Алгоритм 1 (Алгоритм построчной закраски (построчного сканирования) многоугольника).

Bход: P — список вершин многоугольника (без самопересечений), C_{zal} — цвет закраски.

Выход: Закрашенный многоугольник.

- 1. Сформировать список S ребер многоугольника, где для каждого ребра $[(x_1,y_1),(x_2,y_2)]$ выполняется $y_1\leqslant y_2$. Упорядочить этот список по возрастанию значения y_1 .
- 2. Найти y_{min} и y_{max} минимальное и максимальное значение координаты y точек вершин многоугольника.
- 3. $AEL = \emptyset$, $y_t = y_{min}$
- 4. Добавить в AEL все тройки $\left(x_1,y_2,\frac{x_2-x_1}{y_2-y_1}\right)$, составленные для каждого отрезка из S, у которого $y_1=y_t$ и $y_1\neq y_2$.
- 5. Начертить все ребра в S, у которых $y_1 = y_t$ и $y_1 = y_2$.
- 6. Удалить все ребра в S, у которых $y_1 = y_t$.
- 7. Для отрезков в S найти $y_{S\,next}$ минимальное значение y_1 у отрезков в S.
- 8. Отсортировать AEL по возрастанию первого элемента и по возрастанию третьего элемента, и найти $y_{AEL\,next}$ минимальное значение второго элемента, отличное от y_t .
- 9. Если $y_t = y_{S\,next}$, перейти к шагу 4.
- 10. i = 1
- 11. Если i > |AEL|, то переход к шагу 14
- 12. Начертить отрезок $[(x_i, y_t), (x_{i+1}, y_t)]$ цветом C_{zal} , где $(x_i, y_i, \Delta_i x)$ обозначает i-й элемент списка AEL.
- 13. i = i + 2 и переход к шагу 11.
- 14. В каждой тройке $(x_j, y_j, \Delta_j x)$ в AEL заменить x_j на $x_j + \Delta_j x$.
- 14'. $y_t = y_t + 1$;
- 15. Если $y_t \geqslant y_{AEL\,next}$, удалить из AEL все тройки, второй элемент которых меньше или равен y_t . Найти $y_{AEL\,next}$ минимальное значение второго элемента, отличное от y_t ;
- 16. Если $y_t > y_{max}$, закончить алгоритм, иначе переход к шагу 9.