### 1/34/6 (Item 2 from file: 351)

008728321

WPI Acc No: 1991-232336/199132

Measurement of urea or urease in biological fluids - by mixing with pH indicator and urease or urea

Patent Assignee: CENT HOSPIT REG UNI (HOSP-N)

Inventor: ORSONNEAU J L

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week FR 2654436 A 19910517 FR 8914907 A 19891114 199132 B

Priority Applications (No Type Date): FR 8914907 A 19891114

Abstract (Basic): FR 2654436 A

Urea or urease is measured in liqs., partic. biological fluids, by the following methods: the fluid is mixed with a first reagent contg. a stable dye the colour of which varies with pH in the range 5.5-9, it is then mixed with a second reagent contg. urea or urease which ever one is not present in the test soln. The optical density of the mixt. is then measured at the same wavelength of visible light before and after hydrolysis due to the action of the urease. The difference is compared with the result obtained with standard solns. and so the concn. of urea or urease is calculated.

ADVANTAGE - This process is cheap and simple to carry out, may be effected on urine samples without interference from ammonia present, and it does not require pre-treatment of the sample soln.. (16pp Dwg.No.0/0)

Derwent Class: B04; D16; J04; S03; S05 International Patent Class (Additional): C12Q-001/58; G01N-021/79; G01N-033/62

Derwent WPI (Dialog® File 351): (c) 2003 Thomson Derwent. All rights reserved.



19 RÉPUBLIQUE FRANÇAISE

#### INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

**PARIS** 

(11) N° de publication :

(à n'utiliser que pour les commandes de reproduction)

2 654 436

21) N° d'enregistr ment national :

89 14907

(51) Int Cl<sup>5</sup> : C 12 Q 1/58; G 01 N 21/79, 33/62

(12)

## **DEMANDE DE BREVET D'INVENTION**

**A1** 

- (22) Date de dépôt : 14.11.89.
- (30) Priorité :

- (71) Demandeur(s): CENTRE HOSPITALIER REGIONAL ET UNIVERSITAIRE DE NANTES FR.
- 43 Date de la mise à disposition du public de la demande : 17.05.91 Bulletin 91/20.
- Liste des documents cités dans le rapport de recherche : Se reporter à la fin du présent fascicule.
- 60 Références à d'autres documents nationaux apparentés :
- 73) Titulaire(s) :
- (74) Mandataire : Cabinet Lemonnier Dawidowicz.

(72) Inventeur(s) : Orsonneau Jean-Luc.

Procédé pour le dosage de l'urée et de l'uréase, et coffret des réactifs nécessaires pour la mise en œuvre de ce procédé.

67) L'invention concerne un procédé pour le dosage de l'urée, ou de l'uréase dans les milieux liquides, en particulier dans les fluides biologiques.

Selon l'invention, on mélange l'échantillon renfermant respectivement l'urée à doser ou l'uréase à doser avec un premier réactif essentiellement constitué par une solution aqueuse d'un composé chimique qui est stable dans ladite solution au moins pendant la durée du dosage, dont la coloration varie en fonction du pH, dans la plage de pH allant d'environ 5,5 à environ 9, ladite solution renfermant le cas échéant respectivement de l'uréase ou de l'urée, ladite uréase ou urée étant, dans la négative, ajoutée ultérieurement sous la forme d'une solution aqueuse et constituant alors un second réactif, et on déduit la concentration respectivement de l'urée ou de l'uréase recherchée de la différence des mesures de la densité optique de l'échantillon à une même longueur d'onde du spectre visible effectuées avant et après l'action d'hydrolyse par l'uréase, cette différence étant comparée au résultat obtenu, dans les mêmes conditions, avec une solution étalon respectivement d'uré ou d'uréase.

Application au dosage de l'urée ou de l'uréase.

R 2 654 436 - A



La présente invention porte sur un procédé pour le dosage de l'urée et de l'uréase dans les milieux liquides, en particulier dans les liquides biologiques, tels que le sang, les urines, etc. Le dosage de l'uréase est intéressant en immunoenzymologie, l'uréase étant fixée à un anticorps ou à un antigène, ou en biologie moléculaire, l'uréase étant alors fixée à une sonde nucléique ADN ou ARN non-radioactive. L'invention porte également sur les coffrets des réactifs nécessaires pour la mise en oeuvre de ce procédé.

Le dosage de l'urée s'effectuait traditionnellement par les méthodes purement chimiques à l'hypobromite, au xanthydrol, au paradiméthylaminobenzaldéhyde, à la diacétyle monoxime et à l'orthophtalaldéhyde. Dans l'ensemble, ces méthodes ne sont plus utilisées. Les méthodes au diacétyle monoxime et à l'orthophtalaldéhyde qui le sont encore sont peu spécifiques et elles sont sujettes à de nombreuses interférences. De plus, leur emploi est souvent malaisé, car elles nécessitent une température d'utilisation élevée et elles posent des problèmes de corrosion et de conservation.

Les méthodes chimiques classiques pour le dosage de l'urée dans les milieux biologiques ont été supplantées par les méthodes enzymatiques, effectuant un dosage d'ammoniac après hydrolyse de l'urée par l'uréase; ce sont la réaction de Nessler, la réaction de Berthelot et la titration avec la cellule de Conway, la mesure différentielle de pH, l'électrode spécifique à l'ammoniac, et la méthode enzymatique totale à la glutamate deshydrogénase. Cette dernière, qui est de très loin la plus utilisée, est très spécifique, précise et très sensible. Elle présente cependant un certain nombre d'inconvénients:

- elle est coûteuse ;

5

10

15

20

25

30

35

- la stabilité du réactif est r lativement faible ;
- elle nécessite un équipement permettant d fair des mesures de densité optique dans l'ultraviolet (340 nanomètres), étant donc difficilement applicable dans les pays où les moyens techniques et économiques sont modestes;
- elle est difficilement utilisable pour les urines, car elle est sujette à l'interférence de l'ammoniac préexistant et, trop sensible, elle nécessite une dilution des urines car la concentration en urée y est trop importante. Ce pré-traitement des urines est très pénalisant pour des dosages en séries.

La présente invention vise à remédier à l'ensemble de ces inconvénients. A cet effet, selon l'invention, on propose de doser l'urée sur la base de la variation de la densité optique, après hydrolyse de l'urée par l'uréase, du milieu contenant l'urée et un composé chimique dont la coloration varie en fonction du pH (désigné parfois ci-après simplement par le terme «colorant»). Le schéma réactionnel est le suivant, le colorant étant le pourpre de phtaléine :

$$H_2N$$
 $C=0 + H_2O \xrightarrow{ur\acute{e}ase} 2NH_3 + CO_2$ 
 $H_2N$ 
 $ur\acute{e}e$ 

alcalinisation du milieu

pourpre ← pourpre de phtaléine ← incolore

Un tel procédé convient entre autres très bien pour le dosage de l'urée dans les urines. Sa mise en oeuvre est simple, ne comportant que le mélange de l'échantillon à doser avec un ou deux réactifs, sans nécessiter de chauffage. Ces réactifs sont stables pendant plusieurs semaines et ils ne sont pas corrosifs. En outre, le procédé

est spécifique de l'urée, sa spécificité étant celle de l'uréase; il est fiable dans les conditions normales d'utilisation; il ne nécessite pas d'équipement coûteux puisque la mesure de densité optique est faite dans le spectre visible, une estimation pouvant même être faite à l'oeil nu; et il est d'un coût très sensiblement inférieur aux procédés actuels.

5

10

15

30

35

En outre, conformément à l'invention, l'uréase peut être dosée par réaction inverse, l'urée se trouvant à taux connu dans le réactif et l'uréase se trouvant dans l'échantillon. Ce type de dosage est intéressant dans deux cas :

- en immunoenzymologie, l'uréase étant fixée à un anticorps ou à un antigène. L'anticorps (ou antigène) étant spécifique d'une autre molécule (hormone, protéine, médicament ...), il est possible de déterminer quantitativment cette molécule par le biais de la réaction urée-uréase-composé chimique dont la coloration change en fonction du pH;
- en biologie moléculaire, l'uréase étant cette fois fixée à une sonde nucléique ADN ou ARN non-radioactive.

