# CS 577- Intro to Algorithms

Network Flow (Part 2)

Dieter van Melkebeek

October 29, 2020

### Network

- ightharpoonup a digraph (V, E)
- ▶ edge capacities  $c: E \to [0, \infty)$
- ▶ the source  $s \in V$ , which has indegree 0, and
- ▶ the sink  $t \in V$ , which has outdegree 0.

### Network

- ightharpoonup a digraph (V, E)
- edge capacities  $c: E \to [0, \infty)$
- ▶ the source  $s \in V$ , which has indegree 0, and
- ▶ the sink  $t \in V$ , which has outdegree 0.

### Flow

A mapping  $f: E \to [0, \infty)$  satisfying

- ▶ [capacity constraints]  $(\forall e \in E) f(e) \leq c(e)$
- ▶ [conservation constraints]  $(\forall v \in V \setminus \{s, t\}) f_{in}(v) = f_{out}(v)$  where  $f_{in}(v) \doteq \sum_{u \in V: e \doteq (v, v) \in E} f(e)$  and  $f_{out}(v) \doteq \sum_{u \in V: e \doteq (v, u) \in E} f(e)$ .

### Network

- ightharpoonup a digraph (V, E)
- edge capacities  $c: E \to [0, \infty)$
- ▶ the source  $s \in V$ , which has indegree 0, and
- ▶ the sink  $t \in V$ , which has outdegree 0.

### Flow

A mapping  $f: E \to [0, \infty)$  satisfying

- ▶ [capacity constraints]  $(\forall e \in E) f(e) \leq c(e)$
- ▶ [conservation constraints]  $(\forall v \in V \setminus \{s, t\}) f_{in}(v) = f_{out}(v)$  where  $f_{in}(v) \doteq \sum_{u \in V: e \doteq (v, u) \in E} f(e)$  and  $f_{out}(v) \doteq \sum_{u \in V: e \doteq (v, u) \in E} f(e)$ .

#### st-Cut

A partition (S, T) of V such that  $s \in S$  and  $t \in T$ .



# Recap - computational problems

## Recap - computational problems

### Max flow

Input: network N = (V, E, c, s, t)

Output: flow f such that  $\nu(f) \doteq f_{\text{out}}(s)$  is maximized

# Recap - computational problems

### Max flow

Input: network N = (V, E, c, s, t)

Output: flow f such that  $\nu(f) \doteq f_{\text{out}}(s)$  is maximized

#### Min cut

Input: network N = (V, E, c, s, t)

Output: st-cut (S, T) such that  $c(S, T) \doteq \sum_{e \in S \times T} c(e)$  is

minimized

linvariance: For every flow f and st-cut (S, T)

$$f_{\mathsf{out}}(S) - f_{\mathsf{in}}(S) = \nu(f)$$

▶ Invariance: For every flow f and st-cut (S, T)

$$f_{\mathsf{out}}(S) - f_{\mathsf{in}}(S) = \nu(f)$$

▶ Weak duality: For every flow f and st-cut (S, T)

$$\nu(f) \leq c(S, T)$$

▶ Invariance: For every flow f and st-cut (S, T)

$$f_{\mathsf{out}}(S) - f_{\mathsf{in}}(S) = \nu(f)$$

▶ Weak duality: For every flow f and st-cut (S, T)

$$\nu(f) \leq c(S,T)$$

Equality  $\nu(f) = c(S, T)$  holds iff

▶ Invariance: For every flow f and st-cut (S, T)

$$f_{\mathsf{out}}(S) - f_{\mathsf{in}}(S) = \nu(f)$$

▶ Weak duality: For every flow f and st-cut (S, T)

$$\nu(f) \leq c(S,T)$$

Equality 
$$\nu(f) = c(S, T)$$
 holds iff  $(\forall e \in E \cap S \times T) f(e) = c(e)$ 

▶ Invariance: For every flow f and st-cut (S, T)

$$f_{\mathsf{out}}(S) - f_{\mathsf{in}}(S) = \nu(f)$$

• Weak duality: For every flow f and st-cut (S, T)

$$\nu(f) \leq c(S,T)$$

Equality  $\nu(f) = c(S, T)$  holds iff

- $\circ \ (\forall e \in E \cap S \times T) \, f(e) = c(e)$
- $\circ \ (\forall e \in E \cap T \times S) \, f(e) = 0.$

▶ Invariance: For every flow f and st-cut (S, T)

$$f_{\mathsf{out}}(S) - f_{\mathsf{in}}(S) = \nu(f)$$

• Weak duality: For every flow f and st-cut (S, T)

$$\nu(f) \leq c(S,T)$$

Equality  $\nu(f) = c(S, T)$  holds iff

- $\circ \ (\forall e \in E \cap S \times T) \, f(e) = c(e)$
- $\circ \ (\forall e \in E \cap T \times S) \, f(e) = 0.$
- Strong duality (today):

$$\max_{f \text{ low } f} \nu(f) = \min_{st\text{-cut } (S,T)} c(S,T)$$

## Residual Network

Consider a flow f in N = (V, E, c, s, t).

### Definition

The residual network  $N_f = (V, E_f, c_f, s, t)$  has:

- For each  $e \in E$  with f(e) < c(e), an edge e in  $E_f$  with  $c_f(e) \doteq c(e) f(e)$ .
- ▶ For each  $e = (u, v) \in E$  with f(e) > 0, an edge  $e' \doteq (v, u)$  in  $E_f$  with  $c_f(e') \doteq f(e)$ .

### Scheme

- 1. Start with  $f \equiv 0$ .
- 2. While there is an st-path in  $N_f$ 
  - Pick such a path P.
  - ▶  $f \leftarrow f + \text{flow along } P \text{ of value } \min_{e \in P}(c_f(e))$
- 3. Return f.

### Scheme

- 1. Start with  $f \equiv 0$ .
- 2. While there is an st-path in  $N_f$ 
  - Pick such a path P.
  - ▶  $f \leftarrow f + \text{flow along } P \text{ of value } \min_{e \in P}(c_f(e))$
- 3. Return f.

#### Soundness

If the algorithm produces an output, it is correct.

## Scheme

- 1. Start with  $f \equiv 0$ .
- 2. While there is an st-path in  $N_f$ 
  - Pick such a path P.
  - ▶  $f \leftarrow f + \text{flow along } P \text{ of value } \min_{e \in P}(c_f(e))$
- 3. Return *f* .

#### Soundness

If the algorithm produces an output, it is correct.

f always is a valid flow.

### Scheme

- 1. Start with  $f \equiv 0$ .
- 2. While there is an st-path in  $N_f$ 
  - Pick such a path P.
  - ▶  $f \leftarrow f + \text{flow along } P \text{ of value } \min_{e \in P}(c_f(e))$
- 3. Return *f* .

#### Soundness

If the algorithm produces an output, it is correct.

- f always is a valid flow.
- ▶ If there is no *st*-path in  $N_f$  then  $\nu(f)$  is maximized.

### Scheme

- 1. Start with  $f \equiv 0$ .
- 2. While there is an st-path in  $N_f$ 
  - Pick such a path P.
  - ▶  $f \leftarrow f + \text{flow along } P \text{ of value } \min_{e \in P}(c_f(e))$
- 3. Return *f* .

#### Soundness

If the algorithm produces an output, it is correct.

- f always is a valid flow.
- ▶ If there is no st-path in  $N_f$  then  $\nu(f)$  is maximized.

#### **Termination**

**Theorem** 

The following are equivalent:

**Theorem** 

The following are equivalent:

(1) f has maximum value.

### Theorem

The following are equivalent:

- (1) f has maximum value.
- (2) There is no st-path in  $N_f$ .

