(51) Int C1 6

12 T

特開平11-80131

(43)公開日 平成11年(1999) 3月26日

(51) Int.CL*	識別記号		F I					
C 0 7 D 239)/74		C 0	7 D 2	39/74			
A61K 31	/505 ADU		A 6 1 K 31/505			ADU		
31	/515 A E D			:	31/515		AED	
31	/52 ABE			;	31/52		ABE	
	ABX						ABX	
		審查請求	未請求	前求	項の数 5	FD	(全235頁)	最終頁に続く
(21)出願番号	特順平9-251348		(71)	出願人	000005		A26	_
22)出順日	平成9年(1997)9月1	. 8					☆社 区丸の内二丁	目5番2号
			(72)	発明者	北野	靖典		
					神奈川	県横浜	市青葉区鴨志	田町1000番地
					三菱化	学株式	会社横浜総合	研究所内
			(72)	発明者	河原	英治		
					神奈川	県横浜	市青菜区鴨志	田町1000番地
					三菱化	学株式	会社横浜総合	研究所内
			(72)	発明者	高柳	久男		
					神奈川	県横浜	市青菜区鴨志	田町1000番地
					三菱化	学株式	会社横浜総合	研究所内
			(74)	代理人	弁理士	長谷	川・曉司	
								最終頁に続く

(54) 【発明の名称】 エチニルピリミジン誘導体

(57)【要約】

【課題】 強力なチロシンキナーゼ阻害活性及び癌細胞 増殖抑制作用を有し、制癌剤、免疫抑制剤、血小板凝集 阻害剤、動脈硬化治療薬、抗炎症剤、または癌細胞増殖 抑制薬として有用な新規な化合物を提供する。 【解決手段】 下記一般式 (1) で表される新規なエチ

经知识基本

ニルピリミジン誘導体。

【化1】

$$\begin{array}{ccc}
R^1 \\
N & N \\
A & R^2
\end{array}$$
(1)

【特許請求の範囲】

【請求項1】 下記一般式(I)

【化1】

化1】 R1

$$\begin{array}{c}
R^1 \\
N \\
N \\
R^2
\end{array}$$
(1)

(但し、上記一般式 (1) 中、A、Bはそれぞれ独立して (1) ニトロ基; (2) - (CH_2) $_n$ 'N R^3 R^4 (式中、n' は0または1を表し、 R^3 、 R^4 はそれぞれ独立して (a) 木素原子・または (b) カルボキシル基もしくは $C_1 \sim C_5$ のアルコキシカルボニル基で置換されていてもよい $C_1 \sim C_5$ のアルキル基を表す);またはA、Bが一緒になって環を形成し、 (3) 【化2】

[式中、 $X^1 \sim X^4$ はそれぞれ独立して (a) 水薬原子、(b) ハロゲン原子、(c) ニトロ基、 (d) ーク (b) ハロゲン原子、(c) ニトロ基、 (d) ーク (c) ボース・ (d) ボース・

3]

(式中、 $X^5 \sim X^7$ はそれぞれ独立して水素原子、 \cap ゲン原子、 $C_1 \sim C_8$ アルコキシ基または $C_1 \sim C_8$ のアルキル基で置後されていてもよいアミノ基を表す); (5)

【化4】

(式中、 $X^8 \sim X^{10}$ はそれぞれ独立して水素原子、ハロゲン原子、 $C_1 \sim C_5$ のアルコキシ基、または $C_1 \sim C_5$ のアルキル基で置換されていてもよいアミノ基を表す); (6)

【化5】

(式中、 X^{11} および X^{12} は水素原子;もしくは $C_1 \sim C_5$ のアルキル基を表す); (7) 【化6】

[式中、Wは空素原子または $C-X^{15}$ (式中、 X^{15} は水 素原子または $C_1 \sim C_s$ のアルキル基を表す)を表し、 X^{13} および X^{14} は水素原子または $C_1 \sim C_s$ のアルキル基を表す]; (8) 【化7】

(式中、 χ^{10} および χ^{17} は水素原子または $C_1 \sim C_6$ の アルキル基を費力)を要し、 R^1 は (1) 水素原子; (2) ハロゲン原子で関係されていてもよいフェニル基: (4) フェニル基で関係されていてもよいフェニル基: (5) カルボキシル基もしくは $C_1 \sim C_6$ のアルコキン基: (6) ヒドロキシル基;または (7) $C_1 \sim C_6$ のアルカノイル基で置機されていてもよい $C_1 \sim C_6$ のアルカノイル基で置機されていてもよい $C_1 \sim C_6$ のアルカノイル基で置機されていてもよいアミノ基を表し、 R^2 は (1)

R5 R4

【化8】

[化9]

<式中、 R^3 、 R^4 はそれぞれ独立して、(a) 水楽原子; (b) ハロゲン原子、ピリジル基、ピリグジニル基、 むしくは $C_3 \sim C_8$ のシクロアルキル基で置換されていてもよい $C_1 \sim C_8$ のアルキル基;(ii) $C_1 \sim C_8$ のアルコキシ基;(iii) $C_1 \sim C_8$ のアルコキシ基;(iii) $C_1 \sim C_8$ のアルコキシ基;健康されていてもよいアネノ基;または(iv)ハロゲン 阪子もしくは $C_1 \sim C_8$ のアルコキシ基で置換されていてもよいアエニル基を表子);(d)

$$-\frac{(CH_2)_j}{Z^2} + \frac{Z^1}{Z^2}$$
 (式中、 j は0、 1、 2 または3 を表し、 Z^1 、 Z^2 、

Z³ はそれぞれ独立して、(i) 水素原子; (ii) ハロ ゲン原子; (iii)ヒドロキシル基; (iv) C, ~C5の アルコキシ基;または (v) C, \sim C_e のアルコキシカ ルボニル基を表す);または、R3、R4 が互いに環を 形成し、(e) (i) C₁ ~ C₅ のアルキル基、または (ii) - (CH₂)_n " R²⁰ (式中、n" は0、1また は2を表し、R²⁰はカルボキシル基を表すか、またはカ ルボキシル基もしくは $C_1 \sim C_5$ のアルコキシカルボニ ル基で置換されていてもよい $C_a \sim C_s$ のシクロアルキ ル基を表す) で置換されていてもよいアミノ基; (f) [(E10]

コキシカルボニル基を表す);(g) 【化11】

(式中、kは1、2、3または4を表し、R⁷ は (i) ヒドロキシル基: (ii) ヒドロキシル基もしくはC、~ C。アルキル基で置換されていてもよいアミノ基;また は (iii) C, ~ C, のアルコキシ基を表す) ; (h) [(E12]

(i) 【化13】

【化14】

; または (k) 【化15】

を表す。R⁵ は (a) **ビデロメ**リンル基; (b) C, ~C $_5$ のアルキル基; (c) $C_1 \sim C_5$ のアルコキシカルボ ニル基; (d) C, ~C。のアルカノイルオキシ基; (e) カルボキシル基; (f)

【化16】

-E - (CH2)8-21

Y3 1 (式中、mは0または1を表し、nは0、1、2または 3 を表し、Eは (i) 酸素原子; (ii) -NHSO 。-: (iii)-NHCO-;または (iv) -NR7 -(式中、R7 は1) 水素原子; 2) C, ~C。のアルキ ル基;もしくは3) ヒドロキシル基、カルボキシル基、 もしくは $C_1 \sim C_5$ のアルコキシカルボニル基で置換さ れていてもよい $C_1 \sim C_5$ のアルキル基を表す)を表 し、Y1、Y2、Y3 はそれぞれ独立して、(i) 水素 原子; (ii) ハロゲン原子; (iii)ヒドロキシル基; (iv) C, ~C₅ のアルキル基; または (v) C, ~C 5 のアルコキシ基を表す〕; (g) -O-(CO) -G-COR⁸ 〔式中、pは0または1を表し、Gは (i) ヒドロキシル基もしくはアセトキシ基で置換され ていてもよいC, ~C。のアルキレン基;または(ii)

を表し、R⁸ は (i) ヒドロキシル基; (ii) C₁ ~C g のアルコキシ基;または (iii) C, ~ Cg のアルキル 基で置換されていてもよいアミノ基を表す1:(h)-NR9 R10 {式中、R9 、R10はそれぞれ独立して、 (i) 水素原子; (ii) C, ~Cs のアルキル基; (ii i) C, ~ C。のアルコキシカルボニル基で置換されてい てもよいC。~C。のシクロアルキル基;または(iv) - (CO) g-L- (CO) r R¹¹ (式中、qおよびr は0または1を表し、Lは1) ヒドロキシル基もしくは アセトキシ基で置換されていてもよく、酸素原子を介し ていてもよい $C_1 \sim C_n$ のアルキレン基;または2) Ca ~ C_B のシクロアルキレン基を表し、R¹¹は1) ヒド ロキシル基; 2) C, ~C20のアルコキシ基; 3) ピバ ロイルオキシメトキシ基;または4)-NR12R13(式 中、R12はa) 水素原子; b) ヒドロキシル基; または c) C₁ ~C₅ のアルキル基を表し、R¹³はa) 水素原 子; b) フェニル基、カルボキシル基もしくはヒドロキ シル基で置換されていてもよいC、~C。のアルキル 基; c) C₁ ~C₇ のアルコキシカルボニル基; d) シ アノ基; e) フェニル基もしくは $C_1 \sim C_5$ のアルキル 基で置換されていてもよいカルバモイル基;f)フェニ ル基もしくはC₁ ~C₅ のアルキル基で置換されていて もよいスルホニル基;またはg) C, $\sim C_5$ のアルカノ イル基を表す)]を表すか、またはR9、R10が一緒に なって環を形成し、(v) [/E18]

-N (CH₂)_u COR¹⁴

〔式中、tおよびuは0、1または2を表し、R¹⁴は

 ヒドロキシル基;2)C₁~C₂₀のアルコキシ基; ピバロイルオキシメトキシ基;4)-NR¹⁵R 16 (式中、R¹⁵はa) 水素原子;b) ヒドロキシル基; またはc) C, $\sim C_c$ のアルキル基を表し、 R^{16} はa) 水素原子; b) フェニル基、カルボキシル基および/ま たはヒドロキシル基で置換されていてもよいC, ~C。 のアルキル基;またはc)シアノ基を表す)]; (vi) 【化19】

-N N - (CH₂)_s <math>-CO₂ R¹⁷ [式中、s は 0、 1、または 2 を表し、R¹⁷は 1)ヒド ロキシル基; 2) C, ~ C20のアルコキシ基; 3) ピバ ロイルオキシメトキシ基;または4) ヒドロキシル基も しくはC, $\sim C$ _s のアルキル基で置換されていてもよい アミノ基を表す〕を表す〉を表す>を表すか、または、 (2)

【化20】

(式中、C v Aはベンゼン環、ピリジン環、またはピロ ール環を表し、Qはハロゲン原子で置換されていてもよ いフェニル基を表し、Vは(1)水素原子、(2)C, ~Cg のアルコキシカルボニル基、(3) カルボキシル 基、または(4) $C_1 \sim C_5$ のアルコキシカルボニル基 もしくはカルボキシル基で置換されていてもよいC、~ C。のアルキル基を表す)を表す]で表されるエチニル ピリミジン誘導体並びにそれらの水和物、薬理学的に許 容される塩、光学活性形、ラセミ体およびジアステレオ

【請求項2】 一般式[I]中、A、Bが一緒になって 環を形成していることを特徴とする請求項1記載のエチ ニルビリミジン誘導体、並びに、それらの水和物、薬理 学的に許容される塩、光学活性体、ラセミ体、及びジア ステレオマー混合物。

【請求項3】 請求項1または2に記載の化合物および 薬理学的に許容される担体を含んでなる医薬組成物。 【請求項4】 チロシンキナーゼの活性の亢進に起因す

る疾患に対する予防及び/又は治療剤として使用される 請求項3記載の医薬組成物。

【請求項5】 制癌剂、免疫抑制剂、血小板凝集阻害 剤、動脈硬化治療薬、抗炎症剤または癌細胞増殖抑制薬 として使用される請求項3記載の医薬組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、新規なエチニルビ リミジン誘導体に関する。さらに詳しくは、本発明はチ ロシン特異的プロテインキナーゼ (以下、チロシンキナ ーゼ) 阻害活性を有するエチニルピリミジン誘導体に関 する.

[00002]

【従来の技術および発明が解決しようとする課題】癌の 化学療法においては、DNA合成を阻害する薬剤や細胞 分裂を阻害する薬剤が多く用いられている。これらの薬 剤は一般には細胞に対し毒性を示し、急速に分裂する癌 細胞に対しその作用が有効である場合もあるが、多くの 場合その作用が癌細胞に限定されないため強い毒性を有 し、その結果それに基づく副作用が大きな問題になって いるのが現状である。

【0003】 チロシンキナーゼは細胞の分化・増殖や細 胸内情報伝達機構において中心的な機能を司ることが良 く知られている。したがって細胞内チロシンキナーゼ活 性の制御の破綻は細胞の分化増殖機構や細胞情報伝達機 構の異常をもたらし、多くの疾患の発症に直接的に関与 するものと考えられている。例えば動脈硬化 (Am.

J. Physiol. 1991, 260 (4-part 1), C721-C730.); Biochem, Bi ophys. Res. Commun. 1993, 192 (3), 1319-1326. 等)、血小板凝集 (FE BS Letters, 1990, 263 (1), 10 4-108. ; FEBS Letters. 1992, 309(1), 10-14, 等), 免疫異常 (FEBS Letters. 1991, 279 (2), 319-322.; J Immunol. 1991, 146 (9), 2965-2971.; Nature, 199 2, 358, 253-255. 等)、乾癬 (J. Inv est. Deruatol. 1990, 95, 75-9 5) ; 炎症 (Molecular Pharmacol ogy. 1990, 37, 519-525. ; Inte rnational Immunology, 199 2. 4(4), 447-453. 等) 等である。またチ ロシンキナーゼ活性は正常細胞に比べ、より頻繁に腫瘍 細胞において輸出されることも知られている(Cel 1, 1987, 50, 823)。なかでもHER2、E GFレセプター等の増殖因子受容体チロシンキナーゼは 癌の形成への関与が大きいことが明らかとなってきてお り、臨床的にもヒト癌細胞においてこの受容体チロシン キナーゼ活性が特に亢進していることも見いだされてい る (Cancer Res. 1991, 51, 4430 -4435; Cancer Res. 1992, 52, 3636-3641. : Cancer Chemoth er, Pharmacol, 1993, 32, 1-1 9. 等)。さらに、脳、肺、胃腸、頭頸部、膀胱、前立 腺、卵巣、食道、子宮等、数多くの腫瘍においてHER 2. EGFレセプターのチロシンキナーゼが渦剰に発現 していることも示されている (Med. Bull., 1 991, 47, 87; Expert. Opin. Inv est. Drugs, 1994, 3 (6), 577-5 95;特開平5-208911)。また癌の転移に関係 の深い血管新生においてもEGFレセプターの関与が示 されている (I. Biol. Chem. 1995, 12 9, 895-898; Cancer Res. 199 5, 55, 3772-3776)。従って、チロシンキ ナーゼ活性を阻害する薬剤が動脈硬化等の上記に示した チロシンキナーゼが関与する疾患の予防や治療の他、新 しい作用機序を有し、多くの癌種に適応しうる副作用の 少ない制癌剤として有用であると考えられる。

【0004】従来のチロシンキナーゼ阻害物質として は、例えば、アーブスタチン(Erbstatin)、 ラベンダスチン (Lavendustin)、ハーピマ イシンA(HerbimycinA)、ゲニスタイン (Genistein)、ベンジリデンマロノニトリル 採道体(特開平2-138238号公報)、α-シアノ ケイ皮酸アミド誘導体(特開昭62-39523号公 報)、3、5-ジイソプロピル-4-ヒドロキシスチレ ン誘導体(特開昭62-39522号公報)、3,5t-ブチル-4-ヒドロキシスチレン誘導体(特開昭6 2-39523号公報) 等が挙げられ、また最近では、 キナゾリン誘導体(特開平6-73025号公報、特開 平5-208911号公報)に代表されるジアリルアミ ン化合物 (Exp. Opin. Ther. Patent s, 1995, 5 (12), 1245-57: ibi d. 805-817) が報告されている。

[0005]

【課題を解決するための手段】本発明者らは、鋭意検討 の結果、特定構造のエチニルピリミジン誘導体が強力な チロシンキナーゼ阻害活性と癌細胞増殖抑制作用を有す ることを見い出し、本発明に到達した。即ち、本発明の 要旨は、下記一般式 (I) で表されるエチニルピリミジ ン誘導体並びにそれらの水和物、薬理学的に許容される 塩、光学活性形、ラセミ体およびジアステレオマー混合 物(以下、「本発明のエチニルピリミジン誘導体」とも いう).

[0006] 【化21】

【0007】 [但し、上記一般式(I)中、A、Bはそ れぞれ独立して(1) ニトロ基; (2) - (CH2) n. NR3 R4 (式中、n'は0または1を表し、R3、R 4 はそれぞれ独立して(a) 水素原子;または(b) カ ルボキシル基もしくはC,~Cgのアルコキシカルボニ ル基で置換されていてもよい $C_1 \sim C_5$ のアルキル基を 表す);またはA、Bが一緒になって環を形成し、

(3)

[0008]

[化22]

$$X^1$$
 X^2
 X^4

【0009】 [式中、X1~X4 はそれぞれ独立して (a) 水素原子、(b) ハロゲン原子、(c) ニトロ 基、(d) - OR'(式中、R'は(i)酸素原子を1 個含んでいてもよい $C_3 \sim C_8$ のシクロアルキル基、ま たは (ii) C, ~C, アルコキシ基、アミノ基もしくは モルホリノ基で置換されていてもよいC、~C。のアル キル基を表す)、(e)C,~Csのアルキル基で置換 されていてもよいアミノ基を表すか、または(f)隣接 する置換基が一緒になって環を形成し、C, ~C。のオ キシアルキレン基を表す);(4)

[0010]

【化23】

$$X^{5}$$
 X^{7}

【0011】 (式中、X⁵~X⁷ はそれぞれ独立して水 素原子、ハロゲン原子、 $C_1 \sim C_5$ のアルコキシ基また はC、~Csのアルキル基で置換されていてもよいアミ ノ基を表す);(5)

[0012]

【化24】

【0013】(式中、X8~X10はそれぞれ独立して水 素原子、ハロゲン原子、C,~Cgのアルコキシ基また はC、~C。のアルキル基で置換されていてもよいアミ ノ基を表す);(6)

[0014] 【化251

【0015】(式中、X¹¹およびX¹²は水素原子: もし くはC, ~C, のアルキル基を表す); (7) [0016]

【化26】

【0017】 [式中、Wは窒素原子またはC-X15 (式

中、X15は水素原子またはC、~C5のアルキル基を表 す) を表し、X13およびX14は水素原子またはC₁ ~C 。のアルキル基を表す〕; (8) [0018]

【化27】

【0019】 (式中、X¹⁶およびX¹⁷は水素原子または $C_1 \sim C_5$ のアルキル基を表す)を表し、 R^1 は (1) 水素原子; (2) ハロゲン原子; (3) ハロゲン原子で 置換されていてもよいフェニル基; (4) フェニル基で 置換されていてもよいC, ~C。のアルキル基; (5) カルボキシル基もしくはC、~C。のアルコキシカルボ ニル基で置換されていてもよい $C_1 \sim C_5$ のアルコキシ 基; (6) ヒドロキシル基; または (7) C₁ ~C₅ の アルキル基もしくは $C_1 \sim C_5$ のアルカノイル基で置換 されていてもよいアミノ基を表し、 R^2 は(1) [0020]

【化28】

【0021】<式中、R3、R4はそれぞれ独立して、 (a) 水素原子; (b) ハロゲン原子、ピリジル基、ピ リダジニル基、もしくはC₃ ~C₈ のシクロアルキル基 で置換されていてもよい $C_1 \sim C_5$ のアルキル基; (c) - COR⁶ (式中、R⁶ は (i) ヒドロキシル 基; (ii) C, ~C, のアルコキシ基; (iii) C, ~C 5 のアルキル基で置換されていてもよいアミノ基;また は (iv) ハロゲン原子もしくはC, $\sim C_n$ のアルコキシ 基で置換されていてもよいフェニル基を表す):(d) [0022] 【化29】

- (CH2)1 22.

【0023】 (式中、」は0、1、2または3を表し、 Z¹、Z²、Z³ はそれぞれ独立して、(i) 水素原 子: (ii) ハロゲン原子: (iii)ヒドロキシル基: (i v) C, ~C, のアルコキシ基;または(v) C, ~C $_5$ のアルコキシカルボニル基を表す);または、 ${
m R}^3$ 、 R^4 が互いに環を形成し、(e)(i) $C_1 \sim C_5$ のア ルキル基、または (ii) - (CH。) " R²⁰ (式中、 n''は0、1または2を表し、 R^{20} はカルボキシル基を 表すか、またはカルボキシル基もしくはC, $\sim C$, のア ルコキシカルボニル基で置換されていてもよい C_3 ~ C。のシクロアルキル基を表す)で置換されていてもよい アミノ基; (f) [0024] [化30]

【0025】 (式中、R**はカルボキシル基またはC. ~Cc のアルコキシカルボニル基を表す);(g) [0026]

【化31】

【0027】(式中、kは1、2、3または4を表し、 R7 は(i) ヒドロキシル基; (ii) ヒドロキシル基も しくはC、~C。アルキル基で置換されていてもよいア ミノ基; または (iii) C, ~C5 のアルコキシ基を表 す):(h) [0028] [化32]

[0029] (i) [0030]

【化331

[0031] (j) [0032] 【化34】

[0034] 【化35】

【0035】を表す。成ればNM。) ヒドロキシル基; (b) C, ~C。のアルキル基; (c) C, ~C。のア ルコキシカルボニル基; (d) C, ~C。のアルカノイ ルオキシ基; (e) カルボキシル基; (f)

[0036]

【化36】

 $-\mathbb{E}_{\pi} - (CH_2)_{\mathfrak{g}} \xrightarrow{Y^2} Y^2$

【0037】 [式中、mは0または1を表し、nは0、 2または3を表し、Eは(i)酸素原子;(ii) -NHSO2-; (iii)-NHCO-;または (iv)-N R⁷ - (式中、R⁷ は1) 水素原子; 2) C₁ ~C₅ の アルキル基;もしくは3) ヒドロキシル基、カルボキシ ル基、もしくは $C_1 \sim C_5$ のアルコキシカルボニル基で 置換されていてもよいC、~C。のアルキル基を表す) を表し、Y1、Y2、Y3 はそれぞれ独立して、(i) 水素原子; (ii) ハロゲン原子; (iii)ヒドロキシル 基; (iv) C, ~Cg のアルキル基; または (v) C, ~C₅ のアルコキシ基を表す〕;(g)-O-(CO) 。-G-COR⁸ 〔式中、pは0または1を表し、Gは (i) ヒドロキシル基もしくはアセトキシ基で置換され ていてもよいC, ~C。のアルキレン基;または(ii) [0038] 【化37】

【0039】を表し、R** は(i) ヒドロキシル基; (ii) C, ~Cgのアルコキシ基;または(iii)C,~ C。のアルキル基で置換されていてもよいアミノ基を表 す]; (h) -NR9 R10 {式中、R9 、R10はそれぞ れ独立して、(i) 水素原子; (ii) C, ~C。のアル キル基: (iii) C, ~C。のアルコキシカルボニル基で 置換されていてもよい $C_3 \sim C_8$ のシクロアルキル基; または (iv) - (CO) g-L- (CO) r R11 (式 中、gおよびrは0または1を表し、Lは1) ヒドロキ シル基もしくはアセトキシ基で置換されていてもよく、 酸素原子を介していてもよいC、~Cgのアルキレン 基;または2) $C_3 \sim C_8$ のシクロアルキレン基を表 し、R11は1) ヒドロキシル基; 2) C, ~C20のアル コキシ基;3) ピバロイルオキシメトキシ基;または 4) -NR¹²R¹³ (式中、R¹²はa) 水素原子;b) ヒ ドロキシル基;またはc) $C_1 \sim C_5$ のアルキル基を表 し、R13はa) 水素原子; b) フェニル基、カルボキシ ル基もしくはヒドロキシル基で置換されていてもよいC , ~ C = のアルキル基; c) C, ~ C = のアルコキシカ ルボニル基; d) シアノ基; e) フェニル基もしくはC 、~C。のアルキル基で置換されていてもよいカルバモ イル基; f) フェニル基もしくはC, $\sim C_5$ のアルキル 基で置換されていてもよいスルホニル基;またはg) C 、~Cg のアルカノイル基を表す) 〕を表すか、または R9 、R10が一緒になって環を形成し、(v) [0040]

【化38】

-N (CH2) t COR14

【0041】 (式中、七およびuは0、1または2を表し、 R^{16} は1) ヒドロキンル基;2) $C_1 \sim C_{200}$ T ルコキン基;3) ビバロイルオキンメトキン基;4) -N R^{15} R^{16} (式中、 R^{15} R^{10}) ルズ線分子 1) ヒドロキシル基;またはc) $C_1 \sim C_6$ のアルキル基を表し、 R^{16} はa) 水水原子;b) フェニル基、カルボキシル基おは X 大水原子;b) フェニル基、カルボキシル基 大い X 大大 たはヒドロキシル基 マ盟族 されていてもよい $C_1 \sim C_6$ のアルキル基;またはc) シアノ基を設す)〕;

[0042] [化39]

-N N- (CH₂)₃ -CO₂ R¹⁷ 【0043】 【式中、sは0、1、または2を表し、R

【0043】 【式中、srtv、1、または2を表し、R 「は1) と ドロキシルៈ 基: 2) C₁ ~ C₂₀のアルロキシ 基: 3) ピパロイルオキシメトキシៈ または4) ヒド ロキシル・基もしくはC₁ ~ C₆ のアルキル・基で置換され ていてもよいアミノ基を表す)を表す)を表す)を表す か、または、(2)

【0044】 【化40】

C y A

[0.045] (式中、CyAはベンゼン票、ビリジン 康、またはビロール膜を表し、Qはハロゲン原子で置換 されていてもよいフェニル基を表し、Vは(1) 水票原 子、(2) $C_1 \sim C_6$ のアルコキシカルボニル基、

(3) カルボキシル基、または (4) C₁ ~ C₆ のアルコキシカルボニル基もしくはカルボキシル基で置換されていてもよいC₁ ~ C₆ アルキル基を表す)を表す」 これらの化合物および薬学的に許容される起依を含んでなる医薬組成物に存する。本発明の医薬組成物は、テロシンキナーゼの活性の尤進に起因する疾患に対する予防 変ぴ/又は治療料、具体的には、削密剤、免疫抑制剂、血小板酸集程皆剤、動脈吸信治療薬、抗炎症剤、癌細胞増殖抑制薬として使用される。なお、以下、本発明においてはこれもを単に「チロシンキナーゼ阻害薬」ともいった。

[0046]

【発明の実験の影像】以下、本発明につき詳細に認明す る。本発明の化合物は前記一般式(1)で表されるエチ ニルビリミシン誘導体である。一般式(1)において、 定義されるハロゲン原子としては、フッ素原子、塩素原 子、吳素原子、ヨウ素原子が挙げられ、C₁ ~C₂。のア ルキル番としては、メチル基、エチル基、ロープロビル 基、iso一プロビル基、n-プチル基、iso-プチル基、ル基、secープチル基、tertープチル基、<math>n-ペルス・ステル基、オペペンチル基等が挙げられ、 $C_1 \sim C_6$ の アルコキシ基としては、メトキシ基、エトキシ基、n-フロボキシ基、iso-プロボキシ基、n-プトキシ 基、iso-プトキシ基、sec-プトキシ基、ter t-プトキシ基、n-ペンチルオキシ基、オオペンチル オキシ基等が挙げられる。 $C_1 \sim C_6$ のアルカノイル基 としては、ホルミル基、アセデル基、プロビオニル基、 プチリル基、イソプチリル基、バレリル基等が挙げられ ス

【0047】また前記一般式(1)で表される本発例の エチニルビリミジン誘導体は、公知の方法により相当す る酸または塩基によって塩に変換される。形成しうる塩 としては、例えば塩酸塩、硫酸塩、炭酸塩、リン酸塩等 の無機酸塩、あるいはぎ酸塩、酢酸塩、プロビオン酸 塩、乳酸塩、しゅう酸塩、フマル酸塩、マレイン酸塩、 クエン酸塩、福石酸塩、安昆香酸塩、フタル酸塩、メタエン酸塩、4ートルエンスルホン酸、イセチオン 酸塩、グルクロン酸塩、グルコン酸塩等の有機酸の塩が 挙げられる。また、エチニルビリミジン誘導体がカルボン酸等の酸性底を有する場合には、ナトリウム塩、カルシウム塩等のアルカリ土類金属の塩、あるいは、エンモニウム塩、素煙や的に許含される有機アミン(テトラメチルアンモニウム、トリエチルアミン、シクロへキシルアミン、ベンジルアミン、フェネチルアミン、モノエタノールアミン、ジエタノールアミン、トリエ(ヒドロキシエチル)アミン、リジン、アルギニン、ハーメチルーDーグルカミン等)の塩が挙げられる。なお、エチニルビリミジン誘導体が第3級のアミノ基および/またビリジル基を有する場合には、それぞれ、アンモニウム塩、ビリジーム塩を利きるを続きる場合もある。

【0048】なお、本発明のエチニルビリミジン誘導体 は、水和物も形成することができる。以下、本発明の具 体例を示す。以下、Mett、メチル基を、Etはエチル 基を、Prはプロピル基を、Buはプチル基を、Phは フェニル基を表す。

【0049】

		X2~		R2	
R1	Х1	Х2	X3	Х4	R ²
н	Н	Н	H	Н	
Н	Н	н	Olive	н	
В	н	Н	OEt	н	
Н	Н	Н	0 iPr	Н	
H	E	OMe	DiPr	H	
H	H	OMe	0Me	H	
H	H	OMe	OEt	H	NEt 2
II	Н	OMe	0ºPr	н	Me
H	Н	OMe	OiBu	H	
H	Н	OMe	OH	H	
Н	8	OEt	OBt	В	
В	В	0ºPr	OnPr	В	
Н	Н	0 ⁱ Pr	OiPr	Н	
Н	H	0ºPr	OMe	Н	
н	н	0 i Pr	OMe	Н	
Н	OMe	OMe	В	Н	
				【表 2	1

R1

[0050]

表 - 1 (つづき)

			200	- 1 (つつき)	
	R1	Х1	X2	Х3	X4	R2
Ī	Н	Н	O ⁱ Bu	OMe	Н	
	н	H	0-C	I ₂ -0	H	
Ī	Н	Н	В	0-0	H ₂ -0	
	H	H	0-(0	1 ₂) ₂ -0	H	
	В	Н	0-(0	H ₂) ₃ -0	H	
1	н	Н	H	CI	Н	
	Н	Н	CI	CI	Н	
	Н	В	н	Br	В	
İ	8	н	H	F	В	wn.
Ī	8	Н	Ме	Me	8	NEt 2
Ī	Н	0-	-CH ₂ -O	Н	8	Me
	В	OEt	OBt	H	8 -	9
	В	н	Н	CEt	OBt	
Ī	8	H	Н	O t Bu	В	
Ī	B	Н	0 tBu	CMe	В	
	H	Н	Bt	Et	H	
	Н	Н	Br	Br	н	
	Н	Н	Н	-NHMe	Н	
	н	Н	-NHMe	Н	н	
	Н	Н	H	-NH ₂	Н	
51]	H	Н	-NH ₂	Н	表	

表 - 1 (つづき)

		ax.	1 (,,,,,	
R1	X1	X2	X3	X4	R ²
E	H	н	-XMe2	H	
E	H	-NMe ₂	Н	H	
-NH2	H	OMe	OMe	H	
-NH ₂	H	08t	0Et	H	
-NH2	H	0 ⁿ Pr	0ºPr	H	
-NH ₂	Н	OiPr	0 iPr	H	
-NH2	H	0-0	H ₂ -0	H	
-NH ₂	H	Н	-NMe ₂	H	
P	Н	0Me	OMe	H	NEt 2
F	В	0Et	OBt	H	Me
F	9	н	-NHe ₂	н	(0)
C1	. 8	OMe	OMe	B	
C1	8	OBt	OBt	н	
-NMe 2	В	OMe	OMe	В	
-NMe 2	В	Н	H	Н	
-OMe	н	OHe	OMe	н	
0CH2CO2H	н	OMe	Olife	Н	
00H2CO2H	Н	OBt	OEt	Н	
Me	Н	E	н	н	
Ph	Н	OBt	OEt	Н	
Ph	н	H	Н	Fas. 4	,

[0052]

表 ー 1 (つづき)

		æ -	- 1 G	つつき)	
R1	X1	X2	Х3	X4	R2
н	Н	Н	H	В	
H	Н	Н	CMe	H	
8	H	Н	CEt	Н	
Ð	Н	Н	OiPr	н	
Н	H	CMe	OiPr	Н	
Н	н	СМе	OMe	Н	
В	н	CMe	0E t	Н	
H	Н	CMe	0ºPr	Н	
Н	Н	CMe	OiBu	Н	_
H	II	СМе	OH	H	N CO ₂ H
H	Н	OBt	OEt	Н	Me
Н	H	0ºPr	0ªPr	Н	
Н	H	OiPr	0 iPr	н	_
Н	Н	OPPr	ONe	Н	
H	Н	OiPr	ONe	Н	
Н	OMs	OMe	H	H	
E	H	O i Bu	ONe	H	
E	H	0-CH	2-0	H	
H	H	Н	D-CH	2-C	
E	H	O-(CH	2)2-0	Н	

[0053] [表5]

表 - 1 (つづき)

				01	
R1	Χı	X2	Х3	X4	R ²
H	Н	0-(C	H ₂) ₃ -0	Н	
Н	Н	H	C1	н	
Н	Н	CI	Cl	H	
Н	Н	H	Br	H	
Н	Н	H	F	H	
H	Н	Me	Me	Н	
Н	0-	CH2-C	B	Н	N CO ₂ H
H	0Bt	Œŧ	В	Н	Me Tu Wan
H	Н	н	0Et	OBt	\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
H	H	Н	O*Bu	H	9
H	Н	0 ^t Bu	Oble	H	
H	Н	Bt	Et	Н	9
Н	Н	Br	Br	н	
n	Н	Н	-NHMe	н	
H	н	-NHMe	H	Н	
H	Н	Н	-NH ₂	н	
В	H	-NH ₂	Н	Н	
В	Н	н	-Me ₂	Н	
В	Н	-NMe ₂	Н	8	
				[表6	

[0054]

表 - 1 (つづき)

		-	1 (,,,,	
R1	X 1	X5	Х3	X4	R2
-NH ₂	н	OMe	OMe	Н	
-NH ₂	H	DEt	0Et	Н	
-NH ₂	H	D ⁿ Pr	0ªPr	Н	
-NH ₂	H	0 iPr	0 iPr	Н	
-NH2	H	0-0	H ₂ -0	Н	
-NE ₂	Н	Н	-NMe ₂	Н	
F	H	Olle	OMe	Н	
F	H	OBt	OBt	Н	
F	Н	Н	-NMe ₂	H	N CO ₂ H
Cl	Н	CMe	OMe	Н	™
CI	Н	CBt	DEt	H	
-104e ₂	Н	CMe	ONe	н	
-NNe 2	К	H	H	Н	
-OMe	Н	Otée	OMe	Н	
OCH ₂ CO ₂ H	Н	OKe	Otte	Н	
OCH2CO2H	Н	OEt	0Et	Н	
Ме	E	. 8	Н	В	
Ph	H	OEt	0Et	E	
Ph	H	H	H	H	

[0055] [表7]

Н Н Н Н Н H Н Н 0Me 8 0Et H Н Н Н DiPr 0 iPr H H OMe H H Ε OMe OMe H В H OMe 0Bt H E H Me 0°Pr H 0 iBu H H OMe Н OH H H OMc Ħ H H 0Et 0Bt Н Н 0ºPr 0ⁿPr H H Н 0iPr 0 iPr Н H 8 oner OMe В Н Ð 0iPr OMe H В OMe OMe H Н Н Н O i Bu OMe H Н Н D-CH2-D Н H H 0-CH₂-0 Н Н 0-(CH₂)₂-0 H 【表8】

表 - 1 (つづき) (² X³ X⁴

R1 X1 X2

[0056]

R2

表 - 1 (つづき)

	300	- 1 (J-767	
X1	X2	Х3	X4	R ²
В	0-(0)	l ₂) ₃ -0	Н	
8	Н	CI	H	
H	CI	CI	H	
H	Н	Br	B	
H	В	F	H	
Н	Me	Me	H	
0-	-CH2-O	н	Н	Bi No.
0Et	08t	Н	Н	Me CO ₂ H
Н	Н	OEt	OEt	***
Н	Н	O†Bu	Н	
Н	0 tBu	OMe	Н	
В	Bt	Bt	н	
В	Br	Br	н]
H	н	-NIMe	H	
Н	-NHMe	В	Н]
Н	Н	-NH ₂	Н	1
Н	-NH ₂	Н	Н	
Н	H	-NMe2	Н	1
В	-NMe 2	H	н	1
	HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	X X X X X X X X X X	X1	X1

[0057] [表9]

表 - 1 (つづき)

RI	X1	Χs	X3	X4	R ²
-NH ₂	Н	OMe	OMe	Н	
-NH ₂	Н	OEt	OEt	В	
-NH ₂	H	O ⁿ Pr	0 ⁿ Pr	Н	
-NH ₂	H.	0 iPr	0 iPr	H	
-NH ₂	H	0-0	H ₂ -0	H	
-NH ₂	H	H	-NMe ₂	H	
F	H	OMe	0Me	H	
p	Н	0Et	0Et	H	Bt N CO ₂ H
F	Н	Н	-NMe ₂	H	Me CO ₂ H
C1	H ·	OMe	OMe	H	m 🖒
C1	H	0Et	OBt	В	
-NMe 2	В	OMe	OMe	Н	
-NKe 2	8	Н	Н	Н	
-OMe	8	OMe	UMe	Н	
OCH2CO2H	В	OMe	OMe	н	
0CH2CO2H	В	03t	OEt	Н	
Мe	Н	H	H	Н	
Ph	Н	OBt	DEt	Н	
Ph	Н	H	Н	Н	

[0058] 【表10】

表 - 1 (つづき)

R1	X1	X2	Х3	X4	R ²
Н	Н	: Н	H	Н	
Н	Н	Н	DMe	Н	1
н	Н	Н	OBt	Н	
R	Н	Н	OiPr	Н	
Н	H	OMe	OiPr	Н	
Н	Н	OMe	OMe	Н	
Н	Н	OMe	0Et	В	
Н	K	OMe	0 ⁿ Pr	H	
Н	H	ОМе	0 ⁱ Bu	H	,
F	H	OMe	OH	H	Bt N CO ₂ Me
H	H	0Et	0Bt	H	Me
H	H	9ºPr	0°Pr	H	0
Н	H	0iPr	0 iPr	H	_
н	B	0ºPr	OMe	H	
Н	Н	0 Pr	OMe	8	
Н	Otte	OMe	E	н	
Н	Н	O i Bu	OMe	Н	
Н	В	0-CF	2-0	Н	
Н	Н	H	0-CF	l2-0	
Н	H	D-(CH	2)2-0	Н	

[0059] 【表11】

表 - 1 (つづき)

		44	1 (2261	
RI	X1	X2	X3	X4	R ²
Н	н	0-(CE	2)3-0	Н	
Н	Н	H	C 1	H	
Н	Н	C1	Cl	Н	
Н	Н	Н	Br	Н	
Н	Н	Н	F	Н	
H	E	Me	Me	H	
H	0-	CH2-O	Н	H	
H	OBt	OBt	H	E	.
Н	H	н	0Et	08t	Bt N
H	H	Н	O tBu	H	Me CO ₂ Me
Н	H	O tBu	OMe	Н	0
H	В	Et	Bt	H	
Н	В	Br	Br	В	
Н	8	Н	-NINe	Н	
В	B	-NHMe	H	Н	
H	Н	н	-NH ₂	Н	
Н	Н	-NH ₂	H	Н	
H	Н	Н	-Me ₂	В	
Н	Н	-NMe ₂	H	Н	

[0060] [表12]

表 - 1 (つづき)

		ax ·	- 1 (コンさり	
R1	Х1	X2	X8	X4	R ²
-NH ₂	Н	OMe	OMe	В	
-NH2	В	OBt	OBt	В	
-NH ₂	В	0ºPr	OnPr	В	
-NH ₂	Н	0 iPr	OiPr	В	
-NH2	В	0-0	H ₂ -0	Н	
-NH ₂	В	Н	-Nie2	Н	
F	Н	OMe	OMe	Н	
F	Н	03t	OBt	В	<u>.</u> .
F	Н	Н	-NMe ₂	Н	Bt N
CI	Н	OMe	DMe	Н	Me CO ₂ Me
Cl	Н	0Bt	Œt	Н	
-Me ₂	В	OMe	OMe	В	Ť
-NMe 2	н	H	н	Н	
-OMe	В	OMe	DMe	Н	8
0CH2CO2H	Н	OMe	OMe	Н	
OCH2CO2H	Н	OBt	OEt	Н	
Ме	Н	• н	H	Н	
Ph	Н	OBt	OEt	Н	
Ph	Н	H	н	Н	

[0061] [表13]

RI	X1	X 2	Х3	X4	R2
H	Н	CMe	OMe	Н	
H	Н	OEt	0Et	H	
H	H	Oapr	OnPr	Н	
H	Н	OiPr	OiPr	H	
H	Н	OMe	OiPr	H	
Н	Н	OMe	OtBu	H	- N
H	H	0 iFr	OMe	Н	N COZEL
H	H	-0-0	H ₂ 0-	Н	Me
H	Н	0-(0)	l ₂) ₂ -0	Н	(i)
H	H	H	Me ₂	H	_
H	Н	NMe ₂	Н	Н	
NH2	Н	0Et	OEt	В	
NH2	H	OMe	OMe	H	
F	H	OMe	OMe	B	
F :	8	OBt	CEt	В	
H	В	OMe	OMe	B	
В	8	OBt	OEt	В	
El	Н	0 [†] Pr	OiPr	H	
E	Н	OMe	OiPr	H	
Н	Н	OiPr	OMe	Н	
H	Н	0-0	H ₂ 0	И	ON O 00 II
H	H	H	NMe ₂	Н	Me O
H	H	NMe ₂	Н	H	Me]
Н	н	0-(CE	l ₂) ₂ -0	Н	- O
H	Н	O ^a Pr	0ºPr	H	_
NH ₂	Н	ОМе	OMe	Н	
NH ₂	Н	OEt	OBt	Н	
P	Н	0Bt	OEt	H	
F	н	OMe	0Me	Н	

[0062]

R1	X1	X2	X3	X4	R2
Н	н	OMe	OMe	н	
H	н	OBt	OEt	H	
H	Н	0ºPr	0ºPr	H	
В	н	0iPr	0 iPr	Н	
H	Н	OMe	OiPr	н	
Ħ	H	OMe	O¢Bu	H	CONH ₂
Н	E	0iPr	CMe	H	NO DUNH2
B	Н	-0-0	H ₂ 0-	H	Me
H	H	0-(C)	(₂) ₂ -0	Н	0
В	H	Н	NMez	H	
8	Н	NMc2	H	H	
NH ₂	Н	OBt	OEt	Н	
NH ₂	Н	ONe	GMe	H	
F	Н	OMe	OMe	Н	
F	Н	0Bt	OEt	H	
El .	H	OKe	OMe	H	
Ħ	Н	0Bt	ORt	H	
B	Н	0iPr	OiPr	Н	
H	Н	OMe	OiPr	H	
H	Н	0iPr	OMe	H	
E	Н	0-0	H ₂ O	H	CONHOH
H	Н	H	NMe ₂	H	, Junion
H	Н	NMe ₂	Н	H	*×'`
H	H	0-(CI	(₂) ₂ -0	H	** do
H	Н	O ^o Pr	0°Pr	H	9
NH ₂	Н	OMe	OMe	H	
NH ₂	H	OBt	OEt	H	
F	Н	OBt	0Bt	Н	
P	н	OMe	OMe	H	

[0063]

R.2	XΙ	X2	X3	X4	R2
н	В	OMe	OMe	В	
В	Н	OBt	OBt	В	
н	Н	O ⁿ Pr	0ºPr	н	1
Н	Н	OiPr	0iPr	Н	
H	Н	OMe	0 Pr	Н	Me CO2
H	Н	OMe	OtBu	H	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Н	Н	0tPr	OMe	н	> _ `
Н	H	-0-	CH ₂ 0-	В	l Me →
Н	Н	0-(C	H ₂) ₂ -0	H	l V
Н	H	H	NMe ₂	Н	P
H	H	NMe ₂	Н	H	
NH ₂	н	OEt	OBt	Н	
NH2	Н	OHe	OMe	Н	
F	В	OMe	CMe	H	
P '	H	OBt	0Et	H	
Н	H	CMe	0Me	H	
н	H	0Et	0Et	н	
H	H	OiPr	OiPr	H	
H	H	OMe	OiPr	H	
Н	Н	0iPr	CMe	Н	
Н	Н	0-0	H ₂ O	н	
H	Н	Н	NMe ₂	H	₽t ∝com ~
H	H	NMe 2	H	H	Me CONH CO
H	H	O-(CH	2)2-0	H	(i) Ne
H	Н	0ºPr	0ºPr	H	~
NH2	В	OMe	OMe	B	
NH ₂	H	0Bt	CEt	H	
ſ	Н	GBt	OEt	н	
F	8	0Me	DMe .	н	

[0064]

		表	- 1 (つづき)	
R1	χı	X2	Х3	X4	Rž
Н	Н	0Me	OMe	Н	
Н	Н	0Et	08t	Н	
Н	Н	0nbt	0°Pr	Н	
Н	Н	0 i Pr	OiPr	Н	
H	Н	OMe	OiPr	Н	
H	H	OMe	OtBu	Н	
Н	H	OiPr	OMe	Н	,,
В	Н	-0-0	H ₂ 0-	H	
H	H	0-(CH	2)2-0	H	
H	E	H	MMe ₂	H	[
H	H	NMe ₂	Н	H	10251
NH ₂	H	OEt	0Et	H	
NH ₂	H	DMe	0Me	H	
F	H	Ottle	OMe	H	
F	H	0Et	0Et	Н	
н	H	OMe	ONe	Н	
Н	H	0Et	0Et	H	
H	В	0iPr	0iPr	Н	
В	В	OMe	OiPr	Н	
В	В	OiPr	OMe	H	
H	Н	0-0	H ₂ O	Н	
Н	Н	H	NMe ₂	Н	
Н	H	NHe ₂	H	H	00
Н	Н	0-(CH	2)2-0	Н	, and it
Н	Н	0ºPr	0°Pr	Н	U2n
NH ₂	Н	Olde	OMe	H	
NH ₂	H	OEt :	0Et	H	
F	H	OEt	0Et	H	
F	H	00%e	0Me	H	
				【表 1	7]

[0065]

		表	- 1 (-	つづき)	
R1	X1	X2	Х3	X4	R2
Н	Н	UMe	ONe	Н	
Н	Н	0E t	Œt	Н	
Н	Н	0°Pr	0nPr	н	
H	H	OiPr	0iPr	Н	
В	H	OMe	0iPr	E	
I.	H	OMe	O†Bu	H	CONH ₂
- E	H	DiPr	OMe	H	
H	H	-0-0	H ₂ O-	н	CONH ₂
F.	В	0-(CH	2)2-0	H	0
li li	H	H	NMe ₂	H	-
H	H	NMe ₂	H	Н	
NH2	Н	OBt	0Et	H	
NH ₂	Н	OMe	OMe	H	
F	Н	OMe	OMe	H	
P	Н	0Et	0Et	H	
Н	Н	OMe	DMe	F.	
Н	H	OBt	0Et	H	
E	H	DiPr	0iPr	H	
H	H	OMe	oipr	H	
H	Н	01Pr	OMe	Н	
H	Н	0-0	H ₂ O	Н	
H	9	Н	NNe ₂	B	Me a conti
H	8	NMe ₂	H	н	Me CONH ₂
H	В	0-(CH	2)2-0	В	0
H	Н	0ºPr	O*Pr	H	•
NH 2	Н	OHe	OMe	Н	
NH2	H	OBt	OEt	Н	
F	H	OBt	9Et	H	
F	H	OMe	OMe	H	
				【表 1	8]

[0066]

	,	表		つづき)	
R1	X1	X2	X3	X4	R2
-E	H	OMe	OMe	H	
F	H	0Et	0Et	H	
E	H	0ºPr	0ºPr	H]
H	H	OiFr	0iPr	H	
H	H	OMe	OiPr	H	
E	H	OMe	O ^t Bu	H]
H	H	OiPr	OMe	H	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
H	H	-0-	CH ₂ O-	H] () ()
H	H	0-(0)	H ₂) ₂ -0	H	CO ₂ Bt
H	H	H	NMe ₂	H	CO2BI
H	H	NMe ₂	Н	B	
NH ₂	Н	0Et	OBt	Н	1
NH ₂	В	0Me	OMe	Н	
F	В	6Me	OMe	Н	1
F	В	OEt	OBt	Н	
H	В	OMe	OMe	H	
H	В	OEt	OBt	H	
H	Н	0 i Pr	OiPr	н	1
Н	В	OMe	OiPr	Н	
Н	В	0iPr	Olife	H	Ì
Н	В	0-0	H ₂ 0	Н	1 ~~~
H	H	E	Me ₂	Н	1 🔘 🔍
Н	H .	NMe ₂	Н	Н	(0 ² H
Н	Н	D-(C)	(₂) ₂ -0	Н	CO ₂ H
H	Н	0ºPr	OnPr	Н	1
NH ₂	Н	OMe	Olife	Н	
NH ₂	H	OEt	OEt	Н	1
F	н	081	OEt	н	1

【0067】 【表19】

RI	X1	X2	X 3	X4	R2
- H	H A	OMe	OMe	H H	IV.
8	B	OBt .	ORt	H	
B B	H	0st 0°Pr	OPPr	H ·	
H	B B	OiPr	OiPr	H	
	B	OMe	OiPr	H	
В		OMe	Ot Re	H	
H	8				20.14
В	B	0iPr	OMe	H	>0 002100
R	В	-0-0		H	Me 0 C0 ₂ Me
H	8		2)2-0	H	0
В	В	E	NMe ₂	H	
B	Н	NHe ₂	H	H	
NH2	Н	03t	OEt	Н	
NH ₂	H	OHe	OMe	Н	
F	Н	OMe	OMe	H	
F	Н	0Et	0Et	H	
H	Н	UMe	ONe	Н	
Н	Н	OBt	0Et	Н	
Н	В	OiPr	OiPr	H	
Н	Н	OMe	0iPr	H	
Н	Н	OiPr	OMe	Н	
H	Н	0-0	H ₂ O	Н	_ CO2H
Н	H	н	NMe 2	H	Me
Н	Н	Note 2	H	Н	Me O CO ₂ H
H	н	0-(CH	2)2-0	Н	~
H	Н	0°Pr	9ºPr	H	
NH2	н	OMe	OMe	Н	
NH ₂	Н	OBt	0£t	H	
P	Н	DEL	0Et	H	
F	Н	DMe	OMe	н	

[0068] F H

R1	X1	X2	X 3	X.4	Rž
H H	H	OMe	OMe	H	
В	H	OEt	OEt	Н Н	
H	H	OnPr	OnPr	н	
H	H	0 Pr	0 Pr	H -	
Н Н	H	OMe	OiPr	H	
В	H	OMe	O*Bu	H	
Н	H H	0±Pr	OMe	Н.	Me No CO ₂ FI
H	H		H ₂ 0-	F	M->0 CO₂H
E	H		2)2-0	H.	l ** Å
H	H	H H	NMe ₂	H	9
Н	H H	NMe 2	H H	H	
	-		0Et		
NH2	H	OBL		H	
NH 2	H	OMe	0Me	H	
P	H	OMe	0Me	H	
r	H	0Et	0Et	H	
F	H	OMe	OMe	H	
H	H	0Et	OBt	H	
H	H	0iPr	0iPr	H	
H	H	OMe	0iPr	H	
H	H	OiPr	ONe	H	ō
H	H	0-0	H ₂ 0	8	\\^\^\^\^\
Н	В	H	NHe 2	Н	. NJ
H	В	NMe ₂	H	Н	Me O
В	В	O-(CH	2)2-0	Н	0
В	В	0ºPr	0°Pr	H	
NH2	В	OMe	OMe	н	
NH ₂	В	OBt	OBt	H	
F	Н	0Bt	OBt	Н	
P	Н	OMe	OMe	н	

[0069]

R1	X1	X2	Х3	X4	R2
H	Н	OMe	OMe	Н	
Н	н	OEt	OEt	Н	1
Н	Н	OnPr	OnPr	Н	1
н	Н	OiPr	DiPr	Н	1
H	Н	0Me	DiPr	Н]
Н	H	OMe	O†Bu	H	1
Н	Н	OiPr	OMe	В	1
H	Н	-0-0	H ₂ 0-	Н	~~©
Н	H	0-(0)	l ₂) ₂ -0	H]
Н	H	В	NMe ₂	H	
H	H	NMe ₂	H	H	
NH ₂	H	OBt	0Et	H	
NH ₂	H	0Me	OMe	H	
P	H	OMe	0Me	H]
F '	H	0Et	0Et	H	
E	H	0Me	0Me	H	
H	H	0Et	OBt	H	
H	H	0iPr	0iPr	Ħ	
Н	H	0Me	0iPr	H	
Н	B	OiPr	ONe	Н	
В	В	0-0	H ₂ 0	H	
В	В	H	NMe ₂	Н	► .O. ~ .cnaii
В	В	NMe ₂	H	Н	Me CO ₂ H
Н	В	D-(CI	2)2-0	H	0
H	Н	0ºPr	Oapr	H	F
NH ₂	В	OMe	OMe	Н	
NH ₂	H	0Bt	0E t	Н	
F	H	OBt	OEt	Н	
F	H	OMe	OMe	H	

[0070]

