DS no3

Il sera, dans la notation, tenu compte de la présentation et de la qualité de la rédaction. Les résultats devront obligatoirement être soulignés ou encadrés à la règle, le texte et les formules ponctuées, un minimum de 80% des s du pluriel et de 70% des accents est requis.

Pénalités:

- Moins de 80% des s du pluriel ou moins de 70% des accents : -3 points,
- Formules mathématiques non ponctuées : -1 point,
- Recours à des abréviations (tt, qqs, fc., ens...) ou usage abusif de symboles logiques : -2 points.

L'usage de la calculatrice n'est pas autorisé.

Les élèves traiteront un et un seul des trois sujets suivants.

Le sujet 1 s'adresse aux étudiants ayant eu une note convenable au DS 2.

Le sujet 2 est destiné aux étudiants ayant éprouvé de grosses difficultés lors du précédent devoir surveillé.

Le sujet 3 à ceux des étudiants qui visent l'X ou les ÉNS.

SUJET 1 MINES-CENTRALE

DIAMÈTRE TRANSFINI D'UNE PARTIE DU PLAN

Soit Π un espace affine euclidien orienté de dimension 2. Il sera appelé brièvement plan Π . La distance de deux points A et B de Π est notée d(A, B).

Une partie de Π désignée par la lettre E, avec ou sans indice, est un sous-ensemble de Π contenant une infinité de points. Les différentes figures géométriques considérées — segment, cercle — sont supposées posséder elles aussi cette propriété.

Soit un entier $n \geq 2$, et une partie E du plan Π ; pour toute suite finie de points de la partie $E: P_1, P_2, ..., P_n$, on note $g_n(P_1, P_2, ..., P_n)$ la moyenne géométrique des distances mutuelles de ces points, c'est-à-dire :

$$g_n(P_1, P_2, \dots, P_n) = \left(\prod_{i=1,\dots,n, j=1,\dots,n, i \neq j} d(P_i, P_j)\right)^{\frac{1}{n(n-1)}} = \left(\prod_{1 \le i < j \le n} d(P_i, P_j)\right)^{\frac{2}{n(n-1)}}$$

Considérons maintenant l'ensemble des réels $g_n(P_1, P_2, ..., P_n)$ définis pour toute suite de points $P_1, P_2, ..., P_n$; si cet ensemble est borné, la borne supérieure de ces réels sera designée par $\delta_n(E)$:

$$\delta_n(E) = \sup\{g_n(P_1, P_2, ..., P_n) | P_i \in E, 1 \le i \le n\};$$

si au contraire cet ensemble de réels n'est pas borné, on convient que $\delta_n(E)$ est égal à $+\infty$.

Préliminaires

Nous allons démontrer deux résultats utiles dans la suite.

1. Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite de réel. On définit la suite $(v_n)_{n\in\mathbb{N}^*}$, par :

$$v_n = \frac{1u_1 + 2u_2 + \dots + nu_n}{n^2},$$

pour tout entier $n \geq 1$.

On suppose que la suite la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers ℓ . Montrer que la suite $(v_n)_{n\in\mathbb{N}^*}$ converge vers $\frac{\ell}{2}$.

2. Soient n un élément de \mathbb{N}^* , $z_1, z_2, \ldots, z_{n+1}$ des nombres complexes et U un polynôme unitaire de degré n. Donner la valeur du déterminant suivant, valeur qui ne dépend pas de U:

$$V = \begin{vmatrix} 1 & 1 & \dots & 1 \\ z_1 & z_2 & \dots & z_{n+1} \\ z_1^2 & z_2^2 & \dots & z_{n+1}^2 \\ \vdots & \vdots & & \vdots \\ z_1^{n-1} & z_2^{n-1} & \dots & z_{n+1}^{n-1} \\ U(z_1) & U(z_2) & \dots & U(z_{n+1}) \end{vmatrix}.$$

Partie I

QUELQUES PROPRIÉTÉS GÉNÉRALES ET EXEMPLES

- 1. (a) Montrer que si \mathbf{E} est une partie bornée du plan $\delta_2(E) = \sup\{d(A,B)|A \in E, B \in E\}$. Démontrer que pour tout entier n supérieur ou égal à 2, $\delta_n(E)$ est fini et majoré par $\delta_2(E)$.
 - (b) Soient deux parties E_1 et E_2 du plan telles que E_1 soit contenue dans E_2 . Etablir pour tout entier $n \geq 2$, l'inégalité :

$$\delta_n(E_1) \leq \delta_n(E_2).$$

- (c) Démontrer que si un sous-ensemble E de Π n'est pas borné, il existe pour tout réel $\rho > 0$ et tout entier $k \geq 2$, une suite finie de points $(P_1, P_2, ... P_k)$ de Π telle que pour tout couple (i, j) d'élément de $\{1 ... k\}$ distincts, la distance de P_i à P_j soit supérieure ou égale à $\rho : d(P_i, P_j) \geq \rho$. En déduire que si E est non borné, alors; pour tout entier n supérieur ou égal à 2, $\delta_n(E)$ est infini.
- (d) Soit une partie E du plan Π ; soit \bar{E} l'adhérence de E. Montrer que pour tout entier n supérieur ou égal à 2

$$\delta_n(E) = \delta_n(\bar{E}).$$

- 2. Soient A et B des points de Π distincts. On désigne par I le segment [A,B] et par a la longueur de I.
 - Soient P_1 et P_3 des points de I. Montrer qu'il existe un point P_2 de $[P_1, P_3]$ tel que $g_3(P_1, P_2, P_3) = \max\{g_3(P_1, P, P_3)\}, P \in [P_1, P_3]\}.$ En déduire $\delta_3(I)$.
- 3. Soient O un point de Π et C_R un cercle de centre O et de rayon R. Soit un repère orthonormé et direct $(O; (\vec{i}, \vec{j}))$ et trois points du cercle C_R , définis par leurs angles polaires, égaux respectivement à 0, θ et ϕ . :

$$0 = (\vec{i}, \overrightarrow{OP_1}) \theta = (\vec{i}, \overrightarrow{OP_2}) \varphi = (\vec{i}, \overrightarrow{OP_3}), 0 < \theta < \phi < 2\pi.$$

- (a) Montrer que φ étant fixé, $g_3(P_1, P_2, P_3)$ est maximum pour $\theta = \frac{\varphi}{2}$.
- (b) Pour quelles valeurs de φ et de $\theta,\,g_3(P_1,P_2,P_3)$ est-il maximum .
- (c) Déduire des sous-questions précédente $\delta_3(C_R)$.

Partie II

ÉTUDE DE LA SUITE
$$(\delta_n(E))_{n\geq 2}$$

- 1. Soient E une partie bornée de Π et un entier $n \geq 2$.
 - (a) Soit une suite de n+1 points de $E, (P_1, P_2, ..., P_{n+1})$. Démontrer la relation :

$$(g_{n+1}(P_1, P_2, \dots, P_{n+1}))^{n+1} = \prod_{i=1}^{n+1} g_n(P_1, \dots P_i, \dots, P_{n+1}),$$

où pour $i = 1, \ldots, n+1, g_n(P_1, \ldots P_{i-1}, P_{i-1}, P_{i-1})$ désigne $g_n(P_1, P_2, \ldots P_{i-1}, P_{i+1}, \ldots, P_{n+1})$.

- (b) En déduire que $\delta_{n+1}(E) \leq \delta_n(E)$, puis montrer que la suite $(\delta_k(E))_{k\geq 2}$ converge. On notera $\Delta(E)$ sa limite.
- 2. Soit un entier $n \geq 2$.

(a) Soient z_i , i=0,1,...,n-1 les n racines $n^{\rm e}$ de l'unité. Démontrer que pour tout : élément k de $\{0,1,\ldots,n-1\}$

$$\prod_{j=0,\dots,n-1, j\neq k} (z_k - z_j) = n(z_k)^{n-1}.$$

- (b) Calculer, lorsque les points $P_1, P_2, \ldots, ..., P_n$ sont les sommets d'un polygone régulier inscrit dans un cercle C_R de rayon R, la valeur de $g_n(P_1, P_2, ..., P_n)$.
- (c) En déduire pour $E = C_R$, que la limite $\Delta(E)$ de la suite $(\delta_k(E))_{k \geq 2}$ est différente de 0.

Montrer que:

$$R \le \Delta(E) \le \sqrt{3}R$$
.

Partie III

ÉTUDE DE LA SUITE $(\delta_n(E))_{n\geq 2}$

L'objet de cette partie et de relier $\Delta(E)$ à un réel $\mu(E)$ défini à l'aide de valeurs prises par des polynômes.

On considère un repère orthonormé direct $(O; (\vec{i}, \vec{j}))$ du plan Π . A chacun des points P du plan Π on peut alors associé un nombre complexe : l'affixe de P.

Soit E une partie bornée de Π . On note \mathcal{E} , l'ensemble des affixes des points de E.

Pour tout entier $n \geq 1$, soit \mathcal{U}_n l'ensemble des polynômes complexes unitaires U de degré n.

1. (a) Justifier, pour tout polynôme complexe unitaire U, l'existence de la quantité

$$S(E, U) = \sup\{|U(z)|, z \in \mathcal{E}\}.$$

Justifier pour tout entier $n \ge 1$ l'existence de la quentité

$$\sigma_n(E) = \inf\{S(E, U), U \in \mathcal{U}_n\}.$$

(b) On admet que $\sigma_n(E)$ ne dépend pas du choix du repère $(O; (\vec{i}, \vec{j}))$. On pose

$$\mu_n(E) = \sigma_n^{\frac{1}{n}}.$$

Déterminer deux réels a et b strictement positifs tels que :

$$a\sigma_1(E) \le \delta_2(E) \le b\sigma_1(E)$$
.

2. Cas d'un segment

Soit I le segment fermé joignant les points A et B de coordonnées respectives (-1,0) et (1,0). L'intervalle [-1,1] sera identifié à [A,B] et également désigné par I.

Pour tout entier $n \geq 1$, on note T_n l'application

$$T_n: I \to \mathbf{R}; x \mapsto \frac{1}{2^{n-1}}\cos(n\arccos(x)).$$

(a) Montrer que pour tout $x \in I$,

$$T_{n+2}(x) = xT_{n+1}(x) - \frac{1}{4}T_n(x).$$

Indication : on pourra calculer $2^{n+1}T_{n+2} + 2^{n-1}T_n$.

(b) En déduire que pour tout entier $n \geq 1$, T_n est une application polynômiale sur I, on note encore T_n le polynôme associé.

Démontrer que pour tout entier $n \geq 1$, le polynôme T_n est unitaire de degré n.

Déterminer le maximum de l'application T_n sur I.

(c) Soit U un polynôme unitaire de degré n.

Montrer l'existence de $M_U = \max\{U(x)|x \in I\}$.

le but des sous-questions suivantes et d'établir que $M_U \ge \frac{1}{2^{n-1}}$

(d) Supposons que U soit réel et tel que, pour tout $x \in I$, :

$$|U(x)| < \frac{1}{2^{n-1}}. (1)$$

Déterminer les signes des valeurs prises par le polynôme $U-T_n$ aux points x_k définis pour $k=0,1,\ldots,n,$ par : $x_k=\cos\left(\frac{k\pi}{n}\right)$. En déduire que l'hypothèse (1) est fausse.

- (e) On ne suppose plus que U est réel. Démontrer que $M_U \geq \frac{1}{2^{n-1}}$.
- (f) En déduire la valeur de $\mu_n(I)$. Démontrer que la suite $(\mu_k(I))_{k \in \mathbb{N}^*}$ admet une limite notée $\mu(I)$ à déterminer.

Nous repassons au cas général.

3. Soit $(u_n)_{n \in \mathbb{N}^*}$ une suite de réels strictement positifs telle que pour tout couple (p,q) d'entiers strictements positifs,

$$u_{p+q}^{p+q} \le u_p^p u_q^q. \tag{2}$$

- (a) Montrer que pour tout k et tout p, entier strictement positifs, $u_{kp} \leq u_p$.
- (b) Etablir l'existence de $\ell = \inf\{u_n | n \in \mathbf{N}^*\}$. Montrer que la suite $(u_n)_{n \in \mathbf{N}^*}$ converge. Indication : on rappelle que pour tout réel $\varepsilon > 0$, il existe $p \in \mathbf{N}^*$ tel que

$$\ell \le u_n < \ell + \varepsilon$$

et que tout entier n s'écrit de manière unique n = pq + r , avec $0 \le r < p$.

(c) Soit E une partie bornée du plan Π . Montrer que pour tout couple (p,q) d'éléments de \mathbf{N}^* ,

$$\sigma_{p+q}(E) \le \sigma_p(E)\sigma_q(E).$$

(d) Soit $\mu(E)$ la borne inférieure de $\{\mu_n(E)|n\in\mathbf{N}^*\}$ Démontrer que la suite $(\mu_n(E))_{n\in\mathbf{N}^*}$ est convergente et de limite $\mu(E)$.

Vérifier cette propriété sur l'exemple du segment traité en 2.

- 4. Soient E une partie bornée du plan et n un entier strictement possitif. On utilisera dans ce qui suit la question préliminaire sur le calcul de V.
 - (a) Montrer que:

$$\delta_{n+1}(E)^{\frac{n(n+1)}{2}} \le (n+1)\delta_n(E)^{\frac{n(n-1)}{2}}\mu_n(E)^n.$$

(b) Montrer que:

$$\delta_n(E)^{\frac{n(n-1)}{2}}\mu_n(E)^n \le \delta_{n+1}(E)^{\frac{n(n+1)}{2}}.$$

Indication : on pourra considérer le polynôme $U_0 = \prod_{i=1}^n (X - z_i)$

- 5. E désigne toujours une partie bornée du plan.
 - (a) Démontrer que pour tout $n \in \mathbf{N}^*$, $\mu_n(E) \leq \delta_{n+1}(E)$.
 - (b) Donner pour tout $n \in \mathbf{N}^*$, un majorant de δ_{n+1} en fonction de $\mu_1(E), \mu_2(E), \dots, \mu_n(E)$ et de n.

(c) Démontrer que $\Delta(E) = \mu(E)$.

MP* KERICHEN 2020-2021

Correction du DS n°3

Sujet

Préliminaire

1. Mais c'est Cesàro! Définissons la suite des moyennes de u_n $(w_n)_{n \in \mathbb{N}}$ par : $w_n = \frac{1u_1 + 2u_2 + \dots + u_n}{1 + 2 + \dots + n}$ pour tout entier $n \geq 1$; notons que $w_n = \frac{1u_1 + 2u_2 + \dots + u_n}{\frac{n(n+1)}{2}}$..

On a $w_n \underset{n \to +\infty}{\to} \ell$ en effet...

Là, soit on refait la preuve vue en T.D., soit on utilise les théorèmes de comparaisons sur les séries que nous allons voir prochainement.

Or pour tout $n \in \mathbb{N}$, $v_n = \frac{n(n+1)}{2n^2} w_n$ et comme $\frac{n(n+1)}{2n^2} \underset{n \to +\infty}{\longrightarrow} \frac{1}{2}$,

$$\boxed{w_n \underset{n \to +\infty}{\to} \frac{\ell}{2}}$$

2. Notons plutôt le déterminant V, V_U . Le polynôme U unitaire de degré n s'écrit

$$X^n + \sum_{k=0}^{n-1} a_i X^i,$$

avec $a_0, a_1, \dots a_{n-1}$ des complexes, et donc en effectuant sur les lignes de V_u la transformation :

$$L_{n+1} \leftarrow L_{n+1} - \sum_{k=0}^{n-1} a_i L_{i+1},$$

où L_i désigne la i^e ligne de V_U , pour $i=1,\ldots,n+1$, on obtient :

$$V_{II} = V_{X^n}$$
.

V ne dépend donc pas de U, notons à présent V(n) sa valeur. En particulier $V(n) = V_P$, où $P = \prod_{i=1}^n (X - z_i)$, soit

$$V(n) = \begin{vmatrix} 1 & 1 & \dots & 1 \\ z_1 & z_2 & \dots & z_{n+1} \\ z_1^2 & z_2^2 & \dots & z_{n+1}^2 \\ \vdots & \vdots & & \vdots \\ z_1^{n-1} & z_2^{n-1} & \dots & z_{n+1}^{n-1} \\ P(z_1) & P(z_2) & \dots & P(z_{n+1}) \end{vmatrix} = \begin{vmatrix} 1 & 1 & \dots & 1 \\ z_1 & z_2 & \dots & z_{n+1} \\ z_1^2 & z_2^2 & \dots & z_{n+1}^2 \\ \vdots & \vdots & & \vdots \\ z_1^{n-1} & z_2^{n-1} & \dots & z_{n+1}^{n-1} \\ 0 & 0 & \dots & \prod_{i=1}^n (z_{n+1} - z_i) \end{vmatrix}.$$

Par développement par rapport à la dernière ligne, on obtient 1

$$V(n) = \prod_{i=1}^{n} (z_{n+1} - z_i)V(n-1).$$

^{1.} Nous eussions pu nous arrêter là, le déterminant de Vandermonde est au programe de sup.

On montre alors par récurrence descendante que :

$$V(n) = \prod_{1 \le i < j \le n} (z_j - z_i)$$

Première partie

1. (a) E est bornée il existe donc $R \in \mathbf{R}_+^*$ tel que $E \in \mathcal{B}_{\mathbf{f}}(O, \mathbf{R})$, boule fermée de centre O de rayon R. Pour tout A et tout B points de E,

$$g_2(A, B) = d(A, B) \le d(A, O) + d(O, B) = 2R.$$

Donc $\{g_2(A, B), A \in E, B \in E\}$, ensemble non vide $(E \neq \emptyset)$, majoré par 2R, admet une borne supérieure. Finalement

$$\delta_2(E) = \sup \left\{ d(A, B), A \in E, B \in E \right\} < +\infty.$$

Soit $n \geq 2$. Quels que soient P_1, P_2, \ldots, P_n points de E,

$$g_n(P_1, \dots, P_n) = \left(\prod_{1 \le i \le j \le n} d(P_i, P_j)\right)^{2/n(n-1)} \le \left(\prod_{1 \le i \le j \le n} \delta_2(E)\right)^{2/n(n-1)} = \delta_2(E),$$

ce, parce que la borne supérieure est un majorant et par croissance de $\mathbf{R}_+ \to \mathbf{R}$; $s \mapsto s^{2/n(n-1)}$. Donc $\delta_2(E)$ majore $\{g_n(P_1,\ldots,P_n), P_i \in E, 1 \leq i \leq n\}$. La borne supérieure étant le plus petit majorant, $\delta_n(E) \leq \delta_2(E)$

(b) Supposons $\delta_n(E_2) < +\infty$. $\{g_n(P_1, \ldots, P_n), P_i \in E_1, 1 \leq i \leq n\} \subset \{g_n(P_1, \ldots, P_n), P_i \in E_2, 1 \leq i \leq n\}$. Donc la borne supérieure étant un majorant, $\delta_n(E_2)$ majore $\{g_n(P_1, \ldots, P_n), P_i \in E_1, 1 \leq i \leq n\}$. La borne supérieure étant le *plus petit* des majorants,

$$\sup \{g_n(P_1, \dots, P_n), P_i \in E_1, 1 \le i \le n\} \le \delta_n(E_2).$$

Soit finalement $\delta_n(E_1) \leq \delta_n(E_2)$

Cette inégalité évidente pour $\delta_n(E_2) = +\infty$.

