1.1) Read the dataset. Do the descriptive statistics and do null value condition check.

Below is the data structure for the given election data set with vote as the dependent target variable with the rest of them as independent variables.

#	Column	Non-Null Count	Dtype
0	vote	1525 non-null	object
1	age	1525 non-null	int64
2	economic.cond.national	1525 non-null	int64
3	economic.cond.household	1525 non-null	int64
4	Blair	1525 non-null	int64
5	Hague	1525 non-null	int64
6	Europe	1525 non-null	int64
7	political.knowledge	1525 non-null	int64
8	gender	1525 non-null	object

Below is the description of the dataset across categorical and continuous variables.

	vote	age	economic.cond.national	economic.cond.household	Blair	Hague	Europe	political.knowledge	gender
count	1525	1525.000000	1525.000000	1525.000000	1525.000000	1525.000000	1525.000000	1525.000000	1525
unique	2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2
top	Labour	NaN	NaN	NaN	NaN	NaN	NaN	NaN	female
freq	1063	NaN	NaN	NaŇ	NaN	NaN	NaN	NaN	812
mean	NaN	54.182295	3.245902	3.140328	3.334426	2.746885	6.728525	1.542295	NaN
std	NaN	15.711209	0.880969	0.929951	1.174824	1.230703	3.297538	1.083315	NaN
min	NaN	24.000000	1.000000	1.000000	1.000000	1.000000	1.000000	0.000000	NaN
25%	NaN	41.000000	3.000000	3.000000	2.000000	2.000000	4.000000	0.000000	NaN
50%	NaN	53.000000	3.000000	3.000000	4.000000	2.000000	6.000000	2.000000	NaN
75%	NaN	67.000000	4.000000	4.000000	4.000000	4.000000	10.000000	2.000000	NaN
max	NaN	93.000000	5.000000	5.000000	5.000000	5.000000	11.000000	3.000000	NaN

It could be noticed that there isn't much outlier considering the spread on the either side of median for continuous variables and that the target variable vote has only 2 distinct values indicating only two classes from classification perspective with Labour holding higher frequency. Also it could be noticed that gender has 2 unique values with females holding a higher frequency of rows.

Below gives the exact distribution of categorical variables:

```
1. VOTE: 2
Conservative 462
Labour 1063
Name: vote, dtype: int64
```

2. GENDER : 2

male 713 female 812

Name: gender, dtype: int64

Also there are no null values present in any of the variables in the dataset as listed below:

vote
age
economic.cond.national
economic.cond.household
Blair
Hague
Europe
political.knowledge
gender

Dataset contains 1525 rows and 9 columns.

1.2. Perform EDA (Check the null values, Data types, shape, Univariate, bivariate analysis). Also check for outliers . Interpret the inferences for each.

Univariate Analysis for unscaled dataset

1. Univariate analysis for age

Mean is 54.182295, Median is 53.000000, Mode(s) are 37.0000 Column age does not have outliers word will result in an error or misinterpretation.

Column age is not normally distributed

2. Univariate analysis for economic.cond.national

Mean is 3.245902, Median is 3.000000, Mode(s) are 3.0000 Column economic.cond.national has outliers

Column economic.cond.national is not normally distributed

3. Univariate analysis for economic.cond.household

Mean is 3.140328, Median is 3.000000, Mode(s) are 3.0000 Column economic.cond.household has outliers

Column economic.cond.household is not normally distributed

4. Univariate analysis for Blair

Mean is 3.334426, Median is 4.000000, Mode(s) are 4.0000 Column Blair does not have outliers

Column Blair is not normally distributed

5. Univariate analysis for Hague

Mean is 2.746885, Median is 2.000000, Mode(s) are 2.0000 Column Hague does not have outliers

Column Hague is not normally distributed

6. Univariate analysis for Europe

Mean is 6.728525, Median is 6.000000, Mode(s) are 11.0000 Column Europe does not have outliers

Column Europe is not normally distributed

7. Univariate analysis for political.knowledge

Mean is 1.542295, Median is 2.000000, Mode(s) are 2.0000 Column political.knowledge does not have outliers

Column political.knowledge is not normally distributed

Bivariate analysis

1. bivariate analysis for age

Data reveals that lower age group tend to vote for Labour while Labour also retains a better vote share for higher age group comparatively.

