Factor Name	Symbol	Formula
Single Payment Compound Amount	(F/P,i,n)	$F_n = P\left(1 + \frac{i}{m}\right)^{nm}$
Single Payment Present Worth	(P/F,i,n)	$P = F_n \left(1 + \frac{i}{m} \right)^{-nm}$
Uniform Series Compound Amount	(F/A,i,n)	$F_n = A \left[\frac{\left(1 + \frac{i}{m}\right)^{nm} - 1}{\frac{i}{m}} \right]$
PUniform Series Sinking Fund	(A/F,i,n)	$A = F_n \left[\frac{\frac{i}{m}}{\left(1 + \frac{i}{m}\right)^{nm} - 1} \right]$
Uniform Series Present Worth	(P/A,i,n)	$P = A \left[\frac{\left(1 + \frac{i}{m}\right)^{nm} - 1}{\frac{i}{m} \left(1 + \frac{i}{m}\right)^{nm}} \right]$
Capital Recovery	(A/P,i,n)	$A = P \left[\frac{\frac{i}{m} \left(1 + \frac{i}{m} \right)^{nm}}{\left(1 + \frac{i}{m} \right)^{nm} - 1} \right]$
Uniform Gradient Present Worth	(P/G,i,n)	$P = G \left[\frac{\left(1 + \frac{i}{m}\right)^{nm} - 1}{\left(\frac{i}{m}\right)^2 \left(1 + \frac{i}{m}\right)^{nm}} - \frac{n}{\frac{i}{m} \left(1 + \frac{i}{m}\right)^{nm}} \right]$
Uniform Gradient Future Worth	(F/G,i,n)	$F = G \left[\frac{\left(1 + \frac{i}{m}\right)^{nm} - 1}{\left(\frac{i}{m}\right)^2} - \frac{n}{\frac{i}{m}} \right]$
Uniform Gradient Uniform Series	(A/G,i,n)	$A = G\left[\frac{1}{\frac{i}{m}} - \frac{n}{\left(1 + \frac{i}{m}\right)^{nm} - 1}\right]$

Simple Interest: $F_n = P(1 + i_s n)$

Continuous Interest: $F_n = Pe^{i_c t}$

$$i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m - 1$$

Converting for different compound duration: $i_2 = m_2 \left(\left(1 + \frac{i_1}{m_1} \right)^{m_1/m_2} - 1 \right)$

Depreciation Formulas:

Depreciation is a tax savings – it spreads the cost of a fixed capital investment over a period of years, n, determined by the federal government. Equipment life, n, is determined for each industry (IRS Publication 946). Typical value for chemical plants is 9.5 years.

FCI_L: Fixed capital investment, minus land

S: Salvage value (the value of FCI_L at year n, often assumed to be 0)

n: Equipment class life

k: Year of interest

dk: Depreciation in year k

R: Revenue from sales

COM_d: Manufacturing costs (excluding depreciation)

t: Tax Rate (Typical value = 40% including federal, state and local)

Straight Line Depreciation: Simplest method, depreciation is equal in all years

$$d_k^{SL} = \left(\frac{FCI_L - S}{n}\right)$$

Sum of Years Digits Depreciation: Historical method, no longer in use

$$d_k^{SOYD} = \left(\frac{(n+1-k)(FCI_L - S)}{\frac{1}{2}n(n+1)}\right)$$

Double Declining Balance Depreciation:

$$d_k^{DDB} = \frac{2}{n} \left(FCI_L - \sum_{j=0}^{k-1} d_j \right)$$

The quantity 'FCI $_{\rm L}$ minus sum of depreciation from all prior years' is called the "Book Value" In the final year, depreciation is calculated as 'Book Value minus Salvage'

Sum of depreciation over all years must equal Fixed Capital Investment minus Salvage

MACRS Depreciation (Modified Accelerated Cost Recovery System): Uses a shorter equipment class life, n, based on tables in IRS Publication 946. Typical Value is 5 years for Chemical Plants.

This method uses DDB then switches to SL when SL becomes the higher value. Note that the denominator for SL is remaining years, not original n. The $\frac{1}{2}$ year convention is commonly used, assumes equipment placed in service at mid-year. Multiply 1^{st} and last year depreciation by 0.5.

It is much easier to use the MACRS Schedule then to calculate by hand.

Note that MACRS always sets Salvage value to 0.

Table A1 from IRS Publication 946: MACRS Schedules for various recovery periods, using the half-year convention.

Year	MACRS Depreciation Rate for Recovery Period of:													
	3-year	5-year	7-year	10-year	15-year									
1	33.33%	20%	14.29%	10%	5%									
2	44.45	32	24.49	18	9.5									
3	14.81	19.2	17.49	14.4	8.55									
4	7.41	11.52	12.49	11.52	7.7									
5		11.52	8.93	9.22	6.93									
6		5.76	8.92	7.37	6.23									
7			8.93	6.55	5.9									
8			4.46	6.55	5.9									
9				6.56	5.91									
10				6.55	5.9									
11				3.28	5.91									
12					5.9									
13					5.91									
14					5.9									
15					5.91									
16					2.95									

$$\begin{aligned} \text{Expenses} &= (\textit{COM}_d + \mathbf{d}_k) \\ \text{Income Tax} &= (\mathbf{R} - \textit{COM}_d - \mathbf{d}_k) \cdot t \\ \text{After Tax Net Profit} &= (\mathbf{R} - \textit{COM}_d - \mathbf{d}_k) \cdot (1 - t) \\ \text{After Tax Cash Flow} &= (\mathbf{R} - \textit{COM}_d - \mathbf{d}_k) \cdot (1 - t) + d_k \end{aligned}$$

Interest Rate Tables Factor Table - i = 4.00%

100	60	50	40	30	25	24	23	22	21	20	19	18	17	16	15	14	13	12	=	10	9	%	7	6	υı	4	w	2	1	n
0.0198	0.0951	0.1407	0.2083	0.3083	0.3751	0.3901	0.4057	0.4220	0.4388	0.4564	0.4746	0.4936	0.5134	0.5339	0.5553	0.5775	0.6006	0.6246	0.6496	0.6756	0.7026	0.7307	0.7599	0.7903	0.8219	0.8548	0.8890	0.9246	0.9615	P/F
24.5050	22.6235	21.4822	19.7928	17.2920	15.6221	15.2470	14.8568	14.4511	14.0292	13.5903	13.1339	12.6593	12.1657	11.6523	11.1184	10.5631	9.9856	9.3851	8.7605	8.1109	7.4353	6.7327	6.0021	5.2421	4.4518	3.6299	2.7751	1.8861	0.9615	<i>P/A</i>
563.1249	422.9966	361.1638	286.5303	201.0618	156.1040	147.1012	138.1284	129.2024	120.3414	111.5647	102.8933	94.3498	85.9581	77.7441	69.7355	61.9618	54.4546	47.2477	40.3772	33.8814	27.8013	22.1806	17.0657	12.5062	8.5547	5.2670	2.7025	0.9246	00000	P/G
50.5049	10.5196	7.1067	4.8010	3.2434	2.6658	2.5633	2.4647	2.3699	2.2788	2.1911	2.1068	2.0258	1.9479	1.8730	1.8009	1.7317	1.6651	1.6010	1.5395	1.4802	1.4233	1.3686	1.3159	1.2653	1.2167	1.1699	1.1249	1.0816	1.0400	F/P
1,237.6237	237.9907	152.6671	95.0255	56.0849	41.6459	39.0826	36.6179	34.2480	31.9692	29.7781	27.6712	25.6454	23.6975	21.8245	20.0236	18.2919	16.6268	15.0258	13.4864	12.0061	10.5828	9.2142	7.8983	6.6330	5.4163	4.2465	3.1216	2.0400	0000.1	F/A
0.0408	0.0442	0.0466	0.0505	0.0578	0.0640	0.0656	0.0673	0.0692	0.0713	0.0736	0.0761	0.0790	0.0822	0.0858	0.0899	0.0947	0.1001	0.1066	0.1141	0.1233	0.1345	0.1485	0.1666	0.1908	0.2246	0.2755	0.3603	0.5302	1.0400	A/P
0.0008	0.0042	0.0066	0.0105	0.0178	0.0240	0.0256	0.0273	0.0292	0.0313	0.0336	0.0361	0.0390	0.0422	0.0458	0.0499	0.0547	0.0601	0.0666	0.0741	0.0833	0.0945	0.1085	0.1266	0.1508	0.1846	0.2355	0.3203	0.4902	1.0000	A/F
22.9800	18.6972	16.8122	14.4765	11.6274	9.9925	9.6479	9.2973	8.9407	8.5779	8.2091	7.8342	7.4530	7.0656	6.6720	6.2721	5.8659	5.4533	5.0343	4.6090	4.1773	3.7391	3.2944	2.8433	2.3857	1.9216	1.4510	0.9739	0.4902	0.0000	A/G