Állománynév: aramkorok_06nemlin_eszkozok11.pdf

Irodalom: Tankönyv: R. J. Smith & R. C. Dorf, "Circuits, Devices and Systems," Wiley,

(5th Edition), pp. 340-349, 364-375, 590-599, 612-645.

Előadó jegyzetei: http://users.itk.ppke.hu/~kolumban/aramkorok/

6. NEMLINEÁRIS ESZKÖZÖK: DIÓDA, BIPOLÁRIS TRANZISZTOR ÉS MOSFET TRANZISZTOROK

Nemlineáris rendszerek:

- Néhány egyszerű esettől eltekintve zárt alakú megoldás nem létezik, általában csak numerikus vagy grafikus megoldás található
- Unicitás tétele nem igaz, különböző kezdeti feltételekhez sokszor más megoldás tartozik (pl. hiszterézis, káosz)
- Szuperpozició tétele nem alkalmazható
- Impedanciamódszer nem alkalmazható, átviteli függvények nem generálhatók
- Nemlineáris rendszerek nem konzervatívok a gerjesztő frekvenciákra nézve

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 1. oldal

VALÓSÁGOS ESZKÖZÖK TIPIKUS KARAKTERISZTIKÁI

(a) A félvezető dióda feszültség-áram karakterisztikája

Pázmány Péter Katolikus Egyetem

$$I = I_S \left(e^{\frac{V}{\eta V_T}} - 1 \right)$$

ahol szobahőmérsékleten

$$V_T = \frac{kT}{e} = 25 \text{ mV}$$

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 2. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramköröl

(b) Tranzisztoros differenciál erősítő átviteli karakterisztikája

$$V_{out} = -\alpha RI_{EE}\tanh\underbrace{\left(\frac{V_{in}}{2V_T}\right)}_{V_{in}} \approx C_1V_{in} + C_2V_{in}^2 + C_3V_{in}^3 \ \text{ ahol} \ C_1 \text{ \'es } C_2 > 0, \text{ de } C_3 < 0$$

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

A rossz hír:

- Minden fizikai rendszer nemlineáris, tipikusan előbb-utóbb telítésbe megy
- Zárt alakú tervezési módszerek csak lineáris rendszerekre léteznek, azok használatának feltétele a nemlineáris rendszer linearizálása
- Mit lehet tenni?

Modellek és megoldások

- Nagyjelű analízis
 - Grafikus és numerikus megoldások
 Nem linearizálás, tehát a lineáris rendszerekre kidolgozott módszerek nem alkalmazhatók
- Törtvonalas közelítés large-signal model
 Matematikai háttér: Nemlineáris karakterisztikát szakaszonként lineárissal közelítjük
- Kisjelű modell small-signal model
 - Linearizálás az adott munkapontban
 - Matematikai háttér: Taylor soros közelítés

GERJESZTÉSEK

A nemlineáris eszköz karakterisztikáját kétféle módon linearizálhatjuk

Cél: Linerizáljuk a fekete átviteli függvénnyel megadott nemlineáris eszközt

• Piros: Nagyjelű modell (törtvonalas közelítés)

Kék: Kisielű modell a Q munkapontbeli linearizálás

KOLUMBÁN Géza - Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 5. oldal

aramkorok_06nemlin_eszkozok11.pdf: 7. oldal

NEMLIN ÁRAMKÖR

Linearizálás:

1. Nagyjelű modell

Pázmány Péter Katolikus Egyetem

2. Kisjelű modell

LTI ÁRAMKÖRÖK

- 1. Matematikai modell: Differenciál
- 2. Impedancia módszer bevezetése
 - Diff. egy. helyett algebrai egyenlet
 - Átviteli függvények

Analóg rendszerek analízisének mérnöki módszere (teljes kép)

- 3. Impedancia módszer csak akkor használható, ha korlátozzuk a gerjesztéseket a komplex exponenciálisok osztályára
- 1. Tetszőleges gerjesztés
- 2. Lineáris rendszer => szuperpozició
- 3. Szinuszos bázis függvények:
 - Fourier sor
 - Fourier transzformáció

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 6. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

A linearizált helyettesítő kép, ami egy LTI áramkör, analízise

Linearizált helyettesítő kép = LTI Áramkör ⇒		Egyszerűsített áramkör
Időtartomány		Transzformált tartomány
+		\
Lineáris rendszer		Transzformált rendszer
		Impedancia koncepció
Differenciál egyenlet	\Longrightarrow	Algebrai egyenlet
	Transzformáció	
	Matematikus	
+		↓ ↓
Diff. egy. megoldása		Algebrai módszerek
\		↓ ↓
Válaszjel	←	Megoldás a transzformált
	Inverz transzformáció	tartományban

Pázmány Péter Katolikus Egyetem

ELEKTRONIKÁBAN HASZNÁLT. LINEÁRIS HELYETTESÍTŐ KÉPET (AZAZ ZÁRT ALAKÚ MEGOLDÁST ADÓ) MÓDSZEREK

I. Nagyjelű modell: A nemlineáris karakterisztika törtvonalas közelítése

- 1. A nemlineáris eszköz karakterisztikáját törtvonalasan közelítjük
- 2. Különböző, de lineáris modelleket rendelünk az egyes tartományokhoz
- 3. Meghatározzuk, vagy feltételezést teszünk a nemlineáris eszköz működési tartományára
- 4. Egy tartományon belül az eszközt lineárisnak tekintjük

Megjegyzések:

- Nehézséget a működési tartomány meghatározása jelenti (próbálkozás)
- Tipikus alkalmazás: Munkapont meghatározása, kapcsolóüzemű és logikai áramkörök

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 8. oldal

Pázmány Péter Katolikus Egyetem

KI

Elektronikai és biológiai áramkörök

II. Kisjelű közelítés, azaz munkaponti linearizálás módszere

• Matematikai háttér: Taylor vagy hatványsoros közelítés

$$\underbrace{\frac{f(Q+\Delta x)-f(Q)}{\Delta y}=\frac{1}{1!}\frac{df}{dx}\bigg|_{x=Q}\Delta x}_{}+\underbrace{\frac{1}{2!}\frac{d^2f}{dx^2}\bigg|_{x=Q}\Delta x^2+\cdots+\frac{1}{n!}\frac{d^nf}{dx^n}\bigg|_{x=Q}\Delta x^n+\cdots}_{maradéktag}$$

- Eredmény: A perturbácókra a Q munkapontban érvényes kisjelű modell (pirossal jelölve)
- Mivel a kisjelű modell lineáris, a kisjelű modellt tartalmazó rendszer is lineáris, azaz rá a lineáris rendszerekre kidolgozott módszerek alkalmazhatók
- Vedd észre, a kisjelű modell csak a perturbációkra érvényes!!!
- Kisjelű modell tipikus alkalmazása: Kisjelű erősítők (small-signal amplifier)

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 9. oldal

Jelmagyarázat:

Az alkalmazandó modell típusát a bemeneti jel nagysága határozza meg

BE

- Fekete:
 Eszköz nemlineáris karakterisztikája
- Piros:
 Nagyjelű modell,
 törtvonalas közelítés
- Kék:
 Kisjelű modell, a
 Q munkapontbeli linearizálás

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 10. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramköröl

A lineáris közelítő modellekre érvényes megjegyzések:

Törtvonalas közelítés (nagyjelű modell):

- Durva közelítés (nagy hiba)
- Nagy kivezérlés estén is alkalmazható
- Leginkább a munkapont meghatározására használják
- Az eszközparaméterekben mért nagy szórás miatt a durva közelítés által okozott hiba nem érdekes. A munkapontot egyéb módszerekkel stabilizáljuk

Munkaponti linearizálás (kisjelű modell):

- Csak az adott munkapont szűk környezetében érvényes
- Kis kivezérlés esetén alkalmazható
- Az adott munkapontban pontos modellt biztosít
- Csak a perturbációkra igaz
- A DC munkapontot és az AC feldolgozandó jelet csatoló kondenzátorokkal választjuk szét

