office copy (02)

Name:	RollNo.:
-------	----------

THAPAR INSTITUTE OF ENGINEERING & TECHNOLOGY-PATIALA Department of Computer Science and Engineering Written Test (Oct. 19, 2021)

Probability and Statistics (UCS410) Instructors: RJK, SHG, SWT, AMT M.M. 45 Time: 2 Hours

Note: Attempt any FIVE questions. Assume missing data suitably, if any. Some useful data P(Z > 1.67) = 0.04746, P(Z < -3) = 0.00135, P(Z < 3) = 0.99865, P(Z < 0) = 0.5, P(Z < -1.5) = 0.06681, P(-2 < Z < 2) = 0.9544, P(-1 < Z < 1) = 0.6826 Here, Z is the standard Normal variable.

	Two computers A and B are to be marketed. A salesman who is assigned the job of finding customers for them has 60% and 40% chances respectively of succeeding in case of computer A and B. The two computers can be sold independently. Given that he was able to sell at least one computer, what is the probability that computer A has been sold?						
Q1 (b)	 (i) State Bayes Theorem. (ii) Suppose that a product is produced in three factories X, Y, and Z. It is known that factory X produces thrice as many items as factory Y, and that factories Y and Z produce the same number of items. Assume that it is known that 3 per cent of the items produced by each factories X and Z are defective while 5 percent of those manufactured by factory Y are defective. All the items produced in the three factories are stocked, and an item of product is selected at random. What is the probability that this item is defective? If an item selected at random is found to defective, what is the probability that 	6 Marks					
	it was produced by factory X, Y and Z respectively?	6 Marks					
Q2(a)	Define rectangular distribution (Continuous Uniform distribution) and derive its expectation and variance.						
Q2 (b)	Consider random variable X which is distributed exponentially. Its pdf is given by $f(x) = \begin{cases} e^{-x}, & x \ge 0 \\ 0, & elsewhere \end{cases}$ Establish that Markov's inequality holds good for random variable X .						
Q3 (a)	Find Moment Generating Function(MGF) for exponential distribution.	3 Marks					
Q3 (b)	A component exhibits Normal Distribution for failure rate with mean of 3750 hrs. and standard deviation of 500 hrs. What percentage of parts will survive up to 4500 hrs.?	4 Marks					
	What is the probability that at least two out of n people have the same birthday?	2 Marks					

Q4 (a)	Fit the curve $y = ax^b$ for the following data							7 Marks	
	x: y:	1 1200	900	3 600	200	5	50		
Q4 (b)	Does there exist a variate that satisfy following relationship $P[\mu - 2\sigma < X < \mu + 2\sigma] = 0.6$ To conclude use chebyshev's inequality.							2 Marks	
Q5 (a)	Random variable <i>X</i> follows the continuous uniform distribution over the interval 0 to 1 i.e. [0,1]. Find the probability density function (pdf) of $Y = \frac{1}{x}$?								5 Marks
Q5(b)	The first four moments of a distribution about the value 4 of the variable are -1·5, 17, -30 and 108. Find the first four moments about the mean.								4 Marks
Q6	Let the joint probability density function for (X, Y) be $f(x, y) = \begin{cases} \frac{x+y}{2}, & 0 < x, \ 0 < y, \ and \ 3x + y < 3 \\ 0, & Otherwise \end{cases}$ i. Find the probability $P(X < Y)$. Draw the clear target region under consideration ii. Find the marginal probability density function of X . iii. Find the marginal probability density function of Y . iv. Are X and Y independent? If not, find $Cov(X, Y)$.								9 Marks
Q7 (a)	Suppose that the marks of students in a course are normally distributed with mean 50 and standard deviation 15. We take a sample of size 30, and note that the marks of students are: 70, 45, 80, 49, 59, 43, 36, 76, 72, 48, 64, 60, 38, 46, 68, 35, 61, 58, 76, 56, 62, 38, 63, 37, 78, 37, 60, 47, 38, 14. Find the 95.44% confidence interval μ.								5 Marks
Q7(b)	Define a Sample ar estimate of populati		Mean.	Also, S	how that	Sample	Mean is	s an unbiased	4 Marks