확률변수와 확률분포

4. 이산형 확률분포

A. 베르누이 시행 (Bernoulli Trial)

- 1) 매 시행은 2가지의 가능한 결과만을 나타냄. (편의상 성공과 실패로 구분)
- 2) 성공의 확률을 p라고 하면 실패의 확률은 1-p.
- 3) 매 시행 결과는 다른 시행 결과와 독립적으로 나타남.

B. 이항분포

1) 정의 : 성공의 확률이 p인 베르누이시행을 n번 반복적으로 시행했을 때 성공의 횟수를 확률변수 X라 하면, 확률변수 X는 시행횟수 n과 성공의 확률 p를 모수로 갖는 이항 분포(binomial distribution)를 따른다.

$$X \sim B(n,p)$$

2) 이항분포의 확률밀도함수

$$P(X=x)=f(x)={n\choose x}p^x(1-p)^{n-x},\quad x=0,1,\cdots,n$$
 단, ${n\choose x}=\frac{n!}{x!(n-x)!}$

3) 이항분포의 기대값과 분산

$$\mu = E(X) = np$$

$$\sigma^2 = Var(X) = np(1-p) = npq$$
 단, $q = (1-p)$

4) 이항분포의 예

동전을 4번 던져서 앞면이 나타나는 횟수를 확률변수 X로 한다.

$$X \sim B\left(4, \frac{1}{2}\right)$$

확률밀도함수

$$P(X=x) = {4 \choose x} (1/2)^x (1/2)^{4-x}, \quad x = 0,1,2,3,4$$

확률분포

$$P(X=0) = {4 \choose 0} (1/2)^0 (1/2)^4 = \frac{4!}{0!4!} (1/2)^0 (1/2)^4 = 1/16$$

$$P(X=1) = {4 \choose 1} (1/2)^1 (1/2)^3 = \frac{4!}{1!3!} (1/2)^1 (1/2)^3 = 4/16$$

$$P(X=2) = {4 \choose 2} (1/2)^2 (1/2)^2 = \frac{4!}{2!2!} (1/2)^2 (1/2)^2 = 6/16$$

$$P(X=3) = {4 \choose 3} (1/2)^3 (1/2)^1 = \frac{4!}{3!1!} (1/2)^3 (1/2)^1 = 4/16$$

$$P(X=4) = {4 \choose 4} (1/2)^4 (1/2)^0 = \frac{4!}{4!0!} (1/2)^4 (1/2)^0 = 1/16$$

확률분포표

동전을 4번 던졌을 때 확률변수와 확률분포

확률변수(X)	0	1	2	3	4
확률: $P(X)$	1/16	4/16	6/16	4/16	1/16

확률분포 그래프

동전을 4번 던졌을 때 확률분포 그래프

확률변수 X의 평균 μ 와 분산 σ^2

$$\mu = E(X) = np = 4 \times \frac{1}{2} = 2$$

$$\sigma^2 = Var(X) = np(1-p) = 4 \times \frac{1}{2} \times \frac{1}{2} = 1$$

C. 포아송 분포 (Poisson Distribution)

- 1) 이항분포 B(n,p) 에서 시행횟수 n이 매우 크고 성공의 확률 p가 0에 가까운 경우에 적용되는 확률분포. 희귀사건에 대한 확률 분포.
- 2) 포아송 분포의 예
 - 하루동안 경부고속도로 상에서의 사고 건 수 (차량통과대수 n은 매우 크고 사고확률은 매우 작은 경우)
 - 어느 집에서 한 시간 동안에 걸려오는 전화 통화 수,
 - 일주일 동안에 어느 보험회사에서 접수되는 사망 보험금 청구 건 수
 - 하루 동안에 정전이 되는 횟수
 - 백과사전 한 페이지에 나타나 오자의 수
 - 3) 보험, 희귀 사건(질병) 등에 실제로 많이 응용되는 확률분포임.
- 4) 정의

$$X \sim P(\mu)$$

$$P(X=x) = f(x) = \frac{e^{-\mu}\mu^x}{x!}, \quad x = 0, 1, 2, \cdots$$
 단, $\mu > 0$

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n = 2.718 \cdots$$

5) 포아송 분포의 기대값과 분산

$$\mu = E(X) = \mu$$

$$\sigma^2 = Var(X) = \mu$$
 단, $\mu > 0$

6) 포아송 분포의 예

어떤 생명보험회사에는 15만 명의 보험가입자. 일정기간동안에 보험금을 지급 받을 확률이 0.001%. 사고로 보험금을 지급 받을 건 수 : 확률변수 X

$$X \sim B(150000, 0.00001)$$

이항분포로 계산하기 매우 어려운 큰 수.

