Principles and Techniques of Data Science

Data 100

Bella Crouch Yash Dave Kanu Grover Ishani Gupta Arman Kazmi Sakshi Kolli Minh Phan Milad Shafaie Matthew Shen Lillian Weng

Table of contents

Welcome

About the Course Notes

This text offers supplementary resources to accompany lectures presented in the Spring 2024 Edition of the UC Berkeley course Data 100: Principles and Techniques of Data Science.

New notes will be added each week to accompany live lectures. See the full calendar of lectures on the course website.

If you spot any typos or would like to suggest any changes, please fill out the Data 100 Content Feedback Form (Spring 2024). Note that this link will only work if you have an @berkeley.edu email address. If you're not a student at Berkeley and would like to provide feedback, please email us at data100.instructors@berkeley.edu.

1 Introduction

Learning Outcomes

- Acquaint yourself with the overarching goals of Data 100
- Understand the stages of the data science lifecycle

Data science is an interdisciplinary field with a variety of applications and offers great potential to address challenging societal issues. By building data science skills, you can empower yourself to participate in and drive conversations that shape your life and society as a whole, whether that be fighting against climate change, launching diversity initiatives, or more.

The field of data science is rapidly evolving; many of the key technical underpinnings in modern-day data science have been popularized during the early 21st century, and you will learn them throughout the course. It has a wide range of applications from science and medicine to sports.

While data science has immense potential to address challenging problems facing society by enhancing our critical thinking, it can also be used obscure complex decisions and reinforce historical trends and biases. This course will implore you to consider the ethics of data science within its applications.

Data science is fundamentally human-centered and facilitates decision-making by quantitatively balancing tradeoffs. To quantify things reliably, we must use and analyze data appropriately, apply critical thinking and skepticism at every step of the way, and consider how our decisions affect others.

Ultimately, data science is the application of data-centric, computational, and inferential thinking to:

- Understand the world (science).
- Solve problems (engineering).

A true mastery of data science requires a deep theoretical understanding and strong grasp of domain expertise. This course will help you build on the former – specifically, the foundation of your technical knowledge, allowing you to take data and produce useful insights on the world's most challenging and ambiguous problems.

i Course Goals

- Prepare you for advanced Berkeley courses in data management, machine learning, and statistics.
- Enable you to launch a career as a data scientist by providing experience working with real-world data, tools, and techniques.
- Empower you to apply computational and inferential thinking to address **real-world problems**.

i Some Topics We'll Cover

- pandas and NumPy
- Exploratory Data Analysis
- Regular Expressions
- Visualization
- Sampling
- Model Design and Loss Formulation
- Linear Regression
- Gradient Descent
- Logistic Regression
- Clustering
- PCA

i Prerequisites

To ensure that you can get the most out of the course content, please make sure that you are familiar with:

- Using Python.
- Using Jupyter notebooks.
- Inference from Data 8.
- Linear algebra

To set you up for success, we've organized concepts in Data 100 around the **data science lifecycle**: an *iterative* process that encompasses the various statistical and computational building blocks of data science.

1.1 Data Science Lifecycle

The data science lifecycle is a *high-level overview* of the data science workflow. It's a cycle of stages that a data scientist should explore as they conduct a thorough analysis of a data-driven

problem.

There are many variations of the key ideas present in the data science lifecycle. In Data 100, we visualize the stages of the lifecycle using a flow diagram. Notice how there are two entry points.

1.1.1 Ask a Question

Whether by curiosity or necessity, data scientists constantly ask questions. For example, in the business world, data scientists may be interested in predicting the profit generated by a certain investment. In the field of medicine, they may ask whether some patients are more likely than others to benefit from a treatment.

Posing questions is one of the primary ways the data science lifecycle begins. It helps to fully define the question. Here are some things you should ask yourself before framing a question.

- What do we want to know?
 - A question that is too ambiguous may lead to confusion.
- What problems are we trying to solve?
 - The goal of asking a question should be clear in order to justify your efforts to stakeholders.
- What are the hypotheses we want to test?
 - This gives a clear perspective from which to analyze final results.
- What are the metrics for our success?
 - This establishes a clear point to know when to conclude the project.

1.1.2 Obtain Data

The second entry point to the lifecycle is by obtaining data. A careful analysis of any problem requires the use of data. Data may be readily available to us, or we may have to embark on a process to collect it. When doing so, it is crucial to ask the following:

- What data do we have, and what data do we need?
 - Define the units of the data (people, cities, points in time, etc.) and what features to measure.
- How will we sample more data?
 - Scrape the web, collect manually, run experiments, etc.

- Is our data representative of the population we want to study?
 - If our data is not representative of our population of interest, then we can come to incorrect conclusions.

Key procedures: data acquisition, data cleaning

1.1.3 Understand the Data

Raw data itself is not inherently useful. It's impossible to discern all the patterns and relationships between variables without carefully investigating them. Therefore, translating pure data into actionable insights is a key job of a data scientist. For example, we may choose to ask:

- How is our data organized, and what does it contain?
 - Knowing what the data says about the world helps us better understand the world.
- Do we have relevant data?
 - If the data we have collected is not useful to the question at hand, then we must collect more data.
- What are the biases, anomalies, or other issues with the data?
 - These can lead to many false conclusions if ignored, so data scientists must always be aware of these issues.
- How do we transform the data to enable effective analysis?
 - Data is not always easy to interpret at first glance, so a data scientist should strive to reveal the hidden insights.

Key procedures: exploratory data analysis, data visualization.

1.1.4 Understand the World

After observing the patterns in our data, we can begin answering our questions. This may require that we predict a quantity (machine learning) or measure the effect of some treatment (inference).

From here, we may choose to report our results, or possibly conduct more analysis. We may not be satisfied with our findings, or our initial exploration may have brought up new questions that require new data.

• What does the data say about the world?

- Given our models, the data will lead us to certain conclusions about the real world.
- Does it answer our questions or accurately solve the problem?
 - If our model and data can not accomplish our goals, then we must reform our question, model, or both.
- How robust are our conclusions and can we trust the predictions?
 - Inaccurate models can lead to false conclusions.

Key procedures: model creation, prediction, inference.

1.2 Conclusion

The data science lifecycle is meant to be a set of general guidelines rather than a hard set of requirements. In our journey exploring the lifecycle, we'll cover both the underlying theory and technologies used in data science. By the end of the course, we hope that you start to see yourself as a data scientist.

With that, we'll begin by introducing one of the most important tools in exploratory data analysis: pandas.

2 Pandas I

Learning Outcomes

- Build familiarity with pandas and pandas syntax.
- Learn key data structures: DataFrame, Series, and Index.
- Understand methods for extracting data: .loc, .iloc, and [].

In this sequence of lectures, we will dive right into things by having you explore and manipulate real-world data. We'll first introduce pandas, a popular Python library for interacting with tabular data.

2.1 Tabular Data

Data scientists work with data stored in a variety of formats. This class focuses primarily on tabular data — data that is stored in a table.

Tabular data is one of the most common systems that data scientists use to organize data. This is in large part due to the simplicity and flexibility of tables. Tables allow us to represent each **observation**, or instance of collecting data from an individual, as its own *row*. We can record each observation's distinct characteristics, or **features**, in separate *columns*.

To see this in action, we'll explore the **elections** dataset, which stores information about political candidates who ran for president of the United States in previous years.

In the elections dataset, each row (blue box) represents one instance of a candidate running for president in a particular year. For example, the first row represents Andrew Jackson running for president in the year 1824. Each column (yellow box) represents one characteristic piece of information about each presidential candidate. For example, the column named "Result" stores whether or not the candidate won the election.

Your work in Data 8 helped you grow very familiar with using and interpreting data stored in a tabular format. Back then, you used the Table class of the datascience library, a special programming library created specifically for Data 8 students.

In Data 100, we will be working with the programming library pandas, which is generally accepted in the data science community as the industry- and academia-standard tool for manipulating tabular data (as well as the inspiration for Petey, our panda bear mascot).

Using pandas, we can

- Arrange data in a tabular format.
- Extract useful information filtered by specific conditions.
- Operate on data to gain new insights.
- Apply NumPy functions to our data (our friends from Data 8).
- Perform vectorized computations to speed up our analysis (Lab 1).

2.2 Series, DataFrames, and Indices

To begin our work in pandas, we must first import the library into our Python environment. This will allow us to use pandas data structures and methods in our code.

```
# `pd` is the conventional alias for Pandas, as `np` is for NumPy
import pandas as pd
```

There are three fundamental data structures in pandas:

- 1. Series: 1D labeled array data; best thought of as columnar data.
- 2. DataFrame: 2D tabular data with rows and columns.
- 3. Index: A sequence of row/column labels.

DataFrames, Series, and Indices can be represented visually in the following diagram, which considers the first few rows of the elections dataset.

Notice how the **DataFrame** is a two-dimensional object — it contains both rows and columns. The **Series** above is a singular column of this **DataFrame**, namely the **Result** column. Both contain an **Index**, or a shared list of row labels (the integers from 0 to 4, inclusive).

2.2.1 Series

A Series represents a column of a DataFrame; more generally, it can be any 1-dimensional array-like object. It contains both:

- A sequence of **values** of the same type.
- A sequence of data labels called the **index**.

In the cell below, we create a Series named s.

```
s = pd.Series(["welcome", "to", "data 100"])
s
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

```
0
0 welcome
1 to
2 data 100

# Accessing data values within the Series
s.values

array(['welcome', 'to', 'data 100'], dtype=object)

# Accessing the Index of the Series
s.index
```

RangeIndex(start=0, stop=3, step=1)

By default, the index of a Series is a sequential list of integers beginning from 0. Optionally, a manually specified list of desired indices can be passed to the index argument.

```
s = pd.Series([-1, 10, 2], index = ["a", "b", "c"])
s
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeeling and State of the Control of

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

```
0
a -1
b 10
c 2
s.index
```

```
Index(['a', 'b', 'c'], dtype='object')
```

Indices can also be changed after initialization.

```
s.index = ["first", "second", "third"]
s
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	0
first	-1
second	10
third	2

```
s.index
```

Index(['first', 'second', 'third'], dtype='object')

2.2.1.1 Selection in Series

Much like when working with NumPy arrays, we can select a single value or a set of values from a Series. To do so, there are three primary methods:

- 1. A single label.
- 2. A list of labels.
- 3. A filtering condition.

To demonstrate this, let's define the Series ser.

