Review

$$\iint_{\partial\Omega} \vec{v} \cdot \vec{n} dS = \iiint_{\Omega} \nabla \cdot \vec{v} dx dy dz.$$

Green公式
$$\int_{\partial D} \vec{v} \cdot \vec{n} dl = \iint_D (P_x' + Q_y') dx dy$$

Remark: Gauss公式成立的条件.

•Stokes公式
$$\oint_{\partial S} \vec{v} \cdot \vec{\tau} dl = \iint_{S} (\nabla \times \vec{v}) \cdot \vec{n} dS$$

Green公式
$$\int_{\partial D} \vec{v} \cdot \vec{\tau} dl = \iint_D (Q'_x - P'_y) dx dy$$

Remark: 曲面S的选取及定向.

Chap5. 常数项级数

§ 1. 无穷级数的敛散性

级数:
$$\sum_{n=1}^{+\infty} a_n = a_1 + a_2 + \dots + a_n + \dots,$$

部分和:
$$S_n = \sum_{k=1}^n a_k$$

Def.若
$$\lim_{n\to\infty} S_n = S$$
,则称级数 $\sum_{n=1}^{+\infty} a_n$ 收敛,记为 $\sum_{n=1}^{+\infty} a_n = S$;

若数列 $\{S_n\}$ 发散,则称级数 $\sum_{n=1}^{\infty} a_n$ 发散.

 $\underset{n=1}{\operatorname{Remark.}}\sum_{n=1}^{+\infty}a_{n}$ 收敛 \Leftrightarrow $\{S_{n}\}$ 收敛.

Question. $\{S_n\}$ 收敛的必要条件、充分条件、充要条件?

Thm.(级数收敛的必要条件) $\sum_{n=1}^{+\infty} a_n$ 收敛 $\Rightarrow \lim_{n\to\infty} a_n = 0$.

Proof
$$a_n = S_n - S_{n-1} \rightarrow S - S = 0.\square$$

Thm.(级数收敛的Cauchy准则) $\sum_{n=1}^{\infty} a_n$ 收敛的充要条件是:

 $\forall \varepsilon > 0, \exists N \in \mathbb{N}, s.t.$

$$\left|a_{n+1} + a_{n+2} + \dots + a_{n+p}\right| < \varepsilon, \quad \forall n > N, p \ge 1.$$

Proof.
$$\sum_{n=1}^{\infty} a_n$$
收敛 $\Leftrightarrow \{S_n\}$ 收敛 $\Leftrightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}, s.t.$
$$|a_{n+1} + a_{n+2} + \dots + a_{n+p}| =$$

$$|S_{n+p} - S_n| < \varepsilon, \quad \forall n > N, p \ge 1.$$

Thm. 改变有限项的值, 级数 $\sum_{n=1}^{\infty} a_n$ 的敛散性不变.

Thm.
$$\sum_{n=1}^{+\infty} a_n = A, \sum_{n=1}^{+\infty} b_n = B, \lambda \in \mathbb{R}, \text{ II}$$

$$\sum_{n=1}^{+\infty} \lambda a_n = \lambda A,$$

$$\sum_{n=1}^{+\infty} \left(a_n + b_n \right) = A + B.$$

Corollary.
$$\sum_{n=1}^{+\infty} a_n$$
收敛, $\sum_{n=1}^{+\infty} b_n$ 发散, 则 $\sum_{n=1}^{+\infty} (a_n + b_n)$ 发散.

 $(求出<math>S_n$)

解: 当 $|r| \ge 1$ 时, $a_n \to 0$, 发散.

当
$$|r|$$
<1时, $S_n = r + r^2 + \dots + r^n = \frac{r - r^{n+1}}{1 - r}$.

结论:
$$|r| < 1$$
时, $\sum_{n=1}^{+\infty} r^n = \frac{r}{1-r}, \ |r| \ge 1$ 时, 发散.

例
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = 1.$$

(裂项法)

解:
$$S_n = (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \dots + (\frac{1}{n} - \frac{1}{n+1}) = 1 - \frac{1}{n+1} \to 1.$$
□

例. 求 $\sum_{n=1}^{+\infty} \frac{a^{2^{n-1}}}{1-a^{2^n}} = \frac{a}{1-a^2} + \frac{a^2}{1-a^4} + \frac{a^4}{1-a^8} + \cdots$ (归纳法)

解:
$$S_2 = \frac{a}{1-a^2} + \frac{a^2}{1-a^4} = \frac{a(1+a^2)}{1-a^4} + \frac{a^2}{1-a^4} = \frac{a+a^2+a^3}{1-a^4}$$

可归纳证明
$$S_n = \frac{a + a^2 + \dots + a^{2^n - 1}}{1 - a^{2^n}} = \frac{a(1 - a^{2^n - 1})}{(1 - a^{2^n})(1 - a)}$$

$$= \frac{a}{1 - a} \cdot \frac{(1/a^{2^n - 1} - 1)}{1/a^{2^n - 1} - a}$$
故 $|a| < 1$ 时, $S_n \to \frac{a}{1 - a}$; $|a| > 1$ 时, $S_n \to \frac{1}{1 - a}$.

例. 求
$$S = \sum_{n=1}^{+\infty} \frac{n}{2^n}$$
.

(方程法)

解:
$$a_n = \frac{n}{2^n}$$
,

$$a_{n+1} = \frac{n+1}{2^{n+1}} = \frac{n}{2^{n+1}} + \frac{1}{2^{n+1}} = \frac{a_n}{2} + \frac{1}{2^{n+1}}.$$

$$S - \frac{1}{2} = \sum_{n=1}^{+\infty} a_{n+1} = \sum_{n=1}^{+\infty} \frac{a_n}{2} + \sum_{n=1}^{+\infty} \frac{1}{2^{n+1}} = \frac{1}{2}S + \frac{1}{2},$$

$$S=2.\square$$

§ 2. 非负项级数

非负项级数:
$$\sum_{n=1}^{+\infty} a_n, a_n \ge 0, \forall n \in \mathbb{N}.$$
 $S_n \uparrow$

1.非负项级数的收敛原理

Thm 非负项级数收敛⇔部分和序列有上界.

例
$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}$$
. $M: S_N = \sum_{n=1}^N \frac{1}{\sqrt{n}} \ge \frac{1}{\sqrt{N}} \cdot N = \sqrt{N} \to +\infty$. S_N 无上界, 故 $\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}$ 发散.

例. 调和级数 $\sum_{n=1}^{+\infty} \frac{1}{n}$ 发散.

Proof.
$$S_{2^N} = \sum_{n=1}^{2^N} \frac{1}{n}$$

$$=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\cdots+\frac{1}{8}\right)+\cdots+\left(\frac{1}{2^{N-1}+1}+\cdots+\frac{1}{2^N}\right)$$

$$\geq 1 + \frac{1}{2} + \frac{1}{4} \times 2 + \frac{1}{8} \times 4 + \dots + \frac{1}{2^N} \times 2^{N-1} = 1 + \frac{N}{2}.$$

$$\lim_{N\to\infty} S_{2^N} = +\infty, 故 \sum_{n=1}^{+\infty} \frac{1}{n}$$
 发散.□

例
$$\sum_{n=1}^{+\infty} \frac{1}{n^2}$$
.

解:
$$S_N = \sum_{n=1}^N \frac{1}{n^2} \le 1 + \sum_{n=2}^N \frac{1}{n(n-1)}$$

$$= 1 + \sum_{n=2}^N \left(\frac{1}{n-1} - \frac{1}{n}\right) = 2 - \frac{1}{N} \le 2.$$

故
$$\sum_{n=1}^{+\infty} \frac{1}{n^2}$$
收敛,且 $\sum_{n=1}^{+\infty} \frac{1}{n^2} \le 2.$ □

2.非负项级数的比较判别法

要判断一个级数的收敛性,可以考虑将其与另一个已经知道收敛性的级数(尺子)做比较.

Thm (比较判别法-普通形式)

$$1)0 \le a_n \le b_n, \forall n \in \mathbb{N}, 且 \sum_{n=1}^{+\infty} b_n 收敛 \Rightarrow \sum_{n=1}^{+\infty} a_n 收敛.$$

$$(2)a_n \ge b_n \ge 0, \forall n \in \mathbb{N}, 且 \sum_{n=1}^{+\infty} b_n$$
发散 $\Rightarrow \sum_{n=1}^{+\infty} a_n$ 发散.

Proof. 比较两级数的前n项和数列.□

例
$$\sum_{n=1}^{+\infty} \sin \frac{1}{n^2}$$

解:
$$0 \le \sin \frac{1}{n^2} \le \frac{1}{n^2}$$
. 而 $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ 收敛,故 $\sum_{n=1}^{+\infty} \sin \frac{1}{n^2}$ 收敛.□

例
$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt{4n-3}}$$
 发散.

Thm (比较判别法-极限形式)

$$a_n > 0, b_n > 0, \lim_{n \to \infty} \frac{a_n}{b_n} = \lambda, 0 \le \lambda \le +\infty, \text{II}$$

$$1)\lambda < \infty$$
, $\sum_{n=1}^{+\infty} b_n$ 收敛 $\Rightarrow \sum_{n=1}^{+\infty} a_n$ 收敛.

$$2)\lambda > 0$$
, $\sum_{n=1}^{+\infty} b_n$ 发散 $\Rightarrow \sum_{n=1}^{+\infty} a_n$ 发散.

Proof. 2)是1)的推论,下证1).

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lambda, \text{ 則} \exists N_1 \in \mathbb{N}, s.t.$$

$$a_n < (\lambda+1)b_n, \ \forall n > N_1.$$

$$\sum_{n=0}^{+\infty} b_n$$
收敛,则 $\exists N > N_1, s.t.$

$$\left|\sum_{k=n+1}^{n+p} b_k\right| < \frac{\mathcal{E}}{\lambda+1}, \forall n > N, \forall p \ge 1.$$

于是
$$\forall n > N, \forall p \ge 1, 有 \left| \sum_{k=n+1}^{n+p} a_k \right| < (\lambda+1) \left| \sum_{k=n+1}^{n+p} b_k \right| < \varepsilon,$$

故
$$\sum_{n=1}^{+\infty} a_n$$
收敛.□

例
$$\sum_{n=1}^{+\infty} \ln(1+1/n)$$
.

$$\mathbf{\widetilde{H}}: \lim_{n\to\infty} \frac{\ln\left(1+1/n\right)}{1/n} = 1, \sum_{n=1}^{+\infty} \frac{1}{n}$$
 发散 $\Rightarrow \sum_{n=1}^{+\infty} \ln\left(1+\frac{1}{n}\right)$ 发散. \square

例.
$$\sum_{n=2}^{+\infty} \frac{\ln n}{n^p} \quad (p > 1).$$
 以
$$\sum_{n=2}^{+\infty} \frac{1}{n^q}$$
 为标尺!

以
$$\sum_{n=2}^{+\infty} \frac{1}{n^q}$$
为标尺!

$$\sum_{n=1}^{+\infty} \left(\sqrt[n]{a} - \sqrt{1 + \frac{1}{n}} \right).$$

$$\mathbf{\tilde{H}}: \ a_n \triangleq \sqrt[n]{a} - \sqrt{1 + \frac{1}{n}} = e^{\frac{1}{n} \ln a} - \left(1 + \frac{1}{n}\right)^{\frac{1}{2}}$$

$$\sim 1 + \frac{1}{n} \ln a + \frac{(\ln a)^2}{2n^2} + o\left(\frac{1}{n^2}\right) - \left[1 + \frac{1}{2n} - \frac{1}{8n^2} + o\left(\frac{1}{n^2}\right)\right]$$

$$= \left(\ln a - \frac{1}{2}\right) \frac{1}{n} + \left(\frac{(\ln a)^2}{2} + \frac{1}{8}\right) \frac{1}{n^2} + o\left(\frac{1}{n^2}\right), \quad n \to \infty \text{ [b]}.$$

n >> 1时, a, 不变号.可用正项级数判敛法.

当
$$a = \sqrt{e}$$
时, $\lim_{n \to \infty} a_n / \frac{1}{n^2} = \frac{1}{4} \neq 0$, $\sum_{n=1}^{+\infty} a_n$ 级数收敛.□

Remark. $o(\cdot)$ 记号的运用有时很方便!

Thm (比较判别法-上下极限形式) $a_n > 0, b_n > 0$.

1)
$$\sum_{n=1}^{+\infty} b_n$$
收敛, $\overline{\lim}_{n\to\infty} \frac{a_n}{b_n} < +\infty \Rightarrow \sum_{n=1}^{+\infty} a_n$ 收敛.

2)
$$\sum_{n=1}^{+\infty} b_n$$
发散, $\lim_{n\to\infty} \frac{a_n}{b_n} > 0 \Rightarrow \sum_{n=1}^{+\infty} a_n$ 发散.

Thm (Cauchy根式判别法-普通形式)

设
$$\sum_{n=1}^{+\infty} a_n$$
为非负项级数,则

$$1)\sqrt[n]{a_n} < r < 1, \forall n \in \mathbb{N} \Rightarrow \sum_{n=1}^{+\infty} a_n 收敛. \qquad \left(a_n \le r^n\right)$$

2)有无穷多个
$$n, s.t.$$
 $\sqrt[n]{a_n} \ge 1 \Rightarrow \sum_{n=1}^{+\infty} a_n$ 发散. $(a_n \to 0)$

Thm (Cauchy根式判别法-极限形式)

$$\sum_{n=1}^{+\infty} a_n$$
为非负项级数,且 $\lim_{n\to\infty} \sqrt[n]{a_n} = q$,则

$$1)q < 1 \Rightarrow \sum_{n=1}^{+\infty} a_n$$
收敛. $2)q > 1 \Rightarrow \sum_{n=1}^{+\infty} a_n$ 发散.

Proof.
$$\lim_{n\to\infty} \sqrt[n]{a_n} = q$$
,则 $\exists N, s.t. \forall n > N$,有 $\left|\sqrt[n]{a_n} - q\right| < \frac{|1-q|}{2}$.

1)若
$$q < 1$$
,则 $\forall n > N$, $\sqrt[n]{a_n} < q + \frac{|1-q|}{2} < 1$,从而 $\sum_{n=1}^{+\infty} a_n$ 收敛.

2) 若
$$q > 1$$
,则 $\forall n > N$, $\sqrt[n]{a_n} > q - \frac{|1-q|}{2} > 1$,故 $\sum_{n=1}^{+\infty} a_n$ 发散.

例
$$\sum_{n=1}^{+\infty} n^2/2^n$$
.

$$\lim_{n\to\infty} \sqrt[n]{n^2/2^n} = 1/2 < 1, \sum_{n=1}^{+\infty} n^2/2^n \psi \hat{\omega}.$$

例.
$$\sum_{n=1}^{+\infty} \frac{1}{2^{n-(-1)^n}}$$
.

解:
$$\lim_{n\to\infty} \sqrt[n]{\frac{1}{2^{n-(-1)^n}}} = \lim_{n\to\infty} \frac{1}{2^{1-(-1)^n/n}} = \frac{1}{2} < 1, \sum_{n=1}^{+\infty} \frac{1}{2^{n-(-1)^n}}$$
 收敛.□

Thm (Cauchy根式判别法-上下极限形式) $a_n \ge 0$,则

$$1) \overline{\lim}_{n \to \infty} \sqrt[n]{a_n} < 1 \Rightarrow \sum_{n=1}^{+\infty} a_n 收敛.$$

2)
$$\lim_{n\to\infty} \sqrt[n]{a_n} > 1 \Rightarrow \sum_{n=1}^{+\infty} a_n$$
发散.

Remark 当 $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 时,不能利用Cauchy根式判别法

判断 $\sum_{n=1}^{+\infty} a_n$ 的收敛性. 例如

$$\lim_{n\to\infty} \sqrt[n]{1/n} = 1, \sum_{n=1}^{+\infty} 1/n$$
发散.

$$\lim_{n\to\infty} \sqrt[n]{1/n^2} = 1, \sum_{n=1}^{+\infty} 1/n^2 \psi$$

因此我们需要更精细的判别法(或标尺).

3.非负项级数的积分判别法

Thm (Cauchy积分判别法)设 f(x)在[1,+ ∞)上单调下降且

非负,则
$$\sum_{n=1}^{+\infty} f(n)$$
与 $\int_{1}^{+\infty} f(x)dx$

同时收敛或同时发散.

$$\int_{1}^{N} f(x)dx$$

$$\sum_{n=1}^{N-1} f(n+1) \le \sum_{n=1}^{N-1} \int_{n}^{n+1} f(x) dx \le \sum_{n=1}^{N-1} f(n). \square$$

例
$$p$$
 - 级数: $\sum_{n=2}^{+\infty} \frac{1}{n^p}$.

例
$$p$$
 - 级数: $\sum_{n=2}^{+\infty} \frac{1}{n^p}$.

解: $\int_{1}^{+\infty} \frac{dx}{x^p} = \begin{cases} \ln x \Big|_{x=1}^{+\infty}, & p=1 \\ \frac{x^{1-p}}{1-p} \Big|_{x=1}^{+\infty}, & p \neq 1 \end{cases}$

$$= \begin{cases} +\infty, & p \le 1 \\ \frac{1}{p-1}, & p > 1 \end{cases}$$

故
$$p > 1$$
时, $\sum_{n=2}^{+\infty} \frac{1}{n^p}$ 收敛, $p \le 1$ 时, $\sum_{n=2}^{+\infty} \frac{1}{n^p}$ 发散. \square

例 $\sum_{n=2}^{+\infty} \frac{1}{n(\ln n)^p}.$

$$\int_{2}^{+\infty} \frac{dx}{x(\ln x)^{p}} = \begin{cases} \ln(\ln x) \Big|_{x=2}^{+\infty}, & p = 1, \\ \frac{1}{(1-p)(\ln x)^{p-1}} \Big|_{x=2}^{+\infty}, & p \neq 1. \end{cases}$$

$$p > 1$$
时, $\sum_{n=2}^{+\infty} \frac{1}{n(\ln n)^p}$ 收敛.

$$p \le 1$$
时, $\sum_{n=2}^{+\infty} \frac{1}{n(\ln n)^p}$ 发散. \square

Question. $\sum_{n=3}^{+\infty} \frac{1}{n \ln n (\ln \ln n)^p}$ 的敛散性?

