SEGMENTAÇÃO DE IMAGENS

- Segmentação é o processo que divide uma imagem em regiões distintas, cada uma com pixels com atributos similares
 - Particiona os pixels de uma imagem em grupos, geralmente relacionados a objetos em uma imagem.
 - É uma tarefa básica no processo de análise de imagens
 - O sucesso da análise da imagem depende fortemente do resultado da etapa de segmentação

- O resultado de uma segmentação apenas é "correto" dado um determinado contexto
 - Subjetividade
 - Difícil implementação computacional.
 - Dificuldades na avaliação do desempenho.

- Os algoritmos de segmentação são geralmente baseados na busca pelas
 - Descontinuidades dos níveis de cinza
 - Exemplo: bordas
 - Similaridades dos níveis de cinza
 - Exemplo: regiões

- □ Tipos de segmentação
 - Limiarização
 - Limiar local, limiar global, múltiplos limiares
 - Bordas
 - Detecção básica de bordas (Roberts, Prewitt, Sobel)
 - Transformada de Hough
 - Método de Marr-Hildreth,
 - Método de Canny
 - Regiões
 - Crescimento de regiões
 - Split-merge
 - Watershed

Limiarização ou Thresholding

Limiarização ou Thresholding

- □ É uma técnica simples de segmentação
 - É um método global
 - Limiar único
 - Transforma a imagem em uma imagem binária (2 níveis de cinza)
 - Limiares múltiplos
 - Transforma a imagem em uma imagem com 2 ou mais níveis de cinza

Limiar único

- Segmenta a imagem em duas regiões:
 - Uma com valores menores que o limiar (rotulada com 0) e outra com valores maiores que o limiar (rotulada com 1)

Limiar único

Exemplo

Limiar múltiplos

- □ Segmenta a imagem em mais de duas regiões:
 - Dois ou mais limiares podem produzir mais do que duas regiões
 - Intervalos de níveis de cinza correspondentes a uma região são separados por limitares;

Limiar múltiplos

Exemplo

- Como escolher o limiar (ou os limiares) adequado para separar o objeto (ou os objetos) do background?
 - Não é fácil achar um numero mágico T ideal para o limiar!

- □ O resultado é muito sensível às variações de T
 - Bom para uma situação
 - Mau para todas as outras
- O sistema tem que ser robusto! Como escolher o limiar T?
 - Histogramas
 - Outras técnicas

- Assume-se que o histograma de imagem é multimodal
 - □ Cada região corresponde a uma moda do histograma

- Imagem f (x, y) composta de objetos brilhantes sobre fundo escuro
 - Um ponto (x, y) é parte dos objetos se f (x, y) > T

Dificuldade

 Estabelecer múltiplos T que efetivamente isolem regiões de interesse

- Se T₁ < f(x, y) ≤ T₂ → o ponto (x, y) pertence a uma classe de objetos.
- Se f(x, y) > T₂ → o ponto (x, y)
 pertence a outra classe.
- Se $f(x, y) \le T_1 \rightarrow$ o ponto (x, y) pertence ao fundo.

- A limiarização dever ser capaz de encontrar o limiar que melhor separa os picos
 - Inspeção visual
 - O usuário escolhe o limiar baseando-se na inspeção visual do histograma
 - Tentativa e erro
 - Aplicado a processos interativos. O usuário testa diferentes níveis até produzir um resultado satisfatório para o observador
 - Obtenção automática do limiar
 - Análise do formato do histograma

Obtenção automática do limiar

- Limiar global adaptativo
 - Obtido por refinamentos sucessivos da estimativa da posição de um pico
 - Premissas básicas:
 - Cada pico coincide com a média de níveis de cinza de todos os pixels relacionados com este pico; (pico representa a região)
 - A probabilidade do pixel pertencer a uma região i é inversamente proporcional à diferença absoluta entre os valores do pixel e do pico que representa a região i; (pixels são atribuídos às regiões representadas pelo pico mais próximo)
 - Cada nível de cinza da imagem é associado a um pico de acordo com o limiar definido como sendo a metade da distância entre dois picos. (limiar definido no meio de dois picos)

- Limiarização global adaptativa
 - 1) Selecionar uma estimativa inicial para o limiar T
 - Deve ser um ponto entre os valores de intensidade mínimo e máximo (a intensidade média, por exemplo)
 - 2) Segmentar a imagem usando T. Isto produzirá dois grupos de pixels
 - **■** G1 ≤ T
 - $\blacksquare G2 > T$

- Limiarização global adaptativa
 - 3) Computar a média das intensidades dos píxels em cada região
 - $\mu_1(G_1) = \mu_2(G_2)$
 - 4) Computar o novo valor de T
 - $T = (\mu_1 + \mu_1) / 2$
 - 5) Repetir os passos de 2 a 4 até que a diferença entre dois valores sucessivos de T seja menor ou igual a ΔT

- Limiarização global adaptativa Exemplo
 - T inicial = média dos pixels da imagem
 - T resultante = 125,4 após 3 iterações
 - \Box $\Delta T = 0$

Thresholding Global Ótimo

- Obtenção automática do limiar
 - A limiarização pode ser vista como um problema de decisão estatística cujo objetivo é minimizar o erro médio ocorrido na atribuição de pixels a uma ou mais classes;

Thresholding Global Ótimo

- □ O método de Otsu (1979)
 - Ideia
 - maximizar a variância entre as classes (grupos)
 - minimizar a variância interna das classes (grupos)
 - Premissa
 - As intensidades de pixels de uma mesma classe devem ser similares
 - As intensidades de pixels de classes diferentes devem ser diferentes
 - O método se baseia inteiramente em cálculos realizados no histograma de uma imagem

Média e variância

- Qual a intensidade média da imagem?
- Qual a variância das intensidades da imagem?
 - □ Variância é uma medida do contraste de uma imagem

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
1	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	67	123	255	255	255	255	255
2	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	120	52	90	255	255	255	255	255
3	255	255	255	255	255	255	255	94	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	58	71	83	255	255	255	255	255
4	255	255	255	255	255	255	255	51	120	255	255	255	255	255	255	255	255	255	255	255	255	255	255	61	84	79	76	255	255	255	255	255
5	255	255	255	255	255	255	255	55	57	161	255	255	255	255	255	255	255	255	255	255	255	98	60	87	98	80	71	255	255	255	255	255
Е	255	255	255	255	255	255	255	63	109	74	100	255	255	255	255	255	255	255	130	104	60	85	102	88	83	81	65	255	255	255	255	255
7	255	255	255	255	255	255	255	88	139	141	137	96	73	133	255	255	177	114	79	88	110	100	79	73	87	80	67	255	255	255	255	255
8	255	255	129	99	125	255	224	144	202	216	162	144	139	187	235	232	213	158	127	103	91	83	79	75	89	78	75	255	255	255	255	255
Ĝ	255	62	13	35	19	57	134	255	223	236	132	70	147	218	169	222	74	96	137	92	89	85	81	77	92	76	83	255	255	255	255	255
10	134	10	216	242	117	47	19	209	103	168	105	51	155	210	116	255	125	6	127	94	90	86	82	78	94	73	94	255	255	255	255	255
11	104	37	251	255	122	86	41	58	151	10	11	64	140	197	43	45	30	15	133	94	90	86	82	78	98	68	118	255	255	255	255	255
12	209	21	159	175	81	59	51	11	133	133	111	129	132	150	153	55	40	103	109	93	89	85	81	79	100	56	255	255	255	255	255	255
13	255	27	69	66	61	49	37	13	76	113	110	110	111	126	137	137	135	110	95	91	87	84	80	87	89	60	255	255	255	255	255	255
14	255	94	26	54	42	31	24	11	70	102	104	105	105	104	103	101	98	95	80	48	82	81	78	98	68	95	255	255	255	255	255	255
15	255	255	88	15	26	23	15	6	91	97	99	100	100	99	98	96	93	57	10	6	32	79	89	91	54	127	255	255	255	255	255	255
16	255	255	255	123	18	1	7	66	118	111	99	94	93	90	82	66	45	22	32	82	74	75	93	60	80	120	133	255	255	255	255	255
17	255	255	255	255	255	209	116	57	63	91	114	113	101	93	88	86	83	82	82	78	78	115	93	65	99	121	128	209	255	255	255	255
18	255	255	255	255	255	255	133	118	85	58	56	80	102	108	111	106	101	105	103	94	78	56	68	106	109	185	135	255	255	255	255	255
19	255	255	255	255	255	255	209	130	118	107	84	61	52	51	57	65	71	59	52	52	55	75	94	88	114	185	233	186	118	120	255	255
20	255	255	255	255	255	255	255	255	135	125	115	107	99	89	78	70	65	72	81	92	98	105	114	123	135	240	255	255	99	114	83	255
21	255	255	255	255	255	255	255	255	255	255	209	131	125	120	117	115	114	114	116	120	124	132	255	255	255	255	255	110	92	79	56	240
22	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	108	72	43	98
23	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	144	75	47

f(x,	<i>y</i>)	=
, .		

Média e variância

- É possível obter essas informações a partir do histograma da imagem?
 - Média

$$\mu = \frac{\sum_{x=0}^{N} \sum_{y=0}^{M} f(x, y)}{MN}$$

Variância

$$\sigma^{2} = \frac{1}{MN} \sum_{x=0}^{N} \sum_{y=0}^{M} (f(x, y) - \mu)^{2}$$

Média e variância

- Qual a média das intensidades a partir deste histograma?
 - Soma dos valores dos pixels:

$$5x0 + 9x1 + 6x2 + ... + 7x11 = 188$$

■ Total de Pixels:

$$5+9+6+4+...+11=49$$

■ Média = 3.83

Definições

- L distintos níveis de cinza
 - □ {0, 1, 2, 3..., L-1}
 - Exemplo anterior: L = 8
- $\ \square \ n_i$ número de pixels com intensidade i
 - \blacksquare Exemplo anterior: $n_0 = 5$, $n_1 = 9$, ...
- □ Tamanho da imagem M x N
 - \square MN = $n_0 + n_1 + ... + n_{L-1}$
 - **Exemplo** anterior: 5 + 9 + ... + 11 = 49

Qual a média das intensidades a partir deste histograma?

$$\sum_{i=0}^{i=L-1} in_i \quad \text{Soma dos valores dos pixels:} \\ = 5x0 + 9x1 + 6x2 + ... + 7x11 = 188$$

$$\sum_{i=0}^{i=L-1} n_i$$
 Total de Pixels:
• $5 + 9 + 6 + 4 + ... + 11 = 49$
• Média = 3.83

- Qual a média das intensidades a partir do histograma NORMALIZADO?
 - Temos agora uma distribuição de probabilidades

Qual a média das intensidades a partir do histograma NORMALIZADO?

$$p_i = n_i / MN \rightarrow n_i = p_i * MN$$

$$\sum_{i=0}^{i=L-1} i n_{i} = \sum_{i=0}^{i=L-1} i p_{i} MN$$

$$\sum_{i=0}^{i=L-1} n_i = \sum_{i=0}^{i=L-1} p_i MN$$

MN é uma constante, que sai do somatório e, neste caso é eliminada

 $\frac{\sum_{i=0}^{i=L-1} i p_i MN}{\sum_{i=0}^{i=L-1} p_i MN}$

 Lembrando que a soma de todas as probabilidades é igual a 1

$$\sum_{i=0}^{L-1} p_i = 1$$

$$\frac{\sum_{i=0}^{i=L-1} in_i}{\sum_{i=0}^{i=L-1} n_i}$$

$$\frac{\sum_{i=0}^{i=L-1} i p_i}{\sum_{i=0}^{i=L-1} p_i}$$

□ Como calcular a variância?

$$\sigma^{2} = \frac{1}{MN} \sum_{x=0}^{N} \sum_{y=0}^{M} (f(x, y) - \mu)^{2}$$

- Como calcular a variância?
 - Soma dos pixels menos a média

$$5*(0-\mu)^2 + 9*(1-\mu)^2 + ... + 11*(7-\mu)^2$$

$$\sum_{i=0}^{i=L-1} n_i (i - \mu)^2$$

■ Total de pixels (MN)

