Ordinaux, cardinaux et entiers

Le Barbuki 2

Florian Langlois

Bienvenue dans ce livre! C'est le deuxième d'une collection qui tente d'exposer et démontrer les mathématiques de niveau licence et master. Le nom BARBUKI est une référence au célèbre groupe BOURBAKI, dont la démarche de cette collection est inspirée.

- 1 Théorie élémentaire des ensembles.
- 2 Ordinaux, cardinaux et entiers.

Cet ouvrage est là pour me permettre de coucher sur le papier les différentes mathématiques que j'ai apprises durant mes études supérieures : je le rédige principalement pour moi-même et il n'a pas pour but d'être pédagogique. Il va me permettre de conserver sur le long terme une trace de ces connaissances, mais aussi d'organiser celles-ci pour en avoir une vue d'ensemble.

Bien que ce livre reste assez personnel, il est possible qu'il vous soit utile. Afin de comprendre pleinement son contenu, il est nécessaire d'être au courant du contenu du premier ouvrage, c'est-à-dire des bases de la théorie des ensembles, notamment à travers les différents axiomes de ZFC.

Il vous faut aussi savoir mener un raisonnement, ou tout du moins en suivre un, puisque c'est l'un des objets principaux de ce livre. Il est à noter que la construction de cette collection se fait sous la manière d'un escalier à gravir : nous n'utiliserons pas des résultats postérieurs pour démontrer des résultats antérieurs, les seules exceptions étant les exemples donnés pour illustrer, puisque ceux-ci ne sont là que pour aider à la lecture, et non permettre une quelconque démonstration, mais aussi certaines digressions abordant d'autres démonstrations que celles proposées.

Remerciements

Merci à Lyra, GrothenDitQue, Chæris, Cassis et Shika pour leur pinaillage.

Table des matières

1	Ordi	inaux			
	1	Classes	et assertions fonctionnelles		
		1.1	Assertions à paramètres		
		1.2	Classes		
		1.3	Assertions fonctionnelles		
	2	Bons ord	dres		
	3	Ordinau	x		
	4		x successeurs, limites et entiers naturels		
	5	Isomorp	hisme avec les ordinaux		
	6	Récurren	nce: induction et récursion		
		6.1	Induction		
		6.2	Récursion		
	7	Opératio	ons sur les ordinaux		
		7.1	Généralités		
		7.2	Addition d'ordinaux		
Bi	bliogr	aphie .			
Mathématiciens					

Chapitre 1

Ordinaux

Sommaire

1	Classes et assertions fonctionnelles	
	1.1 Assertions à paramètres	
	1.2 Classes	
	1.3 Assertions fonctionnelles	
2	Bons ordres	
3	Ordinaux	
4	Ordinaux successeurs, limites et entiers naturels	
5	Isomorphisme avec les ordinaux	
6	Récurrence : induction et récursion	
	6.1 Induction	
	6.2 Récursion	
7	Opérations sur les ordinaux	
	7.1 Généralités	
	7.2 Addition d'ordinaux	

Imaginez une course à laquelle vous concourez et à laquelle participe une infinité de coureurs. À la fin de la course, chaque participant se voit attribuer un nombre en fonction de l'ordre dans lequel il est arrivé : le premier arrivé reçoit le nombre 0, le deuxième le nombre 1, le troisième le nombre 2, et ainsi de suite pour chaque entier naturel. Et vous ? Vous arrivez après tous les coureurs ayant reçu un nombre entier naturel ! Quel nombre vous correspond-il ? Certainement pas un entier naturel, puisque ceux-ci ont déjà tous été attribués. Il faut donc introduire un nouveau nombre : on le note généralement ω .

Quel nombre attribuer alors à votre ami arrivé juste après vous? Le nombre $\omega+1$ naturellement! Et $\omega+2$ pour la personne juste après-lui, puis $\omega+3$ et ainsi de suite pour les suivants!

Ces nouveaux nombres que nous venons d'introduire font partie de ce que l'on appelle les **nombres ordinaux**, catégorie dans laquelle se trouvent aussi les entiers naturels. L'objet de ce chapitre est justement de définir et développer les nombres ordinaux. Cela s'inscrit dans un contexte plus général qui est celui des **ensembles bien ordonnés**, pour lesquels chaque partie non vide admet un minimum, permettant de répondre notamment à la question « *quel élément vient juste après celui-ci?* ». S'intéresser aux ordinaux présente différentes vertus :

- ▶ comme les nombres entiers naturels en font partie, nous aurons enfin l'occasion de les définir proprement.
- ▶ même si l'exemple de la course est un peu fantaisiste, des situations où l'on souhaite ordonner des choses avec l'une d'entre elle après une infinité d'autres peuvent se présenter à nous et les ordinaux représentent un outil de choix pour cela.
- ▶ enfin, les ordinaux constituent le cadre idéal pour compter le nombre d'éléments des ensembles, ce qui sera l'objet du chapitre 2.

1 Classes et assertions fonctionnelles

1.1 Assertions à paramètres

Dans le livre précédent, nous avons commencé par expliquer que les objets que nous manipulons sont tous considérés comme des ensembles, au point que la notion d'ensemble est en fait primitive. On ne donne pas de définition a priori de ce qu'est un ensemble, on impose juste des axiomes afin de mimer l'intuition d'ensemble.

Nous avons ensuite indiqué que ce ne sont pas les seuls choses manipulables : il y a aussi les assertions, qui sont des affirmations pouvant être vraies ou fausses. Il s'agit au fond d'une façon de structurer le discours à propos des ensembles. L'auteur de ce livre considère que le lecteur est au clair sur ces choses-là. Cependant, il estime aussi devoir préciser un certain nombre de nuances concernant les assertions. Certaines de ces définitions sont déjà évoquées dans le livre précédent, mais un rappel ne fait jamais de mal.

Définition 1 (Assertion à paramètres)

Une **assertion à paramètres** est une assertion qui nécessite un ou plusieurs paramètres pour être énoncée, et donc la vérité peut varier en fonction de ces paramètres éventuels. Un paramètre est toujours un ensemble.

Exemple:

- 1. L'assertion P(n) définie par « n est un entier pair » dépend de qui est n. C'est en cela que l'on précise entre parenthèses la dépendance de P par rapport à n, pour insister sur ce point.
- 2. En revanche, l'assertion Q(x) définie par « x=x » est toujours vraie, quand bien même elle nécessite le paramètre x pour être énoncée.

1.2 Classes

La notion d'ensemble est née de l'idée de vouloir réunir et regrouper plusieurs objets différents : typiquement $\mathbb Z$ est l'ensemble qui contient tous les entiers relatifs. C'est justement le but du premier livre d'expliciter les règles que nous avons choisies ici pour régir les ensembles. Cependant afin d'éviter certains paradoxes et contradictions, nous avons dû restreindre la portée des ensembles : il n'est par exemple pas possible de définir l'ensemble de tous les ensembles, et si on le permettait on aboutirait au paradoxe de Russel. Nous verrons aussi plus tard, après avoir défini la notion d'ordinaux, qu'il est impossible d'avoir un ensemble contenant tous les ordinaux.

Cependant, nous aimerions bien pouvoir simplifier nos discours concernant "tous les ensembles" ou "tous les ordinaux", c'est-à-dire réunir différents objets sans pour autant craindre de former un ensemble paradoxal, ou même sans être freiné par les axiomes ensemblistes. C'est là qu'interviennent les classes. Heureusement, cela ne va pas nécessiter d'introduire autre chose que les ensembles ou que les assertions. En effet, nous allons définir la notion de classe comme étant la même que celle d'assertion à paramètres, le nouveau nom étant simplement associé à un

nouvel usage. Il s'agit d'une approche similaire à celle que nous avons faite dans le premier livre concernant les familles : il n'y a à strictement parler pas de différence entre les familles et les applications, simplement un usage différent et des notations différentes.

L'intérêt des classes est comme nous l'avons dit de pouvoir regrouper différents objets, et donc beaucoup des notions associées aux classes sont inspirées de celles associées aux ensembles, notamment l'appartenance. Il n'est donc pas étonnant qu'on retrouve par exemple le symbole \in .

Définition 2 (Classe)

Soit C une assertion à paramètres.

Si C nécessite un seul paramètre pour être énoncée, on dit parfois que C est une classe.

Pour un ensemble x donné, on dit que x appartient à C si et seulement si C(x) est vraie, auquel cas on note alors $x \in C$. On dit aussi que x est un élément de C.

Dans le cas contraire, c'est-à-dire si C(x) est fausse, on dit que x n'appartient pas à C, ou que x n'est pas un élément de C, et on note $x \notin C$.

Ainsi, la notion de classe généralise celle d'ensemble. En effet, étant donné un ensemble E, on peut lui associer l'assertion à paramètres « $x \in E$ », qui est donc une classe. La définition qui suit précise cela.

Définition 3 (Classe propre)

Soient E un ensemble et C une classe.

1. On appelle classe issue de E la classe C_E définie pour tout ensemble x par

$$C_E(x) : \langle x \in E \rangle$$
.

Autrement dit, pour tout ensemble x on a l'équivalence $x \in C_E \iff x \in E$.

2. On dit que C est une classe **propre** si et seulement si C n'est pas issue d'un ensemble.

Remarque:

Si une classe C est issue d'un ensemble E, alors cet ensemble est unique. En effet, cela vient du fait que l'appartenance caractérise entièrement un ensemble. On commettra souvent l'abus de confondre une classe et l'ensemble dont elle est issue, si celui-ci existe.

Exemple:

Pour avoir des exemples de classes issues d'un ensemble, il suffit simplement de prendre un ensemble de son choix et de former sa classe associée. Voici en revanche quelques exemples de classes propres :

1. La classe U de tous les ensembles. Comme tout paramètre x est nécessairement un

5

ensemble, l'assertion U(x) est toujours vraie. On peut par exemple définir U(x) en posant simplement « x=x ». Ainsi, pour tout ensemble x, on a $x\in U$. D'après le paradoxe de Russell, une telle classe est nécessairement propre.

2. La classe *ON* des ordinaux, que nous aurons l'occasion d'aborder plus tard. Nous verrons via le paradoxe de Burali-Forti que cette classe est propre.

> Notation

Soient C et D deux classes, E un ensemble et C_E la classe issue de E.

- 1. On note $C \subseteq D$ si et seulement si $\forall x, (x \in C \Rightarrow x \in D)$. En particulier on note $E \subseteq D$ si et seulement si $C_E \subseteq D$. Autrement dit, $E \subseteq D$ si et seulement si $\forall x, (x \in E \Rightarrow x \in D)$.
- 2. On note $C \cap D$ la classe définie pour tout ensemble x par

$$x \in C \cap D \iff (x \in C \text{ et } x \in D)$$

En particulier on note $E \cap D$ la classe $C_E \cap D$.

D'après l'axiome de compréhension que $E\cap D$ est une classe issue d'un ensemble. En effet, on a

$$E \cap D = \{x \in E \mid x \in D\} = \{x \in E \mid D(x)\}\$$

Comme indiqué précédemment on confondra souvent les deux.

3. On note $C \cup D$ la classe définie pour tout ensemble x par

$$x \in C \cup D \iff (x \in C \text{ ou } x \in D)$$

En particulier on note $E \cup D$ la classe $C_E \cup D$.

4. On note $D \setminus C$ la définie pour tout ensemble x par

$$x \in D \setminus C \iff (x \in D \text{ et } x \notin C)$$

En particulier on note $D \setminus E$ la classe $D \setminus C_E$.

5. On note $C \in D$ si et seulement si C est issue d'un ensemble F tel que $F \in D$.

1.3 Assertions fonctionnelles

Dans le livre précédent, nous nous sommes intéressés à des assertions à paramètres particulières : les assertions fonctionnelles. Comme le qualificatif *fonctionnelle* le laisse entendre, il s'agit d'une généralisation de la notion de fonction. Redonnons-en la définition.

Définition 4 (Assertion fonctionnelle)

Soit P une assertion à paramètres.

On dit que P est **fonctionnelle** si et seulement si elle nécessite deux paramètres pour être énoncée et pour tout ensembles x, y et y', on a l'implication

$$(P(x,y) \text{ et } P(x,y')) \implies y = y'$$

Ainsi pour un ensemble x donné, il y a au plus un ensemble y qui lui est associé par le biais de P. On dit alors que y est **l'image** de x par P et on note alors P(x) := y.

Exemple:

1. L'assertion P définie pour deux ensembles a et b par

$$P(a,b) \iff$$
 « a est un entier naturel et $b=2a$ »

est une assertion fonctionnelle. Pour tout a entier naturel, on a alors P(a) = 2a.

2. Étant donnée une application f, on peut naturellement lui associer une assertion fonctionnelle P_f en posant pour tout ensembles x et y

$$P_f(x,y) \iff \ll x \in \text{dom}(f) \text{ et } y = f(x) \text{ }$$

Pour tout $x \in dom(f)$, on a alors $P_f(x) = f(x)$.

Comme l'indiquent ces exemples, la notion d'assertion fonctionnelle et la notion de fonctions sont très liées, du fait pour un ensemble x de n'associer qu'au plus un autre ensemble. On retrouve donc naturellement la notion d'image, et les notations P(x) et f(x) qui s'y réfèrent sont identiques. Il est important au passage pour une assertion fonctionnelle de ne pas confondre la notation P(x,y) qui se réfère à l'assertion en elle-même et qui est donc soit vraie soit fausse en fonction des paramètres x et y, et la notation P(x) qui désigne l'unique paramètre y tel que P(x,y) soit vraie, à condition bien sûr que celui-ci existe.

Dans le cas d'une fonction f, on peut parler de son domaine $\mathrm{dom}(f)$ comme d'un ensemble, c'est-à-dire l'ensemble de tout ensemble qui admet une image par f. Il n'est pas toujours possible de faire de même pour une assertion fonctionnelle : par exemple l'assertion fonctionnelle « x=y » aurait pour domaine l'ensemble de tous les ensembles, que nous savons n'existe pas. C'est là qu'interviennent les classes que nous avons introduites plus tôt : la classe de tous les ensembles existe bel et bien!

Définition 5 (Domaine et image d'une assertion fonctionnelle)

Soit *P* une assertion fonctionnelle.

1. On appelle domaine de P la classe notée dom(P) définie pour tout ensemble x par

$$x \in \text{dom}(P) \iff \exists y, P(x, y)$$

2. On appelle image de P la classe notée $\operatorname{im}(P)$ définie pour tout ensemble y par

$$y \in \operatorname{im}(P) \iff \exists x, P(x, y)$$

Exemple:

1. L'assertion fonctionnelle P définie pour tout ensembles x et y par

$$P(x,y) \iff \ll x = y \gg$$

a pour domaine U, la classe de tous les ensembles.

2. L'assertion fonctionnelle Q définie pour tout ensembles x et y par

$$Q(x,y) \iff \ll x \neq y \gg$$

a pour domaine la classe issue de \varnothing . Comme dit précédemment, on commettra souvent l'abus de confondre un ensemble et la classe issue de celui-ci, si bien qu'on écrira $dom(Q) = \varnothing$.

3. Soient f une application et F_f l'assertion fonctionnelle issue de f, c'est-à-dire

$$F_f(x,y) \iff \ll x \in \text{dom}(f) \text{ et } y = f(x) \text{ }$$

On peut voir que $dom(F_f)$ est tout simplement la classe issue de dom(f). Comme dit précédemment, on commettra souvent l'abus de confondre un ensemble et la classe issue de celui-ci, si bien qu'on écrira $dom(F_f) = dom(f)$.

Remarque:

1. A la manière des images directes et réciproques d'un ensemble par une fonction, on peut se donner une classe C et considérer son **image directe** par P, à savoir la classe notée $P^{\rightarrow}(C)$ définie pour tout ensemble y par

$$y \in P^{\rightarrow}(C) \iff \exists x \in C, P(x, y)$$

Nous avons vu dans le livre 1 via l'axiome de remplacement que si E est un ensemble tel que $E \subseteq \mathrm{dom}(P)$ alors $P^{\rightarrow}(E)$ est un ensemble que l'on a noté $\{P(x) \mid x \in E\}$. De même, on peut considère l'**image réciproque** de la classe C par P, à savoir la classe notée $P^{\leftarrow}(C)$ définie pour tout ensemble x par

$$x \in P^{\leftarrow}(C) \iff \exists y \in C, P(x, y)$$

2. Une façon intuitive de construire une assertion fonctionnelle est de se munir d'une **formule**. Autrement dit, étant donné un ensemble x, on construit P(x) explicitement. Par exemple, on peut définir P en posant que pour tout ensembles x et y, on a

$$P(x,y) \iff y = \bigcup x$$

et dans ce cas-là on a naturellement $P(x) = \bigcup x$. C'est d'ailleurs par ce biais là des formules que l'on s'est déjà donné le moyen de construire des applications dans le précédent livre.

3. Soient P une assertion fonctionnelle et E un ensemble tel que $E \subseteq \text{dom}(P)$. On a montré dans le précédent livre qu'il existe alors une unique application $f: E \longrightarrow ?$

telle que
$$\forall x \in E, f(x) = P(x)$$
, que l'on note généralement $\begin{pmatrix} E & \longrightarrow & ? \\ x & \longmapsto & P(x) \end{pmatrix}$.

En cela, on dira que f est la **restriction** de P à E, et on notera $P_{|E} := f$. Ainsi, même si P est une assertion fonctionnelle sans être une application, toute restriction de celle-ci à un ensemble est nécessairement une application.

Notation

Soient P une assertion fonctionnelle, C et D deux classes.

- 1. On notera $P: C \longrightarrow ?$ pour signifier dom(P) = C.
- 2. On notera $P: C \longrightarrow D$ pour signifier dom(P) = C et $im(P) \subseteq D$.

2. BONS ORDRES 9

2 **Bons ordres**

Bien souvent en mathématique, nous aimerions étant donné un élément x pouvoir donner du sens à la question « quel est l'élément qui vient juste après x? ». C'est là qu'intervient la notion de **bon ordre** : toute partie non vide de l'ensemble va admettre un élément minimum. De fait, l'élément qui suit directement x sera simplement le minimum des éléments strictement plus grands que x. Typiquement chez les entiers, n+1 est bien le minimum des entiers strictement plus grands que n.

Concentrons-nous quelques instants sur la notion d'élément minimal. Rappelons qu'un élément a de l'ensemble ordonné (E, \leq) est minimal si et seulement si pour tout $x \in E$ on a

$$x \le a \implies x = a$$

c'est-à-dire qu'il n'y a que a pour être plus petit ou égal à a.

Proposition 1 (Élément minimal et ordre strict)

Soient (E, \leq) un ensemble ordonné non vide, < l'ordre strict associé à \leq et $a \in E$.

Alors a est minimal pour (E, \leq) si et seulement si $\forall x \in E, \text{non}(x < a)$.

Démonstration

Raisonnons par double implications.

Supposons que a est minimal pour (E, <).

Soit $x \in E$.

Supposons par l'absurde que x < a.

On a donc $x \leq a$ et $x \neq a$.

Comme $x \le a$ et a est minimal pour (E, \le) , on a x = a.

Ainsi on a à la fois $x \neq a$ et x = a: c'est absurde.

Par l'absurde, on a donc montré que non(x < a).

Donc $\forall x \in E, \text{non}(x < a)$.

Donc si a est minimal pour (E, \leq) alors $\forall x \in E, \text{non}(x < a)$

 \Leftarrow

Supposons que $\forall x \in E, \text{non}(x < a)$.

Soit $x \in E$.

Supposons que $x \leq a$.

On a donc x < a ou x = a.

Or on a non(x < a) par hypothèse donc nécessairement x = a.

```
Donc si x \le a alors x = a.

Donc \forall x \in E, \left(x \le a \implies x = a\right).

Donc a est minimal pour (E, \le).

Donc si \forall x \in E, \operatorname{non}(x < a) alors a est minimal pour (E, \le).

COFD.
```

Nous l'avons dit dans l'introduction, nous allons dire qu'un ensemble est muni d'un bon ordre lorsque chacune de ses parties (non vides) admet un minimum. Une version plus faible de la notion de bon ordre est la notion d'ordre **bien fondé**, où l'on demande à chaque partie (non vide) d'admettre seulement un élément minimal, pas nécessairement minimum de la partie.

Définition 6 (Ordre bien fondé et bon ordre)

Soit E un ensemble ordonné.

- 1. On dit que E est **bien fondé** si et seulement si toute partie non vide de E admet au moins un élément minimal.
- 2. On dit que E est **bien ordonné** si et seulement si toute partie non vide de E admet un minimum. On dit aussi que l'ordre sur E est un **bon ordre**.

Remarque:

Étant donné une relation d'ordre \leq et son ordre strict associé <, on dit que < est bien fondé si et seulement si \leq est bien fondé. De même, on dit que < est un bon ordre strict si et seulement si \leq est un bon ordre.

Plus généralement on étendra les définitions de tout l'ouvrage aux ordres stricts de cette manière via leurs ordres (larges) associés.

Au premier abord la notion d'élément minimal et la notion d'élément minimum semble être la même chose. Ce n'est pas vrai, puisqu'un ensemble peut avoir plusieurs éléments minimaux. Pensons par exemple à $\mathbb{N}\setminus\{1\}$ muni de la relation de divisibilité : tous les nombres premiers sont des éléments minimaux sans qu'aucun ne soit un minimum. En réalité, pour qu'un élément minimal soit un minimum, il faut et il suffit qu'il soit comparable à tous les éléments de l'ensemble, ce qui explique pourquoi un bon ordre est nécessairement total.

Proposition 2 (Caractérisation des bons ordres)

Soit E un ensemble ordonné.

Les assertions suivantes sont équivalentes :

- 1. E est bien ordonné.
- 2. E est bien fondé et totalement ordonné.

2. BONS ORDRES

Raisonnons par double implications.

1⇒2

Supposons que E est bien ordonné.

Alors toute partie non vide de E admet un minimum.

Or un minimum est un élément minimal (c'est alors le seul).

Donc toute partie non vide de E admet un élément minimal.

Donc E est bien fondé.

Soient x et y dans E.

Alors $\{x, y\}$ est une partie non vide de E.

Elle admet donc un minimum m.

Si m = x alors on a $x = m \le y$.

Si m = y alors on a $y = m \le x$.

Dans les deux cas on a $x \leq y$ ou $y \leq x$.

Donc tous les éléments de E sont comparables : E est totalement ordonné

1 ← 2

Supposons que E est bien fondé et totalement ordonné.

Soit A une partie non vide de E.

Comme E est bien fondé, A admet au moins un élément minimal m.

Montrons que m est le minimum de A.

Supposons par l'absurde que m n'est pas le minimum de A.

Il existe donc $a \in A$ tel que l'on a pas $m \le a$.

Or E est totalement ordonné par hypothèse donc on a $a \le m$.

Comme m est un élément minimal de A on a a=m et en particulier $m \leq a$, ce qui est absurde.

Donc m est le minimum de A.

Donc toute partie non vide de E admet un minimum.

Donc E est bien ordonné.

CQFD.

Proposition 3 (Partie d'un ensemble bien ordonné)

Soient E un ensemble ordonné et $A \subseteq E$.

- 1. Si E est bien fondé alors A est bien fondé.
- 2. Si E est bien ordonné alors A est bien ordonné.

1. Supposons que E est bien fondé.

Soit B une partie non vide de A.

Comme $A \subseteq E$, B est aussi une partie non vide de E.

Or E est bien fondé par hypothèse.

Donc B admet au moins un élément minimal.

Donc toute partie non vide de A admet au moins un élément minimal.

Donc A est bien fondé.

Supposons que E est bien ordonné.

Soit B une partie non vide de A.

Comme $A \subseteq E$, B est aussi une partie non vide de E.

Or E est bien ordonné par hypothèse.

Donc B admet un minimum.

Donc toute partie non vide de A admet un minimum.

Donc A est bien ordonné.

CQFD.

Rappelons qu'étant donnés deux ensembles ordonnés (E, \leq) et (F, \leq) , on peut munir $E \times F$ de l'ordre **lexicographique** associé, c'est-à-dire que pour x et y dans E et s et t dans F, on a

$$(x,s) \le (y,t) \iff [x < y \text{ ou } (x = y \text{ et } s \le t)]$$

Il tire son nom du fait que les dictionnaires fonctionnement sur ce principe (par rapport à l'ordre alphabétique).

Proposition 4 (Bons ordres et ordre lexicographique)

Soient (E, \leq) et (F, \leq) deux ensembles ordonnés.

Soit \triangleleft l'ordre lexicographique associé sur $E \times F$.

 $Si \le et \le sont des bons ordres alors \le est un bon ordre.$

Démonstration

Supposons que \leq et \leq sont des bons ordres.

Soit A une partie non vide de $E \times F$.

Considérons $B := \{ x \in E \mid \exists y \in F, (x, y) \in A \}.$

Comme A est non vide, B est une partie non vide de E.

Or E est bien ordonné donc B admet un minimum b_0 .

2. BONS ORDRES

Considérons alors $C_{b_0} := \{ y \in F \mid (b_0, y) \in A \}.$

Par définition on a $b_0 \in B$ donc il existe $y \in F$ tel que $(b_0, y) \in A$ et donc $y \in C_{b_0}$.

Donc C_{b_0} est une partie non vide de F.

Or F est bien ordonné donc C_{b_0} admet un minimum c_0 .

Considérons alors $a_0 := (b_0, c_0)$ et montrons que a_0 est le minimum de A.

Soit
$$z = (x, y) \in A$$
.

Par définition de B on a $x \in B$.

Or b_0 est le minimum de B donc $b_0 \le x$.

Si $b_0 < x$ alors par définition de \leq on a $(b_0, c_0) \leq (x, y)$.

Supposons à présent que $b_0 = x$.

On a donc $(b_0, y) = (x, y) \in A$ donc par définition de C_{b_0} on a $y \in C_{b_0}$.

Or c_0 est le minimum de C_{b_0} donc $c_0 \leq y$.

On a donc $b_0 = x$ et $c_0 \leq y$ donc $(b_0, c_0) \leq (x, y)$.

Dans les deux cas on a bien $a_0 \le z$.

Donc pour tout $z \in A$, on a $a_0 \leq z$.

Donc a_0 est le minimum de A.

Donc toute partie non vide de $E \times F$ admet un minimum.

Donc $E \times F$ est bien ordonné.

CQFD.

Introduisons à présent la notion de **segment initial**. Une partie d'un ensemble ordonné est un segment initial si et seulement si pour chacun de ses éléments, elle contient aussi tous les éléments qui lui sont inférieurs.

Définition 7 (Segment initial)

Soient E un ensemble ordonné et A une partie de E.

On dit que A est un segment initial de E si et seulement si pour tout x et y dans E, on a

$$(x \in A \text{ et } y \le x) \implies y \in A$$

Exemple:

- 1. Dans \mathbb{R} muni de l'ordre usuel, $]-\infty, 2[$ est un segment initial. En revanche]1;3] n'en est pas un car $2 \in]1;3]$ et $0 \leq 2$ alors que $0 \notin]1;3]$.
- 2. Dans \mathbb{N} muni de la relation de divisibilité, $\{1, 2, 4, 8\}$ est un segment initial. En revanche $\{1, 2, 6\}$ n'en est pas un car $6 \in \{1, 2, 6\}$ et 3|6 alors que $3 \notin \{1, 2, 6\}$.

Remarque:

Soient (E, \leq) un ensemble ordonné, < l'ordre strict associé et $x \in E$.

On rappelle que l'on a introduit la notation $x \downarrow = \{ y \in E \mid y < x \}$.

Dans le cas des ensembles bien ordonnés, on a une caractérisation simple des segments initiaux propres. On rappelle au passage qu'une partie A d'un ensemble E est dite propre si et seulement si $A \neq E$.

Proposition 5 (Segments initiaux d'un ensemble bien ordonné)

Soient E un ensemble **bien ordonné** et A une partie de E.

Les assertions suivantes sont équivalentes :

- 1. A est un segment initial propre de E.
- 2. Il existe $x \in E$ tel que $A = x \downarrow$.

Démonstration

Soient \leq la relation d'ordre sur E et < l'ordre strict associé à \leq .

1⇒2

Supposons que A est un segment initial propre de E.

Comme A est une partie propre de E, on a $A \subseteq E$ donc $E \setminus A \neq \emptyset$.

Or E est bien ordonné par définition donc $E \setminus A$ possède un minimum x.

Montrons que $A = x \downarrow$.

 \subseteq

Soit $a \in A$.

Comme E est bien ordonné, E est totalement ordonné d'après la prop. 2 p. 10.

On a donc $x \le a$ ou a < x.

Supposons par l'absurde que $x \leq a$.

On a $a \in A$ et A est un segment initial de E par hypothèse.

Donc $x \in A$, ce qui est absurde car $x \in E \setminus A$.

Donc par l'absurde on a a < x, c'est-à-dire $a \in x \downarrow$.

On a donc $A \subseteq x \downarrow$.

 \supseteq

Soit $y \in x \downarrow$.

On a alors y < x.

Or par définition x est le minimum de $E \setminus A$.

On a donc $y \notin E \backslash A$ et donc $y \in A$.

Donc $A \supseteq x \downarrow$ et donc $A = x \downarrow$.

15 2. BONS ORDRES

1←2

Supposons qu'il existe $x \in E$ tel que $A = x \downarrow$.

Soient y et z dans E.

Supposons que $y \in A$ et $z \leq y$.

Par hypothèse on a $A = x \downarrow$ donc $y \in x \downarrow$ et donc y < x.

Comme $z \leq y$ on a donc z < x par transitivité et donc $z \in x \downarrow = A$.

Donc si $y \in A$ et $z \le y$ alors $z \in A$.

Donc A est un segment initial de E

De plus, on n'a pas x < x par antiréflexivité donc $x \notin x \downarrow = A$. Ainsi $x \in E$ et $x \notin A$, donc $E \neq A$ et donc A est une partie propre de E.

3 Ordinaux

Lors du précédent livre, nous avons vu la notion d'isomorphisme entre deux ensembles ordonnés. C'est une façon de dire que ces deux ensembles ordonnés "se comportent de la même manière", pour peu que l'on ne s'intèresse qu'à leur structure d'ensembles ordonnés. Nous pouvons donc d'une certaine manière "identifier" deux ensembles ordonnés dès lors qu'il existe un isomorphisme entre les deux, et donc dire en ce sens-là qu'ils sont équivalents. Qui dit équivalence dit classe d'équivalence, c'est-à-dire rassembler en un seul endroit tous ces ensembles ordonnés qui sont isomorphes entre eux. Notons au passage que la notion de classe d'équivalence ici n'a pas besoin d'être un ensemble : nous avons justement introduit plus tôt le concept de classe (tout court) pour palier ce problème.

Se pose alors la question suivante : pour chacune de ces classes d'équivalences, peut-on se donner un représentant canonique, c'est-à-dire un ensemble ordonné qui représenterait toute la classe d'équivalence ? Si nous n'allons pas donner de réponse à cette question en toute généralité, nous allons le faire dans le cas particulier où les ensembles sont munis d'un bon ordre : c'est l'objectif derrière la construction des **ordinaux**, car nous verrons après les avoir définis qu'il en existera systématiquement un et un seul dans chacune des classes d'équivalence des ensembles bien ordonnés.

Pour choisir l'ensemble ordonné en question, il faut choisir en particulier sa relation d'ordre. Tout choix de relation pourrait sembler arbitraire, mais il en existe deux qui sortent naturellement du lot : \in et \subseteq , car ce sont les relations les plus fondamentales qui existent chez les ensembles. Nous n'allons d'ailleurs pas avoir besoin de choisir entre les deux : nous allons faire en sorte que \subseteq soit l'ordre et \in l'ordre strict associé.

Définition 8 (Ensemble transitif)

Soit *E* un ensemble.

On dit que E est **transitif** si et seulement si $\forall x \in E, x \subseteq E$.

Remarque:

Remarquons la chose suivante :

$$\begin{split} E \text{ est transitif } &\iff \forall y \in E, y \subseteq E \\ &\iff \forall y, \Big(y \in E \implies y \subseteq E\Big) \\ &\iff \forall x, \forall y, \Big(x \in y \in E \implies x \in E\Big) \end{split}$$

Ainsi, la transitivité de E signifie une certaine transitivité de \in .

Cette définition répond aussi au fait que nous allons faire de \in un ordre strict sur E: en particulier \in sera transitif, c'est-à-dire que pour x,y et z dans E, si $x \in y \in z$ alors $x \in z$. Le fait pour E d'être transitif va donc étendre légèrement cette propriété en se permettant en plus de remplacer z par E lui-même : si $x \in y \in E$ alors $x \in E$.

Définition 9 (Ordinaux)

Soit E un ensemble.

On dit que E est un **ordinal** si et seulement si

- 1. E est transitif.
- 2. \in est un bon ordre strict sur E.

Pour la petite histoire

John von Neumann (28 décembre 1903 – 8 février 1957) est un mathématicien et physicien américano-hongrois. Il a apporté d'importantes contributions en mécanique quantique, en analyse fonctionnelle, en logique mathématique, en informatique théorique, en sciences économiques et dans beaucoup d'autres domaines des mathématiques et de la physique. Il a de plus participé aux programmes militaires américains.

C'est à lui que l'on doit cette définition d'ordinaux.

Exemple:

- 1. \varnothing est un ordinal. En effet, par vérité creuse, on a les quatre points suivants :
 - (a) On a $\forall x \in \emptyset, x \notin x \text{ donc } \in \text{ est antiréflexive sur } \emptyset$.
 - (b) On a $\forall x \in \emptyset, \forall y \in \emptyset, \forall z \in \emptyset, \Big(\big(x \in y \text{ et } y \in z \big) \implies x \in z \big) \Big)$. Ainsi \in est transitive sur \emptyset .
 - (c) Comme aucune partie de \varnothing n'est non vide, on a bien que toutes les parties non vides de \varnothing admettent un minimum pour \in .
 - (d) On a $\forall x \in \emptyset, x \subseteq \emptyset$ donc \emptyset est transitif.

Les points a et b font de \in un ordre strict sur \varnothing .

Combinés au point c, on en conclut que \in est un bon ordre strict sur \varnothing .

Enfin, combiné au point d on en conclut que \emptyset est un ordinal.

2. Nous verrons plus tard que tout entier naturel, et même № l'ensemble des entiers naturels lui-même, est un ordinal.

Remarque:

Il est d'usage de désigner un ordinal par une lettre grecque minuscule. Par exemple $\mathbb N$ sera aussi désigné par la lettre ω , qui lui sera alors réservée.

Notation:

On notera ON la classe de tous les ordinaux, c'est-à-dire que pour un ensemble x, on a l'équivalence $x \in ON \iff x$ est un ordinal.

Tentons de justifier le choix de la notion d'ordinal pour représenter une classe d'équivalence des ensembles bien ordonnés. Nous avons déjà justifié l'usage de \in comme relation de bon ordre strict pour son côté naturel. Il reste donc simplement à justifier la transitivité de l'ensemble lui-même, c'est-à-dire le point 1 de la définition d'ordinal.

Pour cela, intéressons-nous au cas simple d'ensembles à deux éléments, pour la relation d'ordre strict \in . Comme on veut que \in soit un bon ordre strict, on veut en particulier que tous les éléments distincts soient comparables pour l'appartenance, et donc que sur les deux éléments l'un appartienne à l'autre, ce qui impose au représentant α d'être de la forme $\alpha = \{x, E\}$ avec $x \in E$. Pour rendre le choix de α le plus naturel possible, on aimerait épurer au maximum le choix de x et de E: en particulier il semble naturel de demander $x = \emptyset$ pour ne pas s'encombrer avec d'éventuels éléments de x qui seraient nécessairement arbitraires. Pour la même raison, on aimerait que E ne contienne rien d'autre que x, ce qui impose naturellement $E = \{x\}$ et donc $\alpha = \{\varnothing, \{\varnothing\}\}$.

La transitivité va permettre de retirer les éventuels éléments encombrants : si x est un élément de l'ordinal α , alors par transitivité de α on a $x \subseteq \alpha$, c'est-à-dire que tous les éléments de x font aussi partis de α . Ainsi dans l'exemple $\alpha = \{x, E\}$, x ne peut rien contenir car tout élément éventuel de x se retrouverait en plus dans les éléments de α , et pour la même raison E ne peut rien contenir de plus que x.

Proposition 6 (Les éléments d'un ordinal sont des ordinaux)

Soient α un ordinal et x un ensemble. Si $x \in \alpha$ alors x est un ordinal.

Démonstration

Supposons que $x \in \alpha$.

• Par définition α est un ordinal donc α est transitif et (α, \in) est strictement bien ordonné. Comme $x \in \alpha$, on a donc $x \subseteq \alpha$ par définition de la transitivité.

Or (α, \in) est strictement bien ordonné donc (x, \in) est strictement bien ordonné d'après la proposition 3 page 11.

• Il reste donc à montrer que x est transitif.

```
Soit y \in x.
```

On a vu que $x \subseteq \alpha$ donc $y \in \alpha$ par définition de l'inclusion.

On a donc $y \subseteq \alpha$ car α est transitif.

Montrons que $y \subseteq x$.

Soit $z \in y$.

Comme $y \subseteq \alpha$, on a en particulier $z \in \alpha$ par définition de l'inclusion.

On a donc $z \in y \in x$, et tous les trois sont des éléments de α .

Or (α, \in) est strictement bien ordonné donc \in est transitif sur α .

On a donc $z \in x$ par transitivité.

Donc $\forall z \in y, z \in x$ et donc $y \subseteq x$ par définition de l'inclusion.

Donc $\forall y \in x, y \subseteq x$.

Ainsi x est transitif.

Finalement, (x, \in) est strictement bien ordonné et x est transitif.

Donc x est un ordinal.

CQFD.

Comme nous venons de le voir, les éléments d'un ordinal sont eux aussi des ordinaux. En particulier, nous allons pouvoir montrer des propriétés directement sur les ordinaux en toute généralité, et mécaniquement cela concernera donc en particulier les éléments des ordinaux eux-mêmes.

Proposition 7 (L'intersection de deux ordinaux est un ordinal)

Soient α et β deux ordinaux.

Alors $\alpha \cap \beta$ est un ordinal.

Démonstration

Comme α est un ordinal, (α, \in) est strictement bien ordonné.

Or $\alpha \cap \beta \subseteq \alpha$ donc $(\alpha \cap \beta, \in)$ est strictement bien ordonné d'après la prop. 3 p. 11.

Il reste à montrer que $\alpha \cap \beta$ est transitif.

Soit $x \in \alpha \cap \beta$.

On a donc $x \in \alpha$ et $x \in \beta$.

Or α et β sont des ordinaux donc sont transitifs donc $x \subseteq \alpha$ et $x \subseteq \beta$.

On a donc $x \subseteq \alpha \cap \beta$.

Donc $\forall x \in \alpha \cap \beta, x \subseteq \alpha \cap \beta$.

Donc $\alpha \cap \beta$ est transitif.

Finalement $(\alpha \cap \beta, \in)$ est strictement bien ordonné et $\alpha \cap \beta$ est transitif.

On a donc $\alpha \cap \beta$ est un ordinal

CQFD.

Nous l'avons annoncé quand nous avons introduit la notion d'ordinal : étant donné un ordinal, nous voulons faire de \subseteq l'ordre (large) et de \in l'ordre strict. Par définition d'un ordinal, \in est le bon ordre strict concerné. La proposition suivante va nous montrer que \subseteq est quant à lui l'ordre (large) associé à \in .

Proposition 8 (Ordre large sur les ordinaux)

Soient α et β deux ordinaux.

On a l'équivalence

$$\alpha \subseteq \beta \iff (\alpha \in \beta \text{ ou } \alpha = \beta)$$

Démonstration

Raisonnons par double implications.

Supposons que $\alpha \subseteq \beta$ et $\alpha \neq \beta$.

Montrons que $\alpha \in \beta$.

Posons $X := \beta \setminus \alpha$: par hypothèse on a $X \neq \emptyset$.

Or β est un ordinal donc (β, \in) est strictement bien ordonné.

Donc comme $X \subseteq \beta$ et $X \neq \emptyset$, on en déduit que X admet un minimum ξ pour \in .

Comme $\xi \in X$ et $X \subseteq \beta$, on a $\xi \in \beta$ par définition de l'inclusion.

On peut donc montrer $\xi = \alpha$ pour conclure.

 \subseteq

Soit $\mu \in \xi$.

Comme $\xi \in \beta$ et β est transitif (car ordinal), on a $\mu \in \beta$.

Comme $\mu \in \xi$ et que ξ est le minimum de (X, \in) , on a $\mu \notin X$.

On a donc $\mu \in \beta$ et $\mu \notin X$ donc $\mu \in \beta \backslash X = \alpha$.

Donc $\xi \subseteq \alpha$.

Supposons par l'absurde que $\xi \neq \alpha$, c'est-à-dire $\xi \subseteq \alpha$ d'après ce qui précède.

On a donc $\alpha \setminus \xi \neq \emptyset$ donc il existe $\mu \in \alpha \setminus \xi$.

En particulier on a $\mu \in \alpha$.

Comme $\alpha \subseteq \beta$ par hypothèse, on a $\mu \in \beta$ par définition de l'inclusion.

Ainsi on a $\xi \in \beta$ et $\mu \in \beta$.

Or β est un ordinal donc (β, \in) est strictement bien ordonné et donc \in est un ordre strict total sur β . On a donc $\mu \in \xi$ ou $\xi \in \mu$ ou $\mu = \xi$.

 $\blacktriangleright \mu \in \xi$ est impossible.

En effet par définition on a $\mu \in \alpha \setminus \xi$ donc $\mu \notin \xi$.

 $\blacktriangleright \xi \in \mu$ est impossible.

En effet on aurait $\xi \in \mu \in \alpha$ donc $\xi \in \alpha$ car α est transitif car ordinal.

Or on a $\xi \in X = \beta \setminus \alpha$ donc $\xi \notin \alpha$.

 $\blacktriangleright \mu = \xi$ est impossible.

En effet on a $\xi \in X = \beta \setminus \alpha$ donc $\xi \notin \alpha$ alors que $\mu \in \alpha \setminus \xi$ donc $\mu \in \alpha$.

On a donc $\xi \notin \alpha$ et $\mu \in \alpha$ donc on ne peut pas avoir $\mu = \xi$.

On aboutit donc à une contradiction.

Par l'absurde, on a prouvé que $\xi = \alpha$.

Comme $\xi \in \beta$, on a donc $\alpha \in \beta$.

Donc
$$(\alpha \subseteq \beta \text{ et } \alpha \neq \beta) \implies \alpha \in \beta.$$

Donc
$$(\alpha \subseteq \beta \text{ et } \alpha \neq \beta) \implies \alpha \in \beta.$$

Donc $\alpha \subseteq \beta \implies (\alpha \in \beta \text{ ou } \alpha = \beta)$

 \Leftarrow

Supposons que $\alpha \in \beta$ ou $\alpha = \beta$.

Si $\alpha \in \beta$ alors $\alpha \subseteq \beta$ car β est transitif car ordinal.

Si $\alpha = \beta$ alors en particulier $\alpha \subseteq \beta$.

Dans tous les cas on a $\alpha \subseteq \beta$.

Donc si $\alpha \in \beta$ ou $\alpha = \beta$ alors $\alpha \subseteq \beta$.

COFD.

Remarque:

Désormais, on utilisera régulièrement le fait qu'étant donné un ordinal, il est naturellement muni de ⊆ en tant que relation de bon ordre et que ∈ est le bon ordre strict associé. En particulier pour deux ordinaux α et β , on a l'équivalence $\alpha \subseteq \beta \iff \alpha \in \beta$.

Le fait d'avoir prouvé ces quelques propriétés générales sur les ordinaux nous permet d'entrevoir le magnifique théorème qui va suivre : celui-ci affirme qu'en fait c'est toute la classe ON qui se comporte comme un ordinal.

Théorème 1 (Bon ordre strict sur les ordinaux)

Soient α , β et γ trois ordinaux.

- 1. Si $\alpha \in \beta$ et $\beta \in \gamma$ alors $\alpha \in \gamma$. Ainsi \in est **transitif** sur ON.
- 2. On a $\alpha \notin \alpha$.

Ainsi \in est **antiréflexive** sur ON.

Ainsi par 1 et 2, \in peut être vu comme un **ordre strict** sur ON.

3. On a $\alpha \in \beta$ ou $\beta \in \alpha$ ou $\alpha = \beta$.

Autrement dit \in est un ordre strict **total** sur ON.

4. Soit E un ensemble non vide dont les éléments sont tous des ordinaux.

Alors (E, \in) possède un minimum. Ainsi \in est un **bon** ordre strict sur ON.

Ainsi, \in est un **bon ordre strict** sur ON.

1. Supposons que $\alpha \in \beta \in \gamma$.

On a alors $\alpha \in \gamma$ car γ est transitif car ordinal.

2.

Supposons par l'absurde que $\alpha \in \alpha$.

En prenant $x := \alpha$, on a l'existence d'un $x \in \alpha$ tel que $x \in x$.

Or α est un ordinal donc (α, \in) est strictement bien ordonné donc \in est antiréflexive sur α . En particulier $\forall x \in \alpha, x \notin x$, d'où l'absurdité.

Par l'absurde, on a donc $\alpha \notin \alpha$.

3. Considérons $\delta := \alpha \cap \beta$.

Alors δ est un ordinal d'après la proposition 7 page 19.

Or on a $\delta \subseteq \alpha$ donc $(\delta \in \alpha \text{ ou } \delta = \alpha)$ d'après la proposition 8 page 20.

De même on a $\delta \subseteq \beta$ donc $(\delta \in \beta \text{ ou } \delta = \beta)$ d'après la proposition 8 page 20.

- ▶ Si $\delta = \alpha$ alors comme on a $(\delta \in \beta \text{ ou } \delta = \beta)$ on a $\alpha \in \beta \text{ ou } \alpha = \beta$.
- ▶ Si $\delta = \beta$ alors comme on a $(\delta \in \alpha \text{ ou } \delta = \alpha)$ on a $\beta \in \alpha \text{ ou } \beta = \alpha$.
- ▶ Sinon si $\delta \neq \alpha$ et $\delta \neq \beta$ alors d'après ce qui précède on a $\delta \in \alpha$ et $\delta \in \beta$.

On a donc $\delta \in \alpha \cap \beta$ par définition de l'intersection.

Mais on a aussi $\delta = \alpha \cap \beta$ par définition de δ , donc $\delta \in \delta$, ce qui contredit 1.

Finalement, on a bien $\alpha \in \beta$ ou $\beta \in \alpha$ ou $\alpha = \beta$.

4. Comme E est non vide, il existe $\varepsilon \in E$.

Si ε est le minimum de (E, \in) c'est bon.

Supposons donc que ε n'est pas le minimum de (E, \in) .

Il existe donc $\mu \in E$ tel que l'on n'a ni $\varepsilon \in \mu$ ni $\varepsilon = \mu$.

Or tous les éléments de E sont des ordinaux donc $\mu \in \varepsilon$ d'après 3.

Ainsi $\mu \in E$ et $\mu \in \varepsilon$ donc $\mu \in \varepsilon \cap E$ et donc $\varepsilon \cap E \neq \emptyset$.

Donc $\varepsilon \cap E$ est une partie non vide de ε .

Or (ε, \in) est strictement bien ordonné car ε est un ordinal.

Donc $\varepsilon \cap E$ possède un minimum ξ .

Montrons que ξ est le minimum de E.

Soit $\nu \in E$.

Comme tous les éléments de E sont des ordinaux, on a $\nu \in \varepsilon$ ou $\varepsilon \in \nu$ ou $\nu = \varepsilon$ d'après 3.

- ▶ Si $\nu \in \varepsilon$ alors $\nu \in \varepsilon \cap E$ donc $\xi \in \nu$ car ξ est le minimum de $\varepsilon \cap E$.
- ▶ Si $\varepsilon \in \nu$, comme $\xi \in \varepsilon \cap E$ on a $\xi \in \varepsilon$ donc $\xi \in \varepsilon \in \nu$ et donc $\xi \in \nu$ d'après 1.
- ▶ Si $\nu = \varepsilon$, comme $\xi \in \varepsilon \cap E$ on a $\xi \in \varepsilon$ donc $\xi \in \nu$.

Dans tous les cas on a $\xi \in \nu$.

Donc ξ est le minimum de E.

Dans tous les cas, \overline{E} admet un minimum.

CQFD.

Remarque:

Ainsi on dira simplement que (ON, \in) est une classe strictement bien ordonnée, et grâce à la proposition 8 page 20, nous savons que l'ordre associé est \subseteq , donc nous dirons aussi que (ON, \subseteq) est une classe bien ordonné. Ces affirmations doivent être comprises comme étant un résumé du théorème qui précède.

Nous avons expliqué avant le théorème que la classe des ordinaux ON se comporte elle-même comme un ordinal, mais nous n'avons pas montré de propriété qui s'apparente à la transitivité d'un ordinal. En réalité si, c'est l'objet de la proposition 6 page 18 qui affirme que tout élément d'un ordinal est aussi un ordinal. Autrement dit, pour tout $\alpha \in ON$, tous les éléments de α sont des ordinaux et donc $\alpha \subseteq ON$.

Nous avons affirmé pour justifier de l'intérêt des classes qu'il n'existe pas d'ensemble de tous les ordinaux, si bien que ON est une classe qui n'est pas issue d'un ensemble (elle est donc une classe **propre**). Montrons-le enfin : c'est le fameux **paradoxe de Burali-Forti**.

Théorème 2 (Paradoxe de Burali-Forti)

Il n'existe pas d'ensemble contenant tous les ordinaux.

Démonstration

Supposons par l'absurde qu'il existe un ensemble E tel que tout ordinal en est un élément. Considérons alors $X:=\big\{x\in E\;\big|\;x\text{ est un ordinal }\big\}.$

• Montrons X est transitif.

Soit $\alpha \in X$.

Par définition α est un ordinal.

Soit $\beta \in \alpha$.

Alors β est un ordinal d'après la proposition 6 page 18.

On a donc $\beta \in E$ par définition de E et donc $\beta \in X$ par définition de X.

Donc $\forall \beta \in \alpha, \beta \in X$ donc $\alpha \subseteq X$ par définition de l'inclusion.

Donc $\forall \alpha \in X, \alpha \subseteq X \text{ donc } X \text{ est transitif}.$

• D'après le théorème 1 page 21 (X, \in) est strictement bien ordonné car tous ses éléments sont des ordinaux.

Ainsi X est transitif et (X, \in) est strictement bien ordonné.

Donc X est un ordinal donc $X \in E$ par définition de E donc $X \in X$ par définition de X.

C'est en contradiction avec l'antiréflexivité de ∈ chez les ordinaux.

CQFD.

Pour la petite histoire

Cesare Burali-Forti (13 août 1861 – 21 janvier 1931) est un mathématicien italien.

Cesare Burali-Forti est assistant de Giuseppe Peano à Turin de 1894 à 1896. Bertrand Russell a nommé paradoxe de Burali-Forti, le paradoxe du plus grand ordinal en théorie des ensembles, en référence à un article de 1897 où le mathématicien italien, croyant démontrer que deux ordinaux ne sont pas toujours comparables, fait le raisonnement qui conduit au paradoxe décrit par Russell.

Ainsi, il n'existe pas d'ensemble contenant tous les ordinaux : ON n'est pas issue d'un ensemble, c'est donc une **classe propre**. De fait parmi toutes les sous-classes de ON, certaines sont propres (elle-même par exemple). Nous avons vu lors du théorème 1 page 21 que tout ensemble $X \subseteq ON$ possède un minimum. En fait, ce résultat reste vrai si on remplace X par une classe quelconque, pas forcément issue d'un ensemble.

Proposition 9 (Les sous-classes de ON possèdent un minimum)

Soit $C \subseteq ON$ une classe non vide.

Alors C possède un ordinal minimum, c'est-à-dire $\exists \xi \in C, \forall \alpha \in C, \xi \subseteq \alpha$.

ullet Supposons que C est issue d'un ensemble X non vide.

En particulier $X \subseteq ON$ par définition de C.

D'après le théorème 1 page 21, X possède un ordinal minimum.

Donc C possède un ordinal minimum.

ullet Supposons que C est propre.

En particulier elle n'est pas vide car pas issue de l'ensemble vide.

Il existe donc au moins un ordinal $\alpha \in C$.

Posons alors
$$X := \alpha \cap C = \{ \beta \in \alpha \mid \beta \in C \} = \{ \beta \in \alpha \mid C(\beta) \}.$$

D'après l'axiome de compréhension, X est un ensemble.

ightharpoonup Supposons que X est vide.

Montrons que α est le minimum de C.

Soit
$$\beta \in C$$
.

Par définition de C on a $C \subseteq ON$.

Donc α et β sont des ordinaux.

On a donc $\alpha \subseteq \beta$ ou $\beta \in \alpha$ d'après le théorème 1 page 21.

Si $\beta \in \alpha$ alors $\beta \in \alpha \cap C = X$ et donc X n'est pas vide.

Comme X est vide, on a nécessairement $\alpha \subseteq \beta$.

Donc $\forall \beta \in C, \alpha \subseteq \beta$.

Donc α est le minimum de C.

ightharpoonup Supposons que X n'est pas vide.

Comme
$$X = \alpha \cap C$$
, on a $X \subseteq \alpha$.

Or α est un ordinal donc tous ses éléments sont des ordinaux.

Donc X est un ensemble non vide d'ordinaux.

Donc X possède un ordinal minimum ξ d'après le théorème 1 page 21.

Montrons que ξ est le minimum de C.

Comme $\xi \in X = \alpha \cap C$, on a déjà $\xi \in C$.

Soit $\beta \in C$.

Par définition de C on a $C \subseteq ON$.

Donc α et β sont des ordinaux.

On a donc $\alpha \subseteq \beta$ ou $\beta \in \alpha$ d'après le théorème 1 page 21.

Supposons que $\alpha \subseteq \beta$.

On a
$$\xi \in X = \alpha \cap C$$
 donc $\xi \in \alpha$.

On a donc $\xi \in \beta$ par définition de l'inclusion.

Donc $\xi \subseteq \beta$ car β est transitif car ordinal.

Supposons que $\beta \in \alpha$.

Comme $\beta \in C$, on a $\beta \in \alpha \cap C = X$.

Or ξ est le minium de X donc $\xi \subseteq \beta$.

Donc $\forall \xi \in C, \xi \subseteq \beta$.

Donc ξ est le minimum de C.

Dans tous les cas, C possède un ordinal minimum.

CQFD.

Nous venons de voir que *ON* est une classe propre, et qu'elle se comporte *comme un ordinal*, c'est-à-dire :

- 1. ON est transitive, au sens où si $\beta \in \alpha \in ON$ alors $\beta \in ON$, puisque les éléments d'un ordinal sont eux aussi des ordinaux.
- 2. (ON, \in) est strictement bien ordonné, d'après le théorème 1 page 21.

Il s'avère qu'en fait, il s'agit de la seule classe propre à vérifier ces deux propriétés, comme le montre la proposition suivante. En cela, *ON* est en quelque sorte l'ordinal ultime.

Proposition 10 (ON est la seule classe propre ordinale)

Soit C une classe propre.

Supposons que:

- 1. C est transitive, c'est-à-dire $\forall \alpha \in C, \alpha \subseteq C$.
- 2. (C, \in) est strictement bien ordonné, c'est-à-dire :
 - \blacktriangleright est transitif sur $C: \forall \alpha \in C, \forall \beta \in C, \forall \gamma \in C, (\alpha \in \beta \in \gamma \implies \alpha \in \gamma).$
 - \blacktriangleright est antiréflexif sur $C: \forall \alpha \in C, \alpha \notin \alpha$
 - ▶ Tout ensemble non vide $X \subseteq C$ possède un minimum pour \in .

Alors C = ON.

Démonstration

• Commençons par montrer que $C \subseteq ON$.

Autrement dit, montrons que tous les éléments de C sont des ordinaux.

Soit $\alpha \in C$.

Montrons que α est un ordinal.

 \blacktriangleright Montrons que α est transitif.

Par hypothèse C est transitive donc $\alpha \subseteq C$.

Soit $\beta \in \alpha$.

Comme $\alpha \subseteq C$, on a $\beta \in C$ par définition de l'inclusion.

Donc $\beta \subseteq C$ par transitivité de C.

Soit $\gamma \in \beta$.

Comme $\beta \subseteq C$, on a $\gamma \in C$ par définition de l'inclusion.

Ainsi on a $\gamma \in \beta \in \alpha$ et tous trois sont éléments de C.

Or \in est transitive sur C par hypothèse donc $\gamma \in \alpha$.

Donc $\forall \gamma \in \beta, \gamma \in \alpha$ donc $\beta \subseteq \alpha$ par définition de l'inclusion.

Donc $\forall \beta \in \alpha, \beta \subseteq \alpha \text{ donc } \alpha \text{ est transitif.}$

▶ Montrons que (α, \in) est strictement bien ordonné.

Soient β , γ et δ dans α .

Supposons que $\beta \in \gamma \in \delta$.

On a dit que $\alpha \subseteq C$ donc β, γ et δ sont dans C.

Or \in est transitive sur C donc $\beta \in \delta$.

Donc si $\beta \in \gamma \in \delta$ alors $\beta \in \delta$.

Donc \in est transitive sur α .

Soit $\beta \in \alpha$.

On a dit que $\alpha \subseteq C$ donc $\beta \in C$ par définition de l'inclusion.

Donc $\beta \notin \beta$ par antiréflexivité de \in sur C.

Donc $\forall \beta \in \alpha, \beta \notin \beta$.

Donc \in est antiréflexive sur α .

Ainsi (α, \in) est strictement ordonné.

Soit X une partie non vide de α .

On a dit que $\alpha \subseteq C$ donc $X \subseteq C$ par transitivité de l'inclusion.

Ainsi X est un ensemble non vide inclus dans C.

Donc X possède un minimum pour \in par hypothèse.

Donc toutes les parties non vides de α possède un minimum pour \in .

On en conclut que (α, \in) est strictement bien ordonné.

Ainsi α est transitif et (α, \in) est strictement bien ordonné.

Donc α est un ordinal.

Donc tout élément de C est un ordinal, et donc $C \subseteq ON$

• Montrons que C = ON.

Supposons par l'absurde que $C \neq ON$.

On a donc $C \subsetneq ON$ par ce qui précède.

Considérons alors $D := ON \setminus C$, qui est donc une classe non vide.

Alors D possède un ordinal minimum δ d'après la proposition 9 page 24.

Montrons que $\delta = C$.

Soit $\alpha \in \delta$.

Comme δ est le minimum de D, on a $\alpha \notin D$.

Or $\delta \in D = ON \setminus C$ donc $\delta \in ON$.

Donc α est un ordinal comme élément de l'ordinal δ .

Ainsi on a $\alpha \in ON$ et $\alpha \notin D$ donc $\alpha \in ON \setminus D = C$.

Donc $\forall \alpha \in \delta, \alpha \in C$ donc $\delta \subseteq C$ par définition de l'inclusion.

Soit $\alpha \in C$.

D'après ce qui précède, $C \subseteq ON$ donc $\alpha \in ON$.

Or on a aussi $\delta \in ON$.

On a donc $\alpha \in \delta$ ou $\alpha = \delta$ ou $\delta \in \alpha$ car (ON, \in) est strictement bien ordonné.

▶ Plaçons-nous dans le cas où $\alpha = \delta$.

Comme $\alpha \in C$, on a alors $\delta \in C$.

▶ Plaçons-nous dans le cas où $\delta \in \alpha$.

C est transitive par hypothèse et $\alpha \in C$.

On a donc $\alpha \subseteq C$ et donc $\delta \in C$ par définition de l'inclusion.

Donc si $\alpha = \delta$ ou $\delta \in \alpha$ alors $\delta \in C$.

C'est absurde puisque $\delta \in D = ON \setminus C$ donc $\delta \notin C$.

On en déduit que $\alpha \in \delta$.

Ainsi $\forall \alpha \in C, \alpha \in \delta$ donc $C \subseteq \delta$ par définition de l'inclusion.

On en déduit donc que $C = \delta$ par ce qui précède.

Ainsi C est un ordinal : en particulier C est un ensemble.

C'est absurde puisque par définition C est une classe propre.

Par l'absurde, on a donc montré que nécessairement C = ON.

CQFD.

Cette propriété que nous venons de voir fait donc de $O\!N$ en quelque sorte l'unique classe propre à pouvoir prétendre généraliser la notion d'ordinaux. Nous aurons l'occasion de la revoir quand nous aurons besoin d'étendre une définition qui initialement ne porte que sur les ordinaux : il semblera légitime de ne l'étendre qu'à $O\!N$.

Nous avons vu lors de la proposition 7 page 19 que l'intersection de deux ordinaux est aussi un ordinal. Il en va en fait de même pour l'union de deux ordinaux, et plus généralement pour

l'intersection et la réunion d'ensembles d'ordinaux. Cela nous fournit au passage une expression explicite de la borne supérieure et du minimum d'un ensemble d'ordinaux.

Proposition 11 (Union et intersection d'ordinaux)

Soient α et β deux ordinaux.

- 1. $\alpha \cup \beta$ est un ordinal et $\alpha \cup \beta = \max(\alpha, \beta)$.
- 2. $\alpha \cap \beta$ est un ordinal et $\alpha \cap \beta = \min(\alpha, \beta)$.

Soit X un ensemble dont tous les éléments sont des ordinaux.

- 3. $\bigcup X$ est un ordinal et $\bigcup X = \sup(X)$. La notion de borne supérieure est à comprendre ici "parmi les ordinaux".
- 4. Si $X \neq \emptyset$ alors $\bigcap X$ est un ordinal et $\bigcap X = \min(X)$.

Démonstration

Comme α et β sont deux ordinaux, on a $\alpha \in ON$ et $\beta \in ON$.

Or (ON, \in) est strictement bien ordonné donc en particulier \in est total sur ON.

On a donc $\alpha \in \beta$ ou $\beta \in \alpha$ ou $\alpha = \beta$.

1.

- ► Si $\alpha \in \beta$ alors $\beta = \max(\alpha, \beta)$ par définition du maximum. Or β est un ordinal donc est transitif donc $\alpha \subseteq \beta$ et donc $\alpha \cup \beta = \beta$. En particulier $\alpha \cup \beta$ est un ordinal, et on a donc $\alpha \cup \beta = \max(\alpha, \beta)$.
- ▶ Si $\beta \in \alpha$ alors on raisonne de la même manière pour montrer $\alpha \cup \beta = \max(\alpha, \beta)$.
- ► Si $\alpha = \beta$ alors $\alpha \cup \beta = \alpha$ qui est bien un ordinal. On a donc $\alpha \cup \beta = \alpha = \max(\alpha, \alpha) = \max(\alpha, \beta)$.

Dans tous les cas $\alpha \cup \beta$ est un ordinal et $\alpha \cup \beta = \max(\alpha, \beta)$.

- 2. On a déjà vu lors de la proposition 7 page 19 que $\alpha \cap \beta$ est un ordinal
 - ▶ Si $\alpha \in \beta$ alors $\alpha = \min(\alpha, \beta)$ par définition du minimum. Or β est un ordinal donc est transitif donc $\alpha \subseteq \beta$ donc $\alpha \cap \beta = \alpha$. On a donc $\alpha \cap \beta = \min(\alpha, \beta)$.
 - ▶ Si $\beta \in \alpha$ alors on raisonne de la même manière pour montrer $\alpha \cap \beta = \min(\alpha, \beta)$.
 - ► Si $\alpha = \beta$ alors $\alpha \cap \beta = \alpha$ qui est bien un ordinal. On a donc $\alpha \cap \beta = \alpha = \min(\alpha, \alpha) = \min(\alpha, \beta)$.

Dans tous les cas on a $\alpha \cap \beta = \min(\alpha, \beta)$

- 3. Commençons par montrer que $\bigcup X$ est un ordinal.
- Montrons que $\bigcup X$ est transitif.

Soit
$$x \in \bigcup X$$
.

Par définition de la réunion, il existe $\alpha \in X$ tel que $x \in \alpha$.

Comme X est un ensemble d'ordinaux, α est un ordinal.

Donc α est transitif et donc $x \subseteq \alpha$.

Comme $\alpha \in X$, on a $\alpha \subseteq \bigcup X$ donc $x \subseteq \bigcup X$ par transitivité de l'inclusion.

Donc $\forall x \in \bigcup X, x \subseteq \bigcup X \text{ donc } \bigcup X \text{ est transitif}.$

- Montrons que \in est un bon ordre strict sur $\bigcup X$.
 - ightharpoonup \in est antiréflexive sur $\bigcup X$.

Soit
$$x \in \bigcup X$$
.

Par définition de la réunion, il existe $\alpha \in X$ tel que $x \in \alpha$.

Comme X est un ensemble d'ordinaux, α est un ordinal.

Donc x est un ordinal d'après la proposition 6 page 18.

En particulier $x \notin x$ par antiréflexivité de \in sur ON.

Donc $\forall x \in \bigcup X, x \notin x \text{ donc } \in \text{ est antiréflexive sur } \bigcup X.$

 \blacktriangleright \in est transitive sur $\bigcup X$.

Soient x, y et z dans $\bigcup X$.

Il existe α , β et γ dans X tels que $x \in \alpha$, $y \in \beta$ et $z \in \gamma$.

Or tous les éléments de X sont des ordinaux donc α , β et γ sont des ordinaux.

En particulier d'après $1 \alpha \cup \beta \cup \gamma$ est un ordinal, dont x, y et z sont des éléments.

Supposons que $x \in y \in z$.

Comme $\alpha \cup \beta \cup \gamma$ est un ordinal, $(\alpha \cup \beta \cup \gamma, \in)$ est strictement bien ordonné. Donc \in est transitive sur $\alpha \cup \beta \cup \gamma$.

On a donc $x \in z$ par transitivité.

Donc si $x \in y \in z$ alors $x \in z$.

Donc \in est transitive sur $\bigcup X$.

Ainsi \in est un ordre strict sur $\bigcup X$.

ightharpoonup est un bon ordre strict sur $\bigcup X$.

Soit A une partie non vide de $\bigcup X$.

Soit $a \in A$.

3. ORDINAUX 31

Comme $A \subseteq \bigcup X$ on a $a \in \bigcup X$ par définition de l'inclusion.

Par définition de la réunion, il existe $\alpha \in X$ tel que $a \in \alpha$.

Or tous les éléments X sont des ordinaux donc α est un ordinal.

Donc a est un ordinal d'après la proposition 6 page 18.

Donc tous les éléments de A sont des ordinaux.

Comme A est non vide, il possède un minimum d'après le théorème 1 page 21.

Donc toutes les parties non vides de $\bigcup X$ possèdent un minimum.

Donc \in est un bon ordre strict sur $\bigcup X$.

Donc $\bigcup X$ est un ordinal.

• Montrons que $\bigcup X = \sup(X)$.

Pour tout $\alpha \in X$, on a $\alpha \subseteq \bigcup X$ par définition de la réunion.

En particulier $\bigcup X$ est un majorant de X dans (ON, \subseteq) .

Soit β un majorant de X dans (ON, \subseteq) .

On a donc pour tout $\alpha \in X$, on a $\alpha \subseteq \beta$.

On a donc $\bigcup X \subseteq \beta$ par minimalité de la réunion pour l'inclusion.

Donc tout ordinal majorant de X dans (ON, \subseteq) est plus grand que ou égal à $\bigcup X$.

Ainsi, $\bigcup X$ est le plus petit ordinal majorant de X dans (ON, \subseteq) .

Donc
$$\sup(X) = \bigcup X$$

4. Supposons que X est non vide.

Commençons par montrer que $\bigcap X$ est un ordinal.

 $\bullet \cap X$ est transitif.

En effet, soit $x \in \bigcap X$.

Pour tout $\alpha \in X$, on a $x \in \alpha$.

Or tous les éléments de X sont des ordinaux donc sont transitifs...

Donc pour tout $\alpha \in X$, on a $x \subseteq \alpha$.

Donc $x \subseteq \bigcap X$ par minimalité de l'intersection pour l'inclusion.

Donc
$$\forall x \in \bigcap X, x \subseteq \bigcap X$$
.

Donc $\bigcap X$ est transitif.

• Comme X est non vide, il existe $\alpha \in X$.

On a alors $\bigcap X \subseteq \alpha$.

Or tous les éléments de X sont des ordinaux donc α est un ordinal.

Donc (α, \in) est strictement bien ordonné.

Donc $(\bigcap X, \in)$ est strictement bien ordonné d'après la proposition 3 page 11.

On en conclut que $\bigcap X$ est un ordinal.

• Montrons que $\bigcap X = \min(X)$.

Par définition X est un ensemble non vide d'ordinaux.

Donc (X, \in) admet un minimum ξ d'après le théorème 1 page 21.

Or \subseteq est l'ordre large associé à \in sur ON d'après la proposition 8 page 20.

Donc $\forall \alpha \in X, \xi \subseteq \alpha$ par définition du minimum.

Donc $\xi \subseteq \bigcap X$ par maximalité de l'intersection pour l'inclusion.

Or on a $\xi \in X$ par définition du minimum, donc $\bigcap X \subseteq \xi$ et donc $\bigcap X = \xi$.

Or par définition $\xi = \min(X)$ donc $\bigcap X = \min(X)$.

COFD

4 Ordinaux successeurs, limites et entiers naturels

Ce qui nous a motivé à introduire la notion de bon ordre est le fait qu'étant donné un élément x, il est possible de répondre à la question « quel élément suit directement x? ». En effet, nous avons dit que dans ce cas-là, il suffit de prendre l'ensemble des éléments strictement plus grands que x, et de considérer alors son minimum. On parle alors du successeur de x. Dans le cas particulier des ordinaux, ce successeur a une expression simple (que l'on peut quand-même définir en toute généralité).

Définition 10 (Successeur d'un ensemble)

Soit x un ensemble.

On appelle successeur de x l'ensemble $S(x) := x \cup \{x\}$.

Exemple:

Il est temps de définir nos premiers entiers naturels.

On pose $0 := \emptyset$ et 1 := S(0).

Plus précisément, on a $1 = S(0) = S(\emptyset) = \emptyset \cup \{\emptyset\} = \{\emptyset\} = \{0\}.$

Nous verrons un peu plus tard comment définir tous les autres entiers naturels.

Quand nous aurons défini les entiers naturels, nous verrons que n+1 sera défini comme étant S(n), ce qui correspond bien à l'intuition de l'entier naturel qui suit directement n.

Nous avons défini la notion de successeur d'un ensemble en toute généralité, mais cette notion devient intéressante dans le cas des ordinaux puisqu'elle répond bien à la question de l'ordinal qui suit directement. En effet, on retrouve par exemple le fait que pour n et m deux entiers naturels, on a :

- 1. l'équivalence $n < (m+1) \iff n \le m$.
- 2. l'équivalence $n < m \iff (n+1) < m$.
- 3. n+1 est un entier naturel tel que n < (n+1).
- 4. l'implication $(n+1) = (m+1) \implies n = m$.

Proposition 12 (Successeur d'un ordinal)

Soient α et β deux ordinaux.

- 1. On a l'équivalence $\beta \in S(\alpha) \iff \beta \subseteq \alpha$.
- 2. On a l'équivalence $\beta \in \alpha \iff S(\beta) \subseteq \alpha$.
- 3. $S(\alpha)$ est un ordinal tel que $\alpha \in S(\alpha)$.
- 4. Si $S(\alpha) = S(\beta)$ alors $\alpha = \beta$.

1. On a les équivalences suivantes

$$\beta \in S(\alpha) \iff \beta \in \alpha \cup \{\alpha\}$$

$$\iff \beta \in \alpha \text{ ou } \beta \in \{\alpha\}$$

$$\iff \beta \in \alpha \text{ ou } \beta = \alpha$$

$$\iff \beta \subseteq \alpha \text{ d'après la prop. 8 p. 20}$$

On a donc bien l'équivalence $\beta \in S(\alpha) \iff \beta \subseteq \alpha$.

2. Raisonnons par double implications.

Supposons que $\beta \in \alpha$.

On a donc $\beta \subseteq \alpha$ et $\beta \neq \alpha$ d'après la proposition 8 page 20.

En particulier on a $\beta \subseteq \alpha$.

De plus comme $\beta \in \alpha$, on a $\{\beta\} \subseteq \alpha$.

Comme $\beta \subseteq \alpha$ et $\{\beta\} \subseteq \alpha$, on a $S(\beta) = \beta \cup \{\beta\} \subseteq \alpha$.

Donc si $\beta \in \alpha$ alors $S(\beta) \subseteq \alpha$.

Supposons que $S(\beta) \subseteq \alpha$.

On a donc $\beta \cup \{\beta\} \subseteq \alpha$.

En particulier $\{\beta\} \subseteq \alpha \text{ donc } \beta \in \alpha$.

Donc si $S(\beta) \subseteq \alpha$ alors $\beta \in \alpha$.

Finalement, $\beta \in \alpha \iff S(\beta) \subseteq \alpha$.

- 3. Comme $\alpha \subseteq \alpha$, on obtient $\alpha \in S(\alpha)$ d'après 1.
- ullet Montrons que $S(\alpha)$ est transitif.

Soit $x \in S(\alpha)$.

On a alors $x \in \alpha \cup \{\alpha\}$ par définition donc $x \in \alpha$ ou $x \in \{\alpha\}$.

- ▶ Si $x \in \alpha$ alors $x \subseteq \alpha$ car α est transitif car ordinal.
- ▶ Si $x \in \{\alpha\}$ alors $x = \alpha$ et donc $x \subseteq \alpha$ en particulier.

Dans les deux cas on a $x \subseteq \alpha$.

Comme $S(\alpha) = \alpha \cup \{\alpha\}$ on a $\alpha \subseteq S(\alpha)$ et donc $x \subseteq S(\alpha)$.

Donc $\forall x \in S(\alpha), x \subseteq S(\alpha)$. Donc $S(\alpha)$ est transitif.

• Montrons que \in est un bon ordre strict sur $S(\alpha)$.

Comme $S(\alpha) = \alpha \cup \{\alpha\}$, chaque élément de $S(\alpha)$ est soit un élément de α , soit α lui-même.

Or α est un ordinal donc tous les éléments de α sont des ordinaux d'après la proposition 6 page 18. Donc tous les éléments de $S(\alpha)$ sont des ordinaux.

En particulier \in est transitive et antiréflexive sur $S(\alpha)$ d'après le théorème 1 page 21.

De même, toute partie non vide de $S(\alpha)$ est alors un ensemble non vide d'ordinaux.

Donc toute partie non vide de $S(\alpha)$ admet un minimum d'après ce même théorème.

On en conclut que \in est un bon ordre strict sur $S(\alpha)$.

Ainsi, $S(\alpha)$ est transitif et \in est un bon ordre strict sur $S(\alpha)$. Donc $S(\alpha)$ est un ordinal.

4. Supposons que $S(\alpha) = S(\beta)$.

D'après 3 on a $\alpha \in S(\alpha)$ donc $\alpha \in S(\beta)$ et donc $\alpha \subseteq \beta$ d'après 1.

De même, on a $\beta \in S(\beta)$ donc $\beta \in S(\alpha)$ et donc $\alpha \supseteq \beta$ d'après 1.

On a donc bien $\alpha = \beta$ par double inclusion.

CQFD.

Nous allons enfin définir la notion d'**entiers naturels** : il s'agit des premiers ordinaux. En effet 0 est le plus petit des ordinaux, 1 est son successeur, 2 est le successeur de 1 et ainsi de suite. On pourrait penser qu'en partant de 0 et en enchaînant l'opération de successeur suffisamment de fois, on finirait par avoir parcouru tous les ordinaux. Il n'en est rien : il existe des ordinaux qui ne seront jamais atteints de cette manière. Le plus petit de ces ordinaux est noté ω : oui, il s'agit tout simplement de l'ensemble des entiers naturels, aussi noté $\mathbb N$. Tout ordinal plus petit que lui va donc lui appartenir, et donc être un entier naturel. Il n'a donc pas de prédécesseur direct : en effet si $\alpha \in \omega$ alors α est un entier naturel par définition donc $S(\alpha) = \alpha + 1$ est aussi un entier naturel donc n'est pas ω (puisque sinon $\omega \in \omega$, ce qui est impossible chez les ordinaux).

Ainsi il existe des ordinaux qui ne sont successeurs d'aucun ordinal : il y a 0 bien sûr, mais aussi ω comme nous venons de le voir. Nous allons les appeler ordinaux **limites**, car il y a en quelque sorte une limite à franchir pour les atteindre, on ne peut pas simplement partir d'un ordinal et enchaîner des opérations de successeurs.

Définition 11 (Ordinaux successeurs, limites et entiers naturels)

Soit β un ordinal.

- 1. On dit que β est successeur si et seulement s'il existe un ordinal α tel que $\beta = S(\alpha)$.
- 2. On dit que β est **limite** si et seulement si β n'est pas successeur.
- 3. On dit que β est un **entier naturel** si et seulement si pour tout ordinal $\alpha \subseteq \beta$,

- ightharpoonup ou bien $\alpha = 0$
- \triangleright ou bien α est un ordinal successeur.

On dit aussi que β est **fini**. Dans le cas contraire on dit que β est **transfini**.

Exemple:

- 1. Comme $0 = \emptyset$, on a déjà vu que 0 est un ordinal.
 - 1 en tant que successeur de 0 est aussi un ordinal.
 - 0 et 1 sont tous les deux des entiers naturels.
 - 1 est un successeur (de 0 donc) et 0 est limite car non successeur car vide.
- 2. Quand nous l'aurons défini, nous verrons que ω l'ensemble des entiers naturel est un ordinal limite.
- 3. De même, nous définirons plus tard l'ordinal $\omega+1=S(\omega)$, qui est lui bien successeur de ω donc n'est pas limite, mais n'est pas entier naturel non plus puisque $\omega\subseteq\omega+1$ alors que ω n'est ni 0 ni successeur.

Remarque:

La plupart des ouvrages sur le sujet considère que 0 n'est pas un ordinal limite. Pour des soucis de simplification d'énoncés, nous considérons bien qu'il l'est : au contraire l'exclure demande souvent de l'exclure artificiellement de beaucoup d'énoncés de résultats sur les ordinaux limites.

Pour aider à visualiser tout cela, on peut proposer l'illustration suivante :

Une représentation visuelle des ordinaux.

Il faut ici voir la disposition des bâtons comme s'étendant à l'infini à l'horizon, l'ordre des bâtons étant rangés de la gauche vers la droite : au début on a un bâton pour chaque entier naturel, puis après tous les entiers naturels vient le bâton associé à ω . Ensuite vient le bâton associé à $\omega+1$, puis $\omega+2$ et ainsi de suite pour tous les ordinaux de la forme $\omega+n$ où n est un entier naturel, donc une infinité de bâtons sont disposés après celui de ω . Mais après tous ceux-là se trouve un bâton associé à l'ordinal $\omega+\omega$, et ainsi de suite. Nous aurons bien entendu tout le temps de définir proprement chacun de ces ordinaux, l'idée est ici simplement de comprendre intuitivement ce que nous sommes en train de construire. Gardons bien en tête que la taille des bâtons n'a aucune importante, seul leur agencement horizontal importe. Le fait de représenter des bâtons de plus en plus petits est seulement une astuce pour en faire tenir une infinité.

On peut voir sur l'illustration que les ordinaux limites sont les grands bâtons, qui se retrouvent à droite de toute une infinité de bâton sans n'avoir de prédécesseur direct : nous les avons représentés en **noir**. En **rouge** sont représentés les ordinaux successeurs.

Proposition 13 (Successeur et ordinal limite)

Soit α un ordinal.

Les assertions suivantes sont équivalentes :

- 1. α est un ordinal limite.
- 2. $\forall \beta \in \alpha, S(\beta) \in \alpha$.

Démonstration

1⇒2

Supposons que α est un ordinal limite.

Soit $\beta \in \alpha$.

On a alors $S(\beta) \subseteq \alpha$ d'après la proposition 12 page 33.

On a donc $S(\beta) \in \alpha$ ou $S(\beta) = \alpha$ d'après la proposition 8 page 20.

Or $S(\beta) = \alpha$ est impossible car par définition α est un ordinal limite.

On a donc nécessairement $S(\beta) \in \alpha$.

On a donc $\forall \beta \in \alpha, S(\beta) \in \alpha$.

Donc si α est un ordinal limite alors $\forall \beta \in \alpha, S(\beta) \in \alpha$.

 $2\Rightarrow 1$

Supposons que $\forall \beta \in \alpha, S(\beta) \in \alpha$.

Supposons par l'absurde que α n'est pas limite.

Par définition, α est donc successeur.

Il existe donc un ordinal β tel que $\alpha = S(\beta)$.

Or on a $\beta \in S(\beta)$ d'après la proposition 12 page 33.

On a donc $\beta \in \alpha$ et donc $S(\beta) \in \alpha$ par l'hypothèse.

Or on a dit que $\alpha = S(\beta)$, si bien que $\alpha \in \alpha$.

C'est absurde par antiréflexivité de \in sur ON.

Par l'absurde, on vient de montrer que α est limite.

Donc si $\forall \beta \in \alpha, S(\beta) \in \alpha$ alors α est limite.

COFD.

Proposition 14 (Successeur d'un entier naturel)

Soit n un entier naturel.

- 1. S(n) est un entier naturel.
- 2. Tous les éléments de n sont aussi des entiers naturels.

(f Démonstration

1.

Soit un ordinal $\alpha \subseteq S(n)$.

Par définition n est un entier naturel donc est un ordinal.

Donc S(n) est un ordinal d'après la proposition 12 page 33.

Ainsi on a $\alpha \subseteq S(n)$ avec α et S(n) deux ordinaux.

On a donc ou bien $\alpha \in S(n)$ ou bien $\alpha = S(n)$ d'après la proposition 8 page 20.

▶ Supposons que $\alpha \in S(n)$.

On a alors $\alpha \subseteq n$ d'après la proposition 12 page 33.

Ainsi α est un ordinal qui est une partie de l'entier naturel n.

On a donc par définition ou bien $\alpha = 0$ ou bien α est un successeur.

▶ Supposons que $\alpha = S(n)$.

Comme n est un entier naturel, n est un ordinal.

Donc $\alpha = S(n)$ est un successeur.

Dans les deux cas, ou bien $\alpha = 0$ ou bien α est un successeur.

Donc tous les ordinaux inclus dans S(n) sont ou 0 ou bien un successeur.

