SREENIDHI INSTITUTE OF SCIENCE & TECHNOLOGY

(An Autonomous Institution approved by UGC and 'A' Grade Awarded by NAAC)

II Year B.Tech, Semester-II

PROBABILITY & STATISTICS

Code: 9HC15

UNIT-I: Random Variables and Probability Distributions:

Random variables – Discrete and Continuous, Probability Mass and Density functions, Expectation and Variance. Probability Distributions: Binomial, Poisson and Normal Distributions.

Assignment Questions

1. Find the expected value and variance of the following probability distribution.

X:	-10	-20	30	75	80
P(x):	1/5	3/20	1/2	1/10	1/20

- 2. A random variable X has the following probability function (i) find the value of K
- (ii) Mean (iii) Variance

X	0	1	2	3	4	5	6	7
P(X)	0	K	2K	2K	3K	K ²	2K ²	7K ² +K

[Answers: (i) K=1/10=0.1, (ii) mean=3.66 (iii) variance=3.4044]

3. A continuous random variable has the probability density function

$$f(x) = \begin{cases} k \ x \ e^{-\lambda x} & for \ x \ge 0, \lambda > 0 \\ 0 & otherwise \end{cases}$$
. Determine (i) K (ii) Mean (iii) Variance.

4. The trouble shooting capacity of an IC chip in a circuit is a random variable X whose cumulative

distribution function is given by $F(x) = \begin{cases} 0, & \text{for } x \leq 3 \\ 1 - \frac{9}{x^2}, & \text{for } x > 3 \text{ where } x \text{ denotes the number of years. Find} \end{cases}$

the probability that the IC chip will work properly

(i) Less than 8 years (ii) Beyond 8 years (iii) Between 5 to 7 years

[Answers: (i) 0.8594 (ii) 0.1406 (iii) 0.1763 (iv) 0.64]

- 5. If X is a Poisson variate such that $3P(X = 4) = \frac{1}{2}P(X = 2) + P(X = 0)$, find
 - (a) The mean of X (b) $P(X \le 2)$
- 6. If X is a normal variable with mean 30 and standard deviation 5. Find the probability that (i) $26 \le X \le 40$ and (ii) $X \ge 45$.
- 7. In a certain examination 10% of the students appeared for an exam and got less than 30 marks and 97% of students got less than 62. Assuming the distribution to be normal then find Mean (μ), Standard deviation (σ).
- 8. The marks obtained in Mathematics by 1000 students are normally distributed with mean 78% and standard deviation 11%. Determine how many students got marks above 90%?