Redes Industriais e Sistemas Supervisórios

Bacharelado em Engenharia de Controle e Automação

Redes sem fio em ambiente industrial

Wireless

Redes sem fio para automação industrial

 A indústria pesquisa de forma constante novas formas de aquisição, monitoramento e controle de dados, sendo necessária a obtenção de dados quantitativos e qualitativos da produção, até mesmo em lugares remotos, de difícil acesso ou distantes, estimulando o avanço das tecnologias sem fio na área industrial.

Grupos de Rede sem fio

- 1997: Padronização pelo IEEE pela norma 802.11
- Versões: 4 grupos por raio de alcance.

Grupos de Rede sem fio

Dados

Principais tecnologias sem fio para automação

Norma IEEE (nome de mercado)	802.15.1 (Bluetooth)	802.11b (Wi-Fi)	802.15.4 (ZigBee)	802.15.1 (WISA)	802.15.4 (WirelessHART
Aplicação principal	Eliminar a fiação atual	Ethernet industrial	Controle e monito- ração	Interface, sensores e atuadores	Medições de pro- cesso e controle
Frequência de Operação	2,4 GHz	2,4 GHz	2,4 GHz	2,4 GHz	2,4 GHz
Tava de comunica.					

20-250

externo)

264

30 mA

30-70, 100 +

100-1.000 +

(com amplificador

1.000

120

5 m (ambiente

mente 10 m)

3 a 4 anos

100 mA

industrial; tipica-

11.000

250

3.5 anos

150-300 mA

100, até 2.000

com repetidor

11.000

100 + (antenas

direcionais)

32

0,5 a 5

300 Ma

1.000-3.000

+ (classe 1)

1 a 7

30 (classe 2) 100

45 mA (classe 2) <

150 mA (classe 1)

ção (kbps)

Distâncias alcan-

çadas com visada

direta (m)

Número de

dispositivos

Autonomia da

bateria (dias)

Consumo na

transmissão

IEEE 802.11 - WLAN - Wireless Local Area Network

- Wireless Fidelity (Wi-Fi)
- Tecnologias sem fio destinadas à interligação de redes locais com alcance de 100 a 300 metros
- Extensão alternativa para as redes cabeadas Ethernet.

IEEE 802.11 - WLAN - Wireless Local Area Network

- Opera em faixas de frequências de 2,4GHz e 5GHz
 - Banda: 2,4GHz a 2.4385GHz
 - Velocidade 11Mbps(b)/54Mbps(g)
 - 450m em ambiente aberto
 - 50m em ambiente fechado
 - Meio de transmissão:
 - O Direct Sequence Spread Spectrum DSSS

Protocolo Bluetooth (IEEE 802.15.1)

- Desenvolvido para :
 - O Distâncias de até 100m;
 - o Velocidade baixa: 721 kbps;
 - o Boa segurança a interferências;
 - O Transmissão segura de dados;
 - O Comunicação modo Full-duplex.

Redes de sensores sem fio (RSSF) para a automação industrial

- Emprego crescente em sistemas de automação industrial, comércio e residências
- Tecnologias mais difundidas:
 - o Bluetooth
 - o Wi-Fi
- Oferecem:
 - o Segurança
 - Compatibilidade com sistemas cabeados

- Sensores sem fio
 - O Grande parte possui tecnologia de controle próprio;
 - o Trabalham em conjunto ou individualmente.

- Gateways:
 - O Elementos de interconexão destinados a
 - interligar redes;
 - separar domínios de colisão;
 - traduzir protocolos.

Roteadores:

• Elementos operando no nível de redes, que se utilizam de endereçamento definido neste nível para transferir e rotear mensagens de uma rede para outra.

- Repetidores de sinal:
 - Interligam sub-redes idênticas, produzindo o efeito de extensão;
 - Atuam somente no nível físico

- Pontos de acesso (Access point)
 - Mais configurável: costuma dispor de uma série de modos de uso, controles de banda e segurança;
 - Solução mais profissional para ampliação da cobertura de uma rede sem fio.
 - Costuma ter mais potência.

Antenas

• São projetadas de forma que uma frequência particular

irradie e receba o sinal de rádio.

	Dipolo ressonante	Logperiódica	Espinha de peixe (Yagi-Uda)	Parabólica
Diretividade	Média	Média	Baixa	Muito Grande (única direção)
Distância de radiação do sinal	Pequena (até 300 m em visada direta)	Média (alguns quilômetros em visada direta)	Grande (dezenas de quilômetros em visada direta)	Muito grande (cente- nas de quilômetros em visada direta)

Fatores determinantes em redes sem fio

Tolerância a falhas

Escalabilidade

Custo de produção Ambiente de operação

Segurança

Consumo de energia

Meio de transmissão Topologia da rede

Tolerância a falhas

- Falhas são possíveis e aceitáveis
 - O A rede deve saber lidar com elas de maneira

automática e natural;

- Sensores podem falhar por:
 - o Falta de energia;
 - O Falta de visibilidade entre nós;
 - O Dano físico;
- A falha de alguns poucos não deve atrapalhar o restante da rede, quando dispostos em grandes quantidades.

Escalabilidade

- A ordem de grandeza do número de nós de uma RSSF pode variar de centenas aos milhares;
- Novos projetos devem ser capazes de lidar com este número de nós e utilizar todo o seu potencial.

Custo de produção

- O **preço unitário** dos nós sensores é um fator fundamental, devido ao seu grande número em uma rede;
- Se o custo de uma RSSF é maior do que uma rede de sensores cabeada, avalia-se a viabilidade financeira da sua utilização.

Ambiente de operação

• Ambiente industrial agressivo:

- o Elevada toxicidade;
- o Perigo de explosão;
- o Fenômenos físicos naturais;
- O Segurança militar.

Ambiente de operação

Ambiente de operação

Topologia de rede

- Possibilidade de adição de nós sensores com problemas;
- Mudança de nós pode alterar radicalmente a topologia da rede.
 - O Protocolos de roteamento específicos são necessários.

Topologia de rede

Topologia em estrela

Topologia em árvore

Topologia em malha

Nó final

Roteador

Meios de Transmissão

Radiofrequência (RF) | Infravermelho (IR) | Óptica

Meios de Transmissão

Meios de Transmissão

- Interferências eletromagnéticas podem provocar distorções nos dados recebidos:
 - O Uso de mesma faixa de frequência;
 - Canais adjacentes
 - O Possíveis soluções:
 - Reprogramação da frequência
 - Técnica de espalhamento espectral (spread spectrum)
 - A largura de banda utilizada é muito maior do que
 - o mínimo necessário

Consumo de Energia

- Fontes de energia podem ser escassas, então métodos de economia de energia devem ser utilizados em todos os lugares possíveis;
- Ligar e desligar periodicamente;
- Alteração de meio físico e protocolo pode aumentar a vida útil da bateria em até 22%.

Segurança

- Sistemas criptografados podem atingir níveis aceitáveis ou mesmo superiores às redes cabeadas.
- Aspectos a serem considerados:
 - Confidencialidade
 - Integridade
 - Disponibilidade

• Pelo menos 25% dos instrumentos devem ter conexão direta no gateway, caso contrário, utilizar repetidores.

Cada dispositivo deve ter ao menos três vizinhos de forma segura, o terceiro servindo de reserva, para atuar quando um dos caminhos principais estiver congestionado ou indisponível. **INSTITUTO FEDERAL**

Câmpus Salto

É recomendado que

 antenas estejam a pelo
 menos 0,5 m de distância
 de grandes obstáculos e
 superfícies para evitar
 reflexão do sinal.

 As antenas do gateway e dos repetidores devem estar cerca de 2m acima dos maiores obstáculos.

• É recomendado instalar instrumentos a partir de 2m do solo, existindo instrumentos elevados, não se excederem ângulos de visão maiores do que 45 graus.

Conclusão

 Flexibilidade, tolerância a falhas, baixo custo, rápida instalação são desafios e características de redes de sensores, o que permitem uma vasta gama de aplicações remotas quando bem implementados.

