Tipos Especiais de Listas

Sumário

- Conceitos Introdutórios
- Rotação Direita
- Rotação Esquerda
- Rotações Simples
- Rotações Duplas
- Qual Rotação Usar
- ImplementaçãoInserção em Árvores AVL

Conceitos Introdutórios

Árvores Binárias de Busca

 Altura de uma árvore binária (AB): igual à profundidade, ou nível máximo, de suas folhas

 A eficiência da busca em árvore depende do seu Balanceamento

 Algoritmos de inserção e remoção em ABB não garantem que a árvore gerada a cada passo seja balanceada

- Em Árvore AVL: ABB na qual as alturas das duas sub-árvores de todo nó nunca diferem em mais de 1
 - Fator de balanceamento de nó: a altura de sua sub-árvore esquerda menos a altura de sua sub-árvore direita
 - FB(p) = h(TE(p)) h(TD(p))
 - Em uma árvore AVL todo nó tem fator de balanceamento igual a 1, -1 ou 0

- O problema das árvores AVL e das árvores balanceadas de uma forma geral é como manter a estrutura balanceada após operações de inserção e remoção
- As operações de inserção e remoção sobre ABBs não garantem o balanceamento

As seguintes inserções tornam a árvore desbalanceada

- As seguintes situações podem levar ao desbalaceamento de uma árvore AVL
 - O nó inserido é descendente esquerdo de um nó que tinha FB = 1 (U1 e U8)
 - O nó inserido é descendente direito de um nó que tinha FB =1 (U9 e U12)

- Para manter uma árvore balanceada é necessário aplicar uma transformação na árvore tal que
 - Regra 1 O percurso em-ordem na árvore transformada seja igual ao da árvore original (isto é, a árvore transformada continua sendo uma ABB)
 - Regra 2 A árvore transformada fique balanceada

- A transformação que mantém a árvore balanceada é chamada de rotação
- A rotação pode ser feita à esquerda ou à direita, dependendo do desbalanceamento a ser tratado
- A rotação deve ser realizada de maneira a respeitar as regras 1 e 2 definidas no slide anterior
- Dependendo do desbalanceamento a ser tratado, uma única rotação pode não ser suficiente

Rotação a direita

 A rotação direita consiste em subir o nó B para o lugar de A. A desce para ser sub-árvore direita de B

- A rotação direita tem formato geral ilustrado à direita
- T1, T2 e T3 podem ser sub-árvores de qualquer tamanho, inclusive 0
- A é o nó mais jovem a se tornar desbalanceado

- A rotação direita tem formato geral ilustrado à direita
- T1, T2 e T3 podem ser sub-árvores de qualquer tamanho, inclusive 0
- A é o nó mais jovem a se tornar desbalanceado

Antes da rotação direita

Após a rotação direita

• Exercício : insira em uma árvore AVL a seqüência de valores: 3; 1. Na ordem que os valores foram listados

Rotação a esquerda

- A rotação esquerda tem formato geral ilustrado à direita
- T1, T2 e T3 podem ser sub-árvores de qualquer tamanho, inclusive 0
- A é o nó mais jovem a se tornar desbalanceado

- A rotação esquerda tem formato geral ilustrado à direita
- T1, T2 e T3 podem ser sub-árvores de qualquer tamanho, inclusive 0
- A é o nó mais jovem a se tornar desbalanceado

• Exercício : insira em uma árvore AVL a seqüência de valores: 3; 1. Na ordem que os valores foram listados

Rotação Simples

Árvores AVL - Rotação Simples

- Tanto para a rotação direita quanto para a rotação esquerda, a sub-árvore resultante tem como altura a mesma altura da subárvore original
- Isso significa que o fator de balanceamento de nenhum nó acima de A é afetado

Árvores AVL - Rotação Simples

 Quando se deve utilizar a rotação direita ou esquerda?

Árvores AVL - Rotação Simples

- Quando se deve utilizar a rotação direita ou esquerda?
 - Quando o fator de balanceamento do nó A é positivo, a rotação é direita. Se for negativo a rotação é esquerda

Rotação Duplas

Árvores AVL - Rotação Duplas

- Será que as rotações simples solucionam todos os tipos de desbalanceamento?
 - Infelizmente, não
- Existem situações nas quais é necessário uma rotação dupla

Árvores AVL - Rotação Duplas

- A rotação dupla esquerda/direita tem formato geral ilustrado à direita
- T1, T2, T3 e T4

 podem ser subárvores de qualquer
 tamanho, inclusive 0
- A é o nó mais jovem a se tornar desbalanceado

- Passo 1: rotação esquerda em B
- A princípio a rotação esquerda parece deixar a árvore ainda mais desbalanceada
- Entretanto...

- Passo 2: rotação direita em A
- Repare que a altura final da sub-árvore é n + 2
- Funciona também se o novo nó tivesse sido inserido em T3.

Árvores AVL - Rotação Dir/Esq

- A rotação dupla direita/esquerda tem formato geral ilustrado à direita
- T1, T2, T3 e T4

 podem ser subárvores de qualquer
 tamanho, inclusive 0
- A é o nó mais jovem a se tornar desbalanceado

Árvores AVL - Rotação Dir/Esq

- Passo 1: rotação direita em B
- A princípio a rotação direita parece deixar a árvore ainda mais desbalanceada
- Entretanto...

- Passo 2: rotação esquerda em A
- Repare que a altura final da sub-árvore é n + 2
- Funciona também se o novo nó tivesse sido inserido em T3.

Qual rotação usar

- Se o sinal do nó A e do nó B forem iguais então a rotação é simples
- Se o fator de balanceamento nó A (nó mais jovem a se tornar desbalanceado) for positivo, então a rotação é direita

- Se o sinal do nó A e do nó B forem iguais então a rotação é simples
- Se o fator de balanceamento nó A (nó mais jovem a se tornar desbalanceado) for negativo, então a rotação é esquerda

- Se o sinal do nó A e do nó B forem diferentes então a rotação é dupla
- Se o fator de balanceamento nó A (nó mais jovem a se tornar desbalanceado) for positivo, então a rotação é esquerda/direita

- Se o sinal do nó A e do nó B forem diferentes então a rotação é dupla
- Se o fator de balanceamento nó A (nó mais jovem a se tornar desbalanceado) for negativo, então a rotação é direita/esquerda

Implementação