KTMicro

Application Notes

1

20122013/012/0922, Rev 1.12

KT0603 常见问题解答

1	KT0603 是否需要 MCU 支持?	2
	KT0603 如何选择晶体?	
	KT0603 支持的频率范围是多少?	
4	KT0603 如何选择 VCO 片外电感?	2
5	KT0603 如何进行初始化配置	
	KT0603 如何设定发射频率?	
	KT0603 如何切换发射频率?	
8	KT0603 的频率分辨率是多少?	3
	KT0603 的预加重时间常数是多少?如何修改接收机电路与之匹配?	
	KT0603 如何调整压扩时间常数?	
	KT0603 如何配置发射功率?	
	KT0603 如何进入待机状态?	
	KT0603 如何调整麦克风灵敏度?	
	KT0603 如何开启静音功能?	
	KT0603 静音后是否还有导频信号?	
	KT0603 如何设置导频?	
	KT0603 如何实现低电压指示功能?	
	KT0603 的参考设计是什么样的?	
19	版图必须注意什么?	

20122013/012/0922, Rev 1.12

1 KT0603 是否需要 MCU 支持?

KT0603 内部集成了人机接口模式,无需 MCU 支持即可完成频率设置,静音和电池电压监测等功能。

2 KT0603 如何选择晶体?

KT0603 支持 24MHz 晶体或者 24.576MHz 晶体,晶体两端分别接于 XI 和 XO 引脚。根据所用的晶体,调整 XI 和 XO 引脚与地之间的电容(一般是 33pF),可以微调晶体的震荡频率。

选择 24MHz 晶体还是 24.576MHz 晶体可以在《Wireless Mic Configuration》配置软件的<频道配置>进行选择。

3 KT0603 支持的频率范围是多少?

KT0603 具有支持 UHF 470MHz-960MHz 频率范围的能力,对于不同波段的设计需要配合不同的 VCO 电感。

4 KT0603 如何选择 VCO 片外电感?

KT0603 的 VCO 需要一个片外电感配合芯片工作。电感推荐选用射频多层电感接在 INDP 和 INDN 两个引脚两端。

片外电感的值取决于产品使用的波段,一般在 0.5nH~46.78nH~10nH~之间。

具体频率对应的片外电感值则可参考《Wireless Mic Configuration》配置软件的<频道配置>里的推荐电感值。

5 KT0603 如何进行初始化配置

首先需要将所需的配置信息写入 EEPROM(24C02)中,在上电的过程中,KT0603 会自动将 EEPROM 中存储的初始化信息读入芯片,并且写入内部寄存器中,内部寄存器地址与 EEPROM 中的寄存器地址的映射关系如表格 1 表格 1 表格 1 所示。

表格 1: 24C02 与 KT0603 寄存器地址对应关系

24C02		KT0603	
寄存器地址	位	寄存器地址	位
0x00	D7:D0		D15:D8
0x01	D7:D0	0x00	D7:D0
0x02	D7:D0	0x01	D15:D8
0x03	D7:D0	UXUI	D7:D0
•••			•••

0xBE	D7:D0	0x5F	D15:D8
0xBF	D7:D0	UXJF	D7:D0

6 KT0603 如何设定发射频率?

KT0603 允许用户设定 16 个发射频率。

某个频率 Channel x 的具体频率可以通过配置 CHAN_REGA_x<15:0>寄存器和CHAN_REGB_x<15:0>寄存器去设定,x 为 0-15。可以通过填写《Wireless Mic Configuration》配置软件的<频道配置>对应的 Channel x 进行配置。

