An Overview of AI, Cybernetics, & Dynamic Systems

Systems Sciences Foundations

Author: Eng. Carlos Andrés Sierra, M.Sc. cavirguezs@udistrital.edu.co

Lecturer
Department of Computer Engineering
School of Engineering
Universidad Distrital Francisco José de Caldas

2025-I

Outline

1 Basic Concepts of Artificial Intelligence

- Basic Concepts of Cybernetics
- 3 Introduction to Dynamic Systems

Outline

Basic Concepts of Artificial Intelligence

2 Basic Concepts of Cybernetics

Introduction to Dynamic Systems

2025-I

Al: Definitions and Main Goals

• Artificial Intelligence (AI): Science and engineering of making intelligent machines capable of performing tasks that normally require human intelligence. electronic malonic

Main Goals:

Enable learning, perception, and a

Achieve problem-solving in complex domai

AI: Definitions and Main Goals

- Artificial Intelligence (AI): Science and engineering of making intelligent machines capable of performing tasks that normally require human intelligence.
- Main Goals:
 - Automate reasoning and knowledge representation.
 - Enable learning perception, and adaptation
 - Achieve problem-solving in complex domains.
- Scope
 - Broad field spanning subtopics like machine learning, robotics and cognitive modeling.

Al: Definitions and Main Goals

 Artificial Intelligence (AI): Science and engineering of making intelligent machines capable of performing tasks that normally require human intelligence.

• Main Goals:

- Automate reasoning and knowledge representation.
- Enable learning, perception, and adaptation.
- Achieve problem-solving in complex domains.

Scope:

 Broad field spanning subtopics like machine learning, robotics, and cognitive modeling.

Symbolic vs. Subsymbolic AI:

·Symbolic vs. Subsymbolic AI:

• Symbolic (GOFAI): Knowledge-based systems with logical rules.

• Subsymbolic: Neural networks that learn patterns from data.

Eng. C.A. Sierra, M.Sc. (UD FJC)

- Machine Learning Types:
 - Supervised: Mapping inputs to outputs using labeled data.
 - Unsupervised: Discovering patterns or structures in unbelied data.

- Machine Learning Types:
 - Supervised: Mapping inputs to outputs using labeled data.
 - Unsupervised: Discovering patterns or structures in unlabeled data.

• Reinforcement Learning: Learning actions hrough reward feedback loops.

- m=den • Machine Learning Types:
 - Supervised: Mapping inputs to outputs using labeled data.
- Unsupervised: Discovering patterns or structures in unlabeled data.
- Reinforcement Learning: Learning actions through reward feedback AL - Moclen
 - Glossary:
 - Deep Learning, Decision Tree, Overfitting

Case Study: Titanic in Kaggle

Eng. C.A. Sierra, M.Sc. (UD FJC)

Human Cognition and Behavior:

- Inspired AI research in learning, perception, and problem solving.
- Learning Theories:
 - Benaviorism: Cearining as conditioning.
 Constructivism: Building mental models through experience
- Implications for AI:

- Human Cognition and Behavior:
 - Inspired AI research in learning, perception, and problem solving.
- Learning Theories:
 - Behaviorism: Learning as conditioning.
 - Constructivism: Building mental models through experience
- Implications for Al:

Human Cognition and Behavior:

Inspired AI research in learning, perception, and problem solving.

Learning Theories:

- Behaviorism: Learning as conditioning.
- Constructivism: Building mental models through experience.
- Implications for AI:

Human Cognition and Behavior:

Inspired AI research in learning, perception, and problem solving.

Learning Theories:

- Behaviorism: Learning as conditioning.
- Constructivism: Building mental models through experience.

• Implications for AI:

- Cognitive architectures simulate attention, memory, and reasoning.
- Ethical and social concerns about mind-like systems.

Human Cognition and Behavior:

Inspired AI research in learning, perception, and problem solving.

Learning Theories:

- Behaviorism: Learning as conditioning.
- Constructivism: Building mental models through experience.

