

Sep 22, 2022

Phylogenetic Analysis of Complete Bovine Coronavirus Genome Sequences V.3

Aspen M Workman¹, Tara G. McDaneld¹, Gregory P Harhay¹, Subha Das², John Dustin Loy³, Benjamin M. Hause²

¹United States Department of Agriculture (USDA) Agricultural Research Service (ARS), US Meat Animal Research Center (USM ARC), State Spur 18D, Clay Center, NE 68933, USA;

²South Dakota State University, Brookings, SD 57007, USA;

³Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Linc oln, 4040 East Campus Loop N, Lincoln, NE 68503-0907

dx.doi.org/10.17504/protocols.io.kqdg3pyeql25/v3

Gregory P Harhay United States Department of Agriculture (USDA) Agricultural ...

DISCLAIMER

- •The findings and conclusions in this presentation are those of the authors and should not be construed to represent any official USDA or U.S. Government determination or policy.
- •Mention of trade names or commercial products in this presentation is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA.
- *USDA is an equal opportunity provider and employer

ABSTRACT

Bovine coronavirus (BCoV) has spilled over to many species, including humans, where the host range variant coronavirus OC43 is endemic. Balance of the opposing activities of the surface spike (S) and hemagglutinin esterase (HE) glycoproteins control virion avidity which is critical for interspecies transmission and host adaptation. Here, 78 genomes were sequenced directly from clinical samples collected between 2013 and 2022 from cattle in 12 states, primarily in the Midwestern U.S. Relatively little genetic diversity was observed, with genomes having >98% nucleotide identity. Eleven isolates collected between 2020 and 2022 from four states (Nebraska, Colorado, California, and Wisconsin) contained a 12-nucleotide insertion in the receptorbinding domain (RBD) of the HE gene identical to one recently reported in China, and a single genome from Nebraska collected in 2020 contained a novel 12-nucleotide deletion in the HE gene RBD. Isogenic HE proteins containing either the insertion or deletion in the HE RBD maintained esterase activity and the ability to bind bovine submaxillary mucin, a substrate enriched in the receptor 9-O-acetylated-sialic acid, despite modeling that predicted structural changes in the HER3 loop critical for receptor binding. The emergence of BCoV with structural variants in the RBD raises the possibility of further interspecies transmission.

dx.doi.org/10.17504/protocols.io.kqdg3pyeql25/v3

PROTOCOL CITATION

Aspen M Workman, Tara G. McDaneld, Gregory P Harhay, Subha Das, John Dustin Loy, Benjamin M. Hause 2022. Phylogenetic Analysis of Complete Bovine Coronavirus Genome Sequences. protocols.io https://protocols.io/view/phylogenetic-analysis-of-complete-bovine-coronavir-cgxntxme Version created by Gregory P Harhay

FUNDERS ACKNOWLEDGEMENT

A

National Institute of Food and Agriculture

Grant ID: 2019-67015-29847

USDA ARS CRIS

Grant ID: 3040-32000-036-00D

National Institutes of Allergy and Infectious Diseases

Grant ID: 1R21AI162594-01

MANUSCRIPT CITATION please remember to cite the following publication along with this protocol

Recent emergence of bovine coronavirus variants with mutations in the hemagglutinin-esterase receptor binding domain in U.S. cattle (submitted)

1

Citation: Aspen M Workman, Tara G. McDaneld, Gregory P Harhay, Subha Das, John Dustin Loy, Benjamin M. Hause Phylogenetic Analysis of Complete Bovine Coronavirus Genome Sequences https://dx.doi.org/10.17504/protocols.io.kgdg3pyegl25/v3

4 Extract consensus HE sequence from the MAFFT aligned 192 whole genomes (see below) using Geneious

Discontiguous MegaBLAST input: HE_realigned_consensus_sequence.fasta

Discontiguous MegaBLAST of BCoV HE consensus sequence with E-value of E-20 against all BetaCoronavirus sequences in the GenBank nt database

Output: BetaCoronaVirus_HE_BlastMatch_Bovine_HE_Consensus.txt This list of 844 subject sequences (hits) was reduced to 714 by requiring that each hit covered at least 98.4% (1255 bp) of query HE sequence resulting in the following FASTA file:

BetaCoronaVirus_HE_GE_1255_BP_BlastMatch_Bovine_HE_Consensus.fasta

This file was filtered for sequences with "bovine coronavirus" in the FASTA description field yielding:

■345_Sequences_Bovine_HE_only.fasta

MAFFT Alignment

5 Align using MAFFT v7.450

The sequences were aligned using the MAFFT accuracy methods ---globalpair as defined in the mafft manual page below

DESCRIPTION

MAFFT is a multiple sequence alignment program for unix-like operating systems. It offers a range of multiple alignment methods.

