Дата: 06.02.2023

Клас: 8-Б

Тема: Тотожні перетворення виразів, що містять квадратні корені **Мета:**

- сформувати вміння виконувати тотожні перетворення виразів, що містять квадратні корені, зокрема виносити множник з-під знака кореня, скорочувати дроби, звільнятися від ірраціональності в знаменнику дробу;
- розвивати логічне мислення, мову, вміння працювати самостійно, аналізувати ситуацію, оцінювати свої та дії інших;
- виховувати позитивні риси характеру: доброзичливість, взаємовиручку, справедливість, ставити мету та досягати успіху.

Повідомлення теми та мети уроку. Мотивація навчальної діяльності

Сьогодні на уроці ми розглянемо тотожні перетворення виразів з коренями: додавання коренів, винесення множника з –під кореня, звільнення від ірраціональності в знаменнику дробу.

Сприймання та усвідомлення нового навчального матеріалу

Розглянемо, які тотожні перетворення можна виконувати з ірраціональними виразами.

1. Винесення множника з-під знака кореня

Скористаємося теоремою про корінь з добутку для перетворення виразу $\sqrt{12}$:

$$\sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3}$$
.

2. Внесення множника під знак кореня

Розглянемо тотожне перетворення, обернене до попереднього. Скористаємося правилом множення коренів:

$$2\sqrt{3} = \sqrt{2^2} \cdot \sqrt{3} = \sqrt{4 \cdot 3} = \sqrt{12}.$$

Кажуть, що **множник внесли під знак кореня**. У даному випадку під знак кореня внесли множник 2.

Зауважимо, що під знак кореня можна вносити лише додатний множник.

✓ Множення та ділення виразів, що містять квадратні корені

Використовуючи правила множення та ділення коренів, можна виконувати відповідні дії над виразами, що містять квадратні корені.

Приклад 1

$$5\sqrt{3} \cdot 7\sqrt{2} = 35\sqrt{6};$$

 $8\sqrt{18} \cdot 4\sqrt{2} = \frac{8\sqrt{18}}{4\sqrt{2}} = 2\sqrt{9} = 2 \cdot 3 = 6.$

✓ Піднесення до степеня виразів, що містять квадратні корені

Використовуючи тотожність (\sqrt{a})² = a, де a > 0 можна підносити до степеня вирази, що містять квадратні корені.

Приклад 2

$$(-5\sqrt{2})^2 = (-5)^2 \cdot (\sqrt{2})^2 = 25 \cdot 2 = 50.$$

✓ Додавання квадратних коренів

Приклад 3

$$5\sqrt{2} + 3\sqrt{2} = \sqrt{2}(5+3) = 8\sqrt{2}.$$

✓ Скорочення дробів

Приклад 4

$$\frac{a^2 - 7}{a - \sqrt{7}} = \frac{a^2 - (\sqrt{7})^2}{a - \sqrt{7}} = \frac{(a - \sqrt{7})(a + \sqrt{7})}{a - \sqrt{7}} = a + \sqrt{7}.$$

✓ Звільнення від ірраціональності в знаменнику дробу

Приклад 5. Перетворити дріб $\frac{a}{\sqrt{5}}$ так, щоб він не містив кореня у знаменнику дробу.

Розв'язання

Для виконання завдання досить чисельник і знаменник дробу помножити на $\sqrt{5}$:

$$\frac{a}{\sqrt{5}} = \frac{a\sqrt{5}}{\sqrt{5} \cdot \sqrt{5}} = \frac{a\sqrt{5}}{\sqrt{5}^2} = \frac{a\sqrt{5}}{5}.$$

У такому випадку говорять, що ми звільнилися від ірраціональності в знаменнику дробу.

Приклад 6. Звільнитися від ірраціональності у знаменнику дробу $\frac{2}{\sqrt{7}-1}$.

Розв'язання

Помножимо чисельник і знаменник дробу на $\sqrt{7} + 1$:

$$\frac{2}{\sqrt{7}-1} = \frac{2(\sqrt{7}+1)}{(\sqrt{7}-1)(\sqrt{7}+1)} = \frac{2(\sqrt{7}+1)}{(\sqrt{7})^2-1} = \frac{2(\sqrt{7}+1)}{7-1} = \frac{2(\sqrt{7}+1)}{6} = \frac{\sqrt{7}+1}{3}.$$

Отож, ми бачимо, що у кожного перетворення є свої особливості, їх треба знати. А знати краще будемо тільки тоді, коли більше будемо розв'язувати.

VIII. Домашнє завдання

Опрацювати § 18

Виконати №676, 682

676. Винесіть множник з-під знака кореня:

1)
$$\sqrt{20}$$
;

2)
$$\sqrt{50}$$
;

1)
$$\sqrt{20}$$
; 2) $\sqrt{50}$; 3) $\sqrt{27}$; 4) $\sqrt{192}$; 5) $\sqrt{5^2 \cdot 17}$; 6) $\sqrt{3^4 \cdot 2}$; 7) $\sqrt{7^2 \cdot 2^3}$; 8) $\sqrt{3^5 \cdot 5^3}$.

4)
$$\sqrt{192}$$
;

5)
$$\sqrt{5^2 \cdot 17}$$
:

6)
$$\sqrt{3^4 \cdot 2}$$
:

7)
$$\sqrt{7^2 \cdot 2^3}$$
:

8)
$$\sqrt{3^5 \cdot 5^3}$$

680. Внесіть множник під знак кореня:

1)
$$4\sqrt{3}$$
;

2)
$$2\sqrt{11}$$
;

3)
$$-3\sqrt{5}$$
;

4)
$$-7\sqrt{2}$$

5)
$$5\sqrt{p}$$
;

6)
$$\frac{1}{3}\sqrt{18x}$$
;

7)
$$-0, 2\sqrt{10t}$$
;

1)
$$4\sqrt{3}$$
; 2) $2\sqrt{11}$; 3) $-3\sqrt{5}$; 4) $-7\sqrt{2}$;
5) $5\sqrt{p}$; 6) $\frac{1}{3}\sqrt{18x}$; 7) $-0, 2\sqrt{10t}$; 8) $6\sqrt{\frac{1}{6}y}$.