Week03 - Summary

Training vs Testing

- **Training error** is the performance metric applied to the observations used to train the model
- **Test error** is the average error when applying a model to predict the response on new (test) observations that were not used in the training of the model
 - Training error can underestimate the test error

Bias-Variance Tradeoff

- We observe that the more complex we make our model, the better it seems to perform, i.e. the prediction error gets lower in the training sample
- However, in the test sample, we must be cautious not to overfit the model. Hence we must find the right balance between bias and variance

Common test set approach

- Randomly divide the available set of samples into two:
 - 1. Training set
 - 2. Test set
- The model:
 - Is fitted on the training set
 - Can be used to predict the responses in the test set

Quality of the predictive performance uses the test set with:

Mean square error (MSE) for a quantitative response

Misclassification rate for a qualitative (categorical) response

Drawbacks of the test set approach

The estimate of the test error can be highly variable

Depends on assignment of observations to the training and test sets

Only a subset of the observations are used to:

Fit the model

Assess the model

Test set error may overestimate the test error compared to a model fit on the entire

data set

Cross-Validation

K-Fold Cross Validation

Widely used approach for estimating test error

Estimates can be used to select best model and to give an idea of the test error

of the final chosen model

Idea: randomly divide the data into K equal-sized parts

 $\circ\;\;$ Leave out part k, fit the model to the other K-1 parts (combined), and then

obtain predictions for the left-out kth part

• This is done in term for each point $k=1,2,\ldots K$ and then the results are

combined

Example: 5-Fold

Cross-Validation Process in Regression

- Define K folds as $C_1, C_2, ..., C_K$, where:
 - C_k denotes the indices of the observations in fold k
 - There are n_k observations in fold k
- Compute error metric for each fold
 - Mean square error $MSE_k = \sum_{i \in C_k} (y_i \hat{y}_i)^2 / n_k$
 - \hat{y}_i are the predictions on the test fold, k
- · Aggregate over all folds
 - Overall error = $\sum_{k} MSE_{k} / K$

Cross-Validation for Classification Problems

- · Same as regression but change the assessment metric
- Compute the accuracy for each fold by calculating:
 - · Ak: the accuracy of the classifier in fold k
 - $A_k = \frac{1}{n \cdot k} \sum_{i \in C_k} \mathbb{1}_{\{\widehat{y_i} = y_i\}}$
 - n: the total number of observations in the data set
 - n_k: the number of observations in the belonging to class k
- · Aggregate over all folds
 - Overall accuracy = $\frac{1}{K} \sum_{k} A_{k}$

Repeated Cross-Validation Properties

Repeated CV provides a less-biased CV error estimate

- Repeated CV also gives you the variance of the CV error
- However, it comes with a computational cost
- Implemented in the caret package in R

Example of CV Procedure

- Consider a high-dimensional data set
 - All entirely numeric
 - Need dimension reduction to proceed
- You decide to use the following CV procedure:
 - 1. Compute correlation matrix, select the top 50 variables that have the highest correlation with the response
 - 2. Use these 50 variables as features and perform K-fold cross-validation
- Variable selection performed once using both the training and test data sets
- Information can leak from the test to the training set
- Hence, the CV error estimate is likely to be biased
- Ideally, refrain from using the test data in any way in the training step

Corrected CV Procedure

- Split the data set into K folds
- For each $k=1,2,\ldots,K$
 - \circ Determine the variables that correlate the best with the response using all the data except the data in fold k

- Train your model using the selected variables above
- Run your classification algorithm and record accuracy against the test set

Bootstrap

Essentially sampling with replacement

Simple Investment Example

- Goal: invest a fixed sum of money in two financial assets
 - That yield returns of X and Y where X and Y are random quantities
- · Problem: need to decide allocation in each asset
 - $\circ~$ Invest fraction lpha of our wealth in X and (1-lpha) in Y
- Criterion: minimise the total risk of the investment
 - \circ Mathematically involves minimising Var(lpha X + (1-lpha)Y)
 - The solution (via calculus) is:

Where
$$\sigma_X^2 = Var(X)$$
, $\sigma_Y^2 = Var(Y)$ and $\sigma_{XY} = Cov(X,Y)$

$$Var(XX + (1-x)Y) = \chi^2 Var(X) + (1-x)^2 Var(Y) + 2\chi(1-x) Cov(X,Y)$$

To mindmise this expression, we take the derivative with respect to χ and set it to 0 :

$$\frac{\partial}{\partial x} \left(\chi^2 Var(X) + (1-x)^2 Var(Y) + 2\chi(1-x) Cov(X,Y) + (1-x)^2 Var(Y) + 2\chi(1-x) Cov(X,Y) = 0$$

Simplifying, neget:
$$2\chi Var(X) - 2(1-x) Var(Y) + 2\cos(X,Y)$$

$$\chi = \frac{Var(Y) - Cov(X,Y)}{Var(X) + Var(Y) - 2\cos(X,Y)}$$

$$\chi = \frac{Var(Y) - Cov(X,Y)}{Var(X) + Var(Y) - 2\cos(X,Y)}$$

$$\chi = \frac{C_Y^2 - C_{XY}}{C_X^2 + C_Y^2 - C_{XY}}, \text{ where } C_X^2 + C_Y^2 - C_{XY}$$

$$G_X^2 = Uar(X), G_X = G_X(X,Y)$$

- Suppose that X and Y can be sampled from the population repeatedly
- Can estimate the standard deviation of α_hat
 - \circ Paired observations (X, Y) can be repeatedly simulated, say 100 pairs to get a single estimate of α ; repeat this process to get 1000 estimates for α

Regression Trees

Segments the players into three regions.

1.
$$R_1 = \{X | Years < 4.5\}$$

2.
$$R_2 = \{X | \text{Years} \ge 4.5, \text{Hits} < 117.5 \}$$

3.
$$R_3 = \{X | Years \ge 4.5, Hits \ge 117.5\}$$

Details on tree building process

The goal is to find boxes $R_1, ..., R_J$ that minimises the residual sum of squares (RSS), given by:

$$\sum_{j=1}^{J} \sum_{i \in R_j} \left(y_i - \hat{y}_{R_j} \right)^2$$

Where \hat{y}_{R_j} is the mean response for the training observations within the j^{th} box

Tree building with recursive binary splitting

- Take a top-down, greedy approach that is known as recursive binary splitting
 - \circ $\,$ Top-down: begins at the top of the tree
 - Then successively splits the predictor space
 - Each split is indicated via two new branches further down on the tree
 - Greedy: at each step: the best split is made at that particular step
 - Rather than looking ahead and picking a split will lead to a better tree in some feature step

Using regression trees for prediction

- Partition the predictor space
 - \circ The set of possible values for X_1,X_2,\ldots,X_p into J distinct and non-overlapping regions, R_1,R_2,\ldots,R_J
- Mean value with each region used for prediction
 - $\circ~$ If observation in region R_J , mean of training observations R_J used for prediction

Decision Trees

• What if baseball player salary was categorical (ordinal)? Salary is colour-coded

Decision Trees for Classification

- Very similar to a regression tree
 - Exception being the production of a qualitative response rather than a quantitative one
- For a classification tree
 - Inspect the region that the observation belongs and predict the most commonly occurring class in that region

Gini Index: Tree building with qualitative target

- · Still recursive binary splitting to grow a classification tree
 - Can't use RSS as criterion for binary splits
- Alternative measure such as Gini Index is used instead
- The Gini Index is defined by:

$$G = \sum_{j} \sum_{k=1}^{K} \hat{p}_{jk} \left(1 - \hat{p}_{jk} \right)$$

 \hat{p}_{jk} represents the proportion of training observations in the j^{th} region that are from the k^{th} class

Gini Index

- Is a measure of total variance across the K classes
- Gini index is referred to as a measure of node purity
 - A small value indicates that a node contains predominantly observations from a single class

Cross-Entropy: An alternative to Gini

- $D = -\sum_{m}\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}$
- It turns out that the Gini index and the cross-entropy are very similar numerically

Ensemble Methods with Bootstrapping

Bagging (Bootstrap Aggregation)

- · Bootstrap aggegation, or bagging
 - General purpose procedure for reducing the variance of a statistical learning method
 - Useful and frequently used in the context of decision trees
- Recall that given a set of n observations Z_1,\ldots,Z_n each with a variance of σ^2
 - \circ The variance of the mean Z_bar given by σ^2/n
 - In other words, averaging a set of observations reduces variance
- Usually not possible to have access to multiple training sets
 - Using bootstrapping instead to create multiple training sets
- Use bootstrapping; can generate B different bootstrapped training data sets
 - Train the method of the b^{th} bootstrapping set in order to obtain $\hat{f}_b^*(x)$, the prediction at a point

Average all the observations to obtain:

$$\hat{f}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b^*(x)$$

This is called bagging

Out-of-Bag Error Estimation

- Test error of a bagged model is easy
- Each bagged trees using bootstrapped data
 - Only around two-thirds of the original observations are used
 - The remaining one-third of the observations not used
 - Referred to as the out-of-bag (OOB) observations
- Enables prediction of the response for the ith observation using each of the trees in which that observation was OOB
- This will yield around B/3 predictions for the ith observation, which we average
- The estimate is essentially the leave one out (LOO) cross-validation error for bagging, if B is large

From Bagging to Random Forest

- Random forests (sometimes) provide an improvement over bagged trees
 - A small change decorrelates the trees
 - Reduces the variance when we average the trees
- Random forest approach
 - Create decision trees on bootstrapped training samples
 - When tree fitting, each time a split in a tree is considered
 - A random selection of m predictors is chosen as split candidates from the full set of p predictors
 - A fresh selection of m predictors is taken at each split

The find amental difference between bagging and random forest is that in Random torests, only a subset of features are selected at random out of the total and the best split feature from the subset is used to split each node in a tree, while in bagging where all features are considered for splitting a node.

Ensemble Methods with Boosting

- Instead of computing a single tree once
- Learn from the mistakes of the current tree
- Take a sample of decision trees into account
- Make final prediction model using the aggregated result from an ensemble of trees

Boosting

- Bootstrap aggregation combines the results of separately grown trees
- Boosting similar except that the trees are grown sequentially

Boosting for Regression Trees

fitled for residuals southone at i

- 1. Set $\hat{f}(x) = 0$ and $r_i = y_i$ for all i in the training set
 - Here r_i denotes the ith residual and y_i the outcome
- 2. For b = 1, 2, ..., B fold no. of trees.
 - Fit a tree \hat{f}_b with d splits (d+1) terminal nodes to the new training data (X,r)
 - That is r is the new response value
 - Update f by adding in a shrunken version of the new tree
 - $\hat{f}(x) \leftarrow \hat{f}(x) + \lambda f_b(x)$
 - Update the residuals
 - $r_i \leftarrow r_i \lambda \hat{f}_b(x)$

3. Compute the final model

Parameters to tune in Boosting

- Number of trees B
- The shrinkage parameter λ a small positive number
 - Typical values are between 0.01 and 0.001
- Number of split d in each tree
 - Controls the complexity of the boosted ensemble
 - \circ If d=1, then the tree is just a stump; this actually usually works quite well

Bagging vs Boosting

- Both ensemble methods get N learners from 1 learner
 - Built independently for bagging
 - Built sequentially for boosting

- Trees built-in
 - Boosting are weak learners (sometimes just a stump)
 - Random forest have higher complexity
- Number of parameters to tune
 - Low in random forest
 - High in boosting (depending on which variation you are using)

Another Boosting Algorithm: Adaboost

- Basic idea
 - At each iteration, reweigh the data to place more weight in data points that the classifier got wrong
- Combine all the weak classifiers by taking a weighted combination
- Put more weight on the weak classifiers with the higher accuracies

