Notes on x-ray data

Scott Trinkle

Last edited: September 5, 2018

1 Introduction

The aim of these notes is to discuss and characterize the post-processing steps involved in preparing the reconstructed μ CT data for further analysis.

1.1 Data size reduction

The full resolution (1.2 μ m isotropic) μ CT data¹ is reconstructed with 32-bit float precision, with an image size of 11982×11982×13781 voxels. A single slice is thus ~548 MB and the full volume is ~7.5 TB. The first family of post-processing steps attempt to reduce the data size. First, each slice is cropped to a 10096×6720 voxel field of view that just includes the extent of the brain volume. Next, the data values are rescaled from 32-bit floating point values to 8-bit unsigned integers.² These two operations reduce a single slice to ~68 MB, a reduction of ~87%. A comparison of the pre- and post-processed data is shown in Figure ??.

Figure 1: Caption

¹In these notes, I refer to what I am told is the "best" μCT dataset that has a corresponding DW-MRI volume, located in /data_raf/2017_07_22_WholeMouseMRI_5x_2k_phase35cm_gap31_exp30_newfocus/ recon_flatcorr_1x/recon_crop_8/on_globus

²I am still communicating with Raf to understand how he does this rescaling. He claims that the rescaling causes the denoising, but I am able to better replicate his results after Gaussian filtering as well.

test acc

