

Unsupervised 3D Keypoint Discovery with Multi-View Geometry

Sina Honari, Chen Zhao, Mathieu Salzmann, Pascal Fua

Motivation:

3D human pose estimation models require a considerable amount of labels, which is difficult to obtain. In this paper, we propose a method that discovers unsupervised 3D keypoints. These keypoints can be later mapped to the target 3D pose of interest with a small set of labels (using a simple MLP).

Method:

• Subject is first detected and cropped and together with the background image reconstruct the input image through subject mask estimation.

$$\tilde{\mathbf{I}} = \mathbf{M} \times \mathbf{D} + (1 - \mathbf{M}) \times \mathbf{B}$$

• Encoded features $\Xi^{\mathbf{v}}$ from each view \mathbf{v} are are used to predict 2D keypoints \mathbf{x} in each view, which are then projected to 3D using a triangulation operation Δ

$$\Delta(\{\mathbf{x}_n^{\vartheta}\}_{\vartheta=1}^V, \{\mathbf{\Pi}_{\mathbf{p}}^{\vartheta}\}_{\vartheta=1}^V) = \mathbf{X}_n$$

• The 3D keypoints **X** are first projected to 2D in each view and then used to estimated the subject mask **M** that the model itself has initially estimated.

$$\tilde{\mathbf{M}}_{\mathbf{p}}^{\vartheta} = \phi(\{\hat{\mathbf{x}}_n^{\vartheta}\}_{n=1}^N)$$

 No label or pretrained model is used for subject detection, mask estimation, 2D, or 3D keypoint estimation.

Losses:

• Image reconstruction loss:

$$\mathcal{L}_{\text{reconst}} = \left\|\mathbf{I} - \tilde{\mathbf{I}}\right\|_{2}^{2} + \beta \sum_{l=1}^{3} \left\|\text{Res}_{l}(\mathbf{I}) - \text{Res}_{l}(\tilde{\mathbf{I}})\right\|_{2}^{2}$$

• Mask reconstruction loss: mask of the keypints path should match the mask of the image reconstruction path

$$\mathcal{L}_{ ext{mask}} = \| ilde{\mathbf{M}}_{\mathbf{p}} - \mathbf{M}_{\mathbf{p}} \|_2^2$$

• Coverage loss: the keypoints should fall on the subject mask $\mathcal{L}_{\text{coverage}} = \frac{1}{n} \sum_{n=1}^{N} |1 - \bar{\mathbf{H}}_n \odot \mathbf{M_p}|$

• Centering loss: the center of bounding box (bbox) should be close to the average of keypoints (robust bbox pred) $\sum_{\text{centering}}^{N} \hat{\mathbf{x}}_{n}$

All losses:

 $\mathcal{L}_{unsup} = \mathcal{L}_{reconst} + \gamma \mathcal{L}_{mask} + \delta \mathcal{L}_{coverage} + \eta \mathcal{L}_{centering}$

Results:

Table 1. Comparison with unsupervised 3D models on H36M (in mm). SV and MV indicate single- and multi-view models kpts denotes number of keypoints.

Model				MPJPE	N- MPJPE	P- MPJPE
Kr	nown]	Kinematic M	lodel			
Kundu <i>et al.</i> [26]				99.2	-	-
Kundu et al.[27]				-	-	89.4
U	ninte	rpretable late	ents			
NVS [35]		•		-	115.0	_
Honari et al.[15]				100.3	99.3	74.9
	Keyp	oint Discover	ry			
KeypointNet [41]	SV	2 hid MLP	32 kpts	158.7	156.8	112.9
Ours	SV	2 hid MLP	32 kpts	125.73	121.04	89.05
BKinD-3D [40]	\overline{MV}	Linear	15 kpts ^a	125	·	105
Ours	MV	Linear	32 kpts	120.9	117.9	93.5
Ours	MV	2 hid MLP	32 kpts	73.8	72.6	63.0

Table 2. Comparison with unsupervised 3D models on 3DHP (in cm). All models use a 2 hidden layer MLP to map either features (top 3 models) or 48 discovered keypoints (Ours) to the labelled pose.

Model	Train-Set	MPJPE	N-MPJPE	P-MPJPE
Uni	nterpretable	e latents		
DrNet [7]	3DHP	22.28	21.55	14.94
NSD [37]	3DHP	20.24	19.29	14.09
Honari <i>et al</i> . [15]	3DHP	20.95	19.78	14.04
K	eypoint Disc	covery		
Ours	H36M	16.90	16.19	12.48
Ours	3DHP	14.57	14.21	11.52

Table 3. Comparison with 2D keypoint estimation models. All models predict 32 keypoints on 6 actions of wait, pose, greet, direct, discuss, and walk and regress a linear model from 2D keypoints to the 2D pose labels.

Model	%-MSE Error
Thewlis et al. [43]	7.51
Zhang et al. [49]	4.14
Schmidtke et al. [38]	3.31
Lorenz et al. [30]	2.79
Jakab et al. [21]	2.73
Ours	2.38

Ablation studies:

\mathcal{L}_{rec}	onst	\mathcal{L}_{mask}	$\mathcal{L}_{ ext{coverage}}$	$\mathcal{L}_{ ext{centering}}$	MPJPE	N-MPJPE	P-MPJPE
✓		X	X	X	111.8	107.6	79.7
/	′	✓	X	X	79.9	78.6	67.0
/	′	✓	✓	X	78.3	77.0	65.6
/	′	✓	✓	✓	73.8	72.6	63.0
	Nu	mber of	Views	Pose Model	MPJPE	N-MPJPE	P-MPJPE
	Nu	mber of	Views	Pose Model 2-hid MLP	MPJPE 103.21	N-MPJPE 100.7	P-MPJPE 81.6
	Nu		Views				