- (c) Supposons E non borné. Soit O un point de E. Soit $\rho \in \mathbf{R}_+^*$. Notons, pour tout entier $k \geq 2$, (P_k) La propriété suivante : Il existe P_1, P_2, \ldots, P_k des éléments de E tels que pour tout i et tout j éléments distincts de $\{1, \ldots, k\}$, $d(P_i, P_j) \geq \rho$.
 - (P₂) est vrai: Soit P_1 un point de E. E étant non bornée, E n'est pas inclus dans la boule ouverte $B_o(P_1, \rho)$. Donc on peut choisir un élément P_2 de E distant de P_1 de ρ ou plus, d'où (P₂).
 - Soit un entier n ≥ 2. Supposons (P_n). Montrons (P_{n+1}):
 D'après (P_n), On dispose de P₁, P₂,..., P_n des éléments de E tels que pour tout i et tout j éléments distincts de {1,...,n}, d(P_i, P_j) ≥ ρ. Posons R = max{d(O, P_i), i = 1...n} + ρ². E étant non bornée, E n'est pas inclus dans la boule ouverte B_o(O, R). Donc il existe un élément de E, noté P_{n+1}, dans le complémentaire de cette boule. Pour tout élément i de {1,...,n},

$$d(P_{n+1}, P_i) \ge d(P_{n+1}, O) - d(O, P_i) \ge R + \rho - R = \rho.$$

Les points $P_1, \ldots, P_n, P_{n+1}$ vérifient donc (P_{n+1}) .

^{2.} faites un dessin!

• Par récurrence, on a prouvé que pour tout entier $k \geq 2$, (P_k) est vraie.

Ceci assure puisque ρ est quelconque le résultat.

Supposons toujours E non borné.

Soit un entier $n \geq 2$. Soit $\rho \in \mathbf{R}_{+}^{*}$. D'après la première partie de la question il existe Q_1, Q_2, \ldots, Q_n des éléments de E tels que pour tout i et tout j éléments distincts de $\{1, \ldots, n\}, d(Q_i, Q_j) \geq \rho$. On a, par croissance de $\mathbf{R}_{+} \to \mathbf{R}$; $s \mapsto s^{2/n(n-1)}$,

$$g_n(Q_1, \dots, Q_n) = \left(\prod_{1 \le i < j \le n} d(Q_i, Q_j)\right)^{2/n(n-1)} \ge \left(\prod_{1 \le i < j \le n} \rho\right)^{2/n(n-1)} = \rho.$$

 ρ étant quelconque l'ensemble (non vide) $\{g_n(P_1,\ldots,P_n),P_i\in E,1\leq i\leq n\}$ n'est pas majoré, donc $\delta_n(E)=+\infty$

- (d) Ah une question dure!
 - Comme $E \subset \overline{E}$, on a d'après 1. (b) que

$$\delta_n(E) \le \delta_n(\bar{E}).$$

- Montrons δ_n(E) ≥ δ_n(Ē).
 Pour commencer une remarque : E est borné si et seulement si Ē est borné. En effet si Ē est borné, E qui en est une partie l'est aussi. Si E est borné, alors il est inclus dans une boule fermée B, donc Ē ⊂ B = B et donc Ē est borné.
 - Premier cas : E et \bar{E} sont non bornés D'après 1.(c) $\delta_n(E) = \delta_n(\bar{E}) = +\infty$.
 - SECOND CAS : E ET \bar{E} SONT BORNÉS soit $\varepsilon \in \mathbf{R}_{+}^{*}$. Quitte à diminuer ε on suppose $\varepsilon < 2$. La propriété caractéristique de la borne inférieure dit qu'il existe $Q_{1}, Q_{2}, \ldots, Q_{n}$ éléments de \bar{E} tels que :

$$\delta_n(\bar{E})\left(1 - \frac{\varepsilon}{2}\right) < g_n(Q_1, \dots, Q_n) \le \delta_n(\bar{E})$$
 (3)

Posons $d = \min\{d(Q_i, Q_j), i = 1, \ldots, n, j = 1, \ldots, n, i \neq j\}$. Notons que d > 0, car les point Q_1, Q_2, \ldots, Q_n sont deux à deux distincts puisque d'après (3), $g_n(Q_1, \ldots, Q_n) > 0$. Pour $i = 1, 2, \ldots, n$, la boule ouverte $B_o(Q_i, \frac{\varepsilon d}{4})$ rencontre E, puisque $Q_i \in \bar{E}$. Soit N_i un point de $E \cap B_o(Q_i, \frac{\varepsilon d}{4})$. Par inégalité triangulaire, pour tout couple (i, j) d'éléments distincts de $\{1, 2, \ldots, n\}$,

$$d(N_i, N_j) \ge d(Q_i, Q_j) - 2\frac{\varepsilon d}{4} \ge d(Q_i, Q_j) \left(1 - \frac{\varepsilon}{2}\right) \ge 0.$$

Par multiplication d'inégalités entre réels positifs,

$$g_n(N_1,\ldots,N_n) \ge g_n(Q_1,\ldots,Q_n) \left(1-\frac{\varepsilon}{2}\right)$$

Donc

$$\delta_n(E) \ge g_n(Q_1, \dots Q_n) \left(1 - \frac{\varepsilon}{2}\right) \ge \delta_n(\bar{E}) \left(1 - \frac{\varepsilon}{2}\right)^2 \ge \delta_n(\bar{E}) \left(1 - \varepsilon\right).$$

Comme ε est quelconque $\delta_n(E) \geq \delta_n(\bar{E})$.

Des deux points précédents il découle : $\delta_n(E) = \delta_n(\bar{E})$

2. Soit $P \in [P_1, P_2]$. Notons $t := d(P_1, P)$; $c := d(P_1, P_3)$, alors, puisque $P \in [P_1, P_3]$, $d(P_2, P_3) = c - t$, $t \in [0, c]$ et $g_3(P_1, P, P_3) = c(c - t)t$.

x	0		$\frac{c}{2}$		c	
c(c-x)x	0	7	$\frac{c^3}{4}$	\searrow	0	

L'étude du trinôme du second degré en x, $c(c-x)x^3$, et la croissance de $\mathbf{R}_+ \to \mathbf{R}$; $s \mapsto s^{1/3}$ montre que $g_3(P_1, P, P_3)$ est maximum si et seulement si $t = \frac{c}{2}$ et vaut dans ce cas $\frac{c}{\sqrt[3]{4}}$. Donc $\{g_3(Q_1, Q_2, Q_3), Q_i \in [a, b], i \in \{1, 2, 3\}\}$ est majoré par $\frac{a}{\sqrt[3]{4}}$, or d'après l'étude précédente, $g_3(A, \frac{1}{2}(A+B), B) = \frac{a}{\sqrt[3]{4}}$ et donc :

$$\delta_3 = \frac{a}{\sqrt[3]{4}}$$

3. (a) De manière élémentaire, $d(P_1, P_2) = 2R \sin\left(\frac{\theta}{2}\right)$, $d(P_1, P_3) = 2R \sin\left(\frac{\varphi}{2}\right)$ et $d(P_2, P_3) = 2R \sin\left(\frac{\varphi-\theta}{2}\right)$ car $\frac{\theta}{2}$, $\frac{\varphi}{2}$ et $\frac{\varphi-\theta}{2}$ sont éléments de $[0, \pi]$. (faites un dessin!).

Donc

$$g_3(P_1, P_2, P_3)^3 = 8R^3 \sin\left(\frac{\varphi}{2}\right) \sin\left(\frac{\theta}{2}\right) \sin\left(\frac{\varphi - \theta}{2}\right) = 4R^3 \sin\left(\frac{\varphi}{2}\right) \left(\cos\left(\theta - \frac{\varphi}{2}\right) - \cos\left(\frac{\varphi}{2}\right)\right).$$

Etudions donc $h: [0, \varphi] \to \mathbf{R}; t \mapsto (\cos(t - \frac{\varphi}{2}) - \cos(\frac{\varphi}{2})).$

Tableau de variations:

$$\begin{array}{|c|c|c|c|c|}\hline t & 0 & \frac{\varphi}{2} & \varphi \\ \hline h(t) & 0 & \nearrow & \frac{1}{2} \left(1 - \cos\left(\frac{\varphi}{2}\right)\right) & \searrow & 0 \\ \hline \end{array}$$

On en déduit que $g_3(P_1,P_2,P_3)$, à P_1 et P_2 fixés, est maximum si et seulement si $\theta = \frac{\varphi}{2}$ et vaut alors $2R\left(\frac{1}{2}\sin\left(\frac{\varphi}{2}\right)\left(1-\cos\left(\frac{\varphi}{2}\right)\right)\right)^{1/3}$

(b) φ n'est plus fixé. Etudions l'application

$$H: [0, 2\pi] \to \mathbf{R}; x \mapsto \sin\left(\frac{x}{2}\right) \left(1 - \cos\left(\frac{x}{2}\right)\right).$$

H est \mathcal{C}^{∞} et pour tout élément $x \in [0, 2\pi]$, $H'(x) = \frac{1}{2} \left(1 - \cos\left(\frac{x}{2}\right)\right) \left(1 + 2\cos\left(\frac{x}{2}\right)\right)$ et est donc du signe de $1 + 2\cos\left(\frac{x}{2}\right)$, d'où le tableau de variations :

x	0		$\frac{4\pi}{3}$		2π	
H(t)	0	7	$\frac{3\sqrt{3}}{4}$	\searrow	0	

 $g_3(p_1, P_2, P_3)$ est maximum si et seulement si $\varphi = \frac{4\pi}{3}, \ \theta = \frac{2\pi}{3}$ et dans ce cas

$$g_3(P_1, P_2, P_3) = R\sqrt{3} \,.$$

On pourrait montrer en adaptant le raisonnement précédent que pour que $g_3(P_1, P_2, P_3)$ soit maximum il faut et il suffit que $(\overrightarrow{OP_1}, \overrightarrow{OP_3}) = \frac{1}{2}(\overrightarrow{OP_1}, \overrightarrow{OP_2})$ ce qui conduit au résultat, mais une rédaction rigoureuse et parfaite n'est pas simple.

^{3.} C'est du cours de terminale!

(c) Soient P_1 , P_2 et P_3 , trois points deux à deux distincts du cercle. g_3 étant invariant par les rotations (qui consevent les distances) on peut supposer que l'angle polaire de P_1 est nul; quitte à permuter P_1 et P_2 , ce qui laisse $g_3(P_1, P_2, P_3)$ invariant, on peut supposer que les angles polaires respectifs de P_2 et P_3 , θ et φ satisfont $0 < \theta < \varphi < 2\pi$. D'après 3.(a), $g_3(P_1, P_2, P_3) \le R\sqrt{3}$. Donc $\delta_3(C_R) \le R\sqrt{3}$. Par ailleurs pour P_1, P_2, P_3 d'angles polaires respectifs $0, \frac{2\pi}{3}$ et $\frac{4\pi}{3}, g_3(P_1, P_2, P_3) = R\sqrt{3}$ (cf. 3.(a)) donc :

$$\delta_3(C_R) \le R\sqrt{3}$$

Deuxième partie

1. (a) Soit $n \ge 2$. Pour $i = 1, 2, \dots, n + 1$, on a successivement

$$g_{n+1}(P_1, P_2, \dots, P_{n+1})^{n(n+1)} = \prod_{\substack{j=1,\dots,n+1\\k=1,\dots,n+1\\j\neq k}} d(P_j, P_k),$$

$$g_{n+1}(P_1, P_2, \dots, P_{n+1})^{n(n+1)} = \prod_{\substack{j=1,\dots,n+1\\k=1,\dots,n+1\\j\neq k, j\neq i, k\neq i}} d(P_j, P_k) \prod_{\substack{k=1,\dots,n+1\\k\neq i}} d(P_i, P_k) \prod_{\substack{j=1,\dots,n+1\\j\neq i}} d(P_j, P_i).$$

Soit

$$g_{n+1}(P_1, P_2, \dots, P_{n+1})^{n(n+1)} = g_n(P_1, \dots, P_{i}, \dots, P_{n+1})^{(n-1)n} \left(\prod_{\substack{k=1,\dots,n+1\\k\neq i}} d(P_i, P_k) \right)^2.$$

