Investigations of T-avoiding elements of Coxeter groups

Selina Gilbertson Directed by D.C. Ernst

Northern Arizona University Mathematics Department

FAMUS

April 5, 2013 Happy First Contact Day!

Definition

A Coxeter system consists of a group W (called a Coxeter group) generated by a set S of elements of order 2 having presentation

$$W = \langle S : s^2 = 1, (st)^{m(s,t)} = 1 \rangle,$$

where $m(s, t) \ge 2$ for $s \ne t$.

Since s and t are their own inverses, the relation $(st)^{m(s,t)} = 1$ can be rewritten as

$$m(s,t)=2 \implies st=ts$$
 } commutations $m(s,t)=3 \implies sts=tst$ $m(s,t)=4 \implies stst=tsts$ } braid relations

Coxeter groups can be thought of as generalized reflection groups.

Coxeter graphs

Definition

We can encode (W, S) with a unique Coxeter graph X having:

- 1. vertex set S:
- 2. edges $\{s, t\}$ labeled m(s, t) whenever $m(s, t) \ge 3$.

Comments

- Typically labels of m(s, t) = 3 are omitted.
- Edges correspond to non-commuting pairs of generators.
- If there is no edge between a pair of generators they commute.
- Given X, we can uniquely reconstruct the corresponding (W, S).

Example

The Coxeter group of type A_3 is defined by the graph below.

Figure: Coxeter graph of type A_3 .

Then $W(A_3)$ is subject to:

- $s_i^2 = 1$ for all *i*
- $s_1 s_2 s_1 = s_2 s_1 s_2$, $s_2 s_3 s_2 = s_3 s_2 s_3$
- $s_1 s_3 = s_3 s_1$

In this case, $W(A_3)$ is isomorphic to the symmetric group Sym_4 under the correspondence

$$s_1 \leftrightarrow (1\ 2), \quad s_2 \leftrightarrow (2\ 3), \quad s_3 \leftrightarrow (3\ 4).$$

Example

The Coxeter group of type F_5 is defined by the graph below.

Then $W(F_5)$ is subject to:

- $s_i^2 = 1$ for all i
- $s_1 s_2 s_1 = s_2 s_1 s_2$; $s_3 s_4 s_3 = s_4 s_3 s_4$; $s_4 s_5 s_4 = s_5 s_4 s_5$
- $s_2s_3s_2s_3 = s_3s_2s_3s_2$
- Non-connected generators commute

 F_4 is a finite group, however F_n for $n \ge 5$ is an infinite group.

Reduced expressions & Matsumoto's theorem

Definition

A word $s_{x_1}s_{x_2}\cdots s_{x_m} \in S^*$ is called an expression for $w \in W$ if it is equal to w when considered as a group element. If m is minimal, it is a reduced expression.

Example

Consider the expression $s_1s_3s_2s_1s_2s_3$ for an element $w \in W(A_3)$. Note that

$$s_1 s_3 s_2 s_1 s_2 s_3 = s_1 s_3 s_1 s_2 s_1 s_3 = s_3 s_1 s_1 s_2 s_1 s_3 = \underbrace{s_3 s_2 s_1 s_3 = s_3 s_2 s_3 s_1 = s_2 s_3 s_2 s_1}_{\text{reduced}}.$$

Therefore, $s_1s_3s_2s_1s_2$ is not reduced. However, the expression on the right is reduced.

Theorem (Matsumoto/Tits)

Any two reduced expressions for $w \in W$ differ by a sequence of braid relations and commutations

One way of representing reduced expressions is via heaps. Fix a reduced expression $s_{x_1}s_{x_2}\cdots s_{x_m}$ for $w\in W$ (for any straight line Coxeter graph). Loosely speaking, the heap for this expression is a set of lattice points, one for each s_{x_i} , embedded in $\mathbb{N}\times\mathbb{N}$, subject to contraints illustrated by example.

Example

Consider $s_1 s_2 s_3 s_2$, $s_1 s_3 s_2 s_3$, and $s_3 s_1 s_2 s_3$, which are all reduced expressions of the same element in A_3 . It turns out, there are two distinct heaps:

and

Comment

If two reduced expressions differ by a sequence of commutations, then they have the same heap.

Property T and T-avoiding

Definition

We say that $w \in W$ has Property T iff some reduced expression begins or ends with a product of non-commuting generators. That is,

$$w = \begin{bmatrix} s \\ t \end{bmatrix}$$
 (other crap) or $w = (other crap) \begin{bmatrix} t \\ s \end{bmatrix}$

Definition

We say that w is T-avoiding iff w does not have Property T.

Proposition

Products of commuting generators are T-avoiding.

Question

Are there other elements besides products of commuting generators that are *T-avoiding?*

T-avoiding in types A, B, \widetilde{C} , and D

Definition

An element is classified as **bad** iff it is T-avoiding, but *not* a product of commuting generators.

Theorem (Cormier, Ernst, Goldenberg, Kelly, Malbon)

In types A and B, there are no bad elements. In other words, $w \in W$ is T-avoiding iff w is a product of commuting generators.

Comment

The answer isn't so simple in other Coxeter groups. In particular, there are bad elements in types \widetilde{C} (Ernst) and D (Tyson Gern).

T-avoiding in type F_5

Proposition (Cross, Ernst, Hills-Kimball, Quaranta)

The following heap (called a bowtie) corresponds to a bad element in F_5 :

We can also stack bowties to create infinitely many bad elements in F_5 .

T-avoiding in type F

Theorem (Cross, Ernst, Hills-Kimball, Quaranta)

An element is T-avoiding in F_5 iff it is a product of commuting generators or a stack of bowties.

Corollary (Cross, Ernst, Hills-Kimball, Quaranta)

There are no bad elements in F_4 . That is, the only T-avoiding elements in F_4 are products of commuting generators.

Conjecture (Cross, Ernst, Hills-Kimball, Quaranta)

An element is T-avoiding in F_n for $n \ge 5$ iff it is a product of commuting generators or a stack of bowties. In other words, there are no new bad elements in F_n for $n \ge 6$.

However...

T-avoiding in type F_6

Proposition (Ernst, Gilbertson)

The following heap corresponds to a bad element in F_6 :

As in F_5 , we can stack these elements to create infinitely many bad elements in F_6 .

If n is even, we can create bad elements in F_n using a similar construction. (However, when n is large, the outer walls of each heap block do not need to be the same size.)

Stacking in F_n with n > 5 gets more complicated.

Question

Will adding more 1's give us more T-avoiding elements?

Open questions

Open questions

- If n is even, are there other bad elements in F_n that we have not thought of?
 Proof?
- We have noticed that when n is large and even, we can insert some extra 1's.
 How awful can this get?
- What happens with F_n when n is odd and larger than 5?
- What happens in other types?

Thank You!