Concepts Weird Fibonacci Problem

Recall Fibonacci Numbers:

$$F_n = \begin{cases} 0 & \text{if } n = 0; \\ 1 & \text{if } n = 1; \\ F_{n-1} + F_{n-2} & \text{if } n > 1. \end{cases}$$

n	0	1	2	3	4	5	6	7
F_n	0	1	1	2	3	5	. 8	13
Ratio with	N/A	N/A	1	2	1.5	1.667	1.6	1.625
Previous Term								

Suppose that you know that $F_{n+1} \ge (1.6)F_n$ for *n* bigger than or equal to 4.

Prove that, $F_{n+1} \le 1.7(F_n)$ for *n* bigger than or equal to 3.

Prove that,
$$F_{n+1} \le 1.7(F_n)$$
 for n bigger than or equal to 3.

Let $P(n) = \text{"Fnt}_1 \le 1.7(F_n)^n$

Base Cose $P(3)$ time $1.7(F_n)^n$

Base Cose $P(3)$ time $1.7(F_n)^n$

Cose $1.7(F_n)^n$

Cose $1.7(F_n)^n$

Cose $1.7(F_n)^n$

Cose $1.7(F_n)^n$

Cose $1.7(F_n)^n$

Cose $1.7(F_n)^n$

Fig. $1.7(F_n)^n$

With $1.7(F_n)^n$

Fixed $1.7(F_n)^n$

With $1.7(F_n)^n$

With $1.7(F_n)^n$

With $1.7(F_n)^n$

Fixed $1.7(F_n)^n$

With $1.7(F_n)^n$

Fixed $1.7(F_n)^n$

Also note that $1.7(F_n)^n$

Fixed $1.7(F_n)^n$

So $1.7(F_n)^n$

Fixed $1.7(F_n)^n$

Fi