

SEQUENCE LISTING

<110> KIEFFER, TIMOTHY J.
CHEUNG, ANTHONY T.

<120> COMPOSITIONS AND METHODS FOR REGULATED PROTEIN
EXPRESSION IN GUT

<130> 029996/012 8307

<140> PCT/IB 01/00722
<141> 2001-03-12

<160> 18

<170> PatentIn Ver. 2.1

<210> 1
<211> 19
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 1

ccagccgcag cctttgtga

19

<210> 2
<211> 22
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 2

ggtagacat tggccacaa tg

22

<210> 3
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 3
accaccagcc ctaagtat 19

<210> 4
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 4
ctagttgcag tagttctcca gc 22

<210> 5
<211> 1319
<212> DNA
<213> Mus musculus

<400> 5
ccgaaattac ccactacgtt ggaattctat aagggttggg tttgtgttt tgtttacagc 60
tgcgtcttg gcacccagca cagctgagtg gttctaagcc cacgtcgatg cttaacacat 120
ggttgttcaa tgaatacacag cgaagccgt tctcatttag gggcatgagt aggcatgagg 180
gtgggcagga agcaggaaag agcggaaaca ggtgoggaca gaaaggagggg gctctgaagg 240
atgccagtca gtgccaaact gtcatccaga taccagggtc actgtggccc taggcccaggc 300
tgcacggggc ttcccatgtg gtctgcccag ggtgagagca gaactgcgtt gggcggggca 360
gaaggaaacc aaccaggaag cagggttgc cccaaattat ccaggttta agtacattta 420
agagacaagg ctgggctgtt gaaggtcaga ggtgtccctg ggggtcttga ctaggactga 480
ccacttctgt ttttagttaa tggtgagaac tgcctcacac tgctacctgc cttacttgcc 540
ccttgagagc tgtgagccta ggacccaccc atgtgtgggt tggaccttca gtcacacact 600
gaacgtgtgt gaagccactg gttgtcagag cagggtctc ggcactgagg aagcagtgac 660
cactatcccc tatcaaataa caattaaata cacacagaat gcgaggcaca caactgagtt 720
tcaggagagg cctcgctcag gcaagggggtt caagaggctt ctgtgggacc cgctggatgt 780
tccaggaggt tcttaaagat gggcgtgcct ccagccaagt gaaatcaaga gaaaagtacg 840

cgaagtata gaaaactcag cagtctggag aggtaaatag gggaggaatc cgaggctcag 900
agacaggagt gacttgc ca cgacgcaca gcaagttggc aggtggagtt cagctgtgcc 960
accctctgaa gccgggtacc ctttacagcc accagataca agcgggatag agacagctga 1020
tggagaagct ggaggtgggg ggcgggaccc cgaaggtggg gaaagggcgc gggggggcgg 1080
tcctatgacg taatttctg ggtgtgtcg cgcgtgtcg tgcgtgtcg tgtatataaa 1140
agccggcata gcattgtgc tgctgccgc gccaccgcca ccatcaccgc tgaccacc 1200
accgctactg cagtgtccc gctggtgcag agcttggta gccagactac agaccactc 1260
ccgcacatcct cctgcagcag ctgcgtccact cttccgcac cgtccggctc gctatgcgc 1319

<210> 6
<211> 1760
<212> DNA
<213> Mus musculus

<400> 6
gggaacttcc tctagcttt tcatttagggg ccctgtgttc catctaata gttactgtga 60
gcattccactt ctgtgttgc caggcactgg catagcctca caagagacag ctatatcagg 120
gtcttgcag caaaatctt ctggcatatg caatagtgtc tgggttggg ggttgtatat 180
gggctggatc cccgggtggg gcaagtctctg gatggcttt cttccgtct tagctccaa 240
ctttgtctct gtaactcctt ccatgggtac ttgttccc attctaagaa ggagcaaagt 300
atccacactt ctttcttctt ctttcttctt gagtttgca aatgccacaa aacttcaaa 360
gccttctgaa tagccttctt ttttagtgc tccaatgtat attaaaataa tctatctt 420
atccccattt attaaagcct tcttaaagcc agaaaactat attcatttt ttctttccc 480
agtagttcac aaactatctg gcacctcata agcatcataa ctcagtttgt ggttagataa 540
aatttggatg tgattgttca gtcagcagag acttttagag gacctcatac aacaagattc 600
tctcagttct cagaaatata tttcagttata tacagggta gaggactcac atcttaata 660
aaataaagtt aaaaatttag acotgtataa attattaagg tacctaatac agttccacgg 720
caaagtacag ccatggttat gaattataaa tccaaagaagc ggtgggttaa ctctgacatt 780
gttccttggaa tggtttcat tcattgaagt tagtcacctc aacttactca accaaaacct 840
agaagtattt ctgtggtaact atttcttctt gatgccaaga gggctctagg catatgaaaa 900
tctctcaatc tctctccctc tctctcccccc ttccacccccc actctctctc ttctagcagt 960
aattccctccc ttccctggtag gcagtttgtt ttttggagca cagtttctt gctatctt 1020
gcaacacacccg attttgcata agatttgaat ggcctcatat agaagtatca acaacttgag 1080
cgctctgtgaa ctctcattt gacactgtgc taaaagaatt ggagttgatt ctcattaaaa 1140
aaaaaaattaa gcatctcacc tttttgtctc aaactaaaca gttttaaaac agttctgcct 1200
ggagtcata gatgaaatac gatctatcat atttgcata ttctgttcaa ttgtggctgc 1260
accaggaaat gagaagctat ttctttatag gcacaaataa aaagatagtc attatctgt 1320
aaattcttat gacatggcag caagcccaag aaaccttct aaacaaggcg taaaaacgca 1380
gagatgtcct tgcaatttgcatgtctatc tgacagattt cttccttct aagggat 1440
gtgctgaaca ttttatttcg agcctcagag ataaaagaag gggaaagaag ctgtat 1500
tgctacataa gacaggtggc gtaagcatgc aacgcattaa aaaaatatct aaagtgtatt 1560
ttttctctcg gattcttgc taaaagctgc ctgcgtggg gtttggaggt gacccgggtga 1620
cgtcagcgtg gaatgcggag tcaggcgccc aggctctcta taagccgagg agctgtccgg 1680
tgctgaaacg gcccggcc tcactcagcg gcagagagga gcatgcttgg agccttccac 1740
ataatataag acagaggtaa 1760

