LUCID STAGE 3: DESIGN

- Create a design metaphor, more detailed design
- Produce low fidelity prototype for early evaluation
- Product's basis design metaphor, including navigation, screen layout, and visual design is initially defined
- Transition (finally!) from investigation/information gathering to design
 - * Use information from requirements/task/user analysis
- Goals and corresponding LUCID activities (LUCID tasks)
 - * Develop conceptual model/metaphor
 - * Develop low fidelity prototype and perform initial usability evaluations
 - * Perform usability inspection of initial design

- Conceptual model/metaphor is basis for specific UI design
 - * Metaphor is optional, model required
 - Conceptual model, intuitively, is what product system is and does.
 - Metaphor is analogy with something existing in real world with similarities that can be leveraged for learning new system
 - * Helps designers *and therefore users* develop mental map of UI design
- Conceptual model vs. technical model
 - * Technical model implementation of software architecture (widgets, data structures, files, etc.)
 - * User interaction design vs. user interface software design, revisited

- To help develop conceptual model/metaphor participatory design
 - * Active involvement of users during design
 - * Pros: More accurate information about tasks, situation, etc.; lets users influence design decisions; builds rapport with user
 - * Cons: Costly, may create antagonism between users and designers; users are *not* trained designers!
- Nevertheless, experiences are usually positive, helped by:
 - * Good, experienced leadership
 - * Careful selection of users
- Important strategy for design
 - * Enhances buy-in for new product
 - * Reduces threat of (to!) new product

- PICTIVE (Plastic interface for collaborative technology initiatives through video exploration) example of participatory design technique
 - * Users actually sketch UI design
 - * Then use paper, plastic, tape, sticky notes, etc. to create low-fidelity prototype
 - * Users then perform scenario walkthrough, which is recorded using video camera
 - * Video can be shown to other users and designers, managers

- Example of conceptual model/metaphor for Y2K Calendar: A paper calendar, but extend it to include views of day, week, month, and year (which a single paper calendar cannot do) plus direct searching
- Can have more than one design concept
- Design concept(s) can iterate and change, sometimes dramatically
- Design concept(s) may be controversial
- Concept description accompanied by screen sketches to show key aspects of proposed design
 - * As these are initial design, want them to *encourage* comment and iteration
- Evaluate design concept(s) by discussion with team and key users (including different user classes)
- Choose design concept from evaluation results
 - * Could mean merging parts of two or more concepts

• Goal:

* To create a high-level (independent of appearance) design model with a metaphor

• Activities:

- * Identify application objects, their properties, and relationships among them
- * Decide how objects will be viewed conceptually (not details of appearance) in interaction design
- * Decide how user will access those objects
- * Determine operations to be performed on the objects as a result of user tasks
- * Decide how to invoke and carry out those operations

- Conceptual design model
 - * Identify *objects*: Appointments
 - * Identify *properties*:

Date

Time

Description

Length? - omit for first pass

Alarm or not?

- * Relationships: Only one object so far
- * How objects are represented conceptually in user interaction design
 - By month, week, day, hour (time slot?)
 - Time slot can be empty or contain appointment
 - Implications: In user interaction design these probably are objects, too, as containers of appointments, but can be selected and possibly manipulated

- Conceptual design model continued
 - * Access methods: How users get at the objects
 - * Accessing an existing appointment
 - By viewing, possibly preceded by search or navigation through views
 - * Invoking and carrying out operations on objects
 - Menu? Pull-down?
 - Small, fixed number of commands
 - Implication for interaction style: Buttons or icons?

INITIAL SCREEN DESIGN

- Goal:
 - * To develop together an initial design/layout for the screen(s) and other interaction objects
- Assumption:
 - * Generic desktop platform (not specific to Windows, Mac, etc.)
- Activities:
 - * Draw pictures of screens, including menus, buttons, icons, application objects
 - * Label objects with behavior as appropriate

INITIAL SCREEN DESIGN

• Conceptual design might lead to something like:

- Cognitive/human factors analysis
 - * Design doesn't closely match user's concept of a calendar
 - * Can do better with direct manipulation
 - Have all view containers (day, week, etc.) on desktop and select to be on top
 - Eliminates explicit view control/command
 - Add and modify by typing (editing) directly on text of appointment; eliminate modify button

EXERCISE: ITERATE CONCEPTUAL DESIGN MODEL

- Conceptual design model revisited
 - * Access methods to appointment objects by:
 - Selection and navigation on desk top
 - Search on content (user types string to match)
 - * Decisions about container objects
 - Default display: Several months overlapped, with current month on top
 - In higher level objects user can select lower level objects (view control)
 - Try to show as much appointment information at each level as possible (page preview idea)
 - * Appointment editing
 - Keep it simple (it's not a word processor)
 - Do only at appointment slot (hour) level
 - For add, modify, delete

ITERATE INITIAL SCREEN DESIGN

• Month level (current month is default)

ITERATE INITIAL SCREEN DESIGN

• Dialogue box for searching

ITERATE INITIAL SCREEN DESIGN

• Week level

* Format of week can use improvement

Day level

* Appointments saved when deselect

- User interaction development is evaluation-centered
- Dilemma: Can't evaluate an interface until it is built, but after building, changes are difficult
- Solution: Rapid prototyping producing interactive versions of an evolving interaction design
 - * Main technique supporting iterative refinement of UI design
- Prototype is conversational "prop" to support communication of concepts not easily conveyed verbally [R. Bellamy, Apple Corp.]
- Almost everything you need to know about low fidelity prototyping you learned in kindergarten!
 - * Low fidelity prototypes generally paper-based
 - * Later evolve to be computer-based

- Low-fidelity paper prototypes are not just a stop-gap technique
 - * Do paper prototype at beginning of project
 - Better support for participatory design
 - * Can evolve very quickly
 - * Computer-based prototype can distract from usability focus
 - * People *do* take paper prototype seriously; it does find many usability problems

• Interaction design has two parts

* Look and feel: objects

* Sequencing: behavior

Type of prototype	"Strength"	When in life cycle to apply "strength"	Cost to fix look and feel	Cost to fix sequencing
Paper (lo-fi)	Flexibility; easy to change sequencing, overall behavior	Early	Almost none	Low
Computer (hi-fi)	Fidelity of look and feel	Later	Low	High

- What to put in early prototypes to evaluate usability of overall interaction design metaphor/paradigm
 - * Start with representative sample screen or two
 - * Mock-up a representative task
 - * Follow a representative task thread
 - * Lower fidelity
- What to put in later prototypes to evaluate usability of details
- * More detailed, refined screens
- * More complete tasks
- * Higher fidelity
- Invest *just enough* effort in a prototype
 - * To achieve usability evaluation goal, but no more

INFORMAL EVALUATION: USABILITY INSPECTION

- Sometimes called *heuristic* evaluation or *expert* evaluation [Nielsen, 1990]
- Usability inspection is based on interaction design guidelines, which we cover later.

INFORMAL EVALUATION: USABILITY INSPECTION

- Process
 - * Does not use actual users
 - * Expert user interaction designers (not on user interaction design team) assess specific user interaction design by determining guidelines violated and supported
 - * Based on findings, experts recommend modifications to improve usability
 - * Typically two or three expert designers
 - First, assess design individually
 - Then assess together
 - Gives diversity of opinion, yet is efficient and cost effective

USABILITY INSPECTION

- Advantages
 - * Probably single most cost-effective method to improve usability [C. Kreitzburg, Cognetics Corp.]
 - * Provides design team with perspectives and experience of independent expert designers from outside development team
 - * Complements usability evaluations with users
- Disadvantages
 - * Does not use real users
 - * Experts may not know system in depth
 - * May find "false positives"
 - * May find higher proportion of lower severity problems

USABILITY INSPECTION

- Reporting results
 - * List of guidelines used in inspection

Organize information so it is logically grouped.

* For each guideline, specific examples of design violations

Give explanation and screen image (when available) – e.g., poor use of direct manipulation in original calendar design

- * "Top 3" (or 4 or 5) suggestions for modifications
 - For biggest improvement in usability
 - Based on most frequently visited screens, screens with most usability problems, guidelines most often violated, minimum resources to make changes