz. Dokaz je tako zelo enostaven, da ga ne bomo šli dokazovat. Glavna ideja je, da malo gledate ta zaporedja in potem dobite neke zaključke. ■

Definicija 3.3 (Ciklična podgrupa). Naj bo $(G.\cdot)$ grupa in $a \in G$. Potem naj bo

$$\langle a \rangle := \{ a^n : n \in \mathbb{Z} \}$$

Podgrupa $(\langle a \rangle, \cdot)$ je ciklična podgrupa v G, generirana z enoto a.

Trditev 3.1. Če je (G,\cdot) grupa in $a \in G$, potem je

$$(\langle a \rangle, \cdot) \le (G, \cdot)$$

Dokaz. Ker je $a^1 = a$, je $a \in \langle a \rangle$, torej $\langle a \rangle \neq \emptyset$. Naj bosta sedaj $a^n, a^m \in \langle a \rangle$. Ker je

$$(a^n)^{-1}a^m = (a^{-1})^n a^m = a^{m-n} \in \langle a \rangle$$

je po glavnem izreku potem $(\langle a \rangle, \cdot)$ podgrupa grupe G.

Primer. $(\mathbb{Z}_{12}, +_{12})$ $\langle 3 \rangle = \{3, 6, 9, 0\}$ $(\{0, 3, 6, 9\}, +_{12}) \leq (\mathbb{Z}_{12}), +_{12})$

Definicija 3.4 (Center grupe). Naj bo (G,\cdot) grupa. Potem je Z(G) center grupe G podmnožica z elementi, ki komutirajo z vsemi elementi v G.

$$Z(G) = \{a \in G : \forall x \in G(ax = xa)\}\$$

Opomba. Če je G abelova, je Z(G) = G.

Izrek 3.3. Če je (G, \cdot) grupa, potem je $(Z(G), \cdot) \leq (G, \cdot)$.

Dokaz. Pokažimo najprej, da $a \in Z(G) \implies a^{-1} \in Z(G)$. Če a komutira z vsemi $x \in G$, potem tudi a^{-1} komutira z vsemi $x \in G$:

$$a^{-1} \cdot / ax = xa / \cdot a^{-1}$$

 $a^{-1}axa^{-1} = a^{-1}xaa^{-1}$
 $(a^{-1}a)xa^{-1} = a^{-1}ax(a^{-1})$
 $xa^{-1} = a^{-1}x$

Sedaj pa še $a^{-1}b \in Z(G)$:

$$(a^{-1}b)x = a^{-1}(bx) = a^{-1}(xb) = (a^{-1}x)b = (xa^{-1})b = x(a^{-1}b)$$

Po izreku 3.1 je to zadosti.