Date: Mar 13 Made by Eric

Problem A. Let G be a finite group and let $\tau: G \to GL_2(\mathbb{C})$ be a representation of degree 2. Suppose that there exist elements $g, h \in G$ so that the matrices $\tau(g)$ and $\tau(h)$ do NOT commute. Prove that the representation τ is irreducible.

Proof. Let $V = \mathbb{C}^2$ be a $\mathbb{C}[G]$ module defined by $\forall g \in G, \forall v \in V, g(v) = \tau(g)v$

Assume τ is reducible

Then, there exists a proper non-trivial submodule $W\subseteq V$

We now prove dim(W) = 1

 $dim(W) \neq 0$, since W it non-trivial

Assume dim(W) = 2

$$W \subseteq V \implies W = V$$
, CaC (done)

By Maschke's Theorem, there exists a sub-module $W'\subseteq V$, such that $V=W\bigoplus W'$

$$dim(W) = 1$$
 and $V = W \bigoplus W' \implies dim(W') = 1$

Let $\{w_c\}$ be a basis of W and $\{w'_c\}$ be a basis of W'

So $\{w_c,w_c'\}$ is a basis of V, we from now denote $\{w_c,w_c'\}=lpha$

We now prove
$$\forall g \in G, [g]_{\alpha} = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}, \exists (a,d) \in \mathbb{C}$$

$$\forall w \in W, [w]_{\alpha} = \begin{bmatrix} x \\ 0 \end{bmatrix}, \exists x \in \mathbb{C}$$

$$\forall g \in G, \forall w \in W, g(w) \in W \implies \forall g \in G, \forall w \in W, [g]_{\alpha}[w]_{\alpha} = [w_1]_{\alpha}, \exists w_1 \in W \implies \forall g \in G, \forall w \in W, [g]_{\alpha}[w]_{\alpha} = \begin{bmatrix} x \\ 0 \end{bmatrix}, \exists x \in \mathbb{C}, \implies \forall g \in G, [g]_{\alpha} = \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}, \exists (a,b,d) \in \mathbb{C}$$
 (i)

$$\forall w' \in W', [w']_{\alpha} = \begin{bmatrix} 0 \\ y \end{bmatrix}, \exists y \in \mathbb{C}$$

$$\forall g \in G, \forall w' \in W', g(w') \in W' \implies \forall g \in G, \forall w' \in W', [g]_{\alpha}[w']_{\alpha} = [w'_1]_{\alpha}, \exists w'_1 \in W' \implies \forall g \in G, \forall w' \in W', [g]_{\alpha}[w']_{\alpha} = \begin{bmatrix} 0 \\ y \end{bmatrix}, \exists y \in \mathbb{C}, \implies 0$$

$$\forall g\in G, [g]_\alpha=\begin{bmatrix} a & 0\\ 0 & d \end{bmatrix}, \exists (a,d)\in\mathbb{C} \text{ (proven with (i)) (done)}$$

$$\forall g \in G, \exists (a,d) \in \mathbb{C}, [g]_{\alpha} = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} \implies \forall g_1, g_2 \in G, \exists (a_1, d_1, a_2, d_2) \in \mathbb{C}, [g_1]_{\alpha}[g_2]_{\alpha} = \begin{bmatrix} a_1 & 0 \\ 0 & d_1 \end{bmatrix} \begin{bmatrix} a_2 & 0 \\ 0 & d_2 \end{bmatrix} = \begin{bmatrix} a_1 a_2 & 0 \\ 0 & d_1 d_2 \end{bmatrix} = \begin{bmatrix} a_2 & 0 \\ 0 & d_2 \end{bmatrix} \begin{bmatrix} a_1 & 0 \\ 0 & d_1 \end{bmatrix} = [g_2]_{\alpha}[g_1]_{\alpha}$$

