МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

Тема: «Оценка параметров надежности программ по временным моделям обнаружения ошибок»

Студентка гр. 8304	Мельникова О.А.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2022

Задание

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение интервала между соседними (i-1)-ой и i-ой ошибками (i=[1,30], также смотри примечание в п.3), в соответствии с:
- А) равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}} = 10$, СКО $s_{\text{равн}} = 20/(2*\text{sqrt}(3)) = 5.8$.
- Б) экспоненциальным законом распределения

W(y) = b*exp(-b*y), y>=0, с параметром b=0.1 и соответственно $m_{3\kappa\epsilon\eta} = s_{3\kappa\epsilon\eta} = 1/b = 10$.

Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: $Y = -\ln(t) \, / \, b$

В) релеевским законом распределения

 $W(y) = (y/c^2)*exp(-y^2/(2*c^2)), y>=0, c$ параметром c=8.0 и соответственно $m_{pe\pi} = c*sqrt(\square/2), s_{pe\pi} = c*sqrt(2-\square/2).$

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * qrt(-2*ln(t)).

- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах
 - ${X_i}$ использовать n = 30, 24 и 18 элементов).

Примечание: для каждого значения п следует генерировать и сортировать новые массивы.

- 4. Если B>n, оценить значения средних времен Xj, j=n+1,n+2..., n+k до обнаружения k<=5 следующих ошибок и общее время навыполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.

Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы

1) РАВНОМЕРНОЕ РАСПРЕДЕЛЕНИЕ

100% входных данных:

Был сгенерирован массив из 30-ти элементов, равномерно распределённых на интервале [0, 20].

Генерация происходила с помощью функции np.random.uniform(0, 20, 30). Массив был упорядочен по возрастанию. Результаты представлены в таблице 1.

Таблица 1 – Равномерное распределение, n = 30 (100%).

i	1	2	3	4	5	6	7	8	9	10
Xi	0.264	0.499	2.328	2.607	4.842	5.998	6.205	7.115	8.044	8.584
i	11	12	13	14	15	16	17	18	19	20
Xi	8.931	9.949	11.186	11.777	12.авг	12.361	12.664	12.785	12.793	14.113
i	21	22	23	24	25	26	27	28	29	30
Xi	14.521	14.608	14.808	15.338	15.566	15.875	16.905	17.028	19.674	19.799

Условие сходимости: A > (n+1)/2

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 19,59 > 15.5$$

Были вычислены значения

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 и $g(m, A) = \frac{n}{m-A}$.

Результаты представлены в таблице 2.

Таблица 2 – Расчёт значений функций для равномерного распределения (100%).

(10070										
m	31	32	33	34	35	36	37	38		
fn(m)	3.99499	3.02725	2.5585	2.25546	2.03488	1.86345	1.72456	1.60873		
g(m,A)	2.62914	2.41729	2.23704	2.0818	1.94671	1.82809	1.72309	1.6295		
fn(m) - g(m, A)	1.36585	0.609953	0.321456	0.173661	0.0881624	0.0353594	0.00146921	0.0207685		

Минимум разности достигается при m = 37.

Первоначальное количество ошибок B = m - 1 = 36.

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

$$K = 0.0052$$

Было рассчитано среднее время обнаружения следующих ошибок.

$$X_j = \frac{1}{K(B-j+1)}$$
, где $j = n+1, n+2..., n+k$.

Результат представлен в таблице 3.

Таблица 3 – Расчет времени обнаружения следующих ошибок для равномерного распределения (100%).

i	31	32	33	34	35	36
Xi	31.8466	38.2159	47.7698	63.6931	95.5397	191.079

Время до полного завершения тестирования 468.14 Полное время: 797

80% входных данных:

Был сгенерирован массив из 24-х элементов, равномерно распределённых на интервале [0, 20]. Генерация происходила с помощью функции пр.random.uniform(0, 20, 24). Массив был упорядочен по возрастанию. Результаты представлены в таблице 4.

Таблица 4 – Равномерное распределение, n = 24 (80%).

				1 '			,			
i	1	2	3	4	5	6	7	8	9	10
X_i	0.11	0.975	1.146	1.247	2.494	3.607	3.681	3.718	4.887	4.97
i	11	12	13	14	15	16	17	18	19	20
X_i	6.283	6.849	7.292	8.524	8.527	8.538	8.947	13.354	13.703	14.0
i	21	22	23	24						
X_i	15.221	15.611	17.303	17.421						

Условие сходимости: A > (n+1)/2

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 17,17 > 12.5$$

Были вычислены значения

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 и $g(m,A) = \frac{n}{m-A}$.

Результаты представлены в таблице 5.

Таблица 5 — Расчёт значений функций для равномерного распределения (80%).

m	25	26	27	28
fn(m)	3.77596	2.81596	2.35442	2.05812
g(m, A)	3.06681	2.71933	2.44257	2.21694
fn(m) - g(m, A)	0.709145	0.0966308	0.0881514	0.158821

Минимум разности достигается при m = 27.

Первоначальное количество ошибок B = m - 1 = 26.

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

K = 0.01296

Было рассчитано среднее время обнаружения следующих ошибок.

$$X_j = \frac{1}{K(B-j+1)}$$
, где $j = n+1, n+2 \dots, n+k$.

Результат представлен в таблице 6.

Таблица 6 – Расчет времени обнаружения следующих ошибок для равномерного распределения (80%).

i	25	26
Xi	38.5778	77.1556

Время до полного завершения тестирования 115.73 Полное время: 304

60% входных данных:

Был сгенерирован массив из 18-ти элементов, равномерно распределённых на интервале [0, 20]. Генерация происходила с помощью функции пр.random.uniform(0, 20, 18). Массив был упорядочен по возрастанию. Результаты представлены в таблице 1.

Таблица 7 – Равномерное распределение, п = 18 (60%).

	The things (The state of the s									
i	1	2	3	4	5	6	7	8	9	10
X_i	0.28	2.459	3.266	3.571	4.009	5.174	6.918	8.569	9.098	10.297
i	11	12	13	14	15	16	17	18		
X_i	10.842	12.389	12.876	13.261	14.322	15.571	16.161	19.901		

Условие сходимости: A > (n+1)/2

$$A = \frac{\sum_{i=1}^{n} i X_i}{\sum_{i=1}^{n} X_i}$$

$$A = 12,43 > 9.5$$

Были вычислены значения

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 и $g(m, A) = \frac{n}{m-A}$.

Результаты представлены в таблице 8.

Таблица 8 – Расчёт значений функций для равномерного распределения (60%).

m	19	20	21	22
fn(m)	3.49511	2.54774	2.09774	1.81203
g(m, A)	2.7394	2.37756	2.10016	1.88073
fn(m) - g(m, A)	0.755704	0.170175	0.0024211	0.0687006

Минимум разности достигается при m = 21.

Первоначальное количество ошибок B = m - 1 = 20.

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

$$K = 0.0124$$

Было рассчитано среднее время обнаружения следующих ошибок.

$$X_j = \frac{1}{K(B-j+1)}$$
, где $j = n+1, n+2..., n+k$.

Результат представлен в таблице 9.

Таблица 9 – Расчет времени обнаружения следующих ошибок для равномерного распределения (60%).

i	19	20
Xi	40.2264	80.4529

Время до полного завершения тестирования 120.68 Полное время: 290

2) ЭКСПОНЕНЦИАЛЬНЫЙ ЗАКОН РАСПРЕДЕЛЕНИЯ

100% входных данных:

Был сгенерирован массив из 30-ти элементов, распределённых по закону W(y) = b*exp(-b*y),y>=0, с параметром b=0.1.

Генерация происходила с помощью функции np.random.exponential(10, 30).

Массив был упорядочен по возрастанию.

Результаты представлены в таблице 10.

Таблица 10 - Экспоненциальное распределение, <math>n = 30 (100%).

