Package 'ihclust'

October 13, 2022

October 15, 2022
Type Package
Title Iterative Hierarchical Clustering (IHC)
Version 0.1.0
Description Provides a set of tools to i) identify geographic areas with significant change over time in drug utilization, and ii) characterize common change over time patterns among the time series for multiple geographic areas. For reference, see below: 1. Song, J., Carey, M., Zhu, H., Miao, H., Ram´ırez, J. C., & Wu, H. (2018) <doi:10.1504 (2013)="" 1471-2105-14-6="" 2.="" <doi:10.1186="" h.="" ijcbdd.2018.10011910="" s.,="" wu,=""> 3. Carey, M., Wu, S., Gan, G. & Wu, H. (2016) <doi:10.1016 j.idm.2016.07.001="">.</doi:10.1016></doi:10.1504>
License GNU General Public License (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
Depends R (>= $3.5.0$)
Imports factoextra, splines, ggplot2, foreach, doParallel, parallel
NeedsCompilation no
Author Elin Cho [aut, cre], Yuting Xu [aut], Jaejoon Song [aut] Meinteiner Elin Cho colinghe 5.248 gmail. com
Maintainer Elin Cho <elincho524@gmail.com></elincho524@gmail.com>
Repository CRAN Date/Publication 2022-04-27 07:20:02 UTC
R topics documented:
ihclust 2 opioidData 3 simcurve 4 testchange 5
Index 7

2 ihclust

ihclust

Iterative Hierarchical Clustering (IHC)

Description

This function identifies inhomogeneous clusters using iterative hierarchical clustering (IHC) method.

Usage

```
ihclust(
  data,
  smooth = TRUE,
  cor_criteria = 0.75,
  max_iteration = 100,
  verbose = TRUE
)
```

Arguments

data a numeric matrix, each row representing a time-series and each column repre-

senting a time point

smooth if smooth = 'TRUE', a smooth function is applied before clustering

cor_criteria pre-specified correlation criteria
max_iteration maximum number of iterations

verbose if verbose = 'TRUE', the result of a progress is printed

Details

ihclust

The IHC algorithm implements the three steps as outlined below. First, the Initialization step clusters the data using hierarchical clustering. Second, cluster centers are obtained as an average of all the data points in the cluster. The Merging step considers each of the cluster centers (exemplars) as 'new data point', and use the same procedure described in the Initialization step to merge the exemplars into a new set of clusters. Third, the Pruning step streamlines the clusters and removes inconsistencies by reassessing the cluster membership by each data point.

Value

Output from the function is a list of three items:

- Cluster_Label the cluster label for each data point
- Num_Iterations total number of iterations
- Unique_Clusters_in_Iteration unique clusters in each iteration

opioidData 3

References

1. Song, J., Carey, M., Zhu, H., Miao, H., Ram´ırez, J. C., & Wu, H. (2018). Identifying the dynamic gene regulatory network during latent HIV-1 reactivation using high-dimensional ordinary differential equations. International Journal of Computational Biology and Drug Design, 11,135-153. doi: 10.1504/IJCBDD.2018.10011910. 2. Wu, S., & Wu, H. (2013). More powerful significant testing for time course gene expression data using functional principal component analysis approaches. BMC Bioinformatics, 14:6. 3. Carey, M., Wu, S., Gan, G. & Wu, H. (2016). Correlation-based iterative clustering methods for time course data: The identification of temporal gene response modules for influenza infection in humans. Infectious Disease Modeling, 1, 28-39.

Examples

```
# This is an example not using the permutation approach
opioid_data_noNA <- opioidData[complete.cases(opioidData), ] #remove NAs
mydata <- as.matrix(opioid_data_noNA[1:500,4:18])
testchange_results <- testchange(data=mydata,perm=FALSE,time=seq(1,15,1))
data_change <- testchange_results$sig.change
clustering_results <- ihclust(data=data_change, smooth = TRUE,
cor_criteria = 0.75, max_iteration = 100, verbose = TRUE)</pre>
```

opioidData

Opioid Dispensing Rates

Description

A dataset containing estimated opioid dispensing rate per 100 persons in United States, 2006-2020.

Usage

```
data(opioidData)
```

Format

data.frame; columns: fips = FIPS county code, State = State, County = County, X2006-X2020 = estimated opioid dispensing rate per 100 persons in each year

Source

https://www.cdc.gov/drugoverdose/rxrate-maps/index.html

4 simcurve

ve	
----	--

Description

This function generates two kinds of datasets. 1. Randomly generates curves with change/no change. 2. Generates true curves assumed from fixed coeffecients with some random noise.

Usage

```
simcurve(numareas = c(300, 300, 300), p = 0.05, type, normerr = 0.1)
```

Arguments

numareas	number of areas to generate
p	proportion of the areas that have significant change
type	type of curves generated
normerr	standard deviation of the Normal distribution (with mean zero) of which the coefficients are generated

Details

If type = "random", the function generates curves with change/no change. If type = "fixed", the function generates true curves assumed from fixed coefficients with some random noise. If numareas is not specified, it is assumed as a vector of c(300,300,300). If normer is not specified, it is assumed as a value of 0.01. It is ignored when type= "random".

Value

Output from the function is a list of two items:

- data simulated data
- parameters parameters used to generate the data

Examples

```
mydata_ran <- simcurve(numareas = c(300, 300, 300), p=0.01, type="random")
mydata_fixed <- simcurve(numareas = c(300, 300, 300), p=0.01, type="fixed", normerr = 0.1)</pre>
```

testchange 5

|--|

Description

This function identifies geographic areas with significant change over time.

Usage

```
testchange(data, time, perm = FALSE, nperm = 100, numclust = 4, topF = 500)
```

Arguments

data	a numeric matrix, each row representing a time-series and each column representing a time point
time	defines the time sequence
perm	if perm = 'TRUE', a permutation is performed
nperm	number of permuations
numclust	defines the number of clusters for the parallel processing
topF	number of top F values to be selected when perm = 'FALSE'

Details

number of permutations of >=10,000 is ideal

Value

Output if perm = 'TRUE' is a list of three items:

- perm.F F values obtained from permutation tests
- p.values p-values obtained from permutation tests
- p.adjusted p-values adjusted by Benjamini-Hochberg method

Output if perm = 'False' is a list of three items:

- obs.F conventional F-statistic values
- sig.change areas with significant change over time pattern selected by top F-statistic values
- sel.F top F-statistic values selected

6 testchange

References

1. Song, J., Carey, M., Zhu, H., Miao, H., Ram´ırez, J. C., & Wu, H. (2018). Identifying the dynamic gene regulatory network during latent HIV-1 reactivation using high-dimensional ordinary differential equations. International Journal of Computational Biology and Drug Design, 11,135-153. doi: 10.1504/IJCBDD.2018.10011910. 2. Wu, S., & Wu, H. (2013). More powerful significant testing for time course gene expression data using functional principal component analysis approaches. BMC Bioinformatics, 14:6. 3. Carey, M., Wu, S., Gan, G. & Wu, H. (2016). Correlation-based iterative clustering methods for time course data: The identification of temporal gene response modules for influenza infection in humans. Infectious Disease Modeling, 1, 28-39.

Examples

```
# This is an example not using the permutation approach
opioid_data_noNA <- opioidData[complete.cases(opioidData), ] #remove NAs
mydata <- as.matrix(opioid_data_noNA[,4:18])
testchange_results <- testchange(data=mydata,perm=FALSE,time=seq(1,15,1))</pre>
```

Index