

10/510508

DT05 Rec'd PCT/PTO 07 OCT 2004

SEQUENCE LISTING

<110> Terrett, Jonathan A
<120> Protein Involved in Cancer
<130> 2543-1-038PCT/US
<140> PCT/GB2003/001589
<141> 2003-04-11
<150> GB0208332.7
<151> 2002-04-11
<150> GB0229875.0
<151> 2002-12-21
<160> 6
<170> PatentIn version 3.1
<210> 1
<211> 1212
<212> PRT
<213> Homo sapiens
<400> 1

Met Glu Pro Arg Pro Thr Ala Pro Ser Ser Gly Ala Pro Gly Leu Ala
1 5 10 15

Gly Val Gly Glu Thr Pro Ser Ala Ala Ala Leu Ala Ala Ala Arg Val
20 25 30

Glu Leu Pro Gly Thr Ala Val Pro Ser Val Pro Glu Asp Ala Ala Pro
35 40 45

Ala Ser Arg Asp Gly Gly Val Arg Asp Glu Gly Pro Ala Ala Ala
50 55 60

Gly Asp Gly Leu Gly Arg Pro Leu Gly Pro Thr Pro Ser Gln Ser Arg
65 70 75 80

Phe Gln Val Asp Leu Val Ser Glu Asn Ala Gly Arg Ala Ala Ala Ala
85 90 95

Ala Ala Ala Ala Ala Ala Ala Ala Ala Gly Ala Gly Ala Gly
100 105 110

Ala Lys Gln Thr Pro Ala Asp Gly Glu Ala Ser Gly Glu Ser Glu Pro
115 120 125

Ala Lys Gly Ser Glu Glu Ala Lys Gly Arg Phe Arg Val Asn Phe Val
130 135 140

Asp Pro Ala Ala Ser Ser Ala Glu Asp Ser Leu Ser Asp Ala Ala
145 150 155 160

Gly Val Gly Val Asp Gly Pro Asn Val Ser Phe Gln Asn Gly Gly Asp
165 170 175

Thr Val Leu Ser Glu Gly Ser Ser Leu His Ser Gly Gly Gly Gly
180 185 190

Ser Gly His His Gln His Tyr Tyr Tyr Asp Thr His Thr Asn Thr Tyr
195 200 205

Tyr Leu Arg Thr Phe Gly His Asn Thr Met Asp Ala Val Pro Arg Ile
210 215 220

Asp His Tyr Arg His Thr Ala Ala Gln Leu Gly Glu Lys Leu Leu Arg
225 230 235 240

Pro Ser Leu Ala Glu Leu His Asp Glu Leu Glu Lys Glu Pro Phe Glu
245 250 255

Asp Gly Phe Ala Asn Gly Glu Glu Ser Thr Pro Thr Arg Asp Ala Val
260 265 270

Val Thr Tyr Thr Ala Glu Ser Lys Gly Val Val Lys Phe Gly Trp Ile
275 280 285

Lys Gly Val Leu Val Arg Cys Met Leu Asn Ile Trp Gly Val Met Leu
290 295 300

Phe Ile Arg Leu Ser Trp Ile Val Gly Gln Ala Gly Ile Gly Leu Ser
305 310 315 320

Val Leu Val Ile Met Met Ala Thr Val Val Thr Thr Ile Thr Gly Leu
325 330 335

Ser Thr Ser Ala Ile Ala Thr Asn Gly Phe Val Arg Gly Gly Ala
340 345 350

Tyr Tyr Leu Ile Ser Arg Ser Leu Gly Pro Glu Phe Gly Gly Ala Ile
355 360 365

Gly Leu Ile Phe Ala Phe Ala Asn Ala Val Ala Val Ala Met Tyr Val
370 375 380

Val Gly Phe Ala Glu Thr Val Val Glu Leu Leu Lys Glu His Ser Ile
385 390 395 400

Leu Met Ile Asp Glu Ile Asn Asp Ile Arg Ile Ile Gly Ala Ile Thr
405 410 415

Val Val Ile Leu Leu Gly Ile Ser Val Ala Gly Met Glu Trp Glu Ala
420 425 430

Lys Ala Gln Ile Val Leu Leu Val Ile Leu Leu Leu Ala Ile Gly Asp
435 440 445

Phe Val Ile Gly Thr Phe Ile Pro Leu Glu Ser Lys Lys Pro Lys Gly
450 455 460

Phe Phe Gly Tyr Lys Ser Glu Ile Phe Asn Glu Asn Phe Gly Pro Asp
465 470 475 480

Phe Arg Glu Glu Glu Thr Phe Phe Ser Val Phe Ala Ile Phe Phe Pro
485 490 495

Ala Ala Thr Gly Ile Leu Ala Gly Ala Asn Ile Ser Gly Asp Leu Ala
500 505 510

Asp Pro Gln Ser Ala Ile Pro Lys Gly Thr Leu Leu Ala Ile Leu Ile
515 520 525

Thr Thr Leu Val Tyr Val Gly Ile Ala Val Ser Val Gly Ser Cys Val
530 535 540

Val Arg Asp Ala Thr Gly Asn Val Asn Asp Thr Ile Val Thr Glu Leu
545 550 555 560

Thr Asn Cys Thr Ser Ala Ala Cys Lys Leu Asn Phe Asp Phe Ser Ser
565 570 575

Cys Glu Ser Ser Pro Cys Ser Tyr Gly Leu Met Asn Asn Phe Gln Val
580 585 590

Met Ser Met Val Ser Gly Phe Thr Pro Leu Ile Ser Ala Gly Ile Phe
595 600 605

Ser Ala Thr Leu Ser Ser Ala Leu Ala Ser Leu Val Ser Ala Pro Lys
610 615 620

Ile Phe Gln Ala Leu Cys Lys Asp Asn Ile Tyr Pro Ala Phe Gln Met
625 630 635 640

Phe Ala Lys Gly Tyr Gly Lys Asn Asn Glu Pro Leu Arg Gly Tyr Ile
645 650 655

Leu Thr Phe Leu Ile Ala Leu Gly Phe Ile Leu Ile Ala Glu Leu Asn
660 665 670

Val Ile Ala Pro Ile Ile Ser Asn Phe Phe Leu Ala Ser Tyr Ala Leu
675 680 685

Ile Asn Phe Ser Val Phe His Ala Ser Leu Ala Lys Ser Pro Gly Trp
690 695 700

Arg Pro Ala Phe Lys Tyr Tyr Asn Met Trp Ile Ser Leu Leu Gly Ala
705 710 715 720

Ile Leu Cys Cys Ile Val Met Phe Val Ile Asn Trp Trp Ala Ala Leu
725 730 735

Leu Thr Tyr Val Ile Val Leu Gly Leu Tyr Ile Tyr Val Thr Tyr Lys
740 745 750

Lys Pro Asp Val Asn Trp Gly Ser Ser Thr Gln Ala Leu Thr Tyr Leu
755 760 765

Asn Ala Leu Gln His Ser Ile Arg Leu Ser Gly Val Glu Asp His Val
770 775 780

Lys Asn Phe Arg Pro Gln Cys Leu Val Met Thr Gly Ala Pro Asn Ser
785 790 795 800

Arg Pro Ala Leu Leu His Leu Val His Asp Phe Thr Lys Asn Val Gly
