

Lecture 4: Decision making under uncertainty

Overview

- Decision making?
- Uncertainty models
- Objectives under uncertainty
- One-stage problems
 - Newsvendor problem
- Multi-stage problems
 - Decision trees
 - Stochastic programming

Decision making?

- Process of identifying and choosing alternatives based on values, preferences and beliefs of decision-maker
- What we have been doing so far...deterministic
- Decision making environments
 - Deterministic
 - Uncertain
 - No certainty about some aspects
 - Games more than one decision-maker
 - Adversarial
 - Cooperative
 - Multi-objective more than one objective

Sources of uncertainty

- Parametric (uncertainty and variability)
- Experimental (measurement error)
- Structural (model errors)
- Algorithmic (numerical errors)
- Interpolation (approximation of data-points)

Causes of uncertainty

- Natural limit for example uncertainty principle
 - Inherent uncertainty

- Some uncertainty is epistemological
 - Roulette wheel

Uncertainty models and risk

Types of uncertainty (depend on amount of available info)

Stochastic

Probability distributions available about uncertainty

Robust

- Only ranges of possible values known
- Unknown unknowns unidentified risks

Objective under uncertainty

- Stochastic
 - Functions of probability distribution
 - Expected value (what about variance?)
 - Expected utility
- Robust
 - Not using the probability
 - Minimax (pessimistic)
 - Minimax regret (pessimistic)
 - Maxmax (optimistic)

One-stage problem

- The simplest situation of decision making under uncertainty
- Decision is made before the uncertainty realization
- The result is collected after the realization
- Famous <u>discrete</u> example of the <u>newsvendor</u> problem

News-vendor problem

News vendor sells newspapers at the corner of the street, and each day she must determine how many newspapers q to order. She pays the company $c=20\phi$ for each paper and sells the papers for $b=25\phi$ each. Newspapers that are unsold at the end of the day are worthless. She knows that each day she can sell between 6 and 10 papers, with each possibility being equally likely. Show how this problem fits into the stateof-the-world model.

News-vendor problem

Possible demands (states-of-the-world)

$$S=\{6,7,8,9,10\}$$
 with $p_i=0.2$ for $i \in S$

Possible actions for newsvendor

$$A = \{6,7,8,9,10\}$$

Return

Demand i and purchased j

$$r_{ij} = 25j - 20i$$

News-vendor problem

		Papers Demanded			
Papers Ordered	6	7	8	9	10
6	30¢	30¢	30¢	30¢	30¢
7	10¢	35¢	35¢	35¢	35¢
8	-10¢	15¢	40¢	40¢	40¢
9	-30¢	−5¢	20¢	45¢	45¢
10	−50¢	-25¢	0¢	25¢	50¢

Dominating actions

An action a_i is **dominated** by an action $a_{i'}$ if for all $s_j \in S$, $r_{ij} \le r_{i'j}$ and for some state $s_{j'}$, $r_{ij} < r_{i'j}$. (for maximization)

 Actions A'={1,2,3,4,5,11,...} are all dominated by A={6,7,8,9,10} in our example.

Operational research, FER 11/15/17 12 /

Maximin criterion

- for each action the worst outcome is determined and the action with the best worst outcome is selected
 - $a^*=argmax_{i \in A}\{min_{j \in S} r_{ij}\}$
- for situations with no probabilistic information or critical situations
 - Mitigation of the worst case pessimistic
- in newsvendor example a*=6
 - earns a profit at least 30¢ (an at most)

for problems with minimization - minimax

Maximax criterion

- for each action the best outcome is determined and the action with the best worst outcome is selected
 - $a^*=argmax_{i \in A}\{max_{j \in S} r_{ij}\}$
- for situations with no probabilistic information or noncritical situations
 - Opening potential for the best case optimistic
- in newsvendor example a*=10
 - earns a profit at most 50¢ (an at worst -50¢)

for problems with minimization - minimin

Minimax regret

- Tends to avoid disappointment with hindsight (regret)
- $a^*=argmin_{i\in A} (max_{j\in S}[max_{k\in A} \{r_{kj}\}-r_{ij}])$

