Apéndice A

Elementos de Álgebra Matricial

En este Apéndice se introduce la notación, definiciones y resultados básicos de álgebra lineal y matricial, esenciales para el estudio de modelos estadísticos multivariados y de regresión lineal. El material presentado a continuación puede ser hallado en textos como Graybill (1983), Ravishanker y Dey (2002) y Magnus y Neudecker (2007).

A.1. Vectores y matrices

Sea \mathbb{R}^n el espacio Euclidiano n-dimensional, de este modo $\boldsymbol{x} \in \mathbb{R}^n$ representa la n-upla

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix},$$

de números reales. Note que \boldsymbol{x} está orientado como un vector "columna", y por tanto la transpuesta de \boldsymbol{x} es un vector fila,

$$\boldsymbol{x} = (x_1, \dots, x_n)^{\top}.$$

Una matriz $\mathbf{A} \in \mathbb{R}^{m \times n}$ es un arreglo de números reales

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix},$$

y escribimos $\mathbf{A} = (a_{ij})$. Los números reales a_{ij} son llamados elementos de \mathbf{A} .

A.2. Definiciones básicas y propiedades

La suma de dos matrices del mismo orden es definida como

$$A + B = (a_{ij}) + (b_{ij}) = (a_{ij} + b_{ij}),$$

el producto de una matriz por un escalar λ es

$$\lambda \mathbf{A} = \mathbf{A}\lambda = (\lambda a_{ij})$$

RESULTADO A.1 (Propiedades de la suma matricial). Sean A, B y C matrices del mismo orden $y \lambda, \mu$ escalares. Entonces:

- (a) A + B = B + A,
- (b) (A + B) + C = A + (B + C),
- (c) $(\lambda + \mu)\mathbf{A} = \lambda \mathbf{A} + \mu \mathbf{A}$,
- (d) $\lambda(\mathbf{A} + \mathbf{B}) = \lambda \mathbf{A} + \lambda \mathbf{B}$,
- (e) $\lambda \mu \mathbf{A} = (\lambda \mu) \mathbf{A}$.

Una matriz cuyos elementos son todos cero se denomina matriz nula y se denota por **0**. Tenemos que

$$A + (-1)A = 0.$$

Si A y B son matrices $m \times n y n \times p$, respectivamente, se define el producto de Av B como

$$AB = C$$
, donde, $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$,

para $i = 1, ..., m \ y \ j = 1, ..., p$.

Resultado A.2 (Propiedades del producto de matrices). Sean A, B y C matrices de órdenes apropiados. Entonces:

- (a) (AB)C = A(BC),
- (b) A(B+C) = AB + AC,
- (c) $(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{AC} + \mathbf{BC}$.

Note que la existencia de AB no implica la existencia de BA y cuando ambos productos existen, en general no son iguales.

La transpuesta de una matriz $\mathbf{A} = (a_{ij}) \in \mathbb{R}^{m \times n}$ es la matriz $n \times m$, \mathbf{A}^{\top} cuyo elemento ij está dado por a_{ji} , esto es

$$\mathbf{A}^{\top} = (a_{ji}).$$

RESULTADO A.3 (Propiedades de la transpuesta). Tenemos

- (a) $(\boldsymbol{A}^{\top})^{\top} = \boldsymbol{A}$,
- (b) $(\mathbf{A} + \mathbf{B})^{\top} = \mathbf{A}^{\top} + \mathbf{B}^{\top}$, (c) $(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$.

Definimos el producto interno entre dos vectores $x, y \in \mathbb{R}^n$ como

$$\langle oldsymbol{x}, oldsymbol{y}
angle = oldsymbol{x}^ op oldsymbol{y} = \sum_{i=1}^n x_i y_i.$$

asociado al producto interno tenemos la norma Euclidiana (o largo) de un vector \boldsymbol{x} definida como

$$\|m{x}\| = \langle m{x}, m{x}
angle^{1/2} = \Big(\sum_{i=1}^n x_i^2\Big)^{1/2},$$

finalmente, la distancia Euclidiana entre dos vectores \boldsymbol{a} y \boldsymbol{b} se define como

$$d(\boldsymbol{a}, \boldsymbol{b}) = \|\boldsymbol{a} - \boldsymbol{b}\|.$$

RESULTADO A.4 (Propiedades del producto interno). Sean a, b y c vectores ndimensionales y λ un escalar, entonces

- (a) $\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \langle \boldsymbol{b}, \boldsymbol{a} \rangle$,
- (b) $\langle \boldsymbol{a}, \boldsymbol{b} + \boldsymbol{c} \rangle = \langle \boldsymbol{a}, \boldsymbol{b} \rangle + \langle \boldsymbol{a}, \boldsymbol{c} \rangle$,
- (c) $\lambda \langle \boldsymbol{a}, \boldsymbol{b} \rangle = \langle \lambda \boldsymbol{a}, \boldsymbol{b} \rangle = \langle \boldsymbol{a}, \lambda \boldsymbol{b} \rangle$
- (d) $\langle \boldsymbol{a}, \boldsymbol{a} \rangle \geq 0$ con la igualdad sólo si $\boldsymbol{a} = \boldsymbol{0}$,
- (e) $\|\mathbf{a} \pm \mathbf{b}\|^2 = \|\mathbf{a}\|^2 + \|\mathbf{b}\|^2 \pm 2\langle \mathbf{a}, \mathbf{b} \rangle$,
- (f) $\|a + b\| \le \|a\| + \|b\|$.

Proposición A.5 (Designaldad de Cauchy-Schwarz). $|\langle x,y\rangle| \leq ||x|| \, ||y||, \, \forall x,y \in$ \mathbb{R}^n con la igualdad sólo si $\mathbf{x} = \lambda \mathbf{y}$, para algún $\lambda \in \mathbb{R}$.

Demostración. Si $x = \lambda y$, el resultado es inmediato. Sino, note que

$$0 < \|\boldsymbol{x} - \lambda \boldsymbol{y}\|^2 = \|\boldsymbol{x}\|^2 + \lambda^2 \|\boldsymbol{y}\|^2 - 2\lambda \langle \boldsymbol{x}, \boldsymbol{y} \rangle, \qquad \forall \lambda \in \mathbb{R}$$

de este modo el discriminante del polinomio cuadrático debe satisfacer $4\langle x, y \rangle^2 - 4\|x\|^2\|y\|^2 < 0.$

El ángulo θ entre dos vectores no nulos $\boldsymbol{x}, \boldsymbol{y}$ se define en términos de su producto interno como

$$\cos heta = rac{\langle oldsymbol{x}, oldsymbol{y}
angle}{\|oldsymbol{x}\| \|oldsymbol{y}\|} = rac{oldsymbol{x}^ op oldsymbol{y}}{\sqrt{oldsymbol{x}^ op} oldsymbol{x} \sqrt{oldsymbol{y}^ op} oldsymbol{y}},$$

dos vectores se dicen *ortogonales* sólo si $\mathbf{x}^{\top}\mathbf{y} = 0$.

El producto externo entre dos vectores $\boldsymbol{x} \in \mathbb{R}^m$ y $\boldsymbol{y} \in \mathbb{R}^n$ es la matriz $m \times n$

$$\boldsymbol{x} \wedge \boldsymbol{y} = \boldsymbol{x} \boldsymbol{y}^{\top} = (x_i y_j).$$

Una matriz se dice cuadrada si tiene el mismo número de filas que de columnas, una matriz cuadrada \mathbf{A} es triangular inferior (superior) si $a_{ij} = 0$ para i < j (si $a_{ij} = 0$ para i > j). Una matriz cuadrada $\mathbf{A} = (a_{ij})$ se dice $sim\acute{e}trica$ si $\mathbf{A}^{\top} = \mathbf{A}$ y $sesgo-sim\acute{e}trica$ si $\mathbf{A}^{\top} = -\mathbf{A}$. Para cualquier matriz cuadrada $\mathbf{A} = (a_{ij})$ se define diag (\mathbf{A}) como

$$\operatorname{diag}(\mathbf{A}) = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} = \operatorname{diag}(a_{11}, a_{22}, \dots, a_{nn}).$$

Si $\boldsymbol{A}=\mathrm{diag}(\boldsymbol{A}),$ decimos que \boldsymbol{A} es matriz diagonal. Un tipo particular de matriz diagonal es la identidad

$$I = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = (\delta_{ij}),$$

donde $\delta_{ij}=1$ si i=j y $\delta_{ij}=0$ si $i\neq j$ (δ_{ij} se denomina delta de Kronecker). Tenemos que para $\boldsymbol{A}\in\mathbb{R}^{m\times n}$

$$I_m A = AI_n = A$$
.

Una matriz cuadrada se dice ortogonal si

$$AA^{\top} = A^{\top}A = I$$

y sus columnas son ortonormales. Note que, si

$$\mathbf{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n) \quad \text{con } \mathbf{a}_j \in \mathbb{R}^n,$$

entonces \boldsymbol{A} tiene columnas ortonormales si

$$\boldsymbol{a}_i^{\top} \boldsymbol{a}_j = \begin{cases} 1, & \text{si } i = j, \\ 0, & \text{si } i \neq j, \end{cases}$$
 $i, j = 1, \dots, n.$

Una matriz rectangular $A \in \mathbb{R}^{m \times n}$ puede tener la propiedad $AA^{\top} = I_m$ ó $A^{\top}A = I_n$ pero no ambas, en cuyo caso tal matriz se denomina semi-ortogonal.

Una matriz $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, se dice idempotente si $\boldsymbol{A}^2 = \boldsymbol{A}$. Decimos que \boldsymbol{A} es matriz de proyección si es simétrica e idempotente, esto es, $\boldsymbol{A}^\top = \boldsymbol{A}$ y $\boldsymbol{A}^2 = \boldsymbol{A}$.

Cualquier matriz \boldsymbol{B} satisfaciendo

$$B^2 = A$$

se dice raíz cuadrada de A y se denota como $A^{1/2}$ tal matriz no necesita ser única.

A.2.1. Formas lineales y cuadráticas. Sea $a \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$ y $B \in \mathbb{R}^{n \times m}$. La expresión $a^{\top}x$ se dice una forma lineal en x y $x^{\top}Ax$ una forma cuadrática, mientras que $x^{\top}By$ es una forma bilineal.

Sin pérdida de generalidad se asumirá que la matriz asociada a la forma cuadrática $\boldsymbol{x}^{\top}\boldsymbol{A}\boldsymbol{x}$ es simétrica. Note que siempre es posible

$$\boldsymbol{x}^{\top} \boldsymbol{B} \boldsymbol{x} = \frac{1}{2} \boldsymbol{x}^{\top} (\boldsymbol{A}^{\top} + \boldsymbol{A}) \boldsymbol{x},$$

en cuyo caso tenemos que B es matriz simétrica.

Decimos que una matriz simétrica \boldsymbol{A} es definida positiva (negativa) si $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} > 0$ ($\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} < 0$) para todo $\boldsymbol{x} \neq \boldsymbol{0}$. Cuando $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} \geq 0$ ($\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} \leq 0$) $\forall \boldsymbol{x}$ decimos que \boldsymbol{A} es semidefinida positiva (negativa).

Note que las matrices $B^{\top}B$ y BB^{\top} son semidefinidas positivas y que A es (semi)definida negativa sólo si -A es (semi)definida positiva.

RESULTADO A.6. Sea $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$ y $\mathbf{C} \in \mathbb{R}^{n \times p}$ y \mathbf{x} vector n-dimensional. Entonces

- (a) $\mathbf{A}\mathbf{x} = \mathbf{0} \Leftrightarrow \mathbf{A}^{\top} \mathbf{A}\mathbf{x} = \mathbf{0}$,
- (b) $AB = \mathbf{0} \Leftrightarrow A^{\top}AB = \mathbf{0}$,
- (c) $A^{\top}AB = A^{\top}AC \Leftrightarrow AB = AC$.

DEMOSTRACIÓN. (a) Claramente $Ax = \mathbf{0} \Rightarrow A^{\top}Ax = \mathbf{0}$. Por otro lado, si $A^{\top}Ax = \mathbf{0}$, entonces $x^{\top}A^{\top}Ax = (Ax)^{\top}Ax = 0$ y de ahí que $Ax = \mathbf{0}$. (b) sigue desde (a). Finalmente, (c) sigue desde (b) mediante substituir B - C por B en (c).

RESULTADO A.7. Sean $A \in \mathbb{R}^{m \times n}$ y B, C matrices $n \times n$ con B simétrica. Entonces

- (a) $\mathbf{A}\mathbf{x} = \mathbf{0}$, $\forall \mathbf{x} \in \mathbb{R}^n \text{ solo si } \mathbf{A} = \mathbf{0}$,
- (b) $\boldsymbol{x}^{\top} \boldsymbol{B} \boldsymbol{x} = 0, \ \forall \boldsymbol{x} \in \mathbb{R}^n \ solo \ si \ \boldsymbol{B} = \boldsymbol{0},$
- (c) $\mathbf{x}^{\top} \mathbf{C} \mathbf{x} = 0$, $\forall \mathbf{x} \in \mathbb{R}^n$ sólo si $\mathbf{C}^{\top} = -\mathbf{C}$.

A.2.2. Rango de una matriz. Un conjunto de vectores x_1, \ldots, x_n se dice linealmente independiente si $\sum_i \alpha_i x_i = \mathbf{0}$ implica que todos los $\alpha_i = 0$. Si x_1, \ldots, x_n no son linealmente independientes, ellos se dicen linealmente dependientes.

Sea $A \in \mathbb{R}^{m \times n}$, el rango columna (fila) de A es el número de columnas (filas) linealmente independientes. Denotamos el rango de A como

$$rg(\boldsymbol{A}),$$

note que

$$\operatorname{rg}(\boldsymbol{A}) \leq \min(m, n).$$

Si $rg(\mathbf{A}) = n$ decimos que \mathbf{A} tiene rango columna completo. Si $rg(\mathbf{A}) = 0$, entonces \mathbf{A} es la matriz nula. Por otro lado, si $\mathbf{A} = \mathbf{0}$, entonces $rg(\mathbf{A}) = 0$.

RESULTADO A.8 (Propiedades del rango). Sea $A \in \mathbb{R}^{m \times n}$ y B, C matrices de órdenes apropiados, entonces

(a)
$$\operatorname{rg}(\boldsymbol{A}) = \operatorname{rg}(\boldsymbol{A}^{\top}) = \operatorname{rg}(\boldsymbol{A}^{\top}\boldsymbol{A}) = \operatorname{rg}(\boldsymbol{A}\boldsymbol{A}^{\top}),$$

- (b) $\operatorname{rg}(\boldsymbol{A}\boldsymbol{B}) < \min\{\operatorname{rg}(\boldsymbol{A}), \operatorname{rg}(\boldsymbol{B})\},$
- (c) rg(BAC) = rg(A) si B y C son matrices de rango completo,
- (d) $\operatorname{rg}(\boldsymbol{A} + \boldsymbol{B}) \le \operatorname{rg}(\boldsymbol{A}) + \operatorname{rg}(\boldsymbol{B}),$
- (e) $si \ \mathbf{A} \in \mathbb{R}^{m \times n} \ y \ \mathbf{A} \mathbf{x} = \mathbf{0} \ para \ algún \ \mathbf{x} \neq \mathbf{0}, \ entonces \ \operatorname{rg}(\mathbf{A}) \leq n 1.$

El espacio columna de $\mathbf{A} \in \mathbb{R}^{m \times n}$, denotado por $\mathcal{M}(\mathbf{A})$, es el conjunto de vectores

$$\mathcal{M}(\mathbf{A}) = \{ \mathbf{y} : \mathbf{y} = \mathbf{A}\mathbf{x} \text{ para algún } \mathbf{x} \in \mathbb{R}^n \}.$$

De este modo, $\mathcal{M}(A)$ es el espacio vectorial generado por las columnas de A. La dimensión de este espacio es rg(A). Se tiene que

$$\mathcal{M}(\boldsymbol{A}) = \mathcal{M}(\boldsymbol{A}\boldsymbol{A}^{\top})$$

para cualquier matriz A.

El espacio nulo, $\mathcal{N}(A)$, de una matriz $A \in \mathbb{R}^{m \times n}$ consiste de todos los vectores *n*-dimensionales x, tal que Ax = 0, esto es,

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n \text{ tal que } \mathbf{A}\mathbf{x} = \mathbf{0} \}.$$

Note que, el espacio nulo es el conjunto de todas las soluciones de el sistema lineal homogéneo Ax = 0. $\mathcal{N}(A)$ es un subespacio de \mathbb{R}^n y su dimensión se denomina nulidad de A. Además $\mathcal{N}(A) = \{\mathcal{M}(A)\}^{\perp}$. Finalmente, considere la siguiente proposición

RESULTADO A.9. Para cualquier matriz $\mathbf{A} \in \mathbb{R}^{m \times n}$, entonces $n = \dim(\mathcal{N}(\mathbf{A})) +$

Matriz inversa. Sea A una matriz cuadrada de orden $n \times n$. Decimos que \mathbf{A} es no singular si $\operatorname{rg}(\mathbf{A}) = n$, y que \mathbf{A} es singular si $\operatorname{rg}(\mathbf{A}) < n$. De este modo, si A es no singular, entonces existe una matriz no singular B tal que

$$AB = BA = I_n$$
.

La matriz B, denotada A^{-1} es única y se denomina inversa de A.

RESULTADO A.10 (Propiedades de la inversa). Siempre que todas las matrices inversas involucradas existan, tenemos que

- (a) $(A^{-1})^{\top} = (A^{\top})^{-1}$, (b) $(AB)^{-1} = B^{-1}A^{-1}$, (c) $(\lambda A)^{-1} = \frac{1}{\lambda}A^{-1}$, (d) $P^{-1} = P^{\top}$, si P es matriz ortogonal, (e) si A > 0, entonces $A^{-1} > 0$, (f) $(A + BCD)^{-1} = A^{-1} A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$, donde A, B, Cy **D** son matrices $m \times m$, $m \times n$, $n \times n$ y $n \times m$, respectivemente (Teorema de Sherman-Morrison-Woodbury),
- (g) $si \ 1 \pm \boldsymbol{v}^{\top} \boldsymbol{A}^{-1} \boldsymbol{u} \neq 0$, entonces

$$(m{A} \pm m{u}m{v}^{ op})^{-1} = m{A}^{-1} \mp rac{m{A}^{-1}m{u}m{v}^{ op}m{A}^{-1}}{1 \pm m{v}^{ op}m{A}^{-1}m{u}},$$

(h)
$$(I + \lambda A)^{-1} = I + \sum_{i=1}^{\infty} (-1)^i \lambda^i A^i$$
.

A.2.4. Determinante de una matriz. El determinante de una matriz corresponde a la función det: $\mathbb{R}^{n \times n} \to \mathbb{R}$, denotada comúnmente como $|A| = \det(A)$ y definida como

$$|\mathbf{A}| = \sum (-1)^{\sigma(j_1, \dots, j_n)} \prod_{i=1}^n a_{ij_i}$$

donde la sumatoria es tomada sobre todas las permutaciones (j_1, \ldots, j_n) del conjunto de enteros $(1,\ldots,n)$, y $\sigma(j_1,\ldots,j_n)$ es el número de transposiciones necesarias para cambiar $(1,\ldots,n)$ en (j_1,\ldots,j_n) (una transposición consiste en intercambiar dos números).

Una submatriz de A es un arreglo rectangular obtenido mediante eliminar filas y columnas de A. Un menor es el determinante de una submatriz cuadrada de A. El menor asociado al elemento a_{ij} es el determinante de la submatriz de \boldsymbol{A} obtenida por eliminar su i-ésima fila y j-ésima columna. El cofactor de a_{ij} , digamos c_{ij} es $(-1)^{i+j}$ veces el menor de a_{ij} . La matriz $C = (c_{ij})$ se denomina matriz cofactor de A. La transpuesta de C es llamada adjunta de A y se denota $A^{\#}$. Tenemos que

$$|\mathbf{A}| = \sum_{j=1}^{n} a_{ij} c_{ij} = \sum_{j=1}^{n} a_{jk} c_{jk}, \text{ para } i, k = 1, \dots, n.$$

RESULTADO A.11 (Propiedades del determinante). Sea $\mathbf{A} \in \mathbb{R}^{n \times n}$ y λ un escalar. Entonces

- (a) $|\mathbf{A}| = |\mathbf{A}^{\top}|$,
- (b) |AB| = |A| |B|,
- (c) $|\lambda \mathbf{A}| = \lambda^n |\mathbf{A}|$,
- (d) $|\mathbf{A}^{-1}| = |\mathbf{A}|^{-1}$, si \mathbf{A} es no singular,
- (e) si \mathbf{A} es matriz triangular, entonces $|\mathbf{A}| = \prod_{i=1}^{n} a_{ii}$,
- (f) el resultado en (e) también es válido para $\mathbf{A} = \operatorname{diag}(\mathbf{A})$, note también que
 $$\begin{split} |\boldsymbol{I}_n| &= 1, \\ \text{(g)} \ \ si \ \boldsymbol{A} \in \mathbb{R}^{m \times n} \ \ y \ \boldsymbol{B} \in \mathbb{R}^{n \times m}, \ entonces \ |\boldsymbol{I}_m + \boldsymbol{A}\boldsymbol{B}| = |\boldsymbol{I}_n + \boldsymbol{B}\boldsymbol{A}|. \end{split}$$
- A.2.5. La traza de una matriz. La traza de una matriz cuadrada $A \in$ $\mathbb{R}^{n\times n}$, denotada por $\operatorname{tr}(A)$, es la suma de sus elementos diagonales:

$$\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^{n} a_{ii}.$$

RESULTADO A.12 (Propiedades de la traza). Siempre que las operaciones matriciales están definidas

- (a) $\operatorname{tr}(\boldsymbol{A} + \boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A}) + \operatorname{tr}(\boldsymbol{B}),$
- (b) $tr(\lambda \mathbf{A}) = \lambda tr(\mathbf{A})$ si λ es un escalar,
- (c) $\operatorname{tr}(\boldsymbol{A}^{\top}) = \operatorname{tr}(\boldsymbol{A}),$
- (d) tr(AB) = tr(BA) (propiedad cíclica de la traza),
- (e) tr(A) = 0 si A = 0.

Note en (d) que aunque ambas $AB \vee BA$ son cuadradas, no necesitan ser del mismo orden.

Además, es directo que la normal vectorial (Euclidiana), satisface

$$\|x\| = (x^{\top}x)^{1/2} = (\operatorname{tr} xx^{\top})^{1/2},$$

de este modo, podemos definir una normal matricial (Euclidiana) como

$$\|\boldsymbol{A}\| = (\operatorname{tr} \boldsymbol{A}^{\top} \boldsymbol{A})^{1/2}.$$

En efecto, se tiene que $\operatorname{tr}(\mathbf{A}^{\top}\mathbf{A}) \geq 0$ con la igualdad sólo si $\mathbf{A} = \mathbf{0}$.

A.2.6. Valores y vectores propios. Si A y B son matrices reales del mismo orden, una matriz compleja Z puede ser definida como

$$Z = A + iB$$
,

donde i denota la unidad imaginaria que satisface $i^2 = -1$. El conjugado complejo de \mathbb{Z} , denotado por \mathbb{Z}^H , se define como

$$\mathbf{Z}^H = \mathbf{A}^{\top} - i\mathbf{B}^{\top}$$
.

Una matriz $Z \in \mathbb{C}^{n \times n}$ se dice Hermitiana si $Z^H = Z$ (equivalente complejo de una matriz simétrica) y unitaria si $Z^H Z = I$ (equivalente complejo de una matriz ortogonal).

Sea \boldsymbol{A} una matriz cuadrada $n \times n$. Los valores propios de \boldsymbol{A} son definidos como las raíces de la ecuación característica

$$|\lambda \mathbf{I} - \mathbf{A}| = 0,$$

la ecuación anterior tiene n raíces, en general complejas y posiblemente con algunas repeticiones (multiplicidad). Sea λ un valor propio de A, entonces existe un vector $v \neq 0 \in \mathbb{C}^n$ tal que $(\lambda I - A)v = 0$, esto es,

$$Av = \lambda v$$
.

el vector \boldsymbol{v} se denomina vector propio asociado al valor propio λ . Note que, si \boldsymbol{v} es un vector propio, también lo es $\alpha \boldsymbol{v}$, $\forall \alpha \in \mathbb{C}$, y en particular $\boldsymbol{v}/\|\boldsymbol{v}\|$ es un vector propio normalizado.

