Introducción a los fibrados principales

Guillermo Gallego Sánchez

Geometría de superficies topológicas

17 de diciembre de 2018

Un *fibrado* (E, B, p, F)

Un *fibrado* (E, B, p, F) consta de:

▶ base: B

- **▶ base**: B
- ► espacio total: E

- **▶ base**: B
- ► espacio total: E
- ▶ fibra: F

- **▶ base**: B
- espacio total: E
- ▶ fibra: F
- ▶ $p: E \rightarrow B$ aplicación continua

- **▶ base**: B
- espacio total: E
- ▶ fibra: F
- ▶ $p: E \rightarrow B$ aplicación continua tal que $\forall x \in B \exists U^x$ y una **trivialización**

- ▶ base: B
- espacio total: E
- ▶ fibra: F
- ▶ $p: E \rightarrow B$ aplicación continua tal que $\forall x \in B \exists U^x$ y una **trivialización**

$$p^{-1}(U) \xrightarrow{\varphi_U} U \times F$$

Ejemplos

► El fibrado trivial:

$$F \longrightarrow B \times F$$

$$\downarrow_{\operatorname{pr}_1}$$

$$B$$

Ejemplos

El fibrado trivial:

$$F \longrightarrow B \times F$$

$$\downarrow_{\operatorname{pr}_1}$$

$$B$$

► La cinta de Moebius:

$$(0,1) \longrightarrow E \downarrow \operatorname{pr}_1$$

con $E = \{(x, y) : x \in \mathbb{R}, y \in (0, 1)\} / (x, y) \sim (x + 1, 1 - y) \text{ y}$ $p : E \to \mathbb{S}^1$, viendo la base como $\mathbb{S}^1 = \{x \in \mathbb{R}\} / x \sim x + 1$.

 $E \rightarrow B$ fibrado, $x \in B$, U^x , V^x .

 $E \rightarrow B$ fibrado, $x \in B$, U^x , V^x .

 $E \rightarrow B$ fibrado, $x \in B$, U^x , V^x .

$$\varphi_V \circ \varphi_U^{-1} : (U \cap V) \times F \longrightarrow (U \cap V) \times F$$
$$(x, y) \longmapsto (x, \psi_{UV}(x, y))$$

$$E \to B$$
 fibrado, $x \in B$, U^x , V^x .

$$U \cap V \times F \xrightarrow{\varphi_U^{-1}} p^{-1}(U \cap V) \xrightarrow{\varphi_V} U \cap V \times F$$

$$\downarrow^{p} \qquad \downarrow^{p} \qquad \downarrow^{p}$$

$$\varphi_V \circ \varphi_U^{-1} : (U \cap V) \times F \longrightarrow (U \cap V) \times F$$
$$(x, y) \longmapsto (x, \psi_{UV}(x, y))$$

$$\psi_{UV,x}: F \longrightarrow F$$
$$y \longmapsto \psi_{UV}(x,y)$$

► Función de transición entre U y V:

$$g_{UV}: U \cap V \longrightarrow \operatorname{Homeo}(F)$$

 $x \longmapsto \psi_{UV,x}.$

Las funciones de transición cumplen la condición de cociclo

$$g_{UW}=g_{VW}\circ g_{UV}.$$

En particular, $g_{UU} = \text{id y } g_{UV} = g_{VU}^{-1}$.

Con estructura adicional en las funciones de transición obtenemos otro tipo de fibrados (por ejemplo, fibrados vectoriales → matrices de transición).

 $p: E \to B, p': E \to B'$ fibrados con fibra F.

 $p: E \to B, p': E \to B'$ fibrados con fibra F. Un **isomorfismo de fibrados** entre $p: E \to B$ y $p: E' \to B'$ es un par de homeomorfismos (f, \tilde{f}) tales que

 $p: E \to B, \, p': E \to B'$ fibrados con fibra F. Un **isomorfismo de fibrados** entre $p: E \to B$ y $p: E' \to B'$ es un par de homeomorfismos (f, \tilde{f}) tales que el diagrama

conmuta.

 $p: E \to B, p': E \to B'$ fibrados con fibra F. Un **isomorfismo de fibrados** entre $p: E \to B$ y $p: E' \to B'$ es un par de homeomorfismos (f, \tilde{f}) tales que el diagrama

conmuta.

Las funciones de transición se relacionan por

$$g'_{U'V'}=f_{VV'}^{-1}\circ g_{UV}\circ f_{UU'},$$

con $f_{UU'}: U' \to \text{Homeo}(F)$.

 \mathcal{U} recubrimiento abierto de B, G < Homeo(F) y $\{g_{UV} : U \cap V \to G : U, V \in \mathcal{U}\}$ conjunto de funciones de transición de un fibrado $E \to B$.

 \mathcal{U} recubrimiento abierto de $B, G < \operatorname{Homeo}(F)$ y $\{g_{UV} : U \cap V \to G : U, V \in \mathcal{U}\}$ conjunto de funciones de transición de un fibrado $E \to B$. Entonces $E \to B$ es isomorfo al fibrado $E' \to B$ con

 \mathcal{U} recubrimiento abierto de B, G < Homeo(F) y

 $\{g_{UV}:U\cap V\to G:U,V\in\mathcal{U}\}$ conjunto de funciones de transición de un fibrado $E\to B$.

