

CLIPPEDIMAGE= JP361169217A

PAT-NO: JP361169217A

DOCUMENT-IDENTIFIER: JP 61169217 A

TITLE: MANUFACTURE OF SYNTHETIC RESIN DOLL MEMBER

PUBN-DATE: July 30, 1986

INVENTOR-INFORMATION:

NAME

SATO, YASUTA

SAKURAI, MASATOSHI

ASSIGNEE-INFORMATION:

NAME

TAKARA CO LTD

COUNTRY

N/A

APPL-NO: JP60011393

APPL-DATE: January 24, 1985

INT-CL (IPC): B29C045/36;A63H009/00 ;B29C045/14

US-CL-CURRENT: 446/385

ABSTRACT:

PURPOSE: To uniformly manufacture a synthetic resin doll member with high productivity by a method wherein resin is injection-molded to a core member consisting of composite of metal and synthetic resin.

CONSTITUTION: A cavity S for molding the leg member of a doll is formed respectively on a pair of injection-molded halves 20 and 21. At the same time, an insertion hole 22 is formed at the upper end of the cavity S on the mold half 20. In addition, a pinching part 23 is formed at the lower end of the cavity S in the mating mold surfaces of both the mold halves 20 and 21. Firstly, a core material 1 is set in the molding cavity S

of the mold halves

20. and 21. Secondly, molten vinyl chloride resin with a temperature of

170∼180°C is injected in the mold halves 20 and 21 by conventional

procedure. In this case, because both the gaps are held through the contact of

the tips of gap holding projections 16 with the inner wall 20a of the mold

half, no shifting of the core member due to the fluid pressure of resin applied

to an aggregate 3 occurs. Finally, after the completion of molding, a doll

member is removed from the mold halves 20 and 21 and a gate is cut off and mold

flashes are removed.

COPYRIGHT: (C) 1986, JPO&Japio

⑪ 公開特許公報 (A)

昭61-169217

⑫ Int.CI. 1

B 29 C 45/36
 A 63 H 9/00
 B 29 C 45/14
 // B 29 K 105/22
 B 29 L 31/52

識別記号

府内整理番号

⑬ 公開 昭和61年(1986)7月30日

8117-4F
 7339-2C
 7179-4F
 4F
 4F

審査請求 未請求 発明の数 1 (全 11 頁)

④ 発明の名称 合成樹脂製人形部材の製造方法

⑪ 特願 昭60-11393

⑫ 出願 昭60(1985)1月24日

⑬ 発明者 佐藤 安太 東京都葛飾区青戸4丁目19番16号 株式会社タカラ内

⑭ 発明者 桜井 正利 東京都葛飾区青戸4丁目19番16号 株式会社タカラ内

⑮ 出願人 株式会社 タカラ 東京都葛飾区青戸4丁目19番16号

⑯ 代理人 弁理士 瀬川 幹夫

明細書

1. 発明の名称

合成樹脂製人形部材の製造方法

2. 特許請求の範囲

一端が屈曲し、且つ端部近傍に折り取り用溝部を形成し、ほぼ中間部が蛇行する企屈製芯金の他端部を、外側方に間隔保持突部を突設し、先端に折り取り用溝部を形成した合成樹脂製骨材の基部に接続して芯材を形成し、該芯材を次の工程により射出成形用金型の成形空間内に保持し、成形加工することを特徴とする合成樹脂製人形部材の製造方法。

(イ) 上記芯金の屈曲部側の先端を上記金型の内壁に開口形成した差込み孔に差込み保持する一方、上記骨材の遊端を上記金型の合せ目間に挟持することによって芯材を金型内成形空間の中心位置に保持固定する工程。

(ロ) 上記成形空間内に溶融した塩化ビニル樹脂を射出して成形する工程。

(ハ) 成形された人形部材を上記金型から取出し

後、該人形部材から突出した骨材の端部と芯金の端部を折り取り用溝部から折り取り除去する工程。

3. 発明の詳細な説明

(発明の利用分野)

