Effective Mode Range Query in Arrays

Younan Gao

Introduction

Mode

 The most frequent element in the array is called mode. Mode is not necessarily unique.

Range Query

 Seeks to compute the corresponding statistic on the subarray A[I, r]

o Motivations:

- Mode is a fundamental statistic in data analysis
- My project tries to break the bound of the query time $O(\sqrt{n})$ under certain data patterns in practice

Related Work

Reference	Author	Year	Query Time	Update Time	Space	Worst Case	Lower bound	Remark
[1]	Hicham El-Zein	2018	O(n^(2/3))	O(n 2/3)	O(n)	WOISE Case	Lower bound	Dynamic
[2]	Timothy M. Chan	2014	O(n^(3/4) log log n)	O(n^(3/4) log log n)	O(n)	O(n^(3/4) log n/ log log n)		Dynamic
[2]	Timothy M. Chan	2014	O(n^(2/3) lg n/ lg lg n)	O(n^(2/3) lg n/ lg lg n)	O(n^(4/3))			Dynamic
[2]	Timothy M. Chan	2014	O(√n/log n)		O(n)			Static
[3]	S. Durocher	2011	$O(n^t)$; $O(k)$; $O(m)$; $O(j-i)$		O(n^(2-2t))			0 <t<=1 2<="" td=""></t<=1>
[4]	Mark Greve	2010			S memory cells of w bits		Ω(log n/(log(Sw/n)))	Cell Probe Model
[5]	Holger Petersen	2008	O(1)		O(n^2(loglog n)/ (log n)^2)			
[5]	Holger Petersen	2008	O(n^ε)		O(n^ (2 – 2ε))			0 ≤ ε< 1/2
[5]	Holger Petersen	2008	O(1)		O(n^2/logn)			
[6]	Krizanc	2005	O(n^t log n)		O(n^(2-2t))			0 <t<=1 2<="" td=""></t<=1>
[6]	Krizanc	2005	O(1)		O(n^2(loglog n)/ (log n))			

- What is the difference between dynamic and static
 - Dynamic means the precomputed data structures supports data update
 - In contrast, static means, once data is update, all the precomputed data structures have to been constructed from the scratch.

Why breaks the bound $O(\sqrt{n})$ is hard

- Lower bound of MRQ from Greve et al.
 - Ω(log n / log (s * w / n))) uses s memory cells of w bits
 - Which is Ω(log n / loglog n) query time using O(n) space under RAM model
- Reduce Boolean Matrix Multiplication to MRQ by Chan et al.
 - "A query time significantly below \sqrt{n} cannot be achieved by purely combinatorial techniques"
- Preprocess an O(n)-sized data structure and answer RMQ cannot be done better in O($n^{\omega/2}$) time from He et al.
 - ω is the constant in the exponent of the running time of matrix multiplication, which is 2.3727 with current knowledge

Why breaks the bound $O(\sqrt{n})$ is hard(cont.)

- Reduce Boolean Matrix Multiplication to MRQ by Chan et al.
 - An example of $\sqrt{n} * \sqrt{n}$ Boolean Matrix Multiplication

$$A[3][3] * B[3][3] = C[3][3]$$

How to calculate the multiplication with MRQ

Calculate

Preliminaries(Notation)

Notation	Meaning
m	The highest frequency of the whole array, which is unique
S	The block size
t	The size of one block
n	The length of the array
Δ	The total number of distinct items

Preliminaries(cont.)

Lemma

 (Krizanc et al.) Let A1 and A2 be any multisets. If c is a mode of A1 ∪ A2 and c ∉ A1, then c is a mode of A2.