Entonces $E \rightarrow B$ es isomorfo al fibrado $E' \rightarrow B$ con

espacio total

$$E' = \bigsqcup_{U \in \mathcal{U}} (U \times F)/(x, y) \sim (x, g_{UV}(x)(y))$$

 \mathcal{U} recubrimiento abierto de B, G < Homeo(F) y

 $\{g_{UV}: U\cap V\to G: U, V\in\mathcal{U}\}$ conjunto de funciones de transición de un fibrado $E\to B$.

Entonces $E \rightarrow B$ es isomorfo al fibrado $E' \rightarrow B$ con

espacio total

$$E' = \bigsqcup_{U \in \mathcal{U}} (U \times F)/(x, y) \sim (x, g_{UV}(x)(y))$$

la proyección

$$p: E' \longrightarrow B$$
$$[(x, y)] \longmapsto x.$$

 \mathcal{U} recubrimiento abierto de B. G < Homeo(F).

 \mathcal{U} recubrimiento abierto de B. G < Homeo(F).

▶ Un conjunto de funciones $\{g_{UV}: U \cap V \rightarrow G: U, V \in \mathcal{U}\}$ es: un 1-cociclo de Čech subordinado a \mathcal{U} con coeficientes en G si

$$g_{UW}=g_{VW}\circ g_{UV},$$

 \mathcal{U} recubrimiento abierto de B. G < Homeo(F).

▶ Un conjunto de funciones $\{g_{UV}: U \cap V \rightarrow G: U, V \in \mathcal{U}\}$ es: un 1-cociclo de Čech subordinado a \mathcal{U} con coeficientes en G si

$$g_{UW} = g_{VW} \circ g_{UV}$$

Se llama primer grupo de cohomología de Čech subordinado a U con coeficientes en G al cociente

$$\check{H}(\mathcal{U}, G) = \{1\text{-cociclos}\}/g_{UV} \sim (f_{VV'}^{-1} \circ g_{UV} \circ f_{UU'}).$$

 \mathcal{U} recubrimiento abierto de B. G < Homeo(F).

▶ Un conjunto de funciones $\{g_{UV}: U \cap V \rightarrow G: U, V \in \mathcal{U}\}$ es: un 1-cociclo de Čech subordinado a \mathcal{U} con coeficientes en G si

$$g_{UW} = g_{VW} \circ g_{UV}$$
,

Se llama primer grupo de cohomología de Čech subordinado a U con coeficientes en G al cociente

$$\check{H}(\mathcal{U}, G) = \{1\text{-cociclos}\}/g_{UV} \sim (f_{VV'}^{-1} \circ g_{UV} \circ f_{UU'}).$$

► Tomando el límite directo por refinamiento del recubrimiento, tenemos el *primer grupo de cohomología de Čech con coeficientes en G*

$$\check{H}^{1}(B,G) = \lim_{\stackrel{\longrightarrow}{\mathcal{U}}} \check{H}^{1}(\mathcal{U},G).$$

Secciones

Una **sección** de un fibrado $p: E \rightarrow B$ es una aplicación continua $s: B \rightarrow E$ tal que $p \circ s = \mathrm{id}_B$.

Secciones

Una **sección** de un fibrado $p: E \rightarrow B$ es una aplicación continua $s: B \rightarrow E$ tal que $p \circ s = \mathrm{id}_B$. Una sección local es una sección definida en un abierto $U \subset B$.

Secciones

Una **sección** de un fibrado $p: E \rightarrow B$ es una aplicación continua $s: B \to E$ tal que $p \circ s = id_B$. Una sección local es una sección definida en un abierto $U \subset B$. Denotamos $\Gamma(E)$ al conjunto de las secciones de $E \to B \vee \Gamma(U, E)$ al conjunto de las secciones locales definidas en un abierto $U \subset B$.

Un *fibrado principal* (*P*, *B*, *p*, *G*) consta de:

una variedad diferenciable *P*,

Un *fibrado principal* (*P*, *B*, *p*, *G*) consta de:

- ▶ una variedad diferenciable *P*,
- ▶ un grupo de Lie *G* actuando libremente por la derecha sobre *P*:

$$P \times G \longrightarrow P$$
$$(p, g) \longmapsto p \cdot g,$$

Un *fibrado principal* (P, B, p, G) consta de:

- ▶ una variedad diferenciable *P*,
- ▶ un grupo de Lie *G* actuando libremente por la derecha sobre *P*:

$$P \times G \longrightarrow P$$
$$(p, g) \longmapsto p \cdot g,$$

▶ B = P/G con una sumersión $p : P \rightarrow P/G$, que es la proyección canónica al cociente

Un *fibrado principal* (P, B, p, G) consta de:

- una variedad diferenciable *P*,
- ▶ un grupo de Lie *G* actuando libremente por la derecha sobre *P*:

$$P \times G \longrightarrow P$$
$$(p, g) \longmapsto p \cdot g$$

▶ B = P/G con una sumersión $p : P \to P/G$, que es la proyección canónica al cociente y tal que $\forall x \in B \exists U^x$ y una trivialización

$$p^{-1}(U) \xrightarrow{\varphi_U} U \times G$$

Un *fibrado principal* (P, B, p, G) consta de:

- ▶ una variedad diferenciable *P*,
- ▶ un grupo de Lie *G* actuando libremente por la derecha sobre *P*:

$$P \times G \longrightarrow P$$
$$(p,g) \longmapsto p \cdot g,$$

▶ B = P/G con una sumersión $p : P \to P/G$, que es la proyección canónica al cociente y tal que $\forall x \in B \exists U^x$ y una trivialización

$$p^{-1}(U) \xrightarrow{\varphi_U} U \times G$$

Además,
$$\varphi_U(y) = (p(y), g_U(y))$$
 para cierta $g_U : p^{-1}(U) \to G$ con $g_U(y \cdot g) = g_U(y) \cdot g$.

Observaciones

► Podemos pensar en un fibrado principal como en un fibrado sobre una variedad diferenciable cuya fibra es un grupo de Lie.

Observaciones

▶ Podemos pensar en un fibrado principal como en un fibrado sobre una variedad diferenciable cuya fibra es un grupo de Lie. En efecto, para cada sección local $s_U: U \to P$ y para cada $y \in p^{-1}(x)$ existe un único elemento $g_U(y) \in G$ con $y = s_U(x)g_U(y)$.

Observaciones

- Podemos pensar en un fibrado principal como en un fibrado sobre una variedad diferenciable cuya fibra es un grupo de Lie. En efecto, para cada sección local $s_U: U \to P$ y para cada $y \in p^{-1}(x)$ existe un único elemento $g_U(y) \in G$ con $y = s_U(x)g_U(y)$.
- Las funciones de transición son de la forma

$$U \cap V \times G \longrightarrow U \cap V \times G$$

 $(x, h) \longmapsto (x, g_{UV}(x)h).$

Observaciones

- Podemos pensar en un fibrado principal como en un fibrado sobre una variedad diferenciable cuya fibra es un grupo de Lie. En efecto, para cada sección local $s_U: U \to P$ y para cada $y \in p^{-1}(x)$ existe un único elemento $g_U(y) \in G$ con $y = s_U(x)g_U(y)$.
- Las funciones de transición son de la forma

$$U \cap V \times G \longrightarrow U \cap V \times G$$

 $(x, h) \longmapsto (x, g_{UV}(x)h).$

 Un fibrado principal admite una sección global si y sólo si es trivial.

$$P = B = \mathbb{S}^1 \subset \mathbb{C} \mathsf{y}$$

$$p: \mathbb{S}^1 \longrightarrow \mathbb{S}^1$$
$$z \longmapsto z^2.$$

▶
$$P = B = \mathbb{S}^1 \subset \mathbb{C}$$
 y

$$p: \mathbb{S}^1 \longrightarrow \mathbb{S}^1$$
$$z \longmapsto z^2.$$

Fibra \mathbb{Z}_2 con la acción

$$\mathbb{S}^1 \times \mathbb{Z}_2 \longrightarrow \mathbb{S}^1$$
$$(z, \pm 1) \longmapsto \pm z.$$

▶
$$P = B = \mathbb{S}^1 \subset \mathbb{C}$$
 y

$$p: \mathbb{S}^1 \longrightarrow \mathbb{S}^1$$
$$z \longmapsto z^2.$$

Fibra \mathbb{Z}_2 con la acción

$$\mathbb{S}^1 \times \mathbb{Z}_2 \longrightarrow \mathbb{S}^1$$
$$(z, \pm 1) \longmapsto \pm z.$$

▶ $p: \tilde{M} \to M$ recubridor universal.

►
$$P = B = \mathbb{S}^1 \subset \mathbb{C}$$
 y

$$p: \mathbb{S}^1 \longrightarrow \mathbb{S}^1$$
$$z \longmapsto z^2.$$

Fibra \mathbb{Z}_2 con la acción

$$\mathbb{S}^1 \times \mathbb{Z}_2 \longrightarrow \mathbb{S}^1$$
$$(z, \pm 1) \longmapsto \pm z.$$

▶ $p: \tilde{M} \to M$ recubridor universal. Fibra $\pi_1(M)$ con la acción de monodromía:

$$\tilde{M} \times \pi_1(M) \longrightarrow \tilde{M}$$

 $(y, g) \longmapsto \tilde{\gamma}_g^y(1).$

El $\it fibrado de referencias$ sobre una variedad diferenciable $\it M$ tiene por espacio total

$$L(M) = \{ \psi_x : \mathbb{R}^n \to T_x M : x \in M, \ \psi_x \text{ es un isomorfismo lineal} \}$$

El $\it fibrado de referencias$ sobre una variedad diferenciable $\it M$ tiene por espacio total

 $L(M)=\{\psi_x:\mathbb{R}^n \to T_xM: x\in M,\ \psi_x \ \text{es un isomorfismo lineal}\}$ con la aplicación

$$p: L(M) \longrightarrow M$$
$$\psi_x \longmapsto x.$$

El $\it fibrado de referencias$ sobre una variedad diferenciable $\it M$ tiene por espacio total

$$L(M) = \{ \psi_x : \mathbb{R}^n \to T_x M : x \in M, \ \psi_x \text{ es un isomorfismo lineal} \}$$
 con la aplicación

$$p: L(M) \longrightarrow M$$
$$\psi_x \longmapsto x.$$

Su fibra es $GL(n, \mathbb{R})$

El $\it fibrado de referencias$ sobre una variedad diferenciable $\it M$ tiene por espacio total

 $L(M) = \{ \psi_x : \mathbb{R}^n \to T_x M : x \in M, \ \psi_x \text{ es un isomorfismo lineal} \}$ con la aplicación

$$p: L(M) \longrightarrow M$$
$$\psi_x \longmapsto x.$$

Su fibra es $GL(n, \mathbb{R})$, con la acción

$$\mathbb{R}^n \xrightarrow{A} \mathbb{R}^n \xrightarrow{\psi_x} T_x M.$$

 $p: P \to B$ con fibra $G. x \in B y \in p^{-1}(x)$.

 $p: P \to B$ con fibra $G. x \in B y \in p^{-1}(x)$.

► Subespacio vertical: $V_y = \ker p_* \subset T_y Y$.

 $p: P \to B$ con fibra $G. x \in B y \in p^{-1}(x)$.

- ▶ Subespacio vertical: $V_y = \ker p_* \subset T_y Y$.
- ► *Campo vertical*: $X_y \in V_y \ \forall y \in P$. El corchete de Lie de campos verticales es vertical.

 $p: P \to B$ con fibra $G. x \in B y \in p^{-1}(x)$.

- ▶ Subespacio vertical: $V_y = \ker p_* \subset T_y Y$.
- ► Campo vertical: $X_y \in V_y \ \forall y \in P$. El corchete de Lie de campos verticales es vertical.
- ▶ $V \subset TP$ es G-invariante: $\forall g \in G$, $R_{g,*}V_y = V_{y \cdot g}$.

- $p: P \to B$ con fibra $G. x \in B y \in p^{-1}(x)$.
 - ▶ Subespacio vertical: $V_y = \ker p_* \subset T_y Y$.
 - ► Campo vertical: $X_y \in V_y \ \forall y \in P$. El corchete de Lie de campos verticales es vertical.
 - ▶ $V \subset TP$ es G-invariante: $\forall g \in G$, $R_{g,*}V_y = V_{y \cdot g}$.
 - ▶ Una *conexión* en P es $H \subset V$, G-invariante y tal que $TP = V \oplus H$.

$$\sigma: \mathfrak{g} \longrightarrow \mathfrak{X}(P)$$
$$\xi \longmapsto \sigma(\xi).$$

Este $\sigma(\xi)$ se llama *campo fundamental*

$$\sigma: \mathfrak{g} \longrightarrow \mathfrak{X}(P)$$
$$\xi \longmapsto \sigma(\xi).$$

Este $\sigma(\xi)$ se llama *campo fundamental* y su valor es

$$\sigma_{y}(\xi) = \frac{d}{dt}\Big|_{t=0} (y \cdot \exp(t\xi)).$$

$$\sigma: \mathfrak{g} \longrightarrow \mathfrak{X}(P)$$
$$\xi \longmapsto \sigma(\xi).$$

Este $\sigma(\xi)$ se llama *campo fundamental* y su valor es

$$\sigma_{y}(\xi) = \frac{d}{dt}\Big|_{t=0} (y \cdot \exp(t\xi)).$$

• $p_*\sigma_y(\xi) = 0$, luego $\sigma(\xi)$ es un campo vertical.

$$\sigma: \mathfrak{g} \longrightarrow \mathfrak{X}(P)$$
$$\xi \longmapsto \sigma(\xi).$$

Este $\sigma(\xi)$ se llama *campo fundamental* y su valor es

$$\sigma_{y}(\xi) = \frac{d}{dt}\Big|_{t=0} (y \cdot \exp(t\xi)).$$

- $p_*\sigma_v(\xi) = 0$, luego $\sigma(\xi)$ es un campo vertical.
- $\xi \mapsto \sigma_v(\xi)$ es un isomorfismo.

La 1-**forma de conexión** de una conexión $H \subset TP$ es $\omega \in \Omega^1(P; \mathfrak{g})$

La 1-**forma de conexión** de una conexión $H \subset TP$ es $\omega \in \Omega^1(P;\mathfrak{g})$ definida por

$$\omega(Y) = \begin{cases} \xi & \text{si } Y = \sigma(\xi), \\ 0 & \text{si } Y \text{ es horizontal.} \end{cases}$$

La 1-**forma de conexión** de una conexión $H \subset TP$ es $\omega \in \Omega^1(P;\mathfrak{g})$ definida por

$$\omega(Y) = \begin{cases} \xi & \text{si } Y = \sigma(\xi), \\ 0 & \text{si } Y \text{ es horizontal.} \end{cases}$$

La 1-**forma de conexión** de una conexión $H \subset TP$ es $\omega \in \Omega^1(P;\mathfrak{g})$ definida por

$$\omega(Y) = \begin{cases} \xi & \text{si } Y = \sigma(\xi), \\ 0 & \text{si } Y \text{ es horizontal.} \end{cases}$$

$$\rightarrow$$
 $H = \ker \omega$

La 1-**forma de conexión** de una conexión $H \subset TP$ es $\omega \in \Omega^1(P;\mathfrak{g})$ definida por

$$\omega(Y) = \begin{cases} \xi & \text{si } Y = \sigma(\xi), \\ 0 & \text{si } Y \text{ es horizontal.} \end{cases}$$

- \rightarrow $H = \ker \omega$
- $R_g^* \omega = \mathrm{ad}_{g^{-1}} \circ \omega.$

Conexiones como campos gauge

 \mathcal{U} recubrimiento de B por abiertos trivializantes y $\left\{s_U: U \to p^{-1}(U): U \in \mathcal{U}\right\}$ familia de secciones locales. El **campo gauge** asociado a una 1-forma de conexión $\omega \in \Omega^1(P;\mathfrak{g})$ es

$$\left\{A_U=s_U^*\omega\in\Omega^1(U;\mathfrak{g}):U\in\mathcal{U}\right\}.$$

Conexiones como campos gauge

 \mathcal{U} recubrimiento de B por abiertos trivializantes y $\left\{s_U: U \to p^{-1}(U): U \in \mathcal{U}\right\}$ familia de secciones locales. El **campo gauge** asociado a una 1-forma de conexión $\omega \in \Omega^1(P;\mathfrak{g})$ es

$$\left\{A_U=s_U^*\omega\in\Omega^1(U;\mathfrak{g}):U\in\mathcal{U}\right\}.$$

Se cumple:

$$\omega|_{p^{-1}(U)} = \operatorname{ad}_{g_U^{-1}} \circ p^* A_U + g_U^* \theta,$$

con $\theta \in \Omega^1(G; \mathfrak{g})$ la 1-**forma de Maurer-Cartan**, definida por $\theta_g = (L_{g^{-1}})_*$.

Conexiones como campos gauge

 \mathcal{U} recubrimiento de B por abiertos trivializantes y $\left\{s_U: U \to p^{-1}(U): U \in \mathcal{U}\right\}$ familia de secciones locales. El **campo gauge** asociado a una 1-forma de conexión $\omega \in \Omega^1(P;\mathfrak{g})$ es

$$\left\{A_U=s_U^*\omega\in\Omega^1(U;\mathfrak{g}):U\in\mathcal{U}\right\}.$$

Se cumple:

$$\omega|_{p^{-1}(U)} = \operatorname{ad}_{g_U^{-1}} \circ p^* A_U + g_U^* \theta,$$

con $\theta \in \Omega^1(G;\mathfrak{g})$ la 1-**forma de Maurer-Cartan**, definida por $\theta_g = (L_{g^{-1}})_*$. Además,

$$A_U = \mathrm{ad}_{g_{UV}} \circ A_V + g_{VU}^* \theta.$$

 $p: P \to B$ fibrado principal, ω 1-forma de conexión.

 $p: P \to B$ fibrado principal, ω 1-forma de conexión. Cualquier vector $Y_y \in T_y P$ se descompone como $Y_y = Y_y^v + Y_y^h$.

 $p: P \to B$ fibrado principal, ω 1-forma de conexión. Cualquier vector $Y_y \in T_y P$ se descompone como $Y_y = Y_y^v + Y_y^h$. La *curvatura* de la conexión definida por ω es la 2-forma $\Omega \in \Omega^2(P;\mathfrak{g})$ definida por

$$\Omega(Y_y, Z_y) = d\omega(Y_y^h, Z_y^h).$$

 $p: P \to B$ fibrado principal, ω 1-forma de conexión. Cualquier vector $Y_y \in T_y P$ se descompone como $Y_y = Y_y^v + Y_y^h$. La **curvatura** de la conexión definida por ω es la 2-forma $\Omega \in \Omega^2(P;\mathfrak{g})$ definida por

$$\Omega(Y_y, Z_y) = d\omega(Y_y^h, Z_y^h).$$

Interpretación geométrica:

$$\Omega(Y,Z) = Y^h \omega(Z^h) - Z^h \omega(Y^h) - \omega([Y^h,Z^h]) = -\omega([Y^h,Z^h]),$$

luego Ω se anula \Leftrightarrow [Y^h , Z^h] es horizontal.

 $p: P \to B$ fibrado principal, ω 1-forma de conexión. Cualquier vector $Y_y \in T_y P$ se descompone como $Y_y = Y_y^v + Y_y^h$. La **curvatura** de la conexión definida por ω es la 2-forma $\Omega \in \Omega^2(P;\mathfrak{g})$ definida por

$$\Omega(Y_y, Z_y) = d\omega(Y_y^h, Z_y^h).$$

Interpretación geométrica:

$$\Omega(Y,Z) = Y^h \omega(Z^h) - Z^h \omega(Y^h) - \omega([Y^h,Z^h]) = -\omega([Y^h,Z^h]),$$

luego Ω se anula \Leftrightarrow $[Y^h, Z^h]$ es horizontal. Propiedades:

- $\Omega = d\omega + [\omega, \omega]$ (Ecuación de estructura)
- ► $d\Omega(Y^h, Z^h, W^h) = 0$ (Identidad de Bianchi)

Curvatura como fuerza de campo gauge

 \mathcal{U} recubrimiento de B por abiertos trivializantes y $\left\{s_U: U \to p^{-1}(U): U \in \mathcal{U}\right\}$ familia de secciones locales. La **fuerza de campo gauge** asociada a la curvatura $\Omega \in \Omega^2(P;\mathfrak{g})$ de una 1-forma de conexión $\omega \in \Omega^1(P;\mathfrak{g})$ es

$$\left\{F_U=s_U^*\Omega\in\Omega^2(U;\mathfrak{g}):U\in\mathcal{U}\right\}.$$

Curvatura como fuerza de campo gauge

 \mathcal{U} recubrimiento de B por abiertos trivializantes y $\left\{s_U: U \to p^{-1}(U): U \in \mathcal{U}\right\}$ familia de secciones locales. La **fuerza de campo gauge** asociada a la curvatura $\Omega \in \Omega^2(P;\mathfrak{g})$ de una 1-forma de conexión $\omega \in \Omega^1(P;\mathfrak{g})$ es

$$\left\{F_U=s_U^*\Omega\in\Omega^2(U;\mathfrak{g}):U\in\mathcal{U}\right\}.$$

Propiedades:

• $F_U = dA_U + [A_U, A_U]$ (de la ecuación de estructura)

Curvatura como fuerza de campo gauge

 \mathcal{U} recubrimiento de B por abiertos trivializantes y $\left\{s_U: U \to p^{-1}(U): U \in \mathcal{U}\right\}$ familia de secciones locales. La **fuerza de campo gauge** asociada a la curvatura $\Omega \in \Omega^2(P;\mathfrak{g})$ de una 1-forma de conexión $\omega \in \Omega^1(P;\mathfrak{g})$ es

$$\left\{F_U=s_U^*\Omega\in\Omega^2(U;\mathfrak{g}):U\in\mathcal{U}\right\}.$$

- ► $F_U = dA_U + [A_U, A_U]$ (de la ecuación de estructura)
- $ightharpoonup F_U = \operatorname{ad}_{g_{UV}} \circ F_V.$

Fibrados asociados

 $p:P\to B$ fibrado principal con fibra G que actúa sobre F por la izquierda.

