Università degli Studi di Trieste Facoltà di Ingegneria Corso di strade, ferrovie, aeroporti – A.A. 2003-2004

Esercitazione 2

Per una strada extraurbana secondaria (tipo C), dati il raggio R=400m della curva ed il parametro di scala A=250 della clotoide di prima classe (n=1):

- ricavare la velocità di progetto e la pendenza trasversale in curva;
- verificare che A sia compatibile con le prescrizioni del DM 05.11.2001;
- determinare tutti i parametri della clotoide con le formule esatte;
- tracciare la clotoide per punti.

Introduzione

Poiché non è specificato, assumiamo:

- che la clotoide in esame raccordi un rettifilo di lunghezza non specificata con la curva a raggio costante assegnata;
- che la strada in esame sia di tipo C2, ossia la dimensione delle carreggiate è 3,50m.

Parametri della curva

Determinazione del la pendenza trasversale

Dalla figura 5.2.4.a del DM possiamo osservare che per R< 437m la pendenza trasversale q è pari a 0,07. Noi abbiamo R=400m, quindi possiamo assumere q=0,07.

Determinazione del la velocità di progetto

Potremmo usare la figura 5.2.4.a del DM per determinare direttamente per via grafica la velocità di progetto per R=400m, ma i raggi sono riportati in scala logaritmica ed è quindi difficile avere valori precisi.

Prendiamo quindi, in prima approssimazione, V_p =95km/h (freccia rossa nella figura). Cerchiamo poi, in base alla tabella di pagina 72 del DM, il coefficiente di aderenza impegnato trasversalmente per la V_p che abbiamo adottato:

Velocità km/h	25	40	60	80	100	120	140
aderenza trasv. max imp. $f_{t\ max}$ per strade tipo A, B, C, F extra urbane, e relative strade di servizio	1	0,21	0,17	0,13	0,11	0,10	0,09
aderenza trasv. max imp. $f_{t\ max}$ per strade tipo D, E, F urbane, e relative strade di servizio	0,22	0,21	0,20	0,16	-	-	-

Per velocità intermedie fra quelle indicate si provvede all'interpolazione lineare.

Poiché non abbiamo V_p =95km/h in tabella, basterà fare una semplice proporzione (consentita dalla normativa):

$$\frac{0.11 - 0.13}{100 - 80} = \frac{x - 0.13}{95 - 80}$$
$$x = 0.13 + (95 - 80)\frac{0.11 - 0.13}{100 - 80} = 0.115$$

Avremo pertanto f_t =0,115.

Useremo quindi la relazione a pagina 71 del DM per trovare la V_p :

$$\frac{V_p^2}{R \cdot 127} = q + f_t$$

Inserendo i valori trovati in tale equazione abbiamo:

$$V_p = \sqrt{V_p^2} = \sqrt{(q+f_t)127R} = \sqrt{(0.07+0.115)127\cdot 400} = \sqrt{9398} = 96.94 \frac{km}{h}$$

Dovremmo ora procedere in modo iterativo: il valore trovato di V_p andrebbe reimmesso nella proporzione per trovare un altro f_t da inserire nuovamente nell'equazione. L'esperienza dimostra però che il valore trovato con un solo step è accettabile. Adottiamo quindi V_p =97km/h.

Verifica del parametro A della clotoide

Noti il raggio, la velocità di progetto e la pendenza trasversale della curva abbiamo tutti i parametri necessari per verificare l'intervallo di progetto del parametro di scala *A* della clotoide. Procediamo quindi con le tre verifiche necessarie:

• Criterio della limitazione del contraccolpo

Possiamo utilizzare la formula esatta:

$$A \ge \sqrt{\frac{v^3}{c} - \frac{gvR(q_f - q_i)}{c}}$$

dove c è il contraccolpo, che viene solitamente assunto come $c = c_{\text{max}} = \frac{50,4}{V}$.

Va osservato che nel DM c'è un errore di stampa: è necessario inserire il valore di ν in m/s e non in km/h nella formula esatta. Inoltre il DM dice che il valore v dovrebbe essere desunto dal diagramma delle velocità: va infatti garantita, prima dell'ingresso in curva, una decelerazione di 0.8m/s^2 tra la massima velocità del rettilineo e la velocità di progetto della curva. Assume però $\nu = \nu_{p,curva}$ poiché non conosciamo il diagramma delle velocità e poiché tale fatto è consuetudine nella pratica professionale.

Possiamo inoltre utilizzare la formula approssimata:

$$A \ge 0.021 V_p^2$$

• Criterio della sovrapendenza longitudinale

$$A \ge \sqrt{100 \frac{R}{\Delta i_{\text{max}}} B_i (q_i + q_f)}$$

A pagina 82 del DM troviamo la formula per il calcolo di:

$$\Delta i_{\text{max}} = 18 \frac{B_i}{V}$$

• Criterio ottico

$$\frac{R}{3} \le A \le R$$

Utilizziamo un foglio di calcolo MS Excel per le verifiche:

	Elamanta			Paran	netri		
	Elemento	R	L	q	$V_{\rm p}$	V_{p}	В
n	Descrizione	m	m		km/h	m/s	m
1	Rettifilo			2,5%			3,50
2	Curva	400		7,0%	97	26,94	3,50

Lin	Limitazione del contraccolpo									
	Clotoide	Fori	mula esatta	Formula						
n	Tratto	g	c	A_{min}	approssimata					
		m/s^2	m/s^3	m	m					
1	1-2	9,806	0,520	135,4	197,6					

Sovrapendenza longitudinale							
	Clotoide	$\Delta \mathbf{i}_{ ext{max}}$	A_{min}				
		%	m				
1	1-2	0,65	143,1				

Criterio ottico		
Clotoide	A_{min}	A_{max}
	m	m
1 1-2	133,3	400

Possiamo così osservare che il parametro di scala assegnato è compreso nell'intervallo [143,1;400] ed è quindi compatibile con le norme vigenti.

Calcolo dei parametri della clotoide

Tutte le coordinate seguenti sono relative al sistema di riferimento cartesiano ortogonale locale Oxy di figura, dove

- O è il punto nel quale termina il rettifilo (linea rossa nella figura) ed inizia la clotoide;
- l'asse x ha la stessa direzione del rettifilo e verso opposto ad esso;
- le misure sono espresse in metri.

Per i calcoli è stato utilizzato un foglio di calcolo MS Excel e lo sviluppo in serie è stato condotto fino a n=10.

Parametri principali

I parametri principali sono stati calcolati a partire dall'equazione della clotoide:

$$\frac{1}{R} = \frac{L}{A^2}$$

e dall'espressione derivata:

$$\tau = \frac{L^2}{2A^2}$$

Avendo a disposizione R ed A abbiamo che:

$$L = \frac{A^2}{R} = 156,2500 \text{m}$$

$$\tau = \frac{L^2}{2A^2} = 0,1953 \text{rad}$$

Ascissa del punto di raccordo P

L'ascissa è data dalla formula approssimata

$$X_f \cong L$$

e da quella esatta:

$$X_{f} = A\sqrt{2\tau} \left[\sum_{i=1}^{\infty} (-1)^{i+1} \frac{\tau^{2i-2}}{(4i-3)(2i-2)!} \right]$$

Effettuando lo sviluppo in serie, avremo la soluzione:

	11				
i	(-1)i+1	(tau)2i-2	(4i-3)	(2i-2)!	RIS
1	1	1	1	1	1
2	-1	0,038147	5	2	-0,003815
3	1	0,0014552	9	24	6,737E-06
4	-1	5,551E-05	13	720	-5,93E-09
5	1	2,118E-06	17	40320	3,089E-12
6	-1	8,078E-08	21	3628800	-1,06E-15
7	1	3,081E-09	25	479001600	2,573E-19
8	-1	1,175E-10	29	8,718E+10	-4,65E-23
9	1	4,484E-12	33	2,092E+13	6,495E-27
10	-1	1,711E-13	37	6,402E+15	-7,22E-31
					0,996192
					250
					0.625

155,6550

SOLUZIONE

Ordinata del punto di raccordo P

L'ordinata è data dalla formula approssimata

$$Y_f \cong \frac{L^2}{6R}$$

e da quella esatta:

$$Y_{f} = A\sqrt{2\tau} \left[\sum_{i=1}^{\infty} (-1)^{i+1} \frac{\tau^{2i-1}}{(4i-1)(2i-1)!} \right]$$

Effettuando lo sviluppo in serie, avremo la soluzione:

Effettuando	io sviiupp	o in serie, a	vremo ia s	oluzione:		_
i	(-1)i+1	(tau)2i-1	(4i-1)	(2i-1)!	RIS	
1	1	0,1953125	3	1	0,0651042	
2	-1	0,0074506	7	6	-0,000177	
3	1	0,0002842	11	120	2,153E-07	
4	-1	1,084E-05	15	5040	-1,43E-10	
5	1	4,136E-07	19	362880	5,999E-14	
6	-1	1,578E-08	23	39916800	-1,72E-17	
7	1	6,019E-10	27	6,227E+09	3,58E-21	
8	-1	2,296E-11	31	1,308E+12	-5,66E-25	
9	1	8,758E-13	35	3,557E+14	7,035E-29	
10	-1	3,341E-14	39	1,216E+17	-7,04E-33	
					0,064927	Somma
					250	A
					0,625	rad(2tau)
					10,1448	SOLUZION

Differenza tra i raggi

La differenza tra i raggi è data dalla formula approssimata

$$\Delta R \cong \frac{L^2}{24R}$$

e da quella esatta:

$$\Delta R = \frac{A^4}{24R^3} \left[\sum_{i=1}^{\infty} (-1)^{i+1} \frac{6\tau^{2i-2}}{(4i-1)(2i)!} \right]$$

Effettuando lo sviluppo in serie, avremo la soluzione:

i	(-1)i+1	(tau)2i-2	(4i-1)	(2i)!	RIS
1	1	1	3	2	1
2	-1	0,038147	7	24	-0,001362
3	1	0,0014552	11	720	1,102E-06
4	-1	5,551E-05	15	40320	-5,51E-10
5	1	2,118E-06	19	3628800	1,843E-13
6	-1	8,078E-08	23	479001600	-4,4E-17
7	1	3,081E-09	27	8,718E+10	7,855E-21
8	-1	1,175E-10	31	2,092E+13	-1,09E-24
9	1	4,484E-12	35	6,402E+15	1,201E-28
10	-1	1,711E-13	39	2,433E+18	-1,08E-32

0,9986387 Somma 3,906E+09 (A)4 1,536E+09 24(R)3 2,5397 SOLUZIONE

Ascissa del centro della curva M

L'ascissa è data dalla formula approssimata

$$X_M \cong \frac{L}{2}$$

e da quella esatta:

$$X_{M} = A \frac{\sqrt{2\tau}}{2} \left[\sum_{i=1}^{\infty} (-1)^{i+1} \frac{\tau^{2i-2}}{(4i-3)(2i-2)!} \right]$$

Effettuando lo sviluppo in serie, avremo la soluzione:

i	(-1)i+1	(tau)2i-2	(2i-1)	(4i-3)!	RIS
1	1	1	1	1	1
2	-1	0,038147	3	120	-0,000106
3	1	0,0014552	5	362880	8,02E-10
4	-1	5,551E-05	7	6,227E+09	-1,27E-15
5	1	2,118E-06	9	3,557E+14	6,615E-22
6	-1	8,078E-08	11	5,109E+19	-1,44E-28
7	1	3,081E-09	13	1,551E+25	1,528E-35
8	-1	1,175E-10	15	8,842E+30	-8,86E-43
9	1	4,484E-12	17	8,683E+36	3,038E-50
10	-1	1,711E-13	19	1,376E+43	-6,54E-58
					0.000004

0,999894 Somma 250 A 0,3125 rad(2tau)/2 78,1167 SOLUZIONE

Ordinata del centro della curva M

L'ordinata è data dalla formula approssimata

$$Y_M \cong R + \frac{L^2}{24R}$$

e da quella esatta:

$$Y_{M} = A \frac{\sqrt{2\tau}}{2} \left[\frac{1}{\tau} + \sum_{i=1}^{\infty} (-1)^{i+1} \frac{\tau^{2i-1}}{(4i-1)(2i)!} \right]$$

Effettuando lo sviluppo in serie, avremo la soluzione:

_				,	11	
	RIS	(2i)!	(4i-1)	(tau)2i-1	(-1)i+1	i
	0,0325521	2	3	0,1953125	1	1
	-4,43E-05	24	7	0,0074506	-1	2
	3,589E-08	720	11	0,0002842	1	3
	-1,79E-11	40320	15	1,084E-05	-1	4
	5,999E-15	3628800	19	4,136E-07	1	5
	-1,43E-18	479001600	23	1,578E-08	-1	6
	2,557E-22	8,718E+10	27	6,019E-10	1	7
	-3,54E-26	2,092E+13	31	2,296E-11	-1	8
	3,908E-30	6,402E+15	35	8,758E-13	1	9
	-3,52E-34	2,433E+18	39	3,341E-14	-1	10
	0,0325078	·				

0,0325078	Somma
5,12	1/tau
250	A
0,3125	rad(2tau)/2
402,53967	SOLUZIONE

Tangente Lunga

La tangente lunga è data dalla formula approssimata:

$$T_L \cong \frac{2}{3}L$$

e da quella esatta:

$$T_{L} = A\sqrt{2\tau} \left[\sum_{i=1}^{\infty} (-1)^{i+1} \frac{\tau^{2i-2}}{(4i-3)(2i-2)!} - \sum_{i=1}^{\infty} (-1)^{i+1} \frac{\tau^{2i-1}}{(4i-1)(2i-1)!} \left(\frac{\sum_{i=1}^{\infty} (-1)^{i+1} \frac{\tau^{2i-2}}{(2i-2)!}}{\sum_{i=1}^{\infty} (-1)^{i+1} \frac{\tau^{2i-1}}{(2i-1)!}} \right) \right]$$

Effettuando lo sviluppo in serie, avremo la soluzione:

i	(-1)i+1	(tau)2i-2	(4i-3)	(2i-2)!	RIS
1	1	1	1	1	1
2	-1	0,038147	5	2	-0,003815
3	1	0,0014552	9	24	6,737E-06
4	-1	5,551E-05	13	720	-5,93E-09
5	1	2,118E-06	17	40320	3,089E-12
6	-1	8,078E-08	21	3628800	-1,06E-15
7	1	3,081E-09	25	479001600	2,573E-19
8	-1	1,175E-10	29	8,718E+10	-4,65E-23
9	1	4,484E-12	33	2,092E+13	6,495E-27
10	-1	1,711E-13	37	6,402E+15	-7,22E-31

i	(-1)i+1	(tau)2i-1	(4i-1)	(2i-1)!	RIS
1	1	0,1953125	3	1	0,0651042
2	-1	0,0074506	7	6	-0,000177
3	1	0,0002842	11	120	2,153E-07
4	-1	1,084E-05	15	5040	-1,43E-10
5	1	4,136E-07	19	362880	5,999E-14
6	-1	1,578E-08	23	39916800	-1,72E-17
7	1	6,019E-10	27	6,227E+09	3,58E-21
8	-1	2,296E-11	31	1,308E+12	-5,66E-25
9	1	8,758E-13	35	3,557E+14	7,035E-29
10	-1	3,341E-14	39	1,216E+17	-7,04E-33

i	(-1)i+1	(tau)2i-2	(2i-2)!	RIS
1	1	1	1	1
2	-1	0,038147	2	-0,019073
3	1	0,0014552	24	6,063E-05
4	-1	5,551E-05	720	-7,71E-08
5	1	2,118E-06	40320	5,252E-11
6	-1	8,078E-08	3628800	-2,23E-14
7	1	3,081E-09	479001600	6,433E-18
8	-1	1,175E-10	8,718E+10	-1,35E-21
9	1	4,484E-12	2,092E+13	2,143E-25
10	-1	1,711E-13	6,402E+15	-2,67E-29

i	(-1)i+1	(tau)2i-1	(2i-1)!	RIS
1	1	0,1953125	1	0,1953125
2	-1	0,0074506	6	-0,001242
3	1	0,0002842	120	2,368E-06
4	-1	1,084E-05	5040	-2,15E-09
5	1	4,136E-07	362880	1,14E-12
6	-1	1,578E-08	39916800	-3,95E-16
7	1	6,019E-10	6,227E+09	9,665E-20
8	-1	2,296E-11	1,308E+12	-1,76E-23
9	1	8,758E-13	3,557E+14	2,462E-27
10	-1	3,341E-14	1,216E+17	-2,75E-31

0,996192	SOMMA 1
0,064927	SOMMA 2
0,9809871	SOMMA 3
0,1940731	SOMMA 4
0,6680037	(1-(2*3/4))
250	A
0,625	rad(2tau)
104,3756	SOLUZIONE

Tangente corta

La tangente corta è data dalla formula approssimata:

$$T_K \cong \frac{L}{3}$$

e da quella esatta:

$$T_{K} = A \frac{\sqrt{2\tau}}{2} \left[\frac{\sum_{i=1}^{\infty} (-1)^{i+1} \frac{\tau^{2i-1}}{(4i-1)(2i-1)!}}{\sum_{i=1}^{\infty} (-1)^{i+1} \frac{\tau^{2i-1}}{(2i)!}} \right]$$

Effettuando lo sviluppo in serie, avremo la soluzione:

i	(-1)i+1	(tau)2i-1	(4i-1)	(2i-1)!	RIS
1	1	0,1953125	3	1	0,0651042
2	-1	0,0074506	7	6	-0,000177
3	1	0,0002842	11	120	2,153E-07
4	-1	1,084E-05	15	5040	-1,43E-10
5	1	4,136E-07	19	362880	5,999E-14
6	-1	1,578E-08	23	39916800	-1,72E-17
7	1	6,019E-10	27	6,227E+09	3,58E-21
8	-1	2,296E-11	31	1,308E+12	-5,66E-25
9	1	8,758E-13	35	3,557E+14	7,035E-29
10	-1	3,341E-14	39	1,216E+17	-7,04E-33

i	(-1)i+1	(tau)2i-1	(2i-1)!	RIS
1	1	0,1953125	1	0,1953125
2	-1	0,0074506	6	-0,001242
3	1	0,0002842	120	2,368E-06
4	-1	1,084E-05	5040	-2,15E-09
5	1	4,136E-07	362880	1,14E-12
6	-1	1,578E-08	39916800	-3,95E-16
7	1	6,019E-10	6,227E+09	9,665E-20
8	-1	2,296E-11	1,308E+12	-1,76E-23
9	1	8,758E-13	3,557E+14	2,462E-27
10	-1	3,341E-14	1,216E+17	-2,75E-31

0,064927	SOMMA 1
0,1940731	SOMMA 2
0,3345491	(1/2)
250	A
0,625	rad(2tau)
52,2733	SOLUZIONE

Angolo per la direzione del punto P

L'angolo è dato dalla formula approssimata:

$$\sigma \cong \arctan\left(\frac{A^2}{6R^2}\right)$$

e da quella esatta:

$$\sigma = \arctan\left[\frac{\sum_{i=1}^{\infty} (-1)^{i+1} \frac{\tau^{2i-1}}{(4i-1)(2i-1)!}}{\sum_{i=1}^{\infty} (-1)^{i+1} \frac{\tau^{2i-2}}{(4i-3)(2i-2)!}}\right]$$

Effettuando lo sviluppo in serie, avremo la soluzione:

i	(-1)i+1	(tau)2i-1	(4i-1)	(2i-1)!	RIS
1	1	0,195313	3	1	0,065104
2	-1	0,007451	7	6	-0,00018
3	1	0,000284	11	120	2,15E-07
4	-1	1,08E-05	15	5040	-1,4E-10
5	1	4,14E-07	19	362880	6E-14
6	-1	1,58E-08	23	39916800	-1,7E-17
7	1	6,02E-10	27	6,23E+09	3,58E-21
8	-1	2,3E-11	31	1,31E+12	-5,7E-25
9	1	8,76E-13	35	3,56E+14	7,04E-29
10	-1	3,34E-14	39	1,22E+17	-7E-33

i	(-1)i+1	(tau)2i-2	(4i-3)	(2i-2)!	RIS
1	1	1	1	1	1
2	-1	0,038147	5	2	-0,00381
3	1	0,001455	9	24	6,74E-06
4	-1	5,55E-05	13	720	-5,9E-09
5	1	2,12E-06	17	40320	3,09E-12
6	-1	8,08E-08	21	3628800	-1,1E-15
7	1	3,08E-09	25	4,79E+08	2,57E-19
8	-1	1,18E-10	29	8,72E+10	-4,6E-23
9	1	4,48E-12	33	2,09E+13	6,49E-27
10	-1	1,71E-13	37	6,4E+15	-7,2E-31

0,064927	SOMMA 1
0,996192	SOMMA 2
0,065175	(1/2)
0,0651	SOLUZIONE

Distanza dal l'origine del punto di raccordo P

La distanza è data dalla formula approssimata:

$$I_c \cong L$$

e da quella esatta:

$$I_{C} = A\sqrt{2\tau} \frac{\sum_{i=1}^{\infty} (-1)^{i+1} \frac{\tau^{2i-1}}{(4i-1)(2i-1)!}}{\sin \left\{ \arcsin \left[\frac{\sum_{i=1}^{\infty} (-1)^{i+1} \frac{\tau^{2i-1}}{(4i-1)(2i-1)!}}{\sum_{i=1}^{\infty} (-1)^{i+1} \frac{\tau^{2i-2}}{(4i-3)(2i-2)!} \right] \right\}}$$

Effettuando lo sviluppo in serie, avremo la soluzione:

i	(-1)i+1	(tau)2i-2	(4i-3)	(2i-2)!	RIS
1	1	1	1	1	1
2	-1	0,038147	5	2	-0,003815
3	1	0,0014552	9	24	6,737E-06
4	-1	5,551E-05	13	720	-5,93E-09
5	1	2,118E-06	17	40320	3,089E-12
6	-1	8,078E-08	21	3628800	-1,06E-15
7	1	3,081E-09	25	479001600	2,573E-19
8	-1	1,175E-10	29	8,718E+10	-4,65E-23
9	1	4,484E-12	33	2,092E+13	6,495E-27
10	-1	1,711E-13	37	6,402E+15	-7,22E-31

i	(-1)i+1	(tau)2i-1	(4i-1)	(2i-1)!	RIS
1	1	0,1953125	3	1	0,0651042
2	-1	0,0074506	7	6	-0,000177
3	1	0,0002842	11	120	2,153E-07
4	-1	1,084E-05	15	5040	-1,43E-10
5	1	4,136E-07	19	362880	5,999E-14
6	-1	1,578E-08	23	39916800	-1,72E-17
7	1	6,019E-10	27	6,227E+09	3,58E-21
8	-1	2,296E-11	31	1,308E+12	-5,66E-25
9	1	8,758E-13	35	3,557E+14	7,035E-29
10	-1	3,341E-14	39	1,216E+17	-7,04E-33

0,996192	SOMMA 1
0,064927	SOMMA 2
0,0651752	(2/1)
0,0650372	sen(arctan(2/1)
250	A
0,625	rad(2tau)
155,9853	SOLUZIONE

Confronto tra valori approssimati ed esatti

Dal confronto dei valori relativi ai parametri della clotoide possiamo osservare che gli scarti sono considerevoli.

Ī	Metodo	A	R	L	τ	\mathbf{x}_{f}	$y_{\rm f}$	ΔR	$\mathbf{x}_{\mathbf{M}}$	y_{M}	T_L	T_{K}	σ	l_c
		m	m	m	rad	m	m	m	m	m	m	m	rad	m
1	Approssimato	250	400	156,2500	0,1953	156,2500	10,1725	2,5431	78,1250	402,5431	104,1672	52,0833	0,0650	156,2500
	Esatto (n=10)	250	400	156,2500	0,1953	155,6550	10,1448	2,5397	78,1167	402,5397	104,3756	52,2733	0,0651	155,9853
	Scarto					0,5950	0,0277	0,0035	0,0083	0,0035	-0,2084	-0,1900	-0,0001	0,2647

Tracciamento del la clotoide per punti

Il tracciamento si effettua dividendo la lunghezza L in n parti uguali, calcolando l'angolo relativo a ciascuna parte e calcolando poi, con il metodo esatto, le coordinate *x* ed *y* del punto. Abbiamo scelto n=15 e i risultati sono i seguenti:

Punto	A	R	L	τ	X	y
	m	m	m	rad	m	m
P	250	400	156,2500	0,1953	155,6550	10,1448
1	250	400	10,4167	0,0009	10,4167	0,0030
2	250	400	20,8333	0,0035	20,8333	0,0241
3	250	400	31,2500	0,0078	31,2498	0,0814
4	250	400	41,6667	0,0139	41,6659	0,1929
5	250	400	52,0833	0,0217	52,0809	0,3767
6	250	400	62,5000	0,0313	62,4939	0,6510
7	250	400	72,9167	0,0425	72,9035	1,0337
8	250	400	83,3333	0,0556	83,3076	1,5429
9	250	400	93,7500	0,0703	93,7037	2,1965
10	250	400	104,1667	0,0868	104,0882	3,0125
11	250	400	114,5833	0,1050	114,4570	4,0086
12	250	400	125,0000	0,1250	124,8048	5,2025
13	250	400	135,4167	0,1467	135,1255	6,6118
14	250	400	145,8333	0,1701	145,4118	8,2536
15	250	400	156,2500	0,1953	155,6550	10,1448

Non si riportano gli sviluppi in serie di x ed y relativi ad ogni punto, considerato che è stato utilizzato lo stesso foglio di calcolo per lo sviluppo di x_f ed y_f . Graficamente abbiamo:

