# Improving distributed reasoning with privacy using tree decomposition

**Vincent Armant** 

**LAMIA Seminar** 





### **Outline**

- Introduction
  - A distributed Reasoning Problem
  - Graphical Tree Decomposition
- Distributed tree decomposition
   Preserve network structure
   Keep local information local
- Centralized tree decomp. VS concurrent approaches
- Token elimination
- Experimental results on small-world graphs
- Conclusion / perspectives

Three times web-payment certification



# Modeling the behaviors



Vincent Armant LAMIA Seminar

## Modeling the behaviors





Vincent Armant

## Modeling the behaviors





Global model: set of observations and local system descriptions

$$f_{global} = \Lambda f_i \Lambda_i OBS$$

Vincent Armant LAMIA Seminar

### Minimal conflicts



#### Minimal Conflict:

are components that are together inconsistent with observations

$$\wedge f \wedge OBS \neq C$$

s.t.  $\forall$  C' conflict, if C'  $\Rightarrow$  C then C' = C

$$C \subseteq AB$$
,  $AB = \{ab1, ...,abn \}$ 

Example:

# Minimal diagnoses



### Minimal Diagnosis Δ :

Is a minimal explanation which cover all minimal conflicts

$$\land f \land OBS \land \Delta \land \overline{AB \backslash \Delta} \models \bot$$

s.t.  $\forall \Delta'$  diagnosis, if  $\Delta' \Rightarrow \Delta$  then  $\Delta' = \Delta$ 

$$\Delta \subseteq F$$
,  $F = \{ab1, ..., abn \}$ 

### Example:

# Challenge of distributed Reasoning

- Context : Distributed Algorithm
  - □ Each peer performs the same algorithm
  - ☐ A peer only know:
    - Its acquaintance
    - Its own description
  - □ A peer do not want to share some private knowledge
    - But must share any local knowledge that is "interesting" for the task
  - □ The network incrementally returns solutions (i.e. diagnoses)

How to solve efficiently a distributed reasoning problem?

# Primal graph



centralized problem description

Its primal graph

# Primal graph



centralized problem

Generalization description

Its primal graph

Pb = join of databases relation (Primal Graph ~ Data Base Schema)
"A new approach to database logic Kuper,Vardi 1984"

Pb = Bayesian Inference (Primal Graph ~ Variable dependencies)

# Primal graph



- Each variable labels exactly one node
- All variables contained in the scope of a formula in the problem description are neighbors in the primal graph

Vincent Armant

# Tree Decomposition



Primal graph

A tree decomposition

- 1) is a tree of clusters
- 2) preserves variables dependency
- 3) ensures running intersection

Vincent Armant LAMIA Seminar

# Tree Decomposition



Primal graph

A tree decomposition

- 1) is a tree of clusters
- 2) preserves variables dependency
- 3) ensures running intersection

Vincent Armant LAMIA Seminar

# Tree Decomposition



Primal graph

A tree decomposition

- 1) is a tree of clusters
- 2) preserves variables dependency
- 3) ensures running intersection

# Introduction Why is it useful?



### 1) Good points:

- divides the initial problem into sub-problems organized in a tree structure
- allows concurrent resolution and /or backtrack free search
- bounds time and space complexity by the size of the largest cluster (width) e.g. allows succinct representation (OBDD, MDD, DNNF, ..)

### 2) Limitations:

- finding an optimal tree-decomposition is NP-Hard

### **Outline**

- Introduction
- Distributed tree decomposition
   Preserve network structure
   Keep local information local
- Centralized tree decomp. VS concurrent approaches
- Token elimination
- Experimental results on small-world graphs
- Conclusion / perspectives

## Distributed system



acquaintance links of p1

Initial problem setting is distributed among a set of peers

- 1) each peer can only interact with its neighbors by acquaintance links
- 2) local variables remain local

## Distributed system



each « li » represents a local variable of pi

Initial setting is distributed among a set of peers

- 1) each peer can only interact with neighbors by acquaintance links
- 2) local variables remain local

# Problematic: How to decompose a distributed system respecting privacy and the peer acquaintances?



a primal graph

its tree decomposition

The classical notion of tree decomposition is not sufficient it does not respect the privacy of local variables it does not preserve the peer acquaintances

