Homework on §9 Due: Thursday, March 7

- A. Write a program that takes as input positive integers n and b, and returns n in base b. The output can be a list of digits. You may assume $b \le 10$.
- B. Silverman 9.1.
- C. Silverman 9.2.
- D. Silverman 10.2.
- E. Let p be a prime, and suppose gcd(a,p) = 1. Show that if $ax \equiv c \pmod{p}$, then $x \equiv ca^{p-2} \pmod{p}$.
- F. Suppose gcd(x,97)=1 and $x^n\equiv 1\pmod{97}$, where $1\leq n\leq 96$. Show that $n\mid 96$.
- G. Let $p(x) = x^{33} x$. Show that if n is an integer, then $15 \mid p(n)$.
- H. Suppose a, n are integers with $n \neq 0$ and $gcd(a, n) \neq 1$. Show that $a^r \not\equiv 1 \pmod{n}$ for any positive r.