

Supervised Learning: Basic Concepts

Cheng-Te Li (李政德)

Dept. of Statistics / Institute of Data Science National Cheng Kung University

chengte@mail.ncku.edu.tw

Supervised vs. Unsupervised Learning

Supervised vs. Unsupervised Learning

Supervised vs. Unsupervised Learning

Supervised learning: given data samples with labels

Classification

Unsupervised learning: given data, i.e. samples, but no labels

Clustering

生活中的ML/DS應用: 商品推薦

生活中的ML/DS應用:機器翻譯

Wǒ xiảng yào chéngwéi zīliào kēxuéjiā

Watashi wa deta kagaku-sha ni naritai

生活中的ML/DS應用: 籃球戰術分析

http://www.secondspectrum.com/

生活中的ML/DS應用:人臉辨識/人流分析

Female

生活中的ML/DS應用:健康管理/測謊

https://www.youtube.com/watch?v=QbXgEbeceJI

生活中的ML/DS應用: 語音辨識/聲紋辨識

(Credit: Hung-Yi Lee)

生活中的ML/DS應用:物件辨識/車牌辨識

https://imagga.com/auto-tagging-demo

當代AI: [監督式]機器學習 (Machine Learning)

$AI = 從資料中[監督式]學習出函數: <math>f(X) \rightarrow Y$

2023/9/13 Prof. Cheng-Te Li @ NCKU

$AI = 從資料中[監督式]學習出函數: <math>f(X) \rightarrow Y$

	學習 $f(X)$ 函數	預測目標Y
商品推薦	f([滑鼠,鍵盤,硬碟])	[攝影機,手寫板]
機器翻譯	f("你好嗎?")	"How are you?"
戰術分析	f(CPaul[])	DBooker[]
人臉辨識	$f(\overline{0})$	Female, Smile, 15-25
心率評估	$f(\bigcirc)$	128 BPM
語音辨識	f("人帥真好"
車牌辨識	f(9A-0265)	9A-0265

2023/9/13 Prof. Cheng-Te Li @ NCKU 14

Instances and Labels

Running example: Automatically tag news articles

An instance of a news article that needs to be classified

Instance Space:
All possible news articles

Label Space:
All possible labels

Instances and Labels

Feature Space \mathcal{X} : Instance Space

The set of samples that need to be classified

y: Label Space

The set of all possible labels

The goal of learning:

Find this target function

E.g.: The set of all possible names, documents, sentences, images, emails, etc.

Learning is search over functions

E.g.: {Spam, Not-Spam}, {+, -}, {Sports, Political, Business, Health}

Supervised Learning

Feature Space \mathcal{X} : Instance Space

The set of samples that need to be classified

y: Label Space

The set of all possible labels

17

Learning algorithm only sees samples generated by the function f in action

Supervised Learning: Evaluation

Feature Space \mathcal{X} : Instance Space

The set of samples that need to be classified

y: Label Space

The set of all possible labels

Draw *test* sample $x \in \mathcal{X}$

Are they different? How different?

18

Apply the model to many test samples and compare to the target's prediction Aggregate these results to get a quality measure, e.g., **accuracy**

Can we use these test samples during training phase? → Semi-Supervised Learning

Supervised Learning: General Setting

Given: Training samples that are pairs of the form (x, f(x))

The function *f* is unknown

Typically the input *x* is represented as *feature vectors*

- Example: $x \in \{0,1\}^d$ or $x \in \mathbb{R}^d$ (*d*-dimensional vectors)
- A deterministic mapping from instances in your problem (e.g., news articles) to features

For a training sample (x, f(x)), the value of f(x) is called its *label*

The goal of learning: Use the training samples to find a good approximation h for f

The label determines the kind of problem, we can have:

- **Binary classification**: label space = {0,1}
- Multiclass classification: label space = {1, 2, 3, ···, K}
- Regression: label space = \mathbb{R}

Example of Binary Classification

- Spam filtering
 - Is an email spam or not?
- Recommendation systems
 - Given user's movie preferences, will she like a new movie?
- Anomaly detection
 - Is a smartphone app malicious?
 - Is a Twitter user a bot?
- Authorship identification
 - Were these two documents written by the same person?
- Time series prediction
 - Will the future value of a stock increase or decrease with respect to its current value?

Supervised Learning

- Given: training samples $(\mathbf{x}, f(\mathbf{x}))$ generated by some unknown function f
- Find: a good approximation h to f

Example Applications

- Credit risk assessment
 - **x**: attributes of customer and proposed purchase
 - $\neg f(\mathbf{x})$: approve purchase or not
- Disease diagnosis
 - **x**: attributes of patient (symptoms, lab tests)
 - $\neg f(\mathbf{x})$: disease (or maybe, recommended therapy)
- Face recognition
 - **x**: bitmap picture of person's face
 - $\neg f(\mathbf{x})$: name of the person
- Automatic Steering
 - **x**: bitmap picture of road surface in front of car
 - $\neg f(\mathbf{x})$: degrees to turn the steering wheel

Basic Flow of Supervised Learning

On Supervised Learning

- 1) What is our instance/feature space?
 - What are the inputs to the problem?
 - What are the features?
- 2) What is our label space?
 - What is the prediction task?
- 3) What is our hypothesis space?
 - What functions should the learning algorithm search over?
- 4) What is our learning algorithm?
 - How do we learn from the labeled data?
- 5) What is our loss function or evaluation metric?
 - What is the goodness of a learning algorithm?
 - What is success?

