GEOMETRY

Chapter 16

4th
SECONDARY

RECTAS, PLANOS Y ÁNGULO DIEDRO

MOTIVATING | STRATEGY

En geometría del espacio estudiamos a los puntos, rectas y planos que determinan a las figuras geométricas en el espacio y sólidos geométricos, por ejemplo:

Planos perpendiculares

Angulo diedro

Planos paralelos y planos secantes

Rectas alabeadas

RECTAS, PLANOS Y ÁNGULO DIEDRO

DETERMINACIÓN DE UN PLANO

Existen 4 postulados de determinación de un plano en el espacio.

1. Tres puntos no colineales

A, B y C determinan un plano.

2. Una recta y un punto exterior a ella

3. Dos rectas secantes

4. Dos rectas paralelas

POSICIONES RELATIVAS ENTRE RECTAS Y PLANOS

1. Recta contenida en un plano

Una recta está contenida en un plano, si todos los puntos de la recta pertenecen al plano.

2. Recta paralela a un plano

Una recta y un plano son paralelos si no tienen puntos en común.

3. Recta secante a un plano

Un plano y una recta son secantes, si tienen solo un punto común.

HELICO | THEORY

RECTA PERPENDICULAR A UN PLANO

Si una recta es perpendicular a un plano, entonces se dice que la recta es perpendicular a todas las rectas contenidas en dicho plano.

TEOREMA:

Si una recta es perpendicular a dos rectas secantes, entonces la recta es perpendicular al plano que las contiene.

HELICO | THEORY

01

PROYECCIÓN ORTOGONAL SOBRE UN PLANO

Del gráfico:

- \checkmark E : Proyección ortogonal de A sobre el plano S.
- $\checkmark \overline{QR}$: Proyección ortogonal de \overline{BC} sobre el plano S.
- ✓ Δ FTV: Proyección ortogonal de Δ MNL sobre el plano S.

ÁNGULO FORMADO ENTRE UNA RECTA Y UN PLANO

El ángulo que forma una recta con un plano, es el que forma la recta con su proyección en el plano.

$$m \lessdot (\stackrel{\leftrightarrow}{L}; \blacksquare P) = \alpha$$

TEOREMA DE LAS TRES PERPENDICULARES

Del gráfico:

ÁNGULO DIEDRO

01

Es la figura formada por dos semiplanos que tienen su arista común.

En la figura

- . P y Q son las caras del diedro.
- . AB es la arista del diedro.

Notación

- . Ángulo diedro: $P \overrightarrow{AB} Q$
- . Diedro AB

Además

- . md AB : medida del diedro AB
- . md $\overline{AB} = \alpha$

NOTA:

Para ubicar la medida de un ángulo diedro, se recomienda utilizar el teorema de las tres perpendiculares.

1. En la figura, \overline{AB} forma con el plano P un ángulo de medida 30° y AB = 8 u. Halle la longitud de la proyección del \overline{AB} sobre el plano P.

RESOLUCIÓN:

- \overline{AB} ': Proyección del \overline{AB} sobre el plano P.
- Piden : x.
- AB`B: Notable de 30° y 60°

$$x = 4\sqrt{3} u$$

2. Halle la longitud de la proyección de \overline{AC} sobre el plano Q, si AN = 4 u, MC = 6 u y AC = 26 u.

- MN: Proyección del AC sobre el plano Q.
- Piden: MN.
 - Sea $\overline{CB} \perp \overline{AN}$ (B $\in \overline{AN}$).

$$MC = NB = 6 \land MN = CB$$

ABC: T. Pitágoras

$$26^2 = 10^2 + (CB)^2$$

 $676 = 100 + (CB)^2$

$$576 = (CB)^2$$

$$24 = CB$$

MN = 24 u

3. En la figura, A'B' = 12 u y la diferencia de las distancias de B y A al plano P es 5 u, halle AB.

4.- Se tienen los cuadrados ABCD y ABEF contenidos en planos perpendiculares. Si $EF = 3\sqrt{3}$ u, calcule DE.

- RESOLUCIÓN: Piden : x.
 - Por dato.
 ABCD y ABEF: Cuadrados
 - Se traza \overline{AE} .
 - AFE: Notable de 45° y 45°
 - DAE: T. Pitágoras

$$x^{2} = (3\sqrt{3})^{2} + (3\sqrt{6})^{2}$$

$$x^{2} = 27 + 54$$

$$x^{2} = 81$$

5.- Halle la medida del ángulo diedro P-AB-Q mostrado.

6. Debido a una tormenta tropical un árbol de 18 m de altura es alcanzado por un rayo y se parte a 6 m del suelo como se muestra en la figura. Calcule la longitud de la proyección del tramo BC sobre el suelo.

RESOLUCIÓN:

AC: proyección de BC sobre el suelo

Piden: AC = x

ABC: notable de 30° y 60°

$$x = 6\sqrt{3} \text{ m}$$

7. En la figura se muestra una bisagra la cual se abre formándose un ángulo diedro de 120°. Halle la distancia de A hacia B.

