COMPLEX NUMBER

Complex Numbers

A number z=x+iy where x,y ε R and $i=\sqrt{-1}$; x = Real part or Re(z); y = Imaginary part or Im(z)

Magnitude

$$|z| = \sqrt{x^2 + y^2}$$

$$|z| = |\bar{z}|$$

Argument

amp (z) = arg (z) =
$$\theta = \tan^{-1} \frac{y}{x}$$

General Argument : $2n\pi + \theta$, $n \in \mathbb{N}$

Principal Argument : $-\pi < \theta \le \pi$

Least Positive Argument : $0 < \theta < 2\pi$

Complex Conjugate

If z = x + iy

then the conjugate of 'z' is

$$\overline{z} = x - iy$$

Representation

Polar Representation

$$x = r \cos \theta$$
, $y = r \sin \theta$

Exponential Form

$$z = r e^{i\theta}$$
 (where $e^{i\theta} = \cos \theta + i \sin \theta$)

Vector Representation

z = x + iy may be considered as a position vector of point P.

Properties of argument of a Complex Number

If z, z_1 and z_2 are complex numbers, then

- arg(any real positive number) = 0
- 3 $arg(z-\bar{z}) = \pm \frac{\pi}{2}$
- 6 $arg(z_1.\overline{z_2}) = arg(z_1) - arg(z_2)$
- n arg(z) = -arg(z) = arg(1/z)
- 0 $arg(z^n) = n arg(z)$
- a $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2[|z_1|^2 + |z_2|^2]$
- B $|z_1+z_2|=|z_1|+|z_2| \iff \arg(z_1)=\arg(z_2)$
- **(B)** $|z_1-z_2|^2 \le (|z_1|-|z_2|)^2 + (arg(z_1)-arg(z_2))^2$
- O where $\theta_1 = \arg(z_1)$ and $\theta_2 = \arg(z_2)$ or $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2\text{Re}(z_1 z_2)$

- (Ω) | arg(any real negative number) = π
- $arg (z_1.z_2) = arg(z_1) + arg(z_2)$
- $arg(z_1/z_2) = arg(z_1) arg(z_2)$
- $arg(-z) = arg(z) \pm \pi$
- $m \mid arg(z) + arg(z) = 0$
- $|z_1-z_2| = |z_1+z_2| \iff \arg(z_1)-\arg(z_2) = \frac{\pi}{2}$
- $\bigcup_{1}^{1} |z_1+z_2|^2 = |z_1|^2 + |z_2|^2 \iff \frac{z_1}{z_2}$ is purely imaginary.
- $|z_1+z_2|^2 \ge (|z_1|+|z_2|)^2 + (\arg(z_1)-\arg(z_2))^2$ \mathbf{m}^{1}
- $|z_1+z_2|^2 = |z_1|^2 + |z_2|^2 + 2|z_1| |z_2| \cos(\theta_1-\theta_2), \qquad |z_1-z_2|^2 = |z_1|^2 + |z_2|^2 2|z_1| |z_2| \cos(\theta_1-\theta_2),$ where $\theta_1 = \arg(z_1)$ and $\theta_2 = \arg(z_2)$ or $|z_1 - z_2|^2 = |z_1|^2 + |z_2|^2 - 2\text{Re}(z_1 z_2)$

COMPLEX NUMBER

Properties of Complex Conjugate

If $z = a + ib \implies \overline{z} = a - ib$

- $(\bar{z}) = z$
- $z + \overline{z} = 2a = 2 \text{ Re}(z) = \text{purely real}$
- $z \overline{z} = 2ib = 2i \text{ Im } (z) = \text{purely imaginary}$
- $z \overline{z} = a^2 + b^2 = |z|^2 = {Re(z)}^2 + {Im(z)}^2$
- $z + \overline{z} = 0$ or $z = -\overline{z} \implies z = 0$ or z is purely imaginary
- $z = \overline{z} \implies z$ is purely real

Properties of Modulus

- $z \overline{z} = |z|^2$
- $z^{-1} = \frac{\overline{z}}{|z|^2}$
- $|z_1 \pm z_2|^2 = |z_1|^2 + |z_2|^2 \pm 2\text{Re}(z_1 \, \overline{z}_2)$
- $|z_1 + z_2|^2 + |z_1 z_2|^2 = 2[|z_1|^2 + |z_2|^2]$

Square roots of a Complex Number

The square root of
$$z = a + ib$$
 is $\sqrt{a+ib} = \pm \left[\sqrt{\frac{|z|+a}{2}} + i \sqrt{\frac{|z|-a}{2}} \right]$ for $b > 0$ and $\pm \left[\sqrt{\frac{|z|+a}{2}} - i \sqrt{\frac{|z|-a}{2}} \right]$ for $b < 0$

