

1. Linker system for activating surfaces for bioconjugation having the following general formula (I):

wherein X is a reactive group capable of covalently binding to a surface, Z is a reactive group capable of covalently binding to a biomolecule, with the proviso that X is not Z, Y₁ and Y₂ are independently from each other CR₁R₂ with R₁ and R₂ being independently from each other H, C₁-C₄ alkyl, C₁-C₄ alkoxy or C₁-C₄ acyloxy, i, j, k are independently from each other an integer in the range from 1 to 10, with the proviso that the total number of C atoms in Y₁ and Y₂, the C atoms of R₁ and R₂ not included, is in the range of 2 to 100, and Q is a hydrophilic atom or group selected from the group consisting of O, NH, C=O, O-C=O and CR₃R₄, wherein R₃ and R₄ are independently from each other selected from the group consisting of H, OH, C₁-C₄ alkoxy and C₁-C₄ acyloxy, with the proviso that R₃ and R₄ are not H at the same time and that for Q = NH Z is not NH₂, and wherein in the case of k > 1 the Q's for each [(Y₁)_i-Q-(Y₂)_j]_k are independently selected from each other.

2. Linker system according to claim 1 wherein said reactive group X is selected from the group consisting of a disulfide group, a thiol group, a SiW₃ group with W being a hydrolyzable atom or group, and a group capable of forming free radicals such as an anthrathione group or a derivative thereof, an anthraquinone group or a derivative thereof, a benzophenone group or a derivative thereof.

3. Linker system according to claim 2 wherein said hydrolyzable atom or group W is selected from the group consisting of halides, C₁-C₄ alkoxy, C₁-C₄ acyloxy and amino groups.

4. (Amended) Linker system according to claim 1, wherein said reactive group Z is capable of nucleophilic substitution reactions, nucleophilic addition reactions, Diels-Alder reactions or radical substitutions.

5. Linker system according to claim 4 wherein said reactive group Z is selected from the group consisting of a reactive double bond, a diene group, a dienophilic group, an epoxy group, an aldehyde group, a hydroxyl group, a carboxylic acid group, an active ester group, an amino group, a disulfide group, a thiol group, an aziridine group, an isocyanate group, an isothiocyanate group an azide group and a reactive leaving group.

A2 6. (Amended) Surface carrying a linker system according to claim 1.

B 7. Surface according to claim 6 wherein said linker system forms a patterned array.

C A3 8. (Amended) Surface according to claim 6 , wherein said surface is selected from the group consisting of a SiO₂ surface of a silicon wafer, glass, quartz, fused silica, gold and a polymer.

D A4 9. (Amended) Surface according to any of claim 6 , wherein said linker system is covalently bonded to a biomolecule.

E 10. Surface according to claim 9 wherein said biomolecule is a partner of a specifically interacting system of complementary binding partners.

F 11. Surface according to claim 10 wherein said specifically interacting system of complementary binding partners is based on nucleic acid/complementary nucleic acid, peptide nucleic acid/nucleic acid, enzyme/substrate, receptor/effectector, lectin/sugar, antibody/antigen, avidin/biotin or streptavidin/biotin interaction.

G 12. Surface according to claim 11 wherein said nucleic acid is a DNA or RNA.

H 13. Surface according to claim 12 wherein said DNA or RNA is an oligonucleotide or an aptamer.

Subj A

14. Surface according to claim 11 wherein said antibody is a polyclonal, monoclonal, chimeric or single-chain antibody or a functional fragment or derivative of such antibodies.

Subj A

15. (Amended) Process for the detection of a biomolecule which is a partner of a specifically interacting system of complementary binding partners comprising the steps of

- contacting a surface according to claim 10 with a sample suspected to contain the complementary binding partner,
- removing non-specifically bound sample components in a washing step, and
- detecting the specifically bound sample components.

Subj A

16. Process according to claim 15 wherein for said detecting a colored, fluorescent, bioluminescent, chemoluminescent, phosphorescent or radioactive label, an enzyme, an antibody or a functional fragment or derivative thereof, a protein A/gold based system, a biotin/avidin/streptavidin based system or an enzyme electrode based system is used.

Subj A

17. (Amended) Process for the isolation of a biomolecule which is a partner of a specifically interacting system of complementary binding partners comprising the steps of

- contacting a surface according to claim 10 with a sample suspected to contain the complementary binding partner,
- removing non-specifically bound sample components in a washing step, and,
optionally,
- eluting the specifically bound sample components.

Subj A

18. (Amended) Use of a surface according to claim 10 as an affinity matrix.

Subj A

19. (Amended) Use of a surface according to claim 10 in a sensor chip or biochip.

20. (Amended) Medical or diagnostic instrument comprising a surface according to claim 10.
