风暴要火

一、题目概况 (请选手认真阅读本页内容)

中文题目名称	巨龙镇	布莱克西斯禁区	奥特兰克战道
英文题目与子目录名	dragon	restricted	war
可执行文件名	dragon.cpp	restricted.cpp	war.cpp
输入文件名	dragon.in	restricted.in	war.in
输出文件名	dragon.out	restricted.out	war.out
每个测试点时限	1000ms	2000ms	2000ms
测试点数目	10	10	20
每个测试点分值	10	10	5
附加样例文件	dragon_sample	restricted_sample	war_sample
结果比较方式	Special Judge	全文比较	全文比较
题目类型	传统	传统	传统
运行内存上限	64MB	256MB	512MB

二、提交源程序文件名

语言	巨龙镇	布莱克西斯禁区	奥特兰克战道
C++	dragon.cpp	restricted.cpp	war.cpp
С	dragon.c	restricted.c	war.c
pascal	dragon.pas	restricted.pas	war.pas

三、编译命令

语言	巨龙镇	布莱克西斯禁区	奥特兰克战道
C++	g++ -o dragon dragon.cpp -	g++ -o restricted restricted.cpp -	g++ -o war war.cpp -
	lm -O2	lm -O2	lm -O2
С	gcc -o dragon dragon.c -lm -	gcc -o restricted restricted.c -lm	gcc -o war war.c -lm -
	O2	-O2	O2
pascal	fpc dragon.pas -O2	fpc restricted.pas -O2	fpc war.pas -O2

巨龙镇

时间限制: 1000ms 空间限制: 64MB

巨龙正在听候差遣。

题目描述

一场激烈的团战过后,你的队友成功占领了日月两座祭坛,而你来到了中路准备释放巨龙,却发现祭坛的符文遭到了破坏,有些符文被调换了位置,有些则直接被替换掉了。

所幸你还记得祭坛上符文的工作原理,符文通过构成回文串来反复放大能量来解除巨龙的石化,想要释放巨龙,就要让符文中的回文串尽可能多。

由于时间紧迫,你只能更改最多k个符文,但同时你可以任意调换符文的位置而不耗费任何时间,问最后的符文串是怎样的?

输入输出格式

输入格式:

第一行两个整数n, k,分别表示符文串的总长度,你可以更改的符文个数。

第二行一个字符串S(只包括小写字母), 表示初始的符文串。

输出格式:

一行一个字符串,表示操作后能得到最多回文串的一个串,如果有多组解任意输出一组即可。

输入输出样例

输入样例#1

8 3 abacdadd

输出样例#1

daaaaaad

另两组数据见下发文件

数据范围

对于10%的数据,只有a, b两种字母;

对于另30%的数据, k=0;

对于50%的数据, $n \leq 1000$

对于100%的数据, $n \le 10^6, k \le 10^5$ 。

布莱克西斯禁区

时间限制: 2000ms 空间限制: 256MB

我,即是虫群。

题目描述

费尽千幸万苦,你的团队释放出了声势浩大的虫群冲进了敌军。

众所周知,堡垒之间构成了了一个以核心为根的树形结构,我们的可以利用虫群来切断某些堡垒之间的联系,把整棵树分割为若干联通块。

现在已知敌方每个堡垒处的战斗力,每个为了彻底击溃敌方,你们打算逐步分割敌方阵营。一次分割指将所有联通块分为战斗力相等的更小的联通块,要求时刻保证各个联通块的战斗力相等。一个合法的方案则是一系列合法分割的集合,举例来讲,对于一个形如下图的树,如果所有点的战斗力都为1:

我们就有4种合法方案:

 $\{1, 2, 3, 4\}$

 $\{1,2,3,4\} \to \{1,3\},\{2,4\}$

 $\{1,2,3,4\} \rightarrow \{1\},\{2\},\{3\},\{4\}$

 $\{1,2,3,4\} o \{1,3\}, \{2,4\} o \{1\}, \{2\}, \{3\}, \{4\}$

现在, 你的团队想知道有多少种进攻方案。

输入输出格式

输入格式:

第一行一个正整数n, 表示敌方堡垒的数量。

下一行n个数,表示每个堡垒的战斗力,保证战斗力为int范围内的正整数。

最后一行n-1个数,分别表示 $2\sim n$ 号节点的父亲节点。

我们规定一号点为核心,即整棵树的根,保证每个节点的父节点编号小于自己。

输出格式:

一行一个正整数,表示方案数。

输入输出样例

输入样例#1:

```
4
1 1 1 1
1 1 2
```

输出样例#1

4

输入样例#2

```
4
1 2 1 2
1 1 3
```

输出样例#2

3

另两组数据见下发文件

数据范围

对于20%的数据, $n \leq 10$ 。

对于60%的数据, $n \leq 1000$

对于100%的数据, $n \leq 10^6$

奥特兰克战道

时间限制: 2000ms 空间限制: 512MB

为了联盟!!!

题目描述

又到了刷新地图机制的时间,这次地图上刷新了n个囚营,每个囚营都有 a_i 个联盟的战士,现在你的队伍要去解救这些战士,让他们为你们而战。

由于囚营实在太多,你的队伍打算只解救两个囚营的战士。同时,囚营囚禁的战士越多,敌方的守军也会越多,你的队伍希望两个囚营囚禁的战士数量差尽可能小,这样先被解救出的战士可以直接前往下一个囚营展开营救。当然,两个囚营的距离也不能太远,所以你的团队只打算考虑一段区间内的囚营。

在商讨过程中,你的队友们会不断询问你区间 $[l_i,r_i]$ (保证 $l_i < r_i$)中囚营战士数量差最小的两个囚营的差具体是多少,请你编写一个程序解决这个问题。

输入输出格式

输入格式:

第一行两个数n, m, 表示囚营个数以及询问个数。

接下来一行包含n个整数,表示每个囚营囚禁的战士数量 a_i 。

接下来m行,每行两个整数 l_i, r_i 表示询问的区间。

输出格式:

输出共m行,每行一个整数,表示询问区间中囚营战士数量的最小差值。

输入输出样例

输入样例#1

```
6 4
1 9 8 3 2 3
1 4
3 5
1 6
3 4
```

输出样例#1

1 1 0 5

数据范围

对于5%的数据, $a_i \leq 100$

对于另25%的数据, $n, m \leq 100$

对于另20%的数据, $n,m \leq 2000$

对于另30%的数据, $n, m \leq 10^4$

对于100%的数据, $2 \le n \le 10^5, 1 \le m \le 3 \times 10^5, a_i \le 10^9$