■
$$5 + 9 + 6 + 4 + ... + 11 = 49$$
 $\sum_{i=0}^{i=L-1} n_i$

$$\sum_{i=0}^{i=L-1} n_i$$

$$\sigma^{2} = \frac{1}{MN} \sum_{x=0}^{N} \sum_{y=0}^{M} (f(x, y) - \mu)^{2}$$

$$rac{\sum_{i=0}^{i=L-1} n_i (i-\mu)^2}{\sum_{i=0}^{i=L-1} n_i}$$

- □ E se for um histograma NORMALIZADO?
 - Temos agora uma distribuição de probabilidades

Qual a variância de um histograma NORMALIZADO?

$$p_i = n_i / MN \rightarrow n_i = p_i * MN$$

$$\sum_{i=0}^{i=L-1} i n_i = \sum_{i=0}^{i=L-1} i p_i MN$$

$$\sum_{i=0}^{i=L-1} n_i = \sum_{i=0}^{i=L-1} p_i MN$$

MN é uma constante, que sai do somatório e, neste caso é eliminada

Variância
$$\frac{\sum_{i=0}^{i=L-1}n_i(i-\mu)^2}{\sum_{i=0}^{i=L-1}n_i}$$

Variância $\frac{\sum_{i=0}^{i=L-1} p_i MN(i-\mu)^2}{\sum_{i=0}^{i=L-1} p_i MN}$

Limiar e Classes

- Suponha que selecionemos um limiar k
 - □ 0 < k < L-1
 - Separar em duas classes C₁ e C₂
 - \blacksquare C₁: pixels entre [0,k]
 - C_2 : pixels entre [k+1,L-1]

Probabilidade

Limiar k

- □ 0 < k < L-1
- Qual a probabilidade P₁ de um pixel pertencer a classe C₁ $P_1 = \sum_{i=0}^{n} p_i$
 - $C_1: pixels em [0,k]$
- Qual a probabilidade P₂ de um pixel pertencer a classe C₂
 - \square C₂: pixels em [k+1,L-1]

$$P_2 = \sum_{i=k+1}^{L-1} p_i = 1 - P_1$$

- Limiar k
 - □ 0 < k < L-1
 - Qual a média da intensidade m₁ dos pixels que pertencem a classe C₁
 - $C_1: pixels em [0,k]$
 - Soma dos valores dos pixels:

$$5x0 + 9x1 + 6x2 + 4x3 = 33$$

■ Total de Pixels:

$$5 + 9 + 6 + 4 = 24$$

- Média
 - **1.3**75

- □ Qual a média da região C₁?
 - \square C₁: pixels em [0,k]

$$p_i = n_i / MN \rightarrow n_i = p_i * MN$$

$$\sum_{i=0}^{i=k} in_i = \sum_{i=0}^{i=k} ip_i MN$$

$$\sum_{i=0}^{i=k} n_i = \sum_{i=0}^{i=k} p_i MN$$

MN é uma constante, que sai do somatório e, neste caso é eliminada

 $\frac{\sum_{i=0}^{i=k} i p_i MN}{\sum_{i=0}^{i=k} p_i MN}$

 $\frac{\sum_{i=0}^{i=k} i p_i}{\sum_{i=0}^{i=k} p_i}$

Lembrando que

$$P_1 = \sum_{i=0}^k p_i$$

$$\frac{\sum_{i=0}^{i=k} in_i}{\sum_{i=0}^{i=k} n_i}$$

 $\frac{\sum_{i=0}^{i=k} i p_i MN}{\sum_{i=0}^{i=k} p_i MN}$

 $\frac{\sum_{i=0}^{i=k} i p_i}{\sum_{i=0}^{i=k} p_i}$

$$m_1 = \frac{1}{P_1} \sum_{i=0}^{k} i \ p_i$$

 $\frac{1}{P_1} \sum_{i=0}^{i=k} i p_i$

Limiar k

- □ 0 < k < L-1
- Qual a média da intensidade m₁ dos pixels que pertencem a classe C₁ $m_1 = \frac{1}{P_1} \sum_{i=1}^{K} i \ p_i$
 - $C_1: pixels em [0,k]$
- Qual a média da intensidade m₂ dos pixels que pertencem a classe C₂ $m_2 = \frac{1}{P_2} \sum_{i=1}^{L-1} i p_i$
 - \square C₂: pixels em [k+1,L-1]

