Math 8100 Assignment 6

Due date: Friday 8th of October 2010

1. Prove the following:

(a) $\int_{\{x \in \mathbb{R}^n \,:\, |x| \le 1\}} |x|^{-p} \, dx < \infty \quad \text{if and only if} \quad p < n.$

(b) $\int_{\{x\in\mathbb{R}^n\,:\,|x|\geq 1\}} |x|^{-p}\,dx <\infty \quad \text{if and only if} \quad p>n.$

2. Suppose that $f \in L^1(\mathbb{R}^n)$. Show that

$$\int_{\mathbb{R}^n} |f(x)| \, dx = \int_0^\infty m(\{x \in \mathbb{R}^n : |f(x)| > t\}) \, dt.$$

3. Recall that the Fourier transform of an integrable function f on \mathbb{R}^n may be defined by

$$\widehat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi ix \cdot \xi} \, dx$$

and the convolution of two integrable functions f and g on \mathbb{R}^n may be defined by

$$f * g(x) = \int_{\mathbb{R}^n} f(x - y)g(y) \, dy.$$

Let $f, g, h \in L^1(\mathbb{R}^n)$.

- (a) Prove that for each $\xi \in \mathbb{R}^n$ one has $\widehat{f * g}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$.
- (b) i. Show that f * g = g * f.
 - ii. Show that (f * g) * h = f * (g * h).
- (c) Show that there does not exist $I \in L^1(\mathbb{R}^n)$ such that f * I = f for all $f \in L^1(\mathbb{R}^n)$.
- 4. (a) Let $f \in L^1(\mathbb{R})$.
 - i. Let g(x) = xf(x). Show that if $g \in L^1$, then \widehat{f} is differentiable and $\frac{d}{d\xi}\widehat{f}(\xi) = -2\pi i\,\widehat{g}(\xi)$.
 - ii. Suppose f is C^1 and vanishes at infinity. Let $h(x) = \frac{d}{dx}f(x)$. Show that if $h \in L^1$, then $\hat{h}(\xi) = 2\pi i \xi \hat{f}(\xi)$.
 - (b) Let $G(x) = e^{-\pi x^2}$. By considering the derivative of $\widehat{G}(\xi)/G(\xi)$, show that $\widehat{G}(\xi) = G(\xi)$.
- 5. Suppose that F is a closed subset of $\mathbb R$ whose complement has finite measure. Let $\delta(x)$ denote the distance from x to F, namely

$$\delta(x)=d(x,F)=\inf\{|x-y|\,:\,y\in F\}$$

and

$$I_F(x) = \int_{-\infty}^{\infty} \frac{\delta(y)}{|x - y|^2} \, dy.$$

(a) Prove that δ is continuous, by showing that it satisfies the Lipschitz condition $|\delta(x) - \delta(y)| \le |x - y|$.

1

- (b) Show that $I_F(x) = \infty$ if $x \notin F$.
- (c) Show that $I_F(x) < \infty$ for a.e. $x \in F$, by showing that $\int_F I_F(x) dx < \infty$.

Challenge Problem VI

Hand this in to me at some point in the semester

- (a) Prove that if $A, B \in \mathcal{M}(\mathbb{R})$, then $A \times B \in \mathcal{M}(\mathbb{R}^2)$ with $m(A \times B) = m(A)m(B)$.
- (b) i. The *continuum hypothesis* asserts that whenever S is an infinite subset of \mathbb{R} , then either S is countable, or S has the cardinality of \mathbb{R} . Accepting the validity of the continuum hypothesis show that there exists an ordering \prec of \mathbb{R} with the property that for each $y \in \mathbb{R}$ the set $\{x \in \mathbb{R} : x \prec y\}$ is at most countable.
 - ii. Given the ordering \prec from part (i) we define

$$E = \{(x, y) \in [0, 1] \times [0, 1] : x \prec y\}.$$

Show that E is <u>not</u> measurable, even though the slices

$$E_x = \{ y \in \mathbb{R} : (x, y) \in E \} \text{ and } E^y = \{ x \in \mathbb{R} : (x, y) \in E \}$$

are both measurable with $m(E_x) = 1$ and $m(E^y) = 0$ for each $x, y \in [0, 1]$. [Hint for part (i): Let \prec denote a well-ordering of \mathbb{R} , and define

$$X = \{ y \in \mathbb{R} : the \ set \ \{ x : x \prec y \} \ is \ not \ countable \}.$$

If X is empty we are done. Otherwise, consider the smallest element y' in X, and use the continuum hypothesis.]