

HRDATA ANALYSIS

PSYLIQ Internship Project

Created by: Divya Pardeshi

INTRODUCTION

In this presentation, I've explored key HR questions within a dataset of over 4,400 employees, addressing a range of topics. I will demonstrate my approach to solving the HR Data Analysis Assessment tasks, which include:

- •Filtering datasets to display specific employee groups
- Creating pivot tables to summarize data
- Applying conditional formatting to highlight key metrics
- •Visualizing trends through charts and graphs

Additionally, I will cover establishing relationships between datasets in Power BI. Each task is designed to showcase practical skills in both Excel and Power BI, with the aim of deriving actionable insights from HR data.

PROJECT QUESTIONS & Solutions

1. USING EXCEL, HOW WOULD YOU FILTER THE DATASET TO ONLY SHOW EMPLOYEES AGED 30 AND ABOVE?

Custom Auto	ofilter		?	X
Show rows who	ere:			
Age				
is greater th	an or equa 🗸	30		~
0	And O Or			
	~			~
Use ? to repre	sent any single c	haracter		
Use * to repres	sent any series o	f characters		
osc to repre-				

2. CREATE A PIVOT TABLE TO SUMMARIZE THE AVERAGE MONTHLY INCOME BY JOB ROLE.

Job Role	Avg. of Monthly Income	
Healthcare Representative		\$60.98 K
Human Resources		\$58.53 K
Laboratory Technician		\$66.31 K
Manager		\$63.40 K
Manufacturing Director		\$69.18 K
Research Director		\$65.47 K
Research Scientist		\$64.98 K
Sales Executive		\$65.19 K
Sales Representative		\$65.37 K

3. APPLY CONDITIONAL FORMATTING TO HIGHLIGHT EMPLOYEES WITH MONTHLY INCOME ABOVE THE COMPANY'S AVERAGE INCOME

4	В С	D	E	F G	Н	l J K	L	М	N
Age	Attrition	■ BusinessTravel	Department 🔻 I	DistanceFr Education	EducationField	EmployeeCo Gender JobLevel	✓ JobRole	 MaritalStatus 	MonthlyIncome
2	51 No	Travel_Rarely	Sales	6	2 Life Sciences	1 Female	1 Healthcare Representative	e Married	13116
3	31 Yes	Travel_Frequently	Research & Developmen	10	1 Life Sciences	1 Female	1 Research Scientist	Single	4189
4	32 No	Travel_Frequently	Research & Developmen	17	4 Other	1 Male	4 Sales Executive	Married	19328
5	38 No	Non-Travel	Research & Developmen	2	5 Life Sciences	1 Male	3 Human Resources	Married	8321
5	32 No	Travel_Rarely	Research & Developmen	10	1 Medical	1 Male	1 Sales Executive	Single	2342
7	46 No	Travel_Rarely	Research & Developmen	8	3 Life Sciences	1 Female	4 Research Director	Married	4071
3	28 Yes	Travel_Rarely	Research & Developmen	11	2 Medical	1 Male	2 Sales Executive	Single	5813
9	29 No	Travel_Rarely	Research & Developmen	18	3 Life Sciences	1 Male	2 Sales Executive	Married	3143
0	31 No	Travel_Rarely	Research & Developmen	1	3 Life Sciences	1 Male	3 Laboratory Technician	Married	2044
1	25 No	Non-Travel	Research & Developmen	7	4 Medical	1 Female	4 Laboratory Technician	Divorced	13464
2	45 No	Travel_Rarely	Research & Developmen	17	2 Medical	1 Male	2 Laboratory Technician	Married	7991
3	36 No	Travel_Rarely	Research & Developmen	28	1 Life Sciences	1 Male	1 Laboratory Technician	Married	3377
4	55 No	Travel_Rarely	Research & Developmen	14	4 Life Sciences	1 Female	1 Sales Executive	Single	5538
5	47 Yes	Non-Travel	Research & Developmen	1	1 Medical	1 Male	1 Research Scientist	Married	5762
6	28 No	Travel_Rarely	Research & Developmen	1	3 Life Sciences	1 Male	1 Manufacturing Director	Married	2592
7	37 No	Travel_Rarely	Research & Developmen	1	3 Life Sciences	1 Male	2 Healthcare Representative	Married	5346
8	21 No	Travel_Rarely	Research & Developmen	3	2 Life Sciences	1 Male	1 Laboratory Technician	Single	4213
9	37 No	Non-Travel	Research & Developmen	1	3 Medical	1 Male	2 Sales Executive	Divorced	4127
0	35 No	Travel_Rarely	Sales	7	4 Life Sciences	1 Male	1 Sales Representative	Divorced	2438
1	38 No	Travel_Rarely	Research & Developmen	8	3 Life Sciences	1 Female	1 Manager	Divorced	6870
2	26 No	Travel_Frequently	Research & Developmen	1	4 Other	1 Male	2 Laboratory Technician	Divorced	10447
3	50 No	Travel_Rarely	Sales	8	4 Life Sciences	1 Male	1 Research Scientist	Divorced	9667
4	53 No	Travel_Rarely	Research & Developmen	11	4 Life Sciences	1 Female	2 Research Scientist	Married	2148
5	42 No	Travel_Rarely	Research & Developmen	4	4 Life Sciences	1 Male	1 Manufacturing Director	Married	8926
16	29 No	Travel_Frequently	Research & Developmen	16	4 Medical	1 Male	1 Laboratory Technician	Single	6513
7	55 No	Travel_Rarely	Research & Developmen	1	4 Other	1 Female	1 Research Scientist	Married	6799
8	26 No	Travel_Frequently	Research & Developmen	9	3 Life Sciences	1 Female	1 Manager	Married	16291
9	37 No	Travel_Rarely	Sales	5	1 Marketing	1 Male	1 Research Scientist	Single	2705
0	44 Yes	Travel_Frequently	Research & Developmen	1	2 Medical	1 Male	2 Research Scientist	Divorced	10333
1	38 No	Travel_Rarely	Sales	2	3 Marketing	1 Female	1 Manager	Divorced	4448
2	26 Ves	Travel Rarely	Research & Developmen	1	3 Medical	1 Mala	3 Recearch Scientist	Divorced	685/