		表	- 1 (つづき)	
RI	X!	X2	X3	X4	R2
H	H	OMe	OMe	H	
Н	Н	OEt	OEt	H	
Н	Н	0ªPr	0nPr	H	
H	H	OiPr	OiPr	E	
H	H	OMe	OiPr	H	
В	Н	OMe	O#Bu	E	
H	H	OiPr	DMe	H	. H
E	H	-0-0	H ₂ 0-	H	Me Ne O
E	H	C-(CH	i ₂) ₂ -0	К	
E	H	H	Mez	H	
E	H	NMe ₂	Н	H	
NH ₂	Н	0Et	0Et	H	
NH ₂	H	QMe .	OMe	H	
F	H	0Me	OMe	H	
F	H	0Et	OBt	H	
Н	Н	Olife	OMe	В	
н	В	0Et	OBt	H	
H	B	0iPr	0iPr	Н	
H	B	0Me	0iPr	Н	
H	В	OiPr	OMe	Н	
В	B	0-0	H ₂ 0	Н	
В	Н	Н	NMe ₂	H	Me No ou
В	8	NMe ₂	H	Н	Me OH
H	В	0-(CH	(₂) ₂ -0	Н	(a)
Н	Н	0ºPr	0°Pr	Н	~
NH ₂	В	OMe	OMe	Н	
NH ₂	Н	0Bt	OEt	H	
F	Н	0Et	OEt	Н	
P	н	OMe	DMe	H	

[0071]

R1	X1	X2	- 1 (·	X4	R2
	_			-	K2
H	В	OMe	Olice	H	
Н	Н	OBt	OEt	H	
H	H	0ºPr	0ºPr	H	
H	Н	OiPr	01Pr	Н	
H	Н	OMe	OiPr	H	
H	Н	OMe	D*Bu	H	N/D4
H	H	0 ⁱ Pr	OMe	H	M2 NB1 2
H	Н		H ₂ 0-	Н	Me NEt 2
Н	В	0-(CH	2)2-0	H	- Y
Н	Н	H	NMe ₂	H	F
H	Н	NMe ₂	Н	H	
NH2	Н	0Et	0Et	H	
NH ₂	H	Olife	OMe	H	
P	H	0Me	OMe	H	
F.	Н	0Et	0Et	Н	
Н	Н	0Me	OMe	H	
E	Н	0Et	0Et	H	
H	H	OiPr	OiPr	H	
H	Н	DMe	OiPr	H	
H	Н	OiPr	ONe	Н	
H	H	0-0	H ₂ 0	н	. QAc
Н	H	H	NMe 2	H	Me OAC
H	H	NMe ₂	Н	В	(i)
Н	8	D-(CH	2)2-0	н	_ ~
H	8	0°Pr	0 ⁿ Pr	н	
NH ₂	В	OMe	OMe	н	
NH2	В	0Bt	OBt	Н	
F	В	08t	OBt	Н	
F	Н	Olife	OMe	В	

[0072]

		表	- 1 (-	つづき)	
RI	X1	X2	X3	X4	R2
H	Н	OMe	OMe	Н	
Н	Н	OBt	0Et	Н	
Н	Н	OnPr	OnPr	Н	
H	Н	0iPr	0iPr	H	
H	H	OMe	Oipr	H	
H	II.	OMe	9¢Bu	H	
В	H	OiPr	OMe	H	Me OH
E	H	-0-0	H ₂ 0-	H	** 👆
H	H	O-(CF	l ₂) ₂ -0	H]
H	H	H	NMe ₂	H	F
н	H	NMe ₂	Н	H	
NH ₂	Н	0Et	OBt	H	
NH2	H	OMe	OMe	Н	
F	H .	Oille	OMe	H	
F	Н	0Et	OBt	H	
H	Н	OMe	OMe	H	
Н	8	OBt	OBt	H	
Н	8	0 i Pr	OiPr	H	
H	8	OMe	0iPr	Н	
H	В	OiPr	OMe	H	
H	Н	0-0	H ₂ 0	H	
H	Н	H	NMe ₂	Н	
H	Н	NHe ₂	Н	Н	√ ©
Н	н	D-(CH	2)2-0	H	
Н -	Н	O ⁿ Pr	OnPr	Н	
NH ₂	Н	ОМе	OMe	Н	
NH ₂	Н	OEt	OEt	Н	
F	Н	OBt	Œt	Н	
P	Н	ΠMe	OMe	н	

F H OBt Obt H F H OMe OMe 用 [表25]

			- 1 (- xs	X4	R2
R1	Χı	Χz			K ²
H	H	OMe	OMe	H	
H	H	0Et	OEt	Н	
H	В	0ºPr	0ºPr	H	
H	H	OiPr	0iPr	Н	
Ħ	H	OMe	OiPr	Н	
H	H	OMe	O†Bu	Н	OLI
В	H	0iPr	CMe	H	Me OH
В	H	-0-0	H ₂ 0-	H	· (a)
В	Н	0-(01	2)2-0	В	9
Н	H	H	NMe ₂	H	
H	В	NMe ₂	H	H	
NH ₂	В	0Bt	0Bt	H	
NH ₂	В	0Me	OMe	B	
P	В	OMe	OMe	B	
F	В	0Bt	0Bt	В	
8	H	0Me	CMe	B	
8	В	0Bt	CEt	H	
H	H	OiPr	CiPr	В	
H	В	OMe	CiPr	В	
H	H	0iPr	GWe	Н	
H	H	0-0	H ₂ O	H	
В	H	Н	NMe ₂	Н	
H	H	NMe ₂	Н	H	
H	H	0-(CH	2)2-0	н	Me Me ①
Н	H	0ºPr	CaPr	H	and and
NH ₂	H	OMe	ОМе	Н	
NH ₂	H	0Bt	OBt	Н	
F	Н	CEt	OEt	н	
F	H	CMe	OMe	Н	

[0074]

		表	- 1 (つづき)	
R1	X1	X2	X3	X4	R2
E	H	DMe -	OMe	H	
H	H	0Et	0Et	Н	1
Н	H	0°Pr	0°Pr	Н	1
H	H	0 ⁱ Pr	0iPr	H	1
E	H	Otie	0 Pr	H	
H	H	Ottle	O ^t Bu	H	
H	H	DiPr	OMe	H	Ô
H	Н	-0-0	H ₂ 0-	Н	1 X
H	H	0-(0)	I ₂) ₂ -0	H	
H	H	H	NMe ₂	H	
H	Н	NMe 2	Н	H	
NH ₂	Н	0Et	OBt	Н	
NH ₂	В	6Me	OMe	В	1
F	Ð	OMe	ONe	В	
F	В	0Et	08t	В	
H	В	0Me	OMe	Н	
Н	В	OEt	OBt	В	
H	В	OiPr	OiPr	H	
В	В	OMe	OiPr	В	
В	Н	0 iPr	OMe	H	
B	Н	0-0	H ₂ O	В	
H	В	H	NHe 2	H	Met 2
Н	Н	NHe ₂	H	Н	** d
Н	H	0-(0)	i ₂) ₂ -0	H] Y
H	Н	0ºPr	0°Pr	H	ONe ONe
NH2	Н	OMe	OMe	Н	
NH ₂	Н	OBt	OEt	H	
F	Н	OEt	OEt	Н	
F	В	CMe	OMε	В	

[0075]

RI	X1	X2	Хŝ	X4	R2
Н	Н	OMe	OMe	Н	
H	H	0Et	DEt	H	
Е	H	Oapr	0nPr	Е	
В	Н	OiPr	OiPr	E	
H	H	OMe	DiPr	H	
В	H	OMe	OtBu	H	CONBON
Н	H	01Pr	OMe	H	
H	H	-0-0	H ₂ 0-	H	
E	H	0-(CF	I ₂) ₂ -0	H	0
H	H	Н	NMe ₂	H	
H	H	NMe ₂	H	H	
NH ₂	H	0Et	OBt	H	
NH2	В	0Me	ONe	H	
F	Н	0Me	OMe	Н	
F	H	0Et	0Et	В	
H	8	OMe	OMe	В	
Н	В	OBt	0Bt	В	
H	В	0iPr	OiPr	H	
H	В	OMe	OiPr	В	
H	В	OiPr	CMe	В	
R	В	0-0	H ₂ O	Н	00 11
H	H	H	lMe ₂	H	NOSE .
H	H	NHe ₂	H	H	" X /~
H	Н	D-(CH	i ₂) ₂ -0	Н	Ne O
H	н	0°Pr	0ºPr	H	💚
NH2	Н	ОМе	OMe	Н	
NH ₂	H	OBt	OEt	Н	•
F	H	OBL	OEt	Н	
F	Н	DMe	OMe	Н	

[0076]

R1	₹2
H	
H	
H	
H E OMe O ¹ Pr H E H OMe O ¹ Bu H H H O ¹ Pr OMe H E H -0-O ² O ² D H E H 0-(O ² O ₂ D O H E H NMe ₂ H H NMe ₂ H H NM ₂ H OO ² L OS ² L H	
H	
H H O ¹ Pr OMe H E H -0-CH ₂ D ₂ -O H E H OCCH ₂ D ₂ -O H E H MMe ₂ H H MMe ₂ H H MH ₂ H OEt OSt H	
H H Make ₂ H H NH ₂ H OEt OB4 H	^
H H Make ₂ H H NH ₂ H OEt OB4 H	1 L
H H Make ₂ H H NH ₂ H OEt OB4 H	L CO2n
H H Make ₂ H H NH ₂ H OEt OB4 H)
NH ₂ H OEt OBt H	
142,	
NH2 H OMe OMe H	
F H OMe OMe H	
F H OEt OBt H	
H H OMe UNe H	
H H OBt OBt H	
H H OiPr OiPr H	
H H GMe OiPr H	
H H O'Pr OMe H	
H H 0-CH ₂ O H	0.11
H H H NMe2 H) <u>-1</u>
H H H NMe2 H H H H O-(CE2)2-O H	\sim
H H 0-(CH ₂) ₂ -0 H Me	5
H H OPP OPP H	ク
NH2 H OMe OMe H	
NH ₂ H OBt OBt H	
F H ORt OBt H	
F H OMe OMs H	

[0077]

		表	- 1 (つづき)	
R1	X1	X2	X3	X4	R2
Н	Н	Olife	OMe	н	
Н	н	OBL	OEt	E	
Н	H	OnPr	0ªPr	H	İ
Н	H	OiPr	OiPr	H	1
Н	Ħ	OMe	0iPr	н	
- E	H	DMc	O‡Bu	H	CO₂H
I	н	OiPr	OMe	H	* N
H	Н	-0-0	H ₂ C-	H	Me
Fi Fi	Н	0-(Cl	i ₂) ₂ -0	Н	
H	H	Н	NMe ₂	Н	1
H	Н	NMe ₂	H	Н	
NH ₂	Н	0Et	0Et	Н	
ХН ₂	Н	OMe	Olife	Н	
P	Н	OMe	OMe	H	
F	Н	OEt	0Et	Н	
Н	Н	OMe	OMe	H	
Н	H	OEt	DEt	H	
H	H	0 ^j Pr	0 iPr	H	
H	H	OMe	OiPr	H	
H	H	OiPr	OMe	H	CONH2
H	H	0-0	0 _S R	H	
H	H	Н	NMe ₂	H	
H	H	NMe ₂	H	Н	Mé 🕽
H	B	0-(CH	l ₂) ₂ -0	Н	
8	В	0°Pr	0ºPr	H	
NH 2	Н	OHe	OMe	Н	
NH ₂	H	08t	OBt	H	
F	Н	OBt	Œŧ	Н	
F	н	OMe	OMe	H	

 F
 H
 OSt
 OSE
 H

 F
 N
 OMe
 NKe
 N

 [参30]
 [参30]

RΙ	X1	X 2	X3	X4	R2
H	F.	OMe	ONe	H H	R2
H	H	OBt	OEt.	H	1
H	H	OPPr	OLPr	H	-
н	Н	DiPr	DiPr	H	-
R	H	OMe	0 iPr	- n	-
B	8	OMe	O*Fi O*Bu	- H	Ċ0 ⁵ B
- I	- H	0 iPr	IMe.	H	. Bt
H	В	_	H ₂ 0-	H	Bt NH2
R	Н	_	1 ₂) ₂ -0	H	Me di
Н	E	H H	NMe 2	H	
н	н	NMez	H	B	1
NH ₂	H.	DEt	OEt	E E	
Niz	H	Offic	OMe		
F	Н.	OMe	OMe	H	
F	H	OBt	OBt	H	
H	н	OMe	Olife	Н	
Н	H	0Et	DEŁ	H	
Н	В	OiPr	OiPr	Н.	
Н	В	OMe	OiPr	B	
Н	E	OiPr	OMe	E	
H	E	0-0		E	p+ ∕ CO ₂ H
H	ii ii	н	NMe 2	H	N N NH2
H	H .	NMe ₂	Н	Н	Ne 0
Н	H	D- (CH	2)2-0	н	(O)
н	Я	0°Pr	O ⁿ Pr	Н	
NH ₂	8	OMe	OMe	В	
NH ₂	H	08t	0Et	H	
F	н	OBt	OEt	Н	
F	н	Otte	OMe	н	

[0079]

H	H	Н	H	H	
H	H	OMe	OMe	H	CO Es
H	И	0Et	OEt	H	W2Et
H	H	-00	H ₂ 0-	H	~ N CO2E1
F	H	Н	NMe ₂	Н	
H	H	9 ¹ Pr	0 ⁱ Pr	H	
H	H	NMe ₂	Н	H	
H	H	H	Н	H	
Н	H	0Me	OMe	H	m .
H	H	0Et	OBt	н	√n €
II	H	-00	H ₂ 0-	B) ~"(6)
H	H	Н	NMc 2	B	ľ
Н	В	0 i Pr	0 ⁱ Pr	н	
H	Н	NMe ₂	H	В	
H	В	H	E	н	
H	Ð	OMe	UMe	H	NEt₂
Н	Н	03t	OBt	H	Me
H	Н	0 ⁱ Pr	OiPr	Н	Me O
H	Н	-00	H ₂ 0-	H	CO ₂ H
H	H	H	Me ₂	Н	
Н	H	NHe ₂	H	Н	
H	H	Н	H	Н	
H	Н	OMe	OMe	Н	
Н	Н	03t	OEt	H	l Y.

Н

表 - 1 (つづき)

R2

RI

H H H H NMe 2 H Me₂ H [0080] 【表32】

-0CH₂0-

Н 0Bt Н 0iPr 0iPr

H

Н

		表	- 1 (つづき)	
R1	X1	X2	X3	X4	R2
E	H	Н	В	E	
E	H	OMe	OMe	E	
E	H	OEt	9Et	H	Y
н	H	-00	B ₂ 0-	H	0 NH0
Н	H	Н	NMe ₂	H	HN YNH
E	H	0 ⁱ Fr	0iPr	H	0
H	н	NMe ₂	H	H	
H	H	Н	Н	H	
H	H	OMe	OMe	H	
H	H	0Et	OEt	H	l Y
H	В	-00	H ₂ 0-	В	×_1
Н	В	H	NMe ₂	В	o NII
H	B	0iPr	0 ⁱ Pr	В	
H .	8	NMe ₂	H	Н	
Н	. 8	H	H	H	
Н	В	OMe	OMe	Н	C0 ₂ 8
Н	6	0Bt	OBt	Н	, NJ
Н	8	OiPr	0iPr	В	Me
H	В	-00	H ₂ 0-	Н	0
Н	H	H	NMe 2	Н	F
В	Н	NHe ₂	Н	Н	
Н	В	H	Н	Н	
Н	В	OMe	DMe	В	CO2H
Н	Н	OBt	OEt	Н	
Н	Н	0 Pr	0 ⁱ Pr	Н	Me
Н	H	-00	H ₂ 0-	Н	Q.
Н	H	H	NMe ₂	H	, ,
Н	Н	Mie ₂	Н	H	
				【表 3	3]

[0081]

		æ	- 1 (つつき)	
R1	X1	X2	Х3	X4	R2
н	H	H	H	Н	
Н	H	Olde	OMe	Н	1
Н	H	DEt	0Et	н	1
Н	H	-01	H ₂ 0-	Н	Me O CO₂H
Н	H	Н	NMe ₂	H	Me O CO ₂ H
H	H	0 ⁱ Pr	0 ⁱ Pr	Н	1
H	B	XMe ₂	Н	H	
H	R	H	H	В	
A	B	OMe	CMe	H	
H	H	OBt	0Et	Н	CO™
Н	Н	-00	H ₂ 0-	H	CO ₂ H
Н	Н	H	NMe 2	Н	Me Ne
Н	Н	OiPr	OiPr	H	
Н	H	NMe 2	Н	H	
H	H	H	H	H	
H	Н	0Me	OMe	H	
H	Н	08t	0Et	H	
Н	Н	O ¹ Pr	OiPr	H	×10
H	H	-00	H ₂ 0-	Н	Me Me CO ₂ Me
H	н	Н	NMe ₂	H	
H	H	NMe ₂	Н	H	
Н	H	В	Н	H	
Н	H	Olfe	OMe	H	00 17
Н	H	0Bt	OBt	В	×°V CU 2H
В	Н	0 i Pr	O ⁱ Pr	В	Me O CI
B	H	-00	H ₂ 0-	Н	Y cı
H	Н	H	NMe z	H	CI
Н	Н	NMe ₂	8	Н	
				[∌	₹34 1

[0082]

		表 -	- 1 (つづき)	
R1	X1	X2	X8	X4	R2
Н	Н	Н	Н	н	
H	H	0Me	ONe	В	
H	Н	0Et	OEt	H	ب میکری
Н	I	-00	H ₂ 0-	H	>0 CD₂H
H	H	Н	NMe ₂	H	
H	H	0iPr	0 ⁱ Pr	H	
Н	H	NMe ₂	Н	Н	
Н	H	H	Н	Н	
H	H	OMe	OMe	В	
H	H	0Et	OBt	H	€02√CO2H
H	H	-00	Ж ₂ 0−	Н	Bt 0
Н	В	H	NMc ₂	В	(0)
8	В	0 i Pr	O [†] Pr	H	-
H	В	NMe ₂	H	В	
н	B	H	H	Н	
H	B	OMe	OMe	н	(a)
В	H	0Bt	OBt	H	Y
H	B	0 ⁱ Pr	0iPr	H	N~ CO₂H
Н	Н	-00	H ₂ 0-	В	me me
Н	Н	H	NMe ₂	H	
Н	Н	NHe ₂	H	H	
H	Н	Н	H	Н	16
Н	Н	OMe	OMe	Н	
Н	Н	03t	OEt	Н	\\ \\ \\ \
Н	Н	0 i Pr	0iPr	Н	> <n< td=""></n<>
Н	H	-00	H ₂ 0-	Н	Me Me
Н	H	H	NMe ₂	Н	
Н	н	NMe 2	H	H	

| H | M | NMe₂ | H | H | (表35)

		裘 -	- 1 (*:	つづき)	
R1	χı	X2	Х3	X4	R2
Н	Н	Н	Н	Н	
В	В	OMe	CMe	Н	_
Н	8	0Et	OBt	H	N
Н	H	-00	H ₂ 0-	Ħ	Ω^{-}
H	H	Н	NMe ₂	H	(o)
E	H	0 ¹ Pr	0 ⁱ Pr	H	
E	F	NMe ₂	Н	H	
E	E	Н	Н	H	
Н	Н	0Me	OMe	К	CO 2H
Н	В	OEt	OBt	H	
В	H	-00	1120-	Н	Ne
Н	Н	Н	NMe ₂	Н	(<u>)</u>
H	H	0 ⁱ Pr	O ⁱ Pr	Н	
H	H	NMe ₂	H	Н	
H.	Н	Н	H	H	
H	H	OMe	OMe	H	
H	H	OBt	0Bt	H	~ t₂
H	H	OiPr	0 ⁱ Pr	H	Me 🔍
Н	H	-00	H ₂ 0-	H	Me t2
H	H	Н	NMe ₂	Н	- 3
H	Н	NMe ₂	Н	Н	
H	H	Н	H	H	
H	Н	CMe	OMe	H	NEt ₂
H	Н	OBt	OEt	H	Me Not 2
E	Н	0 i Pr	0iPr	H	Me (H)
H	В	-00	H ₂ 0-	H	
Н	Н	Н	NMe ₂	В	
Н	H	Me ₂	Н	H	

		表	- 1 (つづき)	
R1	χı	X2	X3	X4	R2
H	H	H	В	Н	
H	H	OMe	OMe	H	
H	H	0Et	OEt	н	
H	H	-0	CH ₂ O-	Н	~0 O Ne
H	E	8	NMe 2	H	, we
H	H	OiPr	0 ⁱ Pr	H	1
Н	H	NMe ₂	H	Н	
H	Н	H	Н	8	
Н	В	OMe	OMe	Н	
H	H	OBt	OEt	H	
H	H	-00	CH ₂ O-	H	~O CO gMe
Н	H	H	NMc2	Н	- CU _{gine}
H	Н	OiPr	OiPr	Н	
E	H	MMe ₂	H	H	
H.	H	H	H	H	
H	H	OMe	OMe	н	
H	H	0Bt	0Et	H	
Н	Н	01Pr	OiPr	H	~0@c1
Н	Н	-00	H ₂ 0-	H	
В	Н	Н	NMe ₂	Н	İ
H	H	NMe ₂	Н	H	
H	H	Н	H	H	
H	H .	OMe	OMe	H	No.
H	H	0Et	OBt	H	×NEt₂
H	8	0 ⁱ Pr	0 ⁱ Pr	H	
H	H	-00	H ₂ 0-	Н	9
H	H	H	NMc2	Н	
H	H	Me ₂	8	H	

[0085] 【表37]

		表	- 1 (つづき)	
RI	X1	X2	X2	X4	R2
H	Н	H	Н	Н	
В	Н	OMe	OMe	Н	
H	H	OBt	0Bt	Н	1 No.
H	В	-0	CH ₂ O-	B	NBt 2
н	H	H	NMe 2	E	me me
H	H	0 ⁱ Pr	0 ⁱ Pr	Н	
Н	Н	NKe2	H	H	
Н	H	Н	Н	Н	
H	Н	OMe	ONe	H]
H	Н	OEŁ	OEt	Н	,
H	H	-00	H ₂ 0-	H	NEL 2
Н	Н	H	NMe ₂	Н	Me (O)
Н	Н	0 ¹ Pr	0 ¹ Pr	H	
Н	R	NMe ₂	В	H	
Н	H	H	H	Н	
H	Н	OMe	OMe	H	
Н	Н	OEt	OEt	Н	NBt 2
Н	н	0 ⁱ Pr	OiPr	H	9
Н	F	-00	H ₂ 0-	H	` N O
Н	H	H	NHe ₂	н	1
H	Н	NMe ₂	H	H	
Н	H	H	Н	Н	
В	H	Olfe	OMe	Н	
Н	H	OEt	0Et	н	
В	В	0 ⁱ Pr	DiPr	Н	×144.
H	H	-00	H ₂ O-	Н	Me Me O CO ₂ H
H	н	H	Mile 2	Н	
H	Н	MMe ₂	Н	н	

[0086] [表38]

		表	- 1	(つづき)	
R1	Χı	Xs	Х3	X4	R2
Н	Н	H	H	Н	
H	Н	0Me	OMe	H	
R	H	OBt	OBt	В	7 Y
H	Н	-0	CH ₂ O-	Н	1 10
H	Н	Н	NNe ₂	В	CO ₂ Et
H	H	OiPr	0 Pr	Н	
H	Н	NMc2	H	H	
H	Н	Ę	В	H	
H	li	OMe	OMe	Н	
H	8	OEt	OBt	B	1 Y
R	Н	-00	CH ₂ O-	Н	1 10
H	H	8	Meg	H	CO ₂ H
H	H	0 ⁱ Pr	0 ¹ Pr	H	
H	В	NMe ₂	H	H	1.
Н	В	H	В	H	
H	H	OMe	ONe	H	R+
H	Н	0Bt	OBt	Н	Et N COO(CH ₂) ₆ Ne
H	H	0 ⁱ Pr	0 Pr	Н	Ne COUCH2/8KE
H	H	-00	H ₂ 0-	Н	
H	H	H	NMe ₂	Н	
H	H	NMe ₂	H	H	
H	Н	Н	H	H	
H	E	GMe	ONe	Н	
Н	H	08t	OEt	В	. N -coet
H	Н	0 ⁱ Pr	OiPr	Н	× CO₂Et
H	H	~0CI	H ₂ 0-	н	(a)
H	B	H	NMe ₂	H	
В	H	NMe ₂	Н	H	

【0087】 【表39】

		表	- 1 (-	つづき)	
R!	X1	X2	X8	X4	R2
H	H	Н	H	H	
H	H	0Me	OMe	Н	
H	H	OEL	OBt	H	CO2Bt
Н	H	-00	H ₂ 0-	H	Et02C
H	H	Н	NMe ₂	H	" (©)
H	H	0 ⁱ Pr	0 ⁱ Pr	Н	
H	H	NMe ₂	Н	H	
Н	H	Н	H	H	
H	H	0Me	OMe	В	
H	Н	0Et	ORt	H	CO ₂ H
H	В	-00	н ₂ 0-	Я	HO ₂ C
H	В	H	NMe ₂	H	i (0)
H	В	0 ¹ Pr	0 ⁱ Pr	В	
8	В	NMe ₂	H	A	
В	В	Н	H	H	
H	В	OMe	OMe	В	00.11
H	В	OBt	OBt	В	V N 2002H
H	В	0 ¹ Pr	O¹Pr	В	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
H	Н	-00	H ₂ 0-	Н	()
H	Н	Н	NMe ₂	H	
H	Н	Nile ₂	H	Н	
Н	Н	H	H	H	
Н	Н	OMe	Olife	H	
Н	H	OBt	OEt	Н	<u>B</u> t
H	Н	0 i Pr	OiPr	H	Bt CO ₂ H
H	Н	-00	H ₂ 0-	H	(Y)
H	H	H	NMe ₂	H	
Н	Н	NMe ₂	H	Н	

[0088] [表40]

【表41】

[0089]

		表	- 1 (*	つづき)	
R1	X:	X2	X3	X4	R ²
E	H	Н	Н	H	
E	H	OMe	OMe	E	000(011.) 14
E	H	DEt	0Bt	H	C00 (CH ₂) ₁₄ Me
E	H	-00	H ₂ 0-	H	Me N
H	H	Н	NMe ₂	H	Me 💮
н -	H	OiPr	0 ¹ Pr	H	
Н	Н	MMe ₂	H	H	
H	Н	Н	H	Н	· ·
Н	Н	OMe	0Me	н	OH .
H	H	OEt	OEt	H	3 N 000 V
Н	Н	-00	H ₂ O-	Н	Me CO₂H
H	Н	Н	Me ₂	H	(0)
Н	Н	0 ⁱ Pr	0 ⁱ Pr	Н	
Н	Н	NMe ₂	Н	K	
H	E	H	Н	H	
H	H	0Me	OMe	H	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
H	H	0Et	0Et	H	√N√~
H	H	01Pr	01Pr	H	00
H	. Н	-00	H ₂ O-	H	٤
H	H	Н	NMe ₂	H	CO ₂ H
H	Н	NMe ₂	H	н	
H	В	H	H	Н	
H	В	OMe	OMe	H	CO₂B
Н	В	0Bt	0Bt	H	
Н	Н	0 ⁱ Pr	0iPr	Н	Me
Н	Н	-00	H ₂ 0-	Н	()

| H H N NMe₂ H H H H Me₂ B H | (表42)

Н	Н	OMe	OMe	Н	
Н	Н	0Et	Œt	Н	NEt ₂
В	Н	-00	H ₂ 0-	H	Me
Н	Н	Н	NMe ₂	К	
H	H	0 ¹ Pr	0 ¹ Pr	H	, ,
Н	Н	NMe ₂	H	E	
Н	H	Н	H	H	
H	H	0Me	0Me	H	NEt ₂
H	H	0Et	0Et	H	Me Tat 2
H	H	-00	B ₂ 0-	H	**
H	H	H	NMe ₂	H	9
Н	H	O1Pr	0 Pr	H	OMe
H	H	Mic 2	H	H	
F	H .	H	H	H	
H	H	0Me	QMe .	H	NEt ₂
H	H	0Et	OBt	H	Me T
H	H	0iPr	0iPr	В	ME A
H	H	-00	H ₂ 0-	8	ONe
H	9	Н	NHe ₂	H	ÖMe
H	8	NMe ₂	H	Н	
8	В	H	E	H	
H	8	OMe	OMe	H	
H	8	0Bt	OBt	H	Y

R2

8 8

0¹Pr 0¹Pr

表 - 1 (つづき)							
R1	XI	X2	X3	X4	R2		
Н	H	н	Н	H			
Н	Н	OMe	OMe	H			
H	Н	OEt	OEt	Н	N CO ₂ H		
Н	E	-00	H ₂ 0-	Н	≻N ∨∽co∘H		
H	H	H	NMe ₂	Н) Me		
H	H	0 ⁱ Pr	0 ⁱ Pr	H] 💚		
Н	H	NMe ₂	Н	Н			
Н	В	H	E	Н			
H	H	OMe	OMe	H			
H	H	OBt	OEt	H	Rt 1 CO ₂ H		
H	H	-00	H ₂ 0-	H	Me		
Н	H	H	NMe ₂	Н	1 (0)		
H	Н	DiPr	OiPr	Н	_		
H	H	Mez	Н	H			
E	H	H	В	H			
E	В	0Me	OMe	H	Ç0 ₂ H		
H	H	0Et	0Et	Н			
H	Н	0 ⁱ Pr	D ⁱ Pr	H	N CO₂E		
Н	Н	-00	H ₂ 0-	Н	**		
Н	Н	H	NMe ₂	Н			
R	H	· NMe ₂	H	E			
H	Н -	H	Н	H			
H	H	OMe	OMe	H			
H	H	0Et	OBt	H	Et CO2H		
H	В	0iPr	0 Pr	Н	Ne 10 € CO2H		
Н	H	-00	H ₂ 0-	В	0		
H	H	H	NMe ₂	Н	-		
H	H	NMe ₂	H	Н			

		ax	- 1 (1181	
RI	X1	X2	X3	X4	R2
H	H	H	8	H	
Н	Н	OMe	OMe	H	
Н	Н	OEt	0Et	H	√ CO 2H
H	H	-00	CH ₂ 0-	H	Me O CO 2H
Н	H	H	NMe ₂	H	0
H	Н	OiPr	0 Pr	H	
Н	Н	NMe ₂	H	Н	
9	Н	H	H	В	
Н	Н	OMe	CIMe	н	
Н	H	0Bt	OEt	Н	Ne CO₂H
Н	н	-00	H ₃ 0-	н	Ne CO ₂ H
H	H	H	NMe ₂	Н	0
Н	Н	OiPr	0 ⁱ Pr	Н	
H	H	NMe ₂	Н	H	
H	H	H	H	H	
H	H	OMe	UMe	H	
H	H	0Bt	OBt	Н	Ne Own
H	Н	0 ¹ Pr	OiPr	н	Me NH 2
H	Н	-00	H ₂ O-	Н	0
H	В	H	NMe ₂	H	•
Н	F	litte ₂	Н	E	
F	H	8	Н	H	
Н	H	OMe	0Me	H	
H	H	0Et	0Et	H	Me Nome
Н	В	OiPr	0iPr	Я	Me NCOMe
В	В	-00	H ₂ 0-	н	0
H	н	H	NMe ₂	Н	•
Н	H	NMe 2	Н	H	

| H | H | Mile₂ | H | H | Mile₃ | H | Mile₃ | H | Mile₃ | H | Mile₃ | H | Mile₃ | H | Mile₃ | H | Mile₃ | H | Mile₃ | H | Mile₃ | H | Mile₃ | H | Mile₃ | H | Mile₃ | H | Mile₃ | H | Mile₃ | H | Mile₃ | H | Mile₃ | Mil

R1	χı	Х2	X3	X4	R2
Н	H	Н	H	Н	
В	H	ОНе	OMe	Н	
В	В	03t	OBt	H	We worm.
Н	В	-00	H ₂ 0-	B	NCONNe ₂
Н	B	Н	NMe ₂	В	0
H	В	0iPr	0 ⁱ Pr	Н	
H	Н	NMe ₂	Н	H	
Н	H	Н	H	Н	
H	Н	OMe	OMe	H	
Н	Н	9Et	OEt	Н	Me Non Ma
Н	H	-0CH ₂ 0-		H	Me N NSO ₂ Me
E	Н	Н	NMc 2	H	
Н	H	0 ¹ Pr	0 Pr	Н	
Н	Н	Nile 2	H	H	
В	H	Н	H	H	
В	H	OMe	OMe	H	
Н	E	OEt	0Et	E	Me Nonva
В	H	0 ⁱ Pr	0 ⁱ Pr	H	Ne N NCOMe
H	В	-0	CH ₂ O-	Н) (©
В	Н	Н	NMe ₂	Н	

表 - 1 (つづき)

01Pr H -0CH₂0-В H H NMe₂ H Н H Н NMe₂ H [0094] 【表46】

NMe₂ Н Н

H

Н OiPr

Н H

Н Н Н OMe

H H OMe Н 0Bt OEt

Н

H Н

-52-

		表	- 1 (つづき)	
R1	χı	X2	Хŝ	X4	R2
H	Н	Н	Н	Н	
Н	Н	OMe	OMe	Н	1
H	Н	OEt	OEt	Н	H _{oo} n
H	В	-00	H ₂ 0	Н	Ne Ne
Н	В	Н	NMe ₂	Н	Me Ne
Н	Н	0 ⁱ Pr	OiPr	H	1
Н	H	NMe ₂	Н	Н	1
H	Н	H	Н	Н	
H	Н	OMe	OMe	Н	
H	Н	0Et	0Et	Н	NCOPh
R	К	-00	H ₂ 0-	E] No Mo
E	H	В	NMc ₂	H	не не
E	H	OiPr	0 Pr	H	
H	H	NMe ₂	Н	H	
В	H	H	Н	H	
H	H	OMe	OMe	Н	A.F
E	H .	0Et	0Et	H	NSO 2 F
H	В	0 Pr	0 Pr	H	1302
Н	H	-00	H ₂ 0-	H	ne ne
Н	В	H	NNe ₂	Н	
H	В	NMe ₂	H	Ħ	
Н	В	H	H	H	
Н	В	OMe	OMe	H	
Н	8	OBt	OBt	H	ll ll ll ll ll ll ll ll ll ll ll ll ll
Н	H	0 ⁱ Pr	0 ⁱ Pr	H	Ne Ne OF
H	В.	-00	H ₂ 0-	H	arc arc ·
1 2					1
Н	В	H	NMe ₂	H	

		表	- 1 (つづき)	
R1	X1	X2	X3	X4	R ²
H	Н	Н	Н	В	
H	Н	OMe	OMe	Н	
H	Н	OBt	00t	Н	. NIGO PI
Н	Н	-00	H ₂ 0-	Н	►NHSO ₂ Ph
H	H	Н	NWe ₂	H	
H	H	0 ⁱ Pr	0 ⁱ Pr	H	
H	Н	NMe ₂	н	Н	
H	H	Н	В	Н	
В	Н	OMe	OMe	Н	ÒH
H	В	0Et	0Et	Н] ~v. >oh
H	H	-00	H ₂ 0-	E	Me j v v v v v v v v v v v v v v v v v v
E	H	H	NMe ₂	H	0
H	Н	0 ⁱ Pr	0 Pr	H	
H	H	NMe ₂	H	H	
H	H	H	Н	H	
H	H	0Me	0Me	H	
E	H	0Et	0Et	H	N-VH - COOH
Н	H	0iPr	0 ⁱ Pr	H	N-√H CO2H
H	H	-00	H ₂ 0-	H	(i)
H	В	H	NMe ₂	В	
Н	В	NMe ₂	H	Н	
В	8 .	H	Н	В	
Н	8	OMe	OMe	Н	
н	В	OBt .	OBt	Н	► N - H - CO+H
Н	В	0 ⁱ Pr	0 ⁱ Pr	H	Ne N → H > · · · CO ₂ H
H	H	-00	H ₂ 0-	H	()
Н	H	Н	NMe ₂	H	· -
Н	Н	NMe ₂	H	H	

		表	- 1 (つづき)	
Ri	Χı	X2	X3	X4	R2
Н	Н	Н	H	H	
Н	Н	OMe	DMe	Н	
Н	Н	OEt	OEt	Н	Me 0 0Ac CO₂H
Н	Н	-00	H ₂ 0-	Н	Me O OAc
Н	Н	Н	Nile 2	Н	⊚
Н	Н	OiPr	OiPr	Н	_
Н	Н	NMe ₂	H	Н	
В	Н	Н	Н	Н	
Н	Н	OMe	DMe	К	
Н	H	OEt	DEt	E	0H CO2H
E	E	-00	H ₂ 0-	E	OH CO2H
H	H	н	NMe ₂	H	0
Н	Н	0 ⁱ Fr	0iPr	H	_
H	н	NMe ₂	Н	H	
E	Н	Н	Н	Н	
E	Н	OMe	OMe	Н	
Н	Н	0Et	0Bt	H	Et OH CO2E
Н	В	01Pr	0 i Pr	н	Me 10 OH
Н	В	-00	H ₂ 0-	Н	0
Н	В	H	NMe 2	н	1
В	В	NMe ₂	H	H	
Н	В	H	H	Н	
Н	8	OMe	OMe	Н	
B	В	03t .	OBt	Н	NO NO
Н	В	0 i Pr	0 ⁱ Pr	Н	
Н	Н	-00	H ₂ 0-	H	<u>`</u>
Н	Н	H	NMe 2	Н	ĊO₂H
Н	н	lilleo	В	H	

表	-	2
	Ŗı	
N.	(0)	1
X ⁵		R2

			24	
Rı	X 5	Xε	X.7	R2
H	Н	E	H	
Н	NH ₂	К	H	1
Н	Н	NH ₂	H	1
Н	NilMe	Н	H	
Н	Н	Nithe	H	1
Н	NMe 2	Н	H	N - CU ₂ H
H	Н	NMe 2	H	Me CU ₂ H
Н	Н	Н	NHe 2	1 🔘
H	OMe	Н	H	1
В	OnPr	Н	Н	
Н	OiPr	H	К	1
Н	NEt ₂	Н	Н	1
Н	H	CI	Н	1
NH ₂	Н	Н	Н	
Н	Н	H	Н	
Н	NH ₂	Н	Н	1
Н	Н	Nil ₂	Н	
Н	NHMe	Н	Н	1
H	H	NHMe	Н	1
H	NMe 2	Н	Н	Bt
Н	H	NMe ₂	Н	N
Н	H	Н	NMe ₂	Me CO ₂ H
Н	Olite	Н	Н	
Н	0°Fr	Н	Н	
Н	0:Pr	Н	Н	1
В	NEt ₂	H	Н	1
В	H	Cl	Н	1
NH ₂	н	н	Н	1
			•	【表50】

[0098]

		表	- 2 (-	つづき)
R1	X 5	X 6	X7	R2
Н	Н	Н	В	
Н	NH2	H	Н	
H	H	NH2	Н	
Н	Nime	H	H	
H	Н	NHMe	Н	1
H	NMe ₂	H	Н	Me CO ₂ Et
H	H	NMe ₂	н	
H	H	H	NMe 2	
H	Ottle	H	Н	
H	0ºPr	H	H	
H	0 i Pr	H	H	
H	NEt ₂	Н	Н	
н	H	Cl	H	
NH ₂	H	H	H	
Н	Н	H	Н	1-
H	NH ₂	Н	H	
H	Н	NH2	Н	
H	NHMe	H	H	
Н	Н	NIDLE	Н	
Н	NMe ₂	н	Н	Bt N no. Rt
Н	Н	MMe ₂	H	√N√~no p+
Н	H	H	NNe ₂	Me CO ₂ Bt
Н	0Me	H	H	
Н	0°Pr	H	Н] 💚
Н	0:Pr	H	H	
Н	NE12	H	H	
Н	H	Cl	Н	
NH ₂	Н	H	Н	1

[0099] [表51]

		表 -	- 2 (つづき)
R1	X 5	X6	X7	R2
Н	Н	H	Н	
H	NH ₂	H	Н	
H	Н	NH ₂	Н	
H	Milite	Н	H]
В	H	NHMe	Н	OH
В	NHe ₂	Н	Н	
H	H	NMe 2	H	Né O
H	Н	Н	NMe 2	
В	OMe	Н	H	
Н	0ªPr	Н	H	
Н	O'Pr	Н	H]
Н	NEt ₂	H	н	
н	Н	CI	H	
NH ₂	Н	H	Н	
Н	H	H	Н	
Н	NH2	H	Н	
Н	Н	NH ₂	Н	
Н	NEESe	Н	H	
Н	В	NHMe	Н	
В	NMe ₂	H	Н	0 00 11
Н	H	NMe ₂	Н	Me O CO ₂ H
Н	Н	Н	Nite 2	
H	OMe	H	H	
Н	0ºPr	Н	H	
Н	OiPr	Н	Н	
Н	NEt ₂	Н	H	
Н	H	C1	H	
NH ₂	В	В	В	1

		表	- 2 (*	つづき)
R1	X 5	X6	X7	R2
H	H	Н	Н	
Н	NH ₂	Н	Н	
H	H	NH ₂	Н	
H	NiMe	Н	Н	
Н	Н	NHMe	Н	
H	Mfe ₂	H	Н	Me COgH
Н	H	NMe ₂	Н	
H	Н	H	NMe 2	ME TU
H	Otte	H	Н	
Н	0ºPr	H	Н	
Н	0 Pr	H	H	
Н	NEt ₂	H	Н	
H	Н	CI	Н	
NH ₂	H	H	Н	
Н	H	H	H	
H	NH ₂	H	Н	
Н	H	NH ₂ ·	H	
Н	NHMe	Н	H	
H	Н	NHMe	H	
H	NMe ₂	Н	H	Bt NCOMe
H	H	NMe ₂	H	Me O HOOME
Н	H	H	NMe 2	- " \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Н	OMe	H	Н	0
Н	0ºPr	H	Н	
H	0:Pr	H	H	
Н	NBt 2	H	Н	
Н	В	C1	H	
NH ₂	В	Н	И	

[0101] [表53]

		表 -	- 2 (-	つづき)
R1	Х5	X6	Х7	R2
Н	H	Н	Н	
Н	NH2	H	Н	
H	H	Nil ₂	H	
H	NIMe	H	H	
H	Н	NHMe	Н	
Н	NMe 2	Н	H	Me NCONMe 2
Н	H	NHe ₂	H	NCONMe 2
Н	Н	H	NMe 2	Me II
Н	Otte	H	H	
H	0ºPr	H	H	
H	0 iPr	Н	Н	
H	NEt ₂	H	H	
Н	H	CI	Н	
NH2	В	H	H	
В	Н	H	H	
Н	NH ₂	Н	Н	
Н	В	NH2	Н	
Н	NEMe	H	Н	
Н	Н	NHMe	Н	- ~ ~ u
Н	NMe ₂	Н	H	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Н	H	NMe ₂	H	$\rightarrow $
Н	H	Н	NMe ₂	
Н	OMe	H	H	
Н	Depr	Н	Ħ	
Н	OiPr	Н	В	0.00
H	NEt 2	Н	H	
Н	Н	Cl	Н	
NH ₂	Н	Н	В	

[0102] [表54]

		表	- 2 (つづき)
RI	X 5	X8	X7	R2
Н	Н	Н	Н	
H	NH ₂	Н	Н	
H	Н	NH ₂	Н	
H	NHMe	Н	Н	
Н	Н	NHMe	Н	Et
Н	NMe ₂	H	Н	~ co₂H
Н	Н	MMe ₂	Н	Ht CO ₂ H
H	Н	Н	NMe 2	
H	Ottle	Н	Н	1
H	0ºPr	Н	Н	
H	0¹Pr	H	Н	
Н	NEt ₂	Н	Н]
Н	Н	CI	Н]
NH2	H	H	H	
Н	Н	Н	Н	
H	NH ₂	H	H	
H	H	NH ₂	H	
H	NHMe	Н	H	· ·
Н	Н	NilMe	H	
Н	NMe 2	Н	H	
H	Э.	NMe 2	H	Ne Ne
H	H	H	NMe 2	Ne Ne O
Н	OMe	Н	H	
Н	OnPr	Н	H	
Н	DiPr	H	H	
Н	NBt ₂	Н	H	
H	Н	CI	H	
NH ₂	Н	E	H	1

[0103] [表55]

		表 -	- 2 (-	つづき)
RI	X 5	X6	Х7	R2
H	Н	Н	H	
H	NH2	H	E	
Н	H	NH ₂	H	
Н	NHMe	H	H	
Н	H	NHMe	H	H
H	NHe 2	H	H	X'YA
H	H	NMe 2	H	Po ⁵ H
H	Н	H	NMe 2	
H	OMe	H	H	CO ₂ H
Н	Gapr	Н	E	
H	0 Pr	Н	H	
H	NEt ₂	H	H	
H	Н	CI	H	
NH ₂	H	H	H	
H	H	Н	K	
Н	NH2	H	H	
H	Н	NH ₂	H	
H	NHMe	H	E	
H	H	NHMe	H	
H	NMe ₂	H	H	
H	H	NMe ₂	H	
H	Н	Н	NMe 2] ",
H	OMe	Н	Н	CO ₂ H
H	OnPr	Н	Н	
Н	0 ¹ Pr	Н	H	
Н	NEt ₂	Н	Н	
Н	H	CI	H	
NH ₂	H	H	Н	

[0104] [表56]

		表	- 2 (-	oづき)
R1	Х 5	X6	X7	R2
Н	Н	Н	H	
H	NH2	H	H	
Н	H	NH ₂	H	
H	NHMe	H	H	
Н	H	NHMe	H	
H	Me ₂	Н	H	
H	H	NMe ₂	H	Me COSH
H	Н	H	NMe 2	
Н	CMe	Н	H	
H	0ºPr	Н	H	
Н	OiPr	В	H	
R	NEt ₂	Н	E	
Н	Н	CI	H	
NH ₂	H	Н	H	
H	Н	Н	E	
H	NH ₂	Н	H	
H	H	NH ₂	H	
H	NHMe	Н	H	
H	н	NHMe	Н	
Н	NMe ₂	H	Н	NEt ₂
H	Н	NMe ₂	H	Me No. 2
H	Н	H	NMe ₂	
H	Otte	H	H	1 (9)
Н	0ºPr	Н	Н	
H	0 ¹ Pr	H	H	
H	NEt ₂	н	Н	
Н	Н	CI	H	
NH ₂	Н	н	Н	

[0105] 【表57]

		表 -	- 2 (-	ರ್ತಕೆ)
R1	X 5	X6	Х7	R2
H	Н	Н	Н	
H	NH ₂	Н	Н	
H	Н	NH2	Н	
H	NIMe	H	H	
H	Н	NHMe	Н	p√_r0 π
H	NMe ₂	H	Н	
H	Н	NMe ₂	Н	Me CO ₂ H
H	н	Н	NMe 2	
H	Olde	Н	Н	
H	0ºPr	H	H	
H	0 ¹ Pr	H	Н	
Н	NEt ₂	H	H	
K	Н	Cl	H	
NH ₂	Н	H	H	
H ·	Н	H	Н	
Н	NH ₂	Н	H	
H	Н	NH ₂	H	
H	NHMe	H	H	
Н	H	NHMe	Н	
Н	NMe ₂	H	H	Bt N
H	H	NMe ₂	H	~\\\~~ u
Н	Н	Н	MHe ₂	Me CO ₂ H
H	OMe	H	H	n
Н	O ⁿ Fr	Н	H	
H	01Pr	Н	H	
H	NEt ₂	Н	Н	
Н	Н	C1	H	
NH ₂	Н	Н	Н	

[0106] 【表58】

		表	- 2 (つづき)
R1	X5	X8	X7	R2
Н	Н	Н	H	
Н	NH ₂	E	H	
li	H	NH ₂	H	
В	NEMe	H	Н	∇
Н	Н	NHMe	В	1 Y
В	NMe 2	Н	Н	
В	8	NMe ₂	Н	Me
H	Н	Н	NMe ₂	
Н	ONe	H	В	
Н	0nPr	Н	H	
H	0 Pr	H	H	
H	NBt ₂	E	H	
H	H	C1	Н	
NH ₂	H	H	B	
В	H	B	В	
Н	NH ₂	H	H	
H	H	NH ₂	Н	,
H	NHMe	Н	H	
H	Н	NilMe	Н	
H	NMe ₂	H	H	P4
H	Ħ	NMe ₂	Н	Me Bt CO 2Me
H	H	Н	NMe 2	Me CU ₂ Me
H	DMe	H	H	(in)
Н	OPPr	H	H	
Н	0 iPr	Н	H	
B	NBt ₂	Н	Н	
В	H	CI	Н	
NH ₂	H	H	Ð	

MH₂ H H H 【表59】

		表	- 2	(つづき)
R1	X 5	Xe	X7	R2
H	Н	Н	H	
H	KH ₂	Н	Н	
H	H	NH ₂	H	
H	Nillie	H	Н	
Н	H	NiiMe	H	
Н	NMe ₂	Н	H	
Н	Н	NMe ₂	Н	Me CO ₂ H
Н	Н	Н	NMe 2	ME U
Н	ONe	H	Н	
Н	oppr .	H	H	
H	0 iPr	В	Н	
Н	NEt ₂	Н	H	
Н	Н	CI	H	
NH ₂	Н	Н	H	
Н	Н	Н	E	
H	NH2	Н	H	
Н	Н	NH ₂	н	
Н	NHMe	Н	Н	
Н	Н	NHMe	Н	
H	NNe ₂	H	E	
H	H	NMe ₂	Н	~ ! ~

Cł NH2 Н Н Н 【表60】 [0108]

OnPr Н

OiPr Н

Н

Н Н

Н

H

H Н Н NHe 2

Н ONe Н Н

Н

Н NEt₂ Н Н

Н

		表	- 2 (つづき)
R1	X5	Х6	X7	R2
H	Н	Н	Н	
H	NH2	H	В	
Н	H	NH ₂	H	
H	NUMe	E	H	
Н	H	NEMe	H	
H	NMe ₂	E	H	Bt COoli
H	H	NHe 2	Н	Ne CO ₂ H
H	Н	Н	NMe ₂	™
Н	OMe	H	H	
Н	0ºPr	Н	H	
Н	OPr	H	H	
H	NEt ₂	H	H	
Н	Н	CI	Н	
NH ₂	H	H	H	
H ·	H	H	H	
H	NH ₂	H	H	
H	H	NH ₂	H	
H	NHMe	Н	Н	
Н	Н	NUMB	Н	
H	NMe 2	Н	H	Me N ~ Nocons
H	Н	NMe 2	H	Me NCONMe ₂
Я	H	H	NNe ₂	ME I
H	DMe	B	10	
H	0ºPr	H	Н	-
H	0!Pr	H	Н	
H	NBt ₂	H	H	
H	H	Cl	H	
NH ₂	Н	Н	Н	

[0109] 【表61】

		表 -	- 2 (つづき)
R1	X 5	X 6	X7	R2
В	Н	Н	H	
H	NH2	Н	H	
Н	Н	NH2	К	
H	Nilke	Н	Н	
Н	Н	NHMe	В	N
Н	Mile ₂	Н	Н	N CO₂H
н	H	NMe ₂	Н	
Н	Н	Н	NNe ₂	
Н	OMe	Н	H	
Н	0ªPr	Н	Н]
Н	0 Pr	Н	Н	
Н	NBt ₂	H	Н	1
Н	Н	CI	Н	
NH ₂	Н	li	H	
Н	Н	Н	H	
Н	NH ₂	Н	H	
Н	Н	NH ₂	В]
H	NEMe	В	В	}
. н	Н	NHMe	H	у∕ _ со п
Н	NMe ₂	Н	Н	N CO2H
H	Н	NMe 2	H	, i
H	H	Н	NMe 2	
H	ONe	Н	H]
H	0aPr	Н	H]
H	DiPr	Н	H	
Н	NBt ₂	Н	H]
H	H	Cl	Н	
NH ₂	Н	Н	Н	1

[0110] [表62]

表 - 2 (つづき) RI X 5 X6 Х7 R2 H Н Н H Н NH₂ Н H H Н NH2 H H NEMe E H Н Н NHMe Н Me 2 H Н Н H н NMe 2 Н Н Н NMe₂ OMe Н Н Н OnPr Н H Н Oipr Н Н H NBt₂ Н Н Н Н CI Н NH2 H Н Н H Н Н H NH_2 Н Н Н Н NH₂ Н Н NHMe Н Н NHMe Н Н NMe 2 Н Н Н Н NMe₂ Н Н Н NMe 2 Н OMe H H Н 0ºPr Н Ħ Н OiPr Н Н Н NBt₂ H Н Н Н CI Н Н NH2 Н Н

[0111] [表63]

表 - 2 (つづき) RI χ5 X6 χ7 R2 Н Н Н H Н NH2 Н H Н Н NH2 Н В Н NHMe H Н NHMe H Nie 2 Н Н К H NHe 2 H Н Ħ Н NMe 2 Н Olfe H Н Н 0ºPr Н Н И 0 i Pr Н Н NEt2 Н Н Н Н Н CI Н Н Н Н NH₂

【0112】 【表64】

R1	X8	Х9	X 10	R ²
H	Н	NHMe	H	
Н	Н	NH ₂	H	N
Н	Н	NMe 2	Н	lle V
В	Н	NEt ₂	Н	
Н	н	F	В	
Н	н	NHMe	Н	
Н	Н	NH ₂	8	Ne CO ₂ H
H	Н	NMe 2	H	Me 💮
В	В	NEt 2	Н	1 4
Н	H	P	Н	P
н	Н	Nitite	Н	
H	Н	NH2	H	N
H	н .	Me 2	H	l(e)
Н	Н	NEt ₂	Н	
H	Н	P	Н	Ī .

