CS5491: Artificial Intelligence

First-order Logic

Instructor: Kai Wang

Recap: Propositional Logic: Syntax

- \diamondsuit The proposition symbols P_1 , P_2 etc are sentences.
- \diamondsuit Negation: If P is a sentence, $\neg P$ is a sentence.
- \diamondsuit Conjunction: If P_1 and P_2 are sentences, $P_1 \land P_2$ is a sentence.
- \diamondsuit Disjunction: If P_1 and P_2 are sentences, $P_1 \lor P_2$ is a sentence.
- \diamondsuit Implication: If P_1 and P_2 are sentences, $P_1 \Rightarrow P_2$ is a sentence.
- \diamondsuit Biconditional: If P_1 and P_2 are sentences, $P_1 \Leftrightarrow P_2$ is a sentence.

Recap: Inference

The goal of inference is to decide whether $KB \models \alpha$. $KB \models_i \alpha$ specifically says α can be derived from KB by procedure i.

Soundness: i is sound if whenever $KB \models_i \alpha$, it is also true that $KB \models \alpha$.

Completeness: i is complete if whenever $KB \models \alpha$, it is also true that $KB \models_i \alpha$

Recap: Inference Methods

Resolution

- \diamondsuit To show $KB \models \alpha$, we show that $KB \land \neg \alpha$ is not satisfiable.
- \diamondsuit Conjunctive Normal Form: conjunction of disjunctions of literals \to E.g., $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$
- \diamondsuit Apply resolution to $KB \land \neg \alpha$ in CNF

$$\frac{\ell_1 \vee \dots \vee \ell_k, \quad m_1 \vee \dots \vee m_n}{\ell_1 \vee \dots \vee \ell_{i-1} \vee \ell_{i+1} \vee \dots \vee \ell_k \vee m_1 \vee \dots \vee m_{j-1} \vee m_{j+1} \vee \dots \vee m_n}$$

where l_i and m_i are complementary literals.

until

- → there are no new clauses to be added.
- \rightarrow two clauses resolve to the empty class, which means $KB = \alpha$.

Resolution

```
function PL-RESOLUTION(KB, \alpha) returns true or false
  inputs: KB, the knowledge base, a sentence in propositional logic
          \alpha, the query, a sentence in propositional logic
  clauses ← the set of clauses in the CNF representation of KB \land \neg \alpha
  new ← { }
  loop do
     for each C_i, C_i in clauses do
         resolvents ← PL-RESOLVE(C_i, C_j)
         if resolvents contains the empty clause then return true
         new ← new ∪ resolvents
     if new ⊆ clauses then return false
      clauses ← clauses ∪ new
```

Resolution in Wumpus

♦ We take a subset of the knowledge base, say

$$KB = R_2 \wedge R_4 = \left(B_{1,1} \Leftrightarrow \left(P_{1,2} \vee P_{2,1}\right)\right) \wedge \neg B_{1,1}$$

$$KB \wedge \neg \alpha = (\neg P_{2,1} \vee B_{1,1}) \wedge (\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge (\neg P_{1,2} \vee B_{1,1}) \wedge (\neg B_{1,1}) \wedge (P_{1,2})$$

Problems with Propositional Logic

- Consider the game "minesweeper" on a 10x10 field with only one landmine.
- How do you express the knowledge, with propositional logic, that the squares adjacent to the landmine will display the number 1?
- ♦ Intuitively with a rule like landmine(x,y)⇒ number 1((neighbors(x,y))) but propositional logic cannot do this...

Problems with Propositional Logic

- ♦ Propositional logic has to say, e.g., for grid (3,4):
 - \rightarrow Landmine(3,4) \Rightarrow number 1(2,3)
 - \rightarrow Landmine(3,4) \Rightarrow number 1(2,4)
 - \rightarrow Landmine(3,4) \Rightarrow number 1(2,5)
 - \rightarrow Landmine(3,4) \Rightarrow number 1(3,3)
 - \rightarrow Landmine(3,4) \Rightarrow number 1(3,5)
 - \rightarrow Landmine(3,4) \Rightarrow number 1(4,3)
 - \rightarrow Landmine(3,4) \Rightarrow number 1(4,4)
 - \rightarrow Landmine(3,4) \Rightarrow number 1(4,5)
- ♦ Difficult to express large domains concisely.
- \diamondsuit Do not have objects and relations.

More Logics

Logic	Primitives	Available knowledge
propositional	facts	true/false/unknown
first-order	facts, objects, relations	true/false/unknown
temporal	facts, objects, relations, times	true/false/unknown
probabilistic theory	facts	degree of belief 0,,1
fuzzy logic	facts + degree of truth	known internal value

First-order logic syntax

Inference in firstorder logic

First-order logic syntax

Inference in firstorder logic

First-Order Logic: Syntax

- Constant symbols (i.e., the individuals in the world): Jerry, 2, Green
- Function symbols (mapping individuals to individuals): Sqrt(9),
 Distance(Madison, Chicago)
- Predicate symbols (mapping from individuals to truth values):
 Teacher(Jerry, you), Bigger(sqrt(2), x)

- ♦ Variable symbols: x, y
- \diamondsuit Connectives: $\land, \lor, \neg, \Rightarrow, \Leftrightarrow$

♦ Quantifiers: ∀,∃

First-Order Logic: Term

A term is an object in the world.

- ♦ Constant: Jerry, 2, Green
- ♦ Variables: x, y, a, b, c
- \diamondsuit Function(term₁, ..., term_n)
 - → Sqrt(9), Distance(Madison, Chicago)
 - → Maps one or more objects to another object
 - Can refer to an unnamed object: LeftLeg(John)
 - → Represents a user defined functional relation

First-Order Logic: Atom

An atom is the smallest true/false expression

- Predicate(term₁, ..., term_n)
 - → Teacher(Jerry, you), Bigger(sqrt(2), x)
 - Convention: read "Jerry (is) Teacher (of) you"
 - Maps one or more objects to a truth value
 - Represents a user defined relation
- \diamondsuit Term₁ = term_n
 - → Radius(Earth)=6400km, 1=2
 - Represents the equality relation when two terms refer to the same

First-Order Logic: Sentence

A sentence is a true/false expression

- ♦ Atom
- \diamondsuit Complex sentence using connectives: \land , \lor , \neg , \Rightarrow , \Leftrightarrow
 - → Spouse(Jerry, Jing) ⇒ Spouse(Jing, Jerry)
 - \rightarrow Less(11,22) \land Less(22,33)
- ♦ Complex sentence using quantifiers ∀,∃

First-Order Logic: Universal Quantifier

- \diamondsuit A sentence is true for all values of x in the domain of variable x.
- \diamondsuit Main connective typically is \Rightarrow
 - → Forms "if-then" rules
 - "all humans are mammals"
 - \forall x human(x) \Rightarrow mammal(x)
 - \rightarrow Means if x is a human, then x is a mammal.

First-Order Logic: Universal Quantifier

```
\forall x human(x) \Rightarrow mammal(x)
```

- ♦ It is a big AND: equivalent to the conjunction of all the instantiations of variable x:
 - $(human(Jerry) \Rightarrow mammal(Jerry)) \land (human(Jing) \Rightarrow mammal(Jing)) \land ...$
- ♦ Common mistake is to use \land as the main connective \forall x human(x) \land mammal(x)
- ♦ This means that everything is human and a mammal! (human(Jerry) ∧ mammal(Jerry)) ∧ (human(Jing) ∧ mammal(Jing)) ∧ ...

First-Order Logic: Existential Quantifier

- \diamondsuit A sentence is true for some value of x in the domain of variable x.
- ♦ Main connective typically is ∧
 - "some humans are male"
 - \exists x human(x) \land male(x)
 - → Means there is an x who is a human and is a male

First-Order Logic: Existential Quantifier

```
\exists x human(x) \land male(x)
```

♦ It is a big OR: equivalent to the disjunction of all the instantiations of variable x:

```
(human(Jerry) ∧ male(Jerry)) ∨ (human(Jing) ∧ male(Jing)) ∨ ...
```

- \diamondsuit Common mistake is to use \Rightarrow as the main connective
 - "some pig can fly"

$$\exists x \text{ pig}(x) \Rightarrow \text{fly}(x)$$

♦ This means that there is something not a pig!
(pig(Jerry) ⇒ fly(Jerry)) ∨ (pig(Jing) ⇒ fly(Jing)) ∨ ...

