CSC5520 - Project Update 3

Jonathan A. Gibson Andrew P. Worley Raunak Shakya

Motivation

Methodology

Figure 1. Different phases of Project update 3.

Methodology

Methodology

- Sequential model with 3 fully connected layers using Keras
- epochs = 50 and batch size = 10

Table 1. Deep Neural Network model

Layer (type)	Output Shape	# Parameters
Input (Dense)	(None, 12)	96
Hidden (Dense)	(None, 7)	91
Output (Dense)	(None, 1)	8

- Cliff's Delta $(0 \le \partial \le 1)$
- Addressing similarity between NEUTRAL and INSECURE feature values
- ∂ -> 0: Features are similar
- ∂ -> 1: Features are different

Table 2. Results from Cliff's Delta

ř.	Cliff's Delta						
	ADD_LOC	DEL_LOC	TOT_LOC	DEV_EXP	DEV_RECENT	PRIOR_AGE	CHANGE_FILE_CNT
Chemistry	0.12	0.07	0.1	0.07	0.03	0.02	0.05
Astronomy	0.07	0.03	0.05	0.05	0.07	0.01	0.01
Biology	0.1	0.03	0.07	0.13	0.17	0.01	0.05
Others	0.17	0.12	0.13	0.13	0.01	0.11	0.07

- Class imbalance is very common in real-world datasets
- Difficult to accurately classify minority class
- Resampling algorithms make the data distribution more balanced

Table 3. Results from SMOTEENN

	Original						
	Whole	Chemistry	Astronomy	Biology	Others		
NEUTRAL	0.92	0.94	0.93	0.91	0.96		
INSECURE	0.08	0.06	0.07	0.09	0.04		
	Resampled						
NEUTRAL		0.46	0.46	0.46	0.46		
INSECURE		0.54	0.54	0.54	0.54		

Table 4. Prior Learners Results for Transfer Learning Before Resampling

- Very low I_F1 during transfer learning
 - Except with DTC and RFC tested with "Other" dataset
- Less consistent
- Dependent on the testing set

Using Original Datasets								
	(Acc. N	F1. I F1)	Testing					
()	(,,,,,,,,	, ,	Chemistry	Astronomy	Biology	Others		
DTC	Cacc, N_F1, I_F1 Testing	(1.00, 1.00, 0.99)						
Ω	늘	Astronomy	(0.87, 0.93, 0.07)		(0.85, 0.92, 0.10)	(1.00, 1.00, 0.99)		
	<u></u>	Biology	(0.87, 0.93, 0.07)	(0.85, 0.92, 0.08)		(1.00, 1.00, 0.99)		
8	F	Others	(0.87, 0.93, 0.07)	(0.85, 0.92, 0.08)	(0.85, 0.92, 0.10)			
	(Acc N	F1 F1)		Tes	ting			
1740.40	(/////	1 -, 1_1 -,	Chemistry	Astronomy	Biology	Others		
RFC	50	Chemistry		(0.93, 0.96, 0.00)	(0.91, 0.95, 0.00)	(1.00, 1.00, 0.98)		
8	늘	Astronomy	(0.93, 0.96, 0.03)		(0.91, 0.95, 0.00)	(1.00, 1.00, 0.98)		
	<u>.</u>	Biology	(0.93, 0.96, 0.03)	(0.93, 0.96, 0.00)		(1.00, 1.00, 0.98)		
	F	Others	(0.93, 0.96, 0.03)	(0.93, 0.96, 0.00)	(0.91, 0.95, 0.00)			
	2		DE-1 33 3 3 3 3 3 4 3 6 3 4 3 6 4 3 6 4 3 6 4 3 6 6 6 6	350 1780 1780 1780				
	(Acc N	F1 F1)	Testing					
-	(////	,,	Chemistry	Astronomy	Biology	Others		
KNN	5	Chemistry		(0.92, 0.96, 0.02)	(0.90, 0.95, 0.01)	(0.96, 0.98, 0.32)		
	- <u>=</u>	Astronomy	(0.92, 0.96, 0.06)		(0.90, 0.95, 0.01)	(0.96, 0.98, 0.32)		
	ᆵ	Biology	(0.92, 0.96, 0.06)	(0.92, 0.96, 0.02)		(0.96, 0.98, 0.32)		
	F	Others	(0.92, 0.96, 0.06)	(0.92, 0.96, 0.02)	(0.90, 0.95, 0.01)	4		
1	1		1					
	(Acc N	F1 F1)		Tes	ting	89		
7	(· i.o.o, i.t_		Chemistry	Astronomy	Biology	Others		
ANN	50	Chemistry		(0.83, 0.91, 0.09)	(0.74, 0.85, 0.08)	(0.93, 0.97, 0.10)		
A	Ē	Astronomy	(0.76, 0.86, 0.09)		(0.74, 0.85, 0.08)	(0.93, 0.97, 0.10)		
	Training	Biology	(0.76, 0.86, 0.09)	(0.83, 0.91, 0.09)		(0.93, 0.97, 0.10)		
	F	Others	(0.76, 0.86, 0.09)	(0.83, 0.91, 0.09)	(0.74, 0.85, 0.08)			
	(Acc N	F1, I_F1)		Tes	ting			
	(/////	1 -, 1_1 -,	Chemistry	Astronomy	Biology	Others		
NBC	50	Chemistry		(0.26, 0.36, 0.13)	(0.20, 0.24, 0.16)	(0.71, 0.83, 0.11)		
Z	Ē	Astronomy	(0.28, 0.40, 0.10)	20 20 20	(0.20, 0.24, 0.16)	(0.71, 0.83, 0.11)		
	Training	Biology	(0.28, 0.40, 0.10)	(0.26, 0.36, 0.13)	300 300 300	(0.71, 0.83, 0.11)		
	F	Others	(0.28, 0.40, 0.10)	(0.26, 0.36, 0.13)	(0.20, 0.24, 0.16)			

