On the Cheating of Offline RL

Shangtong Zhang, Assistant Professor

Department of Computer Science University of Virginia https://shangtongzhang.github.io/

Canonical RL relies on agent-env interaction

Case study: AlphaStar

(Vinyals et al. 2019)

Trillions of interactions with SCII simulator!

Online interaction can be slow

Case study: industrial cooling system

(Chervonyi et al. 2022)

1M training steps is nothing in RL

Case study: industrial cooling system

 $10 \times 10^6 \div 3600 \div 24 \approx 116 \, \text{days}$

Online interaction can be dangerous

TECH NEWS

Self-driving Uber car that hit and killed woman did not recognize that pedestrians jaywalk

The automated car lacked "the capability to classify an object as a pedestrian unless that object was near a crosswalk," an NTSB report said.

Offline RL uses previously logged data

 $\{(s_i, a_i, r_i, s_i')\}_{i=1,...,N}$

Case study: Offline AlphaStar

2023-8-8

AlphaStar Unplugged: Large-Scale Offline Reinforcement Learning

Michaël Mathieu^{*,1}, Sherjil Ozair^{*,1}, Srivatsan Srinivasan^{*,1}, Caglar Gulcehre^{*,1}, Shangtong Zhang^{*,2}, Ray Jiang^{*,1}, Tom Le Paine^{*,1}, Richard Powell¹, Konrad Żołna¹, Julian Schrittwieser¹, David Choi¹, Petko Georgiev¹, Daniel Toyama¹, Aja Huang¹, Roman Ring¹, Igor Babuschkin¹, Timo Ewalds¹, Mahyar Bordbar¹, Sarah Henderson¹, Sergio Gómez Colmenarejo¹, Aäron van den Oord¹, Wojciech Marian Czarnecki¹, Nando de Freitas¹ and Oriol Vinyals¹

Case study: Offline AlphaStar

Offline AlphaStar has more than 90% win-rate against AlphaStar Supervised.

William Thomson, Lord Kelvin 1824 - 1907

Only two small clouds remained on the horizon of knowledge in physics offline RL.

how do people tune hyperparameters in offline reinforcement learning???

 $3:26 \text{ PM} \cdot \text{Jun } 23,2023 \cdot \textbf{105.2K} \text{ Views}$

Kyunghyun Cho

New York University, Genentech Verified email at nyu.edu - <u>Homepage</u> Machine Learning Deep Learning

TITLE	CITED BY	YEAR
Neural machine translation by jointly learning to align and translate D Bahdanau, K Cho, Y Bengio ICLR 2015	33050	2014
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation K Cho, B van Merrienboer, C Gulcehre, F Bougares, H Schwenk, Conference on Empirical Methods in Natural Language Processing (EMNLP 2014)	28511	2014
Empirical evaluation of gated recurrent neural networks on sequence modeling J Chung, C Gulcehre, KH Cho, Y Bengio arXiv preprint arXiv:1412.3555	15084	2014

Cited by		VIEW ALL
	All	Since 2019
Citations h-index i10-index	141989 98 234	113051 90 220
	- 1 -	25000
_	ш	18750
		12500
		6250
2017 2018 2019 20	020 2021 2022 202	23 2024 0
Public access		VIEW ALL

Offline RL uses simulator for model selection

Offline data

Candidate agents

Performance

Monte Carlo dominates RL evaluation

99% of such curves in RL papers are generated by online Monte Carlo

Guideline for attending offline RL talks / posters

Simulator!!!

Our approach: admit that we have to use Monte Carlo but try to use Monte Carlo smartly

Improving Monte Carlo Evaluation with Offline Data.

Shuze Liu, Shangtong Zhang. arXiv:2301.13734, 2023.

Thanks & Questions

Build intuition with STAT 101

- Estimating an expectation $\mathbb{E}_{X \sim p}[f(X)]$
- Monte Carlo $\frac{1}{N} \sum_{i=1}^{N} f(X_i), \quad X_i \sim p$
- Importance sampling

$$\mathbb{E}_{X \sim p}\left[f(X)\right] = \mathbb{E}_{X \sim q}\left[\frac{p(X)}{q(X)}f(X)\right] \qquad \frac{1}{N}\sum_{i=1}^{N}\frac{p(X_i)}{q(X_i)}f(X_i), \quad X_i \sim q$$

Optimal sampling distribution minimizing the variance

$$q(x) = \frac{p(x)|f(x)|}{\sum_{y} p(y)|f(y)|}$$

From STAT 101 to RL 999

- Data in RL $\{S_0, A_0, R_1, S_1, A_1, R_2, ..., R_T\} \sim \mu$
- Per-decision importance sampling ratio Monte Carlo estimator

$$\sum_{t=1}^{T} \left(\prod_{i=0}^{t-1} \frac{\pi(A_i \mid S_i)}{\mu(A_i \mid S_i)} \right) R_t$$

"Improving Monte Carlo Evaluation with Offline Data." Shuze Liu, Shangtong Zhang arXiv:2301.13734, 2023.

• A **provably** variance reducing behavior policy for the per-decision MC estimator

$$\sum_{t=1}^{T} \left(\prod_{i=0}^{t-1} \frac{\pi(A_i \mid S_i)}{\mu(A_i \mid S_i)} \right) R_t$$

 A computationally efficient and model-free method to learn this behavior policy from offline data

Searching good behavior policies for off-policy MC is not new

- Some cannot exploit offline data and require new online data
- Some assume special structure of the MDP and need to learn a model

It is desired to do evaluation with offline data

Model-based offline evaluation reduces to simulator

Model-free offline evaluation reduces to model-selection

Model-free offline evaluation reduces to model-selection

learned $d_{\pi}(s)/d_{\mu}(s)$ learned $q_{\pi}(s,a)$

learned $d_{\pi}(s)/d_{\mu}(s)$ learned $q_{\pi}(s,a)$

learned $d_{\pi}(s)/d_{\mu}(s)$ learned $q_{\pi}(s,a)$

learned $d_{\pi}(s)/d_{\mu}(s)$ learned $q_{\pi}(s,a)$

Evaluation

Offline model selection hardly has correctness guarantee

Pitfalls of offline evaluation methods

99% of such curves in RL papers are generated by online Monte Carlo