805 810 815

Leu Met Ile Cys Gly His Val His Met Gly Pro Arg Arg Gln Ala Met
820 825 830

Lys Glu Met Ser Ile Asp Gln Ala Lys Tyr Gln Arg Trp Leu Ile Lys
835 840 845

Asn Lys Met Lys Ala Phe Tyr Ala Pro Val His Ala Asp Asp Leu Arg
850 855 860

Glu Gly Ala Gln Tyr Leu Met Gln Ala Ala Gly Leu Gly Arg Met Lys
865 870 875 880

Pro Asn Thr Leu Val Leu Gly Phe Lys Lys Asp Trp Leu Gln Ala Asp
885 890 895

Met Arg Asp Val Asp Met Tyr Ile Asn Leu Phe His Asp Ala Phe Asp
900 905 910

Ile Gln Tyr Gly Val Val Val Ile Arg Leu Lys Glu Gly Leu Asp Ile
915 920 925

Ser His Leu Gln Gly Gln Glu Glu Leu Leu Ser Ser Gln Glu Lys Ser
930 935 940

Pro Gly Thr Lys Asp Val Val Val Ser Val Glu Tyr Ser Lys Lys Ser
945 950 955 960

Asp Leu Asp Thr Ser Lys Pro Leu Ser Glu Lys Pro Ile Thr His Lys
965 970 975

Val Glu Glu Glu Asp Gly Lys Thr Ala Thr Gln Pro Leu Leu Lys Lys
980 985 990

Glu Ser Lys Gly Pro Ile Val Pro Leu Asn Val Ala Asp Gln Lys Leu
995 1000 1005

Leu Glu Ala Ser Thr Gln Phe Gln Lys Lys Gln Gly Lys Asn Thr
1010 1015 1020

Ile Asp Val Trp Trp Leu Phe Asp Asp Gly Gly Leu Thr Leu Leu
1025 1030 1035

Ile Pro Tyr Leu Leu Thr Thr Lys Lys Lys Trp Lys Asp Cys Lys
1040 1045 1050

Ile Arg Val Phe Ile Gly Gly Lys Ile Asn Arg Ile Asp His Asp
1055 1060 1065

Arg Arg Ala Met Ala Thr Leu Leu Ser Lys Phe Arg Ile Asp Phe
1070 1075 1080

Ser Asp Ile Met Val Leu Gly Asp Ile Asn Thr Lys Pro Lys Lys
1085 1090 1095

Glu Asn Ile Ile Ala Phe Glu Glu Ile Ile Glu Pro Tyr Arg Leu
1100 1105 1110

His Glu Asp Asp Lys Glu Gln Asp Ile Ala Asp Lys Met Lys Glu
1115 1120 1125

Asp Glu Pro Trp Arg Ile Thr Asp Asn Glu Leu Glu Leu Tyr Lys
1130 1135 1140

Thr Lys Thr Tyr Arg Gln Ile Arg Leu Asn Glu Leu Leu Lys Glu
1145 1150 1155

His Ser Ser Thr Ala Asn Ile Ile Val Met Ser Leu Pro Val Ala
1160 1165 1170

Arg Lys Gly Ala Val Ser Ser Ala Leu Tyr Met Ala Trp Leu Glu
1175 1180 1185

Ala Leu Ser Lys Asp Leu Pro Pro Ile Leu Leu Val Arg Gly Asn
1190 1195 1200

His Gln Ser Val Leu Thr Phe Tyr Ser
1205 1210

<210> 2
<211> 4098
<212> DNA
<213> Homo sapiens
1<400> 2
ggtggcctct gtggccgtcc aggctagcgg cggcccgca gcccggggaa gaaagactct
60

