Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики **Кафедра «Прикладная математика»**

ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ «МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Выполнил студент группы 3630102/70201

Крупкина Дарья

Проверил к. ф.-м. н., доцент

Баженов Александр Николаевич

Санкт-Петербург 2020

Содержание

1		Постановка задачи 3							
	1.1	Задание	3						
2	Teo	рия	3						
	2.1	Распределения	3						
	2.2	Эмпирическая функция распределения	4						
		2.2.1 Статистический ряд	4						
		2.2.2 Определение	4						
		2.2.3 Описание	4						
	2.3	Оценки плотности вероятности	5						
		2.3.1 Определение	5						
		2.3.2 Ядерные оценки	5						
3	Pea	лизация	5						
4	Рез	ультаты	6						
	4.1	Эмпирическая функция распределения	6						
	4.2	Ядерные оценки плотности распределения	8						
5	Обо	суждение	15						
6	Пъ	иложения	16						
U	пр	MIONCHIM	10						
C	пис	сок таблиц							
	1	Статистический ряд	4						
	2	Статистический ряд	4						
\sim	1								
C	ш	сок иллюстраций							
	1	Нормальное распределение	6						
	2	Распределение Коши	6						
	3	Распределение Лапласа	7						
	4	Распределение Пуассона	7						
	5	Равномерное распределение	8						
	6	Нормальное распределение, $n=20$	8						
	7	Нормальное распределение, $n=60$	9						
	8	Нормальное распределение, $n=100\ldots\ldots\ldots$	9						
	9	Распределение Коши, $n=20$	10						
	10	Распределение Коши, n= 60	10						
	11	Распределение Коши, n = 100	11						
	12	Распределение Лапласа, n = 20	11						
	13	Распределение Лапласа, $n=60$	12						

14	Распределение Лапласа, n = 100	12
15	Распределение Пуассона, $n=20$	13
16	Распределение Пуассона, $n=60$	13
17	Распределение Пуассона, $n=100$	14
18	Равномерное распределение, $n=20$	14
19	Равномерное распределение, $n=60$	15
20	Равномерное распределение, $n = 100$	15

1 Постановка задачи

Для 5 распределений:

- 1. N(x,0,1) нормальное распределение
- 2. C(x,0,1) распределение Коши
- 3. $L(x,0,\frac{1}{\sqrt{2}})$ распределение Лапласа
- 4. P(k, 10) распределение Пуассона
- 5. $U(x, -\sqrt{3}, \sqrt{3})$ равномерное распределение

1.1 Задание

Стенерировать выборки размером 20, 60 и 100 элементов.

Построить на них эмпирические функции распределения и ядерные оценки плотности распределения на отрезке [4;4] для непрерывных распределений и на отрезке [6;14] для распределения Пуассона.

2 Теория

2.1 Распределения

1. Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}} \tag{1}$$

2. Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{2}$$

3. Распределение Лапласа

$$L(x,0,\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|} \tag{3}$$

4. Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{4}$$

5. Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & |x| \le \sqrt{3} \\ 0 & |x| > \sqrt{3} \end{cases}$$
 (5)

2.2 Эмпирическая функция распределения

2.2.1 Статистический ряд

Статистическим рядом называется последовательность различных элементов выборки $z_1, z_2, ..., z_k$, расположенных в возрастающем порядке с указанием частот $n_1, n_2, ..., n_k$, с которыми эти элементы содержатся в выборке. Статистический ряд обычно записывается в виде таблицы

\mathbf{z}	z_1	z_1	 z_k
n	n_1	n_2	 n_k

Таблица 1: Статистический ряд

2.2.2 Определение

Эмпирической (выборочной) функцией распределения (э. ф. р.) называется относительная частота события X < x, полученная по данной выборке:

$$F_n^*(x) = P^*(X < x) \tag{6}$$

2.2.3 Описание

Для получения относительной частоты $P^*(X < x)$ просуммируем в статистическом ряде, построенном по данной выборке, все частоты n_i , для которых элементы z_i статистического ряда меньше х. Тогда $P^*(X < x) = \frac{1}{n} \sum_{z_i < x} n_i$. Получаем

$$F^*(x) = \frac{1}{n} \sum_{z_i < x} n_i \tag{7}$$

 $F^{\ast}(x)$ — функция распределения дискретной случайной величины $X_{\ast},$ заданной таблицей распределения

X^*	z_1	z_1	 z_k
P	$\frac{n_1}{n}$	$\frac{n_2}{n}$	 $\frac{n_k}{n}$

Таблица 2: Статистический ряд

Эмпирическая функция распределения является оценкой, т. е. приближённым значением, генеральной функции распределения

$$F_n^*(x) \approx F_X(x) \tag{8}$$

2.3 Оценки плотности вероятности

2.3.1 Определение

Оценкой плотности вероятности f(x) называется функция $\hat{f}(x)$, построенная на основе выборки, приближённо равная f(x)

$$f(x) \approx \hat{f}(x) \tag{9}$$

2.3.2 Ядерные оценки

Представим оценку в виде суммы с числом слагаемых, равным объёму выборки:

$$\hat{f}_n(x) = \frac{1}{nh_n} \sum_{i=1}^n K(\frac{x - x_i}{h_n})$$
 (10)

Здесь функция K(u), называемая ядерной (ядром), непрерывна и является плотностью вероятности, x_1, \ldots, x_n — элементы выборки, h_n — любая последовательность положительных чисел, обладающая свойствами

$$h_n \xrightarrow[n \to \infty]{} 0, \frac{h_n}{n^{-1}} \xrightarrow[n \to \infty]{} \infty$$
 (11)

Такие оценки называются непрерывными ядерными [1, с. 421-423].

Замечание. Свойство, означающее сближение оценки с оцениваемой величиной при $n \to \infty$ в каком-либо смысле, называется состоятельностью оценки.

Если плотность f(x) кусочно-непрерывная, то ядерная оценка плотности является состоятельной при соблюдении условий, накладываемых на параметр сглаживания h_n , а также на ядро K(u).

Гауссово (нормальное) ядро [2, с. 38]

$$K(u) = \frac{1}{\sqrt{2\pi}} e^{\frac{-u^2}{2}} \tag{12}$$

Правило Сильвермана [2, с. 44]

$$h_n = 1.06\hat{\sigma}n^{-\frac{1}{5}},\tag{13}$$

где $\hat{\sigma}$ - выборочное стандартное отклонение.

3 Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования Python в среде разработки PyCharm. Использованы библиотеки scipy для генерации выборки и задания функции распределения и плотности вероятности, matplotlib для построения графиков. Исходный код лабораторной работы приведён в приложении в виде ссылки на репозиторий GitHub.

4 Результаты

4.1 Эмпирическая функция распределения

Рис. 1: Нормальное распределение

Рис. 2: Распределение Коши

Рис. 3: Распределение Лапласа

Рис. 4: Распределение Пуассона

Рис. 5: Равномерное распределение

4.2 Ядерные оценки плотности распределения

Рис. 6: Нормальное распределение, n = 20

Рис. 7: Нормальное распределение, n=60

Рис. 8: Нормальное распределение, n = 100

Рис. 9: Распределение Коши, ${\bf n}=20$

Рис. 10: Распределение Коши, n=60

Рис. 11: Распределение Коши, ${\rm n}=100$

Рис. 12: Распределение Лапласа, ${\bf n}=20$

Рис. 13: Распределение Лапласа, n=60

Рис. 14: Распределение Лапласа, ${\rm n}=100$

Рис. 15: Распределение Пуассона,
 $n=20\,$

Рис. 16: Распределение Пуассона, n = 60

Рис. 17: Распределение Пуассона, n=100

Рис. 18: Равномерное распределение, n = 20

Рис. 19: Равномерное распределение, n = 60

Рис. 20: Равномерное распределение, n = 100

5 Обсуждение

По полученным результатам можно сделать вывод, с увеличением размера выборки эмпирическая и теоретическая функции распределения сближаются. При этом для распределения Пуассона эти функции имеют наибольшее отклонение друг от друга. В качестве вывода для ядерных оценок можно сказать, что с ростом размера выборки для всех h функция плотности распределения и ядерная оценка сближаются. Для

части распределений (нормального, Коши) точнее оказывается результат при $h=h_n$, в то время как для равномерного распределения, распределения Пуассона при $h=2h_n$; для распределения Лапласа - при $h=\frac{h_n}{2}$ Распределение Пуассона имеет результат с наибольшим отклонением ядерной оценки от плотности распределения.

6 Приложения

Код программы на GitHub, URL: https://github.com/DariaKrup/Statistics

Список литературы

- [1] Вероятностные разделы математики. Учебник для бакалавров технических направлений.//Под ред. Максимова Ю.Д. Спб.: «Иван Федоров», 2001. 592 с., илл.
- [2] Анатольев, Станислав (2009) «Непараметрическая регрессия», Квантиль, №7, стр. 37-52.