Package 'funStatTest'

May 23, 2024

Title Statistical Testing for Functional Data

Version 1.0.3

Description Implementation of two sample comparison procedures based on median-based statistical tests for functional data, introduced in Smida et al (2022) <doi:10.1080/10485252.2022.2064997>. Other competitive state-of-the-art approaches proposed by Chakraborty and Chaudhuri (2015) <doi:10.1093/biomet/asu072>, Horvath et al (2013) <doi:10.1111/j.1467-9868.2012.01032.x> or Cuevas et al (2004) <doi:10.1016/j.csda.2003.10.021> are also included in the package, as well as procedures to run test result comparisons and power analysis using simulations.

```
License AGPL (>= 3)
```

```
URL https://plmlab.math.cnrs.fr/gdurif/funStatTest/,https:
    //gdurif.pages.math.cnrs.fr/funStatTest/
```

Imports checkmate, distr, dplyr, ggplot2, magrittr, Matrix, pbapply, stats, stringr, tibble, tidyr, tidyselect, utils

Suggests knitr, rmarkdown, testthat, vdiffr

VignetteBuilder knitr

Config/fusen/version 0.6.0

Date/Publication 2024-05-23 09:00:03 UTC

Encoding UTF-8

RoxygenNote 7.3.1

NeedsCompilation no

Author Zaineb Smida [aut] (https://orcid.org/0000-0003-2567-1401>), Lionel Cucala [aut]

Maintainer Ghislain Durif <gd.dev@libertymail.net>

Repository CRAN

comp_stat

R topics documented:

comp_stat																						
permut_pva																						
plot_simu																						4
power_exp																						5
simul_data																						7
simul_traj																						8
stat_cff .																						9
stat_hkr .																						10
stat_med .																						11
stat_mo .																						12
stat_wmw																						13
																						15

comp_stat

Compute multiple statistics

Description

Index

Computation of the different statistics defined in the package. See Smida et al (2022) for more details.

Usage

```
comp_stat(MatX, MatY, stat = c("mo", "med"))
```

Arguments

MatX	numeric matrix of dimension n_point x n containing n trajectories (in columns) of size n_point (in rows).
MatY	numeric matrix of dimension $n_point \times m$ containing m trajectories (in columns) of size n_point (in rows).
stat	character string or vector of character string, name of the statistics for which the p-values will be computed, among "mo", "med", "wmw", "hkr", "cff".

Details

For HKR statistics, only the values of the two statistics, namely HKR1 and HKR2 and not the eigen values (see stat_hkr() for more details).

Value

list of named numeric value corresponding to the statistic values listed in stat input.

Author(s)

Zaineb Smida, Ghislain DURIF, Lionel Cucala

permut_pval 3

References

Zaineb Smida, Lionel Cucala, Ali Gannoun & Ghislain Durif (2022) A median test for functional data, Journal of Nonparametric Statistics, 34:2, 520-553, doi:10.1080/10485252.2022.2064997, hal-03658578

See Also

```
stat_mo(), stat_med(), stat_wmw(), stat_hkr(), stat_cff()
```

Examples

```
simu_data <- simul_data(
    n_point = 100, n_obs1 = 50, n_obs2 = 75, c_val = 10,
    delta_shape = "constant", distrib = "normal"
)

MatX <- simu_data$mat_sample1
MatY <- simu_data$mat_sample2

res <- comp_stat(MatX, MatY, stat = c("mo", "med", "wmw", "hkr", "cff"))
res</pre>
```

permut_pval

Permutation-based computation of p-values

Description

Computation of the p-values associated to any statistics described in the package with the permutation methods. See Smida et al (2022) for more details.

Usage

```
permut_pval(MatX, MatY, n_perm = 100, stat = c("mo", "med"), verbose = FALSE)
```

Arguments

MatX	numeric matrix of dimension $n_point \times n$ containing n trajectories (in columns) of size n_point (in rows).
MatY	numeric matrix of dimension $n_point \times m$ containing m trajectories (in columns) of size n_point (in rows).
n_perm	integer, number of permutation to compute the p-values.
stat	character string or vector of character string, name of the statistics for which the p-values will be computed, among "mo", "med", "wmw", "hkr", "cff".
verbose	boolean, if TRUE, enable verbosity.

Value

list of named numeric value corresponding to the p-values for each statistic listed in the stat input.

plot_simu

Author(s)

Zaineb Smida, Ghislain DURIF, Lionel Cucala

References

Zaineb Smida, Lionel Cucala, Ali Gannoun & Ghislain Durif (2022) A median test for functional data, Journal of Nonparametric Statistics, 34:2, 520-553, doi:10.1080/10485252.2022.2064997, hal-03658578

See Also

```
stat_mo(), stat_med(), stat_wmw(), stat_hkr(), stat_cff(), comp_stat()
```

Examples

```
# simulate small data for the example
simu_data <- simul_data(
    n_point = 20, n_obs1 = 4, n_obs2 = 5, c_val = 10,
    delta_shape = "constant", distrib = "normal"
)

MatX <- simu_data$mat_sample1
MatY <- simu_data$mat_sample2
res <- permut_pval(
    MatX, MatY, n_perm = 100, stat = c("mo", "med", "wmw", "hkr", "cff"),
    verbose = TRUE)
res</pre>
```

plot_simu

Graphical representation of simulated data

Description

Graphical representation of simulated data

Usage

```
plot_simu(simu)
```

Arguments

simu

list, output of simul_data()

Value

the ggplot2 graph of simulated tajectories.

power_exp 5

Author(s)

Zaineb Smida, Ghislain DURIF, Lionel Cucala

See Also

```
simul_data()
```

Examples

```
# constant delta
simu_data <- simul_data(</pre>
    n_point = 100, n_obs1 = 50, n_obs2 = 75, c_val = 5,
    delta_shape = "constant", distrib = "normal"
)
plot_simu(simu_data)
# linear delta
simu_data <- simul_data(</pre>
    n_point = 100, n_obs1 = 50, n_obs2 = 75, c_val = 5,
    delta_shape = "linear", distrib = "normal"
)
plot_simu(simu_data)
# quadratic delta
simu_data <- simul_data(</pre>
    n_point = 100, n_obs1 = 50, n_obs2 = 75, c_val = 5,
    delta_shape = "quadratic", distrib = "normal"
plot_simu(simu_data)
```

power_exp

Simulation-based experiment for power analysis

Description

Computation of the statistical power (i.e. risk to reject the null hypothesis when it is false) associated to any statistics described in the package based on simulation permutation-based p-values computations. See Smida et al (2022) for more details.

```
power_exp(
  n_simu = 100,
  alpha = 0.05,
  n_perm = 100,
  stat = c("mo", "med"),
  n_point = 100,
  n_obs1 = 50,
  n_obs2 = 50,
  c_val = 1,
```

6 power_exp

```
delta_shape = "constant",
  distrib = "normal",
  max_iter = 10000,
  verbose = FALSE
)
```

Arguments

n_simu	integer value, number of simulations to compute the statistical power.
alpha	numerical value, between 0 and 1, type I risk level to reject the null hypothesis in the simulation. Default value is 5%.
n_perm	integer, number of permutation to compute the p-values.
stat	character string or vector of character string, name of the statistics for which the p-values will be computed, among "mo", "med", "wmw", "hkr", "cff".
n_point	integer value, number of points in the trajectory.
n_obs1	integer value, number of trajectories in the first sample.
n_obs2	integer value, number of trajectories in the second sample.
c_val	numeric value, level of divergence between the two samples.
delta_shape	character string, shape of the divergence between the two samples, among "constant", "linear", "quadratic".
distrib	character string, type of probability distribution used to simulate the data among "normal", "cauchy", "dexp", "student".
max_iter	integer, maximum number of iteration for the iterative simulation process.
verbose	boolean, if TRUE, enable verbosity.

Details

The c_val input argument should be strictly positive so that the null hypothesis is not verified when simulating the data (i.e. so that the two sample are not generated from the same probability distribution).

Value

a list with the following elements:

- power_res: a list of named numeric value corresponding to the power values for each statistic listed in stat input.
- pval_res: a list of named numeric values corresponding to the p-values for each simulation and each statistic listed in the stat input.
- simu_config: information about input parameters used for simulation, including n_simu, c_val, distrib, delta_shape, n_point, n_obs1, n_obs2.

Author(s)

Zaineb Smida, Ghislain DURIF, Lionel Cucala

simul_data 7

References

Zaineb Smida, Lionel Cucala, Ali Gannoun & Ghislain Durif (2022) A median test for functional data, Journal of Nonparametric Statistics, 34:2, 520-553, doi:10.1080/10485252.2022.2064997, hal-03658578

See Also

```
stat_mo(), stat_med(), stat_wmw(), stat_hkr(), stat_cff(), comp_stat()
```

Examples

```
# simulate a few small data for the example
res <- power_exp(
    n_simu = 20, alpha = 0.05, n_perm = 100,
    stat = c("mo", "med", "wmw", "hkr", "cff"),
    n_point = 25, n_obs1 = 4, n_obs2 = 5, c_val = 10, delta_shape = "constant",
    distrib = "normal", max_iter = 10000, verbose = FALSE
)
res$power_res</pre>
```

simul_data

Simulation of trajectories from two samples diverging by a delta function

Description

Simulate n_obs1 trajectories of length n_point in the first sample and n_obs2 trajectories of length n_point in the second sample.

Usage

```
simul_data(
    n_point,
    n_obs1,
    n_obs2,
    c_val = 0,
    delta_shape = "constant",
    distrib = "normal",
    max_iter = 10000
)
```

Arguments

```
    n_point integer value, number of points in the trajectory.
    n_obs1 integer value, number of trajectories in the first sample.
    n_obs2 integer value, number of trajectories in the second sample.
    c_val numeric value, level of divergence between the two samples.
```

8 simul_traj

delta_shape	character string, shape of the divergence between the two samples, among "constant", "linear", "quadratic".
distrib	character string, type of probability distribution used to simulate the data among "normal", "cauchy", "dexp", "student".
max_iter	integer, maximum number of iteration for the iterative simulation process.

Value

A list with the following elements

- mat_sample1: numeric matrix of dimension n_point x n_obs1 containing n_obs1 trajectories (in columns) of size n_point (in rows) corresponding to sample 1.
- mat_sample2: numeric matrix of dimension n_point x n_obs2 containing n_obs2 trajectories (in columns) of size n_point (in rows) corresponding to sample 2.

Author(s)

Zaineb Smida, Ghislain DURIF, Lionel Cucala

References

Zaineb Smida, Lionel Cucala, Ali Gannoun & Ghislain Durif (2022) A median test for functional data, Journal of Nonparametric Statistics, 34:2, 520-553, doi:10.1080/10485252.2022.2064997, hal-03658578

See Also

```
plot_simu(), simul_traj()
```

Examples

```
simu_data <- simul_data(
    n_point = 100, n_obs1 = 50, n_obs2 = 75, c_val = 10,
    delta_shape = "constant", distrib = "normal"
)
str(simu_data)</pre>
```

simul_traj

Single trajectory simulation

Description

Simulate a trajectory of length n_point using a random generator associated to different probability distribution.

```
simul_traj(n_point, distrib = "normal", max_iter = 10000)
```

stat_cff 9

Arguments

n_point integer value, number of points in the trajectory.

distrib character string, type of probability distribution used to simulate the data among

"normal", "cauchy", "dexp", "student".

max_iter integer, maximum number of iteration for the iterative simulation process.

Value

Vector of size n_point with the trajectory values.

Author(s)

Zaineb Smida, Ghislain DURIF, Lionel Cucala

References

Zaineb Smida, Lionel Cucala, Ali Gannoun & Ghislain Durif (2022) A median test for functional data, Journal of Nonparametric Statistics, 34:2, 520-553, doi:10.1080/10485252.2022.2064997, hal-03658578

See Also

```
simul_data()
```

Examples

```
simu_vec <- simul_traj(100)
plot(simu_vec, xlab = "point", ylab = "value")</pre>
```

stat cff

Cuevas-Febrero-Fraiman statistic

Description

The Cuevas-Febrero-Fraiman statistics defined in Cuevas et al (2004) (and noted CFF in Smida et al 2022) is computed to compare two sets of functional trajectories.

Usage

```
stat_cff(MatX, MatY)
```

Arguments

MatX numeric matrix of dimension n_point x n containing n trajectories (in columns)

of size n_point (in rows).

MatY numeric matrix of dimension n_point x m containing m trajectories (in columns)

of size n_point (in rows).

10 stat_hkr

Value

numeric value corresponding to the WMW statistic value

Author(s)

Zaineb Smida, Ghislain DURIF, Lionel Cucala

References

Cuevas, A, Febrero, M, and Fraiman, R (2004) An anova test for functional data. Computational Statistics & Data Analysis, 47(1): 111–122. doi:10.1016/j.csda.2003.10.021

Zaineb Smida, Lionel Cucala, Ali Gannoun & Ghislain Durif (2022) A median test for functional data, Journal of Nonparametric Statistics, 34:2, 520-553, doi:10.1080/10485252.2022.2064997, hal-03658578

See Also

```
comp_stat(), permut_pval()
```

Examples

```
simu_data <- simul_data(
    n_point = 100, n_obs1 = 50, n_obs2 = 75, c_val = 10,
    delta_shape = "constant", distrib = "normal"
)

MatX <- simu_data$mat_sample1
MatY <- simu_data$mat_sample2
stat_cff(MatX, MatY)</pre>
```

stat_hkr

Horváth-Kokoszka-Reeder statistics

Description

The Horváth-Kokoszka-Reeder statistics defined in Chakraborty & Chaudhuri (2015) (and noted HKR1 and HKR2 in Smida et al 2022) are computed to compare two sets of functional trajectories.

Usage

```
stat_hkr(MatX, MatY)
```

Arguments

matx numeric matrix of dimension n_point x n containing n trajectories (in columns)

of size n_point (in rows).

MatY numeric matrix of dimension n_point x m containing m trajectories (in columns)

of size n_point (in rows).

stat_med 11

Value

A list with the following elements

- T1: numeric value corresponding to the HKR1 statistic value
- T2: numeric value corresponding to the HKR2 statistic value
- eigenval: numeric vector of eigen values from the empirical pooled covariance matrix of MatX and MatY (see Smida et al, 2022, for more details)

Author(s)

Zaineb Smida, Ghislain DURIF, Lionel Cucala

References

Horváth, L., Kokoszka, P., & Reeder, R. (2013). Estimation of the mean of functional time series and a two-sample problem. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 75(1), 103–122. doi:10.1111/j.14679868.2012.01032.x

Zaineb Smida, Lionel Cucala, Ali Gannoun & Ghislain Durif (2022) A median test for functional data, Journal of Nonparametric Statistics, 34:2, 520-553, doi:10.1080/10485252.2022.2064997, hal-03658578

See Also

```
comp_stat(), permut_pval()
```

Examples

```
simu_data <- simul_data(
    n_point = 100, n_obs1 = 50, n_obs2 = 75, c_val = 10,
    delta_shape = "constant", distrib = "normal"
)

MatX <- simu_data$mat_sample1
MatY <- simu_data$mat_sample2
stat_hkr(MatX, MatY)</pre>
```

stat_med

MED median statistic

Description

The MED median statistics defined in Smida et al (2022) is computed to compare two sets of functional trajectories.

```
stat_med(MatX, MatY)
```

12 stat_mo

Arguments

MatX numeric matrix of dimension n_point x n containing n trajectories (in columns)

of size n_point (in rows).

MatY numeric matrix of dimension n_point x m containing m trajectories (in columns)

of size n_point (in rows).

