PS 2

Unsupervised Machine Learning (40800)

William Parker

${\bf Contents}$

Computation	2
1. Calculate Manhattan, Canberra, and Euclidean distances "by hand" (i.e., create the data,	
program each line, and make the calculations). What are the values for each measure?	2
2. Use the dist() function in R to check your work. Were you right or wrong? (be honest in your	
reporting). If wrong, after debugging, where and why did you go wrong?	3
3. What are the key differences between these measures, and why does it matter? How might you	
see these differences "in action" with these fictitious data?	3
4. Use some basic EDA techniques to present and discuss the old faithful data set (e.g., visualize,	
describe in multiple ways, etc.)	3
5. Calculate a dissimilarity matrix of these data	10
6. Generate an ODI for the Old Faithful data. What do you see?	11
7. Using any munging tools you'd like (e.g., dplyr from the Tidyverse), create a subset of the iris	
data excluding the species feature	11
8. Fit an agglomerative hierarchical clustering algorithm using complete linkage on your subset	
data and render the dendrogram of clustering results. What do you see?	14
9. Try cutting the tree at 2 and 3 branches and show these trees side-by-side. How do they differ?	15
10. Now fit the algorithm using single and complete linkage and present each dendrogram side-by-	
side. Discuss the differences. What effects can we see in the clustering patterns when using	
different linkage methods?	16
Critical Thinking	18
1. You just assessed the clusterability of some feature space \mathbb{R}^n . Address the following questions: .	18
2. Locate (and read) a paper that applies the hierarchical agglomerative clustering technique.	10
Address the following questions:	19
rigaress the following questions	13

Computation

```
library(tidyverse)
library(dendextend)
```

You fielded a survey and collected some wildly descriptive feature vectors. Use the following vectors to address questions 1-3:

```
p \leftarrow c(1,2)
q \leftarrow c(3,4)
```

1. Calculate Manhattan, Canberra, and Euclidean distances "by hand" (i.e., create the data, program each line, and make the calculations). What are the values for each measure?

Manhattan

```
\begin{split} d_{manhattan}(p,q) &= \sum_{i=1}^{n} |p_i - q_i| \\ d_{minkowski} &<- \text{ function}(p, q, m) \{ \\ \text{ dist } &<- \text{ function}(x,y) \text{ abs}(x-y)^m \\ & (\text{sum}(\text{mapply}(\text{dist}, p, q)))^*(1/m) \} \\ \\ \text{Manhattan_dist } &<- \text{ d_minkowski}(p, q, 1) \end{split}
```

the manhattan distance is 4

Canberra

```
\begin{split} d_{manhattan}(p,q) &= \sum_{i=1}^{n} \frac{|p_i - q_i|}{|p_i| + |q_i|} \\ d_{canberra} &<- \text{ function}(p, q) \{ \\ \text{ dist } &<- \text{ function}(x,y) \text{ abs}(x-y) / (\text{abs}(x) + \text{abs}(y)) \\ &\text{ sum}(\text{mapply}(\text{dist}, p, q)) \\ \} \end{split} Canberra_dist <- \text{ d_canberra}(p,q)
```

The Canberra distance is 0.8333333

Euclidean

```
d_{Euclidean} = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2} Euclidean_dist <- d_minkowski(p, q, 2)
```

The Euclidean distance is 2.8284271

2. Use the dist() function in R to check your work. Were you right or wrong? (be honest in your reporting). If wrong, after debugging, where and why did you go wrong?

3. What are the key differences between these measures, and why does it matter? How might you see these differences "in action" with these fictitious data?

The Manhattan distance is the sum of the absolute values of the differences between each vector component, here it is larger than the euclidean distance which is the square root of the sum of square of distances between components. If p and q were physical points in space this would represent the "taxicab" and "crow files" distances respectively, and explain why the manhattan distance is larger.

The Canberra is a weighted version of the manhattan distance. This would be more sensitive to changes in p and q very close to the origin ((0,0) in this case), as it weighs each absolute value by the sum of the asbolute value of p and q

4. Use some basic EDA techniques to present and discuss the old faithful data set (e.g., visualize, describe in multiple ways, etc.)

I'll start by just looking at the dataset

All my calculated distances were correct!

```
faithful <- faithful

faithful
```

```
##
       eruptions waiting
## 1
            3.600
                        79
## 2
            1.800
                        54
## 3
                        74
            3.333
## 4
            2.283
                        62
## 5
                        85
            4.533
## 6
            2.883
                        55
## 7
            4.700
                        88
## 8
            3.600
                        85
                        51
## 9
            1.950
                        85
## 10
            4.350
## 11
            1.833
                        54
## 12
            3.917
                        84
```

##	13	4.200	78
##	14	1.750	47
##	15	4.700	83
##	16	2.167	52
##	17	1.750	62
##	18	4.800	84
##	19	1.600	52
##	20	4.250	79
##	21	1.800	51
##	22	1.750	47
##	23	3.450	78
##	24	3.067	69
##	25	4.533	74
##	26	3.600	83
##	27	1.967	55
##	28	4.083	76
##	29	3.850	78
##	30	4.433	79
##	31	4.300	73
##	32	4.467	77
##	33	3.367	66
##	34	4.033	80
##	35	3.833	74
##	36	2.017	52
##	37	1.867	48
##	38	4.833	80
##	39	1.833	59
##	40	4.783	90
##	41	4.350	80
##	42	1.883	58
##	43	4.567	84
##	44	1.750	58
##	45	4.533	73
##	46	3.317	83
##	47	3.833	64
##	48	2.100	53
##	49	4.633	82
##	50	2.000	59
##	51	4.800	75
##	52	4.716	90
##	53	1.833	54
##	54	4.833	80
##	55	1.733	54
##	56	4.883	83
##	57	3.717	71
##	58	1.667	64
##	59	4.567	77
##	60	4.317	81
##	61	2.233	59
##	62	4.500	84
##	63	1.750	48
##	64	4.800	82
##	65	1.817	60
##	66	4.400	92
			_

##	67	1 167	70
##	67	4.167	78
##	68	4.700	78
##	69	2.067	65
##	70	4.700	73
##	71	4.033	82
##	72	1.967	56
##	73	4.500	79
##	74	4.000	71
##	75	1.983	62
##	76	5.067	76
##	77	2.017	60
##	78	4.567	78
##	79	3.883	76
##	80	3.600	83
##	81	4.133	75
##	82	4.333	82
##	83	4.100	70
##	84	2.633	65
##	85	4.067	73
##	86	4.933	88
##	87	3.950	76
##	88	4.517	80
##	89	2.167	48
##	90	4.000	86
##	91	2.200	60
##	92	4.333	90
##	93	1.867	50
##	94	4.817	78
##	95	1.833	63
##	96	4.300	72
##	97	4.667	84
##	98	3.750	75
##	99	1.867	51
##	100	4.900	82
##	101	2.483	62
##	102	4.367	88
##	103	2.100	49
##	104	4.500	83
##	105	4.050	81
##	106	1.867	47
	107		
##		4.700	84
##	108	1.783	52
##	109	4.850	86
##	110	3.683	81
##	111	4.733	75
##	112	2.300	59
##	113	4.900	89
##	114	4.417	79
##	115	1.700	59
##	116	4.633	81
##	117	2.317	50
##	118	4.600	85
##	119	1.817	59
##	120	4.417	87
			91

##	121	2.617	53
##	122	4.067	69
##	123	4.250	77
##	124	1.967	56
##	125	4.600	88
##	126	3.767	81
##	127	1.917	45
##	128	4.500	82
##	129	2.267	55
##	130	4.650	90
##	131	1.867	45
##	132	4.167	83
##	133	2.800	56
##	134	4.333	89
##	135	1.833	46
##	136	4.383	82
##	137	1.883	51
##	138	4.933	86
##	139	2.033	53
##	140	3.733	79
##	141	4.233	81
##	142	2.233	60
##	143	4.533	82
##	144	4.817	77
##	145	4.333	76
##	146	1.983	59
##	147	4.633	80
##	148	2.017	49
##	149	5.100	96
##	150	1.800	53
##	151	5.033	77
##	152	4.000	77
##	153	2.400	65
##	154	4.600	81
##	155	3.567	71
##	156	4.000	70
##	157	4.500	81
##	158	4.083	93
##	159	1.800	53
##	160	3.967	89
##	161	2.200	45
##	162	4.150	86
##	163	2.000	58
##	164	3.833	78
##	165	3.500	66
##	166	4.583	76
##	167	2.367	63
##	168	5.000	88
##	169	1.933	52
##	170	4.617	93
##	171	1.917	49
##	172	2.083	57
##	173	4.583	77
##	174	3.333	68