Regret of action i in state j

- in newsvendor example a*=6 or 7
 - regret of at most 20¢

	Papers Demanded				
Papers Ordered	6	7		9	10
6	30 − 30 = 0€	35 - 30 = 5¢	40 - 30 = 10 ¢	45 - 30 = 15€	50 - 30 = 20¢
7	30 - 10 = 20¢	35 - 35 = 06	40 - 35 = 56	45 - 35 = 10¢	50 - 35 = 15¢
8	30 + 10 = 40¢	35 - 15 = 20¢	40 - 40 = 0¢	45 - 40 = 5¢	50 - 40 = 10¢
9	30 + 30 = 60¢	35 + 5 = 40¢	$40 - 20 = 20 \neq$	$45 - 45 = 0 \neq$	50 - 45 = 5 ¢
10	30 + 50 = 80 ¢	$35 + 25 = 60 \not e$	40 - 0 = 40¢	45 - 25 = 20€	50 − 50 = 0¢

for problems with minimization – maximin regret

Expected value criterion (EVC)

- Select the action with the best expected value
 - $a^*=argmax_{i \in A} E[r_{ij}]$
- for situations with probabilistic information
 - non-critical situations

Papers Ordered	Expected Reward			
6	1/ ₃ (30 + 30 + 30 + 30 + 30) = 30¢			
7	$\frac{1}{3}(10 + 35 + 35 + 35 + 35) = 30 \neq$			
8	$\frac{1}{3}(-10 + 15 + 40 + 40 + 40) = 25 \notin$			
9	$\frac{1}{5}(-30-5+20+45+45)=15$ ¢			
10	$\frac{1}{5}(-50-25+0+25+50)=0$ ¢			

Optimal solution is 6 or 7

Expected value criterion (EVC)

- Faster solution to newsvendor problem under EVC is using critical fractile formula
- Marginal value of ordering additional piece of newspaper with random demand D and cumulative distribution function F, selling price b, buying price c
 - h(q)=(b-c)*[1-F(q)]-c*F(q)
 - Buy additional as long as h(q)>0
- Optimal q* is given by the formula:

$$q^* = \min\{q \in N_0 | F(q) \ge \frac{b-c}{b}\}$$
 for discrete F

- If F is continuous and strictly increasing, inverse F⁻¹ exists and the solution is: $q^* = F^{-1}(\frac{b-c}{b})$
- For our example q*=6 (critical fractile 1/5)

Multi-stage <u>stochastic</u> problems

- most often optimize expected value
 - computationally the easiest
- Modeling
 - often, Markov Decision Process
 - Markovian assumption
- Solving
 - Dynamic programming approaches
 - Concept of "value function"
 - Decision trees
 - Stochastic programming

Decision trees

- People make series of decision at different points in time
 - Multistage decision problems
- Decision trees decompose large complex decision problem into several smaller ones made in stages
- Make sense only for reasonable number of stages
- Backward induction of DP is used for solving
- Sensitivity analysis over decisions
 - Expected Value of Sample Information (EVSI)
 - Expected Value of Perfect Information (EVPI)

Decision trees - example

Colaco currently has assets of \$150,000 and wants to decide whether to market a new chocolate-flavored soda, Chocola. Colaco has three alternatives:

- 1. Test Chocola locally, then utilize the results of the market study to determine whether or not to market it nationally
- 2. Immediately market Chocola nationally
- 3. Immediately decide not to market it nationally

In absence of market study, they believe there is 55% chance of national success with profit of 300,000\$ and 45% change of national failure with loss of 100,000\$.

With study (at a cost of 30,000\$) there is 60% chance of local success and 40% of local failure. Local success implies 85% chance of national success, and local failure implies 10% chance of national success. If Colaco is risk-neutral, what strategy to follow?

