UNIVERSITY OF NEW ENGLAND

UNIT NAME: MATH 101

PAPER TITLE: Algebra & Differential Calculus

PAPER NUMBER: First and Only

DATE: Wednesday 12 November 2008 TIME: 9:30 AM TO 12:30 PM

TIME ALLOWED: Three (3) hours plus fifteen minutes reading time

NUMBER OF PAGES IN PAPER: FIVE (5)

NUMBER OF QUESTIONS ON PAPER: TWELVE (12)

NUMBER OF QUESTIONS TO BE ANSWERED: TEN (10)

STATIONERY PER CANDIDATE:

6 LEAF A4 BOOKS

0 ROU

ROUGH WORK BOOK

1

1

12 LEAF A4 BOOKS

0 GRAPH PAPER SHEETS

OTHER AIDS REQUIRED: NIL

POCKET CALCULATORS PERMITTED: YES (SILENT TYPE)

TEXTBOOKS OR NOTES PERMITTED: FIVE (5) A4 sheets of handwritten double sided notes (10 pages). No photocopies. No printed pages.

INSTRUCTIONS FOR CANDIDATES:

- Candidates MAY make notes on this examination question paper during the fifteen minutes reading time
- **SECTION A: -** Answer all questions
- **SECTION B:** answer only TWO (2) of the FOUR (4) questions provided
- Questions are of equal value
- Candidates may retain this examination question paper

THE UNIVERSITY CONSIDERS IMPROPER CONDUCT IN EXAMINATIONS TO BE A SERIOUS OFFENCE. PENALTIES FOR CHEATING ARE EXCLUSION FROM THE UNIVERSITY FOR ONE YEAR AND/OR CANCELLATION OF ANY CREDIT RECEIVED IN THE EXAMINATION FOR THAT UNIT.

SECTION A

You should attempt all questions in this section.

Question 1 /10 marks/

- (a) Assuming that a is a negative number and b < a prove that $b^2 > ab$;
- (b) Prove by the mathematical induction that for any $n=1,2,\cdots$,

$$2^n > n + 1$$
.

(c) Determine supremum and infimum (if exist) of the following sets

(i)
$$\{n \in \mathbb{N} : n^3 > 10\}$$
 (ii) $\{x \in \mathbb{R} : x^3 < 8\}$.

Question 2 /10 marks/

- (a) For z = 1 + 3i, write each of the following complex numbers in the form x + iy
 - (i) \bar{z} , (ii) |z|, (iii) $|z|^2$, (iv) $\frac{1}{\bar{z}^2}$, (v) $\frac{z^2 + i}{\bar{z}}$.
- (b) Find all complex numbers z that satisfy

$$z^5 = 1.$$

Question 3 [10 marks]

(a) Find the natural domain X and the range Y of the functions defined by the following formulae

(i)
$$f(x) = x^4 + 1$$
, (ii) $f(x) = \frac{1}{x - 1}$, (iii) $f(x) = \sqrt{x^5 + 1}$.

- (b) Sketch the graph of the function $f: X \to \mathbb{R}$ from Part (a) (ii) $f(x) = \frac{1}{x-1}$. Decide whether this function is injective or surjective.
- (c) Find a real number k that renders continuous the function

$$f: x \mapsto \begin{cases} e^{x-1}, & x < 1\\ \cos(\pi x) + k, & x \ge 1. \end{cases}$$

2

Question 4 [10 marks]

- (a) Determine which of the following sequences of real numbers $(u_n)_{n\in\mathbb{N}}$ is monotone and discuss the behaviour of u_n as $n\to\infty$.
 - (i) $u_n = \frac{1}{n} \frac{1}{n+1}$ (ii) $u_n = (-1)^n$.
- (b) Determine which of the following series converge and which diverge, justifying your answer.

(i)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
 (ii) $\sum_{n=1}^{\infty} \frac{2n+4}{n}$ (iii) $\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^2+1}$.

Question 5 [10 marks]

(a) Find all points at which each of the following functions is well-defined and differentiable, and find the derivatives when they exist. When the function fails to be differentiable at the point, explain why.

(i)
$$f(x) = \frac{1}{\cos x + 1}$$
 (ii) $g(x) = |x - 1| + x^3$.

(b) Differentiate the functions

(i)
$$f(x) = \frac{2x+1}{x^2+2}$$
, (ii) $g(x) = e^{x^2} \cos x$, (iii) $h(x) = \sin(\cos x)$.

Question 6 [10 marks]

Consider the function $f(x) = x^3 - 3x^2 - 9x + 6$.

- (a) Determine the intervals on which f is (i) increasing or decreasing (ii) concave up or concave down.
- (b) Find all the relative maxima and relative minima of f and the absolute maximum and the absolute minimum on [-4, 4].
- (c) Sketch the graph of f on the interval [-4,4] (Choose an appropriate scale).

Question 7 is on page 4

Question 7 [10 marks]

(a) Find all real numbers x, y, z such that

$$x + y - z = 1$$

 $x - y + 2z = 0$
 $x + y + z = 2$

(b) For

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & -1 \\ 0 & -1 \\ -1 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 2 & 1 \\ -1 & -1 & -2 \\ -1 & 1 & -2 \end{pmatrix}.$$

state whether the following products and (or) sums are defined; calculate those which are defined:

- (i) BA (ii) A+B (iii) CB.
- (c) Evaluate the determinant

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 2 \\ 1 & -3 & -4 & -6 \\ 99 & 1 & 0 & 16 \end{vmatrix}.$$

Question 8 [10 marks]

(a) Find the inverse matrix of

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}.$$

Check your answer.

(b) Find eigenvalues and eigenvectors of

$$A = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}.$$

SECTION B

You should attempt only TWO questions in this section.

Question 9 [10 marks]

- (a) Let $f(x) = x^3$. Find $\delta > 0$ such that $|x 1| < \delta$ guarantees |f(x) f(1)| < 0.01.
- (b) Let

$$f(x) = \begin{cases} \sin(\pi x), & \text{if } x \ge 1; \\ x^2 - 1, & \text{if } x < 1. \end{cases}$$

Prove that f(x) is continuous at x = 1.

Question 10 /10 marks/

- (a) Prove that if $\lim_{x\to c} f(x)$ exists, then there is a constant $\delta > 0$, such that f(x) is bounded in $(c, c + \delta)$.
- (b) Prove that if f(x) is differentiable at x = c, then f(x) is continuous at x = c.

 ${\bf Question} \ \, {\bf 11} \quad \, [10 \ marks]$

Find the largest possible area for a rectangle with base on the x-axis and upper vertices on the curve $y = \sqrt{1-x^2}$.

Question 12 /10 marks/

Prove $e^x > x + 1$ for all x > 0.