• Implications for AI:

- Cognitive architectures simulate attention, memory, and reasoning.
- Ethical and social concerns about mind-like systems.

- What key differences separate symbolic (GOFAI) from subsymbolic (neural networks) approaches, and when might each be more suitable?
- 4 How do supervised, unsupervised, and reinforcement learning each handle data differently, and can you suggest real-world examples for each?
- In what ways could insights from psychology inform the design of more human-like Al systems?
- Which ethical concerns should developers keep in mind as AI becomes increasingly integrated into society?
- What do you anticipate as the next big leap or challenge in Al, and why?

- What key differences separate symbolic (GOFAI) from subsymbolic (neural networks) approaches, and when might each be more suitable?
- We have do supervised, unsupervised, and reinforcement learning each handle data differently, and can you suggest real-world examples for each?
- In what ways could insights from psychology inform the design of more human-like AI systems?
- Which ethical concerns should developers keep in mind as AI becomes increasingly integrated into society?
- What do you anticipate as the next big leap or challenge in Al, and why?

- What key differences separate symbolic (GOFAI) from subsymbolic (neural networks) approaches, and when might each be more suitable?
- We have do supervised, unsupervised, and reinforcement learning each handle data differently, and can you suggest real-world examples for each?
- In what ways could insights from psychology inform the design of more human-like AI systems?
- Which ethical concerns should developers keep in mind as AI becomes increasingly integrated into society?
- What do you anticipate as the next big leap or challenge in AI, and why?

- What key differences separate symbolic (GOFAI) from subsymbolic (neural networks) approaches, and when might each be more suitable?
- We have do supervised, unsupervised, and reinforcement learning each handle data differently, and can you suggest real-world examples for each?
- In what ways could insights from psychology inform the design of more human-like AI systems?
- Which ethical concerns should developers keep in mind as AI becomes increasingly integrated into society?
- What do you anticipate as the next big leap or challenge in AI, and why?

- What key differences separate symbolic (GOFAI) from subsymbolic (neural networks) approaches, and when might each be more suitable?
- 4 How do supervised, unsupervised, and reinforcement learning each handle data differently, and can you suggest real-world examples for each?
- In what ways could insights from psychology inform the design of more human-like AI systems?
- Which ethical concerns should developers keep in mind as AI becomes increasingly integrated into society?
- What do you anticipate as the next big leap or challenge in Al, and why?

Systems Sciences Foundations

9/30

Al in Art:

- AI-generated art is gaining popularity, with tools like DALL-E and Midjourney.
- AI in music composition is also on the rise, with systems like OpenAI's MuseNet.

Al in Healthcare:

 AI is revolutionizing diagnostics, drug discovery, and personalized medicine.

Al in Art:

- AI-generated art is gaining popularity, with tools like DALL-E and Midjourney.
- AI in music composition is also on the rise, with systems like OpenAI's MuseNet.

Al in Healthcare

medicine.

AI systems can analyze medical images, predict patient outcomes, and assist in treatment planning.

Al in Art:

- AI-generated art is gaining popularity, with tools like DALL-E and Midjourney.
- AI in music composition is also on the rise, with systems like OpenAI's MuseNet.

• Al in Healthcare:

- AI is revolutionizing diagnostics, drug discovery, and personalized medicine.
- AI systems can analyze medical images, predict patient outcomes, and assist in treatment planning.

Al in Art:

- AI-generated art is gaining popularity, with tools like DALL-E and Midjourney.
- AI in music composition is also on the rise, with systems like OpenAI's MuseNet.

• Al in Healthcare:

- AI is revolutionizing diagnostics, drug discovery, and personalized medicine.
- AI systems can analyze medical images, predict patient outcomes, and assist in treatment planning.

Outline

1 Basic Concepts of Artificial Intelligence

2 Basic Concepts of Cybernetics

Introduction to Dynamic Systems

Cybernetics: Definitions and History

- Cybernetics: Study of communication and control in living beings and machines.
- Norbert Wiener (1948): Formalized the term, focusing on feedback systems.
- Applications:
 - Robotics, Al, management science, social systems analysis.

