

محاسبات عددی برای دانشجویان علوم و مهندسی

تالیف دکتر اصغر کرایه چیان انتشارات دانشگاه فردوسی مشهد

فصل ۳ – معادلات غيرخطي

۱.۲ مقدمه

۲.۳ روش دوبخشی

۳.۳ روش تکرار نقطهی ثابت

 $^{4.7}$, وند $^{7}\Delta$ – اتى $^{2}\Delta$, $^{4.7}$, 6 , 6 , 6 , 6 , 6 , 6

٦.٣ روش وترى

۷.۳ تمرینهای فصل ۳

$$f(x) = \circ$$

یکی از متداولترین مسایلی است که در علوم و مهندسی با آن مواجه می شویم. در اغلب موارد یافتن جواب واقعی امکان پذیر نیست ، و از این رو روشهایی را بررسی می کنیم که بتوانند جواب معادله را با دقت خوبی به دست دهند. به عنوان مثال ، حل معادلاتی به صورتهای زیر را مورد مطالعه قرار می دهیم

$$x^{\circ} + x - \circ = \circ$$

$$x = e^{-x}$$

$$\forall x - \tan x = \circ$$

$$e^{-x} = \sin x$$

معادلهی اول را یک معادلهی چندجملهای و بقیه را معادلات متعالی مینامیم.

روش دوبخشي

الگوريتم روش دوبخشي

گام c-0 را به عنوان تقریبی برای α چاپ می کنیم.

 $c = \frac{a+b}{r}$ گام ۱ – قرار می دهیم

. $f(a)f(b)<\,\circ$ پیوسته و [a,b] بر بازه بر بازه و نید تابع

7.4

قضیدی ۱ – روش دوبخشی همیشه همگرا است. مثال ۱ - تقریبی برای ریشه ی معادله ی زیر با دقت $\epsilon = 1 \circ -$ به دست آورید.

گام ۲ - اگر $f(c)=\circ$ ، آنگاه c ریشه ی معادله است و بهگام δ می رویم. . گام $\alpha - |b-a| < \epsilon$ میرویم c ، $|b-a| < \epsilon$ گام α

 $|lpha-c|<rac{|b-a|}{7}$ در گام ۳، وقتی شرط $|b-a|<\epsilon$ محقق شود، آنگاه

می رویم. در غیراین صورت α در بازه ی [c,b] است. قرار می دهیم a=c ، و به گام ۱ می رویم

حل - تعریف میکنیم $f(x) = x^{0} + x - 1$. این تابع پیوسته است و داریم

معادلهی داده شده در بازهی [۰,۱] تنها یک ریشه دارد. داریم

 $f(\circ) = -1 < \circ$, $f(1) = 1 > \circ$

لذا معادله ی f(x) = 0 در این بازه دارای یک ریشه است. با توجه بهاین

که $0 < f(x) = \Delta x^{*} + 1$ مربازهی [0,1] اکیداً صعودیست ، و از این رو

 $c = \frac{\circ + 1}{r} = \frac{1}{r} \implies f(\frac{1}{r}) = -\frac{10}{rr} < \circ$

0.00000 1.00000 0.00000

0.00000 1.00000 0.Y0000 0.Y0000 1.00000 0.AY000

FACOV.

0. YOFAA

0. VOT91 0. VOT91

0. YOT91

از آنجایی که $\circ > (f(\frac{1}{Y})f(1))$ ، ریشه در بازه ی $\left[\frac{1}{Y},1\right]$ قرار دارد. مجدداً قرار می دهیم

 $c = \frac{\frac{1}{r} + 1}{r} = \frac{r}{r} \Rightarrow f(\frac{r}{r}) < \circ$

پس ریشه در بازه ی $\left[\frac{r}{r}, 1\right]$ قرار دارد. با ادامه ی این روند، جدول زیر نتیجه می شود.

FACCY. O IAYOY.

در تکرار ۱۱ ، ۷۵۴۳۹ ، تقریب مطلوب برای ریشه است ، زیرا در این گام شرط ۱ |b-a| < 0.0 برقرار می شود. اگر α ریشه ی واقعی معادله باشد ، آنگاه یک کران

0. YOFAA 0. YD F T 9

 $|\alpha - \circ. \forall \Delta \forall \forall | < \frac{|b-a|}{\forall} < \circ. \Delta \times 1 \circ^{-1}$

بالا برای خطا (حداکثر خطای ممکن) چنین است

$$f(x) = x^{\mathsf{T}} - \mathsf{T} \sin x = 0$$

نمودارهای دو منحنی نشان میدهد که معادله تنها دارای یک ریشه مثبت است و این ریشه در بازه ی [۱,۲] قرار دارد. این مطلب با توجه به روابط زیر نیز روشن است.

$$f(1) < \circ$$
 , $f(1) > \circ$

با انتخاب $\epsilon = 10^{-6}$ ، نتایج به صورت جدول زیر است.