Limiar e média da região

Otsu

 A fim de avaliar a "qualidade" do limiar no nível k, usamos a métrica normalizada adimensional

$$\eta(k) = \frac{\sigma_B^2(k)}{\sigma_G^2}$$

- $lue{}$ Variância Global: σ^2_G (constante)
- Variância entre classes: $\sigma_B^2(k)$ (depende de k)

Variância "global" e "entre classes"

Variância global

Fórmula geral

$$\sigma^2 = \frac{1}{MN} \sum_{n=0}^{N} \sum_{k=0}^{M} (f(x, y) - \mu)^2$$

$$\sigma^{2} = \frac{1}{MN} \sum_{x=0}^{N} \sum_{y=0}^{M} (f(x,y) - \mu)^{2}$$

$$\sigma^{2} = \sum_{i=0}^{i=L-1} p_{i} (i - \mu)^{2}$$

$$\sigma^{2} = \sum_{i=0}^{i=L-1} p_{i} (i - \mu)^{2}$$

Variância entre classes

 σ_B^2

$$\sigma_B^2 = P_1 (m_1 - m_g)^2 + P_2 (m_2 - m_g)^2$$

$$\sigma_B^2 = P_1 P_2 (m_1 - m_2)^2 = \frac{(m_g P_1 - m)^2}{P_1 (1 - P_1)} \longrightarrow m(k) = \sum_{i=0}^k i p_i$$

Quanto major a distância entre m_1 e m_2 , maior será o valor da variância entre classes σ_R^2

Otsu - Thresholding Global Ótimo

 Queremos separação máxima entre classes, isso implica em maximizar

$$\eta(k) = \frac{\sigma_B^2(k)}{\sigma_G^2}$$

- lacksquare Como σ_G^2 é constante. Podemos maximizar apenas $\sigma_B^2(k)$
 - □ Para achar k, basta avaliar a expressão acima para todo inteiro k, e selecionar o valor de k que maximiza a expressão
 - O thresholding é feito usando o valor k

Algoritmo de Otsu

Passos

- □ Calcular o histograma normalizado da imagem de entrada (pi), i=1,2,3,...L-1
- \square Calcular P1(k) e P2(k), k = 0,1,2 ...L-1
- □ Calcular μ_1 e μ_2 , k = 0,1,2,...L-1
- Calcular µ_G
- lacksquare Calcular a variância entre classes $\sigma_B^2(k)$, k = 0,1,2,...L-1
- □ Obter o limiar Otsu k (se o k não for único, calcular a média dos candidatos)
- lacksquare Calcular a variância geral (σ_G^2)
- Avaliar a separabilidade obtida com a limiarização

Exemplo

T obtido pelo método adaptativo básico=169 T obtido pelo Otsu =181; η =0.467

Exemplo

Slide adaptado do grupo IMAGO - UFPR

Melhorando o Thresholding Global

- Ruído pode tornar a limiarização um problema insolúvel
 - Suavizar a imagem antes de executar o thresholding.

Multiplos Thresholds

- O método de Otsu pode ser estendido para múltiplos thresholds
 - O resultado começa a perder o significado à medida que aumenta o numero de classes

abc

FIGURE 10.45 (a) Image of iceberg. (b) Histogram. (c) Image segmented into three regions using dual Otsu thresholds. (Original image courtesy of NOAA.)

