Osnove obradbe signala: Signali

T. Petković

Sveučilište u Zagrebu

listopad 2022.

Signali

Što je signal?

Signal je fenomen kojeg možemo zamijetiti i koji nosi neku informaciju.

Ova definicija je previše apstraktna za naša razmatranja.

U obradbi signala signal jednostavnije definiramo kao funkciju.

Glavna nezavisna varijabla je vrijeme tako da su signali koje razmatramo vremenske funkcije.

Signal kao funkcija

Signal je funkcija koja ima svoju domenu (nezavisna varijabla) i kodomenu (zavisna varijabla).

Uobičajena notacija za funkcije jest

$$y = f(x), \tag{1}$$

gdje je x nezavisna varijabla, y zavisna varijabla, a f izraz koji definira vezu između x i y.

U ovom predmetu nezavisna varijabla je najćešće vrijeme i označavat ćemo je sa slovom t, dakle razmatramo vremenske signale.

Same signale ćemo označavati sa slovima x i y, odnosno govorimo o signalima x(t) i y(t).

T. Petković — UniZG - FER - OOS 2022/2023 — 3/36

Vremenski signali

Za vremenske signale nezavisna varijabla je **vrijeme** koje označavamo slovom t i kojeg mjerimo u **sekundama** [s].

U općem razmatranju zavisna varijabla x(t) je **amplituda** signala bez definirane mjerne jedinice, dakle ona je **bezdimenzijska**. Stvarna mjerna jedinica će ovisiti o konkretnoj primjeni.

Naš fokus je na signalima koje možemo obrađivati korištenjem računala.

Za takve signale vrijeme ćemo morati diskretizirati tako da osim kontinuiranog vremena t uvodimo i diskretne vremenske trenutke t_n s pripadnim indeksom ili **korakom** n.

Sukladno tome definiramo vremenski kontinuirane i vremenski diskretne signale.

Vremenski kontinuirani signali

Vremenski kontinuirani signali x(t) prikazuju amplitudu ili neku drugu veličinu kao funkciju kontinuiranog vremena $t \in \mathbb{R}$.

$$x: \mathbb{R} \to \mathbb{C}, \quad y = x(t)$$
 (2)

Nezavisnu varijablu t pišemo unutar oblih zagrada (·) koje u obradbi signala indiciraju da se radi o kontinuiranoj varijabli.

Zavisnu varijablu y smo definirali kao kompleksnu varijablu.

Radi općenitosti svi izvodi koje ćemo pokazati na predmetu podrazumijevaju kompleksni signal, i to zato jer su realni signali $x:\mathbb{R}\to\mathbb{R}$ podskup kompleksnih signala.

T. Petković -

Primjer vremenski kontinuiranog signala

Jedan mogući vremenski kontinuirani signal $x(t) : \mathbb{R} \to \mathbb{R}$ jest

$$x(t) = 3 + 2\cos(t - 2) + \sin(t/2) + \sin(3t). \tag{3}$$

Prikažimo ga grafom:

T. Petković — UniZG - FER - OOS 2022/2023

Vremenski diskretni signali

Vremenski diskretni signali x[n] prikazuju amplitudu ili neku drugu veličinu kao funkciju koraka $n \in \mathbb{Z}$.

$$x: \mathbb{Z} \to \mathbb{C}, \quad y = x[n]$$
 (4)

Nezavisnu varijablu n pišemo unutar uglatih zagrada $[\cdot]$ koje u obradbi signala indiciraju da se radi o diskretnoj varijabli.

Zavisnu varijablu y smo opet definirali kao kompleksnu varijablu.

T. Petković — UniZG - FER - OOS 2022/2023 — 7/3

Uzorkovanje vremenski kontinuiranog signala

Diskretizacijom vremena iz vremenski kontinuiranog signala $x(t) : \mathbb{R} \to \mathbb{R}$ dobivamo vremenski diskretni signal $y[n]: \mathbb{Z} \to \mathbb{R}$ za kojeg vrijedi

$$y[n] = x(t_n) \tag{5}$$

Vremenski trenutci t_n u kojima očitavamo signal su unaprijed zadani i poredani rastućim redoslijedom.