### **Theorem**

The following are equivalent:

- (1) f has maximum value.
- (2) There is no st-path in  $N_f$ .
- (3) There exists an st-cut (S, T) such that
  - $\circ \ (\forall e \in E \cap S \times T) \, f(e) = c(e)$
  - $\circ \ (\forall e \in E \cap T \times S) \, f(e) = 0.$

### **Theorem**

The following are equivalent:

- (1) f has maximum value.
- (2) There is no st-path in  $N_f$ .
- (3) There exists an st-cut (S, T) such that
  - $\circ \ (\forall e \in E \cap S \times T) \, f(e) = c(e)$
  - $\circ \ (\forall e \in E \cap T \times S) \, f(e) = 0.$

## Proof

### **Theorem**

The following are equivalent:

- (1) f has maximum value.
- (2) There is no st-path in  $N_f$ .
- (3) There exists an st-cut (S, T) such that
  - $\circ \ (\forall e \in E \cap S \times T) \, f(e) = c(e)$
  - ∘  $(\forall e \in E \cap T \times S) f(e) = 0$ .

## Proof

 $(1) \Rightarrow (2)$  Contrapositive follows by path augmentation.

### **Theorem**

The following are equivalent:

- (1) f has maximum value.
- (2) There is no st-path in  $N_f$ .
- (3) There exists an st-cut (S, T) such that
  - $\circ \ (\forall e \in E \cap S \times T) \, f(e) = c(e)$
  - $\circ \ (\forall e \in E \cap T \times S) \, f(e) = 0.$

## Proof

- $(1) \Rightarrow (2)$  Contrapositive follows by path augmentation.
- $(2) \Rightarrow (3)$  Next slide.

### **Theorem**

The following are equivalent:

- (1) f has maximum value.
- (2) There is no st-path in  $N_f$ .
- (3) There exists an st-cut (S, T) such that
  - $\circ \ (\forall e \in E \cap S \times T) \, f(e) = c(e)$
  - $\circ \ (\forall e \in E \cap T \times S) \, f(e) = 0.$

## Proof

- $(1) \Rightarrow (2)$  Contrapositive follows by path augmentation.
- $(2) \Rightarrow (3)$  Next slide.
- $(3) \Rightarrow (1)$  Follows from weak duality.

#### Theorem

The following are equivalent:

- (1) f has maximum value.
- (2) There is no st-path in  $N_f$ .
- (3) There exists an st-cut (S, T) such that
  - $\circ \ (\forall e \in E \cap S \times T) \, f(e) = c(e)$
  - $\circ \ (\forall e \in E \cap T \times S) \, f(e) = 0.$

### Proof

- $(1) \Rightarrow (2)$  Contrapositive follows by path augmentation.
- $(2) \Rightarrow (3)$  Next slide.
- $(3) \Rightarrow (1)$  Follows from weak duality.

## Corollary: Strong duality

$$\max_{\text{flow } f} \nu(f) = \min_{\text{st-cut } (S,T)} c(S,T)$$

Suppose that there is no st-path in  $N_f$ .

Suppose that there is no st-path in  $N_f$ . Consider

 $S \doteq \{v \in V : \text{ there exists an } sv\text{-path in } N_f\}.$ 

Suppose that there is no st-path in  $N_f$ . Consider

$$S \doteq \{v \in V : \text{ there exists an } sv\text{-path in } N_f\}.$$

▶ (S, T) with  $T = V \setminus S$  is an st-cut in N.

Suppose that there is no st-path in  $N_f$ . Consider

$$S \doteq \{v \in V : \text{ there exists an } sv\text{-path in } N_f\}.$$

► (S, T) with  $T = V \setminus S$  is an st-cut in N. ∘  $s \in S$ 

$$S \doteq \{v \in V : \text{ there exists an } sv\text{-path in } N_f\}.$$

- ▶ (S, T) with  $T = V \setminus S$  is an st-cut in N.
  - $\circ$   $s \in S$
  - $\circ$   $t \in T$

$$S \doteq \{v \in V : \text{ there exists an } sv\text{-path in } N_f\}.$$

- ▶ (S, T) with  $T = V \setminus S$  is an st-cut in N.
  - $\circ$   $s \in S$
  - $\circ$   $t \in T$
- $(\forall e \in E \cap S \times T) f(e) = c(e)$

$$S \doteq \{v \in V : \text{ there exists an } sv\text{-path in } N_f\}.$$

- ▶ (S, T) with  $T = V \setminus S$  is an *st*-cut in N.
  - s ∈ S
  - $\circ$   $t \in T$
- $(\forall e \in E \cap S \times T) f(e) = c(e)$ 
  - Consider  $e = (u, v) \in E$  with  $u \in S$  and f(e) < c(e).

