

• Confidential Computing (NVIDIA, Amazon, Microsoft)

- Confidential Computing (NVIDIA, Amazon, Microsoft)
- Trusted Computing

- Confidential Computing (NVIDIA, Amazon, Microsoft)
- Trusted Computing
- Trustlets (ARM)

- Confidential Computing (NVIDIA, Amazon, Microsoft)
- Trusted Computing
- Trustlets (ARM)
- Zero trust

- Confidential Computing (NVIDIA, Amazon, Microsoft)
- Trusted Computing
- Trustlets (ARM)
- Zero trust
- Enclave (Intel)

- Confidential Computing (NVIDIA, Amazon, Microsoft)
- Trusted Computing
- Trustlets (ARM)
- Zero trust
- Enclave (Intel)
- Secure VM (AMD, IBM)

Trusted Execution Environments

Trusted Execution Environment

3/22

TRUSTED® COMPUTING GROUP

TRUSTED® COMPUTING GROUP

GLOBALPLATFORM®

GLOBALPLATFORM®

Trusted Execution Environment: What It Is, and What It Is Not

Mohamed Sabt*[†], Mohammed Achemlal*[†] and Abdelmadjid Bouabdallah[†]

*Orange Labs, 42 rue des coutures, 14066 Caen, France
{mohamed.sabt, mohammed.achemlal}@orange.com

†Greye ENSICAEN, 6 Bd Maréchal Juin, 14050 Caen, France

†Sorbonne universités, Université de technologie de Compiègne,
Heudiasyc, Centre de recherche Royallieu, 60203 Compiègne, France
{mohamed.sabt, madjid.bouabdallah}@hds.utc.fr

System Security Group

TEEs

The Features of TEEs

- Verifiable Launch
- Runtime Isolation
- Cryptographic Memory Protection
- Secure Storage
- Trusted IO
- Physical Adversary?
- Migration
- etc.

Verifiable Launch: Static vs Dynamic Boot

Verifiable Launch: Static vs Dynamic Boot

7/22

Dynamic Booted TCB

Core

Core

Caches

Core

Caches

Memory

Temporal partitioning

Temporal partitioning

Temporal partitioning

Temporal partitioning

Temporal partitioning

Spatial partitioning

Resource

Resource

Temporal partitioning

Spatial partitioning

Resource

Resource

Temporal partitioning

Resource

Spatial partitioning

Temporal partitioning Resource Resource Spatial partitioning Resource Resource Resource Resource

Temporal partitioning

Resource

Spatial partitioning

Spatio-Temporal partitioning

Temporal partitioning Resource Resource Spatial partitioning Resource Resource Resource

Temporal partitioning

Resource

Spatial partitioning

Spatio-Temporal partitioning

Cryptographic Enforcement:

13/22

Cryptographic Enforcement:

System Security Group

Resource

13/22

Cryptographic Enforcement:

Resource

Cryptographic Enforcement:

Cryptographic Enforcement:

- · Accesses always succeed
- Confidentiality through encryption
- Integrity through MACs/MerkleTrees

Cryptographic Enforcement:

- · Accesses always succeed
- Confidentiality through encryption
- Integrity through MACs/MerkleTrees

- Access policy enforced by hardware
- Confidentiality and Integrity guaranteed

Core Isolation

	Name	Isol Strat	Privilege Level	
			Enclave	Software TCB
	Intel SGX [23, 2]	T-L	Арр	-
>	Intel TDX [8]	T-L	VM	PL1
ndustry	AMD SEV-SNP[17]	T-L	VM	-
ď	ARM TZ[1]	T-L	App/VM	PL0+(PL1/2)
_	ARM CCA [3]	T-L	VM	PL0+(PL1)
	IBM PEF [14]	T-L	VM	PL0
	Flicker [21]	T-L	VM	-
	SEA [22]	T-L	VM	-
	SICE [4]	T-L	VM	PL0
	PodArch [26]	T-L	App	-
	HyperCoffer [32]	T-L	VM	PL0
	H-SVM [15, 16]	T-L	VM	-
	EqualVisor [10]	T-L	VM	PL1
	xu-cc15 [33]	T-L	App	-
	wen-cf13 [31]	T-L	VM	-
	Komodo [13]	T-L	App	PL0 + PL2
æ	SANCTUARY [6]	T-L	App	PL0 + PL2
Ë	TrustICE [28]	T-L	App	PL0 + PL2
Academia	HA-VMSI [34]	T-L	VM	PL0
Š	Sanctum [9]	T-L	App	PL0
_	TIMBER-V [30]	T-L	App	PL0
	Keystone [19]	T-L	App	PL0
	Penglai [12]	T-L	App	PL0
	CURE [5]	T-L	App/VM	PL0
	Iso-X [11]	T-L	App	-
	HyperWall [29]	T-L	VM	-
	Sancus [25, 24]	T-L	App	-
	TrustLite [18]	T-L	App	PL0
	TyTan [7]	T-L	App	PL0
	XOM [20]	T-L	App	-
	AEGIS [27]	T-L	App	-

Core Isolation

Name		Isol	Privilege Level			
	Name	Strat	Enclave	Software TCB		
Industry	Intel SGX [23, 2]	T-L	App	-		
	Intel TDX [8]	T-L	VM	PL1		
	AMD SEV-SNP[17]	T-L	VM	-		
	ARM TZ[1]	T-L	App/VM	PL0+(PL1/2)		
	ARM CCA [3]	T-L	VM	PL0+(PL1)		
	IBM PEF [14]	T-L	VM	PL0		
	Flicker [21]	T-L	VM	-		
	SEA [22]	T-L	VM	-		
	SICE [4]	T-L	VM	PL0		
	PodArch [26]	T-L	App	-		
	HyperCoffer [32]	T-L	VM	PL0		
	H-SVM [15, 16]	T-L	VM	-		
	EqualVisor [10]	T-L	VM	PL1		
	xu-cc15 [33]	T-L	App	-		
	wen-cf13 [31]	T-L	VM	-		
	Komodo [13]	T-L	App	PL0 + PL2		
Ø	SANCTUARY [6]	T-L	App	PL0 + PL2		
Ē	TrustICE [28]	T-L	App	PL0 + PL2		
ğ	HA-VMSI [34]	T-L	VM	PL0		
Academia	Sanctum [9]	T-L	App	PL0		
_	TIMBER-V [30]	T-L	App	PL0		
	Keystone [19]	T-L	App	PL0		
	Penglai [12]	T-L	App	PL0		
	CURE [5]	T-L	App/VM	PL0		
	Iso-X [11]	T-L	App	-		
	HyperWall [29]	T-L	VM	-		
	Sancus [25, 24]	T-L	App	-		
	TrustLite [18]	T-L	App	PL0		
	TyTan [7]	T-L	App	PL0		
	XOM [20]	T-L	App	-		
	AEGIS [27]	T-L	App	-		

Memory Isolation

Memory Isolation against a Software Adversary*

Cache Isolation

Cache Isolation against a Software Adversary*

Shared Cache Isolation over Time

Shared Cache Isolation over Time

Memory Isolation against a Physical Adversary

What about other Devices?

Graviton: Trusted Execution Environments on GPUs

Stavros Volos Kapil Vaswani Microsoft Research Microsoft Research Rodrigo Bruno

INESC-ID / IST, University of Lisbon

What about other Devices?

Graviton: Trusted Execution Environments on GPUs

Stavros Volos Microsoft Research Kapil Vaswani Microsoft Research Rodrigo Bruno
INESC-ID / IST, University of Lisbon

Heterogeneous Isolated Execution for Commodity GPUs

Insu Jang insujang@calab.kaist.ac.kr School of Computing, KAIST Daejeon, Republic of Korea Adrian Tang atang@cs.columbia.edu Department of Computer Science, Columbia University New York, NY, USA Taehoon Kim thkim@calab.kaist.ac.kr School of Computing, KAIST Daejeon, Republic of Korea

Simha Sethumadhavan simha@cs.columbia.edu Department of Computer Science, Columbia University New York, NY, USA Jaehyuk Huh jhhuh@kaist.ac.kr School of Computing, KAIST Daejeon, Republic of Korea

What about other Devices?

Graviton: Trusted Execution Environments on GPUs

NVIDIA CONFIDENTIAL COMPUTING

Secure data and Al models in use.

School of Computing, KAIST Daejeon, Republic of Korea Department of Computer Science, Columbia University School of Computing, KAIST Daejeon, Republic of Korea

Simha Sethumadhavan simha@cs.columbia.edu Department of Computer Science, Columbia University New York, NY, USA Jaehyuk Huh jhhuh@kaist.ac.kr School of Computing, KAIST Daejeon, Republic of Korea

System Security Group

20/22

Cache Isolation Strategies

• CPU TEEs largely figured out

22/22

- CPU TEEs largely figured out
 - A lot of reinvention

22/22

- CPU TEEs largely figured out
 - A lot of reinvention
 - How to increase transparency?

- CPU TEEs largely figured out
 - A lot of reinvention
 - How to increase transparency?
 - Performance improvements still possible

22/22

- CPU TEEs largely figured out
 - A lot of reinvention
 - How to increase transparency?
 - Performance improvements still possible
- TEEs on different architectures still in its infancy

- CPU TEEs largely figured out
 - A lot of reinvention
 - How to increase transparency?
 - Performance improvements still possible
- TEEs on different architectures still in its infancy
- How to combine TEEs on multiple devices?

