

Laboratorio 4 Sistemas Operativos 2022 FaMAFyC - UNC

¿DE QUÉ ESTAMOS HABLANDO?

Un sistema de archivos es un componente del sistema operativo que se encarga de **administrar** y **organizar** los datos dentro de un dispositivo de memoria.

En nuestro caso, organizaremos los datos en archivos y directorios, que tienen metadatos y una jerarquía definida por el usuario

CONSIGNAS

Lo que tienen que hacer para aprobar

01

FILE SYSTEM IN USER SPACE (FUse)

IMPLEMENTACIÓN

Registrar la actividad del usuario

Crear un archivo en donde se guardarán registros de las actividades del usuario.

62 Esconder el registro

Modificar el sistema para que el archivo con los logs de actividad sean invisibles para el usuario tanto si la imagen es montada con fat-fuse o con otra herramienta.

03 Borrar archivos y directorios

Implementar las operaciones unlink y rmdir de manera que se puedan borrar archivos y directorios del FS

 Reconocer los distintos conceptos y niveles de abstracción del sistema de archivos vistos en el teórico, y hacer un paralelismo con la implementación de FAT con FUSE.

- Reconocer los distintos conceptos y niveles de abstracción del sistema de archivos vistos en el teórico, y hacer un paralelismo con la implementación de FAT con FUSE.
- Identificar las partes relevantes a un problema en una base de código extensa y complicada.

- Reconocer los distintos conceptos y niveles de abstracción del sistema de archivos vistos en el teórico, y hacer un paralelismo con la implementación de FAT con FUSE.
- Identificar las partes relevantes a un problema en una base de código extensa y complicada.
- Practicar (más) programación

- Reconocer los distintos conceptos y niveles de abstracción del sistema de archivos vistos en el teórico, y hacer un paralelismo con la implementación de FAT con FUSE.
- Identificar las partes relevantes a un problema en una base de código extensa y complicada.
- Practicar (más) programación
- Horrorizarse por lo fácil que es implementar un sistema de vigilancia transparente para el usuario y poner en perspectiva la importancia de los sistemas operativos de código abierto.

ENTREGA

Requisitos indispensables

02

IOTRA VEZ ARROZ CON POLLO!

REPOSITORIO

A través de Bitbucket, con commits pequeños, con nombres significativos, y de todos los integrantes

ESTILO

Tienen que usar la herramienta clang-format para asegurar que el estilo de código sea consistente con el entregado. Se integra fácilmente con git.

TESTS

El código debe pasar los tests provistos por la cátedra. Sin embargo, eso no es garantía de que no tengan errores

FECHA DE ENTREGA 15/11/2022

15:59:00.000

O3 INTRO A FAT32

¿Cómo se guardan los datos en un pen-drive?

LOS COMPONENTES DE FAT

SECTOR DE BOOT

Define cómo está organizado el volúmen. Ej:

- Particiones
- ubicación de la FAT
- segmentos del sector de datos (clusters)

TABLA(S) FAT

Define dónde están los datos cada archivo.

Como los datos pueden no estar el clusters contiguos, la FAT guarda la cadena de clusters del archivo.

SECTOR DE DATOS

Está dividido en clusters contiguos del mismo tamaño

- Clusters de datos
- Clusters de entradas de directorio

LOS COMPONENTES DE FAT

ENTRADAS DE DIRECTORIO

TABLA FAT32

Offset 600 Size 2000

- Entrada del directorio raíz. Primer cluster de la cadena
- Cadena correspondiente al primer archivo Todos los clusters son contiguos
- Cadena correspondiente al tercer archivo Los clusters están divididos en tres porciones no contiguas
- Cadena correspondiente al quinto archivo Tiene un solo cluster
- Clusters libres

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide for attribution.