### 生成式模型的发展 VAE-GAN-Diffusion

Huffman compression 哈夫曼编码

| 0 | 1 | 1 | 0 | ••••• |
|---|---|---|---|-------|
|---|---|---|---|-------|

#### 字符编码原则:

• 前缀不重复 (prefix-free),从任一位置解码

#### 提示:

• 频率相关:高频短,低频长



| 编码方式 | F(50.0%) | C(25.0%) | R(12.5%) | S(12.5%) | 编码长度期望                            |
|------|----------|----------|----------|----------|-----------------------------------|
| 方式1  | 0        | 1        | 10       | 11       | error                             |
| 方式2  | 10       | 110      | 0        | 111      | 2*0.5+3*0.25+1*0.125+3*0.125=2.25 |
| 方式3  | 0        | 10       | 110      | 111      | 1*0.5+2*0.25+3*0.125+3*0.125=1.75 |

#### Huffman compression 哈夫曼编码

| 编码方式 | F(50.0%) | C(25.0%) | R(12.5%) | S(12.5%) | 编码长度期望                            |
|------|----------|----------|----------|----------|-----------------------------------|
| 方式1  | 0        | 1        | 10       | 11       | error                             |
| 方式2  | 10       | 110      | 0        | 111      | 2*0.5+3*0.25+1*0.125+3*0.125=2.25 |
| 方式3  | 0        | 10       | 110      | 111      | 1*0.5+2*0.25+3*0.125+3*0.125=1.75 |

# F C R S

#### 长度

 $F: -\log_2 0.5 = 1$ 

C:  $-\log_2 0.25 = 2$ 

R:  $-\log_2 0.125=3$ 

 $S: -\log_2 0.125 = 3$ 

#### 信息熵就是最小编码长度期望

$$H(X) = -\sum_{i=1}^b P_i \log_2(P_i)$$

熵 信息熵 交叉熵

#### 熵

- 服从某一特定概率分布事件的理论最小平均编码长度
- 熵在信息学中就是信息熵

$$H(X) = -\sum_{i=1}^b P_i \log_2(P_i)$$

$$H(x) = -\int P(x) \log_2 P(x) dx$$

| $F(50.0\%) \mid C(25.0\%) \mid R(12.5\%) \mid S(12.5\%) \mid$ |
|---------------------------------------------------------------|
|---------------------------------------------------------------|

把来自一个分布q的消息使用另一个分布p的最佳代码传达的平均消息长度)称为交叉熵。

| one-hot | F   | С   | R   | S   |
|---------|-----|-----|-----|-----|
| 实际值q    | 1   | 0   | 0   | 0   |
| 预测值p    | 1/2 | 1/4 | 1/8 | 1/8 |

#### 交叉熵= ∑概率 \* 对应字符长度

$$H_p(q) = \sum_x q(x) \log_2 \left(rac{1}{p(x)}
ight) = -\sum_x q(x) \log_2 p(x)$$



#### 用p表示q所需最佳编码平均长度

 $H_p(q) = -\{1*log_20.5 + 0*log_20.25 + 0*log_20.125 + 0*log_20.125\} = 1$   $H_q(q) = -\{1*log_21 + 0*log_20.25 + 0*log_20.125 + 0*log_20.125\} = 0$   $H_q(p) = \infty$ 

实际值p信息熵 H(p) = -∫plog<sub>2</sub>pdx

预测值q信息熵 H(q) = -∫qlog<sub>2</sub>qdx

预测值q编码实际值p期望长度  $H(p||q) = -\int plog_2qdx$ 

KL散度(q编码p - p编码p) KL(p||q) = H(p||q)-H(p)=  $-\int plog_2 q/pdx$ 

 $\mathbf{p}$ , $\mathbf{q}$ 均为高斯分布  $\mathbf{p} \sim \mathbf{N}(\mu_1, \delta_1)$ ,  $\mathbf{q} \sim \mathbf{N}(\mu_2, \delta_2)$ 

