

Theorem 10.6 The problem EDP has no polynomial-time $(m^{0.5-\varepsilon})$ -approximation for any $0 < \varepsilon < 1/4$ unless $\mathbf{P} = \mathbf{NP}$, where m is the number of edges in the input graph.

EDGE DISJOINT PATH

a list $L = ((s_1, t_1), (s_2, t_2), (s_3, t_3))$ of 3 pairs of vertices

a list $L = ((s_1, t_1), (s_2, t_2), (s_3, t_3))$ of 3 pairs of vertices

A path found between s_1, t_1

a list $L = ((s_1, t_1), (s_2, t_2), (s_3, t_3))$ of 3 pairs of vertices

Another disjoint path found between s_2, t_2

a list $L = ((s_1, t_1), (s_2, t_2), (s_3, t_3))$ of 3 pairs of vertices

No disjoint path found between s_3, t_3

NP-HARD GAP FOR EDP-2

Given a graph G = (V, E) and a list $L = ((u_1, v_1), (u_2, v_2))$ of 2 pairs of vertices,

There are two cases

Two disjoint paths exist. So, OPT = 2

One disjoint path exists. So, OPT = 1 or $OPT < 1 + \epsilon$

NP-hard gap $[1+\varepsilon,2]$

EDP-2 TO EDP-K REDUCTION

$$[1+\varepsilon,2]$$
 \longrightarrow $[1+\varepsilon,k]$

amplification

$$m = \frac{k(k-1)}{2}|E| + k^{2}$$

$$= \frac{k^{2}}{2}|E| - \frac{k}{2}|E| + k^{2}$$

$$\leq \left(\frac{|E|}{2} + 1\right)k^{2}$$

$$m = \frac{k(k-1)}{2}|E| + k^2$$

$$= \frac{k^2}{2}|E| - \frac{k}{2}|E| + k^2$$

$$\leq \left(\frac{|E|}{2} + 1\right)k^2$$

$$\leq k^{\frac{4\epsilon}{(1-2\epsilon)}} \cdot k^2$$

$$\leq k^{\frac{4\epsilon}{(1-2\epsilon)}} \cdot k^2$$

$$=k^{\frac{4\epsilon}{1-2\epsilon}+2}$$

$$=k^{\frac{4\epsilon+2-4\epsilon}{1-2\epsilon}}$$

$$=k^{\frac{2}{1-2\epsilon}}$$

$$\therefore m \le k^{\frac{2}{1-2\epsilon}}$$

$$k \ge m^{\frac{(1-2\epsilon)}{2}}$$

$$k \geq m^{\frac{1}{2} - \epsilon}$$

Theorem 10.7 The problem Max-3Sat does not have a polynomial-time $(8/7 - \varepsilon)$ -approximation for any $\varepsilon > 0$ unless $\mathbf{P} = \mathbf{NP}$.

A finite field having 2 values

MAXIMUM 3-LINEAR EQUATIONS (MAX-3LIN): Given a system of linear equations over (GF(2)), where each equation contains exactly three variables, find an assignment to variables that satisfies the maximum number of equations.

MAX-3LIN has an **NP**-hard gap of $[(0.5 + \varepsilon)m, (1 - \varepsilon)m]$

$$\begin{cases} X_1 \oplus X_2 \oplus X_3 &= 1 \\ X_4 \oplus X_2 \oplus X_3 &= 0 \\ X_1 \oplus X_2 \oplus X_5 &= 1 \\ \cdots \\ X_1 \oplus X_1 \oplus X_K &= 1 \end{cases}$$

Find an assignment that maximizes satisfied equations

MAX-3-LIN TO MAX-3-SAT REDUCTION

$$x_i \oplus x_j \oplus x_k = 1 = \overline{0}$$

0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$(\overline{x_i} \wedge \overline{x_j} \wedge \overline{x_k})$$

$$(\overline{x_i} \wedge x_j \wedge x_k)$$

$$(\overline{x_i} \wedge x_j \wedge x_k)$$

$$(x_i \wedge \overline{x_j} \wedge x_k)$$

$$(x_i \wedge x_j \wedge \overline{x_k})$$

$$x_i \oplus x_j \oplus x_k = 1 = \overline{0}$$

$$= \overline{(\overline{x_i} \wedge \overline{x_j} \wedge \overline{x_k}) \vee (\overline{x_i} \wedge x_j \wedge x_k)} \vee (x_i \wedge \overline{x_j} \wedge x_k) \vee (x_i \wedge \overline{x_k})$$

$$x_i \oplus x_j \oplus x_k = 1 = \overline{0}$$

$$= \overline{(\overline{x_i} \wedge \overline{x_j} \wedge \overline{x_k}) \vee (\overline{x_i} \wedge x_j \wedge x_k)} \vee (x_i \wedge \overline{x_j} \wedge x_k) \vee (x_i \wedge \overline{x_j} \wedge x_k) \vee (x_i \wedge \overline{x_k})$$

$$= \overline{(\overline{x_i} \wedge \overline{x_j} \wedge \overline{x_k})} \wedge \overline{(\overline{x_i} \wedge x_j \wedge x_k)} \wedge \overline{(x_i \wedge \overline{x_j} \wedge x_k)} \wedge \overline{(x_i \wedge \overline{x_j} \wedge x_k)}$$

$$x_i \oplus x_j \oplus x_k = 1 = \overline{0}$$

$$= \overline{(\overline{x_i} \wedge \overline{x_j} \wedge \overline{x_k}) \vee (\overline{x_i} \wedge x_j \wedge x_k)} \vee (x_i \wedge \overline{x_j} \wedge x_k) \vee (x_i \wedge \overline{x_k}) \vee (x_i \wedge \overline{x_k})$$

$$= \overline{(\overline{x_i} \wedge \overline{x_j} \wedge \overline{x_k})} \wedge \overline{(\overline{x_i} \wedge x_j \wedge x_k)} \wedge \overline{(x_i \wedge \overline{x_j} \wedge x_k)} \wedge \overline{(x_i \wedge \overline{x_j} \wedge x_k)}$$

$$= (x_i \vee x_j \vee x_k) \wedge (x_i \vee \overline{x_j} \vee \overline{x_k}) \wedge (\overline{x_i} \vee x_j \vee \overline{x_k}) \wedge (\overline{x_i} \vee \overline{x_j} \vee x_k)$$

CASE - 2

$$x_i \oplus x_j \oplus x_k = 0 = \overline{1}$$

0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$(\overline{x_i} \wedge \overline{x_j} \wedge x_k)$$

$$(\overline{x_i} \wedge x_j \wedge \overline{x_k})$$

$$(x_i \wedge \overline{x_j} \wedge \overline{x_k})$$

$$(x_i \wedge x_j \wedge x_k)$$

$$x_i \oplus x_j \oplus x_k = 0 = \overline{1}$$

$$= \overline{(\overline{x_i} \wedge \overline{x_j} \wedge x_k) \vee (\overline{x_i} \wedge x_j \wedge \overline{x_k}) \vee (x_i \wedge \overline{x_j} \wedge \overline{x_k}) \vee (x_i \wedge x_j \wedge x_k)}$$

$$x_i \oplus x_j \oplus x_k = 0 = \overline{1}$$

$$= \overline{(\overline{x_i} \wedge \overline{x_j} \wedge x_k) \vee (\overline{x_i} \wedge x_j \wedge \overline{x_k}) \vee (x_i \wedge \overline{x_j} \wedge \overline{x_k}) \vee (x_i \wedge x_j \wedge x_k)}$$

$$= \overline{(\overline{x_i} \wedge \overline{x_j} \wedge x_k)} \wedge \overline{(\overline{x_i} \wedge x_j \wedge \overline{x_k})} \wedge \overline{(x_i \wedge \overline{x_j} \wedge \overline{x_k})} \wedge \overline{(x_i \wedge \overline{x_j} \wedge \overline{x_k})}$$

$$x_i \oplus x_j \oplus x_k = 0 = \overline{1}$$

$$= \overline{(\overline{x_i} \wedge \overline{x_j} \wedge x_k) \vee (\overline{x_i} \wedge x_j \wedge \overline{x_k}) \vee (x_i \wedge \overline{x_j} \wedge \overline{x_k}) \vee (x_i \wedge x_j \wedge x_k)}$$

