4. EQUAÇÕES DIFERENCIAIS

4.1: Definição e conceitos básicos

Definição 1.1: Uma equação diferencial ordinária é uma

equação da forma
$$f\left(x, y, \frac{dy}{dx}, \dots, \frac{d^n y}{dx^n}\right) = 0$$
 ou

 $f(x, y, y', ..., y^{(n)}) = 0$, envolvendo uma função incógnita y = y(x) e algumas das suas derivadas em ordem a x.

Exemplos 1.2:

1)
$$\frac{dy}{dx} + xy = 0$$
; 2) $y'' + y' = x$; 3) $(x^2 - y^2)dx - (x + y)dy = 0$.

Definição 1.3: Chama-se <u>ordem da equação diferencial</u> à maior das ordens das derivadas que nela aparecem.

Por exemplo,

- a equação diferencial $y' + x = e^x$ é de primeira ordem;
- a equação diferencial $y^{(9)} xy'' = x^2$ é de nona ordem;
- a equação diferencial $\frac{d^2s}{dt^2} 3\frac{ds}{dt} + 2s = t^2$ é de segunda ordem.

"Resolver" a equação diferencial consiste em encontrar funções y = y(x) que a satisfaçam.

Definição 1.4: Chama-se solução de uma equação diferencial de ordem n no intervalo I a uma função y = g(x) definida nesse intervalo, juntamente com as suas derivadas, até à ordem n, que satisfaz a equação diferencial, ou seja,

$$f(x, g(x), g'(x), ..., g^{(n)}(x)) = 0, \forall x \in I.$$

Exemplo 1.5: Mostre que $y = Ce^x$ é uma solução da equação y' - y = 0.

Resolução: De $y = Ce^x$ resulta que $y' = Ce^x$. Substituindo na equação dada as expressões de y e y', obtém-se $Ce^x - Ce^x = 0$, pelo que a função $y = Ce^x$ satisfaz a equação diferencial dada, qualquer que seja o valor da constante arbitrária C.

Exemplo 1.6: Mostre que a função $y = e^{-x^2} \int_0^x e^{t^2} dt + C_1 e^{-x^2}$ é solução da equação y' + 2xy = 1.

Resolução: De
$$y = e^{-x^2} \int_0^x e^{t^2} dt + C_1 e^{-x^2}$$
 resulta que
$$y' = -2xe^{-x^2} \int_0^x e^{t^2} dt + e^{-x^2} e^{x^2} + C_1 e^{-x^2} (-2x), \text{ isto \'e},$$

$$y' = -2xe^{-x^2} \int_0^x e^{t^2} dt + 1 - 2xC_1 e^{-x^2}.$$

Substituindo as expressões y e y' no 1º membro da equação diferencial, obteremos 1.

Definição 1.7: Chama-se **solução geral** ou **integral geral de uma equação diferencial ordinária** a toda a solução que envolva uma ou mais constantes arbitrárias.

Definição 1.8: Chama-se <u>solução particular</u> ou <u>integral</u> particular de uma equação diferencial ordinária a toda a solução obtida atribuindo valores às constantes arbitrárias da solução geral.

Exemplo 1.9: A taxa de desintegração (perda de massa) de uma substância radioactiva é proporcional à massa que fica. Isto é, se x(t) representa a massa existente num instante t, tem-se $\frac{dx}{dt} = -kx$, sendo k uma constante positiva, característica da substância. Determine a massa existente num instante t.

Resolução: Vamos resolver a equação diferencial $\frac{dx}{dt} = -kx$, isto é x' = -kx.

Sendo x > 0, vem

$$\frac{x'}{x} = -k \Leftrightarrow \int \frac{x'}{x} dt = \int -k dt \Leftrightarrow \ln x = -kt + C \Leftrightarrow x = e^{-kt} e^C \Leftrightarrow x = e^{-kt} C_1.$$

Esta solução x(t), vem afectada duma constante arbitrária C_1 , representando assim uma família de funções (soluções), ou seja, $x(t) = e^{-kt}C_1$ é a solução geral da equação diferencial.

Se x(0) = 2 tem-se: $x(0) = e^{-0k}C_1 \Leftrightarrow C_1 = 2$. Logo, $x(t) = 2e^{-kt}$ é uma solução particular, pois já não envolve nenhuma constante arbitrária.

Definição 1.10: Chamam-se **condições iniciais** as condições relativas à função incógnita e suas derivadas dadas para o mesmo valor da variável independente.

Definição 1.11: Chamam-se **condições de fronteira** as condições relativas à função incógnita e suas derivadas dadas para valores distintos da variável independente.

Nota: A constante C deve-se à primitivação que foi necessário fazer. É evidente que se a equação envolvesse derivadas até uma certa ordem n, seria necessário primitivar n vezes, logo a solução geral envolveria n constantes arbitrárias. Neste caso, para obter uma solução particular seria necessário conhecer n condições.

