实验环境

PyCharm-162. 1237. 1

TextMate, python 2,7

一. 实验题目

<1>. 考虑对于上述表格中的数据进行 Parzen 窗估计和设计分类器。窗函数为一个球形的高斯函数,如下所示:

 $\Phi((x-)/h) \propto \exp \left[-(--)(x--)/(2h 2)\right]$ 编写程序,使用 Parzon 窗估计方法对一个任意的测试样本点 x,进行分类。对分类器的训练则使用表格中的三维数据。同时另 h=1,分类样本点为: (0.5,1.0,0.0),(0.31,1.51,-0.50),(-0.3,0.44,-0.1) 现在我们另 h=0.1,重复 a。

〈2〉. 考虑不同维数空间中,使用 k-紧邻概率密度估计方法的效果编写程序,对于一维的情况,当有 n 个数据样本点时,进行 k-近似概率密度估计。对表格中的类别 3 中的特征 1,用程序画出当 k=1,3,5 时的概率密度估计结果编写程序,对于二维的情况,当有 n 个数据样本点时,进行 k-近似概率密度估计。对表格中的类别 2 中的特征(1,2),用程序画出当 k=1,3,5 时的概率密度估计结果对表格中的 3 个类别的三维特征,使用 k-紧邻概率密度估计方法。并且对下列点出的概率密度进行估计:(-0.41,0.82,0.88),(0.14,0.72,4.1),(-0.81,0.61,-0.38)

二. 实验数据

	W 1			W2			W3		
样本	X1	X2	Х3	X1	X2	Х3	X1	X2	Х3
1	0. 28	1. 31	-6. 2	0. 011	1. 03	-0. 21	1. 36	2. 17	0. 14
2	0. 07	0. 58	-0. 78	1. 27	1. 28	0.08	1. 41	1. 45	-0. 38
3	1. 54	2. 01	-1. 63	0. 13	3. 12	0.16	1. 22	0. 99	0. 69
4	-0. 44	1. 18	-4. 32	-0. 21	1. 23	-0. 11	2. 46	2. 19	1. 31
5	-0. 81	0. 21	5. 73	−2 . 18	1. 39	-0. 19	0. 68	0. 79	0. 87
6	1. 52	3. 16	2. 77	0. 34	1. 96	-0. 16	2. 51	3. 22	1. 35
7	2. 20	2. 42	-0. 19	-1. 38	0. 94	0. 45	0. 60	2. 44	0. 92
8	0. 91	1. 94	6. 21	-0. 12	0. 82	0.17	0. 64	0. 13	0. 97
9	0. 65	1. 93	4. 38	-1. 44	2. 31	0.14	0.85	0. 58	0. 99
10	-0. 26	0. 82	-0. 96	0. 26	1. 94	0. 08	0. 66	0. 51	0. 88

三. 实验过程

(1) 第一个问题,需要用到的是 Parzon 窗估计以及设计分类器,题中 给出了窗函数,我们把这个函数代入书上的公式,对得到的 p 进行 比较可以获得分类结果 公式如下:

$$p_n(x) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h_n} \varphi(\frac{x - x_i}{h_n})$$

当 h=1 时得出结果:

slf:py_code slf\$ python machine_4_2.py [[0.12591898 0.4710785 0.39801295] [0.15343855 0.48279633 0.22602246] [0.13990812 0.37825433 0.18231173]]

这个结果的每一行分别是代表这三个测试点相对于 ω 1, $\square \omega$ 2 以及 ω 3 所计 算出来的pn(x)的结果。所以我们可以很明显的发现,这 三个测试点到最后都应该被划分为第二类。

当 h=2 时得出结果:

这个结果的每一行分别是代表这三个测试点相对于 ω 1, $\square \omega$ 2 以及 ω 3 所计 算出来的pn(x)的结果。所以我们同样可任意发现,这三个测试点到最后都应该被划分为第二类。

(2) 第二题,我们需要使用 k-近邻估计方法,进行分类,并且绘制出概率密度估计结果。首先,对于 k-近邻估计方法,其基本公式如下:

$$p_n(x) = \frac{k_n/n}{V_n}$$

其中,kn就是我们 k-近邻估计中的 k,n 为我们的样本集的大小,而Vn为对应的面积或者体积。具体的算法过程如下:

- 1. 为了估计点 x 的pn(x),我们首先以点 x 为中心进行扩张,直 到包含 进kn个样本为止。其中这kn个点被称为 x 的最近邻.
- 2. 此时,我们的到半径的长度。 而Vn则是一个我们自己定义的,与kn有关的一个空间函数,在二位情况下为面积,三位情况下为

体积。

3. 带入公式, 计算对应的pn(x)。

a)第一问

① 当 k=1 时

② 当 k=3 时

③ 当 k=5 时

b)第二问

① 当 k=1 时

Figure 1

④ 当 k=5 时

● ● Figure 1

c)第三问

第三问如果作图要四维了,应该没法输出图吧,最后的结果是输 p

① k=1 时

这个结果的每一行分别是代表这三个测试点相对于 ω 1, $\square \omega$ 2 以及 ω 3 所计 算出来的pn(x)的结果。所以我们可以发现,

测试点一:第二类测试点二:第一类测试点三:第一类

② k=3 时

这个结果的每一行分别是代表这三个测试点相对于 ω 1, $\square \omega$ 2 以及 ω 3 所计 算出来的pn(x)的结果。所以我们可以发现,

测试点一:第二类测试点二:第一类测试点三:第二类

③ K=5 时

这个结果的每一行分别是代表这三个测试点相对于 ω 1, $\square \omega$ 2 以及 ω 3 所计 算出来的pn(x)的结果。所以我们可以发现,

测试点一:第二类测试点二:第三类测试点三:第二类

四. 遇到的问题

a) 遇到了用 pycharm 画三维图像的问题,总是报 ImportError: No module named 这样的错,弄了一个下午最后没想到把程序在命令行中运行就好了,而且运行效率似乎也比 pycharm 快。可能的原因是电脑上 python 版本太

多了 pycharm 没有配好正确的路径

五. 收获与感悟

- a) 经过这次实验首先我更加熟悉了 python 的使用
- b) 我了解 Parzon 算法的使用
- c) 我了解 K-邻近算法的使用

六. 代码

位于同项目路径的文件中