Previsione dei prezzi del mercato energetico

Streaming Data Managament and Time Series Analysis

Per realizzare la previsione viene utilizzato un Dataset messo a disposizione che include il valore dei prezzi dell'energia elettrica aggregati a livello giornaliero. I dati si riferiscono ad un periodo di 8 anni, dal 1° Gennaio 2010 al 31 Dicembre 2018.

Analisi degli outlier

Sostituzione di 26 valori tramite un'interpolazione lineare

Modellazione della componente arima stagionale

```
## Series: sdtrain
## ARIMA(0,0,0)(1,0,1)[7] with non-zero mean
## Box Cox transformation: lambda= 0.8903728
##
## Coefficients:
## sar1 sma1 mean
## 0.2454 -0.7811 -1.1967
## s.e. 0.0325 0.0223 0.0778
##
## sigma^2 estimated as 180.2: log likelihood=-10241.54
## AIC=20491.08 AICc=20491.09 BIC=20514.45
```

Analisi dei residui del modello stimato

Stima di altri modelli scegliendo il migliore tramite il criterio dell'AIC

ARIMA (1,0,0)(1,1,1)	21998
ARIMA (2,0,0)(1,1,1)	21907
ARIMA (3,0,0)(1,1,1)	21832
ARIMA (4,0,0)(1,1,1)	21801
ARIMA (5,0,0)(1,1,1)	21792
ARIMA (6,0,0)(1,1,1)	21747

Aggiunta di regressori esterni

Regressori sinusoidali

18 serie di seni e coseni con frequenza $\frac{2\pi}{365.25}$

Dummy stocastiche

In corrispondenza delle principali festività italiane.

Analisi dei residui del modello migliore

UCM - modelli

Sinusoidi stocastiche per modellare la

stagionalità intra-annua

Dummy stocasticheper modellare la stagionalità
settimanale

UCM - considerazioni

Machine Learning - KNN

Metodo: ricorsivo

Lags: 365

h: 549

MAPE on validation

16,95%

k: sono stati sviluppati diversi modelli con k differenti appartenenti ad un intervallo tra 5 a 100, con valori multipli di 5. Il migliore in termini di MAPE è risultato k=35.

Machine Learning - RNN

RNN - Risultati

Confronto tra tutti i modelli

5. Confronto e conclusioni

GRAZIE PER L'ATTENZIONE.

Federica Fiorentini - f.fiorentini1@campus.unimib.it - 807124

