ITA5008	Database Technologies	L	T	P	J	C
		3	0	2	0	4
Pre-requisite	Nil	S	yllab	us v	ers	ion
					v.	1.0

Course Objectives:

- 1. To design conceptual and implementation schema of a database.
- 2. To implement and manipulate relational and object-relational database using SQL and PL/SQL
- 3. To introduce the concept of distributed database, parallel database, multimedia database and semi-structured and unstructured database.

Expected Course Outcomes:

- 1. Design conceptual and implementation schema of a database
- 2. Learn how to implement relational database schema and manipulate the same using SQL and PL/SQL
- 3. Improve the database design by normalization.
- 4. Learn how to implement object-relational schema and manipulate the same using SQL
- 5. Learn concept of distributed database and parallel database
- 6. Learn concept of XML database and an overview of NoSQL database models
- 7. Expose to the idea of multimedia database along with some implementation aspects of the same using SQL

Student Learning Outcomes (SLO) 2,7,9

Module:1 Database Introduction & Design Techniques 8 hours

Introduction to Database Systems, DBMS Architecture, Introduction to Data Modeling, ER Model, EER Model -Specialization/Generalization, Aggregation, Composition, Relational modelalgebra operations, ER,EER to Relational Model.

Module:2 Advanced Design Technique -Normalization 8 hours

Normalization – Informal Guidelines, Functional dependencies, decomposition algorithms , Normal Forms up to 5NF, SQL - Basic & Advanced Operations, Query Processing, Query optimization, Storage and File organization

Module:3 Distributed Database 6 hours

Concepts, advantages, types, functions, architecture, data allocation, fragmentation, replication, transparencies, Date's rules, transaction management, concurrency control, dead lock, recovery-2PC, 3PC.

Partition techniques, Architecture, Parallel algorithms for sorting, Parallel join, Parallel Queries.

Mo	dule:5	Object Relational DBMS		6 hours		
	Overview, Complex Data Types, ODBMS & ORDBMS, Structured Types and Inheritance in SQL,					
Tab	le Inher	itance, Object-Identity and Reference Types in SQL.				
Mo	dule:6	Semi structured & Unstructured data base		6 hours		
		erview of XML, DTD, XML schema, XML que	ery languages.			
		s,XML and databases, Unstructured database – NOSQI		101000		
Mo	dule:7	Multimedia Database		3 hours		
Mu	ltimedia	sources, issues, Multimedia database applications Mu	ultimedia databa	se queries-LOB		
	QL.			•		
Mο	dule:8	Contemporary issues		2 hours		
	ert Talk			2 110015		
		Total Lecture hours:		45 hours		
Tex	t Book(s)				
1.		s M. Connolly and Carolyn Begg, Database Systems:		roach to Design,		
D (nentation, and Management, 2015, 6 th Edition, Pearson	India.			
1.	Pamez	Books Elmasri&B.Navathe: Fundamentals of database system	os 2014 7 th Editi	ion Addison		
1.	Wesley	· ·	is, 2014, / Editi	ion, Audison		
2	•	ngh, Database Systems: Concepts, Design & Application	ions, 2011, 2 nd H	Edition, Pearson		
	educati	on.				
3		Ramakrishnan and Johannes Gehrke: Database M	anagement Syst	ems, 2003, 3 rd		
1		, McGraw Hill.	MI 2012 5 th I	Edition Wiley		
4		wcett, Danny Ayers, Liam R. E. Quin: Beginning X rivate Limited.	MIL, 2012, 5 I	Edition, whey		
5		m Silberschatz, S. Sudarshan, Henry F. Korth: Databa	se System Conc	epts, 2011, 6 th		
		, Tata McGraw - Hill Education.	,	1 / /		
		llenging Experiments (Indicative)				
1.	Creatin	g applications with RDBMS		6 hours		
		a) Table creation with constraints, alter schema aggregate functions,	insert values,			
		simple and complex queries with joins				
		b) PLSQL-PROCEDURES, CURSORS, FUNCTIONS	TRIGGERS			
2.	· ·	ign the XML elements to hold the membership info	ormation for a	6 hours		
	Computer Club,					
		(i) Construct a Well formed XML Documer elements for 5 students	nt to hold the			
	(ii) Construct and link to a CSS to display the 5 students					
	b) Create an XML file for a credit card statement					
	Create a data schema for a credit card statement					
		Answer the following questions using XPath	1			

- 1. List all customers
- 2. Select all customers in Sweden.
- 3. Who made payments on 2003-12-04?
- 4. Select all customers in Sweden sorted by customer name.

3. Create applications with ORDBMS

i) Giant Travel is a well-known travel agency that operates guided tours. With offices around the world, they maintain accurate and detailed employee data. The employee data are kept in an object Employee_T and can be divided into two child objects: Guide_T and Admin_T.

An employee can be categorized as a guide or an administration staff, but he or she can also be both. This is important because in the peak season, an administration worker might be needed to guide the tours and vice versa. The objects and the attributes are shown below

Createthe tables for each object have been created; write the implementation of insertion into and deletion from tables Employee and Guide.

ii) The following figure shows the relationship among objects Supervisor_T, Student_T, and Subject_T in a university. A student can take many subjects, and a subject can be taken by many students. For every subject a student takes, there is a mark given.

In another relationship, a student can be supervised by only one supervisor, but a supervisor can supervise many students. Create the objects and the tables from these objects

- a) Write generic methods to insert into and delete from table Enrolls In.
- b. Write generic member methods to insert into and delete from table Supervisor.

6 hours

Supervisor		
Spv_ID	Spv_Name	
1001	Steve Donaldson	
1003	Erin Goldsmith	
1007	Tony Wibowo	

Student			
Student_ID	Student_Name		
11013876	Robert Tan		
11014832	Julio Fernandez		
11014990	Colin Brown		

Subject			
Subject_ID	Subject_Name		
CSE31DB	Database System		
CSE31UIE	User Interface Engineering		
CSE42ADB	Advanced Database		

Enrolls_In			
Student_ID	Subject_Code	Mark	
11013876	CSE31DB	86	
11013876	CSE31UIE	90	
11014832	CSE31ADB	78	
11014990	CSE31DB	74	
11014990	CSE31UIE	70	

Set up a distributed database and create tables ,insert values ,fragment the data and apply queries

i) Assume we have a global conceptual schema that contains the following table with the key underlined: Employee (Eno,Ename,Title,Dno). Also assume that we horizontally fragment the table as follows:

Employee1(Eno; Ename; Title; Dno), where 1<= Dno<=10 Employee2(Eno; Ename; Title; Dno), where 11 <= Dno<=20 Employee3(Eno; Ename; Title; Dno), where 21 <= Dno<=30

In addition, assume we have 4 sites that contain the following fragments: *Site1 has Employee1*

	Site2 has Employee2	
	Site3 has Employee2 and Employee3	
	Site4 has Employee1	
	Implement at least 5 suitable queries using suitable database system on	
	Employee fragments.	
	ii) We are given the following three relations with their keys underlined:	
	Supplier(Sno, Sname, City, State)	
	Part(<u>Pno</u> , Pname, Color)	
	Supplier-Part(Sno,Pno,Qty).	
	Supplier 1 un(Sno,1 no, giy).	
	We know that Suppliers can supply many Parts and many Suppliers can	
	supply a Part. Assume the Supplier table is horizontally fragmented using	
	the predicates: State =Maharashtra and	
	State = Karnataka. We can also assume that Suppliers are evenly located in	
	only those two states.	
	In addition, the Part table is horizontally fragmented using the predicates:	
	1<= Pno<=100,101<=Pno<=200, 201<=Pno<=300, 301<=Pno<=400,	
	401<=Pno<=500.	
	Part numbers are continuous from 1 to 500, inclusive.	
	Now we are to horizontally fragment the Supplier- Part relation according to	
	your	
	choice.	
	Implement at least 5 suitable queries using suitable database system.	
4.	Consider we have the following relation	6 hours
	EMP(EmpId, Name, Location, Sal, DOB, Dept.)	
	For security reasons salary information for employees needs to be	
	maintained at Company	
	Headquarter Server located in Mumbai.	
	Write the procedure for doing the above activity and fire suitable queries	
	on the	
	separated/fragmented data.	
5.	Suppose we have the following Database	6 hours
	CUSTOMER (CID, CNAME, STREET, CCITY);	
	BRANCH (BNAME, ASSETS, BCITY);	
	ACCOUNT (A#, CID, BNAME, BAL);	
	LOAN (L#, CID, BNAME, AMT);	
	TRANSACTION (TID, CID, A#, Date, AMOUNT);	
	Suppose we want to retrieve the name of all customers who have one or	
	more accounts in branches in the city of Mumbai. Write the all possible SQL	

statement for this query. Do optimization of all alternative statements using				
total cost and response time as mea	on.			
Total Laboratory Hours 3				30 hours
Recommended by Board of Studies	05-03-2016			
Approved by Academic Council	40 th	Date	18-03-2016	