Serial No.: 10/699,233 Filed: October 31, 2003

Page : 2 of 26

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

1-3. (Cancelled).

4. (Currently Amended) A method of treating or inhibiting hyperproliferative vascular disorders in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of formula I having the structure

$$R^{1}O$$
 $R^{2}O$
 $R^{3}O$
 $R^{4}O$
 $R^{5}O$
 $R^{5}O$
 $R^{5}O$
 $R^{5}O$
 $R^{5}O$

wherein

R¹, R², R³, R⁴, and R⁵ are each, independently, hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl in which the phenyl moiety is substituted with R⁸;

R⁶ and R⁷ are each, independently, -OH, -OR⁹, O-tert-butyldimethylsilyl, O-trialkylsilyl of 1-6 carbon atoms per alkyl moiety, O-triphenylsilyl,

Serial No.: 10/699,233 Filed: October 31, 2003

Page : 3 of 26

$$-\frac{1}{2} \circ \bigcap_{N} \bigcap_{N}$$

- R⁸, R¹⁰, R¹¹, and R¹² are each, independently, hydrogen, -CN, -NO₂, halogen, CF₃, alkyl of 1-6 carbon atoms, acetyl, benzoyl, or alkoxy of 1-6 carbon atoms;
- R⁹ is acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl in which the phenyl moiety is substituted with R⁸;

Y is $[[\Theta_{1}]]$ S, NH, NMe, or CH₂;

- W is halogen, -CN, CF₃, alkyl of 1-6 carbon atoms, haloalkyl of 1-6 carbon atoms, nitroalkyl of 1-6 carbon atoms, cyanoalkyl of 1-6 carbon atoms, alkoxyalkyl of 2-12 carbon atoms, alkoxy of 1-6 carbon atoms, or phenyl mono-, di-, or tri-substituted with R⁸;
- Z is -NO₂, -NH₂, -NHR¹³, or -NHCO-Het;
- R¹³ is acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, benzoyl in which the phenyl moiety is substituted with R⁸, or
- R^{13} is an α -amino acid in which the α carboxyl group forms an amide with the nitrogen of Z, wherein if said amino acid is glutamic acid or aspartic acid, the non- α carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;

Serial No.: 10/699,233 Filed: October 31, 2003

Page : 4 of 26

Het is pyridyl substituted with R⁸, thienyl substituted with R⁸, furyl substituted with R⁸, oxazolyl substituted with R⁸, pyrazinyl substituted with R⁸, pyrimidinyl substituted with R⁸, or thiazolyl substituted with R⁸;

 R^{14} is R^8 , -NH₂, -CO₂H, or -NH-acyl of 2-7 carbon atoms; <u>and</u> n = 0-3;

with the proviso that when Z is NHR¹³ and Y is O, at least one of R¹, R², R³, R⁴, and R⁵ is hydrogen, or at least one of R⁶ and R⁷ is OH, or a pharmaceutically acceptable salt thereof.

5. (Currently Amended) A method of treating or inhibiting restenosis in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of formula I having the structure

$$R^{10}$$
 R^{20}
 R^{30}
 R^{40}
 R^{50}
 R^{50}
 R^{50}

wherein

R¹, R², R³, R⁴, and R⁵ are each, independently, hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl in which the phenyl moiety is substituted with R⁸;

R⁶ and R⁷ are each, independently, -OH, -OR⁹, O-tert-butyldimethylsilyl, O-trialkylsilyl of 1-6 carbon atoms per alkyl moiety, O-triphenylsilyl,

Serial No.: 10/699,233 Filed: October 31, 2003

Page : 5 of 26

$$-\frac{1}{2}\cdot 0 \qquad \qquad \downarrow N \qquad \qquad \downarrow N$$

- R⁸, R¹⁰, R¹¹, and R¹² are each, independently, hydrogen, -CN, -NO₂, halogen, CF₃, alkyl of 1-6 carbon atoms, acetyl, benzoyl, or alkoxy of 1-6 carbon atoms;
- R⁹ is acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl in which the phenyl moiety is substituted with R⁸;

Y is $[[\Theta,]]$ S, NH, NMe, or CH₂;

