Part 3

Digital Design and Computer Architecture, 2nd Edition

David Money Harris and Sarah L. Harris

Boolean Algebra 1/2

- A set of elements B
 - There exist at least **two** distinct elements $x, y \in B$ s. t. $x \neq y$
- Binary operators: + and ·

```
closure w.r.t. both + and ·
    x, y ∈ B, (x+y) ∈ B, (x · y) ∈ B
+ (additive) identity ?
    0: x + 0 = 0 + x = x
· (multiplicative) identity ?
    1: x \cdot 1 = 1 \cdot x = x
commutative w.r.t. both + and ·
    x + y = y + x    x \cdot y = y \cdot x
associative w.r.t. both + and ·
    x + (x + y) = (x + x) + y    x \cdot (x \cdot y) = (x \cdot x) \cdot y
```

Distributive law:

```
is · distributive over +?

yes : x \cdot (y+z) = (x \cdot y)+(x \cdot z)

is + distributive over ·?

yes : x+(y \cdot z) = (x+y) \cdot (x+z)
```

We do not have the second one in ordinary algebra

Boolean Algebra 2/2

- Complement
 - $\forall x \in B$, there exist an element $x' \in B \ni$

```
x + x' = 1 (·identity) and x \cdot x' = 0 (+ identity)
```

- Not available in ordinary algebra
- No inverses in Boolean Algebra!
- Differences between ordinary and Boolean algebra
 - Ordinary algebra deals with real numbers (infinite)
 - Boolean algebra deals with elements of set B (finite)
 - Complement
 - Distributive law
 - Do not substitute laws from one to another where they are not applicable

Two-Valued Boolean Algebra (Switching Algebra)

- $B = \{0, 1\}$
- Check the axioms
 - Two distinct elements, $0 \neq 1$
 - Closure, associative, commutative, identity elements
 - Complement x + x' = 1 and $x \cdot x' = 0$
 - Distributive law

Х	У	Z		À.S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1	(omnutor

λ·z	X+ (Ā.S)
2	

х + у	X + Z	(x + y) · (x + z)
12		

) Digital Design ahd Computer Architecture, 2nd Edition, 20**1**

CLOCVICE

Two-Valued Boolean Algebra

 Two-valued Boolean algebra is actually equivalent to the binary logic that we defined heuristically before

Operations:

- $\rightarrow \cdot \rightarrow AND$
 - \triangleright we often drop \cdot and write xy instead of x \cdot y
- \rightarrow + \rightarrow OR
- ➤ Complement → NOT
- Binary logic is the application of Boolean algebra to gatetype circuits
 - Two-valued Boolean algebra is developed in a formal mathematical manner
 - This formalism is necessary to develop theorems and properties of Boolean algebra

Duality Principle

- An important principle
 - every algebraic expression deducible from the axioms of Boolean algebra remains valid if the operators and identity elements are interchanged together
- Example:

$$x + x = x$$

■
$$x + x$$
 = $(x+x) \cdot 1$
= $(x+x) \cdot (x+x')$
= $x+(x \cdot x')$
= x

duality principle

$$x + x = x$$

 $\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$

(identity element)
(complement)
(+ over ·)
(complement)

Duality Principle & Theorems

Theorem a:

```
■ x + 1 = 1 hmmm?

■ x + 1 = (x + 1) \cdot 1

= (x + 1) \cdot (x + x')

= x + (1 \cdot x')

= x + x'

= 1
```

Theorem b: (using duality)

$$\mathbf{x} \cdot \mathbf{0} = \mathbf{0}$$

Absorption Theorem

```
x + xy = x hmmmmm?

= x \cdot 1 + x \cdot y

= x \cdot (1+y)

= x \cdot 1

= x
```


Involution Theorem

$$(x')' = x$$

$$(x')' = (x')' + 0$$

$$= (x')' + x \cdot x'$$

$$= ((x')' + x) \cdot ((x')' + x')$$

$$= (x + (x')') \cdot 1$$

$$= (x + (x')') \cdot (x + x')$$

$$= x + ((x')' \cdot x')$$

$$= x + (x' \cdot (x')')$$

$$= x + 0$$

$$= x$$

Involution Theorem

$$(x')' = x$$

- x + x' = 1 and $x \cdot x' = 0$
- Complement of x' is x
- Complement is unique

DeMorgan's Theorem

$$(x + y)' = x' \cdot y'$$

Using duality >>
$$(x \cdot y)' = x' + y'$$

Truth Tables for DeMorgan's Theorem

$$(x + y)' = x' \cdot y'$$

X	У	х+у	(x+y)'	х·у	(x · y)'
0	0				
0	1				
1	0				
1	1				

x'	y'	x' · y '	x' + y'
1	1		
1	0		
0	1		
0	0		

© Digital Design and Computer Architecture, 2nd Edition, 2012

Operator Precedence (Boolean Operator Priority Order)

- 1. Parentheses
- 2. NOT
- 3. AND
- 4. OR

PiNA cOlada?

Boolean Functions

Consists of

- binary variables (in either normal or complement form)
- the constants: 0 and 1
- logic operation symbols: "+" and "·"

Example:

•
$$F_1(x, y, z) = x + y'z$$

■
$$F_2(x, y, z) = x' y' z + x' y z + xy'$$

X	У	Z	F ₁	F ₂
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	0
1 Psian and Compu	ter Architecture	2 nd Edition 2012	1	0

Rules of Combinational Composition

- Every element is combinational
- Every node is either an input or connects to exactly one output
- The circuit contains no cyclic paths
- Example:

Boolean Equations

- Functional specification of outputs in terms of inputs
- Example: $S = F(A, B, C_{in})$ $C_{out} = F(A, B, C_{in})$

$$S = A \oplus B \oplus C_{in}$$

 $C_{out} = AB + AC_{in} + BC_{in}$

Some Definitions

- Complement: variable with a bar or 'over it \overline{A} , \overline{B} , \overline{C}
- Literal: variable or its complement $A, \overline{A}, B, \overline{B}, C, \overline{C}$
- Implicant: product of literals
 ABC, AC, BC
- Minterm: product that includes all input variables

ABC, ABC, ABC

Maxterm: sum that includes all input variables

$$(A+\overline{B}+C)$$
, $(\overline{A}+B+\overline{C})$, $(\overline{A}+\overline{B}+C)$

From Logic to Gates

- Two-level logic: ANDs followed by ORs
- Example: $Y = \overline{ABC} + A\overline{BC} + AB\overline{C}$

Circuit Schematics Rules

- Inputs on the left (or top)
- Outputs on right (or bottom)
- Gates flow from left to right
- Straight wires are best

Circuit Schematic Rules (cont.)

- Wires always connect at a T junction
- A dot where wires cross indicates a connection between the wires
- Wires crossing without a dot make no connection

wires connect without a dot do at a T junction at a dot not connect

Multiple-Output Circuits

Example: Priority Circuit

Output asserted corresponding to most significant TRUE input

A_3	A_2	$A_{\scriptscriptstyle 1}$	A_{o}	Y ₃	Y_2	Y ₁	Y_o
0	0	0	0			<u> </u>	
0	0	0	1				
0	0	1	1 0				
0	0	1	1				
0	1	0	0				
0	1	0	1 0 1 0 1				
0	1	1	0				
0	1	1	1				
1 1	0	0	0				
1	0	0	1 0				
1	0	1					
1 1 1	0	1	1 0				
1	1	0					
1	1	0	1 0				
1	1	1					
1	1	1	1				

Multiple-Output Circuits

Example: Priority Circuit

Output asserted corresponding to most significant TRUE input

A_3	A_2	A_1	A_{o}	Y ₃	Y_2	Y ₁	Y_{o}
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0 0 1 1 0 0 1 1 0 0 1	0101010101010	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0	000000011111111	0000111100000000	0 0 1 1 0 0 0 0 0 0 0	Y _o 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1	1	1	1	1	0	0	0

Priority Circuit Hardware

A_2	A_2	A_{1}	A_{α}	Y ₂	Y ₂	Y ₁	Y
0	0		0	0	Y ₂ 0 0 0 1 1 1 0 0 0 0	0	Y _o 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1	$egin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 &$	$egin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 &$	0101010101010	000000011111111	0	0 0 1 1 0 0 0 0 0 0 0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0	1	0	0	0
1	1	1	1	1	0	0	0

Don't Cares

A_3	A_2	A_1	A_{o}	Y_3	Y ₂	Y ₁	Y ₀ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
A_3 0 0 0 0 0 1 1 1 1	$egin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 &$	0 1 1 0 0 1 1 0 0 1 1	01010101010101	000000011111111	000011110000000	0 0 1 1 0 0 0 0 0 0 0 0	0
1	1	1	1	1	0	0	0

_	A_3	A_2	A_{1}	A_o	Y ₃ 0 0 0 1	Y_2	Y ₁	Y_0
	0	0	0	0	0	0	0	0
	0	0	0	1	0	0	0	1
	0	0	1	X	0	0	1	0
	0	1	X	X	0	1	0	0
	1	X	X	X	1	0	0	0

Contention: X

- Contention: circuit tries to drive output to 1 and 0
 - Actual value somewhere in between
 - Could be 0, 1, or in forbidden zone
 - Might change with voltage, temperature, time, noise
 - Often causes excessive power dissipation

$$A = 1 - Y = X$$

$$B = 0 - Y = X$$

- Warnings:
 - Contention usually indicates a bug.
 - X is used for both "don't care" and contention -> look at the context to tell them apart

Floating: Z

- Floating, high impedance, open, high Z
- Floating output might be 0, 1, or somewhere in between
 - A voltmeter won't indicate whether a node is floating

Tristate Buffer

E	Α	Y
0	0	Z
0	1	Z
1	0	0
1	1	1

Tristate Busses

Floating nodes are used in tristate busses

- Many different drivers
- Exactly one is active at once

Logic Circuit Diagram of F₁

$$F_1(x, y, z) = x + y' z$$

Logic Circuit Diagram of F₁

$$F_1(x, y, z) = x + y' z$$

Gate Implementation of $F_1 = x + y'z$

Logic Circuit Diagram of F₂

$$F_2 = x' y' z + x' y z + xy'$$

Logic Circuit Diagram of F₂

$$F_2 = x' y' z + x' y z + xy'$$

Algebraic manipulation

$$F_2 = x' y' z + x' y z + xy'$$

= $x'z(y'+y) + xy'$
= $x'z + xy'$

Alternative Implementations of F₂

$$F_2 = x'z + xy'$$

Alternative Implementations of F₂

$$F_2 = x'z + xy'$$

Alternative Implementations of F₂

$$F_2 = x'z + xy'$$

$$F_2 = x' y' z + x' y z + xy'$$

Example

Example

Example

Example

OTHER LOGIC OPERATORS - 1

- AND, OR, NOT are logic operators
 - Boolean functions with two variables
 - These are three of the 16 possible two-variable Boolean functions

X	γ	Fo	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

X	У	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	Q	1	0	1	0	1

OTHER LOGIC OPERATORS - 2

- Some of the Boolean functions with two variables
 - Constant functions: $F_0 = 0$ and $F_{15} = 1$
 - AND function: $F_1 = xy$
 - OR function: $F_7 = x + y$
 - XOR function:
 - $F_6 = x' y + xy' = x \oplus y : x \text{ or } y, \text{ but not both}$
 - XNOR (Equivalence) function:
 - $F_9 = xy + x'y' = (x \oplus y)' : x equals y$
 - NOR function:
 - $F_8 = (x + y)' = (x \downarrow y)$ (Not-OR)
 - NAND function:
 - $F_{14} = (x y)' = (x \uparrow y) (Not-AND)$

More Two-Input Logic Gates

XOR

$$Y = A \oplus B$$

 Α	В	Y
0	0	
0	1	
1	0	
1	1	

NAND

$$Y = \overline{AB}$$

Α	В	Υ
0	0	
0	1	
1	0	
1	1	

NOR

$$Y = \overline{A + B}$$

_A	В	Υ
0	0	
0	1	
1	0	
1	1	

XNOR

$$Y = \overline{A \oplus B}$$

Α	В	Y
0	0	
0	1	
1	0	
1	1	

More Two-Input Logic Gates

XOR

$$Y = A \oplus B$$

A	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

NAND

$$Y = \overline{AB}$$

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

NOR

$$Y = \overline{A + B}$$

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

XNOR

$$Y = \overline{A \oplus B}$$

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	1

Example 1:

•
$$Y = AB + \overline{AB}$$

Example 1:

•
$$Y = AB + \overline{AB}$$

 $= B(A + \overline{A})$
 $= B(1)$
 $= B$

Example 2:

• Y = A(AB + ABC)

Example 2:

- Y = A(AB + ABC)
 - =A(AB(1+C))
 - =A(AB(1))
 - =A(AB)
 - = (AA)B
 - =AB

DeMorgan's Theorem

•
$$Y = \overline{AB} = \overline{A} + \overline{B}$$

•
$$Y = \overline{A + B} = \overline{A} \cdot \overline{B}$$

Bubble Pushing

Backward:

- Body changes
- Adds bubbles to inputs

Forward:

- Body changes
- Adds bubble to output

Bubble Pushing

• What is the Boolean expression for this circuit?

Bubble Pushing

• What is the Boolean expression for this circuit?

$$Y = AB + CD$$

Bubble Pushing Rules

- Begin at output, then work toward inputs
- Push bubbles on final output back
- Draw gates in a form so bubbles cancel

Complement of a Function

- F' is complement of F
 - We can obtain F' simply by interchanging of 0s and 1s in the truth table

X	У	Z	F	F '
0	0	0	0	
0	0	1	0	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	0	
1	1	1	0	

F =

F' =

[©] Digital Design and Computer Architecture, 2nd Edition, 2012

Generalizing DeMorgan's Theorem

We can also utilize DeMorgan's Theorem

We can generalize DeMorgan's Theorem

$$(x_1 + x_2 + ... + x_N)' = x_1' \cdot x_2' \cdot ... \cdot x_N'$$

$$(x_1 \cdot x_2 \cdot ... \cdot x_N)' = x_1' + x_2' + ... + x_N'$$

Example: Complement of a Function

Example:

■
$$F_1$$
 = $x'yz' + x'y'z$
■ F_1' = $(x'yz' + x'y'z)'$
= $(x'yz')'(x'y'z)'$
= $(x + y' + z)(x + y + z')$

■
$$F_2$$
 = $x(y'z' + yz)$
■ F_2' = $(x(y'z' + yz))'$
= $x'+(y'z' + yz)'$
= $x'+(y+z)(y'+z')$

Easy Way to Complement: use DeMorgan's

Universal Gates

- NAND and NOR gates are <u>universal</u>
- We know <u>any</u> Boolean function can be written in terms of three logic operations:
 - AND, OR, NOT
- In return, NAND gate can implement these three logic gates by itself
 - So can NOR gate

X	У	(xy)'	x'	у′	(x' y')'
0	0	1	1	1	
0	1	1	1	0	
1	0	1	0	1	
1	1	0	0 59	O	2012

© Digital Design and Computer Architecture, 2nd Edition, 2012

NAND Gate

NOR Gate

Designs with NAND gates Example 1/2

• A function:

$$F_1 = x' y + xy'$$

Example 2/2

$$F_2 = x' y' + xy'$$

Multiple Input Gates

- AND and OR operations:
 - They are both commutative and associative
 - No problem with extending the number of inputs
- NAND and NOR operations:
 - They are commutative but <u>not associative</u>
 - Extending the number of inputs is not obvious
- Example: NAND gates
 - $((xy)'z)' \neq (x(yz)')'$
 - ((xy)'z)' = xy + z'
 - (x(yz)')' = x' + yz

