Bin Packing Problem: A general purpose Hill Climbing procedure

Lukas Schmauch, Sebsatian Wolf

Seminar Modern Heuristics Dr. Rico Walter

Februar 2021

Übersicht

Was ist das Bin Packing Problem?

Computational Studies

Zusammenfassung

Übersicht der Ergebnisse

Тур	Inst.	Items	Mittlere LB	FFD	НС	Mittlere Zeit
Unif	20	120	49.1	0.7		
Unif	20	250	101.6	1.5		
Unif	20	500	201.2	2.7		
Unif	20	1000	400.6	4.85		
Trip	20	60	20	3.2		
Trip	20	120	40	5.8		
Trip	20	249	83	12.1		
Trip	20	510	167	23.05		
Hard	10	200	56.2	3.4		

Optimalitätsanalyse Instanzgruppe Uniform

$$L_1 = \left[\sum_{j=1}^n \frac{w_j}{C} \right] \tag{1}$$

Figure: Anzahl gefundener LBs

Lösungsgüte im Zeitverlauf Instanzgruppe Uniform

Figure: Mittlere Abweichung von LB pro Zeiteinheit

Optimalitätsanalyse Instanzgruppe Triplet

$$ightharpoonup LB = \frac{\#Items}{3}$$

► LB wird nie getroffen

Figure: Anzahl gefundener LBs

Lösungsgüte im Zeitverlauf Instanzgruppe Triplet

Figure: Mittlere Abweichung von LB pro Zeiteinheit

Vergleich mit Triplet und Uniform

Figure: Triplet

Figure: Uniform

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{2}$$

Figure: rel. Abweichung von LB nach 10 Sec.

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{3}$$

Figure: rel. Abweichung von LB nach 10 Sec.

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{4}$$

Figure: rel. Abweichung von LB nach 10 Sec.

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{5}$$

Figure: rel. Abweichung von LB nach 10 Sec.

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{6}$$

Figure: rel. Abweichung von LB nach 10 Sec.

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{7}$$

Figure: rel. Abweichung von LB nach 10 Sec.

Vergleich mit anderer Permutationswahl

Figure: Random Permutation

Figure: Minimale Itemzahl

Literaturverzeichnis

Deep Learning, Ian Goodfellow and Yoshua Bengio and Aaron Courville, 2016

Convolutional neural networks: an overview and application in radiology, Yamashita, 2018

Script: Einführung in tiefe Lernverfahren - Faltungsnetzwerke, Prof. Joachim Denzler

https://towardsdatascience.com/ a-comprehensive-guide-to-convolutional-neural-networks\ -the-eli5-way-3bd2b1164a53

https://aishack.in/tutorials/image-convolution-examples/