HMAC

Keyed Hash Functions as MACs

- have desire to create a MAC using a hash function rather than a block cipher
 - because hash functions are generally faster
 - not limited by export controls unlike block ciphers
- hash includes a key along with the message
- original proposal:

```
KeyedHash = Hash(Key|Message)
```

- some weaknesses were found with this
- eventually led to development of HMAC

HMAC

- specified as Internet standard RFC2104
- uses hash function on the message:

```
HMAC_K = Hash[(K^+ XOR opad) | |
Hash[(K^+ XOR ipad) | | M)]]
```

- where K⁺ is the key padded out to size
- and opad, ipad are specified padding constants
- overhead is just 3 more hash calculations than the message needs alone
- any of MD5, SHA-1, RIPEMD-160 can be used

HMAC (cont'd)

- HMAC Design Objectives [RFC2104]
 - To use available hash functions.
 - To allow for easy replaceability of the embedded hash function
 - To preserve the original performance
 - To use and handle keys in simple way
 - To have a well understood cryptographic analysis of the strength of the authentication mechanism

HMAC Algorithm

 $HMAC_K = H[(K^+ \oplus opad) || H[K^+ \oplus ipad || M]]$

- Append zeros to the left end of K to create a b-bit string K⁺
- 2. XOR K⁺ with ipad to produce the *b*-bit block S_i
- 3. Append M to S_i
- 4. Apply H to the stream generated in step 3

Algorithm (cont'd)

- 5. XOR K⁺ with opad to produce the *b*-bit block S_o
- 6. Append the hash result from step 4 to S_o
- Apply H to the stream generated in step 6 and output the result

EFFICIENT IMPLEMENTATION

of HMAC

HMAC Security

- know that the security of HMAC relates to that of the underlying hash algorithm
- attacking HMAC requires either:
 - brute force attack on key used
 - birthday attack (but since keyed would need to observe a very large number of messages)
- choose hash function used based on speed verses security constraints