<210> 7
<211> 2623
<212> DNA
<213> Mus musculus

<400> 7
agcttttagt gtgtgaatat ctactttggc gctaggccct tggtcataact aagtaagttt 60
cccccttcaact ggggtgtacc agtttacccct ggactgtcta agcaacaaga aggatagaca 120
tggcctacca cagatttcat gtctgccact ggctatgtca gaacatgttag gagctttgg 180
aatcagtgaa acaggtattt tcagactgccc ttccctgcgt ggggctttcc cgaagccata 240
tttttcctag agtcagccct tcccaagctga ggacaagctg tactggacag atgcagccca 300
cttgaactgg gaatacatgg tcatttaggc agctggctta tctcatccat ggtacttgat 360
ggcttcgggt cagcacctca cagaaaagttc agacgggagg cttccgagaa aacagagaag 420
caggcaggag atcctgcagg caatccctcct gctccacagc ctgcacatggac ttccctcagc 480
cttagtgcgt gtgggtccca tctgagaaca ttgggttatat gttatttca aaccgatctg 540
ccttaagga gtggaagaaa aaaactgtgg tggttggct acctttatga taatggcctt 600
ttcatcctcc taataaatat tgccaagtag ggttagattct atacgaaagc tcttaacccca 660
tggtatttagc aaatcatgtc ggtgctaata atgaataactg gatgcagtc gtaacaggat 720
ataaaatgga atgtaagac ctgttgctat gaatgttag ctaacttagat gttgtacaag 780
aaatgttgac gttatgacgt gtggaaactt ggtattgaag atgtggactc gaaactttgt 840
ggatTTTtg atgcccattat aaaaatgtga agaataactgt tccttaccaa aaagaagaag 900
aagaaggaga aggaggagga agaggaggag gaggaagaag agggggagga agaagaagag 960
aaggaggagg aagaggagga ggaggaagaa gaggaggagg aggaagaaga agagaaggag 1020
gaggactagg aggaggagga gaagaaggag aaggggaagg agagagtagc cagaacattt 1080
gggggtgccat cagaataccca gatactccag acatagtcac agaaggactg gtttgggt 1140
taaataggtt ctttggaaaag ttgtgggaa aacctgcagt gagaatttgtt gtcttagaaa 1200
tgataggcaa gattcatcca caagaatgcg acaagatggc tgcctgaaca agccctgaac 1260
attaacagca ccagtagacc tgcttacacg gaagaaagca atctcatagg ccctcaccctt 1320
aaacaaagac tacagacacg agaggaactg gagaggcagga gaaattgggt ctccctttt 1380
tgagccccct aactgggtgt caaataactca atggtcagcc ctgaaatcat atgcacaaag 1440
taatacttagc gcaactgaac agattgttagc tttgtgtgtg tttgtatga taacaaagaa 1500
gaaaaggccc catgttagag agggagcaag gtgggcatgg aggtatggaa ggagttggaa 1560
ggagggggtga gaaggggaaa gtgtatgtat tatcttttaa tttataaaaa aataaaaaat 1620
gggctgggtga gatggctcg tgggtaaagag cacccgactg cttctccga aggtctggag 1680
ttcaaatccc agcaaccaca tgggtggctca caaccatccg taacgagatc tggccccc 1740
ttctggagtg tctgaagaca gotacagtgt acttacat aataaataaa taaatctttt 1800
aaaaaaaaata aaaaataaaaa tattagaata aaatgttagag gaatattttt aatttaacaa 1860
cttgggtgtg gcaaaagtt tcttcaacaa aaacttaatc cctcagataa gaaaagacta 1920
gaatccacga cgtggataga tacttctgtt tgatgcaaga cactattat caggttgtaa 1980
cttggcaga acttggatgg taacttgggg ggaaacacaa cacccttggc aaacaaaaga 2040
ttactagata ttttagatgt aatataaaaa tacttccac aactgtatgg taggaaacag 2100
ttcaatagta atataattat tgaacaaata atccttaaaa gaagaaatcc agaggaatag 2160
caagtttaggg gaagagaggg tttgtgtgtg tttgtgtgcg cgcacattt tagccaaaat 2220
agatgtatata cttaaatgaa catgccatata aaaccattt tttgcatac agtttacata 2280

tgctaatgaa tactaaaaaa aaaaacattg ggattggaga gaaatggctc agtggtaag 2340
agttcaattc ccagcaacca catgattgct cacaaccate tgtaatggga tctgatgcct 2400
tcttcgttataa ttccacaaca gatatgtcct ggtctgaggc ttccaggcat 2520
aaccaaaaaa cccccataat ttccacaaca gatatgtcct ggtctgaggc ttccaggcat 2580
agaaaatagaa acacacagag tgtggagcca gtgcgttca gtcggccat tccagttcag 2623
gcttcagacc aagagaaagg gaaaagaaga gacaagcaac aag

<210> 8
<211> 226
<212> DNA
<213> Homo sapiens

<400> 8
tccagggaaat gcgcgatcca ggccggcgccc cggggcgcccc gctccggcga gaggcgcccc 60
cccgaaacg gcggcgcccc gggegggagg cggggccccgg cccgttaaga agagcggtgc 120
cgccgcggc caccgttgc cccaggaaa gccgagcgcc caccgagccg gcagagaccc 180
accgagcgcc ggcggaggga gcgacgcccc ggcgcacgag ggcacc 226

<210> 9
<211> 110
<212> PRT
<213> Homo sapiens

<400> 9
Met Ala Leu Trp Met Arg Leu Leu Pro Leu Leu Ala Leu Leu Ala Leu
1 5 10 15

Trp Gly Pro Asp Pro Ala Ala Ala Phe Val Asn Gln His Leu Cys Gly
20 25 30

Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe
35 40 45

Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly
50 55 60

Gln Val Glu Leu Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu
65 70 75 80

Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ile Val Glu Gln Cys Cys
85 90 95

Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn
100 105 110

<210> 10
<211> 450
<212> DNA
<213> Homo sapiens

<400> 10
gctgcatcag aagaggccat caagcacatc actgtccttc tgccatggcc ctgtggatgc 60
gcctcctgcc cctgctggcg ctgctggccc tctggggacc tgacccagcc gcagcccttg 120
tgaaccaaca cctgtcgcc tcacacctgg tggaaactct ctaccttagtg tgcggggAAC 180
gaggcttctt ctacacaccc aagacccgccc gggaggcaga ggacctgcag gtggggcagg 240
tggagctggg cggggccctt ggtgcaggca gcctgcagcc cttggccctg gaggggtccc 300
tgcagaagcg tggcattgtg gaacaatgct gtaccagcat ctgctccctc taccagctgg 360
agaactactg caactagacg cagccccca gcaaaaaaaa accccggccc tcctgcaccc 420
agagagatgg aataaagccc ttgaaccaggc 450

<210> 11
<211> 167
<212> PRT
<213> Homo sapiens

<400> 11
Met His Trp Gly Thr Leu Cys Gly Phe Leu Trp Leu Trp Pro Tyr Leu
1 5 10 15
Phe Tyr Val Gln Ala Val Pro Ile Gln Lys Val Gln Asp Asp Thr Lys
20 25 30
Thr Leu Ile Lys Thr Ile Val Thr Arg Ile Asn Asp Ile Ser His Thr
35 40 45
Gln Ser Val Ser Ser Lys Gln Lys Val Thr Gly Leu Asp Phe Ile Pro
50 55 60
Gly Leu His Pro Ile Leu Thr Leu Ser Lys Met Asp Gln Thr Leu Ala
65 70 75 80
Val Tyr Gln Gln Ile Leu Thr Ser Met Pro Ser Arg Asn Val Ile Gln
85 90 95
Ile Ser Asn Asp Leu Glu Asn Leu Arg Asp Leu Leu His Val Leu Ala
100 105 110