ctcacctggc cttgcggctg tggccaccgc cggccagggg tgtggaggc gtgctgccgg
120

agacgtccgc cggcgtctgc agttccgccc ggggtcgggc agctatggag ccgcggccca
180

cggcgccctc ctccggcgcc cgggactgg ccgggtcgg ggagacgccc tcagccgtc
240

cgctggccgc agccagggtg gaactgcccgc gcacggctgt gccctcggtg ccggaggatg
300

ctgcgccccgc gagccgggac ggcggcgggg tccgcgtga gggccccgcg gcggccgggg
360

acgggctggg cagacccttg gggcccaccc cgagccagag ccgtttccag gtggacctgg
420

tttccgagaa cgccggcgcc gccgctgctg cggcggcgcc ggcggcgccg gcagcggcg
480

cggtggtgc tggggcgggg gccaaagcaga ccccccggga cggggaaagcc agcggcgaga
540

gcgagccagc taaaggcagc gaggaagcca agggccgctt ccgcgtgaac ttgcgtggacc
600

cagctgcctc ctgcgtggct gaagacagcc tgtcagatgc tgccggggtc ggagtcgacg
660

ggcccaacgt gagcttccag aacggcgggg acacggtgct gagcgagggc agcagcctgc
720

actccggcgg cggcggcggc agtgggcacc accagcacta ctattatgt acccacacca
780

acacctacta cctgcgcacc ttccggccaca acaccatgga cgctgtgccc aggatcgatc
840

actaccggca cacagccgca cagctggcgc agaagctgct ccggccttagc ctggcggagc
900

tccacgacga gctggaaaag gaacccttttggaggatggctt tgcaaattggg gaagaaagta
960

ctccaaccag agatgctgtg gtcacgtata ctgcagaaag taaaggagtc gtgaagtttgc
1020

gctggatcaa gggtgttatta gtacgttgta tgttaaacat ttgggggtgtg atgctttca
1080

ttagattgtc atggattgtg ggtcaagctg gaataggtct atcagtcctt gtaataatga
1140

tggccactgt tgtgacaact atcacaggat tgtctacttc agcaatagca actaatggat
1200

ttgttaagagg aggaggagca tattattaa tatctagaag tctagggcca gaatttggtg
1260

gtgcaattgg tctaatttttc gccttgcca acgctgttgc agttgttatg tatgtggttg
1320

gatttgcaga aaccgtggtg gagttgctt aggaacattc catacttatg atagatgaaa
1380

tcaatgatat ccgaattattt ggagccatta cagtcgtat tcttttaggt atctcagtag
1440

ctggaatgga gtggaaagca aaagctcaga ttgttcttt ggtgatccta cttcttgcta
1500

ttggtgattt cgtcatagga acatttatcc cactggagag caagaagcca aaagggttt
1560

ttggttataa atctgaaata ttaatgaga actttggcc cgatttcga gaggaagaga
1620

cttcttttc tgtatggcc atcttttc ctgctgcaac tggattctg gctggagcaa
1680

atatctcagg tgatctgca gatcctcagt cagccatacc caaaggaaca ctcctagcca
1740

tttaattac tacattggtt tacgttaggaa ttgcagtatc tggtagttct tggtagttc
1800

gagatgccac tggaaacgtt aatgacacta tcgtaacaga gctaacaac tgtacttctg
1860

cagcctgcaa attaaacttt gatTTTcat cttgtgaaag cagtccttgt tcctatggcc
1920

taatgaacaa cttccaggta atgagtatgg tgcaggatt tacaccacta atttctgcag
1980

gtatattttc agccacttt tttcagcat tagcatccct agtgagtgt cccaaaatat
2040

ttcaggctct atgtaaggac aacatctacc cagtttcca gatgttgct aaaggttatg
2100

ggaaaaataa tgaaccttt cgtggctaca tcttaacatt cttaaatgca cttggattca
2160

tcttaattgc tgaactgaat gttattgcac caattatctc aaacttcttc cttgcattcat
2220

atgcattgat caatTTTca gtattccatg catcacttgc aaaatctcca ggatggcgctc
2280

ctgcattcaa atactacaac atgtggat cacttcttgg agcaattctt tggatgcatt