W is halogen, -CN, CF₃, alkyl of 1-6 carbon atoms, haloalkyl of 1-6 carbon atoms, nitroalkyl of 1-6 carbon atoms, cyanoalkyl of 1-6 carbon atoms, alkoxyalkyl of 2-12 carbon atoms, alkoxy of 1-6 carbon atoms, or phenyl mono-, di-, or tri-substituted with R⁸;

Z is -NO₂, -NH₂, -NHR¹³, or -NHCO-Het;

- R¹³ is acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, benzoyl in which the phenyl moiety is substituted with R⁸, or
- R^{13} is an α -amino acid in which the α carboxyl group forms an amide with the nitrogen of Z, wherein if said amino acid is glutamic acid or aspartic acid, the non- α carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;

Serial No.: 10/699,233 Filed: October 31, 2003

Page : 6 of 26

Het is pyridyl substituted with R⁸, thienyl substituted with R⁸, furyl substituted with R⁸, oxazolyl substituted with R⁸, pyrazinyl substituted with R⁸, pyrimidinyl substituted with R⁸, or thiazolyl substituted with R⁸;

 R^{14} is R^8 , -NH₂, -CO₂H, or -NH-acyl of 2-7 carbon atoms; <u>and</u> n = 0-3;

with the proviso that when Z is NHR¹³ and Y is O, at least one of R¹, R², R³, R⁴, and R⁵ is hydrogen, or at least one of R⁶ and R⁷ is OH, or a pharmaceutically acceptable salt thereof.

- 6. (Original) The method according to claim 5, wherein the restenosis results from a vascular angioplasty procedure, vascular reconstructive surgery, or organ or tissue transplantation.
- 7. (Cancelled)
- 8. (Cancelled).
- 9. (New) A method of preventing hyperproliferative vascular disorders following vascular angioplasty procedure, vascular reconstructive surgery, or organ or tissue transplantation in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of formula I having the structure

$$R^{1}O$$
 $R^{2}O$
 $R^{3}O$
 $R^{4}O$
 $R^{5}O$
 $R^{5}O$
 $R^{5}O$
 $R^{5}O$

wherein

Serial No.: 10/699,233 Filed: October 31, 2003

Page : 7 of 26

R¹, R², R³, R⁴, and R⁵ are each, independently, hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl in which the phenyl moiety is substituted with R⁸;

R⁶ and R⁷ are each, independently, -OH, -OR⁹, O-tert-butyldimethylsilyl, O-trialkylsilyl of 1-6 carbon atoms per alkyl moiety, O-triphenylsilyl,

- R⁸, R¹⁰, R¹¹, and R¹² are each, independently, hydrogen, -CN, -NO₂, halogen, CF₃, alkyl of 1-6 carbon atoms, acetyl, benzoyl, or alkoxy of 1-6 carbon atoms;
- R⁹ is acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl in which the phenyl moiety is substituted with R⁸;

Y is S, NH, NMe, or CH₂;

W is halogen, -CN, CF₃, alkyl of 1-6 carbon atoms, haloalkyl of 1-6 carbon atoms, nitroalkyl of 1-6 carbon atoms, cyanoalkyl of 1-6 carbon atoms, alkoxyalkyl of 2-12 carbon atoms, alkoxy of 1-6 carbon atoms, or phenyl mono-, di-, or tri-substituted with R⁸;

Z is $-NO_2$, $-NH_2$, $-NHR^{13}$, or -NHCO-Het;

Attorney's Docket No.: 16156-040001 / AHP98272

Applicant: Scott C. Mayer et al.

Serial No.: 10/699,233 Filed: October 31, 2003

Page : 8 of 26

R¹³ is acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, benzoyl in which the phenyl moiety is substituted with R⁸, or

- R^{13} is an α -amino acid in which the α carboxyl group forms an amide with the nitrogen of Z, wherein if said amino acid is glutamic acid or aspartic acid, the non- α carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;
- Het is pyridyl substituted with R⁸, thienyl substituted with R⁸, furyl substituted with R⁸, oxazolyl substituted with R⁸, pyrazinyl substituted with R⁸, pyrimidinyl substituted with R⁸, or thiazolyl substituted with R⁸;

 R^{14} is R^8 , -NH₂, -CO₂H, or -NH-acyl of 2-7 carbon atoms; and n = 0-3; or a pharmaceutically acceptable salt thereof.

10. (New) A method of preventing restenosis following vascular angioplasty procedure, vascular reconstructive surgery, or organ or tissue transplantation in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of formula I having the structure

$$R^{10}$$
 R^{20}
 R^{30}
 R^{40}
 R^{50}
 R^{50}
 R^{50}

wherein

R¹, R², R³, R⁴, and R⁵ are each, independently, hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl in which the phenyl moiety is substituted with R⁸;

Attorney's Docket No.: 16156-040001 / AHP98272

Applicant: Scott C. Mayer et al.

Serial No.: 10/699,233 Filed: October 31, 2003

Page : 9 of 26

R⁶ and R⁷ are each, independently, -OH, -OR⁹, O-tert-butyldimethylsilyl, O-trialkylsilyl of 1-6 carbon atoms per alkyl moiety, O-triphenylsilyl,

- R⁸, R¹⁰, R¹¹, and R¹² are each, independently, hydrogen, -CN, -NO₂, halogen, CF₃, alkyl of 1-6 carbon atoms, acetyl, benzoyl, or alkoxy of 1-6 carbon atoms;
- R⁹ is acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl in which the phenyl moiety is substituted with R⁸;

Y is S, NH, NMe, or CH₂;

W is halogen, -CN, CF₃, alkyl of 1-6 carbon atoms, haloalkyl of 1-6 carbon atoms, nitroalkyl of 1-6 carbon atoms, cyanoalkyl of 1-6 carbon atoms, alkoxyalkyl of 2-12 carbon atoms, alkoxy of 1-6 carbon atoms, or phenyl mono-, di-, or tri-substituted with R⁸;

Z is -NO $_2$, -NH $_2$, -NHR 13 , or -NHCO-Het;

R¹³ is acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, benzoyl in which the phenyl moiety is substituted with R⁸, or

Serial No.: 10/699,233 Filed: October 31, 2003

Page : 10 of 26

 R^{13} is an α -amino acid in which the α carboxyl group forms an amide with the nitrogen of Z, wherein if said amino acid is glutamic acid or aspartic acid, the non- α carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;

Het is pyridyl substituted with R⁸, thienyl substituted with R⁸, furyl substituted with R⁸, oxazolyl substituted with R⁸, pyrazinyl substituted with R⁸, pyrimidinyl substituted with R⁸, or thiazolyl substituted with R⁸;

 R^{14} is R^8 , -NH₂, -CO₂H, or -NH-acyl of 2-7 carbon atoms; and n = 0-3; or a pharmaceutically acceptable salt thereof.

11. (New) A method of treating hyperproliferative vascular disorders in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound selected from the group consisting of:

N-{5-[(Hepta-O-acetyl- β -D-maltosyloxy)-methyl]-2-chloro-phenyl}-L-aspartamide- γ -tert- butyl ester or a pharmaceutically acceptable salt thereof;

N-{2-Chloro-5-[(2,2',3,3',4',6,6')-hepta-O-acetyl- β -D-maltosyl-oxymethyl]-phenyl}- (9H-fluoren-9-ylmethoxycarbonyl)-L-alaninamide or a pharmaceutically acceptable salt thereof;

4-Benzoyl-*N*-{2-chloro-5-[(2,2',3,3',4',6,6'-hepta-*O*-acetyl-β-D-maltosyl)-oxy-methyl]phenyl}-benzamide or a pharmaceutically acceptable salt thereof;

N-[2-Chloro-5-(β -D-maltosyl-oxymethyl)-phenyl]-acetamide or a pharmaceutically acceptable salt thereof;

N-{5-[6,6'-Di-O-(tert-butyl-dimethyl-silyl)-β-D-maltosyloxy-methyl]-2-methyl-phenyl}-acetamide or a pharmaceutically acceptable salt thereof;

