



Atlas-ISTN: Joint segmentation, registration and atlas construction with image-and-spatial transformer networks

Medical Imaging & Intelligent Reality Lab. Convergence Medicine/Radiology, University of Ulsan College of Medicine Asan Medical Center

Jung Ji-Hoon

# Index

- 1. Abstract
- 2. Introduction
- 3. Methods
- 4. Experiments and Results
- 5. Conclusion



#### **Abstract**

- 딥러닝의 segmentation 모델은 테스트 시 noise에 민감하며, 안정적인 위상을 보장하지 못 한다.
- Image registration 모델은 segmentation에 유용하지만, 대량의 훈련 데이터가 필요하고, pixel-wise segmentation 모델과 충분히 비교되지 않는다.
- Proposed Atlas-ISTN 프레임워크는 2D와 3D 이미지 데이터에서 segmentation과 registration을 함께 학습하며, 과정에서 모집단을 충분히 반영한 atlas를 구축한다.
- Atlas-ISTN은 여러 SOI(Structures-of-Interest)를 segment하며, 구축된 atlas label map을 예측한 segment map에 정합하며, 테스트 시간에 모델의 매개변수를 세밀하게 조정을 통해 정확도 향상이 가능하다.

  A randomly selected
- 이 프로세스는 image noise에 robust하며, segmentation 및 registration 기준 모델을 뛰어넘는 성능을 제공한다.

A randomly selected training case

Atlas case

#### Introduction

- Image segmentation과 registratio은 오랫동안 biomedical image analysi에 중요한 도구로 활용되어 왔다.
- U-net과 같은 딥러닝 모델들은 2D 및 3D 이미지의 대용량 레이블 데이터셋을 활용해 학습하면서, 도전적인 이미지 데이터셋에서 정확한 pixel-wise segmentation을 위한 풍부한 feature representatio을 학습하는 능력으로 segmentation task의 최신 기술로 등장했다.
- 그러나 이러한 segmentation 모델들의 주요한 **도전적인 요소** 중 하나는 image noise와 artifact에 대한 민감도인데, 이로 인해 테스트 단계에서 잘못된 결과나 **위상학적으로 불가능한** segmentation이 발생할 수 있습니다.
- 최근에는 이런 문제를 해결하기 위해 post processing, anatomical constraints, **새로운 정규화 기법**이나 loss term 등을 사용하는 여러 연구가 진행되었다.
- 더욱 최근에는 image segmentation을 위한 딥러닝 모델을 사용한 image registration에 대한 연구가 확대되고 있다.
- 이러한 방법들은 대부분 훈련된 모델을 한 번 실행하여 **deformation field**를 예측하고, 이 **deformation field**는 source에서 target image로 topology가 알려진 label map을 전파하는데 사용된다.
- 이 모든 방법들에 영감을 받아 저자들은 Atlas-ISTN을 제안한다. 이 프레임워크는 pixel-wise segmentation의 상세한 예측에서 이익을 얻으면서, 학습된 위상적으로 일관성 있는 multi calss atlas label map의 registration을 통해 noise와 artifact의 영향을 회피한다.



### Introduction

#### Contribution

Atlas-ISTN은 ISTN 프레임워크에 기타 제안된 작업들을 확장한 프레임워크로, 모집단에서 추출된 Atlas, segmentation 및 registration을 end-to-end 방식으로 학습합니다. Atlas-ISTN의 contribution은 다음과 같습니다.

- 1. Atlas 구축, registration 및 segmentation을 위한 통합 딥러닝 프레임워크.
- 2. Segmentation 및 registration 모델을 개선하는 robust segmentation system.
- 3. Bias가 없는 모집단에서 추출된 Atlas를 구축.
- 4. 구축된 Atlas label map의 registration을 통한 test 시점에 대한 topological guarantees.
- 5. Atlas space에 mapping을 통해 SOI(Structures-of-Interest)의 대상 간 상응 관계를 제공.



