Chapter Two Part-2

Performance Assessment

Performance assessment

Key parameters to evaluate processor hardware:

- Performance,
- cost,
- size,
- security,
- reliability,
- power consumption

When we say one computer has better performance than another, what do we mean?

What affects the performance of your application of tware?

Application performance depends not just on the raw speed of the processor but also on:

- The instruction set,
- Choice of implementation language,
- Efficiency of the compiler, and
- Skill of the programming done to implement the application.

Clock Speed and Instructions per Second

Operations performed by a processor are governed by a system clock. Such as:

- fetching an instruction,
- decoding the instruction,
- performing an arithmetic operation and others

- All operations begin with the pulse of the clock.
- Thus, at the most fundamental level, the speed of a processor is dictated by the pulse frequency produced by the clock.

 Pulse is measured in cycles per second, or Hertz (Hz).

- All clock signals are generated by a quartz crystal, which generates a constant signal wave while power is applied.
- This wave is converted into a digital voltage pulse stream that is provided in a constant flow to the processor circuitry.

 The rate of pulses is known as the clock rate, or clock speed.

 One increment, or pulse, of the clock is referred to as a clock cycle, or a clock tick.

 The time between pulses is the cycle time.

 The execution of an instruction involves a number of discrete steps.

 Thus, most instructions on most processors require multiple clock cycles to complete.

 Some instructions may take only a few cycles, while others require dozens.

Thus, a straight comparison of clock speeds on different processors does not tell the whole story about performance.

Instruction Execution Rate

A processor is driven by:

- a clock with a constant frequency f or
- equivalently, a constant cycle time t, where t = 1/f.
- I_c , for a program as the number of machine instructions executed for that program until it runs to completion
- An important parameter is **the average cycles** per instruction (*CPI*) for a program.

Let CPI_i be the number of cycles required for instruction type i and I_i be the number of executed instructions of type i for a given program.

Then we can calculate an overall *CPI* as follows:

$$CPI = \frac{\sum_{i=1}^{n} (CPI_i \times I_i)}{I_c}$$

The processor time T needed to execute a given program can be expressed as

$$T = I_c \times CPI \times \tau$$

A common measure of performance for a processor is the rate at which instructions are executed, expressed as millions of instructions per second (MIPS),

MIPS rate =
$$\frac{I_c}{T \times 10^6} = \frac{f}{CPI \times 10^6}$$

Reading Assignment

Amdahl's law

Case study-1

Our favorite program runs in 10 seconds on computer A, which has a 2 GHZ clock. We are trying to help a computer designer build a computer, B, which will run this program in 6 seconds. The designer has determined that a substantial increase in the clock rate is possible, but this increase will affect the rest of the CPU design, causing computer B to require 1.2 times as many clock cycles as computer A for this program. What clock rate should we tell the designer to target?

Case study-2

Suppose we have two implementations of the same instruction set architecture. Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program, and computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same program.

Which computer is faster for this program and by how much?