SOME SOLUTIONS AND SOME COMMENTS SEPTEMBER 29, 2008

Homework # 1

Section 0.3

4. Compute the remainder when 37^{100} is divided by 29.

This question asks you to determine $37^{100} \mod 29$, where 29 is a prime. Notice that $\varphi(29) = 28 = |(\mathbb{Z}/29\mathbb{Z})^*|$. Thus,

$$37^{100} \equiv 37^{28 \cdot 3 + 16} \mod 29$$

 $\equiv 37^{16} \mod 29$
 $\equiv 8^{16} \mod 29$
 $\equiv 23 \mod 29$.

5. Compute the last two digits of 9^{1500} .

Here you want to compute $9^{1500} \mod 100$, so we first compute that $\varphi(100) = 40$.

$$9^{1500} \mod 100 \equiv 9^{20} \mod 100$$

 $\equiv 3^{40} \mod 100$
 $\equiv 1 \mod 100.$

It follows that the last two digits are 01.

Homework #2

Section 2.1

6. Give an example of a non-Abelian group G in which the set of torsion elements of G is not a subgroup. Example: Consider the group $GL_2(\mathbb{R})$.

There are lots of examples in this group. For instance, $\begin{vmatrix} 0 & -1 \\ 1 & -1 \end{vmatrix} = 3$, $\begin{vmatrix} 0 & -1 \\ 0 & 1 \end{vmatrix} = 4$, but their product is not a torsion element. (Check this.)

Section 2.2

4. For each of S_3 , D_8 , and Q_8 compute the centralizers of each element and find the center of each group. Does Lagrange's theorem help with the computations?

(a)
$$S_3 = \{1, (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\}$$

$$C_{S_3}(\{1\ \}) = S_3$$

$$C_{S_3}(\{1\ 2\}) = \langle (1\ 2)\rangle$$

$$C_{S_3}(\{1\ 3\}) = \langle (1\ 3)\rangle$$

$$C_{S_3}(\{2\ 3\}) = \langle (2\ 3)\rangle$$

$$C_{S_3}(\{(132)\}) = \langle (123)\rangle = C_{S_3}(\{(132)\}).$$

$$\begin{array}{rcl} (\mathbf{b}) \ \ Q_8 = \{1,-1,i,-i,j,-j,k,-k\} \\ & C_{Q_8}(\{1\}) & = \ Q_8 \\ & C_{Q_8}(\{-1\}) & = \ Q_8 \\ & C_{Q_8}(\{i\}) & = \ \{1,-1,i,-i\} = \langle i \rangle \\ & C_{Q_8}(\{j\}) & = \ \{1,-1,j,-j\} = \langle j \rangle \\ & C_{Q_8}(\{k\}) & = \ \{1,-1,k,-k\} = \langle k \rangle \\ & C_{Q_8}(\{-i\}) & = \ \{1,-1,j,-j\} = \langle j \rangle \\ & C_{Q_8}(\{-k\}) & = \ \{1,-1,k,-k\} = \langle k \rangle \end{array}$$

$$\begin{array}{lll} \text{(c)} & D_8 = \{1, \ r, \ r^2, \ r^3, \ s, \ sr, \ sr^2, \ sr^3\} \\ & & C_{D_8}(\{1\}) & = & D_8 \\ & & C_{D_8}(\{r\}) & = & \{1, \ r, \ r^2, \ r^3\} = \langle r \rangle \\ & & C_{D_8}(\{r^2\}) & = & \{1, \ r, \ r^2, \ r^3, \ s, \ sr, \ sr^2, \ sr^3\} = D_8 \\ & & C_{D_8}(\{r^3\}) & = & \{1, \ r, \ r^2, \ r^3\} = \langle r \rangle \\ & & C_{D_8}(\{s\}) & = & \{1, \ r^2, \ s, \ sr^2\} = \langle s, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ s, \ sr^2\} = \langle s, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = & \{1, \ r^2, \ sr, \ sr^3\} = \langle rs, \ r^2 \rangle \\ & & C_{D_8}(\{sr^3\}) & = &$$

(d) $D_{16} = \{1, r, r^2, r^3, r^4, r^5, r^6, r^7, s, sr, sr^2, sr^3, sr^4, sr^5, sr^6, sr^7\}$ — really for problem 6 in Section 2.5

$$C_{D_{16}}(\{1\}) = D_{16}$$

$$C_{D_{16}}(\{r\}) = \{1, r, r^2, r^3, r^4, r^5, r^6, r^7\} = \langle r \rangle$$

$$C_{D_{16}}(\{r^2\}) = \{1, r, r^2, r^3, r^4, r^5, r^6, r^7\} = \langle r \rangle$$

$$C_{D_{16}}(\{r^3\}) = \{1, r, r^2, r^3, r^4, r^5, r^6, r^7\} = \langle r \rangle$$

$$C_{D_{16}}(\{r^4\}) = \{1, r, r^2, r^3, r^4, r^5, r^6, r^7\} = \langle r \rangle$$

$$C_{D_{16}}(\{r^5\}) = \{1, r, r^2, r^3, r^4, r^5, r^6, r^7\} = \langle r \rangle$$

$$C_{D_{16}}(\{r^6\}) = \{1, r, r^2, r^3, r^4, r^5, r^6, r^7\} = \langle r \rangle$$

$$C_{D_{16}}(\{r^6\}) = \{1, r, r^2, r^3, r^4, r^5, r^6, r^7\} = \langle r \rangle$$

$$C_{D_{16}}(\{r^7\}) = \{1, r, r^2, r^3, r^4, r^5, r^6, r^7\} = \langle r \rangle$$

$$C_{D_{16}}(\{s\}) = \{1, r^4, s, sr^4\} = \langle s, r^4 \rangle$$

$$C_{D_{16}}(\{sr\}) = \{1, r^4, sr, sr^5\} = \langle sr^5, r^4 \rangle$$

$$C_{D_{16}}(\{sr^3\}) = \{1, r^4, sr^3, sr^7\} = \langle sr^3, r^4 \rangle$$

$$C_{D_{16}}(\{sr^4\}) = \{1, r^4, sr^4, s\} = \langle s, r^4 \rangle$$

$$C_{D_{16}}(\{sr^5\}) = \{1, r^4, sr, sr^5\} = \langle sr^5, r^4 \rangle$$

$$C_{D_{16}}(\{sr^5\}) = \{1, r^4, sr, sr^5\} = \langle sr^5, r^4 \rangle$$

$$C_{D_{16}}(\{sr^5\}) = \{1, r^4, sr, sr^5\} = \langle sr^5, r^4 \rangle$$

$$C_{D_{16}}(\{sr^5\}) = \{1, r^4, sr, sr^5\} = \langle sr^5, r^4 \rangle$$

$$C_{D_{16}}(\{sr^5\}) = \{1, r^4, sr, sr^5\} = \langle sr^5, r^4 \rangle$$

$$C_{D_{16}}(\{sr^5\}) = \{1, r^4, sr, sr^5\} = \langle sr^5, r^4 \rangle$$

$$C_{D_{16}}(\{sr^5\}) = \{1, r^4, sr, sr^5\} = \langle sr^5, r^4 \rangle$$

$$C_{D_{16}}(\{sr^5\}) = \{1, r^4, sr, sr^5\} = \langle sr^5, r^4 \rangle$$

- 6. Let H be a subgroup of G.
 - (a) Show that $H \leq N_G(H)$.

COMMENTS: To establish this, it is enough to show that $H \subseteq N_G(H)$ since we already know that H is a subgroup. (This follows immediately from the definition of $N_G(H)$.) Don't waste your words.

8. Let $G = S_n$, fix an $i \in \{1, 2, ..., n\}$ and let $G_i = \{\sigma \in G \mid \sigma(i) = i\}$ (the stabilizer of i). Use group actions to show that G_i is a subgroup of G.

COMMENTS: Let G act on $A = \{1, ..., n\}$ by $\sigma \cdot i = \sigma(i)$. Then by problem 4a in Section 1.7, the stabilizer of any point in A is a subgroup of G. (I.e. once you establish that this is a group action, you are done....)

It is helpful to notice that G_i acting on A is an action isomorphic to S_{n-1} acting on $A \setminus \{i\}$. This lets us see that $|G_i| = (n-1)!$. Alternatively, just think about G_i ; it consists of all permutations of n that don't move i. Thus, it consists of all possible permutations on $A' = \{1, \ldots, i-1, i+1, \ldots, n\}$.

Section 2.3

8. Let $\mathbb{Z}_{48} = \langle x \rangle$ be a cyclic group of order 48. For which integers a does the map $\phi_a : \overline{1} \mapsto x^a$ extend to an isomorphism from $\mathbb{Z}/48\mathbb{Z}$ onto Z_{48} ?

Solution: The map ϕ_a above extends to a well-defined homomorphism if, and only if, (a, 48) = 1, *i.e.* the generator $\overline{1}$ must be sent to a generator.

Proof. Define the map ϕ_a by

$$\phi_a(\overline{m}) = x^{am}, \quad \forall \overline{m} \in \mathbb{Z}/48\mathbb{Z}.$$

We must show that ϕ_a is well-defined and an isomorphism exactly when a and 48 are relatively prime. Note that if ϕ_a is well-defined, then it will also be a homomorphism since then

$$\phi_a(\overline{mn}) = x^{aman} = x^{am}x^{an} = \phi_a(\overline{m})\phi_a(\overline{n}).$$

To show that ϕ_a is well-defined, suppose that $\overline{m} = \overline{m}' \in \mathbb{Z}/48\mathbb{Z}$. Then $\exists k \in \mathbb{Z}$ so that m' = m + 48k. Thus, $\phi_a(\overline{m}') = x^{am'} = x^{a(m+48k)} = x^{am}x^{a48k} = x^{am}$ in Z_{48} . So $\phi_a(m) = \phi_a(m')$, as needed.

9. Let $Z_{36} = \langle x \rangle$ be a cyclic group of order 36. For which integers a does the map $\psi_a : \bar{1} \mapsto x^a$ extend to a well-defined homomorphism from $\mathbb{Z}/48\mathbb{Z}$ into Z_{36} ?

Comments: The insight for this problem is that $\bar{1}$, the generator of $\mathbb{Z}/48\mathbb{Z}$, must be mapped by ψ_a to an element of order dividing 48 in Z_{36} . Thus, $|x^a| \mid 48$. We also know that $|x^a| = \frac{36}{(36,a)}$ in Z_{36} . Putting this together, we have that $\frac{36}{(36,a)} \mid 48$. For this to be true, we must have that $3 \mid (36,a)$, or equivalently that $3 \mid a$, since $9 \mid 36$, but $3 \mid 48$.

Solution: The map ψ_a above extends to a well-defined homomorphism if, and only if, $3 \mid a$.

Proof. Define the map ψ_a by

$$\psi_a(\bar{m}) = x^{am}, \ \forall \bar{m} \in \mathbb{Z}/48\mathbb{Z}.$$

Let $\bar{m} = \bar{m}' \in \mathbb{Z}/48\mathbb{Z}$. Then, there is an integer k so that m' = m + 48k. We have

$$\psi_{a}(\bar{m}) = \psi_{a}(\bar{m}')$$

$$\iff x^{am} = x^{am'}$$

$$\iff x^{am} = x^{a(m+48k)}$$

$$\iff x^{am} = x^{am}x^{48ka}$$

$$\iff 1 = x^{48ka} \text{ in } Z_{36} \text{ by left cancellation}$$

$$\iff 36 \mid 48ka$$

$$\iff 36 \mid 48a$$

since x has order 36 in Z_{36} and k depended on the representative m' for \bar{m} chosen. Finally, 36 $\mid 48a \iff 3 \mid a$.