# Initialization of Equation-Based Hybrid Models within OpenModelica

Lennart Ochel Bernhard Bachmann Bielefeld University of Applied Sciences

## Outline

Modelica and Initialization

- Mathematical Representation
- Methods within OpenModelica
- Conclusion and Outlook



#### Example

```
model MathRep
  Real x1(start=2.0, fixed=true),
       x2(start=4);
  Real y1, y2, y3(start=-1.5);
  Real d1;
initial equation
  pre(d1) = -0.5 + y1;
equation
 0 = -y2 + \sin(y3);
  der(x1) = sqrt(x1) + time - d1;
  0 = x1 + y2 + y3 + 1;
  0 = x1 + y1 + x1*y1;
  when \{initial(), sample(0.1, 0.1)\} then
    d1 = pre(d1) - y1 + y2;
  end when;
  der(x2) = x1 + y1;
end MathRep;
```



#### Example

```
model MathRep
  Real x1(start=2.0, fixed=true),
       x2(start=4);
  Real y1, y2, y3(start=-1.5);
  Real d1;
initial equation
  pre(d1) = -0.5 + v1;
equation
  0 = -y2 + \sin(y3);
  der(x1) = sqrt(x1) + time - d1;
  0 = x1 + y2 + y3 + 1;
  0 = x1 + y1 + x1*y1;
  when \{initial(), sample(0.1, 0.1)\} then
    d1 = pre(d1) - y1 + y2;
  end when;
  der(x2) = x1 + y1;
end MathRep;
```

#### **Continous Part**

system of differential algebraic equations

initial value problem needs to be solved

e.g. Euler method

$$x_{n+1} = x_n + (t_{n+1} - t_n) \cdot \dot{x}_n$$

#### Example

```
model MathRep
  Real x1(start=2.0, fixed=true),
      x2(start=4);
  Real y1, y2, y3(start=-1.5);
  Real d1;
initial equation
  pre(d1) = -0.5 + y1;
equation
  0 = -y2 + \sin(y3);
  der(x1) = sqrt(x1) + time - d1;
  0 = x1 + y2 + y3 + 1;
  0 = x1 + y1 + x1*y1;
  when \{initial(), sample(0.1, 0.1)\} then
    d1 = pre(d1) - y1 + y2;
  end when;
  der(x2) = x1 + y1;
end MathRep;
```

#### Discrete Part

left limit is assumed to be known

$$d_n^+ = \xi(d_n^-, t_n, ...)$$

e.g.: 
$$d_2^+ = d_2^- + 1$$
  
 $d_3^+ = d_3^-$ 



#### Example

#### model MathRep Real x1(start=2.0, fixed=true), x2(start=4);Real y1, y2, y3(start=-1.5); Real d1;

#### initial equation pre(d1) = -0.5 + v1;

#### equation

```
0 = -y2 + \sin(y3);
  der(x1) = sqrt(x1) + time - d1;
  0 = x1 + y2 + y3 + 1;
 0 = x1 + y1 + x1*y1;
 when \{initial(), sample(0.1, 0.1)\}\ then
d1 = pre(d1) - y1 + y2; // active
    d1 = pre(d1) - y1 + y2;
  end when;
  der(x2) = x1 + y1;
end MathRep;
```

#### Discrete Part

 when-clauses are only active during initialization, if they are explicitly enabled using the initial() operator

```
d1 = pre(d1); // inactive
```

#### Example

```
model MathRep
  Real x1(start=2.0, fixed=true),
       x2(start=4);
  Real y1, y2, y3(start=-1.5);
  Real d1;
initial equation
  pre(d1) = -0.5 + v1;
equation
  0 = -y2 + \sin(y3);
  der(x1) = sqrt(x1) + time - d1;
  0 = x1 + y2 + y3 + 1;
  0 = x1 + y1 + x1*y1;
  when \{initial(), sample(0.1, 0.1)\} then
    d1 = pre(d1) - y1 + y2;
  end when;
  der(x2) = x1 + y1;
end MathRep;
```

