Amendments To The Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

What is claimed is:

1. (Currently Amended) A compound of formula (I)

or a pharmaceutically acceptable salt, solvate, or derivative thereof, wherein:

X is a C_{1-5} alkylene chain, wherein said X is optionally substituted by one or more =0, =S, -S(O)_t-, alkyl, or halogen and wherein said C_{1-5} alkylene chain may optionally have 0-3 heteroatoms selected from oxygen, phosphorus, sulfur, or nitrogen;

Ring A is <u>selected from the group consisting of a saturated, partially saturated or aromatic 3-7 6-membered monocyclic or 8-10 8-membered bicyclic ring having one ring nitrogen and 0-4 additional <u>0</u> heteroatoms selected from oxygen, phosphorus, sulfur, or nitrogen;</u>

R¹ is selected from the group consisting of

(a) a saturated, partially saturated, or aromatic 4-7 monocyclic or 8-10 membered bicyclic ring having one ring nitrogen and 0-4 additional heteroatoms selected from oxygen, phosphorus, sulfur, or nitrogen, optionally attached through a C₁₋₆ alkylene chain, and optionally substituted by one or more R⁸;

— Q is carbon, oxygen, or -S(O)t;

w is 1 or 2;

each R^2 is independently selected from $-OR^0$, $-C(O)-R^0$, $-S(O)_2-R^0$, $-C(O)-N(R^0)_2$, $-S(O)_2-N(R^0)_2$, $-(CH_2)_a-N(R^0)(-V_b-R^+)$, $-(CH_2)_a-(-V_b-R^+)$, halogen, alkyl optionally substituted by one or more R^7 , alkenyl optionally substituted by one or more R^7 , aryl optionally substituted by one or more R^6 , heteroaryl optionally substituted by one or more R^6 , cycloalkyl optionally substituted by one or more R^8 , and heterocyclyl optionally substituted by one or more R^8 ; and two adjacent R^2 s on Ring A are optionally taken together to form a fused, saturated, partially saturated or aromatic 5-6 membered ring having 0-3 heteroatoms selected from oxygen, phosphorus, sulfur,

or nitrogen; or two geminal R²s are optionally taken together to form a spiro, saturated, partially saturated or aromatic 5-6 membered ring having 0-3 heteroatoms selected from oxygen, phosphorus, sulfur, or nitrogen, said fused or spiro ring being optionally substituted by one or more R⁸;

```
a is 0-3; 
b is 0 or 1; 
V is -C(O)-, -C(O)O-, -S(O)<sub>2</sub>-, or -C(O)-N(R^{\circ})-;
```

R⁺ is alkyl, cycloalkyl, aralkyl, aryl, heteroaryl, heteroaralkyl, or heterocyclyl, wherein said R⁺ is optionally substituted by one or more R⁸;

d is 0-1; m is 0 or 1; n is 0-5:

each R^3 independently is -H, -N(R^0)₂, -N(R^0)C(O) R^0 , -CN, halogen, -CF₃, alkyl optionally substituted by one or more groups selected from R^7 or -S-aryl optionally substituted by -(CH₂)₁₋₆-N(R^0)SO₂(R^0), alkenyl optionally substituted by one or more groups selected from R^7 or -S-aryl optionally substituted by -(CH₂)₁₋₆-N(R^0)SO₂(R^0), alkynyl optionally substituted by one or more groups selected from R^7 or -S-aryl optionally substituted by -(CH₂)₁₋₆-N(R^0)SO₂(R^0), cycloalkyl or carbocyclyl optionally substituted by one or more R^8 , aryl optionally substituted by one or more R^6 , or heterocyclyl optionally substituted by one or more R^8 ;

 $Y \text{ is } \frac{\text{alkyl, alkenyl, alkynyl, } (\text{CR}^4\text{R}^5)_p\text{--, }\text{-C(O)-, } -\frac{\text{C(O)C(O)-, }\text{-C(S)-, }}{\text{-O-(CH}_2)_{0-4}\text{-C(O)-, } -\text{C(O)-O-, } -\text{N(R}^0)\text{-C(O)-, } -\text{C(O)-N(R}^0)\text{-, } -\text{N(R}^0)\text{-C(S)-, }}{\text{-S(O)}_{t\text{--}, } -\text{O-C(=N-CN)-, } -\text{O-C(=N-R}^0)\text{-, } -\text{C(=N-CN)-S -, } -\text{C(=N-R}^0)\text{-O-C(=N-R}^0)\text{-}} }$

