Construct a DFA recognising the following language:

$$L = \{w \in \Sigma^* | \text{ every odd position of } w \text{ is } 1\}$$

Justification not required.

Let DFA M recognise L=L(M), M has:

- ullet states $Q=\{q_0,q_1,q_2,q_3\}$
- ullet start state $q_0\in Q$
- ullet accept states $A=\{q_0,q_1,q_2\}$ and,
- ullet transition function δ :

Input State	Letter	Output State
q_0	1	q_1
q_0	$a\in \Sigma, a\neq 1$	q_3
q_1	$a\in \Sigma$	q_2
q_2	1	q_1
q_2	$a\in \Sigma, a eq 1$	q_3
q_3	$a\in \Sigma$	q_3