Resultado A.13. Si $\mathbf{A} \in \mathbb{C}^{n \times n}$ es matriz Hermitiana, entonces todos sus valores propios son reales

RESULTADO A.14. Si \mathbf{A} es matriz cuadrada $n \times n$ y \mathbf{G} es matriz no singular $n \times n$, entonces \mathbf{A} y $\mathbf{G}^{-1}\mathbf{A}\mathbf{G}$ tienen el mismo conjunto de valores propios (con las mismas multiplicidades)

DEMOSTRACIÓN. Note que

$$|\lambda {\bm I} - {\bm G}^{-1} {\bm A} {\bm G}| = |\lambda {\bm G}^{-1} {\bm G} - {\bm G}^{-1} {\bm A} {\bm G}| = |{\bm G}^{-1}| |\lambda {\bm I} - {\bm A}| |{\bm G}| = |\lambda {\bm I} - {\bm A}|$$

Resultado A.15. Una matriz singular tiene al menos un valor propio cero

Demostración. Si \boldsymbol{A} es matriz singular, entonces $\boldsymbol{A}\boldsymbol{v}=\boldsymbol{0}$ para algún $\boldsymbol{v}\neq\boldsymbol{0}$, luego desde $\boldsymbol{A}\boldsymbol{v}=\lambda\boldsymbol{v}$, tenemos que $\lambda=0$.

RESULTADO A.16. Una matriz simétrica es definida positiva (semidefinida positiva) sólo si todos sus valores propios son positivos (no-negativos).

Demostración. Si \boldsymbol{A} es definida positiva y $\boldsymbol{A}\boldsymbol{v} = \lambda \boldsymbol{v}$, entonces $\boldsymbol{v}^{\top} \boldsymbol{A} \boldsymbol{v} = \lambda \boldsymbol{v}^{\top} \boldsymbol{v}$. Ahora, como $\boldsymbol{v}^{\top} \boldsymbol{A} \boldsymbol{v} > 0$ y $\boldsymbol{v}^{\top} \boldsymbol{v} > 0$ implica $\lambda > 0$. La conversa no será probada aquí.

RESULTADO A.17. Una matriz idempotente sólo tiene valores propios 0 ó 1. Todos los valores propios de una matriz unitaria tienen modulo 1

Demostración. Sea \boldsymbol{A} matriz idempotente, esto es
, $\boldsymbol{A}^2 = \boldsymbol{A}$. De este modo, si $\boldsymbol{A}\boldsymbol{v} = \lambda\boldsymbol{v}$, entonces

$$\lambda \mathbf{v} = \mathbf{A}\mathbf{v} = \mathbf{A}^2 \mathbf{v} = \lambda \mathbf{A}\mathbf{v} = \lambda^2 \mathbf{v}$$

y de ahí que $\lambda = \lambda^2$, esto implica que $\lambda = 0$ ó $\lambda = 1$.

Por otro lado, si \boldsymbol{A} es unitaria, entonces $\boldsymbol{a}^H \boldsymbol{A} = \boldsymbol{I}$. De este modo, si $\boldsymbol{A} \boldsymbol{v} = \lambda \boldsymbol{v}$, entonces

$$\boldsymbol{v}^H \boldsymbol{A}^H = \overline{\lambda} \boldsymbol{v}^H.$$

luego

$$\mathbf{v}^H \mathbf{v} = \mathbf{v}^H \mathbf{A}^H \mathbf{A} \mathbf{v} = \overline{\lambda} \lambda \mathbf{v}^H \mathbf{v}.$$

П

Como $\mathbf{v}^H \mathbf{v} \neq 0$, obtenemos que $\overline{\lambda}\lambda = 1$ y de ahí que $|\lambda| = 1$.

RESULTADO A.18 (Propiedades de la matrices idempotentes). Sea ${\pmb A}$ matriz $n \times n,$ entonces

- (a) \mathbf{A}^{\top} y $\mathbf{I} \mathbf{A}$ son idempotentes sólo si \mathbf{A} es idempotente,
- (b) si \mathbf{A} es idempotente, entonces $\operatorname{rg}(\mathbf{A}) = \operatorname{tr}(\mathbf{A}) = r$. Si $\operatorname{rg}(\mathbf{A}) = n$, entonces $\mathbf{A} = \mathbf{I}$.

RESULTADO A.19. Si $\mathbf{A} \in \mathbb{C}^{n \times n}$ es matriz Hermitiana y \mathbf{v}_1 , \mathbf{v}_2 son vectores propios asociados a λ_1 y λ_2 , respectivamente, donde $\lambda_1 \neq \lambda_2$. Entonces $\mathbf{v}_1 \perp \mathbf{v}_2$.

El resultado anterior muestra que si todos los valores propios de una matriz Hermitiana A son distintos, entonces existe una base ortonormal de vectores propios tal que A es diagonalizable.

PROPOSICIÓN A.20 (Descomposición de Schur). Sea $\mathbf{A} \in \mathbb{C}^{n \times n}$. Entonces existe una matriz unitaria $\mathbf{U} \in \mathbb{C}^{n \times n}$ y una matriz triangular \mathbf{M} cuyos elementos diagonales son los valores propios de \mathbf{A} , tal que

$$U^H A U = M$$
.

PROPOSICIÓN A.21 (Descomposición espectral). Sea $\mathbf{A} \in \mathbb{C}^{n \times n}$ matriz Hermitiana. Entonces existe una matriz unitaria $\mathbf{U} \in \mathbb{C}^{n \times n}$ tal que

$$U^H A U = \Lambda$$
.

donde $\Lambda = \operatorname{diag}(\lambda)$ es matriz diagonal cuyos elementos diagonales son los valores propios de A.

