Response to Office communication dated: 06/08/2006

Attorney Docket: UCONEN/206/US

AMENDMENT TO THE CLAIMS

Please amend the claims as follows:

1. (currently amended) A compound of formula I below, and physiologically acceptable salts, comprising:

wherein,

the "A" ring atoms <u>are selected from</u> of compound formula I comprise carbon and 0 to 2 nitrogen heteroatoms;

Ar is an aromatic ring, an aromatic ring <u>having comprising</u> at least one substituent group, a heteroaromatic ring, a heteroaromatic ring <u>having comprising</u> 1 to 5 substituent groups, a heterocyclic ring or a heterocyclic ring <u>having comprising</u> at least one substituent group;

R is selected from H, OH, OCH₃, alkoxy, OCH₂CH₂OH, alcohol, NH₂, PO₃H, OPO₃H, OSO₃H, halogen, C(halogen)₃, SE₁, OE₁ and NE₁E₂,

 E_1 and E_2 are each independently H or alkyl;

R' is selected from H, OH, alkoxy, OCH₂CH₂OH, alcohol, NH₂, PO₃H, OPO₃H, OSO₃H, halogen, C(halogen)₃, SE₁, OE₁ and NE₁E₂,

 E_1 and E_2 are each independently H or alkyl;

Response to Office communication dated: 06/08/2006

Attorney Docket: UCONEN/206/US

R" is $Y-D_1-D_2-T_2$,

Y is optionally present and if present is selected from O, S, NH, N-alkyl, C=CH, C≡C, CH₂, CH(CH₃), C(CH₃)₂, a carbocyclic ring having 4 to 6 ring members and a heterocyclic ring having 4 to 6 ring members with 1 or 2 heteroatoms,

D₁ is optionally present and if present is alkyl,

D₂ is selected from alkyl, NH, N-alkyl, O-alkyl, S-alkyl, a carbocyclic ring, a bicyclic ring, a tricyclic ring, an aromatic ring and a heteroaromatic ring,

T₂ is optionally present and if present is selected from an aromatic ring, a substituted aromatic ring, a heteroaromatic ring, a substituted heteroaromatic ring, a heterocyclic ring, H, OH, halogen, and a substituent group;

R" and R"" are each independently selected from H, halogen, alkyl, alkoxy and a substituent group;

with the proviso that,

when Ar is 4-isopropyl pyridine or 4-isopropenyl pyridine, R''' is hydrogen, and R''' is hydrogen, then R'' can not be a straight or branched saturated alkyl having 1 to 20 carbon atoms;

when Ar is 4-isopropyl toluene or 4-isopropenyl toluene, and both R'" and R'" are hydrogen, R" can not be a straight or branched saturated alkyl having 1 to 20 carbon atoms;

when R" is $C(CH_3)_2(CH_2)_5CH_3$, R_2 and R_4 are methyl, then R' and R" can not be H, OH or OCH_3 .

2. cancelled

3. (previously presented) The compound of claim 1 wherein:

R'" is selected from H, halogen, C(halogen)₃, lower alkyl and alkoxy;

R"" is selected from H, halogen, C(halogen)3, lower alkyl and alkoxy; and

Response to Office communication dated: 06/08/2006

Attorney Docket: UCONEN/206/US

R" is selected from -Y-D₁-D₂-T₂,

Y is selected from C(CH₃)₂, CH₂ and CH(CH₃),

D₁ is optionally present and if present is alkyl,

D₂ is selected from alkyl, NH, N-alkyl, O-alkyl, S-alkyl, a carbocyclic ring, a bicyclic ring, a tricyclic ring, an aromatic ring and a heteroaromatic ring,

T₂ is optionally present and if present is selected from an aromatic ring, a heteroaromatic ring, a heterocyclic ring, H, OH, halogen and a substituent group.

4. (previously presented) The compound of claim 1 wherein:

R" is selected from H, halogen, C(halogen)₃, lower alkyl and alkoxy;

R'''' is selected from H, halogen, $C(halogen)_3$, lower alkyl and alkoxy; and R'' is $-Y-D_1-D_2-T_2$,

Y is selected from O, NH and N-alkyl,

D₁ is optionally present and if present is alkyl,

D₂ is selected from alkyl, NH, N-alkyl, O-alkyl, S-alkyl, a carbocyclic ring, a bicyclic ring, a tricyclic ring, an aromatic ring and a heteroaromatic ring,

T₂ is optionally present and if present is selected from an aromatic ring, a heteroaromatic ring, a heterocyclic ring, H, OH, halogen and a substituent group.