带格式的: 无, 段落间距段前: 0 磅, 段后: 0 磅, 与下段不同页

 设置了格式: 字体: (国际) Times New Roman

 设置了格式: 字体: (国际) Times New Roman

设置了格式:字体: (国际) Times New Roman 设置了格式:字体: (国际) Times New Roman

带格式的:无,段落间距段前:0磅,段后:0磅,与下段不同页

带格式的: 无, 段落间距段前: 0 磅, 段后: 0 磅, 与下段不同页, 制表位: 不在 20.57 字符 + 41.14 字符

20122013/012/0922, Rev 1.12

7 KT0603 如何切换发射频率?

KT0603 允许用户在 EEPROM 里设定好的频率里任意切换。

具体切换电路如<u>图 1 图 1</u> 图 1 所示, CH 引脚连接一个电位器,改变 CH 的电平就可以切换 到与之对应发射频率。

图 1: KT0603 如何切换发射频率

8 KT0603 的频率分辨率是多少?

KT0603 支持 1KHz 的频率分辨率。

9 KT0603 的预加重时间常数是多少?如何修改接收机电路与之匹配?

KT0603 内置预加重网络的时间常数是 75us,为了达到平坦的音频响应,接收机应相应修改去加重网络部门的元件。例如图 2图 2图 2所示接收机电路,可修改为所图 3图 3图 3 示电路。去掉C4,选择 R_i 、 R_i 、 C_i 、 C_i "(C_i "(C_i ")(C_i "

Beijing KT Micro, Ltd. – PROPRIETARY Use Pursuant to Company Instructions

20122013/012/0922, Rev 1.12

图 3: 修改后的接收机去加重电路

10 KT0603 如何调整压扩时间常数?

无线麦克风接收机的压扩时间常数通常由接在压扩芯片 C_{RECT} 引脚的电容决定,例如 NE571 和 NE575 的时间常数为: $\tau_R=\tau_A=10K\times C_{RECT}$ 。为了达到最好的音频效果,应相应修改 KT0603 的压扩时间常数使之与接收机相同。KT0603的压扩时间常数由COMP_TC<20>寄存器决定,见表格 2表格 2表格 2。

表格 2: COMP_TC 寄存器与压扩时间常数的关系

Comp_TC	压扩时间常数(ms)
0	6
1	12
2	24
3	48
4	93
5	199
6	398
7	796

11 KT0603 如何配置发射功率?

KT0603 的发射功率可由 PA_GAIN<3:0>寄存器进行调整,PA_GAIN<3:0>数值为 0~12,0 表示增益最低,12 表示增益最高。

用户可以在《Wireless Mic Configuration》配置软件<射频配置>中的 PA is controlled by PA_GAIN<3:0>, 然后通过滑动对应的 PA_GAIN 进行配置,也可以选择 PA is un-controlled 不通过寄存器控制发射功率。

12 KT0603 如何进入待机状态?

KT0603 可以通过将 CHIP_EN 引脚电平拉低的方式进入待机状态,当 CHIP_EN 引脚电平为高时,KT0603 处于正常工作状态。

13 KT0603 如何调整麦克风灵敏度?

麦克风灵敏度是指麦克风预放大器的放大倍数,由 MIC_SENS<3:0>寄存器决定,它可以从 0~15 中选择,0 表示增益最低(0dB),15 表示增益最高(46dB)。可以通过填写《Wireless Mic Configuration》配置软件的<频道配置>对应的 Channel x 进行配置。

带格式的: 无,段落间距段前: 0 磅,段后: 0 磅,与下段不同页

带格式的: 无,段落间距段前: 0 磅,段后: 0 磅,与下 段不同页

20122013/012/0922, Rev 1.12

14 KT0603 如何开启静音功能?

KT0603 可以通过将 MUTE 引脚电平拉高的方式开启静音功能,当 MUTE 引脚为低电平时, KT0603 退出静音功能。

15 KT0603 静音后是否还有导频信号?

KT0603 允许用户通过 MUTE_PILOT_EN 寄存器设置静音时是否还继续开启导频。0 表示静音时仍然打开导频信号,1 表示静音时不再打开导频信号。

16 KT0603 如何设置导频?

KT0603 允许用户开启和关闭导频,设定导频频率和导频信号的频偏。

开启和关闭导频由 PILOT_DIS 寄存器决定,当 PILOT_DIS 为 0 可以使芯片发射导频,为 1 则关 日导频

导频信号的频率由 FWORD<16:0>寄存器决定,导频信号频率 Fpilot 的允许设置范围为 30-40KHz,与 FWORD<15:0>寄存器的对应关系由下面的公式决定:

使用 <u>24MHz</u> 晶体时:

Fpilot=(FWORD<15:0>/2^19)*600KHz

公式1

使用 24MHz 晶体时:

Fpilot=(FWORD<15:0>/2^19)*600KHz*1.024

公式 2

为了可以与 KT0612 配合使用,当选择的晶体为 24MHz 时,导频频率应设置为 30KHz;当选择的晶体为 24.576MHz 时,导频频率应设为为 32.72KHz。

当选择的晶体为 24MHz 时,导频频率为 30KHz;当选择的晶体为 24.576MHz 时,导频的频率 为 32.72KHz。

导频信号的频偏由 PILOT_FDEV<1:0>寄存器决定,PILOT_FDEV<1:0>与导频发射频偏的关系见表格 3 表格 3 表格 3。

表格 3: PILOT_FDEV 与导频发射频偏的关系

PILOT_FDEV	频偏(KHz)
0	2.5
1	5
2	7.5
3	10

17 KT0603 如何实现低电压指示功能?

KT0603 集成了电池电压测量用 ADC, ADC 从 BAT_IN 引脚检测电池电压,量化范围是 0~1.2V,如果电池电压高于这个范围,需要在片外对电池电压适当分压后送入 BAT_IN。BATT_EN 寄存器决定开启或关闭电池电压测量用 ADC。当 BATT_EN 为 1 时开启电池电压测量用 ADC,为 0 时关闭电池电压测量用 ADC。

LOWBAT_EN 寄存器决定开启或关闭低电压指示功能,当 LOWBAT_EN 为 1 时开启低电压指示,为 0 时关闭低电压指示。

LOWBAT_TH<7:0>寄存器为低电压指示门限,其范围是 0~255, 对应 0~1.2V。如果 BAT_IN 引脚的输入电压高于 LOWBAT_TH<7:0>寄存器设定的电压值, SDA/LOW_BAT 引脚输出高电平; 相反, SDA/LOW_BAT 引脚输出低电平。

用户可以通过《Wireless Mic Configuration》配置软件设置低电压指示功能。首先选中<其他配置>,然后选择 Battery Meter 框中的 Enable 开启电压测量用 ADC,或者选择 Disable 关闭 ADC;然后选择 Low Battery Indicator 框中 Enable 开启低电压指示,或者选择 Disable 关闭低电压指示,再通过拖动 Low Battery Indicator Threshold 中 0mV~1200mV 的滑钮,根据 Threshold 后显示的值配置需要进行低电压指示的具体值,Threshold 后显示的值即为 LOWBAT_TH 寄存器换算为电压的值。

带格式的: 居中,无,段落间距段前: 0 磅,段后: 0 磅 ,与下段不同页

20122013/<u>0</u>12/0922, Rev 1.12

18 KT0603 的参考设计是什么样的?

图 4: 典型应用电路

Components	Description	Value	Suppliers
C1,C3,C5,C6,C18	去 藕 电 容 Supply	0.1uF	
	decoupling capacitor		
C2	滤波电容 Decoupling	0.1uF	
	capacitor		
C7	去藕电容 Decoupling	1uF	
	capacitor		
C4,C8,C9	去藕电容 Decoupling	10uF	
	capacitor		
C10,C11	晶体负载电容 Crystal	33pF	
	load capacitor		
C12	去藕电容 Capacitor	47pF	
C13,C15,C16	去藕电容 Decoupling	100pF	
	capacitor		
C14,C17	LC 巴伦电容 Capacitor	与使用波段相关	
		TBD	
D1	LED 发光二极管		

