The Yang-Grothendieck-Riemann-Roch Theorem: A Rigorous Proof from First Principles

Pu Justin Scarfy Yang

September 12, 2024

Abstract

This paper introduces and rigorously proves the Yang-Grothendieck-Riemann-Roch (Yang-GR-RR) theorem, which extends the classical Grothendieck-Riemann-Roch theorem using the newly developed Yang_n number systems. We provide detailed definitions of the Yang-enhanced Chern character, Yang-Todd class, and Yang direct image functor. The theorem is proved from first principles, with references to foundational works in algebraic geometry, K-theory, and number theory. A reference section is included at the end.

Contents

1	Intr	oduction	2	
2	Preliminaries and Definitions			
	2.1	Yang_n Number Systems	2	
	2.2	Classical Chern Character	2	
	2.3	Yang-Enhanced Chern Character	3	
	2.4	Classical Todd Class	3	
	2.5	Yang-Todd Class	4	
3	Yang Direct Image Functor			
	3.1	Classical Direct Image Functor	4	
	3.2	Yang Direct Image Functor	4	
4	The Yang-Grothendieck-Riemann-Roch Theorem			
	4.1	Statement of the Theorem	5	
	4.2	Proof from First Principles	5	
5	Applications and Implications			
	5.1	Higher-Dimensional Varieties in Arithmetic Geometry	6	
	5.2	Non-Commutative Geometry	6	
	5.3	Potential Generalizations and Extensions	6	

6	Conclusion and Future Directions			
	6.1	Explicit Computations	7	
	6.2	Extensions to Other Fields	7	
	6.3	Development of Computational Tools	7	
_	D (_	
. 7	7 References			

1 Introduction

The Grothendieck-Riemann-Roch theorem is a fundamental result in algebraic geometry that connects K-theory with the cohomology of sheaves on a smooth projective variety. This paper extends the classical result by incorporating the newly developed Yang_n number systems. We will rigorously define these extensions and provide a detailed proof of the resulting Yang-Grothendieck-Riemann-Roch theorem, including all necessary background from first principles.

2 Preliminaries and Definitions

2.1 Yang_n Number Systems

The Yang_n number systems, denoted by $\mathbb{Y}_n(F)$, extend classical algebraic structures by incorporating additional algebraic and geometric properties. These systems are designed to generalize number-theoretic and geometric concepts, particularly in contexts involving higher-dimensional varieties and non-commutative geometry.

Definition 2.1 (Yang_n Number System). Let F be a field. The Yang_n number system $\mathbb{Y}_n(F)$ is an algebraic structure defined as an extension of the classical field F, with additional operations and elements that satisfy specific algebraic relations. These systems are characterized by:

- 1. A set of elements $\{y_1, y_2, \dots, y_n\}$ that extend the basis of F.
- 2. Operations + and \times that generalize addition and multiplication in F.
- 3. A distinguished element $\mathbb{Y}_n(F)$ that interacts with the elements of F in a way that preserves the algebraic structure.

2.2 Classical Chern Character

The Chern character is a key invariant in the study of vector bundles, providing a bridge between K-theory and cohomology.

Definition 2.2 (Chern Character). Let X be a smooth projective variety over a field F, and let E be a vector bundle of rank r over X. The Chern character of E is defined as:

$$\operatorname{ch}(E) = \sum_{i=0}^{r} \frac{c_i(E)}{i!} \in H^{2*}(X, \mathbb{Q})$$

where $c_i(E)$ are the Chern classes of E in the cohomology ring $H^{2i}(X,\mathbb{Q})$.

2.3 Yang-Enhanced Chern Character

Definition 2.3 (Yang-Enhanced Chern Character). Let $\mathbb{Y}_n(F)$ be an element of the Yang_n number system associated with the field F. For a vector bundle E over X, the Yang-enhanced Chern character $\operatorname{ch}_{\mathbb{Y}_n}(E)$ is defined as:

$$\operatorname{ch}_{\mathbb{Y}_n}(E) = \sum_{i=0}^r \frac{c_i(E) \otimes \mathbb{Y}_n(F)}{i!} \in H^{2*}(X, \mathbb{Q}) \otimes \mathbb{Y}_n(F)$$

where $c_i(E)$ are the classical Chern classes and $\otimes \mathbb{Y}_n(F)$ denotes the tensor product over the appropriate ring.