```
ser = pd.Series([4, -2, 0, 6], index = ["a", "b", "c", "d"])
ser
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

⁰ a 4

b -2

c 0

d 6

2.2.1.1.1 A Single Label

```
# We return the value stored at the index label "a"
ser["a"]
```

4

2.2.1.1.2 A List of Labels

```
# We return a Series of the values stored at the index labels "a" and "c" ser[["a", "c"]]
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

```
0
a 4
c 0
```

2.2.1.1.3 A Filtering Condition

Perhaps the most interesting (and useful) method of selecting data from a Series is by using a filtering condition.

First, we apply a boolean operation to the Series. This creates a new Series of boolean values.

```
# Filter condition: select all elements greater than 0 ser > 0

a True
b False
c False
d True
```

We then use this boolean condition to index into our original Series. pandas will select only the entries in the original Series that satisfy the condition.

```
ser[ser > 0]

0
a 4
d 6
```

2.2.2 DataFrames

Typically, we will work with Series using the perspective that they are columns in a DataFrame. We can think of a DataFrame as a collection of Series that all share the same Index.

In Data 8, you encountered the Table class of the datascience library, which represented tabular data. In Data 100, we'll be using the DataFrame class of the pandas library.

2.2.2.1 Creating a DataFrame

There are many ways to create a DataFrame. Here, we will cover the most popular approaches:

- 1. From a CSV file.
- 2. Using a list and column name(s).
- 3. From a dictionary.
- 4. From a Series.

More generally, the syntax for creating a DataFrame is:

```
pandas.DataFrame(data, index, columns)
```

2.2.2.1.1 From a CSV file

In Data 100, our data are typically stored in a CSV (comma-separated values) file format. We can import a CSV file into a DataFrame by passing the data path as an argument to the following pandas function. pd.read_csv("filename.csv")

With our new understanding of pandas in hand, let's return to the elections dataset from before. Now, we can recognize that it is represented as a pandas DataFrame.

```
elections = pd.read_csv("data/elections.csv")
elections
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureW

	Year	Candidate	Party	Popular vote	Result	%
0	1824	Andrew Jackson	Democratic-Republican	151271	loss	57.210122
1	1824	John Quincy Adams	Democratic-Republican	113142	win	42.789878
2	1828	Andrew Jackson	Democratic	642806	win	56.203927
3	1828	John Quincy Adams	National Republican	500897	loss	43.796073
4	1832	Andrew Jackson	Democratic	702735	win	54.574789
5	1832	Henry Clay	National Republican	484205	loss	37.603628
$\ddot{5}$	1832	William Wirt	Anti-Masonic	100715	loss	7.821583
7	1836	Hugh Lawson White	Whig	146109	loss	10.005985
3	1836	Martin Van Buren	Democratic	763291	win	52.272472
)	1836	William Henry Harrison	Whig	550816	loss	37.721543
10	1840	Martin Van Buren	Democratic	1128854	loss	46.948787
11	1840	William Henry Harrison	Whig	1275583	win	53.051213
2	1844	Henry Clay	Whig	1300004	loss	49.250523
.3	1844	James Polk	Democratic	1339570	win	50.749477
4	1848	Lewis Cass	Democratic	1223460	loss	42.552229
.5	1848	Martin Van Buren	Free Soil	291501	loss	10.138474
6	1848	Zachary Taylor	Whig	1360235	win	47.309296
7	1852	Franklin Pierce	Democratic	1605943	win	51.013168
8	1852	John P. Hale	Free Soil	155210	loss	4.930283
9	1852	Winfield Scott	Whig	1386942	loss	44.056548
20	1856	James Buchanan	Democratic	1835140	win	45.306080
21	1856	John C. Frémont	Republican	1342345	loss	33.139919
22	1856	Millard Fillmore	American	873053	loss	21.554001
23	1860	Abraham Lincoln	Republican	1855993	win	39.699408
24	1860	John Bell	Constitutional Union	590901	loss	12.639283
25	1860	John C. Breckinridge	Southern Democratic	848019	loss	18.138998
26	1860	Stephen A. Douglas	Northern Democratic	1380202	loss	29.522311
27	1864	Abraham Lincoln	National Union	2211317	win	54.951512
28	1864	George B. McClellan	Democratic	1812807	loss	45.048488
29	1868	Horatio Seymour	Democratic	2708744	loss	47.334695
80	1868	Ulysses Grant	Republican	3013790	win	52.665305
81	1872	Horace Greeley	Liberal Republican	2834761	loss	44.071406
32	1872	Ulysses Grant	Republican	3597439	win	55.928594
33	1876	Rutherford Hayes	Republican	4034142	win	48.471624
54	1876	Samuel J. Tilden	Democratic	4288546	loss	51.528376
5 85	1880	James B. Weaver	Greenback	308649	loss	3.352344
56 6	1880	James Garfield	Republican	4453337	win	48.369234
57	1880	Winfield Scott Hancock	Democratic			48.278422
				4444976	loss	
8	1884	Benjamin Butler Grover Cleveland	Anti-Monopoly	134294	loss	1.335838
39	1884		Democratic	4914482	win	48.884933
0	1884	James G. Blaine	Republican	4856905	loss	48.312208
1	1884	John St. John	Prohibition	147482	loss	1.467021
2	1888	Alson Streeter	Union Labor	146602	loss	1.288861
3	1888	Benjamin Harrison	Republican	5443633	win	47.858041
4	1888	Clinton B. Fisk	Prohlbition	249819	loss	2.196299
15	1888	Grover Cleveland	Democratic	5534488	loss	48.656799
16	1892	Benjamin Harrison	Republican	5176108	loss	42.984101
17	1892	Grover Cleveland	Democratic	5553898	win	46.121393
18	1892	James B. Weaver	Populist	1041028	loss	8.645038
19	1892	John Bidwell	Prohibition	270879	loss	2.249468
0	1896	John M. Palmer	National Democratic	134645	loss	0.969566

This code stores our DataFrame object in the elections variable. Upon inspection, our elections DataFrame has 182 rows and 6 columns (Year, Candidate, Party, Popular Vote, Result, %). Each row represents a single record — in our example, a presidential candidate from some particular year. Each column represents a single attribute or feature of the record.

2.2.2.1.2 Using a List and Column Name(s)

We'll now explore creating a DataFrame with data of our own.

Consider the following examples. The first code cell creates a DataFrame with a single column Numbers.

```
df_list = pd.DataFrame([1, 2, 3], columns=["Numbers"])
df_list
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	Numbers
0	1
1	2
2	3

The second creates a DataFrame with the columns Numbers and Description. Notice how a 2D list of values is required to initialize the second DataFrame — each nested list represents a single row of data.

```
df_list = pd.DataFrame([[1, "one"], [2, "two"]], columns = ["Number", "Description"])
df_list
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

	Number	Description
0	1	one
1	2	two

2.2.2.1.3 From a Dictionary

A third (and more common) way to create a DataFrame is with a dictionary. The dictionary keys represent the column names, and the dictionary values represent the column values.

Below are two ways of implementing this approach. The first is based on specifying the columns of the DataFrame, whereas the second is based on specifying the rows of the DataFrame.

```
df_dict = pd.DataFrame({
    "Fruit": ["Strawberry", "Orange"],
    "Price": [5.49, 3.99]
})
df_dict
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeb.

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	Fruit	Price
0	Strawberry	5.49
1	Orange	3.99

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeeling and State of the Control of

	Fruit	Price
0	Strawberry	5.49
1	Orange	3.99

2.2.2.1.4 From a Series

Earlier, we explained how a Series was synonymous to a column in a DataFrame. It follows, then, that a DataFrame is equivalent to a collection of Series, which all share the same Index.

In fact, we can initialize a DataFrame by merging two or more Series. Consider the Series s_a and s_b.

```
# Notice how our indices, or row labels, are the same

s_a = pd.Series(["a1", "a2", "a3"], index = ["r1", "r2", "r3"])
s_b = pd.Series(["b1", "b2", "b3"], index = ["r1", "r2", "r3"])
```

We can turn individual Series into a DataFrame using two common methods (shown below):

```
pd.DataFrame(s_a)
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureW

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	0	
r1	a1	
r2	a2	
r3	a3	
s	_b.to	o_frame()

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWilliams

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	0
r1	b1
r2	b2
r3	b3

To merge the two Series and specify their column names, we use the following syntax:

```
pd.DataFrame({
     "A-column": s_a,
     "B-column": s_b
})
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeeling and State of the Company of

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	A-column	B-column
r1	a1	b1
r2	a2	b2
r3	a3	b3

2.2.3 Indices

On a more technical note, an index doesn't have to be an integer, nor does it have to be unique. For example, we can set the index of the elections DataFrame to be the name of presidential candidates.

```
# Creating a DataFrame from a CSV file and specifying the index column
elections = pd.read_csv("data/elections.csv", index_col = "Candidate")
elections
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

Candidate	Year	Party	Popular vote	Result	9
	1004	D D	181081	1	FF 01012
Andrew Jackson	1824	Democratic-Republican	151271	loss	57.21012
John Quincy Adams	1824	Democratic-Republican	113142	win	42.78987
Andrew Jackson	1828	Democratic	642806	win	56.20392
John Quincy Adams	1828	National Republican	500897	loss	43.79607
Andrew Jackson	1832	Democratic	702735	win	54.57478
Henry Clay	1832	National Republican	484205	loss	37.60362
William Wirt	1832	Anti-Masonic	100715	loss	7.82158
Hugh Lawson White	1836	Whig	146109	loss	10.00598
Martin Van Buren	1836	Democratic	763291	win	52.27247
William Henry Harrison	1836	Whig	550816	loss	37.72154
Martin Van Buren	1840	Democratic	1128854	loss	46.94878
William Henry Harrison	1840	Whig	1275583	win	53.05121
Henry Clay	1844	Whig	1300004	loss	49.25052
James Polk	1844	Democratic	1339570	win	50.74947
Lewis Cass	1848	Democratic	1223460	loss	42.55222
Martin Van Buren	1848	Free Soil	291501	loss	10.13847
Zachary Taylor	1848	Whig	1360235	win	47.30929
Franklin Pierce	1852	Democratic	1605943	win	51.01316
John P. Hale	1852	Free Soil	155210	loss	4.93028
Winfield Scott	1852	Whig	1386942	loss	44.05654
James Buchanan	1856	Democratic	1835140	win	45.30608
John C. Frémont	1856	Republican	1342345	loss	33.13991
Millard Fillmore	1856	American	873053	loss	21.55400
Abraham Lincoln	1860	Republican	1855993	win	39.69940
John Bell	1860	Constitutional Union	590901	loss	12.63928
John C. Breckinridge	1860	Southern Democratic	848019	loss	18.13899
Stephen A. Douglas	1860	Northern Democratic	1380202	loss	29.52231
Abraham Lincoln	1864	National Union	2211317	win	54.95151
George B. McClellan	1864	Democratic	1812807	loss	45.04848
Horatio Seymour	1868	Democratic	2708744	loss	47.33469
Ulysses Grant	1868	Republican	3013790	win	52.66530
Horace Greeley	1872	Liberal Republican	2834761	loss	44.07140
Ulysses Grant	1872	Republican	3597439	win	55.92859
Rutherford Hayes	1876	Republican	4034142	win	48.47162
Samuel J. Tilden	1876	Democratic	4288546	loss	51.52837
James B. Weaver	1880	Greenback	308649	loss	3.35234
James Garfield	1880	Republican	4453337	win	48.36923
Winfield Scott Hancock	1880	Democratic	4444976	loss	48.27842
Benjamin Butler	1884	Anti-Monopoly	134294	loss	1.33583
Grover Cleveland	1884	Democratic	4914482	win	48.88493
James G. Blaine	1884	Republican	4856905	loss	48.31220
John St. John	1884	Prohibition	147482	loss	1.46702
Alson Streeter	1888	Union Labor	146602	loss	1.28886
Benjamin Harrison	1888	Republican21	5443633	win	47.85804
Clinton B. Fisk	1888	Prohibition	249819	loss	2.19629
Grover Cleveland	1888	Democratic	5534488	loss	48.65679
Benjamin Harrison	1892	Republican	5176108	loss	42.98410
Grover Cleveland	1892	Democratic	5553898	win	46.12139
James B. Weaver	1892	Populist	1041028	loss	8.64503
John Bidwell	1892	Prohibition National Demogratic	270879 134645	loss	2.24946

We can also select a new column and set it as the index of the DataFrame. For example, we can set the index of the elections DataFrame to represent the candidate's party.

```
elections.reset_index(inplace = True) # Resetting the index so we can set it again
# This sets the index to the "Party" column
elections.set_index("Party")
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeet Future Formatters.py:342: Future Formatters.py:342:

Party	Candidate	Year	Popular vote	Result	%
	A 1 7 1	1004	4 2 4 0 2 4	1	FF 010100
Democratic-Republican	Andrew Jackson	1824	151271	loss	57.210122
Democratic-Republican	John Quincy Adams	1824	113142	win	42.789878
Democratic	Andrew Jackson	1828	642806	win	56.203927
National Republican	John Quincy Adams	1828	500897	loss	43.796073
Democratic	Andrew Jackson	1832	702735	win	54.574789
National Republican	Henry Clay	1832	484205	loss	37.603628
Anti-Masonic	William Wirt	1832	100715	loss	7.821583
Whig	Hugh Lawson White	1836	146109	loss	10.005985
Democratic	Martin Van Buren	1836	763291	win	52.272472
Whig	William Henry Harrison	1836	550816	loss	37.721543
Democratic	Martin Van Buren	1840	1128854	loss	46.948787
Whig	William Henry Harrison	1840	1275583	win	53.051213
Whig	Henry Clay	1844	1300004	loss	49.250523
Democratic	James Polk	1844	1339570	win	50.749477
Democratic	Lewis Cass	1848	1223460	loss	42.552229
Free Soil	Martin Van Buren	1848	291501	loss	10.138474
Whig	Zachary Taylor	1848	1360235	win	47.309296
Democratic	Franklin Pierce	1852	1605943	win	51.013168
Free Soil	John P. Hale	1852	155210	loss	4.930283
Whig	Winfield Scott	1852	1386942	loss	44.056548
Democratic	James Buchanan	1856	1835140	win	45.306080
Republican	John C. Frémont	1856	1342345	loss	33.139919
American	Millard Fillmore	1856	873053	loss	21.554001
Republican	Abraham Lincoln	1860	1855993	win	39.699408
Constitutional Union	John Bell	1860			
			590901	loss	12.639283
Southern Democratic	John C. Breckinridge	1860	848019	loss	18.138998
Northern Democratic	Stephen A. Douglas	1860	1380202	loss	29.522311
National Union	Abraham Lincoln	1864	2211317	win	54.951512
Democratic	George B. McClellan	1864	1812807	loss	45.048488
Democratic	Horatio Seymour	1868	2708744	loss	47.334695
Republican	Ulysses Grant	1868	3013790	win	52.665305
Liberal Republican	Horace Greeley	1872	2834761	loss	44.071406
Republican	Ulysses Grant	1872	3597439	win	55.928594
Republican	Rutherford Hayes	1876	4034142	win	48.471624
Democratic	Samuel J. Tilden	1876	4288546	loss	51.528376
Greenback	James B. Weaver	1880	308649	loss	3.352344
Republican	James Garfield	1880	4453337	win	48.369234
Democratic	Winfield Scott Hancock	1880	4444976	loss	48.278422
Anti-Monopoly	Benjamin Butler	1884	134294	loss	1.335838
Democratic	Grover Cleveland	1884	4914482	win	48.884933
Republican	James G. Blaine	1884	4856905	loss	48.312208
Prohibition	John St. John	1884	147482	loss	1.467021
Union Labor	Alson Streeter	1888	146602	loss	1.288861
Republican	Benjamin Harrison23	1888	5443633	win	47.858041
Prohibition	Clinton B. Fisk	1888	249819	loss	2.196299
Democratic 1	Grover Cleveland	1888	5534488	loss	48.656799
Republican	Benjamin Harrison	1892	5176108	loss	42.984101
Democratic	Grover Cleveland	1892 1892	5553898	win	46.121393
	James B. Weaver				
Prohibition		1892	1041028	loss	8.645038
Prohibition National Demogratic	John Bidwell	1892	270879 134645	loss	2.249468

And, if we'd like, we can revert the index back to the default list of integers.

```
# This resets the index to be the default list of integer
elections.reset_index(inplace=True)
elections.index
```

```
RangeIndex(start=0, stop=182, step=1)
```

It is also important to note that the row labels that constitute an index don't have to be unique. While index values can be unique and numeric, acting as a row number, they can also be named and non-unique.

Here we see unique and numeric index values.

However, here the index values are not unique.

2.3 DataFrame Attributes: Index, Columns, and Shape

On the other hand, column names in a DataFrame are almost always unique. Looking back to the elections dataset, it wouldn't make sense to have two columns named "Candidate". Sometimes, you'll want to extract these different values, in particular, the list of row and column labels.

For index/row labels, use DataFrame.index:

For column labels, use DataFrame.columns:

```
elections.columns
```

```
Index(['index', 'Candidate', 'Year', 'Popular vote', 'Result', '%'], dtype='object')
```

And for the shape of the DataFrame, we can use DataFrame.shape to get the number of rows followed by the number of columns:

```
elections.shape
```

2.4 Slicing in DataFrames

Now that we've learned more about DataFrames, let's dive deeper into their capabilities.

The API (Application Programming Interface) for the DataFrame class is enormous. In this section, we'll discuss several methods of the DataFrame API that allow us to extract subsets of data.

The simplest way to manipulate a DataFrame is to extract a subset of rows and columns, known as slicing.

Common ways we may want to extract data are grabbing:

- The first or last n rows in the DataFrame.
- Data with a certain label.
- Data at a certain position.

We will do so with four primary methods of the DataFrame class:

- 1. .head and .tail
- 2. .loc
- 3. .iloc
- 4. IT

2.4.1 Extracting data with .head and .tail

The simplest scenario in which we want to extract data is when we simply want to select the first or last few rows of the DataFrame.

To extract the first n rows of a DataFrame df, we use the syntax df.head(n).

```
elections = pd.read_csv("data/elections.csv")
```

Extract the first 5 rows of the DataFrame
elections.head(5)

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	Year	Candidate	Party	Popular vote	Result	%
0	1824	Andrew Jackson	Democratic-Republican	151271	loss	57.210122
1	1824	John Quincy Adams	Democratic-Republican	113142	win	42.789878
2	1828	Andrew Jackson	Democratic	642806	win	56.203927
3	1828	John Quincy Adams	National Republican	500897	loss	43.796073
4	1832	Andrew Jackson	Democratic	702735	win	54.574789

Similarly, calling df.tail(n) allows us to extract the last n rows of the DataFrame.

Extract the last 5 rows of the DataFrame
elections.tail(5)

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeb.

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

	Year	Candidate	Party	Popular vote	Result	%
177	2016	Jill Stein	Green	1457226	loss	1.073699
178	2020	Joseph Biden	Democratic	81268924	win	51.311515
179	2020	Donald Trump	Republican	74216154	loss	46.858542
180	2020	Jo Jorgensen	Libertarian	1865724	loss	1.177979
181	2020	Howard Hawkins	Green	405035	loss	0.255731

2.4.2 Label-based Extraction: Indexing with .loc

For the more complex task of extracting data with specific column or index labels, we can use .loc. The .loc accessor allows us to specify the *labels* of rows and columns we wish to extract. The *labels* (commonly referred to as the *indices*) are the bold text on the far *left* of a DataFrame, while the *column labels* are the column names found at the *top* of a DataFrame.

To grab data with .loc, we must specify the row and column label(s) where the data exists. The row labels are the first argument to the .loc function; the column labels are the second.

Arguments to .loc can be:

- A single value.
- A slice.
- A list.

For example, to select a single value, we can select the row labeled O and the column labeled Candidate from the elections DataFrame.

```
elections.loc[0, 'Candidate']
```

'Andrew Jackson'

Keep in mind that passing in just one argument as a single value will produce a Series. Below, we've extracted a subset of the "Popular vote" column as a Series.

```
elections.loc[[87, 25, 179], "Popular vote"]
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

	Popular vote
87	15761254
25	848019
179	74216154

To select *multiple* rows and columns, we can use Python slice notation. Here, we select the rows from labels 0 to 3 and the columns from labels "Year" to "Popular vote". Notice that unlike Python slicing, .loc is *inclusive* of the right upper bound.

```
elections.loc[0:3, 'Year':'Popular vote']
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWelling

	Year	Candidate	Party	Popular vote
0	1824	Andrew Jackson	Democratic-Republican	151271
1	1824	John Quincy Adams	Democratic-Republican	113142
2	1828	Andrew Jackson	Democratic	642806
3	1828	John Quincy Adams	National Republican	500897

Suppose that instead, we want to extract all column values for the first four rows in the elections DataFrame. The shorthand: is useful for this.

```
elections.loc[0:3, :]
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeeling and State of the Control of

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	Year	Candidate	Party	Popular vote	Result	%
0	1824	Andrew Jackson	Democratic-Republican	151271	loss	57.210122
1	1824	John Quincy Adams	Democratic-Republican	113142	win	42.789878
2	1828	Andrew Jackson	Democratic	642806	win	56.203927
3	1828	John Quincy Adams	National Republican	500897	loss	43.796073

We can use the same shorthand to extract all rows.

```
elections.loc[:, ["Year", "Candidate", "Result"]]
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWesters

	Year	Candidate	Result
0	1824	Andrew Jackson	loss
1	1824	John Quincy Adams	win
2	1828	Andrew Jackson	win
3	1828	John Quincy Adams	loss
4	1832	Andrew Jackson	win
5	1832	Henry Clay	loss
6	1832	William Wirt	loss
7	1836	Hugh Lawson White	loss
8	1836	Martin Van Buren	win
9	1836	William Henry Harrison	loss
10	1840	Martin Van Buren	loss
11	1840	William Henry Harrison	win
12	1844	Henry Clay	loss
13	1844	James Polk	win
14	1848	Lewis Cass	loss
15	1848	Martin Van Buren	loss
16	1848	Zachary Taylor	win
17	1852	Franklin Pierce	win
18	1852	John P. Hale	loss
19	1852	Winfield Scott	loss
20	1856	James Buchanan	win
21	1856	John C. Frémont	loss
22	1856	Millard Fillmore	loss
23	1860	Abraham Lincoln	win
$\frac{23}{24}$	1860	John Bell	loss
$\frac{24}{25}$	1860		
$\frac{25}{26}$		John C. Breckinridge Stephen A. Douglas	loss $loss$
$\frac{20}{27}$	$1860 \\ 1864$	Abraham Lincoln	win
28	1864	George B. McClellan	loss $loss$
29	1868	Horatio Seymour	
30	1868	Ulysses Grant	win
31	1872	Horace Greeley	loss
32	1872	Ulysses Grant	
33	1876	Rutherford Hayes	win
34	1876	Samuel J. Tilden	loss
35	1880	James B. Weaver	loss
36	1880	James Garfield	win
37	1880	Winfield Scott Hancock	loss
38	1884	Benjamin Butler	loss
39	1884	Grover Cleveland	win
40	1884	James G. Blaine	loss
41	1884	John St. John	loss
42	1888	Alson Streeter	loss
43	1888	Benjamin Harrison	win
44	1888	Clinton B. Fisk	loss 29
45	1888	Grover Cleveland	loss
46	1892	Benjamin Harrison	loss
47	1892	Grover Cleveland	win
48	1892	James B. Weaver	loss
49	1892	John Bidwell	loss
50	1896	John M. Palmer	loss
51	1906	Lochus Lovering	logg

There are a couple of things we should note. Firstly, unlike conventional Python, pandas allows us to slice string values (in our example, the column labels). Secondly, slicing with .loc is *inclusive*. Notice how our resulting DataFrame includes every row and column between and including the slice labels we specified.

Equivalently, we can use a list to obtain multiple rows and columns in our elections DataFrame.

```
elections.loc[[0, 1, 2, 3], ['Year', 'Candidate', 'Party', 'Popular vote']]
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	Year	Candidate	Party	Popular vote
0	1824	Andrew Jackson	Democratic-Republican	151271
1	1824	John Quincy Adams	Democratic-Republican	113142
2	1828	Andrew Jackson	Democratic	642806
3	1828	John Quincy Adams	National Republican	500897

Lastly, we can interchange list and slicing notation.

```
elections.loc[[0, 1, 2, 3], :]
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureW

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

	Year	Candidate	Party	Popular vote	Result	%
0	1824	Andrew Jackson	Democratic-Republican	151271	loss	57.210122
1	1824	John Quincy Adams	Democratic-Republican	113142	win	42.789878
2	1828	Andrew Jackson	Democratic	642806	win	56.203927
3	1828	John Quincy Adams	National Republican	500897	loss	43.796073

2.4.3 Integer-based Extraction: Indexing with .iloc

Slicing with .iloc works similarly to .loc. However, .iloc uses the *index positions* of rows and columns rather than the labels (think to yourself: loc uses lables; iloc uses indices). The

arguments to the .iloc function also behave similarly — single values, lists, indices, and any combination of these are permitted.

Let's begin reproducing our results from above. We'll begin by selecting the first presidential candidate in our elections DataFrame:

```
# elections.loc[0, "Candidate"] - Previous approach
elections.iloc[0, 1]
```

'Andrew Jackson'

Notice how the first argument to both .loc and .iloc are the same. This is because the row with a label of 0 is conveniently in the $0^{\rm th}$ (equivalently, the first position) of the elections DataFrame. Generally, this is true of any DataFrame where the row labels are incremented in ascending order from 0.

And, as before, if we were to pass in only one single value argument, our result would be a Series.

```
elections.iloc[[1,2,3],1]
```

Candidate

- 1 John Quincy Adams
- 2 Andrew Jackson
- 3 John Quincy Adams

However, when we select the first four rows and columns using .iloc, we notice something.

```
# elections.loc[0:3, 'Year':'Popular vote'] - Previous approach
elections.iloc[0:4, 0:4]
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWesters

	Year	Candidate	Party	Popular vote
0	1824	Andrew Jackson	Democratic-Republican	151271
1	1824	John Quincy Adams	Democratic-Republican	113142
2	1828	Andrew Jackson	Democratic	642806
3	1828	John Quincy Adams	National Republican	500897

Slicing is no longer inclusive in .iloc — it's *exclusive*. In other words, the right end of a slice is not included when using .iloc. This is one of the subtleties of pandas syntax; you will get used to it with practice.

List behavior works just as expected.

```
#elections.loc[[0, 1, 2, 3], ['Year', 'Candidate', 'Party', 'Popular vote']] - Previous Apelections.iloc[[0, 1, 2, 3], [0, 1, 2, 3]]
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

	Year	Candidate	Party	Popular vote
0	1824	Andrew Jackson	Democratic-Republican	151271
1	1824	John Quincy Adams	Democratic-Republican	113142
2	1828	Andrew Jackson	Democratic	642806
3	1828	John Quincy Adams	National Republican	500897

And just like with .loc, we can use a colon with .iloc to extract all rows or columns.

```
elections.iloc[:, 0:3]
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWe

	Year	Candidate	Party
0	1824	Andrew Jackson	Democratic-Republican
1	1824	John Quincy Adams	Democratic-Republicar
2	1828	Andrew Jackson	Democratic
3	1828	John Quincy Adams	National Republican
4	1832	Andrew Jackson	Democratic
5	1832	Henry Clay	National Republican
6	1832	William Wirt	Anti-Masonic
7	1836	Hugh Lawson White	Whig
8	1836	Martin Van Buren	Democratic
9	1836	William Henry Harrison	Whig
10	1840	Martin Van Buren	Democratic
11	1840	William Henry Harrison	Whig
12	1844	Henry Clay	Whig
13	1844	James Polk	Democratic
14	1848	Lewis Cass	Democratic
15	1848	Martin Van Buren	Free Soil
16	1848	Zachary Taylor	Whig
17	1852	Franklin Pierce	Democratic
18	1852	John P. Hale	Free Soil
19	1852	Winfield Scott	Whig
20	1856	James Buchanan	Democratic
$\frac{1}{21}$	1856	John C. Frémont	Republican
$\frac{1}{22}$	1856	Millard Fillmore	American
23	1860	Abraham Lincoln	Republican
24	1860	John Bell	Constitutional Union
25	1860	John C. Breckinridge	Southern Democratic
26	1860	Stephen A. Douglas	Northern Democratic
27	1864	Abraham Lincoln	National Union
28	1864	George B. McClellan	Democratic
29	1868	Horatio Seymour	Democratic
30	1868	Ulysses Grant	Republican
31	1872	Horace Greeley	Liberal Republican
32	1872	Ulysses Grant	Republican
33	1876	Rutherford Hayes	Republican
34	1876	Samuel J. Tilden	Democratic
35	1880	James B. Weaver	Greenback
36	1880	James Garfield	Republican
37	1880	Winfield Scott Hancock	Democratic
38	1884	Benjamin Butler	Anti-Monopoly
39	1884	Grover Cleveland	Democratic
39 40		James G. Blaine	
	1884	John St. John	Republican Prohibition
41 42	1884	Alson Streeter	Union Labor
	1888		
43	1888	Benjamin Harrison	Republican
44	1888	Clinton B. Fisk	Prohibition
45	1888	Grover Cleveland	Democratic
46	1892	Benjamin Harrison	Republican
47	1892	Grover Cleveland	Democratic
48	1892	James B. Weaver	Populist
49	1892	John Bidwell	Prohibition
50	1896	John M. Palmer	National Democratic
51	1906	Joshua Lovering	Drobibition

This discussion begs the question: when should we use .loc vs. .iloc? In most cases, .loc is generally safer to use. You can imagine .iloc may return incorrect values when applied to a dataset where the ordering of data can change. However, .iloc can still be useful — for example, if you are looking at a DataFrame of sorted movie earnings and want to get the median earnings for a given year, you can use .iloc to index into the middle.

Overall, it is important to remember that:

- .loc performances label-based extraction.
- .iloc performs integer-based extraction.

2.4.4 Context-dependent Extraction: Indexing with []

The [] selection operator is the most baffling of all, yet the most commonly used. It only takes a single argument, which may be one of the following:

- 1. A slice of row numbers.
- 2. A list of column labels.
- 3. A single-column label.

That is, [] is *context-dependent*. Let's see some examples.

2.4.4.1 A slice of row numbers

Say we wanted the first four rows of our elections DataFrame.

elections[0:4]

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

	Year	Candidate	Party	Popular vote	Result	%
0	1824	Andrew Jackson	Democratic-Republican	151271	loss	57.210122
1	1824	John Quincy Adams	Democratic-Republican	113142	win	42.789878
2	1828	Andrew Jackson	Democratic	642806	win	56.203927
3	1828	John Quincy Adams	National Republican	500897	loss	43.796073

2.4.4.2 A list of column labels

Suppose we now want the first four columns.

```
elections[["Year", "Candidate", "Party", "Popular vote"]]
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

	Year	Candidate	Party	Popular vote
0	1824	Andrew Jackson	Democratic-Republican	151271
1	1824	John Quincy Adams	Democratic-Republican	113142
2	1828	Andrew Jackson	Democratic	642806
3	1828	John Quincy Adams	National Republican	500897
4	1832	Andrew Jackson	Democratic	702735
5	1832	Henry Clay	National Republican	484205
6	1832	William Wirt	Anti-Masonic	100715
7	1836	Hugh Lawson White	Whig	146109
8	1836	Martin Van Buren	Democratic	763291
9	1836	William Henry Harrison	Whig	550816
10	1840	Martin Van Buren	Democratic	1128854
11	1840	William Henry Harrison	Whig	1275583
12	1844	Henry Clay	Whig	1300004
13	1844	James Polk	Democratic	1339570
14	1848	Lewis Cass	Democratic	1223460
15	1848	Martin Van Buren	Free Soil	291501
16	1848	Zachary Taylor	Whig	1360235
17	1852	Franklin Pierce	Democratic	1605943
18	1852	John P. Hale	Free Soil	155210
19	1852	Winfield Scott	Whig	1386942
20	1856	James Buchanan	Democratic	1835140
$\frac{20}{21}$	1856	John C. Frémont	Republican	1342345
22	1856	Millard Fillmore	American	873053
23	1860	Abraham Lincoln	Republican	1855993
$\frac{20}{24}$	1860	John Bell	Constitutional Union	590901
25	1860	John C. Breckinridge	Southern Democratic	848019
26	1860	Stephen A. Douglas	Northern Democratic	1380202
$\frac{20}{27}$	1864	Abraham Lincoln	National Union	2211317
28	1864	George B. McClellan	Democratic	1812807
$\frac{20}{29}$	1868	Horatio Seymour	Democratic	2708744
30	1868	Ulysses Grant	Republican	3013790
31	1872	Horace Greeley	Liberal Republican	2834761
32	1872	Ulysses Grant	Republican	3597439
32 33	1876	Rutherford Hayes	Republican	4034142
34	1876	Samuel J. Tilden	Democratic	4288546
35	1880	James B. Weaver	Greenback	308649
36	1880	James Garfield	Republican	4453337
37	1880	Winfield Scott Hancock	Democratic	4444976
38	1884	Benjamin Butler	Anti-Monopoly	134294
39	1884	Grover Cleveland	Democratic	4914482
40	1884	James G. Blaine	Republican	4856905
41	1884	John St. John	Prohibition	147482
42	1888	Alson Streeter	Union Labor	146602
43	1888	Benjamin Harrison	Republican	5443633
44	1888	Clinton B. Fisk	Prohibition	249819
45	1888	Grover Cleveland	Democratic	5534488
46	1892	Benjamin Harrison	Republican	5176108
47	1892	Grover Cleveland	Democratic	5553898
48	1892	James B. Weaver	Populist	1041028
49	1892	John Bidwell	Prohibition	270879
50	1896	John M. Palmer	National Democratic	134645

2.4.4.3 A single-column label

Lastly, [] allows us to extract only the "Candidate" column.

elections["Candidate"]

Candidate 0 Andrew Jackson 1 John Quincy Adams 2 Andrew Jackson 3 John Quincy Adams 4 Andrew Jackson 5 Henry Clay 6 William Wirt 7 Hugh Lawson White 8 Martin Van Buren 9 William Henry Harrison 10 Martin Van Buren 11 William Henry Harrison 12 Henry Clay 13 James Polk 14 Lewis Cass 15 Martin Van Buren Zachary Taylor 16 17 Franklin Pierce 18 John P. Hale 19 Winfield Scott 20 James Buchanan 21 John C. Frémont 22Millard Fillmore 23 Abraham Lincoln 24 John Bell 25 John C. Breckinridge 26 Stephen A. Douglas 27 Abraham Lincoln 28 George B. McClellan 29 Horatio Seymour 30 Ulysses Grant 31 Horace Greeley 32 Ulysses Grant 33 Rutherford Hayes 34 Samuel J. Tilden 35 James B. Weaver 36 James Garfield 37 Winfield Scott Hancock 38 Benjamin Butler 39 Grover Cleveland 40 James G. Blaine 41 John St. John

42

43

44

45

 $\frac{46}{47}$

48

49 50 Alson Streeter

Clinton B. Fisk

Grover Cleveland Benjamin Harrison

Grover Cleveland James B. Weaver

John Bidwell

John M. Palmer

Benjamin Harrison

38

The output is a Series! In this course, we'll become very comfortable with [], especially for selecting columns. In practice, [] is much more common than .loc, especially since it is far more concise.

2.5 Parting Note

The pandas library is enormous and contains many useful functions. Here is a link to its documentation. We certainly don't expect you to memorize each and every method of the library, and we will give you a reference sheet for exams.

The introductory Data 100 pandas lectures will provide a high-level view of the key data structures and methods that will form the foundation of your pandas knowledge. A goal of this course is to help you build your familiarity with the real-world programming practice of ... Googling! Answers to your questions can be found in documentation, Stack Overflow, etc. Being able to search for, read, and implement documentation is an important life skill for any data scientist.

With that, we will move on to Pandas II!

3 Pandas II

i Learning Outcomes

- Continue building familiarity with pandas syntax.
- Extract data from a DataFrame using conditional selection.
- Recognize situations where aggregation is useful and identify the correct technique for performing an aggregation.

Last time, we introduced the pandas library as a toolkit for processing data. We learned the DataFrame and Series data structures, familiarized ourselves with the basic syntax for manipulating tabular data, and began writing our first lines of pandas code.

In this lecture, we'll start to dive into some advanced pandas syntax. You may find it helpful to follow along with a notebook of your own as we walk through these new pieces of code.

We'll start by loading the babynames dataset.

```
# This code pulls census data and loads it into a DataFrame
# We won't cover it explicitly in this class, but you are welcome to explore it on your ow
import pandas as pd
import numpy as np
import urllib.request
import os.path
import zipfile
data_url = "https://www.ssa.gov/oact/babynames/state/namesbystate.zip"
local_filename = "data/babynamesbystate.zip"
if not os.path.exists(local_filename): # If the data exists don't download again
    with urllib.request.urlopen(data_url) as resp, open(local_filename, 'wb') as f:
        f.write(resp.read())
zf = zipfile.ZipFile(local_filename, 'r')
ca name = 'STATE.CA.TXT'
field_names = ['State', 'Sex', 'Year', 'Name', 'Count']
with zf.open(ca_name) as fh:
```

```
babynames = pd.read_csv(fh, header=None, names=field_names)
babynames.head()
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

	State	Sex	Year	Name	Count
0	CA	F	1910	Mary	295
1	CA	\mathbf{F}	1910	Helen	239
2	CA	\mathbf{F}	1910	Dorothy	220
3	CA	F	1910	Margaret	163
4	CA	\mathbf{F}	1910	Frances	134

3.1 Conditional Selection

Conditional selection allows us to select a subset of rows in a DataFrame that satisfy some specified condition.

To understand how to use conditional selection, we must look at another possible input of the .loc and [] methods — a boolean array, which is simply an array or Series where each element is either True or False. This boolean array must have a length equal to the number of rows in the DataFrame. It will return all rows that correspond to a value of True in the array. We used a very similar technique when performing conditional extraction from a Series in the last lecture.

To see this in action, let's select all even-indexed rows in the first 10 rows of our DataFrame.

```
# Ask yourself: why is :9 is the correct slice to select the first 10 rows?
babynames_first_10_rows = babynames.loc[:9, :]

# Notice how we have exactly 10 elements in our boolean array argument
babynames_first_10_rows[[True, False, True, False, True, False, True, False]]
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

	State	Sex	Year	Name	Count
0	CA	F	1910	Mary	295
2	CA	\mathbf{F}	1910	Dorothy	220
4	CA	\mathbf{F}	1910	Frances	134
6	CA	\mathbf{F}	1910	Evelyn	126
8	CA	\mathbf{F}	1910	Virginia	101

We can perform a similar operation using .loc.

```
babynames_first_10_rows.loc[[True, False, True, True, False, True, Tru
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeb.

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	State	Sex	Year	Name	Count
0	CA	F	1910	Mary	295
2	CA	\mathbf{F}	1910	Dorothy	220
4	CA	\mathbf{F}	1910	Frances	134
6	CA	\mathbf{F}	1910	Evelyn	126
8	CA	\mathbf{F}	1910	Virginia	101

These techniques worked well in this example, but you can imagine how tedious it might be to list out True and Falsefor every row in a larger DataFrame. To make things easier, we can instead provide a logical condition as an input to .loc or [] that returns a boolean array with the necessary length.

For example, to return all names associated with F sex:

```
# First, use a logical condition to generate a boolean array
logical_operator = (babynames["Sex"] == "F")

# Then, use this boolean array to filter the DataFrame
babynames[logical_operator].head()
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWilliams

	State	Sex	Year	Name	Count
0	CA	F	1910	Mary	295
1	CA	\mathbf{F}	1910	Helen	239
2	CA	\mathbf{F}	1910	Dorothy	220
3	CA	\mathbf{F}	1910	Margaret	163
4	CA	\mathbf{F}	1910	Frances	134

Recall from the previous lecture that .head() will return only the first few rows in the DataFrame. In reality, babynames[logical operator] contains as many rows as there are entries in the original babynames DataFrame with sex "F".

Here, logical_operator evaluates to a Series of boolean values with length 407428.

```
print("There are a total of {} values in 'logical_operator'".format(len(logical_operator))
```

There are a total of 407428 values in 'logical_operator'

Rows starting at row 0 and ending at row 239536 evaluate to True and are thus returned in the DataFrame. Rows from 239537 onwards evaluate to False and are omitted from the output.

```
print("The Oth item in this 'logical_operator' is: {}".format(logical_operator.iloc[0]))
print("The 239536th item in this 'logical_operator' is: {}".format(logical_operator.iloc[2])
print("The 239537th item in this 'logical_operator' is: {}".format(logical_operator.iloc[2])
```

```
The Oth item in this 'logical_operator' is: True
The 239536th item in this 'logical_operator' is: True
The 239537th item in this 'logical_operator' is: False
```

Passing a Series as an argument to babynames[] has the same effect as using a boolean array. In fact, the [] selection operator can take a boolean Series, array, and list as arguments. These three are used interchangeably throughout the course.

We can also use .loc to achieve similar results.

```
babynames.loc[babynames["Sex"] == "F"].head()
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWilliams

	State	Sex	Year	Name	Count
0	CA	F	1910	Mary	295
1	CA	F	1910	Helen	239
2	CA	\mathbf{F}	1910	Dorothy	220
3	CA	F	1910	Margaret	163
4	CA	\mathbf{F}	1910	Frances	134

Boolean conditions can be combined using various bitwise operators, allowing us to filter results by multiple conditions. In the table below, p and q are boolean arrays or Series.

	Symbol	Usage	Meaning
~	~p	Return	ns negation of p
	$p \mid q$	p OR	q
& •		p ANI	-
^	$p \hat{q}$	p XOI	R q (exclusive or)

When combining multiple conditions with logical operators, we surround each individual condition with a set of parenthesis (). This imposes an order of operations on pandas evaluating your logic and can avoid code erroring.

For example, if we want to return data on all names with sex "F" born before the year 2000, we can write:

```
babynames[(babynames["Sex"] == "F") & (babynames["Year"] < 2000)].head()
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureW

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	State	Sex	Year	Name	Count
0	CA	F	1910	Mary	295
1	CA	\mathbf{F}	1910	Helen	239
2	CA	\mathbf{F}	1910	Dorothy	220
3	CA	F	1910	Margaret	163
4	CA	\mathbf{F}	1910	Frances	134

Note that we're working with Series, so using and in place of &, or or in place | will error.

```
# This line of code will raise a ValueError
```

[#] babynames[(babynames["Sex"] == "F") and (babynames["Year"] < 2000)].head()</pre>

If we want to return data on all names with sex "F" or all born before the year 2000, we can write:

```
babynames[(babynames["Sex"] == "F") | (babynames["Year"] < 2000)].head()
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeeling and State of the Company of

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	State	Sex	Year	Name	Count
0	CA	\mathbf{F}	1910	Mary	295
1	CA	\mathbf{F}	1910	Helen	239
2	CA	\mathbf{F}	1910	Dorothy	220
3	CA	F	1910	Margaret	163
4	CA	\mathbf{F}	1910	Frances	134

Boolean array selection is a useful tool, but can lead to overly verbose code for complex conditions. In the example below, our boolean condition is long enough to extend for several lines of code.

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWe

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	State	Sex	Year	Name	Count
6289	CA	\mathbf{F}	1923	Bella	5
7512	CA	\mathbf{F}	1925	Bella	8
12368	CA	\mathbf{F}	1932	Lisa	5
14741	CA	\mathbf{F}	1936	Lisa	8
17084	CA	\mathbf{F}	1939	Lisa	5

Fortunately, pandas provides many alternative methods for constructing boolean filters.

The .isin function is one such example. This method evaluates if the values in a Series are contained in a different sequence (list, array, or Series) of values. In the cell below, we achieve equivalent results to the DataFrame above with far more concise code.

```
names = ["Bella", "Alex", "Narges", "Lisa"]
babynames["Name"].isin(names).head()
```

	Name
0	False
1	False
2	False
3	False
4	False

babynames["Name"].isin(names)].head()

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureW

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	State	Sex	Year	Name	Count
6289	CA	F	1923	Bella	5
7512	CA	\mathbf{F}	1925	Bella	8
12368	CA	\mathbf{F}	1932	Lisa	5
14741	CA	\mathbf{F}	1936	Lisa	8
17084	CA	F	1939	Lisa	5

The function str.startswith can be used to define a filter based on string values in a Series object. It checks to see if string values in a Series start with a particular character.

```
# Identify whether names begin with the letter "N"
babynames["Name"].str.startswith("N").head()
```

	Name
0	False
1	False
2	False
3	False
4	False

```
# Extracting names that begin with the letter "N"
babynames[babynames["Name"].str.startswith("N")].head()
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	State	Sex	Year	Name	Count
76	CA	\mathbf{F}	1910	Norma	23
83	CA	\mathbf{F}	1910	Nellie	20
127	CA	F	1910	Nina	11
198	CA	F	1910	Nora	6
310	CA	\mathbf{F}	1911	Nellie	23

3.2 Adding, Removing, and Modifying Columns

In many data science tasks, we may need to change the columns contained in our DataFrame in some way. Fortunately, the syntax to do so is fairly straightforward.

To add a new column to a DataFrame, we use a syntax similar to that used when accessing an existing column. Specify the name of the new column by writing df["column"], then assign this to a Series or array containing the values that will populate this column.

```
# Create a Series of the length of each name.
babyname_lengths = babynames["Name"].str.len()

# Add a column named "name_lengths" that includes the length of each name babynames["name_lengths"] = babyname_lengths
babynames.head(5)
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeeling and State of the Control of

	State	Sex	Year	Name	Count	name_lengths
0	CA	\mathbf{F}	1910	Mary	295	4
1	CA	\mathbf{F}	1910	Helen	239	5
2	CA	\mathbf{F}	1910	Dorothy	220	7
3	CA	F	1910	Margaret	163	8
4	CA	\mathbf{F}	1910	Frances	134	7

If we need to later modify an existing column, we can do so by referencing this column again with the syntax df ["column"], then re-assigning it to a new Series or array of the appropriate length.

```
# Modify the "name_lengths" column to be one less than its original value
babynames["name_lengths"] = babynames["name_lengths"] - 1
babynames.head()
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureW

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	State	Sex	Year	Name	Count	$name_lengths$
0	CA	\mathbf{F}	1910	Mary	295	3
1	CA	\mathbf{F}	1910	Helen	239	4
2	CA	\mathbf{F}	1910	Dorothy	220	6
3	CA	\mathbf{F}	1910	Margaret	163	7
4	CA	\mathbf{F}	1910	Frances	134	6

We can rename a column using the .rename() method. It takes in a dictionary that maps old column names to their new ones.

```
# Rename "name_lengths" to "Length"
babynames = babynames.rename(columns={"name_lengths":"Length"})
babynames.head()
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeb.

	State	Sex	Year	Name	Count	Length
0	CA	\mathbf{F}	1910	Mary	295	3
1	CA	\mathbf{F}	1910	Helen	239	4
2	CA	\mathbf{F}	1910	Dorothy	220	6
3	CA	\mathbf{F}	1910	Margaret	163	7
4	CA	\mathbf{F}	1910	Frances	134	6

If we want to remove a column or row of a DataFrame, we can call the .drop (documentation) method. Use the axis parameter to specify whether a column or row should be dropped. Unless otherwise specified, pandas will assume that we are dropping a row by default.

```
# Drop our new "Length" column from the DataFrame
babynames = babynames.drop("Length", axis="columns")
babynames.head(5)
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	State	Sex	Year	Name	Count
0	CA	F	1910	Mary	295
1	CA	F	1910	Helen	239
2	CA	\mathbf{F}	1910	Dorothy	220
3	CA	F	1910	Margaret	163
4	CA	\mathbf{F}	1910	Frances	134

Notice that we re-assigned babynames to the result of babynames.drop(...). This is a subtle but important point: pandas table operations do not occur in-place. Calling df.drop(...) will output a copy of df with the row/column of interest removed without modifying the original df table.

In other words, if we simply call:

```
# This creates a copy of `babynames` and removes the column "Name"...
babynames.drop("Name", axis="columns")

# ...but the original `babynames` is unchanged!
# Notice that the "Name" column is still present
babynames.head(5)
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeeling and State of the Company of

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	State	Sex	Year	Name	Count
0	CA	F	1910	Mary	295
1	CA	\mathbf{F}	1910	Helen	239
2	CA	\mathbf{F}	1910	Dorothy	220
3	CA	\mathbf{F}	1910	Margaret	163
4	CA	\mathbf{F}	1910	Frances	134

3.3 Useful Utility Functions

pandas contains an extensive library of functions that can help shorten the process of setting and getting information from its data structures. In the following section, we will give overviews of each of the main utility functions that will help us in Data 100.

Discussing all functionality offered by pandas could take an entire semester! We will walk you through the most commonly-used functions and encourage you to explore and experiment on your own.

- NumPy and built-in function support
- .shape
- .size
- .describe()
- .sample()
- .value_counts()
- .unique()
- .sort_values()

The pandas documentation will be a valuable resource in Data 100 and beyond.

3.3.1 NumPy

pandas is designed to work well with NumPy, the framework for array computations you encountered in Data 8. Just about any NumPy function can be applied to pandas DataFrames and Series.

```
# Pull out the number of babies named Yash each year
yash_count = babynames[babynames["Name"] == "Yash"]["Count"]
```

yash_count.head()

	Count
331824	8
334114	9
336390	11
338773	12
341387	10

```
# Average number of babies named Yash each year
np.mean(yash_count)
```

17.142857142857142

```
# Max number of babies named Yash born in any one year
np.max(yash_count)
```

29

3.3.2 .shape and .size

.shape and .size are attributes of Series and DataFrames that measure the "amount" of data stored in the structure. Calling .shape returns a tuple containing the number of rows and columns present in the DataFrame or Series. .size is used to find the total number of elements in a structure, equivalent to the number of rows times the number of columns.

Many functions strictly require the dimensions of the arguments along certain axes to match. Calling these dimension-finding functions is much faster than counting all of the items by hand.

```
# Return the shape of the DataFrame, in the format (num_rows, num_columns) babynames.shape
```

(407428, 5)

```
\# Return the size of the DataFrame, equal to num_rows * num_columns babynames.size
```

2037140

3.3.3 .describe()

If many statistics are required from a DataFrame (minimum value, maximum value, mean value, etc.), then .describe() (documentation) can be used to compute all of them at once.

babynames.describe()

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	Year	Count
count	407428.000000	407428.000000
mean	1985.733609	79.543456
std	27.007660	293.698654
\min	1910.000000	5.000000
25%	1969.000000	7.000000
50%	1992.000000	13.000000
75%	2008.000000	38.000000
max	2022.000000	8260.000000

A different set of statistics will be reported if .describe() is called on a Series.

babynames["Sex"].describe()

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWesters

	Sex
count	407428
unique	2
top	F
freq	239537

3.3.4 .sample()

As we will see later in the semester, random processes are at the heart of many data science techniques (for example, train-test splits, bootstrapping, and cross-validation). .sample() (documentation) lets us quickly select random entries (a row if called from a DataFrame, or a value if called from a Series).

By default, .sample() selects entries without replacement. Pass in the argument replace=True to sample with replacement.

```
# Sample a single row
babynames.sample()
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	State	Sex	Year	Name	Count
382034	CA	Μ	2014	Roland	52

Naturally, this can be chained with other methods and operators (iloc, etc.).

```
# Sample 5 random rows, and select all columns after column 2
babynames.sample(5).iloc[:, 2:]
```

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

	Year	Name	Count
400272	2020	Kent	13
126730	1993	Cyerra	6
29270	1951	Ophelia	20
313583	1988	Ronny	18
339752	1998	Hovanes	5

Randomly sample 4 names from the year 2000, with replacement, and select all columns aft babynames[babynames["Year"] == 2000].sample(4, replace = True).iloc[:, 2:]

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWesters

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	Year	Name	Count
151089	2000	Athina	10
343516	2000	Nicholaus	15
152569	2000	Kirsty	5
151821	2000	Marlenne	7

3.3.5 .value_counts()

The Series.value_counts() (documentation) method counts the number of occurrence of each unique value in a Series. In other words, it *counts* the number of times each unique *value* appears. This is often useful for determining the most or least common entries in a Series.

In the example below, we can determine the name with the most years in which at least one person has taken that name by counting the number of times each name appears in the "Name" column of babynames. Note that the return value is also a Series.

```
babynames["Name"].value_counts().head()
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

	Name
Jean	223
Francis	221
Guadalupe	218
Jessie	217
Marion	214

3.3.6 .unique()

If we have a Series with many repeated values, then .unique() (documentation) can be used to identify only the *unique* values. Here we return an array of all the names in babynames.

```
babynames["Name"].unique()
```

3.3.7 .sort_values()

Ordering a DataFrame can be useful for isolating extreme values. For example, the first 5 entries of a row sorted in descending order (that is, from highest to lowest) are the largest 5 values. .sort_values (documentation) allows us to order a DataFrame or Series by a specified column. We can choose to either receive the rows in ascending order (default) or descending order.

```
# Sort the "Count" column from highest to lowest
babynames.sort_values(by="Count", ascending=False).head()
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	State	Sex	Year	Name	Count
268041	CA	Μ	1957	Michael	8260
267017	CA	\mathbf{M}	1956	Michael	8258
317387	CA	M	1990	Michael	8246
281850	CA	\mathbf{M}	1969	Michael	8245
283146	CA	\mathbf{M}	1970	Michael	8196

Unlike when calling .value_counts() on a DataFrame, we do not need to explicitly specify the column used for sorting when calling .value_counts() on a Series. We can still specify the ordering paradigm – that is, whether values are sorted in ascending or descending order.

```
# Sort the "Name" Series alphabetically
babynames["Name"].sort_values(ascending=True).head()
```

	Name
366001	Aadan
384005	Aadan
369120	Aadan
398211	Aadarsh
370306	Aaden

3.4 Parting Note

Manipulating DataFrames is not a skill that is mastered in just one day. Due to the flexibility of pandas, there are many different ways to get from point A to point B. We recommend trying multiple different ways to solve the same problem to gain even more practice and reach that point of mastery sooner.

Next, we will start digging deeper into the mechanics behind grouping data.

4 Pandas III

i Learning Outcomes

- Perform advanced aggregation using $\tt.groupby()$
- Use the pd.pivot_table method to construct a pivot table
- Perform simple merges between DataFrames using pd.merge()

We will introduce the concept of aggregating data — we will familiarize ourselves with <code>GroupBy</code> objects and used them as tools to consolidate and summarize a<code>DataFrame</code>. In this lecture, we will explore working with the different aggregation functions and dive into some advanced <code>.groupby</code> methods to show just how powerful of a resource they can be for understanding our data. We will also introduce other techniques for data aggregation to provide flexibility in how we manipulate our tables.

4.1 Custom Sorts

First, let's finish our discussion about sorting. Let's try to solve a sorting problem using different approaches. Assume we want to find the longest baby names and sort our data accordingly.

We'll start by loading the babynames dataset. Note that this dataset is filtered to only contain data from California.

```
# This code pulls census data and loads it into a DataFrame
# We won't cover it explicitly in this class, but you are welcome to explore it on your ow
import pandas as pd
import numpy as np
import urllib.request
import os.path
import zipfile

data_url = "https://www.ssa.gov/oact/babynames/state/namesbystate.zip"
local_filename = "data/babynamesbystate.zip"
if not os.path.exists(local_filename): # If the data exists don't download again
```

```
with urllib.request.urlopen(data_url) as resp, open(local_filename, 'wb') as f:
    f.write(resp.read())

zf = zipfile.ZipFile(local_filename, 'r')

ca_name = 'STATE.CA.TXT'
field_names = ['State', 'Sex', 'Year', 'Name', 'Count']
with zf.open(ca_name) as fh:
    babynames = pd.read_csv(fh, header=None, names=field_names)

babynames.tail(10)
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeeling and State of the Control of

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	State	Sex	Year	Name	Count
407418	CA	Μ	2022	Zach	5
407419	CA	Μ	2022	Zadkiel	5
407420	CA	Μ	2022	Zae	5
407421	CA	M	2022	Zai	5
407422	CA	M	2022	Zay	5
407423	CA	M	2022	Zayvier	5
407424	CA	Μ	2022	Zia	5
407425	CA	M	2022	Zora	5
407426	CA	M	2022	Zuriel	5
407427	CA	M	2022	Zylo	5

4.1.1 Approach 1: Create a Temporary Column

One method to do this is to first start by creating a column that contains the lengths of the names.

```
# Create a Series of the length of each name
babyname_lengths = babynames["Name"].str.len()

# Add a column named "name_lengths" that includes the length of each name
babynames["name_lengths"] = babyname_lengths
babynames.head(5)
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

	State	Sex	Year	Name	Count	name_lengths
0	CA	\mathbf{F}	1910	Mary	295	4
1	CA	\mathbf{F}	1910	Helen	239	5
2	CA	\mathbf{F}	1910	Dorothy	220	7
3	CA	\mathbf{F}	1910	Margaret	163	8
4	CA	\mathbf{F}	1910	Frances	134	7

We can then sort the DataFrame by that column using .sort_values():

```
# Sort by the temporary column
babynames = babynames.sort_values(by="name_lengths", ascending=False)
babynames.head(5)
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	State	Sex	Year	Name	Count	$name_lengths$
334166	CA	Μ	1996	Franciscojavier	8	15
337301	CA	M	1997	Franciscojavier	5	15
339472	CA	M	1998	Franciscojavier	6	15
321792	CA	Μ	1991	Ryanchristopher	7	15
327358	CA	Μ	1993	Johnchristopher	5	15

Finally, we can drop the name_length column from babynames to prevent our table from getting cluttered.

```
# Drop the 'name_length' column
babynames = babynames.drop("name_lengths", axis='columns')
babynames.head(5)
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

	State	Sex	Year	Name	Count
334166	CA	Μ	1996	Franciscojavier	8
337301	CA	\mathbf{M}	1997	Franciscojavier	5
339472	CA	\mathbf{M}	1998	Franciscojavier	6
321792	CA	\mathbf{M}	1991	Ryanchristopher	7
327358	CA	\mathbf{M}	1993	Johnchristopher	5

4.1.2 Approach 2: Sorting using the key Argument

Another way to approach this is to use the key argument of .sort_values(). Here we can specify that we want to sort "Name" values by their length.

```
babynames.sort_values("Name", key=lambda x: x.str.len(), ascending=False).head()
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	State	Sex	Year	Name	Count
334166	CA	Μ	1996	Franciscojavier	8
327472	CA	Μ	1993	Ryanchristopher	5
337301	CA	Μ	1997	Franciscojavier	5
337477	CA	M	1997	Ryanchristopher	5
312543	CA	\mathbf{M}	1987	Franciscojavier	5

4.1.3 Approach 3: Sorting using the map Function

We can also use the map function on a Series to solve this. Say we want to sort the babynames table by the number of "dr"'s and "ea"'s in each "Name". We'll define the function dr_ea_count to help us out.

```
# First, define a function to count the number of times "dr" or "ea" appear in each name
def dr_ea_count(string):
    return string.count('dr') + string.count('ea')

# Then, use `map` to apply `dr_ea_count` to each name in the "Name" column
babynames["dr_ea_count"] = babynames["Name"].map(dr_ea_count)

# Sort the DataFrame by the new "dr_ea_count" column so we can see our handiwork
```

```
babynames = babynames.sort_values(by="dr_ea_count", ascending=False)
babynames.head()
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	State	Sex	Year	Name	Count	dr_ea_count
115957	CA	F	1990	Deandrea	5	3
101976	CA	\mathbf{F}	1986	Deandrea	6	3
131029	CA	\mathbf{F}	1994	Leandrea	5	3
108731	CA	\mathbf{F}	1988	Deandrea	5	3
308131	CA	Μ	1985	Deandrea	6	3

We can drop the dr_ea_count once we're done using it to maintain a neat table.

```
# Drop the `dr_ea_count` column
babynames = babynames.drop("dr_ea_count", axis = 'columns')
babynames.head(5)
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeb.

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

	State	Sex	Year	Name	Count
115957	CA	\mathbf{F}	1990	Deandrea	5
101976	CA	F	1986	Deandrea	6
131029	CA	F	1994	Leandrea	5
108731	CA	F	1988	Deandrea	5
308131	CA	\mathbf{M}	1985	Deandrea	6

4.2 Aggregating Data with .groupby

Up until this point, we have been working with individual rows of DataFrames. As data scientists, we often wish to investigate trends across a larger *subset* of our data. For example, we may want to compute some summary statistic (the mean, median, sum, etc.) for a group of rows in our DataFrame. To do this, we'll use pandas GroupBy objects. Our goal is to group

together rows that fall under the same category and perform an operation that aggregates across all rows in the category.

Let's say we wanted to aggregate all rows in babynames for a given year.

```
babynames.groupby("Year")
```

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x103b986d0>

What does this strange output mean? Calling .groupby (documentation) has generated a GroupBy object. You can imagine this as a set of "mini" sub-DataFrames, where each subframe contains all of the rows from babynames that correspond to a particular year.

The diagram below shows a simplified view of babynames to help illustrate this idea.

We can't work with a GroupBy object directly — that is why you saw that strange output earlier rather than a standard view of a DataFrame. To actually manipulate values within these "mini" DataFrames, we'll need to call an aggregation method. This is a method that tells pandas how to aggregate the values within the GroupBy object. Once the aggregation is applied, pandas will return a normal (now grouped) DataFrame.

The first aggregation method we'll consider is .agg. The .agg method takes in a function as its argument; this function is then applied to each column of a "mini" grouped DataFrame. We end up with a new DataFrame with one aggregated row per subframe. Let's see this in action by finding the sum of all counts for each year in babynames — this is equivalent to finding the number of babies born in each year.

```
babynames[["Year", "Count"]].groupby("Year").agg(sum).head(5)
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureW

	Count
Year	
1910	9163
1911	9983
1912	17946
1913	22094
1914	26926

Figure 4.1: Performing an aggregation

We can relate this back to the diagram we used above. Remember that the diagram uses a simplified version of babynames, which is why we see smaller values for the summed counts.

Calling .agg has condensed each subframe back into a single row. This gives us our final output: a DataFrame that is now indexed by "Year", with a single row for each unique year in the original babynames DataFrame.

There are many different aggregation functions we can use, all of which are useful in different applications.

```
babynames[["Year", "Count"]].groupby("Year").agg(min).head(5)
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	Count
Year	
1910	5
1911	5
1912	5
1913	5
1914	5

```
babynames[["Year", "Count"]].groupby("Year").agg(max).head(5)
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

	Count
Year	
1910	295
1911	390
1912	534
1913	614
1914	773

Same result, but now we explicitly tell pandas to only consider the "Count" column when babynames.groupby("Year")[["Count"]].agg(sum).head(5)

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureW

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	Count
Year	
1910	9163
1911	9983
1912	17946
1913	22094
1914	26926

There are many different aggregations that can be applied to the grouped data. The primary requirement is that an aggregation function must:

- Take in a Series of data (a single column of the grouped subframe).
- Return a single value that aggregates this Series.

4.2.1 Aggregation Functions

Because of this fairly broad requirement, pandas offers many ways of computing an aggregation.

In-built Python operations – such as sum, max, and min – are automatically recognized by pandas.

```
# What is the minimum count for each name in any year?
babynames.groupby("Name")[["Count"]].agg(min).head()
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeeling and State of the Control of

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

Count
5
6
10
6
6

```
# What is the largest single-year count of each name?
babynames.groupby("Name")[["Count"]].agg(max).head()
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWelling Fundamental Fundamental Future Welling Fundamental Future Welling Fundamental Future Future

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	Count
Name	
Aadan	7
Aadarsh	6
Aaden	158
Aadhav	8
Aadhini	6

As mentioned previously, functions from the NumPy library, such as np.mean, np.max, np.min, and np.sum, are also fair game in pandas.

```
# What is the average count for each name across all years?
babynames.groupby("Name")[["Count"]].agg(np.mean).head()
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeeling and State of the Control of

	Count
Name	
Aadan	6.000000
Aadarsh	6.000000
Aaden	46.214286
Aadhav	6.750000
Aadhini	6.000000

pandas also offers a number of in-built functions. Functions that are native to pandas can be referenced using their string name within a call to .agg. Some examples include:

- .agg("sum")
- .agg("max")
- .agg("min")
- .agg("mean")
- .agg("first")
- .agg("last")

The latter two entries in this list — "first" and "last" — are unique to pandas. They return the first or last entry in a subframe column. Why might this be useful? Consider a case where multiple columns in a group share identical information. To represent this information in the grouped output, we can simply grab the first or last entry, which we know will be identical to all other entries.

Let's illustrate this with an example. Say we add a new column to babynames that contains the first letter of each name.

```
# Imagine we had an additional column, "First Letter". We'll explain this code next week
babynames["First Letter"] = babynames["Name"].str[0]

# We construct a simplified DataFrame containing just a subset of columns
babynames_new = babynames[["Name", "First Letter", "Year"]]
babynames_new.head()
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

	Name	First Letter	Year
115957	Deandrea	D	1990
101976	Deandrea	D	1986
131029	Leandrea	L	1994
108731	Deandrea	D	1988
308131	Deandrea	D	1985

If we form groups for each name in the dataset, "First Letter" will be the same for all members of the group. This means that if we simply select the first entry for "First Letter" in the group, we'll represent all data in that group.

We can use a dictionary to apply different aggregation functions to each column during grouping.

Figure 4.2: Aggregating using "first"

```
babynames_new.groupby("Name").agg({"First Letter":"first", "Year":"max"}).head()
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWesters

	First Letter	Year
Name		
Aadan	A	2014
Aadarsh	A	2019
Aaden	A	2020
Aadhav	A	2019
Aadhini	A	2022

4.2.2 Plotting Birth Counts

Let's use .agg to find the total number of babies born in each year. Recall that using .agg with .groupby() follows the format: df.groupby(column_name).agg(aggregation_function). The line of code below gives us the total number of babies born in each year.

```
babynames.groupby("Year")[["Count"]].agg(sum).head(5)
# Alternative 1
# babynames.groupby("Year")[["Count"]].sum()
# Alternative 2
# babynames.groupby("Year").sum(numeric_only=True)
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	Count
Year	
1910	9163
1911	9983
1912	17946
1913	22094
1914	26926

Here's an illustration of the process:

Plotting the Dataframe we obtain tells an interesting story.

```
import plotly.express as px
puzzle2 = babynames.groupby("Year")[["Count"]].agg(sum)
px.line(puzzle2, y = "Count")
```

Unable to display output for mime type(s): text/html

Unable to display output for mime type(s): text/html

A word of warning: we made an enormous assumption when we decided to use this dataset to estimate birth rate. According to this article from the Legistlative Analyst Office, the true number of babies born in California in 2020 was 421,275. However, our plot shows 362,882 babies —— what happened?

4.2.3 Summary of the .groupby() Function

A groupby operation involves some combination of splitting a DataFrame into grouped subframes, applying a function, and combining the results.

For some arbitrary DataFrame df below, the code df.groupby("year").agg(sum) does the following:

- Splits the DataFrame into sub-DataFrames with rows belonging to the same year.
- Applies the sum function to each column of each sub-DataFrame.
- Combines the results of sum into a single DataFrame, indexed by year.

4.2.4 Revisiting the .agg() Function

.agg() can take in any function that aggregates several values into one summary value. Some commonly-used aggregation functions can even be called directly, without explicit use of .agg(). For example, we can call .mean() on .groupby():

```
babynames.groupby("Year").mean().head()
```

We can now put this all into practice. Say we want to find the baby name with sex "F" that has fallen in popularity the most in California. To calculate this, we can first create a metric: "Ratio to Peak" (RTP). The RTP is the ratio of babies born with a given name in 2022 to the *maximum* number of babies born with the name in *any* year.

Let's start with calculating this for one baby, "Jennifer".

```
# We filter by babies with sex "F" and sort by "Year"
f_babynames = babynames[babynames["Sex"] == "F"]
f_babynames = f_babynames.sort_values(["Year"])

# Determine how many Jennifers were born in CA per year
jenn_counts_series = f_babynames[f_babynames["Name"] == "Jennifer"]["Count"]

# Determine the max number of Jennifers born in a year and the number born in 2022
# to calculate RTP
max_jenn = max(f_babynames[f_babynames["Name"] == "Jennifer"]["Count"])
curr_jenn = f_babynames[f_babynames["Name"] == "Jennifer"]["Count"].iloc[-1]
rtp = curr_jenn / max_jenn
rtp
```

0.018796372629843364

By creating a function to calculate RTP and applying it to our DataFrame by using .groupby(), we can easily compute the RTP for all names at once!

```
def ratio_to_peak(series):
    return series.iloc[-1] / max(series)

#Using .groupby() to apply the function
    rtp_table = f_babynames.groupby("Name")[["Year", "Count"]].agg(ratio_to_peak)
    rtp_table.head()
```

/Users/Ishani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342: FutureWeelshani/micromamba/lib/python3.9/site-packages/IPython/core/formatters.py:342:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	Year	Count
Name		
Aadhini	1.0	1.000000
Aadhira	1.0	0.500000
Aadhya	1.0	0.660000
Aadya	1.0	0.586207
Aahana	1.0	0.269231

In the rows shown above, we can see that every row shown has a Year value of 1.0.

This is the "pandas-ification" of logic you saw in Data 8. Much of the logic you've learned in Data 8 will serve you well in Data 100.

4.2.5 Nuisance Columns

Note that you must be careful with which columns you apply the .agg() function to. If we were to apply our function to the table as a whole by doing f_babynames.groupby("Name").agg(ratio_to_peak), executing our .agg() call would result in a TypeError.

We can avoid this issue (and prevent unintentional loss of data) by explicitly selecting column(s) we want to apply our aggregation function to **BEFORE** calling .agg(),

4.2.6 Renaming Columns After Grouping

By default, .groupby will not rename any aggregated columns. As we can see in the table above, the aggregated column is still named Count even though it now represents the RTP. For better readability, we can rename Count to Count RTP