离散数学第七次作业

Problem 1

证明: 对于任意的整数 $n>1,\ 1+\frac{1}{2}+\ldots+\frac{1}{n}$ 不是整数。

Problem 2

计算:

a) 23300 mod 11

b) $2^{3300} \mod 31$

c) $3^{516} \mod 7$

Problem 3

证明;如果 2^n-1 是素数,则 n 也为素数。

Problem 4

证明:对于任意的整数 n

a) $6 \mid n(n+1)(n+2)$

b) $\frac{1}{5}n^5 + \frac{1}{3}n^3 + \frac{7}{15}n$ 是整数.

Problem 5

证明:

a) 设 $d \ge 1$, $d \mid m$, 则 $a \equiv b \pmod{m} \Rightarrow a \equiv b \pmod{d}$

b) 设 $d \ge 1$, 则 $a \equiv b \pmod{m} \Leftrightarrow da \equiv db \pmod{dm}$

c) 设 $c \ni m$ 互素, 则 $a \equiv b \pmod{m} \Leftrightarrow ca \equiv cb \pmod{m}$

Problem 6

借助于费马小定理证明如果 n 是一个正整数,则 42 能整除 n^7-n 。

Problem 7

试证明: 若 $p \ge 7$ 为质数,则 240 | (p^4-1) 。

Problem 8

证明: 若 m 和 n 互素,则 $m^{\phi(n)} + n^{\phi(m)} \equiv 1 \pmod{mn}$ 。