- Arrangements of Lines
 - an incremental algorithm
 - the zone of a line
 - the zone theorem
- Levels and Discrepancy
 - counting the number of lines
 - computing the level at vertices
- Proof of the Zone Theorem
 - induction on the number of lines

MCS 481 Lecture 25 Computational Geometry Jan Verschelde, 15 March 2019

- Arrangements of Lines
 - an incremental algorithm
 - the zone of a line
 - the zone theorem
- Levels and Discrepancy
 - counting the number of lines
 - computing the level at vertices
- Proof of the Zone Theorem
 - induction on the number of lines

five lines in the plane induce a subdivision

The arrangement of lines is stored in a doubly connected edge list, within a bounding box.

an incremental algorithm

Algorithm ConstructArrangement(L)

```
Input: a set L of n lines.
```

Output: A(L), stored in doubly connected edge list, within a bounding box B(L).

- **1** compute B(L) enclosing all vertices of A(L)
- ② construct a doubly connected edge list \mathcal{D} to store B(L)
- of for i from 1 to n do
- find the edge e on B(L) that contains leftmost intersection point of ℓ_i and A_{i-1}
- let f be the bounded face incident to e
- while f is not outside B(L) do
- \bigcirc split f, update \mathcal{D}
- set f to the next face intersected by ℓ_i

- Arrangements of Lines
 - an incremental algorithm
 - the zone of a line
 - the zone theorem
- 2 Levels and Discrepancy
 - counting the number of lines
 - computing the level at vertices
- Proof of the Zone Theorem
 - induction on the number of lines

the zone of a line – an example

The blue line intersects 5 of the 11 faces.

the zone of a line - definitions

Definition (the closure of a face in a subdivision)

Let *f* be a face in a subdivision.

The *closure* \overline{f} *of the face f* is f and all its vertices and edges.

Definition (the zone of a line in an arrangement)

Let A(L) be a line arrangement and ℓ be a line.

The zone of the line ℓ in the arrangement A(L) is

 $\{ f \text{ face of } A(L) \mid \overline{f} \cap \ell \neq \emptyset \}.$

Definition (the zone complexity)

Let A(L) be a line arrangment and ℓ be a line.

The *zone complexity of* ℓ *in* A(L) is the sum of the number of vertices, the number of edges, and the number of faces in the zone of ℓ in A(L).

- Arrangements of Lines
 - an incremental algorithm
 - the zone of a line
 - the zone theorem
- Levels and Discrepancy
 - counting the number of lines
 - computing the level at vertices
- Proof of the Zone Theorem
 - induction on the number of lines

the zone theorem

Theorem (the zone theorem)

Let L be a set of m lines and ℓ be some line. The zone complexity of a line ℓ in the arrangement A(L) is O(m).

By the zone theorem, the cost of the incremental algorithm is quadratic.

Theorem (cost of ConstructArrangement)

A doubly connected edge list for the arrangement induced by a set of n lines in the plane can be constructed in $O(n^2)$ time.

- Arrangements of Lines
 - an incremental algorithm
 - the zone of a line
 - the zone theorem
- 2 Levels and Discrepancy
 - counting the number of lines
 - computing the level at vertices
- Proof of the Zone Theorem
 - induction on the number of lines

the dual of the discrepancy problem

Given a line ℓ , we want to count all points below ℓ .

Given the point ℓ^* , count the lines below ℓ^* .

the level of a point in an arrangement

Definition (level of a point in an arrangement)

Given an arrangement A(L) of lines and a point p, the *level of the point p in A(L)* is the number of lines strictly above p.

- Arrangements of Lines
 - an incremental algorithm
 - the zone of a line
 - the zone theorem
- 2 Levels and Discrepancy
 - counting the number of lines
 - computing the level at vertices
- Proof of the Zone Theorem
 - induction on the number of lines

walking a line and computing levels

For any line ℓ do the following:

- compute the level at the leftmost vertex,
- ② while not at the rightmost vertex on ℓ do
- walk to the next vertex v on ℓ and compute the level of v.

computing the level of the leftmost vertex

In an arrangement of n lines, and a given line ℓ , computing the level of the leftmost vertex on ℓ runs in O(n).

 \rightarrow for the vertex v on ℓ with the smallest x-coordinate, check all other n-1 lines to see whether v lies below.

computing the level of the next vertex

In an arrangement of n lines, and a given line ℓ , computing the level of the next vertex on ℓ also runs in O(n).

- \to in the walk from one vertex to the next, we follow the edges in the doubly connected edge list and update the level as follows:
 - +1 if the edge we follow goes down,
 - -1 if the edge we follow goes up.

computing the discrete measure in quadratic time

The discrete measure of S in U is $\mu_S(h) = \#(S \cap U)/\#S$.

The dual of the sample set S of points is the set of lines S^* . We count the levels of the vertices in the arrangement $A(S^*)$.

Theorem (cost of half plane discrepancy)

The half plane discrepancy of a set S of n points in the unit square U can be computed in $O(n^2)$ time.

- Arrangements of Lines
 - an incremental algorithm
 - the zone of a line
 - the zone theorem
- 2 Levels and Discrepancy
 - counting the number of lines
 - computing the level at vertices
- Proof of the Zone Theorem
 - induction on the number of lines

proving the zone theorem

Theorem (the zone theorem)

Let L be a set of m lines and ℓ be some line. The zone complexity of a line ℓ in the arrangement A(L) is O(m).

Outline of the proof:

- Choose the coordinate system so that ℓ is the *x*-axis.
- Each edge in A(L) bounds two faces.
 An edge is a *left bounding face* for the face to its *right*.
 An edge is a *right bounding face* for the face to its *left*.
- In the zone of ℓ , the number of left bounding edges $\leq 5m$.

The theorem follows from the last statement.

the number of left bounding edges

Lemma (the number of left bounding edges)

Let L be a set of m lines and ℓ be the x-axis. In the zone of ℓ in A(L), the number of left bounding edges \leq 5m.

The lemma is proven by induction on m.

- The base case: m = 1, only one line in L,
 5 is indeed an upper bound to the number of left bounding edges.
- The general case. Let ℓ_1 be the line in L that has the rightmost intersection with ℓ .

We apply the induction hypothesis to $A(L \setminus \{\ell_1\})$: in $A(L \setminus \{\ell_1\})$, the number of left bounding edges $\leq 5(m-1)$.

Need to show:

no more than 5 new left bounding edges when ℓ_1 is added.

the general case

We first assume ℓ_1 intersects ℓ only at one point ν :

We see 5 new edges.

- The edge on ℓ_1 , spanned by (u, v).
- 2 The edge on ℓ_1 , spanned by (v, w).
- **3** The edge on ℓ_2 , starting at u.
- The edge on ℓ , starting at ν .
- **1** The edge on ℓ_3 , starting at w.

the general case - continued

We first assume ℓ_1 intersects ℓ only at one point ν :

The 5 new edges may not the only new edges. However, other new edges are above the vertex u or below w and therefore do not belong to the zone of ℓ .

outline of the proof continued

We first assumed ℓ_1 intersects ℓ only at one point v, but the degree of the vertex v may be much higher, for example: u and/or w may collide with v.

Exercise 1: Examine the case u collides with v. How many new edges appear in this case?

Exercise 2: Examine the case u and w collide with v. How many new edges appear in this case?

recommended assignments

We finished chapter 8 in the textbook.

Consider the following activities, listed below.

- Write the solutions to exercises 1 and 2.
- Consult the CGAL documentation and example code on arrangements of lines.
- Onsider the exercises 10, 12, 13 in the textbook.