Boole Fonksiyonlarının İndirgenmesi

- Amaç: Verilen bir Boole fonksiyonunun en basit gerçeklemesini bulmak.
- İndirgeme sadeleştirmenin sistematik yöntemidir.
- İndirgeme için devrenin basitliğini ölçen bir kriter kullanmak gerekir
- Kullanacağımız kriterler:
 - Değişken sayısı (D)
 - · Kapı girişi sayısı (KG)
 - TÜMLEME kapıları ile birlikte kapı girişi sayısı (KGT)

İndirgeme Kriterleri

$$D = 5$$
 $KG = D + 2 = 7$
 $KGT = KG + 2 = 9$

İndirgeme Kriterleri

Boolean Fonksiyonlarının İndirgenmesi

- Quine-McCluskey
- Karnaugh (K-) diyagramı
- Espresso

İndirgeme Örneği

 $\begin{array}{l} \ddot{\text{Ornek}} \colon f(x_1, x_2, x_3, x_4) = \sum_{m} (1, 3, 5, 6, 7, 8, 12, 14, 15) \\ f(x_1, x_2, x_3, x_4) = \underbrace{x_1' x_2' x_3' x_4}_{X_1' x_2' x_3 x_4} \underbrace{x_1' x_2' x_3 x_4}_{X_1' x_2 x_3 x_4} \underbrace{x_1' x_2 x_3 x_4}_{X_1' x_2 x_3 x_4} \underbrace{x_1' x_2 x_3 x_4}_{X_1' x_2 x_3 x_4} \underbrace{x_1' x_2 x_3 x_4}_{X_1' x_2 x_3 x_4} \underbrace{x_1' x_2 x_3 x_4}_{X_1' x_2 x_3 x_4} \underbrace{x_1' x_2 x_3 x_4}_{X_1' x_2 x_3 x_4} \underbrace{x_1' x_2 x_3 x_4}_{X_1' x_2 x_3 x_4} \underbrace{x_1' x_2 x_3 x_4}_{X_1' x_2 x_3 x_4} \underbrace{x_1' x_2 x_3 x_4}_{X_1' x_2 x_3 x_4} \underbrace{x_1' x_2 x_3 x_4}_{X_1' x_2 x_3 x_4} \underbrace{x_1' x_2 x_3 x_4}_{X_1' x_2 x_3 x_4} \underbrace{x_1' x_2 x_3 x_4}_{X_1' x_2 x_3 x_4} \underbrace{x_1' x_2 x_3 x_4}_{X_1' x_2 x_3 x_4} \underbrace{x_1' x_2 x_3 x_4}_{X_1' x_2 x_3 x_4} \underbrace{x_1' x_2 x_3 x_4}_{X_1' x_2 x_3 x_4} \underbrace{x_1' x_2 x_3 x_4}_{X_1' x_2 x_3} \underbrace{x_1' x_2 x_3 x_4}_{X_1' x_2 x_3 x_4} \underbrace{x_1' x_2 x_3 x_4}_{X_1' x_2 x_3} \underbrace{x_1' x_2 x_4}_{X_1' x_2 x_3} \underbrace{x_1' x_2 x_3 x_4}_{X_1' x_2 x_3} \underbrace{x_1' x_2 x_3}_{X_1' x_2 x_3} \underbrace{x_1' x_2 x_4}_{X_1' x_2 x_3} \underbrace{x_1' x_2 x_4}_{X_1' x_2 x_3} \underbrace{x_1' x_2 x_4}_{X_1' x_2 x_4}$

Quine-McCluskey Yöntemi İle Boole Fonksiyonlarının İndirgenmesi

- Fonksiyon çarpımlar toplamı veya toplamlar çarpımı biçiminde yazılır.
- 1. Aşama: f'nin bütün asal bileşenleri bulunur.
- 2. Aşama: Asal bileşenlerden bazıları atılarak minimal ifade elde edilir.

Quine-McCluskey Yöntemi İle Çarpımlar Toplamı İfadenin İndirgenmesi - 1.

Aşama : Asal Bileşenlerin Belirlenmesi \rightarrow Örnek: $f(x_1,x_2,x_3,x_4)=\sum_{m}(1,3,5,6,7,8,12,14,15)$

x ₁ x ₂ x ₃ x ₄	$x_1 x_2 x_3 x_4$	$x_1 x_2$	X ₃ X ₄
10001	1,3 0 0 - 1 1,3,5,7	0 -	- 1 C
√ 3 0 0 1 1	1,5 0 - 0 1 1,5,3,7 8,12 A 1 - 0 0 6,7,14,15	0 -	- I
50101	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 1	1 -
√12 1 1 0 0	6,7 0 1 - 1 - 7 - 7 - 7		
70111	6,14 V - 1 1 0 12.14 R1 1 - 0		
$\sqrt{14}$ 1 1 1 0 $\sqrt{15}$ 1 1 1 1 1	7,15 v - 1 1 1		

Asal Bileşenlerin Toplamı:

 $f(x_1,\!x_2,\!x_3,\!x_4)\!=\!x_1x_3{}'x_4{}'\!+\!x_1x_2x_4{}'\!+\!x_1{}'x_4\!+\!x_2x_3$

Quine-McCluskey Yöntemi İle Çarpımlar Toplamı İfadenin İndirgenmesi - 2. Aşama: Minimal İfadenin Bulunması

Tablo Yöntemi

Minimal ifade:

 $f(x_1,\!x_2,\!x_3,\!x_4)\!=\!x_1x_3{}'x_4{}'\!+\!x_1{}'x_4\!+\!x_2x_3$

Quine-McCluskey Yöntemi İle Çarpımlar Toplamı İfadenin İndirgenmesi - 2. Aşama: Minimal İfadenin Bulunması

Patrick Yöntemi

Α	8,12	P=C C C D (C+D) A (A+B) (B+D) D
В	12,14	
C	1,3,5,7	C=1, D=1, A=1
D	6,7,14,15	
		P=1

Minimal ifade:

 $f(x_1,\!x_2,\!x_3,\!x_4)\!=\!x_1x_3{}'x_4{}'\!+\!x_1{}'x_4\!+\!x_2x_3$

Örnek: $f(x_1, x_2, x_3, x_4) = \sum_{m} (1, 4, 5, 7, 8, 9, 11, 12, 14, 15)$

		X ₁	X ₂	X ₃	X_4		x_1	X ₂	X3	X ₄	
~~~~	1 4 8 5 9	0 0 1 0 1	0 1 0 1 0	000	1 0 0	1,5 1,9 4,5 4,12 8,9 8,12	0 - 0 - 1 1	0 1 1 0 -	000000	1 1 0 - 0	A B C D E F
1	7 I 1	0 1 1	1 0 1	1 1 1	1 1 0 1	5,7 9,11 12,14 7,15 11,15 14,15	0 1 1 - 1	1 0 1 1 -	- - 1 1	1 0 1 1 -	GHIJKL

#### Asal Bileşenlerin Toplamı:

 $\begin{array}{l} f(x_1, x_2, x_3, x_4) = x_1 x_3' x_4 + x_2' x_3' x_4 + x_1' x_2 x_3' + x_2 x_3' x_4' + x_1 x_2' x_3' + x_1 x_3' x_4' + x_1' x_2 x_4 \\ + x_1 x_2' x_4 + x_1 x_2 x_4' + x_2 x_3 x_4 + x_1 x_3 x_4 + x_1 x_2 x_3 \end{array}$ 



Temel asal bileşen yok. Satır veya sütun örtmesi yok. I=1 veya L=1 Temel asal bileşen yok
Satır örtmesi yok
Sütun örtmesi yok
A=1 olsun
P= (C+D)(G+J)(E+F)(B+E+H)(H+K)
(D+F+I)(I+L)(J+K+L)
Temel asal bileşen yok
E B'yi örter. D C'yi örter. J G'yi örter.
B=0, C=0, G=0
P= D J (E+F)(E+H)(H+K)(D+F+I)(I+L)
(J+K+L)
P= (E+F)(E+H)(H+K)(I+L)
D ve J temel asal bileşen. D=1, J=1
Temel asal bileşen yok
E F'yi örter. H K'yi örter.

F=0, K=0 P= E (E+H) H (I+L) E ve H temel asal bileşen. E=1, H=1

- F=A+D+J+E+H+L
- ► F=A+D+J+E+H+I

#### Quine-McCluskey Yöntemi İle Toplamlar Çarpımı İfadenin İndirgenmesi

• Örnek:  $f(x_1,x_2,x_3,x_4)=\Pi_M(1,4,5,8,11,12,14)$ 

		$x_1$	$x_2$	$X_3$	$X_4$		$x_1$	$x_2$			
	1	0	0	0	1	1,5	0	-	0	1	В
	4	0	1	0	0	4,5	0	1	0	_	C
	8	1	0	0	0	4,12	-	1	0	0	D
	5	0	1	0	1	8,12	1	-	0	0	Ε
	12	1	1	0	0	12,14	1	1	-	0	F
Α	11	1	0	1	1						
	14	1	1	1	0						



#### Asal Bileşenlerin Çarpımı:

#### Minimal ifade

# Keyfi Değerler

- Bazen bir doğruluk tablosunda aşağıdaki durumlardan birine sahip girişler bulunur:
- Karşılık gelen çarpım terimini oluşturacak giriş asla gelmeyecektir.
- Çarpım teriminin oluşturduğu çıkış asla kullanılmayacaktır.
- > Bu durumlarda çıkış değerini tanımlamak gerekmez.
- Bunun yerine çıkış değeri "keyfi" olarak tanımlanır.
- Indirgeme sırasında diyagrama "k" veya "x" koymak devreyi küçültebilir.
- Örnek: BCD kodlanmış sayıların bir basamağını toplayacak bir devre tasarlansın. Sadece 0 dan 9'a kadar olan sayıların kodları kullanılacaktır. Geriye kalan 1010 dan 1111 olan kodlar asla ortaya çıkmayacaktır.

#### Quine-McCluskey Yöntemi Keyfi Değerli Bir Boole Fonksiyonunun İndirgenmesi

• Örnek:  $f(x_1,x_2,x_3)=\Sigma_m(0,1,5)+k\Sigma_m(2,6)$ 





#### Asal Bileşenlerin Toplamı

#### Minimal ifade:

 $f(x_1,\!x_2,\!x_3)\!=\!x_1{'}x_2{'}\!+\!x_1{'}x_3{'}\!+\!x_2{'}x_3\!+\!x_2x_3{'}$ 

 $f(x_1,x_2,x_3)=x_2'x_3+x_1'x_2'$  veya  $x_1'x_3'$ 

Sadece Keyfilerden oluşan asal bileşenleri tablonun satırlarına koyma Keyfi çarpım terimlerini tablonun sütunlarına KOYMA

### İki değişkenli Karnaugh Diyagramı

- Iki değişken: x ve y
  - 4 çarpım terimi:

m.	= x'y'	→ (	າດ
1110	- ^ y	/ (	JU

• 
$$m_1 = x'y$$
  $\rightarrow 01$ 

• 
$$m_2 = xy'$$
  $\rightarrow 10$ 

$$\cdot m_3 = xy \rightarrow 11$$





# Karnaugh Diyagramı ile Fonksiyonların Gösterilimi

 $\rightarrow$  Örnek: F(x,y) = x



▶ F(x,y) fonksiyonu için 1 içeren iki komşu hücre birleştirilebilir.

$$F(x, y) = x \overline{y} + x y = x$$

### Karnaugh Diyagramı ile Fonksiyonların Gösterilimi

ightharpoonup Örnek: G(x,y) = x + y

G = x+y	y = 0	y = 1
x = 0	0	1
x = 1	1	1

 G(x,y) fonksiyonu için 1 içeren iki çift komşu hücre birleştirilebilir.

