

CHAPTER

11

Coordination Compounds

Representation of Complex Compound

Co-ordination number = Number of atoms surrounded to central metal ion.

Notes

Bidentate and Polydentate are also called chelating ligand.

Bonding in Coordination Compound

Effective Atomic Number & Sidgwick Rule

Total number of electron present on central metal atom or ion after accepting the electron pair from ligand.

VBT

- Metal provoide hybridised vacant orbital for the acceptance of lone pair from ligand.
- Hybridisation, shape and magnetic behaviour of complex depends upon the nature of ligand.
- ❖ Strong field ligand pair up the unpaired e[−] of central metal atom where as weak field ligand does not.
- ❖ If unpaired e⁻ present in complex then complex is paramagnetic. If unpaired e⁻ is absent then diamagnatic. eg. C.N. = 4; [NiCl₄]²⁻

Series which shows the Relative Strength of Ligands

 $I^{-}(weakest) < Br^{-} < SCN^{-} < Cl^{-} < S^{2-} < F^{-} < OH^{-} < C_{2}O_{4}^{2-} < H_{2}O$ $< NCS^{-} < edta^{4-} < NH_{3} < en < CN^{-} < CO(strongest)$

Exception

[Co(OX) ₃] ³⁻	d^2sp^3	diamagnetic
[Co(H ₂ O) ₆] ³⁺	d^2sp^3	diamagnetic
$[NiF_6]^{2-}$	d^2sp^3	diamagnetic
$[Cr(NH_3)_6]^{2+}$	sp^3d^2	paramagnetic
$[Mn(NH_3)_6]^{2+}$	sp^3d^2	paramagnetic
[Fe(NH ₃) ₆] ²⁺	sp^3d^2	paramagnetic
$[CoL_6]^{4-}(L = NO_2^{-}/CN^{-})$	d^2sp^3	paramagnatic

Exception

- d³s hybridisation, Td, diamagnetic, inner orbital complex eg.
 MnO₄⁻, CrO₂²⁻, CrO₂Cl₂, CrO₂F₂, VO₄³⁻
- ❖ Transference of electron eg. Cu^{+2} in C.N. → 4 with L (where $L = NO_2^- / CN^- / NH_3$ etc.)

Organometallic Compounds

Compounds in which the less E.N. (Ge, Sb, B, Si, P, As) central metal atoms are bonded directly to carbon atoms are called organometallic compounds.

- σ-bonded compounds formed by nontransition elements.
 R-Mg-X, (CH₃-CH₂)₂ Zn, Ziegler natta catalyst, etc.
- π-bonded organometallic compounds are generally formed by transition elements e.g. Zeise's salt, ferrocene, dibenzene chromium, etc.
- σ-and π-bonded organometallic compounds: Metal carbonyls compounds formed between metal and carbon monoxide belong to this class. Ni(CO)₄, Fe(CO)₅ etc.

Stereo Isomerism

Stereo Isomerism in Co-ordination Compound

CN-4

- * Square planar complex does not show optical isomerism.
- Square planar complex show optical activity if the co-ordinated ligand having chiral center.
- Square planar complex
- * $[Ma_2b_2]^{n\pm}$, $[Ma_2bc]^{n\pm}$, $[Mabcd]^{n\pm}$, $[M(AB)cd]^{n\pm}$
- ❖ [M(AB)(CD)]^{n±} show geometrical isomerism
- ❖ [Mabcd]^{n±} form two cis and one trans.
- Tetrahedral complex [Mabcd]^{n±}, [M(AB)cd]^{n±} [M(AB)(CD)] ^{n±} show optical isomerism
- Tetrahdral complex does not show geometrical isomerism.