- Feedback Loops: Adjust system behavior based on comparing outputs to goals.
- Types of Control:
 - Open-loop: No output-based feedback (simple, less adaptive).
 Closed-loop: Uses sensors or feedback signals (PID control, fuzzy logic).
- Homeostasis:

- Feedback Loops: Adjust system behavior based on comparing outputs to goals.
- Types of Control:
 - Open-loop: No output-based feedback (simple, less adaptive).
 - Closed-loop: Uses sensors or feedback signals (PID control, fuzzy logic).
- Homeostasis

 Maintaining internal stability via continuous regulation (e.g., thermostats).

- Feedback Loops: Adjust system behavior based on comparing outputs to goals.
- Types of Control:
 - Open-loop: No output-based feedback (simple, less adaptive).
 - Closed-loop: Uses sensors or feedback signals (*PID control*, *fuzzy logic*).
- Homeostasis

- Feedback Loops: Adjust system behavior based on comparing outputs to goals.
- Types of Control:
 - Open-loop: No output-based feedback (simple, less adaptive).
 - Closed-loop: Uses sensors or feedback signals (*PID control*, *fuzzy logic*).
- Homeostasis:
 - Maintaining internal stability via continuous regulation (e.g., thermostats).

Study Case: Thermostat System

Relation with AI

Cybernetics + AI:

- Early *AI research* leveraged cybernetic principles of feedback and adaptation.
- Reinforcement Learning is a prime example of a feedback-driven method.
- Self-Regulatory Systems:
 - Agents continuously update their states based on environmental feedback
- Interdisciplinary Insights:
- context-aware solutionsses

Relation with AI

Cybernetics + AI:

- Early *AI research* leveraged cybernetic principles of feedback and adaptation.
- Reinforcement Learning is a prime example of a feedback-driven method.
- Self-Regulatory Systems
- Agents continuously update their states based on environmental facethors.
 - Examples: Autonomous robots, adaptive software agents
- Interdisciplinary Insights:

Relation with AI

Cybernetics + AI:

- Early Al research leveraged cybernetic principles of feedback and adaptation.
- Reinforcement Learning is a prime example of a feedback-driven method.

Self-Regulatory Systems:

- Agents continuously update their states based on environmental feedback.
- Examples: Autonomous robots, adaptive software agents
- Interdisciplinary Insights
- Combining AI and cybernetics fosters robust, adaptive, and

Relation with Al

Cybernetics + AI:

- Early AI research leveraged cybernetic principles of feedback and adaptation.
- Reinforcement Learning is a prime example of a feedback-driven method.

Self-Regulatory Systems:

- Agents continuously update their states based on environmental feedback.
- Examples: Autonomous robots, adaptive software agents.
- Interdisciplinary Insights

Relation with AI

Cybernetics + AI:

- Early *AI research* leveraged cybernetic principles of feedback and adaptation.
- Reinforcement Learning is a prime example of a feedback-driven method.

Self-Regulatory Systems:

- Agents continuously update their states based on environmental feedback.
- Examples: Autonomous robots, adaptive software agents.

• Interdisciplinary Insights:

 Combining AI and cybernetics fosters robust, adaptive, and context-aware solutions.

- How do feedback loops in cybernetics enhance the adaptability of Al systems?
- ② Can you provide examples of real-world applications where cybernetics and Al intersect?
- What are the ethical implications of creating self-regulating systems in society?
- How can we ensure that AI systems maintain a balance between autonomy and human oversight?
- What future trends do you foresee in the integration of cybernetics and AI?

16 / 30

- How do feedback loops in cybernetics enhance the adaptability of Al systems?
- ② Can you provide examples of real-world applications where cybernetics and Al intersect?
- What are the ethical implications of creating self-regulating systems in society?
- How can we ensure that AI systems maintain a balance between autonomy and human oversight?
- What future trends do you foresee in the integration of cybernetics and AI?

