MULTIVARIATE NORMAL DISTRIBUTION

Reference: Johnson & Wichern(2007) Applied Multivariate Statistical Analysis Chapter 4.

1 Univariate Normal Distribution

We begin with the definition of univariate normal distribuion.

(a) Standard normal distribution N(0,1). The probability density function f(z) of a standard normal random variable Z is given by

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} \text{for } -\infty < z < \infty$$

Notation: $Z \sim N(0,1)$.

(b) Normal distribution with mean μ and variance $\sigma^2 N(\mu, \sigma^2)$. The probability density function(pdf) $f(x : \mu, \sigma^2)$ of the normal random variable with mean μ and variance σ^2 is

$$f(x:\mu,\sigma^2) = (2\pi)^{-\frac{1}{2}} (\sigma^2)^{-\frac{1}{2}} e^{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}} \text{ for } -\infty < x < \infty$$

Notation: $X \sim N(\mu, \sigma^2)$.

Note: $X = \sigma Z + \mu$.

2 Multivariate Normal Distribution

Let $\mathbf{Y}^T = (y_1 \ y_2 \ \dots \ y_p)$ be a random vector of p variate with mean vector $\boldsymbol{\mu}$ and covariance matrix σ . Now we can obtain the pdf of \mathbf{Y} replacing x, μ and σ^2 in $f(x : \mu, \sigma^2)$ respectively by vectors \boldsymbol{y} , vector $\boldsymbol{\mu}$ and matrix Σ .

$$f_p(\boldsymbol{y}:\boldsymbol{\mu},\Sigma) = (2\pi)^{-\frac{p}{2}}|\Sigma|^{-\frac{1}{2}}\boldsymbol{e}^{-\frac{1}{2}(\boldsymbol{y}-\boldsymbol{\mu})^T\Sigma^{-1}(\boldsymbol{y}-\boldsymbol{\mu})}$$
 for $\boldsymbol{y}\in\Re^p$

where \Re^p is the p-dimensional real space. Here $f_p(\boldsymbol{y}:\boldsymbol{\mu},\Sigma)$ is called multivariate normal probability density function.

Notation: $Y \sim N_p(\boldsymbol{\mu}, \Sigma)$.

Special Cases

- (a) If Y has $N_p(\boldsymbol{\mu}, \Sigma)$, then the distribution of $Z = (Y \boldsymbol{\mu})$ is $N_p(\mathbf{0}, \Sigma)$.
- (b) If $\Sigma = \text{diag}(\ \sigma_{11} \ \sigma_{22} \ \dots \ \sigma_{pp}\)$ then Y_1,Y_2,\dots,Y_p are independent normal random variables and

$$f_p(\mathbf{y}: \boldsymbol{\mu}, \Sigma) = f(y_1: \mu_1, \sigma_{11}) f(y_2: \mu_2, \sigma_{22}) \dots f(y_p: \mu_p, \sigma_{pp})$$

- (c) if $\mu = 0$ and $\Sigma = \mathcal{I}$, then Y_1, Y_2, \dots, Y_p , are independent identically distributed (standard) normal random variables.
- (d) if $\mathbf{Z} = \mathcal{A}^{-1}(\mathbf{Y} \boldsymbol{\mu})$ where \mathcal{A} is a nonsingular matrix such that $\mathcal{A}\mathcal{A}^T = \Sigma$ then $\mathbf{Z} \sim N_p(\mathbf{0}, \mathcal{I})$. Note that $\mathbf{Y} = \mu + \mathcal{A}\mathbf{Z}$.
- (e) Bivariate Normal Distribuion.

Consider a bivariate normal random vector X. That is,

$$X \sim N_2(\boldsymbol{\mu}, \Sigma)$$

where

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \text{ and } \Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix}.$$

Excercise: Compute the inverse of Σ and write down the probability density function of bivariate normal distribution.

3 Properties of the Multivariate Normal Distribution

- (a) Suppose $X \sim N_p(\mu, \Sigma)$, we have $\mathbf{E}(X) = \mu$, $\mathbf{Cov}(X) = \Sigma$.
- (b) Consider the transformations, $\mathbf{Z} = A\mathbf{X} + \mathbf{b}$, where $A_{p \times p}$ is a constant matrix, $\mathbf{b}_{q \times 1}$ is a constant vector, then

$$\boldsymbol{Z} \sim N_q(\boldsymbol{A}\boldsymbol{\mu} + \boldsymbol{b}, \boldsymbol{A}\boldsymbol{\Sigma}\boldsymbol{A}^T).$$

(c) Sums of independent random vectors:

Let $X_1, X_2, ..., X_k$, be independent random vectors with distribuion $X_j \sim N_p(\mu_j, \Sigma)$ for j = 1, 2, ..., k and $a_1, a_2, ..., a_k$ are real numbers. Define the random vector Y such that

$$Y = a_1 X_1 + a_2 X_2 + \ldots + a_k X_k = \sum_{j=1}^k a_j X_j,$$

then

$$m{Y} \sim N_p \left(\sum_{j=1}^k a_j m{\mu}_j, \sum_{j=1}^k a_j^2 \Sigma
ight)$$

(d) Relation of the Multivariate Normal Distribution to χ^2 Distribuion: For the univariate case, $X \sim N_1(\mu, \sigma^2)$, where $\sigma > 0$, we know that

$$Z^2 = \left\{ \frac{X - \mu}{\sigma} \right\}^2 \sim \chi_1^2.$$

Similarly, suppose Σ is nonsingular and the random variable Y is given by

$$Y = (\boldsymbol{X} - \boldsymbol{\mu})^T \Sigma^{-1} (\boldsymbol{X} - \boldsymbol{\mu})$$

then $Y \sim \chi_p^2$.

Proof: Since Σ is positive deinite and symmetric, there exist a non-singular matrix \mathcal{B} such that $\Sigma = \mathcal{B}\mathcal{B}^T$.

Let Z be the random vector defined by $Z = \mathcal{B}^{-1}(X - \mu)$ then

$$Y = (X - \mu)^{T} \Sigma^{-1} (X - \mu)$$

$$= (X - \mu)^{T} (\mathcal{B}\mathcal{B}^{T})^{-1} (X - \mu)$$

$$= (X - \mu)^{T} (\mathcal{B}^{T})^{-1} (\mathcal{B}^{T})^{-1} (X - \mu)$$

$$= (\mathcal{B}^{-1} (X - \mu))^{T} (\mathcal{B}^{-1} (X - \mu))$$

$$= \mathbf{Z}^{T} \mathbf{Z} = Z_{1}^{2} + Z_{2}^{2} + \dots + Z_{p}^{2}$$

where $\mathbf{Z} = (Z_1 \ Z_2 \dots \ Z_p)$. Since $\mathbf{Z} = \mathcal{B}^{-1}(\mathbf{X} - \boldsymbol{\mu}), \ \mathbf{E}(\mathbf{Z}) = 0$ and

$$\begin{aligned} \mathbf{Cov}(\boldsymbol{Z}) &=& \mathbf{Cov}(\mathcal{B}^{-1}(\boldsymbol{X} - \boldsymbol{\mu})) = \mathcal{B}^{-1}\mathbf{Cov}(\boldsymbol{X} - \boldsymbol{\mu})(\mathcal{B}^{-1})^T \\ &=& \mathcal{B}^{-1}\mathbf{Cov}(\boldsymbol{X})(\mathcal{B}^{-1})^T = \mathcal{B}^{-1}\boldsymbol{\Sigma}(\mathcal{B}^{-1})^T \\ &=& \mathcal{B}^{-1}(\mathcal{B}\mathcal{B}^T)(\mathcal{B}^{-1}) = (\mathcal{B}^{-1}\mathcal{B})(\mathcal{B}^T(\mathcal{B}^{-1})^T) = \mathcal{I}. \end{aligned}$$

Hence, $\mathbf{Z} \sim N_p(\mathbf{0}, \mathcal{I})$ and thus Z_1, Z_2, \dots, Z_p , are *i.i.d* N(0, 1). Therefore by univariate result $\mathbf{Y} = \sum_{j=1}^p Z_j^2 \sim \chi_p^2$.

