Actuarial Computation and Simulation

Week 04: Policy Gradient & Actor-Critic

Aprida Siska Lestia

September 7, 2025

Benang Merah Materi

Week 1: Multi-Armed Bandit

Fokus: memilih aksi terbaik (ϵ -greedy, UCB) tanpa mempertimbangkan state.

Week 2: Dynamic Programming (DP)

Fokus: Markov Decision Process (MDP) dengan *Value Iteration* & *Policy Iteration*.

Asumsi: model transisi dan reward diketahui lengkap.

Week 3: Monte Carlo & TD Learning

Fokus: belajar tanpa model dengan pengalaman langsung.

Perbandingan: SARSA (on-policy) vs Q-learning (off-policy).

Week 4: Policy Gradient & Actor–Critic

Fokus: langsung mengoptimalkan *policy* parametrik (probabilistik) tanpa perlu *value function* eksplisit.

- REINFORCE: update berdasarkan return penuh (mirip Monte Carlo).
- Actor–Critic: gabungan policy gradient (actor) dengan value function (critic) berbasis TD error → lebih stabil.

Benang Merah Materi

Alur Konsep (lanjutan):

Eksplorasi Aksi (Bandit) → MDP dengan Model Lengkap (DP) → Belajar dari Pengalaman Nyata (MC/TD) → Optimisasi Policy Secara Langsung (Policy Gradient & Actor–Critic)

Overview

- Motivasi Policy Gradient
- Algoritma REINFORCE (episodic return)
- Algoritma Actor–Critic (TD error)
- Perbandingan hasil eksperimen
- Lab: implementasi pada CartPole
- Assignment dan diskusi reflektif

Motivasi Policy Gradient

- Konteks:
 - bandit \rightarrow tidak ada state
 - ullet DP o butuh model lengkap
 - $MC/TD \rightarrow$ bisa tanpa model, tapi tetap berbasis value
 - ullet PG ightarrow langsung optimasi policy, cocok untuk kontrol kontinu.
- Policy Gradient langsung memodelkan kebijakan $\pi_{\theta}(a|s)$.
- Intuisi :
 - Bayangkan menggeser distribusi aksi ke arah yang memberi reward lebih tinggi.
 - Update parameter policy mengikuti arah gradien reward.

Intuisi Policy Gradient

Policy-based (Policy Gradient)

- Optimasi langsung parameter kebijakan $\pi_{\theta}(a \mid s)$.
- Aturan arah: $\nabla_{\theta} J(\theta) = \mathbb{E}[\nabla_{\theta} \log \pi_{\theta}(a \mid s) Q^{\pi}(s, a)].$
- Intuisi: perbesar log-prob aksi yang bernilai (Q) tinggi.

Value-based (pembanding)

- Estimasi dulu Q(s, a) atau V(s).
 - $\pi(s) = \arg \max_a Q(s, a)$ (kebijakan *turunan* dari nilai).
 - Kurang alami untuk aksi kontinu (butuh argmax/greedy di ruang kontinu).

Policy Gradient Theorem

Pesan kunci

Policy Gradient memindahkan parameter θ ke arah yang meningkatkan $J(\theta)$ secara langsung; ActorCritic menurunkan varians dengan kritikus (mis. V atau A).

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi}(s,a) \right]$$

- $J(\theta)$: expected return.
- $\pi_{\theta}(a|s)$: policy parameterized by θ .
- Intuisi: update mengikuti arah yang meningkatkan reward jangka panjang.

Algoritma REINFORCE

Update Rule

$$\theta \leftarrow \theta + \alpha \ \mathsf{G}_t \ \nabla_{\theta} \log \pi_{\theta}(\mathsf{a}_t|\mathsf{s}_t)$$

dengan
$$G_t = \sum_{k=t}^T \gamma^{k-t} r_k$$
.

- Implementasi di notebook: train_reinforce.
- Menggunakan return kumulatif (episodic).
- Normalisasi return dipakai untuk mengurangi varians.

