泊松方程

段元兴 2020 年 6 月 1 日

CONTENT 2

Content

1	计算结果	3
2	数值求解泊松方程	3
3	插值得到高斯点上的值	3
4	网格单元上的高斯积分	3
5	总 L_2 误差 E_{L_2}	3

1 计算结果 3

1 计算结果

规模	最大误差(格点上)	E_{L_2}	总耗时/ms
16	3.22E-3	4.10E-3	0.086
32	8.04E-4	1.02E-3	0.1825
64	2.01E-4	2.56E-4	0.5863

5.02E-5

1.25E-5

3.14E-6

7.84E-7

6.40E-5

1.60E-5

4.00E-6

1.00E-6

2.2284

7.8982

30.9301

121.3196

表 1: 计算结果(CPU: Ryzen9 3950x, 单线程)

可以发现 E_{L_2} 是随着N以 $\frac{1}{N^2}$ 下降的, 但是计算时间也以 N^2 上升.

128

256

512

1024

2 数值求解泊松方程

由于矩阵是大规模稀疏的形式, 所以采用稀疏共轭梯度方法求解来保证计算速度和准确度. 迭代过程显示对于每个过程仅仅进行了一次迭代就能达到 10^{-15} 以上的的精度, 仔细观察后发现是因为我的初始近似解为0, 所以在第一次迭代时候就直接使用了 f_{ij} 作为近似解, 而这与真解仅仅相差一个常数倍数, 所以在第二次检验的时候就直接过了.

3 插值得到高斯点上的值

这里使用基函数来线性插值得到解在点 G_i , i = 0, 1, 2, 3上的值:

$$g_i = \sum_{j=0}^{3} \hat{u}_j \phi_j(G_i) \tag{1}$$

其中i, j = 0, 1, 2, 3分别对应与点: 左下, 右下, 左上, 右上, 与题中所给的不一样(方便使用与运算得到正负号).

4 网格单元上的高斯积分

已知在 $[-1,1] \times [-1,1]$ 区间上的高斯积分为:

$$\int_{-1}^{1} \int_{-1}^{1} (\hat{u} - u)^2 dx dy = \sum_{i=0}^{3} (g_i - u(G_i))^2$$
 (2)

考虑到区间的缩放得到:

$$\int_{\Omega_{ij}} (\hat{u} - u)^2 dx dy = \frac{1}{4N^2} \sum_{i=0}^3 (g_i - u(G_i))^2$$
(3)

$\mathbf{5}$ 总 L_2 误差 E_{L_2}

直接将全部小区间得到的误差求和得到:

$$E_{L_2} = \sqrt{\sum_{i,j} \frac{1}{4N^2} \sum_{k=0}^{3} (g_k - u(G_k))^2}$$
 (4)