Curs 2

Din cursul trecut

Programare logică – cazul logicii propoziționale

- □ O clauză definită este o formulă care poate avea una din formele:
 - q (clauză unitate) (un fapt în Prolog q.)

unde q, p_1, \ldots, p_n sunt atomi.

- \square Un "program logic" este o listă F_1, \ldots, F_n de clauze definite.
- \square O țintă (goal) este o listă g_1, \ldots, g_m de atomi.
- ☐ Sarcina sistemului este să stabilească:

$$F_1,\ldots,F_n\models g_1\wedge\ldots\wedge g_m.$$

Scop: Vrem să găsim metode sintactice pentru a rezolva problema de mai sus!

Cuprins

Cazul logicii propoziţionale

2 Cazul calculului cu predicate

Cazul logicii propoziționale

Sistem de deducție pentru clauze definite propoziționale

Pentru o mulțime S de clauze definite propoziționale, avem

- \square Axiome: orice clauză din S
- □ Reguli de deducție:

$$rac{P \quad P
ightarrow Q}{Q} \; (MP) \qquad \qquad rac{P \quad Q}{P \wedge Q} \; (andl)$$

Aceste reguli ne permit să deducem formula de sub linie din formulele de deasupra liniei.

$$rac{P \quad P
ightarrow Q}{Q} \; (MP) \qquad \qquad rac{P \quad Q}{P \wedge Q} \; (andl)$$

Spunem că putem deduce o formulă Q din S în sistemul de deducție,

$$S \vdash Q$$

dacă există o secvență de formule Q_1, \ldots, Q_n astfel încât $Q_n = Q$ și fiecare Q_i :

- \square fie aparține lui S
- \square fie se poate deduce din Q_1, \ldots, Q_{i-1} folosind regulile de deducție

Putem folosi sistemul de deducție pentru a deduce alți atomi:

- \square Clauzele unitate din S (atomii $p_i \in S$) sunt considerate adevărate.
 - Sunt deduşi ca axiome.
- □ Putem deduce că un nou atom r este adevărat dacă
 - \square am dedus că p_1, \ldots, p_n sunt adevărați, și
 - \square $p_1 \wedge \ldots \wedge p_n \rightarrow r$ este în S.
 - O astfel de derivare folosește de n-1 ori **andl** și o data **MP**.

Deci putem construi mulțimi din ce în ce mai mari de atomi care sunt consecințe logice din S, și pentru care există derivări din S.

Completitudinea sistemului de deducție

- Se poate demonstra că aceste reguli sunt corecte, folosind tabelele de adevăr.
 - Dacă formulele de deasupra liniei sunt adevărate, atunci și formula de sub linie este adevărată.
- ☐ Mai mult, sistemul de deducție este și complet. Adică dacă $S \models Q$, atunci $S \vdash Q$.
 - Dacă Q este o consecință logică, atunci există o derivare a sa folosind sistemul de deducție, unde Q este o conjuncție de atomi.
- ☐ În continuare vom demonstra că această afirmație este adevărată.

Mulțimi de mulțimi

- □ Fiind dată o mulțime X, putem considera mulțimea tuturor submulțimilor (mulțimea părților) lui X, notată $\mathcal{P}(X)$.
 - **Exemplu.** $\mathcal{P}(\{1,2,3\})$ este mulțimea cu 8 mulțimi: $\{\{\},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
 - \square Dacă X are n elemente, atunci $\mathcal{P}(X)$ are 2^n elemente.
 - ☐ Putem considera și mulțimea părților unei mulțimi infinite.

Mulțimi de mulțimi

□ Fiind dată orice mulţime de mulţimi Y (nu neapărat mulţimea părţilor unei mulţimi), definim intersecţia lui Y, notată ∩ Y, ca fiind mulţimea tuturor elementelor ce apar în toate mulţimile lui Y.

$$x \in \bigcap Y$$
 ddacă $\forall Z(Z \in Y \rightarrow x \in Z)$

Exemplu.
$$\bigcap \{\{1,2,3\},\{1,3\},\{2,3\}\} = \{3\}$$

Funcții monotone

Fie X, Y mulțimi de mulțimi și $f: X \to Y$ o funcție.

Spunem că f este monotonă dacă pentru orice mulțimi $X_1, X_2 \in X$,

dacă
$$X_1 \subseteq X_2$$
, atunci $f(X_1) \subseteq f(X_2)$.

