Meshless Modelling for Heat-based Robotic Navigation of Radio Frequency Catheter Ablation

Konstantinos A. Mountris

Richard Schilling

Helge A. Wurdemann

1. Statement of clinical need

Atrial Fibrillation (AF) is the most common cardiac arrhythmia and a major risk factor for ischemic stroke.

❖ Radio Frequency Catheter Ablation (RFCA) is a minimally invasive technique utilised to treat AF where a catheter is navigated to the heart through the femoral vein [1] (Fig. 1).

Robotic navigation system

RFCA electrical circuit

Ablation RF heat delivery

Figure 1: Main procedural steps of Radio Frequency Catheter Ablation.

- ❖ Catheter navigation is performed either manually or by using robotic navigation systems. Robotic navigation allows for more effective ablation lesions, but may lead to higher risk of cardiac perforation [2]
- ❖ Computational models may predict lesion formation effectively. However, their clinical application is limited since they have been developed for single-site ablation and numerical accuracy depends on the quality of mesh discretization [3].

Aim of this work

We propose a new **meshless model** to simulate tissue heat distribution during robotic-navigation-assisted ablation while considering conditions of **multi-site ablation**.

2. Methods

- ❖ The meshless Fragile Points Method (FPM) is used to solve the bioheat and electrical equations that describe the thermoelectrical phenomenon of RFCA.
- ❖ The domain of interest is discretized by a set of randomly distributed points which are enclosed in non-overlapping subdomains (Fig. 2).
- Local discontinuous polynomials are employed as trial functions.
- Time-dependent Dirichlet conditions are employed to account for the time interval between the start and end of each ablation (multi-site)

Multi-site ablation mathematical model

$$\rho c(T) \frac{\partial T}{\partial t} - \nabla \cdot (k(T)\nabla T) = q$$

$$\nabla \cdot (\sigma(T)\nabla \Phi) = 0$$

Figure 2: Domain of interest discretization using the Fragile Points Method.

Ablation protocol

- ❖ 3D porcine ventricular tissue block (40×40×20 mm)
- ❖ Density $\rho = 1076$ kgm-3; specific heat $c_0 = 3017$ Jkg-1K; thermal conductivity $k_0 = 0.518$ Wm-1K; electrical conductivity $\sigma_0 = 0.54$ Sm-1.
- ❖ Two ablation sites $s_1 = (0, -1, 20)$ mm and $s_2 = (0, 1, 20)$ mm. Ablation time $t_a = 30$ s. Simulations with catheter indentation at perpendicular position and rotated around the x-axis by 30°.

Figure 3: Temperature distribution for perpendicular catheter indentation (left) and catheter indentation at 30° (right) comparing single-site and multi-site simulations.

3. Results

Lesion characteristics were measured at site s_2 for single-site (**single**) and multi-site ablation simulations (Tab. 1). Multi-site ablation was modelled either using the delivered temperature at s_1 as initial condition (**multi-init**) or by summing the s_1 and s_2 heat maps (**multi-sum**).

	single	multi-sum	multi-init
	$R_{s1} = 0^{\circ}$	$R_{s2} = 0^{\circ}$	
Width (mm)	7.4	10.5	8.7
Depth (mm)	4.1	5.6	5.1
T _{max} (°C)	90.7	168.3	96.2
	R _{s1} = 30°	, R _{s2} = -30°	
Width (mm)	6.9	10.1	7.9
Depth (mm)	3.8	5.4	4.7
T _{max} (°C)	78.3	158.2	82.82

 Table 1: Lesion characteristics for single-site and multi-site ablation simulations.

4. Conclusions and Future Work

The proposed solution demonstrates that **lesion formation** may be significantly **underestimated** if multi-site ablation conditions are omitted. We believe that the proposed algorithm may be proven a useful tool for multi-site ablation simulation that can enable accurate heat distribution prediction and assist decision making during clinical applications.

In future work we will:

- validate the proposed approach using realistic geometric models of the human atria;
- generate heat distribution maps of real ablation protocols delivered to patients

References

- 1. SKS. Huang et al., Elsevier Health Sciences, 2014.
- 2. F. Akca et al., Int. Journal of Cardiology, 179, 2015.
- 3. A. Petras et al., Int. Journal for Numerical Methods in Biomed. Eng., 35, 2019.