$$G(x,y) = (x\overline{y} + xy) + (xy + \overline{x}y) = x + y$$

$$xy \text{ tekrarlanıyor}$$

# Üç değişkenli Karnaugh Diyagramı



- Komşu kareler arasında sadece 1 bit değişir.
  - $^{\circ}$   $m_2 \leftrightarrow m_6$ ,  $m_3 \leftrightarrow m_7$
  - $^{\circ}$   $m_2 \leftrightarrow m_0$  ,  $m_6 \leftrightarrow m_4$

#### Üç değişkenli Karnaugh Diyagramı

2 hücreli dikdörtgen örnekleri



 Gösterilen dikdörtgenlerin çarpım terimlerini okuyun.

# Üç değişkenli Karnaugh

Diyagramı 4 hücreli dikdörtgen örnekleri YZ



Gösterilen dikdörtgenlerin çarpım terimlerini okuyun.

# Örnek: $F(x,y,z) = \sum m(1,2,3,5,7)$



# Üç değişkenli Karnaugh Diyagramı

- 1 hücre 3 değişkenli bir çarpım terimini gösterir.
- 2 komşu hücre 2 değişkenli bir terimi gösterir.
- 4 komşu hücre 1 değişkenli bir terimi gösterir.
- > 8 komşu hücre her zaman 1'e eşittir.

#### Ornek: Uç değişkenli Karnaugh Diyagramı

 $F_1(x, y, z) = \Sigma (2, 3, 4, 5)$ 

x yz	00	01	11	10	
0	0	0	1	1	
1	1	1	0	0	

- F₁(x, y, z) = xy' + x'y
- $F_2(x, y, z) = \Sigma (3, 4, 6, 7)$



# Örnek



# Dört değişkenli Karnaugh

Diyagramı → Dört değiken: x, y, z, t

• 16 çarpım terimi



# Dört değişkenli Karnaugh Diyagramı

Dikdörtgen örnekleri



# Dört değişkenli Karnaugh Diyagramı

Dikdörtgen örnekleri



# Örnek: $F(x,y,z,t) = \Sigma (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

zt				
xy	00	01	11	10
00	1	1	0	1
01	1	1	0	1
11	1	1	0	1
10	1	1	0	0

- F(x,y,z,t) = z'+x't'+yt'

#### Örnek:

F(x,y,z,t)=x'y'z'+y'zt'+x'yzt'+xy'z'



F(x,y,z,t) =y't'+z'y'+x'zt'

#### Toplamlar Çarpımı İfadenin Karnaugh Diyagramı İle İndirgenmesi

• Örnek:  $f(x,y,z,t) = \Pi_M(1,4,5,8,11,12,14)$ 

	zt							
X	y\	00		01		11	10	
	00	1		0		1	1	
	01	0		0 0		1	1	
	11	0		1		1	0	
	10	0		1		0	1	

•  $f(x_1,x_2,x_3,x_4) = (x+z+t')(x'+y'+t)$  (x'+z+t)(x'+y+z'+t')(x+y'+z) veya (y'+z+t)

# Beş Değişkenli Karnaugh Diyagramı

- Dört değişkenliden fazla Karnaugh diyagramlarını kullanmak kolay değildir.
- → 5 değişken → 32 k

	xyz								
tw		000	001	011	010	110	111	101	100
	00	$m_0$	$m_4$	m ₁₂	m ₈	m ₂₄	m ₂₈	m ₂₀	m ₁₆
	01	m ₁	$m_5$	m ₁₃	$m_9$	m ₂₅	m ₂₉	m ₂₁	m ₁₇
	11	$m_3$	m ₇	m ₁₅	m ₁₁	m ₂₇	m ₃₁	m ₂₃	m ₁₉
	10	$m_2$	$m_6$	m ₁₄	m ₁₀	m ₂₆	m ₃₀	m ₂₂	m ₁₈

#### Beş Değişkenli Karnaugh Diyagramı

- Dört değişkenliden fazla Karnaugh diyagramlarını kullanmak kolay değildir.
- ▶ 5 değişken → 32 k

\ tw					\tw				
yz	00	01	11	10	yz	00	01	11	10
00	$m_0$	m ₁	$m_3$	m ₂	00	m ₁₆	m ₁₇	m ₁₉	m ₁₈
01	$m_4$	m ₅	m ₇	m ₆	01	m ₂₀	m ₂₁	m ₂₃	m ₂₂
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄	11	m ₂₈	m ₂₉	m ₃₁	m ₃₀
10	m ₈	m ₉	m ₁₁	m ₁₀	10	m ₂₄	m ₂₅	m ₂₇	m ₂₆
		×	= O				x =	1	

# Çok Değişkenli Karnaugh Diyagramı

- Komşuluk:
  - $\circ x = 0$  diyagramındaki her kare x = 1 diyagramındaki aynı kareye komşudur.
  - ∘ Örneğin,  $m_4 \rightarrow m_{20}$  ve  $m_{15} \rightarrow m_{31}$  komşulukları gösterir.

# Örnek: Beş Değişkenli Karnaugh Diyagramı

F(x, y, z, t, w) =  $\Sigma$  (0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)



### Keyfi Değerli Fonksiyonların İndirgenmesi (1/2)

- F(x, y, z, t) =  $\Sigma(1, 3, 7, 11, 15)$  fonksiyon
- $k(x, y, z, t) = \Sigma(0, 2, 5) keyfi değerler$



# Keyfi Değerli Fonksiyonların İndirgenmesi (2/2)

- $F_1 = zt + x'y' = \Sigma(0, 1, 2, 3, 7, 11, 15)$
- $F_2 = zt + x't = \Sigma(1, 3, 5, 7, 11, 15)$