

Confidential – For Internal Use Only

Our Journey Today

MEETING AGENDA

History of Sequencing

Sanger Sequencing

Next Generation Sequencing

Illumina

Library Construct

Flow cell binding/Bridge amplification

SBS

Operational Machines

Extended NGS

BGI/MGI

PacBio

Oxford Nanopore

Single Cell Approaches

Confidential – For Internal Use Only

Confidential – For Internal Use Only

Central Dogma of Molecular Biology

Why Sequence

Human Health:

- Genetic mutations that lead to disease
- Response to drugs
- Cancer targeting

Microbiology:

- Antibiotic resistance
- Evolution

Agriculture:

- Infestation resistance for GMO
- Crop yield

Timeline for Sequencing

First technologies for sequencing

What becomes Sanger Sequencing

Gel sequencing with radioactive nucleotides

Automated with fluorescent nucleotides

The start of NGS

Pyrosequencing

The start of NGS

Sequencing by Ligation

The start of NGS

Sequencing by Synthesis

Cost over time

Applications and Flavors

Common Terms and Calculations

Reads

The individual output string from a sequencer. Essentially the calls of "ATCG..."

Coverage

- How many times over a base has been sequenced. The more times a base has been sequenced, the more confident you can be in it
- IE 1X coverage means you have each base in your sample once, whereas 30X coverage means you have each base 30 times.

Calculating Coverage and Depth needed

- Coverage= Base pairs sequenced/ Genome size
 - You have the human genome (3Gb) and you have 350M reads of 150bp size
 - Y= (350000000 * 150) / 300000000
 - Y= 17.5X coverage

Common Sequencing Target Depths			
WGS De Novo assembly	>100X coverage		
WGS Variant Analysis	>30X coverage		
RNA Seq- Eukaryotic	>20-30M reads/sample		
RNA Seq- Prokaryotic	>1-5M reads/sample		

Library Construction

Getting your fragment of interest

Library Construction

Example final construct

Flow cell binding and Bridge amplification

Sequencing By Synthesis

2 channel vs 4 channel

Multiplexing

Order of Sequencing

Single end sequencing

Order of Sequencing

Paired end sequencing- for NovaSeq, MiSeq, HiSeq 2500

Order of Sequencing

Paired end sequencing for HiSeq X, HiSeq 4000, NextSeq

Illumina Sequencers and Capacity

Illumina Sequencers and Capacity

Platform	Number of Cycles	Flow cell size	Data output (reads)	Data output (Gb)
MiSeq V2	600 cycle	1 flow cell with no divisible units	~10M paired end reads/flow cell	~4.5-7.5 Gb/flowcell
MiSeq V3	600 cycle	1 flow cell with no divisible units	~20M paired end reads/flow cell	~13 Gb/flowcell
NextSeq	300 cycle	1 flow cell with no divisible units	~400M paired end reads/flow cell	~XX Gb/flowcell
HiSeq X	300 cycle	1 flow cell with 8 divisible lanes	~350M paired end reads/flow cell	~106 Gb/flowcell
HiSeq 2500	500 cycle	1 flow cell with 2 divisible lanes	~150M paired end reads/flow cell	~75 Gb/flowcell
NovaSeq SP	300 cycle or 500 cycle	1 flow cell with no divisible lanes	~650M paired end reads/flow cell	~200-350 Gb/flowcell
NovaSeq S1	300 cycle	1 flow cell with no divisible lanes	~1.3B paired end reads/flow cell	~400 Gb/flowcell
NovaSeq S2	300 cycle	1 flow cell with 2 divisible lanes	~3.3B paired end reads/flow cell	~1 Tb/flow cell
NovaSeq S4	300 cycle	1 flow cell with 4 divisible lanes	~8B paired end reads/flow cell	~2.3 Tb/flow cell. ~600Gb/lane

BGI/MGI

Beijing Genomics Institute

BGI DNA Nanoball

BGI Machines and outputs

Platform	Number of Cycles	Flow cell size	Data output (reads)	Data output (Gb)
BGISEQ-50	SE 50	2 lanes per flowcell	Up to 275M reads	Up to 225 Gb
BGISEQ-500	Up to PE 100	2 lanes per flowcell	Up to 1.3B reads	Up to 520 Gb
DNBSEQ-G50	Up to PE 100	1 lane per flowcell	Up to 300M reads	Up to 60 Gb
DNBSEQ-G400	Up to SE 400	2 or 4 lanes per flow cell	Up to 1.8B reads	Up to 1.4 Tb
DNBSEQ-T7	*	Up to 4 flow cells at a time	Up to 5B reads	Up to 6 Tb

PacBio RS II System

Sequel System

SMRT Sequencing

PacBio Error rate

11% Error rate but Washes out!

Platform	Read time	Flow cell size	Data output (reads)	Data output (Gb)
RS II	Up to 4 hours	1 flow cell with up to 16 SMRT cells	~55,000 reads	~1 Gb/SMRTcell
Sequel	Up to 20 hours	1 flow cell with up to 16 SMRT cells	~300,000-500,000 reads	~8-10 Gb/SMRTcell
Sequel II	Up to 30 hours	1 flow cell with up to 16 SMRT cells	~3-4M reads	~40-50 Gb/SMRTcell

Oxford Nanopore

Oxford Nanopore

Oxford Nanopore

Platform	Number of channels per flow cell	Number of flow cells per device	Run time	Data output per device
SmidgION	Not yet released	Not yet released	Not yet released	Not yet released
Flongle	126 channels	1 flowcell	Up to 16 hours	1-2 Gb
MinION Mk1b	512 channels	1 flowcell	Up to 48 hours	15-30 Gb
GridION Mk1	512 channels	5 flowcells	Up to 48 hours	75-150 Gb
PromethION 24	3000 channels	24 flowcells	Up to 72 hours	2.4-4.3 Tb
PromethION 48	3000 channels	24 flowcells	Up to 72 hours	4.8-8.6 Tb

The Single Cell 3' v2 Assay Scheme

CiteSeq/ReapSeq/FeatureBarcoding

HashTagging

