Analysis I

Contents

I.	Ι	rgendwas	6
	1.	Natürliche Zahlen und elemntare Begriffe	7
		1.1. Zahlbereiche	7
		1.2. Vollständige Induktion	8 10
	2.	Körper	13
		2.1. Was sind Strukturen?	13
		2.2. Körper	13
		2.3. Angeordnete Körper	14
		2.4. Der Betrag	15
		2.5. Das Archimedische Axiom	16
		2.6. Supremum, Infimum und die Supremumseigenschaft	16
	3.	Folgen und Konvergenz	18
		3.1. Reele Folgen und Konvergenz	18
		3.2. Rechenregeln für Grenzwerte	19
		3.3. Stabilität der '≤'-Relation unter Limesbildung	21
		3.4. Monotone Konvergenz, e und Wurzeln	21
		3.5. Einige Grenzwerte - alt und neu	24
	4.	Vollständigkeit	26
		4.1. ???	26
		4.2. Teilfolgen undn der Satz von Bolzano-Weierstraß	27
		4.3. Charakterisierung der Vollständigkeit	28
	5.	Reihen und deren Konvergenz	31
		5.1. Reihen, Konvergenz und absolute Konvergenz	31
		5.2. Konvergenzkriterien	33
		5.3. Umordnung von Reihen	41
II.	. F	Funktionen und Stetigkeit	43
	6.	Elementare topologische Konzepte in \mathbb{R}	44
		6.1. Offene und abgeschlossene Mengen	44
		6.2. Kompaktheit	46 47
		o.s. Dientificit, & find is	41
	7.	Funktionen und Stetigkeit	49
		7.1. Funktinen	49

Composition	· ·
Contents	

	 7.2. Stetigkeit	52
8.	Funktionenfolgen und deren Konvergenz	55
	8.1. Funktionenfolgen und deren Konvergenz	55

Contents 3

Organisation, Tipps & Tricks und Literaturhinweise

Mathe...

- ist intellektuell extrem herausfordernd
- kommt mit einem hohen Arbeitsaufwandr
- oft falschen Erwartungen und
- ist wie Ausdauersport

aber dafür ist Mathe eines der schönsten Studien c:

Generelles Zeitmanagement:

- Vor- und Nachbereitung wahrscheinlich mehr als die gesetzten $14 \times 3 \,\mathrm{h} = 4.2 \cdot 10^1 \,\mathrm{h}$
- Klausurvorbereitung auch mehr als $3.9 \cdot 10^1 \,\mathrm{h}$
- Pro Woche $2 \times 1.5 \, \text{h}, \, 2 \times 2 \, \text{h}, \, 1.5 \, \text{h}, \, 1.0 \cdot 10^1 \, \text{h}$
- Es gibt immer eine Aufgabe die man nicht lösen kann
- In die Vorlesungen kommen

Vorlesung:

- normal nicht alles zu verstehen
- Notizen was man nicht versteht
- Punkte konzise angehen
- Mathe muss sich gedanklich setzen genügend Zeit zu verarbeiten

Übungen:

- zeitintensiv
- Ergebnisse vernünftig aufschreiben
- Weg zu einer korrekter Lösung ist sehr langwierig
- nicht 10 Blätter Papier ab, von denen 9.5 inkonklusiv sind
- also schön Aufschreiben

Wenn wir einen Satz gezeigt bekommen, dann bekommen wir nicht die gescheiterten Jahrelangen Versuche zur Schau, sondern nur die Ausgearbeitete Lösung \rightarrow also bei uns auch langer weg, aber Aufschreiben nur klein

Contents 4

Übungszettel:

- 50% muss richtig sein
- bis Freitag 10:00 Uhr
- in F4
- diese Woche nicht so umfangreich, weil weniger Zeit
- auf ILIAS Terminfindung Abstimmung
- Donnerstag Einteilung in Tutorien
- Blätter tackern :c
- alle zwei Wochen Beweismechanik Aufgaben, nur digital nicht in Papier (ist dann die letzte Aufgabe)

Literaturempfehlung:

- Otto Forster: Analysis 1
 - kurz und knapp aber konzise, udn das hilft
 - ähnliche Struktur wie Vorlesung
 - weig motivation und wenige Querverbindungen
- Königsberger: Analysis 1
 - kurz aber konzise
 - alle themen der Vorlesung, andere Struktur
 - mehr motivation und Querverbindungen
- Klaus Fritsche: Grundkurs Analysis 1
 - ausführlich
- Daniel Grieser: Analysis I
 - Ausfühlich, aber mit Fokus auf das Wesentliche
 - alle Themen der Volesung enthalten, ähnliche Struktur
 - bunt??
- Harro Huser: Lehrbuch der Analysis Teil 1

Contents 5

- extrem ausfühlich,dick, an einigen stellen sehr extensiv
- alle und mehr Themen als Vorlesung
- Querverbindungen
- Walter Rudin: Analysis
 - sehr knapp und elegant
 - klassiker
 - alle themen der Volesung, leicht andere Struktur
 - empfehlenswertes Buch fortgeschrittene Leser*innen
 - nicht für Anfänger*innen
- Herber amann, Joachim Escher: Analysis I
 - strkt logischer Aufbau, damit teils länglich. Großes Bild
 - alle Themen, andere Struktur
 - auch nicht für anfänger*innen
- Terence Tao: Analysis (englisch, aber gut)
- Rober Denk, Reinhard Racke: Kompendium der ANalysis
 - kurz und knapp, teils wie Nachschlagewerk
 - alle themen
- Florian Modler, Martin Kreh: Tutorium Analysis 1 und Lineare Algebra 1
 - kurz und knapp, teils wie nachschalgewerk
 - von studierende für studierende
 - aber enthält ein paar Fehler

Part I. Irgendwas

1 Natürliche Zahlen und elemntare Begriffe

1.1 Zahlbereiche

$$\mathbb{N} := \{1, 2, 3, \dots\}$$

$$\mathbb{N}_0 := \{0, 1, 2, 3, \dots\}$$

$$\mathbb{Z} := \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

$$\mathbb{Q} := \{\frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N}\}$$

$$\mathbb{R} := \{ \text{ reelle Zahlen } \}$$

Wir besprechen gar nicht was eine Menge ist, das ist zu philosophisch Es ist schwierig Mengen zu Definieren, man kommt schnell auf logische Wiedersprüche

- Notation: für x schreiben wir für eine Eigenschaft A "A(x)", falls x A erfüllt.
- \rightarrow Menge aller Objekte x mit A(x)

$${x:A(x)}$$

- \rightarrow gibt es kein x mit A(x), so nennen wir die Menge leer, " \emptyset "
- $\exists \hat{=}$ Existenzquantor, "es existiert"
- A, B, Eig., $M := \{x : x \text{ erf. } A\}$ $N := \{x : \text{ erf. } B\}$ $M \subset N$, falls $\forall x \in M : x \in N$
- M = N, falls $M \subset N \vee N \subset M$
- "Echte Tielmenge": $M \nsubseteq N$, falls $M \subset N, N \neq N$.

Example 1.1.1 (gerade Zahlen)

$$n \in \mathbb{N}_0 \text{ gerade } :\iff (\exists k \in \mathbb{N}_0 : n = 2k)$$

$$M := \{ n \in \mathbb{N}_0 : \exists k \in \mathbb{N}_0 : n = 2k \}$$
 (1)

$$= \{2k : k \in \mathbb{N}_0 \tag{2}$$

Example 1.1 $\mathbb{N} \subsetneq \mathbb{N}_0 \subsetneq \mathbb{Z} \subsetneq \mathbb{Q} \subsetneq \mathbb{R}$

Zu $\mathbb{Q} \subsetneq \mathbb{R} : \sqrt{2} \notin \mathbb{Q}$. Widerspruchsbeweis: Ang., $\sqrt{2} \in \mathbb{Q}$, so $\sqrt{2} = \frac{p}{q}$, mit $p \in \mathbb{N}_0, q \in \mathbb{N}$. (Ep, q teilerfremd (d.h. Bruch ist vollständig gekürzt).. Also $p^2 = 2q^2$

- $\implies p$ ist gerade. Also p=2l mit $l \in N_0$.
- $\implies 4l^2 = p^2 = 2q^2 \implies 2l^2 = q^2 \implies q$ gerade.
- $\implies p, q$ gerade. $\implies p, q$ nicht teilerfremd.

1.2 Vollständige Induktion

 \bullet Ziel: Beweis von Aussagen für alle $n\in\mathbb{N}_0$

Dominoprinzip: Wenn alle Steine umfallen sollen,

- müssen wir den 1. Stein umwerfen,
- muss stehts der n-te Stein den (n+1)-ten umwerfen.

Prinzip (vollst. Ind.) Wollen wir eine Aussage $A(n) \forall n \in \mathbb{N}$ zeigen; so zeigen wir

- (i) A(1) gilt (Induktionsanfang)
- (ii) Aus A(n) für $n \in \mathbb{N}$ stets A(n+1) folgt. (Induktionsschritt)

Definition 1.2 Summen

Für $x_{-1}, \ldots, x_n \in \mathbb{R}$ definieren wir

$$\sum_{k=1}^{n} x_k \coloneqq x_1 + \ldots + x_n$$

Example 1.3 Geometrische Summe

 $\forall n \in \mathbb{N}:$

$$\sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x} \tag{3}$$

I.A. n = 1

$$\sum_{k=0}^{1} x^{k} = x^{0} + x^{1} = 1 + x = \frac{(1-x)(1+x)}{1-x} = \frac{1-x^{2}}{1-x}$$

I.S.

$$n \to n+1$$

Angenommen, (equation) gilt für ein $n \in \mathbb{N}$. z.z. (equation) gilt für n+1

$$\sum_{k=0}^{n+1} x^k = \left(\sum_{k=0}^n x^k\right) + x^{n+1} = \frac{1 - x^{n+1}}{1 - x} + x^{n+1}$$

. . .

Example 1.4 Für welche $n \in \mathbb{N}$ gilt $n^2 < 2^n$?

$$\begin{array}{l} \bullet \ \, n=1 \to 1 < 2 \\ n=2 \to n^2 = 4 \not< 4 = 2^2 \\ n=3 \to n^2 = 9 \not< < 2^3 \\ n=4 \to n^2 = 16 \not< 16 = 2^4 \\ n=5 \to n^2 25 < 32 = 2^5 \\ \end{array}$$

Wir versuchen die Aussage $\forall n \geq 5$ zu zeigen.

I.A.:
$$n = 5 : n^2 = 25 < 32 = 2^5$$

I.S.: Ang., Aussage gilt für $n \ge 5$. Wir müssen zeigen:

$$(n+1)^2 < 2^{n+1}$$

$$(n+1)^2 = \underbrace{n^2}_{<2^n} + 2n + 1 < 2^n + 2n + 1 \stackrel{?}{<} 2^{n+1}$$
 Angenommen, es gilt
$$\forall n \geq 5: 2n+1 < 2^n \tag{4}$$

Dann:
$$(n+1)^2 < \dots < 2^n + 2n + 1 = 2 * 2^n = 2^{n+1}$$

• Wir zeigen (4) wiederum mit voll. Ind.

I.A.:
$$n = 52n + 1 = 11 < 32 = 2^5$$

I.S.: Ang., (4) gilt für
$$n \in \mathbb{N}$$
. Dann gilt: $2(n+1)+1=2n+3=(2n+1)+2<2^n+2<2^n+2^n=2*2^n=2^{n+1}$. Damit folgt (4 und damit die eigentliche Aussage

Definition 1.5

für $n \in \mathbb{N}_0$ definieren wir die Fakultät via $n! := n \times (n-1) \times \cdots \times 2 \times 1$, falls $n \ge 1$, und 0! := 1. Für $k \in \{0, \dots, n\}$ definieren wir den Binomialkoeffizienten

$$\binom{n}{k} \coloneqq \frac{n!}{k!(n-k)!}.$$

Lemma 1.6

Für alle $n \in \mathbb{N}$ und alle $k \in \{1, \ldots, n\}$:

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$$

Proof

$$\binom{n}{k} + \binom{n}{k-1} = \frac{n!(n-k+1)}{k!(n-k)!(n-k+1)} + \frac{n!(k)}{(k-1)!(n-(k-1)k)!(k)}$$
$$= \frac{n!n+n!}{k!(n-k+1)!} = \frac{n!(n+1)}{k!(n-k+1)!}$$

Example 1.7 (Binomische Formel)

Für $x, y \in \mathbb{R}$ und $n \in \mathbb{N}_0$:

$$(x+y)^n? \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Sei also $x, y \in \mathbb{R}$.

I.A.: n = 0. $(x + y)^0 = 1 = \binom{0}{0} x^0 y^0$

I.S.: Gelte die Aussage für $n \in \mathbb{N}_0$

$$(x+y)^{n-1} = (x+y)(x+y)^n = (x+y)\sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$
 (5)

$$= x \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k} + y \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k}$$
 (6)

$$= \sum_{k=0}^{n} \binom{n}{k} x^{k+1} y^{n-k} + \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n+1-k}$$
 (7)

Indexverschiebung: l = k + 1. $l \in \{1, ..., n + 1\}$

$$(7) = \sum_{l=1}^{n} \binom{n}{l-l} x^{l} y^{n+1-l} + \sum_{l=0}^{n} \binom{n}{l} x^{l} y^{n+1-l}$$
Hier Indexverschiebung
$$= \binom{n}{n} x^{n+1} y^{0} + \left(\sum_{k=0}^{n} \left(\binom{n}{l-1} + \binom{n}{l}\right) x^{l} y^{n+1-l}\right) + \binom{n}{0} x^{0} y^{n+1}$$

$$= \binom{n+1}{n+1} x^{n+1} y^{0} + \left(\sum_{l=1}^{n} \binom{n+1}{l} x^{l} y^{(n+1)-l}\right) + \binom{n+1}{0} x^{0} y^{n+1}$$

$$= \sum_{l=0}^{n+1} \binom{n+1}{l} x^{l} y^{(n+1)-l}$$

$$= \sum_{l=0}^{n+1} \binom{n+1}{l} x^{l} y^{(n+1)-l}$$

1.2.1. Characterisierung der natürlichen Zahlen

Definition 1.2.1

Eine Teilmenge $M \subset \mathbb{R}$ heißt induktiv, falls

- (i) $1 \in M$
- (ii) $\forall x \in M : x + 1 \in M$

Example 1.2.2

- (a) \mathbb{N} sind ind. Menge.
- (b) $A \coloneqq \{2n : n \in \mathbb{N}_0\}$ nicht ind. Menge, da (i) $1 \neq A$, (ii) 2n+1 ist immer ungerade
- (c) $B := \{2n+1 : n \in \mathbb{N}_0\}$ nicht ind.: (i), aber 2n+1+1=2(n+1)
- (d) $\mathbb{Q}^+ \coloneqq \{x \in \mathbb{Q} : q > 0\}$ ist ind. Teilmenge
- Sei $(A_i)_{i \in I}$ mit I Indexmenge eine Familie von Mengen. setze

$$\bigcap_{i \in I} := \{x : (\forall i \in I : x \in A_i)\} \quad \text{Schnitt}$$

$$\bigcup_{i \in I} \coloneqq \{x : (\exists i \in I : x \in A_i)\} \quad \text{Vereinigung}$$

