Sampling from Probability Distributions

Sean Hellingman ©

Introduction to Statistical Data Analysis (ADSC1000) shellingman@tru.ca

Fall 2024

Topics

- Introduction
- Random Numbers
 Discrete Probability
 - Distributions

- Continuous ProbabilityDistributions
- 6 Sampling from Common Distributions
- Exercises and References

Introduction

- Many applications in data science require random samples from specific probability distributions.
- Sometimes it may be difficult to solve problems mathematically.
- Forms the basis of simulation studies.
- At its base, this involves generating random numbers.

Pseudo Random Numbers

- Used to generate random samples from probability distributions.
- Random number is uniformly distributed between 0 and 1.
 - Technically not truly random.
- In R: runif(n, min = 0, max = 1)

Sampling from Discrete Probability Distributions

- Recall that the values of the CDF divide the interval from 0 to 1.
- By generating random numbers between 0 and 1 we can match the corresponding outcomes.
- Then any random number falls within one of the intervals.

Example 1

Assume the following discrete probability distribution:

Outcome:	1	2	3	4
p(x) PMF:	0.2	0.3	0.1	0.4
F(x) CDF:	0.2	0.5	0.6	1

• Use R to generate n = 10 random numbers from this distribution.

	Interval		Outcome
0	to	0.2	1
0.2	to	0.5	2
0.5	to	0.6	3
0.6	to	1.0	4

Sampling from Continuous Probability Distributions

- Again, the values of the CDF divide the interval from 0 to 1.
- By generating random numbers between 0 and 1 we can match the corresponding outcomes.
- Input the values into the CDF can be converted back to outcomes (inverse transform sampling).
 - **1** Generate $U \sim \mathsf{Unif}(0,1)$
 - 2 Let $X = F_X^{-1}(U)$

Example 2

- Using R, generate n = 1000 random observations for the standard uniform distribution runif(1000, min = 0, max = 1)
- Next, use those observations and the inverse of the exponential CDF to generate observations from an exponential distribution with $\lambda=2$.
- Hint:

$$F(X) = 1 - e^{-2x}$$

and

$$F^{-1}(U) = -\frac{\ln(1-u)}{2}$$

Random Numbers in R

• There are existing functions in R for generating random numbers from common distributions.

Generally: rdistribution.name(n, ...)

R Functions

- Uniform Distribution: runif(n, min = 0, max = 1)
- Normal Distribution: rnorm(n, mean = 0, sd = 1)
- Exponential Distribution: rexp(n, rate = 0.5)
- Poisson Distribution: rpois(n, lambda = 3)
- Binomial Distribution: rbinom(n, size = 10, prob = 0.3)
- Geometric Distribution: rgeom(n, prob = 0.2)

Thinking About Sample Sizes

- Increasing the number of simulations (n) will cause the sample parameters converge to the distribution.
- This occurs at the expense of computing time.

Example 3

- Set your seed to be 1000.
- In R, generate 3 samples from a normal distribution where $\mu=1$ and $\sigma=2.$
 - $0 n_1 = 2$
- Calculate the sample mean (\bar{x}) and sample variance (s).
- Comment on your findings.

Final Thoughts

- Simulations are often used to test models before using them on real data.
- We will speak more about simulations in another term.
- A representative sample is better than a large sample.

Exercise 1

Assume the following discrete probability distribution:

Outcome:	1	2	3
p(x) PMF:	0.25	0.45	0.30
F(x) CDF:	0.25	0.70	1.0

• Use R to generate $n_1 = 10 \& n_2 = 100$ random numbers from this distribution.

	Interval		Outcome
0	to	0.25	1
0.25	to	0.7	2
0.7	to	1.0	3

Comment on your results.

Exercise 2

- Using R, generate n = 1000 random observations for the standard uniform distribution runif(1000, min = 0, max = 1)
- Use the uniform observations and the qnorm(p, mean, sd) function to generate observations from a normal distribution with mean = 3 and standard deviation (sd) = 2.

Exercise 3

- In R, generate 3 samples from a **binomial** distribution where size (parameter n) = 10 and p = 0.2.
- Sample sizes:
 - $0 n_1 = 2$
 - $n_1 2$ 2 $n_2 = 20$
 - $n_3 = 200$
- Calculate the sample mean (\bar{x}) and sample variance (s).
- Compare your findings to the theoretical expected value and variance.

References & Resources

Evans, J. R., Olson, D. L., & Olson, D. L. (2007). Statistics, data analysis, and decision modeling. Upper Saddle River, NJ: Pearson/Prentice Hall.

Inverse Transform Sampling