HW 7 Tangent Vectors and Cotangent Vectors

Liu Mingdao 2020011156

Exercise 1.7.1

- 1. Consider $g(x)=c, c\in\mathbb{R}$. If c=0, note that \boldsymbol{v} is a linear map, v(g)=v(0)=0. If $c\neq 0$, then for $\forall \boldsymbol{p}\in\mathbb{R}^3$, $c\cdot v(g)=v(c\cdot g)=v(g^2)=g(\boldsymbol{p})v(g)+g(\boldsymbol{p})v(g)=2c\cdot v(g)$, i.e. v(g)=0.
- **2.** From Leibniz rule we have $v((x-p_1)f) = (x-p_1)\big|_{\boldsymbol{p}}v(f) + f(\boldsymbol{p})v(x-p_1)$. Note that $(x-p_1)\big|_{\boldsymbol{p}} = 0$ and $v(x-p_1) = v(x) v(p_1) = v(x)$, we have $v((x-p_1)f) = f(\boldsymbol{p})v(x)$. Similarly, we have

$$v((y - p_2)f) = (y - p_2)|_{\mathbf{p}}v(f) + f(\mathbf{p})v(y - p_2) = f(\mathbf{p})v(y) - f(\mathbf{p})v(p_2) = f(\mathbf{p})v(y)$$
$$v((z - p_3)f) = (z - p_3)|_{\mathbf{p}}v(f) + f(\mathbf{p})v(z - p_3) = f(\mathbf{p})v(z) - f(\mathbf{p})v(p_3) = f(\mathbf{p})v(z)$$

- 3. Suppose a < 1, b < 1, c < 1, then a = b = c = 0, contradiction. So at least one number in $\{a,b,c\}$ is larger or equal to 1. Without loss of generalization, assume $a \ge 1$. Let $f = (x p_1)^{a-1}(y p_2)^b(z p_3)^c$, from a + b + c > 1, we know $(a 1) + b + c \ge 1$, so at least one factor of f has a positive exponent and other factors have exponent 1. Note that $(x p_1)|_{\mathbf{p}} = (y p_2)|_{\mathbf{p}} = (z p_3)|_{\mathbf{p}} = 0$. So $f(\mathbf{p}) = 0$. From the previous subproblem we have $v((x p_1)^a(y p_2)^b(z p_3)^c) = v((x p_1)f) = f(\mathbf{p})v(x) = 0$. (When $b \ge 1$ substitute $\{a, b, c\}$ in this subproblem with $\{b, a, c\}$, in the case of $c \ge 1$, substitute $\{a, b, c\}$ with $\{c, b, a\}$.)
- 4. Using Taylor Expansion at \boldsymbol{p} for f, we have $f = f(p_1, p_2, p_3) + \frac{\partial f}{\partial x}(\boldsymbol{p})(x-p_1) + \frac{\partial f}{\partial y}(\boldsymbol{p})(y-p_2) + \frac{\partial f}{\partial z}(\boldsymbol{p})(z-p_3) + R(x,y,z)$, where R(x,y,z) is the remainder term. Note that R(x,y,z) can be write as linear composition of terms $(x-p_1)^a(y-p_2)^b(z-p_3)^c$, where $a+b+c\geq 2$ (since we have listed the terms when $a+b+c\leq 1$). Then, from the previous subproblem, we have v(R(x,y,z))=0. So $v(f)=v(f(p_1,p_2,p_3))+v(\frac{\partial f}{\partial x}(\boldsymbol{p})(x-p_1))+v(\frac{\partial f}{\partial y}(\boldsymbol{p})(y-p_2))+v(\frac{\partial f}{\partial z}(\boldsymbol{p})(z-p_3))=\frac{\partial f}{\partial x}(\boldsymbol{p})v(x)+\frac{\partial f}{\partial y}(\boldsymbol{p})v(y)+\frac{\partial f}{\partial z}(\boldsymbol{p})v(z).$
 - **5.** From the definition of "direction derivative", we know for $\forall f$ and given point $\boldsymbol{p} \in \mathbb{R}^3$,

$$\nabla_{v} f = \lim_{t \to 0^{+}} \frac{f(\boldsymbol{p} + t\boldsymbol{v}) - f(\boldsymbol{p})}{t}$$

$$= \lim_{t \to 0^{+}} \frac{\frac{\partial f}{\partial x}(\boldsymbol{p})v(x)t + \frac{\partial f}{\partial y}(\boldsymbol{p})v(y)t + \frac{\partial f}{\partial z}(\boldsymbol{p})v(z)t + o(||\boldsymbol{v}||t)}{t}$$

$$= \frac{\partial f}{\partial x}(\boldsymbol{p})v(x) + \frac{\partial f}{\partial y}(\boldsymbol{p})v(y) + \frac{\partial f}{\partial z}(\boldsymbol{p})v(z)$$

$$= v(f)$$

Exercise 1.7.2 In this problem, assume that X is linear.

- 1. $X_{\mathbf{p}}(fg) = X(fg)|_{\mathbf{p}} = (fX(g) + gX(f))|_{\mathbf{p}} = f(\mathbf{p})X(g)|_{\mathbf{p}} + g(\mathbf{p})X(f)|_{\mathbf{p}} = f(\mathbf{p})X_p(g) + g(\mathbf{p})X_p(f)$. For any given $\mathbf{p} \in \mathbb{R}^3$, X_p satisfy the Leibniz rule, so X_p is a derivation at \mathbf{p} .
- 2. For any given $\mathbf{p} \in \mathbb{R}^3$, let \mathbf{w} denote the corresponding vector of X at \mathbf{p} , then $df(X)\big|_{\mathbf{p}} = df(\mathbf{w})$. Note that $\mathbf{w} = \begin{bmatrix} X_{\mathbf{p}}(x) \\ X_{\mathbf{p}}(y) \\ X_{\mathbf{p}}(z) \end{bmatrix}$, so $df(X)\big|_{\mathbf{p}} = \begin{bmatrix} \frac{\partial f}{\partial x}(\mathbf{p}) & \frac{\partial f}{\partial y}(\mathbf{p}) & \frac{\partial f}{\partial z}(\mathbf{p}) \end{bmatrix} \begin{bmatrix} X_{\mathbf{p}}(x) \\ X_{\mathbf{p}}(y) \\ X_{\mathbf{p}}(z) \end{bmatrix}$. From the previous subproblem $X_{\mathbf{p}}(f)$ is a derivation at \mathbf{p} , and from 1.7.1.4 we know a derivation $X_{\mathbf{p}}(f) = X(f)(\mathbf{p}) = \frac{\partial f}{\partial x}(\mathbf{p})X_{\mathbf{p}}(x) + \frac{\partial f}{\partial y}(\mathbf{p})X_{\mathbf{p}}(y) + \frac{\partial f}{\partial z}(\mathbf{p})X_{\mathbf{p}}(z) = df(X)\big|_{\mathbf{p}}$.

3. For $\forall f, g \in V$, we have

$$\begin{split} (X\circ Y-Y\circ X)(fg)&=X\circ Y(fg)-Y\circ X(fg)\\ &=X(Y(fg))-Y(X(fg))\\ &=X(f\cdot Y(g)+g\cdot Y(f))-Y(f\cdot X(g)+g\cdot X(f))\\ &=X(f\cdot Y(g))+X(g\cdot Y(f))-Y((f\cdot X(g))-Y(g\cdot X(f))\\ &=(Y(g)\cdot X(f)+f\cdot X\circ Y(g))+(X(g)\cdot Y(f)+gX\circ Y(f)))\\ &-(Y(f)\cdot X(g)+fY\circ X(g))-(Y(g)\circ X(f)+gY\circ X(f))\\ &=f(X\circ Y-Y\circ X)(g)+g(X\circ Y-Y\circ X)(f) \end{split}$$

 $(X\circ Y-Y\circ X)$ satisfies the Leibniz rule, so $(X\circ Y-Y\circ X)$ is a vector field.

4. For skew-symetric matrix A, B, we have

$$(AB - BA)^{T} = (AB)^{T} - (BA)^{T}$$

$$= (B^{T}A^{T}) - (A^{T}B^{T})$$

$$= (-B)(-A) - (-A)(-B)$$

$$= -(AB - BA)$$

So (AB - BA) is skew-symetric.