

Big Data And Analytics

Seema Acharya Subhashini Chellappan Chapter 4

The Big Data Technology Landscape

Learning Objectives and Learning Outcomes

Learning Objectives	Learning Outcomes
The big data technology landscape	
1. What is NoSQL databases?	 a) To understand the significance of NoSQL databases.
2. Why NoSQL?	b) To understand the need for
3. Key advantages of NoSQL.	NewSQL.
4. What is NewSQL?	c) To understand the Hadoop platform and be able to
5. SQL Vs. NoSQL.	appreciate the difference between Hadoop 1.0 and
6. Getting familiar with Hadoop.	Hadoop 2.0.

Session Plan

Lecture time 45 to 60 minutes

Q/A 15 minutes

Agenda

- NoSQL
 - What is it?
 - Types of NoSQL Databases
 - Why NoSQL?
 - Advantages of NoSQL
 - NoSQL Vendors
 - SQL versus NoSQL
 - NewSQL
 - Comparison of SQL, NoSQL and NewSQL
- Hadoop
 - ► Features of Hadoop
 - Key Advantages of Hadoop
 - Versions of Hadoop

What is NoSQL?

What is NoSQL?

Types of NoSQL

Key value data store

- Riak
- Redis
- Membase

Column-oriented data store

- Cassandra
- HBase
- HyperTable

Document data store

- MongoDB
- CouchDB
- RavenDB

Graph data store

- InfiniteGraph
- Neo4
- Allegro Graph

Advantages of NoSQL

Advantages of NoSQL

Cheap, Easy to implement

Easy to distribute

Can easily scale up & down

Relaxes the data consistency requirement

Doesn't require a pre-defined schema

Data can be replicated to multiple nodes and can be partitioned

Advantages of NoSQL

NoSQL Vendors

NoSQL Vendors

Company	Product	Most widely used by
Amazon	DynamoDB	LinkedIn, Mozilla
Facebook	Cassandra	Netflix, Twitter, eBay
Google	BigTable	Adobe Photoshop

SQL Vs. NoSQL

SQL Vs. NoSQL

SQL	NoSQL
Relational database	Non-relational, distributed database
Relational model	Model-less approach
Pre-defined schema	Dynamic schema for unstructured data
Table based databases	Document-based or graph-based or wide column store or
	key-value pairs databases
Vertically scalable (by increasing system	Horizontally scalable (by creating a cluster of
resources)	commodity machines)
Uses SQL	Uses UnQL (Unstructured Query Language)
Not preferred for large datasets	Largely preferred for large datasets
Not a best fit for hierarchical data	Best fit for hierarchical storage as it follows the key-
	value pair of storing data similar to JSON (Java Script
	Object Notation)
Emphasis on ACID properties	Follows Brewer's CAP theorem
Excellent support from vendors	Relies heavily on community support
Supports complex querying and data	Does not have good support for complex querying
keeping needs	
Can be configured for strong consistency	Few support strong consistency (e.g., MongoDB), few
	others can be configured for eventual consistency (e.g.,
	Cassandra)
Examples: Oracle, DB2, MySQL, MS SQL,	MongoDB, HBase, Cassandra, Redis, Neo4j, CouchDB,
PostgreSQL, etc.	Couchbase, Riak, etc.

NewSQL

SQL Vs. NoSQL Vs. NewSQL

SQL Vs. NoSQL Vs. NewSQL

	SQL	NoSQL	NewSQL
Adherence to ACID properties	Yes	No	Yes
OLTP/OLAP	Yes	No	Yes
Schema rigidity Adherence to data model	Yes Adherence to relational model	No	Maybe
Data Format Flexibility	No	Yes	Maybe
Scalability	Scale up Vertical Scaling	Scale out Horizontal Scaling	Scale out
Distributed Computing	Yes	Yes	Yes
Community Support	Huge	Growing	Slowly growing

Hadoop

Hadoop

Hadoop

Apache Open-Source Software Framework

Inspired by

- Google MapReduce
- Google File System

Hadoop Distributed File System MapReduce

Key Advantages of Hadoop

- Stores data in its native format
- Scalable
- Cost-effective
- Resilient to failure
- Flexibility
- Fast

Versions of Hadoop

Versions of Hadoop

Hadoop 1.0

MapReduce (Cluster Resource Manager & Data Processing)

HDFS (redundant, reliable storage)

MapReduce Others (Data Processing)

YARN
(Cluster Resource Manager)

HDFS
(redundant, reliable storage)

Answer a few quick questions ...

Fill in the blanks

1. The expansion for CA	P is, and
2. The expansion of BAS	E is
3. MongoDB is	and
4. Cassandra is	and
5	has no support for ACID properties of transactions.
6	is a robust database that supports ACID properties o
transactions and has the	scalability of NoSQL.

Answer Me

▶ Cite the difference between Hadoop 1.0 and Hadoop 2.0.

Compare and contrast SQL, NoSQL and NewSQL.

Summary please...

Ask a few participants of the learning program to summarize the lecture.

References ...

Further Readings

- http://www.mongodb.com/nosql-explained
- http://nosql-database.org/
- http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client/core/MapReduce_Compatibility_Hadoop1_Hadoop2.html
- http://hadoop.apache.org/

Thank you