Equivalencia y consecuencia lógica para LPO

IIC1253 - Matemáticas Discretas Clase 05

Prof. Fernando Florenzano Hernández faflorenzano@ing.puc.cl

Contenidos

Cuantificadores

Interpretaciones

Equivalencia lógica

Consecuencia lógica

Outline

Cuantificadores

Interpretaciones

Equivalencia lógica

Consecuencia lógica

Cuantificador universal

Sea $P(x, y_1, ..., y_n)$ un predicado compuesto con dominio D.

Definición

■ Definimos el cuantificador universal:

$$P'(y_1,\ldots,y_n) := \forall x. P(x,y_1,\ldots,y_n)$$

donde x es la variable cuantificada y y_1, \ldots, y_n son las variables libres.

■ Para b_1, \ldots, b_n en D, definimos la valuación:

$$P'(b_1,\ldots,b_n) = 1$$

si para todo a en D se tiene que $P(a, b_1, ..., b_n) = 1$, y o en otro caso.

Cuantificador existencial

Sea $P(x, y_1, ..., y_n)$ un predicado compuesto con dominio D.

Definición

Definimos el cuantificador existencial:

$$P'(y_1,\ldots,y_n) := \exists x. P(x,y_1,\ldots,y_n)$$

donde x es la variable cuantificada y y_1, \ldots, y_n son las variables libres.

Para b_1, \ldots, b_n en D, definimos la valuación:

$$P'(b_1,\ldots,b_n) = 1$$

si existe a en D tal que $P(a, b_1, \ldots, b_n) = 1$, y o en otro caso.

Interpretación de cuantificadores

Sea P(x) un predicado compuesto sobre el **dominio** $D = \{a_1, a_2, \ldots\}$.

Los cuantificadores universal y existencial se pueden "interpretar" como:

$$\forall x. P(x) \approx P(a_1) \wedge P(a_2) \wedge P(a_3) \wedge \dots = \bigwedge_{i=1}^{\infty} P(a_i)$$

$$\exists x. P(x) \approx P(a_1) \vee P(a_2) \vee P(a_3) \vee \dots = \bigvee_{i=1}^{\infty} P(a_i)$$

Es posible combinar cuantificadores

¿Qué significan las siguientes fórmulas?

Para los predicados P(x) := x es par y $O(x,y) := x \le y$ sobre \mathbb{Z} :

- $\forall x. \forall y. O(x,y)$
- \blacksquare $\exists x. \exists y. O(x,y)$
- $\forall x. \exists y. O(x,y)$
- \blacksquare $\exists x. \forall y. O(x,y)$

Predicados compuestos (con cuantificadores)

(re)Definición

Decimos que una predicado es compuesto (o también fórmula) si es:

- un predicado básico,
- la negación (¬), conjunción (∧), disyunción (∨), condicional (→), bicondicional (↔) de predicados compuestos sobre el mismo dominio o
- la cuatificación universal (∀) o existencial (∃) de un pred. compuesto.

El **valuación** de un predicado **compuesto** corresponde a la valuación recursiva de sus cuantificadores, conectivos lógicos y predicados básicos.

Predicados compuestos (más ejemplos)

¿Qué representan las siguientes fórmulas?

Para los predicados $x \le y$, x = y, e x + y = z sobre \mathbb{Z} :

- C(x) := x + x = x
- $\blacksquare L(x,y) := x \le y \land \neg(x = y)$
- $\blacksquare S(x,y) := L(x,y) \land \neg \exists z. (L(x,z) \land L(z,y))$
- $\blacksquare \ I := \ \forall x. \ \exists y. \ \exists z. \ C(z) \land x + y = z$

Contenidos

Cuantificadores

Interpretaciones

Equivalencia lógica

Consecuencia lógica

¿De qué depende si una fórmula sea verdadera o falsa?

¿Es la fórmula verdadera o falsa?

$$\alpha = \exists x. \ \forall y. \ x \leq y$$

- \blacksquare si el "dominio" donde se evalúa α son los naturales.
- \blacksquare si el "dominio" donde se evalúa α son los enteros.
- \blacksquare si el "dominio" donde se evalúa α son nombres de personas. (?)

Depende de la **interpretación** (significado) del dominio y el símbolo ≤.

Notación

Desde ahora, diremos que $P(x_1,...,x_n)$ es un símbolo de predicado.

Definición

Una interpretación \mathcal{I} para sím. de predicado P_1, \ldots, P_m se compone por:

- 1. un dominio $\mathcal{I}(dom)$ y
- **2.** para cada símbolo P_i un **predicado** $\mathcal{I}(P_i)$.