### **Methods**

- 많은 segmentation task에서 target SOI(Structure of interest)의 topology는 사전에 알려져 있다.
  (i.e. medical imaging 에서는 심장의 chamber 는 사람마다 모양의 차이는 있지만 대략적인 위치는 알려져 있음.)
- 하지만 대부분의 segmentation 모델은 이러한 prior knowledge를 활용하지 않기 때문에, 때로는 일관성이 떨어지는 예측을 만들 수 있다.
- 제안된 Atlas-ISTN 는 이러한 단점을 보안하기위해 주어진 모집단에서 추출된 atlas label map을 SOI에 맞게 학습하여, 예측 결과의 일관성을 높입니다.





### **Methods – Deformations**

- 저자들은 본 연구에서 affine 과 non-rigid deformation 모두를 사용하여 registration을 모델링 했다.
  - a. Affine
    - Affine 변환 :  $T = M_t R_\theta D_s$  (translation, rotation, scaling)
    - Trainable parameters : t,  $\theta$ , s
  - b. Non-rigid deformation
    - Non-rigid deformation :  $\phi = \exp(v)$
    - Trainable parameters : v
- Affine registration은 대부분 non-rigid deformation 수행 전 pre-alignment으로 사용함.
  - 이는 non-rigid deformation이 수행될 때 더욱 최적화된 시작점을 제공.
  - 이러한 pre-alignment은 뇌 이미지와 같은 응용 프로그램에서 매우 중요하여, standardized processing pipeline에 포함되어 있다.



φ



### Methods – Atlas-ISTN Model









### Methods – Atlas-ISTN Model

ITN (Image Transformer Network)



• ITN loss:

$$L_{s} = \frac{1}{n} \sum_{i}^{n} \|y_{i} - \hat{y}_{i}\|^{2}$$





### **Methods – Atlas-ISTN Model**

STN (Spatial Transformer Network)







Sec. 2.2

Fig. 3

 $-L_{s2a}$ 

Sec. 2.2

Fig. 4

 $y^a \circ \Phi_i^{-1}$ 

 $y_i \circ \Phi_i$ 

 $I_{\theta}(G)$ 

### Methods – Loss

Total loss

$$L = L_s + \omega (L_{a2s} + L_{s2a} + \lambda L_{reg})$$

λ: vector field의 부드러움의 정도를 조절하는 term.

ω: STN과 관련된 전체 loss의 정도를 조절하는 term.

- Segmentation loss  $(L_s)$ : ITN의 가중치 $(\theta_s)$ 만 업데이트 하기 위한 gradient를 제공.
- Registration loss ( $L_{a2s}$ ,  $L_{s2a}$ ) : STN의 가중치 ( $\theta_d$ )만 업데이트 하기 위한 gradient를 제공.
- Regularization loss ( $L_{reg}$ ) : non-rigid deformation( $\phi$ )만 penalization함.



### **Methods – Atlas Construction**

• image  $atlas(x^a)$ 와 mask  $atlas(y^a)$ 를 모두  $z^a$ 라고할 때, 초기 및 업데이트된  $z^a$ 에 대해서 다음과 같이 표현할 수 있다.

$$z_{j,t}^{a} = \begin{cases} \frac{1}{n} \sum_{i=0}^{n-1} (z_{i,j}), & t = 0\\ (1-\eta) z_{j,t-1}^{a} + \eta \tilde{z}_{j,t}^{a}, & t \ge 1 \end{cases}$$

• Atlas 영상 또는 mask의 update $((1-\eta)z_{j,t-1}^a + \eta z_{j,t}^a)$ 는 1 epoch이 끝난 후 이루어진다. 이때,  $z_{j,t}^a$ 는 다음과 같이 표현 됨.

$$\widetilde{z}_{j,t}^a = \frac{1}{n} \sum_{i=0}^n (z_{i,j} \circ \Phi_{i,t}), \quad t \ge 1$$

- ▶ Atlas를 update 시킬때 장점
  - a. 고정된 atlas를 사용하지 않고 지속적으로 학습되기 때문에 unbiased labeling map이 생성된다.
  - b. 학습을 마치고 난 뒤 test 시점에서 최적화 된 Atlas labeling map으로 사용할 수 있다. 이는 unseen data에 대해서 robust한 효과가 있다.



### **Methods – Test Time Refinement**

- 저자는 Test Time에도 STN 의 가중치를 학습 시킬 수 있다는 것을 강조함.
- Training에서는  $y_{i,j}$ (GT mask)를 loss에 계산한 반면, test 시점에서는  $y_{i,j}$ (GT mask) 대신  $\hat{y}_{i,j}$  (prediction mask)을 사용.

$$L_{a2s}^* = \sum_{j=1}^{c} \| \hat{y}_{i,j} - y_j^a \circ \Phi_i^{-1} \|^2, \quad L_{s2a}^* = \sum_{j=1}^{c} \| \hat{y}_{i,j} \circ \Phi_i - y_j^a \|^2$$

Overall refinement loss:

$$L^* = \beta^* L_{a2s}^* + \gamma^* L_{s2a}^* + \lambda^* L_{reg}$$

- Test 시점에서는 ITN 가중치는 고정되며,
   STN 가중치만 업데이트 된다.
- 만약  $\hat{y}_{i,j}$ 에서 튀는 값이 loss를 계산하는데 방해가 될 거라고 생각되면  $\lambda$ 값을 키워서 아틀라스의 형태가 더 보존 되도록 설정 할 수 있다.





- 저자들이 통제한 상황에서 Atlas-ISTN가 잘 working 하는 지 보여주는 실험.
- Train set 1000 case / Test set 100 case (clean version) / Test set 100 case (corrupt version)







Test set – 100 case (clean version): in-distribution



Figure 6: Qualitative results for the 2D toy data with test data coming from the same distribution as the training data. Both the ITN and 1-pass Atlas-ISTN yield accurate segmentations. test time refinement with increasing regularization weight λ affects the smoothness of the final transformation.



Test set – 100 case (corrupt version): out of distribution



Figure 7: Qualitative results for the 2D toy data with corrupted, out-of-distribution test data. The ITN yields many false positives and false negatives and is topologically implausible. The 1-pass Atlas-ISTN yields a reasonable atlas alignment despite the corrupted input data. test time refinement with increasing regularization weight  $\lambda$  can yield accurate and topologically plausible segmentations.



Quantitative results

**Test set – 100 case (clean version) : in-distribution** 

Test set – 100 case (corrupt version) : out of distribution







- Data Description
  - a. 1,109 3D CCTA images
    - 1 class(LVM) label dataset : 1000 cases
    - multi class(LVM, LV, RV, RA, LA) label dataset: 109 cases
  - b. Train / validation / test
    - 1 class(LVM) label dataset : 0 / 0 / 1000
    - multi class label dataset: 80 / 10 / 19

- Model configuration
  - a. At las update rate :  $\eta = 0.01$

b. 
$$L = L_s + \omega (L_{a2s} + L_{s2a} + \lambda L_{reg})$$
  
 $\omega = 1$   
 $\lambda = 800$ 

c. 
$$L^* = \beta^* L_{a2s}^* + \gamma^* L_{s2a}^* + \lambda^* L_{reg}$$
$$\beta^* = 1$$
$$\gamma^* = 0$$
$$\lambda^* = 800$$

d. Refinement iteration: 100





Figure 9: An axial slice through the initial (top row) and final (bottom row) atlas image (first column) and the 6 channels of the atlas labelmap produced when training Atlas-ISTN on multi-label CCTA data.





