UNI

Entwurf, Analyse und Umsetzung von Algorithmen Runtime analysis Minsort / Heapsort, Induction

Prof. Dr. Rolf Backofen

Bioinformatics Group / Department of Computer Science Entwurf, Analyse und Umsetzung von Algorithmen

Structure

Runtime Example Minsort

Basic Operations

Runtime analysis

Minsort Heapsort

Introduction to Induction

Logarithms

Runtime Example Minsort

Basic Operations

Runtime analysis

Minsort

Heapsort

Logarithms

How long does the program run?

How long does the program run?

- In the last lecture we had a schematic
- **Observation:** it is going to be "disproportionately" slower the more numbers are being sorted

How long does the program run?

- In the last lecture we had a schematic
- **Observation:** it is going to be "disproportionately" slower the more numbers are being sorted
- How can we say more precisely what is happening?

How can we analyze the runtime?

Ideally we have a formula which provides the runtime of the program for a specific input

How can we analyze the runtime?

- Ideally we have a formula which provides the runtime of the program for a specific input
- **Problem:** the runtime is depends on many variables, especially:
 - What kind of computer the code is executed on
 - What is running in the background
 - Which compiler is used to compile the code

How can we analyze the runtime?

- Ideally we have a formula which provides the runtime of the program for a specific input
- **Problem:** the runtime is depends on many variables, especially:
 - What kind of computer the code is executed on
 - What is running in the background
 - Which compiler is used to compile the code
- **Abstraction 1:** analyze the number of basic operations, rather than analyzing the runtime

Runtime Example
Minsort

Basic Operations

Runtime analysis
Minsort
Heapsort

Logarithms

Incomplete list of basic operations:

- \blacksquare Arithmetic operation, for example: a + b
- Assignment of variables, for example: x = y
- Function call, for example: minsort(lst)

Intuitive:

lines of code

Better:

lines of machine code

Best:

process cycles

Important:

The actual runtime has to be roughly proportional to the number of operations.

Structure

Runtime Example Minsort

Basic Operations

Runtime analysis

Minsort

Heapsort
Introduction to Induction

Logarithms

How many operations does *Minsort* need?

- Abstraction 2: we calculate the upper (lower) bound, rather than exactly counting the number of operations Reason: runtime is approximated by number of basic operations, but we can still infer:
 - Upper bound
 - Lower bound

How many operations does Minsort need?

- Abstraction 2: we calculate the upper (lower) bound, rather than exactly counting the number of operations
 Reason: runtime is approximated by number of basic operations, but we can still infer:
 - Upper bound
 - Lower bound

■ Basic Assumption:

- \blacksquare *n* is size of the input data (i.e. array)
- \blacksquare T(n) number of operations for input n

How many operations does *Minsort* need?

■ **Observation:** the number of operations depends only on the size *n* of the array and not on the content!

- **Observation:** the number of operations depends only on the size *n* of the array and not on the content!
- Claim: there are constants C_1 and C_2 such that:

$$C_1 \cdot n^2 \le T(n) \le C_2 \cdot n^2$$

- **Observation:** the number of operations depends only on the size *n* of the array and not on the content!
- Claim: there are constants C_1 and C_2 such that:

$$C_1 \cdot n^2 \le T(n) \le C_2 \cdot n^2$$

This is called "quadratic runtime" (due to n^2)

number of operations

number of input elements n

C₂ =7/2 could have . n^2 been larger or small (exact value not relevant)

> C₁=1/2 could have been choosen smaller (not relevant), but not larger

We declare:

- \blacksquare Runtime of operations: T(n)
- Number of Elements: n
- Constants: C_1 (lower bound), C_2 (upper bound)

$$C_1 \cdot n^2 \le T(n) \le C_2 \cdot n^2$$

■ Number of operations in round i: T_i

Figure: *Minsort* at iteration i = 4. We have to check n - 3 elements

Figure: Minsort with start data

$$T_1 \leq C_2' \cdot (n-0)$$

$$T_1 \le C_2' \cdot (n-0)$$

 $T_2 \le C_2' \cdot (n-1)$

$$T_1 \le C_2' \cdot (n-0)$$

 $T_2 \le C_2' \cdot (n-1)$

$$T_3 \leq C_2' \cdot (n-2)$$

Runtime for each iteration:

$$T_1 \le C'_2 \cdot (n-0)$$

 $T_2 \le C'_2 \cdot (n-1)$
 $T_3 \le C'_2 \cdot (n-2)$

 $T_4 < C_2' \cdot (n-3)$

Figure: Minsort at iteration i

$$T_{1} \leq C'_{2} \cdot (n-0)$$
 $T_{2} \leq C'_{2} \cdot (n-1)$
 $T_{3} \leq C'_{2} \cdot (n-2)$
 $T_{4} \leq C'_{2} \cdot (n-3)$
 \vdots
 $T_{n-1} \leq C'_{2} \cdot 2$
 $T_{n} \leq C'_{2} \cdot 1$

