Compilation Université d'Artois

Compilation

L3 Info

TD - Compilation, Automates

Exercice 1: ER \Rightarrow AFN \Rightarrow AFD \Rightarrow AFD minimisé

Soit l'expression régulière $(a|b)^*abb(a|b)^*$.

- construisez un AFN représentant cette expression régulière
- transformez cet AFN en AFD
- minimisez l'AFD obtenu

Exercice 2: AFN /AFD

Soit l'AFN avec $e_0 = 0$ et $T = \{0, 1, 2\}$:

Δ	a	$\mid b \mid$
0	1, 3	3
1	1, 2	-
2	-	3
3	3	3
4	3	2

- a) Tous les états sont-ils accessibles depuis l'état initial?
- b) Tous les états peuvent-ils amener à un état final?
- c) Simplifier l'automate et le rendre déterministe.
- d) Quel est le langage reconnu?

Exercice 3: AFD/AFN

Soit l'AFN avec $e_0 = 1$ et $T = \{2\}$:

Δ	a	b	c	ϵ
1	1	-	4	2
2	-	2	-	1,3
3	-	-	-	2
4	-	3	-	-

Compilation Université d'Artois

- a) Détérminiser l'AFN présenté ci-dessus et si possible, le minimiser.
- b) Donner une expression régulière (r) correspondant au langage reconnu par l'AFN précédent et l'AFD que vous venez de trouver.
- c) Construire l'arbre abstrait pour l'expression régulière étendue ((r)#).
- d) Préciser les "positions suivantes" des feuilles et les "premières" de la racine de cet arbre abstrait.
- e) En utilisant les fonctions calculées dans la question d) donner un AFD correspondant au langage reconnu par l'expression régulière de la question b)
- f) Comparer les automates obtenus dans les questions a) et e).
- g) Tester sur vos AFD les mots aaabbebebab, bababbbe, ebbbebaaabb.