POTATO DISEASE CLASSIFICATION

MAJOR PROJECT REPORT

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

BACHELOR OF TECHNOLOGY

(Computer Science and Engineering)

Submitted By: Submitted To:

Divyanshu Kumar (2104095) Anuradha Bharti (2104072) prof. Priyanka Arora

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
GURU NANAK DEV ENGINEERING COLLEGE
LUDHIANA, 141006
MAY, 2025

Abstract

The potato is one of the major crops. Potato cultivation has been very popular in for the last few decades. But potato production is being hampered due to some diseases which are increasing the cost of farmers in potato production. However, some potato diseases are hampering potato production that is increasing the cost of farmers. Which is disrupting the life of the farmer. An automated and rapid disease detection process to increase potato production and digitize the system. Our main goal is to diagnose potato disease using leaf pictures that we are going to do through advanced machine learning technology. This project offers a picture that is processing and machine learning based automated systems potato leaf diseases will be identified and classified. Image processing is the best solution for detecting and analysing these diseases. In this analysis, picture division is done more than 4634 pictures of unhealthy potato's leaf, which is taken from openly accessible dataset in Kaggle website plant town information base and a few prepared models are utilized for acknowledgment and characterization. Among them, the program predicts with an accuracy of 99% in testing with 25% test data and 75% train data. Our output has shown that machine learning exceeds all existing tasks in potato disease detection.

ACKNOWLEDGEMENT

We are highly grateful to the Dr. Sehijpal Singh, Principal, Guru Nanak Dev Engineering College (GNDEC), Ludhiana, for providing this opportunity to carry out the major project work at . The constant guidance and encouragement received from Dr. Kiran Jyoti H.O.D. CSE Department, GNDEC Ludhiana has been of great help in carrying out the project work and is acknowledged with reverential thanks. We would like to express a deep sense of gratitude and thanks profusely to Priyanka Arora, without his/her wise counsel and able guidance, it would have been impossible to complete the project in this manner. We express gratitude to other faculty members of computer science and engineering department of GNDEC for their intellectual support throughout the course of this work. Finally, we are indebted to all whosoever have contributed in this report work.

Divyanshu Kumar

Anuradha Bharti

List of Figures

Fig. No.	Figure Description	Page No.
3.1	Flow charts	12
3.2	UML diagram	12
3.3	Data flow diagram level-0	13
3.4	Data flow diagram level-1	14
3.5	Data flow diagram level-2	15
3.6	Sequence diagram	16
3.7	Use case	17
3.8	Activity diagram	18
3.9	Deployment diagram	19
3.10	CNN diagram	20
3.11	E-R Diagram	20
3.12	VGG-16 Architecture	24
3.13	Conv MaxPooling	25
3.14	CNN Architecture	26
4.1	Python library	30
4.2	Python library 2	30
4.3	Anaconda installation	31
4.4	Anaconda installation	32
4.5	Anaconda installation	32
4.6	Anaconda installation	33
4.7	Anaconda installation	33

4.8	Anaconda installation	34
4.9	Anaconda installation	34
4.10	Anaconda installation	35
4.11	Anaconda installation	35
4.12	Anaconda installation	36
4.13	Anaconda installation	36
4.14	Anaconda installation	37
4.15	Anaconda installation	37
4.16	Anaconda installation	38
4.17	Anaconda installation	38
4.18	Anaconda installation	39
4.19	Jupyter notebook	40
4.20	Python notebook	40
4.21	Jupyter notebook	41

Table of Contents

Contents	Page No.	
Abstract	i	
Acknowledgement	ii	
List of Figures	iii	
List of Tables	iv	
Table of Contents	v	
Chapter 1: Introduction	1-5	
1.1 Introduction to Project	1	
1.2 Project Category	3	
1.3 Problem Formulation	3	
1.5 Existing System	4	
1.5.1 Limitations	4	
1.6 Objectives	4	
1.7 Proposed System	4	
Chapter 2: Requirement Analysis and System Specification	6-9	
2.1 Feasibility study	6	
2.1.1 Economical feasibility	6	
2.1.2 Social feasibility	6	
2.1.3 Technical feasibility	7	
2.2 SYSTEM REQUIREMENTS AND SPECIFICATION	7	
2.2.1 Functional Requirements	7	
2.2.2 Non-Functional Requirement	8	

Chapter 3. System Design	10-26
3.1 Design Approach	10-11
3.2 Detail Design	12-20
3.3 User Interface Design	21
3.4 Methodology	22
3.4.1: VGG Configurations	23
3.4.2: VGG 16 Architecture	24
3.4.3: CNN Model	25
Chapter 4. Implementation and Testing	27-50
4.1 Introduction to Languages	28
4.1.1 Python technology	28
4.1.2 Python Platform	29
4.1.3 Python Library	29
4.1.4 Anaconda python installation OF IDE	31
4.1.5.2 SciPy	42
4.1.5.3 TensorFlow	42
4.1.5.4 Kera's	42
4.1.5.5 Pandas	43
4.1.5.6 Matplotlib	43
4.2 Algorithm/Pseudocode used	43
4.2.1 Algorithm	43
4.2.2 Pseudocode used	44
4.3 Testing Techniques	45

4.3.1 UNIT TESTING	45
4.3.2 SYSTEM TESTING	46
4.3.3 FUNCTIONAL TESTING	46
4.3.4 INTEGRATION TESTING	47
4.3.5 USER ACCEPTANCE TESTING	47
4.4 Test Cases designed for the project work	47-50
Chapter 5. Results and Discussions	51
Chapter 6. Conclusion and Future Scope	52