En multipliant ces égalités pour $i=1,2,\ldots,n+1,$ on a successivement :

$$\prod_{i=1}^{n+1} g_{n+1}(P_1, P_2, \dots, P_{n+1})^{n(n+1)} = \prod_{i=1}^{n+1} \left(g_n(P_1, \dots, P_{i-1}, P_i, \dots, P_{n+1})^{(n-1)n} \times \left(\prod_{\substack{k=1, \dots, n+1 \\ k \neq i}} d(P_i, P_k) \right)^2 \right),$$

$$g_{n+1}(P_1, P_2, \dots, P_{n+1})^{n(n+1)^2} = \prod_{i=1}^{n+1} g_n(P_1, \dots, P_{i}, \dots, P_{n+1})^{(n-1)n} \times \left(\prod_{\substack{i=1,\dots,n+1\\k=1,\dots,n+1\\k\neq i}} d(P_i, P_k)\right)^2,$$

$$g_{n+1}(P_1, P_2, \dots, P_{n+1})^{n(n+1)^2} = \prod_{i=1}^{n+1} g_n(P_1, \dots, P_{i}, \dots, P_{n+1})^{(n-1)n} \times g_{n+1}(P_1, P_2, \dots, P_{n+1})^{2n(n+1)}.$$

Finalement

$$g_{n+1}(P_1, P_2, \dots, P_{n+1})^{n+1} = \prod_{i=1}^{n+1} g_n(P_1, \dots, P_i, \dots, P_{n+1})$$

(b) Soient $P_1, P_2, \ldots, P_{n+1}$ des points de E. Pour $i = 1, 2, \ldots, n$, la borne inférieure étant un majorant,

$$0 \leq g_n(P_1, \dots, P_{i}, \dots, P_{n+1}) \leq \delta_n(E).$$

Donc d'après la question précédente,

$$g_{n+1}(P_1, P_2, \dots, P_{n+1})^{n+1} \le \prod_{i=1}^n \delta_n(E) = \delta_n(E)^{n+1}.$$

et donc par croissance de $\mathbf{R}_{+} \to \mathbf{R}$; $t \mapsto t^{1/(n+1)}$,

$$g_{n+1}(P_1, P_2, \dots, P_{n+1}) \le \delta_n(E).$$

La borne supérieure étant le plus petit des majorants,

$$\delta_n(E) \ge \delta_{n+1}(E)$$

La suite $(\delta_p(E))_{p\geq 2}$ est décroissante et minorée par 0, donc elle converge.

2. (a) Ce résultat des plus classiques est à connaître par cœur!

 $X^n - 1 = \prod_{j=0}^{n-1} (X - z_j)$, puisque $X^n - 1$ est unitaire de degré n et admet pour racines $z_0, z_{,1}, \ldots, z_{n-1}$. Par dérivation (formelle)

$$nX^{n-1} = \sum_{i=0}^{n} \left(1 \times \prod_{\substack{j=0,\dots,n-1\\j\neq i}} (X - z_j) \right).$$

Pour $k=1,2,\ldots,n-1$, en substituant z_k à l'indéterminée X, dans cette dernière égalité il vient :

$$nz_k^{n-1} = \prod_{\substack{j=0,\dots,n-1\\j\neq k}} (z_k - z_j)$$

Ce par annulation des termes de la somme pour lesquels $i \neq k$, qui contiennent le facteur $(X - z_k)$.

(b) Munissons le plan Π d'un repère orthonormé directe, tel que P_1 ait comme coordonnées (R,0), en identifiant alors Π et \mathbb{C} , quitte à permuter les points P_1,\ldots,P_n ce qui ne change pas $g_n(P_1,P_2,\ldots,P_n)$, on obtient comme affixe pour P_j , le complexe Rz_{j-1} , pour $j=0,1,\ldots,n-1$. Donc

$$g_n(P_1, P_2, \dots, P_n) = \left(\prod_{\substack{i=1,\dots,n\\j=1,\dots,n\\i\neq i}} d(P_i, P_j)\right)^{1/n(n-1)} = \left(\prod_{\substack{i=0\\i\neq i}} \prod_{\substack{j=0,\dots,n-1\\j\neq i}} R|z_i - z_j|\right)^{1/n(n-1)}$$

Donc d'après 1.(a),

$$g_n(P_1, P_2, \dots, P_n) = R\left(\prod_{i=0}^{n-1} n \underbrace{|z_i|^{n-1}}_{-1}\right)^{1/n(n-1)} = Rn^{1/(n-1)}$$

Remarque: c'est avec une joie non dissimulée que l'on retrouve pour n=3, le résultat de I.3.(c): $g_3(P_1, P_2, P_3) = R\sqrt{3}$, pour P_1, P_2, P_3 sommets d'un triangle équilatéral.

(c) D'après la question précédente, pour tout $n \geq 2$, $\delta_n(C_R) \geq Rn^{1/(n-1)}$. Or $n^{1/(n-1)} = \exp\left(\frac{\ln(n)}{n-1}\right) \underset{n \to +\infty}{\to} 1$, donc par passage à la limite : $\Delta(C_R) \geq R$. D'où l'encadrement :

$$R \le \Delta(C_R) \le \delta_3(C_R) = \sqrt{3}R$$

Troisième partie

1. (a) Notons \mathcal{E} , l'ensemble des affixes des points de E. E étant bornée \mathcal{E} l'est aussi. Donc il existe un réel R > 0 tel que pour tout $z \in \mathcal{E}$, $|z| \leq R$. Soit U un élément de \mathcal{U}_n , il s'écrit : $U(X) = \sum_{i=0}^n a_i X^i$, et donc

$$|U(z)| \le \sum_{i=0}^{n} |a_i| R^i,$$

pour tout $z \in \mathcal{E}$.

L'ensemble $\{U(z), z \in \mathcal{E}\}$ est donc majoré, il est aussi non vide $(E \neq \emptyset)$ il admet donc une borne supérieure notée $\mathcal{S}(E, U)$. $\{\mathcal{S}(E, U), U \in \mathcal{U}_n\}$ est non vide, minoré par 0, il admet donc une borne inférieure.

Justifions, bien que le texte ne le demande pas, l'indépendance de $\sigma_n(E)$ du repère. Soit \mathcal{R}' un autre repère direct. Il existe $z_0 \in \mathbf{C}$ et $\theta \in \mathbf{R}$ tels que, pour tout $M \in \Pi$, d'affixes z et z', respectivement dans \mathcal{R} et \mathcal{R}' , on ait

$$z' = \exp(i\theta)z + z_0.$$

Plus précisément $\varphi: \mathcal{E} \to \mathcal{E}'; z \mapsto \exp(i\theta)z + z_0$ est une bijection.

