

第二章 导数与微分

【考试要求 】

- 1. 理解导数和微分的概念, 理解导数与微分的关系, 理解导数的几何意义, 会求平面曲线的切线方程和法线方程, 了解导数的物理意义, 会用导数描述一些物理量(数一、数二), 经济问题包含边际与弹性的概念(数三), 理解函数的可导性与连续性之间的关系.
- 2. 掌握导数的四则运算法则和复合函数的求导法则, 掌握基本初等函数的导数公式. 了解微分的四则运算法则和一阶微分形式的不变性, 会求函数的微分.
 - 3. 了解高阶导数的概念, 会求简单函数的高阶导数.
 - 4. 会求分段函数的导数, 会求隐函数和由参数方程所确定的函数(数一、数二)以及反函数的导数.

§1.导数概念

一、导数的定义

1.函数在一点处的导数

设函数 y = f(x) 在点 x_0 的某邻域内有定义, 自变量 x 在 x_0 处有增量 x0 人工,相应地函数增量

$$\Delta y = f(x_0 + \Delta x) - f(x_0) \cdot \text{如果} \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
 存在, 则称函数在 x_0 处可导, 同

时称上述极限值为函数 f(x) 在 x_0 处的导数, 记作 $f'(x_0)$, 或 $y' \begin{vmatrix} x & y \\ x & x_0 \end{vmatrix}$ 等. 如果上述极限不存

在,则称函数 y = f(x) 在点 x_0 处不可导,同时称 x_0 为函数的不可导点.

【注】导数定义的两点式, 令
$$x = x_0 + \Delta x$$
, 则 $\Delta x = x - x_0$, 于是 $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$.

【例 2. 1】设函数 $f(x) = (e^x - 1)(e^{2x} - 2)\cdots(e^{nx} - n)$, 其中 n 为正整数,则 f'(0) = (0)

(A)
$$(-1)^{n-1}(n-1)!$$

(B)
$$(-1)^n (n-1)!$$

(c)
$$(-1)^{n-1}n!$$

(D)
$$(-1)^n n!$$

【例 2. 2】已知 f(0) = 0, f'(0) = f'(1) = 1, 求下列极限:

(1)
$$\lim_{x \to 0} \frac{f(1+x) - f(1)}{x}$$
; (2) $\lim_{x \to 0} \frac{f(x)}{x}$; (3) $\lim_{x \to 0} \frac{f(1+3x) - f(1)}{x}$;

(2)
$$\lim_{x \to 0} \frac{f(x)}{x};$$

(3)
$$\lim_{x \to 0} \frac{f(1+3x) - f(1)}{x}$$

(4)
$$\lim_{x\to 0} \frac{f(1+x)-f(1-x)}{x}$$
; (5) $\lim_{x\to 0} \frac{f(x^2)}{1-\cos x}$.

(5)
$$\lim_{x \to 0} \frac{f(x^2)}{1 - \cos x}$$

【例 2. 3】已知 f(x) 连续,且 f(x) 分别满足以下条件,判断 f'(0) 是否存在:

(1) 已知
$$\lim_{x\to 0} \frac{f(x)}{x}$$
存在; (2) 已知 $\lim_{x\to 0} \frac{f(x)}{x^2}$ 存在; (3) 已知 $\lim_{x\to 0} \frac{f(x)}{\sqrt[3]{x}}$ 存在.

(2) 已知
$$\lim_{x\to 0} \frac{f(x)}{x^2}$$
 存在;

(3) 已知
$$\lim_{x\to 0} \frac{f(x)}{\sqrt[3]{x}}$$
 存在.

2.单侧导数

左导数:
$$f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0^{-}} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

右导数:
$$f'_{+}(x_0) = \lim_{x \to x_0^{+}} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0^{+}} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

【注】 f(x) 在点 x_0 处可导 f(x) 在点 x_0 处左、右导数皆存在且相等.

【例 2. 4】已知 f(x) 连续,且 f(x) 分别满足以下条件,判断 f'(0) 是否存在:

(1) 已知
$$\lim_{x\to 0} \frac{f(x^2)}{x^2}$$
 存在;

(2) 已知
$$\lim_{x\to 0} \frac{f(x^3)}{x^3}$$
 存在;

(1) 已知
$$\lim_{x\to 0} \frac{f(x^2)}{x^2}$$
 存在; (2) 已知 $\lim_{x\to 0} \frac{f(x^3)}{x^3}$ 存在; (3) 已知 $\lim_{x\to 0} \frac{f(1-\cos x)}{x^2}$ 存在.

3.导函数

如果函数 y=f(x) 在开区间 I 内的每点处都可导,那么就称函数 f(x) 在开区间 I 内可导,这时对于任意的 $x\in I$,都对应着 f(x) 的一个确定的导数值,这样就构成了一个新的函数,这个函数叫做原来函数 y=f(x) 的导函数,记作 y', f'(x) 或 $\frac{\mathrm{d}y}{\mathrm{d}x}$,导函数简称导数.

【例 2.5】用导数定义证明下列求导公式:

(1)
$$(e^x)' = e^x$$
; $(2) (\ln x)' = \frac{1}{x}$.

二、导数的常用结论

1.奇偶性

如果 f(x) 是奇函数且可导, 则 f'(x) 是偶函数;

如果 f(x) 是偶函数且可导, 则 f'(x) 是奇函数.

2.周期性

如果 f(x) 可导且以 T 为周期, 则 f'(x) 也以 T 为周期.

3.函数的可导性与连续性之间的关系

如果函数 y = f(x) 在点 x_0 处可导, 则 f(x) 在点 x_0 处一定连续; 反之不然.

【例 2. 6】讨论函数
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0 \end{cases}$$
 在 $x = 0$ 处的连续性和可导性.

新<u>赤</u>方 大学生学习与发展中心 南京分中心考研项目部

【例 2. 7】设
$$f(x) = \begin{cases} \frac{1-\cos x}{\sqrt{x}}, & x > 0, \\ x^2 g(x), & x \le 0, \end{cases}$$
 其中 $g(x)$ 是有界函数, 则 $f(x)$ 在 $x = 0$ 处 ()

- (A) 极限不存在.
- (B) 极限存在, 但不连续.
- (C) 连续, 但不可导.

(D) 可导.

三、导数的几何意义与物理意义

1.导数的几何意义

如果函数 y = f(x) 在点 x_0 处导数存在,则在几何上 $f'(x_0)$ 表示曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处的切线的斜率,从而有

切线方程:
$$y - f(x_0) = f'(x_0)(x - x_0)$$

法线方程:
$$y-f(x_0) = -\frac{1}{f'(x_0)}(x-x_0), f'(x_0) \neq 0$$

【例 2.8】过原点作曲线 $y = e^x$ 的切线,求切线方程.

2.导数的物理意义(数一、数二)

设物体作直线运动时, 路程 S 与时间 t 的函数关系为 S = f(t), 如果 $f'(t_0)$ 存在, 则 $f'(t_0)$ 表示物体在时刻 t_0 时的瞬时速度.

§2.导数计算

一、常用导数公式

$$(C)' = 0$$
 $(C$ 为常数)
 $(\sin x)' = \cos x$

$$(\tan x)' = \sec^2 x$$

$$(\sec x)' = \sec x \tan x$$

$$\left(\log_a x\right)' = \frac{1}{x \ln a} \quad (a > 0 \perp a \neq 1)$$

$$\left(a^{x}\right)' = a^{x} \ln a \ (a > 0 \perp a \neq 1)$$

$$\left(\arcsin x\right)' = \frac{1}{\sqrt{1-x^2}}$$

$$(x^{\alpha})' = \alpha x^{\alpha - 1} \quad (\alpha \text{ 为实常数})$$

$$\left(\cos x\right)' = -\sin x$$

$$\left(\cot x\right)' = -\csc^2 x$$

$$\left(\csc x\right)' = -\csc x \cot x$$

$$\left(\ln x\right)' = \frac{1}{x}$$

$$\left(e^{x}\right)'=e^{x}$$

$$\left(\arccos x\right)' = -\frac{1}{\sqrt{1-x^2}}$$

$$\left(\arctan x\right)' = \frac{1}{1+x^2}$$

$$\left(\operatorname{arccot} x\right)' = -\frac{1}{1+x^2}$$

二、四则运算求导法则

$$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$$

$$[f(x) \cdot g(x)]' = f'(x)g(x) + f(x)g'(x)$$

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)} \quad (g(x) \neq 0)$$

三、复合函数求导法则

设 y = f(u), $u = \varphi(x)$, 如果 $\varphi(x)$ 在 x 处可导, f(u) 在对应点 u 处可导,则复合函数

$$y = f[\varphi(x)]$$
 在 x 处可导,且有 $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = f'[\varphi(x)]\varphi'(x)$.

