

CÁLCULO LNTEGRAL- 220146

Ingeniería Civil Informática

Yrina Vera

23 de junio, 2021

La integral definida como suma de área

 $\operatorname{Si} f \colon [a,b] \longrightarrow \mathbb{R}$ es una función continua no negativa, esto es,

$$f(x) \ge 0$$
, $\forall x \in [a, b]$

Entonces

La suma de Riemann $\sum_{i=1}^{n} f(x_i^*) \Delta x$ es la suma de las áreas de los rectángulos de aproximación.

La integral $\int_{a}^{b} f(x)dx$ es el área bajo la curva y = f(x) desde a hasta b.

TEOREMA

Si f es continua sobre [a,b], o si tiene únicamente un número finitos de saltos discontinuos, entonces f es integrable en [a,b] y además se verifica

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$
$$\Delta x = \frac{b-a}{n} \quad \text{y} \quad x_i = a + i\Delta x$$

donde

PROPIEDADES

Sean $f,g\colon [a,b]\longrightarrow \mathbb{R}$ dos funciones integrables y $\alpha\in\mathbb{R}$. Entonces

$$1. \int f(x) \, dx = 0$$

2.
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

3.
$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

4.
$$\int_{a}^{b} [f(x) - g(x)] dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$

5.
$$\int_{-\infty}^{\infty} \alpha f(x) dx = \alpha \int_{-\infty}^{\infty} f(x) dx$$

6. Si a < c < b entonces

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

7. Si existen $m, M \in \mathbb{R}$ tales que

$$m \le f(x) \le M$$
, $\forall x \in D$

entonces

$$m(b-a) \le \int_{a}^{b} f(x) dx \le M(b-a)$$

Primer Teorema Fundamental del Cálculo

Si f es una función continua sobre [a,b], entonces la función g definida por

$$g(x) = \int_{a}^{x} f(t) dt$$
 $a \le x \le b$

es continua sobre [a, b], diferenciable sobre]a, b[y satisface la ecuación g'(x) = f(x), esto es,

$$\frac{d}{dx}\left(\int_{a}^{x} f(t) dt\right) = f(x).$$

Observación.

Si g y h son funciones diferenciables, entonces se verifican las siguientes propiedades.

1.
$$\frac{d}{dx} \left(\int_{a}^{g(x)} f(t) dt \right) = f(g(x)) \cdot g'(x)$$
2.
$$\frac{d}{dx} \left(\int_{g(x)}^{b} f(t) dt \right) = -f(g(x)) \cdot g'(x)$$
3.
$$\frac{d}{dx} \left(\int_{g(x)}^{h(x)} f(t) dt \right) = f(h(x)) \cdot h'(x) - f(g(x)) \cdot g'(x)$$

SEGUNDO TEOREMA FUNDAMENTAL DEL CÁLCULO

Si f es continua sobre [a, b], entonces

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

donde F es cualquier antiderivada de f, esto es, una función tal que F' = f.

Observación. La relación anterior puede ser reescrita como

$$\int_{a}^{b} F'(x) dx = F(b) - F(a).$$

Promedio o Valor Medio de una Función

Si f es una función integrable sobre [a,b], entonces el PROMEDIO de f sobre [a,b] está definido por

$$\bar{f} = f_{prom} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

TEOREMA DEL VALOR MEDIO

Si f es una función continua sobre el intervalo [a,b], entonces existe $c\in]a,b[$ tal que

$$f(c) = f_{prom} = \frac{1}{b-a} \int_{a}^{b} f(x) dx.$$

CAMBIO DE VARIABLE

Sean $f:[a,b]\longrightarrow \mathbb{R}$ y $g:[c,d]\longrightarrow \mathbb{R}$ dos funciones reales continuas tales que $g([c,d])\subset [a,b]$. Si u=g(x) es una función diferenciable entonces

$$\int_{a}^{b} f(g(x))g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du$$

Integrales de Funciones Simétricas

Suponga que f es una función continua sobre [-a, a].

i) Si f es par, esto es, f(-x) = f(x), entonces

$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

ii) Si f es impar, esto es, f(-x) = -f(x), entonces