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

6.1 A FÉLVEZETŐ DIÓDA

A dióda keresztmetszete

A kiürített réteg kialakulása

Kettősréteg és potenciálgát a szakadással lezárt diódában

- Külső záró feszültség alkalmazása (Záró irányú előfeszítés):
 - Szélesíti a kiürített réteget és megnöveli a potenciálgátat
 - Exponenciálisan csökken annak a valószinűsége, hogy egy töltéshordozó átjut a potenciálgáton
- Külső nyitó feszültség alkalmazása (Nyitó irányú előfeszítés):
 - Keskenyíti a kiürített réteget és lecsökkenti a potenciálgátat
 - Exponenciálisan nő annak a valószinűsége, hogy egy töltéshordozó átjut a potenciálgáton

KOLUMBÁN Géza - Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 13. oldal

A dióda karakterisztikája és kapcsolási rajzban használt szimbóluma

Pázmány Péter Katolikus Egyetem

$$I = I_S \left(e^{rac{V}{V_T}} - 1
ight)$$
 ahol $V_T pprox 25 \; {
m mV}$

Megjegyzések

- Feszültségforrást tilos nyitó irányban előfeszített pn átmenettel párhuzamosan kapcsolni

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 14. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Dióda törtvonalas nagyjelű modelljének származtatása

Nyitó irányú előfeszítés Feltétel: I>0 $V_F=V_\gamma+I_FR_F \ \approx 0,7 \ {\rm V}$

Záró irányú előfeszítés Feltétel: I < 0 és $V_b < V < 0$

Letörési tartomány $\mbox{Feltétel: } I < 0 \mbox{ és } V \leq V_b$

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Dióda kisjelű modelljének származtatása

V_b

MUNKAPONT

10

Reverse

MUNKAEGYENES

Dióda egyenlete

$$I = I_S \left(e^{rac{V}{V_T}} - 1
ight)$$
 ahol $V_T pprox 25 \ \mathrm{mV}$

A dióda dinamikus vezetése (azaz a Taylor sor lineáris tagja az adott $I_{\cal Q}$ munkapontban)

$$\begin{split} g_d = & \frac{dI}{dV} \mid_{V_Q} = \frac{d}{dV} I_S \left(e^{\frac{V}{V_T}} - 1 \right) \mid_{V_Q} \\ = & \frac{1}{V_T} I_S e^{\frac{V_Q}{V_T}} = \frac{I_Q + I_S}{V_T} \approx \frac{I_Q}{V_T} \end{split}$$

A dióda dinamikus ellenállása, azaz kisjelű modellje

$$\begin{split} r_d = & \frac{1}{g_d} = \frac{v}{i} = \frac{V_T}{I_Q} = \frac{25}{I_Q^{[mA]}} \quad [\Omega] \\ & 0 \quad T = 25^{\circ} \text{C} \end{split} \qquad \begin{matrix} i \\ v \\ \end{matrix} \qquad \begin{matrix} \\ \\ v \end{matrix}$$

Elektronikai és biológiai áramkörök

A KISJELŰ ANALÍZIS LÉPÉSEI

- A nemlineáris eszköz munkapontjának kiválasztása ill. meghatározása Nemlineáris, állandósult állapotú DC analízis
- II. A nemlineáris eszköz adott munkaponthoz tartozó kisjelű modelljének, és a kisjelű modell (helyettesítő kép) paramétereinek meghatározása
- III. Az áramkör kisjelű modelljének (helyettesítő képének) és a jelúti paraméterek meghatározása Lineáris AC analízis

Hidegítések és szűrések, csatoló kondenzátorok

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 17. oldal

I. A dióda munkapontjának meghatározása

- Nemlineáris, állandósult állapotú DC analízis
- Kondenzátorok szakadással helyettesítendők
- Induktivitások rövidzárral helyettesítendők

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 18. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

