Dr. Nijat Aliyev BHOS

September 23, 2024

Limit

Consider the function
$$f(x) = \frac{x^2 - 1}{x - 1}$$
.

Limit

Consider the function $f(x) = \frac{x^2 - 1}{x - 1}$.

We want to investigate the behavior of f. Especially, when x is near to x = 1.

Limit

Consider the function $f(x) = \frac{x^2 - 1}{x - 1}$.

We want to investigate the behavior of f. Especially, when x is near to x = 1.

Limit

Consider the function $f(x) = \frac{x^2 - 1}{x - 1}$.

We want to investigate the behavior of f. Especially, when x is near to x = 1.

f is obviously not defined at x = 1.

Limit

Consider the function $f(x) = \frac{x^2 - 1}{x - 1}$.

We want to investigate the behavior of f. Especially, when x is near to x = 1.

f is obviously not defined at x = 1. But everywhere else, it is defined.

Limit

Consider the function $f(x) = \frac{x^2 - 1}{x - 1}$.

We want to investigate the behavior of f. Especially, when x is near to x = 1.

f is obviously not defined at x = 1. But everywhere else, it is defined.

$$f(x) = \frac{(x+1)(x-1)}{x-1} = x+1,$$
 if $x \neq 1$

$$f(x) = \frac{(x+1)(x-1)}{x-1} = x+1,$$
 if $x \neq 1$

So, if we remove x = 1, then we have $f(x) \equiv x + 1$.

$$f(x) = \frac{(x+1)(x-1)}{x-1} = x+1,$$
 if $x \neq 1$

So, if we remove x = 1, then we have $f(x) \equiv x + 1$.

Even though f is not defined at x = 1, it is defined at each point near x = 1.

$$f(x) = \frac{(x+1)(x-1)}{x-1} = x+1,$$
 if $x \neq 1$

So, if we remove x = 1, then we have $f(x) \equiv x + 1$.

Even though f is not defined at x = 1, it is defined at each point near x = 1.

So, we can make the value of f(x) as close as we want to y=2 by making x close enough to x=1.

Now let us generalize the idea above.

Now let us generalize the idea above.

Suppose f(x) is defined on an open interval I around x_0 , except possibly at x_0 itself.

Now let us generalize the idea above.

Suppose f(x) is defined on an open interval I around x_0 , except possibly at x_0 itself.

Definition: If as x is sufficiently close to x_0 , f(x) is arbitrarily close to a number $L \in \mathbb{R}$, we say that, f(x) tends to L as x goes to x_0 .

Now let us generalize the idea above.

Suppose f(x) is defined on an open interval I around x_0 , except possibly at x_0 itself.

Definition: If as x is sufficiently close to x_0 , f(x) is arbitrarily close to a number $L \in \mathbb{R}$, we say that, f(x) tends to L as x goes to x_0 .

Denote: $\lim_{x\to x_0} f(x) = L$ or $f(x) \to L$ as $x \to x_0$.

Now let us generalize the idea above.

Suppose f(x) is defined on an open interval I around x_0 , except possibly at x_0 itself.

Definition: If as x is sufficiently close to x_0 , f(x) is arbitrarily close to a number $L \in \mathbb{R}$, we say that, f(x) tends to L as x goes to x_0 .

Denote: $\lim_{x\to x_0} f(x) = L$ or $f(x) \to L$ as $x \to x_0$.

We say,

"the limit of f(x) as x approaches x_0 , equals L" or

"f(x) approaches L as x approaches x_0 ."

Example:

Investigate the behavior of $f(x) = x^2 - x + 2$ for values of f near x = 2.

Example:

Investigate the behavior of $f(x) = x^2 - x + 2$ for values of f near x = 2.

Example:

Investigate the behavior of $f(x) = x^2 - x + 2$ for values of f near x = 2.

We can make f(x) values as close as we want to 4 by taking x sufficiently close to 2.

x	f(x)	x	f(x)
1.0 1.5 1.8 1.9 1.95 1.99 1.995	2.000000 2.750000 3.440000 3.710000 3.852500 3.970100 3.985025 3.997001	3.0 2.5 2.2 2.1 2.05 2.01 2.005 2.001	8.000000 5.750000 4.640000 4.310000 4.152500 4.030100 4.015025 4.003001

Figure 1: Table showing the values of f for values of x close to 2 but not equal to 2.

х	f(x)	x	f(x)
1.0	2.000000	3.0	8.000000
1.5	2.750000	2.5	5.750000
1.8	3.440000	2.2	4.640000
1.9	3.710000	2.1	4.310000
1.95	3.852500	2.05	4.152500
1.99	3.970100	2.01	4.030100
1.995	3.985025	2.005	4.015025
1.999	3.997001	2.001	4.003001

Figure 1: Table showing the values of f for values of x close to 2 but not equal to 2.

When x is close to 2 (on either side of 2), f(x) is close to 4.

х	f(x)	x	f(x)
1.0	2.000000	3.0	8.000000
1.5	2.750000	2.5	5.750000
1.8	3.440000	2.2	4.640000
1.9	3.710000	2.1	4.310000
1.95	3.852500	2.05	4.152500
1.99	3.970100	2.01	4.030100
1.995	3.985025	2.005	4.015025
1.999	3.997001	2.001	4.003001

Figure 1: Table showing the values of f for values of x close to 2 but not equal to 2.

When x is close to 2 (on either side of 2), f(x) is close to 4.

In fact, it appears that we can make the values of f(x) as close as we like to 4 by taking x sufficiently close to 2.

Roughly speaking, this says that the values of f(x) approach L as x approaches x_0 .

Roughly speaking, this says that the values of f(x) approach L as x approaches x_0 .

In other words, the values of f(x) tend to get closer and closer to the number L as x gets closer and closer to the number x_0 (from either side of x_0) but $x \neq x_0$.

Roughly speaking, this says that the values of f(x) approach L as x approaches x_0 .

In other words, the values of f(x) tend to get closer and closer to the number L as x gets closer and closer to the number x_0 (from either side of x_0) but $x \neq x_0$.

Remark: When we find the limit of f(x) as x approaches x_0 , we never consider x_0 .

Roughly speaking, this says that the values of f(x) approach L as x approaches x_0 .

In other words, the values of f(x) tend to get closer and closer to the number L as x gets closer and closer to the number x_0 (from either side of x_0) but $x \neq x_0$.

Remark: When we find the limit of f(x) as x approaches x_0 , we never consider x_0 .

f(x) may not be even defined at $x = x_0$.

Roughly speaking, this says that the values of f(x) approach L as x approaches x_0 .

In other words, the values of f(x) tend to get closer and closer to the number L as x gets closer and closer to the number x_0 (from either side of x_0) but $x \neq x_0$.

Remark: When we find the limit of f(x) as x approaches x_0 , we never consider x_0 .

f(x) may not be even defined at $x = x_0$.

It only mattes how f is defined near x_0 .

The function f has limit value 2 as x goes to 1, even though f is not defined at x=1.

The function f has limit value 2 as x goes to 1, even though f is not defined at x = 1.

The function g has limit value 2 as x tends to 1, even though $2 \neq g(1)$.

The function f has limit value 2 as x goes to 1, even though f is not defined at x = 1.

The function g has limit value 2 as x tends to 1, even though $2 \neq g(1)$.

The function h has limit value as x goes to 1 and it equals to its value at x = 1.

Example:

Discuss the behavior of the following functions, explaining why they have no limit as $x \to 0$.

(a)
$$U(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

(b)
$$g(x) = \begin{cases} \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

(c)
$$f(x) = \begin{cases} 0, & x \le 0\\ \sin\frac{1}{x}, & x > 0 \end{cases}$$

Solution:

Example:

(a) If f is the **identity function** f(x) = x, then for any value of c

$$\lim_{x \to c} f(x) = \lim_{x \to c} x = c.$$

Example:

(a) If f is the **identity function** f(x) = x, then for any value of c

$$\lim_{x \to c} f(x) = \lim_{x \to c} x = c.$$

(b) If f is the constant function f(x) = k then for any value of c

$$\lim_{x\to c} f(x) = k.$$

(b) If f is the constant function f(x) = k then for any value of c

$$\lim_{x\to c}f(x)=k.$$

Limit Laws

Let $L, M, c, k \in \mathbb{R}$ and

$$\lim_{x \to c} f(x) = L$$
 and $\lim_{x \to c} g(x) = M$, then

1. Sum Rule:
$$\lim_{x \to c} (f(x) + g(x)) = L + M$$

2. Difference Rule:
$$\lim_{x \to c} (f(x) - g(x)) = L - M$$

3. Constant Multiple Rule:
$$\lim_{x \to c} (k \cdot f(x)) = k \cdot L$$

4. Product Rule:
$$\lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M$$

5. Quotient Rule:
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}, \quad M \neq 0$$

6. Power Rule:
$$\lim_{x \to c} [f(x)]^n = L^n, n \text{ a positive integer}$$

7. Root Rule:
$$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{L} = L^{1/n}, n \text{ a positive integer}$$

(If *n* is even, we assume that $\lim_{x \to c} f(x) = L > 0$.)

