Unit 4A Ionic, Covalent, and Acid Naming Test SG

Henry Huang

- Test structure ⅓ multiple choice, ⅓ name -> formula, ⅓ formula -> name
- Category A and B (Ionic Compound Naming) = majority of test, covalent compound naming (category C) = small portion of test, acid naming = very small portion of test

Ion Formation, Polyatomic Ions, & Ionic Formulas

- Valence electrons
 - **Definition:** electrons at the outermost shell of an atom (highest energy), participate in bonding and reactions
 - For a main group, there is the same # of valence electrons as the group/column number
 - Valence electrons are the **s & p electrons** in the highest principal energy level (n)
 - They cannot be d or f since d sublevels are always one behind, f sublevels are always 2 behind the principal energy level
 - All d & f sublevels will have 2 valence electrons unless you are an exception
 - e.g. [Se] 6s^2 4f^1 has 2 valence electrons, only in the 6s subshell
 - Losing valence electrons helps an element be more like a noble gas
 - Helium (a noble gas) is an exception, it only has 2 valence electrons but does not form bonds (a normal noble gas has 8 valence electrons, but helium = exception)

Naming Monatomic Ions (Cations)

- When naming a cation **individually and by itself**: name the element as is and add the word "ion" after it to indicate that the atom is charged.
 - E.g. Sodium -> Sodium ion
- Some metals can form cations with different charges depending on the situation. Thus, roman numerals are needed to specify the charge of the cation.
 - E.g.: copper (Cu) can form multiple ions.
 - Cu^1+ would be copper (I) ion, Cu^2+ = copper (II) ion
 - The roman numeral indicates the (+) charge
 - It can never be negative from the definition of a cation

- Roman numerals are only needed for CATIONS
- Naming Monatomic Ions (Anions)
 - When naming anions, change the ending of an atom to "-ide" to indicate a negatively charged ion. Technically, it is more accurate to say nitride ion, but nitride by itself is also sufficient to describe that it is negatively charged.
 - C^4-: carbon -> carbon -> carbide
 - N^3-: nitride, H^-: hydride
- Polyatomic Ions
 - An ion composed of multiple (2 or more) atoms
 - -ide/ate on the name of the compound indicates that the compound contains a polyatomic anion
 - A group of atoms that are covalently bonded to each other and collectively form a net charge, either positive or negative
 - You cannot just distribute polyatomic ions. For example, (CO_3)_2 would NOT be C_2
 O 6.
 - Just a (-) in the exponent symbolizes a charge of 1- for the whole polyatomic ion, NOT JUST one element.
 - You should NEVER modify or change a polyatomic ion's name, e.g. from nitrate to nitride. Keep the name as is since the name for the polyatomic ion has the polyatomic ion already charged.

- Highlighted polyatomic ions and their names should be memorized for the test.
 - https://knowt.com/study/flashcards/b3709ff6-a623-4624-b800-af2dbb0eef93/review
 - Test will NOT include a table of polyatomic ions
- Check Polyatomic if the subscript is on the bottom, not on the top
 - NO^3- is NOT nitrate ion (NO_3^-)
- Oxyanions

- A series of anions containing an element with different numbers of oxygen atoms
- When there are two possible combinations with oxygen...
 - The one with more oxygen atoms ends in "-ate"
 - The one with less oxygen atoms ends in "-ite"
- o If there's even more or even less, you would use...
 - Hypo- prefix for even less oxygen atoms
 - Per- prefix for even more oxygen atoms
- Ionic compounds (also called salt)

- Built by electrons transferred, and made of (+) cations and (-) anions, such that the
 TOTAL CHARGE is neutral (0 charge)
 - E.g.: NaCl is an ionic compound, since Na has 1+ charge and Cl has 1- charge, and the total charge balances to 0
- Ionic compounds form a crystal lattice structure, a repeating three-dimensional arrangement of ions. The lattice consists of cations and anions held together by electrostatic forces of attraction (ionic bonds).
- Ionic compounds do NOT consist of discrete molecules like covalent compounds do.
 Instead, the entire structure is a continuous network of ions.
- The formula for an ionic compound is the lowest/simplest ratio of ions needed to make a neutral compound
 - E.g. 3 Cl and 3 Na would be reduced to 1 Na and 1 Cl, even though we know that there's infinite of each (crystal lattice, repeating structure)
 - This ratio is called a **formula unit** the smallest ratio of ions in a formula
- Names and formulas in an ionic compound list the cation first, and the anion second (e.g. NaCl -> sodium chloride)
- Properties of Ionic Crystals / salts
 - Hard, brittle, high melting points, poor/bad conductors of heat/electricity, unless dissolved aqueously
- Writing Ionic Formulas Criss Cross method
 - Determine charge on the cation and the charge on the anion
 - Write the chemical symbols of each ion cation first, anion second
 - Cross over charge numbers as subscripts (Such that the ionic compound is overall neutral)
 - Essentially: how many cations (e.g. Pb) and anions (e.g. O) do I need to balance out the ionic compound?
 - Simplify as necessary
 - Simplest whole number ratio (e.g. Pb_2 O_4 -> Pb O_2)