k	a	b	С	f(a)	f(b)	f(c)
١	1.00000	1.00000	1.00000	-	+	-
7	1.00000	7.00000	1.40000	-	+	-
٣	1.40000	T.00000	1.44000	-	+	-
:						:
15	1.97709	1.97714	1.97777	_	+	_
14	1.98887	1.97714	1.9884	_	+	+
10	1.97777	1.9884	1.97740	-	+	-

با ۱۵ تکرار، c=1.9۳۳۷۵ تقریبی برای ریشه با چهار رقم اعشار درست است ، زیرا داریم

$$|\alpha - 1.97770| < \frac{|1.97771 - 1.97777|}{7} < \circ.0 \times 10^{-8}$$

روش تكرار نقطهي ثابت 4.4

تعریف f(x) فرض کنید تابع f(x) در بازه ی [a,b] تعریف شده باشد. اگر x ای در این بازه باشد به طوری که f(x) ، f(x) ، آنگاه x را نقطه ی ثابت تابع f(x) می نامند.

 $f(\mathsf{T}) = \mathsf{T}$ را در نظر بگیرید. برای این تابع داریم $f(x) = x^\mathsf{T} - \mathsf{T} x + \mathsf{T}$ مثال $x = x^\mathsf{T}$ پس $x_{\circ} = 1$ یک نقطه ی ثابت این تابع است.

فرض کنید $\alpha \in [a,b]$ ریشه معادله ی معادله و فرض کنید معادله معادله معادله و فرض کنید برای تعیین lpha ، ابتدا معادله را به صورت (x=g(x)) می نویسیم ، یعنی تابع (α) را طوری تعریف می کنیم که اگر f(lpha)=lpha ، آنگاه g(lpha)=lpha ، و برعکس. در این صورت یافتن دنباله توسط رابطه ی $x_{n+1}=g(x_n)$ ، تکرارها را تا آن جا ادامه می دهیم که

ریشه ی معادله ی g(x) ، معادل با یافتن نقطه ی ثابت تابع $g(x)=\circ$ است. برای به دست آوردن نقطه ی ثابت g(x) ، یعنی α ، نقطه ی x و را به عنوان تقریبی برای آن انتخاب نموده و دنباله ی $\{x_n\}_{n=0}^{\infty}$ را به صورت زیر تعریف می کنیم

$$x_{n+1} = g(x_n) , n = \circ, 1, \dots$$

تحت شرایط مناسب این دنباله دارای حد است و

 $\lim_{n\to\infty} x_n = \alpha$

.ست. و یا ریشه معادله یه است. و یا ریشه معادله و است. به عبارت دیگر، حد دنباله نقطه ی ثابت و یا ریشه معادله ی

 (\mathbf{v}) عددی مانند k < 1 وجود داشته باشد به طوری که

به ازای m ای داشته باشیم $|x_m - x_{m-1}| < \epsilon$

که
$$\epsilon > \epsilon$$
 از قبل انتخاب می شود. در این صورت x_m را تقریبی برای ریشه ی معادله با دقت $\epsilon > \epsilon$ می نامیم.

بهازای هر $x \in [a,b]$ داشته باشیم $x \in [a,b]$ ، یعنی تابع y بازهی را بهخودش

شرايط تابع و

قضیهی ۲ – (الف) فرض کنید تابع g(x) در بازهی [a,b] پیوسته و مشتق پذیر باشد و

نقش كند.

$$|g'(x)| \le k < 1$$
, $\forall x \in [a, b]$

مثال ۵ – معادله ی زیر را حل کنید.

$$f(x) = \Upsilon x - \Upsilon e^{-x} = \circ$$

بازهی
$$y=e^{-x}$$
 و $y=\sqrt[7]{\pi}$ نشان می دهند که معادله تنها یک ریشه دارد. نمودارهای معادلههای $y=e^{-x}$ و $y=\sqrt[7]{\pi}$ نشان می دهند که معادله حال معادله را به صورت زیر می نویسیم

$$x = \frac{7}{7}e^{-x}$$

در این جا و مشتق پذیر است و مشتق پذیر است و در بازه ی $g(x) = \frac{r}{r}e^{-x}$ در این جا

$$|g'(x)| = \frac{\mathsf{T}}{\mathsf{T}} e^{-x} \le \frac{\mathsf{T}}{\mathsf{T}} < \mathsf{T} \ , \ \forall x \in [\,\circ\,,\,\mathsf{T}\,]$$

. $g(1)=rac{7}{7e}\in [\,\circ\,,\,1]$ و $g(\,\circ\,)=rac{7}{7}\in [\,\circ\,,\,1]$ نزولی است و داریم ارم و ارم و g(x) تابع g(x)

$$g(x) \in [\circ, 1], \forall x \in [\circ, 1]$$

بنابراین شرایط قضیه ی نقطه ی ثابت بر قرار است. با انتخاب $x_{\circ} = \circ .0$ که در بازه ی [۰,۱] است ، تعریف می کنیم

$$x_{n+1} = \frac{7}{7}e^{-x_n}$$
, $n = \circ, 1, \ldots$

هریک از جملات دنباله تقریبی برای ریشهی معادله است . این تقریبها به صورت جدول

n	x_n	n	x_n
1	0.40440	٦	0.44799
٢	0.4449	٧	0.4444
٣	0.47774	٨	0.44774
۴	0.444V	9	0.44704
۵	0. FT 10V	10	0 FTT 01

در این مثال تقریب به دست آمده در تکرار ۱۰، یعنی ۴۳۲۵۸ = ۱۰، دارای دقت ۱ ۰ ۰ ۰ ۰ ۰ است. بداین معنی که

$$|x_1, -x_2| < 0.0001$$

آهنگ همگرایی روش تکرار نقطهی ثابت

فرض کنید α نقطه α ثابت تابع β یا ریشه α معادله α بازه و α بازه و α در شرایط قضیه α نقطه α ثابت صدق کند. داریم α در شرایط قضیه α نقطه α ثابت صدق کند. داریم

 $\forall x \in [a,b]$ ، $g'(x) \neq 0$ پیوسته و $g'(x) \neq 0$ در بازهی $g'(x) \neq 0$

 $e_{n+1} \approx g'(\alpha)e_n$

که نشان می دهد خطا در هر گام متناسب است با خطا در گام قبلی. در چنین حالتی گفته e_n می شود که همگرایی از مرتبه ی اول یا خطی است. هرقدر $|g'(\alpha)|$ کوچکتر باشد ، $g'(\alpha) = 0$ در سریعتر به سمت صفر میل می کند. به ویژه ، سریعترین حالت وقتی است که $g'(\alpha) = 0$ در این صورت برای تعیین مرتبه ی همگرایی ، فرض کنید $g'(\alpha) = 0$ ییوسته باشد. بنا

اگر $\phi''(\alpha) \neq 0$ ، آنگاه میتوان گفت که

$$e_{n+1} \approx \frac{1}{7}g''(\alpha)e_n^7$$

در این حالت همگرایی را از مرتبهی دوم مینامند. بههمین ترتیب میتوان همگرایی از مرتبههای بالاتر را تعریف نمود.

ملاحظه می شود که با سه تکرار متوالی تقریبی برای α به دست می آید. از این تقریب می توان برای تکرار بعدی استفاده نمود. پس، تعریف می کنیم

$$\hat{x_{n+1}} = x_n - \frac{(x_{n+1} - x_n)^{\mathsf{T}}}{x_{n+1} - \mathsf{T} x_{n+1} + x_n} \quad , \quad n = \circ, \mathsf{T}, \mathsf{T}, \dots$$
 (T)

یا با نماد تفاضلات متناهی

$$\hat{x_{n+1}} = x_n - \frac{(\Delta x_n)^{\mathsf{T}}}{\Delta^{\mathsf{T}} x_n}$$

در روش تکرار نقطه ی ثابت دیدیم که اگر g'(lpha)
eq n ، آنگاه $rac{e_{n+1}}{e_n} pprox g'(lpha)$

بنابراين

از اینجا

$$rac{e_{n+1}}{e_{n+1}}pprox g'(lpha)$$
 قتشابهاً

$$\frac{e_{n+1}}{e_{n+1}} \approx \frac{e_{n+1}}{e_n}$$

$$\frac{x_{n+1} - \alpha}{x_{n+1} - \alpha} \approx \frac{x_{n+1} - \alpha}{x_n - \alpha}$$

$$\alpha \approx x_n - \frac{\left(x_{n+1} - x_n\right)^{\mathsf{Y}}}{x_{n+1} - \mathsf{Y}x_{n+1} + x_n}$$

 $x_{n+1} = g(\hat{x_{n+1}})$ که تقریبی برای α است ، می توان تقریبهای $\hat{x_{n+1}}$ که تقریبی برای $x_{n+1} = g(\hat{x_{n+1}})$ و $x_{n+1} = g(\hat{x_{n+1}})$ از فرمول $\hat{x_{n+1}}$ و ابه دست آورد و به همین ترتیب ادامه داد. می توان نشان داد دنباله ی $\hat{x_{n+1}}$ که از $\hat{x_{n+1}}$ که از $\hat{x_{n+1}}$ که از $\hat{x_{n+1}}$ به دست می آید نیز همگرا به $\hat{x_{n+1}}$ است ، اما آهنگ همگرایی آن خیلی سریعتر است.

قضیه ی $x_{n+1}=g(x_n)$ فرض کنید دنباله ی $\{x_n\}_{n=0}^{\infty}$ تولید شده توسط $\{x_n\}_{n=1}^{\infty}$ همگرا به α ، نقطه ی ثابت α باشد و همگرایی آن خطی باشد. در این صورت دنباله ی $\{x_{n+1}\}$ تعریف شده با α نیز همگرا به α ، و تحت شرایط مناسب همگرایی آن از مرتبه ی دو است.

