MATH 2 Lecture Notes

Tejas Patel

Tuesday, 14 January, 2025

Contents

1		apter 1					
	1.1 1.2	Terminology					
2	First-Order Differential Equations						
	2.1	Preliminary Theory					
		2.1.1 Theorem					
		2.1.2 Key Questions:					
	2.2	Separable Variables (Separable Equations)					
		2.2.1 Definition:					
		2.2.2 Substitution					
	2.3	Homogeneous Equations					
		2.3.1 Definition					
		2.3.2 Example					
		2.3.3 Differential Equation form					
		2.3.4 Substitution					
		2.3.5 Example					
	2.4	Exact Equations					
	2.1	2.4.1 Definition					
		2.4.2 Solve the DE					
		2.4.3 Example:					
	2.5	Linear Equations					
	2.0	2.5.1 Procedure to follow for every Linear DE					
	2.6	What method to use to solve?					
3	Applications of First-Order Differential Equation						
J	3.1	Orthogonal Trajectories					
	0.1	3.1.1 Example					
		3.1.2 Definition					
	3.2	Applications of Linear Equations					
	$\frac{3.2}{3.3}$	Applications of Nonlinear Equations					
	5.5	Applications of Nolliniear Equations					
4	Line	ear DE of Higher Order 1					
	4.1	Preliminary Theory					
	4.2	Constructing a Second Solution from a Known Solution					
		4.2.1 General Reduction of Order Formula					
	4.3	Homogeneous Linear Equations w/ Constant Coefficients					
		4.3.1 Auxilliary Equation for a DE					
		4.3.2 Three Scenarios for the Auxilliary Equation					

	4.4	Undetermined Coefficients - Superposition Approach	11
		4.4.1 Trial Particular Solutions	11
	4.5	Variation of Parameters	11
		4.5.1 Idea:	11
		4.5.2 Derivation:	12
		4.5.3 Example	12
5	Apr	plications of 2nd-Order DE	13
	5.1	Simple Harmonic Motion	13
	-	5.1.1 Example	13
	5.2	Damped Motion	13
	5.3	Forced Motion	13
	5.4	Electric Circuits	13
	0.1		
c	9.2	l. Ducklesse sight Celetiesse	11
6	Exa	ample Problems with Solutions	14
6	E xa 6.1		14
6	Exa 6.1 6.2	$ydx = (2+3x)dy \dots \dots$	
6	Exa 6.1 6.2	$ydx = (2+3x)dy \dots \dots$	14
6	Exa 6.1 6.2	$ydx = (2+3x)dy \dots \dots$	14 14
6	Exa 6.1 6.2 6.3	$ydx = (2+3x)dy \dots $ $\frac{dy}{dx} = e^x e^{5y} \dots $ $y' = 2y - y^2 \dots $	14 14 15 15
6	Exa 6.1 6.2 6.3 6.4 6.5	$ydx = (2+3x)dy$ $\frac{dy}{dx} = e^x e^{5y}$ $y' = 2y - y^2$	14 14 15 15 15
6	Exa 6.1 6.2 6.3 6.4 6.5 6.6	$ydx = (2+3x)dy$ $\frac{dy}{dx} = e^x e^{5y}$ $y' = 2y - y^2$	14 14 15 15 15 15
6	Exa 6.1 6.2 6.3 6.4 6.5 6.6 6.7	$ydx = (2+3x)dy$ $\frac{dy}{dx} = e^x e^{5y}$ $y' = 2y - y^2$	14 14 15 15 15 15 16
6	Exa 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	$ydx = (2+3x)dy$ $\frac{dy}{dx} = e^x e^{5y}$ $y' = 2y - y^2$	14 14 15 15 15 15 16 16
6	Exa 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	$ydx = (2+3x)dy$ $\frac{dy}{dx} = e^x e^{5y}$ $y' = 2y - y^2$ Find the auxilliary equation for the DE	14 14 15 15 15 16 16 16
6	Exa 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10	$ydx = (2+3x)dy$ $\frac{dy}{dx} = e^x e^{5y}$ $y' = 2y - y^2$	14 14 15 15 15 15 16 16

Chapter 1 1

1.1 **Terminology**

Definition A differential equation is an equation containing the derivatives or differentials of one or more dependent variables, with respect to one or more independent variables.

- · An Ordinary Differential Equation (ODE) involves only ordinary derivatives
- · A Partial Differential Equation (PDE) involves partial derivatives.

Definition The order of a DE is the order of the highest-order derivative that appears in the DE

Notation $F(x, y, \frac{dy}{dx}, \frac{d^2y}{dx^2})$ Definition A linear DE is any DE that can be written in form:

 $a_0(x)y + a_1(x)y' + a_2(x)y'' \cdots + a_n(x)y^{(n)} = b(x)$

For a DE to be linear:

- 1. Y and all of its derivatives much be of the 1st degree
- 2. Any term that does not include y or any of its derivatives must be a function of x

1.2Some Mathematical Models

I. Free-falling body

Goal: Find s(t).

