Exercício de laboratório 6

Quadrado latino

César A. Galvão - 19/0011572

2022-08-11

Contents

1	Questão 1				
	1.1	Modelo	3		
	1.2	Tabela ANOVA	4		
	1.3	Estimadores	4		
2	Que	estão 2	6		

1 Questão 1

1.1 Modelo

Para o experimento de quadrado latino utiliza-se o seguinte modelo de efeitos:

$$y_{ijk} = \mu + \alpha_i + \tau_j + \beta_k + \varepsilon_{ijk}, \begin{cases} i, k = 1, 2, 3\\ j = A, B, C \end{cases}$$

$$\tag{1}$$

onde y_{ijk} é a observação na i-ésima linha, na k-ésima coluna para o j-ésimo tratamento. μ é a média total, α_i é o efeito da i-ésima linha, τ_j é o efeito da j-ésimo tratamento, β_k é o efeito da k-ésima coluna e ε_{ijk} é o erro aleatório. O modelo é completamente aditivo; nesse sentido, não há interação entre linhas, colunas e tratamentos. Como só há uma observação em cada célula, apenas dois dos três subscritos i, j e k são necessários para denotar uma observação em particular.

Dessa forma, testa-se a igualdade dos efeitos de tratamento ou, em outras palavras, se o efeito dos tratamentos é igual a zero.

Desse modo, as hipóteses são:

$$\begin{cases}
H_0: \mu_1 = \dots = \mu_a \\
H_1: \exists \mu_i \neq \mu_j, i \neq j.
\end{cases}$$
(2)

ou

$$\begin{cases} H_0: \tau_1=\ldots=\tau_a=0, & \text{(O efeito de tratamento \'e nulo)} \\ H_1: \exists \tau_i \neq 0 \end{cases}$$
 (3)

A análise de variância consiste em particionar a soma de quadrados total das observações, nos componentes para linhas, colunas, tratamentos e erro:

$$SQ_{\mathsf{Tot}} = SQ_{\mathsf{linhas}} + SQ_{\mathsf{Colunas}} + SQ_{\mathsf{Trat}} + SQ_{\mathsf{Res}}$$
 (4)

com os respectivos graus de liberdade:

$$(p^{2}-1) = (p-1) + (p-1) + (p-1) + (p-2)(p-1)$$
(5)

Assumindo que ε_{ijk} segue uma distribuição $N(0,\sigma^2)$, cada soma de quadrados do lado direito da equação apresentada acima é uma variável qui-quadrado independente quando dividida por σ^2 . A estatística de teste apropriada para testar as diferenças entre os tratamentos é

$$F_0 = \frac{QM_{tratamentos}}{QMRES} \stackrel{H_0}{\sim} F_{(p-1),(p-2)(p-1)}$$
 (6)

1.2 Tabela ANOVA

A tabela de análise de variância é apresentada a seguir, na qual é possível observar que todos os efeitos do modelo são significativos. Isto significa que, numa futura repetição do experimento, recomenda-se repetir a estrutura de casualização.

term	df	sumsq	meansq	statistic	p.value
alfa	2	928005.556	464002.778	103.2315	0.0096
beta	2	261114.889	130557.444	29.0465	0.0333
trat	2	608890.889	304445.444	67.7331	0.0145
Residuals	2	8989.556	4494.778	NA	NA

1.3 Estimadores

De acordo com o modelo, os seguintes são os estimadores para média, variância:

 α_1

50.56

 μ

	1706	6.11 4	4494.78			
				•		
	$\overline{ au_1}$	$ au_2$	$ au_{i}$	3		
-224.78		-139.7	'8 364	.56		
	β_1	β_2	β_3			
22	4.56	-36.78	-187.	78		

A seguir, testa-se os pressupostos de normalidade e homocedasticidade para a utilização da ANOVA como um teste adequado:

 α_2

-416.11

 α_3

365.56

statistic	p.value	method		
0.7863	0.0142	Shapiro-Wilk normality test		

Pelo teste Shapiro, rejeita-se normalidade. Trata-se de indicativo de que um teste não-paramétrico seria mais adequado para avaliar as distinções entre tratamentos.

Por fim, verifica-se que os dados são homocedásticos, dados os p-valores dos testes Levene aplicados a seguir sobre os resíduos do modelo de análise de variância.

statistic	p.value	df	df.residual	fonte
0	1	2	6	tratamento

(continued)

statistic	p.value	df	df.residual	fonte
0	1	2	6	bloco
0	1	2	6	linha

2 Questão 2

```
##
                    Df Sum Sq Mean Sq F value Pr(>F)
                    2 727534 363767 1.773 0.19551
## period2
## trat
                     2 80264 40132 0.196 0.82390
## repeticao
                   3 8603312 2867771 13.977 3.84e-05 ***
## repeticao:subject2 8 7750447 968806 4.722 0.00229 **
## Residuals 20 4103618 205181
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Shapiro-Wilk normality test
##
## data: tabela2$residuals
## W = 0.98396, p-value = 0.8689
## Levene's Test for Homogeneity of Variance (center = median)
       Df F value Pr(>F)
## group 11 0.7485 0.6841
##
        24
## Levene's Test for Homogeneity of Variance (center = median)
       Df F value Pr(>F)
## group 2 0.304 0.7399
## Levene's Test for Homogeneity of Variance (center = median)
       Df F value Pr(>F)
## group 2 1.2776 0.2921
##
        33
```