Équation de Sylvester

On montre que l'équation AX + XB = C d'inconnue X admet une unique solution pour tout $C \in \mathcal{M}_n(\mathbb{C})$ et pour tout $A, B \in \mathcal{M}_n(\mathbb{C})$ dont les valeurs propres sont de partie réelle strictement négative.

Lemme 1. Soit $\|.\|$ une norme d'algèbre sur $\mathcal{M}_n(\mathbb{C})$, et soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice dont les valeurs propres sont de partie réelle strictement négative. Alors il existe une fonction polynômiale $P: \mathbb{R} \to \mathbb{R}$ et $\lambda > 0$ tels que $\|e^{tA}\| \le e^{-\lambda t} P(t)$.

[GOU21] p. 200

Démonstration. On fait la décomposition de Dunford de A:A=D+N. Comme D et N commutent, on a $e^{tA}=e^{tD}e^{tN}$. Soient P la matrice de passage donnée par la base de diagonalisation de D et $\lambda_1,\ldots,\lambda_n$ ses valeurs propres. En notant $\|\cdot\|$ la norme subordonnée à $\|\cdot\|_{\infty}$ sur \mathbb{C}^n , on a $\forall t\geq 0$,

$$\begin{split} \|\|e^{tD}\|\| &= \|\|e^{tP\mathrm{Diag}(\lambda_1,\ldots,\lambda_n)P^{-1}}\|\| \\ &= \|\|Pe^{t\mathrm{Diag}(\lambda_1,\ldots,\lambda_n)}P^{-1}\|\| \\ &\leq \underbrace{\|\|P\|\|\|P^{-1}\|\|}_{\|x\|_{\infty}=1} \|\mathrm{Diag}(e^{t\lambda_1},\ldots,e^{t\lambda_n})x\|_{\infty} \\ &\leq \alpha \sup_{i\in [1,n]} |e^{t\lambda_i}| \\ &\leq \alpha e^{-\lambda t} \end{split}$$

où $\lambda > 0$ par hypothèse. En dimension finie, toutes les normes sont équivalentes, donc il existe $\beta > 0$ tel que $\|e^{tD}\| \le \beta e^{-\lambda t}$.

Pour conclure, en notant r l'indice de nilpotence de N,

$$\begin{split} \| \, e^{tA} \| & \leq \| \, e^{tD} \| \, \| \, e^{tN} \| \\ & \leq e^{-\lambda t} \underbrace{ \sum_{k=0}^{r-1} \beta \frac{\| N \, \|^k \, t^k}{k}}_{=P(t)} \end{split}$$

[**I-P**] p. 177

Théorème 2 (Équation de Sylvester). Soient A et $B \in \mathcal{M}_n(\mathbb{C})$ deux matrices dont les valeurs propres sont de partie réelle strictement négative. Alors pour tout $C \in \mathcal{M}_n(\mathbb{C})$, l'équation AX + XB = C admet une unique solution X dans $\mathcal{M}_n(\mathbb{C})$.

 $D\acute{e}monstration$. Comme l'application $\varphi: X \mapsto AX + XB$ est un endomorphisme de $\mathcal{M}_n(\mathbb{C})$, qui est un espace vectoriel de dimension finie, il suffit de montrer qu'elle est surjective pour obtenir l'injectivité (et donc l'unicité de la solution). Soit $C \in \mathcal{M}_n(\mathbb{C})$. On considère le problème de Cauchy suivant d'inconnue $Y: \mathbb{R} \to \mathcal{M}_n(\mathbb{C})$:

$$\begin{cases} Y' = AY + YB \\ Y(0) = C \end{cases} \tag{E}$$

Il s'agit d'une équation différentielle linéaire à coefficients constants (on peut voir cela notamment en calculant les produits AY et YB et en effectuant la somme; l'égalité matricielle avec Y' donnant le système d'équations voulu). D'après le théorème de Cauchy-Lipschitz linéaire, (E) admet une unique solution définie sur $\mathbb R$ tout entier, que l'on note Y.

On vérifie que la solution est définie $\forall t \in \mathbb{R}$ par $Y(t) = \exp(tA)C\exp(tB)$. En effet pour tout $t \in \mathbb{R}$, on a :

$$Y'(t) = A \exp(tA)C \exp(tB) + \exp(tA)CB \exp(tB) = AY + YB$$

car toute matrice M commute avec son exponentielle (puisque $\exp(M)$ est limite d'un polynôme en M) et donc M commute aussi avec $\exp(tM)$ pour tout $t \in \mathbb{R}$.

On va maintenant montrer que $X = -\int_0^{+\infty} Y(s) \, ds$ est la solution de l'équation de Sylvester. Pour tout $t \ge 0$, on intègre Y' entre 0 et t pour obtenir :

$$Y(t) - C = \int_0^t Y'(s) ds = A \times \int_0^t Y(s) ds + \int_0^t Y(s) ds \times B$$

Il ne reste donc plus qu'à montrer que $Y(t) \longrightarrow 0$ et que Y est intégrable pour conclure. Par le Lemme 1, il existe $\lambda_1, \lambda_2 > 0$ et $P_1, P_2 : \mathbb{R} \to \mathbb{R}$ polynômiales tels que $\|e^{tA}\| \le e^{-\lambda_1 t} P_1(t)$ et $\|e^{tB}\| \le e^{-\lambda_2 t} P_2(t)$ pour tout $t \ge 0$. Ainsi, en posant $\lambda = \max(\lambda_1, \lambda_2)$ et $P = P_1 P_2$, comme $\|.\|$ est une norme d'algèbre :

$$||Y(t)|| = ||e^{tA}Ce^{tB}|| \le ||C||P(t)e^{-2\lambda t}$$

En particulier, on a bien $Y(t) \longrightarrow 0$. De plus, comme $||C||P(t)e^{-2\lambda t}$ est intégrable sur $[0, +\infty[$ et domine ||Y(t)||, alors Y est aussi intégrable $[0, +\infty[$. Finalement, en faisant $t \longrightarrow +\infty$, on obtient :

$$-C = A \times \int_0^{+\infty} Y(s) \, ds + \int_0^{+\infty} Y(s) \, ds \times B$$

Donc $\varphi(X) = C$: φ est surjective et X est bien la solution de l'équation de Sylvester.

Remarque 3. Pour dire que toute matrice M commute avec $\exp(M)$, on aurait simplement pu dire que $\exp(M)$ est un polynôme en M ie. $\forall M \in \mathcal{M}_n(\mathbb{C}), \exists P \in \mathbb{C}[X]$ tel que $\exp(M) = P(M)$.

[**GOU21**] p. 189

Démonstration. Soit $M \in \mathcal{M}_n(\mathbb{C})$. L'ensemble $\mathbb{C}[M] = \{P(M) \mid P \in \mathbb{C}[X]\}$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$ qui est de dimension finie, donc $\mathbb{C}[M]$ l'est aussi et est en particulier fermé.

Pour tout $n \in \mathbb{N}$, on pose $P_n = \sum_{k=0}^n \frac{M^k}{k!} \in \mathbb{C}[M]$ de sorte que $P_n \longrightarrow_{n \to +\infty} \exp(M)$. Comme $\mathbb{C}[M]$ est fermé, on en déduit que $\exp(M) \in \mathbb{C}[M]$. Donc $\exists P \in \mathbb{C}[X]$ tel que $\exp(M) = P(M)$.

Bibliographie

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487.html.