Escuela Rafael Díaz Serdán 3° de Secundaria (2023-2024)

Ciencias y Tecnología: Química

Examen de la Unidad 2 Prof.: Julio César Melchor Pinto

Soluciones Nombre del alumno: Fecha: Evaluador: Instrucciones: Lee con atención cada pregunta y rea-Al comenzar este examen, aceptas las siguientes reglas: liza lo que se te pide. Desarrolla tus X No se permite salir del salón de clases. respuestas en el espacio determinado X No se permite intercambiar o prestar ningún tipo de material. para cada solución. De ser necesario, X No se permite el uso de **celular** o cualquier **otro dispositivo**. utiliza una hoja en blanco por separa-X No se permite el uso de apuntes, libros, notas o formularios. do, anotando en ella tu nombre com-X No se permite **mirar** el examen de otros alumnos. pleto, el número del problema y la so-X No se permite la **comunicación** oral o escrita con otros alumnos. lución propuesta. Si no consideraste alguna de estas reglas, comunícalo a tu profesor. Calificación: Aprendizajes a evaluar: Pregunta 🔽 Deduce información acerca de la estructura atómica a partir de da-Puntos 10 10 10 10 10 tos experimentales sobre propiedades atómicas periódicas. Obtenidos 🔽 Representa y diferencia mediante esquemas, modelos y simbología Pregunta 9 10 11 12 Total química, elementos y compuestos, así como átomos y moléculas. Puntos 10 5 5 5 10 100 Karplica y predice propiedades físicas de los materiales con base en ${\bf Obtenidos}$ modelos submicroscópicos sobre la estructura de átomos, moléculas o iones, y sus interacciones electrostáticas. de 10 pts| Señala en cada uno de los enunciados si la sentencia es falsa o verdadera. Los metales son maleables, dúctiles y buenos con-La masa de un neutrón es similar a la del protón. ductores del calor y la electricidad. ☐ Falso ✓ Verdadero ✓ Verdadero ☐ Falso El número de masa representa la suma de proto-1b) Los electrones de valencia se encuentran siempre nes v neutrones. en el último nivel de energía. **☑** Verdadero ☐ Falso ✓ Verdadero ☐ Falso El número total de electrones en un átomo lo de-La fórmula H₂O expresa que la molécula de agua termina el grupo al que pertenece. está constituida por dos átomos de oxígeno v uno ☐ Verdadero **☑** Falso de hidrógeno. ☐ Verdadero **✓** Falso En una fórmula química, los coeficientes indican el número de moléculas o unidades fórmula; así 1d) Los subíndices expresan el número de átomos de como también el número de moles presentes de la los elementos presentes en una molécula o unidad sustancia. fórmula. ✓ Verdadero ☐ Falso **☑** Verdadero

En la fórmula de la Taurina, 4C₂H₇NO₃S, el nú-

mero 4 indica que hay 4 átomos de carbono.

✓ Verdadero ☐ Falso

☐ Falso

☑ Falso

☐ Verdadero

El neutrón es una partícula subatómica que se encuentra girando alrededor del núcleo atómico.

A. Ión de Aluminio (Al³⁺)

B. Ión de Nitrógeno (N^{3-})

C. Ión de Flúor (F⁻)

D. Litio (Li)

E. Ión de Potasio (K⁺)

F. Ión de Berilio (Be⁻)

G. Ión de Azúfre (S^{2+})

H. Ión de Cloro (Cl⁻)

I. Ión de Hierro (Fe³⁺)

J. Fósforo (P)

- (2a) __F 13 protones y 8 electrones de valencia.
- (2b) __G 17 protones y 8 electrones de valencia.
- (2c) C 9 protones y 8 electrones de valencia.
- (2d) B 4 protones y 3 electrones de valencia.
- (2e) <u>H</u> 16 protones y 4 electrones de valencia.

- 2f ______ 15 protones y 5 electrones de valencia.
- (2g) ____ 26 protones y 2 electrones de valencia.
- (2h) A 7 protones y 8 electrones de valencia.
- (2i) I 3 protones y 1 electrón de valencia.
- ${2
 m j}$ ${
 m E}$ 19 protones y 8 electrones de valencia.
- (3) [_de 5 pts] Relaciona cada **concepto** con su definición.
 - A. Las sustancias se representan sólo con símbolos atómicos.
 - B. Esquema tridimensional en el que es posible identificar a los enlaces químicos.
 - C. Las sustancias se representan con símbolos atómicos y líneas que simbolizan a los enlaces químicos.
 - D. Esquema tridimensional en el que no es posible identificar a los enlaces químicos.
- (3a) _D Diagrama de esferas.
- (3b) <u>C</u> Fórmula estructural.
- (3c) A Fórmula condensada.
- (3d) B Diagrama de esferas y barras.

- [_de 10 pts] Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.
 - (4a) 2 Na + ZnI₂ \longrightarrow 2 NaI + Zn
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - (4b) $C_8HO_{18} + calor \uparrow \longrightarrow C_6H_{14} + C_2H_4$
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - (4c) Zn(s) + 2 HCl(ac) \longrightarrow ZnCl₂(ac) + H₂(g)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - $(4d) 2C(s) + O_2(g) \longrightarrow 2CO(g)$
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - (4e) 2 Na + H₂O \longrightarrow 2 NaOH + H₂
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento

- 4f 2 Al(s) + 3 S(s) \longrightarrow Al₂S₃(s)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- (4g) Mg(s) + H₂O(l) \longrightarrow Mg(OH)₂(s)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- (4h) Al + H₂SO₄ \longrightarrow Al₂(SO₄)₃ + H₂
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- (4i) 2 NaCl(s) \longrightarrow 2 Na(s) + Cl₂(g)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- (4j) SO₂(g) + H₂O(l) \longrightarrow H₂SO₃(ac)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - **D**. Doble desplazamiento
- 5 [_de 10 pts] Balancea la siguiente ecuación química:

$$N_2H_4 + O_2 \longrightarrow NO_2 + H_2O$$

Solución:

Hay 2 N en los reactivos y 1 N en el producto, por lo que hay que multiplicar a NO_2 por 2.

$$N_2H_4 + O_2 \longrightarrow 2NO_2 + H_2O$$

Hay 4 H en los reactivos y 2 H en los productos, por lo que hay que multiplicar a H₂O por 2.

$$N_2H_4 + O_2 \longrightarrow 2NO_2 + 2H_2O$$

Hay 2 O en los reactivos y 6 O en los productos, por lo que hay que multiplicar a O_2 por 3. Y la ecuación balanceada es:

$$N_2H_4 + 3O_2 \longrightarrow 2NO_2 + 2H_2O$$

- 6
- de 10 pts] Balancea la siguiente ecuación química:

$$C_2H_6O + O_2 \longrightarrow CO_2 + H_2O$$

Solución:

Hay 2 C en los reactivos y 1 C en los productos, por lo que hay que multiplicar por 2 al CO₂.

$$C_2H_6O + O_2 \longrightarrow 2CO_2 + H_2O$$

Ahora, hay 6 H en los reactivos y 2 H en los productos, por lo que hay que multiplicar por 3 al H_2O .

$$C_2H_6O + O_2 \longrightarrow 2CO_2 + 3H_2O$$

Hay 3 O en los reactivos y 7 O en los productos, por lo que hay que multiplicar por 3 al O_2 . Y la ecuación balanceada es:

$$C_2H_6O + 3O_2 \longrightarrow 2CO_2 + 3H_2O$$

 $\overline{7}$

de 10 pts Balancea la siguiente ecuación química:

$$NH_4NO_3 \longrightarrow N_2 + H_2O + O_2$$

Solución:

Hay 4 H en el reactivo y 2 en el producto, por lo que el coeficiente de H2O es 2.

$$NH_4NO_3 \longrightarrow N_2 + 2H_2O + O_2$$

Hay 3 O en los reactivos y 4 los productos, por lo que si intentamos dar al O_2 un coeficiente de 1/2, nos da 3 oxígenos en ambos lados.

$$NH_4NO_3 \longrightarrow N_2 + 2H_2O + \frac{1}{2}O_2$$

Dado que usualmente no se usan fracciones como coeficientes, multiplicamos todo por 2 para deshacernos de la fracción, y la ecuación balanceada es:

$$2 \text{ NH}_4 \text{NO}_3 \longrightarrow 2 \text{ N}_2 + 4 \text{ H}_2 \text{O} + \text{O}_2$$

- $\left(8\right)$
 - de 10 pts] Contesta a las siguientes preguntas, argumentando ampliamente tu respuesta.
 - 8a

Explica bajo qué condiciones el número atómico permite deducir el número de electrones presentes en un átomo.

