timeSteps len(dateList) Python

Parlie I Algorithmic Trading in
Parlie I Algorithmic Trading i

7

```
while barIterator < timeSteps:</pre>
      for symbol in backtestSymbolList:
           # Historical data input has to be adjusted for your own
           # Simple moving average cross strategy
            price = data[symbol]["close"]
           SMA20 = data[symbol]["SMA20"]
            SMA50 = data[symbol]["SMA50"]
                                                         Team 6
                SMA20 > SMA50:
                  openPosition = backtester.returnOpenPosition(symbol)
```

ip install la ip install va ip install -l ip install -c

ting langde[.] loading <u>htt</u>

ement alreading wheels for ding wheel red in directions fully builting collections.

ling collecter

ding wheel

sfully insta

ting vaderSe

loading http

Introduction

Goal of the Project

- Create "Financial Machine Learning Model" that predicts returns
- Implement "Algorithmic Trading" that utilizes fundamental and sentiment data to derive absolute return strategy both in bull and bear market.

What Strategy:

- "Micro Alpha model": Mainly Data-driven
- "General Sentiment" model: Measure the effect of sentiment in Social Media vs Technical
- Algorithm Upgrade: include 8 Fundamental data factors
- Buy Long at positive ML signal, Sell Short at negative ML signal
- Short-term trading: 1 day
- 1 stock: Red Hat (RHT)

Data collection

- Fundamental Data
 - Alternative Data
- Sentiment Analysis

```
mlDf.dropna()
ncome % growt
names =
'Diluted EPS'
                 Profitability
EBITDA Margi
NetIncome &
Net Debt to
Positive',
                 Growth
ng the Time S
meStamp = pd.
t index(mlDf[
ing Name of C
= mlDf.rename
                 Financial Structure
e features an
Loaded in Fir
s = mlDf[feat
s = features.
= mlDf['Retu
e DataFrame f
and target c
```

rg df = mlDf[

late correlat feat targ df.

Fundamental Data Collection

- Diluted EPS from Continuing Operations: Absolute number
 - EBIT Margin, EBITDA Margin: %

Revenue % Growth, EBITDA % Growth, EBIT % Growth, Sequential % Growth in Net Income from Continuing Operations

- Net Debt to Equity
- Feature of Quarterly Released Data: Look ahead bias
 - Time delay of data: previous quarter's data
 - Difference in time horizon: "Daily" trading & sentimental analysis vs "Quarterly" data


```
art time = tim
eetsDf.text =
Brasing Misc (
eetsDf.text =
eetsDf.text =
eetsDf.text =
int("Middle of
eetsDf.text =
eetsDf.text =
eetsDf.text =
eetsDf.text =
eetsDf = tweet
Erasing Non En
int("Before de
```

eetsDf.text =

eetsDf = tweet

Data Cleaning

What does it mean for B2B businesses when a tech giant like IBM acquires RedHat The Cloud is about to be a whole lot more important in 2019 and beyond.

Metrics

1.Positive Sentiment: compound score >= 0.05

2.Neutral Sentiment: (compound score >- 0.05) & (compound score < 0.05)

3.Negative Sentiment: compound score <=- 0.05

Results

aggDfDay.tail()							
C →		Favourites	retweets	Compound	Positive	Neutral	Negative
	timeStamp						
	2019-01-10	330	128	25.3206	12.747	70.123	2.131
	2019-01-11	541	112	33.4915	18.343	53.682	0.973
	2019-01-12	116	63	10.1557	7.588	17.961	0.452
	2019-01-13	182	75	9.1907	4.500	21.400	1.101
	2019-01-14	154	89	10.8001	5.615	34.459	0.926

Data Preparation

10 print / | Post

Correlation between the Target Variable and the Features

Correlation between the target variable and the features: near zero

- Historical data
- Investors' expectations
- Unexpected events
- Nonlinear relationship

Decision Tree

- Prone to Overfitting
- R Squared of Training Set: 0.99
- R Squared of Test Set: -0.75

Decision Tree - Cross Validation

How easy is to Overfit a Model?