5. (previously presented) The compound of claim 1 wherein:

R" is selected from H, halogen, C(halogen)₃, lower alkyl and alkoxy;

 $R^{""}$ is selected from H, halogen, $C(halogen)_3$, lower alkyl and alkoxy; and $R^{"}$ is $-Y-D_1-D_2-T_2$,

Y is optionally present and if present is selected from C=CH and C≡C,

 D_1 is optionally present and if present is alkyl,

D₂ is selected from alkyl, NH, N-alkyl, O-alkyl, S-alkyl, a carbocyclic ring, a bicyclic ring, a tricyclic ring, an aromatic ring and a heteroaromatic ring,

T₂ is optionally present and if present is selected from an aromatic ring, a heteroaromatic ring, a heterocyclic ring, H, OH, halogen and a substituent group.

Response to Office communication dated: 06/08/2006

Attorney Docket: UCONEN/206/US

6. (previously presented) The compound of claim 1 wherein:

R" is selected from H, halogen, C(halogen)₃, lower alkyl and alkoxy;

R"" is selected from H, halogen, C(halogen)₃, lower alkyl and alkoxy; and R" is $-Y-D_1-D_2-T_2$,

Y is optionally present and if present is selected from a carbocyclic ring having 4 to 6 ring members and a heterocyclic ring having 4 to 6 ring members with 1 or 2 heteroatoms,

D₁ is optionally present and if present is alkyl,

D₂ is selected from alkyl, NH, N-alkyl, O-alkyl, S-alkyl, a carbocyclic ring, a bicyclic ring, a tricyclic ring, an aromatic ring and a heteroaromatic ring,

T₂ is optionally present and if present is selected from an aromatic ring, a heteroaromatic ring, a heterocyclic ring, H, OH, halogen and a substituent group.

- 7. (previously presented) The compound of claim 1 wherein Ar is selected from an aromatic ring having 5 or 6 ring members and a heteroaromatic ring having 5 or 6 ring members.
- 8. (previously presented) The compound of claim 1 wherein Ar is selected from one of the structures:

and,

the Ar aromatic ring structure comprises 0 to 3 heteroatoms as ring members;

R1, R2, R3, R4 and R5 are each independently selected from H, OH, NH₂, halogen,

Response to Office communication dated: 06/08/2006

Attorney Docket: UCONEN/206/US

N₃, NO₂, NCS, C(halogen)₃, CHO, OAc, OCH₃, OC₂H₅, CH₂OH, CH₂CH₂OH, CH₂CH₂OH, CN, C(=O)CH₃, COOH, COOCH₃, COOC₂H₅, COOCH(CH₃)₂, NHCOCH₃, SCH₃, SC₂H₅, NHCH₃, CH₂NH₂, CH₃, C₂H₅, C₃H₇, C₂H₃, ethynyl, alkoxy, alkylmercapto, alkylamino, di-alkylamino, alkylsulfinyl, alkylsulfonyl, methylene dioxy and a substituent group.

9. (previously presented) The compound of claim 1 wherein Ar is selected from 1-, 2- or 3-pyrrolidinyl, 1-, 2-, 3- or 4-piperidinyl, 1-, 2- or 3-morpholinyl, 1-, 2- or 3-thiomorpholinyl, 1-, 2- or 3- azetidinyl, 1-, or 2-piperazinyl, 2- or 3-tetrahydrofuranyl; or any above group substituted on any available ring carbon thereof by alkyl; or any above group unsubstituted on one or more nitrogen atoms, or any above group substituted on one or more nitrogen atoms independently by an alkyl, benzyl, lower-alkoxybenzyl or benzhydryl group; adamantyl; a carbocyclic ring, a substituted carbocyclic ring, a heteroaromatic ring, a substituted heteroaromatic ring, a bicyclic ring, a substituted bicyclic ring, a heterobicyclic ring, a substituted heterobicyclic ring, a polycyclic ring, a substituted polycyclic ring, a heteropolycyclic ring or a substituted heteropolycyclic ring.

