

Patent Office Canberra

REC'D 13 APR 2004

WIPO PCT

I, JULIE BILLINGSLEY, TEAM LEADER EXAMINATION SUPPORT AND SALES hereby certify that annexed is a true copy of the Provisional specification in connection with Application No. 2003901301 for a patent by UNITRACT SYRINGE PTY LTD as filed on 20 March 2003.

WITNESS my hand this Fifth day of April 2004

JULIE BILLINGSLEY

TEAM LEADER EXAMINATION

SUPPORT AND SALES

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

P/00/009 Regulation 3.2

AUSTRALIA

Patents Act 1990

PROVISIONAL SPECIFICATION

Invention Title: "SYRINGE SPRING RETAINER"

The invention is described in the following statement:

TITLE

SYRINGE SPRING RETAINER

FIELD OF THE INVENTION

THIS INVENTION relates to a spring retainer for a syringe. More particularly, this invention relates to a spring retainer for a single-use, retractable syringe that facilitates prevention of syringe and/or needle re-use

BACKGROUND OF THE INVENTION

The problems of shared syringes are notorious. The practice of sharing syringes without adequate sterilisation between successive users is a major contributor to the transfer of Human Immunodeficiency Virus and Hepatitis with subsequent severe repercussions for the sufferer of such diseases and at a high cost to society of supporting and providing medical attention to those sufferers.

A lesser but still significant risk associated with unclean needles and syringes arises from the possibility of inadvertent needle-stick injuries. This is particularly a problem for law enforcement officers and paramedics who often encounter users of illegal drugs in their professional activities. Additionally, the habits of illegal drug users are such that dangerous byproducts of their activities, such as discarded syringes, are often left in places of public access presenting a risk to the users of areas such as public parks and school grounds.

International Publication WO 01/80930 describes a single-use retractable syringe that is highly effective in preventing syringe re-use by ensuring full depression of the plunger during fluid delivery and by ensuring permanent withdrawal of the needle by the plunger back into the syringe barrel. In particular, retractable syringes such as described in International Publication WO 01/80930, Australian Patent 731159 and United States Patent 6,083,199 employ a

20

25

5

10

15

spring to facilitate needle retraction and thereby prevent syringe re-use.

5

10

15

However, resistance by the spring during plunger depression provides an undesirable "feel" to some syringe users, such as intravenous drug users.

SUMMARY OF THE INVENTION

Therefore, in a broad form the present invention provides a spring retainer for a syringe that provides efficient retraction of a spent needle into the barrel of a retractable syringe while also having improved tactile properties to a syringe user.

In one aspect, the invention provides a spring retainer for a syringe having a barrel and a plunger, in use said spring retainer located externally of said barrel and in a slidable relationship with said plunger.

In another aspect, the invention provides a spring retainer for a syringe having a barrel and a plunger comprising at least one shoulder, said spring retainer comprising a housing and a spring compressed therein, said at least one shoulder of said plunger engageable with said housing to trigger withdrawal of said plunger by decompression of said spring.

In yet another aspect, the invention provides a syringe having a spring retainer according to any of the aforementioned aspects.

Preferably, said spring retainer comprises a spring and a housing, in use located externally of said barrel and in slidable relationship with said plunger.

20 Preferably, in use said housing retains said spring in a compressed state.

Suitably, the syringe has a retractable needle.

Preferably, the syringe has a retractable needle that can be engaged by said plunger to facilitate retraction of the needle.

A preferred embodiment of a retractable single use syringe contemplated for use with the spring retainer of the present invention is described in

International Publication WO 01/80930, which is incorporated herein by reference.

In a preferred embodiment, said syringe is a retractable syringe having a retractable needle, in use said spring is compressed in said retainer until at or near completion of depression of said plunger to inject material from said syringe, said compressed spring acting thereafter to facilitate withdrawal of said retractable needle.

5

10

15

Throughout this specification, unless otherwise indicated, "comprise", "comprises" and "comprising" are used inclusively rather than exclusively, so that a stated integer or group of integers may include one or more other non-stated integers or groups of integers.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will now be described with reference to the embodiments disclosed in the accompanying drawings, wherein:

- FIG. 1 is a perspective view of a retractable single use syringe;
- FIG. 2A and 2B are exploded perspective views of a plunger and a first body portion of spring retainer housing;
 - FIG. 3 is an exploded perspective view of spring retainer and plunger;
- FIG. 4 is another exploded perspective view of spring retainer and plunger;
 - FIG. 5 is a cross-sectional view of spring retainer and plunger; and
 - FIG. 6 is another cross-sectional view of spring retainer and plunger.

DETAILED DESCRIPTION OF THE INVENTION

In FIG. 1 and FIG. 2 is described an embodiment of a single use retractable syringe 10 comprising in part, components based on those originally

described in International Publication WO 01/80930. Syringe 10 has plunger 11, barrel 12 and retractable needle 13. Plunger 11 includes first slot 14, second slot 15, retraction slot 16 and fourth slot 17. First slot 14 is interconnected to second slot 15 via first deviation 18, second slot 15 is interconnected to retraction slot 16 via second deviation 19, retraction slot 16 is interconnected to fourth slot 17 via third deviation 20 and fourth slot 17 is interconnected to first slot 14 via fourth deviation 21. First slot 14 and retraction slot 16 are longitudinally offset with respect to each other; second slot 15 and fourth slot 17 are longitudinally offset with respect to each other; first deviation 18 and third deviation 20 are longitudinally offset with respect to each other; and second deviation 19 and fourth deviation 21 are longitudinally offset with respect to each other; as indicated by arrows in FIG. 2. Retractable needle 13 engages plunger 11 by way of needle-engaging means 22 at needle end 23 of plunger 11. Examples of needle-engaging means are also described in Australian Patent 731159 and United States Patent 6,083,199, each of which is incorporated herein by reference. It will also be appreciated that plunger 11 may also employ one or more abutments 25 and/or gates 24 in one or more of slots 14, 15, 16, 17 to co-operate with projections 33A, 33B to assist prevention of syringe re-use, such as shown in FIG. 1 and FIG. 2 and in the manner described in International Publication WO 01/80930.

5

10

15

20

Referring specifically to FIG. 2, there is shown first body portion 41 of spring retainer 40 having first projection 33A and second projection 33B that respectively engage slots as in FIG 2A or as in FIG. 2B.

Referring now to FIGS. 3 and 4, spring retainer 40 comprises first body portion 41 and second body portion 42 that when fitted together house spring 50.

First body portion 41 comprises base 43 having first plunger aperture 44 that slidably accommodates plunger 11. Plunger 11 has shoulders 60A, 60B respectively having tapered surfaces 61A, 61B. Although shoulders 60A, 60B are not shown in FIG. 1 or FIG. 2, it will be appreciated that the portion of plunger 11 having shoulders 60A, 60B in FIG. 3 would be located distal to needle-end 22 of plunger 11 in FIGS 1 and 2.

5

10

15

20

25

Again referring to FIG. 3, second body portion 42 comprises second plunger aperture 45 that slidably accommodates plunger 11. Second body portion 42 also comprises shoulder ramps 48A, 48B and shoulder recesses 49A, 49B.

First body portion 41 and second body portion 42 are fitted together on plunger 11 to compress spring 50 by engaging guides 46A, 46B in sidewall 70 of second body portion 42 with respective tabs 47A, 47B of first body portion 41 and rotating first body portion 41 relative to second body portion 42. Guides 46A and 46B have reduced-width portions 80A, 80B and increased-width portions 81A, 81B, the latter permitting limited rotation of first body portion 41 relative to second body portion 42 by approximately 5 to 20°, notwithstanding engagement of tabs 47A, 47B when retainer 40 is assembled. When retainer 40 is assembled, second body portion 42 is also capable of limited, longitudinal or telescopic movement relative to first body portion 41 against the action of compressed spring 50. Typically, this movement is limited to 0.1 to 1.0 mm, preferably to about 0.2 to 0.8 mm or advantageously to about 0.5 mm, although this is readily varied according to the length and/or volume of the syringe, plunger and/or spring.

Referring to FIG. 5 and FIG 6, spring retainer 40 is mounted to barrel 12 at plunger end 51 with first projection 33A and second projection 33B of first

body portion 41 engaging slots in plunger 11. In the embodiments described in FIG 6, barrel 12 is integrally formed with finger grips 71A, 71B and housing 72 into which is fitted retainer 40, such as by interference fit with first body portion 41 as shown in FIG. 5.

Rotation of plunger 11 during syringe filling, injection and needle retraction may best be understood with reference to FIG. 2 and International Publication WO 01/80930

5

10

15

20

Initially, in use, first projection 33A is located in fourth slot 14 and second projection 33B is located in second slot 12. Projections 33A, 33B may be in the form of "fingers" that engage slots 14, 15, 16 and/or 17

In an alternative embodiment, projections 33A, 33B may be spherical or approximately so, to thereby smoothly, slidably engage slots that are appropriately configured to receive such spherical projections.

Withdrawal of plunger 11 to fill barrel 12 is achieved via an initial 90° rotation whereby first projection 33A moves from fourth slot 14 along fourth deviation 21 into first slot 14, and second projection 33B moves from second slot 15 along second deviation 19 into retraction slot 16. Completion of plunger 11 withdrawal is followed by first projection 33A slidably moving from first slot 14 into second slot 15 via first deviation 18 and second projection 33B slidably moving from retraction slot 16 into fourth slot 17 via third deviation 20. This causes a further 90° rotation of plunger 11 with respect to barrel 12.

During withdrawal of plunger 11, shoulders 60A, 60B are free to slidably travel through respective shoulder recesses 49A, 49B in second body portion 42.

Depression of plunger 11 to inject or expel material from barrel 12 occurs
when first projection 33A is slidably located in second slot 15 and second

projection 33B is slidably located in fourth slot 17.

5

10

15

20

25

During depression, spring 50 remains compressed by retainer 40 and only towards the end of depression of plunger 11 do shoulders 60A, 60B of plunger 11 engage shoulder ramps 48A, 48B to move second body portion 42 longitudinally to further compress spring 50. This is accompanied by plunger 11 engaging retractable needle 13. It is noted that tapered surfaces 61A, 61B of respective shoulders 60A, 60B ensure only "last-minute" engagement of shoulder indents 48A, 48B at the very end of plunger 11 depression.

This, together with the tendency for plunger 11 to rotate a further 90° through first projection 33A moving into retraction slot 16 via second deviation 19 and second projection 33B moving from fourth slot 17 via fourth deviation 21 into first slot 14, acts to rotate second body portion 42 relative to first body portion 41. This rotation aligns respective, reduced-width portions 80A, 80B of guides 46A, 46B with respective tabs 47A, 47B to allow tabls 47A, 47B to slide out of engagement therewith thereby allowing spring 50 to decompress and, in turn, forcing disengagement of second body portion 42 and first body portion 41. This force is relayed to plunger 11 by second body portion 42 bearing against shoulders 60A, 60B of plunger 11 thereby facilitating retraction of plunger 11 and attached needle 13.

It will therefore be apparent from the foregoing that it is only at the very end of plunger 11 depression that decompressed spring 50 acts in facilitating plunger 11 and needle 13 withdrawal. This provides a much smoother feel to the operation of the syringe without any significant spring resistance being felt during most stages of injection.

Throughout the specification, the aim has been to describe the preferred

embodiments of the invention without limiting the invention to any one embodiment or specific collection of features. Various changes and modifications may be made to the embodiments described and illustrated without departing from the present invention. In particular, it is contemplated that gates, abutments, ledges and other means disclosed herein for restricting plunger movement may be readily interchanged as desired by the skilled person.

DATED this twentieth day of March 2003

UNITRACT SYRINGE PTY LTD

by its Patent Attorneys

FISHER ADAMS KELLY

10

FIG. 1

<u>م</u>

F19.6

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
☐ COLORED OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox