Data importation

- 1. Endpoint dataframe
 - A. Exploration of data

Exploration tables using the rstatix, janitor and skimr packages

Data visualization

B. Normality hypothesis and outlier detection

Boxplots after outlier detection

Violin and sina plots after outlier detection

Exploration statistics for the variables after outlier detection

2. Exploration of the timeseries data

Number of data observations per day for the traits of the timeseries datasets

- A. Exploration of the timeseries dataframe
- B. Exploration of the S_timeseries dataframe
- C. Exploration of the T_timeseries dataframe

NaPPI Data Analysis

Elise

2024-06-03

Set the right working directory.

```
setwd("C:/Users/elise/Documents/Mémoire/Main/Data/Templates/NaPPI")
```

Data importation

Import the data sets extracted from the Data Preparation R Markdown.

```
list.files()
```

```
plant_info <- read.table("plant_info.txt", header = TRUE, sep = "\t")
endpoint <- read.table("endpoint.txt", header = TRUE, sep = "\t")
S_timeseries <- read.table("S_timeseries.txt", header = TRUE, sep = "\t")</pre>
```

Convert the columns to factor and date formats.

```
# plant info
plant_info <- lapply(plant_info, factor)</pre>
# endpoint
matching cols <- intersect(names(endpoint), names(plant info))</pre>
endpoint[, matching_cols] <- lapply(endpoint[, matching_cols], factor)</pre>
endpoint$Date <- date(endpoint$Date)</pre>
endpoint$Timestamp <- NA
# timeseries
# No data for NaPPI
# S_timeseries
matching_cols <- intersect(names(S_timeseries), names(plant_info))</pre>
S_timeseries[, matching_cols] <- lapply(S_timeseries[, matching_cols], factor)</pre>
S_timeseries$Timestamp <- as.POSIXct(S_timeseries$Timestamp, format = "%Y-%m-%d %H:%M:%S")</pre>
S_timeseries$Date <- date(S_timeseries$Date)</pre>
# T_timeseries
# No data
```

Collect the variables of every data template and print the names of the variables. This serves as a double check.

```
platform <- "NaPPI"</pre>
# endpoint
df <- endpoint[,colSums(is.na(endpoint))<nrow(endpoint)]</pre>
genotype_index <- which(colnames(df) == "Genotype")</pre>
variables <- colnames(df[, c(3:(genotype_index - 1))]) # We remove the two first columns tha
t are "Unit.ID" and "Date"
# timeseries
# no data
# S timeseries
df_S_timeseries <- S_timeseries[,colSums(is.na(S_timeseries))<nrow(S_timeseries)]</pre>
genotype_index <- which(colnames(df_S_timeseries) == "Genotype")</pre>
variables_S <- colnames(df_S_timeseries[, c(5:(genotype_index - 1))]) # We remove the three</pre>
first columns that are "Unit.ID", "Time" and "Date"
# T timeseries
# no data
print(paste(platform, ": The variables for endpoint are", paste(variables, collapse = ", "),
sep = "")
```

```
## [1] "NaPPI : The variables for endpoint are DW_shoot_g, FW_shoot_g"
```

```
print(paste(platform, ": The variables for S_timeseries are", paste(variables_S, collapse =
   ", "), sep = " "))
```

```
## [1] "NaPPI : The variables for S_timeseries are S_Height_cm, S_Height_pixel, S_Area_cmsqu
ared, S_Area_pixel, S_Perimeter_cm, S_Perimeter_pixel, S_Compactness, S_Width_cm, S_Width_pi
xel"
```

Add a column Plant_type with three levels, H L and T. This variable is useful to test for heterosis effects.

```
endpoint$Plant_type <- substr(endpoint$Genotype, nchar(as.character(endpoint$Genotype)), nch
ar(as.character(endpoint$Genotype)))
S_timeseries$Plant_type <- substr(S_timeseries$Genotype, nchar(as.character(S_timeseries$Genotype)))
otype)), nchar(as.character(S_timeseries$Genotype)))</pre>
```

1. Endpoint dataframe

A. Exploration of data

Exploration tables using the rstatix, janitor and skimr packages

```
endpoint %>%
 count(Genotype)
     Genotype n
## 1 EPPN01_H 9
## 2 EPPN02_H 9
## 3 EPPN03 H 10
## 4 EPPN04 H 7
## 5 EPPN05_H 13
## 6 EPPN06_H 18
## 7 EPPN07 L 2
## 8 EPPN08 H 7
## 9 EPPN09_H 11
## 10 EPPN10_H 7
## 11 EPPN10_L 2
## 12 EPPN11 H 10
## 13 EPPN11_L 3
## 14 EPPN12_H 10
## 15 EPPN13_H 5
## 16 EPPN20_T 3
```

```
endpoint %>%
  tabyl(Genotype, Column) %>%
  adorn_totals("row") %>%
  adorn_percentages("row") %>%
  adorn_pct_formatting() %>%
  adorn_ns() %>%
  adorn_ns() %>%
```

```
2
   Genotype/Column
          EPPN01_H 0.0% (0) 11.1% (1) 11.1% (1) 0.0% (0) 11.1% (1) 0.0% (0)
##
           EPPN02 H
                   0.0% (0) 0.0% (0) 0.0% (0) 11.1% (1)
                                                           0.0% (0) 11.1% (1)
##
                    0.0% (0) 10.0% (1) 10.0% (1) 0.0% (0)
##
                                                           0.0% (0) 10.0% (1)
           EPPN04 H
                    0.0% (0) 0.0% (0) 0.0% (0)
                                                  0.0% (0)
                                                            0.0% (0) 14.3% (1)
##
                   7.7% (1)
           EPPN05 H
                              0.0% (0) 7.7% (1)
                                                  0.0% (0)
                                                           7.7% (1)
                                                                     0.0% (0)
##
           EPPN06 H 11.1% (2)
                              5.6% (1) 11.1% (2)
                                                  5.6% (1)
                                                            0.0% (0)
                                                                      5.6% (1)
##
                    0.0% (0)
                              0.0% (0)
                                       0.0% (0)
                                                  0.0% (0)
##
           EPPN07 L
                                                            0.0% (0)
                                                                      0.0% (0)
           EPPN08 H 0.0% (0)
                              0.0% (0) 14.3% (1)
                                                  0.0% (0)
                                                           0.0% (0)
                                                                      0.0% (0)
##
           EPPN09 H 9.1% (1)
                              0.0% (0) 0.0% (0)
                                                 9.1% (1)
                                                           9.1% (1)
                                                                      9.1% (1)
##
           EPPN10_H 0.0% (0) 0.0% (0)
                                       0.0% (0)
                                                 0.0% (0) 14.3% (1)
##
                                                                      0.0% (0)
           EPPN10_L 50.0% (1) 0.0% (0) 0.0% (0) 50.0% (1)
                                                           0.0% (0)
##
                                                                     0.0% (0)
           EPPN11_H 0.0% (0) 10.0% (1) 10.0% (1)
                                                 0.0% (0)
                                                           0.0% (0) 10.0% (1)
           EPPN11 L 0.0% (0) 33.3% (1) 0.0% (0) 0.0% (0) 0.0% (0)
##
                                                                      0.0% (0)
           EPPN12_H 0.0% (0) 10.0% (1)
                                        0.0% (0) 10.0% (1) 10.0% (1)
                                                                      0.0% (0)
##
           EPPN13 H 0.0% (0) 20.0% (1)
                                        0.0% (0) 0.0% (0) 20.0% (1)
                                                                      0.0% (0)
##
##
           EPPN20 T 33.3% (1) 0.0% (0)
                                        0.0% (0) 33.3% (1) 0.0% (0)
                                                                      0.0% (0)
             Total 4.8% (6) 5.6% (7)
                                        5.6% (7) 4.8% (6) 4.8% (6)
                                                                     4.8% (6)
##
           7
                     8
                               9
                                                  11
                                                            12
                                                                      13
##
                                        10
   11.1% (1) 0.0% (0) 0.0% (0) 11.1% (1) 0.0% (0) 11.1% (1) 11.1% (1)
##
    0.0% (0) 11.1% (1) 11.1% (1) 0.0% (0) 0.0% (0) 11.1% (1)
##
##
    0.0% (0) 10.0% (1)
                       0.0% (0) 10.0% (1) 0.0% (0) 10.0% (1) 0.0% (0)
    0.0% (0) 14.3% (1)
                       0.0% (0) 14.3% (1) 14.3% (1) 0.0% (0) 14.3% (1)
##
##
    7.7% (1)
              7.7% (1)
                        7.7% (1)
                                 0.0% (0)
                                           7.7% (1)
                                                     0.0% (0)
                                                               7.7% (1)
    5.6% (1) 0.0% (0) 5.6% (1) 0.0% (0) 5.6% (1) 0.0% (0)
##
    0.0% (0)
              0.0% (0) 50.0% (1) 0.0% (0) 0.0% (0) 50.0% (1)
                                                                0.0% (0)
              0.0% (0) 0.0% (0) 14.3% (1) 14.3% (1) 0.0% (0)
##
    0.0% (0)
                                                                0.0% (0)
    0.0% (0) 18.2% (2) 9.1% (1)
                                 0.0% (0)
                                           0.0% (0) 9.1% (1)
                                                                9.1% (1)
##
##
    14.3% (1)
              0.0% (0) 14.3% (1)
                                  0.0% (0)
                                            0.0% (0) 14.3% (1)
                                                                0.0% (0)
    0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0)
                                                                0.0% (0)
##
##
    10.0% (1)
              0.0% (0) 0.0% (0) 10.0% (1) 10.0% (1)
                                                      0.0% (0)
                                                                0.0% (0)
                        0.0% (0)
                                 0.0% (0)
                                           0.0% (0)
##
    0.0% (0)
              0.0% (0)
                                                      0.0% (0)
                                                                0.0% (0)
    10.0% (1)
              0.0% (0) 10.0% (1)
