Soft Computing Association Analysis II

Dr. Chun-Hao Chen

Outline

- 1. Association Mining and it Problems
- 2. Multi-level AR Mining & Multiple Minimum Supports
- 3. Fuzzy Data Mining Approaches

4. Conclusions

Association Mining and it Problems

✓ Proposed by Agrawal et al. (SIGMOD'93)

Apriori algorithm

Association Mining and it Problems (Cont.)

- ✓ Basic problems are listed as follows
 - A minimum support for all item is not appropriate
 - Items may have taxonomy
 - Quantitative value may exist in transaction
 - Items may have lifespan
- ✓ Business-oriented problems
 - How to find high utility itemsets
 - How to reduce cost in manufacturing

Association Mining with Taxonomy

✓ What kinds of rules you can mine from transactions with taxonomy

Multiple-level Association Rules

- ✓ Proposed by Han et al. (VLDB'95)
 - Discovering large itemsets level by level
 - √ A top-down searching approach

Generalized Association Rules

- ✓ Proposed by Srikant et al. (VLDB'95)
 - Extending Original Transactions
 - Apriori-like Approach

	TID]	Items Bought		
	100	White bre	ead, Chocolate bise	cuits	
	200	Wheat bre	ead, Chocolate bise	cuits	
	Bread Cookies		okies	Bread	
	White bread		Soda cookies	Chocolate biscuits	
TID			Items Bought		
100		White bread, B	Bread, Chocolate bi	iscuits, Cookies	Chocolate Cookies
200		Wheat bread, B	Bread, Chocolate b	iscuits, Cookies	Chocolate Cookles

Items with Different Minimum Supports

- ✓ Proposed by Liu et al. (KDD'99)
 - - ✓ MIS: the lowest minimum supports among the items in an itemset
 - i.e. minsup{A} ≥ 20%
 minsup{B} ≥ 35%
 MIS {A, B} ≥ 20%
- ✓ Proposed by Wang et al. (VLDB'00)
 - Specifying support constrain on itemsets
 - Assigning the minimum supports with any function
 - ●Too complicated, hard to follow

Generalized AR with Multiple Min. Sup.

- ✓ Proposed by Tzeng et al. (LNCS, 2001)
 - Based on Liu's algorithm
 - Minsups of items and higher level items
 - ✓ Different minimum supports are assigned
 - Maintaining the discovered multi-support, and generalized association rules

Discussions

Do you find any problem about using Minimum itemset support (MIS) for association rule mining?

e.g., minsup{A} ≥ 20%
 minsup{B} ≥ 35%
 MIS {A, B} ≥ 20%

Problems of Liu's Approach (MIS)

✓ 1. Unsatisfying the Downward Closure Property

● e.g.


```
minsup{C} \geq 10\%

MIS {A, B, C} \geq 10\%

assume sup{A, B, C} = 12%

{A, B, C} is large

Prune {A, B} (X)
```

Cannot efficiently prune itemsets!

- ✓ 2. Too Many Rules May be Derived
 - e.g. $minsup{A} \ge 20\%$ $minsup{B} \ge 35\%$ $minsup{C} \ge 1\%$ → MIS{A, B, C} ≥ 1%

- $\{A, B, C\}$
- → become large itemsets easily

Maximum Support Constraint

- ✓ minsup{A, B}
 - \rightarrow minsup{A} \cap minsup{B} (Liu's)
 - → max(minsup{A}, minsup{B})
 - √i.e.
 - ✓ minsup $\{A\}$: sup $\{A\} \ge 0.15$
 - \checkmark minsup{B}: sup{B} ≥ 0.2

Advantages of the Maximum Support Constraint

✓ 1. Satisfying the downward closure property

minsup{C} ≥ 10%, assume sup{C} = 12% → minsup{A, B, C} ≥ 35%, sup{A, B, C} = 12% → {A, B, C} is also small

- ✓ 2. An additional pruning
 - If an itemset contains a small item → It will be pruned

minsup{A} ≥ 20%; minsup{D} ≥ 15% sup{A} = 22%, sup{D} = 18% → both are large

minsup{A, D} \geq 20% sup{A, D} \leq 18% {A, D} is impossible to be large {A, D} \rightarrow pruned

Discussions

Which strategy is better?

- 1. Minimum Support Constraint, or
 - 2. Maximum Support Constraint?

Brief Summery

Single Minimum Support

Agrawal et al. (SIGMOD'93)

• Han *et al.* (*SIGMOD'00*) FP-growth algorithm

Taxonomy

- Han *et al.* (*VLDB* '95) Level-by-Level Approach
- Srikant *et al.* (*VLDB* '95) Generalized Approach

Multiple Minimum Support

Liu et al. (KDD'99) -MIS

• Lee *et al.* (*IJAR*, 2005) Maximum constraints

Taxonomy

- Lui *et al.* (*LNAI*, 2000) Generalized Approach
- Tzeng *et al.* (*LNCS*, 2001) Generalized Approach

Quantitative Transactions

- ✓ In Real World Applications
 - Quantitative value may exist in transaction

TID	Items
T1	(milk, 6); (bread, 4); (cookies, 7), (beverage, 7).
<i>T</i> 2	(milk, 7); (bread, 7); (cookies, 12).
<i>T3</i>	(bread, 8); (cookies, 12); (beverage, 6).
<i>T4</i>	(milk, 2); (bread, 3).
<i>T5</i>	(milk, 3); (bread, 8).
	<u></u>

Quantitative value

How to mine rules from Quantitative Transactions?

Fuzzy Data Mining

- ✓ Solving quantitative values
 - ●e.g. John buys 10 bread, 2 butter and 3 Milk
- √ Fuzzy Data Mining
 - Middle Bread and Little Butter
 - ✓ Middle Bread → Linguistic Term
- √ Three Advantages (Kuok et al.)
 - Understandable to Human
 - Handling Quantitative Value Well (Shape boundary problem)
 - Deriving Extra Information

Fuzzy Association Rules

- ✓ Proposed by Kuok et al. (SIGMOD Record, 1998)
 - Another approach to handle quantitative value

IF middle amount of bread is bought
Then high amount of milk is bought

Linguistic Term

Fuzzy Association Rules (Cont.)

- ✓ How to handle quantitative data?
- √e.g.

Quantitative data

(Bread, 4)

Membership Functions

Linguistic term

$$\frac{0.25}{Bread.Low} + \frac{0.75}{Bread.Middle}$$

Fuzzy Data Mining Algorithm

- ✓Input
 - n quantitative transaction data
 - m attributes (items)
 - A set of membership functions
 - Two thresholds
 - ✓ Minimum support = α
 - ✓ Minimum confidence = λ
- **✓** Output
 - A set of fuzzy association rules

An Example

- ✓ Generating association rules for course grades
 - According to historical data concerning students' course scores
- ✓ The data set
 - 10 transactions

An Example

- ✓ Each case consists of five course scores (Five items)
 - Object-Oriented Programming (denoted OOP),
 - Database (denoted DB),
 - Statistics (denoted ST),
 - Data Structure (denoted DS),
 - Management Information System (denoted MIS).

Transactions

- ✓ The set of students' course scores in the example
 - ●Minsup=1.5, Minconf=0.7

Case	OOP	Database	Statistics	Data structure	MIS
1	86	77	86	71	68
2	61	87	89	77	80
3	84	89	86	79	89
4	73	86	79	84	62
5	70	85	87	72	79
6	65	67	86	61	87
7	71	87	75	71	80
8	86	69	64	84	88
9	75	65	86	86	79
10	83	68	65	85	89

Membership Functions

✓ Three linguistic terms: Low, Middle, High

- ✓ Transform the quantitative values of each transaction datum into fuzzy sets.
- ✓ e.g., Score=86

$$86 = \frac{0.0}{Low} + \frac{0.0}{Middle} + \frac{0.7}{High}$$

Case	OOP		Database		Statistics		Data Structure			MIS					
	L	M	Н	L	M	Н	L	M	Н	L	M	Н	L	M	Н
1	0.0	0.0	0.7	0.0	0.7	0.0	0.0	0.0	0.7	0.0	0.8	0.0	0.1	0.5	0.0
2	0.8	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.9	0.0	0.7	0.0	0.0	0.4	0.2
3	0.0	0.1	0.5	0.0	0.0	0.9	0.0	0.0	0.7	0.0	0.5	0.1	0.0	0.0	0.9
4	0.0	1.0	0.0	0.0	0.0	0.7	0.0	0.5	0.1	0.0	0.1	0.5	0.7	0.0	0.0
5	0.0	0.7	0.0	0.0	0.0	0.6	0.0	0.0	0.8	0.0	0.9	0.0	0.0	0.8	0.1
6	0.4	0.2	0.0	0.2	0.4	0.0	0.0	0.0	0.7	0.8	0.0	0.0	0.0	0.0	0.8
7	0.0	0.8	0.0	0.0	0.0	0.8	0.0	0.8	0.0	0.0	0.8	0.0	0.0	0.4	0.2
8	0.0	0.0	0.7	0.0	0.6	0.0	0.5	0.1	0.0	0.0	0.1	0.5	0.0	0.0	0.8
9	0.0	0.8	0.0	0.4	0.2	0.0	0.0	0.0	0.7	0.0	0.0	0.7	0.0	0.5	0.1
10	0.0	0.2	0.4	0.1	0.5	0.0	0.4	0.2	0.0	0.0	0.0	0.6	0.0	0.0	0.9
count	1.2	3.8	2.3	0.7	2.4	3.8	0.9	1.6	4.6	0.8	3.9	2.4	0.8	2.3	4.0

- ✓ Find L₁
- ✓ Example: minimum support count = 1.5

Itemset	Support
OOP.Middle	3.8
OOP.High	2.3
DB.Middle	2.4
DB.High	3.8
ST.Middle	1.6
ST.High	4.6
DS.Middle	3.9
DS.High	2.5
MIS.Middle	2.3
MIS.High	4.0

- ✓ STEP 4
 - Generate the candidate set C_{r+1} from L_r
 - e.g.
 - √ (OOP.Middle, DB.Middle), (OOP.Middle, DB.High)
 - √ (OOP.Middle, ST.Middle), (OOP.Middle, ST.High)
 - √ (OOP.Middle, DS.Middle), (OOP.Middle, DS.High)
 - √ (OOP.Middle, MIS.Middle), (OOP.Middle, MIS.High)
 - **√** ...,
 - ✓ (DS.High, MIS.Middle), and (DS.High, MIS.High)

- ✓ Calculate the fuzzy membership value of each candidate
- ✓ e.g.

Case	OOP.Middle	DB.High	OOP.Middle ∩DB.High
1	0.0	0.0	0.0
2	0.0	0.8	0.0
3	0.1	0.9	0.1
4	1.0	0.7	0.7
5	0.7	0.6	0.6
6	0.2	0.0	0.0
7	0.8	0.8	0.8
8	0.0	0.0	0.0
9	0.8	0.0	0.0
10	0.2	0.0	0.0

- ✓ Find large itemsets
 - (OOP.Middle, DB.High), (OOP.Middle, ST.Middle)
 - (OOP.Middle, ST.High), (OOP.Middle, DS.Middle)
 - ...

- EP /
- ✓ Construct the association rules
 - If OOP.Middle and DS.Middle then DB.High, conf = 0.94
 - If ST.Middle then OOP.Middle, conf = 0.94
 - •...

Execution Time of FAR Mining

- ✓ Five items will become 15 fuzzy regions in Fuzzy rule mining
 - Number of linguistic terms \rightarrow 3

Discussion

An Efficient Approach

✓ Use only the region with the maximum fuzzy cardinality for each item

Case	OOP		Database		Statistics		Data Structure			MIS					
	L	M	Н	L	M	Н	L	M	Н	L	M	Н	L	M	H
1	0.0	0.0	0.7	0.0	0.7	0.0	0.0	0.0	0.7	0.0	0.8	0.0	0.1	0.5	0.0
2	0.8	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.9	0.0	0.7	0.0	0.0	0.4	0.2
3	0.0	0.1	0.5	0.0	0.0	0.9	0.0	0.0	0.7	0.0	0.5	0.1	0.0	0.0	0.9
4	0.0	1.0	0.0	0.0	0.0	0.7	0.0	0.5	0.1	0.0	0.1	0.5	0.7	0.0	0.0
5	0.0	0.7	0.0	0.0	0.0	0.6	0.0	0.0	0.8	0.0	0.9	0.0	0.0	0.8	0.1
6	0.4	0.2	0.0	0.2	0.4	0.0	0.0	0.0	0.7	0.8	0.0	0.0	0.0	0.0	0.8
7	0.0	0.8	0.0	0.0	0.0	0.8	0.0	0.8	0.0	0.0	0.8	0.0	0.0	0.4	0.2
8	0.0	0.0	0.7	0.0	0.6	0.0	0.5	0.1	0.0	0.0	0.1	0.5	0.0	0.0	0.8
9	0.0	0.8	0.0	0.4	0.2	0.0	0.0	0.0	0.7	0.0	0.0	0.7	0.0	0.5	0.1
10	0.0	0.2	0.4	0.1	0.5	0.0	0.4	0.2	0.0	0.0	0.0	0.6	0.0	0.0	0.9
count	1.2	3.8	2.3	0.7	2.4	3.8	0.9	1.6	4.6	0.8	3.9	2.4	0.8	2.3	4.0

An Efficient Approach (Cont.)

