Math 453

Selected Solutions to Assignment 9

Problem 4: Are there any (non-trivial) homomorphisms from $\mathbb{Z}_8 \times \mathbb{Z}_2$ to $\mathbb{Z}_4 \times \mathbb{Z}_4$? Explain your answer.

Solution: Yes. There is at least one non-trivial homomorphism: let the map $\phi: \mathbb{Z}_8 \times \mathbb{Z}_2 \to \mathbb{Z}_4 \times \mathbb{Z}_4$ be defined by $\phi((i,j)) = (i \mod 4, j \cdot 2 \mod 4)$. Let $(i,j), (k,l) \in \mathbb{Z}_8 \times \mathbb{Z}_2$; then

$$\begin{split} \phi((i,j)+(k,l)) &= \phi((i+j,k+l)) \\ &= ((i+j) \bmod 4, (k+l) \cdot 2 \bmod 4) \\ &= (i \bmod 4+j \bmod 4, 2k \bmod 4+2l \bmod 4) \\ &= (i \bmod 4, 2k \bmod 4) + (j \bmod 4, 2l \bmod 4) \\ &= \phi((i,j)) + \phi((k.l)), \end{split}$$

so ϕ is a homomorphism.

Problem 6: Compute the number of elements of order 2 and order 4 in each of the following groups: \mathbb{Z}_{16} , $\mathbb{Z}_{8} \times \mathbb{Z}_{2}$, $\mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{Z}_{4}$, $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Solution: In \mathbb{Z}_{16} , there is one element of order 2, namely 8; there are two elements of order 4, namely 4 and 12.

In $\mathbb{Z}_8 \times \mathbb{Z}_2$, there are three elements of order 2, namely (4,0), (4,1), (0,1); there are four elements of order 4, namely (2,0), (2,1), (6,0), (6,1).

In $\mathbb{Z}_4 \times \mathbb{Z}_4 \times \mathbb{Z}_4$, there are 7 elements of order 2, namely (2,0,0), (0,2,0), (0,0,2), (2,2,0), (2,0,2), (0,0,2), and (2,2,2). Note that each element of $\mathbb{Z}_4 \times \mathbb{Z}_4 \times \mathbb{Z}_4$ has order 1, 2, or 4 (why?), so the elements of order 4 are precisely the elements that do not have order 1 or 2. There is one element of order 1 (the identity), and we calculated above that there are 7 elements of order 2. Since $|\mathbb{Z}_4 \times \mathbb{Z}_4 \times \mathbb{Z}_4| = 64$, there are 64 - 7 - 1 = 56 elements of order 4.

In $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, there are 7 elements of order 2, namely (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,0,1), and (1,1,1). Clearly, there are no elements of order 4.