Binomial Generalized Linear Models

Filippo Gambarota

University of Padova

2022/2023

Updated on 2023-04-27

Outline

- 1. Binomial GLM
- 2. Binomial GLM Parameter Intepretation
- 3. Binomial GLM Inference
- 4. Binomial GLM Plotting effects
- 5. Binomial GLM Diagnostic
- 6. Binomial GLM Probit link

Binomial GLM

Example: Passing the exam

We want to measure the impact of **watching tv-shows** on the probability of **passing the statistics exam**.

- exam: passing the exam (1 = "passed", 0 = "failed")
- tv_shows: watching tv-shows regularly (1 = "yes", 0 = "no")

```
head(dat)
```

```
## tv_shows exam
## 1 1 0
## 2 1 1
## 3 1 1
## 4 1 1
## 5 1 1
## 6 1 0
```

Example: Passing the exam

We can create the **contingency table**

```
xtabs(~exam + tv_shows, data = dat) |>
  addmargins()
```

```
## tv_shows
## exam 0 1 Sum
## 0 31 22 53
## 1 19 28 47
## Sum 50 50 100
```

Example: Passing the exam

Each cell probability π_{ij} is computed as π_{ij}/n

```
(xtabs(-exam + tv_shows, data = dat)/n) |>
  addmargins()
```

```
## tv_shows
## exam 0 1 Sum
## 0 0.31 0.22 0.53
## 1 0.19 0.28 0.47
## Sum 0.50 0.50 1.00
```

Example: Passing the exam - Odds

The most common way to analyze a 2x2 contingency table is using the **odds ratio** (OR). Firsly let's define *the odds of success* as:

$$odds = \frac{\pi}{1 - \pi}$$
$$\pi = \frac{odds}{odds + 1}$$

- the **odds** are non-negative, ranging between 0 and $+\infty$
- an **odds** of e.g. 3 means that we expect 3 success for each failure

Example: Passing the exam - Odds

For the exam example:

```
odds <- function(p) p / (1 - p)
p11 <- mean(with(dat, exam[tv_shows == 1])) # passing exam / tv_shows
odds(p11)</pre>
```

```
## [1] 1.272727
```

Example: Passing the exam - Odds Ratio

The OR is a ratio of odds:

$$OR = \frac{\frac{\pi_1}{1 - \pi_1}}{\frac{\pi_2}{1 - \pi_2}}$$

- OR ranges between 0 and $+\infty$. When OR=1 the odds for the two conditions are equal
- An e.g. OR=3 means that being in the condition at the numerator increase 3 times the odds of success

Example: Passing the exam - Odds Ratio

```
odds_ratio <- function(p1, p2) odds(p1) / odds(p2)
p11 <- mean(with(dat, exam[tv_shows == 1])) # passing exam | tv_shows
p10 <- mean(with(dat, exam[tv_shows == 0])) # passing exam | not tv_shows
odds_ratio(p11, p10)</pre>
```

[1] 2.076555

Why using these measure?

The odds have an interesting property when taking the logarithm. We can express a probability π using a scale ranging $[-\infty, +\infty]$

We considered a Study conducted by the University of Padua (TEDDY Child Study, 2020)¹. Within the study, researchers asked the participants (mothers of a young child) about the presence of post-partum depression and measured the parental stress using the PSI-Parenting Stress Index.

ID	Parental.stress	Depression.pp
1	75	No
2	51	No
3	76	No
4	88	No
	•••	•••
376	67	No
377	71	No
378	63	No
379	70	No

 $^{^1\}mathsf{Thanks}$ to Prof. Paolo Girardi for the example, see $\mathsf{https:}//\mathsf{teddychild.dpss.psy.unipd.it}/\ for information$

We want to see if the parental stress increase the probability of having post-partum depression:

Let's start by fitting a linear model Depression_pp ~ Parental_stress. We consider "Yes" as 1 and "No" as 0.

```
fit_lm <- lm(Depression_pp01 ~ Parental_stress, data = teddy)
summary(fit_lm)</pre>
```

```
##
## Call:
## lm(formula = Depression pp01 ~ Parental stress, data = teddy)
##
## Residuals:
       Min
                 10 Median
                                          Max
## -0 42473 -0 13768 -0 10003 -0 05768 0 94702
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.172900 0.077561 -2.229 0.026389 *
## Parental_stress 0.004706 0.001201 3.919 0.000105 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3239 on 377 degrees of freedom
## Multiple R-squared: 0.03915. Adjusted R-squared: 0.0366
## F-statistic: 15.36 on 1 and 377 DF, p-value: 0.0001054
```

Let's add the fitted line to our plot:

... and check the residuals, pretty bad right?

