1 Infinite Words

Theorem 1.1. Every non-empty ω -regular language contains an ultimately periodic word.

Proof. Let U be ω -regular, so there is a regular expression $r = \bigcup_{i=1}^n U_i \cdot V_i^{\omega}$ for it. Since $U \neq \emptyset$, n must be larger than 0. Let $u \in U_1$ and $v \in V_1$ be arbitrary. Then $uv^{\omega} \in U$.

Theorem 1.2. For a Kripke structure K with initial state s and $\varphi \in LTL$, the model checking problem $L(K, s) \subseteq L(\varphi)$? is PSPACE-complete.

Proof. **PSPACE** Compute the intersection automaton for $L(K, s) \cap L(\neg \varphi)$ and test it for emptiness. **PSPACE-hard** Encode a poly.-length Turing tape as a Kripke structure and its correct behavior in LTL.

Theorem 1.3 (Büchi). The MSO theory of $(\mathbb{N}, +1, <, 0)$ is decidable.

Proof. Corresponds to S1S formula. Can be checked with NBA emptiness test.

Theorem 1.4. The FO theory of $(\mathbb{R}, +, <, 0)$ is decidable.

Proof. Encode real numbers x by triples of sets (X_s, X_i, X_f) with the number's sign $(X_s = \emptyset)$ or $\{0\}$, the positive decimal digits in binary encoding, and the positive fractional digits in binary encoding. Then an FO sentence can be transformed to an equi-satisfiable MSO sentence over $(\mathbb{N}, +1, <, 0)$.

Theorem 1.5. Subset-construction does not suffice to determinize NBAs.

Proof. Example: Let $\mathcal{A} = (Q, \{a\}, q_0, \Delta, F)$ be an NBA with $Q = \{q_0, q_1\}, F = \{q_1\}, \text{ and } \Delta = \{(q_0, a, q_0), (q_0, a, q_1)\}$. Then $L(\mathcal{A}) = \emptyset$.

The subset construction yields $\mathcal{A}' = \{\{\{q_0\}, \{q_0, q_1\}\}, \{a\}, \{q_0\}, \Delta, \{P \subseteq Q \mid P \cap F \neq \emptyset\}\}$ with $\Delta = \{(\{q_0\}, a\{q_0, q_1\}), (\{q_0, q_1\}, a, \{q_0, q_1\})\}$. Therefore, the word a^{ω} has an accepting run $\{q_0\}\{q_0, q_1\}^{\omega}$.

Theorem 1.6. Let \mathcal{A} be a Rabin automaton and let ρ_1, ρ_2, ρ be runs of \mathcal{A} . If $Inf(\rho_1) \cup Inf(\rho_2) = Inf(\rho)$ and ρ_1 and ρ_2 are both non-accepting, then ρ is also non-accepting.

Proof. Let $\Omega = \{(E_i, F_i) \mid 1 \leq i \leq m\}$. Let $I_1 = \operatorname{Inf}(\rho_1)$, $I_2 = \operatorname{Inf}(\rho_2)$, and $I = \operatorname{Inf}(\rho)$. Assume ρ is accepting, so there is an $1 \leq i \leq m$ s.t. $I \cap E_i = \emptyset$ and $I \cap F_i \neq \emptyset$. That means $I \cap E_i = (I_1 \cup I_2) \cap E_i = \emptyset$, so $I_1 \cap E_i = I_2 \cap E_i = \emptyset$. Since ρ_1 and ρ_2 are non-accepting, that means $I_1 \cap F_i = I_2 \cap F_i = \emptyset$ and therefore $I \cap F_i = \emptyset$, which is a contradiction.

Theorem 1.7. For every n, there is $L_n \subseteq \Sigma^{\omega}$ s.t. there is an NBA that recognizes L_n with n+2 states, but every det. Rabin automaton that recognizes L_n has at least n! states.

Proof. We define the NBA $\mathcal{A}_n = (Q, \Sigma_n, q_0, \Delta, F)$ with

- $\Sigma_n = \{\#, 1, \dots, n\}$
- $Q = \{q_0, q_f, q_1, \dots, q_n\}$
- $F = \{q_f\}$
- Δ:
 - For all $1 \le i \le n$, for all $a \in \Sigma_n$: $q_i \xrightarrow{a} q_i$ and $q_0 \xrightarrow{a} q_i$
 - For all $1 \le i \le n$: $q_i \xrightarrow{i} q_f$ and $q_f \xrightarrow{i} q_i$

Then $\alpha \in L(\mathcal{A}_n)$ iff there are $a_1, \ldots, a_k \in \{1, \ldots, n\}$ such that the words $a_1 a_2, a_2 a_3, \ldots, a_k a_1$ occur infinitely often in α .

Let $\mathcal{A}' = (Q', \Sigma_n, q'_0, \delta, \Omega)$ be a DRA for $L(\mathcal{A}_n)$. We want to show that \mathcal{B} has at least n! states. A permutation word is a word $(i_1 \dots i_n \#)^{\omega}$ with $\{i_1, \dots, i_n\} = \{1, \dots, n\}$; let PW be the set of permutation words. Let $\alpha, \beta \in \text{PM}$ with $\alpha \neq \beta$ and let $\rho_{\alpha}, \rho_{\beta}$ the respective runs of \mathcal{B} . We claim that $\text{Inf}(\rho_{\alpha}) \cap \text{Inf}(\rho_{\beta}) = \emptyset$. If that is true, then $|Q'| \geq |\text{PM}| = n!$.

Claim : $\operatorname{Inf}(\rho_{\alpha}) \cap \operatorname{Inf}(\rho_{\beta}) = \emptyset$

Let $\alpha = (\overline{i}\#)^{\omega}$ and $\beta = (\overline{j}\#)^{\omega}$ with $\overline{i} = i_1 \dots i_n$ and $\overline{j} = j_1 \dots j_n$. Assume there is a $q \in \operatorname{Inf}(\rho_{\alpha}) \cap \operatorname{Inf}(\rho_{\beta})$. We extract the following segments from the two runs:

- ρ_1 from ρ_α with $\rho_1: q_0 \stackrel{w}{\to} q$ for some $w \in \Sigma_n^*$.
- ρ_2 from ρ_α with $\rho_2: q \xrightarrow{w} q$ for some $w \in \Sigma_n^* \bar{i} \Sigma_n^*$.
- ρ_3 from ρ_β with $\rho_3: q \xrightarrow{w} q$ for some $w \in \Sigma_n^* \overline{j} \Sigma_n^*$.
- $\pi := \rho_1(\rho_2\rho_3)^{\omega}$

Then π is a run of \mathcal{A}' on a word γ with $\operatorname{Inf}(\pi) = \operatorname{Inf}(\rho_{\alpha}) \cup \operatorname{Inf}(\rho_{\beta})$. Since $\overline{i} \neq \overline{j}$, there is a minimal k with $i_k \neq j_k$. By this choice, there must also be l, l' such that $i_k = j_l$ and $j_k = i_{l'}$. Therefore, the following pairs all occur infinitely often in γ :

$$i_k i_{k+1}, i_{k+1} i_{k+2}, \dots, i_{l'-1} i_{l'}, j_k j_{k+1}, \dots, j_{l-1} j_{l-1} i_{l'}$$

As shown before, that means $\gamma \in L(\mathcal{A}_n)$, so π is an accepting run. This contradicts the Union Lemma (theorem 1.6).

Theorem 1.8. Given an ABA \mathcal{A} , the dual $\tilde{\mathcal{A}}$ is an alternating co-Büchi automaton which accepts $L(\mathcal{A})^{\complement}$, with $\tilde{F} = Q \setminus F$ and $\tilde{\delta}$ exchanging true/false and $\wedge \wedge \vee$.

Proof. We claim that $L(A)^{\complement} = L(\tilde{A})$.

 \subseteq Let $\alpha \notin L(\mathcal{A})$, so for every run tree t of \mathcal{A} on α , there is a path π_t which is rejecting. One can show that the combination of all these paths is an accepting run of $\tilde{\mathcal{A}}$.

 \supseteq Let $\alpha \in L(\mathcal{A})$, so there is an accepting run tree t. Let \tilde{t} be a run tree of $\tilde{\mathcal{A}}$ on α . One can show (by induction on the path length) that there is a path in t that is also a path in \tilde{t} . Since that path is accepting in t, it must be rejecting in \tilde{t} .

1.1 Minimization

Theorem 1.9. There is a DBA-recog. language which does not have a unique minimal DBA. DBAs minimized with the DFA minimization algorithm can be arbitrarily bad compared to a minimal DBA.

Proof. The language $(a^*b)^{\omega}$ has two non-isomorphic DBAs.

For every n > 0, consider $L_n = \{a^n\}$. The minimal NFA for L_n has n + 1 states but $\lim(L_n) = \{a^{\omega}\}$ can be recognized by a DBA with a single state.

Theorem 1.10. Let $U \subseteq \Sigma^{\omega}$ be regular and \sim_U be the Myhill-Nerode equivalence relation. Every DBA for U has at least $index(\sim_U)$ many states.

Proof. Assume $\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$ is a DBA for U with $|Q| < \operatorname{index}(\sim_U)$. That means there are $u, v \in \Sigma^*$ with $u \not\sim_U v$ but $\delta^*(q_0, u) = \delta^*(q_0, v)$. By definition of the automaton, that means $u \sim_U v$, which is a contradiction.

Theorem 1.11. For every n, there is a $U_n \subseteq \Sigma^{\omega}$ such that $index(\sim_{U_n}) = 1$ but every DBA for U_n has at least n states.

Proof. Let $U_n = \{\alpha \mid a^n b \text{ appears infinitely often as a substring in } \alpha \}$. The language is prefix independent, so index $(\sim_{U_n}) = 1$. However, a DBA for U_n clearly requires n+1 states.

Theorem 1.12. The problem DBAMIN = $\{(A, k) \mid A DBA, k \in \mathbb{N}, There is a k-state DBA for <math>L(A)\}$ is NP-complete.

Definition 1. For $U \subseteq \Sigma^{\omega}$, we define the canonical automaton $\mathcal{A}_U = (Q_U, \Sigma, q_0^U, \delta_U, F_U)$ with

- $Q_U = \{[u]_{\sim_U} \mid u \in \Sigma^*\}$
- $q_0^U = [\varepsilon]_{\sim_U}$
- $\delta_U([u]_{\sim_U}, a) = [ua]_{\sim_U}$
- $F_U = \{[u]_{\sim_U} \mid \exists v \in \Sigma^+ : u \sim_U uv \text{ and } uv^\omega \in U\}$

Theorem 1.13. Let U be WDBA-recognizable. Then A is a WDBA and $L(A_U) = U$.

Proof. We show the statement in two steps.

Claim : A_U is a WDBA.

Let $[u]_{\sim_U}, [v]_{\sim_U} \in Q_U$ be two states in the same SCC and $[u]_{\sim_U} \in F_U$. We need to show that $[v]_{\sim_U} \in F_U$ as well. Since the two states are in the same SCC, let $\mathcal{A}_U : [u]_{\sim_U} \stackrel{y}{\to} [v]_{\sim_U} \stackrel{z}{\to} [u]_{\sim_U}$. We have $u(uz)^{\omega} \in U$.

Hence, $uy(zy)^{\omega} \in U$. By definition we know $[uy]_{\sim_U} = [u']_{\sim_U}$, so $u'(zy)^{\omega} inU$ which means that $[u']_{\sim_U} \in F_U$.

Claim : $L(A_U) = U$.

Let uv^{ω} be an ultimately periodic word. By the pigeon hole principle, there are m, n > 0 such that $uv^m \sim_U uv^m v^n$.

$$uv^{\omega} \in U$$

$$\Leftrightarrow uv^{m}(v^{n})^{\omega} \in U$$

$$\Leftrightarrow [uv^{m}]_{\sim_{U}} \in F_{U}$$

$$uv^{m} \sim_{U} uv^{m} v^{n} uv^{m} (v^{n})^{\omega} \in L(\mathcal{A}_{U})$$

$$\Leftrightarrow uv^{\omega} \in L(\mathcal{A}_{U})$$

Now consider $X = (U \cup L(\mathcal{A}_U)) \setminus (U \cap L(\mathcal{A}_U))$. If the two languages are equal, then X must be empty. As we have shown above, U and $L(\mathcal{A}_U)$ contain the same ultimately periodic words, so X does not contain any. It is also constructed by Boolean operations on regular languages, so X must be regular. That means that $X = \emptyset$.

Definition 2. Let $A = (Q, \Sigma, q_0, \Delta, F)$ be an NBA. A **looping state** is a state in Q from which there is a non-empty path that ends in that same state.

We define the **acceptance height** $ah: Q \to \mathbb{N}$ as follows: Let $q \in Q$. If all looping states that are reachable from q are accepting, then ah(q) := 0. Otherwise, let n be the maximal acceptance height of a state that is reachable from q but not in the same SCC. If q is non-loopinig, set ah(q) := n. Otherwise,

$$ah(q) := \begin{cases} 2 \cdot \lfloor \frac{n-1}{2} \rfloor + 2 & \text{if } q \in F \\ 2 \cdot \lfloor \frac{n}{2} \rfloor + 1 & \text{if } q \notin F \end{cases}$$

A is in **normal form** if $F = \{q \in Q \mid ah(q) \text{ is even}\}.$

Theorem 1.14. Let A be a weak DBA. One can compute an equivalent weak DBA in normal form in linear time.

Proof. SCCs can be computed in linear time. Given the SCCs, the inductive definition of ah can be computed in linear time. \Box

Theorem 1.15. Let A be a weak DBA in normal form. Minimizing A as a DFA also results in a minimal weak DBA.

1.2 Simulation Game

Definition 3. Let $A = (Q, \Sigma, q_0, \Delta, F)$ be an NBA. We define the delayed simulation game $\mathcal{G}_{\mathcal{A}}(G_{\mathcal{A}}, Win)$ as follows

- $G_A = (V_0, V_1, E, c)$
- $V_0 = \Sigma \times Q \times Q$
- $V_1 = Q \times Q$
- Player 0 moves from (a, p, q) to a(p, p') with $(q, a, p') \in \Delta$
- Player 1 moves from (q, q') to a (a, p, q') with $(q, a, p) \in \Delta$

$$\bullet \ c: V \to \{-1,0,1\} \ \textit{with} \ c(v) = \begin{cases} -1 & \textit{if} \ v \in F \times (Q \setminus F) \\ 1 & \textit{if} \ v \in Q \times F \\ 0 & \textit{otherwise} \end{cases}$$

• $\alpha \in Win \ iff \ after \ every -1 \ in \ \alpha$, there is a 1 later on.

Write $q \leq_{de} q'$ if player 0 has a winning strategy from (q, q').

Idea: Player 1 chooses symbols in Σ and transitions on the second state. Player 0 has to answer with transition on the first state which lead to a run of the same acceptance.

Theorem 1.16. If $q \leq_{de} q'$ and $q' \leq_{de} q$, then q and q' can be merged in A without changing the language of the automaton.

Theorem 1.17. The delayed simulation game can be reduced to a Büchi game in linear time.

2 Finite Trees

Theorem 2.1 (Pumping Principle). Let $T \subseteq T_{\Sigma}$ be a regular ranked tree language. There is a $n \in \mathbb{N}$ such that for all trees $t \in T$, all m > n, and all paths $\pi_1 \dots \pi_m$, there are $1 \le i < j \le m$ such that for all $k \in \mathbb{N}$:

$$t[\circ/u] \cdot (t[\circ/v]|_u)^k \cdot t|_v \in T$$

where $u = \pi_1 \dots \pi_i$ and $v = \pi_1 \dots \pi_i$.

Definition 4. Let $T \subseteq T_{\Sigma}$. The Myhill-Nerode equivalence is $\sim_T \subseteq T_{\Sigma} \times T_{\Sigma}$ with

$$t_1 \sim_T t_2 \Leftrightarrow \forall s \in S_\Sigma : s \cdot t_1 \in T \leftrightarrow s \cdot t_2 \in T$$

The index of T is $Index(\sim_T) := |T/\sim_T|$.

Definition 5. Let $T \subseteq T_{\Sigma}$. We define the canonical DTA $\mathcal{A}_T = (Q_T, \Sigma, \delta_T, F_T)$ as

- $\bullet \ Q_T = \{ [t]_{\sim_T} \mid t \in T_{\Sigma} \}.$
- For all $a \in \Sigma_i$: $\delta_T([t_1]_{\sim_T}, \dots, [t_i]_{\sim_T}, a) = [a(t_1, \dots, t_i)]_{\sim_T}$.
- $F_T = \{ [t]_{\sim_T} \mid t \in T \}.$

Theorem 2.2. Let $T \subseteq T_{\Sigma}$. T is regular iff $Index(\sim_T)$ is finite. If T is regular, A_T is the minimal DTA.

Proof. via induction on t, prove $\delta_T^*(t) = [t]$

Theorem 2.3. The emptiness problem for NTAs can be reduced to HORN-SAT in linear time.

Proof. Let $\mathcal{A} = (Q, \Sigma, \Delta, F)$ be an NTA. For every $\tau = (q_1, \dots, q_i, a, p) \in \Delta$, let $\psi_{\tau} = (X_{q_1} \wedge \dots \wedge X_{q_i} \to X_q)$. Then we define $\varphi = \bigwedge_{\tau \in \Delta} \psi_{\tau} \wedge \bigwedge_{q \in F} X_q \to 0$. φ is satisfiable iff $L(\mathcal{A}) \neq \emptyset$.

