1 Задачи с практики

- 1. Попробуйте найти более «короткую» версию iszro iszro $\equiv \lambda b$ t f. b (λx . f) t
- 2. опробуйте найти другое определение succ succ $\equiv \lambda n \ s \ z. \ n \ s \ (s \ z)$
- 3. Попробуйте найти определение plus с использованием succ $\mathrm{plus} \equiv \lambda \mathrm{m} \ \mathrm{n.} \ \mathrm{m} \ \mathrm{succ} \ \mathrm{n}$
- 4. Можно ли mult2 записать короче? mult $\equiv \lambda m$ n s. m (n s)

2 Домашнее задание

1. Выполните подстановку

(a)
$$\lambda$$
 y z. x y w (z x) [x := λ y. y w]
 λ y z. (λ y. y w) y w (z (λ y. y w)) \equiv λ y z. y w w (z (λ y. y w))

(b)
$$\lambda x y. x y (\lambda x. x y) x$$
 [x := $\lambda z. z$] $\lambda x y. x y (\lambda x. x y) x$

(c)
$$x y (\lambda x z. x y z) y [y := x z] x (x z) (\lambda x' z'. x' (x z) z') (x z)$$

2. Уберите лишние скобки и при возможности выполните β -преобразование

(a)
$$(x (\lambda x.((x y) x)) y)$$

 $(x (\lambda x.((x y) x)) y) \equiv$
 $x (\lambda x.((x y) x)) y \equiv$
 $x (\lambda x.(x y x)) y \equiv$
 $x (\lambda x.x y x) y$

(b)
$$((\lambda p.(\lambda q.((q (p r)) s))) ((q (p r)) s))$$

 $((\lambda p.(\lambda q.((q (p r)) s))) ((q (p r)) s)) \equiv$
 $(\lambda p.(\lambda q.((q (p r)) s))) ((q (p r)) s) \equiv$
 $(\lambda p.(\lambda q.(q (p r) s))) ((q (p r)) s) \equiv$
 $(\lambda p.(\lambda q. q (p r) s)) ((q (p r)) s) \equiv$
 $(\lambda p q. q (p r) s) ((q (p r)) s) \equiv$
 $(\lambda p q. q (p r) s) ((q (p r)) s) \equiv$
 $(\lambda p q. q (p r) s) (q (p r) s) \equiv$
 $\lambda q'. q' ((q (p r) s) r) s =$
 $\lambda q'. q' (q (p r) s r) s.$

3. Покажите, что для любых M и N выполняется λ x. M N = **S** (λ x. M) (λ x. N) **S** (λ x. M) (λ x. N) $\equiv \lambda$ x'. (λ x. M) x' ((λ x. N) x') $\equiv \lambda$ x. M N

- 4. Покажите, что
 - (a) $\mathbf{SKK} = \mathbf{I}$ $\mathbf{SKK} \equiv$ $\lambda \mathbf{x} \cdot \mathbf{K} \times (\mathbf{K} \times \mathbf{x}) \equiv$ $\lambda \mathbf{x} \cdot \mathbf{x} \equiv$ \mathbf{I}
 - (b) $\mathbf{B} = \mathbf{S} \ (\mathbf{K} \ \mathbf{S}) \ \mathbf{K} = \lambda \mathbf{x} \cdot (\mathbf{K} \ \mathbf{S}) \ \mathbf{x} \ (\mathbf{K} \ \mathbf{x}) = \lambda \mathbf{x} \cdot \mathbf{K} \ \mathbf{S} \ \mathbf{x} \ (\mathbf{K} \ \mathbf{x}) = \lambda \mathbf{x} \cdot \mathbf{S} \ (\mathbf{K} \ \mathbf{x}) = \lambda \mathbf{x}' \cdot \mathbf{S} \ (\mathbf{K} \ \mathbf{x}') = \lambda \mathbf{x}' \cdot (\lambda \mathbf{f} \ \mathbf{g} \ \mathbf{x} \cdot \mathbf{f} \ \mathbf{x} \ (\mathbf{g} \ \mathbf{x})) \ (\mathbf{K} \ \mathbf{x}') = \lambda \mathbf{x}' \cdot (\lambda \mathbf{g} \ \mathbf{x} \cdot (\mathbf{K} \ \mathbf{x}') \ \mathbf{x} \ (\mathbf{g} \ \mathbf{x})) = \lambda \mathbf{x}' \cdot (\lambda \mathbf{g} \ \mathbf{x} \cdot \mathbf{K} \ \mathbf{x}' \ \mathbf{x} \ (\mathbf{g} \ \mathbf{x})) = \lambda \mathbf{x}' \cdot (\lambda \mathbf{g} \ \mathbf{x} \cdot \mathbf{x}' \ (\mathbf{g} \ \mathbf{x})) = \lambda \mathbf{x}' \cdot \mathbf{g} \ \mathbf{x} \cdot \mathbf{x}' \ (\mathbf{g} \ \mathbf{x}) = \lambda \mathbf{g} \ \mathbf{x} \cdot \mathbf{x}' \ (\mathbf{g} \ \mathbf{x}) = \lambda \mathbf{g} \ \mathbf{x} \cdot \mathbf{f} \ (\mathbf{g} \ \mathbf{x}) = \lambda \mathbf{g} \ \mathbf{x} \cdot \mathbf{f} \ (\mathbf{g} \ \mathbf{x}) = \lambda \mathbf{g} \ \mathbf{x} \cdot \mathbf{f} \ (\mathbf{g} \ \mathbf{x}) = \lambda \mathbf{g} \ \mathbf{g} \ \mathbf{g} \cdot \mathbf{f} \ (\mathbf{g} \ \mathbf{x}) = \lambda \mathbf{g} \ \mathbf{g} \ \mathbf{g} \cdot \mathbf{f} \ (\mathbf{g} \ \mathbf{x}) = \lambda \mathbf{g} \ \mathbf{g} \ \mathbf{g} \cdot \mathbf{f} \ (\mathbf{g} \ \mathbf{g}) = \lambda \mathbf{g} \ \mathbf{g} \ \mathbf{g} \cdot \mathbf{g} \ \mathbf{g} \ \mathbf{g} \ \mathbf{g}$
- 5. Реализуйте функцию возведения в степень для чисел Чёрча. $pow \equiv \lambda m \; n. \; n \; (mult \; m) \; 1$