Differentiate your Objective

Differentiable Programming

How does pre-university calculus relate to Al and the future of computer programming?

Jonathon Hare and Antonia Marcu

Vision, Learning and Control University of Southampton

Differentiation

Recap: what is the derivative of a function of one variable? The derivative in 1D

• Recall that the gradient of a straight line is $\frac{dy}{dx}$.

- Recall that the gradient of a straight line is $\frac{dy}{dx}$.
- For an arbitrary real-valued function, f(a), we can approximate the derivative, f'(a) using the gradient of the secant line defined by (a, f(a)) and a point a small distance, h, away (a + h, f(a + h)): $f'(a) \approx \frac{f(a+h)-f(a)}{h}$.

- Recall that the gradient of a straight line is dy/dx.
- For an arbitrary real-valued function, f(a), we can approximate the derivative, f'(a) using the gradient of the secant line defined by (a, f(a)) and a point a small distance, h, away (a + h, f(a + h)): $f'(a) \approx \frac{f(a+h)-f(a)}{h}$.
 - This expression is Newton's Quotient.

- Recall that the gradient of a straight line is dy/dx.
- For an arbitrary real-valued function, f(a), we can approximate the derivative, f'(a) using the gradient of the secant line defined by (a, f(a)) and a point a small distance, h, away (a + h, f(a + h)): $f'(a) \approx \frac{f(a+h)-f(a)}{h}$.
 - This expression is Newton's Quotient.
 - As *h* becomes smaller, the approximated derivative becomes more accurate.

- Recall that the gradient of a straight line is $\frac{dy}{dx}$.
- For an arbitrary real-valued function, f(a), we can approximate the derivative, f'(a) using the gradient of the secant line defined by (a, f(a)) and a point a small distance, h, away (a + h, f(a + h)): $f'(a) \approx \frac{f(a+h)-f(a)}{h}$.
 - This expression is Newton's Quotient.
 - As *h* becomes smaller, the approximated derivative becomes more accurate.
 - If we take the limit as $h \to 0$, then we have an exact expression for the derivative: $\frac{df}{da} = f'(a) = \lim_{h \to 0} \frac{f(a+h) f(a)}{h}.$

$$y = x^2$$

$$y = x^{2}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{(x+h)^{2} - x^{2}}{h}$$

$$y = x^{2}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{(x+h)^{2} - x^{2}}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{x^{2} + h^{2} + 2hx - x^{2}}{h}$$

$$y = x^{2}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{(x+h)^{2} - x^{2}}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{x^{2} + h^{2} + 2hx - x^{2}}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{h^{2} + 2hx}{h}$$

$$y = x^{2}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{(x+h)^{2} - x^{2}}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{x^{2} + h^{2} + 2hx - x^{2}}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{h^{2} + 2hx}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} (h + 2x)$$

$$y = x^{2}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{(x+h)^{2} - x^{2}}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{x^{2} + h^{2} + 2hx - x^{2}}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{h^{2} + 2hx}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} (h + 2x)$$

$$\frac{dy}{dx} = 2x$$

Intuition: What does the gradient dy/dx tell us

• The 'rate of change' of y with respect to x.

Intuition: What does the gradient dy/dx tell us

- The 'rate of change' of y with respect to x.
- By how much does y change if I make a small change to the x.

Solving a simple problem with differentiation

 At what angle should a javelin be thrown to maximise the distance travelled?

Solving a simple problem with differentiation

- At what angle should a javelin be thrown to maximise the distance travelled?
- Assume initial velocity $u = 28 \,\mathrm{m\,s^{-1}}$ and $g = 9.8 \,\mathrm{m\,s^{-2}}$
- Choose to ignore launch height as it is negligable compared to distance travelled.

Solving a simple problem with differentiation

- At what angle should a javelin be thrown to maximise the distance travelled?
- Assume initial velocity $u = 28 \,\mathrm{m\,s^{-1}}$ and $g = 9.8 \,\mathrm{m\,s^{-2}}$
- Choose to ignore launch height as it is negligable compared to distance travelled.
- Kinematics equations:

$$x = ut\cos(\theta) = 28t\cos(\theta)$$
$$y = ut\sin(\theta) - 0.5gt^{2} = 28t\sin(\theta) - 4.9t^{2}$$