II. A dióda adott munkaponthoz tartozó kisjelű modelljének, és a kisjelű modell paramétereinek meghatározása

A dióda dinamikus ellenállása a munkaponti áram függvénye

$$r_d = \frac{v}{i} = \frac{V_T}{I_Q} = \frac{25}{I_Q^{[mA]}} \quad [\Omega]$$

Pázmány Péter Katolikus Egyetem

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörö

III. A kisjelű modell és a jelúti paraméterek meghatározása

- Lineáris AC analízis
- Hidegítő és csatoló kondenzátorok rövidzárként viselkednek az üzemi frekvencián
- Fojtó tekercsek szakadásként viselkednek az üzemi frekvencián

Emitter

Collector

 αi_E

6.2 A (BIPOLÁRIS RÉTEG-)TRANZISZTOR (BJT)

BJT emitter és bázisrétegeinek előfeszítése

Potenciáleloszlás a BJT-ban

Tranzisztor előfeszítése a normál aktív tartományban: ullet EB átmenet: nyító irányú

• CB átmenet: záró irányú

Például egy npn tranzisztor esetén: \bullet $v_{EB} \approx -0,7 \text{ V}$ (azaz $v_{BE} = -v_{EB} \approx 0,7 \text{ V}$)

• $v_{CB} \geq 0 \text{ V}$

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 21. oldal

KOLUMBÁN Géza — Információs Technológiai Kar

Elektronikai és biológiai áramkörök

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Egy npn típusú bipoláris tranzisztor karakterisztikái

Bemeneti kar.

Kimeneti karakterisztika

A karakterisztikák felvétele

- • Mivel $i_B>0,$ a tranzisztor vezérléséhez teljesítmény szükséges
- A pnp tranzisztor karakterisztikái teljesen megegyeznek a fenti be- és kimeneti karakterisztikával, de minden feszültség és áram -1-vel szorzandó
- Fizikai áramirányt az emittert azonosító nyíl iránya adja meg

Pázmány Péter Katolikus Egyetem

aramkorok_06nemlin_eszkozok11.pdf: 22. oldal

Egy npn típusú bipoláris tranzisztor üzemmódjai

Bemeneti kar.

Tranzisztorhatás: Rekombináció a bázisban igen kicsi, azaz $\alpha \approx 1$

Kimeneti karakterisztika

A kapcsolási rajz

Többségi és kisebbségi töltéshordozók mozgása egy npn transzisztorban

Erősítő üzemmód (Q)

KOLUMBÁN Géza — Információs Technológiai Kar

Normál, aktív: BE átmenet nyító, míg BC átmenet záró írányban van előfeszítve

Kapcsoló üzemmód (Kapcsoló és digitális áramkörök)
 Ugrás (BE) és (KI) pontok között

Az npn bipoláris transzisztor erősítő üzemmódiának grafikus analízise

Vedd észre, Thévenin ekvivalens

Ahol: • Q a munkapont helyét adja meg

• "Load line" a munkaegyenest jelenti

 $v_{CE} + i_C R_C = V_{CC}$

$$i_C = -\frac{1}{R_C} v_{CE} + \frac{V_{CC}}{R_C}$$

KOLUMBÁN Géza - Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 25. oldal

6.2(a) BJT MODELLEZÉSE FÖLDELT BÁZISÚ KAPCSOLÁSBAN

npn normál aktív üzemmódban

- \bullet EB átmenet: nyító irányú $v_{EB} \approx -0.7 \text{ V}$
- ullet CB átmenet: záró irányú $v_{CB} > 0 \text{ V}$

Ahol α a földelt bázisú áramerősítési ténvező

Földelt bázisú (FB) npn tranzisztor

Nagyjelű FB modell

KOLUMBÁN Géza - Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 26. oldal

Pázmány Péter Katolikus Egyetem

6.2(b) BJT MODELLJE FÖLDELT EMITTERES KAPCSOLÁSBAN

Előzmények: A földelt bázisú npn tranzisztor nagyjelű modellje $i_C(i_E)$

$$i_{E} + i_{B} + i_{C} = 0$$

$$i_{C} = -\alpha i_{E} \text{ és } v_{EB,A} \approx -0,7 \text{ V}$$

$$i_{E} = -I_{ES} \left[e^{\left(-\frac{v_{EB}}{V_{T}}\right)} - 1 \right] \approx -I_{ES} e^{\frac{v_{BE}}{V_{T}}}$$

