Números complexos e senóides

Fabio Irigon Pereira

Números complexos

Número bidimensional (representa um vetor)

- Pode ser descrito na forma cartesiana: parte real mais parte imaginária (x + yi).
- Pode ser descrito na forma porlar: amplitude e ângulo $(r < \varphi)$

Números complexos

$$z = r(\cos \varphi + i \sin \varphi)$$

$$r = |z| = \sqrt{x^2 + y^2}.$$

$$\varphi = \arg(x + iy) = \operatorname{atan2}(y, x)$$

Números complexos

Forma cartesiana é mais apropriada para adição e subtração enquanto a forma polar é melhor para multiplicação e divisão.

Senóides

$$y(t) = Aseno(2\pi ft + \varphi) = Aseno(\omega t + \varphi)$$

Senóides

$$y(t) = Aseno(2\pi ft + \varphi) = Aseno(\omega t + \varphi)$$

A: Amplitude f ou ω : frequência φ : fase

f [Hertz] e ω [rad/s]

Identidade de Euller

Senóides discretas

Senóides discretas

Senóides discretas

Exercício

Use a relação ao lado para calcular o período das ondas:

- a) $cos(3\pi/7)$
- b) $sen(5\pi/12)$
- c) $\cos(24/5)$

$$N = \frac{2\pi k}{\omega}$$

Exercício

Use a relação ao lado para calcular o período das ondas:

- a) $cos(3\pi/7)$
- b) $sen(8\pi/15)$
- c) $\cos(24/(5\pi))$

$$N = \frac{2\pi k}{\omega}$$

- a) N = 14
- b) N = 15
- c) Sinal não periódico.