Limit Laws

Example: Evaluate the following limits.

(a)
$$\lim_{x \to c} (x^3 + 4x^2 - 3)$$

(b)
$$\lim_{x \to c} \frac{x^4 + x^2 - 1}{x^2 + 5}$$

$$(\mathbf{c}) \quad \lim_{x \to -2} \sqrt{4x^2 - 3}$$

Limit Laws

Solution:

Solution

(a)
$$\lim_{x \to c} (x^3 + 4x^2 - 3) = \lim_{x \to c} x^3 + \lim_{x \to c} 4x^2 - \lim_{x \to c} 3$$

= $c^3 + 4c^2 - 3$

(b)
$$\lim_{x \to c} \frac{x^4 + x^2 - 1}{x^2 + 5} = \frac{\lim_{x \to c} (x^4 + x^2 - 1)}{\lim_{x \to c} (x^2 + 5)}$$

$$= \frac{\lim_{x \to c} x^4 + \lim_{x \to c} x^2 - \lim_{x \to c} 1}{\lim_{x \to c} x^2 + \lim_{x \to c} 5}$$

$$=\frac{c^4+c^2-1}{c^2+5}$$

(c)
$$\lim_{x \to -2} \sqrt{4x^2 - 3} = \sqrt{\lim_{x \to -2} (4x^2 - 3)}$$

Root Rule with
$$n = 2$$

$$= \sqrt{\lim_{x \to -2} 4x^2 - \lim_{x \to -2} 3}$$

$$= \sqrt{4(-2)^2 - 3}$$

$$=\sqrt{16-3}$$

$$= \sqrt{16} - 3$$

Limit of Polynomials

If
$$P(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0$$
 is any polynomial, then
$$\lim_{x\to\infty}P(x)=P(x_0).$$

Example: Find the following limit $\lim_{x\to 1} (x^5 - 3x^4 - x + 7)$.

Limit of Polynomials

If
$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$$
 is any polynomial, then

$$\lim_{x\to x_0} P(x) = P(x_0).$$

Example: Find the following limit $\lim_{x\to 1}(x^5-3x^4-x+7)$.

Solution:

Let
$$P(x) = x^5 - 3x^4 - x + 7$$
.

$$\lim_{x \to 1} (x^5 - 3x^4 - x + 7) = P(1) = 4.$$

Limit of Rational Functions

If P(x), Q(x) are any two polynomials with $Q(x_0) \neq 0$, then

$$\lim_{x\to x_0}\frac{P(x)}{Q(x)}=\frac{P(x_0)}{Q(x_0)}.$$

Example: Find the limit $\lim_{x\to -1} \frac{x^2+x+1}{x-1}$.

Limit of Rational Functions

If P(x), Q(x) are any two polynomials with $Q(x_0) \neq 0$, then

$$\lim_{x\to x_0}\frac{P(x)}{Q(x)}=\frac{P(x_0)}{Q(x_0)}.$$

Example: Find the limit $\lim_{x\to -1} \frac{x^2+x+1}{x-1}$.

Solution:

Let $P(x) = x^2 + x + 1$ and Q(x) = x - 1. Then, Q(-1) = 2 and P(-1) = 1.

Limit of Rational Functions

If P(x), Q(x) are any two polynomials with $Q(x_0) \neq 0$, then

$$\lim_{x\to x_0}\frac{P(x)}{Q(x)}=\frac{P(x_0)}{Q(x_0)}.$$

Example: Find the limit $\lim_{x\to -1} \frac{x^2+x+1}{x-1}$.

Solution:

Let
$$P(x) = x^2 + x + 1$$
 and $Q(x) = x - 1$. Then, $Q(-1) = 2$ and $P(-1) = 1$.