|       |        |                     | No augmentation      |                      |                     |               |  |  |  |
|-------|--------|---------------------|----------------------|----------------------|---------------------|---------------|--|--|--|
|       |        |                     |                      |                      | Atlas-ISTN          |               |  |  |  |
| Label | Metric | U-net               | U-net <sub>1cc</sub> | ITN                  | 1-pass              | Refine        |  |  |  |
|       | ↑ DSC  | 0.883*              | 0.883*               | 0.893                | 0.803* <sup>†</sup> | 0.894         |  |  |  |
| LVM   | ↓ ASD  | $0.202^{*\dagger}$  | 0.190*               | 0.169                | $0.401^{*\dagger}$  | 0.165         |  |  |  |
|       | ↓ HD   | 16.401*†            | 6.260*               | 6.842*               | 7.775* <sup>†</sup> | 5.255         |  |  |  |
|       | ↑ DSC  | 0.936*              | 0.936*               | 0.941                | 0.896* <sup>†</sup> | 0.943         |  |  |  |
| LV    | ↓ ASD  | 0.123               | 0.123                | 0.113                | $0.235^{*\dagger}$  | 0.109         |  |  |  |
|       | ↓ HD   | 7.157               | 7.132                | 7.124                | 8.619* <sup>†</sup> | 6.938         |  |  |  |
|       | ↑ DSC  | 0.894               | 0.895                | 0.900                | $0.846^{*\dagger}$  | 0.898         |  |  |  |
| RV    | ↓ ASD  | $0.344^{*\dagger}$  | 0.287                | 0.309                | $0.483^{*\dagger}$  | 0.284         |  |  |  |
|       | ↓ HD   | $29.082^{*\dagger}$ | 10.773               | 38.093* <sup>†</sup> | 12.224*†            | <u>10.683</u> |  |  |  |
|       | ↑ DSC  | 0.862               | 0.862                | 0.857                | 0.825* <sup>†</sup> | 0.860         |  |  |  |
| RA    | ↓ ASD  | 0.363               | 0.362                | $0.511^{*\dagger}$   | $0.521^{*\dagger}$  | 0.383         |  |  |  |
|       | ↓ HD   | 17.263              | 13.459               | 35.670* <sup>†</sup> | 13.736              | <u>13.082</u> |  |  |  |
|       | ↑ DSC  | $0.886^{*\dagger}$  | 0.886*†              | 0.899                | 0.846* <sup>†</sup> | 0.900         |  |  |  |
| LA    | ↓ ASD  | 0.344*              | 0.338*               | 0.304                | $0.494^{*\dagger}$  | 0.286         |  |  |  |
|       | ↓ HD   | 15.149*†            | 12.647*              | 23.031*†             | 13.396*             | <u>11.725</u> |  |  |  |

|       |        |          | With augmentation    |                      |                     |              |  |  |  |  |
|-------|--------|----------|----------------------|----------------------|---------------------|--------------|--|--|--|--|
|       |        |          |                      | Atlas-ISTN           |                     |              |  |  |  |  |
| Label | Metric | U-net    | U-net <sub>1cc</sub> | ITN                  | 1-pass              | Refine       |  |  |  |  |
|       | ↑ DSC  | 0.911    | 0.911                | 0.909                | 0.896* <sup>†</sup> | 0.911        |  |  |  |  |
| LVM   | ↓ ASD  | 0.137    | 0.136                | 0.138                | $0.169^{*\dagger}$  | 0.136        |  |  |  |  |
|       | ↓HD    | 6.150    | 4.862                | 4.785                | 5.313* <sup>†</sup> | 4.544        |  |  |  |  |
|       | ↑ DSC  | 0.950    | 0.950                | 0.948*               | 0.942*†             | 0.950        |  |  |  |  |
| LV    | ↓ ASD  | 0.091    | 0.091                | 0.091                | $0.108^{*\dagger}$  | 0.089        |  |  |  |  |
|       | ↓ HD   | 6.283    | 6.283                | 5.981                | 6.527*              | <u>5.973</u> |  |  |  |  |
|       | ↑ DSC  | 0.903    | 0.903                | 0.906                | 0.897* <sup>†</sup> | 0.906        |  |  |  |  |
| RV    | ↓ ASD  | 0.267    | 0.267                | 0.263                | 0.270               | 0.258        |  |  |  |  |
|       | ↓HD    | 13.034   | 10.879               | 11.793* <sup>†</sup> | 10.269              | 10.647       |  |  |  |  |
|       | ↑ DSC  | 0.883    | 0.883                | 0.884                | 0.873* <sup>†</sup> | 0.883        |  |  |  |  |
| RA    | ↓ ASD  | 0.292    | 0.291                | 0.288                | $0.313^{*\dagger}$  | 0.288        |  |  |  |  |
|       | ↓ HD   | 14.593*† | 12.243               | 12.862* <sup>†</sup> | 12.468              | 12.187       |  |  |  |  |
|       | ↑ DSC  | 0.911    | 0.911                | 0.917                | 0.892* <sup>†</sup> | 0.913        |  |  |  |  |
| LA    | ↓ ASD  | 0.236    | 0.236                | 0.230                | $0.297^{*\dagger}$  | 0.238        |  |  |  |  |
|       | ↓HD    | 11.182   | 11.182               | 12.032               | 11.740*             | 11.037       |  |  |  |  |

