

Tutorial #6 - Solution

1- Figure 6-1 shows a double-reduction helical gearset. Pinion 2 is the driver, and it receives a torque of 135 N.m from its shaft in the direction shown. Pinion 2 has a normal module of 3 mm, 14 teeth, and a normal pressure angle of 20° and is cut left-handed with a helix angle of 30°. The mating gear 3 on shaft b has 36 teeth. Gear 4, which is the driver for the second pair of gears in the train, has a normal module of 5 mm, 15 teeth, and a normal pressure angle of 20° and is cut left-handed with a helix angle of 15°. Mating gear 5 has 45 teeth.

Find the magnitude and direction of the force exerted by the bearings C and D on shaft b if bearing C can take only radial load while bearing D is mounted to take both radial and thrust load.

Figure 6-1

Solution:

Tutorial #6 - Solution

Pinion 2: & Geor3:

Power 4 & Gear 5:

Tutorial #6 - Solution

Tutorial # 6 - Solution

From equilibrain of Torques over shaft b:

Wt23 x d3 = WT54 x d4

Wt54 = 8.94 KN

Wr54= Wt54 tan 44 = Wt54 tan 4n4 = 3.37 KN.
Wa54 = Wt54 tan 44 = 2.4 KN Edirection are shown on the sketch

Shaftb:

≤ = 0

Cy - Wr54 - Wt23 + Dy =0

Cy = 5.567 + 3.37 - Dy

2 Mx) = 0

-Wr54x50x103+ Wa54x + - Wt23x1025x103+ 135 Dy = 0

Dy= 4.785 KN

Substituting in 1 Cy = 4.15 KN

2Fx=0

-DI = Was++ Wazz

Dr=-5.614 KN

2 Fx 30

Cx - W+ EL - Wrzz + Dx = 0

Tutorial # 6 - Solution

2- If the pinion described in problem 1 is running at 375 rpm, the gears are made of grade 1 steel, through-hardened at 200 Brinell, made to No. 6 quality standards, uncrowned, and are to be accurately and rigidly mounted. Assume a pinion life of 10^8 cycles, a reliability of 90% and a rim thickness of 20 mm (in gear 5).

Determine the AGMA bending and contact stresses acting on the gears and the corresponding factors of safety.

Solution:

$$W_{123} = 5.56 + kN$$
 $b_{12} b_{3} = 25 \text{ mm}$
 $b_{12} b_{3} = 25 \text{ mm}$
 $b_{13} b_{3} = 25 \text{ mm}$
 $b_{14} b_{15} = 60 \text{ mm}$
 $c_{15} b_{15} = 60 \text{ m$

Tutorial #6 - Solution

KB FP Ye Yz	Kôz = Kôs = - Kôz = Kôs = - Kôz = Kôs = - Eps: 253.6 MPa. Yo = 1 Yz = 0.85 Lz = 108 gylu Ls = YNZ = 0.928	14 ×108 = 3,8×107		1 Pa 15 x3.5x107 = 1.26 x107	
Sp.	Tha = 219.4 H/cc	55 = 200.6 M	ia 6,4 = 93 11Pa	YN3 = 0.9926 Tb5=825 HR	
c.tb	FP2 = 276.8 FMB	Off3= 285, 76 H	8 0 FR4 = 285 76 11 Pa	FP5 = 296.14112	
SF	SF2 = 1.26	S _{F3} = 1.42	F4= 3.07;	SF6= 3.59	
b) Contact:					
	Cp2 = Cp3 = 191 (Table)		Cb4 = Cb2 =	Cp4 = Cp5 = 191 (table)	
	takee Cf = 4		Cf = 1		
I	mn = Tmm coson	= 0,6766	mn = 0.68		
	I = 0.19		T = 0.18		
QC ;	06 = 1081 MPa			TC = 768.59 MPA	
QHb	64p=644 MAR Lz=108		5 HP = 644	5 HP = 644	
Zm	Lz=108			~ .00	
6	Em2 = 0,348	En3:0,97	En420197	En 5 20.33	
C-#,	T = 1 1x 25 MP.	= 72 = MPa	TREMP	er arrollo	
MC HA	Em2 = 0.948 CH = 1 OHP2 = 7 + 18.25 APa MC2 = 0.44 (failure)	72 C3 = C46 (fal	$mc_{4} = 0.95 (failure!)$	$M_{CG} = 0.97 \text{ (failure!)}$	