Projecting Baseball Players' Offensive Outputs During Arbitration Years

By Michael Scognamiglio nyc-mnhtn-ds-080320

Project Overview and Business Case

- Projecting OPS+ for MLB players during their arbitration years
- During Arbitration, player salaries greatly increase
- For GM's on a budget or trying to win a championship, projecting the offensive output of players is important
- GM's can use model to determine player's value and determine whether other options (Free Agency, Trades) should be explored.
- GM's can use model to lower player's salary during arbitration hearings (if projections are not impressive)

Data and Process

- Dataset was comprised of all players on each MLB Rosters from years 2000-2020
- Initial Data Frame had 140,000 rows
- Each row consisted of a player's offensive stats for a season
- Was cut down to about 9,000 rows
- Dataset was cut down to only include position players who had six years of data for model training

Data Collection

Data Cleaning/EDA

Modeling Process

Clustering

- Clustering was used as a feature engineering technique to give the model's more information on each player.
- K Means Clustering was used for all the players in our dataset.
- Clustering input features were cumulative games started and OPS+ for each player aggregated over their first three seasons

Modeling Selection

Type of Model	RSME	MAE
Simple Linear Regression	19.30	15.1
Lasso Model	19.33	15.2
Ridge Model	19.31	15.1
Simple Neural Network	22.5	23

I plan to do some more EDA/ feature engineering to test if my models performance can be improved any further.

Final Model Evaluation

Final Model Analysis

Test Statistic: 9.5 (result was significant)

Final Model Analysis Part II

R^2: 0.55,

P-value:: 1.19*10^-60

Final Model Analysis Part III

Test Stat: 8.6 P-value:1.6*10^-5

Conclusions/Next Steps

- 1. Look for players who have elite slugging percentage, performed on average 22% better than an average player.
- 2. Look closely at a players average OPS+ over their first three seasons, a R^.2 of .55 between average OPS+ and a player's OPS+ in their fifth season
- 3. Prioritize Power Hitters above all else, we found a small difference between hitters who can hit for both power and contact and hitters who only hit for power. However, we found a big difference in OPS+ between hitters who can only hit for contact versus hitters who only hit for power.

As a next step,I would like to test this model on free agents to determine whether this model can perform well on that market. I would be interested in building a new model on new data for this market if the current models do not perform well.

Questions??

Github link:

https://github.com/Scogs25/MIB Player OPS Plus Projections Linkedin:

https://www.linkedin.com/in/michael-scognamiglio-b38471157