				1 1 1							
	i	1	2	3	4	5	6	7	8	9	10
	X_i	0.237	0.259	0.429	1.029	1.063	1.457	1.494	2.187	4.362	4.38
	i	11	12	13	14	15	16	17	18	19	20
	X_i	4.551	4.779	6.242	6.315	6.562	7.278	7.94	8.908	9.35	10.3
	i	21	22	23	24	25	26	27	28	29	30
	X_i	10.838	15.106	16.648	16.817	22.294	23.658	24.081	28.527	32.21	41.6

Условие сходимости: A > (n+1)/2

$$A = \frac{\sum_{i=1}^{n} i X_i}{\sum_{i=1}^{n} X_i}$$

$$A = 23,22 > 15.5$$

Были вычислены значения

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 и $g(m,A) = \frac{n}{m-A}$.

Результаты представлены в таблице 11.

Таблица 11 – Расчёт значений функций для экспоненциального распределения (100%).

m	31	32
fn(m)	3.99499	3.02725
g(m,A)	3.85693	3.41755
fn(m) - g(m, A)	0.13806	0.39031

Минимум разности достигается при m = 31.

Первоначальное количество ошибок B = m - 1 = 30.

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

K = 0.01202

Условие B > n не выполняется.

Полное время: 321 дней

80% входных данных:

Был сгенерирован массив из 30-ти элементов, распределённых по закону W(y) = b*exp(-b*y), y>=0, с параметром b=0.1.

Генерация происходила с помощью функции np.random.exponential(10, 24).

Массив был упорядочен по возрастанию.

Результаты представлены в таблице 12.

Таблица 12 - Экспоненциальное распределение, <math>n = 24 (80%).

i	1	2	3	4	5	6	7	8	9	10
X_i	0.368	0.705	1.556	2.051	2.52	2.785	3.272	3.554	3.824	4.40
i	11	12	13	14	15	16	17	18	19	20
X_i	6.183	8.461	8.581	9.335	10.911	11.7	12.4	13.063	14.008	15.7
i	21	22	23	24						
X_i	24.596	24.624	29.722	59.825						

Условие сходимости: A > (n+1)/2

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 18,75 > 12.5$$

Были вычислены значения

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i} \quad \text{if} \quad g(m,A) = \frac{n}{m-A}.$$

Результаты представлены в таблице 13.

Таблица 13 – Расчёт значений функций для экспоненциального распределения (80%).

m	25	26
fn(m)	3.77596	2.81596
g(m, A)	3.83976	3.31017
fn(m) - g(m, A)	0.0638004	0.494207

Минимум разности достигается при m = 25.

Первоначальное количество ошибок B = m - 1 = 24.

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

K = 0.014005

Условие B > n не выполняется.

Полное время: 274

60% входных данных:

Был сгенерирован массив из 30-ти элементов, распределённых по закону W(y) = b*exp(-b*y),y>=0, с параметром b=0.1.

Генерация происходила с помощью функции np.random.exponential(10, 18).

Массив был упорядочен по возрастанию.

Результаты представлены в таблице 14.

Таблица 14 - Экспоненциальное распределение, <math>n = 18 (60%).

i	1	2	3	4	5	6	7	8	9	10
X_i	0.847	0.848	0.899	1.76	2.456	4.568	4.822	6.748	7.109	9.4
i	11	12	13	14	15	16	17	18		
X_i	12.647	13.785	14.311	14.444	17.311	18.101	18.402	50.914		

Условие сходимости: A > (n+1)/2

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 13,89 > 9.5$$

Были вычислены значения

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 и $g(m, A) = \frac{n}{m-A}$.

Результаты представлены в таблице 15.

Таблица 15 – Расчёт значений функций для экспоненциального распределения (60%).

m	19	20
fn(m)	3.49511	2.54774
g(m, A)	3.52163	2.94538
fn(m) - g(m, A)	0.0265178	0.397636

Минимум разности достигается при m = 19.

Первоначальное количество ошибок B = m - 1 = 18.

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

K = 0.0124

Условие B > n не выполняется.

Полное время: 199

3) РЕЛЕЕВСКИЙ ЗАКОН РАСПРЕДЕЛЕНИЯ

100% входных данных:

Был сгенерирован массив из 30-ти элементов, распределённых по закону $W(y) = (y/c^2)*exp(-y^2/(2*c^2)), y>=0$, с параметром c=8.0. Генерация происходила с помощью функции np.random.rayleigh(8, 30). Массив был упорядочен по возрастанию.

Результаты представлены в таблице 16.

Таблица 16 – Релеевское распределение, п = 30 (100%).

i	1	2	3	4	5	6	7	8	9	10
X_i	2.923	3.493	4.785	5.072	5.644	7.214	7.708	7.795	8.005	8.10
i	11	12	13	14	15	16	17	18	19	20
X_i	8.253	8.892	9.327	9.426	9.5	9.544	9.56	9.95	10.605	10.9
i	21	22	23	24	25	26	27	28	29	30
X_i	11.33	12.129	12.199	12.435	13.501	13.688	14.157	15.478	15.629	17.6

Условие сходимости: A > (n+1)/2

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 18,54 > 15.5$$

Были вычислены значения

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 и $g(m,A) = \frac{n}{m-A}$.

Результаты представлены в таблице 17.

Таблица 17 – Расчёт значений функций для релеевского распределения (100%).

(10070)	-						
m	31	32	33	34	35	36	37
fn(m)	3.99499	3.02725	2.5585	2.25546	2.03488	1.86345	1.72456
g(m, A)	2.40831	2.22935	2.07514	1.94089	1.82295	1.71852	1.62541
fn(m) - g(m, A)	1.58668	0.797899	0.483356	0.314579	0.211929	0.144926	0.0991474
m	38	39	40	41	42	43	44
fn(m)	1.60873	1.51004	1.42457	1.34957	1.28306	1.22353	1.16986
g(m, A)	1.54187	1.4665	1.39815	1.33589	1.27894	1.22665	1.17846
fn(m) - g(m, A)	0.0668565	0.0435442	0.0264206	0.0136801	0.00411242	0.00311754	0.00859938

Минимум разности достигается при m = 43.

Первоначальное количество ошибок B = m - 1 = 42.

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

K = 0.004

Было рассчитано среднее время обнаружения следующих ошибок.

$$X_j = \frac{1}{K(B-j+1)}$$
, где $j = n+1, n+2..., n+k$.

Результат представлен в таблице 18.

Таблица 18 – Расчет времени обнаружения следующих ошибок для релеевского распределения (100%).

i	31	32	33	34	35	36
Xi	20.0385	21.8602	24.0462	26.718	30.0578	34.3518
i	37	38	39	40	41	42
Xi	40.077	48.0925	60.1156	80.1541	120.231	240.462

Время до полного завершения тестирования 746.2

Полное время: 1041.2

80% входных данных:

Был сгенерирован массив из 24-х элементов, распределённых по закону $W(y) = (y/c^2)*exp(-y^2/(2*c^2)), y>=0$, с параметром c=8.0. Генерация происходила с помощью функции np.random.rayleigh(8, 24). Массив был упорядочен по возрастанию. Результаты представлены в таблице 19.

Таблица 19 – Релеевское распределение, п = 24 (80%).

i	1	2	3	4	5	6	7	8	9	10
X_i	1.817	2.739	2.939	3.509	3.774	5.193	5.41	5.502	6.179	8.19
i	11	12	13	14	15	16	17	18	19	20
X_i	8.211	8.468	8.682	9.887	10.563	10.845	11.313	11.667	12.659	14.8
i	21	22	23	24						
X_i	15.378	15.51	17.061	22.242						

Условие сходимости: A > (n+1)/2

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 16,196 > 12.5$$

Были вычислены значения

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 и $g(m,A) = \frac{n}{m-A}$.

