Návrh a Konstrukce Antén A0M17NKA

Elektricky malé antény II.

Návrhové aspekty

Milan Polívka

ČVUT v Praze, FEL

B2: 639, I.2270 polivka@fel.cvut.cz

zima 2023/24

Osnova

- Principiální omezení malých antén shrnutí
- Impedanční vlastnosti jednoduchých malých antén (dipól, smyčka)
- Techniky zvyšování zářivého odporu
- Základní techniky zmenšování rozměrů liniových a flíčkových antén
- Vliv externích přizpůsobovacích obvodů na BW
- Vliv zemní roviny na BW
- Příklady malých antén (mobilní telefony, SMT antény, ..)
- Praktická doporučení pro návrh malých antén (II.)

Elektricky malé antény

Elektricky malá anténa: ka < 0, 5

 $Pro TM_{10} mód (dipól) - limitní vztah pro Q (~1/BW)$

$$Q_{\text{Chu-McLean}} = \frac{2\omega \widetilde{W}_e}{P_{z\acute{\text{a}}\check{\text{r}}}} = \frac{1}{(ka)^3} + \frac{1}{ka}$$

$$Q_{\text{Thal}} \approx \frac{1.5}{(ka)^3} + \frac{0.6}{ka}$$

$$Q_{\text{Gustaffson}} = \frac{1.5}{(ka)^3 \gamma_{1,\text{norm}}}$$

Optimální tvar a proudová/nábojová hustota

Gustafsson a kol. (IEEE TAP, 2012)

- limit D/Q pro elektricky malé antény lze formulovat jako variační problém

$$\frac{D_{e}}{Q_{e}} \leq \max_{\rho} \frac{k^{3}}{4\pi} \frac{\left| \int \hat{\boldsymbol{e}}^{*} \cdot \boldsymbol{r} \rho(\boldsymbol{r}) \, dV \right|^{2}}{\int_{V} \int_{V} \frac{\rho(\boldsymbol{r}_{1}) \rho^{*}(\boldsymbol{r}_{2})}{4\pi |\boldsymbol{r}_{1} - \boldsymbol{r}_{2}|} \, dV_{1} \, dV_{2}}$$

$$\min_{\rho} \int_{V} \int_{V} \frac{\rho(\boldsymbol{r}_{1})\rho^{*}(\boldsymbol{r}_{2})}{4\pi|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}|} dV_{1} dV_{2}$$

Řešením pro kulovou geometrii je několik optimálních rozložení proudových hustot, které mají identické

rozložení nábojové hustoty ($\nabla \cdot \boldsymbol{J} = -j\omega \rho$)

$$\rho(\vartheta,\varphi) = \rho_0 \cos \vartheta$$

poskytující minimální Q nebo optimální D/Q

- skládaný kulový dipól $J_0 \sin \vartheta \widehat{\boldsymbol{\vartheta}}$
- kapacitně zatížený kulový dipól $J_0(\sin\vartheta 1/\sin\vartheta)\hat{\vartheta}$
- skládaná kulová šroubovice (viz dále Best, 2004)

$$J_0(0.15\sin\vartheta\widehat{\boldsymbol{\vartheta}} - \operatorname{sign}(\cos\vartheta)\sin^2\vartheta\widehat{\boldsymbol{\varphi}})$$

A co $Z_{in}(\Gamma)$?

Zářivý odpor

- 1. Numericky, z proudu určeného např. MoM a svork. napětí: $Z_{
 m vst} = U_{
 m vst}/I_{
 m vst}$
- 2. Analyticky, z komplexního Poyntingova teorému, bezeztrátové prostředí:

$$P_{\text{vst}} = -\frac{1}{2} \oiint_{S} (\mathbf{E} \times \mathbf{H}^{*}) \cdot d\mathbf{s} = P_{\text{zář}} + j2\omega (\widetilde{W}_{m} - \widetilde{W}_{e})$$

Na povrchu dokonalého vodiče lze nahradit H^* proudovou hustotou J^* ($\widehat{\mathbf{n}} \times \mathbf{H}_S = \mathbf{J}$); anténu považujeme za obvod s impedancí Z_{vst} protékaný na svorkách proudem I_{vst}

$$P_{\text{vst}} = \frac{1}{2} \int_{V} E \cdot J^{*} dV = P_{\text{zář}} + j2\omega \left(\widetilde{W}_{m} - \widetilde{W}_{e} \right) = \frac{1}{2} U_{\text{vst}} I_{\text{vst}}^{*} = Z_{\text{vst}} \frac{|I_{0}|^{2}}{2}$$

Komplexní výkon $P_{z\acute{a}\check{r}}$ pohybující se v radiálním směru od infinitesimálního dipólu délky $I << \lambda$ (prakticky $I < \lambda/50$) s konst. proudovou hustotou $I_0 = \text{konst.}$ určíme ze složek E_θ , H_ϕ^*

$$P_{\text{zář}} = \iint_{S} \boldsymbol{W} \cdot d\boldsymbol{s} = \int_{0}^{2\pi} \int_{0}^{\pi} W_{\text{r}} r^{2} \sin\theta \, d\theta d\phi = ... = Z_{0} \frac{\pi}{3} \left| \frac{I_{0} l}{\lambda} \right|^{2} \left[1 - j \frac{1}{(kr)^{3}} \right]$$

Zářivý odpor
$$R_{\text{zář}} = \frac{2P_{\text{zář}}}{|I_0|^2} = Z_0 \frac{2\pi}{3} \left(\frac{l}{\lambda}\right)^2 = 80\pi^2 \left(\frac{l}{\lambda}\right)^2 = 20(kl)^2$$

Vlastnosti elektricky krátkého dipólu

Trojúhelníková aproximace rozložení proudové hustoty

(vhodná pro $\lambda/50 l < \lambda/10$), l = 2h

Vlastnosti elektricky krátkého dipólu

Zářivý (vyzařovací) odpor R_{rad} s trojúhelníkovou aproximací proudu

$$R_{rad} = 20 \left(\frac{\pi l}{\lambda}\right)^2 = 5(kl)^2 = 20(kh)^2$$

Ztrátový odpor R_{loss}

$$R_{loss} = \frac{a}{2\delta} R_s \frac{l}{3}$$

 R_s je rezistivita [Ω/m], δ je hloubka vniku [m]

• Reaktance X_a

$$X_a = 120 \left(1 - \ln \frac{l}{a} \right) / tg(kl)$$

Vyzařovací účinnost

$$\eta = \frac{R_R}{R_R + R_L}$$

Vlastnosti elektricky malé smyčky

C - obvod smyčky

D - průměr smyčky

a - poloměr vodiče

N – počet závitů (více)smyčky

Vlastnosti elektricky malé smyčky

Zářivý odpor R_{rad}

$$R_{rad} = 20\pi^2 N^2 \left(\frac{C}{\lambda}\right)^4, NC < \lambda/10$$

Ztrátový odpor R_{loss}

$$R_{loss} = \frac{R_S D}{2a} = \frac{D}{2a\sigma\delta}$$
, kde

 R_s je povrchová resistivita [$\Omega/m2$], σ je vodivost [S/m], δ je hloubka vniku [m]

Reaktance X_a

$$X_a = 60\pi kD \left(\ln \left(\frac{4D}{a} - 2 \right) \right), D >> a$$

Techniky zvětšení $R_{\text{zář}}$ – skládaný monopól

 $R_{zcute{a}\check{r}_sklcute{a}dan\acute{y}\ monop\'ol}=N^2R_{zcute{a}\check{r}_monop\'ol}$

Balanis, C., Antenna Theory: Analysis and Design, John Wiley and Sons, 1997, p. 458-461

Monopole		2 Folded Arm	3 Folded Arm	4 Folded Arm
$f_{ m r}[{ m MHz}]$	1200	1139	1081	1072
$R_{z\acute{a}\acute{r}}\left[\Omega ight]$	36	142	418	543

sférická šroubovice (spherical helix)

$$I = 8,36 \text{ cm}$$

 $ka = 0,263$
 $Q_{lb} = 57,6$

Normal Mode Helix

Spherical Helix

MNH: f_r = 299,6 MHz, R = 4,6 Ω, η > 98 %, Q = 216,6 SH: f_r = 300,2 MHz, R = 2,2 Ω, η > 98 %, Q = 143,9 El. krátký dipól: Z = 1,1 – j1015 Ω, η > 98 %, Q = 960

skládaná sférická šroubovice (folded spherical helix)

4-ramenný FSH:
$$f_{\rm r}$$
 = 299,9 MHz, R = 57,8 Ω, η = 97,4 %, Q = 87,3 $Q/Q_{\rm min, Chu}$ = 1,5 (avšak $Q/Q_{\rm min, Thal} \approx 1$) pro ka = 0,263

- skládaná sférická šroubovice (folded spherical helix)

4-ramenný FSH:
$$f_r$$
 = 299,9 MHz, R = 57,8 Ω, η = 97,4 %, Q = 87,3 $Q/Q_{min, Chu}$ = 1,5 (avšak $Q/Q_{min, Thal} \approx 1$) pro ka = 0,263

- skládaná sférická šroubovice (folded spherical helix)

 $J_0(0.15\sin\vartheta\widehat{\boldsymbol{\vartheta}} - \operatorname{sign}(\cos\vartheta)\sin^2\vartheta\widehat{\boldsymbol{\varphi}})$

Gustafsson a kol., IEEE TAP, 2012

4-ramenný FSH: f_r = 299,9 MHz, R = 57,8 Ω, η = 97,4 %, Q = 87,3 $Q/Q_{min, Chu}$ = 1,5 (avšak $Q/Q_{min, Thal} \approx 1$) pro ka = 0,263

- vícezávitová šroubovice s feritovým jádrem
- Zářivý odpor R_{zář}

$$R_{rad} = 20\pi^2 N^2 \left(\frac{C}{\lambda}\right)^4 \mu e^2, NC < \lambda/10$$

Reaktance X_a

$$X_a = \frac{30\pi^2 N^2 k L \kappa \mu_e}{(L/2a)^2}$$

$$\kappa = 1 - 0.8/(L/a)$$
 je Nagaokův koeficient

Šířka pásma BW

$$BW\eta = \frac{k^3 L^3 \mu_e}{24(L/2a)^2}$$

Základní techniky zmenšování liniových antén

čtvrtvlnné provedení: dipól > monopól (L, F tvar)

• Ladění malé antény do rezonance (X_{ant} -> 0, self-resonance): kapacitní (disk) a induktivní (meandry) zátěž a/nebo jejich kombinace

Goubauova anténa (1976)

- Víceprvkový monopól zatížený kapacitním diskem
- Čtyři sloupky: dva s T-napájením, další dva spojeny se zemí, čtyři sekce disku
- Dle Hansena je ka = 1,04 s BW = 2:1
- Ve Smithově diagramu dvě superponované smyčky vícemódové provedení

Monopóly – L anténa

Krátký invertovaný L-monopól, trojúhelníkové rozložení proudu, $h_{\rm m} << h_{\rm m} + R$

$$I(l) = I_0 - \frac{l}{h_m + R}I_0 = I_0 + ml$$

$$m = -I_0/(h_{\rm m} + R)$$

Střední hodnota proudu na krátké vertikální části považována za konstantní (pouze ta vyzařuje - zjednodušení)

$$I_{\text{avg}} = \frac{1}{h_m} \int_0^{h_m} \left(I_o + mz \right) dz = \frac{1}{h_m} \left(I_o h_m + m \frac{h_m^2}{2} \right) = I_o \frac{R + h_m / 2}{R + h_m} = \alpha I_o$$

$$R_r = 160 \left(\frac{\pi h_m}{\lambda} \cdot \frac{R + h_m/2}{R + h_m} \right)^2 = 40 \left(kh \frac{R + h_m/2}{R + h_m} \right)^2$$

Monopóly – kapacitní zatížení

Krátký monopól se zakončený čtyřmi (n) radiálními vodiči, trojúhelníkové rozložení proudu

$$I_v(z) = I_o - m_z z, \quad 0 \le z \le h_m$$

$$I_r(x) = I_{ro} - m_x x, \quad 0 \le x \le R$$

$$m_x = I_{r0}/R \quad \text{(jelikož } I_{r0}(R) = 0\text{)}$$

Analogicky pro krátkou vertikální část s konstantním rozložením proudu

$$R_{\text{rad}} = 160 \left(\frac{\pi h_m}{\lambda} \cdot \frac{nR + h_m / 2}{nR + h_m} \right)^2$$

$$X = \frac{-30\lambda}{\pi \left(nR + h_m\right)^2} \left\{ h_m \left[\ln \left(\frac{h_m}{r_w}\right) - 1 \right] + nR \ln \left(\frac{2h_m}{r_w}\right) \right\}$$

Základní techniky zmenšování flíčkových antén

- Čtvrtvlnné provedení (λ/2 > λ/4)
- použití vyšší ε_r (λ_g)
- geometrické úpravy motivu zářiče => elektrické prodloužení linií proudu

Základní motiv patche

Základní techniky zmenšování antén

- Čtvrtvlnné provedení $(\lambda/2 > \lambda/4)$
- použití vyšší ε_r (λ_g)
- geometrické úpravy motivu zářiče => elektrické prodloužení linií proudu

Dvojitá spirálová dvoupásmová PIFA

- První dvoupásmová interní dvojitě spirálová anténa, vyvinutá Z. Yingem (Ericsson, 1998, patent US 6166694), rozšířená na dvoupásmovou planární invertovanou.
 F-anténu (PIFA) pro mobilní telefon (patent US 6343208B1)
- Podobné patenty získány různými společnostmi.
- Populární v telefonech Nokia, Siemens, Ericsson 90' let.

Vícepásmové patche: základní módy

Př. PIFA (Planar Inverted F-Antenna) mobilního telefonu kolem r. 2000 tvarovaný multirezonátor - (obvykle) základní vid rezonující na jednotlivých rezon. částech

Z. Ying (Ericsson, 2000, patents no. US6452250, US6326921)

 $PSV = 2 \sim MS11 = -10 dB$

 $PSV = 3 \sim MS11 = -6 dB$

Nokia 5110 (1998) s malou šroubovicí a Nokia 8810 (1998) s PIFA

Nokia byla v letech 1998–2011 největším světovým výrobcem mobilních telefonů. ^[1] Nedokázala však zareagovat na nástup nových chytrých telefonů a svou pozici vedoucího světového výrobce mobilních telefonů postupně zcela ztratila. V roce 2014 byla divize výroby mobilních telefonů (včetně značky) prodána společnosti Microsoft Mobile, dceřiné společnosti Microsoftu. ^[12] Divizi v roce 2016 odkoupila finská společnost HMD Global.

Nokia 3210 (1999) mobil "bez antény"

Motorola Razr V3 (2004)

Apple iPhone 4/4S (2010)

The antenna locations are defined in the sketch below. The view of the phone is from the back side, with Primary Antenna and the 30-pin connector at the bottom of the phone.

Samsung Galaxy S5 (2014)

Pásma:

GSM 850, 900, 1 800, 1 900 MHz WCDMA (3G) 850, 900, 1 700, 1 900, 2 100 MHz LTE (4G) Wi-Fi 802.11 a/ac/b/g/n, Bluetooth 4.0, NFC

http://samsunggalaxy.cz/images/file/images/Galaxy%20S5/LDS-antena.jpg

Samsung Galaxy S8 (2017)

Pásma:

GSM: 850, 900, 1800, 1900 MHz

W-CDMA (3G): 850, 900, 1900, 2100 MHz

LTE (4G): 700 / 800 / 850 / 900 / 1700 / 1800 / 1900 / 2100 / 2600 MHz

Data: Wi-Fi 802.11 a/ac/b/g/n, Bluetooth 5.0, NFC

Poloha:

GPS

GLONASS

Moderní technologie výroby

dříve – DPS

dnes – laserové strukturování

Moderní technologie výroby

Molded interconnect device (MID) 1) – vstřikovaný tvarovaný termoplast s integrovanými

elektronickými obvody

• Laser Direct Structuring (LDS) ²⁾ – přímé laserové strukturování vodivých tras, termoplast dotován vodivě-plastovými aditivy, které jsou aktivovány (slinovány) laserem, metalizace

Samsung Galaxy S10 (2019), S23 (2023)

Pásma:

GSM: 850, 900, 1800, 1900 MHz

W-CDMA (3G): 850, 900, 1900, 2100 MHz

LTE (4G): 700 / 800 / 850 / 900 / 1700 / 1800 / 1900 / 2100 / 2600 MHz

5G: ne (S19) / ano (S23)

Data: Wi-Fi 802.11 a/ac/b/g/n, Bluetooth 5.0, NFC

Poloha:

GPS

GLONASS

BEIDOU

GALILEO

Elektronický

kompas

https://mobilenet.cz/katalog/samsung-galaxy-s23/specifikace

Apple iPhone 13 (2020), 14 (2022)

Pásma:

GSM: 850, 900, 1800, 1900 MHz

W-CDMA (3G): 850, 900, 1900, 2100 MHz

LTE (4G): 700 / 800 / 850 / 900 / 1700 / 1800 / 1900 / 2100 / 2600 MHz

5G: ano

(28 GHz mmWave only servised by Verzion in the US in limited areas)

Data: Wi-Fi 802.11 a/ac/b/g/n, Bluetooth 5.0, NFC

Poloha:

GPS,

Glonass,

Beidou,

Galileo,

Elektronický

kompas,

UWB

https://mobilenet.cz/katalog/apple-iphone-13/specifikace

SMT a čipové antény

- Antény určené pro moderní malé elektronické přístroje miniaturizované vůči vlnové délce
- Zapouzdřené do součástek pro povrchovou montáž (SMT)
- Čipová/SMT anténa vlastní aktivní zářič, pro požadované impedanční a vyzařovací vlastnosti nutno
 - doplnit zemní rovinou (DPS)
 - realizovat impedanční přizpůsobení
- Parametry čipových antén kompromisem při požadavku na minimalizaci rozměru

SMT antény – struktura, provedení

- Způsoby miniaturizace
 - provedení šroubovice, meandrové složení dipólu, patch
 - umístění do dielektrického materiálu s velkou relativní permitivitou

Zapouzdřeny do tvaru SMT součástek

Figure 1: A trace solution for a 2.45 GHz antenna that uses an area of $29.90 \times 5.20 \text{ mm}$. An equivalent ceramic chip antenna uses a ground clearance area of $6.25 \times 4.24 \text{ mm}$. This equates to an 80% reduction in PCB space.

Figure 2: A layout and tuning for a monopole ceramic antenna which can be tuned to $2.4\,\mathrm{GHz}$ or $866\,\mathrm{MHz}$ and takes up an area of only $6\times11\,\mathrm{mm}^2$.

SMT antény – umístění na DPS

- Anténa na DPS (zemní rovina) do "volného prostoru"
- Baterie mimo prostor antény

Vliv zemní desky

Vliv blízké zemní roviny na Q antény

Sten, Hujanen, Koivisto (2001) – vyšetřování Q_{\min} malých dipólových antén umístěných nad rozlehnou zemní rovinou (<u>bez jejích vlastních rezonancí</u>), analogický přístup jako McLean (1996).

• Vertikální dipól (je-li $p_x=0$ nebo $d_x=0$)

$$Q = \frac{10[1 + (ka)^2] + (f_z/a)^2 [27 + 9(ka)^2 + 7(ka)^4]}{2(ka)^3 (2(kf_z)^2 + 5)}$$

• Horizontální dipól ($p_z=0$ nebo $d_z=0$)

$$Q = \frac{27 + 9(ka)^2 + 7(ka)^4}{4(ka)^5}$$

Magnetický dipól (smyčka)

$$Q = \frac{18 + 6(ka)^2 + 3(ka)^4}{(ka)^5}, p_{mx} = 0$$

Sten, Hujanen, Koivisto, IEEE TAP, 2001.

Vliv externích obvodů, Bode-Fanovo kritérium

Bode (1945) – dosažitelná šířka pásma BW pro obvod s daným Q a Γ využitím

nekonečného počtu laděných LC obvodů

Fano (1950) - dosažitelná šířka pásma *BW* s počtem <u>n</u> laděných LC obvodů

• Pro paralelní rezonanční obvod RC s $Q = \omega_0 RC$

$$\int_0^\infty \ln \frac{1}{|\Gamma(\omega)|} \, \mathrm{d}\omega \le \frac{\pi}{RC}$$

$$\int_{\omega_1}^{\omega_2} \ln \frac{1}{\Gamma_{max}} d\omega = \Delta \omega \ln \frac{1}{\Gamma_{max}} \le \frac{\pi}{RC}$$

$$BW \le \frac{1}{Q} \frac{\pi}{\ln\left(\frac{1}{\Gamma}\right)}$$

BW – 3dB relativní šířka pásma ($\Delta\omega/\omega_0$)

 $\Gamma_{max} - \max$. dosažitelný koeficient odrazu v pásmu $\Delta \omega$

Aplikace na princip. limit malých antén

$$BW \le \frac{(ka)^3}{1 + (ka)^2} \frac{\pi}{\ln\left(\frac{PSV + 1}{PSV - 1}\right)}$$

H. W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand, N.Y., 1945.

R. M. Fano, Theoretical Limitations on the Broadband Matching of Arbitrary Impedance, J. Franklin Institute, 1950.

Zatížený činitel jakosti

Vlastní činitel jakosti obvodu (zde antény)

$$Q_0 = \omega \frac{W_{ak}}{P_{z0}} = \omega \frac{W_e + W_m}{P_{z0}}$$

Externí (vnější) činitel jakosti např. přizpůsobovacího obvodu (PO)

$$Q_e = \omega \frac{W_{ak}}{P_{ze}}$$

Zatížený činitel jakosti (antény a PO jako celku)

$$Q_z = \omega \frac{W_{ak}}{P_z}$$

$$\frac{1}{Q_z} = \frac{1}{Q_0} + \frac{1}{Q_e}$$

$$\alpha = \frac{Q_0}{Q_e}$$

činitel vazby mezi anténou (rezonátorem) a navázaným obvodem (PO)

$$Q_Z=rac{Q_0}{1+lpha}$$
 , $Q_Z=rac{f_r}{f_2+f_1}$ f_1 , f_2 odečtením z rezonanční křivky pro pokles o 3dB

Vliv zemní desky na celkovou BW

Obvodový model kombinace PIFA antény a zemní desky

Ohnutý monopól (F anténa) je modelovaný jako sériový rezonanční obvod

SMT antény - přizpůsobení

- Přizpůsobení (a naladění do rezonance)
 - LC prvky, Γ nebo π článek

SMT antény - přizpůsobení

- Přizpůsobení (a naladění do rezonance)
 - LC prvky, Γ nebo π článek

SMT antény – příklad 1

UHF Chip Antenna, VJ 3505, Vishay Intertechnology, Inc.

- vícevrstvá keramická čipová anténa pro mobilní zařízení
- 35 x 5 x 1,2 mm (35 mm $\sim 1/10 \lambda_0$ @860 MHz)
- pásmo 470 860 MHz (~60 %)
- všesměrová, lineární polarizace
- Aplikace: mobilní telefony, přenosná multimediální zařízení (Nintendo), notebooky, GPS zařízení, alarmy, RFID, lékařské monitorovací přístroje

Fig. 1 - Peak Gain and Efficiency vs. Frequency

Fig. 4 - VJ 3505 Footprint

SMT antény – příklad 2

ANT-2.4-CHP-x, ANT-868-CHP-x, ANT-916-CHP-x, Antenna Factor, Inc.

- čipové antény z keramiky LTCC (Low Temperature Co-fired Ceramics)
- 6,5 x 2,2 x 1,0 mm @ 2,45 GHz (6,5 mm $\sim 1/20 \lambda_0$ @ 2.45 GHz)
- "> unity gain"
- 50 Ω, nevyžaduje přizpůsobení

PHYSICAL SPECIFICATIONS				
	2.45GHz	868MHz	916MHz	
Dimensions (mm)	6.5(L) x 2.2(W) x 1.0(H)	16.0(L) x 3.0(W) x 1.7(H)	16.0(L) x 3.0(W) x 1.7(H)	
Operating/Storage Temp	-40~+85°C	-40 ~+85°C	-40 ~+85°C	
Construction	LTCC	LTCC	LTCC	

ELECTRICAL PERFORMANCE				
Center Frequency	2.45GHz	868MHz	916MHz	
Bandwidth	180MHz	10MHz	10MHz	
Wavelength	1/4-wave	1/4-wave	1/4-wave	
Pattern	Omni-directional	Omni-directional	Omni-directional	
Polarization	Linear	Linear	Linear	
VSWR	≤2.0 (Max.)	≤2.0 (Max.)	≤2.0 (Max.)	
Maximum Gain	+0.5dBi	+ 0.5dBi	+0.5dBi	
Impedance	50Ω	50Ω	50Ω	
Power Handling	3W (Max.)	3W (Max.)	3W (Max.)	

SMT antény – příklad 2

ANT-2.4-CHP-x, ANT-868-CHP-x, ANT-916-CHP-x, Antenna Factor, Inc.

868 & 916MHz TEST BOARD

Shrnutí (části II.)

Doporučení pro návrh vhodných impedančních vlastností (elektricky) malých antén:

- Pro naladění antény do rezonance (self-resonance) a nižší dosažitelný Q je vhodnější kapacitní zatížení (disk) než induktivní (meandry proti směrné proudy zvyšují W_{ak})
- Krátkým dipólovým anténám zvýšíte $R_{
 m vyz}$ víceprvkovým uspořádáním
- Malým smyčkovým anténám zvýšíte $R_{
 m vvz}$ vícezávitovým provedením
- Další zvýšení BW lze dosáhnout vytěsněním EM pole z "vnitřku" geometrie antény pomocí magnetických materiálů (ferity), viz např. FM antény.
- Pro větší BW lze vybudit proudy na zemní desce, malá anténa vazební člen.
 Pozor na správné umístění antény na zemní desce.
- Jiný způsob rozšíření *BW* je externími přizpůsobovacími LC obvody. Omezení dosažitelné *BW* je pak dáno Bode-Fanovým kritériem.
- Pro rozšíření šířky pásma či vícepásmovost lze použít více rezonancí (např. Goubau 1976, Choo 2003, PIFA antény mobilních telefonů) příp. přizpůsobovacích obvodů.

Další literatura

- Hansen, R. C., *Electrically small, superdirective, and superconducting antennas,* Hoboken, N. J.: Wiley-Interscience, 2006.
- Miron, D., Small antenna design, Oxford: Elsevier, 2006
- Volakis, J. L., Chen, C. C., Fujimoto, K., *Small antennas: miniaturization techniques & applications*, New York: McGraw-Hill, 2010
- IEEExplore archív vědeckých článků

