

聚合物制备工程之

自由基聚合生产工艺基础

⑩1 自由基聚合生产工艺概述

自由基聚合主要适用于乙烯基单体和二烯烃类单体的 聚合或共聚。有四种实施方法,即

■本体聚合、乳液聚合、悬浮聚合、溶液聚合。

共 11 页

1 自由基聚合生产工艺概述

3

高聚物生产中采用的自由基聚合方法

聚合方法	高聚物品种	操作方式	产品形态	产品用途	
本体聚合	合成树脂 高压聚乙烯 聚苯乙烯 聚氯乙烯 聚甲基丙烯酸甲酯	连续 连续 间歇 浇铸成型	颗粒状 颗粒状 粉状 板、棒、管等	注塑、挤塑、吹塑等成型用 注塑成型用 混炼后用于成型 二次加工	
乳液聚合	合成树脂 聚氯乙烯 聚醋酸乙烯或共聚物 聚丙烯酸酯或共聚物 合成橡胶 丁苯橡胶 丁睛橡胶 氯丁橡胶	间歇 间歇 间歇 连续 连续 连续	粉状 乳液 乳液 贮粒或胶粒 胶粒或胶粒 胶粒或胶粒	搪塑、浸塑、制人造革 粘结剂或涂料等 表明活性剂或涂料等 胶粒用于制造橡胶制品 乳液用于粘结剂或橡胶制品 电缆结缘层	
悬浮聚合	合成树脂 聚氯乙烯 聚苯乙烯 聚甲基丙烯酸甲酯	间歇 间歇 间歇	粉状 珠状 珠状	混炼后用于成型 注塑成型用 做假牙、反光珠	
溶液聚合	合成树脂 聚丙烯睛 聚醋酸乙烯	连续 连续	溶液或颗粒 溶液	直接纺丝或溶解后纺丝 进一步转化为聚乙烯醇	

2 自由基聚合生产引发剂的选择

自由基聚合反应中,正确、合理地选择和使用引发剂,对于聚合反应的正确进行、缩短聚合反应的时间具有重要意义。选择引发剂的基本原则如下:

1.按照聚合方法选择引发剂

共 11 页

ST CANNAGE TO STATE AND A STAT

2 自由基聚合生产引发剂的选择

自由基聚合反应中,正确、合理地选择和使用引发剂,对于聚合反应的正确 进行、缩短聚合反应的时间具有重要意义。选择引发剂的基本原则如下:

2. 根据聚合反应操作温度选择引发剂

引发剂分类	使用温度范围 ℃	引发剂分解活化能 kJ/mol	引发剂举例	
高温引发剂	>100	138~188	异丙苯过氧化氢	
中温引发剂	33~100	109~138	过氧化二苯甲酰	
低温引发剂 -10~33		63~109	过氧化氢-亚铁盐	
		共 11 页		

2 自由基聚合生产引发剂的选择

自由基聚合反应中,正确、合理地选择和使用引发剂,对于聚合反应的正确进行、缩短聚合反应的时间具有重要意义。选择引发剂的基本原则如下:

3. 根据分解活化能选择引发剂

活化能代表引发反应对温度的敏感性:

若要求引发剂的分解温度<mark>窄</mark>,可选用高活化能的引发剂;

若要求引发剂的分解温度宽(缓慢分解),可选用低活化能的引发剂。

$$\frac{\frac{dk}{k}}{\frac{dT}{T}} = \frac{E}{RT}$$

2 自由基聚合生产引发剂的选择

- 自由基聚合反应中,正确、合理地选择和使用引发剂,对于聚合反应的正确进行、缩短聚合反应的时间具有重要意义。选择引发剂的基本原则如下:
 - 4. 根据半衰期(分解速率常数)选择引发剂

间歇操作:

反应时间应当为引发剂半衰期二倍以上, 氯 乙烯聚合三倍以上, 苯乙烯聚合要六到八倍。 复合引发剂:

$$t_{\frac{1}{2}C} [I_C]^{\frac{1}{2}} = t_{\frac{1}{2}A} [I_A]^{\frac{1}{2}} + t_{\frac{1}{2}B} [I_B]^{\frac{1}{2}}$$

连续操作:

V——引发剂残留率<10%;

$$V = \frac{\ln 2}{\frac{\tau}{t_{\frac{1}{2}}} + \ln 2}$$

3 自由基聚合生产分子量控制和分子量调节剂

■ 1. 引发剂对聚合度的影响

用引发剂引发的自由基聚合的动力学链长 υ 与单体和引发剂的关系由

下式表示:

$$\overline{P_n} = \frac{\upsilon}{\frac{C}{2} + D} \qquad \upsilon = k \frac{[M]}{[I]^{1/2}}$$

式中: C、D——偶合终止、歧化终止分率 K——常数 [M]——单体浓度 [I]——引发剂浓度

动力学链长和单体浓度成正比,和引发剂浓度的平方成反比。

Secretary Secret

3 自由基聚合生产分子量控制和分子量调节剂

■ 2.聚合温度对聚合度的影响

各种引发方式下, 温度对聚合度有不同的影响。

3. 链转移反应对聚合度的影响

链转移反应和所得聚合物平均聚合度的关系可用下式表示:

$$1/X_n=1/X_0+C_S([S]/[M])$$

式中: X_n ——加入分子量调节剂后, 所得聚合物平均聚合度;

 X_0 ——未加分子量调节剂时,所得聚合物的平均聚合度;

Cs——链转移常数;

[S]——链转移剂浓度;

[M]——单体浓度。

自由基聚合生产分子量控制和分子量调节剂

链转移反应造成所得聚合物聚合度下降。但可通过链转移反应来控制分子量,甚至控制聚合物分子构型,消除支链或交链结构,从而得到高性能聚合物或改善聚合物加工性能。

硫醇的链转移常数(C_S ,60°C)

单体	硫醇	Cs	单体	硫醇	Cs
苯乙烯	正一丁硫醇	22	甲基丙烯酸甲酯	正一丁硫醇	0.67
苯乙烯	叔一丁硫醇	3.6	丙烯酸甲酯	正一丁硫醇	1.7
苯乙烯	正一十二硫醇	19	乙酸乙烯酯	正一丁硫醇	48

由表可见,链转移常数因单体(链转移剂)种类不同而变化。

共 11 页