Introduction

Face Recognition

Raj, Tom, Donna, Olga, Sahil, Aditya

October 10, 2017

Introduction - MegaFace

- Face recognition and verification problem
- Current Face recognition

VGG Very Deep 16 Architecture (Input)

Images: $\mathbf{I} = \{i_1, \dots, i_N\} \in \mathbb{R}^{3 \times 224 \times 224}$ Input to Network: $\mathbf{X} = \{x_1, \dots, x_N\}, x_i \in \mathbb{R}^{3 \times 224 \times 224}$

$$x_i = i_i - \frac{\sum_{j=1}^{N} i_j}{N} \tag{1}$$

Makes faces more separable after normalization.

VGG Very Deep 16 Architecture (Face Normalization)

Figure 1: Subtracting the average face from all of the input images makes it easier to separate each image in space after normalization

VGG Very Deep 16 Architecture (Function Review)

Convolution (Padding: 1, Stride: 1):

$$f(x) = K^{j} \circledast x + diag(b^{j}) \mathbf{1}_{c_{j} \times n_{j} \times n_{j}} \in \mathbb{R}^{c_{j} \times n_{j} \times n_{j}}$$
(2)

with

$$K^j \in \mathbb{R}^{c_j \times \hat{c}_j \times (2k+1) \times (2k+1)}, \ b^j \in \mathbb{R}^{c_j}$$
 (3)

and

$$\mathbf{1}_{c_{j}\times n_{j}\times n_{j}}=1_{c_{j}}\otimes 1_{n_{j}}\otimes 1_{n_{j}}, \quad k=0,1,2,3,... \tag{4}$$

Relu:

$$g(x) = \begin{cases} 0 & x \le 0, \\ x & x > 0. \end{cases}$$
 (5)

VGG Very Deep 16 Architecture (Function Review)

Softmax (Padding: 0, Stride: 2):

$$p = \sigma(y), y \in \mathbb{R}^c \tag{6}$$

$$p_{j} = \frac{e^{y_{j}}}{\sum_{i=1}^{c} e^{y_{i}}}, j = 1 : c$$
 (7)

$$p_j \ge 0, \sum_{j=1}^{c} p_j = 1$$
 (8)

Max Pooling:

$$r: \mathbb{R}^{a \times b \times b} \to \mathbb{R}^{a \times \frac{b}{2} \times \frac{b}{2}} \tag{9}$$

$$r(X)_{i,j} = \max_{-1 \le k,l \le 0} X_{2i+k,2j+1}, \quad i,j = 1 : \frac{b}{2}$$
 (10)

VGG Very Deep 16 Architecture (Encoding)

Layer	Operation	Filter	Dimension	Filters	Size
0	$K_0 \circledast x$	3x3	3 (r.g.b.)	64	64 × 224 × 224
1	$K_1 \circledast g \circ f^0$	3x3	64	64	64 × 224 × 224
2	$K_2 \circledast r \circ g \circ f^1$	3x3	64	128	$128 \times 112 \times 112$
3	$K_3 \circledast g \circ f^2$	3x3	128	128	$128 \times 112 \times 112$
4	$K_4 \circledast r \circ g \circ f^3$	3x3	128	256	$256 \times 56 \times 56$
5	$K_5 \circledast g \circ f^4$	3x3	256	256	$256 \times 56 \times 56$
6	$K_6 \circledast g \circ f^5$	3x3	256	256	$256 \times 56 \times 56$
7	$K_7 \circledast r \circ g \circ f^6$	3x3	256	512	512 × 28 × 28
8	$K_8 \circledast g \circ f^7$	3x3	512	512	512 × 28 × 28
9	K ₉ ⊛ g ∘ f ⁸	3x3	512	512	512 × 28 × 28
10	$K_{10} \circledast r \circ g \circ f^9$	3x3	512	512	$512 \times 14 \times 14$
11	$K_{11}\circledast g\circ f^{10}$	3x3	512	512	$512 \times 14 \times 14$
12	$K_{12}\circledast g\circ f^{11}$	3x3	512	512	$512 \times 14 \times 14$
13	$K_{13} \circledast r \circ g \circ f^{12}$	7x7	512	4096	$4096 \times 7 \times 7$

VGG Very Deep 16 Architecture (Decoding)

Layer	Operation	Input Size	Output Size
14	$\theta_{14} \circ g \circ f^{13}$	$4096 \times 7 \times 7$	4096
15	$\theta_{15} \circ g \circ f^{14}$	4096	2622
16	$\sigma \circ f^{15}$	2622	2622

Transfer Learning in the Context of Facial Recognition

- K-Class classification
 - $p \in \mathbb{R}^{2262}, p_i \in [0, 1]$
- Internal Face Representation (f^{13} from above layers)
 - $\bullet~7\times7$ representations instead of 224 \times 224 image pixels
 - Reduce noise
 - Learn to extract important facial features
- Tune Model for Verification
 - Triplet Loss
 - Siamese Loss
 - L2 Loss

Triplet Loss Function

- Show Math and motivation for Triplet Loss function.
- You should have the equation and explain in Dr. Xu's notation
- You should explain why picking good matches helps

Implementation and Results

• Put Results Here