Contoh: Episode Mini (2 Langkah) dengan Policy Gradient

Lingkungan sederhana:

- Hanya 1 state (agar fokus ke policy).
- Dua aksi: Left dan Right.
- Aturan reward (episode 2-langkah):

$$r_0=0, \qquad r_1=egin{cases} +1, & {
m jika\ di\ langkah-1\ memilih\ Left} \ 0, & {
m jika\ memilih\ Right} \end{cases}$$

- Diskonto: $\gamma = 0.9$, laju belajar: $\alpha = 0.1$.
- Parameter awal: $\theta_L = 0$, $\theta_R = 0 \Rightarrow \pi(L) = \pi(R) = 0.5$.

Policy & Gradien Log-Softmax (2 Aksi)

Policy (softmax 2-aksi):

$$\pi_{ heta}(L) = rac{e^{ heta_L}}{e^{ heta_L} + e^{ heta_R}}, \qquad \pi_{ heta}(R) = rac{e^{ heta_R}}{e^{ heta_L} + e^{ heta_R}}.$$

Turunan log-probabilitas:

$$egin{aligned}
abla_{ heta_L} \log \pi_{ heta}(L) &= 1 - \pi_{ heta}(L), &
abla_{ heta_R} \log \pi_{ heta}(L) &= -\pi_{ heta}(R),
onumber \
abla_{ heta_L} \log \pi_{ heta}(L) &= -\pi_{ heta}(L).
onumber \
abla_{ heta_L} \log \pi_{ heta}(R) &= -\pi_{ heta}(L).
onumber \
abla_{ heta_L} \log \pi_{ heta}(R) &= -\pi_{ heta}(L).
onumber \
abla_{ heta_L} \log \pi_{ heta}(R) &= -\pi_{ heta}(L).
onumber \
abla_{ heta_L} \log \pi_{ heta}(R) &= -\pi_{ heta}(L).
onumber \
abla_{ heta_L} \log \pi_{ heta}(R) &= -\pi_{ heta}(L).
onumber \
abla_{ heta_L} \log \pi_{ heta}(R) &= -\pi_{ heta}(L).
onumber \
abla_{ heta_L} \log \pi_{ heta}(R) &= -\pi_{ heta}(L).
onumber \
abla_{ heta_L} \log \pi_{ heta}(R) &= -\pi_{ heta}(L).
onumber \
abla_{ heta_L} \log \pi_{ heta}(R) &= -\pi_{ heta}(L).
onumber \
abla_{ heta_L} \log \pi_{ heta}(R) &= -\pi_{ heta}(L).
onumber \
abla_{ heta_L} \log \pi_{ heta}(R) &= -\pi_{ heta_L} \log \pi_{ heta}(R).
onumber \
abla_{ heta_L} \log \pi_{ heta_L} \otimes \pi$$

Aturan REINFORCE (episodik):

$$\theta \leftarrow \theta + \alpha \sum_{t} \left(G_t \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \right), \quad G_t = \sum_{k=t}^{T-1} \gamma^{k-t} r_k.$$

Jalannya Episode

- **1** $\mathbf{t} = \mathbf{0}$: kebetulan $a_0 = \text{Right} \Rightarrow r_0 = 0$.
- 2 $\mathbf{t} = \mathbf{1}$: ambil $a_1 = \text{Left} \Rightarrow r_1 = +1$ (episode selesai).

Return:

$$G_1 = r_1 = 1,$$
 $G_0 = r_0 + \gamma r_1 = 0 + 0.9 \cdot 1 = 0.9.$

Kontribusi Update

pada t = 0 (aksi Right)

Dengan $\pi(L) = \pi(R) = 0.5$ (karena θ awal nol):

$$abla_{ heta_R} \log \pi_{ heta}(R) = 1 - 0.5 = 0.5, \qquad
abla_{ heta_L} \log \pi_{ heta}(R) = -0.5.$$

Kontribusi ke parameter (kalikan $G_0 = 0.9$ dan $\alpha = 0.1$):

$$\Delta\theta_R^{(0)} = 0.1 \times 0.9 \times 0.5 = 0.045, \qquad \Delta\theta_L^{(0)} = 0.1 \times 0.9 \times (-0.5) = -0.045.$$

pada t = 1 (aksi Left)

$$abla_{ heta_L} \log \pi_{ heta}(L) = 1 - 0.5 = 0.5, \qquad
abla_{ heta_R} \log \pi_{ heta}(L) = -0.5.$$

Kontribusi ke parameter (kalikan $G_1 = 1$ dan $\alpha = 0.1$):

$$\Delta\theta_L^{(1)} = 0.1 \times 1 \times 0.5 = 0.05, \qquad \Delta\theta_R^{(1)} = 0.1 \times 1 \times (-0.5) = -0.05.$$

Rekapitulasi Update Parameter

$$\theta_L^{\mathsf{baru}} = 0 + (-0.045) + 0.05 = \boxed{0.005}, \qquad \theta_R^{\mathsf{baru}} = 0 + 0.045 - 0.05 = \boxed{-0.005}.$$

Preferensi selisih: $\theta_L - \theta_R = 0.01$.

$$\pi(L) = \frac{1}{1 + e^{-(\theta_L - \theta_R)}} = \frac{1}{1 + e^{-0.01}} \approx \boxed{0.5025}.$$

Probabilitas Left naik tipis: $0.5000 \rightarrow 0.5025$.

Intuisi yang Didapat

- Aksi **Left** pada t=1 mendapat reward $+1 \Rightarrow$ mendorong $\theta_L \uparrow$, $\theta_R \downarrow$.
- Aksi **Right** pada t = 0 tetap *mendapat kredit* karena G_0 memasukkan reward masa depan (γr_1) .
- Efeknya saling mengimbangi, namun netto tetap mengarah ke Left.

Pelajaran: REINFORCE mengatribusikan reward masa depan ke semua aksi

Catatan: Mengurangi Varians dengan Baseline

Umum dipakai **baseline** b (mis. $V^{\pi}(s_t)$ atau rata-rata return) untuk menurunkan varians:

$$\theta \leftarrow \theta + \alpha \sum_{t} \Big((G_t - b) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \Big).$$

Intuisi:

- Jika G_t hanya sedikit di atas baseline, update kecil (\Rightarrow lebih stabil).
- Mengurangi over-credit pada aksi di awal episode.

Algoritma Actor-Critic

- **Actor**: meng-update policy parameter θ berdasarkan gradien, mirip REINFORCE.
- Critic: aproksimasi value function $V(s; \theta)$ dengan bobot w dan memberikan "kritik" pada actor dengan TD error.

Update Rule

TD error:

$$\delta_t = r_t + \gamma V(s_{t+1}; w) - V(s_t; w)$$

Actor:

$$\theta \leftarrow \theta + \alpha \, \delta_t \, \nabla_\theta \log \pi_\theta(a_t|s_t)$$

Critic:

$$w \leftarrow w + \beta \, \delta_t \, \nabla_w V(s_t; w)$$

Implementasi di notebook: train_actor_critic.

Contoh: episode dengan actor critic

Misalkan terdapat episode pendek dengan :

- \bullet Diskon, $\gamma = 0.9$
- actor parameter : $\theta = 0.2$
- critic parameter : w = 0.5
- learning rate : $\alpha_c = \alpha_a = 0.1$
- Value function : V(s; w) = w.x(s), model linier sederhana dengan fitur x(s).
- Episode: $s_0 \xrightarrow{a_0, r=1} s_1 \xrightarrow{a_1, r=2} s_2$ (terminal).
- Policy : $(\pi_{\theta})(a|s)$ dengan parameter θ sederhana (misalkan parameter aksi)
- Ambil inisialisasi parameter awal: $V(s_0) = 0.5$, $V(s_1) = 0.3$, $V(s_2) = 0$

Langkah 1 : Transisi $s_0 o s_1$

• Hitung TD Error di t = 0:

$$\delta_0 = r_1 + \gamma V(s_1; w) - V(s_0; w)$$

Misal, estimasi nilai: $V(s_0) = 0.5, V(s_1) = 0.3.$

$$\delta_0 = 1 + 0.9(0.3) - 0.5 = 0.77$$

• update critic

$$w \leftarrow 0.5 + 0.1 \times 0.77 \times x(s_0)$$

(update positif \rightarrow nilai $V(s_0)$ dinaikkan).

update actor

$$\theta \leftarrow 0.2 + 0.1 \times 0.77 \times \nabla_{\theta} \log \pi_{\theta}(a_0|s_0)$$

(update positif \rightarrow aksi a_0 lebih diprioritaskan di s_0)

Langkah 2 : Transisi $s_1 \rightarrow s_2$ (terminal)

• Hitung TD Error di t = 1:

$$\delta_1 = r_2 + \gamma V(s_2; w) - V(s_1; w) = 1 + 0.9 \cdot 0 - 0.3 = 1.7$$

update critic

$$w \leftarrow w + 0.1 \times 1.7 \times x(s_1)$$

(update positif \rightarrow nilai $V(s_1)$ dinaikkan mendekati 2).

update actor

$$\theta \leftarrow \theta + 0.1 \times 1.7 \times \nabla_{\theta} \log \pi_{\theta}(a_1|s_1)$$

(update positif \rightarrow aksi a_1 diperkuat di s_1)

Kesimpulan Episode

- Pada transisi pertama $(s_0 \to s_1)$: reward lebih besar dari dugaan \to actor memperkuat aksi a_0 .
- Pada transisi kedua $(s_1 \to s_2)$: reward akhir sangat besar dibanding dugaan $V(s_1) = 0.3 \to \text{actor}$ memperkuat aksi a_1 .
- Critic: memperbaiki estimasi $V(s_0)$ dan $V(s_1)$ mendekati reward sebenarnya.
- Actor: memperbaiki kebijakan agar lebih sering memilih aksi yang menghasilkan reward lebih tinggi.
- Kombinasi ini membuat pembelajaran lebih stabil daripada REINFORCE murni.

Policy Gradient vs ActorCritic

Aspek	REINFORCE (Pol-	ActorCritic
	icy Gradient)	
Sinyal pembe-	Return penuh $G_t =$	TD error $\delta_t = r_{t+1} +$
lajaran	$\sum_{k=t}^{T} \gamma^{k-t} r_k$	$\gamma V(s_{t+1}) - V(s_t)$
Waktu update	Setelah episode sele-	Setiap langkah (online /
	sai (Monte Carlo)	semi-gradient)
Varians	Tinggi (karena selu-	Lebih rendah (ada baseline
	ruh reward episode di-	berupa $V(s)$)
	pakai)	
Komponen	Hanya actor (policy)	Actor (policy) + Critic
		(value function)
Contoh update	$\theta \leftarrow \theta + \alpha G_t \nabla \log \pi$	$\theta \leftarrow \theta + \alpha \delta_t \nabla \log \pi$; $w \leftarrow$
episode		$w + \alpha \delta_t \nabla V$

► Value Based

- Learn values
- ▶ Implicit policy (e.g. ϵ -greedy)

▶ Policy Based

- ► No values
- Learn policy

► Actor-Critic

- Learn values
- Learn policy

Neural Network dalam PG dan AC

Motivasi: Mengapa Perlu NN?

- State bisa sangat kompleks (gambar, data pasar, sensor).
- Tabel atau fungsi linear tidak cukup.
- Neural Network berperan sebagai function approximator.
- Jumlah neuron :
 - input : jumlah variabel state
 - hidden : fleksible
 - output : jumlah kemungkinan aksi (di lingkungan diskrit) atau nilai real/interval (di lingkungan kontinu).

Policy Gradient dengan NN

- di contoh manual : policy $\pi_{\theta}(a|s)$ hanya berupa probabilitas sederhana dengan θ , 1-2 saja.
- Kalau state s sangat kompleks, tidak mungkin lagi menyimpan tabel probabilitas untuk setiap state. Sehingga, policy $\pi_{\theta}(a|s)$ dimodelkan dengan NN.:

$$\pi_{\theta}(a|s) = \mathsf{Softmax}(f_{\theta}(s))$$

• Update parameter (bobot NN):

$$\theta \leftarrow \theta + \alpha G_t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

ullet Contoh: CartPole (input 4 variabel o output probabilitas 2 aksi).

