The weak 3-flow conjecture and the weak circular flow conjecture (C. Thomassen)

Kathlén Kohn

Sei G ein Multigraph ohne Schleifen.

1 Motivation

Definition 1.1. • Eine Orientierung D von G heißt Tutte-Orientierung, falls

$$\forall x \in V(G) : d_D^-(x) \equiv d_D^+(x) \mod 3.$$

• G erlaubt alle verallgemeinerten Tutte-Orientierungen, falls es für alle $p:V(G)\to\mathbb{Z}$ mit $\sum_{x\in V(G)}p(x)\equiv |E(G)|\mod 3$ eine Orientierung D gibt, so dass

$$\forall x \in V(G) : d_D^+(x) \equiv p(x) \mod 3.$$

Vermutung 1.3 (3-Flow Conjecture, Tutte). Jeder 4-kantenzusammenhängende Graph hat eine Tutte-Orientierung.

Theorem 1.4. Jeder 8-kantenzusammenhängende Graph erlaubt alle verallgemeinerten Tutte-Orientierungen.

Vermutung 1.5 (Circular Flow Conjecture, Jaeger). Sei $k \in \mathbb{N}$ ungerade. Jeder (2k-2)-kantenzusammenhängende Graph hat eine Orientierung D, so dass

$$\forall x \in V(G) : d_D^-(x) \equiv d_D^+(x) \mod k.$$

Theorem 1.6. Sei $k \in \mathbb{N}$. Jeder $(2k^2 + k)$ -kantenzusammenhängende Graph hat für alle $p:V(G) \to \mathbb{Z}$ mit $\sum_{x \in V(G)} p(x) \equiv |E(G)| \mod k$ eine Orientierung D, so dass

$$\forall x \in V(G) : d_D^+(x) \equiv p(x) \mod k.$$

Vermutung 1.7 (Tree-Decomposition Conjecture, Bárat/Thomassen). Für jeden Baum T gibt es ein $k_T \in \mathbb{N}$, so dass jeder k_T -kantenzusammenhängende einfache Graph G mit $|E(T)| \mid |E(G)|$ eine T-Zerlegung besitzt (d.h. eine disjunkte Zerlegung von E(G) in zu T isomorphe Teilgraphen).

Theorem 1.8. • $T = K_{1,3} \Rightarrow k_T = 8$

•
$$T = K_{1,k}$$
 mit $k \ge 4 \Rightarrow k_T = 2k^2 + k$

2 Hauptergebnis

Sei $k \in \mathbb{N}$, $k \geq 2$ und $p: V(G) \to \mathbb{Z}$.

Definition 2.1. Sei $A \subseteq V(G)$ mit $d(A) := |\{\{x, y\} \in E(G) \mid x \in A, y \notin A\}| \ge k$.

- $p(A) := \sum_{x \in A} p(x) |E(G[A])|.$
- $t(A) := \min \{ m \in \mathbb{N}_0 \mid \exists l \in \mathbb{N}_0 : m + 2l = d(A), p(A) \in \{l, m + l\} \mod k \} \in \{0, \dots, k\}.$
- A ist positiv bzw. negativ, falls $p(A) \equiv t(A) + \frac{d(A) t(A)}{2} \mod k$ bzw. $p(A) \equiv \frac{d(A) t(A)}{2} \mod k$.

Sei $z_0 \in V(G)$, so dass $e \in E(G)$ gerichtet ist gdw. $z_0 \in e$ ist, und ferner $d^+(z_0) \equiv p(z_0) \mod k$ gilt.

Theorem 2.3. Es sei k = 3 und

- 1. $|V(G)| \ge 3$,
- 2. $1 \le d(z_0) \le 11$,
- 3. für alle $A \subseteq V(G)$ mit $A \neq \emptyset$, $z_0 \notin A$ und $|V(G) \setminus A| \geq 2$ gelte $d(A) \geq 6 + t(A)$,
- 4. $\sum_{x \in V(G)} p(x) \equiv |E(G)| \mod 3.$

Dann existiert eine Orientierung D, die bereits gerichtete Kanten behält, mit

$$\forall x \in V(G) : d_D^+(x) \equiv p(x) \mod 3,$$

es sei denn es ist $V(G-z_0)=A\dot{\cup}B$ mit einer Brücke zwischen A und B sowie $p(A)\equiv |\{(x,z_0)\in E(G)\mid x\in A\}|+2$ mod 3 (Bezeichnung: problematische Brücke).

Theorem 2.4. Es sei $k \ge 4$ und

- 1. $|V(G)| \ge 3$,
- 2. $1 \le d(z_0) \le 3k^2 + 6k 13$,
- 3. für alle $A\subseteq V(G)$ mit $A\neq\emptyset,\ z_0\notin A$ und $|V(G)\setminus A|\geq 2$ gelte $d(A)\geq 2k^2+t(A),$
- 4. $\sum_{x \in V(G)} p(x) \equiv |E(G)| \mod k.$

Dann existiert eine Orientierung D, die bereits gerichtete Kanten behält, mit

$$\forall x \in V(G) : d_D^+(x) \equiv p(x) \mod k.$$