Definición

Una interpretación \mathcal{I} para sím. de predicado P_1, \ldots, P_m se compone por:

- **1.** un **dominio** $\mathcal{I}(dom)$ y
- **2.** para cada símbolo P_i un **predicado** $\mathcal{I}(P_i)$.

Ejemplos

Considere los símbolos P(x) y O(x,y).

- $\mathcal{I}_1(dom) := \mathbb{N}$ $\mathcal{I}_1(P) := x \text{ es par}$ $\mathcal{I}_1(Q) := x \text{ es par}$
 - $\mathcal{I}_1(0) := x < y$
- $\mathcal{I}_2(dom) := \mathbb{Z}$ $\mathcal{I}_2(P) := X > 0$ $\mathcal{I}_2(O) := X + V = 0$

Definición

Sea $\alpha(x_1,\ldots,x_n)$ una fórmula y $\mathcal I$ una interpretación de los símbolos en α .

Diremos que la interpretación \mathcal{I} satisface α sobre a_1, \ldots, a_n en $\mathcal{I}(dom)$:

$$\mathcal{I} \models \alpha(a_1,\ldots,a_n)$$

si $\alpha(a_1,\ldots,a_n)$ es **verdadero** al evaluar cada símbolo en α según \mathcal{I} .

Ejemplos

Para los símbolos P(x) y O(x,y):

$$\blacksquare \mathcal{I}_1 \models \forall x. \exists y. P(y) \land O(x,y)$$
?

$$\blacksquare \mathcal{I}_2 \models \forall x. \exists y. P(y) \land O(x,y)$$
 ?

Definición

Sea $\alpha(x_1,\ldots,x_n)$ una fórmula y $\mathcal I$ una interpretación de los símbolos en α .

Diremos que la interpretación \mathcal{I} satisface α sobre a_1, \ldots, a_n en $\mathcal{I}(dom)$:

$$\mathcal{I} \models \alpha(a_1, \ldots, a_n)$$

si $\alpha(a_1,\ldots,a_n)$ es **verdadero** al evaluar cada símbolo en α según \mathcal{I} .

Si \mathcal{I} **NO** satisface α sobre a_1, \ldots, a_n en $\mathcal{I}(dom)$ lo anotaremos como:

$$\mathcal{I} \not\models \alpha(a_1,\ldots,a_n)$$

 $\mathcal{I} \vDash \alpha$ se puede leer como:

" α es **verdadero** bajo el dominio y predicados dados por \mathcal{I} ."

Contenidos

Cuantificadores

Interpretaciones

Equivalencia lógica

Consecuencia lógica

Equivalencia lógica en lógica de predicados

Definición

Sean $\alpha(x_1,\ldots,x_n)$ y $\beta(x_1,\ldots,x_n)$ dos fórmulas en lógica de predicados. Decimos que α y β son **lógicamente equivalentes**:

$$\alpha \equiv \beta$$

si para toda interpretación \mathcal{I} y para todo a_1, \ldots, a_n en $\mathcal{I}(dom)$ se cumple:

$$\mathcal{I} \vDash \alpha(a_1, \dots, a_n)$$
 si, y solo si, $\mathcal{I} \vDash \beta(a_1, \dots, a_n)$

Caso especial

Si α y β son oraciones (no tienen variables libres), entonces:

para toda interpretación \mathcal{I} : $\mathcal{I} \models \alpha$ si, y solo si, $\mathcal{I} \models \beta$

Algunas equivalencias lógicas

Todas las equivalencias de lógica proposicional son equivalencias en lógica de predicados.

Ejemplos

Para fórmulas α , β y γ en lógica de predicados:

- **1.** Conmutatividad: $\alpha \wedge \beta \equiv \beta \wedge \alpha$
- **2.** Asociatividad: $\alpha \wedge (\beta \wedge \gamma) \equiv (\alpha \wedge \beta) \wedge \gamma$
- **3.** Idempotente: $\alpha \wedge \alpha \equiv \alpha$
- **4.** Doble negación: $\neg \neg \alpha \equiv \alpha$
- **5.** Distributividad: $\alpha \wedge (\beta \vee \gamma) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$
- **6.** De Morgan: $\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$
- 7. ...

Algunas equivalencias lógicas

Ejemplos

Las siguientes fórmulas son lógicamente equivalente:

$$\forall x. P(x) \rightarrow R(x) \equiv \forall x. \neg P(x) \lor R(x)$$

$$(\forall x. P(x)) \rightarrow (\exists y. R(y)) \equiv (\neg \exists y. R(y)) \rightarrow (\neg \forall x. P(x))$$

Nuevas equivalencias lógicas en lógica de predicados

Para fórmulas α y β en lógica de predicados:

- 1. $\neg \forall \mathbf{x}. \alpha \equiv \exists \mathbf{x}. \neg \alpha$.
- **2.** $\neg \exists x. \alpha \equiv \forall x. \neg \alpha$.

