(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001年3月22日(22.03.2001)

PCT

(10) 国際公開番号 WO 01/19807 A1

(51) 国際特許分類?:

C07D 277/18. 279/06, 279/08, 417/12, A61K 31/426, 31/541, 31/5415, 31/547, A61P 13/12, 29/00, 37/06, 43/00 // (C07D 417/12, 213:36, 279:06) (C07D 417/12, 215:12, 279:06) (C07D 417/12, 279:06, 333:34)

(21) 国際出願番号:

PCT/JP00/06185

(22) 国際出願日:

2000年9月11日(11.09.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願平11/260780

1999年9月14日(14.09.1999) JP

(71) 出願人 (米国を除く全ての指定国について): 塩野義 製薬株式会社 (SHIONOGI & CO., LTD.) [JP/JP]; 〒 541-0045 大阪府大阪市中央区道修町3丁目1番8号 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 花崎浩二 (HANASAKI, Koji) [JP/JP]; 〒553-0002 大阪府大阪 市福島区鷺洲5丁目12番4号 塩野義製薬株式会社内 Osaka (JP). 村司孝己 (MURASHI, Takami) [JP/JP]. 甲 斐浩幸 (KAI, Hiroyuki) [JP/JP]; 〒520-3423 滋賀県甲

賀郡甲賀町大字五反田1405番地 塩野義製薬株式会 社内 Shiga (JP).

- (74) 代理人: 山内秀晃, 外(YAMAUCHI, Hideaki et al.); 〒553-0002 大阪府大阪市福島区鷺洲5丁目12番4号 塩 野義製薬株式会社 知的財産部 Osaka (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: 2-IMINO-1,3-THIAZINE DERIVATIVES

(54) 発明の名称: 2ーイミノー1,3ーチアジン誘導体

represents optionally substituted aryl, etc.

(57) Abstract: It is found out that compounds represented by general formula (I) bind selectively to cannabinoid 2 receptor (CB2R) and thus exhibit CB2R antagonism or CB2R agonis wherein R1 represents optionally substituted alkylene; R2 represents hydrogen, alkyl, a group represented by the formula -C(=R5)-R6 (wherein R⁵ represents O or S; and R⁶ represents alkyl, alkoxy, alkylthio, etc.) or a group represented by the formula SO₂R⁷ (wherein R7 represents alkyl, etc.); m is an integer of from 0 to 2; and A

WO 01/19807 AJ

(57) 要約:

式(I)で示される本発明化合物が、カンナビノイド2受容体(CB2R)に選択的に結合し、CB2Rアンタゴニスト作用またはCB2Rアゴニスト作用を示すことを見出した。

$$(CH_2)_{m} = \begin{pmatrix} R^1 \\ R^2 \end{pmatrix}$$

(式中、式中、 R^1 は置換されていてもよいアルキレン; R^2 は水素、アルキル、式:-C(= R^5) $-R^6$ (式中、 R^5 はO又はS; R^6 はアルキル、アルコキシ、アルキルチオ等)で示される基、又は式: $-SO_2R^7$ (式中、 R^7 はアルキル等)で示される基; R^6 はアルキル等)で示される基; R^6 はアルキル等)の整数; R^6 は変換されていてもよい芳香族炭素環等)

明細書

2-イミノー1,3-チアジン誘導体

5 技術分野

本発明は、2-イミノー1,3-チアジン誘導体に関する。より詳しくは、カンナビノイド2受容体に選択的なアンタゴニスト作用またはアゴニスト作用を有する2-イミノー1,3-チアジン誘導体及びその医薬用途に関する。

10 背景技術

20

25

カンナビノイドは、1960年にマリファナの活性物質の本体として発見され、その作用は、中枢神経系作用(幻覚、多幸感、時間空間感覚の混乱)、および末梢細胞系作用(免疫抑制、抗炎症、鎮痛作用)であることが見出された。

その後、内在性カンナビノイド受容体アゴニストとして、アラキドン酸含有リン脂質から産生されるアナンダミドや2-アラキドノイルグリセロールが発見された。これら内在性アゴニストは、中枢神経系作用及び末梢細胞系作用を発現することが知られているが、さらに、Hypertension (1997) 29, 1204-1210 には、アナンダミドの心血管への作用も報告されている。

カンナビノイド受容体としては、1990年にカンナビノイド1受容体が発見され、脳などの中枢神経系に分布することがわかり、そのアゴニストは神経伝達物質の放出を抑制し、幻覚などの中枢作用を示すことがわかった。また、1993年にはカンナビノイド2受容体が発見され、脾臓などの免疫系組織に分布することがわかり、そのアゴニストは免疫系細胞や炎症系細胞の活性化を抑制し、免疫抑制作用、抗炎症作用、鎮痛作用を示すことがわかった(Nature, 1993, 365, 61-65)。

従って、カンナビノイド2受容体の選択的なアンタゴニストまたはアゴニスト

は、カンナビノイド1受容体に由来する中枢神経系の副作用(幻覚など)を回避することができ、カンナビノイド1受容体に関連した依存性を引き起こすこともなく、免疫抑制剤、抗炎症剤、鎮痛剤として期待されている(Nature, 1998, 349, 277-281)。

5 カンナビノイド2受容体アンタゴニスト作用またはアゴニスト作用を有する化 合物としては、イソインドリノン誘導体(WO97/29079、WO99/0 2499)、ピラゾール誘導体(WO98/41519)などが知られている。

一方、2-41, 3-47ジン骨格を有する有機燐化合物には殺虫作用があることが知られている(特開昭 61-65894、特開昭 62-29594)。

10 しかし、2-イミノー1,3-チアジン誘導体がカンナビノイド2受容体アンタゴニスト作用またはアゴニスト作用を有することは知られていない。

発明の開示

カンナビノイド2 受容体に選択的なアンタゴニスト作用またはアゴニスト作用 15 を有する新規な化合物として、2-イミノ-1,3-チアジン誘導体などを見出 した。

すなわち、本発明は、

1) 式(I):

20 (式中、 R^1 は置換されていてもよいアルキレンを表わし、 R^2 はアルキル、式: $-C \ (=R^5) - R^6 \ (式中、<math>R^6$ はO又はSを表わし、 R^6 はアルキル、アルコキシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアラ

5

10

15

20

ルキルオキシ、置換されていてもよいアラルキルチオ、置換されていてもよいアラルキルアミノ、アルコキシアルキル、アルキルチオアルキル、又は置換されていてもよいアミノアルキルを表わす)で示される基、又は式: $-SO_2R^7$ (式中、 R^7 はアルキル、置換されていてもよいアミノ、置換されていてもよいアリール、又は置換されていてもよいヘテロアリールを表わす)で示される基を表わし、mは $0\sim2$ の整数を表わし、Aは置換されていてもよい芳香族炭素環又は置換されていてもよい芳香族炭素環又は置換されていてもよい芳香族炭素環又は置換されていてもよい芳香族複素環を表わす)で示される化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物を含有する医薬組成物、

2) 式:

.

で示される基が、式:

(式中、 R^3 および R^4 はそれぞれ独立して、水素、アルキル、アルコキシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアリール、置換されていてもよいアリールオキシ、シクロアルキル、ハロゲン、ヒドロキシ、ニトロ、ハロアルキル、ハロアルコキシ、置換されていてもよいカルバモイル、カルボキシ、アルコキシカルボニル、アルキルスルフィニル、アルキルスルホニル、アルコキシアルキル、アルキオアルキル、置換されていてもよいアミノアルキル、アルコキシアルコキシ、アルキルチオアルコキシ、置換されていてもよいヘテロアリール、 に換されていてもよい非芳香族複素環式基、アルコキシイミノアルキル、又は式:-C(=O) $-R^H$ (R^H は水素、アルキル、 置換されていてもよいアリール、又は置換されていてもよい非芳香族複素環式基)で示される基を表わすか、又は R^3 及び R^4 は一緒になってアルキレンジオキシを表わし、Aは

置換されていてもよい芳香族炭素環又は置換されていてもよい芳香族複素環を表わす。)である上記1)記載の医薬組成物、

- 3) カンナビノイド2受容体親和性である上記1)又は2)記載の医薬組成物、
- 4) カンナビノイド2受容体作動性である上記3)記載の医薬組成物、
- 5 5) 抗炎症剤である上記3)記載の医薬組成物、
 - 6) 免疫抑制剤である上記3)記載の医薬組成物、
 - 7) 腎炎治療剤である上記3)記載の医薬組成物、
 - 8) 式(II):

10

15

20

$$\begin{array}{c|c} & & & & \\ & & & \\ R^3 & & & \\ & & & \\ R^4 & & & \\ \end{array}$$
 (II)

(式中、 R^1 は置換されていてもよいアルキレンを表わし、 R^2 は式:-C($=R^6$) $-R^6$ (式中、 R^6 はO又はSを表わし、 R^6 はアルキル、アルコキシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアラルキルオキシ、置換されていてもよいアラルキルチオ、置換されていてもよいアラルキルアミノ、アルコキシアルキル、アルキルチオアルキル、又は置換されていてもよいアミノアルキルを表わす)で示される基、又は式: $-SO_2R^7$ (式中、 R^7 はアルキル、置換されていてもよいアミノ、置換されていてもよいアリール、又は置換されていてもよいヘテロアリールを表わす)で示される基を表わし、 R^3 および R^4 はそれぞれ独立して、水素、アルキル、アルコキシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアリール、置換されていてもよいアリール、置換されていてもよいアリール、置換されていてもよいアリール、プロアルキル、ハロアルコキシ、置換されていてもよいカルパモイル、カルボキシ、アル

15

コキシカルボニル、アルキルスルフィニル、アルキルスルホニル、アルコキシアルキル、アルキルチオアルキル、置換されていてもよいアミノアルキル、アルコキシアルコキシ、アルキルチオアルコキシ、置換されていてもよいヘテロアリール、置換されていてもよい非芳香族複素環式基、アルコキシイミノアルキル、又は式:-C(=O)-R^H(R^Hは水素、アルキル、置換されていてもよいアリール、又は置換されていてもよい非芳香族複素環式基)で示される基を表わすか、又はR³及びR⁴は一緒になってアルキレンジオキシを表わし、mは0~2の整数を表わし、Aは置換されていてもよい芳香族炭素環又は置換されていてもよい芳香族複素環を表わす)で示される化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物、

- 9) mが0である上記8)記載の化合物、そのプロドラッグ、それらの製薬上 許容される塩、又はそれらの溶媒和物、
- 10) R¹がアルキレンで置換されていてもよい炭素数2~9の直鎖状又は分枝状のアルキレンである上記8)又は9)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物、
- 11) R^{-1} がアルキレンで置換された炭素数 $2 \sim 9$ の直鎖状のアルキレン、又は炭素数 $2 \sim 9$ の分枝状のアルキレンである上記 8) ~ 1 0) のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物、
- 20 12) R^6 がアルコキシ又はアルキルチオであり、 R^7 が置換されていてもよい アリールである上記 8) \sim 11) のいずれかに記載の化合物、そのプロドラッグ、 それらの製薬上許容される塩、又はそれらの溶媒和物、
 - 13) R³およびR⁴がそれぞれ独立して水素、アルキル、アルコキシ、又はアルキルチオであり、Aが置換されていてもよい芳香族炭素環である上記8)~1
- 25 2) のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される 塩、又はそれらの溶媒和物、

 R^{\perp} が2,2-ジメチルトリメチレン、2,2-ジエチルトリメチレン、 14) 2, 2-エチレントリメチレン、1-メチルトリメチレン、2-メチルトリメチ レン、トリメチレン、2,2-ジーn-プロピルトリメチレン、2,2-テトラ メチレントリメチレン、2,2-ペンタメチレントリメチレン、1,1-ジメチ ルエチレン、又は1-メチルエチレンであり、 R^6 がメチル、エチル、n-プロ ピル、i-プロピル、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、 nープトキシ、メチルチオ、エチルチオ、nープロピルチオ、iープロピルチオ、 i-ブチルチオ、sec-ブチルチオ、ベンジルオキシ、ベンジルチオ、メトキシ メチル、エトキシメチル、メチルチオメチル、エチルチオメチル、又はエチルア ミノであり、R⁷がメチル、エチル、4-トリル、4-二トロフェニル、3-二 10 トロフェニル、2-ニトロフェニル、4-メトキシフェニル、4-トリフルオロ メチルフェニル、2-チエニル、又は2-ナフチルであり、 R^3 が水素、メチル、 エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、sec-ブチ ル、t-ブチル、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、n-プトキシ、メチルチオ、エチルチオ、n-プロピルチオ、i-プロピルチオ、ジ 15 メチルアミノ、アセチルアミノ、N-アセチルメチルアミノ、ジエチルアミノ、 エチルメチルアミノ、プロピルメチルアミノ、フェニル、フェノキシ、フッ素、 塩素、臭素、ニトロ、トリフルオロメチル、ジフルオロメトキシ、トリフルオロ メトキシ、N-メチルカルバモイル、メトキシカルボニル、メタンスルフィニル、 エタンスルフィニル、メタンスルホニル、エタンスルホニル、アセチル、メトキ 20 シメチル、1ーメトキシエチル、3ーピリジル、モルホリノ、ピロリジノ、ピペ リジノ、2-オキソピロリジノ、1-メトキシイミノエチル、又はモルホリノカ ルボニルであり、R⁴が水素、メチル、エチル、フッ素、塩素、ニトロ、メトキ シ、又はエトキシであり、又はR³及びR⁴が一緒になって-O-CH₂-O-を 表わし、Aがベンゼン環、ナフタレン環、ピリジン環、又はキノリン環である上 25 記8)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそ

れらの溶媒和物、

- 15) 上記8)~14)のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物を含有する医薬組成物、
- 16) カンナビノイド2受容体親和性である上記15)記載の医薬組成物、
- 5 17) カンナビノイド2受容体作動性である上記16)記載の医薬組成物、
 - 18) 抗炎症剤である上記16)記載の医薬組成物、
 - 19) 免疫抑制剤である上記16)記載の医薬組成物、
 - 20) 腎炎治療剤である上記16)記載の医薬組成物、
 - 21) 上記1)記載の医薬組成物を投与することを特徴とする炎症の治療方法、
- 10 22) 上記1)記載の医薬組成物を投与することを特徴とする免疫抑制の方法、
 - 23) 上記1)記載の医薬組成物を投与することを特徴とする腎炎の治療方法、
 - 24) 抗炎症剤を製造するための上記1)記載の化合物の使用、
 - 25) 免疫抑制剤を製造するための上記1)記載の化合物の使用、
 - 26) 腎炎治療剤を製造するための上記1)記載の化合物の使用、
- 15 に関する。

発明を実施するための最良の形態

式 (I) 及び式 (II) で示される化合物の定義中使用される各語の意味を、 以下に説明する。各語は明細書中で統一して使用する。

「アルキレン」とは、炭素数 2~10の直鎖状又は分枝状のアルキレンを意味し、例えば、エチレン、1ーメチルエチレン、1ーエチルエチレン、1,1ージメチルエチレン、1,2ージメチルエチレン、1,1ージエチルエチレン、1,2ージエチルエチレン、1ーエチルー2ーメチルエチレン、トリメチレン、1ーメチルトリメチレン、2ーメチルトリメチレン、1,1ージメチルトリメチレン、1,2ージメチルトリメチレン、1,2ージメチルトリメチレン、1,2ージエチルトリメチレン、1,2

ージェチルトリメチレン、 2 、 2 ージエチルトリメチレン、 2 ーエチルー 2 ーメチルトリメチレン、 7 トラメチレン、 1 ーメチルテトラメチレン、 1 、 1 ージメチルテトラメチレン、 1 、 1 ージスチルトリメチレン 、 1 、 1 の 1

「置換されていてもよいアルキレン」の置換基としては、アルキレン(例えば、 メチレン、エチレン、トリメチレン、テトラメチレン、ペンタメチレン等)、シ クロアルキル(例えば、シクロプロピル、シクロブチル、シクロペンチル、シク ロヘキサン等)、アルコキシ(例えば、メトキシ、エトキシ等)、アルキルチオ 15 (例えば、メチルチオ、エチルチオ等)、アルキルアミノ(例えば、メチルアミ ノ、エチルアミノ、ジメチルアミノ等)、アシルアミノ(例えば、アセチルアミ ノ等)、アリール(例えば、フェニル等)、アリールオキシ(例えば、フェノキ シ等)、ハロゲン(フッ素、塩素、臭素、よう素)、ヒドロキシ、アミノ、ニト ロ、アルキルスルホニル (例えば、メタンスルホニル、エタンスルホニル等)、 20 アリールスルホニル(例えば、ベンゼンスルホニル等)、シアノ、ヒドロキシア ミノ、カルボキシ、アルコキシカルボニル(例えば、メトキシカルボニル、エト キシカルボニル等)、アシル(例えば、アセチル、ベンゾイル等)、アラルキル (例えば、ベンジル等)、メルカプト、ヒドラジノ、アミジノ、グアニジノ等が 挙げられ、これらの置換基は1~4個の任意の位置で置換していてもよい。「置 25 換されていてもよいアルキレン」の置換基としては、特に、アルキレンが好まし い。

10

15

なお、アルキレンで置換されたアルキレンには、スピロ原子を介してアルキレンで置換されたアルキレン (例えば、2,2-エチレントリメチレン、2,2-トリメチレントリメチレン、2,2-ベンタメチレントリメチレン等)、及び異なる位置がアルキレンで置換されたアルキレン (例えば、1,2-テトラメチレンエチレン、1,2-エチレントリメチレン等)が包含される。具体的には、2,2-エチレントリメチレン、2,2-ベンタメチレントリメチレン、2,2-ボンタメチレントリメチレンが好ましく、特に、2,2-エチレントリメチレン、2,2-ボンタメチレントリメチレン、2,2-ボンタメチレントリメチレンが好ましく、特に、2,2-エチレントリメチレンが好ましい。

「アルコキシ」とは、酸素原子に上記「アルキル」が超換した基を意味し、例えば、メトキシ、エトキシ、nープロポキシ、iープロポキシ、nープトキシ、iープトキシ、secーブトキシ、tーブトキシ、nーペンチルオキシ、nーへキシルオキシ、nーヘブチルオキシ、nーオクチルオキシなどが挙げられる。特に、炭素数1~4の直鎖又は分枝状のアルコキシが好ましく、メトキシ、エトキシ、nープロポキシ、iープロポキシ、nーブトキシ、iープトキシ、secーブトキシ、tーブトキシが好ましい。

「アルキルチオ」とは、硫黄原子に上記「アルキル」が置換した基を意味し、例えば、メチルチオ、エチルチオ、n-プロピルチオ、i-プロピルチオ、n-プチルチオ、i-プチルチオ、s e c - プチルチオ、t- ブチルチオ、n-ペンチルチオ、n-ヘキシルチオ等が挙げれれる。特に、炭素数 1 \sim 4 の直鎖又は分枝状のアルキルチオが好ましく、メチルチオ、エチルチオ、n- プロピルチオ、i- プロピルチオ、n- ブチルチオ、i- ブチルチオ、s e c- ブチルチオ、t- ブチルチオが好ましい。

「置換されていてもよいアミノ」の置換基としては、アルキル(例えば、メチル、エチル、n-プロピル、i-プロピル等)、アシル(例えば、ホルミル、ア セチル、プロピオニル、ベンゾイル等)等が挙げられる。アミノ基の窒素原子が、これらの置換基でモノ置換またはジ置換されていてもよい。

「置換されていてもよいアミノ」としては、アミノ、メチルアミノ、エチルアミノ、n-プロピルアミノ、i-プロピルアミノ、ジメチルアミノ、ジエチルアミノ、x+ルアミノ、アセチルアミノ、x+ルアミノ、プロピルメチルアミノ等が好ましい。

15

「アリール」とは、炭素数 6 ~ 1 4 の芳香族炭素環式基を意味し、例えば、フェニル、ナフチル、アントリル、フェナントリル等が挙げられる。

「アラルキル」とは、上記「アルキル」に上記「アリール」が置換した基を意 20 味し、例えば、ベンジル、フェニルエチル(例えば、1-フェニルエチル、2-フェニルエチル)、フェニルプロピル(例えば、1-フェニルプロピル、2-フェニルプロピル、3-フェニルプロピル等)、ナフチルメチル(例えば、1-ナフチルメチル、2-ナフチルメチル等)等が挙げられる。

「アラルキルオキシ」とは、酸素原子に上記「アラルキル」が置換した基を意 25 味し、例えば、ベンジルオキシ、フェニルエチルオキシ(例えば、1-フェニル エチルオキシ、2-フェニルエチルオキシ)、フェニルプロポキシ(例えば、1 -フェニルプロピルオキシ、2-フェニルプロピルオキシ、3-フェニルプロピルオキシ等)、ナフチルメトキシ(例えば、<math>1-ナフチルメトキシ、2-ナフチルメトキシ等)等が挙げられる。

「アラルキルチオ」とは、硫黄原子に上記「アラルキル」が置換した基を意味 し、例えば、ベンジルチオ、フェニルエチルチオ(例えば、1-フェニルエチルチオ、2-フェニルエチルチオ)、フェニルプロピルチオ(例えば、1-フェニルプロピルチオ、2-フェニルプロピルチオ、3-フェニルプロピルチオ等)、ナフチルメチルチオ(例えば、1-ナフチルメチルチオ、2-ナフチルメチルチオ等)等が挙げられる。

「アラルキルアミノ」とは、窒素原子に上記「アラルキル」が1又は2個置換した基を意味し、例えば、ベンジルアミノ、フェニルエチルアミノ(例えば、1ーフェニルエチルアミノ、2ーフェニルエチルアミノ)、フェニルプロピルアミノ(例えば、1ーフェニルプロピルアミノ、2ーフェニルプロピルアミノ、3ーフェニルプロピルアミノ)、ナフチルメチルアミノ(例えば、1ーナフチルメチルアミノ、2ーナフチルメチルアミノ等)、ジベンジルアミノ等が挙げられる。

「アルコキシアルキル」とは、上記「アルキル」に上記「アルコキシ」が置換した基を意味し、例えば、メトキシメチル、エトキシメチル、n-プロポキシメチル、1-メトキシエチル、2-Xトキシエチル、1-エトキシエチル、2-エ 20 トキシエチル、1-n-プロポキシエチル、2-1ーメトキシーカープロピル、2-Xトキシーカープロピル、3-Xトキシーカープロピル等が挙げられる。

「アルキルチオアルキル」とは、上記「アルキル」に上記「アルキルチオ」が 置換した基を意味し、例えば、メチルチオメチル、エチルチオメチル、n-プロ

25

ピルチオメチル、1-メチルチオエチル、2-メチルチオエチル、1-エチルチオエチル、2-エチル・2-エチル・3-ロープロピルチオエチル、1-ロープロピルチオエチル、1-メチルチオーロープロピル・2-メチルチオーロープロピル、3-メチルチオーロープロピル、1-エチルチオーロープロピル、2-エチルチオーロープロピル、3-エチルチオーロープロピル・2-エチルチオーロープロピル・3-エチルチオーロープロピル・1-ロピルチオーロープロピル・2-ロピル・3-ロピルチオーロープロピル・3-ロピルチオーロープロピルチオーロープロピル・3-ロピルチオーロープロピルチオーロープロピルチオーロープロピルチオーロープロピルチオーロープロピルチオーロープロピルチオーロープロピル等が挙げられる。

「置換されていてもよいアミノアルキル」とは、上記「置換されていもてよいアミノ」が置換した上記「アルキル」を意味し、例えば、N-メチルアミノメチル、N、N-アセチルアミノメチル、N, N-ジメチルアミノメチルなどが挙げられる。

「アルコキシアルコキシ」とは、上記「アルコキシ」で置換された上記「アルコキシ」を意味し、例えば、メトキシメトキシ、エトキシメトキシ、nープロポキシメトキシ、イソプロポキシメトキシ、1-メトキシエトキシ、2-メトキシエトキシなどが挙げられる。

15

「アルキルチオアルコキシ」とは、上記「アルキルチオ」で置換された上記「アルコキシ」を意味し、例えば、メチルチオメトキシ、エチルチオメトキシ、nープロピルチオメトキシ、イソプロピルチオメトキシ、1-メチルチオエトキシ、2-メトキシエトキシなどが挙げられる。

20 「ヘテロアリール」とは、窒素原子、酸素原子、および/又は硫黄原子を 1 ~ 4 個含む炭素数 1 ~ 9 のヘテロアリールを意味し、例えば、フリル (例えば、2-フリル、3-フリル)、チエニル (例えば、2-チエニル、3-チエニル)、ピロリル (例えば、1-ピロリル、2-ピロリル、3-ピロリル)、イミダゾリル (例えば、1-イミダゾリル、2-イミダゾリル、4-イミダゾリル)、ピラゾリル (例えば、1-ピラゾリル、3-ピラゾリル、4-ピラゾリル)、トリアゾリル (例えば、1, 2, 4-トリアゾール-1-イル、1, 2, 4-トリアゾール-3-イル、1, 2, 4-トリアゾール-4-

イル)、テトラゾリル (例えば、1-テトラゾリル、2-テトラゾリル、5-テトラゾ リル)、オキサゾリル(例えば、2-オキサゾリル、4-オキサゾリル、5-オキサゾ リル)、イソキサゾリル(例えば、3-イソキサゾリル、4-イソキサゾリル、5-イ ソキサゾリル)、チアゾリル(例えば、2-チアゾリル、4-チアゾリル、5-チアゾ リル)、チアジアゾリル、イソチアゾリル(例えば、3-イソチアゾリル、4-イソ チアゾリル、5-イソチアゾリル)、ピリジル(例えば、2-ピリジル、3-ピリジル、 4-ピリジル)、ピリダジニル(例えば、3-ピリダジニル、4-ピリダジニル)、ピ リミジニル (例えば、2-ピリミジニル、4-ピリミジニル、5-ピリミジニル)、フ ラザニル(例えば、3-フラザニル)、ピラジニル(例えば、2-ピラジニル)、オ キサジアゾリル (例えば、1,3,4-オキサジアゾール・2-イル)、ベンゾフリル (例 10 えば、2-ベンゾ[b]フリル、3-ベンゾ[b]フリル、4-ベンゾ[b]フリル、5-ベンゾ[b] フリル、6-ベンゾ[b]フリル、7-ベンゾ[b]フリル)、ベンゾチエニル(例えば、2-ベンゾ[b]チエニル、3·ベンゾ[b]チエニル、4·ベンゾ[b]チエニル、5·ベンゾ[b]チ エニル、6-ベンゾ[b]チエニル、7-ベンゾ[b]チエニル)、ベンズイミダゾリル(例 えば、1-ベンゾイミダゾリル、2-ベンゾイミダゾリル、4-ベンゾイミダゾリル、 15 5-ベンゾイミダゾリル)、ジベンゾフリル、ベンゾオキサゾリル、キノキサリル (例えば、2-キノキサリニル、5-キノキサリニル、6-キノキサリニル)、シンノ リニル (例えば、3-シンノリニル、4-シンノリニル、5-シンノリニル、6-シンノ リニル、7-シンノリニル、8-シンノリニル)、キナゾリル(例えば、2-キナゾリ ニル、4-キナゾリニル、5-キナゾリニル、6-キナゾリニル、7-キナゾリニル、8-20 キナゾリニル)、キノリル(例えば、2-キノリル、3-キノリル、4-キノリル、5-キノリル、6-キノリル、7-キノリル、8-キノリル)、フタラジニル(例えば、1-フタラジニル、5-フタラジニル、6-フタラジニル)、イソキノリル(例えば、1-イソキノリル、3-イソキノリル、4-イソキノリル、5-イソキノリル、6-イソキノ リル、7-イソキノリル、8-イソキノリル)、プリル、プテリジニル(例えば、2-25 プテリジニル、4·プテリジニル、6·プテリジニル、7·プテリジニル)、カルバゾ リル、フェナントリジニル、アクリジニル(例えば、1-アクリジニル、2-アクリジニル、3-アクリジニル、4-アクリジニル、9-アクリジニル)、インドリル(例えば、1-インドリル、2-インドリル、3-インドリル、4-インドリル、5-インドリル、5-インドリル、5-インドリル、4-インドリル、4-インドリル、4-インドリル、4-インドリル、4-インドリル、4-インドリル、4-インドリル、4-インドリル、4-インドリル、4-フェノチアジニル(例えば、4-フェノチアジニル、4-フェノチアジニル)等が挙げられる。

 R^3 又は R^4 のヘテロアリールとしては、特に、3-ピリジルが好ましい。 R^7 のヘテロアリールとしては、特に、2-チエニルが好ましい。

10

15

A環は、「置換されていてもよい芳香族炭素環」又は「置換されていてもよい 芳香族複素環」を意味する。

「芳香族炭素環」とは、炭素数 6 ~ 1 4 の芳香族炭素環を意味し、例えば、ベンゼン、ナフタレン、アントラセン、フェナントレン等が挙げられる。特にベンゼン環、ナフタレン環が好ましい。

「芳香族複素環」とは、窒素原子、酸素原子、および/又は硫黄原子を 1 ~ 4 個含む炭素数 1 ~ 9 の芳香環を意味し、例えば、フラン、チオフェン、ピロール、イミダゾール、ピラゾール、トリアゾール、テトラゾール、オキサゾール、イソキサゾール、チアゾール、チアジアゾール、イソチアゾール、ピリジン、ピリダジン、ピリミジン、フラザン、ピラジン、ベンゾフラン、ベンゾチオフェン、ベンズイミダゾール、ジベンゾフラン、ベンゾオキサゾール、キノキサリン、シンノリン、キナゾリン、キノリン、フタラジン、イソキノリン、プテリジン、カルバゾール、フェナントリジン、アクリジン、インドール、イソインドールまたはフェナジン等が挙げられる。特に、ピリジン、キノリン、イソキノリンが好ましい。

「置換されていてもよいアラルキルオキシ」、「置換されていてもよいアラル

キルチオ」、「置換されていてもよいアラルキルアミノ」、「置換されていても よいアリール」、「躍換されていてもよいヘテロアリール」、「置換されていて もよいアリールオキシ」、「置換されていてもよい芳香族炭素環」、「置換され ていてもよい芳香族複素環」及び「置換されていてもよい非芳香族複素環式基」 の置換基としては、アルキル、アルコキシ、アルキルチオ、置換されていてもよ いアミノ、置換されていてもよいアリール、置換されていてもよいアリールオキ シ、シクロアルキル、ハロゲン、ヒドロキシ、ニトロ、ハロアルキル、ハロアル コキシ、置換されていてもよいカルバモイル、カルボキシ、アルコキシカルボニ ル、アルキルスルフィニル、アルキルスルホニル、アルコキシアルキル、アルキ ルチオアルキル、置換されていてもよいアミノアルキル、アルコキシアルコキシ、 10 アルキルチオアルコキシ、置換されていてもよいヘテロアリール、置換されてい てもよい非芳香族複素環式基、アルコキシイミノアルキル、式:-C(=O)-R^H (R^Hは水素、アルキル、置換されていてもよいアリール、又は置換されてい てもよい非芳香族複素環式基)で示される基、アリールスルホニル (例えば、ベ ンゼンスルホニル等)、シアノ、ヒドロキシアミノ、アラルキル(例えば、ベン 15 ジル等)、メルカプト、ヒドラジノ、アミジノ、グアニジノ、イソシアノ、イソ シアナト、チオシアナト、イソチオシアナト、スルファモイル、ホルミルオキシ、 ハロホルミル、オキザロ、チオホルミル、チオカルボキシ、ジチオカルボキシ、 チオカルバモイル、スルフィノ、スルフォ、スルホアミノ、アジド、ウレイド、 アミジノ、グアニジノ、オキソ、チオキソ等が挙げられる。 20

これらの置換基で置換可能な任意の位置が置換されていてもよい。また、環上の同一又は隣接する位置において、アルキレンジオキシで置換されていてもよい。 アルキレンジオキシとしては、例えば、 $-O-CH_2-O-$ 、 $-O-CH_2-CH_2$

25

「アリールオキシ」とは、酸素原子に上記「アリール」が置換した基を意味し、

例えば、フェノキシ、ナフトキシ (例えば、1-ナフトキシ、2-ナフトキシ等)、アントリルオキシ (例えば、1-アントリルオキシ、2-アントリルオキシ等)、フェナントリルオキシ (例えば、1-フェナントリルオキシ、2-フェナントリルオキシ等)等が挙げられる。

5 「シクロアルキル」とは、炭素数3~7のシクロアルキルを意味し、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等が挙げられる。

「ハロゲン」とは、フッ素、塩素、臭素、沃素を意味する。特に、フッ素、塩素、臭素が好ましい。

- 10 「ハロアルキル」とは、上記「アルキル」に1以上のハロゲンが置換した基を意味し、例えば、クロロメチル、ジクロロメチル、ジフルオロメチル、トリフルオロメチル、クロロエチル(例えば、1-クロロエチル、2-クロロエチル等)、ジクロロエチル(例えば、1,1-ジクロロエチル、1,2-ジクロロエチル、2,2-ジクロロエチル等)等が挙げられる。
- 15 「ハロアルコキシ」とは、上記「アルコキシ」に 1 以上のハロゲンが置換した 基を意味し、例えば、ジクロロメトキシ、ジフルオロメトキシ、トリフルオロメトキシ、トリフルオロエトキシ (2, 2, 2-トリフルオロエトキシ等)等が挙 げられる。

「置換されていてもよいカルバモイル」の置換基としては、アルキル(例えば、20 メチル、エチル、n-プロピル、i-プロピル等)、アシル(例えば、ホルミル、アセチル、プロピオニル、ベンゾイル等)等が挙げられる。カルバモイル基の窒素原子が、これらの置換基でモノ置換またはジ置換されていてもよい。

「置換されていてもよいカルバモイル」としては、カルバモイル、N-メチルカルバモイル、N-エチルカルバモイル等が好ましい。

25 「アルコキシカルボニル」とは、カルボニルに上記「アルコキシ」が置換した 基を意味し、特に、メトキシカルボニル、エトキシカルボニル等が好ましい。 「アルキルスルフィニル」とは、スルフィニルに上記「アルキル」が置換した 基を意味し、特に、メタンスルフィニル、エタンスルフィニル等が好ましい。

「アルキルスルホニル」とは、スルホニルに上記「アルキル」基が置換した基 を意味し、特に、メタンスルホニル、エタンスルホニル等が好ましい。

5 「非芳香族複素環式基」とは、窒素原子、酸素原子、および/又は硫黄原子を 1~4個含む炭素数 1~9の非芳香環を意味し、例えば、1-ピロリニル、2-ピロリニル、3-ピロリニル、ピロリジノ、2-ピロリジニル、3-ピロリジニル、1-イミダゾリニル、2-イミダゾリニル、4-イミダゾリニル、1-イミダゾリジニル、2-イミダゾリジニル、1-ピラゾリニル、3-ピラゾリニル、4-ピラゾリニル、1-ピラゾリジニル、ピマゾリジニル、ピマリジノ、2-ピペリジル、3-ピマリジル、4-ピマリジル、ピペラジノ、2-ピペラジニル、2-モルホリニル、3-モルホリニル、モルホリノ、テトラヒドロピラニル等が挙げられる。特に、モルホリノ、ピロリジノ、ピペリジノ、ピペラジノが好ましい。

15 「アルコキシイミノアルキル」は、アルコキシイミノで置換された上記「アルキル」を意味する。例えば、メトキシイミノメチル、エトキシイミノメチル、1
-メトキシイミノエチル等が挙げられる。

mは0~2の整数を意味し、特に、m=0が好ましい。

カンナビノイド2受容体作動性とは、カンナビノイド2受容体に対してアゴニスト作用を示すことを意味する。

25

20

本発明に係る化合物は、以下に示す工程によって製造することができる。

 $(式中、<math>R^{-1}$ は置換されていてもよいアルキレンを表わし、 R^{-2} はアルキル、式: -C (= R^5) $-R^6$ (式中、 R^5 はO又はSを表わし、 R^6 はアルキル、アルコ キシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアラ ルキルオキシ、置換されていてもよいアラルキルチオ、置換されていてもよいア 5 ラルキルアミノ、アルコキシアルキル、アルキルチオアルキル、又は置換されて いてもよいアミノアルキルを表わす)で示される基、又は式:-SO2R7(式中、 \mathbb{R}^7 はアルキル、置換されていてもよいアミノ、置換されていてもよいアリール、 又は置換されていてもよいヘテロアリールを表わす) で示される基を表わし、R ³およびR⁴はそれぞれ独立して、水素、アルキル、アルコキシ、アルキルチオ、 10 置換されていてもよいアミノ、置換されていてもよいアリール、置換されていて もよいアリールオキシ、シクロアルキル、ハロゲン、ヒドロキシ、ニトロ、ハロ アルキル、ハロアルコキシ、置換されていてもよいカルバモイル、カルボキシ、 アルコキシカルボニル、アルキルスルフィニル、アルキルスルホニル、アルコキ シアルキル、アルキルチオアルキル、置換されていてもよいアミノアルキル、ア 15 ルコキシアルコキシ、アルキルチオアルコキシ、置換されていてもよいヘテロア リール、置換されていてもよい非芳香族複素環式基、アルコキシイミノアルキル、 又は式: $-C(=0)-R^{\parallel}(R^{\parallel}$ は水素、アルキル、置換されていてもよいアリ ール、又は置換されていてもよい非芳香族複素環式基)で示される基を表わすか、 又は R^3 及び R^4 は一緒になって $-O-CH_2-O-$ を表わし、mは $O\sim2$ の整数 20

を表わし、Aは置換されていてもよい芳香族炭素環又は置換されていてもよい芳香族複素環を表わす)

第1工程

式(III)で示される化合物のアミノ基をイソチオシアン酸エステル(イソチオシアネート)に変換し、式(IV)で示される化合物を製造する工程である。アミノ基からイソチオシアン酸エステル(イソチオシアネート)への変換法としては、①アンモニア(NH3、NH4OH)やトリエチルアミン(Et3N)などの塩基の存在下に二硫化炭素(CS2)を作用させて得られるジチオカルバミト酸塩を、クロロ炭酸エチル(C1CO2Et)、トリエチルアミン(Et3N)で処理する方法、②前記ジチオカルバミド酸塩を、硝酸鉛等の金属塩で処理する方法③チオホスゲン(CSC12)を作用させる方法④チオカルボニルジイミダゾールを作用させる方法等が挙げられる。

①の場合、塩基(1.0~1.5当量)及び二硫化炭素(1.0~1.5当量) を化合物(III)に加え、非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)中で0.5時間~10時間攪拌する。その後、クロロ炭酸エチル(1.0~1.5当量)及びトリエチルアミン(1.0~1.5当量)を加え、非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)中で0.5時間~10時間攪拌する。反応温度としては0℃~100℃が好ましく、特に0℃~室温が好ましい。

③の場合、チオホスゲン(1.0~1.5当量)を化合物(III)に加え、 非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジメチル 25 ホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)中で0. 5時間~10時間攪拌する。反応温度としては0℃~100℃が好ましく、特に

0℃~室温が好ましい。

④の場合、チオカルボニルジイミダゾール($1.0 \sim 1.5$ 当量)を化合物(III)に加え、非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)中で0.5時間 ~ 10 時間攪拌する。反応温度としては $0 \sim 100$ が好ましく、特に $0 \sim 2$

式(III)で示される化合物としては、m=0の例として、アニリン、2-メチルアニリン、2-エチルアニリン、2-n-プロピルアニリン、2-i-プ ロピルアニリン、2-n-ブチルアニリン、2-sec-ブチルアニリン、2t-ブチルアニリン、3-メチルアニリン、3-i-プロピルアニリン、3-i 10 ープロピルー4-メチルアニリン、3-t-ブチルアニリン、4-メチルアニリ ン、4-1-プロピルアニリン、2,6-ジメチルアニリン、2,3-ジメチル アニリン、2,4-ジメチルアニリン、3,4-ジエチルアニリン、2,5-ジ メチルアニリン、3,4ージメチルアニリン、3,5ージメチルアニリン、2, 6-ジエチルアニリン、2,6-ジーi-プロピルアニリン、2-メトキシアニ 15 リン、2-エトキシアニリン、2-1-プロポキシアニリン、3-メトキシアニ リン、3,5-ジメトキシアニリン、3-n-プトキシアニリン、4-n-ブト キシアニリン、4-エトキシアニリン、3,4-ジメトキシアニリン、2-メチ ルチオアニリン、2-エチルチオアニリン、2-i-プロピルチオアニリン、2 -N, N-ジメチルアミノアニリン、2-フェニルアニリン、3-フェニルアニ 20 リン、4-フェノキシアニリン、2-シクロヘキシルアニリン、2-シクロペン チルアニリン、2-ニトロアニリン、2,4-ジニトロアニリン、2-フルオロ アニリン、2-クロロアニリン、4-クロロアニリン、2,3-ジクロロアニリ ン、3,4-ジクロロアニリン、2-i-プロピル-4-ニトロアニリン、2i-プロピルー6-ニトロアニリン、2-ヒドロキシアニリン、2-N, N-ジ 25

メチルアミノカルボニルアニリン、2-N-アセチルアニリン、2-(1-エチ

ルプロピル) アニリン、2-i-プロピル4-メチルアニリン、<math>2-i-プロピ ルー4-ヒドロキシアニリン、2-i-プロピルー4-クロロアニリン、2-i-プロピルー4-アミノアニリン、2-i-プロピルー5-メチルアニリン、2-i-プロピルー5-とドロキシアニリン、2-i-プロピルー5-クロロアニリン、4-クロロー3-メチルアニリン、3,4-メチレンジオキシアニリン等が挙げられる。

m=1の例としては、ベンジルアミン、2-メチルベンジルアミン、2-エチ . ルベンジルアミン、2-n-プロピルベンジルアミン、2-i-プロピルベンジ ν アミン、2-n-ブチルベンジルアミン、2-sec-ブチルベンジルアミン、 2-t-ブチルベンジルアミン、3-メチルベンジルアミン、3-i-プロピル 10 ベンジルアミン、3-1-プロピル-4-メチルベンジルアミン、3-t-プチ ルベンジルアミン、4-メチルベンジルアミン、4-i-プロピルベンジルアミ ン、2,6-ジメチルベンジルアミン、2,3-ジメチルベンジルアミン、2, 4-ジメチルベンジルアミン、3,4-ジエチルベンジルアミン、2,5-ジメ チルベンジルアミン、3,4-ジメチルベンジルアミン、3,5-ジメチルベン 15 ジルアミン、2,6-ジエチルベンジルアミン、2,6-ジーi-プロピルベン ジルアミン、2-メトキシベンジルアミン、2-エトキシベンジルアミン、2i-プロポキシベンジルアミン、3-メトキシベンジルアミン、3,5-ジメト キシペンジルアミン、3-n-ブトキシペンジルアミン、4-n-ブトキシペン ジルアミン、4-エトキシベンジルアミン、3,4-ジメトキシベンジルアミン、 20 2-メチルチオペンジルアミン、2-エチルチオペンジルアミン、2-i-プロ ピルチオペンジルアミン、2-N, N-ジメチルアミノベンジルアミン、2-フ ェニルベンジルアミン、3-フェニルベンジルアミン、4-フェノキシベンジル アミン、2-シクロヘキシルベンジルアミン、2-シクロベンチルベンジルアミ ン、2-ニトロペンジルアミン、2,4-ジニトロペンジルアミン、2-フルオ 25 ロベンジルアミン、2-クロロベンジルアミン、4-クロロベンジルアミン、2,

3 - ジクロロベンジルアミン、3,4 - ジクロロベンジルアミン、2 - i - プロ ピルー4-ニトロベンジルアミン、2-i-プロピルー6-ニトロベンジルアミ ン、2-ヒドロキシベンジルアミン、2-N, N-ジメチルアミノカルボニルベ ンジルアミン、2-N-アセチルベンジルアミン、2-(1-エチルプロピル) ベンジルアミン、2-i-プロピル4-メチルベンジルアミン、2-i-プロピ ル-4-ヒドロキシベンジルアミン、2-i-プロピル-4-クロロベンジルア ミン、2-1-プロピル-4-アミノベンジルアミン、2-1-プロピル-5-メチルベンジルアミン、2-i-プロピル-5-ヒドロキシベンジルアミン、2 - i - プロピル-5-クロロベンジルアミン、4-クロロ-3-メチルベンジル アミン、3,4-メチレンジオキシベンジルアミン等が挙げられる。

10

m=2の例としては、フェネチルアミン、2-メチルフェネチルアミン、2-エチルフェネチルアミン、2-n-プロピルフェネチルアミン、2-i-プロピ ルフェネチルアミン、2-n-プチルフェネチルアミン、2-sec-プチルフ ェネチルアミン、2-t-ブチルフェネチルアミン、3-メチルフェネチルアミ ン、3-i-プロピルフェネチルアミン、3-i-プロピル-4-メチルフェネ 15 チルアミン、3-t-ブチルフェネチルアミン、4-メチルフェネチルアミン、 4-1-プロピルフェネチルアミン、2,6-ジメチルフェネチルアミン、2, 3-ジメチルフェネチルアミン、2,4-ジメチルフェネチルアミン、3,4-ジエチルフェネチルアミン、2,5-ジメチルフェネチルアミン、3,4-ジメ チルフェネチルアミン、3,5-ジメチルフェネチルアミン、2,6-ジエチル 20 フェネチルアミン、2,6-ジーi-プロピルフェネチルアミン、2-メトキシ フェネチルアミン、2-エトキシフェネチルアミン、2-i-プロポキシフェネ チルアミン、3ーメトキシフェネチルアミン、3,5ージメトキシフェネチルア ミン、3-n-ブトキシフェネチルアミン、4-n-ブトキシフェネチルアミン、 4-エトキシフェネチルアミン、3,4-ジメトキシフェネチルアミン、2-メ 25 チルチオフェネチルアミン、2ーエチルチオフェネチルアミン、2ーiープロピ

ルチオフェネチルアミン、2-N, N-ジメチルアミノフェネチルアミン、<math>2-フェニルフェネチルアミン、3-フェニルフェネチルアミン、4-フェノキシフ ェネチルアミン、2 - シクロヘキシルフェネチルアミン、2 - シクロベンチルフ ェネチルアミン、2-ニトロフェネチルアミン、2,4-ジニトロフェネチルア ミン、2-フルオロフェネチルアミン、2-クロロフェネチルアミン、4-クロ 5 ロフェネチルアミン、2,3-ジクロロフェネチルアミン、3,4-ジクロロフ ェネチルアミン、2-1-プロピル-4-ニトロフェネチルアミン、2-1-プ ロピルー6-ニトロフェネチルアミン、2-ヒドロキシフェネチルアミン、2-N, $N-\mathcal{Y}$ \neq \mathcal{Y} \neq $\mathcal{$ チルアミン、2-(1-エチルプロピル)フェネチルアミン、2-1-プロピル 10 4-メチルフェネチルアミン、2-i-プロピル-4-ヒドロキシフェネチルア ミン、2-i-プロピル-4-クロロフェネチルアミン、2-i-プロピル-4 ーアミノフェネチルアミン、2-i-プロピル-5-メチルフェネチルアミン、 2-i-プロピル-5-ヒドロキシフェネチルアミン、2-i-プロピル-5-クロロフェネチルアミン、4-クロロ-3-メチルフェネチルアミン、3,4-15 メチレンジオキシフェネチルアミン等が挙げられる。

