

Applied Mathematics 2 - Dec 17

First Year Engineering (Semester 2)

Total marks: 80 Total time: 3 Hours

INSTRUCTIONS

- (1) Question 1 is compulsory.
- (2) Attempt any three from the remaining questions.
- (3) Draw neat diagrams wherever necessary.

1.a. Evaluate
$$\int_0^\infty \frac{e^{-x^2}}{\sqrt{x}} dx$$
 (3 marks)

1.b. Solve
$$(D^3+1)^2y=0$$
 (3 marks)

1.c. Solve the ODE
$$(y + \frac{1}{3}y^3 + \frac{1}{2}x^2)dx + (x + xy^2)dy = 0$$
 (3 marks)

1.d. Use Taylor's series method to find a solution of $\frac{dy}{dx} = 1 + y^2$, y(0) = 0 at x = 0.1 taking h = 0.1 correct to three decimal value. (3 marks)

1.e. Given
$$\int_0^x \frac{dx}{x^2 + y^2} = \frac{1}{a} \tan^{-1}(\frac{x}{a})$$
, using DUIS find the value of $\int_0^x \frac{dx}{(x^2 + a^2)^2}$ (4 marks)

1.f. Find the perimeter of the curve $r=a(1-\cos\theta)$ (4 marks)

2.a. Solve
$$(D^3+D^2+D+1)y=\sin^2 x$$
 (6 marks)

2.b. Change the order of integration
$$\int_0^a \int_{\sqrt{a^2-x^2}}^{x+3a} f(x,y) dx dy$$
 (6 marks)

2.c. Evaluate
$$\int \int_{R} \frac{2xy^2}{1+x^2y^2-y^4} dx dy$$
, where R is a triangle whose vertices are $(0,0),(1,1),(0,1)$. (8 marks)

3.a. Find the volume enclosed by the cylinder $y^2=x$ and $y=x^2$. Cut off by the planes z=0, x+y+z=2 (6 marks)

3.b. Using modified Euler's method, find an appropriate value of y at x = 0.2 in two step taking h = 0.1 and using iteration, given that $\frac{dy}{dx} = x+3y,y=1$ when x=0. dydx=x+3y,y=1 when x=0. (6 marks)

3.c. Solve
$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 4 \operatorname{coslog}(1+x)$$
 (8 marks)

4.a. Show that
$$\int_0^\infty \sqrt{\frac{x^3}{a^3 - x^3}}$$
 (6 marks)

4.b. Solve
$$(D^2+2)y=e^x \cos x + x^2 e^{3x}$$
 (6 marks)

4.c. Use polar co-ordinates to evaluate $\int \int \frac{(x^2+y^2)^2}{x^2y^2}$ over the area Common to the

circle
$$x^2+y^2=ax$$
 and $x^2+y^2=by,a>b>0$ (8 marks)

5.a. Solve y
$$dx+x(1-3x^2y^2)dy=0$$
 (6 marks)

- **5.b.** Find the mass of a lamina in the form of an eclipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} 1$, if the density at any point varies as the product of the distance from the azes of the ellipse. (6 marks)
- **5.c.** Compute the value of $\int_0^{\pi/2} \sqrt{\sin x + \cos x}$ using
- (i) Trapezoidal rule
- (ii) Simpson's $(1/3)^{rd}$ rule
- (iii) Simpson's (3/8)th rule by dividing into six subintervals (8 marks)
- **6.a.** Evaluate $\iint_{v} x^2 dx dy dz$ over the volume bounded by the planes x=0,y=0,z=0 and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$

(6 marks)

- **6.b.** Change the order of integration and evaluate $\int_0^2 \int_{\sqrt{2y}}^2 \frac{x^2}{\sqrt{x^2 4y^2}}$ (6 marks)
- **6.c.** Solve by the method of variation of parameters $\frac{d^2y}{dx^2} 6\frac{dy}{dx} + 9y = \frac{e^{3x}}{x^2}$ (8 marks)