INE5430 - Inteligência Artificial

Trabalho T4 - Sistemas Fuzzy

Caique Rodrigues Marques c.r.marques@grad.ufsc.br

Fernando Jorge Mota contato@fjorgemota.com

Introdução

A base para a execução deste trabalho está no uso de conceitos do sistema fuzzy ou sistema nebuloso, composto de lógica fuzzy e conjunto fuzzy. O estudo de conjuntos fuzzy foi introduzido por Lofti Zadeh, em 1965, e é uma extensão da teoria de conjuntos clássica. A lógica fuzzy é uma lógica multi-valorada onde a informação, ao contrário da lógica booleana, não é atribuída a um ou zero, mas podendo estar entre esses dois valores.

O cerne do raciocínio *fuzzy* é da transformação de informações linguísticas (podendo ser dúbias e vagas) em valores numéricos para que possam ser trabalhadas matematicamente e computacionalmente, depois, é realizado o inverso para que as soluções sejam avaliadas.

O sistema

O sistema utilizado consiste em fazer um caminhão estacionar na vaga especificada, em marcha ré, usando uma série de regras fuzzy. As variáveis que devem ser consideradas são: a posição x e y do caminhão; a direção no qual ele está e o ângulo em que o volante está virado.

Variáveis do sistema

As variáveis entrada do sistema são valores x e y, apontando a posição inicial do caminhão, e a direção, que consiste onde a frente do caminhão está apontado (este dado é obtido a partir da conversão do angulo atual no qual o caminhão se encontra). A partir desses dados, um ângulo é gerado como saída, mostrando qual o angulo do volante do caminhão deve ser modificado antes de executar o próximo movimento a ré, num intervalo que vai de -30° até 30°. Outro ponto a notar é a delimitação das variáveis: os eixos x e y estão limitados ao intervalo (0,1); as direções envolvem cima, baixo, esquerda, direita, diagonais superiores esquerda e direita e diagonais inferiores esquerda e direita, e são definidas a partir de seus valores respectivos em uma escala de 0° a 360°; Já o ângulo é delimitado de -30° até 30°, embora seja enviado para o servidor como um intervalo que vai de -1 a 1.

Como esses intervalos fazem parte do funcionamento do sistema, vamos, abaixo, especificar e listar as condições que classificam um determinado valor fornecido pelo servidor dado em um termo que pode ser usado numa regra de forma mais simples. Segue a lista:

• X

- tooLeft Intervalo entre 0 e 0.3;
- left Intervalo entre 0.2 e 0.5;
- half Intervalo entre 0.4 e 0.6;
- right Intervalo entre 0.5 e 0.8;
- tooRight Intervalo entre 0.7 e 1.

Y

- up Intervalo entre 0 e 0.6;
- half Intervalo entre 0.4 e 0.8;
- bottom Intervalo entre 0.7 e 1.
- Direção (direction, no código)
 - left Intervalo entre 90 e 270;
 - right Intervalo entre 0 e 90 e intervalo entre 270 e 360;

- up Intervalo entre 0 e 180;
- down Intervalo entre 180 e 360.

Além dos termos acima, também definimos um termo que é usado como retorno para cada regra e que respeita intervalos similares ao do termo X:

- Ângulo (angle, no código)
 - tooLeft Intervalo entre -1 e -0.5;
 - left Intervalo entre -0.6 e -0.2;
 - center Intervalo entre -0.3 a 0.3;
 - right Intervalo entre 0.2 e 0.6;
 - tooRight Intervalo entre 0.5 a 1.

Regras

A partir das definições especificadas na seção anterior, uma série de 120 regras são definidas para determinar qual caminho o caminhão deve percorrer. Todas as regras são condicionais (IF, THEN), sendo que dados os x, y e duas direções (para tratar casos onde o caminhão está na diagonal), então o ângulo do volante deve ser uma das cinco posições especificadas na listagem especificada anteriormente e são aplicados cálculos de lógica fuzzy para encontrar o valor que será retornado. Alguns exemplos dessas regras são encontrados abaixo:

X	У	direction	direction	angle
tooLeft	up	left	up	center
tooLeft	up	left	down	tooLeft
left	up	up	direction IS NOT left AND direction IS NOT right	center

Note que os exemplos acima são apenas uma pequena amostra das 120 regras definidas, que não serão todas apresentadas aqui devido à sua extensão.

Método de defuzzificação

Defuzzificação transforma os valores de entrada numa variável de saída que é interpretada pelo programa para qual a angulação do volante que deve estar, partindo do ponto e da direção iniciais. Essa transformação é através de alguma transformação numérica, o método aqui utilizado é o mais tradicional método de defuzzificação: o cálculo do centroide (ou baricentro). O método envolve o cálculo do ponto central da função fuzzy de saída baseando-se nas operações feitas sobre os parâmetros de entrada, tal ponto indica a angulação do volante que o caminhão irá fazer.

Problemas encontrados

Dependendo dos parâmetros x, y e do ângulo com o qual o programa é iniciado, é possível encontrar pontos em que o programa simplesmente não consegue responder com as direções para que o caminhão estacione corretamente. Em alguns pontos, o caminhão consegue estacionar corretamente, outras vezes, ele acaba indo mais para a esquerda ou mais para a direita, errando o alvo.

Um meio de contornar o problema foi a especificação das direções, para incluir também as diagonais, o que resultou em um conjunto de 120 regras. Melhorou os casos, o caminhão consegue estacionar na vaga, dados x,y e direção iniciais, quando antes não conseguia, entretanto, há casos em que ele ainda não estaciona corretamente, chegando bem próximo da vaga (indo levemente ou mais à esquerda ou direita) ou estacionando na vaga de forma incorreta (estacionando horizontalmente à vaga).