

#### NATIONAL AERONAUTICS AND SPACE ADMINISTRATION



NASA-CR-128786) RESULTS OF INVESTIGATIONS ON A 0.015-SCALE HODEL 2A CONFIGURATION OF THE ROCKWELL INTERNATIONAL SPACE SHUTTLE ORBITER IN THE (Chrysler Corp.) 174 p HC \$10.75 CSCL 228

N74-12503

Unclas G3/31 22825

SPACE SHUTTLE

1973

ECEIVEL
STIACHLII
ENANCH

AEROTHERMODYNAMIC DATA REPORT

JOHNSON SPACE CENTER

HOUSTON, TEXAS

DATA MANagement services



DMS-DR-2044 NASA CR-128,786

RESULTS OF INVESTIGATIONS ON A 0.015-SCALE

MODEL 2A CONFIGURATION OF THE ROCKWELL INTERNATIONAL SPACE SHUTTLE ORBITER IN THE NASA/AMES
RESEARCH CENTER 3.5-FOOT HYPERSONIC WIND TUNNEL

Ву

Morris D. Milam and Mark E. Nichols Rockwell International Jack A. Mellenthin, NASA Ames

Prepared under Contract Number NAS9-13247

Вy

Data Management Services Chrysler Corporation Space Division New Orleans, Ia. 70189

for

Engineering Analysis Division

Johnson Space Center National Aeronautics and Space Administration Houston, Te. WIND TUNNEL TEST SPECIFICS:

Test Number:

ARC 3.5-157

NASA Series Number:

OALLA

Test Dates:

4/9/73 - 4/18/73

FACILITY COORDINATOR:

C. R. Nysmith Ames Research Center

Mail Stop 229-5

Moffett Field, California 94035

Phone: (415) 965-5274

PROJECT ENGINEERS:

Morris D. Milam and

Mark E. Nichols

Rockwell International

Space Division

12214 Lekewood Blvd.

Mail Code ACO7

Downey, California 90241

Phone: (203) 922-1432

Jack A. Mellenthin

NASA/Ames Research Center

Mail Stop 229-1

Moffett Field, California 94035

Phone: (415) 965-6211

DATA MANAGEMENT SERVICES:

This document has been prepared by:

J. E. Vaughn

M. J. Lanfranco

Liaison Operations

B. J. Burst Data Operations

This document has been reviewed and is approved for release.

N. D. Kemp

Data Management Services

Chrysler Corporation Space Division assumes no responsibility for the data presented herein other than its display characteristics.

RESULTS OF INVESTIGATIONS ON A 0.015-SCALE

MODEL 2A CONFIGURATION OF THE ROCKWEIL INTERNATIONAL SPACE SHUTTLE ORBITER IN THE NASA/AMES
RESEARCH CENTER 3.5-FOOT HYPERSONIC WIND TUNNEL

Ву

Morris D. Milam\*\*, Mark E. Nichols\*\* and Jack A. Mellenthin\*

#### ABSTRACT

Experimental aerodynamic investigations were conducted in the NACA/
Ames 3.5-Foot Hypersonic Wind Tunnel during the interim April 9-18, 1973
on a 0.015-scale model of the Rockwell International Space Shuttle
Orbiter, configuration 2A. Six component aerodynamic force and moment
data were recorded over an angle of attack range from -3° to 42° at 0°
angle of sideslip and from -10° to 10° sideslip at 0° and 45° constant
angle of attack. Test Mach numbers were 5.27 and 7.32 at unit Reynolds
number of 2.5 x 10° per foot. Various elevon, rudder, speedbrake,
and body flap deflections were tested to determine longitudinal and
lateral-directional stability characteristics and to establish trim
capability.

<sup>\*</sup> Ames Research Center

<sup>\*\*</sup> Rockwell International

(THIS PAGE INTENTIONALLY LEFT BLANK)

## TABLE OF CONTENTS

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| a nomna om                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111  |
| ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2    |
| INDEX OF MODEL FIGURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3    |
| INDEX OF DATA FIGURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| nomen clature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5    |
| CONFIGURATIONS INVESTIGATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10   |
| TEST FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11   |
| DATA REDUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| TABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| 1. TEST CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12   |
| 2. DATA SET COLLATION SHEETS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13   |
| and the state of t | 16   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27   |
| MODEL FIGURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37   |
| DATA FIGURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ٥,   |
| APPENDIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| TABULATED SOURCE DATA LISTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |

## INDEX OF MODEL FIGURES

| Figures | Title                                                                                                          | Page       |
|---------|----------------------------------------------------------------------------------------------------------------|------------|
| 3.      | Axis Systems                                                                                                   | 27         |
| 2       | SSV Orbiter 2A Model Nomenclature and Snadowgraphs                                                             |            |
| (a)     | Model Nomenclature                                                                                             | 58         |
| (b)     | Shadowgraph: M=7.3, $\alpha = 0.5^{\circ}$ , $\beta = 0^{\circ}$ , $\delta_{e_L} = \delta_{e_R} = 0^{\circ}$ , | 5è         |
| , ,     | δ <sub>SP</sub> =54.92°, δ <sub>BF</sub> =-14.75°, δ <sub>R</sub> =0°                                          |            |
| (c)     | Shadowgraph: M=7.3, $x=27^{\circ}$ , $\beta=0^{\circ}$ , $\delta_{eL}=\delta_{ep}=-40^{\circ}$ ,               | 30         |
| ` '     | 8, p=54,92°, 6BF=-14.75°,6 = =0°                                                                               |            |
| 3       | Model Drawings                                                                                                 |            |
| (a)     | SSV Orbiter 2A Configuration Baseline                                                                          | 31         |
| (b)     | Blo, Fh - Basic 2A Fuselage with Body Flep.                                                                    | 32         |
| (c)     | F4 - Body Flap.                                                                                                | 33         |
| (d)     | M3 - QMS Pod.                                                                                                  | 34         |
| (e)     | W87 - Pasic 2A Wing Configuration.                                                                             | <b>3</b> 5 |
| (+)     | Vc - Vertical Teil.                                                                                            | 36         |

# INDEX OF DATA FIGURES

|                                                                                               | PLOYFTED                 |                          |                         |
|-----------------------------------------------------------------------------------------------|--------------------------|--------------------------|-------------------------|
|                                                                                               | COEFFICIENTS<br>SCHEDULE | CONDITIONS VARYING       | PAGES                   |
| Fig. 4 Total Vehicle Characteristics,<br>M = 5.27, Body Flap = -l4.75 Deg.                    | ,                        | <u>,</u>                 | ان<br>1                 |
| -मुक्त C.G.<br>-pit C.G.<br>-जुक्त C.G.                                                       | (C) (B) (A)              | Alpha<br>Alpha<br>Alpha  | 6-6<br>7-11             |
| Fig. 5 Total Vehicle Characteristics, $M = 7.32$ , Body Flap = -14.75 Deg.                    |                          | ,<br>,                   | 91-61                   |
| -Fwd C.G.<br>-Aft C.G.<br>-Fwd C.G.                                                           | (C (A)                   | Alpha<br>Alpha<br>Alpha  | 17-17                   |
| <pre>Fig. 6 Total Vehicle with Deflected Elevons,<br/>M = 5.27, Body Flap = -14.75 Deg.</pre> |                          | :                        | 70-80                   |
| -Fwd C.G.<br>-Aft C.G.<br>-Fwd C.G.                                                           | (CB)                     | Elevon<br>Elevon         | 29-28<br>29-33          |
| Fig. 7 Total Vehicle with Deflected Elevons,<br>M = 7.32, Body Flap = -14.75 Deg.             |                          | [2]                      | 34-38                   |
| -Fwd C.G.<br>-Aft C.G.<br>-Fwd C.G.                                                           | (B)<br>(C)               | Elevon                   | 39-39<br>40-4+          |
| Fig. 8 Incremental Effect of Deflected Elevons, M = 5.27, Body Flap = -14.75 Deg.             | (                        | מסעפן דו                 | 45-49                   |
| -Fwd C.G.<br>-Aft C.G.<br>-Aft C.G.                                                           | <u> </u>                 | Elevon<br>Alpha<br>Alpha | 50-50<br>51-60<br>61-62 |
|                                                                                               |                          |                          |                         |

# INDEX OF DATA FIGURES (CONCTUDED)

| Emu                                                                                  | PLOTTED<br>COEFFICIENTS<br>SCHEDULE | CONDITIONS                         | PAGES                            |
|--------------------------------------------------------------------------------------|-------------------------------------|------------------------------------|----------------------------------|
| Fig. 9 Incremental Effect of Deflected Flevons, $M = 7.32$ , Body Flap = -14.75 Deg. |                                     |                                    | amadanakak Militari              |
| -FWG C.G.<br>-Aft C.G.<br>-FWG C.G.<br>-Aft C.G.                                     | (O) (H) (O)                         | Elevon<br>Elevon<br>Alpha<br>Alpha | 63-67<br>68-63<br>69-83<br>84-85 |
| Fig. 10 Total Vehicle with Deflected Elevons, M = 7.32, Body Fisp = 0.0 Deg.         |                                     |                                    |                                  |
| -Fwd C.G.<br>-Aft C.G.<br>-Fwd C.G.                                                  | (A)                                 | Elevon<br>Elevon                   | 87-91<br>92-92<br>33-97          |
| Hg. 11 Total Vehicle Sideslip Characteristics,<br>M = 7.32, Alpha = 0.0 Deg.         | (H)                                 | Beta                               | 98-100                           |
| Fig. 12 Total Vehicle Sideslip Characteristics $M=7.32$ , Alpha = $h5.0$ Deg.        | (н)                                 | Beta                               | 101-103                          |
| Fig 13 Total Vehicle Sideslip Derivatives, $M = 7.32$                                | (1)                                 | Alpha                              | 104-106                          |
| PLOTTED COEFFICIENTS SCHEDULE:                                                       |                                     |                                    |                                  |
| (A) CL, CD, CA, CN, CLM vs. ALFHA                                                    | (E) DCIM VS. ALPHA                  | ALPHA                              |                                  |
| (B) CIM VS. ALPHA                                                                    | (F) DT, DCI                         | DTL, DCD, DCN, DCA, DCIM vs.       | vs. FLEVON                       |
|                                                                                      | (G) DCIM VS. ELEVON                 | ELEVOR                             |                                  |
| CLM VB. CN, CU                                                                       | (H) CY, CYN,                        | CY, CYN, CBL vs. RETA              |                                  |
| (D) DCL, DCD, DCN, DCA, DCIM VS. ALPHA                                               | (I) CYBETA,                         | CYBETA, CYNBET, CELBET vs.         | 3. ALPHA                         |
|                                                                                      |                                     |                                    |                                  |

#### NOMENCLATURE General

| SYMBOL                     | SADSAC<br>SYMBOL | DEFINITION                                                    |
|----------------------------|------------------|---------------------------------------------------------------|
| 8                          |                  | speed of sound; m/sec, ft/sec                                 |
| Сp                         | CP               | pressure coefficient; (p <sub>1</sub> - p <sub>∞</sub> )/q    |
| м                          | MACH             | Mach number; V/a                                              |
| р                          |                  | pressure; N/m <sup>2</sup> , psf                              |
| ď                          | Q(NSM)<br>Q(PSF) | dynamic pressure; 1/2pV <sup>2</sup> , N/m <sup>2</sup> , psf |
| RN/L                       | rn/l             | unit Reynolds number; per m, per ft                           |
| V                          |                  | velocity; m/sec, ft/sec                                       |
| œ                          | ALPHA            | angle of attack, degrees                                      |
| β                          | BETA             | angle of sideslip, degrees                                    |
| Ψ                          | PSI              | angle of yaw, degrees                                         |
| φ                          | PHI              | angle of roll, degrees                                        |
| ρ                          |                  | mass density; $kg/m^3$ , slugs/ft <sup>3</sup>                |
| •                          |                  | Reference & C.G. Pefinitions                                  |
| Ab                         |                  | base area; m <sup>2</sup> , ft <sup>2</sup>                   |
| ď                          | BREF             | wing span or reference span; m, ft                            |
| c.g.                       |                  | center of gravity                                             |
| <b>I</b> REF               | LREF             | reference length or wing mean aerodynamic chord; m, ft        |
| S                          | SREF             | wing area or reference area; m2, ft2                          |
| -                          | MRP              | moment reference point                                        |
|                            | XMRP             | moment reference point on X axis                              |
|                            | YMRP             | moment reference point on Y axis                              |
|                            | ZMRP             | moment reference point on Z axis                              |
| SUBSCI<br>b<br>1<br>s<br>t | RIPTS            | base local static conditions total conditions free stream     |
| ຜ                          |                  | 1100 000                                                      |

