

[실증적SW개발프로젝트]

CMM 데이터 이상치 탐지 딥러닝 모듈 개발

2143933 김지선

2143978 김예령

2143993 백수민

CONTENT

- 1. 연구의 필요성
- 2. 연구 목표
- 3. 연구 내용
- 4. 최종 결과물

01. 연구의 필요성

- 기존 연구의 한계점
 - 기존 산업 현장에서 CMM(Coordinate Measuring Machine) 데이터의 불량품 처리 방식
 - 부품이 제작되면 모든 부품에 대해 CMM으로 측정 ightarrow 연동 PC에 전달되어 텍스트 파일로 저장됨

CMM 측정기

연동 PC

[그림 1] 기존의 측정데이터 관리 방법 (인쇄, PC 저장)

- 기존 연구의 한계점
 - 측정한 CMM 데이터는 텍스트 파일 형식, 현재는 <u>이를 인쇄해서 작업자가 직접 불량을 판단</u>
 - 기존 제조 공정은 거의 수동식으로 CMM 데이터 불량품 판별에 ML/AI가 도입되지 않았음
 - 불량을 판단하는데 높은 인건비와 많은 시간 소비되어서 회사측에서 자동화 SW를 요청함

[그림 2] 기존의 측정데이터 관리 방법 (인쇄, PC 저장)

01. 연구의 필요성

- 기존 회사의 작업 방식: 부품 측정에 많은 시간 소모로 인해, LOT성 불량이 발생
 - LOT성 불량: 생산 공정에서 연속적인 대형 불량으로, CMM 측정 속도를 높이면 LOT 불량을 줄일 수 있음

[그림 3] 기존 불량품 판별의 워크플로우

- ・ 기존 연구 대비 제안 방법의 차별성 및 필요성
 - AI 기반 불량품 판별 자동화 모델: CMM 기기와 <u>연동된 PC에서 바로 ML/DL 기반으로 불량품 판단</u>
 - 차별성 및 필요성: 기존 워크플로우 대비 <u>불량품 판별 시간과 인건비 대폭 감소 가능</u>

■ 기업의 요구사항(금륜 ENG): 기업은 비용적인 측면에서 고도화된 딥러닝 모델보다는, <u>측정 시간과 인건비</u> <u>감소를 목표</u>로 한 <u>자동화 SW</u>를 요청했음

• 팀별 연구 목표

- 기존 워크플로우 대비 측정 프로세스 시간 25% 감소
- SW 연동 모듈 적용 후 LOT 불량률 20% 감소
- 측정 데이터 인쇄 비용 75% 감소

• 개인별 연구 RnR

- 김지선: DL(GNN)을 사용한 이상치 판별 기술 담당
- 김예령: CMM 데이터 전처리 및 데이터 분석 담당
- 백수민: CMM 데이터의 ML기반 이상치 처리 기술 담당

- 팀목표

- 상반기 (~6월) 달성 목표
 - CMM 데이터에 이상치 탐지 기술을 적용한 불량품 판별 프로그램 개발
 - 국내 학술대회에 논문 투고
- 하반기 (~12월) 달성 목표
 - 딥러닝 기반 새로운 이상치 탐지 기술 개발
 - AI 국제 학술대회 Poster Track 부문에 논문 제출

• 개인별 목표

- 팀장(김지선): DL(GNN) 이상치 판별 기술을 실제 산업 데이터셋에 적용해서 논문 작성
- 팀원(김예령): CMM 데이터 전처리 및 특성 선택을 통한 국내 학술지 작성
- 팀원(백수민): CMM 데이터의 ML 기반 이상치 처리 SW 개발

• 세부연구내용 (구체적으로 어떤 연구를 수행할 것인지 단계별로 설명)

• 1단계: CMM 측정원리 공부 & CMM 데이터 파악 및 전처리

• 2단계: CMM 데이터 특징 분석 및 선택

• 3단계: 기계학습/딥러닝을 사용해서 이상치를 판별하는 코어 모듈 개발

• 4단계: 적정 딥러닝 모델 선택 및 실험

• 5단계: 성능 평가 및 보고서/논문 작성

░ 240304_일상검사_야_중_1-1-1_OK	텍스트 문서	2KB
🗎 240304_일상검사_야_중_1-2-1_OK	텍스트 문서	2KB
■ 240304_일상검사_야_중_1-3-1_OK	텍스트 문서	2KB
240304_일상검사_야_중_1-4-1_NG	텍스트 문서	2KB
240304_일상검사_야_중_1-5-1_OK	텍스트 문서	2KB
240304_일상검사_야_중_2-1-1_OK	텍스트 문서	2KB
240304_일상검사_야_중_2-2-1_OK	텍스트 문서	2KB
█ 240304_일상검사_야_중_2-3-1_OK	텍스트 문서	2KB
240304_일상검사_야_중_2-4-1_OK	텍스트 문서	2KB
240304_일상검사_야_중_2-5-1_OK	텍스트 문서	2KB
░ 240304_일상검사_야_중_2-6-1_OK	텍스트 문서	2KB

다정시 타기시	IZL: 2024.I I함: 24030	03.04, 22:12:3 4_일상검사_	역)_<열전> 1 야_초_1-1-1_	축정지 NG	^{건: 409} : 양정훈	cu-40100		
선호	항목	축정값	기준값	상한공자	하한공	· 자 편	차 만	청
3 %	图1							
	평면도	0.003	0.100			Total	1+	
	SMmf	4P	0.001	0.001	-0.001	0.003		
5 %	1(0 <성)							
	D	16.486	16,485	0.030	0.000	0.001	med.	
	SMmf		0.001	0.001		0.002		
6 %	2(1) <중>							
	D	16.488	16.485	0.030	0.000	0.003		
	SMmf	4P	0,002	0.002	-0.003	0.005		
7.9	3(0 < 4)×							
	D	16.484	16.485	0.030	0.000	-0.001	-0.001	
	SMmf	4P	0.000	0.000	0.000	0.000		
8 %	各1(0) <-	원1, 원2, 원3	의 즉정점 병	한				
			16,485	0.030	0.000	0.001		
	원통도	0.005	0.000					
	직각도	0.006	0.050		평면1		+	
	SMmf	12P	0.002	0.003	-0.002	0.005		
14 %			결전 관리지수					
	X	116.636	116.600	0.100	0.000	0.036	-	
	Y	-10.903	10.900	0.100	-0.100	0.003	[+	
16.2	£1 e 2	도[XVPLAN]	:직선2와 직선	13				
	Ang	57.211	57.000	0.333	-0.333	0.211	+++	
17 8	104 < 27							
	Y/X	27.058	27.000	0.500	-0.500	0.058	1+	
18 %	신5 < 7.5	±42						
	Y/X	7.483	7.500	0.500	-0.500	-0.017		

03. 연구 내용: 실제 데이터 샘플

1	품명	편차_각도1 <- 각도[XYPLAN]:직선2와 직선3 Ang	편차_각도2 <- 각도[XYPLAN]:직선23와 직선24 Ang	편차_거리1 <- XAXIS[PT]:점9와 점10 <상> DS
2	PARKING SPRAG(8속)_<열전>	0.303	-0.023	0.037
3	PARKING SPRAG(8속)_<열전>	0.239	-0.009	0.046
1	PARKING SPRAG(8속)_<열전>	0.129	0.067	0.046
5	PARKING SPRAG(8속)_<열전>	0.256	-0.148	0.053
5	PARKING SPRAG(8속)_<열전>	0.205	-0.133	0.037
7.	PARKING SPRAG(8속)_<열전>	0.336	-0.014	0.034

편차_거리2 <- XAXIS[PT]:점14와 점15 <하> DS	편차_거리3 <- XYPLAN[PT]:원5와 원통1 DS	편차_거리4 <- XAXIS[평균]:점32와 점31 <소재기준> DS	편차_원1(I) <상> D	편차_원2(I) <중> D
0.016	-0.001	0.037	0.010	0.014
0.021	0.030	0.046	0.010	0.014
0.051	0.040	0.046	0.011	0.015
0.017	0.022	0.053	0.012	0.018
0.007	0.024	0.037	0.009	0.015
-0.004	-0.006	0.034	0.010	0.013

▶ 추진일정: 매주 목요일 정기적인 팀 회의를 통해 진행사항 공유 예정

<u>실증적AI프로젝트 금주 활동계획</u>

주제: CMM 데이터의 이상치 탐지 딥러닝 모듈 개발

금주 활동계획	1. (이론) CMM 기반 딥러닝 관련 연구 리딩 및 정리 2. (실습) CMM 데이터의 특성 분석(Feature analysis) 및 정리 3. (이론) Coordinate Measuring Machine(CMM) 기초 측정 방식 정리					
	팀장 (김지선)	팀원1 (김예령)	팀원2 (백수민)			
금주 개인별 활동계획	1. CMM 기반 딥러닝 관련 연구 리딩&정리 • 논문1: Deep learning-based intelligent measurement methods and system for CMM (2023) • 논문2: Neural process enhanced machining error evaluation for coordinate measuring machines	 2. CMM 데이터의 특성 분석 금륜 ENG로부터 제공 받은 데이터 약 9000건에 대한 특성 분석 및 데이터 분석 	3. CMM 기초 측정 방식 정리 • 논문1: Development of a Coordinate Measuring Machine—Based Inspection Planning System for Industry 4.0 (2021) • 논문2: Accuracy of medical models made by additive manufacturing (2013)			
차주 활동계획	1. CMM 데이터 전처리 2. CMM 데이터에 ML 모델 적용을 통히 3. Graph Neural Network(GNN) 관련 C					

QUESTIONS & ANSWERS

Dept. of AI, Dong-A University

김예령 (schsb098@donga.ac.kr)

백수민 (2143993@ donga.ac.kr)