Program

OI, Etap III, dzień pierwszy, 02.04.2008

Kupno gruntu

Bajtazar planuje kupno działki przemysłowej. Jego majątek jest wyceniany na k bajtalarów. Tyle też zamierza on przeznaczyć na zakup gruntu. Jednak znalezienie działki, która kosztuje dokładnie k bajtalarów, jest klopotliwe. W związku z tym, Bajtazar jest gotów kupić ewentualnie droższą działkę. Dodatkowe fundusze może uzyskać przez zaciągnięcie kredytu. Maksymalny rozmiar kredytu, jaki może mu udzielić Bajtocki Bank Kredytowy, wynosi tyle, ile majątek Bajtazara, czyli k bajtalarów. Innymi słowy, Bajtazar chciałby przeznaczyć na kupno działki kwotę w wysokości od k bajtalarów do 2k bajtalarów włącznie.

Teren, na którym Bajtazar zamierza kupić działkę, ma kształt kwadratu o boku długości n metrów. Aktualni właściciele ziemi wyznaczyli różne ceny w przeliczeniu na metr kwadratowy. Bajtazar przeprowadził dokładny wywiad i sporządził mapę cenową tego terenu. Mapa ta opisuje cenę każdego kwadratu o rozmiarze metr na metr. Takich kwadratów jest dokładnie n². Teraz pozostaje wyznaczyć wymarzoną działkę. Musi ona mieć kształt prostokąta, złożonego wyłącznie z całych kwadratów jednostkowych. Bajtazar zaczął szukać na mapie odpowiedniej działki, ale mimo wzmożonych wysiłków nie był w stanie znaleźć właściwego prostokąta. Pomóż Bajtazarowi.

Zadanie

Napisz program, który:

- wczyta ze standardowego wejścia liczby k i n oraz mapę cenową terenu,
- wyznaczy działkę o cenie z przedziału [k,2k] lub stwierdzi, że taka działka nie istnieje,
- wypisze wynik na standardowe wyjście.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite k i n oddzielone pojedynczym odstępem, $1 \le k \le 1\,000\,000\,000$, $1 \le n \le 2\,000$. Każdy z następnych n wierszy zawiera n liczb całkowitych nieujemnych, pooddzielanych pojedynczymi odstępami. Liczba i-ta w wierszu numer j+1 określa cenę jednego kwadratu metr na metr, którego współrzędne w terenie to (i,j). Cena jednego metra nie przekracza $2\,000\,000\,000$ bajtalarów.

Wyjście

Jeżeli nie istnieje działka o cenie z przedziału [k,2k], to program powinien wypisać jeden wiersz zawierający słowo NIE. W przeciwnym przypadku powinien wypisać jeden wiersz zawierający cztery liczby całkowite dodatnie x_1,y_1,x_2,y_2 pooddzielane pojedynczymi odstępami, określające współrzędne prostokąta. Para (x_1,y_1) oznacza lewy górny róg prostokąta, a para (x_2,y_2) — prawy dolny róg prostokąta. Wtedy taki prostokąt określony jest przez zbiór

współrzędnych kwadratów: $\{(x,y) | x_1 \le x \le x_2 \text{ i } y_1 \le y \le y_2\}$. Suma cen kwadratów c leżących wewnątrz wskazanego prostokąta powinna spełniać nierówności $k \le c \le 2k$. Jeżeli jest wiele działek spełniających wymagany warunek, to należy wypisać dowolną z nich.

Przykład

Dla danych wejściowych:

4 3
NIE

1 1 1
1 9 1
1 1 1
2 dla danych wejściowych:

8 4
2 1 4 2
1 2 1 3
25 1 2 1
4 20 3 3
3 30 12 2

1	2	1	3
25	1	2	1
4	20	3	3
3	30	12	2

Cenowa mapa terenu i wyznaczona działka w drugim przykładzie

Rozwiązanie

Rozwiązania nieoptymalne

Dla uproszczenia, kwadraty jednostkowe, na które podzielona jest mapa, będziemy nazywać *polami*, a sumę cen pól zawartych w prostokącie — *ceną prostokąta*. Zadanie polega na znalezieniu prostokąta, którego cena mieści się w przedziale od *k* do 2*k*.