Comme S(n) est un ordinal, c'est donc par définition un entier naturel.

2. Soit $\alpha \in n$.

Par définition n est un entier naturel donc est un ordinal.

Donc α est un ordinal d'après la proposition 6 page 18.

Comme $\alpha \in n$, on a donc $\alpha \subseteq n$ car n est transitif car ordinal.

Soit un ordinal $\beta \subseteq \alpha$.

On a donc $\beta \subseteq n$ par transitivité de l'inclusion.

Or n est un entier naturel et β un ordinal.

Donc on a ou bien $\beta = 0$ ou bien β est un successeur.

Donc tous les ordinaux inclus dans α sont ou 0 ou bien un successeur.

Comme α est un ordinal, par définition α est un entier naturel.

CQFD.

Bien souvent en mathématiques nous sommes amenés à mener un **raisonnement par récurrence** afin de prouver qu'une assertion P à paramètres est vraie pour tout entier naturel n. Pour cela on raisonne en deux étapes :

- 1. On prouve que P(0) est vraie : c'est l'étape d'initialisation.
- 2. On prouve que pour un entier naturel n quelconque, si P(n) est vraie alors P(n+1) est aussi vraie. C'est l'étape d'hérédité.

Grâce à ces deux étapes, on en conclut que P(n) est vraie pour tout entier naturel n. Qu'est-ce qui justifie la validité de ce raisonnement? La réponse se cache dans le théorème suivant.

Théorème 3 (Principe d'induction chez les entiers naturels)

Soit X un ensemble tel que :

- 1. $0 \in X$
- 2. Pour tout $x \in X$ on a $S(x) \in X$.

Alors X contient tous les entiers naturels.

Soit n un entier naturel.

Supposons par l'absurde que $n \notin X$.

Considérons $Y := S(n) \backslash X$.

Comme n est un entier naturel, S(n) est un entier naturel d'après la prop. 14 p. 37.

Donc tous les éléments de S(n) sont des entiers naturels d'après la prop. 14 p. 37.

Donc comme $Y \subseteq S(n)$, tous les éléments de Y sont des entiers naturels.

On a $n \in S(n)$ d'après la proposition 12 page 33 et $n \notin X$ par hypothèse.

On a donc $n \in Y$ par définition de Y.

Donc Y est un ensemble non vide d'entiers naturels.

Il possède donc un entier naturel minimum k d'après le théorème 1 page 21.

On a $k \subseteq k$ donc k est un ordinal inclus dans un entier naturel.

Donc k est ou bien 0 ou bien un successeur par définition.

Or $k \in Y = S(n) \setminus X$ donc $k \notin X$. Comme $0 \in X$ par hypothèse, on a donc $k \neq 0$.

Donc k est un successeur : il existe un ordinal i tel que k = S(i).

Or on a $i \in S(i) = k$ d'après la proposition 12 page 33.

Donc $i \notin Y$ car k est le minimum de Y.

Mais $i \in k \subseteq n \in S(n)$ et tous sont des ordinaux.

On a donc $i \in S(n)$ par transitivité de \in sur ON.

Ainsi $i \notin Y$ et $i \in S(n)$ donc $i \in S(n) \setminus Y = X$.

Or par hypothèse X est stable par successeur donc $k = S(i) \in X$.

C'est absurde puisque $k \in Y$ par définition et $Y = S(n) \setminus X$.

Donc par l'absurde on vient donc de montrer $n \in X$.

CQFD.

Nous pouvons donc justifier la validité du raisonnement par récurrence : imaginons avoir démontré l'étape d'initialisation et l'étape d'hérédité. On peut alors considérer l'ensemble $X:=\left\{n\in\mathbb{N}\;\middle|\; P(n)\right\}$ qui répond alors aux hypothèses du théorème ci-dessus : il contient tous les entiers naturels, ce qui prouve donc bien que P(n) est vraie pour tout entier naturel.

En vérité, il manque quelque chose pour valider ce que nous venons d'affirmer : l'existence de N lui-même. En effet on affirme depuis le début que N, l'ensemble de tous les entiers naturels existe, et on l'a même aussi noté ω en affirmant qu'il s'agit d'un ordinal. Malheureusement, on ne peut le faire sans un axiome, que l'on va donc rajouter aux différents axiomes de ZFC du précédent livre : l'axiome de l'infini.

Axiome 1 (de l'infini)

Il existe au moins un ensemble X tel que

- 1. $0 \in X$
- 2. Pour tout $x \in X$ on a $S(x) \in X$.

Nous sommes à présents armés pour définir proprement \mathbb{N} .

Proposition 15 (Ensemble des entiers naturels)

Il existe un unique ensemble \mathbb{N} tel que pour tout ensemble n, on a l'équivalence

 $n \in \mathbb{N} \iff n \text{ est un entier naturel}$

On dit donc que \mathbb{N} est l'ensemble des entiers naturels, et on le note aussi parfois ω .

Démonstration

Existence:

D'après l'axiome de l'infini, il existe un ensemble X tel que

- 1. $0 \in X$
- 2. Pour tout $x \in X$ on a $S(x) \in X$.

Posons alors $\mathbb{N} := \{x \in X \mid x \text{ est un entier naturel}\}.$

Soit n un ensemble.

 \Rightarrow Si $n \in \mathbb{N}$ alors par définition n est un entier naturel.

Supposons que n est un entier naturel.

Alors $n \in X$ d'après le principe d'induction chez les entiers naturels.

Donc $n \in X$ et n est un entier naturel.

Donc $n \in \mathbb{N}$ par définition de \mathbb{N} .

Donc si n est un entier naturel alors \mathbb{N} .

Ainsi pour tout ensemble n, on a bien l'équivalence $n \in \mathbb{N} \iff n$ est un entier naturel.

Unicité:

L'unicité est garantie par le fait que cette équivalence caractérise l'appartenance à \mathbb{N} .

CQFD.

Avant de prouver que \mathbb{N} est un ordinal, intéressons-nous aux segments initiaux de ON.

Proposition 16 (Segment initiaux des ordinaux)

Soit X un ensemble.

Les assertions suivantes sont équivalentes :

- 1. X est un ordinal.
- 2. Tous les éléments de X sont des ordinaux et X est transitif.
- 3. X est un segment initial de ON.

Démonstration

Nous allons montrer $1 \Leftrightarrow 2$ et $2 \Leftrightarrow 3$.

1⇒2

Supposons que X est un ordinal.

En particulier X est transitif par définition.

De plus tous les éléments de X sont des ordinaux d'après la proposition 6 page 18.

1←2

Supposons que tous les éléments de X sont des ordinaux et X est transitif.

Alors (X, \in) est strictement bien ordonné d'après le théorème 1 page 21.

Comme X est transitif, on en conclut que X est un ordinal.

2⇒3

Supposons que tous les éléments de X sont des ordinaux et X est transitif.

En particulier on sait déjà que $X \subseteq ON$ par définition.

Soient α et β deux ordinaux.

Supposons que $\alpha \in \beta \in X$.

Comme X est transitif et $\beta \in X$, on a $\beta \subseteq X$.

Comme $\alpha \in \beta$ on a donc $\alpha \in X$ par définition de l'inclusion.

Donc si $\alpha \in \beta \in X$ alors $\alpha \in X$.

Donc X est un segment initial de ON

2 ← 3

Supposons que X est un segment initial de ON.

Par définition on a $X \subseteq ON$.

Autrement dit, tous les éléments de X sont des ordinaux.

Soit $\beta \in X$.

Comme on vient de le dire, tous les éléments de X sont des ordinaux.

Donc β est un ordinal.

Soit $\alpha \in \beta$.

Alors α est un ordinal en tant qu'élément d'un ordinal.

Ainsi α et β sont des ordinaux tels que $\alpha \in \beta \in X$.

Donc $\alpha \in X$ car X est un segment initial de ON.

Donc $\forall \alpha \in \beta, \alpha \in X$ et donc $\beta \subseteq X$ par définition de l'inclusion.

Donc $\forall \beta \in X, \beta \subseteq X$ et donc X est transitif.

CQFD.

Remarque:

On a vu grâce au théorème 1 page 21 que les ordinaux sont munis d'un bon ordre.

X est un segment initial des ordinaux est donc équivalent à l'existence d'un ordinal ξ tel que $X=\xi\downarrow$ d'après la proposition 5 page 14. Ici ξ est tout trouvé : c'est X lui-même d'après cette proposition. C'est d'ailleurs assez logique puisque la relation d'ordre strict sur les ordinaux est l'appartenance et donc $X=\{\alpha\mid\alpha\in X\}=X\downarrow$.

Nous pouvons désormais prouver que ω , autre nom donné à \mathbb{N} , est un ordinal. Comme nous l'avons dit plus tôt, c'est même un ordinal limite, c'est-à-dire qu'il n'est pas le successeur d'un ordinal. Mieux, c'est même le plus petit des ordinaux limites non vides, c'est-à-dire le tout premier après 0!

Proposition 17 (omega est le plus petit ordinal limite non vide)

- 1. ω est un ordinal limite.
- 2. ω est le plus petit des ordinaux limites non vides. Autrement dit pour tout ordinal limite non vide α on a $\omega \subseteq \alpha$.

Démonstration

1.

ullet Montrons que ω est un ordinal.

 ω ne contient que des entiers naturels (et les contient tous) par définition.

En particulier ω est un ensemble d'ordinaux.

Il nous suffit de montrer que ω est transitif.

Soit $n \in \omega$.

Alors n est un entier naturel par définition de ω .

Soit $m \in n$.

Alors m est un entier naturel d'après la proposition 14 page 37.

Donc $m \in \omega$ par définition de ω .

Donc $\forall m \in n, m \in \omega$ donc $n \subseteq \omega$ par définition de l'inclusion.

Donc $\forall n \in \omega, n \subseteq \omega \text{ donc } \omega \text{ est transitif.}$

Ainsi ω est un ensemble d'ordinaux qui est transitif.

Donc $|\omega|$ est un ordinal d'après la proposition 16 page 41.

• Montrons que ω est un ordinal limite.

Supposons par l'absurde que ω est successeur.

Il existe donc un ordinal α tel que $\omega = S(\alpha)$.

On a alors $\alpha \in S(\alpha) = \omega$ d'après la proposition 12 page 33.

Donc α est un entier naturel par définition de ω .

Donc $S(\alpha)$ est un entier naturel d'après la proposition 14 page 37.

Donc $S(\alpha) \in \omega$ par définition de ω , c'est-à-dire $\omega \in \omega$.

C'est absurde par antiréflexivité de \in chez les ordinaux.

Donc ω n'est pas un successeur et donc ω est donc limite.

2. Montrons que ω est plus petit que tout ordinal limite non vide.

Soit α un ordinal limite non vide.

Soit $n \in \omega$.

Par définition de ω , n est un entier naturel, en particulier est un ordinal.

On a $n \subseteq n$ donc n est un ordinal inclus dans un entier naturel.

Donc n = 0 ou n est un successeur.

Donc tout élément de ω est ou bien vide ou bien successeur.

Or α est limite non vide donc n'est ni vide ni successeur.

On a donc $\alpha \notin \omega$.

Or α et ω sont des ordinaux donc on a $\omega = \alpha$ ou $\omega \in \alpha$ d'après le théorème 1 page 21.

On a donc $\omega \subseteq \alpha$ d'après la proposition 8 page 20.

CQFD.

Nous l'avons dit quand nous avons évoqué le paradoxe de Burali-Forti : il n'est pas possible d'encapsuler tous les ordinaux dans un seul ensemble. En fait le résultat est même plus fort : tout ensemble d'ordinaux est majoré par d'autres ordinaux qui ne sont pas dans l'ensemble. En particulier parmi tous ces majorants stricts se cache un plus petit majorant strict.

Proposition 18 (Plus petit majorant strict d'ordinaux)

Soit X un ensemble d'ordinaux.

Alors il existe un unique ordinal α tel que

- 1. α est un majorant strict de X. Autrement dit $\forall \xi \in X, \xi \in \alpha$.
- 2. α est plus petit que tout majorant strict de X. Autrement dit pour tout ordinal β , si $\forall \xi \in X, \xi \in \beta$ alors $\alpha \subseteq \beta$.

Autrement dit α est le plus petit de tous les majorants stricts de X.

D'après la proposition 11 page 29, $\bigcup X$ est un ordinal.

Le plus petit des majorants stricts de X va dépendre de si $\bigcup X$ appartient à X ou non.

Posons alors
$$\alpha := \left\{ \begin{array}{ccc} \bigcup X & \text{si } \bigcup X \notin X \\ S(\bigcup X) & \text{si } \bigcup X \in X \end{array} \right.$$

1.

On a vu lors de la proposition 11 page 29 que $\bigcup X = \sup(X)$.

En particulier $\bigcup X$ est un majorant de X.

- ▶ Si $\bigcup X \notin X$ alors $\bigcup X$ est un majorant strict de X. Or dans ce cas-là $\alpha = \bigcup X$ donc α est un majorant strict de X.
- ▶ Supposons à présent que $\bigcup X \in X$.

On a donc $\alpha = S(\bigcup X)$ et en particulier $\bigcup X \in \alpha$.

Or on sait que $\forall \xi \in X, \xi \subseteq \bigcup X$ par définition de la réunion.

Donc $\forall \xi \in X, \xi \in \alpha$ d'après la proposition 12 page 33.

Ainsi α est un majorant strict de X puisque \in est l'ordre strict sur X.

Dans les deux cas, α est un majorant strict de X

2. Soit β un ordinal majorant strict de X.

Comme α et β sont deux ordinaux, on a $\beta \in \alpha$ ou $\alpha \subseteq \beta$ d'après le théorème 1 page 21. Supposons par l'absurde que $\beta \in \alpha$.

▶ Plaçons-nous dans le cas où $| X \notin X$.

Par définition de α on a alors $\alpha = \bigcup X$ donc $\beta \in \bigcup X$.

Par définition de la réunion, il existe donc $\xi \in X$ tel que $\beta \in \xi$.

Donc β n'est pas un majorant de X, ce qui est absurde.

▶ Plaçons-nous dans le cas où $\bigcup X \in X$.

Par définition de α on a alors $\alpha = S(\bigcup X)$ donc $\beta \in S(\bigcup X)$.

On a donc $\beta \subseteq \bigcup X$ d'après la proposition 12 page 33.

Or $\bigcup X \in X$ par hypothèse donc β n'est pas un majorant strict de X.

C'est absurde.

Dans les deux cas on aboutit à une absurdité.

Donc par l'absurde on a montré que $\beta \notin \alpha$ et donc $\alpha \subseteq \beta$.

CQFD.

Dans la preuve qui précède, nous avons discuté du fait que pour un ensemble d'ordinaux X, sa borne supérieure $\sup(X) = \bigcup X$ est un élément de X ou non. Si ce n'est pas le cas, on est en fait assuré que $\sup(X)$ est un ordinal limite.

Proposition 19 (Borne supérieure qui n'est pas un maximum)

Soit X un ensemble d'ordinaux.

Si $\sup(X) \notin X$ alors $\sup(X)$ est un ordinal limite.

Démonstration

Montrons le résultat par contraposition.

Supposons que $\sup(X)$ n'est pas un ordinal limite.

Donc sup(X) est un successeur par définition.

Il existe donc un ordinal α tel que $\sup(X) = S(\alpha)$.

Par définition $\sup(X)$ est un majorant de X.

Donc $S(\alpha)$ est un majorant de X : on a $\forall \xi \in X, \xi \subseteq S(\alpha)$.

Supposons par l'absurde que $\sup(X) \notin X$.

On a donc $S(\alpha) \notin X$ donc $\forall \xi \in X, \xi \neq S(\alpha)$.

Donc $\forall \xi \in X, \xi \in S(\alpha)$ d'après la proposition 8 page 20.

On a donc $\forall \xi \in X, \xi \subseteq \alpha$ d'après la proposition 10 page 33.

Donc α est un majorant de X.

Or on a $\alpha \in S(\alpha)$ d'après la proposition 10 page 33.

Donc $S(\alpha)$ n'est pas le plus petit des majorants de X.

C'est absurde : cela veut dire que $S(\alpha)$ n'est pas la borne supérieure de X .

Par l'absurde, on vient de montrer que $\sup(X) \in X$.

Donc si $\sup(X)$ n'est pas limite alors $\sup(X) \in X$.

Par contraposition, on a $sisup(X) \in X$ alors sup(X) est limite CQFD.

Dans le cas où X est lui-même un ordinal, cette proposition se précise. Cela nous fournit même une autre caractérisation d'être un ordinal limite, en plus de celle donnée par la proposition 13 page 37.

Proposition 20 (Ordinal limite et borne supérieure)

Soit α un ordinal.

Les assertions suivantes sont équivalentes :

- 1. α est un ordinal limite.
- 2. $\sup(\alpha) = \alpha$

Démonstration

 $1\Rightarrow 2$ Supposons que α est un ordinal limite.

On a donc $\forall \beta \in \alpha, S(\beta) \in \alpha$ d'après la proposition 13 page 37.

Notons (\star) cette affirmation.

Trivialement on a $\forall \beta \in \alpha, \beta \in \alpha$ donc α est un majorant de α .

On a donc $\sup(\alpha) \subseteq \alpha$ par minimalité de la borne supérieure.

Supposons par l'absurde que $\sup(\alpha) \neq \alpha$.

On a donc $\sup(\alpha) \subseteq \alpha$ par ce qui précède.

On a donc $\sup(\alpha) \in \alpha$ d'après la proposition 8 page 20.

On a donc $S(\sup(\alpha)) \in \alpha$ d'après (\star) .

Or on a $\sup(\alpha) \in S(\sup(\alpha))$ d'après la proposition 12 page 33.

Donc $sup(\alpha)$ n'est pas un majorant de α .

C'est absurde par définition de la borne supérieure.

Par l'absurde, on vient de montrer que $\sup(\alpha) = \alpha$.

 $2 \Rightarrow 1$ Supposons que $\sup(\alpha) = \alpha$.

Comme α est un ordinal, on a $\alpha \notin \alpha$ par antiréflexivité de \in sur ON.

On a donc $\sup(\alpha) \notin \alpha$.

Donc $sup(\alpha)$ est un ordinal limite d'après la proposition 19 page 45.

Donc comme $\sup(\alpha) = \alpha$, on en déduit que α est un ordinal limite.

CQFD.

5 Isomorphisme avec les ordinaux

Jusqu'à présent, nous avons définis, construits et étudiés les ordinaux pour eux-mêmes. Or nous les avons introduits à la base dans l'optique d'en faire des représentants de classes d'isomorphie. Il est donc temps d'étudier d'un peu plus près les isomorphismes.

Dans un premier temps, constatons qu'un ensemble bien ordonné est toujours isomorphe à l'ensemble de ses segments initiaux propres. Ce n'est pas étonnant dans la mesure où l'on a dit que tout segment propre d'un ensemble bien ordonné est de la forme $x \downarrow$ lors de la proposition 5 page 14.

Proposition 21 (Ensemble des segments initiaux)

Soit E un ensemble bien ordonné.

Soit $X := \{ A \subseteq E \mid A \text{ est un segment initial propre de } E \}.$

On munit X de la relation d'ordre \subseteq .

Soit
$$f := \begin{pmatrix} E & \longrightarrow & X \\ x & \longmapsto & x \downarrow \end{pmatrix}$$
.

On a alors:

- 1. f est un isomorphisme d'ordre de E vers X.
- 2. Si de plus E est un ordinal alors $f = \mathrm{id}_E$ et en particulier E = X.

Démonstration

Soient \leq la relation d'ordre sur E et < l'ordre strict associé à \leq .

1.

• Montrons que f est strictement croissante.

Soient x et y dans E.

Supposons que x < y.

On a alors $x \in y \downarrow$ par définition.

Or on n'a pas x < x par antiréflexivité de < donc $x \notin x \downarrow$.

Comme $x \in y \downarrow$ et $x \notin x \downarrow$ on a $x \downarrow \neq y \downarrow$.

Soit $z \in x \downarrow$.

On a alors z < x par définition.

Donc z < y par transitivité de <.

Donc $z \in y \downarrow$ par définition.

Donc $x \downarrow \subseteq y \downarrow$ par définition de l'inclusion et donc $x \downarrow \subseteq y \downarrow$

Ainsi on a $f(x) \subseteq f(y)$ par définition de f.

Donc si x < y alors $f(x) \subseteq f(y)$.

Donc f est strictement croissante.

En particulier | f | est croissante et injective

ullet Montrons que f est surjective dans X.

Par définition de f on sait déjà que $\operatorname{im}(f) \subseteq X$.

Soit $A \in X$.

Alors A est un segment initial propre de E par définition de X.

Or E est bien ordonné donc il existe $x \in E$ tel que $A = x \downarrow$ d'après la prop. 5 p. 14.

On a donc A = f(x) et donc $A \in \text{im}(f)$.

Donc $im(f) \supseteq X$ et donc im(f) = X.

Ainsi f est surjective dans X.

• Ainsi f est croissante, injective et surjective dans X.

Or E est bien ordonné donc est totalement ordonné d'après la proposition 2 page 10.

Donc f est un isomorphisme de E vers X

2. Supposons que E est un ordinal.

Dans ce cas particulier, l'ordre strict < est l'appartenance \in .

Ainsi pour tout $\alpha \in E$ on a $\alpha \downarrow = \{\beta \in E \mid \beta < \alpha\} = \{\beta \in E \mid \beta \in \alpha\} = E \cap \alpha$.

Remarquons pour commencer que f et id_E ont le même domaine E.

Soit $\alpha \in E$.

Comme E est ordinal, E est transitif donc $\alpha \subseteq E$ et donc $E \cap \alpha = \alpha$.

Or on a vu que $\alpha \downarrow = E \cap \alpha$ donc $\alpha \downarrow = \alpha$.

En particulier $f(\alpha) = \alpha \downarrow = \alpha = \mathrm{id}_E(\alpha)$.

Donc $\forall \alpha \in E, f(\alpha) = \mathrm{id}_E(\alpha)$.

Donc $f = \mathrm{id}_E$. En particulier $E = \mathrm{im}(\mathrm{id}_E) = \mathrm{im}(f) = X$.

CQFD.

Remarque:

- 1. On peut remarquer que $g:=\left(egin{array}{ccc} X & \longrightarrow & E \\ A & \longmapsto & \min(E \backslash A) \end{array}
 ight)$ est la réciproque de f.
- 2. Le cas où E est un ordinal n'est pas non plus étonnant : on a déjà vu lors de la proposition 16 page 41 que les ordinaux sont eux-mêmes les segments initiaux de ON.

Quand nous avons dit que les ordinaux fournissaient un représentant de chaque classe d'isomorphie pour les bons ordres, nous avons aussi affirmé qu'il n'y en avait qu'un seul par classe. Autrement dit, si deux ordinaux sont isomorphes, alors nécessairement il s'agit d'un même ordinal.

Proposition 22 (Isomorphisme entre ordinaux)

Soient α et β deux ordinaux et $f: \alpha \longrightarrow \beta$.

Si f est un isomorphisme de α vers β alors $f = id_{\alpha}$ et donc $\alpha = \beta$.

Démonstration

Supposons que f est un isomorphisme de α vers β .

En particulier f est injective, surjective sur β et croissante.

Étant injective et croissante, f est strictement croissante.

• Montrons que pour tout $\xi \in \alpha$, on a $f(\xi) = f^{\rightarrow}(\xi)$.

Soit $\xi \in \alpha$.

Montrons que $f(\xi) = f^{\rightarrow}(\xi)$.

Soit
$$\gamma \in f(\xi)$$
.

Comme f est surjective sur β on a $\operatorname{im}(f) = \beta$ donc $f(\xi) \in \beta$.

Comme β est un ordinal, β est transitif donc $f(\xi) \subseteq \beta$.

On a donc $\gamma \in \beta$ par définition de l'inclusion.

Comme $\operatorname{im}(f) = \beta$ on a $\gamma \in \operatorname{im}(f)$ donc il existe $\mu \in \alpha$ tel que $\gamma = f(\mu)$.

Comme α est un ordinal, μ et ξ sont des ordinaux d'après la prop. 6 p. 18.

On a alors $\mu \in \xi$ ou $\mu = \xi$ ou $\xi \in \mu$ d'après le théorème 1 page 21.

- ► Si $\mu = \xi$ alors $\gamma = f(\mu) = f(\xi)$. Or par définition on a $\gamma \in f(\xi)$, donc $\gamma \in \gamma$.
- ▶ Si $\xi \in \mu$ alors $f(\xi) \in f(\mu) = \gamma$ par stricte croissance de f. Or par définition on a $\gamma \in f(\xi)$.

On a donc $\gamma \in \gamma$ par transitivité de \in chez les ordinaux.

Dans ces deux cas-là on a donc nécessairement $\gamma \in \gamma$.

C'est absurde par antiréflexivité de \in chez les ordinaux.

On a donc nécessairement $\mu \in \xi$.

Comme $\gamma = f(\mu)$, on a donc $\gamma \in f^{\rightarrow}(\xi)$ par définition de l'image directe.

Donc $f(\xi) \subseteq f^{\rightarrow}(\xi)$.

Soit
$$\gamma \in f^{\rightarrow}(\xi)$$
.

Il existe donc $\mu \in \xi$ tel que $\gamma = f(\mu)$.

Par croissante de f on a alors $\gamma = f(\mu) \subseteq f(\xi)$.

On a donc $\gamma \in f(\xi)$ ou $\gamma = f(\xi)$ d'après la proposition 8 page 20.

Supposons par l'absurde que $\gamma = f(\xi)$.

Comme $\gamma = f(\mu)$, on a alors $\mu = \xi$ par injectivité de f.

Or on a $\mu \in \xi$ donc $\xi \in \xi$.

C'est absurde par antiréflexivité de \in chez les ordinaux.

Donc $\gamma \in f(\xi)$.

Donc $f(\xi) \supseteq f^{\rightarrow}(\xi)$.

Finalement on a bien $f(\xi) = f^{\rightarrow}(\xi)$.

 $\mbox{Donc pour tout } \xi \in \alpha \mbox{, on a } f(\xi) = f^{\rightarrow}(\xi) \mbox{ } (\star).$

• On veut montrer que $f = id_{\alpha}$.

Comme elles ont le même domaine, cela revient à montrer que $\forall \xi \in \alpha, f(\xi) = \xi$.

Pour cela, considérons $X := \{ \xi \in \alpha \mid f(\xi) \neq \xi \}.$

Supposons par l'absurde que X est non vide.

Par définition X est donc une partie non vide de l'ordinal α .

Or tous les éléments de α sont des ordinaux d'après la proposition 6 page 18.

Donc X est un ensemble non vide dont les éléments sont tous des ordinaux.

Il possède donc un ordinal minimum ξ d'après le théorème 1 page 21.

Soit $\mu \in \xi$.

Comme ξ est minimum de X, on a $\mu \notin X$.

Or $\xi \in X$ et $X \subseteq \alpha$ par définitions, donc $\xi \in \alpha$ par définition de l'inclusion.

Ainsi on a $\mu \in \xi \in \alpha$ donc $\mu \in \alpha$ par transitivité de α .

On a donc $\mu \in \alpha$ alors que $\mu \notin X$.

On a donc $f(\mu) = \mu$ par définition de X.

Donc $\forall \mu \in \xi, f(\mu) = \mu$.

$$\mathrm{Donc}\; f(\xi) \underset{(\star)}{=} f^{\rightarrow}(\xi) = \left\{ f(\mu) \; \middle|\; \mu \in \xi \right\} = \left\{ \mu \; \middle|\; \mu \in \xi \right\} = \xi.$$

Donc $f(\xi) = \xi$ donc $\xi \notin X$ par définition de X : c'est absurde.

Par l'absurde, on vient de montrer que X est vide.

Donc $\forall \xi \in \alpha, f(\xi) = \xi$ par définition de X.

Finalement, on a donc $f = id_{\alpha}$.

On a en particulier $\alpha = \operatorname{im}(\operatorname{id}_{\alpha}) = \operatorname{im}(f) = \beta$ par surjectivité de f sur β .

CQFD.

Ainsi, on vient de montrer qu'au sein d'une classe d'isomorphie, il ne peut y avoir au maximum qu'un seul ordinal. Précisions ce que l'on entend par là.

Proposition 23 (Au plus un ordinal associé à un bon ordre)

Soit (E, <) un ensemble ordonné.

Supposons qu'il existe au moins un ordinal α tel que (E, \leq) et (α, \subseteq) sont isomorphes.

51

Alors un tel α est unique, et l'isomorphisme de (E, \leq) vers (α, \subseteq) est unique.

Démonstration

• Unicité de l'ordinal

Soit $f: E \longrightarrow \alpha$ un isomorphisme.

Soit β un ordinal tel que (E, \leq) et (β, \subseteq) sont isomorphes.

Il existe donc un isomorphisme $g: E \longrightarrow \beta$.

Comme $f: E \longrightarrow \alpha$ un isomorphisme, $f^{-1}: \alpha \longrightarrow E$ est un isomorphisme.

Donc $g \circ f^{-1} : \alpha \longrightarrow \beta$ est un isomorphisme.

Donc $\alpha = \beta$ d'après la proposition 22 page 49.

On a donc unicité de l'ordinal α isomorphe à E .

• Unicité de l'isomorphisme.

Soit $g: E \longrightarrow \alpha$ un isomorphisme.

Alors $g^{-1}: \alpha \longrightarrow E$ est un isomorphisme.

Donc $f \circ g^{-1} : \alpha \longrightarrow \alpha$ est un isomorphisme.

Donc $f \circ g^{-1} = \mathrm{id}_{\alpha}$ d'après la proposition 22 page 49.

Donc $f = f \circ id_E = f \circ g^{-1} \circ g = id_{\alpha} \circ g = g$.

On a donc unicité de l'isomorphisme de E vers α

CQFD.

Venons-en finalement à ce qui nous intéressait depuis le début : utiliser les ordinaux pour représenter n'importe quel bon ordre, à isomorphisme près. On vient déjà de voir l'unicité, mais formulons quand-même complètement un théorème digne de ce nom!

Pour le démontrer, nous allons utiliser l'idée proposée par la proposition 21 page 47, qui affirme qu'à isomorphisme près, un ensemble bien ordonné se comporte comme l'ensemble de ses segments initiaux propres. Autrement dit, on peut tout à fait raisonner sur les segments initiaux propres plutôt que sur l'ensemble directement.

Théorème 4 (Unique ordinal associé à un bon ordre)

Soit (E, <) un ensemble bien ordonné.

Alors il existe un unique ordinal α tel que (E, <) et (α, \subseteq) sont isomorphes.

On note alors type $(E, <) := \alpha$.

Rappelons-nous que $x \downarrow = \{ y \in E \mid y < x \}.$

Comme $x \downarrow$ est une partie de E, $x \downarrow$ est aussi bien ordonné d'après la prop. 3 p. 11. Pour la suite de cette démonstration, on dira que x est **bon** si et seulement s'il existe au moins un ordinal ξ tel que $(x \downarrow, \leq)$ est isomorphe à (ξ, \subseteq) .

Dans ce cas-là, un tel ordinal ξ est unique d'après la proposition 23 page 50.

Soit $G := \{x \in E \mid x \text{ est bon }\}.$

Considérons alors $f:G\longrightarrow ?$ l'application qui à $x\in G$ associe l'unique ordinal ξ tel que $(x\downarrow,\leq)$ est isomorphe à (ξ,\subseteq) . Cette fonction existe grâce à l'axiome de remplacement. Pour tout $x\in G$, l'isomorphisme de $(x\downarrow,\leq)$ vers $(f(x),\subseteq)$ est unique d'après la proposi-

tion 23 page 50 : on le notera h_x .

Voici à présent les différentes étapes de la preuve :

- 1. On prouve que G est un segment initial de E.
- 2. On montre que f est un isomorphisme.
- 3. On montre que im(f) est un ordinal : G est donc lui-même isomorphe à un ordinal.
- 4. On montre qu'en fait G = E, ce qui permet de conclure.
- 1. Montrons que G est un segment initial de E.

Autrement dit, montrons que pour tout $x \in G$ et pour tout $y \in x \downarrow$ on a $y \in G$.

Soient $x \in G$ et $y \in x \downarrow$.

On a donc y < x.

Alors pour tout $z \in y \downarrow$, on a z < y donc z < x par transitivité de < et donc $z \in x \downarrow$. Ainsi $y \downarrow \subseteq x \downarrow$ donc on peut considérer la restriction de h_x à $y \downarrow$.

Nous allons montrer que $(h_x)_{|(y\downarrow)}$ est un isomorphisme de $y\downarrow$ vers $h_x(y)$.

Par définition on sait déjà que $(h_x)_{|(y\downarrow)}$ a pour domaine $y\downarrow$.

Par définition h_x est injectif donc $(h_x)_{|(y\downarrow)}$ est injectif.

Par définition h_x est croissant donc $(h_x)_{|(y\downarrow)}$ est croissante.

Remarquons que h_x étant injectif et croissant, h_x est strictement croissant.

Montrons que $(h_x)_{|(y\downarrow)}$ est surjectif sur $h_x(y)$, c'est-à-dire $\operatorname{im}((h_x)_{|(y\downarrow)}) = h_x(y)$.

 \subseteq

Soit $z \in y \downarrow$.

On a alors z < y donc $h_x(z) \in h_x(y)$ par stricte croissance de h_x .

Ainsi $\forall z \in y \downarrow, h_x(z) \in h_x(y)$ donc $\forall u \in h_x \stackrel{\frown}{} (y \downarrow), u \in h_x(y)$.

Donc $h_x^{\rightarrow}(y\downarrow) \subseteq h_x(y)$ et donc $\operatorname{im}((h_x)_{|(y\downarrow)}) \subseteq h_x(y)$.

Soit $\beta \in h_x(y)$.

Comme $h_x: x \downarrow \longrightarrow f(x)$ on a $h_x(y) \in f(x)$.

Ainsi on a $\beta \in h_x(y) \in f(x)$.

Or f(x) est un ordinal par définition de f donc f(x) est transitif.

On en déduit donc que $\beta \in f(x)$.

Or par définition h_x est surjectif dans f(x).

Il existe donc $b \in x \downarrow$ tel que $h_x(b) = \beta$.

Or (E, \leq) est bien ordonné donc \leq est total d'après la proposition 2 page 10.

On a donc b < y ou $y \le b$.

Supposons par l'absurde que $y \leq b$.

On a alors $h_x(y) \subseteq h_x(b)$ par croissance de h_x .

Comme $h_x(b) = \beta$ par définition de b, on a $h_x(y) \subseteq \beta$.

Or on a $\beta \in h_x(y)$ par définition de β .

On vient donc de montrer $\beta \in h_x(y) \subseteq \beta$, ce qui est absurde.

On a donc b < y c'est-à-dire $b \in y \downarrow$.

Comme $\beta = h_x(b)$, on a donc $\beta \in h_x^{\rightarrow}(y\downarrow)$.

Autrement dit, on a $\beta \in \operatorname{im} ((h_x)_{|(y\downarrow)})$.

On a donc im $((h_x)_{|(y\downarrow)}) \supseteq h_x(y)$ et donc im $((h_x)_{|(y\downarrow)}) = h_x(y)$.

Ainsi $(h_x)_{|(y\downarrow)}$ est surjective sur $h_x(y)$.

On a donc $(h_x)_{|(y\downarrow)}$ est croissante, injective et surjective sur $h_x(y)$.

Or on a dit que \leq est total sur E.

Donc $(h_x)_{|(y\downarrow)}$ est un isomorphisme de $y\downarrow$ vers $h_x(y)$.

Ainsi $y \downarrow$ et $h_x(y)$ sont isomorphes.

Or on a dit que $h_x(y)$ est un ordinal puisqu'élément de f(x).

Donc $y \downarrow$ est isomorphe à un ordinal, et donc $y \in G$.

On note au passage que par unicité de l'ordinal on a $f(y) = h_x(y)$.

Donc pour tout $x \in G$ et tout $y \in x \downarrow$, on a $y \in G$ avec $f(y) = h_x(y)$ (*).

2. On rappelle qu'ici $\operatorname{im}(f)$ est muni de \in comme relation d'ordre strict.

En effet im(f) est par définition un ensemble d'ordinaux.

Montrons que f est un isomorphisme de G dans im(f).

Pour cela, montrons que f est strictement croissante.

Soient x et y dans G.

Supposons que y < x.

On a donc $y \in x \downarrow$.

D'après (\star) on a alors $f(y) = h_x(y)$.

Or par définition h_x est à valeurs dans f(x).

On a donc $h_x(y) \in f(x)$ et donc $f(y) \in f(x)$.

Donc si y < x alors $f(y) \in f(x)$.

Donc f est strictement croissante.

En particulier f est croissante et injective, donc f est croissante et bijective sur im(f).

Or on a dit que \leq est total sur E donc \leq est total sur G puisque $G \subseteq E$.

Donc f est un isomorphisme de G dans im(f).

- 3. Montrons que im(f) est un ordinal.
 - \blacktriangleright Montrons que im(f) est transitif.

Soit
$$a \in \text{im}(f)$$
.

Il existe donc $x \in G$ tel que a = f(x).

Soit $b \in a$.

Par définition h_x est bijectif sur f(x) donc surjectif sur f(x).

Donc comme a = f(x), on en déduit que h_x est surjectif sur a.

On a donc $\operatorname{im}(h_x) = a$ et donc $b \in \operatorname{im}(h_x)$.

Il existe donc $y \in x \downarrow$ tel que $b = h_x(y)$.

Or on a $h_x(y) = f(y)$ d'après (\star) .

Donc b = f(y) et donc $b \in \text{im}(f)$.

Donc $a \subseteq \operatorname{im}(f)$ par définition de l'inclusion.

Donc $\forall a \in \operatorname{im}(f), a \subseteq \operatorname{im}(f)$.

Donc im(f) est transitif.

 \blacktriangleright Par définition de f, tous les éléments de im(f) sont des ordinaux.

Donc \in est un bon ordre strict sur $\operatorname{im}(f)$ d'après le théorème 1 page 21.

Ainsi, im(f) est transitif et \in est un bon ordre strict sur im(f).

Donc $|\operatorname{im}(f)|$ est un ordinal.

4. Ainsi f est un isomorphisme de G vers l'ordinal im(f).

Il ne reste plus qu'à prouver que G = E pour conclure.

Supposons par l'absurde que $G \subsetneq E$.

Alors $E \setminus G$ est une partie non vide de l'ensemble bien ordonné E.

Elle admet donc un minimum e.

Montrons que $e \downarrow = G$.

 \subseteq

Soit $x \in e \downarrow$.

Par définition on a x < e donc $x \notin E \backslash G$ car e en est minimum.

On a donc $x \in G$.

Donc $e \downarrow \subseteq G$ par définition de l'inclusion.

Soit $x \in G$.

On a dit que \leq est total sur E donc x < e ou x = e ou e < x.

- ightharpoonup Si x = e alors $e \in G$.
- ▶ Si e < x alors $e \in x \downarrow$ et donc $e \in G$ d'après (\star) .

Dans ces deux cas-là on a donc $e \in G$ ce qui est absurde puisque $e \in E \backslash G$.

On a donc nécessairement x < e et donc $x \in e \downarrow$.

Donc $e \downarrow \supset G$ et donc $e \downarrow = G$.

Or G est isomorphe à l'ordinal im(f) d'après ce qui précède.

Donc $e \downarrow$ est isomorphe à l'ordinal im(f).

Donc $e \in G$ par définition de G, ce qui est absurde puisque $e \in E \backslash G$.

On a donc E = G.

Or G est isomorphe à l'ordinal im(f) d'après ce qui précède.

Donc E est isomorphe à l'ordinal im(f).

L'unicité est garantie par la proposition 23 page 50.

CQFD.

Remarque:

- 1. Ainsi on note $\operatorname{type}(E, \leq)$ l'unique ordinal isomorphe à l'ensemble bien ordonné (E, \leq) . Comme nous avons déjà eu l'occasion de le faire, on omet parfois d'écrire \leq car l'ordre est sous-entendu, afin de simplifier et fluidifier le discours. On notera très donc très souvent $\operatorname{type}(E)$.
- 2. Soit α un ordinal : comme α est nécessairement isomorphe à lui-même, on a donc $\operatorname{type}(\alpha) = \alpha$.

Proposition 24 (Ordinal associé et inclusion)

Soient (A, \leq) un ensemble bien ordonné et X une partie de A. On a $\operatorname{type}(X, \leq) \subseteq \operatorname{type}(A, \leq)$.

Démonstration

• Commençons par supposer que A est un ordinal : la relation \leq est donc \subseteq .

Comme X est une partie de A, on a donc X est un ensemble d'ordinaux.

Posons alors $\delta:=\operatorname{type}(X,\subseteq)$ et $f:(X,\subseteq)\longrightarrow(\delta,\subseteq)$ l'isomorphisme associé.

Remarquons ici que comme δ est un ordinal, δ est aussi un ensemble d'ordinaux.

Donc les éléments de X et les éléments de δ sont comparables pour \subseteq .

En particulier pour tout $\xi \in X$, $f(\xi)$ et ξ sont comparables pour \subseteq .

Montrons que $\forall \xi \in X, f(\xi) \subseteq \xi$.

Pour cela posons $E := \{ \xi \in X \mid f(\xi) \subseteq \xi \}.$

Supposons par l'absurde que $E \subsetneq X$.

Alors $X \setminus E$ est un ensemble non vide d'ordinaux.

Il admet donc un minimum ξ d'après le théorème 1 page 21.

Comme $\xi \in X \setminus E$, on a $\xi \notin E$ donc $\operatorname{non}(f(\xi) \subseteq \xi)$ par définition de E.

Or ξ est un ordinal car élément de X et $f(\xi)$ est un ordinal par définition de f.

Donc comme \in est total chez les ordinaux, on a $\xi \in f(\xi)$.

Or $\operatorname{im}(f) = \delta$ par définition de f donc $f(\xi) \in \delta$.

Ainsi $\xi \in f(\xi) \in \delta$ donc $\xi \in \delta$ par transitivité de \in chez les ordinaux.

Comme $\operatorname{im}(f) = \delta$ on a donc $\xi \in \operatorname{im}(f)$ donc il existe $\gamma \in E$ tel que $\xi = f(\gamma)$.

Comme $\xi \in f(\xi)$ on a donc $f(\gamma) \in f(\xi)$.

Comme f est un isomorphisme, f^{-1} est strictement croissante donc $\gamma \in \xi$.

Comme ξ est le minimum de $X \setminus E$, on a donc $\gamma \notin X \setminus E$ donc $\gamma \in E$.

On a donc $f(\gamma) \subseteq \gamma$ par définition de E, c'est-à-dire $\xi \subseteq \gamma$ par définition de γ .

C'est absurde puisque l'on a dit que $\gamma \in \xi$.

Par l'absurde, on a donc montré que E=X.

Ainsi,
$$\forall \xi \in X, f(\xi) \subseteq \xi$$
 (\star_1) .

Montrons que $\delta \subseteq A$.

Soit $\varepsilon \in \delta$.

Par définition de f on a $\operatorname{im}(f) = \delta$ donc $\varepsilon \in \operatorname{im}(f)$.

Il existe donc $\xi \in X$ tel que $\varepsilon = f(\xi)$.

D'après (\star_1) on a $f(\xi) \subseteq \xi$ donc $\varepsilon \subseteq \xi$.

Or on a $\xi \in X \subseteq A$ donc $\xi \in A$ par définition de l'inclusion.

Ainsi on a $\varepsilon \subseteq \xi \in A$ et tous sont des ordinaux donc $\varepsilon \in A$ par transitivité.

Donc $\delta \subseteq A$ par définition de l'inclusion.

Or par définition $\delta = \operatorname{type}(X, \subseteq)$ donc $\operatorname{type}(X, \subseteq) \subseteq A$.

Or A est un ordinal donc en particulier est l'unique ordinal isomorphe à lui-même.

Autrement dit on a $A = \text{type}(A, \subseteq)$.

On a donc bien $[\operatorname{type}(X,\subseteq)\subseteq\operatorname{type}(A,\subseteq)]$ $(\star_2).$

ullet Plus généralement on ne suppose plus spécialement que A est un ordinal.

Soient alors $\alpha := \operatorname{type}(A, \leq)$ et $g : A \longrightarrow \alpha$ l'isomorphisme associé.

Considérons $Y := g^{\rightarrow}(X)$, de telle que sorte que Y est une partie de α .

On se retrouve dans la situation précédente : d'après (\star_2) on a $\operatorname{type}(Y,\subseteq)\subseteq\operatorname{type}(\alpha,\subseteq)$.

Or g est un isomorphisme donc est croissant, injectif et de réciproque croissante.

Donc $g_{|X}: X \longrightarrow Y$ est croissant, injectif et de réciproque croissante.

Donc $g_{|X}$ est un isomorphisme de X vers Y donc X et Y sont isomorphes.

Donc X et $\operatorname{type}(Y, \subseteq)$ sont isomorphes par transitivité de l'isomorphie.

Donc $\operatorname{type}(X,\leq)=\operatorname{type}(Y,\subseteq)$ par unicité de l'ordinal associé.

On a donc $[\operatorname{type}(X,\leq)\subseteq\operatorname{type}(A,\leq)].$

COFD

6 Récurrence : induction et récursion

Au lycée, nous découvrons la notion de récurrence. On la retrouve notamment à travers le **raisonnement par récurrence** qui, comme nous l'avons déjà explicité, permet de prouver qu'une propriété est vraie pour tous les entiers naturels :

Supposons
$$\begin{cases} P(0) \\ \forall n \in \mathbb{N}, \left(P(n) \implies P(n+1) \right) \end{cases}$$
 Alors on a $\forall n \in \mathbb{N}, P(n)$.

Dans le même temps, on retrouve aussi la récurrence à travers les **définitions par récurrence**, qui permettent de définir une suite à partir d'une donnée initiale et d'une règle pour passer d'un entier au suivant :

$$\begin{cases} u_0 := a \\ \forall n \in \mathbb{N}, u_{n+1} := f(u_n) \end{cases}$$

Ces deux incarnations de la récurrence portent chacune un nom : le raisonnement par récurrence est aussi appelé **induction**, et la définition par récurrence est aussi appelée **récursion**.

6.1 Induction

L'induction chez les ordinaux est donc une généralisation de l'induction chez les nombres entiers : le principe est le même que pour le raisonnement par récurrence classique, c'est-à-dire prouver qu'une assertion est vraie à un certain ordinal et qu'elle se transmet de proche en proche par opération de successeur :

Supposons
$$\begin{cases} P(0) \\ \forall \alpha \in ON, \left(P(\alpha) \implies P(S(\alpha)) \right) \end{cases}$$
 Alors on a $\forall \alpha \in ON, P(\alpha)$.

Cependant, nous l'avons dit : certains ordinaux ne sont le successeur de personne et donc il est impossible que l'assertion leur parvienne de cette façon (sauf pour 0 qui est déjà atteint au début). Autrement dit, la formulation qui précède n'est pas correcte.

Pour palier ce problème, on peut commencer par reformuler le raisonnement par récurrence (sur les entiers naturels) d'une autre manière. Pour démontrer qu'une assertion à paramètres P est vraie pour tout entier naturel n, on peut plutôt montrer :

Supposons
$$\begin{cases} P(0) \\ \forall n \in \mathbb{N}, \left(\forall m < n, P(m) \right) \implies P(n) \end{cases}$$
 Alors on a $\forall n \in \mathbb{N}, P(n)$.

On retrouve ce que l'on appelle usuellement le raisonnement par récurrence **forte**. En réalité, il ne s'agit pas d'un raisonnement plus fort que le raisonnement par récurrence classique. Pour s'en convaincre, il suffit de poser Q(n) :« $\forall m < n, P(m)$ ». On peut alors remarquer que faire l'hypothèse de Q(n), c'est faire l'hypothèse que P(m) est vraie pour tout entier m précédent n, et dire que cela implique alors P(n) signifie désormais que P(m) est vraie pour un entier de

plus, c'est-à-dire pour tout entier m précédent n+1, et donc que Q(n+1) est vraie. Il s'agit donc tout simplement de l'implication $Q(n) \implies Q(n+1)$.

Remarquons au passage qu'on peut enfouir l'initialisation P(0) dans l'implication $\Big(\forall m<0,P(m)\Big)\implies P(0)$ puisque la prémisse étant toujours vraie, cette implication est équivalente à P(0). Autrement dit, on peut reformuler le raisonnement par récurrence sur les entiers de la façon suivante :

Supposons
$$\forall n \in \mathbb{N}, \left(\forall m < n, P(m) \right) \implies P(n).$$
 Alors on a $\forall n \in \mathbb{N}, P(n).$

Or cette fois-ci il n'est pas question de successeur : cette formulation se généralise très bien aux ordinaux ! C'est l'objet du théorème qui suit.

Théorème 5 (Principe d'induction transfinie)

Soit P une assertion à paramètres.

Supposons que pour tout ordinal α , on a

$$(\forall \beta \in \alpha, P(\beta)) \implies P(\alpha)$$

Alors pour tout ordinal α , on a $P(\alpha)$.

Démonstration

Supposons que pour tout ordinal α , on a $(\forall \beta \in \alpha, P(\beta)) \implies P(\alpha)$.

Supposons par l'absurde qu'il existe au moins un ordinal α tel que l'on n'a pas $P(\alpha)$.

Considérons alors $X := \{ \beta \subseteq \alpha \mid \beta \text{ est un ordinal et non } P(\beta) \}.$

Par définition on a $\alpha \in X$ donc X est un ensemble non vide d'ordinaux.

Il admet donc un ordinal minimum ξ d'après le théorème 1 page 21.

Soit $\mu \in \xi$.

Alors μ est un ordinal d'après la proposition 6 page 18.

De plus $\mu \notin X$ car ξ est minimum de X.

Or $\xi \in X$ donc $\xi \subseteq \alpha$ et donc $\mu \in \xi \subseteq \alpha$ avec tous trois des ordinaux.

On a donc $\mu \subseteq \alpha$ par transitivité.

Ainsi on a $\mu \notin X$ alors que $\mu \subseteq \alpha$ et que μ est un ordinal.

Donc nécessairement on a $P(\mu)$ par définition de X.

Donc $\forall \mu \in \xi, P(\mu)$.

On a donc $P(\xi)$ par hypothèse du théorème.

C'est absurde puisque $\xi \in X$ et donc $P(\xi)$ est faux.

Donc par l'absurde on a montré que pour tout ordinal α on a $P(\alpha)$.

On est cependant en droit de se demander : la formulation classique avec le passage de n à n+1 a-t-elle une généralisation chez les ordinaux ? La réponse est oui, à condition de traiter séparément le cas des ordinaux limites puisqu'ils ne sont pas successeurs. C'est donc au fond un mélange des deux formulations. À la manière de la récurrence classique et de la récurrence forte chez les entiers naturels, c'est une formulation équivalente à la précédente, on ne dit au fond rien de moins même si naïvement on peut en avoir l'impression.

Proposition 25 (Principe faible d'induction transfinie)

Soit P une assertion à paramètres.

Supposons que:

- 1. On a P(0).
- 2. Pour tout ordinal α , si $P(\alpha)$ alors $P(S(\alpha))$.
- 3. Pour tout ordinal limite α , si $\forall \beta \in \alpha$, $P(\beta)$ alors $P(\alpha)$.

Alors pour tout ordinal α on a $P(\alpha)$.

Démonstration

Appliquons le théorème 5 page 59.

Soit α un ordinal.

Supposons que $\forall \beta \in \alpha, P(\beta) \ (\star)$.

- ▶ Si $\alpha = 0$, alors d'après l'hypothèse 1 on a $P(\alpha)$.
- ightharpoonup Supposons que α est un successeur.

Par définition il existe un ordinal β tel que $\alpha = S(\beta)$.

Alors $\beta \in \alpha$ d'après la proposition 12 page 33.

On a donc $P(\beta)$ d'après l'hypothèse (\star).

On a donc $P(\alpha)$ d'après l'hypothèse 2.

Supposons que α est un ordinal limite. On alors $P(\alpha)$ d'après les hypothèses (\star) et 3.

Dans tous les cas on a donc $P(\alpha)$.

Donc si $\forall \beta \in \alpha, P(\beta)$ alors $P(\alpha)$.

Donc pour tout ordinal α , on l'implication $(\forall \beta \in \alpha, P(\beta)) \implies P(\alpha)$.

Donc pour tout ordinal α , on a $P(\alpha)$ d'après le théorème 5 page 59.

CQFD.

Remarque:

0 étant un ordinal limite, il entre à la fois dans le cas 1 et le cas 3, mais comme $\forall \beta \in 0, P(\beta)$ est nécessairement vraie, l'implication $\Big(\forall \beta \in 0, P(\beta)\Big) \implies P(0)$ est équivalente à P(0) et donc il y a seulement une redondance, pas de contradiction.

61

6.2 Récursion

Nous l'avons dit, la récursion chez les entiers naturels est aussi connue sous le nom de définition par récurrence, pour définir une suite : on définit la valeur de de cette suite en un entier puis l'on se donne une règle pour déterminer la valeur de la suite sur l'entier suivant à partir du précédent, ce qui permet de proche en proche de définir la suite sur chaque entier. Par exemple on pourrait être amenés à définir la suite suivante :

$$\begin{cases} u_0 := 1 \\ \forall n \in \mathbb{N}^*, u_n := 3u_{n-1} \end{cases}$$

qui va alors donner la suite des puissances de 3. On peut se retrouver dans le cas où l'étape de propagation nécessite en fait les deux termes précédents (auquel cas il faut déterminer la valeur de la suite sur deux entiers au début), comme c'est le cas avec la suite de Fibonacci :

$$\begin{cases} u_0 := 1 \\ u_1 := 1 \\ \forall n \ge 2, u_n := u_{n-1} + u_{n-2} \end{cases}$$

Plus généralement, on peut même vouloir définir un terme à partir de toutes les valeurs précédentes. La notion qui va permettre de donner une "règle de construction" en toute généralité pour se servir des valeurs précédentes est celle d'assertion fonctionnelle que nous avons rappelée au début de ce chapitre. Ainsi, si H est une fonction assertion fonctionnelle, la forme la plus générale qu'on pourrait être amenés à utiliser pour définir une suite par récurrence sur les entiers est

$$\forall n \in \mathbb{N}, u_n := H(u_{|\llbracket 0, n \rrbracket})$$

où $u_{|\mathbb{I}_0,n\mathbb{I}}$ désigne la restriction de la suite u à tous les entiers de 0 à n-1. Ainsi, on tient bien compte des valeurs de u jusqu'à n non compris. Remarquons bien que comme H est très générale, elle peut en particulier ne regarder que quelques valeurs parmi les précédentes et non toutes (par exemple seulement les deux précédentes comme dans le cas de Fibonacci), et aussi être constante en quelques entiers pour s'assurer d'avoir fixé les premières valeurs de la suite. Ainsi dans le cas de la suite de Fibonacci, H serait définie de telle sorte à avoir

$$\begin{cases} H(u_{|\mathbb{I}0,n\mathbb{I}}) := 1 & \text{si } n = 0 \\ H(u_{|\mathbb{I}0,n\mathbb{I}}) := 1 & \text{si } n = 1 \\ H(u_{|\mathbb{I}0,n\mathbb{I}}) := u_{n-1} + u_{n-2} & \text{sinon} \end{cases}$$

C'est ce cadre-là que nous allons désormais définir proprement pour le généraliser encore plus, c'est-à-dire à présent sur tous les ordinaux. Le principe va cependant rester le même : se donner une règle de propagation via les assertions fonctionnelles, et l'utiliser pour définir la valeur d'une suite à un ordinal à partir de la restriction de la suite aux ordinaux précédents.

