mingzailao

Sun Dec 11 15:03:06 2016

Outline

Variational Inference

Auto-Encoding Variational Bayes

Example: Variational Auto-Encoder

Variational Inference

Auto-Encoding Variational Bayes

Example: Variational Auto-Encoder

Notations

- 1. latent variables : $\mathbf{z} = z_{1:m}$
- 2. obseevations : $\mathbf{x} = x_{1:n}$

Joint density

$$p(\mathbf{z}, \mathbf{x}) = p(\mathbf{z})p(\mathbf{x}|\mathbf{z})$$

Notes

$$p(\mathbf{x}|\mathbf{z}) = \frac{p(\mathbf{z}, \mathbf{x})}{p(\mathbf{z})}$$

$$p(\mathbf{z}|\mathbf{x}) = \frac{p(\mathbf{z}, \mathbf{x})}{p(\mathbf{x})}$$

$$p(\mathbf{x}) = \int p(\mathbf{z}, \mathbf{x}) d\mathbf{z}$$

One example

Bayesian mixture of unit-variance univariate Gaussians.

$$\mu_k \sim \mathcal{N}(0, \sigma^2) \quad k = 1, \cdots, K$$
 $c_i \sim \textit{Categorical}(1/K, \cdots, 1/K) \quad i = 1, \cdots, n$
 $x_i | c_i, \mu \sim \mathcal{N}(c_i^T \mu, 1) \quad i = 1, \cdots, n$

One example

For a sample of size n, the joint density of latent and observed variables is:

$$p(\mu, \mathbf{c}, \mathbf{x}) = p(\mu) \prod_{i=1}^{n} p(c_i) p(x_i | c_i, \mu)$$

then, the evidence is

$$p(\mathbf{x}) = \int p(\mu) \prod_{i=1}^{n} \sum_{c_i} p(c_i) p(x_i | c_i, \mu) d\mu$$
$$= \sum_{\mathbf{c}} p(\mathbf{c}) \int p(\mu) \prod_{i=1}^{n} p(x_i | c_i, \mu) d\mu$$

Notes

- 1. assume that \mathcal{Z} : a set of densities over the latent variables.
- 2. what we want:

$$q^*(\mathbf{z}) = arg \min_{q(\mathbf{z}) \in \mathcal{Z}} KL(q(\mathbf{z})|p(\mathbf{z}|\mathbf{x}))$$

3. Variational inference thus turns the inference problem into an optimization problem.

7

recall KL

$$KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x})) = \mathbb{E}_{q(\mathbf{z})}[\log q(\mathbf{z})] - \mathbb{E}_{q(\mathbf{z})}[\log p(\mathbf{z}|\mathbf{x})]$$

$$= \mathbb{E}_{q(\mathbf{z})}[\log q(\mathbf{z})] - \mathbb{E}_{q(\mathbf{z})}[\log \frac{p(\mathbf{z}, \mathbf{x})}{p(\mathbf{x})}]$$

$$= \mathbb{E}_{q(\mathbf{z})}[\log q(\mathbf{z})] - \mathbb{E}_{q(\mathbf{z})}[\log p(\mathbf{z}, \mathbf{x})] + \log p(\mathbf{x})$$

Define evidence lower bound(ELBO)

$$ELBO(q(\mathbf{z})) = \mathbb{E}_{q(\mathbf{z})}[\log p(\mathbf{z}, \mathbf{x})] - \mathbb{E}_{q(\mathbf{z})}[\log q(\mathbf{z})]$$

then $\max ELBO(q(\mathbf{z})) \Leftrightarrow \min KL(q(\mathbf{z})|p(\mathbf{z}|\mathbf{x}))$

Another form of *ELBO*:

$$ELBO(q(\mathbf{z})) = \mathbb{E}_{q(\mathbf{z})}[p(\mathbf{x}|\mathbf{z})] - KL(q(\mathbf{z})||p(\mathbf{z}))$$

Variational Inference

Auto-Encoding Variational Bayes

Example: Variational Auto-Encoder

Figure 1: The type of directed graphical model under consideration. Solid lines denote the generative model $p_{\theta}(\mathbf{z})p_{\theta}(\mathbf{z}|\mathbf{z})$, dashed lines denote the variational approximation $q_{\theta}(\mathbf{z}|\mathbf{x})$ to the intractable posterior $p_{\theta}(\mathbf{z}|\mathbf{x})$. The variational parameters ϕ are learned jointly with the generative model parameters θ .

