

Выпускной проект

Kypc "Data Engineer"

Фурман Юрий yuri.furman@rt.ru, yuri063@yandex.ru

Содержание

- Задачи и требования
- Исходные данные
- Описание структуры хранилища
- Описание ETL-процессов
- Описание витрины
- Контроль качества данных
- Результаты

Задачи и требования

- 1. Разработать структуру хранилища данных (DWH)
- 2. Разработать и автоматизировать процессы извлечения, трансформации и загрузки данных (ETL) из источников в DWH и построение витрин данных
- 3. Обеспечить контроль качества поступающих в хранилище данных
- 4. Разработать ВІ-отчеты (дэшборды)

Задачи и требования

1. Требования к хранилищу данных:

- Гетерогенность источников
- Поддержка историчности
- Гибкость модели данных
- Скорость обновления
- Устойчивость к объёму

2. Требования к ETL-процессам:

- Извлечение данных
- Очистка данных
- Трансформация данных
- Загрузка данных

3. Требования к витрине данных

- Агрегирование информации в определенном временном или тематическом разрезе
- Формирование отчетных данных в виде шаблонизированного документа

4. Требования к качеству данных (метрики качества)

- Полнота / Completeness
- Точность / Accuracy
- Согласованность / Consistency
- Валидность / Validity
- Своевременность / Timeliness
- Целостность / Integrity

Исходные данные представлены **5-тью источниками** (таблицы в операционных базах) некоторой биллинговой системы:

- Начисления: исходные данные источника располагаются в бакете GCS rt-2021-03-25-16-47-29-sfunu-final-project
- Платежи: исходные данные источника располагаются в бакете GCS rt-2021-03-25-16-47-29-sfunu-final-project
- Обращения в ТП: исходные данные источника располагаются в бакете GCS rt-2021-03-25-16-47-29-sfunu-final-project
- Потребляемый трафик: исходные данные источника располагаются в бакете GCS rt-2021-03-25-16-47-29-sfunu-final-project
- MDM: исходные данные источника MDM располагаются в схеме mdm в Greenplum

Источник начисления:

Имя поля	Тип поля	Описание	Пример
user_id	bigint	Идентификатор пользователя	1500023
billing_period	varchar	Период оплаты	2020-12
service	varchar	Услуга	Домашний интернет
tariff	varchar	Тариф	Выгодный 500
sum	float	Сумма начислений	110.0
created_at	datetime	Дата начисления	2021-01-10 14:52:12

Источник платежи:

Имя поля	Тип поля	Описание	Пример
user_id	bigint	Идентификатор пользователя	1500023
pay_doc_type	varchar	Тип платежного документа	Кредитная карта Visa (на сайте)
pay_doc_num	bigint	Номер платежа (уникален в рамках каждого рау_doc_type)	3485900052
account	varchar	Лицевой счет клиента	ФЛ-18709262
phone	varchar	Телефонный номер клиента	79234567890
billing_period	varchar	Период оплаты	2020-12
pay_date	varchar	Дата оплаты	2021-01-10 14:52:12
sum	float	Сумма платежа в рублях	101.50

Источник обращения:

Имя поля	Тип поля	Описание	Пример
user_id	number	Идентификатор пользователя	1500023
start_time	datetime	Дата открытия обращения	2021-01-10 14:52:12
end_time	datetime	Дата закрытия обращения	null
title	varchar	Тема обращения	Нет интернета
description	text	Описание	Нет интернета два дня, роутер перезагружал
service	varchar	Услуга	Домашний интернет

Источник траффик:

Имя поля	Тип поля	Описание	Пример
user_id	bigint	Идентификатор пользователя	1500023
timestamp	bigint	Время регистрации события в миллисекундах	1581177460000
device_id	varchar	Серийный номер пользовательского устройства	AN96763S43
device_ip_addr	varchar	IP-адрес пользовательского устройства	172.16.3.82
bytes_sent	bigint	Объем исходящего трафика	0
bytes_received	bigint	Объем входящего трафика	67330

Источник **МDM**:

Имя поля	Тип поля	Описание	Пример
id	int	Идентификатор пользователя	10234
legal_type	text	Тип пользователя	Физическое лицо, Юридическое лицо
registered_at	timestamp	Дата регистрации	2012-10-02 12:20:15
billing_mode	text	Режим выставления счета абоненту	Предоплатный, постоплатный
is_vip	bool	Признак уровня обслуживания (VIP)	True/False

При проектировании структуры DWH за основу была принята 3-х уровневая модель по Инмону

Организация слоев DWH

Структура stage слоя (STG)

STG_PAYMENT			
NAME	TYPE	COMMENT	
user_id	int	идентификатор пользователя	
pay_doc_type	varchar	Тип платежного документа	
pay_doc_num	int	Номер платежного документа	
account	varchar	Лицевой счет клиента	
phone	varchar	Телефонный номер клиента	
billing_period	varchar	Период (год, месяц) оплаты	
pay_date	varchar	Дата оплаты	
sum	double precision	Сумма платежа в рублях	

STG_TRAFFIC			
NAME	TYPE	COMMENT	
user_id	int	идентификатор пользователя	
timestamp	bigint	время регистрации события в милисек.	
device_id	varchar	Серийный номер устройства пользователя	
device_ip_addr	varchar	IP адрес устройства пользователя	
bytes_sent	int	Объем исходящего трафика	
bytes_received	int	Объем входящего трафика	

STG_BILLING			
NAME	TYPE	COMMENT	
user_id	int	идентификатор пользователя	
billing_period	varchar	Период (год, месяц) оплаты	
service	varchar	услуга	
tariff	varchar	тариф	
sum	varchar	Сумма начислений в рублях	
created_at	datetime	Дата начисления	

STG_ISSUE			
NAME	TYPE	COMMENT	
user_id	varchar	идентификатор пользователя	
start_time	varchar	Дата открытия запроса	
end_time	varchar	Дата закрытия запроса	
title	varchar	Тема запроса	
description	varchar	Описание	
service	varchar	услуга	

Структура операционного слоя (ODS)

ODS_PAYMENT			
NAME	TYPE	COMMENT	
user_id	int	идентификатор пользователя	
pay_doc_type	varchar	Тип платежного документа	
pay_doc_num	bigint	Номер платежного документа	
account	varchar	Лицевой счет клиента	
phone	varchar	Телефонный номер клиента	
billing_period	varchar	Период (год, месяц) оплаты	
pay_date	datet	Дата оплаты	
sum	decimal(10, 2)	Сумма платежа в рублях	

ODS_TRAFFIC			
NAME	TYPE	COMMENT	
user_id	int	идентификатор пользователя	
time_stamp	timestamp	время регистрации события в милисек.	
device_num	varchar	Серийный номер устройства пользователя	
device_ip_addr	varchar	IP адрес устройства пользователя	
bytes_sent	bigint	Объем исходящего трафика	
bytes_received	bigint	Объем входящего трафика	

ODS_BILLING			
NAME	TYPE	COMMENT	
user_id	int	идентификатор пользователя	
billing_period	varchar	Период (год, месяц) оплаты	
service	varchar	услуга	
tariff	varchar	тариф	
sum	decimal(10, 2)	Сумма начислений в рублях	
created_at	timestamp	Дата начисления	

ODS_ISSUE		
NAME	TYPE	COMMENT
user_id	int	идентификатор пользователя
start_time	timestamp	Дата открытия запроса
end_time	timestamp	Дата закрытия запроса
title	varchar	Тема запроса
description	varchar	Описание
service	varchar	услуга

Структура детального слоя (DDS)

При проектировании DDS была применена методология **Data Vault**.

