高三生物选修三综合练习

1 .在体内,人胰岛素基因表达可合成出一条称为前胰岛素原的肽链,此肽链在内质网 中经酶甲切割掉氨基
端一段短肽后成为胰岛素原,进入高尔基体的胰岛素原经酶乙切割去除中间片段 C 后,产生 A、B 两条肽
链,再经酶丙作用生成由 51 个氨基酸残基组成的胰岛素。目前,利用基因工程技术可大量生产胰岛素。回
答下列问题:
(1)人体内合成前胰岛素原的细胞是,合成胰高血糖素的细胞是。
(2)可根据胰岛素原的氨基酸序列,设计并合成编码胰岛素原的序列,用该序列与质粒表达载体构
建胰岛素原基因重组表达载体,再经过细菌转化、筛选及鉴定,即可建立能稳定合成的基因工程菌。
(3)用胰岛素原抗体检测该工程菌的培养物时,培养液无抗原抗体反应,菌体有抗 原抗体反应,则用该工
程菌进行工业发酵时,应从
2. 下面是将某细菌的基因 A 导入大肠杆菌内,制备"工程菌"的示 ////////////////////////////////////
意图。请据图回答:
(1)获得 A 有两条途径: 一是以 A 的 mRNA 为模板, 在
的催化下, 合成互补的单链 DNA, 然后在作用下合成双 B 链 DNA, 从而获得所需基因; 二是根据目标蛋白质的氨 ₩₩₩₩ IRE
基酸序列,推测出响应的 mRNA 序列,然后按照碱基互补配对原
则,推测其 DNA 的序列,再通过化学方法合成所需基因。
(2)利用 PCR 技术扩增 DNA 时,需要在反应体系中添加的有机物质有、_、_、4 种脱氧核苷
酸三磷酸和耐热性的 DNA 聚合酶,扩增过程可以在 PCR 扩增仪中完成。
(3)由 A 和载体 B 拼接形成的 C 通常称为。
(4)在基因工程中,常用 Ca ²⁺ 处理 D,其目的是。
3.已知甲种农作物因受到乙种昆虫危害而减产,乙种昆虫食用某种原核生物分泌的丙种蛋白质后死亡。因此,
可将丙种蛋白质基因转入到甲种农作物体内,使甲种农作物获得抗乙种昆虫危害的能力。回答下列问题:
(1)为了获得丙中蛋白质的基因,在已知丙种蛋白质氨基酸序列的基础上,推测出丙中蛋白质的序
列,据此可利用方法合成目的基因。获得丙中蛋白质的基因还可用、方法。
(2)在利用上述丙中蛋白质基因和质粒载体构建重组质粒的过程中,常需使用酶和。
(3)将含有重组质粒的农杆菌与甲种农作物的愈伤组织共培养,筛选出含有丙种蛋白质的愈伤组织,由该
愈伤组织培养成的再生植株可抵抗的危害。
(4) 若用含有重组质粒的农杆菌直接感染甲种农作物植株叶片伤口,则该植株的种子(填"含有"
或"不含")丙种蛋白质基因。
4.绞股蓝细胞中含有抗烟草花叶病毒(TMV)基因,可以合成一种抗 ① ② ③
THIV III, IIIIV A FILLER MERCE GOISENIFM, IMM THEEL III
由于 TMV 的感染会导致大幅度减产。研究人员利用转基因技术培育 在含有卡那霉素 入
出了抗 TMV 的烟草,主要流程如下图所示:
(1)科学家首先从绞股蓝细胞中提取抗 TMV 基因转录的 RNA,然后
合成目的基因。图中过程①表示。

(2)由图分析, 在过程③构建的重组 Ti 质粒上应该含有的标记基因是基因, 重组 Ti 质	ŧ粒
导入烟草体细胞的常用方法是。	
(3)在过程⑤培养基中除含有卡那霉素及植物必需的各种营养成分外,还必须添加	以
保证受体细胞能培养成再生植株。	
(4)过程⑥可采取	〕过
程中,可通过	
(2)构建重组 II 质粒的,通常要用同种限制酶分别切割 #務 #养基3	丛水稻 (T₀代)
4)检测培育转基因水稻的目的是否达到,需要检测转基因水稻。	
6.浙江大学农学院喻景权教授课题组研究发现,一种植物激素——油菜素内酯能促进农药在植物体内的降解和代谢。用油菜素内酯处理后,许多参与农药降解的基因(如P450 基因和红霉素抗性基因)表达和酶活性都得到提高,在这些基因"指导"下合成的蛋白酶能把农药逐渐转化为水溶性物质或低毒甚至无毒物质,有的则被直接排出体外。某课题组进一步进行了如下的实验操作,请回答下列问题: (1) 获得油菜素内酯合成酶基因的方法有	种1养 药样 药样 的品 的品
。 (2)图中导入重组质粒的方法是,在导入之前应用处理受体细菌。 (3)导入重组质粒 2 以后,往往还需要进行检测和筛选,可用制成探针,测是否导入了重组基因,在培养基中加入	检
7.下图表示胡萝卜的韧皮部细胞通过无菌操作接入试管后,在一定的条件下,形成试管苗的培育过程,请据图回答下列问题: (1)要促进细胞分裂生长,培养基中应有营养物质和激素。营养物质包括	苦苗
分裂方式是 B 阶段除了细胞分裂外,还进行细胞 等。	

(3)此过程需要无菌操作,主要是指对	进行灭菌消毒。	B 阶段需要光照,原	因是
(4)试管苗的根细胞没有叶绿素,而叶的叶肉细胞具有叶绿素,适	。 这是基因	的结果。	
8 .如图是利用基因型为 AaBb 的某二倍体植物作为实验材料所做一些实验示意图,请分析回答:	<i>t</i>	花粉粒 培养 → ① — → ① — → ~ 掌 植材	# R
(1)途径 1、2、3 中①②过程所采用的生物技术是。	(2) 授粉 (2)	187	עאן
由途径1形成的植株 B 的基因型有	W . /V	と 対 と 対 を を を を を を を を を を を を	果实C
熟时不可育的原因是,		→ 申	(P_Q)
使植株 B 可育的方法是。		叶片	
(3)从植株 A 到植株 C 的培育过程, 需要发挥调控作用的植物激素	秦至 🛒 🦳	$\emptyset \longrightarrow \emptyset \longrightarrow$	W _
少有和和。		8 B C	
(4)一般情况下,相同发育程度的植株 C 与植株 D 的性状	— t t t A	0 2	椎C
("相同""不相同"或"不一定相同")。			阻休し
(5)在相同条件和相同发育程度的情况下,植株 D 的表现型与植物	体 A 作问的少月形	生//。	
9.单纯疱疹病毒 I 型(HSV-I)可引起水泡性口唇炎。利用杂交瘤技测 HSV-1。 回答下列问题: (1)在制备抗 HSV-I 的单克隆抗体的过程中,先给小鼠注射一种血清中抗的抗体检测呈阳性,说明小鼠体内产生了反应,淋巴细胞与小鼠的细胞融合,再经过筛选、检测,最终可获和。 (2)若要大量制备抗该蛋白的单克隆抗体,可将该杂交瘤细胞短取、纯化获得。 (3)通过上述方法得到的单克隆抗体可准确地识别这种 HSV-I性。	中纯化的 HSV-1 强 再从小鼠的 得所需的杂交瘤组 主射到小鼠的	蛋白,一段时间后,若 中获取 B 淋巴细胞。将 田胞,该细胞具有的特 中使其增殖,再从	小鼠 好该 E f点是 _中提
10.如图表示单克隆抗体的制备过程,据图回答下列问题:	B	A	
(1)制备单克隆抗体的步骤:		$\downarrow 2$	
a.将注入小鼠体内,从小鼠脾脏中获得 B 淋巴细胞		。 (在正常培养基中无	间
若要生产预防 SARS 的疫苗,则应用	产生抗 X 抗体的细 产 (B 淋巴细胞,培养组	【胞 增殖 在选择培养基	
b.通过图中②过程获得的细胞为	下只能存活几天)		
限增殖的特点外,还有哪些特征?	ī.h	融合	
		······ ······	
合后的细胞,放在		↓	
筛选得到的细胞中的染色体数正好是小鼠体细胞中的二倍吗?			
_* ,原因是	-	↓ (5)	
(2)单克隆抗体与一般的血清抗体相比,优点是)
		Å a	
导弹,则生物导弹的组成是;为了便是	F		
了解生物导弹的作用部位,常要对生物导弹中的成分进行	Ţ		

(3)单克隆抗体的制备过程中需要两次筛选,请写出图中的编号和筛选目的。第一次筛选:
[];
第二次筛选: []。
12. 牛胚胎移植的基本程序如图,请据图回答: 供体母牛同期发情处理受体母牛→妊娠检查
(1)图中 a、b、c 过程分别是指、
(2)供体母牛的主要职能是
母牛必须具备。
(3)为了提高牛胚胎的利用率,常采取的方法是
13.毛角蛋白 型中间丝(KIF)基因与绒山羊的羊绒质量密 KIF 基因 □ 重组表 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
切相关。获得转 KIF II基因的高绒质绒山羊的简单流程 KIF II 基因 F
切相关。获得转 KIF II基因的高绒质绒山羊的简单流程
th /ri /ri /ri
限制酶和。
CO₂的气体环境中,CO₂的作用是。
(3)在过程③中,用处理以获取更多的卵(母)细胞。成熟卵(母)细胞在核移植前需要
进行
(4)从重组细胞到早期胚胎过程中所用的胚胎工程技术是。在胚胎移植前,通过
技术可获得较多胚胎。
14.下图是克隆羊的培育流程图,根据所学知识回答下列问题。
為型吸管
卵母细胞
代孕母羊
○
◎◎◎◎◎ → ◎◎◎ □沽 培养 移植 凡曜平 上皮细胞 分散培养
(1)培育克隆羊时用到的卵母细胞可以从屠宰场收集,并在体外培养到。
(2)从供体羊中取上皮细胞,用处理,然后进行分散培养。培养过程一般在中进行,
整个过程必须保证细胞处于的环境中,所需营养物质要与体内基本相同。
(3)通过
一并吸出。
的重组胚胎,需要用物理或化学的方法进行激活,使其完成
(5)将重组胚胎发育到一定阶段,移植到同种的、相同的其他雌性动物体内,使之继续发育,
最后形成克隆羊。移入的胚胎能够存活,是因为代孕子宫并不会对其发生
ᆿス/ロノ/トッシンロセ生十。イシントロコルニルロႹ6ック [ト/ロ, た凶ノプ Vナ」ロハハムバスス工,凹凹配吻

在子宫内建立正常的生理和组织联系。

(1)胚胎干细胞体外培养诱导分化可形成大量皮肤干细胞,其原因是	15.据报道,中山大学中山眼科中心主任任葛坚领导的研究小组将猴子的皮肤干细胞注射到小里,再将囊胚移入代孕鼠体内发育形成猴鼠嵌合体——猴鼠,用于角膜等器官的移植研究。请l问题:	
平细胞的这种功能特性,当我们身体的某一类细胞功能出现异常或退化时,利用胚胎干细胞的治疗思路是 (2)囊胚期时,胚胎细胞开始出现分化,有些细胞个体较小,将来只能发育成胎膜和胎盘,这类细胞称为 。因此,应将猴子的皮肤干细胞注射到小鼠囊胚的	(1)胚胎干细胞体外培养诱导分化可形成大量皮肤干细胞,其原因是	居胚胎
(3)将囊胚移入代孕鼠体内属于	(2)囊胚期时,胚胎细胞开始出现分化,有些细胞个体较小,将来只能发育成胎膜和胎盘,这类细胞	!称为
在畜牧生产中采用这种技术的优势主要是	。因此,应将猴子的皮肤干细胞注射到小鼠囊胚的。部位,以伴随其发育成某	柒种组织。
在畜牧生产中采用这种技术的优势主要是	(3)将囊胚移入代孕鼠体内属于 技术, 此技术对代孕受体的要求是	0
高胚胎的利用率,可采用		
16. 现有一生活污水净化处理系统,处理流程为"厌氧沉淀池 → 曝光池 → 兼氧池 → 植物池",其中植物池中生活着水生植物、昆虫、鱼类、蛙类等生物。污水经净化处理后,可用于浇灌绿地。回答问题: (1) 污水流经厌氧沉淀池、曝气池和兼氧池后得到初步净化。在这个过程中,微生物通过		70,72 > 3,72
中生活着水生植物、昆虫、鱼类、蛙类等生物。污水经净化处理后,可用于浇灌绿地。回答问题: (1) 污水流经厌氧沉淀池、曝气池和兼氧池后得到初步净化。在这个过程中,微生物通过		
(1) 污水流经厌氧沉淀池、曝气池和兼氧池后得到初步净化。在这个过程中,微生物通过		
吸将有机物分解。 (2) 植物池中,水生植物、昆虫、鱼类、蛙类和底泥中的微生物共同组成了		
(2) 植物池中,水生植物、昆虫、鱼类、蛙类和底泥中的微生物共同组成了(生态系统、群落、种群)。在植物池的食物网中,植物位于第		呼
落、种群)。在植物池的食物网中,植物位于第营养级。植物池中所有蛙类获得的能量最终来源于		
源于	·	
(3) 生态工程所遵循的基本原理有整体性、协调与平衡、		能量最终来
(4) 一般来说,生态工程的主要任务是对		
式进行改善,并提高生态系统的生产力。 17.阅读如下材料: 材料甲: 科学家将牛生长激素基因导入小鼠受精卵中,得到了体型巨大的"超级小鼠"; 科学家采用农杆菌转化法培育出转基因烟草。 材料乙: T4 溶菌酶在温度较高时易失去活性,科学家对编码 T4 溶菌酶的基因进行改造,使其表达的 T4 溶菌酶的第 3 位的异亮氨酸变为半胱氨酸,在该半胱氨酸与第 97 位的半胱氨酸之间形成了一个二硫键,提高了 T4 溶菌酶的耐热性。 材料丙: 兔甲和兔乙是同一物种的两个雌性个体,科学家将兔甲受精卵发育成的胚胎移植到兔乙的体内,成功产出兔甲的后代,证实了同一物种的胚胎可在不同个体的体内发育。 回答下列问题: (1) 材料甲属于基因工程的范畴。将基因表达载体导入小鼠的受精卵中常用法。构建基因表达载体常用的工具酶有		
17.阅读如下材料: 材料甲: 科学家将牛生长激素基因导入小鼠受精卵中,得到了体型巨大的"超级小鼠"; 科学家采用农杆菌转化法培育出转基因烟草。 材料乙: T4 溶菌酶在温 <mark>度较</mark> 高时易失去活性,科学家对编码 T4 溶菌酶的基因进行改造,使其表达的 T4 溶菌酶的第 3 位的异亮氨酸变为半胱氨酸,在该半胱氨酸与第 97 位的半胱氨酸之间形成了一个二硫键,提高了 T4 溶菌酶的耐热性。 材料丙: 兔甲和兔乙是同一物种的两个雌性个体,科学家将兔甲受精卵发育成的胚胎移植到兔乙的体内,成功产出兔甲的后代,证实了同一物种的胚胎可在不同个体的体内发育。回答下列问题: (1) 材料甲属于基因工程的范畴。将基因表达载体导入小鼠的受精卵中常用法。构建基因表达载体常用的工具酶有		坏的生产方
材料甲:科学家将牛生长激素基因导入小鼠受精卵中,得到了体型巨大的"超级小鼠";科学家采用农杆菌转化法培育出转基因烟草。 材料乙:T4 溶菌酶在温度较高时易失去活性,科学家对编码 T4 溶菌酶的基因进行改造,使其表达的 T4 溶菌酶的第 3 位的异亮氨酸变为半胱氨酸,在该半胱氨酸与第 97 位的半胱氨酸之间形成了一个二硫键,提高了 T4 溶菌酶的耐热性。 材料丙:兔甲和兔乙是同一物种的两个雌性个体,科学家将兔甲受精卵发育成的胚胎移植到兔乙的体内,成功产出兔甲的后代,证实了同一物种的胚胎可在不同个体的体内发育。回答下列问题: (1)材料甲属于基因工程的范畴。将基因表达载体导入小鼠的受精卵中常用法。构建基因表达载体常用的工具酶有	式进行改善,并提高生态系统的生产力。	
材料甲:科学家将牛生长激素基因导入小鼠受精卵中,得到了体型巨大的"超级小鼠";科学家采用农杆菌转化法培育出转基因烟草。 材料乙:T4 溶菌酶在温度较高时易失去活性,科学家对编码 T4 溶菌酶的基因进行改造,使其表达的 T4 溶菌酶的第 3 位的异亮氨酸变为半胱氨酸,在该半胱氨酸与第 97 位的半胱氨酸之间形成了一个二硫键,提高了 T4 溶菌酶的耐热性。 材料丙:兔甲和兔乙是同一物种的两个雌性个体,科学家将兔甲受精卵发育成的胚胎移植到兔乙的体内,成功产出兔甲的后代,证实了同一物种的胚胎可在不同个体的体内发育。回答下列问题: (1)材料甲属于基因工程的范畴。将基因表达载体导入小鼠的受精卵中常用法。构建基因表达载体常用的工具酶有	17 阅读加工****	
转化法培育出转基因烟草。 材料乙: T4 溶菌酶在温 <mark>度</mark> 较高时易失去活性,科学家对编码 T4 溶菌酶的基因进行改造,使其表达的 T4 溶菌酶的第 3 位的异亮氨酸变为半胱氨酸,在该半胱氨酸与第 97 位的半胱氨酸之间形成了一个二硫键,提高了 T4 溶菌酶的耐热性。 材料丙: 兔甲和兔乙是同一物种的两个雌性个体,科学家将兔甲受精卵发育成的胚胎移植到兔乙的体内,成功产出兔甲的后代,证实了同一物种的胚胎可在不同个体的体内发育。回答下列问题: (1) 材料甲属于基因工程的范畴。将基因表达载体导入小鼠的受精卵中常用法。构建基因表达载体常用的工具酶有		双用农红荷
材料乙: T4 溶菌酶在温 <mark>度</mark> 较高时易失去活性,科学家对编码 T4 溶菌酶的基因进行改造,使其表达的 T4 溶菌酶的第 3 位的异亮氨酸变为半胱氨酸,在该半胱氨酸与第 <mark>97</mark> 位的半胱氨酸之间形成了一个二硫键,提高了 T4 溶菌酶的耐热性。 材料丙: 兔甲和兔乙是同一物种的两个雌性个体,科学家将兔甲 <mark>受</mark> 精卵发育成的胚胎移植到兔乙的体内,成功产出兔甲的后代,证实了同一物种的胚胎可在不同个体的体内发育。回答下列问题: (1) 材料甲属于基因工程的范畴。将基因表达载体导入小鼠的受精卵中常用法。构建基因表达载体常用的工具酶有		不用 仅们图
使其表达的 T4 溶菌酶的第 3 位的异亮氨酸变为半胱氨酸,在该半胱氨酸与第 97 位的半胱氨酸之间形成了一个二硫键,提高了 T4 溶菌酶的耐热性。 材料丙: 兔甲和兔乙是同一物种的两个雌性个体,科学家将兔甲受精卵发育成的胚胎移植到兔乙的体内,成功产出兔甲的后代,证实了同一物种的胚胎可在不同个体的体内发育。回答下列问题: (1) 材料甲属于基因工程的范畴。将基因表达载体导入小鼠的受精卵中常用法。构建基因表达载体常用的工具酶有		
了一个二硫键,提高了 T4 溶菌酶的耐热性。 材料丙 : 兔甲和兔乙是同一物种的两个雌性个体,科学家将兔甲 <mark>受</mark> 精卵发育成的胚胎移植到兔乙的体内,成功产出兔甲的后代,证实了同一物种的胚胎可在不同个体的体内发育。 回答下列问题: (1) 材料甲属于基因工程的范畴。将基因表达载体导入小鼠的受精卵中常用法。构建基因表达载体常用的工具酶有	and the control of th	殿 之间形成
材料丙:兔甲和兔乙是同一物种的两个雌性个体,科学家将兔甲 <mark>受</mark> 精卵发育成的胚胎移植到兔乙的体内,成功产出兔甲的后代,证实了同一物种的胚胎可在不同个体的体内发育。回答下列问题: (1) 材料甲属于基因工程的范畴。将基因表达载体导入小鼠的受精卵中常用法。构建基因表达载体常用的工具酶有和。在培育转基因植物时常用农杆菌转化法,农杆菌的作用是。 (2) 材料乙属于工程范畴。该工程是指以分子生物学相关理论为基础,通过基因修饰或基因合成,对	and the control of th	政之间加加
成功产出兔甲的后代,证实了同一物种的胚胎可在不同个体的体 <mark>内</mark> 发育。 回答下列问题: (1)材料甲属于基因工程的范畴。将基因表达载体导入小鼠的受精卵中常用法。构建 基因表达载体常用的工具酶有和。在培育转基因植物时常用农杆菌 转化法,农杆菌的作用是。 (2)材料乙属于工程范畴。该工程是指以分子生物学相关理论为基础,通过基因修饰或基 因合成,对		フ 的 休 内
回答下列问题: (1) 材料甲属于基因工程的范畴。将基因表达载体导入小鼠的受精卵中常用法。构建基因表达载体常用的工具酶有和。在培育转基因植物时常用农杆菌转化法,农杆菌的作用是。 (2) 材料乙属于工程范畴。该工程是指以分子生物学相关理论为基础,通过基因修饰或基因合成,对		∠ 113144131,
(1) 材料甲属于基因工程的范畴。将基因表达载体导入小鼠的受精卵中常用法。构建基因表达载体常用的工具酶有和。在培育转基因植物时常用农杆菌转化法,农杆菌的作用是。 (2) 材料乙属于工程范畴。该工程是指以分子生物学相关理论为基础,通过基因修饰或基因合成,对		
基因表达载体常用的工具酶有和。在培育转基因植物时常用农杆菌 转化法,农杆菌的作用是。 (2)材料乙属于工程范畴。该工程是指以分子生物学相关理论为基础,通过基因修饰或基 因合成,对进行改造,或制造制造一种的技术。在该实例中,引起 T4 溶		构建
转化法,农杆菌的作用是。 (2)材料乙属于工程范畴。该工程是指以分子生物学相关理论为基础,通过基因修饰或基 因合成,对进行改造,或制造制造一种的技术。在该实例中,引起 T4 溶		
(2)材料乙属于工程范畴。该工程是指以分子生物学相关理论为基础,通过基因修饰或基因合成,对的技术。在该实例中,引起 T4 溶		市の外口圏
因合成,对		——。 因修佑武其
菌酶空间结构改变的原因是组成该酶肽链的	菌酶空间结构改变的原因是组成该酶肽链的	JINE 17 /I
(4)材料丙属于胚胎工程的范畴。胚胎移植是指将获得的早期胚胎移植到种的,生理状况		生理状况
相同的另一个雌性动物体内,使之继续发育成新个体的技术。在资料丙的实例中,兔甲称为		
· · · · · · · · · · · · · · · · · · ·	兔乙称为	r+`,

基因工程+胚胎工程

坐 囚工性·肛阴工性
1.(15 分)逆转录病毒的遗传物质 RNA 能逆转录生成 DNA,并进一步整合到宿主细胞的某条染色体
中。用逆转录病毒作为运载体可用于基因治疗和培育转基因动物等。
(1)病毒在无生命的培养基上不能生长,必须依靠提供酶、ATP、代谢原料、核糖体等
物质基础和结构基础,才能繁殖。逆转录病毒较 T2 噬菌体更容易变异,从分子水平看,是由于
0
(2) 基因治疗时,将目的基因与运载体结合的"针线"是。将带有目的基因的受体细胞转
入患者体内,患者症状会有明显缓解,这表明。
(3) 若将目的基因转入胚胎干细胞,再经过一系列过程可
获得稳定遗传的转基因动物。
①右图为普通动物早期胚胎发育各时期示意图,将带有目的
基因的胚胎干细胞注射到图中的(填字母)中,胚胎发育
成嵌合型个体。如果转化的胚胎干细胞正好发育成细胞,则
嵌合型个体生下的幼体就极有可能带有目的基因。 A B C
②从胚胎干细胞转化到获得目的基因纯合子,配合基因检测,最少需要代。试简述育种的基本过
程:。
细胞工程+基因工程
2.(15 分)目前治疗白血病的主要方法是骨髓移植,但骨髓配型的成功率较低。随着基因工程的日渐
兴起,迎来了基因治疗白血病的曙光。请回答下列相关问题:
(1)骨髓移植必须进行骨髓配型实验,原因是。目前,临床上通常通过使用
来提高造血干细胞移植的成活率。
(2)造血干细胞移植之前先要进行培养。动物细胞培养一般分为和
养的环境条件,除需要适宜的温度、无菌无毒等以外,还需要,其中 CO₂的作用是;
对子所用的培养液,应定期更换,其目的是。
(3)所使用的正常细胞,通常为
(4) 哺乳动物的 ES 细胞是从中分离出来的一类细胞, ES 细胞可以在体外被诱导
形成新的组织细胞,这使科学家进一步培育人造骨髓成为可能。
胚胎工程
3.(15分)加拿大科学家通过转基因山羊已经生产出重组的人类丁酰胆碱酯酶,该酶可用于对抗生化武器。
下图是转基因山羊的培育过程示意图,请据图回答问题(山羊为二倍体):
[国龙校圣四山十四·柏月及往外总国, 南加国国古内区 (山十2)—旧体 / .
雌性山羊 雄性山羊
<u>ымғш 3 Ф</u>
目的基因
(b)
基因表 ② · 受精卵 · 早期胚胎 · 代孕雌羊子宫 · 转基因山羊
<u> </u>
(1)在上述操作中,过程①需要的工具酶是。
(2) 胚胎工程是指对动物的早期胚胎或
涉及的胚胎工程技术是。
(3) 从雌性山羊卵巢内获取的卵母细胞需要培养到期才能完成受精作用。为了获得更多的卵母
细胞,往往需要向雌性山羊体内注入激素。受精过程中防止多精入卵的屏障是

- (4) 要同时获得多只与此转基因山羊遗传物质相同的小羊,可对囊胚进行
- (5) 下列不属于生物武器特点的是 (选一项)。
- ①致病力强,传染性大 ②污染面积大,危害时间长
- ③有潜伏期,传染途径多
- ④造价高,技术难度大

生态工程

4.(15分)某水厂建设了水源生态湿地。下面为人工湿地群落组成简图、请据图回答问题。

(1) 输入该人工湿地的总能量是 ___和水体中有机物的化学能。图中真菌属于该生态系 统的什么成分? _____。真菌的作用是

- (2) 湿地中芦苇、绿藻和黑藻等植物的分层分布、体现了群落的 结构。在人工干预下、湿 地物种逐渐丰富,该群落演替类型属于
- (3) 建设人工湿地、应遵循:整体性原理、 和系统学与工程学等生态工程的基本原理。
- (4) 某化工厂违规排放大量污水、引起部分浮游动物死亡、进一步加重了污染、进而导致更多生物死亡、 该过程属于 (填"负反馈"、"正反馈")调节。
- (5)种植芦苇、茭白等挺水植物,有利于减少出水口处水中的浮游藻类,原因是___

【组卷用】

40. (15分) 【生物一现代生物科技专题】

将苏云金杆菌 Bt 蛋白的基因导入棉花细胞中,可获得抗棉铃虫的转基因棉,其过程如下图所示(注: 农杆菌中 Ti 质拉上只有 T一DNA 片段能转移到植物细胞中)。

- (质粒中"Bt"代表"Bt基因","KmR"代表"卡那霉素抗性基因") i 质粒进行酶切, 得的重组 Ti 质粒中,Bt 基因应插入到 Ti 质粒的 DNA 上。
 - (2) 过程②应使用选择培养基的目的是为了_
- (3) 过程③中将棉花细胞与农杆菌混合后共同培养,旨在让 T-DNA 进入棉花细胞,并且整合到 ___上,除尽农杆菌后,还须转接到含卡那霉素的培养基上继续培养,目的是__
- (4) 过程③④⑤运用了细胞工程中的_____术,该技术的理论依据是____。
- (5) 检验转基因棉的抗虫性状,常用方法是___

1. 胚胎工程是一项综合性的动物繁育技术,可在畜牧业和制药业等领域发挥重要作用。下图是通过胚胎工程培育试管牛的过程。

- (1) 从良种母牛采集的卵母细胞,都需要进行体外培养,其目的是____; 从良种公牛采集的精子需____ 后才能进行受精作用。
 - (2) 在体外培养受精卵时,除了给予一定量的 O2以维持细胞呼吸外,还需要提供____气体以维持___。
 - (3) 图中过程 A 称为____, 它在胚胎工程中的意义在于____。
- (4) 研制能够产生人类白细胞介素的牛乳腺生物反应器,需将目的的基因导入牛受精卵,最常用的导入方法是____; 获得转基因母牛后,如果____即说明目的基因已经表达。
- 2.人类疾病的转基因动物模型常用于致病机理的探讨及治疗药物的筛选。利用正常大鼠制备遗传性高血压转基因模型大鼠的流程如图所示。

- (1) 卵母细胞除从活体输卵管中采集外,还可从已处死的雌鼠 中获取。
- (2) 图中的高血压相关基因作为______,质粒作为______,二者需用_______切割后连接成重组载体,该过程与质粒上含有_______有关。
- (3) 子代大鼠如果______和______,即可分别在分子水平和个体水平上说明高血压相关基因已成功表达,然后可用其建立高血压转基因动物模型。
- (4) 在上述转基因大鼠的培育过程中,所用到的主要胚胎工程技术是_____、早期胚胎培养和胚胎移植。
- 3.毛角蛋白II型中间丝(KIFII)基因与绒山羊的羊绒质量密切相关。获得转 KIFII基因的高绒质绒山羊的简单流程如图。

- (1) 过程①中最常用的运载工具是_____,所需要的酶是限制酶和_____。
- (2) 在过程②中,用_____处理将皮肤组织块分散成单个成纤维细胞。在培养过程中,将成纤维细胞置于 5%CO₂ 的气体环境中,CO₂ 的作用是 。

(3) 在过程③中,用处理以获取更多的卵(母)细胞。成熟卵(母)细胞在核移植前需要进行
处理。 (4)从重组细胞到早期胚胎过程中所用的胚胎工程技术是。在胚胎移植前,通过技术可易得较多胚胎。
4.科学家通过诱导黑鼠体细胞去分化获得诱导性多能干细胞(iPS),继而利用 iPS 细胞培育出与黑鼠遗传特性相同的克隆鼠,流程如下: 诱导因子
黑鼠 体细胞 iPS细胞
特殊处理
(1)从黑鼠体内获得体细胞后,对其进行的初次培养称为
(2) 图中 2-细胞胚胎可用人工方法从灰鼠输卵管内获得,该过程称为; 也可从灰鼠体
内取出卵子,通过后进行早期胚胎培养获得。 (3)图中重组囊胚通过技术移入白鼠子宫内继续发育,暂不移入的胚胎可使用
方法保存。 (4) 小鼠胚胎干细胞(ES)可由囊胚的
全能性,有望在对人类 iPS 细胞进行定向后用于疾病的细胞治疗。
5.人组织纤溶酶原激活物(htPA)是一种重要的药用蛋白,可在转 htPA 基因母羊的羊乳中获得。流程如下:
htPA基因 面组表达载体
精子 受精卵 早期胚胎 代孕母羊 转加PA基因母羊 羊乳
(1) htPA 基因与载体用切割后,通过 DNA 连接酶连接,以构建重组表达载体。检测目的基因是
否已插入受体细胞 DNA,可采用技术。
(2) 为获取更多的卵(母)细胞,要对供体母羊注射促性腺激素,使其。采集的精子需要经过
,才具备受精能力。
(3)将重组表达载体导入受精卵常用的方法是。为了获得母羊,移植前需对已成功转入目的基因
的胚胎进行。利用胚胎分割和胚胎移植技术可获得多个转基因个体,这体现了早期胚胎细胞的
o
(4)若在转 ht-PA 基因母羊的羊乳中检测到,说明目的基因成功表达。
4. 日前、特子栽体注逐渐成为是具体或力的制各转其因动物方注之一。这方注以特子作为外源其因的栽体

使精子携带外源基因进入卵细胞受精。下图表示利用该方法制备转基因鼠的基本流程。请据图回答:

- (1)人的血清白蛋白基因可以从______获取,也可根据已知的基因脱氧核苷酸序列进行化学合成。图中重组细胞______(①/②)发生了基因的重组。
- (2) 哺乳动物的胚胎的培养液成分较复杂,除一些无机盐和有机盐类外,还需要添加维生素、激素、氨基酸、核苷酸以及______等物质。

- 8.以下是科学家采用不同方法培育良种牛的过程,请据图回答下列有关问题:

采集卵母细胞

人体血清白蛋白基因 基因表达载体

			7,	-		
(1) 图	日中操作过程 A 和	B 分别是	指和	.如果要获	得遗传物质完全相同	的后代,
需要在	B 过程前进行		o			
(2) ②)过程使用的是	酶,	通过②过程获得的目的基	基因	(填"能"或"不能")	在不同物
种间进	ł 行基因交流。					
(3) ③	表示	技术,方法	去C是。			
(4) (4	表示基因表达载。	体的构建,	一个基因表达载体中标	记基因的作用	≣,	在④过程
之前,	需要用		对质粒和目的基因进行排	操作。		
(5) 在	E目的基因的检测-	与鉴定过程	呈中,检测目的基因是否	发挥功能作用的	勺第一步是	
			0			

9. 动物乳腺生物反应器是一项利用转基因动物的乳腺代替传统的生物发酵,进行大规模生产可供治疗人类疾病或用于保健的活性蛋白质的现代生物技术。目前科学家已在牛和羊等动物的乳腺生物反应器中表达出了抗凝血酶、血清白蛋白、生长激素等重要药品。大致过程如图所示:

- (1)在过程③中需要用到的工具酶有___。要使人的药用蛋白基因在奶牛乳腺细胞 中特异性表达,完整的基因表达载体要包括目的基因、____、标记基因等部分。
 (2)要实现超数排卵,应在性成熟雌牛发情周期的某一阶段用___处理。通过①采 集的精子不能直接使成熟的卵子受精,原因是____。
 (3)将获得的重组细胞培养成早期胚胎后,移植到经过___处理的受体母牛子宫内。 因为我们对细胞所需的营养条件还没有完全搞清楚,所以,在早期胚胎的培养基中,往往还需要添加___。
- (4)若要一次获得多只完全相同的转基因牛,应采用胚胎分割移植技术。在对囊胚阶段的胚胎进行分割时,

应注意将_____均等分割。胚胎分割移植后发育成小牛,这些小牛的基因型_ (填"相同"或"不同")。

10 .我国科学家通过 Dazl 基因的异位表达, 最终在体外将小鼠胚胎干细胞同时诱导出了游动的精子和卵子。请回答:

(1)胚胎干细胞可来源于囊胚期的或胎儿的原始性腺。其在体外培养能不断增殖、自我更新,在功能上具有发育的。。
能工具有及有的。 (2)胚胎干细胞的培养和诱导等操作均需在严格的环境条件下操作,且配制的合成培养液通常需要
加入等一些天然成分,还要向培养液中通入一定量的氧气和二氧化碳,氧气参与细胞代谢,二氧化碳可以维持培养基的 。
(3)若将诱导的精子和卵子进行体外受精,对精子进行处理,卵子需要培育到期。判断
哺乳动物的卵子已经受精的重要标志是在卵黄膜和透明带的间隙可以观察到。 (4)将早期胚胎培养到时期进行分割、移植可获得多个同卵胚胎,胚胎分割时要将内细胞
团。
11.人乳头状瘤病毒(HPV)与宫颈癌的发生密切相关,抗 HPV 的单克隆抗体可以准确检测出 HPV,从而及
时监控宫颈癌的发生,以下是以 HPV 衣壳蛋白为抗原制备出单克隆抗体的过程,请据图回答:
小觀骨體瘤细胞
※●● (不能在HAT 将特定的抗
原注人小鼠
某些淋巴细胞 合,转到 杂交瘤 (产生特异抗体)HAT培养 细胞生长 洗育出产生
(J ^E 生特异抗体)HAT培养 细胞生长 选育出产生 基上培养 高特异性抗 体的细胞
(1)单克隆抗体制备过程中涉及的细胞工程技术有。
(2)若要分析杂交瘤细胞中染色体,可通过等过程制成装片,然后在显微镜下观察。杂交瘤细胞中
染色体数目与普通淋巴细胞相比具有的特点是, 在 HAT 培养基上存活的细胞可能包括(填下列序
号)。①无抗体分泌的细胞 ②抗 HPV 抗体的分泌细胞③其它无关抗体的分泌细胞
(3)对于抗体检测呈性的杂交克隆应尽早进行克隆化,克隆化的方法最常用的是有限稀释法,
即稀释细胞到 3~l0 个细胞/mL,每孔加入细胞稀释液mL(0.1 / 1 / 10),使每个孔内不多于一个细
胞,达到单克隆培养的目的。
(4)由上述过程生产出的单克隆抗体不能直接用于人体,理由是。
(5)科学家从某些无限增殖细胞的细胞质中分离出了无限增殖调控基因(prG),该基因能激发动物细胞分裂,
这为单克隆抗体的制备提供了更多的思路。除本题描述的一种制备单克隆抗体技术外,请再简要写出一种
制备单克隆抗体的思路。

12. 右图表示利用胚胎干细胞获得转基因小鼠的流程。请回答下列问题:

1)过程①所培养的细胞应取自囊胚的____。

(2)过程②中,提取的 DNA 在水浴加热的条件下需用____试剂鉴定,基因转入前需要先构建____,其目的

是。 (3)过程③称为。由于动物细胞生活的内环境还有一些成分尚未研究清楚,所以需要加入。 (4)过程④所使用的是技术,进行该操作前需要对受体雌鼠进行。 13.以下是科学家采用不同方法培育良种牛的过程,请据图回答下列有关问题:	
(4)过程②所使用的是技术,进行该操作前需要对受体雌鼠进行。 13.以下是科学家采用不同方法培育良种牛的过程,请据图回答下列有关问题:	
13.以下是科学家采用不同方法培育良种牛的过程,请据图回答下列有关问题: 【①	(3)过程③称为。由于动物细胞生活的内环境还有一些成分尚未研究清楚,所以需要加入。
(1)图中对良种奶牛进行处理时用到的激素是	(4)过程④所使用的是技术,进行该操作前需要对受体雌鼠进行。
(1)图中对良种奶牛进行处理时用到的激素是	13.以下是科学家采用不同方法培育良种牛的过程,请据图回答下列有关问题:
(1)图中对良种奶牛进行处理时用到的激素是	质粒 ①
(1)图中对良种奶牛进行处理时用到的激素是	
(1)图中对良种奶牛进行处理时用到的激素是	人血清白蛋白mRNA②
(1)图中对良种奶牛进行处理时用到的激素是	重
(1)图中对良种奶牛进行处理时用到的激素是	③ 纂(デナ 方法C
(1)图中对良种奶牛进行处理时用到的激素是	着 [、] ★ ★ ↓
(1)图中对良种奶牛进行处理时用到的激素是	良种激素
(1)图中对良种奶牛进行处理时用到的激素是	ψ
一	
一	
入动物细胞的方法,则方法 C 是。(2)图中采用的生物工程技术 A 和 B 分别是指和。 (3)为实现人血清白蛋白基因在转基因牛 E 的乳腺细胞中表达,应让该血清白蛋白基因和的启动子等调控组件结合在一起。如果转基因牛 E 的牛奶中含有,则说明血清蛋白基因在个体水平已表达成功。 14.右图为利用基因工程培育花卉的过程(字母代表相应的物质或结构,数字代表过程或方法)。请回答: (1)花卉基因工程可细分为花色基因工程、花形基因工程、香味基因工程等,不同的基因工程所需要获取的	(1)图中对良种奶牛进行处理时用到的激素是
(3)为实现人血清白蛋白基因在转基因牛 E 的乳腺细胞中表达,应让该血清白蛋白基因和	酶。③表示技术,④表示基因工程中过程;若方法 C 是最常用的将目的基因导
等调控组件结合在一起。如果转基因牛 E 的牛奶中含有	入动物细胞的方法,则方法 C 是。(2)图中采用的生物工程技术 A 和 B 分别是指和
等调控组件结合在一起。如果转基因牛 E 的牛奶中含有	0
等调控组件结合在一起。如果转基因牛 E 的牛奶中含有	
成功。 14.右图为利用基因工程培育花卉的过程(字母代表相应的物质或结构,数字代表过程或方法)。请回答: (1)花卉基因工程可细分为花色基因工程、花形基因工程、香味基因工程等,不同的基因工程所需要获取的	· · · · · · · · · · · · · · · · · · ·
14.右图为利用基因工程培育花卉的过程(字母代表相应的物质或结构,数字代表过程或方法)。请回答: (1)花卉基因工程可细分为花色基因工程、花形基因工程、香味基因工程等,不同的基因工程所需要获取的	
相应的物质或结构,数字代表过程或方法)。请回答: (1)花卉基因工程可细分为花色基因工程、花形基因工程、香味基因工程等,不同的基因工程所需要获取的	
(1)花卉基因工程可细分为花色基因工程、花形基因工程、香味基因工程等,不同的基因工程所需要获取的	
因工程等,不同的基因工程所需要获取的	
程需要的酶有。 (2)基因工程中最常用的运载体是,另外还有	(1)花卉基因工程可细分为花色基因工程、花形基因工程、香味基
(2)基因工程中最常用的运载体是,另外还有	因工程等,不同的基因工程所需要获取的不同,①过 供体细胞→a
、动植物病毒等。整合了目的基因的重组质粒,在组成上还含有启动子、终止子和。 (3)②过程常用的方法是,检测转基因生物的 DNA 上是否插入了目的基因,需要采用技术。	程需要的酶有。
上还含有启动子、终止子和。 (3)②过程常用的方法是,检测转基因生物的 DNA 上是否插入了目的基因,需要采用技术。	(2)基因工程中最常用的运载体是,另外还有 受体植物→外植体→b→转基因植 物
(3)②过程常用的方法是,检测转基因生物的 DNA 上是否插入了目的基因,需要采用技术。	
技术。	
(八队技体队人英体技物的形式已队苏取一百国目达如人细吃家目	
(4)外植体一般从受体植物的形成层处获取,原因是这部分细胞容易。由外植体培养为转基 因植株的③、④过程为,该过程的理论基础是。	
(5)人工种子就是以形成 b 之后得到的、不定芽、顶芽和腋芽等为材料,经过人工薄膜包装	