Radi jednostavnosti gotovo uvijek biramo jednoliko razmaknute trenutke uzorkovanja tako da vrijedi

$$t_n = nT. (6)$$

Primjer vremenski diskretnog signala

Jedan mogući vremenski diskretni signal $y[n]: \mathbb{Z} \to \mathbb{R}$ možemo dobiti uzorkovanjem signala x(t) kao

$$y[n] = x(t_n) = 3 + 2\cos(t_n - 2) + \sin(t_n/2) + \sin(3t_n).$$
 (7)

Prikažimo ga grafom:

T. Petković — UniZG - FER - OOS 2022/2023 — 9

Općenito o diskretizaciji signala

Želimo li analogni signal $x_a : \mathbb{R} \to \mathbb{R}$ pohraniti u računalu radi obradbe onda moramo diskretizirati i domenu i kodomenu signala kako bi dobili novi digitalni signal $x_d : \mathbb{Z} \to \mathbb{Z}$.

Općenito, diskretizaciju domene ili nezavisne varijable, u našem slučaju vremena t, zovemo uzorkovanjem, otipkavanjem ili očitavanjem signala (engl. sampling).

Diskretizaciju amplitude ili zavisne varijable zovemo kvantizacijom signala (engl. *quantization*).

U svim razmatranjima koje ćemo provesti na ovom predmetu nećemo raditi s digitalnim signalima jer kvantizacija amplitude čini većinu aksioma vektorskog prostora nevažećim.

Prema tome dvije glavne klase signala od interesa su vremenski kontinurani signali oblika $x_a:\mathbb{R}\to\mathbb{R}$ i vremenski diskretni signali oblika $x_s:\mathbb{Z}\to\mathbb{R}$.

T. Petković — UniZG - FER - OOS 2022/2023 — 10/

Četiri klase signala obzirom na diskretizaciju

Razne podjele signala

Signale možemo podijeliti na više načina, a neki od važnijih su:

- 1. vremenski diskretne (očitane) ili vremenski kontinuirane,
- 2. amplitudno diskretne (kvantizirane) ili amplitudno kontinuirane,
- 3. analogne ili digitalne,
- 4. periodične ili aperiodične,
- 5. prigušujuće ili raspirujuće,
- 6. kauzalne ili nekauzalne,
- 7. realne ili kompleksne,
- 8. stohastičke ili determinističke, itd.

Većina podjela je samorazumljiva i kako se ne radi o teškom gradivu ostavljamo vam proučavanje tih podjela za samostalni rad.

T. Petković — UniZG - FER - OOS 2022/2023 — 12/3

Signali od interesa

Neki signali se često pojavljuju u obradbi signala pa ih je potrebno dobro poznavati:

- 1. sinusoide (ili kosinusoide),
- 2. eksponencijale,
- jedinični impuls,
- 4. jedinična stepenica,
- 5. Diracova funkcija,
- 6. Heavisideova funkcija,
- 7. funkcija sinc,
- 8. Diracov češalj,
- 9. Kroneckerov češalj.

U ovom predavanju nećemo razmatrati zadnja tri signala koja ostavljamo za kasnije.

T. Petković — UniZG - FER - OOS 2022/2023 — 13/36

Sinusoidalna funkcija ili sinusoida

Sinusoida (ili kosinusoida) je svaki signal oblika:

$$x(t) = A\sin(\Omega t + \phi)$$
 i $x[n] = A\sin(\omega n + \phi)$ (8)

A je amplituda signala.

 Ω ili ω je (kružna) **frekvencija** signala.

 ϕ je **faza** signala

Slično kao što koristimo (\cdot) i $[\cdot]$, ako istodobno razmatramo i vremenski diskretne i vremenski kontinurane signale onda frekvenciju kontinuiranih označavamo s velikim slovom Ω , a frekvenciju diskretnih s malim slovom ω .

T. Petković — UniZG - FER - OOS 2022/2023 — 1

Primjeri sinusoida

Sinusoide
$$x(t) = 2\sin(\frac{\pi}{3}t + \frac{\pi}{6})$$
 i $x[n] = 2\sin(\frac{\pi}{3}n + \frac{\pi}{6})$.