2. bivariate analysis for economic.cond.national

Trend suggests that voters among higher economic conditions at national level tend to vote Labour and comparatively lower economic levels in the same category also tend to vote Labour higher than Conservative.

3. bivariate analysis for economic.cond.household

No noticeable difference across both voter groups across the levels of household economic condition.

4. bivariate analysis for Blair

Trend suggests that Blair has received better higher scale assessment ratings among Labour voters compared to Conservative.

5. bivariate analysis for Hague

Trend suggests that Hague received higher scale ratings from Conservative voters while increased frequency in lower scale ratings from Labour

6. bivariate analysis for Europe

Trend suggests that conservative voters have comparatively lesser number of voters with low eurosceptic sentiments.

7. bivariate analysis for political.knowledge

The Smaller number of voters for Conservative falls under lower scale knowledge regarding party position in european integrations.

Multivariate analysis: Pairplot for unscaled dataset

Heatmap for unscaled dataset:

It is noticed that at lower age group is are less in frequency within lower scale range for national level economic condition. Also folks with highest political knowledge tend to dip with the highest age group.

1.3. Encode the data (having string values) for Modelling. Is Scaling necessary here or not?, Data Split: Split the data into train and test (70:30).

Scaling:

For logistic regression since it goes by linear equations scaling needs to be assessed.

Also since KNN goes by distance computation (Euclidean) between data points it is highly dependent on scaling needs.

For LDA, scaling standardizes the co efficients of independent variables which helps in clear separation of classes as comparison of coefficients happens on standardized data.

However Naïve bayes is unaffected by scaling. Going by the fact that independent variables have different units, scaling becomes necessary to remove the units the variables are associated with so that the linear equation can be formed on the independent variables post standardization of them.

Z scoring based scaling of data would change the coefficient, neutralize/remove the intercept while the accuracy score remains the same before and after. MSE would get scaled too.

Accordingly, below is the univariate analysis for the dataset that is standardized on z scores

Univariate analysis for scaled and outlier treated dataset:

1. Univariate analysis for vote

Mean is -0.000000, Median is 0.659256, Mode(s) are 0.6593 Column vote does not have outliers

Column vote is not normally distributed

2. Univariate analysis for age

Mean is 0.000000, Median is -0.075276, Mode(s) are -1.0940 Column age does not have outliers

Column age is not normally distributed

3. Univariate analysis for economic.cond.national

Mean is 0.013775, Median is -0.279218, Mode(s) are -0.2792 Column economic.cond.national does not have outliers

Column economic.cond.national is not normally distributed

4. Univariate analysis for economic.cond.household

Mean is 0.019100, Median is -0.150948, Mode(s) are -0.1509 Column economic.cond.household has outliers

Column economic.cond.household is not normally distributed

5. Univariate analysis for Blair

Mean is 0.000000, Median is 0.566716, Mode(s) are 0.5667 Column Blair does not have outliers

Column Blair is not normally distributed

6. Univariate analysis for Hague

Mean is -0.000000, Median is -0.607076, Mode(s) are -0.6071 Column Hague does not have outliers

Column Hague is not normally distributed

7. Univariate analysis for Europe

Mean is -0.000000, Median is -0.221002, Mode(s) are 1.2958 Column Europe does not have outliers

Column Europe is not normally distributed

8. Univariate analysis for political.knowledge

Mean is -0.000000, Median is 0.422643, Mode(s) are 0.4226 Column political.knowledge does not have outliers

Column political.knowledge is not normally distributed

9. Univariate analysis for gender male

Mean is -0.000000, Median is -0.937059, Mode(s) are -0.9371 Column gender male does not have outliers

Column gender male is not normally distributed

Encoding the categorical variables:

Below gives the exact distribution of categorical variables:

1. VOTE : 2

Conservative 462 Labour 1063 Name: vote, dtype: int64

2. GENDER : 2

male 713 female 812

Name: gender, dtype: int64

Target variable vote has been encoded with Labour=1 and Conservative=0

One hot encoding has been applied to gender to create binary variable depicting the binary status for each of the gender (Male/Female) and to optimize the first one has been dropped as the 0 or 1 in the other is suffice to represent both.

Below is the data structure after encoding the dataset.

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1525 entries, 1 to 1525
Data columns (total 9 columns):
# Column
                         Non-Null Count Dtype
   -----
                          -----
0 vote
                          1525 non-null int64
                          1525 non-null int64
1
    age
    economic cond national 1525 non-null int64
2
3 economic cond household 1525 non-null int64
                          1525 non-null int64
4
    Blair
5 Hague
                         1525 non-null int64
                          1525 non-null int64
6
    Europe
    political knowledge
                        1525 non-null int64
7
    gender male
                         1525 non-null uint8
dtypes: int64(8), uint8(1)
memory usage: 108.7 KB
```

Data split into training and testing by 70:30 ratio.

Based on the splitting of training and testing data below are the respective dataset properties for its shape and 5 number summary depicting the split.

```
Number of rows and columns of the training set for the independent variables: (1067, 8)

Number of rows and columns of the training set for the dependent variable: (1067,)

Number of rows and columns of the test set for the independent variables: (458, 8)

Number of rows and columns of the test set for the dependent variable: (458,)
```

5 number summary for training data set

	age	economic_cond_national	economic_cond_household	Blair	Hague	Europe	political_knowledge	gender_male
count	1067.000000	1067.000000	1067.000000	1067.000000	1067.000000	1067.000000	1067.000000	1067.000000
mean	-0.017634	0.014497	0.017156	0.009709	0.034336	-0.019144	-0.007468	-0.011019
std	1.001376	0.973226	0.957571	0.997633	0.993164	0.990621	0.997315	0.999691
min	-1.921698	-1.982446	-1.854176	-1.987695	-1.419886	-1.737782	-1.424148	-0.937059
25%	-0.839313	-0.279218	-0.150948	-1.136225	-0.607076	-0.827714	-1.424148	-0.937059
50%	-0.075276	-0.279218	-0.150948	0.566716	-0.607076	-0.221002	0.422643	-0.937059
75%	0.816100	0.856268	0.924730	0.566716	1.018544	0.992422	0.422643	1.067169
max	2.471512	1.991754	2.000408	1.418187	1.831354	1.295778	1.346038	1.067169

5 number summary for testing data set

	age	economic_cond_national	economic_cond_household	Blair	Hague	Europe	political_knowledge	gender_male
count	458.000000	458.000000	458.000000	458.000000	458.000000	458.000000	458.000000	458.000000
mean	0.041081	0.012091	0.023632	-0.022620	-0.079992	0.044600	0.017397	0.025671
std	0.997764	0.958450	0.965372	1.007309	1.013406	1.022290	1.008193	1.002435
min	-1.921698	-1.982446	-1.854176	-1.987695	-1.419886	-1.737782	-1.424148	-0.937059
25%	-0.839313	-0.279218	-0.150948	-1.136225	-0.607076	-0.827714	-1.424148	-0.937059
50%	-0.011607	-0.279218	-0.150948	0.566716	-0.607076	0.082354	0.422643	-0.937059
75%	0.816100	0.856268	0.924730	0.566716	1.018544	0.992422	0.422643	1.067169
max	2.216833	1.991754	2.000408	1.418187	1.831354	1.295778	1.346038	1.067169

1.4. Apply Logistic Regression and LDA (Linear Discriminant Analysis). Interpret the inferences of both models.

Based on the regression model that has been built based on the above training and testing data set below are the statistical summary using the statsmodel library.

OLS Regression Results							
Dep. Variable:	vote	R-squar	ed:		0.379		
Model:	OLS	Adj. R-	squared:		0.374		
Method:	Least Squares	F-stati	stic:		80.62		
Date:	Sat, 05 Dec 2020	Prob (F	-statistic):	6	.12e-104		
Time:	18:56:22	Log-Lik	elihood:		-430.21		
No. Observations:	1067	AIC:			878.4		
Df Residuals:	1058	BIC:			923.2		
Df Model:	8						
Covariance Type:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	0.6977					0.720	
age	-0.0482	0.011	-4.299	0.000	-0.070	-0.026	
political_knowledge	-0.0642	.0.012	-5.576	0.000	-0.087	-0.042	
economic_cond_nationa	1 0.0452	0.013	3.530	0.000	0.020	0.070	
economic_cond_househo	ld 0.0120	0.013	0.944	0.346	-0.013	0.037	
Blair	0.0994	0.012	8.100	0.000	0.075	0.124	
Hague	-0.1568	0.012	-13.148	0.000	-0.180	-0.133	
Europe	-0.0992	0.012	-8.143	0.000	-0.123	-0.075	
gender_male	0.0102	0.011	0.892	0.373	-0.012	0.033	
Omnibus:		Durbin-					
					1.938		
Prob(Omnibus):			Bera (JB):		26.556		
Skew:	-0.375		•		1.71e-06		
Kurtosis:	2.817	Cond. N	0.		1.84		

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Based on the null hypothesis that states that the independent variables have no co relationship with target variables from the universe, please note the coefficients of the predictor variables from the sample should be having p value lesser than the significance value of 5%. Based on the stats model based statistical observation all the predictor variables have their p value is much lesser than 5%. And

hence the null hypothesis will be rejected for each of the predictor variables and all of the predictors will be part of the linear equation.

Subsequently VIF has been evaluated to check multi collinearity among predictor variables. Any multi collinearity among predictor variables would mean that despite prediction itself need not be impacted with any low accuracy, the interpretation of the coefficients would be wrong without treating multi collinearity. Any VIF score between 1 to 5 is an acceptable range to retain the predictor variables in linear equation. Please find below the VIF for all the predictor variables.

