Centra obliczeniowe

Nazwa zadania	Centra obliczeniowe
Wejście	Standardowe wejście
Wyjście	Standardowe wyjście
Limit czasu	2 sekundy
Limit pamięci	256 MB

Wiktoriasoft to szwajcarska firma informatyczna, która obsługuje n centrów obliczeniowych na świecie (najbardziej znane filie Wiktoriasoftu znajdują się w Lozannie, Warszawie i Antalyi). Każde centrum obliczeniowe posiada pewną liczbę dostępnych komputerów. By zapewnić niezawodność, każdy program jest uruchomiony w pewnej liczbie kopii w tym samym czasie. Każda kopia działa w innym centrum obliczeniowym i wymaga pewnej ustalonej liczby komputerów, by się wykonywać. Wszystkie kopie jednego programu wymagają takiej samej liczby komputerów.

Kiedy Wiktoriasoft planuje uruchomienie kolejnego programu i, który wykonywać się będzie w c_i kopiach, każda kopia na m_i komputerach, firma musi najpierw wybrać odpowiednie centra obliczeniowe. W tym celu centra są sortowane malejąco według liczby dostępnych komputerów, a następnie wybierane jest c_i centrów, w każdym z nich rezerwowane jest m_i komputerów.

Wiktoriasoft otrzymała listę *s* programów, które należy uruchamiać w kolejności podanej na wejściu. Prąd kosztuje, więc analitycy firmy poprosili Cię, żebyś podała im liczbę nieużywanych komputerów w każdym z centrów po uruchomieniu wszystkich programów.

Wejście

Pierwsza linia wejścia zawiera dwie liczby całkowite n i s (oddzielone spacją) oznaczające odpowiednio liczbę centrów obliczeniowych oraz liczbę programów, które musi uruchomić Wiktoriasoft.

Kolejna linia zawiera n liczb całkowitych oddzielonych spacją, reprezentujących liczbę dostępnych komputerów w kolejnych n centrach obliczeniowych przed uruchomieniem jakiegokolwiek programu.

Następne s linii opisuje programy, które należy uruchomić. i-ta linia zawiera dwie liczby m_i oraz c_i (rozdzielone spacją), oznaczające odpowiednio liczbę komputerów potrzebnych do uruchomienia

jednej kopii programu oraz liczbę kopii programu.

Wyjście

Należy wypisać jedną linię zawierającą n oddzielonych spacjami liczb całkowitych posortowanych w **kolejności malejącej**, które oznaczają liczbę dostępnych komputerów w każdym z centrów obliczeniowych po uruchomieniu wszystkich zleconych programów.

Ograniczenia

- $1 \le n \le 100\,000$ i $0 \le s \le 5\,000$.
- Każde centrum obliczeniowe ma co najwyżej 10^9 początkowo dostępnych komputerów.
- $1 \le m_i \le 10^9$, dla każdego i, takiego że $1 \le i \le s$.
- $1 \le c_i \le n$, dla każdego i, takiego że $1 \le i \le s$.
- Centra obliczeniowe mają dostatecznie dużo komputerów, by dało się uruchomić wszystkie programy.

Podzadania

- Podzadanie 1 (12 punktów): $n \leq 100$, s = 0.
- Podzadanie 2 (12 punktów): $n \le 100$, $s \le 10$.
- Podzadanie 3 (9 punktów): $n \leq 50\,000$, $s \leq 100$.
- Podzadanie 4 (26 punktów): Każde centrum obliczeniowe ma co najwyżej 1 000 komputerów.
- Podzadanie 5 (18 punktów): $c_i = 1$ dla każdego i, takiego że $1 \le i \le s$.
- Podzadanie 6 (23 punkty): Brak dodatkowych ograniczeń.

Przykład

Wejście	Wyjście		
5 4	11 10 10 9 8		
20 12 10 15 18			
3 4			
4 1			
1 3			
4 2			

Komentarz

Krok	Dostępne komputery	Akcja
Początek	20 12 10 15 18	
Program #1: przed uruchomieniem	20 18 15 12 10	Sortuje centra malejąco.
Program #1: po uruchomieniu	17 15 12 9 10	Zajmuje 3 komputery w pierwszych 4 centrach obliczeniowych.
Program #2: przed uruchomieniem	17 15 12 10 9	Sortuje centra malejąco.
Program #2: po uruchomieniu	13 15 12 10 9	Zajmuje 4 komputery w pierwszym centrum
Program #3: przed uruchomieniem	15 13 12 10 9	Sortuje centra malejąco.
Program #3: po uruchomieniu	14 12 11 10 9	Zajmuje 1 komputer w pierwszych 3 centrach obliczeniowych.
Program #4: przed uruchomieniem	14 12 11 10 9	Sortuje centra malejąco.
Program #4: po uruchomieniu	10 8 11 10 9	Zajmuje 4 komputery w pierwszych 2 centrach obliczeniowych.
Koniec	11 10 10 9 8	Sortuje centra malejąco.