Convention

- Preprocess the input array by constructing a data structure to speed up the query time
- However, all methods here are using O(n) space
- The project focuses on static range query

Rank Reduction

Example

- {10, 20, 20, 10, 30, 30, 10, 40, 40}
- After reduction, {1, 2, 2, 1, 3, 3, 1, 4, 4}

Functions

- Rank Reduction transfer the data set from universe to {1..△}
- The mode of the rank reduction array corresponds to the mode of the original array
- Operations on rank reduction arrays improves query and space efficiency
- By using TreeMap(AVL Tree), Rank Reduction could be implemented within O(log △) time

O(|j - i|) Method

- The most obvious method
 - Direct search without preprocess
 - Takes O(n) space and O(|j-i|) time

```
public Result query_algorithm(int index_i, int index_j) {
   Map<Integer, Integer> map_count_item = new HashMap<Integer, Integer>();
   Result result = new Result(-1, 0);
    int tmp;
    for (int i = index_i; i <= index_j; i++) {</pre>
        if (map_count_item.containsKey(this.original_arr[i])) {
            tmp = 1 + map_count_item.get(this.original_arr[i]);
            map_count_item.put(this.original_arr[i], tmp);
        } else {
            tmp = 1;
            map_count_item.put(this.original_arr[i], tmp);
        if (tmp > result.getFrequency()) {
            result.setFrequency(tmp);
            result.setMode(this.original_arr[i]);
    }
    return result;
```

O(△) Method

- Preprocess
 - Make $t = \Delta$, and $s = n / \Delta$.
 - Precompute an Array C[∆][s], for each C[i, j] stores the frequency of item i in the range from 0 to (j*∆-1)
 - An example as shown below

```
    Input array(Rank Reduction beforehand):
    Index 0 1 2 3 4 5 6 7 8 9 10 11
    Item 1 2 3 4 1 2 2 4 1 1 4 2
    Array C[△][s] 0 1 2
    1 1 2 4
    2 1 3 4
    3 1 1 1
    4 1 2 2
```

- With array C, we can get the frequency of any item between any span of blocks in O(1) time
- Preprocessing Operation takes O(n) space and O(n) time

$O(\Delta)$ Method(cont.)

- Query Algorithm
 - Compute the respective frequencies of all distinct items in the target range [i, j]
 - \circ Compute the respective frequencies of all distinct items in the target range [0, j] and store the frequencies in array C1[\triangle]
 - \circ Compute the respective frequencies of all distinct items in the target range [0, i-1] and store the frequencies in array C2[\triangle]
 - The frequencies in the range [i-j] could be computed by C2 C1
 - Pick the maximum frequency among the array if C2 C1
 - Overall, it takes O(△)

$O(\sqrt{n})$ Method

Preprocess

- Make s = t = \sqrt{n}
- There are totally four arrays needed to be precomputed. Each one takes O(n) space.
 - \circ Q[1.. \triangle][0..m-1]: Each entry Q[i][j] stores the index of item i in the original array.
 - Array_Prime[0..n-1](denoted by P): Each entry P[i] stores the index of the item Original_Array[i] in the array Q[Original_Array[i]]
 - Array_Freq[0..s-1][0..s-1]: Each entry Array_Freq[i][j] stores the maximum frequency in the range from (i*t) to (j*t-1)
 - o Array_Mode [0..s-1][0..s-1]: Each entry Array_Mode[i][j] stores the mode in the range from (i*t) to (j*t-1)
- The respective time cost of each array is as shown below

	Array_Prime	Q	Array_Freq	Array_Mode
Time cost	O(n)	O(n)	O(s*n)	O(s*n)

An example for illustration

block_index	0		1			2			
Index	0	1	2	3	4	5	6	7	8
Original_Array	1	2	2	1	3	3	1	4	4
Array_Prime	0	0	1	1	0	1	2	0	1

Q	0	1	2
1	0	3	6
2	1	2	
3	4	5	
4	7	8	

Mode	0	1	2
0	2	2	1
1		3	3
2			4

Freq	0	1	2
0	2	2	3
1		2	2
2			2

$O(\sqrt{n})$ Method(cont.)

