Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_şt-nat* BAREM DE EVALUARE ȘI DE NOTARE

Test 6

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_1 + a_2 + a_3 + a_4 + a_5 = \frac{(2a_1 + 4r) \cdot 5}{2} = \frac{(2 \cdot 5 + 4 \cdot 2) \cdot 5}{2} =$	3p
	= 45	2 p
2.	$\Delta = a^2 - 4(a-1) = (a-2)^2$	2 p
	$\Delta > 0 \Leftrightarrow a \in \mathbb{R} \setminus \{2\}$	3 p
3.	$\sqrt[3]{x^2 + x + 2} = 2 \Leftrightarrow x^2 + x - 6 = 0$	3 p
	x = -3 sau x = 2	2p
4.	$2C_4^3 - 3A_4^2 = 2 \cdot \frac{4!}{3!(4-3)!} - 3 \cdot \frac{4!}{(4-2)!} =$	2p
	$= 2 \cdot 4 - 3 \cdot 4 \cdot 3 = 8 - 36 = -28$	3 p
5.	$\frac{1}{2} = \frac{a}{a^2 + 1} \Leftrightarrow a^2 - 2a + 1 = 0$	3 p
	a = 1	2p
6.	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot BC \cdot \sin B}{2} \iff 16 = \frac{8 \cdot 8 \cdot \sin B}{2}$	3 p
	$\sin B = \frac{1}{2}$ și, cum triunghiul <i>ABC</i> este ascuțitunghic, obținem că unghiul <i>B</i> are măsura de 30°	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = 0 \cdot 0 - 1 \cdot 1 =$	3p
	=0-1=-1	2 p
b)	$A \cdot A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	2 p
	$M(x,y) \cdot M(a,b) = (xI_2 + yA)(aI_2 + bA) = xaI_2 + xbA + yaA + ybA \cdot A = (xa + yb)I_2 + (xb + ya)A = xaI_2 + xbA + yaA + ybA \cdot A = (xa + yb)I_2 + (xb + ya)A = xaI_2 + xbA + yaA + ybA \cdot A = (xa + yb)I_2 + (xb + ya)A = xaI_2 + xbA + yaA + ybA \cdot A = (xa + yb)I_2 + (xb + ya)A = xaI_2 + xbA + yaA + ybA \cdot A = (xa + yb)I_2 + (xb + ya)A = xaI_2 + xbA + yaA + ybA \cdot A = (xa + yb)I_2 + (xb + ya)A = xaI_2 + xbA + yaA + ybA \cdot A = (xa + yb)I_2 + (xb + ya)A = xaI_2 + xbA + yaA + ybA \cdot A = (xa + yb)I_2 + (xb + ya)A = xaI_2 + xbA + yaA + ybA \cdot A = (xa + yb)I_2 + (xb + ya)A = xaI_2 + xbA + yaA + ybA \cdot A = (xa + yb)I_2 + (xb + ya)A = xaI_2 + xbA + yaA + ybA \cdot A = (xa + yb)I_2 + (xb + ya)A = xaI_2 + xbA + yaA + ybA +$	2
	= M(xa + yb, xb + ya) pentru orice numere reale a , b , x și y	3 p
c)	$\det(M(x,y)) = \begin{vmatrix} x & y \\ y & x \end{vmatrix} = x^2 - y^2, \text{ pentru orice numere reale } x \text{ si } y, \det(x-y)(x+y) = 4$	1p
	$M(x,y) \cdot M(x,y) = M(x^2 + y^2, 2xy) \Rightarrow 2(x^2 + y^2 + 2xy) = 8$, deci $(x+y)^2 = 4$	2p
	x + y = x - y = -2 sau $x + y = x - y = 2$, deci perechile sunt $(-2,0)$ sau $(2,0)$	2 p
2.a)	$2 \circ (1*3) = 2 \circ (1+3-1) = 2 \circ 3 = 2 \cdot 3 - 2 - 3 + 2 = 3$	2p
	$(2 \circ 1)*(2 \circ 3) = (2 \cdot 1 - 2 - 1 + 2)*(2 \cdot 3 - 2 - 3 + 2) = 1*3 = 1 + 3 - 1 = 3 = 2 \circ (1*3)$	3 p
b)	$x \circ x = x^2 - 2x + 2$ și $x * x = 2x - 1$, pentru orice număr real x	2p
	$3^{x \circ x} = \left(3^{-2}\right)^{x*x} \Leftrightarrow x \circ x = -2 \cdot (x*x) \Leftrightarrow x^2 + 2x = 0$, deci $x = -2$ sau $x = 0$	3p

