Регулярные грамматики и выражения. Теорема Клини

Теория формальных языков $2023 \ z$.

Грамматики

Определение

Грамматика — это четвёрка $G = \langle N, \Sigma, P, S \rangle$, где:

- N алфавит нетерминалов;
- Σ алфавит терминалов;
- Р множество правил переписывания $\alpha \to \beta$ типа $\langle (\mathsf{N} \cup \Sigma)^+ \times (\mathsf{N} \cup \Sigma)^* \rangle;$
- $S \in N$ начальный символ.

$$\alpha \to \beta$$
, если $\alpha = \gamma_1 \alpha' \gamma_2$, $\beta = \gamma_1 \beta' \gamma_2$, и $\alpha' \to \beta' \in P$. \to^* — рефлексивное транзитивное замыкание \to .

Язык $\mathcal{L}(G)$, порождаемый G — множество $\{u \mid u \in \Sigma^* \& S \Rightarrow^* u\}$. Сентенциальная форма — элемент множества $\{u \mid u \in (N \cup \Sigma)^* \& S \Rightarrow^* u\}$.

Регулярные грамматики и НКА

Регулярная (праволинейная) грамматика G содержит правила вида $S \to \epsilon$ (причём S не встречается в правых частях никаких правил), $T_i \to \alpha_i$, $T_i \to \alpha_i$ T_j .

То есть во всех сентенциальных формах либо нет нетерминалов, либо он единствен и расположен строго справа от терминальных символов.

Каждый нетерминал N описывает собственный язык $\mathcal{L}(N)$ относительно G — язык слов, которые выводятся из N за конечное число применений правил грамматики G.

Регулярные грамматики и НКА

Регулярная (праволинейная) грамматика G содержит правила вида $S \to \epsilon$ (причём S не встречается в правых частях никаких правил), $T_i \to a_i$, $T_i \to a_i$ T_j .

То есть во всех сентенциальных формах либо нет нетерминалов, либо он единствен и расположен строго справа от терминальных символов.

НКА (неформально) определяется списком правил перехода и финальными состояниями.

- $T_i \to a_i T_j$ соответствует переходу $\langle T_i, a_i, T_j \rangle$;
- $T_i \to \alpha_i$ соответствует переходу $\langle T_i, \alpha_i, F \rangle$, где F уникальное финальное состояние;
- $S \to \epsilon$ соответствует объявлению S финальным.

Операции в регулярных грамматиках

Объединение

Дано: G_1 и G_2 — праволинейные. Построить $G: \mathcal{L}(G) = \mathcal{L}(G_1) \cup \mathcal{L}(G_2)$.

- Переименовать нетерминалы из N_1 и N_2 , чтобы стало $N_1 \cap N_2 = \emptyset$ (сделать α -преобразование). Применить переименовку к правилам G_1 и G_2 .
- Объявить стартовым символом свежий нетерминал S и для всех правил G_1 вида $S_1 \to \alpha$ и правил G_2 вида $S_2 \to \beta$, добавить правила $S \to \alpha$, $S \to \beta$ в правила G.
- **3** Добавить в правила G остальные правила из G_1 и G_2 .

Операции в регулярных грамматиках

Конкатенация

Дано: G_1 и G_2 — праволинейные. Построить $G: \mathcal{L}(G) = \mathcal{L}(G_1) \mathcal{L}(G_2)$.

- Переименовать нетерминалы из N_1 и N_2 , чтобы стало $N_1 \cap N_2 = \emptyset$ (сделать α-преобразование).
- **2** Построить из G_1 её вариант без ϵ -правил (см. ниже).
- По всякому правилу из G_1 вида $A \to \mathfrak{a}$ строим правило G вида $A \to \mathfrak{a} S_2$, где S_2 стартовый нетерминал G_2 .
- f O Добавить в правила G остальные правила из G_1 и G_2 . Объявить S_1 стартовым.
- **§** Если $\varepsilon \in \mathscr{L}(\mathsf{G}_1)$ (до шага 2), то по всем $\mathsf{S}_2 \to \beta$ добавить правило $\mathsf{S}_1 \to \beta$.

Операции в регулярных грамматиках

Положительная итерация Клини

Дано: G_1 — праволинейная. Построить

 $G: \mathscr{L}(G) = \mathscr{L}(G_1)^+.$

- \bullet Построить из G_1 её вариант без ϵ -правил.
- По всякому правилу из G_1 вида $A \to \mathfrak{a}$ строим правило G вида $A \to \mathfrak{a} S_1$, где S_1 стартовый нетерминал G_1 .
- **3** Добавить в правила G все (включая вида $A \to a$) правила из G_1 . Объявить S_1 стартовым.
- $oldsymbol{\epsilon}$ Если $oldsymbol{\epsilon} \in \mathscr{L}(\mathsf{G}_1)$ (до шага 2), добавить правило $\mathsf{S}_1 o oldsymbol{\epsilon}$ и вывести S_1 из рекурсии.

Построение грамматики без ε-правил

Дано: G — праволинейная. Построить G' без правил вида $\mathsf{A} \to \varepsilon$ такую, что $\mathscr{L}(\mathsf{G}') = \mathscr{L}(\mathsf{G})$ или $\mathscr{L}(\mathsf{G}') \cup \{\varepsilon\} = \mathscr{L}(\mathsf{G}).$

- $oldsymbol{0}$ Перенести в G' все правила G, не имеющие вид $A \to \varepsilon$.
- $oldsymbol{2}$ Если существует правило $A o \epsilon$, то по всем правилам вида $B o \alpha A$ дополнительно строим правила $B o \alpha$.

Пересечение регулярных грамматик

Дано: G_1 , G_2 — праволинейные. Построить G' такую, что $\mathscr{L}(G') = \mathscr{L}(G_1) \cap \mathscr{L}(G_2)$.

- **①** Построить стартовый символ G' пару $\langle S_1, S_2 \rangle$, где S_i стартовый символ грамматики G_i .
- **②** Поместить $\langle S_1, S_2 \rangle$ в множество U неразобранных нетерминалов. Множество T разобранных нетерминалов объявить пустым.
- **3** Для каждого очередного нетерминала $(A_1, A_2) \in U$:
 - lacktriangle если $A_1 o a \in G_1$, $A_2 o a \in G_2$, тогда добавить в G' правило $\langle A_1, A_2 \rangle o a$;
 - lacktriangled если $A_1 o aA_3 \in G_1, A_2 o aA_4 \in G_2$, тогда добавить в G' правило $\langle A_1, A_2 \rangle o a \langle A_3, A_4 \rangle$, а в U нетерминал $\langle A_3, A_4 \rangle$, если его ещё нет в множестве T:
 - \odot если все пары правил, указанные выше, были обработаны, тогда переместить $\langle A_1, A_2 \rangle$ из U в T.
- Повторять шаг 3, пока множество U не пусто.
- § Если $\varepsilon \in \mathscr{L}(\mathsf{G}_1)$ & $\varepsilon \in \mathscr{L}(\mathsf{G}_2)$, тогда добавить в G' правило $\langle \mathsf{S}_1, \mathsf{S}_2 \rangle \to \varepsilon$.

Лемма о накачке

Пусть п — число нетерминалов в регулярной грамматике G для языка \mathscr{L} .

Рассмотрим слово $w \in \mathcal{L}(G), |w| \geqslant n+1$. Оно получается применением цепочки из n+1 правил \Rightarrow после применения хотя бы двух из них нетерминал в сентенциальной форме результата повторится.

$$S \xrightarrow{\longrightarrow} w_1 A \xrightarrow{\longrightarrow} w_1 w_2 A \xrightarrow{\longrightarrow} w_1 w_2 w_3$$

не больше $n+1$ шага
$$|w_1| + |w_2| \leqslant n+1$$

По построению, $w_3 \in \mathcal{L}(A)$ (поскольку A в конечном счёте раскрывается в w_3), и также $w_2w_3 \in \mathcal{L}(A)$, причём $|w_2| > 0$. Кроме того, $w_1\mathcal{L}(A) \subseteq \mathcal{L}(G)$, поскольку

Лемма о накачке

Рассмотрим слово $w \in \mathcal{L}(\mathsf{G}), |w| \geqslant n+1$. Оно получается применением цепочки из n+1 правил \Rightarrow после применения хотя бы двух из них нетерминал в сентенциальной форме результата повторится.

Известно, что $|w_1| + |w_2| \le n + 1$.

$$S \longrightarrow \cdots \longrightarrow w_1$$
 $A \longrightarrow \cdots \longrightarrow w_1 w_2$ $A \longrightarrow \cdots \longrightarrow w_1 w_2 w_3$ P_3 : вывод W_3 из A

Поскольку $A \to^* w_2 A$, то $\forall k (A \to^* w_2^k A)$ (достаточно повторить k раз вывод ρ_2). Значит, $\forall k (w_1 \ w_2^k \ w_3 \in \mathscr{L}(\mathsf{G}))$.