Data Vault – набор уникально связанных нормализованных таблиц, содержащих детальные данные, отслеживающих историю изменений и предназначенных для поддержки одной или нескольких функциональных областей бизнеса. Автор: Дэн Линстедт (Dan E. Linstedt).

Дизайн Data Vault сосредоточен вокруг функциональных областей бизнеса.

- Хаб (Hub) хранит сущности.
- Связь (Link) обеспечивает транзакционную интеграцию между Хабами (связи между сущностями).
- Сателлит (Satellite) предоставляет контекст первичного ключа Хаба (атрибуты, описания).

Структура детального слоя (DDS)

Хаб

Хабы (Hub) являются отдельными таблицами, содержащими как минимум уникальный список бизнес ключей.

Атрибуты Хаба включают:

- Ключ бизнес-сущности из внешней системы
- > Суррогатный ключ
- Временная отметка даты загрузки
- > Код источника данных

Линк

Связи (Link) представляет отношения или транзакцию между двумя или более компонентами бизнеса (два или более бизнес ключа).

Атрибуты линка включают:

- Суррогатный ключ (Surrogate Key)
- Ключи Хабов: от 1-го Хаба до N-го Хаба
- Временная отметка даты загрузки
- > Код источника данных

Саттелит

Сателлиты (Satellite) являются контекстной (описательной) информацией ключа Хаба, обычно с историзмом по SCD2.

Атрибуты саттелита включают:

- Первичный ключ Сателлита:
 Первичный ключ Хаба или первичный ключ Связи
- Даты действия записи (SCD2)
- Временная отметка даты загрузки
- Код источника данных

Структура детального слоя (DDS)

Структура слоя витрин данных(DM)

Витрина данных (Data Mart) представляет собой срез DWH в виде массива тематической, узконаправленной информации. Витрина данных, аналогично дэшборд-панели, позволяет аналитику увидеть агрегированную информацию в определенном временном или тематическом разрезе, а также сформировать и распечатать отчетные данные в виде шаблонизированного документа.

Данные для анализа организуются в модель типа **«звезда» (star scheme).** Эта модель представляется двумя видами таблиц:

- таблицами фактов
- таблицами измерений.

Структура слоя витрин данных(DM)

Таблица фактов — является основной таблицей DM. Как правило, она содержит сведения об объектах, событиях или процессах, совокупность которых будет в дальнейшем анализироваться. Характеристики таблиц фактов:

- Таблица фактов содержит числовые параметры (метрики);
- Каждая таблица фактов имеет составной ключ, состоящий из первичных ключей таблиц измерений. Первичный ключ таблицы измерений является внешним ключом в таблице фактов.

Таблица измерений (англ. dimension table) — содержит атрибуты событий, сохраненных в таблице фактов. Атрибуты представляют собой текстовые или иные описания, логически объединенные в одно целое. Таблица измерения имеет первичный ключ и атрибуты, описывающие факты с точки зрения некоторого направления деятельности организации. Характеристики измерений:

- Таблицы измерений содержат данные о детализации фактов;
- Таблицы измерений содержат описательную информацию о числовых значениях в таблице фактов, т.е. они содержат атрибуты фактов;
- Атрибуты таблиц измерений обычно используются при визуализации данных в отчетах и запросах;

Структура слоя витрин данных(DM)

ETL - это совокупность процессов управления хранилищами данных, включая:

- извлечение данных из одного или нескольких источников и подготовка их к преобразованию (загрузка в промежуточную область, проверка данных на соответствие спецификациям и возможность последующей загрузки в DWH);
- трансформация данных преобразование форматов и кодировки, агрегация и очистка;
- **загрузка данных** запись преобразованных данных, включая информацию о структуре их представления (метаданные) в необходимую систему хранения (DWH) или витрину данных.

ETL-процессы по своей архитектуре (способу поступления и обработки данных) делятся на пакетные (batch processing) и потоковые (streaming processing), либо их сочетание – lambda архитектура.

Batch processing - обработка данных, разбитых на непересекающиеся наборы (чаще всего по времени).

Stream processing - обработка данных как непрерывного потока в режиме реального времени.

В данной работе мы используем пакетный режим обработки данных.

В пакетном режиме работы ETL-процессы должны обеспечивать *идемпотентность* операций репроцессинга.

Репроцессинг – повторная обработка данных за уже прошедшие периоды.

Идемпоте́нтность — свойство объекта или операции при повторном применении операции к объекту давать тот же результат, что и при первом.

Далее подробно рассмотрим ETL-процессы, примененные для каждого из слоев DWH.

В качестве целевой БД для нашего DWH мы используем MPP-СУБД Greenplum

ETL-процессы для STG-слоя

Т.к. наши источники данных уже погружены в **Data Lake** и **партицированы** по времени (по *году*), то для обеспечения *идемптентного репроцессинга* достаточно создать в целевой MPP-базе данных внешнюю таблицу, указывающую на источник. Например, для источника **billing**:

```
create external table yfurman.project_stg_billing (
    user_id INT,
    billing_period VARCHAR,
    service VARCHAR,
    tariff VARCHAR,
    tariff VARCHAR,
    created_at VARCHAR)

location ('pxf://rt-2021-03-25-16-47-29-sfunu-final-project/billing/*/?PROFILE=gs:parquet')
FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');
```

На данном этапе мы не производим никаких трансформаций с данными.

ETL-процессы для ODS-слоя

Для обеспечения *идемптентного репроцессинга* на данном этапе мы изначально создаем таблицы ODS в Greenplum *партицироваными* по времени загрузки данных в системах источниках (интервал – 1 год).

```
create table yfurman.project_ods_billing (
        user_id INT,
        billing_period VARCHAR,
        service VARCHAR,
        tariff VARCHAR,
        sum DECIMAL(10,2),
        created_at TIMESTAMP
)
distributed by (user_id)
partition by range(created_at) (
        start (TIMESTAMP '1999-01-01') inclusive
        end (TIMESTAMP '2040-01-01') exclusive
        every ('1 year'::interval)
);
```

На данном этапе мы производим трансформацию типов данных к целевой модели.

ETL-процессы для ODS-слоя

При таком подходе, все что нам нужно – это при репроцессинге, перед повторной заливкой, очистить соответствующую партицию от старых данных:

ETL-процессы для DDS-слоя

Перед началом выполнения ETL-процедур для наших сущностей DV-модели (*хабов, линков, сателлитов*), мы должны обогатить наши данные метаинформацией (указать дату загрузки в DWH и источник данных для каждой записи), рассчитать хеш-значения для ключей. Т.е. мы формируем своеобразный *пред-DDS* слой. Для этого в данной работе были использованы представления (**view**).

