Algoritmos Randomizados: Introdução

Celina Figueiredo
Guilherme Fonseca
Manoel Lemos

→ Vinícius Sá

26° Colóquio Brasileiro de Matemática IMPA – Rio de Janeiro – Brasil 2007

Resumo

- Definições
- Monte Carlo
- Variáveis Aleatórias
- Las Vegas
- Paradigmas combinatórios
- Método probabilístico

Definições

- Algoritmo
- Experimento aleatório (ou randômico)
- Gerador de números aleatórios
- Algoritmos randomizados

Algoritmos Randomizados

- Aplicações
 - criptografia
 - programação distribuída
 - teoria dos grafos
 - geometria computacional
 - etc.

- Vantagens
 - mais rápidos
 - mais simples
 - ambos

- Preço
 - análise trabalhosa
 - <u>incerteza</u>
 - → qualidade da resposta
 - → tempo de execução

Monte Carlo

- Fornecem a resposta correta com probabilidade (alta) conhecida
- Tempo de execução determinístico

Las Vegas

 A resposta dada está sempre correta

 Tempo de execução é uma variável aleatória

(p / problemas de decisão)

Erro bilateral

OU

- Erro unilateral
 - baseados-no-SIM
 - baseados-no-NÃO

C_N: a resposta correta é NÃO

C_s: a resposta correta é SIM

A_N: o algoritmo responde NÃO

A_s: o algoritmo responde SIM

baseado-no-NÃO: $Pr\{C_{N} | A_{N}\} = 1$

$$Pr\{A_s \mid C_s\} = 1$$

```
 \begin{aligned} & \text{Pr} \, \{\text{"erro"}\} \\ & = \, \text{Pr} \, \{\, \text{C}_{_{\!N}} \,, \, \text{A}_{_{\!S}} \, \, \text{U} \, \, \, \, \text{C}_{_{\!S}} \,, \, \text{A}_{_{\!N}} \} \\ & = \, \text{Pr} \, \{\, \text{C}_{_{\!N}} \,, \, \text{A}_{_{\!S}} \,\} \, + \, \text{Pr} \, \{\, \text{C}_{_{\!S}} \,, \, \text{A}_{_{\!N}} \} \\ & = \, \text{Pr} \, \{\, \text{C}_{_{\!N}} \,\} \, . \, \text{Pr} \, \{\, \text{A}_{_{\!S}} \,| \, \text{C}_{_{\!N}} \,\} \, + \, \text{Pr} \, \{\, \text{C}_{_{\!S}} \,\} \,. \, \text{Pr} \, \{\, \text{A}_{_{\!N}} \,| \, \text{C}_{_{\!S}} \,\} \\ & = \, \text{Pr} \, \{\, \text{C}_{_{\!N}} \,\} \,. \, \text{Pr} \, \{\, \text{A}_{_{\!N}} \,| \, \text{C}_{_{\!N}} \,\} \, + \, \text{Pr} \, \{\, \text{C}_{_{\!S}} \,\} \,. \, \text{Pr} \, \{\, \text{A}_{_{\!N}} \,| \, \text{C}_{_{\!S}} \,\} \end{aligned}
```

```
 \begin{aligned} & \text{Pr} \, \{\text{"erro"}\} \\ &= \, \text{Pr} \, \{\, \text{C}_{\text{N}} \,, \, \text{A}_{\text{S}} \, \, \text{U} \, \, \, \, \text{C}_{\text{S}} \,, \, \text{A}_{\text{N}} \, \} \\ &= \, \text{Pr} \, \{\, \text{C}_{\text{N}} \,, \, \text{A}_{\text{S}} \, \} \, + \, \text{Pr} \, \{\, \text{C}_{\text{S}} \,, \, \text{A}_{\text{N}} \, \} \\ &= \, \text{Pr} \, \{\, \text{C}_{\text{N}} \, \} \, \cdot \, \text{Pr} \, \{\, \text{A}_{\text{S}} \, | \, \text{C}_{\text{N}} \, \} \, + \, \text{Pr} \, \{\, \text{C}_{\text{S}} \, \} \, \cdot \, \text{Pr} \, \{\, \text{A}_{\text{N}} \, | \, \text{C}_{\text{S}} \, \} \\ &= \, \text{Pr} \, \{\, \text{C}_{\text{N}} \, \} \, \cdot \, \text{Pr} \, \{\, \text{A}_{\text{S}} \, | \, \text{C}_{\text{N}} \, \} \, + \, \text{Pr} \, \{\, \text{C}_{\text{S}} \, \} \, \cdot \, \, 0 \\ \end{aligned}
```

```
Pr {"erro"}
= Pr \{ C_N, A_S \cup C_S, A_N \}
= Pr\{C_{N}, A_{S}\} + Pr\{C_{S}, A_{N}\}
= Pr\{C_{N}\}.Pr\{A_{S}|C_{N}\} + Pr\{C_{S}\}.Pr\{A_{N}|C_{S}\}
= Pr\{C_{N}\}(Pr\{A_{s}|C_{N}\}) + Pr\{C_{s}\}. 0
= Pr \{ C_{N} \}. \epsilon
                          + 0
```

```
Pr {"erro"}
= Pr \{ C_N, A_S \cup C_S, A_N \}
= Pr\{C_N, A_S\} + Pr\{C_S, A_N\}
= Pr\{C_{N}\}.Pr\{A_{S}|C_{N}\} + Pr\{C_{S}\}.Pr\{A_{N}|C_{S}\}
= Pr\{C_{N}\}(Pr\{A_{s}|C_{N}\}) + Pr\{C_{s}\}. 0
= \mathbf{Pr} \{ C_{N} \}. \qquad \mathbf{\epsilon}
                                   + 0
3 ≥
```

```
Pr {"erro"}
= Pr \{ C_N, A_S \cup C_S, A_N \}
= Pr\{C_{N}, A_{S}\} + Pr\{C_{S}, A_{N}\}
= Pr\{C_{N}\}.Pr\{A_{S}|C_{N}\} + Pr\{C_{S}\}.Pr\{A_{N}|C_{S}\}
= Pr\{C_{N}\}(Pr\{A_{s} | C_{N}\}) + Pr\{C_{s}\}. 0
= \mathbf{Pr} \{ C_{\mathbf{N}} \}.
Pr {"acerto"} \geq p = 1 - ε
```

