Netzob : un outil pour la rétro-conception de protocoles de communication

Georges Bossert 12, Frédéric Guihéry 1, Guillaume Hiet 2

¹ AMOSSYS - Rennes, France

² Research team CIDre, Supélec

6 juin 2012

Les auteurs Supélec et AMOSSYS

Georges Bossert

Doctorant AMOSSYS / Supélec

Frédéric Guihéry

Ingénieur Sécurité **AMOSSYS**

Guillaume Hiet

Enseignant chercheur Supélec - CIDre

- AMOSSYS : Conseil et Expertise en Sécurité des Technologies de l'Information
- SUPELEC CIDre : Groupe de recherche focalisé sur la sécurité des systèmes d'informations distribués.

Plan

- 1 Le contexte
- 2 Notre modèle d'un protocole
- 3 L'inférence du modèle
- 4 Présentation de l'outil Netzob

Le contexte

Omniprésence des protocoles de communication

Le contexte

Omniprésence des protocoles de communication

Malheureusement, les spécifications ne sont pas toujours disponibles (protocoles propriétaires ou non documentés)

Le contexte

Pourquoi réaliser de la rétro-conception de protocoles ?

Pour évaluer la robustesse des implémentations

=> Fuzzer l'API de contrôle d'une centrifugeuse.

Pour générer un trafic réaliste et controllable.

=> Simuler la présence d'un botnet.

Mais également...

- Pour analyser le trafic et identifier d'éventuelles fuites de données.
- Pour **développer** une version libre d'une implémentation propriétaire.
- Pour valider l'implémentation d'un protocole vis-à-vis d'une spécification.

5/34

Le contexte La rétro aujourd'hui

L'essentiel du temps de rétro-analyse d'un protocole ressemble à ça :

Le contexte La rétro aujourd'hui

L'essentiel du temps de rétro-analyse d'un protocole ressemble à ça :

- · Processus complexe et laborieux
- · Processus essentiellement manuel, voire visuel
- · Communauté dépourvue d'outils d'analyse

Le contexte La rétro aujourd'hui

L'essentiel du temps de rétro-analyse d'un protocole ressemble à ça :

- Processus complexe et laborieux
- · Processus essentiellement manuel, voire visuel
- · Communauté dépourvue d'outils d'analyse

Ce constat, partagé, a mené à la création du projet Netzob

Un peu de définitions

Protocole informatique : spécification

- Vocabulaire : liste des messages et leur format.
- Grammaire : règles de procédure permettant d'assurer la cohérence des messages échangés.

Un peu de définitions

Protocole informatique : spécification

- Vocabulaire : liste des messages et leur format.
- Grammaire : règles de procédure permettant d'assurer la cohérence des messages échangés.

Rétro-conception

- · Retrouver la spécification de protocoles lorsqu'elle est inconnue
 - Par inférence (passive ou active) ou par analyse (manuelle)
 - · A partir des messages échangés ou de l'exécutable

Plan

- Le contexte
- 2 Notre modèle d'un protocole
- L'inférence du modèle
- 4 Présentation de l'outil Netzob

Le modèle du vocabulaire

Identification des besoins

Exemples que l'on souhaite vouloir modéliser

0 4 octets									
	source port	destination port							
sequence number									
acknowledgment number									
data offset	reserved SUN H N	wir	window						
	pointer								
	padding								
	dor	ınées							

Le modèle du vocabulaire Réponse aux besoins

Le modèle du vocabulaire

Réponse aux besoins

Le modèle de la grammaire Identification des besoins

#1 : Traduire la relation entre un symbole en entrée et un symbole en sortie

· Répondre « attack successful » lorsque l'on reçoit « attack ».

Le modèle de la grammaire Identification des besoins

#1: Traduire la relation entre un symbole en entrée et un symbole en sortie

Répondre « attack successful » lorsque l'on reçoit « attack ».

#2 : Définir plusieurs symboles de sortie pour le même symbole d'entrée

Répondre « attack successful » ou « attack failed ».

Le modèle de la grammaire

#1: Traduire la relation entre un symbole en entrée et un symbole en sortie

Répondre « attack successful » lorsque l'on reçoit « attack ».

#2 : Définir plusieurs symboles de sortie pour le même symbole d'entrée

Répondre « attack successful » ou « attack failed ».

#3 : Associer une probabilité d'émission pour chaque symbole de sortie

« attack successful » (90%) ou « attack failed » (10%).

Le modèle de la grammaire Identification des besoins

#1 : Traduire la relation entre un symbole en entrée et un symbole en sortie

Répondre « attack successful » lorsque l'on reçoit « attack ».

#2 : Définir plusieurs symboles de sortie pour le même symbole d'entrée

· Répondre « attack successful » ou « attack failed ».

#3 : Associer une probabilité d'émission pour chaque symbole de sortie

« attack successful » (90%) ou « attack failed » (10%).

#4 : Prendre en compte le temps de réponse

« attack successful » plus rapide que « attack failed ».

