Meta-learning for time series forecasting in application to ATM load time series

Presented by:

Ilia Zherebtsov Makar Korchagin Rinat Prochii Folu Obidare Nikita Burtsev

What is ATM forecasting?

ATM forecasting - is the process of predicting how much cash will be needed at an ATM in the future,

i.e. is predicting future values of a time series

Importance of ATM forecasting:

- Minimizing cash outages (empty ATMs)
- Optimizing cash management
- Strategic planning
- Improving Security Measures

Problem statement

- Time series are very complex data and as a result a suitable model must be used to forecast
- Picking a suitable model is time consuming and computationally expensive - especially with many choices of models and large number of time series to predict.
- We use meta-learning to predict the best suited model to predict time series saving a lot of time.

Meta-Learning Technique

There is a dataset with results of applying every model to every time series

Extract best results for each time series from the the dataset and then extract features from every time series

Automate model selection for each individual time series by matching time series features with appropriate forecasting models, aiming to optimize forecast accuracy by selecting the most suitable model

Related work: Meta-learning approach Team 9

model averaging (FFORMA)

Feature Forecasting model performance prediction (FFORMPP)

Feature Forecasting model selection (FFORMS)

T. Talagala, Rob J Hyndman, G. Athanasopoulos. Meta-learning how to forecast time series // Journal of Forecasting/03.01.2020 DOI: 10.1016/j.ijforecast.2019.02.011

Thiyanga S. Talagala* , Feng Li† , Yanfei Kang. FFORMPP: Feature-based forecast model performance prediction // Journal of Forecasting/08.2021 DOI: 10.1016/j.ijforecast.2021.07.002

T. Talagala, Rob J Hyndman, G. Athanasopoulos. Meta-learning how to forecast time series // Journal of Forecasting/09.02.2023 DOI: 10.1002/for.2963

Dataset and time series overview

DataFrame

Time	Metric	TimeSeries	Split	Model
train and forecast	MAE MSE RMSE MASE RMSSE MAPE SMAPE	name of time series	test or validation	24 models in total

Time series archive

3 folders with time series
each time series has 2 columns:
date and the ATM load value
in total 874 files

Skoltech

Data preprocessing: 1st step

Time Series Contecanation

from many time series

to three tables with all time series

danish_atm_daily_100	danish_atm_daily_10	danish_atm_daily_1	danish_atm_daily_0
62	73	126	68
50	102	0	130
51	100	0	142
37	95	144	101
34	83	112	120
32	107	119	124
22	86	93	100
30	62	79	94
36	102	94	88
42	83	108	98

In total 874 time series

Missed values was filled using linear interpolation

Data preprocessing: 2nd step

Removing time outliers

Data preprocessing: 2nd step

Removing metric's outliers

MAPE was not considered because of being ill-conditioned for some cases

$$MAPE = \frac{1}{n} \sum_{t=1}^{n} \frac{|Y_t - \hat{Y}_t|}{|Y_t|}$$

Data preprocessing: 3rd step

Finding correlations between metrics

Feature extraction

	tsFresh library	getML library	Manual search: tsFeatures library
Advantages	 automatic feature extraction process wide range of features 	 automatic feature extraction process wide range of features scalability 	 feature extraction control interpretable
Limitations	 high dimensionality features might lead to redundancy and overfitting some features difficult to interpret 	 needed special structure of data uninterpretable features 	• not automated Skolteck

Choosing metric for meta-learner

Metric for ATM forecasting should has following qualities:

- Not sensitive to scale of time series
- Interpretability
- Sensitive to large errors
- Incorporate forecast horizon

RMSSE (Root Mean Squared Scaled Error)

$$ext{RMSSE} = \sqrt{rac{\sum_{t=1}^{n}(Y_{t} - \hat{Y}_{t})^{2}}{rac{1}{h}\sum_{t=1}^{n}(Y_{t} - Y_{t-1})^{2}}}$$

 Y_t - actual value of the time series at time t \hat{Y}_t - forecasted value of the time series at time t n- total number of observations in the time series

h - forecast horizon

Team 9

Baseline Experiments

	Exp 1	Exp 2	Exp 3
Model	TFTTuningObjective_gl	TFTTuningObjective_gl	N/A
Accuracy	14.94%	13.22%	15.52%
Lost rate	10.92%	10.92%	0
RMSSE	0.84	0.97	0.89

^{*}accuracy - percentage of test it is correct to say that this model is the best

^{*}lost rate - percentage of test we don't have results of this model

^{*}RMSSE - average RMSSE

Classifier Experiments

	Classifier 1	Classifier 2
Accuracy	24.14%	24.14%
Lost rate	0.57%	0%
RMSSE	0.74	0.91

^{*}accuracy - percentage of test it is correct to say that this model is the best

^{*}lost rate - percentage of test we don't have results of this model

^{*}RMSSE - average RMSSE

Results

Conclusion

- Successfully built the meta-learner that can outperform blind guess of the best model for time-series forecasting
- Results of our solution are very close to the ideal solution, only 0.02 difference in RMSSE
- Models works pretty fast: it took only one second to be trained

Our team

Nikita Burtsev

Preparing presentation Visual representation

Rinat Prochii

Feature extraction

Ilia Zherebtsov

Conducting experiments

Makar Korchagin

Data preprocessing

Folu Obidare

Literature review

Skoltech

Feature extraction

tsFresh library

Advantages:

- automatic feature extraction process
- wide range of features

Limitations:

- high dimensionality
- features might lead to redundancy and overfitting
- some features difficult to interpret

getML library

Advantages:

- automatic feature extraction process
- wide range of features
- scalability

Limitations:

- needed special structure of data
- uninterpretable features

Manual search: tsFeatures library

Advantages:

- feature extraction control
- interpretable Limitations:
- imitations.
- not automated

Setup

