Klasyfikacja

May 25, 2025

0.1 Uczenie nadzorowane - klasyfikacja

Uczenie nadzorowane — klasyfikacja polega na trenowaniu modelu na danych wejściowych z przypisanymi etykietami, aby nauczył się rozpoznawać, do której klasy należy nowy, nieznany przykład. Model uczy się reguł, które pozwalają przypisać odpowiednią kategorię do nowych danych.

Wczytaj zbiór danych

Podziel zbiór danych na zbiór treningowy i testowy, dodatkowo w zmiennej X zapisz macierz zmiennych niezależnych, w zmiennej Y zapisz wektor zawierający informacje o tym jaki jest to typ wina (1, 2, 3).

```
0
          1
                 2
                        3
                              4
                                   5
                                          6
                                                7
                                                       8
                                                              9
                                                                    10
                                                                           11
                                                                                 12
              1.71
                                              3.06
0
       14.23
                     2.43
                            15.6
                                  127
                                        2.80
                                                     0.28
                                                           2.29
                                                                  5.64
                                                                        1.04
                                                                               3.92
                                                                  4.38
    1
       13.20
              1.78
                     2.14
                            11.2
                                  100
                                        2.65
                                              2.76
                                                     0.26
                                                           1.28
                                                                        1.05
                                                                               3.40
1
2
                     2.67
                                              3.24
       13.16
              2.36
                            18.6
                                  101
                                        2.80
                                                     0.30
                                                           2.81
                                                                  5.68
                                                                        1.03
                                                                               3.17
3
               1.95
                     2.50
                            16.8
                                        3.85
                                              3.49
                                                     0.24
       14.37
                                  113
                                                           2.18
                                                                  7.80
                                                                        0.86
                                                                               3.45
      13.24 2.59
                     2.87
                            21.0
                                  118
                                        2.80
                                              2.69
                                                     0.39
                                                           1.82
                                                                  4.32
                                                                        1.04
                                                                               2.93
```

13

^{0 1065}

^{1 1050}

^{2 1185}

```
1480
3
   735
         Alcohol Malic acid
                               Ash Alcalinity of ash Magnesium \
0
       1
            14.23
                         1.71 2.43
                                                   15.6
                                                               127
                         1.78 2.14
                                                   11.2
                                                               100
1
       1
            13.20
2
       1
            13.16
                         2.36 2.67
                                                   18.6
                                                               101
                         1.95 2.50
3
            14.37
                                                   16.8
       1
                                                               113
4
       1
            13.24
                         2.59
                              2.87
                                                   21.0
                                                               118
                              Nonflavanoid phenols Proanthocyanins \
  Total phenols Flavanoids
0
            2.80
                        3.06
                                               0.28
1
            2.65
                        2.76
                                               0.26
                                                                1.28
            2.80
2
                        3.24
                                               0.30
                                                                2.81
3
            3.85
                        3.49
                                               0.24
                                                                2.18
4
            2.80
                        2.69
                                               0.39
                                                                1.82
  Color intensity
                    Hue
                         OD280/OD315 of diluted wines Proline
0
              5.64 1.04
                                                   3.92
                                                            1065
              4.38 1.05
                                                   3.40
                                                            1050
1
              5.68 1.03
2
                                                   3.17
                                                            1185
3
              7.80 0.86
                                                   3.45
                                                            1480
4
              4.32 1.04
                                                   2.93
                                                             735
```

0.1.1 Dokonaj normalizacji danych. Skomentuj po co jest ten krok i jak może on wpływać na działania algorytmów z kolejnego punktu.

```
[19]: from sklearn.preprocessing import StandardScaler
      scaler = StandardScaler() # przeksztalca dane tak zeby kazda kolumna miala mean
       \rightarrow 0 i std 1
      X_train_scaled = scaler.fit_transform(X_train)
      X_test_scaled = scaler.transform(X_test)
      display(X_train_scaled)
     array([[ 1.66529275, -0.60840587, 1.21896194, ..., -1.65632857,
             -0.87940904, -0.24860607],
            [-0.54952506, 2.7515415, 1.00331502, ..., -0.58463272,
             -1.25462095, -0.72992237],
            [-0.74531007, -1.14354109, -0.93750727, ..., 0.35845962,
              0.2462267 , -0.24860607],
            [ 1.714239 , -0.44172441, 0.06884503, ..., 1.04434496,
              0.56585166, 2.69572196],
            [-0.35374006, -0.7399965, -0.36244882, ..., 0.01551695,
             -0.74044166, -0.79631083],
            [-0.78201975, 0.06709269, 0.35637426, ..., -0.67036839,
```

```
1.09392769, -0.98551793]], shape=(142, 13))
```

Normalzacja danych polega na przekształceniu wartości cech (features) tak, aby miały porównywalną skalę. (u nas np są różne skale, np Proline około 700 - 1000+; Color intensity 1 - 10) Brak normalizacji mógłby zaburzyć działanie modeli. Dzięki normalizacji model uczy się bardziej efektywnie, a wyniki klasyfikacji są bardziej wiarygodne.

0.1.2 Wykonaj trening dla algorytmów KNeighborsClassifier oraz RandomForest-Classifier (biblioteka scikit-learn)

0.1.3 Wykonaj predykcje

0.1.4 Zapoznaj się z metrykami dostępnymi w: https://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics.

Opisz o czym mówią i w jakim kontekście używamy: accuracy, precision, recall and F-measures, confusion matrix oraz napisz czym jest classification report.

0.1.5 Accuracy:

Mierzy ogólną skuteczność modelu — jaki procent wszystkich przykładów został poprawnie sklasyfikowany. Używamy go, gdy klasy są zrównoważone i pomyłki mają podobną wagę.

0.1.6 Precision:

Sprawdza, spośród wszystkich przypadków zaklasyfikowanych do danej klasy, ile było poprawnych. Używamy, gdy ważne jest ograniczenie liczby fałszywych alarmów.

0.1.7 Recall and F-measures:

Recall - sprawdza ile rzeczywistych przykładów danej klasy model poprawnie wykrył Recall = TP / (TP + FN) TP: dobrze rozpoznane przypadki danej klasy FN: przypadki danej klasy, których model nie rozpoznał

F-measure - Łączy precision i recall w jedną liczbę – to ich średnia harmoniczna F1-score jest niski, jeśli choć jedna z tych metryk jest niska F1 = 2 * (Precision * Recall) / (Precision + Recall)

0.1.8 Confusion matrix:

Jest to tablica pokazująca, ile przykładów każdej klasy zostało poprawnie/niepoprawnie sklasy-fikowanych. Zawiera: TP: trafione pozytywne TN: trafione negatywne FP: fałszywe alarmy FN: przeoczenia Używamy do dokładnej analizy, które klasy model najczęściej myli.

0.1.9 Classification report:

Jest to wygodne podsumowanie zawierające: precision, recall, F1-score i support (liczbę próbek) dla każdej klasy. Używamy do porównania jakości klasyfikacji między klasami.

0.1.10 W nawiązaniu do metryk omawianych na wykładzie i tych analizowanych w punkcie 6. dokonaj analizy predykcji poszczególnych modeli.

```
[21]: from sklearn.metrics import classification report, confusion matrix,
       →ConfusionMatrixDisplay
      # knn
      print("KNN")
      print("Confusion Matrix:")
      display(confusion_matrix(Y_test, Y_pred_Knn))
      print("\nClassification Report:")
      display(classification report(Y test, Y pred Knn))
      # random forest
      print("\n RandomForest")
      print("Confusion Matrix:")
      display(confusion_matrix(Y_test, Y_pred_Rfc))
      print("\nClassification Report:")
      display(classification_report(Y_test, Y_pred_Rfc))
      cm1 = confusion_matrix(Y_test, Y_pred_Knn, labels=Knn.classes_)
      cm2 = confusion_matrix(Y_test, Y_pred_Rfc, labels=Rfc.classes_)
      disp1 = ConfusionMatrixDisplay(confusion_matrix=cm1, display_labels=Knn.
       ⇔classes_)
      disp2 = ConfusionMatrixDisplay(confusion matrix=cm2, display labels=Rfc.
       ⇔classes )
```

```
fig, axs = plt.subplots(1, 2, figsize=(12, 5))
disp1.plot(ax=axs[0])
disp2.plot(ax=axs[1])
axs[0].set_title("KNN")
axs[1].set_title("Random Forest")
plt.tight_layout()
plt.show()
KNN
Confusion Matrix:
array([[14, 0, 0],
      [ 1, 12, 1],
       [0, 0, 8]])
Classification Report:
              precision
                           recall f1-score
                                              support\n\n
                                                                            0.
 93
          1.00
                    0.97
                                14\n
                                              2
                                                      1.00
                                                                0.86
                                                                          0.92
        14\n
                       3
                               0.89
 \hookrightarrow
                                       1.00
                                                  0.94
                                                               8\n\n
 ⇔accuracy
                                     0.94
                                                36\n
                                                       macro avg
                                                                       0.94
 → 0.95
                                               0.95
                                                         0.94
                                                                   0.94
            0.94
                         36\nweighted avg
                                                                              ш
 -36\n'
 RandomForest
Confusion Matrix:
array([[14, 0, 0],
       [ 0, 14, 0],
       [0, 0, 8]])
Classification Report:
              precision
                           recall f1-score
                                              support\n\n
                                                                            1.
 ⇔00
          1.00
                    1.00
                                              2
                                                                          1.00 👝
                                14\n
                                                       1.00
                                                                1.00
```

1.00

1.00

1.00

36\n

1.00

8\n\n

1.00

ш

1.00

macro avg

1.00

1.00

36\nweighted avg

14\n

1.00

⇔accuracy

→ 1.00

-36\n'

0.1.11 Interpretacja i wnioski

- Random Forest uzyskał 100% skuteczność wszystkie próbki zostały poprawnie sklasyfikowane, co świadczy o bardzo dobrej zdolności modelu do rozróżniania klas.
- KNN osiągnął wysoką skuteczność (94%), ale popełnił błędy przy rozróżnianiu klasy 2 prawdopodobnie z powodu podobieństw cech z klasami 1 i 3.
- Random Forest lepiej radzi sobie w sytuacjach, gdzie granice między klasami nie są liniowe lub dane są bardziej złożone dzięki losowości i agregacji wyników wielu drzew.
- KNN jest wrażliwy na skalę i rozkład danych nawet po normalizacji może mieć trudność w klasyfikacji przy mniejszych różnicach między klasami.
- Random Forest wykazuje większą odporność na błędy i szumy w danych.
- Dzięki wizualizacjom łatwo zobaczyć, że Random Forest jest dokładniejszy i bardziej niezawodny niż KNN w tym przypadku.