

ME 471/571

Point-to-point communication

COLLECTIVE COMMUNICATION PATTERNS

SUM REDUCTION

PARALLEL ADDITION IMPROVED

MPI_SEND - SEND A MESSAGE

```
which data? how much data? what kind of data? where?

MPI_Send(void* data, int count, MPI_Datatype datatype, int destination,...
int tag, MPI_Comm communicator)
```


MPI_RECV - RECEIVE A MESSAGE

where to put it? how much data? what kind of data? where from?

MPI_Recv(void* data, int count, MPI_Datatype datatype, int source,...

int tag, MPI_Comm communicator, MPI_Status status)

POINT-TO-POINT HELLO WORLD

POINT-TO-POINT HELLO WORLD

Consider the finite difference scheme we discussed at the beginning of the course:

$$\frac{\partial u}{\partial x} \approx \frac{u_{i+1} - u_{i-1}}{2\Delta x}$$

Let's say we have data u which is distributed across processes:

$$\frac{\partial u}{\partial x} \approx \frac{u_{i+1} - u_{i-1}}{2\Delta x}$$

$$\frac{\partial u}{\partial x} \approx \frac{u_{i+1} - u_{i-1}}{2\Delta x}$$

$$\frac{\partial u}{\partial u} \approx \frac{u_{i+1} - u_{i-1}}{u_{i-1}}$$

$$\frac{\partial u}{\partial x} \approx \frac{u_{i+1} - u_{i-1}}{2\Delta x}$$

- 1) Receive a value of u_4 from irank-1
- 2) Receive a value of u_{10} from irank + 1
- 3) Compute finite difference using values $u_0, u_1, ..., u_{N_{loc}-1}$ and two recieved end values

$$\frac{\partial u}{\partial x} \approx \frac{u_{i+1} - u_{i-1}}{2\Delta x}$$

- 1) Receive a value of u_4 from irank-1
- 2) Send a value of u_9 to irank + 1
- 3) Receive a value of u_{10} from irank + 1
- 4) Send a value of u_5 to irank-1
- 3) Compute finite difference using values $u_0, u_1, ..., u_{N_{loc}-1}$ and two recieved end values

$$\frac{\partial u}{\partial x} \approx \frac{u_{i+1} - u_{i-1}}{2\Delta x}$$