ETL-процессы для DDS-слоя

Приведем пример выделения метаинформации и вычисления хеш-значений для ключей

```
create or replace view yfurman.project view billing one year as (
                         'BILLING - DATA LAKE'::varchar as RECORD SOURCE,
                        \verb|cast((md5(nullif(upper(trim(cast(user\_id as varchar))), '')))| as TEXT) as USER\_PK,
                        cast((md5(nullif(upper(trim(cast(billing_period as varchar))), ''))) as TEXT) as BILLING_PERIOD_PK,
                        cast((md5(nullif(upper(trim(cast(service as varchar))), ''))) as TEXT) as SERVICE_PK,
                        cast((md5(nullif(upper(trim(cast(tariff as varchar))), ''))) as TEXT) as TARIFF PK,
                        cast(md5(nullif(concat ws('||',
                                                 coalesce(nullif(upper(trim(cast(user_id as varchar))), ''), '^^'),
                                                 coalesce(nullif(upper(trim(cast(billing period as varchar))), ''), '^^'),
                                                 coalesce(nullif(upper(trim(cast(service as varchar))), ''), '^^'),
                                                 coalesce(nullif(upper(trim(cast(tariff as varchar))), ''), '^^')
                        ), |^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|^{^{1}}|
                        cast(md5(concat ws('||',
                                                 coalesce(nullif(upper(trim(cast(created at as varchar))), ''), '^^'),
                                                 coalesce(nullif(upper(trim(cast(sum as varchar))), ''), '^^')
                        )) as TEXT) as BILLING HASHDIFF,
                           '2018-01-01'::timestamp as LOAD DATE,
                        created_at as EFFECTIVE_FROM
);
```

ETL-процессы для DDS-слоя. Хабы

Теперь рассмотрим ETL-процесс для каждой из сущностей.

Хабы

Т.к. хабы представляют собой таблицу уникальных бизнес ключей, то для выполнения идемпотетного репроцессинга достаточно обеспечить отсутствие дублирующих записей. При заполнении таблиц хабов данные необходимо брать из всех источников (например, для хаба billing_period таких источника два).

ETL-процессы для DDS-слоя. Хабы

```
with row rank 1 as (
          select * from (select BILLING PERIOD PK, BILLING PERIOD KEY, LOAD DATE, RECORD SOURCE,
                                 row number() over (partition by BILLING PERIOD PK order by LOAD DATE ASC) as row num
                          from yfurman.project view payment one year
          ) as h where row num = 1
row rank 2 as (
          select * from (select BILLING PERIOD PK, BILLING PERIOD KEY, LOAD DATE, RECORD SOURCE,
                                 row number() over (partition by BILLING PERIOD PK order by LOAD DATE ASC) as row num
                         from yfurman.project view billing one year
          ) as h where row num = 1
stage union as (
          select BILLING PERIOD PK, BILLING PERIOD KEY, LOAD DATE, RECORD SOURCE from row rank 1
          union all
           select BILLING PERIOD PK, BILLING PERIOD KEY, LOAD DATE, RECORD SOURCE from row rank 2
raw union as
          select * from (select BILLING PERIOD PK, BILLING PERIOD KEY, LOAD DATE, RECORD SOURCE,
                                 row number() over (partition by BILLING PERIOD PK order by LOAD DATE ASC) as row num
                         from stage union where BILLING PERIOD PK is not NULL
          ) as h where row num = 1
records to insert as
                      select a.BILLING PERIOD PK, a.BILLING PERIOD KEY, a.LOAD DATE, a.RECORD SOURCE
                      from raw union as a
                     left join yfurman.project dds hub billing period as d
                     on a.BILLING PERIOD PK = d.BILLING PERIOD PK
                     where d.BILLING PERIOD PK is NULL
insert into yfurman.project dds hub billing period (BILLING PERIOD PK, BILLING PERIOD KEY, LOAD DATE, RECORD SOURCE)
          select BILLING PERIOD PK, BILLING PERIOD KEY, LOAD DATE, RECORD SOURCE
          from records to insert
);
```

ETL-процессы для DDS-слоя. Линки

Линки

Линки представляют собой таблицы уникальных наборов хеш-ключей из таблиц хабов. Поэтому, также как и для хабов, в данном случае для выполнения идемпотетного репроцессинга достаточно обеспечить отсутствие дублирующих записей.

ETL-процессы для DDS-слоя. Линки

```
with source data as (
          select
                    BILLING PK,
                    USER PK, BILLING PERIOD PK, SERVICE PK, TARIFF PK,
                    LOAD DATE, RECORD SOURCE
          from yfurman.project view billing one year
records to insert as (
          select distinct
                    stg.BILLING PK,
                    stg. USER PK, stg. BILLING PERIOD PK, stg. SERVICE PK, stg. TARIFF PK,
                    stg.LOAD DATE, stg.RECORD SOURCE
          from source data as stg
          left join yfurman.project dds link billing as tgt
          on stg.BILLING PK = tgt.BILLING PK
          where tgt.BILLING PK is null
insert into yfurman.project dds link billing (
          BILLING PK,
          USER PK, BILLING PERIOD PK, SERVICE PK, TARIFF PK,
          LOAD DATE, RECORD SOURCE)
          select
                    BILLING PK,
                    USER_PK, BILLING_PERIOD_PK, SERVICE_PK, TARIFF_PK,
                    LOAD DATE, RECORD SOURCE
          from records to insert
);
```

ETL-процессы для DDS-слоя. Сателлиты

Сателлиты

Таблицы сателлитов, в отличии от хабов и линков, обязаны поддерживать историчность хранимых атрибутов для сущностей (хабов) или транзакций (линков). Прежде чем перейти к описанию ETL-процесса для сателлитов, рассмотрим для них условия обеспечения идемпотентности операций репроцессинга.

ETL-процессы для DDS-слоя. Сателлиты

Предположим, что у нас имеются входные данные, состоящие из множества наборов записей, сегментированных по времени (некоторому атрибуту, $effective_from$). Назовем это множество $\{ODS(i)\} = \{ODS(1), ODS(2), ..., ODS(N-1), ODS(N)\}$. Данное множество должно удовлетворять следующим критериям:

- 1. каждый элемент ODS(i) набор записей $\{z(i, k)\}$, где k от 1 до M(i) (M(i) количество записей в ODS(i))
- 2. для любых і и j (от 1 до N) выполняется условие: если i < j, тогда для любых k (от 1 до M(i)) и p (от 1 до M(j)) справедливо:

z(i, k).effective_from < z(j, p).effective_from

Другими словами, наборы записей ODS(i) не пересекаются по временному атрибуту (effective_from) для любого i от 1 до N.