مثال Λ – ریشه ی منفی معادله ی $x^{\mathsf{T}}+x-\mathsf{T}=0$ را به دست آورید.

$$x_0=g(x_7)=rac{7}{-7.\circ 907}-1=-1.99770$$
 از فرمول (۳) داریم

$$\hat{x_{\Delta}} = -1.9 \text{ A} \Delta \circ \text{V} - \frac{(-\text{Y.} \circ \text{V} \Delta \text{Y} + 1.9 \text{ A} \Delta \circ \text{V})^{\text{Y}}}{-1.997 \text{Y} \Delta - \text{Y}(-\text{Y.} \circ \text{V} \Delta \text{Y}) - 1.9 \text{A} \Delta \circ \text{V}} = -\text{Y.} \circ \circ \circ \circ \text{Y}$$

$$x_{1} = g(\hat{x_{\Delta}}) = -1.99999, x_{Y} = g(x_{1}) = -\text{Y.} \circ \circ \circ \circ \circ , x_{A} = g(x_{Y}) = -\text{Y.} \circ \circ \circ \circ \circ \circ$$

$$\hat{x_{A}} = -\text{Y.} \circ \circ \circ \circ \circ \circ$$

خلاصه ی نتایج روش ایتکن با همان دقت $\epsilon = \frac{1}{7} \times 1 \circ^{-7}$ ، مطابق جدول زیر است.

توجه کنید که در اینجا خطا در هر گام متناسب با مربع خطا در گام قبلی است ، یعنی همگرایی از مرتبه ی دوم است.

$$=\frac{r}{x}-1$$

حل - ریشه ی منفی معادله x=-۲ است. معادله را به صورت زیر می نویسیم

تعریف میکنیم ۱
$$rac{Y}{x}-1$$
 . بسادگی میتوان نشان داد که این تابع در بازه ی

$$x_\circ=-$$
۱.۵ از مرمول $x_\circ=-$ ۱.۵)، شرایط قضیه می نقطه می ثابت را دارد. با انتخاب $x_\circ=-$ 1.۵ از مرمول $x_{n+1}=g(x_n)=\frac{t}{x_n}-$ ۱ $x_n=\circ$, ۱, . . .

نتایج با
$$\epsilon = \frac{1}{7} \times 1$$
۰۰ به صورت جدول زیر حاصل می شود.

در این جدول $|e_n| = |-r-x_n|$. با توجه به ستون آخر ملاحظه می شود که همگرایی خطی است و خطا در هر گام تقریباً نصف می شود.

اکنون با روش ایتکن مساله را حل میکنیم. داریم

$$x_1=g(x_\circ)=rac{7}{-1.\Delta}-1=-7.777777$$
 , $x_7=g(x_1)=-1.4\Delta Y17$

حال از فرمول (۳) داريم

مول (۳) داریم

 $x_{\mathbf{f}} = g(x_{\mathbf{f}}) = \frac{\mathbf{f}}{-1.1 \wedge \mathbf{A} \cdot \mathbf{v}} - 1 = -\mathbf{f} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v}$

1= 2(a.43)

X X=0

4= 1; 4= cos2x

4: 8: 5

روش نيوتن – رافسون

یک همسایگی x_0 شامل α مشتق پذیر باشد، بنابر فرمول تیلور می توان نوشت

 $f(x) = f(x_{\circ}) + (x - x_{\circ})f'(x_{\circ}) + \frac{(x - x_{\circ})^{\Upsilon}}{\Upsilon!}f''(\eta), \quad x_{\circ} < \eta < x$

 $\circ = f(\alpha) = f(x_\circ) + (\alpha - x_\circ)f'(x_\circ) + \frac{(\alpha - x_\circ)^{\mathsf{Y}}}{\mathsf{Y}!}f''(\eta) , \quad x_\circ < \eta < \alpha$

 $-\frac{f(x_\circ)}{f'(x_\circ)} = (\alpha - x_\circ) + \frac{(\alpha - x_\circ)^{\mathsf{T}}}{\mathsf{T}!} \frac{f''(\eta)}{f'(x_\circ)}$

اگر x_0 به اندازه ی کافی به α نزدیک باشد، می توان از جمله ی دوم طرف راست (۵) چشم

 $\alpha - x_{\circ} \approx -\frac{f(x_{\circ})}{f'(x_{\circ})}$

 $\alpha \approx x_{\circ} - \frac{f(x_{\circ})}{f'(x_{\circ})}$

فرض کنید α ریشه معادله ی f(x) و x تقریبی برای آن باشد. با فرض آن که f در

در (۴) قرار می دهیم $x = \alpha$ آنگاه

یا اگر $\phi \neq f'(x_{\circ}) \neq 0$ یا اگر

پوشی نمود، و در نتیجه خواهیم داشت

خواهيم داشت

است ، یعنی

 $x_{\Upsilon} = x_{\Lambda} - \frac{f(x_{\Lambda})}{f'(x_{\Lambda})}$

پس ، $\frac{f(x_0)}{f'(x_0)}$ ، است. اگر آن را x_0 بنامیم ، داریم

و با ادامه ی این روند، فرمول نیوتن - رافسون زیر به دست می آید

 $x_1 = x_\circ - \frac{f(x_\circ)}{f'(x_\circ)}$

عموماً x_1 تقریب بهتری از x_0 است. با قرار دادن x_1 بهجای x_0 در x_1 بهدلیل مشابه

