

Middleboxes and Tunneling

Note: The slides are adapted from the materials from Prof. Richard Han at CU Boulder and Profs. Jennifer Rexford and Mike Freedman at Princeton University, and the networking book (Computer Networking: A Top Down Approach) from Kurose and Ross.

Outline today

- Network Address Translation (NAT)
 - Multiple machines w/ private addrs behind a single public addr
- Firewalls
 - Discarding unwanted packets
- LAN appliances
 - Improve performance/security via middlebox at endpoint sites
- Overlay networks: "on top" of Internet
 - Tunnels between host computers
 - Provide better control, flexibility, QoS, isolation, ...
- Underlay tunnels: "below" IP route
 - Across routers within AS
 - Provide better control, flexibility, QoS, isolation, ...

Network-Layer Principles

- Globally unique identifiers
 - Each node has a unique, fixed IP address
 - ... reachable from everyone and everywhere
- Simple packet forwarding
 - Network nodes simply forward packets
 - ... rather than modifying or filtering them

Internet Reality

- Host mobility
 - Changes in IP addresses as hosts move
- IP address depletion
 - Dynamic assignment of IP addresses
 - Private addresses (10.0.0.0/8, 192.168.0.0/16, ...)
- Security concerns
 - Discarding/detecting suspicious or unwanted packets
- Performance concerns
 - Controlling how link bandwidth is allocated
 - Caching popular content near the clients

Topic today: Middleboxes

- Middleboxes are intermediaries
 - Interposed in-between the communicating hosts
 - Often without knowledge of one or both parties

Myriad uses

- Network address translators
- Firewalls
- Tunnel endpoints
- Traffic shapers
- Intrusion detection systems
- Transparent Web proxy caches
- Application accelerators

"An abomination!"

- Violation of layering
- Hard to reason about
- Responsible for subtle bugs

"A practical necessity!"

- Solve real/pressing problems
- Needs not likely to go away

Network Address Translation

History of NATs

- IP address space depletion
 - Clear in early 90s that 2³² addresses not enough
 - Work began on a successor to IPv4
- In the meantime...
 - Share addresses among numerous devices
 - ... without requiring changes to existing hosts
- Meant to provide short-term remedy
 - Now: NAT is widely deployed, much more than IPv6

Active Component in the Data Path

Port-Translating NAT

- What if both NATted sources use same source port?
 - Can dest differentiate hosts? Can response traffic arrive?
- Map outgoing packets
 - Replace: src addr → NAT addr, source port # → new port #
 - Remote hosts respond using (NAT address, new port #)
- Maintain a translation table
 - Store map of (src addr, port #) to (NAT addr, new port #)
- Map incoming packets
 - Consult the translation table and map the dest addr/port
 - Local host receives the incoming packet

Network Address Translation Example

NAT translation table 1: host 10.0.0.1 2: NAT router WAN side addr LAN side addr sends datagram to changes datagram 10.0.0.1, 3345 128.119.40.186, 80 138.76.29.7, 5001 source addr from 10.0.0.1, 3345 to 138.76.29.7, 5001, S: 10.0.0.1, 3345 D: 128.119.40.186, 80 updates table 10.0.0.1 S: 138.76.29.7, 5001 1,0.0.0.4 D: 128.119.40.186, 80 10.0.0.2 138.76.29.7 S: 128.119.40.186. 80 D: 10.0.0.1, 3345 S: 128.119.40.186, 80 10.0.0.3 D: 138.76.29.7, 5001 4: NAT router changes datagram 3: Reply arrives dest addr from dest. address: 138.76.29.7, 5001 to 10.0.0.1, 3345 138.76.29.7, 5001

Maintaining the Mapping Table

- Create an entry upon seeing an outgoing packet
 - Packet with new (source addr, source port) pair
- Eventually, need to delete entries to free up #'s
 - When? If no packets arrive before a timeout
 - (At risk of disrupting a temporarily idle connection)
- Yet another example of "soft state"
 - I.e., removing state if not refreshed for a while

Where is NAT Implemented?