Exemplo 1.12: Resolva a equação diferencial: y'' - 2 = 0 e indique a solução da equação que satisfaz as condições y(1) = 0 e y'(0) = 2.

Resolução:

$$y'' - 2 = 0 \Leftrightarrow y'' = 2 \Leftrightarrow y' = 2x + C_1 \Leftrightarrow y = x^2 + C_1x + C_2.$$

y, vem afectada de duas constantes arbitrárias representando por isso uma família de funções (soluções). Diz-se, por isso que $y(x) = x^2 + C_1 x + C_2$ é a solução geral da equação diferencial.

$$y(1) = 0 \Leftrightarrow 1 + C_1 + C_2 = 0$$
. Como $y'(x) = 2x + C_1$, $y'(0) = 2 \Leftrightarrow C_1 = 2$. Logo $y(x) = x^2 + 2x - 3$ é a solução particular desejada.

4.2: Equações diferenciais de variáveis separadas e separáveis

Definição 2.1: Uma <u>equação diferencial de variáveis separadas</u> é uma equação do tipo g(y)dy = f(x)dx.

MÉTODO DE RESOLUÇÃO

A solução geral da equação diferencial de variáveis separadas obtém-se por primitivação de ambos os membros da equação, ou seja,

$$\int g(y)dy = \int f(x)dx + C.$$

Definição 2.2: Chama-se <u>equação de variáveis separáveis</u> a uma equação do tipo $f_1(x)h_1(y)dx = f_2(x)h_2(y)dy$ na qual o coeficiente associado a cada diferencial se pode factorizar em funções, dependentes só de x ou só de y.

MÉTODO DE RESOLUÇÃO

Dividindo ambos os membros pelo produto $f_2(x)h_1(y)$ a equação fica com as variáveis separadas $\frac{f_1(x)}{f_2(x)}dx = \frac{h_2(y)}{h_1(y)}dy$.

O integral geral desta equação tem a forma

$$\int \frac{f_1(x)}{f_2(x)} dx = \int \frac{h_2(y)}{h_1(y)} dy + C$$

Exercícios 2.3: Determine a solução geral das equações:

(i)
$$2(y-1)y' = 3x^2 + 4x + 2$$
; (ii) $(1+x)\frac{dy}{dx} - y = 0$.

Exercício 2.4: Calcule a solução particular da equação $(1 + e^x)yy' = e^x$ que satisfaz a condição inicial y(0) = 1.

4.3: Equações diferenciais totais exactas: factor integrante

Definição 3.1: A equação diferencial M(x, y)dx + N(x, y)dy = 0 diz-se **total exacta** se existir uma função g com derivadas parciais de 1^a ordem contínuas tal que

$$\frac{\partial g}{\partial x}(x, y) = M(x, y)$$
 e $\frac{\partial g}{\partial y}(x, y) = N(x, y)$.

Teorema 3.2: Se M e N são funções contínuas com derivadas parciais contínuas numa bola aberta do plano xOy então a equação diferencial M(x,y)dx + N(x,y)dy = 0 é total exacta se e só se

$$\frac{\partial M}{\partial y}(x,y) = \frac{\partial N}{\partial x}(x,y).$$

Nota: O teorema anterior permite concluir que, se $\frac{\partial M}{\partial y}(x,y) \neq \frac{\partial N}{\partial x}(x,y)$, então a equação M(x,y)dx + N(x,y)dy = 0 não é total exacta.

MÉTODO DE RESOLUÇÃO

Para resolver a equação diferencial total exacta M(x,y)dx + N(x,y)dy = 0 devemos determinar a função g que satisfaça as equações $\frac{\partial g}{\partial x}(x,y) = M(x,y)$ e $\frac{\partial g}{\partial y}(x,y) = N(x,y)$. A solução da equação diferencial é dada por g(x,y) = C.

Nota: Em geral a equação diferencial M(x,y)dx + N(x,y)dy = 0 não é total exacta. Mas, por vezes, é possível transformá-la numa equação diferencial total exacta mediante a multiplicação por um factor adequado.

Definição 3.3: Uma função I(x,y) é um <u>factor integrante</u> da equação diferencial M(x,y)dx + N(x,y)dy = 0 se a equação diferencial I(x,y)(M(x,y)dx + N(x,y)dy) = 0 for total exacta.

4.4: Equações diferenciais lineares de 1ª ordem

Definição 4.1: Chama-se <u>equação diferencial linear de 1</u>^a <u>ordem</u> a uma equação da forma y'+P(x)y=Q(x) onde $P \in Q$ são funções contínuas de x num certo domínio $D \subset IR$.

