Modern Fizika Laboratórium

Atomok gerjesztési potenciálja jegyzőkönyv

Mérést végezte: Fejes Bence (Q68ZKZ) Koroknai Botond (AT5M0G) Mérés időpontja: 2023.11.7

Jegyzőkönyv leadásának időpontja: 2023.11.18

Tartalomjegyzék:

1	Bevezetés	2						
2	Mérést célja	2						
3	Eszközök							
	Mérés menete és mért adatok4.1 Neon4.2 Higany	3						
	Számítási feladatok5.1 Hullámhosszak meghatározása	4						
6	Diszkusszió	5						

1 Bevezetés

Niels Bohr 1913-ban bevezetett egy planetáris atommodell, melyben azt feltételezte, hogy az atommag körül az elektronok, csak meghatározott energiapályákon keringhetnek. 1914-ben James Franck és Gustav Hertz kísérletileg is alátámasztotta ezt a feltevést. A kísérletük során termikusan gerjesztett elektronokat gyorsítottak higanygőzt tartalmazó csőben, és azt figyelték meg, hogy biznyos gyorsítófeszültség alatt az elektronoknak nincs elég kinetikus energiája ahhoz, hogy a higany atomok elektronjait gerjesszék. A kritikus feszültséget elévre és afölött már rugalmatlan ütközéssel gerjeszthetőek a higany atomokot, amelyek a gerjesztés hatására a többlet enerigát az uv tartományba eső fotonok formájában sugározzák ki. A labor során ezen mérést probáljuk meg reprodukálni higany és neon esetén.

2 Mérést célja

A feladatunk, hogy a neon és higany legalacsonyabb gerjesztési potenciálját, valamint a bennük lévő szabad úthosszat meghatározzuk.

3 Eszközök

- · mérőprogram
- neoncső
- higanycső
- · kályha
- · Fracnk-Herz tápegység

4 Mérés menete és mért adatok

A mérés során az adott gázokat tartalmazó csöveket rákötöttük a tápegységre és potencióméter segítségével különböző feszültségeket kapcsoltunk rá és a mérőprogram segítségével vizsgáltuk az anódáram változását az U_2 gyorsítófeszültség függvényében. A mérés két részre volt bontva. Először konstans U_1 (keletkező elektronok számát szabályozó feszültség) melett mértünk, U_3 -at (ellenfeszültség) változatgatva, majd pont fordítva. Íly módon 6-6 mérést végeztünk mindkét cső esetén. A mérés során kapott ábrákon az anódáram lokális maximumok és minimumok között ingadozik, ez mutatja, hogy az elektornok az adott atomokat diszkrét gerjesztési energiájú szintekre léptették. A szomszédos maximumok távolsága közti feszültségkülönbség, a mérés során közelítőleg végig azonos marad, így a köztük lévő Δu feszültségkülönbségből megadható a legalacsonyabb gerjesztési enrgia:

$$E = e \cdot \Delta U$$

ahol e az elemi töltést jelölje. mérés során ΔU értékének a csúcsok közti feszültségkülönbség átagát vettük, míg hibájának a szórásukat.

4.1 Neon

Ábra 1: A 6 mérés a neon esetén

U_1 [V]	U_3 [V]	ΔU [V]	E [eV]
1.7	7.4	18.47 ± 0.72	18.47 ± 0.72
1.7	7.8	18.85 ± 1.1	18.85 ± 1.1
1.7	8.2	18.85 ± 1.1	18.86 ± 1.1
7.8	1.4	18.48 ± 1.45	18.48 ± 1.45
7.8	1.7	18.85 ± 1.1	18.85 ± 1.1
7.8	2	18.85 ± 1.1	18.85 ± 1.1

A neon első gerjesztési energiája így:

$$E_{Ne} = 18.727 \pm 0.178 \, eV$$

4.2 Higany

Ábra 2: A 6 mérés a higany esetén

U_1 [V]	U_3 [V]	ΔU [V]	E [eV]
5,5	0,7	$5,02 \pm 0,20$	$5,02 \pm 0,20$
5,5	1,0	$4,87 \pm 0,43$	$4,87 \pm 0,43$
5,5	1,3	$5,02 \pm 0,20$	$5,02 \pm 0,20$
5,0	1,0	$4,94 \pm 0,43$	$4,94 \pm 0,43$
5,5	1,0	$5,02 \pm 0,20$	$5,02 \pm 0,20$
6,0	1,0	$5,02 \pm 0,21$	$5,02 \pm 0,21$

táblázat 1: A higany mért és számolt adatai

A higany első gerjesztési energiája így:

$$E_{Hg} = 4,982 \pm 0,107 \, eV$$

5 Számítási feladatok

5.1 Hullámhosszak meghatározása

A hullámhosszak, melyek az első gerjesztési potenciálokhoz tartoznak két összefüggés segítségével meghatározhatóak:

$$E = h\nu \tag{1}$$

és

$$c = \lambda \nu \tag{2}$$

ahol E a gerejesztési potenciál, h a Planck állandó, ($h=6,62607015\cdot 10^{-34}\frac{m^2kg}{s}$, ν a frekvencia, c a fény vákuumbeli terjedési sebessége ($c=299792458\frac{m}{s}$), λ pedig a hullámhossz.

Az (1)-es és (2)-es egyenlet rendezésével az alábbi egyenletet kapjuk:

$$\lambda = \frac{ch}{E} \tag{3}$$

Ha a képletet az energia szerint deriváljuk, akkor meghatározható a hullámhossz hibája $(\Delta \lambda)$ az alábbiak szerint:

$$\Delta \lambda = \frac{ch}{E^2} \cdot \Delta E \tag{4}$$

A neonra és a higanyra számolt hullámhosszak és hibáik az alábbi táblázatban láthatóak:

	λ [nm]	$\Delta\lambda$ [nm]	$\lambda_{irodalmi}$ [nm]
Ne	66,30	0,63	66.3
Hg	249,20	5,35	254

táblázat 2: A kibocsátott fotonok hullámhossza

A neon által kibocsátott foton hullámhossza gyakorlatilag szinte megegyezik az irodalmi értékkel (a kerekítések miatt úgytűnik, hogy teljesen, de valójában nem teljesen egyezik). A higany esetében nagyobb hibát tapasztalunk, azonban még ez is alig több, mint 2%-os relatív hiba. Ezt okozhatta a hőmérsékletnek az itt számításba nem vett hibája is.

5.2 Szabad úthossz kiszámítása

A szabad úthossz számításhoz a következő képletet használtuk fel:

$$A = \frac{1}{n\sigma} = \frac{k_B T}{p} \frac{1}{\sigma_{tot}} = \frac{k_B T}{8.7 \cdot 10^{(9 - (3110/T))} \cdot 3.5\pi a^2}$$
 (5)

ahol k_B a Boltzmann-állandó ($k_B=1,38065\cdot 10^{-23}~\frac{m^2kg}{s^2K}$), a a Bohr-sugár ($a=5,29177\cdot 10^{-11}$ m), T pedig a higanygőz hőmérésklete (T=403 K). Az összefüggés a szabad úthosszra az alábbi eredményt adja T=403 K esetén:

$$A = 1,083 \ mm$$

Az így kapott úthossz összhangban van a kísérleti eredménnyel, mert ez a távolság jóval kisebb a katód-anód távolságnál, és ennek így is kell lennie. Amennyiben a katód-anód távolsággal összemérhető lenne a szabad úthossz, akkor az megnehezítené az anódáram mintázatának a kiértékelését.

6 Diszkusszió

A mérés során az U_2 függvényében az anódáram jellegzetes görbéit megkaptuk. A kiértékelés során az kibocsátott fotonok hullámhosszát az első gerjesztési potenciálok esetén meg tuduk határozni, és azok az irodalmi értékektől jelentősen nem különböztek. A neon esetén kifejezetten jól egyezett az általunk meghatározott érték, a higany esetén pedig valószínűleg a hőmérséklet általunk nem mért hibája okozhata a kicsit nagyobb eltérést az irodalmi hullámhossz értéktől. A mérés ezek alapján egyértelműen sikeresnek mondható.