- ✓ Advantages and problems
 - Less number of large itemsets
 - Not complete
 - Less computation time
- ✓ Other approaches
 - FP-tree-based approaches

Items Have Lifespan

What should we do to mine fuzzy temporal association rules from temporal transactions?

Fuzzy Temporal ARM Algorithm

- ✓Input
 - Temporal quantitative transactions TempTrans
 - A set of membership functions MF
 - Two thresholds
 - ✓ Minimum support threshold α
 - ✓ Minimum confidence threshold λ
- **✓** Output
 - Fuzzy temporal association rule set temportalFuzzyRuleSet

Used Transactions and MF

✓ Two periods and five transactions

Period	TID	Items
	Trans ₁	(A, 5), (C,4);
P_1 (Aug-5)	Trans ₂	(A, 3), (B,2);
	Trans ₃	(C,4);
$D_{i}(\Lambda u = 6)$	$Trans_4$	(A, 3), (B, 2), (D,4);
P_2 (Aug-6)	Trans ₅	(A, 3), (B, 5), (D,4), (E,2);

✓ Membership functions for Items

Step 1.1

✓ Transform quantitative value into fuzzy sets

Period	TID	Items
	Trans ₁	(1/A.Low), (0.66/C.Low + 0.33/C.High);
$P_1(\text{Aug-5})$	$Trans_2$	(0.5/A.Low), (0.5/B.Low);
	$Trans_3$	(0.66/C.Low + 0.33/C.High);
	Trans ₄	(0.5/A.Low), (0.5/B.Low), (1/D.High);
P_2 (Aug-6)	Tuans	(0.5/A.Low), (0.75/B.Low + 0.25/B.High),
	Trans ₅	(1/D.High), (1/E.High);

Step 1.2

Time Period	Number of Transactions	Temporal Items
P_{1}	3	A, B, C
P_2	2	D, E

Step 2

• e.g., Fuzzy region *A.Low*

 \checkmark Scalar cardinality is 2.5 (= 1.0 + 0.5 + 0.0 + 0.5 + 0.5)

Period	TID	Items
	$Trans_1$	(1/A.Low)
$P_I(\text{Aug-5})$	Trans ₂	(0.5/A.Low)
	Trans ₃	0
D (Aug 6)	Trans ₄	(0.5/A.Low)
P ₂ (Aug-6)	Trans ₅	(0.5/A.Low)

Items	Count	Items	Count
A.Low	2.5	C.High	0.66
A.High	0	D.Low	0
B.Low	1.75	D.High	2
B.High	0.25	E.Low	0
C.Low	1.33	E.High	1

Step 3

✓ Calculate fuzzy temporal support of fuzzy regions according to temporal item starting periods

Period	# Transactions	Temporal Items
P_I	3	A, B, C
P_2	2	D, E

Items	Count
A.Low	2.5

tFuzzySup(A.Low) = 2.5/5

Items	Count	
D.High	2	

tFuzzySup	(D.High)	= 2 /	2
-----------	----------	-------	---

Items	tFuzzy Support	Items	tFuzzy Support
A.Low	0.5	C.High	0.132
A.High	0	D.Low	0
B.Low	0.35	D.High	1
B.High	0.05	E.Low	0
C.Low	0.266	E.High	0.5

Step 4

- ✓ Minimum support was set at 0.3,
- ✓ Four large 1-itemsets are derived as follows

Items	tFuzzy Support	Items	tFuzzy Support
A.Low	0.5	C.High	0.132
A.High	0	D.Low	θ
B.Low	0.35	D.High	1
B.High	0.05	E.Low	0
C.Low	0.266	E.High	0.5

Steps 5 to 9: Find All Large Itemsets

- ✓ Candidate 2-itemset and its tFuzzySupport
 - Case1: Items have the same starting period
 - ✓ Take {*A.Low*, *B.Low*} as an example

