## Университет ИТМО Физико-технический мегафакультет Физический факультет



| Группа <u>Р3221</u>          | К работе допущен |
|------------------------------|------------------|
| Студент Фам Данг Чунг Нгиа   | Работа выполнена |
| Преподаватель Коробков М , П | Отчет принят     |

# Рабочий протокол и отчет по лабораторной работе №1,09

## Определение момента инерции методом крутильных колебаний

## 1, Цель работы,

- 1. Определение момента инерции различных твердых тел методом крутильных колебаний
- 2. Проверка справедливости теоремы Гюйгенса Штейнера

## 2, Задачи, решаемые при выполнении работы,

- 1. Измерение коэффициента угловой жесткости спиральной пружины,
- 2. Прямые измерения периодов крутильных колебаний тел различной формы,
- 3. Расчет моментов инерции объектов измерения и сравнение их с теоретическими значениями,

#### 3, Объект исследования,

Момент инерции различных тел,

#### 4, Метод экспериментального исследования,

Многократные совместные измерения,

#### 5, Рабочие формулы и исходные данные,

5.1) Угловая жесткость пружины:

$$k = -\frac{M}{\varphi}$$

5.2) Момент инерции тела через период колебаний,

$$I = \frac{kT^2}{4\pi^2}$$

где Т - период колебаний крутильных весов,

5.3) Центральный момент инерции цилиндра относительно оси перпендикулярной оси симметрии:

$$I_c = m \left( \frac{r^2}{4} + \frac{h^2}{12} \right)$$

где г - радиус груза, h - высота груза

## 5.4) Исходные данные:

| Тело               | Массы, г | Диаметры, м | Высоты, м |
|--------------------|----------|-------------|-----------|
| Штанга             | 175      | 0,006       | 0,60      |
| Шар                | 923      | 0,10        | -         |
| Полый цилиндр      | 363      | 0,10        | 0,10      |
| Сплошной цилиндр   | 458      | 0,14        | 0,10      |
| Сплошной диск      | 288      | 0,22        | -         |
| Диск с отверстиями | 442      | 0,30        | -         |
| Грузы              | 229      | 0,03        | 0,04      |

## 5.5) Таблица 5:

Таблица 5 : Осевые центральные моменты инерции некоторых тел (т-масса тела)

| Кольцо или цилиндр с тонкими стенками радиуса $r$ , Ось вращения совпадает с осью симметрии                  | $mr^2$                                           |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Однородный тонкий стержень длиной $\ell$ , Ось вращения перпендикулярна стержню,                             | $\frac{m\ell^2}{12}$                             |
| Однородный сплошной диск (цилиндр) радиусом $r$ относительно оси симметрии,                                  | $\frac{mr^2}{12}$                                |
| Полый толстостенный цилиндр с внешним радиусом $r_2$ и внутренним радиусом $r_1$ относительно оси симметрии, | $\frac{m}{12}(r_1^2 + r_2^2)$                    |
| Полый тонкостенный цилиндр высоты $h$ и радиуса $r$ , Ось вращения перпендикулярна к оси симметрии,          | $\frac{m}{12}\left(r_1^2 + \frac{h^2}{6}\right)$ |
| Однородный сплошной цилиндр высоты $h$ и радиуса $r$ , Ось вращения перпендикулярна к оси симметрии,         | $\frac{m}{12}\left(r_1^2 + \frac{h^2}{3}\right)$ |
| Тонкостенная сфера радиуса $r$ ,                                                                             | $\frac{2}{3}mr^2$                                |

| Однородный сплошной шар радиуса $r$ , | $\frac{2}{5} mr^2$ |
|---------------------------------------|--------------------|
|                                       |                    |

## 6, Измерительные приборы,

| № п/п | Наименование           | Предел<br>измерений | Используемый<br>диапазон | Погрешность<br>прибора |
|-------|------------------------|---------------------|--------------------------|------------------------|
| 1     | Электронный секундомер | 60 мин              | 0 - 10 c                 | 0,005 с                |
| 2     | Электронный динамометр | 100 H               | 0 - 2 H                  | 0,03 H                 |
| 3     | Рулетка                | -                   | 0 - 30  cm               | 0,1 см                 |

## 7, Схема установки:



- 1. Штатив со спиральной пружиной
- 2. Штатив для крепления электронного динамометра
- 3. Рулетка
- 4. Электронный динамометр
- 5. Штанга с двумя подвижными грузами
- 6. Сплошной диск
- 7. Диск с отверстиями
- 8. Шар
- 9. Полый цилиндр
- 10. Сплошной цилиндр

#### 8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов),

Таблица 1, Определение коэффициента угловой жесткости пружины

| -2                                                                                                                                        | 270°                                 | -1    | 180° | -9    | )0°  | 9          | 0°   | 18     | 30°  | 27     | 70°  |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------|------|-------|------|------------|------|--------|------|--------|------|
| F, H                                                                                                                                      | r, M                                 | F, H  | r, M | F, H  | r, M | F, H       | r, M | F, H   | r, M | F, H   | r, M |
| 0,40                                                                                                                                      | 0,29                                 | 0,26  | 0,29 | 0,17  | 0,29 | 0,12       | 0,29 | 0,26   | 0,29 | 0,34   | 0,29 |
| 0,63                                                                                                                                      | 0,19                                 | 0,40  | 0,19 | 0,23  | 0,19 | 0,17       | 0,19 | 0,37   | 0,19 | 0,51   | 0,19 |
| 1,31                                                                                                                                      | 0,09                                 | 0,86  | 0,09 | 0,48  | 0,09 | 0,40       | 0,09 | 0,77   | 0,09 | 1,17   | 0,09 |
| $M, H \cdot M (-3\pi/2)$ $M, H \cdot M (-\pi)$ $M, H \cdot M (-\pi/2)$ $M, H \cdot M (\pi/2)$ $M, H \cdot M (\pi)$ $M, H \cdot M (\pi/2)$ |                                      |       |      |       |      | $(3\pi/2)$ |      |        |      |        |      |
| 0,118                                                                                                                                     |                                      | 0,076 |      | 0,045 |      | -0,034     |      | -0,072 |      | -0,100 |      |
|                                                                                                                                           | $k = 0.0230 \pm 0.0047 \; H \cdot M$ |       |      |       |      |            |      |        |      |        |      |

$$M\left(-\frac{3\pi}{2}\right) = \frac{\sum_{i=1}^{3}(F_{i} \cdot r_{i})}{3} = \frac{0.40*0.29 + 0.63*0.19 + 1.31*0.09}{3} = 0.118 \text{ H} \cdot \text{m}$$

Таблица 2, Теорема Гюйгенса-Штейнера для штанги с грузами

| l, m  | $T_1$ , $c$ | $T_2$ , $c$ | $T_3$ , $c$ | $l^2, m^2$ | $T_{cp}^2$ , $c^2$ |
|-------|-------------|-------------|-------------|------------|--------------------|
| 0,000 | 2,58        | 2,50        | 2,56        | 0,000      | 6,49               |
| 0,060 | 3,09        | 3,02        | 3,08        | 0,004      | 9,38               |
| 0,080 | 3,22        | 3,24        | 3,35        | 0,006      | 10,69              |
| 0,100 | 3,81        | 3,86        | 3,74        | 0,010      | 14,47              |
| 0,120 | 4,20        | 4,26        | 4,21        | 0,014      | 17,84              |
| 0,140 | 4,70        | 4,68        | 4,69        | 0,020      | 21,96              |
| 0,160 | 5,08        | 5,24        | 5,13        | 0,026      | 26,52              |

$$T_{cp}^2 = \left(\frac{T_1 + T_2 + T_3}{3}\right)^2 = \left(\frac{2,58 + 2,50 + 2,56}{3}\right)^2 = 6,49 c^2$$

Таблица 3, Теорема Гюйгенса-Штейнера для диска с отверстиями

| l, m  | <i>T</i> <sub>1</sub> , <i>c</i> | $T_2$ , $c$ | $T_3$ , $c$ | $l^2$ , $m^2$ | $T_{cp}^2$ , $c^2$ |
|-------|----------------------------------|-------------|-------------|---------------|--------------------|
| 0,000 | 2,65                             | 2,59        | 2,65        | 0,000         | 6,92               |
| 0,030 | 2,77                             | 2,78        | 2,79        | 0,001         | 7,73               |
| 0,060 | 3,08                             | 3,13        | 3,14        | 0,004         | 9,71               |
| 0,090 | 3,50                             | 3,51        | 3,48        | 0,008         | 12,23              |
| 0,120 | 4,00                             | 4,09        | 4,07        | 0,014         | 16,43              |

## 9. Расчет результатов косвенных измерений (таблицы, примеры расчетов),

• <u>Момент инерции штанги относительно оси вращения (</u>используя первые значения из Таблицы 2):

$$I_{rod} = \frac{\bar{k}T_{cp}^2}{4\pi^2} = \frac{0.023 * 6.49}{4\pi^2} = 3.781 \text{ r.m}^2$$

$$I_{rod \text{ Teop}} = \frac{ml^2}{12} = \frac{175 * 0.6^2}{12} = 5.25 \text{ г. м}^2$$

• <u>Найдите параметры графика зависимости квадрата периода колебаний системы «штанга +</u> грузы» от квадрата расстояния:

$$T^2 = a * l^2 + T_0^2$$

$$a = \frac{8\pi^2 m}{k} = 780,796 \pm 6,412$$
  $\frac{\text{KT}}{\text{H. M}}$ 

$$T_0^2 = \frac{4\pi^2}{k}(I_{rod} + 2I_c) = 6.49 \quad c^2$$

Отсюда найдем массу m одного груза и их центральный момент инерции относительно оси перпендикулярной оси симметрии (Ic):

$$m = \frac{a * k}{8\pi^2} = \frac{780,796 * 0,023}{8\pi^2} = 0,227 \text{ кг}$$

$$I_c = \frac{1}{2} \left( \frac{T_0^2 * k}{4\pi^2} - I_{rod} \right) = \frac{1}{2} \left( \frac{6,49,0,023}{4\pi^2} - 0,00525 \right) = 0,115 \text{ r. m}^2$$

Кроме того, их теоретические значения:

$$m_{\rm reop} = 0,229 \ {\rm Kr}$$

$$I_{c \text{ теор}} = \frac{m}{4} \left( r^2 + \frac{h^2}{3} \right) = 0,134 \text{ г. м}^2$$

• <u>Аналогично для диска с отверстиями (таблица 3) найдите параметры графика зависимости квадрата периода колебаний системы « диск + отверстия» от квадрата расстояния:</u>

$$T^2 = a * l^2 + T_0^2$$
  $a = \frac{4\pi^2 m}{k} = 671,662 \pm 6,977$   $\frac{\mathrm{K}\Gamma}{\mathrm{H.\,M}}$   $T_0^2 = \frac{4\pi^2}{k} I_c = 6,92$   $c^2$   $m = \frac{a * k}{4\pi^2} = \frac{671,662 * 0,023}{4\pi^2} = 0,391 \,\mathrm{K}\Gamma$   $I_c = \frac{T_0^2 * k}{4\pi^2} = 0,004 \,\mathrm{K}\Gamma.\,\mathrm{M}^2$   $m_{\mathrm{Teop}} = 0,442 \,\mathrm{K}\Gamma$   $I_{c\,\mathrm{Teop}} = \frac{m}{2} \,\mathrm{r}^2 = 4,939 \,\mathrm{r.\,M}^2$ 

• Для всех остальных тел (шар, сплошной диск, полый и сплош ной цилиндры) по данным Таблицы 4 найдите центральные моменты инерции:

Таблица 4, Центральные моменты инерции объектов измерения

| Обьект   | $T_1$ , $c$ | $T_2$ , $c$ | T <sub>3</sub> , c | $T_{cp}^2, c^2$ | <i>I</i> , г. м <sup>2</sup> | $I_{\text{теор}}$ , г. м <sup>2</sup> |
|----------|-------------|-------------|--------------------|-----------------|------------------------------|---------------------------------------|
| Сплошной | 1,543       | 1,573       | 1,533              | 2,401           | 1,462                        | 1,706                                 |
| диск     |             |             |                    |                 |                              |                                       |
| Полый    | 1,103       | 1,093       | 1,050              | 1,171           | 0,713                        | 0,902                                 |
| цилиндр  |             |             |                    |                 |                              |                                       |
| Сплошной | 0,887       | 0,873       | 0,887              | 0,779           | 0,474                        | 0,581                                 |
| цилиндр  |             |             |                    |                 |                              |                                       |
| Шар      | 1,530       | 1,523       | 1,553              | 2,357           | 1,435                        | 1,768                                 |

$$I_{c_A} = \frac{\bar{k}T_{Cp}^2}{4\pi^2} = \frac{0.023 * 2.401}{4 * 3.14^2} = 1.462 \text{ r.m}^2$$

$$I_{\text{сд теор}} = \frac{mr^2}{2} = \frac{288 * (\frac{0.2177}{2})^2}{2} = 1,706 \text{ г. м}^2$$