Arsitektur Policy Gradient (dengan NN)

- NN digunakan sebagai **policy** approximator. $ReLU \rightarrow f(x) = max(0, x)$.
- Input layer: representasi state (misalnya posisi, kecepatan, data fitur, gambar).
- hidden layer : mempelajari representasi yang lebih abstrak.
- **Output layer**: menghasilkan probabilitas (distribusi) aksi berdasarkan state.

ActorCritic dengan NN

- Actor: policy NN, menghasilkan distribusi aksi.
- Critic: value NN, memperkirakan V(s).
- Update menggunakan TD error:

$$\delta_t = r_{t+1} + \gamma V_w(s_{t+1}) - V_w(s_t)$$

Actor dan Critic bisa pakai NN terpisah atau berbagi hidden layer.

Arsitektur ActorCritic (dengan NN)

- Input layer: representasi state (misalnya posisi, kecepatan, data fitur, gambar).
- hidden layer : mempelajari representasi yang lebih abstrak.
- **Output 1 (actor)**: 2 neuron → softmax → probabilitas.
- Output 2 (critic): 1 neuron \rightarrow linear \rightarrow nilai V(s).

Kadang Actor dan Critic punya network terpisah, kadang mereka berbagi hidden layer lalu bercabang di output.

Lab/Practice

CartPole Environment

- State (s): vektor dengan 4 komponen
 - Posisi kereta (x)
 - Kecepatan kereta (\dot{x})
 - Sudut tiang (θ)
 - Kecepatan sudut tiang $(\dot{\theta})$
- Action (a):
 - Dorong kereta ke kiri (a = 0)
 - Dorong kereta ke kanan (a = 1)
- Reward (r):
 - ullet +1 untuk setiap langkah jika tiang masih tegak
 - Episode selesai jika tiang jatuh (sudut terlalu besar) atau kereta keluar batas
- **Objective**: memaksimalkan *cumulative reward*, yaitu menjaga tiang tetap tegak selama mungkin.

Lab / Practice

Hyperparameter Penting di CartPole

Hyperparameter	Pengaruh Utama	
Hidden layer (ukuran NN)	Semakin besar \rightarrow kapasitas representasi naik,	
	tapi bisa overfitting / lambat.	
Learning rate (α)	Besar \rightarrow cepat konvergen tapi tidak stabil;	
	Kecil o stabil tapi lambat.	
Gamma (γ)	Dekat $1 o fokus$ reward jangka panjang;	
	Kecil $ ightarrow$ lebih myopic (jangka pendek).	
Jumlah episode	Lebih banyak $ ightarrow$ peluang belajar pola stabil;	
	Tapi waktu training lebih lama.	

Pesan kunci: Eksperimen ini sensitif terhadap setting hyperparameter, jadi cobalah beberapa variasi untuk melihat dampaknya.

Tujuan Eksperimen CartPole

- Membandingkan dua algoritma:
 - REINFORCE (Policy Gradient): update berbasis return episode penuh
 - ActorCritic: update berbasis TD target dengan bantuan value function
- Menjalankan eksperimen 400 episode dan memantau reward
- Mengamati perbedaan stabilitas, kecepatan belajar, dan fluktuasi

Lab / Practice

CartPole Experiments

- Gunakan kode dari notebook Colab (ACS_Week04)
- Fungsi yang digunakan : train_reinforce dan train_actor_critic
- Jalankan eksperimen 500 episode, catat log tiap 50 episode
- Visualisasi learning curve (total reward per episode dan moving average)
- Bandingkan kedua algoritma dari sisi:
 - Kecepatan konvergensi.
 - Stabilitas learning curve.
 - Variasi performa antar-episode.