3

Set up a differential equation in S, model it, then solve

$$ma = mg$$

$$\frac{d^2s}{dt^2} = g$$

$$v = \frac{ds}{dt}, g = \frac{dv}{dt}$$

 $v=\frac{ds}{dt}, g=\frac{dv}{dt}$ What if there is air resistance. Assume force scales linear with velocity

$$\frac{dv}{dt} = g - \frac{kv}{m} \rightarrow \frac{dv}{dt} = g - \frac{k}{m} \cdot \frac{ds}{dt}$$

II: Series Circuit

Voltage drops:

$$V = L\frac{dI}{dt}, V = L\frac{d^2q}{dt^2}$$

$$V = IR, V = R\frac{dq}{dt}$$

$$V = \frac{q}{C}$$

$$E(t) = L\frac{d^2q}{dt} + R\frac{dq}{dt} + R\frac{dq}$$

$$E(t) = L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C}$$

III: Population Growth

P = P(t) = population at time t - use exponential model $\frac{dp}{dt} \propto P \rightarrow \frac{dp}{dt} = kP \rightarrow = Ce^{kt}$ where C is the initial population

IV: Population Growth with Finite Capacity

"Carrying Capacity" = N — uses the logistic growth model

 $\frac{dp}{dt} \propto \text{both P and amount to carrying capacity (N-P)}$ $\frac{dp}{dt} = kP(N-P)$

V: Chemical Reaction

 $A + B \rightarrow C$ Concentrations of A and B decreases by amount of C formed

Can we write DE governing the concentration of C x(t)?

The rate at which the reaaction takes place \propto Product of the remaining concentrations of A and B α initial concentration of A

 β initial concentration of B

$$\frac{dx}{dt} = k(\alpha - x)(\beta - x)$$

First-Order Differential Equations $\mathbf{2}$

Preliminary Theory

Example DE: $y' = 3y \Rightarrow y = Ce^{3x}$ the general solution where C is an arbitrary constant

Add initial condition y(0) = 5 plug in x=0 to $5 = Ce^{3*0}, 5 = C*1, C = 5 \Leftarrow$ Initial Value Problem $y = 5e^{3x}$ is the general solution for the Initial Value Problem

2.1.1 Theorem

$$f(x) = \begin{cases} \frac{dy}{dx} = f(x, y) & \text{Differential Equation} \\ y(x_0) = y_0 & \text{Initial Condition} \end{cases}$$

Let R be a rectangular region in the xy-plane defined by $a \le x \le b, c \le y \le d$, that contains the point (x_0, y_0) in its interior.

If f(x,y) and $\frac{\partial f}{\partial u}$ are continuous on R, then there exists an interval I centered at x_o , and on this interval I there exists a unique solution y(x) for this IVP

Key Questions: 2.1.2

Does every IVP have at least one solution?

If an IVP has a solution is it the only solution?

Meaning of a solution existing "on an Interval" The initial value problem

$$\begin{cases} \frac{dy}{dx} = 1 + y^2 \\ y(0) = 0 \end{cases}$$
 has a unique solution. In fact, we can easily verify that $y = \tan x$ satisfies this IVP

However note that there are some inervals on which $y = \tan x$ cannot be a solution for this IVP, such as (-2,2), where the function is discontinuous at $\pm \frac{\pi}{2}$ but can be used for (-1,1) since it is continuous at all points within the interval

2.2Separable Variables (Separable Equations)

2.2.1Definition:

A differential equation that can be written in the form $\frac{dy}{dx} = \frac{g(x)}{h(y)}$ is said to be separable (or have separable variables).

Example:
$$\frac{dy}{dx} = \frac{g(x)}{h(y)}$$

$$h(y)dy = g(x)dx$$

$$\int h(y)dy = \int g(x)dx$$
Example: $dx + e^{3x}dy = 0$

Example:
$$dx + e^{3x}dy = 0$$

$$e^{3x}dy = -dx$$

$$dy = -\frac{dx}{e^{3x}} \rightarrow dy = -e^{-3x}dx \rightarrow \int dy = \int -e^{-3x}dx \rightarrow y = \frac{1}{3}e^{-3x} + C \text{ where C is an arbitrary constant}$$

2.2.2Substitution

$$\frac{dy}{dx} = F(ax+bc+c) \text{ where } b \neq 0 \text{ use the substitution: } u = ax+by+c \Rightarrow \frac{du}{dx} = a+b\frac{dy}{dx} = \frac{1}{b} \left[\frac{du}{dx} - a \right]$$
 Example:
$$\frac{dy}{dx} = \tan^2(x+y) \text{ let } u = x+y \Rightarrow \frac{dy}{dx} = \frac{du}{dx} - 1 \Rightarrow \frac{du}{dx} - 1 = \tan^2 u \Rightarrow \frac{du}{dx} = \sec^2 u$$

$$\int \cos^2 u \ du = \int dx$$

$$2(x+y) + \sin 2(x+y) = 4x + C \Rightarrow 2y - 2x + \sin 2(x+y)$$
 Solve:
$$\frac{dy}{dx} = (y+3)^2 \text{ By inspection } y = -3 \text{ is a solution. This is the only solution because } f(x,y) = \frac{du}{dx} = \frac{1}{b} \left[\frac{du}{dx} - a \right]$$

 $(x+3)^2$ is continuous on \mathbb{R}^2 and $\frac{\partial f}{\partial x}$ is continuous on \mathbb{R} so it is the only solution Why solving by separation is not possible $\int (y+3)^{-}2dy = \int dx \to (y+3)^{-}2/-1 = x + C_1 \to \frac{1}{y+3} = -x - C_1 \to \frac{1}{y+3}$ $y+3=\frac{1}{c-x}\to y=-3+\frac{1}{c-x}$

 $y(0) = -3 \rightarrow 0 = \frac{1}{c}$ where there is no real c that solves that equation, making this not possible

Homogeneous Equations

What do we do if the DE is not separable?

