Estimating the Effect of a Mis-measured, Endogenous, Binary Treatment

Francis J. DiTraglia
Camilo Garcia-Jimeno

University of Pennsylvania

October 17th, 2016

What is the causal effect of T^* ?

$$y_i = h(T_i^*, \mathbf{x}_i) + \varepsilon_i$$

- ▶ y Outcome of interest
- ▶ h Unknown function that does not depend on i
- ► T* Unobserved, endogenous binary treatment
- ightharpoonup T Observed, mis-measured binary surrogate for T^*
- ▶ x − Exogenous covariates
- \triangleright ε Mean-zero error term
- ▶ z − Discrete instrumental variable

Target of Inference:

ATE function: $\tau(\mathbf{x}) = h(1, \mathbf{x}) - h(0, \mathbf{x})$

Example: Job Training Partnership Act (JPTA)

Heckman et al. (2000, QJE)

Randomized offer of job training, but about 30% of those *not* offered also obtain training and about 40% of those offered training don't attend. Estimate causal effect of *training* rather than *offer* of training.

- y − Log wage
- ▶ T* True training attendence
- ➤ T Self-reported training attendance
- x Individual characteristics
- \triangleright z Offer of job training

Example: Returns to Schooling

Oreopoulos (2006, AER)

Fuzzy RD: minimum school-leaving age in UK increased from 14 to 15 in 1947 but some already stayed until 15 before the law and others failed to comply after it.

- y − Log wage
- ▶ T* School attendance at age 15
- ► T Self-report of school attendance at age 15
- x Individual characteristics
- ▶ z Indicator: born in or after 1933

Related Literature

Continuous Treatment

Lewbel (1997, 2012), Schennach (2004, 2007), Chen et al. (2005), Hu & Schennach (2008), Song (2015), Hu et al. (2015)...

Binary, Exogenous Treatment

Aigner (1973), Bollinger (1996), Kane et al. (1999), Black et al. (2000), Frazis & Loewenstein (2003), Mahajan (2006), Lewbel (2007)

Binary, Endogenous Treatment

Mahajan (2006), Shiu (2015), Ura (2015)

Model: $y = c + \beta T^* + \varepsilon$

Valid Instrument

$$\mathbb{E}[\varepsilon|z]=0.$$

First-stage

$$ho_k^* \equiv \mathbb{P}(T^* = 1|z=z_k)
eq \mathbb{P}(T^* = 1|z=z_\ell) \equiv
ho_\ell^*, \ k
eq \ell$$

Non-differential Measurement Error

- $\blacktriangleright \ \mathbb{E}[\varepsilon|T^*,T,z] = \mathbb{E}[\varepsilon|T^*,z]$
- $\alpha_0 = \mathbb{P}(T = 1 | T^* = 0, z)$
- $\alpha_1 = \mathbb{P}(T = 0 | T^* = 1, z)$

Notation

Define error term that absorbs constant: $u = c + \varepsilon$

Observable Moments: $y = \beta T^* + u$

$$z = 1$$
 $z = 2$... $z = K$
 $T = 0$ y_{01} y_{02} ... y_{0K} y_{0K}
 y_{01} y_{02} ... y_{0K} y_{0K}
 y_{01} y_{02} ... y_{0K} y_{0K}
 y_{0K} y_{0K}

$$ar{y}_{tk} = \mathbb{E}[y|T=t,z=z_k], \quad p_{tk} = q_k p_k$$
 $q_k = \mathbb{P}(z=z_k), \quad p_k = \mathbb{P}(T=1|z=z_k)$

Unobservable Moments: $y = \beta T^* + u$

$$m_{tk}^* = \mathbb{E}[u|T^* = t, z = z_k], \quad p_{tk}^* = q_k p_k^*$$

 $q_k = \mathbb{P}(z = z_k), \quad p_k^* = \mathbb{P}(T^* = 1|z = z_k)$

Mahajan (2006, ECTA)

Regression Model

$$y = \mathbb{E}[y|T^*] + \nu$$

$$\mathbb{E}[
u|T^*] = 0$$
 by construction

Causal Model

$$y = c + \beta T^* + \varepsilon$$

$$\mathbb{E}[\varepsilon|T^*]\neq 0$$

Main Result (Correct) – Exogenous Treatment

Relevant binary instrument z $(p_1^* \neq p_2^*)$ identifies α_0, α_1 and

$$\mathbb{E}[y|T^*]$$
 provided that $\mathbb{E}[\nu|T^*, T, z] = 0$ and $\alpha_0 + \alpha_1 < 1$.

Extension (Incorrect) – Endogenous Treatment

$$\mathbb{E}[\varepsilon|z] = 0, \ \rho_k^* \neq \rho_\ell^*, \ \mathbb{E}[\varepsilon|T,T^*,z] = \mathbb{E}[\varepsilon|T^*] \implies \beta \ \text{identified}.$$

What if z takes on more than two values?

$$\mathbb{E}[arepsilon|z] = 0 \implies \mathit{pair} \ \mathsf{of} \ \mathsf{equations} \ \mathsf{for} \ \mathsf{each} \ k = 1, \dots, K$$

$$\begin{split} \hat{y}_{0k} &= \alpha_1(p_k - \alpha_0) \left(\frac{\beta}{1 - \alpha_0 - \alpha_1}\right) + (1 - \alpha_0)c - (p_k - \alpha_0)m_{1k}^* \\ \hat{y}_{1k} &= (1 - \alpha_1)(p_k - \alpha_0) \left(\frac{\beta}{1 - \alpha_0 - \alpha_1}\right) + \alpha_0c + (p_k - \alpha_0)m_{1k}^* \\ \end{split}$$
 where
$$\hat{y}_{0k} = (1 - p_k)\bar{y}_{0k} \text{ and } \hat{y}_{0k} = p_k\bar{y}_{1k} \end{split}$$

2K Equations in K + 4 Unknowns

Theorem: β is undentified regardless of K.

Proof of special case: $\alpha_0 = 0$

1. System of equations:

$$\widetilde{y}_{0k} = c + p_k \left(\frac{\beta \alpha_1}{1 - \alpha_1} \right) - p_k m_{1k}^*$$

$$\widetilde{y}_{1k} = p_k \beta + p_k m_{1k}^*$$

2.
$$\beta/(1-\alpha_1) \equiv \mathcal{W}$$
 identified, $\beta \alpha_1/(1-\alpha_1) = \mathcal{W} - \beta \implies$

$$(c + p_k \mathcal{W} - \widetilde{y}_{0k})/p_k = \beta + m_{1k}^*$$

$$\widetilde{y}_{1k}/p_k = \beta + m_{1k}^*$$

3. Sum equations from 1. \implies $(c + p_k W - \tilde{y}_{0k}) = \tilde{y}_{1k}$

What about $\alpha_0 + \alpha_1 < 1$?

$$W = \frac{\beta}{1 - \alpha_0 - \alpha_1}, \quad p_k^* = \frac{p_k - \alpha_0}{1 - \alpha_0 - \alpha_1}, \quad 1 - p_k^* = \frac{1 - p_k - \alpha_1}{1 - \alpha_0 - \alpha_1}$$

If $\alpha_0 + \alpha_1 > 0$, then:

- ► $Cor(T, T^*) > 0 \iff \alpha_0 + \alpha_1 < 1$
- lacktriangleright eta has same sign as ${\mathcal W}$
- $\qquad \qquad \alpha_0 < \min_k \{p_k\}$
- $\qquad \qquad \alpha_1 < \min_k \{1 p_k\}$
- ▶ Two-sided bound for β

Non-differential Measurement Error Assumption

- $\alpha_0 = \mathbb{P}(T = 1 | T^* = 0, z)$
- $\alpha_1 = \mathbb{P}(T = 0 | T^* = 1, z)$
- ▶ $\alpha_0 + \alpha_1 < 1$

Weaker

$$\mathbb{E}[\varepsilon|T^*,T,z] = \mathbb{E}[\varepsilon|T^*,z]$$

Stronger

 ε conditionally independent of T given T^* and z.

Bounds From Stronger Measurement Error Assumption

Define
$$F_{tk}(\tau) = \mathbb{P}(Y \le \tau | T = t, z_k)$$
 and $F_k(\tau) = \mathbb{P}(Y \le \tau | z_k)$

$$\alpha_0 \le p_k \inf_{\tau} \left\{ \left[\frac{F_{1k}(\tau)}{F_k(\tau)} \right] \wedge \left[\frac{1 - F_{1k}(\tau)}{1 - F_k(\tau)} \right] \right\} \le p_k$$

$$\alpha_1 \leq (1 - p_k) \inf_{\tau} \left\{ \left[\frac{F_{0k}(\tau)}{F_k(\tau)} \right] \wedge \left[\frac{1 - F_{0k}(\tau)}{1 - F_k(\tau)} \right] \right\} \leq (1 - p_k)$$

Bounds for (α_0, α_1) do *not* require z to be a valid instrument!

Put diagram for Oreopoulous here and maybe Burde and Linden too.

Theorem: Identification Result

Conditional Second Moment Independence.

New Assumption

Homoskedastic errors w.r.t. the *instrument*: $E[\varepsilon^2|z] = E[\varepsilon^2]$

Reasonable?

Makes sense in an RCT or a true natural experiment.

New Moment Conditions

Defining
$$\mu_{k\ell}^* = (p_k - \alpha_0)m_{1k}^* - (p_\ell - \alpha_0)m_{k\ell}^*$$
,

$$\mathbb{E}(y^2|z_k) - \mathbb{E}(y^2|z_\ell) \equiv \Delta \overline{y^2} = \beta \mathcal{W}(p_k - p_\ell) + 2\mathcal{W}\mu_{k\ell}^*$$

$$\mathbb{E}(yT|z_k) - \mathbb{E}(yT|z_\ell) \equiv \Delta \overline{yT} = (1 - \alpha_1)\mathcal{W}(p_k - p_\ell) + \mu_{k\ell}^*$$

Theorem: $(\alpha_1 - \alpha_0)$ is Identified if $E[\varepsilon^2|z] = E[\varepsilon^2]$ Requires only binary z

Solve for $\mu_{k\ell}^*$, substitute $\beta = \mathcal{W}(1 - \alpha_0 - \alpha_1)$, rearrange to find

$$lpha_1 - lpha_0 = 1 + \mathcal{R}/\mathcal{W}, \quad ext{where} \quad \mathcal{R} \equiv rac{\Delta \overline{y^2} - 2 \mathcal{W} \Delta \overline{y} \overline{T}}{\mathcal{W}(p_k - p_\ell)}.$$

What good is $(\alpha_1 - \alpha_0)$?

- ▶ Test necessary condition for *no mis-classification*: $\alpha_0 = \alpha_1$
- ightharpoonup Simple, tighter partial identification bounds for eta
- ▶ If α_0 known, e.g. zero $\implies \beta$ point identified

Conditional Third Moment Independence

New Assumption

Third moment independence w.r.t instrument: $E[\varepsilon^3|z] = E[\varepsilon^3]$

New Moment Conditions

Define
$$\lambda_{k\ell}^* = (p_k - \alpha_0)v_{1k}^* - (p_\ell - \alpha_0)v_{1\ell}^*$$

where $v_{tk}^* = \mathbb{E}(u^2|T^* = t, z_k)$. Then

$$\begin{split} \mathbb{E}(y^3|z_k) &- \mathbb{E}(y^3|z_\ell) \equiv \\ \Delta \overline{y^3} &= \beta^2 \mathcal{W}(p_k - p_\ell) + 3\beta \mathcal{W} \mu_{k\ell}^* + 3\mathcal{W} \lambda_{k\ell}^* \\ \mathbb{E}(y^2 T|z_k) &- \mathbb{E}(y^2 T|z_\ell) \equiv \\ \Delta \overline{y^2 T} &= \beta(1 - \alpha_1) \mathcal{W}(p_k - p_\ell) + 2(1 - \alpha_1) \mathcal{W} \mu_{k\ell}^* + \lambda_{k\ell}^* \end{split}$$

Theorem: β , α_0 and α_1 identified

Adding $E[\varepsilon^3|z] = E[\varepsilon^3]$, z need only be binary.