É usual designar por <u>equação completa</u> aquela em que $Q(x) \neq 0$ enquanto que a equação se chama <u>homogénea</u>, se Q(x) = 0

A resolução destas equações pode enquadrar-se em casos já estudados.

- > Se Q(x)=0, a equação é de variáveis separáveis.
- Se $Q(x) \neq 0$ a equação admite um factor integrante função só de x, $I(x, y) = e^{\int P(x)dx}$.

MÉTODO DE RESOLUÇÃO

- 1° Determinar o factor integrante $I(x, y) = e^{\int P(x)dx}$;
- 2° Multiplicar a equação diferencial por este factor integrante, isto é

$$e^{\int P(x)dx} \left(y' + P(x)y \right) = e^{\int P(x)dx} Q(x); \tag{1}$$

- 3° Notar que o 1° membro da equação (1) é igual a $\frac{d}{dx} \left(ye^{\int P(x)dx} \right);$
- 4° Integrar ambos os membros em ordem a x, ou seja,

$$ye^{\int P(x)dx} = \int Q(x)e^{\int P(x)dx} dx$$
.

Exercício 4.2: Determine a solução geral das equações:

$$(1) \quad \frac{dy}{dx} - 3x^2y = x^2;$$

(2)
$$(1+x^2)dy + (xy + x^3 + x)dx = 0$$

4.5: Transformadas de Laplace. Definição e propriedades.

Definição 5.1: Seja f uma função real de variável real tal que f(t)=0 se t<0. Se existir o integral impróprio $\int_{0}^{+\infty} e^{-st} f(t) dt$, onde s é um número real, a este integral chamamos **transformada de Laplace de f** e representa-se por $L\{f(t)\}$.

Exemplo 5.2: Use a definição para calcule $L\{1\}$ e $L\{e^t\}$.

Nota: (1) A transformada de Laplace $L\{f(t)\}$ de f é uma função de s, ou seja, $L\{f(t)\}=\int\limits_{0}^{+\infty}e^{-st}f(t)dt=F(s)$.

(2) A transformada de Laplace $L\{f(t)\}$ existe se o integral impróprio $\int\limits_0^{+\infty}e^{-st}f(t)\,dt$ for convergente.

Definição 5.3: Uma função f, real de variável real, diz-se **seccionalmente contínua no intervalo** [a,b], se for definida em [a,b] excepto possivelmente num número finito de pontos x_i , $i=1,\cdots,n$ com $a < x_1 < x_2 < \ldots < x_{n-1} < x_n < b$, f é contínua em cada sub-intervalo da forma $]a,x_1[,]x_1,x_2[,\cdots,]x_n,b[$, e se são finitos os limites laterais em cada ponto x_i , $i=1,\cdots,n$.

Definição 5.4: Uma função f, real de variável real, diz-se **seccionalmente contínua em** $[0,+\infty[$, se for seccionalmente contínua em [0,b], para todo b>0.

O teorema seguinte estabelece condições suficientes para a existência da transformada de Laplace.

Teorema 5.5: Seja f uma função real seccionalmente contínua em $[0,+\infty[$. Se existirem números reais c, M e t_0 tais que $|f(t)| \le Me^{ct}$ para $t > t_0$, então $L\{f(t)\}$ existe, para s > c.

Daqui para a frente, consideraremos sempre funções que verificam as condições do teorema anterior.

Teorema 5.6: Propriedade de linearidade. Sejam $a,b \in IR$. Se $L\{f(t)\}$ e $L\{g(t)\}$ existirem então $L\{af(t)+bg(t)\}$ também existe e tem-se $L\{af(t)+bg(t)\}=aL\{f(t)\}+bL\{g(t)\}$.

Exemplo 5.7: Calcule $L\{2e^t + 5\}$.

Definição 5.8: Seja $a \in IR$. Chama-se **função de Heaviside** ou **função degrau unitário** a função $U_a(t) = \begin{cases} 0 & se & t < a \\ 1 & se & t \geq a \end{cases}$

Teorema 5.9: Sejam
$$a, b \in IR$$
. Se $f(t) = \begin{cases} g_1(t) & se & 0 \le t < a \\ g_2(t) & se & a \le t < b, \\ g_3(t) & se & t \ge b \end{cases}$ então $f(t) = g_1(t)[1 - U_a(t)] + g_2(t)[U_a(t) - U_b(t)] + g_3(t)U_b(t).$

Exemplo 5.10: Calcule, usando a tabela à seguir, as seguintes transformadas de Laplace:

(1)
$$L\left\{\frac{1}{2}\right\}$$
;

(2)
$$L\{2t^3\}$$
;

(3)
$$L\{sen(2t)\};$$

(4)
$$L\left\{\frac{\cos(4t)}{2}+1\right\}$$
;

(5)
$$L\{e^{t}t\};$$

(6)
$$L\{t^2e^t\}$$
.

Exemplo 5.11: Considere a função $f(t) = \begin{cases} t & se & 0 \le t < 1 \\ e^t & se & t \ge 1 \end{cases}$. Calcule $L\{f(t)\}$.

TABELA DE TRANSFORMADAS DE LAPLACE

f(t)	$L\{f(t)\}$
1	$\frac{1}{s}$, s>0
	S
t^n , $n=1,2,3\cdots$	$\frac{n!}{s^{n+1}}$, s>0
sen(kt)	$\frac{k}{s^2 + k^2}, s > 0$
$\cos(kt)$	$\frac{s}{s^2 + k^2}, s > 0$
$e^{at}f(t)$	F(s-a)
$f(t-a)U_a(t), a>0$	$e^{-as}F(s)$
$t^n f(t), n = 1, 2, 3 \cdots$	$(-1)^n \frac{d^n}{ds^n} F(s)$
$f^{(n)}(t), n = 1,2,3\cdots$	$s^{n}F(s)-s^{n-1}f(0)-\cdots-f^{(n-1)}(0)$

TRANSFORMADA DE LAPLACE INVERSA

Dada uma função f de domínio IR^+ , a sua transformada de Laplace é, como vimos, uma função F de variável s. Pode agora colocar-se o problema inverso. Dada F(s), existirá uma função f(t) tal que $F(s)=L\{f(t)\}$?

A função f, se existir é chamada <u>transformada de Laplace</u> <u>inversa de F</u> e escreve-se $f(t) = L^{-1}{F(s)}$.

Nota: (1) A transformada de Laplace inversa nem sempre existe, e caso exista, ela pode não ser única.

- (2) Do teorema 5.6 decorre, de imediato, que $L^{-1}\{aF(s)+bG(s)\}=aL^{-1}\{F(s)\}+bL^{-1}\{G(s)\}, \text{ com } a,b \in IR.$
- (3) A tabela de transformadas de Laplace, também pode servir para calcular $L^{-1}\{F(s)\}$.

Exemplo 5.12: (1)
$$L^{-1} \left\{ \frac{1}{s} \right\} = 1;$$

(2) $L^{-1} \left\{ \frac{2}{s^2} \right\} = 2L^{-1} \left\{ \frac{1}{s^2} \right\} = 2t;$
(3) $L^{-1} \left\{ e^{-s} \frac{1}{(s-1)^2} \right\} = tU_1(t).$

A transformada de Laplace é muito útil na resolução de equações diferenciais lineares sujeitas a condições iniciais.

4.6: Resolução de equações diferenciais lineares de ordem *n* usando transformadas de Laplace

Sejam a_0 , a_1 ,..., a_n parâmetros reais. Consideremos a seguinte equação diferencial linear de ordem n, com coeficientes constantes

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = g(t), t \in I \subset IR$$
 (1)

sujeita às condições iniciais, em $t = 0 \in I$,

$$y(0) = y_0, y'(0) = y_1, ..., y^{(n-1)}(0) = y_{n-1}.$$

O nosso objectivo é obter a solução y(t) da equação diferencial. <u>MÉTODO DE RESOLUÇÃO</u>

Aplicando a transformada de Laplace em ambos os membros de (1), e usando a propriedade de linearidade obtemos

$$a_n L\{y^{(n)}\} + a_{n-1} L\{y^{(n-1)}\} + \dots + a_1 L\{y'\} + a_0 L\{y\} = L\{g(t)\}$$
 (2)

Pelo formulário, (2) equivale a

$$a_n \left(s^n Y(s) - s^{n-1} y(0) - \dots - y^{(n-1)}(0) \right) +$$

$$+ a_{n-1} \left(s^{n-1} Y(s) - s^{n-2} y(0) - \dots - y^{(n-2)}(0) \right) + \dots + a_0 Y(s) = G(s)$$
(3)
sendo $Y(s) = L\{y(t)\}$ e $G(s) = L\{g(t)\}$.

Mas (3) pode escrever-se na forma

$$(a_n s^n + a_{n-1} s^{n-1} + \dots + a_0) Y(s) =$$

$$= a_n (s^{n-1} y_0 + \dots + y_{n-1}) + a_{n-1} (s^{n-2} y_0 + \dots + y_{n-2}) + \dots + G(s),$$
 (4)
que é uma equação algébrica em $Y(s)$.

A transformada de Laplace inverse aplicada à solução Y(s) da equação (4), dá-nos a solução $y(t) = L^{-1}\{Y(s)\}$ da equação diferencial (1) sujeita às condições iniciais dadas.

Exemplo 6.1: Recorrendo ao método da transformada de Laplace, determine a solução da seguinte equação diferencial sujeitas às condições iniciais dadas:

$$2y'' - 2y' = (t+1)e^t$$
, $y(0) = \frac{1}{2} e y'(0) = \frac{1}{2}$.