

Zadanie Ogrodzenie – LOGIA 23 (2022/23), etap 2

Treść zadania

Zosia zaprojektowała ogrodzenie dookoła swojego ogrodu. Składa się ono z paneli różnej wysokości. Zapomniała jednak o dwóch furtkach, które planowała umieścić w ogrodzeniu. Zastanawia się teraz, które panele opłaca się zastąpić furtkami. Chce wymienić dwa panele na furtki, ale tak, by furtki nie sąsiadowały ze sobą oraz koszt ogrodzenia był jak najniższy. Koszt panelu jest równy jego wysokości, a furtki Zosia otrzymała w prezencie za darmo. Napisz program, który obliczy koszt ogrodzenia po wymianie paneli na furtki.

Weiście

Pierwszy wiersz wejścia zawiera jedną liczbę naturalną \mathbf{n} oznaczającą liczbę paneli w ogrodzeniu, $5 \le \mathbf{n} \le 1000$.

Drugi wiersz zawiera **n** liczb naturalnych z przedziału [1; 10000] rozdzielonych spacją, opisujących wysokości kolejnych paneli w ogrodzeniu.

Wyjście

Liczba naturalna – minimalny koszt ogrodzenia.

Przykłady:

Wejście	10	5	5
	5567385353	55578	75558
Wyjście	35	17	17
Komentarz	furtki zastąpiły panele	furtki zastąpiły panele	furtki zastąpiły panele
	o wysokości 7 i 8 koszt	o wysokościach 5 i 8	o wysokościach 5 i 8
	ogrodzenia:	uwaga: panele	uwaga: panele
	5+5+6+0+3+0+5+3+	o wysokościach 7 i 8	o wysokościach 7 i 8
	5 + 3 = 35	sąsiadują ze sobą!	sąsiadują ze sobą!

Omówienie rozwiązania

Na pierwszy rzut oka rozwiązanie polega na znalezieniu dwóch maksymalnych wartości w podanym ciągu. Niestety jest jeden dodatkowy warunek – poszukiwane wartości nie mogą ze sobą sąsiadować. Dotyczy to również pierwszego i ostatniego elementu. Czy uwzględniając dodatkowy warunek wystarczy poszukać trzech maksymalnych wartości? Otóż nie. Poniższy przykład to demonstruje:

1 100 10000 101 2

Wyszukując trzy największe wartości otrzymamy 10000, 101 i 100. Po uwzględnieniu dodatkowego warunku wybieramy liczby 100 i 101 (nie sąsiadują ze sobą) i w wyniku otrzymujemy 10003 (1 + 10000 + 2). Nie jest to poprawna odpowiedź, ponieważ bardziej opłaca się usunąć z ciągu

10000 i 2. Wtedy wynik to 203 (1 + 100 + 101). Z tej prostej obserwacji wynika, że do ustalenia poprawnego wyniku poszukujemy czterech największych wartości, spośród których wybierzemy dwie niesąsiadujące ze sobą o maksymalnej sumie. Żeby prawidłowo ustalić wynik musimy oprócz liczby zapamiętywać również jej pozycję w ogrodzeniu.

Zacznijmy od najwolniejszego rozwiązania. Zbadajmy wszystkie pary liczb niesąsiadujących ze sobą w poszukiwaniu maksymalnej sumy dwóch liczb.

```
 \begin{array}{l} \text{maksymalna} \leftarrow 0 \\ \text{dla i od 0 do n - 3 wykonuj} \\ \text{dla j od i + 2 do n - 1 wykonuj} \\ \text{jeżeli nie (i = 0 oraz j = n - 1) oraz p[i] + p[j]} > \text{maksymalna to} \\ \text{maksymalna = p[i] + p[j]} \\ \end{array}
```

Rozwiązanie w języku Python

```
1 n = int(input())
 2 lista = input().split()
 [] = q 
 4 \text{ suma} = 0
 5 for i in range(n):
       p.append(int(lista[i]))
       suma = suma + int(lista[i])
 8 \text{ maksymalna} = 0
 9 for i in range (n - 2):
10
       for j in range (i + 2, n):
            if not (i==0 and j==n-1) and p[i] + p[j] > maksymalna:
11
12
                maksymalna = p[i] + p[j]
13 print(suma-maksymalna)
```

Powyższe rozwiązanie jest proste do implementacji i ma złożoność czasową wystarczającą do danych z treści zadania (1000 liczb).

Szybsze rozwiązanie sprowadza się do znalezienia czterech największych wartości.

```
1 \text{ maks4} = [[0, 0], [0, 0], [0, 0], [0, 0]]
 2 for i in range(n):
       if p[i] > maks4[0][0]:
 4
           maks4.insert(0, [p[i], i])
 5
           maks4.pop()
       elif p[i] > maks4[1][0]:
 7
           maks4.insert(1, [p[i], i])
 8
           maks4.pop()
 9
       elif p[i] > maks4[2][0]:
           maks4.insert(2, [p[i], i])
10
11
           maks4.pop()
12
       elif p[i] > maks4[3][0]:
13
           maks4.insert(3, [p[i], i])
14
           maks4.pop()
```

Zauważmy, że tylko raz przeglądaliśmy zbiór danych.

Po ustaleniu czterech największych wartości (lista maks4) można sprawdzić, które liczby będą stanowiły rozwiązanie. Do rozpatrzenia jest sześć par (0, 1), (0, 2), (0, 3), (1, 2), (1, 3) i (2, 3).

Poniżej kod całego programu.

```
1 n = int(input())
 2 lista = input().split()
 3 p = []
 4 \text{ suma} = 0
 5 for i in range(n):
       p.append(int(lista[i]))
       suma = suma + int(lista[i])
 8 \text{ maks4} = [[0, 0], [0, 0], [0, 0], [0, 0]]
 9 for i in range(n):
10
       if p[i] > maks4[0][0]:
11
           maks4.insert(0, [p[i], i])
12
           maks4.pop()
13
       elif p[i] > maks4[1][0]:
           maks4.insert(1, [p[i], i])
15
           maks4.pop()
16
       elif p[i] > maks4[2][0]:
17
           maks4.insert(2, [p[i], i])
18
           maks4.pop()
19
       elif p[i] > maks4[3][0]:
20
           maks4.insert(3, [p[i], i])
21
           maks4.pop()
22 \text{ maksymalna} = 0
23 for i in range(3):
       for j in range(i + 1, 4):
24
25
            if (not (maks4[i][1]==0 and maks4[j][1]==n-1)) and
               (not (maks4[i][1]==n-1 \text{ and } maks4[j][1]==0)) and
               abs(maks4[i][1] - maks4[j][1]) > 1 and
               maks4[i][0] + maks4[j][0] > maksymalna:
                   maksymalna = maks4[i][0] + maks4[j][0]
26
27 print(suma-maksymalna)
```


Testy

Rozwiązanie należy przetestować najpierw na przykładach z treści zadania, następnie na większych danych. Podczas konkursu zdanie było testowane na następujących grupach testów.

Grupa testów	Test	Wynik	Uwagi
	6	10	dwie największe
	126354		wartości (brak
	6	100	sąsiedztwa, bez
I	40 50 30 60 20 10		brzegu)
	6	1000	
	100 500 200 300 600 400		
	6	103	sąsiedztwo dwie
	2 99 100 1 98 1		największe, bez
П	11	187	brzegu
11	7 7 123 122 8 8 8 9 9 99 9		
	20	481	
	2 456 1000 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1		
	6	103	sąsiedztwo dwie
	100 1 98 2 1 99		największe na brzegu
	60	566	
	500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	111111111111111111111498111		
Ш	11111111499		
	100	824	
	298234567898765432345678987		
	65432345678987654323456789		
	300 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 3 4 5 6 7 8 9 8 7		
	65432345678987654323456299		
	6	199	trzy największe obok
	1 99 10000 98 2 1		siebie, bez brzegu
	100	705	
	823456789876543234567898765		największe na brzeg
	4323456789876543234567890110		
	100 3 4 5 6 7 8 79 8 7 6 5 4 3 2 3 4 5 6 7 8 9 8 7 6		
	54323456789876543234562		
	1000	8051	
IV	823456789876543234567898765		
	4323456789118765432345678980		
	10000 999 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8 3 4		
	567834567811887654323456789		
	876543234567898765432345623		
	456789876876543234567898765		
	432345678987654323456234567		
	898768765432345678987654323		
	456789876543234562345678987		
	687654323456789876543234567		

	898765432345623456789876876 543234567898765432345678987 6543234562345678987651187654 323456789876543234567898765 432345623456789876543232 345678987654323456234567898 7687654323456789876543234567898 7654323456789876543234567898 7654323456789876543234567898		
	543234562345678987687654323 45678987654323456789876543234567 8987654323456789876543234567 2345678987654323456789 876543234567898765432323456789 876543234567898765432345678987654 3234567898765432345678987654 32345623456789876876543234 567891187654323456789876543 234562345678987687654323456		
	789876543234567898765432345 623456789876876543234567898 765432345678987654323456234 567118987687654323456789876 543234567898765432345623456 789876876543234567891187654 323456234567898768765	199	trzy największe obok
	10000 98 2 1 1 99 100 99 3 4 5 6 7 8 79 8 7 6 5 4 3 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 3 4 5 6 2 3 4 5 6 7 8 9 8 7 6 8 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 3 4 5 6 7 8 9 8 7 8 100 110 1000	723	siebie, dwie na brzegu
V	999345678345678345678345678 345678118876543234567898765 43234567898765432345678987654323 4567898765432345678987654323 45678987654323456789876543234567 89876543234567898765432345678987 654323456789876543234567898765432 3456789876543234567898765432 345678987654323456789876543234 5678987654323456789876543234		

456234567898768765432323456	
789876543234562345678987687	
654323456789876543234567898	
765432345623456789876876543	
234567898765432345678987654	
323456234567118987687654323	
456789876543234567898765432	
345623456789876876543234567	
898765432345678987654323456	
234567898768765432345678987	
654323456789876543234562345	
678987687654323234567898765	
432345623456789876876543234	
567898765432345678987654323	
456234567898768765432345678	
911876543234567898765432345	
623456789876876543234567898	
765432345678987654323456234	
567898768765432345678987654	
32345678987654323456234567	
118987687654323456789876543	
234567898765432345623456789	
876876543234567891187654323	
456234567898768765823456789	
876543234567898765432345678	
9 118 7 6 5 4 3 2 3 4 5 6 7 8 980 10000	