2.3.1Definition

A function f(x,y) is said to be **homogeneous of degree** n if, for x, y, and twhere f(x,y) and f(tx,ty)are defined:

$$f(tx, ty) = t^n f(x, y)$$

2.3.2Example

Determine wheteher each function is homogeneous: a:
$$f(x,y) = x^3 - 7x^2y + 4y^3 \rightarrow f(tx,ty) = (tx^3) - 7(tx)^2(ty) + 4(ty)^3$$
 $t^3x^3 - 7t^3x^2y + 4t^3y^3$
 $t^3(x^3 - 7x^2y - 4y^3) = t^3f(x,y)$

How to tell quickly whether f(x,y) is homogeneous:

Each term must have the same combined degree

Example:
$$x^3 - 7x^2y + 4y^3$$
 is D3, $x^2 + y^2 - 4x$ is not, $\sqrt{x^5 + 4y^5}$ is with D 2.5, $\frac{3y}{x} - 2$ is D0

Differential Equation form

M(x,y)dx + N(x,y)dy = 0 is called a homogeneous differential equation if the functions M and N are both homogeneous of the same degree

If f(x,y) is homogeneous of degree n then f(x,y) can be written as:

$$f(x,y) = f\left(x \times 1, x \times \frac{y}{x}\right) = x^n f\left(1, \frac{y}{x}\right)$$

or $f(x,y) = y^n f\left(\frac{x}{y}, 1\right)$

2.3.4 Substitution

To solve a homogeneous DE make the substitution: y = ux $(u = \frac{y}{r})$ or x = vy $(v = \frac{x}{u})$

2.3.5 Example

$$\begin{split} &(y^2 + xy)dx + x^2dy = 0 \to y = ux \to dy = (udx + xdu) \\ &(u^2x^2 + ux^2)dx + x^2(udx + xdu) = 0 \\ &u^2x^2dx + ux^2dx + ux^2dx + x^3du = 0 \\ &ux^2(u+2)dx + x^3du = 0 \\ &\int \frac{1}{u(u+2)}du = -\int \frac{1}{x}dx \\ &\text{Partial Fraction Decomposition: } \frac{1}{u(u+2)} = \frac{A}{u} + \frac{B}{u+2} \to A = \frac{1}{2}, B = -\frac{1}{2} \text{ Back to solving } \\ &\int \left[\frac{0.5}{u} - \frac{0.5}{u+2}\right] = -\int \frac{1}{x}dx \\ &0.5 \ln|u| - 1/2 \ln|u+2| = -\ln|x| + C_1 \\ &\ln\left|\frac{u}{u+2}\right| = 2C_1 - 2 \ln|x| \\ &\left|\frac{u}{u+2}\right| = e^{2C_1} \cdot e^{-2 \ln|x|} = e^{2C_1} \cdot |x^{-2}| \Rightarrow \left|\frac{u}{u+2}\right| = |e^{2C_1} \cdot x^{-2}| \Rightarrow \left|\frac{u}{u+2} = \frac{C}{x^2}\right| \\ &ux^2 = X(u+2) \Rightarrow ux^2 = Cu + 2c \to ux^2 - Cu = 2C \\ &u(x^2-c) = 2C \Rightarrow u = \frac{2C}{x^2-C} \Rightarrow \frac{y}{x} = \frac{2Cx}{x^2-C}, \ x \neq 0 \end{split}$$

2.4 Exact Equations

Recall from Math 1C: Let $F(x,y) = \langle 3x^2 - 7y, -7x + 2y \rangle$

- 1. If F a conservative vector field i.e., Is there a function f(x, y) such that ∇f ? Yes, -7=-7
- 2. If F is indeed conservative, what is f? $x^{3} 7xy + g(y) = f(x, y) 7x + 2y, g'(y) = 2y$ $f(x, y) = x^{3} 7xy + y^{2} + k$

2.4.1 Definition

A differential equation in the form M(x,y)dx + N(x,y)dy = 0 where $M_y = N_x$, is called an exact differential equation.

2.4.2 Solve the DE

$$(3x^2-7y)dx+(-7x+2y)dy=0$$

Using 1C techniques it is $f(x,y)=x^3-2xy+y^2+k$
Set this $f=c$. $f(x,y)=x^3-2xy+y^2=c$ take k=0 in every problem
If the DE is not exact, sometimes we can make it exact by multiplying by magical quantity $\mu(x,y)$

2.4.3 Example:

Solve the DE:
$$(x+y)dx + xlnxdy = 0 \text{ using } \mu(x,y) = \frac{1}{x}$$

$$\left(\frac{x+y}{x}\right)dx + \ln|x| \ dy = 0 \text{ is now exact.}$$
 Solution: $f(x,y) = x + y \ln x = c$

2.5 Linear Equations

Recall: First Order Linear DE is a DE in the form
$$a_1(x)\frac{dy}{dx} + a_0(y)y = g(x), \quad a_1(x) \neq 0$$