Serial No.: 10/699,233

Filed: October 31, 2003

Page : 11 of 26

N-{2-Chloro-5-[6,6'-di-O-(tert-butyl-dimethyl-silyl)-β-D-maltosyloxy-methyl]-phenyl}- acetamide or a pharmaceutically acceptable salt thereof;

N-{2-Chloro-5-[([6,6'-di-O-benzoyl-β-D-maltosyl]oxy)methyl]phenyl}-acetamide or a pharmaceutically acceptable salt thereof;

N-{2-Chloro-5-[([6,6'-di-O-benzoyl-2,2',3,3',4'-penta-acetyl-β-D-maltosyl]oxy)-methyl]phenyl}-acetamide or a pharmaceutically acceptable salt thereof;

(4-Chloro-3-nitrophenyl)methyl-4-O-[6-O-(3-pyridinylcarbonyl)-α-D-glucopyranosyl]-β-D-glucopyranoside-6-(3-pyridinecarboxylate) or a pharmaceutically acceptable salt thereof;

(4-Chloro-3-nitrophenyl)methyl-4-O-[6-O-(3-pyridinylcarbonyl)-α-D-glucopyranosyl]-β-D-glucopyranoside or a pharmaceutically acceptable salt thereof;

N-[2-Chloro-5-[[(4-O- α -D-glucopyranosyl- β -D-glucopyranosyl)oxy]methyl] phenyl]-3-pyridinecarboxamide or a pharmaceutically acceptable salt thereof;

Benzoic acid 6-{4-chloro-3-[(pyridine-3-carbonyl)-amino]-benzyloxy}-4,5-dihydoxy-3- (3,4,5-trihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxy)-tetrahydro-pyran-2- ylmethyl ester or a pharmaceutically acceptable salt thereof;

5- $\{[6,6]$ -Bis-O- $\{(4-\text{toluenesulfonyl})$ - β -maltosyl $\}$ -oxy-methyl $\}$ -2-methyl-1-nitrobenzene or a pharmaceutically acceptable salt thereof;

 $5-\{[2,2',3,3',4'-Penta-O-acetyl-6,6'-bis-O-(4-toluenesulfonyl)-\beta-maltosyl]-oxy-methyl\}-2-methyl-1-nitrobenzene or a pharmaceutically acceptable salt thereof;$

Serial No.: 10/699,233 Filed: October 31, 2003

Page : 12 of 26

5-{[6,6'-Dideoxy-6,6'-bis(4-nitro-imidazol-1-yl)- β-maltosyl]-oxy-methyl}-2-methyl-1-nitrobenzene or a pharmaceutically acceptable salt thereof; and

- 5-{[2,2',3,3',4'-Penta-*O*-acetyl-6,6'-dideoxy-6,6'-bis(4-nitro-imidazol-1-yl)- β-maltosyl]- oxymethyl}-2-methyl-1-nitrobenzene or a pharmaceutically acceptable salt thereof.
- 12. (New) A method of treating restenosis in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound selected from the group consisting of:

N-{5-[(Hepta-O-acetyl-β-D-maltosyloxy)-methyl]-2-chloro-phenyl}-L-aspartamide-γ-tert- butyl ester or a pharmaceutically acceptable salt thereof;

N-{2-Chloro-5-[(2,2',3,3',4',6,6')-hepta-O-acetyl- β -D-maltosyl-oxymethyl]-phenyl}- (9H-fluoren-9-ylmethoxycarbonyl)-L-alaninamide or a pharmaceutically acceptable salt thereof;

4-Benzoyl-*N*-{2-chloro-5-[(2,2',3,3',4',6,6'-hepta-*O*-acetyl-β-D-maltosyl)-oxy-methyl]-phenyl}-benzamide or a pharmaceutically acceptable salt thereof;

N-[2-Chloro-5-(β -D-maltosyl-oxymethyl)-phenyl]-acetamide or a pharmaceutically acceptable salt thereof;

N-{5-[6,6'-Di-*O*-(*tert*-butyl-dimethyl-silyl)-β-D-maltosyloxy-methyl]-2-methyl-phenyl}-acetamide or a pharmaceutically acceptable salt thereof;