Probă scrisă la matematică M şt-nat

Barem de evaluare și de notare

Ī	c)	$(x-1)*(2y+1)=2 \Leftrightarrow x+2y=3 \text{ si } (x+y) \circ 4=10 \Leftrightarrow x+y=4$	3p
		Obţinem $x = 5$, $y = -1$	2 p

(30 de puncte) **SUBIECTUL al III-lea**

$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} (5x - 3) = 2, \lim_{\substack{x \to 1 \\ x > 1}} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} (x^2 - x + \sqrt{x^2 + 3}) = 2 \text{si} f(1) = 2, \text{deci}$ $\lim_{x \to 1} f(x) = f(1), \text{ de unde obţinem că } f \text{ este continuă în } x = 1$	3p
Cum f este continuă pe $(-\infty,1)$ și pe $(1,+\infty)$, obținem că f este continuă pe \mathbb{R}	2 p
$f'(x) = 2x - 1 + \frac{x}{\sqrt{x^2 + 3}}, \ x \in (1, +\infty)$	2p
Tangenta la graficul funcției f în punctul $A(a,f(a))$ are panta egală cu $f'(a)$ și, cum	
$f'(a) > 0$, pentru orice $a \in (1, +\infty)$, obținem că $f'(a) \neq 0$, deci tangenta la graficul funcției	3 p
f în punctul A nu este paralelă cu axa Ox , pentru orice $a \in (1, +\infty)$	
$f''(x) = 2 + \frac{3}{(x^2 + 3)\sqrt{x^2 + 3}}, x \in (1, +\infty)$	2p
$f''(x) > 0$, pentru orice $x \in (1, +\infty)$, de unde obținem că funcția f este convexă pe $(1, +\infty)$	3 p
$f'(x) = \frac{1}{2\sqrt{x}} + 1 =$	3p
$=\frac{\sqrt{x}+2x}{2x}=g(x)$, pentru orice $x \in (0,+\infty)$, deci funcția f este o primitivă a funcției g	2p
$\int_{1}^{4} g(x)dx = f(x) \Big _{1}^{4} = f(4) - f(1) =$	3 p
=7-3=4	2p
$\int_{1}^{m} f(x) \cdot g(x) dx = \int_{1}^{m} f(x) \cdot f'(x) dx = \frac{1}{2} f^{2}(x) \Big _{1}^{m} = \frac{1}{2} (f^{2}(m) - f^{2}(1))$	3 p
$f^{2}(m)-9=40 \Leftrightarrow f(m)=-7$, care nu convine sau $f(m)=7$, de unde obținem $m=4$	2p
	$\lim_{x\to 1} f(x) = f(1), \text{ de unde obținem că } f \text{ este continuă în } x = 1$ $\operatorname{Cum } f \text{ este continuă pe } (-\infty,1) \text{ și pe } (1,+\infty), \text{ obținem că } f \text{ este continuă pe } \mathbb{R}$ $f'(x) = 2x - 1 + \frac{x}{\sqrt{x^2 + 3}}, x \in (1,+\infty)$ Fangenta la graficul funcției f în punctul $A(a, f(a))$ are panta egală cu $f'(a)$ și, cum $f'(a) > 0$, pentru orice $a \in (1,+\infty)$, obținem că $f'(a) \neq 0$, deci tangenta la graficul funcției f în punctul A nu este paralelă cu axa Ox , pentru orice $a \in (1,+\infty)$ $f''(x) = 2 + \frac{3}{(x^2 + 3)\sqrt{x^2 + 3}}, x \in (1,+\infty)$ $f''(x) > 0$, pentru orice $x \in (1,+\infty)$, de unde obținem că funcția f este convexă pe $(1,+\infty)$ $f'(x) = \frac{1}{2\sqrt{x}} + 1 = \frac{\sqrt{x} + 2x}{2x} = g(x)$, pentru orice $x \in (0,+\infty)$, deci funcția f este o primitivă a funcției f a funcției f a funcției f este o primitivă a funcției f a fu