[Question 1]

Consider the following CFG:

 $S \rightarrow aS \mid ba$

Prove that this generates the language defined by the regular expression a*ba

Given $S \rightarrow aS \mid ba$

Let the language generated by the CFG be $\mathcal{L}_{\mathit{CFG}}$

Let the language defined by the regular expression be $L_{ast ba}$

To show $L_{CFG} = L_{a*ba}$, we must prove that

1. $L_{CFG} \subseteq L_{a*ba}$	Every string generated by the CFG is also in the language $a st$
	ba
2. $L_{a*ba} \subseteq L_{CFG}$	Every string in the language $a*ba$ can be generated by the CFG
	is also

1.

Σ : Terminal(s)	a, b
<pre>V: Non-terminal(s)</pre>	S
<pre>P: Production Rule(s)</pre>	P1.
	$S \Rightarrow _aS$
	⇒ _aaS
	$ \Rightarrow _aaa aaS$
	will generate words with arbitrary number of a's
	P2.
	$S \Rightarrow ba$
	will generate just the word ba

Therefore, any string generated by L_{CFG} will be in the form a*ba

2.

a* can be generated with the production P1: $S\Rightarrow _aS$ ba can be generated with the production P2: $S\Rightarrow ba$ Therefore, any string generated by L_{a*ba} can be generated by a*ba L_{CFG}

Thus, $L_{CFG} = L_{a*ba}$

[Question 2]

Find CFGs for the following languages over the alphabet $\Sigma = \{a \ b\}$: All words that do not have the substring ab.

Σ : Terminal(s)	a, b
<pre>V: Non-terminal(s)</pre>	S, StartsWithA, StartsWithB, RemainingAsAfterB
P: Production Rule(s)	P1. $S \Rightarrow \land$
	P2. $S \Rightarrow StartsWithA$
	P3. $S \Rightarrow StartsWithB$
	w $ ext{ill}$ generate the empty string \wedge
	o <mark>r</mark> A
	<mark>or</mark> StartsWithB
	P4. StartsWithA \Rightarrow aStartsWithA
	P5. StartsWithA \Rightarrow aStartsWithB
	P6. StartsWithA $\Rightarrow \land$
	will generate strings starting with a, followed by
	more a's.
	or strings starting with a, followed by $StartsWithB$.
	P7. StartsWithB ⇒ b RemainingAsAfterB
	P8. StartsWithB ⇒ b
	will generate strings starting with b, followed by more b's
	<pre>or strings starting with b, followed by</pre>
	RemainingAsAfterB.
	or just the word b
	P9. RemainingAsAfterB ⇒ a RemainingAsAfterB
	P10. RemainingAsAfterB $\Rightarrow \land$
	will generate strings starting with b, followed by more a's.
	or the empty string ∧

a* can be generated with the production PROD 1: $S\Rightarrow _aS$ ba can be generated with the production PROD 2: $S\Rightarrow ba$ Therefore, any string generated by L_{a*ba} can be generated by a*ba L_{CFG}

Thus,

 $\mathcal{L}_{\mathit{CFG}}$ guarantees that no generated string contains the substring "ab."

Question 3

Investigate each of the CFGs provided and decide whether the word *abba* is generated by the given CFGs.

In the case where *abba* is not generated a brief discussion why a particular CFG does not generate *abba*.

If abba is indeed generated, then draw the corresponding syntax tree illustrating the generation of *abba*.

1. CFG 1: $S \rightarrow aSb \mid ab$

Σ : Terminal(s)	a, b
<pre>V: Non-terminal(s)</pre>	S
P: Production Rule(s)	P1: $S \Rightarrow aSb$
	P2: $S \Rightarrow ab$

Production Rule	Terminal(s) generated
PROD 1:	3
$S \Rightarrow aSb$	a
PROD 1:	h
$S \Rightarrow aSb$	U
PROD 1:	h
$S \Rightarrow aSb$	U
PROD 2:	
$S \Rightarrow ab$	a

2. CFG 2: $S \rightarrow aS \mid bS \mid a$

Σ : Terminal(s)	a, b
<pre>V: Non-terminal(s)</pre>	S
<pre>P: Production Rule(s)</pre>	P1: $S \Rightarrow aS$
	$P2: S \Rightarrow bS$
	P3: $S \Rightarrow a$

Production Rule	Terminal(s) generated
PROD 3:	а
$S \Rightarrow a$	-
PROD 2:	bb
$S \Rightarrow bS$	DD
PROD 3:	
$S \Rightarrow a$	a

