

Anomaly Detection: Distance-based Methods

Pilsung Kang
School of Industrial Management Engineering
Korea University

Harmeling et al. (2006)

- k-Nearest Neighbor-based Approach
 - ✓ Anomaly score of an instance is computed based on the distance information to k nearest neighbors
 - ✓ Does not assume any prior probability distribution for the normal class

- Various distance information used for anomaly score
 - √ Maximum distance to the k-th nearest neighbor

$$d_{max}^k = \kappa(\mathbf{x}) = ||\mathbf{x} - z_k(\mathbf{x})||$$

✓ Average distance to the k-nearest neighbors

$$d_{avg}^{k} = \gamma(\mathbf{x}) = \frac{1}{k} \sum_{j=1}^{k} ||\mathbf{x} - z_j(\mathbf{x})||$$

✓ Distance to the mean of the k-nearest neighbors

$$d_{mean}^{k} = \delta(\mathbf{x}) = \left| \left| \mathbf{x} - \frac{1}{k} \sum_{j=1}^{k} z_{j}(\mathbf{x}) \right| \right|$$

Kang and Cho (2009)

- Various distance information used for anomaly score
 - ✓ Comparison among the maximum, average, and mean distance

(a)
$$d_{max}^5 = 5.0$$
, $d_{avg}^5 = 4.2$.

(c)
$$d_{ava}^5 = 4.4$$
, $d_{mean}^5 = 3.3$

(b)
$$d_{max}^5 = 5.0$$
, $d_{avg}^5 = 2.6$.

Kang and Cho (2009)

- Counter example of the previous anomaly scores
 - ✓ Which one should be identified as abnormal?

		$d^k_{\ max}$	d^{k}_{avg}	$\mathbf{d^k}_{mean}$
A (k=4)	Circle	1.58	1.14	0.50
	Triangle	1.64	1.07	0.94
B (k=5)	Circle	1.56	1.08	0.80
	Triangle	1.86	1.09	0.88

Consider additional factor

✓ whether the new instance is located inside the convex hull of its neighbors

$$\min_{\mathbf{w}} \left(d_{c-hull}^{k}(\mathbf{x}) \right)^{2} = \left\| \mathbf{x}_{new} - \sum_{j=1}^{k} \mathbf{w}_{i} z_{j}(\mathbf{x}) \right\|^{2}$$

$$s.t. \sum_{i=1}^{k} \mathbf{w}_{i} = 1, \quad \mathbf{w}_{i} \ge 0, \quad \forall i.$$

- Combine the average distance and convex distance
 - √ Average distance to the k-nearest neighbors

$$d_{avg}^{k} = \frac{1}{k} \sum_{j=1}^{k} ||\mathbf{x} - z_{j}(\mathbf{x})||$$

√ Convex distance to its k-nearest neighbors

$$d_{c-hull}^{k} = \left| \left| \mathbf{x} - \sum_{j=1}^{k} \mathbf{w}_{i} z_{j}(\mathbf{x}) \right| \right|$$

✓ Put the penalty term using the convex distance for those instances located outside the convex hull of its k-nearest neighbors

$$d_{hybrid}^{k} = d_{avg}^{k} \times \left(\frac{2}{1 + exp(-d_{c-hyll}^{k})}\right)$$

• Counter example revisited

		$d^k_{\; max}$	$d^k_{\ \text{avg}}$	$\mathbf{d^k}_{mean}$	$\mathbf{d}^{k}_{\;hybrid}$
A (k=4)	Circle	1.58	1.14	0.50	1.42
	Triangle	1.64	1.07	0.94	1.18
B (k=5)	Circle	1.56	1.08	0.80	1.18
	Triangle	1.86	1.09	0.88	1.09

• Experiment

✓ Datasets

No.	Name	Source	Class	Dim.	TrN_n	TsN_n	TsN_o
1	Banana	Rätch	-1	2	216	2,708	271
2	Titanic	Rätch	-1	3	100	1,390	139
3	Liver	UCI	healthy	6	73	72	7
4	Ecoli	UCI	cp	7	72	71	7
5	Yeast	UCI	0	8	232	231	23
6	Pima	UCI	0	8	250	250	25
7	Diabetes	Rätch	-1	8	304	196	20
8	Glass	UCI	1	9	35	35	4
9	Breast	Rätch	-1	9	142	54	5
10	Flare	Rätch	-1	9	300	178	18
11	Heart	Rätch	-1	13	94	56	6
12	Image	Rätch	-1	18	554	436	44
13	Twonorm	Rätch	-1	20	198	3,499	350
14	German	Rätch	-1	20	489	211	21
15	Waveform	Rätch	-1	21	268	3,085	308
16	Parkinsons	UCI	parkinsons	22	74	73	7
17	Ionosphere	UCI	0	33	113	112	11
18	Spectf	UCI	0	44	28	27	3
19	Sonar	UCI	mine	60	56	55	6
20	Ozone	UCI	non-ozone	72	29	28	3
21	Arrhythmia	UCI	normal	258	119	118	12