#### **Augmentation:**

translation (range: -8 to +8 voxels), rotation (range: -15 to 15 degrees in x, y, z) and scaling (range: 0.9 to 1.1 image resolution)





|        |                      | No                   | augmentation | With augmentation    |              |                    |                      |                    |                    |              |
|--------|----------------------|----------------------|--------------|----------------------|--------------|--------------------|----------------------|--------------------|--------------------|--------------|
|        |                      | Atlas-ISTN           |              |                      |              |                    |                      | A                  | tlas-ISTN          |              |
| Metric | U-net                | U-net <sub>1cc</sub> | ITN          | 1-pass               | Refine       | U-net              | U-net <sub>1cc</sub> | ITN                | 1-pass             | Refine       |
| ↑ DSC  | 0.840*†              | $0.850^{*\dagger}$   | 0.863*       | 0.683*†              | 0.869        | 0.884*†            | 0.885*               | 0.883*†            | 0.850*†            | 0.888        |
| ↓ ASD  | $0.973^{*\dagger}$   | $0.417^{*}$          | $0.367^{*}$  | $1.207^{*\dagger}$   | 0.256        | $0.301^{*\dagger}$ | 0.224*               | $0.342^{*\dagger}$ | $0.311^{*\dagger}$ | 0.212        |
| ↓ HD   | 38.046* <sup>†</sup> | 10.566*              | 22.948*†     | 11.763* <sup>†</sup> | <u>6.120</u> | 9.854*†            | 6.440*               | 13.046*†           | 6.579*             | <u>5.644</u> |

#### **Augmentation:**

translation (range: -8 to +8 voxels), rotation (range: -15 to 15 degrees in x, y, z) and scaling (range: 0.9 to 1.1 image resolution)



















| Metric | VML     | Atlas-ISTN $_{-L_s}$ | Atlas-ISTN   |  |
|--------|---------|----------------------|--------------|--|
|        | 1-pass  | 1-pass               | 1-pass       |  |
| ↑ DSC  | 0.822*† | 0.839*               | 0.850        |  |
| ↓ ASD  | 0.413*† | 0.368*               | 0.311        |  |
| ↓ HD   | 7.471*† | <b>7.302</b> *       | <u>6.579</u> |  |

VML: VoxelMorph와 유사한 모델 - ITN 없이 STN만 학습.

