1 Introduction

Our language is a theorem prover for constructive logic, based on the Calculus of Constructions (CoC), which is a dependently typed lambda calculus. CoC forms the foundation of many theorem provers like Coq, Lean and Agda, though they also include many other features like inductive types and a cumulative hierarchy of type universes.

In this document, we provide a big-step semantics for our language, upon which our interpreter was based.

Our approach to semantics is heavily inspired by Plotkin's seminal work on structural operational semantics, as well as the specification for Standard ML. Though our language specification is formal and mathematically intensive, we believe in the importance of rigour to ensure precision and clarity. This is especially important for our language since dependent type theory is a complex subject.

A benefit of this approach is that not only did our specification serve as a guide for our implementation, many of the rules we formalize here translate almost directly into the code which we implemented.

Despite our formality, we still aim to provide sufficient exposition and justification for our design decisions. We hope that the reader will agree that the ideas underlying our formalization are intuitive.

In the next section, we offer some background on dependent type theory in relation to the Curry-Howard correspondence. Thereafter, we discuss where our language stands in relation to CoC.

1.1 Dependent type theory and Curry-Howard

Abstractly, CoC is a pure type system that sits at the top of Barendregt's lambda cube. More concretely, it generalizes the simply typed and polymorphic lambda calculi by replacing the simple function type with the dependent Pi type. These generalize the simple function type $A \to B$ by allowing the output type B to now depend on the value of the input expression. The type of functions is now written as $\Pi_{x:A}B(x)$ where we write B(x) for the return type to emphasize that x may appear free in B.

The set theoretic analogue to this dependent Pi type is the generalized cartesian product. Given a set A and a family of sets $\langle B_x | x \in A \rangle$ indexed by the elements $x \in A$, we can form the generalized cartesian product, denoted

$$\Pi_{x \in A} B_x = \left\{ f : A \to \bigcup_{x \in A} B_x \, | \, \forall x \in A, \, f(x) \in B_x \right\}$$

Functions that inhabit this set are known as *choice functions* in set theory. Such choice functions associate to each $x \in A$, an element f(x) in B_x .

More generally, dependently typed languages allow types to depend on expressions as well.

Now you might ask, of what use are these dependent types? Remember that the Curry-Howard correspondence says that simple type theory can be used to encode constructive propositional logic, with sum types (ie coproducts) corresponding to disjunction, products to conjunction, unit to \top and void to \bot .

But what about the quantifiers \forall and \exists ? This is where dependent type theory comes in.

To prove the universally quantified statement, $\forall x \in A, P(x)$ by hand, we would assume that x is an arbitrary element of A and then proceed to prove that P(x) holds. Well, according to the BHK interpretation of constructive logic, constructing a proof as such is akin to defining a function which takes as input an element x of type A and returns a proof of P(x). What is the type of such a function? It is precisely the Pi type, $\Pi_{x:A}P(x)$!

In the event that the output type of a Pi type doesn't depend on the value of the input, we recover the simple function type, which we write as $A \to B$ or $\Pi_{x:A}B$. So we see that the Pi type allows us to model both logical implication as well as universal quantification.

As for the existential quantifier, a proof of $\exists x \in A, P(x)$ corresponds to a pair, $\langle x, \text{pf} \rangle$ where x is an element of type A witnessing the existential and pf is a proof that for this x, P(x) holds. The type of the pair $\langle x, \text{pf} \rangle$ is the Sigma type, $\sum_{x:A} P(x)$. Such Sigma types generalize the ordinary pair type, by allowing the type of the second component to depend on the value of the first.

There is also another interesting interpretation of the Sigma type. Consider the notion of a subset, $\{x \in A \mid P(x)\}$, from set theory. By interpreting sets as types, we can model elements of this subtype of A as pairs containing an element of type A and a second element certifying that the first element does belong to this subtype. What would such a certificate be? Well, a proof that it satisfies the predicate P! Such a pair is of the Sigma type $\Sigma_{x:A}P(x)$!

Note that if the second component of a pair doesn't depend on the first, we recover the usual pair (ie product) type, written $A \times B$ or $\Sigma_{x:A}B$. With this, we see that the Sigma type can encode 3 different notions, namely conjunction, existential quantification, and the subtype/subset relation!

In essence, adding dependent types to the lambda calculus allows types to include expressions like variables. This give us the extra tools that we need to go beyond propositional logic and formalize constructive predicate logic!

The table below summarizes the correspondence between types and their Curry-Howard interpretation.

Type	Formal notation	Alt notation	Curry-Howard interpretation
Pi	$\Pi_{x:A}B(x)$		$\forall x \in A, B(x)$
	$\Pi_{x:A}B$	$A \to B$	$A \rightarrow B$
Sigma	$\Sigma_{x:A}B(x)$		$\exists x \in A, B(x)$
	$\Sigma_{x:A}B(x)$		$\{x \in A \mid B(x)\}$
	$\Sigma_{x:A}B$	$A \times B$	$A \wedge B$
Sum	A + B		$A \lor B$
Unit	Т		⊤ (ie logical truth)
Void			⊥ (ie logical falsity)

These are the types which we implement in our language. In the next section, we discuss how our language resembles and differs from CoC.

1.2 Our language in comparison to CoC

As mentioned earlier, our language is based on the original formulation of CoC. This means that we neither have inductive types nor a countable hierarchy of type universes. Since our emphasis here is on simplicity, we stay true to the original calculus, by offering only 2 sorts, Type and Kind.

As with CoC, Type in our language is the sort of propositions as well as data types. Informally, we can think of type as the type of all types. In other words, an element T of type Type can be interpreted as either being a proposition whose elements are proofs or a data type like a set. Though this is in line with the Curry-Howard interpretation, this has the unfortunate consequence of conflating the syntactic roles of propositions and data types.

This may be counter-intuitive for users because in first (or higher) order logic, there is a clear distinction between terms and well-formed formulae, which belong to different syntactic categories.

As for the sort Kind, it's actually not really useful for users. It's just here to prevent Girard's paradox, a type theoretic formulation of the set theoretic Burali-Forti argument. Through the construction of Girard's paradox, one can (in theory) provide a proof of false, ie a lambda expression that inhabits the empty type. In doing so, the logical consistency of the calculus is lost.

It should also be noted that we focus on theorem proving via Curry-Howard over general programming. This means that our language, like CoC, does not have basic programming constructs like general recursion, conditional statements or even basic types like numbers and booleans.

In its original formulation as a pure type system, CoC only includes one built-in type, namely the Pi type. It does not have Sigmas or sums (ie coproducts). While there are ways to encode \exists , \land and \lor into CoC [insert ref to Type Theory and Formal Proof book], such encodings can be awkward to work with. Hence, we decided to also implement Sigma and sum types as built-ins so that \exists and \land can be modeled more naturally via Sigma and \lor via the sum type.

2 Syntax

In order to implement our rich type system, we promote types to the level of expressions in our language, so we no longer have separate syntactic categories for them.

Yes, this means that everything in our language is an expression, even those things which we call types! With this in mind, a type is then an expression, say T, which satisfies a very specific typing judgment, ie $\Gamma \vdash T \Leftarrow s$. We'll revisit this again later.

For now, we describe the concrete ascii syntax for our language, alongside the syntactic sugar users can enter. This includes unicode symbols.

At the top level, programs will be nonempty sequences of statements. Statements function like top-level commands, as found in other theorem provers like Coq and Lean. These offer a way for users to interact with our system. Through

statements, users can introduce global assumptions and definitions.

2.1 Syntax for expressions

We first define the set of valid expressions of our language as the initial algebra, ie least prefixed point, of the endofunctor

$$F: X \mapsto \{E \mid \{E_0, E_1, \dots, E_n\} \subseteq X \text{ and } \frac{E_0 - E_1 - \dots - E_n}{E} \text{ is a rule instance}\}$$

on some complete powerset lattice. Such a construction can be justified by the famous fixed point theorems of Tarski and Kleene.

Before we list the full set of rules, we first introduce some metavariables.

2.1.1 Metavariables

- 1. A, B, T, E range over expressions.
- 2. x, y, z range over variables.

2.1.2 Syntax rules

1. Sorts

 $\overline{\text{Type}}$

Kind

Since our language makes no distinction between types and propositions, we allow users to enter Prop (short for "proposition") in place of Type.

2. Variables

 \bar{x}

3. Optional parentheses

 $\frac{E}{(E)}$

4. Function abstraction

$$\frac{x \quad E}{\text{fun } x => E}$$

$$\frac{x_0 \quad x_1 \quad \dots \quad x_n \quad E}{\text{fun } x_0 \ x_1 \dots x_n => E}$$

Note that all functions in our language are unary and so fun $x_0 x_1 \dots x_n = E$ is syntactic sugar for

fun
$$x_0 => (\text{fun } x_1 => \dots (\text{fun } x_n => E))$$

Simimarly, one can also provide optional type annotations for input variables. This is to help the type checker infer the type of a function.

$$\frac{x \quad T \quad E}{\operatorname{fun}\left(x:T\right) \, => E}$$

$$\frac{x_i \quad T_i \quad E}{\operatorname{fun}(x_0:T_0) (x_1:T_1) \dots (x_n:T_n) => E}$$

We also treat fun $(x_0:T_0)$ $(x_1:T_1)$... $(x_n:T_n) => E$ as syntactic sugar for

$$\operatorname{fun}(x_0:T_0) => (\operatorname{fun}(x_1:T_1) => \dots (\operatorname{fun}(x_n:T_n) => E))$$

As syntactic sugar, we allow users to use lambda and λ in place of fun.

5. Pi and Sigma type

$$\frac{x \quad A \quad B}{\operatorname{Pi}(x:A), B}$$

$$\frac{x_i \quad A_i \quad B}{\operatorname{Pi}(x_0:A_0)(x_1:A_1)\dots(x_n:A_n), B}$$

As with functions, this is syntactic sugar for

$$Pi(x_0: A_0), (Pi(x_1: A_1), ... (Pi(x_n: A_n), B))$$

If there is only one pair of input type and type annotation following the Pi, the brackets may be ommitted so users can enter $Pi \ x : A$, B instead of $Pi \ (x : A)$, B.

The syntax rules for Sigma, ie Sigma (x : A), B and the above syntactic sugar work the same as with Pi above.

We also allow users to enter, in place of Pi, forall or using unicode, \forall and Π . Similarly, users can enter exists, Σ and \exists instead of Sigma.

In the event that the output type does not depend on the input type, users may enter A \rightarrow B and A * B in place of Pi (x : A), B and Sigma (x : A), B.

6. Sigma constructor

$$\frac{E_1}{(E_1, E_2)}$$

7. Sigma eliminators

$$\frac{E}{\text{fst }E}$$

$$\frac{E}{\operatorname{snd} E}$$

8. Type ascriptions

$$\frac{E-T}{(E:T)}$$

This functions similarly to other functional languages in that it's used mainly to provide type annotations. For instance, it can be used to help the type checker if it's unable to infer the type of an expression.

9. Local let bindings

$$\frac{x \quad E \quad E'}{\det x := E \text{ in } E'}$$

10. Sum type

$$\frac{A}{A+B}$$

11. Sum type constructor

$$\frac{E}{\operatorname{inl} E}$$

$$\frac{E}{\operatorname{inr} E}$$

These are meant for introducing the left and right components of a disjoint sum, ie inl E constructs an expression of type A+B given an expression E of type A. Similarly, inr E constructs an A+B given E of type B.

12. Sum type eliminator

Given expressions E and variables x and y, users can perform case analysis on a sum type via the match construct below

The ordering of both clauses can be swapped so users can also enter

```
match E with
| inr y -> E2
| inl x -> E1
end
```

Note here that x is bound in the expression that is E_1 , while y is bound in E_2 .

This match construct is fashioned after the similarly named pattern matching construct in ML like languages. However, unlike those, we do not implement actual pattern matching since pattern matching for dependent types is not an easy problem. Our match construct serves the sole purpose of allowing one to perform case analysis on sums.

