

Agenda

- 3D Transformations
- Projections
- Brief on Shaders' Anatomy
- Hands On

3D transformations

3D Transformations

Translation

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Scaling

$$\mathbf{S} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3D Rotation

- Rotation around each one of the coordinate axis
- Positive rotations are CCW !!

Rotation around each axis

Coordinate-Axes Rotations

Z-Axis Rotation
 X-Axis Rotation
 Y-Axis Rotation

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x^{t} \\ y^{t} \\ z^{t} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Example - Decomposition

And inverse translation follows

3D projections

3D Viewing

3D Viewing

- Where is the observer / the camera?
 - Position?
 - Close to the 3D scene?
 - Far away?
- How is the observer looking at the scene?
 - Orientation?
- How is the scene represented as a 2D image?
 - Projection?

Projections

Projections

Parallel Projection

Perspective Projection

Parallel Projections

Perspective Projections

Perspective Projections

How to represent?

- Projection matrices
- Homogeneous coordinates
- Concatenation through matrix multiplication
- Don't worry! Graphics APIs implement usual projections!

Homogeneous Coordinates

Homogeneous Coordinates

Coordinate system for projective geometry

Formulas involving homogeneous coordinates are often simpler than in the Cartesian approach

A single matrix can represent affine and projective transformations (remember translations with and without homogeneous coordinates...)

Homogeneous Coordinates

The representation of a geometric object is homogeneous if x and α x represent the same object for $\alpha \neq 0$

- $x = \alpha x$, in homogeneous coordinates
- $x \neq \alpha x$, in Euclidian coordinates, unless $\alpha = 1$

Homogeneous Coordinates

We add one dimension:

$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 \Rightarrow $\mathbf{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ \Rightarrow homogeneous

We can multiply by a constant, and it remains the same object:

$$oldsymbol{x} = \left[egin{array}{c} x \ y \end{array}
ight] = \left[egin{array}{c} wx \ wy \ 1 \end{array}
ight] = \left[egin{array}{c} u \ v \ w \end{array}
ight]$$

Euclidian homogeneous

Homogeneous Coordinates Converting to Euclidian Space

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} u/w \\ v/w \\ 1 \end{bmatrix} \to \begin{bmatrix} u/w \\ v/w \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

homogeneous

Euclidian

Euclidian plane

(4, 8)

(4, 4)

V = 0

Euclidian plane

(4, 8)

(4, 4)

V = 0

Euclidian plane

(4, 8)

(4, 4)

V = 0

Euclidian plane

$$(6, 12) \Rightarrow (6/12, 12/12)$$

$$(4, 8) \Rightarrow (4/8, 8/8)$$

$$(4, 4) \Rightarrow (4/4, 4/4)$$

$$y = 1$$

 $y = 0$

Euclidian plane

y = 3.25

y = 3

We do the basic projection by dividing all coordinates by the last coordinate!

y = 2

But, we want to do so using matrices!

How?

$$y = 1$$

$$y = 0$$

We know why we use homogeneous coordinates

Let's go step by step:

1. We have a point
$$P = \begin{bmatrix} x \\ y \end{bmatrix}$$

2. We represent it in homogeneous coordinates to be able to do rotations, scaling, and translations always doing matrix multiplication

$$\mathsf{P}_{\mathsf{h}} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \quad \mathsf{w}$$

We use them for transformations and then get back

Translations:
$$\begin{vmatrix} x' \\ y' \\ 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{vmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

3. Whenever we want to go back to original coordinates, we just divide everything by w

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} u/w \\ v/w \\ 1 \end{bmatrix} \to \begin{bmatrix} u/w \\ v/w \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

homogeneous

Euclidian

But what matrix can be used for perspective projections?

Loading dumb intelligence model to draw figure
Please wait

Error! No artistic qualities!

Homogeneous Coordinates 2D Example

Image courtesy: Förstner 20

View volume & clipping

How to limit what is observed?

Clipping window on the projection plane

View Angle

Clipping View Volume

The virtual camera only "sees" part of the world or object space

Clipping Planes View Volume

[van Dam]

3D Viewing

- How to view primitives that are outside the view volume?
 - Translate!
- How to view a side face of a model?
 - Rotate!

• ...

The 3D visualization pipeline

3D visualization pipeline

3D visualization pipeline

- Instantiate models
 - Position, orientation, size
- Establish viewing parameters
 - Camera position and orientation
- Define projection
- Perform clipping
- Rasterize
- Compute illumination and shade polygons

3D visualization pipeline

- Main operations represented as point transformations
 - Homogeneous coordinates
 - Transformation matrices
 - Projection matrix
 - Matrix multiplication
- Each object is processed separately

Script side

 Object defined by its vertices, colors, normals, etc

```
self.triangle_vertices = array([
        [0, 1, 0, 1, 1, 1],
        [1, -1, 0, 0, 1, 1],
        [-1, -1, 0, 1, 1, 0]
], 'f')
```

Data placed on the GPU:

```
self.triangle_vbo = glGenBuffers(1)
glBindBuffer(GL_ARRAY_BUFFER, self.triangle_vbo)
glBufferData(GL_ARRAY_BUFFER, 4 * self.triangle_vertices.size, self.triangle_vertices, GL_STATIC_DRAW)
```

Down the shader's hole Script side

 Just before rendering, what attributes are available and where are they are placed in the GPU?

```
self.triangle_vertices = array([
        [0, 1, 0, 1, 1, 1],
        [1, -1, 0, 0, 1, 1],
        [-1, -1, 0, 1, 1, 0]
], 'f')
```

```
glBindBuffer(GL_ARRAY_BUFFER, self.triangle_vbo)

glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6*4, None)

glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6*4, ctypes.c_void_p(3 * 4))

glEnableVertexAttribArray(0)

glEnableVertexAttribArray(1)
```

Script side

Do I need to pass additional data to the shader?
 Remember the transformation matrices

 We will see, ahead, how do we receive this data on the shader

```
# translation
self.modelMatrix = glm.translate(self.modelMatrix, tx, ty, tz)

modelLoc = glGetUniformLocation(self.shader, "model")
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, self.modelMatrix)
```

Shader side

 What attributes am I expecting and their locations

Using the attributes

Vertex shader

```
#version 330
  layout (location = 0) in vec3 position;
  layout (location = 1) in vec3 color;
  uniform mat4 model;
  uniform mat4 view;
  uniform mat4 projection;
  out vec3 vColor;
  void main() {
  gl_Position = projection * view * model * vec4(position, 1.0);
  vColor = vec3(color);
```

Shader side

- Passing attributes out from a shader
- Receiving attributes in the next shader

Fragment shader

```
#version 330
in vec3 vColor;
out vec4 out_color;

void main() {
   out_color = vec4(vColor, 1.0);
```

Vertex shader

```
#version 330
  layout (location = 0) in vec3 position;
  layout (location = 1) in vec3 color;
  uniform mat4 model;
  uniform mat4 view;
  uniform mat4 projection;
  out vec3 vColor;
  void main() {
  gl_Position = projection * view * model * vec4(position, 1.0);
  vColor = vec3(color);
```