Experimento 03 - Cordas Vibrantes e Ondas Estacionárias

Giovani Garuffi RA: 155559João Baraldi RA: 158044Lauro Cruz RA: 156175Lucas Schanner RA: 156412Pedro Stringhini RA: 156983

30 de setembro de 2014

1 Resumo

O experimento realizado buscou estudar ondas estacionárias, com o intuito de determinar o valor da densidade linear μ de um fio de Nylon. Para tanto, foi fixada uma cigarra de 120Hz em uma das extremidades do fio, e na outra foi amarrado um suporte para pesos suspenso por uma roldana, a fim de modular a tração e torná-la independente do comprimento L do fio.

Assim, com diversas configurações comprimento/massas m dos pesos, todas de modo a formar ondas estacionárias de n, registradas em tabela, foi elaborado um gráfico linearizado relacionando $n\sqrt{m}$ e L. A partir do coeficiente angular da reta formada e conehcendo a equação $n\sqrt{m} = 2f\sqrt{\frac{\mu}{g}} \cdot L$, determinou-se a densidade linear $\mu = 3.327 \cdot 10^{-4} \ Kg/m$, de erro $\Delta \mu = 3 \cdot 10^{-7} \ Kg/m$ Tal valor diferencia-se do previamente conhecido de $2.340 \cdot 10^{-4} \ Kg/m$, o que indica erros experimentais.

2 Objetivos

Este experimento teve como objetivo principal o estudo de ondas estacionárias formadas ao longo de um fio, a fim de calcular-se o valor da densidade linear, μ , desse fio.

3 Procedimento Experimental e Coleta de Dados

3.1 Materiais utilizados

Na realização deste experimento foram utilizados os seguintes materiais:

- Cigarra de Frequência de 120 Hz;
- Trena;
- Fio de Nylon;
- Copo Plástico;
- Pesos de Chumbo;
- Polia com Suporte;
- Balança de Precisão.

3.2 Procedimento

O fio de Nylon é ligado à cigarra em uma de suas extremidades, e na outra é ligado ao copo plástico, passando pela polia, como na figura 1. Então, coloca-se os pesos de chumbo no copo, de modo que, para cada realização do experimento o valor m varie, para tal, pode-se utilizar combinações lineares dos pesos adiquiridos.

Com o copo preenchido e a máxima altura do chão possível, e com a cigarra ligada, variase a posição da cigarra até formar-se uma onda estacionária (configuração representada na figura 2), para assim anotar-se os valores da massa m no copo, previamente medido com a balança, da distância L da cigarra à roldana, medido com a trena, e do número n de ventres formados. Obs.: A variação do valor de L não ultrapassa de 80 cm, tendo em vista que essa é, aproximadamente, a altura da mesa.

A montagem experimental pode ser observada nas figuras a seguir.

Figura 1: Montagem do experimento.

3.3 Dados Obtidos

Os valores de L que geraram os n ventres da onda, para cada valor m usado, pode ser encontrados na seguinte tabela:

Tabela 1: Valores de m usados, e os respectivos valores de L para gerar n ventres.

m(g)	L(cm)	
	130.0 ± 0.1	7
49.8 ± 0.1	116.8 ± 0.1	6
	97.3 ± 0.1	5
71.8 ± 0.1	136.5 ± 0.1	6
	115.5 ± 0.1	5
	90.5 ± 0.1	4
104.2 ± 0.1	134.0 ± 0.1	5
	106.5 ± 0.1	4
147.5 ± 0.1	131.0 ± 0.1	4
	98.5 ± 0.1	3
232.2 ± 0.1	119.3 ± 0.1	3
258.6 ± 0.1	125.5 ± 0.1	3
200.0 ± 0.1	87.5 ± 0.1	2

4 Análise dos Resultados e Discussões

4.1 Linearização

A equação

$$L = \frac{1}{2f} \sqrt{\frac{mg}{\mu}} n$$

Pode ser reescrita como

$$L = (\frac{1}{2f}\sqrt{\frac{g}{\mu}}) \cdot n\sqrt{m}$$
$$n\sqrt{m} = 2f\sqrt{\frac{\mu}{g}} \cdot L$$

Vemos então que deve existir uma uma relação linear entre L e $n\sqrt{m}$ em que o coeficiente angular é $a=2f\sqrt{\frac{\mu}{g}}$ e o coeficiente linear é b=0, que pode ser verificada utilizando-se a tabela abaixo:

Tabela 2: Valores de m, \sqrt{m} e $n\sqrt{m}$ relacionados aos comprimentos do fio L

L(m)	n	m(Kg)	$\sqrt{m} \ (\sqrt{Kg})$	$n\sqrt{m} \ (\sqrt{Kg})$
0.875 ± 0.001	2	0.2586 ± 0.0001	0.5085 ± 0.0001	1.0171 ± 0.0002
0.905 ± 0.001	4	0.0718 ± 0.0001	0.2680 ± 0.0002	1.0718 ± 0.0007
0.973 ± 0.001	5	0.0498 ± 0.0001	0.2232 ± 0.0002	1.116 ± 0.001
0.985 ± 0.001	3	0.1975 ± 0.0001	0.4444 ± 0.0001	1.3332 ± 0.0003
1.065 ± 0.001	4	0.1042 ± 0.0001	0.3228 ± 0.0002	1.2912 ± 0.0006
1.155 ± 0.001	5	0.0718 ± 0.0001	0.2680 ± 0.0002	1.3400 ± 0.0009
1.168 ± 0.001	6	0.0498 ± 0.0001	0.2232 ± 0.0002	1.340 ± 0.001
1.193 ± 0.001	3	0.2322 ± 0.0001	0.4819 ± 0.0001	1.4456 ± 0.0003
1.255 ± 0.001	3	0.2586 ± 0.0001	0.5085 ± 0.0001	1.5256 ± 0.0003
1.300 ± 0.001	7	0.0498 ± 0.0001	0.2232 ± 0.0002	1.562 ± 0.002
1.310 ± 0.001	4	0.1975 ± 0.0001	0.4444 ± 0.0001	1.7776 ± 0.0004
1.340 ± 0.001	5	0.1042 ± 0.0001	0.3228 ± 0.0002	1.6140 ± 0.0008
1.365 ± 0.001	6	0.0718 ± 0.0001	0.2680 ± 0.0002	1.608 ± 0.001

4.2 Regressão linear

Fazendo-se a regressão linear $n\sqrt{m}$ por L obtem-se os coeficientes:

$$a = 1.3985 \pm 0.0007 \frac{\sqrt{Kg}}{m}$$

$$b = -0.196 \pm 0.001 \sqrt{Kg}$$

Sendo a o coeficiente angular e b o coeficiente linear. Nota-se que segundo a linearização da equação original, o coeficiente linear deveria ser nulo, o que não condiz com a regressão linear dos dados experimentais. Isso se deve a erros aleatórios e erros durante as medições. A sobreposição da reta obtida sobre os pontos da tabela pode ser vista no gráfico abaixo:

Figura 2: Gráfico da regressão linear de $n\sqrt{m}$ por L, sobreposta aos pontos obtidos experimentalmente.

4.3 Densidade linear do fio

A densidade linear do fio é a relação entre o comprimento (L) do fio e sua massa (M_f) , representado por $\mu = \frac{M_f}{L}$.

A representação física do coeficiente linear (a) é:

$$a = 2f\sqrt{\frac{\mu}{g}}$$

Isolando μ obtemos:

$$\mu = \frac{ga^2}{4f^2}$$

Considerando o valor da aceleração da gravidade

$$q = 9.8 \ m/s^2$$

Podemos calcular o valor da densidade linear como:

$$\mu = 3.327 \cdot 10^{-4} \ Kg/m$$

O erro de μ é dado por:

$$\Delta \mu = \frac{ga}{2f^2} \cdot \Delta a$$

E fazendo-se as devidas substituições chega-se ao valor de:

$$\Delta \mu = 3 \cdot 10^{-7} \ Kg/m$$

Assim, o valor encontrado experimentalmente não está de acordo com o valor conhecido da densidade linear do fio, de $2.340 \cdot 10^{-4} \ Kg/m$.

O valor encontrado, longe do esperado, aponta para a possibilidade de erros experimentais como imprecisões na medição do comprimento do fio, na tração apresentada nele (ao desconsiderar a massa do recipiente em que se colocou os pesos), na obtenção de ondas estacionárias e até mesmo, possivelmente, na contagem de ventres. Pelo gráfico, pode-se ver que há uma quantidade muito alta de erro aleatório, o que não se esperava dessa montagem experimental.

5 Conclusões

Neste experimento, utilizou-se a relação entre o comprimento de um fio, a tensão e número de nós da onda estacionária presente nele, à uma frequência conhecida. Com essa relação foi possível calcular a densidade linear do fio, encontrando o valor $\mu = (3.327 \pm 0.003) \cdot 10^{-4} \ Kg/m$, que não corresponde com o valor conhecido, de $2.340 \cdot 10^{-4} Kg/m$. Assim, evidencia-se a possibilidade de erros experimentais devido a imprecisão na técnica e equipamentos utilizados para as medições.