## 2024 Year 5 Math Practice Paper 2 Suggested Solutions

| Qn | Suggested Solution                                                                                                                                                             |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Let the price of a desktop monitor, keyboard and mouse be $x$ , $y$ and $z$ respectively. $x + y + z = 317.90$                                                                 |
|    | 0.9x + 0.85y + 0.9z = 282.66                                                                                                                                                   |
|    | 0.95x + 0.75y + 0.8z = 283.72                                                                                                                                                  |
|    | x = 219, $y = 69$ , $z = 29.9$                                                                                                                                                 |
|    | Employees of Company <i>B</i> will pay $[0.95(219)+0.75(69)+0.78(29.9)] = $283.12 > $282.66$ .                                                                                 |
|    | No, it will not be more attractive for employees from Company B to purchase all the three items from their own company since they will still have to pay more than the sale by |
|    | Company $A$ .                                                                                                                                                                  |
| Qn | Suggested Solution                                                                                                                                                             |
| 2  | Suggested Soldton                                                                                                                                                              |
|    | y = -x - a $y = x - a$                                                                                                                                                         |
|    | Ox                                                                                                                                                                             |
|    | $y = \frac{2}{x}$                                                                                                                                                              |
|    | For $x < 0$ , solve $\frac{2}{x} = -x - a$ to determine the x-coordinate of the point of intersection.                                                                         |
|    | $x^2 + ax + 2 = 0$                                                                                                                                                             |
|    | $\left(x + \frac{a}{2}\right)^2 + 2 - \frac{a^2}{4} = 0$                                                                                                                       |
|    | $x = -\frac{a}{2} \pm \sqrt{\frac{a^2}{4} - 2} = -\frac{a}{2} \pm \sqrt{\frac{a^2 - 8}{4}}$                                                                                    |
|    | Since $a^2 > 9$ , then $a^2 - 8 > 0$ .                                                                                                                                         |
|    | From the graph, the soln is                                                                                                                                                    |
|    | $\left  -\frac{a}{a} + \sqrt{\frac{a^2 - 8}{a^2}} \right  < x < 0$ $x < -\frac{a}{a} - \sqrt{\frac{a^2 - 8}{a^2}}$                                                             |



| Qn   | Suggested Solutions                                                                                     |
|------|---------------------------------------------------------------------------------------------------------|
| 4(a) | $\frac{dy}{dt} = -\frac{3}{(1+t^2)^2} (2t) = \frac{-6t}{(1+t^2)^2}$                                     |
|      | $\frac{\mathrm{d}x}{\mathrm{d}t} = 9t^2$                                                                |
|      | $\frac{dy}{dx} = \frac{-6t}{(1+t^2)^2} \times \frac{1}{9t^2} = \frac{-2}{3t(1+t^2)^2}$                  |
|      | There are no real solutions for t when $\frac{dy}{dx} = 0$ . Curve C has no stationary points.          |
|      | Alternatively, $\frac{-2}{3t(1+t^2)^2} = 0 \Rightarrow -2 = 0$ (Inconsistent). Thus C has no stationary |
|      | points.                                                                                                 |



Qn
 Suggested Solution

 5(a)
 
$$e^y = 2 + e^x$$

 Differentiate with respect to  $x$ 
 $e^y \frac{dy}{dx} = e^x$ 

 Differentiate with respect to  $x$ 
 $e^y \left(\frac{dy}{dx}\right) \left(\frac{dy}{dx}\right) + e^y \frac{d^2y}{dx^2} = e^x$ 
 $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = \frac{e^x}{e^y}$ 
 $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = \frac{dy}{dx}$  (shown)

 When  $x = 0$ ,  $y = \ln 3$ ,  $\frac{dy}{dx} = \frac{1}{3}$ ,  $\frac{d^2y}{dx^2} = \frac{2}{9}$ 
 $y = \ln 3 + x \left(\frac{1}{3}\right) + \frac{x^2}{2!} \left(\frac{2}{9}\right) + \dots$ 
 $= \ln 3 + \frac{x}{3} + \frac{x^2}{9} + \dots$ 

 (b)
  $y = \ln \left(2 + 1 + x + \frac{x^2}{2!} + \dots\right)$ 
 $= \ln 3 \left[1 + \frac{1}{3} \left(x + \frac{x^2}{2!} + \dots\right)\right]$ 
 $= \ln 3 + \ln \left[1 + \frac{1}{3} \left(x + \frac{x^2}{2!} + \dots\right)\right]$ 

| $y = \ln(2 + e^x) = \ln 3 + \ln[1 + X]$ $\left[ \text{let } X = \frac{1}{3} \left( x + \frac{x^2}{2!} + \dots \right) \right]$                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $= \ln 3 + \left[ X - \frac{1}{2} X^2 + \dots \right]  \text{(apply std series of } \ln(1+X) \text{)}$                                                                        |
| $= \ln 3 + \left[ \frac{1}{3} \left( x + \frac{x^2}{2!} + \dots \right) - \frac{1}{2} \left( \frac{1}{3} \left( x + \frac{x^2}{2!} + \dots \right) \right)^2 + \dots \right]$ |
| $= \ln 3 + \left[ \frac{x}{3} + \frac{x^2}{6} - \frac{x^2}{18} + \dots \right]$                                                                                               |
| $= \ln 3 + \frac{x}{3} + \frac{x^2}{9} + \dots \text{ (verified)}$                                                                                                            |

| Su                                         | Suggested Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |  |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|
| n                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Loan balance at end of month                                |  |
|                                            | of month (after interest)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (after repayment)                                           |  |
| 1                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 847500 – M                                                  |  |
|                                            | (847500 - M)(1.0025)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 847500(1.0025) - 1.0025M - M                                |  |
|                                            | = 847500(1.0025) - 1.0025M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             |  |
| 3                                          | 847500(1.0025) <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 847500(1.0025) <sup>2</sup>                                 |  |
|                                            | $-1.0025^2M - 1.0025M$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-M(1.0025^2+1.0025+1)$                                     |  |
| :                                          | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                                           |  |
| n                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 847500(1.0025) <sup>n-1</sup>                               |  |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $-M(1.0025^{n-1}++1.0025+1)$                                |  |
| Lo                                         | 847500(1.0025) - 1.0025M - M<br>can at the end of <i>n</i> th month $847500(1.0025)^{n-1} - M(1.0025^{n-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ++1.0025+1)                                                 |  |
| Lo = 3                                     | oan at the end of <i>n</i> th month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\left(\frac{5^n}{25}\right)$                               |  |
| Lo = 3 = 3 = 5                             | can at the end of <i>n</i> th month $847500(1.0025)^{n-1} - M(1.0025^{n-1})$ $847500(1.0025)^{n-1} - M\left(\frac{1-1.002}{1-1.002}\right)$ $847500(1.0025)^{n-1} + 400M\left(1-1.002\right)$ The repaid in 25 years,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\left(\frac{5^n}{25}\right)$ $0025^n$                      |  |
| Lo = 3 = 3 = 5                             | can at the end of <i>n</i> th month $847500(1.0025)^{n-1} - M(1.0025^{n-1})$ $847500(1.0025)^{n-1} - M\left(\frac{1-1.002}{1-1.002}\right)$ $847500(1.0025)^{n-1} + 400M\left(1-1.002\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\left(\frac{5^n}{25}\right)$ $0025^n$                      |  |
| Lo = 3 = 3 = 3 = 5 = 5 = 5 = 5 = 5 = 5 = 5 | can at the end of <i>n</i> th month $847500(1.0025)^{n-1} - M(1.0025^{n-1})$ $847500(1.0025)^{n-1} - M\left(\frac{1-1.002}{1-1.002}\right)$ $847500(1.0025)^{n-1} + 400M\left(1-1.002\right)$ The repaid in 25 years,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{5^{n}}{25}$ $0025^{n}$ $0025^{300} = 0$              |  |
| Lo                                         | can at the end of <i>n</i> th month $847500(1.0025)^{n-1} - M(1.0025^{n-1})$ $847500(1.0025)^{n-1} - M\left(\frac{1-1.002}{1-1.002}\right)$ $847500(1.0025)^{n-1} + 400M\left(1-1.002\right)$ $847500(1.0025)^{n-1} + 400M\left(1-1.002\right)$ $847500(1.0025)^{n-1} + 400M\left(1-1.002\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{5^{n}}{25}$ $0025^{n}$ $0025^{300} = 0$              |  |
| Lo                                         | can at the end of $n$ th month $847500(1.0025)^{n-1} - M(1.0025^{n-1})$ $847500(1.0025)^{n-1} - M\left(\frac{1-1.002}{1-1.002}\right)$ $847500(1.0025)^{n-1} + 400M\left(1-1.002\right)$ | $\frac{5^{n}}{25}$ $0025^{n}$ $0025^{300}$ $185 = $4008.92$ |  |

| Qn      | Suggested Solution                                                                                                                                                                                                                               |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(a)(i) | $4y^2 - x^2 = 1$ Standard eqn of hyperbola: $\left(\frac{y}{1/2}\right)^2 - x^2 = 1$ To find equations of oblique asymptotes: $as \ x, y \to \infty,$ $4y^2 \to x^2$ $y \to \pm \frac{x}{2}$ ie. Equation of asymptotes: $y = \pm \frac{x}{2}$   |
|         | $y = \frac{x}{2}$ $(0,0.5)$ $y = \frac{x}{2}$ $y = -\frac{x}{2}$                                                                                                                                                                                 |
| (ii)    | $(2y)^{2} - x^{2} = 1 \xrightarrow{y \text{ by } \frac{y}{2}} y^{2} - x^{2} = 1 \xrightarrow{y \text{ by } (y-1)} (y-1)^{2} + x^{2} = 1$ 1) Scaling parallel to y axis by factor of 2 2) Translation by 1 unit in the positive y- axis direction |
| (b)     | $y = \frac{1}{f(2x)}$ $x = -2$ $y = \frac{1}{2}$ $(2,0)$ $x$ $B'(0,-2)$                                                                                                                                                                          |

| Qn      | Suggested Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 8a(i)   | $\sum_{r=1}^{n} \left( 2^{r+1} + 3r - r^2 \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|         | $=2\sum_{r=1}^{n}2^{r}+3\sum_{r=1}^{n}r-\sum_{r=1}^{n}r^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|         | $=2\left[\frac{2(2^{n}-1)}{2-1}\right]+3\left[\frac{n}{2}(n+1)\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|         | $-\frac{1}{6}(n)(n+1)(2n+1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|         | $=4(2^{n}-1)+\frac{n(n+1)}{6}(9-(2n+1))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|         | $=4(2^{n}-1)+\frac{1}{3}n(n+1)(4-n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| a(ii)   | Replace $r$ with $r+1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|         | $\sum_{r=4}^{N} \left( 2^r + 3r - (r-1)^2 \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|         | $=\sum_{r+1=4}^{r+1=N} \left(2^{r+1}+3(r+1)-(r+1-1)^2\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|         | $= \sum_{r=3}^{N-1} \left(2^{r+1} + 3r - r^2\right) + \sum_{r=3}^{N-1} 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|         | $= \sum_{r=1}^{N-1} \left(2^{r+1} + 3r - r^2\right) - \sum_{r=1}^{2} \left(2^{r+1} + 3r - r^2\right) + 3(N - 1 - 3 + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|         | $=4\left(2^{N-1}-1\right)+\frac{1}{3}(N-1)(N-1+1)(4-(N-1))-(16)+(3N-9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|         | $= 2(2^{N}) + \frac{1}{3}N(N-1)(5-N) + 3N - 29$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|         | where $B = 2, C = \frac{1}{3}, D = 3, E = -29$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 8b      | p=5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| (i, ii) | Method 1(GC) (preferred)  NORHAL FLOAT AUTO REAL RADIAN HP (NORHAL FLOAT AUTO REAL FLOAT AUTO REAL RADIAN HP (NORHAL FLOAT AUTO REAL FLOAT AUTO REAL RADIAN HP (NORHAL FLOAT AUT |  |
|         | THITIAL CONDITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|         | nMin=1<br>■\u(n+1)\B3u(n)-2<br>\u(1)\B5<br>6 973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|         | U(2)=  U(2)=  U(7)=  U(7)+1)=  U(1)=  7  8  87/9  9  26245  10  78733  11  256197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|         | V(1)-<br>V(2)=<br>■·w(n+1)=<br>11 12361971<br>n=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|         | $ \underline{\text{Method 2 (algebraic)}} $ $ y_1 = 3y_1 + 2 = 3(5) + 2 = 13 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|         | $v_2 = 3v_1 - 2 = 3(5) - 2 = 13$<br>$v_3 = 3v_2 - 2 = 3(13) - 2 = 37$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|         | $v_3 - 3v_2 - 2 - 3(13) - 2 - 37$<br>$v_4 = 3v_3 - 2 = 3(37) - 2 = 109$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|         | $v_4 = 3v_3 - 2 = 3(37) - 2 = 103$ & so on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|         | ∴ The sequence increases & diverges.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |

## $\frac{p=1}{M_{\text{other}}}$

### Method 1(GC) (preferred)

| NORMAL FLOAT AU INITIAL CONDITI Plot1 Plot2 | ON        | Ц         |
|---------------------------------------------|-----------|-----------|
| TYPE: SEQ(7)                                | SEQ(77+1) | SEQ(70+2) |
| nMin=1                                      |           |           |
| •\u(n+1)≣3                                  | u(n)−2    |           |
| u(1)≣1∎<br>u(2)=                            |           |           |
| u(2)-<br>■':∨(n+1)=                         |           |           |
| v(1)=                                       |           |           |
| v(2)=                                       |           |           |
| ∎\w(n+1)=                                   |           |           |

| n  | u |        |  |        |
|----|---|--------|--|--------|
| 1  | 1 | $\neg$ |  | $\neg$ |
| 2  | 1 |        |  |        |
| 3  | 1 |        |  |        |
| 4  | 1 |        |  |        |
| 5  | 1 |        |  |        |
| 6  | 1 |        |  |        |
| 7  | 1 |        |  |        |
| 8  | 1 |        |  |        |
| 9  | 1 |        |  |        |
| 10 | 1 |        |  |        |
| 11 | 1 |        |  |        |

#### Method 2 (algebraic)

$$v_2 = 3v_1 - 2 = 3(1) - 2 = 1$$
  
 $v_3 = 3v_2 - 2 = 3(1) - 2 = 1$   
 $v_4 = 3v_3 - 2 = 3(1) - 2 = 1$   
... & so on

∴It is a **constant** sequence which **converges to 1**.

 $= -\frac{1}{m^2} \sqrt{1 - m^2 x^2} + c$ 

| Qn         | Suggested Solution                                                                                                                                                                             |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 9(a)       | $\int \frac{5}{(2x-3)(x+1)}  \mathrm{d}x$                                                                                                                                                      |  |  |
|            | $= \int (\frac{2}{2x-3} - \frac{1}{x+1})  \mathrm{d}x$                                                                                                                                         |  |  |
|            | $=\ln 2x-3 -\ln x+1 +C$ where C is an arbitrary constant                                                                                                                                       |  |  |
| <b>(b)</b> | $\int_{\sqrt{2}}^{2} \frac{\sqrt{x^2 - 1}}{x} dx$ $dx = (\sec \theta \tan \theta) d\theta$                                                                                                     |  |  |
|            | $= \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sqrt{\sec^2 \theta - 1}}{\sec \theta} (\sec \theta \tan \theta) d\theta \qquad \text{When } x = 2, \sec \theta = 2$                             |  |  |
|            | $= \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan^2 \theta  d\theta$ $\cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$ $$                                                              |  |  |
|            | $= \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} (\sec^2 \theta - 1) d\theta$ $\text{when } x = \sqrt{2}, \sec \theta = \sqrt{2}$ $\cos \theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{4}$ |  |  |
|            | $= \left[\tan\theta - \theta\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}}$                                                                                                                           |  |  |
|            | $= \left(\tan\frac{\pi}{3} - \frac{\pi}{3}\right) - \left(\tan\frac{\pi}{4} - \frac{\pi}{4}\right)$                                                                                            |  |  |
|            | $=\sqrt{3}-1-\frac{\pi}{12}$                                                                                                                                                                   |  |  |
| (c)        | $\int \frac{x}{\sqrt{1 - m^2 x^2}}  \mathrm{d}x = -\frac{1}{2m^2} \int -2m^2 x \left(1 - m^2 x^2\right)^{-\frac{1}{2}}  \mathrm{d}x$                                                           |  |  |
|            | $= -\frac{1}{2m^2} \frac{\left(1 - m^2 x^2\right)^{-\frac{1}{2} + 1}}{\frac{1}{2} + 1} + c$                                                                                                    |  |  |

$$\int (\sin^{-1} mx) \frac{x}{\sqrt{1 - m^2 x^2}} dx$$

$$= \left( -\frac{\sin^{-1} mx}{m^2} \sqrt{1 - m^2 x^2} \right) - \int -\frac{1}{m} dx$$

$$u = \sin^{-1} mx \qquad \frac{dv}{dx} = \frac{x}{\sqrt{1 - m^2 x^2}}$$

$$\frac{du}{dx} = \frac{m}{\sqrt{1 - m^2 x^2}} \quad v = -\frac{1}{m^2} \sqrt{1 - m^2 x^2}$$

$$= \left( -\frac{\sin^{-1} mx}{m^2} \sqrt{1 - m^2 x^2} \right) + \frac{x}{m} + c$$

| 05           | Suggested Colution                                                                                                         |
|--------------|----------------------------------------------------------------------------------------------------------------------------|
| Qn           | Suggested Solution                                                                                                         |
| 10(a)<br>(i) | y = f(x) $y = 0$ $y = 0$ $y = 0$ $y = k$                                                                                   |
|              | Every horizontal line $y = k$ , $k \in \mathbb{R}$ cuts the graph of f at most once hence f is one-one and $f^{-1}$ exist. |
|              | Let $y = \frac{1}{x+a}$<br>$\Rightarrow xy + ay = 1$<br>$\Rightarrow xy = 1 - ay$                                          |
|              | $\Rightarrow xy + ay = 1$                                                                                                  |
|              | $\Rightarrow xy = 1 - ay$                                                                                                  |
|              | $\Rightarrow x = \frac{1 - ay}{y} = \frac{1}{y} - a$                                                                       |
|              | Therefore $f^{-1}: x \mapsto \frac{1}{x} - a,  x \in \mathbb{R},  x \neq 0.$                                               |
| (a)(ii)      | Since $R_f = \mathbb{R} \setminus \{0\}$ and $D_g = \mathbb{R}$                                                            |
|              | $R_f \subseteq D_g$ , thus gf exists.                                                                                      |
|              | . 5                                                                                                                        |
|              | x = -a $y$ $y = f(x)$ $y = g(x)$ $y = g(x)$ $y = 0$                                                                        |





$$= \int_0^3 \sqrt{15x + 4} - (x^2 - 2) \, dx$$

$$= \left[ \frac{(15x + 4)^{\frac{3}{2}}}{\frac{3}{2}(15)} - \frac{x^3}{3} + 2x \right]_0^3$$

$$= \left[ \frac{2}{45} (45 + 4)^{\frac{3}{2}} - \frac{27}{3} + 6 - \frac{2}{45} (4)^{\frac{3}{2}} \right]$$

$$= \left[ \frac{686}{45} - 3 - \frac{16}{45} \right]$$

$$= \frac{551 - 16}{45}$$

$$= \frac{535}{45}$$

$$= \frac{107}{9} \text{ unit}^2$$

Volume of revolution **11(c)** 

$$= \pi \left[ \int_{-2}^{7} y + 2 \, dy - \frac{1}{225} \int_{2}^{7} (y^2 - 4)^2 \, dy \right]$$
  
= 91.7 units<sup>3</sup>

# Alternative (markers' reference only) Volume of revolution

$$= \pi \left[ \int_{-2}^{7} y + 2 \, dy - \frac{1}{225} \int_{2}^{7} (y^{2} - 4)^{2} \, dy \right]$$

$$= \pi \left[ \left[ \frac{y^{2}}{2} + 2y \right]_{-2}^{7} - \frac{1}{225} \int_{2}^{7} y^{4} - 8y^{2} + 16 \, dy \right]$$

$$= \pi \left[ \frac{81}{2} - \frac{1}{225} \left[ \frac{y^{5}}{5} - \frac{8y^{3}}{3} + 16y \right]_{2}^{7} \right]$$

