Conclusion

Jiaxuan You Assistant Professor at UIUC CDS

CS598: Deep Learning with Graphs, 2024 Fall

https://ulab-uiuc.github.io/CS598/

Review Our Course Objective

Takeaways from this course:

- Knowledge about graph deep learning
 - Core knowledge: Insights, Coding, Math
 - Latest knowledge: Recent research papers
- Training for Al research
 - Experience the full lifecycle as an AI researcher
 - Read, Ideate, Discuss, Code, Write, Review, Present

Conclusion

Knowledge about graph deep learning

Goal of Graph Deep Learning Enable DL research for the interconnected data

Graph: Ubiquitous across Disciplines

Molecule *Molecule design*

Protein interaction

Drug discovery

Social network *Recommender systems*

Economic network

Policy making

- Graphs: flexible and expressive
- Graphs can bridge interdisciplinary data

Graph ML Tasks

Key Idea: **Node Embeddings**

"Shallow" Encoding

Simplest encoding approach: encoder is just an embedding-lookup

A Single GNN Layer

Putting things together:

(1) Message: each node computes a message

$$\mathbf{m}_{u}^{(l)} = \mathrm{MSG}^{(l)}\left(\mathbf{h}_{u}^{(l-1)}\right), u \in \{N(v) \cup v\}$$

• (2) Aggregation: aggregate messages from neighbors

$$\mathbf{h}_{v}^{(l)} = \mathrm{AGG}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}, \mathbf{m}_{v}^{(l)}\right)$$

- Nonlinearity (activation): Adds expressiveness
 - Often written as $\sigma(\cdot)$: ReLU(\cdot), Sigmoid(\cdot), ...
 - Can be added to message or aggregation

Recap: A General GNN Framework

GNN Training Pipeline

Implementation resources:

<u>DeepSNAP</u> provides core modules for this pipeline <u>GraphGym</u> further implements the full pipeline to facilitate GNN design

Example: Node Classification

Transductive node classification

• All the splits can observe the entire graph structure, but can only observe the

labels of their respective nodes

Training

Validation

Test

- Inductive node classification
 - Suppose we have a dataset of 3 graphs
 - Each split contains an independent graph

Training

Validation

Test

How Expressive is a GNN?

- In other words, most expressive GNN would use an injective neighbor aggregation function at each step.
 - Maps different neighbors to different embeddings.

Example: 1st Iteration, Update Node 3

- Update for the 1st Iteration:
 - For node 3, $N_3 = \{1, 2, 4\}$

GNN Design Space

Overall: A GNN design space

Intra-layer design

Learning rate

0.1, 0.01, 0.001

	Batch Normalization	Dropout	Activation	Aggregation
	True, False	False, 0.3, 0.6	RELU, PRELU, SWISH	MEAN, MAX, SUM
Inter-layer design				
I	Layer connectivity	Pre-process lay	ers Message passing lay	ers Post-precess layers
STACE	K, SKIP-SUM, SKIP-CAT	1, 2, 3	2, 4, 6, 8	1, 2, 3
	_	Loorning	configuration	

In total: 315K possible designs

Optimizer

SGD, ADAM

Purpose:

Batch size

16, 32, 64

We don't want to (and we cannot) cover all the possible designs

Training epochs

100, 200, 400

 A mindset transition: We want to demonstrate that studying a design space is more effective than studying individual GNN designs

Heterogeneous Graphs: Motivation

8 possible relation types!

(Paper, Cite, Paper)

(Paper, Like, Paper)

(Paper, Cite, Author)

(Paper, Like, Author)

(Author, Cite, Author)

(Author, Like, Author)

(Author, Cite, Paper)

(Author, Like, Paper)

Relation types: (node_start, edge, node_end)

- We use relation type to describe an edge (as opposed to edge type)
- Relation type better captures the interaction between nodes and edges

TransE

- Intuition: Translation
 For a triplet (h, r, t), let $\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^d$ be embedding vectors.
- TransE: $\mathbf{h} + \mathbf{r} \approx \mathbf{t}$ if the given link exists else $\mathbf{h} + \mathbf{r} \neq \mathbf{t}$ Entity scoring function: $f_r(h,t) = -||\mathbf{h} + \mathbf{r} - \mathbf{t}||$
 - A valid triplet has a higher score / lower distance

embedding vectors will appear in boldface

Embed with Box Embedding

"What is the drug that causes Short of Breath and treats disease associated with protein ESR2?"

((e:ESR2, (r:Assoc, r:TreatedBy)), (e:Short of Breath, (r:CausedBy))

How do we take intersection of boxes?

Query Plan

Embedding Space

Put Things Together: Test

Identity-aware GNN

- Why does heterogenous message passing work:
 - Suppose two nodes v_1, v_2 have the same computational graph structure, but have different node colorings
 - Since we will apply different neural network for embedding computation, their embeddings will be different

Cluster-GCN: Overview

- We first introduce "vanilla" Cluster-GCN.
- Cluster-GCN consists of two steps:
 - Pre-processing: Given a large graph, partition it into groups of nodes (i.e., subgraphs).
 - Mini-batch training: Sample one node group at a time. Apply GNN's message passing over the induced subgraph.

How to inject PE/SE

Inject local PE/SE with node inputs and treat relative PE/SE as

additional attention bias

Example: Graphormer

Attention: $e_{ij} = \frac{(h_i W_q)(h_j W_k)^T}{\sqrt{d}} + b_{\phi(v_i, v_j)} + c_{ij}$

Spatial Encoding:

Shortest path between v_i, v_j

Edge Encoding:

Average all edge features along the shortest path between $v_i, v_j, c_{ij} = \frac{1}{N} \sum_{e \in SP(i,j)} x_e w_e$

Graph Foundation Models

 A graph foundation model (GFM) is a model pre-trained on extensive graph data, adapted for diverse downstream graph tasks.

PinSAGE:Graph Neural Network

- Graph has tens of billions of nodes and edges
- Further resolves embeddings across the Pinterest graph

Order Constraint (2)

 We specify the order constraint to ensure that the subgraph properties are preserved in the order embedding space

Autoregressive Decoder in ProteinMPNN

The Bottom Line

- There is exciting relational structure in many many real-world problems
- Identifying and harnessing this relational structure leads to better AI

Interconnected world

Graph-structured data

Al agent

Conclusion

Training for Al research

The 5 Questions for A Good Paper

(Originally for writing paper introduction)

- What is the problem?
- Why is it interesting and important?
- Why is it hard? (E.g., why do naive approaches fail?)
- Why hasn't it been solved before? (Or, what's wrong with previous proposed solutions? How does mine differ?)
- What are the key components of my approach and results?
 Also include any specific limitations.

What's Next?

- Review and Response (Due on Dec 8)
 - Everyone will be assigned 2 papers to review by this weekend.
 - Each group is required to participate in the public discussion of the papers. We will discuss general principles and practical strategies today.
 - Review and response will count towards 10% of your final grade. We will evaluate both your reviews and your responses.

What's Next?

- Presentation (Due on Dec 4 & Dec 6)
 - Each group is required to prepare slides for the presentation.
 - We will have 5 minutes for presentation and 3 minutes for comments.
 - TA will assign each group into the Wednesday or Friday session by Dec 1.
 - Presentation will count towards 10% of your final grade.

Conclusion

Review & Response

Reviewer Guide

- An outline of the main reviewer tasks
- Step-by-step reviewing instructions
- Review Examples

- 1 Summary: Provide a brief, accurate summary of the paper, emphasizing its key contributions, methodology, and findings.
- Example: "This paper proposes a novel method for optimizing transformer architectures using a learned attention pruning mechanism. The authors demonstrate improvements in both computational efficiency and downstream performance across three benchmark datasets."

- 2 Strengths: Highlight the paper's major contributions and strengths in detail.
- Example: "The approach is innovative and addresses a significant problem in transformer scalability. The experimental results are compelling, with a 20% reduction in computational cost and consistent performance gains."

- 3 Weaknesses: Clearly state limitations or potential issues, such as incomplete comparisons, insufficient analysis, or unclear writing.
- Example: "The method lacks an ablation study to disentangle the effects of the pruning mechanism from other components of the model."

- 4 Constructive Feedback: Provide actionable suggestions for improvement.
- Example: "Adding a comparison with recent pruning methods like XYZ et al. (2023) would strengthen the claims. Also, explaining why Dataset A was chosen over other common benchmarks would improve clarity."

- Detailed and Specific Comments: Avoid vague statements. Back your claims with evidence or examples.
- Weak: "The experiments are insufficient."
- Strong: "The experiments focus only on synthetic data. Real-world datasets like ABC would provide stronger evidence for the method's generalizability."

High Quality Rebuttal Tip

- Think about yourself as an LLM agent
- "RAG"
- Retrieve evidence
 - From your paper
 - Line xxx to xxx, Figure xxx, Table xxx
 - From famous paper
 - Relevant works, famous works
- Action
 - Improve your writing
 - Add new results

Conclusion

Open-ended Discussion - AMA