SAPHIRE : 233 - Conversion d'énergie Influence des parasites dans un hacheur élévateur

On considère le convertisseur boost représenté sur la figure 1. Ce convertisseur permet d'assurer un transfert de puissance unidirectionnel non-isolé entre 2 sources.

Données:

Alimentation E=50~VFréquence de découpage $f_d=150~kHz$ Rapport cyclique $\alpha=0.75$ Inductance $L=12.5~\mu H$ Condensateur de sortie $C=470~\mu F$ Résistance de sortie $R=40~\Omega$

FIGURE 1 - Schéma du convertisseur Boost

Son fonctionnement est tel que, sur une période de fonctionnement :

- T est fermé, $\forall t \in [0, \alpha T]$ (phase 1)
- T est ouvert, $\forall t \in [\alpha T, T]$ (phase 2)

On va chercher à étudier le comportement de cette structure. On ne s'intéresse qu'au régime permanent. On pourra donc décomposer toute variable x de la façon suivante :

$$x(t) = X + \tilde{x}(t) \tag{1}$$

où X est la valeur moyenne du signal et \tilde{x} est l'ondulation du signal.

1 Étude du convertisseur

On considère dans toute la suite de l'étude que les interrupteurs sont idéaux et que les temps de commutation

- Question 1.1 Rappeler les hypothèses faites sur la tension V_s et sur le courant I_L .
- Question 1.2 Rappeler la méthode d'analyse d'un convertisseur DC-DC.
- Question 1.3 Donner la signification physique de la résistance de sortie R
- < Question 1.4 Tracer de manière qualitative sur le document-réponse les grandeurs v_L , v_D , i_L et i_D .
 - Question 1.5 Déterminer l'expression de la valeur moyenne de la tension de sortie du convertisseur V_s en fonction de α et E.
 - Question 1.6 Faire l'application numérique.
 - Question 1.7 Calculer la valeur de la résistance équivalente permettant d'obtenir une puissance en sortie de 1 kW.
 - Question 1.8 En déduire l'expression du courant moyen dans l'inductance I_L en fonction de α , E et R.
 - Question 1.9 Faire l'application numérique.

Afin d'assurer la conduction continue, on désire imposer une conditionsur le courant.

- Question 1.10 En étudiant la phase 1, donner l'expression de l'ondulation $\Delta I = I_{max} I_{min}$.
- Question 1.11 Donner la relation liant ΔI et I_L permettant d'assurer le fonctionnement en conduction continue.
- Question 1.12 En déduire la valeur minimale de l'inductance.

2 Limites du modèle

En réalité, la valeur du rapport V_s/E est plus faible. Ceci est causé par la résistance parasite r_L de l'inductance représentée sur la figure 2. On prendra pour la suite de l'étude $r_L=5~\Omega$.

FIGURE 2 - Prise en compte de la résistance parasite

Question 2.1 Donner deux phénomènes pouvant être à l'origine des pertes résistives dans la bobine.

Question 2.2 Pour les deux phases de fonctionnement, écrire les équations électriques du système.

Question 2.3 En déduire la nouvelle relation entrée-sortie V_s/E du système.

Question 2.4 Calculer la nouvelle valeur de V_s . Conclure

SAPHIRE : 233 - Conversion d'énergie EXAMEN : Partie Modélisation Electro-Magnétique

La durée totale de l'examen est de 3 heures. La durée de composition de cette partie est de 1,5 heure. Aucun document autorisé.

Modélisation d'un transformateur d'alimentation

1 Questions de cours

Question 1 : Dans un moteur électrique, citer les différentes types de couple électromagnétique?

Question 2 : Décrivez une manière d'obtenir l'expression du couple électromagnétique dans une machine électrique.

2 Modélisation électrique du transformateur

Dans cette partie, nous considérerons un transformateur défini par deux enroulements 1 et 2, figure 1. La bobine notée 1 fera office de primaire et la bobine notée 2, de secondaire.

FIGURE 1 – Représentation graphique du transformateur. S_f est la section de passage dans le fer et l_f la longueur moyenne des lignes de champ magnétique. N_1 et N_2 sont les nombres de spire dans les bobines 1 et 2.

Les différents essais sur le transformateur monophasé sont résumés ci-dessous :

A vide : 50Hz, $V1_{eff}=230V$, $I1_{eff}=1A$, $V2_{eff}=44V$, P1=80W En court circuit : 50Hz, $V1_{eff}=40V$, $I2_{eff}=100A$, P1=250W

Question 3: Sous quelles conditions effectue t'on un essai en court-circuit?

Le schéma électrique équivalent du transformateur est représenté sur la figure 2.

Question 4 : Donner la signification des différents éléments du schéma équivalent.

Question 4: Bonner la signification des différences elements de territories equation à vide, la résistance R_{μ} et l'inductance L_{μ} .

Question 6 : A partir de l'essai en court circuit, calculer la valeur du courant magnétisant I_{μ} et le comparer au courant ramené du secondaire. Quel influence cela a t'il sur le schéma équivalent.

Question 7 : A partir de l'essai en court circuit, déterminer la résistance R_s et l'inductance L_s .

Question 8 : Tracer le diagramme de Fresnel du secondaire pour une charge inductive introduisant un déphasage de 30 deg.

FIGURE 2 - Schéma électrique équivalent du transformateur ramené au secondaire.

Question 9 : Pour une charge consommant 100A et imposant un déphasage inductif de 30 deg, déterminer la chute de tension au secondaire.

Question 10 : Pour une charge consommant 100A et imposant un déphasage inductif de 30 deg, calculer le rendement du transformateur.

3 Modélisation magnétique du transformateur

Question 11 : Décrivez les mécanismes à l'origine des pertes fer?

Question 12: Comment réduire les pertes fer dans les transformateurs?

Dans la suite, nous supposerons que le fer a un comportement magnétique linéaire. On notera μ_0 la perméabilité du vide et μ_r la perméabilité relative du fer.

Question 13 : Écrire le théorème d'Ampère.

Question 14 : Déterminer les inductances propres des bobines 1 et 2. Puis, déterminer les mutuelles inductances entre les deux bobinages.