CS 307-Optimization Algorithms and Techniques

Instructor: Chandresh Kumar Maurya Homepage: chandreshiit.github.io/

Syllabus

- Part I--Introduction
 - Introduction to Optimization
 - Math Foundations
- Part II-- Linear optimization
 - Linear Optimization
- Part III-- Non-linear optimization

Books

- An Introduction to Optimization: Foundations and Fundamental Algorithms, Niclas Andr ´easson, Anton Evgrafov, and Michael Patriksson, 2nd and 3rd ed.
- Convex optimization, Stephen Boyd and Lieven Vandenberghe, 1st ed., 2004

What will be Covered?

- Mathematical foundation
 - Linear algebra
 - Real analysis

Linear Algebra Review

Linear equations

• Set of linear equations (two equations, two unknowns)

$$4x_1 - 5x_2 = -13
-2x_1 + 3x_2 = 9$$

• Set of linear equations (two equations, two unknowns)

$$4x_1 - 5x_2 = -13 \\
-2x_1 + 3x_2 = 9$$

• Can represent compactly using matrix notation

$$Ax = b$$

with

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}$$

Linear Algebra Review

Basic notation

A matrix with real-valued entries, m rows, and n columns

$$A \in \mathbb{R}^{m \times n}$$

• A_{ij} denotes the entry in the *i*th row and *j*th column

• A (column) vector with n real-valued entries

$$x \in \mathbb{R}^n$$

• x_i denotes the *i*th entry

The Transpose

• The transpose operator A^T switches rows and columns of a matrix

$$A_{ij} = (A^T)_{ji}$$

• For a vector $x \in \mathbb{R}^n$, $x^T \in \mathbb{R}^{1 \times n}$ would represent a row vector

Elements of a Matrix

• Can write a matrix in terms of its columns

$$A = \left[\begin{array}{cccc} | & | & & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & & | \end{array} \right]$$

• Careful, a_i here corresponds to an entire *vector* $a_i \in \mathbb{R}^m$, not an element of a vector

• Similarly, can write a matrix in terms of rows

$$A = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ \vdots & & \\ - & a_m^T & - \end{bmatrix}$$

• $a_1 \in \mathbb{R}^n$ here and $a_1 \in \mathbb{R}^m$ from previous slide are not the same vector

Linear Algebra Review

Matrix addition

• For two matrices of the same size and type, $A, B \in \mathbb{R}^{m \times n}$ addition is just sum of corresponding elements

$$A + B = C \in \mathbb{R}^{m \times n} \iff C_{ij} = A_{ij} + B_{ij}$$

• Addition is *undefined* for matrices of different sizes $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{p \times q}$

Matrix multiplication

• For two matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, their product is

$$AB = C \in \mathbb{R}^{m \times p} \iff C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

• Multiplication is undefined when number of columns in A doesn't equal number or rows in B (one exception: cA for $c \in \mathbb{R}$ taken to mean scaling A by c)

• Some imporant properties

– Associative: $(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{p \times q})$

$$A(BC) = (AB)C$$

- Distributive: $(A \in \mathbb{R}^{m \times n}, B, C \in \mathbb{R}^{n \times p})$

$$A(B+C) = AB + AC$$

 NOT commutative: (the dimensions might not even make sense, but this doesn't hold even when the dimensions are correct)

$$AB \neq BA$$

Vector-vector Products

• Inner product: $x, y \in \mathbb{R}^n$

$$x^T y \in \mathbb{R} = \sum_{i=1}^n x_i y_i$$

• Outer product: $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$

$$xy^{T} \in \mathbb{R}^{n \times m} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & \cdots & x_{1}y_{m} \\ x_{2}y_{1} & x_{2}y_{2} & \cdots & x_{2}y_{m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n}y_{1} & x_{n}y_{2} & \cdots & x_{n}y_{m} \end{bmatrix}$$

Matrix-vector Products

- $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n \iff Ax \in \mathbb{R}^m$
- Writing A by rows, each entry of Ax is an inner product between x and a row of A

$$A = \begin{bmatrix} -a_1^T & - \\ -a_2^T & - \\ \vdots \\ -a_m^T & - \end{bmatrix}, \quad Ax \in \mathbb{R}^m = \begin{bmatrix} a_1^T x \\ a_2^T x \\ \vdots \\ a_m^T x \end{bmatrix}$$

• Writing A by columns, Ax is a *linear combination* of the columns of A, with coefficients given by x

$$A = \begin{bmatrix} | & | & & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & & | \end{bmatrix}, \quad Ax \in \mathbb{R}^m = \sum_{i=1}^n a_i x_i$$