Proste rozwiązania

Najprostsze rozwiązanie polega na przejrzeniu wszystkich możliwych prostokątów i wyznaczeniu ceny każdego z nich przez proste zsumowanie cen pól. Jednak wszystkich prostokątów jest $O(n^4)$ i każdy zawiera średnio $O(n^2)$ pól. Prosty program złożony z sześciu zagnieżdżonych pętli **for** działa więc w czasie rzędu $O(n^6)$. Rozwiązanie takie zostało zaimplementowane w programach kups3.cpp i kups6. java.

W poszukiwaniu efektywniejszego podejścia możemy zajrzeć do różnych archiwów zadań — także z Olimpiady Informatycznej. Można znaleźć w nich wiele problemów opartych na schemacie podobnym jak "Kupno gruntu". Zazwyczaj jest w nich dana prostokątna "mapa" podzielona na jednostkowe pola, którym są przypisane pewne nieujemne

wagi, i należy znaleźć prostokąt o sumarycznej wadze spełniającej określone warunki (patrz, na przykład, zadania "Artemis" z XVI IOI [12] oraz "Piramida" z XVIII IOI [14]). Istnieją pewne standardowe techniki, które można zastosować przy rozwiązywaniu tego typu zadań. Jedna z nich polega na wstępnym przetworzeniu mapy tak, aby potem móc w stałym czasie określać dla dowolnego prostokąta sumę wag zawartych w nim pól. (Została ona opisana także w zadaniu "Mapa gęstości" w [8].)

Oznaczmy przez $c_{i,j}$ cenę pola o współrzędnych (i,j), a przez $K_{i,j}^{i',j'}$ cenę prostokąta, którego lewy górny róg ma współrzędne (i,j), a prawy dolny (i',j'):

$$K_{i,j}^{i',j'} = \sum_{x=i}^{i'} \sum_{y=j}^{j'} c_{x,y}.$$

Rys. 1: Wyznaczanie ceny prostokata

Jeżeli znamy wartości $K_{1,1}^{x,y}$ dla wszystkich $x=1,2,\ldots,n,$ $y=1,2,\ldots,n,$ to możemy łatwo wyznaczyć każdą inną wartość $K_{i,j}^{i',j'}$, korzystając z tożsamości (patrz też rys. 1):

$$K_{i,j}^{i',j'} = K_{1,1}^{i',j'} - K_{1,1}^{i-1,j'} - K_{1,1}^{i',j-1} + K_{1,1}^{i-1,j-1}.$$

Z kolei, aby wyznaczyć wartości $K_{1,1}^{x,y}$, wystarczy przejrzeć kolejne wiersze mapy, idąc z góry na dół, i skorzystać z tożsamości:

$$K_{1,1}^{x,y} = K_{1,1}^{x-1,y} + K_{1,1}^{x,y-1} - K_{1,1}^{x-1,y-1} + c_{x,y}$$

lub sumować na bieżąco wagi pól w danym wierszu i skorzystać z tożsamości:

$$K_{1,1}^{x,y} = K_{1,1}^{x,y-1} + (c_{1,y} + c_{2,y} + \dots + c_{x,y}).$$

Widzimy więc, że możemy wyznaczyć wszystkie wartości $K_{1,1}^{x,y}$ w czasie i pamięci $O(n^2)$. Mając te wartości, wystarczy przejrzeć wszystkie możliwe prostokąty (jest ich $O(n^4)$) i sprawdzić ich ceny (każdą obliczamy w czasie O(1)). W ten sposób dostajemy algorytm działający w czasie rzędu $O(n^4)$ i pamięci rzędu $O(n^2)$. Jest on zaimplementowany w plikach kups2.cpp i kups5. java.

Poszukiwanie w przedziale

Jak dotąd przedstawiliśmy rozwiązania, w których analizujemy ceny wszystkich prostokątów. Nie wykorzystaliśmy faktu, że szukana suma musi być liczbą z podanego przedziału — najwyższa pora uwzględnić ten fakt.

Obserwacja 1. Załóżmy, że mamy dwa prostokąty: jeden większy, a drugi mniejszy, zawarty w większym. Ponieważ ceny pól są nieujemne, więc cena większego prostokąta nie może być mniejsza niż cena mniejszego prostokąta. Inaczej mówiąc, jeśli $1 \le i_1 \le i_2 \le i_3 \le i_4 \le n$, oraz $1 \le j_1 \le j_2 \le j_3 \le j_4 \le n$, to:

$$K_{i_2,j_2}^{i_3,j_3} \leqslant K_{i_1,j_1}^{i_4,j_4}$$
.

Korzystając z tej obserwacji, możemy pominąć niektóre prostokąty. Jeśli trafimy na prostokąt o cenie większej niż 2k, to możemy pominąć wszystkie większe, zawierające go prostokąty. Analogicznie, jeśli mamy prostokąt o cenie mniejszej niż k, to możemy pominąć wszystkie zawarte w nim prostokąty.

Ustalmy na chwilę pewne wartości współrzędnych pionowych $1 \le j \le j' \le n$. Możemy przejrzeć wszystkie prostokąty o górnej krawędzi na wysokości j i dolnej na wysokości j' tzw. metodą "gąsienicy". Prostokąty rozważamy w kolejności od lewej do prawej, przy czym, jak zobaczymy, wystarczy, że sprawdzimy tylko niektóre z nich. Zaczynamy od prostokąta o lewym górnym rogu w (1, j) i prawym dolnym rogu w (1, j').

Powiedzmy, że lewy górny róg aktualnie rozważanego prostokąta ma współrzędne (i,j), a prawy dolny — (i',j'). W zależności od wartości $K_{i,j}^{i',j'}$ rozróżniamy trzy przypadki:

- Jeśli $K_{i,j}^{i',j'} < k$, to znaczy, że ani nasz prostokąt, ani żaden w nim zawarty nie spełnia warunków zadania. W szczególności, możemy pominąć prostokąty o prawym dolnym rogu w (i',j') i lewym górnym na prawo od (i,j). Możemy więc powiększyć nasz prostokąt, zwiększając i' o 1.
- Jeśli $K_{i,j}^{i',j'} > 2k$, to znaczy, że ani nasz prostokąt, ani żaden zawierający go większy prostokąt nie spełniają warunków zadania. W szczególności, możemy pominąć prostokąty o lewym górnym rogu w (i,j) i prawym dolnym na prawo od (i',j'). Możemy więc zmniejszyć nasz prostokąt, zwiększając i o 1.
- Jeżeli żaden z poprzednich przypadków nie zachodzi, to znaczy, że $k \leqslant K_{i,j}^{i',j'} \leqslant 2k$ i nasz prostokąt spełnia warunki zadania.

Badany prostokąt jest raz węższy, raz szerszy — jak gąsienica pełznąca z lewa na prawo. Ile kroków może wykonać taka "gąsienica"? Co najwyżej 2n, gdyż w każdym kroku zwiększamy o 1 współrzędną lewego lub prawego boku prostokąta. Jeżeli weźmiemy pod uwagę, że możliwych par j i j' jest $O(n^2)$, otrzymujemy algorytm działający w czasie $O(n^3)$ i pamięci $O(n^2)$. Rozwiązanie takie jest zaimplementowane w plikach kups1.cpp i kups4.java.

Opisany algorytm możemy stosować wszędzie tam, gdzie cena szukanego prostokąta powinna należeć do zadanego przedziału. Jednak w naszym przypadku nie jest to dowolny przedział, ale przedział postaci: od k do 2k. Wykorzystując ten fakt, można skonstruować jeszcze szybsze rozwiązanie.

Rozwiązanie optymalne

Zacznijmy od kilku prostych obserwacji.

Obserwacja 2. Jeżeli, dla pewnych i i j, $c_{i,j} > 2k$, to pole (i,j) nie może być zawarte w żadnym prostokącie spełniającym warunki zadania.

Jest to dosyć oczywisty fakt: cena dowolnego prostokąta zawierającego pole (i, j) musi być większa niż 2k. W związku z tym pola o cenach większych niż 2k nazwiemy *zabronionymi*. Pozostałe pola nazwiemy *dozwolonymi*. Cały prostokąt nazwiemy *dozwolonym*, jeśli wszystkie pola w nim zawarte są dozwolone. Dla uproszczenia przyjmiemy, że wszystkie pola leżące poza mapą są zabronione.

