# Implementación de un Algoritmo Inmune Artificial basado en Selección Clonal para resolver el UTRP

Cristopher Arenas cristopher.arenas@alumnos.usm.cl

Departamento de Informática Universidad Técnica Federico Santa María

Abstract. Los algoritmos inmunes artificiales (AIA) son estrategias de resolución de problemas evolutivos, lo que quiere decir que cambian con el tiempo y representan analogías de ciertos comportamientos biológicos. Estos algoritmos se puede utilizar en ciertos problemas, como por ejemplo el Urban Transit Routing Problem UTRP, en el cual se pretende encontrar rutas que satisfagan a operadores de los buses y a las personas que transportan. Por medio de un modelamiento, una representación del problema y la resolución por medio de un AIA se encontrará una solución que pueda satisfacer un conjunto de restricciones y trabajar con ciertos objetivos.

#### 1 Introducción

Existen acercamientos que se encargan de resolver el Urban Transit Routing Problem (UTRP) [9]. Entre ellos se encuentran algoritmos evolutivos que emulan ciertos comportamientos de la naturaleza y los organismos de manera de encontrar soluciones a este tipo de problemas.

Dentro del grupo de los algorimos evolutivos, existen algunos que implementan ciertos comportamientos observados en los organismos de las personas. Los algoritmos inmunes artificiales representan una metáfora del sistema inmune donde se tiene un conjunto de anticuerpos que tienen la misión de encargarse de los virus y bacterias de enfermedades que atacan a un organismo. Los anticuerpos funcionan a través de procesos adaptativos, pues una vez que encuentran la mejor forma de curar una enfermedad se capacitan para futuras infecciones [4] [14].

En el presente documento se implementará un algoritmo evolutivo que se enfoca en simular el comportamiento del sistema inmune para resolver el UTRP. Posteriormete, se escogeran parámetros adecuados para el problema mediante un proceso de sintonización. Finalmente, se mostrarán algunos experimentos con instancias y las conclusiones del trabajo realizado.

#### 2 Estado del Arte

El problema de enrutamiento de tránsito urbano (UTRP por sus siglas en inglés) involucra la ideación de rutas para el transporte público. Se trata de un problema NP-Duro altamente complejo, y resolverlo involucra invariablemente un ciclo de generación y prueba de grupos de rutas candidatas. La mayor parte de literatura lo considera parte de un problema de escala mayor, el Urban Transit Network Design Problem (UTNDP por sus siglas), el cual es dividido tanto en el UTRP como UTSP (Urban Transit Scheduling Problem), y tal como se puede diferir de sus nombres, el UTSP tiene un enfoque de agendar los tiempos de llegada de los medios de transporte, mientras que el UTRP se enfoca en las rutas que estos utilizan, ambos para mejorar el sistema de transporte urbano en las ciudades. Los primeros acercamientos al UTRP lo tratan como un problema mono-objetivo. En [9] se comparan dos acercamientos de búsqueda local para resolver el problema. En este caso se consideran dos objetivos: la distancia acumulada de todos los pasajeros del bus y el número de trasbordos para la demanda completa. Se considera toda la demanda como satisfecha y el tiempo promedio que cada usuario destina en viajar es el menor posible. Además, se considera que cada ruta del conjunto está libre de ciclos y retrocesos; el conjunto de rutas está conectado; hay exactamente r rutas en el conjunto y el número de nodos en cada ruta debe ser mayor a uno y no debe exceder el valor máximo definido.

La función objetivo está dada por la suma ponderada de ambos objetivos. La inicialización se realiza de manera aleatoria respetando el largo establecido. Se utiliza el movimiento Make-small-change, que considera 3 posibilidades: Agregar un nodo en la última posición de la ruta, borrar el primer nodo de la ruta e invertir el orden de nodos en la ruta. En [16] se propone un algoritmo memético cuyo objetivo es minimizar la suma del costo para los usuarios y la demanda insatisfecha para la red de rutas. La inicialización se reliza de manera aleatoria, se utiliza cruzamiento de rutas en un punto y mutación de una ruta por otra ruta factible. Para la búsqueda local se seleccionan uno o dos cromosomas aletatoriamente, y se combinan de acuerdo a: (1) movimiento 2-opt, (2) intercambio de dos paraderos y (3) reubicación de una parada. Al final del proceso se seleccionan los mejores  $\mu$  cromosomas padre y  $\lambda$  cromosomas hijo. En [7] se utilizan colonias de hormigas para el UTRP. A diferencia de otros problemas resueltos con colonias de hormigas, las hormigas no deben recorrer todos los nodos, sino que deben ir desde cierto nodo hasta otro. Se toma como consideración que cada nodo podrá tener a lo más 4 vecinos y las conexiones con estos serán aquellas pertenceciente a un conjunto de arcos permitidos. Si en algún momento la ruta escogida por la hormiga no cumple alguna de las restricciones (por ejemplo, ciclos en el recorrido), la hormiga se declara muerta y se castiga el camino escogido.

Es posible encontrar acercamientos multi-objetivo para otros problemas similimares. Josefowiez, Semet y Talbi en [8] utilizan diversificación elitista y modelo de islas para el vehicle routing problem con dos objetivos: minimización del largo de las rutas y la diferencia entre el tamaño de la ruta más larga y la más corta. En este caso se utiliza ranking de dominancia para evaluar a los invididuos, donde

los individuos no dominados de la población forman el conjunto  $E_1$  de ranking 1 y el resto de los individuos se agrupan en conjuntos  $E_k$  donde cada elemento es dominado por todos los elementos de los conjuntos anteriores. En [13] se propone un MOEA híbrido que incorpora búsqueda local y el concepto de optimalidad de Pareto para el problema de encontrar una programación de rutas que cumpla con todas las entregas de una empresa de despacho, minimizando las distancias recorridas y el número de camiones. Al igual que en el caso anterior se utiliza un ranking de fitness de Pareto para evaluar la calidad de las soluciones. Zhang, Wang y Tang [3] investigan el problema de diseño de rutas para mega-eventos donde hay un gran tráfico de transporte público y se requieren rutas adicionales para el transporte de las personas que participan de un evento, a su lugar de destino. En [3] se utiliza un algoritmo genético cuya función de evaluación es la distancia total del conjunto de rutas. Además, se utilizan dos penalizaciones: la primera se aplica por cada nodo de destino que quedó fuera de ruta y la segunda se aplica si la distancia total de una ruta supera la máxima distancia permitida.

Acercamientos multi-objetivos específicos para el UTRP se pueden encontrar en [15] donde se utiliza un algoritmo evolutivo que usa el operador Makesmall-change. En este caso se utiliza el concepto de dominancia de Pareto para construir el conjunto de soluciones. Este algoritmo entrega buen conjunto de rutas desde el punto de vista de los pasajeros y con mejores costos para operadores en comparación a un algoritmo mono-objetivo similar con el que se comparó. Mumford en [11] utiliza exactamente el mismo modelado, pero agrega un operador de cruzamiento al algoritmo evolutivo. El operador de cruzamiento selecciona intercaladamente rutas de ambos padres de manera tal de tener una cantidad equitativa de rutas de cada padre en el hijo. En [10] se considera el mismo modelo y función objetivo que los anteriores, pero se realizan diferentes operaciones sobre un set de rutas para tratar de mejorar su calidad. Entre las modificaciones se encuentran: una selección mediante ruleta de las rutas a modificar, una operación crossover entre dos rutas padres, y la revisión de factibilidad de los hijos, para finalmente realizar una operación de mutación sobre dos rutas pertenecientes al mismo set, intercambiando nodos aleatorios.

Para hacerse una idea de la complejidad real del problema es posible mencionar que el sistema de transportes de la ciudad de Santiago, Chile, Transantiago cuenta con 372 recorridos, y 11272 paradas disponibles. Dichas paradas se distribuyen en siete unidades agrupadas por zonas [5]. Además, cuenta con 7 tipos de servicios entre los que se cuentan: servicios normales, cortos, expresos, variantes, nocturnos, especiales e inyectados que operan en distintas condiciones horarias y de capacidad. Los estudios realizados en el caso particular de Santiago coonsideran microsimulaciones de focos de congestión considerando diferentes escenarios de aumento de la capacidad vial, reversibilidad de las pistas y simulación de incidentes [1], mientras que en [2] se presenta un metodo de resolución para el problema de asignación de horarios, rutas y asignación de choferes para una de las siete empresas del Transantiago (STP Santiago) que cuenta con aproximada-

mente 300 buses. El autor aborda el problema mediante MIP (Programación Entera Mixta).

# 3 Descripción del problema

El problema considera inicialmente que se cuenta con algunas variables, tales como un grafo G; el cual representa una red de paraderos, lo que se puede entender, por ejemplo, como la estructura que se tiene en una ciudad. Cada vértice corresponde a un paradero, mientras que los arcos corresponden a las conexiones o caminos existentes entre dichos paraderos. Se considera que el grafo es no dirigido, lo que quiere decir que un arco entre dos vértices indica que hay una conexión en ambos sentidos entre los arcos que conecta. Las posiciones de cada vértice también son conocidas. Además, este grafo posee matrices simétricas, que poseen valores de tiempo de viaje entre paradas, demandas asociadas para cada vértice.

