Занятие № 2. Классическое и статистическое определение вероятности

 \bigcirc Составитель: д.ф.-м.н., проф. Рябов П.Е.

Ко всем задачам, где есть числовой ответ, напишите программу (код) с использованием инструментария $\pmb{Jupyter\ Notebook}$, который иллюстрирует статистическую устойчивость события A, а также постройте график зависимости относительной частоты $\hat{p}(A) \stackrel{\text{def}}{=} \frac{N(A)}{N}$ события A от числа проведенных реализаций опыта N.

2.1. Среди 17 студентов группы, из которых 8 девушек, разыгрывается 7 лотерейных билетов. Найдите вероятность того, что среди обладателей билетов окажутся 4 девушки.

Ответ: 0,302.

- 2.2. Корзина содержит 23 шара: 8 белых, 6 синих и 9 красных. На каждом шаге из корзины «наудачу» извлекается шар и назад в корзину не возвращается. Исход n последовательных извлечений называется выборкой объема n без возвращения или бесповторной выборкой. Из корзины наудачу (без возвращения) извлечены 6 шаров. Найдите вероятности следующих событий и покажите их статистическую устойчивость:
 - **а)** $A = \{$ все шары красные $\}$;
 - **б)** $B = \{3 \text{ синих}, 2 \text{ белых и 1 красный}\};$
 - в) $D = \{$ в точности 4 белых шара $\}$.
 - г) Разобрать случай извлечения шаров с возвращением. Найдите вероятность $\mathbb{P}(A)$ события A, если "статистическая вероятность" равна $\hat{p}(A) \approx 0,\,00358549$.

Ответ: а) точный ответ $\mathbb{P}(A) = \frac{4}{4807} \approx 0,0008321198252548367$. Статистическая устойчивость изображена на рисунке:

Ответ: г) Для случая извлечения шаров c возвращением статистическая устойчивость события A изображена на рисунке:

2.3. Среди кандидатов в студенческий совет факультета 3 первокурсника, 5 второкурсников и 7 третьекурсников. Наудачу выбирают 5 человек на конференцию. Найдите вероятности следующих событий: A – будут выбраны одни третьекурсники; B – все первокурсники попадут на конференцию; C – не будет выбрано ни одного второкурсника.

Ответ: $\frac{1}{143}$; $\frac{2}{91}$; $\frac{12}{143}$.

2.4. Студент знает ответы на 20 вопросов из 25. Зачёт считается сданным при правильном ответе им не менее чем на 3 вопроса из 4 в билете. Какова вероятность того, что студент сдаст зачёт, если, взглянув на первый вопрос билета, он обнаружил, что его знает.

Ответ: 0,9

2.5. 10 футбольных команд, среди которых два призера и один аутсайдер по результатам предыдущего чемпионата, путем жеребьевки разбиваются на две подгруппы по 5 команд. Найдите вероятности следующих событий: A — команды-призеры попадут в разные группы; B — оба призера и аутсайдер попадут в одну группу.

Otbet: $\frac{5}{9}$; $\frac{5}{36}$; $\frac{1}{12}$.

2.6. В группе 12 студентов, среди которых 8 отличников. По списку наудачу отобраны 10 студентов. Найдите вероятность того, что среди отобранных студентов 7 отличников.

Ответ: $\frac{16}{33}$.

2.7. В выпуклом n-угольнике случайным образом выбирают две вершины и соединяют их отрезком. Чему равна вероятность того, что построенный отрезок является диагональю n-угольника?

Ответ: $\frac{n-3}{n-1}$.

2.8. Десять различных книг расставлены на полке наудачу. Найдите вероятность того, что при этом три определенные книги окажутся поставленными вместе.

Ответ: $\frac{1}{15}$.

2.9. Числа 1, 2, 3, 4, 5, 6, 7, 8, 9 записываются в случайном порядке. Найдите вероятности следующих событий: A — числа записаны в порядке возрастания; B — числа 1 и 2 стоят рядом в порядке возрастания; C — числа 3, 6 и 9 расположены в порядке возрастания; D — на чётных местах стоят чётные числа; E — сумма чисел, равноудалённых от концов числа, равна 10.

Otbet: $\frac{1}{9!}$; $\frac{1}{9}$; $\frac{1}{6}$; $\frac{1}{126}$; $\frac{1}{945}$.

2.10. Группа из 8 человек занимает места за круглым столом в случайном порядке. Найдите вероятность того, что определённые два лица окажутся рядом.

Ответ: $\frac{2}{7}$.

2.11. Группа из 8 человек занимает места с одной стороны прямоугольного стола. Найдите вероятность того, что определённые два лица окажутся рядом при условии: а) число мест 8 (событие A); б) число мест 12 (событие B).

Ответ: $\frac{1}{4}$; $\frac{1}{6}$.

2.12. 10 студентов, среди которых Иванов и Петров, занимают очередь в столовую. Какова вероятность того, что между Ивановым и Петровым в очереди окажется менее трех человек?

Ответ: $\frac{8}{15}$.

2.13. 5 мужчин и 5 женщин случайным образом рассаживаются в ряд на 10 мест. Найдите вероятности следующих событий: A – любые две женщины не сидят рядом; B – все мужчины сидят рядом;

Ответ: $\mathbb{P}(A) = \mathbb{P}(B) = \frac{1}{42}$.

2.14. Шесть человек вошли в лифт на первом этаже 7-этажного дома. Найдите вероятности событий: A — на втором, третьем и четвёртом этажах не вышел ни один из пассажиров; B — три пассажира вышли на седьмом этаже; C — на каждом этаже вышел один пассажир; D — все пассажиры вышли на одном этаже.

Other: $\frac{1}{64}$; 0, 0536; 0, 0154; 0.000128601.

2.15. Бросают 4 одинаковые игральные кости. Вычислить вероятности следующих событий: A — ни на одной кости не выпадет 6 очков; B — хотя бы на одной кости выпадет 6 очков.

Ответ: $0,482; 0,518; \frac{1}{36}$.

2.16. Наудачу раскрывается телефонная книга и случайно выбирается семизначный номер телефона. Считая, что все комбинации цифр равновозможные, найдите вероятности следующих событий: A – четыре последние цифры телефонного номера одинаковы; B – номер начинается с цифры 5; C – номер содержит три цифры 5, две цифры 1 и две цифры 2.

Ответ: $\frac{1}{1000}$; $\frac{1}{10}$; 0,000021.

2.17. Какова вероятность того, что в группе из 12 студентов хотя бы у двух окажется одинаковый день рождения?

Ответ: 0, 167.

2.18. Предположим, что "несимметричную" ("неправильную") монету бросают до тех пор, пока она не выпадет дважды одной и той же стороной подряд (вероятность выпадения "герба" равна p=0,7). Построить вероятностную модель т.е. $(\Omega, \mathbb{P}(\cdot))$ и найти вероятность того, что потребуется: а) чётное число бросаний; б) число бросаний кратно 4.