Rechnernetze und Telekommunikation

IPv6

IPv6 - Warum?

- Mangel an IPv4-Adressen
 - 2011 waren keine neuen IPv4-Adressen mehr zu vergeben
 - 2³² (= ca. 4 Mrd.) ist nicht viel
- Neuer Adressierungsmodus "Anycast"
 - z.B. "an einen Router, der mich hört"
 - IPv4 kannte nur Unicast, Broadcast, Multicast
- Einfachere Adressstruktur
 - Einfacher Umzug/Umnummerierung von Adressen
- Eingebaute Unterstützung für
 - Mobilität (MobilelPv6)
 - Sicherheit (IPSec)
 - QoS (Dienstgüte)
- Einfacher Header, schnelleres Routing

IPv6 Adressen

- Länge: 128 Bit, (statt 32 Bit in IPv4)
- Notation
 - 8 Gruppen von je 4 Hexziffern
 - z.B.: 8000:0000:0000:0000:1234:32E1:1234:EDFA
 - Abkürzungen
 - "0000:" werden ":"
 - folgende ":" werden "::"
 - z.B: 8000::1234:32E1:1234:EDFA
 - Netze werden in der CIDR (also "/") Schreibweise angegeben
 - z.B. 3ffe::/16
- Jeder Rechner hat eine (oder mehrere) global erreichbare Adressen
 - Keine Adressübersetzung (NAT)

Unicast-Adressen

- ◆ 2000::/3 (also 2000:... bis 3fff:...)
 - Von der IANA vergebenen globalen Unicast-Adressen
 - ISPs erhalten /32-Netze oder kleiner
 - Endkunden erhalten /64 bis /48-Netze
 - -> 64...80 Bit für lokale/Host- Addressen!)

IPv6 Terminologie

IPv6 - Addressierungs Modell (1)

- Interfaces haben i.d.R. mehrere Adressen
 - Im Gegensatz zu IPv4
- Addressen haben einen Scope
 - Link Local
 - Site Local
 - Global
 - Es gibt Regeln, welche Adresse jeweils genutzt werden sollte

Unicast Adressformate

Link Local

FP (10bits)	RESERVED (54bits)	Interface ID (64bits) MAC derived		
1111111010	MUST be 0			

Site Local

FP (10bits)	Subnet (38bits)	Subnet (16bits)	Interface ID (64bits)
1111111011	Locally Administered	Locally Administered	MAC derived or Locally Administered

Global

FP (3bits)	Registry / provider assigned (45bits)	Subnet (16bits)	Interface ID (64bits)
001	Provider Administered	Locally Administered	MAC derived or Locally Administered or Random

Spezielle IPv6 Adressen

- ::/128 (128 0-Bits)
 - die undefinierte Adresse, steht häufig für alle möglichen Adressen
- ::1/128 (127 0-Bits, ein 1-Bit)
 - die Adresse des eigenen Standortes (localhost, loopback)
- 0:0:0:0:0:ffff::/96 (80 0-Bits, gefolgt von 16 1-Bits)
 - für IPv4 mapped (abgebildete) IPv6 Adressen
 - die letzten 32 Bits enthalten die IPv4-Adresse
- ff00::/8 (ff...) sind Multicast-Adressen

IPv4 vs. IPv6 Header Format

Feste Länge (40 Byte / 320 Bit) / keine Checksum!

IPv4 Header

- Feldname gleich in IPv4 und IPv6
 - Nicht mehr vorhanden in IPv6
 - Name und Position neu in IPv6
 - Neu in IPv6

IPv6 Header

Extension Headers (1)

- Alle weiteren Informationen als zus. "Extension Headers"
- ◆ Z.B.:

```
IPv6 header = TCP header + data

next header = TCP
```

```
IPv6 header

next header =
Routing
```

```
TCP header + data
```

```
IPv6 header
next header =
Routing
```

fragment of TCP header + data

Extension Headers (2)

- Extension Headers werden nur beim Empfänger bearbeitet
 - Viel geringerer Overhead als bei IPv4
 - Ausnahme: Hop-by-Hop Options Header
 - Keine 40 Bytes Limit für die Options wie in IPv4
- Mögliche Extension Headers
 - Fragmentierung
 - Hop-by-Hop Options
 - Routing
 - Authentication
 - Encryption

ICMPv6 Informational Messages

- Natürlich: Ping (Echo request/response) -> ping6
- Neighbor Discovery ICMP message types:
 - Router solicitation Fragt nach Routern
 - Router advertisement
 - Neighbor solicitation Fragt nach Nachbarn
 - Neighbor advertisement
 - Funktionen
 - Router discovery
 - Prefix discovery
 - Autoconfiguration of address & other parameters
 - Duplicate address detection (DAD)
 - Neighbor unreachability detection (NUD)
 - Link-layer address resolution

Router Advertisements

- Periodischer Multicast eines Ipv6 Routers an die "allnodes" multicast adresse (im Link Scope)
 - Inhalte (u.a.)
 - Prefix
 - Möglichst alle gültigen Prefixes an diesem Link
 - Benutzt für Autokonfiguration
 - "Get addresses from DHCP" Flag
 - Gibt an, dass DHCPv6 genutzt werden soll
 - "Get other from DHCP" Flag
 - Hole auch z.B. DNS-Info über DHCP
 - MTU-Größe
 - Minimum Link MTU für IPv6 sind 1280 Bytes!

Serverless Autoconfiguration ("Plug-n-Play")

- Hosts erzeugen Ihre Adresse aus den Router Advertisements
 - Subnet Prefix(e) werden aus den Muticasts gelernt
 - Die Interface IDs werden lokal erzeugt
 - MAC-Adresse oder davon abgeleitet (RFC 2373)
 - Oder Pseudo-Random (RFC 3041) anonymer!
- (Default-)Router-Adressen und Hop-Limit auch aus den Router Advertisements
- Informationen über höhere Ebenen (DNS, NTP,...) via Multicast/Anycast Discovery
- DHCPv6 bleibt alternativ möglich
 - Explizite Kontrolle

Andere Neighbor Discovery Messages

Router Solicitations

- Zur Start-up-Zeit, um sofort Antwort der Router zu bekommen
- Gesendet an die "All-Routers"-Multicastadr. (im Link Scope)

Neighbor Solicitations

- Zur Adress-Auflösung (statt ARP!): gesendet an die "Solicited Node" Multicastadresse
- Zur Erreichbarkeitserkenung: direkt an die Unicastadr.

Neighbor Advertisements

- Zur Adress-Auflösung: gesendet an Unicastadr. Des Anfragers
- Bei Link-Layer Adressänderungen: gesendet an die "All-Hosts"-Multicastadr.

IPv6 Martin Gergeleit

Übersicht Ipv4 vs. IPv6

		-		
_	\sim	Itl		_
	62	ITL	Jľ	-
•	·		41	$\overline{}$

Address length IPSec support QoS support Fragmentation Packet size

Checksum in header Options in header

Link-layer address resolution

Multicast membership

Router Discovery Uses broadcasts Configuration

DNS name queries

IPv4

32 bits Optional Some

Hosts and routers 576 bytes

Yes Yes

ARP (broadcast) Discovery Messages

IGMP

Discovery (MLD)

Optional

Yes

Manual, DHCP Uses A records

IPv6

128 bits Required Better

Hosts only 1280 bytes

No No

Multicast Neighbor

Multicast Listener

Required

No

Automatic, DHCP

Uses AAAA

records

IPv4 nach IPv6 Übergangs-Mechanismen

Dual Stack

- IPv4 und IPv6 Stack parallel auf einem System
- Unterstützt von allen übliche Betriebsystemen

Tunneling

Nutzt die bestehende IPv4-Infrastruktur als virtuellen Link

Translation

• Ermöglicht den Zugriff von IPv6 aus auf IPv4 Ressourcen

Tunneling

- Einkapselung eines IPv6-Paketes in einem IPv4-Paket
 - Möglich durch Router und Hosts
 - Kann manuell eingerichtet werden

IPv6 Martin Gergeleit

Automatisierter Tunnel mit 6to4 (RFC 3056)

- Jede IPv4-Adresse wird auf ein /48 großes IPv6-Netz abgebildet
 - Mit Präfix 2002 und der hexadezimal notierten IPv4-Adresse
 - IPv4-Hosts können über öffentliche 6to4-Relays IPv6 Ressourcen erreichen
 - Rückweg wieder über ein 6to4-Relay (mögl. ein anderes)
 - 192.88.99.1 als Anycast zum Erreichen eines 6to4-Relays

IPv6 Martin Gergeleit

Beispiel: 6to4-Tunnel

IPv6 Martin Gergeleit

Teredo-Tunneling (RFC 4380)

- Ermöglicht den Zugriff auf das IPv6-Netzwerk hinter auch einem NAT
 - Tunnelt in UDP, Port 3554
- Benötigt drei Komponenten:
 - Teredo Client
 - IPv4-Host, der Zugriff auf das IPv6-Netzwerk haben will
 - Teredo Server
 - Unterstützt den Teredo-Client
 - Teredo Relay
 - IPv6-Router, der den Tunnel vom/zum Teredo-Client terminiert
- Teredo ist in Windows 7 implementiert

Teredo Funktion

Teredo IPv6 Tunnel

IPv4 Header	UDP Header	Teredo	IPv6 packet
		Header	

Teredo Addresscodierung (1)

Teredo Prefix	Teredo Server IPv4	Flags	Obscured Teredo Client External Port	Obscured Teredo Client External IPv4
→ 32bits	→ 32bits	16bits	16bits	◆ 32bits

- Teredo Prefix:
 - 3FFE:831F::/32
- Teredo Server IPv4:
 - IPv4 Adresse des Teredo Servers
- Flags: 16 Bits
 - Beschreiben Client-Adresse und Nat-Typ

Teredo Addresscodierung (2)

Teredo Prefix	Teredo Server IPv4	Flags	Obscured Teredo Client External Port	Obscured Teredo Client External IPv4
→ 32bits	→ 32bits	16bits	16bits	◆ 32bits

- Obscured Teredo Client External Port/IPv4
 - Mapped UDP Port und IPv4 Addresse des Clients am NAT (negiert)
 - Negation verhindert, dass der NAT-Router die Adressen in den Daten erkennt und "übereifrig" übersetzt
 - Idee: IPv6 Adresse "speichert" NAT-Übersetzung
- ◆ Teredo-"Bubble"-Pakete halten die NAT-Übersetzung aufrecht
 - Periodisches IPv6-Paket ohne Datenteil

Teredo Beispiel

IPv6 Martin Gergeleit

Sicherheits-Probleme bei Teredo

- NAT-Router bietet keinen Schutz nach außen
 - IPv4-Filter versagen
 - Jedes IPv6-Paket erreicht den Host
- Lösung:
 - Router/Firewall müssen Teredo kennen und "Deep-Packet-Inspektion" machen

IPv6 Martin Gergeleit

Quellen

- Tony Hain, Cisco Systems: Ipv6 Basics, 2002
 - www.nanog.org/meetings/nanog26/presentations/hain.ppt
- Bülent Gebes, Diplomarbeit: Migrationskonzepte von IPv4 nach IPv6 mit Erstellung von exemplarischen Praktikumsversuchen, Aug. 2010

IPv6 Martin Gergeleit