Planche nº 34. Le groupe symétrique. Corrigé

Exercice nº 1:

1) Les inversions de σ sont :

Au total, il y a 2+8+5+2+3=20 inversions. σ est donc une permutation paire (de signature 1).

2) $\tau_{11,12} \circ \sigma = (3\ 10\ 7\ 1\ 2\ 6\ 4\ 5\ 11\ 8\ 9\ 12).$

Puis, $\tau_{9,11} \circ \tau_{11,12} \circ \sigma = (3\ 10\ 7\ 1\ 2\ 6\ 4\ 5\ 9\ 8\ 11\ 12)$.

Puis, $\tau_{10,8} \circ \tau_{9,11} \circ \tau_{11,12} \circ \sigma = (3 \ 8 \ 7 \ 1 \ 2 \ 6 \ 4 \ 5 \ 9 \ 10 \ 11 \ 12).$

Puis, $\tau_{8,5} \circ \tau_{10,8} \circ \tau_{9,11} \circ \tau_{11,12} \circ \sigma = (3 5 7 1 2 6 4 8 9 10 11 12).$

Puis, $\tau_{7,4} \circ \tau_{8,5} \circ \tau_{10,8} \circ \tau_{9,11} \circ \tau_{11,12} \circ \sigma = (3\ 5\ 4\ 1\ 2\ 6\ 7\ 8\ 9\ 10\ 11\ 12).$

Puis, $\tau_{5,2} \circ \tau_{7,4} \circ \tau_{8,5} \circ \tau_{10,8} \circ \tau_{9,11} \circ \tau_{11,12} \circ \sigma = (3\ 2\ 4\ 1\ 5\ 6\ 7\ 8\ 9\ 10\ 11\ 12).$

 $\mathrm{Puis}, \ \tau_{1,4} \circ \tau_{5,2} \circ \tau_{7,4} \circ \tau_{8,5} \circ \tau_{10,8} \circ \tau_{9,11} \circ \tau_{11,12} \circ \sigma = (3\ 2\ 1\ 4\ 5\ 6\ 7\ 8\ 9\ 10\ 11\ 12) = \tau_{1,3}.$

Par suite,

$$\sigma = \tau_{11,12}^{-1} \circ \tau_{9,11}^{-1} \circ \tau_{10,8}^{-1} \circ \tau_{8,5}^{-1} \circ \tau_{7,4}^{-1} \circ \tau_{5,2}^{-1} \circ \tau_{1,4}^{-1} \circ \tau_{1,3}$$

$$= \tau_{11,12} \circ \tau_{9,11} \circ \tau_{10,8} \circ \tau_{8,5} \circ \tau_{7,4} \circ \tau_{5,2} \circ \tau_{1,4} \circ \tau_{1,3}.$$

 σ est le produit de 8 transpositions et on retrouve le fait que σ est une permutation paire.

3) $O(1) = \{1,3,4,7\} = O(3) = O(4) = O(7)$, puis $O(2) = \{2,5,8,10\} = O(5) = O(8) = O(10)$ puis $O(6) = \{6\}$ et $O(9) = \{9,11,12\} = O(11) = O(12)$. σ a 4 orbites, deux de cardinal 4, une de cardinal 3 et un singleton (correspondant à un point fixe).

4) σ est donc le produit commutatif des cycles $c_1 = \begin{pmatrix} 1 & 3 & 4 & 7 \\ 3 & 7 & 1 & 4 \end{pmatrix}$, $c_2 = \begin{pmatrix} 2 & 5 & 8 & 10 \\ 10 & 2 & 5 & 8 \end{pmatrix}$ et

$$c_3 = \left(\begin{array}{ccc} 9 & 11 & 12 \\ 12 & 9 & 11 \end{array} \right).$$

On a $c_1^4 = c_2^4 = \text{Id et } c_3^3 = \text{Id. Or, } 2023 = 4 \times 505 + 3. \text{ Donc,}$

$$c_1^{2023} = c_1^3 \circ (c_1^4)^{505} = c_1^3 = c_1^{-1} = \begin{pmatrix} 1 & 3 & 4 & 7 \\ 4 & 1 & 7 & 3 \end{pmatrix},$$

et de même $c_2^{2023} = c_2^{-1} = \begin{pmatrix} 2 & 5 & 8 & 10 \\ 5 & 8 & 10 & 2 \end{pmatrix}$. Enfin, $c_3^{2023} = (c_3^3)^{674} c_1$. Puisque c_1 , c_2 et c_3 commutent deux à deux,

Exercice nº 2:

 (S_n, \circ) est engendré par les transpositions. Il suffit donc de montrer que pour $2 \leqslant i < j \leqslant n$, la transposition $\tau_{i,j}$ est produit des $\tau_{1,k}$, $2 \leqslant k \leqslant n$. Mais

$$\tau_{1,i}\circ\tau_{1,j}\circ\tau_{1,i}=\left(\begin{array}{ccc}1&i&j\\i&1&j\end{array}\right)\left(\begin{array}{ccc}1&i&j\\j&i&1\end{array}\right)\left(\begin{array}{ccc}1&i&j\\i&1&j\end{array}\right)=\left(\begin{array}{ccc}1&i&j\\1&j&i\end{array}\right)=\tau_{i,j}$$

ce qu'il fallait démontrer.

Exercice nº 3:

Les éléments de A_n sont les produits pairs de transpositions. Il suffit donc de vérifier qu'un produit de deux transpositions est un produit de cycles de longueur 3.

Soient i, j et k trois éléments deux à deux distincts de [1, n]. $\tau_{i,k} \circ \tau_{i,j}$ est le 3-cycle : $i \to j$ $j \to k$ $k \to i$, ce qui montre qu'un 3-cycle est pair et que le produit de deux transpositions dont les supports ont en commun un singleton est un 3-cycle.

Le cas $\tau_{i,j} \circ \tau_{i,j} = Id = (231)(312)$ est immédiat. Il reste à étudier le produit de deux transpositions à supports disjoints. Soient i, j, k et l quatre éléments de deux à deux distincts de $[\![1,n]\!]$.

$$\tau_{i,j} \circ \tau_{k,l} = (jikl) \circ (ijlk) = (jilk) = (ljik) \circ (jkil).$$

Donc, $\tau_{i,j} \circ \tau_{k,l}$ est un bien un produit de 3-cycles ce qui achève la démonstration.

Exercice nº 4:

D'après le n° 2, il suffit de montrer que pour $2 \le i \le n$, $\tau_{1,i}$ peut s'écrire en utilisant uniquement $\tau = \tau_{1,2}$ et $c = (2 \ 3 \ ... \ n \ 1)$. On note que $c^n = Id$.

Tout d'abord, pour $1 \leqslant i \leqslant n-1$, étudions $\sigma = c^{i-1} \circ \tau \circ c^{n-i+1}$. Soit $k \in [1, n]$.

$$\begin{split} \tau \circ c^{n-i+1}(k) \neq c^{n-i+1}(k) &\Leftrightarrow c^{n-i+1}(k) \in \{1,2\} \Leftrightarrow k \in \{c^{-n+i-1}(1),c^{-n+i-1}(2)\} \Leftrightarrow k \in \{c^{i-1}(1),c^{i-1}(2)\} \\ &\Leftrightarrow k \in \{i,i+1\}. \end{split}$$

Donc, si $k \notin \{i, i+1\}$,

$$\sigma(k) = c^{i-1}(k)(\tau \circ c^{n-i+1}(k)) = c^{i-1}(c^{n-i+1}(k)) = c^{n}(k) = k,$$

et la restriction de σ à $\{1,...,n\} \setminus \{i,i+1\}$ est l'identité de cet ensemble. Comme σ n'est pas l'identité (car sinon $\tau = c^{-i+1-n+i-1} = c^{-n} = \text{Id}$ ce qui est faux), σ est donc nécessairement la transposition $\tau_{i,i+1}$.

On a montré que $\forall i \in [1, n-1], c^{i-1} \circ \tau \circ c^{n-i+1} = \tau_{i,i+1}$.

Vérifions maintenant que les $\tau_{1,i}$ s'écrivent à l'aide des $\tau_{j,j+1}$. D'après le n° 2, $\tau_{i,j} = \tau_{1,i} \circ \tau_{1,j} \circ \tau_{1,i}$, et donc bien sûr, plus généralement, $\tau_{i,j} = \tau_{k,i} \circ \tau_{k,j} \circ \tau_{k,i}$.

Par suite, $\tau_{1,i} = \tau_{1,2} \circ \tau_{2,i} \circ \tau_{1,2}$ puis, $\tau_{2,i} = \tau_{2,3} \circ \tau_{3,i} \circ \tau_{2,3}$, puis, $\tau_{3,i} = \tau_{3,4} \circ \tau_{4,i} \circ \tau_{3,4}$... et $\tau_{i-2,i-1} \circ \tau_{i-1,i} \circ \tau_{i-2,i-1}$. Finalement,

$$\tau_{1,i} = \tau_{1,2} \circ \tau_{2,3} \circ ... \circ \tau_{i-2,i-1} \circ \tau_{i-1,i} \circ \tau_{i-2,i-1} \circ ... \circ \tau_{2,3} \circ \tau_{1,2},$$

ce qui achève la démonstration.

Exercice nº 5:

Soit (G, \times) un groupe. Pour x élément de G, on considère $f_x: G \to G$. f_x est une application de G vers G et de $y \mapsto xy$

plus, clairement $f_x \circ f_{x^{-1}} = f_{x^{-1}} \circ f_x = Id_G$. Donc, pour tout élément x de G, f_x est une permutation de G.

Soit alors $\phi:(G,\times)\to (S_G,\circ)$. D'après ce qui précède, ϕ est une application. De plus, ϕ est de plus un morphisme $\chi\mapsto f_\chi$

de groupes. En effet, pour $(x, x', y) \in G^3$, on a :

$$\varphi((xx'))(y) = f_{xx'}(y) = xx'y = f_x(f'_x(y)) = f_x \circ f_{x'}(y) = (\varphi(x) \circ \varphi(x'))(y),$$

et donc $\forall (x, x') \in G^2$, $\varphi(xx') = \varphi(x) \circ \varphi(x')$.

Enfin, φ est injectif car, pour (x, x') élément de G^2 , tout élément d'un groupe étant simplifiable,

$$\varphi(x) = \varphi(x') \Rightarrow \forall y \in G, xy = x'y \Rightarrow x = x',$$

(e désignant l'élément neutre de G).

 φ est ainsi un isomorphisme de groupes de (G, \times) sur $(f(G), \circ)$ qui est un sous groupe de (S_G, \circ) . (G, \times) est bien isomorphe à un sous groupe de (S_G, \circ) .

Exercice nº 6:

Montrons d'abord par récurrence sur $l \ge 2$ que la signature d'un cycle de longueur l est $(-1)^{l-1}$.

- C'est connu pour l = 2 (signature d'une transposition).
- Soit $l \ge 2$. Supposons que tout cycle de longueur l ait pour signature $(-1)^{l-1}$. Soit c un cycle de longueur l+1. On note $\{x_1, x_2, ..., x_{l+1}\}$ le support de c et on suppose que, pour $1 \le i \le l$, $c(x_i) = x_{i+1}$ et que $c(x_{l+1}) = x_1$. Montrons alors que $\tau_{x_1, x_{l+1}} \circ c$ est un cycle de longueur l. $\tau_{x_1, x_{l+1}} \circ c$ fixe déjà x_{l+1} puis, si $1 \le i \le l-1$,

$$\tau_{x_1,x_{1+1}} \circ c(x_i) = \tau_{x_1,x_{1+1}}(x_{i+1}) = x_{i+1}$$

 $(\operatorname{car}\ x_{i+1}\ \operatorname{n'est}\ \operatorname{ni}\ x_1,\ \operatorname{ni}\ x_{l+1}),\ \operatorname{et}\ \operatorname{enfin}\ \tau_{x_1,x_{l+1}}\circ c(x_l)=\tau_{x_1,x_{l+1}}(x_{l+1})=x_1.\ \tau_{x_1,x_{l+1}}\circ c\ \operatorname{est}\ \operatorname{donc}\ \operatorname{bien}\ \operatorname{un}\ \operatorname{cycle}\ \operatorname{de}\ \operatorname{longueur}\ l.\ \operatorname{Par}\ \operatorname{hypothèse}\ \operatorname{de}\ \operatorname{r\'ecurrence},\tau_{x_1,x_{l+1}}\circ c\ \operatorname{a}\ \operatorname{pour}\ \operatorname{signature}\ (-1)^{l-1}\ \operatorname{et}\ \operatorname{donc},\ c\ \operatorname{a}\ \operatorname{pour}\ \operatorname{signature}\ (-1)^{(l+1)-1}.$

Le résultat est démontré par récurrence.

Montrons maintenant que si σ est une permutation quelconque de [1, n] ayant k orbites la signature de σ est $(-1)^{n-k}$. Si σ est l'identité, σ a n orbites et le résultat est clair.

Si σ n'est pas l'identité, on décompose σ en produit de cycles à supports disjoints.

Posons $\sigma = c_1...c_p$ où $\mathfrak p$ désigne le nombre d'orbites de σ non réduites à un singleton et donc $k-\mathfrak p$ est le nombre de points fixes de σ . Si $\mathfrak l_i$ est la longueur de $\mathfrak c_i$, on a donc $\mathfrak n = \mathfrak l_1 + ... + \mathfrak l_{\mathfrak p} + (k-\mathfrak p)$ ou encore $\mathfrak n - k = \mathfrak l_1 + ... + \mathfrak l_{\mathfrak p} - \mathfrak p$. Mais alors,

$$\varepsilon(\sigma) = \prod_{i=1}^{p} \varepsilon(c_i) = \prod_{i=1}^{p} (-1)^{l_i - 1} = (-1)^{l_1 + \dots + l_p - p} = (-1)^{n - k}.$$

Exercice nº 7:

1) a) Soient σ et σ' deux éléments de S_n . Soit $(i,j) \in [1,n]^2$. Le coefficient ligne i, colonne j de $P_{\sigma} \times P_{\sigma'}$ vaut

$$\sum_{k=1}^n \delta_{\mathfrak{i},\sigma(k)} \delta_{k,\sigma'(\mathfrak{j})} = \delta_{\mathfrak{i},\sigma(\sigma'(\mathfrak{j}))} \text{ (obtenu quand } k = \sigma'(\mathfrak{j})),$$

et est donc aussi le coefficient ligne i, colonne j de la matrice $P_{\sigma \circ \sigma'}$. Par suite,

$$\forall (\sigma, \sigma') \in (S_n)^2, P_{\sigma} \times P_{\sigma'} = P_{\sigma \circ \sigma'}.$$

b) Soit $\sigma \in S_n$. D'après a), $P_{\sigma} \times P_{\sigma^{-1}} = P_{\sigma \circ \sigma^{-1}} = P_{Id} = I_n = P_{\sigma^{-1}} \times P_{\sigma}$. On en déduit que toute matrice P_{σ} est inversible, d'inverse $P_{\sigma^{-1}} \in G$. Par suite, $G \subset GL_n(\mathbb{R})$. De plus, $I_n = P_{Id_{[1,n]}} \in G$ et en particulier, $G \neq \emptyset$.

Soit alors $(\sigma, \sigma') \in (S_n)^2$.

$$P_{\sigma} \times (P_{\sigma'})^{-1} = P_{\sigma} P_{\sigma'^{-1}} = P_{\sigma \circ \sigma'^{-1}} \in G$$

car $\sigma \circ \sigma'^{-1} \in S_n$. On a montré que G est un sous-groupe de $(GL_n(\mathbb{R}), \times)$.

