

KARNAUGH MAP

GOWTHAMI MANDAVA

gowthamimandava999@gmail.com

IITH - Future Wireless Communication(FWC22012)

Abstract

This document shows how to find the boolean function of the output for the logic which is in given truth table by using KMap.

1 Components

Component	Value	Quantity	
Arduino	UNO	1	
Resistor	220ohm	1	
Bread board	-	1	
Jumber wires	M-M	20	
Led	-	1	

2 Logic

The circuit takes 4-bit number from (0-7) as input W,X,Y,Z and produces the F as output according to the logic given in table 1.

0 0 0 0 1	0 0 1 1	0 1 0 1	0 1 0 0
0	1	0	0
0	1	1	
			0
1	Λ		ı •
	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
	1 0 0 0 0 1 1	1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 0 1 1	1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0

Table 1:

3 Kmap

Using the boolean logic output F can be expressed in terms of the inputs W,X,Y,Z with the help of the following Kmap.

		YZ				
		00	01	11	10	
0: WX 1:	00	0	1	0	0	
	01	0	1	1	1	
	11	0	1	1	1	
	10	0	1	1	1	

The boolean expression for the output F is obtained in the form of POS after minimizing the Kmap maxterm implicants.

F=XY'Z+X'Y'Z+W'XY+WX'Y+WXY

4 Hardware Connection

Arduino	6	7	8	9	5	GND
breadboard	0/1	0/1	0/1	-	-	
led	-	-	-	+ve	-ve	

Table 2:

Give the connections as per Table 2. For taking the inputs connect 5V of arduino to +ve line of bread board to consider it as logic 'HIGH'.connect GND pin of arduino to -ve line of bread board to consider it as logic 'LOW'.

For example if the inputs W,X,Y,Z are connected 1,0,1,1respectively the output should be 1 i.e., the LED connected to the 5th pin should glow.

In the another case if we connect the inputs W,X,Y,Z to 1,1,0,0 respectively the output should be 0 i.e., the LED connected to 5th pin should turn off

The circuit implementation of the above function is given in figure $1. \,$

5 Software

- 1. Connect the arduino to the USB port of computer
- 2.Download the follwing code

 $\begin{array}{c} {\sf https://github.com/Gowt-hami/fwc-1-module1/tree/}\\ {\sf main/codess} \end{array}$

- 3. Upload the code into the arduino board.
- 4.The output $^{\prime}1^{\prime}$ is represented as the state: LED ON and $^{\prime}0^{\prime}$ is represented as the state LED OFF

