M2 Informatique Réseaux

Multimédia et Qualité de Service

Cours 2: Le multicast

Timur FRIEDMAN

à partir des transparents de Kim THAI, avec modifications

Plan

- Introduction
- Le multicast au niveau réseau
- Le multicast au niveau transport
- Perspectives de recherche

Plan

- Introduction
 - Définition
 - Notion de groupe
 - Problématique
- Le multicast au niveau réseau
- Le multicast au niveau transport
- Perspectives de recherche

Qu'est-ce que le multicast ?

- moyen efficace de communication 1-vers-N
- multicast vs. unicast et broadcast
 - unicast : une seule source vers une seule destination
 - multicast : une seule source vers un sous-ensemble de destinataires
 - broadcast : une seule source vers toutes les destinations

Des applications pour le multicast

Pourquoi le multicast ? (1/3)

distribution utilisant TCP/IP

- résultats
 - plusieurs copies du même paquet
 - plusieurs buffers

Copyright 2004 by Timur Friedman

plusieurs connexions

Pourquoi le multicast ? (2/3)

distribution utilisant un multicast

- résultats
 - une seule copie de chaque paquet
 - un seul buffer

Copyright 2004 by Timur Friedman

une seule connexion multicast

Pourquoi le multicast ? (3/3)

- utilise la bande passante de façon efficace
- prévient la congestion du réseau
- minimise la charge des serveurs
- fournit l'information à davantage d'utilisateurs simultanément
- touche un nombre quelconque de personnes en une seule fois
- etc.

Notion de groupe de multicast

- comment identifier les récepteurs d'un paquet Mcast
 - en unicast : une adresse IP de destination
 - ici, toutes les adresses de destination ???
- une abstraction : le groupe de multicast
 - associe un ensemble d'émetteurs et de récepteurs
 - existe indépendamment des émetteurs et récepteurs

Adresses de multicast IP (1/2)

un groupe de multicast : une adresse de classe D

Α	0 réseau		station			
В	10 rés	eau	sta ⁻	ion		
С	110	réseau		station	ı	
D	1110	adresse	multicas			
de 224.0.0.0			1100000 C	0000000	00000000	000000
			•			•

- 224.0.0.0 : non utilisée
- 224.0.0.1 : représente l'ens. des stations du sous-réseau considéré

à 239.255.255.255 11101111 11111111 11111111 11111111

il n'y a pas d'adresse pour l'ens. des machines de l'Internet

Copyright 2004 by Timur Friedman

Adresses de multicast IP (2/2)

adressage du groupe

- indirection d'adresse
- chaque hôte a sa propre @IP, indépendante de l'@groupe
- dissociation des problèmes

 - découvrir l'ensemble des groupes Mcast courants
 exprimer le souhait de recevoir les paquets d'un groupe

 - découvrir l'ens. des récepteurs d'un groupe
 délivrer les données à chaque membre du groupe

Multicast : les problèmes

des questions...

- quand et comment un groupe naît-il et prend-il fin ?
- quand et comment l'@ groupe est-elle choisie ?
- comment de nouvelles stations se joignent-elles à un groupe ?
- y-a-t-il des conditions pour l'appartenance à un groupe ?
- comment les routeurs interopèrent-ils pour délivrer les paquets ?

des choix...

- un récepteur doit pouvoir joindre ou quitter un groupe en cours de transmission
- un récepteur doit pouvoir joindre ou quitter un groupe sans le signaler explicitement aux émetteurs

des constats....

les hôtes récepteurs sont souvent connectés à des réseaux locaux...

Plan

- Introduction
- Le multicast au niveau réseau
 - Le multicast sur un LAN
 - Le protocole IGMP
 - Le modèle de service
 - Les algorithmes de routage multicast
 - Les protocoles de routage multicast
- Le multicast au niveau transport
- Perspectives de recherche

Multicast sur un LAN (1/3)

- l'existant (cas d'Ethernet)
 - Ethernet repose sur un support à diffusion
 - chaque station a une carte réseau avec une @ matérielle spécifique
 - il existe une adresse de diffusion (FF:FF:FF:FF:FF)
- que faire si l'on souhaite joindre uniquement un sousensemble de stations ?
 - <u>ex</u>: H1 souhaite envoyer un paquet Mcast à H2 et H4 qui sont sur le même réseau que lui
 - deux possibilités...

Multicast sur un LAN (2/3)

le multicast de réseau utilise le broadcast de liaison

le multicast de réseau utilise le multicast de liaison

Multicast sur un LAN (3/3)

- traduction des adresses IP multicast en @ Ethernet
 - format des adresses multicast Ethernet

mécanisme de traduction

on sait Mcaster un paquet IP sur un LAN à diffusion!

IGMP: Qu'est-ce que c'est?

- comment un routeur détermine-t-il si son LAN possède des récepteurs pour un groupe donné ?
- Internet Group Management Protocol
 - permet à un hôte d'indiquer à son routeur local qu'il souhaite joindre un groupe
 - est utilisé sur les LAN à diffusion

IGMP Version 1 (1/1)

- RFC 1112 (Aug.89)
- échange de messages query/report

IGMP Version 1 (2/2)

- risque de congestion
 - étalement des réponses basé sur des temporisateurs

- réduction du trafic sur le LAN si aucun membre
- 8 délai éventuel (qq s.) avant de recevoir les données

IGMP Version 2 (1/2)

- RFC 2236 (Nov.97)
- un récepteur informe explicitement son routeur lorsqu'il quitte un groupe
 - 3 types de message

type de message	envoyé par	but
membership_query		
général	routeur	s'enquérir des groupes auxquels sont abonnés les hôtes
spécifique	routeur	demander si un groupe donné a des membres sur le LAN
membership_report hôte		indiquer que l'hôte souhaite joindre ou a joint un groupe
leave_group hôte		indiquer que l'hôte quitte un groupe donné

étalement des réponses avec 0 ≤ tempo ≤ MaxRespTime

IGMP Version 2 (2/2)

format du message

type	MaxRespTime	Checksum				
Multicast Group Address						

© réduction de la latence du Leave

IGMP Version 3

- draft en cours
- un récepteur peut sélectionner les sources qu'il souhaite (ne pas) entendre

Copyright 2004 by Timur Friedman

Le modèle de service du multicast (1/5)

- issu des travaux de Steve Deering
- caractéristiques de la transmission
 - multicast IP : transmission d'un paquet IP à un groupe d'hôtes identifié par une seule adresse de destination
 - transmission best effort

caractéristiques du groupe

- appartenance dynamique
- pas de restriction quant à la localisation et au # de membres
- un hôte peut être simultanément membre de plusieurs groupes
- un hôte n'a pas besoin de faire partie d'un groupe pour être source
- groupe permanent/transitoire
- l'opération de Join est receiver-driven

Le modèle de service de multicast (2/5)

- l'émetteur ne contrôle pas qui joint le groupe
- il n'y a pas de contrôle sur qui envoie au groupe
- les paquets issus de plusieurs sources peuvent être reçus entrelacés
- 8 2 groupes différents peuvent choisir la même @

rôle des routeurs Mcast locaux

- co-résidents ou séparés des routeurs classiques
- un routeur local qui reçoit un paquet Mcast d'un de ses hôtes, avec un TTL>1, le fait suivre vers tous les sous-réseaux connectant des membres récepteurs
- sur les sous-réseaux destinataires, le routeur local termine la transmission en Mcastant le paquet en local

Le modèle de service de multicast (3/5)

- le RFC 1112 spécifie les extensions à apporter à un hôte IP pour supporter le Mcast
 - 3 niveaux de conformité
 - 0 : l'hôte ne supporte pas le Mcast
 - 1 : l'hôte peut émettre à destination d'un groupe
 - 2 : l'hôte supporte le Mcast en émission et réception
 - modèle d'implémentation IP d'un hôte

Le modèle de service de multicast (4/5)

- les extensions pour l'envoi Mcast
 - interface de service IP
 - utilisation de SendIP
 - @ dest = @ de groupe
 - le niveau supérieur doit pouvoir spécifier un TTL
 - module IP
 - si IP-dest est sur le même réseau local ou si IP-dest est une @ de groupe alors envoyer le paquet en local à IP-dest sinon envoyer le paquet en local à GatewayTo (IP-dest)
 - interface de service LAN
 - module LAN
 - mécanisme de traduction des @IP Mcast en @MAC Mcast

Le modèle de service du multicast (5/5)

- les extensions pour la réception Mcast
 - interface de service IP
 - utilisation de ReceiveIP
 - ajout de JoinHostGroup (group-address, interface)
 - ajout de LeaveHostGroup (group-address, interface)
 - module IP
 - maintien de la liste des groupes dont l'hôte est membre pour chacune des interfaces (mise à jour avec les Join et Leave)
 - intégration de IGMP et adhésion à 224.0.0.1
 - interface de service LAN
 - ajout de JoinLocalGroup (group-address)
 - ajout de LeaveLocalGroup (group-address)
 - module LAN
 - mécanismes de filtrage par la carte souhaités

Copyright 2004 by Timur Friedman

Plan

- Introduction
- Le multicast au niveau réseau
 - Le multicast sur un LAN
 - Le protocole IGMP
 - Le modèle de service
 - Les algorithmes de routage multicast
 - Shortest Path Tree
 - Minimum Cost Tree
 - Constrained Tree
 - Les protocoles de routage multicast
- Le multicast au niveau transport
- Perspectives de recherche

Les algorithmes de routage multicast

- <u>objectif</u>: calculer un arbre de liens connectant tous les routeurs ayant des hôtes appartenant au groupe
- buts:
 - minimiser la distance entre la source et chaque récepteur
 - minimiser l'utilisation de liens dans le réseau
 - * ces buts ne sont pas compatibles

Les algorithmes SPT (1/2)

- <u>but</u>: calculer un arbre
 - ayant la source S pour racine
 - couvrant tous les récepteurs D_i du groupe
 - tel que la distance entre S et D_i soit minimum
- algorithmes de base
 - Bellmann-Ford : à vecteurs de distance
 - Dijkstra : à états des liens
- un arbre par émetteur

Les algorithmes SPT (2/2)

un exemple de topologie

l'ar bre obt enu avec un algorit hme à vect eurs de distance

Copyright 2004 by Timu $\Sigma_i^{\text{ried}} D_i = 29$, liens: 17

Les algorithmes MCT (1/2)

- but : minimiser le coût total de l'arbre
- 2 familles
 - les algorithmes Minimum Spanning Tree
 - contrainte : l'arbre ne doit toucher aucun nœud qui ne soit pas membre du groupe (pas réaliste car les routeurs ne sont pas de membres)
 - ex : algorithme de Prim
 - les algorithmes Minimum Steiner Tree
 - la contrainte est levée
 - problème NP-complet
 - ils supposent de connaître toutes les liaisons du réseau
 - ils sont monolithiques
 - ils n'exploitent pas les informations déjà disponibles de routage unicast

Les algorithmes MCT (2/2)

l'ar bre obt enu avec un algorit hme à vect eurs de dist ance

 \underline{rq} : dist(S, D6) = 5

rq: dist(S, D6) = 7

Copyright 2004 by Timur Fried $D_i = 37$, liens: 15

Les algorithmes CT

- <u>but</u>: minimiser simultanément la dist(S, D_i) et le coût total de l'arbre
- principe
 - associer à chaque lien 2 métriques (distance/délai et coût)
 - rechercher l'arbre à coût minimum tel que dist(S, Di) $\leq \Delta$

Qu'appelle-t-on IP multicast?

- mécanisme utilisé dans l'Internet pour construire un arbre de routage multicast efficace et sans boucles
- IGMP + protocole de routage Mcast

RPF (1/2)

- Reverse Path Forwarding (Source-based Routing)
- l'une des premières techniques utilisées
- <u>but</u>: construire un arbre ayant S comme racine et minimisant dist(S, D_i)
- principe : utiliser l'inondation (flooding) avec
 - si un paquet est reçu par l'if utilisée par le routeur pour joindre S alors le paquet est retransmis sur les autres if sinon le paquet est rejeté

mécanisme simple

- les informations utilisées sont celles du routage unicast
- R_i n'a pas à connaître les arbres recouvrants
- pas de mécanisme particulier pour arrêter l'inondation

Copyright 2004 by Timur Friedman

Truncated Broadcasting (1/2)

- but : réduire le trafic sur les LAN feuilles
- idée : utiliser les informations d'appartenance fournies par IGMP pour déterminer s'il faut ou non Mcaster un paquet sur un LAN feuille
 - forme d'élagage (*pruning*) des feuilles
 - pas de réduction de trafic au cœur du réseau

Truncated Broadcasting (2/2)

DVMRP (1/6)

- RFC 1075 (Nov.88), draft Version 3 en cours
- Distance Vector Multicast Routing Protocol
- but : réduire le trafic au cœur du réseau
- <u>principe</u>: inondation et élagage (*flooding and pruning*)
 - s'il n'a pas de membre sur son LAN, un routeur feuille envoie un message prune à ses voisins
 - un routeur feuille peut envoyer un prune sur toutes ses if, sauf celle correspondant à son SP avec la source (i.e. l'if RPF)
 - quand un routeur intermédiaire reçoit un prune sur chacune de ses if, sauf l'if RPF, il remonte le prune en amont
 - quand un routeur envoie un prune, il mémorise la paire (Source, Groupe) pour laquelle le prune a été envoyé

DVMRP (6/6)

- problèmes communs aux protocoles à vecteurs de distance (e.g. temps de convergence)
- processus périodique d'inondation et d'élagage pour chaque source
- mémorisation des enregistrements prune (Source,
 Groupe)

MOSPF

- RFC 1584 (March 94)
- Multicast Open Shortest Path First
- principe
 - opère dans un AS qui utilise OSPF pour l'unicast
 - étend OSPF en ajoutant les informations d'appartenance aux informations d'états des liens qui sont diffusées par OSPF
- 🙉 problème : scalability avec la taille du réseau
 - mémorisation d'un enregistrement par groupe et par lien du réseau
 - un arbre par source

CBT (1/3)

- RFC 2189 et 2201 (Sept.97)
- Core Based Tree (Group-shared Tree)
- but : éviter les inconvénients de DVMRP et MOSPF
 - résistance au facteur d'échelle : un seul arbre pour le groupe
 - efficacité (éviter les inondations) : messages de Join et de Leave explicites
- <u>principe</u>: construire un arbre partagé, bidirectionnel, avec un cœur unique

CBT (2/3)

construction de l'arbre

- un routeur local qui a un nouveau membre pour un groupe envoie un message join-request vers le cœur en unicast
- le cœur ou le premier routeur sur le chemin faisant déjà partie de l'arbre répond par un join-ack
- chaque routeur ayant vu passer le join-request marque l'if sur laquelle il l'a reçu

maintien de l'arbre

- chaque routeur envoie périodiquement des echo-request à son routeur amont
- le routeur amont répond par des echo-reply
- si un routeur aval n'obtient pas de réponse au bout de N essais, il détache son sous-arbre en envoyant un flush-tree

CBT (3/3)

avantages

pas d'inondation (vs. DVMRP)

- 1 R1 envoie un join (G) au cœur
- 2 R2 marque l'if R2-R1 pour faire suivre ult érieurement les paquets
- 3 R3 mar que l'if R3-R2
- 4 le cœur marque l'if cœur-R3
- 5 lorsque R4 rejoint G, son join s'arrête à R2
- 6 R2 mar que l'if R2-R4
- 7 pour envoyer un paquet à G, S l'envoie en unicast au cœur qui f ait suivre
- un hôte peut joindre/quitter un groupe sans délai (vs. DVMRP)
- un enregistrement par groupe avec les if sortantes (vs. DVMRP)
- pas de calcul explicite d'arbre (vs. MOSPF)

inconvénients

- problèmes de fiabilité, robustesse et de congestion pour le cœur
- l'arbre n'est pas optimal pour toutes les sources

Copyright 2004 by Timur Friedman

PIM (1/3)

