

Introduction to the Problem

- What is Knee Osteoarthritis (OA)?
 - •A progressive joint disorder that leads to pain and reduced mobility.
 - Affects millions of people worldwide, especially older adults.
 - •Diagnosed using **X-ray images**, but it requires expertise.
- > Challenges in Diagnosis
 - •Subjective Analysis: Different doctors may interpret X-rays differently.
 - •Time-Consuming: Manual examination of thousands of images is inefficient.
 - •Need for Automation: Al can help in fast & accurate classification of knee conditions.

OBJECTIVE

- ❖ Develop an **AI model** that can classify knee conditions into **three categories**:
 - Normal: No signs of bone loss.
 - Osteopenia: Early-stage bone loss, requiring medical attention.
 - Osteoporosis: Severe bone loss, leading to high fracture risk.
- **❖** Key Goals of Our Al Model
 - Automate detection from knee X-ray images.
 - > Improve diagnostic accuracy using deep learning.
 - > Provide a scalable & efficient solution for real-world healthcare applications.

> Problem Statement:

■ Knee Osteoarthritis (OA) is a degenerative joint disease that affects millions globally, leading to pain and reduced mobility. Diagnosis is primarily done using X-ray images, which is time-consuming, subjective, and requires medical expertise. There is a critical need for an automated, scalable, and accurate diagnostic system to support healthcare professionals and reduce diagnostic errors.

Proposed Solution:

We propose an Al-powered deep learning approach to automatically classify knee X-ray images into Normal, Osteopenia, and Osteoporosis categories. Using advanced models like Xception, MobileNet, and attention mechanisms with Squeeze & Excitation blocks, our solution enhances diagnostic accuracy and efficiency. This system can assist doctors in early detection and support decision-making in real-world healthcare settings.

.. Opportunities...

- Growing Need for AI in Healthcare: Rising cases of knee osteoarthritis create a huge demand for fast and accurate diagnosis.
- **Expanding Telemedicine Market**: Our AI solution can be integrated into **remote healthcare services**, benefiting rural and underserved areas.
- Cost-Effective & Scalable: Unlike traditional methods requiring specialists, our model provides an affordable & automated alternative.

How is it Different from Existing Solutions?

- Most existing models focus only on advanced OA detection.
- Our Al detects early-stage Osteopenia, allowing for preventive care before severe damage occurs.
- ➤ Uses a hybrid approach (Xception + MobileNet + Attention + SE Block) for superior accuracy.
- > Can be deployed on mobile & cloud platforms, unlike hospital-based solutions.

How Does It Solve the Problem?

✓ Current Issues:

Time-consuming, expensive, and prone to human error.

✓ Our Al Solution:

- Instantly classifies X-ray images into Normal, Osteopenia, and Osteoporosis.
- Reduces dependency on radiologists, making early detection more accessible.
- Improves diagnostic consistency, ensuring fewer misdiagnoses.

Architecture diagram of the proposed solution

AI Models Used

- > Why Deep Learning?
 - Traditional methods rely on handcrafted features.
 - Deep learning models can automatically learn patterns in images.
- > Models Implemented.
 - Xception:
 - A powerful **CNN model** for high-quality feature extraction.
 - Uses depthwise separable convolutions for efficient learning.
 - MobileNet:
 - Lightweight architecture optimized for faster inference.
 - Ideal for deploying AI models in mobile/edge devices.
 - Attention Mechanism:
 - Helps the model focus on relevant knee regions.
 - Squeeze & Excitation (SE) Block:
 - Improves the model's ability to highlight important features.

Model Training & Optimization

Dataset Splitting:

• Training Set: 80%

• Validation Set: 10%

• Test Set: 10%

Techniques Used for Optimization:

• Transfer Learning: Pre-trained models fine-tuned for knee classification.

• Image Data Augmentation: Prevents overfitting & improves generalization.

• Early Stopping: Stops training when validation loss stops decreasing.

• Batch Normalization & Dropout: Helps stabilize training & prevents overfitting.

Future Scope

- > Enhancing Model Accuracy:
 - Experiment with Hybrid Architectures (CNN + Transformer).
- Deploying AI Model in Real Healthcare Systems.
- Building a Mobile App for Doctors & Patients.
- > Training on a Larger & More Diverse Dataset.
- > Illustration of a mobile app interface for Al-assisted knee diagnosis.

HACK O'CLOCK

