2021/12/07

Project 2 – Cell-Based Layout Design

11010CS312000 Introduction of Integrated Circuit Design, NTHU

Outline

- Cell-Based Design
- Standard Cell Setting
- Cell Duplication for Logic Function
- Example
- Project
- Grading

Outline

- Cell-Based Design
- Standard Cell Setting
- Cell Duplication for Logic Function
- Example
- Project
- Grading

Cell-Based Design (1)

- Based on the idea of hierarchical design
- Do not care about the internal details at the cell-level design

Cell-Based Design (2)

Weinberger image array

Outline

- Cell-Based Design
- Standard Cell Setting
- Cell Duplication for Logic Function
- Example
- Project
- Grading

Library Prepared

- Upload library "VLSI_LIB" to workstation
 ~/layout/VLSI LIB
- You may use the same directory used in Project1 since the environment settings are still the same, i.e., DRC, LVS rule files, calibre.csh and 018.tf etc. are also necessary.

New Project Library Creation

- Please refer the slides of Project1
 - Create a library named "project2"
 - Create a cell view named "FA"

Set Library Path (1)

Set Library Path (2)

Set Library Path (3)

Set Library Path (4)

Set Library Path (5)

Outline

- Cell-Based Design
- Standard Cell Setting
- Cell Duplication for Logic Function
- Example
- Project
- Grading

Instance Creation (1)

Instance Creation (2)

Left click to place the cell.

Instance Creation (3)

Instance Creation (4)

Display level 0

Display level 10

Hotkey - Display level

Cadence Virtuoso Layout Hotkeys

	Category	Action	Hotkey
	ZOOM	IN	cntl+Z
	6 3 1 4 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OUT	shift+Z
V	FIT	Fit whole layout to exiting window	f
E	VIEW HIERARCHY	MORE DETAIL	shift+ F
W		LESS DETAIL	cntl+f
	REDRAW		cntl+r
Е	STRETCH		S
D	MOVE		m
D I T	COPY		c
	UNDO		u
	SELECT ALL	Select all objects on the window	cntl +a
	DESELECT ALL	Deselects all selected objects	entl +d
M I	PROPERTIES	Show properties of selected object	q
	RULER	CREATE	k
S		DELETE ALL	$_{ m shift}$ + K
	HIERARCHY	DESCEND	shift+ X
		RETURN	$_{ m shift}$ + $_{ m B}$

Outline

- Cell-Based Design
- Standard Cell Setting
- Cell Duplication for Logic Function
- Example
- Project
- Grading

Example: f = a * b * c * d (1)

Cell duplication

Example: f = a * b * c * d (2)

Metal wire connection

Display level 10

Display level 0

Example: f = a * b * c * d (3)

Vdd / Gnd Connection by metal 1

- You cannot just use metal 1 to connect these segments ______.
- It causes unexpected shorts to other metal 1!

Example: f = a * b * c * d (4)

Vdd / Gnd Connection by metal 2

Example: f = a * b * c * d (5)

Vdd / Gnd Connection by metal 2

Size of VIA must be 0.25um * 0.25um

Example: f = a * b * c * d

Labels in standard cells are different from current cell! P.S. You should display **level zero** for checking

Display level 0

Another clearer example: out = in1 * in2

Labels in standard cells are different from current cell! P.S. You should display **level zero** for checking

Display level 10

Display level 0

Example: f = a * b * c * d (7)

- Schematic file "ADDER3.src.net"
- "x" represents the cell (subcircuit call)
 - x_[name_as_you_like] [Pin 1] [Pin 2] ... [Pin N] [Cell_type_name]

• E.g.

```
.subckt F a b c d f
                       VDD
                            GND
x and1 nand
                          abiOut VDD
                    b
                                      GND
                                            NAND 2X
 and1 inv abiOut abOut VDD
                                 GND
                                      INV 2X
 and2 nand
                    d
                       cdiOut VDD
                                      GND
                                            NAND 2X
 and2 inv
           cdiOut cdOut VDD
                                 GND
                                      INV 2X
 and3 nand
             abOut cdOut fiOut
                                 VDD
                                      GND
                                            NAND 2X
x and3 inv
             fiOut f
                          VDD
                                 GND
                                      INV 2X
.ends
```

Example: f = a * b * c * d (8)

- Definition of standard cells also needs to be put into schematic file.
- You can find standard definition at VLSI LIB/[Cell name]
 - o E.g. VLSI_LIB/NAND_2X/NAND2X.src.net

```
nthucad.cs.nthu.edu.tw - PuTTY
subckt Fabcdf VDD GND
                                abiOut VDD GND NAND 2X
x and1 nand
                        Ь
x and1 inv
                abiOut
                                abOut
                                        VDD GND INV 2X
x_and2_nand
                                cdiOut VDD GND NAND 2X
c and2 inv
                cdiOut
                                cdOut
                                        VDD GND INV 2X
x and3 nand
                abOut
                        cdOut
                                fiOut
                                        VDD GND NAND 2X
x and3 inv
                                        VDD GND INV 2X
                fiOut
 ends
.subckt INV 2X IN OUT VDD GND
mp1 OUT IN VDD VDD P 18 w=0.67u l=0.18u
mn1 OUT IN GND GND N 18 w=0.67u l=0.18u
.ends
.subckt NAND_2X IN1 IN2 OUT VDD GND
mp1 OUT IN1 VDD VDD P_18 w=0.67u l=0.18u
mp2 OUT IN2 VDD VDD P 18 w=0.67u l=0.18u
mn1 NET IN1 GND GND N 18 w=0.67u l=0.18u
mn2 OUT IN2 NET GND N 18 w=0.67u l=0.18u
 ends
   INSERT --
                                                 21,1
```

Outline

- Cell-Based Design
- Standard Cell Setting
- Cell Duplication for Logic Function
- Example
- Project
 - Step 1: 2x1 multiplexer
 - Step 2: 1-bit full adder
 - Step 3: 3-bit carry select adder
- Grading

Project Requirements

Step 1: Design a 2x1 multiplexer: MUX21 (already given in VLSI LIB)

- Use cell-based design
- Pass DRC and LVS

Step 2: Design a 1-bit full adder: FA

- Use cell-based design
- Pass DRC and LVS

Step 3: Design a 3-bit carry select adder: ADDER3

- Design a transistor-level schematic yourself
- Draw a cell-based layout (reuse your full_adder & MUX)
- Pass DRC and LVS

Step 1: 2x1 Multiplexer

- Cell name: MUX21 (given in VLSI_LIB)
- Input
 - in1
 - o in2
 - o ctrl
- Output
 - o out
- Function
 - o out = (ctrl == 0) ? in1 : in2

Step 2: 1-bit Full Adder

- Cell name: FA
- Input
 - \circ a
 - o **b**
 - o c_in
- Output
 - o c_out
 - o sum
- Function
 - o { c_out , sum } = a + b + c_in

	Inputs		Out	puts
A	В	C-IN	Sum	C - Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Step 3: 3-bit Carry Select Adder

- Cell name: ADDER3
- Input
 - o A[0:2]: A0, A1, A2
 - o B[0:2]: B0, B1, B2
 - o CIN
- Output
 - o S[0:2]: S0, S1, S2
 - o COUT
- Function
 - \circ { COUT, S[0:2] } = A[0:2] + B[0:2] + CIN

Transistor Schematic

- Schematic format
 - Cell and port name should be named as follows
 - I/O port must be in order . subckt ADDER3 AO A1 A2 BO B1 B2 CIN SO S1 S2 COUT VDD GND . ends .subckt FA a b c_in sum c_out VDD GND ends . subckt MUX21 in1 in2 ctrl out VDD GND . ends

Layout

- Labels should be STRICTLY named as follows.
 - Cell name
 - ADDER3
 - Input
 - A0, A1, A2, B0, B1, B2, CIN, VDD, GND
 - Output
 - S0, S1, S2, COUT
 - No naming constraint to internal signals
 - You can use only metal layer 1 and 2 (ME1 & ME2)

Outline

- Cell-Based Design
- Standard Cell Setting
- Cell Duplication for Logic Function
- Example
- Project
- Grading

Report

- Your report should contain the following content, and you can add more as you wish.
 - Your NAME and STUDENT ID
 - FIVE screenclips:
 - Layout with rulers (BOTH display level 10 and level 0)
 - DRC summary report
 - The message of passing LVS... ✓ [CORRECT] ⊙
 - LVS schematic (the text file, ADDER3.src.net)
 - What else did you do to enhance your layout quality?
 - What have you learned from this homework? What problem(s) have you encountered in this homework?

Grading (1)

- Submission deadline: 2021/12/31 (Fri.) 23:59
- TWO files to upload:
 - 1. A .pdf format report
 - 2. A .tar.gz file includes all files in directory layout.

You can use the following command to compress your directory on a workstation:

```
$ tar -zcvf [Student_ID]_project2.tar.gz ./layout
```

(More compress & extraction commands: http://note.drx.tw/2008/04/command.html)

- Upload 1. and 2. to eeclass
 - Name the files as "[StudentID]_report2.pdf" and "[StudentID]_project2.tar.gz", repectively.

Grading (2)

- Score breakdown
 - Layout Area 30% (以全班1/3、2/3為分界, 給予三等級分數)
 - o DRC pass 20%
 - Layout 20%
 - LVS schematic 20%
 - Report 10%
 - Uploading date
 - Early bird bonus: Extra 10 points for submission before 2021/12/24 (Fri.) 23:59
 - No late submission

Layout with Rulers to Show Area

- No ruler: -10 points
- Ruler must not be too large or too small.

Notice

- File Naming
 - Library name: project2
 - Cell: FA, ADDER3
 - LVS netlist name: ADDER3.src.net
- Submission after deadline → 0 point
- Plagiarism → 0 point
- Dishonest contents in the report → 0 point