Examen de contrôle continu

Durée: 2h

Documents et calculatrices interdits

Exercice 1 (Questions de cours). Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien.

- 1. Soit $f \in L(E)$. Rappeler la définition de l'adjoint de f.
- 2. Enoncer et démontrer l'inégalité de Minkowski et préciser son cas d'égalité (la démonstration de l'inégalité de Cauchy-Schwarz n'est pas demandée).
- 3. Montrer que, pour toute forme linéaire $\varphi \in E^*$, il existe un unique $u \in E$ tel que $\forall v \in E, \varphi(v) = \langle u, v \rangle$ (théorème de représentation de Riesz).
- 4. Montrer que $A^{\perp} = \text{Vect}(A)^{\perp}$.

Exercice 2. On considère l'espace $E = \mathbb{R}_2[X]$ muni de la forme bilinéaire définie, pour tous $P, Q \in E$, par

$$\langle P, Q \rangle = \int_0^1 t P(t) Q(t) dt.$$

- 1. Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire.
- 2. Enoncer l'inégalité de Cauchy-Schwarz pour $\langle \cdot, \cdot \rangle$.
- 3. En déduire que

$$\forall P \in E, \left| \int_0^1 t^2 P(t) dt \right| \leq \frac{1}{2} \sqrt{\int_0^1 t P(t)^2 dt}$$

et étudier le cas d'égalité.

Exercice 3. Dans $E = \mathbb{R}^3$ muni du produit scalaire usuel, on considère l'hyperplan

$$H = \{(x, y, z) \in \mathbb{R}^3, x + y - z = 0\}.$$

- 1. Déterminer H^{\perp} .
- 2. Donner la matrice dans la base canonique de p_H , la projection orthogonale sur H. En déduire la matrice de la symétrie orthogonale s_H .
- 3. Calculer $d(e_1, H)$, la distance de $e_1 = (1, 0, 0)$ à H.

Exercice 4. Soit $E = \mathbb{R}_3[X]$ muni du produit scalaire $\langle P, Q \rangle = \int_{-1}^1 P(t)Q(t)dt$.

- 1. On considère l'endomorphisme f de E défini, pour tout $P \in E$, par $f(P) = ((X^2 1)P')' = (X^2 1)P'' + 2XP'$. Montrer que f est un endomorphisme symétrique (on ne vérifiera pas que f est un endomorphisme).
- 2. Donner la matrice représentative de f dans la base canonique $\mathcal{B}_0=(1,X,X^2,X^3)$.
- 3. En déduire que la base \mathcal{B}_0 n'est pas orthogonale.
- 4. Calculer, avec la méthode d'orthogonalisation de Gram-Schmidt appliquée à \mathcal{B}_0 , une base orthogonale de E.

 On utilisera sans la démontrer la formule suivante : $\forall k \in \mathbb{N}, \int_{-1}^1 t^k dt = \begin{cases} 0 & \text{si } k \text{ impair,} \\ \frac{2}{k+1} & \text{si } k \text{ pair.} \end{cases}$ (Remarque : il n'est pas demandé d'unitariser les polynômes ainsi obtenus !)

Exercice 5. Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien.

1. Montrer l'égalité suivante

$$\forall (u, v) \in E^2, \|\|u\|^2 v - \langle u, v \rangle u\|^2 = \|u\|^2 [\|u\|^2 \|v\|^2 - \langle u, v \rangle^2].$$

2. En déduire l'inégalité de Cauchy-Schwarz.