BinDaaS: Blockchain-Based Deep-Learning as-a-Service in Healthcare 4.0 Applications

https://youtu.be/Epvu9B44ZfQ

개요

- EHR
 - Electronic Health Record (전자의무기록)
 - 디지털 형태로 체계적으로 수집되어 전자적으로 저장된 환자 및 인구의 건강정보
- 본 논문에서는 EHR을 블록체인 기반으로 만듦
- 또한 DaaS(Deep Learning as a Service)를 이용하여 질병을 예측

Sample view of an electronic health record

Motivation

• healthcare 4.0 어플리케이션 개발을 위한 프레임워크 (BinDaaS) 제안

• 해당 프레임워크는 블록체인 백엔드 + 딥러닝 기술로 이루어짐

System Architecture of BinDaaS

CASE-I

HU를 통해 수집된 데이터는 AO 레이어를 통해 인증 받아야 함 ex) 의사는 병원에 의해 인증을 받아야 함

CASE-II

AO 레이어는 ES 서버에 의해 인증을 받아야 함

CASE-III

ES 서버의 파라미터들이 충족되면, ES에 의해 ES_Notary에서 공증 작업을 수행한 뒤 새로운 블록을 생성하여 네트워크의 모든 유저에 전파

Proposed HCAAM scheme using lattices in BinDaaS

a scheme heterogeneous collective authority authentication mechanism (HCAAM, 다종 집단 권한 인증 메커니즘)

이전 페이지의 그림에서 요청은 아래에서 위로, 시큐리티 파라미터는 위에서 아래로 이동

아래 레이어(AO 등)에서는 다양한 위 레이어(AL 등)의 요청을 처리해야 하기에 다종 집단의 권한에 대한 인증이 필요함

이것을 HCAAM이 처리

DaaS integration in BinDaaS using LSTM for future risk predictions from EHR

LSTM DaaS for future prediction of disease

Algorithm 3 LSTM DaaS for future prediction of diseases

```
Input: Patient EHR records D_1, D_2, ..., D_n as sequence of admissions
S = \{S_{D_1}, S_{D_2}, ..., S_{D_n}\} for n users.
Patient diagnosis codes C = \{C_1, C_2, ..., C_n\} as feature vectors x_{C_i} \in \mathbb{R}^m
Patient interventions I = \{I_1, I_2, \dots, I_k\} as feature vectors x_{I_i} \in R^m, where m is
vector dimension length, elapsed time \Delta t for each i^{th} patient.
Admission codes from WPool with associated probabilities P(WPool)
Output: Future prediction of patient health based on outcome probability P(y|h_{1,2,\ldots,n}).
Initialization: i = 0, j = 0, memory state of LSTM c = 0;
                                                                                                                             else
                                                                                                                  24:
 1: for (i \leftarrow 1 \text{ to } n) do
                                                                                                                             end if
      F_{I,STM}^i \leftarrow \{x_{c_i}, x_{I_i}, \Delta p_i, m_i\}

R^m \leftarrow WPool(\varrho_1, \varrho_2, \dots, \varrho_n)
                                                                                                                  26: end for
       K \leftarrow Compute\_length\ P(y|\varrho_{1,2,...,n})
         \Delta P_i^t \leftarrow D_i^t - D_i^{t-1}
 6: end for
7: for (i \leftarrow 1 \text{ to } n) do
         for (j \leftarrow 1 \text{ to } k) do
              W_{ij} \leftarrow Embed\_Matrix ((D, Z))
              B = \{b_0, b_1, \ldots, b_n\}
              x_t^i \leftarrow max\{A^{d_1}, A^{d_2}, \dots, A^{d_n}\}
                                                                                                                  35:
             p_{t}^{f} \leftarrow max\{B_{s}^{I_{1}}, B_{s}^{I_{2}}, \dots, B_{s}^{I_{k}}\}
                                                                                                                  36:
                                                                                                                             end if
          end for
                                                                                                                  37: end while
14: end for
15: for (i \leftarrow 1 \text{ to } n) do
```

```
18: for (j \leftarrow 1 \text{ to } k) do
             WPool \leftarrow \sigma(\sum w_i x_t + U_t h_{t-1})
            A_t \leftarrow \frac{1}{m_t} (\text{WPool}+b_i)
            if (m_t == 1) then
                  A_{I} > 0
                   A_{t} < 0
27: while (z>0) do
            if (P > A_t) then
                  \Delta_{t-1:t} \leftarrow |\log(e + \delta_{t-1:t})^{-1}|
           \begin{aligned} \mathbf{N}_i &\leftarrow \sigma(w_f x_t + u_f h_{t-1} + Q_f q_{\Delta t-1:t} + p_f p_{t-1} + b_f) \\ &SoftMax(z) &\leftarrow \mathbf{e}^z / \sum_{\tau} t e^{Zt} \end{aligned}
               P(d_{t+1} = c | f_t) \leftarrow SoftMax(z)
                  MeanPool \leftarrow h_{1,2,...,n}
                   MeanPool \leftarrow -\log P(y|u_{1,2,...,n})
38: e_h \leftarrow \sigma(h_t + b_h)
39: x_v \leftarrow h_t a_n + b_v
40: P(y|h_{1,2,...,n}) \leftarrow f_{prob}(x_y)
```

17: end for

 $NormPool \leftarrow m_t + \log(1 + \Delta t)^{-1}$

Evaluation Results

((a)) Improved accuracy in the LSTM_DaaS model

((b)) End-to-end latency over traditional schemes in BinDaaS

Evaluation Results

TABLE IV: Comparative Analysis with existing schemes

Parameters	Bao et al. [48]	Li <i>et al.</i> [49]	Hathaliya et al.[46]	Aujla <i>et al.</i> [47]	Proposed BinDaaS
A1	√	×	√	√	√
A2	×	×	\checkmark	\checkmark	✓
A3	×	×	\checkmark	✓	\checkmark
A4	×	×	\checkmark	\checkmark	\checkmark
A5	×	×	×	×	\checkmark
A6	_	✓	✓	×	\checkmark
A7	×	×	×	×	\checkmark
A8	×	-	×	\checkmark	/
A9	×	×	×	\checkmark	\checkmark
A10	-	X	✓	✓	✓

A1: Replay Attacks; A2: Side-Channel Attacks; A3:Distributed Denial-of-Service(DDoS) attacks; A4: Session-based attacks A5: Provenance and auditability attacks; A6: Tracebility of attacks; A7: Signature-forgery attacks; A8: Signature verificability; A9; Quantum attacks; A10: Known ciphertext attack; ✓ shows scheme is safe; X shows scheme is not safe; & - shows attack is not considered in the scheme.

Q&A