#### Variable Attributes

 initial equations can be implicitly declared using the fixed attribute

 initial guesses can be provided using the start attribute

| $v$ (start= $v^{start}$ ) |            | fixed=true                             | fixed=false                 |
|---------------------------|------------|----------------------------------------|-----------------------------|
| type of $ u$              | continuous | initial equation: $v = v^{start}$      | initial guess of $\emph{v}$ |
|                           | discrete   | initial equation: $pre(v) = v^{start}$ | initial guess of $pre(v)$   |

#### Example

```
model MathRep
  Real x1(start=2.0, fixed=true),
      x2(start=4);
  Real y1, y2, y3(start=-1.5);
  Real d1;
initial equation
  pre(d1) = -0.5 + y1;
equation
  0 = -y2 + \sin(y3);
  der(x1) = sqrt(x1) + time - d1;
  0 = x1 + y2 + y3 + 1;
  0 = x1 + y1 + x1*y1;
  when \{initial(), sample(0.1, 0.1)\} then
    d1 = pre(d1) - y1 + y2;
  end when;
  der(x2) = x1 + y1;
end MathRep;
```

#### Initial Equation/Algorithm

 additional contraints that are just used for initialization

when-clauses are not allowed

pure algebraic system

#### Variables

| name                                                                                             | description                         |
|--------------------------------------------------------------------------------------------------|-------------------------------------|
| $\underline{x}(t), \underline{\dot{x}}(t)$                                                       | vector of all states/derived states |
| $\underline{y}(t)$                                                                               | vector of all algebraic variables   |
| $\underline{d}(t),\underline{d}^{pre}(t)$                                                        | vector of all discrete variables    |
| $\underline{p} = \begin{pmatrix} \underline{p}^{fixed} & \underline{p}^{free} \end{pmatrix}^{T}$ | vector of all parameters            |
| t                                                                                                | simulation time                     |
| $t_0$                                                                                            | initialization time                 |

$$\underline{\omega}(t_0) \coloneqq \begin{pmatrix} \underline{x}(t_0) & \underline{p}^{free} & \underline{d}^{pre}(t_0) \end{pmatrix}^{\mathsf{T}}$$

$$\underline{z}(t) \coloneqq \begin{pmatrix} \underline{\dot{x}}(t) & \underline{y}(t) & \underline{d}(t) \end{pmatrix}^{\mathsf{T}}$$

#### Variables

| name                                                                                             | description                         |
|--------------------------------------------------------------------------------------------------|-------------------------------------|
| $\underline{x}(t), \underline{\dot{x}}(t)$                                                       | vector of all states/derived states |
| $\underline{y}(t)$                                                                               | vector of all algebraic variables   |
| $\underline{d}(t),\underline{d}^{pre}(t)$                                                        | vector of all discrete variables    |
| $\underline{p} = \begin{pmatrix} \underline{p}^{fixed} & \underline{p}^{free} \end{pmatrix}^{T}$ | vector of all parameters            |
| t                                                                                                | simulation time                     |
| $t_0$                                                                                            | initialization time                 |

#### **Equation Systems**

$$\underline{0} \stackrel{!}{=} \underline{f}\left(\underline{x}(t), \underline{\dot{x}}(t), \underline{y}(t), \underline{d}(t), \underline{d}^{pre}(t), \underline{p}, t\right)$$

$$\underline{z}(t) = \underline{g}\left(\underline{x}(t), \underline{d}^{pre}(t), \underline{p}, t\right)$$

$$\Leftrightarrow \underline{z}(t) = \underline{g}\left(\underline{\omega}(t), \underline{p}^{fixed}, t\right)$$