So $\forall g_1, g_2 \in G, [g_1g_2]_{\alpha} = [g_1]_{\alpha}[g_2]_{\alpha} = [g_2]_{\alpha}[g_1]_{\alpha} = [g_2g_1]_{\alpha}$

Let
$$E = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

Notice $\forall g_1, g_2 \in G$, $[g_1g_2]_{\alpha} = [I_V]_E^{\alpha} \tau(g_1g_2)[I_V]_{\alpha}^E$, and $\forall g_1, g_2 \in G$, $[g_2g_1]_{\alpha} = [I_V]_E^{\alpha} \tau(g_2g_1)[I_V]_{\alpha}^E$

So
$$\forall g_1, g_2 \in G, [I_V]_E^{\alpha} \tau(g_1 g_2) [I_V]_{\alpha}^E = [g_1 g_2]_{\alpha} = [g_2 g_1]_{\alpha} = [I_V]_E^{\alpha} \tau(g_2 g_1) [I_V]_{\alpha}^E$$

In short,
$$\forall g_1, g_2 \in G, [I_V]_E^{\alpha} \tau(g_1 g_2) [I_V]_{\alpha}^E = [I_V]_E^{\alpha} \tau(g_2 g_1) [I_V]_{\alpha}^E$$

Doing multiplication with $[I_V]^E_{\alpha}$ and $[I_V]^\alpha_E$, we have $\forall g_1,g_2\in G, [I_V]^E_{\alpha}[I_V]^\alpha_E[I_V]^\alpha_E[I_V]^\alpha_E[I_V]^\alpha_E=[I_V]^\alpha_\alpha[I_V]^\alpha_E[I_V]^\alpha_E[I_V]^\alpha_E[I_V]^\alpha_E$ (ii)

Notice
$$\forall g_1, g_2 \in G$$
, $[I_V]^E_{\alpha}[I_V]^{\alpha}_{E}\tau(g_1g_2)[I_V]^E_{\alpha}[I_V]^{\alpha}_{E} = [I_V]^E_{E}\tau(g_1g_2)[I_V]^E_{E} = I_2\tau(g_1g_2)I_2 = \tau(g_1g_2)$ (iii)

And also notice, $\forall g_1, g_2 \in G$, $[I_V]^E_{\alpha}[I_V]^\alpha_E \tau(g_2g_1)[I_V]^E_{\alpha}[I_V]^\alpha_E = [I_V]^E_E \tau(g_2g_1)[I_V]^E_E = I_2\tau(g_2g_1)I_2 = \tau(g_2g_1)$ (iv)

Combine (ii)(iii)(iv), we see $\forall g_1,g_2\in G, \tau(g_1g_2)=\tau(g_2g_1)\Longrightarrow \tau(g_1)\tau(g_2)=\tau(g_2)\tau(g_1)$ CaC to the premise that there exists two elements in the image of τ such that they do not commute.

Problem B. Consider S_3 acting on $V=C_3=span(\{e_1,e_2,e_3\})$, the permutation module. We know that $span(\{e_1,e_2,e_3\})$ is a 1-dim sub-module of V, and we extend it to obtain a basis $\alpha=\{e_1+e_2+e_3,e_2,e_3\}$ for V

(a) Write down the matrices $[g]_{\alpha}$ for all $g \in S_3$

$$[e]_{\alpha} = I_3$$

$$[(1,2)]_{\alpha} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

$$[(1,3)]_{\alpha} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$

$$[(2,3)]_{\alpha} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$[(1,2,3)]_{\alpha} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}$$

$$[(1,3,2)]_{\alpha} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$

(b) Find another basis β for V such that for every $g \in S_3$, the matrix $[g]_{\beta}$ looks

like
$$[g]_{\beta} = \begin{bmatrix} * & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{bmatrix}$$

Let $\beta = \{e_1 + e_2 + e_3, e_1 - e_2, e_2 - e_3\}$

$$[e]_{\beta} = I_3$$

$$[(1,2)]_{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$[(1,3)]_{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

$$[(2,3)]_{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$

$$[(1,2,3)]_{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}$$

$$[(1,3,2)]_{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$

(c) Show that the map $\phi: S_3 \to GL_2(\mathbb{C})$ defined by $g \mapsto Z_g$, where Z_g is the submatrix consisting of the second and the third rows and columns of $[g]_\beta$ you found in (b), gives an irreducible representation of S_3 .