For convenience, we write $match(E, x \to E_1, y \to E_2)$ to denote this construct.

2.1.3 Syntactic sugar: wildcard variables

In the event where the user does not intend to use the variable being bound, like say in a lambda expression, the underscore, $_$, can be used in place of a variable name. For instance, one can enter fun $_$ => Type in place of fun x => Type. As in other languages, $_$ is not a valid identifier that can be used anywhere else in an expression. It can only be used in place of a variable in a binder.

2.1.4 A word about notation

Note that we often write λx , E instead of fun x => E as in the concrete syntax. Similarly, we also write $\lambda(x:T)$, E in place of fun (x:T) => x. Finally, we use $\Pi_{x:A}B(x)$ to abbreviate Pi (x:A), B.

2.2 Syntax for statements

Statements are top level commands through which users interact with our language. Programs in our language will be *nonempty* sequences of these statements.

1. **Def**

$$\frac{x \quad E}{\text{def } x := E}$$

This creates a top level, global definition, binding the variable x to the expression given by E.

2. Axiom

$$\frac{x - T}{\text{axiom } x : T}$$

This defines the variable x to have a type of T with an unknown binding. The interpreter will treat x like an unknown, indeterminate constant.

We also allow users to enter constant x:T instead of axiom x:T, as syntactic sugar. Note that since our system conflates the notion of types and propositions, introducing a constant x of type T is akin to introducing an assumption (ie axiom).

3. Check

$$\frac{E}{\text{check }E}$$

This instructs the interpreter to compute the type of the expression E and output it.

4. Eval

$$\frac{E}{\text{eval } E}$$

This instructs the interpreter to fully normalize the expression E.

Later, we will properly define the notion of normalization using a bigstep semantics. For now it suffices to say that normalizing an expression is the process of fully evaluating it until no more simplifications can be performed.

3 Capture avoiding substitutions

In this section, we define the concept of free variables and capture avoiding substitutions. This will be important when we later define normalization and reduction in our big-step semantics.

3.1 Free variables

We define the set of free variables of an expression E, ie FV(E) recursively.

$$FV(x) := \{x\}$$

$$FV(E_1 E_2) := FV(E_1) \cup FV(E_2)$$

$$FV(\lambda x, E(x)) := FV(E) \setminus \{x\}$$

$$FV(\lambda (x : T), E(x)) := FV(T) \cup (FV(E) \setminus \{x\})$$

$$FV(\text{let } x := E \text{ in } E') := FV((\lambda x, E') E)$$

$$FV(\Pi_{x:A}B(x)) := FV(A) \cup (FV(B) \setminus \{x\})$$

Note that in Pi expressions, the input type A is actually an expression itself and so may contain free variables. It's important to note that the $\Pi_{x:A}$, like a lambda is a binder binding x in B. However, this does not bind x in the input type, A. If x does appear in the input type A, it is free there.

$$FV(\Sigma_{x:A}B(x)) := FV(\Pi_{x:A}B(x))$$

Sigma expressions follow the same rules as with Pi expressions, with x being bound in the output type B but not in the input type A.

$$\mathrm{FV}(A+B) := \mathrm{FV}(A) \cup \mathrm{FV}(B)$$

$$\mathrm{FV}(\mathrm{match}(E,x \to E_1,y \to E_2)) := E \cup (E_1 \setminus \{x\}) \cup (E_2 \setminus \{y\}))$$

Note that in match expressions, x is bound in E_1 and y is bound in E_2 .

For the expressions fst E, snd E, inl E and inr E, the set of free variables is precisely FV(E), since those keywords are treated like constants.

3.2 Substitution

Here we define $E[x \mapsto E'] := E''$ to mean substituting all free occurrences of x by E' in the expression E yields another expression E''.

$$x[x \mapsto E] := E$$

$$y[x \mapsto E] := y \quad (\text{if } y \neq x)$$

$$(E_1 \ E_2)[x \mapsto E] := (E_1[x \mapsto E] \ E_2[x \mapsto E])$$

$$(\lambda x, E)[x \mapsto E'] := \lambda x, E$$

$$(\lambda y, E)[x \mapsto E'] := \lambda y, E[x \mapsto E'] \quad (\text{if } y \notin FV(E'))$$

$$(\lambda y, E)[x \mapsto E'] := \lambda z, E[y \mapsto z][x \mapsto E']$$

$$(\text{if } z \notin FV(E) \cup FV(E') \cup \{x\})$$

$$(\text{let } y := E \text{ in } E'')[x \mapsto E'] := ((\lambda y, E) E'')[x \mapsto E']$$

We also define $(\lambda(x:T), E)[x \mapsto E']$ similar to the case without the optional type annotation above. The only difference here is we also need to substitute x for E' in the type annotation, T. Note that we do not treat x as being bound in T here.

$$\begin{split} (\Pi_{x:A}B(x))[x\mapsto B'] &:= \Pi_{x:A[x\mapsto B']}B(x) \\ (\Pi_{y:A}B(y))[x\mapsto B'] &:= \Pi_{y:A[x\mapsto B']}B[x\mapsto B'] \quad (\text{if } y\notin \mathrm{FV}(B')) \\ (\Pi_{y:A}B(y))[x\mapsto B'] &:= \Pi_{z:A[x\mapsto B']}B[y\mapsto z][x\mapsto B'] \\ &\quad (\text{if } z\notin FV(B)\cup FV(B')\cup \{x\}) \end{split}$$

For Pi expressions, A is an expression and thus when substituting x by B', we must also perform the substitution in the input type A. However, as x is not bound there, we need not worry about capturing it when substituting there.

For Sigma expressions, we define $(\Sigma_{x:A}B(x))[x \mapsto B']$ in a similar fashion as with the case of Pi.

The substitution rules for fst, snd, inl and inr are trivial and thus ommitted

Finally, we avoid specifying substitution formally for match expressions since it's tedious. The key thing to note is that in the expression $\operatorname{match}(E, x \to E_1, y \to E_2)$, x is bound in E_1 and y is bound in E_2 .

4 Semantics

Now we define a static and big-step semantics for our language.

4.1 Expressions

4.1.1 Overview of reduction and normalization

In the simply typed lambda calculus, there is only the simple function type and lambda abstraction. There, normalization is the process in which expressions are reduced through repeated applications of the beta reduction rule into a form in which no further beta reductions can occur anywhere in the expression, even underneath the outermost lambda. The resulting, reduced expression is said to be in *head normal form*. In this section, we want to define similar notions for our richer language.

First, note that we have more than just function types in our language. In particular, we have 3 main types, namely Pi, Sigma and Sum. Also, these "types" themselves are expressions too. Thus we need to generalize the notion of normalization to account for these new types and their elimination rules. Intuitively, we want to repeatedly reduce an expression using all of these rules until we can reduce no further.

Next note that we will be reducing expressions and substituting with respect to a context, which contains definitions which the user declares globally, via def and axiom statements.

Since axiom statements introduce variables at the global level with a type but no binding, expressions can now contain free variables. Hence we also need a definition of head normal form and reduction that takes care of expressions with free variables. In the next section, we define the head normal form of an expression by way of a new concept – the *neutral expression*. After that, we introduce the *context*, ie environment, before discussing normalization.

4.1.2 Neutral expressions, head normal form, beta equivalence

Informally, neutral expressions are those which cannot be reduced via one of the elimination rules (ie the ones for Pi, Sigma and Sum types) because the expression to be eliminated is a free variable rather than an expression of the appropriate type.

With this, we generalize the notion of head normal form to be one in which the expression cannot be further simplified by applying any of the 3 elimination rules corresponding to the aforementioned types. Formally we define, using mutual recursion, the subset of neutral and normalized expressions via the following judgments:

- 1. hnf(E)This asserts that E is an expression that is in head normal form.
- 2. neutral(E)This asserts that E is a neutral expression.

The rules are as follows:

1.
$$\frac{\operatorname{neutral}(E)}{\operatorname{hnf}(E)}$$
2.
$$\frac{\operatorname{hnf}(E)}{\operatorname{hnf}(\lambda x, E)}$$
3.
$$\frac{\operatorname{hnf}(E_1) \quad \operatorname{hnf}(E_2)}{\operatorname{hnf}(\Pi_{x:E_1}E_2)}$$
4.
$$\frac{\operatorname{hnf}(E_1) \quad \operatorname{hnf}(E_2)}{\operatorname{hnf}(\Sigma_{x:E_1}E_2)}$$
5.
$$\frac{\operatorname{hnf}(E_1) \quad \operatorname{hnf}(E_2)}{\operatorname{hnf}(E_1) \quad \operatorname{hnf}(E_2)}$$
6.
$$\frac{\operatorname{neutral}(x)}{\operatorname{neutral}(x)}$$
7.
$$\frac{\operatorname{neutral}(E_1) \quad \operatorname{hnf}(E_1)}{\operatorname{neutral}(E_1 E_2)}$$
8.
$$\frac{\operatorname{neutral}(E) \quad \operatorname{hnf}(E_1) \quad \operatorname{hnf}(E_2)}{\operatorname{neutral}(\operatorname{match}(E, x \to E_1, y \to E_2))}$$
9.
$$\frac{\operatorname{neutral}(E)}{\operatorname{neutral}(\operatorname{fst} E)}$$
10.
$$\operatorname{neutral}(E)$$

neutral(snd E)

Note that let ... in ... expressions are not considered to be in head normal form because we treat expressions of the form let x := E in E' as syntactic sugar for the application $(\lambda x, E') E$ during the process of normalization.

In fact, we will see later that the typing rules for let expressions are also derived using this syntactic trick.

Finally, we also define the notion of beta equivalence.

Definition 4.1 (Beta equivalence). We say that two expressions are beta equivalent to each other, written $E_1 \equiv_{\beta} E_2$ if they have the same head normal form.

If both expressions are also alpha equivalent, ie they're equal up to renaming of bound variables, we write $E_1 \equiv_{\alpha\beta} E_2$.

We now introduce 2 more types of metavariables corresponding to the new definitions given in the previous section.

- 1. ν , τ range over normalized expressions, ie those in head normal form.
- 2. n ranges over all neutral terms.

4.1.3 A brief overview of contexts

We define contexts, denoted by the metavariable, Γ , to be lists of triples of the form

(variable name, type of variable, binding)

We will use \emptyset to denote the empty context, and :: to refer to the list cons operation.

The binding can be an expression or a special undefined value, which we denote by und. Contexts have global scope and the top level statements def and axiom, return new contexts with updated bindings. The special und value is used for the bindings created by axiom statements and when we want to add a binding for type checking purposes. In such scenarios, we don't particularly care about the actual binding. We're only interested in the type of the variable.

We should mention that whenever we write, say $(x, \tau, \nu) \in \Gamma$, we allow the metavariable ν to be und as well. Also if there are multiple occurrences of x in Γ , as is the case when there is variable shadowing, we refer to the first occurrence of x

Most of the time, when we work with contexts, we want them to be *well* formed in the sense that we want the contexts that we deal with in our typing and normalization judgments to satisfy some additional invariants.

Primarily, we want the "types" that we store in the context to be "valid types" rather than just being expressions in our language. We will discuss this in more detail later, alongside the static semantics.

4.1.4 Overview of judgement forms

Since we will be defining some judgment forms (including normalization and typing related ones) in a mutually recursive fashion, we first give an overview of them.

1. $\mathcal{WF}(\Gamma)$

This asserts that a context Γ is well formed.

2. $\Gamma \vdash E \Leftarrow T$ and $\Gamma \vdash E \Rightarrow T$

These judgments will be used to formalize our bidirectional typechecking algorithm. They form the typing rules for our language. For now, it suffices to say that $\Gamma \vdash E \Leftarrow T$ formalizes the meaning that given an expression E and some type T, we may verify that E has type T under the context Γ .