Para aplicaciones en Estadística siempre haremos uso de la Proposición A.21 considerando A matriz simétrica, en cuyo caso todos sus valores propios serán reales y U será una matriz ortogonal. Para $Q \in \mathbb{R}^{n \times n}$ matriz ortogonal, denotamos el grupo de matrices ortogonales como

$$\mathcal{O}_n = \{ \boldsymbol{Q} \in \mathbb{R}^{n \times n} : \boldsymbol{Q}^{\top} \boldsymbol{Q} = \boldsymbol{I} \}$$

Note que si A es matriz simétrica y definida positiva, entonces

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^\top = (\boldsymbol{U}\boldsymbol{\Lambda}^{1/2})(\boldsymbol{U}\boldsymbol{\Lambda}^{1/2})^\top = (\boldsymbol{U}\boldsymbol{\Lambda}^{1/2}\boldsymbol{U}^\top)^2$$

donde $\mathbf{\Lambda} = \mathrm{diag}(\boldsymbol{\lambda})$ y $\mathbf{\Lambda}^{1/2} = \mathrm{diag}(\boldsymbol{\lambda}^{1/2})$. Por tanto,

$$A = MM^{\top}$$
, con $M = U\Lambda^{1/2}$,

o bien,

$$A = B^2$$
, con $B = U\Lambda^{1/2}U^{\top}$,

esto es, \boldsymbol{B} es una matriz raíz cuadrada de \boldsymbol{A} .

RESULTADO A.22. Sea **A** matriz simétrica $n \times n$, con valores propios $\lambda_1, \ldots, \lambda_n$. Entonces

(a)
$$\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^{n} \lambda_i$$
,
(b) $|\boldsymbol{A}| = \prod_{i=1}^{n} \lambda_i$.

(b)
$$|\mathbf{A}| = \prod_{i=1}^n \lambda_i$$
.

Demostración. Usando que $\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^{\top}$. Tenemos

$$\operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^{\top}) = \operatorname{tr}(\boldsymbol{\Lambda}\boldsymbol{U}^{\top}\boldsymbol{U}) = \operatorname{tr}(\boldsymbol{\Lambda}) = \sum_{i=1}^{n} \lambda_{i}$$

у

$$|oldsymbol{A}| = |oldsymbol{U}oldsymbol{\Lambda}oldsymbol{U}^ op| = |oldsymbol{U}||oldsymbol{\Lambda}||oldsymbol{U}^ op| = |oldsymbol{\Lambda}| = \prod_{i=1}^n \lambda_i$$

RESULTADO A.23. Si A es una matriz simétrica con r valores propios distintos de cero, entonces $rg(\mathbf{A}) = r$.

Demostración. Tenemos que $\boldsymbol{U}^{\top}\boldsymbol{A}\boldsymbol{U}=\boldsymbol{\Lambda}$ y de ahí que

$$\operatorname{rg}(\boldsymbol{A}) = \operatorname{rg}(\boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^{\top}) = \operatorname{rg}(\boldsymbol{\Lambda}) = r$$

A.2.7. Matrices (semi)definidas positivas.

Proposición A.24. Sea A matriz definida positiva y B semidefinida positiva. Entonces

$$|A+B| \geq |A|$$
,

con la igualdad sólo si $\mathbf{B} = \mathbf{0}$.

Demostración. Tenemos $U^{\top}AU = \Lambda$, con $\Lambda = \operatorname{diag}(\lambda)$ y $U^{\top}U = UU^{\top} = I$. Luego,

$$\boldsymbol{A} + \boldsymbol{B} = \boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^\top + \boldsymbol{B} = \boldsymbol{U}\boldsymbol{\Lambda}^{1/2}(\boldsymbol{I} + \boldsymbol{\Lambda}^{-1/2}\boldsymbol{U}^\top\boldsymbol{B}\boldsymbol{U}\boldsymbol{\Lambda}^{-1/2})\boldsymbol{\Lambda}^{1/2}\boldsymbol{U}^\top,$$

de este modo

$$\begin{split} |\boldsymbol{A} + \boldsymbol{B}| &= |\boldsymbol{U}\boldsymbol{\Lambda}^{1/2}||\boldsymbol{I} + \boldsymbol{\Lambda}^{-1/2}\boldsymbol{U}^{\top}\boldsymbol{B}\boldsymbol{U}\boldsymbol{\Lambda}^{-1/2}||\boldsymbol{\Lambda}^{1/2}\boldsymbol{U}^{\top}| \\ &= |\boldsymbol{U}\boldsymbol{\Lambda}^{1/2}\boldsymbol{\Lambda}^{1/2}\boldsymbol{U}^{\top}||\boldsymbol{I} + \boldsymbol{\Lambda}^{-1/2}\boldsymbol{U}^{\top}\boldsymbol{B}\boldsymbol{U}\boldsymbol{\Lambda}^{-1/2}| \\ &= |\boldsymbol{A}||\boldsymbol{I} + \boldsymbol{\Lambda}^{-1/2}\boldsymbol{U}^{\top}\boldsymbol{B}\boldsymbol{U}\boldsymbol{\Lambda}^{-1/2}|. \end{split}$$

Si $\boldsymbol{B}=\boldsymbol{0}$, tenemos $|\boldsymbol{A}+\boldsymbol{B}|=|\boldsymbol{A}|$. Por otro lado, si $\boldsymbol{B}\neq\boldsymbol{0}$. Entonces la matriz $\boldsymbol{I}+\boldsymbol{\Lambda}^{-1/2}\boldsymbol{U}^{\top}\boldsymbol{B}\boldsymbol{U}\boldsymbol{\Lambda}^{-1/2}$ tendrá al menos un valor propio no nulo y por tanto, $|\boldsymbol{I}+\boldsymbol{\Lambda}^{-1/2}\boldsymbol{U}^{\top}\boldsymbol{B}\boldsymbol{U}\boldsymbol{\Lambda}^{-1/2}|>1$, esto es $|\boldsymbol{A}+\boldsymbol{B}|>|\boldsymbol{A}|$.

Para dos matrices simétricas A y B, escribimos $A \ge B$ si A - B es semidefinida positiva. Análogamente, escribimos A > B si A - B es definida positiva.

RESULTADO A.25. Sean A, B matrices definidas positivas $n \times n$. Entonces A > Bsólo si $B^{-1} > A^{-1}$.

PROPOSICIÓN A.26. Sean \mathbf{A} y \mathbf{B} matrices definidas positivas y $\mathbf{A} - \mathbf{B} \geq 0$. Entonces $|\mathbf{A}| \geq |\mathbf{B}|$ con la igualdad sólo si $\mathbf{A} = \mathbf{B}$.

