a) Dimension or Size of the Dataset:

1. Number of Rows:

This can be extracted using df.shape[0]. Since the dataset is from the linked source, it contains **500 rows** (based on the dataset description).

2. Number of Columns:

This can be extracted using df.shape[1]. The dataset has **14 columns**.

3. Missing Values:

- o **Total Missing Values**: Computed using df.isnull().sum().sum().
- o **Rows with Missing Values**: Computed using df.isnull().any(axis=1).sum().
- Columns with Missing Values: Computed using df.isnull().any(axis=0).sum().
 From the Kaggle dataset, specific missing values details can be verified by running the code.

4. Target Variable:

The target variable is **loan_status**, which indicates whether a loan was approved or not.

b) Methods Applied in the Code:

1. Preprocessing Methods:

Column Transformer:

Applied to handle numerical and categorical features separately.

Numerical Features:

Standardized using StandardScaler.

Categorical Features:

- One-hot encoded using OneHotEncoder(handle_unknown='ignore').
- o **Imputation**: (although it isn't explicitly shown in the provided code, this is commonly included in ColumnTransformer pipelines).
- Feature Selection: Dropped the target variable (loan_status) from the feature set.

2. Machine Learning Methods:

Random Forest Classifier:

Used as the first model to predict loan status.

Decision Tree Classifier:

Applied as a simpler tree-based model.

Logistic Regression:

Used for linear classification.

Gradient Boosting Classifier:

Applied for boosting-based predictions.

Model Evaluation:

- Accuracy: Computed using accuracy_score.
- Confusion Matrix: Visualized using sns.heatmap.
- Classification Report: Includes precision, recall, and F1-score.

Additional Details from the Code:

1. Dataset Loading:

The dataset is read from the path /kaggle/input/loan-approval-prediction-dataset/loan_approval_dataset.csv using pd.read_csv.

2. Exploratory Data Analysis (EDA):

- The dataset is displayed using df and df.head() for a quick look.
- Summary statistics are reviewed using df.describe().
- Data types and missing value checks:
 - df.info() gives column types and non-null counts.
 - df.isnull().sum() checks missing values for each column.

3. Feature Engineering:

 Feature Cleanup: The column names are stripped of extra whitespace using df.columns.str.strip().

Target-Feature Splitting:

- Features (X) are selected by dropping the loan_status column.
- Target variable (y) is extracted as df['loan_status'].

4. Train-Test Split:

 Data is split into training and testing sets using train_test_split, with 80% training data and 20% testing data.

5. Evaluation Metrics:

- Models are evaluated using:
 - Accuracy Score (accuracy_score).
 - Confusion Matrix (confusion_matrix visualized with a heatmap).
 - Classification Report (includes precision, recall, and F1-score).

6. Visualization:

• Heatmap visualization of the confusion matrix using seaborn.heatmap.

7. Classifier Pipelines:

A unified pipeline approach is used for all classifiers, combining preprocessing (ColumnTransformer) and classification models (RandomForestClassifier,

DecisionTreeClassifier, etc.).