                                  0.0% (0) 10.0% (1)
                                                      0.0% (0) 10.0% (1)
##
    0.0% (0) 20.0% (1)
                        0.0% (0)
                                  0.0% (0)
                                            0.0% (0)
                                                      0.0% (0)
                                                                0.0% (0)
##
                                                                0.0% (0)
    0.0% (0)
              0.0% (0)
                        0.0% (0)
                                  0.0% (0)
                                            0.0% (0)
                                                      0.0% (0)
##
                        5.6% (7)
##
    4.8% (6)
              5.6% (7)
                                  4.0% (5)
                                            4.8% (6)
                                                      4.8% (6)
                                                                4.8% (6)
##
           14
                    15
                              16
                                        17
                                                  18
                                                            19
                                                                      20
    0.0% (0) 11.1% (1)
                        0.0% (0) 11.1% (1) 0.0% (0) 0.0% (0)
##
                                                                0.0% (0)
   11.1% (1) 11.1% (1) 0.0% (0) 0.0% (0) 11.1% (1) 11.1% (1)
                                                                0.0% (0)
##
##
    10.0% (1)
             0.0% (0) 10.0% (1) 10.0% (1) 0.0% (0) 10.0% (1)
                                                                0.0% (0)
##
    0.0% (0) 14.3% (1)
                       0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0) 14.3% (1)
    0.0% (0)
              7.7% (1)
                        0.0% (0)
                                 0.0% (0) 15.4% (2) 15.4% (2) 0.0% (0)
##
    5.6% (1)
              5.6% (1)
                       5.6% (1)
                                  5.6% (1) 5.6% (1) 0.0% (0) 11.1% (2)
##
              0.0% (0) 0.0% (0)
##
    0.0% (0)
                                  0.0% (0) 0.0% (0) 0.0% (0)
##
    14.3% (1)
              0.0% (0) 14.3% (1)
                                  0.0% (0) 14.3% (1) 14.3% (1)
                                                                0.0% (0)
             0.0% (0)
                                  0.0% (0) 0.0% (0) 9.1% (1)
##
    0.0% (0)
                        9.1% (1)
                                                                0.0% (0)
   14.3% (1) 14.3% (1)
                        0.0% (0)
                                  0.0% (0) 0.0% (0) 14.3% (1)
##
                                                                0.0% (0)
              0.0% (0)
                        0.0% (0)
                                 0.0% (0) 0.0% (0)
                                                     0.0% (0)
##
    0.0% (0)
                                                               0.0% (0)
##
    10.0% (1) 10.0% (1)
                        0.0% (0) 10.0% (1) 0.0% (0)
                                                      0.0% (0) 10.0% (1)
              0.0% (0) 0.0% (0) 0.0% (0) 33.3% (1)
    0.0% (0)
                                                     0.0% (0) 33.3% (1)
##
    0.0% (0)
              0.0% (0) 10.0% (1) 10.0% (1) 0.0% (0)
                                                     0.0% (0) 10.0% (1)
##
##
    0.0% (0)
              0.0% (0) 0.0% (0) 0.0% (0) 20.0% (1)
                                                      0.0% (0) 20.0% (1)
##
    0.0% (0)
              0.0% (0) 0.0% (0) 33.3% (1) 0.0% (0) 0.0% (0) 0.0% (0)
    4.8% (6)
##
             5.6% (7) 4.0% (5) 4.8% (6) 5.6% (7) 5.6% (7) 5.6% (7)
```

```
endpoint %>%
  tabyl(Genotype, Row) %>%
  adorn_totals("row") %>%
  adorn_percentages("row") %>%
  adorn_pct_formatting() %>%
  adorn_ns() %>%
  adorn_ns() %>%
```

```
##
    Genotype/Row
                            1
                                       2
                                                   3
                                                               4
                                                                           5
                                                                                       6
##
        EPPN01 H 11.1%
                         (1) 11.1%
                                     (1) 11.1%
                                                 (1) 22.2%
                                                             (2) 22.2%
                                                                         (2) 11.1%
                                                                                     (1)
##
        EPPN02 H 11.1%
                         (1) 22.2%
                                                             (2) 22.2%
                                                                                     (0)
                                     (2) 11.1%
                                                 (1) 22.2%
                                                                         (2)
                                                                              0.0%
##
        EPPN03_H 10.0%
                         (1) 10.0%
                                     (1) 20.0%
                                                 (2) 10.0%
                                                             (1) 10.0%
                                                                         (1) 20.0%
                                                                                     (2)
##
        EPPN04_H 14.3%
                         (1) 14.3%
                                     (1) 14.3%
                                                 (1) 14.3%
                                                             (1) 14.3%
                                                                         (1) 14.3%
                                                                                     (1)
##
        EPPN05_H 7.7%
                         (1)
                              7.7%
                                     (1)
                                          7.7%
                                                 (1) 23.1%
                                                             (3) 15.4%
                                                                         (2) 23.1%
                                                                                     (3)
        EPPN06 H 11.1%
                         (2) 11.1%
                                     (2) 27.8%
