

Politecnico di Milano Fisica Sperimentale I

a.a. 2017-2018 - Facoltà di Ingegneria Industriale e dell'Informazione

I prova in itinere - 26/04/2018

Giustificare le risposte e scrivere in modo chiaro e leggibile. Sostituire i valori numerici solo alla fine, dopo aver ricavato le espressioni letterali. Scrivere in stampatello nome, cognome, matricola e firmare ogni foglio.

- 1. Il cliente di un supermercato, dopo aver preso dal banco frigo un cespo di insalata di massa m = 200 g, lo lancia nel suo carrello fermo, di massa M = 10 kg, come in figura. L'insalata è lanciata da sopra la sua testa (ad un'altezza H = 2 m) con un angolo di tiro pari a $\alpha = 60^{\circ}$ e cade sul piano del carrello ad una distanza L = 3 m e ad altezza da terra pari a h = 0.5 m.
 - (a) Con quale velocità v_0 (in modulo) è stata lanciata l'insalata? $v_0=5.14 \text{ m/s}$

Quando l'insalata tocca il carrello, vi si incastra senza muoversi più, e il carrello comincia a muoversi senza attrito.

2. Sul pavimento di un vagone ferroviario è appoggiato un corpo di massa M attaccato ad una molla di costante elastica k, fissata alla parete del vagone. Fra il corpo di massa M e il piano orizzontale c'è attrito con coefficienti statico e dinamico rispettivamente pari a μ_s e μ_d . Il vagone è *inizialmente fermo* in stazione e la molla è nella sua *posizione a riposo*. A un certo punto, il vagone viene

H

L

improvvisamente accelerato verso destra con accelerazione costante a, come in figura.

- (a) Determinare l'accelerazione minima a_{\min} affinché M inizi a scivolare sul pavimento del vagone. [$a_{\min} = \mu_s g$] Supponendo che $a > a_{\min}$:
- (b) Calcolare la deformazione Δx della molla per cui, *per un osservatore solidale al vagone*, la risultante di tutte le forze agenti su il corpo M è nulla. $[\Delta x = M(a \mu_d q)/k]$
- (c) Nella situazione trovata al punto (b), quanto vale l'accelerazione del corpo di massa M *per un osservatore* solidale al vagone? $[a_r = 0]$
- 3. Scrat, lo scoiattolo dell'Era Glaciale, ha massa m_s , ed è aggrappato alla sua ghianda di massa m_s collegata ad un ramo tramite una liana elastica di costante elastica k = 9.81 N/m, lunghezza a riposo $y_0 = 40$ cm e massa trascurabile. Sotto Scrat, a distanza $y_T = 4$ m, c'è un tappeto elastico.
 - (a) Calcolare la massa *totale* $M = m + m_s$ sapendo che all'equilibrio la liana ha una lunghezza pari a $y_1 = 1$ m. $[M = k(y_1 y_0)/g = 0.6 \text{ kg}]$

Ad un certo istante, Scrat lascia la presa, senza imprimere alcun impulso alla ghianda.

- (b) Per quali valori di m la ghianda <u>non</u> urta contro il ramo? In tal caso, che tipo di moto compie la ghianda? Con quale periodo e ampiezza? [$m > k(y_1-2y_0)/(2g) = 0.1$ kg; $A = y_1-y_0-mg/k$; $T = 2\pi(m/k)^{1/2}$]
- (c) Calcolare quanto tempo T_S impiega Scrat a rimbalzare fino alla quota iniziale. Trovare il valore di m affinché nell'intervallo di tempo T_S la ghianda compia un numero intero di oscillazioni, in modo che Scrat la possa riafferrare. [$T_S = 2(2y_T/g)^{1/2} = 1.81$ s; $m = y_T k/(2g\pi^2) = 203$ g]

- 4. Un satellite di massa m sta orbitando attorno alla Terra con traiettoria circolare di raggio R. Ad un certo punto esplode e si separa in due frammenti di massa $m_1 = 3/4$ m e $m_2 = 1/4$ m nelle direzioni indicate in figura con $\theta = 60^\circ$.
 - (a) Con che velocità v si muove inizialmente il satellite di massa m? [$v = (vM/R)^{1/2}$]
 - (b) Con quali velocità v_1 e v_2 si muovono i due frammenti immediatamente dopo l'esplosione? Si esprima il risultato in funzione della velocità iniziale v. [$v_2 = 4v$; $v_1 = 4v/3$]
 - (c) Quale è la forma della traiettoria dei due frammenti? [la traiettoria del frammento di massa m_1 è ellittica, quella del frammento di massa m_2 è iperbolica]