Földelt emitteres (FE) npn tranzisztor nagyjelű modellje $i_C(i_B)$

$$i_E + i_B + i_C = -\frac{i_C}{\alpha} + i_B + i_C = 0$$
 $i_E = \frac{\alpha}{1 - \alpha} i_B = \beta i_B \text{ és } v_{BE,A} \approx 0,7 \lor$
 $i_C = -\alpha i_E = \alpha I_{ES} \left(e^{\frac{v_{BE}}{V_T}} - 1 \right)$
 $E \quad \uparrow_{i_E}$

Ahol β a földelt emitteres áramerősítési tényező

6.2(c) AZ npn FE TRANZISZTOR KISJELŰ π MODELLJE

Linearizálás az adott I_E munkapontban: Egyetlen nemlináris elem a $BE \ pn$

A kiinduló egyenletek

$$egin{aligned} i_E + i_B + i_C &= i_E + i_B + eta i_B = 0 &\Longrightarrow &i_B = -rac{i_E}{eta + 1} \ i_E &= -I_{ES} \left(e^{rac{v_{BE}}{V_T}} - 1
ight) pprox -I_{ES} e^{rac{v_{BE}}{V_T}} \end{aligned}$$

A $BE\ pn$ átmenet dinamikus vezetése (linearizálás az $i_E=I_E$ munkapontban)

$$\begin{split} g_{\pi} = & \frac{d \, i_B}{d v_{BE}} \mid_{v_{BE,Q}} = \frac{d}{d v_{BE}} \left(-\frac{i_E}{\beta + 1} \right) \mid_{v_{BE,Q}} \\ = & \frac{1}{\beta + 1} I_{ES} \frac{d}{d v_{BE}} \, e^{\frac{v_{BE}}{V_T}} \mid_{v_{BE,Q}} = \frac{1}{\beta + 1} \frac{1}{V_T} \, \underbrace{I_{ES} e^{\frac{v_{BE,Q}}{V_T}}}_{-i_E \mid v_{BE,Q}} = \frac{1}{\beta + 1} \, \underbrace{\left(-\frac{I_E}{V_T} \right)}_{1/r_e} \end{split}$$

A tranzisztor BE átmenetének dinamikus ellenállása

$$r_{\pi}=rac{oldsymbol{v_{be}}}{oldsymbol{i_{b}}}\equivrac{1}{g_{\pi}}=(eta+1)r_{e}$$

ahol

$$r_e = -rac{V_T}{I_E} = -rac{25}{I_E^{[mA]}} \left[\Omega
ight] @~T = 25^{\circ} extsf{C} ~~ ext{és} ~~I_E < 0$$

A kollektoráram kifejezése

$$i_b = rac{v_{be}}{r_\pi}$$

$$i_c = eta i_b = eta rac{v_{be}}{(eta+1)r_e} = rac{lpha}{r_e} v_{be} = g_m v_{be}$$

ahol a tranzisztor meredeksége

$$g_m = -lpha rac{I_E}{V_T} pprox -rac{I_E^{[{
m mA}]}}{0,025} \, \left[rac{{
m mA}}{{
m V}}
ight] \, @ \, T = 25^{\circ}$$
C

KOLUMBÁN Géza - Információs Technológiai Kar

 $aramkorok_06nemlin_eszkozok11.pdf{:}\ \ 29.\ oldal$

Pázmány Péter Katolikus Egyetem

A tranzisztorok adott munkapontban érvényes, kisjelű modellje

$$\pi - \beta$$
 modell

$$\pi - q_m$$
 modell

Ahol a munkapontfüggő kisjelű tranzisztorparaméterek értéke

$$r_{\pi} = (eta + 1) rac{V_T}{|I_E|} = rac{25}{|I_E^{[mA]}|} \left[\Omega
ight] @~T = 25^{\circ}$$
C

$$g_m = lpha \, rac{|I_E|}{V_T} pprox rac{|I_E^{[{\mathsf{mA}}]}|}{0,025} \, \left[rac{{\mathsf{mA}}}{{\mathsf{V}}}
ight] \, @ \, T = 25^{\circ} {\mathsf{C}}$$

 $|I_E|$ bevezetésével a kisjelű modellt **függetlenítettük** a tranzisztor típusától!

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 30. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

6.2(d) FE TRANZISZTOROS KISJELŰ ERŐSÍTŐ ANALÍZISE

- A tranzisztor munkapontjának meghatározása Nemlineáris, állandósult állapotú DC analízis
- II. A tranzisztor adott munkaponthoz tartozó kisjelű modell paramétereinek meghatározása
- III. A kisjelű modell felrajzolása és a jelúti paraméterek kiszámítása Lineáris AC analízis

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

- I. A tranzisztor munkapontjának meghatározása
- Nemlineáris, állandósult állapotú DC analízis
- Kondenzátorok szakadással ill. az induktivitások rövidzárral helyettesítendők

Rossz hír: A BJT munkapontja **érzékeny** a réteghőmérsékletre A tranzisztort helyettesíteni kell az FE nemlineáris transzisztor modellel

Az npn tranzisztor FE nagyjelű modellje és a Thèvenin tétel alapján

Mindig három egyenlet írható és írandó fel

- Hurokegyenlet a bemeneti (bázis) körre
- Hurokegyenlet a kimeneti (kollektor) körre
- Tranzisztorra vonatkozó egyenlet

Ez függ az eszköz típusától és működési tartományától

Ebben az esetben: normál aktív tartományban üzemelő, npn tranzisztor

KOLUMBÁN Géza - Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 33. oldal

Pázmány Péter Katolikus Egyetem

III. A kisjelű modell felrajzolása és a jelúti paraméterek meghatározása

- Lineáris AC analízis
- Hidegítő és csatoló kondenzátorok rövidzárként viselkednek az üzemi frekvencián
- Fojtó tekercsek szakadásként viselkednek az üzemi frekvencián

II. A tranzisztor adott munkaponthoz tartozó kisjelű modelliének, és a kisjelű modell paramétereinek meghatározása

A $\pi-g_m$ modell paraméterei a munkaponti emitteráram függvényei

$$r_{\pi}=(eta+1)rac{V_{T}}{|I_{E}|}=(eta+1)rac{25}{|I_{E}^{[mA]}|}~\Omega~@~T=25^{\circ}$$
C

$$g_m = rac{|I_E^{ ext{[mA]}}|}{0,025} \, \left[rac{ ext{mA}}{ ext{V}}
ight] \, ext{@} \, T = 25^{\circ} ext{C}$$

Ne feledd: A kisjelű modell független a tranzisztor típusától

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 34. oldal

Pázmány Péter Katolikus Egyetem

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

6.2(e) AZ npn/pnp FE TRANZISZTOROK MODELLJEI

Áram és feszültségirányok normál aktív tartományban:

npn normál aktív tartomány

pnp normál aktív tartomány

$$I_{E} < 0$$
 $I_{B} > 0, I_{C} > 0$ $V_{BE,A} pprox 0, 7 \ \lor$ $V_{CE} > 0, 5 \ \lor$

KOLUMBÁN Géza — Információs Technológiai Kar

$$\begin{array}{c|c} \mathbf{C} & I_C \\ I_B & \mathbf{B} \\ + & V_{CE} \\ V_{BE,A} & \mathbf{E} \end{array} \qquad \begin{array}{c|c} I_C \\ I_C$$

$$I_E>0 \ I_B<0, I_C<0 \ V_{BE,A}pprox -0,7 \ ee \ V_{CE}<-0,5 \ ee$$

Ahol: • Erősítőkben a tranzisztorokat normál aktív üzemmódba kell előfeszíteni

• Segítség az ellenőrzéshez: Az emitteren lévő nyíl a fizikai áramírányt mutatja

Mindkét tranzisztorra érvényes kisjelű modellek:

Az $|I_E|$ bevezetésével a npn/pnp tranzisztorok kisjelű modelljei megegyeznek

Áramvezérelt áramgenerátor

Feszültségvezérelt áramgenerátor

$$r_e=rac{V_T}{|I_E|}$$
 ahol $V_T=25$ mV $r_\pi=(eta+1)r_e$ $g_m=rac{lpha}{r_e}=lpharac{|I_E|}{V_T}pproxrac{|I_E|}{V_T}$

KOLUMBÁN Géza - Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 37. oldal

6.3 A MOSFET TRANZISZTOROK

Növekményes (E) módú, n-csatornás MOSFET tranzisztor

Áramköri szimbólum

Pázmány Péter Katolikus Egyetem

MOSFET keresztmetszete Töltéshordozók eloszlása alacsony v_{GS} mellett

Kimeneti karakterisztika

Elektronikai és biológiai áramkörök

Vedd észre: A kimeneti karakterisztika függ v_{DS} -től (\sim lineárisan)

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 38. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Kiürítéses/növekményes (DE) módú, n-csatornás MOSFET tranzisztor

Szimbólum

MOSFET keresztmetszete

Kimeneti karakterisztika

aramkorok_06nemlin_eszkozok11.pdf: 39. oldal

Üzemmódok: • Q: Telítéses üzemmód, itt használható erősítésre

• BE és KI: Kapcsoló üzemmód

ullet $v_{DS}\sim 0$ V: Rezisztív tartomány (vezérelhető ellenállás)

Vedd észre: A kimeneti karakterisztika függ v_{DS} -től (\sim lineárisan)

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

n-csatornás MOSFET-ek szimbólumai

Növekményes (E) MOSFET

Kiürítéses (DE) MOSFET

n-csatornás MOSFET-ek transzfer karakterisztikái

ahol V_p az elzáródási feszültség

6.3(a) A MOSFET TRANZISZTOROK NAGYJELŰ MODELLJE

A MOSFET erősít, ha a telítéses tartományba van előfeszítve, amelynek feltétele

$$v_{DS} \geq v_{GS} - V_t$$

A nagyjelű modell:

Transzfer karakterisztika: $i_D = K(v_{GS} - V_t)^2$ és $i_S = -i_D$

Bemenetre vonatkozó egyenlet: $i_G = 0 \; \forall \; v_{GS}$ -re azaz a MOSFET tranzisztorok vezérléséhez nem kell teljesítmény (se erősítő, se kapcsoló üzemmódban!!!)

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 41. oldal

A nagyjelű modellek gyakorlatban használt egyenletei (n-csatornás MOSFET)

Növekményes (E) MOSFET

Pázmány Péter Katolikus Egyetem

$$\begin{bmatrix} i_G \\ + \\ v_{GS} \end{bmatrix} + \begin{bmatrix} i_D \\ + \\ v_{DS} \\ \end{bmatrix}$$

$$V_t = V_T > 0$$
 $i_D = K \left(v_{GS} - V_T
ight)^2 \,\,$ és $i_S = -i_D$ $i_G = 0$

A telítés feltétele:

$$v_{DS} \geq v_{GS} - V_T$$

Kiürítéses (DE) MOSFET

$$\begin{bmatrix} i_G \\ + \\ v_{DS} \\ \end{bmatrix} \begin{bmatrix} i_D \\ + \\ v_{DS} \\ \end{bmatrix}$$

$$V_t = V_T > 0$$
 $V_t = V_p < 0$ $i_D = K \left(v_{GS} - V_T
ight)^2 ext{ és } i_S = -i_D$ $i_G = 0$ $i_D = I_{DSS} \left(1 - rac{v_{GS}}{V_p}
ight)^2 ext{ és } i_S = -i_D$ $i_G = 0$

A telítés feltétele:

$$v_{DS} \geq v_{GS} - V_p$$

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 42. oldal

Pázmány Péter Katolikus Egyetem

6.3(b) E és DE MOSFET TRANZISZTOROK KISJELŰ MODELLJE

Vedd észre, a MOSFET egy feszültségvezérelt áramgenerátorral modellezhető

ahol • MOSFET kimeneti csatorna ellenállása: $n \times 1$ k $\Omega \le r_d \le n \times 10$ k Ω

ullet meredeksége: $g_m = rac{di_D}{dv_{GS}}\mid_{V_{GS}}$

Növekményes (E) MOSFET

Kiürítéses (DE) MOSFET

$$g_m^E = 2K\left(V_{GS} - V_T
ight) \qquad \qquad g_m^{DE} = -rac{2I_{DSS}}{V_n}\left(1 - rac{V_{GS}}{V_n}
ight)$$

$$g_m^{DE} = -\frac{2I_{DSS}}{V_p} \left(1 - \frac{V_{GS}}{V_p}\right)$$

MOSFET jellemzők: $i_G = 0$, de g_m nagyon kicsi \Rightarrow kis erősítés!!!

Pázmány Péter Katolikus Egyetem

6.3(c) MOSFET KISJELŰ ERŐSÍTŐ ANALÍZISE

I. Az *n*-csatornás kiürítéses MOSFET munkapontjának meghatározása Nemlineáris, állandósult állapotú DC analízis

II. A MOSFET adott munkaponthoz tartozó kisjelű modell paramétereinek meghatározása

III. A kisjelű modell felrajzolása és a jelúti paraméterek kiszámítása Lineáris AC analízis

KOLUMBÁN Géza — Információs Technológiai Kar

I. A MOSFET munkapontjának meghatározása

- Nemlineáris, állandósult állapotú DC analízis
- Kondenzátorok szakadással ill. az induktivitások rövidzárral helyettesítendők

Jó hír: A MOSFET munkapontja nem érzékeny a hőmérséklet változására

MOSFET-et helyettesíteni kell a nemlineáris nagyjelű modellel

KOLUMBÁN Géza — Információs Technológiai Kar

 $aramkorok_06nemlin_eszkozok11.pdf{:}\ \ 45.\ \ \text{oldal}$

Az előző ábrát a MOSFET eszközök nagyjelű modellje alapján átrajzolva kapjuk

Pázmány Péter Katolikus Egyetem

Mindig három egyenlet írható és írandó fel

- Hurokegyenlet a bemeneti (gate) körre
- Hurokegyenlet a kimeneti (drain) körre
- MOSFET eszközre vonatkozó egyenlet

Ez függ az eszköz típusától és működési tartományától

Ebben az esetben: Telítéses tartományban üzemelő, n-csatornás kiürítéses MOSFET A négyzetes transzfer karakterisztika miatt két megoldás adódik: (1) $V_p < V_{GS}$, a keresett megoldás és (2) $V_{GS} < V_p$, nem fizikai, hanem csak matematikai megoldás

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok11.pdf: 46. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

II. A MOSFET adott munkaponthoz tartozó kisjelű modelljének, és a kisjelű modell paramétereinek meghatározása

Az n-csatornás kiürítéses (DE) MOSFET kisjelű modellje a munkaponti gate-source feszültség függvénye

$$g_m^{DE} = -rac{2I_{DSS}}{V_n}\left(1-rac{V_{GS}}{V_n}
ight)$$

Az r_d kimeneti csatorna ellenállás a katalógusból keresendő ki

A MOSFET paraméterek **függetlenek** a hőmérséklettől

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

III. A kisjelű modell felrajzolása és a jelúti paraméterek meghatározása

- Lineáris AC analízis
- Hidegítő és csatoló kondenzátorok rövidzárként viselkednek az üzemi frekvencián
- Fojtó tekercsek szakadásként viselkednek az üzemi frekvencián