3. CFG 3
$$S \rightarrow aS \mid aSb \mid X$$

 $X \rightarrow aXa \mid a$

Σ : Terminal(s)	a, b
<pre>V: Non-terminal(s)</pre>	S , X
<pre>P: Production Rule(s)</pre>	P1: $S \Rightarrow aS$
	P2: $S \Rightarrow ab$
	$P3:\ S \Rightarrow X$
	P4: $X \Rightarrow aXa$
	P5: $X \Rightarrow a$

Production Rule	Terminal(s) generated
PROD 1:	a
$S \Rightarrow aS$	u
PROD 1:	h
$S \Rightarrow aSb$	b
PROD 1:	b
$S \Rightarrow aSb$	D
PROD 3:	_
$X \Rightarrow a$	a

4. CFG 4: $S \rightarrow aAS \mid a$ $A \rightarrow SbA \mid SS \mid ba$

Σ : Terminal(s)	a, b
<pre>V: Non-terminal(s)</pre>	S , A
<pre>P: Production Rule(s)</pre>	P1: $S \Rightarrow aAS$
	P2: $S \Rightarrow a$
	P3: $A \Rightarrow SbA$
	P4: $A \Rightarrow SS$
	P5: $A \Rightarrow ba$

Production Rule	Terminal(s) generated
PROD 1:	а
$S \Rightarrow aAS$ PROD 4:	
$A \Rightarrow SS$	aa
PROD 1:	aab
$S \Rightarrow aAS$ PROD 1:	
$S \Rightarrow aAS$	aabb
PROD 2:	aabba
$S \Rightarrow a$	
PROD 3:	a abba b
$A \Rightarrow ba$	dabbas
PROD 2:	abba
$S \Rightarrow a$	· · - •

5. CFG 5: $S \rightarrow aB|bA$ $A \rightarrow a|aS|bAA$ $B \rightarrow b|bS|aBB$

Σ : Terminal(s)	a, b
<pre>V: Non-terminal(s)</pre>	S , A , B
P: Production Rule(s)	P1: $S \Rightarrow aB$
	P2: $S \Rightarrow bA$
	P3: $A \Rightarrow a$
	P4: $A \Rightarrow aS$
	P5: $A \Rightarrow bAA$
	P6: $B \Rightarrow b$
	P7: $B \Rightarrow bS$
	P8: $B \Rightarrow aBB$

Production Rule	Terminal(s) generated
PROD 1:	a
$S \Rightarrow aB$	
PROD 7:	ab
$B \Rightarrow bS$	
PROD 3:	abb
$A \Rightarrow a$	
PROD 3:	abba
$A \Rightarrow a$	abba
PROD 5:	
$A \Rightarrow bAA$	

Question 4

Convert the grammar below to CNF.

$$S \rightarrow aX \mid Yb$$

$$X \rightarrow ZXZY \mid a$$

$$Y \rightarrow b \mid bY \mid \Lambda$$

$$Z \rightarrow a \mid \Lambda$$

1. Eliminate $\epsilon\text{-productions}$ from the grammar

$$S \rightarrow aX \mid Yb$$

$$X \rightarrow ZXZY \mid a$$

$$Y \rightarrow b \mid bY$$

$$Z \rightarrow a \mid \Lambda$$

2. Eliminate any non-terminal that produces a single terminal

$$Y \rightarrow B \mid BY$$

$$B \rightarrow b$$

$$Z \rightarrow A \mid \Lambda$$

$$A \rightarrow a$$

3. Ensure productions of the form $A \rightarrow BC$ or $A \rightarrow a$:

Rewrite $X \rightarrow ZXZY$ as:

$$C \to FG$$

$$F \rightarrow ZX$$

$$G \rightarrow ZY$$

Chomsky Normal Form.

$$S \rightarrow aC \mid Yb$$

$$C \rightarrow FG$$

$$F \rightarrow ZX$$

$$G \rightarrow ZY$$

$$X \rightarrow a$$

$$Y \rightarrow B \mid BY$$

$$B \rightarrow b$$

$$Z \rightarrow A \mid \Lambda$$

$$A \rightarrow a$$

Question 5

Develop a DPDA accepting the language $L = \{b^{n+1}(ab)a^{n-1} \mid n \geq 2\}$

Define DPDA

$\Sigma = \{a, b\}$	input alphabet
$\Gamma = \{X Y\}$	stack alphabet
L	Tape of infinite length containing
	a string
The states as defined on page 307	
of the textbook.	
δ	transition function
	read b, push
	read b, push
	read a, push
	read a, pop from stack