CS 446: Machine Learning Homework 2

Due on Tuesday, January 30, 2018, 11:59 a.m. Central Time

1. [6 points] Linear Regression Basics

Consider a linear model of the form $\hat{y}^{(i)} = \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} + b$, where $\mathbf{w}, \mathbf{x} \in \mathbb{R}^K$ and $b \in \mathbb{R}$. Next, we are given a training dataset, $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}$ denoting the corresponding input-target example pairs.

(a) What is the loss function, \mathcal{L} , for training a linear regression model? (Don't forget the $\frac{1}{5}$)

Your answer:

The loss function tries to minimize the sum-of-squares as:

$$\mathcal{L} = \min_{w} \sum_{(x^{(i)|D|}, y^{(i)}) \in \mathcal{D}} \frac{1}{2} (y^{(i)} - \hat{y}^{(i)})^2 = \min_{w} \sum_{(x^{(i)}, y^{(i)}) \in \mathcal{D}}^{|D|} \frac{1}{2} (y^{(i)} - \mathbf{w}^\mathsf{T} \mathbf{x}^{(i)} - b)^2$$

(b) Compute $\frac{\partial \mathcal{L}}{\partial \hat{y}^{(i)}}$.

Your answer:

$$\frac{\partial \mathcal{L}}{\partial \hat{y}^{(i)}} = \sum_{(x^{(i)}, y^{(i)}) \in \mathcal{D}}^{|\mathcal{D}|} (\hat{y}^{(i)} - y^{(i)})$$

(c) Compute $\frac{\partial \hat{y}^{(i)}}{\partial \mathbf{w}_k}$, where \mathbf{w}_k denotes the k^{th} element of \mathbf{w} .

Your answer:

$$\frac{\partial \hat{y}^{(i)}}{\partial \mathbf{w}_k} = x_k^{(i)},$$

(d) Putting the previous parts together, what is $\nabla_{\mathbf{w}} \mathcal{L}$?

Your answer:

$$\nabla_{\mathbf{w}} \mathcal{L} = \sum_{(x^{(i)}, y^{(i)}) \in \mathcal{D}}^{|D|} (\hat{y}^{(i)} - y^{(i)}) \cdot \frac{\partial \hat{y}^{(i)}}{\partial \mathbf{w}} (\hat{y}^{(i)} - y^{(i)}) = \sum_{(x^{(i)}, y^{(i)}) \in \mathcal{D}}^{|D|} (\hat{y}^{(i)} - y^{(i)}) x_k^{(i)}$$

(e) Compute $\frac{\partial \mathcal{L}}{\partial b}$.

Your answer:

$$\frac{\partial \mathcal{L}}{\partial b} = \sum_{(x^{(i)}, y^{(i)}) \in \mathcal{D}}^{|D|} (\hat{y}^{(i)} - y^{(i)}) \cdot \frac{\partial \hat{y}^{(i)}}{\partial b} (\hat{y}^{(i)} - y^{(i)}) = \sum_{(x^{(i)}, y^{(i)}) \in \mathcal{D}}^{|D|} (\hat{y}^{(i)} - y^{(i)})$$

(f) For convenience, we group \mathbf{w} and b together into \mathbf{u} , then we denote $\mathbf{z} = [\mathbf{x} \ 1]$. (i.e. $\hat{y} = \mathbf{u}^{\mathsf{T}}[x,1] = \mathbf{w}^{\mathsf{T}}x + b$). What are the optimal parameters $\mathbf{u}^* = [\mathbf{w}^*, b^*]$? Use the notation $\mathbf{Z} \in \mathbb{R}^{|D| \times (K+1)}$ and $\mathbf{y} \in \mathbb{R}^{|D|}$ in the answer. Where, each row of \mathbf{Z} , \mathbf{y} denotes

an example input-target pair in the dataset.

Your answer:

$$\mathbf{u}^* = (\mathbf{Z}^\intercal \mathbf{Z})^{-1} \mathbf{Z}^\intercal \mathbf{y}$$

2. [2 points] Linear Regression Probabilistic Interpretation

Consider that the input $x^{(i)} \in \mathbb{R}$ and target variable $y^{(i)} \in \mathbb{R}$ to have to following relationship.

$$y^{(i)} = w \cdot x^{(i)} + \epsilon^{(i)}$$

where, ϵ is independently and identically distributed according to a Gaussian distribution with zero mean and unit variance.

(a) What is the conditional probability $p(y^{(i)}|x^{(i)}, w)$.

Your answer:

$$p(y^{(i)}|x^{(i)};w) = \frac{1}{\sqrt{2\pi}} \cdot \exp^{-(y^{(i)}-w\cdot x^{(i)})^2}$$

(b) Given a dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}$, what is the negative log likelihood of the dataset according to our model? (Simplify.)

Your answer:

$$\begin{aligned}
\mathbf{NLL}(w) &= -\log \ell(w) \\
&= -\log \prod_{i=1}^{|D|} \frac{1}{\sqrt{2\pi}} \cdot \exp^{-(y^{(i)} - w \cdot x^{(i)})^2} \\
&= -\sum_{i=1}^{|D|} \log \frac{1}{\sqrt{2\pi}} \cdot \exp^{-(y^{(i)} - w \cdot x^{(i)})^2} \\
&= \frac{|D|}{2} \log(2\pi) + \frac{1}{2} \sum_{i=1}^{|D|} (y^{(i)} - w \cdot x^{(i)})^2
\end{aligned}$$