Essays on Bioinformatics and Social Network Analysis

Statistical and Computational Methods for Complex Systems

George G Vega Yon

University of Southern California, Department of Preventive Medicine

November 18, 2019

▶ We live in a non-*IID* world.

- ► We live in a non-*IID* world.
- ▶ In some times, the cannot understand a process unless we look at it as a whole.

- ▶ We live in a non-*IID* world.
- ▶ In some times, the cannot understand a process unless we look at it as a whole.
- ► There's a reason why we usually assume *IID*.

- ▶ We live in a non-*IID* world.
- ▶ In some times, the cannot understand a process unless we look at it as a whole.
- ▶ There's a reason why we usually assume *IID*.
- ► Modern (as of today) computational tools help us coping with that.

Paper 1: On the prediction of gene functions using phylogenetic trees

Paper 2: Exponential Random Graph Models for Small Networks

Future Research

On the prediction of gene functions using phylogenetic trees

Joint with: Paul D Thomas, Paul Marjoram, Huaiyu Mi, Duncan Thomas, and John Morrison

Encode the synthesis of genetic products that ultimately are related to a particular aspect of life, for example

Encode the synthesis of genetic products that ultimately are related to a particular aspect of life, for example

Molecular function

Active transport GO:0005215

fig/Sodium-potassium_pump_and_diffusion.png

Encode the synthesis of genetic products that ultimately are related to a particular aspect of life, for example

Encode the synthesis of genetic products that ultimately are related to a particular aspect of life, for example

▶ The GO project has \sim 44,700 validated terms \bigcirc , \sim 7.3M annotations on \sim 4,500 species.

 ${\bf source} \colon \mathsf{Statistics} \ \mathsf{from} \ \mathsf{pantherdb.org} \ \mathsf{and} \ \mathsf{geneontology.org}$

- ▶ The GO project has \sim 44,700 validated terms \bigcirc , \sim 7.3M annotations on \sim 4,500 species.
- \blacktriangleright About \sim 500,000 are on human genes.

- ▶ The GO project has \sim 44,700 validated terms \bigcirc , \sim 7.3M annotations on \sim 4,500 species.
- \blacktriangleright About \sim 500,000 are on human genes.
- \blacktriangleright Roughly half of human genes (\sim 10,000 / 20,000) have some form of annotation.

- ▶ The GO project has \sim 44,700 validated terms \bigcirc , \sim 7.3M annotations on \sim 4,500 species.
- ▶ About \sim 500,000 are on human genes.
- \blacktriangleright Roughly half of human genes (\sim 10,000 / 20,000) have some form of annotation.
- \blacktriangleright We know something of less than 10% of known genes (near 1.7M).

- ▶ The GO project has \sim 44,700 validated terms \bigcirc , \sim 7.3M annotations on \sim 4,500 species.
- ▶ About \sim 500,000 are on human genes.
- lacktriangle Roughly half of human genes (\sim 10,000 / 20,000) have some form of annotation.
- ▶ We know something of less than 10% of known genes (near 1.7M).
- ► An important effort of the GO has to do with phylogenetics...

Figure 1 A phylogenetic tree of living things, based on RNA data and proposed by Carl Woese, showing the separation of bacteria, archaea, and eukaryotes (wiki)

► The PANTHER project (part of GO) provides information about evolutionary structure of 1.7 million genes

- ► The PANTHER project (part of GO) provides information about evolutionary structure of 1.7 million genes
- ► These genes are grouped in 15,524 phylogenetic trees (families)

- ► The PANTHER project (part of GO) provides information about evolutionary structure of 1.7 million genes
- These genes are grouped in 15,524 phylogenetic trees (families)
- ► A single family can host multiple species

- ► The PANTHER project (part of GO) provides information about evolutionary structure of 1.7 million genes
- ► These genes are grouped in 15,524 phylogenetic trees (families)
- ► A single family can host multiple species

figure/random-tree-1.pdf

Figure 2 Simulated phylogenetic tree and gene annotations.

We can use

evolutionary trees

to inform a model for predicting

genetic annotations!

An evolutionary model of gene functions

fig/aphylo.pdf

► Initial (spontaneous) gain of function.

fig/aphylo.pdf

$$\mathsf{Pr}(1) = \pi$$

- ▶ Initial (spontaneous) gain of function.
- ► Loss/gain of offspring depends on: (a) the state of their parents (Markov process), and (b) the type of node proce

fig/aphylo.pdf

$$\mathsf{Pr}(1) = \pi$$

$$Pr(0 \rightarrow 1 | Type = t) = \mu_{t0}$$

$$\Pr(1 o 0 | \mathit{Type} = t) = \mu_{t1}$$

- ▶ Initial (spontaneous) gain of function.
- ► Loss/gain of offspring depends on: (a) the state of their parents (Markov process), and (b) the type of node proces
- ▶ We control for human error.

- ▶ Initial (spontaneous) gain of function.
- ▶ We control for human error.

We implemented the model using Felsenstein's' pruning algorithm (linear complexity) in the R package aphylo more.

	Prior	
	Uniform	Beta
Mislab. prob.		
ψ_0	0.23	0.25
ψ_1	0.01	0.01
Gain/Loss at dupl.		
μ_{d0}	0.97	0.96
μ_{d1}	0.52	0.58
Gain/Loss at spec.		
$\mu_{ extsf{s0}}$	0.05	0.06
μ_{s1}	0.01	0.02
Root node		
π	0.81	0.45
Leave-one-out AUC		
Mean	0.69	0.67
Median	0.81	0.75

 Table 1
 Parameter estimates using different priors.

► 141 pooled functions (trees) with 7,388 genes with 0/1 annotations.

	Prior	
	Uniform	Beta
Mislab. prob.		
ψ_0	0.23	0.25
ψ_1	0.01	0.01
Gain/Loss at dupl.		
μ_{d0}	0.97	0.96
μ_{d1}	0.52	0.58
Gain/Loss at spec.		
$\mu_{ extsf{s0}}$	0.05	0.06
μ_{s1}	0.01	0.02
Root node		
π	0.81	0.45
Leave-one-out AUC		
Mean	0.69	0.67
Median	0.81	0.75

 Table 1
 Parameter estimates using different priors.

- ► 141 pooled functions (trees) with 7,388 genes with 0/1 annotations.
- ▶ Parameter estimates are actually probabilities.

	Prior	
	Uniform	Beta
Mislab. prob.		
ψ_0	0.23	0.25
ψ_1	0.01	0.01
Gain/Loss at dupl.		
μ_{d0}	0.97	0.96
μ_{d1}	0.52	0.58
Gain/Loss at spec.		
$\mu_{ extsf{s0}}$	0.05	0.06
μ_{s1}	0.01	0.02
Root node		
π	0.81	0.45
Leave-one-out AUC		
Mean	0.69	0.67
Median	0.81	0.75

 Table 1
 Parameter estimates using different

 priors.
 Parameter estimates using different

- ► 141 pooled functions (trees) with 7,388 genes with 0/1 annotations.
- ▶ Parameter estimates are actually probabilities.
- ▶ Data driven results (uninformative prior).

	Prior	
	Uniform	Beta
Mislab. prob.		
ψ_{0}	0.23	0.25
ψ_1	0.01	0.01
Gain/Loss at dupl.		
μ_{d0}	0.97	0.96
μ_{d1}	0.52	0.58
Gain/Loss at spec.		
μ_{s0}	0.05	0.06
μ_{s1}	0.01	0.02
Root node		
π	0.81	0.45
Leave-one-out AUC		
Mean	0.69	0.67
Median	0.81	0.75

 Table 1 Parameter estimates using different priors.

- ► 141 pooled functions (trees) with 7,388 genes with 0/1 annotations.
- ▶ Parameter estimates are actually probabilities.
- ▶ Data driven results (uninformative prior).
- ► Biologically meaningful results.

	Prior	
	Uniform	Beta
Mislab. prob.		
ψ_0	0.23	0.25
ψ_1	0.01	0.01
Gain/Loss at dupl.		
μ_{d0}	0.97	0.96
μ_{d1}	0.52	0.58
Gain/Loss at spec.		
μ_{s0}	0.05	0.06
μ_{s1}	0.01	0.02
Root node		
π	0.81	0.45
Leave-one-out AUC		
Mean	0.69	0.67
Median	0.81	0.75

 Table 1
 Parameter estimates using different

 priors.
 Parameter estimates using different

- ► 141 pooled functions (trees) with 7,388 genes with 0/1 annotations.
- ▶ Parameter estimates are actually probabilities.
- ▶ Data driven results (uninformative prior).
- ► Biologically meaningful results.
- ► Took about 5 minutes each.

Key takeaways

- ► A parsimonious model for predicting gene functions using phylogenetics.
- ► Computationally scalable. SIFTER (our benchmark) would take about 66 years (yes, years) to estimate a model for 100 families of size 300, we take about 5 minutes.
- ► Meaningful biological results.
- ▶ Preliminary accuracy results comparable to state-of-the-art phylo-based models.

Key takeaways

- ▶ A parsimonious model for predicting gene functions using phylogenetics.
- ► Computationally scalable. SIFTER (our benchmark) would take about 66 years (yes, years) to estimate a model for 100 families of size 300, we take about 5 minutes.
- ► Meaningful biological results.
- ▶ Preliminary accuracy results comparable to state-of-the-art phylo-based models.

Challenges

Right now the model has two big assumptions

Key takeaways

- ▶ A parsimonious model for predicting gene functions using phylogenetics.
- ► Computationally scalable. SIFTER (our benchmark) would take about 66 years (yes, years) to estimate a model for 100 families of size 300, we take about 5 minutes.
- ► Meaningful biological results.
- ▶ Preliminary accuracy results comparable to state-of-the-art phylo-based models.

Challenges

Right now the model has two big assumptions

▶ Offspring are conditional independent on their parent and

Paper 1: On the prediction of gene functions using phylogenetic trees

Key takeaways

- ▶ A parsimonious model for predicting gene functions using phylogenetics.
- ► Computationally scalable. SIFTER (our benchmark) would take about 66 years (yes, years) to estimate a model for 100 families of size 300, we take about 5 minutes.
- ► Meaningful biological results.
- ▶ Preliminary accuracy results comparable to state-of-the-art phylo-based models.

Challenges

Right now the model has two big assumptions

- ▶ Offspring are conditional independent on their parent and

Exponential Random Graph Models for Small Networks

Joint with: Andrew Slaughter and Kayla de la Haye

What are Exponential Random Graph Models

fig/4-L

Exponential Family Random Graph Models, aka ERGMs are:

Exponential Family Random Graph Models, aka ERGMs are:

► Statistical models of (social) networks

Exponential Family Random Graph Models, aka ERGMs are:

- ► Statistical models of (social) networks
- ▶ In simple terms: statistical inference on what network patterns/structures/motifs govern social networks

fig/friendly-terms.pdf

```
fig/parts-of-ergm.pdf
```

The normalizing constant has $2^{n(n-1)}$ terms!

In this network
figure/simple-model-1.pdf

In this network

figure/simple-model-1.pdf

We see 4 edges, 1 transitive triad and no mutual ties.

In this network

figure/simple-model-1.pdf

We see 4 edges, 1 transitive triad and no mutual ties.

The probability function of this model would be

$$\begin{split} \mathbb{P}\left(\mathbf{G} = \mathbf{g} \mid \theta\right) &= \frac{\exp\left\{4\theta_{edges} + \theta_{ttriads} + 0\theta_{mutual}\right\}}{\sum_{\mathbf{g}' \in \mathcal{G}} \exp\left\{\theta^{\mathbf{t}} \mathbf{s}\left(\mathbf{g}'\right)\right\}} \\ \text{with } \theta &= \begin{bmatrix}\theta_{edges} & \theta_{ttriads} & \theta_{mutual}\end{bmatrix}^{\mathbf{t}} \end{split}$$

In this network

figure/simple-model-1.pdf

We see 4 edges, 1 transitive triad and no mutual ties.

The probability function of this model would be

$$\begin{split} \mathbb{P}\left(\mathbf{G} = \mathbf{g} \mid \theta\right) &= \frac{\exp\left\{4\theta_{edges} + \theta_{ttriads} + 0\theta_{mutual}\right\}}{\sum_{\mathbf{g}' \in \mathcal{G}} \exp\left\{\theta^{\mathbf{t}} \mathbf{s}\left(\mathbf{g}'\right)\right\}} \\ \text{with } \theta &= \begin{bmatrix}\theta_{edges} & \theta_{ttriads} & \theta_{mutual}\end{bmatrix}^{\mathbf{t}} \end{split}$$

This model has **MLE** parameter estimates of -0.20 (low density), 0.28 (high chance of ttriads), and -Inf (low chance of mutuality) for the parameters edges, ttriads, and mutual respectively.

Medium-large (dozens to a couple of thousand vertices) networks

- ► Markov Chain Monte Carlo (MCMC) based approaches like MC-MLE or Robbins-Monro Stochastic Approximation.

 details
- ► Maximum Pseudo Likelihood (MPLE)

Medium-large (dozens to a couple of thousand vertices) networks

- ► Maximum Pseudo Likelihood (MPLE)

large-huge networks (up to the millions of vertices)

- ► Semi-parametric bootstrap
- ► Conditional joint estimation (like snowball sampling, a.k.a. divide and conquer)
- ► Equilibrium Expectation Algorithm (millions of vertices)

Medium-large (dozens to a couple of thousand vertices) networks

- ► Maximum Pseudo Likelihood (MPLE)

large-huge networks (up to the millions of vertices)

- ► Semi-parametric bootstrap
- ► Conditional joint estimation (like snowball sampling, a.k.a. divide and conquer)
- ► Equilibrium Expectation Algorithm (millions of vertices)

What about small networks?

Do we care about small networks?

fig/4-I

Do we care about small networks?

fig/4-

We see small networks everywhere

► Families and friends

- ► Families and friends
- ► Small teams

- ► Families and friends
- ► Small teams
- ► Egocentric networks

- ► Families and friends
- ► Small teams
- ► Egocentric networks
- ► Online networks (sometimes)

- ► Families and friends
- ► Small teams
- ► Egocentric networks
- ► Online networks (sometimes)
- ► etc.