Beijing KT Micro, Ltd. – PROPRIETARY Use Pursuant to Company Instructions

 设置了格式:
 字体:
 五号

 设置了格式:
 字体:
 五号

 设置了格式:
 字体:
 五号

 设置了格式:
 字体:
 五号

20122013/012/0922, Rev 1.12

E1	Antenna <u>天线</u>		
FB1,FB2,FB3,FB4,FB5	Ferrite bead 磁珠	331@100MHz	
J1	Micphone jack 音频输入		
	插座		
L1	VCOInductance 电感	与使用波段相关	Murata LQG series
		TBD	
L2,L3	<u> 扼流电感</u> Inductance	TBD68nH	Murata LQG series
L4,L5	LC 巴伦电感 Inductance	与使用波段相关	Murata LQG series
		TBD	
Q1	Transistor 三极管	S9014	
R1,R2	<u> 电阻 Resistor</u>	2.2Kohm	
R3	<u> 电阻 Resistor</u>	680ohm	
R4	<u> 电阻 Resistor</u>	51Kohm	
R5	<u> 电阻 Resistor</u>	30Kohm	
R6	<u> 电阻 Resistor</u>	1Kohm	
R7	<u> 电阻 Resistor</u>	10Kohm	
RV1	Variable resistor 可变电阻	10Kohm	
SW1	Switch <u>开关</u>	2P-3W	
U1	无线麦克风发射芯片	KT0603	
	KT0603		
U2	EEPROMAT24C02	AT24C02	
Y1	Crystal <u>晶体</u>	24MHz	

与频段相关元件值:

<u> 频段</u>	<u>L1</u>	<u>L4, L5</u>	<u>C14</u>	<u>C17</u>
550~650MHz	<u>4.3nH</u>	<u>15nH</u>	<u>1pF</u>	<u>1pF</u>
650~700MHz	2.7nH	<u>12nH</u>	<u>0.5pF</u>	<u>0.5pF</u>
700~736MHz	2.7nH	<u>12nH</u>	<u>0.5pF</u>	<u>0.5pF</u>
736~750MHz	<u>2nH</u>	<u>12nH</u>	<u>0.5pF</u>	<u>0.5pF</u>
750~850MHz	<u>1.5nH</u>	<u>9.1nH</u>	<u>0.3pF</u>	DNS

19 版图必须注意什么?

- 1) 电源的去藕电容应该尽量靠近芯片的电源输入脚,并保证流入芯片的电流都先经过电容滤波。
- 2) 不要将 RF 走线、数字走线、模拟走线平行放置,避免它们之间信号耦合,减少干扰。
- 3) 不要将 RF 输出线打断,或是穿过两层走线。
- 4) RF 输出端在差分信号转化为单端信号前,应尽量保证 RF 的差分输出走线互相靠近并且保持对称。
- 5) RF 输出端的走线要尽量的短,最好将 RF output 安排在 PCB 的板边处。
- 6) RF 输出脚及走线周围需要使用铺地将其包裹起来,避免受到其他信号的干扰,但是注意不要将地线与 RF 信号靠的太近,避免过大的分布电容衰减 RF 信号。
- 7) 确保 AVSS 可以很好的共地。

带格式表格

20122013/012/0922, Rev 1.12

版本信息:

V1.0 Official Release

V1.1 修改第 16 部分的描述和图 4。 V1.2 修改第 16 部分的描述和图 4。

20122013/012/0922, Rev 1.12

联系方式:

北京昆腾微电子有限公司

北京市海淀区北坞村路 23 号北坞创新园 4 号楼

邮编: 100195

+86-10-8889 1955 电话: 传真: +86-10-8889 1977 电子邮件: <u>sales@ktmicro.com</u> 网站: http://www.ktmicro.com.cn

Beijing KT Micro, Ltd. (US Office) 999 Corporate Drive, Suite 170 Ladera Ranch, CA 92694

USA

Tel: 949-713-4000 Fax: 949-713-4004 Email: sales@ktmicro.com