$$= \overline{(\overline{x_i} \wedge \overline{x_j} \wedge x_k)} \wedge \overline{(\overline{x_i} \wedge x_j \wedge \overline{x_k})} \wedge \overline{(x_i \wedge \overline{x_j} \wedge \overline{x_k})} \wedge \overline{(x_i \wedge x_j \wedge x_k)}$$

$$= (x_i \vee x_j \vee \overline{x_k}) \wedge (x_i \vee \overline{x_j} \vee x_k) \wedge (\overline{x_i} \vee x_j \vee x_k) \wedge (\overline{x_i} \vee \overline{x_j} \vee \overline{x_k})$$

- (i) If an assignment satisfies e (or, e'), then the same assignment satisfies four clauses in f_e (or, respectively, in $f_{e'}$).
- (ii) If an assignment does not satisfy e (or, e'), then the same assignment satisfies exactly three clauses in f_e (or, respectively, in $f_{e'}$).

Satisfied equations $\implies (0.5 + \epsilon)m$

Unsatisfied equations
$$\Longrightarrow \{1 - (0.5 + \epsilon)\}m$$

= $(0.5 - \epsilon)m$

MAX-3LIN has an **NP**-hard gap of $[(0.5 + \varepsilon)m, (1 - \varepsilon)m]$

MAX-3LIN has an **NP**-hard gap of $[(0.5 + \varepsilon)m, (1 - \varepsilon)m]$

Satisfied equations $\implies (0.5 + \epsilon)m$

Unsatisfied equations
$$\Longrightarrow \{1 - (0.5 + \epsilon)\}m$$

= $(0.5 - \epsilon)m$

For satisfied equations

No. of clauses satisfied
$$\implies 4 \times (0.5 + \epsilon)m$$

= $(2 + 4\epsilon)m$

For unsatisfied equations

No. of satisfied clauses
$$\implies 3 \times (0.5 - \epsilon)m$$

= $(1.5 - 3\epsilon)m$

MAX-3LIN has an **NP**-hard gap of $[(0.5 + \varepsilon)m, (1 - \varepsilon)m]$

Satisfied equations $\implies (0.5 + \epsilon)m$

Unsatisfied equations
$$\Longrightarrow \{1 - (0.5 + \epsilon)\}m$$

= $(0.5 - \epsilon)m$

For satisfied equations

No. of clauses satisfied
$$\implies 4 \times (0.5 + \epsilon)m$$

= $(2 + 4\epsilon)m$

For unsatisfied equations

No. of satisfied clauses
$$\implies 3 \times (0.5 - \epsilon)m$$

= $(1.5 - 3\epsilon)m$

 \therefore Total satisfied clauses $\implies (3.5 + \epsilon)m$

Satisfied equations $\implies (1 - \epsilon)m$

Unsatisfied equations $\implies \{1 - (1 - \epsilon)\}m$

For satisfied equations

No. of clauses satisfied
$$\implies 4 \times (1 - \epsilon)m$$

= $(4 - 4\epsilon)m$

For unsatisfied equations

No. of satisfied clauses
$$\implies 3 \times \epsilon m$$

= $3\epsilon m$

 \therefore Total satisfied clauses $\implies (4 - \epsilon)m$

MAX-3SAT has an NP-hard gap of $[(3.5+\varepsilon)m, (4-\varepsilon)m]$

Approximation ratio
$$\Rightarrow \frac{4 - \epsilon}{3.5 + \epsilon}$$

Approximation ratio
$$\Rightarrow \frac{4-\epsilon}{3.5+\epsilon}$$

$$> \frac{4-\epsilon-2.5\epsilon}{3.5+\epsilon-\epsilon}$$
 $a(b-c)$ $ab-a$

$$\frac{a}{b} > \frac{a - mc}{b - c}$$

$$a(b - c) > b(a - mc)$$

$$ab - ac > ab - bmc$$

$$-ac > -bmc$$

Approximation ratio
$$\Rightarrow \frac{4 - \epsilon}{3.5 + \epsilon}$$

 $> \frac{4 - \epsilon - 2.5\epsilon}{3.5 + \epsilon - \epsilon}$
 $= \frac{4 - 3.5\epsilon}{3.5}$
 $= \frac{4}{3.5} - \epsilon$
 $= \frac{8}{7} - \epsilon$
 $\therefore \text{Ratio} \Rightarrow \frac{8}{7} - \epsilon$

$$\frac{4-\varepsilon}{3.5+\varepsilon} \longrightarrow \frac{8}{7},$$

as $\varepsilon \to 0$. This completes the proof of this theorem.

