LR2: LR(0) Parsing

LR Parsing

CMPT 379: Compilers

Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

Parsing - Roadmap

- Parser:
 - decision procedure: builds a parse tree
- Top-down vs. bottom-up
- LL(1) Deterministic Parsing
 - recursive-descent
 - table-driven
- LR(k) Deterministic Parsing
 - LR(0), SLR(1), LR(1), LALR(1)
- Parsing arbitrary CFGs Polynomial time parsing

Top-Down vs. Bottom Up

Grammar: $S \rightarrow AB$ Input String: ccbca

 $A \rightarrow c \mid \epsilon$

 $B \rightarrow cbB \mid ca$

Top-Down/le	eftmost	Bottom-Up/rightmost					
$S \Rightarrow AB$	$S \rightarrow AB$	ccbca ← Acbca	A→c				
\Rightarrow cB	$A \rightarrow c$	← AcbB	B→ca				
⇒ ccbB	B→cbB	←AB	B→cbB				
⇒ccbca	B→ca		$S \rightarrow AB$				

Rightmost derivation for

$$E \rightarrow E + E$$

$$E \rightarrow E * E$$

$$E \rightarrow (E)$$

$$E \rightarrow -E$$

$$E \rightarrow id$$

$$E \Rightarrow E * E$$

$$\Rightarrow$$
 E * id

$$\Rightarrow$$
 E + E * id

$$\Rightarrow$$
 E + id * id

$$\Rightarrow$$
 id + id * id

reduce with
$$E \rightarrow id$$

$$E \Rightarrow^*_{rm} E + E \setminus^* id$$

Bottom-up parsing overview

- Start from terminal symbols, search for a path to the start symbol
- Apply shift and reduce actions: postpone decisions
- LR parsing:
 - L: left to right parsing
 - R: rightmost derivation (in reverse or bottom-up)
- $LR(0) \rightarrow SLR(1) \rightarrow LR(1) \rightarrow LALR(1)$
 - 0 or 1 or k lookahead symbols

Actions in Shift-Reduce Parsing

Shift

add terminal to parse stack, advance input

Reduce

- If α w is on the stack, α ,w \in (N U T)* and A \rightarrow w, and there is a $\beta \in$ T* such that S $\Rightarrow^*_{rm} \alpha A \beta \Rightarrow_{rm} \alpha w \beta$ then we can reduce α w to α A on the stack (called *pruning the handle* w)
- α w is a viable prefix
- Error
- Accept

Questions

- When to shift/reduce?
 - What are valid handles?
 - Ambiguity: Shift/reduce conflict
- If reducing, using which production?
 - Ambiguity: Reduce/reduce conflict

LR Parsing

- Table-based parser
 - Creates rightmost derivation (in reverse)
 - For "less massaged" grammars than LL(1)
- Data structures:
 - Stack of states/symbols {s}
 - Action table: action[s, a]; a ∈ T
 - Goto table: **goto**[s, X]; $X \in \mathbb{N}$

Prod	uctions								
1 T-	→ F								
2 T -	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		ctio	n/G	oto ⁻	Tahl	Δ		
3 F –	→ id		Ctio	11/ 00					1
4 F –	→ (T)	*	()	id	\$	T	F	
	0		S5		S 8		2	1	
	1	R1	R1	R1	R1	R1			
	2	S 3				Acc!			
	3		S5		S 8			4	
	4	R2	R2	R2	R2	R2			
	5		S5		S 8		6	1	
	6	S 3		S 7					
	7	R4	R4	R4	R4	R4			
	8	R3	R3	R3	R3	R3			9

Trace "(id)*id"

Stack	Input	Action
0	(id) * id \$	Shift S5
0 5	id)*id\$	Shift S8
058) * id \$	Reduce 3 F→id,
		pop 8, goto [5,F]=1
051) * id \$	Reduce 1 $T \rightarrow F$,
		pop 1, goto [5,T]=6
056) * id \$	Shift S7
0567	* id \$	Reduce 4 $F \rightarrow (T)$,
		pop 7 6 5, goto [0,F]=1
0 1	* id \$	Reduce 1 T \rightarrow F
		pop 1, goto [0,T]=2

