Equivalence Relations and Apartness Relations

The Clowder Project Authors

May 3, 2024

OOTJ This chapter contains some material about reflexive, symmetric, transitive, equivalence, and apartness relations.

Contents

1	Reflexive Relations		2
	1.1	Foundations	2
	1.2	The Reflexive Closure of a Relation	3
2	Symmetric Relations		
	2.1	Foundations	5
	2.2	The Symmetric Closure of a Relation	6
3	Transitive Relations		8
	3.1	Foundations	8
	3.2	The Transitive Closure of a Relation	10
4	Equivalence Relations		13
	4.1	Foundations	13
	4.2	The Equivalence Closure of a Relation	
5	Quotients by Equivalence Relations		16
	5.1	Equivalence Classes	
	5.2	· · · · · · · · · · · · · · · · · · ·	
Α	Oth	er Chapters	22

00TK 1 Reflexive Relations

00TL 1.1 Foundations

Let *A* be a set.

00TM

DEFINITION 1.1.1 ► REFLEXIVE RELATIONS

A reflexive relation is equivalently:1

- · An \mathbb{E}_0 -monoid in $(N_{\bullet}(\mathbf{Rel}(A, A)), \chi_A)$.
- · A pointed object in (**Rel**(A, A), χ_A).

 1 Note that since $\mathbf{Rel}(A,A)$ is posetal, reflexivity is a property of a relation, rather than extra structure.

00TN

REMARK 1.1.2 ► UNWINDING DEFINITION 1.1.1

In detail, a relation R on A is **reflexive** if we have an inclusion

$$\eta_R \colon \chi_A \subset R$$

of relations in **Rel**(A, A), i.e. if, for each $a \in A$, we have $a \sim_R a$.

00TP

00TQ

00TR

DEFINITION 1.1.3 ► THE PO/SET OF REFLEXIVE RELATIONS ON A SET

Let *A* be a set.

- 1. The **set of reflexive relations on** A is the subset $\operatorname{Rel}^{\operatorname{refl}}(A,A)$ of $\operatorname{Rel}(A,A)$ spanned by the reflexive relations.
- 2. The **poset of relations on** A is is the subposet $Rel^{refl}(A, A)$ of Rel(A, A) spanned by the reflexive relations.

00TS

00TT

00TU

PROPOSITION 1.1.4 ► PROPERTIES OF REFLEXIVE RELATIONS

Let R and S be relations on A.

- 1. *Interaction With Inverses.* If R is reflexive, then so is R^{\dagger} .
- 2. *Interaction With Composition*. If R and S are reflexive, then so is $S \diamond R$.

00TV 1.2 The Reflexive Closure of a Relation

Let R be a relation on A.

00TW

DEFINITION 1.2.1 ► THE REFLEXIVE CLOSURE OF A RELATION

The **reflexive closure** of \sim_R is the relation $\sim_R^{\text{refl}_1}$ satisfying the following universal property:²

(★) Given another reflexive relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\mathsf{refl}} \subset \sim_S$.

 1 Further Notation: Also written R^{refl} .

² Slogan: The reflexive closure of R is the smallest reflexive relation containing R.

00TX

CONSTRUCTION 1.2.2 ► THE REFLEXIVE CLOSURE OF A RELATION

Concretely, $\sim_R^{\rm refl}$ is the free pointed object on R in $({\bf Rel}(A,A),\,\chi_A)^{\rm 1}$, being given by

$$\begin{split} R^{\mathsf{refl}} &\stackrel{\mathsf{def}}{=} R \coprod^{\mathsf{Rel}(A,A)} \Delta_A \\ &= R \cup \Delta_A \\ &= \{(a,b) \in A \times A \mid \mathsf{we have} \ a \sim_R b \ \mathsf{or} \ a = b\}. \end{split}$$

¹Or, equivalently, the free \mathbb{E}_0 -monoid on R in $(N_{\bullet}(\mathbf{Rel}(A,A)), \chi_A)$.

PROOF 1.2.3 ► PROOF OF CONSTRUCTION 1.2.2

Clear.

00TY PROPOSITION 1.2.4 ➤ PROPERTIES OF THE REFLEXIVE CLOSURE OF A RELATION

Let R be a relation on A.

00TZ 1. Adjointness. We have an adjunction

$$\Big((-)^{\mathrm{refl}}\dashv \overline{\varpi}\Big)\colon \operatorname{Rel}(A,A) \underbrace{\downarrow}_{\Xi} \operatorname{Rel}^{\mathrm{refl}}(A,A),$$

witnessed by a bijection of sets

$$\mathbf{Rel}^{\mathsf{refl}}\Big(R^{\mathsf{refl}},S\Big) \cong \mathbf{Rel}(R,S),$$

natural in $R \in \text{Obj}(\mathbf{Rel}^{\text{refl}}(A, A))$ and $S \in \text{Obj}(\mathbf{Rel}(A, A))$.

- 2. The Reflexive Closure of a Reflexive Relation. If R is reflexive, then $R^{\text{refl}} = R$.
- 3. Idempotency. We have

00U0

00U1

00U2

$$\left(R^{\text{refl}}\right)^{\text{refl}} = R^{\text{refl}}.$$

4. Interaction With Inverses. We have

$$\begin{pmatrix} R^{\dagger} \end{pmatrix}^{\text{refl}} = \begin{pmatrix} R^{\text{refl}} \end{pmatrix}^{\dagger}, \qquad \underset{(-)^{\dagger}}{\text{Rel}(A, A)} \xrightarrow{(-)^{\text{refl}}} & \text{Rel}(A, A) \\
& \qquad \qquad \qquad \downarrow_{(-)^{\dagger}} \\
& \qquad \qquad \qquad \qquad \qquad \downarrow_{(-)^{\text{refl}}} & \text{Rel}(A, A).$$

00U3 5. Interaction With Composition. We have

PROOF 1.2.5 ➤ PROOF OF PROPOSITION 1.2.4 Item 1: Adjointness This is a rephrasing of the universal property of the reflexive closure of a relation, stated in Definition 1.2.1. Item 2: The Reflexive Closure of a Reflexive Relation Clear. Item 3: Idempotency This follows from Item 2. Item 4: Interaction With Inverses Clear. Item 5: Interaction With Composition This follows from Item 2 of Proposition 1.1.4.

00U4 2 Symmetric Relations

00U5 2.1 Foundations

Let *A* be a set.

00U6 DEFINITION 2.1.1 ➤ SYMMETRIC RELATIONS

A relation R on A is **symmetric** if we have $R^{\dagger} = R$.

00U7 REMARK 2.1.2 ► UNWINDING DEFINITION 2.1.1

In detail, a relation R is symmetric if it satisfies the following condition:

 (\star) For each $a, b \in A$, if $a \sim_R b$, then $b \sim_R a$.

00U8 DEFINITION 2.1.3 ➤ THE PO/SET OF SYMMETRIC RELATIONS ON A SET

Let *A* be a set.

00U9

1. The **set of symmetric relations on** A is the subset $Rel^{symm}(A, A)$ of Rel(A, A) spanned by the symmetric relations.

00UA

2. The **poset of relations on** A is is the subposet $Rel^{symm}(A, A)$ of Rel(A, A) spanned by the symmetric relations.

00UB

PROPOSITION 2.1.4 ► PROPERTIES OF SYMMETRIC RELATIONS

Let R and S be relations on A.

00UC

1. Interaction With Inverses. If R is symmetric, then so is R^{\dagger} .

00UD

2. *Interaction With Composition.* If R and S are symmetric, then so is $S \diamond R$.

Item 1: Interaction With Inverses

Clear.

Item 2: Interaction With Composition

Clear.

00UE 2.2 The Symmetric Closure of a Relation

Let R be a relation on A.

00UF

DEFINITION 2.2.1 ► THE SYMMETRIC CLOSURE OF A RELATION

The **symmetric closure** of \sim_R is the relation $\sim_R^{\text{symm_1}}$ satisfying the following universal property:²

 $(\star) \ \ \text{Given another symmetric relation} \sim_S \text{on } A \text{ such that } R \subset S \text{, there exists an inclusion} \sim_R^{\text{symm}} \subset \sim_S.$

00UG

CONSTRUCTION 2.2.2 ► THE SYMMETRIC CLOSURE OF A RELATION

¹ Further Notation: Also written R^{symm} .

² Slogan: The symmetric closure of R is the smallest symmetric relation containing R.