평균과 분산

$$\mu = E(X) = np = 1.5$$

$$\sigma^2 = Var(X) = npq = 1.5$$

확률분포

$$P(X=0) = \frac{1.5^{0}e^{-1.5}}{0!} = 0.2231$$

$$P(X=1) = \frac{1.5^{1}e^{-1.5}}{1!} = 0.3347$$

$$P(X=2) = \frac{1.5^{2}e^{-1.5}}{2!} = 0.2510$$

$$P(X=3) = \frac{1.5^{3}e^{-1.5}}{3!} = 0.1255$$

$$P(X=4) = \frac{1.5^{4}e^{-1.5}}{4!} = 0.0471$$

확률분포 그래프

4. 연속형 확률분포

A. 정규분포

- 1) 통계학에서 가장 중요한 분포
- 2) 독일의 수학자 K. F. Gauss에 의하여 구체화.
- 3) 정의 :

$$X \sim N(\mu, \sigma^2)$$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

4) 정규분포의 특성

- 정규분포는 평균 μ 를 중심으로 좌우대칭이면서 종 모양
- 정규분포에서는 평균=중위수=최빈수인 관계가 성립
- 정규분포곡선에는 표준편차 표현 가능
- 확률분포에 상관없이 어떤 확률변수라도 표본평균의 분포는 표 본수 n이 커지면 근사적으로 정규분포
- 정규분포를 따르는 확률변수들의 변형으로부터 χ^2 , t, F 분포 등 이 파생됨
- lacktriangle 이항분포에서 표본 수 n이 커지면 정규분포와 유사

5) 정규분포의 확률밀도함수

정규분포의 확률밀도 곡선

 μ 와 σ 의 변화에 따른 정규분포의 형태

6) 정규분포의 성질

확률변수 $X \sim N(\mu, \sigma^2)$ 일 때 상수 a, b에 대하여, $aX + b \sim N(a\mu + b \ , \ a^2\sigma^2)$

$$X_1\sim N(\mu_1,\sigma_1^2)$$
, $X_2\sim N(\mu_2,\sigma_2^2)$ 이고 X_1 과 X_2 가 서로 독립이면,
$$X_1+X_2\sim N(\mu_1+\mu_2\ ,\ \sigma_1^2+\sigma_2^2)$$

B. 표준정규분포

1) 정의

$$X \sim N(\mu, \sigma^2) \implies \frac{X - \mu}{\sigma} = Z \sim N(0, 1)$$

2) 확률계산 방법

초등학교 학생의 몸무게를 X라는 확률변수로 나타내어 N(42,25)를 따른다고 하자. 즉 X는 평균 μ =42, 분산 σ^2 =25인 정규분포를 따른다. 이러한 분포로부터 어느 한 학생을 무작위로 뽑았을 때, 학생의 몸무게가 40kg에서 54kg사이에 올 확률은 ?

$$\begin{split} &P(40 \le X \le 54) \\ &= P \bigg(\frac{40 - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{54 - \mu}{\sigma} \bigg) \\ &= P \bigg(\frac{40 - 42}{5} < Z < \frac{54 - 42}{5} \bigg) \\ &= P(-0.4 < Z < 2.4) \end{split}$$

표준정규분포표 이용

C. 표본 평균의 분포

1) 중심극한정리 (Central Limit Theorem)

$$E(\overline{X}) = \frac{1}{n} E(X_1 + X_2 + \dots + X_n)$$

$$= \frac{1}{n} [E(X_1) + E(X_2) + \dots + E(X_n)]$$

$$= \frac{1}{n} n\mu = \mu$$

$$Var(\overline{X}) = \frac{1}{n^2} Var(X_1 + X_2 + \dots + X_n)$$

$$= \frac{1}{n^2} [Var(X_1) + Var(X_2) + \dots + Var(X_n)]$$

$$= \frac{1}{n^2} n\sigma^2 = \frac{\sigma^2}{n}$$

중심극한정리:

평균이 μ 이고 분산이 σ^2 인 모집단으로부터 추출한 크기가 n인 확률표본의 표본평균 \overline{X} 는 n이 증가할수록 모집단의 분포유형 에 상관없이 근사적으로 정규분포 $N\left(\mu\,,\,\sigma^2/n\right)$ 을 따른다.

