PQ selon orfo 2015
Télématicienne CFC
Télématicien CFC

Position 6
Technique des systèmes électriques, incl. bases technologiques

Dossier des expertes et experts

75	Minutes	14	Exercices	15	Pages	36	Points
----	---------	----	-----------	----	-------	----	--------

Moyens auxiliaires autorisés:

- Règle, équerre, chablon
- Recueil de formules sans exemple de calcul
- Calculatrice de poche indépendante du réseau (Tablettes, Smartphones etc. ne sont pas autorisés)

Cotation - Les critères suivants permettent l'obtention de la totalité des points:

- Les formules et les calculs doivent figurer dans la solution.
- Les résultats sont donnés avec leur unité.
- Le cheminement vers la solution doit être clair.
- Les réponses et leurs unités doivent être soulignées deux fois.
- Le nombre de points maximum est donné pour chaque exercice.
- Les réponses sont évaluées dans l'ordre.
- Les réponses données en plus ne sont pas évaluées.
- Le verso est à utiliser si la place manque. Par exercice, un commentaire adéquat tel que par exemple « voir la solution au dos » doit être noté.
- Toute erreur induite par une précédente erreur n'entraîne aucune déduction.

Barème

6	5,5	5	4,5	4	3,5	3	2,5	2	1,5	1
36.0-34.5	34.0-31.0	30.5-27.0	26.5-23.5	23.0-20.0	19.5-16.5	16.0-13.0	12.5-9.0	8.5-5.5	5.0-2.0	1.5-0.0

Délai d'attente:

Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1^{er} septembre 2023.

Créé par:

Groupe de travail PQ d'EIT.swiss pour la profession de télématicienne CFC / télématicien CFC

Editeur:

CSFO, département procédures de qualification, Berne

2

1. Couplage mixte N° d'objectif d'évaluation 3.2.2b

Calculez la valeur de R_x.

$$I_{R1} = 2 \cdot I_x = 2 \cdot 500 \cdot 10^{-3} A = 1 A$$

$$U_1 = R_1 \cdot I_1 = 75 \Omega \cdot 1 A = 75 V$$

$$U_x = \frac{U_{Tot} - U_1}{2} = \frac{105 \text{ V} - 75 \text{ V}}{2} = \underline{15 \text{ V}}$$

$$R_x = \frac{U_x}{I_x} = \frac{15 \text{ V}}{500 \cdot 10^{-3} \text{ A}} = \underline{\frac{30 \Omega}{}}$$

Indications pour experts : D'autres résolutions sont possibles.

2

2. Sonde de mesure automatique N° d'objectif d'évaluation 3.2.2b

Une sonde de mesure automatique de température et d'humidité basée sur le principe LoRaWAN est alimentée par une pile de 3 Volts de tension et de 2700 mAh de capacité. La capacité totale des piles est réduite de 25% en raison de la basse température ambiante.

99 % du temps, la sonde de mesure est au repos en mode « stand-by » avec une consommation de 0,1 mA.

Le reste du temps (1 %), la sonde de mesure communique avec une consommation de 5.02 mA.

Calculez la durée totale de fonctionnement de cet appareil lorsque celui-ci est équipé de piles neuves.

Le résultat doit être donné en jours entiers.

Q1 =
$$t \cdot I = 0.99 t \cdot I_1 + 0.01 t \cdot I_2$$

Q1 =
$$t \cdot (0.99 \cdot I_1 + 0.01 \cdot I_2)$$

$$t = \frac{Q1 \cdot \eta}{0.99 \cdot I_1 + 0.01 \cdot I_2} = \frac{2700 \cdot 10^{-3} \text{ Ah} \cdot 0.75}{0.99 \cdot 0.1 \cdot 10^{-3} \text{ A} + 0.01 \cdot 5.02 \cdot 10^{-3} \text{ A}}$$

1

1

3

3. Alimentation USB 3.0 N° d'objectif d'évaluation 3.3.2b

7 ports Standard USB 3.0

3 ports pour charge rapide $I_{max} = 2.4 \text{ A}$

La puissance totale maximale de sortie de ce hub est de 50 W.

 a) 5 ports standards sont déjà utilisés pour des périphériques dont la consommation est de 0,7 A chacun, de plus le client souhaite charger des tablettes portables sur les ports rapides.

Calculez le nombre maximal de tablettes que le client pourra mettre en charge rapide sous 2,4 A sans que le courant des ports de charge rapide ne soit limité.

Puissance totale des cinq périphériques : P = n * U * I = 5 * 5 V * 0.7 A = 17,5 WPuissance par tablette = P = U * I = 2.4 A * 5 V = 12 W

Nombre de tablettes =
$$\frac{50 - 17.5 \text{ W}}{12 \text{ W}}$$
 = 2,7 => $\frac{2 \text{ tablettes}}{12 \text{ W}}$

b) Quelle sera la puissance maximale consommée par le bloc d'alimentation de ce hub USB 3.0 si sa propre consommation est de 8 W et que les 5 périphériques multimédia ainsi que toutes les tablettes calculées au point a) sont en service?

 $Pmax = 8 W + 17,5 W + 2 \cdot 12 W = 49,5W$

c) Que se passe-t-il si le client, malgré vos recommandations, utilise tout de même l'ensemble des ports de charge rapide simultanément ?

Le hub USB va limiter la puissance sur les ports de charge rapide et la durée de la charge des périphériques sera prolongée sur ces ports.

Indication pour experts : Le point est accordé si la prolongation du temps de charge ou la limitation du courant est citée.

Points par page:

1

1

4. Chute de tension en ligne N° d'objectif d'évaluation 3.2.3b

a) Calculez le courant qui circule dans ce pistolet à air chaud. (2300 W / 230 V / 10 A)

$$R_{ligne} = \frac{\rho \cdot l_{ligne} \cdot 2}{A} = \frac{0.0175 \ \Omega mm^2 \cdot 75 \ m \cdot 2}{m \cdot 1.5 \ mm^2} = \underline{1.75 \ \Omega}$$

$$R_{charge} = \frac{U_N}{I_N} = \frac{230 \, V}{10 \, A} = \frac{23 \, \Omega}{0.5}$$

$$I = \frac{U_N}{R_{charge} + R_{ligne}} = \frac{230 \, V}{23 \, \Omega + 1,75 \, \Omega} = 9,293 \, A = \underline{9,29 \, A}$$

b) Quelle est la tension aux bornes du pistolet à air chaud?

$$U_{charge} = R_{charge} \cdot I = 23 \Omega \cdot 9{,}29A = \underline{214 V}$$
0,5

Indication pour experts: D'autres chemins de résolution sont également possibles.

2

1

1

5. Diodes N° d'objectif d'évaluation 3.3.1b

L'afficheur 7 segments à LED ci-dessous doit afficher le chiffre 3 selon l'illustration cidessous.

a) Déterminez le numéro du commutateur S qu'il faut fermer dans le schéma ci-dessous pour que le chiffre 3 apparaisse.

REPONSE: S5

b) Quel courant circule dans chacune des LED allumées du point a) si le circuit est alimenté avec une pile de 9 V_{DC} ?

Caractéristiques des LED : $U_{LED} = 1.8 \text{ V}$ Caractéristiques des diodes : $U_{DIODE} = 0.6 \text{ V}$ Caractéristiques des résistances : $R_{1-7} = 560 \Omega$

$$U_{R2} = U_{Tot} - (U_{LED} + U_{DIODE})$$

$$U_{R2} = 9 V - (1.8 V + 0.6 V) = 6.6 V$$

$$I_{R2} = \frac{U_{R2}}{R2} = \frac{6.6 \text{ V}}{560 \Omega} = \underline{11,79 \text{ mA}}$$

Composants électroniques N° d'objectif d'évaluation 3.3.1.b b

Complétez le tableau ci-dessous selon les consignes de la colonne de gauche.

