OF TANK TO SERVICE STREET

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

FRESHMAN ENGINEERING DEPARTMENT

Assignment

UNIT V

SEMICONDUCTORS

1	Derive an equation for the conductivity in intrinsic semiconductor.
2	Explain the drift and diffusion currents in a semiconductor and deduce
	Einstein's relations.
3	Define Fermi level. Explain the Fermi level in intrinsic semiconductor.
4	State and explain Hall effect and find the Hall coefficient.
5	Derive the conductivity in P-Type semiconductor.
6	Derive the conductivity in N-Type semiconductor.
7	Discuss the energy band formation in solids
8	Classify the materials based on energy gap.

Problems

1	The intrinsic carrier density at room temperature i Ge $2.37 \times 10^{19}/m^3$. If the electron and hole mobilities are 0.38 and $0.18m^2V^{-1}s^{-1}$ respectively, estimate the conductivity and resistivity.
2	For an intrinsic semiconductor with gap width 0.7 eV.Calculate the carrier concentration of intrinsic semiconductor at 300 K assuming that mass of electron is equal to the mass of a hole.
3	The following data are given for intrinsic Ge at 300 K. $n_i = 2.4 \times 10^{19} \ /m^3$, $\mu_e = 0.39 \times m^2 \ V^{-1} S^{-1}$, $\mu_p = 0.19 \ m^2 \ V^{-1} S^{-1}$ Estimate the resistivity of the sample.
4	Find the diffusion coefficient of electrons in Silicon at 300 K if $\mu_e = 0.19 \ m^2 \ V^{-1} S^{-1}$
5	The Hall coefficient of certain silicon specimen was found to be $-7.35 \times 10^{-5} / m^3 / C$ from 100 to 400 K. Determine the nature of the semiconductor. If the conductivity was found to be $200/m/\Omega$ Estimate the density and mobility of the charge carrier.

A silicon plate of thickness 1mm, breadth 10mm and length 100mm is placed in a magnetic field of 0.5 wb /m^2 acting perpendicular to its thickness. If 10^{-2} A current flows along its length, calculate the Hall voltage developed if the Hall coefficient is $3.66 \times 10^{-4} \text{ m}^3 \text{ /C}$.

Constants:

Mass of electron =
$$9.1 \times 10^{-31} kg$$

Planck's constant =
$$6.626 \times 10^{-34} Js$$

Charge of electron =
$$1.6 \times 10^{-19}$$
 C

$$1 \, eV = 1.6 \times 10^{-19} J$$

Boltzmann's constant = 1.38×10^{-23}