Trajectory Design for Mars 2020

Aston McDonald

Position and Velocity of Earth at Launch and Mars at Arrival

Planet	Rx (km)	Ry (km)	Rz (km)	Vx (km/s)	Vy (km/s)	Vz (km/s)
Earth (Launch)	9.1900e+7	-1.2094e+8	5.3201e+3	23.2280	17.9096	-8.7892e-4
Mars (Arrival)	-1.4192e+6	2.3490e+8	4.9571e+6	-23.3106	1.9125	0.6120

Orbital Elements

Planet	a (km)	е	i (rad)	ω(rad)	Ω (rad)	ν (rad)	E (deg)
Earth (Launch)	1.4690e+8	0.0168	4.5956e-5	-1.2898	3.0872	-2.7184	-2.7114
Mars (Arrival)	2.2794e+8	0.0934	0.0323	-1.2801	0.8640	1.9932	1.9062

Finding Velocity of s/c at Burnout

- Utilized Zero Radius SOI and patched conics assumption
- Brute force trial and error through iteration with error in velocity x,y, and z directions
 - Initial Guess with Hohmann Transfer
 - Once tolerance was met it was adjusted in adjunct with step size
 - Propagated orbits with the Two Body function seen in HW3
 - Through experimentation max iterations to receive decent miss distance was found to be i=10000=1e4

Results:

- Spacecraft Velocity vector: [26.43665, 19.51899, 1.15681]
- Hit or Miss magnitude of error was 1.59747 km

Combined Resulting Trajectories in Heliocentric Frame

Spacecraft Trajectory in Mars Centric Frame with Earth Trajectory for Launch time reference

Vinf Velocity Diagrams for Launch and Arrival

Animated Trajectories

Inclination of Final Orbit

 Based on the north pole of Mars the inclination of the spacecraft orbit as it approaches mars was found to be 28.194268 degrees

```
khat=[4.461321045940511e-01 -5.583636558975008e-02 8.932236257109472e-01];
% h = r x v
h=cross(rvscA(1:3),rvscA(4:6));
%inclination
isc=acosd(dot(h,khat)/(norm(h)*norm(khat)));
```

NASA Launch Vehicle Performance

- Using the VinfL magnitude C3 was found to be 14.2259
- When cross referenced with the Atlas V (541), mass was ~4250 kg

Results

- Using the collinear maneuver at Mars capture the deltaV was found to be 2.0653 km/s
- The mass left over was found to be ~2106 kg
- Mass of Propellant as a remainder was ~2144 kg
- The Published mass of the Mars 2020 rover is 1025 kg
 - The difference between published mass and found value is likely from the actual spacecraft. As well as Launch/Deploy equipment.

Citations

Given:

NASA launch vehicle performance website

Source Code:

Bemis, R. (n.d.). Animated GIF. Retrieved December 13, 2020, from https://www.mathworks.com/matlabcentral/fileexchange/21944-animate d-gif