

Description

The VSM60N20 uses advanced trench technology and design to provide excellent RDS(ON) with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} =200V, I_{D} =60A $R_{DS(ON)}$ <32m Ω @ V_{GS} =10V
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM60N20-T7	VSM60N20	TO-247	-	-	-

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	200	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	60	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	42	Α	
Pulsed Drain Current	I _{DM}	280	Α	
Maximum Power Dissipation	P _D	300	W	
Derating factor		2.0	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	225	mJ	
Operating Junction and Storage Temperature Range	T _J ,T _{STG}	-55 To 175	°C	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	$R_{ heta JC}$	0.5	°C/W

Shenzhen VSEEI Semiconductor Co., Ltd

Electrical Characteristics (T_C=25 °C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	200	220	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =200V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3.2	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	24	32	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =30A	40	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	\/ -50\/\/ -0\/	-	6200	-	PF
Output Capacitance	Coss	V_{DS} =50V, V_{GS} =0V, F=1.0MHz	-	950	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0WHZ	-	460	-	PF
Switching Characteristics (Note 4)			•			•
Turn-on Delay Time	t _{d(on)}		-	33	-	nS
Turn-on Rise Time	t _r	V_{DD} =100V, R_L =15 Ω	-	20	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{G} =2.5 Ω	-	21	-	nS
Turn-Off Fall Time	t _f		-	31	-	nS
Total Gate Charge	Qg	\/ -400\/ -204	-	130		nC
Gate-Source Charge	Q _{gs}	$V_{DS}=100V,I_{D}=30A,$ $V_{GS}=10V$	-	36		nC
Gate-Drain Charge	Q_{gd}	V _{GS} -10V	-	46		nC
Drain-Source Diode Characteristics			•			•
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =30A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	60	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 30A	-	42		nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	66		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. E_{AS} condition: j=25 $^{\circ}\text{C}$,V_DD=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

350 300 250 Power Dissipation (W) 200 150 100 50 0 0 50 75 100 125 150 175 T_J-Junction Temperature(°C)

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance