Reverse mathematics and the finite intersection principle

Damir D. Dzhafarov University of Chicago

AMS Fall Central Section Meeting Special Session on Computability and Its Applications 6 November, 2010

Reverse mathematics and equivalents of the axiom of choice, oint work with Carl Mummert (submitted).	

A family of sets A has the finite intersection property if

$$\bigcap F \neq \emptyset$$

for all finite $F \subseteq A$ ($|F| \ge 2$).

A family of sets A has the finite intersection property if

$$\bigcap F \neq \emptyset$$

for all finite $F \subseteq A$ ($|F| \ge 2$).

Finite intersection principle (FIP). Every family of sets has a \subseteq -maximal subfamily with the finite intersection property.

A family of sets A has the finite intersection property if

$$\bigcap F \neq \emptyset$$

for all finite $F \subseteq A$ ($|F| \ge 2$).

Finite intersection principle (FIP). Every family of sets has a \subseteq -maximal subfamily with the finite intersection property.

Theorem (Klimovsky; Rubin and Rubin). Over ZF, AC \leftrightarrow FIP.

In RCA_0 , we formalize this principle as follows:

In RCA_0 , we formalize this principle as follows:

A family of sets is just an array $A = \langle A_i : i \in \mathbb{N} \rangle$.

A family A is nontrivial if $(\exists i)[A_i \neq \emptyset]$.

A family $B = \langle B_i : i \in \mathbb{N} \rangle$ is a subfamily of A if $(\forall i)(\exists j)[B_i = A_j]$.

A subfamily B of A is maximal among subfamilies with some property if for every subfamily C of A with that property, if B is a subfamily of C then C is a subfamily of B.

In RCA_0 , we formalize this principle as follows:

A family of sets is just an array $A = \langle A_i : i \in \mathbb{N} \rangle$.

A family A is nontrivial if $(\exists i)[A_i \neq \emptyset]$.

A family $B = \langle B_i : i \in \mathbb{N} \rangle$ is a subfamily of A if $(\forall i)(\exists j)[B_i = A_j]$.

A subfamily B of A is maximal among subfamilies with some property if for every subfamily C of A with that property, if B is a subfamily of C then C is a subfamily of B.

(FIP). Every nontrivial family of sets has a maximal subfamily with the finite intersection property.

It is easy to see that FIP is provable in ACA_0 .

It is easy to see that FIP is provable in ACA_0 .

In fact, it is strictly weaker:

Theorem (Dzhafarov and Mummert). There is an ω -model of FIP consisting entirely of low sets. Hence, FIP does not reverse to ACA₀.

It is easy to see that FIP is provable in ACA_0 .

In fact, it is strictly weaker:

Theorem (Dzhafarov and Mummert). There is an ω -model of FIP consisting entirely of low sets. Hence, FIP does not reverse to ACA₀.

The proof is a forcing argument that exploits the weak notion of "subfamily".

Stronger notions of "subfamily" result in FIP reversing to ACA_0 .

Theorem (Dzhafarov and Mummert). There is a computable nontrivial family that has no computable maximal subfamily with the finite intersection property. Hence, FIP is not provable in RCA_0

Theorem (Dzhafarov and Mummert). There is a computable nontrivial family that has no computable maximal subfamily with the finite intersection property. Hence, FIP is not provable in RCA_0

Proof idea. Build $A = \langle A_i : i \in \omega \rangle$ and think of Φ_e as giving the indices i such that A_i is to belong to a maximal subfamily B.

Theorem (Dzhafarov and Mummert). There is a computable nontrivial family that has no computable maximal subfamily with the finite intersection property. Hence, FIP is not provable in RCA_0

Proof idea. Build $A = \langle A_i : i \in \omega \rangle$ and think of Φ_e as giving the indices i such that A_i is to belong to a maximal subfamily B.

When $\Phi_e(0) \downarrow$, pick some $i \neq \Phi_e(0)$, and keep A_i disjoint from all A_j .