## 10, Расчет погрешностей измерений (для прямых и косвенных измерений),

Погрешность момента инерции штанги:

$$\Delta T = \frac{T_{max} - T_{min}}{2} = \frac{2,58 - 2,50}{2} = 0,04 \ c$$
 
$$\Delta I_{rod} = I_{rod} \sqrt{\left(\frac{\Delta k}{\bar{k}}\right)^2 + \left(\frac{2\Delta T}{T_{cp}}\right)^2} = 3,781. \sqrt{\left(\frac{0,0047}{0,023}\right)^2 + \left(\frac{2*0,04}{6,49}\right)^2} = 0,774 \ \text{f.m}^2$$
 
$$\frac{\Delta I_{rod}}{I_{rod}} = 0.20$$

Аналогично погрешность косвенного измерения моментов инерции тел из таблицы 4.

| Обьекты          | $\Delta I$ , $\Gamma$ . $M^2$ |
|------------------|-------------------------------|
| Сплошный диск    | 0,228                         |
| Полный цилиндр   | 0,151                         |
| Сплошной цилиндр | 0,058                         |
| Шар              | 0,197                         |

#### 11, Графики,

График 1. Зависимость момента силы от угла закручивания пружины



**График 2.** Зависимость квадрата периода колебаний системы «штанга + грузы» от квадрата расстояния



**График 3**. Зависимость квадрата периода колебаний системы « диск + отверстия» от квадрата расстояния



### 12, Окончательные результаты,

12.1. Коэффициент угловой жесткости спиральной пружины

$$k = 0.023 \pm 0.005 \text{ H} \cdot \text{M}$$

12.2. Центральный момент инерции штанги

$$I_{rod} = 3,781 \pm 0,774 \text{ r. m}^2$$
;  $\delta = 28\%$ ;  $\alpha = 0.95$ .

$$I_{rod.reon} = 5,250 \, г. \, \text{м}^2$$

12.3. Масса груза

$$m = 227 \, \Gamma$$

12.4. Центральный момент инерции грузов.

$$I_c = 0.115 \pm 0.019 \text{ r. m}^2$$
;  $\delta = 14\%$ ;  $\alpha = 0.95$ .  $I_{c \text{ reop}} = 0.134 \text{ r. m}^2$ 

12.5. Центральный момент инерции диска с отверстиями.

$$I_c = 4,000 \pm 0,753 \text{ r. m}^2; \delta = 19\%; \alpha = 0,95$$

$$I_{c \text{ теор}} = 4,939 \text{ г. м}^2$$

12.6. Центральный момент инерции шара.

$$I_c = 1,435 \pm 0,333 \text{ r. m}^2$$
;  $\delta = 19\%$ ;  $\alpha = 0.95$ 

$$I_{c \text{ Teop}} = 1,768 \text{ г. м}^2$$

12.7. Центральный момент инерции сплошного диска.

$$I_c = 1,462 \pm 0,774 \text{ r. m}^2$$
;  $\delta = 14,3\%$ ;  $\alpha = 0.95$ 

$$I_{c,\text{Teop}} = 1,706 \text{ г. м}^2$$

12.8. Центральный момент инерции полого цилиндра.

$$I_c = 0.713 \pm 0.180 \text{ r. m}^2$$
;  $\delta = 21\%$ ;  $\alpha = 0.95$ 

$$I_{CTEOD} = 0.902 \text{ r. m}^2$$

12.6. Центральный момент инерции сплошного цилиндра.

$$I_c = 0.474 \pm 0.107 \text{ r. m}^2$$
;  $\delta = 18.4 \%$ ;  $\alpha = 0.95$ 

$$I_{c \text{ Teop}} = 0,581 \text{ г. м}^2$$

### 13, Выводы и анализ результатов работы,

Как видно по графикам зависимости периода колебаний от смещения тел близки к линейным, что говорит о справедливости теоремы Гюйгенса-Штейнера,

Момент инерции большинства исследуемых тел несколько отличается от теоретических значений (примерно на 20%), Вероятная причина недостоверности некоторых полученных значений в недостаточно хорошем закреплением оси вращения вместе с телом на установке, из-за люфта смещалось положение равновесия тела относительно пружины, Результаты оказались занижены, так как из-за плохого закрепления период колебаний уменьшался, и, следовательно, уменьшалось и экспериментальное значение момента инерции тела,