

SHODH JUNE 2024

Inorganic Chemistry

Bioinorganic Chemistry

Lecture No.- 05

By- Hitesh Chugh Sir

RECAP of previous lecture

1) Metalloenzymes

PCS to be covered

Electron Transfer System

The CORRECT combination for metalloenzymes given in Column I with their catalytic reactions in Column II is

Column I	Column II					
(i) Cytochrome P-450	(K) 2H ₂ O ₂ →2H ₂ O+O ₂					
(ii) Catalase	(L) R-CH ₂ OH+O ₂ →R-CHO+H ₂ O ₂ (R=alkyl or aryl)					
(iii) Galactose oxidase	(M) O ₂ +4H ⁺ +4e ⁻ → 2H ₂ O					
(iv) Cytochrome c oxida:	se (N) R-H+O ₂ +2e'+2H'-+ R-OH+H ₂ O (R=alkyl or aryl)					

#Q The correct option for the metal ion present in the active site of myoglobin, hemocyanin and vitamin B₁₂, respectively, is

- (a) iron, iron and zinc
- (b) molybdenum, iron and copper
- (c) iron, copper and cobalt
- (d) molybdenum, copper and cobalt

#Q Match the iron and copper proteins with biological function in the table below: [CSIR NET FEB 2022]) → 12 mm/M

Iron protein			Copper protein			Biological function		
A	Hemerythrin→0,+one	5	İ	Azurin		Х	Oxygenase	
В	Cytochrome P450	4	ii.	Hemocyanin		Y	Electron transfer	
C	Rieske protein	4	iii	Tyrosinase	U	Z	O ₂ transport	

1. A-ii-Z, B-iii-X,C-i-Y

2. A-ii-Z, B-i-X, C-iii-Y

3. A-iii-Y, B-i-Z,C-ii-X

4. A-i-Y, B-iii-Z, C-ii-X

Topic: Electron Transfer System

No Flabile 5=4 3 Fe Ferridorin: Fe3-69) marly No of labile Sh cysteine liggand? O.F Fecus Ferns Felis) Para

Kedox Form Para

be identified by treating with a uid H25 Tes

[CSIR NET DEC-2015] #Q The biological functions of cytochrome P₄₅₀ and myoglobin are, respectively:

- 1.Oxidation of alkene and O₂ storage
- 2.0₂ transport and O₂ storage
- 3.02 storage and electron carrier
- 4.Electron carrier and O₂ transport

#Q Which of the following statements for rubredoxin [CSIR NET FEB 2022]

A. Fe^{2+} center has a tetrahedral geometry.

B. Reduced form of iron is diamagnetic.>

C. Fe^{2+} center undergoes Jahn-Teller distortion.

D. It is a [2Fe-2S] cluster. > are correct?

- (1) A, B and C
- (2) A, C and DY
- (3) £ and D only p
- (4) A and C only

Fe(11)

Fe(11)

Fe(11)

A A A A A A Cumpy

A A A A A A A Cumpy

Para Latto Show

Para

#Q The number of inorganic sulfides in cubane like ferredoxin and their removal method, respectively, are: [CSIR NET JUNE-2017]

- (1) eight and washing with an acid
 - (2) four and washing with a base
- (3) eight and washing with a base
- (4) four and washing with an acid

Blu copper protesy

Plastogamin Etransfer in plants.

Mip.

O Flathened td/

Pictorted ups

0 (3,

Miles

900 her in between 6d V

(51 vous planes,

Azurin. e transfer in bacteria.

ays Mis Miss

Eytochromes

- 0 involve in é transfer
- 0 Hume unit.
- o Fe(III) => Fe(II)
- o oh environ Lis

There are different cytochrom. like upt (a) , get (b) k upt(1) which are differentiate on the basin of ligand attached to their Heme group. Hemylb)

 $R_{1} = -CN = CH_{2}$ $R_{2} = C_{18}H_{30} OH$ L $Henry (a) \rightarrow uyt(a)$

$$R_1 = R_2 = -cM - S(Protein)$$
 $Munu(l) \rightarrow uytll)$

He different groups attached to the Home group of cytchromus so these cyt have diff Oxidation potential.

0.P > cyt(b) > cyt(c) > cyt(c)

flow of etransfer = yt(b) = yt(c) -> cyt(a)

9 Porphy rin 10 Metalloporphyrin 6 Myoglobin O Hemoglobin Oloperative Chat. Bohn Met. CMMI Mimothin my-tun

- O Honnythriz.
- O Homo yamin
- 10 Metalloun

- To Metal Storage | Mutal
- O Nitrogen Fixation
- O Photogynth

1) Electron Transfer System

2 mins Summary

Topic

Metalloenzymes

Topic

Electron Transfer System

Thank