Fakt 1. Jeżeli prostokąt jest dozwolony i jego cena jest nie mniejsza niż k, to istnieje zawarty w nim prostokąt, którego cena jest między k a 2k.

Dowód: Dowód przeprowadzimy przez indukcję ze względu na wielkość prostokąta. Oznaczmy przez P dozwolony prostokąt o cenie $S \ge k$.

- 1. Jeśli prostokąt P składa się tylko z jednego pola, to musi ono być dozwolone, czyli $S \leq 2k$. Tym samym P stanowi szukane rozwiązanie.
- 2. Załóżmy, że prostokąt P składa się z więcej niż jednego pola. Jeżeli $S \le 2k$, to stanowi on szukane rozwiazanie.

Załóżmy przeciwnie, że S>2k. Wówczas można podzielić P, w pionie lub w poziomie, na dwa mniejsze prostokąty P_1 i P_2 . Oznaczmy ich ceny, odpowiednio, przez S_1 i S_2 . Bez straty ogólności możemy założyć, że $S_1\leqslant S_2$. Mamy więc $S_1+S_2=S>2k$. Tak więc $S_2>k$. Z założenia indukcyjnego, prostokąt P_2 zawiera szukane rozwiązanie.

Pokazany fakt pozwala nam zredukować problem z zadania do znalezienia *prostokąta* dozwolonego o maksymalnej cenie:

- Jeśli jego cena jest mniejsza od k, to prostokąt będący rozwiązaniem nie istnieje.
- Jeśli zaś jego cena jest większa lub równa k, to zawiera on szukany prostokąt. Dowód Faktu 1 stanowi jednocześnie przepis na konstrukcję rozwiązania zadania w obrębie znalezionego maksymalnego prostokąta. Jeżeli w każdym kroku będziemy dzielić dany prostokąt mniej więcej w połowie, to po co najwyżej $O(\log n)$ krokach otrzymamy rozwiązanie.

Maksymalny dozwolony prostokat

Zastanówmy się, jak znaleźć prostokąt dozwolony o maksymalnej cenie. Jak w przypadku rozwiązań nieoptymalnych, okazuje się, że pomocne może być poszperanie w olimpijskich archiwach — rozwiązanie tego problemu zostało opisane w rozdziale "Działka" w [9]. Opiszemy je jednak również tutaj.

Rozwiązanie polega na sukcesywnym przeglądaniu prostokątów dozwolonych, które mogą być maksymalne ze względu na cenę. Zauważmy, że pewne prostokąty możemy pominąć — jeśli mamy dwa dozwolone prostokąty A i B, gdzie A zawiera się w B, to wystarczy rozważyć B (A nie może mieć ceny większej niż B). Przypomnijmy, że naszą mapę

zorientowaliśmy tak, że lewy górny róg ma współrzędne (0,0), pierwsza współrzędna (x) rośnie w prawo wzdłuż osi poziomej, a druga (y) — w dół wzdłuż osi pionowej. Oznaczmy przez $M_{x,y}$ zbiór lewych górnych rogów prostokątów dozwolonych, których prawy dolny róg ma współrzędne (x,y). Dodatkowo będziemy wymagać, by prostokątów umieszczonych w zbiorze $M_{x,y}$ nie dało się rozszerzyć w górę lub w lewo do prostokąta dozwolonego — takie prostokąty nazwiemy *nierozszerzalnymi*. Punkty należące do zbiorów $M_{x,y}$ będziemy utożsamiać z prostokątami, które one (wraz z punktem (x,y)) wyznaczają, i dla uproszczenia będziemy mówić o prostokątach należących do $M_{x,y}$.

Oczywiście dla każdego pola zabronionego (x,y) (w tym dla każdego pola spoza mapy) mamy $M_{x,y} = \emptyset$. Rozważmy pole dozwolone (x,y). Jeśli x = 1, to:

$$M_{1,y} = \{(1, \max\{j : 0 \le j \le y, (1, j) \text{ jest zabronione}\} + 1)\}.$$

Dla x>1 zbiór $M_{x,y}$ składa się z prostokątów o takich lewych górnych rogach (x',y'), że zarówno wśród $(x',y'-1),(x'+1,y'-1),\dots,(x,y'-1)$, jak i wśród $(x'-1,y'),(x'-1,y'+1),\dots,(x'-1,y)$ muszą występować pola zabronione. Ilustruje to rysunek 2.