Exemplu

Fie următoarele funcții $f_i: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\})$

- \Box $f_1(Y) = Y \cup \{1\}$ este monotonă.
- $\square \ f_2(Y) = \begin{cases} \{1\} & \mathsf{dac}\ \ i \in Y \\ \{\} & \mathsf{altfel} \end{cases} \text{ este monoton}\ \ i.$

Puncte fixe

- Un punct fix al unei funcții $f: \mathcal{P}(X) \to \mathcal{P}(X)$ este o mulțime $Y \subseteq X$ astfel încât f(Y) = Y.
- \square Un cel mai mic punct fix (Ifp) Y al lui f este un punct fix conținut în toate celelalte puncte fixe ale lui f, adică
 - Y este punct fix, şi
 - \square dacă Z este tot un punct fix, atunci $Y \subseteq Z$.

Teoremă

Dacă $f: \mathcal{P}(X) \to \mathcal{P}(X)$ este monotonă, atunci f are un cel mai mic punct fix.

Clauze definite și funcții monotone

Fie A mulțimea atomilor p_1, p_2, \ldots care apar în S.

Fie $Baza = \{p_i \mid p_i \in S\}$ mulțimea atomilor care apar în clauzele unitate din S.

Definim funcția $f_S: \mathcal{P}(A) \to \mathcal{P}(A)$ prin

$$f_S(Y) = Y \cup \textit{Baza}$$
 $\cup \{a \in A \mid (s_1 \wedge \ldots \wedge s_n \to a) \text{ este în } S, \ s_1 \in Y, \ldots, s_n \in Y\}$

Exercițiu. Arătați că funcția f_S este monotonă.

Clauze definite și funcții monotone

Analizați ce se întamplă când considerâm succesiv

$$\{\}, f_S(\{\}), f_S(f_S(\{\})), f_S(f_S(\{\})), \ldots$$

La fiecare aplicare a lui f_S , rezultatul fie se mărește, fie rămâne neschimbat.

 \square Să presupunem că în S avem k atomi. Atunci după k+1 aplicări ale lui f_S , trebuie să existe un punct în șirul de mulțimi obținute de unde o nouă aplicare a lui f_S nu mai schimbă rezultatul (punct fix):

$$f_S(X) = X$$

Dacă aplicăm f_S succesiv ca mai devreme până găsim un X cu proprietatea $f_S(X) = X$, atunci găsim cel mai mic punct fix al lui f_S .

Cel mai mic punct fix

$$f_S(Y) = Y \cup \textit{Baza}$$

$$\cup \{ \textit{a} \in \textit{A} \mid (\textit{s}_1 \land \ldots \land \textit{s}_n \rightarrow \textit{a}) \text{ este în } \textit{S}, \\ \textit{s}_1 \in Y, \ldots, \textit{s}_n \in Y \}$$

Exemplu

Pentru

$$cold
ightarrow wet$$
 $wet \land wet
ightarrow scotland$

obţinem $f_S(\{\}) = \{\}$, deci $\{\}$ este cel mai mic punct fix.

De aici deducem că niciun atom nu este consecință logică a formulelor de mai sus.

Exemplu

Exemplu

```
În sintaxa Prolog
                                         f_S(Y) = Y \cup Baza
cold.
                                         \cup \{a \in A \mid (s_1 \wedge \ldots \wedge s_n \rightarrow a) \text{ este în } S,
wet :- cold.
                                         s_1 \in Y, \ldots, s_n \in Y
dry :- dry.
scotland :- wet, cold.
                                   f_{\mathcal{S}}(\{\}) = \{ cold \}
                            f_S(\{ cold \}) = \{ cold, wet \}
                      f_S(\{ cold, wet \}) = \{ cold, wet, scotland \}
          f_S(\{ cold, wet, scotland \}) = \{ cold, wet, scotland \}
```

Deci cel mai mic punct fix este { cold, wet, scotland }.

Programe logice și cel mai mic punct fix

Teoremă

Fie X este cel mai mic punct fix al funcției f_S. Atunci

$$q \in X$$
 ddacă $S \models q$.

Intuiție: Cel mai mic punct fix al funcției f_S este mulțimea tuturor atomilor care sunt consecințe logice ale programului.

Funcția $f_S: \mathcal{P}(A) o \mathcal{P}(A)$ este definită prin

$$f_S(Y) = Y \cup Baza$$

 $\cup \{a \in A \mid (s_1 \wedge \ldots \wedge s_n \to a) \text{ este în } S, s_1 \in Y, \ldots, s_n \in Y\}$

unde A este mulțimea atomilor din S și $Baza = \{p_i \mid p_i \in S\}$ este mulțimea atomilor care apar în clauzele unitate din S.

Programe logice și cel mai mic punct fix

Demonstrație

- $(\Rightarrow) q \in X \Rightarrow S \models q$.
 - \square Funcția f_S conservă atomii adevărați.
 - Deci, dacă fiecare clauză unitate din S este adevărată, după fiecare aplicare a funcției f_S obținem o mulțime adevărată de atomi.
- $(\Leftarrow) q \in X \Leftarrow S \models q$.
 - \square Fie $S \models q$. Presupunem prin absurd că $q \notin X$.
 - \square Căutăm o interpretare I care face fiecare formulă din S adevărată, dar q falsă.

Programe logice și cel mai mic punct fix

Demonstrație (cont.)

☐ Fie interpretarea

$$I(p) = \begin{cases}
\text{true}, & \text{dacă } p \in X \\
\text{false}, & \text{altfel}
\end{cases}$$

- Evident, această interpretare face q falsă.
- \square Arătăm că $I \models P$, pentru orice formulă $P \in S$.
- \square Fie $P \in S$. Avem două cazuri:
 - I P este o clauză unitate. Atunci $P \in X$, deci $I \models P$.
 - **2** P este de forma $p_1 \wedge \ldots \wedge p_n \rightarrow r$. Atunci avem două cazuri:
 - există un p_i , i = 1, ..., n, care nu este în X. Deci $I \models P$.
 - toți p_i , i = 1, ..., n, sunt în X. Atunci $r \in f_S(X) = X$, deci $I \models r$. În concluzie $I \models P$.

Corolar

Sistemul de deducție pentru clauze definite propoziționale este complet pentru a arăta clauze unitate:

dacă
$$S \models q$$
, atunci $S \vdash q$.

Demonstrație

- \square Presupunem $S \models q$.
- \square Atunci $q \in X$, unde X este cel mai mic punct fix al funcției f_S .
- \square Fiecare aplicare a funcției f_S produce o mulțime demonstrabilă de atomi.
- \square Cum cel mai mic punct fix este atins după un număr finit de aplicări ale lui f_S , orice $a \in X$ are o derivare.

Metodă de decizie

Avem o metodă de decizie (decision procedure) pentru a verifica $S \vdash q$:

Metoda constă în:

- \square calcularea celui mai mic punct fix X al funcției f_S
- \square dacă $q \in X$ atunci returnăm **true**, altfel returnăm **false**

Această metodă se termină.

Exercițiu. De ce?

Nu acesta este algoritmul folosit de Prolog!

Cazul calculului cu predicate

□ Sloganul programării logice:

Un program este o teorie într-o logica formală, iar execuția sa este o deducție în teorie.

- Programarea logică țintește să folosească logica de ordinul I (calculul cu predicate) ca limbaj de reprezentare.
- ☐ În această reprezentare, programele sunt teorii logice mulțimi de formule din calculul cu predicate.
- □ Reamintim că problema constă în căutarea unei derivări a unei întrebări (formule) din program (teorie).

Limbaje de ordinul I

```
Un limbaj \mathcal{L} de ordinul I este format din:

o mulțime numărabilă de variabile V = \{x_n \mid n \in \mathbb{N}\}

conectorii \neg, \rightarrow, \land, \lor

paranteze

cuantificatorul universal \forall și cuantificatorul existențial \exists

o mulțime \mathbf{P} de simboluri de relații

o mulțime \mathbf{F} de simboluri de funcții

o mulțime \mathbf{C} de simboluri de constante

o funcție aritate ar : \mathbf{F} \cup \mathbf{P} \rightarrow \mathbb{N}^*
```

- \square \mathcal{L} este unic determinat de $\tau = (\mathbf{R}, \mathbf{F}, \mathbf{C}, ari)$
- \square au se numește signatura (vocabularul, alfabetul) lui ${\cal L}$

Exemplu

Un limbaj $\mathcal L$ de ordinul I în care:

- \square $\mathbf{R} = \{P, R\}$
- \Box **F** = {*f*}
- \Box **C** = {*c*}
- \square ari(P) = 1, ari(R) = 2, ari(f) = 2

Sintaxa Prolog

Atenție!

- Sintaxa Prolog nu face diferență între simboluri de funcții și simboluri de predicate!
- □ Dar este important când ne uităm la teoria corespunzătoare programului în logică să facem acestă distincție.

Termenii lui \mathcal{L} sunt definiți inductiv asftel:

- orice variabilă este un termen;
- □ orice simbol de constantă este un termen;
- \square dacă $f \in \mathbf{F}$, ar(f) = n și t_1, \ldots, t_n sunt termeni, atunci $f(t_1, \ldots, t_n)$ este termen.

Notăm cu $Trm_{\mathcal{L}}$ mulțimea termenilor lui \mathcal{L} .

$$c, x_1, f(x_1, c), f(f(x_2, x_2), c)$$

Formulele atomice ale lui \mathcal{L} sunt definite asftel:

□ dacă $R \in \mathbf{R}$, ar(R) = n si t_1, \ldots, t_n sunt termeni, atunci $R(t_1, \ldots, t_n)$ este formulă atomică.

$$P(f(x_1,c)), R(c,x_3)$$

Formulele lui \mathcal{L} sunt definite asftel:

- orice formulă atomică este o formulă
- \square dacă A este o formulă, atunci $\neg A$ este o formulă
- \square dacă A și B sunt formule, atunci $A \vee B$, $A \wedge B$, $A \rightarrow B$ sunt formule
- □ dacă A este o formulă și x_i este o variabilă, atunci $(\forall x_i)A$, $(\exists x_i)A$ sunt formule

$$P(f(x_1,c)), P(x_1) \vee P(c), (\forall x_1)P(x_1), (\forall x_2)R(x_2,x_1)$$

Semantica

Pentru a stabili dacă o formulă este adevărată, avem nevoie de o interpretare într-o structură!

Modelarea unei lumi

```
Presupunem că putem descrie o lume prin:

o mulțime de obiecte
funcții
relații
unde
funcțiile duc obiecte în obiecte
relațiile cu n argumente descriu proprietățile a n obiecte
```

Modelarea unei lumi

Exemplu

Să considerăm o lume în care avem cutii:

□ Putem descrie lumea folosind obiecte

$$O = \{base, a, b, c, d, e\}.$$

Putem descrie ce obiect se află deasupra altui obiect folosind un predicat binar on:

$$on = \{(e, c), (c, a), (e, d), (d, b), (a, base), (b, base)\}$$

Structură

Definiție

- O structură este de forma $S = (S, \mathbf{F}^{S}, \mathbf{P}^{S}, \mathbf{C}^{S})$, unde
 - □ *S* este o mulțime nevidă
 - □ $\mathbf{F}^{\mathcal{S}} = \{ f^{\mathcal{S}} \mid f \in \mathbf{F} \}$ este o mulțime de operații pe A; dacă f are aritatea n, atunci $f^{\mathcal{S}} : S^m \to S$.
 - □ $\mathbf{R}^{S} = \{R^{S} \mid R \in \mathbf{R}\}$ este o mulțime de relații pe A; dacă R are aritatea n, atunci $R^{S} \subseteq S^{m}$.
 - $\square \mathbf{C}^{\mathcal{S}} = \{ c^{\mathcal{S}} \in \mathcal{S} \mid c \in \mathbf{C} \}.$
 - \square *S* se numește universul structurii *S*.
 - \Box f^{S} (respectiv R^{S} , c^{S}) se numește interpretarea lui f (respectiv R,c) in S.

Structură

Exemplu

Lumea în care avem cutii.

- \square Limbajul \mathcal{L}
 - \square $\mathbf{R} = \{on\}$
 - \square $\mathbf{F} = \emptyset$
 - \Box $\mathbf{C} = \emptyset$
 - \square ari(on) = 2
- □ O structură S:
 - \square $S = \{base, a, b, c, d, e\}$
 - \square $\mathbf{F}^{\mathcal{S}} = \emptyset$.
 - \Box $\mathbf{C}^{\mathcal{S}} = \emptyset$.
 - Arr Arr

$$on^{S} = \{(e, c), (c, a), (e, d), (d, b), (a, base), (b, base)\} \subseteq S^{2}.$$

Interpretare

Fie \mathcal{L} un limbaj de ordinul I și \mathcal{S} o (\mathcal{L} -)structură.

Definiție

O interpretare a variabilelor lui $\mathcal L$ în $\mathcal S$ este o funcție

$$I:V\rightarrow S$$
.