- RFC 2362 (June 98)
- Protocol Independent Multicast
- idée: distinction explicite de 2 scénarios de distribution
- le mode dense
 - les membres sont géographiquement concentrés dans une zone
 - <u>idée</u>: RPF avec *flood-and-prune*, similaire à DVMRP est alors raisonnable

PIM (2/3)

- le mode épars
 - les membres sont géographiquement éparpillés
 - <u>but</u>: un routeur ne doit pas avoir à travailler, à moins de rejoindre un arbre
 - principe : approche center-based, similaire à CBT
 - sauf :
 - pas d'acquittement en réponse au join
 - le join est envoyé périodiquement pour «rafraîchir» l'arbre
 - le point de RDV informe une source active d'arrêter d'émettre lorqu'il n'y a plus de routeurs dans l'arbre
 - changement de mode possible : de l'arbre partagé vers l'arbre par source
 - les points de RDV émettent périodiquement en aval pour indiquer leur activité

PIM (3/3)

- R1 sait que son SP avec S passe par son if R1-R4
- or, R1 reçoit les paquets Mcast sur son if R1-R2
- R1 envoie un join à R4
- R1 envoie ensuit e un prune au cœur
- le cœur arrête le transfert Mcast sur cœur-R2 et R2-R1
- le changement de mode per met de décharger le cœur
- en cas de panne du cœur, les hôt es ayant commut é de mode continuent de recevoir
- PI M ne dit pas comment un rout eur dét er mine le point de RDV d'un groupe
- PIM ne dit pas comment déterminer si un groupe est dense ou épars

Le Mbone (1/3)

problème

- pour mettre en œuvre le Mcast sur l'Internet, il faut que tous les routeurs aient des fonctions de Mcast et que les routeurs locaux supportent IGMP
- la plupart des routeurs de l'Internet ne supportent pas le Mcast !!!

idée

- bâtir des sous-réseaux capables de Mcast à la périphérie de l'Internet
- les interconnecter par des *tunnels*, les extrémités des tunnels sont des stations avec mrouted et un support de l'OS pour le Mcast

Multicast Backbone of the Internet

- réseau virtuel de recouvrement, solution transitoire
- premier tunnel en 88 entre BBN et Stanford
- des milliers de sous-réseaux aujourd'hui
- utilisé pour diffuser des sessions IETF ou des conf. IEEE/ACM

Le Mbone (2/3)

- principe : le tunneling
 - encapsulation des paquets Mcast transmis sur le Mbone dans des paquets
 IP classiques
 - l'extrémité du tunnel réceptrice détecte qu'elle a un paquet IP encapsulé dans un paquet IP (protocol =4)
 - après désencapsulation, elle fait suivre le paquet Mcast
 - soit en local sur son sous-réseau, s'il a des hôtes membres
 - soit au prochain routeur Mcast, après ré-encapsulation

Le Mbone (3/3)

trafic

- les conférences génèrent typiquement 100-300 kbits/s (limité à 500 kbit/s)
- pas de mécanisme de «police» mais une déontologie de l'utilisateur

applications

- annuaires de session (sd, sdr)
- conférences audio (vat, nevot, rat)
- conférences vidéo (nv, ivs, vic, nevit)
- tableau blanc (wb)
- éditeur de textes (nte)
- jeux distribués interactifs (MiMaze)

Plan

- Introduction
- Le multicast au niveau réseau
- Le multicast au niveau transport
 - fiabilité
 - SRM
 - RMTP
- Perspectives de recherche

Fiabilité

peut-on étendre l'approche utilisée en unicast (ACK) ?

- chaque destination doit envoyer un ACK pour chaque (groupe de) message(s)
- un msg est retransmis jusqu'à réception d'un acquittement de chaque destinataire
- congestion du réseau
- implosion de la source

■ <u>idée</u> : utiliser des NAK

- le contrôle est déplacé de l'émetteur vers les récepteurs
- la source émet sans se préoccuper des ACK
- les récepteurs détectent les pertes sur «trous» de N° de séquence

de nombreux protocoles ont été proposés

- atomicité : soit 0 soit tous les récepteurs ont reçu le msg
- terminaison : le résultat d'une transm. est connu en un temps fini
- SRM, RMTP, RAMP, RMP, etc.