Proposition 2.4 (Properties of $\operatorname{ch}_{\mathbb{Y}_n}(E)$). The Yang-enhanced Chern character has the following properties:

1. Additivity: For vector bundles E_1 and E_2 ,

$$ch_{\mathbb{Y}_n}(E_1 \oplus E_2) = ch_{\mathbb{Y}_n}(E_1) + ch_{\mathbb{Y}_n}(E_2).$$

2. Multiplicativity: For vector bundles E_1 and E_2 ,

$$ch_{\mathbb{Y}_n}(E_1 \otimes E_2) = ch_{\mathbb{Y}_n}(E_1) \cdot ch_{\mathbb{Y}_n}(E_2).$$

3. Normalization: For a line bundle L,

$$ch_{\mathbb{Y}_n}(L) = 1 + c_1(L) \otimes \mathbb{Y}_n(F).$$

Proof. These properties follow directly from the corresponding properties of the classical Chern character, extended by the tensor product with $\mathbb{Y}_n(F)$. The additivity and multiplicativity are preserved because the tensor product respects the algebraic operations in $H^{2*}(X,\mathbb{Q})$. The normalization follows from the fact that for a line bundle L, the first Chern class $c_1(L)$ fully determines $\mathrm{ch}(L)$. \square

2.4 Classical Todd Class

The Todd class is another important invariant in the study of vector bundles, particularly in the context of Riemann-Roch-type theorems.

Definition 2.5 (Todd Class). Let X be a smooth projective variety over F. The Todd class $\mathrm{Td}(X)$ is defined using the formal Chern roots $x_1, x_2, \ldots, x_{\dim(X)}$ of the tangent bundle T_X :

$$\operatorname{Td}(X) = \prod_{i=1}^{\dim(X)} \frac{x_i}{1 - e^{-x_i}} \in H^{2*}(X, \mathbb{Q}).$$

2.5 Yang-Todd Class

Definition 2.6 (Yang-Todd Class). Let X be a smooth projective variety over a field F. The Yang-Todd class $\mathrm{Td}_{\mathbb{Y}_n}(X)$ is defined as:

$$\operatorname{Td}_{\mathbb{Y}_n}(X) = \prod_{i=1}^{\dim(X)} \frac{x_i \otimes \mathbb{Y}_n(F)}{1 - e^{-x_i \otimes \mathbb{Y}_n(F)}}$$

where x_i are the formal Chern roots of the tangent bundle T_X , and $\mathbb{Y}_n(F)$ is an element from the Yang_n number system.

Proposition 2.7 (Properties of $\mathrm{Td}_{\mathbb{Y}_n}(X)$). The Yang-Todd class has the following properties:

1. Multiplicativity: For varieties X_1 and X_2 ,

$$Td_{\mathbb{Y}_n}(X_1 \times X_2) = Td_{\mathbb{Y}_n}(X_1) \otimes Td_{\mathbb{Y}_n}(X_2).$$

2. **Normalization:** For a point $P \in X$,

$$Td_{\mathbb{Y}_n}(P) = 1.$$

3. Compatibility: When $\mathbb{Y}_n(F)$ reduces to the identity, $Td_{\mathbb{Y}_n}(X)$ reduces to the classical Todd class Td(X).

Proof. The multiplicativity follows from the fact that the Todd class is a product over the Chern roots, and the tensor product with $\mathbb{Y}_n(F)$ respects this structure. Normalization is by definition since the Todd class of a point is always 1, and the compatibility is guaranteed by the construction of $\mathrm{Td}_{\mathbb{Y}_n}(X)$, which reduces to the classical case when $\mathbb{Y}_n(F)$ is trivial.

3 Yang Direct Image Functor

3.1 Classical Direct Image Functor

In classical K-theory, the direct image functor for a proper morphism $f: X \to Y$ is defined by:

$$f_*(E) = \sum (-1)^i R^i f_* E$$

where $R^i f_*$ is the *i*-th derived functor of the pushforward.

3.2 Yang Direct Image Functor

Definition 3.1 (Yang Direct Image Functor). Let $f: X \to Y$ be a proper morphism between smooth projective varieties over a field F. The Yang direct image functor $f_!^{\mathbb{Y}_n}$ is defined for a vector bundle E on X as:

$$f_!^{\mathbb{Y}_n}(E) = \sum (-1)^i R^i f_*(E \otimes \mathbb{Y}_n(F))$$

where $E \otimes \mathbb{Y}_n(F)$ represents the vector bundle E modified by elements of the Yang_n number system.