Figure: Minsort at iteration

$$T_1 \leq C_2' \cdot (n-0)$$

$$T_2 \leq C_2' \cdot (n-1)$$

$$T_3 \leq C_2' \cdot (n-2)$$

$$T_4 \leq C_2' \cdot (n-3)$$

$$T_{n-1} \leq C_2' \cdot 2$$

$$T_n \leq C_2' \cdot 1$$

$$T(n) = (T_1 + \cdots + T_n) \leq \sum_{i=1}^n (C_2' \cdot i)$$

Alternative: Analyse the Code:

```
def minsort(elements):
    for i in range(0, len(elements)-1):
        minimum = i

        for j in range(i+1, len(elements)):
            if elements[j] < elements[minimum]:
                 minimum = j

        if minimum != i:
            elements[i], elements[minimum] = \
                  elements[minimum], elements[i]</pre>
```

Alternative: Analyse the Code:

```
def minsort(elements):
    for i in range(0, len(elements)-1):
        minimum = i

        for j in range(i+1, len(elements)):
            if elements[j] < elements[minimum]:
                 minimum = j

        if minimum != i:
        elements[i], elements[minimum] = \
                  elements[minimum], elements[i]</pre>
```


$$T(n) \leq \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} C_2'$$

$$T(n) \leq \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} C_2' = \sum_{i=0}^{n-2} (n-i-1) \cdot C_2'$$

```
def minsort(elements):
    for i in range(0, len(elements)-1):
        minimum = i

        for j in range(i+1, len(elements)):
            if elements[j] < elements[minimum]:
                 minimum = j

        if minimum != i:
            elements[i], elements[minimum] = \
                  elements[minimum], elements[i]</pre>
```

$$T(n) \leq \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} C_2' = \sum_{i=0}^{n-2} (n-i-1) \cdot C_2' = \sum_{i=1}^{n-1} (n-i) \cdot C_2'$$

Alternative: Analyse the Code:

return elements

$$T(n) \leq \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} C_2' = \sum_{i=0}^{n-2} (n-i-1) \cdot C_2' = \sum_{i=1}^{n-1} (n-i) \cdot C_2' \leq \sum_{i=1}^{n} i \cdot C_2'$$

Alternative: Analyse the Code:

return elements

$$T(n) \leq \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} C_2' = \sum_{i=0}^{n-2} (n-i-1) \cdot C_2' = \sum_{i=1}^{n-1} (n-i) \cdot C_2' \leq \sum_{i=1}^{n} i \cdot C_2'$$

Remark: C'_2 is cost of comparison \Rightarrow assumed constant

$$T(n) \leq \sum_{i=1}^n C_2' \cdot i$$

$$T(n) \leq \sum_{i=1}^{n} C'_{2} \cdot i$$
$$= C'_{2} \cdot \sum_{i=1}^{n} i$$

Proof of upper bound: $T(n) \leq C_2 \cdot n^2$

$$T(n) \leq \sum_{i=1}^{n} C'_{2} \cdot i$$

$$= C'_{2} \cdot \sum_{i=1}^{n} i$$

$$\downarrow \quad \text{Small Gauss sum}$$

$$= C'_{2} \cdot \frac{n(n+1)}{2}$$

Proof of upper bound: $T(n) \leq C_2 \cdot n^2$

$$T(n) \leq \sum_{i=1}^{n} C_2' \cdot i$$

$$= C_2' \cdot \sum_{i=1}^{n} i$$

$$\downarrow \quad \text{Small Gauss sum}$$

$$= C_2' \cdot \frac{n(n+1)}{2}$$

$$\leq C_2' \cdot \frac{n(n+n)}{2}, \ 1 \leq n$$

$$T(n) \leq \sum_{i=1}^{n} C_{2}' \cdot i$$

$$= C_{2}' \cdot \sum_{i=1}^{n} i$$

$$\downarrow \quad \text{Small Gauss sum}$$

$$= C_{2}' \cdot \frac{n(n+1)}{2}$$

$$\leq C_{2}' \cdot \frac{n(n+n)}{2}, \ 1 \leq n$$

$$= C_{2}' \cdot \frac{2 \cdot n^{2}}{2}$$

Proof of upper bound: $T(n) \leq C_2 \cdot n^2$

$$T(n) \leq \sum_{i=1}^{n} C'_{2} \cdot i$$

$$= C'_{2} \cdot \sum_{i=1}^{n} i$$

$$\downarrow \quad \text{Small Gauss sum}$$

$$= C'_{2} \cdot \frac{n(n+1)}{2}$$

$$\leq C'_{2} \cdot \frac{n(n+n)}{2}, \ 1 \leq n$$

$$= C'_{2} \cdot \frac{2 \cdot n^{2}}{2} = C'_{2} \cdot n^{2}$$

Excursion - Small Gauss Formula

Like for the upper bound there exists a C_1 . Summation analysis is the same

$$T(n) \geq \sum_{i=1}^{n-1} C'_1 \cdot (n-i)$$

Like for the upper bound there exists a C_1 . Summation analysis is the same

$$T(n) \geq \sum_{i=1}^{n-1} C'_1 \cdot (n-i) = C'_1 \sum_{i=1}^{n-1} i$$

Like for the upper bound there exists a C_1 . Summation analysis is the same

$$T(n) \geq \sum_{i=1}^{n-1} C'_1 \cdot (n-i) = C'_1 \sum_{i=1}^{n-1} i$$

 $\geq C'_1 \cdot \frac{(n-1) \cdot n}{2}$

$$T(n) \ge \sum_{i=1}^{n-1} C'_1 \cdot (n-i) = C'_1 \sum_{i=1}^{n-1} i$$

 $\ge C'_1 \cdot \frac{(n-1) \cdot n}{2}$ How do we get to n^2 ?