15 人类疾病的转基因动物模型常用于致病机理的探讨及治疗药物的筛选。利用正常大鼠制备遗传性高血压

转基因模型大鼠的流程如图所示(注:基因 B 为高血压相关基因)。

得到的种子。

- (3) 图示中甲为_____(时期) 的去核卵母细胞,⑤过程操作技术叫做_____
- (4) 要在分子水平上检测成功导入的 B 基因在大鼠中是否成功表达,可采用_____ 方法,如果高血压相关基因已在大鼠体内成功表达,可用其建立高血压转基因动物模型。
- 16.人类在预防与诊疗传染性疾病过程中,经常使用疫苗和抗体。已知某传染性疾病的病原体为 RNA 病毒、该病毒表面的 A 蛋白为主要抗原。疫苗生产和抗体制备的流程如下图:

- (2) 任将 X 进行 JI 天 培 乔 Z 则, 至 少 需 要 经 过 两 次 师 选, 方 法 分 别 是 用
- 17.下图表示利用细菌中抗虫基因获取抗虫玉米的部分过程(①~⑧表示操作流程, a、b 表示分子, c~e 表示培养过程, 其中过程 d 表示细菌与玉米细胞混合培养), 请回答:

- (1)上述操作中,获取目的基因的方法可能是_____。流程③用到的工具酶为____。
- (3)流程⑦中需要的培养基有______种,与动物细胞培养液显著不同的是该培养基中含有_____ 从而促进根芽的分化。
 - (4)图示过程中涉及到的生物技术有_____和____和___。
- 18.目前,精子载体法逐渐成为最具诱惑力的制备转基因动物方法之一,该方法以精子作为外源基因的载体,使精子携带外源基因进入卵细胞受精。下图表示利用该方法制备转基因鼠的基本流程。请据图回答:

(1)获取外源基因用到的工具酶是	,为了提高实	只验成功率,	通常利用	技术
获得大量标记的外源基因。	I □ → ++ /I . → ++ \/ 6ab		. — 	LARAH
(2)外源基因能够整合到精子的上是:	提局转化率的关键,	因为受精的	了只有精子的	才能进
入卵细胞中。	+++-	∓ 	7 \#/-	61 TI
(3)过程②采用的是技术,该过程((1)过程)②恶恶东。 ((2)以来与)签名((1)				
(4)过程③需要在(至少写出两点)等条件		动物细胞的	「常呂乔彻顶と	企 没有元王损凉
楚,因此在培养细胞时需在培养基中加入一定量 (5)为了获得更多的早期胚胎,常用		小皿 唐甘	+ u=	5.共俎亩夕的丽
每细胞。 每细胞。	版系列光冲近1」	处理,使只	·, /XII	以然待史多的外
30.供体器官的短缺和排斥反应是制约器官移植	的两个重要问题	加何利田和]化生物科学技	5术解冲汶—难
题成为热点问题。下图是治疗性克隆的过程图解	· · · · · · · · · · · · · · · · · · ·	אינה נייז ניין אא) VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIII	
(1)自体移植供受体为同一个体,最大的优	• 0			
点是	病人 取出→ 健康	细胞 分离	细胞核移植土	kt: sin 400 Nin
细胞工程技术的治疗性克隆, 重组细胞培养时	+	-44/16	W/18/18	1891=100
除了保证无菌、无毒环境,还需丰富的营养,	应 用 治		重	组细胞
通常会在培养液中加入 等天然成分。	治			$^{-}$
核移植的胚胎干细胞通常只分裂不分化,所以	71 7 #h #+ 4m mb	6- 20k Ja Ja	Len 11th	¥
需在培养液中加入诱导形成相应的组	各种血细胞、————————————————————————————————————	叫秋组织T pp经组织于	地肥、—— 细胞等	-(2)
织、器官后用于移植。	Transper 1	I AL ALL A	-H 110 - 21	
(2)重组细胞发育的过程中,细胞开始分化发	发生在①期	,若想获得	基因型完全相	同的两个胚胎,
采用技术,并且要注意对②	进行均等分	割。与试管	曾婴儿不同的	是该技术属于
(有性 / 无性)生殖。				
(3)目前临床器官移植多为同种异体移植,患	者需要长期服用		顶防排斥反应。	,为了扩大器官
供体的来源,人们尝试异种移植,试图利用基因	工程手段	抗原决定基	因,再利用克	克隆技术培育出
没有免疫排斥反应的猪器官,从而解决供体短缺	·问题。获得该转基[因猪的核心	步骤是	о
21.下图I、图II分别表示两项胚胎工程技术应用	图解,请据图回答 ⁻	下列问题:		
A羊细胞				
	5 b. 680 € [15.77	E V. a	1 12	
a G	b ** *** 代孕	² 母羊G →	-小羊X	
B羊细胞	•			
C羊 细胞 外源基	因			
图II:				
a (3)	b 8 ℃ 代孕	母羊H —	小羊 Y	
D羊精子 F				
(1) 图I中,细胞 E 的形成利用了	技术。图I与图I	I共同用到的	生物工程技术	ド有、
0				
(2) 图II中,首先要用孕激素对 C 羊和代码	P羊 H 进行	处理,然	后用促性腺激	y素处理 C 羊获
得大量卵子,选择处于期的卵母细胞与	获能精子在体外完成	戈受精得到	受精卵 F。	
(3)图II中,过程 d 的操作,在相应酶处理后	一般选用	_作为外源基	基因的载体,通	<u>i过</u>

法导入受精卵 F 中。外源基因是否导入受精卵并稳定遗传,可以采用_______方法对 b 过程产生的细胞 进行检测。 (4)细胞 E 和 F 一般在体外培养到期即可移植到代孕母体子宫内。小羊 X 和小羊 Y 比较, 小羊Y的显著特点是。 22 .

以下是科学家采用不同方法培育良种牛的过程,请据图回答下列有关问题:

(1)①过程必须用到酶,②过程使用的是酶。③表示技术。④表示基因工程中
(2)如果转基因牛 D 的牛奶中含有,则说明目的基因在个体水平已表达成功。
(3)图中对良种奶牛进行处理时用到的激素是。 A 和 B 分别是指技术和技术。
选修三现代生物科技专题强化练习 0523
1.研究人员将人工丝蛋白基因导入到蚕卵内,对蚕卵的基因改造获得成功。含有人工丝蛋白的蚕茧发出绿色 荧光,比正常的蚕茧更加轻薄。请回答下列问题: (1)进行转基因操作前,需用酶短时处理幼蚕组织,以便获得单个细胞。将人工丝蛋白基因导入到蚕卵体内,常用的方法是。
(2) 绿色荧光蛋白基因可以作为,用于鉴别和筛选蚕卵中是否含有人工丝蛋白基因。 (3) 采用 PCR 技术可验证干扰素基因是否已经导人家蚕细胞。PCR 技术利用的原理是,该 PCR 反应体系的主要成分应该包含扩增缓冲液(含 Mg²+)、水、4 种脱氧核苷酸、模板 DNA、和
。 (4) 生物反应器培养家香细胞时会产生接触抑制,所以培养时通常将多孔的中空薄壁小玻璃珠放入反应器中,这样可以通过来增加培养的细胞数量,也有利于空气交换。
2.某重点实验室课题研究组欲将一株野生杂草的抗病基因转给一双子叶农作物。该农作物含有高茎基因,植株过高容易倒伏,科学家欲通过基因工程操作抑制高茎基因的表达。结合所学知识分析下列问题: (1)课题研究组已经获得了抗性基因,欲体外大量扩增该目的基因需采用技术,该技术的基
本反应过程:目的基因受热后解链为单链,与单链相应互补序列结合,然后在
(2) 该基因工程操作的核心是。本研究中,欲将目的基因转入受体细胞,常采用法。 (3) 科学家将高茎基因的基因转入受体细胞,该基因产生的 mRNA 能够与高茎基因转录出的
mRNA 互补结合,形成,抑制高茎基因的表达。
3. 我国是受荒漠化危害最为严重的国家之一。近年来,保定地区频受沙尘暴之苦,保护生态环境,大力开展植树种草、治理水土流失、防止沙漠化等是当前的紧要任务。
(1)据研究,保定市沙尘暴的沙主要来自黄土高原和内蒙古高原,西部生态环境的改变首先要解决的非生物

因素是。
(2)在退耕还林、还草过程中,要注意树种、草种不要过于单一。这种做法所依据的主要生态工程原理是
(3)近年来大力推广的生态农业是一个自我维持的生态系统,其特点是保持和完善系统内的生态平衡,其设
计的原则是能量的和物质的,以求得最大的生产力和可持续发展。我国农民收集一切可
能的有机物质使其转变为有机肥料、保持土壤肥力的做法称为农业。
(4)某科研小组想利用基因工程技术培育抗旱植物用于治理水土流失。将抗旱基因导入植物细胞采用最多的
方法是 。要检测抗旱基因是否插入到受体细胞的 DNA 中,采用的是 技术。若检测结
果表明抗旱基因已经插入到受体细胞的 DNA 中,则培育的植株(填"一定"或"不一定")具有抗旱性状。
4. 胚胎工程技术包含的内容很丰富,如图是胚胎工程技术研究及应用的相关情况,其中.供体 1 是良种荷斯
坦高产奶牛,供体2是黄牛,请据图回答下列问题:
坦同广州十,供件 Z 走英十,明加图四音 [79]问题。
(优良
伏良 (供休 1) (供休 1) (供休 2) (供允 2) (
2
一个脸儿 _匆 应用
3 3 4 E
Ni用 4 受体 Mi
37 87 87
胚胎下 細胞 D ① ② ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
离培养 二分胚 小牛

- (1)应用 1 中获得的小牛,其遗传物质来源于_____,细胞 B 的名称是_____。
- (2)应用 2 中牛完成体内受精的场所是_______,刚种植在子宫内的胚胎其发育程度一般为_______, 胚胎种植后可以通过______从母体获得正常发育所需要的物质。这种试管牛的产生,采用的胚胎工程技术 有 (至少答出 2 种)等。
 - (3)应用 3 中细胞 C、D 分别取自____、____
- (4)应用 4 中通过______技术获得二分胚①和②,同时,可以通过取样______进行分子水平的早期胚胎性别鉴定;也可以在细胞水平上通过对_____的分析进行性别鉴定。
- 5.我省许多村镇建成了大型禽畜养殖基地,大量的禽畜粪便随意排放会严重污染环境。为合理利用粪便、净化环境,某地建设了以沼气池为核心的生产自净农业生态系统,如图 I 所示。请回答:

- (1) 图 1 中有 条食物链。无土栽培主要提高了 等元素的利用率。
- (2) 由图 2 可知沼气池中微生物的呼吸类型主要是_____。独立的沼气池_____(属于、不属于)生态系统,原因是____。
- (3) 建设了以沼气池为核心的生产自净农业生态系统的最大优点是____。
- (4) 若要调查农作物附近土壤中小动物的丰富度则一般采用_____方法进行采集、调查,丰富度的统计方法通常有______两种。
- (5) 在上述农业生态模式的启示下, 某城市环保部门提出利用下左图人工湿地对生活污水 (主要含有机物)进行净化处理:

好職做生物 无机碳(CO、无机盐等)	
A、请用箭头和文字补充虚线框中碳转化途径。	
R、为了防止爆发藻类水华,研究者在人工湿地中投放食浮游植物的鱼类和种植大型挺水植物,这些措施	利
用了那些种间关系?。挺水植物在该人工湿地中的作用是。	
6.欧洲哥廷根小型猪因其器官大小、结构和生理特点等方面与人的器官极为相似,已经成为国际上理想的	异
种器官移植研究材料.目前,欧洲哥廷根小型猪作为糖尿病、心脏病、帕金森氏症等重大人类疾病及新药	有
研究的动物模型,也得到了全世界医药管理机构的认可.	_
(1)异种器官移植到人体内会发生,从而使外源器官难以存活.为解决这一难题,必须设法除去图 Bub wikton	돈
用小型猪的基因,或抑制该基因的。	
(2)向小型猪转入外源基因时.其受体细胞通常是,导入方法是. (3)要对转基因成功的医用小型猪进行扩大培养,可采用的技术手段是.	
(4) 利用基因工程技术,可以获得乳汁中含有药用蛋白的动物,这种动物叫做 为了获得该动物,	
需将基因与基因的启动子等调控组件重组在一起,构建基因表达载体:	
7.请回答下列有关胚胎工程和生态工程的相关问题:	
(1) 若某对夫妇结婚后发现妻子双侧输卵管堵塞,无奈需进行试管婴儿技术,该技术包括和	
(2)2015 年 3 月,柴静的纪录片《穹顶之下》引发全国人民对雾霾的关注和讨论,而山西作为产煤大省	
生态环境破坏严重,请问矿区废弃地的生态恢复工程的关键在于,具体措施有,(举例说明, 答两种)利用了的生态工程原理是	1±
8.2013 年 7 月,中国试管婴儿之母——卢光琇教授与研究伙伴共同宣布全球首批经全基因组测序的	
PGD/PGS 试管婴儿在长沙诞生。新技术的突破意味着通过设计试管婴儿解决部分不孕不育问题的同时,	部
分肿瘤疾病、遗传性疾病的家族性遗传也将有望避免。	
(1)设计试管婴儿时为了提高受孕率,胚胎移植时多采用多胚胎移植,因此需要用处理促进母素	竎
排出更多的卵子。 	
(2)胚胎发育的卵裂期在(填"透明带"或"放射冠")内进行。受精卵经 72 小时体外培养发育成由 32 细胞左左的胚胎,则做	3
32 细胞左右的胚胎,叫做,可用于胚胎移植。 (3)为了某些需要,需对胚胎的性别进行鉴定。目前最有效最准确的方法是 SRY—PCR 法,操作的基本	〔
(3) 为了来三点要,需对起船的任劢进行金足。目前最有效最准确的万法足 3KT 「CK 法,採F的金本 序是:从被测的囊胚中取出几个(填"滋养层"或"内细胞团")细胞,提取 DNA;然后用位于 Y 染色	
上的性别决定基因(即 SRY 基因)的一段碱基作,以	
	•
(4)设计试管婴儿、克隆人等都是引起人们广泛争论的问题。我国不反对治疗性克隆,即可利用人体细	胞
核移植等技术治疗人类疾病,在去除卵母细胞的细胞核时,可用微型吸管把位于和之间的第一	极
体一并吸出。	
9.体外受精联合胚胎移植技术(IVF):又称试管婴儿,是指用人工方法让卵子和精子在体外受精并进行! 脚环吸发奇,然后移掠到风体之宫中发奇无深失的圆果,如今试管圆果只发展到第三份	早
期胚胎发育,然后移植到母体子宫内发育而诞生的婴儿。 如今试管婴儿已发展到第三代。 (1)1978 年英国专家 steptoe 和 Edowrds 定制了世界上第一个试管婴儿,被称为人类医学史上的奇迹	
(I) I770 中大国マ系 Steptoe 和 Cuowius 庄前」已介上第二十四目安儿,愀怀乃入关医子丈上的可妙	- 0