Como restricciones del problema se puede considerar lo siguiente [11]:

- Cada ruta del conjunto de rutas está libre de ciclos y retrocesos.
- El conjunto de rutas está conectado.
- Hay exactamente r rutas en el conjunto de rutas.
- El número de nodos en cada ruta debe ser mayor a uno y no debe exceder el valor máximo definido.

Con esto se asume que se sabe la cantidad de rutas tendrá el conjunto de rutas resultante, además de que tendrán un rango paraderos permitidos, los cuales están acotados por un valor mínimo y un valor máximo.

El UTRP consiste en satisfacer tanto a operadores de buses, como a los pasajeros que los utilizan. Es por esto que se tienen las siguientes funciones objetivo, dadas por las Ecuaciones (1) y (2) [11].

La Ecuación (1) considera una minimización de los costos para el operador de buses.  $d_{ij}$  representa la demanda entre las paradas i y j y  $\alpha_{ij}$  corresponde al camino más corto entre las dos paradas.

$$\min \frac{\sum_{i,j=1}^{n} d_{ij} \alpha_{ij}(R)}{\sum_{i,j=1}^{n} d_{ij}}$$
 (1)

Por otra parte, en la Ecuación (2) se considera una minimización de los costos para los pasajeros.  $t_{ij}$  corresponde al tiempo de viaje entre las paradas i y j.

$$\min \sum_{a=1}^{r} \sum_{(i,j)\in r} t_{i,j}(a) \tag{2}$$

Al considerar el UTRP como problema multiobjetivo, se plantea una minimización de costos tanto para operadores de buses, con la demanda de pasajeros; como para pasajeros al considerar los tiempos de viaje.

# 4 Representación

Dentro del contexto del UTRP, se pretende determinar un conjunto de rutas a partir de distintos paraderos de buses preestablecidos, los cuales deben presentar un beneficio para los pasajeros y para el operador del bus.

Para las paradas se utiliza un grafo no dirigido, cuyos vértices corresponden a las paradas y los arcos a un camino entre las paradas. Un ejemplo de esta representación es la red de Mandl, la cual puede apreciarse en la Figura 1.



Fig. 1. Red de Mandl

La representación escogida para manejar el UTRP es mediante un arreglo bi-dimensional que representa un conjunto de rutas. Cada fila será una ruta, la cual contiene un identificador asociado al número de ruta y posteriormente identificadores para los paraderos de buses. Estos paraderos se encuentran representados por una matriz de demandas, una matriz de tiempos de viaje y por un sistema de coordenadas (este último para modelar la posición de cada paradero).

En la Figura 2 se muestra un ejemplo de una representación de rutas el cual se pudo obtener a partir de la literatura existente sobre el UTRP [9].

|   | R1 | 0 | 1 | 4 | 7 |
|---|----|---|---|---|---|
|   | R2 | 0 | 3 | 6 | * |
| ſ | R3 | 1 | 2 | 5 | * |

Fig. 2. Representación para las rutas.

Las matrices de tiempos de viaje y de demandas se representan mediante arreglos bidimensionales, donde la fila i y columna j aporta información entre el paradero i y el paradero j.

Las soluciones para el algoritmo inmune artificial propuesto están dadas por un conjunto de rutas que siguen la estructura de la Figura 2.

# 5 Estructura del algoritmo

El Algoritmo Inmune Artificial implementado está basado en un algoritmo de selección clonal genérico, propuesto por de Castro y Von Zuben [12].

En el Algoritmo 1 se muestran un pseudocódigo del algoritmo implementado. Un anticuerpo se entiende dentro del contexto de los algoritmos inmunes artificiales como una solución candidata.