$$T(n) \geq \sum_{i=1}^{n-1} C'_1 \cdot (n-i) = C'_1 \sum_{i=1}^{n-1} i$$

$$\geq C'_1 \cdot \frac{(n-1) \cdot n}{2} \quad \text{How do we get to } n^2?$$

$$\downarrow \qquad n-1 \geq \frac{n}{2}, \text{ if } n \geq 2$$

$$T(n) \geq \sum_{i=1}^{n-1} C'_1 \cdot (n-i) = C'_1 \sum_{i=1}^{n-1} i$$

$$\geq C'_1 \cdot \frac{(n-1) \cdot n}{2} \quad \text{How do we get to } n^2?$$

$$\downarrow \qquad n-1 \geq \frac{n}{2}, \text{ if } n \geq 2$$

$$\geq C'_1 \cdot \frac{n \cdot n}{2 \cdot 2}$$

$$T(n) \geq \sum_{i=1}^{n-1} C'_1 \cdot (n-i) = C'_1 \sum_{i=1}^{n-1} i$$

$$\geq C'_1 \cdot \frac{(n-1) \cdot n}{2} \quad \text{How do we get to } n^2?$$

$$\downarrow \qquad n-1 \geq \frac{n}{2}, \text{ if } n \geq 2$$

$$\geq C'_1 \cdot \frac{n \cdot n}{2 \cdot 2} = \frac{C'_1}{4} \cdot n^2$$

Runtime analysis - Minsort

Runtime Analysis:

■ Upper bound: $T(n) \le C'_2 \cdot n^2$

Runtime analysis - Minsort

Runtime Analysis:

Upper bound:

 $T(n) \le C_2' \cdot n^2$ $\frac{C_1'}{4} \cdot n^2 \le T(n)$ Lower bound:

■ Upper bound:
$$T(n) \le C_2' \cdot n^2$$

Lower bound:
$$\frac{C_1'}{4} \cdot n^2 \le T(n)$$

Summarized:

$$\frac{C_1'}{4} \cdot n^2 \le T(n) \le C_2' \cdot n^2$$

Quadratic runtime proven:

$$C_1 \cdot n^2 \le T(n) \le C_2 \cdot n^2$$

■ The runtime is growing quadratically with the number of elements *n* in the list

- The runtime is growing quadratically with the number of elements *n* in the list
- With constants C_1 and C_2 for which $C_1 \cdot n^2 \le T(n) \le C_2 \cdot n^2$

- The runtime is growing quadratically with the number of elements *n* in the list
- With constants C_1 and C_2 for which $C_1 \cdot n^2 \le T(n) \le C_2 \cdot n^2$
- $3 \times$ elements $\Rightarrow 9 \times$ runtime

- The runtime is growing quadratically with the number of elements *n* in the list
- With constants C_1 and C_2 for which $C_1 \cdot n^2 \le T(n) \le C_2 \cdot n^2$
- $3 \times$ elements $\Rightarrow 9 \times$ runtime
 - $C = 1 \text{ ns} (1 \text{ simple instruction} \approx 1 \text{ ns})$

- The runtime is growing quadratically with the number of elements *n* in the list
- With constants C_1 and C_2 for which $C_1 \cdot n^2 \le T(n) \le C_2 \cdot n^2$
- $3 \times$ elements $\Rightarrow 9 \times$ runtime
 - $C = 1 \text{ ns} (1 \text{ simple instruction} \approx 1 \text{ ns})$
 - \blacksquare $n = 10^6$ (1 million numbers = 4MB with 4B/number)
 - $C \cdot n^2 = 10^{-9} \text{ s} \cdot 10^{12} = 10^3 \text{ s} = 16.7 \text{ min}$

- The runtime is growing quadratically with the number of elements *n* in the list
- With constants C_1 and C_2 for which $C_1 \cdot n^2 \le T(n) \le C_2 \cdot n^2$
- $3 \times$ elements $\Rightarrow 9 \times$ runtime
 - $C = 1 \text{ ns} (1 \text{ simple instruction} \approx 1 \text{ ns})$
 - \blacksquare $n = 10^6$ (1 million numbers = 4MB with 4B/number)

$$C \cdot n^2 = 10^{-9} \text{ s} \cdot 10^{12} = 10^3 \text{ s} = 16.7 \text{ min}$$

 \blacksquare $n = 10^9$ (1 billion numbers = 4GB)

$$C \cdot n^2 = 10^{-9} \text{ s} \cdot 10^{18} = 10^9 \text{ s} = 31.7 \text{ years}$$

- The runtime is growing quadratically with the number of elements *n* in the list
- With constants C_1 and C_2 for which $C_1 \cdot n^2 \le T(n) \le C_2 \cdot n^2$
- $3 \times$ elements $\Rightarrow 9 \times$ runtime
 - $C = 1 \text{ ns} (1 \text{ simple instruction} \approx 1 \text{ ns})$
 - \blacksquare $n = 10^6$ (1 million numbers = 4MB with 4B/number)

$$C \cdot n^2 = 10^{-9} \text{ s} \cdot 10^{12} = 10^3 \text{ s} = 16.7 \text{ min}$$

 \blacksquare $n = 10^9$ (1 billion numbers = 4 GB)

$$C \cdot n^2 = 10^{-9} \text{ s} \cdot 10^{18} = 10^9 \text{ s} = 31.7 \text{ years}$$

■ Quadratic runtime = "big" problems unsolvable

Structure

Runtime Example
Minsort

Basic Operations

Runtime analysis

Minsort

Heapsort

Introduction to Induction

Logarithms

■ **Minsort:** to determine the minimum value we have to iterate through all the unsorted elements.

