

Прикладная статистика и анализ данных _{Съезд II}

Анализ остатков

Остатки

В качестве оценки ошибки $arepsilon_i$ рассмотрим остатки $e_i = Y_i - \widehat{Y}_i$

Проверка свойств

Нормальность

 H_0 : $e_i \sim \mathcal{N}$

⇒ Критерий Шапиро-Уилка и др.

Несмещенность

 H_0 : $Ee_i = 0$

Критерии монотонного отнош. правд.

В непарам. случае позже

Гомоскедастичность

 $H_0: D\varepsilon = \sigma^2 I_n$

Тут не все так просто...

 $\mathrm{D}arepsilon=\sigma^2 \mathit{I}_{\mathit{n}}$ — гомоскедастичность. Обратное — гетероскедастичность.

В качестве оценки ошибки $arepsilon_i$ рассмотрим остатки $\emph{e}_i = \emph{Y}_i - \widehat{\emph{Y}}_i$

Проблема: $De_i \neq \sigma^2$ при гомоскедастичности.

$$e=Y-\widehat{Y}=(I_n-H)Y,$$
 где $H=X\left(X^TX\right)^{-1}X^T$ $De=(I_n-H)DY(I_n-H)^T=\sigma^2(I_n-H)(I_n-H)^T=\sigma^2(I_n-H)$

Проверять на однородность дисп. нужно поправленные остатки:

$$\widehat{e_i} = rac{e_i}{\sqrt{\widehat{\mathrm{D}}e_i}} = rac{e_i}{\sqrt{rac{RSS}{n-d}(1-h_{ii})}}$$
 — стюдентизированные остатки

Т.к. tr H=d [упр.], то при $d\ll n$: $h_{ii}\approx 0$. Тогда

$$\widehat{e_i} = rac{e_i}{\sqrt{RSS/(n-d)}}$$
 — стандартизированные остатки

Визуальный анализ

Строятся графики зависимости $\hat{e_i}$ от y, x, i

Визуальный анализ

Что будет если строить графики зависимостей остатков от признаков:

Критерии проверки на гомоскедастичность

$$H_0: D\varepsilon = \sigma^2 I_n$$

Критерий Бройша-Пагана

$$R_{\widehat{e}^2}^2$$
 — коэф. детерминации при регрессии $\widehat{e}^2\sim X$ $nR_{\widehat{e}^2}^2\sim \chi_d^2$ — при справедливости ${\sf H}_0$

Критерии проверки на гомоскедастичность

$$H_0: D\varepsilon = \sigma^2 I_n$$

Критерий Голдфелда-Квандта

Упорядочим наблюдения по предполаг. возрастанию дисперсий.

$$RSS_1$$
 — регрессия по первым $\frac{n-r}{2}$ наблюдений, $r>0$

 RSS_2 — регрессия по последним $\frac{n-r}{2}$ наблюдений

$$rac{RSS_2}{RSS_1} \sim F_{rac{n-r}{2}-d,rac{n-r}{2}-d}$$
 при H_0

Что делать при гетероскедастичности?

- **Е**СЛИ НУЖНА ТОЛЬКО ОЦЕНКА θ НИЧЕГО;
- Если есть предположения о природе гетероскедастичности, взвесить наблюдения:

$$Y_i/\widehat{\sigma}_i = (x_i/\widehat{\sigma}_i)^T \theta + \varepsilon_i,$$

где $\widehat{\sigma}_i$ — предполагаемая дисперсия при i-м измерении;

Преобразование признаков и отклика, напр., Бокса-Кокса:

$$Z_i = \begin{cases} \ln Y_i, & \lambda = 0 \\ (Y_i^{\lambda} - 1)/\lambda, & \lambda \neq 0 \end{cases}$$

Величина λ подбирается по графику зависимости $RSS(\lambda)$ от λ

Использовать специальные оценки дисперсии, устойчивые к гетероскедастичности.

Устойчивые оценки дисперсии

Пусть
$$\mathsf{E} arepsilon = \mathsf{0}$$
 и $\mathsf{D} arepsilon = V$. Тогда $\mathsf{D} \widehat{\theta} = \left(X^T X \right)^{-1} X^T V X \left(X^T X \right)^{-1}$.

1. $V = \sigma^2 I_n$ — гомоскедастичность:

$$D\widehat{ heta} = \sigma^2 \left(X^T X \right)^{-1}$$
 — дисперсия оценки коэффициентов; $\widehat{D\widehat{ heta}} = \widehat{\sigma}^2 \left(X^T X \right)^{-1}$ — оценка дисперсии оценки коэффициентов;

2. $V = \text{diag}\left(\sigma_1^2, ..., \sigma_n^2\right)$ — отсутствие автокорреляций:

$$D\widehat{\theta} = (X^TX)^{-1}X^T \cdot \operatorname{diag}\left(\sigma_1^2,...,\sigma_n^2\right) \cdot X\left(X^TX\right)^{-1} -$$
д.о.к.; $\widehat{D\widehat{\theta}} = (X^TX)^{-1}X^T \cdot \operatorname{diag}\left(\widehat{\sigma}_1^2,...,\widehat{\sigma}_n^2\right) \cdot X\left(X^TX\right)^{-1} -$ о.д.о.к.:

3. Наличие автокорреляций — см. временные ряды.

Оценки Уайта

Если автокорреляции отсутствуют, используются оценка Уайта White's heteroscedasticity-consistent estimator (HCE):

$$\widehat{\mathsf{D}\widehat{\theta}} = \left(X^TX\right)^{-1}X^T \cdot \mathsf{diag}\left(\widehat{\sigma}_1^2, ..., \widehat{\sigma}_n^2\right) \cdot X \left(X^TX\right)^{-1}$$

Варианты определения $\widehat{\sigma}_i^2$:

- 1. HC0: \hat{e}_{i}^{2} оценка Уайта
- 2. Модификации МакКиннона-Уайта:

HC1:
$$\frac{n}{n-d}\hat{e}_i^2$$
, HC2: $\frac{\hat{e}_i^2}{1-h_{ii}}$, HC3: $\frac{\hat{e}_i^2}{\left(1-h_{ii}\right)^2}$

(точнее оценивают при малых выборках)

Асимптотическая нормальность при гетероскедаст.

Если автокорреляции отсутствуют, то

$$\sqrt{n}\left(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}\right) \overset{d}{\longrightarrow} \mathcal{N}(0, \boldsymbol{\Sigma}),$$

НСЕ дает состоятельную оценку на матрицу Σ :

$$n\widehat{\mathsf{D}\widehat{\theta}} \overset{\mathsf{P}}{\longrightarrow} \Sigma$$

Данный факт позволяет строить асимптотические дов. интервалы и критерий Вальда для проверки линейных гипотез H_0 : $T\theta = \tau$.

