Mini-Projet MOGPL

Un problème de tomographie discrète $4\mathrm{I}200$

 $Compte ext{-}rendu\ du\ projet$

RÉALISÉ PAR BIZZOZZÉRO NICOLAS ET MIRHOSSEINI YOONES

Table des matières

ble des matiè	res	
Raisonne	nent par programmation dynamique	
P	emière étape	
	Q1	
	$\mathrm{Q2}$	
	Q3	
	$\mathrm{Q4}$	
G	énéralisation	
	${ m Q5}$	
	${ m Q6}$	
P	opagation	
	Q7	
Te	sts	
	Q8	
	Q9	
	à la rescousse	
M	odélisation	
	Q10	
	Q11	
T.,	Q12	
11)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Q13	
	Q14	
Pour allo	plus loin (facultatif)	

Raisonnement par programmation dynamique

Première étape

 $\mathbf{Q}\mathbf{1}$

Si on a déjà calculé tous les $T(j,\ l)$, alors on cherche à savoir si toutes les m cases de la ligne peuvent être coloriées avec la sous-séquence de k blocs. Il suffira donc de vérifier la valeur de retour de l'appel $T(m-1,\ k)$:

- S'il renvoie true, alors on peut colorier la ligne entière avec la séquence entière.
- S'il renvoie *false*, alors la ligne ne peut pas être coloriée entièrement avec la séquence entière.

 $\mathbf{Q2}$

- 1. Si l=0, alors on pourra toujours colorier un nombre infini de cases avec une sous-séquence vide, donc $T(j, 0) = true, \ \forall \ j \in \{0, \dots, m-1\}.$
- 2. Si $l \geq 1$, alors :
 - 2.a Si $j < s_l 1$, alors on veut placer au moins un bloc qui est plus gros que le nombre de cases disponible, ce qui est impossible. Donc $T(j, l) = false, \forall j \in \{0, ..., m-1\}$
 - 2.b Si $j = s_l 1$, alors l'appel à la fonction donnera le même résultat que lors du cas 2.a, excepté si l = 1. En effet, le seul bloc à placer rentrera parfaitement dans les cases disponibles. Donc :
 - ∘ Si $l = 1, T(j, l) = true, \forall j \in \{0, ..., m 1\}.$
 - \circ Si l > 1, $T(j, l) = false, <math>\forall j \in \{0, ..., m-1\}$.

 $\mathbf{Q3}$

En langage naturel, la relation de récurrence qu'on cherche à exprimer se dirait : Si j'ai déjà placé tous les blocs de la sous-séquence sauf le dernier, et que j'ai encore assez de cases pour l'ajouter avec son espace de séparation, alors je peux placer tous les blocs dans les cases. On en déduit donc la relation suivante :

$$T(j, l) = T(j - (s_l + 1), l - 1)$$

 $\mathbf{Q4}$

machin

Q5
Q6
Propagation
Q7
Tests
Q8
Q9
La PLNE à la rescousse
Modélisation
Q10
Q11
Q12
Implantation et tests
Q13
Q14
Q15
Pour aller plus loin (facultatif)

Généralisation