$$= \pi \left[ \frac{81}{2} - \frac{1}{225} \left( \frac{38381}{15} - \frac{256}{15} \right) \right]$$

$$= \pi \left[ \frac{81}{2} - \frac{305}{27} \right]$$

$$= \frac{1577}{54} \pi \quad \text{units}^{3}$$

| Qn           | Suggested Solutions                                                                                                                     |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| <b>12(a)</b> | $S_n = 3n(n+2)$                                                                                                                         |
|              | $u_n = S_n - S_{n-1}$                                                                                                                   |
|              | =3n(n+2)-3(n-1)(n+1)                                                                                                                    |
|              | =6n+3                                                                                                                                   |
|              | $u_n - u_{n-1} = 6n + 3 - (6(n-1) + 3)$                                                                                                 |
|              | =6n+3-6n+3                                                                                                                              |
|              | = 6 (constant)                                                                                                                          |
|              | Since the difference between two consecutive terms is a constant, the series is an arithmetic progression.  The common difference is 6. |
| (b)          | $v_1 = u_2 = 6(2) + 3 = 15$                                                                                                             |
|              | $v_2 = u_7 = 6(7) + 3 = 45$                                                                                                             |
|              | common ratio, $r = \frac{45}{15} = 3$                                                                                                   |
|              | $v_3 = 15(3)^2 = 135$                                                                                                                   |
|              | The $m^{\text{th}}$ term of the series in (i),                                                                                          |
|              | 135 = 6(m) + 3                                                                                                                          |
|              | $m = \frac{135 - 3}{6} = 22$                                                                                                            |
|              | Since $r = 3$ does not lie within $-1 < r < 1$ , the sum to infinity of $v_n$ does not exist.                                           |
| (c)          | common ratio = $\frac{w_n}{w_n}$                                                                                                        |
|              | $^{\prime\prime}n-1$                                                                                                                    |
|              | $= \frac{e^{5+nx(x+1)}}{e^{5+(n-1)x(x+1)}}$                                                                                             |
|              |                                                                                                                                         |
|              | $= \frac{e^5 e^{nx(x+1)}}{e^5 e^{(n-1)x(x+1)}}$                                                                                         |
|              | $= e^{nx(x+1)-(n-1)x(x+1)}$                                                                                                             |
|              |                                                                                                                                         |
|              | $= e^{x(x+1)}$ For the series to converge $\begin{vmatrix} e^{x(x+1)} \\ e^{x(x+1)} \end{vmatrix} < 1$ , $x(x+1) < 0$                   |
|              | For the series to converge, $\left  e^{x(x+1)} \right  < 1$ , $x(x+1) < 0$                                                              |
|              | The range of values of x is $-1 < x < 0$ .                                                                                              |



Sum of first *n* terms of  $v_n$ ,  $S_{v_n}$ 

$$=\frac{15(3^n-1)}{3-1}=\frac{15}{2}(3^n-1)$$

$$S_v > w_n$$
 using  $x = -0.5$ ,

$$S_{v_n} > w_n \text{ using } x = -0.5,$$
  
 $\frac{15}{2} (3^n - 1) > e^{5 + n(-0.5)(0.5)}$ 



From the graph, the least value of n is 3.

