Report 01 - Active Learning for Smart Energy

Author: Gašper Leskovec **Date:** April 8, 2025

Purpose of the task

As part of the Smart Energy project, I was assigned to implement *Active Learning* for classifying the security status of a power grid. The dataset is based on N-1 simulations (failure of a single component in the grid) and simulated time series data.

Work completed so far

Data preparation & analysis

- Loaded the following datasets:
 - distributed_generators.csv, distributed_loads_uniform.csv, simulation_security_labels_n-1.csv
- Performed **EDA** in eda_classifier_dataset.ipynb:
 - Identified missing values
 - o Created histograms, density plots and unique value counts
- Updated train_classifier.ipynb:
 - o Trained a Random Forest model
 - Saved the model as .pkl
 - Exported evaluation metrics as .json

Active Learning setup

- Implemented two main approaches:
 - active_learning_uncertainty_fixedsplit.ipynb → Active Learning with a fixed validation set
 - 2. active_learning_uncertainty_vs_random.ipynb → Comparison between uncertainty sampling and random sampling
- Used RandomForestClassifier, accuracy_score, train_test_split, predict_proba, etc.
- Tracked accuracy improvement across iterations:
 - Active Learning: e.g., 83% → 91%
 - o Random Sampling: e.g., 85% → 91%

Results

Active Learning accuracy

Comparison with Random Sampling

Key insights

- Active Learning significantly improves accuracy with only a small labeled sample.
- The final accuracy (e.g., 90%+) is promising but **depends on the quality and diversity of the initial** sample.
- The pre-trained random_forest_model.pkl can be used as a baseline for comparison.

Next steps

- 1. Validate results with multiple random seeds / initial samples
- 2. Add more evaluation metrics (precision, recall, f1-score)

Key file structure