Multiplos Thresholds

- Na prática, a limiarização global múltipla é usada quando se acredita que problema possa ser resolvido com 2 limiares
 - Em geral, problemas que requerem mais de 2 limiares são resolvidos usando mais informações além da intensidade do pixel ou outros métodos de segmentação mais apropriados

- Problema
 - Ruído ou iluminação não uniforme podem comprometer o desempenho dos algoritmos de limitarização
 - A suavização pode melhorar os resultados, mas frequentemente não é efetivo
- □ Solução → thresholding variável
 - Particionamento da imagem
 - Uso de propriedades locais da imagem

- Particionamento da imagem
 - É utilizada para compensar problemas na iluminação ou na reflectância
 - Subdivide a imagem em retângulos que não se sobrepõem
 - Otsu é aplicado a cada retângulo
 - Os retângulos devem ser pequenos o suficiente para que a iluminação em cada um seja aproximadamente uniforme

Particionamento da imagem

FIGURE 10.46 (a) Noisy, shaded image and (b) its histogram. (c) Segmentation of (a) using the iterative global algorithm from Section 10.3.2. (d) Result obtained using Otsu's method. (e) Image subdivided into six subimages. (f) Result of applying Otsu's method to each subimage individually.

- Particionamento da imagem
 - Subdivisão de imagem funciona bem nos casos em que os objetos de interesse e o fundo ocupam regiões de tamanhos aproximadamente iguais
 - Quando isto não acontece, o método falha porque uma subdivisão pode conter apenas objeto ou apenas fundo

- Uso de propriedades locais
 - Para cada pixel (x,y) e uma vizinhança S_{xy} , calcula a media m_{xy} e o desvio padrão σ_{xy}
 - Threshold

$$T_{xy} = a.\sigma_{xy} + b.m_{xy}$$

- OU
- $T_{xy} = a.\sigma_{xy} + b.G_{xy}$
- A imagem segmentada é obtida como

$$g(x, y) = \begin{cases} 1 \operatorname{se} f(x, y) > T_{xy} \\ 0 \operatorname{se} f(x, y) \leq T_{xy} \end{cases}$$

- Uso de propriedades locais
 - Podemos usar predicados baseados nos parâmetros calculados na vizinhança de (x,y)

$$g(x, y) = \begin{cases} 1 \text{ se Q(parametros locais)} \notin \text{true} \\ 0 \text{ se Q(parametros locais)} \notin \text{false} \end{cases}$$

Por exemplo, considere o predicado $Q(\sigma_{xy}, m_{xy})$

$$Q(\sigma_{xy}, m_{xy}) = \begin{cases} true & \text{se } f(x, y) > a.\sigma_{xy} \text{ AND } f(x, y) > b.m_{xy} \\ false & \text{caso contrário} \end{cases}$$

■ Uso de propriedades locais

Imagem de levedura (possui 3 regioes)

Imgem segmentada usando
Otsu com 2 limiares.

Uso de propriedades locais

Calcula o desvio padrão para cada pixel (x,y) numa vizinhança 3x3.

lmagem que mostra o resultado do desvio padrão local. As fronteiras das células são visiveis.

Resultado da segmentação local usando média geral em vez de média local a = 30 e b = 1.5.

- □ Técnica útil em processamento de texto
 - A media é obtida ao longo do scan line da imagem
 - Seja z_{k+1} a intensidade de um ponto encontrado na sequência do scanning no passo k+1. A intensidade média (moving average) neste ponto é obtida por

$$m(k+1) = \frac{1}{n} \sum_{i=k+2-n}^{k+1} z_i$$

$$m(1) = z_1 / n$$

- Observações
 - □ O valor m(1) não é correto
 - É como se a imagem tivesse n-1 zeros para preencher os pixels de borda
 - O algoritmo é inicializado apenas 1 vez
 - Não reinicializar a cada linha!
 - Transformação pontual
 - T_{xy} = b.m_{xy}, b > 0, em que m_{xy} é a moving average no ponto (x,y)

- Observações
 - Valor mágico para n
 - 5 vezes a largura da letra
 - O método funciona bem em aplicações em que os objetos de interesse são pequeno (ou finos) com respeito ao tamanho da imagem

- Exemplo
 - n = 20
 - \Box b = 0.5

Fry and Italy of Tenness Late afford Boil of the Shew for a Late aford Being of the other for a and Stockley Donelson for a Land haid the two thousand haid the true fresents as a liew enfeoff and Confer askson his heirs and a contain traits or paralled to

Indrintly by between 3 torbley of Kny and staty of Tennessy hudrew Jackson of the Tennessy taty aforesaid of the other part and stockley Donelson for a faul band haid the two thousand hand haid the tweet toward hath bury by their presents and alien enfooff and longer tackson his heirs and a certain traits or parallof La sand airer! on, thousand agree

abc

FIGURE 10.49 (a) Text image corrupted by spot shading. (b) Result of global thresholding using Otsu's method. (c) Result of local thresholding using moving averages.

Exemplo

- n = 20
- \Box b = 0.5

a b c

FIGURE 10.50 (a) Text image corrupted by sinusoidal shading. (b) Result of global thresholding using Otsu's method. (c) Result of local thresholding using moving averages.

- Segmentação de pontos isolados
 - Ponto isolado = Ponto que se destaca dos demais
 - Feita através do uso de um filtro passa altas e um limiar de aceitação

-1	-1	-1
-1	8	-1
-1	-1	-1

- Segmentação de linhas
 - Feita através do uso de um filtro passa altas direcionais
 - Uso de um limiar de aceitação

-1	-1	-1
2	2	2
-1	-1	-1

-1	-1	2
-1	2	-1
2	-1	-1

-1	2	-1
-1	2	-1
-1	2	-1

horizontal

+45 graus

vertical

-45 graus

- Segmentação de bordas
 - Borda: limite entre duas regiões com propriedades relativamente distintas de nível de cinza
 - Roberts, Prewitt, Sobel, Laplaciano
 - Vetor de Gradiente
 - Verifica se a magnitude é maior que um certo valor

Magnitude

M > 0.2

- Transformada de Hough
 - □ Permite encontrar formas em imagens
 - Retas, círculos e elipses (seções cônicas)

Detecção de Regiões

Definição

- □ Baseia-se em conjuntos.
 - A imagem R é um conjunto de regiões R_i
 - Todos os pontos pertencem a uma das regiões
 - Um ponto apenas pode pertencer a uma única região
 - Eficaz em imagens ruidosas

- Consiste na união/divisão de um conjunto inicial de regiões
 - Baseado em algum critério de homogeneidade
 - Cor
 - Textura
 - Etc
 - Tipicamente iterativo
 - Region merging
 - Region splitting
 - Split-merge

- Region merging
 - Divisão inicial da imagem em regiões
 - Definição do critério de união de 2 regiões adjacentes.
 - Unir regiões
 - Repetir passo anterior até não haver mais uniões

- Seed Pixel
- † Direction of Growth

- Grown Pixels
- Pixels Being Considered

(b) Growing Process After a Few Iterations

- Region splitting
 - Inicialmente usa a imagem completa
 - Definição do critério de divisão
 - Divisão iterativa em subregiões
 - Parada quando falhar o critério de divisão

- Split-merge
 - Combinação dos dois algoritmos
 - Permite lidar com formas mais variadas
 - Basta aplicar consecutivamente os algoritmos anteriores

- Inspiração geográfica
 - Lançar água sobre um terreno montanhoso
 - Cada lago corresponde a uma região
- Características
 - Computacionalmente complexo
 - Grande flexibilidade na segmentação
 - Resultados mais estáveis
 - Risco de super-segmentação

Funcionamento

- Suponha que em cada mínimo local tenha um ponto que seja uma fonte de água
- A água sobe inundando as regiões, de baixo para cima
- A água sobre em uma taxa uniforme
- As bordas da imagem podem ser consideradas como sendo uma barragem mais alta que a maior montanha

Funcionamento

- Quando a água está prestes a se fundir nas diversas watersheds, uma barragem é construída para impedir a fusão
- A inundação chegará a um ponto em que somente apenas os topos das barragens serão visíveis acima da linha d'àgua
- Essas linhas são as Linhas de divisão ou linhas de Watershed
- Portanto, são as fronteiras conectadas que são extraídas em um algoritmo de segmentação Watershed.

Exemplo