Theorem (Dzhafarov and Mummert). There is a computable nontrivial family that has no computable maximal subfamily with the finite intersection property. Hence, FIP is not provable in RCA_0

Proof idea. Build $A = \langle A_i : i \in \omega \rangle$ and think of Φ_e as giving the indices i such that A_i is to belong to a maximal subfamily B.

When $\Phi_e(0) \downarrow$, pick some $i \neq \Phi_e(0)$, and keep A_i disjoint from all A_j .

When $\Phi_e(1) \downarrow$, intersect A_i with $A_{\Phi_e(0)}$, and continue to keep A_i disjoint from all other A_j .

Theorem (Dzhafarov and Mummert). There is a computable nontrivial family that has no computable maximal subfamily with the finite intersection property. Hence, FIP is not provable in RCA_0

Proof idea. Build $A = \langle A_i : i \in \omega \rangle$ and think of Φ_e as giving the indices i such that A_i is to belong to a maximal subfamily B.

When $\Phi_e(0) \downarrow$, pick some $i \neq \Phi_e(0)$, and keep A_i disjoint from all A_j .

When $\Phi_e(1) \downarrow$, intersect A_i with $A_{\Phi_e(0)}$, and continue to keep A_i disjoint from all other A_j .

When $\Phi_e(2) \downarrow$, intersect A_i with $A_{\Phi_e(0)} \cap A_{\Phi_e(1)}$, and continue to keep A_i disjoint from all other A_j .

Theorem (Dzhafarov and Mummert). There is a computable nontrivial family that has no computable maximal subfamily with the finite intersection property. Hence, FIP is not provable in RCA_0

Proof idea. Build $A = \langle A_i : i \in \omega \rangle$ and think of Φ_e as giving the indices i such that A_i is to belong to a maximal subfamily B.

When $\Phi_e(0) \downarrow$, pick some $i \neq \Phi_e(0)$, and keep A_i disjoint from all A_j .

When $\Phi_e(1) \downarrow$, intersect A_i with $A_{\Phi_e(0)}$, and continue to keep A_i disjoint from all other A_j .

When $\Phi_e(2) \downarrow$, intersect A_i with $A_{\Phi_e(0)} \cap A_{\Phi_e(1)}$, and continue to keep A_i disjoint from all other A_j .

Continue. Either Φ_e will never output i, and then B will not be maximal, or it will, and then B will not have the finite intersection property.

In fact, more is true:

Theorem (Dzhafarov and Mummert). There is a computable nontrivial family of sets any maximal subfamily of which with the finite intersection property has hyperimmune degree. Hence, FIP is not provable in WKL₀.

In fact, more is true:

Theorem (Dzhafarov and Mummert). There is a computable nontrivial family of sets any maximal subfamily of which with the finite intersection property has hyperimmune degree. Hence, FIP is not provable in WKL₀.

Proof is a considerably more complicated argument because we no longer have computable approximations to the potential maximal subfamilies.

Principles between RCA₀ and ACA₀

Let T be a countable, complete, consistent theory.

A model \mathcal{M} of T realizes a partial type p if there is a tuple $\vec{a} \in |\mathcal{M}|$ such that $\mathcal{M} \models \varphi(\vec{a})$ for every $\varphi \in p$. Otherwise, \mathcal{M} omits p.

A partial type p is principal if there is a formula ψ such that $T \vdash \psi \rightarrow \varphi$ for every formula $\varphi \in p$. A model \mathscr{M} of T is atomic if every type realized in \mathscr{M} is principal.

An atom of T is a formula ψ such that for every formula φ in the same free variables, exactly one of $T \vdash \psi \rightarrow \varphi$ or $T \vdash \psi \rightarrow \neg \varphi$ holds. T is atomic if for every T-consistent φ , $T \vdash \psi \rightarrow \varphi$ for some atom ψ .

Classically, a theory is atomic if and only if it has an atomic model. This was studied by Hirschfeldt, Slaman, and Shore (2009) in the forms:

Atomic model theorem (AMT). Every complete atomic theory has an atomic model.

