Spazi vettoriali normati

Def. Sia V uno spazio vettoriale reale o complesso. Una funzione

$$\|\cdot\|:V\to\mathbb{R}$$

è detta norma su V se valgono le seguenti $\forall v, w \in V, \forall \alpha \in \mathbb{R}$ o \mathbb{C} :

- $(1) \|v\| = 0 \Rightarrow v = 0_V$
- (2) $\|\alpha v\| = |\alpha| \|v\|$
- (3) $||v+w|| \le ||v|| + ||w||$ (disuguaglianza triangolare per la norma).

Uno spazio vettoriale normato $(V, \|\cdot\|)$ è uno spazio vettoriale reale o complesso V munito di una norma.

Oss.
$$||0_V|| = ||0 \ 0_V|| = 0 ||0_V|| = 0$$
. $0 = ||0_V|| = ||v - v|| \le ||v|| + ||-v|| = 2||v||, \ \forall \ v \in V \Rightarrow ||\cdot|| \ge 0$.

Prop. Sia V uno spazio vettoriale normato. Allora la funzione

$$d: V \times V \to \mathbb{R}$$
$$d(v, w) = ||v - w||$$

è una metrica su V. Pertanto V è anche uno spazio metrico e quindi uno spazio topologico.

Dim. Esercizio.

Oss. Si ha: $|||v|| - ||w||| \le ||v - w|| \Rightarrow ||\cdot|| : V \to \mathbb{R}$ continua. Esercizio.

Def. Due metriche d_1 e d_2 su X sono equivalenti se $\exists C_1, C_2 > 0$ t.c.

$$C_1d_1(x,y) \leqslant d_2(x,y) \leqslant C_2d_1(x,y), \quad \forall x,y \in X.$$

Due norme
$$\|\cdot\|_1$$
 e $\|\cdot\|_2$ su V sono equivalenti se $\exists C_1, C_2 > 0$ t.c.

$$C_1||v||_1 \leqslant ||v||_2 \leqslant C_2||v||_1, \quad \forall v \in V.$$

Oss. Sono due relazioni d'equivalenza.

Norme equivalenti su V inducono metriche equivalenti. Esercizio.

Prop. Metriche equivalenti su un insieme X inducono la stessa topologia.

Dim. $d_1, d_2: X \times X \to \mathbb{R}$ metriche equivalenti $\rightsquigarrow C_1, C_2 > 0$ t.c.

$$C_1d_1 \leqslant d_2 \leqslant C_2d_1 \implies B_{d_1}(x, C_2^{-1}r) \subset B_{d_2}(x, r) \subset B_{d_1}(x, C_1^{-1}r).$$

Esempio. $\forall x = (x_1, \dots, x_n) \in \mathbb{R}^n \circ \mathbb{C}^n$, definiamo:

$$||x||_1 := |x_1| + \dots + |x_n|;$$

 $||x||_{\infty} := \max(|x_1|, \dots, |x_n|).$

Sono equivalenti tra loro e alla norma Euclidea || · ||:

$$||x||_{\infty} \leqslant ||x||_1 \leqslant n||x||_{\infty}, \quad ||x||_{\infty} \leqslant ||x|| \leqslant \sqrt{n} \, ||x||_{\infty}.$$

Pertanto su \mathbb{R}^n e \mathbb{C}^n potremo usare indifferentemente una di queste norme per rappresentare la topologia Euclidea.

Esempio. Su \mathbb{R}^n e \mathbb{C}^n si considera anche la p-norma (o norma ℓ^p), $\forall p \geqslant 1$:

$$\|x\|_p:=\left(\sum\limits_{j=1}^n|x_j|^p
ight)^{\!\!rac{1}{p}}\!\!.$$

Si ha subito la disuguaglianza

$$\|x\|_{\infty}\leqslant \|x\|_{p}\leqslant n^{\frac{1}{p}}\|x\|_{\infty}$$

da cui per il Teorema dei due carabinieri

$$\lim_{p\to +\infty}\|x\|_p=\|x\|_\infty.$$

Sfere unitarie $\|x\|_p=1$ in \mathbb{R}^2 per alcuni valori di $p\geqslant 1$.

Oss. $\|\cdot\|_p$ non soddisfa la disuguaglianza triangolare $\forall p \in]0, 1[$.

Enunciamo senza dimostrare il teorema seguente.

Teor. dim $V < \infty \Rightarrow$ tutte le norme su V sono tra loro equivalenti.

N.B. dim $V = \infty \Rightarrow$ esistono norme non equivalenti su V.

Lavoro di gruppo. (a) $B^2 \cong [-1, 1]^2 \subset \mathbb{R}^2$. (b) $\operatorname{Fr}_{\mathbb{R}^2} B^2 = S^1$.

Lezione 5 Immersioni

Immersioni, immersioni locali e omeo locali

Def. Un'applicazione tra spazi topologici $f: X \to Y$ è detta

- (1) immersione se $f|_{f(X)}: X \to f(X)$ omeo, dove $f(X) \subset Y$ ha la top. di sottospazio. Scriviamo $f: X \hookrightarrow Y$ e diciamo X si immerge in Y.
- (2) immersione locale se $\forall x \in X$, $\exists U \subset X$ intorno di x t.c. $f|_U : U \to Y$ è un'immersione. Diciamo che X si immerge localmente in Y.
- (3) omeomorfismo locale se $\forall x \in X$, $\exists U \subset X$ intorno di x t.c. $f(U) \subset Y$ intorno di f(x) e $f_{|U}: U \to f(U)$ omeo.

N. B. In inglese: immersione = embedding; immersione loc. = immersion.

Oss. $X \subset Y$ sottospazio topologico $\Leftrightarrow i_X : X \hookrightarrow Y$ immersione.

Oss. $f: X \hookrightarrow Y$ immersione $\not\leftarrow \Rightarrow f$ continua e iniettiva.

 $X \hookrightarrow Y \Leftrightarrow X$ omeomorfo ad un sottospazio di Y e a meno di immersione possiamo considerare $X \subset Y$.

 $f: X \to Y$ immersione loc. $\not \Leftarrow \Rightarrow f$ continua e loc. iniettiva $(\forall x \in X, \exists U \subset X \text{ intorno di } x \text{ t.c. } f_{|U}: U \to Y \text{ iniettiva}).$ Immersione $\not \Leftarrow \Rightarrow$ immersione loc.

 $f: X \to Y$ omeo loc. $\Leftrightarrow f: X \to Y$ immersione loc. aperta.

Esempio. $\forall k < n$ consideriamo le immersioni canoniche

$$\mathbb{R}^{k} \hookrightarrow \mathbb{R}^{n} \qquad \mathbb{C}^{k} \hookrightarrow \mathbb{C}^{n}$$

$$x \mapsto (x, 0_{\mathbb{R}^{n-k}}) \qquad x \mapsto (x, 0_{\mathbb{C}^{n-k}}).$$

Abbiamo anche: $B^k \hookrightarrow B^n$, $S^k \hookrightarrow S^n$.

Possiamo considerare $\mathbb{R}^k \subset \mathbb{R}^n$, $\mathbb{C}^k \subset \mathbb{C}^n$, $S^k \subset S^n$, $B^k \subset B^n$, $\forall k < n$. Queste immersioni sono chiuse.

Lavoro di gruppo. $f: [0, 2\pi[\rightarrow S^1, f(t) = (\cos t, \sin t) \text{ omeo?}]$