Fibrados asociados

 $p: P \rightarrow B$ fibrado principal con fibra G que actúa sobre F por la izquierda.

Se define el *fibrado asociado* $P \times_G F$ como el cociente $(P \times F)/G$ por la acción

$$(P \times F) \times G \longrightarrow P \times F$$

 $((y, f), g) \longmapsto (y \cdot g, g^{-1} \cdot f),$

Fibrados asociados

 $p: P \to B$ fibrado principal con fibra G que actúa sobre F por la izquierda.

Se define el **fibrado asociado** $P \times_G F$ como el cociente $(P \times F)/G$ por la acción

$$(P \times F) \times G \longrightarrow P \times F$$
$$((y, f), g) \longmapsto (y \cdot g, g^{-1} \cdot f),$$

con la aplicación

$$p_F: P \times_G F \longrightarrow B$$

 $[(y,f)] \longmapsto p(y).$

Ejemplos

▶ $\mathbb{S}^1 \to \mathbb{S}^1$. Se obtiene la banda de Moebius con la acción $(f, \pm 1) \mapsto \pm f$ y el cilindro con la acción trivial.

Ejemplos

- ▶ $\mathbb{S}^1 \to \mathbb{S}^1$. Se obtiene la banda de Moebius con la acción $(f, \pm 1) \mapsto \pm f$ y el cilindro con la acción trivial.
- ► M variedad diferenciable y $L(M) \rightarrow M$ el fibrado de referencias. Hay un isomorfismo

$$L(M) \times_{GL(n,\mathbb{R})} \mathbb{R}^n \longrightarrow TM$$
$$[(\psi, \mathbf{v})] \longmapsto \psi(\mathbf{v}).$$

Ejemplos

- ▶ $\mathbb{S}^1 \to \mathbb{S}^1$. Se obtiene la banda de Moebius con la acción $(f, \pm 1) \mapsto \pm f$ y el cilindro con la acción trivial.
- ► M variedad diferenciable y $L(M) \rightarrow M$ el fibrado de referencias. Hay un isomorfismo

$$L(\mathcal{M}) \times_{\mathrm{GL}(n,\mathbb{R})} \mathbb{R}^n \longrightarrow T\mathcal{M}$$
$$[(\psi, \mathbf{v})] \longmapsto \psi(\mathbf{v}).$$

 \triangleright $E \leadsto P(E), E \cong P(E) \times_G F.$

Fibrado adjunto y curvatura

► Se llama *fibrado adjunto* de un *G*-fibrado principal $P \to B$ al fibrado ad $P = P \times_G \mathfrak{g}$, donde el cociente se realiza por la acción dada por la representación adjunta ad : $G \to \operatorname{Aut}(\mathfrak{g})$.

Fibrado adjunto y curvatura

- ► Se llama *fibrado adjunto* de un *G*-fibrado principal $P \to B$ al fibrado ad $P = P \times_G \mathfrak{g}$, donde el cociente se realiza por la acción dada por la representación adjunta ad : $G \to \operatorname{Aut}(\mathfrak{g})$.
- El fibrado adjunto permite ver la curvatura de una conexión como una 2-forma definida sobre la base:

Fibrado adjunto y curvatura

- ► Se llama *fibrado adjunto* de un *G*-fibrado principal $P \to B$ al fibrado ad $P = P \times_G \mathfrak{g}$, donde el cociente se realiza por la acción dada por la representación adjunta ad : $G \to \operatorname{Aut}(\mathfrak{g})$.
- El fibrado adjunto permite ver la curvatura de una conexión como una 2-forma definida sobre la base: Si tenemos una conexión en P con curvatura Ω podemos definir $\tilde{\Omega} \in \Omega(B, \operatorname{ad} P)$ como

$$\tilde{\Omega}_x(X_x,Y_x) = \big[\big(y, \Omega_y(X_y^h,Y_y^h) \big) \big],$$

con X_y^h , Y_y^h los levantamientos horizontales: $X_y^h \in H_y$ único tal que $p_*(X_y^h) = X_x$, x = p(y).

Buscamos una generalización del teorema de Gauss-Bonnet:

$$\int_{M} K v_g = 2\pi \chi(M).$$

Buscamos una generalización del teorema de Gauss-Bonnet:

$$\underbrace{\int_{M} K v_g}_{\text{Geometria}} = \underbrace{2\pi \chi(M)}_{\text{Topologia}}.$$

En primer lugar buscamos algo que se pueda integrar en toda la variedad:

En primer lugar buscamos algo que se pueda integrar en toda la variedad:

1. Fijamos un fibrado principal $P \to M$ y una conexión en P. Consideramos la curvatura $\tilde{\Omega} \in \Omega^2(M; \text{ad } P)$.

En primer lugar buscamos algo que se pueda integrar en toda la variedad:

- 1. Fijamos un fibrado principal $P \to M$ y una conexión en P. Consideramos la curvatura $\tilde{\Omega} \in \Omega^2(M; \text{ad } P)$.
- 2. Si n = 2k podemos tomar $\Omega \wedge \stackrel{(k)}{\dots} \wedge \Omega$, que se podría integrar en M si tuviera valores reales.

En primer lugar buscamos algo que se pueda integrar en toda la variedad:

- 1. Fijamos un fibrado principal $P \to M$ y una conexión en P. Consideramos la curvatura $\tilde{\Omega} \in \Omega^2(M; \text{ad } P)$.
- 2. Si n = 2k podemos tomar $\Omega \wedge \stackrel{(k)}{\dots} \wedge \Omega$, que se podría integrar en M si tuviera valores reales.
- 3. Por tanto, vamos a buscar funciones f: ad $P \to \mathbb{R}$.

►
$$S^k(g) = \{ f : g \times \overset{(k)}{\cdots} \times g \to \mathbb{R} \text{ multilineales y simétricas.} \}$$

- ► $S^k(g) = \{ f : g \times \overset{(k)}{\cdots} \times g \to \mathbb{R} \text{ multilineales y simétricas.} \}$
- ► Llamo $\mathbb{R}[\mathfrak{g}]_k$, **polinomios homogéneos** a funciones $F:\mathfrak{g}\to\mathbb{R}$ tales que, fijado un isomorfismo $\mathfrak{g}\to\mathbb{R}^m$, el polinomio $F(\mathbf{x}^1,\ldots,\mathbf{x}^m)$ dado por

es homogéneo.

- ► $S^k(g) = \{ f : g \times \overset{(k)}{\cdots} \times g \to \mathbb{R} \text{ multilineales y simétricas.} \}$
- ► Llamo $\mathbb{R}[\mathfrak{g}]_k$, **polinomios homogéneos** a funciones $F:\mathfrak{g}\to\mathbb{R}$ tales que, fijado un isomorfismo $\mathfrak{g}\to\mathbb{R}^m$, el polinomio $F(\mathbf{x}^1,\ldots,\mathbf{x}^m)$ dado por

es homogéneo. Hay una biyección $S^k(\mathfrak{g}) \leftrightarrow \mathbb{R}[\mathfrak{g}]_k$.

- ► $S^k(\mathfrak{g}) = \{ f : \mathfrak{g} \times \overset{(k)}{\cdots} \times \mathfrak{g} \to \mathbb{R} \text{ multilineales y simétricas.} \}$
- ► Llamo $\mathbb{R}[\mathfrak{g}]_k$, **polinomios homogéneos** a funciones $F:\mathfrak{g}\to\mathbb{R}$ tales que, fijado un isomorfismo $\mathfrak{g}\to\mathbb{R}^m$, el polinomio $F(\mathbf{x}^1,\ldots,\mathbf{x}^m)$ dado por

es homogéneo. Hay una biyección $S^k(\mathfrak{g}) \leftrightarrow \mathbb{R}[\mathfrak{g}]_k$.

► Llamo $I^k(\mathfrak{g}) \subset S^k(\mathfrak{g})$, **polinomios invariantes** a las $f \in S^k(\mathfrak{g})$ tales que

$$f(\operatorname{ad}_g \xi_1, \ldots, \operatorname{ad}_g \xi_k) = f(\xi_1, \ldots, \xi_k).$$

Teorema (Construcción de Weil de las clases características)

Sea $p: P \to B$ un fibrado principal con fibra G, ω una 1-forma de conexión en P con curvatura Ω y $f \in I^k(\mathfrak{g})$.

Teorema (Construcción de Weil de las clases características)

Sea $p: P \to B$ un fibrado principal con fibra G, ω una 1-forma de conexión en P con curvatura Ω y $f \in I^k(\mathfrak{g})$. La 2k-forma $f(\Omega \wedge \overset{(k)}{\cdots} \wedge \Omega)$ en P definida por

$$f(\Omega \wedge \stackrel{(k)}{\cdots} \wedge \Omega)(Y_1, \dots, Y_{2k}) =$$

$$= \frac{1}{2k!} \sum_{\sigma \in \mathfrak{S}_{2k}} (-1)^{\sigma} f(\Omega(Y_{\sigma(1)}, Y_{\sigma(2)}), \dots, \Omega(Y_{\sigma(2k-1)}, Y_{\sigma(2k)}))$$

tiene las siguientes propiedades:

Teorema (Construcción de Weil de las clases características)

Sea $p: P \to B$ un fibrado principal con fibra G, ω una 1-forma de conexión en P con curvatura Ω y $f \in I^k(\mathfrak{g})$. La 2k-forma $f(\Omega \wedge \overset{(k)}{\cdots} \wedge \Omega)$ en P definida por

$$f(\Omega \wedge \stackrel{(k)}{\cdots} \wedge \Omega)(Y_1, \dots, Y_{2k}) =$$

$$= \frac{1}{2k!} \sum_{\sigma \in \mathfrak{S}_{2k}} (-1)^{\sigma} f(\Omega(Y_{\sigma(1)}, Y_{\sigma(2)}), \dots, \Omega(Y_{\sigma(2k-1)}, Y_{\sigma(2k)}))$$

tiene las siguientes propiedades:

1. Se puede proyectar (es la pullback por p de una 2k-forma en B).

Teorema (Construcción de Weil de las clases características)

Sea $p: P \to B$ un fibrado principal con fibra G, ω una 1-forma de conexión en P con curvatura Ω y $f \in I^k(\mathfrak{g})$. La 2k-forma $f(\Omega \wedge \overset{(k)}{\cdots} \wedge \Omega)$ en P definida por

$$f(\Omega \wedge \stackrel{(k)}{\cdots} \wedge \Omega)(Y_1, \dots, Y_{2k}) =$$

$$= \frac{1}{2k!} \sum_{\sigma \in \mathfrak{S}_{2k}} (-1)^{\sigma} f(\Omega(Y_{\sigma(1)}, Y_{\sigma(2)}), \dots, \Omega(Y_{\sigma(2k-1)}, Y_{\sigma(2k)}))$$

tiene las siguientes propiedades:

- 1. Se puede proyectar (es la pullback por p de una 2k-forma en B).
- 2. Es cerrada.