#### NOMENCLATURE (Continued)

# Body-Axis System

| SYMBOL                                    | SADSAC<br>SYMBOL | DEFINITION normal force                                             |
|-------------------------------------------|------------------|---------------------------------------------------------------------|
| $\varsigma_{\!N}$                         | CN               | normal-force coefficient; normal force                              |
| $c_{\mathbf{A}}$                          | CA               | exist-force coefficient; axial force                                |
| $c_{\mathbf{Y}}$                          | СҰ               | side-force coefficient; $\frac{\text{side force}}{qS}$              |
| CAb                                       | CAB              | base-force coefficient; base force                                  |
|                                           |                  | $-A_{\mathbf{p}}(\mathbf{p_{\mathbf{b}}} - \mathbf{p_{\infty}})/2S$ |
| $c_{A_{\mathbf{f}}}$                      | CAF              | forebody exial force coefficient, $C_A$ - $C_{A_b}$                 |
| C <sub>m</sub>                            | CLM              | pitching-moment coefficient: pitching moment qS/REF                 |
| $c_{\mathbf{n}}$                          | CYN              | yawing-moment coefficient; yawing moment qSb                        |
| c <b>I</b>                                | CBL              | rolling-moment coefficient: rolling moment qSb                      |
|                                           |                  | Stability-Axis System                                               |
| $c_{ m L}$                                | CL               | lift coefficient; $\frac{\text{lift}}{\text{qS}}$                   |
| CD                                        | CD               | drag coefficient; <u>drag</u><br>qS                                 |
| с <sub>Б</sub>                            | CDB              | base-drag coefficient; base drag                                    |
| $^{\mathrm{C}}_{\mathrm{D}_{\mathbf{f}}}$ | CDF              | forebody drag coefficient; CD - CDo                                 |
| $c_{\mathbf{Y}}$                          | CY               | side-force coefficient; side force qS                               |
| $c_{m}$                                   | CLM              | pitching-moment coefficient; pitching moment qs/REF                 |
| $c_n$                                     | CLIN             | yawing-moment coefficient; yawing moment qSb                        |
| CL.                                       | CSL              | rolling-moment coefficient; rolling moment                          |
| L/D                                       | r/d              | lift-to-drag ratio; C <sub>L</sub> /C <sub>D</sub>                  |

In addition to the standard notation, the following are special to this test.

| Symbol                         | Plot<br>Symbol | Definition                                                                                                            |
|--------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------|
| x <sub>cp</sub> /L             | XCP/L          | longitudinal center of pressure location                                                                              |
| <b>∆</b> C <sub>A</sub>        | DCA            | incremental axial-force coefficient                                                                                   |
| ∆c <sub>D</sub>                | DCD            | incremental drag coefficient                                                                                          |
| <b>∆</b> c <sub>t.</sub>       | DCL            | incremental lift coefficient                                                                                          |
| ∆c <sub>m</sub>                | DCL            | incremental pitching-moment coefficient                                                                               |
| ∆C <sub>N</sub>                | DCN            | incremental normal-force coefficient                                                                                  |
| ð <sub>a</sub>                 | AILRON         | aileron deflection, ( $oldsymbol{\delta}_{ m e_L}$ - $oldsymbol{\delta}_{ m e_L}$ ) $^{\prime\prime\prime}$ , degrees |
| <b>ø</b> BF                    | BDFLAP         | body flap deflection, degrees                                                                                         |
| δ <sub>e</sub>                 | ELE VON        | elevon deflection, ( $oldsymbol{\delta_{ m e_L}}^+ oldsymbol{\delta_{ m e_R}}^-$ ) , degrees                          |
| <b>ő</b> e <sub>I.</sub>       | ELVN-L         | left blevon deflection, degrees                                                                                       |
| <b>∂</b> e <sub>R</sub>        | ELVN-R         | right elevon deflection, degr. **                                                                                     |
| <b>∂</b> <sub>R</sub>          | RUDDER         | rudder deflection, degrees                                                                                            |
| $oldsymbol{\delta}_{	ext{SB}}$ | SPDBRK         | speedbrake deflection, degrees                                                                                        |
| c <sub>Y</sub>                 | CYBETA         | derivative of side force coefficient with respect to beta (beta=±50); per degree                                      |
| <sup>C</sup> n <b>β</b>        | CYNBET         | derivative of yawing moment coefficient with respect to beta (beta=±5°); per degree, body axis system                 |
| <sup>C</sup> <b>l</b> β        | CBLBET         | derivative of rolling moment coefficient with respect to beta (beta=±5°); per degree, stabili'y axis system           |

#### CONFIGURATIONS INVESTIGATED

The test vehicle is a 0.015-scale model of the Rockwell International Space Shuttle Orbiter, configuration 2A light-weight orbiter. It was sting mounted in the wind tunnel utilizing the Task MKTI-D 1.5 inch internal strain gage balance to measure six component aerodynamic force and moment data.

Since the primary purpose of the test was to obtain data relative to aerodynamic control deflections, no body build-up testing was scheduled. Emphasis was on elevon, speedbrake, rudder and body flap deflections.

The orbiter model consisted of the following components and is depicted in figure 2. Pertinent dimensional information for each component is given in table 3. Table 2 summarizes the test schedule.

# Configuration Nomerclature

| Component       | Description                                                                                           |
|-----------------|-------------------------------------------------------------------------------------------------------|
| B <sub>10</sub> | Busic 2A fuselage of the Rockwell International SSV orbiter configuration (VL70-000092A, VL70-000094) |
| c <sub>5</sub>  | Basic 2A canopy                                                                                       |
| $D_7$           | Basic 2A manipulator arm housing                                                                      |
| F <sub>4</sub>  | Basic 2A body flap                                                                                    |
| ₩87             | Basic 2A wing                                                                                         |
| E <sub>18</sub> | Elevon on basic 2A wing                                                                               |
| м <sub>3</sub>  | Basic OMS-RCS pcd for the Rockwell Internation 1 SSV 2A configuration                                 |
| <sup>7</sup> 5  | Basic 2A vertical tail                                                                                |
| h <sub>5</sub>  | Basic rudder for vertical tail                                                                        |
| Nê              | Basic 2A OMC engine nozzle                                                                            |

Configurations Tested

See table 2 for the configurations tested.

#### TEST FACILITY

The test program was conducted in air in the Ames 3.5-Foot Hypersonic Wind Tunnel. This facility is a blowdown-type tunnel that utilizes a pebble-bed heater to heat the air, and axisymmetric contoured nozzles to provide flow Mach numbers of 5.3, 7.4, and 10.4. The nozzle walls are insulated from the hot air stream by injecting helium into the nozzle boundary layer through annular slots upstream of the throat. The tunnel is equipped with a model quick-insert mechanism for quickly moving models into and out of the air stream.

A high-speed, analog-to-digital data acquisition system is used to record test data on magnetic tape. The present system is equipped to measure and record the outputs from 80 thermocouples and/or other types of transducers in addition to 20 channels of tunnel parameters.

#### DATA REDUCTION

The serodynamic forces and moments recorded by the internal strain gage balance were reduced to coefficient form in the tody axis system utilizing the following reference dimensions:

|        |                                           | model scale           | full scale           |
|--------|-------------------------------------------|-----------------------|----------------------|
| 0      | wing planform area                        | 0.605 ft <sup>2</sup> | 2690 ft <sup>2</sup> |
| rei    | wing mean aerodynamic chord               | 7.122 in              | 474.8 in             |
| c<br>L | wing span                                 | 14.050 in             | 936.68 in            |
| 13     | 8 T T D C C C C C C C C C C C C C C C C C |                       |                      |

Moments are referenced about a point 66% of the tody length, which is model station 16.147 (fuselage station 1076.48), or 13.147 inches aft of the nose on fuselage reference line 6.0 (400). Pitching moment data is also presented at fuselage station 1103.24.

Although model base and cavity pressures were measured during the test, they are unavailable here and no adjustments have been made to the data for these pressures.

| MACH NUMBER       | REYNOLDS NUMBER<br>(per unit length) | DYNAMIC PRESSURE<br>(pounds/sq. inch) | STAGNATION TEMPERATU<br>(degrees Fahrenheit) |
|-------------------|--------------------------------------|---------------------------------------|----------------------------------------------|
| 5.27              | 2.5 x 10 <sup>6</sup> /Ft.           | կ.9                                   | 1200                                         |
| 7.32              | 11                                   | 3.0                                   | 1200                                         |
|                   |                                      |                                       |                                              |
|                   |                                      |                                       |                                              |
|                   |                                      |                                       |                                              |
|                   |                                      |                                       |                                              |
|                   |                                      |                                       |                                              |
|                   |                                      |                                       |                                              |
| BALANCE UTILIZED: | TASK 1.5"                            | MKII 400565c / TA                     | <u>5K 1.5" MKII40</u> 0565E                  |
|                   | CAPACITY:                            | ACCURACY.                             | COEFFICIENT<br>TOLERANCE:                    |
| NF                | 500 LB                               | + 005 Reted L                         | oad———                                       |
| АИ                | 500_LB                               |                                       | oad                                          |
| Х                 | 100 LB.                              |                                       | oad                                          |
| YF                | 250 LB.                              |                                       | oad                                          |
| A Y<br>A          | 250 LB.<br>800 LBIN.                 | ±.005 Rated L                         | oad                                          |

TABLE 2.

| TEST: 3.5-1 | -157 AB 11A   |          | _        | DATA   | SFT/ | N     | NO.         | ER C       | 0,17 | TION S               | SET/RUN NUMBER COLLATION SUMMARY | DATE         |                                         |           |                                       |        |
|-------------|---------------|----------|----------|--------|------|-------|-------------|------------|------|----------------------|----------------------------------|--------------|-----------------------------------------|-----------|---------------------------------------|--------|
|             |               |          |          | : 1    |      |       |             |            | 1    | 93014                |                                  | 2            |                                         | MACH      | MACH NUMBERS                          |        |
| DATA SET    | CONFIGURATION | SCHO.    | -        | ł      |      |       |             | Y WE       | , L  | PARAME I ENS/ VALUES |                                  | ROFINS       | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 25.0100   |                                       |        |
| IDENTIFIER  |               | 5        | <u>a</u> | 3,554  | STR  | B SS  | **          | <u>- 7</u> | 3    | 38c                  | -                                |              |                                         | -         |                                       | 1      |
|             |               |          |          |        |      | 1     | +           | $\dashv$   | 1    | +                    | +                                |              | +                                       | 1         |                                       |        |
| DRC032 0    | 424 - M3      | 8        | 0        | ٥      | 0    | 3.    | 0           | 0          | 0    | 0                    |                                  |              | 32                                      | 4         | - +                                   |        |
| +           | 100 -M3       | ن        | 0        | 0      | 0    | 24.95 |             |            | 0    |                      |                                  |              | m                                       | 60        |                                       | 7      |
| 100 B       |               | ري       | -        |        | 0    | 54.93 |             |            | 0    |                      |                                  |              |                                         | a         | _                                     |        |
|             | 100 F10 VE RE | 60       |          | 0      | 2    | _     |             |            | 01   |                      |                                  |              |                                         | 60        |                                       |        |
|             |               | 60       | -        | S      | 0    |       |             |            | ٥    |                      |                                  |              |                                         | 1         |                                       | TES    |
| 700         |               | ں        | 0        | O      | 0    |       |             |            | 0    |                      |                                  |              |                                         | 3         | <del>-</del>                          | ST R   |
| à           |               | U        |          | 10     | 04-  |       |             |            | -40  |                      |                                  |              | -                                       | 9         | -                                     | U 14 N |
| 9 50        |               | U        | 7        | 140    | 04-  |       |             | _          | - 40 | -14.75               |                                  |              | -                                       | 2         | -                                     | UME    |
| 800         |               | 80       | _        | 07-    | 9    |       |             |            | -40  | -14.75               |                                  |              | $\dashv$                                | 00        |                                       | ERS    |
| 60          |               | 32       | 0        | -40    | -40  | -     |             |            | 04-  | 0                    |                                  |              |                                         | 6         | +                                     | _      |
| C           |               | B        | O        | 06-    | -20  | 24.92 |             |            | 30   | _                    |                                  | <del>-</del> | 7                                       | 0/        | -                                     | T      |
|             |               | IJ       | 0        | -20-20 | -20  |       |             |            | 20   | _                    | -                                |              | -                                       | 17        |                                       |        |
| 9           |               | ਹ        | 0        | 0      | 0    |       |             |            | 0    |                      |                                  |              | $\dashv$                                | 0.7       | +                                     | T      |
| . ~         |               | 89       | ٥        | ٥      | 0    |       |             |            | 0    | 1                    |                                  | <del> </del> | 1                                       | 3         | -                                     | 7      |
| ±           |               | (X)      | ÷        | 04-    | Ch-  |       | _           |            | 01-  |                      |                                  |              | +                                       | 7/        |                                       | T      |
| 10          |               | ည        | 1,7      | -40    | -40  |       |             |            | 770  |                      |                                  |              |                                         | W.        |                                       | T      |
| 9. 7        |               | 80       | C        | -40-40 | -40  | 7     | <b>&gt;</b> | 7          | -410 | 7                    | 1                                | -            | 1                                       | 9         | -                                     | -      |
| 7           | (5) <b>E1</b> |          |          | 25     |      | -E    |             | 37         |      | 43                   | 49                               | 5.5          | 19                                      |           | 67                                    | 75.76  |
|             | *******       | 1        | ]        | =      | 1    | 1     | 1           | 1          | 1    |                      | ستنات                            | -            | 1                                       | TOVAR (1) | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | YON (  |
| 8 B         | A(x)=         | 30 - 440 | 140      | 200    | μŢ   |       | COEFFICENT  | ENTS       | 1    |                      | 2 (A) :                          | -3-4 20      | 23.0.6                                  | 4-30      |                                       | 1      |
| SCHEDULES   | B(x) = 12     | 74       | 3        | (C.X.) | اا:، |       |             |            |      |                      |                                  |              |                                         |           |                                       |        |
|             |               |          |          |        |      |       |             |            |      |                      |                                  |              |                                         |           |                                       |        |

TABLE 2. - Continued.

| TEST: 25-159 AB 11A     | DATA SET/BIN NIMBER COLL ATION SUMMARY  | DATE:                                         |
|-------------------------|-----------------------------------------|-----------------------------------------------|
|                         | (                                       |                                               |
| THE SET                 | SCHD. PARAMETERS/VALUES                 | MACH NOMBER                                   |
| DATA SET CONFIGURATION  | a 18 15EL SER SEB SR SA SE SEF          | 5                                             |
| RRCO17 (RIGC=Doffe NaMa | atr 0 3                                 | 17                                            |
| 7                       | B 0 -40   0h-0h-0 B                     | 8/                                            |
|                         | 04-101-100-00-0                         | 6/                                            |
| CO                      | 0 0                                     | '20                                           |
|                         | 0                                       | 2.                                            |
| . 60                    | D 0 C                                   | CC                                            |
| 25                      | 0                                       | 5.3<br>5.3                                    |
| 24                      | <b>→</b>                                |                                               |
| hc .                    | <del> </del> -                          |                                               |
| 95                      | 2                                       | N.                                            |
| 75                      |                                         | 26                                            |
| 2 - 2                   | -                                       | 3/                                            |
| 5.0                     | 3                                       | 27                                            |
| 30                      | ┿~                                      | 30                                            |
| 30                      | C 0 -15 -25   -20                       | 38                                            |
| 36                      | B15-25 4 4 -20                          | 50                                            |
| iii)                    | C 0 0 -/0 0 0                           | 35                                            |
| ¥ 35 ¥                  | FOOO YOO Y                              | 36                                            |
| 1 7 13                  | 19 25 31 37 43 49                       | 55 61 67 75.76                                |
|                         | *************************************** | ר :                                           |
| q                       | E(x) = 3 = 10 @ Dx = 10                 | 15VAR 111 10 10 10 10 10 10 10 10 10 10 10 10 |
| •                       | 1 x=3'                                  | 35,40,45,46,37,48,47,50                       |
| SCHEDOLES               |                                         |                                               |

TABLE 2. - (Concluded)

| Ţ                 | Г              | T                 |               |                      |               | احبسيس  | - Care | ΤE  | ST F                | RUN          | NU                | MBE      | RS                |    |    |              | ا المساور |     | 7    | T           | _        |            | 75.76 | 4  | ב<br>ב<br>ב  |            |          |
|-------------------|----------------|-------------------|---------------|----------------------|---------------|---------|--------|-----|---------------------|--------------|-------------------|----------|-------------------|----|----|--------------|-----------|-----|------|-------------|----------|------------|-------|----|--------------|------------|----------|
|                   |                |                   |               |                      |               |         |        |     |                     |              |                   |          |                   |    |    |              |           |     |      |             |          |            |       |    | (Z)          |            |          |
|                   | 2020           | פניים             | 1             | <del> </del>         |               |         |        |     |                     |              |                   |          |                   | ĺ  |    |              |           |     |      |             |          |            | 67    | 4  | IDVAR        |            |          |
|                   |                | H NOMBER          | X S           | 43                   | 157           | 65      |        | 5.8 |                     | 00           |                   | 17.1     | 7                 | 1  | 19 | 62           | 40        | 7   |      | 11          |          |            |       | 4  | DVAR (1)     |            |          |
| Ì                 |                | <u> </u>          | 5.27 7        | +                    | F             | '       | 53     | ┼   | 54                  | -            | 14                | -        | -+-               | 56 |    |              |           |     |      |             |          |            | 61    | 1  | 100          |            |          |
| E :               | -              |                   | _             | +                    | +             | -       |        |     |                     |              | $\dagger$         | 1        |                   | 1  |    |              |           |     |      | +           |          | 1          |       | 4  |              |            |          |
| DATE              |                | 20                |               | ╁                    | ╁             | -       | -      | -   | -                   | +-           | +                 | +        | +                 | -  |    |              | T         | +   | +    | +           | +        | 7          | 55    | 4  |              |            |          |
|                   |                |                   | +             | -                    | +             | +       | +-     | +   | +                   | -            | +                 | +        | $\dashv$          |    |    | -            | +         | +   | +    | +           | $\dashv$ | 1          |       |    |              |            |          |
| MARY              |                |                   |               | -                    | +             | +       | -      | -   | +                   | +            | +                 | +        | $\dashv$          |    | -  | +            | -         | -   | +    | +           | $\dashv$ | $\dashv$   | 49    | -  |              |            |          |
| COL ATION SIMMARY |                | SE                |               | _                    |               | _       |        | _   | -                   | $\downarrow$ | _                 |          |                   |    | -  | $\downarrow$ | +         | +   | +    | 52          | -        | -          |       |    |              | 1 1        |          |
| O L               | 2              | VALU              | SOF           | 0                    | 14.75         | 1       | 上      | +   | 1                   | 1            | +                 | _        |                   |    |    | <b>学</b>     | +         | +   |      | -14.75      |          |            | 43    | -  | <b> </b><br> | 0          |          |
| Ċ                 |                | PARAMETERS/VALUES | 2,5           | -20                  |               | -20     | 9      | 9 ! | 57.                 | 04-          | 27                | -30      | 0                 | 0  |    | 4            |           | 2   | 7    | 04-         |          |            |       |    | ر<br>ار      | 7          |          |
| 0 1 0 7           | K 110 K        | ARAM              | 50            | 0                    |               |         | 1      | 1   | $\downarrow$        | +            | -                 | _        |                   | _  | -  | +            | +         | _   |      | <b>&gt;</b> |          | -          |       |    | FFICENT      | 7          |          |
|                   | SEI/KUN NUMBEN |                   | 28            | 0                    | _             | 1       | +      | 1   | +                   | $\dashv$     | +                 |          |                   |    | +  | +            | +         | 1   |      | <u>&gt;</u> |          |            |       |    | 100          | 7          |          |
|                   | 7.K            |                   | 0 S.B         | C3 75 C              | 4             | 0       | +      |     | 0                   | 0            | S                 | 00       |                   |    | +  |              |           | 0   | 1/2  | 40 1        | _        | <u> </u> _ |       | آ  |              | 137        |          |
| ١.                | 4              |                   | 27 26.00      | -20 -20              | 0             | -30 -30 | 0101   |     | $\overline{\Delta}$ | 07-07        | 2-126-            | -20 -20  | $\Gamma_{\alpha}$ |    | +  |              | 0         | 101 | -40- | 1           | -        | -          | 1     | 25 | 1            | 45/        | 1        |
|                   | DAI            |                   | 19 SE         |                      | 0             | 0       | 0      | 0   | 0<br>1              | 0            | $C_{\frac{1}{2}}$ | 0        | T                 | +- | 3  | U            | 2         | 0   | O    |             |          |            |       |    | 1            | 15 35      | <b>^</b> |
|                   | 7              |                   | 0 8           | G                    | Ģ             | Ç       | 7      | H   | 11                  | I            | T                 |          | 1                 | *  | +  | 5            | 0         | G   | 5    | 2           | -        | +          | 1     | 13 | }            | 356        | 7        |
|                   | 0A 11A         |                   | Z<br>O        | M3                   | PS            |         |        |     |                     |              |                   |          |                   |    |    |              |           |     |      |             |          |            |       |    | 1            | 2          |          |
| ,                 | OA             |                   | URATI         | N                    | 1/5/          |         |        |     |                     |              |                   | _        |                   | _  | _  |              |           | _   | -    | <b> </b> ,  | -        |            |       | 5  | 1            | H          | ၁        |
| ,                 | 57             |                   | CONFIGURATION | S.D.                 | W87 E18 V5 R5 |         |        |     |                     |              |                   |          |                   |    |    |              |           |     |      |             |          |            |       |    | 1            |            | S        |
|                   | 5 - 157        |                   |               | DRINKS BOCSDIFUNg M3 | N S.          | *****   |        |     |                     | 7            |                   | -        |                   | 1  |    |              | _         | ( 0 | -    | 1           | +        | -          | -     | 7  | 1            | 10<br>80   |          |
| 1                 | <br>           | 1 1               | DATA SET      | 670                  | 43            | 45      | 59     | 53  | 58                  | 54           | 3                 | 31 C<br> | श्री ।            | 57 | 56 | 9            | 3         | 377 | ř  ~ | 7           | 11       |            |       |    | 1            | ۵<br>8     | SCHE     |
|                   | TEST           |                   | DAT           | 0 0                  |               |         |        |     |                     |              |                   |          |                   |    |    |              |           |     |      |             |          |            |       |    | H            | garant saf | ·        |

#### TABLE 3. - MODEL DIMENSIONAL DATA

| MODEL COMPONENT : BODY - BIO              |                                       |                                       |           |
|-------------------------------------------|---------------------------------------|---------------------------------------|-----------|
| GENERAL DESCRIPTION : DOUBLE DELTA WI     | NG FUSELAGE PE                        | R LINES VL70-000                      | 093, WITH |
| 57.0 IN, RADIUS NOSE                      | •                                     |                                       |           |
| 2A CONFIGURATION LAT WT ORBITER           |                                       | · · · · · · · · · · · · · · · · · · · |           |
| SCALE MODEL = .015 (18-0)                 |                                       |                                       |           |
| DRAWING NUMBER: VL72-000061 VL70          | -000093                               |                                       |           |
|                                           |                                       | _                                     |           |
|                                           |                                       |                                       |           |
| DIMENSIONS:                               | FULL SCALE                            | MODEL SCALE                           |           |
| Length ~ in.                              | 1.328,3                               | 19.924                                |           |
| Max. Width - in. (@ $X_0 = 1528.3$ )      | 265.0                                 | 3.975                                 |           |
| Max. Depth - in. ( $\ell X_0 = 1480.52$ ) | 248.0                                 | 3.720                                 |           |
| Fineness Ratio                            | 5.012                                 | 5.012                                 |           |
| Area ~ ft <sup>2</sup>                    |                                       |                                       |           |
| Max. Cross—Sectional                      | 456.40                                | 0.1027                                |           |
| Planform                                  |                                       |                                       |           |
| Wetted                                    | · · · · · · · · · · · · · · · · · · · |                                       |           |
| Base                                      |                                       |                                       |           |

# TABLE 3. - MODEL DIMENSIONAL DATA - Continued.

| MODEL COMPONENT : CANOPY - C5       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GENERAL DESCRIPTION : 2A CONFIGURAT | ION PER LINES VL7 | 70-000092.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SCALE MODEL = 0.015                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DRAWING NUMBER : VL70-000092        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DIMENSIONS :                        | FULL SCALE        | MODEL SCALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sta. Fwd. Bulkhead, in.             | 391.00            | 5.865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sta. T. E., in.                     | 560.0             | 8.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Canopy Intersects Body ML, in.      | 391.00            | 5.865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Fineness Ratio                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Area                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Max. Cross—Sectional                |                   | The state of the s |
| Planform                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Wetted                              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Base                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

No info on view angles

TABLE 3. - MODEL DIMENSIONAL DATA - Continued.

| MODEL COMPONENT : MANIPULATOR H    | OUSING - D <sub>7</sub>                        |               |
|------------------------------------|------------------------------------------------|---------------|
| GENERAL DESCRIPTION : 2A CONFIGURA | ATION, LIGHT WT ORBI                           | TER PER LINES |
|                                    |                                                |               |
|                                    |                                                |               |
| SCALE MODEL = 0.015                |                                                |               |
| DRAWING NUMBER : VL70-00           | 0093                                           |               |
|                                    |                                                |               |
| DIMENSIONS :                       | FULL SCALE                                     | MODEL SCALE   |
| Length - IN.                       | 881.00                                         | 13.215        |
| Max. Width - IN.                   | 51.00                                          | 0.765         |
| Max. Depth - IN.                   | 23.00                                          | 0.345         |
| Fineness Ratio                     |                                                |               |
| Area                               |                                                |               |
| Max. Cross-Sectional               |                                                |               |
| Planform                           |                                                |               |
| Wetted                             | manufactivity (at the property of the Addition |               |
| Base                               |                                                |               |

E Fuselage, BP = 0.0 INFS WP = 500.0 INFS  $X_0$ 426.0 to 1307.0 INFS

TABLE 3. - MODEL DIMENSIONAL DATA - Continued.

| MODEL COMPONENT: WING - WAY NEW LIGHTWE                | ICHT ORBITER       |                    |
|--------------------------------------------------------|--------------------|--------------------|
| GENERAL DESCRIPTION: Oribter Configuration             | per Lines VL70-00  | 0093.              |
| NOTE: (Dihedral angle is defined at the lower          | r surface of the t | ring at the 75.33% |
| element line projected into a plane pe                 |                    |                    |
|                                                        |                    |                    |
| SCALE M. DEL = 0.015                                   |                    |                    |
| TEST NO.                                               | DWG. NO.           | л.70.000093        |
| DIMENSIONS:                                            | FULL-SCALE         | MODEL SCALE        |
|                                                        |                    |                    |
| TOTAL DATA                                             |                    |                    |
| Area (Theo.) ~ Ft <sup>2</sup>                         | 2690.00            | 0.605              |
| Planform<br>Wetted                                     |                    |                    |
| Span(Theo) In.                                         | 936.68             | 14.05              |
| Aspect Ratio                                           | 2.265              | 2.265              |
| Rate of Taper                                          | 1.177              | 1.177              |
| Taper Ratio                                            | <u> </u>           | 0.200<br>3.500     |
| Dihedral Angle, degrees                                | 3.500<br>3.000     | 3.000              |
| Incidence Angle, degrees<br>Aerodynamic Twist, degrees | +3.000             | +3.000             |
| Toe-In Angle                                           |                    |                    |
| Cant Angle                                             |                    |                    |
| Sweep Back Angles, degrees                             |                    | ١                  |
| Leading Edge                                           | 45.000             | 45.000<br>-10.24   |
| Trailing Edge                                          | <u>-10.24</u>      | 35.209             |
| 0.25 Element Line                                      | 35.209             | 2).20              |
| Chords: ~ in.                                          | 689.24             | 10.339             |
| Root (Theo) B.P.O.O.                                   | 137.85             | 2.068              |
| Tip, ( <sub>Theo</sub> ) B.P.<br>MAC                   | 474 81             | 7.122              |
| Fus. Sta. of 25 MAC                                    | 1136.89            | 17.053             |
| W.P. of .25 MAC                                        | 209.20             | h.488              |
| B.L. of .25 MAC                                        | 182.13             | 2.732              |
| Airfoil Section                                        |                    |                    |
| Root                                                   |                    |                    |
| Tip<br>EXPOSED DATA                                    |                    |                    |
| Area (Theo) ~ Ft <sup>2</sup>                          | 1752.29            | 0.394              |
| Span, (Theo) ~ In. BP108 to 468.341                    | 720.68             | 10.810             |
| Aspect Ratio                                           | 2.058              | 2.058<br>0.2451    |
| Taper Ratio                                            | 0.2451             | 0.2471             |
| Chords                                                 | 562.40             | 8.136              |
| Root <sub>BP108</sub>                                  | 137.85             | 2.068              |
| Tip 1.00b<br>MAC 결                                     | 303.03             | 5.895              |
| Fus. Sta. of .25 MAC                                   | 1185.31            | 17.779             |
| W.P. of .25 MAC                                        | 300.20             | 4.503<br>2.156     |
| B.L. of .25 MAC                                        | 143.76             | 2.170              |
|                                                        |                    |                    |

TABLE 3. - MODEL DIMENSIONAL DATA - Continued.

MODEL COMPONENT: WING - W87 NEW LIGHTWEIGHT ORBITER (Continued.)

| Airfoil Section (Rockwell Mod NASA)                                         |                 |        |
|-----------------------------------------------------------------------------|-----------------|--------|
| XXXX-64                                                                     | 0.10            | 0.10   |
| $\begin{array}{c} \text{Root } b = 0.425 \end{array}$                       |                 |        |
| <u></u>                                                                     | 0.12            | 0.12   |
| $ \begin{array}{ccc} \text{Tip} & b \\ \hline 2 & = & \\ 1.00 \end{array} $ |                 |        |
| Data for (1) of (2) Sides                                                   |                 |        |
| Leading Edge Cuff<br>Planform Area - Ft <sup>2</sup>                        | 100 22          | 0.0271 |
| Planform Area - Ft                                                          | 120.33          | 8,400  |
| Leading Edge Intersects Fus M. L. @ Sta                                     | _ <u>500.0_</u> |        |
| Leading Edge Intersects Wing @ Sta                                          | 1035.0          | 15.525 |

TABLE 3. - MODEL DIMENSIONAL DATA - Continued.

| MODEL C    | OMPONENT:                        |                    | ELEVO                         | N E-   | 18                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|----------------------------------|--------------------|-------------------------------|--------|-----------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                  |                    | CONFIGURATION                 | PER 1  | w-87. LINES                             | VL70-0   | 00093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| GENERAL    | DESCRIPTION:                     |                    |                               | T 1111 |                                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | DATA FOR (1)                     | OF (2)             | SIDES                         |        | *************************************** |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                  | -                  |                               |        |                                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | MODEL SCALE = 0.                 | .015               |                               |        |                                         |          | The second secon |
| DD A W T N | G NUMBER:                        |                    | VL70-000093                   | 3      |                                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                  |                    |                               |        | FULL-SCALE                              |          | MODEL SCALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DIMENS     | Area - ft <sup>2</sup>           |                    |                               |        | 205.517                                 |          | 0.046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | Span (equivaler                  | t) ~ i:            | n.                            |        | 353-34                                  |          | 5.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | Inhid equivaler                  | it chor            | d(B.P. 115.0 ir               | ı.),   | 114.78                                  |          | 1.722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | Outb'd equivale                  | ent cho            | in.<br>rd(B.P. 468.3 i<br>in. | n.),   | 55.00                                   | -        | 0.825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | Ratio movable s<br>total surface | surface<br>e chord | chord/                        |        |                                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | At Inb'd                         |                    |                               |        | .20                                     | 8        | .208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | At Outb'd                        |                    |                               |        | .40                                     | <u>0</u> | .400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | Sweep Back Ang                   | les, de            | egrees                        |        |                                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Leading !                        |                    |                               |        | 0.00                                    | )        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | Tailing                          |                    |                               |        | -10.02                                  | 2        | -10.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |                                  |                    |                               |        | 0.00                                    |          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | Hingelin                         |                    | to hinge line).               | - ft   | 3 1548.0                                | 7        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | Area Moment (<br>Product of Ar   | nomna:<br>ea Mome  | to hinge line)<br>ent         |        |                                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

NOTE: The elevon panel consists of an inboard and outboard segment.

The split line dividing the segments is at B.P. 281 inches full scale (B.P. 4.215 inches Model Scale).

TABLE 3. - MODEL DIMENSIONAL DATA - Continued.

| MODEL COMPONENT:                                                                                                                                                                                            | VERTICAL - V5 (Lightwe                                                                                                   | eight Orbiter Confi                        | guration)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GENERAL DESCRIPTION:                                                                                                                                                                                        | Centerline vertical to                                                                                                   | ail, double wedge a                        | nirfoil with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| rounded leading edge                                                                                                                                                                                        | •                                                                                                                        |                                            | And the second s |
| SCALE MODEL = 0.015                                                                                                                                                                                         |                                                                                                                          |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DRAWING NUMBER:                                                                                                                                                                                             | VL70-000095                                                                                                              | -                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DIMENSIONS:                                                                                                                                                                                                 |                                                                                                                          | FULL-SCALE                                 | MODEL SCALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TOTAL DATA  Area ("heo)                                                                                                                                                                                     | - Ft <sup>2</sup>                                                                                                        | 413.25                                     | .0929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Planform  Span (Theo) Aspect kation Rate of Tape Taper Ration Dihedral And Incidence Ar Aerodynamic Toe-In Angle Cant Angle Sweep Back Leading Incidence Trailing O.25 Elem Chords: ~ i Root (The Tip, (The | In.  Ile, degrees  Igle, degrees  Twist, degrees  Angles, degrees  Edge  Edge  Edge  eo) WP  eo) WP  of .25 MAC  .25 MAC | 315.72<br>1.675<br>0.507<br>0.404<br>      | 1.675<br>0.507<br>0.404<br>25.249<br>41.130<br>4.0275<br>1.627<br>2.997<br>21.952<br>9.533<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Trailin                                                                                                                                                                                                     |                                                                                                                          | 10.000<br>14.920<br>2.00<br>13.17<br>12.67 | 10.000<br>14.920<br>2.000<br>0.0030<br>0.0028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

TABLE 3. - MODEL DIMENSIONAL DATA - Continued.

| MODEL COMPONENT:              | RUDDER P5                   |                 |                       |
|-------------------------------|-----------------------------|-----------------|-----------------------|
| GENERAL DESCRIPTION:          | 2A CONFIRGURATION PER LI    | NES VL70-000095 |                       |
|                               |                             |                 |                       |
| SCALE MODEL = 0.019           |                             |                 |                       |
| DRAWING NUMBER:               | VL70-000095                 |                 |                       |
| DIMENSIONS:                   |                             | FULL-SCALE      | MODEL SCALE           |
| Area - ft <sup>2</sup>        |                             | 106.38          | 0.024                 |
| Span (equivale                | nt) ~ in.                   | 201.0           | 3.015                 |
|                               | nt chord ~ in.              | 91.585          | 1.374                 |
| Outb'd equival                | ent chord ~ in.             | 50.833          | 0.762                 |
| Ratio movable<br>total surfac | surface chord/<br>ce chord  |                 |                       |
| At Inb'd                      | equiv. chord                | 0.400           | 0.400                 |
| At Outb'                      | d equiv, chord              | 0.400           | 0.400                 |
| Sweep Back An                 | gles, degrees               |                 | 21. 92                |
| Leading                       | Edge                        | 34.83           | <u>34.83</u><br>26.25 |
| Tailing                       | Edge                        | 26.25           |                       |
| Hingelir                      |                             | 34.83           | 0.0018                |
| Area Moment ( Product of A    | (Normal to hinge line) - ft | 3 526.125       | 0.0010                |

# TABLE 3. - MODEL DIMENSIONAL DATA - Continued.

| MODEL COMPONENT : OMS PODS - M3                                             |                  |             |
|-----------------------------------------------------------------------------|------------------|-------------|
| GENERAL DESCRIPTION: 2A LIGHT WT CO                                         | ONFIGURATION PER | MC120074,   |
| PER LINES VL70-000094.                                                      |                  |             |
| SCALE MODEL = 0.015                                                         |                  |             |
| DRAWING NUMBER: VL70-000094                                                 |                  |             |
| DIMENSIONS :                                                                | FULL SCALE       | MODEL SCALE |
| Length - in.                                                                | 346.0            | 5.190       |
| Max. Width ~ in. @ X <sub>o</sub> = 1450.0                                  | 108.0            | 1.620       |
| Max. Depth ~ in. @ X <sub>0</sub> = 1500.0                                  | 113.8            | 1.707       |
| Fineness Ratio                                                              |                  |             |
| Area                                                                        |                  |             |
| Max. Cross-Sectional                                                        |                  |             |
| Planform                                                                    |                  |             |
| Wetted                                                                      |                  |             |
| Base                                                                        |                  |             |
| $\epsilon$ of oms pod                                                       |                  |             |
| $Y_0 = 80.0 \text{ INFS}, 1.20 \text{ INMS}$ FROM FUSELAGE STATION 1214.0 t | + .959 = 6.959   | 46.0 INFS   |

TABLE 3. - MODEL DIMENSIONAL DATA - Continued.

| MODEL COMPONENT:  N8 - OMS Nozzle  GENERAL DESCRIPTION: Basic OMS Nozzle of (VL70-000089"B")                                                     | f the 2A Orbiter Confi                              | guration                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------|
| SCALE MODEL = 0.015  DRAWING NO. VL70-008306                                                                                                     | FULL-SCALE                                          | MODEL SCALE               |
| DIMENSIONS  MACH NO N/A  DIAMETER DEX - IN  DIAMETER DT - IN  DIAMETER DIN - IN  ON - DEGREES                                                    | 50.00<br>N/A<br>28.00<br>N/A                        | 0.750                     |
| AREA ~ ft <sup>2</sup> MAX CROSS-SECTIONAL  OMS GIMBAL ORIGIN ±8.0 deg.  RIGHT NOZZLE ~ IN  LEFT NOZZLE ~ IN  NULL POSITION  RIGHT NOZZLE ~ DEG. | 13.635  Xo Yo  1518 88.0  1518 -88.0  PITCH  15°49' |                           |
| LEFT NOZZLE ~ DEG.  NOTE: Intersection of nozzle exit and nozzle centerline ~ in.                                                                |                                                     | 23.561<br>±1.489<br>7.609 |

# TABLE 3. - MODEL DIMENSIONAL DATA - Concluded.

| MODEL COMPONENT : FL BODY FLAP |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GENERAL DESCRIPTION : 2A CON   | NFIGURATION PER LINES | VL70-000094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SCALE MODEL = 0.015            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DRAWING NUMBER :               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DIMENSIONS                     | FULL SCALE            | MODEL SCALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Length ~ in.                   | 84.70                 | 1.2705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Max. Width ~ in.               | 265.00                | 3.975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Max. Depth - in.               | 21.00                 | 0.315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Fineness Ratio                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Area, $ft^2$                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Max. Cross—Sectional           |                       | question to be a second to be a seco |
| Planform                       | 142.64                | 0.0321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Wetted                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Base                           | 38.646                | 0.0087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

ບ້ 1. POSITIVE DIRECTIONS OF FORCE COFFICIENTS MOMENT COEFFICIENTS, AND ANGLES ARE INDICATED BY ARROWS. NOTES:

いったいというというというできるというできることできるというできる



Figure 1. Axis systems.



Figure 2(a). - Model Nomenclature.

Figure 2(b). - Shadowgraph: M=7.3,  $\alpha$  =0.5°,  $\beta$  =00,  $\delta$ <sub>eL</sub>= $\delta$ <sub>eR</sub>=0°,  $\delta$ <sub>SB</sub>=5 $^4$ .92°,  $\delta$ <sub>BF</sub>=-1 $^4$ .75,  $\delta$ <sub>R</sub>=0°



Figure 2(c). - Shadowgraph:  $M=7.3, \alpha=27^{\circ}, \beta=0^{\circ}, \delta_{e_L}=\delta_{e_R}=-40^{\circ}, \delta_{SB}=54.97^{\circ}, \delta_{BP}=-14.75^{\circ}. \delta_R=0^{\circ}$ 



| DIMENSIONS | S. 2690 FT <sup>2</sup> | C = 474.8 IN. | X = 876.48 IN. | 2 = 400  IN. | b = 936.68 IN. | L = 1328 IN. |
|------------|-------------------------|---------------|----------------|--------------|----------------|--------------|
| REFERENCE  | AREA                    | MAC           | c. 6.          |              | SPAN           | LENGTH       |



Figure 3(a). - SSV Orbiter 2A Configuration Baseline.

x = 200



Figure 3(b). -  $\rm B_{10},~\rm F_{4}$  - Basic 2A Fuselage with Body Flap.





Figure 3(d). - M3 - OMS Pod.



Figure 3(e). - W87 - Basic 2A Wing Configuration.



DATA FICURES



FIG. 4 TOTAL VEHICLE CHARACTERISTICS, M=5.27, BDFLAP=-14.75 DEG.- FWD. C.G.

#FFERING IN OFFILIDA # 289,000 No. 17, # 174,800 No. 17, # 1076,480 No. 10, # 1076,480 No. 10, # 100,000 No. 10, # 100,00 20 V E AMES 3.5-157-0A11A B10C5 07 F4 N8 M3 #87E18 V5R5(RBS056) **8**8888 PARAMETRIC VALUES
.000 ELVN-R
S4.920 R.000ER
.000 ELEVON
-14.750 BETA ELVN-L SPOBRK ATLRON BOFLAP 5.273 .65 99 1.00 35 80 DRAG COEFFICIENT, CC

FIG. 4 TOTAL VEHICLE CHARACTERISTICS, M=5.27, BDFLAP=-14.75 DEG.- FWD. C.6.

ANGLE OF ATTACK, ALPHA, DEGREES

9

28

.40 26

.45

.55

46

#EFFERING INCORNATION
7 2690.0000 SC: 71.
774.0000 NV.
774.0000 NV.
775.000 NV. SCALE SCALE AMES 3.5-157-0A11A 810C5 D7 F4 N8 M3 W87E18 V5R5 (RBS056) 8888 PARAMETRIC VALUES
.000 ELVN-R
54.970 R.006R
.000 ELEVON
-14.750 BETA ELVN-L SPOBRK AllROV BOFLAP 5.272 .0815 <u>按</u> .0830 .0820 .0845 .0840 .0825 .0860 .0855 .0850 .0835 ,0880 .0875 .0870 .0865 0880. .0885 .0895 **3**0 AXIAL FORCE COEFFICIENT.

TIC A TATAL VEHIC E CHARACTERISTICS MES 27. BUFLAP=14.75 DEG.- FWD. C.G. ANGLE OF ATTACK, ALPHA, DEGREES





AMES 3.5-157-0A11A B10C5 D7 F4 N8 M3 W87E18 V5R5(BBS056) 12 34 36 38 40 ANGLE OF ATTACK, ALPHA, DEGREES 8888 PARMETRIC VALUES
.000 ELVA-R
54.920 RUCCER
.000 ELEVON
-14.750 BETA .0025 <del>2</del> 5.272 .0030 .0045 .0040 .0035 .0000 .0055 .0050 .0075 .0065 .0060 .0080 3.60 PITCHING MOMENT COEFFICIENT.

FIG. 4 TOTAL VEHICLE CHARACTERISTICS.M=5.27,BDFLAP=-14.75 DEG.- AFT. C.G.

ω



4 TOTAL VEHICLE CHARACTERISTICS, M=5.27, BDFLAP=-14.75 DEG.- FWD. C.6. FIG.







AMES 3.5-157-0411A BIDCS D7 F4 N8 M3 W87E18 V5R5(GBS043)



?:

F13.







AMES 3.5-157-0A11A B10CS 07 F4 N8 M3 W87E18 VSRS(GBS043)





AMES 3.5-157-0A11A B10C5 07 F4 N8 M3 W87E18 VSR5(GBS043)



FIG. 5/IØTAL VEHICLE CHARACTERISTICS.M=7.32, BDFLAP=-14.75 DEG.- FWD. C.G. **35,48 37,8 37,8 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6 36,6** AMES 3.5-157-0A11A BIGGS D7 F4 N8 M3 W87E18 VSR5(GBS043) ANGLE OF ATTACK, ALPHA, DEGREES 8888 PARAMETRIC VALUES
.000 ELVN-R
54.920 R.000ER
.000 ELEVON
-14.750 96".1 10 ELVN-L SPOSSK ALRON SOTLAP **⊙**-₹. 38. 2.6 0. œ 2.4 2.2 Ó **8**0 XCP/L LONGITUDINAL CENTER OF PRESSURE





AMES 3.5-157-0A11A BIDCS 07 F4 N8 M3 W87E18 V5R5 (5BS043)





FIG. S TOTAL VEHICLE WITH DEFLECTED ELEVONS.M=5.27,BDFLAP=-14.75 DEG.-FWD C.6.





FIG. 6 TOTAL VEHICLE WITH DEF.ECTED ELEVONS.M=5.27.BDFLAP=-14.75 DEG.-FND C.S. (A)MACH



FIG. 6 TOTAL VEHICLE WITH DEFLECTED ELEVONS.M=5.27.BDFLAP=-14.75 DEG.-FWD C.G.



FIG. 6 TOTAL VEHICLE WITH DEFLECTED ELEVONS,M=5.27,80FLAP=-14.75 DEG.-FWD C.S.





FIG. 6 TOTAL VEHICLE WITH DEFLECTED ELEVONS.M=5.27.BDFLAP=-14.75 DEG.-FWD C.G.





.

6 TOTAL VEHICLE WITH DEFLECTED ELEVONS.M=5.27.8DFLAP=-14.75 DEG.-FWD C.G. 5.27 CA) MACH FIG.



DEFLECTED ELEVONS.M=5.27.BDFLAP=-14.75 DEG.-FWD C.G. FIG. 6 TOTAL VEHICLE WITH



FIG. 6 TOTAL VEHICLE WITH DEFLECTED ELEVONS, M=5.27, BDFLAP=-14.75 DEG.-FWD C.6.













FIG. 7 TOTAL VEHICLE WITH DEFLECTED ELEVONS,M=7.32,BDFLAP=-14.75 DEG.-AFT C.6.



FIG. 7 TOTAL VEHICLE WITH DEFLECTED CLEVONS,M=7.32,80FLAP=-14.75 DEG.-FWD C.G. CAUMACH









FIG. 7 TOTAL VEHICLE WITH DEFLECTED ELEVONS, M=7.32, BDFLAP=-14.75 DEG.-FWD C.S.















これは人人のないないのであるというなないなる



AMES 3.5-157-0A11A B10C5 D7 F4 N8 M3 W87E18 V5R5(EBS054)







(1)





( )





()

FIG. 8 INCREMENTAL EFFECT OF DEFLECTED ELEVONS.M=5.27.80FLAP=-14.75 DEG AFT CG







**(**)

















| ĕ            | gżźżżż                                                             |                                                                       |  |
|--------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| ST STANDARD  |                                                                    | 是                                                                     |  |
| 20.00        | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 | 4.75 DEG                                                              |  |
|              | SCALE SEE                                                          | S 2                                                                   |  |
| V5R5(1BS044) | -20.000                                                            | BOFLAP:                                                               |  |
|              | DATASET<br>IBSCAS                                                  | ELEVON.                                                               |  |
| M3 W87E18    | DATA SCRICE ELEVON -40.000                                         | 30 -28 -26 -24 -22 -20 ANGLE. ELEVONS.M=7.32.BUFLAP=-14.75 DEG FWD CG |  |
| F4 N8 M      | 20 DATASET<br>20 185044                                            | -34 -32<br>ELEVON DEFLECTION<br>FECT OF DEFLECTED                     |  |
| 810C5 07     | *<br>************************************                          |                                                                       |  |
|              | RIC VALLES<br>SPOBRA<br>AILRON<br>BETA                             |                                                                       |  |
| 57-0A11A     | PARAVETRIC 7.320 S                                                 |                                                                       |  |
| AMES 3.5-157 | MQ4<br>PLODER<br>BOFLAP                                            | 9 INCREMENT                                                           |  |
| AMES         | 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                            |                                                                       |  |
|              | <b>‡</b> 0□◊4△                                                     |                                                                       |  |

)

FIG. 9 INCREMENTAL EFFECT OF DEFLECTED ELEVONS.M=7.32.BDFLAP=-14.75 DEG FWD CG -34 -32 -30 -28 -26 - ELEVON DEGREES AMES 3.5-157-0A11A B10C5 D7 F4 N8 M3 W87E18 V5R5(1BS044) ELEVON -20.000 DATASET 185045 DATA SOURCE ELEVON -40.000 54.920 DATASET .000 185044 .000 PARAVETRIC VALUES
7.320 SPOBPK
.000 AILRON
-14.750 BETA PACH RLOCER BOFLAP -.03 80.-60.--.11 -.04 -.02 **6**0□◊44**0**. -.01 FORCE INCREMENTAL









FIG. 9 INCREMENTAL EFFECT OF DEFLECTED ELEVONS,M=7.32,BDFLAP=-14.75 DEG FWD CG



| 57-0A11<br>2.300<br>2.4.300<br>36-14.300<br>36-14.300<br>36-14.300<br>36-14.300<br>36-14.300 | 07 F4 NB   | 24.500 DATASET<br>2000 IBSO44<br>2000 | <br> | <br> | <br> | <br> |   |   | <br>-34 -32<br>ELEVON DEFLECTION<br>FECT OF DEFLECTED |
|----------------------------------------------------------------------------------------------|------------|---------------------------------------|------|------|------|------|---|---|-------------------------------------------------------|
| 57-0A11<br>2.300<br>2.4.300<br>36-14.300<br>36-14.300<br>36-14.300<br>36-14.300<br>36-14.300 | 07         | # # # # # # # # # # # # # # # # # # # | <br> | <br> | <br> | <br> |   | · | <br>N N N                                             |
| N. N                                                     |            | VALLES<br>SPUBPIK<br>ATLIKON<br>RETA  |      | <br> | <br> | <br> |   |   | <br>ELEVON                                            |
| SES - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -                                                    |            | 24 025.<br>200 Al.<br>200 Al.         | <br> | <br> | <br> | <br> |   |   |                                                       |
| · • • • • • • • • • • • • • • • • • • •                                                      | 5-157-     | 9A2                                   | <br> | <br> | <br> | <br> |   |   | <br>EHENT/                                            |
| S. 3.5.5.                                                                                    | AMES 3.5-1 | RODER<br>RODER                        | <br> |      |      | <br> | 1 | ₩ | <br>-38<br>INCR                                       |



COEFFICIENT

PITCHING

MOMENT

FIG. 9 INCREMENTAL EFFECT OF DEFLECTED ELEVONS.M=7.32.BDFLAP=-14.75 DEG AFT CG SCHOOL STATE ELEVON DEFLECTION ANGLE, ELEVON, DEGREES AMES 3.5-157-0A11A B10C5 D7 F4 NB M3 W87E18 V5R5 (JBS044) ELEVON-20.000 DATASET JBSO45 DATA SOUTE ELEVON -40.000 54.920 DATASET .000 JBS044 .000 PARAMETRIC VALLES
7.320 SPOSSOK
.000 AILRON
-14.750 BETA MOH RUDER BOFLAP A A A 6.000 2.000 2.000 2.000 2.000 3.000 11.000 .005.40 60□◊44**□**. 015 010 025 020 .095 060. 020 040 .035 030 .065 045 .085 080 ,075 070 090 055 PITCHING MOMENT COEFFICIENT INCREMENTAL DCFW













CA JMACH







CA JMACH





FIG. 10 TOTAL VEHICLE WITH DEFLECTED ELEVONS, M=7.32, BDFLAP=0.0 DEG. FWD CG



















APPENDIX

TABULATED SOURCE DATA

Plotted data tabulations available from the DMS on request

| · JAYL                              | (RBSDD2) (17 JUL 73 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TABULATED SOURCE DATA - ARC 3.5 157 | SACTOR OF THE NAME OF THE NAME OF THE NAME OF THE PARTY OF THE NAME OF THE PARTY OF |
| DATE SO SEP 73                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                 | 10.00<br>0.00<br>10.00<br>0.00                                   |                            | 0.0000<br>.00000<br>.00000<br>.00004<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------|------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATA            | el va-r =<br>Ruccer =<br>elevon =<br>Beta =                      |                            | CR0000100011 .00045 .000460007000071000220002200039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PARAMETRIC DATA | 10.000<br>54.920<br>.000                                         |                            | CYN -, 00008 , 00002 , 00003 , 00003 , 00003 , 00003 , 00003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | ELVN-L = SPDBRK = AILRCN = BDF; \cdots                           | -5.00/                     | XCP/L CY .4662700245 1.9663400246 .9136300341 .76563 .00314 .73443 .00217 .72996 .00369 .71124 .00128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                 |                                                                  | GRADIENT INTERVAL = -5.00/ | Q_M<br>103154<br>103154<br>03283<br>035831<br>03583<br>03582<br>05120<br>05679<br>07679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 |                                                                  | 2.43                       | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | 1076.4800 IN.<br>.0200 IN.<br>400.0000 IN.                       | RY.                        | CA<br>.09311<br>.06322<br>.04346<br>.04522<br>.04672<br>.08633<br>.08633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 | 1076<br>1 400                                                    | RUN ND. 2/ 0               | 0.09557<br>76790.<br>76790.<br>77270.<br>87270.<br>87270.<br>105675.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | ACE DATA  1. FT. YORR  4. ZHR  CALE                              | 3                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1               | E990,0000 24.FT.<br>474,8000 IN.<br>924,8900 IN.<br>934,8900 IN. |                            | ALPHA<br>-2.235<br>1.950<br>4.536<br>7.366<br>10.460<br>11.135<br>13.445<br>16.923<br>16.923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | Sect : Brest : Scale : Scale :                                   |                            | 25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28 |

(RBS003) (11 JUL 73 )

AMES 3.5-157-CA11A BLOCS DT F4 Nº ME WBTE18 VSR5

PARAMETRIC DATA

|                | 10.000<br>. 300<br>10.000<br>. 000                                                        |                            | 1,81764<br>1,81764<br>1,65167<br>1,51130<br>1,25502<br>1,24538<br>1,12743<br>1,02131<br>92128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------|-------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | ELW:R:<br>R:COSR =<br>ELEVON =<br>BETA =                                                  |                            | CPL<br>000035<br>00042<br>00063<br>00115<br>00015<br>00071<br>00071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TANA STRIPPING | 19,700<br>54,920<br>.000                                                                  |                            | CYN . 09023 . 09060 . 09095 . 09055 . 09009 . 090016 . 090016 . 090016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | BENN-L = SPDERK = AILRON = BEFLAP =                                                       | -5.00/ 5.00                | CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                           | GRADIENT INTERVAL = -5.00/ | CLM XCP/L06800 .7123206459 .7032806974 .703280206 .6980502432 .694871124 .6948712547 .6948713973 .6957813973 .69518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                |                                                                                           | 2.59 GRADI                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | 1076.4899 IN.<br>.0000 IN.<br>400.0009 IN.                                                | RRY.                       | CA<br>.08887<br>.07347<br>.07744<br>.09218<br>.10457<br>.10457<br>.10581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | же = 1076,4800<br>үчг = ,0000<br>Дже = 400,0000                                           | RUN NO. 3/ 0               | 00<br>2 22201<br>1 .28103<br>6 .32268<br>5 .41928<br>5 .57691<br>6 .71764<br>8 .85672<br>2 .97935<br>13 .03788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| REFERENCE DATA | <b>բ</b> ՝ ա                                                                              | ē:                         | 17.989 .41443 .22.106 .49661 .24.607 .53296 .90.809 .76735 .95.809 .95.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.809 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96.800 .96 |
| 82             | 9467 = 2690,0000 94.F<br>LUEF = 474,6000 IN.<br>BREF = 936,6600 IN.<br>9CALE = .0150 9CAL |                            | 5.273 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275 5.275  |

### ANES 3.5-157-CALLA BLOCS DT F4 NB MS WRTELR VSRS

( 27 JUL 73 ) (RBS904)

| ######################################                                                                                                                     |            | 000.<br>000.<br>000.                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------|
| FOCE DATA  94.FT. YOFFP = 1076.4800 IN.  IN. YHFP = .0000 IN.  IN. ZHEP = 400.0000 IN.  SCALE                                                              | DATA       | ELVN-R<br>RUDDER<br>ELEVON<br>SETA                            |
| SQ.FT. NORP = 1076.4800 IN.       ELVN-L = SPERK = SPERK = IN.       SPERK = SPERK = SPERK = ADD.0000 IN.       SPERK = ADD.0000 IN.       AILRON = SERALE | PARAMETRIC | .000<br>54.920<br>.000                                        |
| BNCE DATA SQ.FT. WHRP IN. ZHRP SCALE                                                                                                                       | •          |                                                               |
| BNCE DATA SQ.FT. XMRP IN. YMRP SCALE                                                                                                                       |            |                                                               |
| BNCE DATA SQ.FT. XMRP IN. YMRP SCALE                                                                                                                       |            |                                                               |
| BNCE DATA SQ.FT. XMRP IN. YMRP SCALE                                                                                                                       |            | żżż                                                           |
| BNCE DATA SQ.FT. XMRP IN. YMRP SCALE                                                                                                                       |            | 1076,4800 I<br>.0900 I                                        |
| BNCE DAT/<br>SA.FT.<br>IN.<br>SCALE                                                                                                                        |            |                                                               |
| REFERENCE<br>SHEET = 2474,8000 IN.<br>BREET = 936,6600 IN.<br>SCALE = .0150 SCAL                                                                           | DATA       | 250                                                           |
| SPECT = LNEST = BREST = SCALE =                                                                                                                            | REFERENCE  | 2690.0000 98.FI<br>474.8000 IN.<br>936.6600 IN.<br>.0150 SCAU |
|                                                                                                                                                            |            | SAEF = LAEF = BREF = SCALE =                                  |

2.44 GRADIENT INTERVAL : -5.05/ 5.00

1 1 N

0 /4

REN NO.

#### CBL - .00083 - .00144 - .00145 - .00163 - .00220 - .00220 - .00247 - .00247 - .00247 - .00203 CY -.00110 -.0008 .00432 -.00017 -.00017 -.00027 -.00075 -.0004 XCF.12 69212 67934 67934 67939 67993 68229 68229 68229 68229 68229 2006. 53738 59736 78922 94222 1.09818 1.27316 1.35109 CA .07967 .06418 .06418 .06153 .06608 .07656 .09224 .09222 .09329 2.38462.38462.31512.51637.015957.396952.96592.396759.196759.196759.196775

22.218 22.218 22.228 24.727 27.714 30.848 30.740 35.700

1.64053 1.60192 1.69014 1.54652 1.27679 1.27679 1.12761

. 033963

(RESUDS) (17 JUL 73 )

PARAMETRIC DATA

# AMES 3.5-157-CALLA BLOCS DT F4 NR NO WRTELR VSRS

|        |                                                                | REPERENCE DATA            | <b>⊀</b>                                |          |                                           |                                  |        |          |            |                            |                                           |                         |                                     |                      |
|--------|----------------------------------------------------------------|---------------------------|-----------------------------------------|----------|-------------------------------------------|----------------------------------|--------|----------|------------|----------------------------|-------------------------------------------|-------------------------|-------------------------------------|----------------------|
| Sect : | 2650,0000 54.FT.<br>474,6000 IN.<br>934,6800 IN.<br>.0130 904E | 98.FT.<br>1 IN.<br>9 CALE | 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 89 81 EL | 1076,4600 IN.<br>2000 IN.<br>400,0000 IN. | Aero In.<br>Seed In.<br>Seed In. |        |          |            |                            | BLWH =<br>SPESK =<br>AILRON =<br>ECOLAP = | .000<br>54.920<br>.020. | ED WN-R = RUDDER = ENCON = BETA = E | 000°<br>000°<br>000° |
|        |                                                                |                           | ر<br>ا                                  | ó        | 9 8                                       | \$<br>1,                         | 2.38   | GRACIENT | INTER      | GRADIENT INTERVAL = -5,007 | 6975 /6                                   |                         |                                     |                      |
|        |                                                                | (                         |                                         | •        |                                           | 3                                | 3      | d        | <b>)</b> . | XQX                        | Շ                                         | N.                      | Đ.                                  | 9                    |
| Š      |                                                                |                           | !                                       | 9 (      |                                           | ,                                | ;      |          | ¥6940      | . 625                      |                                           | 072755                  | -,07914                             | 72544                |
| 5.273  |                                                                |                           | .07013                                  |          | 1906                                      |                                  |        |          | 2.65       | 19079. CF                  | 72000-                                    | \$0000                  | -,00017                             | (3920                |
| 5.273  |                                                                |                           | 00263                                   | j.       | 90.0                                      | 6                                |        |          | 1 4 5 5    | 82510                      | -,00553                                   | .02053                  | 17202.                              | .45978               |
| 5:23   |                                                                |                           | 05.10e                                  | ຄຸ       | 7690                                      |                                  |        |          | 101        | -1.6:554                   | 90,70                                     | 41000.                  | 50005                               | 21774                |
| 5.273  |                                                                | •                         |                                         |          | CO.                                       | 64.50                            |        |          |            | 220.69                     | 96000-                                    | -,00005                 |                                     | 1,90157              |
| 3.272  |                                                                |                           | 200                                     |          | · .                                       | 0.000                            |        |          | 1926       | .75653                     | 05207                                     | 92000                   | 00055                               | 1.83051              |
| 5.273  | 13.437                                                         |                           | 26192.                                  | •        | , ,                                       | 2000                             | SC. OF | ·        | 63666      | 1.969.                     | .00315                                    | .00058                  |                                     | 1.85997              |
| 5.273  |                                                                |                           | \$120                                   |          |                                           | 26.790                           | 80808  | •        | 34238      | 86639                      | .03321                                    | .00075                  | - 200089                            | 1,80165              |
| <br>   | 8                                                              |                           | 91484                                   | i J      |                                           | 0:574                            | 702101 |          | 671.35     | -,74397                    | 50:051                                    | 80000                   | \$6006                              | :17765               |

DATE ED BEP 13

( 17 JUL 73 ) PACE

ť

| ### 50 FF 13  **EFFENCE DATA  **EFFENCE DATA | (RBSOD6) | PARAMETRIC DATA | H = -40,000 ELWN-R = 84,920 RUDDER = 000 ELEVON = AP = .000 BETA =  | 5.90                                       | CY CYN CBL .00193001990096 .001170011200262 .001180027000269 .0035002690024 .00430 .00240037 .00445 .002130037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|---------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| . 878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | į               | ENCE DATA  50.FT. MRF = 1076  14. YHRF = 400  18. ZHRF = 400  SCALE | 6/ 0 RWL = 2.32 GRADIENT INTERVAL = -5.00/ | Q.         CA         ON         CLM         XCP/L           -,1809a         .1139a         -,12512         .00437         .67246           -,0.510         .00579         .04707         -,00503         .64745           -,0.234         .00579         .04703         -,00537         .72590           -,02394         .04767         .04682         -,01612         -,01644         .72590           -,02394         .07467         .04945         .14291         -,01596         .67489           -,13159         .07467         .04945         .14291         -,01596         .67489           -,22346         .19823         .08355         .24969         -,01010         .67037           -,9094         .17990         .08379         .34770         -,01010         .67037           -,0348         .25406         -,01010         .66608         .66608           -,0348         .26466         -,00102         .66608           -,0348         .26466         -,00102         .666608           -,0348         -,00102         .66608 |

|                 | 000.03-                                                                                                        |                                 | 1,02466<br>-,02862<br>-,25804<br>-,31075<br>1,76204<br>1,71483<br>1,71483<br>1,71595<br>1,61757 |
|-----------------|----------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------|
| DATA            | ELWHR = RUDDER = BETA = BETA                                                                                   |                                 |                                                                                                 |
| PARAMETRIC DATA | -40.000<br>54.920<br>.000<br>-14.750                                                                           |                                 | CYN -, 00138 -, 0017 -, 00017 -, 00017 -, 00017 -, 00014 -, 00026                               |
|                 | ELWH-L = SPOBRK = AILRON = BEFLAP =                                                                            | 20°5 /20                        | CY000230005500039005920027800273                                                                |
|                 |                                                                                                                | VAL = -5.0                      | . 65270<br>. 64038<br>. 64038<br>07556<br>67867<br>. 66504<br>. 66504<br>. 65767                |
|                 |                                                                                                                | GRADIENT INTERVAL = -5.00/ 5.00 |                                                                                                 |
|                 |                                                                                                                | 2.30 GRA                        |                                                                                                 |
|                 | .0000 IN.<br>.0000 IN.<br>.0000 IN.                                                                            | 1 VAS                           | CA<br>.11399<br>.06730<br>.06609<br>.06604<br>.04939<br>.08353<br>.08467<br>.08645              |
|                 | = 1076.4800<br>= .0000<br>= 400.0000                                                                           | NO. 77 0                        |                                                                                                 |
| i               | DAGE DATA SELFT. 1969 IN. 1969 SCALE                                                                           | S                               | A                                                                                               |
| ,               | 2000,0000 96.<br>474,0070 IN.<br>936,6600 IN.                                                                  |                                 | 2.012<br>2.012<br>4.544<br>7.456<br>10.510<br>13.430<br>16.574<br>15.741<br>22.979              |
|                 | 2 - 25 - 270 e |                                 | 5.5.6<br>6.73.6<br>6.73.6<br>6.73.6<br>6.73.6<br>6.73.6<br>6.73.6<br>6.73.6<br>6.73.6           |

(RBS007) (17 JUL 73 )

AMES 3.5-157-CALLA BLDCS DT F4 NR MS MBTELB VSR5

1,76204 1,59249 1,71483 1,71483 1,70595 1,61757

(RBSDDB) (17 JUL 73 )

## AMES 3.5-157-CALLA BLOCS DT F4 NR MS WATELS VSRS

|                 | 000.<br>000.<br>000.                             |                            | L./D<br>                                                                                                |
|-----------------|--------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------|
|                 | .,10,000<br>.,000<br>.,000,000                   |                            |                                                                                                         |
| CATA            | ELVN-R = RUSSER = ELEVON = BETA =                |                            | CBL -, 100020 , 100022 , 100033 , 100033 , 100033 , 100034 , 100044 , 100043 , 100043 , 100003 , 100003 |
| PARAMETRIC DATA | -45.000<br>54.920<br>.900<br>-14.750             |                            | AYD.  \$1000. \$4000. \$6000. \$9000. \$9000. \$1000. \$2000. \$2000.                                   |
| •               | ELVN-1. = SPDBRK = AILRON = BDFLAP =             | 5.95                       | 0.0286<br>.00176<br>.00176<br>.00285<br>.00285<br>.001401<br>.00264                                     |
|                 |                                                  | "AL = -5.0                 | XCP.A66228 .65208 .65208 .65365 .65365 .65267 .65267                                                    |
|                 |                                                  | GRADIENT INTERVAL = -5.00/ | 00249<br>00114<br>.01114<br>.1.1694<br>.02711<br>.01822<br>.02254<br>.02045                             |
|                 |                                                  | 2.35 GRA                   | 08115.<br>5006.<br>57897.<br>68245.<br>68245.<br>1.01180<br>1.15045.<br>1.23574.                        |
|                 | 88 88 88 88 88 88 88 88 88 88 88 88 88           | RAY.                       | CA<br>.08395<br>.066700<br>.06667<br>.07199<br>.07919<br>.09049<br>.08241<br>.08248                     |
|                 | .N1 0204.4805 IN.<br>.0202 IN.<br>. 495.0000 IN. | 0 /9                       | .25241<br>.25241<br>.30460<br>.39122<br>.39122<br>.39377<br>.75390<br>.66028<br>.34518                  |
| 47.40           |                                                  | RUN NO.                    | .24297<br>.44093<br>.49713<br>.57061<br>.89076<br>.79340<br>.69101<br>.69101                            |
|                 | 2690,0000 90.FT<br>474,6000 IN.<br>936,6600 IN.  |                            | ALPHA<br>18.093<br>22.211<br>24.733<br>27.725<br>30.861<br>30.753<br>40.142<br>42.469                   |
| •               | SRET = 2<br>URET =<br>RREST =<br>SCALE =         |                            | MON<br>9.273<br>9.273<br>9.273<br>9.273<br>8.273<br>8.273<br>8.273                                      |

# AMES 3.5-157-CA11A BIDCS DT F4 NB MS WBTE18 VSR5

(RBSDD9) (17 JUL 73 )

|                 | 40,000<br>,000<br>,000<br>,000                                             |                            | 1.73168<br>1.73168<br>1.65774<br>1.31017<br>1.31017<br>1.25199<br>1.13407<br>1.03433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------|----------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FATA            | ELWHR = RUDDER = ELEVON = ESTA =                                           |                            | .00018<br>.00020<br>.00020<br>.00018<br>.00018<br>.00016<br>.00016<br>.00011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PARAVETRIC FATA | 54.920<br>54.920<br>000.                                                   |                            | CYN .00011 .00047 .00050 .00059 .00069 .00078 .00028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | ELWI-L = SPOBRK = AILRON = BOYL AP =                                       | 200' 2'00                  | 7, 202.7. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. 202.0. |
|                 |                                                                            | VAL = -5.                  | XCP.A66799 .65927 .66218 .66743 .65848 .65927 .66097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 |                                                                            | GRADIENT INTERVAL = -5.00/ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                            | 2.41 GRA                   | 0N<br>.39625<br>.51113<br>.60450<br>.70269<br>.87411<br>1,03678<br>1.17635<br>1.26998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | .0000 IN.                                                                  | RNA.                       | CA<br>.D6445<br>.D6605<br>.D6770<br>.D7130<br>.D7130<br>.D8787<br>.D9282<br>.D8488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                 | 1076                                                                       | 0 /6                       | .25454<br>.25454<br>.31419<br>.39004<br>.31637<br>.34936<br>.78043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1               | MARKE II TARKE II ZARRE II II ZARRE II | RUN NO.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ATAL STREET     | 296.650 IN.<br>936.650 IN.                                                 |                            | 17.972<br>22.234<br>22.234<br>24.710<br>27.719<br>30.617<br>35.894<br>40.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | Section 1                                                                  |                            | 25.6<br>273.6<br>273.6<br>273.6<br>272.6<br>272.6<br>272.6<br>273.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|                                     | (Resolut)                                        |  |
|-------------------------------------|--------------------------------------------------|--|
| TABULATED SOURCE DATA - ARC 3.5 15? | AMES 3.5-157-CALLA BLOCS DT F4 NB HG WATELE YERS |  |
| DATE ST SEP 73                      |                                                  |  |

|                 | ELEVON = -20.000<br>  RUDGER = .000<br>  ELEVON = -20.000<br>  BETA = .000 |                                 | GBL L/C  1.00035 1.61061  7000020 1.75321  7200033 1.6552  500034 1.51270  5100033 1.36124  5200043 1.36124  5300020 1.13628  5400020 1.13628  5400020 1.13628  550001003695 |
|-----------------|----------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PARAMEINIC DAIN | 20.000<br>24.920<br>.000                                                   |                                 | CTN<br>.00046<br>.00070<br>.000972<br>.00095<br>.00095<br>.00041<br>.00041                                                                                                   |
|                 | ELWYL " SPOSKK " AILKON " BOFLAP "                                         | GRADIENT INTERVAL = -5.00/ 5.00 | CY<br>00.142<br>9 .00142<br>9 .00143<br>00.1170<br>00.1170<br>00.1170<br>00.1170<br>00.1170<br>00.1170<br>11 .00148                                                          |
|                 |                                                                            | RVAL = -:                       | XGPA.  67443  65979  65979  66924  66925  66925  66429  65554                                                                                                                |
|                 |                                                                            | ADIENT INTE                     | - D1630<br>.00029<br>.00029<br>.000292<br>.000292<br>00029<br>00157<br>01265<br>01265<br>01265                                                                               |
|                 |                                                                            | 2,83 GR                         | .40341<br>.50084<br>.59284<br>.67992<br>.65925<br>.86434<br>1.02406<br>1.18240<br>1.27379<br>1.235952                                                                        |
|                 | 00 IN.<br>00 IN.<br>00 IN.                                                 |                                 | CA<br>.07665<br>.06459<br>.06479<br>.06471<br>.07712<br>.06182<br>.06182<br>.06182<br>.06132                                                                                 |
|                 | 10000 x 1076,4630<br>11469 a .0000<br>2000 : 600,0000                      | 10/ 0                           |                                                                                                                                                                              |
| i               |                                                                            | ALM NO.                         |                                                                                                                                                                              |
|                 | ######################################                                     |                                 | 16.194<br>22.351<br>24.854<br>27.635<br>30.293<br>31.228<br>33.916<br>37.031<br>40.244<br>43.482<br>GRADIENT                                                                 |
|                 | LEG :                                                                      |                                 | 9.272<br>9.272<br>9.272<br>9.272<br>9.272<br>9.273<br>9.273<br>9.273                                                                                                         |

|                 | 000°02-<br>000°02-<br>000°02-                                | ,                          | L/D<br>-,95566<br>-,26682<br>-,51637<br>-,41191<br>1,31346<br>1,73059<br>1,78698<br>1,73255<br>1,73255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------|--------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATA            | ELW-R = RUDCER = ELEVON = SETA =                             |                            | CPL .00062 .00083 .00083 .00083 .00083 .00083 .00083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PARANETRIC DATA |                                                              |                            | CYN -, 1201025 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001037 -, 1001 |
|                 | ELYNHL S<br>SPOSRK S<br>ATLRON S<br>BOPLA?                   | -5.00/ 5.00                | CY<br>17001221<br>9900199<br>7300582<br>8900109<br>48 .00109<br>66 .00109<br>66 .00109<br>87 .00272<br>88 .00244<br>88 .00244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 |                                                              | - = 7VX                    | XCP/L<br>. 59:047<br>. 21999<br>. 87:073<br>02989<br>. 71:048<br>. 689:06<br>. 57:927<br>. 66:385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 |                                                              | GRADIENT INTERVAL = -5.00/ | 01844<br>018764<br>01870<br>02083<br>02135<br>01840<br>01894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 |                                                              | 2.43 GRA                   | 0.09463<br>09463<br>01451<br>.03065<br>01079<br>.26267<br>.36763<br>.56905<br>.56905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | .0000 IN.<br>.0000 IN.                                       | REVL :                     | CA<br>.09236<br>.06276<br>.04170<br>.00214<br>.07599<br>.07590<br>.7770.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | .N1 0000,<br>.N0 0000 IN.                                    | 11/0                       | 0.09521<br>.09409<br>.05132<br>.0336<br>.0336<br>.13681<br>.18015<br>.23639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | E DATA FT. 2048 # # ZYKR # #                                 | 9                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | EEFO.COCO 90.F<br>474.6CCO IN.<br>936.6CCO IN.<br>.0190 SCAL |                            | ALPHA<br>-1.750<br>E.419<br>4.981<br>7.674<br>11.096<br>17.059<br>ED.283<br>ED.283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                 | 940 = 5<br>UM = 5<br>BREF = 9CME =                           |                            | 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

(KBS011) (17 JUL 73 )

AMES 3.5-157-CALLA BIDCS D7 F4 NB NS WRTELB VSRS

REFERENCE DATA

( 12 JUL 73 )

#### PARAMETRIC DATA

| а |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

| •                                                               |                                 |                                                                                         |
|-----------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------|
| 000°                                                            |                                 |                                                                                         |
| ELVN-R R<br>RUCCER 3<br>ELEVON 3                                |                                 | CBL                                                                                     |
| .000<br>24.920<br>,000                                          |                                 | CYN00043000350003500048 .00044 .00041                                                   |
| ELVN-L * SPCBRK = AILRON = BOFLAP =                             | 2.00                            | CY<br>                                                                                  |
|                                                                 | ML = −5.90                      | XCP/L<br>.49829<br>18.71719<br>.87747<br>.04226<br>.68256<br>.71565<br>.69934<br>.69154 |
|                                                                 | GRADIENT INTERVAL = -5.00/ 5.00 | CLM033670266301794522370426904269                                                       |
|                                                                 | 2.62 GRAD                       | ON07445000570005701190119038790387903879038739                                          |
| 0 0 0 XX                                                        | 12/8<br>12/8                    | CA<br>.08755<br>.06247<br>.05181<br>.04104<br>.04371<br>.07569<br>.07766<br>.06067      |
| 1076,4800 IN.<br>.0200 IN.<br>400,0000 IN                       | 12/ 0                           | 0<br>.06243<br>.05414<br>.03904<br>.06641<br>.14201<br>.18784<br>.24924                 |
| MARP H<br>YHRP B<br>ZHRP B                                      | St. No.                         | 0.07171<br>.07171<br>.02485<br>.07170<br>.1381<br>.1381<br>.34820<br>.42840             |
| 2990,0000 99.FT.<br>474,9000 IN.<br>896,6400 IN.<br>.0150 9CALE |                                 | 2.449                                                                                   |
| 2890,0000 4<br>474,8000 8<br>896,6600 8                         |                                 | A                                                                                       |
| SCALE SCALE                                                     |                                 |                                                                                         |

# AMES 3.5-157-CALLA BLDCS DT F4 NO HS WATELD VSRS

#### ( 87 JUL 71 ) ( 82 DUL 73 ) PARAMETRIC DATA

|                | ELWH-L = .000 ELWH-R = .000  SEGRET: # 24.920 RUCCER = .000  F = .0000 IN. AILRON = .000 ELEVON = .000  BUTLAP = .000 EETA = .000 |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------|
| _              | 20 AS                                                                                         |
| REPUBLICE DATA | 2990,0000 94.FT.<br>474.9000 IN.<br>936.9800 IN.<br>.0150 SCAL                                                                    |
|                |                                                                                                                                   |

|                                                                              | CYN CBL .00060 .00002 .0009600040 .0010000040 .0012100116 .0011600116 .0011600122 .0010600122                         |  |  |  |  |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 3.99                                                                         | CY<br>.00011<br>.00011<br>.00022<br>.00027<br>.00126<br>.00126<br>.00126<br>.00152                                    |  |  |  |  |
| -5.00/<br>116<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118 |                                                                                                                       |  |  |  |  |
| GRADIENT INTERVAL =                                                          | QLM<br>04125<br>02660<br>03919<br>04968<br>05957<br>07156<br>07156<br>09433                                           |  |  |  |  |
| 2.64<br>64                                                                   | 00.43000<br>- 53330<br>- 63892<br>- 71656<br>- 92561<br>- 1.09262<br>- 1.25280<br>- 1.25280<br>- 1.25280<br>- 1.25280 |  |  |  |  |
| ₹<br>*                                                                       | CA<br>.07757<br>.06374<br>.06637<br>.06637<br>.07733<br>.06491<br>.06493<br>.06499                                    |  |  |  |  |
| 0, 13/ 0                                                                     |                                                                                                                       |  |  |  |  |
| RV W                                                                         |                                                                                                                       |  |  |  |  |
|                                                                              | 17.994<br>22.720<br>24.786<br>27.775<br>39.987<br>39.987<br>39.023<br>40.189<br>43.419                                |  |  |  |  |
|                                                                              | MO<br>3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2                                                                         |  |  |  |  |

