$\xi:\Omega \to \mathbb{R}$ - случайная величина. $\xi(w)$ - значение, $w\in \Omega$.

 $\overline{\text{Пример:}}$ Есть 5 марок автомобиля, их стоимости и их количества. А - 1000 - 100; В - 2000 - 5; С - 3000 - 5; D - 2000 - 20;

$$\overline{\text{E} - 1500}$$
 - 30; Тогда нас интересуют $P(\xi = 1000) = \frac{100}{160}, P(\xi = 1500) = \frac{30}{160}, P(\xi = 2000) = \frac{25}{160}, P(\xi = 3000) = \frac{5}{160}$.

Матожидание $E(\xi) = \sum_{w \in \Omega} \xi(w) \cdot P(w) = \sum_{x} x \cdot P(\xi = x)$.

<u>Индикаторная случайная величина:</u> $I_A = \begin{cases} 1, w \in A \\ 0, w \notin A \end{cases}$ Тогда $E(I_A) = P(A)$.

Пусть есть 2 случайной величины ξ_1 и ξ_2 . Тогда $E(\alpha\xi_1+\beta\xi_2)=\alpha E(\xi_1)+\beta E(\xi_2)$. $E(\alpha\xi_1+\beta\xi_2)=\sum_{w\in\Omega}(\alpha\xi_1(w)\cdot P(w)+\beta\xi_2(w)\cdot P(w))=\alpha\sum_{w\in\Omega}\xi_1(w)\cdot P(w)+\beta\sum_{w\in\Omega}\xi_2(w)\cdot P(w)=\alpha E(\xi_1)+\beta E(\xi_2)$

Две случайные величины называются <u>независимые</u>, если $\forall x,y: P(\xi_1=x \text{ и } \xi_2=y)=P(\xi_1=x)\cdot P(\xi_2=y).$ n случайных величин называются <u>попарно независимыми</u>, если любые 2 величины независимы. независимы в совокупности - см семинар

 ξ_1 и ξ_2 - случайные независимые величины. Тогда $E(\xi_1\xi_2)=E(\xi_1)E(\xi_2)$. $E(\xi_1\xi_2)=\sum_{w\in\Omega}\xi_1(w)\xi_2(w)P(w)=\sum_xx\cdot P(\xi_1\xi_2=x)=\sum_{(u,v)}uv\cdot P(\xi_1=u$ и $\xi_2=v)=[\xi_1$ и ξ_2 независимы] = $\sum_{(u,v)}uv\cdot P(\xi_1=u)\cdot P(\xi_2=v)=(\sum_uu\cdot P(\xi_1=u))\cdot (\sum_vv\cdot P(\xi_2=v))=E(\xi_1)E(\xi_2)$.

Задача о назначениях. Есть n работников и n работ. Есть таблица, где a_{ij} - сколько і-ый работник берет за ј-ую работу. Нужно распределить работников по работам так, чтобы суммарная плата за все работы была миниальна. Оценим матожидание затрат при случайном решении. A_{ij} - событие, когда і-ый работник делает ј-ую работу. $\xi = \sum_{(i,j)} I_{A_{ij}} \cdot a_{ij}$. Тогда $E(\xi) = \sum_{(i,j)} E(I_{A_{ij}} = \sum_{(i,j)} a_{ij} P(A_{ij}) = \sum_{(i,j)} a_{ij} \cdot \frac{1}{n}$.

Найти максимальный разрез в неориентированном невзвешанном графе.

Вудем строить случайный разрез(каждую вершину либо в A, либо в A). Тогда ξ - величина нашего разреза. $\xi = \sum_{e \in E(G)} I_{B_e}$, где B_e - событие, когда e лежит в разрезе. $P(e \in \text{разрез}) = \frac{1}{2}$. Тогда $E(\xi) = E(\sum_{e \in E(G)} I_{B_E}) = \sum_{e \in E(G)} E(E(E))$.

Есть перестановка $p_1 \dots p_n$. Алгоритм жадно набирает возрастающую подпоследовательность. Какое матожидание длины этой подпоследовательности?

Событие A_i - алгоритм возьмет p_i . $E(\xi) = E(\sum I_{A_i}) = \sum P(A_i)$. $P(A_i) = P(\forall j < i : p_j < p_i) = \frac{1}{i}$. Тогда $E(\xi) = \sum_{i=1}^n \frac{1}{i} = \Theta(\log n)$.

Дисперсия $D(\xi) = \sum_{w \in \Omega} P(w)(\xi(w) - E(\xi))^2$. Свойства:

- $D(\xi_1 + \xi_2) = D(\xi_1) + D(\xi_2)$, ξ_1 и ξ_2 независимы
- $D(\lambda \xi_1) = \lambda^2 D(\xi_1)$

Неравенство Маркова. $\xi: \Omega \to \mathbb{R}_+$. $P(\xi(w) \ge E(\xi) \cdot k) \le \frac{1}{k}$.

<u>Неравенство Чебышева</u>. $\xi: \Omega \to \mathbb{R}$. $P(|\xi - E(\xi)| \le \alpha) \le \frac{D(\xi)}{\alpha^2}$.