【例 2.9】求下列函数的导数:

(1)
$$y = \ln \cos e^x$$
; $y = \cos x^2 \sin^2 \frac{1}{x}$; $y = x^{2x}$.

【例 2. 10】设
$$y = \ln \sqrt{\frac{1-x}{1+x^2}}$$
,则 $y''|_{x=0} =$ ______.

四、分段函数求导

给定分段函数, 其求导方法如下:

非分段点处按对应的解析式及法则求导; 分段点处严格按照定义求导.

【例 2. 11】设
$$f(x) = \begin{cases} \frac{\varphi(x) - \cos x}{x}, & x \neq 0, \\ a, & x = 0, \end{cases}$$
 其中 $\varphi(x)$ 具有二阶导数, 且 $\varphi(0) = 1$, $\varphi'(0) = 0$.

(1) 确定 a 的值, 使 f(x) 在 x = 0 处连续. (2) 求 f'(x).

五、 隐函数求导

设 F(x,y) = 0 确定了函数关系 y = f(x),则其导数计算如下: 在方程 F(x,y) = 0 两侧同时对 x 求导(注意 y 是 x 的函数),得 G(x,y,y') = 0,从中解出 y' 即可.

【例 2.12】 方程
$$\ln(x^2 + y) = x^3 y + \sin x$$
 确定了 $y = f(x)$, 求 $\frac{dy}{dx}|_{x=0}$.

新大学生学习与发展中心

【例 2. 13】已知 $e^y + 6xy + x^2 - 1 = 0$ 确定了隐函数 y(x), 求 y''(0).

六、反函数求导

设
$$y = f(x)$$
 与 $x = g(y)$ 互为可导的反函数, 且 $g'(y) \neq 0$, 则 $f'(x) = \frac{1}{g'(y)}$.

【例 2. 14】设
$$y(x) = x^3 + e^x$$
, 其反函数为 $x = \varphi(y)$, 求 $\frac{dx}{dy}\Big|_{y=1}$, $\frac{d^2x}{dy^2}\Big|_{y=1}$.

七、参数方程所确定的函数求导(数一、数二)

新旋点 大学生学习与发展中心 南京分中心考研项目部

八、高阶导数

1.高阶导数的定义

如果函数 y = f(x) 的导函数 f'(x) 仍是可导的, 则把 f'(x) 的导数称为 f(x) 的二阶导数, 记作 y'', f''(x) 或 $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$ 等, 也称 f(x) 二阶可导.

类似地, 把 f(x) 的 n-1 阶导数的导数, 称为 f(x) 的 n 阶导数记作 $y^{(n)}$ 、 $f^{(n)}(x)$ 等, 这时也称 f(x) 是 n 阶可导的.

习惯上, 称二阶及二阶以上的导数为高阶导数.

【例 2.17】已知函数 f(x) 具有任意阶导数, 且 $f'(x) = [f(x)]^2$, 则当 n 为大于 2 的正整数时 f(x) in n $\underset{\text{heavy}}{\text{heavy}} f^{(n)}(x) \neq 0$

- (A) $n![f(x)]^{n+1}$. (B) $n[f(x)]^{n+1}$. (C) $[f(x)]^{2n}$. (D) $n![f(x)]^{2n}$.

2.常用的高阶导数公式

$$(1) \left(e^{ax+b} \right)^{(n)} = a^n \cdot e^{ax+b} ;$$

(2)
$$\sin^{(n)}(ax+b) = a^n \cdot \sin(ax+b+n \cdot \frac{\pi}{2})$$
;

(3)
$$\cos^{(n)}(ax+b) = a^n \cdot \cos(ax+b+n \cdot \frac{\pi}{2})$$
;

(4)
$$\ln^{(n)}(ax+b) = a^n \cdot \frac{(-1)^{n-1}(n-1)!}{(ax+b)^n}$$
;

(5)
$$\left(\frac{1}{ax+b}\right)^{(n)} = a^n \cdot \frac{(-1)^n n!}{(ax+b)^{n+1}}$$
.

【例 2.18】求下列函数的 n 阶导 $(n \ge 1)$:

(1)
$$y = \cos^2 x$$
; $(2) y = \frac{x^2 + 1}{x^2 - 1}$.

3.莱布尼茨公式

$$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(n-k)} v^{(k)} = C_n^0 u^{(n)} v + C_n^1 u^{(n-1)} v' + C_n^2 u^{(n-2)} v'' + \dots + C_n^n u v^{(n)}$$

【例 2. 19】已知 $y = x^2 e^x$, 求 $y^{(n)}(x)$.

§3.微分

一、微分的定义

设函数 f(x) 在某区间内有定义, x_0 及 $x_0 + \Delta x$ 在这区间内, 如果函数的增量

$$\Delta y = f(x_0 + \Delta x) - f(x_0)$$

可表示为:

$$\Delta y = A\Delta x + o(\Delta x) \quad (\Delta x \to 0)$$

其中 A 是不依赖于 Δx 的常数, $o(\Delta x)$ 是 $\Delta x \to 0$ 时比 Δx 高阶的无穷小, 则称函数 f(x) 在 x_0 处是

可微的, 而 $A\Delta x$ 叫做 Δy 的线性主部, 也叫函数在该点处的微分, 记作 $dy|_{x=x_0}$, 即

$$\left. \mathrm{d} y \right|_{x=x_0} = A \Delta x$$

二、可微与可导的关系

f(x) 在 x_0 处可微 \Leftrightarrow f(x) 在 x_0 处可导, 且 $dy|_{x=x_0} = A\Delta x = f'(x_0)\Delta x$,即 $A = f'(x_0)$.

一般地, 若 y = f(x) 可导, 则 dy = f'(x)dx. 所以导数 $f'(x) = \frac{dy}{dx}$ 也称为微商, 就是微分之商的含义.

三、微分的运算法则

1.四则运算微分法则

$$d(u \pm v) = du \pm dv; \qquad d(Cu) = Cdu;$$

$$d(uv) = vdu + udv; \qquad d(\frac{u}{v}) = \frac{vdu - udv}{v^2} (v \neq 0);$$

2.复合函数微分法则

已知 y = f[g(x)], 则 dy = f'[g(x)]g'(x)dx. 也可以表示如下: 设 u = g(x), y = f(u), 则 dy = f'(u)du. 变量 u 不管是作为自变量还是作为中间变量, 微分形式 dy = f'(u)du 保持不变, 这一性质称为微分形式的不变性.

【例 2. 20】设 f(x) 可导且 $f'(x_0) = \frac{1}{2}$, 则 $\Delta x \to 0$ 时 f(x) 在 x_0 处的微分 dy 是 (

- (C) 比 Δx 低阶的无穷小.
- (A) 与 Δx 等价的无穷小. (B) 与 Δx 同阶的无穷小.
 - (D) 比 Δx 高阶的无穷小.

【例 2.21】设函数 f(u) 可导,且 $y = f(x^2)$ 当自变量 \mathcal{X} 在 $x_0 = -1$ 的基础上产生增量 $\Delta x = -0.1$ 时,相应的函数值增量 Δy 的线性主部为 0.1,求 f'(1).

【例 2.22】填空:

(1)
$$\cos x dx = d$$

(2)
$$\frac{1}{\sqrt{1-x^2}} dx = d$$

$$(3) \quad \frac{1}{\sqrt{x}} \, \mathrm{d}x = \mathrm{d}$$

(4)
$$e^{2x} dx = d$$

四、微分的几何意义

在直角坐标系中, 函数 y=f(x) 的图形是一条曲线, 对于某一固定的 x_0 值, 曲线上有一个确定点 $M\left(x_0,y_0\right)$, 当自变量 x 有微小增量 Δx 时, 得到曲线上的另一点 $N\left(x_0+\Delta x,y_0+\Delta y\right)$, 如下图:

$$MQ = \Delta x$$
, $QN = \Delta y$,

过点 M 做曲线的切线 MT,它的倾角是 α ,则 $QP = MQ \cdot \tan \alpha = \Delta x \cdot f'(x_0)$,

即

$$dy = QP$$

从而可得微分的几何意义是切线在 $(x_0, f(x_0))$ 处纵坐标的增量.

新东方 大学生学习与发展中心

【例 2. 23】设 f(x) 满足 f'(x) > 0, f''(x) > 0, 当自变量在 x_0 的基础上产生增量为 Δx ($\Delta x > 0$) 时, 试确定 Δy , dy, 0 三者间的大小关系.