T. Petković -

——— UniZG - FER - OOS 2022/2023 ——

Reprezentacija sinusoide

Svaku sinusoidu možemo reprezentirati na dva načina,

$$x(t) = A\sin(\Omega t + \phi) = a\sin(\Omega t) + b\cos(\Omega t). \tag{9}$$

Vrijedi:

$$a = A\cos(\phi) \tag{10}$$

$$b = A\sin(\phi) \tag{11}$$

U obrnutom smjeru to postaje:

$$A = \sqrt{a^2 + b^2} \tag{12}$$

$$\phi = \operatorname{atan2}(b, a) \tag{13}$$

T. Petković — UniZG - FER - OOS 2022/2023 — 16/36

Eksponencijalna funkcija ili eksponencijala

Eksponencijala koju ste do sada najčešće koristili je exp(x).

U obradi signala definiramo vremenski kontinuiranu i vremenski diskretnu eksponecijalu.

Vremenski kontinuirana eksponencijala jest:

$$x(t) = A \exp(st) = Ae^{st}, \quad A, s \in \mathbb{C}.$$
 (14)

Vremenski diskretna eksponencijala jest:

$$x[n] = Az^n, \quad A, z \in \mathbb{C}. \tag{15}$$

T. Petković — UniZG - FER - OOS 2022/2023 — 17

Kontinuirana i diskretna eksponencijala

Na prvi pogled kontinuirana i diskretna eksponencijala izgledaju kao različite funkcije, no između njih postoji jasna veza do koje se najjednostavnije dolazi očitavanjem.

Neka je t=nT, uz $T\in\mathbb{R}$ i $n\in\mathbb{Z}$. Tada je

$$x[n] = x(nT) = Ae^{snT} = A(e^{sT})^n = Az^n,$$
 (16)

pa prepoznajemo da je veza

$$z = e^{sT}. (17)$$

T. Petković –

——— UniZG - FER - OOS 2022/2023 ——

Raspirujuća i prigušujuća eksponencijala

Od posebnog interesa jest ponašanje eksponencijale kada vrijeme t ili korak n teži u beskonačnost, dakle $t, n \to +\infty$.

Kažemo da eskponencijala prigušujuća ako vrijednost njene amplitude teži k nuli kada $t, n \to +\infty$.

Nadalje, kažemo da je eskponencijala raspirujuća ako vrijednost njene amplitude teži u beskonačnost kada $t, n \to +\infty$.

Sukladno tome eksponencijale $x(t) = Ae^{st}$ i $x[n] = Az^n$ su prigušujuće ako

$$\operatorname{Re}[s] < 0 \quad i \quad |z| < 1. \tag{18}$$

Slično, eksponencijale $x(t) = Ae^{st}$ i $x[n] = Az^n$ su raspirujuće ako

$$Re[s] > 0 \quad i \quad |z| > 1.$$
 (19)

T. Petković — UniZG - FER - OOS 2022/2023 — 19/36

Primjer prigušujuće realne eksponencijale

Diskretna eksponencijala $x[n] = \left(\frac{3}{4}\right)^n$ i pridružena kontinuirana eksponencijala $x(t) = e^{\ln(3/4)t}$ su prigušujuće jer je $\left|\frac{3}{4}\right| < 1$ i Re $\left[\ln\frac{3}{4}\right] < 0$.

T. Petković -

——— UniZG - FER - OOS 2022/2023 —

Primjer raspirujuće relane eksponencijale

Diskretna eksponencijala $x[n] = \left(\frac{4}{3}\right)^n$ i pridružena kontinuirana eksponencijala $x(t) = e^{\ln(4/3)t}$ su raspirujuće jer je $\left|\frac{4}{3}\right| > 1$ i Re $\left[\ln\frac{4}{3}\right] > 0$.

T. Petković -

——— UniZG - FER - OOS 2022/2023 —

Kompleksna eksponencijala

Raspirivanje ili prigušenje kompleksne eksponencijale definira njena ovojnica koja je određena s $e^{\text{Re}[s]t}$ ili sa $|z|^n$.