                                                 (5) 16.7%
                                                             (3) 11.1%
                                                                        (2) 16.7%
##
                                                                                     (3)
##
        EPPN07_L 0.0%
                         (0) 0.0%
                                     (0) 50.0%
                                                 (1) 0.0%
                                                             (0) 50.0%
                                                                        (1)
                                                                              0.0%
                                                                                     (0)
##
        EPPN08 H 28.6%
                         (2) 14.3%
                                     (1) 14.3%
                                                 (1) 14.3%
                                                             (1) 14.3%
                                                                         (1)
                                                                              0.0%
                                                                                     (0)
##
        EPPN09_H 18.2%
                         (2) 27.3%
                                     (3)
                                          0.0%
                                                 (0) 9.1%
                                                             (1) 18.2%
                                                                         (2)
                                                                              9.1%
                                                                                     (1)
##
        EPPN10 H 14.3%
                         (1) 0.0%
                                     (0) 28.6%
                                                 (2) 14.3%
                                                             (1)
                                                                  0.0%
                                                                         (0) 28.6%
                                                                                     (2)
        EPPN10 L 50.0%
                         (1) 50.0%
##
                                     (1)
                                          0.0%
                                                 (0)
                                                      0.0%
                                                             (0)
                                                                  0.0%
                                                                         (0)
                                                                              0.0%
                                                                                     (0)
                         (2) 10.0%
##
        EPPN11 H 20.0%
                                     (1) 10.0%
                                                 (1) 20.0%
                                                             (2) 10.0%
                                                                         (1) 10.0%
                                                                                     (1)
##
        EPPN11_L 33.3%
                         (1)
                              0.0%
                                     (0) 33.3%
                                                 (1)
                                                      0.0%
                                                             (0)
                                                                  0.0%
                                                                         (0)
                                                                              0.0%
                                                                                     (0)
##
        EPPN12_H 10.0%
                         (1) 20.0%
                                     (2) 10.0%
                                                 (1) 10.0%
                                                             (1) 20.0%
                                                                         (2) 20.0%
                                                                                     (2)
        EPPN13 H 0.0%
                         (0) 40.0%
                                     (2)
                                                 (0)
                                                                                    (3)
##
                                          0.0%
                                                      0.0%
                                                             (0) 0.0%
                                                                         (0) 60.0%
##
        EPPN20 T 33.3%
                         (1)
                              0.0%
                                     (0)
                                          0.0%
                                                 (0) 33.3%
                                                             (1) 33.3%
                                                                         (1)
                                                                             0.0%
                                                                                     (0)
##
           Total 14.3% (18) 14.3% (18) 14.3% (18) 15.1% (19) 14.3% (18) 15.1% (19)
##
           (1)
##
    11.1%
##
    11.1%
           (1)
    20.0%
##
            (2)
    14.3%
##
            (1)
##
    15.4%
           (2)
##
     5.6%
            (1)
##
     0.0%
            (0)
    14.3%
           (1)
##
##
    18.2%
            (2)
##
    14.3%
           (1)
##
     0.0%
            (0)
##
    20.0%
           (2)
    33.3%
##
           (1)
    10.0%
##
            (1)
##
     0.0%
            (0)
     0.0%
##
            (0)
    12.7% (16)
```

```
endpoint %>%
count(Genotype)
```

```
##
     Genotype n
## 1 EPPN01_H 9
## 2 EPPN02 H 9
## 3 EPPN03 H 10
## 4 EPPN04 H 7
## 5 EPPN05_H 13
## 6 EPPN06_H 18
## 7
     EPPN07 L 2
## 8 EPPN08_H 7
## 9 EPPN09 H 11
## 10 EPPN10_H 7
## 11 EPPN10 L 2
## 12 EPPN11_H 10
## 13 EPPN11 L 3
## 14 EPPN12_H 10
## 15 EPPN13_H 5
## 16 EPPN20 T 3
```

```
## Warning: Using an external vector in selections was deprecated in tidyselect 1.1.0.
## i Please use `all_of()` or `any_of()` instead.
## # Was:
## data %>% select(variables)
##
## # Now:
## data %>% select(all_of(variables))
##
## See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
```

```
skim(endpoint[variables])
```

Data summary

numeric

Name	endpoint[variables]
Number of rows	126
Number of columns	2
Column type frequency:	

2

Group variables None

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
DW_shoot_g	1	0.99	35.93	12.35	17.73	28.79	33.94	38.30	117.0	
FW_shoot_g	1	0.99	177.54	67.14	13.23	130.80	177.25	219.75	346.9	

Data visualization

Using several functions that are located in the functions.R script

Boxplots

```
create_boxplots(endpoint, variables, "Genotype")
```

```
## Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
## i Please use tidy evaluation idioms with `aes()`.
## i See also `vignette("ggplot2-in-packages")` for more information.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
```

```
## Warning: Removed 1 rows containing non-finite values (`stat_boxplot()`).
## Removed 1 rows containing non-finite values (`stat_boxplot()`).
```



```
create_boxplots(endpoint, variables, "Plant_type")
```

```
## Warning: Removed 1 rows containing non-finite values (`stat_boxplot()`).
## Removed 1 rows containing non-finite values (`stat_boxplot()`).
```


Correlation plots

```
for (i in 1:(length(variables) - 1)) {
  for (j in (i + 1):length(variables)) {
    calculate_correlation_plot(endpoint, variables[i], variables[j])
  }
}
```

```
## `geom_smooth()` using formula = 'y ~ x'
```

Warning: Removed 1 rows containing non-finite values (`stat_smooth()`).

```
## Warning: Removed 1 rows containing missing values (`geom_point()`).
```

Warning: Removed 126 rows containing missing values (`geom_text()`).

Correlation Plot between DW_shoot_g and FW_shoot_g

B. Normality hypothesis and outlier detection

Test for normality hypothesis and plot density histogram. The red curve is the normal distribution, the blue dotted curve is the data density curve.

```
normality_results <- normality_test_histogram(endpoint)</pre>
```

```
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
```

QQ Plot of DW_shoot_g


```
## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
## i Please use `after_stat(density)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
```

```
## Warning: Removed 1 rows containing non-finite values (`stat_bin()`).
```

```
## Warning: Removed 1 rows containing non-finite values (`stat_density()`).
```

Warning: Removed 101 rows containing missing values (`geom_function()`).

[1] 117 121

QQ Plot of FW_shoot_g

Warning: Removed 1 rows containing non-finite values (`stat_bin()`).

Warning: Removed 1 rows containing non-finite values (`stat_density()`).

Warning: Removed 101 rows containing missing values (`geom_function()`).

[1] 47 31

Remove the outliers, replacing them with NULL values and normality visual verification.

The function detect_replace_ouliers_by_genotype checks for outlying values, using the Tukey method.

Then run the function on all variables of the dataset.

```
endpoint_clean <- endpoint
# Run the function on the dataset for all the variables
endpoint_clean <- detect_replace_outliers_by_genotype(endpoint_clean)</pre>
```

Boxplots after outlier detection

```
create_boxplots(endpoint_clean, variables, "Genotype")
```

Warning: Removed 7 rows containing non-finite values (`stat_boxplot()`).

Warning: Removed 4 rows containing non-finite values (`stat_boxplot()`).

create_boxplots(endpoint_clean, variables, "Plant_type")

Warning: Removed 7 rows containing non-finite values (`stat_boxplot()`).
Removed 4 rows containing non-finite values (`stat_boxplot()`).

Violin and sina plots after outlier detection

```
create_violin_plots(endpoint_clean, variables, "Genotype")
```

```
## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## i Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
```

Warning: Removed 7 rows containing non-finite values (`stat_ydensity()`).

Warning: Removed 7 rows containing non-finite values (`stat_sina()`).

Warning: Removed 4 rows containing non-finite values (`stat_ydensity()`).

Warning: Removed 4 rows containing non-finite values (`stat_sina()`).

create_violin_plots(endpoint_clean, variables, "Plant_type")

Warning: Removed 7 rows containing non-finite values (`stat_ydensity()`).

Warning: Removed 7 rows containing non-finite values (`stat_sina()`).

Warning: Removed 4 rows containing non-finite values (`stat_ydensity()`).

Warning: Removed 4 rows containing non-finite values (`stat_sina()`).

Exploration statistics for the variables after outlier detection

skim(endpoint_clean[variables])

Data summary

Name	endpoint_clean[variables]
Number of rows	126
Number of columns	2
Column type frequency:	
numeric	2
Group variables	None