 $-S-C(=N-CN)-, -N(R^{0})-C(=N-CN)-, -C(=N-CN)-, -N(R^{0})-C[=N-C(O)-R^{0}]-, -N(R^{0})-C[=N-S(O), -R^{0}]-, -N(R^{0})-C(=N-CR^{0})-, -N(R^{0})-C(=N-R^{0})-, -N(R^{0})-, -N(R^{0})-C(=N-R^{0})-, -N(R^{0})-, -N(R$

each R⁴ independently is H or alkyl optionally substituted by R⁷, alkenyl optionally substituted by R⁷, alkynyl optionally substituted by R⁷;

each R⁵ independently is selected from -H, -C(O)-OR⁶, -C(O)-N(R⁰)₂,

 $-S(O)_2-N(R^0)_2$, $-S(O)_2-R^6$, aryl optionally substituted by R^6 , or heteroaryl optionally substituted by R^6 ;

each t independently is 1 or 2;

each R^6 is independently selected from the group consisting of halogen, - CF_3 , - OCF_3 , - OR^0 , - $(CH_2)_{1-6}$ - OR^0 , - SR^0 , - $(CH_2)_{1-6}$ - SR^0 , - SCF_3 , - R^0 , methylenedioxy, ethylenedioxy, - NO_2 , -CN, - $(CH_2)_{1-6}$ -CN, - $N(R^0)_2$, - $(CH_2)_{1-6}$ - $N(R^0)_2$, - $NR^0C(O)R^0$, - $NR^0(CN)$, - $NR^0C(O)N(R^0)_2$, - $NR^0C(S)N(R^0)_2$, - $NR^0CO_2R^0$, - $NR^0NR^0C(O)R^0$, - $NR^0NR^0C(O)R^0$, - $NR^0NR^0CO_2R^0$, - $NR^0NR^$

 $-(CH_2)_{0-6}CO_2R^0, -O-C(O)R^0, -C(O)R^0, -C(O)N(R^0)N(R^0)_2, -C(O)N(R^0)_2, -C(O)N(R^0)OH, -C(O)N(R^0)SO_2R^0, -OC(O)N(R^0)_2, -S(O)_tR^0, -S(O)_tN(R^0)C(O)R^0, -S(O)_tN(R^0)C(O)R^0, -S(O)_tN(R^0)C(O)R^0, -C(O)N(R^0)C(O)R^0, -C(O)N(R^0)C(O$

 $-S(O)_tN(R^0)OR^0, -NR^0SO_2N(R^0)_2, -NR^0SO_2R^0, -C(=S)N(R^0)_2, -C(=NH)-N(R^0)_2, \\ -(CH_2)_{1-6}-C(O)R^0, -C(=N-OR^0)-N(R^0)_2, -O-(CH_2)_{0-6}-SO_2N(R^0)_2, -(CH_2)_{1-6}NHC(O)R^0, \\ and -SO_2N(R^0)_2 \text{ wherein the two } R^0s \text{ on the same nitrogen are optionally taken} \\ together to form a 5-8 membered saturated, partially saturated, or aromatic ring having additional 0-4 heteroatoms selected from oxygen, phosphorus, nitrogen, or sulfur; \\$

each R^7 is independently selected from halogen, $-CF_3$, $-R^0$, $-OR^0$, $-OCF_3$, $-(CH_2)_{1-6}-OR^0$, $-SR^0$, $-SCF_3$, $-(CH_2)_{1-6}-SR^0$, aryl optionally substituted by $-R^6$, methylenedioxy, ethylenedioxy, $-NO_2$, -CN, $-(CH_2)_{1-6}-CN$, $-N(R^0)_2$, $-(CH_2)_{1-6}-N(R^0)_2$, $-NR^0C(O)R^0$, $-NR^0$ (CN), $-NR^0C(O)N(R^0)_2$, $-N(R^0)C(S)N(R^0)_2$, $-NR^0CO_2R^0$, $-NR^0NR^0C(O)R^0$, $-NR^0NR^0C(O)N(R^0)_2$, $-NR^0NR^0CO_2R^0$, $-C(O)C(O)R^0$, $-C(O)C(O)R^0$, $-C(O)CH_2C(O)R^0$, $-(CH_2)_{0-6}-CO_2R^0$, $-C(O)R^0$, $-C(O)N(R^0)N(R^0)_2$, $-C(O)N(R^0)OH$, $-OC(O)R^0$, $-C(O)N(R^0)SO_2R^0$, $-OC(O)N(R^0)_2$, $-S(O)_tR^0$, $-S(O)_tN(R^0)C(O)R^0$, $-S(O)_tN(R^0)OR^0$, $-NR^0SO_2N(R^0)_2$, $-NR^0SO_2R^0$, $-C(=S)N(R^0)_2$, $-C(=NH)-N(R^0)_2$, $-(CH_2)_{1-6}-C(O)R^0$, $-C(=N-OR^0)-N(R^0)_2$, $-O-(CH_2)_{0-6}-SO_2N(R^0)_2$, $-(CH_2)_{1-6}-NHC(O)R^0$, and $-SO_2N(R^0)_2$ wherein the two R^0 s on the same nitrogen are optionally taken together to form a 5-8 membered saturated, partially

saturated, or aromatic ring having additional 0-4 heteroatoms selected from oxygen, phosphorus, nitrogen, or sulfur;

each R^8 independently is selected from the group consisting of R^7 , =0, =S, =N(R^0), and =N(CN);

 R^9 is hydrogen, or alkyl optionally substituted by one or more R^7 , alkenyl optionally substituted by one or more R^7 , alkynyl optionally substituted by one or more R^7 , cycloalkyl optionally substituted by one or more R^8 , heterocyclyl optionally substituted by one or more R^8 , heterocyclyl optionally substituted by one or more R^6 , or aryl optionally substituted by one or more R^6 ; or

-(Y)_m-R³ and R⁹ may combine with the nitrogen atom with which they are attached to form a saturated, partially saturated, or aromatic 5-7 membered monocyclic or 8-10 membered bicyclic ring that optionally contains 1 to 3 additional heteroatoms selected oxygen, phosphorus, sulfur, or nitrogen, wherein said ring may be optionally substituted with one or more R⁸;

R¹⁰ is hydrogen, alkyl optionally substituted by one or more R⁷, alkenyl optionally substituted by one or more R⁷, alkynyl optionally substituted by one or more R⁸, heterocyclyl optionally substituted by one or more R⁸, heterocyclyl optionally substituted by one or more R⁸, or aryl phenyl optionally substituted by one or more R⁶;

each R^0 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, carbocyclylalkyl, aryl, heteroaryl, aralkyl, heteroaralkyl, heterocyclyl, and heterocyclylalkyl, wherein each member of R^0 except H is optionally substituted by one or more R^* , $-OR^*$, $N(R^*)_2$, =O, =S, halogen, $-CF_3$,

-NO₂, -CN, -C(O)R*, -CO₂R*, -C(O)-aryl, -C(O)-heteroaryl, aralkyl, -S(O)_t-aryl, -S(O)_t-heteroaryl, -NR*SO₂R*, -NR*C(O)R*, -NR*C(O)N(R*)₂, -N(R*)C(S)N(R*)₂, -NR*CO₂R*, -NR*NR*C(O)R*, -NR*NR*C(O)N(R*)₂, -NR*NR*CO₂R*, -C(O)C(O)R*, -C(O)CH₂C(O)R*, -C(O)N(R*)N(R*)₂, -C(O)N(R*)₂, -C(O)N(R*)₂, -C(O)NR*SO₂R*, -OC(O)N(R*)₂, -S(O)_tR*, -NR*SO₂N(R*)₂, and -SO₂N(R*)₂ wherein the two R*s on the same nitrogen are optionally taken together to form a 5-8 membered

saturated, partially saturated or aromatic ring having additional 0-4 heteroatoms selected from oxygen, phosphorus, nitrogen or sulfur; and

each R* is independently H, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, or heteroaryl.

- 2. (Cancelled)
- 3. (Cancelled)
- 4. (Cancelled)
- 5. (Cancelled)
- 6. (Currently Amended) The compound of claim 5 1 wherein R9 is methyl.
- 7. (Currently Amended) The compound of claim 4 $\underline{1}$ wherein $-(Y)_m$ - R^3 is selected from the group consisting of

8. (Currently amended) The compound of claim 4 $\underline{1}$ wherein $-(Y)_m-R^3$ is selected from the group consisting of

- 9. (Cancelled)
- 10. (Cancelled)
- 11. (Original) The compound of claim 1 wherein X is $-(CH_2)$ -, $-(CH_2-CH_2)$ -, or $-(CH_2-CH_2-CH_2)$ -.
- 12. (Cancelled)

PU5020USW

- 13. (Cancelled)
- 14. (Cancelled)

15. (Currently Amended) The compound of claim 12 1 wherein each R², with an asterisk indicating a point of substitution from Ring A, independently is selected from:

16. (Original) The compound of claim 1 wherein ring A, with two geminal R²s, is selected from:

17. (Original) The compound of claim 1 wherein the A ring is tropane or piperidine, either optionally substituted with one or more R².

18. (Original) The compound of claim 15 wherein the A ring in combination with ${\sf R}^2$ is

Page 20 of 24

- 19. (Cancelled)
- 20. (Original) The compound of claim 17 wherein said A ring optionally is N-substituted.
- 21. (Original) The compound of claim 18 wherein the A ring is N-substituted with $-(CH_2)_a-(V_b-R+)$.
- 22. (Original) The compound of claim 1 wherein the compound of formula (I) is:

wherein X is a C_2 - C_3 alkylene chain and R^3 and R^9 are each as defined in claim 1.

- 23. (Cancelled)
- 24. (Cancelled)
- 25. (Cancelled)
- 26. (Cancelled)
- 27. (Cancelled)
- 28. (Cancelled)
- 29. (Cancelled).
- 30. (Cancelled).
- 31. (Cancelled).
- 32. (Cancelled).
- 33. (Cancelled).

- 34. (Previously Amended) A pharmaceutical composition comprising a pharmaceutically effective amount of a compound according to claim 1 together with a pharmaceutically acceptable carrier.
- 35. (Previously Amended) The pharmaceutical composition according to claim 34 in the form of a tablet or capsule.
- 36. (Previously Amended) The pharmaceutical composition according to claim 34 in the form of a liquid.
- 37. (Cancelled
- 38. (Cancelled)
- 39. (Cancelled)