2 - Mathe - MD - Besprechung am:

Übungsserie - Funktionen und Ungleichungen

1. Finde Definitions- und Wertebereich folgender Funktionen:

a)
$$y = \log_2(x+2)$$

$$\mathbb{D} =]-2; \infty[\qquad \mathbb{W} = \mathbb{R}$$

b)
$$y = \log_{1/2} \frac{1}{x+1}$$

$$\mathbb{D} =]-1; \infty[\qquad \mathbb{W} = \mathbb{R}$$

c)
$$y = e^{\sqrt{1-x^2}}$$

$$\mathbb{D} = [-1; 1] \qquad \mathbb{W} = [1/e; e]$$

$$d) y = \log(x^2 + x)$$

$$\mathbb{D} = \mathbb{R} \setminus [-1; 0] \quad \mathbb{W} = \mathbb{R}$$

e)
$$y = \sqrt{3^{\frac{x-1}{x-2}}}$$

$$\mathbb{D} = \mathbb{R} \setminus \{2$$

$$\mathbb{D} = \mathbb{R} \setminus \{2\} \qquad \mathbb{W} = \mathbb{R}^+ \setminus \{\sqrt{3}\}$$

2. Finde den Definitionsbereich folgender Funktionen:

a)
$$y = \ln(\ln(x))$$

$$\mathbb{D} =]1; +\infty[$$

b)
$$y = \sqrt{\log(x^2 - 3)}$$

$$\mathbb{D} = \mathbb{R} \setminus [-2; 2]$$

$$\mathbb{D} = \mathbb{R} \setminus]-2;2$$

c)
$$y = \sqrt{\log_{1/3}(x^2 - 3)}$$

$$\mathbb{D} = [-2; -\sqrt{3}[\ \cup\]\sqrt{3}; 2]$$

d)
$$y = \log \frac{3-x}{x-e}$$

$$\mathbb{D} =]e; 3[$$

3. Für welche x gelten folgende Ungleichungen?

a)
$$\log_2(x-3) > 4$$

$$x \in]19; +\infty[$$

b)
$$\log_{1/2}(x-3) > 4$$

$$x \in [3; 3 + 1/16[$$

c)
$$2 - \log_{1/10} \sqrt{1-x} < 10$$
 $x \in]1 - 10^{16}; 1[$

$$x \in]1 - 10^{16}; 1$$

d)
$$\log_5 \frac{x+2}{x} < -2$$

$$x \in]-25/12;-2[$$

e)
$$\log_a \frac{x+1}{x-2} > 0$$

e)
$$\log_a \frac{x+1}{x-2} > 0$$
 $a \neq 0, 1$. Für $a < 0 : x \in \emptyset$; $a > 1 : x \in [2, \infty]$; $a < 1 : x \in]-\infty; -1[$

f)
$$\ln(x^2 - 4x - 4) > 0$$

$$x \in \mathbb{R} \setminus [-1; 5]$$

$$g) \log 2x < \log (3x - 3)$$

$$x \in]3; +\infty[$$

4. **Schwierig**: Finde den D-Bereich:

$$f(x) = \log_5 \log_{1/5} \frac{4 - x^2}{x + 1/4}$$

$$\mathbb{D} =]-5/2; -2[\ \cup\]3/2; 2[$$

2 - Mathe - MD - Besprechung am:

Übungsserie - Funktionen und Ungleichungen

1. Finde Definitions- und Wertebereich folgender Funktionen:

a)
$$y = \log_2(x+2)$$

$$\mathbb{D} =]-2; \infty[\qquad \mathbb{W} = \mathbb{R}$$

b)
$$y = \log_{1/2} \frac{1}{x+1}$$

$$\mathbb{D} =]-1; \infty[\qquad \mathbb{W} = \mathbb{R}$$

c)
$$y = e^{\sqrt{1-x^2}}$$

$$\mathbb{D} = [-1; 1] \qquad \mathbb{W} = [1/e; e]$$

$$d) y = \log(x^2 + x)$$

$$\mathbb{D} = \mathbb{R} \setminus [-1; 0] \quad \mathbb{W} = \mathbb{R}$$

e)
$$y = \sqrt{3^{\frac{x-1}{x-2}}}$$

$$\mathbb{D} = \mathbb{B} \times \mathbb{C}$$

$$\mathbb{D} = \mathbb{R} \setminus \{2\} \qquad \mathbb{W} = \mathbb{R}^+ \setminus \{\sqrt{3}\}$$

2. Finde den Definitionsbereich folgender Funktionen:

a)
$$y = \ln(\ln(x))$$

$$\mathbb{D} =]1; +\infty[$$

b)
$$y = \sqrt{\log(x^2 - 3)}$$

$$\mathbb{D} = \mathbb{R} \setminus]-2;2[$$

c)
$$y = \sqrt{\log_{1/3}(x^2 - 3)}$$
 $\mathbb{D} = [-2; -\sqrt{3}[\cup]\sqrt{3}; 2]$

$$\mathbb{D} = [-2; -\sqrt{3}] \cup [\sqrt{3}; 2]$$

d)
$$y = \log \frac{3-x}{x-e}$$

$$\mathbb{D}=]e\,;3[$$

3. Für welche x gelten folgende Ungleichungen?

a)
$$\log_2(x-3) > 4$$

$$x \in]19; +\infty[$$

b)
$$\log_{1/2}(x-3) > 4$$

$$x \in [3; 3 + 1/16[$$

c)
$$2 - \log_{1/10} \sqrt{1-x} < 10$$

$$x \in]1 - 10^{16}; 1[$$

d)
$$\log_5 \frac{x+2}{x} < -2$$

$$x \in]-25/12;-2[$$

e)
$$\log_a \frac{x+1}{x-2} > 0$$

e)
$$\log_a \frac{x+1}{x-2} > 0$$
 $a \neq 0, 1$. Für $a < 0 : x \in \emptyset$; $a > 1 : x \in [2, \infty]$; $a < 1 : x \in] -\infty, -1[$

c)
$$\log_{a} x-2 > 0$$

f)
$$\ln(x^2 - 4x - 4) > 0$$

$$x \in \mathbb{R} \setminus [-1; 5]$$

$$g) \log 2x < \log (3x - 3)$$

$$x \in]3; +\infty[$$

4. **Schwierig**: Finde den D-Bereich:

$$f(x) = \log_5 \log_{1/5} \frac{4-x^2}{x+1/4}$$
 $\mathbb{D} =]-5/2; -2[\cup]3/2; 2[$

$$\mathbb{D} =]-5/2; -2[\ \cup\]3/2; 2[$$