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
DW_shoot_g	7	0.94	34.45	8.18	20.37	28.67	33.87	37.41	65.73	
FW_shoot_g	4	0.97	177.12	64.78	26.89	130.97	177.24	219.18	346.90	

```
##
## Summary for: DW_shoot_g
## # A tibble: 16 × 4
     Genotype mean std.dev n missing
     <fct>
              <dbl>
                     <dbl>
   1 EPPN13 H 46.0
                     17.6
##
  2 EPPN09_H 41.9
                     10.5
## 3 EPPN10 L 36.4
                      5.29
                                   0
## 4 EPPN04 H 34.7
                      3.91
                                   a
## 5 EPPN11 H 34.5
                      5.01
## 6 EPPN06_H 34.1
                     8.64
## 7 EPPN03_H 33.9
                     10.3
## 8 EPPN01 H 33.8
                    4.87
                                   0
  9 EPPN08 H 33.4
                      3.70
                                   1
## 10 EPPN10_H 33.3
                      4.11
                                   1
## 11 EPPN05_H 32.7
                      6.61
                                   1
## 12 EPPN12_H 32.0
                      3.94
                                   2
## 13 EPPN02 H 30.6
                      4.81
## 14 EPPN20 T 30.4
                      5.07
                                   0
## 15 EPPN07_L 28.7
                      2.00
                                   0
## 16 EPPN11_L 28.6
                      7.13
## Summary for: FW shoot g
## # A tibble: 16 × 4
##
     Genotype mean std.dev n_missing
     <fct>
              <dbl> <dbl>
  1 EPPN08 H 235.
                      69.6
## 2 EPPN13_H 222.
                      69.5
  3 EPPN10_H 210.
                    69.0
                                   0
   4 EPPN09_H 194.
                      43.7
                                   0
## 5 EPPN06 H 189.
                      85.2
## 6 EPPN05 H 181.
                      71.8
                                   0
## 7 EPPN04_H 181.
                      40.6
  8 EPPN01 H 169.
                    33.3
## 9 EPPN12_H 168.
                      38.0
                                   1
## 10 EPPN07 L 165.
                      61.2
## 11 EPPN11_H 164.
                      63.1
## 12 EPPN02 H 145.
                      43.0
## 13 EPPN03_H 143.
                    79.2
## 14 EPPN11_L 133.
                      59.3
                                   0
## 15 EPPN10 L 132.
                      40.5
                                   0
## 16 EPPN20 T 132.
                      39.3
```

2. Exploration of the timeseries data

In this part, we look at the timeseries, S_timeseries and T_timeseries datasets, also using several functions, located in the functions.R script.

Number of data observations per day for the traits of the timeseries datasets

A. Exploration of the timeseries dataframe

```
print(paste0("No data for", platform))
```

[1] "No data forNaPPI"

B. Exploration of the S_timeseries dataframe

Scatter plots by Genotype

plot_scatter_by_genotype(S_timeseries, variables_S, "EPPN20_T")

Scatterplot of S_Height_cm for Genotype EPPN20_T

Scatterplot of S_Area_cmsquared for Genotype EPPN20_T

Scatterplot of S_Perimeter_cm for Genotype EPPN20_T

Scatterplot of S_Perimeter_pixel for Genotype EPPN20_T

Scatterplot of S_Compactness for Genotype EPPN20_T

Scatterplot of S_Width_cm for Genotype EPPN20_T

Scatterplot of S_Width_pixel for Genotype EPPN20_T

Scatterplots for all genotypes by Plant type (Hybride, Line, EPPN20_T) with smooth line.

plot_scatter_with_smooth(S_timeseries, variables_S)

$geom_smooth()$ using formula = 'y ~ x'

Smooth line of S_Height_cm by Plant type

Scatterplot of S_Height_pixel by Plant type

Smooth line of S_Height_pixel by Plant type

Scatterplot of S_Area_cmsquared by Plant type

Smooth line of S_Area_cmsquared by Plant type

Scatterplot of S_Area_pixel by Plant type

Scatterplot of S_Perimeter_cm by Plant type

Smooth line of S_Perimeter_cm by Plant type

Scatterplot of S_Perimeter_pixel by Plant type

Smooth line of S_Perimeter_pixel by Plant type

Scatterplot of S_Compactness by Plant type

Smooth line of S_Compactness by Plant type

Scatterplot of S_Width_cm by Plant type

Scatterplot of S_Width_pixel by Plant type

Smooth line of S_Width_pixel by Plant type

Scatter plots for all genotypes by water treatment

```
print(paste0("No data for", platform))
```

[1] "No data forNaPPI"

C. Exploration of the T_timeseries dataframe

print(paste0("No data for", platform))

[1] "No data forNaPPI"