DAILY ASSESSMENT FORMAT

Date:	28-05-2020	Name:	K Muthu
Course:	Logic Design	USN:	4al17ec038
Topic:	Boolean equations for digital circuits.	Semester & Section:	6 & 'A'
	Combinational circuits : Conversion of MUX and Decoders to logic gates		
	Design of 7 segment decoder with common anode display		
Github Repository:	K.Muthu-courses		

FORENOON SESSION DETAILS

Image of session

Digital Circuits Lecture-12: Boolean algebra (Part-1)

12K views · 3 years ago

88

2

Share

Save

Unacademy Live - GATE

QQ 1K cubecribere

SUBSCRIBE

Report – Report can be typed or hand written for up to two pages.

Boolean equations for digital circuits:

- Boolean Algebra is used to analyze and simplify the digital (logic) circuits.
- It uses only the binary numbers i.e. 0 and 1.
- It is also called as Binary Algebra or logical Algebra.
- Boolean laws are,
 - ✓ Commutative law This law states that changing the sequence of the variables does not have any effect on the output of a logic circuit.

(i)
$$A.B = B.A$$
 (ii) $A + B = B + A$

✓ Associative law - This law states that the order in which the logic operations are performed is irrelevant as their effect is the same.

(i)
$$(A.B).C = A.(B.C)$$
 (ii) $(A+B)+C=A+(B+C)$

✓ *Distributive law* - This law states the following condition.

$$A.(B + C) = A.B + A.C$$

Combinational circuits:

• Combinational circuit is a circuit in which we combine the different gates in the circuit, for example encoder, decoder, multiplexer and demultiplexer.

Conversion of MUX to logic gates:

- Multiplexer can act as universal combinational circuit.
- All the standard logic gates can be implemented with multiplexers.
- One example on implementation of logic gates using 2:1 MUX
 - ✓ Implementation of NOT gate using 2:1 Mux

Design of 7 segment decoder with common anode display:

- A display decoder is used to convert a BCD or a binary code into a 7 segment code.
- It generally has 4 input lines and 7 output lines.

Date: 28-05-2020 Name: K Muthu

Course: Python Bootcamp 2020 build 15 USN: 4al17ec038

working applications and Games

Topic: Database Semester 6 & 'A'

& Section:

AFTERNOON SESSION DETAILS

Image of session

Lectures More

Report – Report can be typed or hand written for up to two pages.

Database:

- A database is an abstraction over an operating system's file system that makes it easier for developers to build applications that create, read, update and delete persistent data.
- Databases are a concept with many implementations, including PostgreSQL, MySQL and SQLite.
- PostgreSQL and MySQL are two of the most common open source databases for storing Python web applications' data.

• PostgreSQL database:

- ✓ PostgreSQL is the recommended relational database for working with Python web applications.
- ✓ PostgreSQL's feature set, active development and stability contribute to its usage as the backend for millions of applications live on the Web today.
- Connecting to a database with Python: To work with a relational database using Python, you need to use a code library. The most common libraries for relational databases are:
 - ✓ psycopg2 (source code) for PostgreSQL.
 - ✓ MySQLdb (source code) for MySQL.
 - ✓ cx_Oracle for Oracle Database (source code).