Teorema (Construcción de Weil de las clases características)

Sea $p: P \to B$ un fibrado principal con fibra G, ω una 1-forma de conexión en P con curvatura Ω y $f \in I^k(\mathfrak{g})$. La 2k-forma $f(\Omega \wedge \overset{(k)}{\dots} \wedge \Omega)$ en P definida por

$$f(\Omega \wedge \stackrel{(k)}{\cdots} \wedge \Omega)(Y_1, \dots, Y_{2k}) =$$

$$= \frac{1}{2k!} \sum_{\sigma \in \mathfrak{S}_{2k}} (-1)^{\sigma} f(\Omega(Y_{\sigma(1)}, Y_{\sigma(2)}), \dots, \Omega(Y_{\sigma(2k-1)}, Y_{\sigma(2k)}))$$

tiene las siguientes propiedades:

- 1. Se puede proyectar (es la pullback por p de una 2k-forma en B).
- 2. Es cerrada.
- 3. La clase de cohomología de su proyección en B no depende de la elección de la conexión ω. Esta clase se llama la clase característica del fibrado P → B asociada a f.

 \mathbb{S}^2 y U_N , U_S los hemisferios norte y sur.

 \mathbb{S}^2 y U_N , U_S los hemisferios norte y sur. Consideramos un fibrado principal U(1) dado por la función de transición

$$U_N \cap U_S \stackrel{\psi}{\longrightarrow} U(1)$$

 \mathbb{S}^2 y U_N , U_S los hemisferios norte y sur. Consideramos un fibrado principal U(1) dado por la función de transición

$$U_N \cap U_S \xrightarrow{\psi} U(1)$$

$$\downarrow^{\sim} \qquad \qquad \downarrow^{\sim}$$

$$\mathbb{S}^1 \longrightarrow \mathbb{S}^1$$

Para cada grado $k \in \mathbb{Z}$ tenemos un fibrado principal distinto $P_k \to \mathbb{S}^2$.

 \mathbb{S}^2 y U_N , U_S los hemisferios norte y sur.

Consideramos un fibrado principal U(1) dado por la función de transición

$$\phi \pmod{2\pi} \longmapsto k\phi \pmod{2\pi}$$
.

Para cada grado $k \in \mathbb{Z}$ tenemos un fibrado principal distinto $P_k \to \mathbb{S}^2$.

Consideramos la conexión definida por un campo gauge A de la forma

Consideramos la conexión definida por un campo gauge *A* de la forma

• en U_N , $A_N = 0$,

Consideramos la conexión definida por un campo gauge A de la forma

- en U_N , $A_N = 0$,
- ▶ en $U_N \cap U_S$, $A_S = \psi A_N + \psi d\psi = \psi d\psi$ y lo extendemos de cualquier manera a todo U_S .

Consideramos la conexión definida por un campo gauge A de la forma

- en U_N , $A_N = 0$,
- en $U_N \cap U_S$, $A_S = \psi A_N + \psi d\psi = \psi d\psi$ y lo extendemos de cualquier manera a todo U_S .

La curvatura es F = dA + [A, A] = dA.

Consideramos la conexión definida por un campo gauge A de la forma

- en U_N , $A_N = 0$,
- en $U_N \cap U_S$, $A_S = \psi A_N + \psi d\psi = \psi d\psi$ y lo extendemos de cualquier manera a todo U_S .

La curvatura es F = dA + [A, A] = dA. Como U(1) es abeliano, todos los polinomios son invariantes y puedo escoger $p(x) = \frac{1}{2\pi}x$.

Consideramos la conexión definida por un campo gauge A de la forma

- en U_N , $A_N = 0$,
- en $U_N \cap U_S$, $A_S = \psi A_N + \psi d\psi = \psi d\psi$ y lo extendemos de cualquier manera a todo U_S .

La curvatura es F = dA + [A, A] = dA. Como U(1) es abeliano, todos los polinomios son invariantes y puedo escoger $p(x) = \frac{1}{2\pi}x$. Finalmente,

$$\int_{\mathbb{S}^{2}} p(\Omega) = \frac{1}{2\pi} \int_{U_{S}} dA_{S} = \frac{1}{2\pi} \int_{U_{N} \cap U_{S}} A_{S}|_{U_{N} \cap U_{S}}$$
$$= \frac{1}{2\pi} \int_{U_{N} \cap U_{S}} \psi d\psi = \frac{1}{2\pi} \int_{0}^{2\pi} k \phi d\phi = k.$$

Referencias

"Bundles", 2011.

Lecture notes at Universidad Complutense de Madrid.

J. M. Figueroa-O'Farrill.

"Gauge Theory", 2006.

Lecture notes at University of Edinburgh.

S. Kobayashi and K. Nomizu.

Foundations of differential geometry, volume 2.

Interscience Publishers New York, 1963.

J. M. Lee.

Introduction to Smooth Manifolds.

Springer, 2003.

M. Nakahara.

Geometry, topology and physics.

CRC Press, 2003.