第2工程

式 (IV) で示される化合物のイソチオシアン酸エステル(イソチオシアネー 20 ト)に、NH $_2$ -R 1 -OHを反応させ、式 (V) で示される化合物を製造する工程である。

本工程は、非プロトン性溶媒 (例えば、ジエチルエーテル、テトラヒドロフラン、ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等) 中で行うことができる。

25 反応温度としては、0℃~100℃が好ましく、特に0℃~室温が好ましく、 反応時間としては、0.5時間~10時間が好ましい。 NH_2-R^1-OH (R^1 は置換されていてもよいアルキレン) は、化合物 (I V) に対して $1.0\sim1.5$ 当量用いればよい。

 NH_2-R^1-OH としては、2-Pミノエタノール、2-Pミノー2-Xチル エタノール、2-Pミノー1-Xチルエタノール、2-Pミノー1, 1-ジメチ ルエタノール、3-Pミノプロパノール、3-Pミノー2, 2-ジメチルプロパノール、3-Pミノー1-Xチルプロパノール、3-Pミノー2-Xチルプロパノール、3-Pミノー3-Xチルプロパノール、3-Pミノー2, 2-ジエチル プロパノール、1-Pミノメチルー1-Eドロキシメチルシクロプロパン、1-Pミノメチルー1-(Eドロキシメチル)シクロプタン、1-(Pミノメチル)シクロペンタノール等が挙げられる。

第3工程

式 (V) で示される化合物を閉環させ、式 (VI) で示される化合物を製造する工程である。

15 閉環方法としては、①ジエチルアゾジカルボキシレート(DEAD)及びトリフェニルホスフィン(Ph₃P)で処理する方法、②塩酸で処理する方法等が挙げられる。

①の場合は、溶媒として非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、20 クロロホルム等)等を用い、0.5時間~5時間、0℃~室温で行えばよい。ジエチルアゾジカルボキシレート(DEAD)及びトリフェニルホスフィン(Ph3P)は、それぞれ化合物(V)に対して1.0~1.5当量用いればよい。

②の場合は、濃塩酸中で0.5時間~10時間、加熱還流すればよい。

25 第4工程

式 (VI) で示される化合物に、R² (式:-C (= R⁵) - R⁶で示される基

20

又は式: $-SO_2R^7$ で示される基)を導入し、式(II)で示される化合物を製造する工程である。(式中、 R^6 は〇又はSを表わし、 R^6 はアルキル、アルコキシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアラルキルオキシ、置換されていてもよいアラルキルチオ、 置換されていてもよいアラルキルアミノ、アルコキシアルキル、アルキルチオアルキル、又は置換されていてもよいアミノアルキルを表わし、 R^7 はアルキル、 置換されていてもよいアミノ、 置換されていてもよいアリール、又は置換されていてもよいへテロアリールを表わす)

本工程は、塩基(例えば、トリエチルアミン、ピリジン、N, Nージメチルア 10 ミノピリジン等)の存在下、式:X-C(=R⁵)-R⁶(式中、R⁵及びR⁶は 前記と同意義、Xはハロゲンを表わす)で示される化合物を反応させることにより行うことができる。通常のN-アシル化の条件に従って行えばよく、例えば、 溶媒として非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、 ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等) 5 等を使用し、0℃~100℃で、0.5時間~10時間、反応を行えばよい。

また、 R^5 がS、 R^6 がPルキルチオ又は置換されていてもよいPラルキルチオであるジチオ酸エステルの化合物は、塩基(例えば、水素化ナトリウム等)の存在下、二硫化炭素(CS_2)を反応させ、次いで、ハロゲン化Pルキル(例えば、ヨードメタン、ヨードエタン等)又はハロゲン化Pラルキル(例えば、ベンジルプロマイド等)を反応させることによっても得ることができる。この場合、溶媒としては、非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジメチルホルムPミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)を用いることができ、O C~室温で反応は進行する。

また、 R^2 として、式: $-SO_2R^7$ (式中、 R^7 はアルキル、置換されていて もよいアミノ、置換されていてもよいアリール、又は置換されていてもよいヘテロアリールを表わす)で示される基を導入する場合は、式: R^7SO_2X (式中、

Xはハロゲン等)で示される化合物を式(VI)で示される化合物に塩基存在下で反応させればいい。

プロドラッグは、生理学的条件下でインビボにおいて薬学的に活性な本発明化 合物となる化合物である。適当なプロドラッグ誘導体を選択する方法および製造 する方法は、例えば Design of Prodrugs, Elsevier, Amsterdam 1985 に記載され ている。

本発明に係る化合物のプロドラッグは、脱離基を導入することが可能なA環上の置換基(例えば、アミノ、ヒドロキシ等)に、脱離基を導入して製造することができる。アミノ基のプロドラッグとしては、カルバメート体(例えば、メチルカルバメート、シクロプロピルメチルカルバメート、tーブチルカルバメート、ベンジルカルバメート等)、アミド体(例えば、ホルムアミド、アセタミド等)、Nーアルキル体(例えば、Nーアリルアミン、Nーメトキシメチルアミン等)等が挙げられる。ヒドロキシ基のプロドラッグとしては、エーテル体(メトキシメチルエーテル、メトキシエトキシメチルエーテル等)、エステル体(例えば、アセテート、ピバロエート、ベンゾエート等)等が挙げられる。

製薬上許容される塩としては、塩基性塩として、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩;カルシウム塩、マグネシウム塩等のアルカリ土類金属塩;アンモニウム塩;トリメチルアミン塩、トリエチルアミン塩、ジシクロヘキシルアミン塩、エタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩、プロカイン塩等の脂肪族アミン塩;N,N-ジベンジルエチレンジアミン等のアラルキルアミン塩;ピリジン塩、ピコリン塩、キノリン塩、イソキノリン塩等のヘテロ環芳香族アミン塩;テトラメチルアンモニウム塩、テトラエチルアモニウム塩、ベンジルトリメチルアンモニウム塩、ベンジルトリエチルアンモニウム塩、ベンジルトリブチルアンモニウム塩、メチルトリオクチルアンモニウム塩、ベンジルトリブチルアンモニウム塩、メチルトリオクチルアンモニウム

20

25

塩、テトラブチルアンモニウム塩等の第4級アンモニウム塩;アルギニン塩、リジン塩等の塩基性アミノ酸塩等が挙げられる。酸性塩としては、例えば、塩酸塩、硫酸塩、硝酸塩、リン酸塩、炭酸塩、炭酸水素塩、過塩素酸塩等の無機酸塩;酢酸塩、プロピオン酸塩、乳酸塩、マレイン酸塩、フマール酸塩、酒石酸塩、リンゴ酸塩、クエン酸塩、アスコルビン酸塩等の有機酸塩;メタンスルホン酸塩、イセチオン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩等のスルホン酸塩;アスパラギン酸塩、グルタミン酸塩等の酸性アミノ酸等が挙げられる。

溶媒和物としては、式(I)又は式(II)で示される化合物、そのプロドラ ッグ、又はその製薬上許容される塩の溶媒和物を意味し、例えば、一溶媒和物、 二溶媒和物、一水和物、二水和物等が挙げられる。

本発明化合物は、カンナビノイド2受容体(CB2R)親和性であり、カンナビノイド2受容体(CB2R)に選択的に結合し、CB2Rアンタゴニスト作用またはCB2Rアゴニスト作用を示す。特に、CB2Rアゴニスト作用を示す。また、本発明化合物は、カンナビノイド1受容体(CB1R)に対する親和性がなく、カンナビノイド1受容体(CB1R)に由来する中枢神経系の副作用(幻覚など)を回避することができ、カンナビノイド1受容体(CB1R)に関連した依存性を引き起こすこともない。

15

従って、本発明化合物は、カンナビノイド2 受容体(CB2R)が関与する疾患に対して治療又は予防の目的で使用することができる。例えば、Proc. Natl. Acad. Sci. USA 96, 14228-14233.には、CB2 受容体アゴニストが抗炎症作用、鎮痛作用を有する旨記載されている。また、Nature, 1998, 349, 277-281には、CB2 受容体アゴニストが鎮痛作用を有する旨記載されている。また、European Journal of Pharmacology 396 (2000) 85-92 には、CB2 受容体アンタゴニストが鎮痛作用を有する旨記載されている。

すなわち、本発明化合物は、免疫系細胞や炎症系細胞の活性化を抑制し、末梢 細胞系作用(免疫抑制、抗炎症、鎮痛作用)を発現すると考えられ、抗炎症剤、 抗アレルギー剤、鎮痛剤、免疫不全治療剤、免疫抑制剤、免疫調節剤、自己免疫 疾患治療剤、慢性関節リューマチ治療剤、多発性硬化症治療剤等として用いるこ とができる。

また、カンナビノイド2受容体作動剤は、ラット Thy-1 抗体惹起腎炎に対する 抑制効果を有していることが知られており(WO97/29079)、腎炎治療 剤としても有用である。

本発明化合物を治療に用いるには、通常の経口又は非経口投与用の製剤として 製剤化する。本発明化合物を含有する医薬組成物は、経口及び非経口投与のため の剤形をとることができる。即ち、錠剤、カプセル剤、顆粒剤、散剤、シロップ 剤などの経口投与製剤、あるいは、静脈注射、筋肉注射、皮下注射などの注射用 溶液又は懸濁液、吸入薬、点眼薬、点鼻薬、坐剤、もしくは軟膏剤などの経皮投 与用製剤などの非経口投与製剤とすることもできる。

15

20

10

これらの製剤は当業者既知の適当な担体、賦形剤、溶媒、基剤等を用いて製造することができる。例えば、錠剤の場合、活性成分と補助成分を一緒に圧縮又は成型する。補助成分としては、製剤的に許容される賦形剤、例えば結合剤(例えば、トウモロコシでん粉等)、充填剤(例えば、ラクトース、微結晶性セルロース等)、崩壊剤(例えば、でん粉グリコール酸ナトリウム等)又は滑沢剤(例えば、ステアリン酸マグネシウム等)などが用いられる。錠剤は、適宜、コーティングしてもよい。シロップ剤、液剤、懸濁剤などの液体製剤の場合、例えば、懸濁化剤(例えば、メチルセルロース等)、乳化剤(例えば、レシチン等)、保存剤などを用いる。注射用製剤の場合、溶液、懸濁液又は油性もしくは水性乳濁液の形態のいずれでもよく、これらは懸濁安定剤又は分散剤などを含有していてもよい。吸入剤として使用する場合は吸入器に適応可能な液剤として、点眼剤とし

て使用する場合も液剤又は懸濁化剤として用いる。

本発明化合物の投与量は、投与形態、患者の症状、年令、体重、性別、あるいは併用される薬物(あるとすれば)などにより異なり、最終的には医師の判断に委ねられるが、経口投与の場合、体重1 kg あたり、1日0.01~100 mg、好ましくは0.01~10 mg、より好ましくは0.1~10 mg、非経口投与の場合、体重1 kg あたり、1日0.001~100 mg、好ましくは0.001~1 mg、より好ましくは0.01~1 mg、よ

10

実施例

以下に実施例を挙げて本発明を詳しく説明するが、これらは単なる例示であり 本発明はこれらに限定されるものではない。

なお、各略号は以下に示す意味を有する。

15 $Me: x \neq y$, $Et: x \neq y$, $Pr: \neg T \cap U \cap v$, $Pr^i: i - \neg T \cap U \cap v$,

 $Bu: \mathcal{I}\mathcal{F}\mathcal{N}$ 、 $Bu^i: i-\mathcal{I}\mathcal{F}\mathcal{N}$ 、 $Bu^s: sec-\mathcal{I}\mathcal{F}\mathcal{N}$ 、

Bu^t: t - ブチル

Ph:フェニル、Ac:アセチル、Bn:ベンジル

DMF:N, N-ジメチルホルムアミド、THF:テトラヒドロフラン、

20 DEAD:アゾジカルボン酸ジエチル、

参考例 1 - 1 (2 - イソプロピルフェニル) イソチオシアネート(化合物 2)の製造

15

20

2-イソプロピルアニリン (5.00g)、トリエチルアミン (3.74g)、トルエン (10 ml) の混合液に、二硫化炭素 (2.81g)を10分間で滴下し、室温で1時間攪拌した後、12時間放置した。反応溶液を減圧濃縮し、塩化メチレン (20 ml)、トリエチルアミン (3.74g)を加え、クロロ炭酸エチル (4.01g)を氷冷下10分間で加え、室温で1時間攪拌した。反応液に10%塩酸(20 ml)を加え、塩化メチレン (60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して、 (2-イソプロピルフェニル)イソチオシアネート (6.55g、収率99%)を黄色油状物で得た。

10 ¹H-NMR (δ ppm TMS / CDCl₃)1.25(6H, d, J=6.7), 3.25(1H, q, J=6.7), 7.14-7.30(4H, m).

参考例 1 - 2 (2 - イソプロピルフェニル) イソチオシアネート(化合物 2)の製造

2- (1) プロピルアニリン $(1.81 \, g)$ のジエチルエーテル $(20 \, ml)$ 溶液に、チオホスゲン $(1.54 \, g)$ を氷冷下 10 分間で滴下し、室温で 1 時間撹拌した。反応液に水 $(30 \, ml)$ を加え、ジエチルエーテル $(60 \, ml)$ で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して、 $(2- (4) \, ml)$ で $(2.35 \, g)$ 収率 $(2.35 \, g)$ を褐色油状物で得た。

NCS
$$H_2N$$
 OH (1eq) H_2N OH H_2N OH H_3N OH H_4N OH H_5N $H_$

5 (2-イソプロピルフェニル) イソチオシアネート(3.30g) のジエチルエーテル(20 ml) 溶液に、3-アミノ-2,2-ジメチルプロパノール(1.92g) を加え、室温で1時間撹拌した。反応溶液を減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル) にて精製して、N-(2-イソプロピルフェニル)-N'-(1-ヒドロキシ-2,2-ジメチル) プロピルチオウレア(4.60g、収率88%) を黄色油状物で得た。
1H-NMR(δ ppm TMS / CDCl₃)0.82(6H, s), 1.25(6H, d, J=6.7), 3.11(1H, q, J=6.7), 3.25(2H, s), 3.55(2H, d, J=6.3), 6.05(1H, m), 7.17-7.40(4H, m).

参考例3 2-(2-イソプロピルフェニル)イミノ-5,5-ジメチル-1,3-15 チアジン(化合物4)の製造

20

N-(2-4)プロピルフェニル)-N'-(1-1) に、では、 3 時間加熱には、 5 ml)を加え、 3 時間加熱には、 5 ml)を加え、 3 時間加熱には、 5 ml)を放在を室温に冷却し、 20% 水酸化ナトリウム水溶液(25 ml)にはき込み、析出した結晶を 3 取して、酢酸エチルで再結晶して、 2-(2-4) プロピルフェニル) イミノー 5 、 5-3 メチルー 1 、 3-4 アジン(4 、 1 の

率50%)を白色結晶で得た。

融点155-157℃

¹H-NMR (δ ppm TMS / CDCl₃)1.15(6H, s), 1.20(6H, d, J=6.7), 2.67(2H, s), 3.09(2H, s), 3.15.(1H, q, J=6.7), 6.88(1H, m), 7.05-7.11(2H, m), 7.20(1H, m).

5

参考例 4 2-(2-4)プロピルフェニル)イミノー 5,5-9メチルー 1,3-4チアジン(化合物 4)の製造

N-(2-イソプロピルフェニル) - N'-(1-ヒドロキシ-2,2-ジメチ 10 ル)プロピルチオウレア(1.00g)のテトラヒドロフラン(6 ml)の混合液に、塩化チオニル(0.60g)を滴下し、室温で1時間撹拌する。反応溶液を減圧濃縮し、アセトニトリル(20 ml)、炭酸カリウム(0.93g)を加え、2時間加熱還流した。反応液に水(40 ml)を加え、塩化メチレン(60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)にて精製して、2-(2-イソプロピルフェニル)イミノ-5,5-ジメチル-1,3-チアジン(0.45g、収率48%)を白色結晶で得た。

参考例 3、4 で得られた 2-(2-4)プロピルフェニル) イミノー5, 5-ジメ 20 チルー1, 3-チアジンを用いて、以下の実施例 $1\sim 5$ を行った。 実施例 1 3-エチルー2-(2-4)プロピルフェニル) イミノー5, 5-ジメチルー1, 3-チアジン(化合物 I-1) の製造

5

20

 $2-(2-4\gamma)$ プロピルフェニル)イミノー5,5ージメチルー1,3ーチアジン (0.26g)のN,Nージメチルホルムアミド(2ml)溶液に、60%水素化ナトリウム(0.05g)を氷冷下で加え、30分間撹拌後、よう化エチル(0.17g)を加え、空温で2時間撹拌した。反応液に水(30ml)を加え、ジエチルエーテル(60ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-n+1)で酸エチル)にて精製して、3-x+10にで精製して、3-x+11分にです。(2-4)7 ロピルフェニル)イミノー5,5ージメチルー1,3ーチアジン(0.21g)8、収率(2ml)9を無色油状物で得た。

実施例 2 2-(2-4)プロピルフェニル)イミノー 3-プロピオニルー 5, 5 -ジメチルー 1, 3-チアジン(化合物 I-2)の製造

2-(2-4)プロピルフェニル) 4-(2-5) 5-2 3-2 3-4

マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー $(n-\Lambda+ \forall \nu)$ 作酸エチル)にて精製して、2-(2-4)プロピルフェニル)イミノー3-プロピオニルー5,5-ジメチルー1,3-チアジン(0.18) g、収率5.6% を無色油状物で得た。

5 ¹ H-NMR (δ ppm TMS / CDCl₃)1.14 (6H, s), 1.20 (6H, d, J = 6.9), 1.22 (3H, t, J = 7.4), 2.60 (2H, s), 2.95 (2H, q, J = 7.4), 2.96 (1H, q, J = 6.9), 3.73 (2H, s), 6.73-6.78 (1H, m), 7.10-7.17 (2H, m), 7.25-7.32 (1H, m).

実施例 3 3-(x++) カルボニル) -2-(2-4) プロピルフェニル) イミノ -5, 5-ジメチル-1, 3-チアジン(化合物 I-3) の製造

15

2-(2-4)プロピルフェニル)イミノー5,5ージメチルー1,3ーチアジン (0.26 g)、トリエチルアミン(0.15 g)、塩化メチレン(5 ml)の混合液に、クロロ炭酸エチル(0.13 g)を5分間で滴下し、室温で2時間撹拌した。反応液に水(30 ml)を加え、ジエチルエーテル(60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-4)十ン/酢酸エチル)にて精製して、3-(x+2)カルボニル)-2-(2-4)プロピルフェニル)イミノー5,5ージメチルー1,3ーチアジン(0.23 g)、収率68%)を白色結晶で得た。融点84-86%

20 ¹ H-NMR (δ ppm TMS / CDCl₃) 1.16 (6H, s), 1.21 (6H, d, J = 6.9), 1.36 (3H, t, J = 7.1), 2.59 (2H, s), 3.17 (1H, q, J = 6.9), 3.65 (2H, s), 4.32 (2H, q, J = 7.1), 6.74-6.78 (1H, m), 7.12-7.16 (2H, m), 7.30-7.36 (1H, m).

実施例 4 3 -(x + x

5 2-(2-イソプロピルフェニル)イミノ-5,5-ジメチル-1,3-チアジン (1.00g)、トリエチルアミン(0.58g)、塩化メチレン(5 ml)の混合液に、 クロロチオ炭酸エチル(0.56g)を5分間で滴下し、室温で1時間撹拌した。反 応液に水(30 ml)を加え、ジエチルエーテル(60 ml)で抽出した。抽出液を無水 硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロ マトグラフィー(n-ヘキサン/酢酸エチル)にて精製して、3-(エチルチオカル ボニル)-2-(2-イソプロピルフェニル)イミノ-5,5-ジメチル-1,3-チアジン(0.74g、収率56%)を無色油状物で得た。

¹ H-NMR (δ ppm TMS / CDCl₃)1.16 (6H, s), 1.21 (6H, d, J = 6.9), 1.36 (3H, t, J = 7.1), 2.63 (2H, s), 2.89 (2H, q, J = 7.1), 3.15 (1H, q, J = 6.9), 3.77 (2H, s), 6.79-6.85 (1H,m), 7.12-7.16 (2H, m), 7.30-7.36 (1H, m).

15

1-5

1 H-NMR (δ ppm TMS / CDCl 3)1.20 (6H, d, J = 6.9), 1.23 (6H, s), 2.65 (3H, s), 2.68 (2H, s), 3.11 (1H, q, J = 6.9), 4.51 (2H, s), 6.83-6.90 (1H, m), 7.11-7.18 (2H, m), 7.28-7.35 (1H, m).

参考例2、参考例3と同様に、以下の参考例5を行った。

5

15 参考例 5 2 - (2-イソプロピルフェニル) イミノー 1,3-チアゾリジン(化 合物 6)の製造

(2-イソプロピルフェニル) イソチオシアネート (2.00g) のジエチルエーテル (20 ml) 溶液に、2-アミノエタノール (0.69g) を加え、室温で120 時間撹拌した。反応溶液を減圧濃縮して得られた油状物に濃塩酸 (5 ml) を加え、3時間加熱還流した。反応液を室温に冷却し、20%水酸化ナトリウム水溶液 (2

¹H-NMR (δ ppm TMS / CDCl₃)1.20(6H, d, J=6.7), 3.15(1H, q, J=6.7), 3.27(2H, t, J = 6.7), 3.67(2H, t, J = 6.7), 6.95-6.99(1H, m), 7.05-7.19(2H, m), 7.22-7.26(1H, m).

10 参考例 5 で得られた 2-(2-4)プロピルフェニル) イミノー 1,3-4アゾリジンを用いて、以下の実施例 $6\sim7$ を行った。

実施例 6 3-(エチルチオカルボニル)-2-(2-イソプロピルフェニル)イミ<math>J-1, 3-チアゾリジン(化合物 I-6)の製造

. •

5

15

20

2-(2-(1)) ロピルフェニル) イミノー 1,3ーチアゾリジン(0.25g)、トリエチルアミン(0.15g)、塩化メチレン(5 ml)の混合液に、クロロチオ炭酸エチル(0.15 g)を5分間で滴下し、室温で2時間撹拌した。反応液に水(30 ml)を加え、ジエチルエーテル(60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-(n-(1))) 作酸エチル)にて精製して、3ー(エチルチオカルボニル) - 2ー(2ーイソプロピルフェニル) イミノー 1,3ーチアゾリジン(0.27g、収率77%) を白色結晶で得た。融点 79-81 $^{\circ}$

¹ H-NMR (δ ppm TMS / CDCl ₃) 1.20 (6H, d, J = 6.9), 1.30 (3H, t, J = 7.4), 2.90 (2H, t, J = 7.4), 3.15 (2H, t, J = 7.4), 3.20 (1H, q, J = 6.9), 4.31 (2H, t, J = 7.4), 6.79-6.82 (1H, m), 7.07-7.16 (2H, m), 7.28-7.32 (1H, m).

5 実施例 7 2-(2-4)プロピルフェニル)イミノー3-(メチルチオ)チオカル ポニルー1,3-4アゾリジン(化合物 I-7)の製造

2-(2-4)プロピルフェニル)イミノー1,3-4アゾリジン(0.22g)、 - 本化 中来(0.00g) N N - ジェチルホルムアミ <math>k(2ml) の現今遊に 6.0

二硫化炭素(0.09g)、N,N-ジメチルホルムアミド(2 ml)の混合液に、60% 水素化ナトリウム(0.05g)を氷冷下で加え、30分間撹拌後、よう化メチル(0.17g)を加え、室温で2時間撹拌した。反応液に水(30 ml)を加え、ジエチルエーテル(60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)にて精製して、2-(2-イソプロピルフェニル)イミノ-3-(メチルチオ)チオカルボニル-1,3-チアゾリジン(0.14g、収率45%)を無色油状物で得た。

¹ H-NMR (δ ppm TMS / CDCl ₃) 1.23 (6H, d, J = 6.9), 2.65 (3H, s), 2.90 (2H, t, J = 7.4), 3.20 (1H, q, J = 6.9), 4.45 (2H, t, J = 7.4), 6.79-6.82 (1H, m), 7.07-7.16 (2H, m), 7.28-7.32 (1H, m).

20

参考例6 (2-メトキシベンジル)イソチオシアネート(化合物8)の製造

5

7.24-7.30(2H, m).

2-メトキシベンジルアミン(1.80 g)のジエチルエーテル(20 ml)溶液に、チオホスゲン(1.54 g)を氷冷下10分間で滴下し、室温で1時間撹拌した。反応液に水(30 ml)を加え、ジエチルエーテル(60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して、(2-メトキシベンジル)イソチオシアネート(2.35 g、収率99%)を褐色油状物で得た。 1H-NMR(δ ppm TMS/CDCl $_3$)3.86(3H, s), 4.70(2H, s), 6.88(1H, d, J=7.4), 6.98(1H, t, J=7.4), 7.24-7.30(2H, m).

10 参考例 N-(2-メトキシベンジル)-N'-(1-ヒドロキシー <math>2,2-ジ メチル) プロピルチオウレア(化合物 9)の製造

$$\begin{array}{c|c} OMe \\ NCS \\ \hline \\ Et_2O \\ rt \\ 3h \end{array} \begin{array}{c} OH \\ NH \\ OH \\ S \end{array} \begin{array}{c} OMe \\ NH \\ OH \\ S \end{array}$$

(2-メトキシベンジル) イソチオシアネート (2.35g) のジエチルエーテル (20 ml) 溶液に、3-アミノ-2,2-ジメチルプロパノール (1.34g) を加え、室温で1時間撹拌した。反応溶液を減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン/酢酸エチル) にて精製して、N-(2-メトキシベンジル) - N'-(1-ヒドロキシ-2,2-ジメチル) プロピルチオウレア (3.70g、収率99%) を無色油状物で得た。 1H-NMR (δ ppm TMS / CDCl₃)0.82(6H,s), 3.25(2H,s), 3.55(2H,d,J=6.3), 3.86(3H,s), 4.70(2H,s), 6.50(1H, brs), 6.88(1H,d,J=7.4), 6.95(1H,t,J=7.4),

参考例8 2-(2-メトキシベンジル) イミノー5,5-ジメチル-1,3-チアジン(化合物10)の製造

N-(2-メトキシベンジル) -N'-(1-ヒドロキシー2,2-ジメチル)

プロピルチオウレア(3.70g)、トリフェニルホスフィン(3.44g)、テトラヒドロフラン(20ml)の混合液に、アゾジカルボン酸ジエチル(2.28g)を10分間で滴下し、室温で2時間撹拌した。反応液に水(40ml)を加え、塩化メチレン(90ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)にて精製して、2-(2-メトキシベンジル)イミノー5,5-ジメチル-1,3-チアジン(0.87g、収率25%)を無色油状物で得た。

1H-NMR(form TMS/CDCl3)1.05(6H,s,),2.75(2H,s),3.23(2H,s),3.83(3H,s),4.41(2H,s),6.86-6.95(1H,m),7.20-7.30(1H,m),7.44-7.48(2H,m).

20 2-(2-メトキシベンジル)イミノ-5,5-ジメチル-1,3-チアジン(0.
 28 g)、トリエチルアミン(0.15 g)、塩化メチレン(5 ml)の混合液に、クロロチオ炭酸エチル(0.17 g)を5分間で滴下し室温で1時間撹拌した。反応液に

水(30 ml)を加え、ジエチルエーテル(60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-n+t)/作酸エチル)にて精製して、3-(x+t)/になった。x+t/か、x+

¹ H-NMR (δ ppm TMS / CDCl $_3$) 1.15 (6H, s), 1.25 (3H, t, J = 7.4), 2.69 (2H, s), 2.83 (2H, q, J = 7.4), 3.69 (2H, s), 3.84 (3H, s), 4.61 (2H, s), 6.86 (1H, d, J = 8.2), 6.96 (1H, t, J = 8.2), 7.26 (1H, t, J = 8.2), 7.55 (1H, t, J = 8.2).

2-(2-メトキシベンジル)イミノ-5,5-ジメチル-1,3-チアジン(0.27g)、二硫化炭素(0.09g)、N,N-ジメチルホルムアミド(2 ml)の混合 液に、60%水素化ナトリウム(0.05g)を氷冷下で加え、30分間撹拌後、よう化メチル(0.17g)を加え、室温で2時間撹拌した。反応液に水(30 ml)を加え、ジエチルエーテル(60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)にて精製して、2-(2-メトキシベンジル)イミノ-3-(メチルチオ)チオカルボニル-5,5-ジメチル-1,3-チアジン(0.20g、収率57%)を無色油状物で得た。

¹ H-NMR (δ ppm TMS / CDCl₃) 1.25 (6H, s), 2.56 (3H, s), 2.72 (2H, s), 3.85 (3H, s), 4.43 (2H, s), 4.63 (2H, s), 6.86-6.88(2H, m), 7.20-7.30 (1H, m), 7.44-7.48 (1H, m).

参考例9 (2-メトキシフェネチル) イソチオシアネート(化合物12)の製造

2 - メトキシフェネチルアミン (1.98 g) のジエチルエーテル (20 ml) 5 溶液に、チオホスゲン (1.54 g) を氷冷下 10分間で滴下し、室温で 1 時間撹拌した。反応液に水 (30 ml) を加え、ジエチルエーテル (60 ml) で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して、 (2 - メトキシフェネチル) イソチオシアネート (1.80 g、収率 71%) を褐色油状物で得た。 1H-NMR (δ ppm TMS / CDCl₃)3.00(2H, t, J = 7.4), 3.70(2H, t, J = 7.4), 3.86(3H, s), 6.88-6.95(2H, m), 7.15(1H, d, J = 7.4), 7.24(1H, t, J = 7.4).

参考例 10 N - (2-メトキシフェネチル) - N' - (1-ヒドロキシ- 2 , 2 -ジメチル) プロピルチオウレア(化合物 1 3)の製造

15 (2-メトキシフェネチル) イソチオシアネート (2.35g) のジエチルエーテル (20 ml) 溶液に、3-アミノ-2,2-ジメチルプロパノール (1.34g) を加え、室温で1時間撹拌した。反応溶液を減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン/酢酸エチル) にて精製して、N-(2-メトキシフェネチル) -N'-(1-ヒドロキシ-2,2-ジメチル) プロピルチオウレア (2.45g、収率89%) を無色油状物で得た。

1H-NMR(δppm TMS/CDCl₃)0.82(6H, s), 2.90(2H, t, J=7.4), 3.25(2H, s),

PCT/JP00/06185

3.55(2H, d, J=6.3), 3.70(2H, t, J=7.4), 3.86(3H, s), 6.50(1H, brs), 6.88-6.95(2H, m), 7.15(1H, m), 7.24(1H, m).

参考例 1 1 2 - (2 - メトキシフェネチル) イミノー 5,5 - ジメチルー 1,3
5 - チアジン(化合物 1 4)の製造

上記参考例11で得られた2-(2-メトキシフェネチル)イミノー5,5-ジ20 メチルー1,3-チアジンを用いて、以下の実施例 $10\sim11$ を行った。

実施例10 3-(エチルチオカルボニル)-2-(2-メトキシフェネチル)イミノー<math>5,5-ジメチル-1,3-チアジン(化合物 I-10)の製造

 $2-(2-\lambda)+1+2$ フェネチル)イミノー5,5ージメチルー1,3ーチアジン (0.28 g)、トリエチルアミン(0.15 g)、塩化メチレン(5 ml)の混合液に、クロロチオ炭酸エチル(0.15 g)を3分で滴下し、室温で2時間撹拌した。反応液に水(30 ml)を加え、ジエチルエーテル(60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー $(n-\alpha+1)$ /酢酸エチル)にて精製して、 $2-(2-\lambda)+1$ 2ーンエネチル)イミノーNー(1-1)/酢酸エチル)にて精製して、1-10ージメチルー1,3ーチアジン(0.21 g)、収率1-10~%)を無色油状物で得た。

10 ¹ H-NMR (δ ppm TMS/CDCl₃) 1.11 (6H, s), 1.26 (3H, t, J = 7.4), 2.61 (2H, s), 2.83 (2H, q, J = 7.4), 2.99-3.05 (2H, m), 3.61-3.66 (2H, m), 3.62 (2H, s), 3.82 (3H, s), 6.86-6.91 2H, m), 7.17-7.26 (2H, m).

20

1-(1-x)+2 フェネチル)イミノー5,5ージメチルー1,3ーチアジン (0.28 g)、二硫化炭素(0.09 g)、N,Nージメチルホルムアミド(2 ml)の 混合液に、60%水素化ナトリウム(0.05 g)を氷冷下で加え、30%間撹拌後、よう化メチル(0.17 g)を加え、室温で2時間撹拌した。反応液に水(30 ml)を加え、ジエチルエーテル(60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n)

ーヘキサン/酢酸エチル)にて精製して、2-(2-メトキシフェネチル)イミノー3-(メチルチオ)チオカルボニルー5,5-ジメチルー1,3-チアジン(0.18 g、収率<math>50%)を無色油状物で得た。

¹ H-NMR (δ ppm TMS / CDCl₃) 1.19 (6H, s), 2.55 (3H,s), 2.64 (2H, s), 3.05 (2H, t, J = 7.5), 3.66 (2H, t, J = 7.5), 3.84 (3H, s), 4.35 (2H, s), 6.84-6.91 (2H, m), 7.17-7.30 (2H, m).

上記実施例と同様にして、以下の表に示される化合物を合成した。なお、表中 の左カラムの数字は化合物 No. を表わす。 (表1)

$$R^2$$
 R^3
 R^4
 R^5
 R^6

R⁴ R ⁵	1							
	R¹	R ²	R ³	R⁴	R⁵	R⁵	R٬	Rª
I-16	Н	Н	Н	Н	Н	COSEt	Me	Me
I-17	F	Н	Н	Н	Н	COSEt	Me	Me
I-18	C1	Н	Н	H	Н	COSEt	Me	Me
I-19	Me	Н	Н	Н	Н	COSEt	Me	Me
I-20	Et	Н	Н	Н	Н	COSEt	Me	Me
I-21	Pr	Н	Н	Н	Н	COSEt	Me	Me
I-22	Bu	Н	Н	Н	Н	COSEt	Me	Me
I-23	Bu*	Н	Н	Н	Н	COSEt	Me ·	Me
I-24	Bu'	Н	Н	Н	Н	COSEt	Me	Me
I-25	Ph	Н	Н	Н	Н	COSEt	Me	Me
I-26	CF ₃	н	Н	Н	Н	COSEt	Me	Me
I-27	0Me	Н	Н	Н	Н	COSEt	Me	Me
I-28	0Et	Н	Н	Н	Н	COSEt	Me	Me
I-29	OPr'	Н	Н	Н	Н	COSEt	Me	Me
I-30	SMe	Н	Н	Н	Н	COSEt	Me	Me
I-31	SEt	Н	Н	Н	Н	COSEt	Me	Me
I-32	SPr'	Н	Н	Н	Н	COSEt	Me	Me
I-33	NMe,	Н	Н	Н	Н	COSEt	Me	Me
I-34	Н	Pr'	Н	Н	Н	COSEt	Me	Me
I-35	H	Н	C1	Н	Н	COSEt	Me	Me
I-36	H	H	Pr'	Н	Н	COSEt	Me	Me
I-37	Н Н	Н	NO ₂	Н	Н	COSEt	Me	Me
1-38	Me	Me	Н	Н	Н	COSEt	Me	Me
I-39	Me	Н	Me	Н	Н	COSEt	Me	Me
I-40	Me	Н	H	Me	Н	COSEt	Me	Me
I-41	Me	Н	Н	Н	Me	COSEt	Me	Me
I-42	Н Н	Me	Me	Н	Н	COSEt	Me	Me
I-43	Н	Me	Н	Me	Н	COSEt	Me	Me
1-44	Me	Н	C1	Н	Н	COSEt	Me	Me

(表2)

R ⁴ R ⁵		R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸
	R'				K	COSEt	Mė	Me
I-45	C1	Н	Me	H				
I-46	Pr'	Н	NO,	Н	Н	COSEt	Me	Me
I-47	Pr'	Н	Н	Н	NO,	COSEt	Me	Me
I-48	NO ₂	Н	NO,	Н	Н	COSEt	Me	Me
I-49	Pr	Н	Н	Н	Н	COSMe	Me	Me
I-50	Pr'	Н	Н	Н	Н	COSMe	Me	Me
I-51	Bu*	Н	Н	Н	Н	COSMe	Me	Me
I-52	Н	Pr'	Н	Н	Н	COSMe	Me	Me
I-53	Н	OMe	OMe	Н	Н	COSMe	Me	Me
I-54	Н	-00	CH,0-	Н	Н	COSMe	Me	Me
I-55	Н	OMe	OMe	0Me	Н	COSMe	Me	Me
I-56	Et	Н	Н	Н	Н	CSSMe	Me	Me
I-57	Bus	Н	Н	Н	Н	CSSMe	Me	Me
I-58	CH,OMe	Н	Н	Н	Н	CSSMe	Me	Me
I-59	CH(Me)OMe	Н	Н	Н	Н	CSSMe	Me	Me
I-60	0Me	Н	Н	Н	Н	CSSMe	Me	Me
I-61	OEt	Н	Н	Н	Н	CSSMe	Me	Me
I-62	SMe	Н	Н	Н	Н	CSSMe	Me	Me
I-63	SEt	H	Н	Н	Н	CSSMe	Me	Me
I-64	SPr'	Н	Н	Н	Н	CSSMe	Me	Me
I-65	SOMe	Н	Н	Н	Н	CSSMe	Me	Me
I-66	SO,Me	Н	Н	Н	Н	CSSMe	Me	Me
I-67	SOEt	Н	Н	Н	Н	CSSMe	Me	Me
I-68	NMe,	Н	H	Н н	Н	CSSMe	Me	Me
I-69	Н	Pr'	Н Н	 	Н	CSSMe	Me	Me
I-70	Н	Н	. C1	Н	Н	CSSMe	Me	Me

(表3)

R ⁴ R ⁵								
	R'	R²	R³	R⁴	R⁵	R ⁶	R ⁷	Rª
I-71	Me	Н	Me	Н	Н	CSSMe	Me	Me
I-72	Me	Н	Н	Me	Н	CSSMe	Me	Me
I-73	Me	H	Н	Н	Me	CSSMe	Me	Me
I-74	H	Me	Me	Н	Н	CSSMe	Ме	Me
1-75	н	Me	Н	Me	Н	CSSMe	Me	Me
I-76	0Me	OMe	Н	Н	Н	CSSMe	Me	Me
I-77	Н	OMe	OMe	Н	Н	CSSMe	Ме	Me
I-78	OMe		Н	OMe	Н	CSSMe	Me	Me
I-79	0Me	—— — ——	OMe		Н	CSSMe	Me	Ме
I-80	Н	-0CI	1,0-	Н.	Н	CSSMe	Me	Me
I-81	Pr'	Н	NO,	Н	Н	CSSMe	Me.	Me
I-82	Pr'	Н	Н	Н	NO,	CSSMe	Me	Me
I-83	Н	OMe	0Me	OMe	Н	CSSMe	Ме	Me
I-84	Pr'	Н	Н	Н	Н	CSSEt	Me	Me
I-85	Bus	Н	H	Н	Н	CSSEt	Me	Me
I-86	0Et	Н	H	H	Н	CSSEt	Me	Me
I-87	SMe	<u></u> Н	Н	Н	Н	CSSEt	Me	Me
I-88	Н	Pr'	Н	Н	Н	CSSEt	Me	Me
I-118	Н Н	OEt	0Et	H	Н	CSSMe	Me	Me
I-119	OMe	H	Me	Н	+ н	CSSMe	Me	Me
	OMe	Н	Н	Me	н	CSSMe	Me	Me
I-120	Н	OMe	Me	Н	H	CSSMe	Me	Me
I-121	Me	Me	 	Н	H	CSSMe	Me	Me
I-122 I-123	N(Me)Ac		Н	Н	Н	CSSMe	Me	Me

(表4)

		_	
	R ⁶	R ⁷	, Rª
I-89	COPr	Me	Me
I-90	CO0Me	Me	Me
I-91	COOPr	Me	Me
I-92	CONHEt	Me	Me
I-93	COCH₂OMe	Me	Me
I-94	COCH₂SMe	Me	Me
I-95	COCH₂SEt	Me	Me
I-96	CSOEt	Me	Me
I-97	CSNHEt	Me	Me
I-98	CSSPr	Me	Me
I-99	CSSPr'	Me	Me
I-100	CSSBn	Me	Me
I-100	CSSBn	Me	Me

(表5)

Rª R⁷ R⁶ R³ R² n R۱ Me COSEt Me C1 1 Н Н I-101 Me 1 CSSMe Мe C1 Н Н I-102 2 COSEt Me Мe C٦ Н C1 I-103 Me Мe C1 2 CSSMe C1 Н I-104

(表6)

•		
	R ⁸	W
I-105	COSEt	s
I-106	COSEt	s N
I-107	COSEt	s
I-108	COSEt	s N
I-109	COSEt	s ,
I-110	COSEt	s N
I-111	COSEt	s
I-112	COSEt	s
I-113	CSSMe	s N
I-114	CSSMe	s
I-115	CSSMe	s N
I-116	CSSMe	s
I-117	CSSMe	s

(表7)

R⁴ F	J ₂							
	R¹	R ²	R³	R⁴	R⁵	R⁵	R ⁷	R ⁸
I-124	Н	Н	OEt	Н	Ι	CSSMe	Ме	Me
I-125	Н	OEt	Н	H	Ι	CSSMe	Me	Me
I-126	Н	Н	OMe	Н	Н	CSSMe	Ме	Me
1-127	Н	OMe	Н	Н	Н	CSSMe	Ме	Ме
I-128	H	OEt	OMe	Н	Н	CSSMe	Me	Me
I-129	H	OPr	OMe	H	H	CSSMe	Me	Me
I-130	H	OEt	OEt	Н	Н	CSSMe	Ме	Me
I-131	Н	Н	OPr	Н	Н	CSSMe	Ме	Me
I-132	Н	OPr	Τ	Н	Н	CSSMe	Me	. Me_
1-133	— н	Н	OBu	Н	Н	CSSMe	Ме	Me
I-134	Н	OBu	I	Н	Н	CSSMe	Ме	Me
1-135	Н	OMe	OEt	Η	Н	CSSMe	Me	Me
I-136	Н	OMe	OPr	H	Н	CSSMe	Ме	Me
I-137	Н	OBu	OMe	Τ	Н	CSSMe	Me	Me
I-138	Н	H	OPr ⁱ	Н	Н	CSSMe	Me	Me
1-139	Н	OPr ⁱ	Н	Н	Н	CSSMe	Ме	Ме
I-140	Н	Н	Н	Н	Н	CSSMe	Me	Me
I-141	F	Н	Н	Н	Н	CSSMe	Me	Me
I-142	CI	Н	Н	Н	Н	CSSMe	Me	Me
I-143	Н	CI	Н	Н	Н	CSSMe	Ме	Me
1-144	Me	Н	Н	Н	Н	CSSMe	Ме	Me
1-145	Н	Me	Н	Н	Н	CSSMe	Me	Me
I-146	H	Н	Me	Н	Н	CSSMe	Ме	Me
I-147	Н	Bu	Н	Н	Н	CSSMe	Me	Me
1-148	Н	Н	Bu	Н	Н	CSSMe	Ме	Me

(表8)

R⁴ F	₹ ⁵							
	R¹	R²	R³	R⁴	R⁵	R ⁶	R ⁷	R*
I-149	Bu'	Н	Н		Н	CSSMe	Me	Me
I-150	H	Н	Et	Н	Н	CSSMe	Me	Me
I-151	H	Et	Н	Н	Н	CSSMe	Me	Me
I-152	Н	Н	F	Н	Н	CSSMe	Me	Me
I-153	Н	F	Н	Н	Н	CSSMe	Me	Me
I-154	H	Н	Pr ⁱ	Н	Н	CSSMe	Me	Me
I-155	Н	н	Morpho lino	Н	Н	CSSMe	Me	Me
I-156	H	Ac	н	Н	H	CSSMe	Me	Me_
I-157	Н	Н	Br	Н	H	CSSMe	Me	Me
I-158	·H	Br	Н	Η	H	CSSMe	Me	Me
I-159	Br	Н	Н	H	H	CSSMe	Me	<u>Me</u>
1-160	H	C(Me)= NOMe	Н	Н	Н	CSSMe	Me	Me
I-161	H	Н	Ac	Н	Н	CSSMe	Me	Ме
1-162	Н	н	C(Me)= NOMe	н	Н	CSSMe	Ме	Ме
1-163	OPr'	Н	Н	Н	H	CSSMe	Me	Me
I-164	Pr	Н	Н	Н	H	CSSMe	Me	Me
I-165	CF ₃	Н	Н	Н	H	CSSMe	Me	Me `
I-166	H	Н	OPh	Н	H	CSSMe	Me_	Me
I-167	H	Н	Pr	Н	Н	CSSMe	Me	Me
1-168	H	Н	Bu'	H	Н	CSSMe	Me	Me
I-169	Н	CF ₃	Н	Н	Н	CSSMe	Me	Me_
I-170	Н	Н	CF₃	Н	H	CSSMe	Me	Me
I-171	Pr ⁱ	Н	NHAc	Н	Н	CSSMe	Me	Me
I-172	Pr	Н	H	H	NHAc	CSSMe	Me	Me
I-173	H	COOMe	Н	Н	OMe	CSSMe	Me_	Me_

(表9)

$$R^3$$
 R^4
 R^5
 R^7
 R^8

R⁴	R ⁵							
	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
I-174	Morpholino	H	Н	H	H	CSSMe	Me	Me
I-175	Н	Morpholino	H	H	H	CSSMe	Me	Me
1-176	Pr ⁱ	Н	H	COOEt	H	CSSMe	Me	Me
I-177	Н	Н	Piperid ino	Н	н	CSSMe	Ме	Ме
1-178	Pyrrolidino	Н	Н	Н	Н	CSSMe	Ме	Me
I-179	H	SMe	Н	Н	Н	CSSMe	Me	Me
1-179	H.	Н	SMe	Н	Н	CSSMe	Me	Ме
I-181	OCF ₃	Н	Н	Н	I	CSSMe	Me	Ме
1-181	H	OCF ₃	Н	Н	Н	CSSMe	Me	Ме
I-183	Н	H	OCF ₃	Н	Н	CSSMe	Ме	Ме
I-184	Н	Н	3- Pyridyl	н	Н	CSSMe	Ме	Ме
I-185	Н	3-Pyridyl	Н	Н	H	CSSMe	Ме	Ме
1-186	3-Pyridyl	Н	Н	H	H	CSSMe	Me	Ме
I-187	OPh	Н	Н	Н	Н	CSSMe	Ме	Me
I-188	Н Н	OEt	OEt	Н	Н	COOMe	Me	Ме
I-189	OMe	H	Н	Н	Н	COOMe	Me	Ме
I-190	H	Н	Et	Н	H	COOMe	Ме	Me
I-191	Н	H	Pr ⁱ	Н	H	COOMe	Me	Me
1-191	OMe	H	Н	Н	Н	COSMe	Ме	Me
	H	H	Et	Н	Н	COSMe	Ме	Me
I-193	H H	H	Pr ⁱ	Н	Н	COSMe	Me	Ме
I-194	<u> </u>	Н	OEt	Н	Н	COSMe	Me	Ме
I-195	 	OMe	OEt	H	Н	COSMe	Ме	Me
I-196	Н	Piperidino	H	H	Н	CSSMe	Ме	Ме
I-197	 	H	NEt ₂	Н	Н	CSSMe	Ме	Me
I-198	1	<u> </u>						

