IEDA 5230 (Fall 2023) Homework Assignment 3

ZHENG Kaixin, 21013165

A Knapsack problem is defined as follows: Given A, a set of n elements, and a constant c, where each element j has a weight w_j and a value v_j , find a subset of the elements, denoted by B, such that $\sum_{j \in B} w_j \leq c$ and $\sum_{j \in B} v_j$ is maximized.

Assume all w_j, v_j are positive integers, and $w_1 \leq w_2 \leq \ldots \leq w_n$. Let $\sum_{j \in A} w_j = W$ and $\sum_{j \in A} v_j = V$.

- 1) Develop a dynamic programming of which the time complexity is O(nW) to solve the knapsack problem.
- 2) Develop a dynamic programming of which the time complexity is O(nV) to solve the knapsack problem.
- 3) There is a requirement of B such that for any three consecutive elements, k, k+1, and k+2, at most one of them is in B.
 - a. Formulate this problem by integer linear programming.
 - b. Develop a dynamic programming to solve this problem.
- 4) There is a requirement of B such that if element k is in B, at least one of k-1, k+1 is in B.
 - a. Formulate this problem by integer linear programming.
 - b. Develop a dynamic programming to solve this problem.

1 1

Define $F_k(a)$ as the maximum value of the subset of the first k elements, subject to the weight equal to a. Define $B_k(a)$ is the subset.

$$F_0(0) = 0, B_0(0) = \emptyset.$$

For
$$k \in \{1, ..., n\}$$
, $a \in \{0, 1, ..., W\}$, we have:
$$F_k(a) = \max\{F_{k-1}(a), F_{k-1}(a - w_i) + v_i\}, B_k(a) = \begin{cases} B_{k-1}(a), & F_{k-1}(a - w_i) + v_i \le F_{k-1}(a) \\ B_{k-1}(a - w_i) \cup i, & F_{k-1}(a - w_i) + v_i > F_{k-1}(a) \end{cases}$$

The answer is $B_n(c)$

$\mathbf{2}$ 2

Define $F_k(a)$ as the minimum weight of the subset of the first k elements, subject to the value equal to a. Define $B_k(a)$ is the subset.

$$F_0(0) = 0, B_0(0) = \emptyset.$$

For $k \in \{1, ..., n\}, a \in \{0, 1, ..., V\}$, we have:

$$F_k(a) = \min\{F_{k-1}(a), F_{k-1}(a - v_i) + w_i\}, B_k(a) = \begin{cases} B_{k-1}(a), & F_{k-1}(a - v_i) + w_i \ge F_{k-1}(a) \\ B_{k-1}(a - v_i) \cup i, & F_{k-1}(a - v_i) + w_i < F_{k-1}(a) \end{cases}$$

The answer is $B_n(b)$, where b is the largest element that satisfies F_n

3 3

$$\begin{split} & \text{Maximize } \sum_{i=1}^{n} x_i v_i \\ & \text{subject to } \sum_{i=1}^{n} x_i w_i \leq c \\ & x_i + x_{i+1} + x_{i+2} \leq 1, i = 1, ..., n - 2 \\ & x_i \in \{0,1\}, i = 1, ..., n \end{split}$$

b

Define $F_k(a, x_{k-1}, x_k)$ as the maximum value of the subset of the first k elements, subject to the weight equal to a, when the selection of (k-1)th, kth element is x_{k-1}, x_k . Define $B_k(a, x_{k-1}, x_k)$ is the subset.

$$F_0(0,0,0) = 0, B_0(0,0,0) = \emptyset.$$

For $k \in \{1, ..., n\}, a \in \{0, 1, ..., W\}$, we have:

$$F_k(a, 1, 0) = F_{k-1}(a, 0, 1), B_k(a, 1, 0) = B_{k-1}(a, 0, 1),$$

$$F_k(a,0,1) = F_{k-1}(a-w_i,0,0) + v_i, B_k(a,0,1) = B_{k-1}(a-w_i,0,0) \cup i,$$

$$F_k(a,0,0) = \max\{F_{k-1}(a,0,0), F_{k-1}(a,1,0)\}, \ B_k(a,0,0) = \begin{cases} B_{k-1}(a,1,0), & F_{k-1}(a,0,0) \leq F_{k-1}(a,1,0) \\ B_{k-1}(a,0,0), & F_{k-1}(a,0,0) > F_{k-1}(a,1,0) \end{cases}$$
The answer is $B_n(c,d,e)$, where $d,e = \arg\max F_n(a,i,j)$ s.t. $i+j \leq 1$

The answer is $B_n(c,d,e)$, where $d,e = \arg \max_i F_n(a,i,j)$ s.t. i+j

4 4

Maximize
$$\sum_{i=1}^{n} x_i v_i$$

subject to $\sum_{i=1}^{n} x_i w_i \le c$
 $x_{i-1} - x_i + x_{i+1} \ge 0, i = 2, ..., n - 1$
 $x_i \in \{0, 1\}, i = 1, ..., n$

b .

$$F_1(a, x_0, 1) = \begin{cases} 0, & a < w_1 \\ v_1, & a \ge w_1 \end{cases}, B_1(a, x_0, 1) = \begin{cases} \emptyset, & a < w_1 \\ \{1\}, & a \ge w_1 \end{cases}, x_0 \in \{0, 1\}.$$

For $k \in \{1, ..., n\}, a \in \{0, 1, ..., W\}$, we have

$$F_k(a, 1, 0) = F_{k-1}(a, 1, 1), B_k(a, 1, 0) = B_{k-1}(a, 1, 1),$$

$$F_k(a,0,0) = \max\{F_{k-1}(a,0,0), F_{k-1}(a,1,0)\}, B_k(a,0,0) = \begin{cases} B_{k-1}(a,1,0), & F_{k-1}(a,0,0) \le F_{k-1}(a,1,0) \\ B_{k-1}(a,0,0), & F_{k-1}(a,0,0) > F_{k-1}(a,1,0) \end{cases}$$

$$F_k(a, x_{k-1}, 1) = \max\{F_{k-1}(a - w_i, 0, 1) + v_i, F_{k-1}(a - w_i, 1, 1) + v_i\},\$$

$$F_k(a, x_{k-1}, 1) = \max\{F_{k-1}(a - w_i, 0, 1) + v_i, F_{k-1}(a - w_i, 1, 1) + v_i\},$$

$$B_k(a, x_{k-1}, 1) = \begin{cases} B_{k-1}(a, 0, 1) \cup i, & F_{k-1}(a - w_i, 0, 1) \ge F_{k-1}(a - w_i, 1, 1) \\ B_{k-1}(a, 1, 1) \cup i, & F_{k-1}(a - w_i, 0, 1) < F_{k-1}(a - w_i, 1, 1) \end{cases}$$
The answer is $B_n(c, d, e)$, where $d, e = \underset{i, j}{\operatorname{arg max}} F_n(a, i, j)$