[0113] 【表65]

表 - 3 (つづき)

				- '	,
	RI	X8	X ₈	X 10	R ²
	Н	H	NHMe	Н	
	H	Н	NH2	Н	0 CO ₂ H
	Н	И	NMe 2	Н	the Ö
	Н	Н	NEt ₂	Н], (0)
	Н	K	F	Н	Ĭ
	А	н	NHMe	Н	0
	H	Н	NH2	Н	0 CO ₂ H
	H	H	NMe ₂	Н	
	H	Н	NEt ₂	Н	1 \(\psi \)
	H	Н	F	Н	P
	Н	Н	NHMe	Н	
	Н	Н	NH2	Н	
	Н	Н	NMe ₂	H	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	Н	Н	NEt ₂	H	
	н	Н	F	H	
	Н	Н	Me	. н	
	Н	H	NHMe	H	D.
	Н	Н	NH ₂	H	Bt N
	Н	H	NMe 2	н	Me constant
	Н	H	NEt ₂	H	
[0114]	H	Н	F	H	[表66]
					171.00

表 - 3 (つづき)

		200	- 0 ((J.)a)
R1	X 8	X9	X 10	R ²
Н	H	NHMе	Н	Et N.
Н	Н	NH ₂	Н	Ve CO₂H
Н	Н	NMc 2	Н] " <u></u>
Н	H	NEt ₂	Н	1
H	н	F	Н	Ė
Н	Н	NHMe	Н	p.
H	H	NH2	Н	Bt N co ₂ H
Н	H	NMe ₂	Н	Me CU211
Н	Н	NEt ₂	Н	
Н	H	F	Н] ,
В	H	NHMe	Н	p.
н	Н	NH ₂	Н	Ft N CO₂Me
Н	н	MMe ₂	Н	Me CO2WE
Н	Н	NEt ₂	Н	
Н	н	F	Н	, and the second
Н	Н	NHMe	Н	∇
Н	H	NH ₂	H	Y .
Н	H	NMe ₂	H	Me CO ₂ H
Н	H	NEt ₂	Н	, me .
Н	н	F	Н	

[0115] 【表67]

表 - 3 (つづき)

	R1	X 8	X 9	X 10	R ²
	Н	H	NHMe	Н	
	H	H	NH ₂	Н	Bt N
	Н	Н	NMe ₂	н	Me CO ₂ (CH ₂) _{1E} Me
	Н	H	NEt ₂	H	*
	н	Н	F	H	
	F	H	Me	H	
	H	H	MHMe	В	
	H	H	NH ₂	H	N -conhon
	В	Н	NMe 2	Н	Ne T
	H	Н	NBt ₂	Н	0
	H	R	P	H	
	H	H	NHNe	H	
	H	Н	NH ₂	Н	N CO ₂ H
	H	Н	NMe ₂	Н	H6]
	Н	В	NEt ₂ .	H	
	В	Н	P	Н	
	Н	Н	- NHMe	Н	
	Н	н .	NH ₂	Н	N N CO2H
	H	Н	NNe ₂	Н	Me
	H	H	NEt ₂	Н	
[0116]	H	H	ŗ	Н	[表68]

表 - 3 (つづき)

R1	X 8	X9	X 10	R ²
Н	Н	NHMe	H	
H	Н	NH2	H	X\mathred ()
Н	Н	NHe 2	Н	(N) ©
Н	Н	NEt ₂	Н	C0%H
H	Н	F	Н	
Н	Н	NHMe	Н	H N
H	Н	NH ₂	Н	
Н	Н	NMe ₂	Н] 🖒 🗞
Н	Н	NEt ₂	H] \
H	H	F	Н	Ċ0 ₂ H
H	н	Nime	Н	9-4
Н	Н	NH2	Н	∼ CO2H
Н	Н	Me ₂	Н	160
Н	Н	NEt ₂	Н	
Н	Н	F	Н	
н	Н	Ne	H	
Н	Н	NHMe	Н	P+
В	Н	NH ₂	Н	Et CO2H
Н	Н	NMe 2	Н	Me 0
Н	H	NEt ₂	Н	
н	H	F	Н	[±69]

[0117]

表 - 3 (つづき)

				2267
R1	X 8	Хэ	X 10	R ²
Н	Н	NHNe	Н	P.
Н	H	NH ₂	H	Et Non H
H	Н	NMe 2	H	COSH
H	Н	NBt 2	H	
Н	Н	F	H	
Н	Н	NEMe	H	
H	H	NEz	H	Et N
Н	Н	NMe 2	H	CO ₂ H
Н	E	NBt ₂	H	(QL,
Н	E	F	H	
н	H	NHMe	H	Bt
Н	H	NH ₂	Н	N o
Н	н	NMe ₂	H	Me NCONMe 2
В	Н	NEt ₂	H	
Н	H	F	Н	· · · · · · · · · · · · · · · · · · ·
Н	В	NHKe	Н	P4
Н	H	NH2	H	Bt Non No
Н	В	Me ₂	Н	Me NSO ₂ Me
Н	H	NEt ₂	Н	
К	H	F	H	

[0118] [表70]

表 - 3 (つづき)

			ax ·	- a (-) Je)
	R1	X 8	X9	X 10	R ²
	Н	н	NHMe	Н	
	Н	H	NH2	Н	Nco ₂ H
	H	Н	NMe ₂	Н	Me
	Н	Н	NBt ₂	Н	(0)
	Н	Н	P	Н	· ·
	Н	Н	NHMe	Н	
	Н	Н	NH ₂	н	Me No Co
	Н	Н	NMe ₂	Н	H ₂ OÚ ×
	Н	н	NBt ₂	Н	Me
	Н	н	P	н	0
	н	Н	Me	Н	
	Н	Н	NHMe	Н	
	н	Н	NH ₂	Н	Et N
	Н	Н	NNe ₂	Н	Me CO₂H
	Н	Н	NBt ₂	Н	\bigcirc
	В	Н	P	Н	~
	Н	Н	Nible	H	∇
	Н	Н	NH ₂	Н	Y
	Э	Н	NMe ₂	Н	N CO₂H
	Н	Н	NBt 2	Н	Ne Contraction
[0119]	Н	Н	P	Н	[表7.1]
[OIIA]					

表 - 3 (つづき)

			表 .	- 3 (つづき)
	R1	X 8	Х9	X 10	R ²
	Н	H	NHMe	H	
	H	H	NH2	H	N - co ₂ H
	H	Н	NMe ₂	8	Me
	H	Н	NEt ₂	В	
	Н	H	F	H	1
	H	Н	NHMe	Н	***************************************
	Н	H	NH ₂	Н	N CO2Et
	Н	Н	NMe 2	H	Me
	H	H	NEt 2	H	
	H	H	F	В	1
	В	Н	Me	Н	
	H	Ð	NHMe	H	I.D.
	н	Н	NH ₂	H	iPr
	H	H	NMe 2	H	Me CO₂EI
	H	H	NBt ₂	Н] ""
	H	H	F	H	1 🔍
	Н	8	NHMe	Н	
	H	В	NH ₂	Н	0 002H
	Н	H	NMe ₂	H	Me I
	Н	Н	NBt ₂	Н	
[0120]	Н	H	P	Н	[表72]
FO 1 2 0 1					

表 - 3 (つづき)

		•		
R1	Х8	Хş	X 10	R ²
H	H	NiMe	Н	
H	Н	NH ₂	Н	Bt CO ₂ H
Н	Н	NMe 2	Н	Me Ö
Н	Н	MEt ₂	Н	
Н	H	F	Н	, i
Н	H	NHMe	Н	16.
H	H	NH ₂	Н	Me N NHCOMe
Н	H	NMe ₂	Н	Me NACONS
Н	H	NEt ₂	Н	
Н	H	P	Н	Ť
Н	Н	NHMe	Н	
н	H	NH2	Н	Me N
н	H	NMe ₂	Н	NHCONMe ₂
Н	Н	NEt ₂	Н	
H	н	F	Н	1 ~

[0121] [表73]

表 - 4

R1
N N
W N
W N
R2

			X18 X14	
R1	w	X 13	Х14	R ²
Н	CMe	Me	Н	
H	N	H	И	
Н	N	Me	H	Me NBt 2
н	N	H	Кe	
Н	F.	H	Et	
Н	CH	Н	И	
Н	CH	H	Me	
Н	CH	H	н	
Н	CH	H	Me	No.
Н	CMe	Me	Me	NEt 2
Н	N	Н	Me	\ \ \
Н	N	Ms	Ma	
Н	R	H	Me	0
Н	N	Н	Et	1
Н	CH	Н	H	
. н	CH	Н	Me	1
Н	CMe	Me	H	>OH
Н	N	н	H	Me 🗎
Н	N	Me	H	1 💚
Н	N	H	Me	1
H	N	Н	Bt	

【0122】 【表74】

表 - 4 (つづき)

		acc.		, , , , , , , , , , , , , , , , , , ,
R	w	x	х	R
H	СН	E	H	
Н	CH	H	Ме	01-
Н	СМе	Ме	H	≥ ^{0Ac}
Н	N	Н	H	NE
H	N	Ме	H	
H	N	н	Me	
Н	N	Н	Bt	
Н	N	N	Ме	
Н	N	Ме	Me	1 ~" \\(\hat{O}\)
Н	CH	Н	Me	
Н	CMe	Me	Н	
H	N	н	Н	
н .	N	Ме	Н	OCO2H
н	N	н	Me	Ne O was
H	N	Н	Bt	
Н	CH	Н	Н	1
Н	CB	Н	Ме	
Н	CH	н	Н	
H	CEI	Н	Me	
Н	CMe	Нe	Me	OCO ₂ H
Н	N	н	Ме	Me 0 F
н	N	Me	Ме	
Н	N	н	Me]
Н	N	Н	Et	

【0123】 【表75】

表 - 4 (つづき)

		370	- 4 (プラ <i>き)</i>
R	W	X	X	R
Н	CH	н .	Н	
н	CH	Н	Me	
Н	CMe	Me	н	N
Н	n	Н	Н	Me
Н	N	Me	H	(0)
Н	N	н	Me	1
Н	N	Н	Et	
В	CH	R	Н	
H	CH	H	Ne	
Н	CMe	Me	Н	V
Н	N	н	Н	√N()-CO ₂ H
Н	N	Me	H	
н .	N	н	Me	
Н	N	Н	Et	
Н	N	N	Me	
Н	N	Me	Me	
H	CH	H	Me)
H	CNe	Me	H	
H	N	Н	Н	
Н	N	Me	H	Et Non
Н	N	н	Ме	Me CO ₂ H
Н	N	Н	Bt	
Н	CH	Н	H]
H	CH	Н	Me	

[0124] [表76]

		表	- 4 (つづき)
R	w	X	х	R
H	CH	В	H]
H	CH	H	Ne	Et
Н	CVe	Me	Me	Me CO ₂ H
H	N	H	Me	***
H	N	Me	Me	
И	N	H	Me	Ė
H	N	Н	Et	
H	CH	H	H	
H	CH	Н	Me	7.
H	CMe	Me	H	Pt N
Н	N	Н	H	Me CO ₂ H
Н	N	Me	Н	(O)'
В	N	н	Ne	
Н	N	Н	Et	
Н	CH	Н	н	
H	CH	н	Me	_
H	CMe	Ne	Н	
H	N	Н	Н	Ne P
H	N	Ме	К	(O)'
Н	N	н	Me] •
Н	N	.H	Bt	
Н	N	N	Me	× 1
Н	N	Me	Me	1 .X"Y∂i

表 - 4 (つづき)

		-		6)
R	w	x	X	R
Н	CMe	Me	H	
H	N	H	H	
H	N	Me	Н	PCO ₂ H
H	N	Н	Me	Me
Ħ	N	Н	Bt] (0)
H	CH	H	H	I F
Н	CH	Н	Me	
H	CH	Н	Н	
H	CH	В	Me	_
H	CMe	Me	Me	N_002H
Н	N	Н	Me	NG NG CO 2H
Н	N	Ме	Me] (0)
H	N	Н	Me	
Н	N	Н	Bt	
Н	CH	H	Н	
Н	CB	H	Me	_N
Ħ	CMe	Ne	Н	
Н	N	Н	Н	
Н	N	Me	Н] 💚
K	N	н	Me	
H	N	. н	Bt	
H	N	.n	_ st	

[0126] 【表78]

= 4 (nd#

表 - 4 (つづき)						
R	W	х	х	R		
Н	CE	H	Н			
Н	CE	H	Ме	∇		
H	CNe	Me	Н	Y .		
H	N	H	Н	Me CO ₂ H		
Н	N	Me	Н	™		
H	N	H	Me			
H	N	Н	Bt			
В	N	N	Me	. 0 -		
Н	N	Ne	Ме	Me Me		
H	CH	H	Me			
н	CMe	Me	Н			
H	N	H	Н	CO ₂ H		
Н	N	Ne	Н	J		
Н	N	н	Me	~N~		
Н	N	Н	Et	Me Me		
Н	CH	И	H			
Н	CH	н	Me			
Н	CH	H	H			
Н	CH	• н	Me	и со и		
Н	CMe	Me	Me	MCO CO 2H		
Н	N	Н	Me	Me		
H	N	Me	Me	(O)		
Н	N	H	Ne	,		
Н	N	Н	Et	-		
				【表79】		

[0127]

表 - 4 (つづき)

R w Х х Н CH Н Н H CH Н Мe Н Н CMe Me H N Н Н Н Н N Ме Ħ N Н Me N Н Н Bt CH Е Н Н Н CEI Me CMe Ме Б H N H Н Н Н N Ме

[0128]

Bt

H N

H N

H Me

₹ - 5

R1

N

N

R2

R2

R ²	X 17	X 16	R 1
	H	Н	Н
NBt 2	Me	Ne	B
Me Me	Bt	Et	B
me me	n _{Pr}	n _{Pr}	В
	Ме	Н	H
	H	Me	H
	Ne	Me	NH 2
	H	Н	H
NBt 2	Ne	Me	H
Me India	. Et	Et	Н
* 🖒	n _{Pr}	n _{Pr}	H
9	Me	Н	Н
	Н	Me	Н
	Ме	Ne	NH2
	Н	Н	Н
, OH	Ne	Me	H
Me	Et	Et .	H
**	npr	nPr	H
9	Me	H	H
	H	Me	н
	Me	Мe	NH ₂

[0129]

表 - 5 (つづき)

		(>>0)
X 16	X 17	R2
Н	Н	
Me	Me	
Et	Bt	
n _{Pr}	ⁿ Pr	- OAc
Ħ	Me	Me
Me	В	
Me	Me	_
Me	Me	
Me	Me	
Me	Иe	
H	Н	
Me	Ne	
Bt	Bt	OCO2H
ⁿ Pr	n _{Pr}	Me 0
В	Me	
Me	Н	,
Me	Ne	
H	B	
Me	Me	CO ₂ H
Bt	Et	Me 0 CU2n
n _{Pr} .	n _{Pr}	ME O
Н	Me	\\
Me	Н	P
Me	Мe	
	H Me Et mpr H Me Me Me Me Me Me Me Me Me Me Me Me Me	H H Me Me Et Et Et ET Me Me Me B Me H Me Me H Me H Me

[0130] [表82]

表 - 5 (つづき)

R1	X 16	X 17	R2
В	Н	В	
В	Me	Me	_
н	Et	Et	N \ \ c0 ₂ H
В	n _{Pr}	n Pr	ife
В	Н	Ме	
В	Me	В	
NH ₂	Me	Me	
Н	Н	В	
В	Me	Me	
В	Et	Et	P.
В	n _{Pr}	n Pr	Et N CO ₂ H
8	H	Мв	Me CU ₂ H
- 8	Me	Н	
NH ₂	Me	Me	Ť
NEMe	Ме	Me	
OMe	Me	Me	
F	Me	Me	
B	Н	Н	
Н	Ne	Me	
В	Et	Bt	N CO2Et
В	nPr.	n _{Pr}	Me
Н	Н	Me	(0)
В	Me	Н	Ť
NH ₂	Me	Ne	

[0131] [表83]

		表 - 5	(つづき)
R1	X 16	X 17	R2
H	Н	Н	
Н	Me	Ме	
Н	Et	Rt	Me CO ₂ H
Н	n _{Pr}	n _{Pr}	1 ** 👃
H	Н	Me	1 4
H	Me	H	P
NH2	Me	Ne	
H	H	Н	
H	Ne	Me	
В	Et	Bt	V CO2H
U	np _r	n _{Pr}	Ne
H	H	Me	
H	Me	В	
NH ₂	Ne	Me	
Н	Н	H	
В	Me	Me	
H	Bt	Bt	.
H	n _{Pr}	n _{Pr}	Bt N~~~
H	Н	Иe	He CO ₂ H
Н	Me	E	(i)
NH ₂	Me	Me	F
NEMe	Ме	Me	

F Me Ne (表84)

Me

Ne

0Me

	á	表 - 5	(つづき)
R1	X 16	X 17	R2
H	E	Н	
Н	Me	Мe	<u>.</u> .
Н	Et	Et	Bt N
Н	npr	apr	Ne CO ₂ H
H	Н	Me	
В	Ne	H	~
MH2	Ne	Me	
В	В	Н	
В	Ne	Me	n.
Н	Bt	Et	Bt.
Н	n _{Pr}	npr	Ne CO₂Bt
H	Н	Ne	(C) '
Н	Me	H	~
NH2	Me	Иe	
E	Н	8	
Н	Me	Же	
В	Bt	Bt	OCO2H
В	n _{Pr}	ⁿ Pr	Ne 0
В	Н	Me	(O)'
В	Me	Н	~
			-

[0133] [表85]

表 - 5 (つづき)

			(226)
R1	X 16	X 17	R ²
В	Н	H	
В	Me	Me	
В	Et	Bt	
В	a _{Pr}	пPr	
В	Н	Me	Ne Ne 🔘
В	Me	H	
NH2	Me	Me	
NBMe	Me	Me	1
0Me	Me	Me]
F	Мe	Me	
Н	H	И	
Н	Me	Me	
• Н	Et	Bt	
В	ⁿ Pr	ⁿ Pr	
В	Н	Me	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
В	Me	Н	CO ₂ H
NH2	Me	Ne]
Н	H	н	
Н	Me	Me	1 "
Н	Et	Bt	
Н	n Pr	n _{Pr}	
Н	H	Ne]
В	Ne	Н	CO2E1
NH2	Ме	Me	

【0134】 【表86】

表 - 5 (つづき)

R1	X 16	X 17	R2
H	Н	. н	
Н	Me	Me	
H	Et	Bt	√ ∞
H	ⁿ Pr	n _{Pr}	
В	Н	Me] (_{00 11}
Н	Me	Н	COSH
NH2	Me	Me	
Н	Н	Н	
В	Me	Me	
Н	Et	Bt	
Н	n _{Pr}	n _{Pr}] Y
H	H	Me	Ne CO ₂ H
Н	Me	н	
NH ₂	Me	Me	
NHMe	Me	Me	
OMe	Me	Ne	
F	Ме	Ne	
Н	Н	н	
Н	Me	Ne	Me
Н	Et	Bt	Ne CO ₂ H
Н	nPr	npr	Me VU2n
H	H	Me]
Н	Me	н	
NH ₂	Me	Me	

[0135] [表87]

	ā	表 - 5	(つづき)
R1	X 16	X 17	R2
H	H	В	
Н	Иe	Мe	
Н	Et	Bŧ	N N CO ₂ H
В	n _{Pr}	^E Pr	Me
Н	Н	Me	
H	Me	H	
NH ₂	Ne	Me	
H	Я	Н	
H	Ne	Me	CO ₂ H
H	Et	Et	· ~\\
H	ⁿ Pr	n _{Pr}	Ne _
E	Н	Ne	(i)
- E	Me	H	*
NE ₂	Me	Ne	
E	H	B	
H	Ме	Же	60 %
Н	Bt	Bt	~√N CO ⁵ H
В	ⁿ Pr	ⁿ Pr	Ne R
B	H	Me	(O),
B	Me	H	~
NH ₂	Me	Me	
NHMe	Me	Me	
0Me	Ne	Me	
F	Ие	Me	

表 - 5 (つづき)

			()
R1	X 16	X 17	R 2
В	H	Н	
В	Me	Me	ij.
R	Et	Bt	X'\(\hat{O})
8	n _{Pr}	ⁿ Pr	(A) ~
В	H	Me	\
В	Me	H	CO ₂ H
NB ₂	Me	Me	
Н	H	Н	
В	Ме	Me	
В	Et	Et	
В	n Pr	^E Pr	(A) ~
В	Н	Me	\
В	Me	Н	CO ₂ H
NH2	Me	Ме	
В	н	Н	
В	Me	Me	,
В	Et	Bt	Me OH
В	n _{Pr}	ⁿ Pr	Me P
В	Н	Me	
В	Me	Н	
NB2	Me	Me	

[0137] [表89]

表 - 5 (つづき)

R1	X 16	X 17	R ²
8	Н	H	
В	Me	Me	HO
В	Et	Et	Me
Н	ⁿ Pr	[⊕] Pr	*
В	H	Me	1 4
8	Me	H	F .
NH2	Me	Me	
NHMe	Me	Me]
OMe	Me	Me]
F	Мe	Me]
В	Н	И	
В	Нe	Me	
H	Et	Bt	OCO2H
н	ⁿ Pr	n _{Pr}	Me 0 P
H	H	Me) (Q')
В	Me	н]
NH2	Иe	Мe	
H	Н	н	
H	Me	Me	О́Н
В	· Et	Bt] (
H	пPт	n _{Pr}	Me CO ₂ H
В	н	Me] ** 🖒
В	Me	Н] 💝
NH ₂	Me	Me]

[0138] [表90]

R1	A	В	R2
H	NH2	NO ₂	
H	NH2	NH ₂	
В	H -NCH2CO2Et	NO ₂	
Н	-NCH2CO2Bt	NH ₂	N ^t →
Н	-NCH2CO2H	NO ₂	Ne CO ₂ Me
NH2	Me	H	1 💚
NH2	NH2	NO2	
NH2	NH ₂	NH2	
H	NH2	NO2	
Н	NH2	NH ₂	
H	-NCH2CO2Et	ND ₂	
В	-NCH2CO2Et	NH ₂	Bt CO2H
NH ₂	Me	H	Me CU2n
NH2	NH ₂	NO ₂	Ψ
NH ₂	NH ₂	NH ₂	, k
В	-NCH2CO2H	NO ₂	

[0139] 【表91】

	表	- 6	(つづき)
RI	A	В	R2
H	NH ₂	NO ₂	
H	NH ₂	NH ₂	1
H	-NCH2CO2Et	NO ₂	1
В	HCH2CO2Bt	NH2	Rt CO ₂ H
H	-NCH2CO2H	NO2	Ne Voge
NH2	Me	H] 💚
NH2	NHS	ND ₂	1
NH2	NH ₂	NH2	1
H	NH2	NO2	
H	NH ₂	NH ₂]
Ħ	-NCH2CO2Et	NO ₂	_
Н	-NCH2CO2Et	NH2	Ne NO 2H
Н	-NCH2CO2H	NO ₂	" ()
NH2	Me	H	j ř
NH2	NH2	NO ₂	
NH2	NH ₂	NH ₂	1
H	NH ₂	NO ₂	
В	NH2	NH ₂	
8	-NCH2CO2Et	NO ₂	
В	H -NCH2CO2Et	NH2	No CO2H
H	Н -иси ₂ со ₂ н	NO ₂	" 6"
NH2	Me	H] ~
NH2	NH ₂	NO ₂	0
NH ₂	NH ₂	NH ₂	
	2		【表92】

[0140]

	表	- B	(つづき)
R1	A	В	R2
H	NH ₂	NO ₂	
H	NH2	NH ₂	
Н	-NCH2CO2Bt	NO ₂	i Pr
Н	-NCH2CO2Bt	NH ₂	k -
Н	-NCH2CC2H	NO ₂	Ne CO ₂ H
NE2	Me	Н	1 💚
NH2	NH2	NO ₂	1
NH2	NH2	NH ₂	i
Н	NH ₂	NO2	
Н	NH ₂	NH ₂	i
Н	HCH2CO2Et	NO ₂	∇
Н	-NCH ₂ CO ₂ Bt	NH2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Н	-NCH ₂ CO ₂ H	NQ ₂	Me CO ₂ H
NH2	Жe	H	9
NH ₂	NE2	NO ₂	
NH ₂	NH ₂	NH ₂	
Н	NH ₂	NO ₂	
Н	NH ₂	NH2	
H	-NCH2CO2Et	NO ₂	, .
H	H -NCH2CO2Et	NH ₂	VN CO2H
8	-NCH2CO2H	NO ₂	
NH2	Me	H	
NH2	NH ₂	NO2	
NH2	NH ₂	NH2	

【表93】

[0141]

	表	- 6	(つづき)
R1	A	В	R2
Н	NH2	NO ₂	
Н	NH ₂	NH ₂	7
Н	H -NCH2CO2Bt	NO ₂	NEt 2
H	-NCH2CO2Bt	NH ₂	Me NET 2
H	H-NCH2CO2H	NO ₂	
NH ₂	life	H	
NH ₂	NH ₂	NO ₂	
NH2	NH ₂	NH ₂	
H	NH ₂	NO ₂	
H	NH ₂	NH ₂	7
H	-NCH2CO2Bt	NO ₂	N co ₂ H
H	-NCH2CO2Bt	NH ₂	Me Toola
NH ₂	Me	H	
NH ₂	NH ₂	NO ₂]
NH ₂	NH ₂	NH2	7
Н	-NCH2CO2H	NO ₂	
H	NH ₂	NO ₂	
H	NH ₂	NH ₂]
В	-NCH2CO2Et	NO ₂	
В	-NCH2CO2Bt	NH ₂	Ne CO2H
н	-NCH2CO2H	NO ₂	
NH ₂	Хе	H	_
NH2	NE2	NO ₂	_
EH _o	NFo	NHo	

	表	- 6	(つづき)
R1	A	В	R2
H	NH2	NO ₂	
Н	NH2	NH ₂	
Н	-NCH2CO2Rt	NO ₂	
H	NCH2CO2Bt	NH2	Ne 0
B	-NCH2CO2H	NO2	(©
NH2	Ne	H	
NH2	NE ₂	NO ₂	
NH2	NH2	NH2	
Н	NH2	NO ₂	
Н	NE ₂	NH ₂	1
Н	-NCH2CO2Bt	NO2	
Н	-NCH2CO2Bt	NH ₂	
H	-NCH2CO2H	NO ₂	
NH ₂	Me	Б	1
NH2	NH2	NO ₂	
NH2	NH ₂	NH ₂	7
Н	NH2	NO ₂	
H	NH2	NH2	
H	H -NCH2CO2Bt	NO ₂	
Н	H -NCH2CO2Bt	NH ₂	Me
Н	-NCH2CO2H	NO ₂	
NH ₂	Me	H	
NH ₂	NH ₂	NO ₂	
NH ₂	NH ₂	NH ₂	

[0143]

R1	表 A	- 6 В	(つづき) R2
8	NH ₂	NO ₂	K-
B	NH ₂	NH2	+
H		NO ₂	
	-NCH2CO2Et		
8	-NCH2CO2Et	NH ₂	×N ×
B	-NCH2CO2H	NO ₂	Me Me ♥
NH ₂	Мe	Н	
NH ₂	NH ₂	NO ₂	1
NH2	NH ₂	NH2	1
Н	NH ₂	NO ₂	
В	NF2	NH ₂	
Н	H -NCH2CO2Bt	NO ₂	_
H	-NCH2CO2Bt	NII2	NCO ₂ II
H	-NCH2CO2H	NO ₂	©
NH ₂	Me	H	
NH2	NH ₂	NO ₂	
NH ₂	NH ₂	NH ₂	1
H	NH ₂	NO ₂	
Н	NH ₂	NH2	1
H	-NCH2CO2Bt	NO ₂	Et co. II
Н	-NCH2CO2Bt	NH ₂	Ne CO ₂ H
H	-NCH2CO2H	NO ₂	(a)
NH2	Me	H	
NH ₂	NH ₂	NO ₂	
NH2	NH ₂	NH2	1

[0144] [表96]

	表	- 6	(つづき)
R1	A	В	R2
Н	NH ₂	NO ₂	
H	NH ₂	NH ₂	
H	-NCH2CO2Bt	NO ₂	Me No
Н	-NCH2CO2Bt	NH ₂	Me NCONe
NH2	Me	E	(O)
NH2	NH ₂	NO ₂	
NH ₂	NH2	NH ₂	
В	-NCH2CO2H	NO ₂	
В	NH ₂	NO ₂	
H	NH ₂	NH2	
8	H -NCH2CO2Et	NO ₂	Же
В	-NCH2CO2Et	NH2	N NCONMe 2
H .	-МСН ₂ СО ₂ Н	NO ₂	(a)
NH2	Me	H	
NH ₂	NH ₂	NO ₂	
NH2	NH2	NH ₂	
E	NH2	NO ₂	
E	NH ₂	NH ₂	
H	-NCH2CO2Bt	NO ₂	v CO₂H
E	-NCH2CO2Bt	NB ₂	
H	-NCH2CO2H	NO ₂	©
NH ₂	Me	H	
NH2	NH ₂	NO ₂	
NH2	NH ₂	NH ₂	

NH₂ NH₂ NH₂ NH₂ 【表97】

	表	- 6	(つづき)
RI	A	В	R2
H	NH ₂	NO ₂	
H	NH ₂	NH ₂	1
Н	H -NCH2CO2Bt	NO ₂	
Н	-NCH2CO2Et	NH ₂	Q \(\text{\text{\$\pi}} \)
Н	-NCH2CO2H	NO ₂	CO₂H
NH ₂	Me	H	
NH2	NH2	ND ₂	
NH2	NH2	NH ₂	
H	NH2	NO ₂	
H	NH2	NH2	
H	-NCH2CO2Et	NO ₂	×Nso₂ √
H	-NCH2CO2E1	NH2	Me Ne 🔾
B	H-NCH2CO2H	NC ₂	
NH2	Me	H	
NH2	NH2	NO ₂	
NH2	NH ₂	NH2	
H	NH ₂	NO ₂	
H	NH2	NH2	
H	-NCH2CO2Et	NO ₂	(c)
В	-NCH2CO2Et	NH ₂	محکم
Н	-NCH ₂ CO ₂ H	NO ₂	HŃŢŃĦ O
NH2	Me	H	
NH2	NH ₂	NO ₂	
NH2	NH ₂	NH ₂	

[0146] 【表98】

	表	- 6	(つづき)
RI	A	В	R2
H	NH ₂	NO ₂	
H	NH ₂	NH ₂	
Н	-NCH2CO2Et	NO ₂	NEt 2
H	-NCH2CO2Bt	NH ₂	, et
Н	NCH2CO2H	NO ₂	C1
NH ₂	Me	Н	
NH ₂	NH2	NO ₂	
NH ₂	NH2	NH2	
H	NH ₂	NO ₂	
Н	NH ₂	NH ₂	
В	H NCH ₂ CO ₂ Et	NO ₂	NE 1 2
H	-NCH2CO2Bt	NH2	,
Н	-NCH2CO2H	NOz	ļ.
NH ₂	Me	H	
NH ₂	NH2	NO ₂	
NH ₂	NH2	NH ₂	
H	NH ₂	NO ₂	
Н	NH2	NHz	
Н	-NCH2CO2Et	NO ₂	OH
H	-NCH2CO2Et	NH ₂	Me CO ₂ H
NH ₂	Ne	Н	
NH ₂	NF ₂	NO ₂	👺
NH ₂	NH ₂	NH ₂	
В	-NcH2CO2H	NO ₂	

[0147] [表99]

	表	- 6	(つづき)
R t	A	В	R2
K	NH2	NO ₂	
Ħ	NH2	NH ₂	
н	-NCH2CO2Et	NO ₂	.,
H	-NcH2CO2Bt	NH ₂	
Н	H NCH2CO2H	NO ₂	
NH ₂	Мe	H	
NH ₂	NH ₂	NO ₂	
NH2	NE2	NH ₂	
Н	NH ₂	NO ₂	
8	NE2	NH ₂	
B	H NCH2CO2Et	NO ₂	
Н	-NCH2CO2Et	NH2	Me Cook
В	-NCH2CO2H	NO ₂	Me CO ₂ H
NH2	Жe	H]
NH2	NH ₂	NO2	1
NH ₂	NH2	NH2	-
В	NH ₂	NO ₂	
B	NH ₂	NH2	
B	-NCH2CO2Et	NO ₂	
8	-NCH2CO2Et	NH2) ©
В	-NCH2CO2H	NO ₂] 🔌
NH2	Ne	H]
NH ₂	NH ₂	NO ₂	
NH2	NH ₂	NH ₂	1

【0148】 【表100】

	表	- 6	(つづき)
R1	A	В	R2
H	NH ₂	NO ₂	
H	NB ₂	NH ₂	
Н	-NCH2CO2Bt	NO ₂	
Н	H -NCH2CO2Bt	NB ₂	~^@
Н	-NCH2CO2H	NO ₂	
NH2	Me	H	
NH2	NH ₂	NO ₂	
NH ₂	NH2	NH ₂	
H	NH ₂	NO ₂	
Н	NH ₂	NH2	
Н	-NCH2COZEt	NO ₂	
Н	H -NCH2CO2Et	NH2	We Ne ©
В	-NCH2CO2B	NO ₂	Ke Ne 🍑
NB ₂	Ne	H	
NH2	NH2	NO ₂	
NH2	NH2	NH ₂	
Н	NH ₂	NO ₂	
Н	NH2	NH ₂	
H	H -NCH2CO2Bt	NO ₂	Me co ₂ H
H	H -NCH2CO2Et	NH2	Ne Con
H	-NCH2CO2H	NO ₂	©
NH ₂	Me	H	
NH ₂	NH ₂	NO ₂	
NHo	NHo	NHo	

[0149] [表101]

RI	A	В	R2
Н	NH ₂	NO ₂	
Н	NH ₂	. NH2	
Н	-NCH2CO2Et	NO ₂	\checkmark
Н	H -NCH2CO2Et	NII2	Me CO ₂ H
Н	H -NCH ₂ CO ₂ H	NO ₂	(<u>)</u>
NH2	Me	H	
NH ₂	NH ₂	NO ₂	
NH ₂	NH ₂	NH ₂	
Н	NH ₂	NO ₂	
Н	NH2	NH ₂	
H	-NCH2CO2Et	NO2	CO ₂ H
Н	-NCH2CO2Bt	NH ₂	Me Cog.
NH ₂	Me	H] ©
NH2	NH2	NO ₂	
NH2	NH ₂	NH ₂	
Н	H-NCH2CO2H	NO ₂	

【0150】 【表102】

R1	X 11	X 12	R2
H	H	H	
Н	Me	Ne	Bt I
Н	Et	Et	√N~~ _{00.11}
H	npr	n Pr	Me CO ₂ H
В	н	Ме	0
н	Me	H	Ţ
NH2	Me	Ne	•
8	Н	H	
В	Me	Ne	0 00 7
Н	Et	Bt	0 CO2H
Н	ⁿ Pr	ⁿ Pr	Me j ü
H	н	Ne	Ç√c1
Ħ	Me	Н	ĊI
NH2	Me	Ne	
Н	Н	Н	
Н	Me	Ne	
Н	Bt	Bt	N CO2H
В	n _{Pr}	nPr	We U
В	Н	Ne	O F
Н	Ме	H	~
NH ₂	Ме	Me	

【0151】 【表103】

表 - 7 (つづき)

		女 - 1	(208)
R1	XII	X 12	R2
H	н	Н	
Н	Me	Ne	
Н	Bt	Bt	
Н	n _{Pr}	^{II} Pr	Rt N
н	Н	Ne	Me CO ₂ H
Н	Me	Н	
NH2	Me	Ne	1
NHMe	Ме	Ne	1
OMe	Me	Ne	
F	Me	Ne	
Н	н	H	
В	Me	Жe	
Н	Bt	Bt	~# _©
8	ⁿ Pr	n _{Pr}	
В	Н	Жe	
Н	Ме	Н	
NH2	Me	Ne	
В	Н	Н	
Н	Ме	Ne	
H	Bt	Bt	
H	ⁿ Pr	npr	l H
В	Н	Ne	H Ne Ne O
8	Me	H	
NH ₂	Ие	Ne	
			[#104]

[0152]

【表104】

	į	表 - 7	(つづき)
RI	X 11	X 12	R2
Н	н	H.	
Н	Иe	Me	-
Н	Bt	Rt	CO2H
H	n _{Pr}	npr	1 м
H	E	Хe	
H	Me	В	
NH2	Me	Ne	
H	Н	Н	
H	life	Me	
H	Et	Et	
H	nPr	n Pr	I
Н	H	Me	VICO2H
H	Ne	Н	
NH2	Ne	Me	
NHMe	Ne	Ne	
OMe	Me	Ne	
P	Me	Жe	
F	н	H	
Н	Me	Me	
H	Et	Et	VNEt₂
В	n _{Pr}	пРr	Ke \
Н	Н	Me	(((((((((((((((((((
В	Me	H	Ť

表 - 7 (つづき)

		× - /	(つつき)
R1	X 11	X 12	R ²
K	Н	H	
Н	Me	Ne	
н	Et	Et	Me CO ₂ H
H	n _{Pr}	1Pr	Me T
В	Н	Me	
В	Ne	H	0
NH2	Иє	Me	
H	H	H	
H	Ne	Me	2 40 11
H	Bt	Et	Ne O CO2H
H	n _{Pr}	*Pr	Ne d
H	Н	Me	Ÿ
E	Ne	H	F
MH ₂	Ne	Me	
H	H	H	766
H	Me	Ne	
H	Bt	Bt	
F	n _{Pr}	n _{Pr}	Me CO ₂ H
H	Н	Me	Me To the Part
Н	Me	Н	0
NH ₂	Me	Me	~
NHMe	Ме	Ne	
0Me	Ие	Мe	
F	Me	Мe	

【0154】 【表106】

		表 - 7	(つづき)
R1	X11	X 12	R ²
Н	В	Н	
В	Me	Me	Bt
Н	Et	Et	N C02H
Н	*Pr	npr	Me UU2n
H	В	Me	
Н	Мe	Н	
NH2	Жe	Me	
Н	Н	Н	
В	Me	Ne	Bt
В	Et	Et	N CO ₂ Me
Н	^R Pr	npr	Me CU2ME
Н	H	Ne	(0)
Н	Me	H	, and the second
NH2	Me	Ne	
Н	H	H	
н	Me	Ne	_
B	Bt	Bt	N CO2Et
B	ⁿ Pr	npr	Me
H	н	Ne	(0)
B	Me	H	~

[0155] 【表107]

Me

Ne

NH2

表 - 7 (つづき)

RI	X 11	X12	R ²
H	Н	Н	
Н	Ne	Me	
Н	Bt	B t	T
H	n _{Pr}	npr	
H	Н	Кe	Ne C
Н	Me	H	1 🖞
NH ₂	Me	Ne	F
NHMe	Ме	Me	1
0Me	Me	Me	
F	Me	Жe	1
H	Н	Н	
H	Me	Жe	
H	Bt	Bt	Ht CO2H
Н	n _{Pr}	^a Pr] 📞 😋 🗆
H	H	Me	
Н	Me	Н	
NH ₂	Me	Me	
Н	H	H	
В	Me	Ne	
B	Et	Bt	OCO2H
В	ⁿ Pr	n _{Pr}	
H	Н	Me] 💚
В	Me	Н	
NH2	Me	Me	

[0156]

【表108】

ä	5 -	- 8	R1		
			X N N		
			, LJ , ,	R1	
_	_		X3	_	
RI	¥1	Х2	Х3	¥4	R ²
		H0~~0H	OMe		
		0√~0Me	OMe		
		0~~10	OMe		
		0~~100	OMe		
		0~NHMe	OMe		
		0-	ОМе		
		0 < 0	CMe		
		0_0Et	OMe		_
		0√NMe₂	OMe	1	N -co ₂ H
н	Н	0√√ DMe	OMe	E	Me
		00	OMe	1	
		0√^0Me	0~0Me	1	_
		0~~1(_0	0~~I(_0	1	
		н	0~~1(_0	1	
		Н	0~~0Me	1	
		Н	0-🔷	1	
		Н	0~^10fe2	1	
		Н	NO ₂	1	
		DMo	0.0400	1	

表 - 8 (つづき) R1 X1 Х2 ¥3 ¥4 **R2** E0~~0 OMe 0√~0Me OMe 0~~10 OMe OMe 0√NHMe OMe ОМе OMe 0_OEt OMe 0~___NMe2 ОМе 0~~0Me н н Olde 0~~0Me 0~~0Me 0~~10 Н Н 0~0Me 0-1 Н H 0√^Me2

NO₂

Н

表 - 8 (つづき)

Ri	χl	X2	X3	14	R ²
		0~~0H	OMe		
		0~~0Me	OMe		
		0~~N_0	OMe	1	
		0~100	OMe	1	
		O√^KHM€	OMe		
		0-	OMe	1	
		0-<0>	OMe		
		0_OBt	OMe		_
		0√NMe ₂	ONe		N(`)
H	H	0~~ OMe	OMe	В	Mc CO 211
		° 🗘	OMe		
		0~~OMe	0~~0Me		_
		0~~100	0~~1(_0		
		Н	~~ ı Oı		
		Н	0~~0Me		
		Н	□-⟨⟩		
		Н	0√NMe2		
		H	NO ₂		
		OMe	0~~N_0	1	

[0159] [表111]

		*	- 8 (つづ	<u>*</u>)	
R1	χ1	Х2	13	χ4	R ²
		H0~~0	(Me		
		0~^OMe	CIMe		
		0~~10	ОМе		
		0~10	OMe		
	i	0√NHMe	OMe]	
		0-	OMe		
		0-(0)	OMe		
		0_OEt	OMe] !	
ĺ		0√NMe₂	OMe		_N)
К	Н	0~~0Me	OMe	Н	Me CO2Et
		0 🗘	ОМе		
		0-√-CMe	0~~0Me		
		0~~1_0	0~~1_0		
		н	0~10		
Ì		H	0~~0Me		
		E	□-♦		
	ĺ	Н	O√NMe2		
		Н	NO2		
ĺ		OMe	10~N~0	1	

[0160] [表112]

表 - 8 (つづき)

R I	11	X S	Хз	₹4	R ²
		0~~OH	OMe		
	l	0~~0Me	OMe		
İ		0~~N_0	OMe]	
		0~N_0	OMe		
		0~NAMe	OMe		
	ĺ	0-	ОМе	1	
		0-(0)	OMe	1	
		0_OEt	OMe	7	P.
		0~NMe 2	OMc	1	Bt N
Н	В	0√√∪0Me	OMe	H	Ne CO ₂ Ne
		٥٠	OMe		
ł		0~_OMe	0~^0Me	1	Ů
		0~~N_0	0~~I_0	1	
		н	0~~100]	
		Н	0~~0Me	1	
		K	0-		
		Н .	0√NMe₂		
		Н	NO ₂]	
		0We	0~~1(_)0	1	

[0161] [表113]

表 - 8 (つづき) R1 X1 ұ3 **X4** R2 Х2 E0~~0 OMe 0√~OMe OMe ОМе OMe O√NHMe QMe OMe OMe 0_OEt CMe 0~~\Me2 CMe DMe 0~~0Me OMe 0~~0Me 0~~0Me 0~1/0

0~Me2

NO₂

| 00de | 0~1/0 | | [表114]

H

H

		i	長 - 8 (つ:	づき)	
R1	χl	¥2	Х3	14	R ²
		Н	H		
		ONe	OMe		
		CBt	OEt		
		-008	20-		(0)
		Н	NMe ₂		
İ		0~~084e	OMe) _N _//
١.		0~~10	OMe		S C0₂H
	Н	В	0~~0Ke		
		0-	OMe		
н		CMe	O√^OKe	$\Box_{\mathbf{H}}$	
l n		н	H	"	
		0Me	OMe		<u> </u>
		OEt	OBt		
		-001	20-		
		Н	Mile ₂		
		0√CIMe	OMe		HO ₂ C N
		0~~N_0	OMe		
		Н	0~~0Me		
		0-	OMe		
		OMe	0 √ ^0Me		

表 - 8 (つづき)

R1	у1	χ2	Хε	14	R ²		
		В	н				
İ		CMe	ONe				
		CEt	OBt				
		- 0 CE	I ₂ 0-		\bigcirc		
		Н	NHe ₂		Y		
		0~~0Me	OMe	7	HO ₂ C ON		
		0~~1()	Olite		no ₂ c - ~		
		Н	O√^UMe				
		0-	OMe				
В	В	OMe	0~^0Me	Е			
.		Н	H	"			
ı		DMe	OMe				
		0Et	OBt				
		-001	l ₂ 0-		~		
		Н	NMe ₂	╛╹	HO ₂ c \bigwedge_{N}		
		0~~OMe	Olife	╛┃			
		0~~\	OMe				
		H	0~~0Me	╛┃			
		0-	OMe				
		0Me	0~^0Me				

【0164】 【表116】

表 - 8 (つづき)

R1	<u>¥</u> 1	X2	Is	χ4	R ²		
		H	H				
		OMe	OMe	7			
		0Bt	DEt	7-1			
		-0CH	20-		<u> </u>		
		н	NMe ₂	11	(")		
	į	0~ОМе	OMe	11	CO ₂ Ht		
		0~~N_0	OMe		10221		
		Н	0~^0Me				
		0-	OMe				
Н	Н	0Me	0~~0Me] _K			
п	п	н	H]"			
		0Me	OMe				
		OBt	OEt		^		
		-OCH	20-				
		H	NMe ₂		(")		
		□ ~~ UMe	OMe]	CO ₂ H		
		0~~N_0	OMe				
		В	0~~0Me				
		0-	OMe]			
		Olife	0~~0Me				

[0165] [表117]

RI	11	χ2	Σ3	14	R ²
		H	H		
		OMe	OMe		
		OBt	OBt		^
		-0CH	20-		(0)
		H	NHe ₂		CO ₂ Bt
		0~^0Me	OMe		
		0~~10	OMe		
		Н	0~^0Me		
		0	COMe	7	
Н	В	OMe	0~0Me	I.L	
п	п	н	H] n [
		OMe	Olife		
		OBt	OEt		
		-OCH	₂ 0-		0
		H	Me ₂		<u> </u>
		D~~CIMe	OMe) _N _//
		0~~N_0	OMe		CO₂H
		H	0~~0Me	7	
				_	

[0166] 【表118]

表 - 8 (つづき)

R1	χı	X 2	Х3	χ4	R ²
		H	Н		
		OMe	OMe		
ĺ		CEt	OBt		
		-008	20-		, (0)
		н	NMe ₂		
		0~~8Me	OMe	7	HO ₂ C N
ĺ		0~~1(_0	OMe		
	Н	H	0√^Dlfe		
		0-	OMe		
в		OMe	0 ~~ OMe] _E	
в		H	H	1" [
		OMe	OMe	71	
		OBt OEt		7	ļ ļ
		-0CH	20-	7	
		Н	NMe ₂	7	
		0 ~~ 0Me	DMe		CO ² H
	ĺ	0~~100	DMe		co ₂ n
	-	H	0~~0Me		
		0	OMe		
		OMe	0~~ OMe		

[0167] [表119]

表 - 8 (つづき) R1 X1 **x**2 ¥З χ4 R2 H H ONe Olie OBt 0Et -0CH₂0-H NMe_2 0~~0Me OMe 0~N 0 OMe O√^CMe 0-0 OMe CMe 0√~OKe Н H Н CMe OMe OBt 0Bt -OCH₂O-H NMe₂ O√^OMe OMe 0~N 0 OMe 0~~0Me

0Me 0 **~~** 0Me

表 - 8 (つづき)

R1	χı	χ2	Xa	14	R ⁹
		F	• н	1	
İ	ĺ	OMe	OMe		
		DEt	OEt		
	-	-00	H ₂ 0-		H H CO2H
	١.	H	NMe 2		×.~~
		O~^OMe	OMe		Me]
ı		0~~N_0	0%c		
		Н	0√~0Me	٦.	
		0-{	OMe		
В	н	DMe	0~~OMe	- 1	
п	п	Н	н		
		OMe OMe		7 1	
	ı	OEt	OEt		20.17
		-OCI	l ₂ 0-	1	Me H CO2H
		В	NMe ₂		Me
		0~~0Me	OMe	7	ME
i		0~~10	OMe		\vee
		H	0~0Ne		
		0-🔷	OMe		
		Olite	0~~0lite		

【0169】 【表121】

RI	11	ΧS	, <u>x</u> s	¥4	R ²		
		Н	E				
		Otile Otile		7			
ı		DEt	OBt	1	20.11		
		-0CH ₂ O-			Rt H CO2H		
-		H NMe ₂			Me		
i		0~OMe	OMe	7			
		0~~\0	OMe		9		
		Н	0~~0Me	1			
		0-	Olife	7			
н	н	OMe	0~^0Me] _E			
n	a	И	H] "			
		OMe	OMe				
		0Et	OEt OEt		CO ₂ Ne		
	i	-OCE	I ₂ 0-		H H CO2NE		
		Н	NMe 2		Ne V		
		D√~OMe	OMe		L**		
		0~~10	OMe				
		H	0~~0Me				
		0-	DMe				
		ONe	∩∽∩Me				

[0170] [表122]

R1	Y 1	12	χз	χ4	R2
к.	1.			A*	K.
		Н	H	_	
		0Me	DMe		
		OBt	DEt		on v-
		-001	H ₂ 0-	7	Me H CO ₂ Xe
		Н	NMe ₂	7	Ne "
		0 ~ 0Me	ONe	7	Me C
		0~~N_0	OMe	7	9
		Н	0~~0Me	7]	
		0-(OMe	7 1	
		O'Me	0~~0Me	٦	
H	H	Н	H	- B	
		OMe	OMe	7	
		OBt	0Et		
		-001	I ₂ 0-	7 1	Et H CO ₂ Me
		Н	NMe ₂		~.~~
		0√~0Me	OMe		Me]
		0~~1(_0	OMe		9
ļ		H	0~~0Me	٦	
		0-	OMe	1	
	1	Me	0. 000	7	

[0171] 【表123]

【0172】 【表124】

R1	X1	χ²	X8	14	R ²		
		H	F				
		OMe OMe					
		0Et	OEt	71			
-		-OC	I ₂ 0-	71	Me		
-		H	NMe ₂	7 /	Me H CO ₂ Ne		
		C ~~ OMe	Olite	7 [Me CO ₂ Ne		
		0~~N_0	OMe	7	0		
ı		H	0 √ 0Me	7			
1		0-	OMe	11			
	H .	OMe	0~^0Me	٦. ا			
Ϊ.	" [H	H	- 8 -			
		OMe	OMe		_		
		0Et	OEt	7 1			
		-0CE	20-	7	Me N		
-	Γ	H	NMe ₂	7 [Me TH CO ₂ H		
1		0~^0Ne	OMe	7			
		0~~\r_0	OMe	7 [~		
	Г	Н	C~~OMe	7			
		0-()	OMe	7			

000 0√0Me (₹125)

表 - 8 (つづき) R1 X1 Х3 ¥4 R2 у2 H Н OMe ONe OBt 0Et -0CH₂0-NMe 2 H 0____0Me QMe C~~N 0 OMe 0~0Me OMe DMe O√~OMe Н 8 8 Н H OMe OMe 0Et OBt -0CH₂0-H MMe₂ 0**√**OHe OMe OMe

0~~0Me

OMe 0~~0Me

0-(DMe. [0174] 【表126】

R1 X	χ2	Х3	X4	R2		
	H	н				
	OMe	OMe	7			
	OEt	03t	71			
	-00	H ₂ 0-		Me N		
	Н	H NMe2		\times		
	0 ~ OMe	CMe	11	(N)		
	0~~N_0	CMe		_C05II		
	И	0~^0Me	7			
	0-	CMe	7			
н	DNe	0~^0Me], L			
n H	В	8 8				
-	OMe	OMe	7			
	Œt	OEt	7			
	-001	I ₂ 0-		Et		
	Н	NMe ₂		\times 'Ya		
	0 ~~ CMe	OMe		(^N)		
	0~~N_0	OMe		CO ₂ H		
	Н	0~^0Me				
	0-	OMe				
	OMe	0~^0He				

【0175】 【表127】

\mathbb{R}^1	<u>7</u> 1	χz	X ₃	X4	R ²
		H	н	+	
		OMe OMe			
ı		03t	0Et	7	
1		-00	CH ₂ O-		
-		H NMe2			CO ₂ H
- 1		0√^OMe	OMe	7 /	Ne -
	- [0~~N_0	OMe	7	(C) CI
		Н	0 ~ 0 Me		~
		0-	OMe	7 i	
.	E	ONe	0~~0Me	٦. ١	
"	"	H	Н	Н -	
		0Me	OMe		
ı	L	0Et	0Et		
-		-001	H ₂ C-	7 (\sim
ı	Ĺ	Н	NMe 2	1	>N CO2H
1		0~~0Me	OMe		Me Me
	L	0~~\n_0	OMe		\bigcirc
1	L	Н	0~~0Me	7	
	L	0-0	OMe		
- 1	- 1	OM -	0	7	

[0176] [表128]

R I	Х1	I 2	表 - 8 (つ・	X4	R2
ĸ.	A.		ļ ,	Y-	R ²
		В	H		
		ОМе	OMe		
		OBt	0Et		
Į		-0C	H ₂ 0-		Me N
		H	NMe ₂		X'YA
-		0~^0ttle	OMe		(N)
		0~~N_0	CMe	7	CO2
		Н	0~~ONe		
		0-	OMe	7	
в	н	OMe	0 ∽ OMe	٦,,	
"	" [H	H	Н	
-		DYe	OMe	7	
		OBt	0Et	7	
Ì		-OCI	I ₂ 0-	1	Me
		H	NMe ₂		\times
1	- 1	0~OMe	OMe		رام 😞
		0~~10	OMe		CO2-<
	Ī	H	0~^0Me	7	
-	Ī	0-	OMe	7	
	- 1	Ma	0. 000	7	

[0177] 【表129】

_	_			70,	
RI	X1	¥2	X3	¥4	R ²
		H	H		
		OMe	OMe		
		0Bt	OEt		
		-001	l ₂ 0−		H N
		Н	NMe ₂		
		0 ~ OMe	OMe		(¹)
		0~~N_0	ONe		00 ₂ -<
		H	0∕~DMe	7	
		0-♦	OMe		
н	н	ONe	0~~0Me	٦,	
n	п	H	H	n n	
		OWe	OMe	7	
ı		OEt OEt		7	
- 1	ĺ	OCE	20-		Bt
ı	Ì	H	NMe ₂		×"Y\(\cappa\)
Į	Ì	0~~DMe	ÜMe		(N)
		C~~N_0	OMe		co_2
	Ī	. н	0~~0Me	7	
		0-4	OMe	1	
		0Me	0~^0Me	٦ ا	

【0178】本発明化合物の製造法

1) 上記一般式 (I) で表される化合物のうち、R¹ が 水素原子;塩素原子、臭素原子:フェニル基で置換され ていてもよいC₁ ~C₅ のアルキル基:無置換のアミノ 基;ハロゲン原子で置換されていてもよいフェニル基を

表す化合物の製造法

例えばScheme 1の様なルートで製造できる。 【0179】

【化41】

Scheme 1

【0180】 (大中、L Gは塩素原子、バラトルエンス ルホニル基等の配離基を表し、R¹やは既に産義した R¹ のうち、水素原子、塩素原子、臭素原子、アミノ基、フ ェニル基で置換されていてもよい①、~C₆のアルキル 基、ハロゲン原子で置換されていてもよいフェニル基を 表す。A、B及びR² は既に定義した通り。Meはリチ ウム、ハロゲン化マグネシウム、トリアルキルスズ等の

金属原子団を表す)

すなわち、化合物IIと代合物III をテトラヒドロフラ 、ジエチルエーテル等のエーテル系溶媒、ベンゼン、 トルエン等の原化水素系溶媒、ジメチルホルムアミド、 ジメチルスルホキンド等の非プロトン性溶媒中、あるい はそれらの混合溶媒中、1~10当重のトリエチルアミ 、,ジエチルアミン、ビリジン等の塩基、0.001~ 0.5当最のPd(PPh_n)₄、PdCl₂(PPh 3)2等のバラジウム結体、0.001~0.5当量の CuI、CuC1等の飼(1)化合物の存在下、あるい は非存在下、+20℃~+200℃で5分間~48時間 反応させることにより化合物1を製造することができ る。この際、化合物11の付わりに、化合物112をテト ラヒドロフラン、ジエチルエーテル等のエーテル系落 媒、ベンゼン、トルエン等の反化水素系溶媒中でプチル リチウム、臭化エチルマグネシウム等の有機金線化合物 を作用させて調整できるアセチリドIII′(Mot=リ 手ウム、ハロゲン化マグネシウム)やさらにこれを塩化トリアルキルスズ化合物やトリアルコシホウ素化合物と使用させて調整できる Π 「 $Me t = SaR_a$ 、B(OR) $_a$ } (Rt低級アルキル基、または水素原子を表す)を用いる事もできる。化合物 Π はその構造に応じ、次のようにして製造できる(Scheme 2-4)。

【0181】 【化42】

Scheme 2

【0182】 (式中、R¹⁶比水栗原子、フェニル基で建 使されていてもよいC₁ ~ C₈ アルキル基、アミノ基、 ヒドロキシル基、ハロゲン原子で置換されていてもよい フェニル基を要し、R¹⁶は、水栗原子、フェニル基で震 焼されていてもよいC₁ ~ C₈のアルカノイル基、ハロゲン原子で環換されていてもよいベンダイル基を要し、 R' はヒドロキシル基または低級アルコキン基を要し、 R' はCNまたはCONH₂ を要す) a) 化合物11が2環性輸合環 (ゲテリジン環を除く、即

ち、A、Bが一緒になって環を形成するが 【0183】

[0183]

【0184】以外を表す場合)を表す場合 化合物/旧は対応する前駆体IPをペンゼン、トルエン等の 及化水素系溶媒、ジクロロメタン、クロロホルム等のハ ロゲン系炎化水素中、ジメテルホルムアミド等の適当な 溶媒中、または無溶媒で1~10当量のジエテルアニリ ン、ビリジン等の塩素存在下または非存在下、オキシ塩 化リン、五塩化リン、塩化チナニル、オキシ泉化リン等、またはそれらの適当な混合物と+20℃~+20で
での温度でちる関へ 48時間反応させる方法や設金することができる「II (R^{1c}=C1、Br)の場合はIV (R^{1c}=CH)を用いる)。任合物IIの内、LGがパラトルエンスルホニル基、メタンスルホニル基、メランスルホニルス・フェア・アミド等の過去を終せ、レルエン、ジメテルホルムるIVをデトラヒドロブラン、トルエン、ジメテルホルムでドラトルエンスルホニル、塩化メタンスルホニル、無化パラトルエンスルホニル、塩化メタンスルホニル、無木トリフルオロメタンスルホンル像等をそれぞれ作用させることによって製造できる。

 $\{0.18.5\}$ さらに、化合物1Vのうち R^{10} が、未原子、フェニル基で配換されていてもないて、 $1. \sim c_0$ アルキル 基、ハロケルディで観奏されていてもないフェニル基を 妻す化合物の場合、アミノ酸V $\{R'=OH\}$ もしくは そのエステル体V $\{R'=K(B)^{10}-L(B)^{10}-L(B)^{10}-L(B)^{10}\}$ と対応するアミド $\{R^{10}-L(B)^{10}-L(B)^{10}-L(B)^{10}-L(B)^{10}\}$ を適当な容線中、もしくは無熔線または反応 剤を溶媒兼用として用い、 $+2.0 \, ^{10} \sim +2.5 \, ^{10} \, ^{10} \, ^{10}$ での温度 $-7.5 \, ^{10} \, ^{10$

(R=低級アルキル) } またはオルトエステル {R1b-C (OR')。(R'=低級アルキル基) } と適当な溶 媒中、もしくは反応剤を溶媒兼用として用い、+20℃ ~+250℃の温度で5分間~48時間反応させる方法 で製造できる。さらに対応するアミノニトリルVI(R" = CN) を水酸化ナトリウム水溶液等のアルカリ存在 下 0.1~5当量の過酸化水素を+20℃~+250 ℃の温度で5分間~48時間反応させる方法で化合物IV が製造できる。またアミノニトリルVI (R1c=H) とギ 酸と例えば無水酢酸の様な適当な酸無水物より調整でき る混合酸無水物を+50℃~+200℃の温度で5分間 ~48時間反応させる方法でもIV (R^{1b}=H) を製造で きる。化合物IVのうちR1bがアミノ基を表す化合物の場 合はエステル体 (V; R'=低級アルコキシ基)をメタ ノール、エタノール等適当な溶媒中、0.5~100当 量のシアナミド (H, NCN) を+20℃~+150℃ の温度で5分間~48時間反応させる方法で製造でき る。また、化合物IVのうちR1bがアミノ基、またはヒド ロキシル基を表す化合物の場合はscheme 2'に示 す様に、V (R' =OH) をベンゼン、ジクロロメタ ン、水等の適当な溶媒中、水酸化ナトリウム水溶液、ト リエチルアミン等の塩基存在下ホスゲン、トリホスゲン を反応させ、V'とした後、尿素およびグアニジン塩を それぞれ作用させることでも製造できる。

【0186】 b) 化合物IIがピリミジン単線を表す場合 {即ち、化合物IIでA、Bが一($(\text{H}_2)_n$, NR^3 R^4 (式中、n'、 R^3 および R^4 は既に定義した通り)、 またはニトロ基で表される場合}

化合物III 化合物VII を水、メタノール、トルエン、ジ エチルエーテル等の適当な溶媒中、0. 1~10当量の H (CH₂) "NR³ R⁴ (気中、n′、R³およびR ⁴ は既に定義した通り)と0℃~+150℃の温度で5 分間~4 8時間反応させる方法や、ここで得られる化合 がIII (A= (CH₂) "NR³ R⁴) を水、メタノ ール、トルエン、ジメチルボルムアミド等の適当な溶媒 中、亜鉛、鉄等の還元利を用い、1~20℃~+200℃ の温度で5分mの48時形成たきせる方法でも数値でき る。必要に応じ、化合物VIIIは化合物IXを濃硫酸と発煙 耐酸を用いるニトロ化で製造する事ができる(Schemes)。

[0187] [化44]

【0188】(式中、R¹ⁿ及び異は前記と同義を表す) c) 化合物IIがプテリジン環、即ちA、Bが一緒になって業を形成し、

【0189】 【化45】

【0190】を表す場合 (Scheme 4)

上記b) で製造できる化合物II (A=B=NH。) をメ タノール、エタノール等のアルコール系溶媒、ベンゼ ン、トルエン等の炭化水素系溶媒、ジメチルホルムアミ ド、ジメチルスルホキシド等の非プロトン性溶媒中、あ るいはそれらの混合溶媒中、プテリジン環の場合は0. 5~10当量のX11COCOX12 (式中、X11、X12は 既に定義した通り))を、+20℃~+200℃の温度 で5分間~48時間反応させる方法で製造できる。同様 にプリン環の場合は上記a)の方法の他、化合物II(A =B=NH₂) とX¹³CO₂ HまたはX¹³C (OR') X¹³、R'は既に定義した通り)を上記溶媒中、ま たは反応剤を溶媒兼用として用い、+20℃~+200 ℃の温度で5分間~48時間反応させる方法によっても 製造できる。さらにプリン環のアルキル化が必要な場合 は、例えばジメチルホルムアミド、テトラヒドロフラン 等の適当な溶媒中、水素化ナトリウム、ナトリウムメト キシド、炭酸カリウム等の塩基存在下、X14-hal (X14は既に定義した通り、halはヨウ素、臭素等の ハロゲン原子を表す)を0℃~+200℃の温度で5分 間~48時間反応作用させる方法で製造できる。

【0191】 【化46】

【0192】 (式中、R^{1a}、X¹¹、X¹²、X²⁴(X¹³)(14 R' は前記と同義を表し、halはハロゲン原子を表 す)

「化合物III の製造法】

a) 対応するアルコールを酸化して製造できるアルデヒドにジクロロメタン、四塩化以素等適当な溶験中、例えばそれぞれ0. 1~10当量の四臭化炭素およびトリフェニルホスフィンを~20~50℃で5分間~48時間反応させる方法や、テトラヒドロフラン、ジエチルエーデル等の溶験あるいはそれらの混合溶媒中、例えば(EtO)。P(O) CCl₃とn-BuLiを~150℃+560℃で5分間~48時間反応させて調製でき

り化合物III を製造できる。必要に応じ化合物に存在す

る官能基を保護してこの変換を行うこともできる (sc

heme 5). [0193] [4:47]

Scheme

【0194】(式中、X18、X19は同時に臭素原子を表

すか、または、一方が塩素原子を表し、一方が水素原子

$$R^2$$
 OH \longrightarrow R^2 CHO \longrightarrow R^2 X^{18} \longrightarrow H

を表し、R? は前記と同義を表す)
b) R⁵ が特に、アミノ基、アェリチン
基、アルコキシ基、アルカノイルオキシ基(いずれも置 換されていてもよい)を表す場合。
上記a)の方法の他にもscheme6に示す方法でも 製造できる。すたわち対広するケトンにエチニルマグネ シウムハライド、リチウムトリメチルジリルアセチリド、あるいはこれらをCeClaと反応させて調製できるエチニルレリウム化合物でのエチニル化剤をテトラヒドロフラン、ジエチルエーテル、トルエン、ヘキサン等の溶媒あるいはそれらの混合溶媒中、-100で一キの100でも50m~48時間反応させることはり製造できるアルコール体111aを酸無水物、酸クロリド等のアンル化剤をジクロロメタン、トルエン、アセトニトリル等の適当な溶媒中、ビリジン、トルエン、アセトニトリル等の適当な溶媒中、ビリジン、トリエチルアミン等の基本

存在下もしくはこれら塩基を溶媒兼用で用い0℃~+1

5.0°Cで5分間~4.8時間反応させることによりIIIb

(X20=アルカノイルオキシ基を表す、R18は水素原子

またはトリアルキルシリル基を表す)を製造できる。またケトンにエチニル化剤を反応させ、系中に発生するアルコキシドを酸無水物、酸クロリド等のアシル化剤で直接補足する方法によってもIIIb(X²²⁰、R¹⁸は既に定義した通り)を製造できる。IIIbのうちR¹⁸がトリメチルシリル等のシリル等のシリルを表すたらかに塩酸等のサテトラブチルアンモニウムフロリド、フッ化セシウム等の脱シリル化剤を水、メタノール、テトラヒドロフラン等適当な溶媒中、0℃~+150℃で5分間~48時間作用させることで、IIIb(R¹⁸・水素原尺)に変換できる。

【0 1 9 5】化合物IIIb(X²⁰=アルカノイルオキシ基を表し、R¹⁰は水素原子を表す)をテトラヒドロフラン、ジェチルエーデル、ジクロロメタン、トルエン、アセトニトリル等の溶媒中、熱媒量のCu Cl、Cu L あるいは銅粉等の網化合物の存在下、対応するアミン、アニリン、もしくはフェノール(いずれも置換されていてよい)のセペ+150でで5分間~48時間反応させることによりIII、参別部でまる。

【0196】 【化48】

【0197】 (式中、R¹⁸は水素原子、トリアル²⁴ルシ リル等を表し、R³ 、R⁴ 、R⁵ 、X²⁰は前記と同義を 表す)

c) R² が置換フェニル基を表す場合 (scheme 7)

上記a)の方法の他、対応するハロベンゼンを例えばn ーBuLi, Mg等を作用させ調製できるアリールリチ ウムやアリールマグネシウムハライドの有機金属化合物 に例えばN, N' -ジメチルホルムアミド等を反応させ る方法でアルデヒドXが製造でき、Xを上記a)の方法 に準じることによりIII を製造できる。また例えば、ハロベンゼンとトリメチルシリルアセチレン、3ーメチル・1ーブチンー3ーオールもしくはそれらの金属アセチリドをPd、Cu等の金属機能存在アカップリング反応を行い、脱シリル化の条件、もしくはブタノール等適当な溶媒ル、未能化カリウム等の塩基を50℃~+200℃で5分間~48時間反応させ、未端アセチレンを精製させる方法でもIII を製造できる。

Scheme 7

[0198]

[():49]

(式中、R¹⁸はトリメチルシリル基、<mark>→</mark> OHを表し、hal、Q、Vは前記 Me と同義を表す)

 $[0 \ 1 \ 9 \] \ 2)$ 上記一般式 (1) で表される化合物の うち、 \mathbb{R}^1 がフッ素原子、 \mathbb{R}^1 次フッ素原子、 \mathbb{R}^1 に \mathbb{R}^1

a) R^1 がヒドロキシル基;無置換のフェニル基; C_1 $\sim C_5$ のアルキル基で置換されたアミノ基;または無置換の C_1 $\sim C_5$ アルコキシ基を表す場合

 させる方法で製造できる。この際、例えば $n - B u_4 N^*$ B r^- 等の相関移動性策を共存させてもよい。また、ここでアンモニア水を反応させれば、化合物 $I (R^{\Delta n} = NH_a)$ も製造できる。

【0201】b) R^1 が $C_1 \sim C_5$ のアルカノイル基で 留挽されたアミノ基の場合

【0202】c) R¹ がフッ素原子、ヨウ素原子を表す

上記製造法1) で製造できる化合物 $I(R^{1a}=C1$ またはBr) をジメチルホルムアミド、ジメチルスルホキシ

ド等の権任が歳中、あるいはトルエン等の芳香族炭化水 素系溶媒体、対応するフッ化カリ、フッ化ナトリウム等 のフッシ化別、またはヨウ化カリ等のヨウ薬化剤を0℃ ~+150℃の温度で5分間~48時間反応させる方法 で製造できる。また化合物1(R¹⁰=NH₂)を水、エ クノール等の極性溶媒中、または無溶媒で硬硬酸ナトリ ウムカリウム等のヨウ素化剤を作用させることにより 化合物1(R¹¹=1)を、ホウフッ化木素酸(HB F₄)水溶液を作用させるずにより、化合物1(R¹⁰= F)が製造できる。後者の場合、亜硝酸ナトリウム/H BF」水溶液を作用させる。では10円のイント BF」水溶液を作用させるずにより、化合物1(R¹⁰= F)が製造できる。後者の場合、亜硝酸ナトリウム/H BF」水溶液を用いてもいり、

【0203】d) R^1 がカルボキシル基もしくは $C_1 \sim C_5$ のアルコキシカルボニル基で置換されていてもよい $C_1 \sim C_5$ アルコキシ基を表す場合

上記製造上)で製造できる化合物 I (R^{1m} -C 1 または B r) をジメチルホルムアミド、ジメチルスルホキシド等の極性存態中、あるいはトルエン等の男子族炭化水素系溶媒中、対応する日O $-(CH_2)_w$ -COORw $-(CH_2)_w$ -COORw $-(CH_2)_w$ -COORw $-(CH_2)_w$ -COORw $-(CH_2)_w$ -COORw $-(CH_2)_w$ -COORw $-(CH_2)_w$ -COORw $-(CH_2)_w$ -(C

【0204】3) 上記一般式 (I) で表される化合物の うち分子内にエステル、アミド、スルホンアミド等を有 する化合物の製造法

上記製造法1) で示したようにJII (もしくはJII /) がエステル、アミド、スルホンアミド等を有したもので カップリング反応を行う方法のほか、例えば対応するア ルコール、カルボン酸、アミンを有するJII を製造法 1) の方法に従いカップリングの後、エステル化、アミ ド化等を行うことにより目的物を製造することもでき る。

【0205】本発明のエチェルビリミシン海導体は、チ ロシンキナーゼ阻害活性及び監細臨階預測動制作用を有 し、制差剂、免疫抑制剂。血小板凝集阻害剂、動脈硬化 治療薬、抗炎症剂または盗幅処階預測期薬として使用す ることが可能である。 出記一般式(1) で売えむる本発 明化合物を上記の目的で用いるには、通常、全身的また は局所的に、経口または非経口の形で投与される。投与 量は、年令、佐集、症状、新校果、投与方法、処理時 間等により異なる。通常、成人一人あたり、一回につ き、1 m 虚から1.0 g の範囲で、一日一回から数回基 口投与されるか、または成人一人あちり、回じこつき1 mgから5gの範囲で、一日一回から数同評経口投与さ れるか、または、一日1時間から24時間の範囲で静脈 内に持続投与される。もちろ人前記したように、投与量 は種々の条件により変動するので、上記投与量より少な い量で十分な場合もあるし、また範囲を越えて投与の必 要な場合もある。

【0206】本発明化合物を投与する際には、経口投与 のための固体組成物、液体組成物およびその他の組成 物、非経口投与のための注射剤、外用剤、坐剤等として 用いられる。経口投与のための固体組成物には、錠剤、 丸剤、カプセル剤、散剤、顆粒剂等が含まれる。カプセ ル剤にはハードカプセルおよびソフトカプセルが含まれ る。このような固体組成物においては、ひとつまたはそ れ以上の活性物質が、少なくともひとつの不活性な希釈 剤、例えばラクトース、マンニトール、グルコース、ヒ ドロキシプロピルセルロース、微結晶セルロース、デン プン、ポリピニルピロリドン、メタケイ酸アルミン酸マ グネシウムと混合される。組成物は、常法に従って、不 活性な希釈剤以外の添加物、例えばステアリン酸マグネ シウムのような潤滑剤、繊維素グルコール酸カルシウム のような崩壊剤、ラクトースのような安定化剤、グルタ ミン酸またはアスパラギン酸のような溶解補助剤を含有 していてもよい。錠剤または丸剤は必要により白糖、ゼ ラチン、ヒドロキシプロピルセルロース、ヒドロキシブ ロピルメチルセルロースフタレートなどの胃溶性あるい は腸溶性物質のフィルムで被膜してもよいし、また2以 上の層で被膜してもよい。さらにゼラチンのような吸収 されうる物質のカプセルも包含される。

【0207】経口投与のための液体組成物は、薬剤的に 許容される溶液剂、乳湯剂、懸腐剂、シロップ剤、エリ キシル剤等を含み、一般的に用いられる不活性な希釈剤 (精製林、エタノール)を含んでいてもよい、この組成 物は不活性な希釈剤以外に湿漉剤、懸濁剤のような補助 剤、甘味剤、風味剤、芳香剤、防腐剤を含有していても よい。経口投与のためのその他の組成物としては、ひと つまたはされ以上の活性物質を含み、それ自体公知の方 法により処力をわれるズリー・別が含まれる。この組成物 は不活性な希釈剤以外に亜硫酸水素ナトリウムのような 安定剤と等型性を与えるような緩衝剤、例えば塩化ナト リウム、クェン酸ナトリウムあいけクエン能で含有し てもよい。スプレー剤の製造力法は、例えば米国特許第 286861号1号および同第30953559明細書に 誰とく配慮されている。

【0208】本発明による非粒口炎与のための注射剤、 しては、無菌の水性または非水性の溶液剤、懸褐剤としては、 無剤剤を包含する。水性の溶液剤、懸褐剤としては、例え は、注射用蒸削水および生理食塩水が含まれる。非水溶 性の溶液剤、懸濁剤としては、例えば、プロビレングリ コール、ポリエチレングリコール、オリーブ油、エター ル、ポリンルベート80等がある。このような組成物 は、さらに防腐剤、凝潤剤、乳化剤、多定化剤 (例えば、ラクトース)、溶解補助剤(例えば、グルタ ミン酸、アスパラギン酸)のような補助剤を含んでもよ い。これらは例えばパクテリア保留フィルターを通す護 温、殺菌剤の配合また住原料によって無菌化される。これらはまた薬園の固体組成物を製造し、例えば森前な 最品の使用前に無菌化水または無菌の住射用溶媒に溶解し で使用することもできる。非経口投与のためのその他の 組成物としては、ひとつまたはそれ以上の活性物質を含 み、常法により処方される外用液剤、軟コウ、錠布原、 生活、シスポースを

[0209]

【実施例】以下、本発明につき合成例および実施例を挙 げて具体的に説明するが、その要旨を越えないかぎり以 下に限定されるものではない。なお合成例および実施例 ル、反応は特に記載がないかぎり窒素雰囲気下で行なっ た。実施例、合成例中、落盤、影楽、置機基等は次のよ

【0210】 【化50】

[0211] PhC (S) NH2 (5.0g, 36.4 mmo1) とアントラニル酸 (5.0g、36.4mm o 1)を120℃で2時間、160℃で30分間加熱撹 拌した。シクロヘキサノン (15m1) を反応混合物に 加え、130℃で5分間撹拌した。室温まで冷却後、生 成物4aを濾取した(4.0g、49%)。4aに五塩 化リン (5.3g、25.2mmol) およびオキシ塩 化リン (4.8ml、51.5mmol) を加え、13 0℃で2時間撹拌した。減圧下、過剰のオキシ塩化リン および低沸点物を除去し、残渣に氷水を少しずつ加え た。生成物をエタノール (100m1×2) で抽出し、 炭酸水素ナトリウム飽和水溶液 (50m1×2) で洗浄 し、エーテル抽出液を減圧下濃縮した。残渣をヘキサン (50ml) に懸濁させ、加熱しながら撹拌した (以 下、この操作を「ヘキサンで懸洗する」と記す)。 懸濁 液を室温まで冷却後、沈殿物を濾取し、目的物である4 -クロロ-2-フェニルキナゾリン (2 a) (3.18 g、72%) を得た。

2 a: H NMR (250MHz, CDCl₃) δ p p m: 7.53 (m, 3H), 7.66 (dt, J=0. 7.7.6Hz, 1H), 7.94 (dt, J=1. 2, 7. 6 H z, 1 H), 8. 1 O (d, J=1. 2, 8. 2 H z, 1 H), 8. 5 8 (m, 2 H). 合成例2 アミノアセチレン3 a

【0212】

【0213】G. F. Hennion5の方法 (J. Am. Chem. Soc., 1960, 82, 4908) に従い製造した。

 $3\,a$: ^{1}H NMR $(3\,0\,0\,MH\,z,\,CDC\,l_{\,3}\,)\,\delta\,p$ pm: $1.\,0\,8$ (t, $J=7.\,2\,H\,z,\,6\,H)$, $1.\,4$ 0 (s, $6\,H$), $2.\,2\,1$ (s, $1\,H$), $2.\,6\,6$ (q, $J=7.\,2\,H\,z,\,4\,H$).

合成例1と同様な方法でクロロキナゾリン2b、2cを 得た。

【0214】 【表130】

合成例	クロロキナゾリン	出発物質	収率	IH NMR(CDC13) & ppm
3	MeO (1) 2b	MeO CO ₂ H MeO NH ₂ , S 1 PhCNH ₂	1. 3%	(300MHz) 4, 06(s, 3H), 4, 08(s, 3H), 7, 35(s, 1H) 7, 38(s, 3H), 7, 49(m, 3H) 8, 51(m, 2H)
4	CI 2c	CO2H NH2. S CH3CNH2	27%	(250MHz) 2.87(s, 3H), 7.67(m, 1H), 7.90-8.05 (m, 2H), 8.23(d, J=8.1 Hz, 1H)

【0215】実施例1 エチニルキナゾリン1a

【化521

[0216]

$$3 \text{ a} \longrightarrow \begin{pmatrix} \text{BrMg} & \text{NE t}_2 \\ \text{Me Me} \end{pmatrix} \xrightarrow{2 \text{ a}} \begin{array}{c} \text{Ph} \\ \text{N} & \text{N} \\ \text{Ne Me} \\ \text{Me Me} \end{pmatrix}$$

【0217】合成例2で製造したアミノアセチレン3a (500mg、3, 59mmol) のTHF溶液(10 m1) に室温でEtMgBr (3.55m1、3.55 mmol. 1. 0M THF溶液) を加え40分間浸液 し、エチニルグリニヤを調製した。一方、Р d (РР h a) oClo (21mg, 0.03mmol) EPPh

。(31mg、1.2mmol)のTHF溶液(5m 1) を室温で40分間撹拌し、この溶液に2a (480 mg、2.00mmol) と上記エチニルグリニヤを室 温で加え、3時間撹拌した。反応液を冷却後、水を加え 減圧下濃縮した。残渣に炭酸水素ナトリウム飽和水溶液 (20m1) とEtOAc (30m1) を加え、有機層 を分離した。有機層をNa。SO₄上で乾燥後、減圧下 溶媒を留去し得られる残渣をシリカゲルカラムクロマト にて精製し、カップリング生成物1a(700mg、定 量的) を得た。

1a:1H NMR (300MHz, CDCl3) δpp m: 1. 19 (t, J=7. 2Hz, 6H), 1. 64 (s, 6H), 2.88 (q, J=7.2Hz, 4 H), 7, 40-7, 60 (m, 3H), 7, 61 (m, 1H), 7.88 (m, 1H), 8.06 (m, 1H), 8. 27 (m, 1H), 8. 60 (m, 2 H) .

実施例 2 [0218] [(k53]

【0219】実施例1で得られた1a(140mg、 0. 4mmo1) をEt₂O(2m1) に溶解し、氷浴 上撹拌しながら4N HC1/EtOAc溶液(0.1 m1、0、4mmo1) をゆっくり滴下した。室温まで 昇温後、生成物を濾取、乾燥し、1 aの塩酸塩(1 a・ HC1) を白色粉末結晶(70mg、46%)として得

1a · HC1:1H NMR (300MHz, CDC 12) δppm: 1.66 (m, 6H), 2.18 (m, 6H), 3, 43 (br s, 2H), 3, 66 (br s, 2H), 7, 50-7, 60 (m, 3 H), 7, 69 (m, 1H), 7, 95 (m, 1H), 8. 10-8. 25 (m, 2H), 8. 60 (m, 2 H), 12.6 (br s, 1H); IR (KBr) v cm-1: 3449, 2986, 241

5, 2236, 1613, 1562, 1534, 148 7, 1022, 768, 706: mp 165-168℃

【0220】実施例3~6

合成例1~4で製造したクロロキナゾリン2a~2cと アミノアセチレン3a、3b (3bの製造法は合成例8 に記す)を用い実施例1、2と同様な操作を行い目的化 合物を製造した。構造、収率および物性値を次に示す。 [0221]

【表131】

実施例	化合物	出発物質	1 H-NMR	1 R	性状及び融点	収率
3	Med OMe • HCI	2b, 3a ~ ~	(CDC1 ₃ , 300MHz) δ ppm: 1.66 (t, J=7, 2Hz, 6H), 2.14 (s, 6H), 3.37 (m, 2H), 4.10 (s, 3H), 4.10 (s, 3H), 4.10 (s, 3H), 7.4 (s, 1H), 7	(KBr) \(\nu\) cm ⁻¹ 3430, 2988, 2944, 1616, 1568, 1539, 1499, 1466, 1427, 1306, 1229, 1169, 1096, 1028, 1001, 841, 770, 702	白色粉末状 固体 np 185-191℃	62%
4	Me NCN NEt ₂	2c. 3a ~ ~	(CDC1 ₃ , 300MHz) δ ppm: 1,54(L,J=7,4Hz,6H), 2,15(s,6H), 2,90(s,3H), 3,39(m,2H),3,64(m,2H),5,39(m,2H),5,39(m,2H),8,18(d,J=8,1H,7,8,1H,4),7,8,1H,4),1H,1H,1H,1H,1H,1H,1H,1H,1H,1H,1H,1H,1H,	(KBr) PCH ⁻¹ 3426, 2988, 2403, 2238, 1611, 1547, 1484, 1389, 1329, 1240, 1159, 1015, 779.	黄色粉末結晶 mp 164-166℃ (dec)	4%

【0222】 【表132】

実施例	化	台	物	出発物質	1 H-NNR	IR	性状及び融点	収率
5	. 07	N HC1	NBL ₂	2a	(250MHz, CDC13) & ppm: 1, 61 (s, 6H), 1, 68 (t, J= 7, 4Hz, 3H), 1, 76 (t, J= 7, 3Hz, 3H), 2, 01 (s, 3H), 3, 40-3, 65 (m, 2H), 3, 70 4, 41, 42, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44		白色粉末園体 mp 176-179℃	3%
6	Me N N N N	Me (1	NBt ₂	2b. 3b*	(300MHz, CDC 1 ₃) & ppm: 1, 67 (t, J-7, 8Hz, 2H), 1, 73 (t, J-7, 7Hz, 3H), 1, 38 (s, 3H), 2, 90 (s, 3H), 3, 4, 9-3, 60 (m, 2H), 3, 63 (d, J-12, 5Hz, 1H), 3, 80-3, 95 (m, 2H), 3, 95 (d, J-2, 2, 5Hz, 1H), 7, 25-7, 42 (m, 3H), 7, 48 (m, 2H), 7, 56 (m, 1H), 7, 80-8, 0 5 (m, 3H), 12, 6 (br.s., 1H),		淡 黄色粉 末 結晶	48%

*合成例8

【0223】合成例5 4-クロロキナゾリン (2d) 1) 【0224】 【化54】

44 【0225】アントラニル酸(11.45g、83.5 mmol)およびホルムアミド(8.5ml)を135 でで2時間提伸し、冷却後、沈殿物を濾取した。アセト ンで懸洗後、濾取して目的物であるキナゾリン-4-オン (4 d) (4.06g、33%)を得た。 4 d: ¹H NMR (DMSO-d, 250MHz) δp

pm: 7. 50 (t, J=7. 5Hz, 1H), 7. 6 5 (d, J=8. 1Hz, 1H), 7. 80 (m, 1 H), 8. 09 (s, 1H), 8. 10 (d, J=8. 2Hz, 1H), 12. 25 (br s, 1H).

[0226] [化55]

24 【0227】上記キナソリンー4ーオン (44) (4. 15g、28. 4mmol) にPCl₅ (5. 9g、28. 4mmol) にPCl₅ (5. 9g、28. 4mmol) にPCl₅ (5. 9g、28. 4mmol) 、POCl₃ (30ml)を加え、2時間遷流した。練圧下、漁利のPOCl₃ および低齢点かを密接象、米溶上撹拌したがらCHCl₃ (50ml) および燃熱NaHCO₃ 水溶液(50ml)を加え、6、CHCl₃ 陽を乾燥(ng、CO₃)、濃縮し、ヘキサンで懸疹後、沈殿物を確取し、クロロキナソリン(2d) (4. 01g、86%)を得た。2c²th NMR (CDCl₃、300MHz) δppm:7. 73 (m, 1H), 7. 96 (m, 1H), 8. 07 (d, J=8. 4Hz、1H), 8. 27 (d, J=8. 4Hz、1H), 9. 05 (s, 1

H). 合成例6 【0228】 【化56】

2e 【0 2 2 9】 Johannsenらが報告している方法 (Chimica Scripta, 1986, 26, 3 4 7 - 3 5 1) に従い製造した5, 6 - D imet h ylfuro (2, 3 - d) pyrimidin-4 (3 H) - one (1.08g, 6.62mno1) に POC 1₃ (4 m1) を加え運流させた。 滅圧下、過剰 DPOC 1₃ と低沸点物を倒去し、残渣をCHC 1₃ (15 m1) に溶解した。米路上提伸したがら、液相 がアルカリ性になるまで 28 %アンモニア水を加えた。 CHC 1₃ (20 m1×2) で抽出し、乾燥(Na₂ S O₄)、濃縮し、目的物である2 c(9 6 0 mg、7 9 %)を次数色固体として得た。 2 c: ¹H NMR (CDC 1₃, 3 0 0 MH z) δ pp m: 2. 34 (s, 3H), 2. 45 (s, 3H), 8. 63 (s, 1H).

合成例7 アセテート5 【0230】 【化57】

Me OA o

 $[0\,2\,3\,2]\,5;^{2}H$ NMR $(CDC\,1_{3},\,2\,5\,0MH$ z) $\delta\,p\,p\,m:\,1.\,\,6\,4$ $(s,\,3\,H),\,2.\,\,3\,8$ $(s,\,3H),\,2.\,\,6\,0$ $(s,\,1H),\,3.\,\,19$ $(d,\,J=1\,3.\,\,5\,Hz,\,1\,H),\,3.\,\,2\,5$ $(d,\,J=1\,3.\,\,5\,Hz,\,1\,H),\,7.\,\,2\,7\,-7.\,\,3\,0$ $(m,\,5\,H)$. 合成例8 アミノアセチレン3 b $[0\,2\,3\,3]$

【0233】 【化58】

Me NE t2

【0234】合成例7で製造したアセテート5 (1.3 9g、6.86mmol)、CuCl (47mg、0.47mmol) およびEt₂NH (1.67ml、1 6.1mmol)のTH下溶液(15ml)を1時間透流した。 被圧下溶媒を閉去しエーテル(10ml)を加た3NHCl水溶液(10ml×2)で抽出した。 抽酸を米溶上操作し、水溶液のフェックサにたるまでK₂CO₃を少しずつ加え、生成物をCH₂Cl₂(10ml)がはいてまじのAc(20ml)で抽出した。 有機 (Na。SO₄)、濃縮し、得ちれる残液をシリカゲルカラ。

ムクロマトグラフィー (silica 15g, $^{\circ}$ へキサン: EtOAc=9:1) で精製し、目的物3b(0.35g、24%) を油状物質として得た。

[0 2 3 5] 3 b : ¹H NMR (CDC l_3 , 2 5 0 M Hz) δ ppm: 1. 13 (t, J=7.2Hz, 6 H), 1. 25 (s, 3 H), 2. 29 (s, 1 H), 2. 75 (d, J=13.0Hz, 1 H), 2. 78 (q, J=7.2Hz, 4 H), 3. 10 (d, J=13.0Hz, 1 H), 7. 15-7.35 (m, 5 H).

合成例 9 アミノアセチレン 3 c

【0236】 【化59】

【0237】出発物質としてペンジルアセトンを用い、 合成例7および8と同様な操作を行い3c(収率22 %)を油状物質として得た。

合成例10、11 アニリノアセチレン3d、3e 【0238】 【化60】

m. Chem. Soc., 1960, 82, 4908) でそれぞれ製造した。

 $3 \, d.^{1} H$ NMR $(2 \, 5 \, 0 \, MH \, z, \, CDC \, l_{\, 3}) \, \delta \, p \, p \, m : 1. \, 40 \, (s, \, 6H) \, , \, 2. \, 39 \, (s, \, 1H) \, , \, 2. \, 85 \, (s, \, 3H) \, , \, 7. \, 14 \, (m, \, 1H) \, , \, 7. \, 22 \, -7. \, 40 \, (m, \, 4H) \, .$

3e: H NMR (300MHz, CDCl₃) δppm:1.61 (s, 6H), 2.35 (s, 1H), 6.79 (t, J=7.4Hz, 1H), 6.94 (d, J=7.7Hz, 2H), 7.19 (m, 2H).

合成例12 アミノアセチレン3f 【0240】

【化61】

【0241】1) Diethylamino- (3-p yridyl) -acetonitrile Et₂ NH (7.2g, 98.6mmol) に濃塩酸を

Et₂ NH (1.2g、98.0mmol) に機場版と 少しずつ加速中和し、3-pyridinecarbo xaldehyde (7.1ml、75.0mmol) を加えた。KCN (4.88g) の水溶液 (15ml) を加え、3時間運流させた後、水 (30ml)を加えエ -テルで抽出した(50ml×1、20ml×1)。 有 機屬を水 (30ml×2)、総和食塩水 (30ml)で 洗浄、乾燥(Na₂ SO₄)、濃縮し口iethyla mino-(3-pyridyl) -acetonit rile (12.55g、88%)を得た。

2) Diethvlamino- (3-pvridv 1) -acetonitrile (888mg, 4.6 9mmol) OTHF (15ml) -HMPA (5m 溶液を-68℃に冷却し、そこへ1.0MのLit hium bis (trimethylsilyl) a mide (7.0ml、7.0mmol) をゆっくり加 えた。この温度で45分間撹拌後、ベンジルブロミド (0.67m1、5.63mmol)を滴下し、反応溶 液を徐々に室温まで昇温した。水を加え反応を停止させ た後反応混合物を濃縮し、エーテル (50m1) で抽出 した。抽出液を水(40m1×2)で洗浄、乾燥(Na 。SO₄)、濃縮した。残渣(1.90g)を氷浴上撹 拌しながら0.5MエチニルマグネシウムプロミドTH F溶液 (36, 5ml、18, 3mmol) を加え、富 温で2.5時間撹拌した。反応液を氷冷し、水を加えて 反応を停止させた後、濃縮しエーテル (50m1×2) で抽出した。エーテル層を希塩酸で抽出し、抽出液に2 N木酸化ナトリウム水溶液を液相がアルカリ性を呈する まで加え、ジクロロメタン (20m1×2) で抽出し た。有機層を乾燥、濃縮し得られる残渣をシリカゲルカ ラムクロマトグラフィー (ヘキサン: EtOAc=4: 1) で精製し、目的物3f(840mg、65%)を油

 $\begin{bmatrix} 0 & 2 & 4 & 2 & 1 & 3 & f & .^{1}H & NMR & (3 & 0 & 0 & MH & 2. & CDC \\ 1_3 &) & \delta & p & pm & 1. & 13 & (t, & J = 7. & 2Hz, & 3 \\ H) & , & 2. & 5 & 4 & (2 & d_q, & J = 14. & 0, & 7. & 1, & 2 \\ H) & , & 2. & 63 & (s, & 1H) & , & 2. & 83 & (2 & d_q, & J = 14. & 0, & 7. & 1Hz, & 2H) & , & 2. & 93 & (d, & J = 12. & 2Hz, & 1H) & , & 3. & 46 & (d, & J = 12. & 2Hz, & 1H) & , & 6. & 67 & 6. & 76 & (m, & 2H) & , & 6. & 96 & 6-7. & 12 & (m, & 4H) & , & 7. & 63 & (dt, & J = 8. & 6. & 9. & 2. & 0 & Hz, & 1H) & , & 8. & 40 & (dd, & J = 1. & 9. & 9. & 9. \\ \end{bmatrix}$

状物質として得た。

7, 4. 7Hz, 1H), 8. 69 (m, 1H). 合成例13 アミノアセチレン3g 【0243】 【化62】

[0244] 1) Methyl 3-ethylami nopropionate

EtNH₂ (33g, 720mmol) のMeOH溶液 (150ml) に4~6℃でアクリル酸メチル (54ml, 600mmol) を20分以上かけて満下した。24時間後、常圧でMeOHを密去後さらに緘圧で蒸留し、Methyl3—ethylaminopropionate (32.94g、42%) を無色透明液体として得た。bp70℃/20mmHg; HNMR (300MHz, CDCl₃) δppm: 1.11 (t, J=7.1 Hz, 3H), 2.52 (t, J=6.6 Hz, 2 H), 2.66 (q, J=7.1 Hz, 2H), 2.8 9 (t, J=6.6 Hz, 2 H), 3.69 (s, 3

【0245】2) 出発物質としてMethyl 3-e thylaminopropionateおよびアセテート5(合成例7)を用い、合成例8と同様な操作を行いる皮を装責色油状物質として得た(収率41%)。

7) と、E thy 1 4 ー piperid ine car boxylate3xU1- (E thoxy car bonylme thy 1) piperazine を用い合成 何8 と同様な操作を行いる! および3 jをそれぞれ製造した (精製法を化合物番号後のカッコ内に示す)。 3 i: (ヘキサンで懸注); 収率5 9%; 減資金結晶; 1 H NMR (CDC 1 g, 300 MH z) 3 ppm: 1.22 (s, 3H), 1.26 (t, J=7.1H z, 3H), 1.78 (m, 2H), 1.97 (m, 2H), 2.36 (s, 1H), 2.84 (d, J=13.3Hz, 1H), 3.05 (d, J=13.3Hz, 1H), 3.05 (d, J=13.3Hz, 1H), 3.00 (m, 1H), 3.24 (m, 1H), 4.14 (q, J=7.1Hz, 2H), 7.15-7.36

【0249】出発物質としてアセテート5(合成例1

 $3\,g\,:^4H$ NMR $(3\,0\,0\,MH\,z,\,CDC\,l_3$) $\delta\,p\,p\,m\,:\,1,\,1\,2$ $(t,\,J=7,\,2\,H\,z,\,3\,H)$, $1,\,2\,5$ $(s,\,3\,H),\,2,\,3\,1$ $(s,\,1\,H),\,2,\,5\,2-2$. $6\,2$ $(m,\,2\,H),\,2,\,7\,0-2$. $9\,0$ $(m,\,3\,H)$, $3,\,2\,0-3,\,1\,2$ $(m,\,3\,H),\,3,\,6\,7$ $(s,\,3\,H)$, $7,\,1\,8\,-7,\,3\,5$ $(m,\,5\,H)$. $6\chi M 14$ $\gamma\,z\,/\gamma\,t\,z\,+\nu\,\lambda\,h$

[0246] [化63]

【0247】出発物質としてN-Methyletha nolamineおよびアセテート5 (合成例7)を用 い、合成例8と同様な操作を行い3hを淡黄色油状物質 として得た (収率77%)。 3h: H NMR (300MHz, CDCla) δpp

3 n: H NMK (300MH2, CDC1₃) opp m: 1. 26 (s, 3H), 2. 36 (s, 1H), 2. 40 (s, 3H), 2. 74-2. 83 (m, 3H), 3. 09 (d, J=13. 2Hz, 1H), 3. 55-3. 68 (m, 2H), 7. 20-7. 40 (m, 5H).

合成例15、16 アミノアセチレン3i、3j 【0248】 【化64】

(m, 5H)

(0.250) 3 j: (EtOH-H₂ Oで懸決); 収率 50%; 1 H NMR (CDCl₃, 300MH z) 3 6 ppm: 1.21(s, 3H), 1.28(t, J=7.1Hz, 3H), 2.36(s, 1H), 2.61-2.73(m, 4H), 2.80(d, J=13.2Hz, 1H), 2.80-2.90(m, 4H), 3.07(t, J=13.2Hz, 1H), 3.22(s, 2H), 4.27(q, J=7.1Hz, 2H), 7.20-7.40(m, 5H).

台成例17 アミノアセチレン3. 【0251】

【化65】

【0252】合成例7のフェニルアセトンの代わりにフェニルアセトアルデヒドを用い同様な操作で3ーace セのメワー4ーphenyl -1 - but yn eic変換 し、さらにこれとEthyl 4 - piperidin eーcarboxylatoを用い、合成例8と同様な 操作で3kを制造した。

合成例18 アニリノアセチレン3m

[0253]

3 m

【0254】W. S. Johnsonらの方法(J. Am. Chem. Soc., 1949, 71, 1901)で製造したMethyl β-anilinopropionateと3-Chloro-3-methyl-1-butyneを用いて、合成例10 {R. S. Hanzelらの方法(J. Am. Chem. Soc., 1960, 82, 4908)}と同様な操作を行いるよを製造した。

 $3m: x_i \neq 2.8\%$, ^{1}H NMR (CDC1₃, 3.00 MHz) δ ppm: 1. 31 (s, 6H), 2. 26 (t, J=7, 2Hz, 2H), 2. 39 (s, 1 H), 3. 45 (t, J=7, 2Hz, 2H), 3. 62 (s, 3H), 7. 12 (m, 1H), 7. 25 - 7. 38 (m, 4H).

実施例7 化合物1の製造

【0255】 【化67】 NON CO2E

【0 2 5 6] 合成例1 5 で製造したアミノアセテレン3 1 (7.34g、24.6 mmol) および4ークロロー6,7ージエトキシキナソリン(合成例) (6.21g、24.6 mmol)のDMF溶液(120ml)に類性しながら塗薬を40分間吹き込んだ。Et₃N(8.2 ml,59.0 mmol)、Pd (PPh₃)4(710 mg、0.6 lmmol)およびCuI(370 mg、1.94 mmol)を加え、反応混合物を100℃で5時間加熱旋針した。反応液を被圧下機輸し、

7 O mg、1. 3 + mm 6 1 / 変加、及心のごかを1 mg 1 の 0 でで5 時間加熱接針した。反応液を液圧 7 元 線 (100 m 1) と E t O A c (100 m 1) に分配した。 有機層を乾燥(Na S O g) 、濃縮し、残液をシリカグルカラムクロマトグラフィー (ヘキサン→ヘキサン: E t O A c = 2:3)で精製し、目的物を赤褐色タール状物質として得た(10.58g、83%)。

[0257] 1H NMR (CDC13, 300MH z) $\delta p p m : 1$, 26 (t, I = 7, 1 Hz, 3 H), 1. 45 (s, 3H), 1. 50 (t, J=7. 1 Hz, 3 H), 1.56 (t, J=7.0 Hz, 3 H), 1.72-1.95 (m, 2H), 1.93-2. 10 (m, 2H), 2. 36 (tt, J=4. 0, 11. 5 Hz, 1 H), 2. 46 (dt, J=2. 5, 11. 4Hz, 1H), 2. 56 (dt, J=2. 5, 11. 4 Hz, 1 H), 3. 05 (d, I=13. 4 H z, 1H), 3, 27 (d, I=13, 4Hz, 1 H), 3. 22-3. 35 (m, 1H), 3. 45 (b r d, J=11.2Hz, 1H), 4.05 (q, J = 7.1 Hz, 2H), 4.15 (q, J=7.1H)z, 2H), 4.28 (q, J=7.0Hz, 2H), 7. 10-7. 30 (m. 5H), 7. 30-7. 45 (m, 2H), 9.08 (s, 1H). IR (film) v cm⁻¹: 2982, 2936, 28

IR (film) $v c m^{-1}$: 2982, 2936, 28 09, 2213, 1732, 1613, 1568, 10 45, 855, 756, 702.

実施例8 化合物1の製造

[0258]

【化68】

【0259】実施例7で製造したエステル(10.01

g、19.4 mm o 1) のE t O H 溶液 (100 m 1) に 2 N N a O H 水溶液 (25 m 1,50 m m o 1) を 加え室湿で1.5時間提申した。 遠正下遷解乾固し、 残 遠にE t O H (2 m 1)を加え、 握申しながら10% クエン酸水溶液 (180 m 1)を加えた。 室温で30分糧 申した後、 近寒物を逓取、 洗浄 (水-E t O H)、 乾燥し、 目的物を淡黄色粉末結晶として得た (9.04 g、96%)。 さらにトルエンおよびE t O H ー H₂ O で順 次懸姓し、 積製物を自色粉末結晶として得た

 $\begin{bmatrix} 0\,2\,6\,0 \end{bmatrix} \ 1: \ ^1H \ \ NMR \ \ (CDCI_3 \ , \ 3\,0 \ 0M \\ H\,z) \ 5\,p\,p\,m: \ 1. \ 4\,4 \ \ (t, \ J=7, \ 0H\,z, \ 3 \\ H) \ , \ 1. \ 4\,9 \ \ (s, \ 3H) \ , \ 1. \ 5\,6 \ \ (t, \ J=7, \ 0H\,z, \ 3H) \ , \ 1. \ 8\,4-2. \ 0.8 \ \ (m, \ 2H) \ , \ 2. \ 0\,7-2. \ 2\,9 \ \ (m, \ 2H) \ , \ 2. \ 5\,0-2. \ 7\,0 \ \ (m, \ 2H) \ , \ 2. \ 7\,0 \ \ (t, \ t, \ J=10. \ 7H \ z, \ 1H) \ , \ 2. \ 9\,7 \ \ (d, \ J=13. \ 1H\,z, \ 1H) \ , \ 3. \ 8\,9 \ \ (d, \ J=13. \ 1H\,z, \ 1H) \ , \ 3. \ 8\,9 \ \ (m, \ 2H) \ , \ 3. \ 3\,8 \ \ (m, \ 2H) \ , \ 3. \ 3\,8 \ \ (m, \ 2H) \ , \ 3. \ 3\,8 \ \ (m, \ 2H) \ , \ 3. \ 3\,8 \ \ (m, \ 2H) \ , \ 3. \ 3\,9 \ \ (m, \ 2H) \ , \ 3. \ \ (m, \ 2H) \ , \ 3. \ (m, \ 2H) \ , \ 3. \ \ (m, \ 2H) \ , \ 3. \ \ (m, \ 2H) \ , \ 3. \ \ (m, \ 2H) \ , \ 3. \ \ (m, \ 2H) \ , \ 3. \ \ (m, \ 2H) \ , \ 3. \ \ (m, \ 2H) \ , \ 3. \ \ (m, \ 2H) \ , \ 3. \ \ (m, \ 2H) \ , \ 3. \ \ (m, \ 2H) \ , \ 3. \ \ (m, \ 2H) \ , \ 3. \ \ (m,$

H), 4. 28 (q, J=7. 0Hz, 2H), 7. 0 9 (s, 1H), 7. 18-7. 44 (m, 6H), 9. 20 (s, 1H). 1 R (KBr) cm^{-1} : 3409, 2984, 293

7, 2213, 1717, 1612, 1499, 145 8, 1235, 1204, 1032, 936, 704, 662.

m. p. 212-215℃

P-SIMS m/z 488 (M+H) + 【0261】実施例9~90

上記合成例で製造したハロゲン化含蜜素化合物とアセチ レン化合物 (後達のものを含む) を用い発明化合物を製 造した。構造、方法、収率、物性値等を次に示すが、方 法の欄は用いた方法と精製法を示し、次の様に表すこと とする。

方法

(カップリング反応) 実施例1、7の方法をそれぞれ A、Bとし、反応溶媒やパラジウム触媒に変更があった 場合は使用したものをカッコ内に配した。

【0262】(塩酸塩化)実施例2の操作をCとし、反 応容媒に変更があった場合はカッコ内に記した。

(加水分解反応) 実施例8の操作をDとし、反応溶媒に 変更があった場合はカッコ内に記した。

精製法

シリカゲルカラムクロマトグラフィーによる精製で、奈 出被がヘキサンーEtOAc系であるものをP1a、将 出被がCHC1。一MeOH系であるものをP1bと記 した。ODSカラムクロマトグラフィーによる精製をP 2と記した。懸洗または再結品による精製をP3とし、 その際の使用溶媒をカッコ内に記した。いずれの場合も 最終精製物は減圧下乾燥した。

【0263】 【表133】

実施例 9	目的化合物	出発化合物	方法	収率, %	性状/融点/その他
Ne0 OMe	Ne Net 2	NCN C1 NBt 2	A Pib Pla	4 5	褐色油状
スペクトルラ 1H MMR(CDC) 5H), 3, 33(d, 5(n, 2H), 9, 1 実権例 1 0	з. 300MHz) бррн: 1. 20(t. J=13. 2Hz. 1H), 3. 95(e. 2	J=7. 1Hz, 3(D), 1. 48(s, 34), 2. 90-3. 07(b), 4. 06(s, 30), 7. 15-7. 32(m, 50), 7. 32	m. -7.4 方法	权率, %	住状/敵点/その他
MeO ONe	NET 2 HCI	Med OMe NEt 2	С	76	白色粉末結晶 即 186-188℃
スペクトルデ H NMR(DMSD- m, 2H), 3, 47(H), 4, 01(s, 3 . 50(br s, 1H)	de 250MHz) δ ppm:1,500 d, J=15,0Hz, 1H), 3,69(d	br t, J=6, 9Hz, 3H), 1, 79(s, 3H), 3, 35-5, J=15, 0Hz, 1H), 3, 75-4, 95(m, 2H), 3, 91 41 (s, 1H), 7, 45-7, 57(m, 2H), 9, 99(s, 1H)	3, 53 995, 843	ν cm ⁻¹ : 3α 01, 1466, 142 1772, 708.	128, 2980, 2937, 2456, 27, 1366, 1229, 1127,

[0264]

【表134】

実施例11	目的化合物	出発化合物	方法	収率, %	性状/酸点/その他
Med	Me Me	N C1	PdC12 (PPh ₃) ₂ } P1a	83	思褐色油铁
スペクトルラ H MMR(CDC1 7.29(s.1H)。 実施例 1.2		s. 6H), 3. 99(s, 3H), 4. 05(s, 3H), 7. 25(s,	用).	収率, %	性状/酸点/その他
Bto OBL	N	BHO ORL	A Pla P2	2.3	無色柱状結晶 mp 136℃
	2-9		IR (KBr	ν cm ⁻¹ : 2	926, 2832, 2228, 1613, 27, 1368, 1308, 1232.

[0265]

【表135】

実施例13	目的化合物	出発化	合物	方法	収率, %	性状/舳点/その他
	NBt z HC1	Me Me	NBt 2	A Pla C	14	白色粉末結晶 np 179-184℃
スペクトルデー ¹ H MMR(CDC1 ₃ , (s, 3H), 3, 25-1 実施例 1 4		t, 7, 4Hx, 6H), 2, 09(s, 0(m, 2H), 8, 82(s, 1H),	6日), 2.34(s, 3日), 2. 12.45(br s, 1日),	1626, 15		28. 2986, 2948. 2459, 06. 1381, 1256, 1159, . 627. 性状/融点/その他
天雅例14	日的化合物	25, 96 10	. T 10	力压	AX+PS >D	性状/単点/その個
Me Me	NEt 2	Q C1 . Me Me	ME 1 2	A Pla	61	
スペクトルデ	-9					
¹ H NMR(CDC1 ₃ , 0(s, 3H), 2, 80	300MHz) & ppm:1,170 -3,00(m,5H), 3,26(d,	t, J=7, 1Hz, 6H), 1, 410 J=13, 2Hz, 1H), 7, 20-7	(s, 6H), 2. 11 (s, 3H), 7. 45 (m, 5H), 8. 80 (s,	2.4 1H)		

[0266]

【表136】

実施例15	目的化合物	出発化合物	方法	収率, %	性状/融点/その他
Me M	NEL 2-HCI	NON MEt 2	С	8.0	淡橙色結晶 np 130-136℃
.38), 1, 93(s.	3, 300MHz) ö ppm: 1, 63(, 3II), 3, 30-3, 90(n, 4H)	t, J=7, 3Hz, 3H), 1, 71 (t, J=7, 2Hz, 3H), 1, 93 3, 54 (d, J=12, 5Hz, 1H), 3, 93 (d, J=12, 5Hz 8, 84 (s, 1H), 12, 50 (br s, 1H).	1628, 1 1(s 1173, 1	591, 1558, 14	49, 2982, 2930, 2448, 41, 1406, 1383, 1265, , 708.
支施例16	目的化合物	出発化合物	方法	収率, %	性状/融点/その他
Med OMe	Me Me O	NONC1 Mc No No No No No No No No No No No No No	A Pla	100	淡橙色結晶 up 148-151℃
スペクトルラ ¹ H NMR (CDC1 7. 14 (n. 18)。		s, 6iD. 3. 02(s, 3iD, 3. 84(s, 3iD, 4. 07(s, 3), 7. 37(s, 3E), 7. 40(m, 2iD.	1499.1	ν cm ⁻¹ :29 470, 1424, 13 93, 8 42, 789,	76, 2836, 2216, 1615, 162, 1235, 1215, 1184, 708.