Vincent Armant LAMIA Seminar

# Distributed Tree Decomposition Acquaintance Graph



Distributed system

Acquaintance Graph G((P,V), ACQ)

21

- 1) P represents the set of peers
- 2) V labels each peer by its set of variables
- 3) ACQ  $\subseteq$  P x P represents is acquaintance links



#### **Acquaintance Graph**

### Distributed Tree Decomposition

22

- 1) is a tree of clusters
- 2) preserves the variables dependencies
- 3) respects the running intersection property
- 4) preserves the peers acquaintance
- 5) respectis the privacy of local variables



**Acquaintance Graph** 

### Distributed Tree Decomposition

23

- 1) is a tree of clusters
- 2) preserves the variables dependencies
- 3) respects the running intersection property
- 4) preserves the peers acquaintance
- 5) respectis the privacy of local variables



**Acquaintance Graph** 

### Distributed Tree Decomposition

24

- 1) is a tree of clusters
- 2) preserves the variables dependencies
- 3) respects the running intersection property
- 4) preserves the peers acquaintance
- 5) respectis the privacy of local variables



### **Acquaintance Graph**

- -a cluster is created by one peer
- -2 neighboring clusters come from:
  - the same peer
  - neighboring peers

### Distributed Tree Decomposition

25

- 1) is a tree of clusters
- 2) preserves the variables dependencies
- 3) respects the running intersection property
- 4) preserves the peers acquaintance
- 5) respects the privacy of local variables



**Acquaintance Graph** 

A local variable from pi can only appear in a cluster created by pi

**Distributed Tree Decomposition** 

26

- 1) is a tree of clusters
- 2) preserves the variables dependencies
- 3) respects the running intersection property
- 4) preserves the peers acquaintance
- 5) respects the privacy of local variables

### Outline

- Introduction
- Distributed tree decomposition
   Preserve network structure
   Keep local information local
- Centralized tree decomp. VS concurrent approaches
- Token elimination
- Experimental results on small-world graphs
- Conclusion / perspectives

Elimination process

### What are the good tree decomposition techniques? Why?

Finding optimal Tree Decomposition  $\Leftrightarrow$  Finding optimal Elimination Order

It is always possible to build a TD from the clusters induced by Elimination order

Primal graph Elimination Clusters order While the graph is not empty 1) Choose a variable v 2) Add edges between unconnected neighbors 3) Create a cluster ( $v \cup$  neighbors) 4) Eliminate v

Elimination process

### What are the good tree decomposition techniques? Why?

Finding optimal Tree Decomposition  $\Leftrightarrow$  Finding optimal Elimination Order

It is always possible to build a TD from the clusters induced by Elimination order

Primal graph

While the graph is not empty

1) Choose a variable v

2) Add edges between unconnected neighbors

3) Create a cluster (v ∪ neighbors)

4) Eliminate v

Vincent Armant LAMIA Seminar 29

Elimination

Clusters

### What are the good tree decomposition techniques? Why?

Finding optimal Tree Decomposition  $\Leftrightarrow$  Finding optimal Elimination Order

It is always possible to build a TD from the clusters induced by Elimination order

Elimination process

Primal graph

Elimination order

While the graph is not empty

1) Choose a variable v

2) Add edges between unconnected neighbors

4) Create a cluster (v ∪ neighbors)

3) Eliminate v

### What are the good tree decomposition techniques? Why?

Finding optimal Tree Decomposition  $\Leftrightarrow$  Finding optimal Elimination Order

It is always possible to build a TD from the clusters induced by Elimination order

Elimination process

Primal graph

Elimination

order

While the graph is not empty

1) Choose a variable v

2) Add edges between unconnected neighbors

4) Create a cluster (v ∪ neighbors)

3) Eliminate v

Primal graph

Elimination

order

l<sub>3</sub>

ct<sub>l3</sub>

e

h

d

e

Elimination process

### What are the good tree decomposition techniques? Why?

Finding optimal Tree Decomposition  $\Leftrightarrow$  Finding optimal Elimination Order

It is always possible to build a TD from the clusters induced by Elimination order

Primal graph order While the graph is not empty 1) Choose a variable v **I**<sub>5</sub> 2) Add edges between unconnected 15 neighbors 4) Create a cluster ( $v \cup$  neighbors) 3) Eliminate v