Phe Ser Lys Ser Cys His Leu Pro Trp Ala Ser Gly Leu Glu Thr Leu
115 120 125

Asp Ser Leu Gly Gly Val Leu Glu Ala Ser Gly Tyr Ser Thr Glu Val
130 135 140

Val Ala Leu Ser Arg Leu Gln Gly Ser Leu Gln Asp Met Leu Trp Gln
145 150 155 160

Leu Asp Leu Ser Pro Gly Cys
165

<210> 12
<211> 3408
<212> DNA
<213> Homo sapiens

<400> 12

tctgtttca ggcccaagaa gcccattcctg ggaaggaaaa tgcattgggg aaccctgtgc 60
ggattcttgt ggcttggcc ctatctttc tatgtccaag ctgtgccat ccaaaaagtc 120
caagatgaca ccaaaaacct catcaagaca attgtcacca ggtcaatga cattcacac 180
acgcagtctcg tctcctccaa acagaaagtc accgggttgg acttcattcc tgggctccac 240
ccatcctga ccttatccaa gatggaccag acactggcag tctaccaaca gatcctcacc 300
atgtatgcctt ccagaaacgt gatccaaata tccaaacgacc tggagaacct cgggatctt 360
cttcacgtgc tggccttctc taagagctgc cacttgccct gggccagtgg cctggagacc 420
ttggacagcc tgggggggtgt cctggaagct tcaggctact ccacagaggt ggtggccctg 480
agcaggctgc aggggtctct gcaggacatg ctgtggcagc tggacctcag ccctgggtgc 540
tgaggccttg aaggtcactc ttccctgcaag gactacgtta agggaaaggaa ctctggcttc 600
caggtatctc caggattgaa gagcattgca tggacaccccc ttatccagga ctctgtcaat 660
ttccctgact cctctaagcc actcttccaa aggcataga ccctaagcct cctttgctt 720
gaaaccaaag atatatacac aggatecctat tctcaccagg aagggggtcc acccagcaa 780
gagtgggctg catctggat tcccaccaag gtcttcagcc atcaacaaga gttgtcttgc 840
ccctcttga cccatctccc cctcaactgaa tgcctcaatg tgaccagggg tgatttcaga 900
gagggcagag gggtaggcag agccttggg tgaccagaac aaggttccct ctgagaattc 960
caaggagttc catgaagacc acatcccacac acgcaggaac tcccagcaac acaagctgga 1020
agcacatgtt tatttattct gcattttatt ctggatggat ttgaagcaa gcaccagctt 1080
ctccaggctc tttggggtca gccaggccca ggggtctccc tggagtgcag tttccaatcc 1140
catagatggg tctggctgag ctgaacccat tttgagtgac tcgagggttg gtttcatctg 1200
agcaagagct ggcacaaagggt gctctccagt tagttctctc gtaactgggt tcatttctac 1260
tgtgactgat gttacatcac agtgttgc atgggttgc cctgagtgga tctccaagga 1320
ccaggttatt ttaaaaagat ttgtttgtc aagtgtcata tgttaggtgtc tgcacccagg 1380
ggtggggaat gtttgggcag aagggagaag gatctagaat gtgtttctg aataacattt 1440
gtgtggtggg ttctttggaa ggagtgagat cattttctta tcttctgcaa ttgcttagga 1500

tgttttcat gaaaatagct ctttcagggg gggttgagg cctggccagg cacccttgg 1560
 agagaagttt ctggccctgg ctgaccccaa agagcctgga gaagctgatg ctttgcttca 1620
 aatccatcca gaataaaacg caaaggctg aaagccattt gttggggcag tggtaagctc 1680
 tggcttcctc cgactgctag ggagtggtot ttccatatcat ggagtgcacgg tcccacactg 1740
 gtgactgcga tcttcagacg aggggtcctt ggtgtgaccc tctgaatgtt ccagggttga 1800
 tcacactctg ggttattac atggcagtgt tcctatttgg gccttgcattt ccaaattgtt 1860
 gttcttgtct gattggctca cccaagcaag gccaaaattt caaaaaatct tggggggttt 1920
 ttactccagt ggtgaagaaa actcctttag caggtggtcc tgagacctga caagcaactgc 1980
 taggcgagtg ccaggactcc ccaggccagg ccaccaggat ggccttccc actggaggtc 2040
 acattcagga agatgaaaaga ggagggttgg ggtctgccac catcctgcgtt ctgtgttttt 2100
 gctatcacac agtgggtgtt ggatctgtcc aaggaaactt gaatcaaagc agttaacttt 2160
 aagactgagc acctgcttca tgctcagccc tgactggtgc tataggctgg agaagctcac 2220
 ccaataaaaca ttaagattga ggcctgcctt caggatctt gcattcccg tggtaaaacc 2280
 gcactcaccc atgtgccaag gtgggttattt taccacagca gctgaacagc caaatgcattt 2340
 gtgcagttga cagcaggtgg gaaaatggtat gagctgaggg gggccgtgcc caggggccc 2400
 cagggaaccc tgcttgcact ttgtaacatg tttacttttgc agggcatctt agcttctatt 2460
 atagccacat cccttggaaa caagataact gagaatttaa aaataagaaa atacataaga 2520
 ccataaacagc caacagggtgg caggaccagg actatagccc aggtcctctg ataccagag 2580
 cattacgtga gccaggtaat gagggactgg aaccaggag accgagcgtt ttctggaaaa 2640
 gaggagtttgc gaggttagt ttgtaaggagg tgaggatgtt gaattgcctt cagagagaag 2700
 cctgtttgtt tggaagggtt ggtgtgtgg gatcagagg taaaagtgtt agcagtgtt 2760
 tacagcgaga ggcagagaaa gaagagacag gagggcaagg gccatgttgc agggacctt 2820
 aagggtaaag aagtttgcata ttaaaggagt taagagtagc aagttctaga gaagaggctg 2880
 gtgctgtggc cagggtgaga gctgctctgg aaaatgttgc ccagatccac acaaccacct 2940
 aatcaggctg aggtgtcttta agccttttgc tcacaaaacc tggcacaatg gctaattccc 3000
 agagtgtgaa acttcctaag tataaatggt tgtctgtttt tgtaacttta aaaaaaaaaa 3060
 aaaagttgg ccgggtgcgg tggctcacgc ctgtatccc agcactttgg gaggccaagg 3120
 tggggggatc acaagggtcac tagatggcga gcatctggc caacatgggaaacccgtc 3180
 tctactaaaa acacaaaagt tagctgagcg tggtgccgg cgcctgttagt cccagccact 3240
 cgggaggctg agacaggaga atcgcttaaa cctgggaggc ggagagtaca gtgagccaag 3300
 atcgccac tgcactccgg cctgatgaca gagcgagatt ccgtttaaa aaaaaaaaaa 3360
 aaaaagtttgc tttttaaaaaa aatctaaata aaataacttt gcccccttgc 3408

<210> 13
 <211> 136
 <212> PRT
 <213> Homo sapiens

<400> 13
 Gly Ser Ala Ala Gly Leu Leu Arg Leu Glu Thr Pro Ser Gln Leu Arg
 1 5 10 15

Pro Asn Pro Lys Ala Met Asn Ser Gly Val Cys Leu Cys Val Leu Met
 20 25 30

Ala Val Leu Ala Ala Gly Ala Leu Thr Gln Pro Val Pro Pro Ala Asp
35 40 45

Pro Ala Gly Ser Gly Leu Gln Arg Ala Glu Glu Ala Pro Arg Arg Gln
50 55 60

Leu Arg Val Ser Gln Arg Thr Asp Gly Glu Ser Arg Ala His Leu Gly
65 70 75 80

Ala Leu Leu Ala Arg Tyr Ile Gln Gln Ala Arg Lys Ala Pro Ser Gly
85 90 95

Arg Met Ser Ile Val Lys Asn Leu Gln Asn Leu Asp Pro Ser His Arg
100 105 110

Ile Ser Asp Arg Asp Tyr Met Gly Trp Met Asp Phe Gly Arg Arg Ser
115 120 125

Ala Glu Glu Tyr Glu Tyr Pro Ser
130 135

<210> 14

<211> 685

<212> DNA

<213> Homo sapiens

<400> 14

ggctcagctg ccgggtctgc cccgttggaa acgccaagcc agctgcgtcc taatccaaaa 60
gccatgaaca gccgcgtgtg cctgtcgctg ctgatggcg tactggcgcc tggcccccctg 120
acgcagccgg tgcctcccgcc agatccccgg ggctccgggc tgcagcgggc agaggaggcg 180
ccccgttaggc agctgagggt atcgcagaga acggatggcg agtccccgggc gcacctgggc 240
gccctgctgg caagatacat ccagcaggcc cgaaaagctc cttctggacg aatgtccatc 300
gttaagaacc tgcagaacct ggaccccgac cacagataa gtgaccggga ctacatgggc 360
tggatggatt ttggccgtcg cagtggcgag gagtatgagt accccctccta gaggacccag 420
ccgccccatcg cccaacggga agcaacacctcc caaccaggag gaggcagaat aagaaaaacaa 480
tcacactcat aactcattgt ctgtggagtt tgacattgta tgtatctatt tattaagttc 540
tcaatgtgaa aaatgtgtct gtaagattgt ccagtgcac cacacacctc accagaattg 600
tgcaaatggaa agacaaaatg ttttcttcat ctgtgactcc tggctgaaa atgttgttat 660
gctattaaag tgatttcatt ctgcc 685

<210> 15
<211> 1362
<212> DNA
<213> *Rattus* sp.

<400> 15
aattcgcgca ctaagccgca ttattcacgt ttccagacat gtcacaata cagctaattc 60
ctacaacctg agctgtgtca tggggggggg gggaaatcacc cacagcattt aatctgctgc 120
tgttttaaac acgttgcttc taagtaaaga gaccgctaga gccacaacca ggaaccta 180
tgctgctggc atacttgcc tttcatagt ctccctcagc cgaaaccccc ccacgctggg 240
tgccttctct atttagaaag agtttctaag cctttctcct tcaccctaga ctggcaaggt 300
tgagggttagg ctgagggttg caagactgtg agaaaaggga gcccctctct tcttcttgct 360
cggtgagtat ctcagccaag atcctcacca cccagtggaa tcccgtaact ctagaggaaa 420
ggaagaactc tagaggacgg gaagatcatt gcaagctccc ctagatgtgc gagcccgacc 480
cgctccactc agccagccag agcttgaggg tgcttgagac actctctggc gccacttcgc 540
gacaaaatc atcggttagat gtaggctgtt gagaagtcat ctgggaaga aatggaaacc 600
ttttccccaa aggcttccg cacaAAAaggc aagagctgca cccaggatct taaaattctg 660
taagacgaga atccacgagg ccaactgtga ttgagttctg aaaaatttag agccctactc 720
ccctctctca cttgtggag cccactcagg tctgaagtgc tcccaagagaa catgccagaa 780
ttacatttgc tgacacctag tctgtgaggg tccccccgtt tcctggaagg atttgatccc 840
tcaaagctca ctaaaacagtg gtcagcttct ccattccaga caaactcctg ctctctccg 900
ggagtagggg tggcacccctc cctgaagagg actcagcaga ggcaccgaac agggtgggga 960
ggaaagctgt ttagataaag aggaggactc atacaaagta ccccgctgg gaggggctat 1020
cctcattcac tggcccggtt cccttctccc gggggggccac ttgcatecggt ggtctctcca 1080
gtggctgcct ctgagcacgt gtcctgcccgg actgcgtcag cactgggtaa acagatgact 1140
ggctgcgtac cgggcggggc tatTTAAGAG gagTCGCCCC gcccctgccc ctcaacttag 1200
ctggacacca gcccgttgaa accgccaagc cagctgactc cgcacccgaa ggtaagtggc 1260
tggcagatcc aagaatcatg agtgtgaaga actggcctgt agctttgcat ctattggcgt 1320
ttagtcttccatTTCTGT gccttccctc acttgacagc tg 1362

<210> 16
<211> 217
<212> PRT
<213> *Homo sapiens*

<400> 16
Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu
1 5 10 15

Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu
 20 25 30

Ser Arg Pro Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln
35 40 45

Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys
50 55 60

Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe
65 70 75 80

Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys
85 90 95

Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Leu Ile Gln Ser Trp
100 105 110

Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val
115 120 125

Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu
130 135 140

Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg
145 150 155 160

Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser
165 170 175

His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe
180 185 190

Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys
195 200 205

Arg Ser Val Glu Gly Ser Cys Gly Phe
210 215

<210> 17
<211> 799
<212> DNA
<213> Homo sapiens

<400> 17
cgaaccactc agggctctgt ggacagctca cctagctgca atggctacag gctccggac 60
gtccctgctc ctggctttg gcctgctctg cctgcctgg cttcaagagg gcagtgcctt 120
cccaaccatt cccttatcca ggcctttga caacgctatg ctccgcgc 180
ccagctggcc tttgacacct accaggagtt tgaagaagcc tatatccaa aggaacagaa 240
gtattcattc ctgcagaacc cccagaccc cctctgttcc tcagagtcta ttccgacacc 300
cttcaacagg gagaaaacac aacagaaaatc caaccttagag ctgctccgca tctccctgct 360
gctcatccag tcgtggctgg agcccggtc gttcctcagg agtgtcttcg ccaacagcct 420
ggtgtacggc gcctctgaca gcaacgtcta tgaccccta aaggacctag aggaaggcat 480
ccaaacgctg atggggaggc tgaaagatgg cagccccgg actgggcaga tcttcaagca 540
gacctacagc aagttcgaca caaactcaca caacgatgac gcaactactca agaactacgg 600
gctgctctac tgcttcagga aggacatggc caaggtcgag acattcctgc gcatcgtgca 660
gtgccgctct gtggaggggca gctgtggctt cttagtgc 720
ctccccagtg cctctctgg ccctggaagt tgccactcca gtgcccacca gcctgtcct 780
aataaaaatta agttgcata 799

<210> 18
<211> 1167
<212> DNA
<213> Rattus sp.

<400> 18
atctctccag tcccttcctc aaccttctga gaacaggcaa actccaccat gattggctta 60
taaatcgta tatggaccta ctaaggatgt aacaactggg agcatgcta cctagcatgt 120
ccgaaaccccg gagttcagtc cctagcactg cacaatctca gtccttatga agtagaggga 180
agatcagagg ttcaaggaca acatcaattt gagaccagcc tggctactt accaaagaaaa 240
gaaagagaga aataaataaa tagatagata aataaataaa taagtaaata aatatctt 300
ggctggagag ttggttcagt gtttaagagc acttattgtg ggttgggaa tttatctcag 360
tggtagagcg tttgcctagg aagctcaagg ccctgggttc gtcctccagc tccggaaaca 420
aaacaaaaca aaacaaaacaa aaacaaacaa aaaaaaaaaacc ctgtctggaa aacacctaaa 480
taaagatata tatataataat atatatacat ataataatata tatgatatat atatataatat 540
atatcttgcg ggaggaagct ataccttctt ttcttgagcc tccaacacat aaatgtgc 600
tgtcatccca ttcatattgc cccaagtggg aaaccatgtg actataaaact ctaagttcct 660
agtcaacttgg aactctcaag acacctaccc caggcagcat cacttccgga gtgccaccat 720
tatcagttaa catccacatc tggattcag atcccagatc cttctgttc cctcagaatg 780
cacctacagc tttgtggggg tgcccttcc ctcagagagt gccacccgag ttgaccctca 840
ccaggcaac ctttgttacc cacagaatcc aacagaagttt agggggaaaga acagccggcc 900
ctgtgcccag aaaaaaagag gggagggaga aggggggtgct cagcctacca ccggcaggt 960

cccgataac actgcagata cccaaatgtt aatcacccat tagcacaggc ccagagcaa 1020
ggggaaagtg attaggtgt aatatgggtt cactgggcag gagcagtggg cttgagcttc 1080
aaagataaga ggtttcagg ttaatcagca ccctgtggtg tgtggatata aggaagctaa 1140
cacagggtct tgaagcaaga tcctgag 1167