3 Lines of Code!

```
1 from sklearn.tree import DecisionTreeRegressor
2
3 # Create a decision tree regression model with default arguments
4 decision_tree = DecisionTreeRegressor(random_state=0)
5
6 decFit = decision_tree.fit(train_features,train_targets)
```


How easy is to lose all your money in the stock market!

```
1 from sklearn.
3 # Create the
5 rfr.fit(train
7 # Look at the
1 from sklearn
3 depths = np.
4 num leafs =
7 param_grid =
10 gs = GridSea
12
13 gs = gs.fit(
14
15
16
 3 \text{ depths} = np.
4 num leafs =
   param grid =
11 gs = GridSea
13 gs = gs.fit(
14
15
16
```

Random Forest - Why?

Random Forest - Feature Selection

Model For Backtesting

The hugely overfit Decision Tree will be used as predictor of returns.

In order to answer the following questions:

How will the overfitting affect the backtest?

Trading Algorithm

Rebalance according to Target Weight (TW)

Trading Algorithm

• Transaction Data

Date	Predicted Return	Target Weight	Quantity	Price		
2014-01-03	1.1%	0.5	8,962	55.78		
2014-01-06	1.9%	0.5	-44	56.34		
2014-01-07	-0.7%	0	-8,918	57.42		
2014-01-10	1.3%	0.5	8,927	56.81		
2014-01-13	3.2%	1	8,810	57.56		
2014-01-14	-0.3%	0	-17,737	59.38		
2014-01-22	-1.4%	-0.5	-8,939	58.92		
2014-01-23	-2.4%	-1	-9,304	58.12		

Security Weights

Comparison between Training vs Test

Total Return & Risk Statistics

Total Return	Sharpe Ratio	Sortino Ratio	CAGR	Max Drawdown
40,323.22%	4.23	5.75	233.08%	-49.75%

Strategy 2: Adding Limit Deltas

Why?

Purpose is to limited the change in portfolio not more than 10% per day by using bt.algos.LimitDeltas()

Strategy 3: Adding Limit Deltas & 1 Day Lag

Why?

Because there is no way that we can know the closing price before the market close.

How?

By shifting the return for 1 day

	Predicted Return	
2014-01-01		
2014-01-02	1.5%	
2014-01-03	0.3%	
2014-01-04	-0.8%	
2014-01-05	-1.3%	

Comparison of Strategies

	Base Strategy	Limit Deltas	Limit Deltas & 1 day lag	Equity Progression Base Strategy UmitDeltas
Total Return	-46.58%	-8.62%	-1.46%	100 LimitDeltas & 1 day lag
Sharpe Ratio	-1.04	-0.54	-0.22	80
Sortino Ratio	-1.10	-0.64	-0.31	70 60
CAGR	-57.34%	-11.44%	-1.96%	50
Max Drawdown	-49.75%	-19.11%	-7.05%	2018.04 2018.05 2018.06 2018.07 2018.08 2018.09 2018.10 2018.11 2018.12

```
need the ris
bt.get('^
average of
te = float(
bt.get( 's
the strateg
.Strategy
bt.Backtes
un (testBenc
ıy()
hts()
```

lictedReturn

Return['pre

pd.DataFram signal.rena

Conclusion

Machine Learning

- Overfitting: Discrepancy between ML model and Backtesting
- Difference based on the period of training data: ex) '2005 2007' vs '2008 2010'

Algorithmic Trading

- Accuracy of the measurement of sentiment effect
- Appropriateness of the choice and number of factors
- Trading effect on the market: capital size of the model
- Unexpected external events: market regime, competitors, market
- Vulnerable to lose big & fast

Backtesting

Biases - Look ahead, Data Snooping, Shorting

"Lose big & fast"

But, could beat human traders!

Authors

- Diego Giménez - Yoonhee Bae

- Piya Thavornwong - Myungsung Kim

- Jorge Betancourt - Xuan Lu

Thanks to machine-learning algorithms, the robot apocalypse was short-lived.