 Pb_2O_4

 PbO_2

- If you have multiple of a polyatomic ion like 2 of OH^-: use parentheses: e.g. Mn^2+ and OH^- -> Mn(OH)_2
- If you have just one polyatomic ion, it is NOT NECESSARY.
- The **first** element is **ALWAYS** the cation **UNLESS** it is NH_4 (ammonium, the only (+) polyatomic ion). Everything AFTER is the anion.

Naming Ionic Compounds

- Note: The charge of an anion does **NOT** vary in most cases. When talking about Category A, B, C naming, we are talking about the cation, NOT the anion.
 - Anions' charge can still be expected by the regular 4-, 3-, 2-, 1- rule.
 - Hydrogen can be either 1+ OR 1-, so hydrogen <u>CAN BE</u> an anion.
- You can identify the cation's category based on its placement on the periodic table.
- Category C does not involve ions. You identify the category by the first element listed in the chemical formula.

- Category A, B, C elements must be memorized (which elements are in what category).
 Periodic table will be provided on the test
- Note: at times it is easy to mess up similar names. Sulfate and sulfite are polyatomics and not the same. Sulfide is just a regular sulfur ion with charge 2-, not a polyatomic ion.
- Category A cations

- Metals (cations) that form **one kind** of ion (e.g. Na is a category A cation since it can only form a Na^+ ion).
- Category A also includes polyatomic ions since they always have the same charge
 - Put even more simply, **NH_4^+** is the only polyatomic cation, so it is the only category A polyatomic ion.
- Cation is listed first, then the anion
- Monatomic cation = name of element as is
- Monatomic anion = root + ide
 - If anion is polyatomic, do NOT change its name

Category B cations

- Cations that form MULTIPLE ions
 - All category B cations are metals, but not all metals are category B
- Name the <u>cation</u> with <u>roman numerals</u>, and name the anion regularly (root + ide, unless it is a polyatomic anion, in which you keep the name as is)
 - The charge on the metal ion must be specified with a charge **per** cation
 - The roman numeral is **NOT** a measure of the number of cations or anions
 - Roman numerals = I, II, III, IV, V, VI, VII, VIII, IX, X, etc.
- Identify the charge of each cation from the charge and # of atoms
- Charge of each cation = charge of each anion * # of anions / # of cations
 - This is just a formula that helps you balance out the charges of the anions with the charges of the cations

Clarifications

- For a single atom of copper (or any metal), you don't need to specify the charge (e.g., Copper(I) or Copper(II)) unless it's part of a compound.
- If it's a copper ion, you do have to specify if you want it to be part of a compound
- Given name: copper (II) hydroxide, you should be able to determine that there are 2 hydroxides
 - Copper (II) will be Cu²+, while hydroxide will be OH²-, so you need 2
 hydroxides to balance out each 1 copper (II) ion, hence the simplest
 whole number ratio/the formula unit will be Cu(OH)_2.
- Given formula: Cu^2+ (Br^-) 2: copper (II) bromide
- If just given Cu Br_2: you should identify that Br has a charge 1- and there's only 1 Cu, so it would be 2(1)/1 = 2 -> II on the copper, hence Copper (II) bromide

Examples

- CuCl -> cation charge of copper = charge of each chlorine * number of chlorine ions / # of copper ions = 1*1/1=1 -> I -> copper (<u>I</u>) chlor<u>ide</u>
- Fe_2 O_3 -> oxygen forms 2- ions (always!) so 2*3/2=3 -> III -> each iron ion needs a 3+ charge, so iron (III) oxide

Category B: Metals that form multiple ions

H	in general, these metals earlieff									He							
Li	⁴ Be	multiple ions, so the charge on the ion needs to be included in the								s B	Ç	N	° O	°F	Ne		
Na	Mg	name. 13 14 15 16 17 18 18 19 19 19 19 19 19								Ar							
19 K	Ca	Sc 21	Ti	23 V	Cr	Mn	Fe	Co	28 Ni	Cu	Zn	Ga	Ge	As	Se	35 Br	³⁶ Kr
Rb	Sr	39 Y	Zr	Nb	Mo Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn Sn	Sb	Te	53	Хe
Cs	Ba	57 *La	Hf	Ta	74 W	Re	76 Os	lr	78 Pt	Au	Hg	81 TI	Pb	Bi	Po	85 At	8n
87 Fr	88 Ra	89 +Ac	Rf	Ha	Sg	Ns	108 Hs	109 Mt	110	111	112 112	113 113					

