Many kinds of scientific problems

The scientific questions that arise in biology, mecanics, etc... are all different from each other. Moreover, some work are more experimental-based and others have a strong numerical dimension:

- equations solving
- search for functions optimum
- statistical analysis
- real time data acquisition
- etc...

Some dedicated libraries

Python is suitable for scientific computing:

- 1. Everything you interact with in Python an object with methods and attributes
- 2. To solve a problem:
 - A. one define some objects that represent some mathematical or physical properties.
 - B. these objects interacts with each other using a well documented API

The definition of suitable objects can be difficult (step 2.A). Thus, hundreds of open source dedicated packages did it for you. numpy, pandas and matplotlib are particular examples of these since many libraries are built on top of them.

For instance, a numpy array is of type np.ndarray: it can store some temperature values which average can be calculated using nean().

Some very common problems

Some packages are very famous in scientific computing. Let's focus on:

- scipy: typically used in optimization problems
- scikit-learn: typically used in machine learning problems
- sympy: designed for natural mathematical processing