

Design Calculation Sheet for ifi

Designer: kjk	
---------------	--

Location:

City:

Country: kijnki

Date: 2020-06-23 12:43:51

Table of Contents

1-Secondary Beams

- Design For Flexural and shear
- Design For serviceability
- Connections Design

2-Main Beams

- Design For Flexural and shear
- Design For serviceability
- Connections Design

3-Columns

Design For Normal Stress

Secondary Beams

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
31	(20,4,3)	(20,8,3)	4	0.74	0.74
11	(0,4,3)	(0,8,3)	4	0.74	0.74
10	(0,0,3)	(0,4,3)	4	0.74	0.74

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 0.74 t.m

Vd: 0.74 ton

Service Limit State

Combo: LIVE

Span: 4 m

Load: -0.2 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 21.55 < 81.98 => Compact Web

c/tf= 3.74 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 82.62 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.41 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.14 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 1 cm < dall= 1.33 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd = 0.74 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.05 \text{ t/cm}^2 \text{ a q} = 0.03 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.08 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.03 \text{ t/cm}^2 \text{ a qmt} = 0.05 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.06 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.06 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
25	(14,4,3)	(14,8,3)	4	1.44	1.44
24	(14,0,3)	(14,4,3)	4	1.44	1.44
23	(12,4,3)	(12,8,3)	4	1.44	1.44
22	(12,0,3)	(12,4,3)	4	1.44	1.44
21	(10,4,3)	(10,8,3)	4	1.44	1.44
20	(10,0,3)	(10,4,3)	4	1.44	1.44
29	(18,4,3)	(18,8,3)	4	1.44	1.44
18	(8,0,3)	(8,4,3)	4	1.44	1.44
17	(6,4,3)	(6,8,3)	4	1.44	1.44

16	(6,0,3)	(6,4,3)	4	1.44	1.44
15	(4,4,3)	(4,8,3)	4	1.44	1.44
14	(4,0,3)	(4,4,3)	4	1.44	1.44
13	(2,4,3)	(2,8,3)	4	1.44	1.44
12	(2,0,3)	(2,4,3)	4	1.44	1.44
27	(16,4,3)	(16,8,3)	4	1.44	1.44
19	(8,4,3)	(8,8,3)	4	1.44	1.44

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 1.44 t.m

Vd: 1.44 ton

Service Limit State

Combo: LIVE

Span: 4 m

Load: -0.4 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 26.08 < 81.98 => Compact Web

c/tf= 4.21 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 105.86 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.33 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.18 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.73 cm < dall= 1.33 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 1.44 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.1 \text{ t/cm}^2 \text{ a} = 0.07 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.15 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.07 \text{ t/cm}^2 \text{ a qmt} = 0.1 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.12 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.12 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Main Beams

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
9	(14,8,3)	(20,8,3)	6	3.05	1.55
7	(0,8,3)	(6,8,3)	6	3.05	1.55
6	(14,4,3)	(20,4,3)	6	3.05	1.55
1	(0,0,3)	(6,0,3)	6	3.05	1.55

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 3.05 t.m

Vd: 1.55 ton

Service Limit State

Combo: LIVE

Span: 6 m

Load: -0.27 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 31.06 < 81.98 => Compact Web

c/tf= 4.66 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 142.01 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.21 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.12 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.77 cm < dall= 2 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 1.55 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.11 \text{ t/cm}^2 \text{ a} = 0.07 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.16 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.07 \text{ t/cm}^2 \text{ a qmt} = 0.11 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.13 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.13 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
4	(0,4,3)	(6,4,3)	6	5.94	3
8	(6,8,3)	(14,8,3)	8	6.07	2.31
2	(6,0,3)	(14,0,3)	8	6.07	2.31

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 6.07 t.m

Vd: 2.31 ton

Service Limit State

Combo: LIVE

Span: 8 m

opan. o m

Load: -0.3 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 34.73 < 81.98 => Compact Web

c/tf= 5.3 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 174.28 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.41 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.13 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 1.32 cm < dall= 2.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 2.31 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.16 \text{ t/cm}^2 \text{ a q} = 0.11 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.24 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.11 \text{ t/cm}^2 \text{ a} \text{ qmt} = 0.16 \text{ t/cm}^2 => \text{qres} = (q^2 + \text{qmt}^2)^0.5 = 0.19 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.19 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout => L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
5	(6,4,3)	(14,4,3)	8	11.85	4.48

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 11.85 t.m

Vd: 4.48 ton

Service Limit State

Combo: LIVE

Span: 8 m

Load: -0.6 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 38.65 < 81.98 => Compact Web

c/tf= 5.38 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 219.47 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE360

fact= 1.31 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.16 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.94 cm < dall= 2.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 4.48 ton

Rleast= 3.46 ton

N= 3 with Pitch= 84 mm & Full Layout: (42;84 84 42)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.18 \text{ t/cm}^2 \text{ a} = 0.15 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.31 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.15 \text{ t/cm}^2 \text{ a} \text{ qmt} = 0.18 \text{ t/cm}^2 => \text{qres} = (q^2 + \text{qmt}^2)^0.5 = 0.23 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.21 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 252 mm & tp = 10 mm & Sw = 6 mm

Columns

Column ID	Start Point	End Point	Height (m)	Nmax (ton)
37	(6,4,0)	(6,4,3)	3	-10.49
38	(14,4,0)	(14,4,3)	3	-9.05
33	(6,0,0)	(6,0,3)	3	-5.44
41	(6,8,0)	(6,8,3)	3	-5.44
42	(14,8,0)	(14,8,3)	3	-5.44
36	(0,4,0)	(0,4,3)	3	-4.61
34	(14,0,0)	(14,0,3)	3	-3.88
32	(0,0,0)	(0,0,3)	3	-2.42
39	(20,4,0)	(20,4,3)	3	-2.42
40	(0,8,0)	(0,8,3)	3	-2.42
43	(20,8,0)	(20,8,3)	3	-2.42

Design Limit state:

Combo: 1*Dead + 1*Live

Nd: -10.49 ton

1-Check Local Buckling

dw/tw= 36.23 < 37.44 => Compact Web

c/tf= 5.68 < 10.91 => Compact Flange

2-Check Normal Stress

Section: IPE300

lambda = 89.55 < 100

fc= 0.2 t/cm^2 < Fc= 0.88 t/cm^2