この発明は合成樹脂製人形部材の製造方法に関するものである。

(従来技術とその問題点)

一般に、男女児の成長過程における情報や知育を目的とした人形は頭、腕、脚、胴体等のいくつかの部材から構成され、通常の場合、これら部材は主に塩化ビニル樹脂を材料とし、それぞれその目的に応じて異なる製造方法によって製造されている。例えば、頭はローテーション成形法で、胴体は射出成形法で、腕、脚はスラッシュ成形法で製造されている。

しかしながら、いずれの場合も合成樹脂単味ではその材質の硬軟により成形された部材は曲げにくいか、曲げてもすぐに元の形状に復元してしまう。このため、肘部、膝部等の関節部分

の曲げが不自然となり、リアル性に欠け、人形にも人間と同じく身体各部が屈伸するほか、その曲げ状態を保持する基本的動作機能が損なわれている。

これを解決するものとして、人形部材内に芯金を埋設し、芯金によって樹脂部分の原形復元力を抑えて成形体の曲げ状態を保持させることができた。そのため、その試みがスラッシュ成形法によって実行された。これは金型内に溶融樹脂ゾルを注入した後、ゾルの気泡を排出し、さらに目つけ焼きした後に金型内の未硬化塩化ビニル樹脂ゾルを排出してからスチール製芯金を型内に挿入し、その後本焼きすることによって芯金を成形体内に埋設し、冷却、取出し工程を経て芯材が埋設された人形部材を製造するものである。しかし、この成形法には次のような欠点があった。

- (1) スラッシュ成形法では成形体が中空状になるので、芯金位置がずれやすく、芯金を成形体の中心に保持できない。このため、曲げ伸びしが

中心からはずれて偏る傾向を避けることができない。

- (2) 中空状の成形体は曲げたときに曲げ部分が不自然に変形する。

(3) 上記成形法では成形体は金型内から工具で抜んで強制的に引抜いて取出すので、寸法が全て異なる。そのため、腕、脚等のように対をなす部材では、あらためて近似するグループ別に仕分けしなければならず、その作業は煩わしい。

- (4) 成形工程数が多く、成形時間も270秒程度かかるため、生産性が低い。

このため、芯金入り成形体を射出成形法によって行なうことも考えられたが、この成形法を実行するには、次のような技術的にかなり困難な問題点があった。

- (1) 芯金を金型の中心位置に保持させることが技術的に困難である。すなわち、射出成形法においては、溶融樹脂を金型内に射出する際にかなりの樹脂流圧が生じるが、この樹脂流圧に抗し

3

て芯金を同じ位置に強固に保持させるには金型内にどのように、どのような手段によって芯金を固定したらよいかが問題である。仮にこれをピン等で保持しようとなれば、技術的には可能であるが、成形後に人形部材にピンの抜き穴が残ってしまうので商品価値が損なわれてしまう。

- (2) 芯金の保持ができても芯金を人形部材から突出することがないように除去する後加工が必要になるが、これを確実に安全に除去するには、単に成形された人形部材から突出する部分を除去するだけでは足りない。なぜならば、使用中に自然に又は内部で折れて埋設された部分が突出してくる場合があるからである。製品の安全性は企業生命にも関わる重要な課題であるだけに、この処理を効率よく確実に行なうための手段をどう構成するかは非常に難しい問題である。

- (3) 塩化ビニル樹脂は熱収縮率が大きいので、成形後に寸法縮み(5~20%)が生じ、成形部

4

材の寸法がバラつく。しかも、金属製芯金は収縮率が小さいので、成形後に芯金が成形部材から突き出る可能性がある。これをどのように解消するかも重要な問題点である。

以上のような技術的に困難な点が多いため、従来は射出成形法によって芯金入り部材を成形することは断念されていた。

(発明の目的)

この発明は上記問題点を解決し、芯材を金属と合成樹脂との複合材から構成し、射出成形法によって、安全で、寸法が均一で、しかも生産性が高い合成樹脂製人形部材を製造する製造方法を提案することを目的とする。