Solve for $\lambda_{k\ell}^*$, substitute and rearrange. After further substitutions:

$$2\mathcal{W}^2(1-\alpha_1)^2 + 2\mathcal{R}\mathcal{W}(1-\alpha_1) + (\mathcal{S} - \mathcal{R}^2) = 0$$

where

$$\mathcal{S} \equiv rac{\Delta \overline{y^3} - 3 \mathcal{W} \left[\Delta \overline{y^2 \, T} + \mathcal{R} \Delta \overline{y \, T}
ight]}{\mathcal{W}(
ho_k -
ho_\ell)}$$

- Quadratic in $(1 \alpha_1)$ and observables only
- ▶ Always two real roots: one is $(1 \alpha_1)$ and the other is α_0 .
- ▶ To tell which is which, need $\alpha_0 + \alpha_1 < 1$.

Simulation Study: $y = \beta T^* + \varepsilon$

Errors

 $(\varepsilon,\eta)\sim$ jointly normal, mean 0, variance 1, correlation 0.3.

First-Stage

- ▶ Half of subjects have z = 1, the rest have z = 0.
- $T^* = \mathbf{1} \{ \gamma_0 + \gamma_1 z + \eta > 0 \}$
- $\delta = \mathbb{P}(T^* = 0|z = 1) = \mathbb{P}(T^* = 1|z = 0)$

Mis-classification

- Set $\alpha_0 = 0$ so $T^* = 0 \implies T = 0$
- $ightharpoonup T | T^* = 1 \sim \mathsf{Bernoulli}(1 \alpha_1)$
- $ightharpoonup \alpha_0, \alpha_1$ unknown to econometrician.

Sampling Distribution of $\hat{\alpha}_1 - \hat{\alpha}_0$

Sampling Distribution of $\widehat{eta}=(1-\widehat{lpha}_0-\widehat{lpha}_1)\widehat{eta}_{IV}$

(a)
$$N = 500$$
, $\delta = 0.1$ (b) $N = 1000$, $\delta = 0.1$ (c) $N = 5000$, $\delta = 0.1$

(a) $N = 500$, $\delta = 0.1$ (b) $N = 1000$, $\delta = 0.1$ (c) $N = 5000$, $\delta = 0.1$

(a) $N = 500$, $\delta = 0.1$ (c) $N = 5000$, $\delta = 0.1$

(b) $N = 1000$, $\delta = 0.1$ (c) $N = 5000$, $\delta = 0.1$

(a)
$$N = 500$$
, $\delta = 0.2$ (b) $N = 1000$, $\delta = 0.2$ (c) $N = 5000$, $\delta = 0.2$

(a) $N = 500$, $\delta = 0.2$ (b) $N = 1000$, $\delta = 0.2$ (c) $N = 5000$, $\delta = 0.2$

(a) $N = 500$, $\delta = 0.2$ (c) $N = 5000$, $\delta = 0.2$

(b) $N = 1000$, $\delta = 0.2$ (c) $N = 5000$, $\delta = 0.2$

(a)
$$N = 500, \delta = 0.3$$
 (b) $N = 1000, \delta = 0.3$ (c) $N = 5000, \delta = 0.3$ (d) $N = 5000, \delta = 0.3$ (e) $N = 5000, \delta = 0.3$ (f) $N = 5000, \delta = 0.3$ (g) $N = 5000, \delta = 0.3$ (g) $N = 5000, \delta = 0.3$ (h) $N = 1000, \delta = 0.3$ (c) $N = 5000, \delta = 0.3$ (d) $N = 5000, \delta = 0.3$ (e) $N = 5000, \delta = 0.3$ (f) $N = 5000, \delta = 0.3$ (f) $N = 5000, \delta = 0.3$ (g) $N = 5000, \delta = 0.3$ (h) $N = 1000, \delta = 0.3$ (f) $N = 5000, \delta = 0.3$ (g) $N = 5000, \delta = 0.3$ (h) $N = 1000, \delta = 0.3$ (f) $N = 5000, \delta = 0.3$ (g) $N = 5000, \delta = 0.3$ (h) $N = 1000, \delta = 0.3$ (h) N

$$egin{aligned} \Delta(au) &= F_k(au) - F_\ell(au) \ \widetilde{\Delta}_1(au) &= p_k F_{1k}(au) - p_\ell F_{1\ell}(au) \end{aligned}$$

$$\widetilde{\Delta}_1(\tau + \beta) - \widetilde{\Delta}_1(\tau) = \alpha_0 \Delta(\tau + \beta) - (1 - \alpha_1) \Delta(\tau)$$

$$(1 - \alpha_0 - \alpha_1) = (e^{-i\omega\beta} - 1)[\alpha_0 - \xi(\omega)]$$

where we define

$$\xi(\omega) \equiv \frac{\varphi_k(\omega) - \varphi_\ell(\omega)}{p_k \varphi_{1k}(\omega) - p_\ell \varphi_{1\ell}(\omega)}$$

Conclusion

- Endogenous, mis-measured binary treatment.
- Important in applied work but no solution in the literature.
- ▶ Usual (1st moment) IV assumption fails to identify β
- ▶ 2nd moment assumption identifies $\alpha_1 \alpha_0$
- ▶ 3rd moment assumption identifies β

Mahajan's Argument

Regression Model

$$y = \mathbb{E}[y|T^*] + \nu$$

$$\mathbb{E}[\nu|T^*] = 0$$
 by construction

Causal Model

$$y = c + \beta T^* + \varepsilon$$

$$\mathbb{E}[\varepsilon|T^*]\neq 0$$

Ingredients

- 1. If $p_1^* \neq p_2^*$, $\mathbb{E}[\varepsilon|z] = 0$ then, since $\beta_{IV} = \beta/(1 \alpha_0 \alpha_1)$, knowledge of α_0, α_1 is sufficient to recover β . (Correct)
- 2. If $p_1^* \neq p_2^*$, $\mathbb{E}[\nu|T^*,T,z]=0$, α_0,α_1 are identified. (Correct) How to satisfy both 1 and 2 while allowing $\mathbb{E}[\varepsilon|T^*]\neq 0$?
- 3. Assume that $\mathbb{E}[arepsilon|T^*,T,z]=\mathbb{E}[arepsilon|T^*]$ (i.e. $m_{01}^*=m_{02}^*$ and $m_{11}^*=m_{12}^*$)

The Flaw in Mahajan's Argument

Proposition

If $\mathbb{E}[\varepsilon|T^*] \neq 0$ then $\mathbb{E}[\varepsilon|T^*, T, z] = \mathbb{E}[\varepsilon|T^*]$ combined with $\mathbb{E}[\varepsilon|z] = 0$ implies $p_1^* = p_2^*$, i.e. z is irrelevant for T^* .

Proof

 $\mathbb{E}[\varepsilon|z] = 0$ implies

$$(1 - p_1^*)m_{01}^* + p_1^*m_{11}^* = c$$

$$(1 - p_2^*)m_{02}^* + p_2^*m_{12}^* = c$$

while Mahajan's assumption implies $m_{01}^{st}=m_{02}^{st}$ and $m_{11}^{st}=m_{12}^{st}.$

Therefore either $m_{01}^* = m_{02}^* = m_{11}^* = m_{12}^* = c$, which is ruled out by $E[\varepsilon|T^*] = 0$, or $p_1^* = p_2^*$.