$$\underline{0} \stackrel{!}{=} \underline{h}^{res} \coloneqq \underline{h} \left( \underline{x}(t_0), \underline{\dot{x}}(t_0), \underline{y}(t_0), \underline{d}(t_0), \underline{d}^{pre}(t_0), \underline{p}, t_0 \right) 
\Leftrightarrow \underline{0} \stackrel{!}{=} \underline{h}^{res} \coloneqq \underline{h} \left( \underline{\omega}(t_0), \underline{z}(t_0), \underline{p}^{fixed}, t_0 \right)$$

$$\underline{\omega}(t_0) \coloneqq \begin{pmatrix} \underline{x}(t_0) & \underline{p}^{free} & \underline{d}^{pre}(t_0) \end{pmatrix}^{\mathsf{T}}$$

$$\underline{z}(t) \coloneqq \begin{pmatrix} \underline{\dot{x}}(t) & \underline{y}(t) & \underline{d}(t) \end{pmatrix}^{\mathsf{T}}$$

#### Numeric Approach

$$\min_{\underline{\omega}} \phi\left(\underline{\omega}(t_0), \underline{z}(t_0), \underline{d}(t_0), \underline{p}^{fixed}, t_0\right)^2 \to 0$$

s.t.

$$\underline{z}(t_0) = \underline{g}(\underline{\omega}(t_0), \underline{d}(t_0), \underline{p}^{fixed}, t_0)$$
$$\underline{\omega}^{min} \le \underline{\omega} \le \underline{\omega}^{max}$$

 $\dim\left(\underline{\omega}(t_0)
ight)$  must be less than or equal to the number of initial equations

$$\underline{\omega}(t_0) \coloneqq \begin{pmatrix} \underline{x}(t_0) & \underline{p}^{free} & \underline{d}^{pre}(t_0) \end{pmatrix}^{\mathsf{T}}$$

$$\underline{z}(t) \coloneqq \begin{pmatrix} \underline{\dot{x}}(t) & \underline{y}(t) & \underline{d}(t) \end{pmatrix}^{\mathsf{T}}$$

#### Numeric Approach

$$\min_{\underline{\omega}} \phi\left(\underline{\omega}(t_0), \underline{z}(t_0), \underline{d}(t_0), \underline{p}^{fixed}, t_0\right)^2 \to 0$$

s.t.

$$\underline{z}(t_0) = \underline{g}(\underline{\omega}(t_0), \underline{d}(t_0), \underline{p}^{fixed}, t_0)$$
$$\underline{\omega}^{min} \le \underline{\omega} \le \underline{\omega}^{max}$$

## Symbolic Approach

$$\begin{pmatrix} \underline{z}(t_0) \\ \underline{0} \end{pmatrix} = \begin{pmatrix} \underline{g}\left(\underline{\omega}(t_0), \underline{d}(t), \underline{p}^{fixed}, t\right) \\ \underline{h}\left(\underline{\omega}(t_0), \underline{z}(t_0), \underline{d}(t_0), \underline{p}^{fixed}, t_0\right) \end{pmatrix}$$

solving for  $\underline{z}(t_0)$  and  $\underline{\omega}(t_0)$ 

 $\dim\left(\underline{\omega}(t_0)\right)$  must be less than or equal to the number of initial equations

 $\dim\left(\underline{\omega}(t_0)
ight)$  has to be equal to the number of initial equations

$$\underline{\omega}(t_0) \coloneqq \begin{pmatrix} \underline{x}(t_0) & \underline{p}^{free} & \underline{d}^{pre}(t_0) \end{pmatrix}^{\mathsf{T}}$$

$$\underline{z}(t) \coloneqq \begin{pmatrix} \underline{\dot{x}}(t) & \underline{y}(t) & \underline{d}(t) \end{pmatrix}^{\mathsf{T}}$$

#### Basic Approach

$$\min_{\underline{\omega}(t_0)} \phi\left(\underline{\omega}(t_0), \underline{z}(t_0), \underline{p}^{fixed}, t_0\right) \to 0$$

s.t.

$$\underline{z}(t_0) = \underline{g}\left(\underline{\omega}(t_0), \underline{p}^{fixed}, t_0\right)$$
$$\underline{\omega}^{min} \leq \underline{\omega}(t_0) \leq \underline{\omega}^{max}$$

with

$$\phi(.) = \sum_{i} h_{i}^{res} \left(\underline{\omega}(t_{0}), \underline{z}(t_{0}), \underline{p}^{fixed}, t_{0}\right)^{2}$$

#### Basic Approach

$$\min_{\underline{\omega}(t_0)} \phi\left(\underline{\omega}(t_0), \underline{z}(t_0), \underline{p}^{fixed}, t_0\right) \to 0$$

s.t.

$$\underline{z}(t_0) = \underline{g}\left(\underline{\omega}(t_0), \underline{p}^{fixed}, t_0\right)$$
$$\underline{\omega}^{min} \leq \underline{\omega}(t_0) \leq \underline{\omega}^{max}$$

with

$$\phi(.) = \sum_{i} h_{i}^{res} \left(\underline{\omega}(t_{0}), \underline{z}(t_{0}), \underline{p}^{fixed}, t_{0}\right)^{2}$$

#### Start Value Homotopy Approach

$$\phi(.) = (1 - \lambda) \cdot \phi_0 + \lambda \cdot \phi_1$$
$$\lambda \in [0; 1] \subset R$$

with

$$\begin{split} \phi_0(.) &= \sum_{\forall v} (v - v^{start})^2 \\ \phi_1(.) &= \sum_i h_i^{res} \left( \underline{\omega}(t_0), \underline{z}(t_0), \underline{p}^{fixed}, t_0 \right)^2 \end{split}$$

#### Example

```
model forest
  Real foxes;
  Real rabbits;
  Real population;
  Real value;
  [...]
initial equation
  der(foxes) = 20;
  value = 11000;
equation
  der(rabbits) = rabbits*g_r - rabbits*foxes*d_rf;
  der(foxes)
               = -foxes*d_f + rabbits*foxes*d_rf*g_fr;
  population
               = foxes+rabbits;
  value
               = priceFox*foxes + priceRabbit*rabbits;
end forest;
```



#### Example

```
model forest
  Real foxes;
  Real rabbits;
  Real population(start=350);
  Real value;
  [...]
initial equation
  der(foxes) = 20;
  value = 11000;
equation
  der(rabbits) = rabbits*g_r - rabbits*foxes*d_rf;
  der(foxes)
               = -foxes*d_f + rabbits*foxes*d_rf*g_fr;
  population
               = foxes+rabbits;
  value
               = priceFox*foxes + priceRabbit*rabbits;
end forest;
```



#### Example

```
model MathRep
      Real x1(start=2.0, fixed=true),
          x2(start=4);
      Real y1, y2, y3(start=-1.5);
      Real d1;
    initial equation
      pre(d1) = -0.5 + y1;
    equation
f1 = 0 = -y2 + \sin(y3);
f2 der(x1) = sqrt(x1) + time - d1;
f3 0 = x1 + y2 + y3 + 1;
f4 = 0 = x1 + y1 + x1*y1;
     when \{initial(), sample(0.1, 0.1)\}\ then
    d1 = pre(d1) - y1 + y2;
      end when;
      der(x2) = x1 + y1;
    end MathRep;
```

#### **Basic Approach**

$$\begin{pmatrix} \underline{z}(t_0) \\ \underline{0} \end{pmatrix} = \begin{pmatrix} \underline{g}\left(\underline{\omega}(t_0), \underline{d}(t), \underline{p}^{fixed}, t\right) \\ \underline{h}\left(\underline{\omega}(t_0), \underline{z}(t_0), \underline{d}(t_0), \underline{p}^{fixed}, t_0\right) \end{pmatrix}$$

#### Involved Techniques

- matching
- sorting
- tearing
- ...

#### Example

```
model MathRep
      Real x1(start=2.0, fixed=true),
          x2(start=4);
      Real y1, y2, y3(start=-1.5);
     Real d1;
   initial equation
     pre(d1) = -0.5 + y1;
h1
   equation
   0 = -y2 + \sin(y3);
   der(x1) = sqrt(x1) + time - d1;
     0 = x1 + y2 + y3 + 1;
     0 = x1 + y1 + x1*y1;
     when \{initial(), sample(0.1, 0.1)\}\ then
      d1 = pre(d1) - y1 + y2;
f5
     end when;
     der(x2) = x1 + y1;
   end MathRep;
```

#### Matching (initial system)



#### Example

```
model MathRep
      Real x1(start=2.0, fixed=true),
          x2(start=4);
     Real y1, y2, y3(start=-1.5);
     Real d1;
   initial equation
     pre(d1) = -0.5 + y1;
h1
   equation
   0 = -y2 + \sin(y3);
   der(x1) = sqrt(x1) + time - d1;
     0 = x1 + y2 + y3 + 1;
     0 = x1 + y1 + x1*y1;
     when \{initial(), sample(0.1, 0.1)\}\ then
      d1 = pre(d1) - y1 + y2;
     end when;
     der(x2) = x1 + y1;
   end MathRep;
```

#### Matching (initial system)



#### Example

```
model MathRep
      Real x1(start=2.0, fixed=true),
          x2(start=4);
     Real y1, y2, y3(start=-1.5);
     Real d1;
   initial equation
     pre(d1) = -0.5 + y1;
h1
   equation
   0 = -y2 + \sin(y3);
   der(x1) = sqrt(x1) + time - d1;
     0 = x1 + y2 + y3 + 1;
     0 = x1 + y1 + x1*y1;
     when \{initial(), sample(0.1, 0.1)\}\ then
      d1 = pre(d1) - y1 + y2;
     end when;
     der(x2) = x1 + y1;
   end MathRep;
```

### Matching (initial system)



#### Example

```
model MathRep
      Real x1(start=2.0, fixed=true),
          x2(start=4);
      Real y1, y2, y3(start=-1.5);
      Real d1;
   initial equation
      pre(d1) = -0.5 + y1;
h1
   equation
f1 = 0 = -y2 + \sin(y3);
f2 der(x1) = sqrt(x1) + time - d1;
f3 0 = x1 + y2 + y3 + 1;
     0 = x1 + y1 + x1*y1;
     when {initial(), sample(0.1, 0.1)} then
      d1 = pre(d1) - y1 + y2;
f5
      end when;
     der(x2) = x1 + y1;
   end MathRep;
```

#### **Strong Components**



#### Example

```
model MathRep
      Real x1(start=2.0, fixed=true),
          x2(start=4);
     Real y1, y2, y3(start=-1.5);
     Real d1;
   initial equation
     pre(d1) = -0.5 + y1;
h1
   equation
   0 = -y2 + \sin(y3);
   der(x1) = sqrt(x1) + time - d1;
     0 = x1 + y2 + y3 + 1;
     0 = x1 + y1 + x1*y1;
     when \{initial(), sample(0.1, 0.1)\}\ then
      d1 = pre(d1) - y1 + y2;
f5
     end when;
     der(x2) = x1 + y1;
   end MathRep;
```

#### **Strong Components**



# Conclusion and Outlook

## Conclusion

#### Numeric Method

- handles over-constrained problems
- no full support for discrete variables
- Start Value Homotopy
- bad performance for real-world models

#### Symbolic Method

- no over-constrained problems
- full support for discrete variables
- no Start Value Homotopy
- good performance for real-world models

## Conclusion

#### Numeric Method

- handles over-constrained problems
- no full support for discrete variables
- Start Value Homotopy
- bad performance for real-world models

#### Symbolic Method

- no over-constrained problems
- full support for discrete variables
- no Start Value Homotopy
- good performance for real-world models

#### Outlook

merge all advantages from both methods