Una lógica deóntica de "cumplir conscientemente"

Andrés R. Saravia

Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba

10/XI/2023

Doctorando en Ciencias de la Computación (desde 2020)

- Doctorando en Ciencias de la Computación (desde 2020)
- Director: Raul Fervari

- Doctorando en Ciencias de la Computación (desde 2020)
- Director: Raul Fervari
- Lógicas Knowing How o "saber cómo" (perspectiva epistémica):

- Doctorando en Ciencias de la Computación (desde 2020)
- Director: Raul Fervari
- Lógicas Knowing How o "saber cómo" (perspectiva epistémica): describir el conocimiento de los agentes sobre sus habilidades.

- Doctorando en Ciencias de la Computación (desde 2020)
- Director: Raul Fervari
- Lógicas Knowing How o "saber cómo" (perspectiva epistémica): describir el conocimiento de los agentes sobre sus habilidades.
- Knowingly Complying (perspectiva deóntica):

- Doctorando en Ciencias de la Computación (desde 2020)
- Director: Baul Fervari
- Lógicas Knowing How o "saber cómo" (perspectiva epistémica): describir el conocimiento de los agentes sobre sus habilidades.
- Knowingly Complying (perspectiva deóntica):
 describir si el agente cumple conscientemente de acuerdo a las
 normas establecidas.

- Doctorando en Ciencias de la Computación (desde 2020)
- Director: Raul Fervari
- Lógicas Knowing How o "saber cómo" (perspectiva epistémica): describir el conocimiento de los agentes sobre sus habilidades.
- Knowingly Complying (perspectiva deóntica):
 describir si el agente cumple conscientemente de acuerdo a las
 normas establecidas.
- Resultado: Paper aceptado en AAMAS 2023

Motivación

Modelar un conjunto de cursos de acción normativos permitidos

Motivación

Modelar un conjunto de cursos de acción normativos permitidos y, dadas unas condiciones inicial y final,

Motivación

Modelar un conjunto de cursos de acción normativos permitidos y, dadas unas condiciones inicial y final, saber si los agentes cumplen conscientemente o no de acuerdo con estos cursos teniendo en cuenta su percepción.

Sea $\mathfrak{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$ donde

• S es un conjunto de estados,

Sea $\mathfrak{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$ donde

- S es un conjunto de estados,
- $R_a \subseteq S \times S$ para cada $a \in Act$,

Sea $\mathfrak{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$ donde

- S es un conjunto de estados,
- $R_a \subseteq S \times S$ para cada $a \in Act$, y
- $V : Prop \rightarrow 2^S$ es una función de valuación.

Sea $\mathfrak{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$ donde

- S es un conjunto de estados,
- $R_a \subseteq S \times S$ para cada $a \in Act$, y
- V : Prop → 2^S es una función de valuación.

Sea $\mathfrak{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$ donde

- S es un conjunto de estados,
- $R_a \subseteq S \times S$ para cada $a \in Act$, y
- V : Prop → 2^S es una función de valuación.

Representa las acciones que puede ejecutar el agente.

Sea $\mathfrak{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$ donde

- S es un conjunto de estados,
- $R_a \subseteq S \times S$ para cada $a \in Act$, y
- V : Prop → 2^S es una función de valuación.

Representa las acciones que puede ejecutar el agente. Una transición a de w_1 a w_2 se interpreta como "luego de ejecutar la acción a en el estado w_1 el agente llega al estado w_2 ".

Sea $\mathfrak{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$ donde

- S es un conjunto de estados,
- $R_a \subseteq S \times S$ para cada $a \in Act$, y
- V : Prop → 2^S es una función de valuación.

Representa las acciones que puede ejecutar el agente. Una transición a de w_1 a w_2 se interpreta como "luego de ejecutar la acción a en el estado w_1 el agente llega al estado w_2 ". Dado un conjunto Act, un plan σ es un elemento de Act^* (a, ab y ϵ).

Un plan debe ser a prueba de fallos:

Un plan debe ser a prueba de fallos: Cada ejecución parcial debe ser completada.

Un plan debe ser a prueba de fallos: Cada ejecución parcial debe ser completada. Ejemplo: el plan *ab*.

Un plan debe ser a prueba de fallos: Cada ejecución parcial debe ser completada. Ejemplo: el plan *ab*.

ab no es fuertemente ejecutable en w_1

Un plan debe ser a prueba de fallos: Cada ejecución parcial debe ser completada. Ejemplo: el plan *ab*.

ab no es fuertemente ejecutable en w_1

Definition (Ejecutabilidad fuerte de un plan)

Un plan σ es fuertemente ejecutable (FE) en un $u \in S$ sii para toda ejecución parcial de σ desde u se completa.

$$\varphi, \psi := p \mid \neg \varphi \mid \varphi \lor \psi \mid \mathsf{N}(\psi, \varphi) \mid \mathsf{Kc}_i(\psi, \varphi)$$

$$\varphi, \psi := p \mid \neg \varphi \mid \varphi \lor \psi \mid \mathsf{N}(\psi, \varphi) \mid \mathsf{Kc}_i(\psi, \varphi)$$

 $\mathfrak{M} = \langle \mathfrak{L}, \{ \mathsf{U}(i) \}_{i \in \mathsf{Agt}}, \mathsf{N} \rangle$ donde:

$$\varphi, \psi := p \mid \neg \varphi \mid \varphi \lor \psi \mid \mathsf{N}(\psi, \varphi) \mid \mathsf{Kc}_i(\psi, \varphi)$$

 $\mathfrak{M} = \langle \mathfrak{L}, \{ \mathsf{U}(i) \}_{i \in \mathsf{Agt}}, \mathsf{N} \rangle$ donde:

• $\mathfrak{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$ es un LTS;

$$\varphi, \psi := p \mid \neg \varphi \mid \varphi \lor \psi \mid \mathsf{N}(\psi, \varphi) \mid \mathsf{Kc}_i(\psi, \varphi)$$

 $\mathfrak{M} = \langle \mathfrak{L}, \{ \mathsf{U}(i) \}_{i \in \mathsf{Agt}}, \mathsf{N} \rangle$ donde:

- $\mathfrak{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$ es un LTS;
- N un conjunto de planes normativos; y

$$\varphi, \psi ::= p \mid \neg \varphi \mid \varphi \lor \psi \mid \mathsf{N}(\psi, \varphi) \mid \mathsf{Kc}_{i}(\psi, \varphi)$$

 $\mathfrak{M} = \langle \mathfrak{L}, \{ \mathsf{U}(i) \}_{i \in \mathsf{Agt}}, \mathsf{N} \rangle$ donde:

- $\mathfrak{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$ es un LTS;
- N un conjunto de planes normativos; y
- U(i) una relación de indistinguibilidad para un agente i.

$$\varphi, \psi := p \mid \neg \varphi \mid \varphi \lor \psi \mid \mathsf{N}(\psi, \varphi) \mid \mathsf{Kc}_i(\psi, \varphi)$$

 $\mathfrak{M} = \langle \mathfrak{L}, \{ \mathsf{U}(i) \}_{i \in \mathsf{Agt}}, \mathsf{N} \rangle$ donde:

- $\mathfrak{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$ es un LTS;
- N un conjunto de planes normativos; y
- U(i) una relación de indistinguibilidad para un agente i.

Ejemplo: $U(i) = \{\{a, ab\}, \{b\}\}.$

$$\varphi, \psi := p \mid \neg \varphi \mid \varphi \lor \psi \mid \mathsf{N}(\psi, \varphi) \mid \mathsf{Kc}_{i}(\psi, \varphi)$$

 $\mathfrak{M} = \langle \mathfrak{L}, \{ \mathsf{U}(i) \}_{i \in \mathsf{Agt}}, \mathsf{N} \rangle$ donde:

- $\mathfrak{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$ es un LTS;
- N un conjunto de planes normativos; y
- U(i) una relación de indistinguibilidad para un agente i.

Ejemplo: $U(i) = \{\{a, ab\}, \{b\}\}.$

El agente es consciente de que los planes a, ab y b existen.

$$\varphi, \psi := p \mid \neg \varphi \mid \varphi \lor \psi \mid \mathsf{N}(\psi, \varphi) \mid \mathsf{Kc}_i(\psi, \varphi)$$

 $\mathfrak{M} = \langle \mathfrak{L}, \{ \mathsf{U}(i) \}_{i \in \mathsf{Agt}}, \mathsf{N} \rangle$ donde:

- $\mathfrak{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$ es un LTS;
- N un conjunto de planes normativos; y
- U(i) una relación de indistinguibilidad para un agente i.

Ejemplo: $U(i) = \{\{a, ab\}, \{b\}\}.$

- El agente es consciente de que los planes a, ab y b existen.
- Distingue b de los demás planes.

$$\varphi, \psi := p \mid \neg \varphi \mid \varphi \lor \psi \mid \mathsf{N}(\psi, \varphi) \mid \mathsf{Kc}_i(\psi, \varphi)$$

 $\mathfrak{M} = \langle \mathfrak{L}, \{ \mathsf{U}(i) \}_{i \in \mathsf{Agt}}, \mathsf{N} \rangle$ donde:

- $\mathfrak{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$ es un LTS;
- N un conjunto de planes normativos; y
- U(i) una relación de indistinguibilidad para un agente i.

Ejemplo: $U(i) = \{\{a, ab\}, \{b\}\}.$

- El agente es consciente de que los planes a, ab y b existen.
- Distingue *b* de los demás planes.
- No distingue a de ab.

 $\mathfrak{M} \Vdash \mathsf{N}(\psi, \varphi)$ sii existe un plan σ tal que

 $\mathfrak{M} \Vdash \mathsf{N}(\psi, \varphi)$ sii existe un plan σ tal que

① es normativo (es decir, ∈ N),

- $\mathfrak{M} \Vdash \mathsf{N}(\psi, \varphi)$ sii existe un plan σ tal que
 - 1 es normativo (es decir, ∈ N),
 - 2 es FE en todos los estados donde se cumple ψ

- $\mathfrak{M} \Vdash \mathsf{N}(\psi, \varphi)$ sii existe un plan σ tal que
 - 1 es normativo (es decir, ∈ N),
 - 2 es FE en todos los estados donde se cumple ψ y
 - 3 siempre termina, desde estados ψ , en estados φ .

DLKc: Semántica

 $\mathfrak{M} \Vdash \mathsf{Kh}_i(\psi, \varphi)$ sii existe $\pi \in \mathsf{U}(i)$ tal que para todo $\sigma \in \pi$

- ① es normativo (es decir, ∈ N),
- 2 es FE en todos los estados donde se cumple ψ y
- 3 siempre termina, desde estados ψ , en estados φ .

DLKc: Semántica

 $\mathfrak{M} \Vdash \mathsf{Kh}_i(\psi, \varphi)$ sii existe $\pi \in \mathsf{U}(i)$ tal que para todo $\sigma \in \pi$

- ① es normativo (es decir, ∈ N),
- 2 es FE en todos los estados donde se cumple ψ y
- 3 siempre termina, desde estados ψ , en estados φ .

Notar que $A\varphi = N(\neg \varphi, \bot)$ y $E\varphi = \neg A \neg \varphi$.

Procedimiento de emergencia

- Incendio

– Нимо

- Explosión

MANTENER LA CALMA

Activar la alarma,

DESDE UN LUGAR SEGURO

LLAMAR AL 100 (BOMBEROS)

Evacuación: usar únicamente las esacaleras o las rampas.

