\bigcirc	A.	APPENDIX: Aantekeningen uit Collège, niet eig overrühtelijk, wel mooi geschieven.
J		Vrye werkingen
<u></u>	Def	Als G werkt op Ω dan werkt G vry op Ω als de stabilisatoren $G_w := \{g \in G \mid gw = \omega\}$ allen gelyk zyn aan $\{e\}$
	Орт	voor $G_W = \{e\}$ is $G(W) := \{gW \in \mathcal{D} \mid g \in G\}$ (du baan) in bijectée met G onder $gW \leftrightarrow g$
U	Def	Werkingen op grafen: G werkt op E(T) en op V(T)
		er blykt: G werkt vry op W $V(\Gamma)$, \rightarrow G werkt vry op $E(\Gamma)$ als er geen inversie is van een lyn, ge $\neq \bar{e}$ $\forall e \in E(\Gamma)$
	Орм	Als G zonder inversie op $E(\Gamma)$ \Rightarrow er is een G-invariante orientatie op Γ mogelijk. (namelijk: kues een orientatie van e en deel uit naar $G(e)$)
	Def	G werkt vry op \(\text{(een graaf)} \) als \(G \) aus - \(G \) vry werkt \(Op \) \(V \) \(T \)
	Vbd Def	G weekt vry op T (G,S) mils et gean voortbrenger seS is met orde 2: s² = e. immers allen dan wordt e onder s-werking op s en s onder s-werking op e afgebesed Sy G werkt op graaf T. Dan is de gustiënten graaf GT: « knopen zijn de banen G(v)
		« knopen zijn de banen G(v) « ignen « klikklikk zijn uit de banen G(e) genomen voor een lijn e met eindpunten v, w zijn
		knopen $G(v)$ en $G(w)$ verbonden met $G(e)$

OA H C F2 ondergroep van woorden even lengte. (nem F2= \$F(a,b) wat in dan GYT ? **V**(Γ) onder G zýn: H en F₂-H Banen van Want Doel is mu: G werkt vry op een boom => G is een vrye Is geinspireerd door stelling uit de topologie: $\overline{xy} X$ enkelvoudig somenhangend en G vr \overline{y} werkend op X \longrightarrow $T_1(G \setminus X) \stackrel{\sim}{=} G$ Wij bekijken alleen de concrete versie uit grafentheorie. Def (Lift) $Z\bar{y}$ G weakend op Γ met natuurlighe projectie. $\rho: \Gamma \longrightarrow G \backslash \Gamma$ en $\bar{x}\bar{y}$ $\Gamma' = G \backslash \Gamma$ Voor 1' : I' een deelgraaf van T' heet 1 : T een lift van 1' als PJ, : 1 -> 1' een vomorfisme à. Vbd F₂: the at HT Med Han G(a)

T(F₂, (a,b)) by HCF2 "even lengte woorden" HEIOTO Has eora c T Als G ving weakt op T met T'= GIT - Stelling: dan heeft elke boom T'ET' een lift TET

(conder bewijs)

Hoofdstelling waar we naar toe werken. G werkt vry op een boom I, I'= GIT T' een opspannende boom in T'. Zy T de in voige st. genomerde lift van T en neem een G-invariante orientatie op T Zg S = { ge G | g + 1] = E[T] met d(e) ET, w(e) E gT Dan is G vry op S (basis)

Als T' eindig is dan is G vry van rang r = #E(T') - #V(T') + 1Ben G weekt ving op T = D als e'∈ T', e' ∉ T' heeft een unieke lift e∈ T met $\alpha(e) \in T$ $\omega(e) \in T$ $e \notin T$. ⇒ e is een "brug" tussen T en gT Zig B = {eET | a(e)ET w(e) &T } dan is B in sijentie met {e'eT' | e'&T }: voor iedere e EB is et een unieke ge EG met w(e) E geT Zg S= igeleeB} Maak nu een nieuwe graaf Ty door gt voor get tot een punt le verklaren $V(T_{7}): qT von g \in G$ $E(T_{7}): q_{1}T, q_{2}T vyn$ g_1T , g_2T y_1n welbonden als er een $f \in E(T')$ is met $\alpha(f) \in g_1T$, $\omega(f) \in g_2T$ $s = g_1^{-1}g_2$ is $\alpha(g_1^{-1}f) \in T$ $\omega(g_1^{-1}f) \in g_1^{-1}g_2T = sT$ gil is brug van T naar st

IT is daamee samenhandend. It is ook een boom: want gT mg is een bijectie twee knopen g.T g.T zijn verbonden = ge = gigz voor een ge EG e een brug. Maar dit rign precies de tignen van de conjuggrouf dus T = T(G,S) T_7 en dus ook T(G,S) is een boom $\Rightarrow G$ is my op S (bais) Gevolg Stelling van Nielson - Schreier 1) Zý F vuje groep HCF een ondergroep Dan is H en vige group 2) En als Fm vij van rang m is dan voor H C Fn o.g. met index neN, dan is H viny van rager n (m-1) +1 Bew H weekt my op T'(F,S) => de 1) volgt. H heeft index min my m > n banen op knopen en non baren op de ignen => opspannende boxm op HIT(E,S) heeft n-1 lignen \Longrightarrow rang nm-n+1.

