Tridiagonal Matrix Algorithm

MATLAB Implementation

Tamas Kis | kis@stanford.edu

TAMAS KIS

https://github.com/tamaskis

Copyright © 2021 Tamas Kis

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Contents

tridiagonal	4
Syntax	4
Description	4
Examples	4
Links	5
Tridiagonal Matrix Algorithm (Thomas Algorithm)	6
References	7

tridiagonal

Solves the tridiagonal linear system Ax = d for x using the tridiagonal matrix algorithm (i.e. the Thomas algorithm).

Syntax

```
x = tridiagonal(A,d)
```

Description

 $\mathbf{x} = \text{tridiagonal}(A,d)$ solves the tridiagonal linear system $A\mathbf{x} = \mathbf{d}$ for $\mathbf{x} \in \mathbb{R}^n$, where $A \in \mathbb{R}^{n \times n}$ is a tridiagonal matrix and $\mathbf{d} \in \mathbb{R}^n$ is a vector.

Examples

Example 1

Solve the tridiagonal linear system Ax = d for x, where

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 3 & 4 & 5 & 0 & 0 \\ 0 & 6 & 7 & 8 & 0 \\ 0 & 0 & 9 & 1 & 2 \\ 0 & 0 & 0 & 3 & 4 \end{bmatrix}, \quad \mathbf{d} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$

■ SOLUTION

Entering A and d into MATLAB,

To solve the tridiagonal linear system for x,

```
x = tridiagonal(A,d)
```

This yields the result

x =

-0.7229 0.8614 0.1446 -0.3976 1.5482

Links

MATLAB® Central's File Exchange:

 $\verb|https://www.mathworks.com/matlabcentral/fileexchange/85438-tridiagonal-matrix-algorith m-thomas-alg-tridiagonal|$

GitHub®:

https://github.com/tamaskis/tridiagonal-MATLAB

Tridiagonal Matrix Algorithm (Thomas Algorithm)

A tridiagonal linear system is one of the form

We can define the x and d vectors as

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix}, \quad \mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_{n-1} \\ d_n \end{bmatrix}$$

and the $n \times n$ triadiagonal matrix¹, A, as

$$\mathbf{A} = \begin{bmatrix} b_1 & c_1 \\ a_1 & b_2 & c_2 \\ & a_2 & \ddots & \ddots \\ & & \ddots & \ddots & c_{n-2} \\ & & & a_{n-2} & b_{n-1} & c_{n-1} \\ & & & & a_{n-1} & b_n \end{bmatrix}$$
 (1)

Now we can write the tridiagonal linear system as

$$\mathbf{A}\mathbf{x} = \mathbf{d} \tag{2}$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{x}, \mathbf{d} \in \mathbb{R}^n$.

The **tridiagonal matrix algorithm** (also known as the **Thomas algorithm**) is an algorithm that can efficiently solve the tridiagonal linear system (given by Eq. (2)) for x. This algorithm uses three vectors, a, b, and c, which we

$$\mathbf{A} = \begin{bmatrix} a_1 & b_1 \\ c_1 & a_2 & b_2 \\ & c_2 & \ddots & \ddots \\ & & \ddots & \ddots & \\ & & \ddots & \ddots & b_{n-2} \\ & & & c_{n-2} & a_{n-1} & b_{n-1} \\ & & & & c_{n-1} & a_n \end{bmatrix}$$

However, when dealing with the tridiagonal matrix algorithm, a convention similar to the one in Eq. (1) is used almost exclusively. However, the convention that most sources have has the a_i 's ranging from a_2 to a_n , which is extremely inconvenient from an algorithmic standpoint; therefore, I defined them here as ranging from a_1 to a_{n-1} , and this is also reflected in Algorithm 1.

¹ In many references, a tridiagonal matrix is defined with the convention

define as [1]

$$\mathbf{a} = \begin{bmatrix} a_1 \\ \vdots \\ a_{n-1} \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} c_1 \\ \vdots \\ c_{n-1} \end{bmatrix}$$

The tridiagonal matrix algorithm is shown below [1-3].

22 end

23 return x

Algorithm 1: Tridiagonal matrix algorithm (Thomas algorithm).

```
1 Given: A, x, d
   // determines n (where \mathbf{A} \in \mathbb{R}^{n \times n})
 n = \operatorname{size}(\mathbf{A}, 1)
 3 Preallocate vectors of size n \times 1 to store b and x.
4 Preallocate vectors of size (n-1) \times 1 to store a and c.
   // extracts a from A
 5 for i=2 to n do
 6 a_{i-1} = A_{i,i-1}
 7 end
  // extracts b from A
s for i=1 to n do
 b_i = A_{i,i}
10 end
   // extracts c from A
11 for i=2 to n do
12 c_{i-1} = A_{i-1,i}
13 end
   // forward elimination
14 for i = 1 to n do
      w = a_{i-1}/b_{i-1}
15
      b_i = b_i - wc_{i-1}
    d_i = d_i - wd_{i-1}
18 end
  // backward substitution
19 x_n = d_n/b_n
20 for i = n - 1 to 1 by -1 do
21 x_i = (d_i - c_i x_{i+1})/b_i
```

References

- [1] James Hateley. *Linear Systems of Equations and Direct Solvers*. MATH 3620 Course Reader (Vanderbilt University). 2019.
- [2] Tridiagonal matrix algorithm. https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm. (accessed: January 9, 2021).
- [3] Tridiagonal matrix algorithm TDMA (Thomas algorithm). https://www.cfd-online.com/Wiki/Tridiagonal_matrix_algorithm_-_TDMA_(Thomas_algorithm). (accessed: January 9, 2021).