Response to Office communication dated: 06/08/2006

Attorney Docket: UCONEN/206/US

10. (previously presented) The compound of claim 1 wherein Ar is selected from:

$$G = \bigcap_{N \to G} G = \bigcap_{N \to G}$$

G is selected from H, OH, NH₂, halogen, N₃, NO₂, NCS, CF₃, CHO, OAc, OCH₃, OC₂H₅, CH₂OH, CH₂CH₂OH, CH₂CH₂OH, CN, C(=O)CH₃, COOH, COOCH₃, COOC₂H₅, COOCH(CH₃)₂, NHCOCH₃, SCH₃, SC₂H₅, NHCH₃, CH₂NH₂, CH₃, C₂H₅, C₃H₇, C₂H₃, ethynyl, alkoxy, alkylmercapto, alkylamino, di-alkylamino, alkylsulfinyl, alkylsulfonyl and methylene dioxy.

11. (currently amended) A pharmaceutical preparation comprising a therapeutically effective amount of at least one compound of formula I below, and physiologically acceptable salts thereof:

wherein',

the "A" ring atoms <u>are selected from</u> of compound formula I comprise carbon and 0 to 2 nitrogen heteroatoms;

Response to Office communication dated: 06/08/2006

Attorney Docket: UCONEN/206/US

Ar is an aromatic ring, an aromatic ring <u>having comprising</u> at least one substituent group, a heteroaromatic ring, a heteroaromatic ring <u>having comprising</u> 1 to 5 substituent groups, a heterocyclic ring or a heterocyclic ring <u>having comprising</u> at least one substituent group;

R is selected from H, OH, OCH₃, alkoxy, OCH₂CH₂OH, alcohol, NH₂, PO₃H, OPO₃H, OSO₃H, halogen, C(halogen)₃, SE₁, OE₁ and NE₁E₂,

E₁ and E₂ are each independently H or alkyl;

R' is selected from OH, alkoxy, OCH $_2$ CH $_2$ OH, alcohol, NH $_2$, PO $_3$ H, OPO $_3$ H, OSO $_3$ H, halogen, C(halogen) $_3$, SE $_1$, OE $_1$ and NE $_1$ E $_2$,

E₁ and E₂ are each independently H or alkyl;

R" is $Y-D_1-D_2-T_2$,

Y is optionally present and if present is selected from O, S, NH, N-alkyl, C=CH, C≡C, CH₂, CH(CH₃), C(CH₃)₂, a carbocyclic ring having 4 to 6 ring members and a heterocyclic ring having 4 to 6 ring members with 1 or 2 heteroatoms,

D₁ is optionally present and if present is alkyl,

D₂ is selected from alkyl, NH, N-alkyl, O-alkyl, S-alkyl, a carbocyclic ring, a bicyclic ring, a tricyclic ring, an aromatic ring and a heteroaromatic ring,

T₂ is optionally present and if present is selected from an aromatic ring, a substituted aromatic ring, a heteroaromatic ring, a substituted heteroaromatic ring, a heterocyclic ring, a substituted heterocyclic ring, H, OH, halogen, and a substituent group;

R" and R"" are each independently selected from H, halogen, alkyl, alkoxy and a substituent group;

Response to Office communication dated: 06/08/2006

Attorney Docket: UCONEN/206/US

with the proviso that,

when Ar is 4-isopropyl pyridine or 4-isopropenyl pyridine, R" is hydrogen, and R" is hydrogen, then R" can not be a straight or branched saturated alkyl having 1 to 20 carbon atoms;

when Ar is 4-isopropyl toluene or 4-isopropenyl toluene, and both R" and R" are hydrogen, R" can not be a straight or branched saturated alkyl having 1 to 20 carbon atoms;

when R" is $C(CH_3)_2(CH_2)_5CH_3$, R_2 and R_4 are methyl, then R' and R" can not be H, OH or OCH_3 .