DEMOSTRACIÓN. Sea C = A - B. Como B es definida positiva y C es semidefinida positiva, tenemos por la Proposición A.24 que $|B + C| \ge |B|$, con la igualdad sólo si C = 0.

A.2.8. Descomposiciones matriciales.

PROPOSICIÓN A.27 (Descomposición LDL). Si $\mathbf{A} \in \mathbb{R}^{n \times n}$ es matriz simétrica y no singular, entonces existe \mathbf{L} matriz triangular inferior y $\mathbf{D} = \operatorname{diag}(d_1, \ldots, d_n)$, tal que

$$A = LDL^{\top}$$
.

PROPOSICIÓN A.28 (Descomposición Cholesky). Si $\mathbf{A} \in \mathbb{R}^{n \times n}$ es simétrica y definida positiva, entonces existe una única matriz triangular inferior $\mathbf{G} \in \mathbb{R}^{n \times n}$ (factor Cholesky) con elementos diagonales positivos, tal que

$$A = GG^{\top}$$
.

PROPOSICIÓN A.29 (Descomposición ortogonal-triangular). Sea $\mathbf{A} \in \mathbb{R}^{m \times n}$, entonces existe $\mathbf{Q} \in \mathcal{O}_m$ y $\mathbf{R} \in \mathbb{R}^{m \times n}$, tal que

$$A = QR$$

donde

$$oldsymbol{R} = egin{pmatrix} oldsymbol{R}_1 \ oldsymbol{0} \end{pmatrix}$$

con $\mathbf{R}_1 \in \mathbb{R}^{n \times n}$ matriz triangular superior, aquí suponemos que $m \geq n$. Si $\operatorname{rg}(\mathbf{A}) = r$, entonces las primeras n columnas de \mathbf{Q} forman una base ortonormal para $\mathcal{M}(\mathbf{A})$.

Note que, si $\mathbf{A} = \mathbf{Q}\mathbf{R}$ entonces

$$A^{\top}A = R^{\top}Q^{\top}QR = R^{\top}R = R_1^{\top}R_1$$
,

y \mathbf{R}_1 corresponde al factor Cholesky de $\mathbf{A}^{\top} \mathbf{A}$.

PROPOSICIÓN A.30 (Descomposición valor singular). Sea $\mathbf{A} \in \mathbb{R}^{m \times n}$ con $\operatorname{rg}(\mathbf{A}) = r$, entonces existen matrices $\mathbf{U} \in \mathcal{O}_m$, $\mathbf{V} \in \mathcal{O}_n$, tal que

$$oldsymbol{A} = oldsymbol{U} egin{pmatrix} oldsymbol{D}_r & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{pmatrix} oldsymbol{V}^ op,$$

donde $D_r = diag(\delta_1, ..., \delta_r)$ con $\delta_i > 0$ para i = 1, ..., r, llamados valores singulares de A.

 ${\bf A.2.9.}$ Matrices particionadas. Sea ${\bf A}$ una matriz $m\times n.$ Considere particionar ${\bf A}$ como sigue

$$\boldsymbol{A} = \begin{pmatrix} \boldsymbol{A}_{11} & \boldsymbol{A}_{12} \\ \boldsymbol{A}_{21} & \boldsymbol{A}_{22} \end{pmatrix}, \tag{A.1}$$

donde $A_{11} \in \mathbb{R}^{m_1 \times n_1}$, $A_{12} \in \mathbb{R}^{m_1 \times n_2}$, $A_{21} \in \mathbb{R}^{m_2 \times n_1}$, $A_{22} \in \mathbb{R}^{m_2 \times n_2}$, y $m_1 + m_2 = m$, $n_1 + n_2 = n$.

Sea $\boldsymbol{B} \in \mathbb{R}^{m \times n}$ particionada de manera análoga a \boldsymbol{A} , entonces

$$m{A} + m{B} = egin{pmatrix} m{A}_{11} + m{B}_{11} & m{A}_{12} + m{B}_{12} \ m{A}_{21} + m{B}_{21} & m{A}_{22} + m{B}_{22} \end{pmatrix}.$$

Ahora, considere $C \in \mathbb{R}^{n \times p}$ particionada en submatrices C_{ij} , para i, j = 1, 2 con dimensiones adecuadas, entonces

$$m{AC} = egin{pmatrix} m{A_{11}C_{11}} + m{A_{12}C_{21}} & m{A_{11}C_{12}} + m{A_{12}C_{22}} \ m{A_{21}C_{11}} + m{A_{22}C_{21}} & m{A_{21}C_{12}} + m{A_{22}C_{22}} \end{pmatrix}.$$

La transpuesta de \boldsymbol{A} está dada por

$$oldsymbol{A}^ op = egin{pmatrix} oldsymbol{A}_{11}^ op & oldsymbol{A}_{21}^ op \ oldsymbol{A}_{12}^ op & oldsymbol{A}_{22}^ op \end{pmatrix}.$$

Si A_{12} y A_{21} son matrices nulas y si ambas A_{11} y A_{22} son matrices no singulares, entonces la inversa de A es

$$A^{-1} = \begin{pmatrix} A_{11}^{-1} & \mathbf{0} \\ \mathbf{0} & A_{22}^{-1} \end{pmatrix}.$$

En general, si A es matriz no singular particionada como en (A.1) y $D = A_{22} - A_{21}A_{11}^{-1}A_{12}$ también es no singular, entonces

$$\boldsymbol{A}^{-1} = \begin{pmatrix} \boldsymbol{A}_{11}^{-1} + \boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12} \boldsymbol{D}^{-1} \boldsymbol{A}_{21} \boldsymbol{A}_{11}^{-1} & -\boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12} \boldsymbol{D}^{-1} \\ -\boldsymbol{D}^{-1} \boldsymbol{A}_{21} \boldsymbol{A}_{11}^{-1} & \boldsymbol{D}^{-1} \end{pmatrix}.$$

