Entanglement Distillation

Omar Amer and Cameron Morris

April 27, 2018

Motivation

Entanglement

- Joint state which cannot be "seperated"
 - i.e $|\phi\rangle$ is seperable $\leftarrow \nexists |\phi_1\rangle$, $|\phi_2\rangle s.t. |\phi\rangle = |\phi_1\rangle \otimes |\phi_2\rangle$
- Conditional Von-Neuman entropy quantifies the level of entanglement
 - $S(A|B) S(B)\langle 0 \text{ implies that } \rho_{AB} \text{ is entangled}$
 - S(A|B) S(B) = -1 imples that ho_{AB} is maximally entangled

Example 1

Conditional entropy of a pure state

$$ho_{AB} = |\phi_{00}\rangle \langle \phi_{00}|_{AB}$$
 $S(A|B) - S(B) = H(eig(AB)) - H(eig(B))$
 $= H(1,0,0,0) - H(.5,.5)$
 $= 0 - 1$
 $= -1$

Example 2

Conditional entropy of a noisy entangled state

$$\rho'_{AB} = .8 |\phi_{00}\rangle \langle \phi_{00}|_{AB} + \frac{.2}{4}I$$

$$S(A|B) - S(B) = H(eig(AB)) - H(eig(B))$$

$$= H(.85, .05, .05, .05) - H(.5, .5)$$

$$= .84 - 1$$

$$= -.16$$

Applications

- Quantum Teleporation
- Quantum Error Correction
- Quantum Key Distribution

Problem

- Necessary to transfer/store entangled particles
- Quantum channels are noisy, storage is decoherrent
- Maximally entangled states degrade into less entangled states
- We want to find a way to increase entanglement at a distance

Entanglement Distillation

Background

- Fidelity
 - "Closeness" of a state to $|\phi_{00}\rangle\langle\phi_{00}|$
 - $F = \langle \phi_{00} | \rho | \phi_{00} \rangle$
- Werner States
 - Invariant under all unitary operators (up to a phase)
 - $\rho = U\rho U^*$
 - For our purposes they take the form $x |\phi_{00}\rangle \langle \phi_{00}| + (1-x)I$
- Depolarization
 - A process of removing off-diagonals/equalizing eigenvalues
 - Can be used to turn an arbitrary state into a Werner state
 - Preserves fidelity of original state

BBPSSW, a Recurrence Purification Protocol (1/5)

- Described in a paper by Bennet et al. in 1996
- Allows the purification of states with arbitrary accuracy
- Can be applied recursively
 - but you need 2ⁿ qubits
- Requires two way classical communication between Alice and Bob

BPPSSW, Three Simple Steps (2/5)

- 1. Depolarize ρ to a Werner state
 - For example, $x\ket{\phi_{00}}\bra{\phi_{00}}+(1-x)\frac{1}{4}I$
- 2. Bilateral CNOTs on the entangled states
- 3. Measure the target pair. If the measurement is the same keep the pair and repeat. If not, discard the pair.

BPPSSW, Bilateral CNOTS (3/5)

Alice sends Bob qubits 2 and 4. Qubit 1 is entangled with 2 and 3 is entangled with 4.

CNOT	Source	Target			
Alice's	qubit 1	qubit 3			
Bob's	qubit 2	qubit 4			

Construct Alice's CNOT: $|0\rangle \langle 0| \otimes I \otimes I \otimes I + |1\rangle \langle 1| \otimes I \otimes \sigma_x \otimes I$ Construct Bob's CNOT: $I \otimes |0\rangle \langle 0| \otimes I \otimes I + I \otimes |1\rangle \langle 1| \otimes I \otimes \sigma_x$

Alice's CNOT

1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
_	^	^	_	_	_	_	_	_	_	_	_	-	_	_	_

BPPSSW, Deciding to Keep or Discard (4/5)

Alice and Bob choose to measure one of their two pairs in the Z basis. Depending on how pure the entanglement is, it will collapse to a more pure or less pure state.

- If the state is already pure, then measuring a $|1\rangle$ or $|1\rangle$ at one of the entangled qubits will collapse the other qubit into the same state
 - \bullet Ex: $|\phi_{00}
 angle$ will collapse to |00
 angle with probability $rac{1}{2}$ and to |11
 angle with probability $rac{1}{2}$
 - \bullet If $|01\rangle$ or $|10\rangle$ is observed, then the entanglement must have been weakened by noise in the quantum channel
- \bullet We don't have any of the $|\psi\rangle$ bell states because the state was depolarized

BPPSSW, Iterations (5/5)

This protocol can be repeated indefinitely.

Entanglement Pumping

- BPPSSW protocol requires exponential number of qubits
 - Not practically feasible
- Entanglment pumping trades spacial requirement for temporal requirement
 - Recieve new "elementary" entangled pairs as protocol advances
 - Probabilistic but polynomial time

Entanglement Pumping

- Purify one system using another recieved noisily entangled pair
 - Use the two systems for one round of BPPSSW
 - If successfully purify, repeat
 - Else restart (with two new elementary pairs)
- If a purification round fails, whole process restarts
 - But reach arbitrarily high fidelity rather quickly
- Trade-offs:
 - Longer process
 - Can't be parrallelized
 - Requires transmission of qubits
- Can be generalized to $N \mapsto M$ protocols

Questions

References

- Dür, W., & Briegel, H. J. (2007). Entanglement purification and quantum error correction. Reports on Progress in Physics, 70(8), 1381.
- Bennett, C. H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J. A., & Wootters, W. K. (1996). Purification of noisy entanglement and faithful teleportation via noisy channels. Physical review letters, 76(5), 722.