Proof. Let L be the FG-module given rise to by ϕ

Assume ϕ is reducible (i)

Let W be a proper nontrivial FG-submodule of L ϕ is of degree 2

If dim(W) = 2, W is not proper

If dim(W) = 0, W is trivial

So dim(W) = 1

Let γ be a basis of W

Write
$$\gamma = \{ \begin{bmatrix} a \\ b \end{bmatrix} \}$$

Assume a = 0

 $b \neq 0$, other wise dim(W) = 0

Then we see $(1,2)\begin{bmatrix}0\\b\end{bmatrix}=\begin{bmatrix}b\\b\end{bmatrix}\notin W$ CaC

Assume $a \neq 0$

Write b = na

Then we see
$$(1,2)$$
 $\begin{bmatrix} a \\ na \end{bmatrix} = \begin{bmatrix} -a \\ (n+1)a) \end{bmatrix}$

So $\frac{n+1}{-1} = n$, which give us $n = \frac{-1}{2}$

Notcie
$$(1,2)$$
 $\begin{bmatrix} a \\ \frac{-1}{2}a \end{bmatrix} = \begin{bmatrix} \frac{-3}{2}a \\ \frac{-1}{2}a \end{bmatrix} \notin W$ CaC then CaC to (i)

Probelm C. In this problem we provide a counterexample of Maschke's Theorem when the group is infinite. Consider $\phi: \mathbb{Z} \to GL_2(\mathbb{C})$ the function given by

$$\phi(k) = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}, \forall k \in \mathbb{Z}$$

(a) Show that ϕ is a representation for the infinite group \mathbb{Z} (Equivalently, you can prove that \mathbb{C}^2 , viewed as column vectors, is a left \mathbb{Z} -module by the action induced from the representation)

Proof. Let $a, b \in \mathbb{Z}$

$$\phi(a)\phi(b) = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a+b \\ 0 & 1 \end{bmatrix} = \phi(a+b)$$

(b) Show that ϕ is reducible (there exists a sub-representation or submodule)

Proof. Let
$$W = span(\begin{bmatrix} 1 \\ 0 \end{bmatrix})$$

We prove W is a submodule

$$\forall a \in \mathbb{Z}, \forall \begin{bmatrix} n \\ 0 \end{bmatrix} \in W, a \begin{bmatrix} n \\ 0 \end{bmatrix} = \phi(a) \begin{bmatrix} n \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} n \\ 0 \end{bmatrix} = \begin{bmatrix} n \\ 0 \end{bmatrix} \in W$$

(c) Show that ϕ is indecomposable

Proof. Assume ϕ is decomposable

Let W be the submodule $span(\begin{bmatrix} 1 \\ 0 \end{bmatrix})$ from the last question.

So there exists W', such that $W \bigoplus W' = \mathbb{C}^2$

$$dim(W') = dim(\mathbb{C}^2) - dim(W) = 2 - 1 = 1$$

We now prove
$$W' = span(\begin{bmatrix} x \\ y \end{bmatrix}) \implies y \neq 0$$

Assume y = 0

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix} \in span(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) = W \text{ CaC (done)}$$

Then we write $W'=span(\begin{bmatrix} n \\ 1 \end{bmatrix}), \exists n \in \mathbb{C}$

$$\phi(1) \begin{bmatrix} n \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} n \\ 1 \end{bmatrix} = \begin{bmatrix} n+1 \\ 1 \end{bmatrix} \notin span(\begin{bmatrix} n \\ 1 \end{bmatrix}) = W' \operatorname{CaC}$$