4. CREATE A BAR CHART IN EXCEL TO VISUALIZE THE DISTRIBUTION OF EMPLOYEE AGES.

5. IDENTIFY AND CLEAN ANY MISSING OR INCONSISTENT DATA IN THE "DEPARTMENT" COLUMN.

NO INCONSISTENT DATA

6. IN POWER BI, ESTABLISH A RELATIONSHIP BETWEEN THE "EMPLOYEEID" IN THE EMPLOYEE DATA AND THE "EMPLOYEEID" IN THE TIME TRACKING DATA.

7. USING DAX, CREATE A CALCULATED COLUMN THAT CALCULATES THE AVERAGE YEARS AN EMPLOYEE HAS SPENT WITH THEIR CURRENT MANAGER.

Average_Years_With_Current_Manager = AVERAGE(general_data[YearsWithCurrManager])

4.12

Average_Years_With_Current_Manager

8. USING EXCEL, CREATE A PIVOT TABLE THAT DISPLAYS THE COUNT OF EMPLOYEES IN EACH MARITAL STATUS CATEGORY, SEGMENTED BY DEPARTMENT.

Department	Employee Count
■ Human Resources	189
Divorced	21
Married	96
Single	72
Research & Developm	nent 2883
Divorced	621
Married	1350
Single	912
□ Sales	1338
Divorced	339
Married	573
Single	426
Grand Total	4410

9. APPLY CONDITIONAL FORMATTING TO HIGHLIGHT EMPLOYEES WITH BOTH ABOVE-AVERAGE MONTHLY INCOME AND ABOVE-AVERAGE JOB SATISFACTION.

MonthlyIncome	*
	131160
	41890
	193280
	83210
	23420
	40710
	58130
	31430
	20440
	134640
	79910
	33770
	55380
	57620
	25920
	53460
	42130
	41270
	24380
	68700
	104470
	96670
	21480
	89260
	65130
	67990
	162910
	27050
	103330
	44480
	68540

atisfaction	-
Security Process	4
	2
	2
	4
	1
	2
	3
	2
	4
	1
	4
	4
	1
	2
	4
	4
	3
	4
	2
	1
	2
	2 2 3 3
	3
	4
	4
	1
	4
	3
	4
	2

10.IN POWER BI, CREATE A LINE CHART THAT VISUALIZES THE TREND OF EMPLOYEE ATTRITION OVER THE YEARS.

11. DESCRIBE HOW YOU WOULD CREATE A STAR SCHEMA FOR THIS DATASET, EXPLAINING THE BENEFITS OF DOING SO.

- Optimized Query Performance: Power BI's VertiPaq engine is highly optimized for star schemas, leading to faster data processing and report generation.
- **Simplified Data Model:** A clear separation between fact and dimension tables makes the data model easier to understand, maintain, and visualize within Power BI.
- efficient DAX Calculations: DAX formulas work more efficiently with star schemas, especially for measures that involve complex aggregations or filtering across dimensions.
- Improved Data Refresh: Star schemas often result in smaller, more focused tables, which can lead to quicker data refresh times and more efficient memory usage in Power BI.
- Better Visualization Performance: The structured data model allows Power BI to generate visuals more quickly, improving the overall responsiveness of dashboards and reports.

12. USING DAX, CALCULATE THE ROLLING 3-MONTH AVERAGE OF MONTHLY INCOME FOR EACH EMPLOYEE.

Rolling Avg = CALCULATE(Average

('generaldata' [Monthly Income]), DATESINPERIOD ('dimdate' [Date],

LASTDATE('dimdate'[Date]),-3,Month))

13. CREATE A HIERARCHY IN POWER BI THAT ALLOWS USERS TO DRILL DOWN FROM DEPARTMENT TO JOB ROLE TO FURTHER NARROW THEIR ANALYSIS.

