Exame 1ª época

11-06-2012

- **1.a)** Determine os valores próprios λ_n e funções próprias $y_n(x)$ do operador d/dx, definidas no intervalo $[-\ell, \ell]$ e satisfazendo a condição fronteira $y(\ell) = y(-\ell)$.
- **b)** Demonstre como se determinam os coeficientes c_n da série $u(x) = \sum_n c_n y_n(x)$ a partir da expressão de uma função u(x).
- c) Obtenha as séries de Fourier complexas das funções $u(x) = \cos x$, $v(x) = \delta(x)$, definidas no intervalo $[-\ell, \ell]$.
- 2. Considere a equação diferencial

$$(2x - x^2)y''(x) + 3(1 - x)y'(x) + \lambda y(x) = 0$$
, $x \in [0, 2]$.

- a) Admita que a solução y(x) é um polinómio de grau igual ou inferior a 3: $y(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$. Determine as relações que devem ser satisfeitas pelos coeficientes a_i e os valores próprios λ possíveis.
- b) Explicite as funções próprias $y_n(x)$ associadas aos valores próprios λ_n encontrados na alínea a), sujeitas à condição inicial $y_n(0) = 1$.
- **3.a)** Calcule os integrais:

1)
$$\int_{-\ell}^{\ell} \delta(x) \cos x \, dx$$
, 2) $\int_{-\ell}^{\ell} \delta(x) x \, dx$, 3) $\int_{-\ell}^{\ell} \delta(x) x \, f(x) \, dx$.

- **b)** Calcule as derivadas y'(x), y''(x), da função $y(x) = c x \Theta(x) + a_0 + a_1 x$, onde c, a_0 , a_1 são constantes.
- c) Determine as constantes c, a_0 , a_1 , tais que y(x) satisfaça as seguintes condições: $y''(x) = \delta(x), \ y(\ell) = 0, \ y(-\ell) = 0.$
- 4. Considere a equação diferencial:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial y} = 0$$
, $x \in \mathbb{R}$, $y \le 0$.

- a) Escreva u(x,y) em termos da sua transformada de Fourier $\tilde{u}(k,y)$ e deduza a equação diferencial a que obedece $\tilde{u}(k,y)$.
- b) Determine a solução $\tilde{u}(k,y)$ e a solução geral da equação, u(x,y).
- c) Identifique no resultado obtido as soluções da equação separáveis na forma: $u(x,y)=f(x)\,g(y).$
- d) Obtenha a solução u(x,y) que satisfaz a condição fronteira $u(x,0)=e^{-x^2/\alpha^2}$.

$$\begin{split} \tilde{f}(k) &= \int_{-\infty}^{+\infty} f(x) \, e^{-i \, k \, x} \, dx \;, \qquad f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \tilde{f}(k) \, e^{i \, k \, x} \, dk \\ \int_{-\infty}^{+\infty} e^{i \, k \, x} \, dk &= 2\pi \, \delta(x) \;, \qquad \int_{-\infty}^{+\infty} f^*(x) \, g(x) \, dx = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \tilde{f}(k)^* \, \tilde{g}(k) \, dk \\ \int_{-\infty}^{+\infty} e^{-a^2 x^2} \, e^{-i \, k \, x} \, dx &= \frac{\sqrt{\pi}}{a} \, e^{-k^2/(4a^2)} \end{split}$$