Professor : Yuri Frota

www.ic.uff.br/~yuri/pl.html

yuri@ic.uff.br

Professor: Yuri Frota

www.ic.uff.br/~yuri/pl.html

yuri@ic.uff.br

- Logística:

800000000

- Aula as Terças, de 16h as 19h (3h de aula sem intervalo)

Professor: Yuri Frota

www.ic.uff.br/~yuri/pl.html

yuri@ic.uff.br

- Logística:
 - Aula as Terças, de 16h as 19h (3h de aula sem intervalo)
- Escopo:

800000000

- Programação Linear e Inteira (foco em modelagem e resolução)

Professor : Yuri Frota

www.ic.uff.br/~yuri/pl.html

yuri@ic.uff.br

- Logística:
 - Aula as Terças, de 16h as 19h (3h de aula sem intervalo)
- Escopo:
 - Programação Linear e Inteira (foco em modelagem e resolução)
- Ementa:
 - Introdução
 - Modelagem Problemas Lineares
- Métodos para solução de Problemas Lineares (Resolução Gráfica, Simplex, Dualidade, Pontos Interiores etc..)
 - Modelagem Problemas Inteiros
- Métodos para solução de Problemas Inteiros (Branch and Bound, Plano de Cortes, Branch and Cut. PD, Geração de Colunas, Relaxação Lagrangeana, etc)
 - Pacotes de solução para problemas de programação matemática

Professor : Yuri Frota

www.ic.uff.br/~yuri/pl.html

yuri@ic.uff.br

- Logística:
 - Aula as Terças, de 16h as 19h (3h de aula sem intervalo)
- Escopo:
 - Programação Linear e Inteira (foco em modelagem e resolução)
- Ementa:
 - Introdução
 - Modelagem Pro
 - Métodos para s

Pontos Interiores etc..)

- Modelagem Pro
- Métodos para s

and Cut. PD, etc)

- Pacotes de solução para problemas de programação matemática

Professor: Yuri Frota

www.ic.uff.br/~yuri/pl.html

yuri@ic.uff.br

- Livros:

20000000

Otimização Linear

Autores: Nelson Maculan e Marcia Fampa

Editora UNB

http://www.ic.uff.br/~yuri/pl/Maculan.pdf

Professor: Yuri Frota

www.ic.uff.br/~yuri/pl.html yuri@ic.uff.br

Otimização Linear

Autores: Nelson Maculan e Marcia Fampa

Editora UNB

http://www.ic.uff.br/~yuri/pl/Maculan.pdf

Livros:

Integer Programming

L.A. Wolsey Wiley 1998

Livros:

Nicolai Pisaruk Mixed Integer Programming: Models and Methods

Free Book

http://www.ic.uff.br/~yuri/pi/Pisaruk.pdf

Se não conseguir não tem problema, a matéria será apresentada

Bastante modelagem e principais métodos

3 ou 4 trabalhos

de implementação

Professor : Yuri Frota

www.ic.uff.br/~yuri/pl.html

yuri@ic.uff.br

- Avaliação:
 - Pós:
 - Média de Trabalhos + Presença
 - Graduação:
 - Média de Trabalhos + Presença

Os trabalhos e a nota de presença tem peso 1

presença tem o mesmo peso da soma dos pesos dos trabalhos. Ex: se forem 5 trabalhos, cada um tem peso 1 e a presença tem peso 5

<u>Pontos Extras</u>: Exercícios feitos durante as aulas e entregues corretamente -> +1 extra ou +0.5 extra. Ainda foi no quadro depois -> mais +0,5 ou +0.25 extra

Em um 1 mês é possível facilmente somar os pontos de um trabalho

Professor: Yuri Frota

www.ic.uff.br/~yuri/pl.html

yuri@ic.uff.br

- <u>Dinâmica da aula</u>: Teórica + Prática

Teórica : A teoria é apresentada

- Prática: Exercícios sobre a teoria são feitos

Esses que valem os pontos extras

Teoria e prática podem se intercalar durante as 3 horas de aula

- Aulas em Slides:

200000000

- Slides servem de apoio, mas sempre que possível vamos ao quadro (+didático)

Áreas de Atuação:

Banco de Dados

Redes

800000000

Engenharia de Software

Inteligência Artificial

Sistemas Distribuídos

Otimização

Uma penca a mais....

Otimização:

20000000

Uso da matemática para auxiliar nas tomadas de decisão

Problema do mundo Real:

Aumentar o lucro da empresa

Problema do mundo Real:

Aumentar o lucro da empresa

800000000

Modelagem

Sistema de inequações Matemáticas e função objetivo

Modelo matemático:

Problema do mundo Real:

Aumentar o lucro da empresa

800000000

Modelagem Modelo matemático:

Sistema de inequações Matemáticas e função objetivo

Computador soluciona o modelo

Solução matemática:

Conjunto de valores numéricos

Problema do mundo Real:

Aumentar o lucro da empresa

Modelagem Modelo matemático:

Sistema de inequações Matemáticas e função objetivo

Computador soluciona o modelo

Solução para o mundo Real:

O que comprar, o que vender

20000000

Interpretação Solução matemática:

Conjunto de valores numéricos

Exemplo prático:

800000000

Problema do mundo Real:

cobrança da coleta de lixo de Cidade X por domicílio

Exemplo prático:

800000000

Problema do mundo Real: cobrança da coleta

de lixo de Cidade X por domicílio

Modelagem Modelo matemático:

Modelo de Clustering com restrições adicionais

Exemplo prático:

20000000

Problema do mundo Real:

cobrança da coleta de lixo de Cidade X por domicílio Modelagem

Modelo matemático:

Modelo de Clustering com restrições adicionais

Computador NÃO soluciona o modelo devido a dimensão

Modelo + Heuristica Usa informações do Modelo para construção Heurística

Exemplo prático:

200000000

Problema do mundo Real:

cobrança da coleta de lixo de Cidade X por domicílio Modelagem Modelo matemático: Modelo de Clustering com restrições adicionais Absurdos: Terrenos vazios com alta taxa Solução para o mundo Interpretação Real:

Quanto cobrar!

Modelo + Heuristica

Computador NÃO

modelo devido a

soluciona o

Usa informações do Modelo para construção Heurística

Exemplo prático:

200000000

Problema do mundo Real:

cobrança da coleta de lixo de Cidade X por domicílio Modelagem

taxas

Absurdos: Terrenos em

comunidades com altas

CEPs nobres mas em

Modelo matemático:

Modelo de Clustering com restrições adicionais

2x

Solução para o mundo Real:

Quanto cobrar!

Interpretação

Computador NÃO soluciona o modelo devido a dimensão

Modelo + Heuristica Usa informações do Modelo para construção Heurística

Exemplo prático:

200000000

Problema do mundo Real:

cobrança da coleta de lixo de Cidade X por domicílio

Modelagem

Absurdos: Pequenas empresas com alto consumo de energia com altas taxas

Real:

Modelo matemático:

Modelo de Clustering com restrições adicionais

Solução para o mundo

Quanto cobrar!

Interpretação

Computador NÃO soluciona o modelo devido a dimensão

Modelo + Heuristica Usa informações do Modelo para construção Heurística

Exemplo prático:

200000000

Problema do mundo Real:

cobrança da coleta de lixo de Cidade X por domicílio

Modelagem Modelo matemático: Modelo de Clustering com restrições adicionais Absurdos:

Solução para o mundo Real:

Quanto cobrar!

Modelo + Heuristica Interpretação Usa informações do Modelo para construção

Heurística

Computador NÃO

modelo devido a

soluciona o

dimensão

Exemplo prático:

Problema do mundo Real:

cobrança da coleta de lixo de Cidade X por domicílio Modelagem

Ajustes?

Modelo matemático:

Modelo de Clustering com restrições adicionais

OPS)

Computador NÃO soluciona o modelo devido a dimensão

Absurdos:

A taxa da empresa X está alta, pode baixar? Porque? Mistério! Restrições fora do problema

Quanto cobrar!

Solução para o mundo Real:

Quanto cobrar!

Interpretação

10x

Modelo + Heuristica Usa informações do Modelo para construção Heurística

Ficção ?

- Aplicabilidade
 - Área Militar (surgimento da otimização)

A Luftwaffe, a Força Aérea alemã estava submetendo a Inglaterra a um forte ataque, beirando a conquista.

Cientistas ingleses resolveram o problema de obter o máximo benefício dos radares recém-inventados que dispunham.

Graças ao seu trabalho determinando a localização ideal das antenas e da melhor distribuição de sinal conseguiram dobrar a eficácia do sistema de defesa aérea e evitar que a ilha caísse nas mãos da Alemanha nazista.

- Aplicabilidade
 - Área Militar (surgimento da otimização)
 - Indústria Petrolífera (fluxo de gás por dutos)

Aplicabilidade

- Área Militar (surgimento da otimização)
- Indústria Petrolífera (fluxo de gás por dutos)
- Indústria de Alimentos

Aplicabilidade

- Área Militar (surgimento da otimização)
- Indústria Petrolífera (fluxo de gás por dutos)
- Indústria de Alimentos
- Transporte

Aplicabilidade

- Área Militar (surgimento da otimização)
- Indústria Petrolífera (fluxo de gás por dutos)
- Indústria de Alimentos
- Transporte
- Telecomunicações (custo mínimo de conexão)

Aplicabilidade

- Área Militar (surgimento da otimização)
- Indústria Petrolífera (fluxo de gás por dutos)
- Indústria de Alimentos
- Transporte
- Telecomunicações (custo mínimo de conexão)
- Distribuição de Energia Elétrica
- Mercado Financeiro
- E muito mais...

Otimização:

200000000

Uso da matemática para auxiliar nas tomadas de decisão

Otimização:

200000000

Uso da matemática para auxiliar nas tomadas de decisão

O que é um Problema de Otimização ?

É um problema, onde dado um espaço de solução
(definido por um conjunto de restrições), ele tenta
determinar os valores extremos, com respeito a alguma
função.

Otimização:

200000000

Uso da matemática para auxiliar nas tomadas de decisão

- O que é um Problema de Otimização ?

 É um problema, onde dado um espaço de solução
 (definido por um conjunto de restrições), ele tenta
 determinar os valores extremos, com respeito a alguma
 função.
- PPL (Problema de Programação Linear)
 - São problemas de otimização nos quais essa <u>função</u> <u>objetivo</u> e as <u>restrições</u> são todas lineares

Otimização:

Beresses

Uso da matemática para auxiliar nas tomadas de decisão

- O que é um Problema de Otimização ?

 É um problema, onde dado um espaço de solução
 (definido por um conjunto de restrições), ele tenta
 determinar os valores extremos, com respeito a alguma
 função.
- PPL (Problema de Programação Linear)
 - São problemas de otimização nos quais essa <u>função</u> <u>objetivo</u> e as <u>restrições</u> são todas lineares
- PPI (Problema de Programação Inteira)
 - São PPLs com restrições de integralidade (variáveis inteiras)

Problemas de Programação

Existem classificações para os problemas de programação: - Linear/Não Linear

Problemas de Programação

Existem classificações para os problemas de programação:

- Linear/Não Linear
- Convexo/Não Convexo

Existem classificações para os problemas de programação:

- Linear/Não Linear
- Convexo/Não Convexo
- Discreto/Contínuo

Existem classificações para os problemas de programação:

- Linear/Não Linear
- Convexo/Não Convexo
- Discreto/Contínuo
- Com Incerteza/Determinístico

Robusto ou Estocástico

Existem classificações para os problemas de programação:

- Linear/Não Linear
- Convexo/Não Convexo
- Discreto/Contínuo
- Com Incerteza/Determinístico

Então o PPI se enquadra aonde?

Existem classificações para os problemas de programação:

- Linear/Não Linear
- Convexo/Não Convexo
- Discreto/Contínuo
- Com Incerteza/Determinístico

Então o PPI se enquadra aonde?

- Discreto
- Não Convexo (relaxação convexa)
- Determinístico
- Linear quando relaxado da integralidade (i.e. vira um PPL)

E esse será o foco do nosso curso !

Modelando PLs

- O que é necessário para definir um Problema de Programação Linear (PPL) ?

200000000

As 3 componentes

Modelagem

- Vamos começar a modelar nossos problemas matematicamente

800000000

MODELAGEM

Modelando

- O que é necessário para definir um Problema de Programação ?
 - <u>Variáveis de Decisão</u>: São incógnitas a serem determinadas pela solução

As 3 componentes

XeY

Definem a dimensão e a representação da solução

Modelando

- O que é necessário para definir um Problema de Programação?
 - Variáveis de Decisão: São incógnitas a serem determinadas pela solução
 - Restrições: São as limitações de sua região viável

As 3 componentes

As duas retas

Modelando

- O que é necessário para definir um Problema de Programação?

As 3 componentes

- <u>Variáveis de Decisão</u>: São incógnitas a serem determinadas pela solução
- Restrições: São as limitações de sua região viável
- <u>Função Objetivo</u>: Função matemática que define a qualidade da solução em função das variáveis de decisão

Ex: f(x,y)=x+y

- Problema da Mochila:

- Seya está indo para batalha e precisa se proteger
- Capacidade máxima da mochila é 9 kilos

- Problema da Mochila:

- Seya está indo para batalha e precisa se proteger
- Capacidade máxima da mochila é 9 kilos
- Cada parte da armadura possui um peso e um fator de proteção
- Quais partes da armadura ele deve levar ? (peso / proteção)

- Problema da Mochila:

- Seya está indo para batalha e precisa se proteger
- Capacidade máxima da mochila é 9 kilos
- Cada parte da armadura possui um peso e um fator de proteção
- Quais partes da armadura ele deve levar ? (peso / proteção)
 - Solução 1: Capacete + Braço Esq + Perna Esq = 9 / 22

Problema da Mochila:

- Seya está indo para batalha e precisa se proteger
- Capacidade máxima da mochila é 9 kilos
- Cada parte da armadura possui um peso e um fator de proteção
- Quais partes da armadura ele deve levar ? (peso / proteção)
 - Solução 1: Capacete + Braço Esq + Perna Esq = 9 / 22
 - Solução 2: Capacete + Cintura = 9 / 23

Problema da Mochila:

- Seya está indo para batalha e precisa se proteger
- Capacidade máxima da mochila é 9 kilos
- Cada parte da armadura possui um peso e um fator de proteção
- Quais partes da armadura ele deve levar ? (peso / proteção)
 - Solução 1: Capacete + Braço Esq + Perna Esq = 9 / 22
 - Solução 2: Capacete + Cintura = 9 / 23
 - Enumerar soluções (combinações) N=número de peças

N	N!
7	5.040 soluções
17	3.5 x 10 ²⁰ soluções
27	1 x 10 ³⁵ soluções

Problema da Mochila:

- Seya está indo para batalha e precisa se proteger
- Capacidade máxima da mochila é 9 kilos
- Cada parte da armadura possui um peso e um fator de proteção
- Quais partes da armadura ele deve levar ? (peso / proteção)
 - Solução 1: Capacete + Braço Esq + Perna Esq = 9 / 22
 - Solução 2: Capacete + Cintura = 9 / 23
 - Enumerar soluções (combinações) N=número de peças

N	N!
7	5.040 soluções
17	3.5 x 10 ²⁰ soluções
27	1 x 10 ³⁵ soluções

- Um computador atual levaria0,000001 segundos para enumerar

Problema da Mochila:

- Seya está indo para batalha e precisa se proteger
- Capacidade máxima da mochila é 9 kilos
- Cada parte da armadura possui um peso e um fator de proteção
- Quais partes da armadura ele deve levar ? (peso / proteção)
 - Solução 1: Capacete + Braço Esq + Perna Esq = 9 / 22
 - Solução 2: Capacete + Cintura = 9 / 23
 - Enumerar soluções (combinações) N=número de peças

N	N!
7	5.040 soluções
17	3.5 x 10 ²⁰ soluções
27	1 x 10 ³⁵ soluções

- Um computador atual levaria 8,7 dias para enumerar

Problema da Mochila:

- Seya está indo para batalha e precisa se proteger
- Capacidade máxima da mochila é 9 kilos
- Cada parte da armadura possui um peso e um fator de proteção
- Quais partes da armadura ele deve levar ? (peso / proteção)
 - Solução 1: Capacete + Braço Esq + Perna Esq = 9 / 22
 - Solução 2: Capacete + Cintura = 9 / 23
 - Enumerar soluções (combinações) N=número de peças

N	N!
7	5.040 soluções
17	3.5 x 10 ²⁰ soluções
27	1 x 10 ³⁵ soluções

- Um computador atual levaria 73 x
 10¹⁰ anos para enumerar

- Como modelar?
 - Variáveis
 - Restrições
 - Objetivo

- Como modelar ?
 - Variáveis -> Peças da armadura

- Como modelar ?
 - Variáveis -> Peças da armadura

200000000

Vamos atribuir valor 1 se a peça foi escolhida e 0 caso contrário

Exemplo: solução apenas com capacete e cintura

- Como modelar soluções válidas (que pegasus possa carregar) ?
 - Restrições -> Peso

- Como modelar soluções válidas (que pegasus possa carregar) ?
 - Restrições -> Peso

Exemplo: solução apenas com capacete e cintura

Como ponderar boas soluções ?

200000000

Objetivo -> Máxima Proteção

- Como ponderar boas soluções ?
 - Objetivo -> Máxima Proteção

Exemplo: solução apenas com capacete e cintura

MAX
$$12(1)+17(0)+11(1)+2(0)+2(0)+6(0)+8(0)$$

MAX 23

Modelo Matemático Final

são 0 ou 1

- No mundo real
 - Mochila do Seya -> Navio -> Empresa de entrega com centenas de navios
 - Peças da armadura -> Produto -> Milhares de produtos para serem entregues
 - Além de peso, temos restrição de espaço ou restrições de conflito de itens

Navios

Caminhões

Modelando PLs

- Vamos modelar alguns problemas de programação linear

800000000

MODELAGEM

- Problema da Ração Canina:

- Uma empresa de alimentos caninos produz 2 tipos de ração:
 - All Mega Supremo (AMS)
 - Ração das Estrelas (RE)

- Problema da Ração Canina:

- Uma empresa de alimentos caninos produz 2 tipos de ração:
 - All Mega Supremo (AMS)
 - Ração das Estrelas (RE)
- Para sua manufatura são utilizados cereais e carne:
 - AMS: 5kg cereais e 1kg de carne -> 1 pacote de AMS
 - RE: 2kg cereais e 4kg de carne -> 1 pacote de RE

- Problema da Ração Canina:

- Uma empresa de alimentos caninos produz 2 tipos de ração:
 - All Mega Supremo (AMS)
 - Ração das Estrelas (RE)
- Para sua manufatura são utilizados cereais e carne:
 - AMS: 5kg cereais e 1kg de carne -> 1 pacote de AMS
 - RE: 2kg cereais e 4kg de carne -> 1 pacote de RE
- Preço produto:
 - AMS: 20 reais -> pacote
 - RE: 30 reais -> pacote

- Problema da Ração Canina:

- Uma empresa de alimentos caninos produz 2 tipos de ração:
 - All Mega Supremo (AMS)
 - Ração das Estrelas (RE)
- Para sua manufatura são utilizados <u>cereais</u> e <u>carne</u>:
 - AMS: 5kg cereais e 1kg de carne -> 1 pacote de AMS
 - RE: 2kg cereais e 4kg de carne -> 1 pacote de RE
- Preço produto:
 - AMS: 20 reais -> pacote
 - RE: 30 reais -> pacote
- Preço da matéria prima:
 - 1kg cereais -> 1 real
 - 1kg carne -> 4 reais

- Problema da Ração Canina:

- Uma empresa de alimentos caninos produz 2 tipos de ração:
 - All Mega Supremo (AMS)
 - Ração das Estrelas (RE)
- Para sua manufatura são utilizados <u>cereais</u> e <u>carne</u>:
 - AMS: 5kg cereais e 1kg de carne -> 1 pacote de AMS
 - RE: 2kg cereais e 4kg de carne -> 1 pacote de RE
- Preço produto:
 - AMS: 20 reais -> pacote
 - RE: 30 reais -> pacote
- Preço da matéria prima:
 - 1kg cereais -> 1 real
 - 1kg carne -> 4 reais
- Estoque:
 - 10000 kg de carne
 - 30000 kg de cereal

- Problema da Ração Canina:

- Uma empresa de alimentos caninos produz 2 tipos de ração:
 - All Mega Supremo (AMS)
 - Ração das Estrelas (RE)
- Para sua manufatura são utilizados <u>cereais</u> e <u>carne</u>:
 - AMS: 5kg cereais e 1kg de carne -> 1 pacote de AMS
 - RE: 2kg cereais e 4kg de carne -> 1 pacote de RE
- Preço produto:
 - AMS: 20 reais -> pacote
 - RE: 30 reais -> pacote
- Preço da matéria prima:
 - 1kg cereais -> 1 real
 - 1kg carne -> 4 reais
- Estoque:
 - 10000 kg de carne
 - 30000 kg de cereal

- Variáveis de Decisão:

Variáveis de Decisão:

200000000

- X_i Quantidade de ração produzida do tipo i (i=ASM ou RE)

- Variáveis de Decisão:
 - X_i Quantidade de ração produzida do tipo i (i=ASM ou RE)
- Restrições:

20000000

Limite de carne

- Para sua manufatura são utilizados <u>cereais</u> e <u>carne</u>:
 - AMS: 5kg cereais e 1kg de carne -> 1 pacote de AMS
 - RE: 2kg cereais e 4kg de carne -> 1 pacote de RE
- Estoque:
 - 10000 kg de carne
 - 30000 kg de cereal

- Variáveis de Decisão:
 - X_i Quantidade de ração produzida do tipo i (i=ASM ou RE)
- Restrições:

- Limite de carne
 - $1X_{AMS} + 4X_{RE} \le 10000$

- Para sua manufatura são utilizados <u>cereais</u> e <u>carne</u>:
 - AMS: 5kg cereais e 1kg de carne -> 1 pacote de AMS
 - RE: 2kg cereais e 4kg de carne -> 1 pacote de RE
- Estoque:
 - 10000 kg de carne
 - 30000 kg de cereal

- Variáveis de Decisão:
 - X_i Quantidade de ração produzida do tipo i (i=ASM ou RE)
- Restrições:

- Limite de carne
 - $1X_{AMS} + 4X_{RE} \le 10000$
- Limite de cereais

- Para sua manufatura são utilizados <u>cereais</u> e <u>carne</u>:
 - AMS: 5kg cereais e 1kg de carne -> 1 pacote de AMS
 - RE: 2kg cereais e 4kg de carne -> 1 pacote de RE
- Estoque:
 - 10000 kg de carne
 - 30000 kg de cereal

- Variáveis de Decisão:
 - X_i Quantidade de ração produzida do tipo i (i=ASM ou RE)
- Restrições:

- Limite de carne
 - $1X_{AMS} + 4X_{RE} \le 10000$
- Limite de cereais
 - $5X_{AMS} + 2X_{RE} \le 30000$

- Para sua manufatura são utilizados <u>cereais</u> e <u>carne</u>:
 - AMS: 5kg cereais e 1kg de carne -> 1 pacote de AMS
 - RE: 2kg cereais e 4kg de carne -> 1 pacote de RE
- Estoque:
 - 10000 kg de carne
 - 30000 kg de cereal

- Variáveis de Decisão:
 - X_i Quantidade de ração produzida do tipo i (i=ASM ou RE)
- Restrições:

20000000

- Limite de carne

-
$$1X_{AMS} + 4X_{RE} \le 10000$$

- Limite de cereais

-
$$5X_{AMS} + 2X_{RE} \le 30000$$

- Não negatividade
 - $X_{AMS} >= 0 e X_{RE} >= 0$

- Para sua manufatura são utilizados cereais e carne:
 - AMS: 5kg cereais e 1kg de carne -> 1 pacote de AMS
 - RE: 2kg cereais e 4kg de carne -> 1 pacote de RE
- Estoque:
 - 10000 kg de carne
 - 30000 kg de cereal

- Variáveis de Decisão:
 - X_i Quantidade de ração produzida do tipo i (i=ASM ou RE)
- Restrições:
 - Limite de carne

-
$$1X_{AMS} + 4X_{RE} \le 10000$$

- Limite de cereais

-
$$5X_{AMS} + 2X_{RE} \le 30000$$

- Não negatividade

-
$$X_{AMS} >= 0 e X_{RE} >= 0$$

- Função Objetivo:

- Para sua manufatura são utilizados <u>cereais</u> e <u>carne</u>:
 - AMS: 5kg cereais e 1kg de carne -> 1 pacote de AMS
 - RE: 2kg cereais e 4kg de carne -> 1 pacote de RE
- Preço produto:
 - AMS: 20 reais -> pacote
 - RE: 30 reais -> pacote
- Preço da matéria prima:
 - 1kg cereais -> 1 real
 - 1kg carne -> 4 reais

- Variáveis de Decisão:
 - X_i Quantidade de ração produzida do tipo i (i=ASM ou RE)
- Restrições:
 - Limite de carne
 - $1X_{AMS} + 4X_{RE} \le 10000$
 - Limite de cereais
 - $5X_{AMS} + 2X_{RE} \le 30000$
 - Não negatividade
 - $X_{AMS} >= 0 e X_{RE} >= 0$
- Função Objetivo:

20000000

- MAX (20 reais-(1kg x 4 reais + 5kg x 1 real)) X_{AMS} + (30 reais-(4kg x 4 real + 2kg x 1 real)) X_{RE}

- Para sua manufatura são utilizados <u>cereais</u> e <u>carne</u>:
 - AMS: 5kg cereais e 1kg de carne -> 1 pacote de AMS
 - RE: 2kg cereais e 4kg de carne -> 1 pacote de RE
- Preço produto:
 - AMS: 20 reais -> pacote
 - RE: 30 reais -> pacote
- Preço da matéria prima:
 - 1kg cereais -> 1 real
 - 1kg carne -> 4 reais

- Variáveis de Decisão:
 - X_i Quantidade de ração produzida do tipo i (i=ASM ou RE)
- Restrições:
 - Limite de carne
 - $1X_{AMS} + 4X_{RE} \le 10000$
 - Limite de cereais
 - $5X_{AMS} + 2X_{RE} \le 30000$
 - Não negatividade
 - $X_{AMS} >= 0 e X_{RE} >= 0$
- Função Objetivo:

- MAX (20 reais-(1kg x 4 reais + 5kg x 1 real)) X_{AMS} + (30 reais-(4kg x 4 real + 2kg x 1 real)) X_{RE}
- MAX $11 X_{AMS} + 12 X_{RE}$

- Para sua manufatura são utilizados cereais e carne:
 - AMS: 5kg cereais e 1kg de carne -> 1 pacote de AMS
 - RE: 2kg cereais e 4kg de carne -> 1 pacote de RE
- Preço produto:
 - AMS: 20 reais -> pacote
 - RE: 30 reais -> pacote
- Preço da matéria prima:
 - 1kg cereais -> 1 real
 - 1kg carne -> 4 reais

- Modelo Completo:

MAX 11
$$X_{AMS}$$
 + 12 X_{RE}
Sujeito a:
 $1X_{AMS}$ + 4 X_{RE} <= 10000
 $5X_{AMS}$ + 2 X_{RE} <= 30000
 X_{AMS} >= 0 e X_{RE} >=0

- Problema da Dieta:

200000000

 Para uma vida longa felina, um gato precisa ingerir uma quantidade mínima de certas vitaminas, presentes em <u>6 diferentes ingredientes</u> que deverão ser combinados em um composto alimentar de <u>custo mínimo</u>

- Problema da Dieta:

200000000

 Para uma vida longa felina, um gato precisa ingerir uma quantidade mínima de certas vitaminas, presentes em <u>6 diferentes ingredientes</u> que deverão ser combinados em um composto alimentar de <u>custo mínimo</u>

	Qtd. Vitamina por ingrediente									
Vit.	1	2	3	4	5	6	Min.			
Α	1	0	2	2	1	2	9			
С	0	1	3	1	3	2	19			
Preço	35	30	60	50	27	22				

- Variáveis de Decisão:

Variáveis de Decisão:

200000000

- X_i Quantidade do ingrediente i (i=1...6) no composto alimentar

- Variáveis de Decisão:
 - X_i Quantidade do ingrediente i (i=1...6) no composto alimentar
- Restrições:

Besesses

- Vitamina A:

	Qtd. Vitamina por ingrdiente								
Vit.	1	2	3	4	5	6	Min.		
Α	1	0	2	2	1	2	9		
С	0	1	3	1	3	2	19		
Preço	35	30	60	50	27	22			

- Variáveis de Decisão:
 - X_i Quantidade do ingrediente i (i=1...6) no composto alimentar
- Restrições:

20000000

- Vitamina A:

$$1X_1 + 2X_3 + 2X_4 + 1X_5 + 2X_6 >= 9$$

	Qtd. Vitamina por ingrdiente								
Vit.	1	2	3	4	5	6	Min.		
Α	1	0	2	2	1	2	9		
С	0	1	3	1	3	2	19		
Preço	35	30	60	50	27	22			

- Variáveis de Decisão:
 - X_i Quantidade do ingrediente i (i=1...6) no composto alimentar
- Restrições:
 - Vitamina A: $1X_1 + 2X_3 + 2X_4 + 1X_5 + 2X_6 >= 9$
 - Vitamina C:

	Qtd. Vitamina por ingrdiente									
Vit.	1	2	3	4	5	6	Min.			
Α	1	0	2	2	1	2	9			
С	0	1	3	1	3	2	19			
Preço	35	30	60	50	27	22				

- Variáveis de Decisão:
 - X_i Quantidade do ingrediente i (i=1...6) no composto alimentar
- Restrições:
 - Vitamina A:

$$1X_1 + 2X_3 + 2X_4 + 1X_5 + 2X_6 >= 9$$

Vitamina C:

$$1X_2 + 3X_3 + 1X_4 + 3X_5 + 2X_6 >= 19$$

	Qtd. Vitamina por ingrdiente									
Vit.	1	2	3	4	5	6	Min.			
Α	1	0	2	2	1	2	9			
С	0	1	3	1	3	2	19			
Preço	35	30	60	50	27	22				

- Variáveis de Decisão:
 - X_i Quantidade do ingrediente i (i=1...6) no composto alimentar
- Restrições:
 - Vitamina A:

$$1X_1 + 2X_3 + 2X_4 + 1X_5 + 2X_6 >= 9$$

- Vitamina C:

800000000

$$1X_2 + 3X_3 + 1X_4 + 3X_5 + 2X_6 >= 1$$

- Não Negatividade

$$X_1, X_2, X_3, X_4, X_5, X_6 >= 0$$

	Qtd. Vitamina por ingrdiente									
Vit.	1	2	3	4	5	6	Min.			
Α	1	0	2	2	1	2	9			
С	0	1	3	1	3	2	19			
Preço	35	30	60	50	27	22				

- Variáveis de Decisão:
 - X_i Quantidade do ingrediente i (i=1...6) no composto alimentar
- Restrições:
 - Vitamina A:

$$1X_1 + 2X_3 + 2X_4 + 1X_5 + 2X_6 >= 9$$

- Vitamina C:

$$1X_2 + 3X_3 + 1X_4 + 3X_5 + 2X_6 >= 19$$

- Não Negatividade

$$X_1, X_2, X_3, X_4, X_5, X_6 >= 0$$

	Qtd. Vitamina por ingrdiente									
Vit.	1	2	3	4	5	6	Min.			
Α	1	0	2	2	1	2	9			
С	0	1	3	1	3	2	19			
Preço	35	30	60	50	27	22				

- Função Objetivo:

- Variáveis de Decisão:
 - X_i Quantidade do ingrediente i (i=1...6) no composto alimentar
- Restrições:
 - Vitamina A:

$$1X_1 + 2X_3 + 2X_4 + 1X_5 + 2X_6 >= 9$$

Vitamina C:

$$1X_2 + 3X_3 + 1X_4 + 3X_5 + 2X_6 >= 19$$

- Não Negatividade

$$X_1, X_2, X_3, X_4, X_5, X_6 >= 0$$

	Qtd. Vitamina por ingrdiente								
Vit.	1	2	3	4	5	6	Min.		
Α	1	0	2	2	1	2	9		
С	0	1	3	1	3	2	19		
Preço	35	30	60	50	27	22			

- Função Objetivo:

20000000

- MIN $35X_1 + 30X_2 + 60X_3 + 50X_4 + 27X_5 + 22X_6$

- Modelo Completo:

Copococo

MIN
$$35X_1 + 30X_2 + 60X_3 + 50X_4 + 27X_5 + 22X_6$$

Sujeito a:

$$1X_1 + 2X_3 + 2X_4 + 1X_5 + 2X_6 >= 9$$

 $1X_2 + 3X_3 + 1X_4 + 3X_5 + 2X_6 >= 19$
 $X_1, X_2, X_3, X_4, X_5, X_6 >= 0$

Exercícios

Nice | Work:

Problema da empresa com máquinas:

Uma empresa tem dois produtos (P_1 e P_2) e duas máquinas (M_1 e M_2). A primeira máquina é disponível 30 horas semanais, a segunda 42 horas semanais. Cada unidade dos dois produtos precisa de um tempo diferente nas duas

máquinas:

	P_1	P ₂	Max
M_1	1	3	30
M_2	2	3	42
Lucro	3000	6000	

- A empresa tem que produzir pelo menos o dobro de unidades do produto P_1 em relação ao produto P_2 .
- O lucro dos produtos são 3000 reais por unidade do P₁ e 6000 reais por unidade de P₂
- Modele o problema como um PPL para determinar o número de unidades de P₁ e P₂ produzidas para maximizar o lucro.
- 1) Variáveis: Como poderia representar uma solução para meu problema?
- 2) Restrições: Quais as restrições dessa solução?
- 3) F. Objetivo: Como valorar essa solução?

Exercícios

Problema das ligas metálicas:

Uma metalúrgica deseja maximizar sua receita bruta. A tabela a seguir ilustra a proporção de cada material (cobre, zinco e chumbo) na mistura para a obtenção das ligas passíveis de fabricação, assim como a disponibilidade de cada matéria prima (em toneladas) e os preços de venda por tonelada de cada liga.

	Liga 1	Liga 2	Disponibilidade
Cobre	0,5	0,2	16 ton.
Zinco	0,25	0,3	11 ton.
Chumbo	0,25	0,5	15 ton.
Preço	3.000	5.000	

Qual deve ser a quantidade produzida de cada liga?

- 1) Variáveis: X_i => toneladas de liga tipo i produzidas (i=1,2)
- 2) Restrições: uma para cada material
- 3) F. Objetivo: maximizar a venda das ligas (o que é produzido é vendido)

Problema da companhia de Aviação:

Exercícios

- Uma companhia de aviação está considerando a compra de aviões de passageiros de 3 tipos: <u>longo, médio e pequeno</u> <u>curso</u>. O preço de compra seria de 6.7 milhões, 5 milhões e 3.5 milhões respectivamente.
- A diretoria autorizou um gasto de no máximo 150 milhões para compra das aeronaves.
- A companhia terá pilotos treinados para pilotar 30 aviões.
- Se somente aviões de pequeno curso forem comprados, a divisão de manutenção estaria apta a manter 40 novos aviões.
 Cada avião de médio curso gasta 1/3 a mais de manutenção do que o avião de pequeno curso, e o de longo curso 2/3 a mais.
- Estima-se que o lucro anual liquido de 0.42 milhões para avião de longo curso, 0.3 milhões para médio e 0.23 milhões para curto. Usando esses dados obtidos, a companhia quer uma aproximação de quantas aeronaves devem ser obtidas com o objetivo de aumentar os lucros da empresa.
- 1) Variáveis: Como poderia representar uma solução para meu problema, isto é, quantas aeronaves comprar de cada tipo?
- 2) Restrições:
 - De gasto máximo de compra
 - Número de pilotos máximo para pilotar
 - Quantidade máxima de aviões que a manutenção consegue manter.
- 3) F. Objetivo: soma dos lucros das aeronaves

Até a próxima