ETL-процессы для DDS-слоя. Сателлиты

Для фиксированного ключа РК, множество значений атрибутов {V} сателлита является функцией времени в n-мерном пространстве (где n число атрибутов сателлита)

ETL-процессы для DDS-слоя. Сателлиты

Лемма 1. Операция репроцессинга для сателлитов (в терминах *Data Vault*), будет удовлетворять требованию *идемпотентности* тогда и только тогда, когда:

- 1. Для каждого і от 1 до N набору ODS(і) сопоставлен атрибут load_date(і), такой , что:
 - load_date(i) >= max{z(i, k₁).effective_from}, k₁ = 1,M(i)
 и для всех i < N
 load_date(i) <= min{z(i+1, k₂).effective_from}, k₂ = 1,M(i+1)
 - для любых і и j (от 1 до N) выполняется условие: если i < j, то load_date(i) < load_date(j)
- 2. Каждая запись из ODS(i) z(i, k) будет проверяться на совпадение (по первичному ключу и hashdiff) только с такими записями S(j) из множества существующих записей в сателлите $\{S\}$, что

$$z(i, k).load_date >= s(j).load_date, k = 1,M(i)$$

ETL-процессы для DDS-слоя. Сателлиты

- 3. Если множество записей $\{S(i, k)\}$, сформированное на шаге 2 (*records_to_insert*) не пустое, то повторить шаг 2 для каждой ODS(m), где m принимает значение **от i+1 до N**. Иначе переходим на шаг 5.
- 4. После вставки удалить в сателлите дубли записей по составному ключу (hub_pk, hash_diff, effective_from)
- 5. Операция репроцессинга завершена.

Смысл шага 3 — означает, что если мы смогли добавить в сателлит новые записи, то нужно перезалить и все данные для всех $load_date(j) > load_date(i)$

Теперь можем описать пункты 1-2 в виде SQL-запроса

ETL-процессы для DDS-слоя. Сателлиты

```
Запишем это в виде sql-запроса:
with source_data as (
                                                                                           ) as s
                                                                                          where latest = 'Y'
           select
                       HUB PK, HUB HASHDIFF,
                        attribute 1,..., attribute_N,
                                                                              records_to_insert as (
                        EFFECTIVE FROM.
                                                                                          select distinct
                       LOAD DATE, RECORD SOURCE
                                                                                                      e.HUB_PK, e.HUB_HASHDIFF,
           from ods on load date
                                                                                                      e.attribute 1,..., e.attribute_N,
                                                                                                      e.EFFECTIVE FROM,
                                                                                                      e.LOAD DATE, e.RECORD_SOURCE
update_records as (
           select
                                                                                          from source_data as e
                       a.HUB_PK, a.HUB_HASHDIFF,
                                                                                          left join latest_records
                                                                                          on latest records.HUB HASHDIFF = e.HUB HASHDIFF and
                       a.attribute 1,..., a.attribute_N,
                       a.EFFECTIVE FROM,
                                                                                            latest records.HUB PK = e.HUB PK
                       a.LOAD DATE, a.RECORD SOURCE
                                                                                          where latest records.HUB HASHDIFF is NULL
           from dds_sat_hub_details as a
           join source data as b
                                                                              insert into dds sat hub details (
           on a.HUB PK = b.HUB PK
                                                                                          HUB PK, HUB HASHDIFF,
           where a.LOAD DATE <= b.LOAD DATE
                                                                                          attribute 1,..., attribute_N,
                                                                                          EFFECTIVE FROM.
                                                                                          LOAD DATE, RECORD SOURCE)
latest records as (
           select * from (
                       select HUB PK, HUB HASHDIFF, LOAD DATE,
                                                                                          select
                                   case when rank() over (partition by HUB PK
                                                                                                      HUB PK, HUB HASHDIFF,
           order by LOAD DATE desc) = 1
                                                                                                      attribute 1,..., attribute_N,
                                                                                                      EFFECTIVE_FROM,
                                               then 'Y'
                                                                                                      LOAD DATE, RECORD SOURCE
                                               else 'N'
                                                                                          from records to insert
                                   end as latest
                       from update records
```

ETL-процессы для DDS-слоя. Особенности модели темпоральных данных

Существует два подхода к моделированию темпоральных данных:

Подход к моделированию темпоральных данных, основанный на фиксации событий предметной области, состоит в добавлении временной метки фиксации события (факта) как атрибута экземпляра сущности предметной области и отражении момента времени в таблице БД как истории жизни данных предметной области.

Подход к моделированию темпоральных данных, основанный на фиксации состояний предметной области, состоит в добавлении временных меток для фиксации начала и завершения определенного состояния как атрибутов экземпляра сущности предметной области экземпляров сущности и отражении моментов времени начала и завершения определенного состояния сущности в таблице БД как истории жизни данных предметной области.

ETL-процессы для DDS-слоя. Особенности модели темпоральных данных

Пример модели событий: множество значений атрибутов является функцией событий от времени **t**:

V = f(t)

			-				-				
	123 user_id 🏻 🔭	ABC pay_doc_type 🏋 🕻	123 pay_doc_num 🏋 🕻	ABC account 🏋	ABC billing_period	T:	asc phone 🏗	9	pay_date	7‡	123 sum 🔭 🙏
7	10 170	MASTER	291 195 617	FL-1787196450	2014-03		+79250341610		2014-04	-25	8 039
8	10 170	VISA	264 312 040	FL-1787196450	2014-11		+79250341610		2014-12	-10	4 935
9	10 170	MASTER	1 960 386 260	FL-1787196450	2014-03		+79250341610	•	2014-05	-06	7 327
10	10 170	MASTER	706 481 908	FL-1787196450	2014-09		+79250341610		2014-10	-28	5 590
11	10 180	MIR	1 680 757 924	FL-2136710735	2014-07		+79324206266	- 1	2014-08	-27	9 124
12	10 180	MIR	1 512 795 058	FL-2136710735	2014-05		+79324206266		2014-06	-24	2 468
13	10 210	MIR	1 828 999 780	FL-616540745	2014-05		+79022472406	•	2014-06	-17	2 002
14	10 230	MIR	491 305 220	FL-645659412	2014-05		+79727768077		2014-06	-24	4 362
15	10 230	MASTER	1 150 297 087	FL-645659412	2014-09		+79727768077	-	2014-10	-24	3 812
16	10 250	MIR	1 317 113 798	FL-307197932	2014-05		+79660378230		2014-06	-28	1 861
17	10 290	MASTER	1 846 209 445	FL-1933425293	2014-05		+79169958769	•	2014-06	-18	4 723
18	10 300	MASTER	1 840 164 550	FL-1075865221	2014-04		+79138982743		2014-05	-17	6 727
19	10 310	MASTER	1 194 530 527	FL-656077164	2014-09		+79820958565	- 1	2014-11	-09	3 355
20	10 340	VISA	2 103 998 277	FL-1261216314	2014-02		+79814244593	-1	2014-03	-13	51
21	10 350	MASTER	983 803 733	FL-1457665697	2014-11		+79157983892	•	2014-12	-27	3 074
22	10 360	VISA	1 035 728 209	FL-1849317627	2014-04		+79466046540	-	2014-05	-31	5 487
23	10 360	MIR	1 147 511 689	FL-1849317627	2014-01		+79466046540		2014-03	-07	6 936
24	10 360	MIR	1 889 824 377	FL-1849317627	2014-07		+79466046540		2014-09	-01	6 751
25	10 360	MASTER	1 794 657 678	FL-1849317627	2014-07		+79466046540	•	2014-08	-21	3 422
26	10 360	MASTER	1 315 321 880	FL-1849317627	2014-08		+79466046540	1	2014-09	-23	3 020

