Practice Problems

- 1. Consider a training set of five data points $\{(\mathbf{x}_i, t_i)\}_{i=1}^5$, where each input \mathbf{x}_i is 2-dimensional and its corresponding target t_i is a real valued scalar. We wish to learn a suitable regression function, that can perfectly pass through all these points. To this goal, consider adopting a Radial Basis Function (RBF) neural network.
 - (a) Draw a schematic representation of the neural network for this regression problem. Clearly specify:
 - i. the number of nodes in the input layer
 - ii. the number of basis functions in the hidden layer
 - iii. the number of nodes in the output layer.
 - (b) What is the training error for this RBF network. Justify your answer.
 - (c) How many weights are to be learnt for this regression task. Give your reasoning.
- 2. Consider an HMM representation of a coin-tossing experiment. You are given a three state model (corresponding to three different coins) with probabilities

	State 1	State 2	State 3	
P(H)	0.5	0.6	0.4	H: Head
P(T)	0.5	0.4	0.6	

and with all state transition probabilities set to $\frac{1}{3}$. The initial probabilities for state 1, state 2 and state 3 are 0.5, 0.2 and 0.3 respectively. Given the observation sequence $\mathbf{O} = HHTT$, of length four,

T: Tail

- (a) What is the probability that this sequence came from state 1 entirely?
- (b) Using the Viterbi algorithm, what is the optimal sequence of states that can be assigned to **O**?
- 3. Consider a multi-layer perceptron with the following specifications:
 - d nodes in the input layer
 - sigmoidal activation functions at the M nodes in the hidden layer.
 - linear activation functions at the c nodes in the output layer.

The weights of the network are to be learnt using the error function

$$E = \frac{1}{6} \sum_{k=1}^{c} (t_k - y_k)^6$$

where t_k and y_k denote the target and predicted values at the k^{th} output node. Derive expressions for the following:

- (a) Predicted value y_k in terms of the training sample $\mathbf{x} = (x_1, x_2, \dots, x_d)^T$, activation functions and network weights. (You may ignore the bias terms in the derivation.)
- (b) Updation of weight w_{kj} , connecting the j^{th} hidden node to the k^{th} output node.
- (c) Updation of weight w_{ji} , connecting the i^{th} input node to the j^{th} hidden node. **Hint**: Back propagation!

Note: For the sigmoidal function $g(x) = \frac{1}{1 + e^{-x}}$, the derivative is g(x)(1 - g(x)).