Note that, $Q(-1) \neq 0$. So,

$$\lim_{x \to -1} \frac{x^2 + x + 1}{x - 1} = \frac{P(-1)}{Q(-1)} \frac{1}{2}.$$

Eliminating Common Factors

If $Q(x_0) = 0$. Then we check if $P(x_0) = 0$, too. If so, then we P(x) and Q(x) have common factors $x - x_0$.

Eliminating Common Factors

If $Q(x_0) = 0$. Then we check if $P(x_0) = 0$, too. If so, then we P(x) and Q(x) have common factors $x - x_0$.

So, we divide both denominator and numerator by $x - x_0$ and take the limit.

Eliminating Common Factors

If $Q(x_0) = 0$. Then we check if $P(x_0) = 0$, too. If so, then we P(x) and Q(x) have common factors $x - x_0$.

So, we divide both denominator and numerator by $x - x_0$ and take the limit.

Example: Find the limit $\lim_{x\to 2} \frac{(x^2+x-6)}{x^2-2x}$.

Eliminating Common Factors

Solution:

Let
$$P(x) = x^2 + x - 6$$
, $Q(x) = x^2 - 2x$.

Eliminating Common Factors

Solution:

Let
$$P(x) = x^2 + x - 6$$
, $Q(x) = x^2 - 2x$.

Q(2) = 0. We can not apply the previous rule.

Eliminating Common Factors

Solution:

Let
$$P(x) = x^2 + x - 6$$
, $Q(x) = x^2 - 2x$.

Q(2) = 0. We can not apply the previous rule.

Check if P(2) = 0, also. It is.

Eliminating Common Factors

Solution:

Let
$$P(x) = x^2 + x - 6$$
, $Q(x) = x^2 - 2x$.

Q(2) = 0. We can not apply the previous rule.

Check if P(2) = 0, also. It is.

Then, we can rearrange the function as:

$$f(x) = \frac{(x^2 + x - 6)}{x^2 - 2x} = \frac{(x - 2)(x + 3)}{x(x - 2)} = \frac{(x + 3)}{x}.$$

Eliminating Common Factors

Solution:

Let
$$P(x) = x^2 + x - 6$$
, $Q(x) = x^2 - 2x$.

Q(2) = 0. We can not apply the previous rule.

Check if P(2) = 0, also. It is.

Then, we can rearrange the function as:

$$f(x) = \frac{(x^2 + x - 6)}{x^2 - 2x} = \frac{(x - 2)(x + 3)}{x(x - 2)} = \frac{(x + 3)}{x}.$$

$$\lim_{x \to 2} \frac{(x^2 + x - 6)}{x^2 - 2x} = \lim_{x \to 2} \frac{(x+3)}{x} = 5/2.$$

Sandwich Theorem

Theorem: Suppose that $g(x) \le f(x) \le h(x)$ for all x in an open interval I that containing x_0 , except possibly at $x = x_0$ itself. Suppose further that,

$$\lim_{x\to x_0} g(x) = \lim_{x\to x_0} h(x) = L.$$

Then, $\lim_{x\to x_0} f(x) = L$.

Sandwich Theorem

Theorem: Suppose that $g(x) \le f(x) \le h(x)$ for all x in an open interval I that containing x_0 , except possibly at $x = x_0$ itself. Suppose further that,

$$\lim_{x\to x_0} g(x) = \lim_{x\to x_0} h(x) = L.$$

Then, $\lim_{x\to x_0} f(x) = L$.

Example: Suppose $1 - x^2/2 \le f(x) \le 1 + x^2/2$ for all $x \ne 0$. Find $\lim_{x\to 0} f(x)$.

Sandwich Theorem

Theorem: Suppose that $g(x) \le f(x) \le h(x)$ for all x in an open interval I that containing x_0 , except possibly at $x = x_0$ itself. Suppose further that,

$$\lim_{x\to x_0} g(x) = \lim_{x\to x_0} h(x) = L.$$

Then, $\lim_{x\to x_0} f(x) = L$.

Example: Suppose $1 - x^2/2 \le f(x) \le 1 + x^2/2$ for all $x \ne 0$. Find $\lim_{x\to 0} f(x)$.

Solution:

Since $\lim_{x\to 0} (1-x^2/2)=1$ and $\lim_{x\to 0} (1+x^2/2)=1$, by Sandwich Theorem $\lim_{x\to 0} f(x)=1$.