Period	# Transactions	Temporal Items
P_1	3	A, B, C
P_2	2	D, E

Period	TID	A.Low	B.Low	$A.Low \cap B.Low$
P_1 (Aug-5)	Trans ₁	1.0	0.0	0.0
	Trans ₂	0.5	0.5	0.5
	Trans ₃	0.0	0.0	0.0
D (Aug 6)	Trans ₄	0.5	0.5	0.5
<i>P</i> ₂ (Aug-6)	Trans ₅	0.5	0.75	0.5

Steps 5 to 9: Find All Large Itemsets (Cont.)

- ✓ Candidate 2-itemset and its tFuzzySupport
 - Case 2: Items have different starting period
 - ✓ Take {A.Low, D.High} as an example

Period	# Transactions	Temporal Items
P_1	3	A, B, C
P_2	2	D , E

Period	TID	A.Low	D.High	$A.Low \cap D.High$
P_1 (Aug-5)	$Trans_1$	1.0	1	0.0
	Trans ₂	0.5	1	0.0
	Trans ₃	0.0	1	0.0
P_2 (Aug-6)	Trans ₄	0.5	1.0	0.5
	Trans ₅	0.5	1.0	0.5

Steps 5 to 9: Find All Large Itemsets (Cont.)

- ✓ Minimum support is 0.3
- ✓ 5 large 2-itemset are generated

Itemset	Count	tFuzzySupport
(A.Low, B.Low)	1.5	0.3 (=1.5/5)
(A.Low, D.High)	1	0.5 (=1/2)
(B.Low, D.High)	1.25	0.625 (=1.25/2)
(B.Low, E.High)	0.75	0.375 (=0.75/2)
(D.High, E.High)	1	0.5 (=1/2)

Steps 10 to 11: Generate Temporal FAR

- ✓ Take temporal large 2-itemset (A.Low, D.High) as an example
 - 2 candidate rules are listed as follows:

CRule1: If D. High, Then A. Low, and

CRule2: If A.Low, Then D.High.

• Confidence of CRule2 = 0.5 (0.5 / 1)

Itemset	tFuzzySupport
(A.Low, D.High)	0.5 (=1/2)

<i>P</i> ₂ (Aug-6)	Trans ₄	(0.5/A.Low)
	Trans ₅	(0.5/A.Low)

Conf.(CRule2) = 0.5 / 1

Brief Summery (Cont.)

Agrawal et al. (SIGMOD'93)

• Han *et al.* (SIGMOD'00) FP-growth algorithm

Taxonomy

- Han *et al.* (*VLDB* '95) Level-by-Level Approach
- Srikant *et al.* (*VLDB* '95) Generalized Approach

Quantitative Value

- •Hong et al. (IDA) Fuzzy AR mining
- •Chen et al. (Applied soft computing)
 Fuzzy temporal AR mining

Multiple Minimum Support

Liu et al. (KDD'99) -MIS

• Lee *et al.* (*IJAR '05*) Maximum constraints

Taxonomy

- Lui *et al.* (*LNAI*, 2000) Generalized Approach
- Tzeng *et al.* (*LNCS*, 2001) Generalized Approach

Advanced Fuzzy Data Mining Approaches

- ✓ Business-oriented problems
 - How to find high utility itemsets
 - How to reduce cost in manufacturing

High Utility Itemsets

Profit: NT\$2500

Erasable Pattern

1. High Coherent Utility Fuzzy Itemsets Mining

2. Erasable Pattern Mining

Two Fuzzy Data Mining Approaches

- √ High coherent utility fuzzy itemset mining
- ✓ Erasable-itemset mining

Actionable Association Rule?

✓ An example

How to make sure the rule is more actionable?

How about the Following Solution

✓ A rule: Bread → Milk

- √ The following three rules should also be held
 - ●Not Bread → Not Milk
 - ●Not Bread → Milk
 - ●Bread → Not Milk

Actionable Rule - Coherent Concept

- \checkmark A rule: X imply Y (X \rightarrow Y)
 - ullet Calculate contingency table of X \rightarrow Y

Contingency Table of $X \rightarrow Y$

Frequency of		Consequence Y	
co-occurrences		Υ	¬Υ
Antocodont V	Χ	$(X \rightarrow Y) Q_1$	$(X \rightarrow \neg Y) Q_2$
Antecedent X	¬X	$(\neg X \rightarrow Y) Q_3$	$(\neg X \rightarrow \neg Y) Q_4$

- ✓ Reach the Four conditions:
 - $\bullet Q_1 > Q_2$, $Q_1 > Q_3$, $Q_4 > Q_2$ and $Q_4 > Q_3$
 - $\bullet X \rightarrow Y$ is a coherent rule

High Coherent Utility Fuzzy Itemsets Mining

√ Flowchart

An Example

✓ Six Transactions

TID	Items
T1	(milk, 10); (bread, 10); (cookies, 7), (beverage, 7).
T2	(milk, 12); (bread, 14); (cookies, 12).
T3	(bread, 2); (cookies, 12).
T4	(milk, 2); (bread, 4); (cookies, 5).
T5	(milk, 9) ;(bread, 9).
Т6	(milk, 5); (beverage, 12).

- ✓ Minimum utility ratio α = 10%
- ✓ External Utility

Items	milk	bread	cookies	beverage
EU	5	3	1	7

Membership Functions

✓ Three Linguistic Terms: Low, Middle and High

Step 1: Transform to Fuzzy Value

✓ Take (milk, 10) as an example

TID	Fuzzy Set
T1	$(\frac{0.5}{milk.Middle} + \frac{0.5}{milk.High})(\frac{0.5}{bread.Middle} + \frac{0.5}{bread.High})$ $(\frac{0.25}{cookies.Low} + \frac{0.75}{cookies.Middle})(\frac{0.25}{beverage.Low} + \frac{0.75}{beverage.Middle})$
T2	$(\frac{1}{milk.High})(\frac{1}{bread.High})(\frac{1}{cookies.High})$
Т3	$(\frac{1}{bread.Low})(\frac{1}{cookies.High})$
T4	$(\frac{1}{milk.Low})(\frac{1}{bread.Low})(\frac{0.75}{cookies.Low} + \frac{0.25}{cookies.Middle})$
T5	$(\frac{0.75}{milk.Middle} + \frac{0.25}{milk.High})(\frac{0.75}{bread.Middle} + \frac{0.25}{bread.High})$
Т6	$(\frac{0.75}{milk.Low} + \frac{0.25}{milk.Middle})(\frac{1}{beverage.High})$

$$\frac{0.5}{milk.Middle} + \frac{0.5}{milk.High}$$

Step 2: Generate Complement Fuzzy Set

✓ Fuzzy value of (milk, 10) is (0/milk.Low + 0.5/milk.Middle + 0.5/milk.High)

Step 3: Collect Fuzzy Regions

✓ 12 fuzzy regions can be collected

All of Fuzzy Regions				
milk.Low cookies.Lo				
milk.Middle	cookies.Middle			
milk.High	cookies.High			
bread.Low	beverage.Low			
bread.Middle	beverage.Middle			
bread.High	beverage.High			

Step 4: Calculate Utility of Fuzzy Itemsets Value (UFI)

✓ Take milk.Middle as an example

Milk.M	
0.5	
0	
0	
0	
0.75	
0.25	

Items	milk	bread	cookies	beverage
EU	5	3	1	7

$$(0.5+0+0+0+0.75+0.25) \times (8\times5)$$

Fuzzy regions	UFI	Fuzzy regions	UFI
milk.Low	8.75	cookies.Low	1
milk.Middle	60	cookies.Middle	8
milk.High	105	cookies.High	24
bread.Low	6	beverage.Low	1.75
breadMiddle	30	beverage.Middle	42
bread.High	63	beverage.High	84

Step 5: Calculate Total Utility (TU)

Fuzzy regions	UFI	Fuzzy regions	UFI
milk.Low	8.75	cookies.Low	1
milk.Middle	60	cookies.Middle	8
milk.High	105	cookies.High	24
bread.Low	6	beverage.Low	1.75
breadMiddle	30	beverage.Middle	42
bread.High	63	beverage.High	84

Steps 6 & 7: Put into the high utility fuzzy itemsets

- ✓ Minimum utility ratio $\alpha = 10\%$
- ✓ Minimum utility value = Total utility × Minimum utility ratio = $433.5 \times 10\% = 43.35$