Remark. $a_n > 0$,利用比较判别法(上极限形式)可知

•
$$a_n = O\left(\frac{1}{n^p}\right), p > 1, \implies \sum_{n=1}^{+\infty} a_n \psi \mathcal{D}$$

•
$$a_n = O\left(\frac{1}{n(\ln n)^p}\right), p > 1, \Rightarrow \sum_{n=1}^{+\infty} a_n \psi \otimes \psi$$

•
$$a_n = O\left(\frac{1}{n \ln n (\ln \ln n)^p}\right), p > 1, \Rightarrow \sum_{n=1}^{+\infty} a_n \psi \dot{\omega}$$

例.
$$\sum_{n=2}^{+\infty} \frac{\ln n}{n^p}$$
 $(p > 1)$.

以
$$\sum_{n=2}^{+\infty} \frac{1}{n^q}$$
为标尺!

解:
$$p > 1$$
,则 $(p+1)/2 > 1$, $(p-1)/2 > 0$.

$$\frac{\ln n}{n^p} = \frac{1}{n^{(p+1)/2}} \cdot \frac{\ln n}{n^{(p-1)/2}}$$

$$\lim_{n\to\infty}\frac{\ln n}{n^{(p-1)/2}}=0,$$
 因此 $\exists N, s.t. \frac{\ln n}{n^{(p-1)/2}}<\frac{1}{2}, \forall n>N. 于是,$

$$\frac{\ln n}{n^p} < \frac{1}{2n^{(p+1)/2}}, \quad \forall n > N,$$

从而
$$p > 1$$
时 $\sum_{n=2}^{+\infty} \frac{\ln n}{n^p}$ 收敛.□

例.
$$\sum_{n=2}^{+\infty} a_n = \sum_{n=2}^{+\infty} \frac{1}{n^{1+\frac{1}{\ln \ln n}}}.$$

以
$$\sum_{n=2}^{+\infty} \frac{1}{n(\ln n)^p}$$
为标尺!

$$\frac{1}{\operatorname{Im} \ln n} = e^{\frac{\ln n}{\ln \ln n}} = e^{\frac{\ln n \cdot \ln \ln n}{(\ln \ln n)^2}} = \left(e^{\ln(\ln n)}\right)^{\frac{\ln n}{(\ln \ln n)^2}} = (\ln n)^{\frac{\ln n}{(\ln \ln n)^2}}$$

$$\lim_{n\to\infty}\frac{\ln n}{(\ln\ln n)^2}=+\infty, 于是∃N_0, s.t.\frac{\ln n}{(\ln\ln n)^2}>2, \forall n>N_0.$$

继而有
$$\frac{1}{n^{1+\frac{1}{\ln \ln n}}} = \frac{1}{n \cdot n^{\frac{1}{\ln \ln n}}} < \frac{1}{n(\ln n)^2}, \forall n > N_0.$$
故 $\sum_{n=2}^{+\infty} a_n$ 收敛.

故
$$\sum_{n=2}^{+\infty} a_n$$
收敛. \square

4.正项级数的比值判别法

要判断一个级数的收敛性,也可以从其通项的增长速度方面着手考虑.

Thm (比值判别法) 设 $\sum_{n=1}^{+\infty} a_n$ 与 $\sum_{n=1}^{+\infty} b_n$ 都是严格正项级数,

即 $\forall n \in \mathbb{N}, a_n > 0, b_n > 0.$ 则

$$\frac{a_{n+1}}{a_n} \ge \frac{b_{n+1}}{b_n}, \forall n \in \mathbb{N}(\vec{y} \forall n > N_0),$$

$$\sum_{n=1}^{+\infty} b_n$$

$$\sum_{n=1}^{+\infty} b_n$$

$$\sum_{n=1}^{+\infty} b_n$$

$$\sum_{n=1}^{+\infty} b_n$$

Proof. 1)
$$\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}$$
,则

$$a_n = a_1 \cdot \frac{a_2}{a_1} \cdot \frac{a_3}{a_2} \cdot \dots \cdot \frac{a_n}{a_{n-1}} \le a_1 \cdot \frac{b_2}{b_1} \cdot \frac{b_3}{b_2} \cdot \dots \cdot \frac{b_n}{b_{n-1}} \le \frac{a_1}{b_1} b_n.$$

$$\sum_{n=1}^{+\infty} b_n$$
收敛,则 $\sum_{n=1}^{+\infty} a_n$ 收敛. 同理可证2).□

Question. 比值判别法的极限形式和上下极限形式?

