Exercise 9.5 (Quanto option)

Proof

Under domestic money market measure, it holds that

$$dS(t) = S(t) \left[r dt + \sigma_1 d\tilde{W}_1(t) \right]$$

$$dQ(t) = Q(t) \left[(r - r^f) dt + \sigma_2 \rho d\tilde{W}_1(t) + \sigma_2 \sqrt{1 - \rho^2} d\tilde{W}_2(t) \right]$$

$$= Q(t) \left[(r - r^f) dt + \sigma_2 d\tilde{W}_3(t) \right]$$

Here

$$\tilde{W}_3(t) = \int_0^t \rho(u) d\tilde{W}_1(u) + \int_0^t \sqrt{1 - \rho^2(u)} d\tilde{W}_2(u)$$

where \tilde{W}_1 and \tilde{W}_2 are independent. We have that

$$d \log S(t) = \frac{dS(t)}{S(t)} - \frac{dS(t)dS(t)}{2S^2(t)}$$
$$= rdt + \sigma_1 d\tilde{W}_1(t) - \frac{\sigma_1^2}{2}dt$$
$$= \left(r - \frac{\sigma_1^2}{2}\right)dt + \sigma_1 d\tilde{W}_1(t)$$

Integration gives

$$\log S(t) - \log S(0) = \left(r - \frac{\sigma_1^2}{2}\right)t + \sigma_1 \tilde{W}_1(t).$$

Thus,

$$S(t) = S(0)e^{\left(r - \frac{\sigma_1^2}{2}\right)t + \sigma_1 \tilde{W}_1(t)}.$$

Similarly,

$$\begin{split} \mathrm{d} \log Q(t) &= \frac{\mathrm{d} Q(t)}{Q(t)} - \frac{\mathrm{d} Q(t) \mathrm{d} Q(t)}{2Q^2(t)} \\ &= (r - r^f) \mathrm{d} t + \sigma_2 \rho \mathrm{d} \tilde{W}_1(t) + \sigma_2 \sqrt{1 - \rho^2} \mathrm{d} \tilde{W}_2(t) - \frac{\sigma_2^2}{2} (\rho^2 + 1 - \rho^2) \mathrm{d} t \\ &= (r - r^f - \frac{\sigma_2^2}{2}) \mathrm{d} t + \sigma_2 \rho \mathrm{d} \tilde{W}_1(t) + \sigma_2 \sqrt{1 - \rho^2} \mathrm{d} \tilde{W}_2(t) \end{split}$$

Thus,

$$\log Q(t) - \log Q(0) = \left(r - r^f - \frac{\sigma_2^2}{2}\right)t + \sigma_2 \rho \tilde{W}_1(t) + \sigma_2 \sqrt{1 - \rho^2} \tilde{W}_2(t)$$

so that

$$Q(t) = Q(0)e^{\left(r - r^f - \frac{\sigma_2^2}{2}\right)t + \sigma_2 \rho \tilde{W}_1(t) + \sigma_2 \sqrt{1 - \rho^2} \tilde{W}_2(t)}$$

Continuing, we obtain that

$$\begin{split} \frac{S(t)}{Q(t)} &= \frac{S(0)}{Q(0)} \cdot e^{\left(r - \frac{\sigma_1^2}{2}\right)t + \sigma_1 \tilde{W}_1(t) - \left(r - r^f - \frac{\sigma_2^2}{2}\right)t - \sigma_2 \rho \tilde{W}_1(t) - \sigma_2 \sqrt{1 - \rho^2} \tilde{W}_2(t)} \\ &= \frac{S(0)}{Q(0)} \cdot e^{\left(-\frac{\sigma_1^2}{2} + r^f + \frac{\sigma_2^2}{2}\right)t + (\sigma_1 - \sigma_2 \rho)\tilde{W}_1(t) - \sigma_2 \sqrt{1 - \rho^2} \tilde{W}_2(t)} \end{split}$$

Let

$$\sigma_4^2 = (\sigma_1 - \sigma_2 \rho)^2 + \sigma_2^2 (1 - \rho^2)$$

$$= \sigma_1^2 + \sigma_2^2 \rho^2 - 2\sigma_1 \sigma_2 \rho + \sigma_2^2 - \sigma_2^2 \rho^2$$

$$= \sigma_1^2 - 2\sigma_1 \sigma_2 \rho + \sigma_2^2$$

By Levy theorem

$$\tilde{W}_4(t) = \frac{\left(\sigma_1 - \sigma_2 \rho\right) \tilde{W}_1(t) - \sigma_2 \sqrt{1 - \rho^2} \tilde{W}_2(t)}{\sigma_4}$$

is a Brownian motion. Therefore,

$$\frac{S(t)}{Q(t)} = \frac{S(0)}{Q(0)} \cdot e^{\left(-\frac{\sigma_1^2}{2} + r^f + \frac{\sigma_2^2}{2}\right)t + \sigma_4 \tilde{W}_4(t)}$$

Finally,

$$-\frac{\sigma_1^2}{2} + r^f + \frac{\sigma_2^2}{2} = -\frac{1}{2} \left(\sigma_1^2 + \sigma_2^2 - 2\sigma_1 \sigma_2 \rho \right) - \sigma_1 \sigma_2 \rho + r^f + \sigma_2^2$$

$$= -\frac{\sigma_4^2}{2} - \sigma_1 \sigma_2 \rho + r^f + \sigma_2^2$$

$$= -\frac{\sigma_4^2}{2} + r - \left(\underbrace{r - r^f + \sigma_1 \sigma_2 \rho - \sigma_2^2}_{:=a} \right)$$

Putting pieces together, we have shown that

$$\frac{S(t)}{Q(t)} = \frac{S(0)}{Q(0)} \cdot e^{\left(r - a - \frac{\sigma_4^2}{2}\right)t + \sigma_4 \tilde{W}_4(t)}$$

Therefore, $\frac{S(t)}{Q(t)}$ satisfies the same equation as of a continuously dividend paying stock with rate a and which has constant volatility σ . Interest rate is constant r. BSM formula from Section 5.5.2 directly applies.