Proposition 1.2.3

Für eine Menge $M \subset \mathbb{R}$ sind äquivalent

- (i) $M = \mathbb{N}$
- (ii) Ist $N \subset \mathbb{R}$ induktiv, so $M \subset N$
- (iii)

$$M = \bigcap_{N \subset \mathbb{R}} N$$
induktiv

$$(i) \iff (ii) \iff (iii)$$

$\overline{\text{Proof}}$

- '(i) \Longrightarrow (ii)': Sei $N \subset \mathbb{R}$ beliebige ind. Teilmengen von \mathbb{R} . Zu zeigen: $M \stackrel{(i)}{=} \mathbb{N} \subset N$ Aber $1 \in \mathbb{N}$, und $1 \in N$ (da N ind.), Da N ind. ist, ist mit jeder nat. $x \in \mathbb{N}$ also auch $x \in N$. Damit $x + 1 \in \mathbb{N}$ $\mathbb{N} \subset N$.
- ' $(ii) \implies (iii)$ ' Wir zeigen:

$$\bigcap_{N \text{ ind. Menge}} N$$

ist ind. Menge

$$\stackrel{(ii)}{\Longrightarrow} M \stackrel{(ii)}{\subset} N \subset M$$
. Also

$$M = \bigcap_{N \text{ ind.}} N.$$

$$\bigcap_{N \text{ ind}} N$$
 induktiv:

(i)

$$(\forall N \text{ ind: } 1 \in N) \implies 1 \in \bigcap_{N \text{ ind.}} N$$

(ii)

$$\forall x \in \mathbb{R} : x \in \bigcap_{N \text{ ind.}} N \left(\implies x \in \bigcap_{N \text{ ind.}} N \right) \stackrel{\text{DEF.}}{\Longrightarrow} \forall N \text{ ind.} : x+1 \in N \implies x+1 \in \bigcap_{N \text{ ind.}} N = 0$$

'(iii) \implies (i)' Noch zu zeigen (blöd glaube ich oder ÜA, wir hatten auf jeden Fall keine Zeit in der Vorlesung)

2. KÖRPER 13

2 Körper

2.1 Was sind Strukturen?

2.2 Körper

Definition 2.2.1 Körper

in script of Prof. and on paper

Example 2.2.2

in script of Prof. and on paper

Example 2.2.3

in script of Prof. and on paper

Lemma 2.2.4

in script of Prof. and on paper

Lemma 2.2.5

in script of Prof. and on paper

Definition 2.1

In der Situation von definition 2.2.1 sei $n \in \mathbb{N}$, sowie $x_1, \ldots, x_n \in K$. Wir definieren rekursiv $x_1 + \cdots + x_n := (x_1 + \cdots + x_{n-1}) + x_n, x : \cdots x_n := (x_1 + \cdots + x_{n-1}) \cdot x_n$

Definition 2.2

In der Situation von Definition 2.2.1 sei $n \in \mathbb{N}_0$ und $x \in K$. Wir definieren

$$x^0 \coloneqq 1_K \text{ und } x^n \coloneqq (x^{n-1} \cdot x, n \in \mathbb{N})$$

Ist $x \in K \setminus \{0\}$, so sei für $n \in \mathbb{N} : x^{-n} := (x^{-1})^n$.

Lemma 2.3

Für alle $x, y \in K$, $m, n \in \mathbb{N}_0$:

$$i) x^n \cdot x^m = x^{n+m},$$

ii)
$$(x^n)^m = x^{n \cdot m}$$
,

iii)
$$x^n \cdot y^n = (x \cdot y)^n$$

Ist zudem $x, y \neq 0_K$, so gelten diese Identitäten auch für $n, m \in \mathbb{Z}$

2. Körper 14

Proof i

Fixiere $n \in \mathbb{N}_0$, nun Induktion nach m.

I.A.
$$m=0.$$
 $x^n\cdot x^0\stackrel{\mathrm{Def.}}{=} x^n\cdot 1_K\stackrel{\mathrm{(M2)}}{=} 1_K\cdot x^n\stackrel{\mathrm{(M3)}}{=} x^n=x^{n+0}$

I.S. Gelte die Aussage für ein $m \in \mathbb{N}_0$. Zeige für $m \curvearrowright m+1$

$$x^{n} \cdot x^{m+1} \stackrel{\text{Def.}}{=} x^{n} (x^{m}) \cdot x \stackrel{\text{(M1)}}{=} (x^{n} \cdot x^{m}) \cdot x \stackrel{\text{IV}}{=} x^{n+m} \cdot x \stackrel{\text{Def.}}{=} x^{n+m+1}$$

2.3 Angeordnete Körper

• Ziel Vergleich von Elementen hinsichtlich "Größe"

Definition 2.3.1

Eine **Relation** auf einer Menge M ist eine Teilmenge $R \subset M \times M$. Ist $(x, y) \in R$, so schreiben wir auch xRy oder R(x, y) und sagen, dass x und y über R in Relation stehen.

Example 2.3.2

M = Stidierende im H"orsaal,

 $(x,y) \in M \times M : xRy : \iff x$ kennt den Namen von y

- R reflexiv? (d.h. $\forall x \in M : xRy$) Ja
- R symmetrisch? (d.h. $\forall x, y \in M : xRy \iff yRx$) Nein
- R transitiv? (d.h. $\forall x, y, z \in M : xRy \land yRx \implies xRz$) Nein

Definition 2.3.3

Sei R eine Relation auf einem Kürper K. R heiß Ordnung auf K, falls gilt

- (i) **Trichotomie:** $\forall x \in K$: Entweder $0_K Rx, xR0_K$ oder $x = 0_K$
- (ii) Abgeschlossenheit bezüglich Addition $\forall x, y \in K : 0_K Rx, 0_K Ry \implies 0_K R(x+y)$
- (iii) Abgeschlossenheit bezüglich Multiplikation $\forall x,y \in K: 0_K R x, 0_K R y \implies 0_K R (x \cdot y)$

Das Tupel (K, R) heißt **angeordneter Körper.** (Schreibe auch '<' für R).

Setze für $a, b \in K$:

$$a < b : \iff 0_K < (b - a)$$

 $a > b : \iff b < a$
 $a \le b : \iff a < b \lor a = b$
 $b \ge a : \iff a \le b$

2. KÖRPER 15

Lemma 2.3.4

Sei (K, <) angeordneter Körper, $a, b, c \in K$

- (i) Entweder $a > b, a = b \lor a < b$.
- (ii) $a < b \land b < c \implies a < c$
- (iii) $(a > 0 \implies (-a) < 0) \land (a < 0 \implies (-a) > 0)$
- (iv) Gilt a < b, so ist

$$ac < bc,$$
 $c > 0$
 $ac > bc,$ $c < 0$
 $a^2 > 0,$ $a \neq 0$

$$a > 0 \implies a^{-1} > 0$$

$$a < 0 \implies a^{-1} < 0$$

$$b^{-1} < a^{-1}, \text{ falls } a > 0$$

$$a + c < b + c.$$

(v)
$$a < b \implies (-a) > (-b)$$

Proof (i)-(iii)

- (i) Da $a < b \iff 0_K < b a$, folgt das aus Trichotomie und Def. von '>'.
- (ii) zu zeigen: ayc, d.h. $0_K < c a$.

$$c - a = (c + 0_K) - a = \underbrace{(c - b)}_{>0} + \underbrace{(b - a)}_{>0} > 0$$
, d.h. $a < c$

(iii) a > 0. Angenommen, (-a) > 0. $\stackrel{\text{Abg. Add.}}{\Longrightarrow} 0_K = a + (-a) > 0_K \stackrel{\text{Trich.}}{\Longrightarrow} E$ Ist -a = 0, so a = 0, nach Trich. Wid. zu a > 0. Falls a < 0, analog.

Corollary 2.3.5

Es gibt keine Ordnung '<' auf \mathbb{F}_2 , die \mathbb{F}_2 zu einem angeordneten Körper macht

Proof

Angenommen, '<' sei Ordnung. Da $0_K \neq 1_K$, gilt entweder $0_K < 1_K$ oder $1_K < 0_K$ (nach Trich.). Falls $0_K < 1_K$. Dann $0_K = 1_K + 1_K$ damit $0_K = 1_K + 1_K > 0_K + 1 = 1_K$. Widerspruch für $1_K < 0_K$ argumentiere analog.

• PRINZIP: $\mathbb{R} \wedge \mathbb{Q}$ sind angeordnete Körper

2.4 Der Betrag

('Abstand zur Null')

2. Körper 16

Definition 2.4.1

Für $x \in \mathbb{R}$ definieren wir den Betrag $|x| \coloneqq \begin{cases} x, & x \ge 0, \\ -x, & x < 0 \end{cases}$

Lemma 2.4.2

Der in Def 2.4.1 eingeführte Betrag erfüllt

- (i) $forall x \in \mathbb{R}|x| \ge 0$
- (ii) $|x| = 0 \iff x = 0$
- (iii) Multiplikativität: $\forall x, y \in \mathbb{R} : |x \cdot y| = |x| \cdot |y|$
- (iv) Dreiecksungleichung: $\forall x, < \in \mathbb{R} : |x+y| \le |x| + |y|$
- $(\mathbf{v}) \ \forall x \in \mathbb{R} : |-x| = |x|$
- (vi) $\forall x, y \in \mathbb{R} : y \neq 0 \implies \left| \frac{x}{y} \right| = \frac{|x|}{|y|}$

2.5 Das Archimedische Axiom

• Das muss gefordert werden

2.6 Supremum, Infimum und die Supremumseigenschaft

 \bullet Ziel: Entscheidende Eigenschaft von $\mathbb R$

Definition 2.6.1

Eine nichtleere Teilmenge $A \subset \mathbb{R}$ heißt

- nach oben beschränkt, falls $\exists c \in \mathbb{R} \forall x \in A : x \leq c$. Ein solches c "obere Schranke"
- nach unten beschränkt, falls $\exists c \in \mathbb{R} \forall x \in A : c \leq x$ "untere Schranke"

Example 2.6.2

- $A = N_0$ durch 0 nach unten, nach oben unbegrenzt
- $A = \{1, 2, ..., 10\}$ durch 1 nach unten, und durch 10, 11, ... nach oben beschränkt

Definition 2.6.3

Sei $a \subset \mathbb{R}$ nichtleer

(i) Ist A nach oben beschränkt, so heißt $s = \sup A$ Supremum von A, falls s obere Schranke ist und kleinste obere Schranke ist d.h. $\forall c \in \mathbb{R} : c$ obere Schranke von $A \implies s \leq c$. Ist $s \in A$ Supremum von A, so heißt s Maximum von A.

2. Körper 17

- (ii) Ist A nach oben unbeschränkt, so sei $+\infty$ das Supremum von A.
- (iii) Ist A nach unten beschränkt, so nennen wir $s' \in \mathbb{R}$ Infimum von A, falls s' untere Schranke und für jede andere untere Schranke $d \in \mathbb{R}$ von A: $d \leq s'$. Ist $s' \in A$ Infimum, so heißt s' Minimum von A.

(iv) Ist A nach unten unbeschränkt, so sei $-\infty$ das Infimum von A

Schreibweise: $\sup(A), \max(A), \inf(A), \min(A)$.

Example 2.6.4

Für $a, b \in \mathbb{R}$ mit ayb sei $(a, b) := \{\mathbb{R} : a < x < b\}$ Dann: $\sup((a, b)) = b \wedge \inf((a, b)) = a$.

- Obere Schranke: $\forall x \in (a, b) : x <) \implies b$ obere Schranke.
- Ist d andere obere Schranke, so $b \leq d$. Klar: d > a, also angenommen a < d < b. Dann $x := \frac{d+b}{2} \in (a,b), x > d$. $\Longrightarrow d$ keine obere Schranke f Weiter $b \notin (a,b)$, also b Supremum, kein Maximum

Prinzip (Supremumseigenschaft)

Jede nach oben beschränkte Menge $A \subset \mathbb{R}$ hat ein Supremum in \mathbb{R} Informell: $(1, \sqrt{2}) \cap \mathbb{Q}$ hat $\sup = \sqrt{2}$ (später). Aber $\sqrt{2} \notin \mathbb{Q}$, also gilt die Supremumseigenschaft für \mathbb{Q} nicht.

 \mathbb{R} ist

- Körper
- angeordente Körper
- bewerteter Körper
- Archimedisch angeordnete Körper
- Supremumseigenschaft

3 Folgen und Konvergenz

3.1 Reele Folgen und Konvergenz

Folge $a: \mathbb{N} \ni n \mapsto a(n) \in \mathbb{R}$. Schreibweisen:

$$(\underbrace{a_n}_{(=a(n))})_{n\in\mathbb{N}}(n \text{ Laufindex}),(a_n)$$

Example 3.1.1

 $a_n := 2n \rightarrow \text{ Folge der geraden Zahlen}$

 $a_n := 2n + 1 \rightarrow$ Folge der ungeraden Zahlen

Definition 3.1.2 Konvergenz

Sei (a_n) eine Folge in \mathbb{R} $((a_n) \subset \mathbb{R})$ und $a \in \mathbb{R}$. Wir sagen, dass (a_n) gegen a konvergiert, falls $\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n \geq N : |a_n - a| < \varepsilon$

Wir nennen a dann den **Grenzwert** oder **Limes** von (a_n) und schreiben

$$\lim_{n\to\infty}a\coloneqq a$$

Gibt es $a \in \mathbb{R}$ so, dass (a_n) , 'gegen a konvergiert, so nennen wir (a_n) konvergent, andernfalls divergent.

Lemma 3.1.3

Sei $(a_n) \subset \mathbb{R}$ eine Folge, die gegen $a, b \in \mathbb{R}$ konvergiert. Dann a = b.

Proof

Sei $\varepsilon>0$ bel.. Dann

$$\exists N \in \mathbb{N} \forall n \geq N : |a_n - a| < \frac{\varepsilon}{2} \land |a_n - b| < \frac{\varepsilon}{2}$$

$$\implies \forall n \geq N : |a - b| = |(a - a_n) + (a_n - b)| \leq |a_n - a| + |a_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$\stackrel{\forall \varepsilon}{\Longrightarrow} a = b. \quad \blacksquare$$

Für jedes $\varepsilon > 0$: Ab irgendeinem N bleibt die Folge für immer im ε -Streifen um a.

Example 3.1.4

$$(a_n)_{n\in\mathbb{N}}=\left(\frac{1}{n}\right)_{n\in\mathbb{N}}$$
. Vermute: Limes $\lim_{n\to\infty}\frac{1}{n}=0$. Sei $\varepsilon>0$. Mit Archimedes $\exists N\in\mathbb{N}: \frac{1}{\varepsilon}< N$. Dann $\forall n\geq N: \left|\frac{1}{n}\right|=\frac{1}{n}\leq \frac{1}{N}<\varepsilon$.

Example 3.1.5

 $\forall a \in \mathbb{R} : (a_n) = (a)$ (konstante Folge) konvergent gegeben a

Example 3.1.6

$$\lim_{n\to\infty} \frac{n}{2^n} = 0. \text{ Sei } \varepsilon > 0. \text{ Nach } 1.2.3 \ \forall n \geq 5: n^2 < 2^n. \text{ Nach Arch. } \exists N \in \mathbb{N}: N \geq 5 \wedge \frac{1}{\varepsilon} < N. \implies \forall n \geq N: \left|\frac{n}{2^n} - 0\right| = \frac{n}{2^n} \stackrel{\text{Ugl}}{<} \frac{1}{n} \stackrel{n \geq N}{\leq} \frac{1}{N} < \varepsilon$$

Example 3.1.7

$$(a_n)_{n\in\mathbb{N}} := ((-1)^n)_{n\in\mathbb{N}}$$

Beh.: $\neg \exists a \in \mathbb{R} : (a_n)_{n \in \mathbb{N}}$ konv. gg a. Angenommen, es gäbe so ein $a \in \mathbb{R}$. Wähle $0 < \varepsilon < 1$.

Dann $\exists N \in \mathbb{N} \forall n \geq N : |(-1)^n - a| < \varepsilon$.

Dann:
$$2 = |1 - (-1)| \le \underbrace{|(1-a)|} \le |(-a)^n - a| + \underbrace{|a+1|}_{|a-(-1)^n|} < 2\varepsilon < 2$$

Example 3.1.8

 (a_n) reele Folge.

- $\exists \varepsilon > 0 \exists N \in \mathbb{N} \forall n \geq N : |a_n a| < \varepsilon$. Für $\varepsilon = 1$ efüllt die Folge aus example 3.1.7 dies! Nicht äquivalent zu Konvergenz!
- $\forall \varepsilon > 0 \forall N \in \mathbb{N} \exists n \geq N : |a_n a| < \varepsilon$ Folge aus example 3.1.7 erüllt dies - nicht äquivalent!

3.2 Rechenregeln für Grenzwerte

Theorem 3.2.1

Seien $(a_n), (b_n) \subset \mathbb{R}$ konv. gegen $a \in \mathbb{R}$ bzw. $b \in \mathbb{R}$. Dann

- (i) $(a_n + b_n)$ konvergiert gegen $a + b \lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$
- (ii) $(a_n \cdot b_n)$ konvergiert gegen $a \cdot b$
- (iii) Ist $b \neq 0$ so existiert ein $N \in \mathbb{N}$ mit $n \geq N \implies b \neq 0$, und es gilt:

$$\left(\frac{a_n}{b_n}\right)_{n\geq N}$$
 konv gg $\frac{a}{b}$.

Proof

Sei
$$\varepsilon > 0$$

Wg. Konv.
$$a_n \to a \exists N_1 \in \mathbb{N} : \forall n \geq N_1 : |a_n - a| < \frac{\varepsilon}{2}$$

Wg. Konv. $b_n \to b \exists N_2 \in \mathbb{N} : \forall n \geq N_2 : |b_n - b| < \frac{\varepsilon}{2}$

$$(a_n), (b_n), a_n \to a, b_n \to b \implies a_n + b_n \to a + b$$

Definition 3.2.2

Wir sagen, dass $(a_n) \subset \mathbb{R}$ beschränkt ist, falls $\exists M > 0 \forall n \in \mathbb{N} : |a_n| \leq M$.

Lemma 3.2.3

Konvergente Folgen sind beschränkt.

Angenommen, (a_n) konvergiert gegen $a \ni \mathbb{R}$. Mit $\varepsilon = 1$ ex. $N \in \mathbb{N}$:

$$(\forall n \ge N : |a_n - a| < 1) \implies \forall n \ge N : ||a_n| - |a|| < 1 \implies |a_n| \le 1 + |a|$$

Setze
$$M := \max\{|a_1|, \dots, |a_N|, 1 + |a|\}$$
, so $\forall n \in \mathbb{N} : |a_n| \leq M$.

Zurück zum Beweis von Satz 3.2.1 (b) und (c):

Proof

(b) zu zeigen $a_n \to a \land b_n \to b \implies a_n b_n \to ab$

$$|a_n b_n - ab| = |(a_n b_n - ab_n) + (ab_n - ab)| \le |b_n| \cdot |a_n - a| + |a||b_n - b| \tag{8}$$

Sei $\varepsilon > 0$. Da (b_n) beschr., ex. nach Lemma 3.2.3 ein $M > 0 : \forall n \in \mathbb{N} : |b_n| \leq M$. Da $a_n \to a, b_n \to b$

$$(1) \ \exists N_1 \in \mathbb{N} \forall n \ge N_1 : |a_n - a| \frac{\varepsilon}{2M}$$

(2)
$$\exists N_2 \in \mathbb{N} \forall n \ge N_2 : |a_n - a| \frac{\varepsilon}{1 + |a|}$$

(8)
$$\implies \forall n \ge N := \max\{N_1, N_2\} : |a_n b_n - ab|$$

$$\overset{(8)}{\leq} M \cdot \frac{\varepsilon}{2M} + \underbrace{|a| \cdot \frac{\varepsilon}{2(1+|a|)}}_{<\frac{\varepsilon}{2}} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Damit (b).

(c)
$$a_n \to a, b_n \to b \neq 0 \implies \frac{a_n}{b_n} \to \frac{a}{b}$$

$$(1) \ \exists n_0 \in \mathbb{N} \forall n \ge n_0 : |b_n| \ne 0.$$

$$\forall \varepsilon > 0 \exists \widetilde{N} \forall n \ge \widetilde{N} : |b_n - b| < \varepsilon,$$

d.h.
$$|b| - \varepsilon \le |b_n|$$

Wende Dies auf $\varepsilon = \frac{|b|}{2}$ an.

Dann $\forall n \geq \widetilde{N} : 0 < \frac{|\widetilde{b}|}{2} \leq |b_n|$. setze nun $n_0 \coloneqq \widetilde{N}$

(2)
$$b_n \to b \neq 0$$
, so $\frac{1}{b_n} \to \frac{1}{b}$.

$$\left| \frac{1}{b_n} - \frac{1}{b} \right| = \left| \frac{b - b_n}{b_n b} \right| = \frac{|b_n - b|}{|b_n| \cdot |b|} \tag{9}$$

Für
$$n\widetilde{N}: \frac{|b|}{2} < |b_n|$$
, also $\frac{1}{|b_n|} < \frac{2}{|b|}$, also $\frac{1}{|b_n||b|} \frac{2}{|b|^2}$

Für
$$n\widetilde{N}: \frac{|b|}{2} < |b_n|$$
, also $\frac{1}{|b_n|} < \frac{2}{|b|}$, also $\frac{1}{|b_n||b|} \frac{2}{|b|^2}$
Sei $\varepsilon > 0$. Dann $\exists \widetilde{\widetilde{N}} \in \mathbb{N}: \forall n \geq \widetilde{\widetilde{N}}: |b_n - b| < \frac{\varepsilon |b|^2}{2} \cdot \frac{2}{|b|^2} = \varepsilon$

(3)
$$a_n \to a, b_n \to b \neq 0 \stackrel{(2)}{\Longrightarrow} (a_n \to a, \frac{1}{b_n} \to \frac{1}{b}) \stackrel{(b)}{\Longrightarrow} \frac{a_n}{b_n} \to \frac{a}{b}$$

Example 3.2.4

 $a, b, c, d \in \mathbb{R}, c \neq 0, d \neq 0.$

$$\lim_{n\to\infty}\frac{an^2+b}{cn^2+d}=\lim_{n\to\infty}\frac{a+\frac{b}{n^2}}{c+\frac{d}{n^2}}=\lim_{n\to\infty}\frac{a_n}{b_n}$$

- $\frac{A}{n} \to 0$, Thm. 3.2.1 (b) : $\frac{b}{n^2} \to 0 \cdot 0 = 0$ Thm. 3.2.1 (b) $\frac{b}{2} \to 0$ (+) Thm. 3.2.1 (a): $a + \frac{1}{n^2} \to a$
- Nenner $c + \frac{d}{n^2} \to c \stackrel{\text{Thm. 3.2.1 (c)}}{\Longrightarrow} \frac{a_n}{b_n} \to \frac{a}{c}$.

3.3 Stabilität der '\(\leq'\)-Relation unter Limesbildung

Theorem 3.3.1

Seien $(a_n), (b_n)$ zwei konvergente Folgen in \mathbb{R} : Seien $a, b \in \mathbb{R}$

- (i) Gibt es $N \in \mathbb{N} : \forall n \geq N : a_n \leq a$, so $\lim_{n \to \infty} a_n \leq a$.
- (ii) Gibt es $N \in \mathbb{N} : \forall n \geq N : b \leq b_n$, so $b \leq \lim_{n \to \infty} b_n$.

Proof

Sei $\xi := \lim_{n \to \infty} a_n$. Für $\varepsilon > 0$ finden wir $\widetilde{N} \in \mathbb{N} : n \geq \widetilde{N} : |a_n - \xi| < \varepsilon$. Damit

$$\xi = (\xi - a_n) + a_n \le |\xi - a_n| + a_n \le \xi + a_n \le a + \varepsilon \implies \xi \le a.$$

Bemerkung: Satz falsch für '<' Bsp.

Theorem 3.3.2 Sandwich-Thm

Seien $(a_n),(c_n)\subset\mathbb{R}$ konv. Folgen: $a_n,c_n\to a\in\mathbb{R}$ Ist $(b_n)\subset\mathbb{R}$, so dass $\exists N\in\mathbb{N}\forall n\geq N:$ $a_n\leq b_n\leq c_n,$ so $b_n\to a$

Proof

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n \geq N : |a_n - a| < \frac{\varepsilon}{2}, |c_n - a| < \frac{\varepsilon}{2}, \text{ Für solche n} : a - \varepsilon < a_n - \frac{\varepsilon}{2} \leq b_n - \frac{\varepsilon}{2} \leq c_n - \frac{\varepsilon}{2} < a + \varepsilon \implies b_n \to a.$$

3.4 Monotone Konvergenz, e und Wurzeln

Definition 3.4.1

Eine Folge (a_n) heißt

- (i) mon. wachsend $\iff \forall n \in \mathbb{N} a_n \leq a_{n+1}$
- (ii) streng mon. wachsend $\iff \forall n \in \mathbb{N} a_n < a_{n+1}$
- (iii) mon. fallend $\iff \forall n \in \mathbb{N} a_n \geq a_{n+1}$

(iv) streng mon. fallend $\iff \forall n \in \mathbb{N} a_n > a_{n+1}$

Theorem 3.4.2

Eine monotone beshcränkte Folge konvergiert.

Proof

 $\mathbb{E}(a_n)$ monoton wachsend und beschränkt, also existiert nach Supremumseigenschaft $a := \sup\{a_n : n \in \mathbb{N}\} < \infty$

Zu zeigen $a_n \to a$. Sei $\varepsilon 0$ bel.. Dann nach Def. des Supremums $\exists N \in \mathbb{N} : a - \varepsilon y a_N$. Für $n \geq N$ gilt $a_N \leq a_n$ wegen Monotonie $\implies |a_n - a| = a_n - a = a - a_N + \underbrace{a_N - a_n}_{<0} \leq$

 $a - a_n < \varepsilon$. Also $a_n \to a$.

Corollary 3.4.3

Der Grenzwert $e := \lim_{n \to \infty} (1 + \frac{1}{n})^n$ existiert. Wir nennen e die **Eulerische Zahl**. Es gilt $2 \le e \le 3$.

Lemma 3.4.4

Sei $n \in \mathbb{N}_0, x > -1$. Dann $q + nx \le (1 + x)^n$.

Proof Cor. 3.4.4

zu zeigen: $(a_n) = \left(\left(\left(1 + \frac{1}{n}\right)^2\right) \text{ mon. wachs., beschr.}\right)$

$$\frac{a_n}{a_{n-1}} = \frac{\left(\frac{n+1}{n}\right)^2}{\left(\frac{n}{n-1}\right)^2}$$

$$\stackrel{\text{Rechnen}}{=} \left(\frac{n^2 - 1}{n^2}\right)^n \cdot \frac{n}{n-1}$$

$$= \left(1 - \frac{1}{n^2}\right)^n \cdot \frac{n}{n-1}$$

$$\stackrel{\text{Bernoulli mit } x = -\frac{1}{n^2}}{\leq} \left(1 - \frac{1}{n}\right) \cdot \frac{n}{n-1}$$

$$= \frac{n-1}{n} \cdot \frac{n}{n-1}$$

 $\implies (a_n)$ mon. wachsend

Nun: (a_n) beschränkt. Bin. Formel:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

$$|a_n| = \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} = \dots \le \frac{1}{k!}$$

$$2^{k-1} \leq k! \forall k \in \mathbb{N}$$

Damit

$$\left(1 + \frac{1}{n}\right)^n \overset{\text{von davor}}{\leq} 2 + \sum_{k=2}^n \binom{n}{k} \frac{1}{n^k} \leq 2 + 2 \cdot \sum_{k=2} n \frac{1}{2^k} \leq 2 + 2 \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{2^k} \leq 2 + 2 \cdot 1 = 4$$

 \implies Zahle existiert! (nach Thm. 3.4.2)

Wiederholung:

- \bullet Konvergent \Longrightarrow Beschränkt
- ullet Monoton + Beschränkt \Longrightarrow Konvergent

Corollary 3.4.5 Existenz von Quadratwurzeln

Sei $a \geq 0$, Dann existiert ein $x \in \mathbb{R}$ mit $x^2 = a$. Speziell gilt: Ist $x_0 > 0$ so konvergiert die durch

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

definierte Folge gegen die **eindeutige** positive Lösung $x \in \mathbb{R}_{>0}$ der Gleichung $x^2 = a$

Proof

(i) Beschränkt nach unten: Wir zeigen induktiv $x_1 > 0$ für alle $n \in \mathbb{N}$

I.A.: $x_0 > 0$ nach Voraussetzung

I.S.: Gelte $x_n > 0$ für ein $n \in \mathbb{N}$ (I.V.). Dann ist

$$x_{n+1} = \frac{1}{2} \left(\underbrace{x_n}_{>0} + \underbrace{\frac{\geq 0}{a}}_{>0} \right)$$

(ii) Monoton fallend:

$$x_{n+1} - x_n = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) - x_n$$

$$= \frac{1}{2} \left(\frac{a}{x_n} - x_n \right)$$

$$= \frac{1}{2} \underbrace{\left(x_n - x_n \right)}_{>0 \text{ nach (i)}} \text{ für alle } n \in \mathbb{N}$$

Es ist

$$a - x_{n+1}^2 = a - \frac{1}{4} \left(x_n + \frac{a}{x_n} \right)^2$$

$$= a - \frac{1}{4} x_n^2 - \frac{1}{2} a - \frac{1}{4} \cdot \frac{a^2}{x_n^2}$$

$$= \frac{1}{2} a - \frac{1}{4} \left(x_n^2 + \frac{a^2}{x_n^2} \right)$$

$$= -\frac{1}{4} \left(x_n - \frac{a}{x_n} \right)^2 \le 0$$

Also ist (x_n) monoton fallend.