On remarque que pour que u puisse être définie, il faut que ses restrictions respectives soient bien dans le domaine de H pour que l'étape de propagation ait du sens. C'est à travers la notion d'application inductive (une suite étant une application particulière) que nous allons faire cela.

Définition 12 (Application inductive)

Soient H une assertion fonctionnelle et u une application. On dit que u est H-inductive si et seulement si :

- 1. dom(u) est un ordinal.
- 2. Pour tout $\beta \in dom(u)$, on a $u_{|\beta} \in dom(H)$ et $u(\beta) = H(u_{|\beta})$.

Ne perdons pas de vue qu'un ordinal est lui-même l'ensemble de tous les ordinaux qui le précèdent, autrement dit $u_{|\beta}$ est bien la restriction de u à tous les ordinaux qui viennent avant β , au même titre que $u_{|\mathbb{I}0,n\mathbb{I}}$ est la restriction de u à tous les entiers qui précèdent n. Nous verrons d'ailleurs quand nous nous attarderons en détails sur les entiers naturels que n sera justement égal à $[0,n\mathbb{I}]$, donc nous retomberons bien sur nos pieds avec la théorie plus générale des ordinaux.

À ce stade, nous avons déjà défini les notions utiles pour construire les différentes suites que nous avons évoquées : il suffit pour cela de bien choisir le H en question et les applications u qui sont H-inductives et concernées seront celles telles que $\mathrm{dom}(u) = \omega$ l'ensemble des entiers naturels

Cependant nous avons exprimé le souhait d'aller au delà de ω à travers la théorie plus générale des ordinaux. On pourrait tout à fait se contenter pour cela de la définition que nous venons d'énoncer : si l'on souhaite se rendre jusqu'à un ordinal α , même très grand, il suffit de demander $\mathrm{dom}(u) = \alpha$ pour les applications H-inductives qui nous intéressent.

Il y a néanmoins des cas où nous ne voudrions pas particulièrement limiter l'ordinal jusqu'où construire l'application u. Typiquement, étant donnés deux ordinaux α et β , nous serons amenés à définir l'addition $\alpha + \beta$. Nous le ferons à l'aide d'une assertion fonctionnelle H bien choisie. En passant par une application u qui est H-inductive, on pourra faire en sorte que $\forall \beta \in \mathrm{dom}(u), u(\beta) = \alpha + \beta$, en ayant fixé α au préalable. Le problème vient alors de savoir le sens à donner à $\alpha + \mathrm{dom}(u)$. En effet, $\mathrm{dom}(u)$ est lui-même un ordinal, que l'on devra en plus choisir arbitrairement. On peut se contenter de se limiter à $\mathrm{dom}(u)$ en l'ayant pris très grand, mais cela présente une inélégance que l'on peut corriger.

On aimerait pour cela ne pas limiter le domaine des applications : comment faire pour que le domaine soit ON la classe de tous les ordinaux ? En fait, il nous suffit de passer par la généralisation des applications dont nous avons déjà tant parlée : les assertions fonctionnelles. Ainsi, nous allons simplement étendre la définition précédente aux assertions fonctionnelles.

Définition 13 (Assertion fonctionnelle inductive)

Soient H et F deux assertions fonctionnelles. On dit que F est H-inductive si et seulement si :

- 1. $dom(F) \in ON$ ou dom(F) = ON.
- 2. Pour tout $\beta \in \text{dom}(F)$, on a $F_{|\beta} \in \text{dom}(H)$ et $F(\beta) = H(F_{|\beta})$.

Le seul véritable cas nouveau est celui pour lequel dom(F) = ON. En effet, si $dom(F) \in ON$

alors $\mathrm{dom}(F)$ est un ordinal donc F est alors associée à une application et donc on confond sans problème les deux. On peut cependant se demander pourquoi le seul cas nouveau que l'on rajoute est celui où $\mathrm{dom}(F) = ON$. Au fond, tant qu'on est à généraliser, on pourrait demander plus largement $\mathrm{dom}(F) \subseteq ON$, non? La réponse nous a déjà été fournie par la proposition 10 page 26 : ON est en quelque sorte la seule classe propre légitime à généraliser les ordinaux.

On peut remarquer la chose suivante : restreindre une assertion fonctionnelle (ou donc une application) qui est H-inductive à un ordinal de son domaine va nécessairement produire une application qui est encore H-inductive. En effet : qui peut le plus peut le moins.

Proposition 26 (Restriction d'une application inductive)

Soient H et F deux assertions fonctionnelles.

Si F est H-inductive alors pour tout $\beta \in dom(u)$, l'application $F_{|\beta}$ est H-inductive.

Démonstration

Supposons que F est H-inductive.

Alors on a $dom(F) \in ON$ ou dom(F) = ON par définition.

On a donc $dom(F) \subseteq ON$ d'après la proposition 6 page 18.

Soit $\beta \in \text{dom}(F)$.

Comme $dom(F) \subseteq ON$, on en déduit que $dom(F_{|\beta}) = \beta$ est un ordinal.

Soit $\gamma \in \beta$.

On a alors $\gamma \in \beta \in \text{dom}(F)$ donc $\gamma \in \text{dom}(F)$ par transitivité :

Si $dom(F) \in ON$ alors c'est la transitivité de \in sur ON qu'on applique.

Si dom(F) = ON, c'est la transitivité de ON qu'on applique.

Or F est H-inductive par hypothèse.

Donc $F_{|\gamma}$ est dans le domaine de H et $F(\gamma)=H(F_{|\gamma})$.

Or $\gamma \in \beta$ donc $\gamma \subseteq \beta$ par transitivité.

Donc $(F_{|\beta})_{|\gamma}=F_{|\gamma}$ donc en particulier $(F_{|\beta})_{|\gamma}$ est dans le domaine de H.

De plus $F_{|\beta}(\gamma) = F(\gamma) = H(F_{|\gamma}) = H((F_{|\beta})_{|\gamma}).$

Donc pour tout $\gamma \in \beta$, $(F_{|\beta})_{|\gamma}$ est dans le domaine de H et $F_{|\beta}(\gamma) = H((F_{|\beta})_{|\gamma})$.

Donc $F_{|\beta}$ est H-inductive.

Donc pour tout $\beta \in \text{dom}(F)$, $F_{|\beta}$ est H-inductive

COFD.

Pour pouvoir dire qu'on souhaite définir une assertion fonctionnelle F par la relation

$$\forall \beta \in \text{dom}(F), F(\beta) = H(F_{|\beta})$$

il faut s'assurer qu'une telle relation ne convient pas pour plusieurs assertions fonctionnelles : c'est l'objet de la proposition suivante.

Proposition 27 (Au plus une application inductive)

Soit H une assertion fonctionnelle.

Soit C une classe telle que $C \in ON$ ou C = ON.

Il existe au plus une assertion fonctionnelle de domaine C qui est H-inductive.

A Démonstration

Soient F et G deux assertions fonctionnelles qui sont toutes deux H-inductives et telles que dom(F) = C = dom(F).

Supposons par l'absurde que $F \neq G$.

Comme elles ont le même domaine C, il existe $\alpha \in C$ tel que $F(\alpha) \neq G(\alpha)$.

Considérons alors $X := \{ \beta \in C \mid F(\beta) \neq G(\beta) \}.$

Par définition on a $X \subseteq C$, et $\alpha \in X$ donc X est non vide.

Or on a $(C \in ON \text{ ou } C = ON)$ par définition de C, donc $C \subseteq ON$ et donc $X \subseteq ON$.

Ainsi X est classe non vide telle que $X \subseteq ON$.

Donc X possède un ordinal minimum ξ d'après la proposition 9 page 24.

Soit $\gamma \in \xi$.

Comme ξ est le minimum de X, on a $\gamma \notin X$.

Mais comme $\gamma \in \xi \in X \subseteq C$, on a $\gamma \in C$ par transitivité.

Si $C \in ON$ alors c'est la transitivité de \in sur ON qu'on applique.

Si C = ON, c'est la transitivité de ON qu'on applique.

Ainsi $\gamma \notin X$ alors que $\gamma \in C$.

Nécessairement on a donc $F(\gamma) = G(\gamma)$ par définition de X.

Donc $\forall \gamma \in \xi, F(\gamma) = G(\gamma)$ et donc $F_{|\xi} = G_{|\xi}$.

Or F et G sont H-inductives donc $F(\xi) = H(F_{|\xi}) = H(G_{|\xi}) = G(\xi)$.

C'est absurde puisque $\xi \in X$ donc $F(\xi) \neq G(\xi)$.

Donc par l'absurde on a F = G, d'où l'unicité.

COFD.

Remarque:

En particulier si F est H-inductive, alors pour tout $\alpha \in \text{dom}(F)$, l'application $F_{|\alpha}$ est l'unique application H-inductive de domaine α .

Nous venons de voir qu'à domaine fixé, il existe au plus une assertion fonctionnelle qui est H-inductive. Mais en existe-t-il au moins une? La réponse est oui, mais à une certaine condition sur H.

Imaginons que l'on ait défini une application jusqu'à l'ordinal α . On a donc déjà à notre disposition une application $v: \alpha \longrightarrow ?$ qui est H-inductive. Pour pouvoir poursuivre à nouveau la construction, et faire en sorte que v ne soit en fait que la restriction à α de notre assertion fonctionnelle finale, il faut simplement s'assurer que v elle-même est dans le domaine de H. C'est pour cela que dans le théorème suivant, on a rajouté une condition qui semble au fond assez naturelle.

65

Théorème 6 (Principe de récursion transfinie)

Soit H une assertion fonctionnelle.

Soit C une classe telle que $C \in ON$ ou C = ON.

Supposons que pour tout $\alpha \in C$ et toute application $v: \alpha \longrightarrow ?$ on a

si v est H-inductive alors v est dans le domaine de H

Alors il existe une unique assertion fonctionnelle de domaine C qui est H-inductive.

Démonstration

Unicité

C'est exactement l'objet de la proposition 27 page 64.

Existence

• Considérons T la classe des $\alpha \in C$ tel qu'il existe une application $\alpha \longrightarrow ?$ qui est H-inductive et dans le domaine de H. Une telle application est alors unique d'après la proposition 27 page 64.

Montrons que T est transitive.

Soient $\alpha \in T$ et $\beta \in \alpha$.

Comme $\alpha \in T$, il existe une application $u: \alpha \longrightarrow ?$ qui est H-inductive et dans le domaine de H.

Comme $\beta \in \alpha$ et comme u est H-inductive, $u_{|\alpha}$ est dans le domaine de H.

De plus $u_{|\beta}: \beta \longrightarrow ?$ est *H*-inductive d'après la proposition 26 page 63.

Donc il existe une application $\beta \longrightarrow ?$ qui est H-inductive et dans le domaine de H.

Or $\beta \in \alpha \in C$ donc $\beta \in C$ par transitivité.

Si $C \in ON$ alors c'est la transitivité de \in sur ON qu'on applique.

Si C = ON, c'est la transitivité de ON qu'on applique.

Donc $\beta \in T$ par définition de T.

Ainsi $\forall \alpha \in T, \forall \beta \in \alpha, \beta \in T$.

Autrement dit, $\forall \alpha \in T, \alpha \subseteq T \text{ donc } | T \text{ est transitive } |$.

• Montrons que $T \in ON$ ou T = ON.

On a $(C \in ON \text{ ou } C = ON) \text{ donc } C \subseteq ON$.

Comme $T \subseteq C$ on a donc $T \subseteq ON$.

Ainsi tous les éléments de T sont des ordinaux.

Donc (T, \in) est strictement bien ordonnée d'après le théorème 1 page 21.

Or on vient de montrer que T est transitive.

▶ Si T est issue d'un ensemble alors T est un ordinal par définition d'être un ordinal.

ightharpoonup Si T est une classe propre, alors T = ON d'après la proposition 10 page 26.

On a donc nécessairement $T \in ON$ ou T = ON

• Pour tout $\alpha \in T$, posons u_{α} l'unique application $\alpha \longrightarrow ?$ qui est H-inductive et dans le domaine de H.

Considérons alors U_T l'assertion fonctionnelle définie pour tout ensemble x et y par

$$U_T(x,y) \iff \left(x \in T \text{ et } y = H(u_x)\right)$$

Ainsi pour tout $\alpha \in T$, on a $U_T(\alpha) = H(u_\alpha)$.

Montrons que U_T est H-inductive.

On sait déjà que $dom(U_T) = T$ est ou bien un ordinal ou bien ON toute entière.

Soit $\alpha \in T$.

Montrons que $(U_T)_{|\alpha} = u_{\alpha}$.

Soit $\beta \in \alpha$.

▶ On a alors $\beta \in \alpha \in T$ donc $\beta \in T$ par transitivité.

Si $T \in ON$ alors c'est la transitivité de \in sur ON qu'on applique.

Si T = ON, c'est la transitivité de ON qu'on applique.

On a $(U_T)_{|\alpha}(\beta) = U_T(\beta)$ par définition d'une restriction.

Or $U_T(\beta) = H(u_\beta)$ par définition de U_T , donc $(U_T)_{|\alpha}(\beta) = H(u_\beta)$.

ightharpoonup D'un autre côté, on sait que u_{α} est par définition H-inductive.

Donc $u_{\alpha}(\beta) = H((u_{\alpha})_{|\beta})$ par définition de la H-inductivité.

► Enfin $(u_{\alpha})_{|\beta}$ est H-inductive d'après la proposition 26 page 63.

Donc $(u_{\alpha})_{|\beta}=u_{\beta}$ par unicité de l'application de domaine β qui est H-inductive.

On a donc montré que
$$\left\{ \begin{array}{l} (U_T)_{|\alpha}(\beta) = H(u_\beta) \\ \\ u_\alpha(\beta) = H\Big((u_\alpha)_{|\beta}\Big) \\ \\ (u_\alpha)_{|\beta} = u_\beta \end{array} \right.$$

Les deux dernières lignes nous disent que $u_{\alpha}(\beta) = H(u_{\beta})$.

Combiné à la première ligne, on en déduit que $(U_T)_{|\alpha}(\beta) = u_{\alpha}(\beta)$.

Ainsi $\forall \beta \in \alpha, (U_T)_{|\alpha}(\beta) = u_{\alpha}(\beta).$

Or $(U_T)_{|\alpha}$ et u_α ont le même domaine α donc $(U_T)_{|\alpha} = u_\alpha$.

67

Or par définitions u_{α} est dans le domaine de H et $U_T(\alpha) = H(u_{\alpha})$.

Donc $(U_T)_{|\alpha}$ est dans le domaine de H et $U_T(\alpha) = H((U_T)_{|\alpha})$.

Donc pour tout $\alpha \in T$, $(U_T)_{|\alpha}$ est dans le domaine de H et $U_T(\alpha) = H(U_T)_{|\alpha}$.

Donc U_T est H-inductive

• Montrons que T = C.

Supposons par l'absurde que $T \neq C$.

Par définition de T on a $T \subseteq C$ donc on a $T \subsetneq C$.

On a dit que $(T \in ON \text{ ou } T = ON)$ et $(C \in ON \text{ ou } C = ON)$.

- ▶ Si $T \in ON$ et $C \in ON$ alors $T \in C$ d'après la prop. 8 p. 20.
- ▶ Si $T \in ON$ et C = ON alors immédiatement $T \in C$.
- ▶ Si T = ON et $C \in ON$ c'est absurde puisque $T \subsetneq C$.
- ▶ Si T = ON et C = ON c'est absurde puisque $T \subsetneq C$.

On a donc nécessairement $T \in C$.

Comme $(C \in ON \text{ ou } C = ON) \text{ on a } C \subseteq ON \text{ donc } T \in ON.$

Comme $T \in ON$, T est un ordinal donc un ensemble.

Donc U_T est une assertion fonctionnelle de domaine un ensemble.

Donc U_T est une application.

Ainsi U_T est une application H-inductive dont le domaine appartient à C.

Donc U_T est dans le domaine de H par hypothèse du théorème.

Ainsi T est un élément de C et le domaine d'une application H-inductive qui est elle-même dans le domaine de H.

Donc $T \in T$ par définition de T.

C'est absurde par antiréflexivité de \in sur ON.

On a donc montré par l'absurde que $T={\cal C}.$

Or U_T est une assertion fonctionnelle de domaine T qui est H-inductive.

Donc U_T est une assertion fonctionnelle de domaine C qui est H-inductive

CQFD.

Exemple:

Reprenons les exemples du début et éclairons-les de ce que l'on vient d'apprendre.

1. Si l'on souhaite définir proprement l'unique suite $(u_n)_{n\in\mathbb{N}}$ vérifiant

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, u_{n+1} = 3u_n \end{cases}$$

il suffit de considérer l'assertion fonctionnelle H définie pour toute application f

telle que $dom(f) \in \mathbb{N}$ par

$$\begin{cases} H(f) := 1 & \text{si dom}(f) = 0 \\ H(f) := 3f(n) & \text{si dom}(f) = n + 1 \end{cases}$$

En effet, on considère alors $C=\mathbb{N}$, qui vérifie bien $C\in ON$ d'après la proposition 17 page 42. De plus, toute application f dont le domaine est un élément de $C=\mathbb{N}$ est dans le domaine de H: c'est en particulier le cas des applications H-inductives. Ainsi H et C vérifient les hypothèses du théorème précédent : il existe une unique suite $u=(u_n)_{n\in\mathbb{N}}$ qui est H-inductive. Cette suite vérifie alors

$$\begin{cases} u_0 = u(0) = H(u_{|0}) = 1 \\ \forall n \in \mathbb{N}, u_{n+1} = u(n+1) = H(u_{|n+1}) = 3u(n) = u_n \end{cases}$$

2. Si l'on souhaite définir proprement l'unique suite $(u_n)_{n\in\mathbb{N}}$ vérifiant

$$\begin{cases} u_0 = 1 \\ u_1 = 1 \\ \forall n \in \mathbb{N}, u_{n+2} = u_{n+1} + u_n \end{cases}$$

il suffit de considérer l'assertion fonctionnelle H définie pour toute application f telle que $\mathrm{dom}(f) \in \mathbb{N}$ par

$$\begin{cases} H(f) := 1 & \text{si dom}(f) = 0 \\ H(f) := 1 & \text{si dom}(f) = 1 \\ H(f) := f(n+1) + f(n) & \text{si dom}(f) = n+2 \end{cases}$$

On considère ici encore $C=\mathbb{N}$. Pour les mêmes raisons que l'exemple précédent, H et C vérifient les hypothèses du théorème précédent : il existe une unique suite $u=(u_n)_{n\in\mathbb{N}}$ qui est H-inductive. Cette suite vérifie alors

$$\begin{cases} u_0 = u(0) = H(u_{|0}) = 1 \\ u_1 = u(1) = H(u_{|1}) = 1 \\ \forall n \in \mathbb{N}, u_{n+2} = u(n+2) = H(u_{|n+2}) = u(n+1) + u(n) = u_{n+1} + u_n \end{cases}$$

Pour la petite histoire

Leonardo Fibonacci (\sim 1170 – \sim 1250), de son vrai nom Léonard De Pise, est le fils d'un commerçant toscan. Ce dernier émigre avec toute sa famille à Béjaïa dans l'actuelle Algérie et Leonardo est encouragé à maîtriser les comptes pour l'aider. Par la suite, Fibonacci parcourt l'Égypte, la Sicile, la Grèce et la Syrie. Il entre ainsi en contact avec les

69

mathématiques arabes et grecques.

Convaincu de la supériorité du système d'écriture des nombres par les chiffres arabes, il écrit *Liber abaci* à son retour en Europe en 1202, ce qui les introduira en occident. Dans cet ouvrage, il explique la notation de position, les méthodes de calcul des opérations élémentaires, et des méthodes de résolutions d'équations.

Si la suite de Fibonacci était déjà connue au moins depuis 200 avant JC en Inde, c'est Fibonacci qui la rendra célèbre en occident dans *Liber abaci*.

7 Opérations sur les ordinaux

7.1 Généralités

Si nous avons déployé l'artillerie lourde avec la notion d'assertion fonctionnelle inductive, c'est pour avoir les mains libres au moment de la définition de trois opérations importantes chez les ordinaux : l'addition, la multiplication et l'exponentiation. Prenons pour exemple l'addition des ordinaux : nous aimerions donner du sens à l'addition $\alpha + \beta$ pour α et β deux ordinaux. On peut pour cela s'inspirer de l'addition chez les entiers naturels.

Comment allons-nous définir l'addition 2+7 par exemple ? On considère que 2+6 a déjà été définie et on pose alors 2+7:=(2+6)+1. Ainsi on est en train de poser 2+(6+1):=(2+6)+1 et en le réécrivant avec la notation de successeur, cela donne 2+S(6):=S(2+6). Pour définir l'addition de 2 par tous les entiers, on le fait simplement de la manière suivante en initialisant la valeur en 0:

$$\left\{ \begin{array}{l} 2+0:=2\\ 2+S(m):=S(2+m) \text{ pour tout entier naturel } m \end{array} \right.$$

Pour donner du sens à 2+S(m), on considère que 2+m a déjà du sens : c'est bien là une récursion. Quel sens donner alors à $2+\omega$? On va simplement dire que c'est l'ordinal qui vient après tous les 2+n avec $n\in\omega$. Autrement dit, on va dire que $2+\omega$ est la borne supérieure de l'ensemble $\{2+n\mid n\in\omega\}$. Plus généralement, on va poser

$$\begin{cases} 2+0:=2\\ 2+S(\beta):=S(2+\beta) \text{ pour tout ordinal } \beta\\ 2+\gamma:=\sup_{\delta\in\gamma}(2+\delta) \text{ pour tout ordinal limite non nul } \gamma \end{cases}$$

Encore plus généralement, pour α un ordinal quelconque fixé à l'avance, on va poser

$$\begin{cases} \alpha + 0 := \alpha \\ \alpha + S(\beta) := S(\alpha + \beta) \text{ pour tout ordinal } \beta \\ \alpha + \gamma := \sup_{\delta \in \gamma} (\alpha + \delta) \text{ pour tout ordinal limite non nul } \gamma \end{cases}$$

Comment allons-nous procéder pour s'assurer qu'il s'agit d'une définition rigoureuse? On souhaite en fait définir par récursion une assertion fonctionnelle F_{α} vérifiant :

$$\begin{cases} F_{\alpha}(0) := \alpha \\ F_{\alpha}\big(S(\beta)\big) := S\big(F_{\alpha}(\beta)\big) \text{ pour tout ordinal } \beta \\ F_{\alpha}(\gamma) := \sup_{\delta \in \gamma} F_{\alpha}(\delta) \text{ pour tout ordinal limite non nul } \gamma \end{cases}$$

et on pose alors $\alpha+\beta:=F_{\alpha}(\beta)$. Pour pouvoir justifier proprement qu'une telle construction est possible, et pouvoir de même définir la multiplication et l'exponentiation, énonçant la proposition suivante. L'ordinal μ_0 joue le rôle du résultat de l'initialisation, et l'assertion fonctionnelle G est là pour généraliser S.

Proposition 28 (Justification des opérations sur les ordinaux)

Soient μ_0 un ordinal $G: ON \longrightarrow ON$ une assertion fonctionnelle. Alors il existe une unique assertion fonctionnelle $F: ON \longrightarrow ON$ telle que

$$\begin{cases} F(0) = \mu_0 \\ F(S(\beta)) = G(F(\beta)) \text{ pour tout ordinal } \beta \\ F_{\alpha}(\gamma) := \sup_{\delta \in \gamma} F_{\alpha}(\delta) \text{ pour tout ordinal limite non nul } \gamma \end{cases}$$

Démonstration

Existence

Pour toute application f telle que dom(f) est un ordinal et tel que $im(f) \subseteq ON$, on pose

$$\begin{cases} H(f) := \mu_0 & \text{si } \operatorname{dom}(f) = 0 \\ H(f) := G\big(f(\beta)\big) & \text{si } \operatorname{dom}(f) = S(\beta) \text{ avec } \beta \text{ un ordinal} \\ H(f) := \sup_{\delta \in \gamma} f(\delta) & \text{si } \operatorname{dom}(f) = \gamma \text{ est un ordinal limite non nul} \end{cases}$$

On obtient alors H une assertion fonctionnelle.

• Montrons que $im(H) \subseteq ON$.

Soit $y \in im(H)$.

Il existe donc $f \in dom(H)$ tel que y = H(f).

Par définition de H, f est une application telle que $dom(f) \in ON$ et $im(f) \subseteq ON$.

- ► Si dom(f) = 0 alors $y = H(f) = \mu_0 \in ON$.
- ▶ Si dom $(f) = S(\beta)$ avec β un ordinal, alors $y = H(f) = G(f(\beta)) \in \text{im}(G)$. Or par définition $G: ON \longrightarrow ON$ donc $\text{im}(G) \subseteq ON$ et donc $y \in ON$.
- ▶ Si $\operatorname{dom}(f)$ est un ordinal limite non nul γ alors $y = H(f) = \sup_{\delta \in \gamma} f(\delta)$. Or $\operatorname{im}(f) \subseteq ON$ donc $\operatorname{im}(f) = \big\{ f(\delta) \ \big| \ \delta \in \gamma \big\}$ est un ensemble d'ordinaux. Donc y sa borne supérieure est un ordinal.

Dans tous les cas, on a bien $y \in ON$.

Donc $\forall y \in \text{im}(H), y \in ON$, si bien que $\text{im}(H) \subseteq ON$.

• Montrons que H vérifie l'hypothèse du théorème 6 page 65.

Soient α un ordinal et $f: \alpha \longrightarrow ?$ une application H-inductive.

On sait déjà que $dom(f) = \alpha$ est un ordinal.

Il suffit donc de montrer que $\operatorname{im}(f) \subseteq ON$.

Soit $y \in \text{im}(f)$.

Il existe donc $\beta \in \alpha$ tel que $y = f(\beta)$.

Or f est H-inductive par définition.

On a donc $f_{|\beta} \in \text{dom}(H)$ et $y = f(\beta) = H(f_{|\beta}) \in \text{im}(H)$.

Or on a dit que $im(H) \subseteq ON$ donc $y \in ON$.

On a donc $\forall y \in \operatorname{im}(f), y \in ON$ donc $\operatorname{im}(f) \subseteq ON$.

Ainsi on a $dom(f) \in ON$ et $im(f) \subseteq ON$ donc $f \in dom(H)$.

Ainsi pour tout $\alpha \in ON$ et toute application $f: \alpha \longrightarrow ?$, si f est H-inductive alors $f \in \text{dom}(H)$. Donc H et C = ON vérifient l'hypothèse du théorème 6 page 65.

• Il existe donc une unique assertion fonctionnelle $F: ON \longrightarrow ?$ qui est H-inductive. Par définition de la H-inductivité et par définition de H, on a alors

$$\begin{cases} F(0) = H(F_{|0}) = \mu_0 \\ F(S(\beta)) = H(F_{|S(\beta)}) = G(F_{|S(\beta)}(\beta)) = G(F(\beta)) \text{ pour tout ordinal } \beta \\ F(\gamma) = H(F_{|\gamma}) = \sup_{\beta \in \gamma} F_{|\gamma}(\beta) = \sup_{\delta \in \gamma} F(\delta) \text{ pour tout ordinal limite non nul } \gamma \end{cases}$$

Ainsi F vérifie les conditions de l'énoncé.

Remarquons que comme $\operatorname{im}(H) \subseteq ON$ et comme par définition on a $\operatorname{im}(F) \subseteq \operatorname{im}(H)$, on a donc $\operatorname{im}(F) \subseteq ON$ et donc on a bien $F: ON \longrightarrow ON$.

Unicité

Soit $F':ON\longrightarrow ON$ une assertion fonctionnelle vérifiant les conditions de l'énoncé.

Montrons par induction transfinie que F = F'.

Considérons alors l'assertion à paramètres P définie pour tout ordinal α par

$$P(\beta) \iff F(\beta) = F'(\beta)$$

► Initialisation

On a $F(0) = \mu_0 = F'(0)$ donc P(0) est vraie.

► Hérédité

Soit α un ordinal tel que $P(\alpha)$.

On a donc $F(\alpha) = F'(\alpha)$.

Donc
$$F(S(\alpha)) = G(F(\alpha)) = G(F'(\alpha)) = F'(S(\alpha))$$
.

On a donc $P(S(\alpha))$.

Donc pour tout ordinal α , on a $P(\alpha) \implies P(S(\alpha))$.

► Hérédité limite

Soit α un ordinal limite non nul tel que $\forall \beta \in \alpha, P(\beta)$.

On a donc
$$\forall \beta \in \alpha, F(\beta) = F'(\beta)$$
.
Donc $F(\alpha) = \sup_{\beta \in \alpha} F(\beta) = \sup_{\beta \in \alpha} F'(\beta) = F'(\alpha)$.
On a donc $P(\alpha)$.

Donc pour tout ordinal limite non nul α , on a $\Big(\forall \beta \in \alpha, P(\beta)\Big) \implies P(\alpha)$.

Ainsi P vérifie les trois hypothèses du principe faible d'induction transfinie.

Donc pour tout ordinal α , on a $P(\alpha)$, c'est-à-dire $F(\alpha)=F'(\alpha)$. Ainsi on a F=F', d'où l'unicité .

7.2 Addition d'ordinaux

Nous pouvons enfin définir l'addition sur les ordinaux.

Définition 14 (Addition d'ordinaux)

Soit α un ordinal.

On pose

$$\left\{ \begin{array}{l} \alpha+0:=\alpha\\ \alpha+S(\beta):=S(\alpha+\beta) \text{ pour tout ordinal }\beta\\ \alpha+\gamma:=\sup_{\beta\in\gamma}\alpha+\beta \text{ pour tout ordinal limite non nul }\gamma \end{array} \right.$$

Remarque:

Pour justifier proprement que cette définition a du sens, on utilise simplement la proposition 28 page 71 qui précède, en posant $\mu_0 := \alpha$ et $G(\xi) := S(\xi)$ pour tout ordinal ξ . La proposition nous donne alors une assertion fonctionnelle F_{α} telle que

$$\begin{cases} F_{\alpha}(0) := \alpha \\ F_{\alpha}\big(S(\beta)\big) := S\big(F_{\alpha}(\beta)\big) \text{ pour tout ordinal } \beta \\ F_{\alpha}(\gamma) := \sup_{\beta \in \gamma} F_{\alpha}(\beta) \text{ pour tout ordinal limite non nul } \gamma \end{cases}$$

et on pose alors $\alpha + \beta := F_{\alpha}(\beta)$ pour tout ordinal β .

Nous affirmons depuis des pages et des pages que pour un entier naturel n, on va définir n+1comme étant S(n). En fait comme n et 1 sont des cas particuliers d'ordinaux, on a déjà donné du sens à n+1, et on retombe bien sur S(n). Plus généralement, on a la proposition suivante.

Proposition 29 (Successeur et plus un)

Soit α un ordinal.

On a $S(\alpha) = \alpha + 1$.

Démonstration

Remarquons que par définition de l'addition, on a $\alpha + 0 = \alpha$.

On a donc les égalités suivantes :

$$lpha+1=lpha+S(0)$$
 par définition de 1
$$=S(lpha+0) \ {
m par} \ {
m définition} \ {
m de l'addition}$$

$$=S(lpha) \ {
m puisque} \ lpha+0=lpha$$

On a donc $\alpha + 1 = S(\alpha)$

CQFD.

Proposition 30 (Croissance de l'addition des ordinaux)

Soient α , β et γ trois ordinaux.

- 1. Si $\beta \in \gamma$ alors $\alpha + \beta \in \alpha + \gamma$. On dit que l'addition est **strictement croissante à droite**.
- 2. Si $\beta \subseteq \gamma$ alors $\alpha + \beta \subseteq \alpha + \gamma$. On dit que l'addition est **croissante** à droite.
- 3. Si $\beta \subseteq \gamma$ alors $\beta + \alpha \subseteq \gamma + \alpha$. On dit que l'addition est **croissante à gauche**.

Démonstration

1. Fixons α et β .

Posons $P_{\alpha,\beta}$ l'assertion à paramètre définie pour tout ordinal γ par

$$P_{\alpha,\beta}(\gamma) \iff \left(\beta \in \gamma \Rightarrow \alpha + \beta \in \alpha + \gamma\right)$$

Montrons le résultat par le principe faible d'induction.

► Initialisation

La prémisse $\beta \in 0$ étant fausse, on a l'implication $\beta \in 0 \Rightarrow \alpha + \beta \in \alpha + 0$. Ainsi on a $P_{\alpha,\beta}(0)$.

► Hérédité

Soit γ un ordinal tel que $P_{\alpha,\beta}(\gamma)$.

Ainsi on a $\beta \in \gamma \Rightarrow \alpha + \beta \in \alpha + \gamma$.

Supposons que $\beta \in S(\gamma)$.

On a alors $\beta \subseteq \gamma$ d'après la proposition 12 page 33.

On a donc $\beta \in \gamma$ ou $\beta = \gamma$ d'après la proposition 8 page 20.

• Plaçons-nous dans le cas où $\beta \in \gamma$.

On a alors $\alpha + \beta \in \alpha + \gamma$ d'après $P_{\alpha,\beta}(\gamma)$.

Or on a $\alpha + \gamma \in S(\alpha + \gamma)$ d'après la proposition 12 page 33.

On a donc $\alpha + \beta \in S(\alpha + \gamma)$ par transitivité de \in sur ON.

• Plaçons-nous dans le cas où $\beta = \gamma$.

On a donc $\alpha + \beta = \alpha + \gamma$.

Or on a $\alpha + \gamma \in S(\alpha + \gamma)$ d'après la proposition 12 page 33.

On a donc $\alpha + \beta \in S(\alpha + \gamma)$.

Ainsi dans les deux cas on a $\alpha + \beta \in S(\alpha + \gamma)$.

Or par définition de l'addition on a $S(\alpha + \gamma) = \alpha + S(\gamma)$.

On a donc $\alpha + \beta \in \alpha + S(\gamma)$.

Donc si $\beta \in S(\gamma)$ alors $\alpha + \beta \in \alpha + S(\gamma)$.

Ainsi on a $P_{\alpha,\beta}(S(\gamma))$.

Donc pour tout ordinal γ on a $P_{\alpha,\beta}(\gamma) \implies P_{\alpha,\beta}(S(\gamma))$.

► Hérédité limite

Soit γ un ordinal limite non nul tel que $\forall \delta \in \gamma, P_{\alpha,\beta}(\delta)$.

Supposons que $\beta \in \gamma$.

On a alors $S(\beta) \subseteq \gamma$ d'après la proposition 12 page 33.

On a donc $S(\beta) \in \gamma$ ou $S(\beta) = \gamma$ d'après la proposition 8 page 20.

Mais $S(\beta) = \gamma$ est impossible car γ est limite.

On a donc nécessairement $S(\beta) \in \gamma$.

Or par hypothèse on a $\forall \delta \in \gamma, P_{\alpha,\beta}(\delta)$ donc $P_{\alpha,\beta}(S(\beta))$.

Autrement dit on a $\beta \in S(\beta) \implies \alpha + \beta \in \alpha + S(\beta)$.

Or on a $\beta \in S(\beta)$ d'après la proposition 12 page 33.

On a donc $\alpha + \beta \in \alpha + S(\beta)$ par modus ponens.

Or on a $S(\beta) \in \gamma$ donc $\alpha + S(\beta) \in \{\alpha + \delta \mid \delta \in \gamma\}$.

Donc $\alpha + S(\beta) \subseteq \sup \alpha + \delta$ par définition de la borne supérieure.

Comme $\alpha + \beta \in \alpha + S(\beta)$ on a $\alpha + \beta \in \sup \alpha + \delta$ par transitivité.

Or γ est un ordinal limite non nul donc $\alpha + \gamma = \sup_{\delta \in \gamma} \alpha + \delta$ par définition de

l'addition.

On a donc $\alpha + \beta \in \alpha + \gamma$.

Donc si $\beta \in \gamma$ alors $\alpha + \beta \in \alpha + \gamma$.

Autrement dit on a $P_{\alpha,\beta}(\gamma)$.

Donc pour tout ordinal limite non nul γ , si $\forall \delta \in \gamma$, $P_{\alpha,\beta}(\delta)$ alors $P_{\alpha,\beta}(\gamma)$.

Ainsi $P_{\alpha,\beta}$ vérifie les trois conditions du principe faible d'induction.

Donc pour tout ordinal γ on a $P_{\alpha,\beta}(\gamma)$.

Autrement dit, pour tout ordinal γ on a $\beta \in \gamma \Rightarrow \alpha + \beta \in \alpha + \gamma$

2. Supposons que $\beta \subseteq \gamma$.

On a donc $\beta \in \gamma$ ou $\beta = \gamma$ d'après la proposition 8 page 20.

▶ Plaçons-nous dans le cas où $\beta \in \gamma$.

On a donc $\alpha + \beta \in \alpha + \gamma$ d'après 1.

On a en particulier $\alpha + \beta \subseteq \alpha + \gamma$ d'après la proposition 8 page 20.

▶ Plaçons-nous dans le cas où $\beta = \gamma$.

On a alors $\alpha + \beta = \alpha + \gamma$.

En particulier on a $\alpha + \beta \subseteq \alpha + \gamma$.

Dans les deux cas on a donc $\alpha + \beta \subseteq \alpha + \gamma$

3. Fixons β et γ .

Posons $Q_{\beta,\gamma}$ l'assertion à paramètre définie pour tout ordinal α par

$$Q_{\beta,\gamma}(\alpha) \iff \left(\beta \subseteq \gamma \Rightarrow \beta + \alpha \subseteq \gamma + \alpha\right)$$

Montrons le résultat par le principe faible d'induction.

► Initialisation

On a $\beta + 0 = \beta$ et $\gamma + 0 = \gamma$ par définition de l'addition.

On a donc l'implication $\beta \subseteq \gamma \implies \beta + 0 \subseteq \gamma + 0$.

Autrement dit on a $Q_{\beta,\gamma}(0)$.

► Hérédité

Soit α un ordinal tel que $Q_{\beta,\gamma}(\alpha)$.

Autrement dit on a l'implication $\beta \subseteq \gamma \Rightarrow \beta + \alpha \subseteq \gamma + \alpha$.

Supposons que $\beta \subseteq \gamma$.

Par modus ponens on a donc $\beta + \alpha \subseteq \gamma + \alpha$ par ce qui précède.

On a donc $\beta + \alpha \in \gamma + \alpha$ ou $\beta + \alpha = \gamma + \alpha$ d'après la prop. 8 p. 20.

• Plaçons-nous dans le cas où $\beta + \alpha \in \gamma + \alpha$.

On a donc $S(\beta + \alpha) \subseteq \gamma + \alpha$ d'après la proposition 12 page 33.

Or on a $\gamma + \alpha \in S(\gamma + \alpha)$ toujours d'après cette même proposition.

On a donc $S(\beta + \alpha) \in S(\gamma + \alpha)$ par transitivité chez les ordinaux.

En particulier on a $S(\beta + \alpha) \subseteq S(\gamma + \alpha)$ d'après la prop. 8 p. 20.

• Plaçons-nous dans le cas où $\beta + \alpha = \gamma + \alpha$.

On a donc $S(\beta + \alpha) = S(\gamma + \alpha)$.

En particulier on a $S(\beta + \alpha) \subseteq S(\gamma + \alpha)$.

Dans les deux ca son a $S(\beta + \alpha) \subseteq S(\gamma + \alpha)$.

Or on a $S(\beta + \alpha) = \beta + S(\alpha)$ et $S(\gamma + \alpha) = \gamma + S(\alpha)$ par définition de

l'addition. On a donc $\beta + S(\alpha) \subseteq \gamma + S(\alpha)$.

Donc si $\beta \subseteq \gamma$ alors $\beta + S(\alpha) \subseteq \gamma + S(\alpha)$.

Autrement dit on a $Q_{\beta,\gamma}(S(\alpha))$.

Donc pour tout ordinal α , si $Q_{\beta,\gamma}(\alpha)$ alors $Q_{\beta,\gamma}(S(\alpha))$.

► Hérédité limite

Soit α un ordinal limite non nul tel que $\forall \delta \in \alpha, Q_{\beta,\gamma}(\delta)$.

Autrement dit pour tout $\delta \in \alpha$ on a $\beta \subseteq \gamma \Rightarrow \beta + \delta \subseteq \gamma + \delta$.

Supposons que $\beta \subseteq \gamma$.

Par modus ponens pour tout $\delta \in \alpha$ on a $\beta + \delta \subseteq \gamma + \delta$.

Soit $\delta \in \alpha$.

D'après ce qui précède on a $\beta + \delta \subseteq \gamma + \delta$.

Or $\gamma + \delta \in \{\gamma + \varepsilon \mid \varepsilon \in \alpha\}$.

Donc $\gamma + \delta \subseteq \sup \gamma + \varepsilon$ par définition de la borne supérieure.

Or on a $\gamma + \alpha = \sup_{\varepsilon \in \alpha} \gamma + \varepsilon$ par définition de l'addition. On a donc $\gamma + \delta \subseteq \gamma + \alpha$.

On a donc $\beta + \delta \subseteq \gamma + \alpha$ par transitivité.

Donc pour tout $\delta \in \alpha$ on a $\beta + \delta \subseteq \gamma + \alpha$.

Ainsi $\gamma + \alpha$ est un majorant de $\{\beta + \delta \mid \delta \in \alpha\}$.

On a donc $\sup \beta + \delta \subseteq \gamma + \alpha$ par minimalité de la borne supérieure.

Or on a $\beta + \alpha = \sup_{s \in \alpha} \beta + \delta$ par définition de l'addition.

On a donc $\beta + \alpha \subseteq \gamma + \alpha$.

Donc si $\beta \subseteq \gamma$ alors $\beta + \alpha \subseteq \gamma + \alpha$.

Autrement dit, on a $Q_{\beta,\gamma}(\alpha)$.

Donc pour tout ordinal limite non nul α , si $\forall \delta \in \alpha$, $Q_{\beta,\gamma}(\delta)$ alors $Q_{\beta,\gamma}(\alpha)$.

Ainsi $Q_{\beta,\gamma}$ vérifie les trois conditions du principe faible d'induction. Donc pour tout ordinal α on a $Q_{\beta,\gamma}(\alpha)$. Autrement dit pour tout ordinal α on a $\beta \subseteq \gamma \implies \beta + \alpha \subseteq \gamma + \alpha$.

Remarque:

En particulier si $\beta \subseteq \gamma$ alors $\beta+1 \subseteq \gamma+1$ donc $S(\beta) \subseteq S(\gamma)$ d'après la prop. 29 p. 74.

Proposition 31 (Régularité à gauche de l'addition des ordinaux)

Soient α , β et γ trois ordinaux.

Si $\alpha + \beta = \alpha + \gamma$ alors $\beta = \gamma$.

On dit que l'addition des ordinaux est régulière à gauche.

Montrons-le par contraposition.

Supposons que $\beta \neq \gamma$.

On a donc $\beta \in \gamma$ ou $\gamma \in \beta$ d'après le théorème 1 page 21.

Si $\beta \in \gamma$ alors $\alpha + \beta \in \alpha + \gamma$ d'après la proposition 30 page 74.

Si $\gamma \in \beta$ alors $\alpha + \gamma \in \alpha + \beta$ d'après la proposition 30 page 74.

Dans les deux cas on a $\alpha + \beta \neq \alpha + \gamma$.

Donc si $\beta \neq \gamma$ alors $\alpha + \beta \neq \alpha + \gamma$. Par contraposition $\boxed{\text{si } \alpha + \beta = \alpha + \gamma \text{ alors } \beta = \gamma}$.

Remarque:

Malheureusement l'addition n'est pas régulière à droite. En effet nous montrerons que $1 + \omega = \omega = 2 + \omega$, alors que l'on n'a pas 1 = 2.

Dans la définition de l'addition, si γ est un ordinal limite non nul alors $\alpha + \gamma = \sup \alpha + \delta$. Or un ordinal limite est lui-même sa propre borne supérieure $\gamma = \sup \delta$ d'après la proposition 20 page 46, si bien que l'on a en fait $\alpha + \sup \delta = \sup \alpha + \delta$. Ainsi l'addition à droite commute avec la borne supérieure. Nous verrons que c'est vrai même pour la borne supérieure d'un ensemble qui n'est pas lui-même un ordinal. Pour l'heure, généralisons ce concept avec la définition qui suit.

Définition 15 (Assertion fonctionnelle croissante continue)

Soit $F: ON \longrightarrow ON$ une assertion fonctionnelle.

1. On dit que F est **croissante** si et seulement si pour tout ordinaux α et β ,

$$\alpha \subseteq \beta \implies F(\alpha) \subseteq F(\beta)$$

2. Supposons que F est croissante.

On dit que F est **continue** si et seulement si pour tout ensemble d'ordinaux non vide X,

$$F(\sup(X)) = \sup(F^{\rightarrow}(X))$$

Le point 2 de cette définition est bien une généralisation de ce que nous avons vu juste avant : cela dit que $F\left(\sup_{\xi \in X} \xi\right) = \sup_{\xi \in X} F(\xi)$.

Pourquoi cette propriété s'appelle-t-elle *continuité*? Parce qu'elle rappelle ce qu'il se passe dans le cadre de l'analyse : par exemple pour $f:\mathbb{R}\longrightarrow\mathbb{R}$ une application croissante, f est continue (à gauche) en $a \in \mathbb{R}$ si et seulement si $f\left(\lim_{x < a} x\right) = \lim_{x < a} f(x)$.

Il s'avère qu'en fait on peut affaiblir cette condition et quand-même retrouver la continuité en question : en la demandant seulement sur les ordinaux limites, on la retrouve partout.

Proposition 32 (Caractérisation de continuité)

Soit $F: ON \longrightarrow ON$ une assertion fonctionnelle **croissante**.

Les assertions suivantes sont équivalentes :

- 1. F est continue.
- 2. Pour tout ordinal limite non nul γ , on a $F(\gamma) = \sup_{\delta \in \gamma} F(\delta)$.

$$1\Rightarrow 2$$

Supposons que F est continue.

Par définition pour tout ensemble non vide d'ordinaux X, on a $F\left(\sup_{\xi \in X} \xi\right) = \sup_{\xi \in X} F(\xi)$.

Soit γ un ordinal limite non nul.

On a donc
$$F\left(\sup_{\delta \in \gamma} \delta\right) = \sup_{\delta \in \gamma} F(\delta)$$
.

On a donc $\sup \delta = \sup(\gamma) = \gamma$ d'après la proposition 20 page 46.

On a donc
$$\sup_{\delta \in \gamma} \delta = \sup_{\delta \in \gamma} (\gamma) = \sup_{\delta \in \gamma} F(\delta).$$

Donc pour tout ordinal limite non nul γ , on a $F(\gamma) = \sup_{\delta \in \gamma} F(\delta)$

1 ← 2

Supposons que pour tout ordinal limite non nul γ on a $F(\gamma) = \sup_{\delta \in \gamma} F(\delta)$.

Soit X un ensemble non vide d'ordinaux.

Montrons que $F(\sup(X)) = \sup(F^{\rightarrow}(X))$.

Rappelons que comme X est un ensemble, $F^{\rightarrow}(X) = \{F(\xi) \mid \xi \in X\}$ est aussi un ensemble d'après le schéma d'axiome de remplacement. C'est bien un ensemble d'ordinaux car F est à valeurs dans ON.

Raisonnons par double inclusions.

 \subseteq

• Plaçons-nous dans le cas où $\sup(X) \in X$.

Alors $F(\sup(X)) \in F^{\rightarrow}(X)$ par définition de l'image directe.

On a donc $F(\sup(X)) \subseteq \sup(F^{\rightarrow}(X))$ car la borne supérieure est un majorant.

• Plaçons-nous dans le cas où $\sup(X) \notin X$.

Alors $\sup(X)$ est un ordinal limite d'après la proposition 19 page 45.

Supposons par l'absurde que $\sup(X) = 0$.

Comme $\sup(X)$ est un majorant de X, on a $\forall \xi \in X, \xi \subseteq \sup(X)$.

Comme $\sup(X) = 0$, on a $\forall \xi \in X, \xi = \sup(X)$.

Comme X est non vide, on a donc $\sup(X) \in X$.

C'est absurde puisqu'on a supposé que $\sup(X) \notin X$.

Donc $\sup(X)$ est un ordinal limite non nul.

Donc par hypothèse on a $F (\sup(X)) = \sup_{\delta \in \sup(X)} F(\delta)$.

Montrons donc que $\sup_{\delta \in \operatorname{min}(Y)} F(\delta) \subseteq \sup(F^{\to}(X))$.

Soit $\delta \in \sup(X)$.

Par définition $\sup(X)$ est le plus petit majorant de X.

Donc δ n'est pas un majorant de X.

Il existe donc $\xi \in X$ tel que $\delta \subseteq \xi$.

Par croissance de F on a donc $F(\delta) \subseteq F(\xi)$.

Or $\xi \in X$ donc $F(\xi) \in F^{\rightarrow}(X)$ et donc $F(\xi) \subseteq \sup(F^{\rightarrow}(X))$.

Par transitivité de l'inclusion on a donc $F(\delta) \subseteq \sup(F^{\rightarrow}(X))$.

Donc $\forall \delta \in \sup(X), F(\delta) \subseteq \sup(F^{\rightarrow}(X)).$

Donc $\sup_{\delta \in \sup(X)} F(\delta) \subseteq \sup(F^{\rightarrow}(X))$ par minimalité de la borne supérieure.

On a donc $F(\sup(X)) \subseteq \sup(F^{\rightarrow}(X))$ d'après ce qui précède.

Ainsi dans les deux cas on a $F(\sup(X)) \subseteq \sup(F^{\rightarrow}(X))$

 \supseteq

Soit $\mu \in F^{\rightarrow}(X)$.

Par définition il existe $\xi \in X$ tel que $\mu = F(\xi)$.

On a $\xi \subseteq \sup(X)$ car la borne supérieure est un majorant.

On a donc $F(\xi) \subseteq F(\sup(X))$ par croissance de F.

On a donc $\mu \subseteq F(\sup(X))$ par définition de ξ .

Donc pour tout $\mu \in F^{\rightarrow}(X)$, on a $\mu \subseteq F(\sup(X))$.

Donc $\sup(F^{\rightarrow}(X)) \subseteq F(\sup(X))$ par minimalité de la borne supérieure.

Finalement on a bien $F(\sup(X)) = \sup(F^{\rightarrow}(X))$.

CQFD.

Ce que l'on vient de dire s'applique en particulier à l'addition qui vérifie bien la condition sur les ordinaux limites non vides. Ainsi l'addition à droite est continue.

Proposition 33 (Continuité de l'addition des ordinaux)

Soient α un ordinal et X un ensemble non vide d'ordinaux.

On a $\sup(\alpha + \xi) = \alpha + \sup \xi$.

Autrement dit l'addition à droite est continue.

Démonstration

C'est simplement un cas particulier de la proposition 32 page 79.

CQFD.

Remarque:

Malheureusement l'addition à gauche n'est pas continue. En effet, prenons $X=\omega=\alpha$. Nous aurons l'occasion de voir que pour tout $n\in\omega$, on a $n+\omega=\omega$ si bien que $\sup_{n\in\omega}(n+\omega)=\sup_{n\in\omega}\omega=\omega \text{ tandis que }\left(\sup_{n\in\omega}n\right)+\omega=\omega+\omega \text{ qui n'est pas égal à }\omega.$

Proposition 34 (Associativité de l'addition des ordinaux)

Pour tout ordinaux α , β et γ , on a l'égalité

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

On dit que l'addition des ordinaux est associative.

Montrons-le à l'aide du principe faible d'induction transfinie.

Fixons α et β deux ordinaux.

Pour tout ordinal γ , posons $P_{\alpha,\beta}$ l'assertion à paramètre définie par

$$P_{\alpha,\beta}(\gamma) \iff (\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)$$

► Initialisation

Par définition de l'addition on a $(\alpha + \beta) + 0 = \alpha + \beta$.

De même, par définition de l'addition on a $\beta + 0 = \beta$ donc $\alpha + (\beta + 0) = \alpha + \beta$.

On a donc $(\alpha + \beta) + 0 = \alpha + (\beta + 0)$.

On a donc $P_{\alpha,\beta}(0)$.

► Hérédité

Soit γ un ordinal tel que $P_{\alpha,\beta}(\gamma)$.

On a donc $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$.

On a alors

$$(\alpha+\beta)+S(\gamma)=Sig((\alpha+\beta)+\gammaig)$$
 par définition de l'addition
$$=Sig(\alpha+(\beta+\gamma)ig)$$
 puisqu'on a $P_{\alpha,\beta}(\gamma)$
$$=\alpha+S(\beta+\gamma)$$
 par définition de l'addition
$$=\alpha+ig(\beta+S(\gamma)ig)$$
 par définition de l'addition

Ainsi on a $(\alpha + \beta) + S(\gamma) = \alpha + (\beta + S(\gamma))$, c'est-à-dire $P_{\alpha,\beta}(S(\gamma))$. Donc pour tout ordinal γ , on a $P_{\alpha,\beta}(\gamma) \implies P_{\alpha,\beta}(S(\gamma))$.

► Hérédité limite

Soit γ un ordinal limite non nul tel que $\forall \delta \in \gamma, P_{\alpha,\beta}(\delta)$.

Posons
$$X := \{ \beta + \delta \mid \delta \in \gamma \}.$$

On a alors

$$\begin{split} (\alpha+\beta)+\gamma &= \sup_{\delta \in \gamma} \Big((\alpha+\beta)+\delta \Big) \text{ par d\'efinition de l'addition} \\ &= \sup_{\delta \in \gamma} \Big(\alpha+(\beta+\delta) \Big) \text{ puisque } \forall \delta \in \gamma, P_{\alpha,\beta}(\delta) \\ &= \sup_{\xi \in X} (\alpha+\xi) \text{ par d\'efinition de } X \\ &= \alpha + \sup_{\xi \in X} \xi \text{ par continuit\'e à droite de l'addition} \end{split}$$

$$=\alpha+\sup_{\delta\in\gamma}(\beta+\delta) \text{ par d\'efinition de }X$$

$$=\alpha+(\beta+\gamma) \text{ par d\'efinition de l'addition}$$

On a donc
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$
.

Autrement dit on a $P_{\alpha,\beta}(\gamma)$.

Ainsi pour tout ordinal limite non nul γ , on a $(\forall \delta \in \gamma, P_{\alpha,\beta}(\delta)) \implies P_{\alpha,\beta}(\gamma)$.

Ainsi $P_{\alpha,\beta}$ vérifie les trois conditions du principe faible d'induction.

L'addition des ordinaux a une interprétation graphique : visualisons par exemple l'addition des ordinaux ω et 2. Commençons par les représenter tous les deux avec des bâtons indépendemment l'un de l'autre, ω et ses éléments étant en rouge et 2 et ses éléments étant en bleu :

Rappelons qu'ici la taille des bâtons n'a aucune importante, seul leur agencement horizontal importe. Le fait de représenter des bâtons de plus en plus petits est seulement une astuce pour en faire tenir une infinité.

L'interprétation visuelle consiste alors à concaténer les deux ordinaux à additionner, c'est-àdire à les placer l'un derrière l'autre. Ainsi, on peut les disposer de deux manières :

- \blacktriangleright d'abord ω puis 2 à sa droite, ce qui donne la représentation graphique de $\omega + 2$
- \blacktriangleright d'abord 2 puis ω à sa droite, ce qui donne la représentation graphique de $2+\omega$

On renumérote alors les bâtons en fonction de l'ordre dans lequel ils arrivent, de la gauche vers la droite,

ce qui permet ainsi de voir que

- \blacktriangleright $\omega + 2$ est égal à $\{0, 1, 2, \dots, \omega, \omega + 1\}$ donc est l'ordinal qui vient juste après $\omega + 1$, c'est-à-dire son successeur.
- \triangleright 2 + ω est égal à $\{0, 1, 2, 3, \dots\}$, c'est-à-dire tout simplement ω lui-même.

Et oui! On a en effet $\omega + 2 \neq 2 + \omega$. Comme nous aurons l'occasion de le montrer proprement, l'addition des ordinaux n'est pas commutative (bien qu'elle le soit fort heureusement chez les entiers naturels.)

Pour l'heure, cette illustration est là pour nous faire comprendre l'intuition derrière l'addition des ordinaux : cette idée de concaténation va se traduire formellement par la notion d'union disjointe.

Définition 16 (Union disjointe de deux ensembles)

Soient A et B deux ensembles. On appelle **union disjointe** de A et B l'ensemble

$$A \coprod B := (\{0\} \times A) \cup (\{1\} \times B)$$

Ainsi les éléments de $A \coprod B$ sont des couples dont la première composante est un élément de $\{0,1\}$ et la deuxième un élément de $A \cup B$, si bien que $A \coprod B$ est une partie de $\{0,1\} \times (A \cup B)$. Cependant, on a en plus l'information qu'une première composante égale à 0 correspond à une deuxième composante dans A, et on a le même lien entre 1 et B. De cette manière, les éléments de A « viennent avant » les éléments de B, ce qui traduit bien l'idée intuitive de concaténation que nous avons pu voir illustrée.

Dans le cas où A et B sont munit d'un ordre, voyons comment s'en servir pour construire un ordre sur $A \coprod B$.

Définition 17 (Ordre sur l'union disjointe de deux ensembles)

Soient (A, \leq) et (B, \leq) deux ensembles ordonnés.

On appelle **ordre de concaténation** sur $A \coprod B$ la relation binaire définie pour tout (i,x) et (j,y) dans $A \coprod B$ par

$$(i,x) \preceq (j,y) \iff \begin{cases} i=0 \text{ et } j=1 \\ \text{ou} \\ i=0=j \text{ et } x \leq y \\ \text{ou} \\ i=1=j \text{ et } x \preceq y \end{cases}$$

Au fond la construction formelle et ensembliste de $A \coprod B$ et son ordre de concaténation associé importe peu. Ce qui nous importe, ce sont les propriétés qu'ils vérifient, au sens où l'intuition qu'on a de la concaténation est respectée. C'est justement l'objet de la proposition qui suit.

Proposition 35 (Caractérisation de la concaténation)

Soient (A, \leq) et (B, \preceq) deux ensembles ordonnés. Soit \leq l'ordre de concaténation associé sur $A \coprod B$.

1. \leq est une relation d'ordre sur $A \coprod B$.

$$\text{Soient } f := \left(\begin{array}{ccc} A & \longrightarrow & A \amalg B \\ a & \longmapsto & (0,a) \end{array} \right) \text{ et } g := \left(\begin{array}{ccc} B & \longrightarrow & A \amalg B \\ b & \longmapsto & (1,b) \end{array} \right).$$

- 2. $\operatorname{im}(f) \cup \operatorname{im}(q) = A \coprod B \text{ et } \operatorname{im}(f) \cap \operatorname{im}(q) = \emptyset$
- 3. f et g sont des isomorphismes d'ordre sur leurs images respectives.
- 4. Pour tout $u \in \text{im}(f)$ et $v \in \text{im}(g)$, on a $u \leq v$.
- 5. \triangleleft est l'unique relation d'ordre sur $A \coprod B$ vérifiant simultanément 3 et 4.

Démonstration

1. Réflexivité

Soit $(i, x) \in A \coprod B$.

ightharpoonup Supposons que i=0.

Par définition de $A \coprod B$, on a alors $x \in A$.

Par réflexivité de \leq sur A, on a $x \leq x$.

Ainsi $(i = 0 = i \text{ et } x \le x) \text{ donc } (i, x) \le (i, x) \text{ par définition de } \le.$

ightharpoonup On raisonne de la même manière si i=1.

On a donc $(i, x) \leq (i, x)$.

Donc \leq est réflexive sur $A \coprod B$.

Antisymétrie

Soient (i, x) et (j, y) dans $A \coprod B$.

Supposons que $(i, x) \leq (j, y)$ et $(j, y) \leq (i, x)$.

- ▶ Plaçons-nous dans le cas où i = 0 et j = 1. C'est impossible puisqu'on a $(j, y) \le (i, x)$.
- ▶ Plaçons-nous dans le cas où i = 1 et j = 0. C'est impossible puisqu'on a $(i, x) \le (j, y)$.
- Plaçons-nous dans le cas où i=0=j. Par définition de $A \coprod B$, on a alors $x \in A$ et $y \in A$. Comme $(i,x) \unlhd (j,y)$, on a $x \leq y$. Comme $(j,y) \unlhd (i,x)$, on a $y \leq x$. On a donc x=y par antisymétrie de \leq . Ainsi i=j et x=y donc (i,x)=(j,y).
- ▶ Le cas i = 1 = j se traite de la même manière.

Ainsi on a (i, x) = (j, y).

Donc si $(i, x) \leq (j, y)$ et $(j, y) \leq (i, x)$ alors (i, x) = (j, y).

Donc ≤ est antisymétrique.

Transitivité

Soient (i, x), (j, y) et (k, z) dans $A \coprod B$.

Supposons que $(i, x) \leq (j, y)$ et $(j, y) \leq (k, z)$.

▶ Plaçons-nous dans le cas où i = j = k = 0.

Par définition de $A \coprod B$, on a alors $x \in A$, $y \in A$ et $z \in A$.

Comme $(i, x) \leq (j, y)$ et $(j, y) \leq (k, z)$, on a $x \leq y$ et $y \leq z$.

On a donc $x \le z$ par transitivité de \le .

Comme i = 0 = k et $x \le z$, on a $(i, x) \le (k, z)$.

- ▶ Le cas i = j = k = 1 se traite de la même manière.
- ▶ Si i = 0 = j et k = 1 alors on a automatiquement $(i, x) \le (k, z)$.
- ▶ Si i = 0 et j = 1 = k alors on a automatiquement $(i, x) \le (k, z)$.
- ▶ Les autres cas sur les valeurs de i, j et k sont impossibles puisque l'on a $(i, x) \le (j, y)$ et $(j, y) \le (k, z)$.

Dans tous les cas, on a nécessairement $(i, x) \leq (k, z)$.

Donc si $(i, x) \le (j, y)$ et $(j, y) \le (k, z)$ alors $(i, x) \le (k, z)$.

Donc \triangleleft est transitive.

Ainsi \leq est réflexive sur $A \coprod B$, est antisymétrique et transitive.

Donc \leq est une relation d'ordre sur $A \coprod B$.

2. Montrons que $\operatorname{im}(f) \cup \operatorname{im}(g) = A \coprod B$

Par définition de f et de g, on a $\operatorname{im}(f) \subseteq A \coprod B$ et $\operatorname{im}(g) \subseteq A \coprod B$.

On a donc $\operatorname{im}(f) \cup \operatorname{im}(g) \subseteq A \coprod B$.

Soit $(i, x) \in A \coprod B$.

Par définition de $A \coprod B$, on a i = 0 ou i = 1.

▶ Supposons que i = 0.

Par définition de $A \coprod B$, on a alors $x \in A$.

Alors $(i, x) = f(x) \in \operatorname{im}(f) \operatorname{donc}(i, x) \in \operatorname{im}(f) \cup \operatorname{im}(g)$.

▶ Supposons que i = 1.

Par définition de $A \coprod B$, on a alors $x \in B$.

Alors $(i, x) = g(x) \in \operatorname{im}(g)$ donc $(i, x) \in \operatorname{im}(f) \cup \operatorname{im}(g)$.

Dans les deux cas, on a $(i, x) \in \text{im}(f) \cup \text{im}(g)$.

Ainsi $\operatorname{im}(f) \cup \operatorname{im}(g) \supseteq A \coprod B$ et donc $\operatorname{im}(f) \cup \operatorname{im}(g) = A \coprod B$

Montrons que $\operatorname{im}(f) \cap \operatorname{im}(g) = \emptyset$.

Supposons par l'absurde que $\operatorname{im}(f) \cap \operatorname{im}(g) \neq \varnothing$.

Il existe donc $(i, x) \in \operatorname{im}(f) \cap \operatorname{im}(g)$.

Comme $(i, x) \in \text{im}(f)$, il existe $a \in A$ tel que (i, x) = f(a).

Par définition de f, on a alors x = a donc $x \in A$ et donc i = 0.

De même, comme $(i, x) \in \text{im}(g)$, il existe $b \in B$ tel que (i, x) = g(b).

Par définition de g, on a alors x = b donc $x \in B$ et donc i = 1.

Ainsi on a i = 0 et i = 1, ce qui est absurde.

Par l'absurde, on vient de montrer que $|\operatorname{im}(f) \cap \operatorname{im}(g) = \emptyset|$

3. Montrons que f injective.

Soient a et a' dans A.

Supposons que f(a) = f(a').

Par définition de f on a donc f(a) = (0, a) et f(a') = (0, a').

Ainsi on a (0, a) = (0, a') et donc a = a'.

Donc si f(a) = f(a') alors a = a'.

Donc f est injective.

L'injectivité de g se montre de la même manière.

Montrons que f est croissante.

Soient a et a' dans A.

Supposons que $a \leq a'$.

Ainsi 0 = 0 et $a \le a'$ donc $(0, a) \le (0, a')$ par définition de \le .

Or f(a) = (0, a) et f(a') = (0, a') par définition de f.

Donc $f(a) \leq f(a')$.

Donc si $a \le a'$ alors $f(a) \le f(a')$.

Donc f est croissante.

La croissance de g se montre de la même manière.

Comme f est injective, $f^{-1}: \operatorname{im}(f) \longrightarrow A$ est bien définie.

Montrons que f^{-1} est croissante.

Soient (i, x) et (j, y) dans im(f).

Il existe donc a et a' tels que (i, x) = f(a) et (j, y) = f(a').

Par définition de f on a donc x = a et y = a' donc $x \in A$ et $y \in A$.

Par définition de $A \coprod B$ on a donc i = 0 = j.

Par définition de f^{-1} , on a alors $f^{-1}(i,x) = a = x$ et $f^{-1}(j,y) = a' = y$.

Supposons que $(i, x) \leq (j, y)$.

Comme i = 0 = j, on a $x \le y$ par définition de \le .

Or on a dit que $f^{-1}(i,x) = x$ et $f^{-1}(j,y) = y$.

On a donc $f^{-1}(i, x) \leq f^{-1}(j, y)$.

Donc si $(i, x) \leq (j, y)$ alors $f^{-1}(i, x) \leq f^{-1}(j, y)$.

Donc f^{-1} est croissante.

La croissance de g^{-1} se montre de la même manière.

Ainsi f est injective, f et f^{-1} sont croissantes.

Donc |f| est un isomorphisme d'ordre de dom(f) dans im(f)

L'isomorphie d'ordre de g de dom(g) dans im(g) se montre de la même manière.

4. Soient $u \in \operatorname{im}(f)$ et $v \in \operatorname{im}(g)$.

Il existe alors $a \in A$ et $b \in B$ tels que u = f(a) et v = g(b).

Par définition de f et de g, on a f(a) = (0, a) et g(b) = (1, b).

On a donc u=(0,a) et v=(1,b). Or on a $(0,a) \leq (1,b)$ par définition de \leq . On a donc $u \leq v$.

5. Soit \leq une relation d'ordre sur $A \coprod B$ vérifiant simultanément 3 et 4.

Montrons que pour tout u et v dans $A \coprod B$, on a l'équivalence $u \preccurlyeq v \iff u \unlhd v$.

Soient (i, x) et (j, y) dans $A \coprod B$.

▶ Plaçons-nous dans le cas où i = 0 = j.

Par définition de $A \coprod B$, on a alors $x \in A$ et $y \in A$.

Par définition de f, on a alors (i, x) = f(x) et (j, y) = f(y).

On a alors les équivalences suivantes

$$(i,x) \preccurlyeq (j,y) \iff f(x) \preccurlyeq f(y) \text{ par ce qui précède}$$
 $\iff f^{-1}\big(f(x)\big) \leq f^{-1}\big(f(y)\big) \text{ par croissance de } f^{-1}$ $\iff x \leq y$ $\iff (0,x) \unlhd (0,y) \text{ par définition de } \unlhd$ $\iff (i,x) \unlhd (j,y) \text{ puisque } i=0=j$

Donc $(i, x) \leq (j, y) \iff (i, x) \leq (j, y)$.

- ▶ Le cas i = 1 = j se traite de la même manière.
- ▶ Plaçons-nous dans le cas où i = 0 et j = 1.

Par définition de $A \coprod B$ on a alors $x \in A$ et $y \in B$.

Par définitions de f et g on a alors f(x) = (i, x) et g(y) = (j, y).

En particulier on a $(i, x) \in \operatorname{im}(f)$ et $(j, y) \in \operatorname{im}(g)$.

On a donc $(i, x) \leq (j, y)$ d'après 4.

De même, on a $(i, x) \leq (j, y)$ puisque \leq vérifie 4.

En particulier on a l'équivalence $(i, x) \preceq (j, y) \iff (i, x) \preceq (j, y)$.

▶ Plaçons-nous dans le cas où i = 1 et j = 0.

Par définition de $A \coprod B$ on a alors $x \in B$ et $y \in A$.

Par définitions de f et g on a alors g(x) = (i, x) et f(y) = (j, y).

En particulier on a $(j, y) \leq (i, x)$ d'après 4.

De même on a $(j, y) \leq (i, x)$ puisque \leq vérifie 4.

On a donc les équivalences suivantes

$$(i,x) \preccurlyeq (j,y) \iff (i,x) \preccurlyeq (j,y) \text{ et } (j,y) \preccurlyeq (i,x) \text{ d'après ce qui précède}$$

 $\iff (i,x) = (j,y) \text{ par antisymétrie}$

$$\iff (i,x) \unlhd (j,y) \text{ et } (j,y) \unlhd (i,x)$$

$$\iff (i,x) \unlhd (j,y) \text{ d'après ce qui précède}$$

On a donc bien l'équivalence $(i, x) \leq (j, y) \iff (i, x) \leq (j, y)$.

Dans tous les cas, on a l'équivalence $(i, x) \preceq (j, y) \iff (i, x) \preceq (j, y)$.

Ainsi pour tout u et v dans $A \coprod B$, on a l'équivalence $u \leq v \iff u \leq v$.

Donc ≼ et ⊴ sont en fait la même relation d'ordre, d'où l'unicité.

CQFD.

Nous avons formalisé ce qu'était l'opération de concaténation de deux ensembles ordonnés : passer par leur union disjointe et associer à celle-ci l'ordre de concaténation. Il s'avère que si les deux ensembles en question sont bien ordonnés, il en va de même pour leur union disjointe. Heureusement d'ailleurs, puisque notre objectif est d'en tirer un ordinal à la fin (n'oublions pas que l'on s'intéresse à l'addition d'ordinaux!)

Proposition 36 (Concaténation de bons ordres)

Soient (A, \leq) et (B, \leq) deux ensembles ordonnés. Soit \leq l'ordre de concaténation associé sur $A \coprod B$.

Si (A, \leq) et (B, \preceq) sont bien ordonnés alors $(A \coprod B, \leq)$ est bien ordonné.

Supposons que (A,\leq) et (B,\preceq) sont bien ordonnés.

Montrons que toute partie non vide de $A \coprod B$ admet un minimum.

Soit C une partie non vide $A \coprod B$.

▶ Supposons dans un premier temps qu'il existe $a \in A$ tel que $(0, a) \in C$.

Considérons alors $E := \{ a \in A \mid (0, a) \in C \}.$

Alors E est donc une partie non vide de A.

Comme A est bien ordonné, E admet un minimum a_0 .

Ainsi on a $(0, a_0) \in C$ par définition de E.

Montrons que $(0, a_0)$ est le minimum de C.

Soit
$$(i, x) \in C$$
.

• Plaçons-nous dans le cas où i = 0.

Dans ce cas-là $x \in A$ par définition de $A \coprod B$.

Donc $x \in A$ est tel que $(0, x) = (i, x) \in C$.

Alors $x \in E$ par définition de E.

Donc $a_0 \le x$ car a_0 est le minimum de E.

Ainsi $(i = 0 \text{ et } a_0 \le x) \text{ donc } (0, a_0) \le (i, x) \text{ par définition de } \le.$

• Plaçons-nous dans le cas où i = 1.

Ainsi 0 = 0 et i = 1 donc $(0, a_0) \le (i, x)$ par définition de \le .

Dans tous les cas on a $(0, a_0) \le (i, x)$.

Donc $(0, a_0)$ est le minimum de C.

 \blacktriangleright Supposons à présent qu'il n'existe pas de $a \in A$ tel que $(0, a) \in C$.

Donc pour tout $(i, x) \in C$, on a i = 1 et $x \in B$ par définition de $A \coprod B$.

Posons alors $F := \{b \in B \mid (1, b) \in C\}.$

Comme C est non vide, F est une partie non vide de B.

Or B est bien ordonné donc F admet un minimum b_0 .

Ainsi on a $(1, b_0) \in C$ par définition de F.

Montrons que $(1, b_0)$ est le minimum de C.

Soit $(i, x) \in C$.

D'après ce qui précède, on a nécessairement i = 1 et $x \in B$.

Ainsi $x \in B$ est tel que $(1, x) = (i, x) \in C$.

Donc $x \in F$ par définition de F.

Donc $b_0 \leq x$ car b_0 est le minimum de F.

Ainsi $(i = 1 \text{ et } b_0 \leq x) \text{ donc } (1, b_0) \leq (i, x) \text{ par définition de } \leq$.

Donc $(1, b_0)$ est le minimum de C.

Dans les deux cas C admet un minimum.

Donc toute partie non vide de $A \coprod B$ admet un minimum.

Donc $A \coprod B$ est bien ordonné.

CQFD.

Nous y voilà! Prenons deux ordinaux α et β : ils sont bien ordonnés par \subseteq donc α $\coprod \beta$ est aussi bien ordonné par l'ordre de concaténation associé. Donc d'après le théorème 4 page 51, il existe un unique ordinal isomorphe à α $\coprod \beta$, que l'on a noté $\operatorname{type}(\alpha \coprod \beta)$. L'intuition est confirmée par le théorème suivant : cet unique ordinal est en fait $\alpha + \beta$!

Au passage, remarquons que le fait de passer de $\alpha \coprod \beta$ à type $(\alpha \coprod \beta)$ correspond à la renumérotation que l'on a fait dans l'exemple visuel de $2 + \omega$: c'était une étape nécessaire pour s'assurer d'avoir un ordinal à la fin.

Théorème 7 (Addition d'ordinaux et concaténation)

Soient α et β deux ordinaux.

On munit $\alpha \coprod \beta$ de l'ordre de concaténation associé.

Alors $\alpha + \beta = \text{type}(\alpha \coprod \beta)$.

Notons \triangleleft l'ordre de concaténation associé à $\alpha \coprod \beta$.

Construisons un isomorphisme d'ordre entre $\alpha \coprod \beta$ et $\alpha + \beta$.

• Construction de l'application.

Remarquons que pour tout $(i, \gamma) \in \alpha \coprod \beta$, on a :

▶ Plaçons-nous dans le cas où i = 0.

Alors par définition de $\alpha \coprod \beta$ on a $\gamma \in \alpha$.

Or $\alpha = \alpha + 0$ par définition de l'addition.

De plus $0 \subseteq \beta$ car le vide est inclus dans tout ensemble.

Donc par croissance à droite de l'addition on a $\alpha + 0 \subseteq \alpha + \beta$.

On a donc $\alpha \subseteq \alpha + \beta$.

On a donc $\gamma \in \alpha + \beta$ par définition de l'inclusion.

▶ Plaçons-nous dans le cas où i = 1.

Alors par définition de $\alpha \coprod \beta$ on a $\gamma \in \beta$.

Alors $\alpha + \gamma \in \alpha + \beta$ par croissance à droite de l'addition.

Ainsi, on peut poser
$$\varphi := \left(\begin{array}{ccc} \alpha \amalg \beta & \longrightarrow & \alpha + \beta \\ \\ (i, \gamma) & \longmapsto & \left\{ \begin{array}{ccc} \gamma & \text{si } i = 0 \\ \\ \alpha + \gamma & \text{si } i = 1 \end{array} \right\}.$$

• Montrons que φ est croissante.

Soient (i, γ) et (j, δ) dans $\alpha \coprod \beta$.

Supposons que $(i, \gamma) \leq (j, \delta)$.

▶ Plaçons-nous dans le cas où i = 0 = j.

Alors $\gamma \in \alpha$ et $\delta \in \alpha$ par définition de $\alpha \coprod \beta$.

De plus on a $\varphi(i, \gamma) = \gamma$ et $\varphi(j, \delta) = \delta$ par définition de φ .

Comme $(i, \gamma) \leq (j, \delta)$ on a $\gamma \subseteq \delta$ par définition de \leq .

On a donc $\varphi(i, \gamma) \subseteq \varphi(j, \delta)$.

▶ Plaçons-nous dans le cas où i = 1 = j.

Alors $\gamma \in \beta$ et $\delta \in \beta$ par définition de $\alpha \coprod \beta$.

De plus $\varphi(i, \gamma) = \alpha + \gamma$ et $\varphi(j, \delta) = \alpha + \delta$ par définition de φ .

Comme $(i, \gamma) \leq (j, \delta)$ on a $\gamma \subseteq \delta$ par définition de \leq .

On a donc $\alpha + \gamma \subseteq \alpha + \delta$ par croissance de l'addition.

On a donc $\varphi(i, \gamma) \subseteq \varphi(j, \delta)$.

▶ Plaçons-nous dans le cas où i = 0 et j = 1.

Alors $\gamma \in \alpha$ et $\delta \in \beta$ par définition de \leq .

De plus
$$\varphi(i, \gamma) = \gamma$$
 et $\varphi(j, \delta) = \alpha + \delta$.

On a $\gamma \in \alpha = \alpha + 0 \subseteq \alpha + \delta$ par croissance de l'addition.

On a donc $\gamma \subseteq \alpha + \delta$ par transitivité chez les ordinaux.

On a donc $\varphi(i, \gamma) \subseteq \varphi(j, \delta)$.

▶ Plaçons-nous dans le cas où i = 1 et j = 0.

On a alors $(j, \delta) \leq (i, \gamma)$ par définition de \leq .

On a donc $(i, \gamma) = (j, \delta)$ par antisymétrie de \leq .

On a donc $\varphi(i, \gamma) = \varphi(j, \delta)$ et donc en particulier $\varphi(i, \gamma) \subseteq \varphi(j, \delta)$.

Dans tous les cas on a $\varphi(i, \gamma) \subseteq \varphi(j, \delta)$.

Donc si
$$(i, \gamma) \leq (j, \delta)$$
 alors $\varphi(i, \gamma) \subseteq \varphi(j, \delta)$.

Donc φ est croissante.

• Montrons que φ est injective.

Soit
$$(i, \gamma)$$
 et (j, δ) dans $\alpha \coprod \beta$.

Supposons que $\varphi(i, \gamma) = \varphi(j, \delta)$.

▶ Plaçons-nous dans le cas où i = 0 = j.

On a alors $\varphi(i, \gamma) = \gamma$ et $\varphi(j, \delta) = \delta$ par définition de φ .

Comme $\varphi(i, \gamma) = \varphi(j, \delta)$ on a donc $\gamma = \delta$.

Comme i = j et $\gamma = \delta$ on a $(i, \gamma) = (j, \delta)$.

▶ Plaçons-nous dans le cas où i = 1 = j.

On a alors $\varphi(i, \gamma) = \alpha + \gamma$ et $\varphi(j, \delta) = \alpha \delta$ par définition de φ .

Comme $\varphi(i, \gamma) = \varphi(j, \delta)$ on a donc $\alpha + \gamma = \alpha + \delta$.

On en déduit que $\gamma = \delta$ par régularité à gauche de l'addition.

Comme
$$i = j$$
 et $\gamma = \delta$ on a $(i, \gamma) = (j, \delta)$.

▶ Plaçons-nous dans le cas où i = 0 et j = 1.

On a alors $\gamma \in \alpha$ et $\delta \in \beta$ par définition de $\alpha \coprod \beta$.

On a aussi $\varphi(i,\gamma) = \gamma$ et $\varphi(j,\delta) = \alpha + \delta$ par définition de φ .

Or on a $\gamma \in \alpha = \alpha + 0 \subseteq \alpha + \delta$.

On a donc $\gamma \in \alpha + \delta$ par transitivité chez les ordinaux.

On a donc $\varphi(i, \gamma) \in \varphi(j, \delta)$.

C'est absurde par antiréflexivité de \in sur ON.

▶ Le cas où i = 1 et j = 0 est absurde pour la même raison.

Les deux seuls cas possibles conduisent alors à $(i, \gamma) = (j, \delta)$.

Donc si
$$\varphi(i, \gamma) = \varphi(j, \delta)$$
 alors $(i, \gamma) = (j, \delta)$.

Donc φ est injective.

• Montrons que φ est surjective sur $\alpha + \beta$.

Autrement dit, montrons que $im(\varphi) = \alpha + \beta$.

On sait déjà que $\operatorname{im}(\varphi) \subseteq \alpha + \beta$ par définition de φ .

Soit
$$\gamma \in \alpha + \beta$$
.

On a alors $\gamma \in \alpha$ ou $\alpha \subseteq \gamma$ d'après le théorème 1 page 21.

Si
$$\gamma \in \alpha$$
 alors $\gamma = \varphi(0, \gamma)$ donc $\gamma \in \operatorname{im}(\varphi)$.

Supposons à présent que $\alpha \subseteq \gamma$.

Bibliographie

- ► Wikipédia
- ▶ Kenneth Kunen, *The Foundations of Mathematics*, 29 octobre 2007.
- ▶ Jean-Louis Krivine, *Théorie des ensembles*, 1998, éditions Cassini.

Mathématiciens

- ► (1170 1250) Leonardo Fibonacci page 68
- ► (1861 1931) Cesare Burali-Forti page 24.
- ► (1903 1957) John von Neumann page 17.