Divide both sidex by $a_1(x) \Rightarrow \frac{dy}{dx} + \frac{a_0(x)}{a_1(x)}y = \frac{g(x)}{a_1(x)}$ where $P(x) = \frac{a_0(x)}{a_1(x)}$ and $f(x) = \frac{g(x)}{a_1(x)}$ $\frac{dy}{dx} + P(x)y = f(x)$ There is an integrating factor $\mu(x)$ that turns this DE into an exact DE $dy + P(x)ydx = f(x)dx \rightarrow dy \left[P(x)y - f(x)\right]dx = 0$ $\mu(x)dy + \mu(x) \left[P(x)y - f(x)\right]dx = 0 \rightarrow \mu'(x) = \mu(x)P(x)$ $\frac{d\mu}{dx} = \mu P \rightarrow \int \frac{d\mu}{mu} = \int P(x) \rightarrow \ln \mu = \int P(x) dx$ $\mu(x) = e^{\int P(x) dx} \Rightarrow e^{\int P(x) dx} \frac{dy}{dx} + e^{\int P(x) dx} P(x)y = e^{\int P(x) dx} f(x)$ $\frac{dx}{dx} \left[e^{\int P(x) dx} y\right] = e^{\int P(x) dx} f(x) \rightarrow e^{\int P(x) dx} y = \int e^{\int P(x) dx} f(x) dx$ $y = \int e^{\int P(x) dx} f(x) dx$

2.5.1 Procedure to follow for every Linear DE

- 1. Rewrite the linear DE in the form $\frac{dy}{dx} + P(x)y = f(x)$
- 2. Find the integrating factor $\mu(x) = e^{\int P(x)dx}$
- 3. Multiply each side of the DE by $\mu(x)$
- 4. Rewrite the left side as $\frac{d}{dx} [\mu(x) \cdot y]$
- 5. Integrate both sides with respect to x and retreive an implicitly expressed solution
- 6. Solve for y

2.6 What method to use to solve?

First ask is it exact? $(M_y = M_x)$ Yes: Use the method in §2.4 No: Is it linear? (in y or x) Yes: Use the method in §2.5

No: Is it separable?

Yes: §2.2

No: Homogeneous?

Yes: Use a substitution $\S 2.3$ No: Good luck. or use inspection

3 Applications of First-Order Differential Equation

3.1 Orthogonal Trajectories

· Consider the family of curves $y = cx^3$ Question: Which DE should be solved to get this family as its solutions?

Steps:

1. Find
$$\frac{dy}{dx} = 3cx^2$$

2. Eliminate c"

$$y = cx^{3}c = \frac{y}{x^{3}}$$
$$\frac{dy}{dx} = 3\frac{y}{x^{3}}x^{2} \to \frac{3y}{x}$$

· The two curves are orthogonal if their tangent lines are orthogonal at the point of intersection i.e. The derivatives are the negative reciprocals of each other

3.1.1 Example

Show that $y = x^3$ and $x^2 + 3y^2 = 4$ are orthogonal at their points of intersection, (1,1) and (-1,-1) $y = x^3 \Rightarrow \frac{dy}{dx} = 3x^2 \rightarrow 3$ at x = 1 and 3 at x = -1

$$2x + 6y \frac{dy}{dx} = 0 \rightarrow \frac{dy}{dx} = -\frac{x}{3y} = \frac{-1}{3}$$
 at both $x = 1$ and $x = -1$ meaning it is orthogonal

3.1.2 Definition

When all the curves of one family of curves intersect orthogonally all the curves of another family, then the families are said to be orthogonal trajectories of each other

3.2 Applications of Linear Equations

 $\frac{dN}{dt} = kN \rightarrow N = Ce^{kt}$ for bacterial growth rate. Nothing else here, just an applications section

3.3 Applications of Nonlinear Equations

Logistic Model of Population Growth

1: End Behaviour (Steady State Solution) as $t \to \infty P(t) = \frac{aP_0}{bP_0 + (a - bP_0)e^{-at}} \to P(t) = \frac{aP_0}{bP_0} = \frac{a}{b}$

2: Concavity Analysis (Point of Inflection) $\frac{dP}{dt} = P(a - bP)$

$$\frac{d^{2}P}{dt^{2}} = \frac{dP}{dt}(a - 2bP) = P(a - bP)(a - 2bP) = 0$$

For inflection point $a-2bP=0 \rightarrow a=2bP \rightarrow P=\frac{a}{2b} \rightarrow P=\frac{N}{2}$ 3 cases of initial conditions

$$\begin{cases} 0 < P_0 < \frac{a}{2b} & \text{Hits inflection point while rising to CC} \\ \frac{a}{2b} < P_0 < \frac{a}{b} & \text{Population grows at a decreasing rate to CC} \\ P_0 > \frac{a}{b} & \text{Population falls to the carying capacity} \end{cases}$$

4 Linear DE of Higher Order

4.1 Preliminary Theory

Initial Value Problem $a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + ... + a_1(x)y' + a_0(x)y = g(x)$ Initial Conditions $y(x_0) = y_0...y^{(n-1)}(x_0) = y_0^{(n-1)}$

Theorem Let easch $a_j(x)$ be continuous on an interval I and let $a_n(x) \neq 0$ for every... CONTINUE LATER