Department	Total Employees	
☐ Human Resources	189	
Healthcare Representative	9	
Human Resources	3	
Laboratory Technician	39	
Manager	9	
Manufacturing Director	24	
Research Director	3	
Research Scientist	36	
Sales Executive	54	
Sales Representative	12	
■ Research & Development	2883	
⊞ Sales	1338	
Total	4410	

14. HOW CAN YOU SET UP PARAMETERIZED QUERIES IN POWER BI TO ALLOW USERS TO FILTER DATA BASED ON THE DISTANCE FROM HOME **COLUMN?**

To set up parameterized queries in Power BI for filtering data based on the "Distance from Home" column:

- 1. Click on "Transform data" to open Power Query Editor.
- 2. In Power Query Editor, click on "Manage Parameters" in the "Home" tab.
- 3. Create a new parameter, for example, "DistanceParameter," and set its data type (like Decimal or Whole Number).
- 4. Close the "Manage Parameters" window and go back to the data view.
- 5. In the filter for the "Distance from Home" column, replace a constant value with the created parameter like "is less than or equal to DistanceParameter."
- 6. Go back to the report view, and you'll see a new parameter in the right pane.
- 7. Users can now adjust the parameter to filter data based on different distances from home.

15. IN EXCEL, CALCULATE THE TOTAL MONTHLY INCOME FOR EACH DEPARTMENT, CONSIDERING ONLY THE EMPLOYEES WITH A JOB LEVEL GREATER THAN OR EQUAL TO 3.

Total Monthly Income	Departments		
Job Level	Human Resources	Research & Development	Sales
3	\$1.65 M		\$11.79 M
4	\$754.80 K	\$15.28 M	\$8.75 M
5	\$855.84 K	\$10.11 M	\$2.43 M

16. EXPLAIN HOW TO PERFORM A WHAT-IF ANALYSIS IN EXCEL TO UNDERSTAND THE IMPACT OF A 10% INCREASE IN PERCENT SALARY HIKE ON MONTHLY INCOME.

	A	В	C	D	E
1	EmployeeID 🔻	Monthly Income 💌	PercentSalaryHike 💌	Increased Percent Salary Hike	New Monthly Income
2	1	131160	11	12.1	1587036
3	2	41890	23	25.3	1059817
4	3	193280	15	16.5	3189120
5	4	83210	11	12.1	1006841
6	5	23420	12	13.2	309144
7	6	40710	13	14.3	582153
8	7	58130	20	22	1278860
9	8	31430	22	24.2	760606
10	9	20440	21	23.1	472164
11	10	134640	13	14.3	1925352
12	11	79910	13	14.3	1142713
13	12	33770	12	13.2	445764
14	13	55380	17	18.7	1035606
15	14	57620	11	12.1	697202
16	15	25920	14	15.4	399168
17	16	53460	11	12.1	646866
18	17	42130	12	13.2	556116
19	18	41270	13	14.3	590161
20	19	24380	16	17.6	429088
21	20	68700	11	12.1	831270
22	21	104470	18	19.8	2068506
23	22	96670	23	25.3	2445751
24	23	21480	11	12.1	259908
25	24	89260	14	15.4	1374604
26	25	65130	11	12.1	788073
27	26	67990	11	12.1	822679
28	27	162910	22	24.2	3942422
29	28	27050	11	12.1	327305
30	29	103330	14	15.4	1591282

17. VERIFY IF THE DATA ADHERES TO A PREDEFINED SCHEMA. WHAT ACTIONS WOULD YOU TAKE IF YOU FIND INCONSISTENCIES.

To verify if the data adheres to a predefined schema and handle inconsistencies, follow these steps:

1. Define the Schema:

•Clearly outline the expected structure of data, including data types, allowed categorical values, and any constraints.

2. Load the Data:

•Import the data into analysis environment, such as Excel, Power BI, or a database management system, ensuring it's loaded according to the predefined schema.

3. Check Data Types and Missing Values:

- •Data Types: Ensure each column's data type matches the predefined schema (e.g., numeric, text, date).
- •Missing Values: Identify and evaluate any missing values to determine if they are acceptable or need to be addressed.

4. Validate Categorical Data:

•Cross-check categorical columns against the list of predefined valid categories. Ensure no unexpected or invalid values are present.

17. VERIFY IF THE DATA ADHERES TO A PREDEFINED SCHEMA. WHAT ACTIONS WOULD YOU TAKE IF YOU FIND INCONSISTENCIES.

Handling Inconsistencies:

1.Incorrect Data Types:

Action: Convert the data to the correct type, or flag and correct any records that cannot be converted.

2. Missing Values:

Action: Handle missing data by either imputing values, removing the affected records, or flagging them for further investigation, depending on the context.

3. Invalid Categorical Values:

Action: Correct or remove any records with invalid categories, or map them to valid categories if possible.

THANK YOU