COMPUTACIÓN CUÁNTICA

JOSE LUIS IZQUIERDO MAÑAS ELVIRA CASTILLO FERNÁNDEZ

9 DE DICIEMBRE DE 2018

ÍNDICE

- 1 ¿Qué es la computación Cuántica?
 - Mitos
 - Computadores cuánticos VS Super Computadores
- 2 Principios de la física cuántica
- 3 ¿Como funciona un computador cuántico?
- 4 Deficiencias
- 5 Campos de Aplicación
 - Historia
 - Usos en el futuro
 - Usos en la actualidad
- 6 Posicionamiento en la curva de Gartner
- 7 Conclusiones
- 8 Dónde ampliar más información
- 9 Bibliografía

Aprovechar y explotar las sorprendentes leyes de la mecánica cuántica para **procesar información**

CONSECUENCIAS

COMPUTADORES CUÁNTICOS VS SUPER COMPUTADORES

Un ordenador cuántico hace lo mismo que uno usual, pero de forma distinta.

- Bits cuánticos. Qubits.
- Procesamiento: puertas lógicas cuánticas.
- Superposición de estados.
- Fntrelazamiento.
- Más rápido.
- Más eficiente.

Estados de un Qubit

- Puede valer o
- Puede valer 1
- Puede valer o y 1 a la vez.

Experimento:

- Láser
- **■** Espejos
- Receptores de fotones

Experimento:

- Láser
- **■** Espejos
- Receptores de fotones

Experimento:

- Láser
- Espejos
- Receptores de fotones

Experimento:

PRINCIPIO DE ENTRELAZAMIENTO

El entrelazamiento cuántico permite que una partícula influencie el estado de otra instantáneamente, aunque estén a años luz de distancia.

Permite desarrollar dos algoritmos muy relevantes:

- El temple cuántico (1989)
- El algoritmo de Shor (1994)

¿Como funciona un computador

COMO FUI CUÁNTICO?

¿COMO FUNCIONA UN COMPUTADOR CUÁNTICO?

Ejemplos

- Computador Cuántico IBM
- ™ Vista 360º

DEFICIENCIAS

¿PODEMOS REALMENTE CONSTRUIR UNO?

¿PODEMOS REALMENTE CONSTRUIR UNO?

SÍ!!! con una gran cantidad de "*peros*"...

¿Podemos realmente construir uno?

El gran problema

Construir un **computador cuántico** es súper complejo y costoso por culpa de la "**decoherencia**".

¿PODEMOS REALMENTE CONSTRUIR UNO?

El gran problema

Construir un **computador cuántico** es súper complejo y costoso por culpa de la "**decoherencia**".

¿PODEMOS REALMENTE CONSTRUIR UNO?

Se produce cuando...

los componentes tienen contacto con el mundo exterior.

¿Podemos realmente construir uno?

Se produce cuando...

los componentes tienen contacto con el mundo exterior.

Se necesitan unas condiciones muy particulares para su correcto funcionamiento:

- ∀acío
- Temperaturas de -273ºC
- Materiales especiales muy costosos

¿PODEMOS REALMENTE CONSTRUIR UNO?

Se produce cuando...

los componentes tienen contacto con el mundo exterior.

Se necesitan unas condiciones muy particulares para su correcto funcionamiento:

- ∀acío
- ➡ Temperaturas de -273ºC
- Materiales especiales muy costosos

La simple acción de

un único **fotón** que sea capaz de colarse en el computador, manda todo a la "*porra*"

¿Podemos realmente construir uno?

De hecho actualmente no se puede mantener este estado de **coherencia** necesario para que los computadores cuánticos funcionen por mas de **200ms...**

Se usan técnicas de redundancia

para paliar con la decoherencia

Estas técnicas

complican el hardware y el número de qubits de forma **exponencial**

¿PODEMOS REALMENTE CONSTRUIR UNO?

Noticia publicada en Enero del año 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy

Parece que Google

ha sacado un computador cuántico con suficientes qubits como para comenzar a exceder los límites prácticos de los computadores clásicos modernos.

CAMPOS DE APLICACIÓN

HISTORIA

En Wikipedia hay una lista muy exhaustiva de la evolución de la computación cuántica **desde los años 60** hasta nuestros días. En Youtube podemos encontrar una pequeña charla contada por un ingeniero de **IBM**.

NECESIDAD DE LOS ORDENADORES CUÁNTICOS

Podemos pensar

Si queremos más capacidad de cómputo basta con hacer un **Súper computador** más grande o **mejorar** la tecnología subyacente.

NECESIDAD DE LOS ORDENADORES CUÁNTICOS

Podemos pensar

Si queremos más capacidad de cómputo basta con hacer un **Súper computador** más grande o **mejorar** la tecnología subyacente.

La realidad es **muy distinta**:

- Ni el computador más potente puede resolver todos los problemas.
- Si se siguen miniaturizando los materiales de un chip empezarán ha aparecer efectos cuánticos.

80S

En el año **1981** se produce la primera conferencia sobre física de la computación.

En el año **1981** se produce la primera conferencia sobre física de la computación.

El físico Richard Feynman

propone el desafío de desarrollar un computador basado en conceptos cuánticos.

USOS EN EL FUTURO - PROMESAS

La computación cuántica

por su naturaleza podría resolver problemas de **complejidad exponencial** transformándolos en problemas de **complejidad polinómica.**

USOS EN EL FUTURO - PROMESAS

La computación cuántica

por su naturaleza podría resolver problemas de **complejidad exponencial** transformándolos en problemas de **complejidad polinómica.**

Debido al corto funcionamiento

de los computadores cuánticos a corto plazo se cree que serán **coprocesadores** que ayuden a supercomputadores.

USOS EN EL FUTURO - ALGORITMO DE GROVER

Se usa para

búsquedas en bases de datos no indexadas.

USOS EN EL FUTURO - ALGORITMO DE GROVER

Se usa para

búsquedas en bases de datos no indexadas.

- Actualmente estas búsquedas nos cuentan O(n)
- Este algoritmo tiene una eficiencia $O(\sqrt{n})$

Si tuviéramos que realizar **veinte millones** de búsquedas realizaríamos en el peor de los casos **4472** búsquedas.

USOS EN EL FUTURO - CRIPTOGRAFÍA

Bob

La mayoría de algoritmos que utilizamos a día de hoy para cifrar nuestra información, emplean la siguiente fórmula:

 $p * q = C_{publica}$ Siendo p y q números primos que conforman una **clave privada**.

USOS EN EL FUTURO - CRIPTOGRAFÍA

Bob

La mayoría de algoritmos que utilizamos a día de hoy para cifrar nuestra información, emplean la siguiente fórmula:

 $p * q = C_{publica}$ Siendo p y q números primos que conforman una **clave privada**.

Su seguridad se fundamenta en

que obtener los números p y q que producen la **clave pública** es un problema con tanta complejidad en tiempo (**NP-Completo**) que es imposible obtener dichos valores en una vida.

USOS EN EL FUTURO - CRIPTOGRAFÍA

Peter shor propuso un algoritmo **cuántico** capaz de encontrar los factores de un número en un tiempo **polinómico**.

IBM demostró

en el año 2001 que el algoritmo de shor funcionaba utilizando para ello un procesador cuántico de 7 qubits.

USOS EN EL FUTURO - QUÍMICA, MATERIALES

Los **supercomputadores actuales** se usan para

- Síntesis ADN o Moléculas.
- Simulación de partículas.

Los ordenadores cuánticos

podrían revolucionar estos campos.

USOS EN LA ACTUALIDAD

Es una tecnología que se encuentra en la niñez:

USOS EN LA ACTUALIDAD

Es una tecnología que se encuentra en la niñez:

- Estamos en una etapa similar a la que se vivió antes de la invención del transistor, cuando los computadores empleaban las válvulas termoiónicas.
- Su programación se hace "a pelo".
- sólo son capaces de resolver problemas de "juguete".
- aun así se comercializan.

USOS EN LA ACTUALIDAD

Es una tecnología que se encuentra en la niñez:

- Estamos en una etapa similar a la que se vivió antes de la invención del transistor, cuando los computadores empleaban las válvulas termoiónicas.
- Su programación se hace "a pelo".
- sólo son capaces de resolver problemas de "juguete".
- aun así se comercializan.

Ya existen empresas que aplican fenómenos cuánticos para resolver problemas de criptografía.

POSICIONAMIENTO EN LA CURVA DE GARTNER

POSICIONAMIENTO EN LA CURVA DE GARTNER

Hype Cycle for Emerging Technologies 2018

Está a medias entre el final de la primera fase de lanzamiento de la nueva tecnología y el principio del pico de expectativas sobredimensionadas.

Video resumen

Microsoft Quantum

28

CONCLUSIONES

DÓNDE AMPLIAR MÁS INFORMACIÓN

DÓNDE AMPLIAR MÁS INFORMACIÓN

- MIT,
 Página oficial: https://quantumcurriculum.mit.edu/
- IBM Página oficial: https://www.research.ibm.com/ibm-q/
- GOOGLE

 Página oficial: https://ai.google/research/teams/appliedscience/quantum-ai/

BIBLIOGRAFÍA

- Gartner, https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
- Así cambiará el mundo sobre computación cuantica: Ignacio Cirac https://www.youtube.com/watch?v=WJ3r6btgzBM
- Articulos inicios computación cuántica
 - https://www.mckinsey.com/industries/high-tech/ourinsights/the-growing-potential-of-quantum-computing
 - https://www.technologyreview.com/s/544421/googlesquantum-dream-machine/
 - https://www.efefuturo.com/ciencia/cirac-ordenadorescuanticos/
- MIT https://www.technologyreview.com/s/610250/seriousquantum-computers-are-finally-here-what-are-we-going-todo-with-them/

- MIT https://www.technologyreview.com/s/612509/quantum-computers-encryption-threat/
- Ordenador cuántico Intel https://www.xataka.com/ordenadores/asi-ordenadorcuantico-49-qubits-intel-dentro
- University of Waterloo https://uwaterloo.ca/institute-forquantum-computing/quantum-computing-101#Quantumeffects-matter

- Wikipedia decoherencia Cuántica https://es.wikipedia.org/wiki/Decoherenciacu %C3 %A1ntica
- El Confidencial Ya puedes utilizar un ordenador cuántico desde casa https://www.elconfidencial.com/tecnologia/2016-05-04/ibm-computacion-cuantica-informatica₁194604/
- nobbot Así funciona un ordenador cuántico https://www.nobbot.com/futuro/funciona-ordenadorcuantico-aplicaciones/
- Wikipedia Timeline of quantum computing https://en.wikipedia.org/wiki/Timeline_of_quantum_computing#cite manin1980vychislimoe 3
- IEEE SPECTRUM Intel's 49-Qubit Chip Shoots for Quantum Supremacy https://spectrum.ieee.org/techtalk/computing/hardware/intels-49qubit-chip-aims-for-quantum-supremacy

- IAS What Can We Do with a Quantum Computer? https://www.ias.edu/ideas/2014/ambainis-quantum-computing
- Youtube 14:24 Quantum Computing: The Past, Present and Future. https://www.youtube.com/watch?v=XwUEtUgQJHc
- Youtube 1:15:19 Así cambiará el mundo, sobre computación cuántica: Ignacio Cirac https://www.youtube.com/watch?v=WJ3r6btgzBM
- Youtube 51:34 Programando Ordenadores Cuánticos Francisco Galvez | T3chFest 2018 https://www.youtube.com/watch?v=qCrVHKDroRg

; Muchas Gracias!