On the other hand, $\Gamma \vdash E \Rightarrow T$ formalizes the notion of type inference. It says that from a context Γ , we may infer the type of E to be T.

It should be noted here that this isn't real type inference using constraint solving and unification. It's a form of lightweight type inference that can infer simple stuff like the return type of a function application but not the type parameter in the polymorphic identity function $\lambda(T: \text{Type})(x:T)$, x.

3. $\Gamma \vdash E \Downarrow \nu$

The $\cdot \vdash \cdot \Downarrow \cdot$ relation is our big-step normalization process. It says that with respect to a context Γ containing global bindings, we may normalize E to an expression, ν that is in head normal form.

4.1.5 Big step normalization

As mentioned earlier, the aim of normalization is to reduce an expression, through repeated applications of the 3 elimination rules (ie Pi, Sigma and Sum) to head normal form, which includes neutral expressions and free variables as a subset.

One may notice that this intuitive formulation resembles a small-step semantics. Indeed, we may obtain a contraction rule from each elimination rule and then formalize a one-step transition relation, say $\Gamma \vdash E \longmapsto E'$. From that, we can then derive its reflexive, transitive closure, $\Gamma \vdash E \longmapsto^* E'$.

However we take a different approach. We define a big-step semantics directly because this translates nicer into a recursive interpreter written in a functional style.

In the rules below, note how our elimination rules account for expressions in head normal form, ie ν and τ , as well as neutral ones, ie n.

1. Type

$$\frac{\mathcal{WF}(\Gamma)}{\Gamma \vdash \mathrm{Type} \Downarrow \mathrm{Type}}$$

2. Variables

$$\frac{\mathcal{WF}(\Gamma) \quad (x, \tau, \nu) \in \Gamma}{\Gamma \vdash x \Downarrow \nu}$$
$$\frac{\mathcal{WF}(\Gamma) \quad (x, \tau, \text{ und}) \in \Gamma}{\Gamma \vdash x \Downarrow x}$$

3. Type ascriptions

$$\frac{\Gamma \vdash E \Downarrow \nu}{\Gamma \vdash (E:T) \Downarrow \nu}$$

This says type ascriptions do not play a role in computation. They're just there to help the type checker figure things out. Users can also use these as a form of documentation.

4. Pi elimination, ie function application

$$\frac{\Gamma \vdash E_1 \Downarrow \lambda x, \ \nu_1 \qquad \Gamma \vdash E_2 \Downarrow \nu_2 \qquad \Gamma \vdash \nu_1[x \mapsto \nu_2] \Downarrow \nu}{\Gamma \vdash E_1 \ E_2 \Downarrow \nu}$$

$$\frac{\Gamma \vdash E_1 \Downarrow n \qquad \Gamma \vdash E_2 \Downarrow \nu}{\Gamma \vdash E_1 \ E_2 \Downarrow n \ \nu}$$

5. Normalizing under lambdas

$$\frac{\Gamma \vdash E \Downarrow \nu}{\Gamma \vdash \lambda x, \; E, \; \Downarrow \; \lambda x, \; \nu} \\ \frac{\Gamma \vdash \lambda x, \; E \Downarrow \nu}{\Gamma \vdash \lambda \; (x : T), \; E, \; \Downarrow \; \nu}$$

This second rule says that optional type ascriptions do not play a role in normalization, ie we just ignore them.

6. Pi type constructor

$$\frac{\Gamma \vdash A \Downarrow \tau \qquad \Gamma \vdash B(x) \Downarrow \tau'(x)}{\Gamma \vdash \Pi_{x:A}B(x) \Downarrow \Pi_{x:\tau}\tau'(x)}$$

7. Local let binding

$$\frac{\Gamma \vdash E \Downarrow \nu \qquad \Gamma \vdash E'[x \mapsto \nu] \Downarrow \nu'}{\Gamma \vdash \text{let } x := E \text{ in } E' \Downarrow \nu'}$$

8. Normalizing under pair constructor

$$\frac{\Gamma \vdash E_1 \Downarrow \nu_1 \quad \Gamma \vdash E_2 \Downarrow \nu_2}{\Gamma \vdash \langle E_1, E_2 \rangle \Downarrow \langle \nu_1, \nu_2 \rangle}$$

9. Sigma type constructor

$$\frac{\Gamma \vdash A \Downarrow \tau \quad \Gamma \vdash B \Downarrow \tau'(x)}{\Gamma \vdash \Sigma_{x:A}B(x) \Downarrow \Sigma_{x:\tau}\tau'(x)}$$

10. Sigma elimination

$$\frac{\Gamma \vdash E \Downarrow (\nu_1, \nu_2)}{\Gamma \vdash \operatorname{fst} E \Downarrow \nu_1}$$

$$\frac{\Gamma \vdash E \Downarrow n}{\Gamma \vdash \operatorname{fst} E \Downarrow \operatorname{fst} n}$$

$$\frac{\Gamma \vdash E \Downarrow (\nu_1, \nu_2)}{\Gamma \vdash \operatorname{snd} E \Downarrow \nu_2}$$

$$\frac{\Gamma \vdash E \Downarrow n}{\Gamma \vdash \operatorname{snd} E \Downarrow \operatorname{snd} n}$$

11. Sum type constructor

$$\frac{E_1 \Downarrow \nu_1 \qquad E_2 \Downarrow \nu_2}{E_1 + E_2 \Downarrow \nu_1 + \nu_2}$$

12. Normalizing under sum data constructors

$$\frac{\Gamma \vdash E \Downarrow \nu}{\Gamma \vdash \operatorname{inl} E \Downarrow \operatorname{inl} \nu}$$

$$\frac{\Gamma \vdash E \Downarrow \operatorname{inl} \nu}{\Gamma \vdash \operatorname{inr} E \Downarrow \nu}$$