【0267】 【表137】

【0268】 【表138】

実施例 1 9	目的化合物	出発化	合 物	方法	权率, %	性状/酸点/その他
0	NEL2	NON CI	NRt 2	A Pla	8 4	
n, 1H), 8, 03(i	3, 300MHz) & ppm: 1, 21 (1 3, 28z, 18), 7, 21-7, 35 1, J=8, 38z, 18), 8, 04 (d,	J=1. 8Hz, 1H), 9. Z1(s	. III).			
実施例20	目的化合物	出発化	合物	方法	収率, %	性状/融点/その他
(C)	NBt 2 HCl		NB1 2	С	71	白色粉末固体 即 171-174°C
スペクトルデ ¹ H NMR(CDC1; 3(d. J=12, 5H;	- 一夕 3, 300MHz) δ ppm: 1, 70(1 1, 1H), 3, 94 (d, J=12, 5H; 90(m, J=8, 3Hz, 1H), 7, 9	or s, 6H), 1, 99(s, 3H) ;, 1H), 7, 30-7, 42(m, 3	, 3, 38-3, 90 (m. 4H) ID, 7, 43-7, 55 (m. 2	IR(KBr 2236, 1 3, 6 1348, 1 D, 7	615. 1564. 15	32, 3036, 2992, 2448, 37, 1489, 1453, 1391, 1, 743, 706, 673.

[0269]

【表139】

[0270]

【表140】

実施例23	目的化合物	出 発 化	合物	方法	収率, %	性状/融点/その他
0	N N NBt 2	NON C1	NEt.2	A Pla	8 9	
スペクトルラ B NMR (CDC) B (d. J=13, 2H (n. 2H), 7, 18 実施例 2, 4	7-7 3. 300MHz) δ ppm: 0. 97(t, z. Hi), 2. 90(d, J=13. 2Hz, -7. 30(m, 3H), 7. 34(dt, J=	J=7, 1Hz, 6H), 1, 10(s, 1H), 6, 96(dt, J=1, 0, 7, 1, 5, 7, 8Hz, 1H), 7, 51(dd, J=1. 5, 7. 7Ha	.2.6 7.15 .1ED	収率, %	Hidb (W. b. co - p)
	Me2 N NBt2 Me · HC1	NMe ₂	Bt ₂	C	60	性状/軸点/その他 淡黄色結晶 119 93-100°C 吸電性
スペクトルテ	-9			1R (KBr) 2222, 19 7, 50	ν cm ⁻¹ :36	09, 2986, 2940, 2469. 07, 754, 706.

[0271]

【表141】

[0272]

【表142】

実施例27	目的化合物	出発化。	合 物	方法	収率, %	性状/耐点/その他
MeO OMe	Ne NBt 2	NGN C1 NeO OMe	*×-	A P2	8	粘稠性油状
7. 50 (s. 1H), 9	s, 300MHz) & ppm; 1, 97- (m, 8H), 2, 83(g, J=7, 1H 9, 68(s, 1H).	i. 37 (n. 5H). I. 14 (t, J=7. iz. 4H). 4. 04 (s. 3H), 4. 06		, 3H 1306, 12 H).	16, 1570, 15 38, 1211, 11	4, 2851, 2361, 2211, 35, 1499, 1426, 1364, 28, 998, 851, 784.
実施例28	目的化合物	出発化:	合物	方 法	収率,%	性状/酸点/その他
Met) CNMe		NON I	* **	B THF Pd(PPh3)2Gl2 Pla	3 1	mp 147-149°C
スペクトルデ ¹ H NVR (CDC1 , 1HD, 7, 10-7		(s, 3E), 4. 04 (s, 3H), 5. 12 , 7. 27 (s, 1H), 7. 31-7. 37	(s, 2H), 7, 00-7, 0 (n, 2H), 9, 09(s, 1	2838, 23	R1. 2342. 22	57, 3015, 2973, 2936, 130, 1613, 1497, 1427, 213, 1034, 1015, 992,

[0273]

【表143】

[0274]

【表144】

実施例31	目的化合物	出発化合物	方法	収率. %	性状/融点/その他
Neo OMe	NEL 2 - HCI	Med (Me N	C	62	黄色粉末園体
スペクトルラ TH NMR(CDC)		m, (H), 2, 20-3, 80(br peak, 5H), 3, 84(br	5.3		
H). 3. 91 (d. J.	=12.5Hz, 1H), 4. 12(s, 3 (m, 2H), 7.50(s, 1H), 7.	H), 6, 87 (d. J=7, 3Hz, 2H), 7, 05 (t. J=7, 3H 70-7, 85 (m. 1H), 8, 68 (d. J=4, 5Hz, 1H), 8,	z. 2H :		
実施例32	目的化合物	出発化合物	方法	収率, %	性状/触点/その他
Med	NEL2	Ned Olde	B Pd(PPh3)2Cl2 THP Plb	74	赤紫色オイル
スペクトルラ		(t, J=7, 1Hz, 6H), 1, 48(s, 3H), 2, 96(q, J=7 , J=13, 3Hz, 1H), 3, 93(s, 3H), 4, 07(s, 3H)	1570, 15	37, 1498, 14	772, 2361, 2339, 1601, 171, 1425, 1363, 1304, 13, 848, 806, 729.

【0275】 【表145】

[0276] [表146]

実施例35	目的化合物	出発化化)物	方法	収率, %	性状/融点/その他
MeO 0		Me0 OMe		B THF Pd(Føs) ₂ Cl ₂ P1a	6.4	пр 168-170°С
スペクトルラ In NMR(CDC): 7.39-7.53(m		s, 34D, 4, 04 (s, 31D, 6, 93 , 7, 87-7, 90 (m, 11D, 9, 11 ((s, 1H). 7. 27(s, 1 s, 1H).	2363, 23	42, 2197, 16 68, 1319, 12	7, 3013, 2973, 2845, 16, 1508, 1501, 1478, 33, 1165, 1034, 988, 02, 654, 575, 542, 530.
実施例36	目的化合物	出発化症	今 物	方法	収率, %	性状/敵点/その他
Med OMe	NEL 2	N N I NeO OMe ,	WEt 2	B THF Pd(P#a)2Cl2 Pla	3 2	wp 119-122℃
スペクトルラ ¹ H NMR (CDC1), 3, 26 (d, 1H a, 4H), 9, 10 (3, 300MHz) & ppm: 1, 19(J=13, 5Hz), 3, 91(s, 3H	t, 3H, J=7, 1Hz), 1, 46(s, 3 0, 4, 06(s, 3H), 6, 92–6, 98	8H), 2. 92-3. 00 (r 3 (m. 2H), 7. 30-7.	2367, 22	13, 1885, 16	11, 2934, 2872, 2834, 116, 1572, 1505, 1427, 128, 995, 843, 828, 789,

【0277】 【表147】

【0278】 【表148】

実施例39	目的化合物	出 発 化 合 物	方法	収率, %	性状/融点/その他
Med ONe	N NBt ₂ · HCl	NI12 NO NET 2 Met Outo	С	96	黄色周体 mp 212-215°C
スペクトルデ H NMR(CDCIs Deak, 4H), 3. 6 7. 15(s. 1H).	3, 300Miz) δ ppm:1, 700 54 (d. J=12, 4Hz, 1H), 3,	t. J=7, 2Hz. 6H), 1, 95 (s. 3H), 3, 20-3, 90 (b 75 (d. J=12, 4Hz, 1H), 3, 91 (s. 3H), 4, 08 (s, 9-7, 48 (m. 2H), 13, 1 (br. s, 1H).	1597.15	νen :33 14, 1478, 14	83, 2265, 2236, 1659, 26, 1269, 1032, 774,
実施 例40	目的化合物	出発化合物	方法	权率, %	性状/融点/その作
Med OMe	Me Me O CO ₂ Me	Med Office , We like CO on the	A Pla	5 1	機色結晶 mp 159-163℃
スペクトルチ ¹ H NMR (CDC) 7. 15(s, 1H), 1		s. 6H), 3. 62(s. 3H), 3. 42(s. 3H), 4. 97(s. 3 8. 8Hz, 2H), 7. 98(d. J=8. 8Hz, 2H),	1601, 19	ν cm ⁻¹ :25 05, 1431, 13 , 885, 702,	80, 2949, 2222, 1730, 864, 1279, 1231, 1136,

[0279]

【表149】

[0280]

【表150】

実施例43	目的化合物	出 発 化	合物	方法	収率, %	性状/融点/その他
N C	N NEt 2	NON CI +	×WRt ₂	Pla	77	赤褐色油状
スペクトルテ		1			1	1
¹ H NMR (CDC1: 6(s, 3H), 2, 90 30(m, 3H), 7, 5	a, 250MHz) öppm: 1, 210 8(d, J=19Hz, 1H), 2, 990 50-7, 55(m, 2H), 9, 36(s	(t, J=7, 2Hz, 6H), 1, 42(s, (q, J=7, 2Hz, 4H), 3, 40(d, i, 1H)	3HD, 2, 84 (s, 3H J=13Hz, 1HD, 7,), 2. 8 20-7.		
実施例44	目的化合物	出発化	合 物	方法	収率、%	性状/融点/その他
H ₂ N	NO2 NEt2	N ÔN C1 +	NEt 2	Pd(#3P)2Cl2 Pla Pla P3 (Hexane -Bt2O	3 8	黄色結晶 咖 118-120℃
スペクトルデ ¹ H NMR (CDC1 ₂), 3, 27 (d, J=		t, J=7, 2Hz, 6H). 1, 37(s, (m, 5H), 8, 53(s, 1H),	31D, 2, 80-2, 95	IR (KBr) 2872, 23 (m, 581 1381, 13 879, 827	REI 9910 16	433, 3285, 3161, 2972, 190, 1577, 1502, 1425, 111, 1153, 1062, 1020, 119, 497, 416.

[0281]

【表151】

[0282]

【表152】

実施例 4 7	目的化合物	出発化合物	方法	収率, %	性状/融点/その他
ci ci	NEt 2 · HC1	CI CI NEL 2	С	4 8	白色粉末結晶 mp 174-177℃
スペクトルテ H NMR(CDC1: 3B), 3, 38-3.		t, J=7, 5Hz, 3H), 1, 73 (t, J=7, 5Hz, 3H), 2, C 2, 6Hz, 1H), 3, 63-3, 90 (m, 2H), 3, 96 (d, J=J	00(s		
Hz, 1E), 7, 34), 12, 85(br :	-7, 43(n, 3H), 7, 43-7, 5 s, 1H),	5(m, 23), 7, 90(s, 1H), 8, 22(s, 1H), 9, 29(s	s, 1H		-
実施例 4 8	目的化合物	出発化合物	方法	収率,%	性伏/融点/その作
BtO Bto	NEL 2	BtO . FRI 2	A Pia	7 3	油状物質
スペクトルチ ¹ H NNR (CBC) , 3H), 2, 90-3 , 0Hz, 2H), 7, 1		t, J=7. IHz, 3H), 1. 47(s, 3H), 1. 49(t, J=6. 3. 2Hz. 1H), 4. 92(q, J=6. 9Hz, 2H), 4. 28(q, IH).	9Hz J=7		

[0283]

【表153】

実施例49	目的化合物	出発化合物	方法	収率, %	性状/融点/その他
BLO OBt	NEt 2 · HC1	NON NBt 2 BtO We	С	79	淡黄色粉末結晶 np 171-174°C
	s. 300MHz) 5 ppm:1.45(.96(s.3H), 3.33-3.58(J=12.5Hz, 1H), 3.94(q, 5(n,4H), 7.43-7.52(m,	t. J=7. 0Hz, 3H), 1. 57(t, J=7. 0Hz, 3H), 1, 5 n. 2E), 3. 60–3. 90(n, 2H), 3. 62(d, J=12, 5H l=7. 0Hz, 2H), 4. 28(q, J=7. 0Hz, 2H), 7. 01(2H), 9. 08(s, 1H), 12. 65(br s, 2H).	0- z. s. 1	Ea	Ú-
実施例50	目的化合物	出発化合物	方法	収率, %	性状/融点/その他
	NEt 2	C1 NEL2	A	90	淡黄~白色粉末固体 mp 104-5℃
スペクトルテ ¹ H NMR(CDC1 ₂), 3, 30 (d, J=) 5 (n, 2H), 9, 05	g. 300MHz) & ppm: 1, 20(; [3, 2Hz, 1H), 6, 17(dd, J	: . J=7. 1Mz, 6iD, 1, 47(s, 3ID, 2, 84-3, 08(n 0, 7, 4, 9Hz, 2D, 7, 22-7, 34(n, 5iD, 7, 35-		ν cm ⁻¹ :29 64, 1366, 12	69, 2926, 2213, 1613, 11, 1030, 847, 702.

[0284]

【表154】

実施例51 目的化合物	出発化合物	方法	収率, %	性状/融点/その他
NON CO2Et	NONCI CO26t	PdCI2 (PPb3) 2	7 6	淡橙色結晶 mp 107-8℃
スペクトルデータ ¹ H MMR (CDC1 ₃ , 3900diz) さ ppm: 1, 37 5(s, 3f), 4, 34 (q, J=7, 1Hz, 2H), 7, 0 40 (n, 1H), 7, 71 (d, J=8, 3Hz, 1H), 7.	(t. J=7, HEz, 3H), 1, 91 (s. 6H), 3, 78 (s. 3H), 8 (t. J=7, 5Hz, HD, 7, 24 (s. HD, 7, 29 (s. HD) 76 (dd, J=1, 8, 7, 7Hz, Hd), 9, 10 (s. Hd).	1815, 15	99, 1503, 14	82, 2936, 2226, 1699, 70, 1451, 1422, 1382, 92, 993, 912, 843, 712,
実施例52 目的化合物	出発化合物	方法	収率. %	性状/融点/その他
BtO OE Me We	BLO 034 He like	B (PdCI _Z (PPh ₃) ₂) P1a P3 (^4#/>-B1OAc)	71	無色結晶 mp 181.5-182.5℃
スペクトルデータ ¹ H MAR (CDC1 ₈ , 300M z) Sppm: i, 34 6H), 3, 61 (q, J=7, OHz, 2H), 4, 00 (b 01 (d, J=7, SHz, 2H), 7, 15-7, 23 (m, 4)	(t, J=6, 9Hz, 3H), 1.54(t, J=6, 9Hz, 3H), 1.8 r s, JH), 4.24(q, J=7, 9Hz, 2H), 6.78(n, 1H) D, 9.64(s, 1H).	RI (s : 749, 698	64, 1262, 12	95, 2980, 2936, 2220, 23, 1111, 1044, 851,

[0285]

【表155】

[0286]

【表156】

実施例 5 5	目的化合物	出発化合物	方法	収率, %	性状/融点/その他
BtO ORt	Me OH	3t0 C1 Mac N OII	B (PdC1 ₂ (PPh ₃) ₄)	6 6	油状物質
), 3, 67(t, J=	3, 300MHz) & ppm: 1, 47 (3, 310, 2, 80-3, 18 (n, 2H)	t, J=7, Hbz, 3lD, 1, 50(s, 3lD), 1, 56(t, J=6, 2, 96(d, 3=13, 4lbz, Hb; 3, 33(d, J=13, 4lbz, 04z, 2lD), 4, 23(t ₀ , J=7, 0lbz, 2lD), 7, 14–7, 3	9Hz 1H 12 (m		
実施例56	目的化合物	出発化合物	方法	収率,%	性状/融点/その他
Bt.O OSL	N Me N OIH	NON Mc	С	7 6	淡黄色粉末結晶 即 112-116℃ 吸屉性
スペクトルラ ¹ H NMR(CDC) ,3H),3,00-3	s, 30(MHz) δ ppm: 1, 48(, 80(m, 4H), 3, 17(s, 3H)	(t, J=6, 9Hz, 3H), 1, 57 (t, J=6, 9Hz, 3H), 1, 5 , 4, 02 (q, J=6, 9Hz, 2H), 4, 10-4, 25 (m, 2H), , 25-7, 52 (m, 6H), 9, 08 (s, 1H),	2296.16	ν cm ⁻¹ :33 11, 1499, 12	187, 2982, 2036, 2610, 33, 1044, 704.

[0287]

【表157】

実施例57	目的化合物	出発化合物	方法	収率 %	性状/融点/その他
BtO BtO B	tO ₂ C CO ₂ Bt	B10 OEt . B102C CO2Et O	B Pla	6 5	黄色顯粒状結晶 mp 94-95℃
1. J=7. OHz. 3H.	g. 3COMHz) & ppm:1.29(J. 3.58(s.2H), 3.96(a.	t, J=7. 1Hz, 6HD, 1. 41 (t, J=7. 0Hz, 3H), 1. 5 J=7. 0Hz, 2H), 4. 20–4. 40 (m, 6H), 7. 17–7. 2 7. 41 (s, 1H), 9. 08 (s, 1H).	6(t 1613, 15	05, 1458, 12	88, 2936, 2238, 1740, 29, 1042, 851, 704, 567
実施例 5 8	目的化合物	出発化合物	方法	収率、%	性状/融点/その他
Et0 OBt	Et CO ₂ Me	Bto OBt Cl. Bt Combe	B Pla	4 8	茶褐色油状
2H). 3. 31 (d.	p. 300MHz) δ ppm:1, 210 J=6, 9Hz, 3H), 2, 620t, J=13, 2Hz, 1H), 3, 660s	t, J=7, 1Hz, 3H), 1, 47(s, 3H), 1, 49(t, J=7, J=7, 5Hz, 2H), 2, 84-3, 12(s, 3H), 3, 17-3, 2, 3H), 4, 92(dg, J=1, 7, 7, 0Hz, 2H), 4, 28(g, 45(s, 2H), 9, 96(s, 1H).	OHz 6(m J=7		

[0288]

【表158】

実施例59	旨的化合物	出発化合物	方法	収率, %	性状/融点/その他
Bt0 OEt	Et N CO ₂ Ne Ne HCI	Bt Bt CO ₂ Me	С	65	白色粉末結晶 mp 137-151℃
07 (q, J=7, Off	3, 300MHz) δ ppm: 1, 49(1, 2, 70(hr s, 2H), 3, 35	t, J=6, 97z, 3H), 1, 58(t, J=7, 0Hz, 3H), 1, 7 (br s, 24), 3, 50-4, 09(m, 4H), 3, 73(s, 3H) 24), 7, 18(s, 1H), 7, 25-7, 45(m, 3H), 7, 48 (H)	70(t 1439, 13), 4. 893, 858	'24, 1610, 15 67, 1315, 12	23, 2982, 2937, 2361, 68, 1537, 1498, 1460, 32, 1205, 1032, 927, 04, 669, 569, 418.
実施例60	目的化合物	出発化合物	方法	収率、%	性状/融点/その他
RtO OBt	N Et CO₂H	Bto OBt Me CO ₂ Me	D F3 (To1, Bt0H- H ₂ 0)	42	淡黄色粉末結晶 ap 156-157℃
スペクトルラ ¹ H NMR (CDC1 , J=7, OHz, 3H 2H), 3, 30(t, =7, OHz, 2i),	3, 300M(z) & ppm:1, 32(), 1, 58(s, 30), 2, 67(t,]=6, 88z, 20), 3, 39(d, J	t. J=7, 2Hz, 3H), 1, 50(t, J=7, 0Hz, 3H), 1, 1, 3-6, 6Hz, 2H), 2, 98(d, J=13, 1Hz, 1H), 3, 14-13, 1Hz, 1H), 3, 99(g, J=7, 0Hz, 2H), 4, 27(g, 4H), 7, 30-7, 45(g, 2H), 9, 07(s, 1H).	2363. 22	204, 1923, 17 500, 1460, 13 345, 935, 90	123, 2986, 2935, 2538, 38, 1707, 1612, 1572, 198, 1305, 1309, 1232, 1, 829, 787, 769, 704,

【0289】 【表159】

実施例61 目的化合物	出 発 化 合 物	方法	収率 %	性状/融点/その他
iPrO O	iPro iPro . OII	B (PdCl ₂ (PPh ₈) ₂) Pla	4 5	油状物質
スペクトルデータ				
¹ B MM3 (CDC1 ₃ , 300MHz) & ppm: 1, 370 , 3H), 3, 12 (d, J=12, 9Hz, 1H), 3, 21 (d, 4, 74 (dt, J=6, 0, 6, 0Hz, 1H), 7, 26-7.	d, J=6. OHz, 6H), 1. 47(d, J=6, OHz, 6H), 1. 7 J=12. 9Hz, 1H), 4. 49(dt, J=6, 0, 6, OHz, 1H 32(m, 3H), 7. 40-7. 73(m, 4H), 9. 04(s, 1H)	5(s 0,		
実施例62 目的化合物	出発化合物	方法	収率,%	性状/酸点/その他
BLO OCH OCH S	BLO OBL . OCHS	B (PdCl ₂ (PPh ₃) ₂) Pla	96	油状物質
スペクトルデータ ¹ H NMR (CDC1 ₃ , 300MHz) δ ppm: 1, 50 (3 H), 3, 18 (d. J=12, 0Hz, 1H), 3, 31 (d. 2 H), 4, 27 (d. J=7, 2 Hz, 2 H), 4, 37 (d. 1 H), 7, 25-7, 26 (n. 4 H), 7, 40-7, 49 (d. 1 Hz), 7, 40-7, 40 (d. 1 Hz), 7, 40 (d. 1 Hz), 7, 40	t, J=7, 2Hz, 3H), 1, 56(t, J=7, 2Hz, 3H), 1, 5, 1, 12, 0Hz, 1H), 3, 71(s, 3H), 4, 03(q, J=7, I=16, 6Hz, 1H), 4, 46(d, J=16, 6Hz, 1H), 7, 1 m, 2H), 9, 07(s, 1H).	5(s 2Hz 1(s		

【0290】 【表160】

実施例 6 3	目的化合物	由 発 化 合 物	方法	収率、%	性状/融点/その他
BFO OHF	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BLO OBI O OCH3	D P3 (Bt ₂ 0)	3 4	白色結晶 mp=119℃
H). 3. 20(d. J= 9Hz, 2H). 4. 27	g, 300MHz) σ ppm: 1. 480 13. 5Hz, 1HD, 3. 32(d, J ((g, J=7, 2Hz, 2H), 4. 44	t, J=7, 2, 3H), 1, 56(t, J=6, 9Hz, 3H), 1, 73 =13, 5Hz, 1H), 3, 94-3, 59(m, 2H), 3, 97(q, (d, J=14, 0Hz, 1H), 4, 51 (d, J=14, 0Hz, 1H), 42 (m, 2H), 3, 10(s, 1H),	2936, 27 (s. 3 1576, 15	28, 2513, 22	24, 3083, 3030, 2984, 25, 1890, 1738, 1613, 41, 1358, 1235, 1109, 704.
実施例64	目的化合物	出発化合物	方法	収率, %	性状/敵点/その他
iPr0 iPr0	N OBt	iPro iPro + ORt	B Pla	4 9	油状物質
. 2H). 2. 32-2.	_{3.} 300MHz) δ ppm: 1, 250 1, 1, 44(s, 3H), 1, 47(d, 58(m, 2H), 3, 06(d, J=1	(t, J=7, 2Hz, 3H), 1, 37 (d, J=6, 0Hz, 3H), 1, J=6, 0Hz, 5H), 1, 77-1, 86 (m, 2H), 1, 97-2, 3, 5Hz, 1H), 3, 27 (d, J=13, 5Hz, 1H), 3, 25-27, 2Hz, 2H), 4H), 4H), 7, 35-7, 37 (m, 4H), 9, 05 (s, 1H),	89 (d : 1368, 12 14 (m : 569, 1, 29 :	13, 1890, 17 27, 1109, 10	39, 2980, 2934, 2809, 32, 1611, 1489, 1454, 46, 953, 856, 760, 702,
1]		【表 1	61]		
実施例 6 5	目的化合物	出発化合物	方法	収率, %	性状/融点/その他
iPr0 Pr0	O OH	iPr0 OBt	D P3 (Et ₂ 0)	8 5	mp 199.5-200℃
スペクトルデ ¹ H MMR (CDC1 ₂ , J=6, OHz, 6H)), 2, 73-2, 800 1H), 3, 46-3, 5 17(s, 1H), 7, 2	3, 300MHz) δ ppm: 1, 250 1, 1, 47(s, 30), 1, 87-1, 1m, 1H), 2, 98(d, J=13, 2	(d. J=6, OHz, 3H), 1, 36 (d. J=6, OHz, 3H), 1, 95 (m. 2H), 2, 10 - 2, 24 (m. 2H), 2, 51 - 2, 67 (f. Hz, 1H), 3, 37 (d. J=13, 2Hz, 1H), 3, 30 - 3, 31, 0, 6, 0, 6, 0, Hz, 1H, 3, 30 - 3, 31, 38 (m. 2H), 9, 18 (s. 1H), 1, 30 (m. 2H), 9, 18 (s. 1H), 1, 30 (m. 2H), 9, 18 (s. 1H), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	2681, 21 17(d 1491, 14 a 2H 1109, 91 5(m.	519, 2213, 19 154, 1368, 13	22, 2982, 2936, 2814, 08, 1719, 1609, 1541, 02, 1262, 1231, 1200, 762, 704, 664, 569, 507
実施例66	目的化合物	出発化合物	方法	収率. %	性状/融点/その他

油状物質

IR(neat) ν cm⁻¹:3380, 2982, 2814, 2214, 1732, 1595, 1501, 1373, 1263, 1200, 1046, 1Hz 961, 874, 702.

18 NMR (CDC 15, 300ME2) 8 ppg=1, 28 (t, 1-7, 119z, 30), 1, 32 (s, 30), 1, 32 (t, 1-7, 119z, 30), 1, 31 (s, 30), 1, 32 (t, 1-7, 119z, 30), 3, 13 (s, 30), 3, 33 (t, 1-13, 35z, 10), 3, 13 (s, 10), 3, 17 (s, 10), 2, 37 (z, 10), 3, 37 (z, 10), 4, 10 (s, 1-7, 11s, 20), 4, 35 (s, 10), 4, 37 (s, 10), 7, 27 (z, 30), 3, 40 (s, 11), 3, 57 (s, 11), 4, 37 (s, 110), 4, 37 (s, 1

[02

実施例67	目的化合物	出発化合物	方法	収率,%	性状/融点/その他
NH ₂ Y NH ₂ Y NO	(0)	NGN C1 . STOCHOOSE	B THF Pd(∉3P)2C1 Pla	7 6	油状物質
スペクトルラ ¹ H NMR (CDCI), 1, 91-2, 19 3, 20 (d, J=13 , 8, 54 (s, 1H)	データ 3, 250MHz) るppm:1,21 ((m,2H), 2, 29-2, 42 (m, 3 ,5Hz, 1H), 3, 30-3, 42 (m	(t. J=7, 0Hz, 3ID, 1, 35(s, 3ID, 1, 72-1, 99 EO, 3, 63(d, J=13, 5Hz, 1H), 3, 15-3, 23(m 1 H), 3, 48(q, J=7, 0Hz, 2ID, 7, 20-7, 34(IR (neat 2858, 28 (n, 2H 1579, 15 1E), 1124, 10 n, 5H)	1 ν cm ⁻¹ :34 \$16, 236 L 23 \$04, 1454, 13 \$45, 958, 898	60, 3314, 3175, 2982, 39, 2216, 1728, 1620, 175, 1329, 1263, 1180, 6, 875, 800, 758, 702.
実施例68	目的化合物	出発化合物	方法	収率 %	性状/融点/その他
NÎI₂ V NÎI₂ NO	N - C00H	NF12 NO2 COORt	D Pla	29	黄色結晶 即 137-143℃
, 2, 12-2, 38(, 42(m, 2H), 8	m, any, 2, 99-3, 17(m, 3h i, 46(s, 1H), 12, 17(br s	2(s. 3H), 1, 45-1, 68(m, 2H), 1, 83-1, 99(h), 3, 21-3, 35(m, 1H), 7, 29-7, 40(m, 5H), 1, H).		., 418.	
		[35.1	63]		
実施例 6 9	目的化合物	出発化合物	方法	収率, %	性状/酸点/その値
	目的化合物			収率, %	性状/酸点/その他
実施例 6 9 No OMe スペクトルフ	N N 0 √ 0 − We	出発化合物	方法 B (THF) P1b P3 (Et 20)		住状/触点/その他
実施例 6 9 No OMe スペクトルフ	N N 0 √ 0 − We	H 発化合物	方法 B (THF) P1b P3 (Et 20)		信状/酸点/その他 情状/酸点/その他
実施例 6 9 NO NA NA NA NA NA NA NA NA NA NA NA NA NA	N	H % (t à \$)	方法 (TH2) (TH2) (P1) (P3 (Et 20) (St. 20)	2 0	
実施例 6 9 MeO ONe スペクトルラ 18 MM (COC) 7.07(6, J=8.1 実施例 7 0	N	出 発 化 合 物 Me(0 Me(0 Me(0 Me(0 Me(0 Me(0 Me(0 Me(0	方法 B (TET) P13 (Et g0) 方法 B (THP) P13 (Et g0) 方法 B (THP) P15 (Et g0)	2 0 収率、% 1 7	

実施例71	目的化合物	出 発	化合物	方法	収率, %	性状/融点/その他
Bt0 ORL	COORL	Bro OB1	© P COORt	B Pla P3 (Et ₂ 0)	7 4	白色結晶 mp 118-119°C
スペクトルラ n. 2H), 1.95- 1H), 3.22(d, 2Hz, 2H), 4.2	"-9	300MHz) δ ppm: 1. 2 6. 9Hz, 3HD, 1. 57 (t (m, 3HD, 3. 04 (d, J- 54 (m, 1H), 4. 09 (q, -6. 99 (m, 2H), 7. 20	25(t. J=7. 2Hz. 3H), 1. 4 t, J=6. 9Hz, 3H), 1. 73-1 -13. 5Hz, 1H), 3. 18-3. 5 . J=6. 9Hz, 2H), 4. 14(q. 5-7. 34(n. 4H), 9. 07(s.	3(s. IR(KBr) . 92(2212, 17 0(m. 1437, 13 J=7. 1111, 10 1H) 655, 567	v cm ⁻¹ :34 32, 1614, 15 96, 1371, 13 45, 1020, 95	123, 2984, 2932, 2800, 68, 1537, 1498, 1473, 905, 1259, 1228, 1194, 64, 931, 860, 827, 788,
実施例72	目的化合物	曲 発	化合物	方法	収率. %	性状/融点/その他
実施例 7 2 BtO OBt		eti 5%	化合物 COORt	方法 B (THF) PdCl ₂ (PPh ₈) ₂ Pla Plb	収率, %	性状/敵点/その他
Bt0 OBt	目的化合物	B 10 OE t	Coolet	B (TilF) PdCl2(PPhs)2 Pla Plb	2 7	23, 2986, 2363, 2341,

実施例73 目的化合物 出発化合物 方 法 収率,% 性状/融点/その他 В CO₂Bt P1a P3 (MeOH) 68 褐色油状 °C1 BtÓ ĺΟ. スペクトルデータ 実施例74 目的化合物 出発化合物 方 法 収率 % 性状/酸点/その他 D P3 OleOED 7 植黄色粉末結晶 mp 193-197℃ -CO₂Et IR(KBr) ν cm⁻¹:3476, 2938, 2220, 1690, 1609, 1497, 1460, 1238, 1209, 1030, 932, 70 2, 666. スペクトルデータ

【0296】 【表166】

実施例75	目的化合物	出発	化合物	方法	収率, %	性状/融点/その他
BtC OBt	Me N	NON CI Bto OBt	Mc *>N~~0	CO2H (PdC12(PPhs)) P1b P2	20	アモルファス
. 8Hz, 3H), 2. 6 z, 1H), 3. 80 (n	f-9 μH ₂ 0, 300MHz) δ ppm: 1 δ(S, 3H), 2, 93(4, J=13 h, 2H), 3, 90 (η, J=7, Hz 15-7, 48 (n, 6H), 9, 05 (i. 1Hz. 1H), 2, 98-3, i. 2H), 4, 13 (br. s. 2	22 (m. 2H), 3, 39	1611, 1 1. 55(t, J=6 (d. J=13. 1H		95, 2986, 2940, 2216, 32, 934, 828, 766, 706.
実施例76	目的化合物	出発	化合物	方 法	収率. %	性状/触点/その他
Me0 OMe	N DEt	MeO CIMe	*×N\\	OEt B	97	油状物質
), 1, 98-2, 080 18), 3, 26-3, 8	-9 3, 900MHz) & ppm: 1, 25 (m, 28), 2, 33-2, 57 (n, 3 30 (n, 1H), 3, 41-3, 45 (n 7, 37 (n, 7H), 9, 10 (s, 1	M), 3.05(d.J=13.2 L1H), 3.86(s,3H),	Hz, 1H), 3, 28(a	2361. 2 -1. 87 (m. 2H 1497. 1 J=13. 2Hz, 9. 851.	214, 1892, 17	37, 2934, 2809, 2463, 30, 1616, 1570, 1537, 31, 1181, 1046, 993, 95

【0297】 【表167】

実施例77	目的化合物	出発化合物	方法	収率, %	性状/酸点/その他
MeD ONe	O OH	MeO ONE OBt	D P3 (Bt ₂ 0)	5 8	mp 213°C
スペクトルラ ¹ H MMR (DMSO , 2, 21-2, 25 (3, 19 (d, J=13 4H), 7, 32-7.		6(s, 3(l), 1, 56-1, 68(m, 2(l), 1, 83-1, 93(m,), 3, 01 (d, J=13, 5(l ₂ , 1(l), 3, 12-3, 15(m, 1) , 1(l), 3, 83(s, 3(l), 3, 96(s, 3(l), 7, 17-7, 22	2940, 28	34, 2573, 22 45, 1497, 14 33, 1181, 11	88, 3524, 3063, 2982, 214, 1898, 1723, 1703, 52, 1427, 1368, 1302, 30, 1030, 993, 959, 851
実施例78	目的化合物	出発化合物	方法	収率、%	性状/触点/その他
	N OBt	NÔN CI . NA OBE	B (PbCl ₂ (PPb ₈) ₂) Pla	7 8	油状物質
3, 29 (d. J=13	3, 300MHz) δ ppm: 1, 26 ((m, 2H), 2, 40-2, 54 (m, 3, 5Hz, 1H), 3, 39-3, 44 (m, 8, 2, 4, 2Hz, 1H), 8, 29 (d	t, J=7, 1Hz, 3B), 1, 66(s, 3F), 1, 82-1, 94(g B), 3, 05(d, J=12, 5Hz, 1F), 3, 24-3, 31(n, 1, 1F), 4, 15(q, J=7, 1Hz, 2F), 7, 25-7, 33(n, d, J=8, 2, 2, 6Hz, 1F), 9, 27(dd, J=4, 2, 2, 0)	2361, 22 2H : 1468, 13 H), : 961, 797 5H)	16, 1956, 17	137, 2982, 2934, 2811, 28, 1601, 1557, 1541, 262, 1179, 1125, 1047,

実施例79	目的化合物	出発化合物	方法	収率、%	性状/融点/その他
NO OBL	N CCOOH	NON NOOR	D Pla P3 (Et ₂ 0)	78	淡黄色結晶 189-200℃ (分解)
スペクトルラ H), 2, 50-2, 6), 3, 32(d, J= 2, 2H), 6, 97(F 310, 1, 57(1, 3) 9(n, 2H), 2, 70-2, 85(n, 13, 2Hz, 3H), 3, 40-3, 55 dd, J=8, 7, 8, 7Hz, 2H), 7	F 300Mftz) & ppm: 1. 47(s. H). 1. 48(t., J= 6. 98tz. 39). 1. 80-2. 02(m. 24). 2. 07-2. 1 11). 2. 97(d. 1=13. 28tz. 11). 3. 23-2. 3 (m. 18). 3. 96(q. J=6. 98tz. 28). 4. 29(q. 1. 11(s. 18). 7. 27-7. 35(m. 38). 9. 20(s.	6. 9Hz. 1R (KBr) 30 (m, 2 1716, 16 4 (m, 1H 1292, 12 J=6. 9H 852, 829 1H)	ν cm ⁻¹ :34 08, 1541, 15 61, 1228, 11 3, 663, 570, 5	23, 2982, 2934, 2208, 40, 1458, 1398, 1361, 90, 1111, 1033, 935, 15, 413.
実施例80	目的化合物	出発化合物	方法	収率, %	性状/融点/その他
BLO ORL	Ne CO2H	NETE NO CO28	t Pia D P3 (B10H)	16	淡黄色粉末結晶 即 219-223°C
		(1, J=7, 1Hz, 3H), 1, 42(s, 3H), 1, 45–1, 61 3H), 3, 06(d, J=13, 5Hz, 1H), 3, 23(d, J=1; 3Hz, 2H), 3, 99(g, J=7, 0Hz, 2H), 4, 10–4, 1 17(s, 1H), 7, 20–7, 40(m, 5H).			83, 3200, 2960, 2361, 70, 1497, 1447, 1236,
99]		【表:	169]		
実施例 8 1	目的化合物	出発化合物	方 法	収率, %	性状/融点/その他
Bt0 OB		BLO OBL . NO ODER	B P1b P3 (B10H-H20)	6 5	白色粉末結晶 mp 158-159℃
	-	L	irean		
スペクトルラ *H NMR (CDC! , J=7.0Hz, 3H H), 3, 68 (q, J , 4Hz, 1H), 6.		(t. J=7, 1Hz, 3H), 1, 37 (t, J=7, 0Hz, 3H), 2H), 2, 80 (m, 2H), 2, 95 - 3, 01 (m, 2H), 3, 3, 7, 1Hz, 2H), 4, 24 (q, J=7, 0Hz, 2H), 6, 78 g, 1H), 7, 23 (s, 1H), 9, 06 (s, 1H).		02, 1456, 12	79, 2984, 2947, 2222, 34, 1198, 1038, 749,
		(t. J=7, 1Hz, 3H), 1, 37 (t. J=7, 0Hz, 3H), 1 2D), 2, 80 (m, 2H), 2, 95-3, 01 (m, 2D), 3, 7, 1Hz, 2D), 4, 24 (n, J=7, 0Hz, 2D), 6, 78 5, 1H), 7, 22 (s, 1H), 9, 06 (a, 1H).		収率、%	34, 1198, 1038, 749,
1H NMR (CDC1 , J=7. OHz, 3H H), 3. 68 (q, J , 4Hz, 1H), 6.	g, 300MHz) 8 ppm: 1, 28 5, 2, 11(s, 21), 2, 46 (m, -7, 05z, 21), 4, 20 (g, J- 89-7, 05 (m, 25), 7, 21 (s 目的化合物		1.54(t 693. 31 (s. 2 (t. J=7	902, 1456, 12	79, 2894, 2947, 2222, 34, 1198, 1038, 749, 性状/酸点/その他 淡黄色粉末枯品 19 157-159°C
1月 MMR (CDC1 , J=7, 0祖2, 3祖 円), 3, 68 (q, J , 4祖2, 1田), 6. 実施例 8 2	。300(MHz)	出 発 化 合 物	1.54(t 693.16 31(s, 2 (t, J=7) 方法 D	収率 % 60	34, 1188, 1038, 749, 性状/触点/その性 液黄色粉末結晶

実施例83	目的化合物	出発化合物	方法	収率, %	性状/融点/その他			
Bt.O OBt	N CO2Bt	B10 ORt C1 CO2Et	B P1b P3 (E10H)	9 4	白色粉末結晶 mp 152-155℃			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$								
実施例84	目的化合物	出 発 化 合 物	方法	収率, %	性状/融点/その作			
BLO OEL	CO2H	NON NO NO PE	D (BtoH-THF)	5 7	淡黄色粉末結晶 助 279-281°C (dec)			
-2. 40 (m. 4H), 2d, J=15. 0Hz, 9. 40 (s, 1H).	i _s , 300MHz) δ ppm:1.5 2.50-2.85(m, 3H), 3.1	(2(t, J=7, 0Hz, 3H), 1, 50(t, J=6, 9Hz, 3H), 0-3, 25(m, 2H), 3, 29(2d, J=15, 0Hz, 2H), 3, 2H), 4, 10(q, J=7, 0Hz, 2H), 7, 05-7, 40(m, 2H), 4, 10(q, J=7, 0Hz, 2H), 7, 05-7, 40(m, 2H), 4, 10(q, J=7, 0Hz, 2H), 7, 05-7, 40(m, 2H), 4, 10(q, J=7, 0Hz, 2H), 7, 05-7, 40(m, 2H), 4, 10(q, J=7, 0Hz, 2H), 7, 05-7, 40(m, 2H), 4, 10(q, J=7, 0Hz, 2H), 7, 05-7, 40(m, 2H), 4, 10(q, J=7, 0Hz, 2H), 7, 05-7, 40(m, 2H), 4, 10(q, J=7, 0Hz, 2H), 7, 05-7, 40(m, 2H), 4, 10(q, J=7, 0Hz, 2Hz, 2H), 4, 10(q, J=7, 0Hz, 2Hz, 2H), 4, 10(q, J=7, 0Hz, 2Hz, 2H), 4, 10(q, J=7, 0Hz, 2Hz, 2H), 4, 10(q, J=7, 0Hz, 2Hz, 2H), 4, 10(q, J=7, 0Hz, 2Hz, 2Hz, 2Hz, 2Hz, 2Hz, 2Hz, 2Hz, 2	2. 00 1397. 12 .53(6iD.	ν cm ⁻¹ :34 '15, 1612, 15 '35, 1040, 93	,24, 2948, 2816, 2214. 170, 1543, 1499, 1456, 17, 745, 664.			
01】 【表171】								
実施例 8 5	目的化合物	出発化合物	方法	収率, %	性状/融点/その代			
	N → OH	NON TOBE	D P3 (39/1-1/- Bt 20)	3 4	mp 179°C			
スペクトルテ ¹ H NMR(CDC1 ₅ 2.51-2.65(m.), 3.43-3.49(s, 340, 1, 87-1, 98(n, 2H), 2, 96-2, 15(n, 2 , 1H), 3, 27-3, 34(n, 1H), 3, 32(d, 1-13, 2H H), 7, 56(dd, 1-8, 3, 4, 2Hz, 1H), 8, 24(dd.	2517.25	61, 2342, 22 41, 1456, 13	26, 2930, 2808, 2691, 14, 1910, 1717, 1601, 72, 1337, 1219, 1188,			

スペントルデータ 19 MB(CCD12, 300Mm2) 5 ppm-1, 24 (1, 1-7, 201, 30), 1, 40 (4, 20), 1, 70-1, 20 (4, 20), 1, 20 (4, 20),

【0302】 【表172】

[03

実施例87	目的化合物	由発化合物	方法	収率, %	性状/融点/その他		
	NO YOU	NO VOR:	D P3 (397-16- Rt 20)	48	mp>201°C		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
実施例88	目的化合物	出殖化合物	方法	収率 %	性状/敵点/その他		
Bro OB				2 0	灰色粉末園体 up 167-168°C (dec) (BtOH)		
スペクトルラ ¹ H NMR (CDC) r d. J=14 0H	3, 300MHz) δ ppm:1, 460 2, 2H), 2, 40(br t. J=12	(t, J=7, 0Hz, 9H), 1, 57 (t, J=7, 0Hz, 9H), 2, 6 1, 1Hz, 2H), 3, 05 (s, 2H), 3, 15 (br t, J=11, 5 H), 4, 28 (g, J=7, 0Hz, 2H), 7, 02 (s, 1H), 7, 2	2342, 25 05(b 704, 65 9Hz.	220, 1636, 16	07, 2986, 2937, 2361, 15, 1501, 1233, 1034,		

[0303] [表173]

実施例89	目的化合物	出発化合物	方法	収率, %	性状/融点/その他
Bt.0 OBt	Ne N CO₂Bt	Pto OBt . OCO-Bt	B Pib	4 5	茶褐色粘稠性
スペクトルデ	· 9				
¹ H NMR (CDCI, , 3H), 1.57(t, Hz, 1H), 4.08), 9.07(s, 1H)	(m. 2H), 4. 19 (q. J=7. 1H	t, J=7. 1Bz, 3H), 1. 44 (s, 3H), 1. 49 (t, J=7. 4H), 3. 02 (m, 5H), 3. 23 (s, 2H), 3. 29 (d, J=1 z, 2H), 4. 27 (q, J=7. 0Hz, 2H), 7. 10-7. 45 (m	0Hz 3. 4 . 7H		
実施例90	目的化合物	出発化合物	方法	収率 %	性状/融点/その他
ELO DE L	CO ₂ H	ELO DEL MO	D	8 2	黄色粉末園体 即 110-114℃
スペクトルデ ¹ H MAR (DMSO- Hz, 3H), 2, 60- 3, 22 (d, J=13, (s, 1H)		5(s, 3H), 1, 41(t, J=7, 0Hz, 3H), 1, 43(t, J= 0(m, 4H), 3, 03(d, J=13, 4Hz, H), 3, 20(s, 2 4, 28(q, J=6, 9Hz, 2H), 7, 20-7, 50(m, 7H), 9	1499, 13) νςm ⁻¹ :34 366, 1231, 10	.09, 2984, 2216, 1615, M2, 704.

【0304】実施例91

[0305]

【化69】

【0306】実施例8で製造したカルボン酸(389m

g, 0. 8mmol), CICH2OCO-t-Bu (138 µ 1、0.96 mm o 1) およびDBV (13 2 μ 1、0.96 mm o 1) のトルエン溶液 (10 m を80℃で2時間撹拌した。反応液に水(40m EtOAc (40ml) を加え有機層を分離し た。抽出液を洗浄(飽和NaHCO。水溶液、10%ク エン酸水溶液、水)、乾燥(Na2 SO4)、濃縮し、 残渣をシリカゲルカラムクロマトグラフィー (ヘキサ ン: E t O A c = 4:1→2:3) で精製し、エステル 体をアモルファスとして得た(405mg、84%)。 [0307] 1H NMR (CDC13, 300MH z) δppm: 1. 21 (s, 9H), 1. 45 (s, 3H), 1.49 (t, J=7.0Hz, 3H), 1. 56 (t, J=7.0Hz, 3H), 1.73-1.9 4 (m, 2H), 1.95-2.12 (m, 2H), 2. 37-2.62 (m, 3H), 3.04 (d, J= 13. 3Hz, 1H), 3. 27 (d, J=13. 3H z, 1H), 3, 22-3, 32 (m, 1H), 3, 4 4 (m, 1H), 4, 03 (br q, J=7, 0H z, 2H), 4.28 (q, J=7.0Hz, 1H), 5. 77 (s. 2H), 7. 16-7. 30 (m. 5 H), 7.30-7.40 (m, 2H), 9.07 (s, 1H).

実施例92 【0308】 【化70】

【0309】実施例39で製造した2-アミノ体(20 0mg、0. 48mmol) に42%HBF4 水溶液 (4ml)およびこん跡量のEtOHを加え-20℃に 冷却し、5. 1MのNaNO。水溶液(150μ1、 0. 75 mm o 1) を加えた。ゆっくりと昇温し、反応 液が+20℃になる間に数回にわけて5.1MのNaN O2 水溶液 (1. 55ml)、7. 8MのNaNO2 水 溶液 (0.5m1) を加えた。HBF。水溶液 (2m 加え室温で30分間撹拌後、0℃で6N NaOH 水溶液と10%Na。CO。水溶液を液性が中性になる まで加えた。生成物をEtOAc(30ml×1、20 m1×1) で抽出し、抽出液を洗浄 (飽和NaHCOa 水溶液)、乾燥(Na, SO₄)、濃縮した。残渣をシ リカゲルカラムクロマトグラフィー (ヘキサン: EtO 1:0→30:1) で精製し、2-フッ素体(21m g、10%) を得た。

[0310] 1H NMR (CDC12, 300MH

 $\begin{array}{c} z) \;\; \delta \; p \; p \; m \; : 1. \;\; 20 \;\; (t, \; J=7. \;\; 1H \; z, \;\; 6 \\ H) \;\; , \;\; 1. \;\; 48 \;\; (s, \;\; 3H) \;\; , \;\; 2. \;\; 86-3. \;\; 05 \\ (m, \;\; 5H) \;\; , \;\; 3. \;\; 31 \;\; (d, \;\; J=13. \;\; 2H \; z, \;\; 1 \\ H) \;\; , \;\; 3. \;\; 84 \;\; (s, \;\; 3H) \;\; , \;\; 4. \;\; 05 \;\; (s, \;\; 3H) \;\; , \\ 7. \;\; 17-7. \;\; 30 \;\; (m, \;\; 5H) \;\; , \;\; 7. \;\; 32-7. \;\; 40 \\ (m, \;\; 2H) \;\; . \end{array}$

¹⁹F NMR (CDCl₃, 280MHz) δppm: -49.3 実施例93

美趣例93 【0311】 【化71】

【0312】実施例92で製造した2-フッ素体を用い 実施例2と同様な操作を行ない目的とする塩酸塩を白色 粉末結晶として得た(収率74%)。

¹H NMR (CDCl₃, 300MHz) δppm: 1. 67 (t, J=7.7 Hz, 3H), 1. 69 (t, J=8.2 Hz, 3H), 1. 96 (s, 3 H), 3. 25-3.55 (m, 2H), 3. 55-3. 80 (m, 4H), 3. 86 (s, 3H), 4. 0 6 (s, 3H), 7. 10-7. 34 (m, 5H), 7. 37-7.50 (m, 2H), 12. 90 (s, 1 H).

 ^{19}F NMR (CDCl $_3$, $280\,\text{MHz})$ $\delta\,\text{ppm}:$ -49. 4

IR (KBR) vcm⁻¹: 3430, 2980, 294 0, 2450, 2238, 1618, 1580, 154 9, 1306, 1242, 1015, 1001, 84 3, 770, 708.

m. p. 182-187℃ 実施例94 【0313】

【化72】

【0314】実施例39で製造しデジーアミノが (60 mg、0.14mmol)のビリシン (0.5ml) 一無木酢酸 (0.5ml) 溶液を一晩放置した後80℃で1時間加熱撹拌した。反応液を養縮し、残液をシリカゲルカラムクロマト (ヘキサン: EtOAc=4:11-0:1)で報覧し、目的とする2-アモチルアミノ体

(24mg、36%) を得た。

¹H NMR (CDCl₃, 300MHz) δppm: 1. 20 (t, J=7. 1Hz, 3H), 1. 46 (s, 3H), 2.56 (br s, 3H), 2.85 -3.05 (m, 5H), 3.30 (d, J=13.2 Hz, 1H), 3.84 (s, 3H), 4.04 (s, 3H), 7, 12-7, 30 (m, 5H), 7, 30-7. 48 (m, 2H), 8. 14 (br s, 1H). 実施例95

[0315] 【化73】

【0316】実施例25で製造した2-クロロ体(15 6 m g 、 0 、 3 6 m m o 1) のメタノール溶液 (4 m 1) を氷浴上撹拌し、28%NaOMeメタノール溶液 (0.5ml)を加えた。80℃で30分間加熱撹拌し た後、濃縮し、水とCH。C1。を加え有機層を分離し た。有機層を乾燥(Na。SO₄)、濃縮し、目的とす る2-メトキシ体(160mg、定量的)を得た。 ¹H NMR (CDCl₃, 300MHz) δppm: 1. 19 (t, J=7. 1Hz, 3H), 1. 45 (s, 3H), 2.85-3.10 (m, 5H), 3. 31 (d, J=13. 2Hz, 1H), 3.81 (s, 3H), 4.03 (s, 3H), 4.09 (s, 3 H), 7.12 (s, 1H), 7.17-7.30 (m, 4H), 7, 35-7, 42 (m, 2H), 実施例96

[0317] [(E74]

【0318】実施例95で製造した2-メトキシ体を用 い実施例2と同様な操作を行ない目的とする塩酸塩を白 色粉末結晶として得た(収率78%)。 ¹H NMR (CDCl₃, 300MHz) δppm:

1. 64 (t, J=7. 5Hz, 3H), 1. 71

(t, J=7.4 Hz, 3H), 1.95 (s, 3)H), 3.33-3.90 (m, 4H), 3.59 (d, J=12.4Hz, 1H), 3.76 (s, 3 H), 3. 90 (d, J=12. 4Hz, 1H), 4. 05 (s, 3H), 4. 10 (s, 3H), 6. 97 (br s, 1H), 7, 15 (s, 1H), 7, 25 -7. 35 (m, 3H), 7. 42-7. 50 (m, 2 H), 12.65 (br s, 1H). IR (KBr) v cm-1: 3426, 2990, 294

6, 2361, 1620, 1555, 1501, 147 4, 1426, 1410, 1310, 1061, 100 1, 860, 791, 708.

m. p. 172-175℃ 実施例97 [0319] 【化75】

【0320】実施例25で製造した2-クロロ体(36 0 mg、0.82 mm o 1) のベンゼン溶液 (4 m 1) Kn-Bu4 N+ Br (30mg) ≥50%NaOH 水溶液 (3 m 1) を加え、48時間還流した。濃塩酸を 加え中和した後、飽和NaHCO。水溶液を加え生成物 をEtOAc(20m1×2)で抽出した。抽出液を濃 縮し、残渣にMeOH(15m1)を加え生成する沈殿 物を濾取し、目的物である2-ヒドロキシ(2-オキ ソ) 体 (130mg、38%) を白色粉結晶として得

t. [0321] H NMR (CDC13, 300MH z) δppm: 1. 19 (br peak, 6H), 1. 43 (s, 3H), 2. 40-3. 20 (br p eak, 4H), 3.09 (d, J=13.5Hz, 1 H), 3. 58 (d, J=13. 5Hz, 1H), 4. 00 (s, 3H), 4.10 (s, 3H), 5.66 (s, 1H), 6.72-6.85 (m, 2H), 7. 05-7. 20 (m, 3H), 7. 58 (s, 1H), 7.64 (s.1H).

実施例98 化合物2の製造 [0322]

【化76】

【0323】グリコール酸エチル (210mg、2.0 mmol) のDMF溶液 (2m1) に室温で60%Na H (10mg、0. 25mmol) と2-クロロ体1 (130mg、0,30mmol) を加え80℃に加熱 撹拌した。1時間後、さらにグリコール酸エチル620 mg (5. 96mmol), 60%NaH (240m g、6.0mmol) および2-クロロ体1 (100m g、0.23mmo1) を加え室温で10分間撹拌し た。反応液に水とEtOAcを加え、水層を濃縮し、2 N NaOH水溶液 (5 m l) を加えた。室温で2時間 撹拌後、水層をE t₂O (10ml) で洗浄し10%ク エン酸水溶液 (20m1) を加え中和した。生成物をE tOAc (20m1×2) で抽出し、乾燥 (Na2 SO 。) 濃縮し、残渣をシリカゲルカラムクロマトグラフィ ーで精製し目的とする2-(カルボキシメチル)オキシ 体2(46mg、16%)を得た。

2: ¹H NMR (CDCl₃, 250MH₂) δ₁p₁ m: 1. 27 (t, J=7. 1H₂, 3H₃), 1. 55 (s, 3H₁), 3. 00-3. 25 (m, 5H₃), 3. 30 (d, J=15. 4H₂, 1H₁), 3. 70 (s, 3H₃), 3. 89 (s, 3H₃), 5. 00 (s, 2 H₃), 6. 90 (s, 1H₃), 6. 99 (s, 1H₃), 7. 10-7. 40 (m, 5H₃), 12. 55 (br s, 1H₃).

実施例99 【0324】 【化77】

Me O OM Me Me O

[0 3 2 6] ⁵H NMR (DMSO-d₆, 30 0 MHz) δ ppm: 1. 91 (s, 6 H), 3. 86 (s, 3 H), 4. 00 (s, 3 H), 7. 38 (s, 1 H), 7. 62 (s, 1 H), 7. 63 - 7. 80 (m, 4 H), 9. 05 (s, 1 H), 13. 35 (br.s.l.ft)

IR (KBr) v cm⁻¹: 3 4 3 4, 2 9 8 6, 2 9 4 0, 2 4 7 7, 2 2 3 4, 1 9 1 2, 1 7 3 0, 1 5 0 5, 1 4 3 0, 1 3 6 8, 1 2 4 0, 1 1 1 9, 1 0 7 3, 9 9 3, 9 1 8, 8 8 5, 8 0 1, 7 4 5.

m. p. 162-165°C

実施例100 【0327】 【化78】

[0329] H NMR (CDC1, +D, O, 30

IR (KBr) ν cm⁻¹: 3395, 2984, 2938, 2654, 2513, 2249, 2166, 1725, 1613, 1543, 1499, 1460, 1397, 1366, 1231, 1032, 706. m. p. 141-145℃ 実施例101 [0330]

[0~3~3~1] 実施何60で製造したカルボン酸(10~0 mg、0.2 1 mm o 1)のクロロホルム溶液(5 m l)を一10°に冷却し、1-B u OCO C 1 (2 7μ 1、0.2 1 mm o 1)と E t $_3$ N (3 0 μ 1、0.2 1 mm o 1)と E t $_3$ N (3 0 μ 1、0.2 1 mm o 1)と E t $_3$ N (3 0 μ 1、0.2 1 mm o 1)を加え、富富 E 3 の分かけて昇温し反応液を E C E E で表化した。 存機層を洗浄(Na E No E

 $\begin{bmatrix} 0 & 3 & 21 \end{bmatrix}^{1} H & NMR & (CDC 1_{a}, 3 & 0 & 0 & MH \\ z) & \delta ppm : 0. & 90 & (t, J=6.5 Hz, 3 \\ H), & 1. & 20-1. & 70 & (m, 26 H), 2. & 60 \\ (t, J=6.8 Hz, 2 H), 2. & 90 & (m, 4 \\ H), & 3. & 20 & (m, 2 H), 4. & 10 & (m, 4 H), 4. & 30 & (a, J=8.6 Hz, 2 H), 7. & 23 \\ (m, 5 H), & 7. & 38 & (s, 1 H), 7. & 4 & (s, 1 H), 9. & 05 & (s, 1 H), 7. & 4 & (s, 1 H), 9. & 05 & (s, 1 H), 7. & 4 & (s, 1 H), 9. & 05 & (s, 1 H), 18 & (film) & v cm^{-1} : 29 & 28, 2 & 21 & 4, 17 \\ 32, & 16 & 13, & 156 & 8, & 153 & 5, & 149 & 7, & 13 \\ 64, & 150 & 8, & 12 & 29, & 10 & 46, & 93 & 4, & 85 \\ 5, & 70 & 2. \\ Rf=0. & 6 & (\sim + \psi) : EtOAc=1:1, & Si1 \\ icagel & 60 & F_{284} & (MERCK) \\ \end{pmatrix}.$

【0337】実施例61で製造したアルコール体1 (35mg、0.086mmol) のジクロロメタン (2m

[0333] [化80]

[0 3 3 5] 1 H NMR (CDC 1 CD 2 L3 , 30 0 MH z) 3 3 3 2 p pm : 1 . 2 4 (t, 1 J = 7 . 0 Hz, 3 H) , 1 . 47 (t, 1 J = 7 . 0 Hz, 3 H) , 1 . 5 3 - 1 . 5 8 (m, 6 H) , 2 . 5 8 (m, 2 H) , 2 . 9 8 (m, 3 H) , 3 . 27 (m, 3 H) , 3 . 9 (q, 1 J = 7 . 0 Hz, 2 H) , 4 . 2 7 (q, 1 J = 7 . 0 Hz, 2 H) , 4 . 2 7 (q, 1 J = 7 . 0 Hz, 2 H) , 5 . 3 0 (br s, 2 H) , 7 . 10 - 7 . 4 5 (m, 7 H) , 9 . 0 0 (s, 1 H) .

 溶液に室温下で無水コハク酸(34mg、0.34 4mmo1)ジメチルアミノピリジン(52mg、0. 043mmol)、トリエチルアミン (35mg、0. 344mmol) を加えて撹拌した。8日後、反応溶液をシリカゲルカラムクロマトクラフィー (展開溶媒 日 e x ークロロホルム〜メタノール系)と懸洗 (溶媒、E t₂ O) で精製して目的物2 (17mg、39%)を得た。

目的物2

[0338] m. p. :175℃

 1 H NMR (CDC1 $_{3}$, 300MHz) δppm: 1. 43~1. 47 (m, 2H), 1. 79 (s, 3H), 2. 69 (s, 4H), 3. 42 (s, 2H), 4. 68-4. 75 (m, 1H), 4. 83-4. 91

【0340】実施側66で製造上たニトロビリミジン体 1 (457 mg、0.87 mmol)のエタノール (1 0 ml) 裕族に駆動粉末 (561 mg) とH₂ O (2 ml) を加え湿液した。5時間後、護適した後、母液にH₂O(50 ml)を加え、E t O A (200 ml)で抽出し、熱布塩水で洗浄、乾燥(Na₂SO4)、濃縮後得られた残渣をシリカゲルカラムクロマトグラフィー(Hex−EtOAc系)で精製し目的物2 (100 mg、23%)を得た。

-【0341】油状物質

¹H NMR (CDCl₃, 300MHz) δ ppm: 1. 26 (t, J=7. 2Hz, 3H), 1. 31 (t, J=7. 2Hz, 3H), 1. 38 (s, 3 H), 1. 75-1. 83 (m, 2H), 2. 00(m, 1H), 7. 22-7. 35 (m, 6H), 7. 46 (s, 1H), 8. 79 (s, 1H).

 $\begin{array}{l} 1R\ (KB\,r)\ v\ c\ m^{-1}: 34\,26\ ,\ 29\,8\,0\ ,\ 29\,8\\ 6,\ 27\,2\,8\ ,\ 25\,2\,3\ ,\ 23\,6\,3\ ,\ 22\,2\,3\,4\ ,\ 18\,9\\ 0,\ 17\,4\,0\ ,\ 16\,0\,9\ ,\ 15\,7\,4\ ,\ 14\,9\,7\ ,\ 14\,3\\ 7,\ 13\,7\,0\ ,\ 13\,14\ ,\ 12\,3\,6\ ,\ 11\,5\,5\ ,\ 11\,0\\ 9,\ 10\,8\,2\ ,\ 10\,6\,1\ ,\ 9\,5\,5\ ,\ 9\,2\,8\ ,\ 8\,3\,5\ ,\ 7\,4\,3\ ,\ 7\,0\,2\ ,\ 5\,8\,8\ ,\ 6\,6\,9\ ,\ 5\,1\,5. \end{array}$

実施例104

[0339] [他82]

【0342】 【化83】

[0343] 実施例8で製造したイソニペコテン酸体1 (250mg、0.5mmol)のDMF (4ml) 溶 液中に1ーペンタデカノール(171mg、0.75m mol)のDMF (2ml)溶液を加え楽温で撹拌した 中にトリエデルアミン(152mg、1.5mmo l)、1-ヒドロキシベンシドリアゾール(101m ∑g、0. 7 5 mm o 1)、N、N′ →ジシクロヘキシル カルボジイミド (129 mg、0. 625 mm o 1)を 米格下で加え、60℃で撹拌した。3 時間後、渡圧濃縮 してNa HCO。終和水溶液を加え、E t O A c で抽出 した後、飽和食塩木で洗浄、吃燥(Na 2 SO 4)、 類して残な (0. 63 g)を得た。これをシリカゲルカ ラムクロマトグラフィー (展開溶媒Hex-EtOA c 系)、懸洗 (溶媒、Et₂ O) で精製して目的物の長鎖 エステル体2 (135 m g、39%) を得た。 【0344】長鎖エステル体2

【0344】長鎖エステル体2 油状物質

 $^{1} H \ NMR \ (CDCl_{3},\ 300MHz)\ \delta p pm; \\ 0.\ 88\ (t,\ J=6.\ 9Hz,\ 3H)\ ,\ 1.\ 26-\\ 1.\ 30\ (m,\ 26H)\ ,\ 1.\ 45\ (s,\ 3H)\ ,\ 1.\\ 50\ (t,\ J=7.\ 2Hz,\ 3H)\ ,\ 1.\ 56\ (t,\ J=\\ 7.\ 2Hz,\ 3H)\ ,\ 1.\ 76-1.\ 88\ (m,\ 2H)\ ,\ 2.\ 32-\\ 2.\ 60\ (m,\ 3H)\ ,\ 3.\ 05\ (d,\ J=13.\ 5Hz,\ 1)\\ z,\ 1H)\ ,\ 3.\ 28\ (d,\ J=13.\ 5Hz,\ 1)\\ H)\ ,\ 3.\ 52\sim 3.\ 30\ (m,\ 1H)\ ,\ 3.\ 43-$

IR (neat) vcm⁻¹: 2926, 2855, 28 09, 2751, 2361, 2213, 1890, 1 32, 1613, 1497, 1456, 1397, 13 64, 1304, 1262, 1231, 1202, 11 28, 1046, 959, 934, 855, 760, 7 02, 440. 紫編例 106

【0345】 【化84】

【0346】 実施例8で製造したイソニペニチン酸体1 (26 8 mg、0.5 4 mm o 1) のTHF (20 m 1) 溶液に一ちで下でクロルギ酸イソブチルエステル (8 8 mg、0.6 5 mm o 1) のTHF (1 m 1) 溶液を満下した。10分間減拌の後トリエチルアミン(6 6 mg、0.6 5 mm o 1) のTHF (1 m 1) 溶液を満下して10分間撹拌した後、28 %アンモニア水溶液 (4 m 1) を満下した。10分後、減圧衰縮して得られた残渣にNa HCO₃ 乾和水溶液(10 m 1) を洗た tOA c (30 m 1) で掛出、飽和食塩水 (10 m 1) で洗冷、乾燥 (Na₂ SO₄)、減圧衰縮して租結 庙 (278 m g) を得た。これを懸洗(溶煤 E t OA c (3 %%)を得た。

【0347】白色結晶

m. p. :198℃

¹H NMR (CDCl₃, 300MHz) δppm: 1. 45 (s, 3H), 1. 49 (t, J=6.9Hz, 3H), 1. 56 (t, J=6.9Hz, 3H), LO 2 2 0 4 (m, 4H), 2. 20-2. 30 (m, 1H), 2. 42-2. 46 (m, 1H), 2. 53-2. 57 (m, 1H), 3. 05 (d, J=1 3.5Hz, 1H), 3. 28 (d, J=13.5Hz, 1H), 3. 30-3. 35 (m, 1H), 3. 49-3. 53 (m, 1H), 4. 02 (q, J=6.9Hz, 2H), 4. 28 (q, J=6.9Hz, 2H), 5. 39 (s, 1H), 5. 51 (s, 1H), 7. 22-7. 29 (m, 5H), 7. 34-7. 37 (m, 2H), 9. 07 (s, 1H).

IR (KBr) vcm⁻¹: 3304, 3135, 298 0, 2938, 2814, 2367, 2209, 169 0, 1611, 1564, 1535, 1497, 145 8, 1360, 1310, 1231, 1109, 102 8, 932, 858, 826, 762, 704, 65 4.

実施例107

【0348】 【化85】

【0349】実施例8で製造したカルボン酸体1 (25 0 mg、0.50 mm o 1) のN、N ージメチルボルムアミド溶液 (6 m 1) にイングロゼルアミン (4 4 mg、0.75 mm o 1)、トリエチルアミン (15 2 mg、15 mm o 1)、トリエチルアミン (15 2 mg、15 mm o 1)、トリエチルアミン (15 2 mg、15 mm o 1)、トリエチルアミン (15 2 mg、15 mm o 1)、トリスシン ロカルボジイミド (12 9 mg、0.6 2 5 mm o 1)を臨れて順次加えた後、50℃で撹拌した。1時間後、減圧薬権した後、Na HCO。約和水溶液を加え酢酸エチルマ掘出し、約和食塩水で洗浄、乾燥(Na 2 S 4 Mm・グラフィー (溶薬:酢酸エチルーメタ) ール系)、製売 (溶薬:メタノールージエチルエーテル系)で精製して目的物と(6 5 mg、2 4 %)を得た

[0350] m. p. :149°C

¹H NMR (CDCl₃, 300MHz) δppm: 1. 14 (d, J=6.6Hz, 6H), 1. 45 (s, 3H), 1. 49 (t, J=7.2Hz, 3

実施例108 化合物5の製造

[0351]

【化86】

下記スキームで製造を行なった。

【0352】1) 木素化ナトリウム(460mg、1 15mmol、60% in oil)を乾燥ヘキサンで洗浄し、DMF(30ml)を加え、米溶上撹拌した。化合物1(1.90g、9.8mmol)を加え窓温で30分間撹拌後、プロパギルプロマイド(0.8ml、1,0.6mmol)を米冷下加えた。窓道で1時間 機件後、米希下水を加え反応を停止させ、生成物をエーテル (60ml) で抽出した。抽出液を乾燥、濃縮し残 渣をシリカゲルカラムクロマトグラフィーで精製し、化 合物 2 (1.51g、66%) を得た。

2: ^{1}H NMR (CDC1 $_{3}$, 300MHz) δ p p m: 1.46 (s, 9H), 2.24 (t, J=2.4

Hz, 1H), 4.36 (d, J=2.4Hz, 2H), 7.10-7.50 (m, 5H).

【0 35 31 2) PdC l₂ (PPh₃)₂ (10 mg、0.01 4 mmo 1) とPPh₃ (15 mg、0.05 6 mmo 1)、のTHF溶液 (7 m1) を蜜鼠でしばらく撹拌した後、これに化合物1 (250 mg、1.1 mmo 1)、4 - ヨードー6,7 - ジメトキシキナソ リン(3) (14 4 mg、0.5 mmo 1)、Cu I (10 mg、0.05 3 mmo 1) および昆 t₃ N

(O. 5 ml.)、3. 6 mm o l) を加え 1 時間 愛滅後、 室温で一晩放置した。反応被にNH₄ C l 水溶液、N a HCO₃ 熱和水溶液を加え、生成物をE t O A c で抽出 した。抽出液を乾燥、濃縮し、残渣をシリカゲルカラム クロマトグラフィーで精製し化合物4 (100 mg、5 0%) を得た。

4: ¹H NMR (CDCl₃, 300MHz) δpp m:1.46 (s, 9H), 3.96 (s, 3H), 4.06 (s, 3H), 7.2 0-7.50 (m, 7H), 9.09 (s, 1H). [0354]3) 化合物3 (100mg, 0.245m mol) を状态比約101 HCl AcOEt 容確 (2m1) を加えた。操作しながら30分以上かけて室 臨に昇温し、反応液を濃縮した。Et₂O(10m1) を加え、生成物を連取した。実施をCH₂Cl₂(40 m1) - Na HCO₃ 飽和水溶液(20m1) に分配 し、CH₂Cl₂屋を乾燥、濃縮した。得られる残液を EtOAc-Et₂Oで懸洗し、目的とする化合物5 (40mg、53%)を得た。

IR (KBr) $v cm^{-1}$: 3395, 2182, 1790, 1665, 1576, 1503, 1431, 1385, 1300, 1238, 1115, 974, 845, 758.

実施例109 【0355】 【化87】

【0356】ジイソプロピルアミン (43mg、0.43mmol) のTHF溶液 (2mM) に-78℃にて1.6M nBuLiへキサン溶液 (0.268ml、0.43mmol) を潤下した。これを実施例33で得たアルコール体(100mg、0.287mmol) のTHF (1ml)溶液に加え、塩温とした後、無木フタル酸(44mg、0.3mmol) を加えた。反応液に塩化アンモニウム水溶液を加え、前酸エチルで増加した。有機勝を食塩水で洗浄し、液圧下溶媒を倒蛋した。残液をカラムクロマトグラフィーで精製し、Et2〇を注ぎ生じた結晶を濾取し、半エステル体(16.7mg、0.034mmol、収率12%)を得た。以後、

この半エステル合成法をエステル化名法と記す。 $[0\ 3\ 5\ 7]$ 1 H NMR(CDC1 $_{3}$, $2\ 50$ MH $_{2}$ NMR(CDC1 $_{3}$, $2\ 50$ MH $_{2}$ NMP $_{3}$ NMP $_{3}$ NMP $_{3}$ NMP $_{4}$ NMP $_{4}$ NMP $_{5}$ NMP

実施例110 【0358】 【化88】

$$\begin{array}{c} N \\ M \in O \\ OM \in \end{array} \longrightarrow \begin{array}{c} N \\ M \in O \\ OM \in \end{array} \longrightarrow \begin{array}{c} N \\ M \in O \\ OM \in \end{array} \longrightarrow \begin{array}{c} OCO \\ COOH \\ OM \in \\ OM \in \end{array}$$

【0359】実施例33で得たアルコール体(100mg、0.29mmol)と無水エハク酸(45mg、0.29mmol)をエステル化A法にて反応を行い、目的物(19mg、0.042mmol、15%)を得た。

¹H NMR (CDCl₃, 250MHz) δppm: 1. 83 (s, 3H), 2. 68-2. 79 (m, 4 H), 3. 38-3. 52 (m, 2H), 3. 90 (s, 3H), 4. 12 (s, 3H), 7. 15 (s, 1H), 7. 27-7. 43 (m, 6H), 8. 69 (s, 1H). 実施例111 [0360] 【化89】

【0 3 6 1】実施例 2 2 で得たアルコー 5 体 (1 2 0 m g、0。3 3 m m o 1) と無水コハク酸 (3 3 m g、0。3 3 m m o 1) をエステル化 A 法にて反応を行い、目的物 (8 m g、0。0 1 7 m m o 1、5 %) を得た。 1 H NMR(CDCl $_3$, 2 5 0 M H $_2$) 5 p p m : 1、8 2(s,3 H) , 2 . 6 3 - 2 . 7 5 (m, 4 H) , 3 . 3 7 (s,2 H) , 3 . 9 0 (s,3 H) , 4 . 1 3 (s,3 H) , 6 . 7 0 - 7 7 (m, 2 H) , 7 . 1 6 (s,1 H) , 7 . 3 3 \sim 7 . 3 8 (m, 2 H) , 7 . 4 5 (s,1 H) , 8 . 7 2 (s,1 H) , 7 . 4 5 (s,1 H) , 8 . 7 2 (s,1 H) , 7 .

実施例112

【0362】 【化90】

【0365】集範例112で得たアルコモル体(720mg、1.83mmol)のCH₂Cl₂溶液(5mmol)に、無木エハク酸(400mg、4mmol)、4 ージメチルアミノビリジン(50mg、0.41mmol)、トリエチルアミン(1.5ml、10.8mmol)を加全速位で18時間無料にた。反応接をクロロホルムと1N塩酸水溶液に分配し、有機層を飽和食塩水で洗浄し、Ns₂SO₄上で燃機後減圧下溶療を留去し、残産をカラムクロマトクラフィーにより精酸後、エーテルーへキサン(1:1)溶媒にて、懸洗し(215mg、0.434mmol、収率24%)で半エステル 依を得た。

【0366】以後、この半エステル合成法をエステル化 B法と記す。 単蓄色結晶

m. p. 129-131°C

【03 6 3】 プロバルジルアルコール体 (32) と 4 − フルオロフェニルアセトンの3:1 混合物 (56 6m g、2.4 mm o1) とクロロキナゾリン (21) (5 00 mg、1.98 mm o1) を実施例7と回線の方法 で反応を行い、目的化合物 (720 mg、92%) を得た。

¹H NMR (CDCl₃, 250MHz) δppm: 1. 52 (t, J=7.0 Hz, 3 H), 1. 57 (t, J=7.0 Hz, 3 H), 1. 75 (s, 3 H), 3. 07-3. 22 (m, 2 H), 4. 06 (q, 2 H, J=7.0 Hz), 4. 27 (q, 2 H, J=7.0 Hz), 7. 01 (dd, J=8. 7, 8. 7 Hz, 2 H), 7. 14 (s, 1 H), 7. 26 (s, 1 H), 7. 38 (dd, J=8. 7, 5. 4 Hz, 2 H), 9. 06 (s, 1 H).

実施例113

【0364】 【化91】

実施例114 【0367】 【化92】

【0 3 6 8】プロバルジルアルコール (3 a e) (3 2 0 mg、2. 0 mm o 1) と、クロロキナグリン (2 j) (5 0 0 mg、1. 9 8 mm o 1) を実施例7 と同様の方法で反応を行い、目的化合物 (5 9 4 mg、1. 5 6 mm o 1、8 0 %) を得た。

¹H NMR (CDCl₃, 250MHz) δ ppm:

【0370】実施例114で得たアルコール体(300 mg、0.80mmol)と無木コハク酸(80mg、0.80mmol)をエステル化B法にて反応を行い目的物(28mg、0.059mmol、7.4%)を得た。

白色結晶

m. p. 148~150℃

¹H NMR (CDCl₃, 300MHz) δppm: 1. 52-1. 58 (m, 6H), 1. 81 (s, 3 H), 2. 60-2. 80 (m, 4H), 3. 35 $\begin{array}{l} 3.\ 50\ (m,\ 2H)\ ,\ 7.\ 16\ (s,\ 1H)\ ,\ 7.\ 2\\ 6-7.\ 40\ (m,\ 6H)\ ,\ 8.\ 70\ (s,\ 1H)\ ,\\ 1R\ (KBr)\ vcm^{-1}: 3427,\ 2984,\ 293\\ 7,\ 2363,\ 1612,\ 1577,\ 1500,\ 146\\ 7,\ 1439,\ 1400,\ 1371,\ 1059,\ 93\\ 9,\ 827,\ 706\\ \frac{82}{7},\ \frac{1}{7}$

1. 50 (t, J=7. 0Hz, 3H), 1. 56 (t, J=7. 0Hz, 3H), 1. 68 (s, 3 H), 3. 12 (d, J=13. 3Hz, 1H), 3. 22 (d, J=13. 3Hz, 1H), 4. 03 (q, J=7. 0Hz, 2H), 4. 27 (q, J=7. 0H

z, 2H), 7, 15 (s, 1H), 7, 27-7, 3

2 (m, 4H), 7, 39-7, 44 (m, 2H),

9. 07 (s. 1H).

実施例115

[0369]

【化93】

【0371】

$$c_1 \overset{\circ}{\longleftrightarrow} 0 \xrightarrow{} c_1 \overset{\circ}{\longleftrightarrow} c_1 \xrightarrow{} \epsilon_1 \overset{\circ}{\longleftrightarrow} c_1 \xrightarrow{} c_1 \overset{\circ}{\longleftrightarrow} c_1 \xrightarrow{$$

【0372】3、4ージクロロフェニルアセトン(1g、6、6.0mmo1)のTHF(10ml)溶液にエチルマグネシウムクロリド(0.5M in THF12ml、6mmo1)を加えた。これに塩化アンモニウム水溶液を加えた後、酢酸エチルで油出後、有機扇を鉱下洗浄し、弧酸ナトリウムで燃や減圧下溶媒を留去した。出発物質3、4ージクロロフェニルアセトンとプロバルジルアルコールの混合物(NMR比、1:2)(1.21g)が得られた(6.5%)。この混合物(200mg、0.64mmo1)とクロロキナゾリン(2;)(176mg、0.70mmo1)を実施例と同様の反応を行い、カップリング生成物とDMFの1:1混合物(164mg、49%)を例を

 $\begin{bmatrix} 0 \ 3 \ 7 \ 3 \end{bmatrix}^{1} H \quad \stackrel{\text{NMR}}{\text{MR}} \ (\text{CDCl}_{3} \ , \ 2 \ 5 \ 0 \ \text{MH} \\ z) \ \delta p p m : 1. \ 5 \ 2 \ (t, \ J = 6.9 \ 9 \ \text{Hz} \ , 3 \ \text{H}) \ , 1. \ 7 \ 4 \ (s, \ 3 \ \text{H}) \ , 3. \ 0 \ 7 \ (d, \ J = 13.8 \ \text{Hz} \ , 1 \ \text{H}) \ , 4. \ (s, \ 3 \ \text{H}) \ , 3. \ 0 \ 7 \ (d, \ J = 13.8 \ \text{Hz} \ , 1 \ \text{H}) \ , 4. \ (s, \ 3 \ \text{H}) \ , 3. \ 14 \ (d, \ J = 13.8 \ \text{Hz} \ , 1 \ \text{H}) \ , 4. \ 26 \ (q, \ J = 7.0 \ \text{Hz} \ , 2 \ \text{H}) \ , 4. \ 26 \ (q, \ J = 7.0 \ \text{Hz} \ , 2 \ \text{Hz} \ , 1 \ \text{H}) \ , 7. \ 23 \ (m, \ 2 \ \text{H}) \ , 7. \ 36 \ (d, \ J = 8.2 \ \text{Hz} \ , 1 \ \text{H}) \ , 7. \ 51 \ (d, \ J = 1.8 \ \text{Hz} \ , 1 \ \text{H}) \ , 9. \ 0 \ 5 \ (s, \ 1 \ \text{H}) \ .$

実施例117 【0374】 【化95】

【0375】実施例116で得たアルSLル体とDMF の混合物 (164mg) をエステル化B法で反応を行 い、目的物 (122mg、65%) を得た。

淡黄色結晶 m. p. 124~126℃

¹H NMR (CDC1₃, 300MHz) δppm: 1. 54 (t, J=6. 9Hz, 3H), 1. 58 (t, J=7.0Hz, 3H), 1.82(s, 3)H), 2.60-2.88 (m, 4H), 3.31

(d, J=13.8Hz, 1H), 3.39 (d, J= 13.8 Hz, 1H), 4.14 (q, J=6.9 H z, 2H), 4, 28-4, 38 (m, 2H), 7, 1 7 (s, 1H), 7, 24 (dd, J=8, 1, 1, 8 Hz, 1H), 7, 38 (s, 1H), 7, 41 (d, J=8. 1 Hz, 1 H), 7. 47 (d, J=1. 8 H z, 1H), 8, 72 (s, 1H),

IR (KBr) v cm⁻¹: 3427, 2984, 293 7, 2364, 2235, 1741, 1612, 157 5, 1500, 1469, 1371, 1236, 115 3, 1032, 933, 825, 652, 567. 実施例118

[0376]

【0379】実施例118で得たカップリング生成物を 含む油状物質 (180mg) と無水コハク酸 (163m g. 1.63mmol) をエステル化B法にて反応を行 い、目的物 (65mg、0.14mmol、実施例11 7の21より26%) を得た。

淡黄色結晶

m. p. 152~154℃

¹H NMR (CDCl₃, 250MHz) δppm: 1.81 (s. 3H), 2.60-2.85 (m. 4 H), 3.36 (s, 2H), 6.14 (s, 2H), 7, 02 (t, I=8, 6Hz, 2H), 7, 05 (s, 1H), 7. 27 (s, 1H), 7. 31 (t, J=8.6Hz, 1H), 7.34 (t, J=8.6H z, 1H), 8.96 (s, 1H).

IR (KBr) v cm⁻¹: 3425, 3055, 293 2, 2364, 2237, 1901, 1736, 161 6, 1545, 1510, 1467, 1367, 121

【0377】クロロキナゾリン(2i) (100mg、 0. 55mmol) とプロパルジルアルコール (3 z) (157mg、0.664mmol) を実施例7と同様 の方法で反応を行いカップリング生成物を含む油状物質 (180mg) を得た。

¹H NMR (CDC1₃, 250MHz) δppm: 1. 75 (s, 3H), 3. 05-3. 20 (m, 2 H), 6, 19 (s, 2H), 7, 04 (dd, I= 8. 5, 8. 5 Hz, 2 H), 7. 13 (s, 1 H), 7. 38 (dd, J=8. 5, 5. 5Hz. 2H). 9.04 (s. 1H). 実施例119

[0378] 【化97】

9. 1 f 5 3. 1066, 1035, 906, 877. 841, 652, 611, 565.

実施例120 [0380] [42.98]

【0 3 8 1】合成例 1 3 7 で得たプロパルジルアルコー ル3w (280mg, 1, 19mmol) とクロロキナ プリン (2 j) (250mg、0.99mmol)を、 実施例7と同様の方法で反応を行い、カップリング生成 物 (530mg、含溶媒AcOEt) を得た。

¹H NMR (CDC1₂, 250MHz) δppm:

1. 43 (t, J=7. 0Hz, 3H), 1. 55 (t, J=7.0Hz, 3H), 3.19 (d, J=1 3. 4 Hz, 1 H), 3. 26 (d, J=13. 4 H z, 1H), 3.79 (q, J=7.0Hz, 2H), 4. 24 (q, J=7. 0Hz, 2H), 6. 90

【0383】実施例120で得た生成物(530mg) を、無水コハク酸 (150mg、1.5mmol) とエ ステル化B法にて反応を行い、目的物(107mg、 0. 19mmol、実施例119の2jより19%)を 得た。 白色結品

m. p. 156. 5~158℃

¹H NMR (CDCl₃, 250MHz) δ ppm: 1. 51 (t, J=6. 9Hz, 3H), 1. 54 (t, I=6, 9Hz, 3H), 2, 61-2, 73(m, 4H), 3.44 (s, 4H), 4.11 (q, I=6.9Hz, 2H), 4, 18 (a, I=6.9H z, 2H), 7.07 (s, 1H), 7.21 (s, 1 H), 7. 29-7. 41 (m, 10H), 8. 27 (m. 1H).

IR (KBr) v cm⁻¹: 3429, 2982, 293 5, 2498, 2233, 1919, 1739, 161 2, 1575, 1500, 1471, 1439, 137 1, 1317, 1238, 1163, 1039, 93 3, 877, 827, 746, 700, 565. 実施例122

[0384] 【化100】

【0387】実施例122で得たカップリング生成物 (588mg、1,5mmol)と、無水コハク酸(2 25mg、2, 25mmol) とエステル化B法にて反 応を行い、目的物 (347mg、0,707mmo1、 47%) を得た。

白色結晶

m. p. 158~159℃ ¹H NMR (CDC1₃, 250MHz) δppm:

1. 22 (t, J=7. 3Hz, 3H), 1. 55 (t, J=6, 9Hz, 3H), 1, 60 (t, J= (s, 1H), 7. 22-7. 34 (m, 7H), 7. 41-7.46 (m, 4H), 9.04 (s, 1H). 実施例121 [0382] 【化99】

【0385】合成例38で得たプロパルジルアルコール 3 x (315mg、1,8mmol) とクロロキナゾリ ン (2 j) (380mg、1.5mmol) を、実施例 7と同様の方法で反応を行い、カップリング生成物 (5 88mg、1.5mmo1、定量的)を得た。

¹H NMR (CDCl₃, 250MHz) δppm: 1. 27 (t, J=7. 4Hz, 3H), 1. 50 (t, J=7.0Hz, 3H), 1.56 (t, J= 7. 0 Hz, 3 H), 3. 07 (d, J=13. 4 H z, 1H), 3.23 (d, J=13.4Hz, 1 H), 4.04 (q, J = 7.0 Hz, 2H), 4.2 7 (q, J=7.0Hz, 2H), 7.19 (s, 1 H), 7, 25-7, 36 (m, 4H), 7, 40-7. 44 (m, 2H), 9, 06 (s, 1H), 実施例123

[0386] 【化101】

6. 9 Hz, 3 H), 2. 04 (dq, J=7. 3, 9. 3 Hz, 2 H), 2. 58-2. 75 (m, 4 H), 3, 42 (d, I=13, 7Hz, 1H), 3, 57 (d, I=13, 7Hz, 1H), 4, 05-4, 13 (m, 2H), 4.28-4.46 (m, 2H), 7. 16 (s, 1H), 7. 27-7. 30 (m, 5 H), 7.48 (s, 1H), 8.66 (s, 1H). IR (KBr) v cm⁻¹: 3429, 2982, 293 7, 2363, 1739, 1612, 1577, 150 0, 1467, 1439, 1373, 1317, 123 8, 1170, 1035, 978, 939, 702, 6 52, 567.

実施例124

[0388]

【化102】

【0389】プロバルジルアルコール (3Y) (1.7g, 9.8mmol) とクロロキナゾリン (2j) (2.5g, 9.8mmol) を、実施例7と同様に反

B t O

【0391】実施例124で得た生成物(950mg、 2.43mmol)を無水コルク酸(500mg、5m mol)とエステル化B法にで反応を行い、目的物(6 42mg、1.31mmol、54%)を得た。 白色結晶

mp. 123~125℃

応を行い、カップリング生成物 (2.55g、6.5mmol、67%) を得た。

実施例125 【0390】

【化103】

6. 9Hz, 2H), 7. 13-7. 35 (m, 5 H), 7. 36 (s, 1H), 7. 54 (s, 1H), 9. 03 (s. 1H).

1R (KBr) vcm⁻¹: 3416, 2984, 293 7, 2507, 2366, 2233, 1896, 174 1, 1612, 1575, 1500, 1467, 137 1, 1317, 1236, 1153, 1087, 103 2, 933, 827, 748, 700, 567, 54 3, 412.

実施例126

【0392】 【化104】

【0393】カルボン酸(実施例79で製造)(350 mg、0.69mmol)、Lープラニンメチルエステル塩酸塩(96 mg、0.69mmol)、1ー(3-ジメチルアミノブロビル)-3-エチルカルボジイミド塩酸塩(133 mg、0.69mmol)、1ーヒドロ

キシベンゾトリアゾール (93mg、0.69mmo 1)、トリエチルアミン (96 µ I、0.69mmo 1)を、ジクロロメタン (2m1)に溶解させ、12時 同室温で撹拌した。反応液に塩化アンモニウム水溶液を 加え、ジクロロメタンで抽出した。有機屬を飽和食塩水 で洗浄した後、無木配機ナトリウムで放操し、減圧下落 縦を目去した。接流をシリカゲルカラムクロマトグラフ ィーにより情製し、アミド (310mg) を得た。これ (250mg) を実施例8と同様に反応を行い、目的物 (159mg、0.28mmol、50%)を収率で得 た。

【0394】黄色結晶

m. p. 162~172℃

 $\begin{array}{l} 4.\ 18\ (m,\ 3H)\ ,\ 4.\ 25\ (q,\ J=6.\ 9H\\ z,\ 2H)\ ,\ 7.\ 10\ (d\ d,\ J=8.\ 9,\ 8.\ 9H\\ z,\ 2H)\ ,\ 7.\ 25\ (s,\ 1H)\ ,\ 7.\ 32-7.\ 4\\ 0\ (m,\ 3H)\ ,\ 7.\ 62-7.\ 66\ (m,\ 1H)\ ,\\ 9.\ 00\ (s,\ 1H)\ .\\ 1R\ (KBr)\ v\ cm^{-1}: 3406,\ 2984,\ 293\\ 5,\ 2812,\ 2363,\ 2214,\ 1612,\ 149\\ 8,\ 1458,\ 1396,\ 1365,\ 1305,\ 123\\ 0,\ 1157,\ 1109,\ 1043,\ 958,\ 933,\\ 854,\ 825,\ 653,\ 569,\ 424.\\ \\ {\it \cancel{\pm}}$

Et CONH COOR

【0396】カルボン酸(実施例60で製造) (400 mg、0.84mmol)、L-アラニンメチルエステ ル塩酸塩 (117mg、0.84mmol)、1-(3 ージメチルアミノプロピル) -3-エチルカルボジイミ ド塩酸塩 (161mg、0,84mmol)、1-ヒド ロキシベンゾトリアゾール (114mg、0,84mm o1)、トリエチルアミン(118 µ 1、0、84 mm o 1) を、ジクロロメタン (2 m 1) に溶解させ、16 時間撹拌した。反応液に塩化アンモニウム水溶液を注 ぎ、クロロホルムで抽出した。有機層を飽和食塩水で洗 浄後、無水硫酸ナトリウムで乾燥させ、減圧下溶媒を留 去した。残渣をシリカゲルカラムクロマトグラフィーに より精製し、アミド体 (440mg) を得た。これ (4 30mg) を実施例8と同様に反応を行い、目的物(1 06mg、0.19mmol、24%) を得た。 【0397】単黄色結晶

m. p. 129~142℃

 3 (s, 1H), 7. 34-7. 40 (m, 2H).
1R (KBr) vcm⁻¹: 3406, 2982, 293
5, 2361, 2341, 2214, 1612, 149
8, 1458, 1437, 1396, 1365, 130
7, 1230, 1109, 1043, 933, 854,
763, 702, 669, 569, 420.

1) [0398] [(k106]

[0395]

[化105]

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{NH}_2 \\ \\ \text{MeO} \\ \\ \text{NH}_2 \\ \\ \text{MeO} \\ \\ \text{NH}$$

【0399】4,5-ジメトキシアントラニル酸メチル エステル(51.85g、264mmol)にホルムア ミド(264ml)を加え、170でで10時間反応さ せた。冷却後水を加え、生成する洗服物を濾過し、残液 を水で洗浄し、6,7-ジメトキシキナブリンー 4ーオ ン(34.52g、63%)を得た。 ¹H NMR (CDCl₃, 300MHz) δppm: 3.87 (s, 3H), 3.90 (s, 3H), 7.1 3 (s, 1H), 7.44 (s, 1H), 7.98 (s, 1H), 12.04 (br s, 1H).

【0400】2) 6、7ージメトキシキナゾリンー4ー オン (34.5g、167mmol) にトルエン (34 0ml) およびPOCl3 (56.44g、368mm o1)を加え3時間還流させた。減圧下、溶媒を留去し 氷水を加えた後、K2 CO3を水層がアルカリ性になる まで加えクロロホルム (500m1×2) で抽出した。 抽出液を濃縮し、残渣をエーテルで懸洗し標類化合物

(31.09g、83%)を得た。

2 f: 1H NMR (CDC13, 300MHz) δp pm: 4. 07 (s, 3H), 4. 08 (s, 3H), 7. 34 (s, 1H), 7. 40 (s, 1H), 8. 8 7 (s, 1H).

合成例20 4,6,7-トリクロロキナゾリン(2 g) の製造

[0401]

【化107】

【0402】文献記載の方法 (Synth. Commu n. 1992, 22, 3067-3074) と同様な方 法で4,5-ジクロロアントラニル酸(1)を製造した (収率85%)。1 (2g、11.7mmol)とホル ムアミド (5 m 1) を200℃で12時間加熱還流し た。反応液を水で希釈し生じた結晶を濾取し、減圧下乾 燥し、結晶 (3, 7 g) を得た。これをトルエン (20) m1) 混液としオキシ塩化リン (2.2m1、23.6 mmol) を加え、4時間加熱還流した。減圧下、反応 液を濃縮し、炭酸水素ナトリウム水溶液を注ぎ、クロロ ホルムで抽出した。不溶物をセライトを用いて濾去した 後、有機層を飽和食塩水で洗浄し、硫酸ナトリウムで乾 燥後、減圧下溶媒を留去し、4,6,7-トリクロロキ ナゾリン (2g) (683mg、25%) を得た。 2 g: 1H NMR (DMSO-de, 250MHz) δppm: 8. 50 (s, 1H), 8. 54 (s, 1 H), 9.18 (s, 1H). 合成例21 2-アミノー4-クロロー6、7-ジメト

キシキナゾリン (2 h) の製造 [0403] 【化108】

【0404】1) 4,5-ジメトキシアントラニル酸メ チル(1)(2.11g、10.0mmol)のメタノ ール溶液 (20ml) を還流下撹拌しながらH。NCN (0.40g、9.5mmol) と濃塩酸(0.1m 1)を2時間ごとに加え、計10回加えた。濃塩酸 (1.0ml)を加え、約30分間撹拌した後、氷冷し た。生成物を濾別し、冷水(10ml)、メタノール (10ml)、Et₂O(10ml)で洗浄、減圧下乾 燥し、2-アミノ-6、7-ジメトキシキナゾリン-4 -オン(4h)(1.92g、86%)を得た。 [0405] 4h: 1H NMR (DMSO-da, 2 50MHz) δppm: 3.84 (s, 3H), 3.8 9 (s, 3H), 6.99 (s, 1H), 7.34 (s, 1H), 8.38 (br s, 2H), 12.7 0 (br s, 1H).

2) 上記で得た化合物 4 h (1.916g、8.62m

mol), POCl3 (13ml), Me2 NPh (0.26ml)を2時間還流後濃縮し、氷冷下氷水を 残渣に加えた。生成する固体を濾別し、10%Na2 C O。水溶液-THFに分配し、THF層を分離した。水 層を数回THFで抽出し、合わせた抽出液を乾燥、濃縮 した。残渣をシリカゲルカラムクロマトグラフィーで精 製し目的とする2-アミノ-4-クロロ-6, 7-ジメ トキシキナゾリン (2h) (580mg、28%) を得

2 h; ¹H NMR (CDCl₃, 300 MHz) δp pm: 3. 99 (s, 3H), 4. 00 (s, 3H), 5. 06 (br s, 2H), 6. 93 (s, 1H), 7. 23 (s, 1H).

合成例22 2-アミノ-4-クロロ-6, 7-ジエト キシキナゾリンの製造

1)

【0406】 【化109】

【0407】合成例22と同様な操作で反応を行ない、 生成物を識別し、これを7%アンモニア水に懸濁させ、 しば6く撹拌後、濾取、乾燥し、2一アミノー6,7一 ジエトキシキナゾロンを得た(収率88%)。

¹H NMR (DMSO-d₆, 300MHz) δpp m:1.34 (t, J=7.2Hz, 3H), 1.36 (t, J=7.2Hz, 3H), 4.02 (q, J= 6.9Hz, 2H), 4.09 (q, J=6.9Hz, 2H), 6.16 (br s, 2H), 6.66 (s, 1H), 7.24 (s, 1H), 11.80 (br s, 1H), 5.14

2)

[0408] 【化110】

[0412] Methyl 4,5-methylen edioxy-2-Nittrobenzoate(1) (4,5g,20.0mmol)のMeOH(20ml) -EtOAc(40ml) 溶液に10%パラジウムカーボン(170mg)を加え水素雰囲気下-晩撹拌した。不溶物を濾過し、漉液を漉縮して2(2.99g、定量的)を得た。

2: ¹H NMR (CDCl₃, 300MHz) δ pp m:3.82 (s, 3H), 5.73 (br s, 2 H), 5.88 (s, 2H), 6.16 (s, 1H), 7.25 (s, 1H).

【0413】2を合成例19と同様な操作を行ない6, 7ーメチレンジオキシーキナソリンー4ーオン (4 i) (67%) および4ークロロー6, 7ーメチレンジオキ シキナソリン (2 i) (16%)を得た。 4 i: 'H NMR (DMS〇一d₆, 250MH₂)

δ p p m : 6. 20 (s, 2H), 7. 12 (s, 1

【0409】2ーアミノー6,7ージエトキシキナゾロン(5.55g、22.25mの1)、N,N′ージメチルアニリン(7m1)、POCl₃(7.3m1、78.3mm01)をトルエン(100m1)に溶解し、2時間遷流させた。反応液を濃縮後、残流に氷木、NaHCO3水溶液を加えともOAcで抽出(200m1×4)し、抽出液を転削NaHCO3が増減を残冷、濃縮後シリカゲルカラムクロマトグラフィーで特製し、目的とする4ークロロー6,7ージエトキシキナゾリン(370mg、6.2%)を構た。

[0410] ¹H NMR (CDCl₃, 300MH z) δppm: 3.99 (s, 3H), 4.00 (s, 3H), 5.10 (br s, 2H), 6.93 (s, 1H), 7.23 (s, 1H).

¹³C NMR (CDCl₃, 75MHz) δppm:5 6. 1, 56. 3, 103. 6, 104. 6, 113. 4, 147. 9, 151. 0, 157. 2, 158. 3, 160. 2

合成例23 4-クロロ-6,7-メチレンジオキシキナゾリン(2i)の製造

[0411] [(E111]

H), 7. 41 (s, 1H), 7. 98 (s, 1H), 12. 20 (br s, 1H).

合成例24 4-クロロー6, 7-ジエトキシキナゾリン3の合成

【0414】 【化112】

【0415】目的物4-クロロ-6,²ブージエトキシキナゾリン(2j)は上に示す様に出発物質アントラニル

酸メチルエステル体1から2段階の反応で合成した。 1) 6, 7ージエトキシキナゾリン-4ーオン(4j) の合成

アントラニル酸メチルエステル体1 (138g、0.5 9mo1) にホルムアミド (763m1) を加え選流した。3.5時間後米水 (1.1リットル)を加えて米浴中で1時間撹拌した後、濾過して得られる残渣を米水

(1リットル) で洗浄した後、トルエン (350ml× 2) を加え残渣に含まれる水を共沸留去した。 練圧乾燥 後6, 7ージエトキシキナゾリンー4ーオン (118 g、87%) を得た。

【0416】6、7ージエトキシキナゾリンー4ーオン(4 i):

 $^{1} H \ NMR \ (CDCl_{s},\ 300MHz) \ \delta ppm: \\ 1.\ 38 \ (t,\ J=6.\ 9Hz,\ 3H)\ ,\ 1.\ 39 \\ (t,\ J=6.\ 9Hz,\ 3H)\ ,\ 4.\ 13 \ (t,\ J=6.\ 9Hz,\ 2H)\ ,\ 4.\ 17 \ (t,\ J=6.\ 9Hz,\ 2H)\ ,\ 7.\ 11 \ (s,\ 1H)\ ,\ 7.\ 43 \ (s,\ 1H)\ ,\ 7.\ 96 \ (s,\ 1H)\ ,\ 12.\ 03 \ (s,\ 1H)\ ,\ 1.$

【0417】2)目的物4-クロロ-6,7-ジエトキシキナゾリン(2j)の合成6,7-ジエトキシキナゾリン-4-オン(4j)(2

6、7ージエトキシキナゾリンー4ーオン(4j)(2 06.47g、0.881mol)をトルエン(1.4 リットル)に懸測させ、オキシ塩化リン(167ml) を室温下で滑下してトルエン(0.1リットル)を加え た後、遷離した。 2時間後、過剰のオキシ塩化リンとトルエンを被任留去し、炭液比水水 (1リットル)を米的でゆっくり加えた後、クロロホルム (2リットル)で 抽出した。この抽出被を10%Na2 CO3 水溶液(1リットル×2)で洗冷、乾燥(Mg SO4)、湊箱し根結量(247g)を 得た。

【0418】得られた根結晶のクロロホルム溶液(60 0ml)に活性炭(5g)を加え30分間強温で撹拌した後、シリカルカラムクロロ・ドグラフィー(溶媒、クロロホルムーメタノール系)と懸沈(溶媒: $\mathrm{Ho} \mathbf{x} - \mathrm{E} \mathbf{t}_2$ O 3)により精製して目的物 $\mathbf{4} - \mathbf{2} \mathbf{u} \mathbf{u} - \mathbf{6}$ 、 $\mathbf{7} - \mathbf{5} \mathbf{u} \mathbf{x} + \mathbf{5} \mathbf{v} \mathbf{x} + \mathbf{5} \mathbf{v} \mathbf{x} + \mathbf{7} \mathbf{y} \mathbf{y} \mathbf{y}$ (168、49g、76%) を得た。

(4 - クロロ 6, 7 - ジエトキシキナゾリン (2 j): ¹H NMR (CDCl₃, 300MHz) δ ppm: 1. 57 (t, J = 6.9 Hz, 3 H), 1.58 (t, J = 6.9 Hz, 3 H), 4.28 (q, J = 6.9 Hz, 2 H), 4.29 (q, J = 6.9 Hz, 2 H), 7.30 (s, 1 H), 7.37 (s, 1 H), 8.84 (s, 1 H).

合成例25 4-クロロー6,7-ジイソプロポキシキ ナゾリン(2k)の合成 【0419】

【化1131

【0420】上に示す様に出発物質3,4-ジヒドロキシ安息香酸(1)から6工程で目的物を合成した。以下に各々の工程の合成例を示す。

1) 3,4-ジイソプロボキシ安息香酸(2)の合成 3,4-ジヒドロキシ安息香酸1(10.9g、71m mo1)のデトラヒドロフラン溶液(48m1)に2規 定水酸化ナトリウム水溶液(142m1、282mmo 1) を加えた中に0℃下でヨウ化イソプロピル (30 g、177mmo1) のテトラヒドロフラン溶液 (48 m1) を20分間で滴下した後、還流した。

【0421】4日後、反応溶媒中のテトラヒドロフラン を減圧留去した後、ノルマルンキサン(300ml)で 流浄した。得られる水層に濃塩酸を加えて酸性にした 後、酢酸エチル(600ml)で抽出、飽和食塩水で洗

- 淬、乾燥 (MgSO₄)、濃縮の後得られた残渣をシリカゲルカラムクロマトグラフィー (溶媒、クロロホルムーメタノール系) で精製し目的物2 (2.9g、17%) を得た。
- 3, 4-ジイソプロポキシ安息香酸2
- ¹H NMR (CDCl₃, 300MHz) δ p pm: 1. 36 (d, J=6.1Hz, 12H), 4.51 (dq, J=6.1, 6.1Hz, 1H), 4.62 (dq, J=6.1, 6.1Hz, 1H), 6.93 (d, J=8.5, 1H), 7.65 (d, J=1.9 Hz, 1H), 7.72 (dd, J=8.5, 1.9Hz, 1H)
- 【0422】2) 4,5-ジイソプロポキシ-2-ニトロ安息香酸(3)の合成
- 3, 4 -ジイソプロポキン安息香酸 (2) (2. 4 g、 10. 0 mm o 1) のジクロロメタン (5 0 m1) 溶液 中に-55~65 ℃の温度内で、発煙硝酸 (1 m1) の ジクロロメタン (2 0 m1) 溶液に無水硫酸第二スズ
- (1.4ml) のジクロロメタン溶液 (20ml) を1 5分間で同時に満下した。30分後、米水 (100m 1)をゆっくり加え、ジクロロメタン (300ml)で 市出出し約両金塩水 (100ml)で洗浄 乾燥 (MgS
- 抽出し飽和食塩水 $(100 \, \mathrm{m}\, 1)$ で洗浄、乾燥 $(\mathrm{Mg}\, \mathrm{S}\, \mathrm{O}_4)$ 、濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(溶媒クロロホルムーメタノール系)で精製し目的物 3 (2 $.42 \, \mathrm{g}$ $.80 \, \mathrm{W})$ を得た。
- 4, 5-ジイソプロポキシー2-ニトロ安息香酸 3 1 H NMR (DMSO-d $_6$, 300MHz) δ p p
- m: 1. 28-1. 33 (m, 12H), 4. 68-4. 76 (m, 2H), 7. 29 (s, 1H), 7. 5 (s, 1H).
- 【0423】3) 4, 5 ジイソプロポキシー2 ニトロ安息香酸メチルエステル(4)の合成
- 【0424】4,5ージイソプロポキシー2ーニトロ安 息香酸メチルエステル(4)
- ¹H NMR (CDCl₃, 300MHz) δppm: 1. 36-1. 44 (m, 12H), 3. 90 (s, 3 H), 4. 59 (dt, J=6. 1Hz, 1H), 4. 63 (dt, J=6. 1Hz, 1H), 7. 08 (s,

- 1H), 7.46 (s, 1H).
- 【0425】4) 3, 4-ジイソプロボキシアントラニ ル酸メチルエステル (5) の合成
- 4,5 ジイソプロポキシー2 ニトロ安息香酸メチル エステル (4) (1.32 g,4.4 mm o l) のメタ ノール溶液 (40 ml) を密索耐機した後、イラジウム 炭素 (60 mg) を加え、水素に関換して窓温で煎しく 撹拌した。7時間後、モライト濾過をおこない、メタノ ールで洗い込んだ後、濾液を濃縮し目的物ち (1.18 g,99%) を得た。
- 【0426】3,4-ジイソプロポキシアントラニル酸 メチルエステル(5)
- ¹H NMR (CDCl₃, 300MHz) δppm: 1. 28 (d, J=6. 2Hz, 6H), 1. 36 (d, J=6. 2Hz, 6H), 3. 83 (s, 3 H), 6. 13 (s, 1H), 7. 42 (s, 1H).
- H), 6. 13 (s, 1H), 7. 42 (s, 1H). 5) 6, 7ージイソプロポキシキナゾリンー4ーオン (6) の合成
- 4, 5 ジインプロポキシアントラニル酸メチルエステル (5) (1.4g、5.2mmol)にホルムアミド (10ml)を加えて還流した。2時間後、米水 (30ml)を加え、濾過して得られる残渣を水水で洗い乾燥して目的物6 (876mg,64%)を得た。
- 【0427】6,7-ジイソプロポキシキナゾリン-4-オン(6)
- 6) 4-クロロー6, 7-ジイソプロポキシキナゾリン(2k) の合成
- 6, 7-ジイソプロポキシキナゾリン-4-オン6 (8 76 mg、3.34 mmol)のトルエン (30 ml) 被申にオキン族化リン (<math>7 ml) を窓塩下で加えた後、遷流した。2時間後、濃縮後、10%Na₂ CO_3 木溶液を加えクロロホルムで抽出し処和食塩水で洗浄、乾燥 ($M_{\rm S}SO_4$)、濃縮して帯りれた残液をシリブゲルカラムクロマトグラフィー (溶媒、ノルマルへキサン一酢酸エチル)で精製して目的物2 k (577 mg、61%) を潜た。
- 【0428】4-クロロ-6,7-ジイソプロポキシキナゾリン(2k)
- ¹H NMR (CDCl₃, 300MHz) δppm: 1. 46 (d, J=6.1Hz, 6H), 1. 48 (d, J=6.1Hz, 6H), 4. 72 (dt, J=6.1Hz, 6.1Hz, 1H), 4. 76 (dt, J=6.1, 6.1Hz, 1H), 7. 31 (s, 1H), 7. 31 (s, 1H)

7. 44 (s, 1H), 8. 83 (s, 1H). 【0429】合成例26 4-クロロー6-ジメチルア ミノビリド [3, 2-d] ビリミジン2Lの合成

[0430] 【化114】

$$\stackrel{\text{\tiny F}}{\longrightarrow} \stackrel{\text{\tiny N}}{\longrightarrow} \stackrel{\text{\tiny N}}} \stackrel{\text{\tiny N}}{\longrightarrow} \stackrel{\text{\tiny N}}{\longrightarrow} \stackrel{\text{\tiny N}}{\longrightarrow} \stackrel{\text{\tiny N}}{\longrightarrow} \stackrel{\text{$$

【0431】目的物4-クロロー6-ジメチルアミノビ リド [3, 2-d] ピリミジン (3) は上に示す様に出 発物質6-フルオロピリド「3,2-d] ピリミジン-4-オン(1)から2段階で合成した。

(1) 6 - ジメチルアミノビリド(3, 2 - d) ピリミ ジン (2) の合成

W. A. Dennyらの方法に従い(J. Med. Ch em. 1996, 39, 1823-1835) 製造した 6-フルオロピリド [3, 2-d] ピリミジン-4-オ ン (1) (540mg、3, 27mmol) に50%ジ メチルアミノ水溶液 (7 m 1)、エタノール (5 0 m 1) を加えて封管して100℃で撹拌した。

【0432】4時間後室温に戻し一晩放置した後、濃縮 して2 (527mg) を得た。 6-ジメチルアミノピリド [3, 2-d] ピリミジンー 4ーオン(2)

¹H NMR (DMSO-d₆, 300MHz) δpp m: 3. 13 (s, 6H), 7. 19 (d, J=9. 3 Hz, 1H), 7. 77 (d, J=9. 3Hz, 1 H), 7.84 (s.1H).

【0433】(2) 4-クロロー6-ジメチルアミノビ リド [3, 2-d] ピリミジン (2L) の合成 6-ジメチルアミノビリド [3, 2-d] ビリミジン-4-オン(2) (360mg、2,04mmol) にオ キシ塩化リン (15m1) を加えて還流した。30分後 過剰のオキシ塩化リンを減圧留去し、氷浴下でゆっくり 氷水(100ml)を加えた。EtOAc(200m

1) で抽出して、洗浄 (飽和食塩水) 乾燥 (Na。SO a)、濃縮して目的物2L (203mg、51%) を得 t.

4-クロロー6ジメチルアミノピリド [3, 2-d] ピ リミジン (2 L)

¹H NMR (DMSO-d₆, 300MHz) δpp m: 3. 25 (s, 6H), 7. 62 (d, J=9. 3 Hz, 1H), 8, 07 (d, J=9, 3Hz, 1 H), 8, 74 (s, 1H),

合成例27 4ークロロピリド [2.3-d] ピリミジ ン (2 m) の合成

[0434] RE1151

$$\bigcap_{N=1}^{N} NH \longrightarrow \bigcap_{N=1}^{N} NH$$

[0435] R. K. Robins, G. H. Hitc hingsの方法に従い(J. Am. Chem. So c., 77, 2256 (1995) 目的物2mを合成し

4-クロロピリド [2, 3-d] ピリミジン (2m) ^{1}H NMR (DMSO- d_{6} , 300MHz) δpp m: 7. 92 (dd, J=8. 3, 4. 3Hz, 1 H), 8, 75 (dd, I=8, 3, 1, 7Hz, 1 H), 9.30 (s, 1H), 9.38 (dd, J= 4. 3. 1. 7 Hz. 1 H).

合成例28 エチル 4ークロロー5ーアミノー6ーピ リミジルアミノアセテート (2 n) の合成 [0436]

【化116】

【0437】W. R. Boonらの方法に従い(I. C hem. Soc. 96 (1951)) 目的物エチル 4 ークロロー5ーアミノー6ーピリミジルアミノアセテー ト (2 n) を合成した。

エチル 4-クロロー5-アミノー6-ピリミジルアミ ノアセテート (2 n)

¹H NMR (DMSO-d_E, 300MHz) δpp m: 1. 19 (t, J=7. 1Hz, 3H), 4. 13 (q, J=7, 1Hz, 2H), 4, 19 (d, J=5. 7 Hz, 2 H), 8, 4 9 (s, 1 H), 8, 8 2 (t, I = 7, 1Hz, 1H)

合成例29 アセチレン体3nの合成

[0438] 【化117】

【0 4 3 9】 6 0 %N a H (1. 4 g、3 4. 4 mm o 1)を THFで洗浄し、THF (1 0 m1)の 影響成とた中に (1. 3 8 g、8. 6 1 mm o 1)の THF 溶液 (10 m1)を整温下で満下した。1 0 分間接件の 後、プロモ耐酸 (1. 7 9 g、1 2. 9 mm o 1)の THF 溶液 (10 m1)を強工で満下した。2 日後、円₂ O(6 0 m1)を加えてE t₂ O(3 0 m1)で洗浄した後、水圏を右破停で PH 2 とし、E t O A c 10 0 m1 で抽出した。抽出液を飽和食塩水で洗浄、乾燥 (N a₂ S O₄) 減縮し、2 のカルボン酸体の粗結晶(2、0 4 g)を得た。

【0440】符られた粗結晶 (640mg) のメタノー ル溶液 (8m1) 中にトリスチルシリルジアグメタン、 10%へキサン溶液 (14m1) を満下した。これを養 縮した後、シリカゲルカラムクロマトグラフィー (c1 uent: Hex/EtOAc=10/1) で精製し、 目的物3n (505mg,80%) を得た。 アセチンゲるn;

¹H NMR (CDCl₃, 300MHz) δ ppm: 1. 42 (s, 3H), 2. 53 (s, 1H), 2. 7 (d, J=13. 2Hz, 1H), 3. 10 (d, J =13. 2Hz, 1H), 3. 75 (s, 3H), 4. 24 (d, J=10. 8Hz, 1H), 4. 29 (d, J=10. 8Hz, 1H), 7. 26-7. 34 (m, 5H).

合成例30 アセチレン化合物3pの製造 【0441】 【化118】

【0442】Methyl 4-hydroxyben zoate(2.10g、13.8mmol)のCH₃ のN溶液(30ml)を水冷下焼拌し、DBV(2.7ml、17.9mmol)、CuCl₂-2H₂O(2.5mg、0.014mmol)を加え次いで3-Chloro-3-methyl-1-butyne(1.84g、17.9mmol)のCH₃CN溶液(8ml)を20分以上かけで満下した。家選まで昇温し、一般効果した後、CuCl₂・2H₂O(6mg)および3-Chloro-3-methyl-1-butyne(0.5ml)を加え室温で1.5時間機拌し

た。反応減を無額し、残塩を1N HC1水溶液 (30 ml) とトルエン (50 ml) に分配し、存機圏を1N HC1水溶液 (30 ml)×2)、10%N n₂ CO₃水溶液 (30 ml)×2)、 約n食塩水 (30 ml) で売し、機廠 (Mg SO₄) 後、減圧下溶域を耐去し、目的とするアセチレン3p (2.93g、定量的)を得

 $3p: \, ^{1}H$ NMR (CDC l_{3} , 300 MH z) δp pm: 1.69 (s, 6H), 2.62 (s, 1H), 3.88 (s, 3H), 7.24 (d, J=8.9 Hz, 2H), 7.97 (d, J=8.9 Hz, 2H). δp

【0443】 【化119】

た。

【0444】 出発物質としてサリチル酸エチルを用い上配合成例と同様な操作を行なった。 粗精製物をシリカゲルカラムクロマトグラフィー (ヘキサン: E t O Λ c = $1:0 \rightarrow 6 \times 1$) で精製し目的とするアセチレン3 q $(1.95 \, g, 7.2\%)$ を得た。

 $\begin{array}{l} 3\,q: ^{1}H \quad NMR \; (CDC\, I_{3} \;,\; 30\, 0MH\, z) \; \delta \; p \\ p\,m: 1. \; 3\, 9 \; (t,\; J=7.\; 2\, H\, z,\; 3\, H) \;,\; 1. \; 6 \\ 8 \; (s,\; 6\, H) \;,\; 2. \; 5\, 7 \; (s,\; 1H) \;,\; 4. \; 3\, 5 \\ (q,\; J=7.\; 2\, H\, z,\; 2\, H) \;,\; 7. \; 0\, 9 \; (d\, d,\; J=1.\; 1,\; 7. \; 6\, H\, z,\; 1\, H) \;,\; 7. \; 3\, 6-7. \; 4\, 3 \\ (m,\; JH) \;,\; 7. \; 5\, 8 \; (d\, d,\; J=1.\; 1,\; 8.\; 3\, H\, z,\; 1\, H) \;,\; 7. \; 7\, 5 \; (d\, d,\; J=1.\; 8,\; 7.\; 7\, H\, z,\; 1\, H) \;,\; 7. \; 7\, 5 \; (d\, d,\; J=1.\; 8,\; 7.\; 7\, H\, z,\; 1\, H) \;. \end{array}$

合成例32 アミノアセチレン3rの製造 【0445】 【化120】

【0446】NaH (435mg、10.9mmol、60% in mineral oil) を乾燥ヘキサンで洗浄し、DMF (5ml)を加え米浴上選挙した。

合成例14で製造したアミノアセチレン3h (591mg、2.72mmol)のTHF溶液(2ml)を加えた後、Br CH₂ CO₂ H (567mg、4.08mmol)を描了し、10%クエン酸木溶液に反応液をあけた。生成物をし、10%クエン酸木溶液に反応液をあけた。生成物をCH₂ Cl₂ (20ml×2)で抽出し、抽出液を乾燥

(Na₂ SO₄)、濃縮すると目的物3rのDMF溶液 (79wt%)が得られた(210mg、換算収率22 %)。

 $\begin{bmatrix} 0.447 \end{bmatrix}$ 3 r : ¹H NMR (CDC l_3 , 300 MHz) δ p p m : 1.41 (s, 3H), 2.54 (s, 1H), 2.69 (s, 3H), 2.93 (d, 1=12.7 Hz, 1H), 2.92-3.18 (m, 2H), 3.27 (d. J=12.7 Hz, 1H), 3.81 (m, 2H), 4.14 (2d, J=17.5 Hz, 2H), 7.27-7.40 (m, 5H). 合成例 3.7 セチレン3 s の影響

【0448】 【化121】

【0449】下記スキームに従い製造した。 【0450】 【化122】

 $\begin{bmatrix} 0.4 & 5.2 \end{bmatrix} & 1: \ ^{1}H & NMR & (CDC \ ^{1}_{3}, \ 3.0 \ MHz) & \delta \ pp m: 1. \ 2.6 & (t, \ J=7.0 \ Hz, \ 3 \\ H) \ , \ 1. \ 4.6 & (s, \ 9H) \ , \ 1. \ 5.2-1. \ 7.0 \\ (m, \ 2H) \ , \ 1. \ 8.0-1. \ 9.5 & (m, \ 2H) \ , \ 2. \\ 4.3 & (t, \ J=3.9, \ 11.0 \ Hz, \ 1H) \ , \ 2. \\ 8.4 & (m, \ 2H) \ , \ 4. \ 0.1 & (br \ d, \ J=12.8 \\ Hz \ , \ 2H) \ , \ 4. \ 1.4 & (q, \ J=7.0 \ Hz, \ 2H) \ . \\ \end{bmatrix}$

2) 上記1のTHF溶液 (40m1) を-65℃に冷却

6b:R=H L、1MのLithium bis (trimethy lsilyl) amide THF溶液 (14.7m 1、14.7mmol) を満下した。40分後、ペンジ ルプロミド (1.67ml、14.1mmol)を満下 し、65で30分積搾物、ゆっくりと室温まで昇温 した。反応液を停止させ、動和NH₄C1水溶液を 加え反応を停止させ、動和した。疾液を水 (40ml) EtOAc (40ml) に分配し、水陽をEtOAc (30ml) で抽出した。 有機層を乾燥 (Na₂ S O₄)、 濃縮後疫液をシリカゲルカラムクロマトグラフ ィー (ペキサン:EtOAc=9:1) で精製しを待 た (4.23,91%)

3) 2のトルエン溶液 (20ml)を-65℃に冷却 し、1.1MのDIBALトルエン溶液 (8.0ml、 8.77mmo1)を簡ドした。5分後希塩酸を加え、 室温でしばらく撹拌した。右機層を乾燥(Na。S 〇4) 萎縮し、残液をシリカがカラムクロードグラフィーで精製するとアルデヒド4 (381mg、17%) およびアルコール3 (306mg、14%)が生成物と して得られた。

[0454]4: ¹H NMR (CDC1₃, 300M Hz) δ ppm: 1. 44 (s, 9H), 1. 40-1. 66 (m, 4H), 1. 93 (br d, J=1 3.7 Hz, 2H), 2. 78 (s, 2H), 2. 85 (br t, J=12.7 Hz, 2H), 3. 87 (br d, J=13.2 Hz, 2H), 7. 02-7. 10 (m, 2H), 7. 18-7. 35 (m, 3H), 9. 57 (s, 1H).

3: ^{1}H NMR (CDC1₃, 300MHz) ^{8}pp m:1.46(s, 9H), 1.40-1.50 (m, 4H), 2.72(s, 2H), 3.33-3.58 (m, 4H), 3.40(s, 2H), 7.12-7.32 (m, 5H).

【0455】4)アルコール3(306mg、1.4mmol)、NaBr(430mg、4.2mmol)および4ーHydroxy-2,2′,6,6′ーteramethylpiperidineーNーoxide(25mg)のジクロロメタン(6ml)一絶和NaHCO。水溶液(10ml)の混合溶液を水溶上撹拌し、これに5%NaOC1水溶液(2ml)を滴下した。10分後とtoH(0.5ml)を加入た後、有機層を分離し、水陽をジクロロメタン(10ml)で加上した。抽出液を必りカゲルカタクロマトで特製し、アルデヒド2を得た(287mg、68%)。

【0456】5) (E t O) 2 P (O) CC I。 (J. Am. Chem. Soc., 1947, 69, 1002) (766 mg、3.0 mmol) のTHF (4m. 1) ー E t 2 O (6m.) 溶液を一10 0℃に冷却し、1.61MのnーB U Li・ネナン溶液 (1.8 ml、2.9 mmol) を満下した。これにアルデヒド2 (378 mg、1.25 mmol) のTHF (2.5 ml) ー E t 2 O (2.5 ml) 溶液を満下し、反応混合物を与時間がけて鉱温まで昇温した後、15分間還流させた。反応混合物を一3 0℃に冷却し、NH、C I 水溶液を対象、E (O A C (20 ml ×2) で続出た。摘出 液を乾燥(Na2 SO4) 濃縮し、残渣をシリカゲルカラムクロマトグラフィーで構製し、ジクロロ保5を得た(414 mg、48%)。

5: ¹H NMR (CDC1₃, 300MHz) δpp m:1.45(s, 9H), 1.22-1.52(m, 2H), 1.98(br d, J=12.4Hz, 2 H), 1. 75-1. 93 (m, 2H), 2. 83 (s, 2H), 3. 82-4. 00 (m, 2H), 5. 59 (s, 1H), 7. 07-7. 17 (m, 2H), 7. 20-7. 35 (m, 3H).

【045716) 米冷ド、5 (394mg、1. 1mm ol) のTHF溶液 (10ml) に1. 6Mのn-Bu Li ヘキサン溶液 (1. 52ml、2. 43mmol) を満下し、ゆっくりと露温まで昇退した。反応混合液に NH₄ C1 水溶液を加え反応を停止し、生成物をヘキサン-E tOA c混合液で増出した。油出液を乾燥 (Na 2 SO₄)、濃縮し、6 aを得た。6 aをE tOA c (0. 5ml)」に発射 1 米が 4 N HC 1/5+O

(0.5ml) に溶解し、米冷下 4N HC 1/E t O Ac 溶液 (2ml) を加え、10分間撹拌した。室温でさらに1時間撹拌後、E t₂ O (4ml) を加え生成する沈映物を護取し、6b・HC l を白色粉末結晶として得た (210mg、81%)

6 b · HC l : 1 H NMR (DMSO-d $_6$, 300 MH z) δ ppm: 1. 70-1.95 (m, 4H), 2.81 (s, 2H), 2.86 (s, 1H), 3.00-3.20 (m, 2H), 3.22-3.35 (m, 2H), 7.27 (m, 5H), 9.12 (br s, 1H), 9.30 (br s, 1H), 9.30 (br s, 1H).

【0458】7)6b・HCl (203mg, 0.86 mmol)、K₂CO₃(178mg, 1.29mmol)、Br CH₂CO₂Et(114μl, 1.03mmol)のトルエン混合溶液(5ml)を強弧で2時間推拌した。CO₃(178mg)を加え、一般室温に放置した後、不溶物を連別した。連液を濃縮し、残渣にNaHCO₃総和水溶液(10ml)およびEtOA (10ml)を加えた。有機配を総線(Na₂SO₄)、濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製し目的とするアモチレン3。を巡状物質として得た(130mg) 30mg, 53%)。

3s: ¹H NMR (CDCl_s, 300MHz) δ ppm: 1.26 (t, J=7.1Hz, 3H), 1.26 (t, J=7.24 (s, 1H), 2.51 (2d t, J=3.5, 11.3Hz, 2H), 2.76 (s, 2H), 2.81 (m, 2H), 3.21 (s, 2H), 4.18 (q, J=7.1Hz, 2H), 1.71 (6-7.32 (m, 5H).6 会員) δ

【0459】 【化123】

【0460】下記スキームに従い製造した。 【0461】

【化124】

【0462】1) 出発物質としてN-(t-Butox vcarbonvl) -4-piperidone (1) を用い合成例7、8と同様な操作で2(定量的) および4を粗精製物として得た。

2: 1H NMR (CDCI3, 250MHz) Spp m:1.46 (s, 9H), 1.93 (2ddd, J= 3. 9, 9. 4, 13. 2Hz, 2H), 2. 07 (s, 3H), 2.15-2.25 (m, 2H), 2. 67 (s, 1H), 3.34 (2ddd, J=3.6, 9. 7, 13. 5 Hz, 2 H), 3. 72 (m, 2 H) .

【0463】2) 粗精製である4(1,08g)のEt 2 O溶液 (1 m 1) を氷浴上撹拌し、4 N HC1/E t OAc溶液(4m1)を滴下した。室温でしばらく様 拌した後、生成物5を濾取した。この粗精製物(890 mg) , BrCH, CO, Et (0. 61ml, 5. 5 mmo1) およびK。CO3 (2.2g、15.9mm ol)をトルエン(10ml)に懸濁させ、70~80 ℃で4時間撹拌した。反応混合物を放冷後、水 (40m 1) 、EtOAc (40ml) を加え、有機層を分離し た。水層をEtOAc(15m1)で抽出し、抽出液を 乾燥(Na。SO。)、濃縮した。残渣をシリカゲルカ $\neg \Delta D = \nabla$

1→1:1) で精製し、目的物であるアセチレン3 t を 得た(460mg, 1からの収率37%)。

[0464] 3t: 1H NMR (CDC13, 300 MHz) $\delta ppm: 1.28 (t, J=7.1Hz, 3)$ H), 1.93 (2ddd, J=3.7,10.6,1 3. 5 Hz, 2 H), 2. 2 2 (m, 2 H), 2. 4 9 (s, 1H), 2.66 (2ddd, J=2.6, 1 0. 5 Hz, 2 H), 2. 8 2 (m, 2 H), 3. 2 5 (s, 2H), 4.19 (q, J=7.1Hz, 2 H), 6, 79 (m, 1H), 6, 94 (m, 2H), 7. 18 (m. 2H).

合成例35 アセチレン3 u

[0465] 【化125】

【0466】下記スキームに従い製造した。

[0467]

【化126】

[0468] 1) CeCl₃: 7H₂ O (10. 12 g、27.2mmo1) を減圧下140℃で4時間撹拌 しながら乾燥した。これに室温でTHF (70ml)を 加え、1時間撹拌した。一方、トリメチルシリルアセチ レン (3.84ml, 27.2mmol) のTHF溶液 (20ml)をドライアイス-EtOH浴で冷却し、

 6Mのn-BuLiへキサン溶液(16.9ml、 27. 0mm o 1) を滴下し、ゆっくりと室温まで昇温 した。この溶液を上記の方法で調製し、-65℃に冷却 したCeCl。THF懸濁液に滴下し、30分間撹拌し た。この懸濁液にインダノン (3.30g、25.0m mol) のTHF溶液 (9ml) を滴下し、1時間撹拌 後、無水酢酸 (3.1m1、32.4mmo1) を加え た。反応液をゆっくりと室温まで昇温し、一晩放置した 後、NH₄ C1水溶液を加え濃縮した。生成物をEtO Acで抽出し、抽出液を飽和NaHCO。水溶液で洗浄 し、乾燥 (Na2 SO4) 、濃縮した。残渣を短いシリ カゲルカラムクロマトグラフィー (ヘキサン: EtOA c = 4/1) に付し、2を含む油状物質を得た。これを THF (20ml) に溶解し、1M n-BuaNF THF溶液 (1ml、1.0mmol) を加え、室温で 1時間撹拌した。反応溶液に飽和NH。C1水溶液を加 え、生成物をE t O A c (50 m 1) で抽出した。抽出 液を乾燥(Na。SO₄)、濃縮し、残渣をシリカゲル カラムクロマトグラフィー (ヘキサン:EtOAc=15:1→9:1) で精製し、4を結晶性固体として得た (1.71g, 34%).

[0469] 4: 1H NMR (CDC1, 300M

H z) δ p p m : 2. 0 2 (s, 3 H), 2. 5 7 (s, 1 H), 3. 5 6 (2 d, J=17.5 Hz, 2 H), 3 5 8 (2 d, J=17.5 Hz, 2 H), 7.

H), 358 (2 d, J=17. 5Hz, 2H), 321 (s, 4H).

2) 出発物質として4とEthyl 4-piperi dinecarboxylateを用い合成例8と同様 な操作を行ない目的物3uを白色粉末結晶として得た (収率20%)。

[0470]

【化127】

【0471】下記スキームに従い製造した。 【化128】

$$\longrightarrow \underbrace{\begin{array}{c} Me_3\$\underbrace{i} \\ E \wr O_2C \\ 2 \end{array} \underbrace{\begin{array}{c} O_2E \ t \end{array}} \longrightarrow 3$$

1) Diethyl Benzylmalonate (1.00g、4.0mmol)のTHF溶液(40ml)にt-BuOK(494mg、4.4mmol)を加え監証で30分間複件後、米ーメタノール帯で希知した。[(Trimethylsilyl)にはいりにはいいます。 (J.0rg.Chem.1991,56,3912の方法に冷い数②(1.80g、4.0mmol)のTHF溶液(20ml)を加え室温で3時間複件した。木ーCH₂Cl₂で分配し、有機層を破壊(Na₂SO、4.3mmol)のよ、清糖化、果粧をシリカゲルカラムクロマトグラフィーに付し、Diethyl benzyl[(trimethylsilyl) ethynyl]malonate (2)を得た。

[0472] 2: ¹H NMR (CDC1₃, 300M Hz) δppm: 0. 16 (s, 9H), 1. 23 (t, J=7. $1\,H\,z$, $6\,H$), 3. $3\,8$ (s, $2\,H$), 4. $2\,1$ (q, J=7. $1\,H\,z$, $4\,H$), 7. $1\,2-7$. $3\,6$ (m, $5\,H$).

2) 上記2を含水THF (10 m1) に溶解し、1Mの n-B u₄ NF THF溶液 (0. 1m1, 0. 1mm ol)を加えを選合では開発性と。 E t OAc (30 m1) と飽和NH₄ C 1 木溶液 (30 m1)を加え、有機層を分離、乾燥 (Na₂ S O₄)、濃縮し、残液をシリカゲルカラムクロマトグラフィーで精製し、目的とする3 v を得た (39 0 mg、1 より収率3 2%)。 3 v: ¹H NMR (CDC l₃, 3 0 0 MH z) δ p pm: 1. 2 5 (t, J = 7. 1Hz, 6 H), 2. 5 (s, 1 H), 3. 4 1 (s, 2 H), 4. 2 3

pm: 1. 25 (t, J=7.1Hz, 6H), 2. 5 2 (s, 1H), 3. 41 (s, 2H), 4. 23 (q, J=7.1Hz, 4H), 7. 16-7. 34 (m, 5H).

合成例37 【0473】 【化129】

【0474】ジペンジルケトン (2.1g、10mmの1)に0.5MエチニルマグネシウムクロリドTHF部 (24ml、12mmの1)を加え、類性た。塩化アンモニウム水溶液を注ぎ、酢酸エチルで抽出後、有機 層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を倒去し、目的物3w (2.28g、9.7mmの1、97%)を得た。

合成例38 【0475】 【化130】

【0476】1ーフェニルー2ープタノン(2.96 g、20mmol)のTHF(3ml)溶液を0.5M エチニルマグネシウムクロリドTHF溶液(60ml、30mmol)に滴下した。反応液に塩化アンモニウム 水溶液を加え酢酸エチルで抽出し、有機層を拠利を拡大 で洗浄後、硫酸ナトリウムで転嫌し、波圧下溶媒を留去 した。 【0477】目的物3x(3.18g、18.3mmo 1、91%)を得た。

¹H NMR (CDCl₃, 250MHz) δppm: 1. 11 (t, J=7. 4Hz, 3H), 1. 74 (q, J=7. 4Hz, 2H), 2. 46 (s, 1 H), 2. 88 (d, J=13. 2Hz, 1H), 3.

00 (d, J=13.2Hz, 1H), 7. 25-7.50 (m, 5H).

合成例39

[0478] [化131]

【0479】ペンジルアセトン (7.4g、50mmo 1)のTHF (20ml) 溶液を0.5Mエチニルマグ ネシウムクロライドTHF溶液 (110ml、55mm o1)に満下した。反応液に1N HC1を注ぎ、有機 層を衝散エナルで抽出後、熱肉食塩水で洗浄し、破酸ナ トリウムで乾燥後、減圧下溶漿を留去し、ブロバルジル アルコール3Y (8.8g、0.05mo1定量的)を 場た.

¹H NMR (CDCl₃, 250MHz) δppm: 1. 55 (s, 3H), 1. 94-2. 03 (m, 2 H), 2. 51 (s, 1H), 2. 83-2. 90 (m, 2H), 7. 16-7. 32 (m, 5H).

[0480] [化132]

合成例41 以下の方法で2を合成した。

以下の方法で2を占成した 【0482】

【化133】

$$\bigcap_{C_1}^{C_0OH} \longrightarrow \bigcap_{C_1}^{C_1} \bigcap_{C_1}^{NE} \longrightarrow \bigcap_{C_1}^{NE}$$

【0483】1) 3.4-ジクロロフェニル酢酸(2 0. 0g、97. 5mmol) の1, 2-ジクロロエタ ン(100ml)溶液にチオニルクロリド(11.8 g、99.2mmo1)とDMF-滴を加え、3時間加 熱還流したのち減圧下濃縮し油状物質23.3gを得 た。金属マグネシウム (2.56g、107mmo 1) 、エタノール (2m1) THF (30m1) 混液に 四塩化炭素 (0, 2 m 1) を加えた後、マロン酸ジエチ ルエステル (16, 8g、105mmol) のエタノー ル (10m1) THF (8m1) 溶液を加えた。次いで 先に得た油状物質 (23.3g) のTHF (10m1) 溶液を氷冷下滴下し、室温で2時間撹拌した。これに氷 冷下、2N硫酸水溶液 (50ml)、水 (20ml) を 加え、撹拌した後、油層を分離し、水層を酢酸エチルで 抽出後、合わせて飽和食塩水で洗浄し減圧下溶媒を留去 した。これに酢酸(24m1)、水(16m1)、濃硫 酸(3m1)を加え加熱患糖(115℃~145℃、8 時間)した。反応液をエーテルで抽出し、20%未酸化 ナトリウム水溶液で洗浄した後、有機帰を無水確能ナト リウムで乾燥検減圧下溶媒を留去した。残液をシリカゲ ルカラムクロマトグラフィーで精製し、3、4 ージクロ ロフェニルアセトン(1) (15.3g、91mmo 1、収率94%)で得た。

【0 484】2)3、4 一ジクロロフェニルアセトン (1) (1. 28g、7. 6mmol) に水冷下、0. 5Mエチニルマグネシウムクロライド丁HF溶液 (1.6ml、8mmol) を演下し、たいで無水降酸 (0.8 2ml、8. 6mmol) を演下した。反応液に進化アンモニウム外溶液を加え溶液・炉がで加出した後、有機 層を飽和炭酸水沸ナトリウム水溶液、飽和皮塩水の順に洗浄し、減圧下濃縮し油水物質(1.55g)を得た。と同様の操作で3、4 -ジクロロフェニルアモトン

(7g、41.8mmol)から油状物質8.1gを得た

【0485】この油状物質を合わせ、THF (100m 1)に溶解させ、ジエチルアミン (20ml, 193m mol)、塩化銅(I) (200mg、2mmol)を 加え加熱型面した。反応液を耐酸エチルで抽出し、塩化 アンモニウム水溶液で洗浄後減圧下溶媒を留去した。残 液をカラムクロマトグラフィーで洗浄し、プロバルジル アミン3aa (1.74g、6.2mmol、収率12 %)を得た。

[0486]

【化134】

3 ab 【0487】上記ルートにしたがって、アミノアセチレン(3ab)を合成した。次に示す。

1) J. Org. Chem. 22, 939 (1957), C. Osuch, R. Levine, の記述にしたがって、4ーピリジルアセトン(1)を合成した。すなわち、4ーピコリン(23.9g、257mmol)のエーテル(300ml)溶液にメチルリチウム(1.5M in Et₂O、170ml、255mmol)を満下した。これにメチルアセテート(9.5g、128mmol)のエーテル(20ml)溶液に力を強下した。反応液に水本加え、エーテル、耐酸エチルの順に抽出し、有機層を含わせて飽和食塩水で洗浄後、無水硫酸ナトリウルで低燥、減圧下溶媒を留去した。残渣をシリカゲルカラムタロマトグラフィー(クロコホルムークロコホルム:メタノール=9:1)で分離精製し、4ーピリジルアセトン(1)(2.7g、20mmol, 15%)を得た。

[0488] 1: 1 H NMR (CDC1₃, 250M Hz) δ ppm: 2. 22 (s, 3H), 3. 73

(s, 2H), 7. 13-7. 16 (m, 2H), 8. 55-8. 58 (m, 2H).

2) トリメチルシリルアセチレン (3.65ml, 2 5.8 mm o 1) のTHF (20 m 1) 溶液に n B u L i (1.66M in H ex an e 15.6 ml, 25.9 ml) を一78℃にて滴下した。これを3塩化 セリウム7水和物 (10.38g, 28 mm o 1)を減 海下した。この溶液に 1 (2.69g, 20 mm o 1)を加え、1時間指針した後、無水耐酸 (2.3 ml, 2 4 mm o 1)を加えた。反応部に水を加え、海鹿ニチルで抽出した後、有機層を炭酸水素ナトリウム水溶液、次 いで塩和度塩水で洗浄し、減圧下溶媒を耐去した。 接近 をシリカゲルカラムクロマトグラフィー (H ex an n e:AcOEt4:1→1:1)にて分離精製して 2 (0.9g, 3.3 mm o 1,16%)を得た。

3) 2 (0. 9g, 3. 3 mmol) のTHF (10m 1) 溶液に n Bu 4 NF (1M in THF, 0.3 ml, 0.8 mmol) を加え密温で3.5 時間撹拌した。反応液に水を加え酢酸エチルで抽出後、有機層を無 水硫酸ナトリウムで乾燥後減圧下溶媒を留去し、3を含 む残渣 (700 mg) を得た。これを精製セずに次の反 応に用いた。

4) 3を含む油状物質 (7 0 0 mg) とジエチルアミン (2. 7 8 ml 1、2 7 mm o 1) のTHF (2 0 ml) が密液生塩化類 (1) (1 5 mg、0. 1 5 mm o 1)を加え、3時間加熱環流した。反応液を酢酸エチルで抽出し、塩化アンモニウム水溶液で洗浄後、有機験を無水流酸ナトリウルで砂燥し破圧下強を留ました。疾液をシリカグルカラムクロマトグラフィー (ヘキサン: 酢酸エチルイ: 1 ー1: 1) で分離精製し、目的物 5 a b (1 0 1 mg、0. 4 7 mm o 1 2 より 1 4 %)を得た。 [0 4 9 1] 3 a b : ¹H NMR (CDCl₃, 2 5 0 MH z) δ p p m: 1. 11 (t, J = 7. 4 Hz、2 1 H), 2. 4 6 (s, 1 H), 2. 8 8 (d, J = 1 3. 2 Hz、1 H), 3. 0 0 (d, J = 1 3. 2 Hz、1 H), 7. 2 5 - 7. 5 0 (m, 5 H).

合成例43 【0492】 【化135】

【0³493】上記スキ⁴ムに従って、3-エチ²⁵ル-4 -フェニル安息香酸エチル(3 a c)を合成した。以下 に示す。

- 1) 4 プロモ安息香酸エチル (23g、100mmo 1) を、暑煙耐酸 (28g)、濃硫酸 (37g) 混液に 張湿 20で~31℃に保ちながら加えた。反応液を氷水 (1リットル) にあげ生じた結晶を濾取し、エタノール 懸洗後、濾取した結晶と懸洗後の濾液を練圧下濃縮した ものに水を加え濾取した結晶を合わせ、乾燥し、4-ブ ロモ-3=トロ安息香酸エチル (1) (26.8g、9 8mmo 1,98%)を得た。
- [0494] 1; ¹H NMR (CDC l₃, 250M Hz) δppm: 1. 42 (t, J=7.1Hz, 3 H), 4. 43 (q, J=7.1Hz, 2H), 7. 8 4 (d, J=8.4Hz, 1H), 8. 08 (dd, J=8.4Hz, 1.9Hz, 1H), 8. 46 (d, J=1.9Hz, 1H)
- 2) 1 (5.0g、18.2mol) とフェニルホウ酸 (2.67g、21.8mol)、ピス (トリフェニルホスフィン) ーパラジウム (II) クロライド (630mg、0.90mol)、トリエチルアミン (7.5ml、53mmol)のDMF (50ml)溶液を6時間か熱響化した。
- 【0495】反応液を減圧下濃縮し、残液をカラムクロマトグラフィー (ヘキサン→ヘキサン: 酢酸エチル=4:1) により精製し、3-ニトロー4フェニル安息香酸エチル(2) (3.0g、11mmol、60%)を得た。
- 2: 'H NMR (CDCl₃, 250MHz) δ p p m: 1. 44 (t, J=7. 2Hz, 3H), 4. 45 (q, J=7. 2Hz, 2H), 7. 31-7. 36 (m, 2H), 7. 43-7. 57 (m, 3H), 7. 54 (d, J=8Hz, 1H), 8. 27 (dd, J= 8. 1. 7Hz, 1H), 8. 49 (d, J=1. 7H

z, 1H).

【0496】3) 2(1,0g,3.7mmol)の酵 酸エチル(10.2ml)、酢酸(6.8ml)溶液に 10%パラシウムー炭素(0.1g)を加え、水素雰囲 気下4~5気圧で8時間類件した。反応液を濾菌し、水 を加え、酢酸エチルで抽出し、炭酸水素ナトリウム木管 液、次いで緩和食塩木で洗浄後無水硫酸ナトリウムで乾 機し、減圧下溶媒を留去した。浸液をシリカゲルカラム クロマトグラフィー(ベキサ・)・酢酸エチル4:1一 2:1)で精製し、3-アミノー4-フェニルー安息香 酸エチル(3)(787mg,326mmol,88

3: 1 H NMR (CDCl₃, 250MHz) δ pp m:1. 40 (t, J=7.1Hz, 3H), 4.37 (q, J=7.1Hz, 2H), 7.18 (d, J=7.8Hz, 1H), 7.39 \sim 7.45 (m, 7H)

【0497】4)3(787mg、3.26mmol)の24%泉化水素酸混液に70%亜硝酸ナトリウム水溶 核 (5m1)、臭化鯛(1.15g、8mmol)48%臭化水素酸(5m1) 溶液を加え、60℃で1時間が 総した。反応液に水を加え酢酸エチルで抽出し、有機屬を舶和食塩水で洗浄し、無水液酸ナトリウムで燃後減 圧下溶媒を切ませた。炭接をシリカゲルカラムクロマトグラフィー(ペキサン:酢酸エチル 8:1ー4:1)で分離精製し、3一プロモー4ーフェニル交急香酸エチル (4)(541mg、1.7mmol、53%)を得た。

4: 1H NMR (CDC12, 250MHz) δ p p

m: 1. 42 (t, J=7. 0Hz, 3H), 4. 41

(q, J=7.0Hz, 2H), 7.38-7.49 (m, 6H), 8.19 (dd, J=8.1, 1.6H z, 1H), 8.34 (d, J=1.6Hz, 1H). 【0498】 5) 4 (430mg, 1.42mmo 1),トリエチルシリルアセチレン (0.4m1, 2.8mmo 1), ピスー(トリフェニルホスフィン)ーパラジウム (II) クロライド (20mg, 0.029mmo 1)、トリフェニルホスフィン (10mg, 0.038mmo 1)、ヨウ化卵(1) (10mg, 0.053mmo 1)、トリエチルアミン (1.5ml, 10.8mmo 1)のDMF (1ml) 浴波を100℃で1.5

モニウム水溶液、飽和食塩水の順に洗浄し、純圧下溶媒 を慴去した。これに4(541mg, 1.77mmo))を同様の機作を行い、視た残道を合わせシリカゲル パート (ヘキサン・ヘ・キサン: 酢酸エチル18:1)に より高極性物質を除いたカップリング生成物を含む油状 物質(916mg)を得た。

時間加熱した。反応液を酢酸エチルで抽出し、塩化アン

【0499】これをTHF (10ml) に溶解させ、1 MテトラノルマルプチルアンモニウムフルオライドTH F溶液(3.1ml、3.1mmol)を加え、30分 複拌した。反応液に塩化アンモニウム水溶液を加え、酢 酸エチルで抽出後、飽和食塩水で洗浄し、無水硫酸ナト リウムで低速後、減圧下溶珠を付去した。残液をシリカ ゲルカラムクロマトグラフィー(ヘキサン→ヘキサン: 酢酸エチルー40:1)に下輔製し、3-エデニルー4 ーフェニル女息香酸エチル3ac(173mg、0.6 9mmol,22%)を構た。

 $3\,a\,c$: ^{1}H NMR (CDC $l_{\,3}$, $2\,5\,0\,\text{MHz})$ δ

可以例44 【0500】

[0500]

【0501】上記ルートに従って2を合成した。次に示

1) エチニルマグネシウム (0.5 M in THF、 145ml, 72.5 mmol)に4ーフルオロフェニルアモトン (10g、66 mmol)のTHF (10ml)溶液を滴下し、次いで無水耐酸 (7.5 ml、79 mmol)を満下した。反応液に塩化アンモニウム水溶液を加え、配液を加え、配体に上た後、有機を砂丸を配金に大きり、減圧下溶媒を留去した。 残渣をシリカゲル (70g)に適し、(機関溶媒、ヘキサ・ご・誘鞭モナイ・1)減圧下溶媒を留去した後、残渣をエーテルで希釈し、処和炭酸水素ナトリウム水溶液、総和炭塩水の頭に洗浄し、減圧下溶媒を留去し、1 (14.6g、66 mmol)に差量的 を得た。

 $\begin{bmatrix} 0.5 & 0.2 \end{bmatrix} & 1: & ^{1}H & NMR & (CDC \\ 1_s & , & 2.5 & 0.3 \\ (s, 3H) & , & 2. & 0.3 \\ (s, 3H) & , & 2. & 6.0 & (s, 1H) & , & 3. & 1.3 & (d, J=1.3.7 Hz, 1H) & , & 3. & 2.3 & (d, J=1.3.7 Hz, 1H) & , & 3. & 2.3 & (d, J=1.3.7 Hz, 1H) & , & 6.95-7. & 0.3 & (m, 2H) & , & 7. & 2.2-7. & 2.9 & (m, 2H) & . \\ \end{cases}$

2) アセテート (1) (7.0g、31.8mmol) とイソニペコチン酸エチル (12.0g、76.4mm ol) のTHF (70ml) 溶液に塩化網 (1) (22mg、2.2mmol) を加え、66でで2時間、86でで10分間加熱した。減圧下溶媒を留去した。残症をエーテル (100ml) で抽出し、アンモニア水溶液 液、次いで酸和食塩水で洗浄した。有機帰を3N塩酸水溶液(150ml)、飽和炭酸水素化ナトリウム水溶液 (150ml)、飽和炭酸水素下り切し水溶液を加え、ジクロロメタン (300ml)で抽出した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(silica50g、ペキサン:酢酸エチルー4:1)で精製し、目的物3ad(8.21g、25.8mmol, 31%)を得た。

【0504】 【化137】

【0505】フェニルアセトン (4g、29.8mmo1)のTHF (10m1) 溶液に0.5MエチニルマグネシウムクロライドTHF溶液(71m1、37mmo1)を加え、1時間撹拌した。反応液に0.5N塩酸水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、硫酸セグネシウムで乾燥、減圧下溶媒を閉去し、プロバルジルアルコール3ae(4.36g,27.2mmo1,91%)を得た。

合成例46 【0507】 【化138】

$$Me \stackrel{\frown}{\bigcirc} OH + H-= \stackrel{\frown}{\longrightarrow} Me \stackrel{\frown}{\bigcirc} OH$$

【0508】4ーメチルフェノール(1.08g、10mmol)、プロパルジルアルコール(840mg、104mmol)、トリフェニルホスフィン(2.62g、10mmol)のTHF(10ml)溶液に水水溶下かきまぜながらジエチルアンジカルボキシレート(1.8mmol)を耐てした後、空温で一昼夜放置した。溶媒を留去し、残渣をシリカゲルカラムクロマトで精製(保開液、nーペキサン:酢酸エゲル15:

1. 5mmol, 収率15%)を得た。
3 a f: ¹H NMR (CDCl₃, 30 0 MHz) δ p p m: 1. 62 (s, 6 H), 2. 30 (s, 3 H), 2. 52 (s, 1 H), 7. 05-7. 15 (m, 4 H). 合成例47 以下の方法で3 a g を合成した。
[0509]
[化139]

$$\begin{array}{c} Ph \\ \longrightarrow \\ CHO \end{array} \longrightarrow \begin{array}{c} Ph \\ \longrightarrow \\ Ph \end{array} \longrightarrow \begin{array}{c} Br \\ \longrightarrow \\ Ph \end{array} \longrightarrow \begin{array}{c} NEt_2 \\ \longrightarrow \\ \end{array}$$

【0510】1) 2-フェニルブロビオンアルデヒド(6.7g、50mmol)のジクロロメタン (450ml)溶液にトリフェニルホスフィン(52g、200mmol)、四臭化炭素(33.2g、100mmol)を0℃にて加え撹拌した。反応液を濾過後、減圧下

濃縮し残渣をカラムクロマトグラフィーにて精製し、1

(11.2g、39mmo1、77%)を得た。
2) 1 (11.2g、39mmo1)に40%トリトン
Bメタノール溶液(73m1)、ジエチルアミン(55
m1、540mmo1)を加え撹拌した。反反液に水を
加え、ジクロロメタンで抽出し、有機層を減圧下濃縮した。浸値をシリカゲルカラムクロマトグラフィーで精製し、3ag(2.7g、13.4mmo1、35%)を
得た。

以下の方法で3 a hを合成した。 【0512】

【化140】

【0513】1) 2 プロモービフェニル (1g、4. 29 mm o 1) のTHF (40 m 1) 溶液に 1. 7 M / ルマルブチルリチウムへキサン溶液 (3 m 1、5. 15 mm o 1)を マイミでにて適下した。3 0 分酸件後、ジメチルホルムアミド (0. 5 m 1、6. 45 mm o 1)を ルス密風とした後、塩化アンモニウム水溶液を注いだ。酢酸エチルで抽出し、有機屬を無水硫酸ナトリウムで応燥後、減圧下濃縮した。残渣をカラムクロマトグラフィー (ヘキサン: 酢酸エチルー10:1)で分離精製し1(748 m g、4. 1 mm o 1)のジクロコメタ (40 m 1) 溶液は 0 で以上、10 で以上、10 で分離 10 で分離 10 で分離 10 で分離 10 で分離 10 で分離 10 で分離 10 で分離 10 で分割で 10 で分離 10 でのから 10 でのか

(4.3g、16.4mmol)、四央化炭素(2.7 2g、8.2mmol)を加え、30分類件した。これ にペンタン(160ml)を加え濾過した遮接を減圧下 濃縮した、残液をカラムクロマトグラフィー(ヘキサ ン)で精製し、2(1.21g、3.57mmol、8 7%)を得た。

【0514】3) 2 (2.29g、6.77mmol)
のTHF (20ml) 溶液に−78℃にて、1.7Mノ ルマルブチルリチウムへキサン溶液(3.98ml、6.77mmol)を加え拡慢とした。反応液に水を加え、有機量を減圧下濃縮した。残液をカラムクロマトグ ラフィー (ヘキサン)にて構製し、3ah (796m g、4.47mmol、66%) を得た。 3 a h : 1H NMR (CDC13, 300MHz) δ ppm: 3. 03 (s, 1H), 7. 30-7. 43 (m, 6H), 7.57-7.60 (m, 3H). 合成例49

[0515] 【化141】

【0516】アセテート体(1)(1.0g、4.54 mmol)、ジエチルアミン (1.02ml, 9.86 mmo1)、塩化銅(I) (30.7mg、0.31m mol) のTHF (20ml) 溶液を30分加熱環流し た。減圧下溶媒を留去し、エーテルで希釈したのち希塩 酸水溶液で抽出した。水層を水酸化ナトリウム水溶液で アルカリ性とし、ジクロロメタンで抽出した。有機層を 減圧下濃縮し3 a i (296 mg、1.35 mm o 1)

3 a i: ¹H NMR (CDC1₃, 300 MHz) δ ppm: 1. 11 (t, J=7. 1Hz, 6H), 1. 23 (s, 3H), 2, 29 (s, 1H), 2, 74 (d, J=13.2Hz, 1H), 2.77 (q, J= 7. 1 Hz, 4 H), 3. 04 (d, J=13. 2 H z, 1H), 6.80-6.83 (m, 2H), 7.2 2-7. 26 (m. 2H). 合成例50

[0517] 【化142】

以下の方法で3akを合成した。

[0520] 【化143】

【0521】1 2.22-ジメチル-3-フェニル-1 ープロパノール (1. 64g、10mmol) のジクロ ロメタン (150ml) 溶液にピリジニウムクロロクロ メート (3. 23g、15mmol) を加え撹拌した。 反応液をセライトを用い濾渦し、濾液を減圧下滯縮し得 られた残渣をカラムクロマトグラフィー (ヘキサン:酢 酸エチル=1:1) で精製し1(1.61g、9.96 mmo1、99.6%) を得た。

【0522】2) 2, 2-ジメチル-3-フェニル-1

ープロパノール (1) (1.94g、12mmol)の

ジクロロメタン (50ml) 溶液にトリフェニルホスフ イン (12.6g、48mmol)、四臭化炭素 (8. 0g、24mmo1)を加え機拌した。反応液を減圧下 濃縮し残渣をシリカゲルカラムクロマトグラフィー(へ キサン→ヘキサン:酢酸エチル=5:1)で精製し2 (2.26g、7.11mmol、59%) を得た。 [0523] 3) (2. 26g, 7. 11mmol) Ø THF (50m1) 溶液に-78℃にて1. 6Mノルマ ルプチルリチウムヘキサン溶液 (9.8ml、15.6

【0518】1) シクロヘキシルアセトン (2g、1 4. 3mmol) のTHF溶液に、0. 5Mエチニルマ グネシウムクロライドTHF溶液(86ml、43mm o 1) を滴下し、3時間加熱還流した。反応液に氷冷下 無水酢酸 (4.75m1、50.1mmo1) を加え撹 拌した。反応液にエーテルを加え、塩化アンモニウム水 溶液、炭酸水素ナトリウム水溶液、飽和食塩水の順に洗 浄した。無水硫酸ナトリウムで乾燥後、減圧下溶媒を留 去した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=16:1) にて分離精製し、 1 (1.95g、9.36mmol、65%) を得た。 [0519] 2) 1 (1. 95g, 9. 36mmo 1) 、ジエチルアミン (2. 1ml、20. 3mmo 1)、塩化銅(I) (63mg、0.64mmol)の THF (40m1) 溶液を30分加熱還流した。減圧下 溶媒を留去し、エーテルで希釈したのち、希塩酸水溶液 で抽出した。水層を水酸化ナトリウム水溶液でアルカリ 性とし、ジクロロメタンで抽出後、有機層を減圧下濃縮 し、残渣をシリカゲルカラムクロマトグラフィー (ヘキ サン: 酢酸エチル=5:1) にて分離精製し3ai (8 99mg、4.06mmol、43%) を得た。 3 a j : ¹H NMR (CDC1₃, 300MHz) δ ppm: 1.06 (t, J=7.1Hz, 6H), 1. 12-1.68 (m, 11H), 1.35 (s, 3 H), 1.74-1.78 (m, 1H), 1.88-1. 92 (m, 1H), 2. 20 (s, 1H), 2. 6 4 (q, J=7.1 Hz, 4H). 合成例5

mm o 1)を満下した。反応能を強温とし、水を加え反 応を停止し、エーテルで抽出した。 有機層を飽和度塩水 で洗浄後、無水硫酸ナトリウムで乾燥し、酸圧下溶媒を 留去した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン)で洗浄し、3 a k (1.02g、6.45 mm o 1.91%)を持た。

 $3 \, a \, k : \, ^{1}H \, NMR \, (CDC\, l_{\,3} \, , \, 3\, 0\, 0MH\, z) \, \, \delta$ ppm: $1.\,\, 2\, 2 \, (\, s, \,\, 6\, H) \, , \,\, 2.\,\, 1\, 4 \, (\, s, \,\, 1\, H) \, , \,\, 2.\,\, 7\, 2 \, (\, s, \,\, 2\, H) \, , \,\, 7.\,\, 2\, 6\, -\, 7.\,\, 2\, 7$ (m, $5\, H)$.

(m, 5 H) 合成例 5 2

以下のスキームに従って、4を合成した。

[0524]

【化144】

$$\longrightarrow \bigcup_{\mathsf{OMe}}^{\mathsf{NAc}} \longrightarrow \bigcup_{\mathsf{OMe}}^{\mathsf{NEt2}}$$

【0525】1) ¾-メトキシフェニルアゼドリ (3.28 g、20 mm o l) を合成例35の20合成法と問 (物の方法で反応を行い1 (7.17 g、17.9 mm o l) のTHF (100 ml) 溶液に 州テトラノルマルチ・アンモニウムフルオライドTHF溶液 (18 ml、18 mm o l) を簡下、憔悴した。反応液に水を加

え、酢酸エチルで抽出後減圧下溶媒を留去した。 残渣を カラムクロマトグラフィー (ヘキサン: 酢酸エチル= 4:1) で精製し、2 (3.71g、19.5 mm o 1、98%) を得た。

【0526] 2) 2 (3.71g、19.5mmol) のTHF (20ml) 溶液に一78℃にて1MナトリウムへキサメチルジンラジドTHF溶液 (21.5ml、21.5mmol) を薄下しないででにて無水酢液(2.19g、21.5mmol)を加えた。反応液に炭液水素ナトリウム水溶液を加え、酢酸エチルで加出した。 有機関を使削塩化ナトリウム水溶液を過去が高速を増生が、水田下溶薬を留ました。 突流をカラムクロマトグラフィー (ヘキサン:酢酸エチル=

【0527】3)3(2.08g,8.95mmol)のTHF(10ml)溶液にジエチルアミン(2ml)、塩化鋼(60mg、0.61mmol)を加え加熱速流した。反応液を減圧下濃縮し、残液をカラムクロマトグラフィー(ヘキサン:前壁エチル=10:1)で観観し、31(559mg,2.28mmol)、25

5:1) で精製し、3 (2.08g、8.95mmo

【0528】 【化145】

%) を得た。

1、46%)を得た。

【0529】上記ルートに従ってピリミジン誘導体2 p、2gを合成した。

1) 4, 6 = ジクロロー5 = トロピリミジン (9.3 g, 48mmol)をJ, Chem. Soc. 99, (1951)、W. R. Boon, W. C. M. Jon es and G. R. Ramageの方法で反応を行 い、4 - アミノー6 - クロロー5 - ニトロピリミジン (2p) (4.4g, 25mmol, 52%)を得た。 【0530】2)4-アミノ-6-クロロー5-二トロピリミジン2p (5.0g、28mmol)む1.人 m. Chem. Soc. 75, 263 (1953)、 R. K. Robins, 6の方能で反応を行い、4,5 ージアミノー6-クロロピリミジン(1)(2.5g、 17mmol、60%)を得た。

3) 4, 5-ジアミノ-6-クロロピリミジン (1) (1.9g、13mmol)をJ. Am. Chem. S oc., 78, 225 (1956) J. W. Dalyら の方法で反応を行い、4-クロロー6, 7-ジメチルブ テリジン (2q) (1. 9g、9. 8mmol, 75 %) を得た。

合成例 5 4

【0531】 【化146】

【0532】発煙硝酸 (7.5ml)と濃硫酸 (38ml) 混液に、30~35℃にて2,4~ジアミノー6-クロロビリミジン (7.2g、0.05mol)を少量ずつ加え、30分撹拌した。反応破を外 (250g)に注ぎアンモニア水溶液でpH9とした後、結晶を端取し、減圧下乾燥させ、2,4~ジアミノー5~ニトロー6~クロロビリミジン (21)(4.6g、0.0262mol、52%)を得た。

合成例55

[0533]

$$\begin{array}{cccc}
C & & & C & \\
N & N & & & \\
N & N & & & \\
N & Me & & &
\end{array}$$

【0536】上記ルートに従い6-ヨード-9-メチル プリン(2t)を合成した。次に示す。 1) 水素化ナトリウム(60%油性、77mg、1.9

mmol)のTHF (2ml)混液に6-クロロブリン(251mg、1.6mmol)のTHF (2ml)、DMF (2ml)、1.9mmol)を加えた。次いでヨウビメチル(0.12ml、1.9mmol)を加えた後水を注ぎ、ジクロロメタンで抽出した。存機機を優和食塩水では洗冷し、無水硫酸ナトリカムで乾燥後減圧下溶媒を留去した。残後をシリカゲルカラムクロマトグラフィー(CHC1。 Mc OH=10:1)で分離特別し、6-クロロー9-メチルブリン(1)(167mg、1.08mmol、61%)、6-20ロー7-メチルブリン

(69mg、0.41mmol、25%) を得た。 【0537】1: ¹H NMR (CDCl₃, 250M [(k:1 4 7]

2 .

【0534】55~58%ョウ化水素酸(50ml)に 水冷下クロロキナゾリン(5.0g、22.3mmo 1)を少量づか風えを時間掛けた。水(50ml)を 注ぎ、黄色結晶を纏取した後、クロロホルム(300m 1)に溶解させ、5%アンモニア水溶液、水の順に洗浄 し、Na₂ SO₄ で乾燥後、溶蝶を留去(6.0g、1 8.9mmol、収率85%)でヨードキナゾリン(2。)を得た。

合成例56 【0535】

【化148】

ŧ

Hz) δppm: 3. 95 (s, 3H), 8. 12 (s, 1H), 8. 78 (s, 1H).

2) ヨウ化水素酸 (55%、2ml) に氷冷下6-クロローターメチルブリン (1) (175mg、1.0mm o1)を加えし、5時間携件した。反応液にアンモニア 水溶液を注ぎ、酢酸エチル、クロロホルムの順に抽出した。有機履を無水硫酸ナトリウムで乾燥後、終圧下溶鉄を担し、6-ヨードーターメチルブリン (2t) (233mg、0.89mm o1、89%)を得た。

2 t; ^{1}H NMR (CDC $^{1}_{3}$, 2 5 0 MH z) δ p p m : 3. 9 3 (s, 3 H), 8. 1 3 (s, 1 H), 8. 6 5 (s, 1 H).

実施例128 【0538】

【化149】

【0539】プロパルジルアミン3am (1.00g、 3.2mmol) とクロロキナリリン2j (835m g、3.2mmol) を実施例7と同様に反応を行い、 目的物 (1.37g、2.74mmol、86%) を赤 褐色油状物質として得た。

¹H NMR (CDCl₃, 300MHz) δppm: 1. 25 (t, J=7.0Hz, 3H), 1.50 (t, J=7.0Hz, 3H), 1.56 (t, J= 7.0Hz, 3H), 1.61 (s, 3H), 1.75 -1.90 (m, 2H), 1.93-2.08 (m, 2 $\begin{array}{l} H)\;,\;2.\;\;1\;3-2.\;\;5\;0\;\;(m,\;\;5\;H)\;,\;2.\;\;8\;1-2.\;\;9\;2\;\;(m,\;\;2\;H)\;,\;3.\;\;1\;3-3.\;\;3\;9\;\;(m,\;\;2\;H)\;,\;4.\;\;1\;4\;\;(q,\;\;J=7.\;\;0\;H\;z,\;\;2\;H)\;,\;4.\;\;1\;7\;\;(q,\;\;J=7.\;\;0\;H\;z,\;\;2\;H)\;,\;4.\;\;1\;5\;8\;\;(q,\;\;J=7.\;\;0\;H\;z,\;\;2\;H)\;,\;7.\;\;1\;6-7.\;\;3\;2\;\;(m,\;6\;H)\;,\;7.\;\;4\;6\;\;(s,\;\;1\;H)\;,\;9.\;\;0\;6\;\;(s,\;\;1\;H)\;.\\ \label{eq:property}$

【0541】実施例128で得たエステル体(1.20g、2.26mmol)を実施例8と同様に反応を行い、目的物(1.00g、1.99mmol、88%)を得た。

白色結晶

 $\begin{array}{l} 1\,R\,\,(K\,B\,\tau)\,\,\nu\,c\,m^{-1}\,:\,3\,4\,2\,2\,,\,\,2\,9\,8\,4\,,\,\,2\,9\,3\\ 7,\,\,2\,8\,0\,8\,,\,\,2\,2\,1\,4\,,\,\,1\,7\,1\,8\,,\,\,1\,6\,1\,2\,,\,\,1\,5\,7\\ 7,\,\,1\,5\,0\,0\,,\,\,1\,4\,6\,9\,,\,\,1\,3\,9\,6\,,\,\,1\,3\,6\,9\,,\,\,1\,2\,3\\ 6,\,\,1\,0\,4\,3\,,\,\,9\,3\,9\,,\,\,8\,5\,2\,,\,\,8\,2\,5\,,\,\,7\,4\,8\,,\,\,7\,0\\ 0,\,\,6\,3\,2\,. \end{array}$

 ^{1}H NMR (DMSO- d_{6} , 250MHz) δ pp m:1.35 (t, J=6.9Hz, 3H), 1.41

実施例130 【0542】

【化150】

【化151】

C

【05 4 3】プロパルジルアミン3 i (385 mg、 1.29 mm o1) と4 - クロロ - 6 - ニトロキナゾリ ン2 u (270 mg、1.29 mm o1) を、実施例7 と同様に反応を行い、目的物(578 mg、1.22 m mo1、95%)を赤茶色油状物質として得た。 IR (ne at) voc^{m1}:3379,2932,28 10、2208,1728,1622,1577,15 27, 1485, 1439, 1412, 1356, 13 40, 1263, 1178, 1045, 962, 85 2, 806, 744, 702.

[0544] ¹H NMR (CDCl₃, 300MH z) δppm:1.26 (t, J=6.9Hz, 3 H), 1.56 (s, 3H), 1.75-1.95 (m, 2H), 2.00-2.13 (m, 2H), 2. $\begin{array}{l} 2\,7-2\,.\,\,6\,2\,\left(m,\,3\,H\right)\,.\,\,3.\,\,1\,1\,\,\left(d,\,\,J=1\,\right.\\ 3.\,\,2\,H_{\,2}\,.\,\,1\,H\right)\,,\,3.\,\,2\,6\,-3\,.\,3\,2\,\left(m,\,\,1\,H\right)\,,\,3.\,2\,9\,\left(d,\,\,J=1\,3\,.\,\,2\,H_{\,2}\,.\,\,1\,H\right)\,,\,3.\\ 4\,5-3\,.\,5\,5\,\left(m,\,1\,H\right)\,.\,\,4.\,\,1\,5\,\left(d,\,\,J=6\,.\,\,9\,H_{\,2}\,.\,2\,H\right)\,,\,7\,.\,\,2\,1\,-7\,.\,\,3\,3\,\left(m,\,\,3\,H\right)\,,\,7\,.\,\,3\,3\,.\,\,3\,.\,\,3\,.\,\,3\,.\,\,3\,.\,\,3\,.\,\,3\,.\,\,3\,.\,\,3\,.\,\,3\,.\,\,3\,.\,\,3\,.\,\,$

$$+ \underbrace{E t 0}_{B t 0} \underbrace{\downarrow}_{N}^{C 1} \longrightarrow \underbrace{E t 0}_{O B t} \underbrace{\downarrow}_{N}^{N}$$

【0546】3an(1.0g、3.3mmol)とクロロキナソリン(830mg、3.14mmol)を、実施例でと同様に反応を行い、目的物(870mg、1.62mmol、52%)を得た。

¹H NMR (CDC1₃, 250MHz) δppm: 1. 34 (t, J=7.0Hz, 3H), 1. 54 (t, J=7.0Hz, 3H), 2. 44 (s, 3 H), 3. 63 (q, J=7.0Hz, 2H), 4. 2

[(£153]

9.07 (s.1H).

実施例132

[0547]

【0548】実施例131でトシル体(140mg、 0.26mmol)のエタノール(4ml)、THF

(2m1)、飛合溶液に1規定水酸化ナトリウム水溶液 (0.5m1、0.5mmol)を加え、4.5時間境 押した。反応液に1規定塩酸水溶液(1m1)を加えジ クロロメタンで強出後、有機層を飽和食塩水で洗浄し、 無水硫酸ナトリウムで乾燥後、酸圧下溶媒を留去した。 機渣をシリカゲルカラムクロマトグラフィー(クロロホ ルムラクロロホルム:メタノール 30:1)にて精製 し、目的物(68mg、0.18mmol、68%)を 組た

【0549】淡黄色結晶

m. p. 201-204℃

IR (KBr) v cm⁻¹: 3 4 1 2, 3 1 5 5, 2 9 8 4, 2 9 1 0, 2 3 6 1, 2 3 4 1, 2 1 8 3, 1 6 1 2, 1 5 7 2, 1 5 3 1, 1 5 0 2, 1 4 5 8, 1 4 2

9, 1344, 1332, 1234, 1201, 114 9, 1037, 935, 852, 837, 783, 75 2, 698, 630, 617, 605.

9. 2 Hz, 1 H), 8. 66 (dd, J=9. 2,

1H), 9.42 (s, 1H).

実施例131

[0545]

【化152】

2. 4 Hz, 1 H), 9. 09 (d, J = 2. 4 Hz,

5 (q, J=7.0Hz, 2H), 7.15 (s, 1

H), 7. 24-7. 46 (m, 7H), 7. 68-

7. 71 (m, 1H), 7. 70 (d, J=8. 3H

z, 2H), 7.85 (d, J=8.3Hz, 2H),

¹H NMR (CDCl₃, 250MHz) δppm: 1. 34 (t, J=7.0Hz, 3H), 1.55 (t, J=7.0Hz, 3H), 3.64 (q, J= 7.0Hz, 2H), 4.26 (q, J=7.0Hz, 2H), 6.98-7.02 (m, 1H), 7.24-7.32 (m, 3H), 7.34-7.43 (m, 3H), 7.75-7.79 (m, 2H), 8.90-9.10 (m, 1H), 9.06 (s, 1H). TOF-MS m/z; 384 (M+H).

実施例133

【0550】 【化154】

$$\bigcup_{E \text{ to } OE \text{ t}} \bigvee_{N} \bigcup_{N} \longrightarrow \bigcup_{E \text{ t}} \bigcup_{N} \bigcup_{$$

【0551】実施例132で得た物質(50mg、0. 13mmol)のDMF(2ml)溶液に60%水素化 E t O O E t N Me

ナトリウム (6.2g、0.16mmol) を加え次い でヨウ化メチル (8.9μl、0.143mmol) を 加えた。反応液に水を加え、クロロホルムで抽出した。 有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾 燥後、減圧下溶媒を留去した。残渣をシリカゲルカラム クロマトグラフィー (クロロホルム→クロロホルム:メ タノール=40:1)で精製し、得られた結晶をエーテ ルで洗浄し、目的物質 (21mg、0.053mmo 1、41%)を得た。

【0552】黄色結晶

m. p. 136-137.5℃

IR (KBr) v cm⁻¹: 3427, 2982, 293 4, 2361, 2341, 2189, 1612, 157 0, 1502, 1452, 1417, 1400, 135 9, 1342, 1232, 1201, 1155, 103

7, 900, 829, 775, 742, 698, 65

3, 605, 584 ¹H NMR (CDCl₃, 250MHz) δppm: 1. 33 (t, J=7.0Hz, 3H), 1.55 (t, J=7.0Hz, 3H), 3.61 (q, J= 7. 0Hz, 2H), 3. 75 (s, 3H), 4. 26 (q, J=7, 0Hz, 2H), 6, 79 (d, J= 2. 3 Hz, 1 H), 7, 17 (d, J=2, 3 Hz, 1H), 7.23-7.40 (m, 5H), 7.71-7. 75 (m, 2H), 9. 05 (s, 1H). TOF-MS m/z:398 (M+H) 実施例134

[0553] 【化155】

【0554】実施例132で得た物質(100mg、 0.26mmo1) と、プロモ酢酸エチルエステル (6 5mg、0、39mmol) を実施例132と同様に反 応を行い、目的物 (68mg、0.145mmol、5 5%) を得た。

mp. 174-175℃

白色結晶

IR (KBr) v cm⁻¹: 3425, 2982, 295 3, 2363, 2202, 1739, 1614, 157 0, 1500, 1458, 1444, 1363, 131 3, 1232, 1205, 1161, 1035, 102 4, 850, 825, 777, 740, 700, 62

8, 607, 592. [0555] H NMR (CDC13, 300MH

z) $\delta ppm: 1$, 32 (t, I=7, 0Hz, 3 H), 1. 33 (t, J=7.0Hz, 3H), 1. 5 4 (t, J=7.0Hz, 3H), 3.63 (q, J= 7. 0 Hz, 2 H), 4. 25 (q, J=7.0 Hz, 2H), 4.28 (q, J=7.0Hz, 2H), 4. 68 (s, 2H), 6.84-6.85 (m, 1H), 7. 22-7. 29 (m, 4H), 7. 33-7. 39 (m, 2H), 7.73-7.77 (m, 2H), 9. 05 (s, 1H).

TOF-MS m/z:470 (M+H) 実施例135

[0556]

【化156】

46, 698, 611

【0557】実施例134で得たエチルエステル体(3 5 mg、0,0745 mmo1) を実施例8と同様に加 水分解反応を行い、目的物 (30mg、0,068mm o1、91%)を得た。

黄色結晶

230~244℃ 熱分解

IR (KBr) v cm⁻¹: 3427, 3123, 298 6, 2941, 2490, 2364, 2195, 195 7, 1720, 1612, 1574, 1531, 150 0, 1450, 1400, 1363, 1315, 124

m: 1. 30 (t, J=6. 9Hz, 3H), 1. 42 (t, J=6.9 Hz, 3H), 3.78 (q, J=6. 9 Hz, 2 H), 4. 26 (q, J=6. 9 Hz, 2H), 4.89 (s, 2H), 7.24 (d, J= 2. 1 Hz, 1 H), 7. 26-7. 32 (m, 3 H), 7.38-7.44 (m, 2H), 7.59 (d, J=2.1Hz, 1H), 7.72-7.73

¹H NMR (DMSO-d₆, 300MHz) δpp

(m, 1H), 7. 74-7. 75 (m, 1H), 8. 【0558】 99 (s, 1H), 12. 9-13. 4 (m, 1H). 【表174】

TOF-MS m/z; 442 (M+H)

実施例136	目的化合物	出発化合物	方法	収率, %	性状/酸点/その他
Bio	N H NSO ₂ Ph Me Me	C1 & MIISO ₂ PL BLO ORt , Me Me	B Pla P3 (8t ₂ 0)	8 9	黄色粉末結晶 ■p 134.5-136.6℃
スペクトルラ ¹ H NMR(CDCI .6H). 4. 29(q 7. 27(s, 1H). 実施例137		t, J=7, 0Hz, 3ID, 1, 57(t, J=7, 0Hz, 3ID, 1, 1=7, 0Hz, 3ID, 5, 19(s, 1H), 7, 27-7, 42(m (m, 2H), 9, 01(s, 1H)	: 1613. 1) v cm ⁻¹ :34 501, 1229, 11 収率、%	43, 3096, 2880, 2225, 65, 1028. 性状/触点/その何
BtO ORt	Ne CO _Z Et	m 東北 音響	B Pla	100	粘稠性赤褐色油状
スペクトルラ ¹ H NMR (CDC1 3H), 1, 50 an (n, 4H), 2, 52 2H), 7, 18-7.		and 1, 24(2t, J=7, 1 and 6, 9Hz, 3H), 1, 7, 0Hz, 3H), 1, 56(1, J=6, 9Hz, 3H), 1, 43=8(m, 4H), 4, 00=4, 20 (m, 4H), 4, 28(q, J=7)	48(s. 2. 04 . OHz.	•	

[0559] [表175]

実施例138	目的化合物	出発化合物	方法	収率, %	性状/融点/その他
Bt0 OBt	M. CO. H	BLO OBL Me OD ₂ B1	D P2	79	黄色顆粒沃固体 mp 82-94°C
3H), 3, 01 an	s, 300MHz) δ ppm:1, 43- d 3, 13(2d, J=13, 6Hz a , 1H), 3, 32-3, 52 and 3 J=7, 0Hz and 7, 0Hz, 2H	1. 62(m, 9H). 1. 66-2. 10(m, 4H). 2. 58-2. 88 nd 13. 3Hz, 1H), 3. 32 and 3. 38(2d, 1=13, 58-3. 70(m, 1H), 3. 88-4. 12(m, 2H), 4. 233), 7. 06 and 7. 17(2s, 1H). 7. 23-7. 39(m, 6	1717, 14 (m. 3Hz	νcm-1:34 99, 1233.	28, 2982, 2938, 2214,
実施例139	目的化合物	出発化合物	方法	収率 %	性状/触点/その他
BELO OEL	Me CO-We	BtO ORt , We CO, Me	B Pla	6 6	粘稠性褐色油状
スペクトルナ	F-9				
¹ H NMR (CDC1 O(m, 1H), 1, 9 90 (q, J=6, 9H 45 (m, 2H), 9.	z. 2H), 4, 27 (g. J=7, 0Hz	it, J=7. 0Hz, 3H), 1. 50-1. 76 (m. 12H), 1. 76- 1H), 3. 04 (s. 2H), 3. 12 (m. 1H), 3. 67 (s. 3H) 5. 2H), 7. 10 (s. 1H), 7. 20-7. 30 (m. 4H), 7. 35	1. 9 . 3. i-7.		

[0560] [表176]

実施例140	目的化合物	出発化合物	方法	収率, %	性状/融点/その値
Bt() OBt	N H COO ₂ H	ELU OBL No. CO. No.	D P3 (B10H)	90	白色粉末結晶 mp 166-168℃
スペクトル	アータ		IR (KBr) ν cm ⁻¹ :34	28, 2936, 2216, 1684,
H NMR (CDC) , 3H), 1, 50-1 nd 3, 13(2d, OHz, 2H), 4, 9 m, 2H).	3, 300MHz) & ppm: 1, 466 . 78(m, 5H), 1, 80-1, 946 J=13, 1Hz, 2H), 3, 05-3, 11(br s, 2H), 7, 09(s, 1H	(t, J=7, OHz, 3H), 1, 56 (t, J=7, OHz, 3H), 1, 6 m, 1H), 1, 98-2, 20 (m, 2H), 2, 52 (m, 1H), 3, 6 20 (m, 1H), 3, 92 (q, J=7, OHz, 2H), 4, 28 (q, , 1), 7, 20-7, 31 (m, 3H), 7, 28 (s, 1H), 7, 37-7,	33(s 16 a 1=7. 45(1001.	
実施例141	目的化合物	出発化合物	方法	収率 %	性状/融点/その他
BLO ORL	N N OO Me	BIO ORt . mg/m	B Pla Plb	8 0	茶褐色アモルファフ
スペクトル			1R(KBr) ν cm ⁻¹ :33	1 887, 2946, 2816, 2220, 231, 1202, 1036, 750,
¹ H NMR (CDC1 2, 09 (m, 2H), H), 4, 25 (q, J	s, 300MHz) & ppm: 1, 37 2, 35-2, 60 (m, 4H), 2, 61 =7, 0Hz, 2H), 6, 74-7, 05	(t, J=6, 9Hz, 3H), 1, 54 (t, J=7, 0Hz, 3H), 1, 1 -2, 89 (m, 6H), 3, 67 (q, J=6, 9Hz, 2H), 3, 69 (m, 3H), 7, 12–7, 26 (m, 4H), 9, 06 (s, 1H).	1736, 1 95- 694. (s, 3	602, 1499, 12	231, 1202, 1036, 750,
5 1]		【表 1	77]		
実施例142	目的化合物	出発化合物	方 法	収率, %	性状/酸点/その作
V-	II	NON II COME	B	8 1	白色針状結晶 mp 130,0-130,5°C
	H H CO ₂ Me	GET . O	P1a P3 (MeOH)		AP 100.0 C
ではい のまし スペクトルコ		NET STATE OF THE PARTY OF THE P	(MeOH)	νcm ⁻¹ :29	PR 2210, 1728, 1613.
スペクトル	F-9	NET STATE OF THE PARTY OF THE P	(MeOH)) vcm ⁻¹ :29 435, 1235, 11	
スペクトル	F-9	ORL , O	(MeOH)) ycm ⁻¹ :29 435, 1235, 11 収率、%	828, 2210, 1728, 1613, 96, 1046, 901, 700.
スペクトルコ ¹ H NMR(CDC1 Hz, 3H), 1, 52 nd 2, 73(2d, , 2H), 4, 27(q	F-9 3, 30(Miz) & ppn:0, 88 (s., 31), 1, 56(1, 1-7, 07) 1-11, 3hz, 20), 3, 07(2c, 1-7, 0hz, 20), 7, 16(s, 1-7, 0hz, 20)	1. 07 (a, 20). 1. 35-1. 50 (a, 30). 1. 47 (t, 1-1). 230. 1. 75-2. 60 (a, 40). 2. 22 (a, 10). 2-1. 19.1. 23. 24. 20. 56 (a, 30). 3. 56 (a, 30). 3. 60 (a, 20). 20. 19. 24. 20. 19. 24. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	(MeOH) IR (KBr 1503, 1- 6, 9 70 a 0Hz	435, 1235, 11	828, 2210, 1728, 1613, 96, 1046, 901, 700.
スペクトルコ 1日 MMR (CDC1 Hz. 3II), 1.52 nd 2, 73(2d, , 2H), 4.27(収 実施例143	7-9 3, 200812) \$1900.0 38 (4.90) 1.56(1.) 17.0 (4.90) 1.56(1.) 17.0 (4.90) 1.56(1.) 17.0 (4.90) 1.56(1.) 17.0 (4.90) 1.56(1.) 17.0 (4.90) 1.56(1.) 18.0 (4.90) 1.56(1.00) 1.56(1.) 18.0 (4.90) 1.56(1.	1. 17(a, 2B) . 1. 35-1. 50(a, 3B) . 1. 47(1, 1) . 2. 30(a, 1B) . 2. 2(a, 1B) . 2. 30(b, 1.76 2, 105 (a, 4B) . 2. 2(a, 1B) . 2. 30(b, 1.76 2, 105 (a, 4B) . 39-7. 6 (a, 2B) . 1. 10. 2 (a, 1B) . 2. 30(a, 1B) . 2. 30(a, 1B) . 2. 30(a, 1B) . 2. 30(a, 1B) . 30(a,	(MeOff) IR(KBr 1503, 1-15030, 1-1503, 1-1503, 1-1503, 1-1503, 1-1503, 1-1503, 1-1503, 1-1503, 1-1503, 1-1503, 1-1503, 1-1503, 1-1503, 1-1503, 1-1503, 1-1503	収率、%	123, 2210, 1728, 1613, 36, 1046, 901, 700.
スペクトル: 18 Mg(CDC) Hz. 到到, 1,52 cm 2, 73(2d, ,2H), 4,27(g 実施例143	データ \$ 500(#iz) をpa.e. 88 \$ 500(#iz) をpa.e. 186 [1-1] 59: 29: 3 67(2) 1-1] 79: 69: 20: 7, 16(4) 日 89 化 合物	1. 17(a, 2B) . 1. 35-1. 50(a, 3B) . 1. 47(1, 1) . 2. 30(a, 1B) . 2. 2(a, 1B) . 2. 30(b, 1.76 2, 105 (a, 4B) . 2. 2(a, 1B) . 2. 30(b, 1.76 2, 105 (a, 4B) . 39-7. 6 (a, 2B) . 1. 10. 2 (a, 1B) . 2. 30(a, 1B) . 2. 30(a, 1B) . 2. 30(a, 1B) . 2. 30(a, 1B) . 30(a,	(NeON) IR(CO	収率、%	123, 2210, 1728, 1613, 36, 1046, 901, 700.

実施例144	目的化合物	出発化合物	方法	収率, %	佐状/験点/その他
	H H CO ₂ H	MON H H H "CO ₂ Me	D P3 (ELCH, H ₂ 0)	6 4	白色粉末結晶 up 150-154℃
スペクトルウ ¹ H NMR (DMSO , 4B), 2, 13(m 3(q, J=7, OHz		1. 05(m, 2H), 1. 20-1. 55(m, 12H), 1. 80-2. (d. J=13. 0Hz, 1H), 3. 11(d. J=13. 0Hz, 1H), 2H), 7. 10-7. 50(m, 7H), 9. 00(s. 1H).	1615 15	03, 1460, 13	159, 2938, 2218, 1698, 166, 1313, 1235, 1032,
実施例145	目的化合物	出発化合物	方法	収率. %	性状/触点/その他
, , , , , , , , , , , , , , , , , , ,	M	NÔN CI NOODEL	B Pla	4 8	粘性油状物質
スペクトル: 1H NMR(CDC1 . J=7. OHz, 3H =7. OHz, 2H).		t. J=7, Hiz. 3B). 1, 38(t. J=7, 0Hz. 3B), 1, ,4, 19(q, J=7, 1Hz. 2H), 4, 23(s, 20), 4, 25 (u, 3H), 7, 23-7, 31 (u, 4H), 9, 04 (s, 1H)	2342, 22 54(t 1034, 95 (q. J	224, 1612, 15 59, 858, 685,	147, 2982, 2932, 2361, 195, 1379, 1363, 1200,
実施例148	目的化合物	出発化合物	方 法	収率, %	性状/融点/その他
実施例148 NOI	目的化合物	出 発 化 合 物	方 法 D P3 OHeOH)	収率, %	性状/触点/その他 mp 198-202℃
実施例148 NO への テロ スペクトルシ	C000H	N N	D P3 OHeOH) IR (KBr) 2485, 23 1343, 12	4 4	mp 198-202°C 22, 9057, 2982, 2930, 17, 1601, 1501, 1451, 46, 903, 858, 752, 993.
, , , , , , , , , , , , , , , , , , ,	C000H	N N	D P3 OHeOH) IR (KBr) 2485, 23 1343, 12	4 4 ν cm ⁻¹ :34 167, 1944, 17 179, 1213, 10	mp 198-202°C 22, 9057, 2982, 2930, 17, 1601, 1501, 1451, 46, 903, 858, 752, 993, +, 30)
N (i)	C000H	COORE	D P3 OteOH) IR(KBr) 2485, 23 1343, 12 SIMS m/	ν cm ⁻¹ :34 187, 1944, 17 779, 1213, 10 'z 405 (DΩ	
への テロ スペクトルコ 実施例147 NO NO CI	□ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	的 別 化 会 物	D P3 OfeOH) IRGBr) 2445-21343-12 SIMS m/ B Pla	4 4 4	mp 188-202℃ 22. 5057, 2982, 2930, 17, 1691, 1501, 1451, 1461, 146, 903, 856, 752, 893, †, 30) 陸北火 羅丸点ノモの作 本各種油は大物質

実施例148	目的化合物	出発化合物	方法	収率、%	性状/融点/その他
		NON CI OBL	B Pla	7 9	粘稠性油伏物質
スペクトルラ JH NMR (CDC1), 1. 99-2. 04 IH), 3. 24-3. (s, 1H), 7. 24		t, J=6, 9Hz, 3H), 1, 45(s, 3H), 1, 75-1, 89 H), 3, 04(d, J=13, 5Hz, 1H), 3, 25(d, J=13, LH), 4, 15(q, J=6, 9Hz, 2H), 6, 18(s, 1H), H),	: 2216.11	t) ν cm -1:34 728, 1615, 15 336, 949, 855	28, 2982, 2990, 2811, 43, 1462, 1366, 1211, 702,
実施例149	目的化合物	出発化合物	方法	权率. %	性状/融点/その他
	×N~cooch ₃	NONCI NOCKI3	B Pla	77	粘稠性油状物質
	3, 300MHz) & ppm:1, 20	[t, J=7, 2H2, 3H), 1, 48(s, 3H), 2, 56-2, 65	1 2216 11	t) v cm ⁻¹ :34 732, 1613, 15 5, 702.	41. 1462. 1209. 1036.
		(t. J-7. 28a, 3B), 1, 48 (a, 3B), 2, 56-2, 65 7. 20; 20), 3, 19-3, 24 (a, 20), 3, 29 (d, J B), 7, 22-7, 32 (a, 56), 7, 33-7, 39 (a, 20)	1 2216 11	732, 1613, 1 5	41, 1462, 1209, 1036,
¹ H NMR (CDC1), 2, 92 (d, J= Hz, 1H), 3, 67 (s, 1H).			(n. 2H 937, 85 13, 2 9, 05	732, 1613, 1 5	41, 1462, 1209, 1036,
1H NMR(CDCI), 2. 92 (d, J= Hz, 1H), 3. 67 (s, 1H).	_{э.} 300MHz) <i>5</i> ppm:1.20 13.2Hz.1H), 2.97(q, J (s, 3H), 6.17-6.18(m, 2	[表1	(a. 2H 937, 85)	732, 1613, 15 5, 702.	41, 1462, 1209, 1036,
H MMR(CDCI)	。 500sh2)	出発化合物	m 2H 937, 859 13.2 9.05 8 1] 方法 D P3 (MeOH)	1732, 1613, 15 1734, 15 1734, 15 1734, 16	44, 1462, 1209, 1036, 性状/触点/その他 3p 177℃
iH MMR (CDC)), 2, 92 (d, 1- Be, 1H), 3, 67 (s, 1H). (s, 。 500sh2)	出策化合物	m 2H 937, 859 13.2 9.05 8 1] 方法 D P3 (MeOH)	1732, 1613, 15 1734, 15 1734, 15 1734, 16	44, 1462 1209, 1036, 性状/触点/その他	

[0566] [表182]

スペクトルデータ

IR(NBr) ν cm⁻¹:3416, 2928, 2512, 2361, 2210, 1923, 1715, 1549, 1481, 1462, 1368, 1223, 1036, 937, 858, 706. SIMS $m/x = 444([MHH]^{+} 20)$

実施例152	目的化合物	出発化合物	方法	収率, %	性状/融点/その他
	N OBt	NO CI NO CIBE	B Pla	9 1	粘稠性油状物質
スペクトルラ *H NMR(CDC1), 1, 97-2, 02 3, 28 (m. 11), (s. 111), 7, 22	3, 300MHz) & ppm: 1, 26((m, 2H), 2, 30-2, 54(m, 3 3, 26(d, J=13, 4Hz, 1H),	t, J=7, 2Bz, 3B), 1, 44 (s, 3B), 1, 81-1, 87 (n B), 3, 07 (d, J=13, 4Bz, 1B), 3, 15 (s, 6B), 3, 3, 40-3, 48 (m, 1B), 4, 14 (q, J=7, 2Bz, 2B), 6 77 (m, 2B), 8, 99 (s, 1B), 9, 14 (s, 1B).	2211.17	30, 1605, 15	45, 2930, 2805, 2367, 34, 1445, 1414, 1188, [‡, 20)
実施例153	目的化合物	出発化合物	方法	収率. %	性状/酸点/その他
	× \		D P3 (MeOH)	7 5	mp 209-210℃
スペクトルラ ¹ H NMR (DMSO , 2, 26-2, 40(H), 3, 36-3, 4 0(s, 1H), 7, 4	-	6(s, 3H), 1, 56-1, 65(n, 2H), 1, 93-1, 97(m, z, 1H), 3, 18-3, 22(m, 1H), 3, 20(d, J=13, 2H 4H), 7, 21-7, 31(m, 3H), 7, 36-7, 38(m, 2H), 2, 13(s, 1H).	2214, 19	19, 1709, 16	24, 2996, 2517, 2365, 26, 1562, 1495, 1427, 05, 905, 704.

【0567】 【表183】

実施例154	目的化合物	出 発	化合物	方法	収率, %	性状/触点/その他
	N CONTRACTOR OF THE CONTRACTOR	NOTE:	OBL OBL	B Pla	5 6	粘稠性油状物質
¹ H NMR (CDC1	スペクトルデータ 1s. MacCircl ₂ 2008年3 7 5991-1.28(1, 1-7, 681-280, 1, 133-1, 133-1, 139-1					

【0568】合成例57

以下のルートに従って3 a mを合成した。

[0569]

【化157】

【0570】1) 0.5MエチニルマグネシウムクロリドTHF溶液(104ml、52mmol)に、ペンジルアセトン(7g、47.2mmol)を滴下した。次

いで、反応液に無水酢酸(5.36ml、56.5mm o1)を消下した。反応酸に1N HC1水溶液(60 m1)を加入、酢酸エチルで抽出した。有機層を約和食 塩木、炭酸水素件トリウム水溶液、終和食塩水の順に洗 浄し、無水硫酸ナトリウム水溶液、終和食塩水の順に洗 かし、無水硫酸ナトリウムで減後減圧下溶液を留去し た。残液をシリカゲルカラムクロマトグラフィー(ヘキ サン→ヘキサン:酢酸エチル=8:1)で精製し、1 (9.5g、44mmo1、93%)を得た。

【0571】2) アセテート(1) (5g、23mmo 1) のTHF(50ml) 溶液に塩化銅(1) (161 mg、1.6mmol)、イソニペコチン酸エチル (8.71g、55.4mmol)を加え、3時間加熱

-207-

選流した。反応液を室温とし、純圧下濃縮した後、エーケルで抽出した。これを、塩化アンモニウム水溶液、 和食塩水の順に洗浄した後、3N HC1水溶液で抽出 した。この水層をエーテルで洗浄後、2N NaOH水 溶液およびが酸水素ナトリウム水溶液を加え、ジクロロ メタンで抽出した。有機層を使和食塩水で洗水 硫酸ナトリウムで乾燥させ、純圧下濃縮した。残渣をシ リカゲルカラムクロマトグラフィー(ヘキサンーヘキサ ン・酢酸エチルー4:1) で精製し、3 am (5.02 g、16 mno1、69%) を得た。

[0572] 3 am; ¹H NMR (CDC1₃, 25 0MHz) $\delta \text{ ppm}$: 1. 25 (t, J=7. 0Hz, $3\,H)$, 1. $4\,0$ (s, $3\,H)$, 1. $7\,5\,-\,1$. $8\,5$ (m, $2\,H)$, 1. $9\,0\,-\,2$. $0\,0$ (m, $4\,H)$, 2. $2\,0\,-\,2$. $3\,0$ (m, $3\,H)$, 2. $3\,3$ (s, $1\,H)$, 2. $7\,0\,-\,2$. $7\,8$ (m, $2\,H)$, 3. $0\,0\,-\,3$. $2\,1$ (m, $2\,H)$, 4. $1\,3$ (q, $J\,=\,7$. $0\,H\,z$, 2 H) , 7. $1\,7\,-\,7$. $2\,1$ (m, $2\,H)$, 7. $2\,5\,-\,7$. $3\,2$ (m, $3\,H)$. $6\,m$

以下のルートに従って3 a n を合成した。 【0573】

【化158】

【0574】1)ケイ酸ベンジルエステル(1.2g、5mmo1)と、p・ルメニンスルホニルメチルイソシアニド(976mg、5mmo1)のエーテル(10m1)、DMSO(5m1)混合溶液をNaH(60%、240mg、6mmo1)のエーテル(10m1) 懸荷酸エチルで油出した。存機構を処断度塩水で洗浄後、無水硫酸ナトリウムで乾燥させ、純圧下溶媒を留去した。得られた結晶をエーテルで洗浄し、1(864mg、3.12mmo1。62%)を得た、1(864mg、3.12mmo1。62%)を得た。

[0575] ¹H NMR (CDC1₃, 250MH z) δ ppm:5.22(s,2H),6.76-6.79(m,1H),7.23-7.37(m,8H),7.44-7.54(m,3H),8.40-8.60(m.1H).

2) 1 (864mg、3. 12mmol)のTHF (10ml)溶液にトリエチルアミン (650μl、4. 66mmol)、ジメチルアミノビリジン (189mg、1.55mmol)、pートルエンスルホニルクロリド(711mg、3.73mmol)を加え、3.5時間

接押した。 反応被に塩化アンモニウム水溶液を注ぎ、酢 酸エチルで抽出した。 有機層を飽和食塩水で洗浄後、無 水硫酸ナトリウムで乾燥させ、 瀬圧下溶族を倒去した。 残渣をシリカゲルカラムクロマトグラフィー (ヘキサ ン: 前酸エチル4:1) にて精動し、2(1.29g、 3.0mm ol、96%) を得た。

3) 2 (2.76g、6.4mmol)のTHF (70m1) 溶液にリチウムアルミニウムヒドリド (291mg、7.7mmol)を加え、40分機搾した。反応液に水 (0.3ml) 3規定水酸化ナトリウム水溶液

(0.3ml)、水(0.9ml)の順に加え上清を濾取した後、減圧下溶媒を留去した。残液をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチルー4:1一酢酸エチル)にて精製し、3(1.94g、5.9

mmo1、92%)を無色油状物質として得た。

 $\begin{bmatrix} \textbf{0} \ 5 \ 7 \ 7 \end{bmatrix}^{1} \textbf{H} \quad \textbf{NMR} \ (\textbf{CDC1}_{3} \ , \ 2 \ 5 \ 0 \ \textbf{MH} \\ \textbf{z}) \ \delta \ \textbf{p} \ \textbf{pm} : \textbf{2}. \ 4 \ 1 \ (\textbf{s}, \ 3 \ \textbf{H}) \ , \ 4. \ 5 \ 9 \ (\textbf{s}, \ 1 \ \textbf{H}) \ , \ 4. \ 6 \ 1 \ (\textbf{s}, \ 1 \ \textbf{H}) \ , \ 7. \ 2 \ 3 \ - 7. \ 4 \ 0 \\ \textbf{m}, \ 7 \ \textbf{H}) \ , \ 7. \ 4 \ 3 \ - 7. \ 4 \ 8 \ (\textbf{m}, \ 2 \ \textbf{H}) \ , \ 7. \\ \textbf{8} \ 0 \ (\textbf{d}, \ 1 \ = \textbf{8}. \ 4 \ \textbf{H} \ \textbf{z}, \ 2 \ \textbf{H}) \ .$

4) 3 (1.94g、5.9mmol)のジクロロメタン(100ml)溶液に二酸化マンガン(7.8g)を加え、7時間維件した。反応液をセライトーシリカゲルを用い濾過し、濾液を減圧下濃縮し、4 (1.66g、5.1mmol,86%)を得た。

 $\begin{bmatrix} 0.5 \ 7.8 \end{bmatrix}^{1} H & NMR \ (CDC \ l_{3} \ , \ 2.5 \ 0MH \\ z) \ \delta \ p p \, m : 2. \ 44 \ (s, \ 3H) \ , \ 7. \ 23 \ (d. \ J=2. \ 4Hz \ , \ 1H) \ , \ 7. \ 33 - 7. \ 45 \ (m, \ 7H) \ , \ 7. \ 85 \ (d, \ J=8. \ 5Hz \ , \ 2H) \ , \ 7. \ 86 \ (d, \ J=2. \ 4Hz \ , \ 1H) \ , \ 9. \ 89 \ (s, \ 1H) \ , \ H) \ .$

5) 4 (1. 66g、5. 1mmo1)のジクロロメタン(50m1)溶液にトリフェニルホスフィン(2. 2mo1)を加え、米冷下、関吸化炭素(1. 86g、5. 6mmo1)のジクロロメタン(15m1)溶液を滴下し、40分撹拌した。炭酸水素ナリウム水溶液を加え、ジクロロメタンで輸出後、有機層を総和食塩水で洗浄した後、無木硫酸ナトリウムで乾燥させ、シリカ(10g)を加え、減圧下溶媒を留去した。残値をシリカゲルクロマトグラフィー(ヘキサン:香酸金ナル・9:1→ジクロロメタン)に下精製し、5

(2.33g、4.85mmol、95%) を白色結晶 として得た。

[0579] 1 H NMR (CDC1 $_{3}$, 250MH z) δ ppm: 2.43 (s, 3H), 7.16-7.17 (m, 2H), 7.26-7.43 (m, 7H), 7.85 (d, J=8.3Hz, 2H), 7.90-7.91 (m, 1H).

2) 5 (6 1 6 mg、1. 28 mm o 1) のTHF (1 3 m1) 溶液に、 - 7 8 でにて、1. 5 9 M / ルマルブ ナルリチウルへキャン溶液 (2. 7 8 m1、4. 4 2 m o 1) を簡下した。反応液に塩化アンモニウム水溶液 を加え、室温とし、酢酸エチルで抽出した。 有機局を納 施度塩水で洗浄後、無木高酸ナトリウムで乾燥さた 域 圧下溶媒を何去した。 残造をシリカゲルカラムクロマトグラフィー (ヘキサン→ヘキサン:酢酸エチル9: 1) で精製し、3 a n (163 mg、0.51 mm o 1、40%) を超た。

[0581]

【化159】

2 11

【0582】上記の様に特開平6-73025号公報の 記述に従って、4-クロロー6-ニトロキナブリン2 u を5-ニトローアントラニス酸より合成した。 転輸例1

(本発明のチロシンキナーゼ阻害剤の評価ン本条明のチロシンキナーゼ阻害剤について、チロシンキナーゼ阻害 活性および始線設増増阻患作用について評価するため、 部分的に精製されたとトEGF (上皮性細胞増殖因子) 受容体チロシンキナーゼ活性測定素およびにト盤細胞を 用いた細胞原産系において対象を行った。さら、阻害 活性の強さを比較、評価するために、特許あるいは文献 で開示されている既存のチロシンキナーゼ阻害剤のう 、比較的影性の高いものを同時に試験を行った。

【0583】(1) チロシンキナーゼ活性関害作用 (測定方法) チロシンキナーゼ活性関害作用は、ヒト偏 平上皮癌由来のA431細胞株より部分的に精製された 医GF受容体を用い、Linda J. PikeらのP roceedings of the Nationa 1 Academy of Sciences of t he U.S.A.79, 1433 (1982) 記載の チロシンキナーゼ活性測定方法を改良して行った。

【0585】上記のA431無陰順画分($10\sim15\mu$ g)、30mM Hepes経前液(pH7.7)、2mM Mn $C1_2$ 、100 μ M Na $_3$ VO $_4$ 、およびジメチルスルホキシド(DMSO)と溶解した接除物質

(熱義度1% DMSO) の反応混液に、100ngの EGFを加えた後、合成基質RRーSRCペプチド(A rgーArgーLeuーIleーGluーAspーAl aーGluーTyrーAlaーAlaーArgーGl y) 75 μg、10μM yー³³Pーアデノシン三リン 酸(37Kbp)を加えて反応を開始した。このきの容量は60μlである。尚、RRーSRCペプチドは、 EGF受容体のテロシンキナーぜの基質となる合成基質 となるものであり、srcの遺伝子産物中リン酸化され るテロシン残果を含むアミノ酸配列を有する。

【0586】反応は氷中にて30分間行い、10 m g / m $1 + 血清アルブミンを6 <math>\mu$ $1 \ge 20 \%$ $1 \ge 90$ $1 \ge 90$ $1 \ge 20$ $1 \ge 90$

(洗浄は4回練り返し行った)、液体シンチレーション カウンターでP81ホスホセルロースペーパーに付着し た空Pのカウントを測度し、この値をAとした。同時に 被検物質を活加しない反応、被検物質およびEGF共に 添加しない反応のカウントも測定し、各々B、Cとし た。これらの値から、チロシンキナーゼ阻害率は、下記 の式により求められる。

[0587]

【数1】阻害率(%)=100-{(A-C)/(B-C)}×100

【0588】被検物質の添加濃度を変化させて得られた 阻害率より I C_{50} 値 (50%阻害濃度)を算出した。

(2) 癌細胞增殖阻害作用

(測定方法) ヒト鼻咽喉癌であるKB細胞は、その細胞 表面上にEGF受容体を過剰に保有している。このKB 細胞を用いて、培養癌細胞の増殖に対する被検物質の効 果の検討を以下の方法で行った。

【0589】96well dish上に、KB細胞を
2.5×10°cell/wellに播種し、10%F
BS、50U/mlペニシリン及び50μg/mlストレプトマインン含有DMEM:Fl2(1:1)培地中で、37℃、5%炭酸ガス条件下で1日培養後、DMSのに溶解した液物質を指地に添加し(DMSの終濃度く0.1%)、上記条件下で3日間培養上た。なお波検物質は24時間おきに溶地と共変換した。

【0590】生細胞数のカウントは、Michael
C. AlleyものCancerReserch 4
8,589(1988)記載の測定法を参考に、MTT
(3-[4,5-Dimethylthiazol-2-y1]-2,5-diphenytetrazoli
um bromide)試薬を用い540nmと660
nmの2被援の比色定量より求め、その値をもとした。 同時に破除物質を加えない時の生細胞数のカウントも測 定し、その値をもとした。細胞増殖阻害率は、下記の式 により求められる。

[0591]

【数 2 】阻害率 (%) = { (b - a) / b) ×100 (0592) 被検物質の訴訴漢度を変化させて得られた 阻害率より1 C₅6値(50%阻害漢度)を算出した。以上の結果を表に示す。表中、Enzは、チロシンキナーゼ阻害率を、Celliは、細胞増殖阻害率を表わす。

【0593】 【表184】

-210-

		I C 50	(µM)
実施例	化合物	Enz	Cell
2	N N NBL2-HCI	14	0.89
4	Me N NEt 2-HC1	22	0. 76
6	Me N IRL 2	12	0.23
7	BLO OEL NO CO2EL	0. 061	7.6
8	N N N CO ₂ H	0. 020	2.9

[0594] 【表185】

*********	#: A #4:	I C 50	(μM)
実施例	化 合 物	Enz	_C e 1 l
1 0	MeO OMe - HC1	0.003	1.4
1 2	NeO We	0. 014	2
15	Me NBt 2*HC1	1.7	8.0
16	NeD We	0.080	23. 4
18	NEL 2-HC I	1. 2	0. 12

[0595] 【表186】

ata diserva	化合物	I C 50	(μM)
実施例	化 合 物	Enż	Cell
2 0	N NBt 2-HC1	0. 031	0.18
2 1	NeO OKe	0, 013	6.1
2 2	MeO OME P	0. 0054	0.66
2 6	NeO Me NBt 2	7. 3	6. 2
2 7	MeO OMe NBt2	I. 1	0.78

[0596] 【表187】

	71. A #h	1 C 50	(µM)	
実施例	化 合物	Enz	Cell	
2 8	Me0 ONe	0. 015	2. 2	
2 9	NEU ME ME 2	4.6	0.5	
3 2	NEU ME NET 2	0. 20	4.6	
3 3	MeO OMe	0. 0087	0.62	
3 4	MeO OHie OAc	0.013	0. 44	

[0597] 【表188]

etros m	化合物	I C 50	(μM)
実施例	化 合物	Enz	Cell
3 5	Me0 (Me	0. 026	25. 9
3 6	Ne0 (Me NBt 2	0, 0024	1.5
3 7	MeO OMe NBt 2	0. 24	1.4
3 9	NH12 N T N NBL 2 MeO OMe - HC1	6. 073	1.6
4 0	N°N OCO2NE	9.6	1

[0598] [表189]

実施例	化 合物	I C 50 (μM)	
		E n z	Ce11
4.1	NH2 N NEt2 H2N NEt2	2.0	0. 15
4 4	H ₂ N NE1 2	0.28	0. 29
4 5	N NEL 2	1.6	<0.5
4 7	CI NEL2	1.4	0. 25
4 9	BtO OBt NEt 2	0.0068	2.9

[0599] 【表190】

- 17-44- Ma		I C 50 (μM)	
実施例	化合物	Enz	Cell
5 0	N NEt 2	0. 043	0. 27
5 1	MeO OMe	14	0. 20
5 2	Eto ORt	0.044	1.9
5 4	N N COOH	2.9	8.9
5 6	N Me N HC1	0.019	2.4

[0600] [表191]

	n	IC ₅₀ (μM)	
実施例	化合物	Enz	Cell
5 7	E LO OR T COOR T	0.77	4.0
59	Eto Oet Bt HC1	0.0058	2.6
60	Eto OEt COOH	0.0063	1.6
6 2	EtO OEt O CO2Me	0.019	1. 2
63	BIO OEt OCO2H	0.013	11.0

[0601] [表192]

実施例	/L A #	IC ₅₀ (μM)	
美胞的	化合物	Enz	Cell
64	iPrO iPrO COORt	0. 20	8. 8
6 5	iPro iPro	0.021	3. 6
6.6	NH NO2 NH COORT	>100	0. 17
6 7	H ₂ N NO ₂ NO ₂ COORL	1.7	0.14
6 8	H ₂ N NO ₂ COOR	1.3	7.2

[0602] [表193]

et: 44-701	(施例) 化合物	IC ₅₀ (μM)	
実施例		Enz	Cell
6 9	MeD ONC O-Ne	0.097	0.6
70	B10 OBt NEt 2	0. 044	8.3
7 1	B10 B10 P	0.015	9.3
7 2	EtO OGt CO ₂ Bt	51	17. 1
7 3	E10 OEt OEt	0. 25	11.3

[0603] [表194]

	//- A #4	I C 50	(µM)
実施例	化 合物	E n z	Cell
7 4	R to OEL OH	0.062	2.0
7 5	Bro OSt N O COOM	0. 013	19. 0
76	MeD ONe COOR	0.091	
77	N N N COOH	0. 033	7. 6
7 8	N N COOBL	5.0	0, 97

【0604】 【表195】

etropi mi	医施例 化合物	I C 50	(µM)
天鹿例		Enz	Cell
7 9	N N COOR	0. 0059	4.2
8 0	NII2 N N COORE	0. 37	15.1
8 1	N H H COORt	0. 026	10
8 2	ELO OEL N COOH	C. 018	>100
8 3	ELO OEL NO COORT	5.9	38. 6

[0605] 【表196]

		I C 50	(µM)
実施例	化 合物	Enz	Cell
8 4	N N COOR	10	>100 (57. 1)
8 5	N N COOR	0, 53	5. 2
8 6	N N N OBt	0.18	6.3
8 7	N OH OH	0. 073	0. 073
8 8	E LO OB t N COOR	0.086	>100

[0606] [表197]

	実施例 化 合 物	1 C 50	(µM)
実施例		Enz	Cell
8 9	BED OEt N COORT	0.041	37.5
9 0	BLO OEt I	~0,01	46, 5
91	Bto OEt	0. 16	10
93	NEO UMa HC1	0.19	0. 23
94	NHAC N N N NEt 2	5.1	2.8

[0607] [表198]

ctrate ma	//- A #-	Ι C 50 (μM)	
実施例	化合物	Enz	Cell
9 6	OME N N N N N N N N N N N N N N N N N N N	3.0	1.4
9 7	Med Olike	101	>100
9 9	MeO OKe O COOH	88	5. 4
100	RIO ORI CONHCN	0. 025	23. 2
101	BtO OBt St. COO(CH ₂) ₆ Me	1.2	10.3

[0608] [表199]

	化合物	I C 50	(µM)
実施例	化 合 物	Enz	Cell
102	Bt CONH2	0. 0059	6.5
103	N COOM	0, 024	0.36
105	0Et 0Et	31	7.1
106	BLO OEL NO CONNE	0. 012	4.3
107	N°N N N N N N N N N N N N N N N N N N N	0.044	

[0609] [表200]

実施例	化 合 物	I C 50	(µM)
	化合物	Enz	Cell
108	Me0 ONe	10	
109	N HOOC	0. 18	7.4
110	Neo OMe COOH	0. 018	1.9
111	N N COOR	0.0074	1.8
113	ETO OBT O COOR	0.0084	0.70

[0610] [表201]

	/I. A #4	IC ₅₀ (μM)	
実施例	化 合物	Enz	Cell
115	Bro OBt COOH	0.0097	0.36
116	ETO OBT CT	0.051	0.45
118	HOOOS	0.081	1.1
120	BEO OBE	1. 4	2,1
122	Eto ORt O COOH	0.12	0.32

[0611] [表202]

実施例	化 合 物	1 C 50 (μM)		
	化 合物	Enz	Cell	
124	RLO OEt COOH	0. 074	0.6	
125	BtO OEt P	0. 011	~80	
126	BIO OET N N TOOOH	0.0093	45. 4	
129	Ero OEr NO 29H	1.7	0. 62	
1 3 2	EtO OET N	0.14	0. 45	

【0612】 【表203】

实施例	化 合 物	IC ₅₀ (μM)		
		Enz	Cell	
134	BtO OBt COORt	0.76	26. 4	
1 3 5	BLO CEL NCOOH	>0.1 (17/039%)		
136	Bed OEe N S S	2.1	3.9	
137	BLO OBL Ne	0. 24	0.09	
138	E FO OBE COOH	0.042		

[0613] [表204]

実施例	化 合 物	IC ₅₀ (μM)		
		E n z	Cell	
139	R COOMe	0. 032	2.8	
140	RED ORL H	0, 028	1.8	
141	N N NH NH COOMe	0.035	12. 2	
142	Bto OEt H COOMe	0.032	10.0	
144	B10 OEt H COOH	0. 012	0.7	

【0614】 【表205】

実施例	化合物	I C 50 (μM)		
		Enz	Cell	
145	REO OEt CO2Bt	1.6	1.7	
146	N N CO ₂ E	>1	2.2	
147	N ORE	>1	1.7	
148	O COORF	0. 42	2.1	
149	O Et COOMe	0.017	7.8	

[0615] [表206]

実施例	化 合 物	ΙC ₅₀ (μΜ)		
		Enz	Cell	
150	O Bt COOH	0.13	2.5	
151	O O COOR	0.30	1.1	
152	N	> 0. 1	2. 8	
153	N N COOCH	0.18		
	EtO OBt COORt	-0.1 (T/C52%)	17. 4	

【0616】 【発明の効果】本発明のエチニルビリミジン誘導体は、 強力なチロシンキナーゼ阻害活性及び癌細胞煌弾抑制作 用を有するので、制密剤、免疫抑制剤、血小板凝集阻害

利、動脈硬化治療薬、抗炎症剤、または癌細胞増殖抑制 薬として有用である。 【表207】

	化 合物	IC ₅₀ (μM)		
実施例		E n z	Cell	
	ETO OBT COOH	0. 017	6.1	
	PtO ORt COORt	0. 057	4. 4	
	N N COOMe	0.017		
	N°N COORt	>1 (T/C96%)	1.3	

フロントページの続き

(51) Int. Cl. 6	識	別記号	FI		
A61K 3	31/52 A	CB	A 6 1 K	31/52	ACB
3	31/535 A	BC		31/535	ABC
C 0 7 D 23	39/42		C07D	239/42	Z
23	9/62			239/62	
23	9/78			239/78	
40	01/06 2	3 9		401/06	239
40	3/06 2	0 7		403/06	207
40	05/12 2	3 9		405/12	239
40	05/14 2	211		405/14	211
41	7/06 2	3 9		417/06	239
47	1/04 1	. 0 8		471/04	108Z
	1	1 7			117Z
47	3/00			473/00	
47	5/00			475/00	
48	87/04 1	4 4		487/04	144
	1	4 8			148
49	01/048			491/048	
49	1/056			491/056	

(72) 発明者 鈴木 毅 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内

(72) 発明者 大矢 淳 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内

(72)発明者 原 啓人 東京都千代田区丸の内二丁目 5 番 2 号 三 菱化学株式会社医薬カンパニー内