Consigne	Symbole	Désignation
Indiquez la désignation de ce composant.		Diac
Indiquez le sens conventionnel du courant I _B et I _C directement sur le symbole et sa désignation.	I _B I _C	Transistor PNP
Dessinez le symbole correspondant à ce composant.	 	Diode Zenner

0,5

2

1

0,5

3

1

7. Filtres N° d'objectif d'évaluation 3.3.1

Le schéma équivalent d'une ligne bifilaire (Cu) est représenté selon le schéma ci-dessous.

a) Pour chacun des composants du schéma équivalent ci-dessus, indiquez dans le tableau l'unité correspondante à la grandeur.

Grandeur	Unité
R	Ohm ou $[\Omega]$
L	Henry ou [H]
С	Farad ou [F]

b) Si la tension efficace d'entrée U_1 est de 1,7 V, quelle sera la valeur de la tension de sortie U_2 si la fréquence correspond à la fréquence de coupure ?

$$U_2 = \frac{U_1}{\sqrt{2}} = \frac{1.7 \text{ V}}{1.4141} = \frac{1.202}{1.4141} \text{ V}$$

c) Avec cette même tension d'entrée, calculez l'atténuation en [dB] lorsque le signal efficace de sortie est de 0,5 V.

$$A[dB] = 20log_{10} - \frac{U_1}{U_2} = 20log_{10} - \frac{1.7 \text{ V}}{0.5 \text{ V}}$$

$$A[dB] = 20 \times 0,531 = 10,63 dB$$

d) De quel type de filtre s'agit-il?

Filtre passe-bas.

0,5

0,5

3

8. Energie renouvelable N° d'objectif d'évaluation 3.4.2

Un relais de télécommunication est installé à proximité d'une cabane de montagne. Cette installation est alimentée par un équipement photovoltaïque en îlot.

Les paramètres suivants sont connus :

a) Quel est le courant de charge maximal de la batterie si le relais de télécommunication est coupé et que l'ensoleillement est maximal?

$$P_{\text{maxcharge}} = 8344 \text{ W} \cdot \eta_{\text{photo}} \cdot \eta_{\text{reg}} =$$

$$8344 \text{ W} \cdot 0,196 \cdot 0,92 = 1504,59 \text{ W}$$

$$I_{\text{maxcharge}} = \frac{P_{\text{maxcharge}}}{U_{\text{Bat}}} = \frac{1504,59 \text{ W}}{24 \text{ V}} = \frac{62,69}{24 \text{ W}} \text{ A}$$

b) Quelle est la quantité totale d'énergie disponible à la sortie de la batterie lorsque celleci est entièrement chargée?

$$E_{disp} = C_{disp} \cdot U_{bat} = 500 \text{ Ah} \cdot 24 \text{ V} = 12000 \text{ Wh}$$

Points par page:

1

1

9. Disjoncteur différentiel FI / LS type AC N° d'objectif d'évaluation 6.1.3b

Expliquez les inscriptions sur ce disjoncteur différentiel FI / LS :

Numéro	Description de la signification de l'inscription sur le DDR
1	Courant de défaut maximal avant déclenchement
2	Courant nominal
3	Type AC : Fonctionne avec un courant de défaut alternatif

Cochez les cases correspondantes.

Quel est le dispositif qui permet:	FI (DDR)	LS
De protéger les personnes lors d'un défaut d'isolement sur un appareil électrique.	x	
De protéger la ligne alimentant une prise T23 (16 A) lors d'une surcharge.		Х
De protéger la ligne alimentant une prise T23 (16 A) lors d'un court-circuit.		х

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

10. Onduleur (UPS) N° d'objectif d'évaluation 6.1.6b

Consigne		Réponse
Quel est le		Cochez la case
schéma qui		correspondante:
désigne un		
onduleur « line-	~/	🗀
interactive »?		
	Filtre	X
	~/_	^
	V	
Dessinez le		^^^^^
signal de la tension de sortie		
d'un onduleur	' <i>-</i>	
double		
conversion avec		
ce type de		
perturbation.		
	de réponse d'un onduleur double	0ms
conversion (en ms		
Quel est le temps	de réponse d'un onduleur	10-15 ms (< 20 ms)
« Offline » ?		
0		
Quel est l'onduleur	Online	
fréquences ?	(double conversion)	
Citez deux problèr	Casse (feu)	
installation informa		
		Perte des données

2

11. Composants KNX N° d'objectif d'évaluation 6.2.4.b

a) Complétez le schéma ci-dessous en reliant l'alimentation 230V et le bus KNX là où ceci est nécessaire.

Indication pour experts: 0,5pt par liaison juste.

b) Indiquez la meilleure description de fonctionnement en insérant une lettre (a à g) dans la case à droite de chacun des deux composants mentionnés ci-dessous:

Gateway-IP:

0,5

Actionneur:

0,5

- a) Permet de relier des composants d'un bus KNX de versions de logiciels diverses.
- b) Exécute une commande venant du bus KNX.
- c) Permet l'adaptation des composants des couches L1 et L2 au bus KNX.
- d) Permet de connecter une entrée libre de potentiel à un bus KNX.
- e) Permet d'actionner un levier qui vient presser sur un interrupteur.
- f) Permet de relier le bus KNX à un réseau IP.
- g) Permet de créer des réseaux KNX en boucle (anneaux).

2

12. Adresse IPv4 mappée en IPv6 N° d'objectif d'évaluation 3.1.2b

Vous devez mapper une adresse IPv4 sur une adresse IPv6. L'adresse IPv6 se compose de 128 bits au total dont les 64 derniers représentent le HOST-ID.

Vous avez effectué le speed-test ci-dessous :

Complétez ci-dessous la partie grisée du HOST-ID IPv6 en format Hexadécimal. Le cheminement pour arriver à la solution doit être indiqué.

:: ffff: 9d1a: bec8

2

Note pour experts:

 $157.26.190.200_{DEC} = 10011101.00011010.10111110.11001000_{BIN} = 0x 9d1a bec8_{HEX}$

1

1

1

13. Fonction logique N° d'objectif d'évaluation 6.2.5b, 3.1.1

Les chronogrammes ci-dessous représentent un système logique à trois entrées (A, B, C) et une sortie (S_1) .

a) Complétez la table de vérité du système logique représenté ci-dessus.

С	В	Α	S_1
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

b) Exprimez algébriquement l'équation logique qui lie les entrées A, B, C et la sortie S₁.

$$\overrightarrow{A} \cdot \overrightarrow{B} \cdot \overrightarrow{C} = S_1$$
 ou $\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} = S_1$

c) Dessinez le schéma logique qui correspond à cette équation.

$$\begin{array}{c|c}
A \\
\hline
B \\
\hline
C
\end{array}$$

$$\begin{array}{c|c}
A \\
\hline
B \\
\hline
C
\end{array}$$

$$\begin{array}{c|c}
S_1 \\
\hline
C
\end{array}$$
ou

2

14. Norme installation à basse tension NIBT N° d'objectif d'évaluation 6.1.1a

Quels sont les travaux d'installation électrique que vous serez autorisés à faire selon la loi lorsque vous aurez obtenu votre CFC?

Cochez les affirmations dans les colonnes Autorisé / Non autorisé.

Affirmations	Autorisé	Non autorisé	
Un voisin souhaite que vous lui installiez sa nouvelle lampe. En plus de cela, il vous demande de lui installer un variateur de lumière à la place de l'interrupteur à l'entrée du salon.		х	0,5
Un membre de votre famille vous demande de lui installer un accès Internet avec Swisscom TV. Les prises 230V sont disponibles mais vous devez cependant modifier l'installation téléphonique basse tension.	X		0,5
Vous venez d'acheter un aquarium et afin de disposer de suffisamment de prises vous remplacez une prise de « type 13 » par une prise « 3 x type 13 » dans votre appartement. Au tableau, le groupe est désigné de la manière suivante: Groupe 5 FI/LS 13 A, 30 mA chambre 1er étage. Une personne habilitée à contrôler contrôle la modification.	X		0,5
Vous êtes membres d'une association de football et le comité a décidé de rénover les locaux du club. Le président du club vous demande de renouveler l'entier de l'installation électrique sans aide externe.		х	0,5