

PROBABILIDADE E ESTATÍSTICA

Prof^o Agnaldo Cieslak

Técnicas de Amostragem

Quando fazemos uma pesquisa, ou utilizamos algum mecanismo para obter informações, um dos objetivos principais é coletar dados de uma pequena parte de um grande grupo e aprender então alguma coisa sobre esse grupo maior.

População: conjunto de indivíduos, objetos ou produtos que contém a característica que temos interesse. Exemplo:

Característica: altura dos estudantes

População: todos os estudantes
 Média Populacional

Observação

A população depende do interesse da pesquisa

Amostra: subconjunto da população, em geral com dimensão bem menor, que também possui a característica de interesse. Exemplo:

- Característica: altura dos estudantes
- Amostra: 100 estudantes selecionados ao acaso

Média Amostral

Exemplo:

- População: todos os alunos de uma única turma
- Característica: idade dos alunos

Censo: 22 21 24 23 20 22 21 25 24 24 23 19 25 24 23 23

20 21 23 20 23 22 23 23 25 25 20 23 24 20

Média populacional: $\mu = 22,5 \Leftrightarrow \textbf{Parâmetro}$

Amostra de 5 alunos: 25 24 23 23 25

Média amostral: $\bar{x} = 24 \iff \textbf{Estatística}$

Por que fazer amostragem?

- ✓ Parâmetros populacionais desconhecidos
- √ Impossibilidade de realização de um censo
- ✓ Mais barato, mais rápido

Por que fazer amostragem?

- ✓ Parâmetros populacionais desconhecidos
- ✓ Impossibilidade de realização de um censo
- ✓ Mais barato, mais rápido

Se a amostra for mal coletada, nenhuma técnica estatística salvará o resultado.

Passos da amostragem

a) Levantamento amostral:

A amostra é obtida a partir de uma população bem definida, em meio de processos bem definidos pelo pesquisador.

Ex.: retirar uma peça da produção e fazer teste de qualidade.

Passos da amostragem

b) Planejamento de experimentos:

Aplica um tratamento e passa a observar seu efeito entre o objeto de estudo. Requer, portanto, a interferência do pesquisador sobre a população, bem como o controle de fatores externos, com o intuito de medir o efeito desejado.

Exemplos: Estudo do efeito de um novo medicamento, experimentos agronômicos

Passos da amostragem

c) Levantamentos observacionais:

Observa e mede características, mas não modifica o objeto de estudo. Os dados são coletados sem que o pesquisador tenha controle sobre as informações obtidas.

Exemplo: Verificar o valor das vendas de uma empresa em um certo período (não há como "selecionar" as vendas)

Método de amostragem

Para a escolha do método deve-se levar em conta:

- Tipo de pesquisa
- Acessibilidade e disponibilidade dos elementos da população
- Disponibilidade de tempo
- Recursos financeiros e humanos

•Probabilísticos:

Cada elemento da população possui a mesma probabilidade de ser selecionado para compor a amostra -> mecanismos aleatórios de seleção

·Não probabilísticos:

A seleção da amostra depende do julgamento do pesquisador. Há uma escolha deliberada dos elementos para compor a amostra —> mecanismos não aleatórios de seleção. (não há como calcular a probabilidade de cada elemento)

Método de amostragem

Probabilísticas

- Amostra Aleatória Simples
- Amostra sistemática
- Amostra estratificada
- Amostra por conglomerados
- Amostra multi-estágios

Nãoprobabilísticas

- Amostra por conveniência
- Amostra intencional

Amostragem Aleatória Simples (AAS)
Todas as possíveis amostras de tamanho n tem a mesma chance de serem escolhidas (de uma população com N elementos)

Exemplos:

- ✓ Selecionar 10 estudantes de uma sala por sorteio e perguntar a idade
- ✓ Gerar uma amostra aleatória de 1000 números de matrícula de estudantes da faculdade (no computador!) e perguntar a idade

senac rio

Método probabilístico

Amostragem Aleatória Simples (AAS)

- ✓ É o método mais simples para selecionarmos uma amostra probabilística de uma população
- ✓ Serve de base para outros procedimentos amostrais, planejamento de experimentos e estudos observacionais
- ✓ Utilizando-se um procedimento aleatório, sorteia-se um elemento da população. Repete-se o processo até que sejam sorteadas as *n* unidades na amostra.

Com reposição:

o mesmo elemento da população pode ser amostrado mais de uma vez. A probabilidade de seleção não se altera. (N^n)

Sem reposição:

cada elemento da população é amostrado uma única vez. A probabilidade de seleção se altera. (A N,n)

Amostragem Aleatória Simples (AAS) Sequência:

- 1- enumerar os elementos da população de 1 a N sem ordenar;
- 2- Escolher os elementos da amostra de tamanho n, utilizando os números aleatórios (Tabela TNA 8 colunas, 35 linhas)
 - 2.1 Estabelecer algum critério de início:
 - a posição da coluna e o sentido (esq-dir, dir-esq);
 - a posição da linha e o sentido (baixo-cima, cima-baixo);
 - quantidade de algarismos em função do tamanho da população
- e posição dos algarismos (primeiros, meio, últimos)
- 3- Selecionar os elementos de acordo como critério estabelecido;

	1	230890			
	.30	832538	195800		
	693696	811259	767530		
1	350164	427061	425715	3	
A	016923	163536	363050	28.	
62	582566	536671	459349	213078	
4909	520603	115385	203856	762208	
25599	018494	423008	740013	305945	4613a
357214	987644	496044	987838	372572	6236/
685893	759111	691306	570944	133363	09
038514	214586	429852	646810	442963	7
184454	645808	773871	724159	046819	7
**	610936	089960	865090	5263*	

Amostragem Aleatória Simples (AAS)

Exercício;

O engenheiro responsável pelo controle de qualidade de uma fábrica de bombons deseja extrair, sem reposição, uma amostra de tamanho n=5, de uma população de 30 caixas de bombom. As massas dessas caixas foram medidas em kg e apresentadas na tabela abaixo:

1	2	3	4	5
2,6	3,0	2,8	1,6	1,8
3,2	3,1	1,5	2,6	2,9
2,6	1,7	2,6	2,7	1,8
1,9	2,0	1,9	3,1	1,6
2,0	1,6	1,4	1,3	2,1
2,2	1,7	1,6	2,6	2,4

Amostragem Aleatória Simples (AAS)

Exercício;

O engenheiro responsável pelo controle de qualidade de uma fábrica de bombons deseja extrair, sem reposição, uma amostra de tamanho n=5, de uma população de 30 caixas de bombom. As massas dessas caixas foram medidas em kg e apresentadas na tabela abaixo:

População = 30 caixas 1- Enumerar os elementos das caixas de bombom:

1	2	3	4	5
2,6	3,0	2,8	1,6	1,8
3,2	3,1	1,5	2,6	2,9
2,6	1,7	2,6	2,7	1,8
1,9	2,0	1,9	3,1	1,6
2,0	1,6	1,4	1,3	2,1
2,2	1,7	1,6	2,6	2,4

Item	Massa								
1	2,6	7	3,0	13	2,8	19	1,6	25	1,8
2	3,2	8	3,1	14	1,5	20	2,6	26	2,9
3	2,6	9	1,7	15	2,6	21	2,7	27	1,8
4	1,9	10	2,0	16	1,9	22	3,1	28	1,6
5	2,0	11	1,6	17	1,4	23	1,3	29	2,1
6	2,2	12	1,7	18	1,6	24	2,6	30	2,4

2- Escolher os elementos da amostra de tamanho n=5 utilizando a tabela TNA:

Método probabilístico Amostragem Aleatória Simples (AAS) Exercício;

Item	Massa								
1	2,6	7	3.0	13	2,8	19	1,6	25	1,8
2	3,2	8	3,1	14	1,5	20	2,6	26	2,9
3	2,6	9	1,7	15	2,6	21	2,7	27	1,8
4	1,9	10	2.0	16	1,9	22	3,1	28	1,6
5	2,0	11	1,6	17	1,4	23	1,3	29	2,1
6	2,2	12	1.7	18	1,6	24	2,6	30	2,4

2- Escolher os elementos da amostra de tamanho n=5 utilizando a tabela TNA:

2.1 – Estabelecer os critérios para a TNA:

4ª coluna da esquerda para a direita;

6ª linha de baixo para cima;

os 2 primeiros algarismos da TNA (elementos enumerados de 1 a 30); sem reposição (não pode haver repetição);

	I C	L
	496044	
	691306	
	429852	
	773871	
,	089960	
	055601	
	125866	
	001785	ı
	509745	
	940602	
	118615	ı
	155052	
	727709	ı
	200213	
	576692	

Método probabilístico Amostragem Aleatória Simples (AAS) Exercício;

Item	Massa								
1	2,6	7	3.0	13	2,8	19	1,6	25	1,8
2	3,2	8	3,1	14	1,5	20	2,6	26	2,9
3	2,6	9	1,7	15	2,6	21	2,7	27	1,8
4	1,9	10	2,0	16	1,9	22	3,1	28	1,6
5	2,0	11	1,6	17	1,4	23	1,3	29	2,1
6	2,2	12	1,7	18	1,6	24	2,6	30	2,4

2- Escolher os elementos da amostra de tamanho n=5 utilizando a tabela TNA:

2.1 – Estabelecer os critérios para a TNA:

4ª coluna da esquerda para a direita;

6ª linha de baixo para cima;

os 2 primeiros algarismos da TNA (elementos enumerados de 1 a 30); sem reposição (não pode haver repetição);

Os elementos escolhidos foram:

е	la	
	496044	
	691306	
	429852	
;]	773871	
']	089960	
	055601	
	125866	
	001785	
	509745	
	940602	
	118615	
	155052	
	727709	
	200213	
	576692	

Método probabilístico **Amostragem Aleatória Simples (AAS)**Exercício;

Item	Massa								
1	2,6	7	3,0	13	2,8	19	1,6	25	1,8
2	3,2	8	3,1	14	1,5	20	2,6	26	2,9
3	2,6	9	1,7	15	2,6	21	2,7	27	1,8
4	1,9	10	2,0	16	1,9	22	3,1	28	1,6
5	2,0	11	1,6	17	1,4	23	1,3	29	2,1
6	2,2	12	1,7	18	1,6	24	2,6	30	2,4

2-	Escolher	os	elementos	da	amostra	de	tamanho	n=5	utilizando	a tabe	a
T	NA:									1	496044

- 2.1 Estabelecer os critérios para a TNA:
 - 4ª coluna da esquerda para a direita;
 - 6ª linha de baixo para cima;
 - os 2 primeiros algarismos da TNA (elementos enumerados de 1 a 30); sem reposição (não pode haver repetição);

Os elementos escolhidos foram:

- 20 2,6 Kg
- 15- 2,6 Kg
- 11- 1,6 Kg
- 12- 1,7 Kg
- 05- 2,0 Kg

691306

Amostragem Aleatória Sistemática

Utilizada quando os elementos estão dispostos de maneira organizada (ex.: fila, lista) e aleatória.

Escolhe um ponto de partida e seleciona-se cada k-ésimo elemento da população (ex.: o 50 elemento)

Técnica:

- -Razão de amostragem: k=N/n (K=razão de amostragem, N=população, n=amostra
- -Primeiro elemento escolhido pela tabela números aleatórios

-X(TNA), X+K, X+2K, ...

Exemplo:

Em uma fábrica de lâmpadas, a cada 100 peças produzidas, uma é retirada para teste. Outro exemplo é a pessoa escolhida na fila do banco para avaliar o caixa.

Amostragem Estratificada Proporcional

Indicada quando a população está dividida em grupos distintos, denominados estratos. (para populações heterogêneas).

Dentro de cada estrato é realizada uma amostragem aleatória simples. O tamanho da amostra pode ou não ser proporcional ao tamanho do estrato.

Exemplos:

Uma comunidade universitária com 8000 indivíduos está estratificada da seguinte forma:

Estrato	População	Amostra
Professores	800	80
Funcionários	1200	120
Estudantes	6000	600

Amostragem Estratificada Proporcional

Alocação por igual: se se desconfia de que os estratos são todos de tamanhos parecidos, ou seja,

$$N_1 \approx N_2 \approx N_3 \approx \ldots \approx N_k$$

Então pode-se fazer:
$$n_1 = n_2 = n_3 = \ldots = n_k = \frac{n}{k}$$

Exemplo: Se o tamanho de uma amostra for n = 56 |e, o número de estratos é k = 4, então, $n_1 = n_2 = n_3 = n_4 = 14$.

