Лабораторная работа 12

Простейший вариант

Горяйнова Алёна Андреевна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	17
Список литературы		18

Список иллюстраций

3.1	Задание деклараций
3.2	Начальный граф
3.3	Добавление промежуточных состояний
3.4	Добавление деклараций
3.5	Модель простого протокола передачи данных 10
3.6	Симуляция
3.7	Граф пространства состояний

Список таблиц

1 Цель работы

Реализовать простой протокол передачи данных в CPN Tools.

2 Задание

- Реализовать простой протокол передачи данных в CPN Tools.
- Вычислить пространство состояний, сформировать отчет о нем и построить граф.

3 Выполнение лабораторной работы

Основные состояния: источник (Send), получатель (Receiver). Действия (переходы): отправить пакет (Send Packet), отправить подтверждение (Send ACK). Промежуточное состояние: следующий посылаемый пакет (NextSend). Зададим декларации модели(рис. 3.1).

```
► History
▼ Declarations
▼ colset INT = int;
▼ colset DATA = string;
▼ colset INTxDATA = product INT * DATA;
▼ var n, k: INT;
▼ var p, str: DATA;
▼ val stop = "########";
► Monitors
```

Рис. 3.1: Задание деклараций

Стоповый байт ("#######") определяет, что сообщение закончилось. Состояние Receiver имеет тип DATA и начальное значение 1"" (т.е. пустая строка, поскольку состояние собирает данные и номер пакета его не интересует). Состояние NextSend имеет тип INT и начальное значение 11. Поскольку пакеты представляют собой кортеж, состоящий из номера пакета и стро-ки, то выражение у двусторонней дуги будет иметь значение (п,р).

Кроме того, необходимо взаимодействовать с состоянием, которое будет сообщать номер следующего посылаемого пакета данных. Поэтому переход Send Packet соединяем с состоянием NextSend двумя дугами с выражениями n

(рис. 3.2).

Рис. 3.2: Начальный граф

Зададим промежуточные состояния (A, B с типом INTxDATA, C, D с типом INTxDATA) для переходов (рис. 3.3): передать пакет Transmit Packet (передаём (n,p)), передать подтверждение Transmit ACK (передаём целое число k). Добавляем переход получения пакета (Receive Packet).

Рис. 3.3: Добавление промежуточных состояний

На переходах Transmit Packet и Transmit ACK зададим потерю пакетов. Для этого на интервале от 0 до 10 зададим пороговое значение и, если передаваемое значение превысит этот порог, то считаем, что произошла потеря пакета, если нет, то передаём пакет дальше. Для этого задаём вспомогательные состояния SP и SA с типом Ten0 и начальным значением 1'8, соединяем с соответствующими переходами. (рис. 3.4)

```
val Stop = ########;
vcolset Ten0 = int with 0..10;
vcolset Ten1 = int with 0..10;
var s: Ten0;
var r: Ten1;
vfun Ok(s:Ten0, r:Ten1)=(r<=s);</pre>
```

Рис. 3.4: Добавление деклараций

Таким образом, получим модель простого протокола передачи данных (рис. 3.5, 3.6)

Рис. 3.5: Модель простого протокола передачи данных

Рис. 3.6: Симуляция

Вычислим пространство состояний. Прежде, чем пространство состояний может быть вычислено и проанализировано, необходимо сформировать код пространства состояний. Этот код создается, когда используется инструмент Войти в пространство состояний. Вход в пространство состояний занимает некоторое время. Затем, если ожидается, что пространство состояний будет

небольшим, можно просто применить инструмент Вычислить пространство состояний к листу, содержащему страницу сети. Сформируем отчёт о пространстве состояний и проанализируем его. Чтобы сохранить отчет, необходимо

применить инструмент Сохранить отчет о пространстве состояний к листу,

содержащему страницу сети и ввести имя файла отчета.

Из него можно увидеть:

• 16896 состояний и 306863 переходов между ними.

• Указаны границы значений для каждого элемента: промежуточные со-

стояния A, B, C, вспомогательные состояния SP, SA, NextRec, NextSend,

Receiver(в них может находиться только один пакет) и состояние Send(в

нем хранится только 8 элементов, так как мы задали их в начале и с ними

никаких изменений не происходит).

• Указаны границы в виде мультимножеств.

• Маркировка home для всех состояний (в любую позицию можно попасть

из любой другой маркировки).

• Маркировка dead – это состояния, в которых нет включенных переходов.

CPN Tools state space report for:

/home/openmodelica/Desktop/lab12.cpn

Report generated: Fri Apr 25 18:40:33 2025

Statistics

State Space

Nodes: 16896

Arcs:

306863

Secs:

300

Status: Partial

11

Scc Graph

Nodes: 10196 Arcs: 276070

Secs: 9

Boundedness Properties

Best Integer Bounds

	Upper	Lower
New_Page'A 1	17	0
New_Page'B 1	9	0
New_Page'C 1	6	0
New_Page'D 1	5	0
New_Page'NextRec 1	1	1
New_Page'NextSend 1	1	1
New_Page'Reciever 1	1	1
New_Page'SA 1	1	1
New_Page'SP 1	1	1
New_Page'Send 1	8	8

Best Upper Multi-set Bounds

11 (3, "Alysis b")++

6'(4,"y Means")++

1'(5,"of Colou")

New_Page'B 1 7`(2, "g and An")++

```
5'(3,"Alysis b")++
3'(4, "y Means")
    New_Page'C 1 6`3++
5`4++
3`5
    New_Page'D 1
                  5`3++
3`4++
2`5
    New_Page'NextRec 1 1`3++
1`4++
1`5
    New_Page'NextSend 1 1`3++
1`4++
1`5
    New_Page'Reciever 1 1`"Modelling and An"++
1`"Modelling and AnAlysis b"++
1`"Modelling and AnAlysis by Means"
                       1`8
    New_Page'SA 1
    New_Page'SP 1
                       1`8
    New_Page'Send 1
                       1`(1, "Modellin")++
1'(2, "g and An")++
1'(3,"Alysis b")++
1'(4, "y Means")++
1`(5,"of Colou")++
1'(6, "red Petr")++
1`(7,"i Nets##")++
1`(8,"排排排排排")
```

Best Lower Multi-set Bounds

```
New_Page'A 1
                        empty
     New_Page'B 1
                        empty
     New_Page'C 1
                        empty
     New_Page'D 1
                        empty
     New_Page'NextRec 1 empty
     New_Page'NextSend 1 empty
     New_Page'Reciever 1 empty
     New_Page'SA 1
                         1'8
     New_Page'SP 1
                        1`8
     New_Page'Send 1 1`(1,"Modellin")++
1'(2, "g and An")++
1'(3, "Alysis b")++
1'(4, "y Means")++
1'(5, "of Colou")++
1'(6, "red Petr")++
1`(7,"i Nets##")++
1`(8,"排排排排排")
 Home Properties
  Home Markings
     None
 Liveness Properties
```

```
Dead Markings
   7044 [9999,9998,9997,9996,9995,...]
 Dead Transition Instances
   None
 Live Transition Instances
   None
Fairness Properties
______
     New_Page'Recieved_Packet 1
                    No Fairness
     New_Page'Send_ACK 1 No Fairness
     New_Page'Send_Packet 1 Impartial
     New_Page'Transmit_ACK 1
                    No Fairness
     New_Page'Transmit_Packet 1
                    Impartial
```

Сформируем начало графа пространства состояний, так как их много(рис. 3.7):

Рис. 3.7: Граф пространства состояний

4 Выводы

Я реализовала простой протокол передачи данных в CPN Tools и проведен анализ его пространства состояний.

Список литературы