$$S \doteq \{v \in V : \text{ there exists an } sv\text{-path in } N_f\}.$$

- ▶ (S, T) with  $T = V \setminus S$  is an st-cut in N.
  - $\circ$   $s \in S$
  - $\circ$   $t \in T$
- $(\forall e \in E \cap S \times T) f(e) = c(e)$ 
  - Consider  $e = (u, v) \in E$  with  $u \in S$  and f(e) < c(e).
  - Then  $(u, v) \in E_f$  so  $v \in S$ .

$$S \doteq \{v \in V : \text{ there exists an } sv\text{-path in } N_f\}.$$

- ▶ (S, T) with  $T = V \setminus S$  is an *st*-cut in N.
  - $\circ$   $s \in S$
  - $\circ$   $t \in T$
- $(\forall e \in E \cap S \times T) f(e) = c(e)$ 
  - Consider  $e = (u, v) \in E$  with  $u \in S$  and f(e) < c(e).
  - Then  $(u, v) \in E_f$  so  $v \in S$ .
- $(\forall e \in E \cap T \times S) f(e) = 0$

$$S \doteq \{v \in V : \text{ there exists an } sv\text{-path in } N_f\}.$$

- ▶ (S, T) with  $T = V \setminus S$  is an st-cut in N.
  - $\circ$   $s \in S$
  - $\circ$   $t \in T$
- $(\forall e \in E \cap S \times T) f(e) = c(e)$ 
  - Consider  $e = (u, v) \in E$  with  $u \in S$  and f(e) < c(e).
  - Then  $(u, v) \in E_f$  so  $v \in S$ .
- $(\forall e \in E \cap T \times S) f(e) = 0$ 
  - Consider  $e = (u, v) \in E$  with  $v \in S$  and f(e) > 0.

$$S \doteq \{v \in V : \text{ there exists an } sv\text{-path in } N_f\}.$$

- ▶ (S, T) with  $T = V \setminus S$  is an st-cut in N.
  - s ∈ S
  - $\circ$   $t \in T$
- $(\forall e \in E \cap S \times T) f(e) = c(e)$ 
  - Consider  $e = (u, v) \in E$  with  $u \in S$  and f(e) < c(e).
  - Then  $(u, v) \in E_f$  so  $v \in S$ .
- $(\forall e \in E \cap T \times S) f(e) = 0$ 
  - Consider  $e = (u, v) \in E$  with  $v \in S$  and f(e) > 0.
  - Then  $e' \doteq (v, u) \in E_f$  so  $u \in S$ .

$$S \doteq \{v \in V : \text{ there exists an } sv\text{-path in } N_f\}.$$

- ▶ (S, T) with  $T = V \setminus S$  is an st-cut in N.
  - s ∈ S
  - $\circ$   $t \in T$
- $(\forall e \in E \cap S \times T) f(e) = c(e)$ 
  - Consider  $e = (u, v) \in E$  with  $u \in S$  and f(e) < c(e).
  - Then  $(u, v) \in E_f$  so  $v \in S$ .
- $(\forall e \in E \cap T \times S) f(e) = 0$ 
  - Consider  $e = (u, v) \in E$  with  $v \in S$  and f(e) > 0.
  - Then  $e' \doteq (v, u) \in E_f$  so  $u \in S$ .
- $ightharpoonup :: (S, T) \text{ is an } st\text{-cut with } c(S, T) = \nu(f).$

