Background

CCT Actions

Peckness of Edge Posets

David Hemminger*1, Aaron Landesman², Zijian Yao³

¹Duke University, ²Harvard University, ³Brown University

January 8, 2015

Basic Definitions

Definition

Let P be a finite graded poset of rank n. That is:

- Elements of P are a disjoint union of P_0, P_1, \ldots, P_n , called the *ranks*
- If $x \in P_i$ and $x \lessdot y$, then $y \in P_{i+1}$
- Define rk(x) = k, where $x \in P_k$.

Peck Posets

Definition

Write $p_i = |P_i|$. P is

- Rank-symmetric if $p_i = p_{n-i}$ for all $1 \le i \le n$
- Rank-unimodal if for some $0 \le k \le n$ we have

$$p_0 \leq p_1 \leq \ldots \leq p_k \geq p_{k+1} \geq \ldots \geq p_n$$

- k-Sperner if no union of k antichains (sets of pairwise incomparable elements) in P is larger than the union of the largest k ranks of P
- Strongly Sperner if it is k-Sperner for all $1 \le k \le n$.
- Peck if P is rank-symmetric, rank-unimodal, and strongly Sperner.

Definition of the Edge Poset

Definition

For P a finite graded poset, its *edge poset* $\mathcal{E}(P)$ is the finite graded poset defined as follows.

- Elements of $\mathcal{E}(P)$ are ordered pairs $(x,y) \in P \times P$ where $x \leq y$
- Define $(x, y) \lessdot_{\mathcal{E}} (x', y')$ if $x \lessdot_{P} x'$ and $y \lessdot_{P} y'$
- Define $\leq_{\mathcal{E}}$ to be the transitive closure of $\lessdot_{\mathcal{E}}$
- Define $\operatorname{rk}_{\mathcal{E}}(x,y) = \operatorname{rk}_{\mathcal{P}}(x)$.

Basic Example

Conjecture on the Peckness of Edge Posets

Definition

The boolean algebra of rank n, denoted B_n , is the poset whose elements are subsets of [n] with order given by containment, i.e. for $x, y \in B_n$, $x \le y$ if $x \subseteq y$.

Conjecture (Hemminger, Landesman, and Yao 2014)

Let $G \subseteq Aut(B_n)$. Then $\mathcal{E}(B_n/G)$ is Peck.

Main Result

Definition

A group action of G on P is common cover transitive (CCT) if whenever $x, y, z \in P$ such that $x \lessdot z$, $y \lessdot z$, and $y \in Gx$, there exists some $g \in \operatorname{Stab}_G(z)$ such that $g \cdot x = y$.

Theorem (Hemminger, Landesman, and Yao 2014)

If a group action of G on B_n is CCT, then $\mathcal{E}(B_n/G)$ is Peck.

•00

CCT Actions

Background

The trivial group;

Background

- The trivial group;
- ② The group S_n acting on B_n ;

•00

CCT Actions

Background

- The trivial group;
- 2 The group S_n acting on B_n ;
- **3** The group D_{2n} acting on B_n when n=p or n=2p, and p is a prime;

Some examples of CCT actions

CCT Actions

- The trivial group;
- ② The group S_n acting on B_n ;
- **3** The group D_{2n} acting on B_n when n = p or n = 2p, and p is a prime;
- The elementary 2-group $(\mathbb{Z}/2\mathbb{Z})^k$ with any action on B_n .

The direct product and semi-direct product

Lemma

For $\phi: G \times P \to P, \psi: H \times Q \to Q$ two CCT actions, then the direct product

 $\phi \times \psi : (G \times H) \times (P \times Q) \rightarrow (P \times Q), (g, h) \cdot (x, y) \mapsto (gx, hy)$ is also CCT.

Proposition

Let $G \subseteq Aut(P)$, $H \triangleleft G$, $K \subseteq G$ such that $G = H \rtimes K$. Suppose that the action of H on P is CCT and the action of K on P/H is CCT. Then the action of G on P is CCT.

The wreath product

Corollary

If $\psi: G \times P \to P$ is CCT, then $\phi: G \wr S_I \times P^I \to P^I$ where ϕ is the induced action is also CCT.

The wreath product

Corollary

If $\psi: G \times P \to P$ is CCT, then $\phi: G \wr S_I \times P^I \to P^I$ where ϕ is the induced action is also CCT.

Corollary

The action $S_m \wr S_l \times B_n \to B_n$ is CCT, where n = ml.

The wreath product

Corollary

If $\psi: G \times P \to P$ is CCT, then $\phi: G \wr S_I \times P^I \to P^I$ where ϕ is the induced action is also CCT.

Corollary

The action $S_m \wr S_l \times B_n \to B_n$ is CCT, where n = ml.

Remark

This recovers a special case of [IP13, Theorem 1.1]: The poset $\mathcal{E}(B_n/S_m \wr S_l)$ is rank symmetric and rank unimodal. (Furthermore, it is Peck!)

References

Greta Panova Igor Pak.
Unimodality via kronecker products.

Journal of Algebraic Combinatorics, page To appear, 2013.

Richard P. Stanley.
Quotients of peck posets.
Order, 1:29–34, 1984.

Richard P. Stanley.

Algebraic Combinatorics.

Springer, 2013.

Acknowledgements

- Thanks to Dr. Vic Reiner and Elise DelMas for mentoring and TAing this project. We also thank Ka Yu Tam for helpful comments.
- 2 The work for this project took place at the Minnesota at Twin Cities REU. Thanks to Dr. Gregg Musiker and the University of Minnesota School of Mathematics for coordinating and hosting the REU.
- This research was supported by the RTG grant NSF/DMS-1148634.