Д.Б. Кузнецов, Т.В. Шадрина

Пермский национальный исследовательский политехнический университет, Пермь

РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ ДЕЦЕНТРАЛИЗОВАННОГО УПРАВЛЕНИЯ ПОРТАЛОМ САЙТОВ

В статье описывается разработка математической модели децентрализованного управления порталом сайтов при помощи сети Петри и распределенных автоматов с применением теории множеств. Также приводится обоснование необходимости разработки такой модели.

Ключевые слова: модель, управление, портал, сеть Петри, распределенный автомат.

D.B. Kuznetsov, T.V. Shadrina

Perm National Research Polytechnic University, Perm

DEVELOPMENT OF A MATHEMATICAL MODEL FOR WEB-PORTAL MANAGEMENT

The article describes the development of a mathematical model of decentralized web-portal management using a Petri net and distributed machine using set theory. The rationale for the need to develop such a model is also provided.

Keywords: model, management, web-portal, Petri net, distributed machine.

В современном мире сайт является важным инструментом для привлечения клиентов, предоставления информации о продуктах или услугах, установления контакта с потенциальными покупателями, продвижения бренда и увеличения узнаваемости компании. При этом у организаций, имеющих схожую структуру и выполняющих однотипные функции, появляются похожие сайты, что предопределяет дальнейшее развитие разработок в виде объединения их в портальные решения в рамках платформы [1].

По данным Global Digital с каждым годом увеличивается количество пользователей в сети Интернет, на 2023 г. этот показатель составил 64,4 % от мирового населения. С ростом популярности веб-технологий увеличивается и число посетителей веб-порталов, вследствие чего увеличивается нагрузка на серверы, обрабатывающие запросы пользователей к сайтам, что, в свою очередь, повышает вероятность их выхода из

строя. Последствиями такой ситуации могут быть как экономические, так и репутационные потери. Следовательно, возникает необходимость обеспечения надежности веб-портала, о чем также свидетельствует ГОСТ 28806-90, где надежность является одной из основных характеристик качества программного продукта, которая включает в себя отказоустойчивость как подхарактеристику.

В современных системах отказоустойчивость обеспечивается за счет избыточности (резервирования) и балансировки нагрузки. И балансировка нагрузки, и резервное копирование — сложные процессы, которыми необходимо каким-то образом управлять для обеспечения нормальной работы портала сайтов. Следовательно, возникает необходимость в формулировании некоторого набора правил для управления порталом сайтов. Такой набор правил формируется при применении различных моделей и методов управления порталом сайтов.

Результаты анализа существующих моделей и методов управления порталом сайтов приведены в таблице.

Наименование	Преимущества	Недостатки
Системы управления контентом	Широко применяется, высокая степень изученности	Ключевой недостаток следует из определения, CMS управляют контентом, а не серверами
Стохастические	Возможность предвиденья пове-	Не предоставляет инструкций к
модели прогнозиро-	дения как системы в целом, так и	действиям по устранения или
вания	отдельных ее компонентов	минимизации последствий отказа
Системы оркестрации контейнеров (иерар- хическое управление)	Автоматизированное управление, следовательно, отсутствие сбоев, вызванных ошибками оператора	Централизованное управление, иерархическая структура, следова- тельно, наличие единой точки отказа
Бессерверные вычис- ления (децентрализо- ванное управление)	Позволяет не задумываться об инфраструктуре и ее параметрах (масштабируемости, высокой доступности и т. п.)	Отсутствие единого универсально- го решения

Подходы к управлению порталом сайтов

На основании таблицы можно сделать вывод, что для управления порталом сайтов необходимо использовать бессерверные вычисления, т.е. модели и методы децентрализованного управления, но, так как разработанные технологии, которые позволяют использовать такие вычисления, являются коммерческой тайной, а также вследствие отсутствия единого универсального решения среди таких подходов, возникает необходимость в разработке собственной математической модели. В результате анализа методов моделирования порталов сайтов было принято решение об использовании сети Петри и распределенных автоматов. С формальной точки зрения взаимодействие агентов в децен-

трализованной системе управления порталом сайтов определяется упорядоченным конечным набором длинны n=3, каждый из элементов которого принадлежит некоторому конечному множеству M_i $(1 \le i \le n)$ (аналогично для $n \ne 3$):

$$c = \langle X, Z, S \rangle, \tag{1}$$

где X — множество входных значений для агента, Z — множество выходных значений для агента, S — множество агентов.

Множество входных значений — вектор бинарных значений длины n=6:

$$X = \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle,$$
 (2)

где x_1 — определяет отказал ли какой-нибудь из серверов, x_2 — можно ли считать данный сервер лучшим вариантом для размещения сайтов, x_3 — нужно ли выполнить резервное копирование, x_4 — совершил ли пользователь какое-нибудь действие (добавление или удаление блока или сайта), x_5 — произошла ли ошибка после выполнения действия пользователя, x_6 — нужно ли переместить часть сайтов с данного сервера на другой.

Множество выходных значений – это вектор бинарных значений длины n=4:

$$Z = \langle z1, z2, z3, z4 \rangle,$$
 (3)

где z1 — на данном сервере восстановлена работа сайтов с другого сервера, z2 — выполнено резервное копирование, z3 — исправлена пользовательская ошибка, z4 — выполнено перераспределение (часть сайтов с данного сервера размещены на другом).

Учитывая, что агенты в децентрализованной системе управления имеют одинаковый набор правил, можно провести моделирование только для одного из элементов множества S, с учетом уравнений (2) и (3). В таком случае графическое представление сети Петри будет выглядеть, как показано на рис. 1, где R — выполнение процесса восстановления работы сайтов, размещенных на вышедшем из строя сервере, В — процесс выполнение резервного копирования, С — процесс исправления ошибки, допущенной пользователем при внесении изменений на портале, D — процесс перераспределения сайтов по серверам, х — позиции для задания входного вектора, р — позиции, характеризующие промежуточные состояния, t — переходы между позициями, с — переходы между позициями, формирующие выходной вектор.

Рис. 1. Сервер портала как сеть Петри

Так как в основе анализа сетей Петри лежит анализ достижимости, проверим срабатывание выходных сигналов в зависимости от входного вектора при помощи имитационного моделирования. Для этого построим сеть Петри, представленную на рис. 1, в программе GRIN и запустим моделирование в автоматическом режиме.

На рис. 1 ромбами отмечены позиции, в которые будут устанавливаться фишки для задания конкретного значения входного вектора. Также фишка установлена в начальную позицию, отмеченную на рисунке нулем. Таким образом, задавая входной вектор при помощи расставления фишек в соответствующие позиции, на модели можно провести эксперементы.

Количество экспериментов можно посчитать по комбинаторной формуле, применимой для подсчета перестановок с повторениями:

$$\overline{A_n^k} = n^k = 2^6 = 64. (4)$$

где n – количество значений переменной, k – количество переменных.

Результаты имитационного моделирования приведены на рис. 2.

На основании результатов, представленных на рис. 2, построенную модель можно считать применимой.

Для определения взаимодействия агентов в системе построим модель портала сайтов как распределенный автомат.

Автомат представляет собой систему:

$$A = \langle X, Z, Q, f, \phi, q_0 \rangle,$$
 (5)

где $X=\{x_1,\,x_2,\,\dots\,x_n\}$ — множество входных сигналов, $Y=\{y_1,\,y_2,\,\dots\,y_m\}$ — множество выходных сигналов, $Q=\{q_1,\,q_2,\,\dots\,q_k\}$ — множество состояний автомата, $f(q,\,x)$ и $\phi(q,\,x)$ — функции переходов и выходов соответственно, q_0 — начальное состояние автомата [2].

С учетом выражения (5) зададим автомат следующим образом. Множество состояний автомата определим как:

$$Q = \{q_B, q_D, q_E, q_R\},$$
 (6)

где В – состояние при выполнении резервного копирования, D – состояние при перераспределении сайтов по серверам, E – состояние при возникновении ошибки, R – состояние при отказе одного из серверов.

Nt	X ₁	x ₂	\mathbf{x}_3	X 4	X ₅	X ₆	z ₁	Z ₂	Z ₃	Z ₄	N2	X ₁	x ₂	X ₃	X.4	X 5	X 6	Z ₁	z ₂	Z ₃	Z ₄	N2	X ₁	X ₂	x_3	X 4	Xs	X ₆	z ₁	Z ₂	Z ₃	Z 4
1	0	0	0	0	0	0	0	0	0	0	23	0	1	0	1	1	0	0	0	1	0	44	1	0	1	0	1	1	0	1	0	1
2	0	0	0	0	0	1	0	0	0	1	24	0	1	0	1	1	1	0	0	1	1	45	1	0	1	1	0	0	0	1	0	0
3	0	0	0	0	1	0	0	0	0	0	25	0	1	1	0	0	0	0	1	0	0	46	1	0	1	1	0	1	0	1	0	1
4	0	0	0	0	1	1	0	0	0	1	26	0	1	1	0	0	1	0	1	0	1	47	1	0	1	1	1	0	0	1	1	0
5	0	0	0	1	0	0	0	0	0	0	27	0	1	1	0	1	0	0	1	0	0	48	1	0	1	1	1	1	0	1	1	1
6	0	0	0	1	0	1	0	0	0	1	28	0	1	1	0	1	1	0	1	0	1	49	1	1	0	0	0	0	1	0	0	0
7	0	0	0	1	1	0	0	0	1	0	29	0	1	1	1	0	0	0	1	0	0	50	1	1	0	0	0	1	1	0	0	1
8	0	0	0	1	1	1	0	0	1	1	30	0	1	1	1	0	1	0	1	0	1	51	1	1	0	0	1	0	1	0	0	0
9	0	0	1	0	0	0	0	1	0	0	31	0	1	1	1	1	0	0	1	1	0	52	1	1	0	0	1	1	1	0	0	1
10	0	0	1	0	0	1	0	1	0	1	32	0	1	1	1	1	1	0	1	1	1	53	1	1	0	1	0	0	1	0	0	0
11	0	0	1	0	1	0	0	1	0	0	33	1	0	0	0	0	0	0	0	0	0	54	1	1	0	1	0	1	1	0	0	1
12	0	0	1	0	1	1	0	1	0	1	34	1	0	0	0	0	1	0	0	0	1	55	1	1	0	1	1	0	1	0	1	0
13	0	0	1	1	0	0	0	1	0	0	35	1	0	0	0	1	0	0	0	0	0	56	1	1	0	1	1	1	1	0	1	1
14	0	0	1	1	0	1	0	1	0	1	36	1	0	0	0	1	1	0	0	0	1	57	1	1	1	0	0	0	1	0	0	0
15	0	0	1	1	1	0	0	1	1	0	37	1	0	0	1	0	0	0	0	0	0	58	1	1	1	0	0	1	1	1	0	1
16	0	0	1	1	1	1	0	1	1	1	38	1	0	0	1	0	1	0	0	0	1	59	1	1	1	0	1	0	1	1	0	0
17	0	1	0	0	0	0	0	0	0	0	39	1	0	0	1	1	0	0	0	1	0	60	1	1	1	0	1	1	1	1	0	1
18	0	1	0	0	0	1	0	0	0	1	40	1	0	0	1	1	1	0	0	1	1	61	1	1	1	1	0	0	1	1	0	0
19	0	1	0	0	1	0	0	0	0	0	41	1	0	1	0	0	0	0	1	0	0	62	1	1	1	1	0	1	1	1	0	1
20	0	1	0	0	1	1	0	0	0	1	42	1	0	1	0	0	1	0	1	0	1	63	1	1	1	1	1	0	1	1	1	0
21	0	1	0	1	0	0	0	0	0	0	43	1	0	1	0	1	0	0	1	0	0	64	1	1	1	1	1	1	1	1	1	1
22	0	1	0	1	0	1	0	0	0	1																						

Рис. 2. Результаты имитационного моделирования сети Петри

Множество выходных сигналов обозначим как:

$$Y = \{y_{OB}, y_{OD}, y_{OE}, y_{ER}, y_{BO}, y_{DO}, y_{EO}, y_{RO}\}.$$
 (7)

Множество входных сигналов:

$$X = \{x_1, x_2, x_3, x_4, x_5\},\tag{8}$$

где x_1 – любое внешнее воздействие, приводящее к ошибке, x_2 – ошибку нельзя исправить, и она критична, x_3 – команда на выполнение резервного копирования, x_4 – команда на перераспределение сайтов по серверам, x_5 – ошибка исправлена.

Начальное состояние q_0 – состояние, при котором обеспечивается нормальная работа портала. При построении распределенного автомата введем следующие допущения:

- каждый автомат имеет информацию о состоянии каждого другого автомата;
- два или более собственных переходов не могут произойти одновременно, т.е. переход в новое состояние инициируется единственным автоматом;
- при отказе сервер перестает принимать и получать идентификаторы состояний, т.е. «выпадает» из системы, следовательно, никак не влияет на поведение оставшихся.

С учетом этих допущений зададим распределенный асинхронный автомат для двух серверов графом, представленным на рис. 3.

Рис. 3. Портал сайтов как распределенный автомат

На рис. 3 сплошной линией обозначены активные дуги (собственные переходы), а пунктирной – пассивные дуги (вынужденные переходы) петли, сохраняющие текущее состояние автомата, на рисунке опущены. Мультидуги показаны сплошной линией, помеченной разделенными запятой условием собственного перехода и обозначением нового состояния другого автомата, т.е. условием пассивного (вынужденного) перехода [3]. Идентификаторы вида S_{ijk} обозначают факт перехода k-го автомата (k = 1, 2) из i-го состояния ($i = q_B, q_D, q_E, q_R$) в j-е состояние ($j = q_B, q_D, q_E, q_R$). Определим портал сайтов как некоторое множество автоматов A длинны n > 1. Тогда автомат $a_k \in A, 1 \le k \le n$ и автомат $a_p \in A, 1 \le p \le n$, причем $p \ne k$.

Рис. 4. Результаты имитационного моделирования распределенного автомата

Запишем логические функции переходов:

$$\begin{split} q_{Ek}(t+1) &= q_{Ok}(t)(x_{1k}(t) \ V \ S_{OEp}(t)); \ q_{Rk}(t+1) = q_E(t)(x_{2k}(t) \ V \ S_{ERp}(t)); \\ q_{Dk}(t+1) &= q_{Ok}(t)(x_{3k}(t) \ V \ S_{ODp}(t)); \\ q_{Bk}(t+1) &= q_{Ok}(t)(x_{4k}(t) \ V \ S_{OBp}(t)); \\ q_{O}(t+1) &= q_{Bk}(t)S_{BOp}(t) \ V \ q_{Dk}(t)S_{DOp}(t) \ V \ q_{Rk}(t)S_{ROp}(t) \ V \ q_{Ek}(t)x_{5k}(t). \end{split}$$

Функции выходов:

$$\begin{aligned} y_{OE} &= q_{Ok}(x_{1k} \ V \ S_{OEp}); \ y_{ER} = q_{Ek}(x_{2k} \ V \ S_{ERp}); \ y_{OD} = q_{Ok}(x_{3k} \ V \ S_{ODp}); \\ y_{OB} &= q_{Ok}(x_{4k} \ V \ S_{OBp}); \end{aligned} \tag{10}$$

$$y_{EO} = q_{Ek}(x_{5k} \lor S_{EOp}); y_{RO} = q_{Rk}S_{ROp}; y_{DO} = q_{Dk}S_{DOp}; y_{BO} = q_{Bk}S_{Bop}.$$

Для анализа достижимости состояний была построена имитационная модель на языке Python, результаты моделирования представлены на рис. 4.

На основании результатов, приведенных на рис. 4, можно утверждать о правильности функционирования разработанной модели.

Таким образом, в результате исследования разработана математическая модель децентрализованного управления порталом сайтов. Модель построена при помощи сети Петри и распределенного автомата Милли. Полученные функции переходов и выходов можно использовать для составления правил децентрализованного управления порталом сайтов, что является поводом для дальнейших исследований.

Библиографический список

- 1. Езова Н.С., Кузнецов Д.Б. Математическая модель платформы портального решения для построения системы сайтов // Вестник Пермского национального исследовательского политехнического университета. Электротехника, информационные технологии, системы управления. -2013. -№ 8. -C. 23–30.
- 2. Викентьева О.Л., Соловьев А.Е., Файзрахманов Р.А. Дискретная математика: учеб. пособие. Пермь: ПГТУ, 2009. С. 112–120.
- 3. Кузнецов Б.П. Распределенные конечные автоматы // Приборы и системы. Управление, контроль, диагностика. 2000. № 2. С. 9–12.

Сведения об авторах

Кузнецов Денис Борисович – старший преподаватель кафедры «Информационные технологии и автоматизированные системы» Пермского национального исследовательского политехнического университета, г. Пермь, e-mail: kdenisb@gmail.com

Шадрина Татьяна Владимировна – магистрант Пермского национального исследовательского политехнического университета, гр. РИС-23-1м, г. Пермь, e-mail: shanyat@mail.ru