Landscape of Infectious Diseases in California

Qiushi Peng

2022-12-02

Introduction

The dataset, called *Infectious Diseases by Disease*, *County, Year, and Sex*, is downloaded from California Health and Human Services Open Data Portal.

This dataset contains case counts and rates by disease, county, year, and sex for selected infectious diseases that met the surveillance case definition in California. There are 9 columns in the dataset: Disease, County, Year, Sex, Cases, Population, Rate, Lower_95___CI, and Upper_95___CI. There are 167,974 rows. The data represent cases with an estimated illness onset date from 2001 through the last year indicated from California Confidential Morbidity Reports and/or Laboratory Reports. Data captured represent reportable case counts as of the date indicated in the "Temporal Coverage" section below, so the data presented may differ from previous publications due to delays inherent to case reporting, laboratory reporting, and epidemiologic investigation.

After looking at the whole dataset, we formed two questions: We would like to know the infectious diseases with the highest prevalence, and in which year the diseases had a highest infection rate. In that year, did the diseases spread evenly across the whole state? Is there a significant difference in infection rates between males and females?

Methods

1. Data acquisition

Data was downloaded from "https://data.chhs.ca.gov/dataset/infectious-disease".

Geographical data was downloaded from "https://public.opendatasoft.com/explore/dataset/us-county-boundaries/export/?disjunctive.statefp&disjunctive.countyfp&disjunctive.name&disjunctive.namelsad&disjunctive.state name&refine.stusab=CA".

2. Data cleaning and wrangling

Merge diseasaes and CA qeo.

The dataset has 6 columns. Among them, columns "Cases" and "Rate" have several missing values because of "Scoring Criteria" prevent them from being publicated. Thus, we can remove them.

Remove NA rows.

The data type of column "Rate" is chr, which we do not want it to be. Thus, we change the data type to num.

The "County" column includes rows called "California", which is the state not a county, so we delete them. We saved the aggregate "California" data into a new variable "Cal".

Preliminary Results

Summary Table

Year	Sex	Count of Diseases	Cases Avg	Cases SD	Rate Avg	Rate SD
2010	Female	33	280	721.2064	1.493121	3.849269
2010	Total	35	599	1548.3724	1.608657	4.156293
2011	Female	35	255	669.4607	1.347200	3.533235
2011	Male	37	317	859.1431	1.689595	4.576258
2011	Total	40	520	1456.4073	1.378425	3.860948
2012	Female	38	256	736.3415	1.339368	3.849926
2012	Male	39	311	862.0373	1.638974	4.546186
2012	Total	41	536	1552.2050	1.407951	4.075307
2013	Female	37	250	703.9731	1.299622	3.654021
2013	Male	38	306	826.7953	1.601316	4.323413
2013	Total	40	536	1515.2563	1.395600	3.947092
2014	Female	34	281	748.9854	1.445471	3.857928
2014	Male	36	322	839.6155	1.670944	4.352204
2014	Total	38	573	1572.9944	1.481316	4.063930
2015	Female	33	333	835.9687	1.701939	4.274537
2015	Male	39	348	898.8099	1.790641	4.620956
2015	Total	39	632	1673.0009	1.620667	4.288898
2016	Female	36	327	815.8107	1.660472	4.146697
2016	Male	40	381	990.1014	1.944175	5.056574
2016	Total	41	660	1741.9735	1.680268	4.437598
2017	Female	42	334	895.9890	1.686452	4.528398
2017	Male	43	427	1146.1842	2.167233	5.817424
2017	Total	43	755	2017.9861	1.910721	5.110320
2018	Female	40	385	968.5417	1.939375	4.874162
2018	Male	39	493	1200.2316	2.489077	6.061918
2018	Total	41	846	2118.3376	2.133293	5.339772
2019	Female	41	403	1026.8203	2.024537	5.156120
2019	Male	39	525	1299.3127	2.643667	6.546857
2019	Total	41	904	2291.5611	2.274634	5.763299
2020	Female	36	298	768.9392	1.493000	3.858071
2020	Male	38	342	893.3602	1.720474	4.500278
2020	Total	41	580	1587.1061	1.457293	3.989424
2005	Female	32	246	575.8256	1.360469	3.183616
2005	Male	33	298	680.6407	1.663515	3.802820
2005	Total	36	504	1225.4000	1.399250	3.405184
2006	Male	34	301	695.2255	1.669588	3.856451
2006	Total	37	499	1234.2062	1.375784	3.404998
2007	Female	32	247	600.5414	1.342406	3.268665
2007	Male	33	297	690.9014	1.632030	3.800240
2007	Total	36	498	1246.5595	1.363056	3.410330
2008	Male	31	316	725.0317	1.722193	3.955284
2008	Total	32	566	1360.7600	1.534781	3.692082
2009	Female	32	248	644.6026	1.330875	3.459468
2009	Male	34	287	708.7938	1.557794	3.842854
2009	Total	36	498	1310.8356	1.342194	3.535432
2001	Female	30	259	615.2508	1.496167	3.548187
2001	Male	31	317	721.0994	1.843871	4.199006

