

P.D. 1998
P. A. 813

(1)

4714

EFFECT OF NUCLEOTIDES ON RAT LIVER & SKELETAL MUSCLE MITOCHONDRIA: NON-PHOSPHORYLATING RESPIRATION & MEMBRANE POTENTIAL. M. Jekabsons & B.A. Horwitz. *Neurobiol. Physiol. & Behavior*, Univ. Calif. Davis CA 95616.

Non-phosphorylating respiration ($\dot{V}O_2$) is primarily controlled by proton (H^+) leak across the inner mitochondrial membrane (IMM). Recently discovered genes whose predicted amino acid sequences place them in the same family as uncoupling protein-1 (UCP-1) may be the physical basis for this leak. To determine if the leak in isolated liver (L) and skeletal muscle (SM) mitochondria is regulated similarly to UCP-1, we measured effects of nucleotides on non-phosphorylating $\dot{V}O_2$ with a Clark electrode and IMM voltage (IMMV) with the voltage sensitive dye JC-1 (0.47 μ M).

Mitochondria were incubated at 37°C in a KCl based reaction buffer (pH 6.9) containing 3 μ g/mL oligomycin, 5 μ M rotenone, and 5 mM succinate.

Nucleotide effects on $\dot{V}O_2$ and IMMV are summarized in the table; percents are peak changes from the succinate induced value.

	GTP	ATP	AMP	CTP	CMP
VO ₂	-20%	-97%* (11.0)	-13%	-90% (14.6)	+75%* (4.43)
L IMMV	ND	-88%* (12.5)	-27%*	84% (14.1)	-17%*
SM VO ₂	-23%*	-99%* (11.2)	-34%*	79%* (16.3)	+15%* (4.16)
SM IMMV	ND	-96%* (11.1)	-36%*	-86%* (15.6)	-20%*

*p<0.05 for effect of the nucleotide (0.8-21mM) by one way ANOVA. IC₅₀ (ATP, CTP) and EC₅₀ (CMP) values in mM in (); ND=not determined.

We conclude that $\dot{V}O_2$ inhibition by ATP, CTP, and AMP reflects respiratory chain rather than leak inhibition (i.e., IMMV doesn't increase). In contrast, CMP stimulation of $\dot{V}O_2$ and inhibition of IMMV suggest possible CMP regulation of H^+ leak in L and SM mitochondria. Regulation of this leak thus differs from that mediated by UCP-1. [NIH DK-32907, T32-HL-07682]