Discrete Mathematics: Lectures 2 and 3 Asymptotic Notations

Instructor: Arijit Bishnu Date: July 22 and 23, 2009

1 Introductory Story

Asymptotic notations are mostly used in computer science to describe the asymptotic running time of an algorithm. As an example, an algorithm that takes an array of size n as input and runs for time proportional to n^2 is said to take $O(n^2)$ time. 'O' is pronounced as big-oh, so we say that the algorithm takes big-oh of n^2 time. Asymptotic notations also have their use in comparing the growth of functions.

The asymptotic notations, as we will see shortly, deal with functions that have \mathbb{N} as their domain and \mathbb{R} , or mostly $\mathbb{R}_{\geq 0}$ as the range. The domain is \mathbb{N} as the input size is a positive integer. But, after we go through the definitions, we can very well see that it will be applicable for functions where the domain is \mathbb{R} . This has to be clear from the context in which we are using asymptotic notations.

2 O (big-oh) notation: bounding from above

The O-notation is used for asymptotically upper bounding a function. Notice that there can be many functions that bound a particular function from above. We would use O (big-oh) notation to represent a set of functions that upper bounds a particular function.

Definition 1 We say that a function f(n) is big-oh of g(n) written as f(n) = O(g(n)) if there exists positive constants c and n_0 such that $0 \le f(n) \le cg(n)$, $\forall n \ge n_0$. In terms of sets, O(g(n)) denotes a set of functions f(n) that satisfies the above. Formally, O(g(n)) =

 $\{f(n) \mid \exists \text{ positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n), \forall n \geq n_0\}$

A consequence of this definition in terms of limits is as follows. If $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ exists, then $\lim_{n\to\infty} \frac{f(n)}{g(n)} \neq \infty$ implies f(n) = O(g(n)).

Example 1 Let
$$f(n) = n^2$$
. Then, $f(n) = O(n^2)$, $f(n) = O(n^2 \log n)$, $f(n) = O(n^{2.5})$, $f(n) = O(n^3)$, $f(n) = O(n^4)$, ...

Example 2 Let $f(n) = 5.5n^2 - 7n$. We need to verify whether f(n) is $O(n^2)$. Let c be a constant such that $5.5n^2 - 7n \le cn^2$, or, $n \ge \frac{7}{c-5.5}$. Fix c = 9, to get $n \ge 2$. So, our $n_0 = 2$ and c = 9. This shows that there exists positive constants c = 9 and $n_0 = 2$ such that $0 \le f(n) \le cn^2$, $\forall n \ge n_0$.

Exercise 1 Let $f(n) = 5.5n^2 - 7n$. Verify whether f(n) = O(n)?

Exercise 2 Let $f(n) = a_k n^k + a_{k-1} n^{k+1} + ... + a_1 n^1 + a_0$ such that $a_k > 0$. Show that $f(n) = O(n^k)$.

3 Ω (Omega) notation: bounding from below

The Ω -notation is used for asymptotically lower bounding a function. Notice that there can be many functions that bound a particular function from below. We would use Ω (big-omega) notation to represent a set of functions that lower bounds a particular function.

Definition 2 We say that a function f(n) is big-omega of g(n) written as $f(n) = \Omega(g(n))$ if there exists positive constants c and n_0 such that $0 \le cg(n) \le f(n)$, $\forall n \ge n_0$. In terms of sets, O(g(n)) denotes a set of functions f(n) that satisfies the above. Formally, $\Omega(g(n))$

 $\{f(n) \mid \exists \text{ positive constants } c \text{ and } n_0 \text{ such that } 0 \leq cg(n) \leq f(n), \forall n \geq n_0\}$

A consequence of this definition in terms of limits is as follows. If $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ exists, then $\lim_{n\to\infty} \frac{f(n)}{g(n)} \neq 0$ implies $f(n) = \Omega(g(n))$.

Example 3 Let $f(n) = 5.5n^2 - 7n$. We need to verify whether f(n) is $\Omega(n^2)$. Let c be a constant such that $5.5n^2 - 7n \ge cn^2$, or, $n \ge \frac{7}{5.5-c}$. Fix c = 3, to get $n \ge 2.8$. So, our $n_0 = 2.8$ and c = 3. This shows that there exists positive constants c = 3 and $n_0 = 2.8$ such that $0 \le cn^2 \le f(n)$, $\forall n \ge n_0$.

Exercise 3 Let $f(n) = 5.5n^2 - 7n$. Verify whether $f(n) = \Omega(n^2)$. Verify whether $f(n) = \Omega(n)$.

Exercise 4 Let $f(n) = a_k n^k + a_{k-1} n^{k+1} + \ldots + a_1 n^1 + a_o$ such that $a_k > 0$. Show that $f(n) = \Omega(n^k)$. Verify whether $f(n) = \Omega(n^{k-1})$.

Exercise 5 Consider the following statement. f(n) is $\Omega(g(n))$ if and only if g(n) is O(f(n)). If you think the statement to be correct, prove it; else, disprove it.

4 Θ (Theta) notation: bounding from above and below

The Θ -notation is used for asymptotically bounding a function from both above and below. Notice that there can be many functions that bound a particular function both from above and below. We would use Θ (theta) notation to represent a set of functions that bounds a particular function from above and below.

Definition 3 We say that a function f(n) is theta of g(n) written as $f(n) = \Theta(g(n))$ if there exists positive constants c_1 , c_2 and n_0 such that $0 \le c_2 g(n) \le f(n) \le c_1 g(n)$, $\forall n \ge n_0$. In terms of sets, O(g(n)) denotes a set of functions f(n) that satisfies the above. Formally, $\Theta(g(n)) =$

 $\{f(n) \mid \exists \text{ positive constants } c_1, c_2 \text{ and } n_0 \text{ such that } 0 \leq c_2 g(n) \leq f(n) \leq c_1 g(n), \forall n \geq n_0 \}$

A consequence of this definition in terms of limits is as follows. If $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ exists, then $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$ implies $f(n) = \Theta(g(n))$ where c is a non-zero positive constant.

Figure 1: A diagramatic representation of the asymptotic notations O, Ω and Θ .

Exercise 6 Let $f(n) = 5.5n^2 - 7n$. Verify whether $f(n) = \Theta(n)$?

Example 4 Any constant function is O(1), $\Omega(1)$ and $\Theta(1)$. Can you prove it?

Exercise 7 For any two functions f(n) and g(n), show that $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

Solution: Hints: We want if and only if. To prove the above, you have to show that (i) $f(n) = \Theta(g(n))$ implies both f(n) = O(g(n)) and $f(n) = \Omega(g(n))$ and (ii) f(n) = O(g(n)) and $f(n) = \Omega(g(n))$ implies $f(n) = \Theta(g(n))$.

Example 5 Let $f(n) = 5.5n^2 - 7n$. We need to verify whether f(n) is $\Theta(n^2)$. From Example 2 we have constants $c_1 = 9$ and $n_0 = 2$, such that $0 \le f(n) \le c_1 n^2$, $\forall n \ge n_0$. Similarly, we have from Example 3, we have constants $c_2 = 3$ and $n_0 = 2.8$, such that $0 \le c_2 n^2 \le f(n)$, $\forall n \ge n_0$. To show f(n) is $\Theta(n^2)$, we have got hold of two constants c_1 and c_2 . We fix the n_0 for Θ as maximum $\{2, 2.8\} = 2.8$. Thus, we have got positive constants c_1 , c_2 and n_0 such that $0 \le c_2 g(n) \le f(n) \le c_1 g(n)$, $\forall n \ge n_0$.

The notations O, Ω and Θ have a special significance in the study of design and analysis of algorithms. We have already studied the problem of sorting and designed an $O(n \log n)$ algorithm by divide-and-conquer. It can also be shown [4] that the

problem of sorting where only comparisons are used to determine the relative order of two numbers can be solved no faster than $cn \log n$, where c is a positive constant. We say that the problem of sorting has a lower bound of $\Omega(n \log n)$. Any algorithm of sorting that takes $O(n \log n)$ comparisons is said to be an optimal algorithm as asymptotically no faster algorithm can be obtained. We say that an algorithm for sorting taking $O(n \log n)$ comparisons that matches the lower bound of sorting, i.e. $\Omega(n \log n)$ is a $\Theta(n \log n)$ algorithm.

Exercise 8 Prove that the running time of an algorithm is $\Theta(f(n))$ if and only if its worst-case running time is O(f(n)) and its best-case running time is O(f(n)).

5 o (small-oh) notation: bounding strictly from above

The O-notation is used for asymptotically upper bounding a function, but this notation may not be strict. Let $f(n) = n^2$. Then, $f(n) = O(n^2)$ is asymptotically tight but $f(n) = O(n^2 \log n)$, or $f(n) = O(n^{2.5})$, or $f(n) = O(n^3)$ are not asymptotically tight. The o (pronounced small-oh or little-oh) notation is used to denote those functions that are asymptotically strictly greater. Notice that there can be many functions that bound a particular function strictly from above.

Definition 4 We say that a function f(n) is small-oh of g(n) written as f(n) = o(g(n)) if for any positive non-zero constant c (note the change from O), there exists a positive non-zero constant n_0 such that $0 \le f(n) < cg(n)$, $\forall n \ge n_0$. In terms of sets, o(g(n)) denotes a set of functions f(n) that satisfies the above. Formally, o(g(n)) =

$$\{f(n) \mid \exists \ constants \ c > 0 \ and \ n_0 > 0 \ such \ that \ 0 \le f(n) < cg(n), \forall n \ge n_0\}$$

A consequence of this definition in terms of limits is as follows. If $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ exists, then $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$ implies f(n) = o(g(n)).

Example 6 Let
$$f(n) = n^2$$
. Then, $f(n) = o(n^2 \log n)$, $f(n) = o(n^{2.5})$, $f(n) = o(n^3)$, $f(n) = o(n^4)$, ..., but $f(n) \neq o(n^2)$.

Example 7 Let $f(n) = 5.5n^2 - 7n$. Verify whether f(n) is $o(n^2)$. Verify whether f(n) is $o(n^2 \log n)$.

