207. Kupferblock in Styropor

$$a=0.1 \text{ m}; \quad m=a^3 \rho; \quad l=\frac{1}{10}a; \quad T_0=293.15; \quad T_1=333.15 \text{ K}$$
 $\rho=8930 \text{ kg/m}^3; \quad c=385 \text{ J/kg K}; \quad \lambda=0.027 \text{ W/m K}$

Def: System wird erwärmt = positive Wärme = negative Arbeit System kühlt ab = negative Wärme = positive Arbeit

a) Die Wärmeleitfähigkeit der Luft sagt in diesem Beispiel nicht aus, wie gut diese Isoliert, da Luft bei Erwärmung zirkuliert und somit den "Wärmetransport" fördert.

b)
$$G = \lambda \frac{A}{l}$$

$$G = -60\lambda a = -0.162 \text{ W/K}$$

c)
$$\dot{Q} = \frac{dQ}{dt} = G\Delta T$$

$$\dot{Q} = G(T_0 - T_1) = \underline{6.48 \text{ W}}$$

d)
$$T_2 = 332.15 \text{ K}; \quad Q = mc\Delta T$$

 $Q_1 = a^3 \rho c (T_2 - T_1)$
 $t_1 = \frac{Q_1}{\dot{Q}} = \underline{530.6 \text{ s}}$

e)
$$\frac{dT}{dt} = r(T(t) - T_0); \quad r = -\frac{G}{cm}; \quad T(0) = T_1 = 333.15 \text{ K}$$

$$\frac{dT}{dt} = r(T(t) - T_0)$$

$$\int \frac{1}{T(t) - T_0} dT = \int r dt$$

$$\ln(T(t) - T_0) + c_1 = rt + c_2 \qquad c_3 := c_2 - c_1$$

$$T(t) - T_0 = e^{rt + c_3} \qquad C := e^{c_3}$$

$$T(t) = Ce^{rt} + T_0$$

$$T(0) = T_1$$

$$Ce^{rt} + T_0 = T_1$$

$$T(t) = (T_1 - T_0)e^{rt} + T_0$$

$$\Rightarrow T(t) = 40e^{-4.7*10^{-5}t} + 20$$

f) 21 = T(t) $21 = (T_1 - T_0)e^{rt} + T_0$ $t = \frac{\ln\left(\frac{21 - T_0}{T_1 - T_0}\right)}{r} = \frac{78287 \text{ s}}{r}$

209. Limonade mit Eis

$$m_1 = 0.24 \ \mathrm{kg}; \quad T_1 = 306.15 \ \mathrm{K}; \quad m_2 = 0.025 \ \mathrm{kg}; \quad T_2 = 273.15 \ \mathrm{K}$$

$$L = 3.33 * 10^5 \ \mathrm{J/kg} : \quad c = 4190 \ \mathrm{J/kg} \, \mathrm{K}$$

$$Q_s = 2Lm_2$$
 (Schmelzwärme)
 $T_s = -\frac{Q_s}{cm_1} + T_1$ (Temp nach Schmelze)
 $Q_1 = cm_1(T - T_s)$
 $Q_2 = cm_2(T - T_2)$

a) $Q = cm\Delta T$; Q = Lm; $\Delta T = T_{Ende} - T_{Start}$

$$Q_{2} = cm_{2}(T - T_{2})$$

$$Q_{1} + 2Q_{2} = 0$$

$$\Rightarrow T = \frac{m_{1}T_{s} + 2m_{2}T_{2}}{m_{1} + 2m_{2}} = \underline{286.76 \text{ K}}$$
(= 13.61 °C)

b) $Q_s = 6Lm_2 = 4.995 * 10^4 \text{ J}$ (Schmelzwärme) $Q = cm_1(T_1 - T_2) = -3.079 * 10^4 \text{ J}$ (bis zum Gefrieren)

⇒ im Wasser ist nicht genügend Energie gespeichert, um die Eiswürfel zu schmelzen; es bleibt ein Wasser-Eis Gemisch bei $\underline{273.15~\mathrm{K}}$ (= 0 °C) über

PS Physik

212. Luft

 $V = 3 * 4 * 5 \text{ m}; \quad T = 300 \text{ K}; \quad p = 1 \text{ atm}; \quad k_B = 1.38 * 10^{-23} \text{ J/K}$

a)
$$pV = nk_BT$$

$$n = \frac{pV}{k_B T} = \underline{1.47 * 10^{27}}$$

b)

$$\rho_n = \frac{n}{V} = \frac{p}{k_B T} = \underline{2.45 * 10^{19} \text{ cm}^{-3}}$$

c) $u = 1.66 * 10^{-27} \text{ kg}; \quad A_{\text{O}_2} = 32; \quad A_{\text{N}_2} = 28$

$$m_{\rm O_2} = 0.2n * 32u$$

$$m_{\rm N_2} = 0.8n * 28u$$

$$m = m_{\rm O_2} + m_{\rm N_2} = 28.8 nu = \underline{70.19 \text{ kg}}$$

d) $\Delta p = \rho_m g h$; $\rho_m = \frac{m}{V}$; h = 3 m

$$\Delta p = \frac{\rho_m g h}{V} = \underline{34.43 \text{ Pa}}$$

$$\frac{\Delta p}{h} = \frac{\rho_m g}{V} = \underline{\underline{11.48 \text{ Pa/m}}}$$