Exemplo:

Considere uma amostra de tamanho n=48 a ser selecionada de uma população dividida em 3 estratos, tais que $N_1=40$, $N_2=80$ e $N_3=120$, então

*

$$N = 40 + 80 + 120 = 240$$

$$\frac{N_1}{N} = \frac{40}{240} = \frac{1}{6}$$
 \Rightarrow $n_1 = \frac{48}{6} = 8$

$$\frac{N_2}{N} = \frac{80}{240} = \frac{1}{3}$$
 \Rightarrow $n_2 = \frac{48}{3} = 16$

$$\frac{N_3}{N} = \frac{120}{240} = \frac{1}{2}$$
 \Rightarrow $n_3 = \frac{48}{2} = 24$

Portanto, $n_1 = 8$, $n_2 = 16$ e $n_3 = 24$ é a alocação proporcional ao tamanho dos estratos.

Esse resultado significa que se deve selecionar 8 indivíduos do primeiro estrato, 16 do segundo estrato e 24 do terceiro.

Amostragem Estratificada Proporcional

Exercícios de fixação:

Numa região existem 150.000 pessoas sendo 45.000 com idade inferior 20 anos, 75.000 com idade entre 20 anos (inclusive) e 50 anos (exclusive) e 30.000 com idade igual ou superior a 50 anos. Extrair uma amostra de 30 pessoas pelo processo de amostragem estratificada com partilha proporcional.

Estrato População Amostra

Amostragem Aleatória Estratificada + Sistemática - exercício

- a. Imagine uma sala de aula com 90 alunos, sendo 54 sejam brasileiros e 36 sejam estrangeiros, vamos obter a amostra proporcional estratificada de 10%.
- •São, portanto, dois estratos (brasileiros e estrangeiros) e queremos uma amostra de 10% da população. Logo, temos:

Nac.	POPULAÇÃO	AMOSTRA	Quant. AMOSTRA
В	54		
E	36		
Total	90		

Numeramos os alunos de 01 a 90:

- -de 01 a 54 são os brasileiros
- -de de 55 a 90, estrangeiros.
- -Usar tabela de números aleatórios (ou sorteador.com.br) obtemos os seguintes números:

Amostragem por Conglomerado

A área da população é dividida em seções (ou conglomerados, ex.: bairros, quarteirões). Os conglomerados são selecionados aleatoriamente. Dentro de um conglomerado, todos os elementos são amostrados.

A amostragem por conglomerados tem a seguinte característica: a variação dos dados é grande dentro de cada conglomerado e pequena entre os conglomerados.

Exemplos de conglomerados:

- Brasil -> estados -> municípios -> bairros -> cidadãos
- Escolas -> Cursos -> turmas -> alunos

Amostragem multi-estágios

- Efetuado em 2 ou mais estágios;
- Em cada estágios pode-se aplicar um dos métodos vistos;
- Aplicado em amostrais de grande escala e populações heterogêneas.

by Mauro Grisi

- Etapas:
- 1- Amostrar determinada região; 2- Amostrar partes desta região; 3- Amostrar elementos destas partes.

Exemplo:

1°. Amostragem aleatória de propriedades/rebanhos

2°. Amostragem aleatória de fêmeas com idade ≥ 2 anos

Estimativa de animais e propriedades positivas para a brucelose bovina

Amostragem por conveniência (acidental): elementos selecionados por serem imediatamente disponíveis.

Exemplo: Uma repórter entrevistando pessoas na rua

Amostragem por julgamento (intencional): uma pessoa experiente no assunto escolhe intencionalmente os elementos a serem amostrados.

Exemplo: Novo produto "testado" entre funcionários.

Na amostragem não probabilística, os elementos da população não tem a mesma probabilidade de serem selecionados, portanto não há garantias da representatividade da população!

Erros Amostrais

Erro amostral é a diferença entre o resultado amostral e o verdadeiro resultado da população;

> tais erros resultam das flutuações amostrais devidas ao acaso.

Erro não-amostral ocorre quando os dados amostrais são coletados, registrados ou analisados incorretamente;

a seleção de uma amostra tendenciosa, o uso de um instrumento de medida defeituoso, ou cópia incorreta dos dados.