##	175	4.167	81
##	176	4.333	81
##	177	4.500	73
##	178	2.417	50
##	179	4.000	85
##	180	4.167	74
##	181	1.883	55
##	182	4.583	77
##			
		4.250	83
##		3.767	83
##		2.033	51
##		4.433	78
##		4.083	84
##		1.833	46
##	189	4.417	83
##	190	2.183	55
##	191	4.800	81
##	192	1.833	57
##	193	4.800	76
##	194	4.100	84
##	195	3.966	77
##	196	4.233	81
##	197	3.500	87
##		4.366	77
##	199	2.250	51
##	200	4.667	78
##	201	2.100	60
	202		
##		4.350	82
##	203	4.133	91
##	204	1.867	53
##	205	4.600	78
##	206	1.783	46
##		4.367	77
##		3.850	84
##	209	1.933	49
##	210	4.500	83
##	211	2.383	71
##	212	4.700	80
##	213	1.867	49
##	214	3.833	75
##	215	3.417	64
##	216	4.233	76
##	217	2.400	53
##	218	4.800	94
##	219	2.000	55
##	220	4.150	76
##	221	1.867	50
##	222	4.267	82
##	223	1.750	54
##			
	224	4.483	75 70
##	225	4.000	78 70
##	226	4.117	79 70
##	227	4.083	78
##	228	4.267	78

```
## 229
                        70
           3.917
## 230
           4.550
                       79
## 231
           4.083
                       70
## 232
           2.417
                       54
## 233
           4.183
                       86
## 234
           2.217
                       50
## 235
           4.450
                       90
## 236
           1.883
                       54
## 237
           1.850
                       54
## 238
                       77
           4.283
## 239
           3.950
                        79
## 240
           2.333
                        64
                       75
## 241
           4.150
## 242
           2.350
                        47
## 243
           4.933
                       86
## 244
           2.900
                        63
## 245
           4.583
                       85
## 246
           3.833
                        82
## 247
           2.083
                       57
## 248
           4.367
                       82
## 249
           2.133
                       67
## 250
           4.350
                       74
## 251
           2.200
                       54
## 252
           4.450
                       83
## 253
           3.567
                       73
## 254
           4.500
                       73
## 255
           4.150
                       88
## 256
           3.817
                        80
## 257
           3.917
                       71
## 258
           4.450
                       83
## 259
           2.000
                       56
## 260
           4.283
                        79
## 261
                        78
           4.767
## 262
           4.533
                       84
## 263
           1.850
                        58
## 264
           4.250
                       83
## 265
           1.983
                        43
## 266
           2.250
                       60
## 267
           4.750
                       75
## 268
                       81
           4.117
## 269
           2.150
                        46
## 270
           4.417
                        90
## 271
           1.817
                        46
                        74
## 272
           4.467
```

Looks like we have 2 variables, eruptions and waiting. I'll use the skimr package to get some numeric summaries of each variable

```
p0
                                                        p25 p50
                                                                  p75 p100
##
     variable missing complete
                                  n
                                     mean
                                             sd
                                          1.14
                                                                 4.45
##
                    0
                            272 272
                                    3.49
                                                      2.16
                                                                      5.1
    eruptions
                                                 1.6
##
      waiting
                    0
                            272 272 70.9 13.59 43
                                                      58
                                                             76 82
                                                                      96
##
        hist
##
##
```

We have a total of 272 observations of each variable. Reading the documentation, waiting is the time between each eruption event (? units) and eruptions is the duration of the eurption (in minutes). Regardless, both waiting and eruptions seem to have a bimodal distribution.

Next I do a simple scatter plot of the observations

```
faithful %>%
  ggplot(aes(x = waiting, y = eruptions)) +
  geom_point()+
  labs(title = "eruption time vs. waiting time")
```

eruption time vs. waiting time

Assuming that both scales are in minutes, we seem to have two clear clusters of eurption events. If the waiting time is shorter (50-65 min) then the eruption lasts around 2 minutes. If the waiting time if longer, the eruption last longer. While there is a clear positive correlation between waiting time and eruption duration, there is a paucity of data from 65-75 minutes, suggesting something is separating these two groups clearly.