Nonassociativity of NOR operation

Fig. 2-6 Demonstrating the nonassociativity of the NOR operator; $(x \downarrow y) \downarrow z \neq x \downarrow (y \downarrow z)$

Multiple Input Universal Gates

 To overcome this difficulty, we define multipleinput NAND and NOR gates in slightly different manner

Three input NAND gate: (x y z)'

Three input NOR gate:(x + y + z)'

Multiple Input Universal Gates

3-input NOR gate

3-input NAND gate

Cascaded NAND gates

Multiple-Input Logic Gates

NOR3

$$Y = \overline{A + B + C}$$

Α	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	\cap

AND4

$$Y = ABCD$$

Α	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

• Multi-input XOR: Odd parity

XOR and XNOR Gates

- XOR and XNOR operations are both commutative and associative.
- No problem manufacturing multiple input XOR and XNOR gates
- However, they are more costly from hardware point of view.
- Therefore, we usually have 2-input XOR and XNOR gates

3-input XOR Gates

Fig. 2-8 3-input exclusive-OR gate

F

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms for which the output is TRUE
- >> Thus, a sum (OR) of products (AND terms)

			_	minterm
	В	Y	minterm	name
0	0	0	$\overline{A} \overline{B}$	m_0
0	1	1	A B	m_1
1	0	0	\overline{A}	m_2
1	1	1	АВ	m_3

$$Y = F(A, B) =$$

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms for which the output is TRUE
- >> Thus, a sum (OR) of products (AND terms)

				minterm
 A	В	Y	minterm	name
0	0	0	$\overline{A} \overline{B}$	m_0
0	1	1	$\overline{A}\;B$	m_1
1	0	0	$\overline{A} \; \overline{B}$	m_2
1	1	1	АВ	m_3

$$Y = F(A, B) =$$

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms for which the output is TRUE
- >> Thus, a sum (OR) of products (AND terms)

				minterm
 A	В	Y	minterm	name
0	0	0	$\overline{A} \ \overline{B}$	m_0
0	1	1	Ā B	m_1
1	0	0	$\overline{A} \; \overline{B}$	m_2
1	1	1	АВ	m_3

$$Y = F(A, B) = \overline{A}B + AB = \Sigma(1, 3)$$

Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row has a maxterm
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)
- Form function by ANDing the maxterms for which the output is FALSE
- Thus, a product (AND) of sums (OR terms)

				maxterm
_ A	В	Y	maxterm	name
0	0	0	A + B	M_{0}
0	1	1	$A + \overline{B}$	M_1
$\overline{1}$	0	0	Ā + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

$$Y = F(A, B) = (A + B)(\overline{A} + B) = \Pi(0, 2)$$

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You won't eat lunch (E)
 - If it's not open (O) or
 - If they only serve corndogs (C)

Write a truth table for determining if you will eat lunch (E).

0	С	E
0	0	
0	1	
1	0	
1	1	

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You won't eat lunch (E)
 - If it's not open (O) or
 - If they only serve corndogs (C)

Write a truth table for determining if you will eat lunch (E).

O	С	E
0	0	0
0	1	0
1	0	1
1	1	0

SOP & POS Form

• SOP – sum-of-products

0	С	E	minterm
0	0		OC
0	1		<u> </u>
1	0		O C
1	1		ОС

POS – product-of-sums

0	С	Ε	maxterm
0	0		O + C
0	1		$O + \overline{C}$
1	0		O + C
1	1		$\overline{O} + \overline{C}$

SOP & POS Form

SOP – sum-of-products

0	С	E	minterm
0	0	0	O C
0	1	0	O C
1	0	1	O C
1	1	0	O C

$$Y = O\overline{C}$$
$$= \Sigma(2)$$

POS – product-of-sums

0	С	Ε	maxterm
0	0	0	0 + C
0	1	0	$O + \overline{C}$
1	0	1	O + C
1	1	0	$\overline{O} + \overline{C}$

$$Y = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$$

= $\Pi(0, 1, 3)$

Min- & Maxterms with n = 3

			Minterms		Max	xterms
X	У	Z	term	designation	term	designation
0	0	0	x'y'z'	m_0	x + y + z	M_{O}
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m ₂	x + y' + z	M_2
0	1	1	x'yz	m ₃	x + y' + z'	M ₃
1	0	0	xy'z'	m ₄	x' + y + z	M_4
1	0	1	xy'z	m ₅	x' + y + z'	M_5
1	1	0	xyz'	m ₆	x' + y' + z	M_6
1	1	1	xyz	m ₇	x' + y' + z'	M ₇

Formal Expression with Minterms

xyz	mi	M_{i}	F
000	m ₀ =x'y'z'	$\mathbf{M}_0 = \mathbf{x} + \mathbf{y} + \mathbf{z}$	F(0,0,0)
001	m ₁ =x'y'z	$M_1=x+y+z'$	F(0,0,1)
010	m ₂ =x'yz'	$M_2=x+y'+z$	F(0,1,0)
011	m ₃ =x'yz	$M_3=x+y'+z'$	F(0,1,1)
100	m ₄ =xy'z'	$M_4=x'+y+z$	F(1,0,0)
101	$m_5=xy'z$	$M_5=x'+y+z'$	F(1,0,1)
110	m ₆ =xyz'	$M_6=x'+y'+z$	F(1,1,0)
111	m ₇ =xyz	$M_7=x'+y'+z'$	F(1,1,1)

$$F(x, y, z) = F(0,0,0)m_0 + F(0,0,1)m_1 + F(0,1,0)m_2 + F(0,1,1)m_3 + F(1,0,0)m_4 + F(1,0,1)m_5 + F(1,1,0)m_6 + F(1,1,1)m_7$$

Formal Expression with Maxterms

xyz	mi	Mi	F
000	m ₀ =x'y'z'	$\mathbf{M}_0 = \mathbf{x} + \mathbf{y} + \mathbf{z}$	F(0,0,0)
001	m ₁ =x'y'z	$M_1=x+y+z'$	F(0,0,1)
010	m ₂ =x'yz'	$M_2=x+y'+z$	F(0,1,0)
011	m ₃ =x'yz	$M_3=x+y'+z'$	F(0,1,1)
100	m ₄ =xy'z'	M ₄ =x'+y+z	F(1,0,0)
101	m ₅ =xy'z	M ₅ =x'+y+z'	F(1,0,1)
110	m ₆ =xyz'	$M_6=x'+y'+z$	F(1,1,0)
111	m ₇ =xyz	$M_7=x'+y'+z'$	F(1,1,1)

$$F(x, y, z) = (F(0,0,0) + M_0) (F(0,0,1) + M_1) (F(0,1,0) + M_2) (F(0,1,0) + M_3) (F(1,0,0) + M_4) (F(1,0,1) + M_5) (F(1,1,0) + M_6) (F(1,1,1) + M_7)$$