2340

taatgttcgt cattaactgg tgggtgcatt tgctaacata tgtgatagtc cttggctgt
2400

atatttatgt tacctacaaa aaaccagatg tgaattgggg atcctctaca caagccctga
2460

cttacctgaa tgcactgcag cattcaattc gtcttctgg agtggaaagac cacgtaaaaa
2520

actttaggcc acagtgtctt gttatgacag gtgctccaaa ctcacgtcca gctttacttc
2580

atcttgttca tgatttcaca aaaaatgttg gtttcatatgt ctgtggccat gtacatatgg
2640

gtcctcgaag acaagccatg aaagagatgt ccatcgatca agccaaatat cagcgatggc
2700

ttattaagaa caaaatgaag gcattttatg ctccagtaca tgcagatgac ttgagagaag
2760

gtgcacagta tttcatgcag gctgctggc ttggcgtat gaagccaaac acacttgtcc
2820

ttggatttaa gaaagattgg ttgcaagcag atatgaggaa tgtggatatg tatataaact
2880

tatttcatga tgctttgac atacaatatg gagtagtggt tattcgccata aaagaaggc
2940

tggatatac tcatcttcaa ggacaagaag aattattgtc atcacaagag aaatctcctg
3000

gcaccaagga tgtggtagta agtggaaat atagaaaaaa gtccgattta gatacttcca
3060

aaccactcag tgaaaaacca attacacaca aagttgagga agaggatggc aagactgcaa
3120

ctcaaccact gttaaaaaaa gaatccaaag gccctattgt gcctttaaat gtagctgacc
3180

aaaagcttct tgaagctgt acacagttc agaaaaaaaca aggaaagaat actattgt
3240

tctggcgtt ttttcatatgt ggaggtttga cttattgtat accttacattt ctgacgacca
3300

agaaaaaaatg gaaagactgt aagatcagag tattcattgg tggaaagata aacagaatag
3360

accatgaccg gagagcgatg gctactttgc ttagcaagtt ccggatagac ttttctgata
3420

tcatggttct aggagatatc aataccaaac caaagaaaaga aaatattata gcttttgagg
3480

aaatcattga gccatacaga cttcatgaag atgataaaaga gcaagatatt gcagataaaa
3540

tgaaagaaga tgaaccatgg cgaataaacag ataatgagct tgaactttat aagaccaaga
3600

cataccggca gatcaggtta aatgagttat taaaggaaca ttcaagcaca gctaataatatta
3660

ttgtcatgag tctcccagtt gcacgaaaag gtgctgtgtc tagtgctctc tacatggcat
3720

ggttagaagc tctatctaag gacctaccac caatcctcct agttcgtggg aatcatcaga
3780

gtgtccttac cttctattca taaatgttct atacagtggc cagccctcca gaatggtaact
3840

tcagtgccta gtgttagtaac ctgaaatctt caatgacaca ttaacatcac aatggcgaat
3900

ggtgactttt ct当地cagat ttcattaatt tgaaagcaca cagggaaagct tgctccattg
3960

ataacgtgta tggagacttc ggttttagtc aattccatat ctcaatctta atgggtattc
4020

ttctctgttg aactgaagtt tgtgagagta gtttccttt gctacttgaa tagcaataaa
4080

agcgtgttaa cttttgg
4098

<210> 3
<211> 22
<212> DNA
<213> Artificial sequence
1<220>
<223> Primer
<400> 3
cactactac ctgcgcaccc tc
22

```
<210> 4
<211> 22
<212> DNA
<213> Artificial sequence
1<220>
<223> Primer
<400> 4
gaccacagca tctctggttg ga
22
```

```
<210> 5
<211> 12
<212> PRT
<213> Artificial sequence
1<220>
<223> synthetic peptide
<400> 5
```

Ser Lys Lys Pro Lys Gly Phe Phe Gly Tyr Lys Cys
1 5 10

```
<210> 6
<211> 16
<212> PRT
<213> Artificial sequence
1<220>
<223> synthetic peptide
<400> 6
```

Ser Gly Glu Ser Glu Pro Ala Lys Gly Ser Glu Glu Ala Lys Gly Cys
1 5 10 15