- How do feedback loops in cybernetics enhance the adaptability of Al systems?
- ② Can you provide examples of real-world applications where cybernetics and Al intersect?
- What are the ethical implications of creating self-regulating systems in society?
- How can we ensure that AI systems maintain a balance between autonomy and human oversight?
- What future trends do you foresee in the integration of cybernetics and AI?

- How do feedback loops in cybernetics enhance the adaptability of Al systems?
- ② Can you provide examples of real-world applications where cybernetics and Al intersect?
- What are the ethical implications of creating self-regulating systems in society?
- How can we ensure that AI systems maintain a balance between autonomy and human oversight?
- What future trends do you foresee in the integration of cybernetics and AI?

- How do feedback loops in cybernetics enhance the adaptability of Al systems?
- ② Can you provide examples of real-world applications where cybernetics and Al intersect?
- What are the ethical implications of creating self-regulating systems in society?
- How can we ensure that AI systems maintain a balance between autonomy and human oversight?
- What future trends do you foresee in the integration of cybernetics and AI?

Did you know?

Cybernetic Art:

- Artists use cybernetic principles to create interactive installations.
- Examples include responsive sculptures and generative art.
- Cybernetics in Nature:

Did you know?

Cybernetic Art:

- Artists use cybernetic principles to create interactive installations.
- Examples include responsive sculptures and generative art.

Cybernetics in Nature:

- Natural systems exhibit cybernetic principles, like feedback loops in ecosystems.
- Understanding these systems can inform sustainable practices.

Systems Sciences Foundations

17/30

Outline

Basic Concepts of Artificial Intelligence

2 Basic Concepts of Cybernetics

3 Introduction to Dynamic Systems

Definitions and System Characteristics

Dynamic System:

- System whose state evolves over time based on inputs, initial conditions, and internal feedback.
- Inputs vs. Outputs:
 - Inputs: Exogenous factors driving system change.
 Outputs: Responses or changes in the observable state.
- Non-linearity:

Definitions and System Characteristics

Dynamic System:

 System whose state evolves over time based on inputs, initial conditions, and internal feedback.

• Inputs vs. Outputs:

- Inputs: Exogenous factors driving system change.
- Outputs: Responses or changes in the observable state.
- Non-linearity

Definitions and System Characteristics

Dynamic System:

 System whose state evolves over time based on inputs, initial conditions, and internal feedback.

• Inputs vs. Outputs:

- Inputs: Exogenous factors driving system change.
- Outputs: Responses or changes in the observable state.

Non-linearity:

 Many dynamic systems contain complex interdependencies that are non-linear.

Chaos Theory and Sensitivity

Chaos Theory:

- Studies how small variations in initial conditions can lead to large differences in outcomes.
- Butterfly Effect exemplifies extreme sensitivity.

Implications

Long-term predictions become difficult in chaotic regimes.
 Planning requires robust control methods to handle uncertain or volatile behaviors.

Chaos Theory and Sensitivity

Chaos Theory:

- Studies how small variations in initial conditions can lead to large differences in outcomes.
- Butterfly Effect exemplifies extreme sensitivity.

• Implications:

- Long-term predictions become difficult in chaotic regimes.
- Planning requires robust control methods to handle uncertain or volatile behaviors

Modeling Approaches:

- Ordinary Differential Equations (ODEs), agent-based models, simulation.
- Stability and Equilibria:
 - Fixed points, limit cycles, chaotic attractors.
- Problem-Solving Approaches:

Modeling Approaches:

 Ordinary Differential Equations (ODEs), agent-based models, simulation.

Stability and Equilibria:

- Fixed points, limit cycles, chaotic attractors.
- Understanding stable vs. unstable dynamics
- Problem-Solving Approaches:

Modeling Approaches:

 Ordinary Differential Equations (ODEs), agent-based models, simulation.