12. cancelled

13. (previously presented) The pharmaceutical preparation of claim 11, wherein:
R''' is selected from H, halogen, C(halogen)₃, lower alkyl and alkoxy;
R'''' is selected from H, halogen, C(halogen)₃, lower alkyl and alkoxy; and
R'' is -Y-D₁-D₂-T₂,

Y is optionally present and if present is selected from O, S, NH, N-alkyl, C=CH, C≡C, CH₂, CH(CH₃), C(CH₃)₂, a carbocyclic ring having 4 to 6 ring members and a heterocyclic ring having 4 to 6 ring members with 1 or 2 heteroatoms,

D₁ is optionally present and if present is alkyl,

D₂ is selected from alkyl, NH, N-alkyl, O-alkyl, S-alkyl, a carbocyclic ring, a bicyclic ring, a tricyclic ring, an aromatic ring and a heteroaromatic ring,

T₂ is optionally present and if present is selected from an aromatic ring, a heteroaromatic ring, a heterocyclic ring, H, OH, halogen and a substituent group.

14. (currently amended) A method of stimulating a cannabinoid receptor in an individual or animal comprising administering to the individual or animal a therapeutically effective amount of at least one compound of formula I below, and physiologically acceptable salts thereof:

Response to Office communication dated: 06/08/2006

Attorney Docket: UCONEN/206/US

wherein,

the "A" ring atoms of compound formula I comprise carbon and 0 to 2 nitrogen heteroatoms;

Ar is an aromatic ring, an aromatic ring <u>having comprising</u> at least one substituent group, a heteroaromatic ring, a heteroaromatic ring <u>having comprising</u> 1 to 5 substituent groups, a heterocyclic ring or a heterocyclic ring <u>having comprising</u> at least one substituent group;

R is selected from H, OH, OCH₃, alkoxy, OCH₂CH₂OH, alcohol, NH₂, PO₃H, OPO₃H, OSO₃H, halogen, C(halogen)₃, SE₁, OE₁ and NE₁E₂,

 E_1 and E_2 are each independently H or alkyl;

R' is selected from OH, alkoxy, OCH₂CH₂OH, alcohol, NH₂, PO₃H, OPO₃H, OSO₃H, halogen, C(halogen)₃, SE₁, OE₁ and NE₁E₂,

E₁ and E₂ are each independently H or alkyl;

R" is $Y-D_1-D_2-T_2$,

Y is optionally present and if present is selected from O, S, NH, N-alkyl, C=CH, C≡C, CH₂, CH(CH₃), C(CH₃)₂, a carbocyclic ring having 4 to 6 ring members and a heterocyclic ring having 4 to 6 ring members with 1 or 2 heteroatoms,

D₁ is optionally present and if present is alkyl,

D₂ is selected from alkyl, NH, N-alkyl, O-alkyl, S-alkyl, a carbocyclic ring, a bicyclic

Response to Office communication dated: 06/08/2006

Attorney Docket: UCONEN/206/US

ring, a tricyclic ring, an aromatic ring and a heteroaromatic ring,

T₂ is optionally present and if present is selected from an aromatic ring, a substituted aromatic ring, a heteroaromatic ring, a substituted heteroaromatic ring, a heterocyclic ring, a substituted heterocyclic ring, H, OH, halogen, and a substituent group;

R" and R" are each independently selected from H, halogen, alkyl, alkoxy and a substituent group;

with the proviso that,

when Ar is 4-isopropyl pyridine or 4-isopropenyl pyridine, R" is hydrogen, and R" is hydrogen, then R" can not be a straight or branched saturated alkyl having 1 to 20 carbon atoms;

when Ar is 4-isopropyl toluene or 4-isopropenyl toluene, and both R" and R" are hydrogen, R" can not be a straight or branched saturated alkyl having 1 to 20 carbon atoms;

when R" is $C(CH_3)_2(CH_2)_5CH_3$, R₂ and R₄ are methyl, then R' and R" can not be H, OH or OCH_3 .

