

FIG. 1B

FIG. 1C

FIG. 1D

FIG. 2A

FIG. 2B

Fig. 4

```
OP-1
EMP-5
                                                                                 е е н
BMP-6
                                                            RKHR
                                                         Ĺ
OP-2
                                                                                 G C-H
OP-3
                                                      VNLKK
                                              0
                                                  Ε
6CA
                                                                               G G
                                          DNN
Vg-1
UNIVIN
BMP-2
                                                                             6 6 6 6
                                                  O K
BIKP-4
                                                                                   O R
GOF-5
                                                                                   ⊕ R
GOF-E
CDF-7
COMP-2
dpp
B140-9
                                                                               C
                                                                                   C
                                                                                 G
         C_C
DORSALIN
                                                                                   ⊙ R
                                                                               C
EMP-10
GDF-3
GDF-1
                                                                                   Øн
                                                  0 1
SCREW
EMP-3
                                                                                 G
NODAL
TGF-42
TGF-43
TGF-44
         C.C
TGF-41
                                                                                   C
                                                                               C
TGF-45
GOF-9
                                                                           Q H E
Inhibini
Enhabiniza
                                                                                  Ģ
Ethibiaths
         G G (
                                                                                  G 🖸
                                                        VKTDIP
                                                  SHI
InhibingC
                                                  ε
                                                        SAHHVPK
MIS
         CC
                                                                         A K R D G C
                                                                        5
                                            0
                                                  DNL
                                                          YHI
GONF
         C.C.
                                      YENDK-QQLIYGKIPGMY
                                HHL
                                                        AYKEYEDMIATROT
BMP-11
                                                                                    C
                                                  G
                                                    s t
                                SVLTIEP
GOF-8
```

	T T T T T T T T T T T T T T T T T T T		BMP- BMP- BMP- OP- OP-	~ ₩₩	TGF-A Subgroup TGF-A1: TGF-A2: TGF-A3: TGF-A3: TGF-A5: TGF-B5: Pattern:
40	P S H I P P N L S C J J X P G V P G	X	**************************************		
50	X	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZXZZZZZ	111111 XXXXV UDUDUD HHHHHH DDDHDD 0 KKHHK 0 WHOO
HEEL HELIX	P H P P P P P P P P P P P P P P P P P P	V L R A L M H A A K V Q N I I Y E K K K K X C C C C K X X	1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1	X H X H X X X X X X X X X X X X X X X X	D X X H D X C C C C C C C C C C C C C C C C C C C
70	4 2 7 0	4 2 2 0	N	*************************************	~ W > W W Y > W > W > W > W > W > W > W >
<u></u>	0000	×0<0	0000000	0000000	1000000

TGF-ß Si Pai Vg/dpp: Pai GDF Subi Pai Inhibin)				
urd urd gans gad i dag	Inhibin	GDF :	Vg/d ₁	TGF-A	٠

TGF-8 Subgroup-----GDF Subgroup-+-Inhibin Subgroup--Pattern:|j x e Vg/dpp Subgroup--Pattern: | P Pattern: | j x j Pattern: | X F ttern: |C|r X group-+-+-ttern: |C|n n Subgroup+--ttern: |C|C V R ttern: |C|X n ubgroup +-Subgroup--ĸ 7 n O × ۲ Σ BETA × н ч ч × S × ч н 7 ۲ ч 4 শ্ব ٠.4 ı HELIX | FINGER 1 ש н ч × 1 1 ı = x D T Q e D L G X c G 4 Q j. XXX e O ი H × G Σ Σ Σ Œ Ħ * ч **4001** × S ч ŧ ч Þ HEEL m H Þ ₩ I a Σ Σ Z O 51 < ים H Ξ 7 Ю r ø ল HELIX ი ۲ 7 <u>×</u> ი ĸ þ ດ Ø ч z × Ω ZXXX **⋉** r x N P ρ ĸ ĸ BETA × × × × н x r Y C r G X C × ANFIC N ۵ ч ı O C ŧ RING KNOT_A × ด ч XASA ٣ ч G G × e T ۲ 0 <u>၂</u>. <u>င</u> <u>ں</u> × × u. ۲ j Picic K jicic j X C 1010 I K

Inhibin Subgroup--GDF Subgroup-+---Vg/dpp Subgroup----TGF-8 Subgroup-Pattern: |V -Pattern: |V -Pattern: | X z Pattern: |X -H 1 1 ۵ ۵ v ۳ Н Ю ď O ٣ 7 b ø ۲ S S O a O н ۲ a × ۲ × × r 1 X X FINGER_2 90 * ۵ G U B × 1 × ч ч н ı N ı ч × × ч r V a × j¦K V ۲ ت ۲ m = Ħ Ħ 100 4 Ю ч ч ~ K ۲ K tri ъ S z Q z ס 3 z ø × < < 0 **=** 4 **'**0 ric h cixi SC K CS ď j C G C E 110 KNOT2 C O RING CX

pH2487

G W Q D W I I A P E G Y A A Y Y C E G E C A F P L W S Y M W A T W R A I V Q T L GCTGCCAGACTGGATCATGATCATGATCATGGATCATGGATCATGGATCATGGATCATGGATCATGGATCATGGATCATGATCATGATCATGGATCATCATGATCATGATCATCATGATCAT

H V V E A C G C R
ATGGTGGTGGAGCTTGTGGCTGCAGATAGCTCCTCCGAGAATTC
Hindii Psei Ecori

pH2440 His-6 attached at 35 residues upstream of first cysteine; poor activity!?

30. 20 10 -CCATGGCTGACAACCATCACCATCATCACCATATG ... K A D N <u>H H H H H H</u> K NdeI:2 NcoI:1

70 100 60 90 130 G S K Q R S Q H R S K T P K H Q F A L R H A H V A F H S S S D Q R Q A BglI:7 BsaHI:2 OP-1-exon5----StuI MscIdcm:b

[...]

au **k**

ųij

Fig 7C

Sand There are

15 |****}

:::<u>}</u>

Fig 7D

an b

ı,Iİ

Fig. 7 E

pH2527 FB-His-6-truncated OP-1 with acid cleavage site

ATGAT COMMITTANCE CONTINUE AT A CONTINUE AT

ATGGCCHACGTGGCAGAGAACAGCAGCAGCAGCCACAGGCAGCCT

K I K V I K K K K K D Q R Q I

HACT

Bq11

IJĬ.

in b

ijŢ

1,113

acid clear, site

H2528 FB-His6-CDMP-3

إإإ

1,11

Į,į

:=

en b

ijį ųij

-CONTRATORATION TO CONTRACTAL TO A CONTRACTAL ... HIEFHADHKENKEQQANAFTEILHLPHLHEEQRHGEIQS.

KEEPS Q S A N L L A D A K K L N D A Q A P K S D H H H H H S D P H A L A

490 — 500 510 520 530 540 550 560 570 580 590 600 COMMINICACIONIC

620 -TGCGGCTGTAGGTAAGCTTGTGGCTGCAGATAGCTCCTCCGAGAATTC

Fig. 7(G)

ļ. ni

pH2469 truncated, good ROS activity; 14 original residues upstream of first cysteine

Fig. 7(H) pH2510 Collagen site inserted 7 residues upstream of cysteine; good expression, refol 70 H S T C S K Q R S Q W R S K T F K W Q K A L R W A S W R

Boatl: 2

Boat MscIdca:b BfrI:1 Fig. 7(I) pH2523 collagen peptide, and spacer added at 13 residues upstream from 1st cysteir 70 H S T G S X Q R S Q R R S R T P X M Q X A L R M A S W R X

Boalt:2

Boalt HindIII:1 HecIden:b PvuII:b Duplication 150 160 AACGTGGCAGAGAACAGCAGCAGCGACCAGAGGCAGGCC A E M & 8 8 D Q R Q A
OP-1-exon5---- StuId Fig. 7(1) pH2524 Hexa-His, collagen peptide, spacer added at 13 residues upstream from 1st cysi -CCATGGCTGACAACCATCACCATCATCACCATATG 100 120 130 GGGAGCAAACAGGGCAGCCAGAACO;CTCCAAGACGCCCAAGAACCACGAAGGCAGGGATGGCCAGCTGCAGAGAGCAGCCCAAGCTTCATGGCCTTAAGCAGCAGCAGACAAGACAAGGCAGG G S E Q R S Q K \ S E T P E K Q E A L R K A S W R E

BsaHI:2

BynI+ PSTXXXS HindIII:1 KscIden:b BfrI:1 PvuII:b Duplication ANCETGOCAGAGAACAGCAGCAGCAGCAGGCAGGCAGGCC A E W & & & D Q R Q A
OP-1-exon5---- Stul

7-cysteine domain of OP-

finger-1

ø > >

heel

GAGTGCCTTCCCTCTGAACTCCTACATGAACGCCAACCACGCCATCGTGCAGACGCTGGTCCACTTCATCAACCGGAAACGGTGCCAAGCCCTGC Ю

finger-2

TGTGCGCCCACGCAGCTCAATGCCATCTCCGTCCTCTACTTCGATGACAGCTCCAACGTCATCCTGAAGAAATACAGAAACATGGTGGTCCGGGCCTGTGGCTGCCAC ج ن

Figure 9A OP-1 chimerics with CDMP-2 or with BMP-2

OP-1 Chimerics with Chir-2 of west	-	• •
	refolding	activity (cell based)
Parental molecules: finger1 heel finger2 OP-1	(-)	+++ (*)
BKP-2 זוווווווווווווווווווווווווווווווווווו	+++	+++
CDNP-2r	++++	+/-
replacing finger-1 or heel:		
H2383 1111111111	+/-	N/A
H2362r	+	N/A
H2360r	+	N/A
H2331	.	N/A
replacing finger-2 or heel:	+++	+++
н2389	+++	+++
H2471r		· +/-
н2388г	444	+++
H2410	+++	n/a
H2429 111111111 1111111111111111111111111	+/- _	NA
changing patches of residues:		
н2381	+++	N/A
н2390	.+	и/а
н2396	. +	А/А
н2421	+/-	N/A
paired changes in finger-2:		
н2418	+++	++
H2420r	++++	+/-

Figure 9B

OP-1 mutants with C-terminal arginine instead of histidine:

Balancing of charged residues in finger-2 of OP-1 mutants:

protein	finger-1	CXGXC	heel	finger-2	CXCX C-term	Total of charged residues (+), (-) = total	negative charges, finger-2	net charges, finger-2	refolding efficiency
OP-1	3+, 4-	2-	1+, 1-	4+, 2-	0	8+, 9- = 17	2-	2+	+/-
H2247	3+, 4-	2-	1+, 1-	4+, 2-	1+	9+, 9- = 18	2-	2+	+
H2447	3+, 4-	2-	1+, 1-	2+, 6-	1+	7+, 12- = 19	6-	4-	+++
BMP-3	4+, 4-	0	3+, 1-	3+, 4-	1+	11+, 9- = 20	4-	1-	+++
BMP-2	2+, 3-	1-	2+, 1-	2+, 6-	1+	7+, 11- = 18	6-	4-	+++
GDF-5	3+, 5-	1-	1+, 4-	2+, 4-	. 1+	6+, 14- = 20	4-	2-	+++
CDMP-2	3+, 5-	1-	1+, 3-	2+, 4-	1+	6+, 13- = 19	4-	2-	+++
GDNF	2+, 4-	0	6+, 4-	5+, 5-	0	13+, 13- = 26	5-	0	+++
TGF-β1	5+, 3-	0	1+, 1-	5+, 2-	1+	11+, 6- = 17	2-	3+	+/-
TGF-β2	5+, 3-	0	1+, 2-	4+, 3-	1+	10+, 8- = 18	3-	1+	+/-

Figure 10

Fig. 11

Fig. 14

z

2410

2406 2421 0P-1

2247 2234

Ē

Finger-2 sequences of OP-1 mutants and their folding efficiencies and biological activities in the ROS cell based alkaline phosphatase assay.

2457

2447

2418

2233