

GigaMOS™ Trench HiperFET™ Power MOSFET

IXFN360N10T

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

Symbol	Test Conditions		Maximum Ratings		
V _{DSS}	$T_{J} = 25^{\circ}\text{C to } 175^{\circ}$	°C	100	V	
V _{DGR}	$T_{J} = 25^{\circ}C \text{ to } 175^{\circ}$	$^{\circ}$ C, $R_{GS} = 1M\Omega$	100	V	
V _{GSS}	Continuous		±20	V	
V _{GSM}	Transient		±30	V	
I _{D25}	T _c = 25°C (Chip (Capability)	360	A	
LRMS	Lead Current Limit, RMS		200	Α	
I _{DM}	$T_{c} = 25^{\circ}C$, Pulse Width Limited by T_{JM}		900	Α	
I _A	$T_{c} = 25^{\circ}C$		100	Α	
E _{AS}	$T_{\rm C} = 25^{\circ}{\rm C}$		3	J	
P_{D}	T _C = 25°C		830	W	
dV/dt	$I_{_{\mathrm{S}}} \leq I_{_{\mathrm{DM}}}, V_{_{\mathrm{DD}}} \leq V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \leq 175^{\circ}\mathrm{C}$		20	V/ns	
T _J			-55 +175	°C	
T _{JM}			175	°C	
T _{stg}			-55 +175	°C	
T,	1.6mm (0.062 in.) from Case for 10s		300	°C	
T _{SOLD}	Plastic Body for 10s		260	°C	
V _{ISOL}	50/60 Hz, RMS	t = 1 Minute	2500	٧~	
.002	$I_{ISOL} \le 1mA$	t = 1 Second	3000	V~	
M _d	Mounting Torque		1.5/13	Nm/lb.in.	
•	Terminal Connect	ion Torque	1.3/11.5	Nm/lb.in.	
Weight			30	g	

Symbol	Symbol Test Conditions Char		acteristic Values		
(T _J = 25°C, Unless Otherwise Specified)		Min.	Тур.	Max.	
BV _{DSS}	$V_{GS} = 0V, I_{D} = 1mA$	100			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 3mA$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			25	μΑ
	T _J = 150°C			2.5	mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 100A, \text{ Note 1}$			2.6	mΩ

 $egin{array}{lll} V_{_{DSS}} & = & 100V \ I_{_{D25}} & = & 360A \ R_{_{DS(on)}} & \leq & 2.6 m \Omega \ t_{_{rr}} & \leq & 130 ns \end{array}$

miniBLOC, SOT-227 E153432

G = Gate D = DrainS = Source

Either Source Terminal S can be used as the Source Terminal or the Kelvin Source (Gate Return) Terminal.

Features

- International Standard Package
- 175°C Operating Temperature
- High Current Handling Capability
- Avalanche Rated
- Fast Intrinsic Rectifier
- Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode Power Supplies
- DC Choppers
- AC Motor Drives
- Uninterruptible Power Supplies
- High Speed Power Switching Applications

SymbolTest ConditionsChara $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.			ecteristic Values Typ. Max.		
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, \text{ Note 1}$	110	180	S	
C _{iss}			33	nF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		3160	pF	
C _{rss}			400	pF	
R _{Gi}	Gate Input Resistance		1.20	Ω	
t _{d(on)})		47	ns	
t _r	Resistive Switching Times		100	ns	
$\mathbf{t}_{d(off)}$	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_D = 100A$ $R_G = 1\Omega$ (External)		80	ns	
t _f	III _G = 132 (External)		160	ns	
$\mathbf{Q}_{g(on)}$			525	nC	
\mathbf{Q}_{gs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		145	nC	
Q_{gd}			165	nC	
R _{thJC}				0.18 °C/W	
R _{thCS}			0.05	°C/W	

SOT-227B (IXFN) Outline (M4 screws (4x) supplied) MILLIMETERS MYZ MAX 1.255 .323 .169 .169 MAX 31.88 8.20 4.29 4.29 MIN 31.50 7.80 4.09 4.09 .161 .161 .161 30.12 38.00 11.68 .481 .378 .033 .506 1.001 25.42 2.13 5.97 26.90 4.42 4.85 25.07 .084 1.045

-.002

.004

-0.05

0.1

Source-Drain Diode

SymbolTest ConditionsChara $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		cteristic Typ.	stic Values o. Max.		
Is	$V_{GS} = 0V$			360	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			1440	Α
$\mathbf{V}_{\mathtt{SD}}$	$I_F = 100A, V_{GS} = 0V, \text{ Note } 1$			1.2	V
t _{rr} I _{RM} Q _{RM}	$\begin{cases} I_{F} = 100A, V_{GS} = 0V \\ -di/dt = 100A/\mu s \\ V_{R} = 50V \end{cases}$		6.60 0.33	130	ns A µC

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 150°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 180A Value vs. Junction Temperature

Fig. 5. Normalized R_{DS(on)} vs. Drain Current

Fig. 6. Drain Current vs. Case Temperature

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 17. Resistive Turn-off Switching Times vs. Drain Current

Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance

Fig. 19. Maximum Transient Thermal Impedance