

Application Domain D - Domain Properties R - Requirements S - Specification C - Computers P - Programs Two verification criteria: P, C → S? S, D → R? Two validation criteria: all necessary R? all relevant D?

V&V Example

- Requirement R:
 - "During landing, forward thrust shall only be disabled when the aircraft is moving on the runway."
- Domain Properties D:
 - Wheel pulses are on if and only if wheels are turning.
 - Wheels are turning if and only if the aircraft is moving on the runway.
- Specification S:
 - Forward thrust shall be enabled if and only if wheel pulses are on.
- Verification → S, D entails R?
- Validation → Did we miss any?

Dr. Y. Hu

V&V Activities

- Reviews → Walkthroughs, inspections, etc.
- Software testing → Not applicable to RE.
- Formal methods → Use mathematics to prove that the requirements are consistent.
- <u>Consistency checking</u> → Verify consistency between models
- Prototyping → Present a prototype to the stakeholders to confirm its expected behaviors.
- Requirements tracing → Trace each requirement back to its source.

9 Dr. Y. Hu

Verification & Validation

V&V Activities - Reviews

- (Fagan) Inspections formal
 - used to improve quality of the development process
 - collect defect data to analyze the quality of the process
 - written output
 - train junior staff and transferring expertise
- Walkthroughs informal
 - developer technique used by development teams to improve quality of product
 - focus on finding defects

- Management reviews
 - Used to provide confidence that the requirements are sound
 - Attended by management and sponsors (customers)
 - Often just a "dog-and-pony show"
- Review the SRS with stakeholders to validate.

Dr. Y. Hu

Verification

V&V Activities - Consistency

- BPMN diagrams (Activity diagrams)
 - All activities of a business?
- SADT diagrams (DFD, Use Case diagrams)
 - A flow of data is associated with activities, and vice versa?
 - Each case has a user and is documented?
- ER diagrams (Class diagrams)
 - A diagram captures all entities in other diagrams?
 - Every entity has its attributes?
- ET diagrams (Sequence diagrams)
 - Each agent is in a ER diagram and has messages?
- SCR tables (SM, Statechart, R-net diagrams)
 - Each diagram capture (the states of) an entity?
 - Each state is identified by attribute values?
 - Each transition have a trigger event?

Validation

V&V Activities - Prototyping

- "A software prototype is a partial implementation constructed primarily to enable customers, users, or developers to learn more about a problem or its solution."
- "Prototyping is the process of building a working model of the system."
- Approaches
 - Presentation prototypes
 - Exploratory prototypes
 - Breadboards or experimental prototypes
 - Evolutionary prototypes ("operational" or "pilot")

15

Dr. Y. Hu

Validation **V&V Activities - Tracing Traceable** R1 R2 R3 R4 **R5** items R1 0 1 0 1 0 R2 1 1 R4 R3 1 R4 0 0 1 0 1 **R5** 0 0 0 0 0 R3

Tracing - forward

Forward traceability:

stakeholders -> requirements specification

• Traceability matrix:

ID	Requirements	Forward Traceability
S2	Users shall process retirement claims	R10, R11, R12
S3	Users shall process survivor claims	R13

18 Dr. Y. Hu

Tracing - backward

Backward traceability:

requirements specification → stakeholders.

Traceability matrix:

ID	Requirements	Backward Traceability
R10	The system shall accept requirement data.	
R11	The system shall calculate the amount of retirement.	
R12	The system shall calculate point-to-point travel time.	
R13	The system shall calculate the amount of survivor annuity.	

Requirements Traceability

- From ISO/IEEE-STD:
 - Forward traceability
 - Trace forward to all documents spawned by the SRS.
 - Facilitation of referencing of each requirement in future documentation.
 - Each requirement has a unique name or reference number.
 - Backward traceability
 - Trace backward to previous stages of the SRS.
 - The origin of each requirement should be clear.

Dr. Y. Hu

R1

R4

R3

R2

R5

21

Traceability - Importance

- Verification and Validation
 - Assess adequacy of test suite
 - Assess conformance to requirements
 - Assess completeness, consistency, impact analysis
 - Detect requirements conflicts
 - Check consistency of decision making across the lifecycle

- Maintenance
 - Assess change requests
 - Trace design rationale
- Process visibility
 - See how the software was developed
 - Provide an audit trail
- Management
 - Change management
 - Risk management
 - Control of the development process

Dr. Y. Hu

Traceability - Current Practice

- Coverage:
 - link between requirements at different levels
 - link from requirements forward to designs, code, test cases
 - link back from designs, code, test cases to requirements
- Traceability process
 - Assign each requirement/specification a unique id#
 - Identify linkages
 - Use tables to record linkages in a document
 - Use a traceability tool (database) for project wide traceability
 - Some software tools

Dr. Y. Hu

23

Traceability - Current Limitations

- Informational problems
 - Tools fail to track useful traceability information
 - Inadequate pre-requirements traceability
- Lack of agreement...
 - ...over the quantity and type of information to trace
- Informal communication
 - People attach great importance to personal contact and informal communication
 - But then the traceability database only tells part of the story!

24

Dr. Y. Hu

Independent V&V

V&V by separate contractors

- Independent technical opinions
- About 5% ~ 15% of development costs
- Five-fold return on investment:
 - Errors found earlier, cheaper to fix, cheaper to re-test
 - Clearer specifications
 - Developer more likely to use best practices

Three types of independence

- Technical Independence:
 - Avoid analyst bias
 - Use different tools and techniques
- Financial Independence:
 - Separate cost and fund
 - No diverting resources when the thing gets tough
- Managerial Independence:
 - Separate responsibility
 - Decide when and where to focus the V&V effort

Dr. Y. Hu

25

Case Study - Mars polar lander

- Launched:
 - 3 Jan 1999
- Mission
 - Near South Pole
 - Water ice
- Fate:
 - No signal, after initial phase of descent
- Cause:
 - Most likely: premature engine shutdown

Dr. Y. Hu

Recap • V&V objectives • V&V activities