Definiție

Inductiv, definim interpretarea termenului t în S sub I (t_I^S) prin:

- \square dacă $t = x_i \in V$, atunci $t_I^S := I(x_i)$
- \square dacă $t = c \in \mathbf{C}$, atunci $t_I^{\mathcal{S}} := c^{\mathcal{S}}$
- \square dacă $t = f(t_1, \ldots, t_n)$, atunci $t_l^{\mathcal{S}} := f^{\mathcal{S}}((t_1)_l^{\mathcal{S}}, \ldots, (t_n)_l^{\mathcal{S}})$

Interpretare

Putem defini inductiv când o formulă este adevărată în ${\cal S}$ sub interpretarea ${\it I}$:

- $\square S, I \models P(t_1, \ldots, t_n) \text{ dacă } P^S(t_1^S, \ldots, t_n^S)$
- $\square \mathcal{S}, I \models \neg B \text{ dacă } \mathcal{S}, I \not\models B$
- $\square S, I \models B \lor C \text{ dacă } S, I \models B \text{ sau } S, I \models C$
- $\square S, I \models B \land C \text{ dacă } S, I \models B \text{ si } S, I \models C$
- $\square S, I \models B \rightarrow C$ dacă $S, I \not\models B$ sau $S, I \models C$
- $\square \ \mathcal{S}, I \models (\forall x) B$ dacă pentru orice interpretare $I_{x \leftarrow a}$ avem $\mathcal{S}, I_{x_i \leftarrow a} \models B$
- \square $S, I \models (\exists x)B$ dacă există o interpretare $I_{x \leftarrow a}$ astfel încât $S, I_{x_i \leftarrow a} \models B$

unde pentru orice
$$a \in S$$
, $I_{x \leftarrow a}(y) = \begin{cases} I(y) & \text{dacă } y \neq x \\ a & \text{dacă } y = x \end{cases}$

Interpretare

- \square O formulă A este adevărată într-o structură S, notat $S \models A$, dacă este adevărată în S sub orice interpretare.
 - Spunem că S este model al lui A.
- \square O formulă A este adevărată în logica de ordinul I, notat $\models A$, dacă este adevărată în orice structură.

Consecință logică

Definiție

O formulă G este o consecință logică a formulelor F_1, \ldots, F_n , notat

$$F_1,\ldots,F_n\models G$$
,

dacă pentru orice structură ${\cal S}$

dacă
$$S \models F_1$$
 și ... și $S \models F_n$, atunci $S \models G$

Problemă semidecidabilă!

Nu există algoritm care să decidă mereu dacă o formula este sau nu consecință logică a altei formule in logica de ordinul I!

Logica clauzelor definite

Alegem un fragment al logicii de ordinul I astfel:

- ☐ Renunțăm la cuantificatori (dar păstrăm variabilele!)
- \square Renunțăm la \neg , \lor (dar păstrăm \land , \rightarrow !)
- □ Singurele formule admise sunt de forma:
 - \square formule atomice: $P(t_1,\ldots,t_n)$
 - \square $A_1 \wedge ... \wedge A_n \rightarrow B$, unde toate A_i, B sunt formule atomice.

Astfel de formule se numesc clauze definite (sau clauze Horn).

Acest fragment al logicii de ordinul I se numește logica clauzelor definite (sau logica clauzelor Horn).

Programare logica

- □ Presupunem că putem reprezenta cunoștințele ca o mulțime de clauze definite T și suntem interesați să aflăm răspunsul la o întrebare de forma $A_1 \wedge \ldots \wedge A_n$, unde toate A_i sunt formule atomice.
- Adică vrem să aflăm dacă

$$T \models A_1 \wedge \ldots \wedge A_n$$

- Variabilele din partea stângă sunt considerate ca fiind cuantificate universal!
- □ Variabilele din partea dreaptă sunt considerate ca fiind cuantificate existențial!

Logica clauzelor definite

Exemple

```
Fie următoarele clauze definite:
    father(jon, ken).
    father(ken, liz).
    father(X, Y) \rightarrow ancestor(X, Y)
    dauther(X, Y) \rightarrow ancestor(Y, X)
    ancestor(X, Y) \land ancestor(Y, Z) \rightarrow ancestor(X, Z)
Putem întreba:
  □ ancestor(jon, liz)
    dacă există Q astfel încât ancestor (Q, ken)
     (adică (\exists Q) ancestor(Q, ken))
```

Pe săptămâna viitoare!