Value

numeric value corresponding to the MED median statistic value

Author(s)

Zaineb Smida, Ghislain DURIF, Lionel Cucala

References

Zaineb Smida, Lionel Cucala, Ali Gannoun & Ghislain Durif (2022) A median test for functional data, Journal of Nonparametric Statistics, 34:2, 520-553, doi:10.1080/10485252.2022.2064997, hal-03658578

See Also

```
comp_stat(), permut_pval()
```

Examples

```
simu_data <- simul_data(
    n_point = 100, n_obs1 = 50, n_obs2 = 75, c_val = 10,
    delta_shape = "constant", distrib = "normal"
)

MatX <- simu_data$mat_sample1
MatY <- simu_data$mat_sample2
stat_med(MatX, MatY)</pre>
```

stat_mo

MO median statistic

Description

The MO median statistics defined in Smida et al (2022) is computed to compare two sets of functional trajectories.

```
stat_mo(MatX, MatY)
```

stat_wmw 13

Arguments

MatX numeric matrix of dimension n_point x n containing n trajectories (in columns)

of size n_point (in rows).

MatY numeric matrix of dimension n_point x m containing m trajectories (in columns)

of size n_point (in rows).

Value

numeric value corresponding to the MO median statistic value

Author(s)

Zaineb Smida, Ghislain DURIF, Lionel Cucala

References

Zaineb Smida, Lionel Cucala, Ali Gannoun & Ghislain Durif (2022) A median test for functional data, Journal of Nonparametric Statistics, 34:2, 520-553, doi:10.1080/10485252.2022.2064997, hal-03658578

See Also

```
comp_stat(), permut_pval()
```

Examples

```
simu_data <- simul_data(
    n_point = 100, n_obs1 = 50, n_obs2 = 75, c_val = 10,
    delta_shape = "constant", distrib = "normal"
)

MatX <- simu_data$mat_sample1
MatY <- simu_data$mat_sample2
stat_mo(MatX, MatY)</pre>
```

stat_wmw

Wilcoxon-Mann-Whitney (WMW) statistic

Description

The Wilcoxon-Mann-Whitney statistic defined in Chakraborty & Chaudhuri (2015) (and noted WMW in Smida et al 2022) is computed to compare two sets of functional trajectories.

```
stat_wmw(MatX, MatY)
```

14 stat_wmw

Arguments

MatX numeric matrix of dimension n_point x n containing n trajectories (in columns)

of size n_point (in rows).

MatY numeric matrix of dimension n_point x m containing m trajectories (in columns)

of size n_point (in rows).

Value

numeric value corresponding to the WMW statistic value

Author(s)

Zaineb Smida, Ghislain DURIF, Lionel Cucala

References

Anirvan Chakraborty, Probal Chaudhuri, A Wilcoxon–Mann–Whitney-type test for infinite-dimensional data, Biometrika, Volume 102, Issue 1, March 2015, Pages 239–246, doi:10.1093/biomet/asu072

Zaineb Smida, Lionel Cucala, Ali Gannoun & Ghislain Durif (2022) A median test for functional data, Journal of Nonparametric Statistics, 34:2, 520-553, doi:10.1080/10485252.2022.2064997, hal-03658578

See Also

```
comp_stat(), permut_pval()
```

Examples

```
simu_data <- simul_data(
    n_point = 100, n_obs1 = 50, n_obs2 = 75, c_val = 10,
    delta_shape = "constant", distrib = "normal"
)

MatX <- simu_data$mat_sample1
MatY <- simu_data$mat_sample2
stat_wmw(MatX, MatY)</pre>
```

Index

```
comp\_stat, 2
comp\_stat(), 4, 7, 10-14
permut_pval, 3
permut_pval(), 10-14
plot\_simu, 4
plot_simu(), 8
power_exp, 5
simul_data, 7
simul_data(), 4, 5, 9
simul\_traj, 8
simul_traj(), 8
stat_cff, 9
stat_cff(), 3, 4, 7
stat_hkr, 10
stat_hkr(), 2-4, 7
\mathsf{stat}\_\mathsf{med},\, 11
stat_med(), 3, 4, 7
stat_mo, 12
stat_mo(), 3, 4, 7
stat\_wmw, 13
stat_wmw(), 3, 4, 7
```