Chapter 4 Subspaces and Their Properties

Created: 2025年3月20日 09:44

Class: MATH2101

Subspaces of \mathbb{R}^n

Subspace:

A subset $W\subseteq\mathbb{R}^n$ is said to be a **subspace** of \mathbb{R}^n if it satisfies the following:

- $\vec{0} \in W$
- ullet If $ec{x},ec{y}\in W$, then $ec{x}+ec{y}\in W$ (i.e. W is closed under addition)
- If $ec{x} \in W$ and $c \in \mathbb{R}$, then $cec{x} \in W$ (i.e. W is closed under scalar multiplication)

For each $m \times n$ matrix A, we have:

Row space

Notion: Row A

Subspace of \mathbb{R}^n

 $\mathbf{Span} \text{ of the rows of } A$

Column space

Notion: $Col\ A$

Subspace of \mathbb{R}^m

Span of the columns of A

Null space

Notion: Null A

Subspace of \mathbb{R}^n

Solution set of $A\vec{x}=0$

Basis:

Let V be a subspace of \mathbb{R}^n . A linearly independent generating set for V is called a basis for V.

Remarks:

- The plural for basis is *bases*. (单词basis的复数形式是bases)
- A basis for V must be a subset of V.

Every basis for \mathbb{R}^n consists of exactly n vectors.

How to find a basis for each of the row space, column space and the null space of a matrix \boldsymbol{A} :

If R is the RREF of A

- 1. The set of non-zero rows of R will form a basis for $Row\ A$. i.e. $dim(Row\ A)$ is equal to the numbers of non-zero rows of R
- 2. The set of leading columns will form a basis for $Col\ A$.
- 3. The set of special solution vectors corresponding to the free variables in R will form a basis for $Null\ A$.

Reduction Theorem (约简定理) and Extension Theorem (扩展定理):

Let V be a non-zero subspace of \mathbb{R}^n . We have the following:

- (Reduction theorem) Every finite generating set of ${\cal V}$ contains a basis.

ullet (Extension theorem) Every linearly independent subset of V can be extended to a basis.

(By convention we say that only basis of the zero subspace is the empty set.)

Dimension

Any two bases for V contain the same number of vectors. This number is said to be the dimension of V and is denoted by $\dim(V)$.

(By convention the zero subspace is defined to have dimension 0.)

If V and W are subspaces of \mathbb{R}^n such that $V\subseteq W$, then $dim(V)\leq dim(W).$ Equality holds if and only if V=W.

Coordinate vector:

lemma:

Let $B = \{b_1, b_2...b_k\}$ be an **ordered basis** for a subspace V.

Then each $v \in V$ can be written as a unique linear combination of the vectors in B.

In the forms as:

$$v = c_1 b_1 + c_2 b_2 + \dots + c_k b_k$$

Hence we define:

$$[v]_B = egin{bmatrix} c_1 \ c_2 \ c_3 \ \dots \ c_k \end{bmatrix} = B^{-1} v$$

to be the *coordinate vector of v relative to B* (or *B-coordinate vector of v*).

For a linear transformation T_A , we have:

$$[T(v)]_B = [T]_B[v]_B$$

$$[T]_B = [[T(b_1)]_B \ [T(b_2)]_B \ ... \ [T(b_k)]_B]$$

Similarity of matrices

Let A and B be square matrices. We say A is **similar** to B if

$$B = P^{-1}AP$$

for some invertible matrix P.

Thus in some sense, similar matrices can be seen as matrices representing the same linear transformation with respect to different bases.