CLAIMS

What is claimed is:

1	. 1.	A method of determining diffusion and relaxation characteristics about a fluid in
2		an earth formation using nuclear magnetic resonance (NMR) comprising:
3		(a) applying a static magnetic field to the earth formation, said applied
4		static magnetic field producing an internal field gradient;
5		(b) applying a sequence of radio frequency (RF) pulses to said earth
6		formation;
7		(c) detecting magnetic resonance signals resulting from said first sequence;
8		and ·
9		(d) processing said detected signals for determining said diffusion and
10		relaxation characteristics, said determination taking into
11		account said internal field gradient.
12		
1	2.	The method of claim 1 wherein said sequence of RF pulses further comprises:
2		(A) a first sequence of RF pulses associated with a first signal at a first field
3		gradient, and
4		(B) a second sequence of RF pulses associated with a second signal at a
5		second field gradient different from said first field gradient;
6		wherein said signals comprise said first signal and said second signal
7		
1	3.	The method of claim 2 wherein said first and second field gradients correspond to
2		different regions of examination in said earth formation.

3			
1	4.	The m	nethod of claim 2 wherein said first and second pulse sequences each
2		comp	rise at least one initial pulse, a first portion that follows the at least one
3		initial	magnetic field pulse, and a second portion that follows the first portion
4		such t	that the second portion refocuses a last echo of the first portion.
5			
1	5.	The n	nethod of claim 2 wherein
2		(i)	said first portion comprises a modified CPMG sequence including a
3			plurality of refocusing pulses with a tipping angle less than 180° and
4	•		having a first time interval between adjacent refocusing pulses of said
5			first portion, and
6		(ii)	said second portion comprises a plurality of refocusing pulses having a
7			second time interval between adjacent refocusing pulses.
8			
1	6.	The n	nethod of claim 2 wherein said first portion comprises one of (i) an
2		invers	sion recovery sequence, (ii) a driven equilibrium sequence, and, (iii) a
3		CPM	G sequence.
4			
1	7.	The m	nethod of claim 5 further comprising applying an echo train correction to
2		said fi	irst and second signal.
3			
1	8.	The m	nethod of claim 5 further comprising at least one additional repetition of

(A) and (B) for a different value of said first time interval.

584-34206US 25

- 1 9. The method of claim 5 further comprising repeating (i) for at least one
- 2 additional value of a time interval between refocusing pulses of said CPMG
- 3 sequence, said additional value being substantially equal to said second time
- 4 interval.

- 1 10. The method of claim 1 further determining at least one of (i) a total porosity, (ii)
- 2 clay bound water, (iii) bound volume irreducible, (iv) gas saturation, and, (v) oil
- 3 saturation.

4

1 11. The method of claim 2 wherein said first sequence is of a form:

$$W - 90_{\pm x} - TE_{long}/2 - \beta_{Y1} - TE_{long}/2 - echo_{1} - TE_{long}/2 - \beta_{Y1} - TE_{long}/2 - echo_{2} - (TE/2 - \beta_{Y2} - TE/2 - echo)_{j}$$

- where j is an echo number in a train, W is a wait time, TE_{long} is a diffusion editing
- 4 spacing, TE is the Carr-Purcell spacing, $90_{\pm x}$ and β_{Y1} (or β_{Y2}) are RF pulses
- providing rotation angles of 90 and the β_{Y1} (or β_{Y2}) degrees of a magnetization
- 6 vector.

7

1

- 12. The method of claim 1 wherein processing said first and said second signal
- 2 further comprises, for said first field gradient and said second gradient, inverting
- 3 said first and said second signals, to obtain an equivalent amplitude spectrum of a
- 4 T_2 distribution.

- 1 13. The method of claim 12 wherein said processing said first and said second signal
- 2 further comprises inverting a T₂ distribution to obtain a generalized parameter.

1 14. The method of claim 13 wherein said generalized parameter $Z_i^{(j)}$ has a form:

2

$$Z_i^{(j)} = \frac{C}{\gamma^2 G_e^2 D_i^j}$$

- 4 where C is a constant, γ is a gyromagnetic ratio, G_e is the effective field
- 5 gradient, and D_t^j is a diffusion coefficient.

67

- 1 15. The method of claim 13 wherein said processing said first and said at least one
- 2 additional signal further comprises inverting a plurality of said generalized
- 3 parameters.

4

- 1 16. The method of claim 12 wherein at least one component of said equivalent
- 2 amplitude spectrum further comprises a plurality of diffusion components.

3

- 1 17. The method of claim 11 further comprising at least one additional repetition of
- 2 (b) and (c) for a different value of TE_{long} .

3

4 18. The method of claim 2 wherein said first pulse sequence is of a form:

- 5 $180 \tau_1 90_{\pm x} [TE/2 \beta_{\gamma} TE/2 echo]_j$
- 6 wherein 180 is a 180^{0} tipping pulse, τ is a wait time, TE is the Carr-Purcell
- spacing, $90_{\pm x}$ and $β_Y$ are RF pulses providing rotation angles of 90^0 and β of
- 8 a magnetization vector
- 9
- 1 19. The method of claim 18 further comprising at least one additional repetition of
- 2 (A) and (B) for a different value of τ .
- 3
- 1 20. An apparatus for determining diffusion and relaxation characteristics about a fluid
- 2 in an earth formation comprising:
- 3 (a) a magnet on a nuclear magnetic resonance (NMR) sensor conveyed in a
- borehole in said earth formation, said magnet producing a static magnetic
- field to the earth formation with an internal field gradient therein,;
- 6 (b) a transmitter on said NMR sensor for applying a sequence of radio
- frequency (RF) pulses to said earth formation;
- 8 (c) a receiver on said NMR sensor for detecting magnetic resonance signals
- 9 resulting from said first sequence; and
- 10 (d) a processor for determining from said detected signals said diffusion and
- relaxation characteristics, said determination taking into account said
- internal field gradient.
- 13

21. The apparatus of claim 20 wherein said transmitter applies:

2		(A)	a first sequence of RF pulses associated with a first signal at a first field
3			gradient, and
4		(B)	a second sequence of RF pulses associated with a second signal at a
5			second field gradient different from said first field gradient;
6		where	ein said signals comprise said first signal and said second signal
7			
1	22.	The a	pparatus of claim 21 wherein said first and second field gradients
2		corres	spond to different regions of examination in said earth formation.
3			
1	23.	The a	pparatus of claim 21 wherein said first and second pulse sequences each
2		comp	rise at least one initial pulse, a first portion that follows the at least one
3		initial	magnetic field pulse, and a second portion that follows the first portion
4		such t	that the second portion refocuses a last echo of the first portion.
5			
1	24.	The a	pparatus of claim 21 wherein
2		(i)	said first portion comprises a modified CPMG sequence including a
3			plurality of refocusing pulses with a tipping angle less than 180° and
4			having a first time interval between adjacent refocusing pulses of said
5			first portion, and
6		(ii)	said second portion comprises a plurality of refocusing pulses having a
7			second time interval between adjacent refocusing pulses.
8			

- 1 25. The apparatus of claim 21 wherein said first portion comprises one of (i) an
- 2 inversion recovery sequence, (ii) a driven equilibrium sequence, and, (iii) a
- 3 CPMG sequence.

- 1 26. The apparatus of claim 24 wherein said processor further applies further an echo
- 2 train correction to said first and second signal.

3

- 1 27. The apparatus of claim 24 wherein said transmitter further performs at least one
- 2 additional repetition of (A) and (B) for a different value of said first time interval.

3

- 1 28. The apparatus of claim 24 wherein said processor further repeats (i) for at least
- 2 one additional value of a time interval between refocusing pulses of said CPMG
- 3 sequence, said additional value being substantially equal to said second time
- 4 interval.

5

1

- 29. The apparatus of claim 20 wherein said processor further determines at least one
- of (i) a total porosity, (ii) clay bound water, (iii) bound volume irreducible, (iv)
- gas saturation, and, (v) oil saturation.

4

1 30. The apparatus of claim 21 wherein said first sequence is of a form:

$$W - 90_{\pm x} - TE_{long} / 2 - \beta_{Y} - TE_{long} / 2 - echo_{1} - TE_{long} / 2 - \beta_{Y} - TE_{long} / 2 - echo_{2} - (TE / 2 - \beta_{Y} - TE / 2 - echo)_{j}$$

3		where	e j is an echo number in a train, W is a wait time, TE _{long} is a diffusion editing
4	spacir	ng, TE i	is the Carr-Purcell spacing, $90_{\pm x}$ and β_Y are RF pulses providing rotation
5	angles	s of 90 ⁰	and the β of a magnetization vector.
6			
1	31.	The a	pparatus of claim 20 wherein said processor further obtains an
2		equiv	alent amplitude spectrum of a T ₂ distribution.
3			
1	32.	A sys	tem for use in a borehole in an earth formation comprising:
2		. (a)	a conveyance device for conveying a nuclear magnetic resonance
3			(NMR) sensor into said borehole;
4		(b)	a magnet on said NMR) sensor, said magnet applying a static magnetic
5			field in said earth, said static magnetic field having an internal gradient;
6		(b)	a transmitter on said NMR sensor for applying radiofrequency (RF)
7			magnetic field pulses to said formation and producing signals resulting
8			from a T ₂ distribution spectrum of said earth formation, at least one
9			component of said T ₂ spectrum further comprising a plurality of diffusion
10			coefficients;
11		(c)	a receiver on said NMR sensor for receiving said produced signals;
12		(d)	a processor for processing said received signals and determining therefrom
13			said T ₂ distribution and said plurality of diffusion coefficients, said
14			determination accounting for said internal gradient.

1	33.	The system of claim 32 wherein said conveyance device is one of (i) a wireline,		
2		(ii) a c	drillstring, and, (iii) coiled tubing	
3				
1	34.	A met	shod of analyzing an earth formation comprising:	
2		(a)	applying a static magnetic field to the earth formation, said applied	
3		static	magnetic field producing an internal field gradient in said earth	
4		formation;		
5		(b)	applying a first sequence of radio frequency (RF) pulses to said earth	
6			formation and obtaining a first signal associated with a first value of a	
7			field gradient;	
8		(c)	applying a second sequence of radio frequency (RF) pulses to said earth	
9			formation and obtaining a second signal associated with a second value of	
10			a field gradient; and	
11		(d)	processing said first and second signals for determining at least one of (A)	
12			a diffusion characteristic of said earth formation, and, (ii) a relaxation	
13			characteristic of said earth formation, said determination taking into	
14			account said internal field gradient.	
15				
1	35.	The m	nethod of claim 34 wherein said first and second field gradients correspond	
2		to diff	ferent regions of examination in said earth formation.	
3			•	
1	36.	The m	nethod of claim 34 said first and second pulse sequences each	

comprise at least one initial pulse, a first portion that follows the at least one

584-34206US 32

3		initial magnetic field pulse, and a second portion that follows the first portion
4		such that the second portion refocuses a last echo of the first portion.
5		
1	37.	An apparatus for use in a borehole in an earth formation comprising:
2		(a) a magnet for applying a static magnetic field to the earth formation, said
3		applied static magnetic field producing an internal field gradient in said
4		earth formation;
5		(b) a transmitter for applying a first sequence and a second sequence of radio
6		frequency (RF) pulses to said earth formation;
7		(c) a receiver for obtaining a first signal and a second signal resulting from
8		said first and second sequence of RF pulses, said first and second signals
9		associated with a first and second value of a field gradient in said earth
. 10		formation; and
11		(d) a processor for determining from said first and second signal at least one
12		of (A) a diffusion characteristic of said earth formation, and, (ii) a
13		relaxation characteristic of said earth formation, said determination taking
14		into account said internal field gradient.
15	•	
1	38.	The apparatus of claim 37 wherein said first and second field gradients
2		correspond to different regions of examination in said earth formation.
3		•
1	39.	The apparatus of claim 37 said first and second pulse sequences each
2		comprise at least one initial pulse, a first portion that follows the at least one

3		initial magnetic field pulse, and a second portion that follows the first portion
4		such that the second portion refocuses a last echo of the first portion.
5		
1	40.	The apparatus of claim 37 further comprising a conveyance device selected from
2		(i) a wireline, (ii) a drilling tubular, and, (iii) coiled tubing.
3		
1	41.	The method of claim 39 wherein said first portion comprises one of (i) an
2		inversion recovery sequence, (ii) a driven equilibrium sequence, (iii) a CPMG
3		sequence, and, (iv) a modified CPMG sequence having a refocusing pulse with a

tipping angle less than 180°.

4

5