

64-Channel 32-MHz Serial-to-Parallel Converter with Push-Pull Outputs

Features

- 5V CMOS Logic
- Up to +80V Output Voltage
- · Low-Power Level Shifting
- · 32 MHz Equivalent Data Rate
- · Latched Data Outputs
- · Forward and Reverse Shifting Options (DIR pin)
- Diode to V_{PP} allows Efficient Power Recovery
- · Outputs may be Hot Switched

Applications

- · Vacuum Fluorescent Display Driver
- · Inkjet Driver
- · 3D Printer Driver
- · Microelectromechanical Systems Applications

General Description

The HV57708 is a low-voltage to high-voltage serial-to-parallel converter with push-pull outputs. The device is designed as a driver for EL displays. It can also be used in any application requiring multiple-output high-voltage current sourcing and sinking capability such as driving plasma panels, vacuum fluorescent displays and large matrix LCD displays.

The device has four parallel 16-bit registers, permitting data rates four times the speed of the clock frequency. There are also 64 latches and a control logic to perform the polarity select and blanking of the outputs. The HV_{OUT}1 is connected to the first stage of the first Shift register through the polarity and blanking logic. Data is shifted through the Shift registers on the logic low-to-high transition of the clock. The DIR pin causes counter-clockwise shifting when connected to GND and clockwise shifting when connected to VDD. A data output buffer is provided for cascading devices. This output reflects the current status of the last bit of the Shift register, HV_{OUT}64. The operation of the Shift register is not affected by the latch enable (\overline{LE}) , blanking (BL) and polarity (POL) inputs. The transfer of data from the Shift registers to the latches occurs when the LE input is high. The data in the latches is stored when $\overline{\text{LE}}$ is low.

Package Type

Functional Block Diagram

Typical Application Circuit

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Supply Voltage, V _{DD}	
Output Voltage, V _{PP}	
Logic Input Levels	
Ground Current (Note 1)	
Maximum Junction Temperature, T _{J(MAX)}	
Storage Temperature, T _S	–65°C to +150°C
Continuous Total Power Dissipation:	
80-lead PQFP (Note 2)	1200 mW

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

- Note 1: Limited by the total power dissipated in the package
 - 2: For operations above 25°C ambient, derate linearly to the maximum operating temperature at 20 mW/°C.

RECOMMENDED OPERATING CONDITIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Logic Supply Voltage	V_{DD}	4.5	_	5.5	V	
Output Voltage	V_{PP}	8	_	80	V	
High-Level Input Voltage	V _{IH}	V _{DD} -0.5V	_	_	V	
Low-Level Input Voltage	V_{IL}	0	_	0.5	V	
Clock Frequency per Register	f _{CLK}	_	_	8	MHz	
Operating Ambient Temperature	T _A	-40	_	+85	°C	

DC ELECTRICAL CHARACTERISTICS

Electrical Specification	Electrical Specifications: Over recommended operating conditions unless otherwise noted.									
Paramete	er	Sym.	Min.	Тур.	Max.	Unit	Conditions			
V _{DD} Supply Current		I _{DD}	_	_	15	mA	$V_{DD} = V_{DD}$ maximum, $f_{CLK} = 8$ MHz			
High Voltage Supply C	urront			_	100	μΑ	Outputs high			
High-Voltage Supply C	urrent	I _{PP}	_	_	100	μΑ	Outputs low			
Quiescent V _{DD} Supply	Current	I_{DDQ}	_	_	100	μΑ	All V _{IN} = V _{DD}			
High-Level Output	HV _{OUT}	V	65	_	_	V	$I_{O} = -15 \text{ mA}, V_{PP} = +80 \text{V}$			
High-Level Output	Data Out	V _{OH}	V _{DD} -0.5V	_	_	V	I _O = –100 μA			
Low Lovel Output	HV _{OUT}	V	_	_	7	V	I _O = 12 mA, V _{PP} = +80V			
Low-Level Output	Data Out	V _{OL}	_	_	0.5	V	I _O = 100 μA			
High-Level Logic Input	I _{IH}	_	_	1	μΑ	$V_{IH} = V_{DD}$				
Low-Level Logic Input	I _{IL}	_	_	-1	μΑ	V _{IL} = 0V				
High-Voltage Clamp Di	ode	V _{OC}	_	_	1	V	I _{OC} = 1 mA			