Concretely, $\sim_R^{\rm symm}$ is the symmetric relation on A defined by

$$R^{\text{symm}} \stackrel{\text{def}}{=} R \cup R^{\dagger}$$

= $\{(a, b) \in A \times A \mid \text{we have } a \sim_R b \text{ or } b \sim_R a\}.$

PROOF 2.2.3 ► PROOF OF CONSTRUCTION 2.2.2

Clear.

00UH

PROPOSITION 2.2.4 ► PROPERTIES OF THE SYMMETRIC CLOSURE OF A RELATION

Let R be a relation on A.

00UJ

1. Adjointness. We have an adjunction

$$\left((-)^{\operatorname{symm}}\dashv \overline{\Xi}\right)\colon \quad \operatorname{Rel}(A,A) \underbrace{\overset{(-)^{\operatorname{symm}}}{\leftrightarrows}}_{\overline{\Xi}} \operatorname{Rel}^{\operatorname{symm}}(A,A),$$

witnessed by a bijection of sets

$$Rel^{symm}(R^{symm}, S) \cong Rel(R, S),$$

natural in $R \in \text{Obj}(\mathbf{Rel}^{\mathsf{symm}}(A, A))$ and $S \in \text{Obj}(\mathbf{Rel}(A, A))$.

00UK

2. The Symmetric Closure of a Symmetric Relation. If R is symmetric, then $R^{\text{symm}} = R$.

00UL

3. Idempotency. We have

$$(R^{\text{symm}})^{\text{symm}} = R^{\text{symm}}$$
.

00UM

4. Interaction With Inverses. We have

$$\left(R^{\dagger}\right)^{\text{symm}} = \left(R^{\text{symm}}\right)^{\dagger}, \qquad \underset{(-)^{\dagger}}{\overset{(-)^{\text{symm}}}{\underset{(-)^{\dagger}}{\bigvee}}} \ \text{Rel}(A, A) \xrightarrow{(-)^{\text{symm}}} \ \text{Rel}(A, A).$$

00UN

5. Interaction With Composition. We have

$$\operatorname{Rel}(A,A) \times \operatorname{Rel}(A,A) \xrightarrow{\diamond} \operatorname{Rel}(A,A)$$

$$(S \diamond R)^{\operatorname{symm}} \diamond R^{\operatorname{symm}}, \qquad \underset{(-)^{\operatorname{symm}} \times (-)^{\operatorname{symm}}}{(-)^{\operatorname{symm}}} \downarrow \qquad \qquad \downarrow_{(-)^{\operatorname{symm}}}$$

$$\operatorname{Rel}(A,A) \times \operatorname{Rel}(A,A) \xrightarrow{\diamond} \operatorname{Rel}(A,A).$$

PROOF 2.2.5 ➤ PROOF OF PROPOSITION 2.2.4 Item 1: Adjointness This is a rephrasing of the universal property of the symmetric closure of a relation, stated in Definition 2.2.1. Item 2: The Symmetric Closure of a Symmetric Relation Clear. Item 3: Idempotency This follows from Item 2. Item 4: Interaction With Inverses Clear. Item 5: Interaction With Composition

00UP 3 Transitive Relations

00UQ 3.1 Foundations

Let *A* be a set.

00UR

DEFINITION 3.1.1 ► TRANSITIVE RELATIONS

This follows from Item 2 of Proposition 2.1.4.

A transitive relation is equivalently:1

- · A non-unital \mathbb{E}_1 -monoid in $(N_{\bullet}(\mathbf{Rel}(A,A)),\diamond)$.
- · A non-unital monoid in (**Rel** $(A, A), \diamond$).

3.1 Foundations

 1 Note that since $\mathbf{Rel}(A,A)$ is posetal, transitivity is a property of a relation, rather than extra structure.

00US

REMARK 3.1.2 ► UNWINDING DEFINITION 3.1.1

In detail, a relation R on A is **transitive** if we have an inclusion

$$\mu_R \colon R \diamond R \subset R$$

of relations in $\mathbf{Rel}(A,A)$, i.e. if, for each $a,c\in A$, the following condition is satisfied:

 (\star) If there exists some $b \in A$ such that $a \sim_R b$ and $b \sim_R c$, then $a \sim_R c$.

00UT

DEFINITION 3.1.3 ► THE PO/SET OF TRANSITIVE RELATIONS ON A SET

Let *A* be a set.

00UU

- 1. The **set of transitive relations from** A **to** B is the subset $Rel^{trans}(A)$ of Rel(A, A) spanned by the transitive relations.
- 2. The **poset of relations from** A **to** B is is the subposet $Rel^{trans}(A)$ of Rel(A, A) spanned by the transitive relations.

00UV

PROPOSITION 3.1.4 ► PROPERTIES OF TRANSITIVE RELATIONS

Let R and S be relations on A.

00UX

- 1. Interaction With Inverses. If R is transitive, then so is R^{\dagger} .
- 00UY
- 2. Interaction With Composition. If R and S are transitive, then $S \diamond R$ may fail to be transitive.

PROOF 3.1.5 ► PROOF OF PROPOSITION 3.1.4

Item 1: Interaction With Inverses

Clear.

Item 2: Interaction With Composition

See [MSE 2096272].1

¹ Intuition: Transitivity for R and S fails to imply that of $S \diamond R$ because the composition operation for relations intertwines R and S in an incompatible way:

- 1. If $a \sim_{S \diamond R} c$ and $c \sim_{S \diamond r} e$, then:
 - (a) There is some $b \in A$ such that:
 - i. $a \sim_R b$;
 - ii. $b \sim_S c$;
 - (b) There is some $d \in A$ such that:
 - i. $c \sim_R d$;
 - ii. $d \sim_S e$.

00UZ 3.2 The Transitive Closure of a Relation

Let R be a relation on A.

00V0 DEFINITION 3.2.1 ► THE TRANSITIVE CLOSURE OF A RELATION

The **transitive closure** of \sim_R is the relation $\sim_R^{\rm trans1}$ satisfying the following universal property:²

 (\star) Given another transitive relation \sim_S on A such that $R\subset S$, there exists an inclusion $\sim_R^{\rm trans}\subset\sim_S$.

00V1 CONSTRUCTION 3.2.2 ► THE TRANSITIVE CLOSURE OF A RELATION

¹ Further Notation: Also written R^{trans} .

² Slogan: The transitive closure of R is the smallest transitive relation containing R.

Concretely, $\sim_R^{\rm trans}$ is the free non-unital monoid on R in $(\mathbf{Rel}(A,A),\diamond)^{\mathbf{1}}$, being given by

$$R^{\text{trans}} \stackrel{\text{def}}{=} \prod_{n=1}^{\infty} R^{\diamond n}$$

$$\stackrel{\text{def}}{=} \bigcup_{n=1}^{\infty} R^{\diamond n}$$

$$\stackrel{\text{def}}{=} \left\{ (a,b) \in A \times B \middle| \text{ there exists some } (x_1, \dots, x_n) \in R^{\times n} \right\}$$
such that $a \sim_R x_1 \sim_R \dots \sim_R x_n \sim_R b$.

¹Or, equivalently, the free non-unital \mathbb{E}_1 -monoid on R in $(N_{\bullet}(\mathbf{Rel}(A,A)), \diamond)$.

PROOF 3.2.3 ► PROOF OF CONSTRUCTION 3.2.2

Clear.

00V3

00V4

00V5

00V2 PROPOSITION 3.2.4 ➤ PROPERTIES OF THE TRANSITIVE CLOSURE OF A RELATION

Let R be a relation on A.

1. Adjointness. We have an adjunction

witnessed by a bijection of sets

$$Rel^{trans}(R^{trans}, S) \cong Rel(R, S),$$

natural in $R \in \text{Obj}(\mathbf{Rel}^{\mathsf{trans}}(A, A))$ and $S \in \text{Obj}(\mathbf{Rel}(A, B))$.