Результаты представлены в таблице 20.

Таблица 20 – Расчёт значений функций для релеевского распределения (80%).

m	25	26	27	28	29
fn(m)	3.77596	2.81596	2.35442	2.05812	1.84384
g(m, A)	2.72596	2.44792	2.22135	2.03317	1.87438
fn(m) - g(m, A)	1.05	0.368038	0.13307	0.0249561	0.030541

Минимум разности достигается при m = 28.

Первоначальное количество ошибок B = m - 1 = 27.

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

$$K = 0.009$$

Было рассчитано среднее время обнаружения следующих ошибок.

$$X_j = \frac{1}{K(B-j+1)}$$
, где $j = n+1, n+2..., n+k$.

Результат представлен в таблице 21.

Таблица 21 — Расчет времени обнаружения следующих ошибок для релеевского распределения (80%).

i	25	26	27
Xi	36.4935	54.7402	109.48

Время до полного завершения тестирования 200,7 Полное время: 423,3

60% входных данных:

Был сгенерирован массив из 18-ти элементов, распределённых по закону $W(y) = (y/c^2)*exp(-y^2/(2*c^2)), y>=0$, с параметром c=8.0. Генерация происходила с помощью функции пр.random.rayleigh(8, 18). Массив был упорядочен по возрастанию. Результаты представлены в таблице 22.

Таблица 22 – Релеевское распределение, п = 18 (60%).

-	1	2	3	4	5	6	7	8	9	10
X_i	0.686	3.234	4.062	4.286	4.679	8.321	8.573	9.609	9.728	9.8
	11	12	13	14	15	16	17	18		
X_i	9.975	10.29	10.477	12.35	14.882	15.394	18.022	19.017		

Условие сходимости: A > (n+1)/2

$$A = \frac{\sum_{i=1}^{n} i X_i}{\sum_{i=1}^{n} X_i}$$

$$A = 12,07 > 9.5$$

Были вычислены значения

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 и $g(m,A) = \frac{n}{m-A}$.

Результаты представлены в таблице 23.

Таблица 23 – Расчёт значений функций для релеевского распределения (60%).

m	19	20	21	22
fn(m)	3.49511	2.54774	2.09774	1.81203
g(m, A)	2.59731	2.26979	2.01562	1.81264
fn(m) - g(m, A)	0.897797	0.277949	0.0821175	0.000618722

Минимум разности достигается при m = 22.

Первоначальное количество ошибок B = m - 1 = 21.

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

$$K = 0.0105$$

Было рассчитано среднее время обнаружения следующих ошибок.

$$X_j = \frac{1}{K(B-j+1)}$$
, где $j = n+1, n+2..., n+k$.

Результат представлен в таблице 24.

Таблица 24 – Расчет времени обнаружения следующих ошибок для релеевского распределения (60%).

i	19	20	21
Xi	31.8884	47.8326	95.6652

Время до полного завершения тестирования 175,39 Полное время: 348.79

4) РЕЗУЛЬТАТЫ РАСЧЕТОВ

В таблицах 25 и 26 представлены сводные результаты оценки первоначального числа ошибок и полного времени выполнения тестирования соответственно.

Таблица 25 – Оценка первоначального числа ошибок.

n	Входные	Распределение		
	данные,	Равномерное	Экспоненциальное	Релеевское
	%			
30	100	36	30	42
24	80	26	24	27
18	60	20	18	21

Таблица 26 – Оценка полного времени проведения тестирования

n	Входные	Распределение		
	данные,	Равномерное	Экспоненциальное	Релеевское
	%	_		
30	100	797	320	1041
24	80	304	274	423
18	60	289	199	348

Результаты при экспоненциальном распределении оказались ниже, других, что связано с тем, что модель Джелинского-Моранды основана на том, что время до следующего отказа программы распределено экспоненциально. По сравнению с равномерным распределением, релеевское оказывается хуже.

Выводы.

В результате выполнения данной лабораторной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелински-Морданы, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.