- **Minsort:** to determine the minimum value we have to iterate through all the unsorted elements.
- Heapsort: the root node is always the smallest (minheap). We only need to repair a part of the full tree after the delete operation.

- **Minsort:** to determine the minimum value we have to iterate through all the unsorted elements.
- Heapsort: the root node is always the smallest (minheap). We only need to repair a part of the full tree after the delete operation.

Formal:

- **Minsort:** to determine the minimum value we have to iterate through all the unsorted elements.
- Heapsort: the root node is always the smallest (minheap). We only need to repair a part of the full tree after the delete operation.

Formal:

Let T(n) be the runtime for the Heapsort algorithm with n elements

- **Minsort:** to determine the minimum value we have to iterate through all the unsorted elements.
- Heapsort: the root node is always the smallest (minheap). We only need to repair a part of the full tree after the delete operation.

Formal:

- Let T(n) be the runtime for the Heapsort algorithm with n elements
- On the next pages we will proof $T(n) \le C \cdot n \log_2 n$

Depth of a binary tree:

- **Depth** *d*: longest path through the tree
- Complete binary tree has $n = 2^d 1$ nodes
- Example: d = 4⇒ $n = 2^4 - 1 = 15$

Figure: Binary tree with 15 nodes

Structure

Runtime Example
Minsort

Basic Operations

Runtime analysis

Minsort

Heapsort
Introduction to Induction

Logarithms

Induction

Basics:

Induction

Basics:

■ You want to show that assumption A(n) is valid $\forall n \in \mathbb{N}$

- You want to show that assumption A(n) is valid $\forall n \in \mathbb{N}$
- We show induction in two steps:

- You want to show that assumption A(n) is valid $\forall n \in \mathbb{N}$
- We show induction in two steps:
 - Induction basis: we show that our assumption is valid for one value (for example: n = 1, A(1)).

- You want to show that assumption A(n) is valid $\forall n \in \mathbb{N}$
- We show induction in two steps:
 - Induction basis: we show that our assumption is valid for one value (for example: n = 1, A(1)).
 - Induction step: we show that the assumption is valid for all n (normally one step forward: n = n + 1, A(1), ..., A(n)).

- You want to show that assumption A(n) is valid $\forall n \in \mathbb{N}$
- We show induction in two steps:
 - Induction basis: we show that our assumption is valid for one value (for example: n = 1, A(1)).
 - Induction step: we show that the assumption is valid for all n (normally one step forward: n = n + 1, A(1), ..., A(n)).
- If both has been proven, then A(n) holds for all natural numbers n by **induction**

Claim:

A **complete** binary tree of depth d has $v(d) = 2^d - 1$ nodes

Claim:

A **complete** binary tree of depth d has $v(d) = 2^d - 1$ nodes

■ **Induction basis:** assumption holds for d = 1

Root

$$v(1) = 2^1 - 1 = 1$$

Figure: Tree of depth 1 has 1 node

Claim:

A **complete** binary tree of depth d has $v(d) = 2^d - 1$ nodes

■ **Induction basis:** assumption holds for d = 1

Root

$$v(1) = 2^1 - 1 = 1$$

 \Rightarrow correct \checkmark

Figure: Tree of depth 1 has 1 node

Induction - Example 1

Number of nodes v(d) in a binary tree with depth d:

■ Induction assumption: $v(d) = 2^d - 1$

Induction - Example 1

Number of nodes v(d) in a binary tree with depth d:

- Induction assumption: $v(d) = 2^d 1$
- Induction basis: $v(1) = 2^d 1 = 2^1 1 = 1$ ✓

- Induction assumption: $v(d) = 2^d 1$
- Induction basis: $v(1) = 2^d 1 = 2^1 1 = 1$ ✓
- **Induction step:** to show for d := d + 1

Figure: binary tree with subtrees

- Induction assumption: $v(d) = 2^d 1$
- Induction basis: $v(1) = 2^d 1 = 2^1 1 = 1$
- Induction step: to show for d := d + 1

$$v(d+1) = 2 \cdot v(d) + 1$$

Figure: binary tree with subtrees

- Induction assumption: $v(d) = 2^d 1$
- Induction basis: $v(1) = 2^d 1 = 2^1 1 = 1$
- **Induction step:** to show for d := d + 1

$$v(d+1) = 2 \cdot v(d) + 1$$

= $2 \cdot (2^{d} - 1) + 1$

- Induction assumption: $v(d) = 2^d 1$
- Induction basis: $v(1) = 2^d 1 = 2^1 1 = 1$
- **Induction step:** to show for d := d + 1

Figure: binary tree with subtrees

$$v(d+1) = 2 \cdot v(d) + 1$$

= $2 \cdot (2^{d} - 1) + 1$
= $2^{d+1} - 2 + 1$

- Induction assumption: $v(d) = 2^d 1$
- Induction basis: $v(1) = 2^d 1 = 2^1 1 = 1$
- Induction step: to show for d := d + 1

Figure: binary tree with subtrees

$$v(d+1) = 2 \cdot v(d) + 1$$

$$= 2 \cdot \left(2^{d} - 1\right) + 1$$

$$= 2^{d+1} - 2 + 1$$

$$= 2^{d+1} - 1 \checkmark$$

- Induction assumption: $v(d) = 2^d 1$
- Induction basis: $v(1) = 2^d 1 = 2^1 1 = 1$
- **Induction step:** to show for d := d + 1

Figure: binary tree with subtrees

$$v(d+1) = 2 \cdot v(d) + 1$$

$$= 2 \cdot \left(2^{d} - 1\right) + 1$$

$$= 2^{d+1} - 2 + 1$$

$$= 2^{d+1} - 1 \checkmark$$

 \Rightarrow By induction: $v(d) = 2^d - 1 \ \forall d \in \mathbb{N} \ \Box$

Structure

Runtime Example
Minsort

Basic Operations

Runtime analysis

Minsort

Heapsort

Introduction to Induction

Logarithms

■ Initially: heapify list of *n* elements

■ **Initially:** heapify list of *n* elements

■ **Then:** until all *n* elements are sorted

- Initially: heapify list of *n* elements
- Then: until all *n* elements are sorted
 - Remove root (=minimum element)

- Initially: heapify list of *n* elements
- **Then:** until all *n* elements are sorted
 - Remove root (=minimum element)
 - Move last leaf to root position

- **Initially:** heapify list of *n* elements
- Then: until all *n* elements are sorted
 - Remove root (=minimum element)
 - Move last leaf to root position
 - Repair heap by sifting

Runtime of heapify with depth of d:

■ No costs at depth d with 2^{d-1} (or less) nodes

Runtime of heapify with depth of d:

- No costs at depth d with 2^{d-1} (or less) nodes
- The cost for sifting with depth 1 is at most 1*C* per node

Runtime of heapify with depth of d:

- No costs at depth d with 2^{d-1} (or less) nodes
- The cost for sifting with depth 1 is at most 1*C* per node
- In general: sifting costs are linear with path length and number of nodes

Depth	Nodes	Path length	Costs per node	
d	2 ^{d-1}	0	$\leq C \cdot 0$	

Depth	Nodes	Path length	Costs per node
d	2^{d-1}	0	$\leq C \cdot 0$
<i>d</i> − 1	2^{d-2}	1	$\leq C \cdot 1$

Depth	Nodes	Path length	Costs per node	
d	2^{d-1}	0	$\leq C \cdot 0$	
d - 1	2^{d-2}	1	$\leq C \cdot 1$	
d-2	2^{d-3}	2	≤ <i>C</i> ⋅ 2	

Generally: Depth $d \rightarrow 2^{d-1}$ nodes

Depth	Nodes	Path length	Costs per node	
d	2^{d-1}	0	$\leq C \cdot 0$	
<i>d</i> − 1	2^{d-2}	1	≤ <i>C</i> ⋅ 1	
d-2	2^{d-3}	2	≤ <i>C</i> ⋅ 2	
d-3	2^{d-4}	3	≤ <i>C</i> ⋅ 3	

Runtime - Heapsort Heapify

Heapify total runtime:

Generally: Depth $d \rightarrow 2^{d-1}$ nodes

Depth	Nodes	Path length	Costs per node	
d	2^{d-1}	0	$\leq C \cdot 0$	
<i>d</i> − 1	2^{d-2}	1	≤ <i>C</i> ⋅ 1	
d-2	2^{d-3}	2	≤ <i>C</i> ⋅ 2	
d-3	2^{d-4}	3	≤ <i>C</i> ⋅ 3	

$$T(d) \leq \sum_{i=1}^{d} \left(C \cdot (i-1) \cdot 2^{d-i} \right)$$

Generally: Depth $d \rightarrow 2^{d-1}$ nodes

Depth	Nodes	Path length	Costs per node	Upper bound
d	2^{d-1}	0	≤ <i>C</i> ⋅ 0	
<i>d</i> − 1	2^{d-2}	1	≤ <i>C</i> ⋅ 1	Standard
d-2	2^{d-3}	2	$\leq C \cdot 2$	Equation
d-3	2^{d-4}	3	≤ <i>C</i> ⋅ 3	

In total: $T(d) \le \sum_{i=1}^{d} (C \cdot (i-1) \cdot 2^{d-i}) \le \sum_{i=1}^{d} (C \cdot i \cdot 2^{d-i})$

Generally: Depth $d \rightarrow 2^{d-1}$ nodes

Depth	Nodes	Path length	Costs per node	Upper bound
d	2^{d-1}	0	$\leq C \cdot 0$	≤ <i>C</i> · 1
<i>d</i> − 1	2^{d-2}	1	≤ <i>C</i> ⋅ 1	$\leq C \cdot 2$
d-2	2^{d-3}	2	$\leq C \cdot 2$	≤ <i>C</i> ⋅ 3
d-3	2^{d-4}	3	≤ <i>C</i> ⋅ 3	$\leq C \cdot 4$