4 Sampling Distributions

Consider a random sample $X_1, X_2, ..., X_n$ from a multivariate normal population with mean μ and covariance Σ . Let \overline{X} be the sample mean vector and S_n be the sample covariance matrix computed using the above sample. Then

$$\overline{\boldsymbol{X}}_n = \frac{1}{n} \sum_{i=1}^n \boldsymbol{X}_j \text{ and } \mathcal{S}_n = \frac{1}{n-1} \sum_{i=1}^n (\boldsymbol{X}_j - \overline{\boldsymbol{X}}_n) (\boldsymbol{X}_j - \overline{\boldsymbol{X}}_n)^T.$$

(a) <u>Distribution of \overline{X}_n </u>.

Since $\mathbf{E}(X_j) = \boldsymbol{\mu}$ and $\mathbf{Cov}(X) = \Sigma$,

$$\mathbf{E}(\overline{X}_n) = \boldsymbol{\mu} \text{ and } \mathbf{Cov}(\overline{X}_n) = \frac{1}{n}\Sigma.$$

Further, since the population distribution is multivariate normal (that is, X_{j} 's are multivariate normal random vectors,

$$\overline{\boldsymbol{X}}_n \sim N_p(\boldsymbol{\mu}, \frac{1}{n}\Sigma).$$

(b) **Distribuion of** S_n .

 $(n-1)S_n$ has a Wishart distribution with (n-1) degree of freedom(df). For more details of the Wishart distribution see Johnson & Wichern page 174.

Note: If $Z_1, Z_2, ..., Z_n$ are iid normal random vectors with $\mathbf{E}(\mathbf{Z}_i) = \mathbf{0}$ and $\mathbf{Cov}(\mathbf{Z}_i) = \Sigma$ for all i, then $\sum_{i=1}^n \mathbf{Z}_j \mathbf{Z}_j^T$ has a Wishart distribution with n df.

(c) Distribution of the Quatratic.

Let $Z^2 = n(\overline{X}_n - \mu)^T \Sigma^{-1} (\overline{X}_n - \mu)$. Then Z has a chi-square distribuion with p df.

(d) Independence of Sample Mean and Covariance Matrix.

 \overline{X}_n and S_n are independent. Recall that in univariate case, the sample mean and the sample variance are independent. This is refer to as Basu's theorem.

(e) Hotelling T^2 Distribuion.

The distribuion of the statistics, T^2 where

$$T^{2} = n(\overline{X}_{n} - \boldsymbol{\mu})^{T} \mathcal{S}_{n}^{-1}(\overline{X}_{n} - \boldsymbol{\mu}).$$

is called Hotelling's T^2 distribution. (For more details of the Hotelling's T^2 distribution see Johnson & Wichern page 212.) Further we can prove that $\frac{(n-p)}{p(n-1)}T^2$ is distributed as $F_{p,n-p}$ (F distribution with p and (n-p)df).

(f) Mahalanobis Distance

Mahalanobis distance, D^2 is a standardised form of Euclidean distance. Mahalanobis distance of the observation X_i in the sample given above is

$$D_i^2 = (\boldsymbol{X}_i - \overline{\boldsymbol{X}}_n)^T \mathcal{S}_n^{-1} (\boldsymbol{X}_i - \overline{\boldsymbol{X}}_n)$$

for i = 1, 2, ..., n.

If both n and n-p are respectively greater than 30 and 25, then Mahalanobis distances, $D_i^2 (i=1,2,\ldots,n)$ are chi-square distributed with p degree of freedom.

6

5 Assessing the Normality of Multivariate Population

Let X be the random vector representing the multivariate population of interest and

$$oldsymbol{X} = \left(egin{array}{c} X_1 \ X_2 \ dots \ X_p \end{array}
ight)$$

Theorem 1: if X is multivariate normal random vector then

- (a) all the marginals are normally distributed, that is, X_j for all j, are normal random variables, and
- (b) if a is a constant vector, then

$$\boldsymbol{a}^T \boldsymbol{X} \sim N(\boldsymbol{a}^T \boldsymbol{\mu}, \boldsymbol{a}^T \Sigma \boldsymbol{a})$$

where μ is the mean and Σ is the covariance of X.

Using the above themrem, we can prove the following theorem:

Theorem 2: A random vector X has a p-variate normal distribution if and only if (iff) $a^T X$ is normal for every constant vector a.

Note:

- (a) Theorem 2 is not use to prove that X is a normal random vector because it is difficult to prove that $a^T X$ is normal for all a.
- (b) Note that if X_1, X_2, \ldots, X_p are normal random variables, it does not imply that X is multivariate normal. Prove this using the Example 4.8 page 202 in Johnson & Wichern.

6 Normal Probability Plot

Normal probability plot is also called a Q-Q(quantile quantile) plot.

(a) Univariate Case

Step 1: Arrange the observations X_1, X_2, \ldots, X_n in increasing order. That is,

$$X_{(1)} \le X_{(2)} \le \ldots \le X_{(n)}.$$

Step 2: Obtain z_i from a Normal Table, such that $P(Z \le z_i) = (i - 0.5)/n$ where $Z \sim N(0, 1)$.

Step 3: Plot the points $(z_i, X_{(i)}), i = 1, 2, ..., n$.

If the points approximately follow a straight line, then the observations are from a normal distribution.

(b) Multivariate Case

Step 1: Compute the Mahalanobis distances, D_i^2 of all the observations X_1, X_2, \ldots, X_n . Arrange the distances are in increasing order. That is,

$$D_{(1)}^2 \le D_{(2)}^2 \le \ldots \le D_{(n)}^2$$
.

Step 2: Obtain ξ_i from a Chi-Square Table, such that

$$\mathcal{P}(\chi_p^2 \le \xi_i) = (i - 0.5)/n$$

for i = 1, 2, ..., n, where χ_p^2 is the chi-square distribution with p degrees of freedom.

Step 3: Plot the points $(\xi_i, D_{(i)}^2)$, i = 1, 2, ..., n.

If the points approximately follow a straight line, then the observations are from a multivariate normal distribution.

7 Large Sample Distribution of $\overline{\boldsymbol{X}}_n$ and \mathcal{S}_n

Now we assume that the random sample, X_1, X_2, \dots, X_n , from a <u>unknown</u> multivariate population with mean μ and covariance Σ .

(a) Law of Large Numbers.

- 1. \overline{X}_n converges in probability to μ : that is, $\mathcal{P}(|\overline{X}_n \mu| < \epsilon) \to 1$ as $n \to \infty$ and
- 2. S_n converges in probability to Σ .

(b) Central Limit Theorem.

If n is large relative to p, then

$$\sqrt{n}(\overline{\boldsymbol{X}}_n - \boldsymbol{\mu}) \sim N_p(\boldsymbol{0}, \Sigma).$$

(c) Important Results.

If the sample covariance matrix is finite and non-singular and n is large relative to p, then the distribution of

- $\sqrt{n}(\overline{\boldsymbol{X}}_n \boldsymbol{\mu})$ is approximately $N_p(\boldsymbol{0}, \Sigma)$ and
- $n(\overline{\boldsymbol{X}}_n \boldsymbol{\mu})^T \mathcal{S}_n^{-1}(\overline{\boldsymbol{X}}_n \boldsymbol{\mu})$ is approximately χ_p^2 .