quantum computing and quantum information

Vivek Soorya

July 2025

1 at a glance

Exercises 1, and 4 are too trivial; consider them solved; Exercise 2 is solved Exercises 3 and 5 are incomplete

2 lemmas to prove and questions to answer

- 1. Show that
 - (a) Show that $\langle \psi | M | \psi \rangle = \langle \psi | P_m | \psi \rangle = P(m) \text{ for } P_m \text{ fixed}$
 - (b) Show that Given a transformation in finite dimensions from a vector space to itself, and the input basis e_i , the matrix columns are the output bases are the matrix columns.
 - (c) SHow that given a matrix transformation in terms of input bases e_i , and output bases; the output bases become the matrix's columns. How can I systematically explore the prove for this
 - (d) Exercise 2.5: Inner Product on \mathbb{C}^n We need to show that $\langle \phi | \psi \rangle = \sum_{i=1}^n \phi_i^* \psi_i$ is a valid inner product on \mathbb{C}^n . An inner product must satisfy three properties:
 - i. Conjugate symmetry: $\langle \phi | \psi \rangle = \langle \psi | \phi \rangle^*$.
 - ii. Linearity in the second argument: $\langle \phi | \alpha \psi + \beta \chi \rangle = \alpha \langle \phi | \psi \rangle + \beta \langle \phi | \chi \rangle$.
 - iii. Positive-definiteness: $\langle \phi | \phi \rangle \geq 0$, and $\langle \phi | \phi \rangle = 0$ if and only if $| \phi \rangle$ is the zero vector.

Let
$$|\phi\rangle = \begin{pmatrix} \phi_1 \\ \vdots \\ \phi_n \end{pmatrix}$$
 and $|\psi\rangle = \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_n \end{pmatrix}$.

- 2. answer these
 - (a) What kind of transformation results when a matrix is transformed by its adjoint.

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a^2 + c^2 & ab + cd \\ ab + cd & b^2 + d^2 \end{bmatrix}$$

(b) Is

$$\langle \psi | M | \psi \rangle = ? \langle \psi | P_m | \psi \rangle$$

We know that,

$$\langle \psi | M | \psi \rangle = \sum_{m} \langle \psi | P_{m} | \psi \rangle$$

Now, for fixed $m \equiv m_a$ every projector that is not P_m will take $\langle \psi | P_m | \psi \rangle$ to the kernel, gives 0 as the expectation value for that projection, leaving $\langle \psi | P_{m_a} | \psi \rangle$ to result. Thus, for fixed $m \equiv m_a$, $\langle \psi | M | \psi \rangle = \langle \psi | P_{m_a} | \psi \rangle$

- (c) Can a scalar have a matrix representation, can a vector have a matrix representation
- (d) Is the outer product like a projection onto the vector space itself, with the vector that outer product vector being a sort of light source and the vector being operated on being the object & the resultant vector being the projection? It is essentially an additional left multiplication with the dual.
- (e) For quantum mechanics, we only need the vector space made of vectors whose norm is ≤ 1 . Can we discard the rest of the vector space? (i.e. where the norm is > 1)

- (f) Given an isolated physical system, what is the state space?
- (g) Is negative like eigenvalue interpreted as phase?
- (h) What is a determinant, physically? Cuz they are used in characteristic equation to extract eigenvalues and eigenvectors

3 never gonna practice

working on these

1. A + B + C = inner product where

A:
$$\langle v_1|v_2\rangle = \langle v_2|v_1\rangle^*$$

B: $\langle v_1|v_1\rangle \geq 0$ and is equal to 0 iff $v_1=0$

B: projection of a vector with itself are always positive complex values.

C:
$$\langle v_1 | (\lambda v_2) \rangle = \lambda \langle v_1 | v_2 \rangle = \text{linearity}$$