(表10)

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8

R⁴	`R ⁵		·			R ⁶	R ⁷	R ⁸
	R ¹	R ²	R³	R⁴	R⁵			Me
1-199	OMe	Н	COOMe	H	<u> </u>	CSSMe	<u>Me</u>	ivie
I-200	Н	2- Oxopyrr olidino	н	н	н	CSSMe	Me	Ме
I-201	н	OPh	Н	Н	H	CSSMe	_Me_	Me
I-202		Н	Ph	Н	Н	CSSMe	Me	Me
I-202	Ph	Н	Н	Н	Н	CSSMe	Me	Me
	H	Ph	Н	Н	Н	CSSMe	Me	Me
I-204	Pr ⁱ	H	Н	H	Н	CSOMe	Ме	Me
I-205	Pr ⁱ	H		Н	Н	CSSMe	Me	Me
I-206	OMe	Н	(Morphol ino)CO	н	н	CSSMe	Me	Me
	Н	H	NMe ₂	Н	Н	CSSMe	Me	Me
I-208	Н	NMe ₂	H	Н	Н	CSSMe	Me	Me
I-209		H	Н	Н	Н	CSSMe	Me	Me
I-210	N(Me)Et	H-H	H	Н	Н	CSSMe	Me	Me
I-211	N(Me)Pr	 	 	Н	H	CSSMe	Me	Me
I-212	NEt ₂	 ''	H H	Н	F	CSSMe	Me	Me
I-213	F Pr'	H	CI	Н	Н	CSSMe	Me	Me
1-214		Me	H H	H	Н	CSSMe	Ме	Me
I-215	NMe ₂	H	Me	H	Н	CSSMe	Ме	Me
I-216	NMe ₂	 	H	Me	Н	CSSMe	Ме	Me
1-217	NMe ₂		H H	CI	Н	CSSMe	Me	Ме
I-218	NMe ₂	H	+	H H	Me	CSSMe	Me	Me
I-219	Me_	H	 	H	H	CSSEt	Me	Ме
I-220	NMe ₂	H	 П	H	H	CSSEt	Me	Me
I-221	H	NMe ₂		 	 	CSSEt	Me	Me
I-222	NMe ₂	<u> </u>	Me_	 	H	CSSEt	Me	Me
1-223	H	H	Pr		1 11.	1 0000		

(表11)

R⁴ i	R ⁵							
	R¹	R²	R³	R⁴.	R⁵	R ⁶	R ⁷	R⁵
I-224	OMe	Н	CONHMe	Н	H	CSSMe	Me	Me
I-225	OCHF ₂	I	H	Н	H	CSSMe.	Me_	Me
I-226	H	OCHF ₂	Н	Н	Н	CSSMe	Me	Me
I-227	Н	NEt ₂	Н	Н	H	CSSMe	Ме	Me
I-228	NMe ₂	Н	CI	Н	H	CSSMe	Ме	Me
1-229	NMe ₂	Н	F	Н	H	CSSMe	Me	Me
I-230	NMe ₂	Н	Н	F	H	CSSMe	Ме	Ме
1-231	NMe ₂	H	Et	I	Н	CSSMe	Ме	Me
I-232	NMe ₂	Н	Н	Εt	Н	CSSMe	Ме	Ме
I-232	NMe ₂	Н	CI	Н	Н	CSSEt	Me	Ме
I-234	NMe ₂	Н	F	Н	Н	CSSEt	Ме	Ме
I-235	NMe ₂	Н	Et	Н	Н	CSSEt	Ме	Me
I-236	Pr ⁱ	H	Н	H	Н	CSSBus	Ме	Ме
I-237	Pr ⁱ	Н	Н	Н	Н	CSSBu ⁱ	Me	Ме
I-238	Pr'	H	Н	Н	Н	CSNHMe	Ме	Me
1-239	Me	NMe ₂	Н	Н	Н	CSSMe	Me	Ме
I-240	NMe ₂	OMe	Н	Н	Н	CSSMe	Ме	Me_
I-241	H	NMe ₂	Me	Н	Н	CSSMe	Ме	Ме
1-242	NMe ₂	CI	Н	Н	Н	CSSMe	Me	Ме
I-243	H	NMe ₂	OMe	Н	Н	CSSMe	Мe	Me
1-244	Pr ⁱ	H	Н	Н	Н	CSSEt	Et_	Et
I-245	Pr ⁱ	H	Н	Н	Н	Me	Me	Ме
I-245	Pr'	H	H	Н	H	Pr	Ме	Ме
I-247	Pr'	H	H	Н	Н	Pr ⁱ	Me	Ме
I-247	Pr'	H	H	Н	H	Bu ⁱ	Ме	Ме
1-240			<u> </u>					

(表12)

	A	R ⁶	R ⁷	R ⁸
I-249	\Diamond	CSSMe	Ме	Me
1-250		CSSMe	Me	Me
I-251	N—OMe	CSSMe	Me	Ме
1-252	N—NMe ₂	CSSMe	Me	Me
1-253	CI—N—	CSSMe	Ме	Me
I-254	MeO-N-	CSSMe	Me	Me
1-255	EtO-N-	CSSMe	Me	Ме
1-256	PrO-N	CSSMe	Me	Ме
I-257	Pro-N-	CSSMe	Me	Me
1-258	MeS-N-	CSSMe	Me	Me
I-259	EtS-N-	CSSMe	Me	Me
1-260	PrS-N	CSSMe	Me	Ме
I-261	Pr ⁱ s N	CSSMe	Me	Me

(表13)

	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
I-262	NMe ₂	Н	OMe	Н	Н	CSSMe	Me	Ме
1-263	NMe ₂	Н	Н	OMe	. H_	CSSMe	Me	Me
I-264	Me	NEt ₂	Н	Н	H	CSSMe	Ме	Me
I-265	Н	NEt ₂	Me	Н	Н	CSSMe	Ме	Me
I-266	Н	NEt ₂	OMe	Н	H	CSSMe	Ме	Me
1-267	Bu⁵	Н	Н	Н	H	CSSMe	Et	Et
I-268	Pr ⁱ	Н	Н	Н	Н	CSSMe	Pr	Pr
1-269	Pr [/]	Н	Н	Н	Н	CSSMe	-(CH	
1-270	Pr'	Н	Н	Н	I	CSSMe	-(CH	2)5-

(表14)

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8

H" F		R ²	R ³	R⁴	R⁵	R ⁶	. R ⁷	₽ª
T 271	R¹ Pr ⁱ	— `` H	- '\	H	Н	SO₂Me	Ме	Ме
I-271 I-272	Pr ⁱ	Н	Н	Н	Н	SO ₂ -(S)	Me	Me
I-273	Pr ⁱ	Н	Н	н	н	SO₂€ Me	Me	Ме
1-274	Н	Pr ⁱ	Н	Н	Н	SO₂{\(\bigcirc\)}Me	Me	Ме
I-275	Н.	Pr ⁱ	H	Н	Н	SO₂Et	Ме	Me
I-276	Н	Pr ⁱ	Н	Н	Н	SO ₂ NO ₂	Me	Me
I-277	Н	Pr ⁱ	Н	Н	н	SO₂€ OMe	Me	Me
I-278	Н	Pr ⁱ	Н	Н	н	SO ₂ NO ₂	Ме	Ме
1-279	Н	Pr ⁱ	Н	Н	Н	SO₂€CF ₃	Ме	Me
1-280	H`	Pr ⁱ	Н	н	н	SO ₂	Me	Me

上記の表に示される化合物の物性データ (融点、 ¹ H - N M R) を以下の表に 5 示す。

(表15)

// A 44-		物性
化合物 番号		, M
No	融点	
I-16	57-59℃	1.16 (6H, s), 1.31 (3H, t, J = 7.3), 2.64 (2H, s), 2.91 (2H, q, J = 7.3), 3.78 (2H, s), 6.96 (1H,dd, J = 7.4, 1.2), 7.14 (1H, t, J = 7.4), 7.36 (2H, t, J = 7.4).
I-17		1.15 (6H, s), 1.31 (3H, t, J = 7.3), 2.67 (2H, s), 2.91 (2H, q J = 7.3), 3.77 (2H, s), 7.10-7.15 (4H, m).
I-18		1.16 (6H, s), 1.31 (3H, t, J = 7.3), 2.68 (2H, s), 2.92 (2H, q, J = 7.3), 3.80 (2H, s), 6.96 (1H, dd, J = 7.7, 1.2), 7.08 (1H, dt, J = 7.7, 1.6), 7.25 (2H, t, J = 7.4), 7.40 (1H, d, J = 7.4).
I-19		1.15 (6H, s), 1.27 (3H, t, J = 7.3), 2.24 (3H, s), 2.62 (2H, s), 2.92 (2H, q, J = 7.4), 3.77 (2H, s), 6.83 (1H, d, J = 7.7), 7.04 (1H, t, J = 7.7), 7.16-7.22 (2H, m).
1-20		1.15 (6H, s), 1.19 (3H, t, $J = 7.4$), 1.31 (3H, t, $J = 7.3$), 2.62 (2H, q, $J = 7.3$), 2.65 (2H, s), 2.94 (2H, q, $J = 7.4$), 3.77 (2H, s), 6.83 (1H, d, $J = 7.6$), 7.10-7.22 (3H, m).
I-21		0.95 (3H, t, $J = 7.3$), 1.15 (6H, s), 1.30 (3H, t, $J = 7.4$), 1.50-1.64 (2H, m), 2.56 (2H, q, $J = 7.3$), 2.59 (2H, s), 2.90 (2H, q, $J = 7.4$), 3.76 (2H, s), 6.82 (1H, d, $J = 7.3$), 7.06-7.28 (3H, m).
I-22		0.90 (3H, t, J = 7.1), 1.15 (6H, s), 1.29 (3H, t, J = 7.4), 1.30-1.34 (2H, m), 1.52-1.58 (2H, m), 2.54 (2H, q, J = 7.1), 2.62 (2H, s), 2.92 (2H, q, J = 7.4), 3.76 (2H, s), 6.79 (1H, dd, J = 7.9, 1.4), 7.06-7.28 (3H, m).
I-23		0.86 (3H, t, J = 7.4), 1.14 (6H, s), 1.16 (6H, d, J = 6.9), 1.29 (3H, t, J = 7.4), 1.48-1.58 (2H, m), 2.61 (2H, s), 2.89 (2H, q, J = 7.4), 2.88-2.92 (1H, m), 3.76 (2H, d, J = 13.6), 3.82 (1H, d, J = 13.6), 6.82-6.88 (1H, m), 7.10-7.18 (1H, m), 7.23-7.29
1-24		1.15 (6H, s), 1.27 (3H, t, J = 7.4), 1.33 (9H, s), 2.68 (2H, s), 2.86 (2H, q, J = 7.4), 3.75 (2H, s), 6.86 (1H, dd, J = 7.4, 1.6), 7.08-7.19 (2H, m), 7.38 (2H, dd, J = 7.4, 1.6).
1-25		0.99 (6H, s), 1.25 (3H, t, J = 7.4), 2.45 (2H, s), 2.82 (2H, q, J = 7.4), 3.51 (2H, s), 6.98 (1H, d, J = 7.7), 7.20-7.36 (6H, m), 7.43 (2H, m).
I-26	82-83℃	1.15 (6H, s), 1.29 (3H, t, J = 7.3), 2.66 (2H, s), 2.89 (2H, q, J = 7.4), 3.77 (2H, s), 6.98 (1H, d, J = 7.6), 7.19 (1H, t, J = 7.6), 7.49 (1H, t, J = 7.6), 7.64 (1H, d, J = 7.6).

(表16)

化合物		物性
番号		
No	融点	
1.07		1.16 (6H, s), 1.25 (3H, t, J = 7.4), 2.62 (2H, s), 2.88 (2H, q, J
I-27		= 7.4), 3.78 (2H, s), 3.83 (3H, s), 6.91-6.96 (3H, m), 7.05-7.14
		(1H, m).
I-28		1.15 (6H, s), 1.30 (3H, t, J = 7.4), 1.40 (3H, t, J = 7.0), 2.60
		(2H, s), 2.90 (2H, q, J = 7.4), 3.78 (2H, s), 4.08 (2H, q, J = 7.00, 7
		7.0), 6.90-6.94 (3H, m), 7.06-7.08 (1H, m).
I-29		1.14 (6H, s), 1.29 (6H, d, J = 7.4), 1.31 (6H, d, J = 6.0), 2.59
		(2H, s), 2.89 (2H, q, J = 7.4), 3.76 (2H, s), 4.50 (1H, q, J = 7.4), 3.76 (2H, s), 4.50 (1H, q, J = 7.4), 3.76 (1H, m)
		6.0), 6.90-6.93 (3H, m), 7.01-7.07 (1H, m).
I-30		1.15 (6H, s), 1.29 (3H, t, J = 7.4), 2.43 (3H, s), 2.63 (2H, s),
	78-80℃	2.89 (2H, q, J = 7.4), 3.78 (2H, s), 6.87-6.91 (1H, m), 7.05-7.14
		(2H, m), $7.20-7.29$ $(1H, m)$.
I-31		(2H, H), $(1.20, 1.20)$ $(2H, L)$
	55-57℃	(2H, s), 2.89 (2H, q, J = 7.4), 2.94 (2H, q, J = 7.4), 3.78 (2H, s), 2.89 (2H, q, J = 7.4), 7.08 (2H, m), 7.32 (1H, dd, s), 7.80 (2H, m), 7.80
,		s), 6.91 (1H, dd, J = 7.4, 1.6), 7.08-7.20 (2H, m), 7.32 (1H, dd,
		J = 7.4, 1.6). 1.15 (6H, s), 1.27 (6H, d, J = 6.6), 1.28 (6H, d, J = 7.4), 2.65
I-32		1.15 (6H, s), 1.27 (6H, d, J = 6.6), 1.26 (6H, d, J = 7.4), 2.36 (1H, m), 3.78 (2H, s).
	1	(2H, s), 2.88 (2H, q, J = 7.4), 3.38-3.42 (1H, m), 3.78 (2H, s), (2H, s), 7.08, 7.20 (2H, m), 7.32 (1H, dd, J
ł		(2H, s), 2.00 (2H, d), 3.08-7.20 (2H, m), 7.32 (1H, dd, J) $6.90 (1H, dd, J = 7.7, 1.6), 7.08-7.20 (2H, m), 7.32 (1H, dd, J)$
<u> </u>		= 7.7, 1.6). 1.15 (6H, s), 1.29 (3H, t, J = 7.4), 2.60 (2H, s), 2.71 (6H, s),
I-33	1	1.15 (6H, s), 1.29 (3H, t, 5 - 7.4), 2.00 (2H, 3), 2.11 (6H, 5), 2.89 (2H, q, J = 7.4), 3.77 (2H, s), 6.90-6.98 (3H, m), 7.05-7.10
	1	
		(1H, m). 1.16 (6H, s), 1.27 (6H, d, J = 6.9), 1.31 (3H, t, J = 7.4), 2.64
I-34		(2H, s), 2.91 (2H, q, J = 7.4), 2.98 (1H, q, J = 6.9), 3.77 (2H, g)
	1	s), 6.78-6.83 (2H, m), 7.01-7.04 (1H, m), 7.25-7.27 (1H, m).
		s), 6.78-6.83 (211, m), 1.61 (223, 123) 1.16 (6H, s), 1.30 (3H, t, J = 7.3), 2.66 (2H, s), 2.90 (2H, q, J
1-35	68-69℃	$\begin{bmatrix} 1.16 & (6H, s), 1.30 & (3H, t, s) = 7.0, 2.30 & (2H, s) = 7.3, 3.76 & (2H, s) = 8.8 & (2H, dd, J = 6.6, 2.1), 7.31 & (2H, dd, J = 6.6, 2.1) & $
		= 6.6, 2.1). 1.15 (6H, s), 1.20 (6H, d, J = 6.9), 1.26 (3H, t, J = 7.4), 2.64
I-36		$\begin{array}{c} 1.15 \text{ (6H, s), } 1.20 \text{ (6H, d, s = 0.5), } 1.25 \text{ (6H, s), } \\ (2H, s), 2.86 \text{ (2H, q, J = 7.4), } 2.89 \text{ (1H, q, J = 6.9), } 3.75 \text{ (2H, s), } \\ \end{array}$
	67-69℃	(2H, s), 2.86 (2H, d, 3 = 7.4), 2.86 (1H, d, J = 8.3). s), 6.98 (2H, d, J = 8.2), 7.20 (2H, d, J = 8.3).
		s), 6.98 (2H, tl, 5 - 6.2), 7.25 (2H, s), 2.92 (2H, q, J 1.15 (6H, s), 1.30 (3H, t, J = 7.3), 2.72 (2H, s), 2.92 (2H, q, J
1-37	125-	1 - 7.2 2.78 (9H s) 7.05 (2H d. J = 8.3), 7.31 (2H, 0, 0 - 6.0)
	126°C	1.15 (6H, s), 1.30 (3H, t, J = 7.4), 2.14 (3H, s), 2.29 (3H, s),
1-38		
	76-78℃	Z.63 (ZH, S), Z.63 (ZH, q, 0 = 1.4), 6.11 (ZH, S),
	ļ	= 7.9), 6.94 (1H, d, $J = 7.9$), 7.06 (1H, s).

(表17)

		Afra Alt-
化合物	-	物性
番号		
No	融点	
I-39		1.14 (6H, s), 1.29 (3H, t, J = 7.4), 2.21 (3H, s), 2.32 (3H, s),
		2.65 (2H, s), 2.89 (2H, q, $J = 7.4$), 3.76 (2H, s), 6.73 (1H, d,
		J = 7.9), 6.97 (1H, d, $J = 7.9$), 7.02 (1H, s).
I-40		1.15 (6H, s), 1.30 (3H, t, J = 7.4), 2.19 (3H, s), 2.31 (3H, s),
! !		2.64 (2H, s), 2.89 (2H, q, J = 7.4), 3.77 (2H, s), 6.65 (1H, s),
		6.86 (1H, d, J = 7.9), 7.07 (1H, d, J = 7.7).
1-41	.59-61°C	1.15 (6H, s), 1.30 (3H, t, J = 7.3), 2.19 (6H, s), 2.62 (2H, s),
1		2.90 (2H, q, J = 7.3), 3.78 (2H, s), 6.90-6.96 (1H, m), 7.02-
		7.08 (2H, m). 1.15 (6H, s), 1.31 (3H, t, J = 7.4), 2.26 (3H, s), 2.28 (3H, s),
I-42		$\begin{bmatrix} 1.15 & (6H, s), 1.31 & (3H, t, 3 = 7.4), 2.26 & (3H, s), 2.26 & (3H, s), \\ 2.65 & (2H, s), 2.91 & (2H, q, J = 7.4), 3.78 & (2H, s), 6.74 & (1H, dd, l) \end{bmatrix}$
1		J = 7.9, 1.8, 6.80 (1H, d, J = 1.8), 7.13 (1H, d, J = 7.7).
1 10	· · · · · · · · · · · · · · · · · · ·	3 = 7.5, 1.6), 0.60 (111, d, $3 = 1.6$), 7.15 (111, d, $3 = 1.6$), 1.15 (6H, s), 2.63 (2H, s),
1-43	•	2.90 (2H, q, J = 7.4), 3.76 (2H, s), 6.58 (2H, s), 6.77 (1H, s).
I-44		1.15 (6H, s), 1.28 (3H, t, J = 7.4), 2.21 (3H, s), 2.64 (2H, s),
1-44		2.90 (2H, q, J = 7.4), 3.76 (2H, s), 6.74 (1H, d, J = 8.2),
1		7 10-7 18 (2H, m).
I-45	-	1.15 (6H. s), $1.28 (3H, t, J = 7.4)$, $2.31 (3H, s)$, $2.66 (2H, s)$,
1-40		2.92 (2H, q, J = 7.4), 3.78 (2H, s), 6.74 (1H, d, J = 7.8), 7.04
ļ		(1H d. $J = 7.8$), 7.25 (1H, d, $J = 7.8$).
I-46		1.16 (6H, s), 1.25 (6H, d, J = 6.9), 1.29 (3H, t, J = 7.4), 2.69
	119-	(2H, s), 2.90 (2H, q, J = 7.4), 3.15 (1H, m), 3.79 (2H, s), 6.92
1	120°C	(1H, d, J = 8.7), 8.01 (1H, dd, J = 8.5, 2.4), 8.18 (1H, d, J =
		2.4).
I-47		1.17 (6H, s), 1.23 (6H, d, J = 6.9), 1.30 (3H, t, J = 7.4), 2.69
		(2H, s), 2.91 (2H, q, J = 7.4), 3.19 (1H, m), 3.79 (2H, s), 7.41 (1H, d, J = 8.7), 7.71 (1H, d, J = 2.4), 7.92 (1H, dd, J = 8.7)
		M : '
T 10	<u> </u>	2.4). 1.15 (6H, s), 1.30 (3H, t, J = 7.4), 2.73 (2H, s), 2.93 (2H, q, J
I-48		= 7.4), 3.82 (2H, s)7.15 (2H, d, J = 8.3), 8.48 (1H, dd, J = 8.3,
1		1,4), 8.90 (1H, d, J =8.3).
T 40	 	0.95 (3H, t, J = 7.3), 1.15 (6H, s), 1.50-1.64 (2H, m), 2.32
I-49	64-66°C	(3H, s), 2.56 (2H, q, J = 7.3), 2.63 (2H, s), 3.78 (2H, s), 6.82
	04.000	(1H, d, J = 7.3),
		7.06-7.28 (3H, m).
1-50		1.16 (6H. s), 1.20 (6H. d. J = 6.9), 2.32 (3H. s), 2.64 (2H. s),
	95-96°C	3.12 (1H, q, J = 6.9), 3.79 (2H, s), $6.78-6.82$ (1H, m),
		7.11-7.20 (2H, m), 7.30-7.34 (1H, m).

(表18)

TH AT		物性
化 合 物 番		7/J Jahn
号		
	 融点	
No	器法	
1-51		0.85 (3H, t, J = 7.3), 1.15 (6H, d, J = 6.9), 1.18 (6H, s),
	53-56°C	1.57-1.70 (2H, m), 2.31 (3H, s), 2.62 (2H, s), 2.91 (1H, q, J = 1)
		6.9), 3.74 (1H, d, J = 13.7), 3.78 (1H, d, J = 13.7), 6.78-6.83
		(1H, m), 7.11-7.18 (2H, m), 7.23-7.30 (1H, m).
I-52		1.17 (6H, s), 1.27 (6H, d, J = 6.9), 2.33 (3H, s), 2.65 (2H, s),
	88-90°C	2.91 (1H, q, J = 6.9), 3.79 (2H, s), 6.78-6.83 (2H, m), 7.01-
		7.04 (1H, m), 7.20-7.24 (1H, m).
I-53	·	1.16 (6H, s), 2.32 (3H, s), 2.65 (2H, s), 3.77 (2H, s), 3.87 (6H,
		s), 6.51-6.59 (2H, m), 6.80-6.89 (1H, m).
I-54	102-	1.15 (6H, s), 2.31 (3H, s), 2.65 (2H, s), 3.76 (2H, s), 5.96 (2H,
	104℃	s), 6.42 (1H, dd, $J = 8.1, 1.8$), 6.53 (1H, d, $J = 1.8$), 6.78 (1H,
		d, J = 8.1).
I-55	129-	1.16 (6H, s), 2.32 (3H, s), 2.67 (2H, s), 3.78 (2H, s), 3.85 (6H,
	131℃	s), 3.86 (3H, s), 6.20 (2H, s)
I-56	107-	1.17 (3H, t, J = 7.6), 1.22 (6H, s), 2.58 (2H, q, J = 7.6), 2.64
	109℃	(3H, s), 2.66 (2H, s), 4.51 (2H, s), 6.91 (1H, dd, J = 7.5, 1.3),
		7.02-7.19 (2H, m), 7.23-7.28 (1H, m). 0.85 (3H, t, J = 7.3), 1.18 (6H, d, J = 6.9), 1.23 (6H, s),
I-57		0.85 (3H, t, $3 = 4.3$), 1.18 (6H, tl, $3 = 6.3$), 1.23 (6H, s), 1.57-1.70 (2H, m), 2.64 (3H, s), 2.66 (2H, s), 2.88 (1H, q, J =
	·	6.9, 4.38 (1H, d, $J = 13.7$), 4.60 (1H, d, $J = 13.7$), $6.83-6.90$
ŀ		(1H, m), 7.11-7.18 (2H, m), 7.28-7.35 (1H, m).
7.50	05.05°C	1.22 (6H, s), 2.62 (3H, s), 2.63 (2H, s), 3.35 (3H, s), 4.40 (2H,
I-58	85-87℃	s), 4.48 (2H, s), 6.93-6.99 (1H, m), 7.11-7.29 (2H, m), 7.40-
		7.49 (1H, m).
1-59	113-	1.22 (3H, s), 1.24 (3H, s), 1.37 (3H, d, J = 6.4), 2.63 (3H, s),
1.09	114°C	2.65 (2H, s), 3.24 (3H, s), 4.35 (1H, d, J = 13.6), 4.55 (1H, q,
1	1140	J = 6.4), 4.66 (1H, d, $J = 13.6$), 6.91 (1H, d, $J = 7.4$), 7.19-
1	1	7.40 (2H, m), 7.51 (1H, d, J = 7.4).
I-60	128-	1.22 (6H, s), 2.62 (3H, s), 2.65 (2H, s), 3.85 (3H, s), 4.53 (2H,
	130°C	s), 6.93-6.99 (2H, m), 7.02-7.15 (2H, m).
I-61	100-	1.26 (6H, s), 1.43 (3H, t, J = 7.4), 2.66 (2H, s), 2.67(3H, s),
	101°C	4.08 (2H, q, J = 7.0), 4.55 (2H, s), $6.95-6.99$ (3H, m), $7.11-$
		7.18 (1H, m).
1-62	137-	1.23 (6H, s), 2.43 (3H, s), 2.64 (3H, s), 2.67 (2H, s), 4.53 (2H,
	139℃	s), 6.87-6.92 (1H, m), 7.11-7.20 (2H, m), 7.23-7.29 (1H, m).

(表19)

(32 1 3)		
化合物 番号		物性
No	融点	
1-63	103- 105℃	1.15 (6H, s), 1.29 (3H, t, J = 7.4), 1.31 (3H, t, J = 7.4), 2.66 (2H, s), 2.89 (2H, q, J = 7.4), 2.94 (2H, q, J = 7.4), 3.78 (2H, s), 6.91 (1H, dd, J = 7.4, 1.6), 7.08-7.20 (2H, m), 7.32 (1H, dd, J = 7.4, 1.6).
1-64	125- 126℃	1.24 (6H, s), 1.28 (6H, d, J = 6.6), 2.63(3H, s), 2.66 (2H, s), 3.38-3.42 (1H, m), 4.53 (2H, s), 6.97 (1H, dd, J = 7.7, 1.6), 7.08-7.20 (2H, m), 7.32 (1H, dd, J = 7.7, 1.6).
1-65		1.22 (6H, s), 2.63 (3H, s), 2.65 (2H, d, J = 13.6), 2.75 (3H, s), 4.17 (1H, d, J = 13.6), 4.77 (1H, d, J = 13.6), 7.06 (1H, dd, J = 7.7, 1.7), 7.19-7.40 (2H, m), 7.97 (1H, dd, J = 7.7, 1.7).
I-66	147- 149℃	1.23 (6H, s), 2.63 (3H, s), 2.71 (2H, s), 3.13 (3H, s), 4.52 (2H, s), 7.11 (1H, m,), 7.11-7.20 (2H, m), 7.23-7.29 (1H, m).
1-67	129- 130℃	1.22 (6H, s), 1.23 (3H, t, J = 6.9), 2.63 (3H, s), 2.66 (2H, s), 2.70-2.85 (1H, m), 2.90-3.15 (1H, m), 4.25 (1H, d, J = 13.6), 4.70 (1H, d, J = 13.6), 7.06 (1H, d, J = 7.5), 7.30-7.45 (2H, m), 7.90 (1H, d, J = 7.5).
I-68	100- 102℃	1.23 (6H, s), 2.62 (3H, s), 2.65 (2H, s), 2.71 (6H, s), 4.50 (2H, s), 6.93-6.99 (3H, m), 7.02-7.15 (1H, m).
I-69		1.23 (6H, s), 1.25 (6H, d, J = 6.9), 2.64 (3H, s), 2.66 (2H, s), 2.92 (1H, q, J = 6.9), 4.52 (2H, s), 6.84-6.86 (2H, m), 7.08-7.13 (1H, m), 7.28-7.32 (1H, m).
1-70	116- 118℃	1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.51 (2H, s), 6.97 (2H, d, J = 8.6), 7.35 (2H, d, J = 8.6).
I-71	103- 105℃	1.22 (6H, s), 2.19 (3H, s), 2.30 (3H, s), 2.63 (3H, s), 2.65 (2H, s), 4.50 (2H, s), 6.79 (1H, d, J = 7.9), 6.98 (1H, d, J = 7.9),
1-72	100∙ 101°C	1.23 (6H, s), 2.18 (3H, s), 2.32 (3H, s), 2.64 (3H, s), 2.65 (2H, s), 4.51 (2H, s), 6.71 (1H, s), 6.88 (1H, d, J = 7.9), 7.08 (1H, t, J = 7.9).
1-73	93-95℃	1.22 (6H, s), 2.12 (3H, s), 2.30 (3H, s), 2.64 (3H, s), 2.65 (2H, s), 4.51 (2H, s), 6.76 (1H, d, J = 7.9), 6.98 (1H, d, J = 7.9), 7.08 (1H, t, J = 7.9).
I-74	126- 128℃	1.23 (6H, s), 2.25 (3H, s), 2.27 (3H, s), 2.64 (3H, s), 2.65 (2H, s), 4.51 (2H, s), 6.76 (1H, d, J = 7.9), 6.82 (1H, s), 713 (1H, d, J = 7.9).
I-75	96-98℃	1.23 (6H, s), 2.32 (6H, s), 2.63 (3H, s), 2.65 (2H, s), 4.51 (2H, s), 6.64 (2H, s), 6.80 (1H, s).
I-76		s), 6.64 (214, 5), 6.60 (3H, s), 2.65 (2H, s), 3.79 (3H, s), 3.88 (3H, s), 4.52 (2H, s), 6.60 (1H, d, J = 7.9), 6.73 (1H, d, J = 7.9), 7.04 (1H, d, J = 7.9).

(表20)

化合物 番号 No 融点 I-77	
1.24 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 3.87 (6H, s),	
	4.50 (2H e)
1 C C1 6 65 (2H m), 6.80-0.83 (111, m).	
	, 4.52 (2H, s)
6.48 (1H, dd, J = 8.5, 2.4), 6.51 (111, d, 0 = 2.1), 6.51	
8.5). 1.22 (6H, s), 2.62 (3H, s), 2.64 (2H, s), 3.77 (6H, s)	, 4.52 (2H, s)
6.56 (1H, d, $J = 2.4$), 6.68 (1H, dd, $J = 2.4$), 6.68	
8.5). 1.80 108- 1.23 (6H, s), 2.63 (3H, s), 2.66 (2H, s), 4.49 (2H, s)	, 6.04 (2H, s).
110° C 6.50 (1H, dd, J = 8.1, 1.8), 6.61 (111, a, 6 = 1.6),	
8.1). 1.23 (6H, s), 1.25 (6H, d, J = 6.9), 2.65 (3H, s), 2.	.71 (2H, s),
3.11 (1H, q, $J = 6.9$), 4.51 (2H, s), 7.02 (1H, d, $J = 2.7$)	
$ \frac{3.11 \text{ (III, q, o.s., s.)}}{\text{dd, J} = 8.5, 2.7), 8.21 \text{ (1H, d, J} = 2.7).} $ $ \frac{3.11 \text{ (III, q, o.s., s.)}}{\text{dd, J} = 8.5, 2.7), 8.21 \text{ (1H, d, J} = 6.9), 2.63 \text{ (3H, s), 2} $ $ \frac{3.11 \text{ (III, q, o.s., s.)}}{\text{dd, J} = 8.5, 2.7), 8.21 \text{ (1H, d, J} = 6.9), 2.63 \text{ (3H, s.), 2} $ $ \frac{3.11 \text{ (III, q, o.s., s.)}}{\text{dd, J} = 8.5, 2.7), 8.21 \text{ (1H, d, J} = 6.9), 2.63 \text{ (3H, s.), 2} $ $ \frac{3.11 \text{ (III, q, o.s., s.)}}{\text{dd, J} = 8.5, 2.7), 8.21 \text{ (1H, d, J} = 6.9), 2.63 \text{ (3H, s.), 2} $.66 (2H, s),
$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	8.5), 7.80 (1H,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
I-83 1.24 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.51 (2H, s), 6.28 (2H, s).	
4.51 (2H, s), 6.28 (2H, s). 4.51 (2H, s), 6.28 (2H, s). 1.23 (6H, s), 1.35 (3H, t, J = 6.9), 1.23 (6H, s), 1.35 (2H, g, J = 6.9), 1.23	.7.4), 2.65 (2H,
s), 3.11 (1H, q, J = 6.9), 3.20 (2H, q), 7.30-7.34 ((1H. m).
6.89-6.92 (1H, m), 7.14-7.20 (2H, m), 7.30-1.31 0.85 (3H, t, J = 7.4), 1.18 (6H, d, J = 6.9), 1.23 (6H, d, J = 6.	H, s), 1.35 (3H,
t, J = 7.4, 1.57 - 1.70 (2H, m), 2.50 (2H, s), 2.50 (2H,	60 (1H, d, J =
3.25 (2H, q, J = 7.4), 4.35 (1H, d, 3 = 15.1), 13.7), 6.89-6.92 (1H, m), 7.10-7.18 (2H, m), 7.30 (1H, d), 6.89-6.92 (1H, m), 7.10-7.18 (2H, m), 7.30 (1H, d), 6.89-6.92 (1H, m), 7.10-7.18 (2H, m), 7.30 (1H, d), 6.89-6.92 (1H, m), 7.10-7.18 (2H, m), 7.30 (1H, d), 6.89-6.92 (1H, m), 7.10-7.18 (2H, m), 7.30 (1H, d), 6.89-6.92 (1H, m), 7.10-7.18 (2H, m), 7.30 (1H, d), 6.89-6.92 (1H, m), 7.10-7.18 (2H, m), 7.30 (1H, d), 6.89-6.92 (1H,)-7.34 (1H, m).
1-86 96-97 1.23 (6H, s), 1.36 (3H, t, $J = 7.0$), 1.40 (3H, s, $J = 7.0$)), 4.51 (2H, s)
I-87 105-106 1.22 (6H, s), 1.35 (3H, t, J = 7.4), 2.45 (6H, s), 3.26 (2H, g, J = 7.4), 4.50 (2H, s), 6.95-6.98 (1H, g, J = 7.4), 4.50 (2H, s), 6.95-6.98 (1H, g, J = 7.4), 4.50 (2H, s), 6.95-6.98 (1H, g, J = 7.4), 4.50 (2H, s), 6.95-6.98 (1H, g, J = 7.4), 4.50 (2H, s), 6.95-6.98 (1H, g, J = 7.4), 4.50 (2H, s), 6.95-6.98 (1H, g, J = 7.4), 4.50 (2H, s), 6.95-6.98 (1H, g, J = 7.4), 4.50 (2H, s), 6.95-6.98 (1H, g, J = 7.4), 4.50 (2H, s), 6.95-6.98 (1H, g, J = 7.4), 4.50 (2H, g, J =	l, m), 7.10-7.1
(2H, m), 7.24-7.29 (1H, m).	

(表21)

(32 2 1		ft- til.
化 合		物性
物番		
号		
No	融点	
I-88		1.23 (6H, s), 1.25 (6H, d, J = 6.9), 1.35 (3H, t, J = 7.4), 2.66
		(2H, s), 2.90 (1H, q, J = 6.9), 3.28 (2H, q, J = 7.4), 4.50 (2H, J = 6.9)
		s), 6.84-6.88 (2H, m), 7.08-7.13 (1H, m), 7.28-7.32 (1H, m).
I-89		0.98 (3H,t, J = 7.4), 1.12 (6H, s), 1.22 (6H, d, J = 6.9),
		1.72-1.80 (2H,m), 2.58 (2H, s), 2.90 (2H, t, $J = 7.4$), 3.06
		(1H, q, J = 6.9), 3.71 (2H, s), 6.71-6.76 (1H, m), 7.11-7.20
		(2H, m), 7.30-7.34 (1H, m).
I-90		1.14 (6H, s), 1.21 (6H, d, J = 6.9), 2.58 (2H, s), 3.14 (1H, q,
1	99-	J = 6.9), 3.64 (2H, s), 3.86 (3H, s), 6.73-6.78 (1H, m),
	101°C	7.11-7.18 (2H, m), 7.28-7.35 (1H, m).
1-91		1.00 (3H, t, J = 7.3), 1.14 (6H, s), 1.20 (6H, d, J = 6.9), 1.74
		(2H, q, J = 7.3), 2.58 (2H, s), 3.16 (1H, q, J = 6.9), 3.65 (2H,
		s), 4.23 (2H, q, J = 6.9), 6.73-6.80 (1H, m), 7.12-7.18 (2H,
		m), 7.31-7.34 (1H, m). 1.13 (6H, s), 1.19 (6H, d, J = 6.9), 1.20 (3H, t, J = 7.4), 2.60
1-92		(2H, s), 2.98 (1H, q, J = 6.9), 3.38 (2H, q, J = 7.4), 3.77 (2H, J)
	52-53℃	s), 6.73-6.78 (1H, m), 7.09-7.18 (2H, m), 7.28-7.32 (1H, m).
T 00		1.14 (6H, s), 1.22 (6H, d, J = 6.9), 2.62 (2H, s), 2.96 (1H, q,
I-93	# # # # # # # # # # # # # # # # # # #	J = 6.9), 3.48 (3H, s), 3.75 (2H, s), 4.64 (2H, s), 6.73-6.78
	76-78℃	(1H, m), 7.10-7.17 (2H, m), 7.25-7.32 (1H, m).
I-94		1.14 (6H, s), 1.20 (6H, d, J = 6.9), 2.23 (3H, s), 2.68 (2H, s),
1.94	61-62°C	$\begin{bmatrix} 2.93 \text{ (1H, q, J = 6.9)}, & 3.71 \text{ (2H, s)}, & 3.94 \text{ (2H, s)}, & 6.82-6.86 \end{bmatrix}$
	01-02 0	(1H, m), 7.10-7.18 (2H, m), 7.30-7.36 (1H, m).
I-95		1.13 (6H, s), 1.20 (6H, d, J = 6.9), 1.31 (3H, t, J = 7.3), 2.65
1-30	50-52℃	(2H, J = 7.3), 2.68 (2H, s), 2.90 (1H, q, J = 6.9), 3.71 (2H, l)
	00 02 0	s), 3.97 (2H, s), 6.82-6.86 (1H, m), 7.12-7.19 (2H, m),
	ŀ	7.30-7.36 (1H, m).
I-96		1.21 (6H. s), 1.22 (6H, d, J = 6.9), 1.42 (3H, t, J = 6.9), 2.61
	73-75℃	(2H, s), 3.10 $(1H, q, J = 6.9)$, 4.15 $(2H, s)$, 4.65 $(2H, q, J = 6.9)$
İ		6.9), 6.74-6.78 (1H, m), 7.14-7.20 (2H, m), 7.30-7.34 (1H,
	1	m).
1-97		1.18 (6H, s), 1.22 (6H, d, J = 6.9), 1.25 (3H, t, J = 7.4), 2.60
	160-	(2H, s), 2.90 (1H, q, J = 6.9), 3.71 (2H, q, J = 7.4), 4.40 (2H, q)
	162℃	s), 6.74-6.78 (1H, m), 7.14-7.20 (2H, m), 7.30-7.34 (1H, m).
I-98		1.04 (3H, t, J = 7.4), 1.20 (6H, d, J = 6.9), 1.27 (6H, s), 1.73
1	1	(2H, m), 2.64 (2H, s), 3.12 (1H, q, J = 6.9), 3.22 (2H, t, J =
-		7.4), 4.48 (2H, s),
L		6.89-6.92 (1H, m), 7.10-7.20 (2H, m), 7.28-7.35 (1H, m).

(表22)

(32 2 2)		
化合物		物性
番号		
No	融点	
I-99		1.04 (6H, d, J = 6.9), 1.27 (6H, s), 1.42 (3H, d, J = 6.9),
	113-	0.63 (9H s) 3.14 (1H, a, J = 6.9), 4.02 (1H, q, J = 6.9), 1.02
	114	4.46 (2H, s), 6.89-6.93 (1H, m), 7.10-7.20 (2H, m), 7.28-
. 1	1	7.95 (1H m)
I-100		1.10 (6H, d, J = 6.9), 1.22 (6H, s), 2.64 (2H, s), 3.08 (1H, l)
	•	q, $J = 6.9$), 4.48 (2H, s),4.49 (2H, s), 6.83-6.90 (1H, m),
		7 11.7 18 (2H m), 7.20-7.38 (6H, m).
I-101		1.15 (6H, s), 1.25 (3H, t, J = 7.4), 2.70 (2H, s), 2.87 (2H, q,
		J = 7.4), 3.69 (2H, s), 4.55 (2H, s), 7.30-7.40 (4H, m).
I-102		1.24 (6H, s), 2.57 (3H, s), 2.73 (2H, s), 4.43 (2H, s), 4.58
		(2H, s), 7.23-7.40 (4H, m).
I-103		1.11 (6H, s), 1.26 (3H, t, J = 7.4), 2.61 (2H, s), 2.83 (2H, q,
	l	J = 7.4), 3.10 (2H, t, $J = 7.4$), 3.65 (2H, s), 3.66 (2H, t, $J = 1.4$), 3.10 (2H, t, $J = 1.4$), 3.65 (2H, t), 3.66 (2H, t, $J = 1.4$), 3.65 (2H, s), 3.66 (2H, t, $J = 1.4$), 3.65 (2H, t, $J = 1.4$),
		7.4), 7.17 (1H, dd, J = 8.2, 2.1), 7.30 (1H, t, J = 8.2), 7.36
	ļ	(1H, d, J = 2.1).
I-104	1	1.16 (6H, s), 2.55 (3H,s), 2.63 (2H, s), 3.13 (2H, t, J =
		7.5), 3.69 (2H, t, $J = 7.5$), 4.35 (2H, s), 7.15 (1H, dd, $J =$
		8.2, 2.1), 7.25 (1H, t, J = 8.2), 7.36 (1H, d, J = 2.1).
I-105		11.90 (GH d $I = 6.9$) 1.30 (3H, t. $J = 7.4$), 2.10-2.22 (2H,
		I_{m}) 2 88 (2H t J = 6.4), 2.94 (2H, q, J = 7.4), 3.11 (111, q,
,	1	J = 6.9, 4.05 (2H, t, $J = 7.4$), 6.82-6.86 (1H, m), 7.10-7.18
		(2H, m), 7.28-7.34 (1H, m).
I-106		1.17-1.30 (12H, m), 1.45-1,52 (1H,m), 1.90-1.96 (1H, m),
		2.92 (2H, q, J = 7.4), 2.95 - 3.05 (2H, m), 3.14 - 3.23 (1H, m), 2.92 (2H, q, J = 7.4), 2.95 - 3.00 (2H, m), 7.40 - 7.45 (2H, m), 7.4
	<u> </u>	$3.72 \cdot 3.75$ (1H, m), $7.20 \cdot 7.30$ (2H,m), $7.40 \cdot 7.45$ (2H,m). 1.22 (6H, d, J = 6.9), 1.28 (3H, d, J = 6.6), 1.29 (3H, t, J =
I-107		1.22 (6H, d, $J = 6.9$), 1.28 (3H, d, $J = 6.0$), 1.28 (2H, q, $J = 7.4$), 1.75-1.77 (1H,m), 2.29-2.34 (1H, m), 2.88 (2H, q, $J = 7.4$), 1.75-1.77 (1H,m), 2.29-2.34 (1H, m), 2.88 (2H, q, $J = 7.4$), 1.75-1.77 (1H,m), 2.29-2.34 (1H, m), 2.88 (2H, q, $J = 7.4$), 1.75-1.77 (1H,m), 2.29-2.34 (1H, m), 2.88 (2H, q, $J = 7.4$), 1.75-1.77 (1H,m), 2.29-2.34 (1H, m), 2.88 (2H, q, $J = 7.4$), 1.75-1.77 (1H,m), 2.29-2.34 (1H, m), 2.88 (2H, q, $J = 7.4$), 1.75-1.77 (1H,m), 2.29-2.34 (1H, m), 2.88 (2H, q, $J = 7.4$), 1.75-1.77 (1H,m), 2.29-2.34 (1H, m), 2.88 (2H, q, $J = 7.4$), 1.75-1.77 (1H,m), 2.29-2.34 (1H, m), 2.88 (2H, q, $J = 7.4$), 1.75-1.77 (1H,m), 2.29-2.34 (1H, m), 2.88 (2H, q, $J = 7.4$), 1.75-1.77 (1H,m), 2.29-2.34 (1H,m), 2.88 (2H, q, $J = 7.4$), 1.75-1.77 (1H,m), 2.29-2.34 (1H,m), 2.88 (2H,m), 2.88
		7.4), 1.75-1.77 (1H, m), 2.25-2.54 (1H, m), 4.01-4.10 (2H, m), 7.4), 3.14 (1H, m), 3.31-3.36 (1H, m), 4.01-4.10 (2H, m),
		6.81-6.85 (1H, m), 7.10-7.20 (2H, m), 7.28-7.35 (1H, m).
7 100		$\frac{1}{10}$ (2H d. J = 6.6) 1.20 (6H, d. J = 6.9), 1.29 (3H, t, J =
1-108		$1_{7/4}$ $9/40_{-}$ 9 50 (1H m), 2.57 (1H, dd, J = 13.5, 0.0), 4.31
		1/611 = 1 - 7/1 = 9.95/1H m) $3.14/(1H, m)$, $3.49/(1D, uu)$
}		J = 13.5, 8.4, 4.30 (1H, dd, $J = 13.5, 8.4$), $6.81-6.85$ (111,
		m), 7.10-7.20 (2H, m), 7.28-7.35 (1H, m).
L		

(表23)

(表23	,	44.10
化合		物性
物番		
号		
No	融点	·
		T = C(0) + T = C(0) +
I-109		0.88 (6H, t, J = 7.5), 1.22 (6H, d, J = 6.9), 1.29 (3H, t, J = 7.4),
		0.88 (6H, t, J = 7.3), 1.22 (6H, s), 2.89 (2H, q, J = 7.4), 3.15 1.45-1.52 (4H, m), 2.58 (2H, s), 2.89 (2H, q, J = 7.4), 3.15 (1H,m), 3.77 (2H, s), 6.78-6.83 (1H, m), 7.08-7.21 (2H, m),
		(1H,m), 3.77 $(2H, s)$, $6.78-6.63$ $(111, m)$, 7.53
		7.30-7.35 (1H, m). 1.21 (6H, d, J = 6.9), 1.23 (6H, s), 1.25 (3H, t, J = 7.4), 2.81
I-110	109-	1.21 (6H, d, $J = 6.9$), 1.23 (6H, s), 1.25 (8H, s), 7.13-7.30 (2H, q, $J = 7.4$), 2.90 (1H, t, $J = 6.9$), 3.05 (2H, s), 7.13-7.30
	111°C	L \ # 00 M 4E (9 H m)
	<u> </u>	(2H, m), 7.36-7.45 (2H, m). 1.21 (6H, d, J = 6.9), 1.31 (3H, t, J = 7.4), 1.42 (3H, d, J = 6.7),
I-111		1
ļ		2.90 (2H, q, J = 7.4), 3.25 (1H, q) 6.6), 3.87-3.93 (1H, m), 6.78-6.82 (1H, m), 7.08-7.20 (2H, m),
		1 00 (1TT)
¥ 110	 	$\frac{1}{1}$ = 0.5 (OTT = 1.14 (QH) $\frac{1}{1}$ = 6.3), 2.76 ($\frac{1}{1}$, $\frac{1}{1}$, $\frac{1}{1}$ = 10.0), [
I-112		1
1		2.96 (2H, t, $J = 7.4$), 5.22 (111, q, σ), 5.12 (1H, q, $J = 6.3$), 6.81-6.85 (1H, m), 7.09-7.16 (2H, m),
1	ļ	
I-113		$\frac{1}{1}$
1-113	126-	1 1 9 57 9 64 12H MJ. 2.01 (011,0), 4:00 =:0" (
	128℃	1(1H m) 3.07 (1H, m), 5.95-6.05 (1H, m), 6.36-7.00 (1H, m)
	_	1
I-114		7.12-7.22 (2H, m), 7.26-7.66 (1H, m), 1.20 (6H, d, $J = 6.9$), 1.28 (3H, d, $J = 6.9$), 1.82-1.88 (1H, m), 1.20 (6H, d, $J = 6.9$), 2.30 (3H, a), 2.11 (1H, m), 3.29-3.35 (1H, m),
	1	1.20 (6H, d, J = 6.9), 1.26 (3H, d, G = 6.9), 1.26 (3H, m), 3.29-3.35 (1H, m), 2.48-2.63 (1H, m), 2.63 (3H,s), 3.11 (1H, m), 3.29-3.35 (1H, m), 4.26(1H, m), 4.98 (1H, m), 6.90-6.95 (1H, m), 7.15-7.20 (2H, d, G)
1	1	
		m), 7.30-7.35 (1H, m). 1.14 (3H, d, J = 6.5), 1.20 (6H, d, J = 6.9), 2.53 (1H, dd, J = 1.14 (3H, d, J = 6.5), 1.20 (6H, d, J = 6.9), 2.55 (1H, dd, J = 6.9)
I-118	5	
1		- A A A 11 /14 M A 3 /7
}		(13.0, 5.4), 3.11 (1H, m), 3.12 (1H, m), 7.15-7.25 (2H, m), 7.30-1 (1H, m),
1	1	
.		-1
I-11	119-	10.09 (9H s) 9.64 (3H s), 3.15 (1H, H), 4.00 (2H, 3), 0.10 310
1	121°C	1 /- **
I-11		" " =0 (*** \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1-11	99-	- 1 of /1TT 0 0 1 /3H 0 2 7 /9 (3H 8), 0.00*0.00 (****************************
1	100℃	1.22-1.25 (1H, m), 2.61 (3H, s), 2.75 (2H, m), 7.30-7.35 (4.40 (2H, s), 6.92-6.95 (1H, m), 7.15-7.21 (2H, m), 7.30-7.35
1	1000	(1H, m).
L		

(表24)

化合		物性
物番		
1 1		
号		
No	融点	
I-118		1.23 (6H, s), 1.45 (6H, t, J = 7.4), 2.63 (3H, s), 2.67(2H, s), 4.08
1-110		(2H, q, J = 7.0), 4.55 (2H, s), 6.57-6.63 (2H, m), 6.85 (1H, d, J)
1		` · · · · ·
		= 7.9).
I-119	116-	1.24 (6H, s), 2.37 (3H, s), 2.64 (3H, s), 2.66 (2H, s), 3.84 (3H,
	118℃	s), 4.54 (2H, s), 6.75-6.80 (2H, m), 6.88 (1H, m).
I-120	92-93℃	1.23 (6H, s), 2.27 (3H, s), 2.63 (3H, s), 2.67 (2H, s), 3.84 (3H,
1 120	0_ 00 0	s), 4.51 (2H, s), 6.51-6.58 (2H, m), 7.10 (1H, d, J = 7.9).
I-121	129-	1.22 (6H, s), 2.30 (3H, s), 2.63 (3H, s), 2.65 (2H, s), 3.80 (3H,
	130°C	s), 4.53 (2H, s), 6.78-6.95 (3H, m).
I-122	93-95℃	1.22 (6H, s), 2.12 (3H, s), 2.30 (3H, s), 2.64 (3H, s), 2.65 (2H,
1-122	33-30 0	s), 4.51 (2H, s), 6.76 (1H, d, $J = 7.9$), 6.98 (1H, d, $J = 7.9$), 7.08
1	ļ	
		(1H, t, J = 7.9).
I-123		1.22 (6H, s), 1.83 (3H, s), 2.63 (3H, s), 2.65 (2H, s), 3.17 (3H,
1	151-	s), 4.40 (1H, d, J = 13.6), 4.65 (1H, d, J = 13.6), 7.01 (1H, d, J
İ	152°C	= 7.9),
1		7.10-7.15 (2H, m), 7.30-7.35 (1H, m).
	<u> </u>	1

(表25)

		<u></u>	4/m 144
化	合		物性
物	番		•
号			YYV P. (ava.)
N	o	融点	NMR (CHCl ₃)
			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
I-1	24	105-	1.23 (6H, s), 1.41 (3H, t, J=7.0), 2.63 (3H, s), 2.66 (2H,
]		106℃	s),4.08 (2H, q, J=7.0), 4.50 (2H, s), 6.88 (2H, d, J=8.6),
			6 98 (2H d. J=8.6).
I-1	25	92-94°C	1.23 (6H, s), 1.40 (3H, t, J=7.0), 2.62 (3H, s), 2.66 (2H,
]			[s], 4.08 (2H, q, J=7.0), 4.50 (2H, s), 6.57-6.63 (2H, m),
		!	6 70-6 75 (1H. m), 7.25-7.30 (1H, m).
I - 1	26	108-	1 23 (6H, s), 2.63 (3H, s), 2.65 (2H, s), 3.81 (3H, s), 4.50
ļ [*] '	0	109℃	(2H s) 6.92 (2H, d, J=8.6), 7.04 (2H, d, J=8.6)
I - 1	27	62-64°C	1 23 (6H. s). 2.63 (3H, s), 2.66 (2H, s), 3.82 (3H, s), 4.50
1			(2H, s), 6.57-6.63 (2H, m), 6.70-6.75 (1H, m), 7.25-7.30 (1H,
1			l m).
T_	128	78-79℃	1 23 (6H s) 1 44 (3H, t. J=7.0), 2.59 (3H, s), 2.63 (2H,
'-	120	10 150	s), 3.82 (3H, s), 4.10 (2H, q, J=7.0), 4.47 (2H, s),
1			16 57-6 63 (2H, m), 6.82-6.87 (1H, m).
T	120	58-60°C	1.04 (3H, t. J=7.0), 1.23 (6H, s), 2.00 (2H, sext, J=7.0),
1 -	129	1 30-00 0	2.63 (3H, s), 2.67 (2H, s), 3.87 (3H, s), 4.10 (2H, t, J=7.0),
			4.50 (2H, s), 6.58-6.64 (2H, m), 6.86-6.91 (1H, m).
-	120		1113(6H s) 145(6H t. J=7.4), 2.28(3H, s), 2.02(2H, I)
1-	130		s), 3.74 (2H, s), 4.08 (4H, q, J=7.4), 6.46-6.53 (2H, m),
1			6 88-6 92 (1H. m).
 	101	91-93°C	1.04 (3H, t, J=7.0), 1.22 (6H, s), 1.76 (2H, sext, J=7.0),
1-	131	1 21-22 C	2.63 (3H, s), 2.65 (2H, s), 3.91 (2H, t, J=7.0), 4.50 (2H,
			s), 6.90 (2H, d, J=8.6), 6.98 (2H, d, J = 8.6).
 	1.00	100	1.04 (3H, t, $J = 7.0$), 1.22 (6H, s), 1.76 (2H, sext, $J = 1.04$)
1-	132	103-	7.0), 2.63 (3H, s), 2.65 (2H, s), 3.91 (2H, t, J=7.0), 4.50
		104℃	(2H, s), 6.50 (1H, d, J=2.1), 6.60 (1H, d, J=7.4), 6.72 (1H, d, J=7.4)
			dd, J=7.4, 2.1), 7.28 (1H, d, J=7.4).
_		24 222	0.98 (3H, t, J=7.0), 1.23 (6H, s), 1.42-1.48 (2H, m),
I -	133	91-92°C	1.70-1.80 (2H, m), 2.63 (3H, s), 2.65 (2H, s), 3.96 (2H,
		1	t, J=7.0), 4.50 (2H, s), 6.90 (2H, d, J=8.6), 6.98 (2H, d,
-			
<u></u>		<u> </u>	J=8.6). 0.98 (3H, t, J=7.0), 1.23 (6H, s), 1.42-1.48 (2H, m),
I -	-134	86-87°C	0.98 (3H, t, J=7.0), 1.23 (0H, S), 1.42-1.40 (2H, M), 1.23 (0H, S), 2.65 (2H, S), 3.96 (2H, S), 3.
1			1.70-1.80 (2H, m), 2.63 (3H, s), 2.65 (2H, s), 3.96 (2H,
			t, J=7.0), 4.50 (2H, s), 6.50 (1H, d, J=2.1), 6.60 (1H, d, t, J=7.8)
1			J=7.8), 6.72 (1H, dd, J=7.8, 2.1), 7.28 (1H, d, J=7.8).

(表26)

(表 2 6)			
化	合		物性
物	番	*	
	1997		
号	, - 	点点	NMR (CHCl ₃)
1	lo	元期	
		00 7000	1.22 (6H, s), 1.47 (3H, t, J=7.0), 2.64 (3H, s), 2.66 (2H,
1-	135	69-70℃	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			(4.77 + 1.70 + 0.0) 6 69 (1H d. $(1=2.1), 0.00$ (1H) (1.00)
L			$\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$
I -	136	88-89℃	1.04 (3H, t, J=7.0), 1.25 (3H, s), 3.90 (2H, t, J=7.0), 2.63 (3H, s), 2.67 (2H, s), 3.87 (3H, s), 3.90 (2H, t, J=7.0), 2.63 (3H, s), 2.67 (2H, d, J=2.1), 5.62 (1H, d, J=2.1), 5.
ļ			2.63 (3H, s), 2.67 (2H, s), 6.61 (1H, dd, J=8.2, 2.1), 6.62 (1H, d, J=2.1),
1			4.51 (2H, s), 6.61 (1h, dd, 0-6.2, 2.17), 0.02
			6.88 (1H, d, J=8.2).
I-	137	83-85℃	0.98 (3H, t, J=7.0), 1.23 (6H, s), 1.42-1.48 (2H, m),
			0.98 (3H, t, 3-7.0), 1.26 (3H, s), 2.68 (2H, s), 3.87 (3H, s), 1.70-1.80 (2H, m), 2.64 (3H, s), 2.68 (2H, s), 3.87 (3H, s), 6.61
1			1.70-1.80 (2H, m), 2.64 (3H, s), 2.65 (2H, d, J=8.2), 6.61 4.03 (2H, t, J=7.0), 4.50 (2H, s), 6.59 (1H, d, J=8.2), 6.61
1		ł	1 / · · · · · · · · · · · · · · · · · ·
T-	-138	84-85°C	(1H, s), 6.88 (1H, d, 5-6.2). 1.23 (6H, s), 1.34 (6H, d, J=6.1), 2.63 (3H, s), 2.65 (2H, d, J=6.1), 6.89 (2H, d,
1 *	100		(a) 4.50 (2H, s), 4.53 (1H, sept, 3-0.1), 0.03 (2H, s)
1		1	1
-	-139	92-93°C	$\frac{1}{1}$ $\frac{1}$
1	-109	32 00 0	\
		1	s), 4.50 (2h, s), 4.05 (1h, dd, J=8.0, 2.1), 7.28 J=2.1), 6.60 (1H, d, J=8.0), 6.72 (1H, dd, J=8.0, 2.1), 7.28
			1 + * 0 0\
\ _	140	109-	1 22 (6H s), 2.63 (3H, s), 2.65 (2H, s), 4.50 (2H, s), 1.01
1	-140	1	(2H, d, J=7.5), 7.15 (1H, d, J=7.5),
1		110℃	1 (av 1 T -7 h)
<u>-</u>		00 000	1 23 (6H s) 2.63 (3H, s), 2.69 (2H, s), 4.54 (2H, s),
1	-141	92-93℃	
L		1.00	
I	-142		1.23 (6H, s), 2.63 (3H, s), 2.66 (2H, dd, J=8.0, 2.1), 7.25 (1H, dd, J=8.0, 2.1), 7.25 (1H, dd, J=8.0, 2.1)
		135℃	
	-143	92-93℃	1.23 (6H, s), 2.63 (3H, S), 2.63 (2H, G), (2H, dd, J=8.0, 2.1), 7.03 (1H, d, J=2.1), 7.15 (1H, dd, J=8.0, J=8.0)
			1
-			J=8.0, 2.1), 7.28(1H, t, J=8.0). 1.22 (6H, s), 2.22 (3H, s), 2.63 (3H, s), 2.65 (2H, s), 4.50
	I-144		1.22 (6H, s), 2.22 (3H, s), 2.03 (6H, t, J=8.1), 7.15-7.25 (2H, s), 7.00 (1H, d, J=8.1), 7.08 (1H, t, J=8.1), 7.15-7.25
		135°C	
- 1			(2H, m). 1.23 (6H, s), 2.37 (3H, s), 2.63 (3H, s), 2.66 (2H, s), 4.50
+	I-14	5 87-89°C	1.23 (6H, s), 2.37 (3H, s), 2.03 (3H, s), 2.00 (2H, s), 6.98 (1H, d.
}			(2H. s), 6.82 (1H, d, J=8.1), 6.84 (1H, S), 6.85 (2H, S)
		1	J=8.1), 7.21 (1H, t, J=8.1).
L			

(表27)

化合		物性
物番	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
号		
No	融点	NMR (CHCI ₃)
'''	TILDA 7111	
I-146	91.93℃	1.23 (6H, s), 2.35 (3H, s), 2.63 (3H, s), 2.65 (2H, s), 4.50
		(2H, s), 6.92 (2H, d, J=8.6), 7.15 (2H, d, J=8.6).
I-147	82-83℃	0.90 (3H, t, J=7.0), 1.22 (6H, s), 1.28-1.40 (2H, m),
		1.48-1.55 (2H, m), 2.55 (2H, t, $J = 7.0$), 2.64 (3H, s), 2.66
		(2H, s), 4.50 (2H, s), 6.90 (1H, d, J=7.8), 7.09 (1H, t,
		J=7.8), 7.11 (1H, t, J=7.8), 7.28 (1H, d, J=7.8).
I-148	72-73℃	0.90 (3H, t, J=7.0), 1.22 (6H, s), 1.28-1.40 (2H, m),
		1.48-1.55 (2H, m), 2.60 (2H, t, J=7.0), 2.64 (3H, s), 2.66
Į i		(2H, s), 4.50 (2H, s), 6.95 (2H, d, J=8.6), 7.18 (2H, d,
		J = 8.6).
I-149	133-	1.23 (6H, s), 1.35 (9H, s), 2.65 (3H, s), 2.69 (2H, s), 4.50
	134℃	(2H, s), 6.97 (1H, d, J=7.8), 7.13 (1H, t, J=7.8), 7.19 (1H,
		t, J=7.8), 7.41 (1H, d, J=7.8).
I-150	99-	1.22 (6H, s), 1.23 (3H, t, J=7.4), 2.62 (3H, s), 2.64 (2H,
1	100℃	s), 2.66 (2H, q, J=7.4), 4.50 (2H, s), 6.95 (2H, d, J= 8.6),
7 151	40.4000	7.20 (2H, d, J=8.6). 1.23 (6H, s), 1.24 (3H, t, J=7.0), 2.64 (3H, s), 2.66 (2H,
I-151	40-42°C	s), 2.67 (2H, q, J=7.0), 4.52 (2H, s), 6.83 (1H, d, J=8.1),
		6.86 (1H, s), 7.00 (1H, d, J=8.1), 7.28 (1H, t, J=8.1).
I-152	118-	1.23 (6H, s), 2.64 (3H, s), 2.67 (2H, s), 4.52 (2H, s),
1-102	119°C	6.97-7.10 (4H, m).
I-153	89-90°C	1.23 (6H, s), 2.64 (3H, s), 2.67 (2H, s), 4.52 (2H, s),
	30 00 0	6.73-6.90 (3H, m), 7.25-7.30 (1H, m).
I-154	111-	1.22 (6H, s), 1.25 (6H, d, J=7.0), 2.62 (3H, s), 2.64 (2H,
	112℃	s), 2.91 (1H, sept, J=7.0), 4.50 (2H, s), 6.95 (2H, d,
		J=8.6), 7.25 (2H, d, J=8.6).
I-155	127-	1.23 (6H, s), 2.62 (3H, s), 2.64 (2H, s), 3.14-3.18 (4H, m),
	129℃	3.85-3.90 (4H, m), 4.50 (2H, s), 6.93 (2H, d, J = 8.6), 7.04
L		(2H, d, J=8.6).
I-156	91-93℃	1.24 (6H, s), 2.62 (3H, s), 2.65 (3H, s), 2.68 (2H, s), 4.53
		(2H, s), $7.21-7.25$ $(1H, m)$, 7.48 $(1H, t, J=7.9)$, 7.61 $(1H, t)$
	1	t, J=1.8), 7.74-7.78 (1H, m).

(表28)

(衣 2		物性
化合		190 13E
物番		
号		NACE (CINCIL)
No	融点	NMR (CHCl ₃)
		2 (2H s) 4 50 (2H s).
I-157	103.5-	1.23 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 4.50 (2H, s),
	104.5℃	6.88-6.94 (2H, m), 7.46-7.51 (2H, m).
I-158	3 97-98℃	6.88-6.94 (2H, m), 7.40 7.01 (2H, s), 4.51 (2H, s), 1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.51 (2H, s),
		6.93-6.97 (1H, m), 7.19-7.31 (3H, m).
I-159	155.5-	/ / OT - \ O EE (3H &) - X hy (ZH, S), 4.04 (4") - \ / \
	156.5℃	1.24 (6H, S), 2.65 (5H, B), 7.28-7.34 (1H, B), 7.59-7.63 (1H, B).
I-16		$\frac{1}{1}$ 00 (cm a) 2 22 (2H a) 2.64 (3H, S), 2.07 (2H, S), $\frac{1}{2}$.00 (
	106℃	(3H, s), 4.52 (2H, s), 7.01-7.05 (1H, m), 7.28 (1H, t,
1		J=1.8), 7.37 (1H, t, $J=7.8$), 7.45-7.49 (1H, m).
I-16	1 111-	Ti on (8t e) 2 60 (3H. s), 2.05 (3n, s), 2.05 (2n, 5), 1105
	112℃	1,6** 1 7 06 7 10 (9H m) / 9(50.00 \644 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I-16	2 124-	1.23 (6H, s), 2.23 (3H, s), 2.64 (3H, s), 2.67 (2H, s), 4.00
	125℃	1.23 (6H, s), 2.23 (3H, s), 2.01 (6H, m), 7.65-7.70 (2H, (3H, s), 4.52 (2H, s), 7.00-7.05 (2H, m), 7.65-7.70
1.		m). 2.63 (2H s) 2.64 (3H,
I-16	3 102-	m). 1.23 (6H, s), 1.32 (6H, d, J=6.3), 2.63 (2H, s), 2.64 (3H, 1.23 (6H, s), 1.32 (6H, d, J=6.3), 6.90-6.98 (3H, 1.23 (6H, s), 1.32 (6H, s), 1.32 (6H, d, J=6.3), 6.90-6.98 (3H, s)
\ _	103.5℃	1.23 (6H, s), 1.32 (6H, d, d=0.07), 2=6.3), 6.90-6.98 (3H, s), 4.52 (2H, s), 4.52 (1H, sept, J=6.3), 6.90-6.98
}		m), $7.04-7.13$ (1H, m)
I-16	4 90-92°C	m), 7.04-7.13 (111, m) 0.94 (3H, t, J=7.3), 1.23 (6H, s), 1.58 (2H, sext, J=7.3), 0.95 (2H, s), 4.51 (2H, s)
	l l	0.94 (3H, t, 3=7.3), 1.25 (0H, 5), 1.25 (2H, s), 4.51 (2H, 2.51-2.56 (2H, m), 2.65 (3H, s), 2.65 (2H, s), 4.51 (2H, 3.51 (2H, m))
		2.51-2.56 (2H, m), 2.66 (6H, m) s), 6.90 (1H, dd, J=7.6, 1.3), 7.07-7.25 (3H, m) 1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.49 (2H, s), 7.08
I-1		1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.16 (2H, m), (1H, d, J=7.9), 7.22 (1H, d, J=7.6), 7.50-7.56 (1H, m),
	158℃	(1H, d, J=7.9), 7.22 (1n, d, J=1.0), 1.00 (100 (100 (100 (100 (100 (100 (100
.		7.66-7.69 (1H, m) 1.24 (6H, s), 2.64 (3H, s), 2.69 (2H, s), 4.51 (2H, s),
I-1		1.24 (6H, S), 2.64 (3H, S), 2.65 (2H, m)
	146°C	7.00-7.13 (7H, m), 7.30-7.37 (2H, m) 0.95 (3H, t, J=7.3), 1.23 (6H, s), 1.65 (2H, sext, J=7.3),
I-1	67 77-79℃	0.95 (3H, t, J=7.3), 1.23 (6H, s), 1.66 (2H, s), 4.51 (2H, 2.58 (2H, t, J=7.3), 2.63 (3H, s), 2.66 (2H, s), 4.51 (2H, s)
1		2.58 (2H, t, J=7.3), 2.03 (3H, 5), 2.03 (2H, m)
		s), 6.93-7.00 (2H, m), 7.14-7.20 (2H, m)

(表29)

化合		物性
物番		,
号		·
No	融点	NMR (CHCl ₃)
140	AT AM	
I-168	117-	1.23 (6H, s), 1.55 (9H, s), 2.63 (3H, s), 2.67 (2H, s), 4.52
	118℃	(2H, s), 6.96-7.01 (2H, m), 7.37-7.42 (2H, m).
I-169	55-56℃	1.24 (6H, s), 2.65 (3H, s), 2.69 (2H, s), 4.53 (2H, s), 7.19
		(1H, d, J=7.6), 7.26-7.27 $(1H, m), 7.40-7.52$ $(2H, m).$
I-170	88-90℃	1.24 (6H, s), 2.65 (3H, s), 2.69 (2H, s), 4.53 (2H, s), 7.10
		(2H, d, J=8.2), 7.63 (2H, d, J=8.2).
I-171		1.15 (6H, s), 1.18 (6H, d, J=6.9), 2.17 (3H, s), 2.31 (3H,
		s), 2.64 (2H, s), 3.11 (1H, sept, J=6.9), 3.78 (2H, s), 6.80
		(1H, d, J=8.2), 7.11-7.18 (1H, m), 7.28-7.35 (1H, m).
I-172		1.15 (6H, s), 1.18 (6H, d, J=6.9), 2.15 (3H, s), 2.31 (3H,
	İ	s), 2.65 (2H, s), 3.11 (1H, sept, J=6.9), 3.78 (2H, s), 6.99
		(1H, s), 7.11-7.18 (1H, m), 7.28-7.35 (1H, s).
I-173	121-	1.22 (6H, s), 2.64 (3H, s), 2.67 (2H, s), 3.89 (3H, s), 3.89
	123℃	(3H, s), 4.54 (2H, s), 6.96 (1H, d, J=8.6), 7.67 (1H, d,
		J=2.1), 7.87 (1H, dd, J=8.6, 2.1).
I-174	146-	1.24 (6H, s), 2.59 (2H, s), 2.65 (3H, s), 2.96-2.99 (4H,
	147°C	m), 3.76-3.79 (4H, m), 4.52 (2H, s), 6.98-7.17 (4H, m).
I-175	155-	1.23 (6H, s), 2.64 (3H, s), 2.66 (2H, s), 3.16-3.20 (4H,
	157°C	m), 3.84-3.88 (4H, m), 4.51 (2H, s), 6.54-6.57 (2H, m),
		6.70-6.74 (1H, m), 7.24-7.30 (1H, m).
I-176		1.22 (6H, d, J=6.6), 1.23 (6H, s), 1.38 (3H, t, J=7.1),
ĺ	ļ	2.65 (3H, s), 2.67 (2H, s), 3.08-3.18 (1H, m), 4.37 (2H,
		q, J=6.9), 4.52 (2H, s), 7.38 (1H, d, J=7.9), 7.59 (1H,
		d, J=2.0), 7.82 (1H, dd, J=8.1, 1.8).
I-177	120-	1.23 (6H, s), 1.50-1.61 (2H, m), 1.67-1.75 (4H, m), 2.62
1	122℃	(3H, s), 2.66 (2H, s), 3.13-3.17 (4H, m), 4.50 (2H, s),
		6.92-7.02 (4H, m).
I-178	124-	1.23 (6H, s), 1.85-1.90 (4H, m), 2.62 (3H, s), 2.68 (2H, s), 3.22-3.27 (4H, m), 4.48 (2H, s), 6.74-6.80 (2H, m),
	125°C	S , J.ZZ-J.ZI (4n, m), 4.40 (2n, S), 0.14 0.00 (2n, m),
		6.95-6.98 (1H, m), 7.03-7.10 (1H, m).

(表30)

_		<u> </u>	物性
	比合		7/2 1-1-2
	勿 番	•	
-]	融点	NMR (CHCl ₃)
l	No	ME III	, , , , , , , , , , , , , , , , , , , ,
-	-179		1.23 (6H, s), 2.50 (3H, s), 2.64 (3H, s), 2.67 (2H, s), 4.51
	1-119		(2H, s), 6.78-6.82 (1H, m), 6.91 (1H, t, J=2.0), 7.03-7.07
			(1H, m), 7.25-7.31 (1H, m).
\vdash	I-180	102-	1.23 (6H, s), 2.49 (3H, s), 2.63 (3H, s), 2.67 (2H, s), 4.51
	1-100	102°C	(2H, s), 6.96-7.01 (2H, m), 7.27-7.31 (2H, m).
\vdash	I-181	82-83℃	1.23 (6H, s), 2.64 (3H, s), 2.67 (2H, s), 4.52 (2H, s), 7.07
	1-101	02 03 0	(1H, dd, J=7.6, 1.7), 7.14-7.20 (1H, m), 7.25-7.34 (2H, m).
-	I-182		1.23 (6H, s), 2.64 (3H, s), 2.69 (2H, s), 4.52 (2H, s), 6.90
	1 102		(1H s) 6.93-7.04 (2H, m), 7.38 (1H, t, J=8.2)
\vdash	I-183	68-70℃	1.24 (6H, s), 2.64 (3H, s), 2.69 (2H, s), 4.51 (2H, s),
	1 100	00 100	17 01-7 07 (2H. m), 7.21-7.24 (2H, m).
\vdash	I-184	169-	1 25 (6H, s), 2,66 (3H, s), 2.70 (2H, s), 4.54 (2H, s),
	1 101	170℃	7 13-7 18 (2H. m), 7.34-7.39 (1H, m), 7.59-7.63 (2H, m), 13-7 18 (2H, m), 13-7 (2H,
1			7.86-7.91 (1H, m), 8.58 (1H, dd, J=4.8, 1.6), 8.87 (1H, t,
	•		I=1 5)
T	I-185	92.5-	1.24 (6H, s), 2.65 (3H, s), 2.69 (2H, s), 4.54 (2H, s),
1		93.5℃	7.05-7.09 (1H, m), 7.24 (1H, t, J=1.6), 7.34-7.40 (2H, m),
-			7.49 (1H, t, J=7.6), 7.87-7.92 (1H, m), 8.60 (1H, dd, J=4.9,
L		<u> </u>	1.4), 8.87 (1H, dd, J=2.3, 0.7)
	I-186		1.09 (6H, s), 2.56 (3H, s), 2.58 (2H, s), 4.20 (2H, s),
			7.09-7.12 (1H, m), 7.24-7.30 (2H, m), 7.36-7.45 (2H, m),
1			7.75-7.79 (1H, m), 8.54 (1H, dd, J=4.9, 1.6), 8.68 (1H, dd,
ļ			J=2.3, 0.7 1.17 (6H, s), 2.51 (3H, s), 2.61 (2H, s), 4.33 (2H, s),
İ	I-187	1	_ · · · · /=**
-		111.5℃	1.14 (6H, s), 1.43 (6H, t, J=7.4), 2.61 (2H, s),
1	I-188	75-76℃	3.65 (2H, s), 3.84 (3H, s), 4.08 (4H, q, J=7.4),
			6.46 (1H, dd, J=8.1, 2.2), 6.52 (1H, d, J=2.2),
			16 84 (1H d J=8.4).
	T 100		1.19 (6H, s), 2.61 (2H, s), 3.65 (2H, s), 3.85 (3H, s), 3.88
	I-189		(3H, s), 6.85-6.99 (3H, m), 7.02-7.15 (1H, m).
			(01, 5), 5.55 5.55

(表31)

化合	<u> </u>	物性
物番		
号		
No	融点	NMR (CHCl ₃)
I-190		1.13 (6H, s), 1.23 (3H, t, J=7.4), 2.62 (2H, s), 2.66 (2H,
		q, J=7.4), 3.64 (2H, s), 3.84 (3H, s), 6.84 (2H, d, J=8.6),
		7.16 (2H, d, J=8.6).
I-191	45-47℃	1.14 (6H, s), 1.25 (6H, d, J = 7.0), 2.62 (2H, s), 2.91 (1H,
		sept, J=7.0), 3.64 (2H, s), 3.84 (3H, s), 6.86 (2H, d,
		J=8.6), 7.19 (2H, d, J=8.6).
I-192	93-95℃	1.15 (6H, s), 2.31 (3H, s), 2.62 (2H, s), 3.80 (2H, s), 3.85 (3H, s), 6.85-6.99 (3H, m), 7.02-7.15 (1H, m).
T 100	65-67°C	1.13 (6H, s), 1.23 (3H, t, J=7.4), 2.31 (3H, s), 2.62 (2H,
I-193	65-67 C	s), 2.65 (2H, q, J=7.4), 3.77 (2H, s), 6.90 (2H, d, J=8.3),
	•	7.21 (2H, d, J=8.3).
I-194	95-97℃	1.15 (6H, s), 1.24 (6H, d, J=7.0), 2.31 (3H, s), 2.64 (2H,
1 101		s), 2.91 (1H, sept, J=7.0), 3.77 (2H, s), 6.90 (2H, d,
	ŀ	J=8.6), 7.21 (2H, d, J=8.6).
I-195	94-96℃	1.15 (6H, s), 1.41 (3H, t, J=7.0), 2.31 (3H, s), 2.64 (2H,
		s), 3.77 (2H, s), 4.05 (2H, q, J=7.4), 6.90-6.99 (4H, m).
I-196	99-	1.15 (6H, s), 1.47 (3H, t, J=7.0), 2.32 (3H, s), 2.66 (2H,
1	100℃	s), 3.77 (2H, s), 3.88 (3H, s), 4.08 (2H, q, J=7.0), 6.52
		(1H, d, J= 8.2), 6.56 (1H, d, J=2.1), 6.88 (1H, d, J=8.2).
I-197	133-	1.23 (6H, s), 1.50-1.75 (6H, m), 2.63 (3H, s), 2.65 (2H, s), 3.18 (4H, t, J=5.4), 4.51 (2H, s), 6.47-6.57 (2H, m),
	134°C	6.72-6.76 (1H, m), 7.21 (1H, d, J=8.1)
I-198	124-	1.17 (6H, t, J=6.9), 1.23 (6H, s), 2.61 (3H, s), 2.68 (2H,
1-190	124- 125°C	s), 3.35 (4H, q, J=6.9), 4.49 (2H, s), 6.68 (2H, d, J=8.9),
	1200	7.04 (2H, d, J=8.9)
I-199	85-87°C	1.22 (6H, s), 2.63 (3H, s), 2.67 (2H, s), 3.89 (3H, s),
		[3.92 (3H, s), 4.54 (2H, s), 7.01 (1H, d, J=7.9), 7.62 (1H, s)
		d, J=1.3), 7.67 (1H, dd, J=7.9, 1.7)
I-200	137-	1.23 (6H, s), 2.11-2.22 (2H, m), 2.62 (2H, t, J=7.9),
-	138℃	2.64 (3H, s), 2.67 (2H, s), 3.88 (2H, t, J=7.1), 4.52
		(2H, s), 6.81-6.84 (1H, m), 7.30-7.50 (3H, m)

(表32)

(30 2	•	物性
化合		初性
物番		
号		
No	融点	NMR (CHCl₃)
l		
I-201	86.5-	1.22 (6H, s), 2.62 (3H, s), 2.67 (2H, s), 4.50 (2H, s), 6.71
	87.5℃	(1H, t, J=2.0), 6.76-6.82 (2H, m), 7.02-7.13 (3H, m),
		7.29-7.37 (3H, m)
I-202	162-	1.25 (6H, s), 2.65 (3H, s), 2.70 (2H, s), 4.54 (2H, s),
	163℃	7.10-7.14 (2H, m), 7.33-7.46 (3H, m), 7.59-7.63 (4H, m)
I-203	56.5-	1.06 (6H, s), 2.51 (3H, s), 2.59 (2H, s), 4.14 (2H, s), 7.07
- 2	57.5℃	(1H, dd, J=8.2, 1.3), 7.21-7.45 (8H, m)
I-204	97-99°C	1.24 (6H, s), 2.65 (3H, s), 2.68 (2H, s), 4.54 (2H, s),
		7.00-7.04 (1H, m), $7.25-7.26$ (1H, m), $7.33-7.48$ (5H, m),
		7.60-7.63 (2H, m)
I-205	95-96°C	1.21 (6H, s), 1.21 (6H, d, J=6.9), 2.61 (2H, s), 4.13(3H,
		s), 4.16 (2H, s), 6.77-6.81 (1H, m), 7.13-7.16 (2H, m),
1		7.29-7.33 (1H, m)
I-206	128-	1.18 (6H, d, J=6.9), 1.22 (6H, s), 2.63 (3H, s), 2.66 (2H,
1 200	129℃	s), 2.96-3.06 (1H, m), 4.48 (2H, s), 6.67 (1H, d, J=8.2),
		7.47 (1H, dd, J=8.2, 1.7), 7.59 (1H, d, J=2.0)
I-207	149-	1.23 (6H, s), 2.63 (3H, s), 2.67 (2H, s), 3.71 (8H, m),
	150°C	3.86 (3H, s), 4.53 (2H, s), 6.95-7.05 (3H, m)
I-208	124-	1.23 (6H, s), 2.61 (3H, s), 2.67 (2H, s), 2.96 (6H, s), 4.50
	126℃	(2H, s), 6.74 (2H, d, J=8.2), 7.04 (2H, d, J=8.2).
I-209	107-	1.23 (6H, s), 2.63 (3H, s), 2.65 (2H, s), 2.96 (6H, s), 4.51
	109℃	(2H, s), 6.34 (1H, d, J=2.0), 6.38 (1H, d, J=8.0), 6.54 (1H,
		dd, J=8.0, 2.0), 7.24 (2H, d, J=8.0).
I-210	98-99°C	1.06 (3H, t, J=7.4), 1.23 (6H, s), 2.63 (5H, s), 2.65 (3H,
		s), 2.99 (2H, q, J=7.4), 4.51 (2H, s), 6.98-7.10 (3H, m),
		7.15-7.20 (1H, m).
I-211	94-96℃	0.84 (3H, t, J = 7.4), 1.22 (6H, s), 1.49 (2H, sext, J =
		7.3), 2.63 (3H, s), 2.65 (2H, s), 2.72 (3H, s), 2.84 (2H,
		t, $J = 7.4$), 4.51 (2H, s), 6.90-7.05 (3H, m), 7.10-7.15
		(1H, m).
	<u> </u>	

(表33)

化合		物性
物番		177 1444
号		
No	融点	NMR (CHCl ₃)

I-212	98-99℃	1.02 (6H, t, J=7.4), 1.22 (6H, s), 2.61 (2H, s), 2.63 (3H,
		s), 3.06 (4H, q, J=7.4), 4.51 (2H, s), 6.98-7.10 (4H, m).
I-213	83-84°C	1.23 (6H, s), 2.64 (3H, s), 2.71 (2H, s), 4.57 (2H, s),
		6.90-7.12 (3H, m)
I-214	-	1.19 (6H, d, J=6.9), 1.23 (6H, s), 2.64 (3H, s), 2.67 (2H,
		s), 3.06 (1H, sept, J=6.9), 4.49 (2H, s), 6.85 (1H, d,
		J=8.2), 7.14 (1H, dd, J=8.2, 2.3), 7.27 (1H, d, J=2.3)
I-215	83-85℃	1.23 (6H, s), 2.32 (3H, s), 2.63 (3H, s), 2.66 (2H, s), 2.71
		(6H, s), 4.50 (2H, s), 6.75-6.80 (1H, m), 6.98 (1H, s),
7 010	99-	6.97-7.00 (1H, m). 1.23 (6H, s), 2.33 (3H, s), 2.62 (3H, s), 2.65 (2H, s), 2.70
I-216	99- 100℃	(6H, s), 4.50 (2H, s), 6.78 (2H, t, J=7.9),
	100 C	6.91 (1H, d , J=7.9).
I-217	98-99℃	1.23 (6H, s), 2.30 (3H, s), 2.63 (3H, s), 2.64 (2H, s), 2.67
	00 00 0	(6H, s), 4.50 (2H, s), 6.81 (1H, s), 6.92 (2H, s).
I-218	117-	1.23 (6H, s), 2.63 (3H, s), 2.65 (2H, s), 2.68 (6H, s), 4.50
	19℃	(2H, s), 6.89 (1H, d , J=8.5), 6.99 (1H, d , J=2.0), 7.04
,		(1H, dd , J=7.9, 2.0).
I-219	68-70°C	1.22 (6H, s), 2.22 (6H, s), 2.64 (3H, s), 2.66 (2H, s), 4.54
		(2H, s), 6.93-6.98 (1H, m), 7.04 (2H, d, J=8.0).
I-220	97-99℃	1.22 (6H, s), 1.34 (3H, t, J=7.4), 2.64 (2H, s),
	,	2.72 (6H, s), 3.25 (2H, q, J=7.4), 4.47 (2H, s),
		6.94-7.05 (3H, m), 7.15-7.20 (1H, m).
I-221	118-	1.22 (6H, s), 1.34 (3H, t, J=7.4), 2.64 (2H, s), 2.95 (6H, s), 3.25 (2H, q, J=7.4), 4.47 (2H, s), 6.34 (1H, d, J=7.5),
	119℃	6.38 (1H, s), 6.52 (1H, d, J=7.5,), 7.24 (1H, t, J=7.5).
I-222	74-76°C	1.22 (6H, s), 1.34 (3H, t, J=7.4), 2.33 (3H, s), 2.63 (2H,
1-222	14-100	s), 2.70 (6H, s), 3.25 (2H, q, J=7.4), 4.47 (2H, s), 6.78
		(1H, d, J=7.5), 6.82 (1H, s), 6.91 (1H, t, J=7.5).
L	<u> </u>	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

WO 01/19807 PCT/JP00/06185

(表34)

化合		物性
物番		
号		
No	融点	NMR (CHCl ₃)
7 000		1 00 (011 -) 1 05 (011 1 1-7 0) 1 04 (011 1 1-7 4) 0 05
I-223		1.22 (6H, s), 1.25 (6H, d, J=7.0), 1.34 (3H, t, J=7.4), 2.65 (2H, s), 2.91 (1H, sept, J=7.0), 3.25 (2H, q, J=7.4), 4.50
		(2H, s), 6.98 (2H, d, J=8.2), 7.28 (2H, d, J=8.2).
I-224		1.21 (6H, s), 2.62 (3H, s), 2.66 (2H, s), 2.97 (3H, d,
1 224		J=4.9), 3.84 (3H, s), 4.51 (2H, s), 6.66 (1H, brs), 6.96
		(1H, d, J=7.9), 7.30-7.33 (1H, m), 7.49 (1H, d, J=1.3)
I-225	69-71℃	1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.52 (2H, s), 6.49
		(1H, t, J=74.6), 7.04-7.26 (4H, m)
I-226		1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.51 (2H, s), 6.50
		(1H, t, J=74.2), 7.00-7.05 (2H, s),
		7.11-7.16 (2H, m)
1-227	81-83℃	1.17 (6H, t, J=7.0), 1.23 (6H, s), 2.63 (3H, s),
		2.66 (2H, s), 3.35 (4H, q, J=7.0), 4.52 (2H, s), 6.29 (1H, s), 6.30 (1H, d,t, J=8.2,2.3),
		6.49 (1H, dd, J=8.2, 2.3), 7.19 (1H, t, J=8.2).
I-228	106-	1.21 (6H, s), 2.61 (3H, s), 2.64 (2H, s), 2.70 (6H, s), 4.47
- ===	107℃	(2H, s), 6.90 (2H, s), 6.93 (1H, s).
I-229	121-	1.23 (6H, s), 2.62 (3H, s), 2.65 (2H, s), 2.70 (6H, s), 4.48
	122℃	(2H, s), 6.50-6.70 (2H, m), 6.93 (1H, dd, J=8.5, 6.2).
I-230	85-86℃	1.21 (6H, s), 2.63 (3H, s), 2.64 (2H, s), 2.66 (6H, s), 4.49
		(2H, s), 6.74-6.79 (2H, m), 6.93-6.98 (1H, m).
I-231	82-84°C	1.23 (6H, s), 1.25 (3H, t, J=7.6), 2.62 (3H, s), 2.66 (2H,
		s), 2.67 (2H, q, J=7.6), 2.71 (6H, s), 4.50 (2H, s), 6.80 (1H, d, J=7.6), 6.84 (1H, s), 6.93 (1H, d, J=7.6).
I-232	75-76℃	1.22 (3H, t, J=7.6), 1.23 (6H, s), 2.60 (2H, q, J=7.6), 2.63
1 202	'0 '0 0	(3H, s), 2.64 (2H, s), 2.68 (6H, s), 4.50 (2H, s), 6.83 (1H,
		s), 6.93 (2H, s).
I-233	86-88℃	1.22 (6H, s), 1.33 (3H, t, J=7.4), 2.64 (2H, s), 2.71 (6H,
		s), 3.24 (2H, q, J=7.4), 4.47 (2H, s), 6.92 (2H, s), 6.94(1H,
		s).

WO 01/19807 PCT/JP00/06185

(表35)

化合	[物性
物 番		
号		
No	融点	NMR (CHCl₃)
I-234	70-71℃	1.22 (6H, s), 1.34 (3H, t, J=7.4), 2.64 (2H, s), 2.71 (6H,
i		s), 3.25 (2H, q, J=7.4), 4.46 (2H, s), 6.60-6.68 (2H, m),
1 225	00.000	6.92-6.94(1H, m).
1-235	80-82℃	1.22 (6H, s), 1.24 (3H, t, J=7.6), 1.33 (3H, t, J=7.4), 2.60 (2H, q, J=7.6), 2.61 (2H, s), 2.71 (6H, s), 3.24 (2H, q,
		J=7.4), 4.47 (2H, s), 6.81 (1H, d, J=7.6), 6.94(1H, s),
		6.94 (1H, d, J=7.6).
I-236		1.03 (3H, t, J=7.3), 1.20 (6H, d, J=6.9), 1.23 (6H, s), 1.40
		(3H, d, J=6.9), 1.61-1.89 (2H, m), 2.63 (2H, s), 3.15 (1H,
		sept, J=6.9), 3.95 (1H, q, J=6.9), 4.47 (2H, s), 6.89-6.92
L		(1H, m), 7.13-7.20 (2H, m), 7.31-7.34 (1H, m)
1-237		1.05 (6H, d, J=6.6), 1.21 (6H, d, J=6.6), 1.23 (6H, s), 1.98-2.08 (1H, m), 2.64 (2H, s), 3.16 (1H, sept, J=6.6),
		3.20 (2H, d, J=6.6), 4.49 (2H, s), 6.88-6.92 (1H, m),
		7.13-7.22 (2H, m), 7.30-7.35 (1H, m)
I-238	102-	1.20 (6H, d, J=6.9), 1.22 (6H, s), 2.61 (2H, s), 2.85-2.95
İ	104℃	(1H, m), 3.19 (3H, d, J=4.6), 4.46 (2H, s), 6.73-6.79 (1H,
		m), 7.14-7.20 (2H, m), 7.29-7.34 (1H, m), 12.40 (1H, brs)
I-239	58-60℃	1.23 (6H, s), 2.17 (3H, s), 2.64 (3H, s), 2.65 (2H, s),
		2.70 (6H, s), 4.52 (2H, s), 6.63 (1H, d, J=7.9), 6.87 (1H, d, J=7.9), 7.14 (1H, d, J=7.9).
I-240	100-	1.23 (6H, s), 2.62 (3H, s), 2.64 (2H, s), 2.78 (6H, s), 3.89
1-240	101°C	(3H, s), 4.52 (2H, s), 6.60-6.70 (2H, m), 6.94 (1H, d,
		J=7.9).
I-241	82-83℃	1.23 (6H, s), 2.30 (3H, s), 2.63 (3H, s), 2.65 (2H, s), 2.70
		(6H, s), 4.52 (2H, s), 6.63 (1H, d,t, J=7.9,1.9),
7 0 10	-	6.70 (1H, d, J=1.9), 7.14 (1H, d, J=7.9).
I-242	99- 100°C	1.23 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 2.81 (6H, s), 4.50 (2H, s), 6.91 (1H, d,t, J=8.4,2.6), 7.06 (1H, d, J=8.4),
	100 C	7.14 (1H, d, J=2.6).
1-243	63-64°C	1.23 (6H, s), 2.63 (3H, s), 2.67 (2H, s), 2.78 (6H, s), 3.89
		(3H, s), 4.52 (2H, s), 6.67 (1H, s), 6.70 (1H, d, J=7.9),
		6.81 (1H, d , J=7.9).
I-244	68-70℃	0.88 (6H, t, J=7.5), 1.22 (6H, d, J=6.9), 1.35 (3H, t,
		J=7.4), 1.50-1.70 (4H, m), 2.61 (2H, s), 3.15 (1H, sept,
		J=6.9), 3.29 (2H, q, J=7.4), 4.44 (2H, s), 6.89-6.92 (1H,
1	l	m), 7.08-7.21 (2H, m), 7.30-7.35 (1H, m).

(表36)

(/L A		物性
化 合物 番		9) II
物 (
No	. 融点	NMR (CHCI ₃)
100		TOTAL (OHOLS)
I-245	81-82°C	1.14 (6H, s), 1.20 (6H, d, J=6.9), 2.63 (2H, s), 3.06 (2H,
1 2.0		s), 3.08 (1H, sept, J=6.9), 3.18 (3H, s), 6.74 (1H, dd,
		J=7.3, 1.7), 6.98-7.10 (2H, m), 7.20-7.24 (1H, m)
I-246	47-49℃	0.95 (3H, t, J=7.3), 1.13 (6H, s), 1.20 (6H, d, J=6.9),
		1.55-1.74 (2H, m), 2.62 (2H, s), 3.03-3.11 (3H, m),
		3.52-3.57 (2H, m), 6.73 (1H, dd, J=7.6, 1.7), 6.96-7.10 (2H,
		m), 7.21 (1H, dd, J=7.3, 1.7)
I-247	68-70°C	1.11 (6H, s), 1.18 (6H, d, J=6.9), 1.19 (6H, d, J=6.9), 2.56
		(2H, s), 2.89 (2H, s), 3.08 (1H, sept, J=6.9), 5.08 (1H,
		sept, J=6.9), 6.73 (1H, dd, J=7.9, 1.7), 6.99-7.10 (2H, m),
		7.21 (1H, dd, J=7.9, 1.7)
I-248	•	0.97 (6H, d, J=6.9), 1.14 (6H, s), 1.18 (6H, d, J=6.9),
	1	2.05-2.15 (1H, m), 2.62 (2H, s), 3.07 (2H, s), 3.08 (1H,
		sept, J=6.9), 3.44 (2H, d, J=7.6), 6.71(1H, dd, J=7.6, 1.7),
T 040	0.0790	6.96-7.09 (2H, m), 7.21 (1H, dd, J=7.6, 1.7) 1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.59 (2H, s), 7.04
I-249	96-97℃	(1H, d, J=7.3), 7.41-7.50 (3H, m), 7.67 (1H, d, J=7.3), 7.87
		(1H, dd, $J = 7.3$, 2.1), 8.05 (1H, d, $J=7.3$,).
I-250	108-	1.24 (6H, s), 2.67 (3H, s), 2.69 (2H, s), 4.59 (2H, s), 7.15
1-230	109°C	(1H, d, J=7.3), 7.41 (1H, q, J=7.3), 7.69 (1H, t, J=8.4),
	100 0	7.91 (1H, d, J=7.3), 8.45 (1H, d, J=8.4),
		8.92-8.95 (1H, m).
I-251	105-	1.22 (6H, s), 2.62 (3H, s), 2.65 (2H, s), 3.97 (3H, s), 4.53
	107℃	(2H, s), 6.87-6.90 (1H, m), 7.25-7.30 (1H, m), 7.96-7.99
		(1H, m).
I-252	132-	1.23 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 2.92 (3H, s),
	133℃	4.49 (2H, s), 6.73-6.78 (1H, m), 7.20-7.23 (1H, m),
		8.05-8.07 (1H, m)
I-253	118-	1.23 (6H, s), 2.60 (3H, s), 2.63 (2H, s), 4.52 (2H, s), 7.30
	120°C	(2H, s), 8.12 (1H, s).
I-254	112-	1.23 (6H, s), 2.63 (3H, s), 2.69 (2H, s), 3.94 (3H, s), 4.51
	113°C	(2H, s), 6.76 (1H, d, J = 8.1), 7.35 (1H, dd, J = 8.1, 2.1),
7 055	100	7.92 (1H, d, $J = 2.1$). 1.23 (6H, s), 1.40 (3H, t, $J=7.0$), 2.62 (3H, s), 2.66 (2H,
I-255	109-	s), 4.38 (2H, q, J=7.0), 4.51 (2H, s), 6.75 (1H, d, J= 8.1).
	110℃	7.35 (1H, dd, J=8.1, 2.1), 7.90 (1H, d, J=2.1).
		11.00 (11) 44, 0-011, 111/)

(表37)

 -T		物性
No	融点	NMR (CHCl₃)
		1.03 (3H, t, J=7.6), 1.22 (6H, s), 1.76 (2H, sext, J= 7.6),
I-256	75-76°C	2.63 (3H, s), 2.65 (2H, s), 4.24 (2H, t, J=7.6), 4.51 (2H,
		s), 6.76 (1H, d, J=8.1), 7.35 (1H, dd, J=8.1, 2.1),
		s), 6.76 (111, d, 3-6.1), 7.36 (111, dd, 6 6.1)
	E 4 . EC 9C	7.92 (1H, d, J=2.1). 1.24 (6H, s), 1.36 (6H, d, J=6.3), 2.63 (3H, s), 2.70 (2H,
I-257	74-76°C	s), 4.51 (2H, s), 5.28 (1H, sept, J=6.3), 6.70 (1H, d,
		J=8.1), 7.32 (1H, dd, J=8.1, 2.1), 7.92 (1H, d, J=2.1).
	100	1.23 (6H, s), 2.58 (3H, s), 2.63 (2H, s), 2.69 (3H, s), 4.51
I-258	102-	(2H, s), 7.20-7.26 (2H, m), 8.21 (1H, d, J=2.1).
7 050	104℃ 81-83℃	$\begin{bmatrix} 1 & 22 & (6H & e) & 1 & 38 & (3H, t. J=7.3), 2.63 & (3H, S), 2.63 & (2H, t. J=7.3) \end{bmatrix}$
1-259	81-63 C	s), 3.18 (2H, q, J=7.3), 4.51 (2H, s), 7.15-7.26 (2H, m),
		lo 21 /1H d J=2 1).
I-260	78-79℃	1.05 (3H, t. J = 7.4), 1.23 (6H, s), 1.75 (2H, sext, J=7.3),
1-200	10 13 0	2.63 (3H, s), 2.65 (2H, s), 3.15 (2H, t, J=7.4),
		[4.51 (2H, s), 7.15-7.26 (2H, m), 8.20 (1H, d, J=2.1).
1-261	102-	1.23 (6H s), 1.40 (6H, d, J=6.6), 2.63 (3H, s),
1 201	103℃	2.66 (2H, s), 4.00 (1H, sept, J=6.6), 4.51 (2H, s), 7.15-7.20
		1/2u = 0 8 22 (1H, d. J=2.1).
I-262	109-	1.22 (6H, s), 2.61 (3H, s), 2.65 (2H, s), 2.70 (6H, s), 3.80
i	110℃	(3H, s), 4.48 (2H, s), 6.47 (1H, dd, J=7.9, 2.1), 6.56 (1H, dd, J=7.9, 2.1)
		d, J=2.1), 6.95 (1H, d, J=7.9).
I-263	99-	1.22 (6H, s), 2.62 (3H, s), 2.63 (2H, s), 2.64 (6H, s), 3.78
ļ	100℃	(3H, s), 4.48 (2H, s), 6.59 (1H, d, J=2.1), 6.64 (1H, dd,
		J=7.9, 2.1), 6.98 (1H, d, J=7.9). 0.98 (6H, t, J=7.0), 1.23 (6H, s), 2.16 (3H, s), 2.63 (3H,
I-264	114-	0.98 (6H, t, J=7.0), 1.23 (6H, s), 2.16 (6H, s), 2.64 (2H, s), 2.98 (4H, q, J=7.0), 4.52 (2H, s), 6.65
	115℃	(1H, d, J=7.9), 6.89 (1H, d, J=7.9), 7.13 (1H, t, J=7.9).
		0.98 (6H, t, J=7.0), 1.23 (6H, s), 2.16 (3H, s), 2.63 (3H,
I-265	66-67℃	s), 2.64 (2H, s), 2.98 (4H, q, J=7.0), 4.52 (2H, s), 6.63
		(1H, dd, J=7.9,2.1), 6.70 (1H, d, J=2.1),
		$J_{7,16}$ (1H, d. $J_{7,9}$).
1-266	88-90°C	1.04 (6H + 1=7.0), 1.24 (6H, s), 2.63 (3H, s), 2.67 (2H, s)
1-266	00-30 C	$_{\rm c}$ 3 17 (4H, a. J=7.0), 3.86 (3H, s), 4.51 (2H, s), 6.67
		(1H, s), 6.70 (1H, d, J=7.9), 6.85 (1H, d, J=7.9).
L		11/2-12/2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-

(表38)

(3000	<u> </u>	from Alle
化 合		物性
物番	•	
号		
	51. E	NMR (CHCl ₃)
No	融点	
		10 (2V d I=6 0) 1 51-1 65 (6H m)
1-267	138-	0.82-0.92 (9H, m), 1.18 (3H, d, J=6.9), 1.51-1.65 (6H, m),
ļ _	140℃	2.62 (2H, s), 2.65 (3H, s), 2.87 (1H, sept, J=6.9), 4.33
,		(1H, d, J=13.5), 4.59 (1H, d, J=13.5), 6.89-6.92 (1H, m),
		7 13-7 28 (3H, m)
	101	0.89-0.95 (6H, m), 1.21 (6H, d, J=6.9), 1.25-1.54 (8H, m),
I-268	161-	2.62 (2H, s), 2.65 (3H, s), 3.10 (1H, sept, J=6.9), 4.47
	163℃	2.62 (2H, S), 2.05 (3H, S), 3.16 (1H, Sept), 6 377, 511-7
		(2H, s), 6.88-6.92 (1H, m), 7.14-7.18 (2H, m), 7.31-7.34
		(1H, m)
I-269		1 21 (6H d J=6 9), 1.65-1.88 (8H, m), 2.64 (3H, s), 2.75
1-209		(2H, s), 3.09 (1H, sept, J=6.9), 4.57 (2H, s), 6.90-6.94
1		(1H, m), 7.13-7.20 (2H, m), 7.30-7.35 (1H, m)
		1.21 (6H, d, J=6.9), 1.37-1.54 (8H, m), 1.76-1.80 (2H, m),
I-270		1.21 (6H, d, $J=6.9$), 1.37-1.34 (6H, m), 1.76 1.00 (2H, m)
ŀ		2.65 (3H, s), 2.67 (2H, s), 3.09 (1H, sept, J=6.9), 4.54
		(2H, s), 6.89 (1H, m), 7.11-7.21 (2H, m), 7.29-7.34 (1H,
j		m)
1	1	"

(表39)

(400	<u> </u>	物性
化 合		初性
物番		
号		
No	融点	NMR (CHCl ₃)
140	MIA /TTV	
7 071		1.04 (3H, s), 1.08 (3H, s), 1.29 (6H, d), J=6.9), 2.69(2H,
I-271		s), 3.40 (1H, sept, J=6.9), 3.43 (3H, s), 3.51 (2H, s),
ľ		s), 3.40 (In, sept, 0-0.5), 6.46 (on, 6), 6161 (en, 6)
		7.18-7.29 (2H, m), 7.36-7.45 (2H, m)
I-272		0.96 (3H, s), 1.05 (3H, s), 1.25 (3H, d, J=6.9), 1.26 (3H,
		d, J=6.9), 2.61 (1H, d, J=12), 2.70 (1H, d, J=12), 3.39 (1H,
	ļ	sept, J=6.9), 3.45-3.58 (2H, m), 7.02-7.07 (2H, m),
	ļ	7.11-7.18 (1H, m), $7.38-7.45$ (2H, m), $7.61-7.70$ (2H, m)
I-273		$\frac{10.84 \text{ (3H s)}}{1.00 \text{ (3H, s)}}$, 1.25 (3H, d, J=6.9), 1.29 (3H, 1)
1-213		J=6.9), 2.43 (3H, s), 2.53 (1H, d, $J=12$), 2.64 (1H, d, $J=12$),
	1	3.29 (1H, d, J=16), 3.42 (1H, d, J=16), 3.47 (1H, sept,
ł	ì	J=6.9), $7.09-7.19$ (2H, m), $7.24-7.29$ (2H, m), $7.38-7.45$ (2H,
		m), 7.81-7.86 (2H, m)
I-274		0.99 (6H, s), 1.19 (6H, d, J=6.9), 2.40 (3H, s), 2.67 (2H,
		s), 2.87 (1H, sept, J=6.9), 3.43 (2H, s), 7.11-7.29 (6H,
	į	m), 7.68 (2H, d, J=8.1)
1-275		1.07 (6H, s), 1.26 (6H, d, J=6.9), 1.38 (3H, t, J=7.2), 2.71
1 2 2 10		(2H, s), 2.93 (1H, sept, J=6.9), 3.51 (2H, s), 3.60 (2H,
!	1	1 1-7 2) 7 20-7.30 (4H, m)
7 070		1.19 (6H, s), 1.23 (6H, d, J=6.9), 2.77 (2H, s), 2.87 (1H,
I-276		sept, J=6.9), 3.58 (2H, s), 6.65-6.69 (2H, m), 6.91 (1H,
		d, J=7.5), 7.20 (1H, t, J=7.5), 7.51 (2H, d, J=9.3), 8.22
		(2H, d, J=9.3)
1-277	· .	0.99 (6H, s), 1.20 (6H, d, J=6.9), 2.67 (2H, s), 2.88 (1H,
1	1	sept, J=6.9), 3.44 (2H, s), 3.85 (3H, s), 6.86-6.90 (2H,
	1	m), 7.11-7.26 (4H, m), 7.72-7.76 (2H, m)

(表40)

化合		物性
物番		
号		NMR (CHCl₃)
No	融点	NWR (CHCi3)
1-278		1.03 (6H, s), 1.20 (6H, d, J=6.9), 2.70 (2H, s), 2.88 (1H,
1 2 10		$ _{\text{sent}}$ I=6.9), 3.44 (2H, s), 7.08-7.31 (4H, m), 7.60 (1H,
		t, J=8.4), 8.04 (1H, d, J=8.4), 8.39 (d, J=8.4), 8.74 (1H,
Į.		s)s
I-279		1.01 (6H, s), 1.19 (6H, d, J=6.9), 2.69 (2H, s), 2.88 (1H, sept, J=6.9), 3.42 (2H, s), 7.09-7.32 (4H, m), 7.68 (2H,
		d J=8.4), 7.92 (2H, d, J=8.4),
I-280		1.19 (3H, s), 1.21 (3H, s), 1.23-1.30 (6H, m), 2.62 (1H, d, J=12), 2.82 (1H, sept, J=6.9), 3.02 (1H, d, J=12),
	1	3.46-3.70 (2H, m), 6.53-6.60 (2H, m), 6.86 (1H, d, J=7.8),
	1	7.13 (1H, t, J=7.8), 7.28-7.40 (2H, m), 7.61-7.66 (1H, m),
		7.13 (1H, t, $J=7.8$), $1.20-1.40$ (2H, m), 1.01 1.00 (1H, m)
		7.90 (1H, dd, J=7.5, 1.2)

本発明化合物には、以下の表に示される化合物も含まれる。これらの化合物は、 上記実施例と同様に合成することができる。なお、表中の左カラムの数字は化合 物No. を表わす。 (表41-A)

R⁴ I	R ^o							
	R¹	R ²	R³	R⁴	R⁵	R⁵	R ⁷	R ⁸
A-1	Н	Pr	Н	Н	Η	CSSMe	Me	Me
A-2	Pr ⁱ	Н	CI	Н	Н	CSSMe	Me	Me
A-3	Н	Bu⁵	H	H	Η	CSSMe	Me	Ме
A-4	Н	Н	Bu⁵	Н	H	CSSMe	Ме	Me
A-5	OPr	Н	Н	Н	Н	CSSMe	Ме	Me
A-6	OBu	Н	Н	Н	Н	CSSMe	Me_	Ме
A-7	Н	SEt	Н	Н	Н	CSSMe	Me	Me
A-8	Н	Н	SEt	Н	Н	CSSMe	Me	Me
A-9	Н	SPr ⁱ	Τ	Н	Н	CSSMe	Me	Ме
A-10	Н	Н	SPr ⁱ	Н	Н	CSSMe	Me	Me
A-11	Н	OCHF,	I	Н	Н	CSSMe	Me	Me
A-12	Pr'	Н	NMe ₂	Н	Н	CSSMe	Me	Me
A-13	Pr ⁱ	NMe ₂	Н	Н	Н	CSSMe	Me	Me
A-14	Et	Et	Н	Н	Н	CSSMe	Ме	Me
A-15	Н	Et	Et	Н	Н	CSSMe	Me	Me
A-16	Bu ⁱ	H	Н	Н	Н	CSSMe	Me	Me
A-17	Н	Bu ⁱ	Н	Н	Н	CSSMe	Me	Me
A-18	Н	Н	Bu ⁱ	Н	Н	CSSMe	Me	Me
A-19	Н	N(Me)Et	Н	Н	H	CSSMe	Me	Me
A-20	H	N(Me)Pr	Н	Н	Н	CSSMe	Me	Me
A-21	NPr ₂	Н	Н	Н	Н	CSSMe	Me	Me
A-22	Н	NPr ₂	Н	Н	Н	CSSMe	Me	Me
A-23	Н	H	· NPr ₂	Н	Н	CSSMe	Me	Me
A-24	Н	NPr ₂	Мe	Н	Н	CSSMe	Me	Ме
A-25	Н	Bu ^t	Н	Н	Н	CSSMe	Me	Me

(表41-B)

R ⁴ F	₹ ⁵				· 7		57 1	08
	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
A-26	Н	CH,OMe	H	<u> </u>	<u>H</u>	CSSMe	Me	Me
A-27	Н	Н	CH,OMe	н	Н	CSSMe	Me	Me
A-28	CH,OEt	Н	н	H	H	CSSMe	Me	Me
A-29	Н	CH,OEt	Н	Н	Н	CSSMe	Me	Me
A-30	H	Н	CH,OEt	Н	Н	CSSMe	Ме	Me
A-31	CH,SMe	Н	Н	Н	Н	CSSMe	Me	Me
A-32	Н	CH, SMe	Н	Н	Н	CSSMe	Ме	Me
A-33	H	Н	CH,SMe	Н	Н	CSSMe	Me	Me
A-34	CH,SEt	Н	H	Н	Н	CSSMe	Me	Me
A-35	H	CH, SEt	Н	Н	Н	CSSMe	Me	Me
A-36	Н	H	CH,SEt	Н	Н	CSSMe	Me	Ме
A-30 A-37	CH,NMe,	Н	Н	Н	Н	CSSMe	Me	Me
A-37	H	CH,NMe,	Н	Н	Н	CSSMe	Me	Me
A-39	 	H	CH,NMe,	Н	Ι	CSSMe	Me	Ме
A-40	CH,NEt,	H	Н	Н	Н	CSSMe	Me	Ме
A-41	H	CH, NEt,	Н	Н	Н	CSSMe	Me_	Me
A-42	Н	Н	CH,NEt,	Н	H	CSSMe	Me	Me
A-43	OCH, CH, OM	Н	Н	Н	Н	CSSMe	Me	Me
A-44	Т н	OCH, CH, OMe	Н	Н	Н	CSSMe	Me	Me
A-45	Н	Н	OCH,CH,OM e	Н	н	CSSMe	Me	Ме
A-46	OCH,CH,SM	Н	Н	Н	Н	CSSMe	Ме	Me
A-47	 	OCH, CH, SMe	Н	Н	Н	CSSMe	Me	Me
A-48	Н	Н	OCH,CH,SM e	Н	н	CSSMe	Me	Me
A-49	OCH, CH, NM e,	Н	н	Н	н	CSSMe	Me	Me
A-50	H	OCH, CH, NMe,	Н	Н	Н	CSSMe	Me	Me

(表41-C)

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8

R ⁴ F	r⁵ R¹	R²	R³	R⁴	R ⁵	R ⁶	R ⁷	R ⁸
	H		OCH, CH, NMe,	Н	Н	CSSMe	Me	Me
A-51		H	F	H	Н	CSSMe	Me	Me
A-52	F		Cl	H	H	CSSMe	Me	Me
A53	<u>C1</u>	H			H	CSSMe	Me	Me
A-54	OMe	Cl	Н	H	H	CSSMe	Me	Me
A-55	OMe	<u> </u>	CI	H	H	CSSMe	Me	Me
A-56	. OMe	Ме	Н			CSSMe	Me	Me
A-57	OMe	Et.	H	<u>H</u>	H	CSSMe	Me	Me
A-58	OMe	<u> </u>	Et	H			Me	Me
A-59	OMe	<u> </u>	Pr ⁱ	H	H	CSSMe		Me
A-60	OMe	H	OEt	H	H	CSSMe	Me_	Me
A-61	OMe	Η	OPr	<u> </u>	H	CSSMe	Me	
A-62	OMe	NMe₁	H	Н	Н	CSSMe	Me	Me
A-63	OMe	NEt,	Н	H	Н	CSSMe	Me	Ме
A-64	OEt	NMe,	Н	H	H	CSSMe	Me	Me
A-65	OEt	NEt,	Н	Н	Н	CSSMe	Me	Me
A-66	H	OMe	F	Н	Н	CSSMe	Me	Me
A-67	H	OMe	CI	Н	Н	CSSMe	Me	Ме
A-68	Н	OMe	OPr'	Н	Н	CSSMe	Me	Me
A-69	H	OEt	OPr	Н	H	CSSMe	Me	Me
A-70	H H	OEt	OPr ⁱ	H	Н	CSSMe	Me	Me
	Н Н	OEt	OBu	Н	Н	CSSMe	Me	Me
A-71 A-72	SMe	SMe	Н	Н	Н	CSSMe	Me	Me
A-73	SMe	H	SMe	Н	Н	CSSMe	Me	Me
A-74	NMe,	NMe,	Н	Н	Н	CSSMe	Ме	Me
A-74 A-75	NMe,	H	NMe,	Н	Н	CSSMe	Ме	Me

(表42)

$$R^3$$
 R^4
 R^5
 R^7
 R^8

	R¹	R ²	R³	R⁴	R ⁵	R ⁶	R ⁷	R ⁸
B-1	Н.	Ι	H	H	Н	COSMe	Me	Ме
B-2	CI	Η	Н	Н	Н	COSMe	Me	Me
B-3	Br	Н	Н	Н	Н	COSMe	Me	Ме
B-4	Me	H	Н	Н	Н	COSMe	Me	Ме
B-5	Et	Н	H	Н	Η	COSMe	Me	Me
B-6	Bu	H	Ι	I	Ι	COSMe	Ме	Me
B-7	Bu ⁱ	Н	Н	I	Н.	COSMe	Me	Me
B-8	Bu ^t	Н	Ξ	H	Н	COSMe	Me	Me
B-9	OEt	Н	Ι	Τ	Н	COSMe	Me	Me
B-10	OPr	Н	I	Н	H	COSMe	Me	Me
B-11	OCHF ₂	Н	Ι	H	H	COSMe	Me	Me
B-12	OCF ₃	Н	Ι	Τ	Н	COSMe	Ме	Me
B-13	CF₃	Н	Τ	H	H	COSMe	Me	Me
B-14	SMe	Н	Ι	Н	H	COSMe	Me	Me
B-15	SEt	Н	Ι	H	H	COSMe	Me	Me
B-16	SPr'	Н	Ξ	Н	H	COSMe	Me_	Me
B-17	NMe ₂	Н	Ι	<u>H</u>	Н	COSMe	Me	Me
B-18	NEt ₂	Н	I	Н	Н	COSMe	Me	Me
B-19	Н	CI	H	Η	Н	COSMe	Me	Me
B-20	Н	Br	H	Η	Н	COSMe	Ме	Me
B-21	Н	Me	Н	Н	Н	COSMe	Me	Me_
B-22	H	Et	Н	H	H	COSMe	Me	Ме
B-23	Н	Pr	Н	Н	Н	COSMe	Me	Me
B-24	Н	Bu	H	Н	Н	COSMe	Ме	Me
B-25	Н	Bu ⁱ	H	Н	H	COSMe	Me	Me

(表43)

$$R^{2}$$
 R^{1} R^{5} R^{6} R^{6}

н	n.							
	R ¹	R ²	R ³	R⁴	R⁵	R⁵	R ⁷	R ⁸
B-26	Н	Bu ^s	Н	Ŧ	Η	COSMe	Ме	Me
B-27	Н	Bu'	Н	Ι	Ι	COSMe	Ме	Me
B-28	Н	OMe	Н	Ι	Ι	COSMe	Me	Me
B-29	Н	OEt	Н	Н	Н	COSMe	Me	Me
B-30	Н	OPr	Н	Н	Н	COSMe	Ме	Me
B-31	Н	OCHF ₂	Н	H	Н	COSMe	Ме	Ме
B-32	Н	OCF ₃	Н	Ι	Ι	COSMe	Ме	Me
B-33	Н	CF₃	Н	Н	Н	COSMe	Me	Ме
B-34	Н	SMe	Н	Н	Н	COSMe	Ме	Ме
B-35	Н	SEt	H	H	Н	COSMe	Ме	Me
B-36	Н	SPr ⁱ	Н	Н	H	COSMe	Me	Me
B-37	Н	NMe ₂	Н	Н	Н	COSMe	Ме	Me_
B-38	Н	NEt ₂	H	H	H	COSMe	Me	Me
B-39	Н	Н	CI	Н	Н	COSMe	Ме	Ме
B-40	Н	Н	Br	Н	Н	COSMe	Me	Ме
B-41	Н	Н	Ме	Н	Н	COSMe	Ме	Me
B-42	Н	Н	Pr	Н	Н	COSMe	Me	Ме
B-43	Н	Н	Bu	H	Н	COSMe	Ме	Me
B-44	Н	Н	Bu ⁱ	Н	Н	COSMe	Me	Me
B-45	Н	Н_	Bu⁵	Н	Н	COSMe	Ме	Me
B-46	Н	Н	Bu ^t	Н	Н	COSMe	Me	Me
B-47	Н	Н	OMe	H	H	COSMe	Me	Me
B-48	Н	Н	OEt	Н	Н	COSMe	Me	Ме
B-49	Н	Н	OPr	Н	Н	COSMe	Me	Me
B-50	Н	Н	OCHF ₂	Н	Н	COSMe	Ме	Me

(表44)

R" F	₹							
	R¹	R²	\mathbb{R}^3	. R⁴	R⁵	R ⁶	R ⁷	R ^a
B-51	Н	Н	OCF ₃	Н	Н	COSMe	Me	Me
B-52	Н	Н	CF ₃	Н	Н	COSMe	Me	Me
B-53	Н	Н	SMe	Η	Н	COSMe	Me	Me
B-54	Н	Н	SEt	Τ	Ι	COSMe	Me	Me
B-55	Н	H	SPr ⁱ	H	Н	COSMe	Me	Me
B-56	Н	Н	NMe ₂	Н	H	COSMe	Me	Me
B-57	Н	Н	NEt ₂	Н	Н	COSMe	Me	Me
B-58	Me	Me	Н	Τ	Ι	COSMe	Me	Me_
B-59	Н	Me	Me	H	I	COSMe	Me	Me
B-60	Et	Et	Н	Н	H	COSMe	Me	Me
B-61	Н	Et	Et	. Н	Н	COSMe	Me	Me
B-62	OMe	Me	H	Н	Н	COSMe	Me	Me
B-63	OMe	H	Me	H	Н	COSMe	Me	Ме
B-64	NMe ₂	Me	Н	Н	Н	COSMe	Me	Ме
B-65	Н	NMe ₂	Me	Н	H	COSMe	Me	Me
B-66	Me	NMe ₂	Н	H	H -	COSMe	Me	Me
B-67	NMe ₂	CI	Н	Н	H	COSMe	Me	Me
B-68	Me	NEt ₂	Н	H	Н	COSMe	Me	Me
B-69	Н	NEt ₂	Ме	H	<u>H</u>	COSMe	Me	Me
B-70	Pr	Н	F	Н	H	COSMe	Me	Me

(表45)

$$R^3$$
 R^4
 R^5
 R^7
 R^8
 R^6

R⁴ Ì	₹ ⁵						·	
	R¹	R ²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
C-1	н	Н	Н	Н	<u>H</u>	CSSEt	Me	Me
C-2	CI	Н	Н	Н	Н	CSSEt	Me	Me
C-3	Br	Н	H	Н	H	CSSEt	Me	Me
C-4	Me	Н	Н	Н	Н	CSSEt	Me	Me
C-5	Et	Н	Н	Н	H	CSSEt	Me	Me
C-6	Pr	Н	н	н	Н	CSSEt	Ме	Me
C-7	Bu	H	Н	Н	Н	CSSEt	Me	Me
C-8	Bu ⁱ	Н	Н	Н	Н	CSSEt	Me	Me
C-8	Bu ^r	H	Н	Н	Н	CSSEt	Ме	Ме
C-10	OMe	Н	H	Н	Н	CSSEt	Ме	Me
	OPr	Н	Н	H	Н	CSSEt	Ме	Ме
C-11	OCHF ₂	H H	Н	Н	Н	CSSEt	Me	Me
C-12	OCF ₃	H	Н.	Н	Н	CSSEt	Me	Me
C-13	CF ₃	Н Н	H	Н	Н	CSSEt	Ме	Me_
C-14	SEt	H	H	Н	Н	CSSEt	Me	Me
C-15	SPr'	H	H	Н	Н	CSSEt	Me	Me
C-16	NEt ₂	H H	Н	Н	Н	CSSEt	Me	Me
C-17	H H	CI	Н	H	Н	CSSEt	Me	Ме
C-18	H	Br	H	Н	Н	CSSEt	Me	Me
C-19	H	Me	H	Н	Н	CSSEt	Me	Me
C-20	 	Et	 	H	Н	CSSEt	Me	Ме
C-21	 	Pr	H	H	Н	CSSEt	Me	Ме
C-22	 	Bu	H	Н	Н	CSSEt	Me	Me
C-23		Bu [/]	H	H	Н	CSSEt	Me	Me
C-24	 H	Bu ^s	Н Н	Н	Н	CSSEt	Me	Me
C-25	<u> </u>	<u> Du</u>	<u> </u>				<u> </u>	

(表46)

$$R^3$$
 R^4
 R^5
 R^7
 R^8
 R^8

C-26 H Bu' H H H H H H H H H H H C-27 H OMe H H H H CSSEt Me Me C-28 H OEt H H H H CSSEt Me Me C-29 H OPr H H H CSSEt Me Me C-30 H OCHF2 H H H CSSEt Me Me C-31 H OCF3 H H H CSSEt Me Me C-32 H CF3 H H H CSSEt Me Me C-33 H SMe H H H CSSEt Me Me C-34 H SEt H H H CSSEt Me Me C-35 H SPr' H H H<	R ⁴ F	₹ ⁵						R ⁷	R ⁸
C-26 H Bu' H H H H CSSET Me Me C-27 H OMe H H H H CSSET Me Me C-28 H OET H H H H CSSET Me Me C-29 H OPr H H H CSSET Me Me C-30 H OCHF2 H H H CSSET Me Me C-31 H OCF3 H H H CSSET Me		R¹	R ²	R ³	R⁴	R⁵	R ⁶		
C-27 H OMe H H H CSSEt Me Me C-28 H OEt H H H H CSSEt Me Me C-29 H OPr H H H CSSEt Me Me C-30 H OCH52 H H H CSSEt Me Me C-31 H OCF3 H H H CSSEt Me Me Me C-32 H CF3 H H H CSSEt Me	C-26		Bu¹	Н	H				
C-28 H OEt H H H CSSEt Me Me C-29 H OPr H H H CSSEt Me Me C-30 H OCHF2 H H H CSSEt Me Me C-31 H OCF3 H H H CSSEt Me Me C-32 H CF3 H H H CSSEt Me Me C-33 H SMe H H H CSSEt Me Me C-34 H SEt H H H CSSEt Me Me C-35 H SPr' H H H CSSEt Me Me C-36 H NEt2 H H H CSSEt Me Me C-37 H H Br H H CSSEt Me Me C-39			OMe	Н	Н	H			
C-29 H OPr H H H CSSEt Me Me C-30 H OCHF2 H H H CSSEt Me Me C-31 H OCF3 H H H CSSEt Me Me C-31 H CF3 H H H CSSEt Me Me C-32 H CF3 H H H CSSEt Me Me C-33 H SMe H H H CSSEt Me Me C-34 H SEt H H H CSSEt Me Me C-35 H SPr' H H H CSSEt Me Me C-36 H NEt2 H H H CSSEt Me Me C-37 H H CI H CSSEt Me Me C-38 H H Br H CSSEt Me Me C-39 H H Me H CSSEt Me Me C-40 H H Et H CSSEt Me Me C-41 H H R Bu H CSSEt Me Me C-42 H H Bu' H CSSEt Me Me C-43 H H Bu' H CSSEt Me Me C-44 H H Bu' H CSSEt Me Me C-45 H H Bu' H CSSEt Me Me C-46 H H GSSET Me Me C-47 H H OPr H H CSSET Me Me C-48 H H OPr H H CSSET Me Me C-48 H H OPr H H CSSET Me Me C-49 H H CSSET Me Me Me C-49 H H CSSET Me Me Me C-49 H H CSSET Me Me Me Me Me Me Me Me Me Me				Н	H	H	CSSEt	Me	
C-30 H OCHF ₂ H H H CSSEt Me Me Me C-31 H OCF ₃ H H H CSSEt Me Me Me Me C-32 H CF ₃ H H H CSSEt Me Me Me Me C-33 H SMe H H H CSSEt Me Me Me Me C-34 H SEt H H H CSSEt Me Me Me Me Me Me Me					Н.	Н	CSSEt	Me	
C-30 H OCF3 H H H CSSEt Me Me C-32 H CF3 H H H CSSEt Me Me C-33 H SMe H H H CSSEt Me Me C-34 H SEt H H H CSSEt Me Me C-35 H SPr' H H H CSSEt Me Me C-36 H NEt2 H H H CSSEt Me Me C-36 H NEt2 H H H CSSEt Me Me C-37 H H GI H H CSSEt Me Me C-38 H H B H H CSSEt Me Me C-40 H H E H H CSSEt Me Me C-41					Н	Н	CSSEt	Me	
C-31 H CF3 H H H CSSEt Me Me C-33 H SMe H H H CSSEt Me Me C-34 H SEt H H H CSSEt Me Me C-35 H SPr' H H H CSSEt Me Me C-36 H NEt2 H H H CSSEt Me Me C-37 H H CI H H CSSEt Me Me C-38 H H Br H H CSSEt Me Me C-39 H H Me H CSSEt Me Me C-40 H H Et H H CSSEt Me Me C-41 H H Bu H H CSSEt Me Me C-42 H						Н	CSSEt	Me	Me
C-32 H SMe H H H CSSEt Me Me C-34 H SEt H H H H CSSEt Me Me C-35 H SPr' H H H CSSEt Me Me C-36 H NEt2 H H H CSSEt Me Me C-37 H H CI H H CSSEt Me Me C-38 H H Br H H CSSEt Me Me C-39 H H Me H H CSSEt Me Me C-40 H H Et H H CSSEt Me Me C-41 H H Bu H H CSSEt Me Me C-42 H H Bu' H H CSSEt Me Me <						Н	CSSEt	Ме	Me
C-34 H SEt H H H CSSEt Me Me C-35 H SPr' H H H CSSEt Me Me C-36 H NEt ₂ H H H CSSEt Me Me C-37 H H CI H H CSSEt Me Me C-38 H H Br H H CSSEt Me Me C-39 H H Me H H CSSEt Me Me C-40 H H Et H H CSSEt Me Me C-41 H H Bu H H CSSEt Me Me C-42 H H Bu' H H CSSEt Me Me C-43 H H Bu' H H CSSEt Me Me C-44						H	CSSEt	Ме	Me
C-34 H SET H H H H CSSEt Me Me C-35 H SPri H H H CSSEt Me Me C-36 H NEt2 H H H CSSEt Me Me C-37 H H Br H H CSSEt Me Me C-38 H H Br H H CSSEt Me Me C-39 H H Me H H CSSEt Me Me C-40 H H Et H H CSSEt Me Me C-41 H H Bu H H CSSEt Me Me C-42 H H Bu' H H CSSEt Me Me C-43 H H Bu' H H CSSEt Me Me <							CSSEt	Me	Me
C-35 H SFI H H H CSSEt Me Me C-36 H NEt2 H H H CSSEt Me Me C-37 H H Br H H CSSEt Me Me C-38 H H Br H H CSSEt Me Me C-39 H H Me H H CSSEt Me Me C-40 H H Et H H CSSEt Me Me C-40 H H Bu H H CSSEt Me Me C-41 H H Bu H H CSSEt Me Me C-42 H H Bu' H H CSSEt Me Me C-43 H H Bu' H H CSSEt Me Me C-45							CSSEt	Ме	Me
C-36 H NEt ₂ II II <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>CSSEt</td><td>Me</td><td>Me</td></t<>							CSSEt	Me	Me
C-37 H H Br H H CSSEt Me Me C-38 H H Br H H CSSEt Me Me C-39 H H Me H H CSSEt Me Me C-40 H H Et H H CSSEt Me Me C-41 H H Pr H H CSSEt Me Me C-42 H H Bu H H CSSEt Me Me C-43 H H Bu' H H CSSEt Me Me C-43 H H Bu' H H CSSEt Me Me C-44 H H Bu' H H CSSEt Me Me C-45 H H Bu' H H CSSEt Me Me C-46 <								Me	Me
C-38 H H BI H H CSSEt Me Me C-39 H H H Me H H Me Me C-40 H H Et H H CSSEt Me Me C-41 H H Pr H H CSSEt Me Me C-42 H H Bu H H CSSEt Me Me C-43 H H Bu' H H CSSEt Me Me C-43 H H Bu' H H CSSEt Me Me C-43 H H Bu' H H CSSEt Me Me C-45 H H Bu' H H CSSEt Me Me C-46 H H OEt H H CSSEt Me Me C-47	C-37							Me	Me
C-39 H H Me Me Me C-40 H H Et H H CSSEt Me Me C-41 H H Pr H H CSSEt Me Me C-42 H H Bu H H CSSEt Me Me C-43 H H Bu' H H CSSEt Me Me C-44 H H Bu' H H CSSEt Me Me C-45 H H OMe H H CSSEt Me Me C-46 H H OMe H H CSSEt Me Me C-47 H H OCH H H CSSEt Me Me C-48 H H OCH H H CSSEt Me Me C-49 H H OCH <	C-38							Me	Me
C-40 H H Et II II<	C-39							Me	Me
C-41 H H Pr H H CSSEt Me Me C-42 H H Bu H H CSSEt Me Me C-43 H H Bu' H H CSSEt Me Me C-44 H H Bu' H H CSSEt Me Me C-45 H H OMe H H CSSEt Me Me C-46 H H OMe H H CSSEt Me Me C-47 H H OCH H H CSSEt Me Me C-48 H H OCH H H CSSEt Me Me C-49 H H OCH H H CSSEt Me Me	C-40								Me
C-42 H H Bu H H CSSEt Me Me C-43 H H Bu' H H CSSEt Me Me C-44 H H Bu' H H CSSEt Me Me C-45 H H OMe H H CSSEt Me Me C-46 H H OMe H H CSSEt Me Me C-47 H H OCF H H CSSEt Me Me C-48 H H OCF H H CSSEt Me Me C-49 H H OCF H H CSSEt Me Me	C-41								Me
C-43 H H Bu' H H CSSEt Me Me C-44 H H Bu' H H CSSEt Me Me C-45 H H Bu' H H CSSEt Me Me C-46 H H OMe H H CSSEt Me Me C-47 H H OCH H H CSSEt Me Me C-48 H H OCH H H CSSEt Me Me C-49 H H OCH H H CSSEt Me Me	C-42	H							Me
C-44 H H Bu' H H CSSEt Me Me C-45 H H Bu' H H CSSEt Me Me C-46 H H OMe H H CSSEt Me Me C-47 H H OPr H H CSSEt Me Me C-48 H H OCF H H CSSEt Me Me C-49 H H OCF H H CSSEt Me Me	C-43								Me
C-45 H H Bu' H H CSSEt Me Me C-46 H H OMe H H CSSEt Me Me C-47 H H OPr H H CSSEt Me Me C-48 H H OCHF2 H H CSSEt Me Me C-49 H H OCF2 H H CSSEt Me Me	C-44	H							Me
C-46 H H OMe H H OSSET Me Me C-47 H H OEt H H CSSET Me Me C-48 H H OPr H H CSSET Me Me C-49 H H OCF H H CSSET Me Me Me Me Me Me Me Me Me	C-45	H						 	
C-47 H H OET H H OSSET Me Me C-48 H H OCHF2 H H CSSET Me Me C-49 H H OCF2 H H CSSET Me Me	C-46	Н							
C-48 H H OPr H H CSSEt Me Me C-49 H H OCHF ₂ H H CSSEt Me Me	C-47	Н							
C-49 H H OCHF ₂ H H CSSEt Me Me	C-48	Н	H						
L CE H H I USSELI ME I ME		Н	Н						
1 V-3V 1 '' 1 <u> </u>	C-50	H	Н	OCF ₃	<u> </u>	<u> </u>	LOSSET	INIE	IVIC

(表47)

R⁴ F	15						r	
T	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
C-51	Н	Н	CF ₃	Н	<u> </u>	CSSEt	Me	Me
C-52	Н	Н	SMe	Н	Н	CSSEt	Me_	Me
C-53	Н	Н	SEt	Н	Н	CSSEt	Me	Me
C-54	— <u>—</u>	Н	.SPr ⁱ	Н	H	CSSEt	Me	Me
C-55		Н	NMe ₂	Н	Н	CSSEt	Me	Me
C-56	<u></u> Н	Н	NEt ₂	Н	H	CSSEt	Me	Me
C-57	Me	Me	Н	Н	H	CSSEt	Me	Me
C-58	H	Me	Me	Н	Н	CSSEt	Me	Me
C-59	Et .	Et	Н	Н	Н	CSSEt	Me	Me
C-60	<u></u> Н	Et	Et	H	H	CSSEt	Ме	Me
C-61	OMe	Me	Н	Τ	Ŧ	CSSEt	Ме	Me
C-62	OMe	H	Me	Н	Н	CSSEt	Me	Me
C-63	NMe ₂	Me	Н	Н	Н	CSSEt	Me	Ме
C-64	H	NMe ₂	Me	Н	Н	CSSEt	Me	Ме
C-65	Me	NMe ₂	Н	Н	Н	CSSEt	Me	Me_
C-66	NMe ₂	CI	Н	Н	Н	CSSEt	Me	Me
C-67	Me	NEt ₂	Н	н	Н	CSSEt	Me	Me
C-68	H	NEt ₂	Me	Н	Н	CSSEt	Me	Me
C-69	Pr ⁱ	H H	F	Н	Н	CSSEt	Ме	Me
C-70	OMe	H	OMe	Н	Н	CSSEt	Me	Me
C-70	H	OMe	OMe	Н	Н	CSSEt	Me	Me
C-71	H	OMe	OEt	Н	Н	CSSEt	Me	Me
C-72	H	OEt	OMe	Н	Н	CSSEt	Ме	Me
	H	OEt	OEt	H	Н	CSSEt	Ме	Me
C-74	OMe	H	Me	Н	Н	CSSEt	Me	Me
C-75	Civie			ـ ـ ـ ـ ـ ــــــــــــــــــــــــــــ				

(表48)

R⁴	R ⁵							
	R¹ I	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
D-1	Br	H	Н	Н	Н	COSEt	Me	Me
D-2	Bu ⁱ	Н	H	Н	H	COSEt	Me	Me
D-3	OPr	Н	Н	Н	Н	COSEt	Me	Me
D-4	OCHF,	Н	Н	H	Н	COSEt	Me	Ме
D-5	OCF ₃	Н	Н	Н	Н	COSEt	Me	Me
D-6	NEt ₂	H	Н	Н	Н	COSEt	Ме	Me
D-7	H	CI	Н	Н	Н	COSEt	Me	Me
D-7	 	Br	Н	Н	Н	COSEt	Me	Ме
D-8 D-9	 	Et	Н	Н	Н	COSEt	Me	Me
D-10	H	Pr	Н	Н	Н	COSEt	Me	Ме
D-10 D-11	H H	Bu	Н	Н	Н	COSEt	Me	Ме
D-11 D-12	H	Bu ⁱ	H	Н	Н	COSEt	Me	Me
D-12 D-13	 	Bu⁵	H	Н	Н	COSEt	Me	Ме
D-14	H	Bu ^r	Н	Н	Н	COSEt	Me	Me
D-14 D-15	H	OEt	Н	Н	Н	COSEt	Me	Ме
D-16	 	OPr	Н	Н	Н	COSEt	Me	Me
D-17	H	OCHF ₂	Н	Н	Н	COSEt	Me	Ме
D-17	H	OCF ₃	Н	Н	Н	COSEt	Me	Me
D-19	 	CF ₃	Н	Н	Н	COSEt	Ме	Me
D-20	 	SMe	Н	Н	Н	COSEt	Me	Me
D-20	H H	SEt	Н	Н	Н	COSEt	Ме	Ме
D-21	 	SPr'	Н	Н	Н	COSEt	Ме	Me
D-23	 	NMe ₂	Н	Н	Н	COSEt	Me	Me
D-24	 	NEt ₂	Н	Н	Н	COSEt	Me	Me
D-25	 	H	Br	Н	Н	COSEt	Ме	Me
D-23	<u></u>			<u> </u>				

(表49)

H'	H					D6 1	R ⁷	R ⁸
	R¹	R ²	R ³	R⁴ .	R⁵	R ⁶		
D-26	Н	Н	Et	H	H	COSEt	Me	Me
D-27	Н	Н	Pr	Ι	H	COSEt	Me	Me
D-28	Н	Н	Bu	Н	Ι	COSEt	Me	Me
D-29	Н	Н	Bu [/]	Ι	Н	COSEt	Me	Me
D-30	Н	Н	Bus	Н	H	COSEt	Ме	Me_
D-30	H	Н	Bu'	Н	I	COSEt	Me	Me_
D-31 D-32	H	Н	OMe	Н	Н	COSEt	Ме	Me
D-32 D-33	Н	H	OEt	Н	Н	COSEt	Ме	Me
D-33 D-34	H	H	OPr	Н	Н	COSEt	Ме	Me
D-34 D-35	. H	Н	OCHF,	Н	Н	COSEt	Me	Ме
D-36	H	H	OCF ₃	Н	Н	COSEt	Me	Me
	H H	H	CF ₃	Н	. н	COSEt	Me	Me
D-37 D-38	H	Н Н	SMe	Н	Н	COSEt	Me	Me
	H	H	SEt	Н	Н	COSEt	Me	Me
D-39	H	H	SPr ⁱ	Н	Н	COSEt	Me	Me
D-40	H	Н	NMe ₂	H	Н	COSEt	Me	Me
D-41	H	H	NEt ₂	H	Н	COSEt	Me	Me
D-42		Et	H	H	H	COSEt	Me	Me
D-43	Et	Et	Et	H	H	COSEt	Me	Me
D-44	H		 	H	H	COSEt	Me	Me
D-45	OMe_	Me_	Me	H	H	COSEt	Me	Me
D-46	OMe	H		H	H	COSEt	Me	Me
D-47	NMe ₂	Me_	H			COSEt	Me	Me
D-48	<u> </u>	NMe ₂	Me	H	H			Me
D-49	H	OEt	OMe	H	H	COSEt	Me	
D-50	Н	OEt	OEt	H	<u> </u>	COSEt	Me	Me_

(表50)

E-1 H H H H H H CSSMe Et Et E-2 CI H H H H H CSSMe Et Et E-3 Br H H H H H CSSMe Et Et E-4 Me H H H H H CSSMe Et Et E-5 Et H H H H CSSMe Et Et E-6 Pr H H H H CSSMe Et Et E-7 Bu H H H H CSSMe Et Et E-8 Bu' H H H H CSSMe Et Et E-9 Bu' H H H H CSSMe Et Et E-10 OMe H H H H CSSMe Et Et E-11 OEt H H H H CSSMe Et Et E-12 OPr' H H H H CSSMe Et Et E-13 OPr H H H H CSSMe Et Et E-14 OCHF ₂ H H H H CSSMe Et Et E-15 OCF ₃ H H H H CSSMe Et Et E-16 CF ₃ H H H CSSMe Et Et E-17 SMe H H H CSSMe Et Et E-18 SEt H H H CSSMe Et Et E-19 SPr' H H H CSSMe Et Et E-20 NMe ₂ H H H H CSSMe Et Et E-21 NEt ₂ H H H H CSSMe Et Et E-22 NMe ₂ H H H H CSSMe Et Et E-21 NEt ₂ H H H H CSSMe Et Et E-22 NEt ₂ H H H H CSSMe Et Et E-22 NEt ₂ H H H H CSSMe Et Et	R" I	R							
E-1 H H H H H H CSSMe Et Et E-2 CI H H H H H H CSSMe Et		R¹	R ²	R³	R⁴.	R⁵	R⁵	R ⁷	R ⁸
E-2 CI H H H H H CSSMe Et Et E-3 Br H H H H H H H CSSMe Et	E-1		Н	Н	H	Н	CSSMe	Et	Et
E-3 Br H H H H H H H CSSMe Et Et <td></td> <td>CI</td> <td>Н</td> <td>Н</td> <td>Н</td> <td>Н</td> <td>CSSMe</td> <td>Et</td> <td>Et</td>		CI	Н	Н	Н	Н	CSSMe	Et	Et
E-4 Me H H H H H CSSMe Et Et E-5 Et H H H H H CSSMe Et Et <td></td> <td></td> <td>Н</td> <td>Н</td> <td>H</td> <td>Н</td> <td>CSSMe</td> <td>Et</td> <td>Et</td>			Н	Н	H	Н	CSSMe	Et	Et
E-5 Et H H H H H CSSMe Et Et E-6 Pr H H H H H CSSMe Et Et <td></td> <td></td> <td>Н</td> <td>Н</td> <td>Н</td> <td>Н</td> <td>CSSMe</td> <td>Et</td> <td>Et</td>			Н	Н	Н	Н	CSSMe	Et	Et
E-6 Pr H H H H H CSSMe Et Et E-7 Bu H H H H H H CSSMe Et Et E-8 Bu' H H H H H CSSMe Et Et E-9 Bu' H H H H CSSMe Et			Н	Н	Н	Н	CSSMe	Et	Et
E-7 Bu H H H H H CSSMe Et Et E-8 Bu' H H H H H H H CSSMe Et Et Et E-9 Bu' H H H H H H H H CSSMe Et		Pr		Н	I	Н	CSSMe	Et	Et_
E-8 Bu' H H H H H H H CSSMe Et Et Et E-9 Bu' H H H H H H H CSSMe Et		Bu		Н	I	Н	CSSMe	E	Et
E-9 Bu' H H H H H H CSSMe Et Et E-10 OMe H H H H H H H CSSMe Et Et <td></td> <td></td> <td>Н</td> <td>Н</td> <td>Τ</td> <td>Н</td> <td>CSSMe</td> <td>Et</td> <td>Et</td>			Н	Н	Τ	Н	CSSMe	Et	Et
E-10 OMe H H H H H H H CSSMe Et Et E-11 OEt H H H H H H CSSMe Et Et E-12 OPri H H H H H CSSMe Et Et E-13 OPr H H H H CSSMe Et Et<				Н	I	Н	CSSMe	Et	Et
E-11 OEt H H H H H H CSSMe Et Et E-12 OPr' H H H H H H CSSMe Et Et E-13 OPr H H H H H CSSMe Et Et E-14 OCHF2 H H H H CSSMe Et Et Et E-15 OCF3 H H H H H CSSMe Et Et <td< td=""><td></td><td>OMe</td><td>Н</td><td>H</td><td>Ξ</td><td>Н</td><td>CSSMe</td><td>Et</td><td>Et</td></td<>		OMe	Н	H	Ξ	Н	CSSMe	Et	Et
E-12 OPr' H H H H H H CSSMe Et Et E-13 OPr H H H H H CSSMe Et Et E-14 OCHF2 H H H H H CSSMe Et Et E-15 OCF3 H H H H CSSMe Et Et E-16 CF3 H H H H CSSMe Et Et E-17 SMe H H H H CSSMe Et Et Et E-18 SEt H H H H H CSSMe Et Et Et E-19 SPr' H H H H H H CSSMe Et Et E-20 NMe2 H H H H H H CSSMe Et Et <			Н	H	Н	H	CSSMe	Et	
E-13 OPr H H H H H CSSMe Et Et E-14 OCHF2 H H H H H H CSSMe Et Et E-15 OCF3 H H H H CSSMe Et Et E-16 CF3 H H H H CSSMe Et Et E-17 SMe H H H H CSSMe Et Et E-18 SEt H H H H CSSMe Et Et E-18 SEt H H H H CSSMe Et Et E-18 SEt H H H H CSSMe Et Et E-19 SPri H H H H H CSSMe Et Et E-20 NMe2 H H H H H			Н	H	Н	Н	CSSMe		Et
E-14 OCHF2 H H H H H CSSMe Et Et E-15 OCF3 H H H H H H CSSMe Et Et E-16 CF3 H H H H H CSSMe Et Et E-17 SMe H H H H CSSMe Et Et Et E-18 SEt H H H H H CSSMe Et Et Et E-19 SPr' H H H H H CSSMe Et Et Et E-20 NMe2 H H H H H H CSSMe Et Et E-21 NEt2 H H H H H CSSMe Et Et E-22 H CI H H H H H CSSMe <td< td=""><td></td><td></td><td>Н</td><td>H</td><td>Н</td><td>Н</td><td>CSSMe</td><td>Et</td><td>Et</td></td<>			Н	H	Н	Н	CSSMe	Et	Et
E-15 OCF3 H H H H H CSSMe Et Et E-16 CF3 H H H H H H CSSMe Et Et E-17 SMe H H H H CSSMe Et Et E-18 SEt H H H H CSSMe Et Et E-19 SPr' H H H H CSSMe Et Et E-20 NMe2 H H H H H CSSMe Et Et E-21 NEt2 H H H H H CSSMe Et Et E-22 H CI H H H H CSSMe Et Et			Н	H	Η	Н	CSSMe	Et	
E-16 CF3 H H H H CSSMe Et Et E-17 SMe H H H H H CSSMe Et Et E-18 SEt H H H H CSSMe Et Et E-19 SPri H H H H CSSMe Et Et E-20 NMe2 H H H H CSSMe Et Et E-21 NEt2 H H H H CSSMe Et Et E-22 H CI H H H CSSMe Et Et	E-15		I	Н	Н	Н	CSSMe		
E-17 SMe H H H H CSSMe Et Et E-18 SEt H H H H CSSMe Et Et E-19 SPri H H H H CSSMe Et Et E-20 NMe2 H H H H CSSMe Et Et E-21 NEt2 H H H H CSSMe Et Et E-22 H CI H H H CSSMe Et Et			Н	H	Н	Η	CSSMe		
E-18 SEt H H H H CSSMe Et Et E-19 SPr' H H H H CSSMe Et Et E-20 NMe2 H H H H CSSMe Et Et E-21 NEt2 H H H H CSSMe Et Et E-22 H CI H H H CSSMe Et Et			H	Н	Н	H	CSSMe	Et	Et
E-19 SPr' H H H H CSSMe Et Et E-20 NMe ₂ H H H H H CSSMe Et Et E-21 NEt ₂ H H H H CSSMe Et Et E-22 H CI H H H CSSMe Et Et	E-18		Н	Н	Н	H		Et	
E-20 NMe2 H H H H CSSMe Et Et E-21 NEt2 H H H H CSSMe Et Et E-22 H CI H H H CSSMe Et Et		SPr ⁱ	Н	Н	Н	H			
E-21 NEt ₂ H H H H CSSMe Et Et E-22 H CI H H H CSSMe Et Et		NMe ₂	Н	Н	Н	H			
E-22 H CI H H H CSSMe Et Et	E-21		Н	Н	H				
			CI	Н	Н	H			
E-23 H DI I I I I I I I I		Н	Br	Н		Н		Et_	<u>Et</u>
E-24 H Me H H H CSSMe Et Et		Н	Me	Н	H				
E-25 H Et H H H CSSMe Et Et		Н	Et	Н	Н	<u>H</u>	CSSMe	<u>Et</u>	<u>Et</u>

(表51)

$$R^3$$
 R^4
 R^6
 R^7
 R^8

R ⁴ F	₁ 5		•					
	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ^e
E-26	— <u>'`</u>	Pr	Н	Н	H	CSSMe	Et	<u>Et</u>
E-27	H	Pr'	Н	н	Н	CSSMe	Et	<u>Et</u>
E-27 E-28	— н	Bu	Н	Н	Н	CSSMe	Et	Et
E-28	Н Н	Bu ⁱ	Н	Н	Н	CSSMe	Et	Et
	Н	Bu ^s	H	Н	Н	CSSMe	Et	Et
E-30	— ''	Bu'	H	Н	Н	CSSMe	Et	Et
E-31	Н Н	OMe	Н	Н	Н	CSSMe	Et	Et
E-32		OEt	Н	Н	Н	CSSMe	Et	Et
E-33	<u> </u>	OPr	H	Н	Н	CSSMe	Et	Et_
E-34	Н Н	OPr'	H	Н	Н	CSSMe	Et	Et
E-35	H	OCHF ₂	H	H	Н	CSSMe	Et	Et_
E-36	H	OCF ₃	H	Н	Н	CSSMe	Et	Et
E-37	H	CF ₃	H	Н	H	CSSMe	Et	Et
E-38	Н Н	SMe	H	Н	Н	CSSMe	Et	Et_
E-39		SEt	H	Н	Н	CSSMe	Et	Et
E-40	H	SPr'	Н Н	H	Н	CSSMe	Et	Et
E-41	H	NMe ₂	<u>''</u>	Н	Н	CSSMe	Et	Et
E-42		NEt ₂	H	Н	Н	CSSMe	Et	Et
E-43	H	H H	Ci	H	H	CSSMe	Et	Et
E-44	H	 	Br	H	Н	CSSMe	Et	Et
E-45		 	Me	H	Н	CSSMe	Et	Et
E-46	H	 	Et	H	Н	CSSMe	Et	Et
E-47	H	H	Pr	H	H	CSSMe	Et	Et
E-48		H	Pr ⁱ	 	H	CSSMe	Et	Et
E-49	H	H	Bu	 	Н	CSSMe	Et	Et
E-50	<u> </u>		1 Du _					

(表52)

R⁴ F	₹ ⁵							
	R¹	R²	R³	R⁴	·R⁵	R ⁶	R ⁷	R ⁸
E-51	H	Н	Bu ⁱ	Н	Н	CSSMe	Et	Et
E-52	H	Н	Bus	Н	Н	CSSMe	Et	Et
E-53	!	Н	Bu'	Н	I	CSSMe	Et	Et
E-54	— 	Н	OMe	Н	Η	CSSMe	Et	Et
E-55	H	H	OEt	Η	Н	CSSMe	Et	Et
E-56	Н	Н	OPr	Н	Ή	CSSMe	Et	Et
E-57	H	H	OPr ⁱ	Н	Н	CSSMe	Et	Et
E-58	H	H	OCHF,	Н	I	CSSMe	Et	Et
E-59	—— ;;	Н	OCF ₃	I	Н	CSSMe	Et	Et
E-60	Н Н	Н	CF ₃	Н	Н	CSSMe	Et	Et
E-61	Н	Н	SMe	Н	Н	CSSMe	Et	Et
E-62	Н	Н	SEt	Н	Н	CSSMe	Et	Et
E-63		Н	SPr ⁱ	Н	Н	CSSMe	Et	Et
E-64	Н	Н	NMe ₂	Н	Н	CSSMe	Et	Et
E-65	H	Н	NEt ₂	Н	Н	CSSMe	Et	Et
E-66	Me	NMe ₂	H	Н.	Н	CSSMe	Et_	Et
E-67	NMe ₂	CI	Н	Н	Н	CSSMe	Et	Et
E-68	Me	NEt ₂	Н	Н	Н	CSSMe	Et	Et
E-69	Н	NEt ₂	Me	Н	Н	CSSMe	Et	Et
E-70	Pr'	Н	F	Н	Н	CSSMe	<u>Et</u>	Et
E-71	OMe	Н	OMe	Н	Н	CSSMe	Et	Et
E-72	H	OMe	OMe	Н	Н	CSSMe	Et	Et_
E-73	H	OMe	OEt	Н	Н	CSSMe	Et	Et
E-74	Н	OEt	OMe	Н	Н	CSSMe	Et	Et_
E-75	H	OEt	OEt	Н	H	CSSMe	<u>Et</u>	Et
								

(表53)

R⁴ I	7 ⁵						 _	
	R¹	R ²	R³	R⁴	R⁵	R⁵	R ⁷	R ⁸
F-1	Н	H	Н	Н	H	CSSMe	Pr	<u>Pr</u>
F-2	CI	Н	Н	Н	Η	CSSMe	Pr_	Pr
F-3	Br	Н	Н	Н	Н	CSSMe	Pr	Pr
F-4	Me	H	Н	Н	Н	CSSMe	Pr_	Pr
F-5	Et	H	Н	Н.	H	CSSMe	Pr	Pr
F-6	Pr	H	H	Н	H	CSSMe	Pr	Pr
F-7	Bu	Н		H	Н	CSSMe	Pr	Pr
	Bu ⁱ	Н	H	Н	Н	CSSMe	Pr	Pr
F-8 F-9	Bu'	Н	Н	Н	Н	CSSMe	Pr	Pr
	OMe	- н		Н	Н	CSSMe	Pr	Pr
F-10	OEt	Н.	Н	Н	Н	CSSMe	Pr	Pr
F-11	OPr'	Н Н	Н	Н	Н	CSSMe	Pr	Pr
F-12	OPr	Н	H	H	Н	CSSMe	Pr	Pr
F-13	OCHF ₂	H	H	Н	Н	CSSMe	Pr	Pr
F-14		H	H:	H	Н	CSSMe	Pr	Pr
F-15	OCF ₃	H	H	Н	Н	CSSMe	Pr	Pr
F-16	CF ₃	Н	H	H	Н	CSSMe	Pr	Pr
F-17	SMe_	Н	H	Н	Н	CSSMe	Pr	Pr
F-18	SEt SPr'	H	 	H	Н	CSSMe	Pr	Pr
F-19		H	H	H	H	CSSMe	Pr	Pr
F-20	NMe ₂	Н	H.	H	H	CSSMe	Pr	Pr
F-21	NEt ₂	Ci	Н.	H	H	CSSMe	Pr	Pr
F-22	<u> </u>		Н	H	H	CSSMe	Pr	Pr
F-23	H H	Br	Н Н	H	Н Н	CSSMe	Pr	Pr
F-24	H	Me		H	 	CSSMe	Pr	Pr
F-25_	H	<u>Et</u>	<u> </u>		1	10001110		1

(表54)

R ⁴ ÌP	t ⁵							
	R¹	R ²	R³	R ⁴	R⁵	R ⁶	R ⁷	R*
	H	Pr	H	Н	H	CSSMe	Pr	Pr
F-26		Pr'	— H	Н	H	CSSMe	Pr	<u>Pr</u>
F-27	H	Bu	- ;;	Н	Н	CSSMe	.Pr	Pr
F-28	H	Bu ⁱ	 ;;	Н	Н	CSSMe	Pr	Pr
F-29	<u>H</u>	Bu ^s	H	Н	Н	CSSMe	Pr	Pr
F-30	<u>H</u>	Bu'	—- <u>''</u>	— н	Н	CSSMe	Pr	Pr
F-31	H		<u>''</u>	- ii	H	CSSMe	Pr	Pr
F-32	Н	OMe	H	H	H	CSSMe	Pr	Pr
F-33	<u> </u>	OEt	Н Н	H	H	CSSMe	Pr	Pr
F-34	<u> </u>	OPr	<u> П</u>	H H	Н	CSSMe	Pr	Pr
F-35	<u>H</u>	OPr ⁱ	Н	H	H	CSSMe	Pr	Pr
F-36	H	OCHF ₂	<u> </u>	Н Н	Н Н	CSSMe	Pr	Pr
F-37	H	OCF ₃		H	H	CSSMe	Pr	Pr
F-38	Н	CF₃	H	H	H	CSSMe	Pr	Pr
F-39	Н	SMe	H	Н	H	CSSMe	Pr	Pr
F-40	H	SEt	<u>H</u>	H	H	CSSMe	Pr	Pr
F-41	H	SPr ⁱ	H	H	H	CSSMe	Pr	Pr
F-42	H	NMe ₂	H	H	 	CSSMe	Pr	Pr
F-43	H	NEt ₂	H		Н Н	CSSMe	Pr	Pr
F-44	Н	<u>H</u>	CI	H	H	CSSMe	Pr	Pr
F-45	H	H	Br	H	 	CSSMe	Pr	Pr
F-46	H	H	Me	H	H	CSSMe	Pr	Pr
F-47	H	<u> </u>	<u>Et</u>	<u> </u>	 	CSSMe	Pŕ	Pr
F-48	H	H	Pr	H H	 	CSSMe	Pr	Pr
F-49	H.	H	Pr ⁱ	H		CSSMe	Pr	Pr
F-50	Н	H	Bu	<u> </u>	Н	CSSIME	1	

(表55)

R⁴ F	⁵							
	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
F-51	H	Н	Bu ⁱ	Н	Н	CSSMe	Pr	Pr
F-52	H	Н	Bu⁵	Н	Н	CSSMe	.Pr	Pr_
F-53	H	Н	Bu'	Н	Н	CSSMe	Pr	Pr
F-54		H	OMe	Н	Н	CSSMe	Pr	Pr
F-55	H	H	OEt	Н	Н	CSSMe	Pr	Pr
F-55	H	H	OPr	Н	Н	CSSMe	Pr	Pr
F-50 F-57	 	— н	OPr'	Н	Н	CSSMe	Pr	Pr_
	- 'i'		OCHF,	H	Н	CSSMe	Pr	Pr
F-58	H	Н Н	OCF ₃	Н	Н	CSSMe	Pr	Pr
F-59	<u> </u>	H	CF ₃	Н	Н	CSSMe	Pr	Pr
F-60	Н	Н Н	SMe	Н	Н	CSSMe	Pr	Pr
F-61	Н	H	SEt	H	Н	CSSMe	Pr	Pr
F-62	Н	H	SPr ⁱ	Н	Н	CSSMe	Pr	Pr
F-63	<u> </u>	Н Н	NMe ₂	H	Н	CSSMe	Pr	Pr
F-64	Н Н	H	NEt ₂	H	Н	CSSMe	Pr	· Pr
F-65	Me	NMe ₂	H	Н	Н	CSSMe	Pr	Pr
F-66		CI	H	Н	н	CSSMe	Pr	Pr
F-67	NMe ₂	NEt ₂	H	H	H	CSSMe	Pr	Pr
F-68	Me	NEt ₂	Me	H	Н	CSSMe	Pr	Pr
F-69	H Bu ^s	H H	H	H	Н	CSSMe	Pr	Pr
F-70		H	OMe	H	H	CSSMe	Pr	Pr
F-71	OMe	OMe	OMe	H	H	CSSMe	Pr	Pr
F-72	H	OMe	OEt	H	H	CSSMe	Pr	Pr
F-73	H .		OMe	H	H	CSSMe	Pr	Pr
F-74	H	OEt		H	Н	CSSMe	Pr	Pr
F-75	<u> H</u>	OEt	OEt_	1 17		1 0000	·	1

(表56)

R I	H ^o		52		R⁵	R ⁶	R ⁷	R ⁸
	R¹	R ²	R ³	R⁴				Et
G-1	H	<u>H</u>	H	<u> </u>	Н	CSSEt	Et	
G-2	CI	H	<u>H</u>	H	<u> </u>	CSSEt	<u>Et</u>	<u>Et</u>
G-3	Br	Н	Н	H	H	CSSEt	Et	Et
G-4	Me	Н	Н	H	H	CSSEt	Et	Et
G-5	Et	Н	Н	Н	Н	CSSEt	Et	<u>Et</u>
G-6	Pr	Н	H	I	H	CSSEt	Et	Et
G-7	Bu	Н	Н	Н	H	CSSEt	Et	<u>Et</u>
G-8	Bu ⁱ	Н	H	Ŧ	Н	CSSEt	Et	Et
G-9	Bu'	Н	Н	Ξ	Н	CSSEt	Et	Et
G-10	OMe	Н	Н	Н	Н	CSSEt	Et	Et
G-11	OEt	Н	Н	Н	Н	CSSEt	Et ·	Et
G-11	OPr'	Н	Н	Н	Н	CSSEt	Et	Et
G-13	OPr	Н	Н	Н	Н	CSSEt	Et	Et
G-14	OCHF ₂	Н		Н	Н	CSSEt	Et	Et
G-15	OCF ₃	Н	Н	Н	Н	CSSEt	Et	Et
G-16	CF ₃	H	H	Н	Н	CSSEt	Et	Et
G-17	SMe	H	Н	Н	Н	CSSEt	Et	Et
G-17	SEt	H	Н	Н	Н	CSSEt	Et	Et
G-18	SPr ⁱ	Н	Н	Н	Н	CSSEt	Et	Et
G-20	NMe ₂	Н	Н	Н	Н	CSSEt	Et	Et
G-20	NEt ₂	H	Н	Н	Н	CSSEt	Et	Et
	H H	CI	H	Н	Н	CSSEt	Et	Et
G-22	H	Br	H	H	Н	CSSEt	Et	Et
G-23		Me	Н.	H	H	CSSEt	Et.	Et
G-24	H	Et	H	H	H	CSSEt	Et	Et
G-25	<u> </u>			1 11		1 0000	1	

(表57)

R⁴ F	₹ ⁵							50
	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R⁵
G-26	Н	Pr	Н	H	<u> </u>	CSSEt	Et	Et
G-27	Н	Pr ⁱ	Н	H	<u>H</u>	CSSEt	<u>Et</u>	<u>Et</u>
G-28	Н	Bu	Н	Н	H	CSSEt	Et	<u>Et</u>
G-29	Н	Bu ⁱ	H	H	H	CSSEt	Et	<u>Et</u>
G-30	Н	Bus	Н	Н	Н	CSSEt	Et	Et
G-31	Н Н	Bu¹	Н	Ŧ	Н	CSSEt	Et	<u>Et</u>
G-32	- н	OMe	Н	H	Н	CSSEt	Et	<u> </u>
G-32	H	OEt	Н	Н	Н	CSSEt	Et	Et
G-34	H	OPr	Н	Н	Н	CSSEt	Et	<u> Et </u>
G-35	Н Н	OPr'	Н	н	Н	CSSEt	Et	Et
G-36	Н	OCHF ₂	Н	Н	Н	CSSEt	Et	Eť
G-37	H	OCF ₃	Н	Н	Н	CSSEt	Et	Et
G-38	H	CF ₃	H	Н	Н	CSSEt	Et	Et
G-38	H	SMe	H	Н	Н	CSSEt	Et	Et
	H	SEt	H	Н	Н	CSSEt	Et	Et
G-40	Н	SPr'	- H	Н	Н	CSSEt	Et	Et
G-41	H	NMe ₂	Н	Н	Н	CSSEt	Et.	Et
G-42 G-43	H	NEt ₂	H	H	Н	CSSEt	Et	Et
	H	H	CI	Н	H	CSSEt	Et	Et
G-44	 	H	Br	Н	Н	CSSEt	Et	Et
G-45	H	H	Me	Н	Н	CSSEt	Et	Et
G-46	 	 	Et	H	Н	CSSEt	Et	Et
G-47	 	 	Pr	 	H	CSSEt	Et	Et
G-48		H	Pr'	H	H	CSSEt	Et	Et
G-49	H	 	Bu	 ' 	H	CSSEt	Et	Et
G-50	H	<u> </u>	l Bu	<u> </u>		1 222		

(表58)

H P	<u>-</u>							
	R¹	R ²	R³	R⁴	R⁵	R⁵	R ⁷	R ⁸
G-51	Н	Н	Bu'	H	H	CSSEt	Et	Et
G-52	Н	Н	Bu⁵	Н	H	CSSEt	Et	Et
G-53	Н	H	Bu ^t	Н	Н	CSSEt	Et	Et
G-54	Н	Н	OMe.	Н	Н	CSSEt	Et	Et
G-55	H	Н	OEt	I	Н	CSSEt	Et	Et_
G-56	Н	Н	OPr	Н	Н	CSSEt	Et	Et
G-57	H	H	OPr ⁱ	Н	Н	CSSEt	Et	Et
G-58	H	Н	OCHF ₂	Н	Н	CSSEt	Et	Et
G-59	H	Н	OCF ₃	Н	Н	CSSEt	Et	Et
G-60	H	H	CF ₃	Н	Н	CSSEt	Et	Et
G-61	H	H	SMe	Н	Н	CSSEt	Et	Et
G-62	 	Н	SEt	Н	Н	CSSEt	Et	Et
G-63	Н.	H	SPr ⁱ	Н	Н	CSSEt	Et	Et
G-64	H	Н	NMe ₂	Н	Н	CSSEt	Et	Et
G-65	H H	Н	NEt ₂	Н	Н	CSSEt	Et	Et_
G-66	Me	NMe ₂	Н	Н	Н	CSSEt	Et	Et
G-67	NMe ₂	CI	Н	Н	Н	CSSEt	Et	Et
G-68	Me	NEt ₂	Н	Н	Н	CSSEt	Et	Et
G-69	H	NEt ₂	Me	Н	Н	CSSEt	Et	Et
G-70	Bus	H	Н	Н	Н	CSSEt	Et	Et
G-71	OMe	H	OMe	Н	Н	CSSEt	Et	Et
G-71	H	OMe	OMe	Н	Н	CSSEt	Et	Et
	H	OMe	OEt	H	Н	CSSEt	Et	Et
G-73 G-74	 	OEt	OMe	Н	H	CSSEt	Et	Et
	 	OEt	OEt	H	H	CSSEt	Et	Et
G-75		1 0 2 (1 0 = 1	1				

(表59)

R⁴ F											
	R¹	R ²	R ³	R⁴	R⁵	R ⁶					
H-1	Н	. н	Н	H	H	CSSMe	-(CH ₂) ₂ -				
H-2	CI	Н	Н	Н	H	CSSMe	-(CH ₂) ₂ -				
H-3	Br	Н	H	H	H	CSSMe	-(CH ₂) ₂ -				
H-4	Me	Н	Н	Н	H	CSSMe	-(CH ₂) ₂ -				
H-5	Et	Н	Н	H	H	CSSMe	-(CH ₂) ₂ -				
H-6	Pr	Н	Н	Ι	I	CSSMe	-(CH ₂) ₂ -				
H-7	Bu	— H	Н	H	H	CSSMe	-(CH ₂) ₂ -				
H-8	Bu ⁱ	Н	H	H	H	CSSMe	-(CH ₂) ₂ -				
H-9	Bu'	Н	Н	Н	Н	CSSMe	-(CH ₂) ₂ -				
H-10	OMe	Н	Н	Н	Н	CSSMe	-(CH ₂) ₂ -				
H-11	OEt	Н	Н	Н	Н	CSSMe	-(CH ₂) ₂ -				
H-12	OPr'	Н	H	Н	Н	CSSMe	-(CH ₂) ₂ -				
H-12	OPr	Н	Н	Н	Н	CSSMe	-(CH ₂) ₂ -				
H-14	OCHF ₂	Н	Н	Н	Н	CSSMe	-(CH ₂) ₂ -				
H-15	OCF ₃	H	Н	Н	Н	CSSMe	-(CH ₂) ₂ -				
H-15	CF ₃	H	Н	Н	Н	CSSMe	-(CH ₂) ₂ -				
H-17	SMe	H	Н	Н	Н	CSSMe	-(CH ₂) ₂ -				
	SEt	H	Н	Н	Н	CSSMe	-(CH ₂) ₂ -				
H-18 H-19	SPr'	Н	Н	Н	Н	CSSMe	-(CH ₂) ₂ -				
	NMe ₂	Н	Н	Н	Н	CSSMe	-(CH ₂) ₂ -				
H-20	NEt ₂	H	Н	Н	Н	CSSMe	-(CH ₂) ₂ -				
H-21	H H	 ci	1-1	H	Н	CSSMe	-(CH ₂) ₂ -				
H-22	H	Br	Н	H	Н	CSSMe	-(CH ₂) ₂ -				
H-23	H	Me	Н	H	Н	CSSMe	-(CH ₂) ₂ -				
H-24	H	Et	H	Н	Н	CSSMe	-(CH ₂) ₂ -				
H-25	<u> </u>	1	<u></u>								

(表60)

H ·	H-						
	R¹	R ²	R ³	R⁴	R⁵.	R ⁶	R ⁷ R ⁸
H-26	Ŧ	Pr	Н	Ι	Η	CSSMe	-(CH ₂) ₂ -
H-27	H	Pr ⁱ	Н	Ι	Ι	CSSMe	-(CH ₂) ₂ -
H-28	Н	Bu	H	Н	Ι	CSSMe	-(CH ₂) ₂ -
H-29	Н	Bu [/]	π	Ι	Ι	CSSMe	-(CH ₂) ₂ -
H-30	Н	Bu⁵	I	I	Ξ	CSSMe	-(CH ₂) ₂ -
H-31	Н	Bu ^t	H	I	I	CSSMe	-(CH ₂) ₂ -
H-32	Н	OMe	I	Η	Ι	CSSMe	-(CH ₂) ₂ -
H-33	Н	OEt	Н	Н	Ι	CSSMe	-(CH ₂) ₂ -
H-34	Н	OPr	Н	H	Ι	CSSMe	-(CH ₂) ₂ -
H-35	Н	OPr'	Н	Ι	Ι	CSSMe	-(CH ₂) ₂ -
H-36	Н	OCHF ₂	Н	Η	I	CSSMe	-(CH ₂) ₂ -
H-37	Н	OCF ₃	Н	Н	Ι	CSSMe	-(CH ₂) ₂ -
H-38	Н	CF ₃	Н	Η	Ι	CSSMe	-(CH ₂) ₂ -
H-39	H	SMe	I	Н	Н	CSSMe	-(CH ₂) ₂ -
H-40	Н	SEt	I	Н	Н	CSSMe	-(CH ₂) ₂ -
H-41	Н	SPr ⁱ	Τ	Н	Н	CSSMe	-(CH ₂) ₂ -
H-42	Н	NMe ₂	H	H	Н	CSSMe	-(CH ₂) ₂ -
H-43	Н	NEt ₂	Η	Н	Н	CSSMe	-(CH ₂) ₂ -
H-44	Н	H	CI	H	H	CSSMe	-(CH ₂) ₂ -
H-45	Н	Н	Br	Н	Н	CSSMe	-(CH ₂) ₂ -
H-46	Н	Н	Ме	Н	Н	CSSMe	-(CH ₂) ₂
H-47	Н	H	Et	Н	H	CSSMe	-(CH ₂) ₂ -
H-48	Н	H	Pr	Н	Н	CSSMe	-(CH ₂) ₂ -
H-49	Н	Н	Pr ⁱ	· H	H	CSSMe	-(CH ₂) ₂ -
H-50	Н	Н	Bu	Н	H	CSSMe	-(CH ₂) ₂ -

(表61)

₹⁵						
R¹	R ²	R³	R⁴	R⁵		R ⁷ R ⁸
Н	Н	Bu ⁱ	H	Ι	CSSMe	-(CH ₂) ₂ -
Н	Н	Bu⁵	I	Ι	CSSMe	-(CH ₂) ₂ -
Н	Н	Bu ^t	Н	H	CSSMe	-(CH ₂) ₂ -
	Н	OMe	Н	Н	CSSMe	-(CH ₂) ₂ -
H	Н	OEt	Н	Н	CSSMe	-(CH ₂) ₂ -
	Н	OPr	Н	Н	CSSMe	-(CH ₂) ₂ -
	Н	OPr ⁱ	Н	Н	CSSMe	-(CH ₂) ₂ -
	Н	OCHF ₂	Н	Н	CSSMe	-(CH ₂) ₂ -
	Н	OCF ₃	Н	Н	CSSMe	-(CH ₂) ₂ -
Н	Н	CF ₃	Н	Н	CSSMe	-(CH ₂) ₂ -
Н	Н	SMe	Н	Н	CSSMe	-(CH ₂) ₂ -
Н	Н	SEt	Н	Н	CSSMe	-(CH ₂) ₂ -
Н	Н	SPr ⁱ	Н	H	CSSMe	-(CH ₂) ₂ -
Н	Н	NMe ₂	Н	H	CSSMe	-(CH ₂) ₂ -
Н	Н	NEt ₂	Н	H	CSSMe	-(CH ₂) ₂ -
Me	NMe ₂	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
NMe ₂	CI	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
Me	NEt ₂	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
Н	NEt ₂	Me	Н	Н	CSSMe	-(CH ₂) ₂ -
Bus	Н	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
OMe	Н	OMe	Н	Н	CSSMe	-(CH ₂) ₂ -
Н	OMe	OMe	Н	H	CSSMe	-(CH ₂) ₂ -
Н	OMe	OEt	Н	Н	CSSMe	-(CH ₂) ₂ -
Н	OEt	OMe	Н	H_	CSSMe	-(CH ₂) ₂ -
Н	OEt	OEt	Н	Н	CSSMe	-(CH ₂) ₂ -
	R' H H H H H H H H H H H H H H H H H H H	R¹ R² H H H H H H H H H H H H H H H H H H H	R¹ R² R³ H H Bu' H H Bu' H H Bu' H H OMe H H OPr H H OPr' H H OCF3 H H OCF3 H H SMe H H SMe H H SSE H H SPr' H H NMe2 H H NMe2 H H NMe2 H NMe2 H H NEt2 H H NEt2 H H NEt2 Me Bus H H OMe H OMe H OMe OMe H OMe OMe	R¹ R² R³ R⁴ H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H SEt H H H H SEt H H H NMe2 H H H H NMe2 H H H H NMe2 H H H NMe2 H H H H NMe2 H H H H NEt2 H H H H NEt2 H H H H <td< td=""><td>R¹ R² R³ R⁴ R⁵ H H H H H H H H H H H H H H H H H H H H H H H H H H H<td>R¹ R² R³ R⁴ R⁵ R⁶ H H H H CSSMe H H Bu³ H H CSSMe H H Bu³ H H CSSMe H H H OMe H H CSSMe H H H OPr H H CSSMe H H SMe H H CSSMe H H SSMe</td></td></td<>	R¹ R² R³ R⁴ R⁵ H H H H H H H H H H H H H H H H H H H H H H H H H H H <td>R¹ R² R³ R⁴ R⁵ R⁶ H H H H CSSMe H H Bu³ H H CSSMe H H Bu³ H H CSSMe H H H OMe H H CSSMe H H H OPr H H CSSMe H H SMe H H CSSMe H H SSMe</td>	R¹ R² R³ R⁴ R⁵ R⁶ H H H H CSSMe H H Bu³ H H CSSMe H H Bu³ H H CSSMe H H H OMe H H CSSMe H H H OPr H H CSSMe H H SMe H H CSSMe H H SSMe

(表62)

R*	R							
	R¹	R²	₽³	R⁴	R⁵	R⁵	R ⁷	R ⁸
N-1	Н	Н	Н	H	Ι	CSSMe	-(CH	2)4-
N-2	CI	Н	Н	H	Ι	CSSMe	-(CH	2)4-
N-3	Br	Н	Н	H	H	CSSMe	-(CH	
N-4	Me	Ι	Τ	Н	Н	CSSMe	-(CH	
N-5	Et	H	Ι	H	Н	CSSMe	-(CH	2)4-
N-6	Pr	Н	Ι	Н	Н	CSSMe	-(CH	2)4-
N-7	Bu	Ι	Η	Н	Н	CSSMe	-(CH	
N-8	Bu ⁱ	Ħ	H	H	Н	CSSMe	-(CH	2)4-
N-9	Bu'	Ι	H	Н	Н	CSSMe	-(CH	2)4-
N-10	OMe	Ι	H	H	<u>H</u>	CSSMe	-(CH	2)4-
N-11	OEt	I	Н	H	Н	CSSMe	-(CH	
N-12	OPr ⁱ	Ι	H	Н	H	CSSMe	-(CH	
N-13	OPr	H	Н	Н	Н	CSSMe	-(CH	
N-14	OCHF ₂	I	Н	Н	H	CSSMe	-(CH	
N-15	OCF₃	H	Н	Н	Н	CSSMe	-(CH	
N-16	CF₃	H	Н	H	H	CSSMe	-(CH	
N-17	SMe	Н	Н	H	H	CSSMe	-(CH	
N-18	SEt	H	Н	Н	<u> </u>	CSSMe	-(CH	
N-19	SPr ⁱ	H	. н	H	<u>H</u>	CSSMe	-(CH	
N-20	NMe₂	H	<u> </u>	Н	<u>H</u>	CSSMe	-(CH	
N-21	NEt ₂	H	Н	Н	<u>H</u>	CSSMe	-(CH	
N-22	Н	CI	Н	H	<u>H</u>	CSSMe	-(CH	
N-23	Н	Br	Н	Н	Н	CSSMe	-(CH	
N-24	Н	Me	Н	Н	Н	CSSMe	-(CH	
N-25	Н	Et	Н	<u> </u>	H	CSSMe	-(CF	12)4-

(表63)

R ⁴ F	5						-57 T 58
	R¹	R²	R³	R⁴	R⁵	R⁵	R ⁷ R ⁸
N-26	Н	Pr	Н	H	H	CSSMe	-(CH ₂) ₄ -
N-27	Н	Pr ⁱ	H	Н	Н	CSSMe	-(CH₂)₄-
N-28	Н	Bu	Н	Н	H	CSSMe	-(CH ₂)₄-
N-29	H	Bu ⁱ	H	H	Η	CSSMe	-(CH₂)₄-
N-30	Н	Bu⁵	Н	H	I	CSSMe	-(CH ₂) ₄ -
N-31	<u></u> Н	Bu'	Н	H	Ι	CSSMe	-(CH ₂) ₄ -
N-32	<u> Н</u>	OMe	H	H	Н	CSSMe	-(CH ₂) ₄ -
N-32 N-33	 ;; -	OEt	Н	Н	Н	CSSMe	-(CH ₂) ₄ -
N-34	— '''	OPr	Н	Н	Н	CSSMe	-(CH ₂)₄-
N-35	H	OPr'	Н	Н	Н	CSSMe	-(CH ₂)₄-
N-35 N-36		OCHF ₂	Н	Н	Н	CSSMe	-(CH ₂) ₄ -
	Н	OCF ₃	H	Н	Н	CSSMe	-(CH ₂) ₄ -
N-37	Н	CF ₃	Н	Н	Н	CSSMe	-(CH ₂) ₄ -
N-38	H	SMe	H	Н	Н	CSSMe	-(CH ₂) ₄ -
N-39	H -	SEt	H	Н	Н	CSSMe	-(CH ₂) ₄ -
N-40		SPr'	H	H	Н	CSSMe	-(CH ₂) ₄ -
N-41	H	NMe ₂	Н	Н	Н	CSSMe	-(CH ₂) ₄ -
N-42		NEt ₂	H	Н	Н	CSSMe	-(CH ₂) ₄ -
N-43	H	H	CI	H	Н	CSSMe	-(CH ₂) ₄ -
N-44	H	H	Br	H H	H	CSSMe	-(CH ₂) ₄ -
N-45	H	H	Me	H	H	CSSMe	-(CH ₂) ₄ -
N-46	H		Et	 	H	CSSMe	-(CH ₂) ₄ -
N-47	H H		Pr	 	H	CSSMe	-(CH ₂) ₄ -
N-48	H	H	Pr ⁱ	 	H	CSSMe	-(CH ₂) ₄ -
N-49	H	H	Bu	H	Н	CSSMe	-(CH ₂) ₄ -
N-50	<u>H</u>	<u>H</u>	I Du				

R" f	٩°							
	R¹	R²	R³	R⁴	R ⁵	R ⁶	R ⁷	R ⁸
N-51	H	Η	Bu ⁱ	H	Н	CSSMe	-(CH	
N-52	Н	н	Bu ^s	Н	Н	CSSMe	-(CH	2)4-
N-53	I	Н	Bu'	Н	Н	CSSMe	-(CH	
N-54	Н	Н	OMe	H	H	CSSMe	-(CH	2)4-
N-55	H	Н	OEt	Н	Η	CSSMe	-(CH	2)4-
N-56	H	. H	OPr	H	Н	CSSMe	-(CH	2)4
N-57	Н	Н	OPr ⁱ	H	Η	CSSMe	-(CH	
N-58	Н	Н	OCHF ₂	Н	Н	CSSMe	-(CH	2)4-
N-59	Н	Н	OCF ₃	H	Н	CSSMe	-(CH	
N-60	Н	Н	CF₃	Н	Н	CSSMe	-(CH	
N-61	Н	Н	SMe	Н	Н	CSSMe	-(CH	2)4-
N-62	Н	Н	SEt -	Н	Н	CSSMe	-(CH	2)4-
N-63	Н	Н	SPr ⁱ	Н	Н	CSSMe	-(CH	2)4-
N-64	Н	Н	NMe ₂	Н	Н	CSSMe	-(CH	2)4-
N-65	Н	Н	NEt ₂	Н	Н	CSSMe	-(CH	
N-66	Me	NMe ₂	Н	Н	Н	CSSMe_	-(CH	
N-67	NMe ₂	CI	Н	Н	Н	CSSMe	-(CH	2)4-
N-68	Me	NEt ₂	Н	Н	Н	CSSMe	-(CH	2)4-
N-69	Н	NEt ₂	Me	Н	H	CSSMe	-(CH	
N-70	Bu⁵	Н	Н	Н	H	CSSMe	-(CH	
N-71	OMe	Н	OMe	Н	Н	CSSMe	-(CH	
N-72	Н	OMe	OMe	Н	Н	CSSMe	-(CH	
N-73	Н	OMe	OEt	Н	Н	CSSMe.	-(CH	
N-74	Н	OEt	OMe	Н	Н	CSSMe	-(CH	
N-75	Н	0Et	OEt	Н	Н	CSSMe	-(CH	2)4-

(表65)

R⁴ F	₹ ⁵						-7 59
	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷ R ⁸
J-1	Н	Н	Н	<u>H</u>	<u> H</u>	CSSMe	-(CH ₂) ₅ -
J-2	CI	Н	Н	H	Н	CSSMe	-(CH ₂) ₅ -
J-3	Br	Н	H	Н	Н	CSSMe	-(CH ₂) ₅ -
J-4	Me	Н	Н	Н	H	CSSMe	-(CH ₂) ₅ -
J-5	Et	Н	Н	Н	H	CSSMe	-(CH ₂) ₅ -
J-6	Pr	Н	Н	Н	Н	CSSMe	-(CH ₂) ₅ -
J-7	Bu	Н	Н	H	H	CSSMe	-(CH₂)₅-
J-8	Bu ⁱ	Н	Н	Н	T_	CSSMe	-(CH ₂) ₅ -
J-9	Bu'	H	Н	H	I	CSSMe	-(CH ₂) ₅ -
J-10	OMe	Н	Н	Н	Η	CSSMe	-(CH₂)₅-
J-11	OEt	Н	Н	H	Н	CSSMe	-(CH ₂) ₅ -
J-12	OPr'	Н	Н	Н	Н	CSSMe	-(CH ₂) ₅ -
J-13	OPr	Н	Н	Н	Н	CSSMe	-(CH ₂) ₅ -
J-14	OCHF ₂	Н	Н	Н	H	CSSMe	-(CH ₂) ₅ -
J-15	OCF ₃	Н	Н	Н	Н	CSSMe	-(CH ₂) ₅ -
J-16	CF ₃	Н	Н	Н	Н	CSSMe	-(CH ₂) ₅ -
J-17	SMe	Н	Н	Н	Н	CSSMe	-(CH ₂) ₅ -
J-18	SEt	Н	Н	Н	. H	CSSMe	-(CH ₂) ₅ -
J-19	SPr'	Н	. н	Н	H	CSSMe	-(CH ₂) ₅ -
J-20	NMe ₂	Н	Н	H	H	CSSMe	-(CH ₂) ₅ -
J-20	NEt ₂	Н	Н	Н	Н	CSSMe	-(CH ₂) ₅ -
J-22	H H	Ci	Н	H	H	CSSMe	-(CH ₂) ₅ -
J-22	H	Br	Н	Н	Н	CSSMe	-(CH ₂) ₅ -
J-23	Н	Me	Н	Н	Н	CSSMe	-(CH ₂) ₅ -
J-25	 	Et	Н	Н	Н	CSSMe	-(CH ₂) ₅ -
1-23							

(表66)

R"	R						
	R ¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷ R ⁸
J-26	Н	Pr	Н	Н	Ι	CSSMe	-(CH₂)₅-
J-27	Н	Pr ⁱ	H	Н	Ι	CSSMe	-(CH ₂) ₅ -
J-28	Н	Bu	Η	Н	Ι	CSSMe	-(CH ₂) ₅ -
J-29	Н	Bu'	H	Н	Ι	CSSMe	-(CH ₂) ₅ -
J-30	Н	Bu ^s	Н	Н	Η	CSSMe	-(CH ₂) ₅ -
J-31	Н	Bu ^t	H	Н	Ι	CSSMe	-(CH ₂) ₅ -
J-32	Н	OMe	Н	Н	Η	CSSMe	-(CH ₂) ₅ -
J-33	Н	OEt	H	Н	Ι	CSSMe	-(CH ₂) ₅ -
J-34	Н	OPr	H	Н	H	CSSMe	-(CH ₂) ₅ -
J-35	Н	OPr ⁱ	Ι	Н	H	CSSMe	-(CH ₂) ₅ -
J-36	Н	OCHF ₂	I	H	H	CSSMe	-(CH ₂) ₅ -
J-37	Н	OCF₃	Ι	Н	H	CSSMe	-(CH ₂) ₅ -
J-38	Н	CF₃	Η	H	H	CSSMe	-(CH ₂) ₅ -
J-39	Н	SMe	Ι	Н	Н	CSSMe	-(CH ₂) ₅ -
J-40	Н	SEt	Η	H	H	CSSMe	-(CH ₂) ₅ -
J-41	Н	SPr ⁱ	Н	Н	Н	CSSMe	-(CH ₂) ₅ -
J-42	Н	NMe ₂	Н	H	H	CSSMe	-(CH ₂) ₅ -
J-43	H	NEt ₂	Η	Н	H	CSSMe	-(CH ₂) ₅ -
J-44	Н	Н	ō	H	Н	CSSMe	-(CH₂)₅-
J-45	Н	Н	Br	Н	H	CSSMe	-(CH ₂) ₅ -
J-46	Н	Н	Me	Н	Н	CSSMe	-(CH ₂) ₅ -
J-47	Н	Н	Et	Н	Н	CSSMe	-(CH ₂) ₅ -
J-48	Н	Н	Pr	Н	Н	CSSMe	-(CH ₂) ₅ -
J-49	Н	Н	Pr ⁱ	Н	H	CSSMe	-(CH ₂) ₅ -
J-50	Н	Н	Bu	Н	Н	CSSMe	-(CH₂)₅-

(表67)

R⁴ F	₹ ⁵						
	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷ R ⁸
J-51	H	H	Bu ⁱ	Н	Н	CSSMe	-(CH ₂) ₅ -
J-52	H	H	Bu⁵	Н	Τ	CSSMe	-(CH ₂) ₅ -
J-53	H	H	Bu ^r	Н.	Н	CSSMe	-(CH ₂) ₅ -
J-54	— <u>;;</u>	H	OMe	Н	Н	CSSMe	-(CH ₂) ₅ -
J-55	H	Н	OEt	Н	Н	CSSMe	-(CH ₂) ₅ -
J-56	— ''	Н	OPr	Н	Н	CSSMe	-(CH ₂) ₅ -
J-57	- н	H	OPr'	Н	Н	CSSMe	-(CH ₂) ₅ -
J-58	Н	Н	OCHF ₂	I	H	CSSMe	-(CH ₂) ₅ -
J-59	Н	Н	OCF ₃	H	Н	CSSMe	-(CH ₂) ₅ -
J-60	H	Н	CF ₃	H	Н	CSSMe	-(CH ₂) ₅ -
J-61	Н	H	SMe	Н	Н	CSSMe	-(CH ₂) ₅ -
J-62	H	Н	SEt	Н	Н	CSSMe	-(CH ₂) ₅ -
J-63	H	H	SPr ⁱ	Н	Н	CSSMe	-(CH ₂) ₅ -
J-64	H	H	NMe ₂	Н	Н	CSSMe	-(CH ₂) ₅ -
J-65	H	H	NEt ₂	Н	Н	CSSMe	-(CH ₂) ₅ -
J-66	Me	NMe ₂	H	Н	Н	CSSMe	-(CH ₂) ₅ -
J-67	NMe ₂	CI	Н	Н	Н	CSSMe	-(CH ₂) ₅ -
J-68	Me	NEt ₂	Н	Н	Н	CSSMe	-(CH ₂) ₅ -
J-69	H	NEt ₂	Me	Н	Н	CSSMe	-(CH ₂) ₅ -
J-70	Bus	H	Н	Н	Н	CSSMe	-(CH ₂) ₅ -
J-70	OMe	H	OMe	Н	Н	CSSMe	-(CH ₂) ₅ -
$\frac{J-71}{J-72}$	H	OMe	OMe	H	Н	CSSMe	-(CH ₂) ₅ -
J-73	H	OMe	OEt	Н	Н	CSSMe	-(CH ₂) ₅ -
J-74	H	OEt	OMe	Н	Н	CSSMe	-(CH ₂) ₅ -
J-75	Н	OEt	OEt	Н	Н	CSSMe	-(CH ₂) ₅ -
J-13	<u></u>						=

(表68)

R*	ਜ ੇ						67	D8
	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
K-1	Н	Н	H	H	<u> </u>	COSEt	Et	• Et
K-2	CI	Н	Н	H	H	COSEt	Et	<u>Et</u>
K-3	Br	Н	Н	Н	Н	COSEt	Et	<u>Et</u>
K-4	Me	Н	Н	T	Н	COSEt	Et	Et
K-5	Et	Н	Н	Н	Н	COSEt	Eť	<u>Et</u>
K-6	Pr	H	Н	Ι	H	COSEt	Et	Et
K-7	Bu	Н	Н	Н	I	COSEt	Et	Et
K-8	Bu ⁱ	H	Н	Н	H	COSEt	Et	Et
K-9	Bu'	H	Н	Н	Н	COSEt	Et	Et
K-10	OMe	H	Н	Н	Н	COSEt	Et	Et
	OEt	H	Н	Н	Н	COSEt	Et	Et
K-11	OPr'	Н	Н	н	Н	COSEt	Et	Et
K-12 K-13	OPr	Н Н	Н	Н	Н	COSEt	Et	Et
	OCHF ₂	Н Н	Н	Н	Н	COSEt	Et	Et
K-14	OCF ₃	<u>''</u>	H	Н	Н	COSEt	Et	Et
K-15	CF ₃	H H	H	Н	H	COSEt	Et ·	Et
K-16	SMe	H	H	Н	Н	COSEt	Et	Et
K-17	SEt	H	H	Н	Н	COSEt	Et	Et
K-18	SPr ⁱ	H	H	Н	Н	COSEt	Et	€t
K-19		H	Н Н	H	Н	COSEt	Et	Et
K-20	NMe ₂	H	H	H	H	COSEt	Et	Et
K-21	NEt ₂	CI	H	H	Н	COSEt	Et	Et
K-22	<u>H</u>	Br	H	H	H	COSEt	Et	Et
K-23	H		Н	 	H	COSEt	Et	Et
K-24	<u> </u>	Me	H	H	H	COSEt	Et	Et
K-25	<u> </u>	Et	<u> </u>	1	<u> </u>	1 2 2 2 2 2 .		

(表69)

n							
R¹	R²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
Н	Pr	I	Н	Ι	COSEt	Et	Et
Н	Pr ⁱ	Н	Н	H	COSEt	<u>Et</u>	Et
Н	Bu	Н	H	Н	COSEt	Et	Et
Н	Bu'	Н	Н	Н	COSEt	Et	Et
	Bu⁵	H	Н	Н	COSEt	E <u>t </u>	Et
		Н	Ι	Н	COSEt	Et	Et
		Н	H	Н	COSEt	Et	Et
	OEt	Н	Н	Н	COSEt	Et	Et
	OPr	Н	Н	Н	COSEt	Et	Et
	OPr'	Н	Н	Н	COSEt	Et	Et
		I	Н	Н	COSEt	Et	Et
Н		H	Н	Н	COSEt	Et	Et
Н		I	H	Н	COSEt	Et	Et_
Н	SMe	Н	Н	H	COSEt	Et	Et
Н	SEt	Н	Н	Н	COSEt	Et	Et
Н	SPr ⁱ	. Н	Н	Н	COSEt	Et	Et
Н	NMe ₂	Н	Н	Н	COSEt	Et	Et
Н		Н	Н	Н	COSEt	Et	Et
Н	Н	CI	Н	Н	COSEt	Et	Et
H	Н	Br	Н	Н	COSEt	Et	Et
Н	Н	Me	Н	Н	COSEt		Et
H	H	Et	H	H	COSEt		Et_
Н	Н	Pr	Н	Н	COSEt	Et	Et
Н	Н	Pr ⁱ	Н	Н	COSEt	Et	Et
H	Н	Bu	Н	Н	COSEt	Et	Et
		R¹ R² H Pr H Pr' H Bu H Bu' H Bus H Bus H Bus H OMe H OEt H OPr H OPr H OCHF2 H OCF3 H SMe H SEt H SPr' H NMe2 H NEt2 H H H	R¹ R² R³ H Pr H H Pr' H H Bu H H Bu' H H Bu' H H Bu' H H OMe H H OMe H H OPr H H OPr' H H OCHF2 H H OCF3 H H SMe H H SMe H H SEt H H SEt H H NMe2 H H NMe2 H H H Br H H H H H Br <t< td=""><td>R¹ R² R³ R⁴ H Pr H H H Pr' H H H Bu H H H Bu' H H H Bu' H H H Bu' H H H OMe H H H OMe H H H OPr H H H OPr¹ H H H OPr¹ H H H OCF₃ H H H OCF₃ H H H SMe H H H SSt H H H SPr¹ H H H NMe₂ H H H NMe₂ H H H H H H H H H H</td><td>R¹ R² R³ R⁴ R⁵ H Pr H H H H H Pr' H</td><td>R¹ R² R³ R⁴ R⁵ R⁶ H Pr H H H COSEt H Bu H H H COSEt H Bu' H H H COSEt H Bu' H H H COSEt H Bu' H H H COSEt H OMe H H H COSEt H OMe H H H COSEt H OPr H H H COSEt H OPr H H H COSEt H OPr' H H H COSEt H OPr' H H H COSEt H OPr' H H H COSEt H OCF3 H H H COSEt H SMe H H <</td><td>R¹ R² R³ R⁴ R⁵ R² H Pr H H H COSEt Et H Pr' H H H COSEt Et H Bu H H H COSEt Et H Bu' H H H COSEt Et H Bu' H H H COSEt Et H OMe H H H COSEt Et H OMe H H H COSEt Et H OPr H H H COSEt Et H OPr' H H H COSEt Et H OCF3 H H H COSEt Et H OCF3 H H H COSEt Et H SMe H H H COSEt Et <!--</td--></td></t<>	R¹ R² R³ R⁴ H Pr H H H Pr' H H H Bu H H H Bu' H H H Bu' H H H Bu' H H H OMe H H H OMe H H H OPr H H H OPr¹ H H H OPr¹ H H H OCF₃ H H H OCF₃ H H H SMe H H H SSt H H H SPr¹ H H H NMe₂ H H H NMe₂ H H H H H H H H H H	R¹ R² R³ R⁴ R⁵ H Pr H H H H H Pr' H	R¹ R² R³ R⁴ R⁵ R⁶ H Pr H H H COSEt H Bu H H H COSEt H Bu' H H H COSEt H Bu' H H H COSEt H Bu' H H H COSEt H OMe H H H COSEt H OMe H H H COSEt H OPr H H H COSEt H OPr H H H COSEt H OPr' H H H COSEt H OPr' H H H COSEt H OPr' H H H COSEt H OCF3 H H H COSEt H SMe H H <	R¹ R² R³ R⁴ R⁵ R² H Pr H H H COSEt Et H Pr' H H H COSEt Et H Bu H H H COSEt Et H Bu' H H H COSEt Et H Bu' H H H COSEt Et H OMe H H H COSEt Et H OMe H H H COSEt Et H OPr H H H COSEt Et H OPr' H H H COSEt Et H OCF3 H H H COSEt Et H OCF3 H H H COSEt Et H SMe H H H COSEt Et </td

(表70)

R⁴ F	₹5						·	
	R¹	R ²	R ³	R⁴	R ⁵	R⁵	R ⁷	R ⁸
K-51	H	Н	Bu ⁱ	Н	Н	COSEt	Et	Et
K-52	H	Н	Bu⁵	Н	Н	COSEt	Et	Et
K-53	H	Н	Bu'	Н	Н	COSEt	Et	Et
K-54	H	Н	OMe	Н	Н	COSEt	Et	Et
K-55	H	Н	OEt	Н	Н	COSEt	Et	Et
K-56	H	Н	OPr	Н	Н	COSEt	Et	Et
K-57	Н	Н	OPr ⁱ	Н	Н	COSEt	Et	Et
K-58	Н	H	OCHF ₂	Ή	Н	COSEt	Et	Et
K-59	Н	H	OCF ₃	Н	Н	COSEt	Et	Et
K-60	Н	Н	CF₃	Н	Н	COSEt	Et	Et
K-61	Н	Н	SMe	Н	Н	COSEt	Et	Et
K-62	H	H	SEt	Н	Н	COSEt	Et	Et
K-63	H	Н	SPr ⁱ	Н	Н	COSEt	Et	Et
K-64	H	Н	NMe ₂	Н	Н	COSEt	Et	Et
K-65	Н	Н	NEt ₂	Н	Н	COSEt	Et	Et
K-66	Me	NMe ₂	Н	Н	Н	COSEt	Et	Et
K-67	NMe ₂	CI	Н	Н	Н	COSEt	Et	Et
K-68	Me	NEt ₂	Н	Н	H	COSEt	Et	Et
K-69	Н	NEt ₂	Me	Н	H	COSEt	Et	Et
K-70	Bus	Н	Н	Н	Н	COSEt	Et	Et
K-71	OMe	Н	OMe	Н	Н	COSEt	Et	Et
K-72	Н	OMe	OMe	Н	Н	COSEt	Et	Et
K-73	Н	OMe	OEt.	Н	Н	COSEt	Et	Et
K-74	H	OEt	OMe	Н	H	COSEt	<u>Et</u>	Et
K-75	H	OEt	OEt	Н	Н	COSEt	Et	Et

(表71)

n	Π							
	R¹_	R²	R³	R⁴	R⁵	R ⁶	R ⁷	₽ ⁸
L-1	Н	Н	Ξ	Н	Н	COSMe	Et	Et
L-2	CI	Н	Ι	Н.	Н	COSMe	Et	Et
L-3	Br	Н	Τ	Н	Н	COSMe	Et	Et
L-4	Ме	Н	Τ	Н	H	COSMe	Et	Et .
L-5	Et	Н	Н	Н	Н	COSMe	Et	Et
L-6	Pr	Н	I	H	I	COSMe	Et	Et
L-7	Bu	Н	Н	I	Ξ	COSMe	E	Et
L-8	Bu ⁱ	Н	Н	H	Ŧ	COSMe	Et	Et
L-9	Bu¹	Н	H	Τ	Ι	COSMe	Et	Et
L-10	OMe	H	Н	Н	H	COSMe	Et	Et
L-11	OEt	Н	Н	Н	Н	COSMe	Et	Et
L-12	OPr ⁱ	Н	Н	Н	Ι	COSMe	Et	Et
L-13	OPr	Н	Н	Τ	Н	COSMe	Et	Ę
L-14	OCHF ₂	Н	Н	Н	Ι	COSMe	Et	Et
L-15	OCF ₃	Н	Н	Ι	Η	COSMe	Et	Et
L-16	CF ₃	Н	Н	Н	Ι	COSMe	Ę	Et
L-17	SMe	Н	Н	Н	Ι	COSMe	Et	Et
L-18	SEt	Н	Н	Н	Ή	COSMe	Et	Et
L-19	SPr ⁱ	Н	Н	H	Τ	COSMe	Et	Et
L-20	NMe ₂	Ι	Н	H	Н	COSMe	Et	Et
L-21	NEt ₂	Н	Н	Н	H	COSMe	Et	Et
L-22	Н	CI	Н	Н	H	COSMe	Et	Et :
L-23	Н	Br	Н	<u>H</u>	Н	COSMe	Et	Et
L-24	Н	Me	Н	Н	Н	COSMe	Et	Et
L-25	Н	Et	Н	Н	Н	COSMe	Et	Et

(表72)

n	n							
	R¹	R ²	₽³	R⁴	R⁵	R⁵	R ⁷	R ⁸
L-26	Н	Pr	I	Τ	Н	COSMe	Et	Et
L-27	Н	Pr ⁱ	Ξ	Ι	Н	COSMe	Et	Et
L-28	H	Bu	H	Τ	I	COSMe	Et	Et
L-29	Н	· Bu′	H	Τ	I	COSMe	Et	Et
L-30	Н	Bu⁵	Ι	H	Τ	COSMe	Et	Et
L-31	Н	Bu ^t	H	Н	Ι	COSMe	Et	Et
L-32	Н	OMe	Н	I	I	COSMe	Et	Et
L-33	Н	OEt	Н	H	Ι	COSMe	Et	Et
L-34	H	OPr	Н	Ξ	Ι	COSMe	Et	Et
L-35	Н	OPr ⁱ	I	Τ	Ι	COSMe	Et	Et
L-36	Н	OCHF ₂	I	I	Ι	COSMe	Et	Et
L-37	Н	OCF ₃	H	Ι	Ι	COSMe	Έt	Et
L-38	Н	CF ₃	Η	I	Η	COSMe	Et	Et
L-39	Н	SMe	Н	Ι	H	COSMe	Et	Et
L-40	Н	SEt	Η	Ι	Ι	COSMe	Et	Et
L-41	Н	SPr'	Η	I	H	COSMe	Et	Et
L-42	Н	NMe₂	Н	Ι	Н	COSMe	Et	Et
L-43	Н	NEt ₂	H	Н	Н	COSMe	Et	Et
L-44	Н	Н	CI	Н	H	COSMe	Et	Et
L-45	Н	Н	Br	Н	Н	COSMe	Et	Et
L-46	Н	Н	Me	Н	Н	COSMe	Et	Et
L-47	Н	Н	Et	Н	Н	COSMe	Et	Et
L-48	Н	H	Pr	Н	Н	COSMe	Et	Et
L-49	Н	Н	Pr ⁱ	Н	H	COSMe	Et	Et
L-50	Н	Н	Bu	Н	Н	COSMe	Et	Et

(表73)

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{6}$$

R⁴	₽°		•					
	R¹	R ²	R³	R⁴	R ⁵	R ⁶	R ⁷	R ⁸
L-51	Н	H	Bu ⁱ	H	H	COSMe	Et	Et
L-52	H.	Н	Bu ^s	Н	H	COSMe	Et	Et
L-53	Н	H	Bu ^t	H	Н	COSMe	Et	Et
L-54	Н	H	OMe	Н	Η.	COSMe	Et	Et
L-55	Н	Н	OEt	Н	Н	COSMe	Et	Et
L-56	Н	I	OPr	Н	Τ	COSMe	Et_	Et
L-57	Н	I	OPr ⁱ	H	H	COSMe	Et	Et
L-58	Н	H	OCHF ₂	Н	Η	COSMe	Et	Et
L-59	Н	Н	OCF ₃	H	Н	COSMe	Et	<u>Et</u>
L-60	Н	Н	CF ₃	· H	Н	COSMe	Et	Et
L-61	Н	Н	SMe	Η	Н	COSMe	Et	Et
L-62	Н	Н	SEt	Н	Н	COSMe	Et	Et
L-63	Н	Н	SPr ⁱ	Ή	Н	COSMe	Et	Et
L-64	Н	Н	NMe ₂	Η	Н	COSMe	Et	Et
L-65	Н	Н	NEt ₂	Η	H	COSMe	Et	Et
L-66	Me	NMe ₂	Н	Н	H	COSMe	Et	Et
L-67	NMe ₂	CI	Н	Ι	Н	COSMe	Et	· Et
L-68	Me	NEt ₂	Н	H	Н	COSMe_	Et	Et
L-69	Н	NEt ₂	Me	H	Н	COSMe	Et	Et
L-70	Bus	Н	Н	Н	<u> H</u>	COSMe	<u>Et</u>	Et
L-71	Pr'	Н	Н	H	H	COSMe	Et	Et
L-72	Н	OMe	OMe	Н	H	COSMe	Et	Et
L-73	Н	OMe	OEt	Н	Н	COSMe	Et	Et
L-74	Н	OEt	OMe	Н	Н	COSMe	Et	Et
L-75	Н	OEt	OEt	Н	Н	COSMe	<u>Et</u>	Et

(表74)

R™.						
R¹	R ²	R³	R ⁴	R⁵	R ⁶ _	R ⁷ R ⁸
Н	Н	Н	Η	H	COSMe	-(CH ₂) ₄ -
CI	Н	Н	H	H	COSMe	-(CH ₂) ₄ -
Br	Н	Н	Н	Η	COSMe	-(CH ₂) ₄ -
Me	Н	Н	Н	H	COSMe	-(CH ₂) ₄ -
Et	Н	Н	Н	H	COSMe	-(CH ₂) ₄ -
Pr	Н	Н	Н	H	COSMe	-(CH ₂) ₄ -
Bu	Н	Н	Н	Н	COSMe	-(CH ₂)₄-
Bu ⁱ	Н	Н	Η	Η	COSMe	-(CH ₂) ₄ -
Bu ^t	Н	Н	Н	Н	COSMe	-(CH ₂) ₄ -
OMe	Н	Н	Н	Н	COSMe	-(CH ₂) ₄ -
OEt	Н	Н	Η	Н	COSMe	-(CH₂)₄-
OPr'	Н	Н	Н	H	COSMe	-(CH ₂) ₄ -
OPr	Н	Н	H	Н	COSMe	-(CH₂)₄-
OCHF ₂	I	H	H	Н	COSMe	-(CH₂)₄-
	Ξ	Н	H	Н	COSMe	-(CH ₂) ₄ -
	Н	Н	H	Н	COSMe	-(CH ₂) ₄ -
SMe	I	Н	Н	H		-(CH ₂) ₄ -
SEt	Н	Н	Н	<u>H</u>	COSMe	-(CH ₂) ₄ -
SPr ⁱ	Н	Н	Н	H	COSMe	-(CH ₂) ₄ -
	Н	Н	Н	Н	COSMe	-(CH ₂) ₄ -
	Н	Н	Н	Н	COSMe	-(CH ₂) ₄ -
Н	CI	Н	Н	Н	COSMe	-(CH ₂)₄-
Н	Br	Н	Н	Н	COSMe	-(CH ₂) ₄ -
Н	Me	Н	Н	Н	COSMe	-(CH ₂)₄-
Н	Et	Н	Н	H	COSMe	-(CH ₂) ₄ -
	R¹ H CI Br Me Et Pr Bu Bu' OMe OEt OPr' OPr OCHF2 OCF3 CF3 SMe SEt SPr' NMe2 NEt2 H H H	R¹ R² H H CI H Br H Me H Et H Pr H Bu H Bu' H OME H OPr' H OPr H OCHF2 H OCF3 H CF3 H SME H SEt H SPr' H NMe2 H NEt2 H NEt2 H H CI H Br H Me	R¹ R² R³ H H H CI H H Br H H Me H H Et H H Pr H H Bu H H Bu' H H Bu' H H OMe H H OMe H H OPr' H H OPr' H H OCF3 H H OCF3 H H SMe H H SEt H H NMe2 H H NEt2 H H H CI H H Br H NEt2 H H H Me H	R¹ R² R³ R⁴ H H H H CI H H H Br H H H Me H H H Me H H H Me H H H Pr H H H Bu H H H Bu' H H H OMe H H H OMe H H H OFt' H H H OPr' H H H OCF3 H H H SMe H H H SMe H H H SPr' H H H NEt2 H H H H H H H H H H H	R¹ R² R³ R⁴ R⁵ H H H H H H Br H H H H H Br H H H H H Me H	R¹ R² R³ R⁴ R⁵ R⁵ H H H H H COSMe CI H H H H COSMe Br H H H H COSMe Me H H H H COSMe Et H H H H COSMe Pr H H H H COSMe Bu' H H H H COSMe Bu' H H H H COSMe OMe H H H H COSMe OMe H H H H COSMe OPr' H H H H COSMe OCF3 H H H H H COSMe OCF3 H H H H H H COSMe SEt H </td

(表75)

R ⁴ F	₹ ⁵							
	R¹	R ²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
M-26	Н	Pr	H	Ι	Ι	COSMe		12)4-
M-27	Н	Pr ⁱ	Н	Ι	Τ	COSMe		12)4-
M-28	Н	Bu	H	Ξ	Ι	COSMe		12)4-
M-29	Н	Bu [/]	Н	Н	Ι	COSMe	-(CF	12)4-
M-30	H.	Bu⁵	H	Н	Τ	COSMe	-(CH	12)4-
M-31	Н	Bu ^t	H	H	Ι	COSMe	-(CH	12)4-
M-32	Н	OMe	Н	Н	Ι	COSMe	-(CH	12)4-
M-33	. Н	OEt	H	Н	I	COSMe	-(CH	12)4-
M-34	H	OPr	I	Н	Η	COSMe	-(CH	12)4-
M-35	Н	OPr ⁱ	H	·H	Н	COSMe		12)4-
M-36	Н	OCHF ₂	Н	Н	Н	COSMe	-(CH	12)4-
M-37	H	OCF ₃	Н	Н	Η	COSMe	-(CH	12)4-
M-38	Н	CF ₃	Н	Н	Н	COSMe		12)4-
M-39	Н	SMe	H	Н	Н	COSMe		12)4-
M-40	H	SEt	Н	Н	Н	COSMe	-(CH	12)4-
M-41	Н	SPr ⁱ	Н	Н	Н	COSMe		12)4-
M-42	Н	NMe ₂	H	Н	H	COSMe		12)4-
M-43	Н	NEt ₂	Н	H	Н	COSMe		12)4-
M-44	Н	H	CI	Н	Н	COSMe		12)4-
M-45	Н	Н	Br	Н	Н	COSMe_		1 ₂) ₄ -
M-46	Н	Н	Ме	Н	H	COSMe		H ₂) ₄ -
M-47	Н	Н	Et	H	<u>H</u>	.COSMe		H ₂) ₄ -
M-48	Н	Н	Pr	Н	Н	COSMe		H ₂) ₄ -
M-49	Н	Н	Pr ⁱ	Н	Н	COSMe	-(CI	H₂)₄-
M-50	Н	Н.	Bu	Н	Н	COSMe	-(CI	H ₂) ₄ -

(表76)

$$R^3$$
 R^4
 R^5
 R^7
 R^8

R⁴ Ì	२ ⁵						
	R¹	R²	R³	R⁴	R⁵	R ⁶	R ⁷ R ⁸
M-51	Н	H	Bu ⁱ	Н	H	COSMe	-(CH ₂) ₄ -
M-52	Н	Н	Bu⁵	H	Н	COSMe	-(CH ₂)₄-
M-53	Н	Н	Bu ^r	H	Н	COSMe	-(CH ₂)₄-
M-54	Н	Н	OMe	Н	Η	COSMe	-(CH ₂) ₄ -
M-55	Н	Н	OEt	H	Н	COSMe	-(CH ₂) ₄ -
M-56	Н	Н	OPr	Н	H _	COSMe	-(CH ₂)₄-
M-57	Н	Н	OPr'	Н	Н	COSMe	-(CH ₂)₄-
M-58	Н	Н	OCHF ₂	Н	H	COSMe	-(CH ₂) ₄ -
M-59	Н	Н	OCF ₃	Н	H	COSMe	-(CH ₂) ₄ -
M-60	Н	Н	CF₃	H	Н	COSMe	-(CH ₂) ₄ -
M-61	Н	Н	SMe	H	H	COSMe	-(CH ₂)₄-
M-62	Н	Н	SEt	Н	H	COSMe	-(CH ₂) ₄ -
M-63	Н	Н	SPr ⁱ	Н	H	COSMe	-(CH ₂) ₄ -
M-64	H	Н	NMe₂	Н	H	COSMe	-(CH ₂) ₄ -
M-65	Н	Н	NEt ₂	Н	Н	COSMe	-(CH ₂) ₄ -
M-66	Me	NMe ₂	Н	Н	Н	COSMe	-(CH ₂) ₄ -
M-67	NMe ₂	CI	Н	Н	H	COSMe	-(CH ₂) ₄ -
M-68	Me	NEt ₂	Н	Н	Н	COSMe	-(CH ₂) ₄ -
M-69	H .	NEt ₂	Me	Н	Н	COSMe	-(CH ₂) ₄ -
M-70	Bus	Н	Н	Н	Н	COSMe	-(CH ₂) ₄ -
M-71	Pr ⁱ	Н	Н	Н	Н	COSMe	-(CH ₂) ₄ -
M-72	Н	OMe	OMe	H	Н	COSMe	-(CH ₂) ₄ -
M-73	Н	OMe	OEt	H	H	COSMe	-(CH ₂) ₄ -
M-74	Н	OEt	OMe	Н	Н	COSMe	-(CH ₂) ₄ -
M-75	Н	OEt	OEt	Н	H	COSMe	-(CH ₂) ₄ -

(表77)

_							
	R¹	R ²	R³	n	R ⁶	R ⁷	R ⁸
R-1	Н	Н	Н	1	CSSMe	Me	Me_
R-2	CI	Н	Н	1	CSSMe	Me	Me
R-3	Br	Н	Н	1	CSSMe	Me	Me
R-4	Me	H	Н	1	CSSMe	Me	Me
R-5	Et	Н	Н	1	CSSMe	Me	Me
R-6	Pr	H	Н	1	CSSMe	Me	Me
R-7	Bu	н	Н	1	CSSMe	Ме	Me
R-8	Bu'	H	Н	1	CSSMe	Ме	Me
R-9	Bu'	H	Н	1	CSSMe	Me	Me
R-10	Pr'	— <u>'</u>	Н	1	CSSMe	Me	Me
R-10 R-11	OEt	H	Н	1	CSSMe	Me	Ме
R-11 R-12	OPr'	H	Н	1	CSSMe	Ме	Ме
R-12	OPr	Н	Н	1	CSSMe	Me	Me
R-13 R-14	OCHF ₂	. H	Н	1	CSSMe	Ме	Ме
	OCF ₃	Н	Н	1	CSSMe	Me	Ме
R-15	CF ₃	H	H	1	CSSMe	Me	Me
R-16	SMe	H	H	1	CSSMe	Me	Ме
R-17	SEt	H	Н Н	1	CSSMe	Me	Me
R-18	SPr'	H	H	1	CSSMe	Me	Me
R-19	NMe ₂	H	H	1	CSSMe	Me	Me
R-20		H	H	1	CSSMe	Me	Me
R-21	NEt ₂	Ci	H	1	CSSMe	Me	Me
R-22	H	Br	Н	1	CSSMe	Me	Me
R-23	<u> </u>	Me	H	1	CSSMe	Me	Me
R-24	H		H	 	CSSMe	Me	Me
R-25	Н	<u>Et</u>	<u> </u>	<u> </u>	1 3001110	1	

(表78)

	R¹	R ²	R³	n	R ⁶	R ⁷	R ⁸
R-26	Н	Pr	Н	1	CSSMe	Ме	Me
R-27	Н	Pr ⁱ	Н	1	CSSMe	Me	Me
R-28	H	Bu	Н	1	CSSMe	Me	Ме
R-29	Н	Bu ⁱ	Н	1	CSSMe	Me	Ме
R-30	Н	Bus	H	1	CSSMe	Me	Me
R-31	. н	Bu'	Н	1	CSSMe	Me	Me
R-32	Н	OMe	Н	1	CSSMe	Me -	Ме
R-33	Н	OEt ·	H	1	CSSMe	Me	Me
R-34	Н	OPr	Н	1	CSSMe	Me	Me
R-35	Н	OPr ⁱ	Н	1	CSSMe	Me	Ме
R-36	Н	OCHF ₂	Н	1	CSSMe	Me	Me
R-37	Н	OCF ₃	Н	1	CSSMe	Me	Me
R-38	Н	CF ₃	Н	1	CSSMe	Me	Me
R-39	Н	SMe	Н	1	CSSMe	Me	Me
R-40	Н	SEt	Н	1	CSSMe	Me	Me
R-41	H	SPr ⁱ	Н	1	CSSMe	Me	Me
R-42	Н	NMe ₂	Н	1	CSSMe	Me	Me
R-43	Н	NEt ₂	Н	1	CSSMe	Me	Me
R-44	CI	Н	CI	1	CSSMe	Me	Me
R-45	Н	Н	Br	1	CSSMe	Me	Me
R-46	Н	Н	Me	1	CSSMe	Me	Me
R-47	Н	Н	Et	1	CSSMe	Me	Me
R-48	Н	Н	Pr	1	CSSMe	Me	Ме
R-49	Н	Н	Pr ⁱ	1	CSSMe	Me	Me
R-50	Н	Н	Bu	1	CSSMe	Me	Me

(表79)

$$R^{2}$$
 R^{1}
 $CH_{2})_{n}$
 R^{6}

	R¹	R²	R ³	n	R ⁶	R ⁷	R ⁸
R-51	Н	H	Bu ⁱ	1	CSSMe	Me	Me
R-52	H	Н	Bu⁵	1	CSSMe	Me	Me
R-53	H	Н	Bu'	1	CSSMe	Me	Me
R-54	Н	H	OMe	1	CSSMe	Me	Me
R-55	H	I	OEt	1	CSSMe	Me	Me
R-56	H	Н	OPr	1	CSSMe	Me	Me
R-57	Н	Н	OPr'	1	CSSMe	Ме	Me
R-58	Н	Н	OCHF ₂	1	CSSMe	Me.	Me
R-59	H	Н	OCF ₃	1	CSSMe	Me	Me
R-60	Н	Н	CF ₃	1	CSSMe	Me	Me
R-61	Н	H	SMe	1	CSSMe	Ме	Me
R-62	Н	Н	SEt	1	CSSMe	Ме	Me
R-63	Н	Н	SPr ⁱ	1	CSSMe	Ме	Ме
R-64	H	Н	NMe ₂	1	CSSMe	Me	Me
R-65	H	Н	NEt ₂	1	CSSMe	Ме	Me
R-66	Me	NMe ₂	Н	1	CSSMe	Me	Me
R-67	NMe ₂	CI	Н	1	CSSMe	Me .	Ме
R-68	Me	NEt ₂	Н	1	CSSMe	Me	Me
R-69	Н	NEt ₂	Me	1	CSSMe	Me	Me
R-70	Bus	Н	Н	1	CSSMe	Me	Me
R-71	OMe	Н	OMe	1	CSSMe	Me	Me
R-72	Н	OMe	. OMe	1	CSSMe	Ме	Ме
R-73	H	OMe	OEt	1	CSSMe	Me	Me
R-74	Н	OEt	OMe	1	CSSMe	Ме	Ме
R-75	Н	OEt	OEt	1	CSSMe	Me	Me

(表80)

$$R^{2}$$
 R^{1} R^{3} $(CH_{2})_{n}$ N R^{6}

	R¹	R ²	R³	n	R ⁶	R ⁷	R ⁸
0.1	H	H	H	2	CSSMe	Me	Me
0-1	CI	H	H	2	CSSMe	Me	Me
0-2		Н Н	H	2	CSSMe	Me	Me
0-3	Br			2	CSSMe	Me	Me
0-4	Me	H	H				
O-5	Et	Н	T	2	CSSMe	Ме	Me
0-6	Pr	. Н	Н	2	CSSMe	Me	Me
0-7	Bu	H	H	2	CSSMe	Me	Ме
0-8	Bu'	Ϊ	H	2	CSSMe	Me	Me
0-9	Bu ^r	H	Н	2	CSSMe	Me	Me
O-10	Pr'	H	Н	2	CSSMe	Ме	Me
0-11	OEt	I	Н	2	CSSMe	Me	Me
0-12	OPr ⁱ	Н	Н	2	CSSMe	Ме	Me
O-13	OPr	H	Н	2	CSSMe	Ме	Me
0-14	OCHF,	Н	Н	2	CSSMe	Me	Me
0-15	OCF ₃	Н	Н	2	CSSMe	Ме	Me
0-16	CF ₃	Н	Н	2	CSSMe	Me	Me
0-17	SMe	Н	Н	2	CSSMe	Me	Me
0-18	SEt	Н	Н	2	CSSMe	Me	Ме
0-19	SPr ⁱ	Н	Н	2	CSSMe	Me	Me
0-20	NMe ₂	H	Н	2	CSSMe	Me	Me
0-21	NEt ₂	Н	Н	2	CSSMe	Me	Ме
0-22	H	ĊI	Н	2	CSSMe	Me	Me
0-23	H	Br	H	2	CSSMe	Me	Me
	H	Me	Н	2	CSSMe	Me	Me
0-24	H	Et	Н Н	2	CSSMe	Me	Me
0-25	<u> </u>		<u> </u>		1 3000	1	1

(表81)

$$R^2$$
 R^1
 R^3
 $(CH_2)_n$ - N
 R^6

	R¹	R ²	R³	m	∏ R ⁶	R ⁷	R ⁸
0.06	H H	Pr	H	2	CSSMe	Me	Me
0-26	Н Н	Pri	— 	2	CSSMe	Me	Me
0-27		Bu	H	2	CSSMe	Me	Me
O-28	Н		Н Н	2	CSSMe	Me	Me
0-29	H	Bu ⁱ			CSSMe	Me	Me
O-30	H	Bu⁵	H	2			
O-31	H	Bu'	H	2	CSSMe	Me	Me
O-32	H	OMe	Н	2	CSSMe	Me	Me
O-33	. Н	OEt	H	2	CSSMe	Me	Me
0-34	Н	OPr	H	2	CSSMe	Me	Me
0-35	Н	OPr ⁱ	Н	2	CSSMe	Me	Me
0-36	Н	OCHF ₂	Н	2	CSSMe	Ме	Me
0-37	Н	OCF ₃	H	2	CSSMe	Ме	Me
Q-38	Н	CF ₃	Н	2	CSSMe	Ме	Me
0-39	Н	SMe	Н	2	CSSMe	Ме	Me
0-40	Н	SEt	Н	2	CSSMe	Ме	Me
0-41	Н	SPr ⁱ	Н	2	CSSMe	Me	Me
0-42	Н	NMe ₂	Н	2	CSSMe	Ме	Me
0-43	Н	NEt ₂	Н	2	CSSMe	Me	Ме
0-44	F	H ^	F	2	CSSMe	Me	Me
0-45	H	Н	Br	2	CSSMe	Ме	Ме
0-46	Н	Н	Me	2	CSSMe	Me	Me
0-47	Н	Н	Et	2	CSSMe	Ме	Me
0-48	Н	Н	Pr	2	CSSMe	Me	Me
0-49	H H	H	Pr'	2	CSSMe	Me	Me
0-50	H	Н Н	Bu	2	CSSMe	Me	Me

(表82)

$$R^3$$
 R^2
 $(CH_2)_n$ -N
 R^6

	R¹	R²	R³	n	R ⁶	R ⁷	R*
O-51	Н	Н	Bu ⁱ	2	CSSMe	Ме	Me
O-52	Н	Н	Bu⁵	2	CSSMe	Ме	Me
O-53	Н	H	Bu ^t	2	CSSMe	Ме	Me
O-54	Н	H	OMe	2	CSSMe	Me	Me
O-55	H	Н	OEt	2	CSSMe	Ме	Me
O-56	Н	Н	OPr	2	CSSMe	Ме	Me
0-57	Н	I	OPr ⁱ	2	CSSMe	Me :	Me
O-58	Н	Н	OCHF ₂	2	CSSMe	Me	Me
0-59	Н	Н	OCF ₃	2	CSSMe	Me	Me
O-60	Η	Н	CF ₃	2	CSSMe	Ме	Me
O-61	H	Н	SMe	2	CSSMe	Me	Me
O-62	Н	Н	SEt	2	CSSMe	Me	Me
O-63	Н	Н	SPr ⁱ	2	CSSMe	Me	Me
0-64	Н	Н	NMe ₂	2	CSSMe	Me	Me
0-65	Н	Н	NEt ₂	2	CSSMe	Me	Me
0-66	Me	NMe ₂	Н	2	CSSMe	Me	Ме
0-67	NMe ₂	CI	Н	2	CSSMe	Me	Ме
O-68	Me	NEt ₂	Н	2	CSSMe	Me	M <u>e</u>
0-69	Н	NEt ₂	Me	2	CSSMe	Me	Me
0-70	Bu³	Н	Н	2	CSSMe	Me	Me
0-71	OMe	Н	OMe	2	CSSMe	Me	Me
0-72	Н	OMe	OMe	2	CSSMe	Me	Ме
0-73	Н	OMe	OEt	2	CSSMe	Me	Me
0-74	Н	OEt	OMe	2	CSSMe	Me	Me
0-75	Н	OEt	OEt	2	CSSMe	Me	Me

(表83)

$$R^3$$
 R^3
 $(CH_2)_n$
 R^7
 R^8

R¹	R ²	R ³	n	R ⁶	R ⁷	R₽
Н	Н	Н	1	CSSMe	Et	Et
CI	Н	Н	1	CSSMe	Et.	Et
Br	н	H	1	CSSMe	Et	Et
		Н	1	CSSMe	Et	Et
	Н	Н	1	CSSMe	Et	Et
		Н	1	CSSMe	Et	Et
		Н	1	CSSMe	Et	Et
	Н	Н	1	CSSMe	Et	Et
	Н	Н	1	CSSMe	Et	Et
		Н	1	CSSMe	Et	Et
		Н	1	CSSMe	Et	Et
	н	Н	1	CSSMe	Et	Et
	Н	Н	1	CSSMe	Et	Et
		Н	1	CSSMe	Et	Et
		Н	1	CSSMe	Et	Et
		Н	1	CSSMe	Et	Et
		Н	1	CSSMe	Et	Et
		Н	1	CSSMe	Et	Et
	Н	Н	1	CSSMe	Et	Et
	Н	Н	1	CSSMe	Et	Et
		Н	1	CSSMe	Et	Et
		Н	1	CSSMe	Et	Et
	Br	Н	1	CSSMe	Et	Et .
	Me	Н	1	CSSMe	Et	Et
H	Et	Н	1	CSSMe	Et	Et
	CI Br Me Et Pr Bu Bu' Bu' Pr' OEt OPr OCHF ₂ OCF ₃ SMe SEt SPr' NMe ₂ NEt ₂ H H	H H CI H Br H Me H Et H Pr H Bu H Bu' H Pr' H OEt H OPr' H OCHF ₂ H OCF ₃ H SMe H SEt H SPr' H NMe ₂ H NEt ₂ H H R H R H Br H Me	H H H H CI H H Br H H Me H H Et H H Pr H H Bu H H Bu' H H Bu' H H OEt H H OPr' H H OFF	H H H H 1 CI H H H 1 Br H H H 1 Br H H H 1 Me H H H 1 Et H H H 1 Pr H H H 1 Bu H H H 1 Bu' H H H 1 Pr' H H H 1 OEt H H H 1 OPr' H H H 1 OPr' H H H 1 OPr' H H H 1 OCHF ₂ H H H 1 SMe H H H 1 SMe H H H 1 SEt H H H 1 SEt H H H 1 SEt H H H 1 NEt ₂ H H H 1 NMe ₂ H H H 1 NMe ₂ H H H 1 NMe ₂ H H H 1 NEt ₂ H H 1 H Br H 1 H Me H 1	H	H

(表84)

$$R^{2}$$
 R^{1} R^{3} $(CH_{2})_{n}$ R^{0} R^{6}

R¹	R ²	R ³	n	R⁵	R ⁷	R ⁸
	Pr	Н	1	CSSMe	Et	Et
	Pr ⁱ	H	1	CSSMe	Et	Et
Н	Bu	Н	1	CSSMe	Et	Et
Н	Bu ⁱ	H	1	CSSMe	Et	Et
Н	Bu⁵	Н	1	CSSMe	Et	Et
Н	Bu ^t	Н	1	CSSMe	Et	Et
	OMe	Н	1	CSSMe	Et	Et
	OEt	Н	1	CSSMe	Et	Et
	OPr	Н	1	CSSMe	Et	Et
	OPr'	Н	1	CSSMe	Et	Et
	OCHF ₂	H	1	CSSMe	Et	Et
		Н	1	CSSMe	Et	Et
Н		Н	1	CSSMe	Et	Et
Н	SMe	Н	1	CSSMe	Et	Et
Н	SEt	Н	1	CSSMe	Et	<u>Et</u>
Н	SPr ⁱ	Н	1	CSSMe		Et
Н	NMe ₂	Н	1	CSSMe	Et	Et /
Н	NEt ₂	Н	1	CSSMe	Et	Et :
OMe	Н	Н	1	CSSMe		Et
Н	Н	Br	1	CSSMe		Et
Н	Н	Ме	1	CSSMe	Et	Et
Н	Н	Et	1	CSSMe	Et	Et
Н	Н	Pr	1	CSSMe	Et	Et
Н	Н	Pr ⁱ	1	CSSMe	Et	Et
Н	Н	Bu	1	CSSMe	Et	Et
	H H H H H H H H H H H H H H H H H H H	H Pr H Pr' H Bu H Bu' H Bu' H OMe H OEt H OPr H OPr' H OCHF2 H OCF3 H SMe H SEt H SPr' H NMe2 H NEt2 OMe H H H	H Pr H H Pr' H H Bu H H Bu' H H Bu' H H OMe H H OEt H H OPr H H OPr' H H OCHF2 H H OCF3 H H SMe H H SEt H H SEt H H SPr' H H NMe2 H H NEt2 H OMe H H NEt2 H OMe H H NEt2 H OMe H H NEt2 H OMe H H NEt2 H OMe H H H H H Pr	H Pr H 1 H Pr' H 1 H Bu H 1 H Bu' H 1 H Bu' H 1 H Bu' H 1 H OME H 1 H OPr H 1 H OPr' H 1 H OCHF2 H 1 H OCF3 H 1 H SEt H 1 H SEt H 1 H SEt H 1 H SPr' H 1 H NMe2 H 1 H NEt2 H 1 OME H 1 H NEt2 H 1 H NEt2 H 1 H NEt2 H 1 H NEt2 H 1 H H H Br 1 H H H Pr 1 H H H Pr' 1	H	H