第一代试管婴儿是将精子和卵子在体外完成受精,待受精卵发育到早期胚胎,再移入子宫继续发育产生的

新个体。

①精子与卵细胞在体外受精成功的标志是 _

②当早期胚胎发育到
(2)1992 年由比利时 Palermo 医师及刘家恩博士等首次在人体成功应用卵浆内单精子注射(ICSI),使
试管婴儿技术的成功率得到很大的提高。国内医学界将 ICSI 称为第二代试管婴儿技术。
①该技术解决因男性因素导致的不育问题,如精子无顶体或顶体功能异常等。在精子形成过程中,细胞中
的
②由于不是每个卵子都能受精,不是每个受精卵都能发育成有活力的胚胎,因此要从女性体内获得多个卵
子,才能保证有可以移植的胚胎,这就需要利用
移入子宫的外来胚胎基本上不发生 反应,这为胚胎在受体内的存活提供了可能。 ③对多余的胚胎进行 处理,以备以后移植,可以增加 IVF 的累积妊娠率,并可大大节省费用。有
时当有某种原因不宜进行胚胎移植时,会用同样方法保存所有的胚胎。
(3) 第三代在人工助孕与显微操作的基础上, 胚胎着床前进行基因诊断, 使不孕不育夫妇不仅能喜得贵子
而且能优生优育。可通过观察胚胎细胞的
术来检测胚胎是否携带致病基因。
10.花椰菜易受黑腐病菌的危害而患黑腐病,野生黑芥具有黑腐病的抗性基因。用一定剂量的紫外线处理黑
芥原生质体可使其染色体片段化,并丧失再生能力。再利用此原生质体作为部分遗传物质的供体与完整的
花椰菜原生质体融合,以获得抗黑腐病杂种植株。流程如下图。
→ 紫外线
光照培养的抗病
型黑芥菌的幼叶
暗培养的易感型 ↓ 根细胞 相细胞
花椭菜的幼根 原生质体
据图回答下列问题:
(1) 过程①所需的酶是。
(2)过程②后,在显微镜下观察融合的活细胞中有供体的存在,这一特征可作为初步筛选杂和
细胞的标志。
(3)原生质体培养液中需要加入适宜浓度的甘露醇以保持一定的渗透压,其作用是。原生质体经过
(4) 若分析再生植株的染色体变异类型,应剪取再生植株和植株的根尖,通
过、、染色和制片等过程制成装片,然后在显微镜下观察比较染色体的形态和数目
(5) 采用特异性引物对花椰菜和黑芥基因组 DNA 进行 PCR 扩增,得到两亲本的差异性条带,可用于杂种
植株的鉴定。下图是用该引物对双亲及再生植株 1-4 进行 PCR 扩增的结果。据图判断,再生植株 1-4 中
一定是杂种植株的有。
花椰菜 1 2 3 4 黑芥 碱基对
300
(6)对杂种植株进行
一、基因工程与蛋白质工程
1. 根据基因工程的有关知识回答下列问题。
(1) 利用 PCR 技术扩增目的基因时,需要加入两种引物,原因是
成的 DNA 单链会与引物 II 结合,进行 DNA 的延伸,这样,DNA 聚合酶只能特异地
复制的 DNA 序列,一个 DNA 分子三轮复制以后,含有两种引物的 DNA 分子

有个。
(2) 基因工程的核心步骤是。其目的是使目的基因在受体细质
中,并可遗传给下代。
(3) 大肠杆菌作为受体细胞最常用的转化方法是: 首先用 Ca2+处理细胞, 使细胞处于一种能吸收周 围环
境中 DNA 分子的生理状态,这种细胞称为细胞。
(4)检测目的基因是否发挥功能作用的第一步是
2. 已知生物体内有一种蛋白质(P),该蛋白质是一种转运蛋白,由 305 个氨基酸组成。如果将 P 分子回
158 位的丝氨酸变成亮氨酸,240 位的谷氨酰胺变成苯丙氨酸,改变后的蛋白质(P1)不但保留 P 的I
能,而且具有了酶的催化活性。回答下列问题:
(1)从上述资料可知,若要改变蛋白质的功能,可以考虑对蛋白质的进行改造。
(2)以 P 基因序列为基础,获得 P1 基因的途径有修饰
基因或合成基因,所获得的基因表达时是遵循中心法则的,中心法则的全部内容包括
的复制,以及遗传信息在不同分子之间的流动,即:
(3)蛋白质工程也被称为第二代基因工程,其基本途径是从预期蛋白质功能出发,通过
和
纯化获得蛋白质,之后还需要对合成蛋白质的生物进行鉴定。
3. 植物甲具有极强的耐旱性,其耐旱性与某个基因有关。若从该植物中获得该耐旱基因,并将其转移到耐
旱性低的植物乙中,有可能提高后者的耐旱性。回答下列问题:
(1)理论上,基因组文库含有生物的基因;而 cDNA 文库中含有生物的基因。
(2)若要从植物甲中获得耐旱基因,可首先建立该植物的基因组文库,再从中出所需的耐旱基因
(3)将耐旱基因导入农杆菌,并通过农杆菌转化法将其导入植物的体细胞中,经过一系列的过程
得到再生植株。要确认该耐旱基因是否在再生植株中正确表达,应检测此再生植株中该基因
的,如果检测结果呈阳性,再在田间试验中检测植株的是否得到提高。
(4)假如用得到的二倍体转基因耐旱植株自交,子代中耐旱与不耐旱植株的数量比为 3:1 时,则可推测
该耐旱基因整合到了(填"同源染色体的一条上"或"同源染色体的两条上")。
4.人血清白蛋白(HSA)具有重要的医用价值,只能从血浆中制备。下图是以基因工程技术获取重组 HS
(rHSA)的两条途径。
TISA
基因
(1)为获取 HSA 基因,首先需采集人的血液,提取
PCR 技术扩增 HSA 基因。下图中箭头表示一条引物结合模板的位置及扩增方向,请用箭头在方框内 标出另一条引物的位置及扩增方向。
你正为一家引物的位直及扩培力问。 ————————————————————————————————————
HSA 基因
一(2)后动于通带共有物件及组织特并住,特定在水相起的细胞的特并农应(III)的栽体,需要通用的后 子是(填写字母,单选)。
A.人血细胞启动子 B.水稻胚乳细胞启动子
C.大肠杆菌启动子 D.农杆菌启动子
(3) 利用农杆菌转化水稻受体细胞的过程中,需添加酚类物质,其目的
————————————————————————————————————
择途径I获取 rHSA 的优势是
(5) 为证明 rHSA 具有医用价值,须确认 rHSA 与的生物学功能一致。
5. 嗜热土壤芽孢杆菌产生的β葡萄糖苷酶 (BgIB) 是一种耐热纤维素酶,为使其在工业生产中更好地应用
· · · · · · · · · · · · · · · · · · ·

开展了以下试验:

- 1. 利用大肠杆菌表达 BalB 酶
 - (1) PCR 扩增 bglB 基因时,选用_____基因组 DNA 作模板。
 - (2) 下图为质粒限制酶酶切图谱。*bgIB* 基因不含图中限制酶识别序列。为使 PCR 扩增的 *bgIB* 基因重组进入该质粒、扩增的 *bgIB* 基因两端需分别引入 和 不同限制酶的识别序列。

注: 图中限制酶的识别序列及切割形成的黏性末端均不相同。

- (3) 大肠杆菌不能降解纤维素,但转入上述建构好的表达载体后则获得了降解纤维素的能力,这是因为。。
- 6. 胰岛素 A、B 链分别表达法是生产胰岛素的方法之一。图 1 是该方法所用的基因表达载体,图 2 表示利用大肠杆菌作为工程菌生产人胰岛素的基本流程(融合蛋白 A、B 分别表示β半乳糖苷酶与胰岛素 A、B 链融合的蛋白)。请回答下列问题:

- (1) 图 1 基因表达载体中没有标注出来的基本结构是。
- (3) 构建基因表达载体时必需的工具酶有。
- (4) β半乳糖苷酶与胰岛素 A 链或 B 链融合表达,可将胰岛素肽链上蛋白酶的切割位点隐藏在内部,其意义在干。
- (5)溴化氰能切断肽链中甲硫氨酸羧基端的肽键,用溴化氰处理相应的融合蛋白能获得完整的 A 链或 B 链, 且β半乳糖苷酶被切成多个肽段,这是因为。
- 7.人组织纤溶酶原激活物(htPA)是一种重要的药用蛋白,可在转 htPA 基因母羊的羊乳中获得。流程如下:

- (4) 若在转 htPA 基因母羊的羊乳中检测到______,说明目的基因成功表达。

的_____。