As for the exam example, we could compute a sort of contingency table despite the Parental_stress is a numerical variable by creating some discrete categories (just for exploratory analysis):

```
table(teddy$Depression pp, teddy$Parental stress c) |> table(teddy$Depression pp, teddy$Parental stress c) |>
    round(2)
                                                            prop.table(margin = 2) |>
                                                            round(2)
##
         < 40 40-60 60-80 80-100 > 100
                                                        ##
                164
                      136
                                                                 < 40 40-60 60-80 80-100 > 100
     Yes
                 15
                       21
                               7
                                                                       0.92 0.87
                                                                                     0.79 0.60
                                                             Yes
                                                                       0.08 0.13
                                                                                     0.21 0.40
```

Ideally, we could compute the increase in the odds of having the post-partum depression as the parental stress increase. In fact, as we are going to see, the Binomial GLM is able to estimate the non-linear increase in the probability.

Binomial GLM

- The **random component** of a Binomial GLM the binomial distribution with parameter π
- ullet The **systematic component** is a linear combination of predictors and coefficients eta X
- The **link function** is a function that map probabilities into the $[-\infty, +\infty]$ range.

Binomial GLM - Logit Link

The **logit** link is the most common link function when using a binomial GLM:

$$\log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 X_1 + ... \beta_p X_p$$

The inverse of the logit maps again the probability into the [0,1] range:

$$\pi = \frac{e^{\beta_0 + \beta_1 X_1 + \dots \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots \beta_p X_p}}$$

Binomial GLM - Logit Link

Thus with a single numerical predictor x the relationship between x and π in non-linear on the probability scale but linear on the logit scale.

Binomial GLM - Logit Link

The problem is that effects are non-linear, thus is more difficult to interpret and report model results

Binomial GLM - Model fitting in R

The big picture...

Binomial GLM - Model fitting in R

We can model the contingency table presented before. We put data in **binary form**:

```
## tv_shows
## exam 0 1
## 0 35 22
## 1 15 28
```

```
## 1 tv_shows exam
## 1 1 0
## 2 1 1 1
## 3 1 1 1
## 4 1 1 1
## 5 .... ...
## 6 0 0 0
## 7 0 1
## 8 0 0 0
## 9 0 0
```

Binomial GLM - Intercept only model

Let's start from the simplest model (often called null model) where there are no predictors:

```
fit0 <- glm(exam ~ 1, data = dat, family = binomial(link = "logit"))
summary(fit0)</pre>
```

```
## Call:
## glm(formula = exam ~ 1, family = binomial(link = "logit"), data = dat)
## Deviance Residuals:
              10 Median 30
     Min
                                   Max
## -1.060 -1.060 -1.060 1.299 1.299
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.2819
                           0.2020 -1.395
                                            0.163
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 136.66 on 99 degrees of freedom
## Residual deviance: 136.66 on 99 degrees of freedom
## AIC: 138.66
## Number of Fisher Scoring iterations: 4
```

Binomial GLM - Intercept only model

When fitting an intercept-only model, the parameter is the average value of the y variable:

$$\log(\frac{\pi}{1-\pi}) = \beta_0$$
$$\pi = \frac{e^{\beta_0}}{1+e^{\beta_0}}$$

Binomial GLM - Intercept only model

In R, the $logit(\pi)$ is computed using qlogis() that is the q + logis combination of functions to work with probability distributions. The $logit^{-1}$ thus the inverse of the logit function is plogis():

```
# average y on the respo nse scale
mean(dat$exam)

## [1] 0.43

c("logit" = coef(fit0)[1],
    "inv-logit" = plogis(coef(fit0)[1])
)
```

```
## logit.(Intercept) inv-logit.(Intercept)
## -0.2818512 0.4300000
```

Binomial GLM - Link function (TIPS)

If you are not sure about how to transform using the link function you can directly access the family() object in R that contains the appropriate link function and the corresponding inverse.

```
bin <- binomial(link = "logit")
bin$linkfun() # the same as plogis
bin$linkinv() # the same as qlogis
```

Binomial GLM - Model with X

Now we can add the tv_shows predictor. Now the model has two coefficients. Given that the tv_shows is a binary variable, the intercept is the average y when tv_shows is 0, and the tv_shows coefficient is the increase in y for a unit increase in tv_shows:

```
fit <- glm(exam ~ tv_shows, data = dat, family = binomial(link = "logit"))
summary(fit)
##
## Call:
## glm(formula = exam ~ tv_shows, family = binomial(link = "logit"),
      data = dat)
## Deviance Residuals:
      Min
              1Q Median 3Q
                                     Max
## -1.2814 -0.8446 -0.8446 1.0769 1.5518
##
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
## tv_shows 1.0885 0.4200 2.592 0.00956 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 136.66 on 99 degrees of freedom
## Residual deviance: 129.68 on 98 degrees of freedom
## AIC: 133.68
```

Binomial GLM - Model with X

Thinking about our data, the (Intercept) is the probability of passing the exam without watching tv-shows. The tv_shows (should be) the difference in the probability of passing the exam between people who watched or did not watched tv-shows, BUT:

- we are on the logit scale. Thus we are modelling log(odds) and not probabilities
- a difference on the log scale is a ratio on the raw scale. Thus taking the exponential of tv_shows we obtain the ratio of odds of passing the exam watching vs non-watching tv-shows. Do you remember something?

Binomial GLM - Model with X_{1}

The tv_shows is exactly the Odds Ratio that we calculated on the contingency table:

[1] 2.969697

Binomial GLM - Parameter Intepretation

Binomial GLM - Model Interretation

Given the non-linearity and the link function, parameter interretation is not easy for GLMs. In the case of the Binomial GLM we will se:

- interpreting model coefficients on the linear and logit scale
- odds ratio (already introduced)
- the divide by 4 rule [1], [2]
- marginal effects
- predicted probabilities

Binomial GLM - Intepreting model coefficients

Models coefficients are intepreted in the same way as standard regression models. The big difference concerns:

- numerical predictors
- categorical predictors

Using contrast coding and centering/standardizing we can make model coefficients more intepretable or tailored to our research question.

Binomial GLM - Categorical predictors

We we use a categorical predictor with p levels, the model will estimate p-1 parameters. The interpretation of these parameters is controlled by the contrast coding. In R the default is the treatment coding (or dummy coding). Essentially R create p-1 dummy variables (0 and 1) where 0 is the reference level (usually the first category) and 1 is the current level. We can see the coding scheme using the model.matrix() function that return the X matrix:

Binomial GLM - Categorical predictors

dat\$tv shows0 <- ifelse(dat\$tv shows == 0, -0.5, 0.5)

(Intercept) ## 0.4248077

In the simple case of the exam dataset, the intercept (β_0) is the reference level (default to 0 because is the first) and β_0 is the difference between the actual level and the reference level. If we change the order of the levels we could change the intercept value while β_1 will be the same. As an example we could use the so-called sum to zero coding where instead of assigning 0 and 1 we use different values. For example assigning -0.5 and 0.5 will make the intercept the grand-mean:

```
fit <- glm(exam ~ tv_shows0, data = dat, family = binomial(link = "logit"))
# grand mean
mean(c(mean(dat$exam[dat$tv_shows == 1]), mean(dat$exam[dat$tv_shows == 0])))
## [1] 0.43
# intercept
plogis(coef(fit)[1])</pre>
```

Binomial GLM - Categorical predictors

With numerical predictors the idea is the same as categorical predictors. In fact, categorical predictors are converted into numbers (e.e., 0 and 1 or -0.5 and 0.5). The only caveat is that the effects are linear only the **logit** scale. Thus β_1 is interpreted in the same way as standard linear models only on the link-function scale. For the **binomial**

GLM the β_1 is the increase in the $log(odds(\pi))$ for a unit-increase in the x. In the response (probability) scale, the β_1 is the multiplicative increase in the odds of y=1 for a unit increase in the predictor.

With numerical predictors we could mean-center and or standardize the predictors. With centering (similarly to the categorical example) we change the interpretation of the intercept. Standardizing is helpful to have more meaningful β values. The β_i of a centered predictor is the increase in y for a increase in one standard deviation of x.

$$x_{cen} = x_i - \hat{x}$$

$$x_z = \frac{x_i - \hat{x}}{\sigma_x}$$

Let's return to our teddy child example and fitting the proper model:

```
fit_glm <- glm(Depression_pp01 ~ Parental_stress, data = teddy, family = binomial(link = "logit"))
summary(fit_glm)</pre>
```

```
##
## Call:
## glm(formula = Depression_pp01 ~ Parental_stress, family = binomial(link = "logit"),
      data = teddv)
##
## Deviance Residuals:
      Min
                10 Median
                                         Max
## -1 2852 -0 5165 -0 4509 -0 3861 2 3096
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.323906
                            0.690689 -6.260 3.84e-10 ***
## Parental_stress 0.036015 0.009838 3.661 0.000251 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 284.13 on 378 degrees of freedom
## Residual deviance: 271.23 on 377 degrees of freedom
## ATC: 275.23
## Number of Fisher Scoring iterations: 5
```

The (Intercept) (β_0) is the probability of having post-partum depression for a mother with parental stress zero (maybe better centering?)

$$p(yes|x=0) = g^{-1}(\beta_0)$$

```
plogis(coef(fit_glm)["(Intercept)"])
```

```
## (Intercept)
## 0.01307482
```

The Parental_stress (β_1) is the increase in the log(odds) of having the post-partum depression for a unit increase in the parental stress index. If we take the exponential of β_1 we obtain the increase in the odds of having post-partum depression for a unit increase in parental stress index.

```
exp(coef(fit_glm)["Parental_stress"])
```

```
## Parental_stress
## 1.036671
```

0.0360147 0.0360147 0.0360147

The problem is that, as shown before, the effects are non-linear on the probability scale while are linear on the logit scale. On the logit scale, all differences are constant:

```
pr \leftarrow list(c(10, 11), c(50, 51), c(70, 71))
predictions <- lapply(pr, function(x) {
   predict(fit_glm, newdata = data.frame(Parental_stress = x))
})
predictions
## [[1]]
## -3.963759 -3.927744
## [[2]]
## -2.523171 -2.487156
## [[3]]
## -1 802877 -1 766862
# notice that the difference is exactly the Parental stress parameter
sapply(predictions, diff)
```

0 0006702661 0 0025138036 0 0044317558

While on the probability scale, the differences are not the same. This is problematic when interpreting the results of a Binomial GLM with a numerical predictor.

Binomial GLM - Divide by 4 rule

The **divide by 4 rule** is a very easy way to evaluate the effect of a continous predictor on the probability.

Given the non-linearity, the derivative of the logistic function (i.e., the slope) is maximal when predicts probabilities around \sim 0.5.

In fact, $\beta_i\pi(1-\pi)$ is maximized when $\pi=0.5$ turning into $\beta_i0.25$ (i.e., dividing by 4).

Binomial GLM - Divide by 4 rule

Binomial GLM - Predicted probabilities

In a similar way we can use the inverse logit function to find the predicted probability specific values of x. For example, the difference between p(y=1|x=2.5)-p(y=1|x=5) can be calculated using the model equation:

- $logit^{-1}p(y=1|x=2.5) = \frac{e^{\beta_0+\beta_12.5}}{1+e^{\beta_0+\beta_12.5}}$
- $logit^{-1}p(y=1|x=5) = \frac{e^{\beta_0^2+\beta_1 5}}{1+e^{\beta_0^2+\beta_1 5}}$
- $logit^{-1}p(y=1|x=5) logit^{-1}p(y=1|x=2.5)$

```
coefs <- coef(fit)
plogis(coefs[1] + coefs[2]*5) - plogis(coefs[1] + coefs[2]*2.5)</pre>
```

```
## (Intercept)
## 0.2237369
```

Binomial GLM - Predicted probabilities

0.2237369

In R we can use directly the predict() function with the argument type = "response" to return the predicted probabilities instead of the logits:

Binomial GLM - Predicted probabilities

[1] 0.0329886 0.2567255

I have written the epredict() function that extend the predict() function giving some useful messages when computing predictions. you can use it with every model and also with multiple predictors.

```
epredict(fit, values = list(x = c(2.5, 5)), type = "response")
## y ~ -5.693 + 0.926*c(2.5, 5)
```

Binomial GLM - Marginal effects

Marginal effects can be considered very similar to the **divide by 4 rule**. A particularly useful type of marginal effect is the **average marginal effect**. While the **divide by 4** rule estimate the **maximal** difference (in probability scale) according to x, the **average marginal effect** is the average of all slopes (i.e., derivatives) interpreted as the average change in probability scale across all unit increases in x.

```
# calculate the derivative
calc_deriv <- function(b0, b1, x){
    (b1 * exp(b0 + b1 * x)) / (1 + (exp(b0 + b1 * x)))^2
}
coefs <- coef(fit)
dd <- calc_deriv(coefs[1], coefs[2], dat$x)
mean(dd)</pre>
```

[1] 0.09338663

Binomial GLM - Marginal effects

More efficiently we can do the same using the margins package in R:

```
mrg <- margins::margins(fit)
summary(mrg)</pre>
```

```
## factor AME SE z p lower upper ## x 0.0934 0.0031 29.9339 0.0000 0.0873 0.0995
```

Binomial GLM - Inference

Binomial GLM - Wald tests

The basic approach when doing inference with GLM is interpreting the Wald test of each model coefficients. The Wald test is calculated as follows:

$$z = \frac{\beta_i - \beta_0}{\sigma_{\beta_i}}$$

Calculating the p-value based on a standard normal distribution.

Binomial GLM - Wald-type confidence intervals

Wald-type confidence interval (directly from model summary), where Φ is the cumulative Gaussian function gnorm():

$$95\%CI = \hat{\beta} \pm \Phi(\alpha/2)SE_{\beta}$$

```
## Estimate Std. Error z.value Pr...z.
## (Intercept) -0.6632942 0.2985407 -2.221788 0.0262976067
## tv_shows 1.4170660 0.4254859 3.330465 0.0008670096

## 95% confidence interval
summ$Estimate + qnorm(c(0.025, 0.95))*summ$Std. Error
```

```
## [1] -1.248423 2.116928
```

Binomial GLM - Wald-type confidence intervals

You can also use the plot_param() function to represent the sampling distribution and the confidence interval:

```
plot_param(fit, "tv_shows", ci = "z") + mytheme()
```


Binomial GLM - Profile likelihood confidence intervals

The computation is a little bit different and they are not always symmetric:

```
# profile likelihood, different from wald type
confint(fit)
```

```
## (Intercept) -1.2711814 -0.09226204
## tv_shows 0.5998267 2.27401606
```

Binomial GLM - Profile likelihood confidence intervals

Again we can use the plot_param() function:

```
plot_param(fit, "tv_shows", ci = "profile") + mytheme()
```


Binomial GLM - Confidence intervals

When calculating confidence intervals it is important to consider the link function. In the same way as we compute the inverse logit function on the parameter value, we could revert also the confidence intervals.

IMPORTANT, do not apply the inverse logit on the standard error and then compute the confidence interval.

```
fits <- broom::tidy(fit) # extract parameters as dataframe
fits</pre>
```

```
## # A tibble: 2 x 5

## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> = 1.52 0.368 -4.12 0.0000380

## 2 tv_shows 2.01 0.469 4.27 0.0000193
```

Binomial GLM - Confidence intervals

7.432749 4.234493 10.631004

```
b <- fits$estimate[2]
se <- fits$std.error[2]
# correct, wald-type confidence intervals
c(b = exp(b), lower = exp(b - 2*se), upper = exp(b + 2*se))
                lower
                          upper
## 7 432749 2 906586 19 007090
# correct, likelihood based confidence intervals
exp(confint(fit, "tv_shows"))
      2.5 % 97.5 %
  3.062659 19.530409
# wrong wald type
c(b = exp(b), lower = exp(b) - 2*exp(se), upper = exp(b) + 2*exp(se))
          b lower
                       upper
```

Binomial GLM - Confidence intervals

The same principle holds for predicted probabilities. First compute the intervals on the logit scale and then transform-back on the probability scale:

```
fits <- dat |>
    select(tv_shows) |>
    distinct() |>
    add_predict(fit, se.fit = TRUE)

fits$p <- plogis(fits$fit)
fits$lower <- plogis(with(fits, fit - 2*se.fit))
fits$upper <- plogis(with(fits, fit + 2*se.fit))
fits</pre>
```

Binomial GLM - Anova

With multiple predictors, especially with categorical variables with more than 2 levels, we can compute the an anova-like analysis individuating the effect of each predictor. In R we can do this using the car::Anova() function. Let's simulate a model with a 2x2 interaction:

```
## id x1 x2 y
## 1 1 a c 1
## 2 2 a d 0
## 3 3 b c 0
## 4 4 b d 0
## 5 5 a c 1
## 6 6 a d 0
```

We can fit the most complex model containing the two main effects and the interaction²:

```
fit_max <- glm(y ~ x1 + x2 + x1:x2, data = dat, family = binomial(link = "logit")) # same as x1 * x2
```

 $^{^2}$ I set the contrasts for the two factors as contr.sum()/2 that are required for a proper analysis of factorial designs

Binomial GLM - Anova

summary(fit_max)

```
## Call:
## glm(formula = y ~ x1 + x2 + x1:x2, family = binomial(link = "logit"),
      data = dat)
## Deviance Residuals:
     Min 1Q Median 3Q
                                  Max
## -1.066 -1.011 -0.459 1.293 2.146
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.0151 0.2279 -4.454 8.44e-06 ***
     0.5724 0.4559 1.256 0.20924
## x11
## x21
      1.3565 0.4559 2.976 0.00292 **
## x11:x21 -0.8704 0.9117 -0.955 0.33973
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 144.87 on 119 degrees of freedom
## Residual deviance: 133.54 on 116 degrees of freedom
## ATC: 141.54
##
## Number of Fisher Scoring iterations: 4
```

Binomial GLM - Anova

car::Anova(fit_max)

Then using car::Anova(). For each effect we have the χ^2 statistics and the associated p-value. The null hypothesis is that the specific factor did not contribute in reducing the residual deviance.

```
## Analysis of Deviance Table (Type II tests)
##
## Response: y
## LR Chisq Df Pr(>Chisq)
## x1    1.0943    1    0.295529
## x2    9.3856    1    0.002187 **
## x1:x2    0.9403    1    0.332195
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The table obtained with car::Anova() is essentially a model comparison using the Likelihood Ratio test. This can be done using the anova(...) function.

$$\begin{split} D = 2(log(\mathcal{L}_{full}) - log(\mathcal{L}_{reduced})) \\ D \sim \chi_{df_{full} - df_{reduced}}^2 \end{split}$$

To better understanding, the x2 effect reported in the car::Anova() table is a model comparison between a model with $y \sim x1 + x2$ and a model without x2. The difference between these two model is the unique contribution of x2 after controlling for x1:

```
fit <- glm(y ~ x1 + x2, data = dat, family = binomial(link = "logit"))
fit0 <- glm(y ~ x1, data = dat, family = binomial(link = "logit"))
anova(fit0, fit, test = "LRT") # ~ same as car::Anova(fit_max)</pre>
```

```
## Analysis of Deviance Table
##
## Model 1: y ~ x1
## Model 2: y ~ x1 + x2
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 118 143.86
## 2 117 134.48 1 9.3856 0.002187 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The model comparison using anova() (i.e., likelihood ratio tests) is limited to nested models thus models that differs only for one term. For example:

```
fit1 <- glm(y ~ x1, data = dat, family = binomial(link = "logit"))
fit2 <- glm(y ~ x2, data = dat, family = binomial(link = "logit"))
fit3 <- glm(y ~ x1 + x2, data = dat, family = binomial(link = "logit"))</pre>
```

fit1 and fit2 are non-nested because we have the same number of predictors (thus degrees of freedom). fit3 and fit1/fit2 are nested because fit3 is more complex and removing one term we can obtain the less complex models.

Model 2: v ~ x1 + x2

118

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

117 134.48 1 9.3856 0.002187 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

143.86

```
anova(fit1, fit2, test = "LRT") # do not works properly
## Analysis of Deviance Table
##
## Model 1: y ~ x1
## Model 2: y ~ x2
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
         118 143.86
## 1
     118 135.57 0 8.2914
## 2
anova(fit1, fit3, test = "LRT") # same anova(fit2, fit3)
## Analysis of Deviance Table
##
## Model 1: v ~ x1
```