Lista 1

Victor Sena Molero - 8941317

February 23, 2016

Ex 1.a. $3^n \neq O(2^n)$

Proof. Suponha que 3^n é $O(2^n)$, logo,

$$\exists c, n_0 : 3^n \le c2^n \quad \forall n \in \mathbb{N}, n \ge n_0$$

mas, já que $\lim_{n\to\infty}(3/2)^n$ para todo n natural, temos que

$$\exists m \in \mathbb{N}, m \ge n_0 : (3/2)^m > c$$

logo,

$$\exists m \in \mathbb{N}, m \ge n_0 : 3^m > c2^m$$

um absurdo, ou seja, 3^n não é $O(2^n)$

Ex 1.b. $\log_{10} n = O(\lg n)$

Proof.

$$\log_{10} n / \log_{10} 2 = \lg n$$

$$\log_{10} n = \log_{10} 2 * \lg n$$

logo, com $c = \log_{10} 2$ e $n_0 = 1$ temos

$$\log_{10} n \le c \lg n \forall n \ge n_0$$

Ex 1.c. $\lg n = O(\log_{10} n)$

Proof.

$$\lg n / \lg 10 = \log_{10} n$$

$$\lg n = \lg 10 * \log_{10} n$$

logo, com $c = \lg 10$ e $n_0 = 1$ temos

$$\lg n \le c \log_{10} n \forall n \ge n_0$$

Ex 4.a.

$$\sum_{i=1}^{n} i^k = \Theta(n^{k+1})$$

Proof. $f(n) = \Theta(g(n))$ se e somente se f(n) = O(g(n)) e $f(n) = \Omega(g(n))$ Vamos provar, primeiramente f(n) = O(g(n))

$$\sum_{i=1}^{n} i^{k} \le \sum_{i=1}^{n} n^{k} = n * n^{k} = n^{k+1}$$

agora, $f(n) = \Omega(g(n))$

$$\sum_{i=1}^{n} i^{k} \ge \sum_{i=\lceil n/2 \rceil}^{n} i^{k} \ge \sum_{i=\lceil n/2 \rceil}^{n} (n/2)^{k} \ge \lfloor n/2 \rfloor (n/2)^{k} \ge (n/2-1)(n/2)^{k}$$

para um $n \ge 4$, temos que $n/2 - 1 \ge n/4$, então

$$(n/2 - 1)(n/2)^k \ge (n/4)(n/2)^k = n^{k+1}/2^{k+2}$$

Ex 4.b.

$$\sum_{i=1}^{n} i/2^{i} \le 2$$

Proof.

$$\sum_{i=1}^{n} i/2^{i} = \sum_{k=1}^{n} \sum_{i=k}^{n} 1/2^{i}$$

Já que $\sum_{i=k}^{n} 1/2^{i}$ é uma soma de P.G. com razão 1/2 e início em $1/2^{k}$

$$\sum_{i=k}^{n} 1/2^{i} = 1/2^{k} (1 - 1/2^{n})/(1/2) = 1/2^{k-1} (1 - 1/2^{n}) = 1/2^{k-1} - 1/2^{n+k-1} \le 1/2^{k-1}$$

Logo,

$$\sum_{k=1}^{n} \sum_{i=k}^{n} 1/2^{i} \le \sum_{k=1}^{n} 1/2^{k-1} = \sum_{k=0}^{n-1} 1/2^{k} \le 1/2^{-1} = 2$$