Procedimiento de emergencia

- INCENDIO

– Нимо

Explosión

MANTENER LA CALMA

ACTIVAR LA ALARMA,

DESDE UN LUGAR SEGURO

LLAMAR AL 100 (BOMBEROS)

Evacuación: usar únicamente las esacaleras o las rampas.

Procedimiento de emergencia

Incendio

– Нимо

- Explosión

MANTENER LA CALMA

ACTIVAR LA ALARMA,

DESDE UN LUGAR SEGURO

LLAMAR AL 100 (BOMBEROS)

Evacuación: usar únicamente las esacaleras o las rampas.

Procedimiento de emergencia

- INCENDIO

– Нимо

- Explosión

MANTENER LA CALMA

Activar la alarma,

DESDE UN LUGAR SEGURO

LLAMAR AL 100 (BOMBEROS)

Evacuación: usar únicamente las esacaleras o las rampas.

Procedimiento de emergencia

- Incendio

– Нимо

- Explosión

MANTENER LA CALMA

Activar la alarma,

DESDE UN LUGAR SEGURO

LLAMAR AL 100 (BOMBEROS)

Evacuación: usar únicamente las esacaleras o las rampas.

 $\sigma_0 = \text{keep.calm}$

 $\sigma_r = \text{pull.alarm}$; use.ramp; call.999

 σ_s = pull.alarm; use.stairs; call.999

 $\sigma_0 = \text{keep.calm}$

 $\sigma_r = \text{pull.alarm}$; use.ramp; call.999

 $\sigma_s = \text{pull.alarm}$; use.stairs; call.999

 σ_e = pull.alarm; use.elevator; call.999

 $\sigma_0 = \text{keep.calm}$

 $\sigma_r = \text{pull.alarm}$; use.ramp; call.999

 $\sigma_s = \text{pull.alarm}$; use.stairs; call.999

 $\sigma_{\it e} = {\it pull.alarm}; use.elevator; call.999$

 $N = {\sigma_0, \sigma_r, \sigma_s}$

 $\sigma_0 = \text{keep.calm}$

 σ_r = pull.alarm; use.ramp; call.999

 σ_s = pull.alarm; use.stairs; call.999

 σ_e = pull.alarm; use.elevator; call.999

 $N = {\sigma_0, \sigma_r, \sigma_s}$

 σ_0 = keep.calm σ_r = pull.alarm; use.ramp; call.999 σ_s = pull.alarm; use.stairs; call.999 σ_e = pull.alarm; use.elevator; call.999 $N = \{\sigma_0, \sigma_r, \sigma_s\}$ $U(i) = \{\{\sigma_e\}, \{\sigma_r, \sigma_s\}\}$

