

Difficulty Grading of a Kilter Board Route

Kavy Nihar Mittal Bonifác Lukács Faucher-Timár Oriol Martínez Fité

Pattern Recognition and Machine Learning ETSEIB-UPC 26/05/2025

Problem Statement

- What is the Kilter Board?
- Why is difficulty grading important?
- How is difficulty assessed?
- The problem: subjective, inconsistent ratings
- Goal: Build a machine learning model to predict route difficulty

Example

- Name: Sour Gummi Worms
- Number of holds: 11
- Wall angle: 40°
- Difficulty: 5c/V2 (15.00)
- Number of logged ascensions: 32234

Dataset Description

- Data source: Kilter Board API via mobile app
- Size: 50,000+ routes
- Filtering criteria (e.g., at least 5 user completions)
- How difficulty is rated (e.g., 1–39 scale, V-scale conversion)
- Factors influencing difficulty (wall angle, hold type/position, etc.)

Preprocessing

- Features used per hold (x/y, start/finish, foothold) → leads to 201 features/climb
- Cap at 20 holds → 101 total features/climb
- Use of PCA for dimensionality reduction → 2 features/hold (99.99%) → 41 features/climb

Train & Test Data

- 80/20 train/test split
- Shapes: Xtrain (43164×41), Xtest (10792×41)
- Goal: Generalize to unseen climbs

Difficulty Rating Prediction

Models tested:

- a. Dummy Regressor (baseline)
- b. Linear Regression
- c. Decision Tree
- d. Random Forest
- e. Extra Trees
- f. Gradient Boosting
- g. Histogram-based Gradient Boosting
- Hyperparameter tuning via Grid Search

MODEL PERFORMANCE WITH R2 SCORES

Model	R ² Score
Dummy Regressor	-0.0006
Linear Regressor	0.348
Decision Tree Regressor	0.499
Random Forest Regressor	0.593
Extra Tree Regressor	0.517
Gradient Boosting Regressor	0.810
Hist Gradient Boosting Regressor	0.860

Results

Example

- Name: Sour Gummi Worms
- Original difficulty: 5c/V2 (15.00)
- Linear Regression estimation: 6b+/V4 (18.84)
- Decision Tree estimation: 6c/V5 (20.25)
- RandomForest estimation: 6b+/V4 (18.60)
- ExtraTree estimation: 6b/V4 (18.01)
- GradientBoosting estimation: 6a/V3 (15.71)
- HistGradientBoosting estimation: 5c/V2 (15.08)

Conclusion

- Value added:
 - a. Objective grading
 - b. Better training & benchmarking
 - c. Tools for climbers and gyms
 - d. Metric for further AI development in this field

Future Work

- Potential extensions:
 - a. Use of other type of features (type of hold, distance between holds)
 - b. Include user demographic or anthropometric data
 - c. Time-to-complete metrics
 - d. Graph-based Deep Learning Models (e.g. GNNs) for preserving and leveraging spatial information.
 - e. Real-time route grading in the app