Formalism for another source of interference with an arbitrary phase relative to $q\bar{q}$

The total amplitude is the sum of four amplitudes $A = A_c + A_{q\bar{q}} + A_{ggg} + A_{ggg-noint}$:

- 1. A_c : continuum $q\bar{q}$,
- 2. $A_{q\bar{q}}: \Upsilon \to q\bar{q},$
- 3. A_{qqq} : $\Upsilon \to ggg$ decays which interfere with $q\bar{q}$ at the hadron level, and
- 4. $A_{qqq\text{-noint}}$: $\Upsilon \to ggg$ decays which do not interfere with $q\bar{q}$ at the hadron level.

The squared amplitude is

$$|A|^{2} = |A_{c}|^{2} + |A_{q\bar{q}}|^{2} + |A_{ggg}|^{2} + |A_{ggg-\text{noint}}|^{2} + 2\mathcal{R}e(A_{c}^{*}A_{q\bar{q}}) + 2\mathcal{R}e(A_{c}^{*}A_{ggg}) + 2\mathcal{R}e(A_{q\bar{q}}^{*}A_{ggg}) + A_{ggg-\text{noint}}^{*}(A_{c} + A_{q\bar{q}} + A_{ggg})$$
(1)

The only two relevant terms are $2\mathcal{R}e(A_c^*A_{q\bar{q}})$ and $2\mathcal{R}e(A_c^*A_{ggg})$. The rest are non-interfering or are interference between two Υ final states, which is just part of the Υ cross-section (a part of the Γ_{ee} we wish to measure).

To use Karl's existing code, I need to make these two interference terms look like one. Karl's lineshape takes two inputs, y_{int} and ϕ to define interference with the background:

$$2\mathcal{R}e(A_c^*A_{BW}) = y_{int}\sigma_{BW}\left(2\frac{W_{res} - M_{\Upsilon}}{\Gamma}\cos\phi + \sin\phi\right)$$
 (2)

With only $q\bar{q}$ interference, y_{int} is proportional to $\sqrt{\mathcal{B}_{q\bar{q}}}$ and the amplitude of $\Upsilon \to q\bar{q}$, and ϕ is the phase difference between continuum $q\bar{q}$ and $\Upsilon \to q\bar{q}$ when $\sqrt{s} \ll M_{\Upsilon}$. My A_{BW} has two terms, $A_{q\bar{q}} + A_{ggg}$. I will parameterize them like this:

$$A_{q\bar{q}} = a_{q\bar{q}}e^{i\phi_r}$$
 and $A_{qqq} = a_{qqq}e^{i\phi_r + i\phi_{ggg}}$ (3)

where ϕ_r is the resonance phase (which varies from 0 to π as a function of beam energy) and ϕ_{ggg} is a constant offset due to $\Upsilon \to q\bar{q}$ and $\Upsilon \to ggg$ not being coherent (ϕ_{ggg} might be π). Now

$$A_{q\bar{q}} + A_{ggg} = (a_{q\bar{q}} + a_{ggg}e^{i\phi_{ggg}})e^{i\phi_r} = (a_{q\bar{q}} + a_{ggg}\cos\phi_{ggg} + ia_{ggg}\sin\phi_{ggg})e^{i\phi_r}$$
(4)

$$= \sqrt{a_{q\bar{q}}^2 + a_{ggg}^2 + 2a_{q\bar{q}}a_{ggg}\cos\phi_{ggg}} \exp\left(i\phi_r + i\tan^{-1}\left(\frac{a_{ggg}\sin\phi_{ggg}}{a_{q\bar{q}} + a_{ggg}\cos\phi_{ggg}}\right)\right)$$
 (5)

To use Karl's function, I need to replace

$$y_{int} \rightarrow \sqrt{y_{q\bar{q}}^2 + y_{ggg}^2 + 2y_{q\bar{q}}y_{ggg}\cos\phi_{ggg}}$$
 and (6)

$$\phi \rightarrow \phi_{q\bar{q}} + tan^{-1} \left(\frac{y_{ggg} \sin \phi_{ggg}}{y_{q\bar{q}} + y_{ggg} \cos \phi_{ggg}} \right)$$
 (7)

where $y_{q\bar{q}}$ is the usual interference parameter, y_{ggg} is the equivalent for the fraction of $\Upsilon \to ggg$ that interferes, and $\phi_{q\bar{q}}$ is the usual starting interference (assumed to be zero, as usual).

(The horizontal lines represent one unit in χ^2)

Other Forms of Interference

We have assumed that the $\sqrt{s} \ll M_\Upsilon$ phase difference between continuum $q\bar{q}$ and $\Upsilon \to q\bar{q}$ is zero, as it is for $\mu^+\mu^-$. A gluon connecting $b\bar{b}$ with $q\bar{q}$ could spoil that. However, the final state quarks are light (how often are they $c\bar{c}$?), with ~ 5 GeV of momentum, so α_s is 0.2. The top diagram is therefore of order 4% on a 10% decay mode.

This is a very small effect because the $gg\gamma$ mode has a branching fraction of some 3%.

Did I leave anything out? Are my arguments wrong?