III. Fonction inverse

1) Définition

<u>Définition</u>: La <u>fonction inverse</u> f est définie sur $\mathbb{R}\setminus\{0\}$ par $f(x)=\frac{1}{x}$.

Rappel:

- ❖ $\mathbb{R}\setminus\{0\}$ désigne l'ensemble des nombres réels sauf 0, c'est-à-dire $]-\infty;0[\cup]0;+\infty[$. On note aussi cet ensemble \mathbb{R}^* .
- ❖ La fonction inverse n'est donc pas définie en 0.

2) Variations

Propriété:

La fonction inverse f est décroissante sur l'intervalle $]-\infty;0[$ et décroissante sur l'intervalle $]0;+\infty[$.

Remarques:

La variation d'une fonction ne s'étudie que sur un **intervalle**. On ne peut donc pas dire que f est décroissante sur $]-\infty;0[\cup]0;+\infty[$ qui n'est pas un intervalle (c'est une **réunion** d'intervalles). On peut par contre conclure de manière séparée que la fonction inverse est décroissante sur l'intervalle $]-\infty;0[$ et décroissante sur l'intervalle $]0;+\infty[$.

Exemple:

Dans ces exemples, on va prendre deux nombres et comparer les images par la fonction inverse appelée f. On va se servir de la décroissance de la fonction inverse sur $]-\infty;0[$ et $]0;+\infty[$.

• Comparer les nombres $\frac{1}{7}$ et $\frac{1}{9}$.

On sait que 7 < 9 et que la fonction inverse est décroissante sur $]0; +\infty[$: l'ordre de l'inégalité est donc renversée.

Ainsi :
$$f(7) > f(9)$$
 et $\frac{1}{7} > \frac{1}{9}$

• Comparer les nombres $\frac{1}{\pi}$ et $\frac{1}{\sqrt[3]{27}}$.

On doit comparer π et $\sqrt[3]{27}$. Calculons $\sqrt[3]{27}$: $\sqrt[3]{27}$ =

On en déduit : π $\sqrt[3]{27}$

Or la fonction inverse est: l'ordre de l'inégalité est:

Ainsi :
$$f(\pi) < f\left(\sqrt[3]{27}\right)$$
 et $\boxed{\frac{1}{\pi} < \frac{1}{\sqrt[3]{27}}}$

- Comparer les nombres $-\frac{1}{4}$ et $\frac{1}{-5}$.
- Comparer les nombres $\frac{1}{5}$ et $-\frac{1}{4}$.

Démonstration de la décroissance :

Soient a et b deux nombres réels strictement positifs tels que a < b

$$f(b) - f(a) = \frac{1}{b} - \frac{1}{a} = \frac{a - b}{ab}.$$

Or a>0 et b>0 et de plus a-b<0 par hypothèse. Donc f(b)-f(a)<0 ce qui prouve que f est décroissante sur l'intervalle $\left]0;+\infty\right[$.

La décroissance sur l'intervalle $]-\infty;0[$ est prouvée de manière analogue en choisissant a et b deux nombres réels strictement négatifs tels que a < b.

3) Représentation graphique

Remarques:

- Dans un repère (O, I, J), la courbe de la fonction inverse est une hyperbole de centre O.
- 2) La courbe de la fonction inverse est symétrique par rapport à l'origine. On dit que la fonction est impaire. Mathématiquement, cela se traduit par $\mathbf{f}(-\mathbf{x}) = -\mathbf{f}(\mathbf{x})$

х	-2	-1	0,25	1	2	3
<i>f</i> (x)	-0,5	-1	4	1	0,5	$\frac{1}{3}$