  La sonde étant spécifique de son brin complémentaire, il est alors possible de le détecter ou de le doser, toujours par la même réaction. Cette méthode peut alors permettre la détection de virus ou de bactéries dans les milieux biologiques et dans les produits alimentaires, le dépistage des maladies génétiques, et d'aider au diagnostic et au traitement dans les cancers.

La présente invention a donc d'abord pour objet un procédé de dosage de l'urée, ou de l'uréase, dans les milieux liquides, en particulier dans les milieux biologiques, caractérisé par le fait qu'on mélange l'échantillon renfermant respectivement l'urée ou l'uréase à doser avec un premier réactif essentiellement constitué par une solution aqueuse d'un composé chimique qui est stable dans ladite

solution au moins pendant la durée du dosage et dont la coloration vari en fonction du pH, dans la plag de pH allant d'environ 5,5 à environ 9, ladite solution r nfermant le cas échéant respectivement de l'uréase ou de l'urée, ladite urée ou uréase étant, dans la négative, ajoutée ultérieurement sous la forme d'une solution aqueuse et constituant alors un second réactif, et on déduit la concentration respectivement de l'urée ou de l'uréase recherchée de la différence des mesures de la densité optique de l'échantillon à une même longueur d'onde du spectre visible, effectuées avant et après l'action d'hydrolyse par l'uréase, cette différence étant comparée au résultat obtenu, dans les mêmes conditions, avec une solution étalon respectivement d'urée ou d'uréase.

15

20

25

30

35

5

10

Conformément à un premier mode de réalisation :

- dans une première étape, on mélange l'échantillon renfermant respectivement l'urée à doser ou l'uréase à doser avec un premier réactif essentiellement constitué par une solution aqueuse du composé chimique dont la coloration varie en fonction du pH, dans la plage de pH allant d'environ 5,5 à environ 9, ladite solution renfermant le cas échéant respectivement de l'uréase ou de l'urée;
- dans une seconde étape, on mesure la densité optique de l'échantillon ;
  - dans une troisième étape, conduite dans le cas où le premier réactif ne contenait pas respectivement d'uréase ou d'urée, on ajoute à l'échantillon à traiter, un second réactif constitué par une solution aqueuse respectivement d'uréase ou d'urée ; et
  - dans une quatrième étape, on mesure à nouveau la densité optique de l'échantillon à la même longueur d'onde; et
  - on déduit la concentration respectivement d'urée ou d'uréase recherchée.

Le colorant selon l'invention doit être soluble en

milieux aqueux dans la plage de pH correspondant à celle de l'action de l'uréase (environ 5,5-9), et il doit être stable dans ce milieu au moins pendant la durée du dosage, soit, de préférence, pendant au moins quelques heures. De plus, le changement de couleur ne doit être ni trop rapide ni trop bref. Ce colorant peut être un complexant métallique, comme le pourpre de phtaléine, le rouge de pyrogallol, le bleu de méthyl thymol, le pourpre de bromocrésol, le bleu de toluidine, le bleu d'aniline, ou un indicateur coloré de pH, comme l'hématoxyline, le tournesol, le nitro-4 phénol, le bleu de bromoxylénol, l'alizarine, le bleu de bromothymol, le pourpre de crésol, la phénolphtaléine; on peut également utiliser un mélange de ces composés.

La solution aqueuse constituant le premier réactif peut avantageusement renfermer au moins un agent complexant, comme l'EDTA, le NTA, en une quantité suffisante pour éviter toute interférence avec des métaux éventuellement présents dans le milieu.

Cette solution aqueuse constituant le premier réactif peut être plus ou moins tamponnée en fonction de la sensibilité désirée (moins elle est tamponnée, plus la variation de coloration est importante pour une même quantité d'urée (ou d'uréase)).

### (a) <u>Dosage de l'urée</u>

5

10

15

20

25

30

35

Dans le dosage de l'urée, l'uréase se présente sous la forme d'une poudre et elle est incorporée, au moment de l'emploi, soit dans la solution du colorant, soit dans une solution d'eau physiologique, pour constituer alors le second réactif.