Atlas-ISTN-Ls : segmentation loss 없이 학습한 Atlas-ISTN



|        |         | Independent          |                      | Fixed                 |         | SVF                 |         | Proposed |                    |        |
|--------|---------|----------------------|----------------------|-----------------------|---------|---------------------|---------|----------|--------------------|--------|
| Metric | ITN     | 1-pass               | Refine               | Refine <sub>200</sub> | 1-pass  | Refine              | 1-pass  | Refine   | 1-pass             | Refine |
| ↑ DSC  | 0.884*  | 0.204*†              | 0.770*†              | 0.820*†               | 0.848*† | 0.879*†             | 0.854*† | 0.883*   | 0.842*†            | 0.886  |
| ↓ ASD  | 0.301*† | 9.775*†              | $1.483^{*\dagger}$   | 1.035*†               | 0.313*† | $0.232*^{\dagger}$  | 0.298*† | 0.218*   | $0.328*^{\dagger}$ | 0.213  |
| ↓ HD   | 9.854*† | 32.552* <sup>†</sup> | 11.312* <sup>†</sup> | $9.405^{*\dagger}$    | 6.980*† | 6.196* <sup>†</sup> | 6.549*† | 5.539    | 6.567*†            | 5.506  |

Independent: 학습 단계에서 ITN만 학습하고 STN은 test 단계에서 학습을 하는 모델.

Fixed: Atlas를 업데이트하지 않고 fix 시킨 모델.

**SVF** : registration 단계에서 pre-alignment를 해주는  $T = M_t R_\theta D_s$ 를 제거한 모델.

Refine: 100 epochs

Refine\_200: 200 epochs



Dataset(T1-weighted 3D MRI scans) :

UKBB: 100/20/200

Cam-CAN: 0/0/200

IXI all: 0/0/581

IXI-guys: 0/0/322

IXI-HH: 0/0/185

IXI-IoP: 0/0/74

- Model configuration
  - a. Atlas update rate :  $\eta = 0.01$

b. 
$$L = L_s + \omega (L_{a2s} + L_{s2a} + \lambda L_{reg})$$

$$\omega = \frac{1}{1 + e^{-(t - 200)/25}}$$

$$\lambda = 500$$

c. 
$$L^* = \beta^* L_{a2s}^* + \gamma^* L_{s2a}^* + \lambda^* L_{reg}$$

$$\beta^* = 1$$

$$\gamma^* = 0$$

$$\lambda^* = 500$$

d. Refinement iteration: 50



|        |                     |                     |                     |                    | Atlas-ISTN         |                    |  |  |
|--------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|--|--|
| Metric | U-net               | VML                 | Id                  | ITN                | 1-pass             | Refine             |  |  |
|        |                     |                     |                     |                    |                    |                    |  |  |
| ↑ DSC  | 0.900*              | 0.876*†             | 0.773* <sup>†</sup> | 0.898*†            | 0.889*†            | 0.902              |  |  |
| ↓ ASD  | 0.208*              | $0.263^{*\dagger}$  | $0.553*^{\dagger}$  | 0.213*†            | $0.232^{*\dagger}$ | 0.202              |  |  |
| ↓ HD   | 5.868*              | 5.851*              | 7.399*†             | $5.976*^{\dagger}$ | 5.743              | <u>5.651</u>       |  |  |
|        |                     |                     | Cam-CAN             | V (n=200)          |                    |                    |  |  |
| ↑ DSC  | 0.869*†             | $0.863^{*\dagger}$  | 0.765*†             | $0.866*^{\dagger}$ | 0.873              | 0.877              |  |  |
| ↓ ASD  | $0.369^{*\dagger}$  | $0.315^{*}$         | $0.597^{*\dagger}$  | $0.388^{*\dagger}$ | 0.291              | 0.301              |  |  |
| ↓ HD   | $9.131^{*\dagger}$  | <u>5.862</u>        | $7.266^{*\dagger}$  | $8.715^{*\dagger}$ | 6.311*             | $6.926^{*\dagger}$ |  |  |
|        |                     |                     | IXI all (           | n=581)             |                    |                    |  |  |
| ↑ DSC  | 0.880*              | 0.851* <sup>†</sup> | 0.741* <sup>†</sup> | 0.880*             | 0.874*†            | 0.890              |  |  |
| ↓ ASD  | 0.261*              | $0.343*^{\dagger}$  | $0.683^{*\dagger}$  | 0.264*             | $0.279^{*\dagger}$ | 0.235              |  |  |
| ↓ HD   | $7.006^{*\dagger}$  | 6.104               | 7.610* <sup>†</sup> | 6.780*†            | 6.075              | 6.022              |  |  |
|        |                     |                     | IXI-Guys            | uys (n=322)        |                    |                    |  |  |
| ↑ DSC  | 0.897*              | 0.874*†             | 0.769*†             | 0.898*             | 0.890*†            | 0.906              |  |  |
| ↓ ASD  | $0.217^{*}$         | $0.278^{*\dagger}$  | $0.574^{*\dagger}$  | $0.215^{*}$        | $0.233^{*\dagger}$ | 0.197              |  |  |
| ↓ HD   | 5.640*              | 5.588*              | $6.976^{*\dagger}$  | 5.779*†            | 5.458*             | 5.367              |  |  |
|        |                     |                     | IXI-HH              | (n=185)            |                    |                    |  |  |
| ↑ DSC  | 0.866*              | 0.827*†             | 0.707*†             | 0.861*†            | 0.859*†            | 0.875              |  |  |
| ↓ ASD  | 0.296*              | $0.403^{*\dagger}$  | $0.809^{*\dagger}$  | $0.309^{*\dagger}$ | $0.310^{*\dagger}$ | 0.269              |  |  |
| ↓ HD   | 7.945* <sup>†</sup> | <u>6.418</u>        | 8.206*†             | 7.896*†            | 6.530              | 6.656              |  |  |
|        | IXI-IoP (n=74)      |                     |                     |                    |                    |                    |  |  |
| ↑ DSC  | 0.844*              | 0.813*†             | 0.708*†             | 0.846*             | 0.839*             | 0.862              |  |  |
| ↓ ASD  | 0.368*              | $0.480^{*\dagger}$  | $0.845^{*\dagger}$  | 0.367*             | $0.401^{*}$        | 0.316              |  |  |
| ↓ HD   | 10.599*†            | 7.568               | 8.882*†             | 8.343*†            | 7.618              | 7.290              |  |  |

