Reinforcement Learning for Personalized Dialogue Management

Floris den Hengst, Mark Hoogendoorn, Frank van Harmelen & Joost Bosman

Dialogue Systems

Dialogflow

Sequential Model

How may I help you? When are you going to pay the money back? What are you going to use the A <...> might be good for you, ...

FSM Model

Belief State Model

Reinforcement Learning (1/2)

Trajectory
$$\langle s_0, a_0, r_0, s_1, \dots, s_T, a_T, r_T \rangle, r \in \mathbb{R}$$

Maximize
$$\sum_{t=0}^{t=T} y^{t+1} r_t$$
, $y \in [0,1]$

Segmentation-based Personalization

- O. Maintain a belief over personal context
- 1. Segment users based on belief
- 2. Learn 1 DM policy per segment

Belief State-based Personalization

- O. Maintain a belief over personal context
- 1. Include belief into DM policy input
- 2. Learn 1 DM policy across all users

Experimental setup (1/2)

Recommendation scenarios

- Restaurant 1
- 2. Restaurant 2
- 3. Laptop
- 4. Financial products

Simulation

- different user behavior patterns 2
 - Layperson
 - 2. Expert
- levels of S2T + NLU error .0, .15, .30
- total number of environments 24

Reward based on task completion and # turns

Algorithms varying in

- Taking into account uncertainty
- Ability to learn from experience
- Using task-specific heuristics

Total environment – algorithm pairs 384

Experimental setup (2/2)

Experimental setup (2/2)

Conclusions & Discussion

Take uncertainty into account

Learning approaches most robust to

- novel domain
- personalization setting

Personalized ≥ gold-standard handcrafted approach

Performance personalized approaches varies with

- environment
- algorithm
- available data

References

[bransford1972]

Bransford, J.D., & Johnson, M.K. (1972). Contextual prerequisites for understanding: Some investigations of comprehension and recall. Journal of Verbal Learning and Verbal Behavior, 11, 717-726.

[peckham1991]

Peckham, Jeremy. "Speech Understanding and Dialogue over the telephone: an overview of the ESPRIT SUNDIAL project." Speech and Natural Language: Proceedings of a Workshop Held at Pacific Grove, California, February 19-22, 1991. 1991.

[ultes2017]

Ultes, Stefan, et al. "Pydial: A multi-domain statistical dialogue system toolkit." Proceedings of ACL 2017, System Demonstrations. 2017.

[young2007]

Young, Steve, et al. "The hidden information state approach to dialog management." 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP'07. Vol. 4. IEEE, 2007.

[casanueva2015]

Casanueva, Inigo, et al. "Knowledge transfer between speakers for personalised dialogue management." Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue. 2015.

[mo2018]

Mo, Kaixiang, et al. "Personalizing a dialogue system with transfer reinforcement learning." Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[genevay2016]

Genevay, Aude, and Romain Laroche. "Transfer learning for user adaptation in spoken dialogue systems." Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems. International Foundation for Autonomous Agents and Multiagent Systems, 2016.

[wu2015]

Ji Wu, Miao Li, and Chin-Hui Lee. An entropy minimization framework for goaldriven dialogue management. In Sixteenth Annual Conference of the InternationSpeech Communication Association, 2015.

Thank you

F.den.hengst@vu.nl

florisdh.nl/presentations/wi-2019.pdf

[ultes2017]

	hidden layer 1	hidden layer 2	ϵ
DQN	300	100	.5
A2C	200	75	.5
eNAC	130	50	.5

Personalizing DM

			This talk	
[casan 201	[11102010]	[genevay 2016]	segmentation based	belief-state based
Assumes pre-existing interactions with user	✓			
Assumes user similarity metric	✓		✓	
Small number of users		✓		
Assumes existing = personal conte			✓	√