# 1.3 モル導電率の測定

## 1. 目的

種々の電解質水溶液の導電率を測定し、濃度との関係を考察することで Debye-Huckel-Onsager の式について 理解する。

### 2. 原理

### ■モル電気伝導率

電気伝導率とは、溶液の導電率を濃度で割ったものであり、通常  $\kappa$  で表され単位は  $[(\cdot \text{cm})^{-1}]$  である。 これは、 $1[\text{cm}^2]$  の断面積を持つ抵抗の長さあたりの抵抗値の逆数である。また、抵抗の逆数を [S] という単位で表すことがある。モル電気伝導率は、電解質濃度  $1[g/\text{cm}^3]$  あたりの電気伝導率であり、記号  $\Lambda$  で表される。 これをモル濃度 C[mol/L] に換算し、イオンの価数 Z を加味すると、

$$\Lambda = 1000 \kappa / zC$$

となる。

#### ■電解質水溶液の電気伝導度

モル電気伝導率は電解質の性質、濃度と関係がある。これは、Debye-Huckel の理論から導かれるものであり、強電解質では  $\Lambda \propto \sqrt{C}$  である。これは、コールラウシュの平方根則といい、より詳しくは以下の Debye-Huckel-Onsager の式で表される。

$$\Lambda = \Lambda_0 - (A + B\Lambda_0)\sqrt{C}$$

 $\Lambda_0$  は極限モル電気伝導度といい、 $C \to 0$  での電気伝導度である。弱電解質では、 $C \to 0$  で急激に伝導度が上昇する。これについては後に考察する。

完全電離している電解質水溶液中では、陽イオンと陰イオンが別々に存在しており、それぞれが電荷移動の媒体となっていると考えることができる。つまり、イオン同士の相互作用がない無限希釈では、各イオンの電気 伝導度の線形和が溶液全体の電気伝導度となる。つまり、溶液の極限モル電気伝導率は定数  $\tau_0^+, \tau_0^-$  を用いて 以下の式で表すことができる。

$$\Lambda_0 = \Lambda_0^- + \Lambda_0^+ = \Lambda_0 \tau_0^- + \Lambda_0 \tau_0^+$$

この定数  $au_0^+, au_0^-$  をイオンの輸率といい、イオン種ごとに固有の値である。

## 3. 実験方法

### ■試薬

- NaCl 溶液
- HCl 溶液
- CH<sub>3</sub>COOH 溶液

NaCl,HCl については濃度を 0.01,0.015,0.02,0.025,0.05,0.1[mol/L] の 7 通り、 $CH_3COOH$  については 0.001,0.002,0.005,0.01,0.02,0.05,0.1[mol/L] の 7 通りの条件に設定し、それぞれ導電率を測定した。 また、先に蒸留水の導電率を測定し、各溶液の電気伝導度を算出する際はこの値で補正した。

## 4. 結果

NaCl,HCl, 酢酸について、濃度と電気伝導率  $[S \cdot cm^2/mol]$  の関係を以下のグラフに示す。



図 1 濃度-電気伝導率

## 課題 1

4 節参照

### 課題 2

課題 1 同様、NaCl,HCl, 酢酸について、濃度の平方根と電気伝導率  $[S\cdot cm^2/mol]$  を以下のグラフに示す。また、最小二乗法を用いて回帰分析を行った。それぞれの物質について、回帰直線の切片・傾き・ $r^2$  値を以下の表に示す。



図 2 濃度の平方根-電気伝導率

| 物質   | 切片 (×10 <sup>4</sup> ) | 傾き (×10 <sup>5</sup> ) | $r^2$ |
|------|------------------------|------------------------|-------|
| NaCl | 12.9                   | 1.25                   | 0.995 |
| HCl  | 45.5                   | 4.84                   | 0.984 |
| 酢酸   | 4.42                   | 1.52                   | 0.596 |
|      |                        |                        |       |

課題3 課題2の表より、それぞれの物質の極限モル電気伝導率を以下に示す。

| 物質   | 極限モル電気伝導率 $(	imes 10^4 [	ext{S} \cdot 	ext{cm}^2/	ext{mol}])$ |
|------|---------------------------------------------------------------|
| NaCl | 12.9                                                          |
| HCl  | 45.5                                                          |
| 酢酸   | 4.42                                                          |

## 課題 4, 課題 5

NaCl,HCl について、それぞれの陽イオン、陰イオンの極限モル電気伝導率  $(\Lambda_+^\infty, \Lambda_-^\infty)$  を以下の表に示す。(単位:([S·cm²/mol])) なお、各イオンの輸率は表に示した値を用いた。

| 物質   | 輸率 (-,+)         | 陰イオン            | 陽イオン            | $\Lambda^{\infty}_{-}(\times 10^4)$ | $\Lambda^{\infty}_{+}(\times 10^{4})$ |
|------|------------------|-----------------|-----------------|-------------------------------------|---------------------------------------|
| NaCl | (0.6038, 0.3962) | $\mathrm{Cl}^-$ | $\mathrm{Na}^+$ | 7.79                                | 5.11                                  |
| HCl  | (0.1790, 0.8210) | $Cl^-$          | $\mathrm{H}^+$  | 7.74                                | 37.4                                  |

### 課題 6

(1)

課題2で示したグラフ・回帰系数より、強電解質・強酸では濃度の平方根とモル電気伝導率が比例していた。 一方、酢酸のような弱電解質では比例関係が成り立たず、低濃度では電気伝導率が急激に上昇した。これは、 以下の式に示す酢酸の解離平衡が低濃度ほど右に偏り、電荷を媒介するイオンが増えたためであると考える。

$$\mathrm{CH_{3}COOH} \rightleftharpoons \mathrm{CH_{3}COO^{-}} + \mathrm{H^{+}}$$

一方、強電解質や強酸では完全電離が仮定できるため、イオン濃度が電解質濃度に比例し、コールラウシュの 平方根則が成り立つと考える。

(2)

課題 4,5 の表より、NaCl と HCl で Cl $^-$  の極限モル電気伝導率は変わらなかったものの、Na $^+$  と H $^+$  では異なった。このことから、極限モル電気伝導率はイオン種に固有の値であると推定できる。また、H $^+$  の極限モル電気伝導率が Na $^+$  より極めて高いのは、プロトンジャンプという機構によると考える。プロトンジャンプは以下の 3 段階に分けられる。1. プロトンが近接する水分子と結合を形成する。2. 結合された水分子の持つ水素分子が解離し、プロトンとなる。3.2 でできたプロトンが近接する水分子に結合する。

このように連鎖的に結合を形成・切断することで、プロトンは水分子中を素早く移動することができる。この ため、プロトンは極限モル電気伝導率が大きくなると考える。

#### 課題7

極限当量モル電気伝導率  $\Lambda_0$  は、各イオンの極限モル電気伝導率の線形和で表されるため、 $\Lambda_0$  は以下の式で求めることができる。

$$\Lambda_0 = (3.496 + 0.409) \times 10^{-2} [S \cdot m^2/\text{mol}] = 3.905 \times 10^4 [S \cdot \text{cm}^2/\text{mol}]$$

実際の伝導率はイオン濃度に比例するため、極限当量伝導率と解離度の関係は以下の式となる。

$$\Lambda = \Lambda_0 \alpha$$

酢酸濃度と解離度の関係を表すグラフを以下の図に示す。

この値から、平衡定数を求めた。平衡定数 K, 解離度  $\alpha$ , 濃度 C の関係は以下のオストワルトの希釈律で近似した。

$$K = \frac{c\alpha^2}{1 - \alpha}$$

濃度・平衡定数の関係を以下のグラフにしめす。



図3 酢酸濃度-解離度



図 4 濃度-解離平衡定数

以上の結果から、弱電解質においては低濃度で解離定数が急激に上昇し、それに伴って解離度も上昇することがわかった。これは、課題 6-(1) で示した弱電解質の極限モル導電率がコールラウシュの平方根則に当てはまらないことの裏付けになる。

また、濃度 0.001[mol/L] で解離定数が負になったことについては、低濃度では微量に含まれる他の化学種の存在が無視できなくなり、通常の解離平衡で近似できなくなるためと考える。

# 6. 参考文献

• アトキンス 物理化学 (下) 第 10 版/P. W. Atkins/ 2017/09/01 /東京化学同人