在比值判别法中取 $\sum_{n=1}^{+\infty} b_n$ 为等比级数 $\sum_{n=1}^{+\infty} r^n$,则有

Thm (D'Alembert判别法-普通形式) 设 $\sum_{n=1}^{\infty} a_n$ 为严格正

项级数,则

$$1)\frac{a_{n+1}}{a_n} \le r < 1, \forall n \ge n_0 \Longrightarrow \sum_{n=1}^{+\infty} a_n$$
收敛.

$$(2)$$
 $\frac{a_{n+1}}{a_n} \ge 1$, $\forall n \ge n_0 \Longrightarrow \sum_{n=1}^{+\infty} a_n$ 发散.

Thm (D'Alembert判别法-极限形式) 设 $\sum_{n=1}^{\infty} a_n$ 为严格正

项级数, $\lim_{n\to\infty} a_{n+1}/a_n = q$. 则

$$1)q < 1 \Rightarrow \sum_{n=1}^{+\infty} a_n$$
收敛.
$$2)q > 1 \Rightarrow \sum_{n=1}^{+\infty} a_n$$
发散.

Remark 当 $\lim_{n\to\infty} a_{n+1}/a_n = 1$ 时,D'Alembert 判别法失效.

例如
$$\sum_{n=1}^{+\infty} 1/n^2$$
收敛, $\sum_{n=1}^{+\infty} 1/n$ 发散, 而 $\lim_{n\to\infty} \frac{1/(n+1)^2}{1/n^2} = 1$,

$$\lim_{n\to\infty}\frac{1/(n+1)}{1/n}=1.\square$$

Thm (D'Alembert判别法-上下极限形式) $a_n > 0$,则

$$1)\overline{\lim}_{n\to\infty}\frac{a_{n+1}}{a_n}<1\Rightarrow\sum_{n=1}^{+\infty}a_n$$
收敛.

$$2)\underline{\lim}_{n\to\infty}\frac{a_{n+1}}{a_n}>1\Rightarrow \sum_{n=1}^{+\infty}a_n$$
发散.

例. $\sum_{n=1}^{+\infty} \frac{\ln n}{2^n}$

解:
$$\frac{a_{n+1}}{a_n} = \frac{\ln(n+1)}{2\ln n}$$

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \frac{1}{2} < 1, \text{ in } \sum_{n=1}^{+\infty} \frac{\ln n}{2^n} \text{ in } \frac{1}{2^n}$$

例.
$$\sum_{n=1}^{+\infty} \frac{\sqrt{n! \cdot 2^n}}{n^{n/2}}$$

$$\frac{n^{n/2}}{a_n} = 2\sqrt{n+1} \cdot \frac{n^{n/2}}{(n+1)^{(n+1)/2}}$$

$$= \frac{2n^{n/2}}{(n+1)^{n/2}} = \frac{2}{\left(\left(1+\frac{1}{n}\right)^n\right)^{\frac{1}{2}}}$$

$$\lim_{n\to+\infty}\frac{a_{n+1}}{a_n}=\frac{2}{\sqrt{e}}>1,故级数发散.$$

Remark D'Alembert判别法失效时, 需要更精细的尺度, 如:

$$\sum_{n=1}^{+\infty} \frac{1}{n^p}, \sum_{n=1}^{+\infty} \frac{1}{n(\ln n)^p}, \sum_{n=1}^{+\infty} \frac{1}{n \ln n(\ln \ln n)^p}, \dots$$

分别取
$$\sum_{n=1}^{+\infty} \frac{1}{n^p}$$
和 $\sum_{n=1}^{+\infty} \frac{1}{n(\ln n)^p}$ 作为比值比较的尺度,得到

Raabe判别法和Gauss判别法.

Thm (Raabe判别法-普通形式) $a_n > 0$,则

1)若
$$\exists q > 1, N_0 \in \mathbb{N}, s.t.$$

$$2$$
)若 $3N_0 \in \mathbb{N}$, s.t.

$$n\left(\frac{a_n}{a_{n+1}}-1\right) \ge q > 1, \forall n > N_0, \quad n\left(\frac{a_n}{a_{n+1}}-1\right) \le 1, \forall n > N_0,$$

则
$$\sum_{n=1}^{+\infty} a_n$$
收敛.

