Véletlen fizikai folyamatok

2. beadandó

Márton Tamás

${\it PJF19C}$ martontamas@caesar.elte.hu

1. 1.feladat

Feladat leírás.

A Perrin kísérlet analíziséhez először oldjuk meg a két-dimenziós Brown-mozgás következő változatát: l rácsállandójú négyzetrácson egy részecske τ időközönként, egyenlő valószínűséggel ugrik a négy szomszédos rácspont egyikébe, s az egymást követő lépések függetlenek egymástól. A részecske az (x0=0,y0=0) pontból indul.

Határozzuk meg a $t=N\tau$ idő alatti várható elmozdulást, $\sqrt{\langle r^2 \rangle}=\sqrt{\langle x^2_t \rangle+\langle y^2_t \rangle}$ -t!

Feladat megoldása.

A második előadás elején elhangzott egy segítség ehhez a feladathoz, miszerint diszkrét esetű megoldással egyszerűbb megoldani ezt a problémát.

$$\langle e_i \rangle = (0, \frac{1}{4}) + (0, -\frac{1}{4}) + (\frac{1}{4}) + (-\frac{1}{4}, 0) = 0,$$
 (1.1)

tehát a részecskének N lépés után a várható értéke:

$$\langle x_N \rangle = l \sum_{i=1}^N \langle e_i \rangle = 0.$$
 (1.2)

Az elmozdulás várható értéke ezek alapján pedig:

$$\langle x^2_N \rangle = l^2 \sum_{j=1}^N \sum_{i=1}^N \langle e_j e_i \rangle = l^2 N + l^2 \sum_{j \neq i} \langle e_j e_i \rangle = l^2 N + l^2 \sum_{j \neq i} \langle e_j \rangle \langle e_i \rangle = l^2 N. \tag{1.3}$$

Tehát a $t = N\tau$ idő alatt történő elmozdulás várható értéke:

$$\sqrt{\langle r^2 \rangle} = l\sqrt{N}.\tag{1.4}$$

2. 2.feladat

Feladat leírás.

Perrin kísérletében kolloid részecskék mozgását vizsgálták híg, vizes oldatban. A részecskék sugara $a=0.52\mu m$, $\tau=30s$ -onként mértek a helyzetüket, s az ábrán látható négyzetrács rácsállandója $3.125\mu m$. Becsüljük meg a kolloid részecskék diffúziós együtthatóját kétféleképpen: (a) a kezdő és a végpont közötti elmozdulásból, feltételezve hogy a mozgás diffúzív, és (b) a τ idő alatti ugráshosszok négyzetének átlagából!

2.0.1. ábra. Perrin kísérlet ábrái.

Feladat megoldása.

2.1. (a) feladat

Ahhoz, hogy ezt a feladatot meg tudjam oldani, meg kellett számolnom mindhárom részecske által megtett lépésszámot és ezáltal a megtett utat, majd az eltelt időd kell kiszámolnom.

1. táblázat. A mért és számolt adatok.

Részecske	Lépésszám	Idő [s]	Távolság négyzet $[m^2]$
Jobb	42	1260	$1.239 \cdot 10^{-10}$
Középső	30	900	$2.725 \cdot 10^{-9}$
Bal	47	1410	$1.239 \cdot 10^{-9}$

Majd felhasználjuk a Brown-mozgsra levezetett elmozdulás négyzetére vonatkozó összefüggést $\langle r^2 \rangle = 2Dt$, aminek segítségével már ki tudjuk számolni a diffúziós együtthatót.

2. táblázat. Diffúziós együtthatók.

Részecske	Diffúziós együttható $[m^2/s]$
Jobb	$2.766 \cdot 10^{-13}$
Középső	$1.514 \cdot 10^{-12}$
Bal	$4.394 \cdot 10^{-13}$

A diffúziós együttható meghatározásához ezeknek az értékeknek vettem az átlagát:

$$D = 7.43 \cdot 10^{-13} \frac{m^2}{s} \tag{2.1}$$

2.2. (b) feladat

Ennek a részfeladat megoldásához egy internetes alkalmazás segítségét használtam, ahol az Perrinkísérletről készült ábrát feltöltve, azon pontokat jelöltem, amihez a program koordinátákat rendelt, amit bármilyen táblázatkezelőbe importálhatunk. Majd a diffúziós együttható értékét úgy határozom meg, hogy az egesével kiszámolt elmozdulások négyzetét átlagolom ki, és ezt osztom el a τ kétszeresével :

$$D = \frac{\langle \Delta^2 \rangle}{2\tau}.\tag{2.2}$$

A diffúziós együttható ezek alapján:

3. táblázat. Diffúziós együtthatók.

