Разработка аппарата математического анализа паттернов ЭЭГ человека, с распознаванием образов для реализации в устройствах дистанционного миоуправления на основе активных протезов

Соответствие проекта тематике заявленной научной платформы:

Заявленная работа соответствует платформе «неврология и нейронауки» стратегии развития медицины до 2025 г., в частности целям:

- 1. разработка методов реабилитации, позволяющих улучшить функциональную независимость и двигательную активность больных с заболеваниями нервной системы.
- 2. создание новых технологий восстановления утраченных функций нервной системы на основе разнообразных интерфейсов: мозг компьютер, роботизированных устройств

Актуальность:

В России количество ежегодных ампутаций достигает 30-40 тысяч. 1/3 из них это ампутации нижних конечностей. Причиной ампутации конечностей в 48 % случаев является травма (бытовая, производственная, огнестрельные ранения, сосудистые заболевания - атеросклероз), в 42%—сосудистые заболевания, в 10%—опухоли и врожденные деформации. Среди больных с ампутационными дефектами лица с ампутациями нижних конечностей составляют 92 %, с ампутациями верхних конечностей — 8 %. При этом вычленение в тазобедренном суставе и высокая (до 8 см) культя бедра встречается в 4 % случаев, культя бедра на различных уровнях (за исключением высокой)- 33,7 %, культя голени на различных уровнях — 51,3%, культя стопы — 8%; вычленение и ампутационная культя плеча на различных уровнях — в 24,5 % случаев, культя предплечья — 29,4 %, культя кисти — 3,9%, культя пальцев кисти — 42,2 %.

При ампутации высока степень инвалидизации: Лицам, перенесшим ампутацию одной руки на уровне предплечья - устанавливается 3-я группа инвалидности бессрочно.

Другой немаловажной проблемой является восстановление двигательной функции у пациентов после перенесенного инсульта. 450 тыс. в год на территории России, из 1000 заболеваемость 2,3-3,3 у лиц старше 25 лет. 2/3 больных с двигательными нарушениями, определяющие тяжесть инвалидизации. Экономические потери составляют от 225-336 млн. руб. в год. Данные экономические потери возникают по причине стойкой утраты трудоспособности пациентов (первая и вторая группы инвалидности). Существующие методы реабилитации успешно применяемые в сосудистых центрах к сожалению имеют значительные ограничение. Во первых реабилитация имеет временное ограничение сроками госпитализации. Во – вторых не все пациенты проходят через центры имеющие реабилитационные отделения достаточной мощности (оснащенности). В - третьих реабилитация должна проходить с максимальной нагрузкой в первые два года после перенесенного инсульта, т.к. позже пластичность процессов коры головного мозга снижается и эффективность реабилитационных мероприятий экспоненциально снижается. На данном этапе у пациента формируется двигательных дефицит на который воздействовать доступными методами практический не возможно. Все это в комплексе обусловливает трудность реабилитации данных пациентов и стойкость возникшего двигательного дефицита у данных пациентов.

Научный коллектив:

- Повереннова И.Е. профессор, д.м.н., заведующая кафедрой неврологии и нейрохирургии
- Пятин В.Ф., профессор, д.м.н., заведующий кафедрой нормальной физиологии
- Антипов О.И., профессор, д.ф-м.н, заведующий лабораторией биофизики
- Захаров А.В., ассистент, к.м.н., заведующий лабораторией нейроинтерфейсов
- Сергеева М. С., доцент, к. б. н., заведующая лабораторий нейрофизиологии
- Широлапов И. В., старший преподаватель, к. м. н.
- Тюрин Н. Л., старший преподаватель, к. м. н.

Финансовая модель:

Экономические потери от инсультов и травм ЦНС в России составляют от 500 млн рублей в год (Е.И.Гусев,В.И.Скворцова и соавт. «Эпидемиология инсульта в России» 2012 г.). Количество случаев превышает 450 000 ежегодно. 2\3 больных страдают двигательными и речевыми нарушениями. При охвате рынка в 1% ежегодный объем продаж управляемых нейрокомпьютерным интерфейсом двигательных и речевых ортезов составит 3000 штук. При средней цене устройства в 1 млн рублей, ожидаемый годовой объем продаж составляет 3 млрд рублей.

Конкурентные преимущества проекта:

Современные нейрокомпьютерные интерфейсы, такие как <u>MindWave</u> производитель <u>MindWave</u>, <u>XWave headset</u> и <u>MyndPlay BrainBand</u> регистрируют мозговую активность по 8 каналам ЭЭГ. В данных устройствах реализуется технология регистрации когнитивного вызванного потенциала на значимый зрительный стимул. Этого решения недостаточно для обеспечения полноценной работы биотического протеза или ортеза.

В предлагаемой работе предлагается верификация и развитие методики распознавания нейрофизиологических коррелятов электрической активности головного мозга и скелетных мышц с целью последующей реализации технологии регистрации когнитивного двигательного потенциала (планирование движения) с помощью не менее чем 6 неинвазивных электродов, устанавливаемых в проекции моторной и премоторной коры головного мозга. Регистрируемые сигналы в последующем будут обрабатываться с помощью использующего разработанный алгоритм нейросетевого классификатора и интерпретироваться как дифференцированное движение.

Инновационность:

Будет впервые в мировой практике методики усиленной активации нейронов сенсомоторной области коры головного мозга при исследованиях паттернов электрической мозговой. Планируется создание уникального математического аппарата выявления двигательных и сенсорных паттернов электрической активности мышц, сенсорной и моторной коры головного мозга универсальность математического алгоритма в части выявления нейрофизиологических коррелятов двигательных паттернов в структуре ЭЭГ и ЭМГ. Планируемая достоверность выявления нейрофизиологических коррелятов двигательных паттернов в структуре ЭЭГ и ЭМГ - не менее 80%.

Выполняемые работы будут проводиться в целях разработки в последующем индивидуальных биомедицинских приборов в области двигательной реабилитации и в развитии активных протезов на основе распознавания мозговых коррелятов (образов) сенсорного и миоэлектрического управления и диагностики мультифункциональных точных и воспроизводимых паттернов активации мышц при движениях.

Информация о профильных публикациях, грантах и соисолнителях:

1. СРАВНЕНИЕ СКОРОСТИ И ТОЧНОСТИ ФРАКТАЛЬНЫХ МЕТОДОВ ДЕТЕРМИНИРОВАННОГО ХАОСА ПРИМЕНИТЕЛЬНО К РАСПОЗНАНИЮ СТАДИЙ СНА

Антипов О.И., Захаров А.В., Неганов В.А.

Бюллетень Восточно-Сибирского научного центра СО РАМН. 2013. № 2-1 (90). С. 9-14.

2. УСТРОЙСТВО ДЛЯ ВЫЯВЛЕНИЯ СТАДИЙ СНА ПРИ ПОЛИСОМНОГРАФИИ Антипов О.И., Неганов В.А., Захаров А.В.

патент на полезную модель RUS 122271 11.01.2012

3. ВОЗМОЖНОСТИ РАЗЛИЧНЫХ МЕТОДОВ АВТОМАТИЧЕСКОГО РАСПОЗНАВАНИЯ СТАДИЙ СНА

Антипов И.Е., Захаров А.В., Повереннова О.И., Неганов В.А., Ерофеев А.Е. Саратовский научно-медицинский журнал. 2012. Т. 8. № 2. С. 374-379.

4. ФИЗИЧЕСКАЯ НАГРУЗКА УСКОРЕНИЕМ -РАСШИРЕНИЕ РЕАБИЛИТАЦИОННЫХ ВОЗМОЖНОСТЕЙ ВОССТАНОВИТЕЛЬНОЙ МЕДИЦИНЫ Пятин В.Ф., Широлапов И.В.

Вестник восстановительной медицины. 2009. № 29. С. 24.

5. СПОСОБ ПРОГНОЗИРОВАНИЯ ПРОФИЛЯ ФУНКЦИОНАЛЬНОЙ АСИММЕТРИИ МОЗГА ЧЕЛОВЕКА

Пятин В.Ф., Сивков В.Б., Лаврова О.В.

патент на изобретение RUS 2245676 21.05.2003

6. АНАЛИЗ И ПРОГНОЗИРОВАНИЕ ПОВЕДЕНИЯ ВРЕМЕННЫХ РЯДОВ: БИФУРКАЦИИ, КАТАСТРОФЫ, СИНЕРГЕТИКА, ФРАКТАЛЫ И НЕЙРОННЫЕ СЕТИ

Антипов О.И.

Антипов О. И., Неганов В. А.; под ред. Неганова В. А., Москва, 2011.

7. ПОКАЗАТЕЛЬ ХЕРСТА БИОЭЛЕКТРИЧЕСКИХ СИГНАЛОВ *Антипов О.И., Нагорная М.Ю.*

Инфокоммуникационные технологии. 2011. Т. 9. № 1. С. 75-77.