 $\sigma_0 = \text{keep.calm}$ $\sigma_r = \text{pull.alarm}; \text{ use.ramp}; \text{ call.999}$ $\sigma_s = \text{pull.alarm}; \text{ use.stairs}; \text{ call.999}$ $\sigma_e = \text{pull.alarm}; \text{ use.elevator}; \text{ call.999}$ $N = \{\sigma_0, \sigma_r, \sigma_s\}$ $U(i) = \{\{\sigma_e\}, \{\sigma_r, \sigma_s\}\}$ $U(j) = \{\{\sigma_e, \sigma_r, \sigma_s\}\}$ $V(j) = \{\{\sigma_e, \sigma_r, \sigma_s\}\}$ $V(j) = \{\{\sigma_e, \sigma_r, \sigma_s\}\}$


```
\sigma_0 = \text{keep.calm}
\sigma_r = \text{pull.alarm}; use.ramp; call.999
\sigma_s = \text{pull.alarm}; use.stairs; call.999
\sigma_e = \text{pull.alarm}; use.elevator; call.999
N = \{\sigma_0, \sigma_r, \sigma_s\}
U(i) = \{\{\sigma_e\}, \{\sigma_r, \sigma_s\}\}
U(j) = \{\{\sigma_e, \sigma_r, \sigma_s\}\}
V(j) = \{\{\sigma_e, \sigma_r, \sigma_s\}\}
V(j) = \{\{\sigma_e, \sigma_r, \sigma_s\}\}
```



```
\sigma_0 = \text{keep.calm}
\sigma_r = \text{pull.alarm}; use.ramp; call.999
\sigma_s = \text{pull.alarm}; use.stairs; call.999
\sigma_e = \text{pull.alarm}; use.elevator; call.999
N = \{\sigma_0, \sigma_r, \sigma_s\}
U(i) = \{\{\sigma_e\}, \{\sigma_r, \sigma_s\}\}
U(j) = \{\{\sigma_e, \sigma_r, \sigma_s\}\}
V(j) = \{\{\sigma_e, \sigma_r, \sigma_s\}\}
V(j) = \{\{\sigma_e, \sigma_r, \sigma_s\}\}
```



```
\sigma_0 = \text{keep.calm}
\sigma_r = \text{pull.alarm}; \text{ use.ramp}; \text{ call.999}
\sigma_s = \text{pull.alarm}; \text{ use.stairs}; \text{ call.999}
\sigma_e = \text{pull.alarm}; \text{ use.elevator}; \text{ call.999}
N = \{\sigma_0, \sigma_r, \sigma_s\}
U(i) = \{\{\sigma_e\}, \{\sigma_r, \sigma_s\}\}
U(j) = \{\{\sigma_e, \sigma_r, \sigma_s\}\}
V(j) = \{\{\sigma_e, \sigma_r, \sigma_s\}\}
V(j) = \{\{\sigma_e, \sigma_r, \sigma_s\}\}
```



```
\sigma_0 = \text{keep.calm}
\sigma_r = \text{pull.alarm}; \text{ use.ramp}; \text{ call.999}
\sigma_s = \text{pull.alarm}; \text{ use.stairs}; \text{ call.999}
\sigma_e = \text{pull.alarm}; \text{ use.elevator}; \text{ call.999}
N = \{\sigma_0, \sigma_r, \sigma_s\}
U(i) = \{\{\sigma_e\}, \{\sigma_r, \sigma_s\}\}
U(j) = \{\{\sigma_e, \sigma_r, \sigma_s\}\}
V(j) = \{\{\sigma_e, \sigma_r, \sigma_s\}\}
```



```
\sigma_0 = \text{keep.calm}
\sigma_r = \text{pull.alarm}; \text{ use.ramp}; \text{ call.999}
\sigma_s = \text{pull.alarm}; \text{ use.stairs}; \text{ call.999}
\sigma_e = \text{pull.alarm}; \text{ use.elevator}; \text{ call.999}
N = \{\sigma_0, \sigma_r, \sigma_s\}
U(i) = \{\{\sigma_e\}, \{\sigma_r, \sigma_s\}\}
U(j) = \{\{\sigma_e, \sigma_r, \sigma_s\}\}
V(j) = \{\{\sigma_e, \sigma_r, \sigma_s\}\}
```

Axioms	:
Taut DistA TA	$ \vdash \varphi \text{para } \varphi \text{ una tautología proposicional} \\ \vdash A(\psi \to \varphi) \to (A\psi \to A\varphi) \\ \vdash A\varphi \to \varphi $
4KcA 5KcA 4NA 5NA	$\vdash Kc_i(\psi,\varphi) \to AKc_i(\psi,\varphi)$ $\vdash \neg Kc_i(\psi,\varphi) \to A \neg Kc_i(\psi,\varphi)$ $\vdash N(\psi,\varphi) \to A N(\psi,\varphi)$ $\vdash \neg N(\psi,\varphi) \to A \neg N(\psi,\varphi)$
KcN DN KcA NA Kc⊥	$ \begin{array}{l} \vdash Kc_i(\psi,\varphi) \to N(\psi,\varphi) \\ \vdash N(\varphi,\top) \\ \vdash (A(\psi\to\chi) \land Kc_i(\chi,\rho) \land A(\rho\to\varphi)) \to Kc_i(\psi,\varphi) \\ \vdash (A(\psi\to\chi) \land N(\chi,\rho) \land A(\rho\to\varphi)) \to N(\psi,\varphi) \\ \vdash Kc_i(\bot,\bot) \end{array} $
Rules:	

$$\frac{\vdash \psi \vdash (\psi \to \varphi)}{\vdash \varphi} \text{ (MP)} \qquad \frac{\vdash \varphi}{\vdash \mathsf{A}\varphi} \text{ (Nec)}$$

Axioms:

Taut
$$\vdash \varphi$$
 para φ una tautología proposicional DistA $\vdash A(\psi \to \varphi) \to (A\psi \to A\varphi)$
TA $\vdash A\varphi \to \varphi$

4KcA $\vdash Kc_i(\psi,\varphi) \to AKc_i(\psi,\varphi)$
5KcA $\vdash \neg Kc_i(\psi,\varphi) \to A \neg Kc_i(\psi,\varphi)$
4NA $\vdash N(\psi,\varphi) \to A \neg N(\psi,\varphi)$
5NA $\vdash \neg N(\psi,\varphi) \to A \neg N(\psi,\varphi)$

KcN $\vdash Kc_i(\psi,\varphi) \to N(\psi,\varphi)$
DN $\vdash N(\varphi,\tau)$
KcA $\vdash (A(\psi \to \chi) \land Kc_i(\chi,\rho) \land A(\rho \to \varphi)) \to Kc_i(\psi,\varphi)$
NA $\vdash (A(\psi \to \chi) \land N(\chi,\rho) \land A(\rho \to \varphi)) \to N(\psi,\varphi)$
Kc_\(\text{KC}\)

Rules:

$$\frac{\vdash \psi \quad \vdash (\psi \to \varphi)}{\vdash \varphi} \text{ (MP)} \qquad \frac{\vdash \varphi}{\vdash \mathsf{A}\varphi} \text{ (Nec)}$$

Axioms	:
Taut DistA TA	⊢ φ para φ una tautología proposicional ⊢ $A(\psi \to \varphi) \to (A\psi \to A\varphi)$ ⊢ $A\varphi \to \varphi$
4KcA 5KcA 4NA 5NA	$\vdash KC_i(\psi, \varphi) \to AKC_i(\psi, \varphi)$ $\vdash \neg KC_i(\psi, \varphi) \to A \neg KC_i(\psi, \varphi)$ $\vdash N(\psi, \varphi) \to A N(\psi, \varphi)$ $\vdash \neg N(\psi, \varphi) \to A \neg N(\psi, \varphi)$
KcN DN KcA NA Kc⊥	$ \begin{array}{l} \vdash Kc_i(\psi,\varphi) \to N(\psi,\varphi) \\ \vdash N(\varphi,\top) \\ \vdash (A(\psi\to\chi) \land Kc_i(\chi,\rho) \land A(\rho\to\varphi)) \to Kc_i(\psi,\varphi) \\ \vdash (A(\psi\to\chi) \land N(\chi,\rho) \land A(\rho\to\varphi)) \to N(\psi,\varphi) \\ \vdash Kc_i(\bot,\bot) \end{array} $
Rules:	
	$\frac{\vdash \psi \vdash (\psi \to \varphi)}{\vdash \varphi} \text{ (MP)} \qquad \frac{\vdash \varphi}{\vdash A\varphi} \text{ (Nec)}$