From this plot I believe we can safely conclude that a linear model of data generation like $eruptionTime = \beta_0 + \beta_1 * waiting + \epsilon$ is insufficient to fully describe what is going on.

I was curious to see how scaling (which we do in the next step) would effect the plot

```
faithful %>%
scale() %>%
```

```
as_tibble() %>%
ggplot(aes(x = waiting, y = eruptions)) +
geom_point() +
labs(title = "scaled eruption time vs. scaled waiting time")
```

scaled eruption time vs. scaled waiting time

Looks exactly the same, which makes sens because scale just performs the same linear transformation on each axises (mean centers each column and divides each column value by it's standard deviation), which shouldn't effect the relative position of each point

5. Calculate a dissimilarity matrix of these data.

I will scale the data first with scale

```
faith_dist <- faithful %>%
    scale() %>%
    dist()

length(faith_dist)
```

[1] 36856

I calculate the distance matrix which is 272 x 272. This matrix should have 73984 entries, but the calculated object only has 36856 entries. The explanaiton is for this is that the matrix is symmetric and all the diagonal elements are zero, so R only returns (73984 - 272)/2 = 36856 important non-zero unique entries (i.e. n * (n-1)/2)

Note that I used euclidean distance which is the default distance metric in dist()

6. Generate an ODI for the Old Faithful data. What do you see?

```
seriation::dissplot(faith_dist)
```

```
## Registered S3 method overwritten by 'seriation':
## method from
## reorder.hclust gclus
```


The Ordered Dissimilarity Image (ODI) demonstrates two clear clusters of observations.

7. Using any munging tools you'd like (e.g., dplyr from the Tidyverse), create a subset of the iris data excluding the species feature

```
iris_no_species <- iris %>%
   select(-Species)

iris_no_species
```

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
##	1	5.1	3.5	1.4	0.2
##	2	4.9	3.0	1.4	0.2
##	3	4.7	3.2	1.3	0.2
##	4	4.6	3.1	1.5	0.2
##	5	5.0	3.6	1.4	0.2
##	6	5.4	3.9	1.7	0.4
##	7	4.6	3.4	1.4	0.3
##	8	5.0	3.4	1.5	0.2
##	9	4.4	2.9	1.4	0.2

##	10	4.9	3.1	1.5	0.1
##	11	5.4	3.7	1.5	0.2
##	12	4.8	3.4	1.6	0.2
##	13	4.8	3.0	1.4	0.1
##	14	4.3	3.0	1.1	0.1
##	15	5.8	4.0	1.2	0.2
##	16	5.7	4.4	1.5	0.4
##	17	5.4	3.9	1.3	0.4
##	18	5.1	3.5	1.4	0.3
##	19	5.7	3.8	1.7	0.3
##	20	5.1	3.8	1.5	0.3
##	21	5.4	3.4	1.7	0.2
##	22	5.1	3.7	1.5	0.4
##	23	4.6	3.6	1.0	0.2
##	24	5.1	3.3	1.7	0.5
##	25	4.8	3.4	1.9	0.2
##	26	5.0	3.0	1.6	0.2
##	27	5.0	3.4	1.6	0.4
	28	5.2	3.5	1.5	0.2
	29	5.2	3.4	1.4	0.2
			3.2		
	30	4.7		1.6	0.2
	31	4.8	3.1	1.6	0.2
	32	5.4	3.4	1.5	0.4
	33	5.2	4.1	1.5	0.1
##	34	5.5	4.2	1.4	0.2
##	35	4.9	3.1	1.5	0.2
##	36	5.0	3.2	1.2	0.2
##	37	5.5	3.5	1.3	0.2
##	38	4.9	3.6	1.4	0.1
##	39	4.4	3.0	1.3	0.2
##	40	5.1	3.4	1.5	0.2
	41	5.0	3.5	1.3	0.3
	42	4.5	2.3	1.3	0.3
	43	4.4	3.2	1.3	0.2
	44	5.0	3.5	1.6	0.6
	45	5.1	3.8	1.9	0.4
##		4.8	3.0	1.4	0.3
##		5.1	3.8	1.6	0.2
##	48	4.6	3.2	1.4	0.2
##	49	5.3	3.7	1.5	0.2
##	50	5.0	3.3	1.4	0.2
##	51	7.0	3.2	4.7	1.4
##	52	6.4	3.2	4.5	1.5
##	53	6.9	3.1	4.9	1.5
##	54	5.5	2.3	4.0	1.3
	55	6.5	2.8	4.6	1.5
##	56	5.7	2.8	4.5	1.3
	57	6.3	3.3	4.7	1.6
	58	4.9	2.4	3.3	1.0
	59	6.6	2.9	4.6	1.3
	60	5.2	2.7	3.9	1.4
##		5.0	2.0	3.5	1.0
##		5.9	3.0	4.2	1.5
##	63	6.0	2.2	4.0	1.0