• Performance (in terms of the Integrated Error)

Data	Dim.	Γ_n	Gauss	MoG	Parzen	1-SVM	KMC	KCC	НС	PCA	d_{max}^k	d_{avg}^k	d_{mean}^k	1-NN	MST-CD	d_{hybrid}^{k}
Titanic	3	100	19.12	19.12	18.50	17.27	21.12	21.26	22.80	22.48	3.64		10.00		1.33^{*}	1.33*
Liver	6	73	44.41	45.04	41.11	38.82	41.90	43.41	40.91	40.68	40.00	38.85	38.96	39.81	39.14	38.18
Ecoli	7	72	3.61	2.58	3.14	2.35	2.45	3.38	3.88	20.12	2.22	2.13	2.84	3.94	2.67	2.11
Glass	9	35	18.82	18.29	22.25	17.43	18.61	22.61	24.42	22.21	13.86	12.25	12.36	18.93	11.54	11.39
Breast	9	142	35.83	31.51	32.04	29.64	34.68	40.68	32.80	31.24	29.58	28.84	29.53	34.62	33.18	26.99^{*}
Banana	2	216	54.91	8.56	7.96	8.30	16.93	12.53	7.65	42.55	8.51	8.08	9.87	10.57	11.67	7.89
Yeast	8	232	31.55	28.98	27.99	26.58	28.78	33.25	27.32	31.47	25.81	24.54	25.87	27.79	26.50	23.40
Pima	8	250	29.86	33.55	26.04	27.50	29.60	32.69	28.46	33.28	24.82	24.57	27.68	28.17	27.72	24.45
Diabetes	8	304	30.61	34.68	27.35	26.60	28.80	35.31	26.45	31.32	23.70	23.29	25.68	26.66	28.21	23.64
Flare	9	300	23.19	23.19	24.82	15.40	29.67	26.65	25.57	26.76	10.49	9.74	17.09	5.62	5.47	6.14
Spectf	44	28	28.33	16.42	21.11	14.75	15.00	28.02	16.36	26.30	14.20	13.40	12.96	17.16	13.33	11.67^*
Sonar	60	56	41.59	37.27	34.32	33.80	41.55	40.06	40.07	42.32	39.65	34.67	32.12	33.73	31.30	32.62
Ozone	72	29	23.99	14.64	13.15	12.50	13.51	19.11	16.49	34.46	11.07	10.71	9.76	14.11	12.86	10.30
Arrhythmia	258	119	28.01	40.25	28.03	25.79	25.38	28.62	27.42	28.17	26.10	26.01	25.93	26.16	24.57	23.93
Heart	13	94	21.13	19.05	20.58	18.61	19.84	20.79	18.22	20.21	15.23	14.75	15.72	23.08	23.24	14.30
Image	18	554	13.11	13.61	11.79	10.38	23.22	30.13	31.21	15.87	13.80	11.99	10.32	10.53	9.19^*	11.04
Twonorm	20	198	9.83	11.80	11.62	9.48	8.82	12.38	6.13^{*}	9.62	9.62	10.02	10.79	12.87	12.62	10.11
German	20	489	38.16	36.99	37.24	35.72	39.23	42.79	40.56	37.73	34.72	33.95	34.59	37.88	36.35	33.77
Waveform	21	268	42.14	30.25	26.33	22.65^*	27.56	31.26	25.44	43.07	23.75	24.58	27.69	29.05	27.09	25.24
Parkinsons	22	74	32.71	46.35	32.14	29.16	32.65	32.66	32.79	34.60	36.95	32.54	31.63	34.22	30.68	30.30
Ionosphere	33	113	4.44	4.93	4.16	2.80	3.54	4.40	4.39	3.68	2.70	2.76	2.75	4.00	2.70	2.72

Clustering-based Approach

- K-Means clustering-based anomaly detection
 - ✓ anomaly score of an instance is computed based on the distance information to the nearest centroid
 - ✓ Does not assume any prior probability distribution for the normal class

$$\mathcal{X} = C_1 \cup C_2 \dots \cup C_K, \quad C_i \cap C_j = \phi, \quad i \neq j.$$

$$\arg\min_{\mathbf{C}} \sum_{i=1}^{K} \sum_{\mathbf{x}_j \in C_i} ||\mathbf{x}_j - \mathbf{c}_i||^2$$

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

Clustering-based Approach

- Clustering-based Approach
 - √ Two anomaly scores by KMC
 - Absolute distance to the nearest centroid
 - Relative distance to the nearest centroid

