Quantum Computing CHEAT SHEET for circuit magicians

Bits and Qubits

Multiple qubits form a register. The number of computational states doubles with each new qubit. A state with multiple qubits involved is often denoted like |(00=0)\&0) (where & is the tensor product)

# qubits	# basis states	example
1	2	$\bigoplus_{i \in \mathcal{O}_{i,0}} \frac{1}{\sqrt{2}} 0\rangle - \frac{1}{\sqrt{2}} 1\rangle$
2	4	\bigcirc
3	8	$ \bigoplus_{i} \bigoplus_{j} \bigoplus_{i} \bigoplus_{i} \bigoplus_{j} \bigoplus_{i} \bigoplus_{j} \bigoplus_{i} \bigoplus_{j} \bigoplus_{i} \bigoplus_{j} \bigoplus_{i} \bigoplus_{j} \bigoplus_{i} \bigoplus_{j} \frac{1}{2\sqrt{2}} \frac{100(j-\frac{1}{2\sqrt{2}})$

Two or more qubits can be entangled meaning that the state cannot be factorized as a product of states:

Building Blocks for Quantum Algorithms

There are many clever ways to arrange quantum circuits. A couple of them are depicted below.

Increment & decrement are used to add or subtract one from a register and are an example of how to do arithmetic with quantum gates.

Swap test allows for checking how similar the states in two registers are.

Amplitude Amplification converts phase differences into amplitude

Quantum Fourier Transform can reveal the signal frequency in a register. Among other algorithms, it is used in Shor's algorithm for factoring numbers and computing the discrete logarithm.