(baseados-no-NÃO)

 Quando respondem NÃO, estão sempre corretos (exibem certificado)

(baseados-no-NÃO)

Exemplo: IDENTIDADE DE POLINÔMIOS

$$F(x) = (x - a_1) (x - a_2) \dots (x - a_d)$$

$$G(x) = b_d x^d + b_{d-1} x^{d-1} + \dots + b_1 x + b_0$$

Determinístico

- 1) Transforme F(x)
- 2) Compare os coeficientes de F(x) e G(x)
- 3) Se houver diferença, retorne NÃO
- 4) Senão, retorne SIM

Monte Carlo

- 1) Sorteie um inteiro *w,* aleatoriamente, de 1 a 100*d*
- 2) Avalie F(w) e G(w)
- 3) Se $F(w) \neq G(w)$, retorne NÃO
- 4) Senão, retorne SIM

(baseados-no-NÃO)

Exemplo: IDENTIDADE DE POLINÔMIOS

$$F(x) = (x - a_1) (x - a_2) \dots (x - a_d)$$

$$G(x) = b_d x^d + b_{d-1} x^{d-1} + \dots + b_1 x + b_0$$

$\underline{\mathsf{Deterministico}} \longrightarrow \mathsf{O}(d^2)$

- 1) Transforme F(x)
- 2) Compare os coeficientes de F(x) e G(x)
- 3) Se houver diferença, retorne NÃO
- 4) Senão, retorne SIM

Monte Carlo

- 1) Sorteie um inteiro *w,* aleatoriamente, de 1 a 100*d*
- 2) Avalie F(w) e G(w)
- 3) Se $F(w) \neq G(w)$, retorne NÃO
- 4) Senão, retorne SIM

(baseados-no-NÃO)

Exemplo: IDENTIDADE DE POLINÔMIOS

$$F(x) = (x - a_1) (x - a_2) \dots (x - a_d)$$

$$G(x) = b_d x^d + b_{d-1} x^{d-1} + \dots + b_1 x + b_0$$

Determinístico \rightarrow $O(d^2)$

- 1) Transforme F(x)
- 2) Compare os coeficientes de F(x) e G(x)
- 3) Se houver diferença, retorne NÃO
- 4) Senão, retorne SIM

Monte Carlo \rightarrow O(d)

- 1) Sorteie um inteiro *w,* aleatoriamente, de 1 a 100*d*
- 2) Avalie F(w) e G(w)
- 3) Se $F(w) \neq G(w)$, retorne NÃO
- 4) Senão, retorne SIM

(baseados-no-NÃO)

Exemplo: IDENTIDADE DE POLINÔMIOS

$$F(x) = (x - a_1) (x - a_2) \dots (x - a_d)$$

$$G(x) = b_d x^d + b_{d-1} x^{d-1} + \dots + b_1 x + b_0$$

$$Pr\{A_{N} \mid C_{s}\} = 0$$

$$Pr\{A_s \mid C_N\} = \epsilon = ?$$

$$\varepsilon \le d / 100d = 1/100$$

Monte Carlo \rightarrow O(d)

- 1) Sorteie um inteiro *w,* aleatoriamente, de 1 a 100*d*
- 2) Avalie F(w) e G(w)
- 3) Se $F(w) \neq G(w)$, retorne NÃO
- 4) Senão, retorne SIM

(baseados-no-NÃO)

Refinando a probabilidade de acerto...

Em uma execução do algoritmo,

$$Pr \{ \text{"erro"} \} \leq Pr \{ A_s \mid C_N \} = \epsilon$$

• Em *t* execuções independentes,

$$\Pr \{\text{"erro"}\} = \Pr \{\text{"erro_1","erro_2", ..., "erro_t"}\} \leq \varepsilon^t$$

Variáveis Aleatórias

 Função que mapeia um experimento aleatório em um valor numérico qualquer

 $X:\Omega\to\mathbb{R}$

A = soma dos valores obtidos no lançamento de dois dados

B = número de sorteios até que se complete determinada coluna de uma cartela de bingo

$$C = \begin{cases} 1, \text{ se cara} \\ 0, \text{ se coroa} \end{cases}$$

Variáveis Aleatórias

 Esperança (ou valor esperado)
 média dos resultados possíveis ponderada pelas probabilidades de ocorrência

A = soma dos valores obtidos no lançamento de dois dados

Variáveis Aleatórias

- Esperança: $\mathbf{E}[X] = \Sigma(j \cdot \mathbf{Pr}\{"X = j"\})$
- Variância: **Var** [X] = **E** [X²] (**E** [X])²
- Desvio padrão
- Momentos da V. A.

Variáveis Aleatórias famosas

$$Pr \{ \text{"sucesso"} \} = p$$

Bernoulli

$$X = \begin{cases} 1, \text{ se "sucesso"} \\ 0, \text{ se "fracasso"} \end{cases}$$

E [X] =
$$p$$
 Var [X] = p (1- p)

Binomial

$$X =$$
 "número de sucessos em n $E[X] = n p$ experimentos independentes" $Var[X] = n p (1-p)$

E [X] =
$$n p$$

Var [X] = $n p (1-p)$

Geométrica

E [X] = 1 / p
Var [X] =
$$(1-p) / p^2$$

Desigualdades famosas

Desigualdade de Markov

$$\Pr\{X \ge a\} \le \frac{\mathbf{E}[X]}{a} \qquad (a > 0)$$

Desigualdade de Chebyshev

$$\Pr\{|X - E[X]| \ge a\} \le \frac{Var[X]}{a^2}$$
 (a > 0)

Resposta
 <u>sempre</u> correta

 Tempo computacional é uma V. A.

Exemplo: ORDENAÇÃO

Exemplo: ORDENAÇÃO

Quick Sort

- pivô escolhido deterministicamente
- pior caso: O(n²)

Quick Sort Randomizado

- pivô escolhido aleatoriamente
- tempo esperado (para qualquer entrada!!):

Quick Sort Randomizado

Entrada:
$$a_1, a_2, a_3, \dots, a_n$$

Saída:
$$y_1, y_2, y_3, ..., y_n$$

X = "número de comparações realizadas" = ?

 $X_{j,k} = \begin{cases} 1, \text{ se \'e feita a comparação entre y}_{j} \text{ e y}_{k} \\ 0, \text{ caso contr\'ario} \end{cases}$

Bernoulli

$$X = X_{1,2} + X_{1,3} + \dots + X_{n-1,n}$$

$$E[X] = E[X_{1,2} + X_{1,3} + \dots + X_{n-1,n}] =$$

$$= E[X_{1,2}] + E[X_{1,3}] + \dots + E[X_{n-1,n}]$$

Linearidade da Esperança:

$$\mathsf{E}\left[f\left(X\right)\right] \ = \ f\left(\mathsf{E}\left[X\right]\right)$$

Quick Sort Randomizado

$$\Pr \{ \text{"sucesso"} \} = \Pr \{ X_{j,k} = 1 \} = 2 / (k - j + 1)$$

$$\mathbf{E}[X] = \sum_{1 \le j < k \le n} \mathbf{E}[X_{j,k}] =$$

$$= \sum_{1 \le j < k \le n} 2 / (k - j + 1) =$$

$$= O(n \log n)$$

Tempo esperado de um algoritmo de Las Vegas

Tempo médio de um algoritmo determinístico

(dado um modelo probabilístico da entrada)

Monte Carlo X Las Vegas

- Monte Carlo,
 a partir de Las Vegas
- 1) enquanto tempo < t
- 2) se Las Vegas encontra SIM,
- 3) responda SIM
- 4) se Las Vegas encontra NÃO,
- 5) responda NÃO
- 6) reponda NÃO (arbitrariamente)
- → Monte Carlo baseado-no-SIM
- → X = "tempo do Las Vegas"
- → $\Pr \{\text{"erro"}\} = \Pr \{C_s, A_N\}$ = $\Pr \{C_s\} . \Pr \{A_N | C_s\}$ ≤ $\Pr \{\text{"}X \ge t\text{"}\}$

- Las Vegas,
 a partir de 2 Monte Carlos
- 1) repita
- 2) se MC-SIM encontra SIM,
- 3) responda SIM
- 4) se MC-NÃO encontra NÃO,
- 5) responda NÃO
- → número *T* de iterações

V. A. geométrica!

- → Pr {"sucesso"} = $p = 1 \varepsilon_{\text{SIM}} \cdot \varepsilon_{\text{NÃO}}$
- → **E**[T] = 1/p

Markov! Chebyshev!

Modelo de bolas e latas

O colecionador de coupons

Exemplo: IDENTIFICAÇÃO DE ROTEADORES

1) Método da esperança

1) Método da esperança

Se **E** [X] = μ , então existe elemento para o qual $X \le \mu$ e existe elemento para o qual $X \ge \mu$

1) Método da esperança

Exemplo: CORTES GRANDES EM GRAFOS

1) Método da esperança

Exemplo: CORTES GRANDES EM GRAFOS

1) Método da esperança

Exemplo: CORTES GRANDES EM GRAFOS

Para cada vértice v...

coloque v em A com probabilidade ½

coloque v em B com probabilidade ½

Retorne o corte (A,B)

X = tamanho do corte retornado

$$X_j = \begin{cases} 1, \text{ aresta j pertence ao corte} \\ 0, \text{ caso contrário} \end{cases}$$

(Bernoulli)

Pr {"sucesso"} =
$$p$$
 = ?

$$X = \sum_{j} X_{j}$$

$$E[X] = \sum_{j} E[X_{j}] = m \cdot p = m/2$$

2) Método da probabilidade positiva

2) Método da probabilidade positiva

Espaço probabilístico Ω

2) Método da probabilidade positiva

Algoritmo ruim (não serve para a prova)

Algoritmo adequado (serve para a prova)

Algoritmos Randomizados: Introdução

Celina Figueiredo
Guilherme Fonseca
Manoel Lemos

→ Vinícius Sá

26° Colóquio Brasileiro de Matemática IMPA – Rio de Janeiro – Brasil 2007