NOTATIONS:

- \mathcal{E}' l'ensemble des affixes des points de **E** relativement à \mathcal{R}' .
- $-- \mathcal{S}'(E, U) := \sup\{|U(z)|, z \in \mathcal{E}'\}.$
- $--\sigma'_n := \inf \{ \mathcal{S}'(E, U), U \in \mathcal{U}_n \}.$

Soit $V_0 \in \mathcal{U}_n$, posons pour tout complexe z, $U_0(z) := \exp(-in\theta)V_0(\exp(i\theta)z + z_0)$. $U_0 \in \mathcal{U}_n$ et pour tout $z \in \mathcal{E}'$, $|V_0(\varphi(z))| = |U_0(z)|$, donc

$$\{|V_0(z')|, z' \in \mathcal{E}'\} = \{|V_0(\varphi(z))|, z \in \mathcal{E}\} = \{|U_0(z)|, z \in \mathcal{E}\}.$$

Donc $S'(E, V_0) = S(E, U_0)$. V_0 étant quelconque,

$$\{S'(E,V), V \in \mathcal{U}\} \subset \{S(E,U), U \in \mathcal{U}\}$$

Donc $\sigma'_n(E) \geq \sigma_n(E)$ et même par symétrie de rôles de \mathcal{R} et \mathcal{R}' ,

$$\sigma'_n(E) = \sigma_n(E)$$

La définition de $\sigma_n(E)$ est indépendante du repère.

(b) • Soit $a \in \mathcal{E}$. Pour tout $z \in \mathcal{E}$, $|z-a| \le \delta_2(E)$. Donc $\{|z-a|, z \in \mathcal{E}\}$ est majoré par $\delta_2(E)$, donc $\sup\{|z-a|, z \in \mathcal{E}\} \le \delta_2(E)$. Or $\sup\{|z-a|, z \in \mathcal{E}\}$ vaut $\mathcal{S}(E, X-a)$, donc

$$\sigma_1(E) < \mathcal{S}(E, X - a) < \delta_2(E).$$

• Pour tout $b_0 \in \mathbb{C}$ et tout couple (P_1, P_2) d'éléments de \mathbb{E} d'affixes respectifs z_1 et z_2 ,

$$g_2(P_1, P_2) = d(P_1, P_2) = |z_1 - z_2| \le |z_1 - b_0| + |z_2 - b_0| \le 2\mathcal{S}(E, X - b_0).$$

Donc, $\frac{1}{2}g_2(P_1, P_2)$ minore $\{S(E, X - b_0), b_0 \in \mathbf{C}\} = \{S(E, U), U \in \mathcal{U}_1\}$. Donc, la borne inférieure étant le plus grands des minorants,

$$g_2(P_1, P_2) \le 2\sigma_1(E).$$

Finalement, la borne supérieure étant le plus petits des majorants,

$$\delta_2(E) \leq 2\sigma_1(E)$$
.

Conclusion $\sigma_1(E) \le \delta_2(E) \le 2\sigma_1(E)$

2. (a) Soit $x \in I$. Posons $\theta = \arccos(x)$. Soit enfin $n \in N^*$.

$$2^{n+1}T_{n+2}(x) + 2^{n-1}T_n(x) = \cos((n+2)\theta) + \cos(n\theta) = \cos((n+1)\theta + \theta) + \cos((n+1)\theta - \theta).$$

Donc

$$2^{n+1}T_{n+2}(x) + 2^{n-1}T_n(x) = (\cos((n+1)\theta)\cos(\theta) - \sin((n+1)\theta)\sin(\theta)) + (\cos((n+1)\theta)\cos((n+1)\theta)\cos((n+1)\theta)) + (\cos((n+1)\theta)\cos((n+1)\theta)) + (\cos((n+1)\theta)\cos((n+$$

$$(\cos((n+1)\theta)\cos(-\theta) - \sin((n+1)\theta)\sin(-\theta)),$$

soit

$$2^{n+1}T_{n+2}(x) + 2^{n-1}T_{n+2}(x) = 2\cos((n+1)\theta)\cos(\theta).$$

D'où la relation de récurrence :

$$T_{n+2}(x) = xT_{n+1}(x) - \frac{1}{4}T_n(x)$$
(4)

(b) On identifie maintenant polynôme et fonction polynomiale sur I associée.

Pour tout $n \in N^*$ on note (P_n) la propriété :

 (P_n) : Pour tout élément k de $\{1, 2, \ldots, n+1\}$, T_k est un polynôme unitaire de degré k.

- (P_1) est vraie.
 - En effet, pour tout élément x de I,

$$T_1(x) = x$$
 et $T_2(x) = \frac{1}{2}\cos(2\arccos(x)) = \frac{1}{2}(2\cos^2(\arccos(x)) - 1) = x^2 - \frac{1}{2}$.

- Soit m∈ N*. Supposons (P_m). Montrons (P_{m+1}).
 D'après (P_m), T_m est un polynôme de degré m, T_{m+1} est un polynôme unitaire de degré m + 1, et donc XT_{m+1} est un polynôme unitaire et d°(XT_{m+1}) = m + 2 > d°(T_m). On déduit donc de (4) que T_{m+2} est un polynôme unitaire de degré m+2. D'où (P_{m+1}).
- Par récurrence, on a prouvé que pour tout $n \in \mathbb{N}$, (P_n) est vraie.

Soit $n \in \mathbf{N}^*$. Pour tout $x \in I$, $|T_n(x)| \leq \frac{1}{2^{n-1}}$, de plus $|T_n(0)| = \frac{1}{2^{n-1}}$.

Le maximum de T_n sur I est donc $\frac{1}{2^{n-1}}$.

- (c) |U| est continue sur le segment [-1,1], donc atteint sa borne supérieur en un point t_0 de [-1,1]. D'ou l'existence de $\max\{|U(x)|, x \in I\}$, qui vaut $|U(t_0)||$.
- (d) Pour k = 0, 1, ..., n, $\frac{k\pi}{n} \in [0, \pi]^4$, et donc : $U(x_k) T_n(x_k) = U(x_k) \frac{1}{2^{n-1}} \cos(k\pi) = U(x_k) \frac{(-1)^k}{2^{n-1}}$. Comme $|U(x)| < \frac{1}{2^{n-1}}$, pour tout $x \in I$,

$$(U-T_n)(x_k) < 0$$
, pour k pair,

$$(U-T_n)(x_k)>0$$
, pour k impair.

