1 Reeksen van getallen (oneindige sommen)

Definities

reeks van reëele getallen
$$(\{u_n\}_{n\geq l}, \{s_n\}_{n\geq l})$$
termenrij rij van partieelsommen
$$\{u_n\}_{n\geq l} \qquad \qquad \{s_n\}_{n\geq l}$$
korte notatie
$$s_n = \sum_{k=l}^n u_k$$

Convergentie van een reeks: convergentie van haar rij van partieelsommen.				
absoluut convergent	voorwaardelijk convergent			
$\sum_{n=1}^{\infty} u_n \text{ is convergent}$	convergentie maar GEEN absolute convergentie			

Convergentietesten

algemeen: criterium Cauchy				
convergentie	$\forall \epsilon > 0, \exists N, \text{zodat } \forall m \geq n \geq N$			
	$ u_n + u_{n+1} + \ldots + u_m < \epsilon $			
NODIGE voorwaarde	$\lim_{n \to \infty} u_n = 0$			
divergentie	$\exists \epsilon > 0, \forall N, \text{zodat } \exists m \geq n \geq N$			
	$ u_n + u_{n+1} + \ldots + u_m \ge \epsilon$			

	reeksen met enkel positieve termen $\sum u_n$							
	vergelijkingstest	integraaltest	d'Alembert (I)	d'Alembert (II)	Cauchy	Raabe		
				verhoudingstest				
CONV	$\sum v_k \text{ conv}$	$\int_{1}^{\infty} f(x)dx$	$\limsup_{n \to \infty} \frac{u_{n+1}}{u_n} < 1$	$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} < 1$	$\left \limsup_{n \to \infty} \sqrt[n]{u_n} < 1 \right $	c > 1		
	$u_n \le v_n$	conv				$c = \lim_{n \to \infty} n \left(1 - \frac{u_{n+1}}{u_n} \right)$		
DIV	$\sum v_k \text{ div}$ $v_n \le u_n$	anders	$ \liminf_{n \to \infty} \frac{u_{n+1}}{u_n} > 1 $	$\left \lim_{n \to \infty} \frac{u_{n+1}}{u_n} > 1 \right $	$ \lim_{n \to \infty} \sup_{n \to \infty} \sqrt[n]{u_n} > 1 $	c < 1		
	$v_n \le u_n$							
reeksen met enkel negatieve termen, idem op tegengestelde na								
	wisselreeksen, bv. Leibnizreeks							

Enkele memorabele reeksen

reeks van Grandi	1-1+1-1+	divergent	rij van partieelsommen $1,0,1\dots$ heeft geen limiet
harmonische reeks	$\sum_{n=1}^{\infty} \frac{1}{n}$	divergentie	voldoet niet aan Cauchy criterium
meetkundige reeks, $reden q$	$\sum_{n=0}^{\infty} q^k$	q < 1: convergentie	$s_n = \frac{1}{1 - q}$
		$ q \ge 1$: divergentie	niet voldaan aan $\lim_{n \to \infty} u_n = 0$
Dirichletreeks	$\sum_{n=1}^{\infty} n^{-p}$	p > 1: convergentie	$p = 2$: $s_n = \frac{\pi^2}{6}$
			$p = 4$: $s_n = \frac{\pi^4}{90}$
		$p \leq 1$: divergentie	
(Riemann-zetafunctie)	$\zeta(p) = \sum_{n=1}^{\infty} \frac{1}{n^p}$	$\mathrm{met}\ p\in\mathbb{C}$	toepassing: getaltheorie
leuke reeks (1)	$\sum_{n=2}^{\infty} \frac{1}{n^p \ln(n)}$	$p \le 1$: divergentie	
		p > 1: convergentie	
leuke reeks (2)	$\sum_{n=2}^{\infty} \frac{1}{n \ln^p(n)}$	$p \leq 1$: divergentie	
		p > 1: convergentie	
Leibnizreeks	$\sum_{n=1}^{\infty} (-1)^{n+1} u_n$	convergent	
	$u_1 \ge \dots u_1 \ge 0$ $\lim_{n \to \infty} u_n = 0$		
harmonische wisselreeks	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$	convergent	$s_n = \ln(2)$

Enkele memorabele andere identiteiten, gerelateerd aan de oefeningen

Euler getal	$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$		
	$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = \frac{1}{e}$	bv. neem ln van beide leden	
indien $\lim_{x \to \bar{x}} f(x) = a$	$\lim_{x \to \bar{x}} f(x)g(x) = ab \qquad \lim_{x \to \bar{x}} \frac{f(x)}{g(x)} = \frac{a}{b}$		
$\operatorname{en} \lim_{x \to \bar{x}} g(x) = b$			
kan handig zijn	$\lim_{n \to \infty} n^{1/n} = 1$	bv. neem exp en ln	
Taylorreeks voor $\arctan(x)$	$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots$		
p-test			

END

Bij het opstellen van dit overzicht werd gebruik gemaakt van [1]. Dank aan de heer N. Scheerlinck voor het ontdekken van fouten/typo's!

References

[1]Stefan Vandewalle and L
 Beernaert. Analyse II: Handboek. SVB Janssen, Leuven, 2018.