Binary Search Tree

1. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
0. BST tree;
1. tree.insert('H');
2. tree.insert('A');
3. tree.insert('R');
4. tree.insert('H');
5. tree.insert('U');
6. tree.insert('I');
6
```

H

1 8 H

A R

1.

2.

3.

4.

5.

6.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น HARHIU
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น A H H I R U
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น ATHURH

2. ต่อจากข้อ 1 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
7.delete_node(&(tree.root->left));// A
8.delete_node(&(tree.root->right));
9.delete_node(&(tree.root->right));
```

7.

8.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น H H I
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น

3. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
170
0.
      BST tree2;
     tree2.insert('G');}
1.
     tree2.insert('0'); 14
     tree2.insert('I');q
     tree2.insert('N'); j
     tree2.insert('G');}
     tree2.insert('M');11
                                 EGGIMNORTY
     tree2.insert('E'); 5
     tree2.insert('R'); ነት
     tree2.insert('T'); 19
9.
     tree2.insert('Y'); 45
10.
```

1, 6

7. G

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น GEOIG NMATY
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น EGGINMORTY
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น EGMNIY TROG

4. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
11. delete_node(&(tree2.root->right->left));
12. delete_node(&((tree2.root->right->left)->right));
13. delete_node(&((tree2.root->right->right)->right));
14. delete_node(&((tree2.root->right->right)->right));
```

EGGIMNORTY

17

11

14

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น <u>EGGMOL</u> หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น <u>EGMAD</u> หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น <u>EGMAD</u> 5. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
BST tree3;
1.
2.
      tree3.insert('A');
      tree3.insert('B');
3.
      tree3.insert('C');
4.
      tree3.insert('D');
5.
      tree3.insert('E');
      tree3.insert('F');
7.
      tree3.insert('G');
      tree3.insert('H');
9.
```

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น ARCDEFG H
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น ARCDEFG H
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น HG PEDCBA

6. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
10. delete_node(&(tree3.root));
11. delete_node(&(tree3.root));
12. delete_node(&(tree3.root));
13. delete_node(&(tree3.root));
```


หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น EFO H
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น EFO H
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น H6PE

7.	BST ที่ balance กับ BST ที่ไม่ balance แบบใหนมีลำดับชั้นที่มากกว่ากัน หากจำนวนสมาชิกเท่ากัน เนื่องจากอะไร (ขอสั้นๆ) ไม่ balance เพราะ แบบ balance ถ้าง ทำให้ ทั้งทั้งแก้ผาให
8.	BST ที่ balance กับ BST ที่ไม่ balance หากต้องการ search แบบใหน ให้เวลาในการค้นหาน้อยกว่ากัน อย่างไร (ขอสั้นๆ) เบบ balance อพากตัล ข่อผูลไปได้ ไอง(ก) วึงเร็จก่า
9.	Tree ที่ balance กับ tree ที่ไม่ balance แบบใดโดยทั่วไปจะมีประสิทธิภาพดีกว่ากัน (ขอ1 คำ)
10	o. ดังนั้นการคิด algorithm และ data structure เราควรพยายามให้ tree อยู่ในรูปของ balance หรือ unbalance เนื่องจากอะไร (ขอยาวๆ) balance เพื่องกับ แพรวะ unbalance tree ทำให้การทำงาหใช้เมลา มากกลา ไฟลกce เพื่องกับ กับ tree ไปทางเดียงกัน อากกล่า ปกติ