Fuzzy regions	UFI	Fuzzy regions	UFI
mil ik ow	8.75	cooki es .Low	1
milk.Middle	60	cookie	8
milk.High	105	cook ik s.High	24
breakLow	6	bever x e.Low	1.75
bread y liddle	30	bevera	42
bread.High	63	beverage.High	84

HUFI
milk.Middle
milk.High
bread.High
beverage.High

HUFI is not empty, continue

Step 8.1: Join Candidate High Utility Fuzzy Itemsets

- ✓ Generate candidate High Utility Fuzzy Itemsets (CHUFI)
 - •Similar to generate candidate 2-itemsets

Fuzzy Regions

milk.Middle

milk.High

bread.High

beverage.High

CHUFI			
bread.High	milk.Middle		
beverage.High	milk.Middle		
bread.High	milk.High		
beverage.High	milk.High		
bread.High	beverage.High		

Step 8.2: Calculate Utility of Fuzzy Itemsets Value

•UFI₁(milk.High, bread.High) =
$$(0.5+1+0.25) \times (5\times12) + (0.5+1+0.25) \times (3\times12)$$

= $105 + 63 = 168$

Items	milk	bread	cookies	beverage
EU	5	3	1	7
1 _	!			
0.75	•	\		
0.5				
į				
0.25				
o L	<u> </u>	<u>/ </u>	7:1-1-1- 7	
0	1 2 3	4 5 6 7	8 9 10 11 12	13 14 15 16

milk.H	bread.H	TID
0.5	0.5	Υ
1	1	Υ
0	0	
0	0	
0.25	0.25	Υ
0	0	

Step 8.3: Put into High Utility Fuzzy Itemsets (HUFI)

✓ Continue previous example

Item	UFI ₁		
bread.High	milk.Middle	77	
beverage.High	milk.Middle	94	
bread.High	milk.High	168	
beverage.High	milk.High	0 -	<43.35
bread.High	beverage.High	0 _	12.25
			<43.35

HUFI			
bread.High	milk.Middle		
beverage.High	milk.Middle		
bread.High	milk.High		

Step 8.4: Calculate the Contingency Table

✓ Take (milk.High, bread.High) as an example

milk.H	bread.H	TID
0.5	0.5	Υ
1	1	Y
0	0	
0	0	
0.25	0.25	Y
0	0	

milk.H	~bread.H	TID
0.5	0.5	Υ
1	0	
0	1	
0	1	
0.25	0.75	Υ
0	1	

~milk.H	bread.H	TID
0.5	0.5	Υ
0	1	
1	0	
1	0	
0.75	0.25	Υ
1	0	

~milk.H	~bread.H	TID
0.5	0.5	Υ
0	0	
1	1	Υ
1	1	Υ
0.75	0.75	Υ
1	1	Υ

Step 8.4: Calculate the Contingency Table (Cont.)

✓ Contingency tables of milk.High → bread.High and bread.High → milk.High should be calculated

(milk.High→bread.High)

	Consequence bread.H	Consequence ~bread.H
Antecedent milk.H	Q1: 168	Q2: 102
Antecedent ~milk.H	Q3: 90	Q4: 408

(bread.High → milk.High)

	Consequence milk.H	Consequence ~milk.H
Antecedent bread.H	Q1: 168	Q2: 90
Antecedent ~bread.H	Q3: 102	Q4: 408

Step 8.5: Check HUFI meets the four conditions

- \bullet Q1 > Q2 (168 > 90)
- \bullet Q1 > Q3 (168 > 102)
- \bullet Q4 > Q2 (408 > 90)
- ●Q4 > Q3 (408 > 102) put (milk.High, bread.High) into High Coherent UFI!

	Consequence bread.H	Consequence ~bread.H
Antecedent milk.H	Q1: 168 >	Q2: 102
Antecedent ~milk.H	Q3: 90 <	Q4: 408

	Consequence milk.H	Consequence ~milk.H
Antecedent bread.H	Q1: 168 >	Q2: 90
Antecedent ~bread.H	Q3: 102 <	Q4: 408

Steps 8.6 to 9

- ✓ Step 8.6
 - Check the HCUFI set is empty or not
 - ●No, goto step 9.
- ✓Step 9
 - ullet Parameter k+1
 - Lengthen itemsets

Step 10: Output HCUFI

✓ In this example, only a HCUFI is generated

HCUFI
bread.High milk.High

Erasable-Itemset Mining

- ✓ Possible Reasons for erasable-itemset mining
 - Control the balance between cost and profit
 - Meet financial crisis or other business reasons