- Home router (e.g., Linksys box)
 - Integrates router, DHCP server, NAT, etc.
 - Use single IP address from the service provider

- Campus or corporate network
 - NAT at the connection to the Internet
 - Share a collection of public IP addresses
 - Avoid complexity of renumbering hosts/routers
 when changing ISP (w/ provider-allocated IP prefix)

Practical Objections Against NAT

- Port #s are meant to identify sockets
 - Yet, NAT uses them to identify end hosts
 - Makes it hard to run a server behind a NAT

• Explicit config at NAT for incoming conn's

Principled Objections Against NAT

- Routers are not supposed to look at port #s
 - Network layer should care only about IP header
 - ... and not be looking at the port numbers at all
- NAT violates the end-to-end argument
 - Network nodes should not modify the packets
- IPv6 is a cleaner solution
 - Better to migrate than to limp along with a hack

That's what happens when network puts power in hands of end users!

Firewalls

Firewalls

Isolates internal net from larger Internet, allowing some packets to pass, blocking others.

- Firewall filters packet-by-packet, based on:
- Source/Dest IP address; Source/Dest TCP/UDP port numbers
 - TCP SYN and ACK bits; ICMP message type
 - Deep packet inspection on packet contents (DPI)

Internet Attacks: Denial of Service

Denial-of-service attacks

- Outsider overwhelms the host with unsolicited traffic
- ... with the goal of preventing any useful work

Example: attacks by botnets

- Bad guys take over a large collection of hosts
- ... and program these hosts to send traffic to your host
- Leading to excessive traffic

Motivations for denial-of-service attacks

- Malice (e.g., just to be mean)
- Revenge (e.g., for some past perceived injustice)
- Greed (e.g., blackmailing)

Packet Filtering Examples

- Block all packets with IP protocol field = 17 and with either source or dest port = 23.
 - All incoming and outgoing UDP flows blocked
 - All Telnet connections are blocked
- Block inbound TCP packets with SYN but no ACK
 - Prevents external clients from making TCP connections with internal clients
 - But allows internal clients to connect to outside
- Block all packets with TCP port of Quake

Firewall Configuration

- Firewall applies a set of rules to each packet
 - To decide whether to permit or deny the packet
- Each rule is a test on the packet
 - Comparing IP and TCP/UDP header fields
 - ... and deciding whether to permit or deny
- Order matters
 - Once packet matches a rule, the decision is done

Firewall Configuration Example

- Alice runs a network in 222.22.0.0/16
 - Wants to let Bob's school access certain hosts
 - Bob is on 111.11.0.0/16
 - Alice's special hosts on 222.22.22.0/24
 - Alice doesn't trust Trudy, inside Bob's network
 - Trudy is on 111.11.11.0/24
 - Alice doesn't want any other traffic from Internet

Rules

- #1: Don't let Trudy's machines in
 - Deny (src = 111.11.11.0/24, dst = 222.22.0.0/16)
- #2: Let rest of Bob's network in to special dsts
 - Permit (src=111.11.0.0/16, dst = 222.22.22.0/24)
- #3: Block the rest of the world
 - Deny (src = 0.0.0.0/0, dst = 0.0.0.0/0)

A Variation: Traffic Management

- Permit vs. deny is too binary a decision
 - Maybe better to classify the traffic based on rules
 - ... and then handle the classes of traffic differently
- Traffic shaping (rate limiting)
 - Limit the amount of bandwidth for certain traffic
 - E.g., rate limit on Web or P2P traffic
- Separate queues
 - Use rules to group related packets
 - And then do round-robin scheduling across groups
 - E.g., separate queue for each internal IP address

Tunneling via on-path middleboxes

At Connection Point to the Internet

- Improve performance between edge networks
 - E.g., multiple sites of the same company
 - Through buffering, compression, caching, ...
- Incrementally deployable
 - No changes to the end hosts or the rest of the Internet
 - Inspects the packets as they go by, and takes action

Example: Improve TCP Throughput

- Appliance with a lot of local memory
- Sends ACK packets quickly to the sender
- Overwrites receive window with a large value
- Or, even run a new and improved version of TCP

Example: Compression

- Compress the packet
- Send the compressed packet
- Uncompress at the other end
- Maybe compress across successive packets

Example: Caching

- Cache copies of the outgoing packets
- Check for sequences of bytes that match past data
- Just send a pointer to the past data
- And have the receiving appliance reconstruct

Example: Encryption

- Two sites share keys for encrypting traffic
- Sending appliance encrypts the data
- Receiving appliance decrypts the data
- Protects the sites from snoopers on the Internet

Tunneling via Overlay Networks

Using Overlays to Evolve the Internet

- Internet needs to evolve
 - IPv6
 - Mobility
 - Security
 - IP Multicast
- But, global change is hard
 - Coordination with many ASes
 - "Flag day" to deploy and enable the technology
- Instead, better to incrementally deploy
 - And find ways to bridge deployment gaps

Overlay Networks

Overlay Networks

Overlay Networks

- A logical network built on top of a physical network
 - Overlay links are tunnels through the underlying network
- Many logical networks may coexist at once
 - Over the same underlying network
 - And providing its own particular service
- Nodes are often end hosts
 - Acting as intermediate nodes that forward traffic
 - Providing a service, such as access to files
- Who controls the nodes providing service?
 - The party providing the service
 - Distributed collection of end users

IP Tunneling to Build Overlay Links

- IP tunnel is a virtual point-to-point link
 - Illusion of a direct link between two separated nodes

- Encapsulation of the packet inside an IP datagram
 - Node B sends a packet to node E
 - ... containing another packet as the payload

6Bone: Deploying IPv6 over IP4

Communicating With Mobile Users

- A mobile user changes locations frequently
 - So, the IP address of the machine changes often
- The user wants applications to continue running
 - So, the change in IP address needs to be hidden
- Solution: fixed gateway forwards packets
 - Gateway has fixed IP address and keeps track of mobile addr

MBone: Multicast Backbone

- IP Multicast
 - One packet, many receivers on same IP (multicast) address
- A catch-22 for deploying multicast
 - Router vendors wouldn't support, since they weren't sure
 - And, since it didn't exist, nobody was using it
- Idea: software implementing multicast protocols
 - And unicast tunnels to traverse non-participants

Secure Communication Over Insecure Links

- Encrypt packets at entry and decrypt at exit
- Eavesdropper cannot snoop the data
- ... or determine the real source and destination

Tunneling under IP Networks

Introducing
Multi-Protocol Label Switching
(MPLS)

MPLS Overview

- Main idea: Virtual circuit
 - Packets forwarded based only on circuit identifier

Router can forward traffic to the same destination on different interfaces/paths.

MPLS Overview

Router can forward traffic to the same destination on different interfaces/paths.

Circuit Abstraction: Label Swapping

- Label-switched paths: Paths "named" by label at ingress
- At each hop, MPLS routers:
 - Use label to determine outgoing interface, new label
 - Thus, push/pop/swap MPLS headers that encapsulate IP
- Label distribution protocol: disseminate signaling info
- Initially from concern with longest-prefix-match speed
 - Now use in other applications, e.g., intra-AS traffic management

Private communication over a public network Layer 3 Virtual Private Networks

- Isolation: Multiple logical networks over a single, shared physical infrastructure
- Tunneling: Keeping routes out of the core

High-Level Overview of Operation

- IP packets arrive at provider edge router (PE)
- Destination IP looked up in forwarding table
 - Multiple "virtual" forwarding tables
 - Ingress port associated with one virtual forw. table
- Datagram sent to customer's network using tunneling (i.e., an MPLS label-switched path)

Conclusions

- Middleboxes address important problems
 - Getting by with fewer IP addresses
 - Blocking unwanted traffic
 - Making fair use of network resources
 - Improving end-to-end performance
- Middleboxes cause problems of their own
 - No longer globally unique IP addresses
 - No longer can assume network simply delivers packets