- Query Algorithm includes 3 parts
 - Compute the mode and its frequency (denoted by fc) in the span, which covers the complete blocks within the target range
 - Compute the mode and its frequency in the prefix and suffix

• The overall query time is O(t), which is $O(\sqrt{n})$

O(m) Method

Preprocess

- This is a new method and slightly more efficient on space and query time
- Make t = m and s = n / t
- There are totally four arrays to be precomputed. Each one takes O(n) space.
 - \circ Q[1.. \triangle][0..m-1]: Each entry Q[i][j] stores the index of item i in the original array.
 - Array_Prime[0..n-1]: Each entry Array_Prime[i] stores the corresponding index of the item Original_Array[i] in the array Q[i]
 - F[0..s-1][1..m]: Each entry F[i][j] stores the smallest index(denoted by v), such that the mode of the range [i*m, v] has frequency at most j;
 - Arr_Mode[0..s-1][1..m]: Each entry Arr_Mode[i][j] stores the corresponding mode of the entry F[i][j]
- The respective time cost to precompute each array is as shown below

	Array_Prime	Q	Array_F	Array_Mode
Time Cost	O(n)	O(n)	O(s*n)	O(s*n)

An example

block_index	0		1			2			
Index	0	1	2	3	4	5	6	7	8
Original_Array	1	2	2	1	3	3	1	4	4
Array_Prime	0	0	1	1	0	1	2	0	1

Q	0	1	2
1	0	3	6
2	1	2	
3	4	5	
4	7	8	

Array_F	1	2	3
0	0	2	6
1	3	5	9
2	6	8	9
Arr_Mode	1	2	3
0	1	2	1
1	1	3	3
2	1	4	4

O(m) Method(cont.)

Query Algorithm

- A mode of the span plus suffix and its frequency (denoted by fc) can be computed by finding the predecessor of index_j in corresponding array Array_F[t] (t represents the block index where the left side of the span locate);
 - The index of the found predecessor equals to the frequency fc
 - Arr_mode[t][fc] represents the mode of the span plus suffix. (t represents the block index where the left side of the span locate)
- Secondly, we only need to scan the prefix items to identify the candidate mode which frequency is more than fc using the same way to the previous method.
- There is no need to scan the suffix items, Proof:
 - If the suffix shares some items with the prefix, then when scanning the items in prefix, these common items can be covered.
 - o For the items only contained in the suffix, their frequency could not be more than fc.
- 3 ways to find the index of the predecessor in array_F

	vEB	Binary Search	Linear Scan
Time cost O(lglgn)		O(Igm)	O(m)
		O(lgn)	O(sqrt(n))

Another $O(\sqrt{n})$ Method

o Idea in Pseudocode:

```
Method_Four(int []p, int n):
    s = sqrt(n);
#B0 stores the items with freq <= s
#B1 stores the items with freq > s
[B0, B1] = array_partition(p);
result_1 <- Apply "O(m)" method on B0
result_2 <- Apply "O(\Delta)" method on B1
final_result <- compare(result_1, result_2)
return final_result</pre>
```

- Why is it $O(\sqrt{n})$
 - Get mode from array B0 takes O(m), which is O(\sqrt{n})
 - Get mode from array B1 takes $O(\triangle)$ time. When the frequencies of each item is **more than s**, \triangle must be **less than t**. (Here $s = t = \sqrt{n}$)
 - Proof:

Another $O(\sqrt{n})$ Method (cont.)

- It still uses O(n) space
 - B0 takes O(s*m) space, which is O(n)
 - B1 needs O(s*△) space, which is also O(n)
- The value of the new $O(\sqrt{n})$ Method
 - Original method: the worst case of the mode range query for any array takes $O(\sqrt{n})$
 - New method: there exists some arrays satisfying certain data pattern, on which the worst case of query time could be much less than $O(\sqrt{n})$.
 - E.g. {1, 2, 3, 4, 5, 6, 7, 8, 9}

Implementation

- Programming Language: Java
- Data Structure from Java utility package
 - HashMap
 - Array
 - TreeMap
- Implements on five methods
- Machine: 2.9GHz/8GB

Data Structure from Java

- Array
 - Implemented by self-adjusting list
 - However, it is used as a fixed size list during implementation
- HashMap:
 - Put/Get: O(1) time
 - Avoid iterating HashMap by Rank Reduction beforehand
- TreeMap
 - Red Black Tree
 - Put/Get/ContainsKey: O(lgn) time
 - Iteration: O(nlgn) time

Methos	Array	HashMap	TreeMap
j - i	$\sqrt{}$	\checkmark	X
O(m)	$\sqrt{}$	\checkmark	X
O(△)	$\sqrt{}$	X	X
$O(\sqrt{n})$	$\sqrt{}$	X	\checkmark
Rank Reduction	$\sqrt{}$	\checkmark	\checkmark
Array_Partition	$\sqrt{}$	\checkmark	X

Implementation Support

- Array Partition
- Rank Reduction on Array
- Sample Data Generator
- Serialization by Java
 - Serialization is the process of turning an object in memory into a stream of bytes.

An Example on Array Partition

- Original Array
 - {2, 7, 2, <mark>7, 1, 5, 7, 2, 7</mark>}
- Array Partitions
 - B0: {2, 2, 1, 5, 2}
 - B1: {7, 7, 7, 7}
- Precompute Arrays take O(n) time and O(n) space

	0	1	2	3	4	5	6	7	8
I_0	0	1	1	2	2	3	4	4	-1
J_0	0	0	1	1	2	3	3	4	4
I_1	0	0	1	1	2	2	2	3	3
J_1	-1	0	0	1	1	1	2	2	3

Implementation of the new $O(\sqrt{n})$ Method

One of the four strategies as shown below:

Implementation of the new $O(\sqrt{n})$ Method

 Based on different data patterns, apply different strategies

Condition		B1	
B1.length ==0	O(j-i)	O(m)	Ο(Δ)
Billerigtii ==0	X	$\sqrt{}$	X
B0.length ==0	O(j-i)	O(m)	$O(\triangle)$
bollerigtii ==0	X	Х	√
B0.length <=s	O(j-i)	O(m)	$O(\triangle)$
&& B1.length > 0	√	Х	√
Otherwise	O(j-i)	O(m)	O(△)
Otherwise	X	√	√

Performance Comparison between two $O(\sqrt{n})$ methods

Performance Comparison

Denfermen Communication		n	m	Δ	n	m	Δ	n	m	Δ
	Performance Comparison	10000000	2659	4000	10000000	10370	1000	10000000	10400	3229
			New			New			New	
	$O(\sqrt{n})$ Method	Original	B0.length	B1.length	Original	B0.length	B1.length	Original	B0.length	B1.length
O(v n)Method	Original	10000000	0	Original	0	10000000	Original	5100000	4889600	
		O(m) n	nethod		O(△) r	method		O(m) method	$O(\Delta)$ method	
Precompute	Total Size of Precompute Data Structure(MB)	200.1	40	0.2	200.1	28	0.1	200.1	41	6.5
	Time Cost(Millisecond)	63432	295	546	62855	7.	10	70246	14	731
	Prefix+Span	693	22	23	371	4!	51	575	9:	13
Dange Over	Span+Suffix	626	2	2	677	18	32	564	20	09
Range Query (Microsecond)	Less than one block	224	22	20	243	1	70	262	23	02
(iviici osecona)	Prefix+Span+Suffix	690	40	77	133	1	79	982	50	60
	Span	372	2	2	325	1	50	354	1	54

Analysis

Space for precompute data structure

Space Space					
Orig	jinal		New	New	
Array	Size	Ar	ray	Size	
original_arr	n	origir	nal_arr	n	
original_arr_prime	n		array_B	n	
array_Q	n	Array_Patition	array_l	2*n	
array_s	n=s*s		array_J	2*n	
array_s_prime	n=s*s		original_arr_prime	n	
		O(m) Mathad	array_Q	n	
		O(m) Method	array_F	s*m	
			array_mode	s*m	
		O(△) Method	array_C	∆*s	
Total	5n	Total range from 6n to 1			

Performance Comparison between two $O(\sqrt{n})$ methods (cont.)

Analysis

Precompute time cost

	Tressingues time cost						
	Precompute Time						
Origina	ıl		New	I			
Array	Time	A	rray	Time			
original_arr	O(1)	orig	inal_arr	O(1)			
original_arr_prime	O(n)	Array_Patition	array_B	O(n)			
array_Q	O(n)		array_l	O(n)			
array_s	O(n*s + s*s)		array_J	O(n)			
array_s_prime	O(n*s + s*s)	O(m) Method	original_arr_prime	O(n)			
			array_Q	O(n)			
			array_F	O(s*n+s*m)			
			array_mode	O(s*n+s*m)			
		$O(\triangle)$ Method	array_C	O(n)			
Total	O(n*s + s*s)	T	otal	range from O(n) to O(s*n+s*m)			

Query time

Note: $t == \sqrt{n}$	Query Time				
$m \le \sqrt{n}$	Ovisional New				
$\triangle <= \sqrt{n}$	Original	O(m) method	$O(\Delta)$ method		
Prefix+Span	O(t)+O(1)	O(t)+O(m)	Ο(Δ)		
Span+Suffix	O(t)+O(1)	O(m)	$O(\triangle)$		
Less than one block	$O(j-i) \in O(t)$	$O(j-i) \in O(m)$	$O(j-i) \in O(\Delta)$		
Prefix+Span+Suffix	O(t)+O(1)+O(t)	O(t)+O(m)	Ο(Δ)		
Span	O(1)	O(m)	$O(\triangle)$		

Future Work

- **Target:** Identify other data patterns satisfying fast mode range query which breaks the bound $O(\sqrt{n})$.
- One Trivial Finding
 - Query the frequency of any number in range blocks with constant time.
- Example: {10, 20, 20, 10, 30, 30, 10, 40, 40}

	1 2		3	3		
10	0	1	0	1	0	1
20	0	0	1	1	1	
30	1	0	0	1	1	
40	1	1	0	0	1	

Find the freq of 10 between block 2 and 3

$Select_1(3) = 6$	$Select_1(2-1) = 2$
$Rank_1(6) = 3$	$Rank_1(2) = 1$

The freq of 10 = 3 - 1

- Analysis:
 - Space: O($(n + \Delta * m) / word size)$
 - Running time: O(△)
 - Limitation: The unit of query range is block

Future Work (cont.)

- o Extension:
 - O(1) time to get the frequency of any number in any range
- Example

```
10 011101110111

20 10101111111

30 11110101111

40 11111110101
```

- Analysis:
 - Space: $O((\Delta+1)*n / log n)$ words, regarding log n is O(word size)
 - Query time: O(1)
- Apply this method on mode range query:
 - Space: the sameQuery time: O(Δ)
 - When \triangle is O(log n), the space is O(n) and the query time is O(log n). This is another way to break the $O(\sqrt{n})$ bound for arrays with specific data pattern.

Reference

- 1. Hicham El-Zein, Meng He, J. Ian Munro, Bryce Sandlund: Improved Time and Space Bounds for Dynamic Range Mode. ESA 2018: 25:1-25:13
- 2. Timothy M. Chan, Stephane Durocher, Kasper Green Larsen, Jason Morrison, Bryan T. Wilkinson: Linear-Space Data Structures for Range Mode Query in Arrays. Theory Comput. Syst. 55(4): 719-741(2014)
- 3. Stephane Durocher, Hicham El-Zein, J. Ian Munro, Sharma V. Thankachan:Low space data structures for geometric range mode query. Theor. Comput. Sci. 581: 97-101 (2015)
- 4. Mark Greve, Allan Grønlund Jørgensen, Kasper Dalgaard Larsen, Jakob Truelsen: Cell Probe Lower Bounds and Approximations for Range Mode. ICALP (1) 2010: 605-616
- 5. Holger Petersen, Szymon Grabowski:Range mode and range median queries in constant time and sub-quadratic space. Inf. Process. Lett. 109(4): 225-228(2009)
- 6. Danny Krizanc, Pat Morin, Michiel H. M. Smid: Range Mode and Range Median Queries on Lists and Trees. Nord. J. Comput. 12(1): 1-17 (2005)

Thanks!

Any question?