Data Analysis and Machine Learning: Machine learning with Gaussian Processes

Christian Forssén¹

Morten Hjorth-Jensen^{2,3}

¹Department of Physics, Chalmers University of Technology, Sweden

²Department of Physics, University of Oslo

³Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

Mar 19, 2018

What is a Gaussian Process?

- We have considered splines and kernel regression methods. These
- require choice of somewhat arbitrary set of knots.
 - Antoher possibility is to setup a prior distribution for the regression function using a *Gaussian Process*.
 - This is a very flexible class of models that has distinct computational and theoretical advantages. It can be viewed as a potentially infinitedimensional generalization of Gaussian distributions.
 - See the excellent (and free) book Gaussian Processes for Machine Learning by Carl Edward Rasmussen and Christopher K. I. Williams.

Gaussian process regression

- Realizations from a Gaussian process correspond to random functions
- Let us first consider an unknown regression function $\mu(x)$ that depends on a single, continuous variable x.
- The Gaussian process is written as $\mu \sim GP(m, k)$, and is parametrized in terms of a mean function m(x) and a covariance function k(x, x').

• The GP prior on μ describes it as a random function for which the values at any set of N prespecified points $\{x_i\}_{i=1}^N$ are a draw from a N-dimensional normal distribution

$$\mu(x_1), \dots \mu(x_N) \sim N((m(x_1), \dots, m(x_N)), K(x_1, \dots, x_N)),$$

with mean m and covariance K.

Topics

- More matematical details
- The role of the covariance function (different kernels)
- multidimensional case
- \bullet examples.