Solving a simple problem with differentiation

$$x = 28t \cos(\theta)$$
$$y = 28t \sin(\theta) - 4.9t^2$$

• Javelin hits ground when y = 0 and we only care about t > 0:

$$0 = 28t \sin(\theta) - 4.9t^{2}$$

$$\implies t = \frac{28}{4.9} \sin(\theta)$$

Substituting into the horizontal component:

$$x = 28\frac{28}{4.9}\sin(\theta)\cos(\theta) = 80\sin(2\theta)$$

Solving a simple problem with differentiation

$$\max_{\theta} \quad 80 \sin(2\theta)$$
s.t.
$$0 \le \theta \le \frac{\pi}{2}$$

Solving a simple problem with differentiation

$$\max_{\theta} \quad 80 \sin(2\theta)$$
s.t.
$$0 \le \theta \le \frac{\pi}{2}$$

Compute derivative w.r.t θ and set to zero:

$$0 = \frac{d(80\sin(2\theta))}{d\theta}$$
$$= 160\cos(2\theta)$$
$$\implies \theta = \frac{1}{2}\cos^{-1}(0) = \frac{\pi}{4}$$

Solving a simple problem with differentiation

$$\max_{\theta} \quad 80 \sin(2\theta)$$
s.t.
$$0 \le \theta \le \frac{\pi}{2}$$

Compute derivative w.r.t θ and set to zero:

$$0 = \frac{d(80\sin(2\theta))}{d\theta}$$
$$= 160\cos(2\theta)$$
$$\implies \theta = \frac{1}{2}\cos^{-1}(0) = \frac{\pi}{4}$$

Irrespective of the initial velocity maximum distance is acheived at 45°.

• To compute the parameter (angle) for the javelin example we maximised the equation for distance travelled.

¹Note: maximising a distance is the same as minimising a negative distance

- To compute the parameter (angle) for the javelin example we maximised the equation for distance travelled.
- We can solve all kinds of problems if we can:
 - formulate a loss or cost function.

¹Note: maximising a distance is the same as minimising a negative distance

- To compute the parameter (angle) for the javelin example we *maximised* the equation for distance travelled.
- We can solve all kinds of problems if we can:
 - formulate a loss or cost function.
 - **minimise** the loss with respect to the parameter(s) 1 .

¹Note: maximising a distance is the same as minimising a negative distance

- To compute the parameter (angle) for the javelin example we maximised the equation for distance travelled.
- We can solve all kinds of problems if we can:
 - formulate a loss or cost function.
 - minimise the loss with respect to the parameter(s)1.
- Problems:
 - The loss must be differentiable (or rather you must be able to compute or estimate its gradient somehow).
 - The loss function could be arbitrarily complex... you might not be able to analytically compute the solution (or the gradient).
 - Some loss functions might have many minima; you might have to settle for finding a sub-optimal one (or a saddle-point).

¹Note: maximising a distance is the same as minimising a negative distance

A simple algorithm for minimising a function Gradient Descent

• How can you numerically estimate the value of the parameter θ that minimises a loss function, $\mathcal{L}(\theta)$?

A simple algorithm for minimising a function

Gradient Descent

- How can you numerically estimate the value of the parameter θ that minimises a loss function, $\mathcal{L}(\theta)$?
- Really intuitive idea: starting from an initial guess, $\theta^{(0)}$, take small steps in the direction of the negative gradient.

A simple algorithm for minimising a function

Gradient Descent

- How can you numerically estimate the value of the parameter θ that minimises a loss function, $\mathcal{L}(\theta)$?
- Really intuitive idea: starting from an initial guess, $\theta^{(0)}$, take small steps in the direction of the negative gradient.

Gradient Descent:

$$heta^{(i+1)} = heta^{(i)} - \lambda rac{ ext{d} \mathcal{L}}{ ext{d} heta}$$
 where λ is the learning rate

Javelin throwing again, but with Python code

- Almost all complex functions can be broken into simpler parts (often with very simple derivatives).
- You can add (or subtract) sub-functions, multiply (or divide) sub-functions and make functions of functions.
 - The sum rule, product rule and chain rule tell you how to differentiate these.

- Almost all complex functions can be broken into simpler parts (often with very simple derivatives).
- You can add (or subtract) sub-functions, multiply (or divide) sub-functions and make functions of functions.
 - The sum rule, product rule and chain rule tell you how to differentiate these.
- If you break down functions into their constituent parts computing the derivative becomes very easy
- Example: the sin function can be written in terms of exponentials (Euler's formula) and the derivative of an exponential e^x is just e^x ...

- Most interesting functions that we might want to work with have more than one parameter that we might want to optimise.
 - In many real applications it can be *millions* of parameters.

- Most interesting functions that we might want to work with have more than one parameter that we might want to optimise.
 - In many real applications it can be millions of parameters.
- Partial derivatives $\frac{\partial f}{\partial x_i}$ let us compute the gradient of the *i*-th parameter by holding the other parameters constant.

• At the end of the day computer programs are just compositions of really simple functions that computer processors can compute: arithmetic operations (add, multiply, divide, ...), logical operations (and, or, not, comparisons...), operations that move data, etc.

- At the end of the day computer programs are just compositions of really simple functions that computer processors can compute: arithmetic operations (add, multiply, divide, ...), logical operations (and, or, not, comparisons...), operations that move data, etc.
- Many of these primitive operations have *well defined* gradients with respect to their operands.

- At the end of the day computer programs are just compositions of really simple functions that computer processors can compute: arithmetic operations (add, multiply, divide, ...), logical operations (and, or, not, comparisons...), operations that move data, etc.
- Many of these primitive operations have *well defined* gradients with respect to their operands.
- The chain rule tells us how to compute gradients of composite functions.

- At the end of the day computer programs are just compositions of really simple functions that computer processors can compute: arithmetic operations (add, multiply, divide, ...), logical operations (and, or, not, comparisons...), operations that move data, etc.
- Many of these primitive operations have well defined gradients with respect to their operands.
- The chain rule tells us how to compute gradients of composite functions.

So, in principle we can find the optimal "parameters" of a computer program designed to solve a specific task by following the gradients to optimise it.

Differentiating Branches

Code - if-else statement

if
$$a > 0.5$$
:
 $b = 0$
else:
 $b = 2 * a$

Math

$$b(a) = \begin{cases} 0 & \text{if } a > 0.5\\ 2a & \text{if } a \le 0.5 \end{cases}$$

$$\frac{\partial b}{\partial a} = \begin{cases} 0 & \text{if } a > 0.5\\ 2 & \text{if } a \le 0.5 \end{cases}$$

Differentiating Loops

Code - for loop statement

Math

$$b_0 = 1$$

$$b_1 = b_0 + b_0 a = 1 + a$$

$$b_2 = b_1 + b_1 a = 1 + 2a + a^2$$

$$b_3 = b_2 + b_2 a = 1 + 3a + 3a^2 + a^3$$

$$\frac{\partial b}{\partial a} = 3 + 6a + 3a^2$$

• We can differentiate through lots of types of programs and algorithms (even the Gradient Descent algorithm is itself differentiable!), but...

- We can differentiate through lots of types of programs and algorithms (even the Gradient Descent algorithm is itself differentiable!), but...
- not every operation or function has useful gradients

- We can differentiate through lots of types of programs and algorithms (even the Gradient Descent algorithm is itself differentiable!), but...
- not every operation or function has useful gradients
 - discontinuities, large areas of zero-gradient, ...

- We can differentiate through lots of types of programs and algorithms (even the Gradient Descent algorithm is itself differentiable!), but...
- not every operation or function has useful gradients
 - discontinuities, large areas of zero-gradient, ...
- Computer science researchers are actively developing mathematical 'tricks' to circumvent many of these problems.
 - Relaxations of functions that behave almost the same, but have well defined gradients.
 - Reparameterisations of functions involving randomness.
 - Approximations of useable gradients for functions that have ill-posed gradients.

What kinds of functional building blocks are common?

- Today, the most common operations with parameters are:
 - Vector addition: the input vector to a function is added to a vector of weights.
 - *Vector-Matrix multiplication*: the input vector to the function is multiplied with a matrix of weights.
 - Convolution: the input vector (or matrix...) is 'convolved' with a set of weights.
 - (in all these cases 'weights' are the parameters which are learned)

What kinds of functional building blocks are common?

- Today, the most common operations with parameters are:
 - *Vector addition*: the input vector to a function is added to a vector of weights.
 - Vector-Matrix multiplication: the input vector to the function is multiplied with a matrix of weights.
 - Convolution: the input vector (or matrix...) is 'convolved' with a set of weights.
 - (in all these cases 'weights' are the parameters which are learned)
- The above operations are *linear*, so they are often combined with element-wise nonlinearities; e.g.:
 - max(0, x) aka ReLU.
 - tanh(x).
 - $\frac{1}{1+e^{-x}}$ aka sigmoid or the logistic function.

Playing Games

- You can use differentiable programming to write (and train) 'agents' that can play games.
- It can be hard to get a gradient from a single game involving many moves, but there is a clever trick which allows good estimates of gradients to be created over the average of many games.
- This is broadly the area of what is called reinforcement learning.

Playing Games

Demo: AlphaStar

Object detection

- Consider a function that takes an image as input and produces an array of *bounding boxes* and corresponding *labels*.
- With enough training data we can learn the parameters required to detect objects in images.

Object detection Demo

Drawing

- We could envisage a differentiable function that takes in a set of line coordinates and turns them into an image...
- With such a function we can optimise the line coordinates so they e.g. match a photograph, thus automatically creating a *sketch*.

Drawing Demo

Drawing Demo

Where is this all going?

Software 2.0

There is a revolution happening and you're going to be part of it!

Image credit: Andrei Karpathy

https://karpathy.medium.com/software-2-0-a64152b37c35

Any Questions?