中国科学技术大学

2017-2018 第二学期期末考试题(2)

考试科目: <u>随机过程(B)</u>				得分:	
学生所在系:		_ 姓名: _		学号:	
(2018年6月29日,半开卷)					
一、(24分。填空题每空3分,其余每空2分)判断是非与填空:					
(1) (判断是	非) 设 S 为一不可约	的马氏链 $\{X_n,$	$n \ge 0$ }的状态	空间,则对任意 $i,j\in S$	<i>S</i> :
(a) $i, j $	均为正常返状态 (); (b) μ	$\mu_i = \mu_j$,其中,	$\mu_i = \sum_{n=0}^{\infty} n f_{ii}^{(n)} ($);
(c) i, j =	未必为常返状态(); (d)	$d(i) = d(j) \in$	$(0,\infty)$ () .	
(2) (判断是	非)设马氏链共有/	n个状态,且 i	$j \rightarrow j$, 则:		
(a) 可用3	E多n步由i转移到 j	i(b)) 由 <i>i</i> 转移到 <i>j</i>	i 至少要用 n 步 ()	0
(3)(填空);	及粒子在数轴上由 0	出发作对称随	机游动,则它回]到0的平均时间为()。
(4) (填空)) 设 $\{N(t), t \ge 0\}$ 是-	一强度为え的	Poisson 过程,	s,t>0,则:	
$P\{N(s)=k$	$ N(s+t)=n\}=($)(0	$\leq k \leq n$); E	$N(s+t) N(s)\}$ 的期望	2为
(),方差为()。			
二、(15分)	设某路段发生交通	事故的次数 <i>N</i> ((t) 为一 Poisson	n 过程,且平均每月发	生交
	$ \mathcal{L}_t = 0 $ 表示去年 12				
	3 月底为止未发生为 1到今年 3 月底已发生			月底至少发生7次交通	事故
的概率是多少?					
	字故造成的经济损约 试求到 6 月底为止			数为0.1的指数分布, 的期望值。	且各
				b,c)的边爬行,假定 另外两个顶点(b 和 c	
概率都等于1/2。	试用一个马氏链 {X	$\{n,n\geq 0\}$ 描述	这个过程(状	态: <i>a,b,c</i>), 并且	

(1) 写出该马氏链的转移概率矩阵P;

(2) 试求 $P^{(n)} = P^n$;

(3) 试求
$$\lim_{n\to\infty} P^{(n)} = ?$$

四、(18分)设 $\{X_n, n \ge 0\}$ 为区间 [0,3]上的随机游动,其转移概率矩阵为:

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 \\ 2 & 0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ 3 & 0 & 0 & 1 & 0 \end{bmatrix}$$

试求质点由k 出发而被0吸收的概率 p_k 及它被吸收的平均步数 v_k , (k=1,2,3)。

五、(16 分)设A 与 B独立,都服从[-1, 1]上的均匀分布,定义随机过程:

$$X(t) = A\cos ω_0 t + B\sin ω_0 t$$
, $(t ∈ R, ω_0)$ 为非零常数)

- (1) 证明 $\{X(t), t \in R\}$ 为宽平稳过程;
- (2) 试求其功率谱密度函数 $S(\omega)$ 。

六、(12分) 设平稳过程 $X = \{X(t), t \in R\}$ (均值为 0) 的功率谱密度函数为:

$$S(\omega) = \frac{\omega^2 + 14}{\omega^4 + 13\omega^2 + 36}$$

- (1) 试求 X 的协方差函数 $R(\tau)$;
- (2) 问 X 的均值是否有遍历性? 为什么?

(完)