IMAGE RESTORATION WITH DEEP LEARNING

by Elaheh Shakeri

December 2022

PROBLEM STATEMENT

Can we use deep learning to restore old damaged images?

02

DATA COLLECTION AND DESCRIPTION

INPUT

DATA SAMPLING, SPLITTING AND CLEANING

• Raw data: 31,801 paired images

• Three sample datasets: 2% - 636 paired images

12% - 3,816 paired images

32% - 10,176 paired images

• Splitting 85% Train and Validation 15% Validation

 Cleaning: Cross Examination of the image filenames in input and output folders and removing all lone images

MODELING: CONVOLUTIONAL AUTOENCODER

Model 1: 7 hidden layers 29,507 trainable parameters Model 2: 14 hidden layers 374,406 trainable parameters

LOSS FUNCTION

EVALUATION METRICS

MEAN SQUARED ERROR (MSE)

- AVERAGE DIFFERNCE OF THE OUTPUT AND GROUND TRUTH
- LOW MSE -> HIGH
 SIMILARITY BETWEEN
 MODEL OUTPUT AND
 GROUND TRUTH

PEAK SIGNAL TO NOISE RATIO

- COMPARING LOW-LEVEL
 DIFFERNCES OF THE MODEL
 OUTPUT AND GROUND
 TRUTH
- HIGH PSNR -> HIGH IMAGE
 QUALITY

STRUCTURAL SIMILARITY INDEX MEASURE (SSIM)

- COMPARING LOW-LEVEL
 DIFFERNCES OF THE MODEL
 OUTPUT AND GROUND
 TRUTH
- HIGH SSIM -> HIGH IMAGE
 QUALITY

MODEL 1 RESULTS

Epochs		TRAIN			VALIDATION			TEST		
		MSE	PSNR	SSIM	MSE	PSNR	SSIM	MSE	PSNR	SSIM
100	2% sample dataset	0.0012	30.44	0.8877	0.0013	30.06	0.8922	0.0013	30.06	0.8834
	12% sample dataset	0.0012	30.48	0.8922	0.0013	30.29	0.8877	0.0013	30.31	0.8876
	32% sample dataset	0.0009	31.86	0.9124	0.0009	31.74	0.9098	0.0009	31.77	0.9113
300	2% sample dataset	0.00087	32.09	0.9137	0.0009	31.77	0.9156	0.0009	31.68	0.9075
	12% sample dataset	0.00084	32.29	0.9195	0.00085	32.16	0.9163	0.0008	32.16	0.9173
200	32% sample dataset	0.0009	31.86	0.9130	0.0009	31.91	0.9134	0.0009	31.77	0.9113

7 hidden layers 29,507 trainable parameters

MODEL 2 RESULTS

Epochs	TRAIN				VALIDATION			TEST		
		MSE	PSNR	SSIM	MSE	PSNR	SSIM	MSE	PSNR	SSIM
100	2% sample dataset	0.0035	25.82	0.7628	0.0038	25.46	0.7631	0.0035	25.69	0.7627
	12% sample dataset	0.0023	27.79	0.8141	0.0023	27.72	0.8109	0.0023	27.67	0.81
200	2% sample dataset	0.0025	27.456	0.8007	0.0027	27.00	0.8048	0.0025	27.11	0.7971
	12% sample dataset	0.0018	28.78	0.8381	0.0019	28.40	0.8333	0.0020	28.41	0.8324

14 hidden layers 374,406 trainable parameters

MODELING RESULTS - BAD

Model 2, 2 % sample dataset trained for 100 epochs

MODELING RESULTS - GOOD

Model 1, 12 % sample dataset trained for 300 epochs

CONCLUSIONS

- When the structure of the model is more complicated and number of trainable parameters is higher, a larger dataset and longer training duration is required.
- Based on the results from our modeling, we can conclude that if we had more time and computational resources, we were able to improve the model performance significantly by using a larger sample or the total dataset and training the model for longer durations.

FUTURE STEPS:

Run the second model for longer training periods with a higher number of images.

Implement transfer learning into our modeling - Find a model that has been pretrained on a similar problem such as denoising, deblurring

QUESTIONS?