#### Algoritmo 1 Algoritmo Inmune Artificial basado en Selección Clonal

Entrada: Información del problema, información de instancia

Salida: Un conjunto de memoria M

- 1: Inicializar aleatoriamente población P de tamaño  $tam\_pob$
- $2: g \leftarrow 1$
- 3: mientras  $g \le$ generaciones hacer
- 4: para cada p perteneciente a la población P hacer
- 5: Calcular aptitud de p
- 6: fin para
- 7: Eliminar de la población P anticuerpos dominados
- 8: Seleccionar mp de los mejores anticuerpos de P
- 9: Generar un conjunto de clones C de tamaño tam\_cloncon anticuerpos mp
- 10: para cada clon c perteneciente al conjunto C hacer
- 11:  $k \leftarrow$  numero de mutaciones a realizar de acuerdo a aptitud de c
- 12: Mutar k veces el clon c
- 13: fin para
- 14: Copiar hasta mp clones a la población P
- 15: Seleccionar mm anticuerpos de P
- 16: Copiar los anticuerpos mm al conjunto de memoria M
- 17: Reemplazar pp anticuerpos con anticuerpos generados aleatoriamente
- 18:  $g \leftarrow g + 1$
- 19: fin mientras

# 6 Parámetros del algoritmo

El algoritmo considera los siguientes parámetros:

 generaciones: criterio de término para el algoritmo inmune. Es la cantidad de iteraciones que deben ocurrir para que finalice el algoritmo. Posee valores de 0 a infinito.

- alpha y beta: representan variables de peso para ponderar las dos funciones objetivo y determinar una aptitud para una solución candidata. Posee valores entre cero y uno. La suma de ambas debe ser uno.
- tam\_pob: representa el tamaño de la población P en cada generación. Una generación está compuesta por un conjunto de soluciones candidatas factibles.
   Posee valores de 1 a infinito.
- tam\_clon: es el tamaño de la población de clones C que se generarán en cada generación a partir de las mejores soluciones candidatas. Posee valores de 1 a infinito.
- porc\_mejores: Porcentaje de mejores soluciones de la población que serán seleccionadas para mutarse en cada generación. Posee valores entre 0 y 1.
- porc\_clones: porcentaje de mejores clones mutados que serán almacenados en el conjunto de memoria M. Posee valores entre 0 y 1.
- porc\_reemplazo: porcentaje de peores soluciones de la población que serán reemplazadas por soluciones aleatorias. Posee valores entre 0 y 1.

#### 7 Inicialización

El conjunto de soluciones iniciales es generado aleatoriamente. Una solución está compuesta por r rutas, donde cada está acotada por un mínimo y máximo de paraderos. El algoritmo 2 muestra los pasos de la generación de la población inicial.

Como fue mencionado en la representación del problema, una solución se compone por un conjunto de rutas. A su vez cada ruta se compone de un conjunto de paraderos. Para la generación de soluciones se debe iniciar con la asignación de paraderos, los cuales al agruparse constituyen una ruta. Finalmente, un conjunto de rutas genera una solución.

Una ruta es generada escogiendo aleatoriamente la cantidad q de paraderos que tendrá (acotada por el mínimo y máximo de paraderos). Después se selecciona aleatoriamente un paradero. Luego, se buscan los vecinos del paradero y se escoge aleatoriamente uno de ellos. Este proceso se repite hasta completar la cantidad q. Progresivamente, nuevas rutas son generadas de la misma forma, hasta completar r rutas. Un conjunto de soluciones se generará repitiendo los pasos anteriores de rutas y paraderos hasta llenar la población P con tam\_pobindividuos.

Las soluciones que se generan en este algoritmo siempre son factibles, ya que satisfacen las cuatro restricciones del problema:

- Cada ruta del conjunto de rutas está libre de ciclos y retrocesos: el conjunto de vecinos a considerar no contiene paraderos que ya estén en la ruta.
- El conjunto de rutas está conectado: es satisfecho considerando el conjunto de vecinos seleccionando solo aquellos paraderos con conexión directa, dado por el grafo de la red de paraderos. Si existe adyacencia entre dos vértices (paraderos) entonces se considera como un vecino.
- Hay exactamente r rutas en el conjunto de rutas: al generar solciones iniciales, se considera generar esta cantidad de rutas.

— El número de nodos en cada ruta debe ser mayor a uno y no debe exceder el valor máximo definido: el mínimo y máximo de paraderos está considerado al momento de generar una ruta. La cantidad de paraderos que tendrá una ruta se escoge aleatoriamente en un rango de valores posibles que es mayor o igual al mínimo de rutas y menor o igual al máximo de rutas.