N-{2-Chloro-5-[6,6'-di-O-(tert-butyl-dimethyl-silyl)-β-D-maltosyloxy-methyl]-phenyl}-acetamide or a pharmaceutically acceptable salt thereof;

Attorney's Docket No.: 16156-040001 / AHP98272

Applicant: Scott C. Mayer et al. Serial No.: 10/699,233

Filed : October 31, 2003

Page : 13 of 26

N-{2-Chloro-5-[([6,6'-di-O-benzoyl- β -D-maltosyl]oxy)methyl]phenyl}-acetamide or a pharmaceutically acceptable salt thereof;

N-{2-Chloro-5-[([6,6'-di-*O*-benzoyl-2,2',3,3',4'-penta-acetyl-β-D-maltosyl]oxy)-methyl]phenyl}-acetamide or a pharmaceutically acceptable salt thereof;

(4-Chloro-3-nitrophenyl)methyl-4-O-[6-O-(3-pyridinylcarbonyl)-α-D-glucopyranosyl]-β-D-glucopyranoside-6-(3-pyridinecarboxylate) or a pharmaceutically acceptable salt thereof;

(4-Chloro-3-nitrophenyl)methyl-4-O-[6-O-(3-pyridinylcarbonyl)- α -D-glucopyranosyl]- β -D-glucopyranoside or a pharmaceutically acceptable salt thereof;

N-[2-Chloro-5-[[(4-O-α-D-glucopyranosyl- β -D-glucopyranosyl)oxy]methyl] phenyl]-3-pyridinecarboxamide or a pharmaceutically acceptable salt thereof;

Benzoic acid 6-{4-chloro-3-[(pyridine-3-carbonyl)-amino]-benzyloxy}-4,5-dihydoxy-3- (3,4,5-trihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxy)-tetrahydro-pyran-2- ylmethyl ester or a pharmaceutically acceptable salt thereof;

5- $\{[6,6]$ '-Bis-O- $\{(4-\text{toluenesulfonyl})$ - β -maltosyl $\}$ - $\{(4-\text{toluenesulfonyl})$ - $\{(4-\text{toluenesulfonyl})$ - $\{(4-\text{toluenesulfonyl})\}$ - $\{(4-\text{toluene$

 $5-\{[2,2',3,3',4'-Penta-O-acetyl-6,6'-bis-O-(4-toluenesulfonyl)-\beta-maltosyl]-oxy-methyl\}-2-methyl-1-nitrobenzene or a pharmaceutically acceptable salt thereof;$

 $5-\{[6,6'-Dideoxy-6,6'-bis(4-nitro-imidazol-1-yl)-\beta-maltosyl]-oxy-methyl\}-2-methyl-1-nitrobenzene or a pharmaceutically acceptable salt thereof; and$

Serial No.: 10/699,233 Filed: October 31, 2003

Page : 14 of 26

5-{[2,2',3,3',4'-Penta-*O*-acetyl-6,6'-dideoxy-6,6'-bis(4-nitro-imidazol-1-yl)- β-maltosyl]- oxymethyl}-2-methyl-1-nitrobenzene or a pharmaceutically acceptable salt thereof.

- 13. (New) The method according to claim 12, wherein the restenosis results from a vascular angioplasty procedure, vascular reconstructive surgery, or organ or tissue transplantation.
- 14. (New) A method of preventing hyperproliferative vascular disorders following vascular angioplasty procedure, vascular reconstructive surgery, or organ or tissue transplantation in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound selected from the group consisting of:

N-{5-[(Hepta-O-acetyl- β -D-maltosyloxy)-methyl]-2-chloro-phenyl}-L-aspartamide- γ -tert- butyl ester or a pharmaceutically acceptable salt thereof;

N-{2-Chloro-5-[(2,2',3,3',4',6,6')-hepta-O-acetyl-β-D-maltosyl-oxymethyl]-phenyl}- (9H-fluoren-9-ylmethoxycarbonyl)-L-alaninamide or a pharmaceutically acceptable salt thereof;

4-Benzoyl-*N*-{2-chloro-5-[(2,2',3,3',4',6,6'-hepta-*O*-acetyl-β-D-maltosyl)-oxy-methyl]-phenyl}-benzamide or a pharmaceutically acceptable salt thereof;

N-[2-Chloro-5-(β -D-maltosyl-oxymethyl)-phenyl]-acetamide or a pharmaceutically acceptable salt thereof;

N-{5-[6,6'-Di-O-(tert-butyl-dimethyl-silyl)-β-D-maltosyloxy-methyl]-2-methyl-phenyl}-acetamide or a pharmaceutically acceptable salt thereof;

N-{2-Chloro-5-[6,6'-di-O-(tert-butyl-dimethyl-silyl)- β -D-maltosyloxy-methyl]-phenyl}-acetamide or a pharmaceutically acceptable salt thereof;

Serial No.: 10/699,233 Filed: October 31, 2003

Page : 15 of 26

N-{2-Chloro-5-[([6,6'-di-O-benzoyl-β-D-maltosyl]oxy)methyl]phenyl}-acetamide or a pharmaceutically acceptable salt thereof;

N-{2-Chloro-5-[([6,6'-di-*O*-benzoyl-2,2',3,3',4'-penta-acetyl-β-D-maltosyl]oxy)-methyl]phenyl}-acetamide or a pharmaceutically acceptable salt thereof;

(4-Chloro-3-nitrophenyl)methyl-4-O-[6-O-(3-pyridinylcarbonyl)-α-D-glucopyranosyl]-β-D-glucopyranoside-6-(3-pyridinecarboxylate) or a pharmaceutically acceptable salt thereof;

(4-Chloro-3-nitrophenyl)methyl-4-O-[6-O-(3-pyridinylcarbonyl)-α-D-glucopyranosyl]-β-D-glucopyranoside or a pharmaceutically acceptable salt thereof;

N-[2-Chloro-5-[[(4-O- α -D-glucopyranosyl- β -D-glucopyranosyl)oxy]methyl] phenyl]-3-pyridinecarboxamide or a pharmaceutically acceptable salt thereof;

Benzoic acid 6-{4-chloro-3-[(pyridine-3-carbonyl)-amino]-benzyloxy}-4,5-dihydoxy-3- (3,4,5-trihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxy)-tetrahydro-pyran-2- ylmethyl ester or a pharmaceutically acceptable salt thereof;

5-{[6,6'-Bis-O-(4-toluenesulfonyl)- β-maltosyl]-oxy-methyl}-2-methyl-1-nitrobenzene or a pharmaceutically acceptable salt thereof;

5-{[2,2',3,3',4'-Penta-*O*-acetyl-6,6'-bis-*O*-(4-toluenesulfonyl)- β-maltosyl]-oxy-methyl}- 2-methyl-1-nitrobenzene or a pharmaceutically acceptable salt thereof;

5-{[6,6'-Dideoxy-6,6'-bis(4-nitro-imidazol-1-yl)- β-maltosyl]-oxy-methyl}-2-methyl-1-nitrobenzene or a pharmaceutically acceptable salt thereof; and

Serial No.: 10/699,233 Filed: October 31, 2003

Page : 16 of 26

5-{[2,2',3,3',4'-Penta-*O*-acetyl-6,6'-dideoxy-6,6'-bis(4-nitro-imidazol-1-yl)- β-maltosyl]- oxymethyl}-2-methyl-1-nitrobenzene or a pharmaceutically acceptable salt thereof.

15. (New) A method of preventing restenosis following vascular angioplasty procedure, vascular reconstructive surgery, or organ or tissue transplantation in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound selected from the group consisting of:

N-{5-[(Hepta-O-acetyl- β -D-maltosyloxy)-methyl]-2-chloro-phenyl}-L-aspartamide- γ -tert- butyl ester or a pharmaceutically acceptable salt thereof;

N-{2-Chloro-5-[(2,2',3,3',4',6,6')-hepta-O-acetyl- β -D-maltosyl-oxymethyl]-phenyl}- (9H-fluoren-9-ylmethoxycarbonyl)-L-alaninamide or a pharmaceutically acceptable salt thereof;

4-Benzoyl-*N*-{2-chloro-5-[(2,2',3,3',4',6,6'-hepta-*O*-acetyl-β-D-maltosyl)-oxy-methyl]-phenyl}-benzamide or a pharmaceutically acceptable salt thereof;