6 ω (small-omega) notation: bounding strictly from below

The Ω -notation is used for asymptotically lower bounding a function, but this notation may not be strict. Let $f(n) = n^2$. Then, $f(n) = \Omega(n^2)$ is asymptotically tight

but $f(n) = \Omega(n \log n)$, or $f(n) = \Omega(n)$, or $f(n) = \Omega(n^{\frac{1}{2}})$ are not asymptotically tight. The ω (pronounced small-omega or little-omega) notation is used to denote those functions that are asymptotically strictly smaller. Notice that there can be many functions that bound a particular function strictly from below. ω notation is to Ω notation as o notation is to O notation.

Definition 5 We say that a function f(n) is small-omega of g(n) written as $f(n) = \omega(g(n))$ if for any positive non-zero constant c (note the change from Ω), there exists a positive non-zero constant n_0 such that $0 \le cg(n) < f(n)$, $\forall n \ge n_0$. In terms of sets, $\omega(g(n))$ denotes a set of functions f(n) that satisfies the above. Formally, $\omega(g(n)) =$

 $\{f(n) \mid \exists \ constants \ c > 0 \ and \ n_0 > 0 \ such \ that \ 0 \le cg(n) < f(n), \forall n \ge n_0\}$

A consequence of this definition in terms of limits is as follows. If $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ exists, then $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$ implies $f(n) = \omega(g(n))$.

Example 8 Let $f(n) = n^2$. Then, $f(n) = \omega(n)$, $f(n) = \omega(n \log n)$, $f(n) = \omega(n^{\frac{1}{3}})$, ..., but $f(n) \neq \omega(n^2)$.

Example 9 Let $f(n) = 5.5n^2 - 7n$. Verify whether f(n) is $\omega(n^2)$. Verify whether f(n) is $\omega(n \log n)$.

Exercise 9 Show that a function $f(n) \in \omega(g(n))$ if and only if $g(n) \in o(f(n))$.

Exercise 10 *Show that* $2^{n+1} = O(2^n)$.

Exercise 11 Verify whether $2^{2n} = O(2^n)$.

Exercise 12 Prove that $o(f(n)) \cap \omega(f(n)) = \emptyset$.

Exercise 13 Show that $n^{2+\epsilon} = o(2^n)$ and $n^{2-\epsilon} \neq o(2^n)$ where $\epsilon < 1$ is a small positive constant.

Exercise 14 $f(n) \prec g(n)$ denotes f(n) = o(g(n)). Using this notation, find the hierarchy of the following functions: $\log^2 n$, 2^{n^2} , $\log \log n$, n!, 2^n , $n^{4/5}$, \sqrt{n} ; and fill up the following table.

Exercise 15 Let $f_1(n)$ and $f_2(n)$ be two non-negative functions in n, where n is a positive integer. Suppose $f_1(n) = O(f_2(n))$.

(i) Show that $f_2(n) = \Omega(f_1(n))$.

(ii) Consider the statement: $2^{f_1(n)} = O(2^{f_2(n)})$. If it is true, prove it; else, disprove it.

Exercise 16 Let f(n) and g(n) be asymptotically positive functions. Prove the following:

Transitivity: $f(n) = \mathcal{X}(g(n))$ and $g(n) = \mathcal{X}(h(n))$ imply $f(n) = \mathcal{X}(h(n))$ where $\mathcal{X} = \{O, \Omega, \Theta, o, \omega\}.$

Reflexivity: $f(n) = \mathcal{X}(f(n))$ where $\mathcal{X} = \{O, \Omega, \Theta\}$.

Symmetry: $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.

Transpose Symmetry: f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$.

Transpose Symmetry: f(n) = o(g(n)) if and only if $g(n) = \omega(f(n))$.

Exercise 17 The assymptotic notation O satisfies the transitive property, i.e. if f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)). Now, if $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ exists, then $\lim_{n\to\infty} \frac{f(n)}{g(n)} \neq \infty$ implies f(n) = O(g(n)). Now, let $f(n) = 2^{n+1}$ and $g(n) = 2^n$. Then, $\lim_{n\to\infty} \frac{2^{n+1}}{2^n} = 2 \neq \infty$. So, $2^{n+1} = O(2^n)$. Extending this further, we can write $2^n = O(2^{n-1})$, ..., $2^i = O(2^{i-1})$, ... So, using the transitive property, we can write $2^{n+1} = O(2^{i-1})$. We can go on extending this, so that finally $2^{n+1} = O(2^k)$, where k is a constant. So, we can write $2^{n+1} = O(1)$. Do you agree to what has been proved? If not, where is the fallacy?

References

- [1] J. Matoušek and J. Nešetřil, *Invitation to Discrete Mathematics*, Oxford University Press, New York, 1998.
- [2] C. L. Liu, Elements of Discrete Mathematics, Tata McGraw Hill, New Delhi, 2000.
- [3] Ronald L. Graham, Donald E. Knuth and O. Patashnik, *Concrete Mathematics*, Pearson Education,
- [4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Algorithms Design Techniques and Analysis, Prentice Hall of India.