

American Politicians Diverge Systematically, Indian Politicians do so Chaotically: Text Embeddings as a Window into Party Polarization

Amar Budhiraja, Ankur Sharma, Rahul Agrawal, Monojit Choudhury, Joyojeet Pal

Introduction

• Demonstrating the use of representation learning as a window into political dialogue on social media through the tweets by politicians on Twitter.

Count/Country	USA	India
Politician Handles	4422	13111
Tweets	2767344	5637474
State Annotations	1500	13111
Party Annotations	598	13111

Table 1. Dataset Statistics

Proposed Method

• Given a politician and a tweet they have written, predict 'K' sequence words from the tweet with the politician ID as input.

Figure 1. Model Architecture to learn political embeddings

$$\mathcal{L}(\theta) = \frac{1}{M} \frac{1}{K} \sum_{j=1}^{M} \sum_{i=1}^{K} \log(Pr(w_i, P_{t_j}) \mid \theta) \text{ \mathbf{Pr} -probability of predicting a certain word out of the K sampled}$$

M - total # of tweets

0 - model parameters

Party Prediction Task

• USA: Strong correlation between the word distribution and the predicted party (logistic regression on embedding) of a politician

Method	Accuracy	F1-Score	
Proposed Method	0.9795 (0.0066)	0.9793 (0.0066)	
User-DBOW	0.9616	0.9613	
(Ding, Bickel, and Pan 2017)	(0.0081)	(0.0082)	
Word2Vec Baseline	0.9131	0.9126	
(Benton, Arora, and Dredze 2016)	(0.0169)	(0.0170)	
TF-IDF Baseline	0.9036 (0.0278)	0.9026 (0.0286)	

Table 2. Results of Party Prediction Task for USA Dataset.

India: Distinct bifurcation between

the Northern (BJP-majority) states

and the Southern (Regional &

Ethnolinguistic) states; Geography

(state) is also a crucial factor

Method	Accuracy	Precision	Recall	F1-Score
Proposed Method	0.8518 (0.0100)	0.9206 (0.0061)	0.6062 (0.0160)	0.6990 (0.0146)
User-DBOW (Ding, Bickel, and Pan 2017)	0.8151 (0.0156)	0.9053 (0.0083)	0.5712 (0.0168)	0.6651 (0.0163)
Word2Vec Baseline (Benton, Arora, and Dredze 2016)	0.7677 (0.0143)	0.8533 (0.0067)	0.5004 (0.0159)	0.5756 (0.0160)
TF-IDF Baseline	0.6527 (0.0238)	0.8110 (0.0127)	0.4745 (0.0274)	0.5315 (0.0233)

Table 3. Results of Politician Polarization for Indian Dataset.

• India: Party prediction results are not as accurate as of the USA. Possible factors beyond the party of a politician influence their writing on social media

Political Affiliation and Topical Communities

Figure 2. Scatter plot of embeddings for six states in India

Figure 3. Scatter plot of the embeddings for USA

• USA: Clear party-based affinity from state politicians as well as congressional handles. Also, clear democratic and republican clusters within each state leading to high party prediction accuracy

Discussion

- <u>USA</u>: Republicans and Democrats sit virtually on two separate planes, closely mirror that separation in politicians' online discourse
- India: Hindi-speaking northern states are highly overlapping, representing the hegemonic control of the ruling BJP, while the non-Hindi speaking states are strikingly separated into their own clusters.
- We demonstrate that representation learning gives us a window into how polarized our politics are, and think about the risks that bring.