CUSTOMER PERSONALITY ANALYSIS

By Ian Hash and Pleng Witayaweerasak

Executive Summary

PROBLEM DOMAIN	We aim to explore how supermarket businesses can perform customer segmentation analysis using clustering techniques to optimize marketing strategy, identify high value customers, and increase revenue		
DATASET	Our dataset is sourced from Kaggle – it offers a comprehensive view of customer demographics, purchasing behavior, marketing campaign responses, and interaction channels		
METHODS	We will be using dimensionality reduction with PCA, unsupervised learning and clustering techniques ie. K-Means and Apriori Algorithm to find insights about different customer segments		
FINDINGS	From K-Means analysis, we segmented customers into 4 clusters based on their income, spending, and shopping behavior. From Apriori Algorithm, we found products frequently bought together for each segment		
RECOMMENDATION	We suggest product recommendation that market and cross-sell frequently bought together items, and recommend marketing and inventory strategies that will improve KPIs for the business		

PROBLEM DOMAIN

- Retailers often fail to deliver personalized experiences, leading to irrelevant ads, poor product recommendations, and lost sales opportunities.
- We aim to perform customer segmentation and build a machine learning model to predict customer groups based on behavior and demographics, and suggest relevant products that will increase sales.

BUSINESS QUESTIONS & KPIS

- How can segmentation and machine learning drive personalized marketing to boost sales and ROI?
- How can retailers allocate resources more efficiently by identifying and targeting high-value customer segments?
- How can customer insights inform product development and retention strategies to increase revenue and customer lifetime value?

OUR DATASET

Source

<u>Customer Personality Analysis</u>

2,240 rows x 29 features

Features include demographics, shopping behaviors, total spent on products, and customer responses

24 missing values

Dataset is already pretty clean

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2240 entries, 0 to 2239
Data columns (total 29 columns):

#	# Column Non-Null Count Dtype				
0	ID	2240	non-null	int64	
1	Year_Birth	2240	non-null	int64	
2	Education	2240	non-null	object	
3	Marital_Status	2240	non-null	object	
4	Income	2216	non-null	float64	
5	Kidhome	2240	non-null	int64	
6	Teenhome	2240	non-null	int64	
7	Dt_Customer	2240	non-null	object	
8	Recency	2240	non-null	int64	
9	MntWines	2240	non-null	int64	
10	MntFruits	2240	non-null	int64	
11	MntMeatProducts	2240	non-null	int64	
12	MntFishProducts	2240	non-null	int64	
13	MntSweetProducts	2240	non-null	int64	
14	MntGoldProds	2240	non-null	int64	
15	NumDealsPurchases	2240	non-null	int64	
16	NumWebPurchases	2240	non-null	int64	
17	NumCatalogPurchases	2240	non-null	int64	
18	NumStorePurchases	2240	non-null	int64	
19	NumWebVisitsMonth	2240	non-null	int64	
20	AcceptedCmp3		non-null	int64	
21	AcceptedCmp4	2240		int64	
22	AcceptedCmp5		non-null	int64	
23	AcceptedCmp1		non-null	int64	
24	AcceptedCmp2		non-null	int64	
25	Complain	2240	non-null	int64	
26	Z_CostContact	2240		int64	
27	Z_Revenue		non-null	int64	
28	Response		non-null	int64	
dtypes: float64(1), int64(25), object(3)					
memory usage: 507.6+ KB					

DATA PREPROCESSING + FEATURE ENGINEERING

- We imputed 24 missing income values with median income
- Age and Income have outliers so we set a cap max (Age < 90 and income < 600K) and dropped 4 rows
- We created new features such as Total Spending, Age, Family Size, Recency, and some interaction features
- Categorical features were grouped for clarity Education was grouped into undergraduate, graduate, and postgraduate. Marital status was grouped into Living_With partner or alone
- Some irrelevant features were also dropped such as Customer_ID

Categorical features were one-hot encoded and the rest of numerical features were scaled using

StandardScaler

--- Education --- Education Graduation 1127
PhD 486
Master 370
2n Cycle 203
Basic 54
Name: count, dtype: int64
--- Marital_Status --- Marital_Stat

OUR METHODS

DIMENSIONALITY REDUCTION

We used PCA to select features that explained 80% of the variance

K-MEANS

We used K-Means clustering to segment customers into 4 groups

CHOOSE N CLUSTERS

We used the Elbow Method and Silhouette Score to find n clusters

APRIORI ALGORITHM

We used Apriori algorithm to identify product association rule

DIMENSIONALITY REDUCTION WITH PCA

With cumulative 80% explained variance threshold, we chose 7 components for our models

TotalSpending Spending_Age_Interaction Income_FamilySize_Ratio Income Income MntMeatProducts NumCatalogPurchases NntWines NumStorePurchases MntFiruits MntSweetProducts NumMebVisitsMonth FamilySize_est MntGoldProds NumMebPurchases NumMebPurchases NumMebPurchases NumMebPurchases NumMebPurchases	PC1 0.326886 0.315062 0.296609 0.296624 0.282401 0.278912 0.269880 0.246851 0.233131 0.332245 0.217156 0.196050 0.188752 0.179472 0.856238 0.0456238	0.417078 0.094541 0.307604 0.493436 0.214665 0.469281	PC3 0.069421 0.020131 0.086136 0.771070 0.008408 0.004540 0.053228 0.0075566 0.075666 0.075566 0.075666 0.075566 0.075566 0.075566 0.075566 0.075566 0.075566 0.07556	0.076 0.221 0.111 0.027 0.010 0.053 0.289 0.011 0.294 0.358 0.352 0.103 0.238 0.174 0.035 0.239 0.555 0.134
Recency TotalSpending Spending Age_Interaction Income_FamilySize_Ratio Income Income FamilySize_Ratio Income Inco	9.034429 PC5 0.136813 0.033027 0.110310 0.162248 0.207013 0.138863 0.264049 0.055408 0.254757 0.247159 0.009765 0.009765 0.007385 0.0070385 0.119587 0.66108 0.119587 0.679074 0.093301 0.009705	0.053789 0.027119 0.035519 0.273350 0.128070 0.132367 0.220246 0.162961 0.127992 0.104205 0.026512 0.183895 0.387582 0.500873 0.124952	9.568427 PC7 0.02367 0.032451 0.022863 0.065183 0.216573 0.362787 0.132562 0.299405 0.001811 0.175432 0.294021 0.137844 0.017857 0.289414 0.0975368 0.289414 0.017857 0.385991 0.3149780	0.143

CHOOSE N CLUSTERS

The **elbow method** evaluates the distortion score, which measures how tightly the data points fit within each cluster. The **silhouette score** measures how similar each point is to its own cluster compared to others, ranging from -1 to 1. A higher score means more distinct, well-separated clusters. With both methods, we chose 4 clusters for K-Means

K-MEANS

K-Means is an **unsupervised** machine learning algorithm that partitioned our data into 4 distinct clusters based on feature similarity. It iteratively assigns data points to the nearest cluster centroid and updates centroids until convergence.

The visualizations show the clustering results projected onto the first three principal components (PC1–PC3), which capture the most variance in the data.

We can see that clusters are well-separated with minor overlapping in the reduced dimensional space.

K-MEANS FINDINGS

CLUSTER	0	1	2	3
AGE	61	57	59	49
SPEND	\$170	\$1415	\$875	\$97
FAMILY SIZE	2.8	1.1	2.1	1.8
BEHAVIOR	Moderate use of deals and store purchases	Prefer catalog and store channels – Least responsive to deals	Most deal purchases and highest web purchases	High web visits but low purchase activity

K-MEANS CLUSTER FINDINGS

Low-Spending, Older Families

- Moderate income
- Older age
- Very low spending
- Value-conscious

\$170

Average spend per customer

Very High-Income, High-Spending

- Highest income
- Slightly younger
- Very high spending
- Loyal and affluent

\$1,415

Average spend per customer

High-Income, Digitally Active

- High income
- Slightly older
- High spending
- Active and valuable

\$875

Average spend per customer

Young, Low-Income, Low-Spending

- Low income
- Youngest group
- Lowest spending
- Price-sensitive browsers

\$97

Average spend per customer

HIGH VALUE PERSONA — High Income High Spending

\$1,415

Average spend per customer

Education

Graduate

Age

57

Income

■ \$77K

Household

1.1, mostly educated professionals

Products

 High spending across all product categories

Promotion

- Prefer catalog/stores
- Least responsive to deals

K-MEANS CLUSTER RECOMMENDATION

Low-Spending, Older Families

- Value bundles on essentials
- Loyalty programs tailored to older family shoppers "Family Saver" or "Senior Advantage"

Very High-Income, High-Spending

- VIP membership
- Cross-sell premium items (wine/cold cuts)
- Emphasize high-quality service
- Avoid discount-heavy messages

High-Income, Digitally Active

- Targeted online promos
 - + flash sale
- Personalized deal recommendation
- Optimize digital ads
- Loyalty apps and gamified rewards

Young, Low-Income, Low-Spending

- New customer voucher
- Students or new starters discount
- Engage through social media and influencer marketing
- Aim for retention as their income grows

APRIORI ALGORITHM

The **Apriori algorithm** is a classic data mining technique used to **identify frequent itemsets and generate association rules**, most notably applied in market basket analysis to find which products are often purchased together

Apriori relies on the principle that **all non-empty subsets of a frequent itemset must also be frequent**. If a set of items is not frequent, none of its supersets can be frequent either

It can effectively help us answer the following types of questions:

- Which items are frequently bought together?
- What are the most common combinations of items?
- If a customer buys item X, how likely are they to buy item Y?
- What customer behaviors or preferences are linked?

We answered these questions for across all clusters, as well as explored them for each specific cluster to inform customer segment specific recommendations

APRIORI PRODUCT INSIGHTS CUSTOMER SEGMENTS

Low-Spending, Older Families

- Focus Marketing on Associated Product Groups
- Not High Return Individual Customers, Group Potential
- 1. Wines+Meats
- 2. Fruits+Meats

Very High-Income, High-Spending

- 'Biggest Buyers'
- Focus Marketing on Top Ranked Associated Product Groups
- 1. Meat+Fish+Sweets
- 2. Meat+Fish
- 3. Meat+Wine

High-Income, Digitally Active

- Individual Product Associations Rank Higher That Groups
- Focus Marketing on Top Ranked Individual Products
- 1. Meat
- 2. Gold
- 3. Wines

Young, Low-Income, Low-Spending

- 'Non-buyer' & 'no-buyer'
- Focus Marketing on Associated Product Groups
- Not High Return Individual Customers, Group Potential
- 1. Fruits+Sweets
- 2. Wines+Meats

APRIORI PRODUCT INSIGHTS CUSTOMER CROSS-SEGMENT

Customers who buy Sweets tend to buy Fish and Fruits more than all other product combinations

- in about 13% of all transactions
- in about 77% of transactions with sweets as the antecedent
- are purchased much more often together than by random chance

Customers who Sweets tend to buy Meat

- in about 17% of all transactions
- in about 66% of transactions with sweets as the antecedent
- more often together than by random chance

Customers who buy Meat tend to buy Wine

- in about 15% of all transactions
- in about **59%** of transactions with meat as the antecedent
- more often together than by random chance

VISUALIZING PRODUCT PURCHASE RELATIONSHIPS

OUR PRODUCT RECOMMENDATIONS

1

Market **Fish Products** and Product Associations with Fish to All Customer Segments 2

Target 'Biggest Buyers' with Meat+Fish+Sweets Combos 3

Market **Meat**, **Gold**, **Wine** Individually to **Mid-Income**, **Digitally Active Group**

4

Place Sweets, Such as Bakery, Near Meat Butcher/Deli - Online/In-App Recommendations 5

Market **Meat and Wines** Together

OUR BUSINESS RECOMMENDATIONS

Data-Driven Product Bundling

Action

- Create product bundles using suggested combos
- 2. Run "Buy A, Get B at 10% Off offers"

Business Impact

- Increase average order value & total revenue
- Boost conversion rate
- Drive repeat purchase

Segment-Based Targeted Marketing

Action

- Personalized campaigns targeting (eg. in-store VIP perks for cluster 1, digital deals for cluster 2)
- 2. Retarget via email, ads, loyalty platform

Business Impact

- Increase ROI on ad spend
- Improve customer retention and lifetime value

Smart Product Placement (Online + In-Store)

Action

- Position suggested combo together
- 2. Suggest "Frequently Bought Together" on online platform

Business Impact

- Increase Basket Size
- Encourage product discovery and better UX

Product Development and Inventory Strategy

Action

- Develop segment-specific SKUs (luxury collection vs. budget kits)
- 2. Align inventory with cluster-level demand forecast

Business Impact

- Improve product market fit
- Optimized inventory cost