SRM (1/2)

Scalable Reliable Multicast

- offre une transmission fiable, sans séquencement, «scalable» (car receiverbased + reprise en local)
- 2 composants
 - un composant indépendant de l'application : offre les mécanismes pour demander et récupérer les segments de données manquants
 - un composant dépendant de l'application : est responsable du nommage des segments de façon à ce qu'ils soient identifiés de manière unique par tout le groupe et de l'ordonnancement
- idée : un segment manquant n'est pas forcément retransmis par la source
 - sur détection d'une perte, la demande de retransm. est Mcastée
 - le récepteur le plus proche du demandeur Mcaste la retransmission

SRM (2/2)

- <u>but</u>: minimiser le trafic
 - un seul membre demande la retransm.
 - un seul membre retransmet le msg manquant

principe

- envoi des requêtes : slotting + damping,
 - Request Timer
- envoi des retransmissions
 - Repair Timer

difficulté

- dimensionnement des Timers
 - estimation du RTT pour chaque paire (D_i, D_i)

hyp: D5, D6 et D7 ont un msg manquant

- → nouveaux msgs
- req. de retransm.
- --> retransmissions

Copyright 2004 by Timur Friedman

RMTP

Reliable Multicast Transport Protocol

offre une transmission point à multipoint, fiable, avec maintien de séquence

idées

- notion de hiérarchie
 - réduire l'implosion à la source
 - réduire les temps de réponse
- notion de reprise en local

principe

- les récepteurs sont groupés dans des régions locales
- il y a un DR (Designated Receiver) par région, chargé d'agréger les msg de status

difficulté: construire d'arbre logique

Plan

- Introduction
- Le multicast au niveau réseau
- Le multicast au niveau transport
- Perspectives de recherche
 - niveau réseau
 - niveau transport
 - niveau application

Perspectives au niveau réseau

adressage et routage à l'intérieur d'un groupe

multicast sur un sous arbre (« subcasting »)

unicast vers un membre du groupe (« reachcasting »)

- routage multicast dans un réseau mobile
- routage multicast avec QoS

Perspectives au niveau transport

- contrôle de flux/congestion
- fiabilité assistée par les routeurs
- auto-configuration des membres du groupe

Perspectives au niveau application

- allocation des adresses multicast
- nommage d'objets partagés

Bibliographie

- [RFC 1112] S. Deering, «Host Extensionsfor IP Multicasting», August 1989.
- [RFC 1075] D. Waitzman, S. Deering, C. Partridge, «Distance Vector Multicast Routing Protocol», November 1988.
- **■** [RFC 1584] J. Moy, «Multicast Extensions to OSPF», March 1994.
- [RFC 2189] A. Ballardie, «Core Base Trees (CBT Version 2) Multicast Routing: Protocol Specification», September 1997.
- [RFC 2201] A. Ballardie, «Core Base Trees (CBT Version 2) Multicast Architecture», September 1997.
- **■** [RFC 2236] R. Fenner, «Internet Group Management Protocol, Version 2», November 1997.
- [RFC 2362] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacobson, C. Liu, P. Sharma, L. Wei, «Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification, June 1998.
- C. Diot, W. Dabbous, J. Crowcroft, «Multipoint Communication: A Survey of Protocols, Functions and Mechanisms», IEEE JSAC, Vol.15, N°3, April 1997.
- S. Floyd, V. Jacobson, S. McCanne, C.G. Liu, L. Zhang, «A Reliable Multicast Framework for Lightweight Sessions and Applications Level Framing», Proc. of ACM SIGCOMM'95, October 1995.
- S. Paul, K.K. Sabnani, J.C. Lin, S. Bhattacharyya, «Reliable Multicast Transport Protocol (RMTP)», IEEE JSAC, Vol.15, N°3, April 1997.
- S. Paul, «Multicasting on the Internet and its Applications», Kluwer Academic Publishers, 1998.
- http://www.mbone.com