- VML : VoxelMorph와 유사한 모델 ITN 없이 STN만 학습.
- Id : t=0 일때, 초기 atlas mask











### **Conclusion**

- Atlas-ISTN은 image segmentation과 registration을 동시에 학습하는 프레임워크를 제공하며, 이 과정에서 모집단으로부터 추출된 Atlas를 생성하여 모델 훈련에 사용함.
- Atlas mask의 registration을 통해 target SOI의 위상적으로 일관성 있고 정확한 segmentation을 제공함.
- 또한, 저자들은 여러 연구를 통해 제안된 Atlas-ISTN 모델이 기준 segmentation 및 registration 모델보다 segmentation 성능이 향상된 것을 보여줌.
- Atlas-ISTN은 특히 훈련 데이터가 제한적일 때 테스트 데이터가 unseen data인 경우에도 segmentation 과 registration의 성능을 크게 향상시키는 것이 확인됨.



# Collaborators



Medical Imaging Intelligent Reality Lab

#### Cardiac

June-goo Lee Gyu-jun Jeong Tae-won Kim Ji-hoon Jung

#### Anesthesiology

Sung-Hoon Kim, Eun Ho Lee

#### Gastroenterology

Jeongsik Byeon, Kang Mo Kim, Do-hoon Kim

#### Pathology

Hyunjeong Go, Gyuheon Choi Gyungyub Gong, Dong Eun Song

#### Neurology

(2022년 SUMMER WORKSHOP)

#### 의료영상지능실현연구실 WORKSHO

Jaehong Lee, Sangbeom Jun
Misun Kwon, Beomjun Kim, Sun Kwon, Eun-Jae
Lee

#### **Emergency Medicine**

Dong-Woo Seo

#### Cardiology

Jaekwan Song, Jongmin Song Young-Hak Kim

#### Surgery

Beom Seok Ko, JongHun Jeong Songchuk Kim, Tae-Yon Sung

#### **Pulmonology and Critical Care Medicine**

Yoen-mok Oh, Sei Won Lee, Jin-won Huh



