Université de Bordeaux Master Mathématiques et Applications Année 2016-2017

Algorithmique Arithmétique

15 décembre 2016

Documents allowed

The exercises are independent

The three parts will be evaluated on the same number of points

Part 1: Number theory

Let *E* be an elliptic curve defined over the finite field $\mathbb{Z}/p\mathbb{Z}$, and let $P \in E(\mathbb{Z}/p\mathbb{Z})$ be a point on *E*. let *N* be a positive number and let $N = a_0 + 2a_1 + \cdots + 2^k a_k$, with $a_i \in \{0, 1\}$, be its binary expansion.

- **1.** Recall in this context the fast algorithm to compute $NP = \underbrace{P + \cdots + P}_{N}$, referred to here as *double and add*. Precisely compute the number of additions in $E(\mathbb{Z}/p\mathbb{Z})$ that this algorithm requires, in terms of the number of 0 and 1 in the binary expansion of N.
- **2.** Explain why a substraction in $E(\mathbb{Z}/p\mathbb{Z})$ is essentially not more costly than an addition. In the following, we call 'operation' either an addition or a substraction in $E(\mathbb{Z}/p\mathbb{Z})$.
- **3.** Let $N = 1 + 2 + \cdots + 2^k$. Noticing that $N = 2^{k+1} 1$, give a method that allows to compute NP with k + 2 operations, and compare with *double and add*.
- **4.** Inspired by the previous question, show that one can find $b_i \in \{0, 1, -1\}$ such that

$$N = b_0 + 2b_1 + \dots + 2^{k+1}b_{k+1}$$

and such that among two successive b_i at least one of them is equal to zero. Describe an algorithm that computes such b_i from the a_i .

5. Describe an algorithm to compute NP from an expression of N of the form given in the previous question, and compute exactly the number of operations that it requires, in terms of the number of zeroes and ± 1 among the b_i . What is this number in the worst case?

- **6.** This question is independent of the previous ones. We consider the following key exchange protocol between Alice and Bob : They choose a public elliptic curve E on $\mathbb{Z}/p\mathbb{Z}$ and a point $P \in E(\mathbb{Z}/p\mathbb{Z})$. Alice chooses secretly a number n_A and Bob chooses secretly a number n_B . Alice computes $Q_A = n_A P$ and then sends Q_A to Bob. Bob computes $Q_B = n_B P$ and then sends Q_B to Alice. Then, Alice computes $n_A Q_B$ and Bob computes $n_B Q_A$.
 - a) Explain why Alice and Bpb have now a common secret *S*.
 - b) We now assume that Eve is able to intercept the data that Alice and Bob exchange, which problem does she have to solve in order to compute *S*?
 - c) Explain why she is able to compute S if she can solve the discrete log problem in $E(\mathbb{Z}/p\mathbb{Z})$.
 - d) Informally describe an algorithm that allows Eve to solve the discrete log problem in $E(\mathbb{Z}/p\mathbb{Z})$ in $\tilde{O}(\sqrt{p})$ operations in $E(\mathbb{Z}/p\mathbb{Z})$. What happens if Alice can use a quantum computer?

Part 2: Quantum computing

Exercice 1.

Let us recall the quantum key exchange between Alice and Bob. We condider the following two othonormal bases of $\mathcal{B} = \mathbb{C}^2$:

$$\oplus = \{\ket{0},\ket{1}\} \qquad \otimes = \Big\{rac{\ket{0}+\ket{1}}{\sqrt{2}},rac{\ket{0}-\ket{1}}{\sqrt{2}}\Big\}$$

Alice chooses, uniformly and independently, a sequence of bits $(a_1, a_2, ..., a_N)$. Next, she chooses, uniformly and independently, a sequence of bases $(\alpha_1, ..., \alpha_N) \in \{\oplus, \otimes\}^N$. She sends to Bob a sequence of particules in the quantum states $|\psi_i\rangle$ depending on the pair (a_i, α_i) according to the rule given in the following table :

$$\begin{array}{c|cc} & \oplus & \otimes \\ \hline 0 & |0\rangle & \frac{|0\rangle + |1\rangle}{\sqrt{2}} \\ \hline 1 & |1\rangle & \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{array}$$

Then, it is Bob's turn to choose a sequence of bases $(\beta_1, ..., \beta_N) \in \{\oplus, \otimes\}^N$, and to measure in the base β_i the quantum state number i that he has received. He obtains a sequence of bits $(b_1, ..., b_N) \in \{0, 1\}^N$.

In the third step, Alice and Bob publish through a public classical channel the two sequences $(\alpha_1, ..., \alpha_N)$ and $(\beta_1, ..., \beta_N)$, and derive the set I of indices i such that $\alpha_i =$

 β_i . They discard from their sequences a_1, \ldots, a_N and $b_1, \ldots b_N$ the entries of index not belonging to I.

Eve is an eavesdropper who can perform a measure of her choice on every state $|\psi_i\rangle$, before the state is sent to Bob.

We were presented during the lecture an analysis of the situation in the case when Eve measures each $|\psi_i\rangle$ in one of the bases \oplus or \otimes (chosen uniformly and independently). We will consider a different strategy were Eve chooses an angle θ , and performs her measures according to the base $\{|e_0\rangle, |e_1\rangle\}$, where

$$\begin{cases} |e_0\rangle = \cos\theta |0\rangle + \sin\theta |1\rangle \\ |e_1\rangle = -\sin\theta |0\rangle + \cos\theta |1\rangle . \end{cases}$$

Said differently, with the notations of the lecture, this measure is the measure associated to the orthogonal projections P_0 , P_1 on respectively $|e_0\rangle$ and $|e_1\rangle$.

- **1.** Recall, given a state $|\psi\rangle$, what can be the result of Eve's measure on $|\psi\rangle$ and what happens to this state during the measurement.
- **2.** We assume that $\alpha_i = \beta_i = \oplus$ and that $a_i = 0$. Describe precisely, and with explanations, the state $|\psi_i\rangle$ at the various steps of the protocole : when Alice sends it, after Eve's measurement, after Bob's measurement and give in every case the value of the bit obtained by Eve and by Bob.
- **3.** Same question in the other cases : $\alpha_i = \beta_i = \oplus$ and $a_i = 1$, then $\alpha_i = \beta_i = \otimes$ and $a_i = 0$, $a_i = 1$. In this question, just state the results without too many explanations.
- **4.** Compute the probability that Eve's action can be detected by Alice and Bob during the transmission of one bit of index $i \in I$.
- **5.** Compute the probability that, during the transmission of one bit of index $i \in I$, Eve is not detected, and obtains the correct value of this bit.
- **6.** What is the optimal value of θ for Eve?
- 7. In this question, Eve would like to find a way not to be detected. She thinks she can make it if she brings her one particule in state $|e\rangle$ and creates a quantum system in state $|\psi_i\rangle\otimes|e\rangle$. She would like to perform a quantum operation U on this system to that it is transformed to $|\psi_i\rangle\otimes|\psi_i\rangle$, with the goal to measure her qubit (i.e. the second) without modifying Alice's qubit. Show that such an operation, valid for all i, cannot exist.

Part 3: Euclidean lattices

Exercice 2. We have seen in TD4 that the continued fractions expansion of a real number α allows to compute rational approximations of α verifying $|\alpha - p/q| < 1/(2q^2)$.

Here we consider *simultaneous approximations* of n numbers $\alpha_1, \ldots, \alpha_n$. Dirichlet showed that there are infinitely many integers p_i and q such that $|\alpha_i - p_i/q| < q^{-(1+1/n)}$ for all $i = 1, \ldots, n$. We will see that the LLL algorithm allows to compute such approximations, up to a multiplicative factor that depends only on n.

We assume that individual rational approximations of each α_i are known and we denote them $\beta_i = u_i/v_i$ with $u_i, v_i \in \mathbb{Z}$. We fix an upper bound Q for the denominator q of the desired simultaneous approximations, we set $\epsilon = Q^{-1/n}$ and we choose Q large enough so that $\epsilon < 1$.

Let $w = 2^{-n(n+1)/4} \epsilon^{n+1}$ and let L be the lattice of dimension n+1 generated by the columns of the following matrix P:

$$P = \begin{pmatrix} w & 0 & \dots & 0 \\ \beta_1 & -1 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ \beta_n & 0 & \dots & -1 \end{pmatrix}$$

We recall that the LLL algorithm computes a base of L whose first vector b_1 satisfies :

$$||b_1|| \leq 2^{\frac{n}{4}} \det(L)^{\frac{1}{n+1}}.$$

- **1.** Compute det(L).
- **2.** Show that the LLL algorithm outputs integers q > 0 and p_1, \ldots, p_n such that

$$q^2w^2 + (q\beta_1 - p_1)^2 + \dots + (q\beta_n - p_n)^2 \le \epsilon^2$$

- **3.** Show that $q \leq 2^{n(n+1)/4}Q$ and that $|\beta_i p_i/q| < 2^{(n+1)/4}q^{-(1+1/n)}$.
- **4.** What can you say about the complexity of this method?

Exercice 3. *Ne pas hésiter à faire des dessins..*

The goal of this exercise is to show the following theorem which is due to Hermite:

Théorème : Let *L* be a lattice of dimension *n*, there exists a base $\{e_1, \ldots, e_n\}$ of *L* such that

$$||e_1|| \dots ||e_n|| \le \left(\frac{4}{3}\right)^{\frac{n(n-1)}{4}} \det(L).$$

In what follows, e_1 is a minimal vector of L and $H = (\mathbb{R}e_1)^{\perp}$ is the hyperplane orthogonal to e_1 . Let P denote the orthogonal projection on H, and let L' = P(L) be the projection of the lattice L on H.

- **1.** Show that for all $x' \in L'$, there is $x \in L$ such that P(x) = x' and $||x|| \le \sqrt{4/3}||x'||$.
- **2.** Let $\{e'_2, \ldots, e'_n\}$ be a base of the lattice L'. Let e_2, \ldots, e_n be elements of L such that $P(e_i) = e'_i$. Show that $\{e_1, e_2, \ldots, e_n\}$ is a base of L.
- **3.** Show that $\det(L) = ||e_1|| \det(L')$.
- **4.** Prove Hermite's theorem by induction on n, with the help of previous questions.
- **5.** Show that Hermite's inequality is optimal in dimension 2. Compare, for arbitrary n, with the analogous inequality satisfied by an LLL reduced basis.