

IRFB3306PbF IRFS3306PbF IRFSL3306PbF

Applications

- High Efficiency Synchronous Rectification in SMPS
- Uninterruptible Power Supply
- High Speed Power Switching
- Hard Switched and High Frequency Circuits

Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche
- Enhanced body diode dV/dt and dl/dt Capability
- Lead-Free
- RoHS Compliant, Halogen-Free

HEXFET® Power MOSFET

112/(1 2 1 1 0 (
V _{DSS}	60V
R _{DS(on)} typ.	$3.3 \mathrm{m}\Omega$
max.	$4.2 m\Omega$
I _{D (Silicon Limited)}	160A ①
I _{D (Package Limited)}	120A

G	D	S
Gate	Drain	Source

Base Part Number	Package Type	Standard Pa	ack	Orderable Part Number	
Dase Part Number	rackage Type	Form	Quantity	Orderable Part Number	
IRFB3306PbF	TO-220	Tube	50	IRFB3306PbF	
IRFSL3306PbF	TO-262	Tube	50	IRFSL3306PbF	
		Tube	50	IRFS3306PbF	
IRFS3306PbF	D2Pak	Tape and Reel Left	800	IRFS3306TRLPbF	
		Tape and Reel Right	800	IRFS3306TRRPbF	

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	160①	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	110①	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Wire Bond Limited)	120	A
I _{DM}	Pulsed Drain Current ②	620	
P _D @T _C = 25°C	Maximum Power Dissipation	230	W
	Linear Derating Factor	1.5	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery ④	14	V/ns
T_J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		⊸°c
	Soldering Temperature, for 10 seconds	300	
	(1.6mm from case)		
	Mounting torque, 6-32 or M3 screw	10lb· in (1.1N· m)	

Avalanche Characteristics

E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ③	184	mJ
I _{AR}	Avalanche Current ②	See Fig. 14, 15, 22a, 22b,	Α
E _{AB}	Repetitive Avalanche Energy ⑤		mJ

Thermal Resistance

Symbol	Symbol Parameter		Max.	Units
$R_{\theta JC}$	Junction-to-Case ®		0.65	
R _{eCS}	Case-to-Sink, Flat Greased Surface , TO-220	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient, TO-220 ⁽⁹⁾		62	*C/VV
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount) , D²Pak ⊗®		40	

Static @ $T_J = 25^{\circ}C$ (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	60			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.07		V/°C	Reference to 25°C, I _D = 5mA ^②
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.3	4.2	mΩ	$V_{GS} = 10V, I_{D} = 75A$ (§)
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_D = 150\mu A$
I _{DSS}	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 60V, V_{GS} = 0V$
				250		$V_{DS} = 48V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
R _G	Internal Gate Resistance		0.7		Ω	

Dynamic @ T_{.1} = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	230			S	$V_{DS} = 50V, I_{D} = 75A$
Q_g	Total Gate Charge		85	120	nC	I _D = 75A
Q_{gs}	Gate-to-Source Charge		20			V _{DS} =30V
Q_{gd}	Gate-to-Drain ("Miller") Charge		26			V _{GS} = 10V ⑤
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		59		Î	$I_D = 75A, V_{DS} = 0V, V_{GS} = 10V$
t _{d(on)}	Turn-On Delay Time		15		ns	$V_{DD} = 30V$
t _r	Rise Time		76		Î	I _D = 75A
t _{d(off)}	Turn-Off Delay Time		40			$R_G = 2.7\Omega$
t _f	Fall Time		77			V _{GS} = 10V ⑤
C _{iss}	Input Capacitance	_	4520		pF	$V_{GS} = 0V$
C _{oss}	Output Capacitance	_	500			$V_{DS} = 50V$
C _{rss}	Reverse Transfer Capacitance		250			f = 1.0MHz, See Fig. 5
C _{oss} eff. (ER)	Effective Output Capacitance (Energy Related)		720			$V_{GS} = 0V$, $V_{DS} = 0V$ to 48V \bigcirc , See Fig. 11
C _{oss} eff. (TR)	Effective Output Capacitance (Time Related)®		880			V _{GS} = 0V, V _{DS} = 0V to 48V ®