##	64	6.1	2.9	4.7	1.4
##	65	5.6	2.9	3.6	1.3
##	66	6.7	3.1	4.4	1.4
##	67	5.6	3.0	4.5	1.5
##	68	5.8	2.7	4.1	1.0
##	69	6.2	2.2	4.5	1.5
##	70	5.6	2.5	3.9	1.1
##	71	5.9	3.2	4.8	1.8
##	72	6.1	2.8	4.0	1.3
##	73	6.3	2.5	4.9	1.5
##	74	6.1	2.8	4.7	1.2
##	75	6.4	2.9	4.3	1.3
##	76	6.6	3.0	4.4	1.4
##	77	6.8	2.8	4.8	1.4
##	78	6.7	3.0	5.0	1.7
##	79	6.0	2.9	4.5	1.5
##	80	5.7	2.6	3.5	1.0
##	81	5.5	2.4	3.8	1.1
##		5.5	2.4	3.7	1.0
##	83	5.8	2.7	3.9	1.2
##		6.0	2.7	5.1	1.6
##		5.4	3.0	4.5	1.5
##		6.0	3.4	4.5	1.6
##		6.7	3.1	4.7	1.5
##		6.3	2.3	4.4	1.3
##		5.6	3.0	4.1	1.3
##		5.5	2.5	4.0	1.3
	91	5.5	2.6	4.4	1.2
##		6.1	3.0	4.6	1.4
##		5.8	2.6	4.0	1.2
	94	5.0	2.3	3.3	1.0
	95	5.6	2.7	4.2	1.3
	96	5.7	3.0	4.2	1.2
	97	5.7	2.9	4.2	1.3
	98	6.2	2.9	4.3	1.3
	99	5.1	2.5	3.0	1.1
##	100	5.7	2.8	4.1	1.3
##	101	6.3	3.3	6.0	2.5
##	102	5.8	2.7	5.1	1.9
##	103	7.1	3.0	5.9	2.1
##	104	6.3	2.9	5.6	1.8
##	105	6.5	3.0	5.8	2.2
##	106	7.6	3.0	6.6	2.1
##	107	4.9	2.5	4.5	1.7
##	108	7.3	2.9	6.3	1.8
##	109	6.7	2.5	5.8	1.8
##	110	7.2	3.6	6.1	2.5
##	111	6.5	3.2	5.1	2.0
##	112	6.4	2.7	5.3	1.9
##	113	6.8	3.0	5.5	2.1
##	114	5.7	2.5	5.0	2.0
##	115	5.8	2.8	5.1	2.4
##	116	6.4	3.2	5.3	2.3
##	117	6.5	3.0	5.5	1.8
	•	-	-	-	

```
## 118
                  7.7
                               3.8
                                             6.7
                                                           2.2
## 119
                  7.7
                               2.6
                                             6.9
                                                           2.3
## 120
                  6.0
                               2.2
                                             5.0
                                                           1.5
## 121
                               3.2
                                                           2.3
                 6.9
                                             5.7
## 122
                 5.6
                               2.8
                                             4.9
                                                           2.0
## 123
                                             6.7
                                                           2.0
                 7.7
                               2.8
## 124
                 6.3
                               2.7
                                             4.9
                                                           1.8
## 125
                                                           2.1
                 6.7
                               3.3
                                             5.7
## 126
                 7.2
                               3.2
                                             6.0
                                                           1.8
                                             4.8
## 127
                 6.2
                               2.8
                                                           1.8
## 128
                  6.1
                               3.0
                                             4.9
                                                           1.8
## 129
                  6.4
                               2.8
                                             5.6
                                                           2.1
## 130
                  7.2
                               3.0
                                             5.8
                                                           1.6
## 131
                 7.4
                               2.8
                                             6.1
                                                           1.9
## 132
                 7.9
                               3.8
                                             6.4
                                                           2.0
## 133
                  6.4
                               2.8
                                             5.6
                                                           2.2
## 134
                  6.3
                                             5.1
                                                           1.5
                               2.8
## 135
                  6.1
                               2.6
                                             5.6
                                                           1.4
## 136
                 7.7
                               3.0
                                             6.1
                                                           2.3
## 137
                  6.3
                               3.4
                                             5.6
                                                           2.4
## 138
                 6.4
                               3.1
                                             5.5
                                                           1.8
## 139
                  6.0
                               3.0
                                             4.8
                                                           1.8
## 140
                 6.9
                               3.1
                                             5.4
                                                           2.1
## 141
                  6.7
                               3.1
                                             5.6
                                                           2.4
## 142
                 6.9
                               3.1
                                             5.1
                                                           2.3
## 143
                 5.8
                               2.7
                                             5.1
                                                           1.9
## 144
                 6.8
                               3.2
                                             5.9
                                                           2.3
## 145
                  6.7
                                             5.7
                               3.3
                                                           2.5
## 146
                  6.7
                               3.0
                                             5.2
                                                           2.3
## 147
                  6.3
                               2.5
                                             5.0
                                                           1.9
## 148
                  6.5
                               3.0
                                             5.2
                                                           2.0
## 149
                  6.2
                               3.4
                                             5.4
                                                           2.3
## 150
                 5.9
                               3.0
                                             5.1
                                                           1.8
```