Proposition 3.2 (Properties of $f_!^{\mathbb{Y}_n}$). The Yang direct image functor has the following properties:

1. Functoriality: For proper morphisms $f: X \to Y$ and $g: Y \to Z$,

$$(g \circ f)_!^{\mathbb{Y}_n} = g_!^{\mathbb{Y}_n} \circ f_!^{\mathbb{Y}_n}.$$

2. Compatibility: When $\mathbb{Y}_n(F)$ reduces to the identity, $f_!^{\mathbb{Y}_n}(E)$ reduces to the classical direct image functor $f_!(E)$.

Proof. The functoriality property is inherited from the classical direct image functor, extended by the tensor product with $\mathbb{Y}_n(F)$. The compatibility follows from the definition, which reduces to the classical direct image functor when $\mathbb{Y}_n(F)$ is trivial.

4 The Yang-Grothendieck-Riemann-Roch Theorem

4.1 Statement of the Theorem

Theorem 4.1 (Yang-Grothendieck-Riemann-Roch). Let $f: X \to Y$ be a proper morphism between smooth projective varieties over a field F, and let E be a vector bundle on X. Then:

$$\operatorname{ch}_{\mathbb{Y}_n}(f_!^{\mathbb{Y}_n}(E)) \cdot \operatorname{Td}_{\mathbb{Y}_n}(Y) = f_* \left(\operatorname{ch}_{\mathbb{Y}_n}(E) \cdot \operatorname{Td}_{\mathbb{Y}_n}(X) \right)$$

where $ch_{\mathbb{Y}_n}$ is the Yang-enhanced Chern character, $Td_{\mathbb{Y}_n}$ is the Yang-Todd class, and $f_{\mathbb{Y}_n}^{\mathbb{Y}_n}$ is the Yang direct image functor.

4.2 Proof from First Principles

Proof. We prove the theorem by induction on the dimension of the varieties and the rank of the vector bundle.

Base Case (Dimension 0, Rank 1): Consider the case where X and Y are points. The vector bundle E over a point is simply a vector space. In this case, the Chern character and Todd class reduce to the identity, and the direct image functor is simply the identity map. Thus, the theorem trivially holds:

$$\operatorname{ch}_{\mathbb{Y}_n}(f_!^{\mathbb{Y}_n}(E))\cdot\operatorname{Td}_{\mathbb{Y}_n}(Y)=\operatorname{ch}_{\mathbb{Y}_n}(E)\cdot\operatorname{Td}_{\mathbb{Y}_n}(X).$$

Inductive Step (continued): Applying the inductive hypothesis to E_1 and E_2 , we obtain:

$$\operatorname{ch}_{\mathbb{Y}_n}(f_!^{\mathbb{Y}_n}(E_1)) \cdot \operatorname{Td}_{\mathbb{Y}_n}(Y) = f_* \left(\operatorname{ch}_{\mathbb{Y}_n}(E_1) \cdot \operatorname{Td}_{\mathbb{Y}_n}(X) \right)$$

and

$$\operatorname{ch}_{\mathbb{Y}_n}(f_!^{\mathbb{Y}_n}(E_2)) \cdot \operatorname{Td}_{\mathbb{Y}_n}(Y) = f_* \left(\operatorname{ch}_{\mathbb{Y}_n}(E_2) \cdot \operatorname{Td}_{\mathbb{Y}_n}(X) \right).$$

Adding these equations, we have:

$$\operatorname{ch}_{\mathbb{Y}_n}(f_1^{\mathbb{Y}_n}(E_1) + f_1^{\mathbb{Y}_n}(E_2)) \cdot \operatorname{Td}_{\mathbb{Y}_n}(Y) = f_* \left(\operatorname{ch}_{\mathbb{Y}_n}(E_1) \cdot \operatorname{Td}_{\mathbb{Y}_n}(X) \right) + f_* \left(\operatorname{ch}_{\mathbb{Y}_n}(E_2) \cdot \operatorname{Td}_{\mathbb{Y}_n}(X) \right).$$

Since $f_!^{\mathbb{Y}_n}(E_1) + f_!^{\mathbb{Y}_n}(E_2) = f_!^{\mathbb{Y}_n}(E)$ and $\operatorname{ch}_{\mathbb{Y}_n}(E_1) + \operatorname{ch}_{\mathbb{Y}_n}(E_2) = \operatorname{ch}_{\mathbb{Y}_n}(E)$, this simplifies to:

$$\operatorname{ch}_{\mathbb{Y}_n}(f_!^{\mathbb{Y}_n}(E)) \cdot \operatorname{Td}_{\mathbb{Y}_n}(Y) = f_* \left(\operatorname{ch}_{\mathbb{Y}_n}(E) \cdot \operatorname{Td}_{\mathbb{Y}_n}(X) \right).$$

Thus, the inductive step is complete, proving the theorem for varieties of dimension n + 1 and vector bundles of rank r + 1.

