Facultad de Ciencias Programa FOGEC ÁLGEBRA I 1er. semestre 2021 Prof. Mario Marotti

CLASE No. 16

Inducción completa

Supongamos que nos proponemos demostrar una proposición matemática que depende de un número natural "n".

Por ejemplo, pruebe que la suma de números impares consecutivos a partir del número 1 es siempre un cuadrado perfecto.

Comencemos a andar el camino:

Primera proposición:

P(1): Verdadera

Segunda proposición:

P(2): 1 + 3 = 4 Verdadera

Tercera proposición:

P(3): 1 + 3 + 5 = 9 Verdadera

Cuarta proposición:

P(4): 1 + 3 + 5 + 7 = 16 Verdadera

¿Se seguirá cumpliendo si sumamos impares hasta el 1001? ¿Y hasta el 3657?

Una analogía

Examinemos ahora el siguiente juego. Se trata de que todas las fichas de dominó de la figura caigan independientemente de si son 1001 o 3657.

El problema es análogo al anterior.

Tenemos n proposiciones y queremos que todas sean verdaderas.

Primera proposición:

P(1): Cae la ficha 1

Segunda proposición:

P(2): Cae la ficha 2

Tercera proposición:

P(3): Cae la ficha 3

Cuarta proposición:

P(4): Cae la ficha 4

¿Qué debemos hacer?

Debemos hacer dos cosas:

A) colocarlas a una distancia tal que cada una de ellas haga caer a la siguiente en la fila.

Aún así, las fichas no caerán.

B) Debemos empujar la primera para que caiga.

Escribamos las dos proposiciones anteriores de forma matemática:

Principio de inducción completa:

Paso base:

La primera ficha deberá caer.

P(1) es verdadera.

Paso inductivo:

Si la ficha que ocupa una posición cualquiera h cae, entonces la que ocupa la posición siguiente h+1 también cae.

Si P(h) es verdadera $\Rightarrow P(h+1)$ es verdadera

Entonces:

Todas las fichas caerán.

Conclusión:

P(n) es verdadera $\forall n \in \mathbb{N}$

¿Cómo funciona el principio?

La ficha 1 cae (por el paso base), pero la ficha 1 cae, hará caer la 2 (por el paso inductivo), y la 2 hará caer a la 3, y la 3 hará caer a la 4. Pusimos en marcha un mecanismo que ya no podemos detener.

Ejemplo 1

Apliquemos esta idea para demostrar que:

$$P(n)$$
: $1 + 3 + 5 + 7 + 9 + \dots + (2n - 1) = n^2$

Paso base: ¿Se cumple para n = 1?

Si, ya que

$$1 = 1$$

Paso inductivo:

Si se cumple para un natural cualquiera h, deberá cumplirse también para el natural siguiente h+1.

Hipótesis) Suponemos P(h) verdadera,

$$P(h)$$
: $1 + 3 + 5 + 7 + 9 + \dots + (2h - 1) = h^2$

Tesis) Debemos demostrar que P(h + 1) también lo es.

$$P(h+1)$$
: $1+3+5+7+9+\cdots+(2h-1)+[2(h+1)-1]=(h+1)^2$

Es fácil de demostrar:

$$1 + 3 + 5 + 7 + 9 + \dots + (2h - 1) + [2(h + 1) - 1] = (h + 1)^{2}$$

$$\Leftrightarrow h^{2} + [2(h + 1) - 1] = (h + 1)^{2} \Leftrightarrow$$

$$\Leftrightarrow h^{2} + 2h + 2 - 1 = (h + 1)(h + 1) \Leftrightarrow$$

$$\Leftrightarrow h^{2} + 2h + 1 = h^{2} + 2h + 1$$

La última es una identidad que se cumple $\forall h$. Desandando el camino hacia atrás, vemos que lo que queríamos demostrar es también verdadero. Está probado. La suma de números impares consecutivos comenzando con el 1 da siempre un cuadrado perfecto.

Con sumatorias:

Algunos estudiantes entienden mejor el problema ocupando la notación de sumatoria.

Comencemos de nuevo. Queremos demostrar que la siguiente igualdad se cumple $\forall n \in \mathbb{N}$

$$\sum_{i=1}^{i=n} (2i-1) = n^2$$

Paso base: ¿Se cumple para n=1? Si, ya que

$$\sum_{i=1}^{i=1} (2i-1) = 1^2$$

La sumatoria tiene un solo término.

$$2 \cdot 1 - 1 = 1$$

Paso inductivo: Si se cumple para un natural cualquiera h, deberá cumplirse también para el natural siguiente h+1.

Hipótesis) Suponemos P(h) verdadera,

$$\sum_{i=1}^{i=h} (2i-1) = h^2$$

Tesis) P(h + 1) también es verdadera.

$$\sum_{i=1}^{i=h+1} (2i-1) = (h+1)^2$$

Demostración) Separemos el último término de la sumatoria de la tesis.

$$\sum_{i=1}^{i=h} (2i-1) + [2(h+1)-1] = (h+1)^2$$

Reemplazamos la sumatoria por la expresión de la hipótesis,

$$\Leftrightarrow h^2 + [2(h+1)-1] = (h+1)^2 \Leftrightarrow h^2 + 2h + 2 - 1 = (h+1)(h+1) \Leftrightarrow h^2 + 2h + 1 = h^2 + 2h + 1$$

Está demostrado también.

Ejemplo 2 (un ejemplo sin sumatorias):

Demostrar por i. c. que $\forall n \in \mathbb{N}$ con n > 2 se cumple que $n^2 \ge 2n + 1$

Solución:

Paso base: Debemos probar que la propiedad se cumple para el primero de los naturales indicados, o sea $n=3\dots$

$$3^2 > 2 \cdot 3 + 1$$

Se cumple.

Paso inductivo: Debemos probar que si se cumple para un natural h cualquiera, también se cumple para el siguiente de h, o sea h+1.

Hipótesis: (lo que suponemos que se cumple)

$$h^2 \ge 2h + 1$$

Tesis: (lo que queremos demostrar que se cumple):

$$(h+1)^2 \ge 2(h+1)+1$$

Demostración:

Queremos probar que:

$$(h+1)^2 \ge 2(h+1)+1$$

Desarrollemos esta expresión:

$$h^2 + 2h + 1 \ge 2h + 2 + 1$$

Sabemos, por hipótesis, que:

$$h^2 > 2h + 1$$

Por tanto, sumando en ambos miembros 2h + 1, obtenemos:

$$h^2 + 2h + 1 \ge 2h + 1 + 2h + 1$$

$$h^2 + 2h + 1 \ge 2h + 1 + 2h + 1$$

Y sabemos también que todos los naturales pares son mayores que el 1,

Por tanto, sumando 2h + 2 en cada miembro,

$$2h + 2h + 2 > 1 + 2h + 2$$

Por tanto, aplicando la propiedad transitiva de la desigualdad:

Si
$$a \ge b$$
 y $b \ge c$ \Rightarrow $a \ge c$

tenemos que:

$$(h+1)^2 \ge 2h+1+2h+1$$
 y $2h+2h+2 \ge 2h+3$

por tanto,

$$(h+1)^2 \ge 2(h+1)+1$$

Eso es lo que queríamos demostrar (LQQD).

Está demostrado el teorema. La propiedad se cumple $\forall n > 2$.

Ejercicios

1. Demuestre por inducción completa:

(a)
$$1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$$

(b)
$$1^2 + 3^2 + 5^2 + \dots + (2n - 1)^2 = \frac{n(2n - 1)(2n + 1)}{3}$$

(c)
$$6 + 24 + 60 + ... + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

- (d) Exprese las igualdades anteriores utilizando el símbolo Σ .
- **2.** Demuestre por inducción completa:

(a)
$$\sum_{i=1}^{i=n} i^3 = \left[\frac{n(n+1)}{2} \right]^2$$

(b)
$$\sum_{i=2}^{i=n} (4i-1) = 2n^2 + n - 3$$

(c)
$$\sum_{i=1}^{i=n} \frac{1}{i(i+1)} = \frac{n}{n+1}$$

(d)
$$\sum_{i=1}^{i=n} \frac{1}{(2i-1)(2i+1)} = \frac{n}{2n+1}$$

(e)
$$\sum_{i=1}^{i=n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

(f)
$$\sum_{i=1}^{i=n} i(i+1) = \frac{n(n+1)(n+2)}{3}$$