Boundary-Value Problem for 2nd order Linear DE $a_2(x)y'' + a_1(x)y' + a_0(x)y = g(x)$

$$y(a) = y_0 \qquad y(b) = y_1$$

Example:
$$y'' + 16y = 0$$
 $y(0) = 0$ $y(\pi/2) = 0$

 $y = \sin 4x$ and $y = \cos 4x$ are solutions so $y(x) = c_1 \cos 4x + c_2 \sin 4x$

$$y(0) = c_1 \cos(0) + c_2 \sin(0) = c_1 = 0$$

$$y(\pi/2) = c_1 \cos(2\pi) + c_2 \sin(2\pi) = c_1 = 0$$
 so $y(x) = c_2 \sin 4x$ is a solution

4.2 Constructing a Second Solution from a Known Solution

General Formula

Given $a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$ and $a_2(x) \neq 0$ and $y_1(x) \neq 0$ is a solution of this DE, find $y_2(x)$ P(x) Q(x) Divide by $a_2(x)$: $y'' + \frac{a_1(x)}{g_2(x)}y' + \frac{a_0(x)}{g_2(x)}y = 0$ y'' + Py' + Qy = 0, $y_2 = uy_1 \rightarrow y_2' = uy'1 + u'y_1 \rightarrow y_2'' = uy_1'' + 2u'y_1' + u''y_1$ Plug it all in: $u''y_1 + 2u'y_1' + 2u$

$$y_1 w' + (2y'_1 + Py_1)w = 0$$

$$w' + \frac{2y'_1 + Py_1}{y_1}w = 0 \quad \mu = e^{\int \frac{2y'_1}{y_1} + Pdx}$$

$$w = c_1 y_1^{-2} e^{-\int Pdx} = u' = e^{-\int Pdx} y_1^2$$

4.2.1 General Reduction of Order Formula

$$y = C_1 y_1 + C_2 y_2$$
 where $y_2 = y_1 \int \frac{e^{-\int P dx}}{y_1^2} dx$

4.3 Homogeneous Linear Equations w/ Constant Coefficients

In the DE $a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$, take

$$a_2(x) = a,$$
 $a_1(x) = b,$ $a_0(x) = c$

so we have a 2ns-order Homogeneous Linear DE with constant coefficients

$$ay'' + by' + cy$$

What does a typical solution look like?

$$\begin{cases} y = e^{mx} \\ y' = me^{mx} \\ y'' = m^2 e^{mx} \end{cases} \text{ so } am^2 e^{mx} + bme^{mx} + ce^{mx} = 0 = e^{mx} (am^2 + bc + c)$$

4.3.1 Auxilliary Equation for a DE

$$am^2 + bm + c = 0$$

4.3.2 Three Scenarios for the Auxilliary Equation

$$\begin{cases} \text{If } b^2 - 4ac > 0 & \text{two real roots } y = c_1 e^{m_1 x} + c_2 e^{m_2 x} \\ \text{If } b^2 - 4ac = 0 & \text{one real root } y = c_1 e^{mx} + c_2 x e^{mx} \\ \text{If } b^2 - 4ac < 0 & \text{No real roots, } 2 \text{ distinct complex roots, } y = e^{\alpha x} \left(C_1 \cos \beta t + C_2 \sin \beta t \right) \ m = \alpha \pm i \beta \end{cases}$$

4.4 Undetermined Coefficients - Superposition Approach

• Nonhomogeneous Linear DE with constant coefficients:

$$ay'' + by' + cy = g(x)$$

Recall from Section 4.1: The general solution is:

$$y(x) = y_c(x) + y_p(x)$$

where $y_c(x)$ is the general solution ay'' + by' + cy = 0 $y_p(x)$ is one particular colution of ay'' + by' + cy = g(x) **The big question:** How do we find $y_p(x)$?

4.4.1 Trial Particular Solutions

g(x)	Form of y_p
constant	A
2x-7	Ax + B
$-x^2 + 3$	$Ax^2 + Bx + C$
$\sin kx \text{ or } \cos kx$	$A\cos kx + B\sin kx$
e^{kx}	Ae^{kx}
$(2x-7)e^{kx}$	$(Ax+B)e^{kx}$
x^2e^{kx}	$(Ax^2 + Bx + C)e^{kx}$
$e^{kx}\cos lx \ ore^{kx}\sin lx$	$e^{kx}(A\cos lx + B\sin lx)$
$5x^2\sin kx$	$Ax^{2} + Bx + C \cos kx + (Dx^{2} + Ex + F)\sin kx$
$xe^{kx}\cos lx$	$(Ax+B)e^{kx}\cos lx + (Cx+D)e^{kx}\sin lx$

4.5 Variation of Parameters

Given: $a_2(x)y'' + a_1(x)y' + a_0(x)y = g(x)$ $\Rightarrow y'' + P(x)y' + Q(x)y = f(x)$ Goal: Find y_p

4.5.1 Idea:

Let y_1, y_2 be the two linearly independent solutions of

$$y'' + P(x)y' + Q(x)y = 0$$

Then we will look for y_p of the form:

$$y_p = u_1(x)y_1(x) + u_2(x)y_2(x)$$

4.5.2 Derivation:

$$\begin{aligned} y_p' &= u_1'y_1 + u_2'y_2 + u_1y_1' + u_2y_2' \text{ by product rule} \\ \text{Assume } u_1'y_1 + u_2'y_2 &= 0 \rightarrow y_p' = u_1y_1' + u_2y_2' \\ y_p'' &= u_1y_1'' + u_2y_2'' + u_1'y_1' + u_2' + y_2' \text{ then substitute into } y'' + Py' + Qy = f \\ \underbrace{u_1(y_1'' + Py_1' + Qy_1) + u_2(y_2'' + Py_2' + Qy_2) + u_1'y_1' + u_2' + y_2'}_{\{u_1'y_1 + u_2'y_2 = 0\}} \rightarrow y_p = u_1y_1 + u_2y_2 \end{aligned}$$

4.5.3 Example

$$y'' + 9y = \cos 3x$$

$$m^{2} + 9 = 0 \rightarrow m = \pm 3i \rightarrow y_{c} = C_{1} \cos 3x + C_{2} \sin 3x$$

$$y_{p} = u_{1}y_{1} + u_{2}y_{2} \text{ where } u'_{1} = \frac{\begin{bmatrix} 0 & \sin 3x \\ \cos 3x & 2\cos 3x \end{bmatrix}}{\begin{bmatrix} \cos 3x & \sin 3x \\ 3\sin 3x & 3\cos 3x \end{bmatrix}} = -\frac{1}{3} \sin 3x \cos 3x = -\frac{1}{6} \sin 6x$$

$$u_{1} = \int -\frac{1}{6} \sin 6x dx = \frac{\cos 6x}{36}$$

$$u'_{2} = \frac{\begin{bmatrix} \cos 3x & 0 \\ -3\sin 3x & \cos 3x \end{bmatrix}}{\begin{bmatrix} \cos 3x & \sin 3x \\ 3\sin 3x & 3\cos 3x \end{bmatrix}} = \frac{\cos^{2} 3x}{3} = \int \frac{\cos^{2} 3x}{3} dx = \int \frac{1 + \cos 6x}{6} dx = \frac{x}{6} + \frac{\sin 6x}{36}$$

$$y_{p} = \frac{\cos 6x}{36} \cos 3x + \frac{x}{6} + \frac{\sin 6x}{36} \sin 3x = \frac{1}{36} \cos 3x + \frac{x}{6} \sin 3x$$

$$y_{p} = C_{1} \cos 3x + C_{2} \sin 3x + \frac{1}{36} \cos 3x + \frac{x}{6} \sin 3x = \begin{bmatrix} C_{1} \cos 3x + C_{2} \sin 3x + \frac{1}{6} x \sin 3x \end{bmatrix}$$
Initial Value Problem $y(0) = 1$, $y'(0) = 0$

$$C_{1} \cos 3x + C_{2} \sin 3x + \frac{1}{6} x \sin 3x \rightarrow C_{1} \cos(0) = 1 \rightarrow C_{1} = 1$$

$$y'(0) \rightarrow 3\sin 3x + 3C_{2} \cos 3x + \frac{1}{6} x \sin 3x = 0 \rightarrow 3C_{2} = 0 \text{ so } C_{2} = 0$$

$$y(x) = \cos 3x + \frac{1}{6} x \sin 3x$$

5 Applications of 2nd-Order DE

5.1 Simple Harmonic Motion

$$\begin{split} \frac{d^2x}{dt^2} + \omega^2 s &= 0 \text{ where } \omega = \sqrt{\frac{k}{m}} \\ \text{Auxilliary Equation: } m^2\omega^2 &= 0 \quad m = 0 \pm \beta i \\ C_1 cos\omega t + C_3 \sin \omega t &= A \sin(\omega t + \phi) \text{ where } A = \sqrt{C_1^2 + C_2^2}, \ \sin \phi = \frac{C_2}{A}, \ \cos \phi = \frac{C_2}{A}, \ \tan \phi = \frac{C_1}{C_2} \end{split}$$

5.1.1 Example

A 16lb weight is attached to a spring, stretching it 1.28 feet. This weight is released 2 feet above the equilibrium position, with initial downward velocity of 1.5 $\,\mathrm{ft/s}$

5.2 Damped Motion

5.3 Forced Motion

5.4 Electric Circuits

Example Problems with Solutions

6.1

$$\begin{cases} \frac{dy}{dx} = 2xy^{\frac{2}{3}} \\ y(0) = 0 \end{cases} \quad y = 0 \text{ and } y = \frac{x^6}{27} \text{ are solutions}$$

$$\frac{dy}{dx}\frac{x^6}{27} = 2x \cdot \frac{x^4}{9} = y^{\frac{2}{3}}$$

$$\begin{cases} \frac{dy}{dx} = 2yx^{\frac{2}{3}} \\ y(0) = 0 \end{cases}$$
 and $y = 0$ is the only solution. This IVP satisfies a certain condition and that makes

it have a unique solution

$$\begin{cases} \frac{dy}{dx} = xy^{\frac{1}{2}} \\ y(0) = 0 \end{cases}$$

Does the IVP have a unique solution? When on \mathbb{R}^2 is $\frac{\partial f}{\partial y}$ continuous? $\frac{\partial f}{\partial y} = \frac{1}{2}xy^{-\frac{1}{2}} = \frac{x}{2.\sqrt{y}}$

$$\begin{cases} \frac{dy}{dx} = 3y & \text{Yes there is a unique solution, } \frac{\partial f}{\partial y} = 3 \\ y(0) = 5 & \end{cases}$$