```
VIF for age is 1.0139198118441526

VIF for gender_male is 1.0340695795969062

VIF for political_knowledge is 1.0584898802222538

VIF for Hague is 1.1370817306128767

VIF for economic_cond_household is 1.1556640850266833

VIF for Europe is 1.2096030388419405

VIF for Blair is 1.2372034397053333

VIF for economic_cond_national is 1.2565812563307652
```

Based on the above observation none of the independent variables have correlation with other independent variables and hence there is no multi collinearity.

Please find below the accuracy metrics/score:

```
• R Squared: 0.379 (Same as adjusted R Squared)
```

Accordingly, based on the scaled (normalized) data followed by evaluation of tuning opportunities of the model looking at sample vs universe hypothesis testing, it could be narrowed down that the below formula goes well towards building both Logistic regression as well as LDA models.

vote ~

age+political_knowledge+economic_cond_national+economic_cond_household+Blair+Hague+Europe +gender_male

Accordingly, both models have been built based on the below linear equation that depicts individual coefficients of independent variables along with intercept value.

```
(0.7) * Intercept + (-0.05) * age + (-0.06) * political_knowledge + (0.05) * economic_cond_national + (0.01) * economic_cond_household + (0.1) * Blair + (-0.16) * Hague + (-0.1) * Europe + (0.01) * gender male
```

Based on the model built, below are the count comparison of prediction of test samples against the original classification.

Note: Vote refers to original classification in the dataset and predicted vote refers to model output. Age column refers to count grouped by vote and predicted vote to give a comparison. It enables us to see the real mapping of classification across original and prediction in terms of accuracy by each model.

For Logistical regression:

		age	
vote	predicted_vote		
0	0.0	9	
	1.0	24	
1	0.0	33	
	1.0	82	

For LDA:

		age
vote	predicted_vote	
0	0.0	8
	1.0	25
1	0.0	33
	1.0	82

1.5. Apply KNN Model and Naïve Bayes Model. Interpret the inferences of each model.

KNN model is a distance based mechanism mostly using Euclidean measure. And in this case we are looking for a classification need and KNN can help build classification based on feature similarity. Since KNN continues to retain the training dataset instead of learning to create a model using the learning, it is a lazy learner and simplest of all models for classification. K in KNN refers to the number of nearest neighbors. A small value of K indicates higher influence of noise over result while larger value is cost heavy for compute. So usually a standardized approach is to adopt K=sqrt(N)/2 where N is the size of the training data set. Also, K has to be an odd number to avoid ties between predicting classes.

Bayes theorem is an extension of conditional probability that is based on the knowledge of prior probability values of something that has occurred. It provides a mechanism to compute posterior probability of class for the given predictor based on prior probability of the given predictor for the same class. Idea is to factor all available evidence in the form of predictors into naïve Bayes rule to obtain more accurate probability for class prediction. Naïve Bayes classifier works on the principle of Bayes theorem with the assumption that input features are independent of each other. Usually not ideal for data sets with a large number of numerical attributes, however, does well with noisy and missing data even with low training samples. For those independent variables that are continuous it is assumed to be distributed normally and the estimates go by mean and standard deviation of continuous variables.