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			160①	Α	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current			620	Α	integral reverse
	(Body Diode) ②					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 75A, V_{GS} = 0V$ (5)
t _{rr}	Reverse Recovery Time		31		ns	$T_J = 25^{\circ}C$ $V_R = 51V$,
			35			$T_J = 125^{\circ}C$ $I_F = 75A$
Q _{rr}	Reverse Recovery Charge		34		nC	$T_J = 25^{\circ}C$ di/dt = 100A/ μ s \odot
			45			$T_J = 125^{\circ}C$
I _{RRM}	Reverse Recovery Current		1.9		Α	$T_J = 25$ °C
t _{on}	Forward Turn-On Time	Intrins	ic turn-	on time	is negl	igible (turn-on is dominated by LS+LD)

Notes:

- ① Calculated continuous current based on maximum allowable junction ④ $I_{SD} \le 75A$, di/dt $\le 1400A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_{J} \le 175^{\circ}C$. temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.
- ② Repetitive rating; pulse width limited by max. junction temperature.
- R_G = 25 $\!\Omega,\,I_{AS}$ = 96 A, V_{GS} =10 V. Part not recommended for use above this value.
- ⑤ Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- $\ \, \mbox{\ensuremath{\mathbb{G}}} \ \, \mbox{\ensuremath{\mathbb{C}}}_{\mbox{\scriptsize oss}} \ \mbox{\scriptsize eff.} \ \mbox{\scriptsize (TR)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- O Coss eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- ® When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994.

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

V_{SD}, Source-to-Drain Voltage (V)

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 11. Typical C_{OSS} Stored Energy

Fig 8. Maximum Safe Operating Area

Fig 10. Drain-to-Source Breakdown Voltage

Fig 12. Maximum Avalanche Energy Vs. DrainCurrent

Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 14. Typical Avalanche Current vs. Pulsewidth

Fig 15. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption:
 - Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{imax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
- 4. $P_{D (ave)}$ = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).

tav = Average time in avalanche.

D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see Figures 13)

 $P_{D (ave)} = 1/2 (1.3 \cdot BV \cdot I_{av}) = \Delta T / Z_{thJC}$ $I_{av} = 2\Delta T / [1.3 \cdot BV \cdot Z_{th}]$ E_{AS (AR)} = P_{D (ave)}·t_{av}

Fig 16. Threshold Voltage Vs. Temperature

Fig. 18 - Typical Recovery Current vs. dif/dt

Fig. 17 - Typical Recovery Current vs. di_f/dt

Fig. 19 - Typical Stored Charge vs. di_f/dt

Fig. 20 - Typical Stored Charge vs. dif/dt

Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 22a. Unclamped Inductive Test Circuit

Fig 23a. Switching Time Test Circuit

Fig 23b. Switching Time Waveforms

Fig 24a. Gate Charge Test Circuit

Fig 24b. Gate Charge Waveform

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994.
- DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS].
- LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.
- DIMENSION D, D1 & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY.
- CONTROLLING DIMENSION: INCHES,
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1
- DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.
- OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

SYMBOL	MILLIM	ETERS	INC	HES	
	MIN.	MAX.	MIN.	MAX.	NOTES
Α	3.56	4.83	.140	.190	
A1	1.14	1.40	.045	.055	
A2	2.03	2.92	.080	.115	
b	0.38	1.01	.015	.040	
b1	0.38	0.97	.015	.038	5
b2	1,14	1.78	.045	.070	
b3	1,14	1.73	.045	.068	5
С	0.36	0.61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14.22	16.51	.560	.650	4
D1	8.38	9.02	.330	.355	
D2	11.68	12.88	.460	.507	7
E	9.65	10.67	.380	.420	4,7
E1	6.86	8.89	.270	.350	7
E2	-	0.76	-	.030	8
е	2.54	BSC	.100	BSC	
e1	5.08	BSC	.200	BSC	
H1	5.84	6.86	.230	.270	7,8
L	12.70	14,73	.500	.580	
L1	3.56	4.06	.140	.160	3
øΡ	3.54	4.08	.139	.161	
Q	2.54	3.42	.100	.135	

LEAD ASSIGNMENTS

HEXFET 1.- GATE 2.- DRAIN 3.- SOURCE

IGBTs, CoPACK

1.- GATE 2.- COLLECTOR 3.- EMITTER

DIODES

1.- ANODE 2.- CATHODE 3.- ANODE

TO-220AB Part Marking Information

TO-220AB packages are not recommended for Surface Mount Application.

