Exercise 6. Let S_{Ω} be the minimal uncountable well-ordered set.

- (a) Show that S_{Ω} has no largest element.
- (b) Show that for every $\alpha \in S_{\Omega}$, the subset $\{x | \alpha < x\}$ is uncountable.
- (c) Let X_0 be the subset of S_{Ω} consisting of all elements x such that x has no immediate predecessor. Show that X_0 is uncountable.

Proof.

- (a) Suppose S_{Ω} has a largest element M. Then the section S_M is countable, and the set $\bar{S}_M = S_M \cup \{M\}$ is also countable. For all $x \in S_{\Omega}$, we have $x \leq M$, so that $S_{\Omega} \subset \bar{S}_M$ is countable. This is a contradiction, so S_{Ω} does not have a largest element.
- (b) Let $\alpha \in S_{\Omega}$, and $\bar{S}_{\alpha} = S_{\alpha} \cup \{\alpha\}$. Let $x \in S_{\Omega}$, x is comparable with α , so that exactly one of the following conditions is true: $x = \alpha$, or $x < \alpha$, or $\alpha < x$. From this we deduce that $S_{\Omega} = \bar{S}_{\alpha} \cup \{x | \alpha < x\}$. As the finite union of countable sets, \bar{S}_{α} is countable. Since S_{Ω} is uncountable, $\{x | \alpha < x\}$ must also be uncountable.
- (c) Suppose that X_0 is countable, then it has an upper bound m in S_{Ω} . Since S_{Ω} does not have a largest element, m has an immediate successor α_1 . By induction over $n \in \mathbb{Z}_+$, we define a function

$$\alpha: \mathbb{Z}_+ \to S_\Omega$$

$$n \mapsto \begin{cases} \alpha_1 & \text{if } n=1\\ \text{the immediate successor of } \alpha_{n-1} & \text{otherwise} \end{cases}$$

Note that, since S_{Ω} does not have a largest element, the immediate successor of α_n exists for all $n \in \mathbb{Z}_+$, so that the rule above defines a unique function $\alpha : \mathbb{Z}_+ \to S_{\Omega}$. Let $A = \{\alpha_n, n \in \mathbb{Z}_+\}$, α is a surjection from \mathbb{Z}_+ onto A, so A is a countable subset of S_{Ω} . Therefore A has an upper bound in S_{Ω} , and since S_{Ω} is a well-ordered set, A has a least upper bound $u \in S_{\Omega}$ which verifies

$$m < \alpha_1 < \alpha_2 < \dots \le u \tag{1}$$

Suppose that there exists $p \in \mathbb{Z}_+$ such that $\alpha_p = u$. Then as the immediate successor of α_p , α_{p+1} must verify $\alpha_{p+1} > u$, which contradicts the fact that u is an upper bound for A. Therefore

$$\forall n \in \mathbb{Z}_+, \quad \alpha_n < u. \tag{2}$$

Suppose that u has an immediate predecessor v.

If there exists $r \in \mathbb{Z}_+$ such that $v < \alpha_r$, then from (2), we deduce that $\alpha_r < u$, which contradicts the fact that v is the immediate predecessor of u. Therefore

$$\forall n \in \mathbb{Z}_+, \quad \alpha_n \le v$$

and this last proposition contradicts the fact that u is the least upper bound of A.

From the above we deduce that u does not have an immediate predecessor, which implies that $u \in X_0$, and therefore $u \leq m$. This contradicts (1), so X_0 does not have an upper bound in S_{Ω} and is therefore an uncountable subset of S_{Ω} .