Theorem 10.8 The problem MIN-VC does not have a polynomial-time $(7/6 - \varepsilon)$ -approximation for any $\varepsilon > 0$ unless $\mathbf{P} = \mathbf{NP}$.

MAX-3-LIN TO MIN-VC REDUCTION

$$\begin{cases} X_1 \oplus X_2 \oplus X_3 &= 1 \\ X_4 \oplus X_2 \oplus X_3 &= 0 \\ X_1 \oplus X_2 \oplus X_5 &= 1 \\ \cdots \\ X_1 \oplus X_1 \oplus X_K &= 1 \end{cases}$$

Find an assignment that maximizes satisfied equations

CASE-1

CASE - 2

$$X_{I} \oplus X_{J} \oplus X_{K} = 0$$

X_{I}	X_{J}	X_{K}	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	1
1	0	1	
1	1	0	
1	1	1	1

CASE-1

MAX-3LIN has an **NP**-hard gap of $[(0.5 + \varepsilon)m, (1 - \varepsilon)m]$

At least $(1 - \epsilon)m$ equations are satisfied.

 \implies At least $(1 - \epsilon)m$ labels of vertices are satisfied [one vertex per graph].

At least $(1 - \epsilon)m$ equations are satisfied.

 \implies At least $(1 - \epsilon)m$ labels of vertices are satisfied [one vertex per graph].

 \therefore Independent set size $\geq (1 - \epsilon)m$

Total vertices =4m

At least $(1 - \epsilon)m$ equations are satisfied.

 \implies At least $(1 - \epsilon)m$ labels of vertices are satisfied [one vertex per graph].

 \therefore Independent set size $\geq (1 - \epsilon)m$

Total vertices =4m

 \therefore Vertex cover size $\leq 4m - (1 - \epsilon)m = (3 + \epsilon)m$

fewer than $(0.5 + \epsilon)m$ equations are satisfied

 \Rightarrow fewer than $(0.5 + \epsilon)m$ labels of vertices are satisfied [one vertex per graph].

 \therefore Independent set size $< (0.5 + \epsilon)m$

Total vertices =4m

 \therefore Vertex cover size $> 4m - (0.5 + \epsilon)m = (3.5 - \epsilon)m$

MIN-VC has an **NP**-hard gap of $[(3+\varepsilon)m, (3.5-\varepsilon)m]$

Approximation ratio
$$\Rightarrow \frac{3.5 - \epsilon}{3 + \epsilon}$$

Approximation ratio
$$\Rightarrow \frac{3.5 - \epsilon}{3 + \epsilon}$$

$$> \frac{3.5 - \epsilon - 2\epsilon}{3 + \epsilon - \epsilon}$$

$$\frac{a}{b} > \frac{a - mc}{b - c}$$

$$-c) > b(a - mc)$$

$$-ac > ab - bmc$$

$$-ac > -bmc$$

Approximation ratio
$$\Rightarrow \frac{3.5 - \epsilon}{3 + \epsilon}$$

$$> \frac{3.5 - \epsilon - 2\epsilon}{3 + \epsilon - \epsilon}$$

$$=\frac{3.5-3\epsilon}{3}$$

$$=\frac{3.5}{3}-\epsilon$$

$$=\frac{7}{6}-\epsilon$$

$$\therefore \text{Ratio} \Rightarrow \frac{7}{6} - \epsilon$$

$$\frac{3.5 - \varepsilon}{3 + \varepsilon} \longrightarrow \frac{7}{6}$$

as $\varepsilon \to 0$.

