

Sea  $\lambda$  un valor característico de A con vector característico  $\mathbf{v} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ . Sea  $m = \max\{|x_1|, x_1|, x_2| \}$ 

$$|x_2|, \ldots, |x_n|$$
. Entonces  $\binom{1}{m} \mathbf{v} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$  es un vector característico de  $A$  correspondiente

a  $\lambda$  y máx  $\{|y_1|, |y_2|, \ldots, |y_n|\} = 1$ . Sea  $y_i$  un elemento de y con  $|y_i| = 1$ . Ahora bien,  $Ay = \lambda y$ . La componente i del vector de dimensión n Ay es  $a_{i1}y_1 + a_{i2}y_2 + \cdots + a_{in}y_n$ . La componente i de  $\lambda y$  es  $\lambda y_i$ . Entonces

$$a_i y_1 + a_{i2} y_2 + \cdots + a_{in} y_n = \lambda y_i$$

lo que se puede escribir como

$$\sum_{j=1}^{n} a_{i1} y_{j} = \lambda y_{i}$$
 (8.8.11)

Restando  $a_i y_i$  en ambos lados, la ecuación (8.8.11) se puede escribir como

$$\sum_{\substack{j=1\\i\neq i}}^{n} a_{i1} y_{j} = \lambda y_{i} - a_{ii} y_{i} = (\lambda - a_{ii}) y_{i}$$
(8.8.12)

Después, tomando el valor absoluto en ambos lados de (8.8.12) y usando la desigualdad del triángulo  $(|a+b| \le |a| + |b|)$ , se obtiene

$$|(a_{ii} - \lambda)y_i| = \left| -\sum_{\substack{j=1\\j \neq 1}}^n a_{ij} y_j \right| \le \sum_{\substack{j=1\\j \neq 1}}^n |a_{ij}| |y_j|$$
(8.8.13)

Se dividen ambos lados de (8.8.13) entre  $|y_i|$  (que es igual a 1) para obtener

$$|a_{ii} - \lambda| \le \sum_{\substack{j=1\\j \ne 1}}^{n} |a_{ij}| \frac{|y_j|}{|y_i|} \le \sum_{\substack{j=1\\j \ne 1}}^{n} |a_{ij}| \le r_1$$
(8.8.14)

El último paso sigue el hecho de que  $|y_j| \le |y_i|$  (por la forma en que se eligió  $y_i$ ). Pero esto prueba el teorema, ya que (8.8.14) muestra que  $\lambda \in D_i$ .

Para ejemplificar el teorema anterior, utilizando la información del ejemplo 8.1.4, se había encontrado que los valores característicos de A son 1, -2 y 3, los cuales están dentro de las tres circunferencias, como se puede apreciar en la figura 8.6.



Figura 8.6

Todos los valores característicos de *A* están dentro de estas tres circunferencias.