

1a) (2 pts.) Dado el siguiente programa lógico proposicional P:

$$\begin{array}{ccc} p & \leftarrow & not \ q \\ q & \leftarrow & not \ r \\ r & \leftarrow & not \ p \end{array}$$

Indica cuáles son sus modelos clásicos mediante una tabla de verdad.

En lógica clásica, las tres reglas corresponderían respectivamente $p \vee q$, $q \vee r$ y $p \vee r$.

p	q	r	$p \lor q$	$\mid q ee r \mid$	$p \lor r$	modelo
0	0	0	0	0	0	
0	0	1	0	1	1	
0	1	0	1	1	0	
0	1	1	1	1	1	×
1	0	0	1	0	1	
1	0	1	1	1	1	×
1	1	0	1	1	1	×
1	1	1	1	1	1	×

Es decir, obtenemos cuatro modelos clásicos $\{q, r\}, \{p, r\}, \{p, q\}, y \{p, q, r\}.$

1b) (3 pts.) Para cada modelo clásico I obtenido anteriormente, obtén el programa reducto P^I correspondiente, su modelo mínimo y, finalmente, indica si I es modelo estable (stable model). Usa tantas filas como precises.

$\begin{array}{c} \text{modelo clásico} \\ I \end{array}$	$\begin{array}{c} \text{programa reducto} \\ P^I \end{array}$	$\begin{array}{c} \text{modelo} \\ \text{mínimo de } P^I \end{array}$	¿es estable? (sí/no)
$\{q,r\}$	$r \leftarrow$	$\{r\}$	no
$\{p,r\}$	$p \leftarrow$	$\{p\}$	no
$\{p,q\}$	$q \leftarrow$	$\{q\}$	no
$\{p,q,r\}$	(vacío)	Ø	no

El programa no tiene modelos estables.

- 2) En la lista de invitados de una boda, la familia nos facilita una lista con hechos para el predicado odia(X,Y) donde X e Y son personas numeradas de 1 a n=m*c y m es el número de mesas con capacidad para c personas cada una. Queremos obtener asignaciones a mesas en las que la gente no coincida con ninguna persona a la que odie. Las soluciones deben expresarse en términos del predicado sienta(X,M), que sienta a la persona X en la mesa M.
- 2a) (3 pts.) Nos proporcionan el siguiente código ASP con algunos datos de ejemplo y la restricción principal. Completa el código para resolver correctamente el problema:

- 2b) (1 pt.) Explica al menos dos situaciones en los datos de entrada que provocarían que el problema no tenga solución.
 - Un ejemplo trivial que no tiene solución sería si una persona se odia a sí misma. Otros ejemplos serían si hay una persona odiada por todo el mundo, o si toda persona odia a alguien.
- 2c) (1 pt.) Dados los hechos de entrada y la restricción (*) que se proporciona en el apartado 2a) ¿Cuántos casos ground (esto es, sin variables) generará la regla (*)? Razona la respuesta. En el programa de ejemplo, tenemos 4 hechos para el predicado odia(X,Y) mientras que el número de mesas es m=3. Así pues, cuatro pares de valores (X,Y) por 3 posibles valores para M nos da 12 casos ground.