Solución:

El número atómico Z se relaciona con la cantidad de protones en un átomo. Si consideramos un átomo eléctricamente neutro, la cantidad de electrones deberá ser la misma.

- (8b) E á
- En términos generales, el radio de un átomo es aproximadamente 10,000 veces mayor que su núcleo. Si un átomo pudiera amplificarse de manera que el radio de su núcleo midiera 2 mm (lo que mide un grano de sal), ¿cuál sería el radio del átomo en metros?

Solución:

$$10,000 \times 2 \text{ mm} = 20,000 \text{ mm} = 20m$$

- 9 [_de 5 pts] Señala la opción que responde correctamente a la pregunta de cada uno de los siguientes incisos:
 - (9a) ¿Qué propiedades periódicas aumentan al recorrer un grupo de arriba hacia abajo en la tabla periódica?
 - A. El carácter metálico y la electronegatividad
 - B. El potencial de Ionización y el carácter metálico
 - C. El carácter no metálico y el potencial de ionización
 - **D**. La electronegatividad y la afinidad electrónica
 - E. Ninguna de las anteriores
 - 9b ¿Qué propiedades periódicas aumentan al desplazarnos en un período de izquierda a dere- cha en la tabla periódica?
 - A. La electronegatividad y el tamaño atómico
 - B. El radio atómico y el radio iónico
 - C. El carácter metálico y la afinidad electrónica
 - D. Potencial de ionización y electronegatividad
 - E. Ninguna de las anteriores
 - 9c En la tabla periódica, el tamaño atómico tiende a aumentar hacia la:
 - A. Derecha y hacia arriba
 - B. Derecha y hacia abajo
 - C. Izquierda y hacia arriba
 - D. Izquierda y hacia abajo

- (9d) El tamaño de los átomos aumenta cuando:
 - A. Se incrementa el número de período
 - B. Disminuye el número de período
 - C. Se incrementa el número de grupo
 - D. Disminuye el número de bloque
 - E. Ninguna de las anteriores
- 9e El radio atómico es la distancia que hay del núcleo de un átomo a su electrón más lejano ¿Cómo varía esta propiedad atómica en los elementos de la tabla periódica?
 - A. Disminuye conforme nos desplazamos de izquierda a derecha a lo largo de un período
 - B. Aumenta conforme nos desplazamos de arriba hacia abajo a lo largo de un grupo
 - C. Aumenta conforme nos desplazamos de derecha a izquierda a lo largo de un período
 - D. Todos son correctos

10 [_de 5 pts] Completa la siguiente tabla determinando para cada especie, la cantidad de protones (+), neutrones (n) y electrones (-).

Especie	Símbolo	\oplus	n	<u>-</u>
Xenón				
Ión negativo de Antimonio				
Fósforo				
Ión negativo de Azúfre				
Ión positivo de Silicio				

11) [_ de 5 pts] Escribe el grupo (familia), el período y el tipo de clasificación de los siguientes elementos. Después de realizar este ejercicio, ubica a cada elemento en la tabla

${\bf Elemento}$	${\rm Grupo/Familia}$	Período	Tipo
Paladio			
Oro			
${ m Arg\'on}$			
Samario			
Talio			

- 12 [_de 10 pts] Relaciona cada elemento con las características que le corresponden.
 - 12a <u>E</u> Titanio
 - (12b) ___**J** Oro
 - 12c D Helio
 - 12d A Boro
 - 12e I Radón
 - (12f) ____ F ___ Yodo
 - 12g H Bismuto
 - (12h) __G__ Radio
 - 12i) __B__ Galio
 - (12j) ____ Silicio

- A. Elemento metaloide del grupo III, subgrupo A de la tabla periódica.
- B. Elemento metálico con Z = 31.
- C. Elemento metaloide, ubicado en el tercer período de la tabla periódica.
- D. Elemento conocido como gas noble y se encuentra en el período 1 de la tabla periódica.
- E. Elemento con 22 protones y 22 electrones.
- F. Elemento de la familia de los Halógenos con 74 neutrones.
- G. Elemento de la familia de metales alcalino-terreos con 138 neutrones.
- H. Elemento no metálico con Z = 83.
- I. Gas inerte (gas noble) que se encuentra en el período 6 de la tabla periódica.
- J. Metal brillante utilizado en joyería.

Tabla 1: Tabla Periódica de los Elementos.

$\begin{array}{c} 18 \text{ VIIIA} \\ \mathbf{Helio} \\ \text{Helio} \end{array}$	$\sum_{N \in \mathcal{N}}^{20.180}$	$\overset{18}{A}\overset{39.948}{r}$	$\overset{36}{K}\overset{83.8}{r}$	$\sum_{Xenón}^{54}$	$\mathop{Rad\acute{o}}^{86}_{\mathrm{C}}$	$\frac{118}{0}$ 294	$\overset{71}{\mathbf{L}}$ 174.97 $\overset{71}{\mathbf{L}}$ Luterio	$\frac{103}{L} \frac{262}{L}$ Lawrencio
17 VIIA	9 18.998 Fluor	$\bigcap_{Cloro}^{17} \bigcup_{Cloro}^{35.453}$	\Pr_{Bromo}^{35}	53 126.9 Todo	$\mathop{\mathrm{AL}}_{\mathop{Astato}}^{85}$	$\frac{117}{\text{Teneso}}$	$\sum_{\text{Yterbio}}^{70} \frac{173.04}{\text{S}}$	102 259 Nobelio
16 VIA	8 15.999 Oxígeno	16 32.065 S	$\overset{34}{\mathbf{S}}\overset{78.96}{\mathbf{C}}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{Po}^{209}$	$\frac{116}{L} \begin{array}{c} 293 \\ \hline \\ \text{Libermonio} \end{array}$	$\prod_{\text{Tulio}}^{69}$	$\overset{\text{101}}{\text{Nendelevio}}$
15 VA	$\sum_{ ext{Nitrógeno}}^{ ext{7}}$	$\overset{15}{P}\overset{30.974}{P}$	${\overset{33}{A}}_{\text{Arsénico}}$	$\overset{51}{S}\overset{121.76}{b}$ Antimonio	$\overset{83}{\text{Bismuto}}$	${\overset{115}{\text{MSCOVio}}}^{288}$	$\frac{68}{E}_{\mathbf{r}}$	Frmio Fermio
14 IVA	6 12.011 Carbono	$\overset{14}{S}\overset{28.086}{\text{Silicio}}$	$\overset{32}{G}\overset{72.64}{e}$ Germanio	$\overset{50}{S}\overset{118.71}{n}$	\Pr_{Pbmo}^{82}	114 289 Flerovio	$\overset{\textbf{67}}{\text{Holmio}}\overset{164.93}{\text{Holmio}}$	99 252 Einsteinio
13 IIIA	$\overset{5}{\mathbf{B}}$	$\overset{13}{A}\overset{26.982}{\text{Aluminio}}$	$\overset{31}{\mathrm{Galo}}$	\prod_{Indo}^{49}	81 204.38 Talio	113 284 Nihonio	$\bigcup_{Disprosio}^{66}$	$\bigcup_{\text{Californio}}^{98}$
		12 IIB	$\overset{30}{Z}\overset{65.39}{\mathrm{n}}$	$\overset{48}{\text{Cadmio}}^{112.41}$	$\overset{80}{H}\overset{200.59}{S}$	$\overset{112}{\bigcirc} \overset{285}{\text{C}}$	$\prod_{Terbio}^{65-158.93}$	$\frac{97}{BK}$
		11 IB	$\overset{29}{\overset{63.546}{U}}$	$^{47}_{ extstyle Ag}$	$\overset{79}{\mathbf{A}}_{0^{\mathrm{ro}}}^{196.97}$	$\underset{\text{Roentgenio}}{\text{111}} \text{280}$	64 157.25 Gd	Omrio
		10 VIIIB	28 58.693 Niquel	$\Pr^{46 \ 106.42}_{Paladio}$	$\Pr^{78-195.08}_{\text{Platino}}$	110 281 DS	$\overset{\textbf{63}}{\text{Europio}}$	$\underset{\text{Americio}}{Am}$
		9 VIIIB	$ \bigcup_{\text{Cobalto}}^{27} $	$\mathop{Rh}\limits^{45~102.91}_{\text{Rodio}}$	$\frac{77}{L}$	$\overset{\text{109}}{\text{IM}}\overset{\text{268}}{\text{Meitnerio}}$	$\overset{62}{S}\overset{150.36}{m}$	$\overset{94}{Putonio}$
	ro.	8 VIIIB	$\overset{26}{F}\overset{55.845}{\bullet}$	$\mathop{Ruthenio}^{44}$	$\overset{76}{\text{Osmio}}$	108 277 Hassio	$\Pr_{\text{Prometio}}^{61}$	93 237 Neptunio
gía:	Naturales ntéticos	7 VIIB	$\overset{25}{N}\overset{54.938}{\text{Manganeso}}$	$\prod_{ m Tecnecio}^{43}$	$\mathop{Renio}_{\text{Renio}}^{75 186.21}$	$\overset{\text{107}}{B}\overset{264}{\text{Bohrio}}$	60 144.24 Neodimio	92 238.03 Uranio
Simbolog	Negro: Natural Gris: Sintéticos	6 VIB	$\bigcup_{Cromo}^{24}\mathbf{\Gamma}$	${\overset{42}{\text{Nolybdeno}}}^{95.94}$	$\frac{74}{\text{NM}}$	106 266 S Seaborgio	$\sum_{\mathrm{Praseodymio}}^{59}$	$\overset{91}{\text{Pa}}\overset{231.04}{\text{Protactinio}}$
Sin	$\sum_{ ext{Simbolo}}^{ ext{Z}}$	5 VB	$\sum_{\text{Vanadio}}^{23} 50.942$	$\sum_{\text{Niobio}}^{41} \stackrel{92.906}{\text{N}}$	$\prod_{\text{Tantalo}}^{73} 180.95$	$\bigcup_{\text{Dubnio}}^{105}$	$\overset{58}{\overset{140.12}{Cerio}}$	$\prod_{Tario}^{90-232.04}$
		4 IVB	$\prod_{\text{Titanio}}^{22} 47.867$	$\overset{40}{Z}\overset{91.224}{r}$ Circonio	$\underset{\text{Hafh io}}{\overset{72}{\text{Hz}}}_{\text{Hafh io}}$	$\underset{\text{Rutherfordio}}{\overset{104}{\text{P}}}$	$\sum_{\text{Lantánido}}^{57}$	$\overset{89}{Ac}$
		3 IIIA	$\overset{\scriptscriptstyle{21}}{S}^{\scriptscriptstyle{44.956}}_{c}$ Escandio	$\sum_{\text{ltrio}}^{39} 88.906$	57-71 * Lantánido	. 89-103 . ** 	s -terreos	idos
2 IIA	$\overset{4}{B}\overset{9.0122}{\text{Berilio}}$	${\overset{12}{\mathrm{Mgenesio}}}^{24.305}$	$\overset{20}{\text{Calcio}}^{40.078}$	$\overset{38}{\mathrm{Sr}}_{^{87.62}}$	$\overset{56}{\text{Bario}}_{\text{137.33}}$	\mathop{Radio}^{88}	Metales Alcalinos Metales Alcalino-terreos Metal	Metaloide No metal Halógeno Gases Nobles Lantánidos/Actínidos
1 IA 1 1.0079 Hidrógeno	$\sum_{\text{Litio}}^{6.941}$	$\overset{\text{11}}{\text{Na}}\overset{22.990}{\text{Sodio}}$	19 39.098 K	$\mathop{Rb}^{37}_{\text{Rubidio}}$	\sum_{Cesio}^{55}	$\frac{87}{F} \sum_{\text{Francio}}^{223}$	Metales Metales Metal	Metaloide No metal Halógeno Gases Nobles Lantánidos/A
Н	7	က	4	5	9	7		