1. Structure Theorem for finitely generated abelian groups

- (1) How many number of non isomorphic abelian groups are there of order 320. Write down the invariant decomposition and also the elementary decomposition for each of the groups.
- (2) Let G and H be finite groups. Let |g| = m for $g \in G$ and |h| = n for $h \in H$. Then prove that |(g,h)| = l.c.m(m,n) for $(g,h) \in G \times H$.
- (3) Which pair of abelian groups are isomorphic from the list below, where the expression $\{a_1, \ldots, a_k\}$ denote the abelian group $\mathbb{Z}_{a_1} \times \ldots \times \mathbb{Z}_{a_k}$.

- (4) Let G be a finite abelian group with invariant factor type (n_1, \ldots, n_t) . Prove that G contains an element of order m if $m|n_1$.
- (5) Suppose that G is a finite abelian group that has exactly one subgroup for each divisor of |G|. Show that G is cyclic.