 ASSIGNMENT #5 - Q1
PART 1
$T = \Sigma_{i} (P \times \sqrt[3]{s_{i}})$
a] Rocky: $0.5 \cdot \left(\frac{2 \times m}{2 \times m/n}\right) = \left[0.5 h\right]$
b) Sandy: $0.2 \cdot \left(\frac{2 \text{ km}}{3 \text{ km/h}}\right) = 0.2 \cdot \frac{2}{3} \text{ h} = \left[\sim 0.13 \text{ h}\right]$
c] Smooth: 0.3. (2 km) = 0.3. 2/5 h = 0.12h
Route 1 = 0.5 + 0.13 + 0.12 = 0.75h
d] Rocky: 0.4. (1.8 km) = 0.4. 0.9n = 0.36h)
e] Sandy: $0.4 \cdot \left(\frac{1.8 \text{ km}}{3 \text{ km/n}}\right) = 0.4 \cdot 0.6 \text{ n} = 0.24 \text{ n}$
f] $Smooth: 0.2. \left(\frac{1.8 \text{ km}}{5 \text{ km/h}}\right) = 0.2.0.36 = [0.072 \text{ h}]$
Route 2 = 0.36 + 0.24 + 0.072 = 0.672h
g] Rocky: 0.1. (3.1 km) = 0.155 h h] Sandy: 0.5. (3.1 km) ~ 0.521
i] Smooth 1 0.4. (3.1 km) = 0.248 h

Route 3: 0.155 + 0.51	7 + 0.248 = 0.92 h
	ROTE 2
Route 2 4 Route 1 4 Ro	ite 3, so The Rouse should use Route 2
7	
PART 2	
a] Route 1 = 0.75 h	
Additional time = 0.	3.0.75
0.75 + (0.3.0.75)	= 0.975
2013/	
b] Route 2 = 0.672 + (0	(6-1) = [1.272]
	0.92
c] Route 3 = same =	0.42
2-7-3/ Prote 14 R	oute 2, so the Rover should use Route 3
Rolle 52 Colle 2	
PART 3	
	This is the best once Scenalin (if
	(0.62 h). This is the best case scenario (if
5 km/n	comparted by
b7 Route 3= 0.92, 80	The difference is 0.92-0.62= 0.3h
5) 5000	
	can do this within 0.3h, then it's
nelptul	

E