第七章 脂质和生物膜(2)

二、磷脂

甘油磷脂类 鞘 (氨醇) 磷脂类

1、甘油磷酸脂类

* 极性头和非极性尾

磷脂的水解: 磷脂酶

* 溶血磷脂

2、鞘磷脂

- * 植物和动物细胞膜的重要组分
- * 不含甘油
- *由一分子脂肪酸、一分子鞘氨醇和一分子极性头基团组成

Sphingolipid (general structure)

糖鞘脂可以决定人的血型

三、类固醇类

固醇 类固醇

1、固醇

*环戊烷多氢菲的衍生物,含有醇基

* 又称甾醇

1) 胆固醇

* 胆结石主要 成分

7一脱氢胆固醇 (VD3原)

*7-脱氢胆固醇存在于动物的皮下,在紫外 线作用下形成维生素D3

2) 植物固醇

- * 植物细胞的重要组分
- *植物固醇以豆固醇、麦固醇含量最多,分别存在于大豆和麦芽中。

豆固醇

变固摩

3) 微生物固醇

* 微生物固醇以麦角固醇最多,经过日光和 紫外线照射可以被转化为维生素D,

2、类固醇

- * 固醇的衍生物
- * 胆酸盐
 - *是体内天然的乳化剂,促进肠道内脂肪、胆固醇以及脂溶性维生素的乳化

第三节 生物膜

生物膜系统

- *细胞质膜
- * 内膜系统
 - * 核膜
 - * 线粒体膜
 - * 内质网膜

一、生物膜研究历史

* 1972年S. J. Singer和G. L. Nicolson提出了细胞膜的 模型。

流动镶嵌模型的要点

- * 连续主体为极性脂质 (磷脂) 双分子层
- * 在细胞正常温度下具有流动性
- * 内在蛋白"溶于"双分子层中 心疏水内部,可侧向移动、旋 转,但不能翻滚
- * 周边蛋白与双分子层的极性头相连,可自由移动
- * 生物膜中各种化学成分的分布 是高度不对称的

二、生物膜的化学组成

表 2-2 一些生物膜的化学组成

W.			占膜总=	F 重 的	%	
组 分	髓磷脂	视网膜	浆 膜	线粒体膜	大肠杆菌	叶绿体类囊体
	(牛)	杆细胞	(人红细胞)	(肝)	(质 膜)	膜(菠菜)
总脂	78	41	40	24	25	52
总磷脂(与总脂%)	33(42)	27(66)	24(60)	22.5(94)	25(>90)	4.7(9)
磷脂酸胆碱	7.5	13.0	6.9	8.8		
磷脂酰乙醇胺	11.7	6.5	6.5	8.4	18 Ja	
磷脂酰丝氨酸	7.1	2.5	3.1			7
磷脂酰肌醇	0.6	0.4	0.3	0.75	7 1 12	
心磷脂		0.4		4.3	3	
神经鞘磷脂	6.4	0.5	6.5			
胆固醇	17.0	2.0	9.2	0.24		1
糖脂	22.0	9.5	微	微		23
蛋白质	22	59	60	76	75	48

* 膜的功能越复杂,蛋白质含量越高

1、膜脂

- * 以磷脂为主, 其次是糖脂和胆固醇
- * 膜胆固醇的含量
 - * 动物高于植物
 - * 质膜高于内膜

2、膜蛋白

*周边蛋白(水溶性)和内在蛋白(脂溶性)

周边蛋白

- * 约占膜蛋白的20-30%,分布于双层脂膜的外表层,主要通过静电引力或范德华力与膜结合。
- * 周边蛋白与膜的结合比较疏松,改变溶液的离子强度就容易从膜上分离出来。
- * 周边蛋白能溶解于水。

内在蛋白

- * 约占膜蛋白的70-80%,蛋白的部分或全部嵌在双层脂膜的疏水层中。
- *特征是不溶于水,主要靠疏水键与膜脂相结合,而且不容易从膜中分离出来。只有用去垢剂使膜崩解后方可得到。

3、膜糖类

表 4-5 组成膜糖的单糖

类别	单糖名称及缩写符号	
中性糖	葡萄糖 (Glc)、半乳糖 (Gal)、甘露糖 (Man)、岩藻糖 (Fu	ıc)
氨基糖	N-乙酰葡萄糖 (GlcNAc)、N-乙酰半乳糖 (GalNAc)	H.
酸性糖	唾液酸 (SA)*	

* 以 N-乙酰神经氨酸 (NANA) 为代表

三、生物膜的功能

- *保护作用
- * 物质传递
- * 能量转换
- *细胞的识别和信息传递

1)简单扩散

- *物质从高浓度的一侧,通过膜转运到低浓度的另一侧,即沿着浓度梯度(膜两边的浓度差)的方向跨膜转运的过程。
- *这类转运是通过被转运物质本身的扩散作用进行的,是一个不需要外加能量的自发过程,也不需要膜蛋白的协助。
- * 水、氧、尿素等

- * 不同的小分子物质跨膜的速率差异大
 - * 小分子比大分子容易
 - * 非极性分子比极性分子容易
 - * 带电离子最难

2)协助扩散

- * 沿浓度梯度跨膜,不需要能量
- * 需要特异的膜蛋白协助以提高速率和特异性
- * 如葡萄糖分子穿越红细胞膜
 - * 通透系数10-7cm/s (简单), 10-2cm/s (协助)
 - * D-葡萄糖>>L-葡萄糖

3) 主动运输

- *主动转运是在外加能量驱动下进行的物质跨膜转运过程,从低浓度到高浓度。
- *主动转运的物质,可以是离子、小分子化合物,也可以是复杂的大分子物质,如某些蛋白或酶等。
- *这一过程一般都与ATP的释能反应相偶联。

钠钾离子泵

- * 红细胞中钠离子浓度为25mmo1/L, 钾离子浓度为150mmo1/L;
- * 血浆中钠离子浓度为145mmo1/L, 钾离子浓度为5mmo1/L;
 - * 细胞内侧: α-亚基与Na+结合促进ATP水解,天门冬氨酸残基磷酸化导致亚基构象发生变化,将Na+运出细胞;
 - * 细胞外侧: α-亚基与K+结合,发生去磷酸化,导致亚基构象恢复,将 K+运入细胞;
 - * 每次循环消耗一分子ATP, 转运出去三个Na+和转入两个K+;

4) 膜运输

* 胞饮作用与胞吐作用

2、能量转换

- * 氧化磷酸化: 通过生物氧化作用,将食物分子中存储的化学能转变成生物能。
 - * 真核细胞的氧化磷酸化主要在线粒体膜上进行; 原核细胞的氧化磷酸化则是在细胞质膜上进行。
- * 光合磷酸化: 通过光合作用,将光能(主要是太阳能)转换成ATP的高能磷酸键。再利用ATP的能量合成糖类物质。
 - * 光合磷酸化主要在叶绿体膜上进行。

本章总结

- * 脂类的种类
- * 甘油三酯
- * 脂肪酸
- *油脂的理化性质和鉴定
- * 甘油磷脂、鞘磷脂、固醇
- * 生物膜结构及功能

需要掌握的单词 (1)

* lipid

- triacylglycerol
- * mono-
- * di-
- glycerol
- * fatty acid

- * palmitic acid
- * stearic acid
- * oleic acid
- * lipase

需要掌握的单词 (2)

- phospholipid
- * phosphoglyceride
- * sterol
- * steroid

- * biological membrane
- * protein

判断题

* 存在于动物皮下的胆固醇在日光或者紫外光作 用下可生成维生素D₃。

* 膜脂中,除胆固醇外都是双亲性分子。

判断题

- * 细胞膜的内在蛋白通常比周边蛋白疏水性强。
- * 细胞膜的外侧和内侧具有不同的蛋白质。
- * 不同种属来源的细胞可以相互融合,说明所有的细胞膜都具有相同的组分。

- * 下列脂肪酸中不是必需脂肪酸的是()
- * A、油酸 B、亚油酸 C、亚麻酸

- * D、花生四烯酸
- * 下列说法中正确的是()
- * A、所有的磷脂都含有甘油基
- * B、所有脂类分子都含有脂酰基
- * C、脂肪酸的碳链越长越不易溶于水
- * D、油脂的碱水解生成脂肪酸和甘油

- * 生物膜是指
- * A. 单位膜
- * B. 蛋白质和脂质二维排列构成的液晶态膜
- * C. 包围在细胞外面的一层薄膜
- * D. 细胞内各种膜的总称
- * E. 细胞膜及内膜系统的总称

- * 生物膜的主要化学成分是
- * A. 蛋白质和核酸 B. 蛋白质和糖类
- * C. 蛋白质和脂肪
- * D. 蛋白质和脂类

E. 脂类和糖类

- * 膜脂的类型主要有
- * A. 磷脂 B. 糖脂
- * C. 甘油三酯 D. 胆固醇

练习题

■猪油的皂化值为193,碘值为54;椰子油的皂化值为246,碘值为8。这些数据说明猪油和椰子油的分子结构有何差异?

作业题

* 完全皂化50g油脂样品需要9.5gKOH,该油脂碘值为60,求平均每个油脂分子中有几个不饱和双键?

完全皂化5g由饱和脂肪酸组成的甘油三酯消耗 0.5mol/LKOH36mL,求该甘油三酯中平均每个 脂肪酸分子的碳原子数。