> Vincent Armant LAMIA Seminar 32

Elimination

Clusters

Elimination process

### What are the good tree decomposition techniques? Why?

Finding optimal Tree Decomposition  $\Leftrightarrow$  Finding optimal Elimination Order

It is always possible to build a TD from the clusters induced by Elimination order

Primal graph order While the graph is not empty 1) Choose a variable v 2) Add edges between unconnected 15 neighbors 4) Create a cluster ( $v \cup$  neighbors) 3) eliminate v

> Vincent Armant LAMIA Seminar 33

Elimination

Clusters

### What are the good tree decomposition techniques? Why?

Finding optimal Tree Decomposition  $\Leftrightarrow$  Finding optimal Elimination Order

It is always possible to build a TD from the clusters induced by Elimination order

Elimination process

Primal graph

Elimination

Clusters

order

While the graph is not empty

1) Choose a variable v

2) Add edges between unconnected neighbors

4) Create a cluster (v ∪ neighbors)

3) eliminate v

Elimination

Clusters

order

I<sub>3</sub>

ct<sub>I3</sub>

e

a

ct<sub>I3</sub>

e

a

Elimination process

### What are the good tree decomposition techniques? Why?

Finding optimal Tree Decomposition  $\Leftrightarrow$  Finding optimal Elimination Order

It is always possible to build a TD from the clusters induced by Elimination order

Primal graph Elimination Clusters order While the graph is not empty 1) Choose a variable v 2) Add edges between unconnected 15 neighbors ct<sub>15</sub> 4) Create a cluster ( $v \cup$  neighbors) 3) eliminate v

### What are the good tree decomposition techniques? Why?

Finding optimal Tree Decomposition  $\Leftrightarrow$  Finding optimal Elimination Order

It is always possible to build a TD from the clusters induced by Elimination order

Elimination process

Primal graph

Elimination

Clusters

order

While the graph is not empty

1) Choose a variable v

2) Add edges between unconnected neighbors

4) Create a cluster (v ∪ neighbors)

3) Eliminate v

Elimination

order

I<sub>3</sub>

ct<sub>I3</sub>

e

a

ct<sub>I3</sub>

a

Elimination process

## What are the good tree decomposition techniques? Why?

Finding optimal Tree Decomposition  $\Leftrightarrow$  Finding optimal Elimination Order

It is always possible to build a TD from the clusters induced by Elimination order

Primal graph Elimination Clusters order While the graph is not empty 1) Choose a variable v 2) Add edges between unconnected 15 neighbors ct<sub>15</sub> 4) Create a cluster ( $v \cup$  neighbors) 3) Eliminate v a

Elimination process

## What are the good tree decomposition techniques? Why?

Finding optimal Tree Decomposition  $\Leftrightarrow$  Finding optimal Elimination Order

It is always possible to build a TD from the clusters induced by Elimination order

Primal graph Elimination Clusters order While the graph is not empty 1) Choose a variable v 2) Add edges between unconnected 15 neighbors ct<sub>15</sub> 4) Create a cluster ( $v \cup$  neighbors) 3) Eliminate v a

## What are the good tree decomposition techniques? Why?

Finding optimal Tree Decomposition  $\Leftrightarrow$  Finding optimal Elimination Order

It is always possible to build a TD from the clusters induced by Elimination order

While the graph is not empty

1) Choose a variable v

2) Add edges between unconnected neighbors

4) Create a cluster (v \cup neighbors)

3) Eliminate v

Primal graph

Elimination order

I<sub>3</sub>

ct<sub>13</sub>

l<sub>5</sub>

e

a

ct<sub>13</sub>

l<sub>3</sub>

ct<sub>13</sub>

e

ct<sub>13</sub>

l<sub>4</sub>

a

ct<sub>13</sub>

l<sub>5</sub>

e

a

•••

### What are the good tree decomposition techniques? Why?

Finding optimal Tree Decomposition  $\Leftrightarrow$  Finding optimal Elimination Order

It is always possible to build a TD from the clusters induced by Elimination order





Observation: The edge added between I1 and h will increase the size of the cluster induced I1 or h



Remark: If we add no edges → Perfect elimination



Heuristic: Eliminate first the variable that minimizes the number of additional edges : (Min Fill)



Pb: elimination order cannot be directly applied No privacy, No notion of acquaintance links

Idea: Weight each node by the quality of the clusters that the node will produce if it is the next to be eliminated



## Lesson learn from distributed context

Intuition:

distributed settings can speed up the elimination process by concurrent eliminations



concurrent eliminations {a, e }

concurrent eliminations {b, d}

Concurrent eliminations can be bad for tree decomposition

Vincent Armant LAMIA Seminar 42

d

С

C

## Outline

- Introduction
- Distributed tree decomposition
   Preserve network structure
   Keep local information local
- Centralized tree decomp. VS concurrent approaches
- Token elimination
- Experimental results on small-world graphs
- Conclusion / perspectives

## Token Elimination: Principle

- Distributed algorithm
  - Phase 1: Implicit building of a DTD
    - Elimination
    - Local elections and votes
    - Token passing
  - Phase 2: clusters reconnection (acquaintance property).

### Heuristics:

- Min-Cluster: Each peer estimates the size of the cluster it will produce if it is the next to be eliminated.
- Min-Proj: Each peer estimates the size of additional variables it will add to the token if it is the next to be eliminated.

Vincent Armant LAMIA Seminar

44

### Distributed algorithm

### On going Distributed Tree Decomposition

#### p receives the token

- organizes a local election
- peers vote , p is a local minimal ?
  - . No: sends the token
  - . Yes: eliminates itself, creates a new cluster, adds shared variables to the token, reorganizes local election sends the token



**LAMIA Seminar** 

45

### Distributed algorithm

On going Distributed Tree Decomposition

p receives the token

### - organizes a local election

- peers vote , p is a local minimal ?
  - . No: sends the token
  - . Yes: eliminates itself, creates a new cluster, adds shared variables to the token, reorganizes local election sends the token



### Distributed algorithm

On going Distributed Tree Decomposition

p receives the token

- organize a local election
- peers vote, p is a local minimal?
  - . No: sends the token
  - . Yes: eliminates itself, creates a new cluster, adds shared variables to the token, reorganizes local election sends the token



LAMIA Seminar

iar 47

### Distributed algorithm

On going Distributed Tree Decomposition

p receives the token

- organize a local election
- peers vote, p is a local minimal?
  - . No: sends the token
  - . Yes: eliminates itself, creates a new cluster, adds shared variables to the token, reorganizes local election sends the token



LAMIA Seminar

48

### Distributed algorithm

### p receives the token

- organize a local election
- peers vote , p is a local minimal ?
  - . No: sends the token
  - . Yes: eliminates itself, creates a new cluster, adds shared variables to the token, reorganizes local election sends the token



On going Distributed Tree Decomposition

### Distributed algorithm

On going Distributed Tree Decomposition

p receives the token

### - organizes a local election

- peers vote , p is a local minimal ?
  - . No: sends the token
  - . Yes: eliminates itself, creates a new cluster, adds shared variables to the token, reorganizes local election sends the token



### Distributed algorithm

On going Distributed Tree Decomposition

p receives the token

- organize a local election
- peers vote, p is a local minimal?
  - . No: sends the token
  - . Yes: eliminates itself, creates a new cluster, adds shared variables to the token, reorganizes local election sends the token



### Distributed algorithm

On going Distributed Tree Decomposition

p receives the token

- organize a local election
- peers vote, p is a local minimal?
  - . No: sends the token
  - Yes: eliminates itself, creates a new cluster, adds shared variables to the token, reorganizes local election peers vote and sends the token





p5 creates the cluster for I5 (privacy)

52

### Distributed algorithm

p receives the token

- organize a local election
- peers vote, p is a local minimal?
  - . No: sends the token
  - . Yes: eliminates itself, creates a new cluster, adds shared variables to the token, reorganizes local election peers vote and sends the token



### On going Distributed Tree Decomposition



### Distributed algorithm

p receives the token

- organize a local election
- peers vote, p is a local minimal?
  - . No: sends the token
  - . Yes: eliminates itself, creates a new cluster, adds shared variables to the token,

#### reorganizes local election

peers vote and sends the token





### Distributed algorithm

p receives the token

- organize a local election
- peers vote, p is a local minimal?
  - . No: sends the token
  - . Yes: eliminates itself, creates a new cluster, adds shared variables to the token,

