GATE: IN - 50.2023

EE23BTECH11224 - Sri Krishna Prabhas Yadla*

Question: The phase margin of the transfer function $G(s) = \frac{2(1-s)}{(1+s)^2}$ is _____ degrees. (rounded off to the nearest integer). (GATE IN 2023)

Solution:

From Table 1,

Parameters	Description
ω_c	crossover frequency
$\angle G(j\omega)$	phase angle of the transfer function
PM	$\angle G(j\omega_c) + 180^\circ$; Phase Margin

TABLE 1 PARAMETERS

$$G(j\omega) = \frac{2(1-j\omega)}{(1+j\omega)^2} \tag{1}$$

$$|G(j\omega)| = \left| \frac{2(1 - j\omega)}{(1 + j\omega)^2} \right|$$

$$= \frac{2}{\sqrt{1 + \omega^2}}$$
(2)

$$=\frac{2}{\sqrt{1+\omega^2}}\tag{3}$$

$$\angle G(j\omega) = 3 \tan^{-1}(-\omega) \tag{4}$$

$$G(j\omega_c) = 1 \tag{5}$$

$$\implies \omega_c = \sqrt{3}$$
 (6)

$$\implies \angle G(j\omega_c) = -180^{\circ} \tag{7}$$

Fig. 1. Plot of $|G(j\omega)|$ vs $\log \omega$

Fig. 2. Plot of $\angle G(j\omega)$ vs $\log \omega$