- Binary and Ternary Compounds
 - o **Binary** compound made of two elements (both monatomic ions)
 - E.g. NaCl sodium chloride
 - Mg_3 P_2 magnesium phosphide, Cr_2 O_3: chromium (III) oxide

- Ternary compound made of three or more different elements (because the compound has one or more polyatomic ions)
 - E.g. NH_4 F ammonium fluoride, Ca (NO_3)_2 calcium nitrate, Fe SO_3 -> iron (II) sulfite
- Net charge **still has to be 0**, since they are still ionic compounds

Naming Covalent Compounds

- Recall: Ionic Bond = cations + anions OR EQUIVALENTLY metals + nonmetals
 - Most cations = metals, most anions = nonmetals
- Covalent Bond = metalloid + nonmetal **OR** nonmetal + nonmetal
 - No "ions" that are combined; rather, atoms share electrons to achieve stable electron configurations
 - DO NOT simplify formulas for category C because they represent actual molecular ratios (Category C cations form molecules), not just the ratio of atoms.
- Covalent Nomenclature/Naming (Category C)
 - Name the first element
 - Use the full name of the first element.
 - Add a **prefix** if there is **more than one atom** of the element (do **NOT** use "mono-" for the first element if there is only one atom).
 - Name the second element
 - Change the ending of the second element to "-ide".
 - Always use a prefix to indicate the number of atoms, EVEN IF there is only one atom of the second element.
 - o Mono prefix: only used on second element
 - Examples
 - NO nitrogen monoxide
 - NO₂ nitrogen <u>di</u>oxide
 - N₂O <u>di</u>nitrogen <u>mon</u>oxide
 - N_2O_3 <u>di</u>nitrogen <u>tri</u>oxide
 - SF_6 sulfur hexafluoride (NOT mono sulfur hexafluoride)
 - Prefixes (memorize!):

# of atoms	Prefix	# of atoms	Prefix
1	mono-	6	hexa-
2	di-	7	hepta-
3	tri-	8	octa-
4	tetra-	9	nona-
5	penta-	10	deca-

- Double Vowels
 - When ao or oo occur together, drop the first vowel
 - Mg_10 O_10: decaoxide -> decoxide
 - Only valid for **ao** and **oo**, if it is **io** or **ia**, you keep both
- Category C: covalent naming
 - o Element listed first determines if it's in category C or not
 - Mostly nonmetals/semimetals
 - No polyatomic ions to worry about

Naming Acids

- Acid formulas will start with a Hydrogen atom (HCl, HNO3, HNO2, H2SO4) as the cation
- Acids belong to Category C (covalent compounds) because their chemical bonds are primarily covalent but when they dissociate in water, they form ions.
- When the anion does NOT contain Oxygen: (usually just 2 elements)
 - Use the prefix hydro + root of the anion's name ic + "acid"
 - Example: HCl = hydrochloric acid; HBr- hydrobromic acid
- When the anion DOES contain Oxygen (3 or more elements)
 - The name will depend on the name of the polyatomic anion.
 - Do NOT use the prefix hydro!!!
 - \circ If the anion ends in ATE \rightarrow change the name to end in IC + acid
 - \circ If the anion ends in ITE \rightarrow change the name to end in **OUS** + acid
 - \circ ATE \rightarrow IC
 - \circ ITE \rightarrow OUS
 - Examples
 - H_2 SO_4: SO_4 has an overall charge of 2-, so you need 2 hydrogen atoms (since hydrogen has a 1+ charge)
 - Anion is sulfate, so the name of the acid ends in ic -> sulfuric acid
 - H_2 SO_3: anion is sulfite, so the name of the acid ends in ous -> sulfurous acid
 - Acids must be neutral overall. The number of H^+ ions needed equals the absolute value of the anion's charge. Each Hydrogen ion contributes a 1+ charge. Add enough H^+ ions to balance the charge of the anion. Write the formula with the hydrogen atoms first, followed by the anion
 - H_2 SO_4: SO_4 has an overall charge of 2-, so you need 2 hydrogen atoms (since hydrogen has a 1+ charge)

Helpful References and Tables

