Universidad de la República Facultad de Ingeniería - IMERL

Cálculo diferencial e integral en varias variables Segundo Semestre 2020

Primer parcial – Sábado 17 de octubre de 2020

Nro de Parcial	Cédula	Apellido y nombre		

(I) Múltiple opción. Total: 30 puntos

Puntajes: 5 puntos si la respuesta es correcta, 0 punto por no contestar y -1 si la respuesta es incorrecta. Indique sus respuestas en los casilleros correspondientes, con letras mayúsculas imprenta: A, B, C, D o E.

Ejercicio 1	Ejercicio 2	Ejercicio 3	Ejercicio 4	Ejercicio 5	Ejercicio 6

Ejercicio 1

Se considera el polinomio complejo $P(z)=z^3+2z^2+\frac{3}{2}z+\frac{1}{2}$, y las siguientes afirmaciones:

- (I) Existen dos raíces tales que su suma es igual a la raíz restante.
- (II) La distancia entre dos raíces distintas siempre es constante.
- (III) El producto de todas las raíces es igual al inverso de la suma de todas sus raíces.

Entonces:

- A) Todas las afirmaciones son correctas.
- B) Ninguna afirmación es correcta.
- C) Solo las afirmaciones (II) y (III) son correctas.
- D) Solo las afirmaciones (I) y (III) son correctas.
- E) Solo la afirmación (I) es correcta.

Ejercicio 2

Sea y(x) la solución a la ecuación diferencial $y'' + 2y' + 2y = 5e^x$ que cumple y(0) = 1, y'(0) = 2. Calcule $y(\pi/2)$:

A)
$$y(\pi/2) = e^{-\pi/2} - e^{\pi/2}$$

B)
$$y(\pi/2) = e^{-\pi/2} + e^{\pi/2}$$

C)
$$y(\pi/2) = e^{-\pi/2}$$

D)
$$y(\pi/2) = e^{\pi/2}$$

E)
$$y(\pi/2) = \frac{\pi}{2}e^{\pi/2}$$

Ejercicio 3

Se consideran las siguientes afirmaciones:

- (I) Si A es un conjunto cerrado y $p \notin A$, entonces no existe ninguna sucesión con elementos de A que converja a p.
- (II) Sea $a_n = (-1)^n + \frac{1}{n}$. Entonces existen infinitas subsucesiones de a_n que convergen a -1.
- (III) Si a_n es no acotada, entonces toda subsucesión de a_n también es no acotada.

Entonces:

- A) Solo las afirmaciones (I) y (II) son correctas.
- B) Todas las afirmaciones son correctas.
- C) Solo las afirmaciones (II) y (III) son correctas.
- D) Ninguna afirmación es correcta.
- E) Solo la afirmación (I) es correcta.

Ejercicio 4

Sea a_n una sucesión de términos positivos tal que $\sum a_n$ es convergente. Considere las siguientes series

$$\sum_{n=1}^{\infty} e^{a_n^2} - 1 \quad \text{y} \quad \sum_{n=1}^{\infty} \cos(a_n) \sin(a_n).$$

Entonces:

- A) Ambas series son divergentes.
- B) Ambas series son convergentes.
- C) Solo la primera serie es convergente.
- D) Solo la segunda serie es convergente.
- E) La segunda serie no se puede clasificar a priori, por no ser de signo constante.

Ejercicio 5

Sean α, β, γ tres reales positivos. Considere la integral impropia $\int_0^1 \frac{dx}{(\sin(x))^{\alpha} (e^x - 1)^{\beta} (\cos(x))^{\gamma}}.$ Entonces para que la integral sea convergente debe cumplirse:

- A) $\alpha + \beta < 1$.
- B) $\alpha + \beta + \gamma < 1$.
- C) $\alpha < 1, y \beta + \gamma > \frac{1}{2}$
- D) $\alpha + \beta + \gamma > 1$.
- E) $\alpha + \beta < \frac{1}{2}$.

Ejercicio 6

Sea $A = \{(\frac{1}{n}, (-1)^n) : n \in \mathbb{N}\} \subset \mathbb{R}^2.$

Seleccione la opción correcta (recuerde que A' es el conjunto de puntos de acumulación de A):

- A) $A' = \emptyset$.
- B) A es compacto.
- C) A' = A.
- D) A es cerrado.
- E) $A \subset \partial A$.

(II) Desarrollo. Total: 10 puntos

- 1. Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales. Completar las siguientes definiciones:
 - a) (a_n) es convergente si...
 - b) (a_n) es monónona creciente si...
 - c) (a_n) es acotada si...
- 2. Dar ejemplos de:
 - a) Una sucesión convergente que no es monótona.
 - b) Una sucesión acotada que no es convergente.
- 3. Consideremos la sucesión de término general $a_n = \frac{1 + \log(n)}{n^3}$. Probar que es monótona (decreciente), acotada y convergente.