Pour l'application au dosage de l'urée dans les milieux biologiques, comme le sang ou les urines, la concentration en colorant dans la solution constituant le premier réactif peut aller de quelques micromoles à quelques millimoles par litre, étant choisie notamment entre environ 0,1 et environ 5 mmole/1, et la concentration en uréase dans

le premier ou second réactif peut aller de quelques centaines à quelques milliers d'UI/1, et se situer notamment entre environ 1 000 et 50 000 UI/1.

La concentration du colorant varie en fonction de la quantité maximale d'urée à doser. Ainsi, dans l'Exemple 2 ci-après, la quantité maximale est fixée à 500 mmol/l, l'échantillon est dilué au 1/111, soit une concentration de 4,5 mmol/l; si le milieu n'était pas tamponné, il faudrait une concentration légèrement supérieure à cette valeur; comme il l'est un peu, une concentration à 2,5 mmol/l suffit.

La quantité d'uréase influe seulement sur la vitesse de la réaction avec 35 000 UI/1, celle-ci est complète, même pour une concentration d'urée de 500 mmol/1, en moins de 5 minutes ; plus on diminuera la concentration d'uréase, plus la réaction sera longue.

#### (b) Dosage de l'uréase

5

10

15

20

25

30

35

Pour les applications à l'immuno-enzymologie et à la biologie moléculaires, les conditions seront là fort différentes, l'uréase sera présente en très petite quantité puisqu'il n'y aura qu'une molécule d'uréase par molécule de produit recherché et celui-ci est le plus souvent en quantité infime, en général inférieure à l UI/l; en revanche, l'urée sera présente dans le premier ou le second réactif en une quantité connue, en étant comprise par exemple entre l et 50 mmol/l; et le colorant devra être dans un milieu le moins tamponné possible pour avoir une bonne sensibilité et à une concentration de quelques micromoles à quelques millimoles/litre.

On effectue les mesures de densité optique à une longueur d'onde de 580 nanomètres par exemple.

L'ensemble, ou au moins le flacon de poudre d'uréase, doit être conservé entre 4° et 8°C; il est ainsi utilisable après plusieurs mois. Grâce à cette disposition d'ensemble, on met au service de l'analyste un moyen de dosage simple rapide, efficace et peu coûteux.

Les exemples suivants sont destinés à illustrer la présente invention sans en limiter la portée.

# Exemple 1 : Coffret de réactifs pour le dosage de l'urée

5

10

15

Ce coffret se compose des réactifs suivants :

- Réactif 1 (prêt à l'emploi) : solution aqueuse de
  - \* pourpre de phtaléine ..... 2,5 mmol/l
  - \* tampon TRIS ...... 30 mmol/1
  - \* EDTA..... 5 mmol/1
  - \* l'ensemble est ajusté à un pH de 7,4.
- Réactif 2 (poudre à dissoudre dans l'eau physiologique en mode bi-réactifs ou dans le réactif 1 en mode monoréactif)
  - \* uréase ......>35 000 U/1
- Réactif 3 (prêt à l'emploi) : standard urée
  - \* urée ..... 250 mmol/l

20

Différents conditionnements peuvent être envisagés:

| 2 | 5 |
|---|---|
| _ | _ |

30

35

|       | Réactif 1 | Réactif 2 | Réactif 3 |
|-------|-----------|-----------|-----------|
| grand | 500 ml    | 50 ml     | 5 ml      |
| moyen | 250 ml    | 25 ml     | 5 ml      |
| petit | 100 ml    | 10 ml     | 5 ml      |

# Exemple 2 : Dosage de l'urée dans les urines en mode bi-réactifs

Le réactif 2 est reconstitué par de l'eau physiologique (chlorure de sodium à 150 mmol/l) selon le conditionnement utilisé. Le photomètre est réglé à une longueur d'onde de 580 nm. Le dosage est conduit à une température allant de la température ambiante à 37°C environ.