Determine the region R for which the DE would have a unique solution through a point (x_0, y_0) in the region $\frac{dy}{dx} = \sqrt{xy}$

Where on
$$\mathbb{R}^2$$
 is $\frac{\partial f}{\partial y}$ continuous? $\frac{\partial f}{\partial y} = \frac{1}{2}(xy)^{-1/2} * \frac{\partial}{\partial y}(xy) = \frac{x}{2\sqrt{xy}}$

$$\frac{\mathbf{DIY}}{\frac{dy}{dx}} - y = x$$

6.2
$$ydx = (2+3x)dy$$

Solve:
$$ydx = (2 + 3x)dy$$

Solve:
$$ydx = (2+3x)dy$$

$$\frac{dy}{y} = \frac{dx}{2+3x}$$

$$\int \frac{dy}{y} = \int \frac{dx}{2+3x}$$

$$\ln|y| = \frac{\ln|2+3x|}{3} + C$$

$$e^{\ln|y|} = e^{\frac{\ln|2+3x|}{3}} + C_1$$

$$= e^{\frac{\ln|2+3x|}{3}} \cdot e^{C_1}$$

$$|y| = e^{C_1} \cdot \ln|2+3x|^{\frac{1}{3}}$$

$$\ln|y| = \frac{\ln|2 + 3x|}{3} + C$$

$$e^{\ln|y|} = e^{\frac{\ln|2+3x|}{3} + C_1}$$

$$|y| = e^{C_1} \cdot \ln|2 + 3x|^{\frac{1}{3}}$$

$$|y| = |e^{C_1}| \cdot |(2+3x)^{\frac{1}{3}}$$

$$|y| = \left| e^{C_1} \cdot |(2+3x)^{\frac{1}{3}} \right|$$

$$|y| = e^{C_1} | \cdot |(2+3x)^{\frac{1}{3}}|$$

$$|y| = |e^{C_1}| \cdot |(2+3x)^{\frac{1}{3}}|$$

$$|y| = |e^{C_1}| \cdot |(2+3x)^{\frac{1}{3}}|$$

$$y = \pm C(2+3x)^{\frac{1}{3}} \qquad x \neq -\frac{2}{3}$$

6.3
$$\frac{dy}{dx} = e^x e^{5y}$$

$$\frac{dy}{dx} = e^x e^{5y}$$

$$e^{-5y} dy = \frac{e^x}{dx}$$

$$\int e^{-5y} dy = \int e^x dx$$

$$-\frac{1}{5}e^{-5y} = e^x + C_1$$

$$e^{-5y} = -5e^x - 5C_1$$

$$-5y = \ln(-5e^x - 5C_1)$$

$$y = -\frac{1}{5}\ln(C - 5e^x)$$

6.4
$$y' = 2y - y^2$$

$$\begin{split} y' &= 2y - y^2 \\ \frac{dy}{dx} &= y(2-y) \to \int \frac{dy}{y(2-y)} = \int dx \to \int \left(\frac{0.5}{y} + \frac{0.5}{2-y}\right) dy = \int dx \\ \frac{1}{2} \ln|y| - \frac{1}{2} \ln|2 - y| &= x + C_1 \\ \ln|y| - \ln|2 - y| &= 2x + 2C_1 \\ \ln\left|\frac{y}{2-y}\right| &= 2x + 2C_1 \Rightarrow \left|\frac{y}{2-y}\right| = e^{2x}e^{2C_1} \to \frac{y}{2-y} = Ce^{2x} \to y = CE^{2x}(2-y) \\ y &= 2Ce^{2x} - Ce^{2x}y \to (1 + Ce^{2x})y = 2Ce^{2x} \\ \boxed{y = \frac{2Ce^{2x}}{1 + Ce^{2x}}} \to \frac{2C}{e^{-2x} + C} \end{split}$$

6.5

$$\begin{split} &(x-y)dx + xdy = 0\\ &\text{Substitution } y = ux \Rightarrow dy = udx + xdu\\ &(x-ux)dx + x(udx + xdu) = 0\\ &xdx - uxdx + uxdx + x^2du = 0\\ &\int du = -\int \frac{1}{x}dx \Rightarrow u = -\ln|x| + C\\ &u = \frac{y}{x}\\ &\frac{y}{x} = C - \ln|x|\\ &y = Cx - x \ln|x| \end{split}$$

6.6

$$(x^3+y^2)dx=3xy^2dy=0$$
 is conservative, so find $f(x,y)$ that satisfies $M=f_x, N=f_y$
$$\int (x^3+y^3)dx=\frac{x^4}{4}+xy^3+g(y) \text{ and } \int xy^2dy=xy^3+g'(y)$$

$$f(x,y)=\frac{x^4}{4}+xy^3=C$$

6.7

Big Mouth John brings a juicy rumor to a town of 5000. Assume logistic growth. After 5 days 200 people have heard it. How many people will have heard it after 7 days? $\frac{dP}{dt} = kP(5000 - P) =$

$$P(5000k - kP) \to a = 5000k$$

$$P(t) = \frac{aP_0}{bP_0 + (a - bP_0)e^{-at}}$$

$$P(t) = \frac{5000k \cdot 1}{k \cdot 1 + (5000k - k \cdot 1)e^{-5000kt}} = \frac{5000k}{k + 4999ke^{-5000kt}} = \frac{5000}{1 + 4999e^{-5000kt}}$$