Perbandingan Hasil Eksperimen

1. Kecepatan konvergensi

- **REINFORCE**: reward cepat naik hingga menembus 100-200 pada episode awal ($\approx 150-200$). Artinya ada *learning progress* yang cukup cepat.
- Actor–Critic: reward stagnan di 8–10 sepanjang 400 episode \rightarrow hampir tidak ada konvergensi.

Jawaban: REINFORCE lebih cepat konvergen, sedangkan Actor–Critic gagal belajar.

2. Stabilitas learning curve

- **REINFORCE**: sangat fluktuatif, reward naik-turun tajam; moving average sempat tinggi tapi turun lagi.
- Actor-Critic: stabil, tapi stabil di level reward rendah (tidak naik).

Jawaban: Actor–Critic lebih stabil, tapi stabil di titik yang salah. REINFORCE tidak stabil, tetapi mampu mencapai reward tinggi.

Perbandingan Hasil Eksperimen

3. Variasi performa antar-episode

- **REINFORCE**: variasi besar antar episode (ada episode yang tembus >300 reward, ada juga drop ke <50).
- **Actor–Critic**: variasi kecil, hampir semua episode rewardnya mirip (sekitar 8–10).

Jawaban: REINFORCE punya variasi antar episode yang besar; Actor–Critic variasinya kecil tapi "mentok rendah".

Catatan Diskusi & Refleksi

- Amati perbedaan stabilitas REINFORCE vs ActorCritic
- Mengapa normalisasi return di REINFORCE dapat membantu?
- Apa trade-off biasvarians akibat penggunaan TD target di ActorCritic?
- Dalam eksperimen ini: ActorCritic stuck di reward rendah, REINFORCE fluktuatif tapi sempat mencapai reward tinggi. Mengapa?
- Opsional: tambahkan baseline pada REINFORCE untuk mengurangi varians

Refleksi & Jawaban

- **Stabilitas:** REINFORCE fluktuatif tapi bisa tinggi; ActorCritic stabil tapi stuck rendah.
- Normalisasi return: mengurangi varians update REINFORCE, gradien lebih stabil.
- Biasvarians trade-off: ActorCritic lebih stabil (varians rendah) tapi bias tinggi jika value function tidak akurat.
- Hasil eksperimen: ActorCritic gagal belajar, REINFORCE meski fluktuatif kadang tembus reward tinggi.
- Baseline: mengurangi varians tanpa mengubah ekspektasi gradien.

Arahan Perbaikan

- Eksperimen Hyperparameter
 - Coba variasi learning rate: 3×10^{-3} , 1×10^{-3} , 5×10^{-4}
 - Ubah nilai γ : 0.95 atau 0.97
- Arsitektur Neural Network
 - Tambahkan hidden layer atau neuron (misalnya 2 layer dengan 128-256 unit)
 - Gunakan aktivasi yang stabil seperti ReLU atau LeakyReLU
 - Coba dropout kecil (misalnya 0.1-0.2) untuk mengurangi overfitting
- Stabilisasi ActorCritic
 - ullet Periksa kembali perhitungan advantage $(r + \gamma V(s') V(s))$
 - Gunakan normalisasi reward atau advantage
- Baseline pada REINFORCE
 - Gunakan value function sebagai baseline untuk mengurangi varians
- Optimizers dan Regularisasi
 - Uji optimizer lain seperti RMSprop
 - Tambahkan entropy bonus untuk menjaga eksplorasi

Perbaikan Arsitektur Neural Network (2)

1. Tambah hidden layer

```
self.net = nn.Sequential(
    nn.Linear(obs_dim, hidden), nn.ReLU(),
    nn.Linear(hidden, hidden), nn.ReLU(),
    nn.Linear(hidden, act_dim)
)
```

2. Ganti fungsi aktivasi

```
self.net = nn.Sequential(
    nn.Linear(obs_dim, hidden), nn.LeakyReLU(0.01),
    nn.Linear(hidden, hidden), nn.LeakyReLU(0.01),
    nn.Linear(hidden, act_dim)
)
```

Perbaikan Arsitektur Neural Network (2)