- ► Families and friends
- ► Small teams
- ► Egocentric networks
- ► Online networks (sometimes)
- ► etc.

fig/american-chopper-argument-ergmitos.png

From the methodological point of view, current methods are great, but:

From the methodological point of view, current methods are great, but:

► Possible accuracy issues (error rates)

From the methodological point of view, current methods are great, but:

- ► Possible accuracy issues (error rates)
- ► Prone to degeneracy problems (sampling and existence of MLE)

From the methodological point of view, current methods are great, but:

- ► Possible accuracy issues (error rates)
- ► Prone to degeneracy problems (sampling and existence of MLE)
- ▶ It is not MLE...

▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.

- ▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.
- ► For example, a network with 5 nodes has 1,048,576 unique configurations.

- ▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.
- ▶ For example, a network with 5 nodes has 1,048,576 unique configurations.
- ► This allow us to directly compute **the normalizing constant**.

- ▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.
- ▶ For example, a network with 5 nodes has 1,048,576 unique configurations.
- ► This allow us to directly compute **the normalizing constant**.

- ▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.
- ▶ For example, a network with 5 nodes has 1,048,576 unique configurations.
- ► This allow us to directly compute **the normalizing constant**.
- ▶ Using the exact likelihood opens a huge window of methodological-possibilities.

- ▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.
- ▶ For example, a network with 5 nodes has 1,048,576 unique configurations.
- ► This allow us to directly compute **the normalizing constant**.
- ▶ Using the exact likelihood opens a huge window of methodological-possibilities.

fig/fivenets_graphs.pdf

Figure 3 Random sample of 5 networks simulated using the ergmito package

fig/fivenets_graphs.pdf

Figure 3 Random sample of 5 networks simulated using the ergmito package

	Bernoulli	Full model
Edge-count	-0.69*	-1.70**
	(0.27)	(0.54)
Homophily (on Gender)		1.59^{*}
		(0.64)
AIC	78.38	73.34
BIC	80.48	77.53
Log Likelihood	-38.19	-34.67
Num. networks	5	5

Standard errors in parenthesis. ***p < 0.001, **p < 0.01, *p < 0.05

Table 2 Fitted ERGMitos using the fivenets dataset.

We

fig/fivenets_graphs.pdf

Figure 3 Random sample of 5 networks simulated using the ergmito package

ed using the ergmito package	
performed a large simulation study	comparing MC-MLE (ergm) with MLE (ergmito).

	Bernoulli	Full model
Edge-count	-0.69*	-1.70**
	(0.27)	(0.54)
Homophily (on Gender)		1.59^{*}
		(0.64)
AIC	78.38	73.34
BIC	80.48	77.53
Log Likelihood	-38.19	-34.67
Num. networks	5	5

Standard errors in parenthesis. ***p < 0.001, **p < 0.01, *p < 0.05

 Table 2 Fitted ERGMitos using the fivenets dataset.

	Р(Туре		
Sample size	MC-MLE (ergm)	MLE (ergmito)	χ^2
5	0.084	0.057	11.71 ***
10	0.070	0.045	12.46 ***
15	0.084	0.066	5.55 *
20	0.074	0.060	3.58
30	0.057	0.052	0.67
50	0.046	0.044	0.17
100	0.048	0.048	0.00

Table 3 Empirical Type I error rates. The χ^2 statistic is from a 2-sample test for equality of proportions, and the significance levels are given by *** p < 0.001, *** p < 0.01, and * p < 0.01.

 $\verb|fig/bias-elapsed-02-various-sizes-4-5-ttriad.pdf|$

- ▶ New extension of ERGMs using exact statistics for small networks (families, teams, etc.)
- ▶ Performance: Same (un)bias, Lower Type I error rates, (way) faster.
- ▶ Opens the door the new methods, e.g. Mixed effects, LRT, etc.

- ▶ New extension of ERGMs using exact statistics for small networks (families, teams, etc.)
- ▶ Performance: Same (un)bias, Lower Type I error rates, (way) faster.
- ▶ Opens the door the new methods, e.g. Mixed effects, LRT, etc.

Challenges

► Computationally, we can do better in terms of speed/memory.

- ▶ New extension of ERGMs using exact statistics for small networks (families, teams, etc.)
- ▶ Performance: Same (un)bias, Lower Type I error rates, (way) faster.
- ▶ Opens the door the new methods, e.g. Mixed effects, LRT, etc.

Challenges

- ► Computationally, we can do better in terms of speed/memory.
- ► Have a good way of assessing goodness-of-fit.

- ▶ New extension of ERGMs using exact statistics for small networks (families, teams, etc.)
- ▶ Performance: Same (un)bias, Lower Type I error rates, (way) faster.
- ▶ Opens the door the new methods, e.g. Mixed effects, LRT, etc.

