3rd Year B.S. (Honors) 2019 Math Lab Assignment 03 Course: AMTH 350 (Math Lab III) Department of Applied Mathematics University of Dhaka

Name: Roll No:

Write MATLAB program to solve the following problems using Script file.

No:	Problems
1	Consider the following linear system of equations:
	$10x_1 - x_2 + 2x_3 = 6$
	$-x_1 + 11x_2 - x_3 + 3x_4 = 25$
	$2x_1 - x_2 + 10x_3 - x_4 = -11$
	$3x_2 - x_3 + 8x_4 = 15$
	Solve the above system, correct up to 5 decimal places, with initial guess
	$x_0 = (0,0,0,0)$ using:
	(i) Jacobi iterative method.
	(ii) Gauss-Seidel iterative method.
	(iii) SOR iterative method with $\omega = 1.1$.
2	Consider the system of equations given below
	$ 2x_1 - 3x_2 + 2x_3 = 5 -4x_1 + 2x_2 - 6x_3 = 14 $
	$2x_1 + 2x_2 + 4x_3 = 8$
	(a) Solve the system using Gaussian elimination method.
	(b) Solve the system using Gaussian-Jordan elimination method.
3	Use the Power method to approximate the dominant eigenvalue of the
	matrix
	$A = \begin{pmatrix} -4 & 14 & 0 \\ -5 & 13 & 0 \\ -1 & 0 & 2 \end{pmatrix}$
	Let $x^0 = (1,1,1)^T$

4 Solve the following initial value problem over the interval [0,2]. Display all your results graphically.

$$\frac{dy}{dt} = yt^3 - 1.5y, \ y(0) = 1$$

- (a) ode solver.
- (b) Using Euler's method with h = 0.5 and 0.25.
- (c) Using the midpoint method with h = 0.5.
- (d) Using Heun's method with h=0.5.
- (e) Using the fourth-order RK method with h = 0.5.
- 5(a) | Solve the following system of ODEs

$$\frac{dx}{dt} = ax - bxy$$

$$\frac{dy}{dt} = -cy + dxy$$

$$x(0) = 2, \quad y(0) = 1$$

Taking a = 1.2, b = 0.6, c = 0.8, and d = 0.3.

5(b) The van der Pol equation is a second order ODE

$$\frac{d^2y}{dx^2} - \mu(1 - y^2)\frac{dy}{dx} + y = 0, \ y(0) = 2, \ y'(0) = 0$$

where $\mu > 0$ is a scalar parameter. Solve the above equation using shooting method (ode45 solver) and then show the result graphically.

6 Consider the heat conduction equation

$$\rho c_p \frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}, \quad u(x,0) = 100, u(0,t) = 0, u(10,t) = 0,$$

$$0 \le x \le 10, t > 0$$

Solve the above equation using finite difference method and the show the result graphically.(In particular case let $\rho = 1$, $c_p = 1$ and k = 1)