(発明の構成)

上記目的を達成するため、この発明に係る合成樹脂製人形部材の製造方法は、一端が屈曲し、且つ端部近傍に折り取り用構部を形成し、ほぼ中間部が蛇行する金属製芯金の他端部を、外側方に間隔保持突部を突設し、先端に折り取り用構部を形成した合成樹脂製骨材の基部に接

5

6

焼して芯材を形成し、該芯材を次の工程により射出成形用金型の成形空間内に保持し、成形加工することを特徴とする。

- (イ) 上記芯金の屈曲部側の先端を上記金型の内壁に開口形成した差込み孔に差込み保持する一方、上記骨材の遊端を上記金型の合せ目間に挟持することによって芯材を金型内成形空間の中心位置に保持固定する工程。
- (ロ) 上記成形空間内に溶融した塩化ビニル樹脂を射出して成形する工程。
- (ハ) 成形された人形部材を上記金型から取出し後、該人形部材から突出した骨材の端部と芯金の端部を折り取り用溝部から折り取り除去する工程。

(発明の作用、効果)

上述のように、この発明によれば、まず芯材を金属製芯金と合成樹脂製骨材との複合構造とし、これを金型にセットするには、一端を一方の金型の差込み孔に差込み保持し、他端を金型の合せ目間に挟持するだけでよいから作業は非

常に楽である。また、骨材には間隔保持突部が形成され、これにより金型内壁と骨材とは常に同じ間隔が保たれるので、芯材は金型内の中心位置に強固に保持される。加えて、芯金の中間に蛇行部が設けられているので、金型内に溶融した塩化ビニル樹脂が射出されたときに芯金の中間蛇行部は樹脂流圧を吸収して和らげるから、芯材は樹脂流圧に抗して金型内の中心位置に保持される。したがって、中心から偏らずに自然に曲げられる人形部材を成形することができる。

次に、金型から取り出された人形部材の一端には芯金の差込み端部が、他端には骨材の挟持端部が突出しているが、これら芯金及び骨材の端部は折り取り用溝部からニッパー等によって簡単に折り取ることができる。したがって、最終製品の安全性は100%満足される。

さらに、成形後の成形部材の収縮に関しては、芯材は芯金と骨材との複合構造材であるから、凹凸部分が多く、この凹凸部分が収縮の障

害となって塩化ビニル樹脂部の収縮は抑えられる。同様に、芯金には蛇行部が形成されているので、この部分が同様の理由により樹脂収縮を邪魔する。また、合成樹脂製骨材は成形部材に占める割合が高いので、相対的に樹脂部分の割合は低く、その収縮度合も低く抑えられる。これらが相乗的に作用して塩化ビニル樹脂部の収縮は抑制され、寸法精度の高い成形部材を得ることができる。

さらに、射出成形はスラッシュ成形に比べて作業における安全性が高いほか工程数も少なくてすむので、総合的な生産性を著しく向上させることができる。

(実施例)

以下、図面とともにこの発明の実施例を人形の脚部材を製造する例について説明する。

はじめに、この発明の骨子は、まず芯材を金属製芯金と合成樹脂製骨材とから複合構成することにあり、次に、人形部材の成形にあたり、この複合芯材を金型内の中心に位置決め固定し

た後、溶融した合成樹脂を金型内に注入充填して射出成形し、最後に芯材先端の後処理することにある。

そこで、まず、芯材の構成について説明し、次に成形態様を人形の脚部材について説明する。

図において、符号1は芯材を示す。この芯材1は第2図及び第2図に示すように、金属製芯金2と合成樹脂製骨材3とから成る複合材である。芯金2はこの例においてはスプリングバックが小さく、機械的強度が高く、熱伝導性の良いものが好ましく、この例では特殊アルミ合金製のものを採用し、その一端は屈曲され、該屈曲部4には折り取り用溝部15aが形成され、ほぼ中間部に蛇行部5が形成され、さらに他端部には鉤形折曲部6が形成されている。

骨材3は塩化ビニル樹脂よりも熱変形温度が高く、しかも機械的強度に優れるものが好ましく、この例ではポリアセタール樹脂によって射出成形されたものを採用した。骨材3は芯金保

持部7と芯部8とから構成されている。芯金保持部7には上面及び一方の側面に開口する芯金保持溝9が形成されている。該保持溝9の側面開口部9aの相対する内壁には互いの間隔が芯金2の径よりもやや小さくなるように設定された突片10、10が向きあいに設けられている。また、同じ内壁は下部において連結片12によって連結され、該連結片12によって保持溝9の下端部には芯金2の折曲げ部6を受ける受孔13が開口形成されている。この受孔13の大きさは芯金2の径よりもやや大きい。そして、保持溝9における上記受孔13に対する反対側は開放されている。芯部8は板状に形成され、その上部両側には補強リブ14、14が形成されているとともに、下部には薄肉の折り取り用溝部15bが形成されている。また、芯金保持部7及び芯部8の相対する両側には外側方に各一対の突起状の間隔保持突部16、16が突出形成されている。これらの保持突部は必ずしも一対ずつ設ける必要はなく、また同じ方向

を向く必要もない。

上記芯金2と竹材3とから芯材1を組立て構成するときは、第2図に示すように、芯金2の下端の鉤形折曲げ部6を竹材3の保持溝9の側面開口部9aから斜めに挿入し、さらに、向きあい突片10、10の間から保持溝9内にこじ入れると、該芯金2は連結片12に当接する部分を中心回転して向きあい突片10、10間の間隔は竹材3の彈性によって拡開するため、芯金2は保持溝9内に保持されるとともに、同時にその下端の折曲げ部6は竹材3の受孔13内に嵌入される。これにより、保持溝9の上方開口部から抜け出すことなく、また、保持溝9内の芯金2は側面開口部において向きあい突片10、10の抵抗を受けるから、簡単には外れない。したがって、芯金2は骨材3の保持溝9内に良好に保持される。なお、受孔13の大きさは芯金2の径よりもやや大きいから、芯金2の折曲げ部6と受孔13との間にはクリアランスが生じる。

11

次に、上記構成の芯材を用いて人形の脚部材を射出成形によって成形する成形態様について説明する。

まず、第3図に示すように、射出成形用金型20、21には人形の脚部材用成形空間Sが形成されているとともに、上端部には一方の金型20に差込み孔22が形成され、下端部には両金型20、21の合せ目に挟持部23が形成されている。

そこで、上記構成の芯材1を金型20、21の成形空間S内にセットする。この場合、金型20、21を合せるときに、芯金2の屈曲部4の先端4aを上記金型20の内壁20aに開口形成した差込み孔22に差込み保持する一方、骨材3の芯部8の先端8aを金型20、21の合せ目挟持部23間に挟持させる。なお、差込み孔22は補助部材22aによって芯金2をよりよく保持できるように形成されている。これにより、芯材1は成形空間Sの中心位置に保持固定される。芯材1のセットに要する時間は5

12

秒程度に行なうことができ、作業は非常に楽である。

次に、通常の射出成形法に従って上記金型20、21内に170°～180°Cの溶融塩化ビニル樹脂を射出する。その後、成形空間S内の芯材1にはかなりの樹脂流圧が加わる。しかし、芯材1は上下端部において金型20、21に保持され、しかも樹脂流入側の端部屈曲部4は樹脂流に対して直角に保持されているため、流圧に十分に抗し得る。しかも芯金2には蛇行部5が形成されているため、この蛇行部5が樹脂流圧に対する抵抗となってこれを緩和するため、他の部分に対する樹脂流圧は緩和される。また、骨材3に作用する樹脂流圧に対しては、間隔保持突部16、16の先端が金型内壁20a、21aに接触して常に骨材3と金型内壁20a、21aとの間隔を良好に保持する。したがって、芯材1の位置が樹脂流圧によってほとんどずれることはない。

間隔保持突部16、16の金型内壁20a、

13

14

21a に対する接触は点接触であるため、溶融樹脂は保持穴部 16、16 と金型内壁 20a、21a との間にもまわりこむ。また、骨材 3 は成形温度が高いので溶融樹脂の注入によってなんら変形しない。さらに、芯材 1 のうち芯金 2 は熱伝導性の良い特殊アルミ合金であるから、まわりの溶融樹脂との間に温度差が生じない。同様に、骨材 3 は熱変形温度が高いので溶融樹脂の注入によってなんら変形しない。

上記射出成形工程に要する時間は 50 ~ 60 秒である。

次に、成形終了後、金型 20、21 を外して人形部材を取出す。これによって内部に芯材 1 が埋設された人形の脚部材 25 を得ることができる。その際、脚部材 25 の基部側から芯金 2 の端部 4a が突出するとともに、脚先端側の端部から骨材 3 の先端 8a が突出している。そこで、脚部材 25 のゲートカットとともに、芯金 2 の先端 4a と骨材先端部 8a を、折り取り用溝部 15b から折り取る。芯金 2 はスプリング

15

る樹脂の収縮は最小限に抑えられる。また、脚部材 25 のうち芯金 2 が埋設されている部分は、芯金 2 のほぼ中間部に脚部材 25 の長手方向に対して蛇行する蛇行部 5 が形成され、該蛇行部 5 がこの方向における樹脂収縮を抑える。したがって、脚部材 25 の寸法精度は非常に高い。加えて、芯金 2 の先端折曲げ部 6 と骨材 3 の受孔 13 との間にクリアランスが形成されているから、成形時の成形熱による熱伝導率、熱収縮率の違いによる歪みが吸収され、脚部材 25 に割れ等が生じるおそれがない。

このようにして得られた脚部材 25 には芯金 2 が埋設されているので、これを曲げることによって芯材 1 の芯金 2 も曲がるが、芯金 2 は脚部材 25 の中心に保持されているため、曲げ、戻し方向が不自然に偏らない。そして、芯金 2 はスプリングバックの小さい特殊アルミ合金から成るため、脚部材 25 を曲げたときに樹化ビニル樹脂部の彈性復元力を抑えて脚部材 25 の曲げ状態を保持することができる。芯材 1 のう

バッケの小さい特殊アルミ合金から成るため、折り取りは非常に容易である。折り取り用溝部 15a は脚基部の連結部 25a の端部よりも内側に形成しておくことにより、折り取り端部は外端に突出することがない。同様に、折り取り用溝部 15b は脚部材 25 の内部に設けられているので、折り取られた残部の先端は人形部材 25 の内部に残り、外部に突出しないので、安全である。この成形部材取出し及び芯材処理工程は 10 秒で程度で十分に行なうことができる。

ところで、成形終了後は脚部材 25 における樹化ビニル樹脂は収縮する。しかしながら、脚部材 25 のうち骨材 3 が埋設されている部分は樹脂部分に対して骨材 3 の部分の占める割合が大きいために、その分相対的に樹脂分が少なくなり、収縮度合も小さくなるほか、芯金保持部 7 と芯部 8 との間には脚部材 25 の長手方向に対して垂直な壁が形成され、この壁が樹脂の収縮を阻止するので、この部分の長手方向におけ

16

ち骨材 3 は曲がらないが、これは脚部材 25 の曲げ不要部分に配されているので、なんら不都合は生じない。したがって、人間の動きに近似した曲げ性能を有する人形部材が得られる。

なお、芯材 1 は芯金 2 として特殊アルミ合金を採用し、しかも芯金 2 先端の屈曲部を骨材 3 の受孔 13 に引掛ける構成にしているため、繰返し曲げ戻し能力が非常に高い。一秒間隔で 90 度の曲げテストの結果、従来のスチール芯では 10 ~ 15b 回で使用不能となったが、この実施例の芯金 2 ではその 10 ~ 12 倍の曲げ性能が確かめられた。

上述の成形方法の効果をまとめて列挙すると、次の通りである。

(1) 成形工程の簡略化と生産性の向上達成。

射出成形法による成形が可能となるので、従来のスラッシュ成形法に比べ、工程数がほぼ 3 分の 1 に、成形時間が 3 分の 1 ~ 4 分の 1 に短縮できた。また、成形時に芯材の金型へのセットも簡単且つ確実に行なうことができる。

17

18

き、さらに射出成形法はスラッシュ成形法に比べ作業が安全である。したがって、総合的な生産性が著しく向上した。

(2) 成形部材の安全性の確保。

芯材を金属製芯金と樹脂骨材とを接続させた複合芯材として構成しているため、人形部材において芯金と骨材とが突出する。しかし、芯金は人形の体内に納められて外部に露出しないほか、その突出端部は折り取り除去される。また、骨材の突出端部も成形部材内部から折り取られる。したがって、成形部材は全く安全である。

(3) 成形部材の性能、寸法精度の向上。

射出成形中に芯材の成形部材内における中心位置が保持されるので、成形部材の曲げ方向が偏らず、自然な曲げ状態が保持できるから、成形部材は曲げ性能に優れる。また、成形後収縮も有効に抑えられるので、寸法精度に優れる。その他、繰返し曲げ能力も良好で、熱収縮率の相違による成形部材の割れ等

を防止することができる。

なお、上述の実施例は人形の脚部材に関するものであるが、腕、胴体部材も上述と同じ要領によって成形することができる。

4. 図面の簡単な説明

第1図はこの発明に供する芯材の斜視図、第2図は上記芯材の縦断面図、第3図は上記芯材を金型にセットした状態を示す金型の縦断面図、第4図(a)(b)は成形された人形の脚部材の一端部断面図である。

符号 S … 成形空間、1 … 芯材、2 … 芯金、3 … 骨材、4 … 屈曲部、4a … 芯金の先端部、5 … 蛇行部、6 … 折曲げ部、7 … 芯金保持部、8 … 芯部、9 … 保持溝、13 … 受孔、15a、15b … 折り取り用溝部、16 … 間隔保持突部、20、21 … 金型、22 … 差込み孔、23 … 挟持部

特許出願人 株式会社タカラ

代理人 弁理士 清川幹夫

1…芯材
2…芯金
4…屈曲部
5…蛇行部
6…折曲げ部
7…芯金保持部
8…芯部
9…保持溝
13…受孔
15a、15b…折り取り用溝部

第1図

第2図

1…芯材
2…芯金
3…叶材
4…屈曲部
4a…芯金の先端部
5…蛇行部
6…折曲部
7…芯金保持部
8…芯部
9…保持部
15a、15b…折り取り用箇部
16…削除保持部

第3圖

S…成形空間
1…芯材
2…芯金
3…骨材
4…屈曲部
5…走行部
15a、15b…折り取り用筋部
16…樹脂保護部
20、21…金型
22…落込み孔
23…保持部

第4図

1...花材
2...芯金
3...竹材
4...底面部
4a...芯金の先端部
5...走行部
15a, 15b...折り取り用部
16...間隔保持部

手續和正德（方式）

昭和 60 年 6 月 4 日

特許庁長官 志賀 学 殿

1. 事件の表示 昭和60年特許願 第11393号

2. 発明の名称 合成樹脂製人形部材の製造方法

3. 补正をする者 事件との関係 特許出願人

住 所 東京都葛飾区寄戸4丁目19番18号

名 称 株式会社 タカラ

代表者 佐藤安太

4. 代理人 住 所 東京都中央区新富1丁目18番4号
古川ビル2F ☎03(553)8056

氏 名 (7481) 弁理士 漣川幹夫

5. 补正命令の日付 昭和60年 4月30日

6. 补正の対象 図面

7. 补正の内容 別紙の通り

第 1 図

(訂正)

第 2 図(訂正)

第 3 図 (訂正)

第 4 図 (訂正)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.