$D^2 Pak\ Package\ Outline\ (\text{Dimensions}\ are\ shown\ in\ millimeters\ (inches))$

S Y M	DIMENSIONS						
B	MILLIM	ETERS	INC	HES	O T E S		
L	MIN.	MAX.	MIN.	MAX.	S		
Α	4,06	4.83	.160	.190			
A1	0.00	0.254	,000	.010			
b	0.51	0.99	.020	.039			
b1	0.51	0.89	.020	.035	5		
b2	1,14	1,78	.045	.070			
ь3	1,14	1,73	.045	.068	5		
С	0.38	0.74	.015	.029			
c1	0.38	0.58	.015	.023	5		
c2	1,14	1.65	.045	.065			
D	8.38	9.65	.330	.380	3		
D1	6.86	_	.270	_	4		
E	9.65	10.67	.380	.420	3,4		
E1	6.22	_	.245	_	4		
е	2.54	BSC	.100	.100 BSC			
Н	14.61	15,88	.575	.625			
L	1.78	2.79	.070	.110			
L1	_	1,68	-	.066	4		
L2	_	1,78	-	.070			
L3	0.25	BSC	.010	BSC			

NOTEC

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61, 63 AND c1 APPLY TO BASE METAL ONLY.

- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION; INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

LEAD ASSIGNMENTS

DIODES

1.- ANODE (TWO DIE) / OPEN (ONE DIE)

2, 4.- CATHODE 3.- ANODE

HEXFET

IGBTs, CoPACK

1.- GATE

1,- GATE

2, 4.- DRAIN 3.- SOURCE 2, 4.- COLLECTOR 3.- EMITTER

D²Pak Part Marking Information

TO-262 Package Outline (Dimensions are shown in millimeters (inches))

S Y M	DIMENSIONS					
B	MILLIM	ETERS	INC	HES	O T E S	
0 L	MIN.	MAX.	MIN.	MAX.	E S	
Α	4.06	4,83	.160	.190		
A1	2.03	3,02	.080	,119		
ь	0.51	0.99	.020	.039		
b1	0.51	0.89	.020	.035	5	
ь2	1,14	1.78	.045	.070		
b3	1,14	1.73	.045	.068	5	
С	0.38	0.74	.015	.029		
c1	0.38	0.58	.015	.023	5	
c2	1.14	1.65	.045	.065		
D	8.38	9,65	.330	.380	3	
D1	6.86	-	.270	_	4	
E	9.65	10.67	.380	.420	3,4	
E1	6,22	-	.245		4	
е	2,54	BSC	.100 BSC			
L	13,46	14.10	.530	.555		
L1	-	1.65	-	.065	4	
L2	3.56	3.71	.140	.146		

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3 DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED $^{\circ}$ 0.127 [.005"] per side, these dimensions are measured at the outmost extremes of the plastic body.
- 4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- 5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.
- 6, CONTROLLING DIMENSION: INCH.
- 7.- OUTLINE CONFORM TO JEDEC TO-262 EXCEPT A1(mox.), b(min.) AND D1(min.) WHERE DIMENSIONS DERIVED THE ACTUAL PACKAGE OUTLINE.

LEAD ASSIGNMENTS

IGBTs, CoPACK

- 2.- COLLECTOR 3.- EMITTER
- 4.- COLLECTOR

HEXFET

- 1.- ANODE (TWO DIE) / OPEN (ONE DIE)
 2, 4.- CATHODE
- 2.- DRAIN 3.- SOURCE 4.- DRAIN
- 3.- ANODE

TO-262 Part Marking Information

D²Pak Tape & Reel Information

NOTES:

- 1. COMFORMS TO EIA-418.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 3 DIMENSION MEASURED @ HUB.
- 4 INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Qualification information[†]

Qualification level	Industrial	
	(per JEDEC JESD47F ^{††} guidelines)	
Moisture Sensitivity Level	TO-220	N/A
	D2Pak	- MSL1
	TO-262	
RoHS compliant	Yes	

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability/
- †† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comment	
	Updated data sheet with new IR corporate template.	
4/24/2014	Updated package outline & part marking on page 8, 9 & 10.	
	Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1.	

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/