In total:
$$T(d) \le \sum_{i=1}^{d} \left(C \cdot (i-1) \cdot 2^{d-i} \right) \le \sum_{i=1}^{d} \left(C \cdot i \cdot 2^{d-i} \right)$$

$$T(d) \leq C \cdot \sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right) \leq C \cdot 2^{d+1}$$

$$T(d) \leq C \cdot \sum_{i=1}^{d} \left(i \cdot 2^{d-i}\right) \leq C \cdot 2^{d+1}$$

Hence: Resulting costs for heapify:

$$T(d) \leq C \cdot 2^{d+1}$$

$$T(d) \leq C \cdot \sum_{i=1}^{d} \left(i \cdot 2^{d-i}\right) \leq C \cdot 2^{d+1}$$

Hence: Resulting costs for heapify:

$$T(d) \leq C \cdot 2^{d+1}$$

However: We want costs in relation to n

Heapify

$$T(d) \leq C \cdot 2^{d+1}$$

$$T(d) \leq C \cdot 2^{d+1}$$

A binary tree of depth d has $2^{d-1} \le n$ nodes

$$T(d) \leq C \cdot 2^{d+1}$$

■ A binary tree of depth d has $2^{d-1} \le n$ nodes Why?

$$T(d) \leq C \cdot 2^{d+1}$$

■ A binary tree of depth d has $2^{d-1} \le n$ nodes Why?

Figure: Partial binary tree

$$T(d) \leq C \cdot 2^{d+1}$$

- A binary tree of depth d has $2^{d-1} \le n$ nodes Why?
- $2^{d-1} 1$ nodes in full tree till layer d-1

Figure: Partial binary tree

$$T(d) \leq C \cdot 2^{d+1}$$

- A binary tree of depth d has $2^{d-1} \le n$ nodes Why?
- $2^{d-1} 1$ nodes in full tree till layer d-1
- At least 1 node in layer d

Figure: Partial binary tree

$$T(d) \leq C \cdot 2^{d+1}$$

- A binary tree of depth d has $2^{d-1} \le n$ nodes Why?
- $2^{d-1} 1$ nodes in full tree till layer d-1
- At least 1 node in layer d
- Equation multiplied by 2^2 ⇒ $2^{d-1} \cdot 2^2 < 2^2 \cdot n$

Figure: Partial binary tree

$$T(d) \leq C \cdot 2^{d+1}$$

- A binary tree of depth d has $2^{d-1} \le n$ nodes Why?
- $2^{d-1} 1$ nodes in full tree till layer d-1
- At least 1 node in layer d
- Equation multiplied by 2^2 ⇒ $2^{d-1} \cdot 2^2 \le 2^2 \cdot n$
- Cost for heapify: $\Rightarrow T(n) < C \cdot 4 \cdot n$

Figure: Partial binary tree

Structure

Runtime Example
Minsort

Basic Operations

Runtime analysis

Minsort

Heapsort
Introduction to Induction

Logarithms

■ We want to proof (induction assumption):

$$\underbrace{\sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right)}_{A(d) \leq B(d)} \leq 2^{d+1}$$

■ We denote the left side with A, the right side with B

■ Induction basis: *d* := 1:

$$A(d) \leq B(d)$$

Induction basis: d := 1:

$$A(d) \leq B(d)$$

$$A(d) \le B(d)$$

$$\sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right) \le 2^{d+1}$$

Induction basis: d := 1:

$$A(d) \leq B(d)$$

$$\sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right) \leq 2^{d+1}$$

$$A(d) \leq B(d)$$

$$\sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right) \leq 2^{d+1}$$

$$\sum_{i=1}^{1} \left(i \cdot 2^{1-i} \right) \leq 2^{1+1}$$

■ Induction basis: *d* := 1:

$$A(d) \leq B(d)$$

$$\sum_{i=1}^{d} (i \cdot 2^{d-i}) \leq 2^{d+1}$$

$$\sum_{i=1}^{1} (i \cdot 2^{1-i}) \leq 2^{1+1}$$

$$2^{0} \leq 2^{2} \checkmark$$

Induction - Example 2

Induction step: (d := d + 1):

■ **Idea:** Write down right-hand formula and try to get A(d) and B(d) out of it

$$A(d) \leq B(d)$$
 \Rightarrow $A(d+1) \leq B(d+1)$

■ **Idea:** Write down right-hand formula and try to get A(d) and B(d) out of it

$$A(d) \leq B(d)$$
 \Rightarrow $A(d+1) \leq B(d+1)$

$$\sum_{i=1}^{d+1} (i \cdot 2^{d+1-i}) \leq 2^{d+1+1}$$

■ **Idea:** Write down right-hand formula and try to get A(d) and B(d) out of it

$$A(d) \leq B(d) \qquad \Rightarrow \qquad A(d+1) \leq B(d+1)$$

$$\sum_{i=1}^{d+1} \left(i \cdot 2^{d+1-i} \right) \leq 2^{d+1+1}$$

$$2 \cdot \sum_{i=1}^{d+1} \left(i \cdot 2^{d-i} \right) \leq 2 \cdot 2^{d+1}$$

$$\vdots$$

$$2 \cdot \sum_{i=1}^{d+1} \left(i \cdot 2^{d-i} \right) \le 2 \cdot 2^{d+1}$$

:

$$2 \cdot \sum_{i=1}^{d+1} \left(i \cdot 2^{d-i} \right) \le 2 \cdot 2^{d+1}$$

$$2 \cdot \sum_{i=1}^{d+1} \left(i \cdot 2^{d-i} \right) \leq 2 \cdot B(d)$$

:

$$2 \cdot \sum_{i=1}^{d+1} \left(i \cdot 2^{d-i} \right) \le 2 \cdot 2^{d+1}$$

$$2 \cdot \sum_{i=1}^{d+1} \left(i \cdot 2^{d-i} \right) \leq 2 \cdot B(d)$$

$$2 \cdot \sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right) + 2 \cdot (d+1) \cdot 2^{d-(d+1)} \le 2 \cdot B(d)$$

÷

$$2 \cdot \sum_{i=1}^{d+1} \left(i \cdot 2^{d-i} \right) \le 2 \cdot 2^{d+1}$$

$$2 \cdot \sum_{i=1}^{d+1} \left(i \cdot 2^{d-i} \right) \leq 2 \cdot B(d)$$

$$2 \cdot \sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right) + 2 \cdot (d+1) \cdot 2^{d-(d+1)} \le 2 \cdot B(d)$$

$$2 \cdot A(d) + (d+1) \leq 2 \cdot B(d)$$

:

$$2 \cdot \sum_{i=1}^{d+1} (i \cdot 2^{d-i}) \le 2 \cdot 2^{d+1}$$

$$2 \cdot \sum_{i=1}^{d+1} \left(i \cdot 2^{d-i} \right) \leq 2 \cdot B(d)$$

$$2 \cdot \sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right) + 2 \cdot (d+1) \cdot 2^{d-(d+1)} \le 2 \cdot B(d)$$

$$2 \cdot A(d) + (d+1) \leq 2 \cdot B(d)$$

■ **Problem:** does not work but claim still holds

Working proof:

■ Show a little bit stronger claim

$$\sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right) \le 2^{d+1} - d - 2 \le 2^{d+1}$$

Working proof:

Show a little bit stronger claim

$$\sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right) \le 2^{d+1} - d - 2 \le 2^{d+1}$$

■ Advantage: results in a stronger induction assumption

$$\Rightarrow$$
 exercise

Structure

Runtime Example
Minsort

Basic Operations

Runtime analysis

Minsort

Heapsort

Introduction to Induction

Logarithms

 \blacksquare *n* × taking out maximum (each constant cost)

- \blacksquare *n* × taking out maximum (each constant cost)
- Maximum of d steps for each of $n \times n$ heap repair

- \blacksquare *n* × taking out maximum (each constant cost)
- Maximum of d steps for each of $n \times$ heap repair

⇒ Depth
$$d$$
 of initial heap is $\leq 1 + \log_2 n$ Why?

$$2^{d-1} \le n \Rightarrow d-1 \le \log_2 n \Rightarrow d \le 1 + \log_2 n$$

- \blacksquare *n* × taking out maximum (each constant cost)
- Maximum of *d* steps for each of $n \times n$ heap repair
 - \Rightarrow Depth *d* of initial heap is $\leq 1 + \log_2 n$ Why?

$$2^{d-1} \le n \Rightarrow d-1 \le \log_2 n \Rightarrow d \le 1 + \log_2 n$$

■ Recall: the depth and number of elements is decreasing

- \blacksquare *n* × taking out maximum (each constant cost)
- Maximum of d steps for each of $n \times n$ heap repair
 - \Rightarrow Depth d of initial heap is $\leq 1 + \log_2 n$ Why?

$$2^{d-1} \le n \Rightarrow d-1 \le \log_2 n \Rightarrow d \le 1 + \log_2 n$$

- Recall: the depth and number of elements is decreasing
 - Hence: $T(n) \le n \cdot d \cdot C \le n \cdot (1 + \log_2 n) \cdot C$

- \blacksquare $n \times$ taking out maximum (each constant cost)
- Maximum of d steps for each of $n \times$ heap repair
 - \Rightarrow Depth *d* of initial heap is $\leq 1 + \log_2 n$ Why?

$$2^{d-1} \le n \Rightarrow d-1 \le \log_2 n \Rightarrow d \le 1 + \log_2 n$$

- Recall: the depth and number of elements is decreasing
 - Hence: $T(n) \le n \cdot d \cdot C \le n \cdot (1 + \log_2 n) \cdot C$
 - We can reduce this to:

$$T(n) \le 2 \cdot n \log_2 n \cdot C$$
 (holds for $n > 2$)

lacksquare Heapify: $T(n) \leq 4 \cdot n \cdot C$

- Heapify: $T(n) \le 4 \cdot n \cdot C$
- Remove: $T(n) \le 2 \cdot n \log_2 n \cdot C$

- Heapify: $T(n) \leq 4 \cdot n \cdot C$
- Remove: $T(n) \le 2 \cdot n \log_2 n \cdot C$
- Total runtime: $T(n) \le 6 \cdot n \log_2 n \cdot C$

