

Normalization

.NET

Database normalization is the process of structuring a relational database in order to reduce data redundancy and improve data integrity.

Normalization Assignment (Pt. 1)

- Create an unnormalized table.
- List the information of your family members.
- There must be at least 5 attributes to each tuple (row) and at least 5 entities.

https://www.tutorialspoint.com/dbms/database_normalization.htm https://www.c-sharpcorner.com/UploadFile/0146e3/database-normalization/

Normalization is a method to prevent **anomalies** and keep the database in a consistent state. **Fields** and **tables** of a relational DB are organized to minimize redundancy and dependency.

Normalization involves dividing large **tables** into smaller (and less redundant) **tables** and defining relationships among their **atomic** data.

There are many normal forms but 1NF, 2NF, and 3NF are primarily used.

https://www.tutorialspoint.com/dbms/database_normalization.htm https://www.c-sharpcorner.com/UploadFile/0146e3/database-normalization/

This table is not normalized. All the information is stored in one table.

Salutation	Name	City	Movies Watched
Mr.	Moore	Crowley	Avengers Endgame, Thor
Miss.	Garza	Monterrey	Ant-Man, Captain Marvel
Mr.	Moore	Dallas	Spider-Man: Homecoming, Doctor Strange, Iron Man 2

https://www.tutorialspoint.com/dbms/database_normalization.htm https://www.c-sharpcorner.com/UploadFile/0146e3/database-normalization/

1st Normal Form (1NF)

- Have a single *Primary* Key.
- Each table cell should contain a single value.
- Each entity needs to be unique.
- The table contains atomic values only.

Title	Name	City	Movies Watched
Mr.	Moore	Crowley	Avengers Endgame
Mr.	Moore	Crowley	Thor
Miss.	Garza	Monterrey	Ant-Man
Miss.	Garza	Monterrey	Captain Marvel
Mr.	Moore	Dallas	Spider-Man: Homecoming
Mr.	Moore	Dallas	Doctor Strange
Mr.	Moore	Dallas	Iron Man 2

https://www.tutorialspoint.com/dbms/database_normalization.htm https://www.c-sharpcorner.com/UploadFile/0146e3/database-normalization/

2nd Normal Form (2NF) -

- First, be in 1NF.
- Remove subsets of data that apply to multiple rows of a *table* and place them in separate *tables* with PK → FK relationships among the new tables.
- If the table is in **1NF** and every non-key attribute is dependent on the **Primary Key**. then **2NF** is achieved.

Id	Title	Name	City 1	<u>'</u>
1	Mr.	Moore	Crowley	
2	Miss.	Garza	Monterrey	
3	Mr.	Moore	Dallas	

Actions Taken:

The *1NF* table is divided into two tables.

Table 1 contains only person information. *Id* is created as the *Primary Key (PK)* for Table 1.

Table 2 contains the information for each movie. Table 2's new *PK* column is *Movield*.

Movield	ld(FK)	Movie 2	
22	1	Avengers Endgame	
4	1	Thor	
12	2	Ant-Man	
21	2	Captain Marvel	
16	3	Spider-Man: Homecoming	
14	3	Doctor Strange	
3	3	Iron Man 2	

https://www.tutorialspoint.com/dbms/database_normalization.htm https://www.c-sharpcorner.com/UploadFile/0146e3/database-normalization/

To achieve *3NF*, there must be no dependencies between fields in a single row.

"Given a value for column B, do we then have only one possible value for column C?"

If yes, B and C should be put into a new table, with one of them becoming the *Primary Key* (*PK*). A reference to the new table should be left in the original table and marked as a *Foreign Key*.

ld	Title	Name	City 1
1	Mr.	Moore	Crowley
2	Miss.	Garza	Monterrey
3	Mr.	Moore	Dallas

A *Transitive Functional Dependency* occurs when the change of one *Candidate Key* column might cause any other *Candidate Key* column to change. In table 1, changing the non-key column '*Customer Name*' may change 'Salutation'.

Movield	ld(FK)	Movie	2
22	1	Avengers Endgame	
4	1	Thor	
12	2	Ant-Man	
21	2	Captain Marvel	
16	3	Spider-Man: Homecoming	
14	3	Doctor Strange	
3	3	Iron Man 2	

https://www.tutorialspoint.com/dbms/database_normalization.htm https://www.c-sharpcorner.com/UploadFile/0146e3/database-normalization/

Table 1		
TitleId	Title	
1	Mr.	
2	Miss.	
3	Mrs.	
4	Dr.	

Table 4		
CityId	City	
76036	Crowley	
75201	Dallas	
32070 Monterre		
76701	Waco	

A Transitive Functional Dependency occurs when the change of one Candidate Key
column might cause any other Candidate Key column to change. In table 1, changing the

Candidate Key column 'Name' may change 'Title'.

Table 2		
Movield	Movie	
22	Avengers Endgame	
4	Thor	
12	Ant-Man	
21	Captain Marvel	
16	Spider-Man: Homecoming	
14	Doctor Strange	
3	Iron Man 2	

Junctio	Junction Table		
Movield	ld		
22	1		
4	1		
12	2		
21	2		
16	3		
14	3		
3	3		

Table 3				
ld	TitleId	Name	CityId	
1	1	Moore	76036	
2	2	Garza	75201	
3	1	Moore	32070	

Actions Taken:

Table 1 is divided. Two new tables are created to store Title and City. Table 2 is divided to isolate Movie data and a Junction table is created to show the Many-To-Many relationship between movie and person. The database is now in *3NF*.

Assignment (Pt. 2)

Convert your Pt. 1 table to a 3NF table.