Лемма о накачке

Утверждение

Если G — регулярная, то существует такое $n \in \mathbb{N}$, что $\forall w \big(w \in \mathcal{L}(\mathsf{G}) \& |w| > n \Rightarrow \exists w_1, w_2, w_3 \big(|w_2| > 0 \& |w_1| + |w_2| \leqslant n \& w = w_1 \ w_2 \ w_3 \& \ \forall k (k \geqslant 0 \Rightarrow w_1 \ w_2^k \ w_3 \in \mathcal{L}(\mathsf{G})) \big) \big).$

Известно, что $|w_1| + |w_2| \le n + 1$.

$$\underbrace{S \longrightarrow \cdots \longrightarrow w_1}_{\rho_1: \text{ вывод } w_1 A \text{ из } S}^{\rho_2: \text{ вывод } w_2 A \text{ из } A} \xrightarrow{\rho_3: \text{ вывод } w_3 \text{ из } A}_{\rho_3: \text{ вывод } w_3 \text{ из } A}$$

Поскольку $A \to^* w_2 A$, то $\forall k (A \to^* w_2^k A)$ (достаточно повторить k раз вывод ρ_2). Значит, $\forall k (w_1 \ w_2^k \ w_3 \in \mathscr{L}(\mathsf{G}))$.

Ещё раз о структуре накачек

Если G — регулярная, то существует такое $n \in \mathbb{N}$, что $\forall w \big(w \in \mathcal{L}(\mathsf{G}) \ \& \ |w| \geqslant n \Rightarrow \exists w_1, w_2, w_3 \big(|w_2| > 0 \ \& \ |w_1| + |w_2| \leqslant n \ \& \ w = w_1 w_2 w_3 \ \& \ \forall k (k \geqslant 0 \Rightarrow w_1 w_2^{\ k} w_3 \in \mathcal{L}(\mathsf{G})) \big) \big).$

- п длина накачки;
- w₁ префикс накачки;
- w_2 накачиваемый фрагмент (или просто «накачка»);
- w₃ суффикс накачки;
- w_1w_2 область накачки;
- слово w_1w_3 (случай k=0) результат «пустой накачки» или «отрицательной накачки»;
- слова $w_1 w_2^k w_3$, где $k \ge 2$ результаты «положительной накачки».

Применение леммы о накачке

Ниже запись x[y] означает, что выбор x зависит от y.

Отрицание классической леммы о накачке

Пусть \mathscr{L} — произвольный формальный язык. Если $\forall n \in \mathbb{N} \ \exists w[n] \ (w \in \mathscr{L} \& |w| \geqslant n \&$ $\forall w_1[n,w], w_2[n,w], w_3[n,w] \ (|w_2| > 0 \& |w_1| + |w_2| \leqslant n \& w = w_1w_2w_3 \Rightarrow \exists i[n,w,w_1,w_2,w_3] \ (i \geqslant 0 \& w_1w_2{}^iw_3 \notin \mathscr{L})))$, то \mathscr{L} — не регулярный.

На розовом фоне — параметры, которые выбираются произвольно. На голубом — те, которые можно конкретизировать. Таким образом, можно трактовать применение этой формы леммы о накачке как игру двух участников: «красные» пытаются создать максимально плохие условия для её применения, а «синие» — найти выигрышную стратегию в рамках условий «красных».

Применение леммы о накачке

Ниже запись x[y] означает, что выбор x зависит от y.

Отрицание классической леммы о накачке

На розовом фоне — параметры, которые выбираются произвольно. На голубом — те, которые можно конкретизировать. Иногда такие игры «за кванторы» при использовании формул с большим количеством чередований ∀ и ∃ называют «играми демона и ангела» (d∀emonic vs. ang∃lic nondeterministic choice) или игрой «Абеляра и Элоизы».

Применение леммы о накачке

- Ход «красных» выбор n. Каждое доказательство начинается фразой: «пусть n длина накачки».
- Ход «синих»: ищем «ненакачиваемое» слово w. Это слово должно зависеть от n (его длина не меньше), и быть достаточно удобным для анализа (чтобы минимизировать количество разбиений его на фрагменты накачки).
- Ход «красных». Мы его не знаем, поэтому должны перебрать все возможные. В рамках префикса длины не больше п рассматриваем допустимые разбиения выбранного w на w_1 и w_2 . Например, если w начинается с префикса \mathfrak{a}^n , то с учётом ограничения $|w_1|+|w_2|\leqslant n$ возможна только ситуация, когда $w_1=\mathfrak{a}^{k_1}$, $w_2=\mathfrak{a}^{k_2}$, причём $k_2\geqslant 1$ и $k_1+k_2\leqslant n$.
- Выбор w_1 и w_2 однозначно определяет и значение w_3 .
- Ход «синих». По каждому разбиению строим накачиваемую серию $w_1(w_2)^i w_3$ и предъявляем такое значение i_0 , что $w_1(w_2)^{i_0} w_3 \notin \mathcal{L}$.

Примеры применения леммы о накачке

Обозначим обращение (reversal) слова w как w^R . Рассмотрим язык $\mathscr{L} = \{ w \, w^R \mid w \in \Sigma^+ \}$.

Пусть длина накачки — п. Рассмотрим слово

$$|\mathfrak{b}^{n+1}\mathfrak{a}\,\mathfrak{a}\,\mathfrak{b}^{n+1}|\in\mathscr{L}.$$
 Поскольку $|w_1|+|w_2|\leqslant n$, то

 $w_2=b^{\ \mathbf{k}}$, $\mathbf{k}\geqslant 1$. Но $b^{\mathbf{m}}$ а а $b^{\mathbf{n}}\notin \mathscr{L}$, если $\mathbf{m}\neq \mathbf{n}$. Поэтому \mathscr{L} — не регулярный.

12 / 24

Примеры применения леммы о накачке

Обозначим обращение (reversal) слова w как w^R . Рассмотрим язык $\mathscr{L} = \{w \, w^R \mid w \in \Sigma^+\}$.

Пусть длина накачки — п. Рассмотрим слово

$$b^{n+1}$$
а а $b^{n+1} \in \mathscr{L}$. Поскольку $|w_1| + |w_2| \leqslant n$, то

$$w_2=b^{-\mathbf{k}}$$
, $\mathbf{k}\geqslant 1$. Но $b^{\mathbf{m}}a$ а $b^{\mathbf{n}}\notin\mathscr{L}$, если $\mathbf{m}\neq \mathbf{n}$. Поэтому \mathscr{L} — не регулярный.

Рассмотрим язык $\mathcal{L}' = \{a^n b^m \mid n \neq m\}.$

Пусть длина накачки — п. Рассмотрим множество слов

$$a^n b^{n+n!} \in \mathscr{L}'$$
. Поскольку $|w_1| + |w_2| \leqslant n$, то

$$w_2=a^{-k}$$
, $k\geqslant 1$. Но для всех $k\leqslant n\ \exists v(n+k\cdot v=n+n!)$, а именно $v=\frac{n!}{k}$. Поэтому слово вида $a^{n+n!}b^{n+n!}\in \mathscr{L}'$, что

абсурдно. Следовательно, \mathscr{L}' не является регулярным.

Анализ на достаточность

Является ли лемма о накачке достаточной характеристикой регулярных языков? Существуют ли языки, которые «накачиваются» согласно её формулировке, но не регулярны?

Гипотеза

$$\begin{split} \mathsf{G} &\longrightarrow \mathsf{perулярная} \stackrel{???}{\Longleftrightarrow} \mathsf{cyществует} \ \mathsf{такоe} \ \mathsf{n} \in \mathbb{N}, \, \mathsf{что} \ \forall w \big(w \in \\ \mathscr{L}(\mathsf{G}) \ \& \ |w| \geqslant \mathsf{n} \Rightarrow \exists w_1, w_2, w_3 \big(|w_2| > 0 \ \& \ |w_1| + |w_2| \leqslant \\ \mathsf{n} \ \& \ w = w_1 \ w_2 \ w_3 \ \& \ \forall \mathsf{k} \big(\mathsf{k} \geqslant 0 \Rightarrow w_1 \ w_2^{\mathsf{k}} \ w_3 \in \mathscr{L}(\mathsf{G}) \big) \big) \big). \end{split}$$

Анализ на достаточность

Гипотеза

G — регулярная $\stackrel{???}{\Longleftrightarrow}$ существует такое $n \in \mathbb{N}$, что $\forall w (w \in \mathcal{L}(G) \& |w| \geqslant n \Rightarrow \exists w_1, w_2, w_3 (|w_2| > 0 \& |w_1| + |w_2| \leqslant n \& w = w_1 \ w_2 \ w_3 \& \ \forall k (k \geqslant 0 \Rightarrow w_1 \ w_2^k \ w_3 \in \mathcal{L}(G)))).$