2.1 BTTs

Theorem 2.4. The equivalence problem for BTTs is undecidable.

Proof. Follows from the equivalence problem of rational word transducer.

Theorem 2.5. The emptiness problem for BTTs is decidable in polynomial time.

Proof. One can construct in polynomial time a \uparrow NTA that recognizes the domain of a given BTT. The emptiness problem of BTTs then is equivalent to the emptiness problem of \uparrow NTAs.

Theorem 2.6. The type-checking problem (given regular T, T', is $A(T) \subseteq T'$?) is decidable.

Proof. $\mathcal{A}(T) \subseteq T'$ iff $\mathcal{A}^{-1}((T')^{\complement}) \cap T = \emptyset$. If T' is regular then so is $\mathcal{A}^{-1}((T')^{\complement}) \cap T$ and this can be decided.

Theorem 2.7. If T is regular, then $A^{-1}(T)$ is regular. If A is linear, then $A(T_{\Sigma})$ is regular.

Theorem 2.8. There are BTT-definable relations R_1, R_2 such that $R_1 \circ R_2$ is not BTT-definable.

Proof. Let $\Sigma = \{f, g, h, c\}$ and for both $i \in \{1, 2\}$: $A_i = (\{q, q_f\}, \Sigma, \Sigma, \Delta_i, \{q_f\})$ where

- Δ_1 :
 - $-c \to q(c)$ $-g(q(x_1)) \to q(g(x_1))$ $-g(x_1) \to q_f(f(x_1))$
- Δ_2 :

$$-c \to q(c) -g(q(x_1)) \to q(g(x_1)) -g(q(x_1)) \to q(h(x_1)) -f(q(x_1), q(x_2)) \to q_f(f(x_1, x_2))$$

 \mathcal{A}_1 converts a tree $t \in T_{\{c,g\}}$ to f(t,t). \mathcal{A}_2 replaces an arbitrary number of gs by hs. $R_1 \circ R_2$ defines the set of trees $f(t_1,t_2)$ where t_1 and t_2 are of equal height.

Theorem 2.9. If A_1 is linear or A_2 is deterministic Then $R(A_1) \circ R(A_2)$ is BTT-definable.

3 Infinite Trees

Theorem 3.1 (BTA Pumping). For $t \in T_{\Sigma}, x \in \{0, 1\}^*, y \in \{0, 1\}^+, let$

$$t^*_{[x,y]}: \{0,1\}^* \to \Sigma, z \mapsto \begin{cases} t(z) & \text{if } xy \not\sqsubseteq z \\ xz' & \text{if } \exists n > 0: z = xy^nz' \text{ with } y \not\sqsubseteq z' \end{cases}.$$

Let \mathcal{A} be a BTA, $t \in T(\mathcal{A})$, ρ an accepting run of \mathcal{A} on t, and $x, y, y' \in \{0, 1\}^*$ s.t. $\rho(x) = \rho(xy)$, $y' \subset y$, and $\rho(xy') \in F$. Then $t_{\lceil x,y \rceil}^* \in T(\mathcal{A})$.

Proof. $\rho_{[x,y]}^*$ is an accepting run of \mathcal{A} on $t_{[x,y]}^*$.

Theorem 3.2. Every non-empty regular tree language contains a regular tree.

Proof. Let \mathcal{A} be a PTA for $T = T(\mathcal{A}) \neq \emptyset$ and let $\mathcal{G}_{\mathcal{A}}$ be the emptiness game for \mathcal{A} . Since T is not empty, player Automaton has a positional winning strategy $\sigma : Q \to \Sigma$. For $\sigma(q) = (q, a, q_0, q_1)$, we define $\delta_{\sigma}(q, 0) = q_0$, $\delta_{\sigma}(q, 1) = q_1$, and $f_{\sigma}(q) = a$. Then $t \in T$ where t is the regular tree defined by $\mathcal{B} = (Q, \{0, 1\}, q_0, \delta_{\sigma}, f_{\sigma})$.

Theorem 3.3 (Rabin's Tree Theorem). The MSO theory of $\underline{T_2}$ is decidable for formulas $\varphi(X_1, \ldots, X_n)$ and a model $X_1, \ldots X_n \subseteq \{0, 1\}^*$ is computable.

Proof. Transform φ into an equivalent PTA. A model can be found by solving the emptiness game.