Based on the model built below are the count comparison of prediction of test samples against the original classification.

For Naïve Bayes:

		age
vote	predicted_vote	
0	0.0	10
	1.0	23
1	0.0	30
	1.0	85

For KNN:

		age	
vote	predicted_vote		
0	0.0	8	•
	1.0	25	
1	0.0	31	
	1.0	84	

1.6. Model Tuning, Bagging and Boosting.

For KNN,

Based on the standardized approach to adopt K=sqrt(N)/2 where N is the size of the training data set and that K has to be an odd number to avoid tie between predicting classes we could with K value as 39 for KNN.

For Logistical regression and LDA we have made our investigations to arrive at below conclusions:

Based on the null hypothesis that states that the independent variables have no co relationship with target variables from the universe, please note the coefficients of the predictor variables from the sample should be having p value lesser than the significance value of 5%. Based on the stats model based statistical observation all the predictor variables have their p value is much lesser than 5%. And hence the null hypothesis will be rejected for each of the predictor variables and all of the predictors will be part of the linear equation.

Subsequently VIF has been evaluated to check multi collinearity among predictor variables. Any multi collinearity among predictor variables would mean that despite prediction itself need not be impacted with any low accuracy, the interpretation of the coefficients would be wrong without treating multi collinearity. Any VIF score between 1 to 5 is an acceptable range to retain the predictor variables in linear equation. Please find below the VIF for all the predictor variables.

Also the max_iteration for Logistical regression has been kept at 100 to strike a balance to optimize as well as control over fitment by increasing to more iterations with "newton-cg" solver to arrive at optimal prediction for train and test convergence.

Bagging:

For Bagging we are using random forest that utilizes bootstrapping and ensemble methods to create multiple trees out which final classification goes by voting mechanism across the models. And in this case we are also tuning the model in terms of the number of estimators (trees) to be limited at 50 followed by maximum features to 50% of total features which is 4. Accordingly bagging spawns many trees as strong learners in parallel and hence over-fitment of individual trees should not be that much of a concern if in rare cases as the overall classification goes by voting across trees and the individual datasets across multiple such models running parallelly are only a subset sample.

Accordingly based on the model execution below are the comparative counts between original classification in the dataset versus predicted vote by the random forest classifier.

		age
vote	predicted_vote	
0	0.0	9
	1.0	24*
1	0.0	33
	1.0	82

Boosting:

In contrast to Bagging, boosting trains a large number of weak learners and that too sequentially by focusing on misclassified data by improving their weights further towards training it for accuracy. Boosting then combines all weak learners into a single strong learner to provide an overall classification and hence it has increased aggregate complexity while using simple low complex individual models. In the project we have used an over-sampling technique using SMOTE (synthetic minority oversampling technique) towards improving the under-represented class of the target variable to avoid false positive predictions. SMOTE creates more samples of the minority class, however not by replicating the existing data points but by creating new data points within the range of possibility.

Accordingly based on the model execution below are the comparative count between original classification in the dataset versus predicted vote on the test dataset for each of the four models which clearly depicts increased accuracy and prevent false positives:

For logistical regression:

age

vote	predicted_vote	
0	0.0	12
	1.0	21
1	0.0	41
	1.0	74

For LDA:

age

vote	e predicted_vote	
0	0.0	12
	1.0	21
1	0.0	41
	1.0	74

For Naïve Bayes:

age

vote	predicted_vote	
0	0.0	12
	1.0	21
1	0.0	40
	1.0	75

For KNN

age

vote	predicted_vote	
0	0.0	13
	1.0	20
1	0.0	43
	1.0	72

1.7. Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model .Final Model - Compare all models on the basis of the performance metrics in a structured tabular manner. Describe on which model is best/optimized

Accuracy metrics below:

	Without boosting	
Model	Training score	Test score
Logistical regression	0.830365511	0.849344978
LDA	0.826616682	0.847161572
Naïve Bayes	0.826616682	0.847161572
KNN	0.999062793	0.858078603

	Boosting	
	Training Test	
Model	score	score
	0.81989247	0.82532
Logistical regression	3	8
	0.81989247	0.82532
LDA	3	8
		0.82532
Naïve Bayes	0.8125	8
	0.89180107	0.79039
KNN	5	3

Performance accuracy

	Original	
Model	Training score	Test score
Logistical regression	0.830365511	0.849344978
LDA	0.826616682	0.847161572
Naïve Bayes	0.826616682	0.847161572
KNN	0.999062793	0.858078603
Random Forest classifier	0.999062793	0.829694323

	Boosting	
Model	Training score	Test score
Logistical regression	0.819892473	0.825327511
LDA	0.819892473	0.825327511

Naïve Bayes	0.8125	0.825327511
KNN	0.891801075	0.790393013

Confusion matrix:

Logistic regression:

Without boosting			
Logistic regression/Training			
Actual Negative	212	111	
Actual Positive	70	674	

W	ithout b
Logistic regression/Testing	Predic
Actual Negative	
Actual Positive	

Boosting			
LDA/Training	Predicted Negative	Predicted Positive	
Actual Negative	610	134	
Actual Positive	134	610	

Boosting	
LDA/Testing Predicted Negative	
Actual Negative	114
Actual Positive	55

LDA:

Without boosting			
LDA/Training Predicted Negative Predicted Positive			
Actual Negative	217	106	
Actual Positive	79	665	

	Without b
LDA/Testing	Predicted Nega
Actual Negative	
Actual Positive	

Boosting			
LDA/Training Predicted Negative Predicted Positive			
Actual Negative	610	134	
Actual Positive	134	610	

Boosting		
LDA/Testing	DA/Testing Predicted Negative	
Actual Negative	114	
Actual Positive	55	

Naïve Bayes:

Without boosting			
Naïve Bayes/Training			
Actual Negative	226	97	
Actual Positive	88	656	

	Without b
Naïve Bayes/Testing	Predicted I
Actual Negative	
Actual Positive	

Boosting			
Predicted Predicted			
Naïve Bayes/Training	Negative	Positive	
Actual Negative	600		144
Actual Positive	135		609

Boosting	
Naïve Bayes/Testing	Predicted Negative
Actual Negative	112
Actual Positive	53

KNN:

Without boosting		
KNN/Training Predicted Negative		Predicted Positive
Actual Negative	323	0
Actual Positive	1	743

	Without b
KNN/Testing	Predicted Nega
Actual Negative	
Actual Positive	

Boosting			
KNN/Training	Predicted Negative	Predicted Positive	
Actual Negative	715	29	
Actual Positive	132	612	

Boosting	
KNN/Testing	Predicted Negative
Actual Negative	114
Actual Positive	71

Bagging through Random Forest:

Bagging			
Random Forest/Training Predicted Negative Predicted Positive			
Actual Negative	323	0	
Actual Positive	1	743	

	Bagg
Random Forest/Testing	Predicte
Actual Negative	
Actual Positive	

AUC score:

AUC	Without boosting			
	Test			
Model	Training score	score		
Logistical regression	0.781	0.801		
LDA	0.877	0.916		
Naïve Bayes	0.875	0.91		
KNN	1	0.917		
Random Forest				
classifier	1	0.899		

AUC	Boosting			
		Test		
Model	Training score	score		
Logistical				
regression	0.884	0.914		
LDA	0.884	0.914		
Naïve Bayes	0.886	0.908		
KNN	0.965	0.863		

ROC curve by model without boosting.

0.0

0.4

0.2

0.0

Naïve Bayes (Without boosting)

0.8

0.6

0.4

0.2

0.0

KNN

Train 1.0

0.8

0.2

0.0

Classification matrix is as below:

LDA without boosting

Logistic regression v	without boost	ing			Logistic regression	with b
classification	report for precision			support		
0	0.75	0.66	0.70	323		
1	0.86	0.91	0.88	744		
accuracy			0.83	1067		
macro avg	0.81	0.78	0.79	1067		
weighted avg	0.83	0.83	0.83	1067		
classification						
	precision	recall	f1-score	support		
0	0.80	0.68	0.73	139		
1	0.87	0.92	0.90	319		
accuracy			0.85	458		
macro avg	0.83	0.80	0.81	458		
weighted avg	0.85	0.85	0.85	458		
					Classification	Repor
						preci
					0	G
					1	e
					accuracy	
					macro avg	6
					weighted avg	6
					Classification	Repor
						preci
					0	6
					1	е

	• • •		
ΠΙΔ	with	hoo	sting

accuracy macro avg weighted avg

Classification Repor

preci

0 0

0	0
1	9

accuracy macro avg

weighted avg

Classification Report of the training data:

	precision	recall	f1-score	support
0	0.73	0.67	0.70	323
1	0.86	0.89	0.88	744
accuracy			0.83	1067
macro avg	0.80	0.78	0.79	1067
weighted avg	0.82	0.83	0.82	1067

Classification Report of the test data:

	precision	recall	f1-score	support
0	0.77	0.71	0.74	139
1	0.88	0.91	0.89	319
accuracy			0.85	458
macro avg	0.82	0.81	0.81	458
weighted avg	0.84	0.85	0.85	458

Naïve Bayes without boosting Classification Report of the training data:

	precision	recall	f1-score	support
0 1	0.72 0.87	0.70 0.88	0.71 0.88	323 744
accuracy macro avg	0.80	0.79	0.83 0.79	1067 1067

Naïve Bayes with boostin

Classification Repor preci

accuracy

0

KNN with boosting

Classification Repo

Classification Repo

prec:

KNN	wit	hout	boosting
-----	-----	------	----------

Classification Report of the training data:

	precision	recall	f1-score	support	
0	1.00	1.00	1.00	323	0
1	1.00	1.00	1.00	744	1
accuracy			1.00	1067	accuracy
macro avg	1.00	1.00	1.00	1067	macro avg
weighted avg	1.00	1.00	1.00	1067	weighted avg

Classification Report of the test data:

	precision	recall	f1-score	support		prec:
0	0.80	0.71	0.75	139	0	
1	0.88	0.92	0.90	319	1	4
accuracy			0.86	458	accuracy	
macro avg	0.84	0.82	0.83	458	macro avg	(
weighted avg	0.86	0.86	0.86	458	weighted avg	(

Random Forest

Classification Report of the training data:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	323
1	1.00	1.00	1.00	744
accuracy			1.00	1067
macro avg	1.00	1.00	1.00	1067
weighted avg	1.00	1.00	1.00	1067

Classification Report of the test data:

	precision	recall	f1-score	support
0	0.74	0.68	0.71	139
1	0.87	0.89	0.88	319
accuracy			0.83	458
macro avg	0.80	0.79	0.79	458
weighted avg	0.83	0.83	0.83	458

1.8. Based on your analysis and working on the business problem, detail out appropriate insights and recommendations to help the management solve the business objective.

Since the classification has to focus on the probability of favorable votes across both the parties of labour and conservative, the business question is to find who will vote (True positives) more than who did not get the vote (True negative). And hence it is important to strike a balance on the true positives across prediction metrics (precision) and actual metrics(recall). That leads to the fact that both Logistic regression and LDA has done better without boosting even though naïve bayes have better scores under boosting wherein the training and testing convergence is much better in the earlier case of LDA and logistic regression.

Also based on the model we could derive below linear equation where we can see that Blair assessment has the most significant impact on the voting pattern, meaning every unit of increase in his assessment results in better prediction of voting by 10%.