Example

хуz	mi	Mi	F
000	m ₀ =x'y'z'	$\mathbf{M}_0 = \mathbf{x} + \mathbf{y} + \mathbf{z}$	0
001	m ₁ =x'y'z	$M_1=x+y+z'$	1
010	$m_2=x'yz'$	$M_2=x+y'+z$	1
011	m ₃ =x'yz	$M_3=x+y'+z'$	0
100	$m_4=xy'z'$	$M_4=x'+y+z$	0
101	$m_5=xy'z$	$M_5=x'+y+z'$	0
110	m ₆ =xyz'	$M_6=x'+y'+z$	1
111	m ₇ =xyz	$M_7=x'+y'+z'$	0

$$F(x, y, z) = ?$$
 in minters
 $F(x, y, z) = ?$ in maxterms

Example

хуz	mi	Mi	F
000	m ₀ =x'y'z'	$\mathbf{M}_0 = \mathbf{x} + \mathbf{y} + \mathbf{z}$	0
001	m ₁ =x'y'z	$M_1=x+y+z'$	1
010	m ₂ =x'yz'	$M_2=x+y'+z$	1
011	m ₃ =x'yz	$M_3=x+y'+z'$	0
100	m ₄ =xy'z'	$M_4=x'+y+z$	0
101	m ₅ =xy'z	M ₅ =x'+y+z'	0
110	m ₆ =xyz'	$M_6=x'+y'+z$	1
111	m ₇ =xyz	$M_7=x'+y'+z'$	0

$$F(x, y, z) = x'y'z + x'yz' + xyz'$$

 $F(x, y, z) = (x+y+z)(x+y'+z')(x'+y+z)(x'+y+z')(x'+y'+z')$

Boolean Functions in Canonical Form

X	У	Z	F ₁	F ₂
0	0	0	0	1
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

•
$$F_1(x, y, z) =$$

•
$$F_2(x, y, z) =$$

Important Properties

- Any Boolean function can be expressed
 - as <u>a sum of minterms</u>
 - as a product of maxterms
- Example:
 - $F'(x,y,z) = \Sigma (0, 2, 3, 5, 6)$
 - How do we find the complement of F'?
 - \blacksquare F(x,y,z) =

Important Properties

- Any Boolean function can be expressed
 - as <u>a sum of minterms</u>
 - as a product of maxterms
- Example:
 - $F'(x,y,z) = \Sigma (0, 2, 3, 5, 6)$ = x'y'z' + x'yz' + x'yz + xy'z + xyz'
 - How do we find the complement of F'?
 - \blacksquare F(x,y,z) =

Important Properties

- Any Boolean function can be expressed
 - as a sum of minterms
 - as a product of maxterms
- Example:

■
$$F'(x,y,z) = \Sigma (0, 2, 3, 5, 6)$$

= $x'y'z' + x'yz' + x'yz + xy'z + xyz'$

■ How do we find the complement of F'?

$$F(x,y,z)=(x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)$$
=

=

Canonical Form

- If a Boolean function is expressed as a sum of minterms or product of maxterms, the function is said to be in canonical form.
- Example: $F = x + y'z \rightarrow$ canonical form?
 - No
 - But we can put it in canonical form.

- $F = x + y'z = \Sigma (7, 6, 5, 4, 1)$
- Alternative way:
 - Obtain the truth table first and then the canonical term

Example: Product of Maxterms

- F = xy + x'z
 - Use the distributive law of + over ·

• F =
$$xy + x'z$$

= $xy(z+z') + x'z(y+y')$
= $xyz + xyz' + x'yz + x'y'z$
= Σ (7,6,3,1)

Example: Product of Maxterms

- F = xy + x'z
 - Use the distributive law of + over ·

• F =
$$xy + x'z$$

= $xy(z+z') + x'z(y+y')$
= $xyz + xyz' + x'yz + x'y'z$
= Σ (7,6,3,1)

Conversion Between Canonical Forms

• Fact:

 The complement of a function (given in sum of minterms) can be expressed as a sum of minterms missing from the original function

• Example:

- $F(x, y, z) = \Sigma (1, 4, 5, 6, 7)$
- F'(x, y, z) =
- Now take the complement of F' and make use of DeMorgan's theorem
- (F')' = =
- F = $M_0 \cdot M_2 \cdot M_3 = \Pi (0, 2, 3)$

General Rule for Conversion

Important relation:

- $\mathbf{m}_{j}' = \mathbf{M}_{j}$
- \blacksquare $M_j' = m_j$
- The rule:
 - Interchange symbols Π and Σ , and
 - list those terms missing from the original form
- Example: F = xy + x'z

$$F = \Sigma(1, 3, 6, 7) \rightarrow F = \Pi(?, ?, ?, ?)$$

Standard Forms

- Fact:
 - Canonical forms are very seldom the ones with the least number of literals
- Alternative representation:
 - Standard form
 - a <u>term</u> may contain any number of literals
 - Two types
 - 1. the sum of products
 - 2. the product of sums
 - Examples:
 - $F_1 = y' + xy + x'yz'$
 - $F_2 = x(y' + z)(x' + y + z')$

Example: Standard Forms

•
$$F_1 = y' + xy + x'yz'$$

•
$$F_2 = x(y' + z)(x' + y + z')$$

Example: Standard Forms

•
$$F_1 = y' + xy + x'yz'$$

•
$$F_2 = x(y' + z)(x' + y + z')$$

(a) Sum of Products

(b) Product of Sums

Fig. 2-3 Two-level implementation

Nonstandard Forms

Example:

- $F_3 = AB(C+D) + C(D + E)$
- This hybrid form yields three-level implementation

- The standard form: $F_3 = ABC + ABD + CD + CE$

Complexity of Digital Circuits

- Directly related to the complexity of the algebraic expression we use to build the circuit.
- Truth table
 - may lead to different implementations
 - Question: which one to use?

Gate-Level Minimization

- Finding an optimal gate-level implementation of Boolean functions.
 - So far: ad hoc.
 - Difficult to perform manually
- Need a more systematic (algorithmic) way
 - Can use computer-based logic synthesis tools
 - Exp: espresso logic minimization software
 - Karnough Map (K-map) can be used for manual design of digital circuits.

The Map Method

- The truth table representation of a function is unique.
- But, not the algebraic expression
 - Several versions of an algebraic expression exist.
 - Difficult to minimize algebraic functions manually.
- The map method is a simple procedure to minimize Boolean functions.
 - Pictorial form of a truth table.
 - Called Karnough Map or K-Map.
 - Boolean expressions can be minimized by combining terms
 - This way, K-maps minimize equations graphically

Two-Variable K-Map

- Two variables: x and y
 - \rightarrow 4 minterms:

•
$$m_0 = x'y'$$
 $\rightarrow 00$

•
$$m_1 = x'y$$
 $\rightarrow 01$

•
$$m_2 = xy' \rightarrow 10$$

•
$$m_3 = xy$$
 $\rightarrow 11$

Four squares (cells) for four minterms

 Figure (b) shows the relationship between the squares and the variables x and y.

Example: Two-Variable K-Map

Y		
x	0	1
0	1	1
1	1	0

$$F = m_0 + m_1 + m_2 = x'y' + x'y + xy'$$

Remember the Shortcuts

$$> x + x = x \leftrightarrow x \cdot x = x$$

$$> x + 1 = 1 \leftrightarrow x \cdot 0 = 0$$

$$> x + xy = x \leftrightarrow x \cdot (x+y) = x$$
 [Absorption]

$$>(x + y)' = x' \cdot y' \leftrightarrow (x.y)' = x' + y'$$
 [DeMorgan]

Example: Two-Variable K-Map

У у		
x	0	1
0	1	1
1	1	0

$$F = m_0 + m_1 + m_2 = x'y' + x'y + xy'$$

$$F = x' + y'$$

 We can do the same optimization by combining adjacent cells.

Example: Two-Variable K-Map

Strategy:

- 1. Cover as many <u>adjacent 1 cells</u> as possible by the <u>orders of two</u> in <u>circles</u> in each direction
 - e.g., 1x1, 1x2, 2x1, 2x2, 1x4, 4x1, 2x4, 4x2, 4x4, ...
 - Every 1 must be circled <u>at least</u> once.
 - Each circle must be as large as possible
 - Adjacency is established either vertically or horizontally (not diagonally: cells touching each other by corners only are not adjacent)
- 2. Express each circle as a product of literals by only including the literals that are the same (all true or all complement) in the circle
- 3. Form the final expression by OR(+)ing the circle expressions

\ у		
X	0	1
0	1	1
1	1	0

K-Map Definitions

- Complement: variable with a bar over it \bar{A} , \bar{B} , \bar{C}
- Literal: variable or its complement \bar{A} , A, \bar{B} , B, C, \bar{C}
- Implicant: product of literals ABC, AC, BC
- **Prime implicant:** implicant corresponding to the largest circle in a K-map

Example: Two-Variable K-Map

Strategy:

- 1. Cover as many <u>adjacent 1 cells</u> as possible by the <u>orders of two</u> in <u>circles</u> in each direction
 - e.g., 1x1, 1x2, 2x1, 2x2, 1x4, 4x1, 2x4, 4x2, 4x4, ...
 - Every 1 must be circled <u>at least</u> once.
 - Each circle must be as large as possible
 - Adjacency is established either vertically or horizontally (not diagonally: cells touching each other by corners only are not adjacent)
- 2. Express each circle as a product of literals by only including the literals that are the same (all true or all complement) in the circle
- 3. Form the final expression by OR(+)ing the circle expressions

У у		
X	0	1
0	1	1
1	1	0

Two-Variable K-Map (Cont.)

 May only be useful to represent 16 Boolean functions.

Two-Variable K-Map (Cont.)

- May only be useful to represent 16 Boolean functions.
 - Exp: If m1=m2=m3=1 then m1+m2+m3=x'y+xy'+xy=x+y (OR function)

Two-Variable K-Map (Cont.)

 May only be useful to represent 16 Boolean functions.

Two-Variable K-Map (Cont.)

- May only be useful to represent 16 Boolean functions.
 - Exp: If only m3=1 then m1=xy (AND function)

Three-Variable Map

- There are 8 minterms for 3 variables.
- So, there are 8 squares.

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

Three-Variable Map

- Minterms are arranged not in a binary sequence, but in a sequence similar to the Gray code.
- Adjacent squares: they differ by only one variable, which is complement (primed) in one square and true (not primed) in the other
 - $m_2 \leftrightarrow m_6, m_3 \leftrightarrow m_7$
 - $m_2 \leftrightarrow m_0$, $m_6 \leftrightarrow m_4$

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

Three-Variable Map (Cont.)

- For instance, the square for square *m5* corresponds to row 1 and column 01: *101*
 - Another way to look: m5=xy'z
- When variables are 0, they are primed (x'),
 Otherwise not primed (x)

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

Three-Variable Map (Cont.)

- Two adjacent squares differ by one variable (one primed, the other is not).
 - So, they can be minimized
 - Ex: m5+m7=xy'z+xyz=xz(y'+y)=xz
- try to cover as many adjacent squares as possible by the orders of two.

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$Y = \overline{AB}$$

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Y	B 00	01	11	10
0	ABC	<i>⊼BC</i>	ABC	ABC
1	ĀĒC	ĀBC	ABC	AĒC

Truth Table

Α	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

K-Map

Υ \	В			
C	00	01	11	10
0	ABC	<i>⊼BC</i>	ABC	ABC
1	ĀĒC	ĀBC	ABC	ABC

Truth Table

_ A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

K-Map

$$Y = \overline{A}B + B\overline{C}$$

Adjacent squares

 Squares on opposite edges are adjacent. These adjacent squares don't touch each other.

>> Circles may wrap around the edges

- m0 is adjacent to m1, m2 and m4
- m4 is adjacent to m0, m5 and m6
- m0+m2 = x'y'z'+x'yz' = x'z'(y'+y) = x'z'
- m4+m6 = xy'z'+xyz' = xz'(y'+y) = xz'

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

In 3-Variable Karnaugh Maps

- 1 single square represents a minterm with
 3 literals
- Circle of 2 adjacent squares represent a term with 2 literals
- Circle of 4 adjacent squares represent a term with 1 literal
- Circle of 8 adjacent squares produce F=1

Example: Three-Variable K-Map

• $F_1(x, y, z) = \sum (2, 3, 4, 5)$

- $F_1(x, y, z) =$
- $F_2(x, y, z) = \sum (3, 4, 6, 7)$

 $F_2(x, y, z) =$

Example: Three-Variable K-Map

• $F_1(x, y, z) = \sum (2, 3, 4, 5)$

yz x	00	01	11	10
0	0	0	1	1
1	1	1	0	0

•
$$F_1(x, y, z) =$$

• $F_2(x, y, z) = \sum (3, 4, 6, 7)$

yz				
x	00	01	11	10
0	0	0	1	0
1	1	0	1	1

•
$$F_2(x, y, z) =$$

Example: Three-Variable K-Map

•
$$F_1(x, y, z) = \sum (2, 3, 4, 5)$$

•
$$F_1(x, y, z) = xy' + x'y$$

•
$$F_2(x, y, z) = \sum (3, 4, 6, 7)$$

$$\cdot_{123}F_2(x, y, z) = XZ' + YZ$$

• $F_1(x, y, z) = \sum (0, 2, 4, 5, 6)$

$$F_1(x, y, z) =$$

• $F_1(x, y, z) = \sum (0, 2, 4, 5, 6)$

$$F_1(x, y, z) =$$

• $F_1(x, y, z) = \sum (0, 2, 4, 5, 6)$

$$F_1(x, y, z) =$$

Finding Sum of Minterms

 If a function is not expressed in sum of minterms form, it is possible to get it using K-map

- Example: F(x, y, z) = x'z + x'y + xy'z + yz

Finding Sum of Minterms

 If a function is not expressed in sum of minterms form, it is possible to get it using K-map

$$- \underline{Example}: F(x, y, z) = x'z + x'y + xy'z + yz$$

$$F(x, y, z) = x'y'z + x'yz + x'yz' + xy'z + xyz$$

- *F=A'C+A'B+AB'C+BC*
 - Express F as a sum of minterms.
 - *F*(*A*, *B*, *C*)=

- *F=A'C+A'B+AB'C+BC*
 - Express F as a sum of minterms.
 - $F(A,B,C)=\Sigma(1,2,3,5,7)$
 - Find the minimal sum-of-products expression

• *F=C+A'B*

Four-Variable K-Map

- Four variables: x, y, z, t
 - >> 8 literals
 - >> 16 minterms

Four-Variable Map

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m_{15}	m_{14}
m_8	m_9	m_{11}	m_{10}

\	\ yz	,			y	
w		00	01	11	10	
	`			m_3	m_2	
	00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'	
						,
		m_4	m_5	m_7	m_6	
	01	m_4 $w'xy'z'$	w'xy'z	w'xyz	w'xyz'	
	,					\downarrow_x
		m_{12}	m_{13}	m_{15}	m_{14}	
	11	wxy'z'	wxy'z	wxyz	wxyz'	
w ł						J
,,,		m_8	m_9	m_{11}	m_{10}	
	10	m_8 $wx'y'z'$	wx'y'z	wx'yz	wx'yz'	
				7.	,	
			4	6		

(b)

 $F(x,y,z,t) = \Sigma (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

$$F(x,y,z,t) =$$

 $F(x,y,z,t) = \Sigma (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

\ zt				
xy	00	01	11	10
00	1	1	0	1
01	1	1	0	1
11	1	1	0	1
10	1	1	0	0

$$F(x,y,z,t) =$$

 $F(x,y,z,t) = \Sigma (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

$$F(x,y,z,t) =$$

• F(x,y,z,t) = x'y'z' + y'zt' + x'yzt' + xy'z'