$$S \doteq \{v \in V : \text{ there exists an } sv\text{-path in } N_f\}.$$

- ▶ (S, T) with  $T = V \setminus S$  is an st-cut in N.
  - s ∈ S
  - $\circ$   $t \in T$
- $(\forall e \in E \cap S \times T) f(e) = c(e)$ 
  - Consider  $e = (u, v) \in E$  with  $u \in S$  and f(e) < c(e).
  - Then  $(u, v) \in E_f$  so  $v \in S$ .
- $(\forall e \in E \cap T \times S) f(e) = 0$ 
  - Consider  $e = (u, v) \in E$  with  $v \in S$  and f(e) > 0.
  - Then  $e' \doteq (v, u) \in E_f$  so  $u \in S$ .
- ▶  $\therefore$  (S, T) is an st-cut with  $c(S, T) = \nu(f)$ . By weak duality  $\nu(f)$  is maximized and c(S, T) minimized.

$$S \doteq \{v \in V : \text{ there exists an } sv\text{-path in } N_f\}.$$

- ▶ (S, T) with  $T = V \setminus S$  is an st-cut in N.
  - s ∈ S
  - $\circ$   $t \in T$
- $(\forall e \in E \cap S \times T) f(e) = c(e)$ 
  - Consider  $e = (u, v) \in E$  with  $u \in S$  and f(e) < c(e).
  - Then  $(u, v) \in E_f$  so  $v \in S$ .
- $(\forall e \in E \cap T \times S) f(e) = 0$ 
  - Consider  $e = (u, v) \in E$  with  $v \in S$  and f(e) > 0.
  - Then  $e' \doteq (v, u) \in E_f$  so  $u \in S$ .
- ▶  $\therefore$  (S, T) is an st-cut with  $c(S, T) = \nu(f)$ . By weak duality  $\nu(f)$  is maximized and c(S, T) minimized.
- ▶ Construction of (S, T) from f runs in linear time.



## Path Augmentation - recap

#### Scheme

- 1. Start with  $f \equiv 0$ .
- 2. While there is an st-path in  $N_f$ 
  - Pick such a path P.
  - ▶  $f \leftarrow f + \text{flow along } P \text{ of value } \min_{e \in P}(c_f(e))$
- 3. Return *f* .

#### Soundness

If the algorithm produces an output, it is correct.

- f always is a valid flow.
- ▶ If there is no st-path in  $N_f$  then  $\nu(f)$  is maximized.

#### **Termination**

Depends on the choice of augmenting path.

- ▶ Depends on the choice of augmenting path.
- ▶ There exist instances and choices without termination.

- Depends on the choice of augmenting path.
- ▶ There exist instances and choices without termination.

#### Integral capacities

If all capacities are integral, termination is guaranteed no matter how augmenting paths are picked.

- Depends on the choice of augmenting path.
- ▶ There exist instances and choices without termination.

#### Integral capacities

If all capacities are integral, termination is guaranteed no matter how augmenting paths are picked.

• # augmentations  $\leq F \doteq \max_{\mathsf{flow}\ f} \nu(f)$ 

- Depends on the choice of augmenting path.
- ▶ There exist instances and choices without termination.

#### Integral capacities

If all capacities are integral, termination is guaranteed no matter how augmenting paths are picked.

- # augmentations  $\leq F \doteq \max_{\text{flow } f} \nu(f)$
- ▶ If each augmenting path is picked using linear-time graph traversal, running time is  $O((n+m) \cdot F)$ .

- Depends on the choice of augmenting path.
- ▶ There exist instances and choices without termination.

#### Integral capacities

If all capacities are integral, termination is guaranteed no matter how augmenting paths are picked.

- $\blacktriangleright$  # augmentations  $\leq F \doteq \max_{\text{flow } f} \nu(f)$
- ▶ If each augmenting path is picked using linear-time graph traversal, running time is  $O((n+m) \cdot F)$ .
- ▶ Running time is *pseudopolynomial*, i.e., bounded by polynomial in size parameters (n and m) and *value* of numbers involved (capacities). [ $F \le \sum_{e \in E} c(e)$ .]