- Results consistent across all datasets
- High accuracy but 0.00 for all other metrics
- DNN predicted the NEUTRAL class only

Table 5. Acc, Prec, Rec, F1 values with DNN Before Resampling

Using Original Datasets									
(Acc, Prec, Rec, F1) Testing									
Z	(ACC, FICE	c, Rec, 11)	Chemistry	Astronomy	Biology	Others			
É	50	Chemistry		(0.93, 0.00, 0.00, 0.00)	(0.91, 0.00, 0.00, 0.00)	(0.96, 0.00, 0.00, 0.00)			
	<u> </u>	Astronomy	(0.94, 0.00, 0.00, 0.00)		(0.91, 0.00, 0.00, 0.00)	(0.96, 0.00, 0.00, 0.00)			
	<u>.</u>	Biology	(0.94, 0.00, 0.00, 0.00)	(0.93, 0.00, 0.00, 0.00)		(0.96, 0.00, 0.00, 0.00)			
	F	Others	(0.94, 0.00, 0.00, 0.00)	(0.93, 0.00, 0.00, 0.00)	(0.91, 0.00, 0.00, 0.00)				

Table 6. Prior Learners Results for Transfer Learning After Resampling

- Drastic improvements for minority class, but majority class suffered
- More consistent
- Less dependent on testing dataset

Using Resampled Datasets							
	(Acc. N	F1, I_F1)		Testing			
()	(////	,,	Chemistry	Astronomy	Biology	Others	
DTC	20	Chemistry		(0.64, 0.65, 0.62)	(0.60, 0.63, 0.56)	(1.00, 1.00, 1.00)	
	Training	Astronomy	(0.61, 0.64, 0.56)		(0.60, 0.63, 0.56)	(1.00, 1.00, 1.00)	
	<u></u>	Biology	(0.61, 0.64, 0.56)	(0.64, 0.65, 0.62)	v	(1.00, 1.00, 1.00)	
3	F	Others	(0.61, 0.64, 0.56)	(0.64, 0.65, 0.62)	(0.60, 0.63, 0.56)		
	IAcc N	F1, I_F1)		Tes	ting		
2.7	(ACC, 14_	(1, 1_(1)	Chemistry	Astronomy	Biology	Others	
RFC	<u>∞</u>	Chemistry		(0.62, 0.66, 0.57)	(0.59, 0.66, 0.48)	(1.00, 1.00, 1.00)	
~	į.	Astronomy	(0.61, 0.67, 0.54)		(0.59, 0.66, 0.48)	(1.00, 1.00, 1.00)	
	Training	Biology	(0.61, 0.67, 0.54)	(0.62, 0.66, 0.57)		(1.00, 1.00, 1.00)	
	F	Others	(0.61, 0.67, 0.54)	(0.62, 0.66, 0.57)	(0.59, 0.66, 0.48)		
	IACC N	E1 E1\	Testing				
_	(Acc, N_F1, I_F1)		Chemistry	Astronomy	Biology	Others	
KNN	Training	Chemistry		(0.50, 0.54, 0.46)	(0.47, 0.57, 0.33)	(0.99, 0.99, 0.99)	
호		Astronomy	(0.51, 0.58, 0.40)		(0.47, 0.57, 0.33)	(0.99, 0.99, 0.99)	
	<u>.e</u>	Biology	(0.51, 0.58, 0.40)	(0.50, 0.54, 0.46)		(0.99, 0.99, 0.99)	
	F	Others	(0.51, 0.58, 0.40)	(0.50, 0.54, 0.46)	(0.47, 0.57, 0.33)		
					(
80	(Acc N	F1, I_F1)		Tes	ting	Ev so	
-	(//// // // // // // // // // // // // /	1 -, 1_1 -,	Chemistry	Astronomy	Biology	Others	
ANN	8	Chemistry		(0.56, 0.53, 0.58)	(0.41, 0.45, 0.36)	(0.72, 0.63, 0.78)	
¥	Training	Astronomy	(0.53, 0.43, 0.60)		(0.41, 0.45, 0.36)	(0.72, 0.63, 0.78)	
	<u>.</u>	Biology	(0.53, 0.43, 0.60)	(0.56, 0.53, 0.58)	6	(0.72, 0.63, 0.78)	
20	F	Others	(0.53, 0.43, 0.60)	(0.56, 0.53, 0.58)	(0.41, 0.45, 0.36)		
	IACC N	F1, I_F1)	Testing				
()	(/100) 14_	,, -,	Chemistry	Astronomy	Biology	Others	
NBC	26	Chemistry	200	(0.54, 0.02, 0.70)	(0.54, 0.03, 0.70)	(0.55, 0.07, 0.70)	
Z	- <u>E</u>	Astronomy	(0.53, 0.07, 0.69)		(0.54, 0.03, 0.70)	(0.55, 0.07, 0.70)	
5,000	Training	Biology	(0.53, 0.07, 0.69)	(0.54, 0.02, 0.70)		(0.55, 0.07, 0.70)	
	F	Others	(0.53, 0.07, 0.69)	(0.54, 0.02, 0.70)	(0.54, 0.03, 0.70)		

- Results consistent across all datasets
- Much better DNN results after resampling

Table 7. Acc, Prec, Rec, F1 Values with DNN After Resampling

Using Resampled Datasets								
	(Acc Pres	c, Rec, F1)		Tes	ting			
z	(ACC, 110)	c, Rec, 1 1)	Chemistry	Others				
Z	8 2	Chemistry		(0.55, 1.00, 0.55, 0.70)	(0.54, 1.00, 0.54, 0.70)	(0.54, 1.00, 0.54, 0.70)		
		Astronomy	(0.54, 1.00, 0.54, 0.70)		(0.54, 1.00, 0.54, 0.70)	(0.54, 1.00, 0.54, 0.70)		
<u>a</u> ;	Biology	(0.54, 1.00, 0.54, 0.70)	(0.54, 1.00, 0.54, 0.70)		(0.54, 1.00, 0.54, 0.70)			
	F	Others	(0.54, 1.00, 0.54, 0.70)	(0.54, 1.00, 0.54, 0.70)	(0.54, 1.00, 0.54, 0.70)			

Potential Changes/Optimizations

- We used mostly default parameters for the API calls
- We could optimize SMOTE parameters for better resampling
- Calculate loss based on the recall metric to maximize minority classification
 - High accuracy even when predictions were only for NEUTRAL class
- We can experiment with different DNN shapes/layers
 - Optimize DNN parameters
- We could compare features against each other
 - May allow us to omit features that are too similar

Conclusion

- DTC and RFC did really well before and after resampling the datasets
- Transfer learning tells us if a classification model is good at generalizing information between similar domains
- Resampling is a good way to produce better results for the minority class at the expense of the majority class results
- Prior learners is better before resampling
- DNN is better after resampling
- No security weaknesses reported with Bandit for any project update

Thank you!