	Date. Na
	Chapter 1: Mechania:
	DYNAMICS OF SYSTEM OF PARTICLES
	A7 Concept on Vector: vector consists of both magnitude and direction
	- Defn: vector states the exact position in co-ordinate states blane.
	ie, distance from X-, Y-, Z-axis. Cg: $\hat{A} = A_{2}\hat{i} + A_{3}\hat{j} + A_{2}\hat{k}$
(10)	X) Unit vector: $\hat{A} = \vec{A}$ vector $ \vec{A} $ its magnitude. Along a-axis, \hat{i} Along y-axis, \hat{j} Along z-axis, \hat{z}
	Y) Scalar product: $\overrightarrow{A} \times \overrightarrow{A} \cdot \overrightarrow{B} = A - B \cdot cost \theta$ (Rojection y a vector called scalar product or dot product because on another) product of two products is a scalar ie, solution doesn't have a vector.
	$\vec{J} \cdot \vec{J} = 0$ $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} (\text{commutative}) \vec{J} \cdot \vec{E} = 1$ $\vec{J} \cdot \vec{E} = 0$ $\vec{k} \cdot \vec{E} = 1$

x) Vector product: $\vec{A} \times \vec{B} = A \cdot B - 8in \Theta(\vec{n})$ Unit vector giving direction also called cross-product. to plane containing A and B. it indicates area swept up by the rotational motion. $\vec{A} \times \vec{B} = - \vec{B} \times \vec{A}$ ie, $\vec{B} \times \vec{A} = A \cdot B \sin \theta (-\hat{n})$ for unit vectors; $\hat{j} \times \hat{j} = \hat{k}$ $\hat{j} \times \hat{k} = \hat{i}$ (Note: initial hackground vector concept needed for Ch: L) Workdone By a Constant Force: SI unit: Joule

CGS unit: erg When a body moves through a distance (or displacement d) by a force F, then workdone Here, W= Fd ces 0° ie, applied force is in the same direction as the displacement So, workdone = Force x displacement.

	Oate. Na
- device of	If the applied force is not in the same direction of the displacement, then workdone
	$W = \vec{F} \cdot \vec{d}$ $= (F \cos(\theta) \cdot d)$
	in the direction of displacement x The displacement.
	If $0 < 11/2$, workdone is positive ie, the body gains its K.E.
	If $\theta > \Pi/2$, workdone is negative ie, the K-t-g the body decreases.
	If $\theta = \pi I_2$, workdone is zero ($w = 0$). - Examples of no workdone: i) When we push the wall and the wall doesn't more. ii) If the body is moving in a circular path, then overall workdone is zero.
	Workdone by a Number of Constant forces Let us consider a system of 'n' number of the body displaces a certain distance 'd'

., DAI ..., DKn.

```
In the first step, f, is assumed to be constant workdone (.Dw.) = Fi - Dx,
  In the rewnd step, Fz is assumed to be constant
     : Workdone (\Delta W_2) = F_2 \cdot \Delta H_2
:
 In the ith step. Fi is assumed to be constant
      ! Workdone ( DW; ) = F; . DX;
  In the nth step, for is assumed to be constant
      : Workdone (DWn) = fn. Dxn.
  Now, the total workdone (W) = DW, + DW2 + -... + DW; +--... + DWn
        = fi . Ax1 + F2 . Ax2 + .... + Fj . Ax; + .... + Fn . Axn
   An exact roult can be obtained if each DX - D
   and the number of intervals tends to infinity (a)
   Now,
  the total workdone = lim Fi. AM, + lim Fz. AM2 + ---
                     U-KQ O-KQ
                     --- + 1im Fi-Da; + ---- + 1im Fo-Dan
               Dn → D Dx ¬D
               = lim & Fi. Da;
 The total workdone in one-d by the variable face is the i
                                                    mugnitude
of area into covered by the loop.
```


	Date. No.
In terms of rectangular components, for Force, $\vec{F} = F_{x} \hat{i} + F_{y} \hat{j} + F_{z} \hat{k}$	
For displacement, $ds = dx \hat{i} + dy \hat{j} + dz \hat{k}$	
So, total workdone (Wat, +Mx) = $\vec{F} \cdot \vec{ds}$	
$= \int (f_{\chi} \hat{i} + f_{y} \hat{j} + f_{z} \hat{k}).$	(daî+dyj+dx)
Since we know, $\hat{j} \cdot \hat{j} = 1$, $\hat{k} \cdot \hat{k} = 1$	
$\widehat{J} = 0, \widehat{J} = 0, \widehat{J} = 0$ $S_{0}, \widehat{J} = 0, \widehat{J} = 0$ $S_{0}, \widehat{J} = 0, \widehat{J} = 0$ $S_{0}, \widehat{J} = 0, \widehat{J} = 0$	F: taking all 3
$W = \int_{R} F_{n} dx + \int_{R} F_{y} dy + \int_{Z} F_{z} dz$	coordinate axes
Thus, the total workdone in 3-d can be	calculated

	Octe	9Va
From free body diagram,		
$T\cos \phi = mg - (?)$ $T\sin \phi = F - (ii)$		
Dividing (i) from (ii),		
Tring F		
$F = mg \tan \phi - (iii)$		
We know, Total woncdone by force F is. $W = \int_{\Gamma} F \cdot dn$		
= Img tant da (iv)		
In \triangle ARC, $\sin \psi = \frac{\pi}{2}$		
Differentiating both sides wirt φ , $d\eta = L\cos\psi$ $d\eta = L\cos\psi$		

Date No. = mads c mv.dv = $\frac{1}{2}$: W= AKE (Work-energy theorem is verified *7 Physical Significance: (i): From W.E. Theorem, we easily defined work and kinetic energy and derive relation using them
from Newton's 2nd law of motion.

(ii) It is used to calculate the workdone by
resultant force and calculating speed at that distance. * Limitation: (i) Since it is derived from Newton's 2nd law of motion, it is only applicable on particles.

Hence, we consider whole object as a single
particle it all of its object particles behave like
particles. (ii) Direction of velocity cannot be determined.

	Q.3: A hody of mass 4.5 gm is dropped from rest at height 10.5 m whove earth's surface. Neglecting air resistance, what will be its speed just it strikes the ground.	betwee
	Civen; mass $(m) = 4.5 \text{ gm} = 4.5 \times 10^{-3} \text{ kg}$. height $(h) = 10.5 \text{ m}$. instial velocity $(u) = 0 \text{ m/s}$.	
	According to work-energy theorem; Whet = AKE	
	or, $mgh = \frac{1}{2}mv^2 - \frac{1}{2}mu^2$	
	or, $phgh = 1 phv^2$ [:' $u=0$] on $v=\sqrt{2gh}$	
	on $V = \sqrt{2} \times 9.8 \times 10.5 = 14.34 \text{ m/s}.$	
	The speed just before striking the ground's	
- A15		

A.4: A block of mass 3.63 kg slides on a honzontal frictionless table with speed v= 1.22 m/s It is brought to rest in compressing a stringspring. In its path. By how much is the spring compressed if total workdone spring constant is 135 N/m? Given, mass (An)= 3-63 kg initialspeed (u) = 1-22 m/s final velocity (v) = b spring wonstrant (K) = 135 N/m. According to work- Energy theorem; $\frac{01}{2} - \frac{1}{2} k n^2 = \frac{1}{2} m v^2 - \frac{1}{2} m u^2$ or, tykn2 = tymu2 [: v=0, howard to $\chi = \int m u^2 = \int 3.63 \times (1.22)^2$ 1 2 = 0.20 m The spring gets compressed by 0.20 m

	Date. 210
	(b). Elastic) spring force.
	Here, Workdone to take body from initial to final position (a) = 1 k(xx2-x1)
-	Workdone to take body from final to initial position $(b) = 1 k (\pi_1^2 - \pi_1^2)$
	$= -1 \times (M_{1}^{2} - M_{1}^{2})$ Total workdone (Wnet) = a + b $= 0 ie_{1} conservative$
	(*): Example of Non-consessuative force: a) Enous; We know; Workdone by frictional force (w) = -fd.
	Here, Workdone from B to A = (1) Workdone from B to A = (1) Workdone from B to A = (1)
	(WBA) = -fd.