Accuracy-oriented methods:

• L-INS-i (probably most accurate; recommended for <200 sequences; iterative refinement method incorporating local pairwise alignment information):

mafft --localpair --maxiterate 1000input [> output]

linsi input [> output]

• G-INS-i (suitable for sequences of similar lengths; recommended for <200 sequences; iterative refinement method incorporating global pairwise alignment information):

mafft--globalpair--maxiterate 1000input [> output]

ginsi input [> output]

Keep in mind ...

3

Citation: Aspen M Workman, Tara G. McDaneld, Gregory P Harhay, Subha Das, John Dustin Loy, Benjamin M. Hause Phylogenetic Analysis of Complete Bovine Coronavirus Genome Sequences https://dx.doi.org/10.17504/protocols.io.kqdq3pyeql25/v3

- The commands below generate files that contain both STDOUT (mafft output to the "terminal") as well as the
 multifasta alignment file (.afa). The STDOUT is found at the beginning of the file and the alignments follow the
 STDOUT
- 2. All .afa_out files were split in a text editor into two separate .out and .afa files for downstream analysis.
- The input FASTA file headers contain description information; this header information should be stripped out to facilitate readable, compact leaf names/identifiers. Use the following command to strip out the description text.

sed to strip out the description in the header from FASTA

sed '/^>/ s/ .*//' input_alignment_multifasta_file.afa >
output_alignment_multifasta_file.SEQID_Only.afa

Strip out description text from multifasta alignment file UBUNTU Linux

5.1 The input FASTA files are:

```
    ⊕ 192_Spike_6_14_22.fasta
    ⊕ 192_HE_6_14_22.fasta
    ⊕ 192_Genomes_Final_6_14_22.fasta
    ➡ 345_Sequences_Bovine_HE_only.fasta
    ➡ BetaCoronaVirus_HE_GE_1255_BP_BlastMatch_Bovine_HE_Consensus.fasta
    ➡ HE_realigned_consensus_sequence.fasta
```

The spike and HE genes were extracted from the annotated genomes into the file of fasta sequences above. There are duplicated sequences within 192_HE_6_22.fasta as well as within 192_Spike_6_14_22.fasta. The genome sequences within 192_Genomes_Final_6_14_22.fasta are unique.

The spike and HE FASTA sequence files were deduplicated with **fassort** & **fasuniq** from the FAST Analysis of Sequences Toolbox. The unique sequences present in multiple genomes will be designated with a sequence identifier comprised of a concatenation of the sequence identifiers used in the multiple genomes separated by a "__" or ":". For example, the HE fasta sequence id IWT-11:SHG-6:TCG-21:TCG-23:TCG-22 represents the identical HE fasta sequences IWT-11, SHG-6, TCG-21, TCG-23 and TCG-22.

Create file of unique spike FASTA sequences

fassort -s 192_HE_6_14_22.fasta | fasuniq --concat='__' > unique_HE_6_14_22.fasta

Create a file of unique HE FASTA sequences. The unique sequences present in multiple genomes will be designated with a sequence identifier comprised of a concatenation of the sequence identifiers used in the multiple genomes, separated by a double underscore "__"

UBUNTU Linux

hunique_HE_6_14_22.fasta


```
Create file of unique Spike FASTA sequences
        fassort -s 192_Spike_6_14_22.fasta | fasuniq --concat='__' >
        unique_Spike_6_14_22.fasta
        Create a file of unique Spike FASTA sequences. The unique sequences present in multiple genomes will be
        designated with a sequence identifier comprised of a concatenation of the sequence identifiers used in the
        multiple genomes, separated by a double underscore "__"
        UBUNTU Linux
       unique_Spike_6_14_22.fasta
        fassort -s 345_Sequences_Bovine_HE_only.fasta | fasuniq --concat='_' >
        unique 345 Sequences Bovine HE only.fasta
       unique_345_Sequences_Bovine_HE_only.fasta
        BetaCoronaVirus_HE_GE_1255_BP_BlastMatch_Bovine_HE_Consensus.fasta |
        fasuniq --concat="_" >
        unique\_Beta Corona Virus\_HE\_GE\_1255\_BP\_Blast Match\_Bovine\_HE\_Consensus
       ■unique_BetaCoronaVirus_HE_GE_1255_BP_BlastMatch_Bovine_HE_Consensus.fasta
5.2 Remove description text (all text after sequence id) in HE, Spike, and Genomes fasta fileps.
        sed to strip out the description in the header from FASTA
        sed '/^>/ s/ .*//' unique_HE_6_14_22.fasta >
        unique_HE_6_14_22.SEQID_Only.fasta
      output : unique_HE_6_14_22.SEQID_Only.fasta
        sed to strip out the description in the header from FASTA
        sed '/^>/ s/ .*//' unique_HE_6_14_22.fasta >
        unique_HE_6_14_22.SEQID_Only.fasta
        UBUNTU Linux
```


