Examen National de Brevet de Technicien Supérieur Session de Mai 2017

- Sujet-

Pa	ige
1	
/	2

Centre National de l'Évaluation, des Examens et de l'Orientation

Filières:	DSI – SRI -MCW		Durée:	2 Heures
Épreuve:	MATHEMATIQUES		Coefficient	15

Epreuve:	MATHEMATIQUES	Coefficient	15		
6 points	Exercice 1 :				
	On considère l'équation différentielle suivante : (E) : $y'' + y' - 2y = -3e^{-2x}$,				
	où y est une fonction de la variable réelle x , deux fois dérivable sur $\mathbb R$.				
	Soit (H) : $y'' + y' - 2y = 0$ l'équation homogène associée à (E) .				
1	1. Résoudre l'équation différentielle (H) .				
1	2. Vérifier que la fonction g définie par : $g(x) = xe^{-2x}$ est une solution particulière				
	de l'équation différentielle (E)				
1	3. Déterminer la solution générale de (E) .				
1	4. Déterminer la solution f de (E) vérifiant les conditions suivantes :				
	f(0) = -1 et $f'(0) = 3$.				
	5. Soit f la fonction de la variable réelle x définie sur \mathbb{R} par : $f(x) = (x-1)e^{-2x}$.				
1	a- Montrer que le développement limité de f à l'ordre 2 au voisinage de 0 est :				
	$f(x) = -1 + 3x - 4x^2 + o(x^2)$.				
1	b- En déduire l'équation de la tangente (T) à la courbe (C_f) au point $A(0,-1)$				
	et préciser sa position par rapport à $\left(C_f ight)$.				
4 points	Exercice 2:				
	Déterminer la nature des séries suivantes :				
1	 1. ∑_{n≥1} 1/n³. 2. ∑_{n=1} 2ⁿ (On pourra utiliser le critère de D'Alembert). 				
1	2. $\sum_{n=1}^{\infty} \frac{2^n}{1}$ (On pourra utiliser le critère de D'Alembert).				

1 2.
$$\sum_{n\geq 0} \frac{2^n}{n+1}$$
 (On pourra utiliser le critère de D'Alembert).

1 2.
$$\sum_{n\geq 0} \frac{2^n}{n+1}$$
 (On pourra utiliser le critère de D'Alemb
1 3. $\sum_{n\geq 1} \left(1-\frac{1}{n}\right)^{n^2}$ (On pourra utiliser le critère de Cauchy)
1 4. $\sum_{n\geq 0} \frac{\left(-1\right)^n}{n^2+1}$.

$$4. \quad \sum_{n\geq 0} \frac{\left(-1\right)^n}{n^2+1}.$$

Filières: DSI -SRI - MCW

Épreuve: Mathématiques

6 points | Exercice 3 :

Soit la matrice suivante:
$$A = \begin{pmatrix} -1 & 0 & 0 \\ -1 & 1 & 1 \\ -3 & 0 & 2 \end{pmatrix}$$

1 1. a- Montrer que le polynôme caractéristique de A est :

$$P_{A}(\lambda) = -(1+\lambda)(1-\lambda)(2-\lambda)$$

- 0.5 b- Donner les valeurs propres de A.
- 0.5 c- En déduire que A est diagonalisable.
 - 2. On considère les matrices suivantes :

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \ Q = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} \text{ et } D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

- 1,5 a- Calculer PQ, puis en déduire que P est inversible et donner son inverse P^{-1} .
- b- Vérifier que : $P^{-1}AP = D$.
- 0,5+1 | c- Soit $n \in \mathbb{N}$, Calculer D^n en fonction de n, puis en déduire A^n en fonction de n.

4 points | Exercice 4 :

On admet que le nombre de fautes d'impression par page dans un livre obéit à la loi de Poisson de paramètre $\lambda = 2$.

Calculer les probabilités des événements suivants :

- 1 1. N' avoir aucune faute.
- 1 2. Avoir au moins deux fautes.
- 2 3. Avoir entre 3 et 6 fautes (Bornes comprises).

Fin de l'épreuve