• F(x,y,z,t) =

• F(x,y,z,t) = x'y'z' + y'zt' + x'yzt' + xy'z'

zt				
xy	00	01	11	10
00	1	1	0	1
01	0	0	0	1
11	0	0	0	0
10	1	1	0	1

• F(x,y,z,t) =

• F(x,y,z,t) = x'y'z' + y'zt' + x'yzt' + xy'z'

• F(x,y,z,t) =

Α	В	С	D	Y
0	0		0	1
0	0 0	0 0	1	0
0	0	1	0	
0	0	1	1	1
0	1	0	0	0
0	1 1 1 0 0	0 0 1 1	0 1 0 1 0 1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	1 0 1 0	1
1	0	1 0	1	0
1	1	0	0	0
1	1	0	1	0
0 0 0 0 0 0 0 1 1 1 1 1	0 1 1 1	1	1 0 1 0	1 0 1 1 1 1 0 0 0
1	1	1	1	0

Α	В	С	D	Y
0	0	0	0	1
0	0	0	1	1 0
0		1	1 0 1 0 1 0 1	
0 0 0 0 0 0 1 1	0 0	1	1	1 1 0
0	1	0	0	0
0	1 1 1 1 0	0	1	1
0	1	1	0	1
0	1	1 1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0 0 0	1	1	0
1 1	1	0	0	0
1	1	0	1	0
1 1	1 1 1	1	1 0 1 0 1	1 1 1 1 1 0 0 0
1	1	1	1	0

Y	5			
CD A	B 00	01	11	10
00	1	0	0	1
01	0	1	0	1
11	1	1	0	0
10	1	1	0	1

Α	В	С	D	Y
0	0	0		1
0	0	0	0 1 0 1 0 1 0	0
0		1	0	1
0	0 0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1 1 1 0	1	0	1
0	1	1 1 0	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0 0	1	1	0
1	1	0	0	0
0 0 0 0 0 0 0 1 1 1 1 1	1 1 1	0	1 0 1 0 1 0	1 0 1 0 1 1 1 1 0 0 0
1	1	1		0
1	1	1	1	0

$$Y = \overline{A}C + \overline{A}BD + A\overline{B}\overline{C} + \overline{B}\overline{D}$$

Prime Implicants

- Prime Implicant: is a product term obtained by combining maximum possible number of adjacent cells in the map
 - ➤ A single 1 on the map represents a prime implicant if it is not adjacent to any other 1s.
 - Two adjacent 1s form a prime implicant, provided that they are not within a group of four adjacent 1s.
 - ➤ So on..

Circle = Prime Implicant

Essential Prime Implicants

 If a minterm can be covered by only one prime implicant, that prime implicant is said to be an <u>Essential Prime Implicant</u>

In other words:

If a prime implicant covers a minterm that is not covered by any other, then it is an *essential* prime implicant

Example: Prime Implicants

• $F(x,y,z,t) = \Sigma (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$

\zt				
xy	00	01	11	10
ху 00				
01				
11				
10				

• $F(x,y,z,t) = \Sigma (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$

\zt				
xy	00	01	11	10
00	1	0	1	1
01	0	1	1	0
11	0	1	1	0
10	1	1	1	1

• $F(x,y,z,t) = \Sigma (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$

zt					
xy	00	01	11	10	_
00	1	0	1	1	
01	0	1	1	0	
11	9	1	1	0	
10	1	1	1	1	
'					1

$$F(x,y,z,t) = y't' + yt + xy' + zt$$

Which ones are the essential prime implicants?

• $F(x,y,z,t) = \Sigma (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$

zt					
xy	00	01	11	10	_
00	1	0	1	1	
01	0	1	1	0	
11	9	1	1	0	
10	1	1	1	1	
•		•	•		•

· Why are these the essential prime implicants?

• $F(x,y,z,t) = \Sigma (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$

zt						zt				
xy	00	01	11	10	_	xy	00	01	11	10
00	1/	0	1	1		00	m _o	m_1	m ₃	m ₂
01	0	1	1	0		01	m ₄	m ₅	m_7	m ₆
11	0	1	1	0		11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
10	1	1	1	1		10	m ₈	m ₉	m ₁₁	m ₁₀
	1			1		-		_		

- $y't' \rightarrow$ essential since m_0 is covered only in it
- yt -> essential since m_5 is covered only in it
- They together cover m_0 , m_2 , m_8 , m_{10} , m_5 , m_7 , m_{13} , m_{15}

- m₃, m₉, m₁₁ are not yet covered.
- How do we cover them?
- There is actually more than one way.

zt				1
xy	00	01	11 2	10
00	1	0	1	1
01	0	1	13	0
11	0	1	1	0
10	1	1	1	1
'				4

- Both y'z and zt cover m_3 and m_{11} .
- m₉ can be covered in two different prime implicants: xt or xy'
- m_3 , $m_{11} \rightarrow zt$ or y'z
- $m_9 \rightarrow xy'$ or xt

- F(x, y, z, t) = yt + y't' + zt + xt
- or F(x, y, z, t) = yt + y't' + zt + xy'
- or F(x, y, z, t) = yt + y't' + y'z + xt
- or F(x, y, z, t) = yt + y't' + y'z + xy'
- What to do?
 - 1. Find out all the essential prime implicants
 - Then find the other prime implicants that cover the minterms that are not covered by the essential prime implicants. More than one way to choose those.
 - 3. Simplified expression is the logical sum of the essential implicants plus the other implicants

Five-Variable Map

Downside:

- Karnaugh maps with more than four variables are not simple to use anymore.
- 5 variables \rightarrow 32 squares, 6 variables \rightarrow 64 squares
- Somewhat more practical way for F(x, y, z, t, w) :

tw					tw				
yz	00	01	11	10	yz	00	01	11	10
00	m_0	m_1	m_3	m ₂	00	m ₁₆	m ₁₇	m ₁₉	m ₁₈
01	m_4	m ₅	m_7	m ₆	01	m ₂₀	m ₂₁	m ₂₃	m ₂₂
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄	11	m ₂₈	m 29	m ₃₁	m ₃₀
10	m ₈	m ₉	m ₁₁	m ₁₀	10	m ₂₄	m ₂₅	m ₂₇	m ₂₆

Five-Variable Maps

Adjacency:

- Each square in the x = 0 map is adjacent to the corresponding square in the x = 1 map.
- For example, $m_4 \leftrightarrow m_{20}$ and $m_{15} \leftrightarrow m_{31}$

tw				
yz	00	01	11	10
00	m_0	m_1	m ₃	m ₂
01	m_4	m ₅	m_7	m ₆
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
10	m ₈	m ₉	m ₁₁	m ₁₀

tw				
yz	00	01	11	10
00	m ₁₆	m ₁₇	m ₁₉	m ₁₈
01	m ₂₀	m ₂₁	m ₂₃	m ₂₂
11	m ₂₈	m 29	m ₃₁	m ₃₀
10	m ₂₄	m ₂₅	m ₂₇	m ₂₆

Five-Variable Map

- Not simple, it is not usually used.
- 5 variables >> 32 squares.

Example: Five-Variable Map

 $F(x, y, z, t, w) = \Sigma (0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)$

• F(x,y,z,t,w) =

Example: Five-Variable Map

 $F(x, y, z, t, w) = \Sigma (0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)$

tw					tw				
yz	00	01	11	10	yz	00	01	11	10
00	1			1	00				
01	1			1	01		1	1	
11		1			11		1	1	
10		1			10		1		
•		X	= 0				x =	1	•

• F(x,y,z,t,w) =

Example: Five-Variable Map

 $F(x, y, z, t, w) = \Sigma (0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)$

• F(x,y,z,t,w) =

Example

• An alternative look would be:

Many-Variable Maps

- 6-variables: Use **four** 4-variable maps to obtain 64 squares required for six variable optimization
- Alternatively: Can use computer optimization
 - Quine-McCluskey method
 - Espresso method

Product of Sums Simplification

- So far we have seen simplified expressions from Karnaugh maps in <u>sum of products</u> form.
- But simplified <u>product of sums</u> can also be derived from Karnaugh maps.
- Method:
 - A square with 1 represents a "minterm"
 - Similarly an empty square (a square with 0) represents a "maxterm".
 - Treat the 0s in the same manner as we treat 1s
 - >> Combine them as we did for sum-of-products
- This way we obtain F' (complement of the function)
- Take (the complement of F'): ((F')') to obtain F

- $F(x, y, z, t) = \Sigma (0, 1, 2, 5, 8, 9, 10)$
 - Simplify this function in
 - a. sum of products
 - b. product of sums

\ zt	δ. ρ	rodaci	. Or Jan	113
xy	00	01	11	10
00 ×y	1	1		1
01		1		
11				
10	1	1		1

$$F(x, y, z, t) =$$

- $F(x, y, z, t) = \Sigma (0, 1, 2, 5, 8, 9, 10)$
 - Simplify this function in
 - a. sum of products
 - b. product of sums

$$F(x, y, z, t) =$$

- $F(x, y, z, t) = \Sigma (0, 1, 2, 5, 8, 9, 10)$
 - Simplify this function in
 - a. sum of products
 - b. product of sums

$$F(x,y,z,t) = y't' + y'z' + x'z't$$

- 1. Find F'(x,y,z,t) in Sum of Products form by grouping 0's
- 2. Apply DeMorgan's theorem to F' (use dual theorem) to find F in Product of Sums form

\zt				
xy	00	01	11	10
00	1	1	0	1
01	0	1	0	0
11	0	0	0	0
10	1	1	0	1

- 1. Find F'(x,y,z,t) in Sum of Products form by grouping 0's
- 2. Apply DeMorgan's theorem to F' (use dual theorem) to find F in Product of Sums form

- 1. Find F'(x,y,z,t) in Sum of Products form by grouping 0's
- 2. Apply DeMorgan's theorem to F' (use dual theorem) to find F in Product of Sums form

$$F' = yt' + zt + xy$$

- 1. Find F'(x,y,z,t) in Sum of Products form by grouping 0's
- 2. Apply DeMorgan's theorem to F' (use dual theorem) to find F in Product of Sums form

$$F(x,y,z,t) = (y'+t)(z'+t')(x'+y')$$

F(x,y,z,t) = y't' + y'z' + x'z't: sum of products implementation

F = (y' + t)(x' + y')(z' + t'): product of sums implementation

Product of Maxterms

- If the function is originally expressed in the product of maxterms canonical form, the procedure is also valid
- Example:

$$F(x, y, z) = \Pi(0, 2, 5, 7)$$

$$F(x, y, z) =$$

Product of Maxterms

- If the function is originally expressed in the product of maxterms canonical form, the procedure is also valid
- Example:

$$F(x, y, z) = \Pi(0, 2, 5, 7)$$

$$F'(x, y, z) = xz + x'z'$$

 $F(x, y, z) = (x'+z')(x+z)$

Product of Maxterms

- If the function is originally expressed in the product of maxterms canonical form, the procedure is also valid
- Example:

$$F(x, y, z) = \Pi(0, 2, 5, 7)$$

$$F'(x, y, z) = xz + x'z'$$

 $F(x, y, z) = (x'+z')(x+z)$

$$F(x, y, z) = x'z + xz'$$

Product of Sums

- To enter a function F expressed in product of sums in the map
 - 1. take its complement: F'
 - 2. Find the squares corresponding to the terms in F'
 - 3. Fill these square with 0's and others with 1's.
- Example:

$$- F(x, y, z, t) = (x' + y' + z')(y + t)$$

- F'(x, y, z, t) =

zt xy	00	01	11	10
ху 00				
01				
11				
10				

Product of Sums

- To enter a function F expressed in product of sums in the map
 - 1. take its complement, F'
 - 2. Find the squares corresponding to the terms in F'
 - 3. Fill these square with 0's and others with 1's.
- Example:

$$- F(x, y, z, t) = (x' + y' + z')(y + t)$$

- F'(x, y, z, t) =

\zt				
xy	00	01	11	10
ху 00	0			0
01				
11			0	0
10	0			0

Don't Care Conditions

- Some functions are undefined for certain input combinations
 - Such function are referred as <u>incompletely</u> <u>specified functions</u>
 - therefore, the corresponding output values do not have to be defined
 - This may significantly reduce the circuit complexity
 - Example: Four bit binary codes has six unused combinations.

Unspecified Minterms

- For unspecified minterms, we do not care what value the function produces.
- Unspecified minterms of a function are called <u>don't</u> <u>care</u> conditions.
- We use "X" symbol to represent them in a Karnaugh map.
- Useful for further simplification
- The Xs in the map can be taken as 0 or 1 to realize the best simplification.

>> a "don't care" (X) is circled (i.e., taken as 1) only if it helps to minimize the equation

- $F(x, y, z, t) = \Sigma(1, 3, 7, 11, 15)$: function
- $d(x, y, z, t) = \Sigma(0, 2, 5)$: don't care conditions

						zt
	F=	10	11	01	00	xy
	•	X	1	1	X	00
or	F ₁ =	0	1	X	0	01
C.	• 1	0	1	0	0	11
	F ₂ =	0	1	0	0	10

- $F(x, y, z, t) = \Sigma(1, 3, 7, 11, 15)$: function
- $d(x, y, z, t) = \Sigma(0, 2, 5)$: don't care conditions

•
$$F_1 = zt + x'y' = \Sigma(0, 1, 2, 3, 7, 11, 15)$$

•
$$F_2 = zt + x't = \Sigma(1, 3, 5, 7, 11, 15)$$

- The two functions are algebraically unequal
 - But as far as the function (F with d) is concerned: both alternatives are acceptable
- Look at the simplified product of sums expression for the same function F.

zt				
xy	00	01	11	10
00	X	1	1	X
01	0	X	1	0
11	0	0	1	0
178	0	0	1	0

•
$$F_1 = zt + x'y' = \Sigma(0, 1, 2, 3, 7, 11, 15)$$

•
$$F_2 = zt + x't = \Sigma(1, 3, 5, 7, 11, 15)$$

- The two functions are algebraically unequal
 - But as far as the function F with d is concerned: both functions are acceptable
- Look at the simplified product of sums expression for the same function F.

K-Maps with Don't Cares

Α	В	С	D	Y
0	0	0	0	1
0	0	0	1	1 0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	1 0 0 1 1 0	1	X
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0 0 0 0	0	1	1
1	0	1	0	X
1	0	1 1 0	1	X
1	1	0	0	X
1	1	0	1	X
0 0 0 0 0 0 0 1 1 1 1 1	1	1	0 1 0 1 0 1 0 1 0 1	1 0 X 1 1 1 X X X
1	1	1	1	X

K-Maps with Don't Cares

Α	В	С	D	Y
0	0	0	0	1
0	0	0	1	1 0
0	0	1	0	
0	0 0	1 1	1 0 1 0 1 0 1 0 1 0	1
0	1 1	0	0	0
0	1	0	1	X
0	1	1	0	1
0		1 1 0	1	1
1	0	0	0	1
1	1 0 0	0	1	1
1	0	1	0	X
1	0 0	1	1	X
1	1	1 0	0	X
1	1	0	1	X
0 0 0 0 0 0 1 1 1 1 1	1	1		1 1 0 X 1 1 1 X X X X
1	1	1	1	X

Υ						
CD A	B 00	01	11	10		
00	1	0	X	1		
01	0	X	X	1		
11	1	1	X	Х		
10	1	1	X	Х		

K-Maps with Don't Cares

Α	В	С	D	Y
0			0	1
0	0 0	0 0	1	1 0
0	0	1	0 1 0 1 0 1 0 1 0 1	1
0	0	1	1	1
0	1	0	0	0
0	1 1 1 0 0	1 0 0 1 1 0	1	X
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1 1 0 0	1	X
1	1	0	0	X
1	1 1 1	0	1	X
0 0 0 0 0 0 0 1 1 1 1 1	1	1	0	1 0 X 1 1 1 X X X
1	1	1	1	X

$$Y = A + \overline{B}\overline{D} + C$$

NAND and NOR Gates

NAND and NOR gates are easier to fabricate

Design with NAND or NOR Gates

It is beneficial to derive conversion rules <u>from</u>
 Boolean functions given in terms of AND, OR, an
 NOT gates <u>into</u> equivalent NAND or NOR
 implementations

New Notation

- Implementing a Boolean function with NAND gates is easy if it is in sum of products form.
- Example: F(x, y, z, t) = xy + zt

ALWAYS USE THIS

INTERMEDIATE

FORM WITH

BUBBLES TO AVOID

$$F(x, y, z, t) = ((xy)')' + ((zt)')'$$

The Conversion Method

• Example: $F(x, y, z) = \sum (1, 3, 4, 5, 7)$

$$F = z + xy'$$

$$F = (z')' + ((xy')')'$$

Example: Design with NAND Gates

- Summary
 - 1. Simplify the function
 - 2. Draw a NAND gate for each product term
 - 3. Draw a NAND gate for the OR gate in the 2nd level,
 - 4. A product term with single literal needs an inverter in the first level. Assume single, complemented literals are available.

Multi-Level NAND Gate Designs

- The standard form results in two-level implementations
- Non-standard forms may raise a difficulty
- Example: F = x(zt + y) + yz'4-level implementation

Example: Multilevel NAND...

$$F = x(zt + y) + yz'$$

Design with Multi-Level NAND Gates

Rules

- 1. Convert all AND gates to NAND gates
- 2. Convert all OR gates to NAND gates
- 3. Insert an inverter (one-input NAND gate) at the output if the final operation is AND
- 4. Check the bubbles in the diagram. For every bubble along a path from input to output there must be another bubble. If not so, complement the input literal

Another (Harder) Example

- Example: F = (xy' + xy)(z + t')
 - (three-level implementation)

Example: Multi-Level NAND Gates

Design with NOR Gates

- NOR is the dual operation of NAND.
 - All rules and procedure we used in the design with NAND gates apply here in a similar way.
 - Function is implemented easily if it is in <u>product of</u> <u>sums form</u>.

Logic operations with NOR gates

Example: Design with NOR Gates

• F = (x+y) (z+t) w

Example: Design with NOR Gates

• F = (xy' + zt)(z + t')

Harder Example

• Example: F = x(zt + y) + yz'

Exclusive-OR Function

• The symbol: ⊕

$$\triangleright x \oplus y = xy' + x'y$$

$$\triangleright$$
 (x \oplus y)' = xy + x'y'

Properties

$$\triangleright x \oplus 0 = x$$

$$> x \oplus 1 = x'$$

$$\triangleright x \oplus x = 0$$

$$> x \oplus x' = 1$$

$$\triangleright x \oplus y' = x' \oplus y = (x \oplus y)' : XNOR$$

Commutative & Associative

$$\triangleright$$
 x \oplus y = y \oplus x

$$_{203}$$
 \triangleright (x \oplus y) \oplus z = x \oplus (y \oplus z)

Exclusive-OR Function

- XOR gate is <u>not</u> universal
 - Only a limited number of Boolean functions can be expressed in terms of XOR gates
- XOR operation has very important applications in arithmetic and error-detection circuits.
- Odd Function

$$(x \oplus y) \oplus z = (xy' + x'y) \oplus z$$

$$= (xy' + x'y) z' + (xy' + x'y)' z$$

$$= xy'z' + x'yz' + (xy + x'y') z$$

$$= xy'z' + x'yz' + xyz + x'y'z$$

$$= \sum (4, 2, 7, 1) \qquad yz$$

$$\times \qquad 00 \quad 01 \quad 11 \quad 10$$

$$0 \quad 0 \quad 1 \quad 0 \quad 1$$

XOR Implementations

(a) With AND-OR-NOT gates

Odd Function

- If an odd number of variables are equal to 1, then the function is equal to 1.
- Therefore, multivariable XOR operation is referred as the Odd function.

Odd Function

- n variable XOR function is odd function defined as:
 The logical sum of the 2ⁿ/2 minterms whose binary numerical values have an odd number of 1's
- If n=3, 4 minterms have odd number of 1's

(a) Odd function $F = A \oplus B \oplus C$

(b) Even function $F = (A \oplus B \oplus C)'$

Odd & Even Functions

Odd function

• $(x \oplus y \oplus z)' = ((x \oplus y) \oplus z)'$

Parity Generation

- A parity bit is an extra bit included with a binary message
 - e.g., odd parity: If number of 1's in data is even, parity bit is set to 1; else 0. So that the number of 1's including parity is always odd
- The circuit that generates the parity bit in the transmitter is called parity generator.
- Parity bit can be generated using XOR function.

7 bits of data	(account of 4 bits)	8 bits including parity		
	(count of 1-bits)	even	odd	
0000000	0	00000000	00000001	
1010001	3	10100011	10100010	
1101001	4	1101001 0	11010011	
1111111	7	11111111	11111110	

3-Bit Parity Generator

Even-Parity-Generator Truth Table

Three-Bit Message		Parity Bit	
x y z		P	
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

(a) 3-bit even parity generator

Parity Checker

- Bits are transmitted to the destination with parity.
- The circuit that checks the parity in the receiver is called a parity checker.
- Parity checker can be implmeneted with XOR gates.

4-Bit Parity Checker

Even-Parity-Checker Truth Table

Four Bits Received				Parity Error Check
x	y	z	P	c
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

(b) 4-bit even parity checker

Adder Circuit for Integers

Addition of two 2-bit numbers

$$Z = X + Y$$

•
$$X = (x_1 x_0)$$
 and $Y = (y_1 y_0)$

$$Z = (z_2 z_1 z_0)$$

Bitwise addition

1.
$$z_0 = x_0 \oplus y_0$$
 (sum)
 $c_1 = x_0 y_0$ (carry)

2.
$$z_1 = x_1 \oplus y_1 \oplus c_1$$

 $c_2 = x_1 y_1 + x_1 c_1 + y_1 c_1$

3.
$$z_2 = c_2$$

Adder Circuit

$$z_1 = x_1 \oplus y_1 \oplus c_1$$

 $c_2 = x_1 y_1 + x_1 c_1 + y_1 c_1$

$$z_0 = x_0 \oplus y_0$$

$$c_1 = x_0 y_0$$

 $z_2 = c_2$

Comparator Circuit

• F(X>Y)

$$X = (x_1 x_0)$$
 and $Y = (y_1 y_0)$

$y_1 y_0$ $x_1 x_0$	00	01	11	10
00				
01				
11				
10				

Comparator Circuit

• F(X>Y)

$$X = (x_1 x_0)$$
 and $Y = (y_1 y_0)$

$y_1 y_0$				
$x_1 x_0$	00	01	11	10
00	0	0	0	0
01	1	0	0	0
11	1	1	0	1
10	1	1	0	0

$$F(x_1, x_0, y_1, y_0) = x_1y_1' + x_1x_0y_0' + x_0y_0'y_1'$$