- (iii) Es gilt $l := \lim_{n \to \infty} x_n$ und $l = \lim_{n \to \infty} x_{n+1}$. Es folgt wegen $x_n x_{n+1} = \frac{1}{2} (x_n^2 + a)$, dass $l^2 = \frac{1}{2} (l^2 + a)$ und damit $l^2 = a$.
- (iv) Eindeutigkeit: Seien x, y > 0 seien zwei Lösungen zu

$$x^2 = y^2 = a$$

Dann gilt
$$0 = x^2 - y^2 = \underbrace{(x+y)}_{>0}(x-y)$$
. Also ist $x - y = 0$,

3.5 Einige Grenzwerte - alt und neu

• Für $k \in \mathbb{N}$ gilt $\lim_{n \to \infty} \frac{1}{n^k} = 0$ (Heratives Anwenden von Satz 3.2.1(i))

Definition 3.5.1 Bestimmte Divergenz

Eine Folge $(a_n) \subset \mathbb{R}$ heißt

- Bestimmt divergent gegen $+\infty$ (in Symbolen $\lim_{n\to\infty}a_n=\infty$), flls zu jedem k>0 ein $N\in\mathbb{N}$ existiert mit $a_n\geq k$ für alle $n\geq\mathbb{N}$
- Bestimmt divergent gegen $-\infty$ (in Symbolen $\lim_{n\to\infty} a_n = -\infty$), falls zu jedem k < 0 ein $N \in \mathbb{N}$ existiert mit $a_n \leq k$ für alle $n \geq N$.
- Ist (a_n) weder konvergent noch bestimmt divergent, so nennen wir (a_n) unbestimmt divergent und sagen " $\lim_{n\to\infty} a_n$ existiert nicht".
- Es gilt

$$\lim_{n \to \infty} x^n = \begin{cases} +\infty & \text{falls } x > 1\\ 1 & \text{falls } x = 1\\ 0 & \text{falls } |x| < 1\\ -\infty & \text{falls } x \ge -1 \end{cases}$$

- Für x > 1 setzte y := x - 1, mit Bernoullischer Ungleichung:

$$x^n = (1+y)^n \ge 1 + ny \to \infty$$

- Für x=1 gilt für alle $n\in\mathbb{N}$ $x^n=1.$
- Für $|x^{-1}>1$ (falls $x\neq 0$) Sei $\varepsilon>0$ Also gilt es existiert ein $N\in\mathbb{N}$, so das für alle $n\geq N$ gilt $|x^{-n}|\geq \frac{1}{\varepsilon}$, damit $|x^n|<\varepsilon$ für alle $n\geq N$
- Rest folgt mit Beispiel 3.1.7

$$\lim_{n \to \infty} \sum_{k=0}^{n} x^k = \begin{cases} +\infty & \text{falls } x \ge 1\\ \frac{1}{1-x} & \text{falls } |x| < 1\\ \text{existiert nicht} & \text{falls } x \le -1 \end{cases}$$

4 Vollständigkeit

4.1 ???

Supremumseigenschaft zeichnet \mathbb{R} aus.

Cauchy-Folgen

In \mathbb{R} sind Cauchy-Folgen und konvergente Folgen gleich, in \mathbb{Q} z.B. nicht.

Cauchy-Folgen sind beschränkt

es ist nicht so, dass alle Beschränkte Folgen, Cauchy-Folgen sind

Definition 4.1.1 Cauchyfolge

Eine reele Folge (a_n) heißt Cauchy oder Cauchyfolge, falls für alle $\varepsilon > 0$ ein $N \in \mathbb{N}$ existiert, sodass $|a_n - a_m| < \varepsilon$ für allle $n, m \ge N$. $\forall \varepsilon > 0 \exists N \in \mathbb{N} : \forall n, m \ge N : |a_n - a_m| < \varepsilon$

Theorem 4.1.2

Sei (a_n) eine folge in \mathbb{R} . Dann gilt:

- (i) Ist (a_n) konvergent, so ist (a_n) -Cauchy.
- (ii) Ist (a_n) Cauchy, dann ist (a_n) beschränkt.
- (iii) Ist (a_n) konvergent, so ist (a_n) beschränkt.

Proof

(i) Sei $\varepsilon 0$ beliebig. Da (a_n) konvergent, existiert ein $a \in \mathbb{R}$ und ein $N \in \mathbb{N}$ mit $|a_n - a| < \frac{\varepsilon}{2}$. Seien $n, m \in \mathbb{N}$, dann gilt

$$|a_n - a_m| = |(a_n - a) + (a - a_m)| \le |a_n - a| + |a - a_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

(ii) Setze $\varepsilon = 1$. Dann finden wir ein $N \in \mathbb{N}$ mit $|a_n - a_m| < 1$ für alle $n, m \ge N$. Die Menge $\{|a_1|, \ldots, |a_N|\}$ ist endlich, hat also ein Maximum, nenne dieses M. Für alle $n \ge \mathbb{N}$ gilt also $|a_n| \le M$ falls $1 \le n \le M$,

$$|a_n| \le |a_n - a_N| + |a_N| \le |a_n - a_N| + |a_N| \le 1 + M$$
 falls $n \ge N$

Deswegen ist (a_n) durch 1 + M beschränkt.

(iii) Direkt aus (i) und (iii)

Example 4.1.3 Beschränktheit und nicht Cauchy

Betrachte $(a_n) := (-1)^n$. Dann ist $|a_n| = 1$ für alle $n \in \mathbb{N}$ und speziell (a_n) beschränkt. Wähle $0 < \varepsilon < 2$. Dann gilt für bel $N \in \mathbb{N}$

$$|a_n - a_{n+1}| = 2 > \varepsilon$$

4.2 Teilfolgen undn der Satz von Bolzano-Weierstraß

•

$$((-1)^n): \begin{cases} \text{gerade Folgeglieder: immer } -1 \\ \text{ungerade Folgeglieder: immer } -1 \end{cases}$$

Definition 4.2.1

Sei $(a_n) \subset \mathbb{R}$ Folge und $n : \mathbb{N} \to \mathbb{N}$ eine monoton wachsende Abbildung. Dann heißt $(a_{n(k)})$ **Teilfolge**

Example 4.2.2

$$(a_n) = ((-1)^n)$$

- $n(k) = 2k \rightsquigarrow (a_{n_k}) =$ Teilfolge der geraden Folgenglieder
- $n(k) = 2k 1 \rightsquigarrow (a_{n_k}) =$ Teilfolge der ungeraden Folgenglieder

Definition 4.2.3

Sei $(a_n) \subset \mathbb{R}$ und $(a_{n_k}) \subset (a_n)$ Teilfolge die gegen $a \in \mathbb{R}$ konvergiert. Dann heißt a Häufungspunkt von (a_n) . Wir definieren dann den Limes superior via

$$\limsup_{n\to\infty}\coloneqq\inf_{n\in\mathbb{N}}\sup_{k\geq n}a_k,$$

und den Limes inferior via

$$\liminf_{n\to\infty} a_n := \sup_{n\in\mathbb{N}} \inf_{k\geq n} a_k.$$

• a HP von $(a_n) \iff \forall \varepsilon > 0 \forall N \in \mathbb{N} \exists n \geq N : |a_n - < | < \varepsilon.$

Example 4.2.4

 $(a_n) = (a)$ für $a \in \mathbb{R}$ (konstante Folge), so a einzelner Häufungspunkt; allgemeiner: Falls $a_n \to a$ konvergiert, so ist a einzelner Häufungspunkt.

Example 4.2.5

 $(a_n)=(-1)^n$, so sind +1 und -1 Häufungspunkte der Folge. Weiter $\limsup_{n\to\infty}a_n=+1$ und $\liminf_{n\to\infty}a_n=-1$.

Theorem 4.2.6 Bolzano Weierstraß

Jede beschränkte Folge in \mathbb{R} besitzt eine konvergente Teilfolge.

Lemma 4.2.7

Jede Folge in \mathbb{R} hat eine monotone Teilfolge.

Proof

Sei $(a_n) \subset \mathbb{R}$ beschränkt. Nach Lem 4.2.7 gibt es eine monotone Teilfolge, die natürlich auch beschränkt ist. Nach dem Satz über monotone, beschränkte Folgen konvergiert diese Teilfolge.

Brauchen:

Proof

Sei $(a_n) \subset \mathbb{R}$ bel. Wir nennen $a_{n_0}(n_0 \in \mathbb{N})$ Gipfelpunkt, falls:

(i) unendlich viele Gipfelpunkte: Sei dann (a_{n_k}) Teilfolge der Gipfelpunkte. Dann

$$n_1 \le n_2 \le n_3 \le \cdots$$
 und

$$a_{n_1} \ge a_{n_2} \ge a_{n_3} \ge \cdots$$

Also ist (a_{n_k}) monoton fallend.

(ii) endlich viele oder keine Gipfelpunkte: Hier existiert

$$N \in \mathbb{N} : n \ge N \implies a_n$$

kein Gipfelpunkt. Also gilt nicht: D. h. $\exists n_1 \geq N : a_N < a_{n_1} \implies a_{n_1}$ kein Gipfelpunkt $\implies \exists N_2 \ngeq n_1 : a_{n_1} < a_{n_2}$, usf. Dann ist (a_{n_k}) monoton wachsend.

4.3 Charakterisierung der Vollständigkeit

Für $a \le b$ sei $[a, b] := \{x \in \mathbb{R} : a \le x \le b\}$. Der Durchmesser von $[a, b] : \operatorname{diam}([a, b]) = b - a$

Lemma 4.3.1

Sei (a_n) Cauchyfolge, die eine gegen $a \in \mathbb{R}$ konvergiente Teilfolge besitzt. Dann konvergiert (a_n) gegen a.

Proof

 $\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n, m \geq N : |a_n - a_m| < \frac{\varepsilon}{2}$. Wähle zu $\varepsilon > 0$ ein solches $N \in \mathbb{N}$. Dann gibt es wegen konvergenter Teilfolge einen Index $\widetilde{N} \geq N : |a - a_{widetildeN}| < \frac{varepsilon}{2}$. Dann $\forall n \geq N$:

$$|a_n - a| = |(a_n - a_{\widetilde{N}}) + (a_{\widetilde{N}} - a)|$$

$$< \underbrace{a_n - a_{\widetilde{N}}}_{\underline{\varepsilon}} + \underbrace{a_{\widetilde{N}} - a}_{\underline{\varepsilon}}| < \varepsilon$$

Theorem 4.3.2

Die folgenden Prinzipien sind auf \mathbb{R} äquivalent:

- (i) **Supremumseigenschaft:** Jede nichtleere, nach oben beschrenkte Menge hat ein Supremum.
- (ii) **Bolzano-Weierstraß-Eigenschaft:** Jede beschränkte Folge hat eine konvergente Teilfolge

- (iii) Vollständigkeit: Jede Cauchyfolge konvergiert
- (iv) Intervallscachtelungsprinzip: Sind $(a_n), (b_n) \subset \mathbb{R}$ mit $\forall n \in \mathbb{N} : a_n \leq b_n \wedge [a_{n+1}, b_{n+1}] \subset [a_n, b_n]$ mit $\lim_{n \to \infty} \operatorname{diam}([a_n, b_n]) = 0$, so existiert genau ein

$$x \in \bigcap_{n \in \mathbb{N}} [a_n, b_n].$$

Proof

Plan: $(i) \implies (ii) \implies (iii) \implies (iv) \implies (i)$

- $\operatorname{Ad}(i) \Longrightarrow (ii)$ Die Supremumseigenschaft ist die einizige Zutat, um Bolzano-Weierstraß zu zeigen. Damit folgt (ii) aus (i)
- Ad $(ii) \implies (iii)$ Sei (a_n) Cauchyfolge. Nach letzter Vorlesung ist (a_n) beschränkt, und nach (ii) hat (a_n) also konvergiert Teilfolge. Nach Lem 4.3.1 konvergiert dann aber bereits $(a_n) \implies (iii)$
- Ad $(iii) \implies (iv)$ Sei $([a_n, b_n])$ eine Intervallschachtelung mit diam $([a_n, b_n]) \rightarrow 0, n \rightarrow \infty$.. Sei $\varepsilon > 0$. Dann

$$\exists N \in \mathbb{N} : \forall n \geq N : \underbrace{\operatorname{diam}([a_n, b_n])}_{b_n - a_n} < \varepsilon$$

. Dann $\forall n, m \geq N : a_m \in [a_n, b_n]$ (da Intervallschachtellung), also:

$$|a_n - a_m| \le |a_n - b_n| < \varepsilon \implies (a_n)$$
 Cauchy.

Ähnlich: (b_n) Cauchy $\stackrel{(iii)}{\Longrightarrow} \exists a, b \in \mathbb{R} : a_n \to a, b_n \to b.$

$$|a-b| = \lim_{n \to \infty} \underbrace{|a_n - b_n|}_{\operatorname{diam}([a_n, b_n])} = 0 \implies a = b.$$

Kurz zu

 $a \in \bigcap_{n \in \mathbb{N}} [a_n, b_n] : (a_n)$ monoton wachsend, (b_n) monoton fallend

Stabilität der KG-Relation
$$a_1 \le a_2 \le \cdots \le a$$

$$\Rightarrow b \ge \cdots \ge b_2 \ge b_1$$

$$\Rightarrow a_1 \le a_2 \le \cdots \le a = b \le \cdots \le b_2 \le b$$

hier fehlt noch was ...

Ad $(iv) \Longrightarrow (i)$ Sei $A \subset \mathbb{R}$ nichtleer und nach oben beschränkt. Zu zeigen A besitzt Supremum. Wähle $x_0 \in A$, sowie $y_0 \in \mathbb{R}$ eine obere Schranke von A. Seien für $n \in \mathbb{N}_0$ die Intervalle $[x_0, y_0], \ldots, [x_n, y_n]$ definiert. Setzte dann

$$x_{n+1} \coloneqq \begin{cases} x_n, & \text{falls } \left[\frac{x_n + y_n}{2}, y_n\right] \cap A \neq \emptyset \\ \xi \in \left[\frac{x_n + y_n}{2}, y_n\right] \cap A & \text{sonst} \end{cases}$$
$$y_{n+1} \coloneqq \begin{cases} \frac{x_n + y_n}{2}, & \text{falls } \left[\frac{x_n + y_n}{2}, y_n\right] \cap A \neq \emptyset \\ y_n & \text{sonst} \end{cases}$$

- $[x_{n+1}, y_{n+1}] \subset [x_n, y_n] : \%$ (sieht man ja)
- Beh.: $|x_n y_n| \le 2^{-n} |x_0 y_0 \forall n \in \mathbb{N}_0$ (reference star)

I.A.: erfüllt.