- Heapify: $T(n) \leq 4 \cdot n \cdot C$
- Remove: $T(n) \le 2 \cdot n \log_2 n \cdot C$
- Total runtime: $T(n) \le 6 \cdot n \log_2 n \cdot C$
- Constraints:
 - Upper bound: $C_2 \cdot n \log_2 n \ge T(n)$ (for $n \ge 2$)
 - Lower bound: $C_1 \cdot n \log_2 n \le T(n)$ (for $n \ge 2$)

- Heapify: $T(n) \leq 4 \cdot n \cdot C$
- Remove: $T(n) \le 2 \cdot n \log_2 n \cdot C$
- Total runtime: $T(n) \le 6 \cdot n \log_2 n \cdot C$
- Constraints:
 - Upper bound: $C_2 \cdot n \log_2 n \ge T(n)$ (for $n \ge 2$)
 - Lower bound: $C_1 \cdot n \log_2 n \le T(n)$ (for $n \ge 2$)
 - \blacksquare \Rightarrow C_1 and C_2 are constant

Structure

Runtime Example Minsort

Basic Operations

Runtime analysis

Minsort Heapsort

Logarithms

$$\log_a n = \frac{\log_b n}{\log_b a} = \log_b n \cdot \frac{1}{\log_b a}$$

The only difference is a constant coefficient $\frac{1}{\log_b a}$

Examples:

$$\log_2 4 = \log_{10} 4 \cdot \frac{1}{\log_2 10} = 0.602 \dots \cdot 3.322 \dots = 2 \checkmark$$

$$\log_{10} 1000 = \log_e 1000 \cdot \frac{1}{\log_2 10} = \ln 1000 \cdot \frac{1}{\ln 10} = 3$$

$$C_1 \cdot n \cdot \log_2 n \le T(n) \le C_2 \cdot n \cdot \log_2 n$$
 for $n \ge 2$

■ Assume we have constants C_1 and C_2 with

$$C_1 \cdot n \cdot \log_2 n \le T(n) \le C_2 \cdot n \cdot \log_2 n$$
 for $n \ge 2$

 \blacksquare 2× elements \Rightarrow only slightly larger than 2× runtime

$$C_1 \cdot n \cdot \log_2 n \le T(n) \le C_2 \cdot n \cdot \log_2 n$$
 for $n \ge 2$

- \blacksquare 2× elements \Rightarrow only slightly larger than 2× runtime
 - $C = 1 \text{ ns} (1 \text{ simple instruction} \approx 1 \text{ ns})$

$$C_1 \cdot n \cdot \log_2 n \le T(n) \le C_2 \cdot n \cdot \log_2 n$$
 for $n \ge 2$

- \blacksquare 2× elements \Rightarrow only slightly larger than 2× runtime
 - \blacksquare *C* = 1 ns (1 simple instruction \approx 1 ns)
 - \blacksquare $n = 2^{20}$ (1 million numbers = 4 MB with 4 B/number)
 - $C \cdot n \cdot log_2 n = 10^{-9} \text{ s} \cdot 2^{20} \cdot 20 = 21.0 \text{ ms}$

$$C_1 \cdot n \cdot \log_2 n \le T(n) \le C_2 \cdot n \cdot \log_2 n$$
 for $n \ge 2$

- \blacksquare 2× elements \Rightarrow only slightly larger than 2× runtime
 - \blacksquare *C* = 1 ns (1 simple instruction \approx 1 ns)
 - \blacksquare $n = 2^{20}$ (1 million numbers = 4MB with 4B/number)

$$C \cdot n \cdot log_2 n = 10^{-9} \text{ s} \cdot 2^{20} \cdot 20 = 21.0 \text{ ms}$$

- $n = 2^{30}$ (1 billion numbers = 4GB)
 - $C \cdot n \cdot log_2 n = 10^{-9} \, \text{s} \cdot 2^{30} \cdot 30 = 32 \, \text{s}$

$$C_1 \cdot n \cdot \log_2 n \le T(n) \le C_2 \cdot n \cdot \log_2 n$$
 for $n \ge 2$

- $2 \times$ elements \Rightarrow only slightly larger than $2 \times$ runtime
 - \blacksquare *C* = 1 ns (1 simple instruction \approx 1 ns)
 - $n = 2^{20}$ (1 million numbers = 4MB with 4B/number)

$$C \cdot n \cdot \log_2 n = 10^{-9} \text{ s} \cdot 2^{20} \cdot 20 = 21.0 \text{ ms}$$

- $n = 2^{30}$ (1 billion numbers = 4GB)
 - $C \cdot n \cdot log_2 n = 10^{-9} \text{ s} \cdot 2^{30} \cdot 30 = 32 \text{ s}$
- Runtime $n \log_2 n$ is nearly as good as linear!

■ Course literature

[CRL01] Thomas H. Cormen, Ronald L. Rivest, and Charles E. Leiserson. Introduction to Algorithms. MIT Press, Cambridge, Mass, 2001.

[MS08] Kurt Mehlhorn and Peter Sanders.
Algorithms and data structures, 2008.
https://people.mpi-inf.mpg.de/~mehlhorn/

ftp/Mehlhorn-Sanders-Toolbox.pdf.

Mathematical Induction

[Wik] Mathematical induction

https://en.wikipedia.org/wiki/Mathematical_induction