Soit $\phi: S_n \to G$. D'après a), ϕ est un morphisme de groupes. ϕ est clairement surjectif. Il reste à vérifier que ϕ est injectif.

Soit $(\sigma, \sigma') \in S_n^2$.

$$\begin{split} \phi(\sigma) &= \phi(\sigma') \Rightarrow P_{\sigma} = P_{\sigma'} \Rightarrow \forall (i,j) \in [\![1,n]\!]^2, \; \delta_{i,\sigma(j)} = \delta_{i,\sigma'(j)} \\ &\Rightarrow \forall i \in [\![1,n]\!], \; \delta_{i,\sigma(i)} = \delta_{i,\sigma'(i)} \Rightarrow \forall i \in [\![1,n]\!], \; \sigma(i) = \sigma'(i) \end{split}$$

Donc φ est injectif.

Finalement, ϕ est un isomorphisme du groupe (S_n, \circ) sur le groupe (G, \times) et on a montré que (G, \times) est un sous-groupe de $(GL_n(\mathbb{R}), \times)$, isomorphe à (S_n, \circ) .

2) Soit $(i,j) \in [1,n]^2$. Le coefficient ligne i, colonne j de AP_{σ} vaut :

$$\sum_{k=1}^n \alpha_{i,k} \delta_{k,\sigma(j)} = \alpha_{i,\sigma(j)} \; (\mathrm{obtenu} \; \mathrm{quand} \; k = \sigma(j)).$$

Ainsi, l'élément ligne i, colonne j, de AP_{σ} est l'élément ligne i, colonne $\sigma(j)$, de A, ou encore, si j est un élément donné de [1,n], la j-ème colonne de AP_{σ} est la $\sigma(j)$ -ème colonne de A. Ainsi, si on note $C_1,...,C_n$ les colonnes de A (et donc $A=(C_1,...,C_n)$), alors $AP_{\sigma}=(C_{\sigma(1)},...,C_{\sigma(n)})$. En clair, multiplier A par P_{σ} à droite a pour effet d'appliquer la permutation σ aux colonnes de A (puisque P_{σ} est inversible, on retrouve le fait que permuter les colonnes de A ne modifie pas le rang de A).

De même, le coefficient ligne i, colonne j, de $P_{\sigma}A$ vaut

$$\sum_{k=1}^n \delta_{\mathfrak{i},\sigma(k)} a_{k,\mathfrak{j}} = \sum_{k=1}^n \delta_{\sigma^{-1}(\mathfrak{i}),k} a_{k,\mathfrak{j}} = a_{\sigma^{-1}(\mathfrak{i}),\mathfrak{j}},$$

(on a utilisé $\sigma(k) = i \Leftrightarrow k = \sigma^{-1}(i)$) et multiplier A par P_{σ} à gauche a pour effet d'appliquer la permutation σ^{-1} aux lignes de A.

Exercice nº 8:

 $G = \{A_1, ..., A_p\}$ est déjà une partie non vide de $GL_n(\mathbb{R})$, stable pour \times . Il reste à vérifier que G est stable pour le passage à l'inverse.

Soient $i \in [\![1,n]\!]$, puis ϕ_i : $G \to G$. Puisque G est stable pour le produit, ϕ_i est une application de G dans G. $A \mapsto A_i A$

Montrons que φ_i est injective. Soit $(A, B) \in G^2$.

$$\phi_i(A) = \phi_i(B) \Rightarrow A_iA = A_iB \Rightarrow A_i^{-1}A_iA = A_i^{-1}A_iB \Rightarrow A = B.$$

Donc, ϕ_i est une application injective de l'ensemble **fini** G dans lui-même. On sait alors que ϕ_i est une permutation de G.

