Talep Tahminleri

Talep Tahminleri

- ✓ Gelecekteki durumları tahmin etme
- ✓ Bir zaman dilimi üzerinde talep davranışlarının genelleştirilmesi
- ✓ Kalitatif (Nitel) metodlar
 - ✓ Subjektif (Öznel) metodlara dayalı
- ✓ Kantitatif (Nicel) metodlar
 - ✓ Matematiksel formüllere dayalı

Tolep Tahmin Bileşenleri

- ✓ Zaman
 - ✓ Kısa alan, orta alan, uzun alan
- ✓ Talep davranışları
 - ✓ Eğimler, dalgalanmalar, mevsimsel numuneler, rastgele

Ialep Davranışları

- ✓ Eğim
 - ✓ Dereceli, uzun vade üstü veya altı hareketleri
- ✓ Dalgalanmalar
 - ✓/Uzun zaman çatısı üzerinde alt ve üst hareketlerin tekrarlanması
- ✓ Mevsimsel Numune
 - ✓ Tekrarlanabilir taleplerdeki peryodik dalgalanmalar
- ✓ Rastgele hareketlerde numunesiz takip

Tahmin Hareket Türleri

Talep Tahmini Metodları

- ✓ Zaman serileri
 - ✓ Regresyon veya nedensel modelleme
- ✓ Kalitatif (Nitel) metodlar
 - √/Yönetimsel hüküm, uzmanlık ve fikirler
 - ✓ Yönetim, pazarlama, satın alma, mühendislik yararı
- **V** Delphi metodu
 - ✓ Uzmanlardan istenilen talep tahminleri

Zaman Serileri Metodları

- ✓ İstatistiksel metodların tarihsel verilerle kullanımı
 - ✓ Hareketli Ortalama
 - √/Üstel düzleme
 - 🗸 Doğrusal eğimli çizgi
- ✓ Varsayılan numuneler tekrarlanacak
- ✓ Ham talep tahminleri
 - √ talep tahminleri = son peryoddaki veri

Hareketli Ortalama

- ✓ Çeşitli peryodlardaki ortalama veri
- ✓ Azalan, düzgün olmayan değişiklikler
- ✓ Talep dengede olduğu zaman eğim veya mevsimsel numune yoktur

$$MA_n = \sum_{i=1}^{n} D_i$$

n = hareketli ortalamada
peryod numarası

 $D_i = i$ periyodundaki talep

Basit Hareketli Ortalama

AY	AYLIK SİPARİŞLER	3
Ocak	120	$\sum_{i} D_{i}$
Şubat	90	$MA_3 = $
Mart	/ 100	3
Nisan	75	90 + 110 + 130
Mayıs /	110	= 3
Haziran	50	· ·
Temmuz	75	
Ağustos	130	= 110
Eylül	110	Kasım ayı siparişleri
Ekim	90	

Basit Hareketli Ortalama

AY	AYLIK SİPARİŞLER	3 - AY HAREKETLİ ORT	
Jan	120	_	$\sum_{i}^{5} D_{i}$
Feb	90	_	i = 1
Mar	100	_	$MA_5 =$
Apr	75	103.3	5
May /	110	88.3	00 + 440 + 420 + 75 + 50
June /	50	95.0 =	90 + 110 + 130 + 75 + 50
July /	75	78.3	5
Aug	130	78.3	0.4
Sept	110	85.0	= 91
Oct	90	105.0	Kasım ayı siparişleri
Nov	_	110.0	

Basit Hareketli Ortalama

	AY	AYLIK SİPARİŞLER	3 - AY HAREKETLİ ORTALAMA	5-AY
	Ocak	120	_	_
	Şubat	90	_	_
	Mart	100	_	_
	Nisan /	75	103.3	_
	Mayıs /	110	88.3	-
	Haziran	50	95.0	99.0
1	Temmuz	75	78.3	85.0
	Ağustos	130	78.3	82.0
\'	Ey/ül	110	85.0	88.0
	Ekim	90	105.0	95.0
	Kasım	_	110.0	91.0