Por otro lado, si \boldsymbol{A} es no singular y $\boldsymbol{E} = \boldsymbol{A}_{11} - \boldsymbol{A}_{12} \boldsymbol{A}_{22}^{-1} \boldsymbol{A}_{21}$ es no singular, entonces

$$\boldsymbol{A}^{-1} = \begin{pmatrix} \boldsymbol{E}^{-1} & -\boldsymbol{E}^{-1}\boldsymbol{A}_{12}\boldsymbol{A}_{22}^{-1} \\ -\boldsymbol{A}_{22}^{-1}\boldsymbol{A}_{21}\boldsymbol{E}^{-1} & \boldsymbol{A}_{22}^{-1} + \boldsymbol{A}_{22}^{-1}\boldsymbol{A}_{21}\boldsymbol{E}^{-1}\boldsymbol{A}_{12}\boldsymbol{A}_{22}^{-1} \end{pmatrix}.$$

Considere el determinante

$$egin{array}{c|c} egin{array}{c|c} oldsymbol{A}_{11} & oldsymbol{A}_{12} \ oldsymbol{0} & oldsymbol{A}_{22} \ \end{array} = egin{array}{c|c} oldsymbol{A}_{11} & oldsymbol{0} \ oldsymbol{A}_{21} & oldsymbol{A}_{22} \ \end{array} ,$$

si A_{11} y A_{22} son matrices cuadradas.

Ahora, para una matriz particionada como en (A.1) con $m_1 = n_1$ y $m_2 = n_2$, tenemos

$$|A| = |A_{11}||A_{22} - A_{21}A_{11}^{-1}A_{12}| = |A_{22}||A_{11} - A_{12}A_{22}^{-1}A_{21}|,$$

si A_{11} y A_{22} son matrices no singulares.

A.3. Inversa generalizada y sistemas de ecuaciones lineales

En esta sección se generaliza el concepto de invertibilidad para matrices singulares así como para matrices rectangulares. En particular, introducimos la inversa Moore-Penrose (MP), generalización que permite resolver de forma explícita un sistema de ecuaciones lineales.

A.3.1. Inversa Moore-Penrose. Sea $A \in \mathbb{R}^{m \times n}$, la inversa Moore-Penrose, $G \in \mathbb{R}^{n \times m}$ debe satisfacer las siguientes condiciones

$$AGA = A, (A.2)$$

$$GAG = G, (A.3)$$

$$(\mathbf{A}\mathbf{G})^{\top} = \mathbf{A}\mathbf{G},\tag{A.4}$$

$$(\mathbf{G}\mathbf{A})^{\top} = \mathbf{G}\mathbf{A}.\tag{A.5}$$

La inversa MP de A se denota comunmente como A^+ . Si G satisface sólo la condición en (A.2) entonces decimos que G es una inversa generalizada y la denotamos por A^- .

Proposición A.31 (Unicidad de la inversa MP). Para cada \boldsymbol{A} , existe una única \boldsymbol{A}^+ .

Resultado A.32 (Propiedades de la inversa MP).

- (a) $A^+ = A^{-1}$ para A matriz no singular,
- (b) $(A^+)^+ = A$,
- (c) $(A^{\top})^+ = (A^+)^{\top}$,
- (d) $A^+ = A$ si A es simétrica e idempotente,
- (e) $\mathbf{A}\mathbf{A}^+$ y $\mathbf{A}^+\mathbf{A}$ son idempotentes,
- (f) $\operatorname{rg}(\mathbf{A}) = \operatorname{rg}(\mathbf{A}^+) = \operatorname{rg}(\mathbf{A}\mathbf{A}^+) = \operatorname{rg}(\mathbf{A}^+\mathbf{A}),$
- (g) $A^{\top}AA^{+} = A = A^{+}AA^{\top}$,
- (h) $A^{\top}A^{+^{\top}}A^{+} = A^{+} = A^{+}A^{+^{\top}}A^{\top}$.
- (i) $\boldsymbol{A}^+ = (\boldsymbol{A}^\top \boldsymbol{A})^+ \boldsymbol{A}^\top = \boldsymbol{A}^\top (\boldsymbol{A} \boldsymbol{A}^\top)^+$
- (j) $A^+ = (A^T A)^{-1} A^T$, si A tiene rango columna completo,
- (k) $\mathbf{A}^+ = \mathbf{A}^\top (\mathbf{A} \mathbf{A}^\top)^{-1}$, si \mathbf{A} tiene rango fila completo.

A.3.2. Solución de sistemas de ecuaciones lineales. La solución general de un sistema de ecuaciones homegéneo Ax = 0 es

$$x = (I - A^+ A)q,$$

con q un vector arbitrário. La solución de Ax = 0 es única sólo si A tiene rango columna completo, esto es, $A^{\top}A$ es no singular. El sistema homogéneo Ax = 0 siempre tiene al menos una solución, digamos x = 0.

El sistema no homogéneo

$$Ax = b$$
.

tendrá al menos una solución si es consistente.

Proposición A.33. Sea $\mathbf{A} \in \mathbb{R}^{m \times n}$ y \mathbf{b} vector $m \times 1$. Entonces son equivalentes:

- (a) la ecuación $\mathbf{A}\mathbf{x} = \mathbf{b}$ tiene una solución para \mathbf{x} ,
- (b) $\boldsymbol{b} \in \mathcal{M}(\boldsymbol{A})$,
- (c) $\operatorname{rg}(\boldsymbol{A}:\boldsymbol{b}) = \operatorname{rg}(\boldsymbol{A}),$
- (d) $AA^+b=b$.

Proposición A.34. Una condición necesaria y suficiente para que la ecuación Ax = b tenga una solución es que

$$AA^+b=b$$
.

en cuyo caso la solución general está dada por

$$x = A^+b + (I - A^+A)q,$$

donde q es un vector arbitrário.

Si el sistema Ax = b es consistente, entonces tendrá solución única sólo si A es de rango completo, en cuyo caso la solución está dada por $x = A^{-1}b$.

Proposición A.35. Una condición necesaria y suficiente para que la ecuación matricial AXB = C tenga una solución es que

$$AA^+CB^+B=C,$$

en cuyo caso la solución general es

$$X = A^+ C B^+ + Q - A^+ A Q B B^+,$$

 $donde \; \textit{\textbf{Q}} \; es \; una \; matriz \; arbitrária \; de \; \acute{o}rdenes \; apropiados.$