15. (previously presented) The method of claim 14 wherein:

R" is selected from H, halogen, C(halogen)3, lower alkyl and alkoxy;

R"" is selected from H, halogen, C(halogen)₃, lower alkyl and alkoxy; and R" is $-Y-D_1-D_2-T_2$,

Y is optionally present and if present is selected from O, S, NH, N-alkyl, C=CH, C≡C, CH₂, CH(CH₃), C(CH₃)₂, a carbocyclic ring having 4 to 6 ring members and a heterocyclic ring having 4 to 6 ring members with 1 or 2 heteroatoms,

D₁ is optionally present and if present is alkyl,

D₂ is selected from alkyl, NH, N-alkyl, O-alkyl, S-alkyl, a carbocyclic ring, a bicyclic ring, a tricyclic ring, an aromatic ring and a heteroaromatic ring,

T₂ is optionally present and if present is selected from an aromatic ring, a

Response to Office communication dated: 06/08/2006

Attorney Docket: UCONEN/206/US

heteroaromatic ring, a heterocyclic ring, H, OH, halogen and a substituent group.

16. (currently amended) A method of selectively stimulating CB2 cannabinoid receptors in an individual or animal comprising administering to the individual or animal a therapeutically effective amount of at least one compound of formula I below, and physiologically acceptable salts thereof:

wherein,

the "A" ring atoms of compound formula I comprise carbon and 0 to 2 nitrogen heteroatoms;

Ar is an aromatic ring, an aromatic ring <u>having comprising</u> at least one substituent group, a heteroaromatic ring, a heteroaromatic ring <u>having comprising</u> 1 to 5 substituent groups, a heterocyclic ring or a heterocyclic ring <u>having comprising</u> at least one substituent group;

R is selected from H, OH, OCH₃, alkoxy, OCH₂CH₂OH, alcohol, NH₂, PO₃H, OPO₃H, OSO₃H, halogen, C(halogen)₃, SE₁, OE₁ and NE₁E₂,

E₁ and E₂ are each independently H or alkyl;

R' is selected from OH, alkoxy, OCH₂CH₂OH, alcohol, NH₂, PO₃H, OPO₃H, OSO₃H, halogen, C(halogen)₃, SE₁, OE₁ and NE₁E₂,

E₁ and E₂ are each independently H or alkyl;

Response to Office communication dated: 06/08/2006

Attorney Docket: UCONEN/206/US

R" is $Y-D_1-D_2-T_2$,

Y is optionally present and if present is selected from O, S, NH, N-alkyl, C=CH, C≡C, CH₂, CH(CH₃), C(CH₃)₂, a carbocyclic ring having 4 to 6 ring members and a heterocyclic ring having 4 to 6 ring members with 1 or 2 heteroatoms,

D₁ is optionally present and if present is alkyl,

D₂ is selected from alkyl, NH, N-alkyl, O-alkyl, S-alkyl, a carbocyclic ring, a bicyclic ring, a tricyclic ring, an aromatic ring and a heteroaromatic ring,

T₂ is optionally present and if present is selected from an aromatic ring, a substituted aromatic ring, a heteroaromatic ring, a substituted heteroaromatic ring, a heterocyclic ring, a substituted heterocyclic ring, H, OH, halogen, and a substituent group;

R" and R"" are each independently selected from H, halogen, alkyl, alkoxy and a substituent group;

with the proviso that,

when Ar is 4-isopropyl pyridine or 4-isopropenyl pyridine, R" is hydrogen, and R" is hydrogen, then R" can not be a straight or branched saturated alkyl having 1 to 20 carbon atoms;

when Ar is 4-isopropyl toluene or 4-isopropenyl toluene, and both R'" and R'" are hydrogen, R" can not be a straight or branched saturated alkyl having 1 to 20 carbon atoms;

when R" is $C(CH_3)_2(CH_2)_5CH_3$, R_2 and R_4 are methyl, then R' and R" can not be H, OH or OCH_3 .

17. (previously presented) The method of claim 16, wherein:

R" is selected from H, halogen, C(halogen)3, lower alkyl and alkoxy;

R"" is selected from H, halogen, C(halogen)₃, lower alkyl and alkoxy; and

R" is -Y-D₁-D₂-T₂,

Y is optionally present and if present is selected from O, S, NH, N-alkyl,

Response to Office communication dated: 06/08/2006

Attorney Docket: UCONEN/206/US

C=CH, C≡C, CH₂, CH(CH₃), C(CH₃)₂, a carbocyclic ring having 4 to 6 ring members and a heterocyclic ring having 4 to 6 ring members with 1 or 2 heteroatoms,

D₁ is optionally present and if present is alkyl,

D₂ is selected from alkyl, NH, N-alkyl, O-alkyl, S-alkyl, a carbocyclic ring, a bicyclic ring, a tricyclic ring, an aromatic ring and a heteroaromatic ring,

T₂ is optionally present and if present is selected from an aromatic ring, a heteroaromatic ring, a heterocyclic ring, H, OH, halogen and a substituent group.

18. (currently amended) A method of treating a condition comprising administering to an individual or animal having the condition a therapeutically effective amount of at least one compound of formula I below, and physiologically acceptable salts thereof:

wherein,

the "A" ring atoms of compound formula I comprise carbon and 0 to 2 nitrogen heteroatoms;

Ar is an aromatic ring, an aromatic ring <u>having comprising</u> at least one substituent group, a heteroaromatic ring, a heteroaromatic ring <u>having comprising</u> 1 to 5 substituent groups, a heterocyclic ring or a heterocyclic ring <u>having comprising</u> at least one substituent group;

R is selected from H, OH, OCH₃, alkoxy, OCH₂CH₂OH, alcohol, NH₂, PO₃H, OPO₃H, OSO₃H, halogen, C(halogen)₃, SE₁, OE₁ and NE₁E₂,

E₁ and E₂ are each independently H or alkyl;

Response to Office communication dated: 06/08/2006

Attorney Docket: UCONEN/206/US

R' is selected from OH, alkoxy, OCH₂CH₂OH, alcohol, NH₂, PO₃H, OPO₃H, OSO₃H, halogen, C(halogen)₃, SE₁, OE₁ and NE₁E₂,

E₁ and E₂ are each independently H or alkyl;

R" is Y-D₁-D₂-T₂,

Y is optionally present and if present is selected from O, S, NH, N-alkyl, C=CH, C≡C, CH₂, CH(CH₃), C(CH₃)₂, a carbocyclic ring having 4 to 6 ring members and a heterocyclic ring having 4 to 6 ring members with 1 or 2 heteroatoms,

D₁ is optionally present and if present is alkyl,

D₂ is selected from alkyl, NH, N-alkyl, O-alkyl, S-alkyl, a carbocyclic ring, a bicyclic ring, a tricyclic ring, an aromatic ring and a heteroaromatic ring,

T₂ is optionally present and if present is selected from an aromatic ring, a substituted aromatic ring, a heteroaromatic ring, a substituted heteroaromatic ring, a heterocyclic ring, a substituted heterocyclic ring, H, OH, halogen, and a substituent group;

R" and R" are each independently selected from H, halogen, alkyl, alkoxy and a substituent group,

with the proviso that,

when Ar is 4-isopropyl pyridine or 4-isopropenyl pyridine, R" is hydrogen, and R"" is hydrogen, then R" can not be a straight or branched saturated alkyl having 1 to 20 carbon atoms;

when Ar is 4-isopropyl toluene or 4-isopropenyl toluene, and both R'" and R'" are hydrogen, R" can not be a straight or branched saturated alkyl having 1 to 20 carbon atoms;

when R" is $C(CH_3)_2(CH_2)_5CH_3$, R₂ and R₄ are methyl, then R' and R" can not be H, OH or OCH_3 .

Response to Office communication dated: 06/08/2006

Attorney Docket: UCONEN/206/US

19. (previously presented) The method of claim 18, wherein:

R" is selected from H, halogen, C(halogen)3, lower alkyl and alkoxy;

R"" is selected from H, halogen, C(halogen)₃, lower alkyl and alkoxy; and R" is $-Y-D_1-D_2-T_2$,

Y is optionally present and if present is selected from O, S, NH, N-alkyl, C=CH, C≡C, CH₂, CH(CH₃), C(CH₃)₂, a carbocyclic ring having 4 to 6 ring members and a heterocyclic ring having 4 to 6 ring members with 1 or 2 heteroatoms,

D₁ is optionally present and if present is alkyl,

D₂ is selected from alkyl, NH, N-alkyl, O-alkyl, S-alkyl, a carbocyclic ring, a bicyclic ring, a tricyclic ring, an aromatic ring and a heteroaromatic ring,

T₂ is optionally present and if present is selected from an aromatic ring, a heteroaromatic ring, a heterocyclic ring, H, OH, halogen and a substituent group.