5

```
output: munique_Spike_6_14_22.SEQID_Only.fasta
       sed to strip out the description in the header from FASTA
       sed '/^>/ s/ .*//' 192_Genomes_Final_6_14_22.fasta >
       192_Genomes_Final_6_14_22.SEQID_Only.fasta
       UBUNTU Linux
     output: 192_Genomes_Final_6_14_22.SEQID_Only.fasta
       sed '/^>/ s/ .*//' unique_345_Sequences_Bovine_HE_only.fasta >
       unique\_345\_Sequences\_Bovine\_HE\_only.SEQID\_Only.fasta
      unique_345_Sequences_Bovine_HE_only.SEQID_Only.fasta
       sed '/^>/ s/ .*//'
       unique_BetaCoronaVirus_HE_GE_1255_BP_BlastMatch_Bovine_HE_Consensus
       unique_BetaCoronaVirus_HE_GE_1255_BP_BlastMatch_Bovine_HE_Consensus
      unique_BetaCoronaVirus_HE_GE_1255_BP_BlastMatch_Bovine_HE_Consensus_SeqID_Only.fasta
5.3 Align 192 BCV genomes using the default PAM (JTT) 200 substitution matrix
       nohup mafft --thread 25 --globalpair --maxiterate 1000 --jtt 200 --reorder
       192_Genomes_Final_6_14_22.SEQID_Only.fasta >
       192_Genomes_Final_6_14_22.SEQID_Only.jtt_200.globalpair.afa_out &
      outputs: 192_Genomes_Final_6_14_22.jtt_200.globalpair.SEQID_Only.afa_out
      This was split into 192_Genomes_Final_6_14_22.jtt_200.globalpair.SEQID_Only.afa &
      192_Genomes_Final_6_14_22.jtt_200.globalpair.SEQID_Only.out
5.4 Align 192 BCV genomes using the PAM (JTT) 100 substitution matrix
```


6

```
nohup mafft --thread 30 --globalpair --maxiterate 1000 --jtt 100 --reorder
       192_Genomes_Final_6_14_22.SEQID_Only.fasta >
       192_Genomes_Final_6_14_22.jtt_100.globalpair.SEQID_Only.afa_out &
      outputs: __192_Genomes_Final_6_14_22.jtt_100.globalpair.SEQID_Only.afa_out
      This was split into 192_Genomes_Final_6_14_22.jtt_100.globalpair.SEQID_Only.afa &
       192_Genomes_Final_6_14_22.jtt_100.globalpair.SEQID_Only.out
5.5 Align SPIKE using the default PAM (JTT) 200 substitution matrix
        nohup mafft --thread 15 --globalpair --maxiterate 1000 --jtt 200 --reorder
       unique_Spike_6_14_22.SEQID_Only.fasta >
       unique\_Spike\_6\_14\_22.SEQID\_Only.jtt\_200.globalpair.afa\_out~\&
      Outputs:
                unique_Spike_6_14_22.SEQID_Only.jtt_200.globalpair.afa_out
      This was split into unique_Spike_6_14_22.SEQID_Only.jtt_200.globalpair.afa &
        unique_Spike_6_14_22.SEQID_Only.jtt_200.globalpair.out
5.6 Align SPIKE using the PAM (JTT) 100 substitution matrix
       nohup mafft --thread 15 --globalpair --maxiterate 1000 --jtt 100 --reorder
       unique_Spike_6_14_22.SEQID_Only.fasta >
       unique_Spike_6_14_22.SEQID_Only.jtt_100.globalpair.afa_out &
      Outputs: unique_Spike_6_14_22.SEQID_Only.jtt_100.globalpair.afa_out
      This was split into unique_Spike_6_14_22.SEQID_Only.jtt_100.globalpair.afa &
        unique_Spike_6_14_22.SEQID_Only.jtt_100.globalpair.out
5.7 Align HE using the default PAM (JTT) 200 substitution matrix
       nohup mafft --thread 15 --globalpair --maxiterate 1000 --jtt 200 --reorder
       unique_HE_6_14_22.SEQID_Only.fasta >
       unique\_HE\_6\_14\_22.SEQID\_Only.jtt\_200.globalpair.afa\_out
               unique_HE_6_14_22.SEQID_Only.jtt_200.globalpair.afa_out
      Outputs:
      This was split into unique_HE_6_14_22.SEQID_Only.jtt_200.globalpair.afa &
      unique_HE_6_14_22.SEQID_Only.jtt_200.globalpair.out
5.8 Align HE using the PAM (JTT) 100 substitution matrix
```



```
nohup mafft --thread 15 --globalpair --maxiterate 1000 --jtt 100 --reorder
               unique_HE_6_14_22.SEQID_Only.fasta >
               unique_HE_6_14_22.SEQID_Only.jtt_100.globalpair.afa_out
             Output: unique_HE_6_14_22.SEQID_Only.jtt_100.globalpair.afa_out
             This was split into: unique_HE_6_14_22.SEQID_Only.jtt_100.globalpair.afa &
               unique_HE_6_14_22.SEQID_Only.jtt_100.globalpair.out
       5.9 Align unique BCV HE sequences the PAM (JTT) 100 substitution matrix
               nohup mafft --thread 25 --globalpair --maxiterate 1000 --jtt 100 --reorder
               unique_345_Sequences_Bovine_HE_only.SEQID_Only.fasta>
               unique_345_Sequences_Bovine_HE_only.SEQID_Only.jtt_100.globalpair.afa_o
             Output:
               unique_345_Sequences_Bovine_HE_only.SEQID_Only.jtt_100.globalpair.afa_out
             Was split into
               unique_345_Sequences_Bovine_HE_only.SEQID_Only.jtt_100.globalpair.afa &
               unique_345_Sequences_Bovine_HE_only.SEQID_Only.jtt_100.globalpair.out
               nohup mafft --thread 15 --globalpair --maxiterate 1000 --jtt 100 --reorder
               unique_BetaCoronaVirus_HE_GE_1255_BP_BlastMatch_Bovine_HE_Consensus
               unique_BetaCoronaVirus_HE_GE_1255_BP_BlastMatch_Bovine_HE_Consensus
               unique_BetaCoronaVirus_HE_GE_1255_BP_BlastMatch_Bovine_HE_Consensus_SeqID_Only.jtt_100.globalpair.afa_out
               unique_BetaCoronaVirus_HE_GE_1255_BP_BlastMatch_Bovine_HE_Consensus_SeqID_Only.jtt_100.globalpair.afa
               unique_BetaCoronaVirus_HE_GE_1255_BP_BlastMatch_Bovine_HE_Consensus_SeqID_Only.jtt_100.globalpair.out
RaXML Tee Building
```

protocols.io

Tree Building

8

Citation: Aspen M Workman, Tara G. McDaneld, Gregory P Harhay, Subha Das, John Dustin Loy, Benjamin M. Hause Phylogenetic Analysis of Complete Bovine Coronavirus Genome Sequences https://dx.doi.org/10.17504/protocols.io.kqdg3pyeql25/v3

Notes below are cut from the RaXML manual to put the command line parameters used in context

"This is a how-to, which describes how RAxML should best be used for a simple real-world biological analysis, given an example alignment named ex_al"

Now, if you want to run a full analysis, i.e., BS and ML search type:

raxmlHPC -f a -x 12345 -p 12345 -# 100 m GTRGAMMA -s ex_al -n TEST

This will first conduct a BS search and once that is done a search for the best–scoring ML tree. Such a program run will return the bootstrapped trees (RAxML_bootstrap.TEST), the best scoring ML tree(RAxML_bestTree.TEST), and the BS support values drawn on the best-scoring tree as node labels (RAxML_bipartitions.TEST) as well as, more correctly since support values refer to branches as branch labels (RAxML_bipartitionsBranchLabels.TEST).

Finally, note that by increasing the number of BS replicates via -# you will also make the ML thorough since for ML optimization every 5th BS tree is used as a starting point to for ML trees

raxmlHPC reports 192_Genomes_Final_6_14_22.jtt_100.globalpair.SEQID_Only.afa has 3438 DNA alignment patterns

Thus, if you run RAxML with 32 instead of 1 thread this does not mean that it will automatically become 32 times faster, it may actually even become slower. As I already mentioned, the parallel efficiency, that is, with how many threads/cores you can still execute it efficiently in parallel depends on the alignment length, or to be more precise on the number of distinct patterns in your alignment.