Primjer: Kompleksna eksponencijala

$$x(t) = \exp(t(-\frac{1}{2} + 5j)) = e^{-t/2}(\cos(5t) + j\sin(5t))$$
 (20)

je prigušujuća jer njena ovojnica $e^{-t/2}$ trne.

T. Petković — UniZG - FER - OOS 2022/2023 — —

22/36

Veza čiste kompleksne eksponencijale i sinusoide

Za eksponencijalu s čisto imaginarnim eksponentom vrijedi

$$e^{j\Omega t} = \cos(\Omega t) + j\sin(\Omega t). \tag{21}$$

Sukladno tome čistu sinusoidu možemo predstaviti kao

$$\sin(\Omega t) = \frac{1}{2i} \left(e^{j\Omega t} - e^{-j\Omega t} \right), \tag{22}$$

a čistu kosinusoidu možemo predstaviti kao

$$\cos(\Omega t) = \frac{1}{2} \left(e^{j\Omega t} + e^{-j\Omega t} \right). \tag{23}$$

T. Petković — UniZG - FER - OOS 2022/2023 — 23/

Vremenski diskretni jedinični impuls

Vremenski diskretni jedinični impuls $\delta[n]$ je signal

$$\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & \text{inače.} \end{cases}$$
 (24)

Ovako definirani jedinični impuls je posebna varijanta Kroneckerove delta funkcije, odnosno možemo pisati $\delta[n] = \delta_{0n} = \delta_{n0}$ za $n \in \mathbb{Z}$.

T. Petković — UniZG - FER - OOS 2022/2023 — 24

Svojstvo očitavanja jediničnog impulsa

Želimo li znati vrijednost vremenski diskretnog signala x[n] u koraku n=m možemo signal pomnožiti s pomaknutim jediničnim impulsom,

$$x[m] = x[n] \cdot \delta[n - m]. \tag{25}$$

Navedeno svojstvo jediničnog impulsa nazivamo svojstvom uzorkovanja ili **očitavanja** signala.

Dodatno, primijetite da svaki vremenski diskretni signal x[n] možemo predstaviti preko njegovih individualnih uzoraka korištenjem pomaknutih jediničnih impulsa, odnosno da vrijedi

$$x[n] = \sum_{m=-\infty}^{+\infty} x[m]\delta[n-m]. \tag{26}$$

T. Petković — UniZG - FER - OOS 2022/2023 — 25/36

Vremenski diskretna jedinična stepenica

Vremenski diskretna jedinična stepenica $\mu[n]$ je signal

$$\mu[n] = \begin{cases} 1, & 0 \le n \\ 0, & \text{inače.} \end{cases}$$
 (27)

Primijetite da je $\mu[n]$ sumacija od $\delta[n]$, odnosno vrijedi

$$\mu[n] = \sum_{m=-\infty}^{n} \delta[m]. \tag{28}$$

T. Petković — UniZG - FER - OOS 2022/2023 — 26/36

Jedinična stepenica i kauzalni signali

Jediničnu stepenica se koristi kod modeliranja kauzalnih i antikauzalnih signala.

Kauzalni signal $x_{\text{kauzalni}}[n]$ definiramo kao signal za kojeg vrijedi da je jednak nuli za sve negativne korake, odnosno

$$x_{\text{kauzalni}}[n] = 0$$
 za $n < 0$. (29)

Opravdanje ove definicije ćemo razmotriti kod uvođenja sustava.

Sada vidimo da svaki signal x[n] možemo učiniti kauzalnim ako ga pomnožimo s jediničnom stepenicom, odnosno

$$x_{\text{kauzalni}}[n] = x[n] \cdot \mu[n].$$
 (30)

T. Petković — UniZG - FER - OOS 2022/2023 — 27/36

Jedinična stepenica i antikauzalni signali

Antikauzalni signal $x_{antikauzalni}[n]$ definiramo kao signal za kojeg vrijedi da je jednak nuli za sve pozitivne korake, odnosno

$$X_{\text{antikauzalni}}[n] = 0 \quad \text{za} \quad n > 0.$$
 (31)

Opravdanje ove definicije ćemo isto razmotriti kod uvođenja sustava i definiranja $\mathcal Z$ transformacije.