Részecske	Diffúziós együttható $[m^2/s]$
Jobb	$7.387 \cdot 10^{-13}$
Középső	$6.379 \cdot 10^{-13}$
Bal	$1.238 \cdot 10^{-12}$

Ezek alapján ismét vettem az átlagot. Az így számolt diffúziós együttható értéke:

$$D = 8.714 \cdot 10^{-13} \frac{m^2}{s}. (2.3)$$

3. 3.feladat

Feladat leírás.

Használjuk a (2) feladat eredményét, valamint a Brown-mozgas Langevin-fele leírásából kapott kifejezést a kolloidrészecskék diffúziós együtthatójára, s becsüljük meg az Avogadro-számot! A kolloidrészecskék sűrűséget tekinthetjük vízhez közelinek, a hőmérsékletet pedig szobahőmérsékletnek.

Feladat megoldása.

Ebben a feladatban, úgy ahogy az előzőekben is, külön-külön fogom számolni a N_A Avogadroszám értékét. Langevin által levezetett eredmény a diffúziós együtthatóra a Brown-mozgásra:

$$D = \frac{k_B T}{6\pi \eta a}. (3.1)$$

Ahol η a viszkozitás, a a részecske sugara, k_B a Boltzmann állandó, amelynek értéke $k_B = 1.38 \cdot 10^{-23} \ T$ a hőmérséklet. Tudjuk még, hogy:

$$N_A k_B = R, (3.2)$$

ahol R az egyetemes gázállandó $R=8.314\frac{J}{mol\cdot K}$. A diffúziós együttható formulája a következű formulába írható át:

$$D = \frac{RT}{6\pi \eta a N_A}. (3.3)$$

Az Avogadro-számra a következő összefüggést kapjuk:

$$N_A = \frac{RT}{6\pi\eta aD}. (3.4)$$

A számításhoz használt értékek a következők: $T=20.2\circ C$ ami a 293.2 \circ K, $\eta(T=20.2\circ C)=10^{-3}Pa\cdot s$. A részecskék sugara a második feladatból $a=0.52\cdot 10^{-6}m$. Az avogadrószám a következőnek adódik (a)s(b) esetre:

4. táblázat. Számolt Avogadro értékek.

második módszerrel	Avogadro szám $[1/mol]$	
a	$3.35 \cdot 10^{23}$	
b	$2.85 \cdot 10^{23}$	

A kapott értékek eltérnek az irodalmi értéktől $(A_N = 6.02 \cdot 10^2 31/mol)$, nagyságrendben jól kaptam meg az értéket. A hiba adódhat a a pontatlan úthossz mérésekből.

4. 4. feladat

Feladat leírás.

Tegyük fel, hogy a kolloidrészecskék diffúziós együtthatójára kapott kifejezés extrapolálható molekuláris szintre. Milyen értéket kapunk egy nem túlságosan nagy molekula (pl. Buckminsterfullerene: 60 szénatom focilabdaszerű elrendezésben, átmérő: 1.01 nm) vízben történő termális mozgásának diffúziós együtthatójára? És mit kapunk egy biológiai molekulára (pl. DNS)?

Feladat megoldás.

A diffúziós együttható kiszámításához alkalmazom a már ismert képletet:

$$D = \frac{k_B t}{6\pi \eta a}. (4.1)$$

Ahol a η a víz viszkozitása, amely a korábbi feladatmegoldásokból $\eta(T=293.2\circ K)=10^{-3}Pa\cdot s$. Ezek alapján a diffúziós együtthatók a következők:

5. táblázat. Avogadro számok.

Hőmérséklet $[\circ K]$	Sugár $[m]$	$D [m^2/s]$	Molekula
293.2	$1.01 \cdot 10^{-9}$	$2.127 \cdot 10^{-10}$	Buckminsterfullerene
293.2	$17 \cdot 10^{-10}$	$1.26 \cdot 10^{-10}$	DNS