MAT0122 ÁLGEBRA LINEAR I FOLHA DE SOLUÇÃO

Nome:Beatriz Viana Costa Número USP: 13673214

Assinatura

Beatriz Viana Costa

Sua assinatura atesta a autenticidade e originalidade de seu trabalho e que você se compromete a seguir o código de ética da USP em suas atividades acadêmicas, incluindo esta atividade.

Exercício: E47 Data: 20/10/2022

SOLUÇÃO

i)

Dados do exercício:

- $S \subset V$, um conjunto gerador minimal;
- Span S = V;
- $S' \subset S$, tal que $S' \neq S$ e Span $S' \neq V$.

Seja B uma base de V, sabemos que:

I. Span B = V;

II. B é linearmente independente.

Pelo enunciado já sabemos que Span de S=V, logo iremos provar que S é linearmente independente.

Vamos supor S linearmente dependente.

Temos $S = \{s_1, \ldots, s_k, \ldots, s_n\}$, e por S ser LD sabemos que algum vetor qualquer, como por exemplo s_k pode ser escrito como uma combinação linear dos demais vetores de S.

$$\exists \ s_k = \sum_{i \neq k}^n \alpha_i s_i$$

Vamos então supor $v \in V$, um vetor qualquer.

$$\mathbf{v} = \sum_{i} \beta_{i} s_{i} = \sum_{i \neq k} \beta_{i} s_{i} + \beta_{k} s_{k}$$

E pela representação de s_k descrita inicialmente, sameos que este somatório pode ser escrito como:

$$v = \sum_{i \neq k} (\beta_i + \beta_k \alpha_i) s_i$$

E seja $\gamma_i = \beta_i + \beta_k \alpha_i$, chegamos que:

$$v = \sum_{ik} \gamma_i s_i$$

Além disso temos tambem $S' = \{s_1, ..., s_{k-1}, s_{k+1}, ..., s_n\}$, pois $S' \subset S$ e $S' \neq S$, sendo o conjunto que não possui o vetor s_k , que pode ser escrito como uma combinação linear, logo S' é linearmente independente e portanto Span S' = V.

Contudo, chegamos em um absurdo, pois nos foi dado que S' não é gerador do espaço vetorial, e portanto, S não pode ser LD, sendo assim LI e por consequância uma base de V.

ii)

Dados do exercício:

- $S \subset V$, um conjunto linearmente independente maximal;
- $S' \subset V$;
- $S \subset S'$ e $S \neq S'$;
- S' é linearmente dependente.

Iremos mostrar que Span S = V.

Temos $S = \{s_1, ..., s_n\}$ e $S' = S \cup \{v\}$, tal que v é um vetor qualquer, $v \in V$ e $v \notin S$. Sabemos que o vetor nulo pode ser escrito de maneira trivial, com o vetor $s_i \in S'$ poderado por um α_i :

$$\sum_{i=1}^{n} \alpha_i s_i = 0$$
$$\alpha_1, \dots, \alpha_n = 0$$

Contudo, $\exists \alpha \neq 0$ tal que αv mais o somatório é igual a 0, ou seja, além da slução trivial, onde todos os α 's são iguais a 0, há também uma solução não trivial:

$$\sum_{i=1}^{n} \alpha_i s_i + \alpha v = 0$$

E, sabendo que $\alpha \neq 0$, podemos encontrar que:

$$v = \sum_{i=1}^{n} \frac{\alpha_i}{\alpha} s_i$$
$$\gamma_i = \frac{\alpha_i}{\alpha}$$
$$v = \sum_{i=1}^{n} \alpha_i s_i$$

Logo, sendo v um vetor qualquer tal que $v \in V$, este vetor pode ser escrito como uma combinação linear de S e, portanto, Span S = V.