Probability and Mathematical Statistics in Data Science

Lecture 25: Section 9.3: Confidence Intervals: Method

Confidence Intervals

- A point estimate, because it is a single number, by itself provides no information about the precision and reliability of estimation
- An alternative to reporting a single sensible value for the parameter being estimated is to calculate and report an entire interval of plausible values an interval estimate or confidence interval (CI).
- A confidence interval is always calculated by first selecting a confidence level, which is a measure of the degree of reliability of the interval.

Using \overline{X} to estimate μ

- ullet $ar{X}$ is an unbiased estimator of μ
- If we also know that each of the X_k had SD σ , what can we say about $SD(\bar{X})$?
- What does the Central Limit theorem say about the sample mean?

We will use the CLT and the sample mean to define a interval that will cover the true mean with a specified probability, say 95%

Illustration (σ is Known)

- Let's first consider a simple, somewhat unrealistic problem situation.
 - I. We are interested in the population mean parameter μ .
 - 2. The population distribution is normal.
 - 3. The value of the population standard deviation σ is known. (unlikely!)
- Suppose we have a random sample $X_1, X_2, ..., X_n$ from a normal distribution with mean value μ and standard deviation σ . As we know, \bar{X} also follows a normal distribution with mean value μ and standard error σ/\sqrt{n} . Thus, we could get a standard normal distribution by normalizing \bar{X}

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Construction

 The smallest interval that contains 95% of the possible outcomes of Z is (-1.96, 1.96).

$$-1.96 < \frac{\bar{\mathbf{X}} - \mu}{\sigma/\sqrt{n}} < 1.96$$

$$-1.96 \cdot \frac{\sigma}{\sqrt{n}} < \bar{\mathbf{X}} - \mu < 1.96 \cdot \frac{\sigma}{\sqrt{n}}$$

$$\bar{\mathbf{X}} - 1.96 \cdot \frac{\sigma}{\sqrt{n}} < \mu < \bar{\mathbf{X}} + 1.96 \cdot \frac{\sigma}{\sqrt{n}}$$

Random Interval

By constructing a confidence interval like this, we never be sure whether μ actually lies in our confidence interval. However, we know that about 95 out of 100 times intervals constructed using this method will capture the true parameter.

• Interpreted as: "the probability is .95 that the random interval includes or covers the true value of μ."

Confidence Interval for the Population Mean

The 95% confidence interval for the population mean is calculated as follows:

$$\overline{x} \pm z \left(\frac{\sigma}{\sqrt{n}} \right)$$

sample mean $\pm 2 \times (standard error)$

where the standard deviation of the mean is:

$$se(\overline{x}) = \frac{\sigma}{\sqrt{n}}$$

Example

A population distribution is known to have an SD of 20. The average of an sample of 64 observations is 55. What is your 95% confidence interval for the population mean?

Kaggle Dataset – Heart Disease UCI

This database contains 76 attributes, but all published experiments refer to using a subset of 14 of them.

- Attribute Information:
 - > I.age
 - > 2. sex
 - > 3. chest pain type (4 values)
 - > 4. resting blood pressure
 - > 5. serum cholestoral in mg/dl
 - > 6. fasting blood sugar > 120 mg/dl

source: https://www.kaggle.com/ronitf/heart-disease-uci

Kaggle Dataset – Heart Disease Dataset

- The dataset consists of 303 patients from the Cleveland Clinic, a non-profit academic medical center.
- We will analyze the measurements taken for Cholesterol level an blood pressure.
- **Q.** What are the necessary assumptions and conditions that should be checked before constructing a confidence intervals for the population mean in this case?

Kaggle Dataset – Heart Disease Dataset

- Random Sample: Heart Disease patients from Cleveland Clinic. Not enough information given to decide whether the data was based on a random or an convenience sample
- Independence: The sample may not be random but (in this case) it is fair to assume the measurement values (cholesterol levels) are independent. Why?
- Sample Size: The sample size of 303 is greater than 40, so even if the population distribution of individual cholesterol levels is not normal, our analysis will still be valid.

Kaggle Dataset – Heart Disease UCI

Cholesterol Levels

Sample Size = 303 Sample Mean = 246.3 Sample Standard Deviation = 51.8

95% Confidence Interval: sample mean ± 2 x (standard error)

 $246.3 \pm 2 * (51.8 / square root of 303)$

 $= 246.3 \pm 5.95$

= [240.35, 252.25]

Q. What does the confidence interval mean?

Kaggle Dataset – Heart Disease UCI

Blood Pressure

Sample Size = 303 Sample Mean = 131.6 Sample Standard Deviation = 17.5

95% Confidence Interval: 131.6 ± 2 * (17.5 / square root of 303)

$$= 131.6 \pm 1.0$$

$$= [130.6, 132.6]$$

Q. What does the 95% confidence interval mean?

Confidence levels

- The probability with which our *random* interval will cover the mean is called the confidence level.
- In reality (vs theory), we will have just one *realization* (observed value) of the sample mean (from our data sample), and we use that value to write down the realization of our random interval.
- What would we do differently if we wanted a 68% Cl? 99.7% Cl?

What about an 90% Cl? 99% Cl?

Understanding the Confidence Level

- For a confidence level of 95%, we expect that about 95% of all such intervals will actually cover the true population value.
 - The remaining 5% will not. Confidence is in the *procedure* over the long run.
- 90% confidence level => multiplier = 1.645
- 95% confidence level => multiplier = 1.96
- 99% confidence level => multiplier = 2.576
- More confidence
 Wider Interval (for the standard error)

Confidence Intervals for Population Proportions

If our sample data adheres to the assumptions and conditions for valid analysis, a confidence interval for the population proportion, p, can be calculated as follows:

$$\hat{p} \pm z (se(\hat{p}))$$

sample proportion $\pm 2 \times (standard error)$

where the standard error is:

$$SE(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Example

We have a population of I million in a town. We take a SRS of size 400 and find that 22% of the sample is unemployed. Estimate the percentage of unemployed people in the town.