Le modèle de la grammaire Machine de Mealy Stochastique à Transitions Déterministes

Machine de Mealy Stochastique à Transitions Déterministes

$$MMSTD = \langle S, X, Y, T, q_0 \rangle$$

- q_0 État initial
 - S Ensemble des états
- X Alphabet des symboles d'entrées
- Y Alphabet des symboles de sorties
- T Ensemble de matrices de transitions

•
$$|T| = |X| \times |Y|$$

•
$$T = \{A(x,y)\}, a_{i,j}(x,y) = (p(s_i,y|s_i,x),t_{i,j}(x,y))$$

•
$$\forall x \in X, \forall s_i, s_j \in S \ p(s_j|s_i, x) = \sum_{v \in Y} p(s_j, v|s_i, x) \in \{0, 1\}$$

Le modèle de la grammaire Machine de Mealy Stochastique à Transitions Déterministes

Pour résumer :

- Automate symbolique
- Transitions déterministes mais symboles de sorties indéterministes
- Prise en compte du temps de réaction

Plan

- Le contexte
- 2 Notre modèle d'un protocole
- 3 L'inférence du modèle
- 4 Présentation de l'outil Netzob

#1: Découpage et regroupement

- Découpage en champs
- Regroupement des messages par similarité
- Approche semi-automatique

L'inférence du vocabulaire Le découpage en champs

Le découpage en champs

- Partitionnement par délimiteur
- Partitionnement par variation

Alignement de séguence (Needleman-Wunsch)

```
150 Opening BINARY mode data connection for 150 Opening BINARY mod
```

Champs dynamiques de taille variable

L'inférence du vocabulaire Le regroupement par similarité

Regroupement par clustering UPGMA

- Calcul de similarité en sortie de Needleman-Wunsh
- · Remplissage d'une matrice de similarité
- · Fusion des messages les plus similaires
- Puis on itère...

L'inférence du vocabulaire Le regroupement par similarité

Regroupement par clustering UPGMA

- Représentable sous la forme d'un dendrogramme
- Possibilité de choisir un seuil de regroupement

L'inférence de la grammaire

Inférence du graphe de transition

- Principe : soumettre des séquences de symboles à un « professeur »
- · Transmission des messages vers/depuis le binaire confiné
- Variante de l'algorithme L* (Angluin).
- Ré-initialisation entre chaque soumission (virtualisation)

Généralisation du modèle

- Ajout de l'indéterminisation en sortie :
 - · rejeu des traces dans l'automate inféré
 - · estimation des probabilités des symboles de sorties
- · Ajout du temps de réaction
 - Mesure du temps entre un symbole d'entrée et de sortie.
 - Utilisation d'une loi normale.

Plan

- Notre modèle d'un protocole
- Présentation de l'outil Netzob

Présentation de l'outil Netzob

Simulation Client Import PCAP Serveur Inférence du Capture réseau protocole à la volée Fuzzing * Inférence du Flux IPC vocabulaire Inférence de la **Fichiers** Export grammaire **XML** Format XML Flux API * Format texte Dissecteur Scapy *

Démonstration

[Démo]

Démonstration Exemple de grammaire

Le projet

- Développé en Python et en C
- Sous licence GPLv3
- Actuellement 7 contributeurs (AMOSSYS, Supélec, Bull)
- Disponibilité
 - · Via dépôt git ou tar.gz
 - Paquet Debian (À la recherche d'un sponsor)
 - · Paquet Gentoo et Windows (en cours)

Conclusion

Bilan

- Domaine assez actif au niveau académique ces dernières années
- Mais quasiment aucune retombée dans les outils publics
- · Netzob vise à combler ce manque
 - · Support de travaux académiques
 - Utilisable dans un contexte opérationnel (audit, évaluation, développement, ...)

Travaux futurs

- Nouveaux capteurs (API, noyau, périphériques)
- Gestions des sessions
- Gestion d'autres formats d'encodages (ASN.1, TSN.1, EBML, etc.)
- Open « wishlist »: https://dev.netzob.org

Conclusion

- http://www.netzob.org,@Netzob
- Des questions à poser à Zoby?

Comment contribuer:

- Partage de PCAPs (malware, scada...)
- Participation au développement
- · Retour d'expérience

Annexes

Fonctionnement de Needleman & Wunsch

$$M(i,j)=MAX[M(i-1,j-1) + S(i,j); M(i,j-1) + W; M(i-1,j) + W)]$$

 $S(i,j) = SCORING SCHEME | W = GAP PENALTY$

		G	À	A	Т	Т	С	A	G	Т	Т	A
	0,	Q	0	0	0	0	0	0	0	0	0	0
G	0 +	1										
G	0											
Α	0											
T	0											
С	0											
G	0											
A	0											

Annexes Fonctionnement de Needleman & Wunsch

Traceback step

Annexes

Comment fonctionne l'algorithme de classification UPGMA?

- Exécution itérative des opérations suivantes :
 - 1 Recherche dans la matrice le score le plus élevé.
 - 2 Regroupe les deux groupes associés.
 - 3 Mise à jour de la matrice (calcul de la moyenne des deux lignes).

Annexes Comment fonctionne l'algorithme L*a

- Tant que l'automate hypothèse n'est pas conforme
 - Tant que la table n'est pas close et consistente
 - Soumission d'une requête d'appartenance
 - Construction d'un automate hypothèse
 - Recherche d'un contre exemple (requète d'équivalence)

