KNN algorithm on SVHN Dataset

Καρυοφυλλιά Πριάχου

December 16, 2022

1 Updates

Για να ελαχιστοποιήσω προσωρινά το υπολογιστικό κόστος και να διευκολυνθώ στους πειραματισμούς μου, επέλεξα απ' το dataset τα πρώτα 1000 δεδομένα. Παρατηρώ οτι το accuracy μου μειώνεται περίπου κατά 20,65%.

```
accuracy = 0.24185617701290718
  test_imagesC = test_images[0:1000,:]
  train_imagesC = train_images[0:1000]
  test_labelsC = test_labels[0:1000]
  train_labelsC = train_labels[0:1000]

#testRIres = np.reshape(testRI,(18315,3072))
knn = OneVsRestClassifier(KNeighborsClassifier(n_neighbors=3, weights='distance'))
knn.fit(train_imagesC, train_labelsC)
acc = knn.score(train_imagesC,train_labelsC)

print("pixel accuracy: {:.2f}%".format(acc * 100))

pixel accuracy: 100.00%

#todo mean squared error
pred = knn.predict(test_images)
accuracy = accuracy_score(test_labels, pred)
print(accuracy)
```

0.24185617701290718

2 NN with Keras

• RGB σε Gray

How do I convert RGB to grayscale?

The Average method takes the average value of R, G, and B as the grayscale value.

```
Grayscale = (R + G + B) / 3.
Grayscale = R / 3 + G / 3 + B / 3.
Grayscale = 0.299R + 0.587G + 0.114B.
Y = 0.299R + 0.587G + 0.114B U'= (B-Y)*0.565 V'= (R-Y)*0.713.
Grayscale = Y.
```

```
def rgb2gray(rgb):
    r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
    gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
    return gray
```

Αφού έκανα την εικόνα απο rgb σε gray μένει να μετατρέψω τους πίνακες απο [x,y,rgb,samples] σε [samples,x,y] για να εκπαιδευτούν στο μοντέλο μου. x,y=32pixel

```
def images3d(data):
    images = [] #create empty list
    for i in range(0, data.shape[3]): #73257 gia train images, 26032 gia test
        images.append(rgb2gray(data[:, :, :, i])) #to append einai gia lists
    return np.asarray(images) #metatroph list se numpy array
```

Μορφή πινάχων πριν και μετά τον μετασχηματισμό τους:

```
(32, 32, 3, 73257) Train images

(32, 32, 3, 26032) Test images

(73257,) train labels

(26032,) test labels

----after format-----

(73257, 32, 32) Train images

(26032, 32, 32) Test images

(73257,) Train labels

(26032,) Test labels
```

• Κανονικοποίηση μεταβλητών. $2^8 = 256$ πιθανότητες γαι κάθε χρώμα.

```
train_imagesNN, test_imagesNN = train_images / 255, test_images / 255
train_labelsNN, test_labelsNN = train_labels, test_labels
```

• Δημιουργία μοντέλου με keras. Ξεχινάω με ένα input layer, 3 hid-

den layers (100 outputs) και ενα output (11 outputs όσες και οι κλασεις μου) layer. Τα keras. layers. dense εκτελούν την πράξη output = activation(dot(input, kernel) + bias) όπου activation χρησιμοποιώ την συνάρτηση RELU και kernel είναι ο πίνακας των βαρών. Εκτελώ για $\mathbf{10}$ εποχές.

Layer (type)	Output Shape	Param #
	(1) (1004)	
flatten_4 (Flatten)	(None, 1024)	0
dense_20 (Dense)	(None, 300)	307500
dense 21 (Dense)	(None, 100)	30100
dense_21 (bense)	(None, 100)	30100
dense_22 (Dense)	(None, 100)	10100
dense 23 (Dense)	(None, 11)	1111
_	, , ,	

Total params: 348,811 Trainable params: 348,811 Non-trainable params: 0

accuracy = 0.1160, validation accuracy = 0.1107

Αλλάζω την συνάρτηση του τελευταίου επιπέδου εξόδου απο RELU σε Softmax. Η συνάρτηση softmax

$$f(x) = \frac{e^x}{\sum e^x} \tag{1}$$

χρησιμοποιείται κατα βάση στη τελευταίο layer γιατί παράγει ως έξοδο μία κανονικοποιημένη κατανομή πιθανοτήτων. Δηλαδή κανονικοποιεί όλες τις εισόδους στο διάστημα [0,1] και επιπλέον το άθροισμα των τιμών του διανύσματος ισούται με 1. Όπως βλέπουμε δίνει πολύ καλύτερα αποτελέσματα σε σχέση με την RELU που παράγει τυχαίες πραγματικές τιμές για κάθε κλάση.

accuracy = 0.7538, validation accuracy 0.6945

Προσθέτω samples για forwardpass. Ο χρόνος εκτέλεσης όπως είναι αναμενόμενο διπλασιάζεται.

	Layer (type)	Output	Shape	Param #
•	flatten_6 (Flatten)	(None,	1024)	0
	dense_28 (Dense)	(None,	500)	512500
	dense_29 (Dense)	(None,	200)	100200
	dense_30 (Dense)	(None,	200)	40200
	dense_31 (Dense)	(None,	11)	2211

Total params: 655,111 Trainable params: 655,111 Non-trainable params: 0

accuracy = 0.7654, validation accuracy 0.7275

Προσθέτω 1 hidden layer

Layer (type)	Output Shape	Param #
flatten_7 (Flatten)	(None, 1024)	0
dense_32 (Dense)	(None, 500)	512500
dense_33 (Dense)	(None, 200)	100200
dense_34 (Dense)	(None, 200)	40200
dense_35 (Dense)	(None, 200)	40200
dense_36 (Dense)	(None, 11)	2211

Total params: 695,311 Trainable params: 695,311 Non-trainable params: 0

accuracy = 0.7762, validation accuracy = 0.6892

Προσθέτω κιαλλο hidden layer.

Layer (type)	Output	Shape	Param #
flatten_8 (Flatten)	(None,	1024)	0
dense_37 (Dense)	(None,	500)	512500
dense_38 (Dense)	(None,	200)	100200
dense_39 (Dense)	(None,	200)	40200
dense_40 (Dense)	(None,	200)	40200
dense_41 (Dense)	(None,	200)	40200
dense_42 (Dense)	(None,	11)	2211

Total params: 735,511 Trainable params: 735,511 Non-trainable params: 0

accuracy= 0.7788, validation accuracy= 0.6570

Παρατηρώ συγκριτικά μικρή αύξηση στο accuracy και συγκριτικά μεγάλη μείωση του value accuracy, οπότε παραμένω στα 4 hidden layers. Αυτό ωφείλεται στο οτι τα σφάλματα στην φάση του backpropagation που επιστρέφουν γίνονται πολύ μικρά, και η εκπαίδευση του μοντέλου γίνεται λιγότερο αποτελεσματική αυξάνοντας άσκοπα την πολυπλοκότητα.

Οι δοχιμές μου γινόντουσαν με τον gradient descent optimizer: $\theta = \theta - \alpha \cdot \bigtriangledown J(\theta)$

Ο gradient descent διατηρεί ενα learning rate(α) για κάθε ανανέωση των βαρών και δεν αλλάζει κατα την διάρκεια της εκπαίδευσης. Ο Adams optimizer προσαρμώζει το learning rate αποθηκεύοντας τον εκθετικά μειωμένο μέσο των προηγούμενων τετραγωνικών παραγώγων v_t και τον εκθετικά μειωμένο μέσο των προηγούμενων παραγώγων m_t :

$$\hat{m_t} = \frac{m_t}{1 - \beta_1^t} \tag{2}$$

$$\hat{v_t} = \frac{v_t}{1 - \beta_2^t} \tag{3}$$

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v_t}} + \varepsilon} \hat{m_t} \tag{4}$$

οπου b_1 expotentiaal decay rate for first moment estimates (eg 0.9), b_2 exponential decay rate for the second-moment estimates (eg 0.999) και ϵ ένας πολύ μικρός αριθμός για να αποφευχθεί η διαίρεση με το 0.

model.compile(loss = 'sparse_categorical_crossentropy',optimizer = 'adam', metrics = ['accuracy'])

accuracy = 0.7996, validation accuracy = 0.7714

Batch size. Το default batch size του keras είναι 32. Το batch size είναι ο αριθμός των samples που θα χρησιμοποιηθούν σε ένα forward/backward pass πριν το update των παραμέτρων του μοντέλου. Αυξάνω το batch size απο 32 σε 50:

history = model.fit(train_imagesNN,train_labelsNN,epochs = 10, validation_data = (test_imagesNN, test_labelsNN), batch_size=50)

accuracy = 0.7765, validation accuracy = 0.7466

Το accuracy μειώθηκε μου σημαίνει οτι το νευρωνικό δίκτυο αρχίζει να υπερεκπαιδεύεται (poor generalization).

batch size=25.

accuracy=0.6108, validation accuracy= 0.05832

batch size = 50

Training and Validation accuracy

accuracy=0.7609, validation accuracy=0.7268 Batch size=35

Epochs

accuracy=0.7099, validation accuracy=0.6808 Batch size=37

accuracy=0.7057, validation accuracy=0.6705 Batch size=32

accuracy=0.6795, validation accuracy=0.6404 Batch size=60

accuracy=0.7705, validation accuracy=0.7430Batch size=150

accuracy=0.7880, validation accuracy=0.7551 Batch size=250

 $\begin{array}{l} {\rm accuracy}{=}0.7855,\,{\rm validation\,\,accuracy}{=}0.6747\\ {\rm Batch\,\,size}{=}\,\,1000 \end{array}$

accuracy=0.7495, validation accuracy=0.7043 Batch size=160

accuracy=0.7869, validation accuracy=0.7578 Batch size=100

accuracy=0.7824, validation accuracy= 0.7549

Συγκέντρωση γραφημάτων

• Παρατηρώ οτι για πολύ μικρό batch size έχω μικρό accuracy και validation accuracy (πχ 25). Όσο μεγαλώνει το batch size μεγαλώνει το accuracy και το validation accuracy μέχρι ένα σημείο που αρχίζει το validation accuracy να μειώνεται (1000 batch size), και βλέπουμε πως το μοντέλο έχει αρχίσει να δυσκολεύεται να κάνει "γενίκευση", έχουμε overfitting.

Figure 7: batch size = 100

Figure 8: batch size = 150

Figure 9: batch size = 160

Figure 10: batch size = 250