Rys. 2: Prostokąty tworzące zbiory $M_{1,y}$ i $M_{x,y}$. Pola zabronione oznaczono przekreślonymi kwadracikami.

Niech $M_{x,y} = \{(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)\}$, przy czym $x_1 \le x_2 \le \dots \le x_k$. Z tego, że prostokąty ze zbioru $M_{x,y}$ są nierozszerzalne, wynika, że $x_1 < x_2 < \dots < x_k$ oraz $y_1 > y_2 > \dots > y_k$. Zastanówmy się teraz, jak zmieni się zbiór $M_{x,y}$, gdy zwiększymy x o jeden, czyli jak mają się do siebie $M_{x,y}$ i $M_{x+1,y}$? Zależy to od tego, na jakiej wysokości znajduje się najniższe pole zabronione leżące nad polem (x+1,y) — oznaczmy je przez (x+1,y'):

$$y' = \max\{j : 0 \le j \le y, (x+1, j) \text{ jest zabronione}\}.$$

Możliwe są cztery przypadki (dwa najważniejsze z nich przedstawiono na rys. 3):

- jeśli $y' + 1 < y_k$, to $M_{x+1,y} = M_{x,y} \cup \{(x+1, y'+1)\},\$
- jeśli $y' + 1 = y_k$, to $M_{x+1,y} = M_{x,y}$,
- jeśli $y_k < y' + 1 \le y$, to:

$$M_{x+1,y} = \{(x_i, y_i) : y_i > y', i = 1, 2, \dots, k\} \cup \{(\min\{x_i : 1 \le i \le k, y_i \le y' + 1\}, y' + 1)\},\$$

Rys. 3: Zależność między $M_{x,y}$ i $M_{x+1,y}$.

• jeśli y' = y, to $M_{x+1,y} = \emptyset$.

Zbiory $M_{x,y}$ konstruujemy wiersz po wierszu, dla kolejnych wartości y. Zauważmy, że poszukując prostokąta dozwolonego o maksymalnej cenie, nie musimy brać pod uwagę wszystkich prostokątów ze zbioru $M_{x,y}$. Jeśli punkt $(x',y') \in M_{x,y} \cap M_{x+1,y}$, to wyznaczony przez niego prostokąt ze zbioru $M_{x,y}$ zawiera się w całości w wyznaczonym przez ten punkt prostokącie ze zbioru $M_{x+1,y}$. Jeśli więc będziemy konstruować kolejne zbiory $M_{x,y}$ (dla danego y) w kolejności od lewej do prawej (dla $x=1,2,\ldots$), to wystarczy, że będziemy uwzględniać tylko ceny prostokątów o prawym dolnym rogu w (x,y) i lewych górnych rogach ze zbioru $M_{x,y} \setminus M_{x+1,y}$ (czyli "odpadających" przy przejściu od zbioru $M_{x,y}$ do zbioru $M_{x+1,y}$).

Implementacja

Zastanówmy się, jakiej struktury danych użyć do reprezentowania zbiorów $M_{x,y}$, tak aby móc je efektywnie przeglądać. Zauważmy, że przekształcając $M_{x,y}$ w $M_{x+1,y}$, usuwamy pewną liczbę najwyżej położonych punktów i ewentualnie dodajemy jeden, położony wyżej niż wszystkie pozostałe. Odpowiednią strukturą będzie więc stos — pola $(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)$ będą na nim ułożone w kolejności od spodu do wierzchu. Oto pseudokod programu, który znajduje prostokąt dozwolony o maksymalnej cenie:

```
1: s := -1; { maksymalna dotychczas uzyskana cena }
 2: w := NULL; { najlepszy znaleziony prostokąt dozwolony }
 3: for y := 1 to n do begin
 4.
       M := \emptyset; \{ \text{stos } \}
       for x := 1 to n+1 do begin
 5:
         y' := \max\{j : 0 \le j \le y, (x, j) \text{ jest zabronione}\};
 6:
 7:
          while (M \neq \emptyset) and (M.top.y < y' + 1) do begin
 8:
            if K_{M.top}^{x-1,y} > s then begin
 9:
               s := K_{M.top}^{x-1,y};
10:
               w := \text{prostokat o rogach w } M.\text{top i } (x-1,y);
11:
12:
            end;
            x' := M.top.x;
13:
```

