《大学物理 AI》作业 No.08 静电场中的导体和电介质

班级	学号	姓名	成绩
********	 *************本章	 ·教学要求******	*****
1、理解静电平衡的条件,	理解静电感应、静电原	异蔽的原理;	
2、掌握静电平衡时导体表	面感应电荷的分布和日	电场、电势的计算;	
3、了解电介质的极化现象	和微观解释, 理解电位	$_{\dot{ extstyle 0}}$ 的定义,确	切理解电介质中的高斯定理, 并
能利用它求解有电介质存在 4、理解电容的定义,掌握 5、掌握电容器的储能公式 6、理解电流强度和电流密	电容器电容的计算方法 ,理解电场能量密度的	去; 内概念,并能计算电荷	
一、选择题:			
1. 把 A , B 两块不带电的导电势为 U_A , B 的电势为 U_B , [(A) $U_B > U_A \ne$ (C) $U_B = U_A$	则	的电场中,如图所示。 (B) $U_B > U_A = 0$ (D) $U_B < U_A$	设无限远处为电势零点, A 的
2. 半径分别为 R 和 r 的 在忽略导线的影响下,两环			两球连接在一起并使它们带电。
[] (A) <i>R/r</i>	水面的电闸面击反之	(B) R^2/r^2	
(C) r^2/R^2		(D) r/R	
荷,其分布将是: (A) 内表面均匀,外 (B) 内表面不均匀, (C) 内表面均匀,外	表面也均匀。 外表面均匀。 表面不均匀。	上放一个点电荷,则在	球壳内、外表面上将出现感应电
(D) 内表面不均匀,	外表面也不均匀.		[]
板平行地插入两极板之间, [] (A) 储能减少, 但	则由于金属板的插入 1与金属板位置无关;		再将一块与极板面积相同的金属 对电容器储能的影响为:
, , , , , , , , , , , , , , , , , , , ,	!与金属板位置有关; !与金属板位置无关;	A	屋 垢
, , , , , , , , , , , , , , , , , , , ,	2与金属极位直无天; 2与金属板位置有关。	金	属板

- 5. 一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两极板间距离拉大,则极板上的电荷 Q、电场强度的大小 E 和电场能量 W 将发生如下变化
- - (C) Q 增大, E 减小, W 增大 (D) Q 增大, E 增大, W 减小

二、填空题:

- 1. 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布. 如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现球壳内场强分布将_____(选填变化、不变),球壳外的场强将_____(选填变化、不变)。
- 2.如图所示,一球形导体,带有电荷 q,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将______(选填增大、减小、不变)。

$$\underline{\qquad} \circ (\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2})$$

- 4. 用力F把电容器中的电介质板拉出,在图(a) 的情况下电容器中储存的静电能量将_____,在图(b) 的情况下电容器中储存的静电能量_____。
- 5. 在电容为 C_0 的平行板空气电容器中,平行地插入一厚度为两极板距离一半的金属板,则电容器的电容C=_____。

三、计算题:

- 1. 如图所示,一内半径为a、外半径为b的金属球壳,带有电量Q,在球
- 壳空腔内距离球心r处有一点电荷q,设无限远处为电势零点,试求:
 - (1) 球壳内外表面上的电荷;
 - (2) 球心 O 点处,由球壳内表面上电荷产生的电势;
 - (3) 球心 O 点处的总电势。

- 2.一圆柱形电容器,内圆柱半径为 R_1 ,外圆柱半径为 R_2 ,长为 $L[L>>(R_1_R_2)]$,两圆柱之间充满相对介质常数为 ε_r 的各向同性均匀介质。设内外圆柱单位长度上带电量(即电荷线密度)分别为 λ 和 $-\lambda$,求:
 - (1) 电容器的电容.
 - (2) 电容器储存的能量.

3. 一电容为 C 的空气平行板电容器, 距离增大至 n 倍时外力所作的功。	接端电压为 U 的电源充电后随即断开。	试求把两个极板间