#### reorganizes local election

peers vote and sends the token



On going Distributed Tree Decomposition



If p4 is the next to be eliminated, it will produce a cluster of 6 variables



### Distributed algorithm

p receives the token

- organize a local election
- peers vote, p is a local minimal?
  - . No: sends the token
  - . Yes: eliminates itself, creates a new cluster, adds shared variables to the token,

#### reorganizes local election

peers vote and sends the token



### On going Distributed Tree Decomposition







### Distributed algorithm

p receives the token

- organize a local election

#### - peers vote, p is a local minimal?

- . No: sends the token
- . Yes: eliminates itself, creates a new cluster, adds shared variables to the token, reorganizes local election

peers vote and p sends the token



On going Distributed Tree Decomposition



### Distributed algorithm

### Distributed digoritin

- organize a local election

p receives the token

- peers vote , p is a local minimal ?
  - . No: sends the token
  - . Yes: eliminates itself, creates a new cluster, adds shared variables to the token, reorganizes local election peers vote and p sends the token



On going Distributed Tree Decomposition



### Distributed algorithm

- p1 receives the token
- peers vote, p1 is a local minimal?
  - . No: sends the token

- organize a local election

. Yes: eliminates itself, creates a new cluster, adds shared variables to the token, reorganizes local election peers vote and p sends the token



On going Distributed Tree Decomposition



### Distributed algorithm

#### p2 receives the token

- organize a local election
- peers vote, p2 is a local minimal?
  - . No: sends the token
  - Yes: eliminates itself, creates a new cluster, adds shared variables to the token, reorganizes local election peers vote and p sends the token







### Distributed algorithm

#### p2 receives the token

- organize a local election
- peers vote, p2 is a local minimal?
  - . No: sends the token
  - Yes: eliminates itself, creates a new cluster, adds shared variables to the token, reorganizes local election peers vote and p sends the token







### Distributed algorithm

#### p3 receives the token

- organize a local election
- peers vote, p3 is a local minimal?
  - . No: sends the token
  - Yes: eliminates itself, creates a new cluster, adds shared variables to the token, reorganizes local election peers vote and p sends the token





### Distributed algorithm

#### p3 receives the token

- organize a local election
- peers vote, p3 is a local minimal?
  - . No: sends the token
  - Yes: eliminates itself, creates a new cluster, adds shared variables to the token, reorganizes local election peers vote and p sends the token





### Distributed algorithm

p3 receives the token

- organize a local election
- peers vote, p3 is a local minimal?
  - . No: sends the token
  - Yes: eliminates itself, creates a new cluster, adds shared variables to the token, reorganizes local election peers vote and p sends the token





### Distributed algorithm

p3 receives the token

- organize a local election
- peers vote, p3 is a local minimal?
  - . No: sends the token
  - Yes: eliminates itself, creates a new cluster, adds shared variables to the token, reorganizes local election peers vote and p sends the token



On going Distributed Tree Decomposition



Pb: link between p3 and p1 does not follow the accointances

Distributed structured network

## р3 (13) h **p2** p4 (<mark>14</mark>' р1 р5 е (d)

Final Distributed Tree Decomposition



66

## Outline

- Preliminary: Tree Decomposition
- Problematic: How to decompose a distributed system respecting privacy and acquaintances
- Distributed Tree Decomposition
- Token Elimination
- Experimental results on small world graph
- Conclusion et perspectives

## Barabasi et Albert (B.A.) graphs



### Properties

low average distance between 2 nodes

heterogeneity (degree distribution follows a power law )

 represents interaction graph of a lot of real world applications

## width of tree decomposed BA Graphs



## CPU-Time of the tree decomposed BA Graphs



## Watts et Strogatz (W.S.) graphs



### Properties

Short average distance between nodes

Homogenous (degree distribution follows Poisson law)

Represents some applications
 s.t. ISCAS circuits...

## width of the tree decomposed WS Graphs



## CPU time of the tree decomposed de WS graph



## Conclusions

- Distributed Tree Decomposition respecting
  - privacy (main reason for distributed systems)
  - preserving network acquaintance
- Token Elimination relying
  - On elimination order
  - on votes, token passing
- Results: Token Elimination
  - outperforms classical distributed decomposition methods
  - is competitive with centralized methods

# Thanks for your Attention ©

– Questions?

- varmant@4c.ucc.ie