Or $U-T_n$ est continu, donc le théorème de la valeur intermédiaire assure que $U-T_n$ s'annule sur les intervalles $]x_k, x_{k+1}[$, pour $k=0,1\ldots,n-1$. $U-T_n$ admet donc au moins n racines distinctes. Or U et T_n sont unitaires de même degré n, donc

^{4.} Avant d'écrire que $\arccos(\cos(a)) = a$ il faut s'assurer que $a \in [0, \pi]$.

 $d^{o}(U - T_{n}) < n$. Donc $U - T_{n}$, polynôme ayant plus de racines que son degré, est nul. Mais alors le maximum de |U| sur I est d'après 1., $\frac{1}{2^{n-1}}$ ce qui constitue une contradiction.

Pour un polynôme U unitaire de degré n, réel, $\max\{|U(x)|, x \in I\} \ge \frac{1}{2^{n-1}}$.

(e) Soit un polynôme U unitaire de degré n, complexe. Sa partie réelle est un polynôme R unitaire de degré n réel. Donc $\max\{|R(x)|, x \in I\} \ge \frac{1}{2^{n-1}}$, mais pour tout $x \in I$, $|U(x)| \ge |R(x)|$, donc a fortiori,

$$\max\{|U(x)|, x \in I\} \ge \frac{1}{2^{n-1}}$$

(f) Soit $U \in \mathcal{U}_n$, d'après 2. (b), $\mathcal{S}(I,U) \geq \frac{1}{2^{n-1}}$. donc $\sigma_n(I) \geq \frac{1}{2^{n-1}}$. Or $\mathcal{S}(I,T_n) = \frac{1}{2^{n-1}}$, donc $\sigma_n(I) \leq \frac{1}{2^{n-1}}$. Finalement $\sigma_n(I) = \frac{1}{2^{n-1}}$ et donc :

$$\mu_n(I) = \left(\frac{1}{2}\right)^{\frac{n-1}{n}}$$

Indications pour la fin du devoir (ce n'est plus une correction!)

- 1. (a) Raisonner par récurrence.
 - (b) $\{u_n|n\in \mathbb{N}\}$ est non vide minoré par 0 donc admet une borne inférieure ℓ .
 - (c) Soit $\varepsilon \in \mathbb{R}_+^*$. La propriété de la borne inférieure donne l'existence de $p \in \mathbb{N}$ tel que :

$$\ell < u_n < \ell + \varepsilon$$
.

Pour tout $n \in \mathbb{N}$, par dividion euclidienne $n = k_n p + r_n$, avec $0 \le r_n < p$. $(k_n)_{n \in \mathbb{N}}$ tend vers $+\infty$ et $(r_n)_{n \in \mathbb{N}}$ est bornée.

$$u_n \le \left(u_{k_n p}^{k_n p} u_{r_n}^{r_n}\right)^{\frac{1}{k_n p + r_n}} \le \left(u_p^{k_n p} u_{r_n}^{r_n}\right)^{\frac{1}{k_n p + r_n}}.$$

Or $(k_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ et $(r_n)_{n\in\mathbb{N}}$ est bornée, donc

$$\left(u_p^{k_n p} u_{r_n}^{r_n}\right)^{\frac{1}{k_n p + r_n}} \underset{n \to +\infty}{\to} u_p < \ell + \varepsilon.$$

Donc pour n suffisament grand $\ell \leq u_n < \ell + 2\varepsilon...$

(d) Soient P et Q des polynômes complexes de degrés respectifs p et q unitaires. Pour tout $z \in \mathbf{E}$,

$$|PQ(z)| = |P(z)||Q(z)| < S(E, P)S(E, Q).$$

Donc $S(E, PQ) \leq S(E, P)S(E, Q)$, et donc $\sigma_{pq} \leq S(E, P)S(E, Q)$, puisque PQ est unitaire de degré p+q. Donc la borne inférieure étant le plus grand des minorants et P et Q étant quelconques.

$$\sigma_{p+q} \leq \sigma_p \sigma_q$$
.

(e) Au cas où l'un des $\sigma_m(E)$ est nul, les suivants aussi et $(\mu_n)_{n\in\mathbb{N}}$ étant nulle à partir d'un certain rang converge vers zéro. Sinon, la suite $(\mu_n)_{n\in\mathbb{N}}$ vérifie la propriété du 3., donc converge vers sa borne inférieure.

2. (a) Par développement par rapport à la dernière ligne :

$$|V| \le \sum_{i=1}^{n+1} |U(z_i)| \prod_{1 \le k < j \le n+1, k \ne ij \ne i} |z_k - z_j| \le \sum_{i=1}^{n+1} S(E, U) \prod_{1 \le k < j \le n+1, k \ne ij \ne i} |z_k - z_j|$$

Or $\prod_{\substack{1 \leq k < j \leq n+1, k \neq ij \neq i \\ \text{d'affixe } z_k, \text{ pour } k=1,\ldots,n=1.}} |z_k-z_j| = g_n(P_1,\ldots P_k)^{\frac{n(n-1)}{2}} \leq \delta_n^{\frac{n(n-1)}{2}}, \text{ où } P_k \text{ est le point }$

$$g_n(P_1, \dots P_{n+1})^{\frac{n(n+1)}{2}} = |V| \le (n+1)S(E, U)\delta_n^{\frac{n(n-1)}{2}}.$$

D'où l'on tire facilement :

$$\delta_{n+1}(E)^{\frac{n(n+1)}{2}} \le (n+1)\delta_n(E)^{\frac{n(n-1)}{2}}\mu_n(E)^n.$$

(b) La formule résulte du choix particulier de $U,\,U=U_0$ qui donne :

$$\delta_{n+1}(E)^{\frac{n(n+1)}{2}} \ge g_{n+1}(P_1, \dots, P_{n+1})^{\frac{n(n+1)}{2}} = |V| = |U_0(z_{n+1}) \prod_{1 \le k < j \le n} |z_k - z_j|,$$

puis z_{n+1} étant quelconque,

$$\delta_{n+1}(E)^{\frac{n(n+1)}{2}} \ge S(E, U_0) | \prod_{1 \le k < j \le n} |z_k - z_j| \dots$$

- (c) Résulte immédiatement de la sous-question précédente et de la décroissance de $(\delta_n)_{n \in \mathbb{N}^*}$.
- (d) On multiplie les inégalités 4.(a) et après un téléscopage on obtient la formule.
- (e) Se déduit de la sous-question précédente et de la première question des prélimlinaires.