Parishram (2025)

Physics

Electric Charges and Fields

DPP:6

- $\mathbf{Q1}$ A point \mathbf{Q} lies on the perpendicular bisector of an electrical dipole of dipole moment p. If the distance of Q from the dipole is r (much larger than the size of the dipole), then electric field at Q is proportional to
 - (A) p^{-1} and r^{-2}
 - (B) p and r^{-2}
 - (C) p^2 and r^{-3}
 - (D) p and r^{-3}
- Q2 The electric field due to an electric dipole at a distance r from its centre in axial position is E. If the dipole is rotated through an angle of 90° about its perpendicular axis, the electric field at the same point will be
 - (A) E
 - (B) $\mathrm{E}/4$
 - (C) $\mathrm{E}/2$
 - (D) 2E
- Q3 A region surrounding a stationary electric dipoles has
 - (A) Magnetic field only
 - (B) Electric field only
 - (C) Both electric and magnetic fields
 - (D) No electric and magnetic fields
- **Q4** A water molecule has an electric dipole moment $6.4 imes 10^{-30} \mathrm{C} - \mathrm{m}$ when it is in vapour state. The distance in metre between the centre of positive and negative charge of the molecule is (Given that charge of positivity is $1.6 imes 10^{-19} \mathrm{C}$)

- (A) $4 imes 10^{-10}$
- (B) $4 imes 10^{-11}$
- (C) $4 imes 10^{-12}$
- (D) 4×10^{-13}
- Q5 The electric dipole moment of an electron and a proton 4.3 nm apart is
 - (A) $6.88 \times 10^{-28} \text{Cm}$
 - (B) $2.56 \times 10^{-29} \text{Cm}$
 - (C) $3.72 \times 10^{-14} \text{Cm}$
 - (D) 11×10^{-46} Cm
- **Q6** The electric intensity due to a dipole of length $10 \mathrm{~cm}$ and having a charge of $500 \mu\mathrm{C}$, at a point on the axis at a distance $20~\mathrm{cm}$ from one of the charges in air, is
 - (A) $6.25 \times 10^7 \text{ N/C}$
 - (B) $9.28 \times 10^7 \text{ N/C}$
 - (C) $13.1 \times 10^{11} \text{ N/C}$
 - (D) $20.5 \times 10^7 \text{ N/C}$
- Q7 An electric dipole has a pair of equal and opposite point charges q and -q separated by a distance 2x. The axis of the dipole is defined
 - (A) Direction from positive charge to negative charge
 - (B) Direction from negative charge to positive charge
 - (C) Perpendicular to the line joining the two charges drawn at the centre and pointing upward direction
 - (D) Perpendicular to the line joining the two charges drawn at the centre and pointing

downward direction

Q8 If the magnitude of intensity of electric field at a distance x on axial line and at a distance yon equatorial line on a given dipole are equal,

then x:y is (A) 1:1

(B) $1:\sqrt{2}$

(C) 1:2

(D) $\sqrt[3]{2}:1$

Answer K

(A) Q1 (D) Q5 (C) (A) Q2 Q6 Q3 (B) (B) **Q7**

Q4 (B) (D) Q8

Hints & Solutions

Note: scan the QR code to watch video solution

Q1 Video Solution:

Q2 Video Solution:

Q3 Video Solution:

Q4 Video Solution:

Q5 Video Solution:

Q6 Video Solution:

Q7 Video Solution:

Q8 Video Solution:

