Business Analytics

Assignment-4

Name-Subham Kedia UNI-sk4355

```
Answer 1
```

```
Part a.
```

> summary(lin_fit)

Call:

 $lm(formula = SAT_AVG \sim ... data = data1)$

Residuals:

Min 10 Median **3Q** Max -254.21 -44.63 3.83 45.58 326.06

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
               6.515e+02 1.165e+01 55.941 < 2e-16 ***
(Intercept)
UGDS
               2.019e-04 3.755e-04 0.538 0.59089
COSTT4_A
               3.288e-05 5.068e-04 0.065 0.94828
TUITIONFEE_OUT 1.798e-03 6.596e-04 2.725 0.00653 **
TUITFTE
              -7.138e-04 6.609e-04 -1.080 0.28034
AVGFACSAL
              1.626e-02 1.453e-03 11.197 < 2e-16 ***
              4.090e+01 9.069e+00 4.510 7.16e-06 ***
PFTFAC
              4.226e+02 1.962e+01 21.533 < 2e-16 ***
C150_4
PFTFTUG1_EF -1.672e+01 1.375e+01 -1.216 0.22419
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 70.62 on 1127 degrees of freedom Multiple R-squared: 0.6839, Adjusted R-squared: 0.6817 F-statistic: 304.8 on 8 and 1127 DF, p-value: < 2.2e-16

Part b.

```
> k_error
```

```
[,1]
               [,2]
        1 10215.000
 [1,]
[2,]
        2 6914.788
        3 5795.651
[3,]
[4,]
       4 4942.474
        5 4374.167
[5,]
       6 3974.122
[6,]
[7,]
        7 3685.025
       8 3505.264
 [8,]
[9,]
       9 3383.770
     10 3216.017
[10,]
```

> km.out\$tot.withinss

[1] 1682.157

> best_k

[1] 50

<u>Part c.</u>

Cluster Dendrogram

The center of the four clusters are as follows: - > fun(cdata2.scaled, clusters1)

	1 111 (
	SAT_AVG	UGDS	COSTT4_A	TUITIONFEE_OUT	TUITFTE	AVGFACSAL	PFTFAC	C150_4	PFTFTUG1_EF
1 -6	2.2199665	-0.1123658	-0.19388979	-0.1890802	-0.2166313	-0.2523323	-0.05336020	-0.2062865	-0.06857637
2 -6	0.6876610	-0.5412567	-0.07032185	-0.4305325	-0.2526509	-0.9222844	1.14865902	-1.0138354	-2.40584595
3 1	1.8666452	0.1512219	1.89106810	1.9527381	2.0524053	2.1786807	0.02673124	1.9045596	1.19172391
4 1	1.0468429	4.8313211	-1.10954145	-1.0819839	-0.6762202	1.2141458	0.41116360	0.7651325	0.56464515

Part d.

> pr.out

Standard deviations (1, ..., p=9):
[1] 2.0991647 1.2954650 1.0282162 0.7968603 0.6690731 0.5946890 0.4343527 0.4114926 0.2525090

Rotation (n x k) = (9×9) :

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9
SAT_AVG	-0.378421996	0.27923233	-0.0030129162	0.12633715	-0.5708592	0.037236466	-0.63765449	0.16987577	-0.01132004
UGDS	-0.011461768	0.66694046	0.2383467508	-0.05570151	0.4917494	0.471570080	-0.12695997	-0.01166887	-0.12122858
COSTT4_A	-0.396426934	-0.36908585	0.0008361613	0.12682358	0.1593642	0.135425916	-0.09780300	-0.28175670	-0.74689158
TUITIONFEE_OUT	-0.436718247	-0.16194366	0.0416347910	0.11207950	0.2303716	0.076256879	-0.14900916	-0.54979553	0.62079877
TUITFTE	-0.398340664	-0.26500712	0.0773741532	0.19835224	0.3293961	0.086068026	0.06890620	0.75989053	0.16635625
AVGFACSAL	-0.319920894	0.39237293	0.2128160347	0.13965131	0.1390480	-0.774792509	0.20618190	-0.05450444	-0.11739447
PFTFAC	-0.001909359	0.23378148	-0.8619904335	0.41882376	0.1556676	0.001580521	0.04881993	-0.01017309	-0.01341435
C150_4	-0.404188105	0.18783675	-0.0148815485	-0.06283647	-0.4248775	0.357488240	0.69721140	-0.05085399	0.01307230
PFTFTUG1_EF	-0.290502919	0.02545382	-0.3833030155	-0.84503395	0.1457562	-0.128718053	-0.09880582	0.07905779	-0.01143031

> summary(pr.out)

Importance of components:

PC₁ PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 Standard deviation 2.0992 1.2955 1.0282 0.79686 0.66907 0.59469 0.43435 0.41149 0.25251 Proportion of Variance 0.4896 0.1865 0.1175 0.07055 0.04974 0.03929 0.02096 0.01881 0.00708 Cumulative Proportion 0.4896 0.6761 0.7935 0.86410 0.91384 0.95314 0.97410 0.99292 1.00000 > pr.out\$sdev

[1] 2.0991647 1.2954650 1.0282162 0.7968603 0.6690731 0.5946890 0.4343527 0.4114926 0.2525090

> pr.var

[1] 4.40649260 1.67822962 1.05722855 0.63498627 0.44765882 0.35365498 0.18866223 0.16932617 0.06376078

 $\hbox{\tt [1]} \ \ 0.489610289 \ \ 0.186469957 \ \ 0.117469839 \ \ 0.070554030 \ \ 0.049739869 \ \ 0.039294997 \ \ 0.020962470 \ \ 0.018814019 \ \ 0.007084531$

<u>Part e.</u> Interpreting the Biplot: -

The bi plot represents the loading vectors for the principal component 1 and 2. For example if you look at the loading vector at COST4_A for PC1 it takes a value of -0.06 and for PC2 around -0.04.

SAT_AVG

> mean((pcr.pred - y.test)^2)
[1] 6469.671

SAT_AVG

Comparing the two mean squared errors, we can see that PLS is performing better.

Answer 2

Part a.

For each store, below is the head of a dataset containing the percent change in sales before and after the BOPS initiative began.

> head(newdata)

	store_id	before	after	sales_change	affected_US
1	1	3426214	3067960	-10.456265	0
2	3	1286235	1138916	-11.453506	1
3	5	2724174	2518141	-7.563137	1
4	7	2220212	1772502	-20.165191	1
5	9	2647523	2617901	-1.118857	1
6	11	1725955	1570214	-9.023468	1
>					

The average percent change for stores in USA and Canada are: -

```
> avg_usa
[1] -10.16649
> avg_canada
[1] -15.90507
> |
```

Part b.

The effect of BOPS, and the standard error are: -

```
> summary(fit1)
```

Call:

```
lm(formula = sales_change ~ affected_US, data = newdata)
```

Residuals:

```
Min 1Q Median 3Q Max
-13.4278 -3.7914 -0.4035 3.4551 11.5440
```

Coefficients:

Residual standard error: 5.767 on 82 degrees of freedom Multiple R-squared: 0.1407, Adjusted R-squared: 0.1302 F-statistic: 13.43 on 1 and 82 DF, p-value: 0.0004389

. 1

Part c.

For each DMA, below is the head of a dataset containing the percent change in sales before and after the BOPS initiative began.

> head(newdata1)

	dma_id	before	after	sales_change	affected
1	1	650041	531297	-18.267155	1
2	2	1818503	1976251	8.674608	0
3	3	517515	346931	-32.962136	1
4	4	84947	74004	-12.882150	1
5	5	892666	549045	-38.493793	0
6	6	316062	237481	-24.862527	0

The average percent change for DMAs close to stores with BOPS is as follows: -

> avg_change

[1] -19.6481

Part d.

The effect of BOPS, and the standard error: -

> summary(fit2)

Call:

lm(formula = sales_change ~ affected, data = newdata1)

Residuals:

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.21 on 208 degrees of freedom Multiple R-squared: 0.01697, Adjusted R-squared: 0.01225

F-statistic: 3.591 on 1 and 208 DF, p-value: 0.05947

<u>Part e.</u>

Below, is the complete analysis for the 13 weeks of data before and after the BOPS initiative began:

For each store, below is the head of a dataset containing the percent change in sales before and after the BOPS initiative began.

> head(newdata2)

```
store_id before after sales_change affected_US
1
       1 1652725 1758173 6.38025080
                                         0
2
                                         1
       3 669458 637472 -4.77789495
3
       1
4
       7 1046072 971387 -7.13956592
                                         1
5
       9 1345028 1349561 0.33701901
                                         1
      11 876662 844379 -3.68249109
                                         1
```

The average percent change for stores in USA and Canada are: -

```
> avg_usa1
[1] 3.404812
```

> avg_canada1

The effect of BOPS, and the standard error are: -

> summary(fit3)

Call:

lm(formula = sales_change ~ affected_US, data = newdata2)

Residuals:

Min 1Q Median 3Q Max -21.7044 -5.9985 -0.3401 4.3486 20.2398

Coefficients:

Residual standard error: 8.816 on 82 degrees of freedom Multiple R-squared: 0.1298, Adjusted R-squared: 0.1192 F-statistic: 12.23 on 1 and 82 DF, p-value: 0.0007627

For each DMA, below is the head of a dataset containing the percent change in sales before and after the BOPS initiative began.

> head(newdata3)

	dma_id	before	after	sales_change	affected
1	1	263255	343960	30.656588	1
2	2	789939	1378247	74.475118	0
3	3	236344	244332	3.379819	1
4	4	42688	46338	8.550412	1
5	5	437900	368642	-15.815940	0
6	6	127175	155519	22.287399	0

The average percent change for DMAs close to stores with BOPS is as follows: -

> avg_change1

[1] 11.90288

The effect of BOPS, and the standard error: -

> summary(fit4)

Call:

lm(formula = sales_change ~ affected, data = newdata3)

Residuals:

Min 1Q Median 3Q Max -43.835 -12.069 -1.006 10.747 75.385

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.767 1.841 8.566 2.41e-15 ***

affected -3.864 2.654 -1.456 0.147

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 19.22 on 208 degrees of freedom Multiple R-squared: 0.01009, Adjusted R-squared: 0.005329

F-statistic: 2.12 on 1 and 208 DF, p-value: 0.1469