Le mode opératoire figure dans le tableau ci-après.

|    | Introduire au fond des tubes à essai :                                                           |                    |                   |                    |
|----|--------------------------------------------------------------------------------------------------|--------------------|-------------------|--------------------|
| 5  |                                                                                                  | Témoin<br>Réactifs | Standard          | Essai              |
|    | Standard                                                                                         |                    | 10 µ1             |                    |
| •  | Echantillon d'urines                                                                             |                    |                   | 10 µ1              |
|    | Réactif 1                                                                                        | 1 ml               | 1 ml              | 1 ml               |
|    | Mélanger, incuber 1 minute<br>et mesurer la densité<br>optique (DO) à 580 nm<br>contre le témoin |                    | <sup>DO</sup> lét | <sup>DO</sup> léch |
|    | Réactif 2                                                                                        | 100 ul             | 100 µl            | 100 µl             |
| 15 | Mélanger, incuber<br>5 minutes et mesurer la<br>DO à 580 nm contre le<br>témoin                  |                    | <sup>DO</sup> 2ét | DO <sub>2éch</sub> |

- Calcul du résultat :

20

$$\frac{(DO_{2\text{\'ech}} - DO_{1\text{\'ech}})}{(DO_{2\text{\'et}} - DO_{1\text{\'et}})}$$
 x concentration du standard (230 mmol/1)

- Linéarité : 500 mmol/l

25

# Exemple 3 : Dosage de l'urée dans le sang en mode bi-réactifs

On procède comme à l'Exemple 2, excepté que les volumes de standard et d'échantillon de sérum ou de plasma sont de 50 ul, et que le standard urée doit être dilué au  $1/10^{\frac{10}{2}}$ .

La linéarité est de 100 mmol/l.

# Exemple 4: Dosage de l'urée dans les urines ou dans le sang en mode mono-réactif

On procède comme à l'Exemple 2, excepté que le réactif 2 est reconstitué avec le réactif 1 (au lieu de l'eau physiologique).

|    | Introduire au fond des tubes à essai :                              |                                   |                                   |
|----|---------------------------------------------------------------------|-----------------------------------|-----------------------------------|
| 10 |                                                                     | Standard                          | Essai                             |
|    | Standard                                                            | 10 µl (urines)<br>ou 50 µl (sang) | _                                 |
| •  | Echantillon                                                         |                                   | 10 µl (urines)<br>ou 50 µl (sang) |
| 15 | Réactif                                                             | 1 ml                              | 1 ml                              |
|    | Mesurer la DO à 580 nm<br>aussitôt après l'addi-<br>tion de réactif | <sup>DO</sup> 1ét                 | <sup>DO</sup> léch                |
| 20 | Faire une deuxième<br>mesure de DO 5 minutes<br>plus tard           | <sup>DO</sup> 2ét                 | DO <sub>2éch</sub>                |

- calcul du résultat :

 $\frac{(DO_{2\acute{e}ch} - DO_{1\acute{e}ch})}{(DO_{2\acute{e}t} - DO_{1\acute{e}t})} \times concentration du standard$ 

linéarité : 500 mmol/l pour les urines 100 mmol/l pour le sang.

Exemple 5 : Dosage de l'urée dans les urines ou dans le sang en mode cinétique

| 5  | Introduire au fond des tubes à essai :                                                               |                                   |                                   |
|----|------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|
|    |                                                                                                      | Standard                          | Essai                             |
|    | Standard                                                                                             | 10 µl (urines)<br>ou 50 µl (sang) |                                   |
| 10 | Echantillon                                                                                          |                                   | 10 µl (urines)<br>ou 50 µl (sang) |
|    | Réactif (1+2)                                                                                        | 1 ml                              | 1 ml                              |
| 15 | Suivre la variation de DO entre $T_0$ (aussitôt après le mélange) et $T_1$ (1 minute plus tard) = DO | <sup>DO</sup> ét                  | <sup>DO</sup> éch                 |

- Calcul du résultat :

 $\begin{array}{c} \begin{array}{c} \text{DO}_{\acute{\text{e}ch}} \\ \hline \\ \text{DO}_{\acute{\text{e}t}} \end{array} \text{$\chi$ concentration du standard} \end{array}$ 

- Linéarité : 500 mmol/l (urines)
100 mmol/l (sang)

30

25

# REVENDICATIONS

- 1 Procédé pour l dosage de l'urée, ou de l'uréase dans les milieux liquides, en particuli r dans les fluides biologiques, caractérisé par le fait qu'on mélange l'échantillon renfermant respectivement l'urée à doser ou 5 l'uréase à doser avec un premier réactif essentiellement constitué par une solution aqueuse d'un composé chimique qui est stable dans ladite solution au moins pendant la durée du dosage, dont la coloration varie en fonction du pH, dans la plage de pH allant d'environ 5,5 à environ 9, ladite 10 solution renfermant le cas échéant respectivement de l'uréase ou de l'urée, ladite uréase ou urée étant, dans la négative, ajoutée ultérieurement sous la forme d'une solution aqueuse et constituant alors un second réactif, et on déduit la concentration respectivement de l'urée ou de 15 l'uréase recherchée de la différence des mesures de la densité optique de l'échantillon à une même longueur d'onde du spectre visible, effectuées avant et après l'action d'hydrolyse par l'uréase, cette différence étant comparée au résultat obtenu, dans les mêmes conditions, avec une 20 solution étalon respectivement d'urée ou d'uréase.
  - 2 Procédé selon la revendication 1, caractérisé par le fait que :
- dans une première étape, on mélange l'échantillon
  renfermant respectivement l'urée à doser ou l'uréase à
  doser avec un premier réactif essentiellement constitué
  par une solution d'un composé chimique dont la coloration varie en fonction du pH, dans la plage allant
  d'environ 5,5 à environ 9, ladite solution renfermant
  le cas échéant respectivement de l'uréase ou de l'urée;
  - dans une seconde étape, on mesure la densité optique de l'échantillon ;
- dans une troisième étape, conduite dans le cas où le premier réactif ne contenait pas respectivement d'uréase ou d'urée, on ajoute à l'échantillon à traiter, un second réactif constitué par une solution

- aqueuse respectivement d'uréase ou d'urée ; et
- dans une quatrième étape, on mesure à nouveau la densité optique de l'échantillon à la même longueur d'onde ; et
- on déduit la concentration respectivement d'urée ou d'uréase recherchée.
  - 3 Procédé selon la revendication 1, caractérisé par le fait qu'on suit la variation de la densité optique de l'échantillon et de la solution étalon.
- 4 Procédé selon l'une des revendications 1 à 3, pour le dosage de l'uréase, caractérisé par le fait que l'uréase est couplée à un anticorps ou à un antigène spécifique d'une molécule, telle qu'une hormone, une protéine, un médicament, que l'on veut doser.

15

20

25

30

- 5 Procédé selon l'une des revendications 1 à 3, pour le dosage de l'uréase, caractérisé par le fait que l'uréase est couplée à une sonde nucléique ADN ou ARN non-radioactive.
  - 6 Procédé selon l'une des revendications 1 à 5, caractérisé par le fait que le composé chimique dont la coloration varie en fonction du pH est un complexant métallique.
  - 7 Procédé selon la revendication 6, caractérisé par le fait que le complexant métallique est choisi parmi le pourpre de phtaléine, le rouge de pyrogallol, le bleu de méthyl thymol, le pourpre de bromocrésol, le bleu de toluidine et le bleu d'aniline.
  - 8 Procédé selon l'une des revendications 1 à 5, caractérisé par le fait que le composé chimique dont la coloration varie en fonction du pH est un indicateur coloré de pH.
  - 9 Procédé selon la revendication 8, caractérisé par le fait que l'indicateur coloré de pH est choisi parmi l'hématoxylène, le tournesol, le nitro-4 phénol, le bleu de bromoxylénol, l'alizarine, le bleu de bromothymol, le pourpre de crésol et la phénolphtaleine.

- 10 Procédé selon l'une des revendications 1 à 9, caractérisé par le fait que la solution aqueuse constituant le premier réactif renferme au moins un agent complexant, tel que l'EDTA ou le NTA, en une quantité suffisante pour éviter toute interférence avec les métaux éventuellement présents dans le milieu.
- 11 Procédé selon l'une des revendications 1 à 10, caractérisé par le fait que la solution aqueuse constituant le premier réactif est une solution tamponnée.

5

10

15

20

25

- 12 Procédé selon l'une des revendications 1 à 11, pour le dosage de l'urée ou de l'uréase, caractérisé par le fait que la concentration du composé chimique dont la coloration varie en fonction du pH dans la solution constituant le premier réactif est comprise entre quelques micromoles par litre et quelques millimoles par litre, notamment entre environ 0,1 à 5 mmoles/l.
  - 13 Procédé selon l'une des revendications 1 à 12, pour le dosage de l'urée, caractérisé par le fait que la concentration en uréase dans le premier réactif ou le second réactif est comprise entre quelques millièmes et quelques milliers d'UI/1.
  - 14 Procédé selon la revendication 13, caractérisé en ce que la concentration en uréase est comprise entre 1 000 et 50 000 UI/1.
  - 15 Procédé selon l'une des revendications 1 à 12, pour le dosage de l'uréase, caractérisé en ce que la concentration en uréase est inférieure à 1 UI/1.
  - 16 Procédé selon l'une des revendications l à 12, pour le dosage de l'uréase, caractérisé par le fait que la concentration en urée dans le premier ou second réactif est comprise entre environ l et 50 mmol/l.
  - 17 Procédé selon l'une des revendications 1 à 16, caractérisé par le fait qu'on effectue les mesures de densité optique à une longueur d'onde d'environ 580 nanomètres.
- 18 Coffret des réactifs nécessaires pour la 35 mise en œuvre du procédé tel que défini à l'une des revendications l à 3, et 6 à 14, pour le dosage de l'urée, caractérisé par le fait qu'il comprend :

- un flacon d'une solution d'un composé chimique dont la coloration varie en fonction du pH;
- un flacon d'uréase en poudre ; et
- un flacon de solution étalon d'urée.

### INSTITUT NATIONAL

de la PROPRIETE INDUSTRIELLE

# RAPPORT DE RECHERCHE

établi sur la base des dernières revendications déposées avant le commencement de la recherche

FR 8914907 FA 434736

| atégorie | Citation du document avec indication, en cas de besoin,<br>des parties pertinentes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | de la demande<br>examinée                                                                                                                                                |                                              |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| χ        | US-A-4 101 382 (M.K. CHANG) * Document en entier *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-3,6-<br>18                                                                                                                                                             |                                              |
| Υ        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4,5                                                                                                                                                                      |                                              |
| Y        | AU-B-7 867 881 (COMMONWEALTH SERUM LABORATORIES COMMISSION)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4,5                                                                                                                                                                      | ·                                            |
| A        | * Document en entier *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-3,6-<br>18                                                                                                                                                             |                                              |
| X        | FR-A-2 544 742 (LABORATOIRES BIOTROL<br>* Document en entier *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .) 1-3                                                                                                                                                                   | • .                                          |
| <b>X</b> | GB-A-2 030 295 (INSTITUTO SIEROTERAPICO E VACCINOGEN TOSCANO "SCLAVO S.p.A.") * Document en entier *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 .                                                                                                                                                                      | · .                                          |
| A        | EP-A-0 054 096 (I.E. MODROVICH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          | DOMAINES TECHNIQUES<br>RECHERCHES (Int. CL5) |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          | C 12 Q<br>G 01 N                             |
|          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                          | G OI N                                       |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                              |
|          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                          |                                              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                              |
| -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                              |
|          | Date d'achèvement de la red<br>19-07-1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                          | FFITH G.                                     |
|          | particulièrement pertinent à lui seul à la particulièrement pertinent en combinalson avec un de controllèrement en combinalson avec un de controllèrement pertinent en combinalson avec un de controllèrement en combinalson d | prie ou principe à la hase de<br>ument de brevet bénéficiant<br>date de dépôt et qui n'a été<br>lépôt ou qu'à une date posté<br>dans la demande<br>pour d'autres ralsons | d'ube date anteneure                         |