1. Lat A=(1,2,3), B=(8,9,4) och C=(7,6,8) vara tre punkter.
a) Auge en ehvabiere på garameberform för det plan som innehåller punkterna A, B och C.

Lögning. En allmen elwabron for ett sident plan (och par vätt form) är (x,y, E) = A + SAB + b AC för E, BER.

 $\frac{7}{AB} = B - A = (8,9,4) - (1,2,3) = (7,7,1)$ $\frac{7}{AC} = C - A = (7,6,5) - (1,2,3) = (6,4,2)$ $\frac{1}{Alltsi W chuakoray}$ (x,9,2) = (1,2,3) + s(7,7,1) + t(6,4,2) & for s,6 & CR.

Svan: (x,y,z) = (1,3,3)+s(7,7,1)+6(6,42) for s,6ER.

b) Ange en chration på parameter fri som som det plan som innelieller punktemer A, B oefg C.

Lözning. For att ställa upp planets elwation på parameter fri form behöver vi en punto i planet, till exempel A, och en normalvelstor till planet. Den senare kan vi beräkna som krysgrodukten AB x AE.

 $\overrightarrow{AB} \times \overrightarrow{AC} = (7\overrightarrow{e_1} + 7\overrightarrow{e_2} + \overline{e_3}) \times (6\overrightarrow{e_1} + 4\cancel{e_2} + 2\overrightarrow{e_3}) =$ $= 28\overrightarrow{e_3} + 14(-\overrightarrow{e_2}) + 42(-\overrightarrow{e_3}) + 14\overrightarrow{e_1} + 6\overrightarrow{e_2} + 4(-\overrightarrow{e_1}) =$ $= (14 - 4)\overrightarrow{e_1} + (-14 + 6)\overrightarrow{e_2} + (28 - 42)\overrightarrow{e_3} = 10\overrightarrow{e_1} - 8\overrightarrow{e_2} - 14\overrightarrow{e_3}$

Alltså år $\overrightarrow{AB} \times \overrightarrow{AC} = 2(5\overline{e}, -4\overline{e}_2 - 7\overline{e}_3)$, så vi kan ta $5\overline{e}, -4\overline{e}_7 - 7\overline{e}_3 = \overline{n}$ som normalvelitor i den sökta ehvationen. 0 = N. ((x,y,z)-A) = (5,-4,-7) . ((x,y,z)-(1,2,3)) = $=(5,-4,-7) \circ (x-1,y-2,z-3) = 5(x-1)-4(y-2)-7(z-3) =$ =5x-5-4y+8-7z+21=5x-4y-7z+24Svan: En chrabion for det planet är 5x-4y-72=-24. Kolls (x,y,z)=A ger 5x-4y-7z=5.1-4.2-7.3=5-8-21=-24. (x,y,z)=B ger 5x-4y-7z=5.8-4.9-7.4=40-36-28=-24. (x,y, z)=C ger 5x-4y-7z=5.7-4.6-7.5=35-24-35=-24. Allbra ligger 4B, C sambliga i planet 5x-4y-72=-24. c) Avgör om punkten D=(6,3,6) ligger i samma plan som Lösning. Vi forbsäller med insällning som ovan. (xy,z)=D ger 5x-4y-7z=5.6-4.3-7.6=30-12-42=30-54=-24. Svar: Ja, punkten D ligger ochså i samma plan.

2. Lit
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ och $\overline{u_0} = \overline{v_0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Lit

U_=AUO, U2=AU, U3=AU2, U4=AU3 och U5=AU4. Låb V_1=BV0, V2=BV, V3=BV2, V4=BV3 och V5=BV4. Riba ut vehborerna uo, us och vo, us i ett koordinatsystem. Se till alt ha graderat axlama och välj en lamplig shala.

Löguing. For alt punna viba ut vehtorema pehover vi først våhna ut vilha de år.

$$\overline{u}_{0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \overline{v}_{0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\
\overline{u}_{1} = A\overline{u}_{0} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\
\overline{u}_{2} = A\overline{u}_{1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\
\overline{u}_{3} = A\overline{u}_{2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix}$$

 $\overline{u}_{y} = A\overline{u}_{3} = \begin{pmatrix} 10 \\ 11 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 143 \\ 143 \end{pmatrix} = \begin{pmatrix} 143 \\ 4 \end{pmatrix} = \begin{pmatrix} 143 \\ 4 \end{pmatrix} = \begin{pmatrix} 143 \\ 143 \end{pmatrix} = \begin{pmatrix}$

 $\overline{U}_{5} = A\overline{u}_{y} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \qquad \overline{\nabla}_{5} = B\overline{\nabla}_{y} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -4 \\ 0 \end{pmatrix} = \begin{pmatrix} -4 \\ -4 \end{pmatrix}$

X-hoordinater gar fran -4 till +1 och y-koordinater fran -4 till 5, så ett intervell från -5 till 5 på båda axlama verhar lampligt. Men om man korban positiva sidem av x-axely litet grand får man plabs med en figur i större stala på papperet.

3. Beråhva determinanten 11.0	7 0 -5
020) -3 0
0 -4 3	0 5.
200	20
140	103
	,
Løsning. Man kan ju børja med grundsbra	Legin för vadgeduhtion.
11050-51-269 11	0 5 0 -51
0 2 0 -3 0 0	2 0 -3 0
0-4305 = 0+-	4305 =
	0 -10 2 10
140403 () Ot	0 -16 0 23
↓	,
20-30 (2) 20	-3 O) (Nu Hir det
= 10 -4 3 0 50 6 = 0 3	-6 5 mer si stil
0-10 2 10 - 0+-10	2 10 på rähningarna.)
0-16 0 23 0-16	0 23
V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35 -27 35
=20 -10 2 10 $3 = 20$ -10 2	10 = 2.2.
1-16 0 23 -16 0	23
3	
	-40) - 461244
-16 + 5 +	
0	
Svan : -249	

Ye Lat $A = \begin{bmatrix} -39 & -17 & 3 \end{bmatrix}$. Avgör vilha av följande vehtorer $\begin{bmatrix} 27 & 10 & -6 \end{bmatrix}$ som är egenvehtorer bill A , och
4. Lat A = -39 - 17 3 Avgór vilha av följande velstorer
127 10-6/ som är egenvehrorer bill A och
val de egenvelborerne har for egenvarden.
$\begin{pmatrix} 0 \\ -1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$
val de egenvelsborerne har for egenvarden.
(9/ 1-1/ 12/ 11/ 12/ 11/
1 DOW 1 PLIP O PLANTAGE
Lösning. Det är harn att kolla dem mot egenvelstorelwebienen
Au=lu. (19 9-2) (0) (8-8) (0) Skelle behove be 1=-5
$Au_{1} = \begin{pmatrix} 19 & 8 & -2 \end{pmatrix} \begin{pmatrix} 0 & 8 & 8 \end{pmatrix} \begin{pmatrix} 0 & 5 \end{pmatrix}$ $Au_{1} = \begin{pmatrix} -39 & -17 & 3 & 1 \\ 27 & 10 & -6 \end{pmatrix} \begin{pmatrix} 4 & 10 & -24 \\ 4 & 10 & -24 \end{pmatrix} \begin{pmatrix} -14 \\ -14 \end{pmatrix}$ $Skulle behove he \lambda = -5 4 \times 4 = -\frac{14}{4} = -\frac{7}{2} = -3.5 \text{ for beelse,}$
27 10-6/4/ 10-24/ 1-14/ $\lambda = \frac{-14}{4} = -\frac{7}{2} = -3.5$ Son tredite.
Ej egenvelbor.
(19 8 -2 /-1) (-19-8+2) (-25) Pehan helt annan
$ \frac{19 8 -2}{4 19 8 -2} \left(-1 \right) \left(-19 - 8 + 2 \right) \left(-25 \right) \text{Pehan helt annan}}{1 19 19 19 19 19 19 19 $
(27 10 -6/\-1/\ \-27-10+6/\ \-31/
(19 0 2) (2) (28-22 U) (2) The complete
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
07 10 -6 12 154-40-12 2/
(20 10 10) 12/ 10/2/ 17
[19 8 -2]/2 /38-40-2) /-4) Egenveltor,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
127 10 -6/1/ (54-50-6/ \-2/
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Aug = 107 -17 0 = -11 + 10 gora forska elementet
127 10-12/ 1-2/ 1 Kuz till nagot annat
Gegenvehlor. au O-

Svar! Egenveltorerna år ūz (egenvarde \=1), ū, (egenvarde \=-2)
och ū, (egenvarde \=-3). ŭ, ūz och ūz år cj egenveltorer.

5. Låt $\overline{v}_1 = \overline{e}_1 + 4\overline{e}_2 + 9\overline{e}_3$, $\overline{v}_2 = \overline{e}_1 + 2\overline{e}_2 - \overline{e}_3$ och $\overline{v}_3 = 1/\overline{e}_1 - 5\overline{e}_2 + \overline{e}_3$ här $\overline{e}_1, \overline{e}_2, \overline{e}_3$ betæhner vehtorerne i stemdardbasen för \mathbb{R}^3 .

a) Kontrollere att $\overline{v}_1, \overline{v}_2, \overline{v}_3$ betæhner en ortogonal följd av vehtorer, men att denna följd fule är ortonormal.

Løsning, Orbogonalistet kontrolleras med chalarprodukt.

$$\overline{V_1 \circ V_2} = (1, 4, 9) \circ (1, 2, -1) = 1 + 8 - 9 = 0$$
 $\overline{V_1 \circ V_3} = (1, 4, 9) \circ (11, -5, 1) = 11 - 20 + 9 = 0$
 $\overline{V_2 \circ V_8} = (1, 2, -1) \circ (11, -5, 1) = 11 - 10 - 1 = 0$

Mla parisa skalisprodukter blir 0, så $\{v_1, v_2, v_3\}$ är orbogonal.

Orbonormalitet skulle även kräva alt $\|v_i\| = \|v_i\| = \|v_i\| = 1$, men det ser man lätt på de fre övriga skalarprodukterna att normerna inte alls blir $\{i\}$ $\{v_i, v_j = 1^2 + v_i^2 + q^2 = 1 + 16 + 81 = 98$ $\{v_i, v_j = 1^2 + v_j^2 + q^2 = 1 + 16 + 81 = 98$ $\{v_i, v_j = 1^2 + v_j^2 + q^2 = 1 + 16 + 81 = 98$ $\{v_i, v_j = 1^2 + v_j^2 + q^2 = 1 + 16 + 81 = 98$ $\{v_i, v_j = 1^2 + v_j^2 + q^2 = 1 + 16 + 81 = 98\}$

Svar: V, v2, v3 år ortogonda men éj normerade.

b) Bostom shalaver 1, 5,64R salana att 1V, +5V2+6V3 = 120, +302, Loquing. Eftersom v, v, v, v, as orbogonala sa kan man beriline V, S, & meddelst shalarprodukt med velborn vars koefficient de år, uban att beliova ba hansyn bell de andra vektorerna. (Då dessa vektorer emellertid inte är normerade så kehover man dela produkten mel normen i kvadret för att kompensera for languen.) Lat u = 12e, +3e, +30e3. Da an $v = \overline{u} \cdot \overline{v}_1 = (12, 3, 30) \cdot (1, 4, 9) = 12 + 12 + 270 = 294 = 197 = 0$ 98 $t = \frac{\overline{u} \cdot \overline{v_3}}{\overline{v_2} \cdot \overline{v_2}} = \frac{(12,3,30) \cdot (11,-5,1)}{147} = \frac{132-15+30}{147} = \frac{147}{147} = 1$ Sur : (r,s,t) = (3,-2,1) 12 Koll: 35, -252+53=3(e,+4e2+9e3)-2(e,+2e2-e3)+ + (Nei-sentes) = 3e, +12en+27en-2e, -4en+2en+ + 4g-5ez+ez = (3-2+11)ex+(12-4-5)ez+(27+2+1)ez= = 12ē, +3ē, +30ē, =a. Stammen!