I	Productions				*	()	id	\$	T	F				
1	$T \rightarrow F$			0		S5		S8		2	1				
2	2 $T \rightarrow T^{*}F$ '(id)*id"					R1	R1	R1	R1						
3	$F \rightarrow id$	(Id) Id		2	S 3				A						
		Input	A	3		S5		S 8			4				
4	$F \rightarrow (T)$		φ C1	4	R2	R2	R2	R2	R2						
	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	(id)*id		5		S5		S 8		6	1				
	05	id)*id	.	U	S3		S 7								
	058) * id	\$ R	7	R4	R4	R4	R4	R4						
			po	8	R3	R3	R3	R3	R3						
	051) * id) * id \$ Reduce $1 T \rightarrow F$,												
			po	pop 1, goto [5,T]=6											
	056						Shift S7								
					Reduce 4 $F \rightarrow (T)$,										
				pop 7 6 5, goto [0,F]=1											
	0 1					$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
			·												
			po	pop 1, goto [0,T]=2											

Trace "(id)*id"

Stack	Input	Action
0 1	* id \$	Reduce 1 T→F,
		pop 1, goto [0,T]=2
0 2	* id \$	Shift S3
023	id \$	Shift S8
0238	\$	Reduce 3 F→id,
		pop 8, goto [3,F]=4
0234	\$	Reduce 2 T→T * F
		pop 4 3 2, goto [0,T]=2
0 2	\$	Accept

J	Produ	ctions					*	()	id	\$	T	F
1	$T \rightarrow$	\rightarrow F				0		S 5		S8		2	1
2	$2 T \rightarrow T*F$ "(id)*id"					1	R1	R1	R1	R1	R1		
$\begin{array}{c c} \hline 3 & F \rightarrow id \end{array}$				a) Id		2	S 3				A		
4						3		S5		S8			4
-	T ->	\rightarrow (T)		Input	Actio	4	R2	R2	R2	R2	R2		
	Stack 0 1 0 2		Input		5		S5		S8		6	1	
			* id \$	Reduc	6	S 3		S7					
				pop 1,	7	R4	R4	R4	R4	R4			
			* id \$	Shift S	8	R3	R3	R3	R3	R3			
		023		id \$	Shift S8								
		023	8	\$	Reduc	e 3	$F \rightarrow$	id,					
					pop 8, goto [3,F]=4								
			pop 4 3 2, goto [0,T]=2										
	0 2 \$ Accept												
						L							

Tracing LR: action[s, a]

- case **shift** *u*:
 - push state u
 - read new a
- case **reduce** *r*:
 - lookup production $r: X \rightarrow Y_1...Y_k$;
 - pop k states, find state u
 - push goto[u, X]
- case accept: done
- no entry in action table: error

Configuration set

- Each set is a parser state
- We use the notion of a dotted rule or item:

$$T \rightarrow T * \bullet F$$

 The dot is before F, so we predict all rules with F as the left-hand side

$$T \rightarrow T * \bullet F$$
 $F \rightarrow \bullet (T)$
 $F \rightarrow \bullet id$

- This creates a configuration set (or item set)
 - Like NFA-to-DFA conversion

Closure

Closure property:

- If $T \rightarrow X_1 \dots X_i \bullet X_{i+1} \dots X_n$ is in set, and X_{i+1} is a nonterminal, then
 - $X_{i+1} \rightarrow \bullet Y_1 \dots Y_m$ is in the set as well for all productions $X_{i+1} \rightarrow Y_1 \dots Y_m$
- Compute as fixed point
- The closure property creates a configuration set (item set) from a dotted rule (item).

Starting Configuration

- Augment Grammar with S'
- Add production S' → S
- Initial configuration set is

 $closure(S' \rightarrow \bullet S)$

Example: $I = closure(S' \rightarrow \bullet T)$

$$S' \to T$$

$$T \to F \mid T * F$$

$$F \to id \mid (T)$$

Example: $I = closure(S' \rightarrow \bullet T)$

$$S' \rightarrow \bullet T$$
 $T \rightarrow \bullet T * F$
 $T \rightarrow \bullet F$
 $F \rightarrow \bullet id$
 $F \rightarrow \bullet (T)$

$$S' \rightarrow T$$
 $T \rightarrow F \mid T * F$
 $F \rightarrow id \mid (T)$

Successor(I, X)

Informally: "move by symbol X"

- move dot to the right in all items where dot is before X
- remove all other items (viable prefixes only!)
- 3. compute closure

Successor Example

$$I = \{S' \to \bullet T, \\ T \to \bullet F, \\ T \to \bullet T * F, \\ F \to \bullet id, \\ F \to \bullet (T) \}$$

$$S' \to T$$

$$T \to F \mid T * F$$

$$F \to id \mid (T)$$

Compute **Successor**(I, "(")

$$\{ F \rightarrow (\bullet T), T \rightarrow \bullet F, T \rightarrow \bullet T * F, F \rightarrow \bullet id, F \rightarrow \bullet (T) \}$$

Sets-of-Items Construction

LR(0) Construction

- 1. Construct $F = \{I_0, I_1, ... I_n\}$
- 2. a) if $\{A \rightarrow \alpha \bullet\} \in I_i \text{ and } A != S'$ then action[i, _] := reduce $A \rightarrow \alpha$
 - b) if $\{S' \rightarrow S \bullet\} \in I_i$ then action[i,\$] := accept
 - c) if $\{A \rightarrow \alpha \bullet a\beta\} \in I_i \text{ and Successor}(I_i,a) = I_j$ then action[i,a] := shift j
- 3. if Successor(I_i ,A) = I_j then goto[i,A] := j

LR(0) Construction (cont'd)

- 4. All entries not defined are errors
- 5. Make sure I_0 is the initial state
- Note: LR(0) always reduces if $\{A \rightarrow \alpha \bullet\} \in I_i$, no lookahead
- Shift and reduce items can't be in the same configuration set
 - Accepting state doesn't count as reduce item
- At most one reduce item per set

Set-of-items with Epsilon rules

LR(0) conflicts:

```
S' \rightarrow T
T \rightarrow F
T \rightarrow T * F
T \rightarrow id
F \rightarrow id \mid (T)
F \rightarrow id = T;
```

```
11: F \rightarrow id \bullet
F \rightarrow id \bullet = T
Shift/reduce conflict
```

```
1: F \rightarrow id \bullet
T \rightarrow id \bullet
Reduce/Reduce conflict
```

Need more lookahead: SLR(1)

Viable Prefixes

• γ is a viable prefix if there is some ω such that $\gamma \mid \omega$ is a state of a shift-reduce parser

$$stack \rightarrow \gamma | \omega | rest of input$$

- Important fact: A viable prefix is a prefix of a handle
- An LR(0) item [$X \rightarrow \alpha \bullet \beta$] says that
 - $-\alpha$ is on top of the stack (α is a suffix of γ)
 - The parser is looking for an X
 - Expects to find input string derived from β
- We can recognize viable prefixes via a NfA (DFA)
 - States of NFA are LR(o) items
 - States of DFA are sets of LR(o) items (LR(o) states)

LR(0) Grammars

- An LR(0) grammar is a CFG such that the LR(0) construction produces a table without conflicts (a deterministic pushdown automata)
- $S \Rightarrow^*_{rm} \alpha A\beta \Rightarrow_{rm} \alpha w\beta$ and $A \rightarrow w$ then we can prune the handle w
 - pruning the handle means we can reduce αw to αA on the stack
- Every viable prefix aw can recognized using the DFA built by the LR(0) construction

LR(0) Grammars

- Once we have a viable prefix on the stack, we can prune the handle and then restart the DFA to obtain another viable prefix, and so on ...
- In LR(0) pruning the handle can be done without any lookahead
 - this means that in the rightmost derivation,
 - $S \Rightarrow^*_{rm} \alpha A \beta \Rightarrow_{rm} \alpha w \beta$ we reduce using a unique rule $A \to w$ without ambiguity, and without looking at β
- No ambiguous context-free grammar can be LR(0)

LR(0) Grammars ⊂ Context-free Grammars