则
$$\sum_{n=1}^{+\infty} a_n$$
发散.

$$\frac{b_n}{b_{n+1}} = \frac{(n+1)^p}{n^p} = \left(1 + \frac{1}{n}\right)^p$$

$$= 1 + \frac{p}{n} + o\left(\frac{1}{n}\right) \le 1 + \frac{q}{n} = \frac{a_n}{a_{n+1}}.$$

而
$$\sum_{n=1}^{+\infty} b_n = \sum_{n=1}^{+\infty} \frac{1}{n^p}$$
 收敛 $(p > 1)$,由比值判别法, $\sum_{n=1}^{+\infty} a_n$ 收敛.

2)所给条件等价于
$$\frac{a_n}{a_{n+1}} \le 1 + \frac{1}{n} = \frac{-\frac{n}{n}}{\frac{1}{n+1}}$$
, $\forall n > N_0$. $\sum_{n=1}^{+\infty} \frac{1}{n}$ 发散,因此 $\sum_{n=1}^{+\infty} a_n$ 发散. \square

Thm (Raabe-极限形式)
$$a_n > 0$$
, $\lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = q$, 则

1) 若
$$q > 1$$
,则 $\sum_{n=1}^{+\infty} a_n$ 收敛; 2) 若 $q < 1$,则 $\sum_{n=1}^{+\infty} a_n$ 发散.

Thm (Raabe判别法-上下极限形式) $a_n > 0$,则

$$1) \lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) > 1 \Rightarrow \sum_{n=1}^{+\infty} a_n 收敛;$$

$$2)\overline{\lim}_{n\to\infty} n \left(\frac{a_n}{a_{n+1}} - 1\right) < 1 \Rightarrow \sum_{n=1}^{+\infty} a_n$$
发散.

例.
$$\sum_{n=1}^{+\infty} \frac{(2n-1)!!}{(2n)!!}.$$

$$\frac{n}{a_{n+1}} = \frac{(2n-1)!!}{(2n)!!} \cdot \frac{(2n+2)!!}{(2n+1)!!} = \frac{2n+2}{2n+1} = 1 + \frac{1}{2n+1},$$

$$\lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = \lim_{n \to \infty} \frac{n}{2n+1} = \frac{1}{2} < 1,$$

由Raabe判别法,级数发散.□

例.
$$\sum_{n=1}^{+\infty} \frac{1}{a^{\ln n}} \quad (a > 0). \left(a^{\ln n} = n^{\ln a}, 故此级数为p - 级数. \right)$$
解:
$$n \left(\frac{a_n}{a_{n+1}} - 1 \right) = n \left(a^{\ln(n+1) - \ln n} - 1 \right) = \frac{a^{\ln\left(1 + \frac{1}{n}\right)} - 1}{1/n}.$$

$$\lim_{x \to 0} \frac{a^{\ln(1+x)} - 1}{x} = \lim_{x \to 0} \left(\frac{a^{\ln(1+x)} - 1}{\ln(1+x)} \cdot \frac{\ln(1+x)}{x} \right) = \ln a,$$

$$\lim_{x \to 0} \frac{a^{\ln(1+x)} - 1}{x} = \lim_{x \to 0} \left(\frac{a^{\ln(1+x)} - 1}{\ln(1+x)} \cdot \frac{\ln(1+x)}{x} \right) = \ln a$$

$$\lim_{n\to\infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = \ln a.$$

由Raabe判别法, a > e时, 级数收敛; a < e时, 级数发散.

此外,
$$a = e$$
时, $\sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} 1/n$, 发散.□

Question. 比值判别法中, 选 $\sum_{n=1}^{+\infty} \frac{1}{a^{\ln n}}$ 为标尺,还有何结论?

分析:
$$\frac{b_n}{b_{n+1}} = a^{\ln(n+1)-\ln n} = a^{\ln\left(1+\frac{1}{n}\right)}, \ln\frac{b_n}{b_{n+1}} = \ln a \cdot \ln\left(1+\frac{1}{n}\right),$$

$$n \ln \frac{b_n}{b_{n+1}} = \ln a \cdot n \ln \left(1 + \frac{1}{n} \right) \rightarrow \ln a.$$

结论: Thm.(对数比值型判别法) 设 $\lim_{n\to\infty} n \ln \frac{a_n}{a_{n+1}} = l$,则

$$l > 1 \Rightarrow \sum_{n=1}^{+\infty} a_n$$
收敛; $l < 1 \Rightarrow \sum_{n=1}^{+\infty} a_n$ 发散.

Question.请写出对数比值型判别法的一般形式和上下极限形式.

Question. 比较判别法中, 选用 $\sum_{n=1}^{+\infty} \frac{1}{a^{\ln n}}$ 为标尺, 有何结论?

分析:
$$a_n \ge \frac{1}{a^{\ln n}} \Leftrightarrow \sqrt[\ln n]{a_n} \ge a^{-1}$$
.

结论: Thm.(对数根式型判别法) 设 $\lim_{n\to\infty} \sqrt[\ln n]{a_n} = l$,则

$$l < \frac{1}{e} \Rightarrow \sum_{n=1}^{+\infty} a_n$$
收敛; $l > \frac{1}{e} \Rightarrow \sum_{n=1}^{+\infty} a_n$ 发散.

Question.请写出对数根式型判别法的一般形式和上下极限形式.

Question. 比较判别法中, 选用 $\sum_{n=1}^{+\infty} \frac{1}{n^p}$ 为标尺, 还有何结论?

分析:
$$a_n \le \frac{1}{n^p} \Leftrightarrow \frac{1}{a_n} \ge n^p \Leftrightarrow \frac{\ln 1/a_n}{\ln n^p} \ge 1 \Leftrightarrow \frac{\ln 1/a_n}{\ln n} \ge p.$$

结论: Thm.(对数判别法) 设 $\lim_{n\to\infty} \frac{\ln 1/a_n}{\ln n} = l$,则

$$l>1 \Rightarrow \sum_{n=1}^{+\infty} a_n$$
收敛; $l<1 \Rightarrow \sum_{n=1}^{+\infty} a_n$ 发散.

Question.请写出对数判别法的一般形式和上下极限形式.

Remark. 若
$$\lim_{n\to\infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = 1$$
, Raabe 判别法失效.利用更

精细的标尺
$$\sum_{n=1}^{+\infty} \frac{1}{n(\ln n)^p}$$
,得到如下Gauss判别法.

Thm (Gauss判别法) 设 $\sum_{n=1}^{\infty} a_n$ 为严格正项级数,并设

$$\frac{a_n}{a_{n+1}} = \lambda + \frac{\mu}{n} + \frac{\upsilon}{n \ln n} + o\left(\frac{1}{n \ln n}\right), n \to \infty$$
时.

1) 若
$$\lambda > 1$$
, 则 $\sum_{n=1}^{+\infty} a_n$ 收敛, 若 $\lambda < 1$, 则 $\sum_{n=1}^{+\infty} a_n$ 发散.(D'Alembert)

2)设
$$\lambda = 1.$$
 若 $\mu > 1$,则 $\sum_{n=1}^{+\infty} a_n$ 收敛,若 $\mu < 1$,则 $\sum_{n=1}^{+\infty} a_n$ 发散.(Raabe)

3)设
$$\lambda = \mu = 1.$$
若 $\upsilon > 1$,则 $\sum_{n=1}^{+\infty} a_n$ 收敛,若 $\upsilon < 1$,则 $\sum_{n=1}^{+\infty} a_n$ 发散.

Proof. 3)取
$$\sum_{n=1}^{+\infty} b_n = \sum_{n=1}^{+\infty} \frac{1}{n(\ln n)^p}$$
, 当 n 充分大时, 有

$$\frac{b_n}{b_{n+1}} = \frac{(n+1)(\ln(n+1))^p}{n(\ln n)^p} = \left(1 + \frac{1}{n}\right) \left(\frac{\ln\left(1 + \frac{1}{n}\right) + \ln n}{\ln n}\right)^p$$

$$= \left(1 + \frac{1}{n}\right) \left(1 + \frac{\frac{1}{n} + o\left(\frac{1}{n}\right)}{\ln n}\right)^p = \left(1 + \frac{1}{n}\right) \left(1 + \frac{1}{n \ln n} + o\left(\frac{1}{n \ln n}\right)\right)^p$$

$$= \left(1 + \frac{1}{n}\right) \left(1 + \frac{p}{n \ln n} + o\left(\frac{1}{n \ln n}\right)\right) = 1 + \frac{1}{n} + \frac{p}{n \ln n} + o\left(\frac{1}{n \ln n}\right).$$

• • • • • □

作业: 习题5.1 No. 2, 5-7

习题5.2 No.1-3,5,8-11