CS 663: Digital Image Processing Assignment – 4

Question -2,3

Farhan Ali – 170070035 Modhugu Rineeth – 170070049 Prajval Nakrani – 17D070014 Etcherla Harshvardhan – 17D070052

DATE: 1 /
gn:2) To maximize: fcf
constraints: $f^{\dagger}f = 1$, $e^{\dagger}f = 0$.
Constraints. It
Sou: Kagrange formulation:
To etce Afte
J(f) = ftcf - Aff - 2fe
Taking derivative w. ret- f 2 equate to 0
J'(f) = 2Cf - 2Af - X2e=0 -0
$J'(f) = 2Cf - 2Af - \lambda_2 e = 0 - 0$ $\Rightarrow 2(e^t e)f - 2Ae^t f - \lambda_2 e^t e = 0$
$e^{t}e=1 \Rightarrow 2(c^{t}e)^{t}f - 2\lambda_{1}e^{t}f - \lambda_{2} = 0$
C is a symmetrie matrix \Rightarrow $C = C^{\dagger}$. Also, e is an eigenveelor of C ?e. $Ce = ue$
Also, e is an eigenvector of C ?e. Ce=lle
$\Rightarrow 2 \mu e^{\dagger} - 2 \lambda_{1} e^{\dagger} - \lambda_{2} = 0$
$\Rightarrow 2(u-h)e^{t}f - h_2 = 0$
00 ot p - 0 - 0 - 0
$e^{\circ}e^{\dagger}f = 0 \Rightarrow \lambda_2 = 0 - 2$
putting 2 in 1 , we get
$Cf = \lambda f \Rightarrow f$ is an eigenvector of C
Now, FCF = 2 + F = 2. + to be maximized
some observe that it of is maximized when f
is eigenvector and & is eigenvalue. Fince all
non-zero eigen values are distinct. Ay has to be the took second largest eigen value

gn:3) (a) P = ATA, g = AAT.; A = MAN
To show: yTPy >0 and yTQZ 710
y → n dimensional vector.
TA SOA ASSESSED
Now, ypy = ytAtAy
$= (Ay)^{T} Ay$
= Ay > 0
_TQ _T()T7
ZTBZ = ZTAATZ
$= (A^T Z)^T A^T Z$
= ATZ 70
o's P and g are positive semi definite (PSD)
Say P is a PSD matrix and V is its eigenvector with X as eigen value, then,
with 23 as eigen value, then,
VPV = VXV
VIPV = V'XV
$=$ \times \vee \vee
= 0 × 11 × 112 almorries - 100 = 1
But, VTPV 30 => 2 v 30
$\Rightarrow \lambda \neq 0 \left(-\frac{1}{2} v ^2 \neq 0\right)$
=) For a PSD, eigen values are always
non-negative and Plg are PSD.
Tibit- igains and in a grace.

A = MXO
gn: 3) (b) Guven: A Pu = \under u) \Qv= uv.
To Prove: g(Au) = x (Au), P(ATV) = u(ATV)
Proof: Pu = xdeer lenaramente n
of A Au = Mu = Mip avoly
AAAU = A Muliplying both sides by A
$= \frac{1}{AA^{\dagger}}Au = \frac{1}{\lambda}(Au)$
$\Rightarrow g(Au) = \chi(Au)$
u = n - dimensional vector.
2 A (2 Y) =
AATV = UV
ATA) ATV = W(ATV) (Multiplying both) sides by AT
$\Rightarrow P(A^{T}V) = \mu(A^{T}V)$
V = m-dimensional vector
rector.

Question – 3c)

an 3)(c) Say & is the eigenvector corresponding to eigenvector vi of matrix a.
to eigenvector v. of matrix Q.
from scetion (a) & so PSD => 0 >0.
.'. gv; = < v; (< > 0).
Now, Aug = A/ATVI
MATVILLO /
$=(AA^{\dagger})V_{\overline{i}}$
11 x vill2
most restance and the
= QVi
1 ATVILL
11. 0112
- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
CHO V 46 E(1) AT Villay 14 MA
Charles To Maravana Atra
=) Y; = X
HAT VIII
2

gn 3)d) couven: Aui = Yi Vi
U = [4 v2 vm], v=[4 u2 um]
$\Gamma = \text{diag}(\tau_1, \tau_2, \dots, \tau_m)$
Sou: Ur = U, diag (r,,rm)
$= \begin{bmatrix} v_1 & v_2 & \dots & v_m \end{bmatrix} \begin{bmatrix} v_1 & \dots & v_m \\ \vdots & v_2 & \dots \\ \vdots & \ddots & \ddots & \vdots \end{bmatrix}$
[m.]
= [7, V, 82 V2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
= [AU Auz - Aum] (from)
= AV.
Urv = AVV.
: All the column vectors of V are
orthonormal (given),
$VV^{\dagger} = I$.
· · · · · · · · · · · · · · · · · · ·
$\Rightarrow U \Gamma V = A$

Note: vi and ui are column vectors and not single elements. The notation might confuse the reader to consider them as single elements but they are vectors in the matrix. So, [v1 v2 v3 .. vn] = A matrix with vi as column vectors