# Slow convergence

Augmentation along path of maximum residual capacity

▶ # augmentations =  $O(m \cdot \log F)$  for integral instances

- $\blacktriangleright$  # augmentations =  $O(m \cdot \log F)$  for integral instances
- ▶ Finding one path: O(n+m) time

- $\blacktriangleright$  # augmentations =  $O(m \cdot \log F)$  for integral instances
- Finding one path: O(n+m) time
- ▶ Overall running time:  $O((n+m)m \cdot \log F)$

- $\blacktriangleright$  # augmentations =  $O(m \cdot \log F)$  for integral instances
- Finding one path: O(n+m) time
- ▶ Overall running time:  $O((n+m)m \cdot \log F)$
- ▶ Running time is *polynomial*, i.e., bounded by polynomial in size parameters and *bitlength* of numbers involved.

### Augmentation along path of maximum residual capacity

- $\blacktriangleright$  # augmentations =  $O(m \cdot \log F)$  for integral instances
- Finding one path: O(n+m) time
- ▶ Overall running time:  $O((n+m)m \cdot \log F)$
- ► Running time is *polynomial*, i.e., bounded by polynomial in size parameters and *bitlength* of numbers involved.

### Augmentation along path of maximum residual capacity

- $\blacktriangleright$  # augmentations =  $O(m \cdot \log F)$  for integral instances
- Finding one path: O(n+m) time
- ▶ Overall running time:  $O((n+m)m \cdot \log F)$
- ► Running time is *polynomial*, i.e., bounded by polynomial in size parameters and *bitlength* of numbers involved.

### Augmentation along path with smallest number of edges

 $\blacktriangleright$  # augmentations = O(nm) for all instances

### Augmentation along path of maximum residual capacity

- $\blacktriangleright$  # augmentations =  $O(m \cdot \log F)$  for integral instances
- Finding one path: O(n+m) time
- ▶ Overall running time:  $O((n+m)m \cdot \log F)$
- Running time is polynomial, i.e., bounded by polynomial in size parameters and bitlength of numbers involved.

- $\blacktriangleright$  # augmentations = O(nm) for all instances
- Finding one path: O(n+m) time (BFS)

### Augmentation along path of maximum residual capacity

- $\blacktriangleright$  # augmentations =  $O(m \cdot \log F)$  for integral instances
- Finding one path: O(n+m) time
- ▶ Overall running time:  $O((n+m)m \cdot \log F)$
- Running time is polynomial, i.e., bounded by polynomial in size parameters and bitlength of numbers involved.

- $\blacktriangleright$  # augmentations = O(nm) for all instances
- Finding one path: O(n+m) time (BFS)
- ▶ Overall running time: O(nm(n+m))

### Augmentation along path of maximum residual capacity

- $\blacktriangleright$  # augmentations =  $O(m \cdot \log F)$  for integral instances
- Finding one path: O(n+m) time
- ▶ Overall running time:  $O((n+m)m \cdot \log F)$
- Running time is polynomial, i.e., bounded by polynomial in size parameters and bitlength of numbers involved.

- $\blacktriangleright$  # augmentations = O(nm) for all instances
- Finding one path: O(n+m) time (BFS)
- ▶ Overall running time: O(nm(n+m))
- Running time is strongly polynomial, i.e., bounded by polynomial in size parameters only.

### Augmentation along path of maximum residual capacity

- $\blacktriangleright$  # augmentations =  $O(m \cdot \log F)$  for integral instances
- ▶ Finding one path: O(n+m) time
- ▶ Overall running time:  $O((n+m)m \cdot \log F)$
- Running time is polynomial, i.e., bounded by polynomial in size parameters and bitlength of numbers involved.

### Augmentation along path with smallest number of edges

- $\blacktriangleright$  # augmentations = O(nm) for all instances
- Finding one path: O(n+m) time (BFS)
- ▶ Overall running time: O(nm(n+m))
- Running time is strongly polynomial, i.e., bounded by polynomial in size parameters only.

Other approaches: O(nm) time for all instances

