DREXML: UNA HERRAMIENTA PARA EL DESCUBRIMIENTO DE DIANAS TERAPÉUTICAS EN ENFERMEDADES RARAS

Marina Esteban-Medina^{1,2}, Víctor Manuel de la Oliva Roque^{1,2}, Sara Herráiz-Gil^{3,4,5,6}, María Peña-Chilet^{7,1}, Joaquín Dopazo^{1,2,8,9}, and Carlos Loucera^{1,2,8}

¹Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain ²Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain ³Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), U714, Madrid, Spain ⁴Departamento de Bioingeniería, Universidad Carlos III de Madrid (UC3M), Madrid, Spain ⁵Regenerative Medicine and Tissue Engineering Group, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital (IIS-FJD), Madrid, Spain ⁶Epithelial Biomedicine Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain ⁷Platform of Big Data, AI and Biostatistics. Health Research Institute La Fe (IISLAFE). Valencia. Spain ⁸Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), U715, Seville, Spain ⁹FPS/ELIXIR-es, Hospital Virgen del Rocío, Seville, Spain

XVII Reunión anual CIBERER (2024)

Introducción

DREXML es una herramienta de software libre que utiliza aprendizaje automático para identificar nuevos usos para medicamentos existentes. Se ha validado con éxito en dos enfermedades raras: Anemia de Fanconi, Melanoma Familiar, COVID-19 y Retinitis Pigmentosa. El modelo identifica dianas terapéuticas para enfermedades específicas mediante el empleo de aprendizaje automático y modelado mecanicista de la transducción de señales. En el caso de la Anemia de Fanconi, el modelo predice con éxito fármacos reutilizados previamente validados, mientras que en el caso del melanoma familiar, identifica un conjunto prometedor de fármacos para futuras investigaciones.

Mapa de la enfermedad

- Genes en Orphanet, DisGeNet, . . . ?
- Control Vs Case?
- Pathways?

Transducción de la Señal

$S_n = v_n \left(1 - \prod_{s_a \in A} (1 - s_a) \right) \prod_{s_i \in I} (1 - s_i)$

Contextualiza dianas

$$\phi_{i}^{k} = \frac{1}{K!} \sum_{S \subseteq F \setminus \{i\}} \frac{|S|!(n_{circuits} - |S| - 1)!}{n_{circuits}!} [f_{x}(S \cup \{i\}) - f_{x}(S)]$$

Construyendo puentes

Conectando **Diana - Enfermedad**.

Usando **trasncriptómica pública** de **sanos**.

Software y Publicación

Input Disease Disease **Genetic Traits Mechanistic Map**

Inferir el Impacto de las Dianas sobre el Mapa Mecanicista de la Enfermedad

COMPLEX

3. Making the explainable **FOREST**

ORUGBANK

Predictive model

Métricas inteligibles

Filtrando y contextualizando

Melanoma Familiar

Resultados

- Software Libre **pip install drexml**
- Fácilmente usable **drexml run disease.env**
- Interrogar funcionalmente a las dianas en el contexto de una enfermedad dada.
- Anemia de Fanconi
- Resultados congruentes con validaciones experimentales previas.
- \bullet TGF β 1 y EGFR son dianas más específicas con menos efectos secundarios.
- Melanoma Familiar
 - Se proponen dianas que iterfieren con la vía de melanogénesis: TYR / JAK.
- Preparada para regímenes de escasez de datos.

Financiación

Afiliaciones del Ponente

