Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

Институт информационных систем и технологий

Кафедра информационных систем

Основная образовательная программа по УГСН 09.03.02 «Информационные системы и технологии» (академический бакалавриат)

Электронная презентация по дисциплине Б1.Б.18 «СИСТЕМЫ УПРАВЛЕНИЯ ЖИЗНЕННЫМ ЦИКЛОМ ИЗДЕЛИЙ»

Лектор:

Поляков Сергей Дмитриевич

доцент кафедры информационных систем, к.т.н., доцент

Лекция 12. Основы цифрового производства

Структура лекции

- ✓ Индустрия 4.0 четвёртая промышленная революция
- ✓ Программа «Цифровая экономика Российской Федерации»
- ✓ Технологии индустрии 4.0
- Ускорение диффузии технологий
- ✓ Ключевые системы и компоненты цифрового производственного предприятия
- ✓ Новая парадигма цифрового проектирования и моделирования
- ✓ Комплексная оценка цифрового развития предприятия

Индустрия 4.0

Четвертая промышленная революция (Индустрия 4.0) –

- ✓ Основа концепции четвертой промышленной революции (Клаус Шваб):
- ✓ киберфизические системы (Cyber-Physical System, CPS), состоящие из:
 - различных природных объектов;
 - искусственных подсистем;
 - управляющих контроллеров;
 - тесно связанных и координируемых между собой вычислительных и физических ресурсов;
- ✓ автоматизированные производственные процессы;
- ✓ устройства наделенные искусственным интеллектом;
- ✓ другие современные технологии;
- ✓ персонализированный рынок.

Индустрия 4.0

Три типа интеграции инфраструктуры Industrie 4.0:

- ✓ Горизонтальная интеграция структурной модели бизнеса (value networks).
- ✓ Сквозная цифровая интеграция производственных процессов (digital integration of engineering) по всей структурной модели бизнеса.
- ✓ Вертикальная интеграция внутренней производственной цепочки предприятия (networked manufacturing).

Пример горизонтальной интеграции структурной модели бизнеса

История промышленных революций

Первая промышленная революция (период XVIII—XIX века)

Вторая промышленная революция (период со второй половины XIX по начало XX века)

Третья промышленная революция (с конца XX века (с 1970 г.))

Четвертая промышленная революция (с 2011 года)

Принципы Индустрии 4.0

- 1. Совместимость
- 2. Прозрачность
- 3. Техническая поддержка
- 4. Децентрализация управленческих решений

Важнейшие составляющие Индустрии 4.0 является – данные

Основные технологии Индустрии 4.0

- ✓ Аддитивные технологии, 3d-печать
- ✓ Моделирование и визуализация
- ✓ Интеграция систем
- ✓ Интернет вещей
- ✓ Кибербезопасность
- ✓ Облачные сервисы
- ✓ Дополненная реальность
- ✓ Виртуальная реальность (виртуальные фабрики, цифровые двойники и др.)
- ✓ Автономные роботы, роботизация
- ✓ Планирование и анализ онлайн
- ✓ Искусственный интеллект
- ✓ Энергоэффективные технологии
- ✓ Альтернативная энергетика
- ✓ Большие данные и аналитика
- ✓ Дистанционное обслуживание

Примеры Индустрии 4.0

- ✓ Очки дополненной реальности
- ✓ Модуль моделирования и визуализации
- ✓ Программное обеспечение, позволяющее соединить станки в одну сеть
- ✓ Самовосстанавливающееся оборудование
- ✓ Автоматический заказ компонентов
- ✓ «Общение» станочного оборудования с заготовкой и другими объектами
- ✓ Цифровая копия продукта
- ✓ Единое цифровое пространство промышленности
- ✓ Удаленная настройка оборудования для производства умной продукции.
- ✓ Мониторинг всех производственных, технологических и других процессов.
- ✓ Внутрицеховое перемещение деталей без участия человека и др.

Программа «Цифровая экономика Российской Федерации»

Распоряжение Правительства РФ от 28 июля 2017 г. № 1632-р

Три уровня цифровой экономики:

- ✓ рынки и отрасли экономики (сферы деятельности);
- ✓ платформы и технологии;
- ✓ среда, охватывающая нормативное регулирование, информационную инфраструктуру, кадры и информационную безопасность.

Основные сквозные цифровые технологии:

- ✓ большие данные;
- ✓ нейротехнологии и искусственный интеллект;
- ✓ системы распределенного реестра;
- ✓ квантовые технологии;
- ✓ новые производственные технологии;
- ✓ промышленный интернет;
- ✓ компоненты робототехники и сенсорика;
- ✓ технологии беспроводной связи;
- ✓ технологии виртуальной и дополненной реальностей.

Некоторые технологии индустрии 4.0

Большие данные (Big Data)

Большие данные предназначены для обработки:

- ✓ более значительных объемов информации
- ✓ более быстро получаемых и меняющихся сведений
- ✓ неструктурированных данных

Промышленный интернет вещей (Industrial Internet of Things – lioT) Принцип технологии lioT:

- ✓ установка датчиков, исполнительных механизмов, контроллеров и человеко-машинных интерфейсов на ключевые части оборудования;
- ✓ сбор информации и данных о состоянии предприятия;
- ✓ обработка данных для принятия обоснованных решений.

Технология виртуальной реальности

Цифровой двойник (Digital Twin)

Дополненная реальность (Augmented Reality (AR))

Использование дополненной реальности на сборочных участках современного машиностроительного производства

AGCO General Electric

Boeing

Flex

Диффузия потребительских технологий за 110 лет

Диффузия производственных технологий за 70 лет

Резкое падение стоимости ключевых технологий

X	人人	A				
БПЛА, Себестоимость еденицы:	Средняя себестоимость 3D печати аналогичных характеристик:	Промышленные роботы:	Себестоимость секвенирования ДНК:	Стоимость кВт-ч солнечной энергии:	Сенсоры (3D лидар)	Себестоимость смартфона аналогичных характеристик:
2007: \$ 100k 2013: \$ 700	2007: \$ 40k 2013: \$ 100	2007: \$ 100k 2013: \$ 700	2007: \$ 40k 2013: \$100	1984: \$ 30 2014: \$ 0.16	2009: \$ 30k 2014: \$80	1984: \$ 499 2014: \$ 10

World Economic Forum White Paper Digital Transformation of Industries: Digital Enterprise, January 2016 — Nepesod Fabinka.ru

Отдельные производственные технологии на цикле зрелости технологии Гартнера **2016** года

Отдельные производственные технологии на цикле зрелости технологии Гартнера **2017** года

Ключевые компоненты и системы цифрового предприятия

Система методов работы с иностранными партнёрами по цифровому производству

- 1. Использование подходов к созданию и развитию команд управления проектами для их эффективной совместной работы в различных географических локациях и странах
- 2. Создание и внедрение методики согласования технических характеристик оборудования, поставляемого для российских предприятий
- 3. Управление сроками производственного жизненного цикла машиностроительного предприятия
- 4. Контроль качества поставляемой продукции на заводах-производителях
- 5. Обеспечение интеграции иностранного и российского оборудования
- 6. Формирование логистических маршрутов в условиях жёстких климатических условий и удалённости мест доставки
- 7. Обеспечение шеф-монтажных и пуско-наладочных работ в жёстких условиях
- 8. **Обеспечение сервисной поддержки** и исполнения увеличенных сроков гарантийных обязательств.

Комплексная модель оценки цифрового предприятия

15 ключевых управленческих систем цифрового предприятия

✓ Единое информационное пространство предприятия

- Единая система управления информацией предприятия, единое информационное пространство, EIM
- Цифровое моделирование бизнес-процессов и технологических процессов компании
- > Конвергенция цифрового и физического в разрабатываемом продукте
- > Корпоративная инновационная система
- Интеграция в хозяйственную деятельность нематериальных активов (НМА) и результатов интеллектуальной деятельности (РИД)

✓ Производство

- > Цифровой реверс-инжиниринг
- > Аддитивное производство и быстрое прототипирование
- > Энергоэффективность и экологичность
- ➤ Автоматизированные рабочие места в цехах, сбор данных от средств производства (Machine Data Collection, MDC) и дополненная реальность (Computer Aided Workshops, CAW).
- > Производственная система с технологиями бережливого производства

✓ Управление и материально-техническое снабжение

- > Цифровое управление логистикой
- > Трансфер технологий
- Кросс-отраслевая кооперация
- Учебные производственные центры и партнерство с образовательными платформами
- > Профессиональное управление проектами

19

Комплексные решения best-in-class технологий

Цифровые, «Умные», Виртуальные «Фабрики Будущего» (Digital, Smart, Virtual Factories of the Future) — имеют принципиальную схему в виде триады:

- ✓ цифровое проектирование и моделирование;
- ✓ новые материалы;
- ✓ аддитивные технологии», в которой драйвером выступает новая парадигма цифрового проектирования и моделирования Smart Digital Twin [(Simulation & Optimization)-Based Smart Big Data]-Driven Advanced (Design and Manufacturing), направленная на смещение «центра тяжести» на этап проектирования

Компьютерные технологии мирового уровня (CAD-CAE-CFD-FSI-MBD-EMA-CAO-HPC-...)) и применение Метода конечных элементов (Finite Element Method, FEM)

«Умные» модели, позволяющие повысить адекватность и математических моделей, и получаемых численных результатов

Комплексные решения best-in-class технологий

Г. Фабрика Будущего – это определенный тип системы бизнес-процессов (способ комбинирования бизнес-процессов), имеющий следующие характеристики:

Трехуровневая схема Фабрик Будущего

представленная 14 февраля 2017 года в ходе одобрения дорожной карты «Технет» НТИ на заседании президиума Совета при Президенте РФ по модернизации экономики и инновационному развитию России под руководством Председателя Правительства РФ Д.А. Медведева

Передовое производство

Стоимость изменений в передовом производстве

«Умные» модели - основа новой парадигмы цифрового проектирования

В «Умных» моделях:

- ✓ Используются сложные мультидисциплинарные математические модели с высоким уровнем адекватности реальным материалам, конструкциям и физико-механическим процессам (включая технологические и производственные)
- ✓ Материалы, конструкции и физико-механические процессы описываются уравнениями математической физики, в первую очередь, 3D нестационарными нелинейными дифференциальными уравнениями в частных производных

«Умные» модели, агрегируют в себе знания при создании продукта:

- ✓ фундаментальные науки и законы;
- ✓ геометрические (CAD) и вычислительные конечно-элементные (CAE) полномасштабные модели;
- ✓ полные данные о материалах;
- ✓ информацию об эксплуатационных режимах;
- ✓ данные о технологиях производства и др.

Сравнительный анализ традиционного и современного подходов к построению физических и математических моделей

Комплексная оценка цифрового развития предприятия

Системы оценки развития ключевых бизнес-направлений предприятия

- 1. Методология оценки зрелости компании в управлении проектами американского института управления проектами (Project Management Institute, PMI). OPM3, Organizational Project Management Maturity Model модель зрелости организационного управления проектами.
- 2. Методологии оценки зрелости компании в использовании технологий информационного моделирования зданий (Building Information Modelling, BIM), BIM framework команды международных исследователей и Bew-Richards BIM Maturity Model (Великобритания).
- 3. Методология оценки зрелости компании в использовании технологий бережливого производства (lean). Global Benchmarking (GBM) глобальный сравнительный анализ, применяемый компанией Toyota Engineering Corporation для оценки степени внедрения технологий бережливого производства

Комплексная оценка цифрового развития предприятия

Комплексная модель оценки степени развития цифровой производственной компании (Organizational Digital Manufacturing Maturity Model – ODM3)

Основные задачи:

- **1.** Оценка компании через сопоставительный анализ с наиболее развитыми предприятиями посредством использования системы оценки лучших практик цифрового производства отраслевых лидеров.
- **2.** Визуализация стадии развития компании во внедрении ключевых компонентов и систем цифрового производства для планирования и реализации производственной программы, а также достижения стратегических целей компании.
- **3.** Определение направления развития компании для поддержки в достижении лучших бизнес-результатов, включая развитие специалистов компании.
- **4.** Моделирование экономического эффекта в результате внедрения ключевых производственных технологий.
- **5.** При управлении национальной экономикой определение состояния отраслей, установка целей развития и координация их достижений для отраслевых флагманов.

Комплексная оценка цифрового развития предприятия

Комплексная модель оценки степени развития цифровой производственной компании

Уровни развития производительности компании:

- **1.** Ad Hoc, случайный
- 2. Defined, базовый
- 3. Managed, управляемый
- 4. Integrated, интегрируемый
- 5. Optimized, оптимизируемый

Комплексная модель оценки цифрового предприятия

15 ключевых управленческих систем цифрового предприятия

Раздел 1. Проектирование и технологическая подготовка производства

Сегмент 1.	Единое	информационное	пространство
		The Principle of the Pr	

- Сегмент 2. Цифровое моделирование и оптимизация процессов и продуктов, включая FEA/CFD/CAE
- Сегмент 3. Конвергенция цифрового и физического в продуктах и информационная модель выпускаемого продукта цифровой двойник
- Сегмент 4. Корпоративная инновационная система и акселератор
- Сегмент 5. Интеллектуальная собственность предприятия

Раздел 2. Производство

- Сегмент 6. Цифровой реверс-инжиниринг
- Сегмент 7. Аддитивное производство и быстрое прототипирование
- Сегмент 8. Энергоэффективность
- Сегмент 9. Автоматизированные рабочие места в цехах
- Сегмент 10. Производственные системы

Раздел 3. Управление и материально-техническое снабжение

- Сегмент 11. Цифровое управление логистикой
- Сегмент 12. Трансфер технологий
- Сегмент 13. Кросс-отраслевая кооперация
- Сегмент 14. Партнерство с образовательными платформами
- Сегмент 15. Управление проектами

Комплексная модель оценки цифрового развития предприятия

Уровни развития, слева и результат диагностики развития компании, справа, цветами, отмечены компания сравнения и сравниваемая

Комплексная модель оценки цифрового развития предприятия

Комплексная модель оценки цифрового развития предприятия

Раздел 1. Единое информационное производство.

Сегмент 1. Единая система управления информацией предприятия, единое информационное пространство, EIM

