

CSCE 2110 Foundations of Data Structures

Splay Tree

Contents

- Splay tree
 - o insertion
 - o find
 - o deletion
 - o running time analysis Binary Trees

Self adjusting Trees

- Ordinary binary search trees have no balance conditions
 - What you get from insertion order is it
- Balanced trees like AVL trees enforce a balance condition when nodes change
 - Tree is always balanced after an insert or delete
- Self-adjusting trees get reorganized over time as nodes are accessed
 - Tree adjusts after insert, delete, or find

Splay Trees

- Splay trees are tree structures that:
 - Are not perfectly balanced all the time
 - Data most recently accessed is near the root. (principle of locality; 80-20 "rule")
- The procedure:
 - After node X is accessed, perform "splaying" operations to bring X to the root of the tree.
 - Do this in a way that leaves the tree more balanced as a whole

Splay Tree Idea

Splaying Cases

Node being accessed (x) is:

- Root
- Child of root
- Has both parent (p) and grandparent (g)
 - \circ Zig-zig pattern: $g \to p \to x$ is left-left or right-right
 - \circ Zig-zag pattern: $g \to p \to x$ is left-right or right-left

Access Root

Do nothing (that was easy!)

Access Child of Root

Zig (AVL single rotation)

Access (LL, RR) Grandchild

Zig-Zag

Access (LR, RL) Grandchild

Zig-Zag

Splay Operations: Find

- Find the node in normal BST manner
- Splay the node to the root Are not perfectly balanced all the time

Find(6)

... still splaying ...

... 6 splayed out!

Find (4)
Splay it Again!

... 4 splayed out!

Analyzing Calls to a Data Structure

- Some algorithms involve repeated calls to one or more data structures
- Example:
 - o repeatedly insert keys into a dynamic array
 - o repeatedly remove the smallest key from the heap
- When analyzing the running time of the overall algorithm, need to sum up the time spent in all the calls to the data structure
- When different calls take different times, how can we accurately calculate the total time?

Amortized Analysis

- Purpose is to accurately compute the total time spent in executing a sequence of operations on a data structure
- Three different approaches:
 - aggregate method: brute force
 - accounting method: assign costs to each operation so that it is easy to sum them up while still ensuring that result is accurate
 - potential method: a more sophisticated version of the accounting method
- In Amortized Analysis, we analyze a sequence of operations and guarantee a worst-case average time which is lower than the worst- case time of a particular expensive operation.

Dynamic Array Insertion

```
Item No.
                            5
                                              9 10 .....
Table Size 1 2 4 4 8 8 8 8 16 16 .....
            1 2 3 1 5 1 1 1 9 1 .....
Cost
 Amortized Cost = (1 + 2 + 3 + 5 + 1 + 1 + 9 + 1...)
We can simplify the above series by breaking terms 2, 3, 5, 9.. into two as (1+1), (1+
                                       [Log<sub>2</sub>(n-1)]+1 terms
2), (1+4), (1+8)
                          n terms
                     [(1+1+1+1...)+(1+2+4+...)]
  Amortized Cost =
                <= \frac{[n+2n]}{n}
                <= 3
  Amortized Cost = O(1)
```

Splay Tree Algorithm Analysis

- Worst case time is O(n)
- Amortized time for all operations is O(log n)
 - a sequence of M operations on an n-node splay tree takes
 O(M log n) time.
 - Maybe not now, but soon, and for the rest of the operations

Why Splaying Helps

- If a node on the access path is at depth d before the splay, it's final depth $\leq 3 + d/2$
 - Exceptions are the root, the child of the root, and the node splayed
- Overall, nodes which are below nodes on the access path tend to move closer to the root

Splay Tree Insert and Delete

- Insert x
 - Insert x as normal then splay x to root.
- Delete x
 - Find x
 - Splay x to root and remove it
 - Splay the max in the left subtree to the root
 - Attach the right subtree to the new root of the left subtree.

Example Insert

- Inserting in order 1, 2, 3, ..., 8
- Without self-adjustment

With Self-Adjustment

With Self-Adjustment

Each Insert takes O(1) time therefore O(n) time for n Insert!!

Example Deletion

Summary of Search Trees

- Problem with Binary Search Trees: Must keep tree balanced to allow fast access to stored items
- AVL trees: Insert/Delete operations keep tree balanced
- Splay trees: Repeated Find operations produce balanced trees
- Splay trees are very effective search trees
 - o relatively simple: no extra fields required
 - o excellent locality properties:
 - frequently accessed keys are cheap to find (near top of tree)
 - infrequently accessed keys stay out of the way (near bottom of tree)