Aufgabe 1. Die Relation \leq auf A ist nur dann eine Halbordnung wenn sie auch eine transitive Relation ist (Skriptum, Definition 7.3). Es muss also gelten, dass

$$\forall x, y, z \in A : x < y \land y < z \Rightarrow x < z.$$

Weiters muss für eine Halbordnung die Antisymmetrie gelten (Skriptum, Definition 7.2) gelten, also

$$\forall x, y \in A : x \leq y \land y \leq x \Rightarrow x = y.$$

Wählt man nun $x=a,\,y=b$ und z=c so kann aus dem gegebenen Ausdruck $a\leq b\leq c\leq a$ gemäß der Transitivität abgeleitet werden, dass $a\leq b$ und $b\leq a$. Gemäß der Antisymmetrie müsste nun gelten, dass a=b. Gegeben ist allerdings $a\neq b$. Die gegebene Relation kann also keine Halbordnung sein.

Aufgabe 2. Es gelte $x, y \in N$.

- a) Isoton nachdem $x \le y \Rightarrow x^2 \le y^2$.
- b) Nicht isoton nachdem $x \le y \not\Rightarrow x^2 \mid y^2$. (Man wähle etwa x=2 und y=3. Es gilt $2 \le 3$, nicht aber $4 \mid 9$.)
- c) Isoton nachdem $x\mid y\Rightarrow x^2\leq y^2$. $(x\mid y \text{ impliziert},\ x\cdot n=y \text{ für ein }n\in\mathbb{Z}.$ Es gilt also auch $|x|\leq |y|$ und somit $x^2\leq y^2$.)
- d) Isoton nachdem $x \mid y \Rightarrow x^2 \mid y^2$.

Aufgabe 3.

- a) I beschreibt die Injektivität von f und H die "Halbgeordnetheit" von \square . Zu zeigen ist $I \Rightarrow H$.
 - Man wähle beliebige $a_1, a_2 \in A$ derart, dass $a_1 \neq a_2$ und $f(a_1) = f(a_2)$. Nachdem \leq eine Halbordnung ist gilt nun $f(a_1) \leq f(a_2)$ und $f(a_2) \leq f(a_1)$. Es muss nun also gelten, dass $a_1 \sqsubseteq a_2$ und $a_2 \sqsubseteq a_1$. Nachdem $a_1 \neq a_2$ kann \sqsubseteq gemäß der Vorraussetzung der Antisymmetrie keine Halbordnung sein.
 - Es wurde gezeigt, dass wenn f nicht injektiv ist, \sqsubseteq keine Halbordnung auf A sein kann $\neg I \Rightarrow \neg H$. Damit gilt $I \Rightarrow H$
- b) Man wähle beliebige $a_1, a_2 \in A$ mit $a_1 = a_2$. Unter der Annahme, dass \sqsubseteq eine Halbordnung ist, gilt nun $a_1 \sqsubseteq a_2$ und $a_2 \sqsubseteq a_1$. Nachdem $a_1 \sqsubseteq a_2 \Leftrightarrow f(a_1) \leq f(a_2)$ gilt nun weiter $f(a_1) \leq f(a_2)$ und $f(a_2) \leq f(a_1)$. Gemäß der Antisymmetrie muss nun gelten, dass $f(a_1) = f(a_2)$.
 - Ist \sqsubseteq eine Halbordnung muss f also injektiv sein. $(H \Rightarrow I.)$