Par ϕ_i , A_i a un antécédent A dans G. L'égalité $A_iA = A_i$ fournit $A_i^{-1}A_iA = A_i^{-1}A_i$ puis $A = I \in G$. Ainsi, G contient la matrice I. Ensuite, I a un antécédent par ϕ_i dans G. Donc, il existe $B \in G$ telle que $A_iB = I$. Mais alors $A_i^{-1} = B \in G$. G est bien stable pour le passage à l'inverse et est donc un sous-groupe de $(GL_n(\mathbb{R}), \times)$.

Exercice nº 9:

Pour $(x_1,...,x_n) \in E$, on pose $\varphi((x_1,...,x_n)) = x_1 + ... + x_n$. φ est une forme linéaire non nulle sur E et H est le noyau de φ . H est donc bien un hyperplan de E.

 $\mathrm{Pour}\; (\sigma,\sigma') \in S^2_{\mathfrak{n}}, \, \mathrm{les\; endomorphismes}\; f_{\sigma} \circ f_{\sigma'} \; \mathrm{et}\; f_{\sigma \circ \sigma'} \; \mathrm{co\"{i}ncident} \; \mathrm{sur\; une} \; \mathrm{base} \; \mathrm{de}\; E \; \mathrm{et} \; \mathrm{donc} \; f_{\sigma} \circ f_{\sigma'} = f_{\sigma \circ \sigma'}.$

 $(\mathcal{L}(E), +, .)$ est un espace vectoriel et donc p est bien un endomorphisme de E.

$$p^2 = \frac{1}{n!^2} \left(\sum_{\sigma \in S_n} f_\sigma \right)^2 = \sum_{(\sigma,\sigma') \in (S_n)^2} f_\sigma \circ f_{\sigma'} = \sum_{(\sigma,\sigma') \in (S_n)^2} f_{\sigma \circ \sigma'}.$$

 (S_n,\circ) est un groupe fini. Par suite, l'application $S_n \to S_n$, injective (même démarche que dans le n° 8), est une $\sigma \mapsto \sigma \circ \sigma'$

permutation de S_n . On en déduit que, pour σ' donnée, $\sum_{\sigma \in S_n} f_{\sigma \circ \sigma'} = \sum_{\sigma \in S_n} f_{\sigma}$. Ainsi,

$$p^2 = \frac{1}{n!^2} \sum_{\sigma' \in S_n} \left(\sum_{\sigma \in S_n} f_{\sigma \circ \sigma'} \right) = \frac{1}{n!^2} \sum_{\sigma' \in S_n} n! p = \frac{1}{n!^2} \times n! n! p = p.$$

p est donc une projection. Déterminons alors l'image et le noyau de p. Soit $i \in [1, n]$.

$$p(e_i) = \frac{1}{n!} \sum_{\sigma \in S_n} f_{\sigma}(e_i) = \frac{1}{n!} \sum_{\sigma \in S_n} e_{\sigma(i)}.$$

Maintenant, il y a autant de permutations σ telles que $\sigma(i)=1$, que de permutations σ telles que $\sigma(i)=2,...$ ou de permutations σ telles que $\sigma(i)=n$, à savoir $\frac{n!}{n}=(n-1)!$. Donc,

$$\forall i \in [[1, n]], \ p(e_i) = \frac{1}{n!} \frac{n!}{n} \sum_{k=1}^{n} e_k = \frac{1}{n} \sum_{k=1}^{n} e_k.$$

Posons $u = \frac{1}{n} \sum_{k=1}^{n} e_k$. D'après ce qui précède,

$$Imp = Vect(p(e_1), ..., p(e_n)) = Vect(u).$$

Ensuite, si $x = x_1e_1 + ... + x_ne_n$ est un élément de E,

$$p(x) = 0 \Leftrightarrow \sum_{k=1}^{n} x_k p(e_k) = 0 \Leftrightarrow \left(\sum_{k=1}^{n} x_k\right) u = 0 \Leftrightarrow \sum_{k=1}^{n} x_k = 0 \Leftrightarrow x \in H.$$

Ainsi, p est la projection sur Vect(u) parallèlement à H.