 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} , n = \circ, 1, \dots$

lpha ممگرا به متاسب برای تابع f ، دنباله ی میریف شده با $\{x_n\}_{n=0}^\infty$ تحت شرایط مناسب برای تابع

 $\lim_{n \to \infty} x_n = \alpha$

مثال ۹ - ریشههای معادلهی زیر را با روش نیوتن - رافسون محاسبه کنید.

$$x - x = 10$$

فرمول نيوتن - رافسون در اين جا چنين است

حل $y=x^*$ و y=x+1 و تاتخی دو منحنی y=x+1 و مستند. با رسم این منحنیها معلوم می شود که معادله دارای یک ریشه ی مثبت و یک ریشه ی منفی است. تعریف می کنیم

$$f(x) = x^{\mathfrak{f}} - x - 1 \circ$$

داریم f(1) = -1 و f(1) = f(1) . پس ریشه ی مثبت در بازه ی f(1) = -1 قرار دارد. همچنین $-\Lambda = f(-1) = f(-1)$ و + f(-1) = f(-1) همچنین + f(-1) = f(-1) همچنین همچنین همچنین همچنین همچنین همچنین و متابع است.

$$f'(x) = f'x^{r} - 1$$

$$x_{n+1} = x_n - \frac{x_n^{\mathfrak{p}} - x_n - 1 \circ}{\mathfrak{p} x_n^{\mathfrak{p}} - 1} = \frac{\mathfrak{p} x_n^{\mathfrak{p}} + 1 \circ}{\mathfrak{p} x_n^{\mathfrak{p}} - 1}, n = \circ, 1, \dots$$

برای ریشه ی مثبت نقطه ی آغازین را $x_{\circ} = 7$ و برای ریشه ی مثبت نقطه ی آغازین را $x_{\circ} = -1.0$ میکنیم. اگر $\epsilon = 1 \circ - \epsilon$ بگیریم، نتایج به صورت جدولهای زیرند.

x_n	n	x_n
7	0	-1.0
1.18071	1	-1.777079
1.4004.1	٢	-1.79146
1.400040	٣	-1.797477
1.100010	14	-1.797477

تقریب با دقت مطلوب برای هر دو ریشه پس از ۴ تکرار بهدست می آید، یعنی برای هر دو

 $|x_{\mathcal{V}} - x_{\mathcal{V}}| < \circ. \circ \circ \circ \land$

$$|f(-1.79YYYY)| = f.\lambda\lambda\lambda\lambda\Upsilon^{7} \times 10^{-4} < 10^{-7}$$

توجه کنید که شرط $|x_{r}-x_{r}| < 0.000$ بیانگر این نیست که خطا در تقریبهای بهدست آمده کمتریا برابریا $|f(x_{\mathfrak{k}})| < 1 \circ^{-1}$ است. همین طور $|f(x_{\mathfrak{k}})| < 1 \circ^{-1}$ نیز اندازه ی خطای

تقریب را مشخص نمی کند.

ین نیست که حصه در طریبه ی بدست
$$|f(x_t)| < 1$$
 نیز اندازه ی خطای

1 |2n - 2n-1 < F

@ |f(an) < E

فرمول خطای روش نیوتن

$$e_{n+1} = -\frac{f''(\xi_n)}{Yf'(x_n)} e_n^Y$$

همگرایی روش نیوتن

قضیه ی α فرض کنید α ریشه ی معادله ی α باشد، و α باشد، و α و " α در یک همسایگی از α مانند α بیوسته باشند، و α باشد α . در این صورت اگر نقطه ی آغازین α به قدر کافی به α نزدیک انتخاب شود، دنباله ی $\{x_n\}_{n=0}^{\infty}$ تولید شده توسط فرمول نیوتن همگرا به α است، یعنی

$$\lim_{n \to \infty} x_n = \alpha \tag{A}$$

$$\lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^{\Upsilon}} = \frac{|f''(\alpha)|}{\Upsilon |f'(\alpha)|}$$

که نشان میدهد مرتبهی همگرایی روش نیوتن حداقل برابر ۲ است.

$$Input \ a_k \ , k = \circ, 1, \dots, n$$
 الگوریتم هُرنر $b_n = a_n$

For
$$k = n - 1, n - 7, ..., 1, o$$
 do:
 $b_k = b_{k+1}x_o + a_k$
End k

$$P'(x_\circ) = Q(x_\circ)$$
 $P'(x_\circ)$ برای محاسبه ی

$$C_{n-1} = b_n$$

$$C_{n-1} = b_n \times b_{n-1}$$

$$C_{n-2} = C_n \times b_{n-2}$$

$$C_0 = C_1 \times b_n \Rightarrow Q(x) = C_0$$

حل معادلات چندجملهای با روش نیوتن – رافسون

فرض کنید بخواهیم ریشهای از معادله ی $P(x) = \circ$ را بیابیم که P(x) یک چندجملهای به صورت زیر است

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_s \tag{10}$$

با استفاده از فرمول نیوتن ،

$$x_{k+1} = x_k - \frac{P(x_k)}{P'(x_k)}, \ k = \circ, 1, \dots$$

در هر تکرار باید $P(x_k)$ و $P(x_k)$ که هردو چندجملهای هستند، بهازای k ای محاسبه شوند که اگر n بزرگ باشد، به تعداد عمل ضرب زیادی نیاز خواهد بود. روشی کارا بهنام روش هُرنر برای محاسبه ی یک چندجمله ی بهازای یک نقطه ی مفروض وجود دارد که آن را تشریح می کنیم.

فرض کنید بخواهیم مقدار چندجملهای $P(x)=a_{\mathsf{T}}x^{\mathsf{T}}+a_{\mathsf{T}}x^{\mathsf{T}}+a_{\mathsf{N}}x+a_{\circ}$ را بهازای $x=x_{\circ}$

$$P(x_{\circ}) = ((a_{\uparrow}x_{\circ} + a_{\uparrow})x_{\circ} + a_{\downarrow})x_{\circ} + a_{\circ}$$

اگر قرار دهیم

$$b_r = a_r$$

$$b_{\mathsf{Y}} = b_{\mathsf{Y}} x_{\circ} + a_{\mathsf{Y}}$$

$$b_1 = b_1 x_0 + a_1$$

$$b_{\circ} = b_{1}x_{\circ} + a_{\circ}$$

آنگاه داریم

$$P(x_{\circ}) = b_{\circ}$$

مثال ۱۱ \rightarrow اگر P'(-1) و $P(x) = Tx^{4} - Tx^{7} + Tx - P$ و P'(-1) و را با روش هُرنر.

$$a_{\mathfrak{f}} = \mathfrak{f}$$
 , $a_{\mathfrak{f}} = \mathfrak{o}$, $a_{\mathfrak{f}} = -\mathfrak{f}$, $a_{\mathfrak{f}} = \mathfrak{f}$, $a_{\mathfrak{o}} = -\mathfrak{f}$

برطبق الگوريتم هُرنر داريم

حل - داريم

$$b_{\mathfrak{k}} = a_{\mathfrak{k}} = 2$$

$$b_{\mathsf{T}} = \mathsf{T}(-\mathsf{T}) + \circ = -\mathsf{F}$$

$$b_{\Upsilon} = (-\Upsilon)(-\Upsilon) - \Upsilon = \Delta$$

$$b_1 = \Delta(-\Upsilon) + \Upsilon = -\Upsilon$$

$$b_{\circ} = (-\mathsf{Y})(-\mathsf{Y}) - \mathsf{F} = \mathsf{I} \circ$$

پس ۱۰
$$P(-T) = 1$$
 حال داریم

$$Q(x) = \Upsilon x^{\mathsf{T}} - \Upsilon x^{\mathsf{T}} + \Delta x - \mathsf{Y}$$

ضرایب
$$Q(x)$$
 را به صورت زیر نام گذاری می کنیم

$$a_{\Upsilon} = \Upsilon$$
 , $a_{\Upsilon} = -\Upsilon$, $a_{\Lambda} = \Delta$, $a_{\circ} = -\Upsilon$

قرار مىدھىم

$$b_{\Upsilon} = a_{\Upsilon} = \Upsilon$$

 $b_{\Upsilon} = \Upsilon(-\Upsilon) - \Upsilon = -\Lambda$

$$b_1 = (-A)(-Y) + \Delta = Y$$

$$b_{\circ} = Y (-Y) - Y = -49$$

$$.P'(-\mathsf{T}) = Q(-\mathsf{T}) = -\mathsf{F}$$
۹ بنابراین

امتیاز روش هُرنر بر روش معمولی

 $P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_n$ برای محاسبه ی مقدار چندجمله ای تعداد عمل ضرب مورد نیاز برابر است با به به ازای $x = x_n$ به ازای معمولی، تعداد عمل ضرب مورد نیاز برابر است با

$$1+7+\ldots+(n-1)+n=\frac{n(n+1)}{7}$$

زیرا در محاسبه ی a_1x_0 به یک عمل ضرب و در محاسبه ی $a_1x_0^*$ به دو عمل ضرب و ... و برای $a_1x_0^*$ به $a_1x_0^*$ عمل ضرب نیاز است. از طرفی با توجه به الگوریتم هُرنر ، در محاسبه ی هر b_k به یک عمل ضرب نیاز است ، و در نتیجه کل عمل ضرب مورد نیاز برابر $a_1x_0^*$ به یک عمل ضرب اگر $a_1x_0^*$ ، آنگاه با روش معمولی در مورد نیاز برابر $a_1x_0^*$ بست. پس ، برای مثال ، اگر $a_1x_0^*$ ، آنگاه با روش معمولی در حدود $a_1x_0^*$ ضرب و با روش هُرنر $a_1x_0^*$ عمل ضرب لازم است. از آنجایی که انجام هر عمل ضرب توسط کامپیوتر زمان بر است ، امتیاز روش هُرنر بر روش معمولی آشکار می شود.