This number is printed by RAxML to the terminal and into the RAxML_info.runID file" and look like this:

Alignment has 70 distinct alignment patterns

As a rule of thumb **I'd use one core/thread per 500 DNA site patterns**, i.e., if you have less, than it's probably better to just use the sequential version. Single-gene DNA alignments with around 1000 sites can be analyzed with 2 or at most 4 threads. Thus, the more patterns your alignment has, the more threads/cores you can use efficiently.

Given the directions above from the RaXML manual, use 8 threads for raxmIHPC tree building

nohup raxmlHPC -T 8 -f a -x 12345 -p 12345 -N 2000 -m GTRGAMMA -s 192_Genomes_Final_6_14_22.jtt_100.globalpair.SEQID_Only.afa -n 192_Genomes_Final_6_14_22.jtt_100.globalpair.SEQID_Only.T8.N2000 > 192_Genomes_Final_6_14_22.jtt_100.globalpair.SEQID_Only.T8.N2000.out &

Run raxmIHPC command using nohup on 'nix platform to protect from premature job termination in case of remote connection loss ... and run in background with & at end of command line. Perform a 2000 boostrap search followed by a search for the best-scoring maximum likelihood tree.

- -T 8 (use 8 threads)
- -f a
- -x 12345
- -p 12345
- -m GTRGAMMA
- -N 2000

Output:

```
RAXML_bootstrap.192_Genomes_Final_6_14_22.jtt_100.globalpair.SEQID_Only.T8.N2000

192_Genomes_Final_6_14_22.jtt_100.globalpair.SEQID_Only.T8.N2000.out

RAXML_info.192_Genomes_Final_6_14_22.jtt_100.globalpair.SEQID_Only.T8.N2000

RAXML_bipartitionsBranchLabels.192_Genomes_Final_6_14_22.jtt_100.globalpair.SEQID_Only.T8.N2000

RAXML_bipartitions.192_Genomes_Final_6_14_22.jtt_100.globalpair.SEQID_Only.T8.N2000

RAXML_bestTree.192_Genomes_Final_6_14_22.jtt_100.globalpair.SEQID_Only.T8.N2000
```

Use RAxML_bipartitionsBranchLabels.192_Genomes_Final_6_14_22.jtt_100.globalpair.SEQID_Only.T8.N2000 file to create phylogenetic tree with bootstrap support values provided as branch labels.

Visualize this tree of 192 Bovine coronavirus genomes, MAFFT Global Pair Alignment, PAM 100 in the Interactive Tree of Life

Citation: Aspen M Workman, Tara G. McDaneld, Gregory P Harhay, Subha Das, John Dustin Loy, Benjamin M. Hause Phylogenetic Analysis of Complete Bovine Coronavirus Genome Sequences https://dx.doi.org/10.17504/protocols.io.kgdg3pyegl25/v3

RAXML tree of 192 bovine coronavirus genomes. Bootstrap support values are proportional to the line thickness of the branches. Isolates with HE deletions are denoted with a filled red square while the single isolate with an HE insertion is denoted with a filled blue square. Tree metrics are best investigated in the ITOL tree.

The pdf suitable for download is RaXML tree of 192 livestock coronavirus genomes.pdf

7 Following the same approach with the 192 BCoV genomes other RaXML Trees were generated for spike and HE and are included here

RAXML_bipartitionsBranchLabels.unique_HE_6_14_22.SEQID_Only.jtt_100.globalpair.T8.N2000

RAXML_bipartitionsBranchLabels.unique_HE_6_14_22.SEQID_Only.jtt_200.globalpair.T8.N2000

RAXML_bipartitionsBranchLabels.unique_Spike_6_14_22.SEQID_Only.jtt_100.globalpair.T8.N2000

RAXML_bipartitionsBranchLabels.unique_Spike_6_14_22.SEQID_Only.jtt_200.globalpair.T8.N2000

RAxML_bipartitionsBranchLabels.unique_345_Sequences_Bovine_HE_only.SEQID_Only.jtt_100.globalpair.T8.N2000

unique_BetaCoronaVirus_HE_GE_1255_BP_BlastMatch_Bovine_HE_Consensus_SeqID_Only.T8.N200.out

RAXML_bipartitionsBranchLabels.unique_BetaCoronaVirus_HE_GE_1255_BP_BlastMatch_Bovine_HE_Consensus_SeqID_Only.T8.N2000