Złożoność rozwiązania

Jaka jest złożoność czasowa przedstawionego rozwiązania? Zawartość wewnętrznej pętli **for** (linie 6–16) jest powtarzana $O(n^2)$ razy. Pokażemy, że jest ona wykonywana w stałym czasie (zamortyzowanym). Musimy przyjrzeć się dokładniej dwóm instrukcjom: obliczeniu wartości y' (linia 6) i pętli **while** (linie 8–15).

Linia 6 — **maksimum.** Nie musimy obliczać najbliższych pól zabronionych za każdym razem od nowa. Dysponując wartościami wyznaczonymi dla poprzedniego wiersza (y-1), wystarczy poprawić je jedynie w tych kolumnach, gdzie w wierszu y pojawiło się pole zabronione. W ten sposób, potrzebne maksimum obliczamy tak naprawdę w czasie stałym.

Linie 8–15 — pętla while. Zauważmy, że w każdym kroku pętli ze stosu jest zdejmowany jeden element. Jednak elementy są wkładane na stos poza pętlą while, a każdy włożony element może być zdjęty tylko raz. To oznacza, że sumaryczna liczba wykonań tej pętli w czasie rozważania jednego wiersza jest rzędu O(n), czyli pętla jest wykonywana w stałym czasie zamortyzowanym.

Widzimy więc, że przedstawiona procedura działa w czasie $O(n^2)$. Dodatkowe operacje, pozwalające na podstawie prostokąta dozwolonego o maksymalnej cenie wyznaczyć poszukiwaną działkę o cenie z przedziału [k,2k], zajmują czas $O(n^2 + \log n)$. Tak więc, cały algorytm działa w czasie $O(n^2)$ i pamięci O(n). Jest to optymalne rozwiązanie, gdyż samo wczytanie danych wymaga wykonania n^2 operacji. Zostało ono zaimplementowane w plikach kup.cpp i kupl. java.

Testy

Testy zostały tak dobrane, że programy o złożoności czasowej $O(n^6)$ nie dostają żadnych punktów. Rozwiązania działające w czasie $O(n^4)$ uzyskują 20 %, a działające w czasie $O(n^3)$ — 40 % punktów.

W poniższej tabeli przedstawiono charakterystykę testów.

Nazwa	n	Opis
kup0 .in	3	test przykładowy, brak rozwiązania
kup0a.in	4	test przykładowy
kup1a.in	5	test losowy, poprawnościowy
kup1b.in	50	test strukturalny, wydajnościowy

Nazwa	n	Opis
kup1c.in	10	test losowy, poprawnościowy, brak rozwiązania
kup2a.in	15	test strukturalny, poprawnościowy
kup2b.in	60	test losowy, wydajnościowy i poprawnościowy
kup3a.in	200	test losowy, poprawnościowy
kup3b.in	200	test losowy, wydajnościowy i poprawnościowy
kup4a.in	500	test losowy, poprawnościowy
kup4b.in	500	test losowy, wydajnościowy i poprawnościowy
kup5 .in	1000	test losowy, wydajnościowy i poprawnościowy
kup6 .in	2000	test losowy, wydajnościowy i poprawnościowy
kup7 .in	500	test z polami zabronionymi na obu przekątnych, wydajnościowy
kup8 .in	2000	test z polami zabronionymi na obu przekątnych, wydajnościowy
kup9a.in	500	test z polami zabronionymi w kształcie konturu "karo", wydaj- nościowy
kup9b.in	500	test losowy, wydajnościowy, brak rozwiązania
kup10a.in	2000	test z polami zabronionymi w kształcie konturu "karo", wydaj- nościowy
kup10b.in	2000	test losowy, wydajnościowy, brak rozwiązania