HIT — Cryptography — Homework 3

September 9, 2014

Problem 1. In our attack on a two-round substitution-permutation network, we considered a block length of 64 bits and a network with 16 S-boxes that each take a 4-bit input.

- 1. Repeat the analysis for the case of 8 S-boxes, each taking an 8-bit input. What is the complexity of the attack now?
- 2. Repeat the analysis again with a 128-bit block length and 16 S-boxes that each take an 8-bit input.
- 3. Does the block length make any difference?

Problem 2. Show that DES has the property that $DES_k(x) = DES_{\overline{k}}(\overline{x})$ for every key k and input x (where \overline{z} denotes the bitwise complement of z). This is called the complementarity property of DES.

Problem 3. Let F be a pseudorandom function. Show that the following MAC for messages of length 2n is insecure: The shared key is a random $k \in \{0,1\}^n$. To authenticate a message $m_1 || m_2$ with $|m_1| = |m_2| = n$, compute the tag $\langle F_k(m_1), F_k(F_k(m_2)) \rangle$.

Problem 4. Let (Gen, H) be a collision-resistant hash function. Is (Gen, \hat{H}) defined by $(\hat{H}^s(x)) \stackrel{\text{def}}{=} H^s(H^s(x))$ necessarily collision resistant? Prove your answer.

Problem 5. For each of following modifications to the Merkle-Damgård transform, determine whether the result is collision resistant or not. If yes, provide a proof; if not, demonstrate an attack.

- 1. Modify the construction so that the input length is not included at all (i.e, output z_B and not $z_{B+1} = h^s(z_B||L)$).
- 2. Modify the construction so that instead of outputting $z = h^s(z_B || L)$, the algorithm outputs $z_B || L$
- 3. Instead of using an IV, just start the computation from x_1 . That is, define $z_1 := x_1$ and then compute $z_i := h^s(z_{i-1}||x_i)$ for i = 2, ..., B+1 and output z_{B+1} as before.
- 4. Instead of using a fixed IV, set $z_0 := L$ and then compute $z_i := h^s(z_{i-1} || x_i)$ for $i = 1, \ldots, B$ and output z_B .

Problem 6. Let f be a one-way function. Is g(x) = f(f(x)) necessarily a one-way function? What about g(x) = (f(x), f(f(x)))? Prove your answers.