Stability and Equilibria:

- Fixed points, limit cycles, chaotic attractors.
- Understanding stable vs. unstable dynamics.
- Problem-Solving Approaches:

Modeling Approaches:

 Ordinary Differential Equations (ODEs), agent-based models, simulation.

Stability and Equilibria:

- Fixed points, limit cycles, chaotic attractors.
- Understanding stable vs. unstable dynamics.

• Problem-Solving Approaches:

- Control theory to manipulate system trajectories (e.g., feedback, adaptive control).
- Reinforcement learning for autonomous agents adjusting actions dynamically.

Modeling Approaches:

 Ordinary Differential Equations (ODEs), agent-based models, simulation.

Stability and Equilibria:

- Fixed points, limit cycles, chaotic attractors.
- Understanding stable vs. unstable dynamics.

• Problem-Solving Approaches:

- Control theory to manipulate system trajectories (e.g., feedback, adaptive control).
- Reinforcement learning for autonomous agents adjusting actions dynamically.

21/30

Case Study: Lotka—Volterra model

Case Study: SIR model

2025-I

Case Study: Bank — Event-Based Simulation

- How do chaotic systems challenge our understanding of predictability in dynamic systems?
- ② Can you provide examples of real-world systems that exhibit chaotic behavior?
- What are the advantages and disadvantages of using ODEs versus agent-based models for system analysis?
- How can we ensure that our models remain relevant and accurate over time?
- What role does feedback play in the design of effective control systems?

- How do chaotic systems challenge our understanding of predictability in dynamic systems?
- ② Can you provide examples of real-world systems that exhibit chaotic behavior?
- What are the advantages and disadvantages of using ODEs versus agent-based models for system analysis?
- How can we ensure that our models remain relevant and accurate over time?
- What role does feedback play in the design of effective control systems?

- How do chaotic systems challenge our understanding of predictability in dynamic systems?
- ② Can you provide examples of real-world systems that exhibit chaotic behavior?
- What are the advantages and disadvantages of using ODEs versus agent-based models for system analysis?
- How can we ensure that our models remain relevant and accurate over time?
- What role does feedback play in the design of effective control systems?

- How do chaotic systems challenge our understanding of predictability in dynamic systems?
- ② Can you provide examples of real-world systems that exhibit chaotic behavior?
- What are the advantages and disadvantages of using ODEs versus agent-based models for system analysis?
- How can we ensure that our models remain relevant and accurate over time?
- What role does feedback play in the design of effective control systems?

- How do chaotic systems challenge our understanding of predictability in dynamic systems?
- ② Can you provide examples of real-world systems that exhibit chaotic behavior?
- What are the advantages and disadvantages of using ODEs versus agent-based models for system analysis?
- How can we ensure that our models remain relevant and accurate over time?
- What role does feedback play in the design of effective control systems?

Did you know?

Dynamic Systems in Nature:

- Ecosystems, weather patterns, and population dynamics are all examples of dynamic systems.
- Understanding these systems can help us predict and manage environmental changes.
- Dynamic Systems in Technology

Did you know?

Dynamic Systems in Nature:

- Ecosystems, weather patterns, and population dynamics are all examples of dynamic systems.
- Understanding these systems can help us predict and manage environmental changes.

Dynamic Systems in Technology:

- Robotics, control systems, and networked systems are all examples of dynamic systems.
- Advances in these fields are driving innovation in AI and cybernetics.

Outline

Basic Concepts of Artificial Intelligence

2 Basic Concepts of Cybernetics

Introduction to Dynamic Systems

Conclusion

- Systems Sciences Foundations merges AI, cybernetics, and dynamic systems.
- Provides frameworks for modeling, understanding, and controlling complex behaviors.
- Preparatory step for deeper explorations: advanced ML, multi-agent cybernetic architectures, and real-world system simulations.

Outline

Basic Concepts of Artificial Intelligence

2 Basic Concepts of Cybernetics

Introduction to Dynamic Systems

Thanks!

Questions?

Repo: https://github.com/EngAndres/ud-public/tree/main/courses/systems-sciences-foundations