20. (currently amended) A method of providing a physiological response in an individual or animal comprising administering to the individual or animal a therapeutically effective amount of at least one compound of formula I below, and physiologically acceptable salts thereof:

wherein.

the "A" ring atoms of compound formula I comprise carbon and 0 to 2 nitrogen heteroatoms;

Ar is an aromatic ring, an aromatic ring <u>having comprising</u> at least one substituent group, a heteroaromatic ring, a heteroaromatic ring <u>having comprising</u> 1 to 5 substituent

Response to Office communication dated: 06/08/2006

Attorney Docket: UCONEN/206/US

groups, a heterocyclic ring or a heterocyclic ring <u>having</u> comprising at least one substituent group;

R is selected from H, OH, OCH₃, alkoxy, OCH₂CH₂OH, alcohol, NH₂, PO₃H, OPO₃H, OSO₃H, halogen, C(halogen)₃, SE₁, OE₁ and NE₁E₂,

 E_1 and E_2 are each independently H or alkyl;

R' is selected from H_7 OH, alkoxy, OCH₂CH₂OH, alcohol, NH₂, PO₃H, OPO₃H, OSO₃H, halogen, C(halogen)₃, SE₁, OE₁ and NE₁E₂,

 E_1 and E_2 are each independently H or alkyl;

R" is $Y-D_1-D_2-T_2$,

Y is optionally present and if present is selected from O, S, NH, N-alkyl, C=CH, C≡C, CH₂, CH(CH₃), C(CH₃)₂, a carbocyclic ring having 4 to 6 ring members and a heterocyclic ring having 4 to 6 ring members with 1 or 2 heteroatoms,

D₁ is optionally present and if present is alkyl,

D₂ is selected from alkyl, NH, N-alkyl, O-alkyl, S-alkyl, a carbocyclic ring, a bicyclic ring, a tricyclic ring, an aromatic ring and a heteroaromatic ring,

T₂ is optionally present and if present is selected from an aromatic ring, a substituted aromatic ring, a heteroaromatic ring, a substituted heteroaromatic ring, a heterocyclic ring, a substituted heterocyclic ring, H, OH, halogen, and a substituent group;

R''' and R'''' are each independently selected from H, halogen, alkyl, alkoxy and a substituent group,

with the proviso that,

when Ar is 4-isopropyl pyridine or 4-isopropenyl pyridine, R" is hydrogen, and R" is hydrogen, then R" can not be a straight or branched saturated alkyl having 1 to 20 carbon atoms;

Response to Office communication dated: 06/08/2006

Attorney Docket: UCONEN/206/US

when Ar is 4-isopropyl toluene or 4-isopropenyl toluene, and both R" and R" are hydrogen, R" can not be a straight or branched saturated alkyl having 1 to 20 carbon atoms;

when R" is $C(CH_3)_2(CH_2)_5CH_3$, R_2 and R_4 are methyl, then R' and R" can not be H, OH or OCH_3 .

21. (previously presented) The method of claim 20, wherein:

R"' is selected from H, halogen, C(halogen)₃, lower alkyl and alkoxy; R"' is selected from H, halogen, C(halogen)₃, lower alkyl and alkoxy; and R" is $-Y-D_1-D_2-T_2$.

Y is optionally present and if present is selected from O, S, NH, N-alkyl, C=CH, C≡C, CH₂, CH(CH₃), C(CH₃)₂, a carbocyclic ring having 4 to 6 ring members and a heterocyclic ring having 4 to 6 ring members with 1 or 2 heteroatoms,

D₁ is optionally present and if present is alkyl,

D₂ is selected from alkyl, NH, N-alkyl, O-alkyl, S-alkyl, a carbocyclic ring, a bicyclic ring, a tricyclic ring, an aromatic ring and a heteroaromatic ring,

T₂ is optionally present and if present is selected from an aromatic ring, a heteroaromatic ring, a heterocyclic ring, H, OH, halogen and a substituent group.