Year	Sex	Count of Diseases	Cases Avg	Cases SD	Rate Avg	Rate SD
2001	Total	33	542	1309.5534	1.570727	3.794365
2003	Female	32	232	560.0812	1.302875	3.149590
2003	Total	35	482	1191.3046	1.361914	3.366266
2004	Male	34	277	655.6244	1.557059	3.686448
2004	Total	36	485	1202.2932	1.355639	3.362737
2006	Female	34	233	582.8317	1.279559	3.199011
2008	Female	30	274	666.9355	1.481333	3.600166
2010	Male	32	362	883.3563	1.955875	4.770420
2002	Female	27	298	655.5235	1.698667	3.734204
2002	Male	31	315	721.0375	1.811581	4.147735
2002	Total	32	564	1337.0065	1.615563	3.826668
2003	Male	32	288	663.4518	1.634000	3.768226
2004	Female	29	267	598.2320	1.487310	3.329347

We made a line plot to show rate of each infectious disease from 2001 to 2020.

Figure 1. Line plot of rate of each infectious disease from 2001 to 2020

25
20
15
15
10
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Year

Anaplasmosis
Creutried1—Jakob Disease and other Transmissible Sponglism Encephalopathus
Babesious
Creutried4—Jakob Disease and other Transmissible Sponglism Encephalopathus
Boulism, Footborne
Cryptosportidosis
Boulism, Crootborne
Cryptosportidosis
Boulism, Other
Cryptosportidosis
Boulism, Other
Cryptosportidosis
Boulism, Footborne
Cryptosportidosis
Boulism, Footborne
Cryptosportidosis
Boulism, Footborne
Cryptosportidosis
Boulism, Other
Cryptosportidosis
Boulism, Footborne
Cryptosportidosis
Boulism, Gryptosportidosis
Boulism, Footborne
Cryptosportidosis
Boulism, Gryptosportidosis
Bouli

From the plot, we can see that Campylobacteriosis, Salmonellosis, Giardiasis, Shigellosis, and Coccidioidomycosis always have a high infection rate from 2001 to 2020. We also notice that Shiga toxin-producing E. coli (STEC) without HUS rate has increased a lot since 2011.

Shiga toxin-producing E. coli (STEC) without HUS

Let's look further at the disease with the highest infection rate – Campylobacteriosis.

Figure 2. Boxplot of infection rate of Campylobacteriosis from 2001 to 2020

From the plot, we can see that infection rate of **Campylobacteriosis** is high in 2019. Let's look at the disease in each county in 2019.

Figure 3. Barplot of infection rate of Campylobacteriosis in different counties in 20°

From the plot, we can see that **San Benito** has a highest infection rate of **Campylobacteriosis** in 2019. Alpine has the lowest infection rate.

Let see the data in a map view to see if there is a geographical factor playing a role.

We made a table to see that if infection rates are the same for different genders.

Sex	Cases	Population	Rate
Female	20	30943	64.635
Male	19	31108	61.078
Total	39	62051	62.852

Chi-square test.

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: contingency_table
## X-squared = 0.00027594, df = 1, p-value = 0.9867
```

There is not a significant difference between male and female for the infection rate of Campylobacteriosis in San Benito in 2019 (p = 0.9867).

Conclusion and Summary

1. We can see that Campylobacteriosis, Salmonellosis, Giardiasis, Shigellosis, and Coccidioidomycosis always have a higher infection rate from 2001 to 2020 than other infectious diseases. Shiga toxin-producing E. coli (STEC) without HUS infection rate has increased significantly a lot since 2011 (Figure 1).

- 2. San Benito had a very high infection rate of Campylobacteriosis in 2019 (Figure 2, 3), which is more than 60%.
- 3. There is not a significant difference between male and female for the infection rate of Campylobacteriosis in San Benito in 2019 (p = 0.9867, Table 1).
- 4. Counties around San Francisco had a higher infection rate of Campylobacteriosis in 2019. Inland area had relatively lower infection rate of Campylobacteriosis (Figure 4).

Reference

1. California Department of Public Health, Center for Infectious Diseases, Infectious Diseases Branch, Surveillance and Statistics Section, 2001-2020. Infectious-Diseases-by-Disease-County-Year-Sex.csv

Discussion