Lay 5.1 Math 2210Q

Question 1 What are the eigenvalues of A?

$$A = \begin{bmatrix} 2 & 6 \\ 0 & -5 \end{bmatrix}$$

List in order from smallest to largest. $\lambda_1 = \boxed{-5}$, $\lambda_2 = \boxed{2}$

Question 2 What are the eigenvalues of A?

$$A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 2 & 5 \\ 0 & 0 & 1 \end{bmatrix}$$

List in order from smallest to largest. $\lambda_1 = \boxed{1}$, $\lambda_2 = \boxed{2}$

Question 3 What are the eigenvalues of A?

$$A = \begin{bmatrix} -1 & 4 & 3\\ 0 & 5 & -1\\ 0 & 0 & 8 \end{bmatrix}$$

List in order from smallest to largest. $\lambda_1 = \boxed{-1}$, $\lambda_2 = \boxed{5}$, $\lambda_3 = \boxed{8}$

Question 4 Is $\lambda = -1$ an eigenvalue of A?

$$A = \begin{bmatrix} -1 & 4 \\ 3 & -2 \end{bmatrix}$$

Multiple Choice:

- (a) Yes
- (b) *No* ✓

Hint: The eigenvalues of the echelon form of A are not necessarily the same as the eigenvalues of A. So row reducing to a triangular matrix and looking at the diagonal is not a valid method here. Instead consider the equation $(A - \lambda I)\vec{x} = \vec{0}$.

Question 5 Which of the following is an eigenvector of A?

$$A = \begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 1 \\ -3 & 4 & 5 \end{bmatrix}$$

Multiple Choice:

(a)
$$\vec{x} = \begin{bmatrix} 2\\4\\1 \end{bmatrix}$$

(b)
$$\vec{x} = \begin{bmatrix} 2 \\ 2 \\ -2 \end{bmatrix} \checkmark$$

Hint: A nonzero vector \vec{x} is an eigenvector of A if $A\vec{x}$ is a multiple of \vec{x} , in other words if $A\vec{x} = \lambda \vec{x}$ for some λ .

Question 6 True/False: To find the eigenvalues of A are the entries in the main diagonal of U where U is an echelon form of A.

Multiple Choice:

- (a) True
- (b) False ✓

Hint: Question 4 is a counter example.

Question 7 True/False: The scalar zero is an eigenvalue of A if and only if A is not invertible.

Multiple Choice:

- (a) True ✓
- (b) False

Hint: Zero is an eigenvalue of A means $A\vec{x} = 0\vec{x}$ has a nontrivial $(\vec{x} \neq 0)$ solution. Use the IMT.