• Network:

- o A directed graph where each edge has its weight represented in the form flow/capacity.
- O For any node, Σ incoming flow = Σ outcoming flow.

• Single-Source Max Flow problem:

- o Find the maximum amount of flow that can pass through the network at a time.
 - The path goes from a special node that has no incoming edges called the source.
 - To another special node that has no outcoming edges called the sink/target.
- o **Multiple-Source** variant can be transformed to the single source problem:
 - Create a super-source node and add edges with infinite capacity from it to all starting nodes.
 - Create a super-sink node and add edges with infinite capacity all sink nodes to it.
- o Applications:
 - Shipping products, Bipartite matching, Image segmentation.

• Ford-Fulkerson Algorithm:

- 1. Begin with flow = 0.
- 2. While there is an augmenting path in the residual network
- 3. Augment the flow through that path.

o Augmenting path:

- Any path (not necessarily directed) from source to sink such that it doesn't pass through a full forward edge ($\mathbf{f} = \mathbf{c}$), or an empty backward edge ($\mathbf{f} = \mathbf{0}$).
- A directed path through the residual network, that can go through any edge with weight > 0.
- Residual network: the same original network graph, replacing each edge (u, v) with weight f/c with two edges:
 - The edge (u, v) with weight c f.
 - Represents the free space, how much flow can we add here.
 - The edge (v, u) with weight f.
 - Represents how much flow is currently passing that can we decrease.
- o How to augment the flow through a path?
 - Calculate the bottleneck value 'm' of the path (minimum-weight edge in the path).
 - For each edge (u, v) in the path
 - Weight on edge (u, v) = m
 - Weight on edge (v, u) += m
 - If any edge weight became 0, delete it (it can't be used in any path).
- o How to find an augmenting path?
 - Ford-Fulkerson: doesn't specify search algorithm
 - Can DFS the residual network.
 - **Time complexity:** $O(|E|.|f^*|)$, f^* is the max flow value.
 - **Edmonds-Karp:** (more efficient implementation): BFS the residual network.
 - Time complexity: $O(|V|.|E|^2)$

- Max-Flow, Min cut theorem:
 - Cut (in a network):
 - Dividing the network into two disjoint sets (S, T), by removing one or more edges.
 - Separate the edges such that the sink is no longer reachable from the source.
 - o Minimum cut:
 - The cut with minimum capacity.
 - Cut capacity: upper bound for the flow that can go through the cut.
 - Σ forward (S \rightarrow T) flow for all removed edges.
 - o Net flow across a cut: The total amount of flow that can pass if this cut wasn't there
 - Σ forward (S \rightarrow T) Σ backward (S \leftarrow T) flow.
 - o Surprisingly,
 - Net flow across any cut in a network = Value of its flow \leq Capacity of any cut.
 - Value of max flow = Capacity of min cut.
- **Example:** A flow network with a random cut.
 - o No more augmented paths.
 - \circ Net flow = 11 + 8 = 15 + 4 = 12 + 11 4 = 19
 - o Cut capacity = 12 + 14 = 26
- However, this situation is not optimal and cannot be reached by the regular FF algorithm.

- The correct solution for this graph:
 - o The cut is circled in red.
 - o Max flow value = Min cut capacity = 23

• **Visualizer:** https://visualgo.net/en/maxflow