GENERALITE SUR LES ANGLES ORIENTES ET LA TRIGONOMETRIE

Lajoie BENGONE AKOU

2024

TABLES DE MATIERES

I.	Angles orientés	3
1.	. Définition	3
2.	. Congruence modulo 2π	3
3.	. Somme de deux angles orientés	3
II.	Propriétés des angles orientés	3
4.	. Relation de Chasles	3
5.	. Propriétés	3
6.	. Double d'un angle orienté	4
7.	. Propriété	4
8.	. Angles orientés et cercle – Caractérisation d'un cercle	4
III.	Trigonométrie	5
9.	. Définition	5
1	0. Propriété	5
1	1. Equation de $\cos \alpha$, $\sin \alpha$ et $\tan \alpha$ en fonction de $\tan(\alpha 2)$ Erreur	! Signet non
d	éfini.	
IV.	Equations et Inéquations trigonométriques	5
12	2. Equations trigonométriques	5
1.	3. Inéquations trigonométriquesErreur ! Signe	et non défini.

I. Angles orientés

1. Définition

On appelle mesure de $(\widehat{\vec{u}}, \widehat{\vec{v}})$ tout réel de la forme : $\alpha + 2k\pi, k \in \mathbb{Z}$ ou α est la mesure principale définie sur $]-\pi,\pi]$.

2. Congruence modulo 2π

Deux mesures quelconques d'un même angle orienté sont congru modulo 2π lorsqu'elle diffère d'un multiple entier de 2π .

On écrit : $x \equiv y[2\pi]$

3. Somme de deux angles orientés

Soit $\hat{\alpha}$ et $\hat{\beta}$ deux angles orientés de mesure respectives α et β . On appelle sommes des angles orientés $\hat{\alpha}$ et $\hat{\beta}$ et on note $\hat{\alpha} + \hat{\beta}$ l'angle orienté de mesure $\alpha + \beta$.

II. Propriétés des angles orientés

4. Relation de Chasles

Soit \vec{u} , \vec{v} et \vec{w} trois vecteurs. D'après la propriété de Chasles, on a :

$$(\widehat{\vec{u}}, \widehat{\vec{w}}) + (\widehat{\vec{w}}, \widehat{\vec{v}}) = (\widehat{\vec{u}}, \widehat{\vec{v}})$$

Par conséquent, pour tout vecteur \vec{u} , $\vec{u'}$, \vec{v} et $\vec{v'}$:

$$(\widehat{\overrightarrow{u},\overrightarrow{v})} + (\widehat{\overrightarrow{u'},\overrightarrow{v'}}) \tau \Leftrightarrow (\widehat{\overrightarrow{u},\overrightarrow{u'}}) + (\widehat{\overrightarrow{v},\overrightarrow{v'}})$$

5. Propriétés

Soit \vec{u} et \vec{v} deux vecteus et k un nombre réel non nul. On a

•
$$(\widehat{\vec{u}},\widehat{\vec{v}}) = -(\widehat{\vec{v}},\widehat{\vec{u}});$$

•
$$si \ k > 0$$
, $alors$, $(k\overrightarrow{\vec{u}}, \overrightarrow{\vec{v}}) + (\overrightarrow{\vec{u}}, \overrightarrow{kv}) = (\overrightarrow{\vec{u}}, \overrightarrow{\vec{v}})$

•
$$si \ k < 0, alors, (k\overrightarrow{u}, \overrightarrow{v}) + (\overrightarrow{u}, \overrightarrow{kv}) = \pi + (\widehat{u}, \overrightarrow{v})$$

•
$$(k\overrightarrow{u}, \widehat{k}\overrightarrow{v}) = (\widehat{u}, \widehat{v})$$

- Propriété 3 : Pour tout réel a et b d'image symétrique de A et B sur le cercle trigonométrique, $(\overrightarrow{0A}, \overrightarrow{OB}) = b a$
- 6. Double d'un angle orienté Soit l'angle orienté $(\widehat{\vec{u}}, \widehat{\vec{v}})$. On appelle le double de $(\widehat{\vec{u}}, \widehat{\vec{v}})$, et on note $2(\widehat{\vec{u}}, \widehat{\vec{v}})$ l'angle orienté défini par :

$$2(\widehat{\vec{u}},\widehat{\vec{v}}) = (\widehat{\vec{u}},\widehat{\vec{v}}) + (\widehat{\vec{u}},\widehat{\vec{v}})$$

7. Propriété

Soit $\hat{\alpha}$ et $\hat{\beta}$ deux angles orienté et $\hat{\delta}$ l'angle orienté droit direct. On a :

(1).
$$2\hat{\alpha} = \hat{0} \iff \hat{\alpha} = \hat{0} \text{ ou } \hat{\alpha} = \hat{\pi}$$

(2).
$$2\hat{\alpha} = \widehat{2\beta} \iff \hat{\alpha} = \hat{\beta} \text{ ou } \hat{\alpha} = \hat{\beta} + \hat{\pi}$$

(3).
$$2\hat{\alpha} = \hat{\pi} \iff \hat{\alpha} = \hat{\delta} \text{ ou } \hat{\alpha} = -\hat{\delta}$$

8. Angles orientés et cercle – Caractérisation d'un cercle
Soit C un cercle de centre 0, A et B deux points distinct de ce cercle. Pour tout point M
distinct de A et B, on a :

$$M \in (C) \Leftrightarrow 2(\widehat{MA}, \widehat{MB}) = (\widehat{OA}, \widehat{OB})$$

III. Trigonométrie

9. Définition

Soit $(\widehat{u}, \widehat{v})$ un angle orienté de mesure α et M l'image de α sur le cercle (C). M a pour coordonnées :

$$M \binom{\cos \alpha}{\sin \alpha}$$

10. Propriété

$$(1).\cos(-\alpha) = \cos \alpha$$

$$(5).\cos(\pi + \alpha) = -\cos \alpha$$

$$(2).\sin(-\alpha) = -\sin \alpha$$

$$(6).\sin(\pi + \alpha) = -\sin \alpha$$

$$(3).\cos(\pi - \alpha) = -\cos \alpha$$

$$(7).\cos(\frac{\pi}{2} - \alpha) = \sin \alpha$$

$$(4).\sin(\pi - \alpha) = \sin \alpha$$

$$(8).\sin(\frac{\pi}{2}-\alpha)=\cos\,\alpha$$

11. Formule de duplication et de linéarisation

Pour tout réel a, on a :

Formule de duplication

$$\cos 2a = \cos^2 a - \sin^2 a$$

$$\cos^2 a = \frac{1 + \cos 2a}{2}$$

$$sin2a = 2sin\alpha * cos\alpha$$

$$\sin^2 a = \frac{1 - \cos 2a}{2}$$

IV. Equations et Inéquations trigonométriques

12. Equations trigonométriques

Pour tout nombre réels x et α , on :

- (1). $\cos x = \cos \alpha \iff x = \alpha + 2k\pi \text{ ou } x = -\alpha + 2k\pi$
- (2). $\sin x = \sin \alpha \iff x = \alpha + 2k\pi \text{ ou } x = \pi \alpha + 2k\pi$
- (3). $\tan x = \tan \alpha \iff x = \alpha + k\pi \text{ ou } x = -\alpha + 2\pi$