Clustering-based Approach

• KMC-based anomaly score: Example

PCA revisited

✓ Purpose: maximize the variance after projection

$$\max \mathbf{w}^T \mathbf{S} \mathbf{w}$$

$$s.t. \ \mathbf{w}^T \mathbf{w} = 1$$

√ Solution

$$L = \mathbf{w}^T \mathbf{S} \mathbf{w} - \lambda (\mathbf{w}^T \mathbf{w} - 1)$$

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{S}\mathbf{w} - \lambda\mathbf{w} = 0 \Rightarrow (\mathbf{S} - \lambda\mathbf{I})\mathbf{w} = 0$$

- PCA as an anomaly detector
 - ✓ Anomaly score: the amount of reconstruction loss from the projected space into the original space

- PCA as an anomaly detector
 - ✓ Compute the reconstruction loss

error(
$$x$$
) = $\|\mathbf{x} - \mathbf{w}\mathbf{w}^{\mathsf{T}}\mathbf{x}\|^{2} = (\mathbf{x} - \mathbf{w}\mathbf{w}^{\mathsf{T}}\mathbf{x})^{\mathsf{T}}(\mathbf{x} - \mathbf{w}\mathbf{w}^{\mathsf{T}}\mathbf{x})$
= $\mathbf{x}^{\mathsf{T}}\mathbf{x} - \mathbf{x}^{\mathsf{T}}\mathbf{w}\mathbf{w}^{\mathsf{T}}\mathbf{x} - \mathbf{x}^{\mathsf{T}}\mathbf{w}\mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{x}^{\mathsf{T}}\mathbf{w}\mathbf{w}^{\mathsf{T}}\mathbf{w}^{\mathsf{T}}\mathbf{x}$
= $\mathbf{x}^{\mathsf{T}}\mathbf{x} - \mathbf{x}^{\mathsf{T}}\mathbf{w}\mathbf{w}^{\mathsf{T}}\mathbf{x} = \|\mathbf{x}\|^{2} - \|\mathbf{w}^{\mathsf{T}}\mathbf{x}\|^{2}$

- PCA as an anomaly detector
 - ✓ Graphical interpretation

https://stats.stackexchange.com/questions/259806/anomaly-detection-using-pca-reconstruction-error

References

Research Papers

- Breunig, M.M., Kriegel, H.-P., Ng, R.T., and Sander, J. (2000). LOF: Identifying density-based local outliers. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data: 93-104.
- Chalapathy, R., Menon, A. K., & Chawla, S. (2018). Anomaly detection using one-class neural networks. arXiv preprint arXiv:1802.06360.
- Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys 41(3): 15.
- Harmeling, S. Dornhege, G., Tax, D. Meinecke, F., and Muller, K-R. (2006). From outliers to prototype: Ordering data. Neurocomputing 69(13-15): 1608-1618.
- Hariri, S., Kind, M. C., & Brunner, R. J. (2018). Extended Isolation Forest. arXiv preprint arXiv:1811.02141.
- Kang, P. and Cho, S. (2009). A hybrid novelty score and its use in keystroke dynamics-based user authentication. Pattern Recognition 42(11): 3115-3127.
- Liu, F.T., Ting, K. M., & Zhou, Z. H. (2008, December). Isolation forest. In Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on (pp. 413-422). IEEE.
- Liu, F.T., Ting, K. M., & Zhou, Z. H. (2012). Isolation-based anomaly detection. ACM Transactions on Knowledge Discovery from Data (TKDD), 6(1), 3.
- Oza, P., & Patel, V. M. (2018). One-class convolutional neural network. IEEE Signal Processing Letters, 26(2), 277-281.
- Perera, P., Nallapati, R., & Xiang, B. (2019). Ocgan: One-class novelty detection using gans with constrained latent representations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2898-2906).

References

Research Papers

- Pimentel, M.A.F., Clifton, D.A., Clifton, L., and Tarassenko, L. (2014). A review of novelty detection, Signal Processing 99: 215-249.
- Schlegl, T., Seeböck, P., Waldstein, S. M., Schmidt-Erfurth, U., & Langs, G. (2017, June). Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In International Conference on Information Processing in Medical Imaging (pp. 146-157). Springer, Cham.
- Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., and Williamson, R. C.(2001). Estimating the support of a high-dimensional distribution. Neural computation 13(7): 1443-1471.
- Tax, D.M. (2001). One-class classification, Ph.D. Thesis, Delft University of Technology, Netherlands.
- Tax, D.M. and Duin, R.P. (2004). Support vector data description. Machine learning 54(1): 45-66.

Other materials

- Pages 28-33 & 36: http://research.cs.tamu.edu/prism/lectures/pr/pr 17.pdf
- Figures in Auto-encoder section: https://dl.dropboxusercontent.com/u/19557502/6 01 definition.pdf
- Gramfort, A. (2016). Anomaly/Novelty detection with scikit-learn: https://www.slideshare.net/agramfort/anomalynovelty-detection-with-scikitlearn

