1 Rungeovy-Kuttovy metody

Řešíme numericky Riccatiho rovnici (1) na intervalu [0.25, 0.45] Rungeovými-Kuttovými metodami. Známe její analytické řešení: $u(t) = (\frac{1}{\sqrt{2}t} \tan{(\sqrt{2}(c-\frac{1}{t}))} - \frac{1}{2t})e^t$, kde klademe c=1.

$$\dot{u}(t) = t^{-4}e^{t} + u(t) + 2e^{-t}u^{2}(t) = f(t, u),$$

$$u(0.25) = -31,1844.$$
(1)

Označíme $\tau = integrationTimeStep$, $u_0 = u(t_0)$. Použijeme metody:

I. Euler:

$$k_1(\tau) = \tau \cdot f(t_0, u_0),$$

 $u(t_0 + \tau) = u(t) + k_1(\tau).$

II. Runge-Kutta 2. řádu:

$$k_1(\tau) = \tau \cdot f(t_0, u_0),$$

$$k_2(\tau) = \tau \cdot f(t_0 + \tau, u_0 + k_1(\tau)),$$

$$u(t_0 + \tau) = u(t) + \frac{1}{2}k_1(\tau) + \frac{1}{2}k_2(\tau).$$

III. Runge-Kutta-Merson:

$$\begin{split} k_1(\tau) &= \tau \cdot f(t_0, u_0), \\ k_2(\tau) &= \tau \cdot f(t_0 + \frac{1}{3}\tau, u_0 + \frac{1}{3}k_1), \\ k_3(\tau) &= \tau \cdot f(t_0 + \frac{1}{3}\tau, u_0 + \frac{1}{6}k_1 + \frac{1}{6}k_2), \\ k_4(\tau) &= \tau \cdot f(t_0 + \frac{1}{2}\tau, u_0 + \frac{1}{8}k_1 + \frac{3}{8}k_3), \\ k_5(\tau) &= \tau \cdot f(t_0 + \tau, u_0 + \frac{1}{2}k_1 - \frac{3}{2}k_3 + 2k_4), \\ u(t_0 + \tau) &= y_0 + \frac{1}{6}k_1 + \frac{2}{3}k_4 + \frac{1}{6}k_5. \end{split}$$

Soustředíme se na metodě (II):

(a) Průběh numerického řešení v porovnání s průběhem analytického ($timeStep = 10^{-2}$, $integrationTimeStep = 10^{-3}$):

(b) Implementace:

```
template < typename Problem >
class RungeKutta: public IntegratorBase
 public:
  RungeKutta ( Problem& problem )
       this ->k1 = new double[ problem.getDegreesOfFreedom() ];
       this \rightarrow k2 = new double[problem.getDegreesOfFreedom()];
       this ->aux = new double[ problem.getDegreesOfFreedom() ];
  }
  bool solve ( Problem& problem,
               double* u )
       const int dofs = problem.getDegreesOfFreedom();
       double tau = std::min( this->integrationTimeStep, this->stopTime - this->time );
       long int iteration( 0 );
       while ( this -> time < this -> stopTime )
         /* ***
         * Compute k1
         problem.getRightHandSide( this->time, u, k1 );
         /* ***
         * Compute k2
         */
         for(int i = 0; i < dofs; i++)
           aux[i] = u[i] + tau * k1[i];
         problem.getRightHandSide( this->time + tau, aux, k2 );
         /* ** */
         for(int i = 0; i < dofs; i++)
           u[i] += (tau / 2.0) * (k1[i] + k2[i]);
         this -> time += tau;
         iteration++;
         if ( iteration > 100000 )
           std::cerr << "The_solver_has_reached_the_maximum_number_of_iteratoins._"
                       << std::endl;
           return false;
         }
         tau = std::min( tau, this->stopTime - this->time);
         std::cout << "ITER:" << iteration << "_\t_tau_=_" << tau
                       << "_\t_time=_" << time << "____\r_" << std :: flush;</pre>
       std::cout << std::endl;</pre>
       return true;
  }
  ~RungeKutta()
       delete[] k1;
       delete[] k2;
       delete[] aux;
 protected:
  double *k1, *k2, *aux;
};
```

2 L^1, L^2, L^∞ - normy, EOC (experimental orders of convergence)

Označíme $\tau=integrationTimeStep,~\Delta t=timeStep~(\Delta t=10^{-2}),~\bar{u}_{\tau}$ - numerické řešení spočítané s integračním krokem $\tau,~u$ - analytické řešení, K - počet bodů v rozdělení intervalu $[a,b]~(a=0.25,~b=0.45,~K=\frac{b-a}{\Delta t}=\frac{0.45-0.25}{10^{-2}}=20)$. Potom lze spočítat normy takto:

$$\begin{split} ||\bar{u}_{\tau} - u||_{L^{1}} &= \sum_{j=0}^{K} |\bar{u}_{\tau}(a + j\Delta t) - u(a + j\Delta t)| \cdot \Delta t \\ ||\bar{u}_{\tau} - u||_{L^{2}} &= \Big(\sum_{j=0}^{K} |\bar{u}_{\tau}(a + j\Delta t) - u(a + j\Delta t)|^{2} \cdot \Delta t\Big)^{\frac{1}{2}} \\ ||\bar{u}_{\tau} - u||_{L^{\infty}} &= \max_{j=0,1,\cdots,K} |\bar{u}_{\tau}(a + j\Delta t) - u(a + j\Delta t)| \end{split}$$

Chyba (err.) metody se spočte jako $E_{\tau} = ||\bar{u}_{\tau} - u||_{L}$ a experimentální řád konvergence $\mathrm{EOC}(E_{\tau_{1}}, E_{\tau_{2}}) = \log_{2} \frac{E_{\tau_{1}}}{E_{\tau_{2}}} / \log_{2} \frac{\tau_{1}}{\tau_{2}}$.

τ	L^1		L^2		L^{∞}	
	err.	EOC	err.	EOC	err.	EOC
10^{-3}	$1.75358 \cdot 10^{-1}$	×	$6.52637 \cdot 10^{-1}$	×	5.20364	×
$5 \cdot 10^{-4}$	$8.44912 \cdot 10^{-2}$	1.053	$3.10358 \cdot 10^{-1}$	1.072	2.45653	1.083
$2.5 \cdot 10^{-4}$	$4.14977 \cdot 10^{-2}$	1.026	$1.51472 \cdot 10^{-1}$	1.035	1.19462	1.04
$1.25 \cdot 10^{-4}$	$2.05675 \cdot 10^{-2}$	1.013	$7.48415 \cdot 10^{-2}$	1.017	$5.89204 \cdot 10^{-1}$	1.02
$6.25 \cdot 10^{-5}$	$1.02391 \cdot 10^{-2}$	1.006	$3.72011 \cdot 10^{-2}$	1.008	$2.92613 \cdot 10^{-1}$	1.01
$3.125 \cdot 10^{-5}$	$5.10848 \cdot 10^{-3}$	1.003	$1.85461 \cdot 10^{-2}$	1.004	$1.45814 \cdot 10^{-1}$	1.005

Tabulka 1: Eulerova metoda

τ	L^1		L^2		L^{∞}	
	err.	EOC	err.	EOC	err.	EOC
10^{-3}	$1.83033 \cdot 10^{-3}$	×	$7.84699 \cdot 10^{-3}$	×	$6.82516 \cdot 10^{-2}$	×
$5 \cdot 10^{-4}$	$4.55945 \cdot 10^{-4}$	2.0052	$1.96057 \cdot 10^{-3}$	2.00087	$1.70738 \cdot 10^{-2}$	1.99908
$2.5 \cdot 10^{-4}$	$1.13708 \cdot 10^{-4}$	2.0035	$4.89612 \cdot 10^{-4}$	2.00156	$4.26622 \cdot 10^{-3}$	2.00075
$1.25 \cdot 10^{-4}$	$2.83878 \cdot 10^{-5}$	2.002	$1.22314 \cdot 10^{-4}$	2.00105	$1.06606 \cdot 10^{-3}$	2.00067
$6.25 \cdot 10^{-5}$	$7.0918 \cdot 10^{-6}$	2.001	$3.05658 \cdot 10^{-5}$	2.0006	$2.66439 \cdot 10^{-4}$	2.00041
$3.125 \cdot 10^{-5}$	$1.77228 \cdot 10^{-6}$	2.0005	$7.63974 \cdot 10^{-6}$	2.00032	$6.65992 \cdot 10^{-5}$	2.00023

Tabulka 2: Rungeova-Kuttova metoda 2. řádu

τ	L^1		L^2		L^{∞}	
	err.	EOC	err.	EOC	err.	EOC
10^{-3}	$2.36651 \cdot 10^{-7}$	×	$9.76783 \cdot 10^{-7}$	×	$8.3966 \cdot 10^{-6}$	×
$5 \cdot 10^{-4}$	$1.46934 \cdot 10^{-8}$	4.00952	$6.07233 \cdot 10^{-8}$	4.00772	$5.22349 \cdot 10^{-7}$	4.00672
$2.5 \cdot 10^{-4}$	$9.1339 \cdot 10^{-10}$	4.00779	$3.77666 \cdot 10^{-9}$	4.00707	$3.24991 \cdot 10^{-8}$	4.00654
$1.25 \cdot 10^{-4}$	$5.54893 \cdot 10^{-11}$	4.04095	$2.28997 \cdot 10^{-10}$	4.04371	$1.97127 \cdot 10^{-9}$	4.0432
$6.25 \cdot 10^{-5}$	$8.35626 \cdot 10^{-12}$	2.73128	$3.62685 \cdot 10^{-11}$	2.65854	$3.10102 \cdot 10^{-10}$	2.66831
$3.125 \cdot 10^{-5}$	$7.7862 \cdot 10^{-12}$	0.10194	$3.51773 \cdot 10^{-11}$	0.04407	$2.98606 \cdot 10^{-10}$	0.0545

Tabulka 3: Rungeova-Kuttova-Mersonova metoda (bez adaptivity)