AMENDMENTS TO THE SPECIFICATION:

Please replace the paragraph at Page 5, line 9, with the following: (wherein, the chain line represents a connecting means. R5 represents a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, a linear, branched or cyclic alkoxyalkyl group having 2 to 10 carbon atoms, or a linear, branched or cyclic acyl group having 1 to 10 carbon atoms. Re represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms. W¹ represents a single bond or a (k+2)-valent hydrocarbon group having 1 to 10 carbon atoms. Z represents a divalent hydrocarbon group having 2 to 15 carbon atoms, and forms a single ring or a cross-linked ring together with carbon atoms to be bonded. k represents 0 or 1.) and the remaining groups of R1 to R4 are selected each independently from a hydrogen atom, linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms, halogens, linear, branched or cyclic halogenated alkyl groups having 1 to 20 carbon atoms, linear, branched or cyclic alkoxy groups having 1 to 20 carbon atoms, linear, branched or cyclic alkoxyalkyl groups having 2 to 20 carbon atoms, linear, branched or cyclic alkylcarbonyloxy groups having 2 to 20 carbon atoms, arylcarbonyloxy groups having 6 to 20 carbon atoms, linear, branched or cyclic alkylsulfonyloxy groups having 1 to 20 carbon atoms, branched or cyclic alkylsulfonyloxy groups, arylsulfonyloxy groups having 6 to 20 carbon atoms, linear, branched or cyclic alkoxycarbonyl groups having 2 to 20 carbon atoms, or linear, branched or cyclic alkoxycarbonylalkyl groups having 3 to 20 carbon atoms, and X1s may be the same or different and represent -O- or -CR72- (wherein, R7 represents a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms.). j represents an integer of 0 or 1 to 3.], and contains at least a structural unit [B] of the following general formula [3]:

Please replace the paragraph at Page 13, line 11, with the following:

(wherein, the chain line represents a connecting means. R⁶ is as define above. R³⁸ to R⁴⁷

each independently represents a hydrogen atom, or a linear, branched or cyclic alkyl group

having 1 to 10 carbon atoms.), and 2-alkyl-2-adamantyl groups such as 2-methyl-2-adamantyl, 2-ethyl-2-adamantyl and the like, are listed. Specific examples of the general formula [13] include 1-methylcyclopropyl, 1-methylcyclobutyl, 1-ethylcyclobutyl, 1-methylcyclopentyl, 1-ethylcyclopentyl, 1-no-propylcyclopentyl, 1-iso-propylcyclopentyl, 1-tert-butylcyclopentyl, 1-cyclopentyl, 1-cyclopentyl, 1-cyclopentyl, 1-norbornylcyclo-pentyl, 1-methylcyclohexyl, 1-ethylcyclohexyl, 1-methylcyclohexyl, 1-methylcyclohexyl, 1-methylcyclohexyl, 1-methylcyclononyl and the like, and among them, 1-alkylcyclopentyls of the chemical formula [15]:

Please replace the paragraph at Page 34, line 26, with the following:

Regarding W^2 , the (q+2)-valent hydrocarbon group having 1 to 10 carbon atoms is a linear, branched or cyclic divalent hydrocarbon group having 1 to 10 carbon atoms when q represents 0, and examples thereof include methylene, dimethylmethylene, ethylidene, propylidene, butylidene, 1-methylethylene, 2-methylethylene, 1-ethylethylene, 2-ethylethylene, 1,1-dimethylethylene, 1,2-dimethylethylene, 2,2-dimethylethylene, 1-ethyl-2-methylethylene, trimethylene, 1-methyltrimethylene, 2-methyltrimethylene, 3-methyltrimethylene, tetramethylene, pentamethylene, 1,1-cyclopentylene, 1,2-cyclopentylene, 1,3-cyclopentylene, 1,1-cyclohexylene, 1,2-cyclohexylene, 1,3-cyclohexylene, 1,4-cyclohexylene and the like. Among them, methylene, ethylidene, ethylene, 1-methylethylene, 2-methylethylene, trimethylene and 2-methyltrimethylene are preferable. When [k] \mathbf{q} is 1, those having a connecting means formed by removing one hydrogen atom at any position on the hydrocarbon group as described above when [k] \mathbf{q} represents 0, are listed. Most preferably, W^2 represents a single bond.

907-30-9890 13/58 B.696

0 836 2021 P.877/25

Please replace the paragraph at Page 42, line 20, with the following:

In the general formula [7], at least one of R²⁴ to R²⁷ R²⁵ to R²⁸ represents a functional group having a carboxylate group of the general formula [8] (wherein, the chain line represents a connecting means. R²⁸ R²⁹ represents a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, a linear, branched or cyclic alkoxyalkyl group having 2 to 10 carbon atoms, or a linear, branched or cyclic acyl group having 1 to 10 carbon atoms. R²⁶ R³⁰ represents a linear or branched alkyl group having 1 to 10 carbon atoms, a linear, branched or cyclic alkoxyalkyl group having 2 to 10 carbon atoms, or a linear, branched or cyclic alkoxyalkyl group having 2 to 10 carbon atoms, or a linear, branched or cyclic halogenated alkyl group having 1 to 20 carbon atoms. W³ represents a single bond or a (k+2)-valent (s+2)-valent hydrocarbon group having 1 to 10 carbon atoms.

Please replace the paragraph at Page 43, line 7, with the following:

Regarding R²⁸ R²⁹, examples of the linear, branched or cyclic alkyl group having 1 to 10 carbon atoms include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, cyclopentyl, cyclohexyl, 1-ethylcyclopentyl, 1-ethylcyclohexyl and the like, examples of the linear, branched or cyclic alkoxyalkyl group having 2 to 10 carbon atoms include methoxymethyl, 1-ethoxyethyl, 1-tert-butoxyethyl, 1-cyclohexyloxyethyl, 1-ethoxypropyl, 1-ethoxy-1-methylethyl, tetrahydrofuran-2-yl, tetrahydropyran-2-yl and the like, and examples of the linear, branched or cyclic acyl group having 1 to 10 carbon atoms include formyl, acetyl, pivaloyl, cyclohexylcarbonyl and the like. Of these groups R²⁸ R²⁹ linear or branched alkyl groups having 1 to 6 carbon atoms, linear, branched or cyclic alkoxyalkyl groups having 2 to 7 carbon atoms and linear or branched acyl groups having 2 to 7 carbon atoms are preferable, and particularly, a hydrogen atom, methyl, ethyl, methoxymethyl, 1-ethoxyethyl, tetrahydrofuran-2-yl and acetyl are preferable.

Please replace paragraph at Page 43, line 26, with the following:

Regarding R²⁹ R³⁰, examples of the linear, branched or cyclic alkyl group having 1 to 10 carbon atoms include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl and the like, examples of the linear, branched or cyclic alkoxyalkyl group having 2 to 10 carbon atoms include methoxymethyl, 1-ethoxyethyl, 1-tert-butoxyethyl, 1-cyclohexyloxyethyl, 1-ethoxypropyl, 1-ethoxy-1-methylethyl, tetrahydrofuran-2-yl, tetrahydropyran-2-yl and the like, and examples of the linear, branched or cyclic halogenated alkyl group having 1 to 20 carbon atoms include fluoromethyl, chloromethyl, bromomethyl, difluoromethyl, dichloromethyl, dibromomethyl, trifluoromethyl, trichloromethyl, tribromomethyl and the like. Of these groups R²⁹ R³⁰, linear or branched alkyl groups having 1 to 10 carbon atoms are preferable, and particularly, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl and tert-butyl are preferable.

Please replace the paragraph at Page 45, line 7, with the following:

Regarding the other groups of R²⁴ to R²⁸ R²⁵ to R²⁸, a hydrogen atom, linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms such as methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, cyclohexyl, menthyl and the like, halogens such as a chlorine atom, bromine atom, iodine atom, fluorine atom and the like, linear, branched or cyclic halogenated alkyl groups having 1 to 20 carbon atoms such as fluoromethyl, chloromethyl, bromomethyl, difluoromethyl, dichloromethyl, dibromomethyl, trifluoromethyl, trichloromethyl, tribromomethyl and the like, linear, branched or cyclic alkoxy groups having 1 to 12 carbon atoms such as methoxy, ethoxy, isopropoxy, n-butoxy, tert-butoxy, menthoxy and the like, linear, branched or cyclic alkoxyalkyl groups having 2 to 20 carbon atoms such as methoxymethyl, methoxyethyl, tert-butoxymethyl, tert-butoxyethyl, menthoxymenthol and the like, or containing alkoxy saccharides such as methylglucose and the like, linear, branched or cyclic alkylcarbonyloxy groups having 2 to 20 carbon atoms such as acetoxy and the like, arylcarbonyloxy groups having 6 to 20 carbon atoms such as naphthoyloxy and the like,

