STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

WORKED SOLUTIONS

ENST2.5: STATIC FRICTION

Question

The crate shown below has a mass of 50kg and the coefficient of static friction between the crate and the plane is $\mu_S = 0.25$. $g = 9.81 \text{ms}^{-2}$

- (a) Calculate the minimum force P required to stop the crate from sliding down the plane.
- (b) Calculate the minimum force P required to push the crate up the plane.

 (Hibbeler, R.C, 2010, Engineering Mechanics: Statics, Pearson)

Worked Solution (a)

NOTE:

- Normal force N must act a distance from the crate's centre to counteract the tipping effect caused by P
- Friction force Ff must act up the plane to prevent crate from slipping down.

Resolving forces parallel to plane >> & F = 0

Pcos 30 + F_f - mgsin 30 = 0 Pcos 30 + $\mu_s N$ - 50(9.81) sin 30 = 0 0.87P + 0.25N - 245.25 = 0 $\Rightarrow N = \frac{245.25 - 0.87P}{0.25}$

Resolving forces perpendicular to plane 12 F_1=0

 $N - P \sin 30 - mg \cos 30 = 0$, and substituting for N above 245.25 - 0.81P - 0.5P - 424.78 = 0 $\Rightarrow P = 140 N$

Worked Solution (b)

Free Body Diagram

NOTE :

Friction force F_f must act down the plane to resist crate being pushed up the plane.

Resolving forces parallel to plane >= 0

Pcos 30 - F₅ - mgsin 30 = 0 Pcos 30 - Jus N - 50(9.81) sin 30 = 0 0.87 P - 0.25 N - 245.25 = 0 \Rightarrow N = $\frac{0.87P - 245.25}{0.25}$

Resolving forces perpendicular to plane \$ \$F_=0

 $N - P \sin 30 - mg \cos 30 = 0$, and substituting for N above $0.87P - 245.25 - 0.5P - 424.78 = 0 \Rightarrow P = 474N$