Системы технического зрения

БИНАРИЗАЦИЯ. ЛИНЕЙНЫЕ ФИЛЬТРЫ

Уменьшение объёма информации

Упрощение её обработки

Как её произвести?

На основе обработки гистограмы яркостей

Выбор конкретного положения?

opencv_binarization

ОРИГИНАЛ

РЕЗУЛЬТАТ

opencv_binarization

```
#include <iostream>
#include <opencv2/opencv.hpp>
#include <stdlib.h>
#include <stdio.h>
using namespace cv;
/// Global variables
int threshold value = 0;
int threshold type = 3;;
int const max_value = 255;
int const max type = 4;
int const max BINARY value = 255;
Mat src, src gray, dst;
char* window name = "Threshold Demo";
char* trackbar type = "Type: \n 0: Binary \n 1: Binary Inverted \n 2: Truncate \n 3: To Zero \n 4: To Zero Inverted";
char* trackbar value = "Value";
/// Function headers
void Threshold Demo( int, void* );
cv::Mat brightnessEnch (cv::Mat& greyScale);
```

opencv_binariza tion

```
int main()
 /// Load an image
 src = imread( "Iznos sample.jpg", 1 );
 /// Convert the image to Gray
 cvtColor( src, src_gray, CV_BGR2GRAY );
  src gray = brightnessEnch(src gray);
 imshow ("Original",src_gray);
  /// Create a window to display results
 namedWindow( window name, CV WINDOW AUTOSIZE );
  /// Create Trackbar to choose type of Threshold
 createTrackbar( trackbar type,
                 window name, &threshold type,
                  max type, Threshold Demo );
 createTrackbar( trackbar value,
                  window name, &threshold value,
                  max value, Threshold Demo );
  /// Call the function to initialize
 Threshold Demo( 0, 0 );
  /// Wait until user finishes program
 while(true)
   int c:
   c = waitKey(20);
   if( (char)c == 27 )
     { break; }
```

opencv_binarization

Критерий Отсу (Оцу)

Вычисляются математицеское ожидание μ и вероятность ω для каждого значения яркости

Вычисляются их суммы и ищется минимум

$$\sigma_b^2(t) = \sigma^2 - \sigma_w^2(t) = \omega_1(t)\omega_2(t) \left[\mu_1(t) - \mu_2(t)\right]^2$$

ОРИГИНАЛ

БИНАРИЗАЦИЯ THRESH_BINARY

ОРИГИНАЛ

БИНАРИЗАЦИЯ THRESH_BINARY

Бинарное изображение: а если контрастность ниже?

ОРИГИНАЛ

БИНАРИЗАЦИЯ TO_ZERO

Бинарное изображение: а если контрастность ниже?

ОРИГИНАЛ

БИНАРИЗАЦИЯ TO_ZERO

Попробуем бинаризовать не всё изображение, а его отдельные области

Точнее, будем сравнивать пиксель с его окружением

Если он ярче порогового значения – 1, иначе – 0

Как выбрать область?

MEAN 5X5

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

GAUSS 5X5

1	2	3	2	1
2	4	6	4	2
3	6	9	6	3
2	4	6	4	2
1	2	3	2	1

Суммируем по области размером (size x size)

При суммировании используем веса

Делим на сумму весов

ОРИГИНАЛ

БИНАРИЗАЦИЯ MEAN

Сегментированное изображение

Для многомодового случая нет универсального подхода

Сегментирован ное изображение

Модель шума «соль-перец» вероятности перехода

$Im[x,y] \rightarrow Im'[x,y]$	Im ' [x,y]=1	Im ' [x,y]=0
Im[x,y]=1	1-p	p
Im[x,y]=0	q	1-q

исходное

p=0.25 q=0.25

p=0.1 q=0.1

p=0.45 q=0.45

Медианный фильтр

Считаем количество 0 и 1 в *n*-окрестности

1	1	0
1	0	1
1	1	0

• Единиц > нулей => 1

Результат зависит от зашумлённости

Результат зависит от размера апертуры

ранговый фильтр — больше заданного порога разные пороги для нулей и единиц! Он же процентильный

1	1	0
1	0	1
1	1	0

- Единиц 6, нулей 3
- Ранг 6 1, ранг 7 0
- Нужен, если мы имеем априорную информацию

Модель аддитивного шума

$$\operatorname{Im}'[x,y]=\operatorname{Im}[x,y]+R(x,y)$$

Частный случай – гауссов шум

$$\operatorname{Im}'[x,y]=\operatorname{Im}[x,y]+\operatorname{N}(0,\sigma),$$

Мат.модель: сумма множества независимых факторов

Подходит при маленьких дисперсиях

Предположения: независимость, нулевое матожидание

исходное

σ=80

σ=40

σ=300

Медианный фильтр

Упорядочиваем точки в *n*-окрестности

173	164	170
150	176	169
168	182	166

• (150, 164, 166, 168, 169, 170, 173, 176, 182) — в середине списка

Зависит от зашумлённости

Зависит от размера апертуры

Ранговый фильтр

Упорядочиваем точки в *n*-окрестности

173	164	170
150	176	169
168	182	166

• (150, 164, 166, 168, 169, 170, 173, 176, 182) – в середине списка

Взвешенный фильтр

Суммируем с весами

173	164	170
150	176	169
168	182	166

1	1	1
1	1	1
1	1	1

∑167,33 ≈167

Взвешенный фильтр

Суммируем с весами

173	164	170
150	176	169
168	182	166

1	2	1
2	4	2
1	2	1

• Σ 169,43 ≈169

Фильтры в OpenCV

```
Медианный фильтр
void medianBlur (cv::Mat src, CV::Mat dst, int ksize)
src – исходное изображение
dst – результат
ksize – размер фильтра
Бокс-фильтр
void boxFilter (cv::Mat src, CV::Mat dst, int ksize)
Гауссов фильтр
void gaussianBlur (cv::Mat src, CV::Mat dst, int ksize)
```

Результат фильтрации

ОРИГИНАЛ БОКС-ФИЛЬТР

Результат фильтрации

ОРИГИНАЛ

СВЁРТКА С ГАУССИАНОМ

Результат фильтрации

ОРИГИНАЛ

МЕДИАННЫЙ ФИЛЬТР