N-[2-Chloro-5-(β -D-maltosyl-oxymethyl)-phenyl]-acetamide or a pharmaceutically acceptable salt thereof;

N-{5-[6,6'-Di-*O*-(*tert*-butyl-dimethyl-silyl)-β-D-maltosyloxy-methyl]-2-methyl-phenyl}-acetamide or a pharmaceutically acceptable salt thereof;

N-{2-Chloro-5-[6,6'-di-O-(tert-butyl-dimethyl-silyl)-β-D-maltosyloxy-methyl]-phenyl}-acetamide or a pharmaceutically acceptable salt thereof;

Serial No.: 10/699,233 Filed: October 31, 2003

Page : 17 of 26

N-{2-Chloro-5-[([6,6'-di-O-benzoyl-β-D-maltosyl]oxy)methyl]phenyl}-acetamide or a pharmaceutically acceptable salt thereof;

N-{2-Chloro-5-[([6,6'-di-O-benzoyl-2,2',3,3',4'-penta-acetyl- β -D-maltosyl]oxy)-methyl]phenyl}-acetamide or a pharmaceutically acceptable salt thereof;

(4-Chloro-3-nitrophenyl)methyl-4-O-[6-O-(3-pyridinylcarbonyl)- α -D-glucopyranosyl]- β -D-glucopyranoside-6-(3-pyridinecarboxylate) or a pharmaceutically acceptable salt thereof;

(4-Chloro-3-nitrophenyl)methyl-4-O-[6-O-(3-pyridinylcarbonyl)- α -D-glucopyranosyl]- β -D-glucopyranoside or a pharmaceutically acceptable salt thereof;

N-[2-Chloro-5-[[(4-O-α-D-glucopyranosyl-β-D-glucopyranosyl)oxy]methyl] phenyl]-3-pyridinecarboxamide or a pharmaceutically acceptable salt thereof;

Benzoic acid 6-{4-chloro-3-[(pyridine-3-carbonyl)-amino]-benzyloxy}-4,5-dihydoxy-3- (3,4,5-trihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxy)-tetrahydro-pyran-2- ylmethyl ester or a pharmaceutically acceptable salt thereof;

5- $\{[6,6]$ -Bis-O- $\{(4-\text{toluenesulfonyl})$ - β -maltosyl $\}$ - $\{(4-\text{toluenesulfonyl})$ - $\{(4-\text{toluenesulfonyl})$ - $\{(4-\text{toluenesulfonyl})\}$ - $\{(4-\text{toluenes$

5-{[2,2',3,3',4'-Penta-O-acetyl-6,6'-bis-O-(4-toluenesulfonyl)- β-maltosyl]-oxy-methyl}- 2-methyl-1-nitrobenzene or a pharmaceutically acceptable salt thereof;

5-{[6,6'-Dideoxy-6,6'-bis(4-nitro-imidazol-1-yl)- β-maltosyl]-oxy-methyl}-2-methyl-1-nitrobenzene or a pharmaceutically acceptable salt thereof; and

Applicant: Scott C. Mayer et al. Serial No.: 10/699,233 Attorney's Docket No.: 16156-040001 / AHP98272

Filed : October 31, 2003 Page : 18 of 26

 $5-\{[2,2',3,3',4'-Penta-\textit{O}-acetyl-6,6'-dideoxy-6,6'-bis(4-nitro-imidazol-1-yl)-\beta-maltosyl]-oxy-bis(4-nitro-imidazol-1-yl)-\beta-maltosyl]-oxy-bis(4-nitro-imidazol-1-yl)-\beta-maltosyl]-oxy-bis(4-nitro-imidazol-1-yl)-\beta-maltosyl]-oxy-bis(4-nitro-imidazol-1-yl)-\beta-maltosyl]-oxy-bis(4-nitro-imidazol-1-yl)-\beta-maltosyl]-oxy-bis(4-nitro-imidazol-1-yl)-bis(4$ methyl}-2-methyl-1-nitrobenzene or a pharmaceutically acceptable salt thereof.