#### HW<sub>6</sub>

# Due Thursday 6/2 at 3:00PM on Gradescope

You are not required to submit the solutions to Part 1, but you still should solve these questions since op amps will be on the final.

# Part 1 (Practice Problems):

### **Q1.** Problem 11.3

A certain NMOS transistor has  $V_{t0} = 1V$ ,  $KP = 50\mu A/V^2$ ,  $L = 5\mu m$ , and  $W = 50\mu m$ . For each set of voltages, state the region of operation and compute the drain current.

**a.** 
$$v_{GS} = 4V$$
 and  $v_{DS} = 10V$ 

**b.** 
$$v_{GS} = 4V$$
 and  $v_{DS} = 2V$ 

**c.** 
$$v_{GS} = 0V$$
 and  $v_{DS} = 10V$ 

#### **Solution:**

$$KP = \frac{1}{2}KP\left(\frac{W}{L}\right) = 0.25mA/V^2$$

- a. Saturation because we have  $v_{GS} \ge V_{to}$  and  $v_{DS} \ge v_{GS} V_{to}$ .  $i_D = K(v_{GS} V_{to})^2 = 2.25 mA$
- b. Triode because we have  $v_{DS} < v_{GS} V_{to}$  and  $v_{GS} \ge V_{to}$ .  $i_D = K[2(v_{GS} V_{to})v_{DS} v_{DS}^2] = 2mA$
- c. Cutoff because we have  $v_{GS} \leq V_{to}$ .  $i_D = 0$

## **Q2.** Problem 11.22

Use a load-line analysis of the circuit shown in the figure below to determine the values of  $V_{DSQ}$ ,  $V_{DSmin}$ , and  $V_{DSmax}$ . The characteristics of the FET are shown in the plot on the right. Note that the labelled  $I_{DQ}$  is for a different textbook example, not for this problem. [Hint: First, replace the 15V source and the resistances by their Thevenin equivalent circuit.]



#### **Solution:**

The Thevenin equivalent for the drain circuit contains a 12V source in series with a  $1.2k\Omega$  resistance. Then, we can construct the load line and determine the required voltages as shown:



### **Q3.** Problem 11.50

Consider the common-source amplifier shown in the figure below. The NMOS transistor has  $KP = 50\mu A/V^2$ ,  $L = 5\mu m$ ,  $W = 500\mu m$ ,  $V_{to} = 1V$ , and  $r_d = \infty$ .

- **a.** Determine the values of  $I_{DQ}$ ,  $V_{DSQ}$ , and  $g_m$ .
- **b.** Compute the voltage gain, input resistance, and the output resistance, assuming that the coupling capacitors are short circuits for the ac signal.



#### **Solution:**

**a.** 
$$V_G = V_{DD} \left( \frac{R_2}{R_1 + R_2} \right) = 20 \left( \frac{0.3}{1.7 + 0.3} \right) = 3V$$

$$V_{GSQ} = V_G = 3V$$

$$K = \frac{1}{2} KP \left( \frac{W}{L} \right) = 2.5 mA/V^2$$

$$I_{DQ} = K \left( V_{GSQ} - V_{to} \right)^2 = 10 mA$$

$$V_{DSQ} = V_{DD} - R_D I_{DSQ} = 10V$$

$$g_m = 2\sqrt{KI_{DQ}} = 0.01S$$

**b.** 
$$R'_{L} = \frac{1}{\frac{1}{R_{D}} + \frac{1}{R_{L}}} = 500\Omega$$
 $A_{V} = -g_{m}R'_{L} = -5$ 
 $R_{in} = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}}} = 255k\Omega$ 
 $R_{o} = R_{D} = 1k\Omega$ 

## **Q4.** Problem 13.9

Consider the circuit shown in the figure below. Sketch  $v_{in}(t)$  and  $v_o(t)$  to scale versus time. The op amp is ideal.



### **Solution:**

This is an inverting amplifier having a voltage gain given by  $A_V = -\frac{R_2}{R_1} = -3$ . Thus, we have  $v_o(t) = -3 \times [2\cos(2000\pi t)]$ . Sketches of  $v_{in}(t)$  and  $v_o(t)$  are:



### **Q5.** Problem 13.12

Consider the inverting amplifier shown in the figure below, in which one of the resistors has been replaced with a diode. Assume an ideal op amp,  $v_{in}$  positive, and a diode current given by  $i_D = I_s \exp(v_D/nV_T)$ . Derive an expression for  $v_o$  in terms of  $v_{in}$ , R,  $I_s$ , n, and  $V_T$ .



## **Solution:**

Using the summing-point constraint, we have

$$i_D = \frac{v_{in}}{R} = I_S \exp\left(\frac{v_D}{nV_T}\right)$$
$$v_o = -v_D$$

Solving, we have

$$v_o = -nV_T \ln \left(\frac{v_{in}}{RI_S}\right)$$

# **Q6**. Problem 13.21

Analyze the ideal-op-amp circuit shown in the figure below to find an expression for  $v_o$  in terms of  $v_A$ ,  $v_B$ , and the resistance values.



# **Solution:**



Writing a current equation at the noninverting input, we have  $\frac{v_1-v_A}{R_A}+\frac{v_1-v_B}{R_B}=0$ 

$$\frac{v_1 - v_A}{R_A} + \frac{\bar{v}_1 - v_B}{R_B} = 0$$

Using the voltage-division principle we can write

$$v_1 = \frac{R_1}{R_1 + R_2} v_o$$

Using the second equation to substitute for  $v_1$  in the first equation and rearranging, we get:  $v_o = \frac{R_1 + R_2}{R_1} \left( \frac{v_A R_B + v_B R_A}{R_A + R_B} \right)$ 

$$v_o = \frac{R_1 + R_2}{R_1} \left( \frac{v_A R_B + v_B R_A}{R_A + R_B} \right)$$

## **Q7.** Problem 13.74

Sketch the output voltage of the idea-op-amp circuit shown in the figure below to scale versus time. The circuit is shown in (a) and the input voltage  $v_p(t)$  is shown in (b).



### **Solution:**

This is an integrator circuit and the output is given by:

$$v_o(t) = -\frac{1}{RC} \int_0^t v_{in} dt = -50 \int_0^t v_{in} dt$$

A sketch of  $v_o(t)$  versus t is:

