Big-O Cheat Sheet

Preface

This is a LATEX'ed version of http://bigocheatsheet.com/ (as of 17 February 2015).

Legend:

Searching

Algorithm	Data Structure	Time Complexity Average	Worst	Space Complexity Worst
Depth First Search (DFS)	Graph of $ V $ vertices and $ E $ edges	-	O(E + V)	O(V)
Breadth First Search (BFS)	Graph of $ V $ vertices and $ E $ edges	-	O(E + V)	O(V)
Binary search	Sorted array of n elements	$oxed{O(\log n)}$	$O(\log n)$	O(1)
Linear (Brute Force)	Array	O(n)	O(n)	O(1)
Shortest path by Dijkstra, using a Min-heap as priority queue Shortest path by Dijkstra,	Graph with $ V $ vertices and $ E $ edges	$O((V + E)\log V)$	$O((V + E)\log V)$	O(V)
Shortest path by Dijkstra, using an unsorted array as priority queue	Graph with $ V $ vertices and $ E $ edges	$O(V ^2)$	$O(V ^2)$	O(V)
Shortest path by Bellman-Ford	Graph with $ V $ vertices and $ E $ edges	O(V E)	O(V E)	O(V)

Sorting

Algorithm	Data Structure	Time Comp Best	olexity Average	Worst	Worst Case Auxiliary Space Complexity Worst
Quicksort	Array	$O(n \log n)$	$O(n \log n)$	$O(n^2)$	O(n)
Mergesort	Array	$O(n \log n)$	$\boxed{O(n\log n)}$	$O(n \log n)$	O(n)
Heapsort	Array	$O(n \log n)$	$\boxed{O(n\log n)}$	$O(n \log n)$	O(1)
Bubble Sort	Array	O(n)	$\boxed{O(n^2)}$	$O(n^2)$	O(1)
Insertion Sort	Array	$\overline{O(n)}$	$\overline{O(n^2)}$	$O(n^2)$	O(1)
Selection Sort	Array	$O(n^2)$	$O(n^2)$	$O(n^2)$	O(1)
Bucket sort ^a	Array	O(n+k)	O(n+k)	$O(n^2)$	O(nk)
Radix sort ^b	Array	$oxed{O(nk)}$	$\boxed{O(nk)}$	$\boxed{O(nk)}$	O(n+k)

Graphs

Node/Edge Management	Storage	Add Vertex	Add Edge	Remove Vertex	Remove Edge	Query
Adjacency list	O(V + E)	O(1)	O(1)	O(V + E)	O(E)	O(V)
Incidence list	O(V + E)	O(1)	O(1)	O(E)	O(E)	O(E)
Adjacency matrix	$O(V ^2)$	$O(V ^2)$	O(1)	$O(V ^2)$	O(1)	O(1)
Incidence matrix	O(V E)	O(V E)	O(V E)	O(V E)	O(V E)	O(E)

^a Only for integers with range k ^b Constant number of digits 'k'

Data Structures

D 1 C1 1	Time Con	$\mathbf{nplexity}$			***				Space Complexity
Data Structure	Average Indexing	Search	Insertion	Deletion	$egin{array}{c} \mathbf{Worst} \\ \mathbf{Indexing} \end{array}$	Search	Insertion	Deletion	Worst
Basic Array	O(1)	$oxed{O(n)}$	-	-	O(1)	$oxed{O(n)}$	-	-	O(n)
Dynamic Array	O(1)	$\boxed{O(n)}$	$\boxed{O(n)}$	$\boxed{O(n)}$	O(1)	$\boxed{O(n)}$	$\boxed{O(n)}$	$\boxed{O(n)}$	O(n)
Singly-Linked List	$\boxed{O(n)}$	$\boxed{O(n)}$	O(1)	O(1)	$\boxed{O(n)}$	$\boxed{O(n)}$	O(1)	O(1)	O(n)
Doubly-Linked List	O(n)	O(n)	O(1)	O(1)	O(n)	$\boxed{O(n)}$	O(1)	O(1)	O(n)
Skip List	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(n)	O(n)	O(n)	O(n)	$O(n \log n)$
Hash Table	-	O(1)	O(1)	O(1)	-	O(n)	$\overline{O(n)}$	$\overline{O(n)}$	O(n)
Binary Search Tree	$O(\log n)$	$O(\log n)$	$\overline{O(\log n)}$	$O(\log n)$	$\boxed{O(n)}$	O(n)	$\overline{O(n)}$	O(n)	O(n)
Cartesian Tree	-	$O(\log n)$	$O(\log n)$	$O(\log n)$	-	$\boxed{O(n)}$	$\overline{O(n)}$	$\overline{O(n)}$	O(n)
B-Tree	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(n)
Red-Black Tree	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$\overline{O(\log n)}$	$O(\log n)$	O(n)
Splay Tree	-	$O(\log n)$	$O(\log n)$	$O(\log n)$	-	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(n)
AVL Tree	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$\overline{O(\log n)}$	$O(\log n)$	O(n)

Heaps

Heaps	Time Co Heapify	mplexity Find Max	Extract Max	Increase Key	Insert	Delete	Merge
Linked List (sorted)	-	O(1)	O(1)	$\boxed{O(n)}$	$oxed{O(n)}$	O(1)	O(m+n)
Linked List (unsorted)	-	$\boxed{O(n)}$	$\boxed{O(n)}$	O(1)	O(1)	O(1)	O(1)
Binary Heap	O(n)	O(1)	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(m+n)
Binomial Heap	-	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$
Fibonacci Heap	-	O(1)	$O(\log n)$ ^a	O(1) a	O(1)	$O(\log n)^{\mathbf{a}}$	O(1)

^a Amortized

Big-O Complexity Chart

Big-O Complexity