(مثال ۱۲) معادلهی زیر را در نظر بگیرید محاسبهی ریشههای تکراری با روش نیوتن $f(x) = x^{\mathfrak{f}} - {\mathfrak{f}} x^{\mathfrak{f}} + {\mathfrak{f}} = \left(x^{\mathfrak{f}} - {\mathfrak{f}}\right)^{\mathfrak{f}} = 0$ m است کورار $f(x)=\circ$ ریشه معادله معادله می شود که lpha ریشه معادله معادله معادله می تکرار

$$x_{k+1}=rac{rx_k^\gamma+r}{rx_k}$$
 , $k=\circ$, $1,\ldots$ با انتخاب $x_{o}=1.0$ و $x_{o}=1.0$ نتایج به صورت زیر به دست می آید.

$$e_n$$
 $A.\Delta YA7FF \times 10^{-7}$
 $f.F119A1 \times 10^{-7}$
 $f.Y79F\Delta 1 \times 10^{-7}$
 $f.Y74F \times 10^{-7}$
 $f.Y74F \times 10^{-7}$
 $f.Y74F \times 10^{-7}$

$$N_1 = \frac{10}{1.414400} \frac{1.414400}{1.414400} \frac{1.414400}{1.414400}$$
 در جدول بالا $e_n = |\sqrt{r} - x_n|$ ، خطا در هر تکرار است. ملاحظه می شود که سرعت همگاه کند است و خطا در هم تکل تقریباً نصف و شود و تمان نشان داد (تمرین) که

1.0

1.40144

1.4477.V

1.470491

1.419444

در جدول بالا
$$|e_n| < e_n = |\sqrt{1-x_n}|$$
 ، خطا در هر تکرار است. ملاحظه می شود که سرع همگرایی کند است و خطا در هر تکرار تقریباً نصف می شود. می توان نشان داد (تمرین) که e_{n+1} . .

یک ریشهی این معادله ۷۲ و مرتبه تکرار آن دو است. تقریبی برای این ریشه با روش

 $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{\left(x_k^{\mathsf{Y}} - \mathsf{Y}\right)}{\mathsf{Y}x_k\left(x_k^{\mathsf{Y}} - \mathsf{Y}\right)}$

نیوتن استاندارد و روش نیوتن تصحیح شده بهدست می آوریم. با روش استاندارد داریم

بهعبارت دیگر همگرایی خطی است و جواب با دقت مطلوب پس از ۱۰ تکرار به دست می آید. در حقیقت داریم ϵ در x_1 - x_2 - در ضمن با نوجه به این که x_1 ، تقریب ، $\sqrt{\Upsilon} = 1.4147170717...$ که اعشار درست دارد.

مى توان از فرمول نبوتن تصحيح شده $x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}, \ k = \circ, 1, \dots$ استفاده نمود، که در آن m مرتبه ی تکرار ریشه است.

همگرایی خطی است. برای آن که در حالت ریشههای تکراری همگرایی از مرتبه ی دوم باشد، می توان از فرمول نیوتن تصحیح شده
$$f(x_k)$$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \;,\; k = \circ, 1, \ldots$$
 با شرایط ذکر شده در قضیه همگرا است، ولی سرعت همگرایی از مرتبه ی دوم نبوده، بلکه

$$f^{(m)}(\alpha) \neq 0$$
 اما $\alpha \neq 0$. $f^{(m)}(\alpha) \neq 0$. $f^{(m)}(\alpha) \neq 0$ اگر α ریشه معادله α میتوان نشان داد که دنباله α با تعریف شده با فرمول نیوتن $\{x_n\}_{n=0}^{\infty}$.

 $f(\alpha) = f'(\alpha) = \dots = f^{(m-1)}(\alpha) = \circ$

اکنون تقریبی برای ریشه با روش نیوتن تصحیح شده بهدست می آوریم. داریم

$$x_{k+1} = x_k - rac{\mathsf{Y}\left(x_k^{\mathsf{Y}} - \mathsf{Y}\right)^{\mathsf{Y}}}{\mathsf{Y}x_k\left(x_k^{\mathsf{Y}} - \mathsf{Y}\right)}$$

$$x_{k+1} = \frac{x_k^{\Upsilon} + \Upsilon}{\Upsilon x_k}$$
 ; $k = \circ, 1, \dots$

با انتخاب $x_{\circ}=1.0$ و $\epsilon=1$ تتایج به صورت زیر به دست می آید. $x_{\circ}=1.0$

n	x_n	e_n
0	1.0	1.071744 × 10-4
1	1.41777	7.400770 × 10-4
1	1.414717	7.171078 × 10-7
N-P	1.414714	7.470777 × 10-1

ملاحظه می شود که با این روش جواب با دقت مطلوب با سه تکرار به دست می آید، یعنی $x_{\rm T}-x_{\rm T}$. به بیان دیگر، سرعت همگرایی تند است ، و به طوری که ملاحظه می شود خطا در هر تکرار متناسب با مربع خطا در تکرار قبل است. در حقیقت می توان نشان داد (تمرین) که

$$\lim_{n\to\infty}\frac{e_{n+1}}{e_n^{\gamma}}=\frac{1}{\gamma\sqrt{\gamma}}$$

یعنی همگرایی مرتبه ی دو است. در این جا تقریب x_{7} دارای شش رقم اعشار درست است.

JH2)

به طوری که دیدیم روش نیوتن سریعا همگرا است ، ولی نقص عمده ی این روش آن است که در هر تکرار به محاسبه ی دو تابع نیاز است یکی f و دیگری f' . این امر حجم محاسبات را افزایش میدهد ضمن آن که ممکن است محاسبه ی مشتق هم پیچیده باشد. یک راه برای آن که نیازی به محاسبهی مشتق نباشد و در عین حال روشی با سرعت همگرایی بالا داشته

$$f'(x) \approx \frac{f(x) - f(x - h)}{h}$$

در این صورت با قرار دادن در فرمول نیوتن خواهیم داشت

باشیم، آن است که مشتق را به صورت زیر تقریب بزنیم

$$x_{n+1} = x_n - \left(\frac{h}{f(x_n) - f(x_n - h)}\right) f(x_n)$$

یا اگر قرار دهیم $x_n - h = x_{n-1}$ ، آنگاه

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n) , n = 1, 7, \dots$$
(17)

in the formula of the following states of

$$x_{n+1} = \frac{x_{n-1}f(x_n) - x_nf(x_{n-1})}{f(x_n) - f(x_{n-1})} , n = 1, 7, \dots$$
 (14)

فرمولهای (۱۳) و (۱۴) را فرمولهای وتری مینامند.

f(x)= ه معادلهی معادلهی معادلهی می و x برای lpha ، ریشهی معادلهی x، انتخاب نموده و دنباله ی $\{x_n\}_{n=0}^{\infty}$ را توسط فرمول (۱۳) یا (۱۴) تولید می کنیم. تحت شرایط مناسب دنباله همگرا به α خواهد بود.

مثال ۱۳ ← تقریبی برای ۲۷ بهدست آورید.

حل $\sqrt{7}$ ریشهی معادلهی $x_0=1$ $x_0=x$ است. تقریبهای اولیه $x_0=1$ و را انتخاب می کنیم. بنا به فرمول وتری (۱۳) داریم $x_1 = 1$

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{x_n^{\mathsf{T}} - x_{n-1}^{\mathsf{T}}} \left(x_n^{\mathsf{T}} - {\mathsf{T}} \right)$$

$$x_{n+1} = \frac{x_n x_{n-1} + \mathsf{T}}{x_n + x_{n-1}} \ , \ n = \mathsf{I}, \mathsf{T}, \dots$$

ازاينجا

$$x_{\mathsf{Y}} = 1.\mathsf{YYYYYY}$$
 , $x_{\mathsf{Y}} = 1.\mathsf{f} \circ \circ \circ \circ \circ$,...

نتایج در جدول زیر داده می شود.

n	x_{n+1}	e_{n+1}
1	1.44444	0.01010
٢	1.400000	0.014714
٣	1.414744	0.000471
4	1.414111	0.000007
۵	1.414414	0.000000

که $e_n = |\sqrt{7} - x_n|$ در این مثال $\epsilon = \circ . \circ \circ \circ$ و از آزمون توقف

$$|f(x_{n+1})| < \epsilon$$
, $|x_{n+1} - x_n| < \epsilon$

استفاده شده است ، که در تکرار ۵ این دو شرط تواماً بر قرار می شود.

قضیه کY فرض کنید α ریشه معادله یf(x)=0 باشد، و f' و f' در یک همسایگی α مانند f' پیوسته باشند، و $f'(x)\neq 0$ باشد، و $f'(x)\neq 0$ مانند $f'(x)\neq 0$ مانند $f(x)\neq 0$ بیوسته باشند، و $f(x)\neq 0$ مانند $f(x)\neq 0$ به مانند $f(x)\neq 0$ مانند $f(x)\neq 0$ به مانند

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$$
, $n = 1, 7, ...$

همگرا به lpha است ، و

$$\lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^p} = C$$

که $c \neq 0$ ثابت و $\frac{\sqrt{3}+1}{7}$. به عبارت دیگر مرتبه ی همگرایی روش $p \approx 1.7$ است.