ETL-процессы для DDS-слоя. Особенности модели темпоральных данных

Функция событий

ETL-процессы для DDS-слоя. Особенности модели темпоральных данных

Пример модели состояний: множество значений атрибутов является функцией состояний на интервале от \mathbf{t} до $\mathbf{t}+\Delta\mathbf{t}$: $\mathbf{V}=\mathbf{f}(\mathbf{t},\Delta\mathbf{t})$

				/		
	123 user_id	start_time 📆	<pre>end_time </pre>	asc title 📆	ABC description 🏋 🕻	ABC service 🏋 🛊
5	11 020	2013-03-29 12:24:36	2013-04-01 01:24:36	gZGhWuWZbdbeBi	VXDkkqxDSUrQRR	Цифровое ТВ
6	11 020	2013-01-09 08:47:11	2013-01-09 17:47:11	6YdRsnqOPSVYFv	pETaMRVLozeeaP	Домашний интернет
7	11 020	2013-05-28 22:05:56	2013-05-29 11:05:56	AbrNNFQROFeGeM	dYctHZtwMJdQBc	Домашний интернет
8	11 020	2013-04-30 07:34:31	2013-05-02 07:34:31	SiXPvvlrhOLkON	LJBBOkJcpnzFOd	Цифровое ТВ
9	11 020	2013-10-28 15:19:21	2013-10-30 02:19:21	PdkzamQgFjCTqx	LUnvCIFeJsylki	Домашний интернет
10	10 990	2013-02-18 01:00:36	2013-02-18 04:00:36	RGiOJvKaqushtF	acTvRUEaqZIAZJ	Домашний интернет
11	10 990	2013-06- 1 8 11:27:16	2013-06-21 06:27:16	:cgezFVuthbIaU	cfLkQwBduRDxQU	Цифровое ТВ
12	10 990	2013-05-18 15:49:43	2013-05-19 06:49:43	mRnPtYkoaGQytj	bYvvfvCfKVNGBV	Домашний интернет
13	10 980	2013-10-01 09:53:24	2013-10-02 20:53:24	trNnxrlEydfAsW	FWeFBagSfiwCmn	Домашний интернет
14	10 980	2013-02-16 21:59:28	2013-02-18 14:59:28	uMAWLoENIpSVUj	OstLlyXuRUojKS	Цифровое ТВ
15	10 970	2013-10-31 12:03:33	2013-11-01 16:03:33	pDKtInZUyqZGXf	CcFHjxVDJqNilf	Домашний интернет
16	10 970	2013-07- 1 3 16:28:09	2013-07-14 11:28:09	${\sf QdZwVZOIQTyqPB}$	KOcsYFedhoKnPq	Цифровое ТВ
17	10 970	2013-09-21 11:35:26	2013-09-24 02:35:26	DVeRFhzNcUVgXu	LhsJvvwlEsxbwm	Домашний интернет
18	10 970	2013-09- 1 1 10:48:08	2013-09-14 02:48:08	EHbmYgNKicUACe	${\sf sPBgkYbhWWILXc}$	Цифровое ТВ
19	10 970	2013-06-01 11:28:57	2013-06-04 07:28:57	KvweAtqeDdhRsf	QWJUcTisCWmvno	Цифровое ТВ
20	10 970	2013-07-15 03:01:32	2013-07-16 06:01:32	QjqavPoqaIvBPW	XxVsrjZfUrbDaa	Цифровое ТВ
21	10 970	2013-08-25 01:59:42	2013-08-26 17:59:42	qXihxhnkzjKgE	bUiigyfkzFqnJh	Домашний интернет

ETL-процессы для DDS-слоя. Особенности модели темпоральных данных Функция состояний

ETL-процессы для DDS-слоя. Особенности модели темпоральных данных

SATELLITE

ETL-процессы для DDS-слоя. Особенности модели темпоральных данных

Пример модели состояний при неизвестном Δt : $V = f(t, \Delta t)$

	123 user_id 🏻 🖺 🕇	ABC pay_doc_type 🏋	123 pay_doc_num 🔭	ABC account 📆	ABC billing_period	T:	asc phone ∜‡	<pre>pay_date T‡</pre>	123 sum 🟋 🔭
7	10 170	MASTER	291 195 617	FL-1787196450	2014-03		+79250341610	2014-04-25	8 039
8	10 170	VISA	264 312 040	FL-1787196450	2014-11		+79250341610	2014-12-10	4 935
9	10 170	MASTER	1 960 386 260	FL-1787196450	2014-03		+79250341610	2014-05-06	7 327
10	10 170	MASTER	706 481 908	FL-1787196450	2014-09	•	+79250341610	2014-10-28	5 590
11	10 180	MIR	1 680 757 924	FL-2136710735	2014-07		+79324206266	2014-08-27	9 1 2 4
12	10 180	MIR	1 512 795 058	FL-2136710735	2014-05		+79324206266	2014-06-24	2 468
13	10 210	MIR	1 828 999 780	FL-616540745	2014-05		+79022472406	2014-06-17	2 002
14	10 230	MIR	491 305 220	FL-645659412	2014-05	•	+79727768077	2014-06-24	4 362
15	10 230	MASTER	1 150 297 087	FL-645659412	2014-09		+79727768077	2014-10-24	3 812
16	10 250	MIR	1 317 113 798	FL-307197932	2014-05		+79660378230	2014-06-28	1 861
17	10 290	MASTER	1 846 209 445	FL-1933425293	2014-05		+79169958769	2014-06-18	4 723
18	10 300	MASTER	1 840 164 550	FL-1075865221	2014-04	•	+79138982743	2014-05-17	6 727
19	10 310	MASTER	1 194 530 527	FL-656077164	2014-09		+79820958565	2014-11-09	3 355
20	10 340	VISA	2 103 998 277	FL-1261216314	2014-02		+79814244593	2014-03-13	51
21	10 350	MASTER	983 803 733	FL-1457665697	2014-11		+79157983892	2014-12-27	3 074
22	10 360	VISA	1 035 728 209	FL-1849317627	2014-04	•	+79466046540	2014-05-31	5 487
23	10 360	MIR	1 147 511 689	FL-1849317627	2014-01		+79466046540	2014-03-07	6 936
24	10 360	MIR	1 889 824 377	FL-1849317627	2014-07		+79466046540	2014-09-01	6 751
25	10 360	MASTER	1 794 657 678	FL-1849317627	2014-07		+79466046540	2014-08-21	3 422
26	10 360	MASTER	1 315 321 880	FL-1849317627	2014-08		+79466046540	2014-09-23	3 020

ETL-процессы для DDS-слоя. Особенности модели темпоральных данных

Функция состояний, при неизвестном ∆t

Аномалия, связанная с темпоральностью данных: если не принять специальных мер, то количество записей в хранилище будет зависеть от порядка заполнения

ETL-процессы для DM-слоя

Т.к. витрина данных служит для предоставления агрегированной информации в определенном временном или тематическом разрезе, то мы должны определить по каким основным **бизнес-ключам** будем строить агрегатные функции. В нашем примере – это user_id и billing_period Используя их как каркас, мы будем собирать нашу витрину данных. На первом этапе мы построим вспомогательную таблицу, для которой подготовим данные по каждому тематическому разделу - нас интересуют данные в разрезе: выставленных и оплаченных счетов, суммарного трафика, количества обращений в ТП на каждого пользователя в календарный период (год).