Define $q(\mathbf{z}|\mathbf{x}^{(i)})$ use the information of $\mathbf{x}^{(i)}$

Given dataset $\{\mathbf{x}^{(i)}\}_{i=1}^N$,then :

$$\log p_{\theta}(\mathbf{x}^{(i)}) = KL(q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)})||p_{\theta}(\mathbf{z}|\mathbf{x}^{(i)})) + ELBO(q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)}))$$

ELBO

$$ELBO(q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)})) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)})}[\log p_{\theta}(\mathbf{x}^{(i)}|\mathbf{z})]$$

$$- KL(q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)})||p_{\theta}(\mathbf{z}))$$

$$= \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)})}[-\log q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)}) + \log p_{\theta}(\mathbf{x}, \mathbf{z})]$$

The usual (naive) Monte Carlo gradient estimator

$$\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{z})}[f(\mathbf{z})] = \mathbb{E}_{q_{\phi}(\mathbf{z})}[f(\mathbf{z})\nabla_{q_{\phi}(\mathbf{z})}\log q_{\phi}(\mathbf{z})]$$

$$\approx \frac{1}{L} \sum_{l=1}^{L} f(\mathbf{z})\nabla_{q_{\phi}(\mathbf{z}^{(l)})}\log q_{\phi}(\mathbf{z}^{(l)})$$

where $\mathbf{z}^{(l)} \sim q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)})$

Chose $q_{\phi}(\mathbf{z}|\mathbf{x})$:

$$\tilde{\mathbf{z}} \sim g_{\phi}(\epsilon, \mathbf{x})$$
 with $\epsilon \sim p(\epsilon)$

Use Monte Carlo estimates of expectations

$$\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)})}[f(\mathbf{z})] = \mathbb{E}_{p(\epsilon)}[f(g_{\phi}(\epsilon, \mathbf{x}^{(i)}))]$$

$$\approx \frac{1}{L} \sum_{l=1}^{L} f(g_{\phi}(\epsilon^{(l)}, \mathbf{x}^{(i)})) \quad where \ \epsilon^{(l)} \sim p(\epsilon)$$

Apply the technique to the variational lower bound Get generic Stochastic Gradient Variational Bayes (SGVB) estimator $\tilde{\mathcal{L}}^A(\theta,\phi;\mathbf{x}^{(i)}) \approx \mathcal{L}(\theta,\phi;\mathbf{x}^{(i)})$:

$$\tilde{\mathcal{L}}^{A}(\theta, \phi; \mathbf{x}^{(i)}) = \frac{1}{L} \sum_{l=1}^{L} \log p_{\theta}(\mathbf{x}^{(i)}, \mathbf{z}^{(i,l)})$$

$$- \log q_{\phi}(\mathbf{z}^{(i,l)}|\mathbf{x}^{(i)})$$

where $\mathbf{z}^{i,l} = g_{\phi}(\epsilon_{i,l}, \mathbf{x}^{(i)})$, and $\epsilon^{(i,l)} \sim p(\epsilon)$ for $\forall i, l$

Anther

$$\tilde{\mathcal{L}}^{(B)}(\theta, \phi; \mathbf{x}^{(i)}) = -KL(q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)})||p_{\theta}(\mathbf{z})) + \frac{1}{L} \sum_{l=1}^{L} (\log p_{\theta}(\mathbf{x}^{(i)}|\mathbf{z}^{(i,l)}))$$

where $\mathbf{z}^{i,l} = g_{\phi}(\epsilon_{i,l}, \mathbf{x}^{(i)})$, and $\epsilon^{(i,l)} \sim p(\epsilon)$ for $\forall i, l$

Batch version

$$\tilde{\mathcal{L}}(\theta, \phi; \mathbf{X}) \approx \tilde{\mathcal{L}}^M(\theta, \phi; \mathbf{X}^M) = \frac{N}{M} \sum_{i=1}^M \tilde{\mathcal{L}}^M(\theta, \phi; \mathbf{x}^{(i)})$$

Variational Inference

Auto-Encoding Variational Bayes

Example: Variational Auto-Encoder

Idea:

Use a neural network for the probabilistic encoder $q_{\phi}(\mathbf{z}|\mathbf{x})$ the approximation to the posterior of the generative model $p_{\theta}(\mathbf{x}, \mathbf{z})$, and where the parameters θ and ϕ are optimized jointly with the AEVB algorithm.

