THE HYDROGEN ATOM

General Chemistry I, Lecture Series 5 Qixi Mi

Reading: OGB8 §5.1

Outline

Oscillations in 2D

Atomic orbitals: Appearance

Atomic orbitals: Properties

1D Standing Wave (1)

(1) $\psi(x) = 0$ for $x \le 0$ or $x \ge L$

(Boundary condition 边界条件)

(2)
$$\int |\psi(x)|^2 dx = 1$$

1D Standing Wave (2)

The n^{th} Wave function: $\psi_n(x) \propto \sin\left(n\pi\frac{x}{L}\right)$, n = number of nodes + 1.

From 1D to 2D Standing Waves /= 1 /= 2

Oscillations of a Round Plate

The 1s Wave

主量子数

Principal quantum number n =Total number of nodes + 1

角(动量)量子数

Angular quantum number / = Number of angular nodes

$$I = 0, 1, 2, 3... \implies s, p, d, f...$$

No nodes.

$$n = 1$$
, $l = 0 \Longrightarrow 1s$

The 2s Wave

1 nodal ring (radial node)

$$n = 2$$
, $l = 0 \Longrightarrow 2s$

The 2p Wave

1 nodal line (angular node)

$$n = 2, l = 1 \implies 2p$$

The 3s Wave

2 nodal rings (radial nodes)

$$n = 3, l = 0 \implies 3s$$

The 3p Wave

1 nodal ring (radial node)

1 nodal line (angular node)

$$n = 3, l = 1 \implies 3p$$

The 3d Wave

2 nodal lines (angular nodes)

$$n = 3, l = 2 \implies 3d$$

Outline

Oscillations in 2D

Atomic orbitals: Appearance

Atomic orbitals: Properties

Spherical Polar Coordinates 球极坐标

Azimuthal angle 方位角

$$E_{\rm p} = -\frac{1}{4\pi\varepsilon_0} \frac{Ze^2}{r}$$

Orbital 轨道; 轨域

0.5

-0.5

The 1s Wave in 3D

TS OFDITAL CLOSS SECTION

No nodes.

$$n = 1, I = 0 \Longrightarrow 1s$$

Wave Function of the 1s Orbital

$$\psi_{1s} = \frac{1}{\sqrt{\pi}} a_0^{-3/2} \cdot \exp\left(-\frac{r}{a_0}\right)$$

Bohr radius $a_0 = 53 \text{ pm} = 0.53 \text{ Å}$

1 Ångstrom = 10^{-10} m

0.3

0.2

0.1

-0.1

-0.2

-0.3

2s orbital cross section

The 2s Wave in 3D

1 nodal sphere (radial node)

$$n = 2$$
, $l = 0 \Longrightarrow 2s$

Wave Function of the 2s Orbital

0.2

0.15

0.1

0.05

-0.05

-0.1

-0.15

-0.2

The 2p Wave in 3D

2p orbital cross section

1 nodal plane (angular node)

$$n = 2, l = 1 \implies 2p$$

Wave Function of the $2p_z$ Orbital

The $2p_x$ and $2p_y$ Orbitals

Comparison of 1s, 2s, 3s Orbitals

The 3p Orbitals

0.06

0.04

0.02

-0.02

-0.04

The 3d Wave in 3D

3d orbital cross section

2 nodal planes (angular nodes)

$$n = 3, l = 2 \implies 3d$$

The 3d Orbitals (1)

The 3d Orbitals (2)

Comparison of 3s, 3p, 3d Orbitals

Outline

- Oscillations in 2D
- Atomic orbitals: Appearance
- Atomic orbitals: Properties

$$A = 4\pi r^2$$
, $dV = Adr = 4\pi r^2 dr$.

Orbital Radius

Most probable radius r_{mp}

For Bohr Model: $r_n = n^2 a_0$ For 1s, 2p, 3d, ...: $r_{mp,n} = n^2 a_0$ Orbital Angular Momentum

$$L = \sqrt{I(I+1)} \cdot h/2\pi \approx I \cdot h/2\pi$$

For 1s, 2s orbitals: I = 0, L = 0.

For 2p, 3p orbitals: I = 1, $L = \sqrt{2} \hbar$, L can take 3 orientations.

For 3*d*, 4*d* orbitals: I = 2, $L = \sqrt{6} \hbar$, L can take 5 orientations.

Old vs. New Quantum Theory

Niels Bohr (Copenhagen, Cambridge, 1885–1962)

Erwin Schrödinger (Zürich, 1887–1961)

Orbital Energy

Bohr, OGB8 p.143

$$E_n = -\frac{R_H}{n^2},$$
 $R_H = 2.18 \times 10^{-18} \,\text{J}$
 $= 13.6 \,\text{eV}$

Non-Bohr Orbitals

Elliptical orbits 椭圆轨道

Radial Distribution

For H atom, $r(3s) \neq r(3p) \neq r(3d)$

$$E_{k}(3s) = E_{k}(3p) = E_{k}(3d)$$

$$E_{p}(3s) = E_{p}(3p) = E_{p}(3d)$$

Summary

Principal quantum number n = Total number of nodes + 1n = 1, 2, 3, ...

Angular momentum quantum number I = Number of nodal planes I = 0, 1, 2, ..., n - 1.

$$E_n = -\frac{13.6 \text{ eV}}{n^2}$$

$$L = \sqrt{I(I+1)} \cdot h/2\pi \approx I \cdot h/2\pi$$

For 1s, 2p, 3d, ...:
$$r_{mp,n} = n^2 a_0$$

2s, 3s, 2p exhibit penetration effect.

Midterm 1 on Wednesday Oct. 31st

Time: 10:15 – 11:00 am