Важное замечание: в данной реализации репроцессинг для слоя DM не является идемпотентным без полной очистки витрины по той причине, что данные в ней являются агрегированными за все периоды, и, следовательно, нельзя выделить отдельные записи за обрабатываемый период. Например, не возможно отделить платеж за 2018 год , сделанный пользователем в 2017 от 2018 или 2019 года.

ETL-процессы для DM-слоя

Рассмотрим отдельно вопрос обеспечения идемпотентности репроцессинга для слоя витрин данных (DM).

Таблицу итоговой витрины (таблицу фактов), как и промежуточные таблицы фактов, для каждой «порции» данных из источников (за любой интервал времени), можно представить как матрицы, имеющие следующий вид:

A_1	A ₂	 A _N	F ₁	F ₂	F _M
a _{1,1}	a _{2,1}	 a _{N,1}	f _{1,1}	f _{2,1}	f _{M,1}
a _{1,2}	a _{2,2}	 a _{N,2}			
a _{1,P(A1)}		 a _{N,P(AN)}			

Где A_1 , A_2 ,, A_N - измерения, а F_1 , F_2 ,, F_M - факты.

ETL-процессы для DM-слоя

Очевидно, что наборов значений $(a_{1,j}, a_{2,j},, a_{N,j})$ будет столько, сколько всего существует комбинаций всех значений измерений, т.е.

$$P = P(A_1) \times P(A_2) \times ... \times P(A_N)$$
, где $P(A_i)$ – число значений измерения A_i , $i = 1$, N

Т.к. каждый такой набор является уникальным, то ему можно сопоставить результат хеш-функции – хеш-ключ:

$$h_{j} = h(a_{1,j}, a_{2,j},, a_{N,j}),$$
 где $j = 1, P$

Тогда таблицы фактов можно преобразовать к виду:

Н	F ₁	F ₂	F_{M}
h ₁	f _{1,1}	f _{2,1}	 $f_{M,1}$
h ₁			
h _P	f _{1,P}	f _{2,P}	 $f_{M,P}$

ETL-процессы для DM-слоя

			$\overline{}$				
A_1	A ₂	· · · · ·	Ą	 A _N	F ₁	F ₂	 F_M
a _{1,1}	a _{2,1}		a _{i,1}	 a _{N,1}	f _{1,1}	f _{2,1}	 f _{M,1}
a _{1,2}	a _{2,2}		a _{i,2}	 a _{N,2}			 :
				 			 :
a _{1,P(A1)}		\	a _{i,P(Ai)}	 a _{N,P(AN)}			

Значения измерений, в общем случае могут быть НЕ УНИКАЛЬНЫМИ для каждого из поступивших в хранилище пакетов («порций») данных ODS(i). Следствием этого является, то, что для обеспечения идемпотености репроцессинга мы должны хранить таблицы фактов для каждого интервала времени.

	123 user_id \[\]	pac pay_doc_type TI	123 pay_doc_num 🟋	REC account 11	noc phone 111	asc billing period T	pay_date 123	sum 🏋
1	10 810	MASTER	427 820 469	FL-1210809915	+79010168768	2013-12	2014-01-19	8 725
2	11 070	MASTER	1 623 090 989	FL-943794062	+79342178413	2013-12	2014-01-06	1 712
3	10 610	MIR	803 805 944	FL-921488443	+79898918916	2013-12	2014-01-19	2 504
4	11 050	VISA	1 859 579 573	FL-1267332307	+79672841946	2013-12	2014-01-12	4 638
5	10 700	MASTER	1 013 475 541	FL-470957464	+79978855132	2013-12	2014-01-14	8 862
6	10 360	MIR	1 147 511 689	FL-1849317627	+79466046540	2014-01	2014-03-07	6 936
7	10 860	MIR	1 859 110 066	FL-1679842082	+79145464669	2014-01	2014-02-14	3 792
8	10 700	MASTER	68 880 093	FL-470957464	+79978855132	2014-01	2014-02-23	7 391
9	11 150	MIR	2 062 917 526	FL-1656077958	+79293902808	2014-01	2014-02-19	616
10	10 650	VISA	1 649 212 405	FL-1665093401	+79385725317	2014-01	2014-02-08	1 847

В противном случае, если таблица фактов рассчитана только на полном наборе данных из всех интервалов, то в случае необходимости учета изменений на каком-либо из интервалов, возникает необходимость ее полного пересчета.

ETL-процессы для DM-слоя

Мы можем обеспечить идемпотентность репроцессинга для пакетной обработки данных, поступающих за каждый временной интервал, при соблюдении следующих условий:

- 1. Все факты F_1 , F_2 , ..., F_M аддитивны (т.е. являются результатом аддитивных агрегатных функций: сложения, вычитания и т.д.)
- 2. При расчете временной таблицы фактов, в ней будут учитываться данные, полученные из источников, только за тот интервал времени, которому соответствует данный набор. Т.е., применительно к модели DV, значения атрибутов из таблиц *сателлитов* будут выбираться за период, соответствующий определенной LOAD DATE.
- 3. Необходимо хранить все промежуточные (временные) витрины за каждый период загрузки данных (один период одна промежуточная витрина)
- 4. При выполнении репроцессинга для некоторого интервала времени **V**, необходимо:
 - а. для каждого (или группы) столбцов фактов из итоговой матрицы (витрины) выполнить обратную аддитивную операцию (для сложения вычесть, и т.д) с соответствующими столбцами фактов из ранее рассчитанной временной витрины для этого интервала **V**.
 - b. Пересчитать все или часть столбцов фактов в витрине для интервала V на новых загруженных данных
 - с. Выполнить аддитивную операцию для каждого пересчитанного столбца фактов для интервала **V** с итоговой матрицей (витриной)

ETL-процессы для DM-слоя

ETL-процессы для DM-слоя

Подготавливаем данные по тематике:

1) Выставленные пользователям счета:

ETL-процессы для DM-слоя

Подготавливаем данные по тематике:

2) Оплаты пользователей:

3) Обращения пользователей в ТП:

ETL-процессы для DM-слоя

Подготавливаем данные по тематике:

4) Суммарный трафик пользователей:

5) И, собственно, сам каркас из бизнес-ключей:

ETL-процессы для DM-слоя

Теперь можем собрать это все в одну таблицу:

```
raw data as (
          select
                   LEGAL TYPE KEY as legal type,
                    DISTRICT KEY as district,
                    BILLING MODE KEY as billing mode,
                    extract (year from registered at) as registration year,
                    is vip,
                    extract(year from to date(rup.BILLING PERIOD KEY, 'YYYY-MM')) as billing year,
                    pay sum,
                    bill sum,
                    issue count,
                    traff out,
                    traff in
                    from raw user period rup
                    left join payment sum data psd on rup.USER PK = psd.USER PK
                                        and rup.BILLING PERIOD PK = psd.BILLING PERIOD PK
                    left join billing sum data bsd on rup.USER PK = bsd.USER PK
                                        and rup.BILLING PERIOD PK = bsd.BILLING PERIOD PK
                    left join issue sum data isd on rup.USER PK = isd.USER PK
                                       and rup.BILLING PERIOD KEY = isd.BILLING PERIOD KEY
                    left join traffic sum data tsd on rup.USER PK = tsd.USER PK
                                       and rup.BILLING PERIOD KEY = tsd.BILLING PERIOD KEY
                    left join yfurman.project dds link mdm lm on rup.USER PK = lm.USER PK
                   left join yfurman.project dds hub legal type hlt on lm.LEGAL TYPE PK = hlt.LEGAL TYPE PK
                    left join yfurman.project dds hub district hd on lm.DISTRICT PK = hd.DISTRICT PK
                   left join yfurman.project dds hub billing mode hbm on lm.BILLING MODE PK = hbm.BILLING MODE PK
                    left join yfurman.project dds sat mdm details smd on lm.MDM PK = smd.MDM PK
```

ETL-процессы для DM-слоя

Далее, мы агрегируем данные из полученной объединенной таблицы по остальным интересующим нас бизнес-ключам – отчетному периоду, типу пользователя, региону, режиму выставления счетов, году регистрации, признаку VIP:

Эти значения мы вставляем во временную таблицу, на основании которой построим таблицы измерений и фактов.

ETL-процессы для DM-слоя

Пример заполнения таблицы для измерений:

```
insert into yfurman.project_report_dim_billing_year(billing_year_key)
select distinct billing_year as billing_year_key
from yfurman.project_report_tmp a
left join yfurman.project_report_dim_billing_year b on b.billing_year_key = a.billing_year
where b.billing_year_key is null;
```

Заполнение таблицы фактов:

Оркестрация

Для управления рабочими ETL процессами необходимо использовать специальные программные средства - *оркестраторы*. В ряде случаев для этого достаточно обычного **cron**. Мы для оркестрации использовали **Apache Airfow**.

Это ПО предоставляет следующий функционал:

- Визуальное представление задач с управлением через GUI
- Единая система для всех задач во всех сервисах на всех серверах
- Обеспечение зависимостей между задачами
- Перезапуск задач со сложной логикой
- Алертинг

Оркестрация

Apache Airfow удобен тем, что сценарии запуска задач в нем описываются Python-кодом. Например, в нашем случае логику зависимостей ETL-процессов можно описать простой структурой:

```
FactoryPhase = namedtuple('FactoryPhase', ['name', 'latest only', 'list jobs'])
FactoryJob = namedtuple('FactoryJob', ['name', 'source path', 'mask'])
PHASES = (
    FactoryPhase (
        name='ETL', latest only = False,
       list jobs=(
            FactoryJob(name='ODS', source path='ods', mask='.sql'),
            FactoryJob (name='LOAD VIEWS', source path='views', mask='.sql'),
            FactoryJob(name='HUBS', source path='hubs', mask='.sql'),
            FactoryJob(name='LINKS', source path='links', mask='.sql'),
            FactoryJob(name='SATELLITES', source path='satellites', mask='.sql'),
            FactoryJob (name='CLEAR VIEWS', source path='clear views', mask='.sql'),
   FactoryPhase (
       name='DM', latest only = True,
       list jobs=(
            FactoryJob (name='CREATE TMP REPORT', source path='tmp report', mask='.sql'),
            FactoryJob (name='DIMENSIONS', source path='dimensions', mask='.sql'),
            FactoryJob(name='FACTS', source path='facts', mask='.sql'),
            FactoryJob (name='CLEAR TMP', source path='clear tmp', mask='.sql'),
```

Оркестрация

Тогда весь ETL процесс можно описать следующим образом:

```
def get job context(phase name, job):
    tasks = []
    for task file name in [i for i in os.listdir(os.path.join(ROOT DIR, DATA DIR, job.source path)) \
                           if i.endswith(job.mask)]:
        tasks.append(PostgresOperator(
            task id='{} {} {}'.format(phase name, job.name, os.path.splitext(task file name)[0]),
            dag=dag,
            params={'prefix': PREFIX NAME},
            sql=os.path.join(job.source path, task file name)
       ) )
    return tasks
check point last = None
for phase in PHASES:
    if phase.latest only:
        last only point = LatestOnlyOperator(task id="{} latest only".format(phase.name), dag=dag)
        if check point last:
            check point last >> last only point
            check point last = last only point
    for job in phase.list jobs:
        check point = DummyOperator(task id="{} {} complete".format(phase.name, job.name), dag=dag)
        job context = get job context(phase.name, job)
        if check point last:
            check point last >> job context >> check point
        else:
            job context >> check point
        check point last = check point
```

Оркестрация

Обращаем внимание, что задачи для витрин данных выполняются только, если текущий инстанс DAG-airflow является последним возможным в данный момент (т.е. execution_date = end_date). Это следствие не идемпотености репроцессинга для DM. Нет смысла каждый раз пересчитывать витрину, если сразу при очередном запуске ее необходимо очистить.

Т.к. пайпланы в Apache Airflow представлены в виде направленного ациклического графа (*DAG*), то весь наш ETL процесс будет представлен примерно таким образом (на картинке только *часть графа*)

Согласно поставленной задаче построенная витрина должна содержать следующие данные:

Название поля	Тип поля	Значение поля
year*	int	Отчетный период (год)
legal_type*	string	Юридическое или физическое лицо
district*	string	Регион обслуживания клиента
billing_mode*	string	Постоплата / предоплата
registration_year*	int	Год подключения пользователя
is_vip*	boolean	Является ли клиент премиальным
payment_sum*	decimal	Сумма платежей за период
billing_sum**	decimal	Сумма начислений за период
issue_cnt**	int	Количество обращений в ТП за период
traffic_amount**	bigint	Объем суммарного (входящего и исходящего) трафика, потребленного за период

