Mono-Objective Genetic Algorithm in Python

October 3, 2017

Reference Manual

Contents

1	Introduction	3
	1.1 Basic genetic algorithm structure	3
2	Installation	3
	2.1 Required python packages	3
	2.2 Using the package	4
3	Modules	4
4	References	4

1 Introduction

This is an implementation of the Genetic Algorithm in Python.

The added features for faster resolution times are as follows:

- 1. Handling variable types differently (continuous, binary, discrete)
- 2. Conversion of variables into binary equivalent
- 3. User defined choice of selection mechanism
- 4. Parallel computing

1.1 Basic genetic algorithm structure

The basic structure of the genetic algorithm is as follows:

- 1. Initialize a population of agents
- 2. Evaluate the fitness of the agents in the population
- 3. For the predefined number of generations:
 - (a) Select parents for the creation of offsprings
 - (b) Use the parents to create offsprings
 - (c) Apply mutation mechanism for diversity
 - (d) Evaluate the fitness of this new population
- 4. Extract the agents with best fitness

2 Installation

At the moment, this code only works in Windows®. The folder has to be copied into the directory 'C:\' as some internal commands are hard-coded.

2.1 Required python packages

- 1. pandas
- 2. numpy
- 3. datetime
- 4. matplotlib
- 5. math
- 6. copy
- 7. random
- 8. multiprocessing

2.2 Using the package

Important files and locations to take note of:

- 1. Input data: ga_mono_simplesetup.py
 - (a) Population size (e.g. population = 200).
 - (b) Number of generations to run the algorithm for (e.g. generations = 1000)
 - (c) Selection mechanism to determine the agents populating the parent pool
 - i. Available options: 1. roulette_wheel and 2.tournament_selection
 - (d) Determine the size of the parent pool
 - i. The variable crossover_perc is used to determine the size of the parent pool
 - ii. e.g. ${\tt crossover_perc}=0.5,$ means that the parent pool will be 50% of the population size

3 Modules

4 References