

Definición y concepto básico de procesos

¿Qué es un proceso?

Un proceso se define como un programa en ejecución por parte del usuario o del sistema.

Recursos que necesitan los procesos:

- Memoria
- Archivos
- Dispositivos de E/S

Características fundamentales de los procesos

Cada proceso tiene características esenciales:

Identificación única

Asignación de un PID (Process Identifier)

Identificador del usuario propietario que lo inició

C≡ Prioridad

Nivel de prioridad para determinar qué proceso se ejecuta primero

Recursos

Consumen y gestionan recursos del sistema durante su ejecución

Administrador de Tareas mostrando procesos con sus PIDs y recursos asignados

Estados de un proceso

Ciclo de vida de un proceso

Nuevo/Creado

Proceso en creación, se le asignan recursos iniciales

Preparado/Listo

Esperando a ser asignado a la CPU para ejecución

Ejecución

Proceso actualmente en ejecución en la CPU

Bloqueado/Espera

Esperando un evento o recurso para continuar

Terminado

Proceso ha finalizado su ejecución

Gestión de procesos

Operaciones esenciales del sistema operativo:

Cuando un usuario inicia un programa o el sistema necesita ejecutar una tarea

- Control del avance
 Monitorización y gestión del progreso del proceso
- Tratamiento de excepciones

 Manejo de errores o situaciones inesperadas durante la ejecución
- Asignación de recursos

 Distribución eficiente de procesador, memoria y dispositivos hardware
- Sistema de comunicación
 Establecimiento de mecanismos para la comunicación entre procesos

Diagrama de gestión de procesos: CPU, cola de listos, cola de E/S y cola de eventos

Procesos vs. Hebras (Threads)

Diferencias fundamentales:

Proceso

Unidad de ejecución propietaria de recursos

Hebras (Threads)

Unidades de ejecución dentro de un proceso que comparten sus recursos

Ventajas de las hebras:

- Comunicación más fácil y eficiente
- No requiere cambio de contexto del proceso
- Menor sobrecarga en creación y gestión

A Limitación importante

La protección de recursos entre hebras del mismo proceso no es controlada por el sistema operativo

Un proceso puede contener múltiples hebras que comparten sus recursos

Modelo de proceso multihilo con bloque de control de proceso y múltiples hilos

Conceptos fundamentales:

X

Sistemas multiproceso

Permiten realizar varios procesos simultáneamente, ejecutando varias tareas al mismo tiempo

Sistemas multitarea

Existen varios procesos que se ejecutan en un mismo intervalo de tiempo

★ Multiprogramación

Permite aprovechar de forma más eficiente los recursos del sistema, especialmente el tiempo de CPU

- Optimización del tiempo
- Mejor uso de memoria
- Mayor rendimiento

Múltiples procesadores conectados a una memoria central

Sistemas de multiprocesamiento: asimétrico y simétrico

Planificación de procesos

Funciones del planificador (scheduler):

Asignación de CPU

Determina cómo se asigna la CPU a un solo proceso en cada momento

Cambio de proceso

Decide si se debe cambiar el proceso activo según la política de planificación

Gestión de contexto

Salva el entorno volátil del proceso actual y carga el del nuevo proceso

Ejecución

Cede el control al nuevo proceso elegido

(S) El despachador se invoca cuando:

- Un proceso finaliza
- El SO decide detener el proceso activo
- El proceso agota su quantum

Ejemplo de planificación de procesos con tabla y diagrama de Gantt

Diagrama de Gantt con la ejecución de cinco procesos a lo largo del tiempo

Ejemplo práctico de planificación

Aplicación del algoritmo FIFO (First In, First Out)

† Comparación de órdenes

El algoritmo **FIFO** ejecuta los procesos en el orden en que llegan. El orden de ejecución afecta significativamente al rendimiento del sistema.

Orden
$$1 \rightarrow 2 \rightarrow 3$$

$$(18 + 24 + 30) \div 3$$

24

Orden
$$2 \rightarrow 3 \rightarrow 1$$

$$(6+12+30) \div 3$$

16

El segundo orden de ejecución reduce el tiempo medio de retorno en un 33%, demostrando la importancia de una buena estrategia de planificación.

Tipos de procesos:

Independientes

Pueden ejecutarse, detenerse y rearancarse sin efectos negativos Son deterministas y reproducibles

Ej: programa que calcula números primos

Cooperantes

Comparten su estado, su funcionamiento no es determinista Pueden ser irreproducibles y generar situaciones inesperadas

<>> Ej: dos procesos que escriben en la misma pantalla

▲ Riesgo en procesos cooperantes

Pueden producirse situaciones peligrosas donde se pierda el control del sistema

PARALELA CONCURRENTE Cola de Procesador

Comparación entre procesamiento concurrente y paralelo

SISTEMAS OPERATIVOS

Concurrencia Exclusión mutua y sincronización

Mg. Samuel Oporto Díaz

CONCURRENCIA

Conceptos de concurrencia, exclusión mutua y sincronización