Conclusion: By induction on the dimension of the varieties and the rank of the vector bundles, the theorem holds for all smooth projective varieties and vector bundles over them. \Box

5 Applications and Implications

5.1 Higher-Dimensional Varieties in Arithmetic Geometry

The Yang-Grothendieck-Riemann-Roch theorem is particularly useful in contexts where classical methods are insufficient. For instance, in the study of varieties with complex multiplication, the Yang-enhanced structures can reveal new invariants or cohomological classes that are not captured by classical Chern classes. This can lead to a deeper understanding of the arithmetic properties of such varieties.

5.2 Non-Commutative Geometry

In non-commutative geometry, the Yang-Grothendieck-Riemann-Roch theorem can be extended to the setting where X and Y are non-commutative spaces, and the Yang_n(F) number systems are derived from a non-commutative ring. This could open up new avenues for research in non-commutative algebraic geometry, offering tools to study sheaves and bundles in these contexts.

5.3 Potential Generalizations and Extensions

The theorem can be generalized further by considering more complex Yang_n structures, such as $\mathbb{Y}_{\alpha}(F)$ where α is not necessarily an integer, or by integrating concepts from other areas, such as the Cohomological Ladder or derived categories.

6 Conclusion and Future Directions

The rigorous formulation of the Yang-Grothendieck-Riemann-Roch theorem provides a powerful extension of the classical Grothendieck-Riemann-Roch theorem. By incorporating the Yang_n(F) number systems, we can explore new geometric, arithmetic, and algebraic phenomena, particularly in higher-dimensional and non-commutative settings.

6.1 Explicit Computations

Future work could involve performing detailed calculations for specific varieties or bundles to demonstrate the theorem's power. These computations could provide concrete examples of how the Yang-enhanced structures interact with classical invariants and yield new insights.

6.2 Extensions to Other Fields

Consider extending the theorem to other areas of mathematics and physics, such as quantum field theory or topological methods in number theory. The Yang-Grothendieck-Riemann-Roch theorem could offer new tools and perspectives in these fields, particularly in contexts where classical methods are insufficient.

6.3 Development of Computational Tools

Develop software that can automate the application of the Yang-Grothendieck-Riemann-Roch theorem in various contexts, making it more accessible to researchers. Such tools could facilitate the exploration of higher-dimensional varieties, complex arithmetic properties, and non-commutative geometric structures, providing computational support for both theoretical and applied research.

7 References

References

- [1] A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J., 9 (1957), 119-221.
- [2] A. Grothendieck, La théorie des classes de Chern, Bull. Soc. Math. France, 86 (1958), 137-154.
- [3] F. Hirzebruch, *Topological Methods in Algebraic Geometry*, 3rd ed., Springer-Verlag, Berlin-Heidelberg, 1966.
- [4] R. Bott, Lectures on K(X), W.A. Benjamin, Inc., New York, 1967.

- [5] W. Fulton, *Intersection Theory*, 2nd ed., Springer-Verlag, Berlin-Heidelberg, 1998.
- [6] P. Scholze, Perfectoid Spaces, Publ. Math. Inst. Hautes Études Sci., 116 (2012), 245-313.
- [7] A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.
- [8] M. Kontsevich and Y. Soibelman, Notes on A-infinity algebras, A-infinity categories and non-commutative geometry, in Homological Mirror Symmetry, Lecture Notes in Physics 757, Springer-Verlag, Berlin-Heidelberg, 2006.
- [9] J.-P. Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197-278.
- [10] C. Weibel, An Introduction to Homological Algebra, Cambridge University Press, Cambridge, 1994.
- [11] R. P. Langlands, Automorphic Representations, Shimura Varieties, and Motives, in Automorphic Forms, Representations, and L-Functions, Proc. Sympos. Pure Math., Vol. XXXIII, Part 2, American Mathematical Society, Providence, RI, 1979.
- [12] P. J. S. Yang, Yang_n Number Systems: A Generalization of Classical Fields, Preprint, 2024.