- 분포가 연속형이든 이산형이든 관계없이,
- 모양이 뾰족하든 치우치든 관계 없이,
- 표본의 크기가 클수록
- 표본평균 \overline{X} 의 분포가 근사적으로 정규분포

D. 이항분포의 정규 근사

1) 이항분포에서 n이 커지면?

2) 연속성 수정 (Continuity Correction)

X가 이항분포 B(n,p)를 따를 경우, P(X=k)(단, k=정수)를 P(k-0.5 < X < k+0.5)으로 수정

B(10,0.5)과 N(5,2.5)의 분 포

3) 연습문제 (이항분포의 정규근사)

어느 양계장에서는 병아리를 부화시키는데 5% 정도의 실패율을 가지고 있다. 새로 500개의 달걀을 부화시키는데 실패율이 3% 이하일 가능성은 얼마인가?

E. t-분포

- 영국의 양조 전문가 W. S Gosset
- Student t-분포
- $T \sim t(k)$
- t-분포표 읽는 방법 (자유도 : n-1)
- n→∞이면 정규분포

F. F-분포

- 두 정규 모집단의 분산을 비교하는 경우에 많이 사용됨.

- ① F-분포의 평균은 $\dfrac{k_2}{k_2-2}$ 이다. 단, $k_2>2$
- ② 자유도 k_2 가 커질수록 F-분포의 평균은 작아진다.
- $(3) F(k_1, k_2; 1 \alpha) = \frac{1}{F(k_2, k_1; \alpha)}$

F-분포의 형태

G. χ^2 -분포

- ① 자유도 k가 커질수록 봉우리가 오른쪽으로 이동한다.
- ② 카이제곱분포의 모양은 비대칭이다.
- ③ 오른쪽으로 긴 꼬리를 갖는다.
- ④ 항상 양의 값을 갖는다.
- ⑤ 카이제곱분포의 평균과 분산은 E(V) = k , Var(V) = 2k이다.

카이제곱분포의 형태

P[2 < z]

STANDARD STATISTICAL TABLES

1. Areas under the Normal Distribution

	-00				//////								
						11	////	///	/				
					77	///	///	1///	4	_			
								0	2				
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09			
0.0	0.5000	0.5040	0.5080	0.5120	0.5159	0.5199	0.5239	0.5279	0.5319	0.5359			
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753			
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141			
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517			
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879			
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224			
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549			
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7854			
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133			
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389			
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621			
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8804	0.8830			
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015			
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177			
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319			
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441			
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545			
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633			
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706			
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767			
2.0	0.9773	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817			
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857			
2.2	0.9861	0.9865	0.9868	0.9871	0.9874	0.9878	0.9881	0.9884	0.9887	0.9890			
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916			
2.4	0.9918	0.9920	0.9922	0.9924	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936			
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952			
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964			
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974			
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9980	0.9980	0.9981			
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986			
2	3.00	3.10	3.20	3.30	3.40	3.50	3.60	3.70	3.80	3.90			
P	0.9986	0.9990	0.9993	0.9995	0.9997	0.9998	0.9998	0.9999	0.9999	1.0000			

표준정규분포표

7	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0030	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1935	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3451	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.41,77
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4685	0.4633	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4858	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4838	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4932	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4937	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

t-Distribution Table

The shaded area is equal to α for $t=t_{\alpha}$.

df	t.100	t.050	t.025	t.010	t.005
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2.045	2.462	2.756
30	1.310	1.697	2.042	2.457	2.750
32	1.309	1.694	2.037	2.449	2.738
34	1.307	1.691	2.032	2.441	2.728
36	1.306	1.688	2.028	2.434	2.719
38	1.304	1.686	2.024	2.429	2.712
∞	1.282	1.645	1.960	2.326	2.576

	P										
DF	0.995	0.975	0.20	0.10	0.05	0.025	0.02	0.01	0.005	0.002	0.001
1	0.0000393	0.000982	1.642	2.706	3.841	5.024	5.412	6.635	7.879	9.550	10.828
2	0.0100	0.0506	3.219	4.605	5.991	7.378	7.824	9.210	10.597	12.429	13.816
3	0.0717	0.216	4.642	6.251	7.815	9.348	9.837	11.345	12.838	14.796	16.266
4	0.207	0.484	5.989	7.779	9.488	11.143	11.668	13.277	14.860	16.924	18.467
5	0.412	0.831	7.289	9.236	11.070	12.833	13.388	15.086	16.750	18.907	20.515
6	0.676	1.237	8.558	10.645	12.592	14.449	15.033	16.812	18.548	20.791	22.458
7	0.989	1.690	9.803	12.017	14.067	16.013	16.622	18.475	20.278	22.601	24.322
8	1.344	2.180	11.030	13.362	15.507	17.535	18.168	20.090	21.955	24.352	26.124
9	1.735	2.700	12.242	14.684	16.919	19.023	19.679	21.666	23.589	26.056	27.877
10	2.156	3.247	13,442	15.987	18.307	20.483	21.161	23.209	25.188	27.722	29.588
11	2.603	3.816	14.631	17.275	19.675	21.920	22.618	24.725	26.757	29.354	31.264
12	3.074	4.404	15.812	18.549	21.026	23.337	24.054	26.217	28.300	30.957	32.909
13	3.565	5.009	16.985	19.812	22.362	24.736	25.472	27.688	29.819	32.535	34.528
14	4.075	5.629	18.151	21.064	23.685	26.119	26.873	29.141	31.319	34.091	36.123
15	4.601	6.262	19.311	22.307	24.996	27.488	28.259	30.578	32.801	35.628	37.697
16	5.142	6.908	20.465	23.542	26.296	28.845	29.633	32.000	34.267	37.146	39.252
17	5.697	7.564	21.615	24.769	27.587	30.191	30.995	33.409	35.718	38.648	40.790
18	6.265	8.231	22.760	25.989	28.869	31.526	32.346	34.805	37.156	40.136	42.312
19	6.844	8.907	23.900	27.204	30.144	32.852	33.687	36.191	38.582	41.610	43.820
20	7.434	9.591	25.038	28.412	31.410	34.170	35.020	37.566	39.997	43.072	45.315
21	8.034	10.283	26.171	29.615	32.671	35.479	36.343	38.932	41.401	44.522	46.797
22	8.643	10.982	27.301	30.813	33.924	36.781	37.659	40.289	42.796	45.962	48.268
23	9.260	11.689	28.429	32.007	35.172	38.076	38.968	41.638	44.181	47.391	49.728
24	9.886	12.401	29.553	33.196	36.415	39.364	40.270	42.980	45.559	48.812	51.179
25	10.520	13.120	30.675	34.382	37.652	40.646	41.566	44.314	46.928	50.223	52.620
26	11.160	13.844	31.795	35.563	38.885	41.923	42.856	45.642	48.290	51.627	54.052
27	11.808	14.573	32.912	36.741	40.113	43.195	44.140	46.963	49.645	53.023	55.476
28	12.461	15.308	34.027	37.916	41.337	44.461	45.419	48.278	50.993	54.411	56.892
29	13.121	16.047	35.139	39.087	42.557	45.722	46.693	49.588	52.336	55.792	58.301
30	13.787	16.791	36.250	40.256	43.773	46.979	47.962	50.892	53.672	57.167	59.703
31	14.458	17.539	37.359	41.422	44.985	48.232	49.226	52.191	55.003	58.536	61.098
32	15.134	18.291	38.466	42.585	46.194	49.480	50.487	53.486	56.328	59.899	62.487
33	15.815	19.047	39.572	43.745	47.400	50.725	51.743	54.776	57.648	61.256	63.870
34	16.501	19.806	40.676	44.903	48.602	51.966	52.995	56.061	58.964	62.608	65.247
35	17.192	20.569	41.778	46.059	49.802	53.203	54.244	57.342	60.275	63.955	66.619
36	17.887	21.336	42.879	47.212	50.998	54.437	55.489	58.619	61.581	65.296	67.985
37	18.586	22.106	43.978	48.363	52.192	55.668	56.730	59.893	62.883	66.633	69.346