Challenges

- ► Computationally, we can do better in terms of speed/memory.
- ► Have a good way of assessing goodness-of-fit.
- ► Explore extending this method for (very) large networks.

Future Research

 ${\bf Goodness\hbox{-}of\hbox{-}fit}$

 $\,\blacktriangleright\,$ Is something that will need to be addressed at some point.

- ▶ Is something that will need to be addressed at some point.
- ▶ The problem is not easy as we need to deal a discrete distribution.

- ▶ Is something that will need to be addressed at some point.
- ▶ The problem is not easy as we need to deal a discrete distribution.
- ▶ Two key questions: What sufficient statistic to look at? what test?

- ▶ Is something that will need to be addressed at some point.
- ▶ The problem is not easy as we need to deal a discrete distribution.
- ► Two key questions: What sufficient statistic to look at? what test?

- ▶ Is something that will need to be addressed at some point.
- ▶ The problem is not easy as we need to deal a discrete distribution.
- ► Two key questions: What sufficient statistic to look at? what test?

ERGMs for large networks

▶ There is still no standard way to estimate ERGMs for large networks.

- ▶ Is something that will need to be addressed at some point.
- ▶ The problem is not easy as we need to deal a discrete distribution.
- ▶ Two key questions: What sufficient statistic to look at? what test?

- ▶ There is still no standard way to estimate ERGMs for large networks.
- Most atempts are still depending on simulation methods.

- ▶ Is something that will need to be addressed at some point.
- ▶ The problem is not easy as we need to deal a discrete distribution.
- ▶ Two key questions: What sufficient statistic to look at? what test?

- ▶ There is still no standard way to estimate ERGMs for large networks.
- Most atempts are still depending on simulation methods.
- ▶ We could use the Snowball Sampling framework together with ERGMitos.

- ▶ Is something that will need to be addressed at some point.
- ▶ The problem is not easy as we need to deal a discrete distribution.
- ▶ Two key questions: What sufficient statistic to look at? what test?

- ▶ There is still no standard way to estimate ERGMs for large networks.
- ▶ Most atempts are still depending on simulation methods.
- ► We could use the Snowball Sampling framework together with ERGMitos. (... I would call this ERGMote)

Future Research: phylogenetic models

fig/4-I

▶ Make the model hierarchical when pooling trees

- ▶ Make the model hierarchical when pooling trees
 - ▶ Different mutation rates per class of tree.
 - $\,\blacktriangleright\,$ It can also account for mutation rate as a function of type of function
 - ► Can be complicated to fit (how many classes?)

- ► Make the model hierarchical when pooling trees
 - ▶ Different mutation rates per class of tree.
 - $\,\blacktriangleright\,$ It can also account for mutation rate as a function of type of function
 - ► Can be complicated to fit (how many classes?)
- ▶ Use a framework similar to Exponential Random Graph Models:

- ► Make the model hierarchical when pooling trees
 - ▶ Different mutation rates per class of tree.
 - ▶ It can also account for mutation rate as a function of type of function
 - ► Can be complicated to fit (how many classes?)
- ▶ Use a framework similar to Exponential Random Graph Models:
 - ► A generalization of the model.
 - ► Extends to account for joint dist of functions+siblings
 - ► Can incorporate aditional information such as branch lenghts.
 - lacktriangleq Yet computationally more compact compared to SIFTER (iso-statistics).

- ▶ Make the model hierarchical when pooling trees
 - ▶ Different mutation rates per class of tree.
 - ▶ It can also account for mutation rate as a function of type of function
 - ► Can be complicated to fit (how many classes?)
- ▶ Use a framework similar to Exponential Random Graph Models:
 - ► A generalization of the model.
 - ► Extends to account for joint dist of functions+siblings
 - ► Can incorporate aditional information such as branch lenghts.
 - ▶ Yet computationally more compact compared to SIFTER (iso-statistics).

$$\mathbb{P}\left(\mathbf{X} = \left\{x_{n1}, x_{n2}, \dots\right\} \mid x_{\mathbf{p}(n1,\dots)}\right) = \frac{\exp\left\{\mu^{T} \mathbf{s}(\mathbf{x} | x_{\mathbf{p}(\cdot)})\right\}}{\sum_{\mathbf{x}'} \exp\left\{\mu^{T} \mathbf{s}(\mathbf{x}' | x_{\mathbf{p}(\cdot)})\right\}}$$

Future Research: phylogenetic models

11g/4-L

▶ 2 siblings 2 function involves modelling the following array:

$$\left[\begin{array}{c} x_{\rho 1} \\ x_{\rho 2} \end{array}\right] \to \left(\left[\begin{array}{c} x_{i1} \\ x_{i2} \end{array}\right], \left[\begin{array}{c} x_{j1} \\ x_{j2} \end{array}\right]\right)$$

▶ 2 siblings 2 function involves modelling the following array:

$$\left[\begin{array}{c} x_{\rho 1} \\ x_{\rho 2} \end{array}\right] \to \left(\left[\begin{array}{c} x_{i1} \\ x_{i2} \end{array}\right], \left[\begin{array}{c} x_{j1} \\ x_{j2} \end{array}\right]\right)$$

▶ Here we have $2^2 = 4$ possible states.