#### **Alternative (table method)**

| Qn         | Suggested Solution                                                                                                                                             |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13(a)      | Let $OB$ be $x$ m.                                                                                                                                             |
|            | $AB-x \qquad 3$ $\theta \qquad 2$ $O \qquad x \qquad \theta$                                                                                                   |
|            | From diagram,                                                                                                                                                  |
|            |                                                                                                                                                                |
|            | $\cos \theta = \frac{3}{AB - x}$ and $\sin \theta = \frac{2}{x}$ .                                                                                             |
|            | So we have $AB = (AB - x) + x = \frac{3}{\cos \theta} + \frac{2}{\sin \theta}$ , where $\alpha = 3, \beta = 2$ .                                               |
| <b>(b)</b> | Differentiating the result in part (a) with respect to $t$ ,                                                                                                   |
|            | $\frac{\mathrm{d}(AB)}{\mathrm{d}t} = \left(3\sec\theta\tan\theta - 2\csc\theta\cot\theta\right)\left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)\cdots(*)$    |
|            | When $OB = \frac{2}{\sin \theta} = 4$ , $\theta = \frac{1}{6}\pi$ .                                                                                            |
|            | Subst $\theta = \frac{1}{6}\pi$ and $\frac{d\theta}{dt} = -0.1$ into (*):                                                                                      |
|            | Using GC, $\frac{d(AB)}{dt} = 0.493 \text{ m/s (to 3 s.f.)}$                                                                                                   |
|            | $\therefore$ Rate of increase in AB when $OB = 4$ is $0.493$ m/s                                                                                               |
| (c)        | $p \le AB$ for all possible lengths $p$ and angles $\theta$ ,                                                                                                  |
|            | i.e. $\max p = \min AB$ .                                                                                                                                      |
|            | $AB = \frac{3}{\cos \theta} + \frac{2}{\sin \theta}.$                                                                                                          |
|            |                                                                                                                                                                |
|            | $\frac{d(AB)}{d\theta} = \frac{3\sin\theta}{\cos^2\theta} - \frac{2\cos\theta}{\sin^2\theta} = \frac{3\sin^3\theta - 2\cos^3\theta}{\cos^2\theta\sin^2\theta}$ |
|            | At min AB, $\frac{d(AB)}{d\theta} = 0$                                                                                                                         |
|            | $\Rightarrow 3\sin^3\theta = 2\cos^3\theta$                                                                                                                    |
|            | $\tan^3 \theta = \frac{2}{3} \Rightarrow \tan \theta = \left(\frac{2}{3}\right)^{\frac{1}{3}}$                                                                 |
|            | $\therefore \theta = \tan^{-1} \left(\frac{2}{3}\right)^{\frac{1}{3}}.$                                                                                        |

| $\theta$          | 0.717   | $(2)^{\frac{1}{2}}$                   | 0.719  |
|-------------------|---------|---------------------------------------|--------|
|                   |         | $\tan^{-1}\left(\frac{2}{-}\right)^3$ |        |
|                   |         | (3)                                   |        |
| $\mathrm{d}AB$    | -0.0216 | 0                                     | 0.0205 |
|                   | 0.0000  | _                                     | ****   |
| $\mathrm{d}	heta$ |         |                                       |        |
| Tangent           | \       | -                                     | /      |

 $\therefore AB$  is a minimum when  $\theta = \tan^{-1} \left(\frac{2}{3}\right)^{\frac{1}{3}}$ .

#### **Alternative**

$$\frac{d(AB)}{d\theta} = \frac{3\sin^3\theta - 2\cos^3\theta}{\cos^2\theta\sin^2\theta} = \frac{3\cos^3\theta\left(\tan^3\theta - \frac{2}{3}\right)}{\cos^2\theta\sin^2\theta}$$

$$\frac{\theta}{\tan^{-1}\left(\frac{2}{3}\right)^{\frac{1}{3}}} \left(\tan^{-1}\left(\frac{2}{3}\right)^{\frac{1}{3}}\right)^{\frac{1}{3}} \left(\tan^{-1}\left(\frac{2}{3}\right)^{\frac{1}{3}}\right)^{\frac{1}{3}}$$

$$\frac{dAB}{d\theta} \qquad \text{negative} \qquad 0 \qquad \text{positive}$$



Thus we have

$$AB = \frac{3\left[ (2)^{\frac{2}{3}} + (3)^{\frac{2}{3}} \right]^{\frac{1}{2}}}{(3)^{\frac{1}{3}}} + \frac{2\left[ (2)^{\frac{2}{3}} + (3)^{\frac{2}{3}} \right]^{\frac{1}{2}}}{(2)^{\frac{1}{3}}}$$

$$= \left[ (2)^{\frac{2}{3}} + (3)^{\frac{2}{3}} \right]^{\frac{1}{2}} \left[ (3)^{\frac{2}{3}} + (2)^{\frac{2}{3}} \right]$$

$$= \left[ (2)^{\frac{2}{3}} + (3)^{\frac{2}{3}} \right]^{\frac{3}{2}}$$

$$\max p = \left[ (2)^{\frac{2}{3}} + (3)^{\frac{2}{3}} \right]^{\frac{3}{2}}, \text{ where } k = \frac{2}{3}.$$