REMARK OF TAYLOR THEOREM ON DECEMBER 21

TA: SINGYUAN

(i) If $f \in C^m$ near x = a, then $R_m(h) = o(h^m)$. In fact, remainder term can be written as

$$R_m(h) = \frac{h^m}{(m-1)!} \int_0^1 (1-t)^{m-1} [f^{(m)}(a+th) - f^{(m)}(a)] dt$$

(ii) If $f \in C^m$ near x = a and f is (m+1)-times differentiable near x = a, then the remainder term of order m is OBVIOUSLY little o with order m and the remainder term is

$$R_m(h) = \frac{f^{(m+1)}(\xi)}{(m+1)!} h^{m+1}$$

- (iii) Continuing the statement above, $f \in C^m$ near x = a and f is (m+1)-times differentiable at x = a, the remainder term of order m+1 is actually little o with order m+1, *i.e.* $R_{m+1}(h) = o(h^{m+1})$, but we could not explicitly write down $R_{m+1}(x-a)$.
- (iv) If $f \in C^m$ near x = a and moreover $f \in C^{m+1}$, then we could write down remainder term $R_m(x-a)$ more precisely, not just exist ξ . That is,

$$f(x) - f(a) = f'(\xi)(x - a)$$

$$f(x) - f(a) = \int_{a}^{x} f'(t)dt$$

(v) Let $f \in C^m$ near x = a and f can be written as

$$f(x) = a_0 + a_1(x-a) + \dots + a_m(x-a)^m + R_m(x-a)$$
.

Make sure you could prove if $R_m(x-a) = o((x-a)^m)$ then $a_i = \frac{f^{(i)}(a)}{i!}$ uniquely.

(vi) Make sure you could tell the difference between T_n converge on which interval I as $n \to \infty$ and T_n converge to original f as $n \to \infty$. Hint: Consider the following function

$$f(x) = e^{-\frac{1}{x^2}}, \quad x = 0.$$

- (vii) By above example, the function and Taylor polynomial is not bijection. For instance, both f(x) and $f(x) + e^{-\frac{1}{x^2}}$ have same Taylor polynomial.
- (viii) Inverse the Taylor theorem is not true. That is, $f(x) = T_m(x-a) + R_m(x-a)$ does not imply $f \in C^m$ near x = a. Hint: Consider the following function

$$f(x) = \sin\left(\frac{1}{x^4}\right)e^{-\frac{1}{x^2}}, \quad x = 0.$$

For any m, $T_m(x) = 0$ and $R_m(x) = f(x) \in o(x^k)$, for all k. However, $f(x) \in C^1$ is just differentiable at x = 0

(ix) If expand about more points? Suppose x_0, x_1, \dots, x_n are distinct numbers in the interval [a, b] and $f \in C^{n+1}[a, b]$. Then, for $x \in [a, b]$ exist $\xi \in (a, b)$ such that

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0) (x - x_1) \cdots (x - x_n) ,$$

where P is Lagrange interpolating polynomial as you learned in senior high school i.e.

$$P(x) = \sum_{k=1}^{n} f(x_k) \prod_{\substack{i=0\\i=k}}^{n} \frac{(x-x_i)}{(x_k-x_i)}.$$