

Natural Cycles

Assignment for Senior Data Scientist position

Jeroen Buil

Contents

- Introduction
- Exploratory Data Analysis
- Questions:
 - 1. What is the chance of getting pregnant within 13 cycles?
 - 2. How long does it usually take to get pregnant?
 - 3. What factors impact the time it takes to get pregnant?
 - 4. ML vs non-ML methods approach?

Quick introduction

- Jeroen Buil
 - Senior Data Scientist / Biomedical Engineer

Focus:
Practically applying Al for

2024

EDA: Exploratory Data Analysis

=> First step before any analysis

Q: Is the data suitable?

EDA: Quick glance

- Missing data:
 - ~40% of samples miss some data points
 - => Need to remove (or ideally fill) depending on analysis

NaN count:	
bmi	0
age	0
country	113
been_pregnant_before	317
education	391
sleeping_pattern	499
n_cycles_trying	0
outcome	0
dedication	0
average_cycle_length	6
cycle_length_std	25
regular_cycle	6
intercourse_frequency	0

Data range:

- BMI of 0 => not possible
- Big spread in (average) cycle length
- Dedication +100% => not possible

	min	max
bmi	0.0	50.611299
age	19	44
country	None	None
been_pregnant_before	None	None
education	None	None
sleeping_pattern	None	None
n_cycles_trying	1	26
outcome	not_pregnant	pregnant
dedication	0.0	1.347826
average_cycle_length	19.5	145.5
cycle_length_std	0.0	168.998521
regular_cycle	False	True
intercourse_frequency	0.0	0.793103

EDA: Histograms

- BMI:
 - Contains missing data (BMI of 0) => remove!
 - Underweight (BMI <16) + Morbidly Obese (BMI > 40) present => Keep or consider outliers?
- Cycle length:
 - (Very) high cycle lengths (>35 145 days) => users with PCOS*? => Keep or consider outliers?
- Unbalanced variables:
 - Country
 - · Been pregnant before
 - Education
 - · Sleeping Pattern
 - Cycle regularity
 - Regular_cycle
 - => Makes them harder to use as predictors!

*Polycystic ovary syndrome (PCOS) is characterised by irregular menstrual cycles, higher chance of diabetis type II and difficulty getting pregnant - https://en.wikipedia.org/wiki/Polycystic ovary syndrome

EDA: Data Inconsistencies?

- No intercourse, but still pregnant?
 - => remove samples

- cycles_length > 50 days are NOT regular cycles!
 - => Regularity of cycle is determined by cycle_length_std (< 5 days)

EDA: Data correlation

High correlation:

- Average cycle length <=> Cycle length std
 - This is to be expected
 - => consider keeping only one of the two

1.0

0.8

0.6

0.4

_ _

0.0

_0

EDA: Conclusion

- Data seems usable!
- Data requires some clean-up
 - Not all samples + variable are useable for modelling

Q1: What is the chance of getting pregnant within 13 cycles?

Group:	Chance	Participants
Got pregnant within the study	57.5%	1148 / 1995participants
Got pregnant within the study within 13 cycles	57.5%	1148 / 1995 participants
Got pregnant within 13 cycles out of all pregnant participants	100%	1148 / 1148 <u>pregnant</u> participants

Pregnant Participants: Cumulative Pregnancy Rate

Q2: How long does it usually take to get pregnant?

- What is "usually"? => 50%? 90%?
- Answer expressed in Days/Cycles?
- Note: <u>only pregnant participants</u> are included

Answer:

- Majority of participants (>50%) got pregnant ≤ 2 cycles
- 90% did so ≤ 7 cycles

Q2: How long does it usually take to get pregnant?

Additional remarks:

- Not all participants got pregnant during the study
 - Only 1139/1975 participants (57,8%)
- Longer study time might show longer 'average' conceptions times

Q3: What factors impact the time it takes to get pregnant?

Two approaches:

• Non-ML

• Non-ML

Simple Stupid

• ML:

Why?

- (Relatively) Low amount of variables
- Many categorical variables are unbalanced, can cause bias
- Simpler method => easier interpretable results

First more data cleaning needed

Removed "outliers"	Why	
Non-pregnant participants	We want to know how quickly, not IF they got pregnant.	
Pregnant participants with intercourse frequency 0	Can't get pregnant without sexual intercourse.	
BMI < 12	Unrealistic value	
Dedication > 1.00	You can't log more than 100% of days	
Remove samples with NaN's / empty values	We want to investigate all parameters	

Clean samples: 1121 (out of 1995)

Simple binning in groups already shows obvious effects

Statistical analysis confirms (linear) effect

- All 3 seem quite logical:
 - Dedication
 - Better tracking => quicker pregnant
 - Intercourse frequency
 - Regular intercourse => quicker pregnant
 - Age
 - Younger => more fertile => quicker pregnant

Also non-linear effects visible

Limitation of linear analysis => More advanced modelling needed?

Q4: How would your approach change if you were to use different techniques (e.g., ML or non-ML methods)?

- Two approaches:
 - Non-ML

• <u>ML:</u>

• Why?

- Easier to to investigate complex (non-linear) patterns
- Resulting model (potentially) useable for predicting conception time

Model choice

- When in doubt: XGBoost!
 - Easy implementation (especially compared to neural networks)
 - Accepts categorical + numerical data
 - Allows for classification + regression modeling
 - Build-in explainability tools (feature importance)

Note: average performance over 5-fold cross validation is shown

Poor performance XGBoost regression model...

• Likely due to data imbalance

Solution: bin, balance and classify!

- 1. Group conception times into 3 bins
- 2. Rebalance classes
- 3. Classification now gives ~79% accuracy

XGBoost Classification (CV): Classification Results

Confusion Matrix (%)

Confusion Matrix (Counts)

Feature importance shows new effects affecting conception time

Top 10 Feature Importance (XGBoost Classification, CV)

Conclusion

- ML techniques require (more) tweaking to get working
 - But can reveal more influencing factors
- Factors affecting conception time (in order of importance):
 - 1. Nr of previous pregnancies
 - 2. Cycle regularity and average length
 - 3. Sleeping patterns
 - 4. Dedication to logging data on Natural Cycles
 - 5. Intercourse frequency
 - 6. Physical condition: Age + BMI
- (Further investigation needed **HOW** these affect conception time)