Charm-tagging

Bennett Austin

Introduction

- c-tagging variables study
 - JetFitter and SV1 variables used in DL1 algorithm
- Data samples used:
 - H->cc for charm and light jets
 - H->bb for bottom jets
- Cuts used:
 - Jet pt > 20 GeV
 - |Jet eta| < 2.5

	m(JF)	Invariant mass of tracks from displaced vertices
JetFitter	$f_E(JF)$	Energy fraction of the tracks associated with
	JE ()	the displaced vertices
	$\Delta R(\vec{p}_{\rm jet}, \vec{p}_{ m vtx})({ m JF})$	ΔR between the jet axis and the vectorial sum
	ZIT (P JEB P VIX) (/	of momenta of all tracks attached to displaced
		vertices
	$S_{xyz}(JF)$	Significance of the average distance between
	- 252.	PV and displaced vertices
	$N_{\mathrm{TrkAtVtx}}(\mathrm{JF})$	Number of tracks from multi-prong displaced
		vertices
	$N_{2\mathrm{TrkVtx}}(\mathrm{JF})$	Number of two-track vertex candidates (prior
		to decay chain fit)
	$N_{1-\text{trk vertices}}(\text{JF})$	Number of single-prong displaced vertices
	$N_{\geq 2\text{-trk vertices}}(JF)$	Number of multi-prong displaced vertices
	m(SV)	Invariant mass of tracks at the secondary vertex
		assuming pion mass
	$f_E(SV)$	Energy fraction of the tracks associated with
SV1		the secondary vertex
3 1	$N_{\text{TrkAtVtx}}(\text{SV})$	Number of tracks used in the secondary vertex
	$N_{2\text{TrkVtx}}(\text{SV})$	Number of two-track vertex candidates
	$L_{xy}(SV)$	Transverse distance between the primary and
		secondary vertex
	$L_{xyz}(SV)$	Distance between the primary and the second-
		ary vertex
	$S_{xyz}(SV)$	Distance between the primary and the second-
		ary vertex divided by its uncertainty
	$\Delta R(\vec{p}_{\rm jet}, \vec{p}_{\rm vtx})({\rm SV})$	ΔR between the jet axis and the direction of the
		secondary vertex relative to the primary vertex.

Introduction

- Higgs->cc invariant mass
- Highest jet pt pairs
- Blue: truth c-jets
- Red: truth c-jets correctly tagged as c-jets by DL1

DL1 Score and efficiencies

- c-jet efficiency: 19.8%
- b-jet c-tagged efficiency: 6.4%
- Light-jet c-tagged efficiency: 0.8%
- pc, pu, pb probability of jets
- f is fraction of b-jets in background
 - \circ f = 0.08
- Requirements for c-tag:
 - o DL1 >= 1.3
 - MV2c10 <= 0.83

$$DL_1 = \ln \frac{p_c}{fp_b + (1 - f)p_u}$$

Green: light jets, red: b-jets, blue: c-jets

Jet Kinematics

Green: light jets, red: b-jets, blue: c-jets

Track kinematics

Track eta: c-jets follow a pattern similar to light jets rather than b-jets

Track Pt for JF and SV1

- Blue: JetFitter
- Red: SV1
- All flavours considered

Track variables

- Total tracks peak at 11
- No single track SV1 events
- No SV1 vertices > 1

JF and SV1 vertices

2D Plot of previous vertex graph

JF variables

- Delta R: delta R between jet axis and direction of displaced vertices
- Lxy1: decay distance from primary to secondary vertex
- Lxy2: decay distance from secondary to tertiary vertex

JF variables

Significance: average
 distance between primary
 vertex and displaced vertices
 divided by its uncertainty

 Energy fraction: ratio of energy from JF tracks to sum of all track energies

JF Variables

- b and c jets have somewhat different plots
- b-jets have much fewer0-vertex events
- 3-vertex events are mainly b-jets

SV1 Variables

 Lxy: decay distance from primary to secondary vertex

 Energy fraction: ratio of energy from SV1 tracks to sum of all track energies

SV1 variables

 Significance: distance from primary vertex to secondary vertex divided by its uncertainty

 Delta R: delta R between jet axis and PV->SV direction

SV1 variables

- c-jets have fewer vertices than b-jets
- b-jets mainly have one SV1 vertex

SV1 and JF Efficiencies

- c jet SV1 efficiency: 29.8%, Light jet SV1 efficiency: 2.2%
- c jet JF efficiency: 69.29%, Light jet JF efficiency: 28.9% (one vertex requirement)

c jet JF efficiency: 17.8%, Light jet JF efficiency: 5.47% (two vertices)

requirement)

Conclusion and Next Steps

- Improve c-tagging efficiency in DL1 algorithm
- b and c jets are fairly distinguishable when looking at the JF and SV1 vertices
- Machine learning: after studying the SV1 and JF variables, it will be useful to improve the DL1 algorithm
 - DL1 training
 - Improve c-tagging efficiency
 - looking into applying electron information into DL1