Solve the GPE in a 1D parabolic trap

Ashton Bradley

April 15, 2019

1 Introduction

In this simple example we find a ground state of the Gross-Pitaevskii equation in a harmonic trap.

The mean field order parameter evolves according to

$$i\hbar \frac{\partial \psi(x,t)}{\partial t} = \left(-\frac{\hbar^2 \partial_x^2}{2m} + V(x,t) + g|\psi(x,t)|^2\right)\psi(x,t)$$

gr(fmt="png", legend=false, titlefontsize=12, size=(600,300), grid=false, transpose=true, colorbar=false);

2 Loading the package

```
First, we load some useful packages.
```

using Plots, LaTeXStrings

```
Now load FourierGPE

using FourierGPE

Let's define a convenient plot function

function showpsi(x, \(\psi\))

p1 = plot(x,abs2.(\psi))

xlabel!(L"x/a_x");ylabel!(L"|\psi|^2")

p2 = plot(x,angle.(\psi))

xlabel!(L"x/a_x");ylabel!(L"\textrm{phase}(\psi)")

p = plot(p1,p2,layout=(2,1),size=(600,400))

return p

end
```

3 User parameters

We reserve a place for user parameters.

showpsi (generic function with 1 method)

```
@with_kw mutable struct Params <: UserParams @deftype Float64
    # user parameters:
    κ = 0.1
end
par = Params();

Let's set the system size, and number of spatial points

L = (40.0,)
N = (512,)
μ = 25.0

Now we need to initialize the simulation object and the transforms

sim = Sim(L,N,par)
@pack! sim = μ
@unpack_Sim sim;</pre>
```

3.1 Declaring the potential

Let's define the trapping potential.

```
import FourierGPE.V
V(x,t) = 0.5*x^2
V (generic function with 3 methods)
```

We only require that it is a scalar function because alter we will evaluate it using a broad-casted dot-call.

4 Initial condition

Let's define a useful Thomas-Fermi wavefunction

```
\psi 0(x,\mu,g) = \operatorname{sqrt}(\mu/g) * \operatorname{sqrt}(\max(1.0-V(x,0.0)/\mu,0.0) + \operatorname{im}*0.0)
x = X[1];
The initial state is now created as
\psi i = \psi 0.(x,\mu,g)
\phi i = \operatorname{kspace}(\psi i, \operatorname{sim})
\operatorname{Opack!} \sin = \phi i;
```

5 Evolution in k-space

```
The FFTW library is used to evolve the Gross-Pitaevskii equation in k-space sol = runsim(sim);
0.937409 seconds (1.82 M allocations: 82.972 MiB, 2.78% gc time)
```

Here we save the entire solution as a single variable sol.

Let's have a look at the final state and verify we have a ground state

```
φg = sol[end]
ψg = xspace(φg,sim)
p=plot(x,g*abs2.(ψg),fill=(0,0.2))
plot!(x,one.(x)*μ)
plot!(x,V.(x,0.0))
xlims!(-10,10); ylims!(0,1.3*μ)
title!(L"\textrm{local}\; \mu(x)")
xlabel!(L"x/a_x"); ylabel!(L"\mu(x)/\hbar\omega_x")
plot(p)
```


The initial Thomas-Fermi state has been evolved for a default time $t=2/\gamma$ which is a characteristic damping time for the dissipative system with dimensionless damping γ . The solution will approach the ground state satisfying $L\psi_0 = \mu\psi_0$ on a timescale of order $1/\gamma$. The figure shows a smooth density profile and a completely homogeneous phase profile over the region of finite atomic density, as required for the ground state. The indeterminate phase evident at large |x| is unimportant.

5.1 Default simulation parameters

The default parameters are given in the declaration of Sim, which allows parameter interdependence. The struct Sim is declared as:

```
@with_kw mutable struct Sim{D} <: Simulation{D} @deftype Float64
   L::NTuple{D,Float64}
   N::NTuple{D,Int64}
   \mu = 15.0
   g = 0.1
```

where we see a set of default parameters, and then some useful transform fields built using the parameters. Note that the transforms have to be built after building X,K.

6 Dark soliton in harmonically trapped system

We found a ground state by imaginary time propagation. Now we can impose a phase and density imprint consistent with a dark soliton. We will use the solution for the homogeneous system, which will be a reasonable approximation if we impose it on a smooth background solution.

6.1 Imprinting a dark soliton

```
\psi \mathbf{f} = \mathbf{xspace}(\mathbf{sol[end],sim})
\mathbf{c} = \mathbf{sqrt}(\mu)
\xi = 1/\mathbf{c}
\mathbf{v} = 0.5*\mathbf{c}
\mathbf{xs} = 0.
\mathbf{f} = \mathbf{sqrt}(1-(\mathbf{v/c})^2)
0.8660254037844386
Soliton speed is determined by depth and local healing length. Start at xs = 0.0
\psi \mathbf{s} = \psi \mathbf{f}.*(\mathbf{f}*tanh.(\mathbf{f}*(\mathbf{x} .-\mathbf{xs})/\xi).+im*\mathbf{v/c});
\mathbf{showpsi}(\mathbf{x},\psi \mathbf{s})
\mathbf{xlims!}(-10,10)
```


6.2 Initilize Simulation

We can recycle our earlier parameter choices, modifying the damping and simulation timescale

```
\begin{array}{l} \gamma = 0.0 \\ \text{tf} = 8*\text{pi/sqrt(2)}; \ \text{t} = \text{LinRange(ti,tf,Nt)} \\ \text{dt} = 0.01\pi/\mu \\ \text{simSoliton} = \text{Sim(sim;} \gamma = \gamma, \text{tf=tf,t=t)} \\ \phi \text{i} = \text{kspace}(\psi \text{s,simSoliton}) \\ \text{@pack! simSoliton} = \phi \text{i} \\ \text{@unpack\_Sim simSoliton;} \end{array}
```

In doing so, we have to specify the dimension of the simulation in this case (an improved constructor needed).

6.3 Solve equation of motion

As before, we specify the initial condition in momentum space, and evolve sols = runsim(simSoliton);

```
5.307425 seconds (320 allocations: 1.757 MiB)
```

6.4 View the solution using Plots

Plots allows easy creation of an animated gif, as in the runnable example code below.

```
\phi f = sols[end-4]

\psi f = xspace(\phi f, simSoliton)
```

The result is visible in the media folder.

Here we just plot the final state:

gif(anim,animpath,fps=30)

