Introduction to Abstraction

Jason Gross

Summary

In this class, we will begin our study of abstraction. The essential idea behind abstraction is that, having built a compound object out of multiple components, we can throw away our knowledge of how the compound object was *constructed* without losing anything important. We will cover a couple examples of abstraction. Finally, we will look at examples of respecting abstraction barriers and of piercing them.

Intended Learning Outcomes

By the end of this session, students will be able to...

- define "abstraction"
- give at least one example of abstraction in mathematics, and justify why it's an example of abstraction
- give at least one example of abstraction in computer science, and justify why it's an example of abstraction
- give examples of operations that pierce abstraction barriers
- give examples of operations that respect abstraction barriers

Lesson Plan

Class Components	Description of Component	What will the teacher do?	What will the students do?	Justification or Rational ¹
1. Introduce class to				
2. Introduce a	Definition of "abstraction"	First ask students to define	Attempt to recall, construct,	Abstraction forms the basis
specific idea /		abstraction themselves, then	or predict a definition; then	for this entire unit. Ask-
topic / piece of		give definition	listen to the given definition	ing students for the definition
course content.				first engages prior knowledge
				and invites students' atten-
				tion and active engagement;
				having a definition sets them
				up to engage with examples
3. Demonstrate	Example: defining the natu-	Recall the definition of sets.	Listen, think, ask questions	This example is a relatively
the idea / topic.	ral numbers in set theory	Describe the way we define		simple one (perhaps still to
		natural numbers in formal		complex though?), and giv-
		set theory. Solicit questions.		ing the example sets the
				stage for the next questions
				which will require the stu-
				dents to make sense of this
				example in the context of ab-
				straction.

Class Components	Description of Component	What will the teacher do?	What will the students do?	Justification or Rational ¹
4. Provide oppor-	How is the definition of nat-	Ask students to think about	Think about how to integrate	The first thing to learn,
tunities for stu-	ural numbers an example of	what makes this an example	the definition of abstraction	I think, after knowing the
dents to apply and	abstraction?	of abstraction. Perhaps ask	with this example. Commu-	definition of abstraction, is
integrate new in-		students to share thoughts.	nicate how to justify this ex-	knowing how to apply that
formation		Share that in order to jus-	ample as an abstraction.	definition to existing abstrac-
		tify something as an exam-		tions. This component asks
		ple of abstraction, we need		students to engage with that
		to point at (a) the com-		application, and sets the
		pound object(s) we built; (b)		stage for them to eventu-
		the components we built it		ally think about which things
		from; (c) what it means to		are and are not abstractions.
		throw away our knowledge		Finrally, this component will
		of how the compound object		not fully answer (c) and (d),
		was constructed; and (d) how		which I will ask students to
		to justify that we haven't		keep in the back of their mind
		lost anything important. Ask		as we look at more examples.
		students to think again in		
		light of this lens, and share		
		what makes this an example		
		of abstraction.		

Class Components	Description of Component	What will the teacher do?	What will the students do?	Justification or Rational ¹
3(b). Demon-	Example: defining finite-	Describe how to define finite-	Listen, think, ask questions	This is another example sim-
strate the idea /	domain functions as lists of	domain functions as lists of		ilar to the natural number
topic.	pairs	pairs. Solicit questions.		one, and I hope it will help
				solidify the knowledge of the
				students to see two different
				examples that use set theory
				to build compound objects.
				Furthermore, using lists of
				pairs rather than sets of pairs
				sets up the students to think
				about how some details of
				the construction can be irrel-
				evant.
4(b). Provide	How is the definition of func-	Ask students to recall what	Recall knowledge they were	Same as above.
opportunities for	tions an example of abstrac-	the parts of justifying an ex-	given recently. Think about	
students to apply	tion?	ample of abstraction Ask stu-	integrating the definition of	
and integrate new		dents what makes this an ex-	abstraction with this exam-	
information		ample of abstraction.	ple, and respond with their	
			thoughts.	

Class Components	Description of Component	What will the teacher do?	What will the students do?	Justification or Rational ¹
3(c). Demonstrate	Example: defining rational	Ask students how rational	Recall prior mathematical	This example provides the
the idea / topic.	numbers as pairs of integers	numbers can be defined as	knowledge about the compo-	students with their first op-
		pairs of integers, and to spec-	nents we're using. Come up	portunity to attempt to con-
		ify in particular which subset	with ideas for how to repre-	struct the abstraction, given
		of all pairs of integers we're	sent a compound object with	the target compound object
		considering, and how to de-	these components.	and the components. I hope
		fine injection of the integers		that it will be relatively ob-
		into the rationals, addition,		vious what the idea should
		and multiplication.		be (numerator-denominator
				pairs), while still containing
				enough subtlety for the stu-
				dents to chew on (does the
				gcd need to be 1? if so, multi-
				plication is non-trivial; if not,
				we get duplicate representa-
				tion; note also we must for-
				bid 0 in the denominator).
				This is a step towards being
				able to both recognize and
				construct abstractions in the
				wild. Additionally, it sets
				up an example of how you
				might define an abstraction
				in multiple ways ($gcd = 1$,
				and gcd not required to equal
				1), and sets us up for see-
				ing how this impacts what
				abstraction-breaking opera-
-				tions are available.

Class Components	Description of Component	What will the teacher do?	What will the students do?	Justification or Rational 1
4(c). Provide	How is this definition an ex-	Ask students to think about	Think about how to integrate	Same as above
opportunities for	ample of abstraction?	what makes this an example	the definition of abstraction	
students to apply		of abstraction, and then to	with this example. Commu-	
and integrate new		share.	nicate how to justify this ex-	
information			ample as an abstraction.	

Class Components	Description of Component	What will the teacher do?	What will the students do?	Justification or Rational ¹
3(d). Demon-	Natural Number in Set The-	Ask students to recall the	Recall knowledge learnt in	This example intro-
strate the idea /	ory: Abstraction-Breaking,	definition of natural numbers	this class. Use knowl-	duces the concept of
topic.	Abstraction-Respecting	using set theory. Point out	edge of mathematics to de-	interface/API/abstraction-
		the compound objects: 0,	fine simple functions, subject	barrier, which will hopefully
		successor, and N. Name this	to constraints about build-	be at least somewhat famil-
		as our API, interface, or ab-	ing blocks. Listen and en-	iar to the students. I hope to
		straction barrier. Ask how	gage with definition of induc-	guide students through see-
		to define the function $+2$ in	tion and recursion. Ask ques-	ing how to define operations
		terms of successor. Ask stu-	tions about their confusions.	in terms of the interface, and
		dents to think about how to	Communicate their thoughts	also to recognize when oper-
		define the function that is	about how to define opera-	ations pierce the abstraction
		the identity on 0 and -1 on	tions.	barrier. This is almost the
		the other naturals. Describe		culmination of the package
		induction and recursion and		of what an abstraction bar-
		computation rule of recur-		rier is; it lets students see
		sion. Define predecessor. So-		when given abstractions may
		licit questions. Ask how to		not be sufficient.
		define addition, provide defi-		
		nition if students don't think		
		of it. Ask how to define		
		max. Point out two different		
		definitions of max, one that		
		uses only 0, successor, and		
		recursion, and one that uses		
		the definition-as-sets. Ask		
		for two different definitions of		
		min. Point out abstraction-		
		respecting and abstraction-		
		piercing.		

Class Components	Description of Component	What will the teacher do?	What will the students do?	Justification or Rational ¹
4(d)(i). Provide	Abstraction-Respecting and	Ask students to recall the ex-	Recall recently given knowl-	This component gives stu-
opportunities for	Abstraction-Piercing in the	ample of finite functions as	edge. Listen and ask	dents the opportunity to in-
students to apply	other examples	lists of pairs Describe the	questions. Construct an ex-	tegrate and apply the knowl-
and integrate new		interface: function creation,	ample of abstraction-barrier-	edge from 3(d) to the exam-
information		function calling, and equal-	piercing and abstraction-	ple that we worked before.
		ity of functions. Point out is-	barrier-respecting.	It still scaffolds their learn-
		sues with list duplicates and		ing by providing the inter-
		missing elements, and func-		face and drawing their at-
		tion creation. Ask students		tention to a particular exam-
		to define how to glue two		ple of an operation that can
		functions together, both in a		be easily defined in both an
		way that pierces the abstrac-		abstraction-breaking and an
		tion barrier, and in a way		abstraction-preserving way.
		that doesn't; use a concrete		
		example for function gluing.		

Class Components	Description of Component	What will the teacher do?	What will the students do?	Justification or Rational ¹
4(d)(ii). Provide	Abstraction-Respecting and	Ask students to recall	Same as above, but this time	Same as above, but with a bit
opportunities for	Abstraction-Piercing in ra-	the definition(s) of the	with a bit less scaffolding, on	less scaffolding.
students to apply	tional numbers as pairs of in-	compound object and the	an example that is in some	
and integrate new	tegers	example. Write down both	ways easier and in some ways	
information		definitions ($gcd = 1$, and gcd	more nuanced.	
		allowed to be anything). Ask		
		students to think about the		
		interface, then pair up (or		
		perhaps groups of three) and		
		discuss what interface they		
		think should apply to each		
		abstraction—tell students to		
		attend to whether or not the		
		interfaces are the same. Ask		
		for volunteers to share, and		
		share sufficient interfaces		
		(division of integers into		
		rationals; reduced numerator		
		& denominator; axiom that		
		gcd = 1 and deominator		
		is positive \Longrightarrow that we get		
		the same numerator and		
		denominator out that we		
		put in; extensional equality).		
		Ask students to come up		
		with an operation that has		
		both an abstraction-piercing		
		way of defining it and an		
		abstraction-respecting one,		
		and to write down both.		

Class Components Description of Component	What will the teacher do?	What will the students do?	Justification or Rational ¹
5. Summarize topics/material; Look ahead to next	class		Note that we haven't covered
			what makes an abstraction
			barrier sufficient, and we'll
			be looking at that in the up-
			coming classes.

1

[•] Why have you decided to include this component?

[•] How does this component sequence or scaffold learning?