Omitting partial types principle (OPT). For any collection S of partial types of a complete theory T, there is a model of T that omits all the the nonprincipal partial types in S.

 Π^0_1 **genercity principle** (Π^0_1 G). For any uniformly Π^0_1 collection of dense subsets of $2^{<\mathbb{N}}$ $\langle S_i : i \in \mathbb{N} \rangle$ there exists G such that $(\forall i)(\exists n)[G \upharpoonright n \in S_i]$.

Theorem (Hirschfeldt, Slaman, and Shore). Over RCA₀,

$$\Pi^0_1\mathsf{G} \to \mathsf{AMT} \to \mathsf{OPT}$$

and the implications are strict. The principles all lie strictly in-between RCA_0 and ACA_0 and are incomparable with WKL_0 .

Theorem (Conidis; Hirschfeldt, Slaman, and Shore). Over RCA₀, AMT + I $\Sigma_2^0 \to \Pi_1^0$ G.

Theorem (Hirschfeldt, Slaman, and Shore). Over RCA₀,

$$\Pi^0_1\mathsf{G} \to \mathsf{AMT} \to \mathsf{OPT}$$

and the implications are strict. The principles all lie strictly in-between RCA_0 and ACA_0 and are incomparable with WKL_0 .

Theorem (Conidis; Hirschfeldt, Slaman, and Shore). Over RCA₀, AMT + I $\Sigma_2^0 \to \Pi_1^0$ G.

These principles are some of the weakest to have been studied that are not computably true.

There is a surprising connection between the reverse mathematical content of these model-theoretic principles and FIP.

There is a surprising connection between the reverse mathematical content of these model-theoretic principles and FIP.

Theorem (Dzhafarov and Mummert). Over RCA₀,

$$\Pi^0_1 G \to FIP \to OPT$$

and the first implication is strict.

There is a surprising connection between the reverse mathematical content of these model-theoretic principles and FIP.

Theorem (Dzhafarov and Mummert). Over RCA₀,

$$\Pi^0_1\mathsf{G}\to F\mathsf{IP}\to\mathsf{OPT}$$

and the first implication is strict.

The second implication follows by formalizing our proof that there is a computable instance of FIP with all solutions of hyperimmune degree, and a result of Hirschfeldt, Shore, and Slaman that OPT is equivalent to the existence of a hyperimmune set.

Csima, Hirschfeldt, Knight, and Soare (2004) showed no low₂ Δ_2^0 set computes an atomic model of every complete atomic decidable theory.

Csima, Hirschfeldt, Knight, and Soare (2004) showed no low₂ Δ_2^0 set computes an atomic model of every complete atomic decidable theory.

By contrast:

Theorem (Dzhafarov and Mummert). There is an ω -model of FIP consisting entirely of sets Turing below a low₂ c.e. set. Hence, FIP does not imply Π_1^0 G or even AMT.

Csima, Hirschfeldt, Knight, and Soare (2004) showed no low₂ Δ_2^0 set computes an atomic model of every complete atomic decidable theory.

By contrast:

Theorem (Dzhafarov and Mummert). There is an ω -model of FIP consisting entirely of sets Turing below a low₂ c.e. set. Hence, FIP does not imply Π_1^0 G or even AMT.

In fact, we can show that if A is a computable nontrivial family of sets, then every noncomputable c.e. set computes a maximal subfamily of A with the finite intersection property.

Csima, Hirschfeldt, Knight, and Soare (2004) showed no low₂ Δ_2^0 set computes an atomic model of every complete atomic decidable theory.

By contrast:

Theorem (Dzhafarov and Mummert). There is an ω -model of FIP consisting entirely of sets Turing below a low₂ c.e. set. Hence, FIP does not imply Π_1^0 G or even AMT.

In fact, we can show that if A is a computable nontrivial family of sets, then every noncomputable c.e. set computes a maximal subfamily of A with the finite intersection property.

Open question. Does OPT imply FIP?

