

Chapter 0. From the Ground Up

Han-You Jeong

Networked Smart Systems Laboratory

Department of Electrical Engineering

Pusan National University

Contents

- Signals and Systems
- Signal Processing Applications
- Analog or Discrete
- Complex or Real

Definition of Signals and Systems

Signal

A function of time, e.g., the voltages or currents encountered in circuits.

Voice Signal

Image Signal

System

 Any device described by a mathematical model, e.g., the differential equations of an RLC circuit.

Plug-in Hybrid Vehicle

CD Player

- CD Player
 - Pits and bumps on CD correspond to ones and zeros, respectively.
 - Control issues
 - Rotate the disc at different speeds depending on the location of track
 - Focus a laser and a lens system to read the pits and bumps on the disc.
 - Move the laser to follow the track being read.

SDR and CR

- Software Defined Radio (SDR) and Cognitive Radio (CR)
 - In SDR, some of the radio functions typically implemented in hardware are reconfigured by changing the software.
 - CR improves the RF spectrum efficiency by reusing a spectrum when the primary users are not active.

Computer-Controlled Systems

Computer-Controlled Systems

- Control systems are feedback systems where the response of a system is changed to make it follow a desirable behavior.
- The sensor acts as a transducer whenever the output of the plant is of a different type than the reference.

Analog or Discrete

Analog or continuous-time signals x(t)

- A function of one or more continuously changing variables.
- Dealt by (infinitesimal) calculus, e.g., differentiation/integration.

Discrete-time signals x[n]

- A sequence of measurements typically made at uniform times.
- Dealt by finite calculus where differentiation and integration can be done only approximately by difference and summation, respectively.

Digital Revolution

Digital Revolution

Transforms all kinds of information, e.g. texts, voice, image, video, etc., into a sequence of binary digits, i.e. 0 and 1.

CONTINUOUS OR DISCRETE

Continuous and Discrete Representations

Sampling or discretization of an analog signal (Ch. 7)

$$x[n] = x(nT_s) = x(t)_{|t=nT_s|}$$
or
 $\{\cdots x(-T_s) \ x(0) \ x(T_s) \ x(2T_s)\cdots\}$
 $\{\cdots x[-1] \ x[0] \ x[1] \ x[2]\cdots\}$

Inherent discrete-time signals

Example of discrete-time signal: Stock market

Calculus vs Finite Calculus

- Derivatives vs. Finite Differences
 - Derivative operator measures rate of change of an analog signal

$$D[x(t)] = \frac{dx(t)}{dt} = \lim_{h \to 0} \frac{x(t+h) - x(t)}{h}$$

Forward finite-difference operator measures the change in the signal from one sample to the next

$$\Delta[x(nT_s)] = x((n+1)T_s) - x(nT_s) \qquad \frac{dx(t)}{dt} \mid_{t=nT_s} = \lim_{T_s \to 0} \frac{\Delta[x(nT_s)]}{T_s}$$

- Integrals vs. Summations
 - Integration is the opposite of differentiation

- Integration is the opposite of differentiation
$$I(t) = \int_{t_0}^t x(\tau) d\tau$$

$$\approx \lim_{h \to 0} \frac{x(t) + x(t-h)}{2} = x(t)$$

$$D[D^{-1}[x(t)]] = x(t).$$

CONTINUOUS OR DISCRETE

Approximation of Integrals by Sums

The area of a triangle of base of 10 and height of 10

$$\int_{0}^{10} t \ dt = \frac{t^2}{2} \Big|_{t=0}^{10} = 50.$$

- Approximation of the area
 - By pulses of width 1 and height nT_s

$$\sum_{n=0}^{9} p[n] = \sum_{n=0}^{9} n = 0 + 1 + 2 + \dots 9 = 0.5 \left[\sum_{n=0}^{9} n + \sum_{k=9}^{0} k \right]$$
$$= 0.5 \left[\sum_{n=0}^{9} n + \sum_{n=0}^{9} (9 - n) \right] = \frac{9}{2} \sum_{n=0}^{9} 1 = \frac{10 \times 9}{2} = 45$$

CONTINUOUS OR DISCRETE

Differential and Difference Equations

- A differential equation characterizes the way the system responds to inputs over time.
 - Most systems are characterized by nonlinear, time-dependent coefficient differential equations.
 - Solutions are obtained by an analog computer consisting of op-amps, resistors, capacitors, voltage sources, and relays.
 - The drawback is the **storage of the solution** which is difficult to record.
 - Laplace transform (Ch. 3)
- A digital computer can easily solve the difference equation which approximates a differential equation using the trapezoidal rule.
 - Z-transform (Ch. 9)

Example - RC Circuit

- RC circuit
 - A first-order linear with constant-coefficient differential equation
 - Differential equation using differentiator/integrator

Differentiator
$$v_i(t)=v_c(t)+\frac{dv_c(t)}{dt}$$
 Integrator
$$v_c(t)=\int\limits_0^t [v_i(\tau)-v_c(\tau)]d\tau+v_c(0) \qquad t\geq 0$$

Complex or Real

- Time-dependent signals are characterized by means of frequency and damping.
 - $-s = \sigma + j\Omega$: analog signals in the Laplace transform
 - $-z = re^{j\omega}$: discrete-time signals in the Z-transform

Euler's Identity & Sinusoidal Function

Euler's Identity

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

Sinusoidal Function

$$\cos(\theta) = \mathcal{R}e[e^{j\theta}] = \frac{e^{j\theta} + e^{-j\theta}}{2} \qquad \sin(\theta) = \mathcal{I}m[e^{j\theta}] = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

$$\cos^{2}(\theta) = \left\lceil \frac{e^{j\theta} + e^{-j\theta}}{2} \right\rceil^{2} = \frac{1}{4} [2 + e^{j2\theta} + e^{-j2\theta}] = \frac{1}{2} + \frac{1}{2} \cos(2\theta)$$

$$\sin^2(\theta) = 1 - \cos^2(\theta) = \frac{1}{2} - \frac{1}{2}\cos(2\theta)$$

$$\sin(\theta)\cos(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j} \frac{e^{j\theta} + e^{-j\theta}}{2} = \frac{e^{j2\theta} - e^{-j2\theta}}{4j} = \frac{1}{2}\sin(2\theta)$$

Phasors and Sinusoidal Steady-State

- Sinusoid $x(t) = A\cos(\Omega_0 t + \psi)$ $-\infty < t < \infty$
 - A: amplitude, $\Omega_0 = 2\pi f_0$: frequency (rad/sec), ψ : phase (rad)
- The **phasor** is a **complex number** characterized by the **amplitude** and the **phase** of cosine signal of a certain frequency Ω_0

$$V = Ae^{j\psi} = A\cos(\psi) + jA\sin(\psi) = A\angle\psi$$
$$v(t) = \mathcal{R}e[Ve^{j\Omega_0 t}] = \mathcal{R}e[Ae^{j(\Omega_0 t + \psi)}] = A\cos(\Omega_0 t + \psi)$$

Example – RC Circuit

Differential Equations:

$$v_{i}(t) = \frac{dv_{c}(t)}{dt} + v_{c}(t)$$

$$\mathcal{R}e\left[V_{c}(1+j\Omega_{0})e^{j\Omega_{0}t}\right] = \mathcal{R}e\left[Ae^{j\Omega_{0}t}\right]$$

$$V_{c} = \frac{A}{1+j\Omega_{0}} = \frac{A}{\sqrt{1+\Omega_{0}^{2}}}e^{-j\tan^{-1}(\Omega_{0})} = Ce^{j\psi}$$

Sinusoidal Steady-State Response:

$$v_c(t) = \mathcal{R}e\left[V_c e^{j\Omega_0 t}\right] = \frac{A}{\sqrt{1 + \Omega_0^2}} \cos(\Omega_0 t - \tan^{-1}(\Omega_0)) \qquad \frac{V_c}{V_i} = \frac{1}{1 + j\Omega_0}$$

Thank You