▶ 2 siblings 2 function involves modelling the following array:

$$\left[\begin{array}{c} x_{\rho 1} \\ x_{\rho 2} \end{array}\right] \to \left(\left[\begin{array}{c} x_{i1} \\ x_{i2} \end{array}\right], \left[\begin{array}{c} x_{j1} \\ x_{j2} \end{array}\right]\right)$$

▶ Here we have $2^2 = 4$ possible states.

Example 2

If we treat siblings independent, but work with 5 functions, SIFTER needs to estimate $2^{10}=1,024$ parameters.

▶ 2 siblings 2 function involves modelling the following array:

$$\left[\begin{array}{c} x_{\rho 1} \\ x_{\rho 2} \end{array}\right] \to \left(\left[\begin{array}{c} x_{i1} \\ x_{i2} \end{array}\right], \left[\begin{array}{c} x_{j1} \\ x_{j2} \end{array}\right]\right)$$

▶ Here we have $2^2 = 4$ possible states.

- If we treat siblings independent, but work with 5 functions, SIFTER needs to estimate $2^{10}=1,024$ parameters.
- ▶ Our approach can reduce this number to, for example, 11 terms:

▶ 2 siblings 2 function involves modelling the following array:

$$\left[\begin{array}{c} x_{\rho 1} \\ x_{\rho 2} \end{array}\right] \to \left(\left[\begin{array}{c} x_{i1} \\ x_{i2} \end{array}\right], \left[\begin{array}{c} x_{j1} \\ x_{j2} \end{array}\right]\right)$$

▶ Here we have $2^2 = 4$ possible states.

- If we treat siblings independent, but work with 5 functions, SIFTER needs to estimate $2^{10} = 1,024$ parameters.
- ▶ Our approach can reduce this number to, for example, 11 terms:
 - $5 \times 4/2 = 10$ statistics for pairwise correlation.

▶ 2 siblings 2 function involves modelling the following array:

$$\left[\begin{array}{c} x_{p1} \\ x_{p2} \end{array}\right] \to \left(\left[\begin{array}{c} x_{i1} \\ x_{i2} \end{array}\right], \left[\begin{array}{c} x_{j1} \\ x_{j2} \end{array}\right]\right)$$

▶ Here we have $2^2 = 4$ possible states.

- If we treat siblings independent, but work with 5 functions, SIFTER needs to estimate $2^{10} = 1,024$ parameters.
- ▶ Our approach can reduce this number to, for example, 11 terms:
 - ightharpoonup 5 imes 4/2 = 10 statistics for pairwise correlation.
 - ► One statistic accounting for longest branch.

Concluding Remarks

fig/4-1

 $\,\blacktriangleright\,$ Paper 1: Phylogenetic models of gene functional evolution

- ▶ Paper 1: Phylogenetic models of gene functional evolution
 - ► A parsimonious, computational scalable model.

- ▶ Paper 1: Phylogenetic models of gene functional evolution
 - ► A parsimonious, computational scalable model.
 - ▶ Performance comparable to state-of-the-art models.

- ▶ Paper 1: Phylogenetic models of gene functional evolution
 - ► A parsimonious, computational scalable model.
 - ▶ Performance comparable to state-of-the-art models.
 - ▶ Next steps: Breaking assumptions and use what I've learned from ERGMs.

- ▶ Paper 1: Phylogenetic models of gene functional evolution
 - ► A parsimonious, computational scalable model.
 - ▶ Performance comparable to state-of-the-art models.
 - ▶ Next steps: Breaking assumptions and use what I've learned from ERGMs.
- ▶ Paper 2: ERGMs for small networks

- ▶ Paper 1: Phylogenetic models of gene functional evolution
 - ► A parsimonious, computational scalable model.
 - ► Performance comparable to state-of-the-art models.
 - ▶ Next steps: Breaking assumptions and use what I've learned from ERGMs.
- ▶ Paper 2: ERGMs for small networks
 - ► An extension to a well studied models for social networks.

- ▶ Paper 1: Phylogenetic models of gene functional evolution
 - ► A parsimonious, computational scalable model.
 - ► Performance comparable to state-of-the-art models.
 - ▶ Next steps: Breaking assumptions and use what I've learned from ERGMs.
- ▶ Paper 2: ERGMs for small networks
 - ▶ An extension to a well studied models for social networks.
 - ▶ Opens the door to a large set of methodological innovations.

- ▶ Paper 1: Phylogenetic models of gene functional evolution
 - ► A parsimonious, computational scalable model.
 - ► Performance comparable to state-of-the-art models.
 - ▶ Next steps: Breaking assumptions and use what I've learned from ERGMs.
- ▶ Paper 2: ERGMs for small networks
 - ► An extension to a well studied models for social networks.
 - ▶ Opens the door to a large set of methodological innovations.
 - ► Next steps: GOF or extensions to large networks?

- ▶ Paper 1: Phylogenetic models of gene functional evolution
 - ► A parsimonious, computational scalable model.
 - ► Performance comparable to state-of-the-art models.
 - ▶ Next steps: Breaking assumptions and use what I've learned from ERGMs.
- ▶ Paper 2: ERGMs for small networks
 - ► An extension to a well studied models for social networks.
 - ▶ Opens the door to a large set of methodological innovations.
 - ► Next steps: GOF or extensions to large networks?

Accomplishments during the development of this work

Concluding Remarks

- ▶ Paper 1: Phylogenetic models of gene functional evolution
 - ► A parsimonious, computational scalable model.
 - ▶ Performance comparable to state-of-the-art models.
 - ▶ Next steps: Breaking assumptions and use what I've learned from ERGMs.
- ► Paper 2: ERGMs for small networks
 - ► An extension to a well studied models for social networks.
 - ▶ Opens the door to a large set of methodological innovations.
 - Next steps: GOF or extensions to large networks?

Accomplishments during the development of this work

 6 journal publications (Journal of Open Source Software, Stata Journal, Journal of health and social behavior, Translational behavioral medicine, Social Science & Medicine)

Concluding Remarks

- ▶ Paper 1: Phylogenetic models of gene functional evolution
 - ► A parsimonious, computational scalable model.
 - ▶ Performance comparable to state-of-the-art models.
 - ▶ Next steps: Breaking assumptions and use what I've learned from ERGMs.
- ► Paper 2: ERGMs for small networks
 - An extension to a well studied models for social networks.
 - Opens the door to a large set of methodological innovations.
 - Next steps: GOF or extensions to large networks?

Accomplishments during the development of this work

- 6 journal publications (Journal of Open Source Software, Stata Journal, Journal of health and social behavior, Translational behavioral medicine, Social Science & Medicine)
- ▶ 11 packages/libraries built (ergmito, similR, gnet, fmcmc, slurmR, aphylo, polygons, pruner, netplot, rphyloxml, jsPhyloSVG)

Essays on Bioinformatics and Social Network Analysis

Statistical and Computational Methods for Complex Systems

George G Vega Yon

University of Southern California, Department of Preventive Medicine

November 18, 2019

fig/2-Line_KeckSOMofUSC_CardOnGold1-eps-converted-to.pdf
Thanks!

- Drosophila pseudoobscura". In: Evolution 43.6, pp. 1308–1311. ISSN: 00143820, 15585646. URL: http://www.jstor.org/stable/2409365.
- diverse protein families". In: Genome Research 21.11, pp. 1969–1980. ISSN: 10889051. DOI: 10.1101/gr.104687.109.
- Phylogenomics". In: PLOS Computational Biology 1.5. DOI: 10.1371/journal.pcbi.0010045.
 - URL: https://doi.org/10.1371/journal.pcbi.0010045.
- **Meanwelliang, Yuxiang et al. (Dec. 2016). "An expanded evaluation of protein function prediction methods shows an improvement in accuracy". In: Genome Biology 17.1, p. 184. ISSN: 1474-760X. DOI: 10.1186/s13059-016-1037-6. URL:
 - http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1037-6.

ISSN: 0028-0836. DOI: 10.1038/35001165. URL: http://www.nature.com/articles/35001165.

gene ontology terms for functional similarity analysis of genes". In: Bioinformatics 32.9, pp. 1380–1387. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btv755. URL: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv755.

networks, domain assignments and sequence similarity". In: Nucleic Acids Research 43.W1, W134–W140. ISSN: 0305-1048. DOI: 10.1093/nar/gkv523. URL:

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkv523.

reamlricorlart**Yu**, Chun et al. (Jan. 2018). "Assessing the Performances of Protein Function Prediction Algorithms from the Perspectives of Identification Accuracy and False Discovery Rate". In:

International Journal of Molecular Sciences 19.1, p. 183. ISSN: 1422-0067. DOI:

10.3390/ijms19010183. URL: http://www.mdpi.com/1422-0067/19/1/183.

Example of GO term

Accession	GO:0060047
Name	heart contraction
Ontology	biological_process
Synonyms	heart beating, cardiac contraction, hemolymph circulation
Alternate	IDs None
Definition	The multicellular organismal process in which the heart decreases in volume
Definition	in a characteristic way to propel blood through the body. Source: GOC:dph

Table 4 Heart Contraction Function. source: amigo.geneontology.org

You know what is interesting about this function?

These four species have a gene with that function...

These four species have a gene with that function... and two of these are part of the same evolutionary tree!

fig/cat.jpg fig/Oryzias_latipes.jpg Felis catus pthr10037 Oryzias latipes pthr11521 fig/Anole_Lizard.jpg fig/horse.jpg

Equus caballus pthr24356

Anolis carolinensis pthr11521

There various approaches for this, some to highlight

- ► Text analysis like in Pesaranghader et al. 2016
- Protein-protein interaction networks like in Oliver 2000; Piovesan et al. 2015.
- Phylogenetic based like SIFTER Barbara E. Engelhardt et al. 2011, 2005.
 - \triangleright Parameters to estimate: 2^{2P} , where P is the number of functions.

(a nice literature review in Jiang et al. 2016; Yu et al. 2018)

An evolutionary model of gene functions (algorithmic view)

```
Data: A phylogenetic tree, \{\pi, \mu, \psi\} (Model probabilities)
Result: An annotated tree
for n \in PostOrder(N) do
   Nodes gain/loss function depending on their parent;
   switch class of n do
       case root node do
           Gain function with probability \pi:
       case interior node do
           if Parent has the function then Keep it with prob. (1 - \mu_1):
           else Gain it with prob. \mu_0:
   end
   Finally, we allow for mislabeling:
   if n is leaf then
       if has the function then Mislabel with prob. \psi_1:
       else Mislabel with prob. \psi_0:
end
```


Figure 4 Dodd 1989: After one year of isolation, flies showed a significant level or assortativity in mating (wikimedia)

Figure 5 A key part of molecular innovation, gene duplication provides opportunity for new functions to emerge (wikimedia)

- ► Simulation and visualization of annotated phylogenetic trees.
- ▶ Pruning algorithm implemented in C++ using the pruner template library (by-product).
- ▶ Uses metaprogramming (users can specify different formulas).
- The estimation is done using either Maximum Likelihood, Maximum A Posteriory, or MCMC.
- ► The MCMC estimation is done via the fmcmc R package using adaptive MCMC (also implemented as part of this project):
 - ► Automatic stop via convergence check.
 - Out-of-the-box parallel chains using parallel computing.
 - ▶ User-defined transition kernel (in our case, Adaptive Kernel).

Sufficient statistics have various forms

Representation	Description
ergm-terms/mu	Mutual Ties (Reciprocity) $\sum_{i eq j} y_{ij} y_{ji}$
ergm-terms/tt	Transitive Triad (Balance) riad.pdf \(\sum_{i\neq j\neq k} \textit{yij Yjk Yik}\)
ergm-terms/hor	Homophily paf $\sum_{i eq j} y_{ij} 1 \left(x_i = x_j ight)$
ergm-terms/noo	Covariate Effect for Incoming Ties $\sum_{i \neq j} y_{ij} x_j$
ergm-terms/for	reyeler D _{i≠j≠k≠l} YijYjkYklYli

One of the most popular methods for estimating ERGMs is the MC-MLE approach (citations here) This consists on the following steps

- 1. Start from a sensible guess on what should be the population parameters (usually done using pseudo-MLE estimation)
- 2. While the algorithm doesn't converge, do:
 - 2.1 Simulate a stream of networks with the current state of the parameter, θ_t
 - 2.2 Using the law of large numbers, approximate the ratio of likelihoods based on the parameter θ_t , this is the objective function
 - 2.3 Update the parameter by a Newton-Raphson step
 - 2.4 Next iteration

In general

- ▶ Implements estimation of ERGMs using exact statistics for small networks
- Meta-programming allows specifying likelihood (and gradient) functions for joint models (a function that writes a function)
- ► Includes tools for simulating, and post-estimation checks
- Getting ready for CRAN!

More specific tricks

- ► Computes support of Pr using ergm::ergm.allstats
- ▶ It includes a vectorized function doing the same
- ► Scales up nice (hundreds of small networks) saving space and computation (when possible)
- ▶ Highly tested (90% coverage with more than one hundred tests)

▶ Draw 20,000 samples of groups of small networks

- ▶ Draw 20,000 samples of groups of small networks
- ► Each group had prescribed: (model parameters, number of networks, sizes of the networks)

◀ go back

- ▶ Draw 20,000 samples of groups of small networks
- ► Each group had prescribed: (model parameters, number of networks, sizes of the networks)
- ► Each group could have from 5 to 300 small networks

◀ go back

- ▶ Draw 20,000 samples of groups of small networks
- ► Each group had prescribed: (model parameters, number of networks, sizes of the networks)
- ► Each group could have from 5 to 300 small networks
- ▶ We estimated the models using MC-MLE and MLE.

◀ go back

```
fig/failed-tree.pdf
```

Paper 2 Simulation Studies: Empirical Bias

fig/4-L

 $\verb|fig/bias-02-various-sizes-4-5-ttriad.pdf|\\$