

The Hydrologic Cycle The cyclical movement of water through the various reservoirs is represented by the hydrologic cycle Water is transferred from one reservoir to another through: Evaporation Precipitation Ground infiltration Surface runoff Transpiration

Earth's Water_HydroCycle

Surface Water On Land 22% of all precipitation on Earth falls over land: Over half is returned to the atmosphere via evapotranspiration The remainder flows to the sea as runoff

Evapotranspiration

- Evapotranspiration is the combination of evaporation and transpiration:
 - Evaporation: Net movement of water molecules away from a wet surface into air that is less saturated
 - Transpiration in plants: Outward movement of water through small openings (stomata) in the underside of leaves

Runoff

- Precipitation over land that is not returned to the atmosphere via evapotranspiration flows back to the sea as runoff
- Runoff accounts for 8% of the entire hydrologic cycle
- Runoff follows two basic pathways to the sea:
 - Overland flow (95%)
 - Subsurface flow as groundwater (5%)

The Water-Balance Equation The water budget is a portrait of the hydrologic cycle at a specific site or area Input is precipitation: Precipitation at a site is measured using rain gauge Precipitation input must be balanced by output Outputs Include: Actual Evapotranspiration (ACET) is the net outward movement of water molecules away from land and plants Potential Evapotranspiration (POTET) is the water that

would evaporate and transpire under optimum moisture conditions (when enough moisture is available)

Determining POTET Potential evaporation is easily measured using an evaporation pan: As evaporation occurs, water in measured amounts is replaced in the pan so that no shortage occurs POTET can also be measured with a lysimeter, which employs a buried tank opened at the surface A deficit occurs if there is not enough precipitation or moisture to meet demand A surplus occur when there is an oversupply of water

Not enough water available to meet demand Several types of drought: Meteorological drought: Lower precipitation, higher temperatures and reduction in soil moisture Agricultural drought: Changes in soil moisture and weather as they affect crop yields Hydrologic drought: Reservoir levels drop, stream flow decreases and groundwater mining increases Socioeconomic drought: Water rationing, wildfires, and other problems affecting the economy and society Recent droughts around the world (e.g. Australia and southwestern US) possibly linked to global climate change

Hoover
Dam And
Decadelong
Drought In
The
Western
United
States

Groundwater Resources

- Groundwater Profile and Movement
- Aquifers, Wells, and Springs
- Overuse of Groundwater
- Pollution of Groundwater

Groundwater

- Groundwater is water found in the pores of soil and sediment, plus narrow fractures in bedrock
- Groundwater is the largest reservoir of fresh water that is readily available to humans;
 - About 50% of U.S. population derives a portion of its freshwater from groundwater sources
 - Groundwater supplies up to 100% of freshwater in some rural areas

How Groundwater Moves

- Groundwater percolates through soil, regolith and rock through open pore spaces or fractures
- Water moves slowly through pores along parallel, thread-like paths

Table 12.2 Porosity and Permeability of Aquifer Rock Types		
Rock Type	Porosity (Pore Space That May Hold Fluid)	Permeability (Ability to Allow Fluids to Pass Through
Gravel	Very high	Very high
Coarse- to medium-grained sand	High	High
Fine-grained sand and silt	Moderate	Moderate to low
Sandstone, moderately cemented	Moderate to low	Low
Fractured shale or metamorphic rocks	Low	Very low
Unfractured shale	Very low	Very low

Recharge and Discharge

- The time water takes to move through the ground from recharge to discharge depends on:
 - Permeability of material
 - Travel distance
 - Path of flow
- Can range from days to thousands of years

Water Table Formation

Artesian Systems

- Artesian system occurs where groundwater under pressure rises above the level of an aquifer
- Two conditions are necessary:
 - Aquifer is inclined with one end receiving water (recharge area)
 - Aquifer is confined with aquicludes above and below

Artesian Wells

- In artesian wells, water rises on its own without pumping
- Two types of artesian wells:
 - Nonflowing occurs when pressure surface is below ground and water does not reach surface
 - Pressure surface above ground creates a flowing artesian well

Changes in the Water Table With Time

- In regions where withdrawal of water exceeds recharge, the water table will gradually drop
- If the water table is allowed to drop significantly, land subsidence will result

High Plains Aquifer

- Located in a region with modest amounts of precipitation, but high evaporation rates:
 - Little rain water available to recharge aquifer
- 170,000 wells irrigate ~65,000 sq/km of land
- Intense irrigation depleted groundwater in many areas:
 - 62% of total decline occurring in Texas

Groundwater Contamination Disposal pord improving placed on aquifur recharge area Telegrape of place of placed pord improving placed on aquifur recharge area Telegrape of placed pord improving placed on aquifur recharge area Telegrape of placed pord improving placed on aquifur recharge area Telegrape of placed pord improving placed on aquifur recharge area Telegrape of placed pord improving placed on aquifur recharge area Telegrape of placed pord improving placed on aquifur recharge area Telegrape of placed pord improving placed on aquifur recharge area Telegrape of placed pord improving placed on aquifur recharge area Telegrape of placed pord improving placed on aquifur recharge area Telegrape of placed pord improving placed on aquifur recharge area Telegrape of placed pord improving placed on aquifur recharge area Telegrape of placed pord improving placed on aquifur recharge area Telegrape of placed pord improving placed on aquifur recharge area Telegrape of placed pord improving placed on aquifur recharge area Telegrape of placed pord improving placed on aquifur recharge area Telegrape of placed pord improving placed on aquifur recharge area Telegrape of placed pord improving placed on aquifur recharge area Telegrape of placed pord improving placed on aquifur recharge area Telegrape of placed pord improving placed on aquifur recharge area Telegrape of placed place

Contaminated Wastewater From Fracking Operations

Our Water Supply Water supply in the United States comes from surface and groundwater sources In some areas like New England, water supply far exceeds usage In other areas like the western U.S., water shortages result

Water Desalination

- Desalination of seawater can augment diminishing groundwater supplies
- Drinking water is produced from seawater through a series of filters
- Desalination usage important today in Australia, Middle East, coastal southern California and Florida
- Volume of fresh water produced by desalination worldwide expected to double between 2010-2020

Desalination is an important supplement to water supplies in regions with large variations in rainfall throughout the year and declining groundwater reserves. This plant in Barcelona, Spain, uses the process of reverse osmosis to remove salts and impurities.