

UE19CS252

Dr. D. C. Kiran

Department of Computer Science and Engineering

3 & 5 Stage ARM Processor

Dr. D. C. Kiran

Department of Computer Science and Engineering

Syllabus

Unit 1: Basic Processor Architecture and Design

Unit 2: Pipelined Processor and Design

- 3-Stage ARM Processor
- 5-Stage Pipeline Processor
- Introduction to Pipeline Processor

Unit 3: Memory Design

Unit 4: Input/Output Device Design

Unit 5: Advanced Architecture

Recall → Single Cycle vs Multiple Cycle

ARM Processors

ARM7TDMI

ARM9TDMI

ARM10

ARM7TDMI – 3 Stage

Fetch (IF)

The instruction is fetched from memory and placed in the instruction pipeline

Decode (ID)

• The instruction is decoded and the datapath control signals prepared for the next cycle.

Execute (EX)

 The register bank is read, an operand shifted, the ALU result generated and written back into a destination register

ARM9TDMI- 5 Stage

ARM 5-stage (ARM 9 Architecture)

- •Fetch [IF]
- •Decode [ID]
- •Execute [EX]
- Buffer/Data or Memory Access-[MEM]
- •Write back [WB]

Instruction & Data Memory?
Split

ARM ARCHITECTURE - 5 STAGE PIPELINING - Fetch - [IF], Decode - [ID]

Fetch - [IF]

- The instruction is **fetched** from memory and placed in the instruction pipeline.
- Update the PC to the next sequential PC by adding 4 to PC.

Decode - [ID]

- The instruction is decoded and register operands read from the register files.
 There are 3 operand read ports in the register file so most ARM instructions can source all their operands in one cycle.
- Do the equality test on the registers as they are read, for a possible branch.
- Sign extend the offset field of the instruction in case it is needed.

ARM ARCHITECTURE - 5 STAGE PIPELINING- DECODE STAGE - [ID]

- Compute the possible branch target address by adding the sign-extended offset to the incremented PC.
- Further, the branch can be completed by the end this stage by storing the branch target address into the PC if condition yielded true.
- Decoding is done in parallel with reading registers, as the register specifiers are at fixed location in a RISC architecture.

ARM ARCHITECTURE - 5 STAGE PIPELINING Execute - [EX]

Also called as execute / effective address cycle.

The ALU operates on the operands prepared in the previous cycle, performing of the three functions depending on the instruction type.

- Memory Reference: the ALU adds the base register and the offset to form the effective address.
- Register Register ALU instruction: The ALU performs the operation specified by the opcode on the values read from the register file.
- Register Immediate ALU instruction: The ALU performs the operations specified by the opcode on the first value read from the register file and the sign extended immediate.

Buffer/Data or Memory Access-[MEM]

Data memory is accessed if required.

Otherwise the ALU result is simply buffered for one cycle.

If the instruction is a LOAD, the memory does a read using effective address computed in the previous cycle.

If the instruction is a STORE, then the memory writes the data from the second register read using the effective address.

Buffer/Data or Memory Access-[MEM]

The Five Stages of Load

- IF: Instruction Fetch
 - Fetch the instruction from the Instruction Memory
- ID: Registers Fetch and Instruction Decode
- EXE: Calculate the memory address
- MEM: Read the data from the Data Memory
- WB: Write the data back to the register file

ARM ARCHITECTURE - 5 STAGE PIPELINING - Write back - [WB]

The result generated by the instruction is written back to the register file.

The data may come either from memory system [for LOAD], or from the ALU [for an ALU instruction].

The Four Stages of Data Processing

- IF: Instruction Fetch
 - Fetch the instruction from the Instruction Memory
- ID: Registers Fetch and Instruction Decode
- EXE:
 - ALU operates on the two register operands
 - Update PC
- WB: Write the ALU output back to the register file

THANK YOU

Dr. D. C. Kiran

Department of Computer Science and Engineering

dckiran@pes.edu

9829935135