#### Algoritmo 2 Inicialización de soluciones factibles para el UTRP

**Entrada:** tamaño de población  $tam_pob$ , cantidad r de rutas por solución, mímimo min de parederos para una ruta, máximo max de paraderos para una ruta

Salida: Conjunto P con población de soluciones factibles

```
1: P \leftarrow conjunto vacío
2: \ soluciones \leftarrow 0
 3: mientras soluciones < tam_pob hacer
 4:
      rutas \leftarrow 0
 5:
       s \leftarrow nueva solución
 6:
       mientras rutas < r hacer
 7:
          nr \leftarrow nueva ruta
 8:
          q \leftarrownúmero aleatorio entre miny max
 9:
          i \leftarrow \text{paradero seleccioado aleatoriamente}
10:
          agregar paradero i a ruta nr
11:
          paraderos \leftarrow 1
12:
          mientras paraderos < q hacer
13:
             N \leftarrow \text{vecinos de paradero } i
14:
            i \leftarrow paradero seleccionado aleatoriamente desde N
            agregar paradero i a ruta nr
15:
16:
            paraderos \leftarrow paraderos + 1
17:
          fin mientras
18:
          agregar ruta nr a solución s
          rutas \leftarrow rutas + 1
19:
20:
       fin mientras
       agregar solución s a población P
21:
22:
       soluciones \leftarrow soluciones + 1
23: fin mientras
```

# 8 Proceso iterativo

El algoritmo propuesto posee un proceso iterativo que se repite hasta satisfacer una cantidad de iteraciones o generaciones dadas por el parámetro generaciones. A continuación se detallarán los pasos realizados en cada una de estas generaciones.

#### 8.1 Cálculo de aptitud

Cada elemento p de la población P es evaluado mediante una función de aptitud para determinar si es mejor o peor que otras soluciones. Esta función  $f_{apt}$  está dada por la ecuación (3).

$$f_{apt}(p) = \operatorname{alpha} \cdot \tilde{FO}_1(p) + \operatorname{beta} \cdot \tilde{FO}_2(p)$$
 (3)

Para determinar la aptitud de un elemento p, ésta se deberá evaluar en las funciones objetivo  $FO_1$  y  $FO_2$  dadas por las ecuaciones (1) y (2), respectivamente. Luego, cada valor será normalizado por una cota inferior y así se determinarán las magnitudes  $\tilde{FO}_1$  y  $\tilde{FO}_2$ , según lo mostrado en las Ecuaciones (4) y (5).

$$\tilde{FO}_1(p) = \frac{FO_1(p)}{LB_{FO_1}} \tag{4}$$

$$\tilde{FO}_2(p) = \frac{FO_2(p)}{LB_{FO_2}} \tag{5}$$

Finalmente, la aptitud de p está dada por una poderación de  $\tilde{FO}_1$  y  $\tilde{FO}_2$ , utilizando los parámetros alpha y beta. La función de aptitud entregará valores entre 0 y 1, siendo el valor 1 la mejor aptitud posible.

#### 8.2 Eliminación de soluciones dominadas

El algoritmo inmune trabaja sobre soluciones factibles no dominadas. Al inicio de cada iteración, posteriormente al proceso de determinar la aptitud de las soluciones, se eliminan aquellas soluciones dominadas. Esto es, para realizar la transformación de soluciones que estén directamente en el frente de Pareto, con la intención de mejorarlas.

#### 8.3 Selección de soluciones

Del conjunto de soluciones factibles no dominadas, se escoge un porcentaje de ellas para generar un conjunto de clones C. Las soluciones del conjunto P son ordenadas de acuerdo a su aptitud en orden ascendente, y luego las primeras mp soluciones se clonan de manera aleatoria en el conjunto C hasta completar el tamaño  $tam_clon$ . La cantidad mp es determinada utilizando el parámetro porc\_mejores como se muestra en la Ecuación (6):

$$mp = \lceil |P| \cdot \texttt{porc\_mejores} \rceil \tag{6}$$

La cantidad mp se detemina multiplicando la cardinalidad del conjunto P por el parámetro porc\_mejores. A esta operación se le aplica la función techo para aproximar al entero superior.

#### 8.4 Operadores de transformación

Los operadores de tranformación utilizados en este algoritmo son tres operadores de mutación, diseñados para generar cambios distintos en las solciones. Los operadores trabajan generando un movimiento sobre una ruta de una solución. Estos operadores consisten en agregar un paradero a una ruta, eliminar un paradero de una ruta y reordenar una ruta mediante un punto de corte.

1. **Agregar una ruta**: Considerando una ruta r con n paraderos ordenados:  $bs_1, bs_2, \ldots, bs_n$ . Este operador busca un vecino del paradero  $bs_n$  y le agrega un nuevo paradero  $bs_{n+1}$  al final de la ruta, dejando la ruta con n+1 paraderos ordenados. La Figura 3 muestra un ejemplo con n=6.



Fig. 3. Adición de un paradero al final de una ruta de 6 paraderos.

2. **Eliminar una ruta**: Considerando una ruta r con n paraderos ordenados:  $bs_1, bs_2, \ldots, bs_n$ . Este operador elimina el último paradero  $bs_n$ , dejando la ruta con n-1 paraderos ordenados. La Figura 4 muestra un ejemplo con n=6.



Fig. 4. Eliminación del último paradero en una ruta con 6 paraderos.

3. Reordenar una ruta mediante un punto de corte: Considerando una ruta r con n paraderos ordenados:  $bs_1, bs_2, \ldots, bs_n$ . Si los paraderos  $bs_1$  y  $bs_n$  tienen conexión directa, entonces se genera un reordenamiento del orden de la ruta uniendo  $bs_1$  y  $bs_n$  y seleccionando aleatoriamente un punto de corte en la conexión entre otras dos paradas. La ruta mantiene el número de



**Fig. 5.** Reordenamiento de una ruta con 6 paraderos, seleccionando como punto de corte la conexión entre  $bs_4$  y  $bs_5$ .

paraderos. La Figura 5 muestra un ejemplo con n=6 y seleccionando como punto de corte la conexión entre el cuarto y quinto paradero.

La cantidad de veces que un clon debe ser mutado está determinado por su aptitud x con respecto a la mayor aptitud  $apt_{mayor}$  del conjunto de clones, la menor aptitud  $apt_{menor}$  del conjunto de clones y la cantidad de rutas  $n_{rutas}$  del clon. Para determinar un valor k, con la cantidad de veces que un clon debe ser mutado se utiliza la función K(x), detallada en la Ecuación (7):

$$k = \lceil K(x) \rceil = \left\lceil 1 + \frac{n_{rutas} - 1}{apt_{menor} - apt_{mayor}} (x - apt_{menor}) \right\rceil$$
 (7)

Dado que x puede tener valores entre la aptitud menor y la aptitud mayor,  $apt_{menor} \leq x \leq apt_{mayor}$ . Evaluando la función K(x), se tiene que  $K(apt_{menor}) =$ 1 y  $k(apt_{mayor}) = n_{rutas}$ , por lo tanto  $1 \le K(x) \le n_{rutas}$ . En la Figura 6 se muestra la función K(x) de manera gráfica. Esta función corresponde a una recta con pendiente positiva igual a  $(n_{rutas}-1)/(apt_{mayor}-apt_{menor})$ . De esta forma, el clon dentro del conjunto de clones con mejor aptitud será mutada 1 vez, mientras que el con con peor aptitud se mutará tantas veces como rutas tenga. Clones que están en puntos intermedios se mutarán más a medida que tengan mayor aptitud. La cantidad k que determina la cantidad de veces que un clon se mutará utilizará esta función aproximada al entero inmediatamente superior. Con esta función se asegura la generación de diversidad de soluciones, donde todos los clones serán mutados al menos 1 vez y se mutarán más a medida que su aptitud sea mayor. Una consideración importante a destacar, para mantenerse en el terreno de las soluciones factibles, es que el operador de mutación 1 (agregar un paradero) está prohibido para rutas con el máximo de paraderos y el operador de mutación 2 (eliminar un paradero) está prohibido para rutas con el mínimo de paraderos.

#### 8.5 Selección de mejores soluciones para el conjunto de memoria

Luego de la mutación de clones, se copian hasta mp de los clones a la población P. El tope máximo de clones a copiar está acotado superiormente por el tamaño de la población tam\_pob. El criterio escogido para copiar unos clones sobre otros es el ranking basado en la dominacia de pareto, mostrado en la Ecuación (8).



**Fig. 6.** Gráfica de la función K(x)

$$rank(x_i, t) = 1 + p_i^{(t)} \tag{8}$$

El ranking para una solución  $x_i$  con respecto a un conjunto t es  $1 + p_i^{(t)}$ , donde  $p_i^{(t)}$  es la cantidad de soluciones que dominan a  $x_i$  en el conjunto t. Los clones seleccionados para pasar al conjunto P son escogidos por el valor que tengan ranking con respecto al conjunto de clones. Los primeros clones en copiarse a la población P serán aquellos con menor valor de ranking, luego se seleccionarán clones en orden ascendente hasta completar la población tam\_pob o hasta que se hayan copiado todos los clones en la población.

Los anticuerpos de la población P son ordenados de acuerdo a su aptitud, luego los primeros mm anticuerpos son copiados al conjunto de memoria M. Para determinar la cantidad mm se considera la cardinalidad de la población P y el parámetro porc\_clones, según la Ecuación (9). mm es aproximado al entero inmediatamente superior.

$$mm = \lceil |P| \cdot \texttt{porc\_clones} \rceil \tag{9}$$

Al copiar soluciones al conjunto de memoria M se considera solo incluir soluciones no repetidas y no dominadas.

#### 8.6 Selección de soluciones para conformar nueva población

Las peores pp soluciones (las últimas del conjunto ordenado P) son reemplazadas con nuevas soluciones generadas aleatoriamente, de acuerdo al Algoritmo 2. La cantidad pp es calculada considerando la cardinalidad de la población P y el parámetro  $porc\_reemplazo$ , de acuerdo a la Ecuación 10. pp es aproximado al entero inmediatamente superior.

$$pp = \lceil |P| \cdot \texttt{porc\_reemplazo} \rceil \tag{10}$$

# 9 Experimentos

#### 9.1 Datasets

Los datasets considerados para la experimentación corresponden a dos de los datasets los mostrados en la literatura [11]. El primero de ellos, Mandl, corresponde a una red conexa de 15 nodos y 20 arcos. El segundo, Mumford0, es una red de 30 nodos y 90 arcos. Dos instancias de los datasets se consideraron para la ejecución del algoritmo. En el caso de Mandl, se consideró una instancia con 6 rutas de entre 2 y 8 nodos por ruta. Para el caso de Mumford0, la instancia utilizada fue una de 12 rutas con 2 a 15 paraderos cada una. La Tabla 1 resume información de las instancias.

| Instancia | Nodos | Arcos | Cant. Rutas | Paraderos/Ruta |
|-----------|-------|-------|-------------|----------------|
| Mandl     | 15    | 20    | 6           | 2-8            |
| Mumford0  | 30    | 90    | 12          | 2-15           |

Tab. 1. Instancias a utilizar en la experimentación

Para normalizar la aptitud de las soluciones se utilizarán las cotas inferiores dadas en [11], las cuales se muestran en la Tabla 2.

| Instancia | $LB_{FO_1}[s]$ | $LB_{FO_2}[s]$ |
|-----------|----------------|----------------|
| Mandl     | 63             | 10.0058        |
| Mumford0  | 94             | 13.0121        |

Tab. 2. Cotas inferiores utilizados para normalizar la calidad de las soluciones.

#### 9.2 Sintonización de Parámetros

Para encontrar los parámetros que obtienen mejores resultados se utilizará el sintonizador ParamILS [6], el cual determina la combinación de parámetros que minimizan un objetivo entregado por la instancia. El objetivo a minimizar por ParamILS será el hipervolumen. Sin embargo, ParamILS encontrará la combinación de parámetros para el menor hipervolumen negativo (el valor obtenido en una ejecución del algoritmo, multiplicado por menos uno) que es equivalente a maximizar el hipervolumen positivo del frente de pareto. Se sintonizarán 5 parámetros que tienen incidencia en la cantidad de soluciones seleccionadas en distintas etapas del algoritmo y en los tamaños de poblaciones de soluciones. Se fijará el parámetro generaciones en 250 para cada ejecución realizada por el sintonizador y se cambiarán los valores de los parámetros alpha y beta cada

50 iteraciones de manera aleatoria. En la Tabla 3 se muestran los parámetros a sintonizar, donde en cada caso, un valor por defecto será utilizado inicialmente y otros 3 valores adicionales serán entregados a ParamILS.

| Parámetro      | Defecto | Valores a utilizar |      |      |      |
|----------------|---------|--------------------|------|------|------|
| porc_mejores   | 1.00    | 0.25               | 0.50 | 0.75 | 1.00 |
| porc_clones    | 0.50    | 0.25               | 0.50 | 0.75 | 1.00 |
| porc_reemplazo | 0.30    | 0.10               | 0.30 | 0.50 | 0.70 |
| tam_pob        | 100     | 50                 | 100  | 150  | 200  |
| tam_clon       | 150     | 50                 | 100  | 150  | 200  |

Tab. 3. Valores a utilizar para la sintonización de parámetros.

### 9.3 Búsqueda de mejores soluciones

Una vez determinados los mejores parámetros por cada instancia, se realizarán 10 pruebas adicionales con estos parámetros usando distintas semillas. Se fijará el parámetro generaciones en 1000 para cada ejecución del algoritmo y se cambiarán los valores de los parámetros alpha y beta cada 50 iteraciones de manera aleatoria.

### 10 Resultados

| Instancia | porc_mejores | $porc\_clones$ | porc_reemplazo | tam_pob | $tam_clon$ |
|-----------|--------------|----------------|----------------|---------|------------|
| Mandl     | 1.00         | 0.25           | 0.30           | 150     | 200        |
| Mumford0  | 0.25         | 0.25           | 0.30           | 150     | 150        |

Tab. 4. Valores entregados por el sintonizador para cada instancia.

# 11 Bibliografía

# References

 Victor Zuñiga Alarcón. Uso de herramientas de microsimulación para la definición de estrategias de control de tránsito para la ciudad de santiago. PhD thesis, Universidad de Chile, 2010.

| Instancia   | Mejor soluc     | ión para pasajeros  | Mejor solución para operadores |                |  |
|-------------|-----------------|---------------------|--------------------------------|----------------|--|
| Ilistalicia | Costos          | Rutas               | Costos                         | Rutas          |  |
| Mandl       | $C_p = 10.4778$ | 9-15-6-3-2-1        | $C_p = 13.0501$                | 11-13-14       |  |
|             | $C_o = 158$     | 3-2-5-4-6-8-10      | $C_o = 63$                     | 9-15-7         |  |
|             | (semilla=4)     | 4-2-3-6-15-7        | (semilla=567)                  | 15-8-6-3-2-4-5 |  |
|             |                 | 11-10-8-6-3-2-1     |                                | 2-1            |  |
|             |                 | 9-15-7-10-11-12-4-2 |                                | 7-10           |  |
|             |                 | 11-13-14-10-7       |                                | 12-11-10       |  |
| Mumford0    | $C_p = C_o =$   |                     | $C_p = C_o =$                  |                |  |
|             | $C_o =$         |                     | $C_o =$                        |                |  |
|             |                 |                     |                                |                |  |

**Tab. 5.** Mejores soluciones para pasajeros y operadores por instancia.

- Cristián Cortés, Pablo Rey, Priscila Molina, Mario Recabal, and Sebastián Souyris.
   Uso de modelos de optimización para el apoyo a la operación de un alimentado de transantiago. 2009.
- 3. J. Tang D. Zhang, H. Wang. A hybrid genetic algorithm for the special transit route designing problem in mega-events. In *Control and Decision Conference*, 25th Chinese, pages 2426–2429, 2013.
- 4. Leandro Nunes de Castro y Jon Timmis. An Introduction to Artificial Immune Systems: A New Computational Intelligence Paradiam. Springer-Verlag, 2002.
- 5. Gobierno de Chile. Portal de datos públicos. http://datos.gob.cl/datasets/ver/1587, Noviembre 2013.
- Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stutzle. Paramils: An automatic algorithm configuration framework. *Journal of Artificial Intelligence Research*, 36:267–306, October 2009.
- 7. Hong Jiang, Qingsong Yu, and Yong Huang. An improved ant colony algorithm for urban transit network optimization. In *Natural Computation (ICNC)*, 2010 Sixth International Conference on, volume 5, pages 2739–2743. IEEE, 2010.
- 8. Talbi Josefowiez, Semet. An evolutionary algorithm for the vehicle routing problem with route balancing. *European Journal of Operational Research*, 195:761–769, 2009.
- 9. Christine L. Mumford Lang Fan. A metaheuristic approach to the urban transit routing problem. *Journal of Heuristics*, 1(16):353–372, 2010.
- 10. Joanne Suk Chun Chew Lai Soon Lee. A genetic algorithm to the urban transit routing problem. *International Journal of Modern Physics*, 9, 2012.
- 11. Christine L. Mumford. New heuristic and evolutionary operators for the multiobjective urban transit routing problem. In 2013 IEEE Congress on Evolutionary Computation, pages 939–946, 2013.
- 12. Mark Read, Paul S Andrews, and Jon Timmis. An introduction to artificial immune systems. In *Handbook of Natural Computing*, pages 1575–1597. Springer, 2012.
- 13. K.C. Tan. A hybrid multiobjective evolutionary algorithm for solving truck and trailer vehicle routing problems. *European Journal or Operational Research*, 172:855–885, 2006.
- Nareli Cruz Cortés y Carlos A. Coello Coello. Un sistema inmune artificial para solucionar problemas de optimización multiobjetivo. Congreso Mexicano de Computación Evolutiva, 2003.

- 15. Jie Zhang, Huapu Lu, and Lang Fan. The multi-objective optimization algorithm to a simple model of urban transit routing problem. In *Natural Computation (ICNC)*, 2010 Sixth International Conference on, volume 6, pages 2812–2815. IEEE, 2010.
- 16. Xie Binglei Zhao Hang. A memetic algorithm for optimization of urban transit route network. In *Seventth International Conference on Natural Computation*, pages 1899–1903, 2011.