# 0.5\*{ e^data + mu^2 -1 - 0 # 0.5\*data + 0.5\*e^data + 0.5\*mu^2 -0.5 AutoEncoder 自编码(AE)



#### 自编码是一种非线性降维方式

• 目标:使隐藏层h包含高维输入X尽可能多的重要信息。

优化目标函数  $MinimizeLoss = dist(X, X^R)$ 

优点:泛化性强,无监督,不需数据标注

缺点:针对异常识别场景,训练数据需要为正常数据。

```
AE(
         (encoder): Sequential(
          (0): Linear(in_features=784, out_features=256, bias=True)
          (1): ReLU()
          (2): Linear(in_features=256, out_features=20, bias=True)
          (3): ReLU()
         (decoder): Sequential(
          (0): Linear(in_features=20, out_features=256, bias=True)
          (1): ReLU()
          (2): Linear(in_features=256, out_features=784, bias=True)
          (3): Sigmoid()
00000
                   00000
00000
                                                变分自编码
                   00000
00000
                                                器(VAE)
                   00000
00000
                    0000
```

• 实验:手写字母编码与重建



input

output

#### 变分自编码器 VAE

主要目标:构建从隐变量 Z生成目标数据 X 的模型

假设:样本服从某些常见的分布(eg:正态)



p(Z) : 先验分布, 假设为正态分布

p(XR|Z):后验分布,由 Z 来生成 X的模型



目标1:构建从隐变量 Z生成目标数据 X 的模型 Loss1 =BCE( X , X<sup>R</sup>) X和X<sup>R</sup>的二值交叉熵

目标2: 隐变量 Z的分布与尽可能符合正态分布 (降低Z的KL散度)

> KL散度(q编码p - p编码p) KL(p||q) = H(p||q)-H(p) = -∫plog<sub>2</sub>q/pdx





#### VAE



生成对抗网络(GAN,Generative adversarial network) GAN其实是两个网络的组合:

- 判别网络(Discriminator):
   负责判断输入的数据是真实的还是生成的。
   优化自己让自己判断得更准确

两个网络的关系形成对抗,因此叫对抗网络。





#### 训练生成器



Actor-Critic 演员评论家

Actor (演员)是策略函数  $\pi_{\theta}(s)$  Critic (评论家)是值函数  $\nabla_{\pi}(s)$ 



策略函数Actor,类似于策略梯度算法,但是没有Critic的(使用蒙特卡罗法来计算每一步的价值部分替代Critic的功能)。



拟合值函数V区别于q表,可以近似做以下理解

$$Q^{\pi}(s_t,a_t) \approx r(s_t,a_t) + V^{\pi}(s_{t+1})$$





带噪声图+加噪step ---Noise Predicter ---> 噪声 带噪声图-噪声 -----> 新带噪声图 (噪声更少)

Net的唯一作用就是预测噪声



difussion











$$\beta_t \text{从} \beta_1 = 10^{-4} \text{到} \beta_T = 0.02$$
 线性增长。





$$q(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0}) = \mathcal{N}(\mathbf{x}_{t};\sqrt{1-\beta_{t}}\mathbf{x}_{t-1},\beta_{t}\mathbf{I})$$

$$q(\mathbf{x}_{t}|\mathbf{x}_{0}) = \mathcal{N}(\mathbf{x}_{t};\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0},(1-\bar{\alpha}_{t})\mathbf{I})$$

$$q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) = \mathcal{N}(\mathbf{x}_{t-1};\frac{\sqrt{\alpha_{t}}(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_{t}}\mathbf{x}_{t} + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_{t}}{1-\bar{\alpha}_{t}}\mathbf{x}_{0},\frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_{t}}\cdot\beta_{t}\mathbf{I})$$

其中,只有参数 $\beta_t$ 是可调的。 $\bar{\alpha}_t$ 是根据 $\beta_t$ 算出的变量  $\alpha_t = 1 - \beta_t, \bar{\alpha}_t = \prod_{i=1}^t \alpha_i$ 。







## 谢谢