

DATA SCIENCE AZ IT BIZTONSÁGBAN

A kategória támogatója: SOPHOS

Ismertető a feladathoz

A 3.forduló feladatait a hosszú hétvége miatt kivételesen szerda (11.02.) éjfélig tudod megoldani!

Érdemes ebben a fordulóban is játszanod, mert a következő forduló kezdetekor, 11.03-án 18 órától kiosztjuk az 1.-2.-3. fordulóban megszerzett badgeket!

A verseny közben az alábbi teljesítményeket díjazzuk:

- fordulógyőztes
- átlagnál jobb időeredmény
- átlag feletti pontszám
- hibátlan forduló

Szeretnénk rá felhívni figyelmedet, hogy az egyszer megkapott badge-eket nem vonjuk vissza, akkor sem, ha esetleg az adott fordulóban a visszajelzések alapján változások vannak.

Jó játékot!

FIGYELEM!

A következőkben URL-ekkel fogunk dolgozni. Az adathalmaz különbőző források egyesitésével készült:

- Malicious:
- 1. https://urlhaus.abuse.ch/
- 2. https://phishtank.org/
- Benign
- 1. https://data.mendeley.com/datasets/gdx3pkwp47/2

A malicious URL-ek nem szintetikusak, ténylegesen vírusokat és/vagy phishing site-ot hosztolnak.

A véletlen klikkelés és megnyitást elkerülendő, minden URL-ben a pontokat "." "[.]"-ra cseréltük.

<FIGYELEM vége>

Az előző fordulóban két tokenizációs megközelitéssel tanítottunk egy-egy Logistic regression modellt, hogy el tudjuk dönteni URL-ekről, hogy gyanúsak-e, vagy sem.

Az töltsük le előző fordulóban megismert tanító adathoz tartozó teszt adatot az alábbi linkről:

• https://oitm-competition.s3.eu-west-2.amazonaws.com/round3/oitm_test_urls.csv

Az előző fordulóban tanított tokenizerek és modellek elérhetőek az alábbi URL-eken:

- https://oitm-competition.s3.eu-west-2.amazonaws.com/round3/ngram_vectorizer.pkl
- https://oitm-competition.s3.eu-west-2.amazonaws.com/round3/word_vectorizer.pkl

- https://oitm-competition.s3.eu-west-2.amazonaws.com/round3/lr_ngram.pkl
- https://oitm-competition.s3.eu-west-2.amazonaws.com/round3/lr_word.pkl

Ebben a fordulóban megnézzük, hogy melyik megközelités volt hatékonyabb.

Felhasznált idő: 00:00/40:00 Elért pontszám: 0/16

1. feladat 0/1 pont

Mi a definíciója a True Positive Rate-nek (TPR)?

Válasz

- TP/TN+FN
- TP/TP+FP
- TP/TP+FN

Ez a válasz helyes, de nem jelölted meg.

TN/TP+FN

Magyarázat

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

2. feladat 0/2 pont

A valóságban (jó esetben) sokkal kevesebb káros minta áll rendelkezésünkre, mint ártalmatlan. Az alábbi metrikák közül melyiket érdemes kerülni leginkább kiegyensúlyozatlan adathalmaz esetén?

_	Accuracy E <mark>z a válasz helyes, de nem jelölted meg.</mark>
F	Precision
O A	AUC
F	T Score
Mag	yarázat
Pélo	da: ha van 100 URL-ünk, amiből 99 benign, 1 káros, akkor az azonosan hamis függvénynek az accuracy-ja 99%
http	os://machinelearningmastery.com/failure-of-accuracy-for-imbalanced-class-distributions/
3. fe	eladat 0/1 pont
Az alá	bbiak közül melyek igazak a ROC görbe alatti területre (ROC AUC)?
Vála	szok
	Az AUC a görbe alatti területet méri és a True Positive Rate-et, valamint a False Positive Rate-et mutatja meg, különböző valószínűség küszöbértékekkel
E	z a válasz helyes, de nem jelölted meg.
	A tökéletes modell területe 1.0 Ez a <mark>válasz helyes, de nem jelölted meg.</mark>
	Az a modell, amelyik random eredményeket ad, 0-ás ROC görbe alatti területtel fog rendelkezni
	Az azonosan igaz modell, 0-ás ROC görbe alatti területtel fog rendelkezni
Mag	yarázat
http	ps://en.wikipedia.org/wiki/Receiver_operating_characteristic
4. fe	eladat 0/3 pont
	ző fordulóban két tokenizációs módszerrel tanitottunk egy-egy Logistic regression modellt.
Mi a R	OC AUC értéke a jobban teljesítő modellnek, három tizedesjegyig?
Vála	szok
A h	elyes válasz:
0.98	
.988	

Válasz

Magyarázat

```
lr_ngram = pickle.load(open('lr_ngram.pkl', 'rb'))
lr_word = pickle.load(open('lr_word.pkl', 'rb'))

ngram_vectorizer = pickle.load(open('ngram_vectorizer.pkl', 'rb'))

word_vectorizer = pickle.load(open('word_vectorizer.pkl', 'rb'))

df_test = pd.read_csv('oitm_test_urls.csv')

test_ngram_features = ngram_vectorizer.transform(df_test['url'])

test_word_features = word_vectorizer.transform(df_test['url'])

preds_ngram = lr_ngram.predict_proba(test_ngram_features)[:, 1]

preds_word = lr_word.predict_proba(test_word_features)[:, 1]

df_test['preds_ngram'] = preds_word

for y_pred, y_true, legend_label in [(preds_ngram, df_test['is_malware'], 'ngram'), (preds_word, df_test['is_ fpr, tpr, _ = metrics.roc_curve(y_true, y_pred)

auc = metrics.roc_auc_score(y_true, y_pred)

print(f'(legend_label): {auc}')
```

5. feladat 0/3 pont

Mi az n-gram Model True Positive Rate-je 10^-3-nál, három tizedesjegyig?

Válaszok

A helyes válasz: 0.825 .825 82.5% 1.000

Magyarázat

```
fpr, tpr, thresholds = metrics.roc_curve(df_test['is_malware'], preds_ngram)

def tprs_at_fprs(fpr_desired, fpr, tpr):
    tpr_desired = np.zeros(len(fpr_desired))
    hi = len(fpr)

for pos, val in enumerate(fpr_desired):
    idx = bisect_right(fpr, val, 0, hi)
    idx = (idx if idx != hi else -1) - 1
    if idx >= 0:
        tpr_desired[pos] = tpr[idx]

    return tpr_desired

tprs_at_fprs([0.001], fpr, tpr)
```

A feladatot lehetett úgy is értelmezni, hogy a threshold legyen 1e-3.

Így threshold=1e-3 esetén 3 tizedesjegyre kerekítve 1.000 jön ki a TPR-re:

```
y_predicted = y_score >= 1e-3
cm = sklearn.metrics.confusion_
matrix(y_true, y_predicted)
tn, fp, fn, tp = cm.ravel()
tpr = tp/(tp+fn)
print(tpr)
```

6. feladat 0/3 pont

Mi a 10^-3 False Positive Rate-hez threshold határérték az n-gram modellnél, három tizedesjegyig?

Válaszok

A helyes válasz:

0.593

.593

59.3%

Magyarázat

```
fpr, tpr, thresholds = metrics.roc_curve(df_test['is_malware'], preds_ngram)

def thresholds_at_fprs(fpr_desired, fpr, thresholds):
```

```
thresholds_desired = np.zeros(len(fpr_desired))
    hi = len(fpr)
    for pos, val in enumerate(fpr_desired):
        idx = bisect_right(fpr, val, 0, hi)
        idx = (idx if idx != hi else -1) - 1
        if idx >= 0:
            thresholds_desired[pos] = thresholds[idx]
    return thresholds_desired
thresholds_at_fprs([0.001], fpr, thresholds)
```

7. feladat 0/1 pont

Amennyiben úgy döntöttünk, hogy 10^-4 False Positive Rate-et szeretnénk megengedni a modelljeinknek a

'rottentomatoes[.]com/uwbrvz8quj/a[.]exe' URL-t mindkét modell pozitívként jelzi, az 'exe' és a tanitó halmazban gyakran malicious mintákban előforduló 'uwbrvz8quj' string miatt. Hogyha módositjuk kicsit az URL-t, a következőre:

'rottentomatoes[.]com/uwbrvz8quk/a[.]exe', melyik modell jelezne be az alábbi URL-re, hogy gyanús, továbbra is rögzitett 10^-4 FPR mellett?

Válasz

N-gram

Ez a válasz helyes, de nem jelölted meg.

Word

Egyik sem

Magyarázat

```
fpr, tpr, thresholds = metrics.roc_curve(df_test['is_malware'], preds_ngram)
print(f"Ngram Treshhold: {thresholds_at_fprs([0.0001], fpr, tpr)[0]}")
print(f"Ngram pred {lr_ngram.predict_proba(ngram_vectorizer.transform(['rottentomatoes[.]com/uwbrvz8quk/a[.]e
fpr, tpr, thresholds = metrics.roc_curve(df_test['is_malware'], preds_word)
print(f"Word Treshhold: {thresholds_at_fprs([0.0001], fpr, tpr)[0]}")
print(f"Word pred {lr_word.predict_proba(word_vectorizer.transform(['rottentomatoes[.]com/uwbrvz8quk/a[.]exe'
```

Az Ngram tokenizációs módszer ellenálóbbnak bizonyul a betűcsere ellen, amit akár tekinthetünk egy egyszerű "obfuszkációs" kisértletnek.

8. feladat 0/2 pont

Melyik token felelős az alábbi ROC görbén pirossal jelölt szakaszon (fpr 0.0005 és 0.0009) található fals pozitív minták edményéért leginkább a word tokenizer által adott tokeneken tanított logistic regressionnel?

Válaszok

```
A helyes válasz:
cn
.cn
[.]cn
```

Magyarázat

```
df_test[(df_test['preds_word'] < thresholds_at_fprs([0.0005], fpr, thresholds)[0]) & (df_test['preds_word'] >
```

1

Legfontosabb tudnivalók ☑ Kapcsolat ☑ Versenyszabályzat ☑ Adatvédelem ☑

© 2023 Human Priority Kft.

KÉSZÍTETTE C�NE

Megjelenés

* Világos ♀