Matrix-matrix Products

• Write $A \in \mathbb{R}^{m \times n}$ by rows, $B \in \mathbb{R}^{n \times p}$ by columns: entries of AB are inner products of the rows of A and the columns of B

$$A = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ \vdots & & \\ - & a_m^T & - \end{bmatrix}, B = \begin{bmatrix} | & | & | & | \\ b_1 & b_2 & \cdots & b_p \\ | & | & & | \end{bmatrix}$$
$$(AB)_{ij} = a_i^T b_j$$

• Write $A \in \mathbb{R}^{m \times n}$ by columns, $B \in \mathbb{R}^{n \times p}$ by rows: AB is a sum of outer products of columns of A and rows of B

and rows of
$$B$$

$$A = \begin{bmatrix} | & | & | & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & | & | \end{bmatrix}, \quad B = \begin{bmatrix} - & b_1^T & - \\ - & b_2^T & - \\ \vdots & | - & b_n^T & - \end{bmatrix}$$

$$AB \in \mathbb{R}^{m \times p} = \sum_{i=1}^{n} a_i b_i^T$$

• Leave $A \in \mathbb{R}^{m \times n}$ as complete matrix, write $B \in \mathbb{R}^{n \times p}$ by columns: columns of AB are

matrix-vector products between
$$A$$
 and columns of B

$$B = \begin{bmatrix} | & | & | & | \\ b_1 & b_2 & \cdots & b_p \\ | & | & | & | \end{bmatrix}$$

 $AB \in \mathbb{R}^{m \times p} = [Ab_1 \ Ab_2 \ \cdots \ Ab_p]$

Linear Algebra Review

The Identity Matrix

$$I \in \mathbb{R}^{n \times n} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

• Has the property that for any $A \in \mathbb{R}^{m \times n}$

$$AI = A = IA$$

(note that the identity matrices on the left and right are different sizes, $n \times n$ versus $m \times m$)

The Zero Matrix

$$0 \in \mathbb{R}^{m \times n} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

• Useful in defining block forms for matrices; e.g. $A \in \mathbb{R}^{m \times n}$. $B \in \mathbb{R}^{p \times q}$

$$C \in \mathbb{R}^{(m+p)\times(n+q)} = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$$

The All-ones Vector

$$1 \in \mathbb{R}^n = \left[\begin{array}{c} 1 \\ \vdots \\ 1 \end{array} \right]$$

Useful, for example, in compactly representing sums

$$a \in \mathbb{R}^n, \ 1^T a = \sum_{i=1}^n a_i$$

The Standard Basis Vector

$$e_i \in \mathbb{R}^n = \left| \begin{array}{c} \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \end{array} \right| \leftarrow i \mathsf{th} \; \mathsf{row}$$

• Can be used to extract entries of a vector $x \in \mathbb{R}^n$

$$x^T e_i = x_i$$

Symmetric Matrices

- Symmetric matrix: $A \in \mathbb{R}^{n \times n}$ with $A = A^T$
- Arise naturally in many settings
 - For $A \in \mathbb{R}^{m \times n}$, $A^T A \in \mathbb{R}^{n \times n}$ is symmetric

Diagonal Matrices

• For $d \in \mathbb{R}^n$

$$\operatorname{diag}(d) \in \mathbb{R}^{n \times n} = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$

• For example, the identity is given by I = diag(1)

• Multiplying $A \in \mathbb{R}^{m \times n}$ by a diagonal matrix $D \in \mathbb{R}^{n \times n}$ on the right scales the *columns* of A

$$AD = \begin{bmatrix} | & | & | \\ d_1 a_1 & d_2 a_2 & \cdots & d_n a_n \\ | & | & | \end{bmatrix}$$

• Multiplying by a diagonal matrix $D \in \mathbb{R}^{m \times m}$ on the left scales the *rows* of A

$$DA = \begin{bmatrix} - & d_1 a_1^T & - \\ - & d_2 a_2^T & - \\ & \vdots & \\ - & d_m a_m^T & - \end{bmatrix}$$

Linear Algebra Review

The Matrix Inverse

• Inverse of a square matrix $A \in \mathbb{R}^{n \times n}$ denoted A^{-1}

$$AA^{-1} = I = A^{-1}A$$

 May not exist (non-singular matrix has inverse, singular matrix does not)

$$A^{-1}$$
 exists $\iff Ax \neq 0$ for all $x \neq 0$

- \bullet Some important properties for $A,B\in\mathbb{R}^{n\times n}$ non-singular
 - $-(A^{-1})^{-1}=A$
 - $(AB)^{-1} = B^{-1}A^{-1}$
 - $-(A^T)^{-1}=(A^{-1})^T$

Solving Linear Equations

• Two linear equations

$$4x_1 - 5x_2 = -13 \\
-2x_1 + 3x_2 = 9$$

• In vector form, Ax = b, with

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}$$

Solution using inverse

$$Ax = b$$

$$A^{-1}Ax = A^{-1}b$$

$$x = A^{-1}b$$

 Won't worry here about how to compute inverse, but it's very similar to the standard method for solving linear equations

Linear Algebra Review

Notation for Functions

- $f(x) = x^2$, $f: \mathbb{R} \to \mathbb{R}$
- Function with matrix inputs/outputs

$$f: \mathbb{R}^{m \times n} \to \mathbb{R}^{p \times q}$$

Some Examples

• Transpose: $f(A) = A^T$

$$f: \mathbb{R}^{m \times n} \to \mathbb{R}^{n \times m}$$

• Inverse: $f(A) = A^{-1}$

$$f: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$$

• Multiplication: f(x) = Ax for $A \in \mathbb{R}^{m \times n}$

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

The Trace

• $\operatorname{tr}: \mathbb{R}^{n \times n} \to \mathbb{R}$

$$\operatorname{tr} A = \sum_{i=1}^{n} A_{ii}$$

- Some properties
 - $-\operatorname{tr} A = \operatorname{tr} A^T$. $A \in \mathbb{R}^{n \times n}$
 - $-\operatorname{tr}(A+B) = \operatorname{tr} A + \operatorname{tr} B, A, B \in \mathbb{R}^{n \times n}$
 - $\operatorname{tr} AB = \operatorname{tr} BA$, $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times m}$

Norms

- A vector norm is any function $f: \mathbb{R}^n \to \mathbb{R}$ with
 - 1. $f(x) \ge 0$ and $f(x) = 0 \Leftrightarrow x = 0$
 - 2. f(ax) = |a|f(x) for $a \in \mathbb{R}$
 - $3. f(x+y) \le f(x) + f(y)$

• ℓ_2 norm

$$||x||_2 = \sqrt{x^T x} = \sqrt{\sum_{i=1}^n x_i^2}$$

• ℓ_1 norm

$$||x||_1 = \sum_{i=1}^n |x_i|$$

• ℓ_{∞} norm

$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$$

Determinant

• $\det: \mathbb{R}^{n \times n} \to \mathbb{R}$ (sometimes denoted $|\cdot|$)

• $|\det A|$ is the area of the parallelogram

- Can be formally defined by three properties
 - 1. Determinant of identity is one: $\det I = 1$
 - 2. Multiplying a row by scalar $t \in \mathbb{R}$ scales determinant:

$$\det \begin{vmatrix} - & ta_1^T & - \\ - & a_2^T & - \\ \vdots & - & a^T & - \end{vmatrix} = t \det A$$

3. Swapping rows negates determinant:

$$\det \begin{bmatrix} - & a_2^T & - \\ - & a_1^T & - \\ \vdots \\ - & a_n^T & - \end{bmatrix} = -\det A$$

- Important properties
 - $-\det A = \det A^T$
 - $\det AB = \det A \det B$
 - $-\det A = 0 \Leftrightarrow A \text{ singular (non-invertible)}$
 - $\det A^{-1} = 1/\det A$

Linear Algebra Review

• Given $a_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$ for $i = 1, \ldots, m$,

Given
$$a_i \in \mathbb{R}^n$$
, $b_i \in \mathbb{R}$ for $i = 1, ..., m$, $f: \mathbb{R}^n \to \mathbb{R}$

 $f(x) = \sum_{i=1}^{m} (a_i^T x - b_i)^2$

• $f: \mathbb{R}^{m \times n} \to \mathbb{R}$

$$f(A) = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^2$$

i=1 j=1

 \bullet Given $x\in\mathbb{R}^m$, $y\in\mathbb{R}^n$, construct $A\in\mathbb{R}^{m\times n}$ such that

$$A_{ij} = (x_i - y_j)^2$$

Linear Algebra Review

Range

• For $A \in \mathbb{R}^{m \times n}$, range of A is the set of all vectors that can be written Ax for some $x \in \mathbb{R}^n$

$$\mathcal{R}(A) \subseteq \mathbb{R}^m = \{ y : y = Ax, x \in \mathbb{R}^n \}$$

• The columns of A are *linearly independent* if no column is in the range of the remaining columns

$$a_i \notin \mathcal{R}(A_{-i}), \forall i = 1, \dots, n$$

Rank

- Rank of $A \in \mathbb{R}^{m \times n}$ is the number of linearly indpendent columns
- Some important properties

$$-\operatorname{rank}(A) = \operatorname{rank}(A^T)$$

- For $A \in \mathbb{R}^{n \times n}$,

$$\operatorname{rank}(A) = n \Leftrightarrow \mathcal{R}(A) = \mathbb{R}^n \Leftrightarrow A \text{ non-singular}$$

Orthogonality

• Two vectors $x, y \in \mathbb{R}^n$ are orthogonal if

$$x^T y = 0$$

• They are *orthonormal* if, in addition,

$$||x||_2 = ||y||_2 = 1$$

• A matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if all it's columns are orthonormal, i.e.,

$$U^TU = I = UU^T$$

Columns of an orthogonal matrix are linearly independent

Nullspace

• for $A \in \mathbb{R}^{m \times n}$, nullspace of A is set of all vectors x s.t. Ax = 0

$$\mathcal{N}(A) \subseteq \mathbb{R}^n = \{x : Ax = 0\}$$

• $\mathcal{R}(A)$ and $\mathcal{N}(A^T)$ are orthogonal complements

$$\mathcal{R}(A) \cup \mathcal{N}(A^T) = \mathbb{R}^m, \ \mathcal{R}(A) \cap \mathcal{N}(A^T) = \{0\}$$

Linear Algebra Review

Eigenvalues and Eigenvectors

• For $A \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue and $x \in \mathbb{C}^n \neq 0$ an eigenvector if

$$Ax = \lambda x$$

- Satisfied if $(\lambda I A)x = 0$, which we know exists if and only if $\det(\lambda I A) = 0$
- $det(\lambda I A)$ is a polynomial (of degree n) in λ , its n roots are the n eigenvalues of A

Diagonalization

 \bullet Write equations for all n eigenvalues as

$$A \begin{bmatrix} | & & | \\ x_1 & \cdots & x_n \\ | & & | \end{bmatrix} = \begin{bmatrix} | & & | \\ x_1 & \cdots & x_n \\ | & & | \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$$

• Write as $AX = X\Lambda$, which implies

$$A = X\Lambda X^{-1}$$

if X is invertible (A diagonalizable)

• Important properties of eigenvectors/eigenvalues

$$-\operatorname{tr} A = \sum_{i=1}^{n} \lambda_i$$

$$- \det A = \prod_{i=1}^n \lambda_i$$

- $-\operatorname{rank}(A) = \operatorname{number} \operatorname{of} \operatorname{non-zero} \operatorname{eigenvalues}$
- Eigenvalues of A^{-1} are $1/\lambda_i$, $i=1,\ldots,n$, eigenvectors are the same

• An example: Given $A \in \mathbb{R}^{n \times n}$, what can we say about A^k as $k \to \infty$?

Symmetric Matrices

- For a symmetric matrix $A \in \mathbb{R}^{n \times n}$) $(A = A^T)$, we have the following properties
 - 1. All eigenvalues/eigenvectors of A are real (more correctly, eigenvectors can be chosen to be real)
 - 2. The eigenvectors of A are orthogonal (can be chosen to be orthogonal)
- Implies that A can be diagonalized as

$$A = U\Lambda U^T$$

• Eigenvalues of symmetric matrix are real

• Eigenvectors of symmetric matrix can be chosen to be real

• Eigenvectors of symmetric matrix can be chosen to be orthogonal

Linear Algebra Review

Quadratic Forms

• A quadratic form is a function $f: \mathbb{R}^n \to \mathbb{R}$

$$f(x) = x^T A x$$

for some $A \in \mathbb{R}^{n \times n}$

• Can take A to be symmetric, since

$$x^{T}Ax = (x^{T}Ax)^{T} = x^{T}A^{T}x = x^{T}\frac{1}{2}(A + A^{T})x$$

• $A \in \mathbb{R}^{n \times n}$ is positive definite (positive semidefinite) if $x^T A x > 0$ ($x^T A x \geq 0$) for all $x \in \mathbb{R}^n \neq 0$

semidefinite) if $x^T A x < 0$ ($x^T A x < 0$) for all

 A is indefinite if neither positive nor negative semidefinite

• $A \in \mathbb{R}^{n \times n}$ is negative definite (negative

 $x \in \mathbb{R}^n \neq 0$

- ullet Definiteness is characterized by eigenvalues of A
 - A positive definite $\Leftrightarrow \lambda_i > 0, \ \forall i$
 - A positive semidefinite $\Leftrightarrow \lambda_i \geq 0, \ \forall i$
 - A negative definite $\Leftrightarrow \lambda_i < 0, \ \forall i$
 - A negative semidefinite $\Leftrightarrow \lambda_i \leq 0, \ \forall i$