3. Tambahkan dropout

```
self.net = nn.Sequential(
    nn.Linear(obs_dim, hidden), nn.ReLU(),
    nn.Dropout(p=0.1),
    nn.Linear(hidden, hidden), nn.ReLU(),
    nn.Dropout(p=0.1),
    nn.Linear(hidden, act_dim)
)
```

4. Ubah ukuran hidden units

```
policy = PolicyNet(obs_dim, act_dim, hidden=256)
```

Normalisasi pada Actor-Critic (3)

```
Pada bagian TD error :

# Normalisasi delta (advantage)
adv = (delta - delta.mean()) / (delta.std() + 1e-8)

loss_actor = -logp * adv.detach()
loss_critic = delta.pow(2)
```

Baseline pada REINFORCE (4)

• Update REINFORCE standar menggunakan return penuh G_t :

$$abla J(heta) pprox \sum_t G_t \,
abla \log \pi_{ heta}(a_t|s_t)$$

- Varians dari G_t sangat tinggi \Rightarrow gradien tidak stabil.
- Hasil: kurva reward naik-turun tajam, sulit mencapai stabilitas.

Ide Baseline

• Untuk mengurangi varians, tambahkan baseline $b(s_t)$:

$$abla J(heta) pprox \sum_t ig(G_t - b(s_t) ig) \,
abla \log \pi_{ heta}(a_t|s_t)$$

- Syarat: baseline tidak boleh bergantung pada action.
- Pilihan umum: gunakan value function $V^{\pi}(s_t)$.
- Maka: $A_t = G_t V(s_t)$ disebut **advantage**.
- Keuntungan Menggunakan Baseline
 - Mengurangi varians gradien ⇒ training lebih stabil.
 - Tidak mengubah ekspektasi gradien (estimasi tetap tidak bias).
 - Membantu policy fokus pada advantage (aksi lebih baik/lebih buruk dari rata-rata).

Revisi Python: REINFORCE dengan Baseline

```
# Hitung return
returns = compute_returns(rewards, gamma) # shape [T]
# Stack states -> prediksi V(s_t)
states_t = torch.stack(states)
                                               # [T, obs_dim]
values = vnet(states_t)
                                               # [T]
# Advantage dengan value-baseline
advantages = returns - values.detach()
# (opsional) normalisasi advantage (lebih stabil)
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
# Gabung log_probs
log_probs_t = torch.stack(log_probs)
                                               # [T]
# Loss policy (pakai advantage)
loss_policy = -(log_probs_t * advantages).sum()
# Loss value (regresi V ke return)
loss_value = (values - returns).pow(2).mean()
# (opsional) entropy bonus supaya eksplorasi terjaga
# entropy = torch.distributions.Categorical(logits=...).entropy().mean()
# loss_entropy = - ent_coef * entropy
loss = loss_policy + loss_value # + loss_entropy (jika dipakai)
optimizer.zero_grad()
loss.backward()
optimizer.step()
```

Optimizers dan Regularisasi (5)

- Optimizer alternatif: Awalnya pakai Adam, kemudian bisa dicoba RMSprop atau SGD+momentum untuk melihat stabilitas training.
- Entropy bonus :
 - Distribusi policy yang terlalu tajam (peaked) membuat eksplorasi cepat hilang.
 - Tambahkan term entropy ke dalam loss untuk meratakan distribusi aksi, sehingga agent tetap eksploratif.

Optimizers dan Regularisasi (5)

Optimizer Alternatif

```
#awalnya :
optimizer = optim.Adam(net.parameters(), lr=lr)
#jika pakai RMSprop :
optimizer = optim.RMSprop(net.parameters(), lr=lr)
#atau SGD + momentum
optimizer = optim.SGD(net.parameters(), lr=lr, momentum=0.9)
```

Entropy Bonus

```
#awalnya :
loss = loss_policy + loss_value
#setelah ditambah entropy bonus :
entropy = dist.entropy().mean()  # dist = distribusi aksi dari policy
ent_coef = 0.01  # koefisien entropy bonus
loss = loss_policy + loss_value - ent_coef * entropy
```