Decision trees - example

- Decision tree if created in forward pass
- Calculations are done in backward pass (folding back the tree)
 - Instantiation of backwards induction algorithm based on dynamic programming
 - For finite horizon MDPs
- The solution gives strategy or policy that for each state (decision fork) defines the optimal decision

Operational research, FER 11/15/17 21 /

Decision trees - example

- Each square is decision node (fork)
- Each circle is event node (fork)
- Terminal branch is a branch with no forks

- Backward operations:
 - Terminal branch read deterministic utility
 - Event node calculate expected utility
 - Decision node pick decision from optimal subbranch

The optimal strategy is not to test locally and then to market nationally.

Expected value of sample information

- Measuring value of sample information using decision trees
 - Sensitivity analysis wrt. utilization of testing
- Expected value with sample information (EVWSI)
 - Profit if acting optimally and test market is costless
 - In Chocola example EWSI=264,000+30,000=294,000 (the best branch with costless testing)
- Expected Value with original value (EVWOI)
 - Value of problem if there is no testing available
- Expected value of sample information (EVSI)
 - EVSI=EVWSI-EVWOI
 - In Chocola example, EVSI=294,000 270,000=24,000\$
 - Chocola would pay for such test only if it costs up to EVSI=24,000\$

Expected value of perfect information (EVPI)

- Similar to sample information but perfect information tells the outcome **before** making decision
 - Sample information only created more skewed (informative) forecast
- EVPI=EVWPI-EVWOI
 - for Cholaco EVPI=315,000-270,000=45,000\$

 EVPI is an upper bound on EVSI

Operational research, FER 11/15/17 24 /

Bayes' rule and decision trees

- Different states of world result in different rewards
- s_i, i=1,...,n possible states of the world
- p(s_i) prior probabilities of states of the world
 - Before any action
- Buying information (for example experiments) might give more knowledge about state of the world
 - enable better decisions
- o_i, j=1,...,m possible outcomes of the experiment
- if the decision maker is given conditional probabilities p(s_i|o_i)
 - after the experiment we get outcome o_k
 - new probability of the states is given by posterior distribution p(s_i|o_k)
- if given likelihoods p(o_i|s_i) [stats from previous test]
 - Calculate posterior probabilities using Bayes' formula

$$p(s_i|o_j) = \frac{p(o_j|s_i) * p(s_i)}{p(o_i)}$$

p(o_i) – marginal probability of outcomes – needed for normalization

Decision trees?

- Good for discrete problems
 - with small dimensionality
 - with small branching factor

- What about problems with continuous and/or vector decision variables with high dimensionality?
 - Stochastic programming
 - Robust programming
 - When no stochastic data available

Two-stage <u>stochastic</u> problem - Farmer

- raising wheat and corn on 300 ha
- at least 200 t of wheat and 240 t of corn for cattle
- they can be sold for 170\$/t and 150\$/t and purchased for 40% higher price
- yield of each culture depends on weather:

	Below p=1/3	Average p=1/3	Above p=1/3
wheat	2 t/ha	2.5 t/ha	3 t/ha
corn	2.8 t/ha	3 t/ha	3.2 t/ha

Use linear programming to determine a production schedule to minimize the sum of production and inventory costs during the next four quarters.

Two stages:

- 1. Decide on planting (proactive before information)
- Decide how to deal with the outcome (reactive after information), recourse
 - Sell excess/buy deficit (for cattle)

Two-stage <u>stochastic</u> problem - Farmer

- raising wheat and corn on 300 ha
- at least 200 t of wheat and 240 t of corn for cattle
- they can be sold for 170\$/t and 150\$/t and purchased for 40% higher price
- yield of each culture depends on weather:

	Below p=1/3	Average p=1/3	Above p=1/3
wheat	2 t/ha	2.5 t/ha	3 t/ha
corn	2.8 t/ha	3 t/ha	3.2 t/ha

Linear stochastic programming

- Constraints are linear
- Objective must be linear
 - Expected value/utility
 - Minimax
 - Can be expressed as linear function + constraints

Two-stage <u>stochastic</u> problem – Farmer - solution

Check the notebook "Farmer – Stochastic programming"

Operational research, FER 11/8/17 29 /