

Thermomechanical simulation of Nickel-based Super Alloy(Inconel 718) using Abaqus

Final report

朱镇

January 3, 2023

Part one
Background
and Physics

Part two
Properties

3
Part three
Result

Background and Physics

Background

Inconel 718 nickel-based alloy (GH4169 in GB) -- Widely used in

Advantages^[1]:

High Stiffness and *Strength* at high temperature(850 °C)

High Dynamic Shear Strength

Extremely *low Reactivity* in highly corrosive environment

Examples: Turbine Blades and Combustion Chamber in turbine engine

Poor machinability^[1]:

Adhere with tool——built up edge(积屑瘤)

Strain hardening—harder for next cut

Low thermal conductivity—high temperature in cutting zone

Simulation

Proper Cutting Parameters and Tools

rine industries

[1] Rinaldi S, Imbrogno S, Rotella G, et al. Physics based modeling of machining Inconel 718 to predict surface integrity modification[J]. Procedia CIRP, 2019, 82: 350-355.

Physics

1. Workpiece

2. Tool

thermal and mechanical model

3. Contact

Thermomechanical coupling modeling^[2]:

1.1 Workpiece thermal model: **The first law of thermodynamics**

$$\rho \overline{\mathbf{c}_{\mathbf{p}}} \frac{\partial \mathbf{T}}{\partial t} - \frac{\partial}{\partial x_i} \cdot \left(\lambda \frac{\partial \mathbf{T}}{\partial x_i} \right) = \dot{q}_{\mathbf{p}}$$

1.2 Workpiece mechanical model:

Flastic model: Hooke's law

$$\sigma_{ij} = \mathcal{C}_{ijkl} \left(\varepsilon_{kl}^e - \alpha \Delta T \delta_{kl} \right)$$

$$C_{ijkl} = \frac{E}{(1+\nu)(1-2\nu)} \delta_{ij}\delta_{kl} + \frac{E}{(1+\nu)} \delta_{ik}\delta_{jl}$$

Specific heat capacity c_p Thermal conductivity λ Thermal expansion α Temperature dependent

Young's modulus E Possion's ratio v Temperature dependent

[2] Bedzra R. Finite element simulation of two dimensional orthogonal cutting process and comparison with experiments[D]. GER: RWTH Aachen University, 2013.

Physics

- 1. Workpiece
- 2. Tool thermal and mechanical model
- 3. Contact

Thermomechanical coupling modeling[2]:

1.2 Workpiece mechanical model:

Plastic model: Johnson-Cook plasticity model

$$\underbrace{\sqrt{\frac{3}{2}} \|\sigma_{ij}^{D}\|}_{\sigma_{vM}} = \left(A + B \left(\underbrace{\int \|\dot{\varepsilon}_{ij}^{p}\| dt}_{\varepsilon}\right)^{n}\right) \left(1 + C \ln \left(\underbrace{\frac{\|\dot{\varepsilon}_{ij}^{p}\|}{\dot{\varepsilon}_{0}}}_{\varepsilon}\right)\right) \left(1 - \left(\underbrace{\frac{T - \Gamma_{0}}{\Gamma_{m} - \Gamma_{0}}}_{\varepsilon}\right)^{m}\right)$$

Coefficients A, B, C, m, n $\text{Reference strain rate } \dot{\mathcal{E}}_0$ $\text{Reference temperature T}_0$ $\text{Melting temperature T}_m$

Material separation (chip formation) model: Johnson-Cook damage model

$$\varepsilon_f = \left(\mathbf{d}_1 + \mathbf{d}_2 \exp\left(-\mathbf{d}_3 \frac{\sigma_{\mathrm{m}}}{\sigma_{\mathrm{vM}}} \right) \right) \left(1 + \mathbf{d}_4 \ln\left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_0} \right) \right) \left(1 + \mathbf{d}_5 \left(\frac{\mathbf{T} - \mathbf{T}_0}{\mathbf{T}_{\mathrm{m}} - \mathbf{T}_0} \right) \right)$$

Stress triaxiality on fracture Strain rate

Temperature

Material dependent parameters d_1 , d_2 , d_3 , d_4 , d_5 Reference temperature T_0 Melting temperature T_m Reference strain rate $\dot{\mathcal{E}}_0$

[2] Bedzra R. Finite element simulation of two dimensional orthogonal cutting process and comparison with experiments[D]. GER: RWTH Aachen University, 2013.

Physics

1. Workpiece

2. Tool thermal and

thermal and mechanical model

3. Contact

Thermomechanical coupling modeling[2]:

2 Tool mechanical and thermal model:

Elastic model: Hooke's law

Thermal model: The first law of thermodynamics

3.1 Contact mechanical model: Coulomb's friction law

$$\tau_f = \mu \sigma_n$$

Friction coefficient µ

3.2 Contact thermal model:

Contact between tool and chip is thermally perfect

Boundaries are assumed to be at room temperature (20°C)

Heat loss due to convection and radiation to surroundings is not taken into account

Part two

Properties

Worpiece properties

1.1 Workpiece dimension

Length	Height	Cutting zone height
5	2	0.1

1.2 Workpiece thermal properties

Т	(°C)	0	1	.00	200	300	400	500	600	700	800	900	1000	1100	120
c _p (J/(kg • °C)) 44	10 4	170	480	490	500	520	550	600	660	650	660	700	71
T	(°C)	0	100) /	200	300	400	500	600	700	800	900	1000	1100	120
λ(Ν/(s • °C))	10	11		13	15	18	19	21	25	26	25	25	29	31
T (°C)	0 5	0 1	00	150	200	250	300	350	400	450	500	550	600 6	50	
α(10 ⁻ ⁶ /°C)	13 13	.05 13	3.1 1	13.3	13.5	13.7	13.8	13.9	14.1	14.25	14.3	14.6	15 1:	5.3	

Workpiece properties

1.3 Workpiece mechanical properties

Elastic:

T (°C)	E (GPa)	v
20	217	0.3
871	155.9	0.3

Plastic:

$\dot{\mathcal{E}}_0$ (1/s)	T ₀ (°C)	T _m (°C)	A(MPa)	B(MPa)	C(MPa)	n	m
10-3	20	1297	1485	904	0.015	0.777	1.689

Material seperation:

$$\varepsilon_f = \left(\mathbf{d}_1 + \mathbf{d}_2 \exp\left(-\mathbf{d}_3 \frac{\sigma_{\mathrm{m}}}{\sigma_{\mathrm{vM}}} \right) \right) \left(1 + \mathbf{d}_4 \ln\left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_0} \right) \right) \left(1 + \mathbf{d}_5 \left(\frac{\mathbf{T} - \mathbf{T}_0}{\mathbf{T}_{\mathrm{m}} - \mathbf{T}_0} \right) \right)$$

Stress triaxiality on fracture Strain rate

Temperature

Tool and contact properties

2.1 Tool dimension:

Rake angle(°)	Flank angle(°)	Radius(µm)
0	10	10

2.2 Tool thermal properties:

T (°C)	0	100	200	300	400	500	600	700	800	900	1000	1100	12
$c_p(J/(kg \cdot {}^{\circ}C))$	200	210	220	240	245	250	255	260	260	260	260	260	20

T (°C)	0	100	200	300	400	500	600	700	800	900	1000	1100	120
$\lambda(N/(s \cdot {}^{\circ}C))$	100	94	90	82	76	69	66	65	65	65	65	65	65

$$\alpha(10^{-6})^{\circ}C = 540$$

3.1 Contact friction coefficient:

$$\mu = 0.5$$

Part three

Result

Simulation Result

Different cutting speed: 20m/min, 40m/min, 80m/min

- 1. Cutting force and feed force
- 2. Temperature

Force

Cutting condition: 40m/min

Cutting force

Feed force

Table 1. My simulation result of average cutting force and feed force

	Vc=20m/min	Vc=40m/min	Vc=80m/min
Average cutting force(N)	569.53	557.52	537.16
Average feed force(N)	247.29	270.24	264.24

Table 2. Reference experiment and simulation result of average cutting force and feed force

	Ve	=20m/min	Ve	=40m/min	Vc=80m/min		
	Exp	Sim	Exp	Sim	Exp	Sim	
Average cutting force(N)	269	285.42	234	259.83	232	254.90	
Average feed force(N)	235	128.09	192	113.06	181	104.74	

Discrepency:

- 1. Two times difference
- 2. Insufficient data
- 3. Force scale (10³)

Temperature

A distance of 1 mm behind the tool edge

A distance of 3.5 mm behind the tool edge

Chip morphology

Vc=80m/min Vc=40m/min Vc=20m/min

Conclusion: Continuous chip

Chip thinkness

Vc=40m/min 0.39mm

Vc=80m/min 0.46mm

Reference

Discrepancy:

1. Different model