scale the features and calculate a dissimilarity matrix

```
iris_dist <- iris_no_species %>%
    scale() %>%
    dist()

length(iris_dist)
```

[1] 11175

We get the expected n * (n-1)/2 number of unique non-zero entries

8. Fit an agglomerative hierarchical clustering algorithm using complete linkage on your subset data and render the dendrogram of clustering results. What do you see?

```
ggdendro::dendro_data(hc_complete)$segments %>%
ggplot() +
geom_segment(aes(x = x, y = y, xend = xend, yend = yend)) +
labs(y = "distance", x = "flower index")
```


early on the tree (distance just below 6) could be cut at k = 3. Another natural cut would be just below a distance of 4, yielding k = 5.

9. Try cutting the tree at 2 and 3 branches and show these trees side-by-side. How do they differ?

Looks like Cluster 1 in the k=2 cut gets divided pretty significantly into clusters of 49 and 24 observations. Cluster 2 in the k=2 cut stays intact (becoming cluster #3 in the k=3 cut). this suggests that 3 cuts are probably better than 2.

To plot the cuts with color, I use the dendextend package

```
dend <- iris_no_species %>%
    scale() %>%
    dist() %>%
    hclust(method = "complete") %>%
    as.dendrogram()

par(mfrow = c(1, 2))

dend %>%
    set("branches_k_color", value = c("darkgreen", "purple"), k = 2) %>%
    set("labels", NA ) %>%
    plot(main = "k = 2")

dend %>%
    set("branches_k_color", value = c("darkgreen", "red", "darkblue"), k = 3) %>%
    set("labels", NA ) %>%
    plot(main = "k = 3")
```


10. Now fit the algorithm using single and complete linkage and present each dendrogram side-by-side. Discuss the differences. What effects can we see in the clustering patterns when using different linkage methods?

```
par(mfrow = c(1, 2))

iris_no_species %>%
    scale() %>%
    dist() %>%
    hclust(method = "complete") %>%
    as.dendrogram() %>%
    set("labels", NA ) %>%
    plot(main = "complete")
```

```
iris_no_species %>%
  scale() %>%
  dist() %>%
  hclust(method = "single") %>%
  as.dendrogram() %>%
  set("labels", NA ) %>%
  plot(main = "single")
```

complete

single

The differences

between the complete and single methods are quite striking here. the complete method joins the two clusters with the smallest distance between their elements that are furthest apart, whereas the single method joins the two clusters that have the shortest distance between their closest elements.

Thus the single method is more likely to "chain" mainy roups with the same distance from single elements being close together, even though the groups may be far apart. Complete clustering finds more compact clusters of similar diameter, that is apparent in this example as well.

Interestingly despite the differing tree structure, the k=3 cut groups seem to be relatively preserved, although the first group has more observations now

Critical Thinking

1. You just assessed the clusterability of some feature space \mathbb{R}^n . Address the following questions:

a. How would you go about determining whether clustering made sense to consider or not?

Before launching into techniques designed to diagnose clusterability (see my answer to b below), I would think about the nature of the data and possible models of the data generating process and ask

- 1. based on what we know about where the data came from, is it reasonable to suspect that the data may be clustered?
- 2. if the data are clustered, so what? What does the clustering add to our knowledge about the data?

To use a medical example, let's say there is reason to suspect disease X might not just be one distinct disease but instead multiple similar disease states with different causes and treatments. Proceeding to diagnosing clusterability in a high dimensional clinical dataset of patient with disease X in this context makes a lot of sense.

b. What are techniques you would use, and what might you be looking for from each?

- 1. exploratory data analysis (EDA). Like in the old faithful example, a grid of scatter plots of different combinations of features may demonstrate a clear case for clustering. If the dimension n is very high, I would use a dimension reduction technique like principle component analysis and then perform scatter plots of the first two PCA components.
- 2. generate a distance matrix and then create a visual assessment of cluster tendency like the ordered dissimilarity matrix
- 3. Use the same distance matrix to calculate a hopkin's statistic and test the null hypothesis of spatial randomness

c. How might these techniques work together to motivate clustering or not?

If EDA is highly suggestive of clustering, then ODI and the hopkin's statistic would just be confirmatory. However if EDA does not reveal a clear clustering pattern, then ODI and hopkin's statistic may suggest clustering where it was not readily apparent from the EDA.

d. And ultimately, can/should you proceed if you find little to no support for clusterability? Why or why not?

I think proceeding would depend on your prior belief that clusters could be involved in the data generation process. If it was strong enough I would proceed regardless of the results of the diagnostic tests for clusterability, especially if the results of clustering could answer a clear research hypothesis.

On the other hand, if I was skeptical about the clusterability of the data based on what was known about the data generating process, negative diagnostics for clusterability would convince me to stop.

2. Locate (and read) a paper that applies the hierarchical agglomerative clustering technique. Address the following questions:

a. Describe the author(s) process.

I read Johnson, S. C. (1967). "Hierarchical clustering schemes." Psychometrika, 32(3), 241-254. Tis seems like a foundational paper in the hierarchial agglomerative clustering field. the authors set out to formally define the mechanics of agglomerative clustering and work through an example in painstanking detail to demonstrate them. They specifically demonstrate the complete (maximum) and single (minimum) linkage methods.

b. Do they go through similar steps as we covered this week both in setting the stage for clustering (e.g., assessing clusterability, calculating distance, etc.), as well as in fitting the algorithm? If not, what did they omit and does this omission impact their findings in your opinion?

they did not appear to do any clusterability diagnositics, but did follow similar steps after that point including

- 1. create a distance matrix using all n*(n-1)/2 similarity measures
- 2. initiate with singletons
- 3. form a cluster according to linkage method (either single or complete in their case)
- 4. record distance between clusters on linkage method scale
- 5. repeat steps 3-4 until only one cluster with all the observations exists

They omit the other linkage methods we learned about, as they think the single = "connectedness" and complete = "compactness" have the clearest interpretations.

c. Describe at least one possible extension from the study that could emerge based on their findings.

The authors show the distance metric used in the agglomerative hierarchial cluster scheme linkage method need to statisfy not just the standard triangle inequality d(x,z)d(x,y)+d(y,z) but the stronger "ultrametric inequality" that for 3 points x,y,z in clusters $x,y \in C_i$ and $y,z \in C_j$ then $d(x,z) \max [d(x,y),d(y,z)]$. They suggest an unsolved problem is finding the "closest" metric that statisfies the ultrametric inequality.