МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №2

по дисциплине: Исследования операций тема: «Симплекс-метод в чистом виде»

Выполнил: ст. группы ПВ-223

Дмитриев Андрей

Проверил:

Вирченко Ю.П.

Цель работы: изучить симплекс-метод для решения задачи линейного программирования с использованием симплекс-таблиц. Получить навыки кодирования изученного алгоритма, отладки и тестирования соответствующих программ.

Задания для подготовки к работе

- 1. Выяснить: какой вид должна иметь задача ЛП, чтобы можно было применять симплекс-метод в чистом виде, а также как составляется первая симплекс-таблица?
- 2. Изучить алгоритм перехода от одной симплекс-таблицы к другой при решении задачи симплекс-методом.
- 3. Запрограммировать и отладить изученный алгоритм. В рамках подготовки тестовых данных решить вручную задачу в соответствии с вариантом.

Вариант 2:

$$z = 6x_2 + 8x_4 + 3x_6 \rightarrow \text{max};$$

$$\begin{cases} x_1 - 4x_2 - 5x_4 - 3x_6 = 9, \\ 7x_2 + 5x_4 + x_5 + 4x_6 = 26, \\ 3x_2 + x_3 - 5x_4 - 4x_6 = 10, \end{cases}$$

$$x_i \ge 0 \left(i = \overline{1,6} \right).$$

Задание 1: Выяснить: какой вид должна иметь задача ЛП, чтобы можно было применять симплекс-метод в чистом виде, а также как составляется первая симплекс-таблица?

Для того чтобы можно было применять симплекс-метод в чистом виде, задача линейного программирования (ЛП) должна быть линейной и включать ограничения в виде неравенств и/или равенств. Задача линейного программирования (ЛП) формулируется следующим образом:

- 1. Целевая Функция линейная функция, которую необходимо минимизировать или максимизировать.
- 2. Ограничения условия в виде линейных уравнений или неравенств.

Задание №2: Изучить алгоритм перехода от одной симплекс-таблицы к другой при решении задачи симплекс-методом.

Решение:

Алгоритм перехода от одной симплекс-таблицы к другой при решении задачи симплекс-методом включает следующие шаги:

- 1. Выбор ведущего столбца: Ведущий столбец выбирается на основе коэффициентов целевой функции. Выбирается столбец с наибольшим отрицательным коэффициентом. Если все коэффициенты неотрицательны, то текущее решение является оптимальным.
- 2. Выбор ведущей строки: Ведущая строка выбирается на основе минимального положительного отношения свободного члена к коэффициенту в ведущем столбце. Если все отношения отрицательны или равны нулю, то задача не имеет ограниченного решения.
- 3. Пересчёт таблицы: Пересчёт таблицы выполняется с использованием операций над строками для приведения ведущего элемента к единице и всех остальных элементов ведущего столбца к нулю.
- 4. Повторение процесса: Этот процесс повторяется, пока не произойдёт одно из следующих событий:
 - а. Все коэффициенты при переменных в строке целевой функции отрицательны или равны нулю.

- b. Все элементы в столбце свободных членов неотрицательные.
- с. В последней строке таблицы целевой функции появляются положительные значения.
- d. Нельзя повысить значение целевой функции путем движения к другой базисной точке.

Задание №3: Запрограммировать и отладить изученный алгоритм. В рамках подготовки тестовых данных решить вручную одну из следующих ниже задач.

Реализация

Блок схема (начало, инициализация):

Блок схема (конец, логика алгоритма):

Листинг кода:

Тестовые данные:

Результат работы программы:

```
C:\Users\dmitr\AppData\Local\Programs\Python\Py
T:/2kurs2sem/OperRes/lab2/main.py
Целевая функция: 6x_2 + 8x_4 + 3x_6 -> max
Решение: [0. 0. 0. 5.2 0. 0.]; Fmax= 41.6
Process finished with exit code 0
```

Решение вручную:

Для канонического заданного вида определим таблицу:

Базис	Свободный	Переменные						
	член	\mathbf{x}_1	\mathbf{X}_2	X 3	X 4	X5	X ₆	
\mathbf{x}_1	9	1	-4	0	-5	0	-3	
X5	26	0	7	0	5	1	4	
X 3	10	0	3	1	-5	0	-4	
F	0	0	6	0	8	0	3	

Инвертируем коэффициенты целевой функции и получим разрешающий элемент, определив новые свободные переменные.

Базис	Свободный	Переменные						
	член	\mathbf{x}_1	\mathbf{x}_2	X3	X4	X5	X ₆	
\mathbf{x}_1	-9/5	1	-4	0	-5	0	-3	
X5	26/5	0	7	0	5	1	4	
X ₃	-10/5	0	3	1	-5	0	-4	
F	0	0	-6	0	-8	0	-3	

Проведём замену х₅ на х₄

Базис	Свободный	Переменные						
	член	\mathbf{x}_1	\mathbf{x}_2	X 3	X4	X5	X ₆	
\mathbf{x}_1	35	1	3	0	0	1	1	
X ₄	26	0	7	0	5	1	4	
X 3	36	0	10	1	0	1	0	
F	0	0	-6	0	-8	0	-3	

Базис	Свободный	Переменные					
	член	\mathbf{x}_1	\mathbf{x}_2	X 3	X4	X5	X ₆
\mathbf{x}_1	35	1	3	0	0	1	1
X4	26/5	0	7/5	0	1	1/5	4/5
X ₃	36	0	10	1	0	1	0
F	0-26/5*(-8)	0	-6-7/5*(-8)	0	0	0	1-4/5*(-8)

Получили:

$$x_1 = 35 \ x_2 = 0 \ x_3 = 36 \ x_4 = 26/5 \ x_5 = 0 \ x_6 = 0$$

$$F_{max} = 8*26/5 = 208/5 = 41.6$$

Вывод: В ходе лабораторной работы изучили симплекс-метод для решения задачи линейного программирования с использованием симплекс-таблиц. Получили навыки кодирования изученного алгоритма, отладки и тестирования соответствующих программ, как признак — результаты ручного решения и решения программой совпадают.

GitHub: https://github.com/AnDreV133