AC ELECTRICAL CHARACTERISTICS

Electrical Specifications: $T_A = 85^{\circ}C$ maximum. Logic signal inputs and data inputs have t_r , $t_f \le 5$ ns (10% and 90% points).

pointo).						
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Clock Frequency	f _{CLK}	_	-	8	MHz	Per register
Clock Width High or Low	t_{WL} , t_{WH}	62			ns	
Data Set-Up Time before Clock Rises	t _{SU}	10	1	_	ns	
Data Hold Time after Clock Rises	t _H	15	_	_	ns	
Time from Latch Enable to HV _{OUT}	t _{ON} , t _{OFF}	_		500	ns	C _L = 15 pF
Latch Enable Pulse Width	t_{WLE}	25	_	_	ns	
Delay Time Clock to Latch Enable Low to High	t _{DLE}	25	_	_	ns	Note 1
Latch Enable Set-Up Time before Clock Rises	t _{SLE}	0	1	_	ns	
Delay Time Clock to Data Low to High	t _{DLH}	_	_	70	ns	C _L = 15 pF
Delay Time Clock to Data High to Low	t _{DHL}	_	_	70	ns	C _L = 15 pF

Note 1: t_{DLE} is not required but recommended to produce stable high-voltage outputs and thus minimize power dissipation and current spikes. t_{DLE} allows internal SR output to stabilize.

TEMPERATURE SPECIFICATIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
TEMPERATURE RANGE						
Operating Ambient Temperature	T_A	-40	_	+85	°C	
Maximum Junction Temperature	$T_{J(MAX)}$		-	+125	°C	
Storage Temperature	T_S	- 65	_	+150	°C	
PACKAGE THERMAL RESISTANCE						
80-lead PQFP	$\theta_{\sf JA}$	_	37	_	°C/W	

HV57708

Timing Waveforms

2.0 PIN DESCRIPTION

The details on the pins of HV57708 are listed on Table 2-1. Refer to **Package Type** for the location of pins.

TABLE 2-1: PIN FUNCTION TABLE

Pin Number	Pin Name	
		Description
1	HVOUT24/41	High-voltage output
2	HVOUT23/42	High-voltage output
3	HVOUT22/43	High-voltage output
4	HVOUT21/44	High-voltage output
5	HVOUT20/45	High-voltage output
6	HVOUT19/46	High-voltage output
7	HVOUT18/47	High-voltage output
8	HVOUT17/48	High-voltage output
9	HVOUT16/49	High-voltage output
10	HVOUT15/50	High-voltage output
11	HVOUT14/51	High-voltage output
12	HVOUT13/52	High-voltage output
13	HVOUT12/53	High-voltage output
14	HVOUT11/54	High-voltage output
15	HVOUT10/55	High-voltage output
16	HVOUT9/56	High-voltage output
17	HVOUT8/57	High-voltage output
18	HVOUT7/58	High-voltage output
19	HVOUT6/59	High-voltage output
20	HVOUT5/60	High-voltage output
21	HVOUT4/61	High-voltage output
22	HVOUT3/62	High-voltage output
23	HVOUT2/63	High-voltage output
24	HVOUT1/64	High-voltage output
25	DIN1/DOUT4(A)	Data Input 1/Output 4 A pin
26	DIN2/DOUT3(A)	Data Input 2/Output 3 A pin
27	DIN3/DOUT2(A)	Data Input 3/Output 2 A pin
28	DIN4/DOUT1(A)	Data Input 4/Output 1 A pin
29	Œ	Latch enable pin
30	CLK	Clock pin
31	BL	Blanking pin
32	VDD	Low-voltage supply voltage
33	DIR	Direction pin (Note)
34	GND	Ground

Note: Pin designation for DIR = H/L

Example: For DIR = H, pin 41 is HVOUT6 For DIR = L, pin 41 is HVOUT1

For clockwise and counter-clockwise shifts, see Table 3-2 $Q_N \rightarrow Q_{N+1}$.

HV57708

TABLE 2-1: PIN FUNCTION TABLE (CONTINUED)

Pin Number	Pin Name	Description							
35	POL	Polarity pin							
36	DOUT4/DIN1(B)	Data Output 4/Input 1 B pin							
37	DOUT3/DIN2(B)	Data Output 3/Input 2 B pin							
38	DOUT2/DIN3(B)	Data Output 2/Input 3 B pin							
39	DOUT1/DIN4(B)	Data Output 1/Input 4 B pin							
40	VPP	High-voltage supply voltage							
41	HVOUT64/1	High-voltage output							
42	HVOUT63/2	High-voltage output							
43	HVOUT62/3	High-voltage output							
44	HVOUT61/4	High-voltage output							
45	HVOUT60/5	High-voltage output							
46	HVOUT59/6	High-voltage output							
47	HVOUT58/7	High-voltage output							
48	HVOUT57/8	High-voltage output							
49	HVOUT56/9	High-voltage output							
50	HVOUT55/10	High-voltage output							
51	HVOUT54/11	High-voltage output							
52	HVOUT53/12	High-voltage output							
53	HVOUT52/13	High-voltage output							
54	HVOUT51/14	High-voltage output							
55	HVOUT50/15	High-voltage output							
56	HVOUT49/16	High-voltage output							
57	HVOUT48/17	High-voltage output							
58	HVOUT47/18	High-voltage output							
59	HVOUT46/19	High-voltage output							
60	HVOUT45/20	High-voltage output							
61	HVOUT44/21	High-voltage output							
62	HVOUT43/22	High-voltage output							
63	HVOUT42/23	High-voltage output							
64	HVOUT41/24	High-voltage output							
65	HVOUT40/25	High-voltage output							
66	HVOUT39/26	High-voltage output							
67	HVOUT38/27	High-voltage output							
68	HVOUT37/28	High-voltage output							
69	HVOUT36/29	High-voltage output							
70	HVOUT35/30	High-voltage output							
71	HVOUT34/31	High-voltage output							
72	HVOUT33/32	High-voltage output							

Note: Pin designation for DIR = H/L

Example: For DIR = H, pin 41 is HVOUT6 For DIR = L, pin 41 is HVOUT1

For clockwise and counter-clockwise shifts, see Table 3-2 $Q_N \rightarrow Q_{N+1}$.

TABLE 2-1: PIN FUNCTION TABLE (CONTINUED)

Pin Number	Pin Name	Description						
73	HVOUT32/33	High-voltage output						
74	HVOUT31/34	High-voltage output						
75	HVOUT30/35	High-voltage output						
76	HVOUT29/36	High-voltage output						
77	HVOUT28/37	High-voltage output						
78	HVOUT27/38	High-voltage output						
79	HVOUT26/39	High-voltage output						
80	HVOUT25/40	High-voltage output						

Note: Pin designation for DIR = H/L

Example: For DIR = H, pin 41 is HVOUT6 For DIR = L, pin 41 is HVOUT1

For clockwise and counter-clockwise shifts, see Table 3-2 ${\rm Q}_N \to {\rm Q}_{N+1}.$

3.0 FUNCTIONAL DESCRIPTION

Follow the steps in Table 3-1 to power up and power down the HV57708.

TABLE 3-1: POWER-UP AND POWER-DOWN SEQUENCE

	Power-Up	Power-Down				
Step	Description	Step	Description			
1	Connect ground.	1	Remove V _{PP.} (Note 1)			
2	Apply V _{DD} .	2	Remove all inputs.			
3	Set all inputs (Data, CLK, Enable, etc.) to a known state.	3	Remove V _{DD.}			
4	Apply V _{PP.} (Note 1)	4	Disconnect ground.			

Note 1: The V_{PP} should not drop below V_{DD} or float during operation.

TABLE 3-2: TRUTH FUNCTION TABLE

Function		I	nputs	;				Outputs	
Function	Data	CLK	LE	BL	POL	DIR	Shift Register	High-Voltage Output	Data Out
All O/P High	Х	Х	Х	L	L	Х	_	Н	_
All O/P Low	Х	Х	Х	L	Н	Х		L	_
O/P Normal	Х	Х	Χ	Ι	Н	Х		No inversion	_
O/P Inverted	Х	Х	Χ	Ι	L	Х		Inversion	_
Data falls	L	1	Ι	Ι	Н	Х	L	L	_
through	Н	1	Ι	Ι	Н	Х	Н	Н	_
Transparent	L	1	Ι	Ι	L	Х	L	Н	_
Latches	Н	1	Ι	Ι	L	Х	Н	L	_
Data Stored/	Х	Х	L	Ι	Н	Х	*	Stored data	_
Latches Loaded	Χ	Х	L	Ι	L	Х	*	Inversion of stored data	_
	D _{I/O} 1–4A	1	Ι	Ι	Н	Н	$Q_N \rightarrow Q_{N+1}$	New H or L	D _{I/O} 1–4B
I/O Relation	D _{I/O} 1–4A	1	L	Ι	Н	Н	$Q_N \rightarrow Q_{N+1}$	Previous H or L	D _{I/O} 1–4B
I/O Relation	D _{I/O} 1–4B	1	L	Ι	Н	L	$Q_{N}{\rightarrow}Q_{N-1}$	Previous H or L	D _{I/O} 1–4A
	D _{I/O} 1–4B	1	Ι	Ι	Н	L	$Q_{N}{\rightarrow}Q_{N-1}$	New H or L	D _{I/O} 1–4A

Note: H = High-logic level

L = Low-logic level

X = Irrelevant

↑ = Low-to-high transition

^{* =} Dependent on the previous stage's state. See Table 2-1 for D_{IN} and D_{OUT} pin designation for clockwise and counter-clockwise shifts.

FIGURE 3-1: Input and Output Equivalent Circuits.

FIGURE 3-2: Shift Register Operation.

4.0 PACKAGE MARKING INFORMATION

4.1 **Packaging Information**

Legend: XX...X Product Code or Customer-specific information

Υ Year code (last digit of calendar year) YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01')

Alphanumeric traceability code NNN

Pb-free JEDEC® designator for Matte Tin (Sn) (e3)

This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

In the event the full Microchip part number cannot be marked on one line, it will Note: be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.

80-Lead PQFP Package Outline (PG)

20.00x14.00mm body, 3.40mm height (max), 0.80mm pitch, 3.90mm footprint

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Note:

A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbo	ol	Α	A1	A2	b	D	D1	E	E1	е	L	L1	L2	θ	θ1
Dimen-	MIN	2.80*	0.25	2.55	0.30	23.65*	19.80*	17.65*	13.80*		0.73			0°	5°
sion	NOM	-	-	2.80	-	23.90	20.00	17.90	14.00	0.80 BSC	0.88	1.95 REF	0.25 BSC	3.5°	-
(mm)	MAX	3.40	0.50*	3.05	0.45	24.15*	20.20*	18.15*	14.20*		1.03			7 °	16º

JEDEC Registration MO-112, Variation CB-1, Issue B, Sept. 1995.

* This dimension is not specified in the JEDEC drawing.

Drawings not to scale.

HV57708

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (April 2018)

- Converted Supertex Doc # DSFP-HV57708 to Microchip DS20005861A
- Removed "HVCMOS® Technology" in the Features section
- Changed the package marking format
- Made minor changes throughout the document

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	<u>xx</u>		- <u>X</u> - <u>X</u>	Example:
Device	Package Options		Environmental Media Type	a) HV57708PG-G: 64-Channel 32 MHz Serial-to- Parallel Converter with Push- Pull Outputs, 80-lead PQFP, 66/Tray
Device:	HV57708	=	64-Channel 32 MHz Serial-to-Parallel Converter with Push-Pull Outputs	oo nay
Package:	PG	=	80-lead PQFP	
Environmental:	G	=	Lead (Pb)-free/RoHS-compliant Package	
Media Type:	(blank)	=	66/Tray for a PG Package	

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-2752-0

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 **Technical Support:**

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang

Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820