Düzeltme Etkileri

Ağırlıklı Hareketli Ortalama

Ayarlanabilir ortalama hareket metodunu daha açıkça veri dalgalanmalarına yansıtmak

$$WMA_n = \sum_{i=1}^{N} W_i D_i$$

$$W_i$$
 = %0 ve 100 arasında
 i peryodundaki
 ağırlık

$$\sum W_i = 1.00$$

Ağırlıklı Hareketli Ortalama - Örnek

AY	AĞIRLIK	VERİ
Ağu	17%	130
Ağu Eyl Ekm	33%	110
Ekm	50%	90

Kasım talep tahmini

3

$$WMA_3 = \sum_{i=1}^{N} W_i D_i$$

$$= (0.50)(90) + (0.33)(110) + (0.17)(130)$$

= 103.4 sipariş

Üstel Düzeltme

- ✓ Ortalama Metodu
- ✓ Ağırlıklar son veride daha kuvvetli
- ✓ Tepkiler son değişikliklerde daha fazla
- ✓ Genişçe kullanılan, hatasız metod

$$F_{t+1} = \alpha D_t + (1 - \alpha)F_t$$

 F_{t+1} = Gelecek peryod için talep tahmini

 D_t = şu anki peryod için gerçek talep

F_t = Şu anki peryod için önceden karşılaştırılan talep tahmini

 α = ağırlık faktörü, düzeltme sabiti

Düzeltme Sabitinin Etkisi

$$0.0 \le \alpha \le 1.0$$

$$\alpha = 0.20$$
, olduğunda $F_{t+1} = 0.20 D_t + 0.80 F_t$

$$\alpha \neq 0$$
, olduğunda $F_{t+1} = 0$ $D_t + 1$ $F_t 0 = F_t$

Talep tahmini son veriyi yansıtmaz

$$\alpha = 1$$
, olduğunda $F_{t+1} = 1$ $D_t + 0$ $F_t = D_t$ talep tahmini sadece en son veriye dayalıdır

Üstel Düzeltme - Örnek

PERYOD	AY	TALEP
1	Oca	37
2	Şub	40
3	Mar	41
4	Nis	37
5	May	45
6	Haz	50
7 /	Tem	43
8	Ağu	47
()	Eyl	56
10	Ekm	52
\\/11	Kas	55
12	Ara	54

Üstel Düzeltme - Örnek

			n, F _{t+1}	
PERYOD	AY	TALEP	$(\alpha = 0.3)$	$(\alpha = 0.5)$
1 /	Jan	37	_	_
2	Feb	40	37.00	37.00
3	Mar	41	37.90	38.50
4	Apr	37	38.83	39.75
5	May	45	38.28	38.37
6	Jun	50	40.29	41.68
7 /	Jul	43	43.20	45.84
8	Aug	47	43.14	44.42
\\\ \\\ \\\	Sep	56	44.30	45.71
/10	Oct	52	47.81	50.85
\\/11	Nov	55	49.06	51.42
12	Dec	54	50.84	53.21
13	Jan	_	51.79	53.61

<u>Üstel Düzeltme Tahminleri</u>

Doğrusal Eğim Fonksiyonu

$$y = a + bx$$

$$b = \frac{\sum xy - n\overline{x}\overline{y}}{\sum x^2 - n\overline{x}^2}$$

$$a = \overline{y} - b\overline{x}$$

$$n = \text{periyot sayısı}$$

$$\overline{x} = \frac{\sum x}{n} = x \text{ değerlerinin ort.}$$

$$\overline{y} = \frac{\sum y}{n} = y \text{ değerlerinin ort.}$$

En Küçük Kareler - Örnek

x(Pl	RYOD)	y(TALEP)	xy	x ²	$\bar{x} = \frac{78}{12} = 6.5$
	1 2	37 40	37 80	1 4	$v = \frac{557}{} = 46.42$
	3	41	123	9	* 12
	4 5	37 45	148 225	16 25	$b = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n\bar{x}^2}$
	6 7	50	300	36	_ 3867 - (12)(6.5)(46.42)
		43 47	301 376	49 64	650 - 12(6.5) ²
$ \cdot $	8 9	56	504	81	= 1.72
	10	52 55	520 605	100 121	a = y - bx
	12	54	648	144	= 46.42 - (1.72)(6.5)
	78	557	3867	650	= 35.2

Doğrusal eğim fonksiyonu y = 35.2 + 1.72x

Peryod 13 için talep tahmini y = 35.2 + 1.72(13) = 57.56

Doğrusal Eğim Fonksiyonu

Mevsimsel Ayarlamalar

- ✓ Rutin artışlar/ talepte azalma
- ✓ Mevsimsel faktörleri kullanarak talep tahminlerini ayarlama

Mevsimsel faktör =
$$S_i = \frac{D_i}{\sum D}$$

Mevsimsel Ayarlamalar

		TALEP				
YIL	/ 1	2	3	4	Toplam	
1999	12.6	8.6	6.3	17.5	45.0	
2000	14.1	10.3	7.5	18.2	50.1	
2001	15.3	10.6	8.1	19.6	53.6	
Toplam	42.029.5	21.9	55.3	148.7		
S ₁ =	/ D ₁ ΣΒ	42.0 148.7 ²⁸		S ₃ =	D_3	21.9 148.715
$S_2 =$	$egin{array}{c} D_2 \ \Sigma \mathcal{D} \end{array}$	29.5 148.7		S ₄ =	D_4 $\Sigma \mathcal{D}$	55.3 148.7 ²⁷

Mevsimsel Ayarlamalar

		TALEP				
YIL	1	2	3	4	Toplam	0000::
1999	12.6	8.6	6.3	17.5	45.0	2002 için
2000	14.1	10.3	7.5	18.2	50.1	y = 40.97 + 4.30x
2001	15.3	10.6	8.1	19.6	53.6	=40.97 + 4.30(4)
Toplam	42.029.5	21.9	55.3	148.7		= 58.17
S_i	0.28	0.20	0.15	0.37		
SF ₁	$= (S_1) (F_5)$			$SF_3 =$	$(S_3) (F_5)$	
	=(0.28)(5		16.28	ŭ		3.17) = 8.73
_	$= (S_2) (F_5)$			SF ₄ =	$(S_4)(F_5)$	
1	= (0.20)(5	8.17) =	11.63	=	(0.37)(58	3.17) = 21.53

Iahmini Doğruluğu

- ✓ Hata= gerçek talep tahmini
- ✓ Hatanın minimize edilmesi için bir metod bulma
- ✓ Ortalama mutlak sapma
- ✓ Ortalama Mutlak Yüzdelik Sapma
- ✓ Kümülatif hata (E)

Ortalama Mutlak Sapma (MAD)

$$\mathsf{MAD} = \frac{\sum |D_t - F_t|}{n}$$

t = peryod numarası

 $D_t = t$ peryodunda talep

 $F_t = t$ peryodu için talep tahmini

n = Toplam peryod sayısı

| | = mutlak değer

Ortalama Mutlak Sapma (MAD)- Örnek

PERYOD	TALEP, D_t	F_t ($\alpha = 0$.	$3) (D_t - F_t)$	$ D_t - F_t $
/ 1	37	37.00	_	_
2	40	37.00	3.00	3.00
3	41	37.90	3.10	3.10
4_	37	38.83	-1.83	1.83
5	45	38.28	6.72	6.72
6	50	40.29	9.69	9.69
7	43	43.20	-0.20	0.20
8	47	43.14	3.86	3.86
9	56	44.30	11.70	11.70
10	52	47.81	4.19	4.19
11	55	49.06	5.94	5.94
12	54	50.84	3.15	3.15
	557		49.31	53.39
$\sum_{t} D_{t} - F_{t} $	53.39	= 4.85		

Diğer Doğruluk Ölçüleri

✓ Ortalama Mutlak Yüzdelik Sapma (MAPD)

$$\mathsf{MAPD} = \frac{\sum |D_t - F_t|}{\sum D_t}$$

√ Kümülatif Hata

$$E = \sum e_t$$

✓ Ortalama hata

$$\mathsf{E} = \frac{\sum \mathbf{e}_t}{n}$$

izleme Sinyali

- ✓ Herbir peryodu hesaplama
- ✓ Kontrol limitlerini karşılaştırma
- ✓ Talep tahmini limitin içindeyse kontrollü

İzleme sinyali =
$$\frac{\sum (D_t - F_t)}{MAD} = \frac{E}{MAD}$$

Kontrol limitleri kullanımı +/- 2 ile +/- 5 MAD