Получим несколько записей из таблицы фактов витрины :

projec	t_report_fct1 🛭									
₀T select	* from yfurman.project	_report_fct limit 100	Введите SQ	L выражение чтобы отфи	льтровать результат	ы			▶ ▼	$\blacksquare; \ \diamondsuit \ \bullet; \ \leftarrow \ \bullet \ \bullet$
ети — 17 18 19	12屆 billing_year_id 🏋 📜	123 legal_type_id\(\frac{1}{4}\)	12a district_id 📆	123 registration_year_id 🕻	123 billing_mode_id 🏋 🕻	☑ is_vip 📆	12g payment_sum 📆	123 billing_sum 📆	12⅓ issue_cnt\\\^‡	12₫ traffic_amount 📆
5 17	2	2	1	3	1	[]	123 168	116 642	26	27 543 753 621
18	2	2	2	2	1	[]	23 398	23 398	19	25 818 118 710
<u> 19</u>	2	2	3	3	1	[]	30 992	30 992	9	27 782 554 870
<u> 20</u>	2	2	3	1	1	[]	98 161	90 170	25	55 139 058 712
21 22	2	2	3	2	2	[]	51 424	51 424	10	14 147 441 382
22	2	2	5	2	2	[]	79 592	71 992	16	27 588 397 423
23	2	2	7	1	1	[v]	45 985	41 928	12	26 209 226 805
24	2	2	7	3	2	[]	212 532	202 745	60	125 284 353 278
25	2	2	8	2	2	[v]	81 487	76 859	10	21 574 834 008
26	2	1	4	3	2	[]	94 852	87 966	12	22 425 542 380
27	2	1	4	1	2	[]	68 289	61 262	10	32 392 426 832
28	2	1	5	2	2	[]	37 405	23 564	19	24 421 132 746
29	2	1	7	2	1	[]	68 370	68 370	13	29 874 871 493
30	4	2	6	3	1	[]	48 741	43 488	9	24 705 835 354
31	4	2	6	1	2	[v]	199 799	195 524	36	82 179 460 281
24 25 26 27 28 29 30 31 32 33 34	3	2	6	3	1	[]	77 176	75 608	15	20 005 306 987
33	3	2	2	1	1	[]	113 243	103 684	14	27 172 266 415
34	3	2	3	2	1	[v]	50 687	37 414	19	17 721 471 655
35	3	2	3	1	1	[v]	69 078	63 747	9	23 729 811 149

и несколько записей из таблиц измерений:

С использованием инструментария Microsoft PowerBI был построен отчет для витрины:

Под качеством данных, применительно к DWH, понимают – характеристику, показывающую степень пригодности данных к дальнейшему использованию.

Из основных метрик качества в данной работе реализован контроль:

Полноты данных:

- Данные присутствуют за весь период, без пропусков
- Все объекты из исходной системы представлены в целевой

Валидности данных:

- Даты соответствуют заданному формату: 2018-03-05
- Номера телефонов имеют вид: +79271235678
- ІР-адреса удовлетворяют шаблону: 195.217.200.125
- Суммы платежей находятся в диапазоне: 0.1 до 1000 000 руб.

Целостность данных:

• Правильные типы данных

Для контроля качества данных в данной работе была использована Python-based open-source library **Great Expectations** (https://greatexpectations.io/). Проверки данных проводились для четырех источников данных (**billing**, **issue**, **payment**. **traffic**) в слое ODS.

В результате проверок было обнаружено, что данные в источнике **рауменt** *не прошли проверку* по метрике **валидность** — имеются записи, содержащие платежи со значением сумм **0.00**, что противоречит бизнес-логике.

Данные в остальных источниках прошли успешные проверки по всем приведенным выше метрикам.

Приведем несколько примеров проведенных проверок качества данных:

Пример для источника billing:

great_expectations Home / Validations / yfurman.project_ods_billing.warning / yfurman.project_ods_billing / 2021-05-17T14:58:30.663119+00:00

expectations.

Statistics

Evaluated Expectations	29
Successful Expectations	29
Unsuccessful Expectations	0
Success Percent	100%

Show more info...

Table-Level Expectations

Search

Table of Contents				
Overview				
Table-Level Expect				

Status \$	Expectation	Observed Value
•	Must have these columns in this order: user_id , billing_period , service , tariff , sum , created_at	['user_id', 'billing_period', 'service', 'tariff', 'sum', 'created_at']

Пример для источника billing:

great_expectations Home / Validations / yfurman.project_ods_billing.warning / yfurman.project_ods_billing / 2021-05-17T14:58:30.663119+00:00

Пример для источника payment:

great_expectations Home / Validations / yfurman.project_ods_payment.warning / yfurman.project_ods_payment / 2021-05-17T11:59:28.039717+00:00

Validation Result

Evaluates whether a batch of data matches expectations.

Table of Contents	
Overview	

Expectation Suite: yfurman.project_ods_payment.warning

Data asset: yfurman.project_ods_payment

Status: X Failed

Statistics

Evaluated Expectations	35
Successful Expectations	34
Unsuccessful Expectations	1
Success Percent	≈97.14%

Show more info...

sum

Search

Status \$	Expectation	Observed Value
×	minimum value must be greater than or equal to 0.01.	

Результаты

Выводы:

В данной работе реализовано:

- 1. Разработана структура DWH. Выделены слои: STG (источники), ODS (операционный слой), DDS (детальный слой), DM (витрины). Ядро DWH (детальный слой), построено по методике Data Vault.
- 2. **Разработаны/реализованы** и **автоматизированы ETL**-процессы для **4 источников** данных из DataLake (*Google Cloud Storage*) и помещение данных из них в нормализованную структуру (**модель DV**) в OLAP базе данных (*Greenplum Database*). Все реализованные ETL-процессы обеспечивают **идемпотентный репроцессинг**
- 3. Построена витрина данных (модель «звезда»). Для витрины данных построен отчет в Microsoft PowerBl
- 4. **Обеспечен контроль качества** поступающих в хранилище данных (с использованием библиотек *Great Expectations*)

Результаты

Выводы:

Что осталось «за кадром»:

- 1. Не реализована оркестрация перерасчета витрины в случае репроцессинга (повторного ETL-процесса) данных из источников за «прошлые» периоды. Т.к. мы принудительно запрещаем расчет витрины для всех инстансов, кроме последнего, это приводит к тому что, если витрина уже была рассчитана, то любой повторный ETL-процесс за период, отличный от последнего, заданного в планировщике, не приведет к ее перерасчету.
- 2. Не реализована оркестрация контроля качества данных источников. Great Expectation позволяет создать checkpoint для каждого набора проверок. Для каждой загружаемой партиции источника можно создать в DAG задачу проверки качества (great_expectations checkpoint run название_checkpoint). В случае возврата кода ошибки прерывать ETL-процесс для данного источника.
- 3. Функцинал репроцессинга для слоя DM реализован только с условием полного пересчета таблицы фактов,

Результаты

При выполнении данной работы были использованы:

Материалы лекций и практических занятий курса РТК Data Engineer по следующим темам:

- 1. Архитектура аналитических решений.
- 2. Управление процессами обработки данных
- 3. Построение Data Lake
- 4. Построение Data Warehouse
- 5. Data Governance
- 6. Инструменты BI

Сервисы, программные средства и библиотеки:

- 1. Google Cloud Platform
- 2. Apache Airflow
- 3. Python (v. 3.8)
- 4. Greenplum Database (Postgresql)
- 5. DBeaver (v. 21.0.4)
- 6. Microsoft Azure Platform
- 7. Microsoft PowerBI

- 8. Great Expectations
- 9. Jupiter Notebook
- 10. Oracle WorkBench
- 11. GitHub.com

Спасибо за внимание!