22. (currently amended) A method of treating a condition selected from central and peripheral pain, neuropathy, neurodegenerative diseases including multiple sclerosis, Parkinson's disease, Huntington's chorea, Alzheimer's disease; mental disorders such as schizophrenia and depression, endotoxic shock, hypotensive shock; or of modulating appetite; or of modulating the immune system; or of reducing fertility; or of treating diseases associated with motor function such as Tourette's syndrome; or of treating inflammation; or of providing neuroprotection; or of suppressing memory; or of producing peripheral vasodilation; or of treating epilepsy, glaucoma, nausea associated with cancer chemotherapy or nausea associated with Aids wasting syndrome comprising administering to an individual or animal having the condition a therapeutically effective amount of at least

Response to Office communication dated: 06/08/2006

Attorney Docket: UCONEN/206/US

one compound of formula I below, and physiologically acceptable salts thereof:

wherein,

the "A" ring atoms of compound formula I comprise carbon and 0 to 2 nitrogen heteroatoms;

Ar is an aromatic ring, an aromatic ring <u>having comprising</u> at least one substituent group, a heteroaromatic ring, a heteroaromatic ring <u>having comprising</u> 1 to 5 substituent groups, a heterocyclic ring or a heterocyclic ring <u>having comprising</u> at least one substituent group;

R is selected from H, OH, OCH₃, alkoxy, OCH₂CH₂OH, alcohol, NH₂, PO₃H, OPO₃H, OSO₃H, halogen, C(halogen)₃, SE₁, OE₁ and NE₁E₂,

E₁ and E₂ are each independently H or alkyl;

R' is selected from H, OH, alkoxy, OCH₂CH₂OH, alcohol, NH₂, PO₃H, OPO₃H, OSO₃H, halogen, C(halogen)₃, SE₁, OE₁ and NE₁E₂,

E₁ and E₂ are each independently H or alkyl;

R'' is $Y-D_1-D_2-T_2$,

Y is optionally present and if present is selected from O, S, NH, N-alkyl, C=CH, C≡C, CH₂, CH(CH₃), C(CH₃)₂, a carbocyclic ring having 4 to 6 ring members and a heterocyclic ring having 4 to 6 ring members with 1 or 2 heteroatoms,

Response to Office communication dated: 06/08/2006

Attorney Docket: UCONEN/206/US

D₁ is optionally present and if present is alkyl,

D₂ is selected from alkyl, NH, N-alkyl, O-alkyl, S-alkyl, a carbocyclic ring, a bicyclic ring, a tricyclic ring, an aromatic ring and a heteroaromatic ring,

T₂ is optionally present and if present is selected from an aromatic ring, a substituted aromatic ring, a heteroaromatic ring, a substituted heteroaromatic ring, a heterocyclic ring, H, OH, halogen, and a substituent group;

R" and R"" are each independently selected from H, halogen, alkyl, alkoxy and a substituent group,

with the proviso that,

when Ar is 4-isopropyl pyridine or 4-isopropenyl pyridine, R" is hydrogen, and R" is hydrogen, then R" can not be a straight or branched saturated alkyl having 1 to 20 carbon atoms;

when Ar is 4-isopropyl toluene or 4-isopropenyl toluene, and both R" and R" are hydrogen, R" can not be a straight or branched saturated alkyl having 1 to 20 carbon atoms;

when R" is $C(CH_3)_2(CH_2)_5CH_3$, R_2 and R_4 are methyl, then R' and R" can not be H, OH or OCH_3 .

23. (previously presented) The method of claim 22, wherein:

R" is selected from H, halogen, C(halogen)3, lower alkyl and alkoxy;

R"" is selected from H, halogen, $C(halogen)_3$, lower alkyl and alkoxy; and R" is $-Y-D_1-D_2-T_2$,

Y is optionally present and if present is selected from O, S, NH, N-alkyl, C=CH, C≡C, CH₂, CH(CH₃), C(CH₃)₂, a carbocyclic ring having 4 to 6 ring members and a heterocyclic ring having 4 to 6 ring members with 1 or 2 heteroatoms,

D₁ is optionally present and if present is alkyl,

D₂ is selected from alkyl, NH, N-alkyl, O-alkyl, S-alkyl, a carbocyclic ring, a

Response to Office communication dated: 06/08/2006

Attorney Docket: UCONEN/206/US

bicyclic ring, a tricyclic ring, an aromatic ring and a heteroaromatic ring,

T₂ is optionally present and if present is selected from an aromatic ring, a heteroaromatic ring, a heterocyclic ring, H, OH, halogen and a substituent group.