Politechnika Poznańska Wydział Inżynierii Materiałowej i Fizyki Technicznej Laboratorium Fizyki Ćwiczenie nr 103

Wyznaczenie współczynnika rozszerzalności liniowej ciał stałych

···J ======= ····J ====================					
Wydział:	WIiT	Wykonawca:	Data		
Forma studiów:	Niestacjonarne	Krzysztof Piotrowski (146313)	wykonania		
Stopień studiów:	I		ćwiczenia:		
Rok akademicki:	2	Osoby w grupie:	2020-11-27		
Grupa:	3	Kacper Paczos			
Prowadzący:	mgr inż.	Krystian Kudła			
	Maciej Szary	Michał Koberski	Ocena:		

1 Wstęp

Wymiary liniowe ciała zależą na ogół od jego temperatury. Zależność temperatury i długości ciała jest wyrażona wzorem:

$$\Delta l = \alpha l_0 \Delta T$$

gdzie:

 $\Delta l = l_1 - l_0$ to zmiana długości ciała, l_0 - długość początkowa, l_1 - długość w momencie pomiaru, α to współczynnik rozszerzalności liniowej ciał stałych,

 $\Delta T = T_1 - T_0$ to zmiana temperatury w $^{\circ}C$, T_0 - temperatura początkowa, T_1 - temperatura w momencie pomiaru.

Współczynnik rozszerzalności liniowej (α) jest definiowany jako względny przyrost długości $\Delta l/l$ w jednostce zmiany temperatury w $^{\circ}C$.

Celem ćwiczeń jest określenie współczynnika rozszerzalności liniowej α dla miedzi, mosiądzu i stali wraz z jego błędem pomiaru $\Delta\alpha$.

2 Przebieg ćwiczenia

Pomiarów dokonujemy na stanowisku na którym umieszczone są rury z miedzi, mosiądzu i stali. Przez rury pompowana jest ogrzewana przez ultratermostat woda. Dla każdej rury jest dedykowany termometr wraz z parą czujników zegarowych do pomiaru wydłużenia po obu stronach rur. Dokonujemy pomiarów długości rur dla pewnego spektrum temperatur. Po przekształceniu danych pomiarowych na przyrost długości rur (Δl) oraz przyrost temperatury (ΔT) obliczamy dla nich współczynnik regresji liniowej odpowiadający nachyleniu (a) pewnej prostej reprezentującej nasze dane do osi x (temperatury). Określamy statystyczną istotność uzyskanych wyników oraz odnotowujemy dla nich błąd standardowy. Jeśli wynik jest statystycznie istotny, to obliczamy współczynnik rozszerzalności liniowej α wraz z jego błędem pomiaru $\Delta \alpha$.

3 Wyniki pomiarowe

Oznaczenia:

 l_0 - długość początkowa pręta (w temperaturze t_0)

 x_k - położenie końca pręta

 x_p - położenie początku pręta

 $l_0 = x_k - x_p$

t - temperatura

 Δl - wydłużenie pręta

Błędy (niepewności) pomiarowe (dokładości przyrządów):

 $\Delta x_k = \Delta x_p = 0.05mm \Rightarrow \Delta l = \Delta x_k + \Delta x_p = 0.1mm$

 $\Delta(\Delta l) = 0.01$ mm (błąd dla wsp. reg. lin. a uwzględni to samoistnie)

 $\Delta t = 0, 1^{\circ}C$

	miedź		mosiądz			stal			
$x_k[mm]$	$x_p[mm]$	$l_0[mm]$	$x_k[mm]$	$x_p[mm]$	$l_0[mm]$	$x_k[mm]$	$x_p[mm]$	$l_0[mm]$	
771,60	0,65	770,95	772,45	1,10	771,35	772,25	1,25	771,00	

Tabela 1: Wyznaczenie długości początkowej pręta.

	miedź		mosiądz			stal			
Lp.	$T[^{\circ}C]$	$\Delta T[^{\circ}C]$	$\Delta l[mm]$	$T[^{\circ}C]$	$\Delta T[^{\circ}C]$	$\Delta l[mm]$	$T[^{\circ}C]$	$\Delta T[^{\circ}C]$	$\Delta l[mm]$
1	21,2	0,0	0,00	21,1	0,0	0,00	21,3	0,0	0,00
2	26,8	5,6	0,09	27,1	6,0	0,09	27,3	6,0	0,06
3	32,6	11,4	0,15	32,5	11,4	0,17	32,7	11,4	0,11
4	37,3	16,1	0,22	37,1	16,0	0,25	37,3	16,0	0,15
5	42,5	21,3	0,29	42,3	21,2	0,33	42,4	21,1	0,20
6	47,1	25,9	0,35	47,1	26,0	0,39	47,2	25,9	0,24
7	52,2	31,0	0,41	52,0	30,9	0,46	52,1	30,8	0,28
8	57,0	35,8	0,48	57,3	36,2	0,54	57,2	35,9	0,33
9	62,2	41,0	0,54	61,3	40,2	0,61	62,0	40,7	0,37
10	68,1	46,9	0,61	67,5	46,4	0,69	68,0	46,7	0,43

Tabela 2: Badanie zależności wydłużenia pręta w funkcji temperatury.

Metodologia

Analiza regresji liniowej

Użyto metody analizy regresji liniowej dla określenia współczynnika nachylenia prostej do osi x (a). Metoda ta oblicza równanie dla prostej która najlepiej opisuje zależności pomiędzy zmienną niezależną (temperatura rur), a zmienną zależną (długość rur). Równanie regresji liniowej przedstawia się następującym wzorem:

$$y = ax + b$$

gdzie:

y to zmienna zależna (długość rur),

x to zmienna niezależna (temperatura rur),

b to punkt przecięcia z osią Y, wyrażony formułą:

$$b = \overline{Y} - a \overline{X}$$

gdzie:

 \overline{Y} to średnia Y (długości),

 \overline{X} to średnia X (temperatury),

a to współczynnik regresji liniowej (nachylenie), wyrażony wzorem: $a = \frac{cov(X,Y)}{s_c^2}$ gdzie: cov(x,y) to kowariancja pomiędzy zmiennymi X i Y,

 s_x^2 to wariancja zmiennej niezależnej X.

4.2 Metoda różniczki zupełnej do wyznaczenia błędu

Wzór na metodę różniczki zupełnej:

$$\Delta z = \left| \frac{\delta f}{\delta x_1} \Delta x_1 \right| + \left| \frac{\delta f}{\delta x_2} \Delta x_2 \right| + \dots$$

5 Obliczenia

materiał	$a[mm/^{\circ}C]$	$s[mm/^{\circ}C]$	p-value
miedź	$1,30*10^{-2}$	$1,43*10^{-4}$	0,00
mosiądz	$1,49*10^{-2}$	$1,37*10^{-4}$	0,00
stal	$0.91*10^{-2}$	$0,67*10^{-4}$	0,00

Tabela 3: Współczynnik regresji liniowej *a* dla poszczególnych materiałów wraz z odchyleniem standardowym *s* i p-value. Analiza regresji przeprowadzona przy użyciu excela.

Wyprowadzenie wzoru na współczynnik rozszerzalności liniowej α :

$$\Delta l = \alpha \ l_0 \ \Delta T \quad \Rightarrow \quad \alpha = \frac{\Delta l}{l_0 \ \Delta T}$$
 $a = \frac{\Delta l}{\Delta T} \quad \Rightarrow \quad \alpha = \frac{a}{l_0} \quad \Rightarrow \quad \alpha = a \ l_0^{-1}$

Wyprowadzenie wzoru na błąd pomiaru $\Delta \alpha$:

$$\Delta lpha = |rac{\partial \, lpha}{\partial \, a} \Delta a| + |rac{\partial \, lpha}{\partial \, l_0} \Delta l_0|$$
 $\Delta lpha = |l_0^{-1} \, \Delta a| + |-a \, \Delta l_0|$
 $\Delta lpha = rac{\Delta a}{l_0} + a \, \Delta l_0$

 ∂ - sygnał, że pochodna będzie liczona dla funkcji wielu zmiennych.

$$\Delta\alpha_{miedz} \approx \frac{1,43*10^{-4}}{7,71*10^{2}} + 1,68*10^{-5}*10^{-1} \approx (0,19+1,68)*10^{-6} \approx 1,87*10^{-6} [mm/^{\circ}C]$$

$$\Delta\alpha_{mosiadz} \approx \frac{1,37*10^{-4}}{7,71*10^{2}} + 1,93*10^{-5}*10^{-1} \approx (0,18+1,93)*10^{-6} \approx 2,11*10^{-6} [mm/^{\circ}C]$$

$$\Delta\alpha_{stal} \approx \frac{0,67*10^{-4}}{7,71*10^{2}} + 1,18*10^{-5}*10^{-1} \approx (0,09+1,18)*10^{-6} \approx 1,27*10^{-6} [mm/^{\circ}C]$$

materiał	$\alpha[mm/^{\circ}C]$	$\Delta \alpha [mm/^{\circ}C]$
miedź	$1,68*10^{-5}$	$\pm 1,87*10^{-6}$
mosiądz	$1,93*10^{-5}$	$\pm 2,11*10^{-6}$
stal	$1,18*10^{-5}$	$\pm 1,27*10^{-6}$

Tabela 4: Współczynnik rozszerzalności liniowej α wraz z błędem pomiaru $\Delta\alpha$.

6 Wnioski

Dla każdego badanego materiału wartość p-value dla a jest poniżej 0,05, a więc wyniki są statystycznie istotne. Materiały te posiadają różne współczynniki rozszerzalności liniowej, szeregując je malejąco będzie to mosiądz $(19,3\pm2,1)[nm/^{\circ}C]$, miedź $(16,8\pm1,9)[nm/^{\circ}C]$ i stal $(11,8\pm1,3)[nm/^{\circ}C]$. Określenie zależności zmian temperatur i długości za pomocą funkcji liniowej ma pokrycie w rzeczywistości dla pewnych określonych przedziałów temperatur zależnie od użytego materiału.

Rysunek 1: Zależność zmiany długości rury od jego temperatury.