alkylsulfonyloxy groups having 1 to 20 carbon atoms such as mesyloxy and the like, arylsulfonyloxy groups having 6 to 20 carbon atoms such as tosyloxy and the like, linear, branched or cyclic alkoxycarbonyl groups having 2 to 20 carbon atoms such as methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, isopropoxycarbonyl, nbutoxycarbonyl, tert-butoxycarbonyl, cyclohexyloxycarbonyl and the like, linear, branched or cyclic alkoxycarbonylalkyl groups having 3 to 20 carbon atoms such as methoxycarbonylmethyl, 2-(methoxycarbonyl)ethyl, 1-(methoxycarbonyl)ethyl, ethoxycarbonylmethyl, 2-(ethoxycarbonyl)ethyl, n-propoxycarbonylmethyl, isopropoxycarbonylmethyl, n-butoxycarbonylmethyl, tert-butoxycarbonylmethyl, cyclohexyloxycarbonylmethyl and the like, are each independently listed as specific examples thereof. Among them, a hydrogen atom, linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms, linear, branched or cyclic alkoxy groups having 1 to 20 carbon atoms, linear, branched or cyclic alkoxyalkyl groups having 2 to 20 carbon atoms, linear, branched or cyclic alkoxycarbonyl groups having 2 to 20 carbon atoms and linear, branched or cyclic alkoxycarbonylalkyl groups having 3 to 20 carbon atoms are preferable, and a hydrogen atom, linear or branched alkyl groups having 1 to 10 carbon atoms, linear or branched alkoxycarbonyl groups having 2 to 10 carbon atoms and linear or branched alkoxycarbonylalkyl groups having 3 to 10 carbon are more preferable.

Please replace the paragraph at Page 46, last line, with the following:

 X^5 represents -O- or $-CR^{30}_{2}$ - (wherein, R^{30} $-CR^{31}_{2}$ - (wherein, R^{31} represents a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms.), and when r represents 1 to 3, X^5 s may be the same or different. Specific examples of R^{20} R^{31} include a hydrogen atom, and linear or branched alkyl groups having 1 to 10 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl and the like. X^5 represents preferably -O- or $-CH_{2^-}$, and more preferably, all of X^5 s are either -O- or $-CH_{2^-}$. r represents preferably 0 or 1.

Please replace the paragraph at Page 53, line 15, with the following:

The cyclic olefin monomer corresponding to the structural unit [A] of the general formula [1] is a cyclic olefin monomer having a structure of the general formula [9], the cyclic olefin monomer corresponding to the structural unit [B] of the general formula [3] is a cyclic olefin monomer having a structure of the general formula [10], the cyclic olefin monomer corresponding to the structural unit [C] of the general formula [4] is a cyclic olefin monomer having a structure of the general formula [11], the cyclic olefin monomer corresponding to the structural unit [E] of the general formula [7] is a cyclic olefin monomer having a structure of the general formula [12], and the cyclic olefin monomer corresponding to the structural unit [F] of the general formula [22] is a cyclic olefin monomer having a structure of the following general formula [23]:

(wherein, R72 to R75, X5 and [v] r are as defined above.)

Please replace the paragraph at Page 56, line 11, with the following:

The polymerization catalyst used in the present invention may be any catalyst providing it causes ring-opening metathesis polymerization, and specific examples of the living ring-opening metathesis catalyst include tungsten-based alkylidene catalysts such as $W(N-2,6-Pr^i_2C_6H_3)(CHBu^i)(OBu^i)_2,\ W(N-2,6-Pr^i_2C_6H_3)(CHBu^i)(OCMe_2CF_3)_2,\ W(N-2,6-Pr^i_2C_6H_3)(CHBu^i)(OCMe_2CF_3)_2,\ W(N-2,6-Pr^i_2C_6H_3)\ (CHCMe_2Ph)(OBu^i)_2,\ W(N-2,6-Pr^i_2C_6H_3)\ (CHCMe_2Ph)(OCMe_2CF_3)_2,\ W(N-2,6-Pr^i_2C_6H_3)\ (CHCMe_2Ph)(OCMe_2CF_3)_2)_2\ (in the formula,$

Pr' represents an iso-propyl group, But represents a tert-butyl group, Me represents a methyl group, and Ph represents a phenyl group.) and the like, tungsten-based alkylidene catalysts such as W(N-2,6-Me₂C₆H₃)(CHCHCMePh) (OBu¹)₂(PMe₃), W(N-2,6- $Me_2C_6H_3$)(CHCHCMe₂)(OBu¹)₂(PMe₃), W(N-2,6-Me₂C₆H₃)(CHCHCPh₂)(OBu¹)₂(PMe₃), W(N-2,6-Me₂C₆H₃)(DBu¹)₂(PMe₃)(DBu¹)₂(PMe₃)(DBu¹)₂(PMe₃)(DBu¹)₂(PMe₃)(DBu¹)₂(PMe₃)(DBu¹)₂(PMe₃)(DBu¹)₂(PMe₃)(DBu¹)₂(PMe₃)(DBu¹)₂(PMe₃)(DBu¹)₂(PMe₃)(DBu¹)₃(PMe₃)(DBu¹)₄(PMe₃)(DBu¹)(DBu¹)₄(PMe₃)(DBu¹)(DBu¹)(DBu¹)(DBu¹)(DBu¹)(DBu¹)(DBu¹)(D $2,6-Me_2C_6H_3$) (CHCHCMePh)(OCMe₂(CF₃))₂(PMe₃), W(N-2,6-Me₂C₆H₃)(CHCHCMe₂) $(OCMe_2(CF_3))_2(PMe_3)$, $W(N-2,6-Me_2C_8H_3)(CHCHCPh_2)$ $(OCMe_2(CF_3))_2(PMe_3)$, $W(N-2,6-Me_2C_8H_3)$ $Me_2C_6H_3$)(CHCHCMe₂)(OCMe(CF₃)₂)₂(PMe₃), $\frac{W(N-2,6-1)}{2}$ Me₂C₆H₃)(CHCHCMe₂)(OCMe(CF₃)₂)₂(PMe₃), W(N-2,6- $Me_2C_6H_3$)(CHCHCPh₂)(OCMe(CF₃)₂)₂(PMe₃), W(N-2,6-Pr¹₂C₆H₃) (CHCHCMePh)(OCMe₂(CF₃))₂(PMe₃), W(N-2,6-Pr¹₂C₆H₃)(CHCHCMePh) (OCMe(CF₃)₂)₂(PMe₃), W(N-2,6-Pr¹₂C₆H₃)(CHCHCMePh)(OPh)₂(PMe₃) (in the formula, Pr¹ represents an iso-propyl group, But represents a tert-butyl group, Me represents a methyl group, and Ph represents a phenyl group.) and the like, molybdenum-based alkylidene catalysts such as Mo(N-2,6-Pr₂C₆H₃)(CHBu^t)(OBu^t)₂, Mo(N-2,6- $Pr_{2}^{i}C_{8}H_{3})(CHBu^{t})(OCMe_{2}CF_{3})_{2}, Mo(N-2,6-Pr_{2}^{i}C_{8}H_{3})(CHBu^{t})(OCMe_{2}(CF_{3})_{2})_{2}, Mo(N-2,6-Pr_{2}^{i}C_{8}H_{3})(OCMe_{2}(CF_{3})_{2})_{2}, Mo(N-2,6-Pr_{2}^{i}C_{8}H_{3})(OCMe_{2}(CF_{3})_{2})_{2}, Mo(N-2,6-Pr_{2}^{i}C_{8}H_{3})(OCMe_{2}(CF_{3})_{2})_{2}, Mo(N-2,6-Pr_{2}^{i}C_{8}H_{3})(OCMe_{2}(CF_{3})_{$ $Pr_{2}^{i}C_{6}H_{3}$) (CHCMe₂Ph)(OBu¹)₂, Mo(N-2,6-Pr₂C₆H₃)(CHCMe₂Ph)(OCMe₂CF₃)₂, Mo(N-2.6-Pr¹₂C₆H₃)(CHCMe₂Ph)(OCMe₂(CF₃)₂)₂ (in the formula, Pr¹ represents an iso-propyl group, Bu¹ represents a tert-butyl group, Me represents a methyl group, and Ph represents a phenyl group.) and the like, rhenium-based alkylidene catalysts such as Re(CBut)(CHBut)(O-2,6- $Pr_2^iC_6H_3)_{21}$ Re(CBu^t)(CHBu^t)(O-2-Bu^t₂C₆H₄)₂, Re(CBu^t)(CHBu^t)(OCMe₂CF₃)₂, Re(CBu^t)(CHBu^t)(OCMe(CF₃)₂)₂, Re(CBu^t)(CHBu^t)(O-2,6-Me₂C₈H₃)₂ (in the formula, Bu^t represents a tert-butyl group.) and the like, tantalum-based alkylidene catalysts such as $Ta[C(Me)C(Me)CHMe_3](O-2,6-Pr_2^iC_6H_3)_3Py$, $Ta[C(Ph)C(Ph)CHMe_3](O-2,6-Pr_2^iC_6H_3)_3Py$ (in the formula, Me represents a methyl group, Ph represents a phenyl group, and Py represents a pyridine group.) and the like, ruthenium-based alkylidene catalysts such as Ru(CHCHCPh₂) (PPh₃)₂Cl₂, Ru(CHCHCPh₂)(P(C₆H₁₁)₃)₂Cl₂ (in the formula, Ph represents a

phenyl group.) and the like, and titanacyclobutane catalyst. The above-mentioned ringopening metathesis catalyst may be used alone or in admixture of two or more.

Please replace the paragraph at Page 58, line 5, with the following:

As the specific examples of the organic transition metal halogen complex, there are listed catalysts obtained by combining tungsten-based halogen complexes such as W(N-2,6- $Pr_{2}^{i}C_{6}H_{3}$)(thf)(OBu^t)Cl₂, W(N-2,6-Pr₂C₆H₃)(thf)(OCMe₂CF₃) Cl₂, W(N-2,6- $Pr_{2}^{i}C_{6}H_{3}$)(thf)(OCMe(CF₃)₂)Cl₂, $\frac{W(N-2,6-Pr_{2}^{i}C_{6}H_{3})}{W(N-2,6-Me_{2}C_{6}H_{3})}$ (thf)(OBu^t)Cl₂, $\frac{W(N-2,6-Me_{2}C_{6}H_{3})}{W(N-2,6-Me_{2}C_{6}H_{3})}$ 2,6-Pr₂C₆H₃) W(N-2,6-Me₂C₆H₃)(thf)(OCMe₂CF₃)Cl₂, W(N-2,6-Pr₂C₆H₃) W(N-2,6-Me₂C₆H₃)(thf)(OCMe₂(CF₃)₂)Cl₂ (in the formula, Prⁱ represents an iso-propyl group, Bu^t represents a tert-butyl group, Me represents a methyl group, Ph represents a phenyl group, thf represents tetrahydrofuran.) and the like, with organometallic compounds described below, and catalysts obtained by combining molybdenum-based halogen complexes such as $Mo(N-2,6-Pr^{1}_{2}C_{6}H_{3})(thf)(OBu^{1})Cl_{2}, Mo(N-2,6-Pr^{1}_{2}C_{6}H_{3})(thf) (OCMe_{2}CF_{3})Cl_{2}, Mo(N-2,6-Pr^{1}_{2}C_{6}H_{3})(thf) (OCMe_{2}CF_{3})(thf) (OCMe_{2}CF_{3})(thf$ Pr'₂C₆H₃) Mo(N-2,6-Me₂C₆H₃)(thf)(OCMe(CF₃)₂)Cl₂, Mo(N-2,6-Pr'₂C₆H₃)(thf)(OBu^t)Cl₂, Me(N-2,6-Pr¹,2C₆H₃) Mo(N-2,6-Me₂C₆H₃)(thf) (OCMe₂CF₃)Cl₂, Mo(N-2,6-Pr¹,2C₆H₃) Mo(N-2,6- $Me_2C_6H_3$ (thf)(OCMe(CF₃)₂)Cl₂ (in the formula, Pr represents an iso-propyl group, Bu^t represents a tert-butyl group, Me represents a methyl group, Ph represents a phenyl group, thf represents tetrahydrofuran.) and the like, with organometallic compounds described below[,].