Opet, svaki signal x[n] možemo učiniti antikauzalnim ako ga pomnožimo s u vremenu invertiranom jediničnom stepenicom, odnosno

$$x_{\text{antikauzalni}}[n] = x[n] \cdot \mu[-n].$$
 (32)

T. Petković — UniZG - FER - OOS 2022/2023 — 28/36

Diracova funkcija

Vremenski kontinurani jedinični impuls ili Diracova funkcija (preciznije distribucija) jest signal

$$\delta(t) = \begin{cases} \text{neodredeno}, & t = 0 \\ 0, & \text{inače.} \end{cases}$$
 (33)

Vrijednost u t=0 je nedoređena jer Diracovu funkciju definiramo preko njenog utjecaja na integral, odnosno vrijednost za t=0 jest upravo takva da vrijedi

$$\int_{-\infty}^{+\infty} x(t) \frac{\delta(t)}{\delta(t)} dt = x(0), \tag{34}$$

gdje je x(t) signal neprekinut u t = 0.

T. Petković — UniZG - FER - OOS 2022/2023 — 29/36

Diracova funkcija

Kolokvijalno kažemo da Diracova funkcija vadi podintegralnu vrijednost u t=0, pa bi prema tome u točki t=0 ona trebala imati jediničnu površinu. Kako ne postoji broj koji ima površinu vrijednost amplitude u t=0 je neodređena, no u nekim izlaganjima se definira kao ∞ .

Kod crtanja grafa signala Diracovu funkciju $a\delta(t)$ označujemo sa strelicom koja ide od osi apscise do vrijednosti a, a ponekad do strelice dopišemo tu vrijednost a.

T. Petković ————

——— UniZG - FER - OOS 2022/2023 —

Svojstva Diracove funkcije

Obzirom da se ne radi o klasičnoj funkciji bez ulaženja u dublje razmatranje ovdje navodimo odabrana svojstava Diracove funkcije.

Svojstvo Uvjet
$$\int_{-\infty}^{+\infty} f(t)\delta(t) \, dt = f(0) \qquad \qquad f(t) \text{ je neprekinuta u } t = 0$$

$$\int_{-\infty}^{+\infty} f(t)\delta(t-t_0) \, dt = f(t_0) \qquad \qquad f(t) \text{ je neprekinuta u } t = t_0$$

$$\int_{-\infty}^{+\infty} f(t)\delta^{(n)}(t) \, dt = (-1)^n f^{(n)}(0) \qquad \qquad f(t) \text{ je diferencijabilna klase } C^n, \, n \in \mathbb{N}$$

$$f(t)\delta(t) = f(0)\delta(t) \qquad \qquad f(t) \text{ je neprekinuta u } t = 0$$

$$f(t)\delta(t-t_0) = f(t_0)\delta(t-t_0) \qquad \qquad f(t) \text{ je neprekinuta u } t = t_0$$

$$f(t)\delta^{(n)}(t) = \sum_{k=0}^{n} (-1)^n \binom{n}{k} f^{(k)}(0)\delta^{(n-k)}(t) \qquad \qquad f(t) \text{ je diferencijabilna klase } C^n, \, n \in \mathbb{N}$$

$$\delta(at) = \frac{1}{|a|}\delta(t) \qquad \qquad a \in \mathbb{R} \setminus \{0\}$$

$$f(t)\delta(at+b) = \frac{1}{|a|}f(-\frac{b}{a})\delta(t-\frac{b}{a}) \qquad \qquad f(t) \text{ je neprekinuta u } t = -\frac{b}{a}, \, a \in \mathbb{R} \setminus \{0\}$$

T. Petković — UniZG - FER - OOS 2022/2023 –

Svojstvo očitavanja Diracove funkcije

Važno svojstvo Diracove funkcije jest svojstvo očitavanja signala u $t=t_0$ (engl. sampling property i sifting property), odnosno vrijedi

$$x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$$

$$x(t_0) = \int_{-\infty}^{+\infty} x(t)\delta(t-t_0) dt$$
(35)