Basic Flow of Supervised Learning

x: [65, 87]

Input: Features (特徵)

y: - (negative)

Output: Prediction Target

Training Data $\{(x_1, y_1), (x_2, y_2), ...\}$

Test Data $\{(\hat{x},?),...\}$

ML Training Process

各種參數組合而成的函數:

 $\{h_\theta^1,h_\theta^2,h_\theta^3,\dots\}$

訓練目標: 尋找一個最能夠 縮小 $h_{\theta}(x) \rightarrow y$ 預測誤差的函數 h_{θ}^*

找到**最佳**函數 h_{θ}^{*} \downarrow

 \rightarrow **Predict**: $h_{\theta}^*(\hat{x}) = \hat{y} \longrightarrow +$ (Positive)

訓練(training): 挑選最能夠表示從訓練資料之特徵到預測目標的最佳函數 測試(test): 根據測試資料之特徵以及學到的函數,來產生預測結果

1) Instance/Feature Space $\mathcal X$

\mathcal{X} : Instance Space

The set of samples that need to be classified

E.g.: The set of all possible names, documents, sentences, images, emails, etc.

The goal of learning:

Find this target function

y: Label Space

The set of all possible labels

E.g.: {Spam, Not-Spam}, {+, -}, {Sports, Political, Business, Health}

- Designing an appropriate feature representation of the instance space is very crucial
- Instances $x \in \mathcal{X}$ are defined by features/attributes
- Features could be Boolean
 - Example: Does the email contain the word "free"?
- Features could be real valued
 - Example: What is the height of the person?
 - Example: What was the stock price yesterday?

Features could be hand-crafted or themselves learned

Instances as Feature Vectors

An input to the problem (E.g., emails, names, images)

Feature function

A feature vector

Feature functions, also known as feature extractors

- Convert data samples to vectors (or a collection of attributes)
- Each $x \in \mathcal{X} \& x \in \mathbb{R}^d$ is a feature vector (d-dimensional space)
 - Each $x = [x_1, x_2, \dots, x_d]$ is a point in the vector space with d dimensions
- Often deterministic, but could also be learned
- Typically thought of as high-dimensional vectors

- * Features are supposed to capture all the information needed for a learned system to make its prediction
- → Think of them as the sensory inputs for the learned system
- * Not all information about the instances is necessary or relevant
- → Bad features could even confuse a learner

2023/9/13 Prof. Cheng-Te Li @ NCKU 26

Tabular Data

Somebody has defined features for you. But you can still extend it by defining your own!

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

2023/9/13 Prof. Cheng-Te Li @ NCKU

Sentiment Text Classification

Can you define features to depict texts?

Loves the German bakeries in Sydney. Together with my imported honey it feels like home	Positive
@VivaLaLauren Mine is broken too! I miss my sidekick	Negative
Finished fixing my twitterI had to unfollow and follow everyone again	Negative
@DinahLady I too, liked the movie! I want to buy the DVD when it comes out	Positive
@frugaldougal So sad to hear about @OscarTheCat	Negative
@Mofette briliant! May the fourth be with you #starwarsday #starwars	Positive
Good morning thespians a bright and sunny day in UK, Spring at last	Positive
@DowneyisDOWNEY Me neither! My laptop's new, has dvd burning/ripping software but I just can't copy the files somehow!	Negative

2023/9/13 Prof. Cheng-Te Li @ NCKU 28

2) Label Space Y

\mathcal{X} : Instance Space

The set of samples that need to be classified

E.g.: The set of all possible names, documents, sentences, images, emails, etc.

Target Function
$$y = f(x)$$

The goal of learning: Find this target function

y: Label Space

The set of all possible labels

E.g.: {Spam, Not-Spam}, {+, -}, {Sports, Political, Business, Health}

The label space depends on the nature of the problem

- Classification: labels are categorical
 - Binary classification: Two possible labels
 - Multiclass classification: K possible labels

e.g., Machine Translation, Speech

- Structured classification: Graph valued outputs → Recognition, Image Style Transfer
- Regression (numerical): label space ${\mathcal Y}$ is the set (or subset) of real numbers
- Ranking (ordinal)
 - Labels are ordinal (an ordering over the labels)
 - E.g. A Yelp 5-star review is only slightly different from a 4-star review, but very different from a 1-star review

3) Hypothesis Space

 \mathcal{X} : Instance Space

The set of samples that need to be classified

y: Label Space

The set of all possible labels

The goal of learning:

Find this target function

E.g.: The set of all possible names, documents, sentences, images, emails, etc.

Learning is search over functions

E.g.: {Spam, Not-Spam}, {+, -}, {Sports, Political, Business, Health}

Hypothesis Space

- Hypothesis: a proposed function h believed to be similar/approximate to target function f
- Hypothesis space: the space of all hypotheses that can, in principle, be output by a learning method
- Learning is a search through hypothesis space

Learning problem: Find a function that best separates the data

Different Hypothesis Spaces

On Supervised Learning

- 1) What is our instance/feature space?
 - What are the inputs to the problem?
 - What are the features?
- 2) What is our label space?
 - What is the prediction task?
- 3) What is our hypothesis space?
 - What functions should the learning algorithm search over?
- 4) What is our learning algorithm?
 - How do we learn from the labeled data?

Will be introduced in this semester

- 5) What is our loss function or evaluation metric?
 - What is the goodness of a learning algorithm?
 - What is success?

List of Supervised Learning Methods

- KNN
- Naïve Bayes
- Decision Tree
- Random Forest
- Gradient Boosting ML
 - GBDT, XGBoost, CatBoost, LightGBM
- Logistic Regression
- Support Vector Machine
- Overfitting and Regularization
- MLP (Shallow Neural Network)
- Deep Neural Network