SCHEMATA

Mariano Montone (marianomontone@gmail.com)

Table of Contents

1	Ir	ntroduction 1	L
2	Ir	nstallation2	2
3	U	sage	3
4	\mathbf{S}	${ m chema\ types}\dots\dots$	1
		Type schemas	
	4.2		
	4.3		4
	4.4	Schema references	
	4.5	SATISFIES-SCHEMA type	5
	4.6	SCHEMA-CLASS metaclass	5
5	R	eference	7
	5.1	SCHEMATA package	7
6	Ir	ndex	L

1 Introduction

Generic purpose schema library for serialization and validation of data.

This library is used by CL-REST-SERVER for API serialization and validation.

It features:

- Validation using schemas.
- Serialization and unserialization using schemas.
- $\bullet\,$ Integration with Common Lisp type system.
- A schema class metaclass.

2 Installation

With Quicklisp: (ql:quickload "schemata")

3 Usage

```
Use [DEFINE-SCHEMA], page 7for defining schemas.
  Schema example:
     (schemata:define-schema customer
         (object "customer"
                  ((id string :external-name "id" :accessor
                       customer-id :documentation "customer id")
                   (number string :external-name "number" :required nil
                                   :accessor customer-nr :documentation
                           "customer number")
                   (name string :external-name "name" :accessor
                         customer-name :documentation "customer name")
                   (address-1 string :external-name "address1"
                                       :required nil :documentation
                              "customer first address")
                   (address-2 string :external-name "address2"
                                       :required nil :documentation
                              "customer second address")
                   (postal-code string :external-name "postalcode"
                                         :required nil :documentation
                                "postal code")
                   (postal-area string :external-name "postalarea"
                                         :required nil :documentation
                                "postal area")
                   (country string :external-name "country" :required nil
                            :documentation "country code")
                   (phone string :external-name "phone" :required nil
                                   :documentation "phone")
                   (fax string :external-name "fax" :required nil
                                :documentation "fax")
                   (email string :external-name "email" :required nil
                                   :documentation "email"))
                  (:documentation "customer data fetched")))
```

4 Schema types

4.1 Type schemas

```
Schemas can be built from Common Lisp types:

SCHEMATA> (defparameter *s* (schema string))

*S*

SCHEMATA> *s*

#<TYPE-SCHEMA STRING {1006FBBD13}>

SCHEMATA> (validate-with-schema *s* "22")

NIL

SCHEMATA> (validate-with-schema *s* 22 :error-p nil)

#<VALIDATION-ERROR "~s is not of type: ~a" {100152EB13}>
```

4.2 Object schema

Object schemas are built using the syntax: (object name attributes options). Attributes are specified as: (attribute-name attribute-type &rest options).

The attribute-type is parsed as a schema.

Possible attribute options are: 'required', 'required-message', 'default', 'accessor', 'writer', 'reader', 'parser', 'validator', 'add-validator', 'formatter', 'external-name', 'serializer', 'unserializer', 'slot'.

Example:

4.3 List schema

Homogeneous list of schemas are specified via list-of.

Example:

```
SCHEMATA> (defparameter *s* (schema (list-of integer)))
*S*

SCHEMATA> (validate-with-schema *s* '(1 2 "foo"))
; Evaluation aborted on #<SCHEMATA:VALIDATION-ERROR "~s is not of type: ~a" {1006ECA323}>.

SCHEMATA> (validate-with-schema *s* '(1 2 3))
NIL
```

4.4 Schema references

Defined schemas can be referenced via either '(schema schema-name)' or '(ref schema-name)' (they are identical).

```
Example:
```

```
SCHEMATA> (define-schema person
```

```
(object person
                    ((name string))))
#<OBJECT-SCHEMA {1006F8A813}>
SCHEMATA> (defparameter *list-of-person* (schema (list-of (ref person))))
*LIST-OF-PERSON*
SCHEMATA> *list-of-person*
#<LIST-SCHEMA {1006F8C2A3}>
SCHEMATA> (parse-with-schema *list-of-person* '((("name" . "Mariano")) (("name" . "Peter"))
(((NAME . "Mariano")) ((NAME . "Peter")))
SCHEMATA> (validate-with-schema *list-of-person* '((("name" . 22)) (("name" . "Peter"))))
; processing (DEFMETHOD SCHEMA-VALIDATE ...); Evaluation aborted on #<SB-PCL::NO-APPLICABLE
SCHEMATA> (validate-with-schema *list-of-person* '((("name" . 22)) (("name" . "Peter"))))
; Evaluation aborted on #<SCHEMATA: VALIDATION-ERROR "~s is not of type: ~a" {10082EB883}>.
SCHEMATA> (validate-with-schema *list-of-person* '((("name" . "Mariano")) (("name" . "Peter
SCHEMATA> (validate-with-schema *list-of-person* '((("names" . "Mariano")) (("name" . "Pete
; Evaluation aborted on #<SCHEMATA:VALIDATION-ERROR "Attributes not part of schema: ~a" {10
```

4.5 SATISFIES-SCHEMA type

Schemata integrates with the Lisp type system via the SATISFIES-SCHEMA type. Schemas can be thought as types over data. Defined schemas can be checked using TYPEP and CHECK-TYPE with the type '(satisfies-schema schema-name)'.

Example:

4.6 SCHEMA-CLASS metaclass

```
SCHEMA-CLASS classes get an schema attached.
```

```
Example:
```

```
SCHEMATA> (validate-with-schema (find-class 'person) '(("name" . "Mariano") ("age" . 'asdf) #<VALIDATION-ERROR 'ASDF is not of type: INTEGER {100109F833}>
```

5 Reference

5.1 SCHEMATA package

SCHEMATA [PACKAGE]

External definitions

Macros

SCHEMATA: SCHEMA (schema-def)

[Macro]

Wrapper macro for schema definitions.

SCHEMATA: DEFINE-SCHEMA (name schema)

[Macro]

Register SCHEMA under NAME. The schema can then be accessed via FIND-SCHEMA.

Generic functions

SCHEMATA: PARSE-WITH-SCHEMA (schema string-or-data) [Generic-Function]

Parses the string to an association list using the schema

SCHEMATA: ATTRIBUTE-NAME (sb-pcl::object) [Generic-Function]

SCHEMATA: UNSERIALIZE-WITH-SCHEMA (schema data format) [Generic-Function]

SCHEMATA: SCHEMA-DOCUMENTATION (sb-pcl::object) [Generic-Function]

SCHEMATA: OBJECT-CLASS (sb-pcl::object) [Generic-Function]

SCHEMATA: ATTRIBUTE-PARSER (sb-pcl::object) [Generic-Function]

SCHEMATA: ATTRIBUTE-VALIDATOR (sb-pcl::object) [Generic-Function]

SCHEMATA: ATTRIBUTE-ADD-VALIDATOR (sb-pcl::object) [Generic-Function]

SCHEMATA: ATTRIBUTE-EXTERNAL-NAME (sb-pcl::object) [Generic-Function]

SCHEMATA: SCHEMA-TYPE (sb-pcl::object) [Generic-Function]

SCHEMATA: ATTRIBUTE-FORMATTER (sb-pcl::object) [Generic-Function]

SCHEMATA: OBJECT-NAME (sb-pcl::object) [Generic-Function]

SCHEMATA: OBJECT-ATTRIBUTES (sb-pcl::object) [Generic-Function]

SCHEMATA: ATTRIBUTE-ACCESSOR (sb-pcl::object) [Generic-Function]

SCHEMATA: ATTRIBUTE-TYPE (sb-pcl::object) [Generic-Function]

Functions

SCHEMATA: ATTRIBUTE-READER (attribute)

[Function]

SCHEMATA: POPULATE-WITH-SCHEMA (schema object data & key

[Function]

exclude)

Populate CLOS objects from data + schema. Attributes members of EXCLUDE parameter are not populated.

SCHEMATA: SCHEMA-CLASS-SCHEMA (schema-class)

[Function]

Generate a schema using the schema class meta info

SCHEMATA: SERIALIZE-WITH-SCHEMA (schema input & optional

[Function]

(serializer generic-serializer::*serializer*) (stream generic-serializer::*serializer-output*))

SCHEMATA: SCHEMA-SPEC (schema)

[Function]

SCHEMATA: ATTRIBUTE-TYPE-NAME (attribute)

[Function]

SCHEMATA: VALIDATION-ERROR (message &rest args)

[Function]

Validate input using schema. Useful for validating resource operations posted content (for :post and :put methods). Input can be a string or an association list.

Args: - schema (symbol or schema): The schema - data (alist): The data to validate. - format (keyword): The data format. - collect-errors (boolean): If true, collect all the validation errors. If false, return the first validation error found. Default: true. - error-p (boolean): If true, when validation errors are found, a validation error is signaled. If false, the validation errors are returned as the function result and no error is signaled.

SCHEMATA: ATTRIBUTE-OPTIONAL-P (attribute)

[Function]

SCHEMATA: ATTRIBUTE-WRITER (attribute)

[Function]

SCHEMATA: FIND-OBJECT-ATTRIBUTE (object attribute-name & key (error-p t))

[Function]

 ${\tt SCHEMATA:FIND-SCHEMA}\ (name\ \& {\bf optional}\ (errorp\ t))$

[Function]

Find a schema definition by name

SCHEMATA: PATCH-WITH-SCHEMA (schema object data)

[Function]

Populate CLOS objects from data + schema. Only populates attributes available in DATA, validating them. Useful for PATCH rest api operations implementations. DATA should be an association list.

Classes

SCHEMATA: OBJECT-SCHEMA

[Class]

Class precedence list: object-schema, schema, standard-object, t

Slots:

- name type: (or string symbol); initarg: :name; reader: schemata:object-name; writer: (setf schemata:object-name)

 The name of the object.
- attributes type: list; initarg: :attributes; reader: schemata:object-attributes; writer: (setf schemata:object-attributes)
- class type: (or null symbol); initarg: :class; reader: schemata:object-class; writer: (setf schemata:object-class)
- ignore-unknown-attributes type: boolean; initarg: :ignore-unknown-attributes; reader: schemata::ignore-unknown-attributes; writer: (setf schemata::ignore-unknown-attributes)
- serializer type: (or null trivial-types:function-designator); initarg: :serializer; reader: schemata::object-serializer; writer: (setf schemata::object-serializer)
- unserializer type: (or null trivial-types:function-designator); initarg: :unserializer; reader: schemata::object-unserializer; writer: (setf schemata::object-unserializer)

SCHEMATA: SCHEMA-REFERENCE-SCHEMA

[Class]

Class precedence list: schema-reference-schema, schema, standard-object, t

• name — type: symbol; initarg: :schema-name; reader: schemata::schema-name; writer: (setf schemata::schema-name)

SCHEMATA: SCHEMA

[Class]

Class precedence list: schema, standard-object, t

Slots

• documentation — type: t; initarg: :documentation; reader: schemata:schema-documentation; writer: (setf schemata:schema-documentation)

SCHEMATA: VALIDATION-ERROR

[Class]

Class precedence list: validation-error, error, serious-condition, condition, t

SCHEMATA: ATTRIBUTE

[Class]

Class precedence list: attribute, schema, attribute-properties, standard-object, t

Slots:

- name type: symbol; initarg: :name; reader: schemata:attribute-name; writer: (setf schemata:attribute-name)
- type type: schemata:schema; initarg: :type; reader: schemata:attribute-type; writer: (setf schemata:attribute-type)
- accessor type: (or null symbol); initarg: :accessor; reader: schemata:attribute-accessor; writer: (setf schemata:attribute-accessor)
- writer type: (or null trivial-types:function-designator); initarg: :writer

- reader type: (or null trivial-types:function-designator); initarg: :reader
- slot type: (or null symbol); initarg: :slot; reader: schemata::attribute-slot; writer: (setf schemata::attribute-slot)

SCHEMATA: TYPE-SCHEMA

[Class]

Class precedence list: ${\tt type-schema}$, ${\tt schema}$, ${\tt standard-object}$, ${\tt t}$

Slots:

• type — type: t; initarg: :type; reader: schema-type; writer: (setf schemata:schema-type)

SCHEMATA: SCHEMA-OBJECT

[Class]

Class precedence list: schema-object, standard-object, t

SCHEMATA: SCHEMA-CLASS

[Class]

Metaclass for schema objects

Class precedence list: schema-class, standard-class, class, specializer, metaobject, standard-object, t

Slots:

• schema-name — type: (or null string symbol); initarg: :schema-name; reader: schemata::schema-name; writer: (setf schemata::schema-name)

6 Index

 $({\rm Index}\ is\ nonexistent})$

*	S
BASE64-ENCODE	SCHEMATA:*BASE64-ENCODE*4
SCHEMATA: ATTRIBUTE-ACCESSOR	SCHEMATA: OBJECT-ATTRIBUTES7
SCHEMATA: ATTRIBUTE-ADD-VALIDATOR	SCHEMATA: OBJECT-CLASS7
SCHEMATA: ATTRIBUTE-EXTERNAL-NAME	SCHEMATA: OBJECT-NAME7
SCHEMATA: ATTRIBUTE-FORMATTER 7	SCHEMATA:PARSE-WITH-SCHEMA7
SCHEMATA: ATTRIBUTE-NAME7	SCHEMATA: PATCH-WITH-SCHEMA8
SCHEMATA: ATTRIBUTE-OPTIONAL-P	SCHEMATA: POPULATE-WITH-SCHEMA8
SCHEMATA: ATTRIBUTE-PARSER	SCHEMATA: SCHEMA7
SCHEMATA: ATTRIBUTE-READER	SCHEMATA: SCHEMA-CLASS-SCHEMA 8
SCHEMATA: ATTRIBUTE-TYPE7	SCHEMATA: SCHEMA-DOCUMENTATION 7
SCHEMATA: ATTRIBUTE-TYPE-NAME	SCHEMATA: SCHEMA-SPEC8
SCHEMATA: ATTRIBUTE-VALIDATOR 7	SCHEMATA: SCHEMA-TYPE7
SCHEMATA: ATTRIBUTE-WRITER	SCHEMATA: SERIALIZE-WITH-SCHEMA
SCHEMATA: DEFINE-SCHEMA7	SCHEMATA: UNSERIALIZE-WITH-SCHEMA7
SCHEMATA: FIND-OBJECT-ATTRIBUTE8	SCHEMATA: VALIDATE-WITH-SCHEMA8
SCHEMATA · EIND_SCHEMA &	SCHEMATA - VAI TDATTON_EDDOD