Axioms	:
Taut DistA TA	⊢ φ para φ una tautología proposicional ⊢ $A(\psi \to \varphi) \to (A\psi \to A\varphi)$ ⊢ $A\varphi \to \varphi$
4KcA 5KcA 4NA 5NA	$\vdash KC_i(\psi, \varphi) \to AKC_i(\psi, \varphi)$ $\vdash \neg KC_i(\psi, \varphi) \to A \neg KC_i(\psi, \varphi)$ $\vdash N(\psi, \varphi) \to A N(\psi, \varphi)$ $\vdash \neg N(\psi, \varphi) \to A \neg N(\psi, \varphi)$
KcN DN KcA NA Kc⊥	$ \begin{array}{l} \vdash Kc_i(\psi,\varphi) \to N(\psi,\varphi) \\ \vdash N(\varphi,\top) \\ \vdash (A(\psi\to\chi) \land Kc_i(\chi,\rho) \land A(\rho\to\varphi)) \to Kc_i(\psi,\varphi) \\ \vdash (A(\psi\to\chi) \land N(\chi,\rho) \land A(\rho\to\varphi)) \to N(\psi,\varphi) \\ \vdash Kc_i(\bot,\bot) \end{array} $

Rules:

$$\frac{\vdash \psi \quad \vdash (\psi \to \varphi)}{\vdash \varphi} \text{ (MP)} \qquad \frac{\vdash \varphi}{\vdash \mathsf{A}\varphi} \text{ (Nec)}$$

Axiomatización correcta y fuertemente completa.

- Axiomatización correcta y fuertemente completa.
- Model checking está en P.

- Axiomatización correcta y fuertemente completa.
- Model checking está en P.
- Problema de satisfacibilidad es NP-complete.

- Axiomatización correcta y fuertemente completa.
- Model checking está en P.
- Problema de satisfacibilidad es NP-complete.
- Una tercera modalidad ($S(\psi, \varphi)$):

- Axiomatización correcta y fuertemente completa.
- Model checking está en P.
- Problema de satisfacibilidad es NP-complete.
- Una tercera modalidad ($S(\psi, \varphi)$):
 - Habilidades generaes de los agentes.

- Axiomatización correcta y fuertemente completa.
- Model checking está en P.
- Problema de satisfacibilidad es NP-complete.
- Una tercera modalidad ($S(\psi, \varphi)$):
 - Habilidades generaes de los agentes.
 - 'lo que los agentes pueden hacer' / 'lo que los agentes hacen de acuerdo '.

- Axiomatización correcta y fuertemente completa.
- Model checking está en P.
- Problema de satisfacibilidad es NP-complete.
- Una tercera modalidad ($S(\psi, \varphi)$):
 - · Habilidades generaes de los agentes.
 - 'lo que los agentes pueden hacer' / 'lo que los agentes hacen de acuerdo '.
 - Axiomatización correcta y fuertemente completa con los tres.

- Axiomatización correcta y fuertemente completa.
- Model checking está en P.
- Problema de satisfacibilidad es NP-complete.
- Una tercera modalidad (S(ψ, φ)):
 - · Habilidades generaes de los agentes.
 - 'lo que los agentes pueden hacer' / 'lo que los agentes hacen de acuerdo '.
 - Axiomatización correcta y fuertemente completa con los tres.

Trabajo futuro:

- Axiomatización correcta y fuertemente completa.
- Model checking está en P.
- Problema de satisfacibilidad es NP-complete.
- Una tercera modalidad ($S(\psi, \varphi)$):
 - · Habilidades generaes de los agentes.
 - 'lo que los agentes pueden hacer' / 'lo que los agentes hacen de acuerdo '.
 - Axiomatización correcta y fuertemente completa con los tres.

Trabajo futuro:

 Estudiar la complejidad con los tres operadores (SAT para S sólo es a lo más NP).

- Axiomatización correcta y fuertemente completa.
- Model checking está en P.
- Problema de satisfacibilidad es NP-complete.
- Una tercera modalidad ($S(\psi, \varphi)$):
 - · Habilidades generaes de los agentes.
 - 'lo que los agentes pueden hacer' / 'lo que los agentes hacen de acuerdo '.
 - Axiomatización correcta y fuertemente completa con los tres.

Trabajo futuro:

- Estudiar la complejidad con los tres operadores (SAT para S sólo es a lo más NP).
- Imponer más restricciones a los componentes del modelo.