Zbog toga slično kao i za vremenski diskretni jedinični impuls $\delta[n]$ preko kojeg možemo predstaviti svaki signal x[n] kao

$$x[n] = \sum_{m = -\infty}^{+\infty} x[m]\delta[n - m], \tag{36}$$

za Diracovu funkciju $\delta(t)$ vrijedi

$$x(t) = \int_{-\infty}^{+\infty} x(\tau) \delta(t - \tau) d\tau.$$
 (37)

T. Petković — UniZG - FER - OOS 2022/2023 — 32/3

Heavisideova funkcija

Vremenski kontinurana jedinična stepenica ili Heavisideova funkcija (preciznije distribucija) jest signal

$$\mu(t) = \begin{cases} 1, & 0 \le t \\ 0, & \text{inače.} \end{cases}$$

$$(38)$$

$$-4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4$$

Primijetite da je $\mu(t)$ integral od $\delta(t)$, odnosno vrijedi

$$\mu(t) = \int_{-\infty}^{t} \delta(\tau) d\tau. \tag{39}$$

T. Petković — UniZG - FER - OOS 2022/2023 — 33/36

Heavisideova funkcija i kauzalnost

Isto kao i kod vremenski diskretnih signala Heavisideova funkcija je korisna kod konstrukcije kauzalnih i antikauzalnih signala.

Svaki signal x(t) možemo učiniti kauzalnim ako ga pomnožimo s Heavisideovom funkcijom, odnosno

$$x_{\text{kauzalni}}(t) = x(t) \cdot \mu(t).$$
 (40)

Slično, svaki signal x(t) možemo učiniti antikauzalnim ako ga pomnožimo s u vremenu invertiranom Heavisideovom funkcijom, odnosno

$$X_{\text{antikauzalni}}(t) = x(t) \cdot \mu(-t).$$
 (41)

T. Petković — UniZG - FER - OOS 2022/2023 — 3-

Prostor signala je vektorski prostor

Za kraj uočite da je prostor vremenski diskretnih signala **vektorski prostor** nad poljem \mathbb{C} .

Neka su x[n], y[n] i z[n] vremenski diskretni signali, $x, y, z : \mathbb{Z} \to \mathbb{C}$, i neka su a i b kompleksni brojevi. Onda vrijedi:

- Prostor signala je komutativna grupa.
 - 1. Asocijativnost: x[n] + (y[n] + z[n]) = (x[n] + y[n]) + z[n]
 - 2. Neutralni element: x[n] + 0[n] = 0[n] + x[n] = x[n]
 - 3. Suprotni element: x[n] + (-x[n]) = (-x[n]) + x[n] = 0[n]
 - 4. Komutativnost: x[n] + y[n] = y[n] + x[n]
- Postoji vanjsko (ili hibridno) množenje za koje vrijedi:
 - 5. Kvaziasocijativnost: $a(b \cdot x[n]) = (ab) \cdot x[n]$
 - 6. Posjedovanje jedinice: $1 \cdot x[n] = x[n]$
 - 7. Distributivnost prema vektorskom zbrajanju: $a \cdot (x[n] + y[n]) = a \cdot x[n] + b \cdot y[n]$
 - 8. Distributivnost prema skalarnom zbrajanju: $(a+b) \cdot x[n] = a \cdot x[n] + b \cdot x[n]$

Preporučeno čitanje

- ▶ P. Prandoni, M. Vetterli, "Signal Processing for Communications" (https://sp4comm.org/), poglavlje 2.
- ▶ B. Jeren, "Signali i sustavi", Školska knjiga, 2021., poglavlje 2. (bez dijela 2.5.)
- ► H. Babić, "Signali i sustavi" (http://sis.zesoi.fer.hr/ predavanja/pdf/sis_2001_skripta.pdf), dio 1.1. te uvod poglavlja 9. i dio 9.1.
- ▶ M. Vetterli, J. Kovačević, V. K. Goyal, "Foundations of Signal Processing" (https://fourierandwavelets.org/), dijelovi 3.2., 4.2. i 3.A.4.