From here use
$$P(5) = 200$$
 to determine k

$$P(t) = \frac{5000}{1 + 4999e^{-5000kt}} \Rightarrow 200 = \frac{5000}{1 + 4999e - 25000k}$$

$$1 + 4999e^{-25000k} = 25$$

$$e^{-25000k} = \frac{24}{4999}$$

$$k = -\frac{1}{25000} \ln\left(\frac{25}{4999}\right) = 2.13557E - 4$$
Now plug in for $P(7) = 1303.3603$ people

6.8

Compound C is formed as a reaction of A and B $A + B \rightarrow C$. The resulting reaction is such that

- 1. For each gram of B, 3 grams of A are used
- 2. Initially 40g of A 25g of B
- 3. 10 mins after start, 20g of C is formed
- 4. Reaction rate is proportional to amounts of A and B
- (a) Determine the amount of C at time t
- (b) How much C is formed in 15 minutes
- (c) How much C formes at $t = \infty$

$$\begin{aligned} \frac{dx}{dt} &= k_1(40 - 0.75x)(25 - 0.25x) = \frac{k_1}{160}(160 - 3x)(100 - x) = k(160 - 3x)(100 - x) \\ \frac{dx}{dt} &= k(160 - 3x)(100 - x) = \int \frac{1}{(160 - 3x)(100 - x)} dx = \int kdt \\ &= \int \frac{3/140}{160 - 3x} - \frac{1/140}{100 - x} dx = kt + C_1 \\ &= \frac{1}{140} \ln \left| \frac{100 - x}{160 - 3x} \right| = kt + C_1 = \frac{100 - x}{160 - 3x} = c_2 e^{140kt} \Rightarrow c_2 = \frac{5}{8} \text{ by } x(0) = 0 \\ &= \frac{100 - x}{160 - 3x} = \frac{5}{8} e^{140kt} \quad x(10) = 20 \to k = \frac{1}{1400} \ln \frac{32}{25} \\ x(t) &= \frac{100(e^{140kt} - 1)}{\frac{15}{8}e^{140kt} - 1} \text{ where } k = \frac{1}{1400} \ln \frac{32}{25} \\ x(15) &= 26.12705 \text{ grams of } C \\ \lim_{t \to \infty} \frac{100(e^{140kt} - 1)}{\frac{15}{8}e^{140kt} - 1} = \frac{160}{3} \text{ grams of } C \end{aligned}$$

Find the auxilliary equation for the DE

$$3y'' + 5y' - 2y = 0$$
$$3m^2 + 5m - 2 = 0$$

Solve

$$3m^2+5m-2=0$$
 Solutions to quadratic formula $m_1=\frac{1}{3}~m_2=-2$ Solution to DE $y=c_1e^{\frac{x}{3}}+c_2e^{-2x}$

Solve

$$m^{2} + 4m + 4 = 0$$

 $(m+2)^{2} = 0, \quad m = -2$
 $y = c_{1}e^{-2x} + c_{2}xe^{-2x}$

6.10
$$y'' - 2y' - 3y = -6x^2 + x - 2$$

Find y_c

$$y'' - 2y' - 3y = 0$$
 gets an auxilliary equation $m^2 - 2m - 3 = 0 \Rightarrow (m+1)(m-3) = 0 \Rightarrow m_2 = -1, m_2 = -3$ $y_2 = c_1 e^{-x} + c_2 e^{3x}$

Find y_p

Find
$$y_p$$

 $y_p(x) = Ax^2 + Bx + C$
 $y'_p(x) = 2Ax + B$
 $y''_p(x) = 2A$
Plug it in
 $2A - 2(2Ax + B) - 3(Ax^2 + Bx + C) = -6x^2 + x - 2$
 $\Rightarrow -3Ax^2 + (-4A - 3B)x + (2A - 2B - 3C) = -6x^2 + x - 2$
 $-3A = -6$ $-4A - 3B = 1$ $2A - 2B - 3C = -2$

A=2, B=-3, C=4 making the equation $y_p(x)=2x^2-3x+4$ Solution to the nonhomogeneous equation $y = y_c + y_p = c_1 e^{-x} + c_2 e^{3x} + 2x^2 - 3x + 4$

6.11 $y'' + 2y' + y = 3\sin 2x$

$$m^{2} + 2m + 1 = 0 \Rightarrow m - 1, \quad m = -1$$

$$y_{c} = c_{1}e^{-x} + c_{2}xe^{-x}$$

$$y_{p} = \cos 2x + B \sin 2x$$

$$y'_{p}(x) = -2A \sin 2x + 2x \cos 2x$$

$$y''_{p} = -4A \cos 2x - 4B \sin 2x$$

$$y''_{p} + 2y'_{p} + y_{p} = (-3A + 4B) \cos 2x + (-4A - 3B) \sin 2x = 3 \sin 2x \Rightarrow A = -\frac{12}{25} \quad B = -\frac{9}{25}$$

$$\Rightarrow y_{p} = -\frac{12}{25} \cos 2x - \frac{9}{25} \sin 2x$$

$$y = c_{1}e^{-x} + c_{2}xe^{-x} - \frac{12}{25} \cos 2x - \frac{9}{25} \sin 2x$$