13. Normalizing sum eliminator

$$\begin{split} \frac{\Gamma \vdash E \Downarrow \operatorname{inl} \nu & \Gamma \vdash E_1[x \mapsto \nu] \Downarrow \nu_1}{\Gamma \vdash \operatorname{match}(E, x \to E_1, y \to E_2) \Downarrow \nu_1} \\ \\ \frac{\Gamma \vdash E \Downarrow \operatorname{inr} \nu & \Gamma \vdash E_2[y \mapsto \nu] \Downarrow \nu_2}{\Gamma \vdash \operatorname{match}(E, x \to E_1, y \to E_2) \Downarrow E_2[y \mapsto \nu_2]} \\ \\ \frac{\Gamma \vdash E \Downarrow n & \Gamma \vdash E_1 \Downarrow \nu_1 & \Gamma \vdash E_2 \Downarrow \nu_2}{\Gamma \vdash \operatorname{match}(E, x \to E_1, y \to E_2) \Downarrow \operatorname{match}(n, x \to \nu_1, y \to \nu_2)} \end{split}$$

Note that the lack of a normalization rule for Kind is deliberate. The reason is that we will ensure that we only normalize expressions after we typecheck them, and we will see in the next section that Kind has no type. Thus we will never need to normalize it.

4.1.6 Well formed types and contexts

Recall that when defining the notion of a context earlier, we said that we normally only work with well formed ones. In particular, this means that the types we store in the context are "valid". Here we properly define these concepts.

First we introduce a new metavariable s to denote either of the 2 sorts, Type and Kind.

Definition 4.2 (Well formed type and type constructor). An expression T is said to be a well-formed type with respect to the context Γ if it satisfies

$$\Gamma \vdash T \Leftarrow s$$

Informally, we can think of Type as the "type of all small types" and so all small well formed types are those expressions satisfying $\Gamma \vdash T \Leftarrow$ Type, ie they can be checked to have type Type.

Those T satisfying $\Gamma \vdash T \Leftarrow \text{Kind}$ instead represent the type of type constructors. In other words, the type of a type constructor is a Kind, just like in Haskell.

With this, we define well formed contexts as contexts satisfying 2 key invariants:

- 1. Well formed contexts only contain well formed types.
- 2. The expressions representing the type and binding of a variable are both in head normal form.

Observe that in order to maintain these 2 invariants while typechecking an expression, we will need to perform normalization on types themselves. To see this, consider what happens when we want to typecheck a lambda abstraction. Intuitively, we proceed as in the simply typed lambda calculus. We want to add the variable and its type to the context and continue typechecking the body. But remember, we must ensure that the context remains well formed when typechecking the body. For this, we must check that the type is well formed and normalize it to head normal form before we can add it to the context.

However, it must be noted that we only normalize expressions after we typecheck them. At no point in our formulation in the next section, do we attempt to normalize an expression before checking that it has a well formed type.

Definition 4.3 (Well formed context). Recalling that \emptyset denotes the empty list and that :: denotes the list cons operation, we define precisely the judgment $\mathcal{WF}(\Gamma)$.

1. Base case

 $\mathcal{WF}(\emptyset)$

2. Inductive cases

$$\begin{split} & \frac{\mathcal{WF}(\Gamma)}{\mathcal{WF}((x,\,\tau,\,\nu) :: \Gamma)} \\ & \frac{\mathcal{WF}(\Gamma)}{\mathcal{WF}((x,\,\tau,\,\mathrm{und}) :: \Gamma)} \end{split}$$

4.1.7 Static semantics, ie typing rules

Definition 4.4 (Bidrectional typechecking). Here we define the 2 *mutually recursive* relations

- 1. $\cdot \vdash \cdot \Rightarrow \cdot$ which corresponds to inference
- 2. $\cdot \vdash \cdot \Leftarrow \cdot$ which corresponds to *checking*

The idea is that there are some expressions for which it is easier to *infer*, ie compute the type directly, while for others, it is easier to have the user supply a type annotation and then *check* that it is correct.

As a rule of thumb, it is often easier to check the type for introduction rules while for elimination rules, it is usually easier to infer the type.

1. Var

$$\frac{\mathcal{WF}(\Gamma) \quad (x,\,\tau,\,v) \in \Gamma}{\Gamma \vdash x \Rightarrow \tau}$$

This says that we may infer the type of a variable if the type information is already in our context.

2. **Type**

$$\frac{\mathcal{WF}(\Gamma)}{\Gamma \vdash \mathrm{Type} \Rightarrow \mathrm{Kind}}$$

3. Type ascriptions

$$\frac{\Gamma \vdash T \Rightarrow s \quad \Gamma \vdash T \Downarrow \tau \quad \Gamma \vdash E \Leftarrow \tau}{\Gamma \vdash (E:T) \Rightarrow \tau}$$

Optional type ascriptions allow the interpreter to infer the type of an expression. This is useful for lambda abstractions in particular because it's kinda hard to infer the type of a function like λx , x without any further contextual information.

$$\frac{\Gamma \vdash E \Leftarrow \operatorname{Kind}}{\Gamma \vdash (E : \operatorname{Kind}) \Rightarrow \operatorname{Kind}}$$

Note that the first rule doesn't allow users to assert that (E: Kind) since there is no s with $\Gamma \vdash \text{Kind} \Rightarrow s$. This second rule allows users to assert that Type and type constructors have type Kind.

4. Check

$$\frac{\Gamma \vdash E \Rightarrow \tau' \qquad \tau \equiv_{\alpha\beta} \tau'}{\Gamma \vdash E \Leftarrow \tau}$$

This says that to check if E has type τ with respect to a context Γ , we may first infer the type of E. Suppose it is τ' . Then if we also find that τ and τ' are α and β equivalent to each other, we may conclude that E indeed has type τ .

Remark. This rule, together with the one on type ascriptions, is precisely the reason why we eagerly normalize types and maintain the 2 invariants required for our contexts to be well formed.

To see this, suppose the user requests that we typecheck an expression of the form (x:T) where T is some complicated expression entered by the user. Intuitively, we want to grab the type of x from the context and then check that it is equal to the annotated type of T.

Unlike the simply typed and polymorphic lambda calculi, our type system is much richer and so checking types for equality is not so simple. In fact, "types" are just expressions!

Ah but since we always normalize types before dealing with them, assuming that terms have a unique head normal form (we'll discuss this later in the section on metatheoretic properties), we will normalize T and T' to τ and τ' respectively. After that, we need only compare them for structural equality, modulo alpha equivalence. Such an operation is trivial to implement using an implementation that represets variables by de bruijn indices.

5. Pi formation

$$\frac{\Gamma \vdash A \Rightarrow s_1 \quad \Gamma \vdash A \Downarrow \tau \quad (x, \, \tau, \, \text{und}) :: \Gamma \vdash B(x) \Rightarrow s_2}{\Gamma \vdash \Pi_{x:A} B(x) \Rightarrow s_2}$$

Note that this is a rule schema with the metavariables $s_1, s_2 \in \{\text{Type}, \text{Kind}\}.$

6. Pi introduction

$$\frac{(x, \tau, \text{ und}) :: \Gamma \vdash E \Leftarrow \tau'(x)}{\Gamma \vdash \lambda x, E \Leftarrow \Pi_{x:\tau} \tau'(x)}$$

Note that in the event that the input variable of the lambda abstraction and Pi are different, then we must perform an α renaming so that the variable being bound in $(\lambda x, E)$ and $\Pi_{u:\tau}\tau'(y)$ are the same.

$$\frac{\Gamma \vdash T \Rightarrow s \quad \Gamma \vdash T \Downarrow \tau \quad (x, \tau, \text{ und}) :: \Gamma \vdash E \Rightarrow \tau'(x)}{\Gamma \vdash \lambda (x : T), E \Rightarrow \Pi_{x : \tau} \tau'(x)}$$

The second rule says that if the user type annotates the input argument of the function, then we can try to infer the type of the output and consequently, the type of the function as a whole.

7. Function application, ie Pi elimination

$$\frac{\Gamma \vdash E_1 \Rightarrow \Pi_{x:\tau}\tau'(x) \qquad \Gamma \vdash E_2 \Leftarrow \tau \qquad \Gamma \vdash \tau'[x \mapsto E_2] \Downarrow \tau''}{E_1 E_2 \Rightarrow \tau''}$$

8. Local let binding

$$\frac{\Gamma \vdash E \Rightarrow \tau \quad (x, \, \tau, \, \text{und}) :: \Gamma \vdash E' \Rightarrow \tau'(x) \quad \Gamma \vdash \tau'[x \mapsto E] \Downarrow \tau''}{\Gamma \vdash \text{let } x := E \text{ in } E' \Rightarrow \tau''}$$

9. Sigma formation

$$\frac{\Gamma \vdash A \Rightarrow s_1 \quad \Gamma \vdash A \Downarrow \tau \quad (x, \tau, \text{ und}) :: \Gamma \vdash B(x) \Rightarrow s_2}{\Gamma \vdash \Sigma_{x:A} B(x) \Rightarrow s_2}$$

As with the rule for Pi formation, $s_1, s_2 \in \{\text{Type}, \text{Kind}\}.$

10. Sigma introduction

$$\frac{\Gamma \vdash E_1 \Leftarrow \tau_1 \quad \Gamma \vdash \tau_2[x \mapsto E_1] \Downarrow \tau_2' \quad \Gamma \vdash E_2 \Leftarrow \tau_2'}{\Gamma \vdash \langle E_1, E_2 \rangle \Leftarrow \Sigma_{x:\tau_1} \tau_2(x)}$$

11. Sigma elimination

$$\frac{\Gamma \vdash E \Rightarrow \Sigma_{x:\tau_1} \tau_2(x)}{\Gamma \vdash \text{fst } E \Rightarrow \tau_1}$$

$$\frac{\Gamma \vdash E \Rightarrow \Sigma_{x:\tau_1} \tau_2(x) \qquad \Gamma \vdash \tau_2[x \mapsto \text{fst } E] \Downarrow \tau_2'}{\Gamma \vdash \text{snd } E \Rightarrow \tau_2'}$$

12. Sum formation

$$\frac{\Gamma \vdash A \Leftarrow \text{Type} \quad \Gamma \vdash B \Leftarrow \text{Type}}{\Gamma \vdash A + B \Rightarrow \text{Type}}$$

Note that this rule says that users can only make construct a sum, aka coproduct, out of types that live in the universe Type, not Kind.

Recalling the Curry-Howard correspondence which identifies types and propositions, we see sum types as a way to model disjunction. Hence we do not see a need to allow users to construct sums out of large types like type constructors found in Kind.

Also we are unsure if the logical consistency of the system can be preserved if we allow for A+B to be formed when one is of type Type while the other has type Kind.

13. Sum introduction

$$\frac{\Gamma \vdash E \Leftarrow \tau_1}{\Gamma \vdash \text{inl } E \Leftarrow \tau_1 + \tau_2}$$
$$\frac{\Gamma \vdash E \Leftarrow \tau_2}{\Gamma \vdash \text{inr } E \Leftarrow \tau_1 + \tau_2}$$

14. Sum elimination

$$\frac{\Gamma \vdash E \Rightarrow \tau_1 + \tau_2 \quad (x, \, \tau_1, \, \text{und}) :: \Gamma \vdash E_1 \Rightarrow \tau_1' \quad (y, \, \tau_2, \, \text{und}) :: \Gamma \vdash E_2 \Rightarrow \tau_2' \quad \tau_1' \equiv_{\alpha\beta} \tau_2'}{\Gamma \vdash \text{match}(E, \, x \rightarrow E_1, \, y \rightarrow E_2) \Rightarrow \tau_1'}$$

The nice thing about these rules is that we can translate it almost directly into a typechecking and inference algorithm! More precisely, we may translate $\Gamma \vdash E \Leftarrow T$ into a function called check (Γ, E, T) which checks if the expression E really has the type T given a context Γ .

Similarly, $\Gamma \vdash E \Rightarrow T$ gives us the function infer (Γ, E) which outputs the inferred type of E given the context Γ .

