Putnam Exam A1 Problems

2018) **Problem:** Find all $(a, b) \in \mathbb{N}^2$ where

$$\frac{1}{a} + \frac{1}{b} = \frac{3}{2018}$$

Hints: Find a way to factor the equation such that each factor correlates to a prime factor of some number.

Solution: (674, 340033), (2018, 1009), and (673, 1358114), plus their reverse pairs.

Proof: Clearing denominators, we obtain

$$2018a + 2018b = 3ab \implies 3ab - 2018a - 2018b = 0$$

$$\implies 9ab - 3(2018)a - 3(2018)b = 0.$$

Adding 2018^2 to both sides, we can factor the equation as

$$(3a - 2018)(3b - 2018) = 2018^2 = 2^21009^2$$
.

Note that $2018 \equiv 1 \pmod{3}$, thus $3a - 2018 \equiv 3b - 2018 \equiv 1 \pmod{3}$. The possible factorizations of 2018^2 are $(2)(2 \times 1009^2)$, $(2^2)(1009^2)$, $(2^2 \times 1009)(1009)$, and $(1)(2^2 \times 1009^2)$, but since $2 \not\equiv 1 \pmod{3}$, we know that neither 3a - 2018 nor 3b - 2018 are equal to it, so we can ignore that factorization. Finally, using the remaining three factorizations, we can solve the following equations for a and b as follows:

$$3a - 2018 = 2^{2}$$
, $3b - 2018 = 1009^{2}$
 $3a - 2018 = 2^{2} \times 1009$, $3b - 2018 = 1009$
 $3a - 2018 = 1$, $3b - 2018 = 2^{2} \times 1009^{2}$

Thus we obtain (674, 340033), (2018, 1009), and (673, 1358114), as solutions.

2017) **Problem:** Let $S \subseteq \mathbb{N}$ be the smallest set where $2 \in S$, $n^2 \in S \implies n \in S$, and $n \in S \implies (n+5)^2 \in S$. Which positive integers are not in S?

Solution: 1 and all n where $n \equiv 0 \pmod{5}$.

Proof: It is clear that $1 \notin S$.

2008) **Problem:** Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function where f(x,y) + f(y,z) + f(z,x) = 0 for all $x, y, z \in \mathbb{R}$. Show that f(x,y) = g(x) - g(y) for some function $g: \mathbb{R} \to \mathbb{R}$.

Hints: Since the defining property of f holds for all choices of x, y, and z, any property of f that we derive by fixing some or all of the variables will also hold for all choices.

Solution: Fix $z \in \mathbb{R}$, then g(x) = f(x, z)

Proof: Suppose x = y = z, then f(x,y) + f(y,z) + f(z,x) = 3f(x,x) = 0, thus f(x,x) = 0 for all $x \in \mathbb{R}$. Next, suppose x = z and y is free, then f(x,y) + f(y,z) + f(y,z) + f(y,z) = 0

Putnam Exam A1 Problems

$$f(z,x) = f(x,y) + f(y,x) + f(x,x) = f(x,y) + f(y,z) = 0 \implies f(x,y) = -f(x,y)$$
 for all $x,y \in \mathbb{R}$. Finally, fix $z \in \mathbb{R}$ and let $g(x) = f(x,z)$, then $f(x,y) + f(y,z) + f(z,x) = f(x,y) + f(y,z) - f(x,z) = f(x,y) + g(y) - g(x) = 0 \implies f(x,y) = g(x) - g(y)$.

1999) **Problem:** Find polynomials f(x), g(x), and h(x) where

$$|f(x)| - |g(x)| + h(x) = \begin{cases} -1 & x < -1\\ 3x + 2 & -1 \le x \le 0\\ 2 - 2x & x > 0 \end{cases}$$

Hints:

Solution:

Proof: Consider the functions p(x) and q(x) defined as follows: