Nearest neighbor classification

DSE 220

Outline

- 1 Nearest neighbor classification
- 2 k-nearest neighbor
- 3 Choosing the features and distance function

The problem we'll solve today

Given an image of a handwritten digit, say which digit it is.

More examples:

The machine learning approach

Assemble a data set:

```
1416119134857268U32264141
86635972029929977225100467
0130844145910106154061036
3110641110304752620099799
6684120867285571314279554
6060177501871129930899709
8401097075973319720155190
5510755182551828143580909
```

The MNIST data set of handwritten digits:

- Training set of 60,000 images and their labels.
- **Test set** of 10,000 images and their labels.

And let the machine figure out the underlying patterns.

Nearest neighbor classification

Training images $x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(60000)}$ Labels $y^{(1)}, y^{(2)}, y^{(3)}, \dots, y^{(60000)}$ are numbers in the range 0-9

> 1416119154857268U32264141 8663597202992997225100467 0130844145910106154061036 3110641110304752620099799 6689120867885571314279554 6010177301871129930899709 8401097075973319720155190 5610755182551828143580909

How to **classify** a new image x?

- Find its nearest neighbor amongst the $x^{(i)}$
- Return $y^{(i)}$

The data space

How to measure the distance between images?

MNIST images:

• Size 28×28 (total: 784 pixels)

• Each pixel is grayscale: 0-255

Stretch each image into a vector with 784 coordinates:

- Data space $\mathcal{X} = \mathbb{R}^{784}$
- Label space $\mathcal{Y} = \{0, 1, ..., 9\}$

The distance function

Remember Euclidean distance in two dimensions?

$$z = (3,5)$$

$$x = (1, 2)$$

Euclidean distance in higher dimension

Euclidean distance between 784-dimensional vectors x, z is

$$||x-z|| = \sqrt{\sum_{i=1}^{784} (x_i - z_i)^2}$$

Here x_i is the *i*th coordinate of x.

Nearest neighbor classification

Training images $x^{(1)}, \dots, x^{(60000)}$, labels $y^{(1)}, \dots, y^{(60000)}$

1416119134857868U3226#141 8663597202992997225100467 0130844145910106154061036 3110641110304752620099799 6684120867885571314279554 6060177301871129930899709 8401097075973319720155190 551075518255182554603546035460

To classify a new image x:

- Find its nearest neighbor amongst the $x^{(i)}$ using Euclidean distance in \mathbb{R}^{784}
- Return $y^{(i)}$

How accurate is this classifier?

Accuracy of nearest neighbor on MNIST

Training set of 60,000 points.

- What is the error rate on training points? Zero.
 In general, training error is an overly optimistic predictor of future performance.
- A better gauge: separate test set of 10,000 points.
 Test error = fraction of test points incorrectly classified.
- What test error would we expect for a random classifier? (One that picks a label 0 9 at random?) 90%.
- Test error of nearest neighbor: 3.09%.

Examples of errors

Test set of 10,000 points:

- 309 are misclassified
- Error rate 3.09%

Examples of errors:

Ideas for improvement: (1) k-NN (2) better distance function.

Outline

- 1 Nearest neighbor classification
- 2 k-nearest neighbor
- 3 Choosing the features and distance function

K-nearest neighbor classification

Classify a point using the labels of its k nearest neighbors among the training points.

In real life, there's no test set. How to decide which k is best?

- Hold-out set.
 - Let *S* be the training set.
 - Choose a subset $V \subset S$ as a validation set.
 - What fraction of V is misclassified by the k-nearest neighbors in $S \setminus V$?
- 2 Leave-one-out cross-validation.
 - For each point $x \in S$, find the k-nearest neighbors in $S \setminus \{x\}$.
 - What fraction are misclassified?

Cross-validation

How to estimate the error of k-NN for a particular k?

10-fold cross-validation

- Divide the training set into 10 equal pieces. Training set (call it S): 60,000 points Call the pieces S_1, S_2, \ldots, S_{10} : 6,000 points each.
- For each piece S_i :
 - Classify each point in S_i using k-NN with training set $S-S_i$
 - Let ϵ_i = fraction of S_i that is incorrectly classified
- Take the average of these 10 numbers:

estimated error with
$$k\text{-NN} = \frac{\epsilon_1 + \dots + \epsilon_{10}}{10}$$

Outline

- 1 Nearest neighbor classification
- 2 k-nearest neighbor
- 3 Choosing the features and distance function

Another improvement: better distance functions

The Euclidean (ℓ_2) distance between these two images is very high!

Much better idea: distance measures that are invariant under:

- Small translations and rotations. e.g. tangent distance.
- A broader family of natural deformations. e.g. shape context.

Test error rates:	ℓ_{2}	tangent distance	shape context
	3.09	1.10	0.63

Related problem: feature selection

Feature selection/reweighting is part of picking a distance function. And, one noisy feature can wreak havoc with nearest neighbor!

Algorithmic issue: speeding up NN search

Naive search takes time O(n) for training set of size n: slow!

There are data structures for speeding up nearest neighbor search, like:

- 1 Locality sensitive hashing
- 2 Ball trees
- **3** *K*-d trees

These are part of standard Python libraries for NN, and help a lot.

Example: k-d trees for NN search

A hierarchical, rectilinear spatial partition.

For data set $S \subset \mathbb{R}^d$:

- Pick a coordinate $1 \le i \le d$.
- Compute $v = \text{median}(\{x_i : x \in S\})$.
- Split *S* into two halves:

$$S_L = \{x \in S : x_i < v\}$$

$$S_R = \{x \in S : x_i \ge v\}$$

• Recurse on S_L , S_R

Two types of search, given a query $q \in \mathbb{R}^d$:

- *Defeatist search*: Route *q* to a leaf cell and return the NN in that cell. This might not be the true NN.
- *Comprehensive search*: Grow the search region to other cells that cannot be ruled out using the triangle inequality.