- 2. The Transitive Closure of a Transitive Relation. If R is transitive, then $R^{trans} = R$.
- 3. Idempotency. We have

$$(R^{\text{trans}})^{\text{trans}} = R^{\text{trans}}.$$

00V6

4. Interaction With Inverses. We have

$$\left(R^{\dagger}\right)^{\text{trans}} = \left(R^{\text{trans}}\right)^{\dagger}, \qquad \underset{(-)^{\dagger}}{\left(-\right)^{\dagger}} \qquad \underset{(-)^{\text{trans}}}{\left(-\right)^{\text{trans}}} \quad \text{Rel}(A, A)$$

$$Rel(A, A) \xrightarrow[(-)^{\text{trans}}]{} \quad \text{Rel}(A, A).$$

00V7

5. Interaction With Composition. We have

PROOF 3.2.5 ► PROOF OF PROPOSITION 3.2.4

Item 1: Adjointness

This is a rephrasing of the universal property of the transitive closure of a relation, stated in Definition 3.2.1.

Item 2: The Transitive Closure of a Transitive Relation

Clear.

Item 3: Idempotency

This follows from Item 2.

Item 4: Interaction With Inverses

We have

$$\begin{split} \left(R^{\dagger}\right)^{\text{trans}} &= \bigcup_{n=1}^{\infty} \left(R^{\dagger}\right)^{\diamond n} \\ &= \bigcup_{n=1}^{\infty} \left(R^{\diamond n}\right)^{\dagger} \\ &= \left(\bigcup_{n=1}^{\infty} R^{\diamond n}\right)^{\dagger} \\ &= \left(R^{\text{trans}}\right)^{\dagger}, \end{split}$$

where we have used, respectively:

- 1. Construction 3.2.2.
- 2. Constructions With Relations, Item 4 of Proposition 3.12.3.
- 3. Constructions With Relations, Item 1 of Proposition 3.6.2.
- 4. Construction 3.2.2.

Item 5: Interaction With Composition

This follows from Item 2 of Proposition 3.1.4.

00V8 4 Equivalence Relations

00V9 4.1 Foundations

Let *A* be a set.

00VA DEFINITION 4.1.1 ➤ EQUIVALENCE RELATIONS

A relation R is an **equivalence relation** if it is reflexive, symmetric, and transitive.¹

¹ Further Terminology: If instead R is just symmetric and transitive, then it is called a **partial** equivalence relation.

00VB

EXAMPLE 4.1.2 ► THE KERNEL OF A FUNCTION

The **kernel of a function** $f: A \to B$ is the equivalence relation $\sim_{\mathsf{Ker}(f)}$ on A obtained by declaring $a \sim_{\mathsf{Ker}(f)} b$ iff f(a) = f(b).

¹The kernel $Ker(f): A \rightarrow A$ of f is the underlying functor of the monad induced by the adjunction $Gr(f) \dashv f^{-1}: A \rightleftarrows B$ in **Rel** of Constructions With Relations, Item 2 of Proposition 3.1.2.

00VC

DEFINITION 4.1.3 ► THE PO/SET OF EQUIVALENCE RELATIONS ON A SET

Let A and B be sets.

00VD

- 1. The **set of equivalence relations from** A **to** B is the subset $Rel^{eq}(A, B)$ of Rel(A, B) spanned by the equivalence relations.
- 2. The **poset of relations from** A **to** B is is the subposet $Rel^{eq}(A, B)$ of Rel(A, B) spanned by the equivalence relations.

00VE

OOVF 4.2 The Equivalence Closure of a Relation

Let R be a relation on A.

00VG

DEFINITION 4.2.1 ► THE EQUIVALENCE CLOSURE OF A RELATION

The **equivalence closure**¹ of \sim_R is the relation $\sim_R^{\text{eq}_2}$ satisfying the following universal property:³

 (\star) Given another equivalence relation \sim_S on A such that $R\subset S$, there exists an inclusion $\sim_R^{\text{eq}}\subset\sim_S$.

00VH

CONSTRUCTION 4.2.2 ► THE EQUIVALENCE CLOSURE OF A RELATION

¹ Further Terminology: Also called the **equivalence relation associated to** \sim_R .

² Further Notation: Also written R^{eq} .

³ Slogan: The equivalence closure of R is the smallest equivalence relation containing R.