(表85)

$$R^{3}$$
 R^{3}
 $(CH_{2})_{n}$ - N
 R^{7}
 R^{8}

R¹			n			R⁵
Н	Н	Bu ⁱ	1		Et	Et
Н	I	Bu ^s	1	CSSMe	Et	Et
Н	Н	Bu ^t	1	CSSMe		Et
Н	Н	OMe	1	CSSMe	Et	Et
Н	Н	OEt	1	CSSMe	Et	Et
Н	Н	OPr	1	CSSMe	Et	Et
Н	Н	OPr ⁱ	1	CSSMe	Et	Et
Н	Н	OCHF ₂	1	CSSMe	Et	Et
Н	H	OCF ₃	1	CSSMe	Et	Et
Н	H	CF ₃	1	CSSMe	Et	Et
Н	H	SMe	1	CSSMe	Et	Et
Н	Н	SEt	1	CSSMe	Et	Et
Н	Н	SPr ⁱ	1	CSSMe	Et	Et
Н	Н	NMe ₂	1	CSSMe	Et	Et
Н	Н	NEt ₂	1	CSSMe	Et	Et
Me	NMe ₂	Н	1	CSSMe	Et	Et
	CI	Н	1	CSSMe	Et _	Et
Me	NEt ₂	Н	1	CSSMe	Et	Et
Н		Me	1	CSSMe	Et	Et
Bus	Н	Н	1	CSSMe	Et	Et
OMe	Н	OMe	1	CSSMe	Et	Et
	OMe	OMe	1	CSSMe	Et	Et
Н	OMe	OEt	1	CSSMe	Et	Et
	OEt	OMe	1	CSSMe	Et	Et
Н	OEt	OEt	1	CSSMe	Et	Et
	H H H H H H H H H H H H H H H H H H H	H H H H H H H H H H H H H H H H H H H	H H Bu' H H Bu' H H Bu' H H OMe H H OEt H H OPr H H OPr' H H OCHF2 H H CF3 H H SMe H H SEt H H SEt H H NEt2 H NEt2 H NEt2 H NMe Bu' H NEt2 H NEt2 H OMe H OMe H OMe H OMe H OMe OMe H OMe OMe H OMe OMe	H H Bu' 1 H H Bu' 1 H H Bu' 1 H H Bu' 1 H H OMe 1 H H OME 1 H H OPr 1 H H OPr 1 H H OCHF2 1 H H OCF3 1 H H CF3 1 H H SME 1 H H SSE 1 H H SSE 1 H H SPr' 1 H H NMe2 1 H H NEt2 1 Me NMe2 H 1 NMe2 CI H 1 NMe2 CI H 1 NMe2 NEt2 H 1 NMe4 NEt2 H 1 NMe5 NEt2 H 1 NMe5 NEt2 H 1 NMe6 NEt2 H 1 NMe7 NEt2 Me 1 NMe8 NEt2 H 1 NMe8 NEt2 H 1 NMe9 OMe 1 NMe9 OMe 1 H OME OME 1	H H Bu' 1 CSSMe H H Bu' 1 CSSMe H H Bu' 1 CSSMe H H OMe 1 CSSMe H H OPr 1 CSSMe H H OPr' 1 CSSMe H H OCF3 1 CSSMe H H OCF3 1 CSSMe H H SMe 1 CSSMe H H SMe 1 CSSMe H H SSPr' 1 CSSMe H H NMe2 1 CSSMe H H NMe2 1 CSSMe NMe NMe2 H 1 CSSMe NMe NEt2 H 1 CSSMe Me NEt2 H 1 CSSMe H NEt2 Me 1 CSSMe <td> H</td>	H

(表86)

	R ¹	R²	R³	n	R ⁶	R ⁷ ·	R ⁸
Q-1	Н	Н	Н	2	CSSMe	Et	Et
Q-2	CI	H	Н	2	CSSMe	Et	Et
Q-3	Br	Н	H	2	CSSMe	Et	Et
Q-4	Me	Н	Н	2	CSSMe	Et	Et
Q-5	Et	H	I	2	CSSMe	Et	Et
Q-6	Pr	Н	Н	_2	CSSMe	Et	Et
Q-7	Bu	H	Н	2	CSSMe	Et	Et
Q-8	Bu ⁱ	Н	H	2	CSSMe	Et	Et
Q-9	Bu ^t	Н	Н	2	CSSMe	Et	Et
Q-10	Pr ⁱ	I	H	2	CSSMe	Et	Et
Q-11	OEt	Н	I	2	CSSMe	Et	Et
Q-12	OPr'	Η	H	2	CSSMe	Et _	Et
Q-13	OPr	Н	I	2	CSSMe	Et	Et
Q-14	OCHF ₂	Н	H	2	CSSMe	Et	Et
Q-15	OCF₃	Н	H	2	CSSMe	Et	Et
Q-16	CF₃	H	H	2	CSSMe	Et	Et
Q-17	SMe	Н	Н	2	CSSMe	Et	Et
Q-18	SEt	Н	H	2	CSSMe	Et	Et
Q-19	SPr'	Н	Н	2	CSSMe	Et	Et
Q-20	NMe ₂	Н	H	2	CSSMe	Et	Et
Q-21	NEt ₂	Н	Н	2	CSSMe	Et	. Et
Q-22	Н	CI	Н	2	CSSMe	Et	Et
Q-23	Н	Br	H	2	CSSMe	Et	Et .
Q-24	Н	Me	Н	2	CSSMe	Et	Et
Q-25	Н	Et	Н	2	CSSMe	Et	Et

(表87)

$$R^{2}$$
 R^{1} R^{1} R^{8} R^{8} R^{8} R^{1} R^{1} R^{1} R^{1} R^{1} R^{1} R^{1} R^{2} R^{3} R^{3} R^{1} R^{1} R^{2} R^{3} R^{3}

	R¹	R ²	R³	m	R ⁶	R ⁷	R ⁸
Q-26	Н	Pr	Ħ	2	CSSMe	Et	Et
Q-27	Н	Pr'	I	2	CSSMe	<u>Et</u>	Et
Q-28	Н	Bu	H	2	CSSMe	Et	Et
Q-29	Н	Bu ⁱ	Н	2	CSSMe	Et	Et
Q-30	Н	Bu⁵	Н	2	CSSMe	Et	Et
Q-31	Н	Bu ^t	Н	2	CSSMe	Et	Et
Q-32	Н	OMe	Н	2	CSSMe	Et	Et
Q-33	Н	OEt	Н	2	CSSMe	Et	Et
Q-34	Н	OPr	Н	2	CSSMe	Et	Et
Q-35	Н	OPr ⁱ	Н	2	CSSMe	Et	Et
Q-36	Н	OCHF ₂	Н	2	CSSMe	Et	Et
Q-37	Н	OCF ₃	н	2	CSSMe	Et	Et
Q-38	Н	CF₃	Н	2	CSSMe	Et	Et
Q-39	Н	SMe	Н	2	CSSMe	Et	Et
Q-40	Н	SEt	Н	2	CSSMe	Et	Et
0-41	Н	SPr ⁱ	Н	2	CSSMe	Et	Et
O-42	Н	NMe ₂	Н	2	CSSMe	Et	Et
Q-43	Н	NEt ₂	Н	2	CSSMe	Et	Et
Q-44	OMe	Н	Н	2	CSSMe	Et	Et
Q-45	Н	Н	Br	2	CSSMe	Et	Et
Q-46	Н	Н	Me	2	CSSMe	Et	Et
Q-47	Н	H	Et	2	CSSMe	Et	Et
Q-48	Н	Н	Pr	2	CSSMe	Et	Et _
Q-49	Н	Н	Pr ⁱ	2	CSSMe	Et	Et
Q-50	Н	Н	Bu	2	CSSMe	Et	Et

(表88)

$$R^2$$
 R^1
 R^3
 $(CH_2)_n$ - N
 R^6

	R¹	R ²	R ³	n	R ⁶	R ⁷	R ^B
Q-51	Н	_ н	Bu ⁱ	2	CSSMe	Et	Et
Q-52	Н	Н	Bu ^s	2	CSSMe	Et	Et
Q-53	Н	Н	Bu'	2	CSSMe	Et	Et
Q-54	Н	Н	OMe	2	CSSMe	Et	Et
Q-55	Н	Н	OEt	2	CSSMe	Et	Et
Q-56	Н	Н	OPr	2	CSSMe	Et	Et
Q-57	Н	Н	OPr ⁱ	2	CSSMe	Et	Et
Q-58	Н	Н	OCHF ₂	2	CSSMe	Et	Et
Q-59	Н	Н	OCF ₃	2	CSSMe	Et	Et
Q-60	Н	Н	CF₃	2	CSSMe	Et	Et
Q-61	I	Н	SMe	2	CSSMe	Et	Et
Q-62	I	Н	SEt	2	CSSMe	Et	Et
Q-63	I	Н	SPr ⁱ	2	CSSMe	Et	Et
Q-64	Н	Н	NMe ₂	2	CSSMe	Et	Et
Q-65	Н	H	NEt ₂	2	CSSMe	Et	Et
Q-66	Me	NMe ₂	Н	2	CSSMe	Et	Et
Q-67	NMe ₂	CI	Н	2	CSSMe	Et	Et
Q-68	Ме	NEt ₂	Н	2	CSSMe	Et	Et
Q-69	Н	NEt ₂	Me	2	CSSMe	Et	Et
Q-70	Bu⁵	Н	Н	2	CSSMe	Et	Et
Q-71	OMe	Н	OMe	2	CSSMe	Et	Et
Q-72	Н	OMe	OMe	2	CSSMe	Et	Et
Q-73	Н	OMe	OEt	2	CSSMe	Et	Et
Q-74	H	OEt	OMe	2	CSSMe	Et	Et
Q-75	Н	OEt	OEt	2	CSSMe	Et	Et

上記の本発明化合物の試験例を以下に示す。

5 試験例1 ヒト CB2 受容体結合阻害実験

10

ヒト CB2 受容体をコードする cDNA 配列 (Munro 等, Nature, 1993, 365, 61-65) を、動物細胞用発現ベクターである pSVL SV40 Late Promoter Expression Vector (Amersham Pharmacia Biotech社) のプロモーター下流域に順方向に挿入した。得られた発現ベクターを LipofectAMINE 試薬 (Gibco BRL社) を用いて、宿主細胞 CHO に使用説明書にしたがってトランスフェクションし、CB2 受容体安定発現細胞を得た。

CB2 受容体を発現させた CHO 細胞から調製した膜標品を、被検化合物及び 38,000 dpm の [³H] CP55940 (終濃度 0.5 nM: NEN Life Science Products 社製) とともに、アッセイ緩衝液 (0.5% 牛血清アルブミンを含む 50 mM Tris-HCl 緩衝液 (pH 7.4)、1 mM EDTA、3 mM MgCl2)中で、25℃、2 時間インキュベーションした後、1% ポリエチレンイミン処理したグラスフィルターGF/C にて濾過した。0.1% BSA を含む 50 mM Tris-HCl 緩衝液 (pH 7.4)にて洗浄後、液体シンチレーションカウンターにてグラスフィルター上の放射活性を求めた。非特異的結合は 10 μ M WIN55212-2 (US 5081122 記載のカンナビノイド受容体アゴニスト、Research Biochemicals International 社製)存在下で測定し、特異的結合に対する被検化合物の 50%阻害濃度 (1Csn値)を求めた。

ヒト CB1 受容体に対する結合実験は、CB1 受容体を安定発現する CHO 細胞を上記と同じ方法で作製し、その膜画分を用いて行った。これらの結合実験の結果、得られた被検化合物の各ヒトカンナビノイド受容体に対する Ki 値を表に示した。表に示したとおり、本発明の一連の化合物は、CB1 受容体に比べて CB2 受容体への CP55940 (US 4371720 記載のカンナビノイド受容体アゴニスト) の結合を選択的に阻害した。

10

1.5

1	ul#	Ω	Ω)
(50	×	9	- 3

(表89)			
化合物	Ki (nM)		
	CB1受容体	CB2受容体	
1-5	>5000	61	
1-23	>5000	29	
1-50	>5000	39	
I-51	n.t.	23	
I-52	n.t.	35	
I-56	n.t.	54	
1-6	>5000	9	
I- 5 7	4134	6	
1-69	n.t.	33	
1-60	2097	18	
I-62	n.t.	44	
I-63	n.t.	43	
1-74	n.t.	48	
1-77	n.t.	53	
I-84	>5000	35	
I-85	n.t.	25	

n.t.: not tested

10

ヒト CB2 受容体を介する cAMP 生成阻害実験

ヒト CB2 受容体を発現させた CHO 細胞に、被検化合物を添加し 15 分間インキュ 5 ベーションの後、フォルスコリン (終濃度 4 μ M、SIGMA 社) を加えて 20 分間イ ンキュベーションした。1N HCl を添加して反応を停止させた後、上清中の cAMP 量を Amersham Pharmacia Biotech 社製の EIA kit を用いて測定した。フォルスコ リン刺激による cAMP 生成をフォルスコリン無刺激に対して 100%とし、50%の抑制 作用を示す被検化合物の濃度 (IC_{so}値)を求めた。この結果得られた被検化合物 の IC; 値を表90に示す。表90に示すとおり、本発明化合物は、CB2 受容体に 対してアゴニスト作用を示した。

なお、同様に試験することにより、アンタゴニスト作用についても試験するこ とができる。

(表90)

化合物	IC ₅₀ (nM)
1-5	6.5
I-23	2.6
I-51	2.8
i-6	2.7
1-57	5.5

試験例3 ヒツジ赤血球(SRBC)誘発遅延型過敏反応(DTH)モデル実験

雌性 ddY マウス (7 週令)をヒツジ赤血球 (SRBC) 誘発遅延型過敏反応 (DTH) モデル に用いた。

カンナビノイド受容体作用薬である I-6、I-60、I-77 および I-118 は 0.6% アラビアゴム溶液に懸濁した。マウスは 10⁷ 個の SRBC を左後肢足蹠皮内(40 ml)に注射することにより感作した。その 5 日後に 10⁸ 個の SRBC を右後肢足蹠皮内(40 ml)に注射することにより DTH 反応を惹起した。薬物は DTH 反応惹起 1 時間前および 5 時間後に経口投与(10 ml/kg)した。 SRBC 注射 24 時間後に左右後肢の容積を水置換法により測定し、右足容積と左足容積の差を求めることにより足浮腫容量を算出して DTH 反応の指標とした。

データはそれぞれの化合物の抑制率で示す。統計的検定はWelchのt検定法により行ない、P<0.05のとき有意差ありと判定した。

15

10

(表91)

WO 01/19807

化合物	投与量(mg/kg)	抑制率(%)
I-6	40	45.2
1-60	30	31.1
1-77	30	33.8
I-118	30	33.0

産業上の利用可能性

10

式(I)及び式(II)で示される本発明化合物は、カンナビノイド2受容体(CB2R)に選択的に結合し、CB2Rアンタゴニスト作用またはCB2Rアゴニスト作用を示す。従って、カンナビノイド1受容体(CB1R)に由来する中枢神経系の副作用(幻覚など)を回避することができ、カンナビノイド1受容体(CB1R)に関連した依存性を引き起こすこともなく、カンナビノイド2受容体(CB2R)が関与する疾患に対して治療又は予防の目的で使用することができる。

請求の範囲

1. 式(I):

$$(CH_2)_m$$
 (I) R^2

5 (式中、 R^1 は置換されていてもよいアルキレンを表わし、 R^2 はアルキル、式:-C($=R^5$) $-R^6$ (式中、 R^6 はO又はSを表わし、 R^6 はアルキル、アルコキシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアラルキルオキシ、置換されていてもよいアラルキルチオ、置換されていてもよいアラルキルアミノ、アルコキシアルキル、アルキルチオアルキル、又は置換されていてもよいアミノアルキルを表わす)で示される基、又は式: $-SO_2R^7$ (式中、 R^7 はアルキル、置換されていてもよいアミノ、置換されていてもよいアリール、又は置換されていてもよいヘテロアリールを表わす)で示される基を表わし、 R^7 はアルキル、置換されていてもよいアミノ、置換されていてもよいアリール、口は R^7 1 は R^7 1 ないてもよい R^7 2 ないてもよい R^7 3 ないてもよい R^7 4 ないてもよい R^7 5 ない R^7 6 ない R^7 6 ない R^7 7 ない R^7 8 ない R^7 9

2. 式:

で示される基が、式:

(式中、 R^3 および R^4 はそれぞれ独立して、水素、アルキル、アルコキシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアリール、置換されていてもよいアリールオキシ、シクロアルキル、ハロゲン、ヒドロキシ、ニトロ、ハロアルキル、ハロアルコキシ、置換されていてもよいカルバモイル、カルボキシ、アルコキシカルボニル、アルキルスルフィニル、アルキルスルホニル、アルコキシアルキル、アルキルチオアルキル、置換されていてもよいアミノアルキル、アルコキシアルコキシ、アルキルチオアルコキシ、置換されていてもよいステロアリール、置換されていてもよい非芳香族複素環式基、アルコキシイミノアルキル、又は式: $-C(=O)-R^H(R^H$ は水素、アルキル、置換されていてもよいアリール、又は置換されていてもよい非芳香族複素環式基)で示される基を表わすか、又は R^3 及び R^4 は一緒になってアルキレンジオキシを表わし、Aは置換されていてもよい芳香族複素環を表わす。)である請求の範囲第1項記載の医薬組成物。

- 3. カンナビノイド2受容体親和性である請求の範囲第1項又は第2項記載の 15 医薬組成物。
 - 4. カンナビノイド2受容体作動性である請求の範囲第3項記載の医薬組成物。
 - 5. 抗炎症剤である請求の範囲第3項記載の医薬組成物。
 - 6. 免疫抑制剤である請求の範囲第3項記載の医薬組成物。
 - 7. 腎炎治療剤である請求の範囲第3項記載の医薬組成物。
- 20 8. 式(II):

10

$$\begin{array}{c|c}
R^3 & (CH_2)_m & R^1 \\
R^4 & R^2
\end{array}$$
(II)

(式中、 R^1 は置換されていてもよいアルキレンを表わし、 R^2 は式:-C (= R⁵) - R⁶ (式中、R⁵はO又はSを表わし、R⁶はアルキル、アルコキシ、アル キルチオ、置換されていてもよいアミノ、置換されていてもよいアラルキルオキ シ、置換されていてもよいアラルキルチオ、置換されていてもよいアラルキルア ミノ、アルコキシアルキル、アルキルチオアルキル、又は置換されていてもよい 5 アミノアルキルを表わす)で示される基、又は式:-SO2R¹(式中、R¹はア ルキル、置換されていてもよいアミノ、置換されていてもよいアリール、又は置 換されていてもよいヘテロアリールを表わす)で示される基を表わし、R³およ びR⁴はそれぞれ独立して、水素、アルキル、アルコキシ、アルキルチオ、置換 されていてもよいアミノ、置換されていてもよいアリール、置換されていてもよ 10 いアリールオキシ、シクロアルキル、ハロゲン、ヒドロキシ、ニトロ、ハロアル キル、ハロアルコキシ、置換されていてもよいカルバモイル、カルボキシ、アル コキシカルボニル、アルキルスルフィニル、アルキルスルホニル、アルコキシア ルキル、アルキルチオアルキル、置換されていてもよいアミノアルキル、アルコ キシアルコキシ、アルキルチオアルコキシ、置換されていてもよいヘテロアリー 15 ル、置換されていてもよい非芳香族複素環式基、アルコキシイミノアルキル、又 は式:-C(=O)-R"(R"は水素、アルキル、置換されていてもよいアリー ル、又は置換されていてもよい非芳香族複素環式基)で示される基を表わすか、 又はR³及びR⁴は一緒になってアルキレンジオキシを表わし、mは0~2の整数 を表わし、Aは置換されていてもよい芳香族炭素環又は置換されていてもよい芳 20 香族複素環を表わす)で示される化合物、そのプロドラッグ、それらの製薬上許 容される塩、又はそれらの溶媒和物。

- 9. mが 0 である請求の範囲第 8 項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物。
- 25 10. R^{\perp} がアルキレンで置換されていてもよい炭素数 $2\sim9$ の直鎖状又は分枝状のアルキレンである請求の範囲第 8 項又は第 9 項記載の化合物、そのプロド

ラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物。

5

11. R¹がアルキレンで置換された炭素数 2~9の直鎖状のアルキレン、又は炭素数 2~9の分枝状のアルキレンである請求の範囲第 8 項~第 1 0 項のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物。

12. R⁶がアルコキシ又はアルキルチオであり、R⁷が置換されていてもよい アリールである請求の範囲第8項~第11項のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物。

13. R³およびR⁴がそれぞれ独立して水素、アルキル、アルコキシ、又はア 10 ルキルチオであり、Aが置換されていてもよい芳香族炭素環である請求の範囲第 8項~第12項のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上 許容される塩、又はそれらの溶媒和物。

R 1 が 2 、 2 ージメチルトリメチレン、 2 , 2 ージエチルトリメチレン、 2、2-エチレントリメチレン、1-メチルトリメチレン、2-メチルトリメチ レン、トリメチレン、2,2-ジ-n-ブロピルトリメチレン、2,2-テトラ 15 ルエチレン、又は1-メチルエチレンであり、R⁶がメチル、エチル、n-プロ ピル、i-プロピル、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、 n-ブトキシ、メチルチオ、エチルチオ、n-プロピルチオ、i-プロピルチオ、 i- ブチルチオ、sec-ブチルチオ、ペンジルオキシ、ペンジルチオ、メトキシ 20 メチル、エトキシメチル、メチルチオメチル、エチルチオメチル、又はエチルア ミノであり、Rプがメチル、エチル、4-トリル、4-ニトロフェニル、3-ニ トロフェニル、2-ニトロフェニル、4-メトキシフェニル、4-トリフルオロ メチルフェニル、2-チエニル、又は2-ナフチルであり、 R^3 が水素、メチル、 エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、sec-ブチ 25

ル、t-ブチル、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、n-

ブトキシ、メチルチオ、エチルチオ、nープロピルチオ、iープロピルチオ、ジメチルアミノ、アセチルアミノ、N-アセチルメチルアミノ、ジェチルアミノ、エチルメチルアミノ、プロピルメチルアミノ、フェニル、フェノキシ、フッ素、塩素、臭素、ニトロ、トリフルオロメチル、ジフルオロメトキシ、トリフルオロ メトキシ、N-メチルカルバモイル、メトキシカルボニル、メタンスルフィニル、エタンスルフィニル、メタンスルホニル、アセチル、メトキシメチル、1-メトキシエチル、3-ピリジル、モルホリノ、ピロリジノ、ピベリジノ、2-オキソピロリジノ、1-メトキシイミノエチル、又はモルホリノカルボニルであり、 R^4 が水素、メチル、エチル、フッ素、塩素、ニトロ、メトキシ、又はエトキシであり、又は R^3 及び R^4 が一緒になって-O-C H_2- O-を表わし、Aがベンゼン環、ナフタレン環、ピリジン環、又はキノリン環である調求の範囲第8項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物。

- 15. 請求の範囲第8項~第14項のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物を含有する医薬組成物。
 - 16. カンナビノイド2受容体親和性である請求の範囲第15項記載の医薬組成物。
- 17. カンナビノイド2受容体作動性である請求の範囲第16項記載の医薬組 20 成物。
 - 18. 抗炎症剤である請求の範囲第16項記載の医薬組成物。
 - 19. 免疫抑制剤である請求の範囲第16項記載の医薬組成物。
 - 20. 腎炎治療剤である請求の範囲第16項記載の医薬組成物。
- 21. 請求の範囲第1項記載の医薬組成物を投与することを特徴とする炎症の 25 治療方法。
 - 22. 請求の範囲第1項記載の医薬組成物を投与することを特徴とする免疫抑

WO 01/19807 PCT/JP00/06185

制の方法。

23. 請求の範囲第1項記載の医薬組成物を投与することを特徴とする腎炎の治療方法。

- 24. 抗炎症剤を製造するための請求の範囲第1項記載の化合物の使用。
- 5 25. 免疫抑制剤を製造するための請求の範囲第1項記載の化合物の使用。
 - 26. 腎炎治療剤を製造するための請求の範囲第1項記載の化合物の使用。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/06185

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07D277/18, 279/06, 279/08, 417/12, A61K31/426, 31/541, 31/5415, 31/547, A61P13/12, 29/00, 37/06, 43/00//(C07D417/12, C07D213:36, C07D279:06), (C07D417/12, C07D215:12, C07D279:06), (C07D417/12, C07D279:06, C07D333:34) According to International Patent Classification (IPC) or to both national classification and IPC				
	SEARCHED		•	
Minimum do	cumentation searched (classification system followed b	79/08,417/12,A61K31/426,		
Documentati	on searched other than minimum documentation to the	extent that such documents are included	in the fields searched	
•		·		
Electronic da CAPL	ata base consulted during the international search (name US (STN), REGISTRY (STN), WPI (DIALOG	of data base and, where practicable, scar	rch terms used)	
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where app		Relevant to claim No.	
X	GIELDANOWSKI, J., et al., "PHARM THE GROUP OF NEW SUBSTITUTE		1-6,24,25	
A	THIAZINOCAOROXYL ACID DERIVATIVE Exp., 26(1-6), pp.921-929 (1978	S", Arch. Immunl. Ther.	7-20,26	
х	JP, 62-212378, A (Bayer Aktieng 18 September, 1987 (18.09.87),	esellschaft),	1-5,24	
A	Claims; page 25, upper right colur	mn to page 26, upper left	6-20,25,26	
	column; example & DE, 3632042, A & EP, 24068 & US, 4771062, A	0, A		
х	JP, 2-3678, A (Janssen Pharmace 09 January, 1990 (09.01.90),	utica N.V.),	1-5,24	
A	Claims; page 14, upper left column column; example		6-20,25,26	
	& EP, 331232, A & AU, 89307			
	& NO, 8900813, A & DK, 89009	931. A		
	& PT, 89875, A & FI, 89009 & CN, 1036569, A & ZA, 89015	547, A	n	
	& IL, 89426, A			
<u> </u>	<u> </u>			
	er documents are listed in the continuation of Box C.	See patent family annex.	mational filtra data	
Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance		"T" later document published after the inte priority date and not in conflict with the understand the principle or theory und	ne application but cited to erlying the invention	
"E" earlier document but published on or after the international filing date		"X" document of particular relevance; the considered novel or cannot be conside step when the document is taken along	red to involve an inventive	
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		"Y" document of particular relevance; the considered to involve an inventive ste	claimed invention cannot be	
"O" document referring to an oral disclosure, use, exhibition or other		combined with one or more other such combination being obvious to a person	documents, such	
"P" document published prior to the international filing date but later than the priority date claimed		"&" document member of the same patent		
Date of the actual completion of the international search 27 November, 2000 (27.11.00)		Date of mailing of the international sea 12 December, 2000 (rch report 12.12.00)	
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer		
Facsimile N		Telephone No.		
I acommic i	•••	l		

International application No.

PCT/JP00/06185

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
Х	FR, 2201080, A (BADISCHE ANILIN- & SODA-FABRIK AG.), 26 April, 1974 (26.04.74),	1-5,24	
A	Claims; page 4, line 1 to page 5, line 3 & DE, 2114097, A & GB, 1402103, A	6-20,25,26	
X	JP, 2-223564, A (Ube Industries, Ltd.), 05 September, 1990 (05.09.90),	8-10,13	
Α	Claims; Table 1, & EP, 356158, A & ZA, 8906308, A & US, 5073558, A	11,12,14	
x	JP, 63-41471, A (Nippon Soda Co., Ltd.), 22 February, 1988 (22.02.88),	8-10,13	
A	Claims; Table 1 (Family: none)	11,12,14	
X	JP, 57-134472, A (Hoechst Aktiengesellschaft), 19 August, 1982 (19.08.82),	1,2	
A	Claims; page 9, lower right column to page 10, lower right column	3-20,24-26	
	& EP. 55458. A. & DE. 3049460. A		
	& NO, 8104468, A & DK, 8105811, A	·	
	& FI, 8104175, A & ZA, 8108968, A		
	& US, 4421757, A & IL, 64653, A & ES, 8305342, A & ES, 8308549, A		
	& ES, 8308550, A & ES, 8308551, A		
	& ES, 8402829, A & CA, 1173836, A		
X	JP, 59-172486, A (Janssen Pharmaceutica N.V.), 29 September, 1984 (29.09.84),	1,2	
Α	Claims; page 11, upper right column to lower left column; example	3-20,24-26	
	& EP, 118138, A & AU, 8425097, A		
	& NO, 8400735, A & NO, 8702221, A		
	& NO, 9000396, A & DK, 8401070, A		
	& DK, 9100783, A & DK, 9101088, A & FI, 8400781, A & PT, 78156, A		
	& F1, 8400781, A & P1, 78156, A & ZA, 8401449, A & US, 4619931, A		
	& IL, 71066, A & CA, 1271194, A		
	& JP, 5-246999, A & ES, 8505364, A		
	& ES, 8506007, A & ES, 88507541, A		
x	JP, 56-10180, A (Hoechst Aktiengesellschaft), 02 February, 1981 (02.02.81),	1,2	
Α	Claims; page 18, upper left column to page 19, upper left column; example	3-20,24-26	
	& DE, 2926771, A & NO, 8001995, A		
	& NO, 8404120, A & EP, 23964, A		
	& DK, 8002865, A & FI, 8002094, A		
	& ZA, 8003979, A & US, 4346088, A		
	& CA, 1156240, A & IL, 60468, A & IL, 70114, A		
x	JP, 52-51364, A (Hoechst Aktiengesellschaft),	1,2	
_	25 April, 1977 (25.04.77),	2 20 2 2 2 2	
A	Claims; example	3-20,24-26	
	& BE, 847352, A & DE, 2546165, A		
	& NL, 7611159, A & SE, 7611504, A & SO, 7603502, A & FI, 7602920, A		
	& NO, 7603502, A & FI, 7602920, A & ER, 2327778, A		
	& US, 4083979, A & AT, 7902625, A		
	SA/210 (continuation of second sheet) (July 1992)		

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

International application No.
PCT/JP00/06185

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
	& AT, 7607655, A & GB, 1563323, A	
. [& CA, 1083581, A	
.	JP, 52-17468, A (Hoechst Aktiengesellschaft),	1,2
х	09 February, 1977 (09.02.77),	-,-
A	Claims; example	3-20,24-26
	& BE, 844666, A & DE, 2533821, A	
	& NL, 7608206, A & SE, 7608545, A & NO, 7602625, A & DK, 7603404, A & FI, 7602140, A & FR, 2319345, A	
	E FT 7602140. A & FR, 2319345, A	
	& US, 4061647, A & GB, 1522107, A	
	& AT, 7605555, A & IL, 50146, A	
	& CA, 1077492, A	
x	JP, 51-54555, A (Hoechst Aktiengesellschaft),	1,2,
	lia May, 1976 (13.05.76),	3 20 24-36
A	Claims; page 28, lower right column to page 29, upper right	3-20,24-36
	column; example & JP, 52-83511, A & NL, 5708848, A	
	& BE. 831794, A & IL, 47779, A	
	& DE, 2436263, A & SE, 7508476, A	•
	& PT, 64112, A & NO, 7502636, A & DK, 750340, A & FI, 7502131, A	
	E DK, 750340, A & FI, 7502131, A	
	& FR, 2282882, A & ZA, 7504772, A & DD, 121112, A & US, 4061761, A	· ·
	& US. 4125614, A & GB, 1513948, A	
÷	& CA, 1054596, A & CH, 617431, A & CH, 623316, A & CH, 624677, A	
	& CH, 623316, A & CH, 624677, A & CH, 624677, A & AT, 7505770, A	
	& AT, 7707817, A & AT, 7707814, A	
	& AT, 7707815, A & AT, 7707816, A	•,
x	JP, 50-37775, A (Egyt Gyogyszervegyeszeti Gyar),	1,2,
^	08 April, 1975 (08.04.75),	
A	Claims; page 2; example	3-10,24-26
	& NL, 7409315, A & DE, 2433104, A	
	& SE, 7409092, A & DK, 7403740, A & DD, 112452, A & FR, 2236495, A	
	& CS, 7404954, A & GB, 1467385, A	
	& AT, 7404954, A	
v	JP, 48-36169, A (Bayer Aktiengesellschaft),	1,2,
X	l 28 May. 1973 (28,05,73),	
A	Claims; page 3, upper left column to page 4, upper right	3-20,24,26
	column; example	
	& JP, 48-36168, A & BE, 788743, A & DE, 2145807, & RO, 68389, AA,	
	& NL, 7212419, A & ZA, 7206271, A	
	& FR, 2154512, A & DD, 103898, A	
	& DD, 105990, A & GB, 1377265, A & RO, 84247, A & US, 3860590, A	
	& RO, 84247, A & US, 3860590, A & AT, 7402318, A & AT, 7402319, A	
	& SU, 455544, A & CH, 569724, A	
	& CH, 587258, A & SU, 439988, A	
	& SU, 505363, A & SU, 556728, A	
	& RO, 84248, A & RO, 68372, A & IL, 40338, A & CA, 1007638, A	
	JP, 48-23793, A (Imperial Chem. Ind. Ltd.),	1,2

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP00/06185

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	Claims; page 3, upper left column; example & DE, 2236970, A & BE, 786416, A & FR, 2147214, A & ZA, 7204731, A & SU, 847915, A & DD, 103645, A & GB, 1351031, A & US, 3845070, A & US, 3925440,	3-20,24,26
x	US, 3678041, A (Etablissements Clin-Byla),	1,2
A	18 July, 1972 (18.07.72), Claims; Column 1, lines 1 to 11; example & DE, 1770583, A & BE, 716140, A & AU, 6838776, A & ZA, 6703535, A & ZA, 6803535, A & CA, 897687, A & GB, 1224546, A & US, 3678041, A & US, 3704296, A & FR, 1604530, A	3-20,24,26
X .	JP, 6-220053, A (Fuji Photo Film Co., Ltd.),	1,2
A	09 August, 1994 (09.08.94), Claims; Par. Nos. [0014], [0015], [0024] & US, 5476945, A & US, 5618831, A	3-20,24,26
x	GAILWAD, N. J., et al., "Substituted-4-Thiazolidinones as Anticonvulsants", Indian J. Pharm. Sci., 46(5),	1,2
Α	pp.170-171 (1984)	3-20,24,26
PX	WO, 00/42031, A2 (BAYER CORPORATION), 20 July, 2000 (20.07.00), Claims; example & AU, 200027087, A	1,2,8-10,13,1
A	JP, 11-80124, A (JAPAN TOBACCO INC.), 26 March, 1999 (26.03.99) & WO, 99/02499, A1 & AU, 9881279, A	1-20,24-26
A	MUNRO, S., et al., "Molecular characterization of a peripheral receptor of cannabinoids", NATURE, 365(2), pp.61-65 (1993)	1-20,24-26
,		
ı ·		

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/06185

	ox I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)			
Thi	This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:			
	∇	Claims Nos.: 21-23		
1.	\boxtimes	because they relate to subject matter not required to be searched by this Authority, namely:		
•	of of	The inventions as set forth in claims 21 to 23 pertain to methods for treatment the human body by therapy (Article 17(2)(a)(i) of the PCT and Rule 39.1(iv) the Regulations under the PCT).		
2.	\boxtimes	Claims Nos.: 1-20,24-26 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:		
	(5	See extra sheet.)		
	_			
3.	Ш	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).		
_	<u> </u>	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)		
	x II	ernational Searching Authority found multiple inventions in this international application, as follows:		
Th	is Inte	emational Searching Authority found indusple inventions in this international appreciation, as formation		
		·		
1.		As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.		
2.		As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.		
3.		As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:		
1				
l				
		•		
l		•]		
4.		No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:		
R	emat	k on Protest		
		No protest accompanied the payment of additional search fees.		

PCT/JP00/06185

Continuation of Box No. I-2 of continuation of first sheet (1)

(The technical features of the inventions as set forth in claims 1 to 20 and claims 24 to 26 reside in the compounds per se represented by the formula (I) or (II) or utilization of these compounds as drugs. The compounds involved in the formulae (I) and (II) have nothing but the following chemical structure in common:

As stated in the documents, compounds having this chemical structure and medicinal compositions with the use of these compounds have been widely known. Therefore, the technical features cannot be considered as being sufficiently specified by the chemical structure. Moreover, only a part of compounds among compounds involved in a broad scope are supported in the description. Therefore, the claims and description fail to satisfy the definite requirements to such an extent as enabling meaningful international search.

In this report, therefore, the search has been practiced exclusively on compounds satisfying the following conditions by reference to the statement in the description:

- the substituent A is an optionally substituted phenyl or optionally substituted 3-pyridyl group;
- ·m is an integer of from 0 to 2;
- $\cdot\,R^1$ is an optionally substituted, linear $C_{2\text{--}3}$ alkylene group; and
- \cdot R² is an alkyl, $-(C=R^5)-R^6$ or $-SO_2R^2$ group (wherein R⁵, R⁶ and R⁷ are each as defined in claims).

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl⁷ C07D277/18, 279/06, 279/08, 417/12, A61K31/426, 31/541, 31/5415, 31/547, A61P13/12, 29/00, 37/06, 43/00 //(C07D417/12, C07D213:36, C07D279:06), (C07D417/12, C07D279:06, C07D333:34)

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' C07D277/08-277/18, 279/06-279/08, 417/12, A61K31/426, 31/541-31/5415, 31/547, A61P13/12, 29/00, 37/00-37/06, 43/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CAPLUS (STN), REGISTRY (STN), WPI (DIALOG), JICST (JOIS)

C. 関連すると認められる文献			
引用文献の		関連する	
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号	
x	GIELDANOWSKI, J., et al., "PHARMACOLOGICAL ACTIVITY IN THE GROUP OF NEW SUBSTITUTED THIAZOLOACETIC AND THIAZINOCAOROXYL	1-6, 24, 25	
A	ACID DERIVATIVES", Arch. Immunl. Ther. Exp., 26(1-6), pp. 921-929 (1978)	7-20, 26	
x	JP, 62-212378, A (バイエル・アクチエンゲゼルシヤフト), 18. 9月. 1987 (18. 09. 87),	1-5, 24	
A	特許請求の範囲,第25頁右上欄-第26頁左上欄,実施例, & DE, 3632042, A,& EP, 240680, A,& US, 4771062, A	6-20, 25, 26	
1		L	

[X] C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

C(続き).	関連すると認められる文献	
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
X	JP, 2-3678, A (ジャンセン・ファーマシューチカ・ナー ムローゼ・フェンノートシャップ),	1-5, 24
A	9.1月.1990(09.01.90), 特許請求の範囲,第14頁左上欄一第15頁右下欄,実施例,	6-20, 25, 26
	& EP, 331232, A, & AU, 8930739, A, & NO, 8900813, A, & DK, 8900918, A, & PT, 89875, A, & FI, 8900931, A, & CN, 1036569, A, & ZA, 8901547, A, & IL, 89426, A	
x	FR,2201080,A(BADISCHE ANILIN- & SODA-FABRIK AG.), 26.4月.1974(26.04.74),	1-5, 24
A	特許請求の範囲,第4頁1行一第5頁3行, & DE, 2114097, A, & GB, 1402103, A	6-20, 25, 26
X	JP, 2-223564, A (宇部與産株式会社), 5.9月.1990(05.09.90),	8-10, 13
A	特許請求の範囲,第 1 表, & EP, 356158, A,& ZA, 8906308, A,& US, 5073558, A	11, 12, 14
x	JP, 63-41471, A (日本曹達株式会社), 22. 2月. 1988 (22. 02. 88),	8-10, 13
A	特許請求の範囲,第1表(ファミリーなし)	11, 12, 14
X	JP, 57-134472, A (ヘキスト・アクチエンゲゼルシャフト), 19.8月.1982 (19.08.82),	1, 2
A	特許請求の範囲,第9頁右下欄一第10頁右下欄,& EP, 55458, A, & DE, 3049460, A, & NO, 8104468, A, & DK, 8105811, A,	3-20, 24-26
	& FI, 8104175, A, & ZA, 8108968, A, & US, 4421757, A, & IL, 64653, A, & ES, 8305342, A, & ES, 8308549, A, & ES, 8308550, A, & ES, 8308551, A, & ES, 8402829, A, & CA, 1173836, A	
x	JP, 59-172486, A (ジャンセン・ファーマシューチカ・ナームローゼ・フェンノートシャップ),	1, 2
A	29.9月.1984 (29.09.84), 特許請求の範囲,第11頁右上欄一左下欄,実施例,&EP,118138,A, & AU,8425097,A,&NO,8400735,A,&NO,8702221,A, & NO,9000396,A,&DK,8401070,A,&DK,9100783,A,	3-20, 24-26
	& DK, 9101088, A, & FI, 8400781, A, & PT, 78156, A, & ZA, 8401449, A, & US, 4619931, A, & IL, 71066, A, & CA, 1271194, A, & JP, 5-246999, A, & ES, 8505364, A, & ES, 8506007, A, & ES, 88507541, A	

C (続き). 関連すると認められる文献			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号	
Х	JP, 56-10180, A (ヘキスト・アクチーエンゲゼルシャフト), 2. 2月. 1981 (02. 02. 81),	1, 2	
A	特許請求の範囲,第18頁左上欄一第19頁左上欄,実施例, & DE, 2926771, A,& NO, 8001995, A,& NO, 8404120, A,	3-20, 24-26	
	& EP, 23964, A, & DK, 8002865, A, & FI, 8002094, A, & ZA, 8003979, A, & US, 4346088, A, & CA, 1156240, A,		
	& IL, 60468, A, & IL, 70114, A		
X	JP, 52-51364, A (ヘキスト・アクチーエンゲゼルシャフト), 25. 4月. 1977 (25. 04. 77),	1, 2	
A	特許請求の範囲,実施例,& BE, 847352, A,& DE, 2546165, A, & NL, 7611159, A,& SE, 7611504, A,& NO, 7603502, A, & FI, 7602920, A,& DK, 7604640, A,& FR, 2327778, A, & US, 4083979, A,& AT, 7902625, A,& AT, 7607655, A, & GB, 1563323, A,& CA, 1083581, A	3-20, 24-26	
x	JP, 52-17468, A (ヘキスト・アクチーエングゼルシャフト), 9. 2月. 1977 (09. 02. 77),	1, 2	
A	特許請求の範囲,実施例,& BE, 844666, A,& DE, 2533821, A, & NL, 7608206, A,& SE, 7608545, A,& NO, 7602625, A, & DK, 7603404, A,& FI, 7602140, A,& FR, 2319345, A, & US, 4061647, A,& GB, 1522107, A,& AT, 7605555, A, & IL, 50146, A,& CA, 1077492, A	3-20, 24-26	
X A	JP, 51-54555, A (ヘキスト・アクチーエンゲゼルシヤフト), 13.5月.1976 (13.05.76), 特許請求の範囲, 第28頁右下欄一第29頁右上欄, 実施例, & JP, 52-83511, A, & NL, 5708848, A, & BE, 831794, A, & IL, 47779, A, & DE, 2436263, A, & SE, 7508476, A, & PT, 64112, A, & NO, 7502636, A, & DK, 750340, A, & FI, 7502131, A, & FR, 2282882, A, & ZA, 7504772, A, & DD, 121112, A, & US, 4061761, A, & US, 4125614, A & GB, 1513948, A, & CA, 1054596, A, & CH, 617431, A, & CH, 623316, A, & CH, 624677, A, & CH, 624678, A, & AT, 7707817, A & AT, 7707814, A, & AT, 7707815, A, & AT, 7707816, A	1, 2 3-20, 24-26	
X A	JP, 50-37775, A (エギト ギオギスゼルヴェギエスゼティ グヤール), 8. 4月. 1975 (08. 04. 75), 特許請求の範囲, 第2頁, 実施例, & NL, 7409315, A, & DE, 2433104, A, & SE, 7409092, A, & DK, 7403740, A, & DD, 112452, A, & FR, 2236495, A, & CS, 7404954, A, & GB, 1467385, A, & AT, 7404954, A	1 , 2 3-20, 24-26	

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP, 48-36169, A (バイエル・アクチエンゲゼルシヤフト), 28. 5月. 1973 (28. 05. 73),	1, 2
A	ト), 28. 3月. 1973 (28. 03. 73), 特許請求の範囲, 第3頁左上欄一第4頁右上欄, 実施例, & JP, 48-36168, A, & BE, 788743, A, & DE, 2145807, & RO, 68389, A, A, & NL, 7212419, A, & ZA, 7206271, A, & FR, 2154512, A,	3-20, 24-26
	& DD, 103898, A, & DD, 105990, A, & GB, 1377265, A, & RO, 84247, A, & US, 3860590, A, & AT, 7402318, A, & AT, 7402319, A, & SU, 455544, A, & CH, 569724, A, & CH, 587258, A & SU, 439988, A, & SU, 505363, A, & SU, 556728, A, & RO, 84248, A& RO, 68372, A, & IL, 40338, A, & CA, 1007638, A	
x	JP, 48-23793, A (イムペリアル・ケミカル・インダストリース・リミテッド),	1, 2
Α	27.3月.1973 (29.03.73), 特許請求の範囲,第3頁左上欄,実施例,&DE,2236970,A, &BE,786416,A,&FR,2147214,A,&ZA,7204731,A,&SU,847915,A, ⅅ,103645,A,&GB,1351031,A,&US,3845070,A,&US,3925440,	3-20, 24-26
\mathbf{x}	US, 3678041, A (Etablissements Clin-Byla), 18.7月.1972 (18.07.72),	1, 2
A	特許請求の範囲,第1欄1-11行,実施例,& DE,1770583, A, & BE,716140, A, & AU,6838776, A, & ZA,6703535, A, & ZA,6803535, A, & CA,897687, A, & GB,1224546, A, & US,3678041, A, & US,3704296, A, & FR,1604530, A	3-20, 24-26
Х	JP, 6-220053, A (富士写真フィルム株式会社), 9.8月.1994(09.08.94),	1, 2
A	特許請求の範囲,【0014】,【0015】,【0024】, & US, 5476945, A,& US, 5618831, A	3-20, 24-26
x	GAILWAD, N. J., et al., "Substituted-4-Thiazolidinones as Anticonvulsants", Indian J. Pharm. Sci., 46(5), pp. 170-171	
Α	(1984)	3-20, 24-26
PΧ	WO, 00/42031, A2 (BAYER CORPORATION), 20.7月.2000(20.07.00), 特許請求の範囲,実施例, & AU,200027087,A	1, 2, 8-10, 13, 15
A	JP, 11-80124, A (日本たばこ産業株式会社), 26.3.1999(26.03.99), & WO,99/02499,A1, & AU,9881279,A	1-20, 24-26
A	MUNRO, S., et al., "Molecular characterization of a peripheral receptor of cannabinoids", NATURE, 365(2), pp.61-65 (1993)	1-20, 24-26

・ 様式PCT/ISA/210 (第1ページの続葉 (1)) (1998年7月)

(第1欄の2について)

請求の範囲 1-20 並びに 24-26 にかかる発明は、いずれも式(I)若しくは式(II)により表される化合物自体又は当該化合物を医薬として用いることを技術的特徴とするものである。そして、式(I)及び式(II)に含まれる化合物群における共通した化学構造は

$$- (CH_2) = N = C$$

なる部分のみであるが、文献欄にもあるように、かかる化学構造を有する化合物やかかる化合物を用いた医薬組成物は広く知られているものであるから、かかる化学構造によってはその技術的特徴が充分に特定されたものとは認められず、また、明細書には広範な化合物群に包含される一部の化合物についてしか裏付けとなる記載がなされていない。したがって、請求の範囲及び明細書は、有意義な国際調査をすることができる程度まで所定の要件を満たしているものではない。

したがって、本報告においては明細書の記載を参考にして、以下の条件を満たすもののみを調査の対象とした。

- ・置換基Aは置換可能なフェニル基又は置換可能な3-ピリジル基
- ·mは0ないし2の整数
- ・R'は炭素数2または3である、置換可能な直鎖アルキレン基
- R²はアルキル基、-C(=R⁵)-R⁶基、又は-SO₂R⁷基 (R⁵、R⁶及びR⁷の各置換基の定義は請求の範囲に記載の通り。)