Inequalities

Triangle Inequalities

(1)
$$|z_1 \pm z_2| \le |z_1| + |z_2|$$
 (2) $|z_1 \pm z_2| \ge |z_1| - |z_2|$

Parallelogram Identity

(1)
$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2[|z_1|^2 + |z_2|^2]$$

Points to Remember

- If ABC is an equilateral triangle having vertices z_1 , z_2 , z_3 then $|z_1^2 + z_2^2 + z_3^2 = z_1z_2 + z_2z_3 + z_3z_1$ or $\frac{1}{z_1-z_2} + \frac{1}{z_2-z_3} + \frac{1}{z_3-z_1} = 0$
- If z_1 , z_2 , z_3 , z_4 are vertices of parallelogram then $z_1 + z_3 = z_2 + z_4$
- If z1, z2, z3 are affixes of the Points A, B and C in the Argand plane, then

(a)
$$\angle BAC = arg\left(\frac{z_3 - z_1}{z_2 - z_1}\right)$$

(a)
$$\angle BAC = arg\left(\frac{z_3 - z_1}{z_2 - z_1}\right)$$
 (b) $\frac{z_3 - z_1}{z_2 - z_1} = \frac{|z_3 - z_1|}{|z_2 - z_1|} (\cos \alpha + i \sin \alpha)$, where $\alpha = \angle BAC$

The equation of a circle whose centre is at point having affix zo and radius

$$R is |z - z_0| = R$$

If a, b are positive real numbers then $\sqrt{-a} \times \sqrt{-b} = -\sqrt{ab}$

Integral powers of iota

$$i = \sqrt{-1}$$
 so $i^2 = -1$; $i^3 = -i$ and $i^4 = 1$ $i^{4n+3} = -i$; i^{4n} or $i^{4n+4} = 1$
Hence $i^{4n+1} = i$; $i^{4n+2} = -1$

COMPLEX THEOREM

Statement

- (i) if $n \in Z$ (the set of integers), then $(\cos \theta + i \sin \theta)^n = \cos (n\theta) + i \sin (n\theta)$
- (ii) if $n \in Q$ (the set of rational number), then $\cos(n\theta) + i \sin(n\theta)$ one of the values of $(\cos\theta + i \sin\theta)^n$.

Roots of Unity

Let z = a + ib be a complex number, and let $r(\cos \theta + i \sin \theta)$ be the polar form of z.

Then by De Moivre's theorem $r^{1/n}\left\{\cos\left(\frac{\theta}{n}\right)+i\sin\left(\frac{\theta}{n}\right)\right\}$ is one of the values of $z^{1/n}$.

Cube Roots of unity

 $z = (1)^{1/3}$

Roots: 1, ω , ω^2 , where $\omega = e^{i\frac{2\pi}{3}}$

Properties of Cube Roots of Unity

- $1 + \omega^r + \omega^{2r} = 0$ $r \neq 3r$
- $\omega = e^{i\frac{2\pi}{3}} = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ $\omega^2 = e^{i\frac{4\pi}{3}} = \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$
- The three cube roots of unity when plotted on the argand plane constitute the vertices of an equilateral triangle. +i

nth Roots of unity

 $z = (1)^{1/n}$

Roots: 1, $\alpha_1, \alpha_2, ..., \alpha_{n-1}$

$$\alpha_r = e^{i\frac{2\pi r}{n}} = \cos\frac{2\pi r}{n} + i\sin\frac{2\pi r}{n}$$

Properties of nth Roots of Unity

- They are in G.P. with common ratio e^{f²⁷}
- $1^p + \alpha_1^p + \alpha_2^p + \dots + \alpha_{n-1}^p = 0$ if $p \neq kn$
- $1^p + (\alpha_1)^p + (\alpha_2)^p + \dots + (\alpha_{n-1})^p = n \text{ if } p = kn$
- $(1-\alpha_1)(1-\alpha_2)....(1-\alpha_{n-1}) = n$
- $(1 + \alpha_1) (1 + \alpha_2)$ $(1 + \alpha_{n-1}) = 0$ if n is even and 1 if n is odd
- $(1.\alpha_1.\alpha_2.\alpha_3...\alpha_{n-1}) = (-1)^{n-1}$
- $(\omega \alpha_1) (\omega \alpha_2) \dots (\omega \alpha_{n-1}) = \begin{bmatrix} 0 & \text{if } n = 3k \\ 1 & \text{if } n = 3k + 1 \\ 1+\omega & \text{if } n = 3k + 2 \end{bmatrix}$

Point to Remember

Centroid, Incentre, Orthocentre & Circumcentre of a triangle on a complex plane

- (a) Centroid ' G ' = $\frac{z_1 + z_2 + z_3}{3}$
- (b) Incentre ' I ' = $\frac{a z_1 + b z_2 + c z_3}{a + b + c}$
- (c) Orthocentre ' Z_H ' = $\frac{Z_1 \tan A + Z_2 \tan B + Z_3 \tan C}{\tan A + \tan B + \tan C}$
- (D) Circumcentre ' Z_s ' = $\frac{Z_1 (\sin 2A) + Z_2 (\sin 2B) + Z_3 (\sin 2C)}{\sin 2A + \sin 2B + \sin 2C}$