```
(0.7) * Intercept + (-0.05) * age + (-0.06) * political_knowledge + (0.05) * economic_cond_national + (0.01) * economic_cond_household + (0.1) * Blair + (-0.16) * Hague + (-0.1) * Europe + (0.01) * gender male
```

2.1) Find the number of characters, words and sentences for the mentioned documents. (Hint: use .words(), .raw(), .sent() for extracting counts)

```
Number of characters:
Total characters in the speech from President Roosevelt:7571
Total characters in the speech from President Kennedy:7571
Total characters in the speech from President Nixon:7571
```

Number of words:

```
Total words spoken by President Roosevelt:1360
Total words spoken by President Kennedy:1390
Total words spoken by President Nixon:1819
```

Number of sentences:

```
Total sentences in the speech from President Roosevelt:38 Total sentences in the speech from President Kennedy:27 Total sentences in the speech from President Nixon:51
```

2.2) Remove all the stopwords from the three speeches.

Stop words are common words that are not useful in providing value or context and hence would have to be processed to eliminate them as a part of text cleaning. Ex: 'the', 'an', 'in'

Following are the top 10 common words by it's frequency spoken in president Roosevelt's speech

```
[('the', 104),
  ('of', 81),
  ('and', 41),
  ('to', 35),
  ('in', 30),
  ('a', 28),
  ('is', 24),
  ('--', 22),
  ('we', 22),
  ('that', 21)]
```

After stop words have been removed with words converted to lower case following are the top 10 common words spoken in president Roosevelt's speech by it's frequency.

```
[('us', 25),
  ('let', 22),
  ('--', 17),
  ('new', 15),
  ('peace', 11),
  ('great', 9),
  ('america', 9),
  ('world.', 8),
  ("america's", 8),
  ('shall', 7)]
```

Following are the top 10 common words by it's frequency spoken in president Kennedy's speech

```
[('the', 86),
  ('of', 65),
  ('to', 42),
  ('and', 41),
  ('we', 30),
  ('a', 29),
  ('in', 26),
  ('--', 24),
  ('our', 21),
  ('not', 19)]
```

After stop words have been removed with words converted to lower case following are the top 10 common words spoken in president Kennedy 's speech by it's frequency.

```
[('--', 24),
  ('let', 16),
  ('us', 11),
  ('new', 7),
  ('pledge', 7),
  ('sides', 7),
  ('shall', 5),
  ('ask', 5),
  ('president', 4),
  ('fellow', 4)]
```

Following are the top 10 common words by it's frequency spoken in president Nixon's speech

```
[('the', 83),
  ('of', 68),
  ('to', 65),
  ('in', 58),
  ('and', 50),
  ('we', 47),
  ('a', 35),
  ('that', 33),
  ('our', 32),
  ('for', 32)]
```

After stop words have been removed with words converted to lower case following are the top 10 common words spoken in president Nixon's speech by it's frequency.

```
[('us', 25),
  ('let', 22),
  ('--', 17),
  ('new', 15),
  ('peace', 11),
  ('great', 9),
  ('america', 9),
  ('world.', 8),
  ("america's", 8),
  ('shall', 7)]
```

2.3) Which word occurs the most number of times in his inaugural address for each president? Mention the top three words. (after removing the stopwords)

After stop words have been removed following are the top 3 words spoken in President Roosevelt's speech by it's frequency.

```
[('us', 25),
  ('let', 22),
  ('--', 17)]

Subsequently after removing the punctuations and performing stemming the top 3 words stands corrected as below for President Roosevelt.
[('nation', 10),
  ('know', 9),
```

```
('us', 8)]
```

After stop words have been removed following are the top 10 common words spoken in President Kennedy 's speech by it's frequency.

```
[('--', 24),
  ('let', 16),
  ('us', 11)]

Subsequently after removing the punctuations and performing stemming the top 3 words stands corrected as below for President Kennedy.
[('let', 16),
  ('us', 11),
  ('power', 7)]
```

After stop words have been removed following are the top 10 common words spoken in President Nixon's speech by it's frequency.

```
[('us', 25),
    ('let', 22),
    ('--', 17)]

Subsequently after removing the punctuations and performing stemming the top 3 words stands corrected as below for President Nixon.
[('us', 25),
    ('let', 22),
    ('new', 15)]
```

2.4) Plot the word cloud of each of the three speeches. (after removing the stopwords)

Following is the word cloud from President Roosevelt's speech which can be correlated to the top words spoken after stop words and punctuation removals and stemming based on the font sizing.

Following is the word cloud from President Kennedy's speech which can be correlated to the top words spoken after stop words and punctuation removals and stemming based on the font sizing..

Following is the word cloud from President Nixon's speech which can be correlated to the top words spoken after stop words and punctuation removals and stemming based on the font sizing..