Рассмотрим язык $\mathscr{L}=\left\{w\,w^{\mathsf{R}}\,z\,|\,w\in\Sigma^{+}\,\&\,z\in\Sigma^{+}\right\}$ и $\mathfrak{n}=4.$

- Если |w|=1, тогда можно разбить слово $w\,w^R\,z$ так: $w_1=w\,w^R,\,w_2=z[1],\,w_3=z\big[2..|z|\big].$ Тогда для всех k $w_1\,w_2^k\,w_3\in\mathscr{L}.$
- Если $|w| \geqslant 2$, тогда разбиваем так: $w_1 = \varepsilon$, $w_2 = w[1]$, $w_3 = w[2..|w|] \ w^R \ z$. Слова $w[2..|w|] \ w^R \ z$ и $w[1]^k \ w[2..|w|] \ w^R \ z$ при $k \geqslant 2$ также принадлежат \mathscr{L} .

Анализ на достаточность

<u>Ги</u>потеза

G — регулярная $\stackrel{???}{\Longleftrightarrow}$ существует такое $n \in \mathbb{N}$, что $\forall w \big(w \in \mathscr{L}(\mathsf{G}) \& |w| \geqslant n \Rightarrow \exists w_1, w_2, w_3 \big(|w_2| > 0 \& |w_1| + |w_2| \leqslant n \& w = w_1 \ w_2 \ w_3 \& \ \forall k (k \geqslant 0 \Rightarrow w_1 \ w_2^k \ w_3 \in \mathscr{L}(\mathsf{G})) \big) \big).$

Мы нашли длину накачки для $\left\{ w\,w^{\mathsf{R}}\,z\,|\,w\in\Sigma^{+}\,\&\,z\in\Sigma^{+}\right\}$ (она равна 4), но язык регулярным не является. Следовательно, лемма о накачке — только необходимое, но не достаточное условие регулярности.

13 / 24

Смысл леммы о накачке

Структура доказательства указывает, что длина накачки п регулярного языка $\mathscr L$ не больше (возможно, меньше) числа нетерминалов в минимальной грамматике для $\mathscr L$.

Покажем, что у некоторых регулярных языков длина накачки действительно меньше, чем размер минимального НКА (или минимальной регулярной грамматики).

Смысл леммы о накачке

Рассмотрим $\mathscr{L}=\mathfrak{a}\mid \mathfrak{b}\mid (\mathfrak{a}\mid \mathfrak{a}\mid \mathfrak{b}\}^*\mathfrak{a})|(\mathfrak{b}\mid \mathfrak{a}\mid \mathfrak{b}\}^*\mathfrak{b}).$ Если выбрать длину накачки $\mathfrak{n}=2$, то в качестве «накачки» Ψ можно взять вторую букву слова из $\mathscr{L}.$ Пусть G имеет два нетерминала S, T и распознаёт $\mathscr{L}.$ Если G содержит правила $S\to\mathfrak{a}T$ и $S\to\mathfrak{b}T$ (или $S\to\mathfrak{a}S, S\to\mathfrak{b}S$), то для некоторого непустого z слова вида $\mathfrak{a}z$ и $\mathfrak{b}z$ будут либо оба принадлежать $\mathscr{L},$ либо нет, чего не может быть. Значит, G содержит либо пару $S\to\mathfrak{a}T, S\to\mathfrak{b}S,$ либо пару $S\to\mathfrak{b}T, S\to\mathfrak{a}S.$ Рассмотрим первый случай. Тогда для некоторого непустого z имеем $\mathfrak{a}z\in\mathscr{L}\Leftrightarrow\mathfrak{b}^+\mathfrak{a}z\in\mathscr{L},$ что абсурдно.

Таким образом, в грамматике для $\mathscr L$ должно быть больше двух нетерминалов (можно обойтись тремя).

Достаточный вариант леммы о накачке

Видно, что проблемы с языком $\{w \, w^{\mathsf{R}} \, z \, | \, w \in \Sigma^+ \, \& \, z \in \Sigma^+ \}$ возникают из-за того, что у него очень удачный префикс: любая степень буквы, большая первой, начинается с палиндрома. Однако, если бы мы потребовали, чтобы слово из $\mathscr L$ начиналось с палиндрома хотя бы длины 4, подобное рассуждение уже не привело бы к успеху.

Достаточный вариант леммы о накачке

Мы можем искать не первый повтор нетерминала в пути разбора по грамматике, а любой, если осталось разобрать ещё достаточно длинный суффикс.

$$S \twoheadrightarrow \cdots \twoheadrightarrow \Phi \ A_0 \twoheadrightarrow \Phi \ \Psi' \ A \twoheadrightarrow \cdots \twoheadrightarrow \Phi \ \Psi' \ \Psi \ A \twoheadrightarrow \cdots \twoheadrightarrow \Phi \ \Psi' \ \Psi \ \Theta$$

Произвольное число шагов

Не более m шагов до повтора нетерминала

 \mathscr{L} регулярный \Leftrightarrow существует универсальная длина накачки m такая, что $w \in \mathscr{L}(|w| \geqslant m)$ для любого $i \leqslant |w| - m$ может быть представлено как $\Phi \Psi' \Psi \Theta$, где $|\Phi| = i$, $1 \geqslant |\Psi| \leqslant m$, $|\Psi'| + |\Psi| \leqslant m$, причём $\forall k (\Phi \Psi' \Psi^k \Theta \in \mathscr{L})$.

Академические регулярные выражения $\mathcal{R}\mathcal{E}$

- А | В альтернатива (вхождение слова или из А, или из В);
- A В конкатенация (множество слов с префиксами из А и суффиксами из В);
- А* итерация Клини (0 или более конкатенаций А с собой).
- A^+ положительная итерация (синтаксический сахар для выражения $A A^*$);
- A? опция (синтаксический сахар для выражения $(A \mid \epsilon)$).

И менее очевидные синтаксические конструкции, такие как отрицание, положительные и отрицательные «ретроспективные» и «опережающие» проверки (моделирующие в т.ч. пересечения), сохраняющие выразительную силу регулярных языков.

Академические регулярные выражения $\Re \mathcal{E}$

- А | В альтернатива (вхождение слова или из А, или из В);
- A В конкатенация (множество слов с префиксами из А и суффиксами из В);
- А* итерация Клини (0 или более конкатенаций А с собой).

Приоритет операций: итерация > конкатенация > альтернатива, то есть $ab^* \mid c^*d$ — то же, что $\left(a(b^*)\right) \mid \left((c^*)d\right)$.

Определим $\mathbf{r}_1=\mathbf{r}_2 \Leftrightarrow \mathscr{L}(\mathbf{r}_1)=\mathscr{L}(\mathbf{r}_2)$. Для всех $\mathbf{r}_1,\,\mathbf{r}_2,\,\mathbf{r}_3\in\mathcal{R}\mathcal{E}$:

- операции конкатенации и альтернативы ассоциативны;
- $\mathbf{r}_1 \mid \mathbf{r}_2 = \mathbf{r}_2 \mid \mathbf{r}_1;$
- $\bullet r_1(r_2 | r_3) = r_1r_2 | r_1r_3;$
- $(r_1 | r_2)r_3 = r_1r_3 | r_2r_3.$

Как описать все возможные тождества регулярных выражений?

Полукольца

Полукольцо $S = \langle \mathcal{A}, \oplus, \otimes, 0 \rangle$ над носителем \mathcal{A} — это алгебраическая структура такая, что:

- S коммутативный моноид по \oplus ;
- S полугруппа по \otimes ;
- 0 это id по сложению и ноль по умножению;
- выполнены левая и правая дистрибутивности.
- Регулярные выражения идемпотентное по \oplus полукольцо с единицей (ε) относительно | и ·. Нуль пустое выражение \varnothing , не распознающее никакую строку.
- Натуральные числа с +, · коммутативное полукольцо с 1.
- Если М множество, то $\langle 2^M, \cup, \cap, \varnothing \rangle$ идемпотентное коммутативное полукольцо с единицей, равной М.
- $\langle \mathbb{N} \cup \{\infty\}$, min, +, $\infty \rangle$ тропическое полукольцо.

Алгебра Клини

Для полной формализации алгебры регулярных выражений требуется ввести аксиомы для *. Конечной аксиоматизации для неё не существует, но можно построить полную схему аксиом.

Алгебра Клини $\langle \Sigma, |, \cdot, *, \varnothing, \varepsilon \rangle$ — идемпотентное полукольцо с единицей, удовлетворяющее следующим аксиомам:

- $x^*x + 1 = x^* = 1 + xx^*$ (аксиома развёртки)
- (формализация Саломаа, **Sal**): $\forall p, q, x ((p \mid qx = x \Rightarrow x = q^*p) \& (p \mid xq = x \Rightarrow x = pq^*))$, где q не распознаёт ε левая и правая леммы Ардена;
- (формализация Козена, **Koz**): $\forall p, q, x ((q \mid px \le x \Rightarrow p^*q \le x) \& (q \mid xp \le x \Rightarrow qp^* \le x))$, где $x \le y \Leftrightarrow x \mid y = y, x = y \Leftrightarrow x \le y \& y \le x$.

Алгебра Клини

В выводах далее используются следующие условные обозначения.

Сокращение	Аксиома
(ldm)	$x \mid x = x$
(Unfold)	$\varepsilon \mid xx^* = x^*$, $\varepsilon \mid x^*x = x^*$
(Dstr)	$(x \mid y)z = xz \mid yz, \ x(y \mid z) = xy \mid xz$
(Koz)	$q \mid px \leqslant x \Rightarrow p^*q \leqslant x, q \mid xp \leqslant x \Rightarrow qp^* \leqslant x$

Применение коммутативности по альтернативе и ассоциативности, а также применение аксиом единицы в выводах не указываются.

Некоторые теоремы алгебры Клини

$$(\mathsf{Bsm})$$
 $ax = xb \Rightarrow a^*x = xb^*$ (Бисимуляция)

$$(\mathsf{SId}) \quad x(\mathsf{y} \mathsf{x})^* = (\mathsf{x} \mathsf{y})^* \mathsf{x}$$
 (Сдвиг)

(Dnst)
$$x^*(yx^*)^* = (x \mid y)^*$$
 (Уплощение)

Законы сдвига и уплощения используются в оптимизациях регулярных событий:

- закон сдвига позволяет перестраивать циклы с поствычислениями в циклы с предвычислениями;
- закон уплощения позволяет перестраивать друг в друга вложенные циклы и циклы с условиями внутри итерации.

Полнота аксиоматики

Теорема о полноте Sal и Koz

Любое равенство регулярных выражений выводимо из аксиоматики **Sal** и аксиоматики **Koz**.

Пример вывода в системе **Коz**:

(0)
$$x^* = xx^* \mid \varepsilon = xx^* \mid xx^* \mid \varepsilon = xx^* \mid x^*$$
 (Unfold + Idm)
(1) $x \mid yx = x \Rightarrow x \mid y^*x = x$ (Koz, $p = y$, $q = x$)

(2)
$$x^*x^* \mid x^* = x^*$$
 $(0+1)$

$$(2) \quad \chi^{\alpha} \chi^{\alpha} \mid \chi^{\alpha} \equiv \chi^{\alpha}$$

$$(0+1)$$

(3)
$$x^*x^* = (\varepsilon \mid xx^*)(\varepsilon \mid xx^*)$$
 (Unfold)
(4) $(\varepsilon \mid xx^*)(\varepsilon \mid xx^*) = (\varepsilon \mid xx^* \mid xx^*) \mid xxx^*$ (Dstr + 3)

(5)
$$(\varepsilon \mid xx^* \mid xx^*) \mid xxx^* = x^* \mid xxx^*$$
 $(Idm + Unfold + 4)$

(5)
$$(\varepsilon \mid xx^* \mid xx^*) \mid xxx^* = x^* \mid xxx^*$$
 $(Idm + Unfold + 4)$

(6)
$$x^* \mid xxx^* = x^* \mid (x^* \mid xxx^*)$$
 (Idm + 5)

(7)
$$x^* \mid (x^* \mid xxx^*) = x^* \mid x^*x^*$$
 (4+5)

(8)
$$x^*x^* \leqslant x^* \& x^* \leqslant x^*x^*$$
 (2+7)

$$(9) \quad \chi^* \chi^* = \chi^* \tag{3}$$

Смысл леммы Ардена и аксиом Козена

Неподвижная точка функции f(x) — такое x, что f(x) = x.

Пусть
$$X = (pX) \mid q$$
, где X — неизвестное $\Re \mathcal{E}$, а p , q — известные, причём $\varepsilon \notin \mathcal{L}(p)$. Тогда $X = (p)^*q$.

То есть p^*q — наименьшая (но не единственная) неподвижная точка выражения $px \mid q$ по отношению \leq , и единственная, если $\varepsilon \notin \mathcal{L}(p)$.

Рассмотрим систему уравнений:

$$X_1 = (A_{11}X_1) | (A_{12}X_2) | \dots | B_1$$

 $X_2 = (A_{21}X_1) | (A_{22}X_2) | \dots | B_2$

. . .

$$X_n = (A_{n1}X_1) | (A_{n2}X_2) | \dots | B_n$$

Положим $\varepsilon \notin A_{ij}$. Выразим X_1 через X_2, \ldots, X_n, X_2 через X_3, \ldots, X_n и т.д. Получим регулярное выражение для X_n (и после обратных подстановок также для X_{n-1}, \ldots, X_1).

От грамматики и НКА к ЯЕ

Теорема Клини

По каждому НКА можно построить $\Re \mathcal{E}$, распознающую тот же язык. Верно и обратное.

Здесь считаем, что в НКА нет є-переходов.

- Объявляем каждый нетерминал (или состояние НКА) переменной и строим для него уравнение:
 - По правилу A → аВ (или для стрелки из A в B) добавляем альтернативу аВ;
 - По правилу $A \to b$ (или для стрелки в финальное состояние) добавляем альтернативу без переменных.
 - Если начальное состояние финальное, добавляем в уравнение для S альтернативу ε.
- Решаем систему относительно S.

От грамматики к ЯЕ

Построим
$$\mathcal{RE}$$
 по грамматике: $egin{array}{cccc} S o aT & S o aS \\ T o aT & T o bT & T o b \end{array}$

Строим по правилам грамматики систему:

$$S = (\alpha S) \mid (\alpha T)$$

$$T = ((a \mid b)T) \mid b$$

Решаем второе уравнение: $T = (a \mid b)^*b$

Подставляем в первое: $S = (aS) \mid (a(a \mid b)^*b)$ Получаем ответ:

$$S = a^*a(a \mid b)^*b$$

Построим НКА, соответствующий этой грамматике:

От грамматики к ЯЕ

Построим
$$\mathcal{R}\mathcal{E}$$
 по грамматике: $egin{array}{cccc} S o aT & S o aS \\ T o aT & T o bT & T o b \end{array}$

Получаем ответ: $S = a^*a(a \mid b)^*b$

Построим НКА, соответствующий этой грамматике .

Видно, что решив уравнение для Т, по существу мы превратили его в НКА над регексами, имеющий на одно состояние меньше.

Можно было бы сказать, что и выражение для $\mathcal{L}(S)$ соответствует НКА с одним переходом (из стартового состояния в финальное), если бы до S было «самое стартовое» состояние с переходом в S по ε . Это наблюдение приводит к «двойнику» решения уравнений по лемме Ардена — методу устранения состояний.

От грамматики к $\mathcal{R}\mathcal{E}$

В качестве промежуточной структуры здесь используется НКА с переходами по регулярным выражениям, а не по элементам алфавита.

Метод устранения состояний

- Для единообразия перед преобразованием вводится новое начальное состояние S с ε-переходом в начальное состояние q₀, и финальное состояние T, с ε-переходами в него из всех q ∈ F. Все состояния, кроме T, становятся нефинальными.
- Пусть требуется устранить состояние q такое, что $q \stackrel{\tau}{\to} q$. Тогда для всех пар q_A , q_B , где $q_A \stackrel{\Phi}{\to} q$, $q \stackrel{\Psi}{\to} q_B$ (q_A и q_B могут совпадать), добавляем переход $q_A \stackrel{\Phi(\tau)^*\Psi}{\longrightarrow} q_B$, и после всех таких добавлений удаляем q.
- Когда останутся только S и T, где S $\stackrel{\rho}{\to}$ T, то ρ и будет искомым регулярным выражением.

От грамматики к $\mathcal{R}\mathcal{E}$

Построим \mathcal{RE} по грамматике: $egin{array}{cccc} S o \alpha T & S o \alpha S \\ T o \alpha T & T o b T & T o b \end{array}$

Получаем ответ: $S = a^*a(a \mid b)^*b$

Если S выражать через T, получаем язык $\mathcal{L}(S) = a^*a(a \mid b)^*b$. Точно такое же выражение получится, если сначала применить к S лемму Ардена, а потом подставить туда результат вычисления $\mathscr{L}(\mathsf{T})$. Можно ли гарантировать, что любой порядок подстановок приведёт к одному и тому же результату?