In the literature, such rules are called *syntax directed*, as the algorithm closely follows the formalization of the corresponding judgments.

4.2 Statements and programs

Programs in our language are nonempty sequences of statements, with each statement being built from some expression. We formalize the execution of programs by defining a *transition system*.

Before that, we first define the notion of a configuration, which plays the same role as states in automata.

4.2.1 Configuration/state of program

A configuration has the form

$$(\Gamma, \langle S_0; \ldots; S_n \rangle, E)$$

Configurations are triples representing the instantaneous state during an execution of a program. Here, Γ denotes the current state of the global context and the sequence $\langle S_0; \ldots; S_n \rangle$ denotes the sequence of statements to be executed next. The expression E is used to indicate the output of the previously executed statement.

With this view, given a program, $\langle S_0; \ldots; S_n \rangle$, we also define the initial and final configurations.

1. Initial configuration: $(\emptyset, \langle S_0; \ldots; S_n \rangle, \text{Type})$

This is the state in which we begin executing our programs. Initially, our global context is empty. Also, Type is merely a dummy value and could have very well be replaced by Kind.

2. **Final configurations** $(\Gamma, \langle \rangle, E)$ After executing programs in our language, if all goes well, we'll end up in one of these states.

In the next section, we define the big-step transition relation for programs $\cdot \downarrow \cdot$ using this notion of a configuration.

4.2.2 Big step semantics for programs

We define the big step transition relation, $\cdot \downarrow \cdot$, via a new judgment form.

It should be noted that in the rules below, we interleave type checking and evaluation, ie we type check and then evaluate each statement, one at a time, carrying the context along as we go. We do not statically type check the whole program first, then evaluate afterwards.

1. Check

$$\frac{\Gamma \vdash E \Rightarrow s}{(\Gamma,\, \langle \mathrm{check}\ E \rangle,\, E') \Downarrow (\Gamma,\, \langle \rangle,\, \tau)}$$

2. Eval

$$\frac{\Gamma \vdash E \Rightarrow s \quad \Gamma \vdash E \Downarrow \nu}{(\Gamma, \langle \text{eval } E \rangle, E') \Downarrow (\Gamma, \langle \rangle, \nu)}$$

3. Axiom

$$\frac{\Gamma \vdash T \Rightarrow s \quad \Gamma \vdash T \Downarrow \tau}{(\Gamma, \langle \operatorname{axiom} x : T \rangle, E) \Downarrow ((x, \tau, \operatorname{und}) :: \Gamma, \langle \rangle, x)}$$

4. **Def**

$$\frac{\Gamma \vdash E \Rightarrow s \quad \Gamma \vdash E \Downarrow \nu}{(\Gamma, \langle \operatorname{def} x := E \rangle, E') \Downarrow ((x, \tau, \nu) :: \Gamma, \langle \rangle, x)}$$

5. Sequences of statements

$$\frac{(\Gamma, \langle S_0 \rangle, E) \Downarrow (\Gamma', \langle \rangle, E') \qquad (\Gamma', \langle S_1; \dots; S_n \rangle, E) \Downarrow (\Gamma'', \langle \rangle, E'')}{(\Gamma, \langle S_0; S_1; \dots; S_n \rangle, E) \Downarrow (\Gamma'', \langle \rangle, E'')}$$

4.2.3 Putting the transition system together

Letting S denote the (infinite) set of all configurations, and defining

$$F := \{ (\Gamma, \langle \rangle, E) \in S \mid E \text{ expression} \}$$

we obtain a transition system, given by the tuple

$$\langle S, \downarrow, (\emptyset, \langle S_0; \ldots; S_n \rangle, \text{Type}), F \rangle$$

Notice how our formalization mimics the definition of an automaton.

4.2.4 Output expression of evaluating a program

With these rules, given a user-entered program, say $\langle S_0; \dots; S_n \rangle$, we define the output expression of a program to be the E such that

$$(\emptyset, \langle S_0; \dots S_n \rangle, \text{Type}) \downarrow (\Gamma, \langle \rangle, E)$$

In other words, the expression output to the user is the expression obtained by beginning with the initial configuration and then recursively evaluating until we reach a final configuration.

5 Metatheoretic discussion – TODO

The original Calculus of Constructions is known to be strongly normalizing in that the normalization process, when applied to any well typed term, always terminates. Furthermore, it has decidable typechecking and is logically consistent when its type system is viewed as a logical calculus, with the Pi type corresponding to universal quantification.

Say something about why we think our bidirectional typechecking works. https://arxiv.org/pdf/2102.06513.pdf

Also say something about how "impredicative" Sigma types breaks consistency due to Girard's paradox and that the only (?) way to fix that is to use a predicative hierarchy of type universe with either cumulativity or universe polymorphism.

Mention that this issue may not be a big one because the proof term in Girard's is astronomical and Idk if our system can even handle anything that big since it isn't very efficient (cos we substitute naively rather than use normalization by evaluation).

If users are really afraid, just avoid using higher order existential quantification and stick to first order. Alternatively, can encode higher order existential quantification in terms of universal in CoC (see Type Theory and Formal Proof book).

https://era.ed.ac.uk/bitstream/handle/1842/12487/Luo1990.Pdf

Here we make an assumption that head normal forms are *unique*. This is not a far fetched assumption because it holds for the original Calculus of Constructions as well as various extensions of it that include Sigma types among others. [insert reference to Luo's phd thesis]

It's worth noting that η equivalence is not respected by our type system. By that we mean that the following rule does not hold:

$$\frac{\Gamma \vdash E \Rightarrow \tau' \qquad \tau \equiv_{\eta} \tau'}{\Gamma \vdash E \Leftarrow \tau}$$

In other words, 2 types that are η equivalent to one another will *not* be judged as equal types.

One way to fix this is to allow the type checker to eta expand terms, via eliminating and then applying the data constructor while computing the beta

normal form. However, this significantly complicates discussions of the metatheoretic properties of the language and so for simplicity, we chose to follow the original formulation of the Calculus of Constructions and ignore this.

6 Technical implementation