Demostración ($\neg \forall x. \alpha \equiv \exists x. \neg \alpha$)

Sea \mathcal{I} una interpretación cualquiera, entonces:

$$\mathcal{I} \vDash \neg \forall x. \ \alpha(x) \qquad \text{ssi} \qquad \mathcal{I} \not \models \forall x. \ \alpha(x)$$

$$\text{ssi} \qquad \text{existe } a \text{ en } \mathcal{I}(\textit{dom}) \text{ tal que } \mathcal{I} \not \models \alpha(a)$$

$$\text{ssi} \qquad \text{existe } a \text{ en } \mathcal{I}(\textit{dom}) \text{ tal que } \mathcal{I} \vDash \neg \alpha(a)$$

$$\text{ssi} \qquad \mathcal{I} \vDash \exists x. \ \neg \alpha(x)$$

¡Demuestre la otra equivalencia!

Nuevas equivalencias lógicas en lógica de predicados

Para fórmulas α y β en lógica de predicados:

3.
$$\forall x. (\alpha \wedge \beta) \equiv (\forall x. \alpha) \wedge (\forall x. \beta)$$
.

4.
$$\exists x. (\alpha \lor \beta) \equiv (\exists x. \alpha) \lor (\exists x. \beta).$$

Demostración ($\exists x. (\alpha \lor \beta) \equiv (\exists x. \alpha) \lor (\exists x. \beta)$)

Sea \mathcal{I} una interpretación cualquiera, entonces:

$$\mathcal{I} \vDash \exists x. \ (\alpha(x) \lor \beta(x)) \quad \Rightarrow \quad \text{existe } a \text{ en } \mathcal{I}(dom) \text{ tal que } \mathcal{I} \vDash \alpha(a) \lor \beta(a)$$

$$\Rightarrow \quad \text{existe } a \text{ en } \mathcal{I}(dom) \text{ tal que } \mathcal{I} \vDash \alpha(a) \text{ (SPDG)}$$

$$\Rightarrow \quad \mathcal{I} \vDash \exists x. \ \alpha(x)$$

$$\Rightarrow \quad \mathcal{I} \vDash \exists x. \ \alpha(x) \lor \exists x. \ \beta(x)$$

Nuevas equivalencias lógicas en lógica de predicados

Para fórmulas α y β en lógica de predicados:

3.
$$\forall x. (\alpha \land \beta) \equiv (\forall x. \alpha) \land (\forall x. \beta)$$
.

4.
$$\exists x. (\alpha \lor \beta) \equiv (\exists x. \alpha) \lor (\exists x. \beta).$$

Demostración ($\exists x. (\alpha \lor \beta) \equiv (\exists x. \alpha) \lor (\exists x. \beta)$)

Sea \mathcal{I} una interpretación cualquiera, entonces:

$$\mathcal{I} \vDash \exists \mathsf{x}. \ \alpha(\mathsf{x}) \lor \exists \mathsf{x}. \ \beta(\mathsf{x}) \quad \Rightarrow \quad \mathcal{I} \vDash \exists \mathsf{x}. \ \alpha(\mathsf{x}) \quad \mathsf{(SPDG)}$$

$$\Rightarrow \quad \mathsf{existe} \ a \ \mathsf{en} \ \mathcal{I}(\mathsf{dom}) \ \mathsf{tal} \ \mathsf{que} \ \mathcal{I} \vDash \alpha(\mathsf{a}) \lor \beta(\mathsf{a})$$

$$\Rightarrow \quad \mathsf{existe} \ a \ \mathsf{en} \ \mathcal{I}(\mathsf{dom}) \ \mathsf{tal} \ \mathsf{que} \ \mathcal{I} \vDash \alpha(\mathsf{a}) \lor \beta(\mathsf{a})$$

$$\Rightarrow \quad \mathcal{I} \vDash \exists \mathsf{x}. \ (\alpha(\mathsf{x}) \lor \beta(\mathsf{x})) \quad \Box$$

¡Demuestre la otra equivalencia!

