Corrigé exercice 105:

Partie A

La fonction f est une fonction définie et dérivable sur $[0; \infty[$ comme produit de fonctions définies et dérivables sur cet intervalle. Et, pour tout $x \in [0; \infty[$, $f'(x) = 1 \times e^{-x} + (-e^{-x}) \times x = e^{-x}(1-x)$. Or, pour tout réel $x \ge 0$, on a $e^{-x} > 0$ donc f'(x) est du même signe que 1-x.

Or, $1-x \ge 0 \Leftrightarrow x \le 1$. Donc $f'(x) \ge 0$ sur [0;1] et $f'(x) \le 0$ sur $[1;+\infty[$.

x	0		1		$+\infty$
Signe de $f'(x)$		+	ф	_	
Variations de f	0		e ⁻¹ \		\ 0

Partie B

1. On obtient le graphique suivant.

2. Soit $n \in \mathbb{N}$. On note P_n la proposition : « $1 \ge u_n > 0$ ». On souhaite démontrer que P_n est vraie pour tout $n \in \mathbb{N}$.

Initialisation : Pour n = 0.

 $u_0 = 1$ donc on a bien $1 \ge u_0 > 0$. On en déduit que P_0 est vraie.

 \mathbf{HR} : On considère un entier naturel k quelconque tel que P_k est vraie (hypothèse de récurrence), autrement dit tel que $1 \ge u_k > 0$.

Hérédité : On souhaite démontrer que P_{k+1} est vraie, autrement dit que $1 \ge u_{k+1} > 0$.

Par hypothèse de récurrence, on a $1 \ge u_k > 0$. Or, comme la fonction f est croissante sur [0; 1], on en déduit que $f(1) \ge f(u_k) > f(0)$ c'est-à-dire $e^{-1} \ge u_{k+1} > 0$.

Donc $1 \ge u_{k+1} > 0$.

Conclusion: Pour tout $n \in \mathbb{N}$, P_n est vraie donc $1 \ge u_n > 0$.

3. Montrer que (u_n) est décroissante revient à montrer que pour tout entier naturel $n, u_{n+1} \leq u_n$.

Nous pouvons le montrer par récurrence

Initialisation: $0 < u_1 = e^{-1} < u_0 = 1$

HR: On suppose qu'il existe k > 0 tel que $0 < u_{k+1} < u_k < 1$.

Hérédité: Montrons que $0 < u_{k+2} < u_{k+1} < 1$. On a montré dans la partie A que f est croissante sur [0;1]. $0 < u_{k+1} < u_k < 1 \Leftrightarrow f(0) < f(u_{k+1}) < f(u_k) < f(1) \Leftrightarrow 0 < u_{k+2} < u_{k+1} < e^{-1} < 1$. On a montré l'hérédité.

Conclusion : u_n est décroissante.

- 4. (a) La suite (u_n) est décroissante et minorée par 0, donc elle converge.
 - (b) On a $xe^{-x} = x \Leftrightarrow xe^{-x} x = 0 \Leftrightarrow x(e^{-x} 1) = 0$ $\Leftrightarrow x = 0$ ou $e^{-x} - 1 = 0 \Leftrightarrow x = 0$ ou $-x = 0 \Leftrightarrow x = 0$.

Ainsi, la limite de la suite (u_n) vaut 0.

Partie C

 $u \leftarrow 1$

 $S \leftarrow u$

Pour k variant de 1 à 100 :

$$u \leftarrow u \times e^{-u}$$

$$S \leftarrow S + u$$

Fin Pour