I.S.: $n \curvearrowright n+1$. Gelte (star) für ein $n \in \mathbb{N}_0$. Entweder

(a)
$$|x_{n+1} - y_{n+1}| = |x_n - \left(\frac{x_n + y_n}{2}\right)| = \frac{1}{2}|x_n - y_n| \stackrel{IV}{\leq} 2^{-(n+1)}|x_0 - y_0|$$

(b)
$$|x_{n+1} - y_{n+1}| = |\xi - y_n| = y_n - \xi \le y_n - \frac{1}{2}(x_n + y_n) = \frac{1}{2}(x_n - y_n) \stackrel{IV}{\le} 2^{-(n+1)}|x_0 - y_0|$$

 $\Longrightarrow \operatorname{diam}([x_N,y_n]) \to 0, n \to \infty$. Nach $(iv)\exists ! x \in \bigcap_{n \in \mathbb{N}_0} [x_n,y_n]$. Zeige nun: $x = \sup(A)$. x obere Schranke. Hierzu: $x = \lim_{n \to \infty} y_n$. Also $\forall z \in A$:

$$z \stackrel{\forall n}{\leq} y_n \stackrel{n \to \infty}{\to} x \implies z \leq x \implies \text{obere Schranke}$$

x kleinste obere Schranke: Angenommen es gäbe $x' \in \mathbb{R}, x' \nleq x \land x'$ obere Schranke. Aber $x_n \to x$ Aber $\forall n \in \mathbb{N}_0 : x_n \in A$. Dann aber $\exists N \in \mathbb{N} : \forall n \geq N : x' < x_n < x$. (Wähle $\varepsilon = \frac{1}{2}|x - x'|$)). Widerspruch, da x' keine obere Schranke. Also gilt (i)

Example einfach Beispiel aus Vorlesung

Ich glaube das soll zeigen, dass irgendwas an \mathbb{R} besonders

$$[\sqrt{2} - 1, \sqrt{2} + \frac{1}{n}]$$

$$\sqrt{2} - \frac{2}{n} \le a_n leq \sqrt{2} - \frac{1}{n}$$

$$\sqrt{2} + \frac{1}{n} \le b_n leq \sqrt{2} + \frac{1}{n}$$

$$[a_n, b_n], a_n, b_n \in \mathbb{Q}$$

5 Reihen und deren Konvergenz

5.1 Reihen, Konvergenz und absolute Konvergenz

Definition 5.1.1

Sei $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ eine Folge. Dann heißt die Folge $(s_k)_{k\in\mathbb{N}}$ mit

$$s_k \coloneqq \sum_{n=1}^k a_n$$

die **Reihe** (u $(a_n)_{n\in\mathbb{N}}$ assoziiert):

$$\sum_{k=1}^{\infty} a_n.$$

Die Reihe $\sum_{n=1}^{\infty} a_n$ heißt **konvergent**, falls die Folge $(s_k)_{k \in \mathbb{N}}$ konvergiert, und wir bezeichnen dan mit $\sum_{n=1}^{\infty} a_n$ auch ihren Limes. Andernfalls heißt die **Reihe divergent**.

Verschärfung:

Definition 5.1.2

Die Reihe $\sum_{n=1}^{\infty} a_n$ heißt **absolut konvergent**, falls $\sum_{n=1}^{\infty} a_n$ konvergiert.

Lemma 5.1.3

Absolute Konvergenz impliziert Konvergenz.

\mathbf{Proof}

Ist $\sum_{n=1}^{\infty} |a_n|$ konvergent, so ist $(\sum_{n=1}^{\infty} |a_n|)_{k \in \mathbb{N}}$ Cauchy.

$$\implies \forall \varepsilon > 0 : \exists k_0 \in \mathbb{N} \forall k \ge l \ge k_0 :$$

$$\sum_{n=l+1}^{k} |a_n| < \varepsilon$$

$$\implies \left| \sum_{n=1}^{k} a_n - \sum_{n=1}^{l} a_n \right|$$

$$= \left| \sum_{n=l+1}^{k} a_n \right|$$

$$\leq \sum_{n=l+1}^{k} |a_n|$$

Also $\left(\sum_{n=1}^{k} a_n\right)_k$ Cauchy, also fergit wg Voll. ax.

Example 5.1.4 Geometrische Reihe

Sei $q \in \mathbb{R}$. Dann konvergiert

$$\sum_{n=1}^{\infty} q^n$$

genau dann, wenn |q| < 1. Aus Kapitel 1 wissen wir, dass

$$\sum_{n=0}^{N} q^{n} = \frac{1 - q^{N+1}}{1 - q}, \text{ also}$$

$$\sum_{n=1}^{N} q^n = \frac{q - q^{N+1}}{1 - q} \stackrel{N \to \infty}{\to} \frac{q}{1 - q}.$$

Speziell konvergiert die Reihe (absolut).

•

$$q = 1: \sum_{n=1}^{N} q^n = N \to \infty, N \to infty.$$

•

$$q > 1: \sum_{n=1}^{N} q^n$$
, also $\sum_{n=1}^{N} \to \infty, N \to infty$.

•

 $q \leq -1 \Rightarrow$ Alternation, keine Konvergenz

Example 5.1.5

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{1} + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots = \frac{\pi^2}{6}$$

•

$$\sum_{n=2}^{\infty} \frac{1}{n(n-1)} \text{ konvergient}$$

$$\frac{1}{n(n-1)} = \frac{A}{n} + \frac{B}{n-1} = \frac{A(n-1) + Bn}{n(n-1)} = \underbrace{-A + \underbrace{(A+B)}_{n} n}_{n(n-1)}$$

$$\sum_{n=2} N \frac{1}{n(n-1)} = \sum_{n=2}^{N} \left(-\frac{1}{n} + \frac{1}{n-1} \right)$$

$$= \left(\frac{1}{1} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \dots + \frac{1}{N-1} - \frac{1}{N}$$

$$= 1 - \frac{1}{N} \stackrel{\mathbb{N} \to \infty}{\to} 1.$$

Damit:

$$\forall N \in \mathbb{N}, N \geq 2: \sum_{n=1}^{N} \frac{1}{n^2} = 1 + \sum_{n=2}^{N} \frac{1}{n^2} \leq 1 + \sum_{\substack{n=2 \text{ beschränkt in N}}}^{N} \frac{1}{n(n-1)} \implies \left(\sum_{n=1}^{N} \frac{1}{n^2}\right)_{N \in \mathbb{N}} \text{ beschränkt}$$

Example 5.1.6 Harmonische Reihe

$$\sum_{n=1}^{\infty} \frac{1}{n} \mathbf{divergent}.$$

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \sum_{k=0}^{\infty} \underbrace{\sum_{n=2^k+1}^{2^{k+1}} \frac{1}{n}}_{2^k - \text{Summanden}} \le 1 + \underbrace{\sum_{n=2^k+1}^{2^{k+1}} \frac{1}{2^{k+1}}}_{\frac{2^k}{2^{k+1}}} = 1 + \sum_{k=0}^{\infty} \frac{1}{2} = \infty$$

Lemma 5.1.7

Konvergiert

$$\sum_{n=1}^{\infty} a_n,$$

so ist (a_n) eine Nullfuloge.

Corollary 5.1.8 Trivialkriterium

Ist (a_n) keine Nullfolge, so divergiert

$$\sum_{n=1}^{\infty} a_n$$

Proof Lem 5.1.7

Nach Voraussetzung ist

$$\left(\sum_{n=1}^{k} a_n\right)_{k \in \mathbb{N}}$$

Cauchy. Sei $\varepsilon > 0$ beliebig, so $\exists k_0 \in \mathbb{N} \forall k, l \geq k_0 : \left| \sum_{n=1}^k a_n - \sum_{n=1}^l a_n \right| < \varepsilon \overset{k=l+1}{\leadsto} \forall l \geq k_0 : |a_{l+1} < \varepsilon \implies (a_n)$ Nullfolge

5.2 Konvergenzkriterien

• Leibniz \leadsto alternierende Reihen

$$\sum_{n=1}^{\infty} (-1)^n a_n$$

Proposition 5.2.1 Leibnizkriterium

Ist $(a_n) \subset \mathbb{R}$ monoton fallende Nullfolge, so konvergiert die alternierende Reihe

$$\sum_{n=1}^{\infty} (-1)^n a_n$$

Bemerkung: Satz 5.2.1 sagt **nichts** über absolute Konvergenz. Denn sei $(a_n) = (\frac{1}{n})$. Dann ist (a_n) monoton fallende Nullfolge

$$\sum_{n=1}^{\infty} |(-1)^n a_n| = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

Proof (Satz 5.2.1)

Für

$$k \in \mathbb{N} : s_k := \sum_{n=1}^k (-1)^n a_n$$

• gerade Indices: $k = 2j, j \in \mathbb{N}$.

$$s_{2j} = -a_1 + a_2 - a_3 + a_4 - a_5 + \dots + \underbrace{(-1)^{2j-1}}_{=-a_1 + a_2 - a_3 + \dots - a_{2j-1} + a_{2j}}_{=-a_1 + a_2 - a_3 + \dots - a_{2j-1} + a_{2j} - a_{2j+1} + \underbrace{a_{2j+2}}_{=a_{2(j+1)}}$$

$$\implies s_{2j} \ge s_{2(j+1)}$$

und $s_2 j \ge -a_1 + a_{2j}$ und $a_{2j} \to 0 \implies (s_{2j})$ nach unten beschränkt. Satz über monotone beschränkte Folgen: (s_{2j}) konvergiert $s_{2j} \to s$

• Analog: (s_{2j+1}) monoton wachsend und nach oben beschränkt $\implies (s_{2j+1})$ konvergiert, $s_{2j+1} \to s'$

•
$$S = s' : |s - s'| = \lim_{j \to \infty} \underbrace{|s_{2j+1} - s_{2j}|}_{|\sum_{k=1}^{2j+1} (-1)^k a_k - \sum_{k=1}^{2j} (-1)^k a_k|} = \lim_{j \to \infty} |(-1)^{2j+1} a_{2j+1}| = \lim_{j \to \infty} |a_{2j+1}| = 0.$$

Zu zeigen : Die ganze Reihe konvergiert gegen s: Sei $\varepsilon > 0$:

Fall 1:

$$\exists k_1 \in \mathbb{N} \forall k \ge k_1 : \left| \sum_{n=1}^{\infty} 2k(-1)^n a_n - s \right| < \varepsilon$$

Fall 2:

$$\exists k_2 \in \mathbb{N} \forall k \ge k_2 : \left| \sum_{n=1}^{\infty} 2k + 1(-1)^n a_n - s \right| < \varepsilon$$

Sei nun $N := \max\{2k_1, 2k_2 + 1\}$. Dann $\forall j \geq N$:

$$\left| \sum_{n=1} j(-1)^n a_n - s \right| < \varepsilon.$$

Damit folgt die Behauptung

Example 5.2.2 Alternierende harmonische Reihe

$$\sum_{n=1}^{\infty} (-1)^n \underbrace{\frac{1}{n}}_{a_n}$$

konvergiert nach Leibniz, da (a_n) eine monoton fallende Nullfolge

$$\sum_{n=1}^{\infty} (-1)^n \frac{9n^2 - n + 100}{20n^3 + n^2 + 4}$$

dann muss man feststellen, dass gegen Null und ab einem gewissen Zeitpunkt monoton fallend

Ab jetzt: Kriterien für absolute Konvergenz

Proposition 5.2.3 (Majorantenkriterium/Minorantenkriterium)

Seien $(a_n), (b_n) \in \mathbb{R}$ so, dass

(a) $|a_n| \le |b_n| \forall n \in \mathbb{N}$ und

$$\sum_{n=1}^{\infty} |b_n| < \infty.$$

Dann konvergiert $\sum_{n=1}^{\infty} a_n$ absolut.

(b) $|a_n| \leq |b_n| \forall n \in \mathbb{N}$ und

$$\sum_{n=1}^{\infty} |a_n| = \infty.$$

Dann divergiert $\sum_{n=1}^{\infty} a_n$.

Proof (Satz 5.2.3)

Sei $\varepsilon > 0$. Da

$$\sum_{n=1}^{\infty} |b_n| < \infty$$

gibt es

$$N \in \mathbb{N} : \forall k, m \geq N : \sum_{n=k}^{m} |b_n| < \varepsilon$$
 (Cauchyfolge/Partialsummen der Beträge)

Daher auch

$$\sum_{n=k}^{m} |a_n| \stackrel{\text{Vor.}}{\leq} \sum_{n=k}^{m} |b_n| < \varepsilon.$$

Also ist

$$\left(\sum_{n=1}^{N} |a_n|\right)_{N \in \mathbb{N}}$$

Cauchy, und damit folgt (a) nach Vollständigkeit von R. (b) Analog.

Vergleich mit geometrischen Reihen

Proposition 5.2.4 (Quotientenkriterium)

Sei $(a_n) \subset \mathbb{R}$

(a) Es gebe $0 \le q < 1 \land N \in \mathbb{N}$ so, dass

$$a_n \neq 0 \land \left| \frac{a_{n+1}}{a_n} \right| \le q \quad \forall n \ge N$$

Dann konvergiert

$$\sum_{n=1}^{\infty} a_n$$

 ${\bf absolut.}$

(b) Es gebe $1 \le q < \infty \land N \in \mathbb{N}$ so, dass

$$a_n \neq 0 \land \left| \frac{a_{n+1}}{a_n} \right| \leq q \quad \forall n \geq N$$

Dann divergiert

$$\sum_{n=1}^{\infty} a_n.$$

Proof (Satz 5.2.4)

(a) Zuerst:

$$a_n \neq 0, \underbrace{\left| \frac{a_{n+1}}{a_n} \right| \leq q(<1)}_{|a_{n+1} \leq q|a_n|} \forall n \geq N$$

Beh.: $\forall j \in \mathbb{N}_0 : |a_{N+j}| \leq q^j |a_N|$.

I.A. j = 0 yus is correct

I.S. $j \curvearrowright j + 1$.

$$|a_{N+j+1}| \stackrel{\text{Nach Vor.}}{\leq} q |a_{N+j}| \stackrel{\text{I.V.}}{\leq} q^{j+1} |a_N|$$

$$\sum_{n=1}^{\infty} = \sum_{n=1}^{N-1} |a_n| + \sum_{n=N}^{\infty} |a_n|$$

$$= \left(\sum_{n=1}^{N-1}\right) + \sum_{j=0}^{\infty} |a_{N+j}|$$

$$= \underbrace{\left(\sum_{n=1}^{N-1}\right)}_{<\infty} + \underbrace{|a_N| \sum_{j=0}^{\infty} q^j}_{<\infty}$$

$$<\infty \text{ } q<1 \text{ geometrische Reihe}$$

(b) Via Induktion.: $|a_n| \neq 0, \forall j \in \mathbb{N}_0 : |a_{N+1}| \geq q^j |a_N|$ $|a_{N+1}| \geq q^j |a_N| \stackrel{j \to \infty}{\not\to} 0. \implies (a_n) \text{ keine NUllfolge } \Longrightarrow \text{ [Trivialkriterium]}$

Corollary 5.2.5

Ist $(a_n) \subset \mathbb{R}$ so, dass $\exists N \in \mathbb{N} : \forall n \geq N : a_n \neq 0$. Konvergiert

$$\left(\left|\frac{a_{n+1}}{a_n}\right|\right)$$

 mit

$$\lim_{n\to\infty}\dots$$

Example 5.2.6

$$\sum_{n=1}^{\infty} \underbrace{\frac{n!}{2^n}}_{=a_n}$$

1.

$$\forall n \in \mathbb{N} : a_n \neq 0$$

2.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \dots$$

Proposition 5.2.7 (Wurzelkriterium)

Sei $(a_n) \subset \mathbb{R}$. Dann:

(i) Es gebe $0 \le q < 1 \land N \in \mathbb{N}$ mit $\sqrt[n]{|a_n|} \le q \forall n \ge N$. Dann konvergiert

$$\sum_{n=1}^{\infty} a_n$$

absolut

(ii) Es gebe $1 \leq q < \infty \land N \in \mathbb{N}$ mit $\sqrt[n]{|a_n|} > q \forall n \geq N.$ Dann divergergiert

$$\sum_{n=1}^{\infty} a_n$$

Proof

Analog zum Quotientenkriterium, ab n=N nutze $|a_N| \leq q^n$ + Geom

Example

Konvergiert $\sum_{n=1}^{\infty} a_n$ vielleicht sogar absolut? Nullfolge? -> nein reihe divergent Trivialkriterium

Alternierende Reihe -> ja Leibniz -> konvergienz/Divergenz

- -> nein: Quotiont -> ja Quotientenkriterium
- -> nein: Potent -> ja Wurzelkriterium
- -> nein: geeignete Maj.? -> nein: Tricky

Corollary 5.2.8 Wurzelkriterium in Limesform

Ist $a_n \subset \mathbb{R}$ Folge mit

(i)

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} < 1$$

, so konvergiert

$$\sum_{n=1}^{\infty} a_n$$

absolut.

(ii)

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} > 1$$

, so divergiert

$$\sum_{n=1}^{\infty} a_n$$

 $\overline{\text{Example }}5.2.9$

$$\sum_{n=1}^{\infty} \underbrace{\left(\frac{2n+1}{3n+2}\right)^n}_{a_n},$$

$$\lim_{n\to\infty}\sqrt[n]{|a_n|}=\lim_{n\to\infty}\frac{2n+1}{3n+2}$$

$$=\frac{2}{3}<1\implies \text{ absolute Konvergenz nach Wurzelkriterium}$$

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=a\implies \lim_{\sqrt[n]{a_n}}=a,$$

falls $a, a_1, \ldots \in \mathbb{R}_{>0}$

Das bedeuteet: Liefert das Quotientenkriterium eine Entscheidung, so auch das Wurzelkriterium. Aber Vorsicht, das bedeutet nicht, dass das Wurzelkriterium "leichter" anzuwenden ist.

Proposition 5.2.10 Reihenverdichtungskriterium

Sei $(a_n)\subset \mathbb{R}_{>0}$ eine monoton fallende Nullfolge. Dann konvergiert

$$\sum_{n=1}^{\infty} a_n$$

genau dann, wenn

$$\sum_{n=1}^{\infty} 2^n a_{2^n}$$

konvergiert. (verdichtete Reihe)

Proof Satz 5.2.10

 $\forall N \in \mathbb{N}$

$$\sum_{n=1}^{2^{N}} a_{n} = a_{1} + \sum_{k=1}^{N} \underbrace{\sum_{n=2^{k-1}+1}^{2^{k}} a_{n}}_{2^{k-1}\text{-Summanden}}$$

$$\geq a_{1} + \sum_{k=1}^{N} 2^{k-1} a_{2^{k}}$$

$$= a_{1} + \frac{1}{2} \sum_{k=1}^{N} 2^{k} a_{2^{k}}.$$

⇒ Konvergiert

$$\sum_{n=1}^{\infty} a_n,$$

so auch

$$\sum_{n=1}^{\infty} 2^n a_{2^n}$$

$$\sum_{n=1}^{2^{N}} a_n = a_1 + \sum_{k=1}^{N} \sum_{n=2^{k-1}+1}^{2^k} \underbrace{a_n}_{2^{k-1}+1}$$

$$\leq a_1 + \sum_{k=1}^{N} 2^{k-1} a_{2^{k-1}+1}$$

$$= a_1 + a_2 + \sum_{k=2}^{N} 2^{k-1} a_{2^{k-1}+1}$$

$$= a_1 + a_2 + \sum_{j=1}^{N-1} 2^j \underbrace{a_{2^j+1}}_{\leq a_{2^j}}$$

$$\leq a_1 + a_2 + \sum_{j=1}^{N-1} 2^j a_{2^j+1}$$

 \implies Konvergiert

$$\sum_{n=1}^{\infty} 2^n a_{2^n},$$

so auch

$$\sum_{n=1}^{\infty} a_n.$$

Example 5.2.11

Für welche s > 0 konvergiert

$$\sum_{n?1}^{\infty} \underbrace{\frac{1}{n^s}}_{a_n}?$$

- Quotientenkriterium: $\rightarrow 1$ Fail
- Reihenverdichtung: Verdichtete Reihe:

$$\sum_{n=1}^{\infty} \frac{2^n}{2^{ns}} = \sum_{n=1}^{\infty} (2^{1-s})^n q.$$

Das ist eine **geometrische Reihe**, die genau für |q|<1. aber $q=2^{1-s}<1$ genau dann wenn s>1

5.3 Umordnung von Reihen

Definition 5.3.1

Wir nennen eine bijektive Abbildung $\sigma: \mathbb{N} \to \mathbb{N}$ eine **Umordnng**. Ist $(a_n) \subset \mathbb{R}$, so heißt

$$\sum_{n=1}^{\infty} a_{sigma(n)}$$

die (zu σ gehörige) Umordnung der Reihe.

Wir nennen die Reihe

$$\sum_{n=1}^{\infty} a_n$$

unbedingt konvergent, falls **jede** Umordnung der Reihe gegen denselben Wert konvergiert. Konvergiert

$$\sum_{n=1}^{\infty} a_n,$$

aber nicht unbedingt, so heißt die Reihe bedingt konvergent.

Proposition 5.3.2 Dirichletscher Umordnungssatz

Eine absolut konvergierende Reihe ist unbedingt konvergent.

Proof Satz 5.3.2

Sei

$$\sum_{n=1}^{\infty} a_n$$

absolut konvergent und $\sigma:\mathbb{N}\to\mathbb{N}$ bijektiv. Sei $\varepsilon>0$

1

$$\sum_{n=1}^{\infty} |a_n|$$

konvergiert

$$\implies \exists n_0 \in \mathbb{N} : \forall n \ge m \ge n_0 : \sum_{k=m}^n |a_k| < \frac{\varepsilon}{2}$$

(Parialsummen Cauchy)

2 Ist

$$s = \sum_{n=1}^{\infty} |a_n|,$$

so

$$\exists n_1 \ge n_0 : \left| \sum_{k=1}^{n_1} a_k - s \right| < \frac{\varepsilon}{2}.$$

3 Wähle
$$m_1 \in \mathbb{N} : \{1, \dots, n_1\} \subset \{\sigma(1), \dots, \sigma(m_1)\} (\rightsquigarrow \sigma \text{ bijektiv})$$

Sei $n \geq m_1$ beliebig. Dann $\exists n_2, \dots, n_l \in \mathbb{N} : n_1 < n_2 < \dots < n_l$

$$\{1,\ldots,n_1,n_2,\ldots,n_l\} = \{\sigma(1),\ldots,\sigma(n)\}.$$

$$\implies \left| \sum_{k=1}^{n} a_{\sigma(k)} - \sum_{k=1}^{n_1} a_k \right| = \left| \sum_{j=2}^{l} a_{n_j} \right|$$

$$\leq \sum_{k=n_2}^{n_l} |a_k|$$

$$\stackrel{1}{\leq} \frac{\varepsilon}{2}$$

Nun

$$\forall n \ge m : \left| s - \sum_{k=1}^{n} a_{\sigma(k)} \right|$$

$$\le \left| \underbrace{s - \sum_{k=1}^{n} a_k}_{\stackrel{2}{\underset{\varepsilon}{=}}} \right| + \left| \underbrace{\sum_{k=1}^{n_1} a_k - \sum_{k=1}^{n} a_{\sigma(k)}}_{\stackrel{2}{\underset{\varepsilon}{=}}} \right| < \varepsilon$$

Proposition 5.3.3 Riemannscher Umordnungssatz

Sei

$$\sum_{n=1}^{\infty} a_n$$

konvergent nicht absolut konvergent. Dann gibt es zu jedem $s \in \mathbb{R}$ eine Umordung σ mit

$$\sum_{n=1}^{\infty} a_{\sigma(n)} = s.$$

Teil II: Funktionen und Stetigkeit

Part II. Funktionen und Stetigkeit

6 Elementare topologische Konzepte in \mathbb{R}

6.1 Offene und abgeschlossene Mengen

Definition 6.1.1

Eine Menge $A \subset \mathbb{R}$ heißt **abgeschlossen** falls der Grenzwert jeder konvergenten Folge $(x_n) \subset \mathbb{R}$ auch zu A gehört: $x_1, x_2, \ldots \in A$ und $x_n \to x \in \mathbb{R} \implies x \in A$. Ist hingegen $\mathbb{R} \setminus A$ abgeschlossen, so heißt A offen.

Example 6.1.2

 $a < b, A := [a, b] := \{x \in \mathbb{R} : a \le x \le b\}$ Sei $(x_n) \subset A$, d.h., $x_1, x_2, \ldots \in A$ mit $x_n \to x(x = \lim_{n \to \infty} x_n)$

Stabilität von '\!\leq', '\!\geq' unter Limesbildung $\Longrightarrow_{a \leq x_n \leq b} a \leq x, x \leq b \implies x \in A \implies A$ abgeschlossen. Setzte für $\varepsilon > 0, x \in \mathbb{R} : B_{\varepsilon}(x) \coloneqq \{y \in \mathbb{R} : |x - y| < \varepsilon\}$ "offener \varepsilon-Ball um x"

Lemma 6.1.3

Eine Menge $A \subset \mathbb{R}$ ist offen genau dann, wenn

$$\forall x \in A \exists \varepsilon > 0 : B_{\varepsilon}(x) \subset A$$

Proof Lemma 6.1.3

- " \Longrightarrow " Angenommen $\exists x \in A \forall \varepsilon > 0 : B_{\varepsilon}(x) \not\subset A$ $\Longrightarrow \exists x \in A \forall n \in \mathbb{N} : \exists x_n \in B_{\frac{1}{n}}(x) \cap (\mathbb{R} \setminus A). \Longrightarrow (x_n) \subset \mathbb{R} \setminus A \wedge x_n \to x \in A.$ Also kann $\mathbb{R} \setminus A$ nicht abgeschlossen sein, also A nicht offen. $\Longrightarrow (A \text{ offen } \Longrightarrow \text{ Bedinung gilt})$
- " \Leftarrow " zu zeigen ... gilt \Longrightarrow A offen. (\Longleftrightarrow $\mathbb{R} \setminus A$ enthalten) Sei $(x_n) \subset \mathbb{R} \setminus A$ konvergent gegen $x \in \mathbb{R}$. Angenommen, $x \in A$. Nach stern $\exists \varepsilon > 0 :$ $B_{\varepsilon}(x) \subset A$. Da $x_n \to x : \exists N \in \mathbb{N} \forall n \geq N : x_n \in B_{\varepsilon}(x) \subset A$. Damit $\forall n \geq N : x_n \in A$ Widerspruch zu $x_n \in \mathbb{R} \setminus A$

Theorem 6.1.4 (offene Teilmenge als Topologie)

Das System T aller offenen Teilmengen von \mathbb{R} hat folgende Eigenschafften

- T1) $\emptyset, \mathbb{R} \in T$
- T2) $A, B \in T \implies A \cap B \in T$
- T3) Ist I Eine Indexmenge und $(A_i)_{i \in I} \subset T$, so ist $\bigcup_{i \in I} A_i \in T$

Das bedeutet, dass T eine **Topologie** auf \mathbb{R} ist.

• Allgemein: Topologien $\hat{=}$ Systeme offener Mengen

Proof

Alles nach Lem. 6.1.3

 $(T1) \ \emptyset, \mathbb{R} \in \mathcal{T}$

A offen
$$\iff \forall x \in A : \exists \varepsilon > 0 : B_{\varepsilon}(x) \subset A$$

 $A = \emptyset$, so trivialer weiße erfüllt. für $A = \mathbb{R}$:

$$\forall x \in \mathbb{R}; \forall \varepsilon > 0: B_{\varepsilon}(x) \subset \mathbb{R} \implies (T1)$$

- (T2) zz.: A, B offen $\implies A \cap B$ offen
 - (i) $A \cap B = \emptyset \stackrel{\text{(T1)}}{\Longrightarrow} a \cap B \in T$
 - (ii) $A \cap B \neq \emptyset \implies \exists x : x \in A \land x \in B$.

$$A \wedge B$$
 offen $\implies \exists \varepsilon_1, \varepsilon_2 > 0 : B_{\varepsilon_1}(x) \subset A \wedge B_{\varepsilon_2}(x) \subset B$.

Dann
$$B_{\varepsilon}(x) \subset B_{\varepsilon_1}(x) \subset A \wedge B_{\varepsilon}(x) \subset B_{\varepsilon_2}(x) \subset B$$

 $\implies B_{\varepsilon}(x) \subset A \cap B \implies A \cap B \in \mathcal{T}$

(T3) $(A_i)_{i\in I} \in \mathcal{T}$ (d.h. $\forall i \in I : A_i$ ist offen) zu zeigen $\bigcup_{i\in I} A_i$ offen. Sei $x \in \bigcup_{i\in I} A_i$. Dann $\exists i_0 \in I : x \in A_{i_0}$. Aber A_{i_0} offen, also $\exists \varepsilon > 0 : B_{\varepsilon}(x) \subset A_{i_0}$. Damit $B_{\varepsilon}(x) \subset A_{i_0} \subset \bigcup_{i\in I} A_i$. Also $\bigcup_{i\in I} A_i$ offen.

Lemma 6.1.5

Seien $-\infty \le a \le b \le \infty$. Dann ist (a,b) offen und für $-\infty < a \le b < \infty$ das Intervall [a,b] abgeschlossen.

Proof Lem 6.1.5

(a,b) offen: $x \in (a,b)$ $\varepsilon := \min\{d_1,d_2\} \implies B_{\varepsilon}(x) \subset (a,b)$ enthalten. $\implies (a,b)$ offen. [a,b] abgeschlossen.: Hierzu $\mathbb{R} \setminus [a,b]$ offen. Aber $\mathbb{R} \setminus [a,b] = (-\infty,a) \cup (b,\infty)$. Das ist nach Thm 6.1.4 offen $\implies [a,b]$ abgeschlossen

Definition 6.1.6 Häufungs-, Berührpunkte

Sei $A \in \mathbb{R} \land a \in \mathbb{R}$. Wir nennen a einen

- i) Berührungspunkt von A, falls in jedem $B_{\varepsilon}(a)\varepsilon > 0$, mindestens ein Element aus A liegt.
- ii) **Häufungspunkt** von A, falls in jedem $B_{\varepsilon}(a), \varepsilon > 0$, unendlich viele Elemente aus A liegen

Example 6.1.7

$$A = (0,1] \cup \{2\}$$

 \bullet Dann ist a=0 Berührpunkt und Häufungspunkt

Formal: Sei $\varepsilon > 0$ und sei $(x_n) = (\frac{1}{n})$. Dann $(x_n) \subset (0,1]$ und $x_n \to 0$. D.h. $\exists N \in \mathbb{N} \forall n \geq N : |x_n| < \varepsilon$, also $0 < x_n < \varepsilon$. Damit ist 0 Häufungpunkt von A.

