Learning Distributed Document Representations for Multi-Label Document Categorization

Nitish Gupta

B.Tech - M.Tech Dual Degree
Thesis Defense
Electrical Engineering
IIT Kanpur

May 16, 2015

Outline

- Multi-Label Document Categorization
- Related Work
 - Text Representations
 - Learning Algorithms
- Oistributed Word Representations
- Learning Distributed Document Represenations
- Ocument Cateogorization Algorithm
- Results
- Conclusion and Future Work

Text Documents usually belong to more than one conceptual class.
 For E.g. an article on Music Piracy

- Text Documents usually belong to more than one conceptual class.
 For E.g. an article on Music Piracy
- Task of assigning documents to one or more predefined categories is called Multi-Label Document Categorization

- Text Documents usually belong to more than one conceptual class.
 For E.g. an article on Music Piracy
- Task of assigning documents to one or more predefined categories is called Multi-Label Document Categorization
- Wide range real-world applications :
 - Web-page tagging
 - Medical Patient Record Management
 - Wikipedia Article Management
 - Document Recommendation etc.

- Text Documents usually belong to more than one conceptual class.
 For E.g. an article on Music Piracy
- Task of assigning documents to one or more predefined categories is called Multi-Label Document Categorization
- Wide range real-world applications :
 - Web-page tagging
 - Medical Patient Record Management
 - Wikipedia Article Management
 - Document Recommendation etc.
- Multi-label classification belongs to a general class of supervised learning algorithms where:

- Text Documents usually belong to more than one conceptual class.
 For E.g. an article on Music Piracy
- Task of assigning documents to one or more predefined categories is called Multi-Label Document Categorization
- Wide range real-world applications :
 - Web-page tagging
 - Medical Patient Record Management
 - Wikipedia Article Management
 - Document Recommendation etc.
- Multi-label classification belongs to a general class of supervised learning algorithms where:
 - \bullet Training instances in the form of document-category pairs are used to learn a classifier ${\cal H}$

- Text Documents usually belong to more than one conceptual class.
 For E.g. an article on Music Piracy
- Task of assigning documents to one or more predefined categories is called Multi-Label Document Categorization
- Wide range real-world applications :
 - Web-page tagging
 - Medical Patient Record Management
 - Wikipedia Article Management
 - Document Recommendation etc.
- Multi-label classification belongs to a general class of supervised learning algorithms where:
 - \bullet Training instances in the form of document-category pairs are used to learn a classifier ${\cal H}$
 - ullet Learned classifier ${\cal H}$ is used to assign categories to new test documents

Given,

ullet A set of documents $D=\{d_1,\ldots,d_{|D|}\}$

Given,

- ullet A set of documents $D=\{d_1,\ldots,d_{|D|}\}$
- A set of categories $C = \{c_1, \dots, c_{|C|}\}$

Given,

- ullet A set of documents $D=\{d_1,\ldots,d_{|D|}\}$
- A set of categories $C = \{c_1, \dots, c_{|C|}\}$
- ullet Training data for n (n < |D|) documents, $\mathcal{T} = \{\mathit{I}_{d_1}, \ldots, \mathit{I}_{d_n}\}$

Given,

- ullet A set of documents $D=\{d_1,\ldots,d_{|D|}\}$
- A set of categories $C = \{c_1, \dots, c_{|C|}\}$
- Training data for n (n < |D|) documents, $\mathcal{T} = \{l_{d_1}, \ldots, l_{d_n}\}$ Each label vector $l_{d_i} \in \{0,1\}^{|C|}$ denotes relevance of categories to the document d_i

Given,

- ullet A set of documents $D=\{d_1,\ldots,d_{|D|}\}$
- A set of categories $C = \{c_1, \dots, c_{|C|}\}$
- Training data for n (n < |D|) documents, $\mathcal{T} = \{l_{d_1}, \ldots, l_{d_n}\}$ Each label vector $l_{d_i} \in \{0,1\}^{|C|}$ denotes relevance of categories to the document d_i

Example:

Documents	Sports	Music	Arts	Technology	Literature	Politics
d_1	0	0	1	0	1	0
d_2	0	1	1	0	0	1
d_3^-	1	0	0	1	0	1
d_4	x	×	×	×	×	x
d ₅	×	×	×	×	×	×

Given,

- ullet A set of documents $D=\{d_1,\ldots,d_{|D|}\}$
- A set of categories $C = \{c_1, \dots, c_{|C|}\}$
- Training data for n (n < |D|) documents, $\mathcal{T} = \{l_{d_1}, \ldots, l_{d_n}\}$ Each label vector $l_{d_i} \in \{0,1\}^{|C|}$ denotes relevance of categories to the document d_i

Example:

Documents	Sports	Music	Arts	Technology	Literature	Politics
d_1	0	0	1	0	1	0
d_2	0	1	1	0	0	1
$\overline{d_3}$	1	0	0	1	0	1
d_4	×	×	×	×	×	x
d ₅	×	х	х	×	×	×

Using \mathcal{T} , D and C the learning algorithm learns a multi-label classifier \mathcal{H} to estimate category label vectors, I_{d_i} (j > n) for the test documents.

Document Categorization task has the following two components :

 $\textbf{9} \ \textit{Learning Document Representations}: \ \textit{Representing text documents using numerical vectors that are inputs to the multi-label classifier} \ \mathcal{H}$

- $\textbf{9} \ \textit{Learning Document Representations}: \ \textit{Representing text documents using numerical vectors that are inputs to the multi-label classifier} \ \mathcal{H}$
 - Each document $d_i \in D$ is represented using a vector $v_{d_i} \in \mathbb{R}^k$

- $\begin{tabular}{ll} \textbf{Q} Learning Document Representations} : Representing text documents using numerical vectors that are inputs to the multi-label classifier \mathcal{H} \\ \end{tabular}$
 - ullet Each document $d_i \in D$ is represented using a vector $v_{d_i} \in \mathbb{R}^k$
 - Vectors (v_{d_i}) should encode the semantic content of the documents

- $\textbf{9} \ \textit{Learning Document Representations}: \ \textit{Representing text documents using numerical vectors that are inputs to the multi-label classifier} \ \mathcal{H}$
 - ullet Each document $d_i \in D$ is represented using a vector $v_{d_i} \in \mathbb{R}^k$
 - Vectors (v_{d_i}) should encode the semantic content of the documents
 - Encoding documents in a k-dimensional space using such representation is called the Vector Space Model

- $\textbf{9} \ \textit{Learning Document Representations}: \ \textit{Representing text documents using numerical vectors that are inputs to the multi-label classifier} \ \mathcal{H}$
 - ullet Each document $d_i \in D$ is represented using a vector $v_{d_i} \in \mathbb{R}^k$
 - Vectors (v_{d_i}) should encode the semantic content of the documents
 - Encoding documents in a k-dimensional space using such representation is called the Vector Space Model
 - The complete document set D can be represented by a document representation matrix $\mathbf{D} \in \mathbb{R}^{k \times |D|}$

Document Categorization task has the following two components :

- $\textbf{ 0} \ \textit{Learning Document Representations}: \ \textit{Representing text documents using numerical vectors that are inputs to the multi-label classifier \mathcal{H} }$
 - ullet Each document $d_i \in D$ is represented using a vector $oldsymbol{v}_{d_i} \in \mathbb{R}^k$
 - Vectors (v_{d_i}) should encode the semantic content of the documents
 - Encoding documents in a k-dimensional space using such representation is called the Vector Space Model
 - The complete document set D can be represented by a document representation matrix $\mathbf{D} \in \mathbb{R}^{k \times |D|}$

In this thesis, we focus on learning efficient document representations, D

Document Categorization task has the following two components :

- - ullet Each document $d_i \in D$ is represented using a vector $oldsymbol{v}_{d_i} \in \mathbb{R}^k$
 - Vectors (v_{d_i}) should encode the semantic content of the documents
 - Encoding documents in a k-dimensional space using such representation is called the Vector Space Model
 - The complete document set D can be represented by a document representation matrix $\mathbf{D} \in \mathbb{R}^{k \times |D|}$

In this thesis, we focus on learning efficient document representations, D

 $oldsymbol{@}$ Learning Algorithm : Algorithm to learn the multi-label classifier ${\cal H}$

Learning Multiple Binary Classifiers :

Learning Multiple Binary Classifiers:
 Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments

- Learning Multiple Binary Classifiers:
 Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments
 - Logistic Regression

- Learning Multiple Binary Classifiers: Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments
 - Logistic Regression
 - Support Vector Machines (SVM)

• Learning Multiple Binary Classifiers :

Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments

- Logistic Regression
- Support Vector Machines (SVM)
- Neural Networks

Learning Multiple Binary Classifiers :

Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments

- Logistic Regression
- Support Vector Machines (SVM)
- Neural Networks
- Naive Bayes

- Learning Multiple Binary Classifiers: Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments
 - Logistic Regression
 - Support Vector Machines (SVM)
 - Neural Networks
 - Naive Bayes
- Learning Single Joint Classifier :

• Learning Multiple Binary Classifiers :

Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments

- Logistic Regression
- Support Vector Machines (SVM)
- Neural Networks
- Naive Bayes
- Learning Single Joint Classifier :

Learning Multiple Binary Classifiers :

Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments

- Logistic Regression
- Support Vector Machines (SVM)
- Neural Networks
- Naive Bayes
- Learning Single Joint Classifier :

Algorithms that jointly assign all the categories to a document d_i , i.e. estimate the complete label vector I_{d_i} using a single classifier

k-Nearest Neighbor (k-NN)

Learning Multiple Binary Classifiers :

Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments

- Logistic Regression
- Support Vector Machines (SVM)
- Neural Networks
- Naive Bayes
- Learning Single Joint Classifier :

- k-Nearest Neighbor (k-NN)
- Linear Least Square Fit

Learning Multiple Binary Classifiers :

Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments

- Logistic Regression
- Support Vector Machines (SVM)
- Neural Networks
- Naive Bayes
- 2 Learning Single Joint Classifier:

- k-Nearest Neighbor (k-NN)
- Linear Least Square Fit
- Decision Trees

Learning Multiple Binary Classifiers :

Algorithms that treat each category assignment independently and learn multiple binary classifiers, one for each category, to make the category assignments

- Logistic Regression
- Support Vector Machines (SVM)
- Neural Networks
- Naive Bayes
- 2 Learning Single Joint Classifier:

- k-Nearest Neighbor (k-NN)
- Linear Least Square Fit
- Decision Trees
- Generative Probabilistic Models

Background on Text Representation

Bag of Words Model

Bag of Words Model

ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- Each element in v_{d_i} denotes presence/absence of each word

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- Each element in v_{d_i} denotes presence/absence of each word
- Weighing techniques employed to give importance to important terms

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- Each element in v_{d_i} denotes presence/absence of each word
- Weighing techniques employed to give importance to important terms
 - Term Frequency (tf)

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- Each element in v_{d_i} denotes presence/absence of each word
- Weighing techniques employed to give importance to important terms
 - Term Frequency (tf)
 - Inverse Document Frequency (idf)

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- Each element in v_{d_i} denotes presence/absence of each word
- Weighing techniques employed to give importance to important terms
 - Term Frequency (tf)
 - Inverse Document Frequency (idf)
 - ullet Term Frequency Inverse Document Frequency ($\emph{tf-idf}$): $\emph{tf} \times \emph{idf}$

Bag of Words Model

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- ullet Each element in v_{d_i} denotes presence/absence of each word
- Weighing techniques employed to give importance to important terms
 - Term Frequency (tf)
 - Inverse Document Frequency (idf)
 - ullet Term Frequency Inverse Document Frequency ($\emph{tf-idf}$) : $\emph{tf} \times \emph{idf}$

Bag of Words Model

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- Each element in v_{d_i} denotes presence/absence of each word
- Weighing techniques employed to give importance to important terms
 - Term Frequency (tf)
 - Inverse Document Frequency (idf)
 - ullet Term Frequency Inverse Document Frequency ($\emph{tf-idf}$) : $\emph{tf} \times \emph{idf}$

Drawbacks of the Bag-of-Words model

High-dimensionality

Bag of Words Model

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- Each element in v_{d_i} denotes presence/absence of each word
- Weighing techniques employed to give importance to important terms
 - Term Frequency (tf)
 - Inverse Document Frequency (idf)
 - Term Frequency Inverse Document Frequency (tf-idf) : tf imes idf

- High-dimensionality
- Sparsity

Bag of Words Model

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- Each element in v_{d_i} denotes presence/absence of each word
- Weighing techniques employed to give importance to important terms
 - Term Frequency (tf)
 - Inverse Document Frequency (idf)
 - Term Frequency Inverse Document Frequency (tf-idf) : tf imes idf

- High-dimensionality
- Sparsity
- Inability to encode word contexts

Bag of Words Model

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- Each element in v_{d_i} denotes presence/absence of each word
- Weighing techniques employed to give importance to important terms
 - Term Frequency (tf)
 - Inverse Document Frequency (idf)
 - ullet Term Frequency Inverse Document Frequency (tf-idf) : tf imes idf

- High-dimensionality
- Sparsity
- Inability to encode word contexts
- Ignoring word wordering

References

[1] G. Salton and C.-S. Yang. On the specification of term values in automatic indexing. *Journal of documentation*, 29(4):351–372, 1973.