团 (clique)

【题目描述】

给出一张有 n 个点 m 条边的无向图,其中每个点按 $1,2,\dots,n$ 编号。你需要将图中的所有点划分成两个点集(每个点必须恰好属于两者之一,可以有一个点集为空),使得属于同一个点集的两个不同点之间一定有连边(即划分为两个团)。

如果存在这样的划分方案,则输出 m 条边中满足两个端点属于同一个点集的边数量的最小值。否则输出 -1。

【输入格式】

从标准输入读入数据。

由于边数可能很多,本题采用邻接矩阵的方式输入。

输入的第一行包含两个整数 n, m,表示图的点数和边数。

接下来 n 行,第 i 行输入一个长度为 n 的仅包含 $\underline{0}$ 和 $\underline{1}$ 的字符串 s_i 。 s_i 的第 j 个字符 $s_{i,j}$ ($1 \le j \le n$) 为 $\underline{1}$ 表示 i 和 j 之间有连边,为 $\underline{0}$ 表示没有连边。保证 $\forall 1 \le i \le n, s_{i,i} = 0$; $\forall 1 \le i, j \le n, s_{i,j} = s_{j,i}$ 。

【输出格式】

输出到标准输出。

输出一行,包含一个整数。如果存在满足要求的划分方案,则输出最小值;否则输出 -1。

【样例 1 输入】

5 5

01100

10000

10011

00101

00110

【样例1输出】

4

【样例1解释】

两个团的点集分别为 {1,2} 和 {3,4,5}。

【样例 2】

见题目目录下的 2.in 与 2.ans。

【子任务】

对于 30% 的数据, $n \le 16$ 。

对于 70% 的数据, $n \le 500$, 其中有 10% 满足 $20 < n \le 500, m = \frac{n(n-1)}{2}$ 。

对于 100% 的数据, $2 \le n \le 2000, 0 \le m \le \frac{n(n-1)}{2}$ 。