• Dann ist a=2 Berührpunkt, aber kein Häufungspkt. Ist $0<\varepsilon<1$, so $B_{\varepsilon}(2)\cap A=\{2\}$. Also ist a=0 Berührungspunkt, aber kein Häufungspunkt von A

6.2 Kompaktheit

Definition 6.2.1

Wir nenn eine Menge $A \subset \mathbb{R}$ kompakt falls jede Folge in A eine Teilfolge hat, die gegen ein Element aus A konvergiert. D.h.: Ist $(x_n) \subset A$, so $\exists (x_{n_k}) \subset (x_n) \exists x \in A : x \lim_{k \to \infty} x_{n_k}$.

Example 6.2.2

Wir betrachten

$$A \coloneqq \{\frac{1}{n} : n \in \mathbb{N}\},\$$

$$B := [0, 1],$$

$$C\coloneqq [0,\infty)(=\{x\in\mathbb{R}:x\geq 0\})$$

- A ist **nicht kompakt:** Betrachte $(x_n) = (\frac{1}{n})$. Per Def: $(x_n) \subset A$. Aber $x \to 0$. Jede Teilfolge von (x_n) konvergiert auch gegen x = 0. Aber $0 \notin A$. Damit konvergiert jede Teilfolge von (x_n) gegen $0 \notin$, also A nicht kompakt
- B ist kompakt: Sei $x_n \subset [0,1]$. Also (x_n) beschränkt. Nach Bolzano-Weierstraß hat (x_n) eine konvergente Teilfolge $(x_{n_k}): x_{n_k} \to x \in \mathbb{R}$. Aber [0,1] ist abgeschlossen, also $x \in [0,1]$. Da (x_n) beliebig, B kompakt
- C ist **nicht kompakt:** $(C = [0, \infty))$. Betrachte $(x_n) = (n)$. Dann $(x_n) \subset C$ und jede Teilfolge divergiert gegen $+\infty$. Also konvergiert keine Teilfolge und damit C nicht kompakt

Theorem 6.2.3 Heine-Borel

Eine Menge $A \subset \mathbb{R}$ ist genau dann kompakt, wenn sie abgeschlossen und beschränkt ist.

Proof Theorem 6.2.3

" \Longrightarrow " zu zeigen: A kompakt \Longrightarrow A abgeschlossen und beschränkt

Abgeschlossen: zu zeigen $(x_n) \subset A$ konvergiert mit $x_n \to x \in \mathbb{R}$, so $x \in A$. Sei (x_n) eine solche Folge. DAnn konvergiert x_n gegen $x \in \mathbb{R}$. Nach Kompaktheit $\exists (x_{n_k}) \subset (x_n) \exists <\in A: x_{n_k} \to y$. Aber **jede** Teilfolge einer konvergenten Folge konvergiert gegen denselben Limes. Also $x_{n_k} \to x, k \to \infty$. Aber Limiten sind eindeutig, also $x = y \in A$. Also $x \in A$, also ist A abgeschlossen

Beschränkung: Angenommen, A ist nicht beschränkt, Œnach oben unbeschränkt. Dann gibt es eine Folge $x_n \subset A$, die monoton gegen $+\infty$ divergiert. Dann aber auch jede Teilfolge, und damit kann keine Teilfolge konvergieren \implies Widerspruch zu Kompaktheit. $\implies A$ ist beschrnänkt

- " \iff " Sei $A \subset \mathbb{R}$ abgeschlossen und beschrännkkt. Sei $(x_n) \subset A$. Da A beschränkt, ist (x_n) beschränkt. Nach Bolzano-Weierstraß $\exists (x_{n_k}) \subset (x_n) \exists x \in \mathbb{R} : x = \lim_{k \to \infty} x_{n_k}$. Aber A ist abgeschlossen und damit $x \in A$. Also ist A kompakt
- Maximum ist Supremum, das in der Menge enhalten ist, und Minimum ist Infimum, das in der Menge enthalten ist

Theorem 6.2.4

Ist $K \subset \mathbb{R}$ kompakt, so existieren $\max(K) \wedge \min(K)$.

Proof Thm. 6.2.4

Œfür Maximum. Sei $m := \sup(K)$. Nach Heine-Borel: K beschränkt, also $m < \infty$. Da $m = \sup(K), \exists (x_n) \subset K : x_n \to m$. Nach Heine-Borel: K abgeschlossen $\implies m = \lim_{n \to \infty} x_n \in K$. Damit ist m Maximum.

- [0,1] kompakt, $\min[0,1] = 0$, $\max[0,1] = 1$.
- (0,1) nicht kompakt, $\inf(0,1) = 0 \notin (0,1)$
- $[0, \infty)$ nicht kompakt, $\sup[0, \infty) = \infty \notin \mathbb{R}$.

6.3 Dichtheit, \mathbb{Q} und \mathbb{R}

Dichtheit bezieht sich auf Approximierbarkeit.

informell: $B \in \mathbb{R}$ liegt **dicht** in \mathbb{R} , falls jedes Element aus \mathbb{R} durch Eemente aus B approximiert werden kann.

Definition 6.3.1

Sei $A \subset \mathbb{R}$. Eine Teilmenge $B \subset A$ heißt dicht in A, falls

 $\forall x \in A \forall \varepsilon > 0 \exists y \in B_{\varepsilon}(x) : y \in B.$

Theorem 6.3.2 \mathbb{Q} ist dicht in \mathbb{R}

• Bereits in Kapitel 3 gesehen: $\sqrt{2}$ kann durch rationale Zahlen approximiert werden. D.h. $\exists (x_n) \subset \mathbb{Q} : x_n \to \sqrt{2} \notin \mathbb{Q}$. (speziell \mathbb{Q} nicht abgeschlossen) Thm 6.3.2: Das geht für alle $x \in \mathbb{R}$

Theorem 6.3.3 Dezimaldarstellungen

$$\forall x \in [0, 1] \forall k \in \mathbb{N} \exists ! a_k \in \{0, \dots, 9\} : x = \sum_{k=1}^{\infty} a_k 10^{-k}.$$
(10)

Proof Satz 6.3.3

10 entspricht $0, a_1 a_2 a_3 a_4 \dots$ (Übungsblatt 6 Aufgabe 3)

Proof Satz 6.3.2

Sei $x \in [0,1] \land x = \sum_{k=1}^{\infty} a_k 10^{-k}$ die Dezimaldarstellung aus Satz 6.3.3. Definiere (x_n) via $x_n \coloneqq \sum_{k=1}^{\infty} a_k 10^{-k} \in \mathbb{Q}$. Aber $x = \lim_{n \to \infty} x_n$, also ist $\mathbb{Q} \cap [0,1]$ dicht in [0,1]. Ist $x \in \mathbb{R}$, so sei $m \in \mathbb{Z}$ die größte ganze Zahl mit $m \le x$. Dann $x = m + \Theta, \Theta \in (0,1]$. Nach erstem Teil $\exists (\Theta_n) \subset \mathbb{Q} \cap [0,1] : \lim_{n \to \infty} \Theta_n$. Dann $(m + \Theta_n) \subset \mathbb{Q} \land x = \lim_{n \to \infty} \underbrace{m + \Theta_n}$. Also \mathbb{Q} dicht in

■Erinnerung: Q abzählbar (Cantorsches Diagonalschema, Kapitel 1)

Theorem 6.3.4

 \mathbb{R} ist überabzählbar

Proof 6.3.5 Satz 6.3.4

Angenommen \mathbb{R} abzählbar, so auch (0,1). Dann $\exists x_n \subset (0,1) : \forall x \in (0,1) \exists n \in \mathbb{N} : x = x_n$. Nach 6.3.3 knnen wir schreiben:

$$\forall a_{ij} \in \{0, \dots, 9\}$$

$$x_1 = 0, a_{11}a_{12}a_{13} \dots$$

 $x_2 = 0, a_{21}a_{22}a_{23} \dots$
 $x_3 = 0, a_{31}a_{32}a_{33} \dots$

$$b_{jj} := \begin{cases} a_{jj} + 2 &= \text{falls} a_{jj} \le 5 \\ a_{jj} - 2 &= \text{falls} a_{jj} > 5 \end{cases}$$

Betrachte $z := 0, b_{11}b_{22}b_{33}b_{44}\dots$ Damit $\forall j \in \mathbb{N} : |z - x_j| \ge 10^{-j}$, also $\forall j \in \mathbb{N} : x_j \ne z$. $\implies \mathbb{R}$ ist überabzählbar.

$$\left| \sum_{k=1}^{\infty} b_k k 10^{-k} - \sum_{k=1}^{\infty} a_{jk} 10^{-k} \right| = something$$

7 Funktionen und Stetigkeit

7.1 Funktinen

$$\Omega \subset \mathbb{R}, f: \Omega \ni x \mapsto f(x) \in \mathbb{R}$$

Setze $Gr(f) := \{(x, f(x)) : x \in \Omega\}$ "Graph" von $f : Gr(f) \subset \mathbb{R}$.

Example 7.1.1

Ist $n \in \mathbb{N}_0, a_0, \dots, a_n \in \mathbb{R}$ mit $a_n \neq 0$ Dann: $\gamma : \mathbb{R} \ni \mapsto \sum_{k=1}^{\infty} a_k x^k$ Polynomfunktion vom Grad n. Kurz: Polinom

Example **7.1.2**

Sind $p, q : \mathbb{R} \to \mathbb{R}$ Polynome, so heißt

$$\frac{p}{q}: \mathbb{R} \setminus \{x \in \mathbb{R}: q(x) = 0\} \ni x \mapsto \frac{p(x)}{q(x)}$$

rationale Funktion

Example 7.1.3

$$|\cdot|I:\mathbb{R}\ni x\mapsto |x|=egin{cases} x&=x\geq 0\ -x&=x<0 \end{cases}$$

"Betragsfunktion"

Example 7.1.4

Für $x \in \mathbb{R}$

$$|x| \coloneqq \max \{n \in \mathbb{Z} : n \le 0\}$$

 $|\cdot|: \mathbb{R} \ni x \mapsto [x] \in \mathbb{R}$ "Gaußklammer"

Example 7.1.5

Für
$$x \in \mathbb{R} : \mathrm{sgn}(x) \coloneqq \begin{cases} 1 &= x > 0 \\ 0, &= x = 0 \text{ "Signumsfunktion"} \\ -1, &= x < 0 \end{cases}$$

7.2 Stetigkeit

Idee: Kleine Änderung der Argumente ⇒ kleine Änderung der Funktionswerte

Definition 7.2.1

Sei $A \subset \mathbb{R}$ nichtleer. Eine Funktion $f: A \to \mathbb{R}$ heißt stetig in $x_0 \in A$, falls

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x \in A : |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

Ist f in **jedem** $x_0 \in A$ stetig, so nennen wir f **stetig** (in A)

Ist f in $x_0 \in A$ nicht stetig, so heißt f in x_0 unstetig

Figure 1: Test000

Example 7.2.2

- Konstante Funktion: $f: \mathbb{R} \ni x \mapsto c \in \mathbb{R}$. Ist $\varepsilon > 0, x_0 \in \mathbb{R}$. Für alle $\delta > 0: |x - x_0| < \delta \implies |f(x) - f(x_0)| = |c - c| = 0 < \varepsilon$. \Longrightarrow Stetigkeit
- $f: \mathbb{R} \ni x \mapsto x \in \mathbb{R}$ (Identität) Ist $\varepsilon > 0, x_0 \in \mathbb{R}$, so setze $\delta := \varepsilon$. Dann: $|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$. \Longrightarrow Stetigkeit
- $f: \mathbb{R} \ni x \mapsto x^2 \in \mathbb{R}$.

$$|f(x) - f(x_0)| = |x^2 - x_0^2| = |x + x_0| |x - x_0| \le (|x| + |x_0|)|x - x_0|.$$
(11)

Sei $x_0 \in \mathbb{R}, \varepsilon > 0$. Wir setzten $\underbrace{\delta}_{\text{Hängt nun von } x_0 \text{ ab}} \coloneqq \min \left\{ 1, \frac{\varepsilon}{2|x_0|+1} \right\}$.

Dann: $|x-x_0| < \delta$, so mit (11)

 $|f(x) - f(x_0)| \stackrel{(11)}{\leq} (|x - x_0| + 2|x_0|) \cdot \delta \leq (1 + 2|x_0|) \cdot \frac{\varepsilon}{2|x_0|+1} = \varepsilon.$

Example 7.2.3

 $A \subset \mathbb{R}$ nichtleer, $f:A \to \mathbb{R}$ Lipschitz $\iff \exists L \geq 0$ (Lipschitzkonst.) $\forall x,y \in A: |f(x)-f(y) \leq L|x-y|$.

Sei $x_0 \in \mathbb{R}, \varepsilon > 0$. Setzte $\delta := \frac{\varepsilon}{L}$, so ist $|x - x_0| < \delta \implies |f(x) - f(x_0)| \le L \cdot |x - x_0| \le L \cdot \delta = L \cdot \frac{\varepsilon}{L} = \varepsilon$. Stetig! "Lipschitzstetig"

Example 7.2.4

Für
$$x \in \mathbb{R} : \mathrm{sgn}(x) \coloneqq \begin{cases} 1, &= x > 0 \\ 0, &= 0 \end{cases}$$
 "Signumsfunktion" $-1, &= x < 0$

Sei $0 < \varepsilon < 1$. Dann gilt $\forall \delta > 0$: $|\operatorname{sgn}(\frac{\delta}{2} - \operatorname{sng}(0))| = |1 - 0| = 1 > \varepsilon$, aber $|\frac{\delta}{2} - 0| = \frac{\delta}{2} < \delta$

Falls " δ nur von ε " abhängt:

Definition 7.2.5

Sei $A \subset \mathbb{R}$ nichtleer. $f: A \to \mathbb{R}$ heißt **gleichmäßig stetig** in A, falls $\forall \varepsilon > 0 \exists \delta > 0 \forall x, x_0 \in A: |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$.

Stetigkeit von $f: \mathbb{R} \to \mathbb{R}$

$$\forall \varepsilon > 0 : \forall x_0 \in \mathbb{R} : \exists \delta > 0 : \forall y \in \mathbb{R} :$$

 $|x_0 - y| < \delta \implies |f(x_0) - f(y)| < \varepsilon$

Gleichmäßige Stetigkeit:

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x, y \in \mathbb{R} :$$

 $|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$

Example 7.2.6

Die Funktion $f:(0,\infty)\to\mathbb{R}$ ist stetig, aber nicht gleichmäßig stetig.

Funktionen $f, g : \mathbb{R} \to \mathbb{R}$ können multipliziert und addiert werden.

$$(f+g)(x) := f(x) + g(x) \quad x \in \mathbb{R}$$
$$(f \cdot g)(x) = f(x) + g(x) \quad x \in \mathbb{R}$$
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \qquad x \in \mathbb{R}$$

Theorem 7.2.7

Sei $R \subseteq \mathbb{R}$ nichtleer, sowie $f, g : R \to \mathbb{R}$ stetig in $x_0 \in R$. Dann sind f + g, sowie $f \cdot g$ stetig in x_0 . Gilt weiter $g(x_0) \neq 0$, so ist auch $\frac{f}{g}$ stetig in x_0 . Snd also $f, g : R \to \mathbb{R}$ stetig in R, so sind f + g, $f \cdot g$ stetig in R, und $\frac{f}{g}$ ist stetig auf $\{x \in R : g(x) \neq 0\}$.

Proof Theorem 7.2.7.

(i) Sei $\varepsilon > 0$. Dann finden wir $\delta_1 > 0$ und $\delta_2 > 0$, sodass

$$|x - x_0| < \delta_1 \implies |f(x) - f(x_0)| < \frac{\varepsilon}{2},$$

 $|x - x_0| < \delta_2 \implies |g(x) - g(x_0)| < \frac{\varepsilon}{2},$

Setze $\delta := \min \{\delta_1, \delta_2\}$. Dann gilt für alle $x \in R$ mit $|x - x_0| < \delta$, dass

$$|(f+g)(x) - (f+g)(x_0)| = |f(x) - f(x_0) + g(x) - g(x_0)|$$

$$\stackrel{\triangle-\text{Ungl.}}{\leq} |f(x) - f(x_0)| + |g(x) - g(x_0)|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$< \varepsilon$$

$$\implies (f+g)$$
 stetig in x_0

(ii) Sei $\varepsilon > 0, M := |g(x_0)| + 1$. Dann finden wir $\delta_1 > 0$ und $\delta_2 > 0$, sodass

$$|x - x_0| < \delta_1 \implies |f(x) - f(x_0)| < \frac{\varepsilon}{2M},$$

 $|x - x_0| < \delta_2 \implies |g(x) - g(x_0)| < \frac{\varepsilon}{2|f(x_0)|},$

und $\delta_3 > 0$

$$\forall x \in R : |x - x_0| < \delta_3 \implies |g(x) - g(x_0)| < 1 \quad (\implies |g(x) - g(x_0)| < M)$$

Setze $\delta := \min \{\delta_1, \delta_2, \delta_3\}$. Sei $x \in R$ mit $|x - x_0| < \delta$, dann gilt

$$|(fg)(x) - (fg)(x_0)| = |f(x)g(x) - f(x_0)g(x) + f(x_0)g(x) - f(x_0)g(x_0)$$

$$\stackrel{\triangle - \text{Ungl.}}{\leq} |g(x)||f(x) - f(x_0)| + |f(x_0)||g(x) - g(x_0)|$$

$$< M \frac{\varepsilon}{2M} + |f(x_0)| \frac{\varepsilon}{2|f(x_0)|}$$

$$< \varepsilon.$$

 $\implies (fg)$ stetig in x_0

(iii) Übungsaufgabe

Example 7.2.8

- 1. Beispiel 7.2.2 $f1: \mathbb{R} \ni x \mapsto x \in \mathbb{R}$ stetig ist.
- 2. Induktiv folgt $f_n : \mathbb{R} \to \mathbb{R}, x \mapsto x^n$ ist stetig (nach Theorem 7.2.7)
- 3. Da konstante Funkionen stetig sind, folgt nach Theorem 7.2.7, dassfür jedes $a \in \mathbb{R} : \mathbb{R} \to \mathbb{R}$, $x \mapsto ax$ stetig ist.
- 4. Jede rationale Funktion ist stetig.

Theorem 7.2.9 (Präsenzaufgabe)

Seien $R_1, R_2 \subset \mathbb{R}$ nichtleer sowie $f: R_1 - R_2$ und $g: R_2 \to \mathbb{R}$ stetig in x_0 bzw. in $f(x_0)$. Dann ist $g \circ f: R_1 \to \mathbb{R}$ stetig in x_0 , wobei

$$(g \circ f)(x) := f(g(x)), \quad x \in \mathbb{R}.$$

7.3 Charakterisierung der Stetigkeit und Grenzwerte von Funktionen

Theorem 7.3.1 Folgencharakter der Stetigkeit

Sei $A \subset \mathbb{R}$ nichtleer. Eine Funktion $f: A \to \mathbb{R}$ ist stetig in $x \in A$, genau dann wenn für jede Folge $(x_n) \subset A$ mit $x_n \to x$ gilt, dass $f(x_n) \to f(x)$.

Proof 7.3.2 Theorem 7.3.1

" \Longrightarrow " Sei $f: A \to \mathbb{R}$ stetig in $x \in A$ und $(x_n) \subset A$ mit $x_n \to x$. Dann gibt es ein $\delta > 0$, sodass $\forall y \in A$ mit $|x - y| < \delta$ impliziert, dass $|f(x) - f(y)| < \varepsilon$. Da $x_n \to x$, gibt es ein

 $N \in \mathbb{N} \min_{\substack{n \to \infty \\ n \to \infty}} |x_n - x| < \delta \quad \forall n \ge N$. Sei $n \ge \mathbb{N}$. Dann gilt also $|f(x_n) - f(x)| < \varepsilon$. Also $f(x_n)f(x)$.

"

Angenommen f ist nicht stetig in x. Dann gibt es ein $\varepsilon > 0$, sodass $\forall n \in \mathbb{N} \exists x_n \in A : |x_n - x| < \frac{1}{n}, \delta > 0$ und $|f(x) - f(x_n)| \ge \varepsilon$. Also $x_n \to x$, aber $f(x_n)$ konvergiert nicht gegen f(x).

Definition 7.3.3

Sei $A \subset \mathbb{R}$ nichtleer und $x_0 \in \mathbb{R}$ ein Berührpunkt von A.

1. Dann definieren wir

$$\lim_{x \to \infty} f(x) \coloneqq \lim_{\substack{x \to x_0 \\ x \in A}} f(x) \coloneqq c$$

falls für jede Folge x_n

2. Rechtsseitiger Limes von f in x_0 : $\lim_{x \searrow x_0} f(x) = c$, falls x_0 Berührpunkt von A und für jede Folge $(x_n) \subset (x_0, \infty)$ mit $\lim_{n \to \infty} x_n = x$ gilt: $\lim_{n \to \infty} f(x_n) = c$.

Sei A nach oben ubeschränkt, dann schreibe

$$\lim_{x \to \infty} f(x) \coloneqq c,$$

falls $\forall (x_n) \subset A$ mit $x_n \to \infty$ gilt $\lim_{n \to \infty} f(x_n) = c$. Analog: $\lim_{n \to \infty} f(x)$ und $\lim_{x \to \infty} f(x)$.

Corollary 7.3.4

Sei $A \subset \mathbb{R}$ nichtleer. Dann ist eine Funktion $f: A \to \mathbb{R}$ genau dann stetig, wenn $f(x_0) = \lim_{x \to x_0} f(x) \quad \forall x_0 \in A$ gilt.

Example 7.3.5

Sei $x_0 \in \mathbb{Z}$

$$\lim_{x \searrow x_0} \lfloor x \rfloor = x_0$$

$$\lim_{x \nearrow x_0} \lfloor x \rfloor = x_0 - 1$$

7.4 Sätze üver stetige Funktionen

Theorem 7.4.1

Seien $-\infty < a < b < \infty$ und $f:[a,b] \to \mathbb{R}$ stetig mit f(a), f(b) < 0. Dann $\exists x_0 \in [a,b]: f(x) = 0$

Proof Theorem 7.4.1

 $\times f(a) < 0$ und f(b) > 0 (ansonsten betrachte -f).

Es sei $I_0 := [a,b]$. Ist $I_n = [a_n,b_n]$ für $n \in \mathbb{N}$ definiert, so sezte

$$I_{n+1} := \begin{cases} [a_n, \frac{a_n + b_n}{2}, & \text{falls } f\left(\frac{a_n + b_n}{2}\right) > 0\\ [\frac{a_n + b_n}{2}, b_n], & \text{sonst.} \end{cases}$$

Induktiv folgt diam $(I_n) = 2^{-n}(b-a)$ f.a. $n \in \mathbb{N}$. Weiter ist $I_0 > I_1 > I_2 > \cdots$ Also ist (I_n) eine Schachtelung abgeschlossener Intervalle mit diam $(I_n) \to 0$. Nach Theorem 4.3.2 gibt es genau ein $x \in \bigcap_{n \in \mathbb{N}} I_n$. Speziell $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = x$ f ist stetig, also gilt

$$0 \le \lim_{n \to \infty} f(b_n) = f(x) = \lim_{n \to \infty} a_n \le 0$$

Example 7.4.2 Eindimensionaler Brouwer

Sei $f:[0,1] \to [0,1]$ stetig. Dann hat f einen Fixpunkt d.h. es gibt ein $x_0 \in [0,1]$ mit $f(x_0) = x_0$, denn die Hilfsfunktion g(x) := f(x) - x. Diese ist stetig und es gibt $\exists \varepsilon > 0 : \forall \delta > 0 : \exists x, y \in K : |x - y| < \delta$ und $|f(x) - f(y)| \ge \varepsilon$.

Wähle solches $\varepsilon > 0$. Dann finden wir für alle $n \in \mathbb{N}$ $x_n, y_n \in K$ mit $|x_n - y_n| < 2^{-n}$ und $|f(x_n) - f(y_n)| \ge \varepsilon$. Da K kompakt, hat (x_n) eine konvergente Teilfolge (x_{n_k}) mit Grenzwert $x \in K$. Nun ist

$$|y_{n_k} - x| \le |y_{n_k} - x_{n_k}| + |x_{n_k} - k| \to 0.$$

Also konvergiert auch (y_{n_k}) gegen x.

Theorem 7.4.3

weiß nicht könnte alles sein

Theorem 7.4.4

Sei $K \subseteq \mathbb{R}$ kompakt und $f: K \to \mathbb{R}$ stetig. Dann nimmt f sowohl Maximum als auch Minimum in K an.

Proof Theorem 7.4.4

Wir zeigen, f(K) ist kompakt. Sei $(y_n) \subset f(K)$ eine Folge. Nach Def. des Bildes gibt es also zu jedem $n \in \mathbb{N}$ ein $x_n \in K$ mit $f(x_n) = y_n$. Da K kompakt ist, gibt es eine konvergente Teilfolge $(x_{n_k}) \subset K$ mit Grenzwert $x \in K$. Da f stetig ist, folgt $f(x) = f(\lim_{n_k \to \infty} x_{n_k}) \stackrel{\text{stetig}}{=} \lim_{n_k \to \infty} f(x_{n_k}) = \lim_{n_k \to \infty} y_{n_k}$

8 Funktionenfolgen und deren Konvergenz

8.1 Funktionenfolgen und deren Konvergenz

Ist $\Omega \subset \mathbb{R}$ nichtleer und für jedes $n \in \mathbb{N}$ eine Funktion $f_n : \Omega \to \mathbb{R}$ definiert, so nennen wir (f_n) eine Funktionenfolge

Example 8.1.1

Sei für $n \in \mathbb{N}$ $f_n : \Omega \to \mathbb{R}, x \mapsto x^n$. z.B.

- 1. $f_1: \Omega \to \mathbb{R}, x \mapsto x$
- 2. $f_2: \Omega \to \mathbb{R}, x \to x^2$
- 3. usw.

Definition 8.1.2 Punktweise Konvergenz

Sei $\Omega \subset \mathbb{R}$ nichtleer und $f, f_1, f_2, \ldots : \Omega \to \mathbb{R}$.

Wir sagen (f_n) konvergiert punktweise gegen f, falls $\forall x \in R$ die Folge $(f_n(x))$ gegen f(x) konvergiert.

Gibt es ein $f: \Omega \to \mathbb{R}$, so dass (f_n) punktweise gegen f konvergiert, so nennen wir (f_n) punktweise konvergent.

Wir nennen dann f Grenzfunktion von (f_n) .

Das bedeutet:

$$\forall x \in \Omega : \forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n \geq N : |f_n(x) - f(x)| < \varepsilon$$

Example 8.1.3

Sei $\Omega = [0,1]$. Wir betrachten $f_n : \Omega \to \mathbb{R}$ mit $f_n(x) = x^n, x \in [0,1]$.

Ist $x \in [0,1)$, so $\lim_{n\to\infty} f_n(x) = 0$. Hingegen $\lim_{n\to\infty} f_n(x) = 1$ für x=1. Also konvergiert (f_n) punktweise gegen

$$f: \Omega \to \mathbb{R} \text{ mit } f(x) := \begin{cases} 0 & \text{für } 0 \le x < 1 \\ 1 & \text{für } x = 1 \end{cases}$$

Figure 2: Definition 8.1.2

Definition 8.1.4

Sei $\Omega \subset \mathbb{R}$ nichtleer und $f, f_1, f_2, \ldots : \Omega \to \mathbb{R}$. Wir sagen (f_n) konvergiert gleichmäßig gegen f, falls für jedes $\varepsilon > 0$ ein $N \in \mathbb{N}$ existiert, sodass $|f(x) - f_n(x)| < \varepsilon$ f.a. $x \in \Omega$ und alle $n \geq N$ gilt.

Das bedeutet:

 $\forall \varepsilon > 0 : \exists N \in \mathbb{N} \forall n \ge N : \forall x \in \Omega : |f_n(x) - f(x)| < \varepsilon.$

Lemma 8.1.5

Sei $\Omega \subset \mathbb{R}$ nichtleer und $f, f_1, f_2, \ldots : \Omega \to \mathbb{R}$ so, dass (f_n) gleichmäßig gegen f konvergiert. Dann konvergiert (f_n) auch punktweise gegen f.

Example 8.1.6

Die Folge aus Beispiel 8.1.3 konvergiert nicht gleichmäßig. Sei $1 > \varepsilon > 0, N \in \mathbb{N}$ beliebig. Setzte $x := \sqrt[n]{\varepsilon}$. Dann ist $x_0 \in (0,1)$ und $f_n(x_0) = \varepsilon$, d.h. $|f_n(x_0) - f(x_0)| = |f_n(x_0)| = \varepsilon \ge \varepsilon$

Theorem 8.1.7

Sei $\Omega \subset \mathbb{R}$ nichtleer und $f_1, f_2, \ldots : \Omega \to \mathbb{R}$ stetige Funktionen. Konvergiert (f_n) gleichmäßig gegen $f : \Omega \to \mathbb{R}$, so ist f stetig.

Proof Theorem 8.1.7

Sei $x_0\in\Omega$ und $\varepsilon>0$ beliebeig. Dann finden wir wegen glm. Konv. ein $N\in\mathbb{N}$ mit $|f_n(x)-f(x)|<\frac{\varepsilon}{2}$...