Nuevas equivalencias lógicas en lógica de predicados

¿Es verdad que ...?

$$\exists \mathbf{x}. (\alpha \wedge \beta) \stackrel{?}{=} (\exists \mathbf{x}. \alpha) \wedge (\exists \mathbf{x}. \beta)$$

Contenidos

Cuantificadores

Interpretaciones

Equivalencia lógica

Consecuencia lógica

Tautologías en lógica de predicados

Definición

Una fórmula α es una **tautología** si para toda interpretación \mathcal{I} y para todo a_1, \ldots, a_n en $\mathcal{I}(dom)$ se cumple que:

$$\mathcal{I} \vDash \alpha(\mathbf{a}_1, \ldots, \mathbf{a}_n)$$

¿Cuáles fórmulas son tautologías?	
	✓
■ $\forall x. \exists y. x \leq y$	×
$ (\forall x. P(x)) \rightarrow P(y) $	✓
	×

Consecuencia lógica en lógica de predicados

Para un conjunto Σ de fórmulas, decimos que \mathcal{I} satisface Σ con a_1, \ldots, a_n en $\mathcal{I}(dom)$ si:

$$\mathcal{I} \vDash \alpha(a_1, \ldots, a_n)$$
 para toda $\alpha \in \Sigma$

Si \mathcal{I} satisface Σ con a_1, \ldots, a_n escribiremos $\mathcal{I} \models \Sigma(a_1, \ldots, a_n)$.

Definición

Una oración α es consecuencia lógica de un conjunto de oraciones Σ :

$$\Sigma \models \alpha$$

si para toda interpretación \mathcal{I} y a_1, \ldots, a_n en $\mathcal{I}(dom)$ se cumple que:

si
$$\mathcal{I} \models \Sigma(a_1, \ldots, a_n)$$
 entonces $\mathcal{I} \models \alpha(a_1, \ldots, a_n)$

Consecuencia lógica en lógica de predicados

Ejemplo

Todos los hombres son mortales.

Sócrates es hombre.

Por lo tanto, Sócrates es mortal.

Esto lo podemos modelar con el vocabulario $H(\cdot)$, $M(\cdot)$:

$$\forall x. \ \mathsf{H}(x) \to \mathsf{M}(x)$$

H(s)

 $\mathsf{M}(\mathsf{s})$

¿Cuáles son consecuencias lógicas válidas?

1.
$$\{ (\forall x. \alpha) \lor (\forall x. \beta) \} \models \forall x. (\alpha \lor \beta)$$

2. $\{ \exists x. (\alpha \land \beta) \} \models (\exists x. \alpha) \land (\exists x. \beta)$

3. $\{ (\exists x. \alpha) \land (\exists x. \beta) \} \models \exists x. (\alpha \land \beta)$

4. $\{ \forall x. \exists y. R(x,y) \} \models \exists x. \forall y. R(x,y)$

Demuestre estas consecuencias lógicas

¡Para hacer inferencia lógica es muy útil usar nombres de variables!

1. Instanciación universal:

$$\forall x. \alpha(x)$$
 $\alpha(a)$ para cualquier a

2. Generalización universal:

$\alpha(a)$	para cualquier <i>a</i>
$\forall x. \alpha(x)$	

¡Para hacer inferencia lógica es muy útil usar nombres de variables!

3. Instanciación existencial:

$$\exists x. \ \alpha(x)$$
 $\alpha(a)$ para algún a (nuevo)

4. Generalización existencial:

$$\frac{\alpha(a) \qquad \text{para algún } a}{\exists x. \ \alpha(x)}$$

Ejemplo

Algún estudiante en la sala no estudio para el examen Todos los estudiantes en la sala pasaron el examen

Algún estudiante pasó el examen y no estudio

¿Cómo modelamos este problema?

S(x) := x está en la sala.

E(x) := x estudio para el examen.

X(x) := x pasó el examen.

¿Cómo queda la consecuencia lógica?

$$\exists x. S(x) \land \neg E(x)$$

$$\forall x. S(x) \rightarrow X(x)$$

$$\exists x. X(x) \land \neg E(x)$$

Ejemplo

$$\exists x. \, S(x) \land \neg E(x)$$

$$\forall x. \, S(x) \to X(x)$$

$$\exists x. \, X(x) \land \neg E(x)$$

¿Cómo inferimos esta consecuencia lógica?

1.
$$\exists x. S(x) \land \neg E(x)$$
 (Premisa)

2.
$$S(a) \land \neg E(a)$$
 (Inst. existencial 1.)

3.
$$S(a)$$
 (Simpl. conjuntiva 2.)
4. $\forall x. S(x) \rightarrow X(x)$ (Premisa)

5.
$$S(a) \rightarrow X(a)$$
 (Inst. universal 4.)

6.
$$X(a)$$
 (Modus ponens 3. y 5.)

7.
$$\neg E(a)$$
 (Simpl. conjuntiva 2.)
8. $X(a) \land \neg E(a)$ (Conjunción 6. y 7.)

9.
$$\exists x. X(x) \land \neg E(x)$$
 (Gen. existencial 8.)