META Algorithm

- ✓ Proposed by Deng et al. in 2009
 - •A level-wise approach
 - Based on the Apriori algorithm
- √ Goal
 - •Find materials can be eliminated and still have balance between cost and profit
 - Provide information for manager make a better production plan

An Example for META Algorithm

✓ Input dataset contain information of product, materials and profit

PID	Materials	Profit Value
P_{I}	ABE	200
P_2	AB	1000
P_{3}	CD	500
P_4	BDEF	50

- ✓ Parameter
 - A maximum erasable ratio α = 35%

Loss of Deleting An Itemset

√ Given the following information

PID	Items	Profit Value
P_{I}	ABE	200
P_2	AB	1000
P_3	CD	500
P_{4}	BDE F	50

- ✓ Delete Itemset $\{D\}$ affect P_3 , P_4
 - \bullet Loss(D) = 500 + 50 = 550
- ✓ Delete Itemset $\{DE\}$ affect P_1 , P_3 , P_4
 - \bullet Loss(DE) = 200 + 500 + 50 = 750

An Erasable Itemset

- ✓ Materials can be deleted
 - •Loss(X) ≤ total profit value (T) × maximum erasable ratio (α)

PID	Items	Profit Value
P_{I}	ABE	200
P_2	AB	1000
$P_{\mathfrak{Z}}$	CD	500
P_4	BDEF	50

$$T = 200 + 1000 + 500 + 50 = 1750$$

Threshold =
$$1750 \times 35\% = 612.5$$

$$Loss(D) = 550 < 612.5$$
, D is an erasable itemset

$$Loss(DE) = 750 > 612.5$$
, DE is a non-erasable itemset

Mining Erasable Itemsets

Database		
PID	Items	Profit Value
<i>P1</i>	ABE	200
P2	AB	1000
<i>P3</i>	CD	500
P4	BDEF	50
Gain threshold 612.5		

Candidate 1-itemset	
A	1200
В	1250
C	500
D	550
E	250
F	50

Erasable 1-itemset		
C	500	
D	550	
E	250	
F	50	

Mining Erasable Itemsets (Cont.)

Candidate 2-itemset	
CD	550
CE	750
CF	550
DE	750
DF	550
EF	250

Candidate 2-itemset	
CD	
CE	
CF	
DE	
DF	
EF	

Erasable 2-itemset		
CD	550	
CF	550	
DF	550	
EF	250	

Mining Erasable Itemsets (Cont.)

Erasable 2-itemset		
CD	550	
CF	550	
DF	550	
EF	250	

Candidate 3-itemset

CDF

Candidate 3-itemset

CDF 550

Erasable 3-itemset

CDF 550

Mining Erasable Itemsets (Cont.)

Final erasable itemsets		
C	500	
D	550	
E	250	
F	50	
CD	550	
CF	550	
DF	550	
EF	250	
CDF	550	

Brief Summery (Cont.)

Single Minimum Support

Agrawal et al. (SIGMOD'93)

• Han *et al.* (*SIGMOD'00*) FP-growth algorithm

Taxonomy

- Han *et al.* (*VLDB'95*) Level-by-Level Approach
- Srikant *et al.* (*VLDB* '95) Generalized Approach

Quantitative Value

- •Hong et al. (IDA) Fuzzy AR mining
- •Chen et al. (Applied soft computing)
 Fuzzy temporal AR mining

Multiple Minimum Support

Liu et al. (KDD'99) -MIS

• Lee *et al.* (*IJAR*, 2005) Maximum constraints

Taxonomy

- Lui *et al.* (*LNAI*, 2000) Generalized Approach
- Tzeng *et al.* (*LNCS*, 2001) Generalized Approach

Utility Itemset Mining

Multip

idns'

Apriori

• Chen *et al.* (*Soft Computing'14*) High Coherent Utility Fuzzy Itemsets Mining

Erasable Itemset Mining

•Deng et al. (ICMLC'09) Erasable Itemset Mining

Conclusions

- ✓ Single minimum support
 - Utility itemset mining with taxonomy
 - Erasable itemset mining with taxonomy
 - Erasable itemset mining with quantitative value
 - Genetic-fuzzy data mining
 - •etc
- ✓ Multiple minimum support
 - Topics listed above can take multiple minimum support into consideration