 \diamondsuit $\forall x \forall y \text{ is the same as } \forall y \forall x$

 \Rightarrow $\exists x \exists y \text{ is the same as } \exists y \exists x$

- **Example:**
 - \rightarrow \forall x \forall y likes(x,y) meaning that "Everyone likes everyone".
 - \rightarrow \forall y \forall x likes(x,y) meaning that "Everyone is liked by everyone".

 \diamondsuit $\forall x \exists y \text{ is the not the same as } \exists y \forall x$

 \Rightarrow $\exists x \ \forall y \ is the same as <math>\ \forall y \ \exists x$

- **Example:**
 - \rightarrow \forall x \exists y likes(x,y) meaning that "Everyone likes someone (can be different)".
 - \rightarrow $\exists y \ \forall x \ likes(x,y) \ meaning that "There is someone who is liked by everyone".$

 \diamondsuit $\forall x P(x)$ when negated becomes $\exists x \neg P(x)$

 \Rightarrow $\exists x P(x)$ when negated becomes $\forall x \neg P(x)$

- **A** Example:
 - \rightarrow \forall x sleep(x) meaning that "Everyone sleeps".
 - \rightarrow $\exists x \neg sleep(x)$ meaning that "There is someone who does not sleep".

 \diamondsuit $\forall x P(x) is the same as <math>\neg \exists x \neg P(x)$

 \Rightarrow $\exists x P(x) \text{ is the same as } \neg \forall x \neg P(x)$

- **A** Example:
 - \rightarrow \forall x sleep(x) meaning that "Everyone sleeps".
 - \rightarrow ¬ \exists x ¬sleep(x) meaning that "There does not exist someone being not asleep".

- King(Richard) V King(John)
- → Brother(LeftLeg(Richard), John)
- \diamondsuit $\forall x \forall y Brother(x,y) \Rightarrow Sibling(x,y)$
- ♦ In(Paris, France) ∧ In(Marseilles, France)
- \diamondsuit \forall c Country(c) \land Border(c,Ecuador) \Rightarrow In(c, SouthAmerica)
- \diamondsuit \forall c Country(c) \land Border(c, Spain) \land Border(c, Italy)

Richard has only two brothers, John and Geoffrey.

Brother(John, Richard) \land Brother(Geoffrey, Richard) \land John \neq Geoffrey \land \forall x Brother(x, Richard) \Rightarrow (x=John \lor x=Geoffrey)

No region in South America borders any region in Europe.

 $\forall c,d \ In(c, SouthAmerica) \land In(d, Europe) \Rightarrow \neg Border(c,d)$

Clicker question: No two adjacent countries have the same map color.

- A. $\exists x \exists y \text{ Country } (x) \land \text{ Country } (y) \land \text{ Border} (x,y) \land \neg (\text{Color}(x)=\text{Color}(y)) \land \neg (x=y)$
- B. $\forall x \ \forall y \ Country \ (x) \ \land \ Country \ (y) \ \land \ Border(x,y) \Rightarrow \neg(Color(x)=Color(y))$
- C. $\forall x \forall y \text{ Country } (x) \land \text{ Country } (y) \land \text{ Border}(x,y) \Rightarrow \neg(\text{Color}(x)=\text{Color}(y)) \land \neg(x=y)$
- D. $\forall x \ \forall y \ Country \ (x) \ \land \ Country \ (y) \ \land \ (x \neq y) \ \land \ Border(x,y) \Rightarrow \neg(Color(x)=Color(y))$

Wumpus in First-Order Logic

- ♦ Can include the time domain
 - at time step 4: Percept([Stench, Breeze, Glitter], 4)
 - → at time step 6: Percept([None, Breeze, None], 6)
 - → Actions can be: Turn(Right), Turn(Left), Forward, Shoot

Wumpus in First-Order Logic

- ♦ Can encode complex rules
 - \rightarrow \forall t, s, g, m, c Percept([s,b,Glitter,m,c],t) \Rightarrow Glitter(t)
 - \rightarrow \forall t Glitter(t) \Rightarrow BestAction(Grab, t)
 - \rightarrow \forall x, y, a, b Adjacent([x,y], [a,b]) \Leftrightarrow (x=a \land (y=b-1 \lor y=b+1)) \lor (y=b \land (x=a-1 \lor x=a+1))

3

2

First-order logic syntax

Inference in firstorder logic

Inference Rules

- ♦ Inference rules for the propositional logic:
 - → Modus ponens

$$\frac{A \Rightarrow B, A}{B}$$

→ Resolution

$$\frac{A \vee B, \neg B \vee C}{A \vee C}$$

Additional inference rules are needed for sentences with quantifiers and variables.

Variable Substitutions

- ♦ Variable in sentences can be substituted with terms.
- ♦ Substitution is a mapping from variables to terms.
 - $\rightarrow \{x_1/t_1, x_2/t_2 \cdots\}$
- **Example:**
 - \rightarrow SUBST({x / Sam, y / Pam}, likes(x,y)) = like(Sam, Pam)
 - \rightarrow SUBST({x / z, y / fatherof(John)}, likes(x,y)) = like(z, fatherof(John))

Inference Rules for Quantifiers

Universal elimination: substituting a variable with a constant

$$\frac{\forall x \; \phi(x)}{\phi(a)}$$

- \diamondsuit Example:
 - → ∀x Likes(x, IceCream)

Likes(Ben, IceCream)

Inference Rules for Quantifiers

Existential elimination: substituting a variable with a constant that does not appear elsewhere in the KB, i.e., Skolem constant.

$$\frac{\exists x \; \phi(x)}{\phi(a)}$$

- **A** Example:
 - \rightarrow $\exists x \text{ Kill}(x, \text{Victim})$

Kill(Murderer, Victim)

 \rightarrow $\exists x \; Crown(x) \land OnHead(x, John)$

 $Crown(C_1) \wedge OnHead(C_1, John)$

Propositionalization

- Suppose the KB contains just the following:
 - \rightarrow $\forall x \, \text{King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x)$
 - → King(John)
 - → Greedy(John)
 - → Brother(Richard, John)

- Instantiating the universal sentence in all possible ways:
 - \rightarrow King(John) \land Greedy(John) \Rightarrow Evil(John)
 - → King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
 - → King(John)
 - → Greedy(John)
 - → Brother(Richard, John)

Problems with Propositionalization

- Propositionalization generates lots of irrelevant sentences.
- \diamondsuit With p k-ary predicates and n constants, there are pn^k instantiations.
- **Example:**
 - \rightarrow $\forall x \, \text{King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x)$
 - King(John)
 - → ∀y Greedy(y)
 - → Brother(Richard, John)

Unification

Unification takes two similar sentences and computes the substitution that makes them look the same, if it exists $UNIFY(p,q) = \sigma \ s.t. \ SUBST(\sigma,p) = SUBST(\sigma,q)$

Example:

- → UNIFY(Knows(John, x), Knows(John, Jane)) = {x / Jane}
- UNIFY(Knows(John, x), Knows(y, Ann)) = {x / Ann, y / John}
- UNIFY(Knows(John, x), Knows(y, MotherOf(y))) = {x / MotherOf(John), y / John}
- UNIFY(Knows(John, x), Knows(x, Elizabeth)) = fail

Generalized Modus Ponens

 \diamondsuit If there exists a substitution σ such that $SUBST(\sigma, A_i) = SUBST(\sigma, A_i')$ for all i=1,2,...,n, then

$$\frac{A_1 \wedge A_2 \wedge \cdots A_n \Rightarrow B, A'_1 \wedge A'_2 \wedge \cdots A'_n}{SUBST(\sigma, B)}$$

Example:

- \rightarrow $\forall x \, \text{King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x)$
- → King(John)
- → ∀y Greedy(y)
- → Brother(Richard, John)

$$A_1 = \text{King(x)}, A'_1 = \text{King(John)}$$

 $A_2 = \text{Greedy(x)}, A'_2 = \text{Greedy(y)}$
 $\sigma = \{x \mid \text{John, y \mid John}\}, B = \text{Evil(x)}$
 $SUBST(\sigma, B) = \text{Evil(John)}$

Generalized Resolution Rule

 \diamondsuit If the substitution is computed without failure, i.e., $\sigma = UNIFY(\phi_i, \neg \psi_i) \neq fail$,

$$\frac{\phi_1 \vee \phi_2 \vee \cdots \phi_k, \psi_1 \vee \psi_2 \vee \cdots \psi_n}{SUBST(\sigma, \phi_1 \vee \cdots \vee \phi_{i-1} \vee \phi_{i+1} \cdots \vee \phi_k, \vee \psi_1 \vee \cdots \vee \psi_{j-1} \vee \psi_{j+1} \cdots \psi_n)}$$

Example:

$$\rightarrow \frac{P(x) \vee Q(x), \neg Q(John) \vee S(y)}{P(John) \vee S(y)}$$

Inference with Resolution Rule

- Proof by contration
 - \rightarrow Prove that KB, $\neg \alpha$ is unsatisfiable.
- ♦ Main procedures:
 - \rightarrow Convert KB, $\neg \alpha$ to CNF with ground terms and universal variables only.
 - → Apply repeatedly the resolution rule while keeping track of the consistency of substitutions.
 - Stop when empty set (contradiction) is derived or no more new resolvents (conclusions) follow.

Conversion to CNF

Eliminate implications and logical equivalences

$$\rightarrow (p \Rightarrow q) \rightarrow (\neg p \lor q)$$

♦ Move negations inside

$$\rightarrow \neg (p \land q) \rightarrow (\neg p \lor \neg q) , \neg (p \lor q) \rightarrow (\neg p \land \neg q)$$

$$\rightarrow \neg \forall xp \rightarrow \exists x \neg p, \neg \exists xp \rightarrow \forall x \neg p$$

$$\rightarrow \neg \neg p \rightarrow p$$

♦ Standardize variables

Conversion to CNF

- ♦ Move all quantifiers left
- Skolemization
 - \rightarrow $\exists y \ P(A) \lor Q(y) \rightarrow P(A) \lor Q(B)$
 - $\rightarrow \forall x \exists y P(x) \land Q(y) \rightarrow \forall x P(x) \land Q(F(x))$
- Drop universal quantifiers
 - $\rightarrow \forall x P(x) \lor Q(F(x)) \rightarrow P(x) \lor Q(F(x))$
- Convert to CNF using the distribution laws.
 - $\rightarrow p \lor (q \land r) \rightarrow (p \lor q) \land (p \land r)$

- ♦ Suppose the KB contains just the following:
 - → John like all kinds of food.
 - → Apples are food.
 - Anything anyone eats and isn't killed by is food.
 - Bill eats peanuts and is still alive.
 - → Sue eats everything Bill eats.

Prove that "John likes peanuts".

Represent the KB with first-order logic sentences.

- John like all kinds of food.
- → Apples are food.
- Anything anyone eats and isn't killed by is food.
- Bill eats peanuts and is still alive.
- Sue eats everything Bill eats.

- \rightarrow $\forall x (Food(x) \Rightarrow Like(John, x))$
- → Food(Apple)
 - $\forall x \forall y (Eat(x,y) \land \neg Killed by(x,y)) \Rightarrow Food(y)$
 - → Eat(Bill, penut) ∧ ¬Killed by(Bill,peanut)
 - $\forall x (Eat(Bill,x) \Rightarrow Eat(Sue,x))$

Convert the FOL sentences into the CNF form.

- $\forall x \text{ (Food(x)} \Rightarrow \text{Like(John, x))}$
- Food(Apple)
- $\forall x \ \forall y \ (\text{Eat}(x,y) \land \neg \text{Killed by}(x,y)) \Rightarrow \text{Food}(y)$
- Eat(Bill, penut) $\land \neg$ Killed by(Bill,peanut)
- $\forall x (Eat(Bill,x) \Rightarrow Eat(Sue,x))$

- ¬Food(x) ∨ Like(John, x) Food(Apple)
- \rightarrow \neg Eat(x,y) \lor Killed by(x,y)) \lor Food(y)
- → Eat(Bill, penut)
- ¬Killed by(Bill,peanut)
 - \neg Eat(Bill,x) \lor Eat(Sue,x)

♦ Resolution

- \rightarrow ¬Food(x) \lor Like(John, x)
- → Food(Apple)
 - \rightarrow \neg Eat(x,y) \lor Killed by(x,y)) \lor Food(y)
- Eat(Bill, penut)
 - ¬Killed by(Bill,peanut)
- → ¬Eat(Bill,x) ∨ Eat(Sue,x)

Understand the downsides of propositional logic.

Understand the syntax and semantic of first-order logic.

Learn to formulate the first-order logic for real-world problems.

Understand the generalized inference rules for first-order logic.

Know how to implement the forward / backward chaining and resolution.

Important This Week

Do more exercises in Chapter 8 in the textbook.