Set $p_{\theta}(\mathbf{z})$:

$$p_{\theta}(\mathbf{z}) = \mathcal{N}(\mathbf{z}; 0, \mathbf{I})$$

Notes

• In this case, the prior lacks parameters.

Set $p_{\theta}(\mathbf{x}|\mathbf{z})$:

- 1. Multivariate Gaussian (in case of real-valued data)
- 2. Bernoulli (in case of binary data)

Both parameters of the distributions are computed from ${\bf z}$ with a MLP(a fully-connected neural network with a single hidden layer)

Set $q_{\phi}(\mathbf{z}|\mathbf{x})$

$$\log q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)}) = \log \mathcal{N}(\mathbf{z}; \mu^{(i)}, (\sigma^{(i)})^{2}\mathbf{I})$$

where the $\mu^{(i)}$ and $\sigma^{(i)}$ are the output of the encoding MLP

DO IT IN PRACTICE

$$\mathbf{z}^{(i,l)} = g_{\phi}(\mathbf{x}^{(i)}, \epsilon^{(l)})$$
$$= \mu^{(i)} + \sigma^{(i)} \odot \epsilon^{(l)}$$

where $\epsilon^{(l)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

1. In this model both both $p_{\theta}(\mathbf{z})$ (the prior) and $q_{\phi}(\mathbf{z}|\mathbf{x})$ are Gaussian;

Solution of
$$-KL(q_{\phi}(\mathbf{z})||p_{\theta}(\mathbf{z}))$$
, Gaussian case $p_{\theta}(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$, and $q_{\phi}(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mu, \sigma^2 \mathbf{I})$

$$-KL(q_{\phi}(\mathbf{z})||p_{\theta}(\mathbf{z})) = \frac{1}{2} \sum_{j=1}^{J} (1 + \log((\sigma_{j})^{2}) - (\mu_{j})^{2} - (\sigma_{j})^{2})$$

The resulting estimator for this model and datapoint $\mathbf{x}^{(i)}$

$$\mathcal{L}(\theta, \phi; \mathbf{x}^{(i)}) \approx \frac{1}{2} \sum_{j=1}^{J} (1 + \log((\sigma_j^{(i)})^2) - (\mu_j^{(i)})^2 - (\sigma_j^{(i)})^2)$$

$$+ \frac{1}{L} \sum_{l=1}^{L} \log p_{\theta}(\mathbf{x}^{(i)}|\mathbf{z}^{(i,l)})$$

where
$$\mathbf{z}^{(i,l)} = \mu^{(i)} + \sigma^{(i)} \odot \epsilon^{(l)}$$
, and $\epsilon^{(l)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

• the decoding term $p_{\theta}(\mathbf{x}^{(i)}|\mathbf{z}^{(i,l)})$ is a Bernoulli or Gaussian MLP, depending on the type of data we are modelling.

MLP's as probabilistic encoders and decoders

- 1. encoder: MLP with Gaussian output;
- 2. decoder: MLPs with either Gaussian or Bernoulli outputs, depending on the type of data.

Bernoulli MLP as decoder

• Recall Bernoulli : $p^k(1-p)^{1-k}$

$$\log p(\mathbf{x}|\mathbf{z}) = \sum_{i=1}^{D} x_i \log y_i + (1 - x_i) \cdot \log(1 - y_i)$$

where

$$\mathbf{y} = f_{\sigma}(\mathbf{W}_{2} \tanh(\mathbf{W}_{1}\mathbf{z} + \mathbf{b}_{1}) + \mathbf{b}_{2})$$

Gaussian MLP as decoder

$$\log p(\mathbf{x}|\mathbf{z}) = \log \mathcal{N}(\mathbf{x}; \mu, \sigma^2 \mathbf{I})$$

where

$$\mu = \mathbf{W}_4 \mathbf{h} + \mathbf{b}_4$$
$$\log \sigma^2 = \mathbf{W}_5 \mathbf{h} + \mathbf{b}_5$$
$$\mathbf{h} = \tanh(\mathbf{W}_3 \mathbf{z} + b_3)$$

Gaussian MLP as encoder

$$\log p(\mathbf{z}|\mathbf{x}) = \log \mathcal{N}(\mathbf{z}; \mu, \sigma^2 \mathbf{I})$$

where

$$\mu = \mathbf{W}_7 \mathbf{h} + \mathbf{b}_7$$
$$\log \sigma^2 = \mathbf{W}_8 \mathbf{h} + \mathbf{b}_8$$
$$\mathbf{h} = \tanh(\mathbf{W}_6 \mathbf{z} + b_6)$$