

Introdução ao Cálculo Diferencial e Integral

Teoria dos Conjuntos

Prof. Dani Prestini

Teoria dos Conjuntos

- CONJUNTOS: Coleções ou agrupamentos de objetos.
- ✓ Indica-se um conjunto por uma letra maiúscula de nosso alfabeto (A, B, C, D, E, ...)
- Elementos: é cada objeto de uma coleção.
- ✓ Indica-se um elemento por uma letra minúscula de nosso alfabeto (a, b, c, d, e, ...)

Representação de Conjuntos

1. Forma Tabular ou Enumerativa:

Escrevemos os elementos entre chaves e separados por vírgulas.

Exemplos:

b) Conjunto A dos números ímpares positivos. $A = \{1, 3, 5, 7, 9, ...\}$ (conjunto infinito)

$$A = \{1, 3, 5, 7, 9, ...\}$$
 (conjunto infinito)

c) Conjunto U dos números pares primos positivos.
U = {2}

$$U = \{2\}$$

Representação de Conjuntos

2. Diagrama de Venn:

Escrevemos os elementos no interior de uma figura geométrica.

a) Conjunto V das vogais.

Exemplos:

b) Conjunto P dos números primos positivos.

P 2 11 3 5 7

Representação de Conjuntos

3. Propriedade Característica:

Representamos o conjunto através de uma propriedade característica de seus elementos.

a) Conjunto V das vogais.
$$V = \{x | x \text{ \'e } vogal\} = \{a, e, i, o, u\}$$

Exemplos:

b) Conjunto P dos números primos positivos.
$$P = \{x | x \text{ \'e n\'umero primo positivo}\} = \{2,3,5,7,11,\dots\}$$

c) Conjunto U dos números pares primos positivos. $U = \{x | x \text{ \'e n\'umero par primo positivo}\} = \{2\}$

$$U = \{x | x \text{ \'e n\'umero par primo positivo}\} = \{2\}$$

Igualdade de Conjuntos

- ✓ Dois ou mais conjuntos são iguais se eles possuem os mesmos elementos.
- \checkmark {1, 2, 3} = {3, 1, 2}

A repetição de elementos não altera um conjunto.

$$\{b, c, c, c, d, e, e\} = \{b, c, d, e\}$$

> A ordem dos elementos não altera um conjunto.

$$\{g, o, l\} = \{l, o, g, o\} \in \{f, i, a, t\} = \{f, a, t, i, a\}$$

Tipos de Conjuntos

Conjunto Unitário: apresenta um único elemento.

```
A = { Azul }
U = \{x | x \text{ \'e n\'umero par positivo e primo}\} = \{2\}
```

Conjunto Vazio: não apresenta elemento algum

Indicado por $\{\}$ ou \emptyset

<u>Conjunto Universo</u>: limita os elementos que podem ser soluções de um estudo.

Cores da bandeira do Brasil U = {verde, amarelo, azul e branco}

Subconjuntos

- A é subconjunto de B se, e somente se, todos os elementos de A pertencerem a B.
- Podemos dizer a mesma coisa de quatro formas diferentes:

A **está contido** em B.

 $A \subset B$

B contém A.

 $B \supset A$

A é **subconjunto** de B.

A é *parte* de B.

Escrever todos os subconjuntos do conjunto $A = \{0, 5, 7, 9\}$.

Subconjunto com nenhum elemento: Ø

Ø é subconjunto de qualquer conjunto.

Subconjuntos com um elemento: {0}; {5}; {7}; {9}

Subconjuntos com dois elementos: {0,5}; {0,7}; {0,9}; {5,7}; {5,9}; {7;9}

Subconjuntos com três elementos: {0,5,7}; {0,5,9}; {0,7,9}; {5,7,9}

Subconjuntos com quatro elementos: {0,5,7,9}

O número total de subconjuntos é igual a 16. Então se A tem n elementos, A tem 2ⁿ subconjuntos.

- 1) Dado o conjunto $A = \{1, \{2, 3\}, \{4\}\}$, julgue se os itens abaixo são verdadeiros ou falsos.
- a) $1 \in A$
- b) $\{1\} \in A$
- c) $1 \subset A$
- d) $\{1\}\subset A$
- e) $\{2, 3\} \subset A$
- f) $\emptyset \in A$

- a) V pois 1 é elemento de A
- **b) F**, pois {1} é subconjunto de A − símbolo ⊂
- c) F, pois 1 é elemento de A − símbolo ∈
- d) V, pois {1} é subconjunto de A
- e) F, pois $\{2, 3\}$ é elemento de A símbolo \in
- f) F, pois Φ é subconjunto de A − símbolo ⊂
- 2) Dados os conjuntos A = {1, 2}, B = {1, 2, 3, 4, 5}, C = {3, 4, 5} e D = {0, 1, 2, 3, 4, 5}, classifique em verdadeiro (V) ou falso (F):
- a) () $A \subset B$

b) () $D \subset B$

c) () A ⊄ D

d) () $B \subset C$

e) () $B \subset D$

 $f) () C \not\subset A$

- a)
- b) F
- c) F
- d) F
- <u>)</u> (
- f) \

Operações com conjuntos

União de Conjuntos

Dados os conjuntos A e B, a união de A e B é o conjunto formado pelos elementos que pertencem a A ou a B.

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$$

Intersecção de Conjuntos

Dados os conjuntos A e B, a intersecção de A e B é o conjunto formado pelos elementos que pertencem a A e B.

$$A \cap B = \{x \mid x \in A \in x \in B\}$$

Diferença entre Conjuntos

Dados os conjuntos A e B, a diferença de A e B é o conjunto formado pelos elementos que pertencem a A, mas não a B.

$$A - B = \{x \mid x \in A \in x \notin B\}$$

1) União (∪)

1.1) Considerando os conjuntos $A = \{ x \in \mathbb{R} \mid -2 \le x < 1 \}$ e B = [0, 6], determine $A \cup B$.

A 0 6

B -2 0 1

Logo: $A \cup B = \{ x \in \mathbb{R} \mid -2 \le x < 6 \}$

1.2) Dados os conjuntos $B = \{ x \in \mathbb{R} \mid -3 \le x < 1 \}$ e $M = \{ x \in \mathbb{R} \mid 1 < x < 2 \}$, calcule $B \cup M$.

Logo: $B \cup M = \{ x \in \mathbb{R} \mid -3 \le x < 2 \ e \ x \ne 1 \}$

2) Intersecção (∩)

 $A \cap B$

2.1) Considerando os conjuntos $A = \{ x \in \mathbb{R} \mid -2 \le x < 1 \}$ e $B = [0, 6[, determine A \cap B.]$

Logo: $A \cap B = \{ x \in \mathbb{R} \mid 0 \le x < 1 \}$

2.2) Dados os conjuntos $B = \{ x \in \mathbb{R} \mid -3 \le x \le 1 \}$ e $D = \{ x \in \mathbb{R} \mid 1 \le x < 2 \}$, calcule $B \cap D$.

Logo: $\mathbf{B} \cap \mathbf{D} = \{ \mathbf{1} \}$

3) Diferença (-)

3.1) Considerando os conjuntos $A = \{ x \in \mathbb{R} \mid -2 \le x < 1 \}$ e B = [0, 6[, determine A - B.

Logo: $A - B = \{ x \in \mathbb{R} \mid -2 \le x < 0 \}$

4) Misto

4.1) Dados os conjuntos: $A =]-\infty$, -1], $B = \{x \in \mathbb{R} \mid -3 < x < 2\}$, $C = \{x \in \mathbb{R} \mid x \ge 2\}$ e D =]-2, 3], obtenha o conjunto $[(A \cap B) \cup C] - D$.

Então: $[(A \cap B) \cup C] - D = \{x \in \mathbb{R} \mid -3 < x \le -2 \text{ ou } x > 3\}$

Numa sala de aula:

- √ 15 alunos jogam basquete como única atividade esportiva;
- ✓ 25 jogam futebol, também como única atividade esportiva;
- ✓ 7 praticam as duas atividades: basquete e futebol.

Quantos alunos foram pesquisados, sabendo-se que todos optaram pelo menos por um dos dois esportes?

Dos 180 funcionários que trabalham no escritório de uma empresa, precisamente:

- √ 108 falam inglês;
- √ 68 falam espanhol;
- √32 não falam inglês nem espanhol.

Quantos funcionários desse escritório falam as duas línguas, inglês e espanhol?

$$(108 - x) + (x) + (68 - x) + 32 = 180$$

$$108 - x + x + 68 - x + 32 = 180$$

$$208 - x = 180$$

$$-x = 180 - 206$$

$$x = 28$$

Em uma enquete realizada via Internet, os telespectadores de certa emissora manifestaram sua preferência em relação ao programa que gostariam que fosse reprisado: A, B ou C. Os resultados obtidos foram:

Programas	Quantidade de telespectadores
А	550
В	630
С	580
A e B	210
A e C	180
B e C	150
A,BeC	60
Nenhum	35

Quantos telespectadores participaram dessa enquete?

Quantos telespectadores participaram dessa enquete?

Programas	Qtde	
Α	550	
В	630	
С	580	
A e B	210	
A e C	180	
B e C	150	
A,BeC	60 🗸	
Nenhum	35 -	
	,	

Conjuntos Numéricos

Conjuntos Numéricos

Fonte: Esquema extraído do site Virtual Escola

Conjuntos Numéricos

Conjunto dos números inteiros (\mathbb{Z}):

$$\mathbb{Z} = \{..., -2, -1, 0, 1, 2, 3, ...\}$$
 ou $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, ...\}$

Obs.:

- i) Conjunto dos números inteiros não nulos: $\mathbb{Z}^* = \{..., -3, -2, -1, 1, 2, 3, ...\}$
- ii) Conjunto dos números inteiros não negativos: $\mathbb{Z}_{+} = \{0, 1, 2, 3, 4, ...\}$
- iii) Conjunto dos números inteiros não positivos: $\mathbb{Z}_{-} = \{..., -3, -2, -1, 0\}$
- iv) Conjunto dos números inteiros positivos: $\mathbb{Z}_{+}^{*} = \{1, 2, 3, 4, ...\}$
- v) Conjunto dos números inteiros negativos: $\mathbb{Z}_{-}^* = \{..., -3, -2, -1\}$

Intervalos são subconjuntos do \mathbb{R} , e podem ser representados através da notação de conjunto, de colchetes ou na reta Real

TIPOS DE INTERVALOS:

1) Intervalos aberto:

Notação de gráfica:

2 10

Notação de conjunto:

 $\{x \in \mathbb{R} / 2 < x < 10\}$

Notação de colchete:

]2,10[

2) Intervalos fechado:

Notação de gráfica:

2 10

Notação de conjunto:

 $\{x \in \mathbb{R} / 2 \le x \le 10\}$

Notação de colchete:

[2,10]

TIPOS DE INTERVALOS:

3) Intervalos semi-aberto ou semi-fechado:

Notação de gráfica:

 $\{x \in \mathbb{R} / 2 \le x < 10\}$

10

Notação de conjunto:

Notação de colchete: [2,10[

Notação de gráfica:

2 10

Notação de conjunto:

 $\{ x \in \mathbb{R} / 2 < x \le 10 \}$

Notação de colchete:

] 2, 10]

TIPOS DE INTERVALOS:

4) Intervalos infinitos:

Notação de gráfica:

Notação de conjunto:

Notação de colchete:

)__

$$\{x \in \mathbb{R} / x > 2\}$$

] 2 , +
$$\infty$$
 [

Notação de gráfica:

Notação de conjunto:

Notação de colchete:

2

 $\{x \in \mathbb{R} / x \ge 2\}$

 $[2, +\infty[$

TIPOS DE INTERVALOS:

4) Intervalos infinitos:

Notação de gráfica:

Notação de conjunto:

Notação de colchete:

 $\{x \in \mathbb{R} / x < 2\}$

2

]- ∞ ,2[

Notação de gráfica:

Notação de conjunto:

Notação de colchete:

 $\{x \in \mathbb{R} / x \leq 2\}$

 $]-\infty,2]$

1) Represente em cada reta real os intervalos correspondentes:

a)
$$]-\infty,-1]$$

b)
$$\{x \in \mathbb{R} \mid 0 \le x \le 2\} \rightarrow$$

d)
$$\{ x \in \mathbb{R} \mid -2 < x \le \sqrt{2} \} \rightarrow$$

f)
$$\{ x \in \mathbb{R} \mid x > -5 \}$$
 \to

2) Dados os intervalos abaixo, escreva-os em notação de conjunto:

