QUANTUM ALGORITHMS HOMEWORK 9 SELECTED SOLUTIONS

PROF. MATTHEW MOORE

AP 1. Suppose that \mathbb{A} and \mathbb{B} are orthogonal to each other.

- (i) What is $\dim(\mathbb{A} + \mathbb{B})$?
- (ii) Show that $\mathcal{P}(|v\rangle, \mathbb{A} + \mathbb{B}) = \mathcal{P}(|v\rangle, \mathbb{A}) + \mathcal{P}(|v\rangle, \mathbb{B}).$
- (iii) Show that $\Pi_{\mathbb{A}}\Pi_{\mathbb{B}} = \Pi_{\mathbb{B}}\Pi_{\mathbb{A}}$.

Solution: (i) Let \mathcal{A} and \mathcal{B} be orthonormal bases for \mathbb{A} and \mathbb{B} , respectively. It follows that $\mathcal{A} \cup \mathcal{B}$ is a spanning set of $\mathbb{A} + \mathbb{B}$. Furthermore, since \mathbb{A} and \mathbb{B} are orthogonal, \mathcal{A} and \mathcal{B} are orthogonal. It follows that $\mathcal{A} \cup \mathcal{B}$ is a set of orthogonal vectors, and any set of orthogonal vectors not containing the zero vector $\vec{0}$ is linearly independent. Thus $\dim(\mathbb{A} + \mathbb{B}) = \dim(\mathbb{A}) + \dim(\mathbb{B})$.

(ii): Proof. Let $\mathcal{A} = \{|a_1\rangle, \dots, |a_n\rangle\}$ and $\mathcal{B} = \{|b_1\rangle, \dots, |b_m\rangle\}$ be orthonormal bases for \mathbb{A} and \mathbb{B} , respectively. From the previous part, we have that $\mathcal{A} \cup \mathcal{B}$ is an orthonormal basis for $\mathbb{A} + \mathbb{B}$. Define

$$|c_i\rangle = \begin{cases} a_i & \text{if } 1 \le i \le n, \\ b_{i-n} & \text{if } n < i \le n+m \end{cases}$$

so that $A \cup B = \{|c_1\rangle, \dots, |c_{n+m}\rangle\}$. We have

$$\Pi_{\mathbb{A}+\mathbb{B}} = \sum_{i=1}^{n+m} |c_i\rangle \langle c_i| = \sum_{i=1}^{n} |c_i\rangle \langle c_i| + \sum_{i=n+1}^{n+m} |c_i\rangle \langle c_i|$$
$$= \sum_{i=1}^{n} |a_i\rangle \langle a_i| + \sum_{i=1}^{m} |b_i\rangle \langle b_i| = \Pi_{\mathbb{A}} + \Pi_{\mathbb{B}}.$$

Therefore

$$\mathcal{P}(|v\rangle, \mathbb{A} + \mathbb{B}) = \langle v | \Pi_{A+\mathbb{B}} | v \rangle = \langle v | (\Pi_{\mathbb{A}} + \Pi_{\mathbb{B}}) | v \rangle$$
$$= \langle v | \Pi_{\mathbb{A}} | v \rangle + \langle v | \Pi_{\mathbb{B}} | v \rangle = \mathcal{P}(|v\rangle, \mathbb{A}) + \mathcal{P}(|v\rangle, \mathbb{B}). \qquad \Box$$

(iii): Proof. Using the same definitions for \mathcal{A} and \mathcal{B} as in the previous part, we have

$$\Pi_{\mathbb{A}}\Pi_{\mathbb{B}} = \left(\sum_{i=1}^{n} |a_{i}\rangle\langle a_{i}|\right) \left(\sum_{j=1}^{m} |b_{j}\rangle\langle b_{j}|\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} |a_{i}\rangle\langle a_{i}|b_{j}\rangle\langle b_{j}|$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} |a_{i}\rangle\langle 0\rangle\langle b_{j}| = |\vec{0}\rangle\langle\vec{0}|.$$

Reversing the order also gives $\Pi_{\mathbb{B}}\Pi_{\mathbb{A}} = |\vec{0}\rangle\langle\vec{0}|$.

Date: March 31, 2020.

- **AP 2.** Suppose that $\mathbb{A} \leq \mathbb{V}$ and $\mathbb{B} \leq \mathbb{W}$ are two subspaces.
 - (i) Prove that $\Pi_{\mathbb{A}\otimes\mathbb{B}} = \Pi_{\mathbb{A}}\otimes\Pi_{\mathbb{B}}$.
- (ii) Let ρ and τ be density matrices. Prove that $\mathcal{P}(\rho \otimes \tau, \mathbb{A} \otimes \mathbb{B}) = \mathcal{P}(\rho, \mathbb{A})\mathcal{P}(\tau, \mathbb{B})$. You may use the fact that $\text{Tr}(X \otimes Y) = \text{Tr}(X) \text{Tr}(Y)$.

Solution:

(i): *Proof.* Let $\mathcal{A} = \{|a_1\rangle, \dots, |a_n\rangle\}$ and $\mathcal{B} = \{|b_1\rangle, \dots, |b_m\rangle\}$ be orthonormal bases for A and \mathbb{B} , respectively. It follows that

$$C = \{ |a_i, b_j\rangle \mid 1 \le i \le n \text{ and } 1 \le j \le m \}$$

is an orthonormal basis for $\mathbb{A} \otimes \mathbb{B}$. Therefore

$$\begin{split} \Pi_{A\otimes\mathbb{B}} &= \sum_{i,j} |a_i,b_j\rangle \, \langle a_i,b_j| = \sum_{i,j} \left(\, |a_i\rangle \otimes |b_j\rangle \, \right) \! \left(\, \langle a_i| \otimes \langle b_j| \, \right) \\ &= \sum_{i,j} |a_i\rangle \, \langle a_i| \otimes |b_j\rangle \, \langle b_j| = \left(\sum_i |a_i\rangle \, \langle a_i| \right) \otimes \left(\sum_j |b_j\rangle \, \langle b_j| \right) \\ &= \Pi_{\mathbb{A}} \otimes \Pi_{\mathbb{B}}. \end{split}$$

(ii): Proof. We have

$$\mathcal{P}(\rho \otimes \tau, \mathbb{A} \otimes \mathbb{B}) = \operatorname{Tr}\left((\rho \otimes \tau)\Pi_{A \otimes \mathbb{B}}\right) = \operatorname{Tr}\left((\rho \otimes \tau)(\Pi_{\mathbb{A}} \otimes \Pi_{\mathbb{B}})\right)$$
$$= \operatorname{Tr}\left((\rho\Pi_{\mathbb{A}}) \otimes (\tau\Pi_{\mathbb{B}})\right) = \operatorname{Tr}\left(\rho\Pi_{\mathbb{A}}\right) \operatorname{Tr}\left(\tau\Pi_{\mathbb{B}}\right)$$
$$= \mathcal{P}(\rho, \mathbb{A})\mathcal{P}(\tau, \mathbb{B})$$

(we use the result of the previous part on line 1).