TEMPERATURE SENSOR AND VISUALIZER WITH PIC24 MICROCONTROLLER

TRUMAN BROWN

OVERVIEW

- Goal:
 - Assemble temperature sensor, LCD, and iLED to work together
 - MCP9808 High Accuracy I2C

Temperature Sensor Breakout Board

- Akizuki/Sitronix Controlled LCD
- WS2812 iLED
- Helpful additions:
 - Push-button switch
 - Debugging LED

CIRCUIT

LIBRARIES NEEDED

Assembly Library

- Various delays (100μS,
 1ms)
- Write Pulses functions on RAO
 - 0.35μs in 1.25μs period
 - 0.70μs in 1.25μs period

iLED Library

- Setup the LED
 - I/O, 16MHz, etc.
- Variable delay
 - # of ms delay
- Write a color to the LED
 - Controlled with red, green blue values
 - 0-255 value for each color

LIBRARIES NEEDED (CONT.)

LCD Library

- Setup the LCD
 - 12C, IF cleared, etc.
 - Minimum frequency of 100 kHz
- Write commands to the LCD
- Initialize the LCD with series of commands
- Set the cursor on the LCD
 - Row, column
- Write a single character to the LCD
- Write a string/constant array of characters to LCD

Temperature Sensor Library

- Initialize the temperature sensor
 - Minimum frequency of 100 kHz
 - Initialized to idle condition
- Initiate the start condition for the data transfer protocol
- Initiate the stop condition for the data transfer protocol
- Write data to the temperature sensor
 - Return either acknowledge status
- Read digital temperature data from sensor
- Configure the sensor with series of writes
- Initialize the double click detector on the button-switch

HOW ALL THE LIBRARIES WORK TOGETHER IN MAIN

- Call all setup functions from all libraries (setupLED(), setupLCD(), lcd_init(), etc.)
- Initialize necessary variables
 - Char array to store floating point value of temperature
 - Two arrays of size 255 to store "checkpoints" of temperatures to compare to sensor reading
 - {70.0, 69.85, 69.70, 69.55,....,(70-i*0.15)}, {70.0, 70.15, 70.30, 70.45,....,(70+i*0.15)}
- While(1) loop
 - Read temperature sensor data into two bytes as required by MCP9808 sensor using temperature sensor library functions
 - Display temperature value on LCD using LCD library functions
 - Switch between Celsius and Fahrenheit
 - Fade iLED between blue and red in correspondence to temperature readings from sensor
 - Uses iLED library functions to write the color to the LED.

PROBLEMS ENCOUNTERED AND THEIR SOLUTIONS

Getting the temperature sensor configured correctly

The datasheet along with the LCD I2C experience helped

Converting the ambient temperature sensor register into a decimal value

 Studying two's complement again to better understand how to convert

Fading the iLED smoothly between red and blue

 Switched while loops of checkpoints to an array of checkpoints