Concretely, \sim_R^{eq} is the equivalence relation on A defined by

$$R^{\text{eq}} \stackrel{\text{def}}{=} \left(\left(R^{\text{refl}} \right)^{\text{symm}} \right)^{\text{trans}}$$
$$= \left(\left(R^{\text{symm}} \right)^{\text{trans}} \right)^{\text{refl}}$$

$$= \left\{ (a,b) \in A \times B \right\}$$

there exists $(x_1, \ldots, x_n) \in R^{\times n}$ satisfying at least one of the following conditions:

- 1. The following conditions are satisfied:
 - (a) We have $a \sim_R x_1$ or $x_1 \sim_R a$;
 - (b) We have $x_i \sim_R x_{i+1}$ or $x_{i+1} \sim_R x_i$ for each $1 \le i \le n-1$;
 - (c) We have $b \sim_R x_n$ or $x_n \sim_R b$;
- 2. We have a = b.

PROOF 4.2.3 ► PROOF OF CONSTRUCTION 4.2.2

From the universal properties of the reflexive, symmetric, and transitive closures of a relation (Definitions 1.2.1, 2.2.1 and 3.2.1), we see that it suffices to prove that:

- 00VJ
- 1. The symmetric closure of a reflexive relation is still reflexive.
- 2. The transitive closure of a symmetric relation is still symmetric.

which are both clear.

00VL

PROPOSITION 4.2.4 ► PROPERTIES OF EQUIVALENCE RELATIONS

Let R be a relation on A.

00VM

1. Adjointness. We have an adjunction

$$((-)^{\operatorname{eq}} \dashv \overline{\Xi})$$
: $\operatorname{Rel}(A, B)$ $\stackrel{(-)^{\operatorname{eq}}}{\underbrace{\Xi}}$ $\operatorname{Rel}^{\operatorname{eq}}(A, B)$,

witnessed by a bijection of sets

$$Rel^{eq}(R^{eq}, S) \cong Rel(R, S),$$

natural in $R \in \text{Obj}(\mathbf{Rel}^{eq}(A, B))$ and $S \in \text{Obj}(\mathbf{Rel}(A, B))$.

- 2. The Equivalence Closure of an Equivalence Relation. If R is an equivalence relation, then $R^{\rm eq}=R$.
- 3. Idempotency. We have

$$(R^{eq})^{eq} = R^{eq}$$
.

PROOF 4.2.5 ► PROOF OF PROPOSITION 4.2.4

Item 1: Adjointness

This is a rephrasing of the universal property of the equivalence closure of a relation, stated in Definition 4.2.1.

Item 2: The Equivalence Closure of an Equivalence Relation

Clear.

00VN

00VP

Item 3: Idempotency

This follows from Item 2.

00VQ 5 Quotients by Equivalence Relations

00VR 5.1 Equivalence Classes

Let A be a set, let R be a relation on A, and let $a \in A$.

00VS DEFINITION 5.1.1 ► EQUIVALENCE CLASSES

The **equivalence class associated to** a is the set [a] defined by

$$[a] \stackrel{\text{def}}{=} \{x \in X \mid x \sim_R a\}$$

$$= \{x \in X \mid a \sim_R x\}.$$
 (since R is symmetric)

00VT 5.2 Quotients of Sets by Equivalence Relations

Let A be a set and let R be a relation on A.

00VU

DEFINITION 5.2.1 ► QUOTIENTS OF SETS BY EQUIVALENCE RELATIONS

The **quotient of** X **by** R is the set X/\sim_R defined by

$$X/\sim_R \stackrel{\text{def}}{=} \{ [a] \in \mathcal{P}(X) \mid a \in X \}.$$

00VV

REMARK 5.2.2 ► WHY USE "EQUIVALENCE" RELATIONS FOR QUOTIENT SETS

The reason we define quotient sets for equivalence relations only is that each of the properties of being an equivalence relation—reflexivity, symmetry, and transitivity—ensures that the equivalences classes [a] of X under R are well-behaved:

- · Reflexivity. If R is reflexive, then, for each $a \in X$, we have $a \in [a]$.
- · Symmetry. The equivalence class [a] of an element a of X is defined by

$$[a] \stackrel{\text{def}}{=} \{x \in X \mid x \sim_R a\},\$$

but we could equally well define

$$[a]' \stackrel{\text{def}}{=} \{x \in X \mid a \sim_R x\}$$

instead. This is not a problem when R is symmetric, as we then have [a] = [a]'.

• Transitivity. If R is transitive, then [a] and [b] are disjoint iff $a \not\sim_R b$, and equal otherwise.

00VW

PROPOSITION 5.2.3 ► PROPERTIES OF QUOTIENT SETS

Let $f: X \to Y$ be a function and let R be a relation on X.

00VX

1. As a Coequaliser. We have an isomorphism of sets

$$X/\sim_R^{\operatorname{eq}} \cong \operatorname{CoEq}\left(R \hookrightarrow X \times X \stackrel{\operatorname{pr}_1}{\rightarrow} X\right),$$

 $^{^{1}}$ When categorifying equivalence relations, one finds that [a] and [a]' correspond to presheaves and copresheaves; see ??, ??.

where $\sim_R^{\rm eq}$ is the equivalence relation generated by \sim_R .

2. As a Pushout. We have an isomorphism of sets¹

$$X/\sim_{R}^{\text{eq}} \cong X \coprod_{\mathsf{Eq}(\mathsf{pr}_1,\mathsf{pr}_2)} X, \qquad \bigwedge^{\mathsf{r}} \qquad \bigwedge^{\mathsf{r}} \qquad \bigwedge$$

$$X \leftarrow \mathsf{Eq}(\mathsf{pr}_1,\mathsf{pr}_2).$$

where \sim_R^{eq} is the equivalence relation generated by \sim_R .

3. The First Isomorphism Theorem for Sets. We have an isomorphism of sets^{2,3}

$$X/\sim_{\mathsf{Ker}(f)} \cong \mathsf{Im}(f).$$

- 4. Descending Functions to Quotient Sets, I. Let R be an equivalence relation on X. The following conditions are equivalent:
 - (a) There exists a map

$$\overline{f}: X/\sim_R \to Y$$

making the diagram

commute.

- (b) We have $R \subset \text{Ker}(f)$.
- (c) For each $x, y \in X$, if $x \sim_R y$, then f(x) = f(y).

5. Descending Functions to Quotient Sets, II. Let R be an equivalence relation on X. If the conditions of Item 4 hold, then \overline{f} is the unique map making the

00VZ

00VY

00W0

00W1

diagram

commute.

6. Descending Functions to Quotient Sets, III. Let R be an equivalence relation on X. We have a bijection

$$\operatorname{Hom}_{\operatorname{Sets}}(X/\sim_R,Y)\cong \operatorname{Hom}_{\operatorname{Sets}}^R(X,Y),$$

natural in $X,Y\in {\sf Obj}({\sf Sets})$, given by the assignment $f\mapsto \overline{f}$ of Items 4 and 5, where ${\sf Hom}^R_{\sf Sets}(X,Y)$ is the set defined by

$$\operatorname{Hom}_{\mathsf{Sets}}^R(X,Y) \stackrel{\text{def}}{=} \left\{ f \in \operatorname{Hom}_{\mathsf{Sets}}(X,Y) \middle| \begin{array}{l} \text{for each } x,y \in X, \\ \text{if } x \sim_R y, \text{ then} \\ f(x) = f(y) \end{array} \right\}.$$

7. Descending Functions to Quotient Sets, IV. Let R be an equivalence relation on X. If the conditions of Item 4 hold, then the following conditions are equivalent:

- (a) The map \overline{f} is an injection.
- (b) We have R = Ker(f).
- (c) For each $x,y\in X$, we have $x\sim_R y$ iff f(x)=f(y).

8. Descending Functions to Quotient Sets, V. Let R be an equivalence relation on X. If the conditions of Item 4 hold, then the following conditions are equivalent:

- (a) The map $f: X \to Y$ is surjective.
- (b) The map $\overline{f}\colon X/{\sim_R} \to Y$ is surjective.

9. Descending Functions to Quotient Sets, VI. Let R be a relation on X and let \sim_R^{eq} be the equivalence relation associated to R. The following conditions are equivalent:

00W2

00W3

00W4

00W5

00W6

00W7

- (a) The map f satisfies the equivalent conditions of Item 4:
 - · There exists a map

$$\overline{f}: X/\sim_{p}^{eq} \to Y$$

making the diagram

commute.

- $\cdot \ \, \text{For each}\, x,y\in X, \text{if}\, x\sim_R^{\text{eq}} y, \text{then}\, f(x)=f(y).$
- (b) For each $x, y \in X$, if $x \sim_R y$, then f(x) = f(y).

$$\operatorname{Eq}(\operatorname{pr}_1,\operatorname{pr}_2)\cong X\times_{X/{\sim_R^{\operatorname{eq}}}}X, \qquad \qquad \bigvee_{X\longrightarrow X/{\sim_R^{\operatorname{eq}}}}X$$

² Further Terminology: The set $X/\sim_{\mathsf{Ker}(f)}$ is often called the **coimage of** f, and denoted by $\mathsf{Coim}(f)$.

 3 In a sense this is a result relating the monad in **Rel** induced by f with the comonad in **Rel** induced by f, as the kernel and image

$$\operatorname{Ker}(f): X \to X,$$

 $\operatorname{Im}(f) \subset Y$

of f are the underlying functors of (respectively) the induced monad and comonad of the adjunction

$$\left(\operatorname{Gr}(f) \dashv f^{-1}\right): A \xrightarrow{f^{-1}} B$$

of Constructions With Relations, Item 2 of Proposition 3.1.2.

¹Dually, we also have an isomorphism of sets

PROOF 5.2.4 ► PROOF OF PROPOSITION 5.2.3

Item 1: As a Coequaliser

Omitted.

Item 2: As a Pushout

Omitted.

Item 3: The First Isomorphism Theorem for Sets

Clear.

Item 4: Descending Functions to Quotient Sets, I

See [Pro24c].

Item 5: Descending Functions to Quotient Sets, II

See [Pro24d].

Item 6: Descending Functions to Quotient Sets, III

This follows from Items 5 and 6.

Item 7: Descending Functions to Quotient Sets, IV

See [Pro24b].

Item 8: Descending Functions to Quotient Sets, V

See [Pro24a].

Item 9: Descending Functions to Quotient Sets, VI

The implication Item $9a \Longrightarrow Item 9b$ is clear.

Conversely, suppose that, for each $x,y \in X$, if $x \sim_R y$, then f(x) = f(y). Spelling out the definition of the equivalence closure of R, we see that the condition $x \sim_R^{\text{eq}} y$ unwinds to the following:

- (*) There exist $(x_1, \ldots, x_n) \in R^{\times n}$ satisfying at least one of the following conditions:
 - 1. The following conditions are satisfied:
 - (a) We have $x \sim_R x_1$ or $x_1 \sim_R x$;
 - (b) We have $x_i \sim_R x_{i+1}$ or $x_{i+1} \sim_R x_i$ for each $1 \leq i \leq n-1$;
 - (c) We have $y \sim_R x_n$ or $x_n \sim_R y$;
 - 2. We have x = y.

Now, if x = y, then f(x) = f(y) trivially; otherwise, we have

$$f(x) = f(x_1),$$

$$f(x_1) = f(x_2),$$

$$\vdots$$

$$f(x_{n-1}) = f(x_n),$$

$$f(x_n) = f(y),$$

and f(x) = f(y), as we wanted to show.

Appendices

A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets

- 6. Constructions With Relations
- 7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Relations

5. Relations

Bicategories

9. Types of Morphisms in Bicategories

References

[MSE 2096272]

Akiva Weinberger. Is composition of two transitive relations transitive? If not, can you give me a counterexample? Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/2096272 (cit. on p. 10).

[Pro24a]

Proof Wiki Contributors. Condition For Mapping from Quotient Set To Be A Surjection — Proof Wiki. 2024. URL: https://proofwiki.org/

References 23

wiki/Condition_for_Mapping_from_Quotient_Set_to_be_ Surjection (cit. on p. 21). [Pro24b] Proof Wiki Contributors. Condition For Mapping From Quotient Set To Be An Injection—Proof Wiki. 2024. URL: https://proofwiki.org/ wiki/Condition_for_Mapping_from_Quotient_Set_to_be_ Injection (cit. on p. 21). [Pro24c] Proof Wiki Contributors. Condition For Mapping From Quotient Set To Be Well-Defined — Proof Wiki. 2024. URL: https://proofwiki.org/ wiki/Condition_for_Mapping_from_Quotient_Set_to_be_ Well-Defined (cit. on p. 21). Proof Wiki Contributors. Mapping From Quotient Set When Defined Is [Pro24d] Unique — Proof Wiki. 2024. URL: https://proofwiki.org/wiki/ Mapping_from_Quotient_Set_when_Defined_is_Unique (cit. on p. 21).