•

The second secon

1.66343 1.60147 1.63423 1.53614 1.27632 1.15184 1.15184 1.04369 .93950

| TABU   |  |
|--------|--|
|        |  |
| _      |  |
| E.     |  |
| 2      |  |
| DATE # |  |
| 0      |  |

#### MANLATED SOURCE DATA - ARC 3.5 157

#### (RBS014) (17 JUL 73 )

PARAMETRIC DATA

### AMES 3.3-157-CALLA BLOCS DY F4 NO NG WOTELS YERS

| Ş         | 40.990<br>40.990<br>900.990                     |                                 | 1.72282<br>1.74773<br>1.74773<br>1.54147<br>-6.76120<br>1.30164<br>1.30169<br>1.225702<br>1.02792<br>1.02792<br>1.02792<br>1.02792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------|-------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | ELW-R : . RUCDER : . ELEVON : .                 |                                 | .00014<br>.00022<br>.00022<br>.00003<br>.00007<br>.00003<br>.00003<br>.00003<br>.00004<br>.00004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           | 24.920<br>.000                                  |                                 | CYN .00017 .00017 .00016 .00010 .00010 .00016 .00016 .00017 .00016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           | ELWAL ::<br>SPTBRK ::<br>AILRON ::<br>BOFLAP :: | 00'6 /00'                       | CY<br>D00134<br>D0135<br>05 9<br>05131<br>05131<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>05126<br>0 |
|           |                                                 | YAL = -5.                       | . 66906<br>. 65909<br>. 65900<br>. 65900<br>. 65901<br>. 65849<br>. 65965<br>. 65965<br>. 66029<br>. 66029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |                                                 | GRADIENT INTERVAL = -5.00/ 5.00 | CLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |                                                 | 2.76 GRA                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | .0000 IN.                                       | PAY,                            | CA<br>.06236<br>.06481<br>.06893<br>.00892<br>.07920<br>.09287<br>.08287<br>.08287<br>.08387<br>.00049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | .000.000 IN.<br>.000.000 IN.                    | 14/ 0                           | .19766<br>.24646<br>.30325<br>.00020<br>.37419<br>.31510<br>00116<br>.77150<br>.87357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DATA      | 2862<br>2882                                    | Ğ.                              | 2.<br>.3-024<br>.43076<br>.49777<br>.3-6190<br>.70137<br>.70782<br>.96836<br>.92038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| REPORTE D | 296.5000 96.FT.<br>474.6000 IN.<br>996.8800 IN. |                                 | ALPHA<br>18,036<br>22,272<br>24,835<br>27,471<br>27,471<br>29,964<br>39,094<br>40,273<br>40,273<br>40,273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           |                                                 |                                 | MOM<br>S.ETT<br>3.ETT<br>3.ETT<br>3.ETT<br>5.ETT<br>5.ETT<br>5.ETT<br>5.ETT<br>5.ETT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

### AMES 3.5-157-CALLA BLDCS DT F4 NR MS WBYELS VSR5

#### PARANETRIC DATA

(RBSD15) (17 JUL 73 )

| 2 C C C C C C C C C C C C C C C C C C C | ### ##################################                                                       |                                      | CY CYN CBL L/D 0 ,00039 ,00004 -,00003 2,34649 7 ,00108 ,00032 ,00017 1,35372 2 ,00162 ,00067 -2,33069 |
|-----------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------|
|                                         |                                                                                              | 2.71 GRADIENT INTERVAL = -5.00/ 5.00 | CN CLM XCP/L<br>-,00185 -,00049 ,56470<br>,87489 ,00885 ,65637<br>2,05828 ,02194 2,1522                |
| 2                                       | 107679 = 1076.4800 IN.<br>YHERP = ,0000 IN.<br>ZHEP = 400.0000 IN.                           | RUN NO. 15/ D AN/L =                 | CA CA CA CA CA CA CA CACA CACA CACA CA                                                                 |
| REFERENCE DATA                          | SMEY = E880,0000 50.FT.<br>LEGY = 474,0000 IN.<br>BMEY = 956,6600 IN.<br>CALLE T. 0150 SCALE |                                      | D AHPM HAM OF 25.26                                                                                    |

いいから、アイナをはいかいとなるというが、おとなるという

( 17 JUL 78 )

#### PARAVETRIC DATA

| ELVN-L = -40.000 ELVN-R = -40.000 SPORK = 24.920 RUCER = .000 AILROM F .000 ELEVON = -40.000 BOFLAR = .000 PETA = .000 | 2.52 GRADIENT INTERVAL = -5.00/ 5.00 | CN CLM XCP/L CY CYN CBL L/D  -3856701037 .66960 .00253 .00029 .00022 1.7272;  -52017 .00243 .6553200136 .00077 .00065 1.74639  -00047 .00032 .4202900012 .00013 .00020 1.37962  -00047 .00032 .6502900012 .00013 .00020 1.37962  -00047 .00039 .6502900013 .00036 .00074 1.664954  -00048000108 .6502900014 .0003900037 1.49968  -0004900144 .5751000296 .00012 .00037 1.59508  -00054 .00795 .65509 .00149 .0003900037 1.59508  -0065400202 .54964 .00014 .0003900037 1.5946  -1.7639 .00115 .65932 .0003900031 1.5946  -1.7639 .00115 .65932 .0003300036 .00037 .92988  -1.3436 .00388 .65938 .0003300036 .00037 .92988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7989 = 1076.4800 IN.<br>1789 = .0000 IN.<br>2789 = 400.5000 IN.                                                        | RUN NO. 16/ D RWL =                  | 20 CA<br>19756 DECUI<br>1.20077 DESSE<br>19 JORGES DECUI<br>19 JORGES DECUI<br>100025000171<br>100025000171<br>100025000171<br>11 JORGES DECUI<br>12 JORGES DECUI<br>13 JORGES DECUI<br>14 JORGES DECUI<br>15 JORGES DECUI<br>16 JORGES DECUI<br>17 JORGES DECUI<br>18 JORGES DEC |
| #EFEBRACE DATA<br>#EFF = E80.0000 90.FT. 70<br>LIEF = 474.9000 IN. 70<br>#EFF = 996.6900 IN. 27<br>SCALE = .0190 SCALE |                                      | 5.273 18.066 .34122<br>5.273 18.066 .34132<br>5.273 22.283 .45533<br>5.273 22.283 .45533<br>5.273 24.016 .49973<br>5.273 27.007 27.0010<br>5.272 31.102 .0010<br>5.272 35.007 20.0010<br>5.272 35.007 20.0010<br>5.272 35.007 20.0010<br>5.272 35.007 20.0010<br>5.272 20.007 20.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

## AMES 3.5-157-CA11A BIDCS DT FA NB MB MBTE18 VSRS

REFERENCE DATA

( 27 JUL 73 )

|                 | 000'07-          |
|-----------------|------------------|
| PARAMETRIC DATA | -40,000 ELVN-R = |
|                 | -40.000          |
|                 | ₽¥₽<br>"         |
|                 |                  |

| ର ପ ର                                                           |                            | 864<br>606<br>867<br>461<br>1056<br>1013<br>1013<br>1233                              |
|-----------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------|
| .000<br>.000<br>.000                                            |                            | 1.06864<br>48606<br>.18867<br>62461<br>1.82685<br>1.72613<br>1.72013<br>1.62788       |
| RUCCER =<br>ELEVON =<br>BETA =                                  |                            | CBL                                                                                   |
| 24.920<br>.000.                                                 |                            | CTM - 00092 - 00092 - 00092 - 00092 - 00092 - 000148 - 000148 - 00009 - 00009 - 00009 |
| SPD33K = ATURON = BOFLAP =                                      | 5.00                       | .00010<br>.00004<br>.00044<br>.00041<br>.00148<br>.00148                              |
|                                                                 | GRADIENT INTERVAL = -5.00/ | XCP/L<br>.65552<br>.61114<br>.81365<br>.42926<br>.67231<br>.66737<br>.66533<br>.66552 |
|                                                                 | NEW INTER                  | CLM0012400534004090040901407001407001407000402                                        |
|                                                                 | 2.50 GRA                   | O                                                                                     |
| <u>.</u>                                                        | 1<br>1                     | CA<br>.11020<br>.06717<br>.06747<br>.04681<br>.0659<br>.09329<br>.08410               |
| # 1076.4800 IN.<br># 0000 IN.<br># 400.0000 IN.                 | 0 /21 .                    | 00<br>211522<br>200578<br>200664<br>200604<br>312076<br>32523<br>25252<br>26000,-     |
| 25.45<br>25.45<br>26.45                                         | SC NO.                     | 2.<br>1.231.<br>2.04167<br>2.0223.<br>2.0023.<br>2.0023.<br>2.0924.<br>4.5924.        |
| 2000,0003 90.FT.<br>474.6020 IN.<br>936.6800 IN.<br>.0150 SCALE |                            | ALPHA -E.299 -E.299 -1.866 -4.437 7.321 -10.392 13.349 16.496 19.699 22.699           |
| Section 1                                                       |                            | 9.273.6<br>27.2.6<br>27.2.6<br>27.2.6<br>27.3.6<br>27.3.6<br>27.3.6<br>27.3.6         |

)

11 カーナー・「一時、中華の政治は別様の無限です。

THE PARTY OF THE PROPERTY OF THE PROPERTY OF A DESCRIPTION OF THE PROPERTY OF THE PARTY OF THE P

PACE

#### AMES 3.5-157-CA11A BIOCS DT F4 NB NS WOTEIB VYRS

|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 1.74694<br>1.77346<br>1.66690<br>1.51736<br>1.36723<br>1.25489<br>1.13426<br>1.03549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATA            | ELVN-R R<br>RUDGER B<br>ELEVCN B<br>SSTA B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | CBL<br>CDDD4<br>CDDD16<br>CDD16<br>CDD17<br>CDD17<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CDD27<br>CD27<br>C                                                                                     |
| PARAMETRIC DATA | 24.000<br>24.920<br>.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | CAN<br>.00001<br>.00043<br>.00018<br>.00011<br>.00011<br>.00014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | ELW-L = SPD3RK = AILRON = ECTLAP =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00'\$ /00'                             | .00029<br>.00017<br>.00040<br>.00040<br>.00054<br>.0014<br>.00118<br>.00118<br>.00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ************************************** | XCP/L<br>.66912<br>.65883<br>.65958<br>.65958<br>.65753<br>.65049<br>.65049<br>.65976<br>.65976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GRADIENT INTERVAL = -5.00/ 5.00        | 4.09865<br>09865<br>00160<br>00167<br>00164<br>00161<br>00161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.42 GRA                               | .38554<br>.38524<br>.58056<br>.58056<br>.6717<br>1.01579<br>1.16756<br>1.26440<br>1.36002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | 00 IN.<br>00 IN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | # <b>7</b>                             | CA<br>.06065<br>.06279<br>.06807<br>.08116<br>.09116<br>.09317<br>.06652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | . 1076.4800 IN.<br>.0000 IN.<br>. 400.000 IN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18/ 0                                  | .19571<br>.24374<br>.30049<br>.37561<br>.62530<br>.63532<br>.77454<br>.86044<br>.99404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2               | 2040<br>7460<br>2040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RUN NO.                                | A. 34167<br>43266<br>90063<br>90063<br>978727<br>171821<br>171725<br>18725<br>12727<br>12725<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727<br>12727 |
| BENTHENCE DATA  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | ALPHA<br>17.946<br>22.136<br>24.691<br>27.669<br>30.948<br>35.772<br>35.039<br>40.036<br>43.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | SECTION SECTIO |                                        | MON<br>5.273<br>5.273<br>5.272<br>5.272<br>5.272<br>5.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.27                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

## AMES 3.5-157-CA11A BIDCS D7 F4 NB HS WB7E1B V5R5

(17 JUL 73 )

PARANETRIC DATA

| ESSO.0000 SG.FT.<br>474.6000 IN.<br>936.6000 IN.<br>936.600 IN. |                            | 4.01 ALPHA<br>5.273 -2.427 -<br>5.272 1.790 -<br>5.273 7.200 -<br>5.272 10.465<br>5.272 19.328<br>5.273 19.328<br>5.273 27.328 |
|-----------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| DATA  • SARO = YKO = ZKKO = E                                   | R'N NO.                    |                                                                                                                                |
| 1076.4800 IN.<br>,0000 IN.<br>499.0000 IN.                      | 19/0                       | 0.1156E08274084770443307775137752319523195                                                                                     |
| .4800 IN.<br>.0000 IN.                                          | RRV."                      |                                                                                                                                |
|                                                                 | 2.48 GRA                   | 0.<br>12542                                                                                                                    |
|                                                                 | GRADIENT INTERVAL = -5.70/ | CLM -,00190 -,00621 -,00862 -,01375 -,00366 -,01369 -,00684 -,00684                                                            |
|                                                                 | AL = -5.70                 | XCP/L<br>.65457<br>.59682<br>.81139<br>.47227<br>.66595<br>.67122<br>.67122<br>.65149                                          |
| ELWY-L = SPOBRK = AILRON = BOFLAP =                             |                            | CYD0055D0048D0048D0048D0048D0267D0267D0267                                                                                     |
| -40.000<br>24.920<br>.000                                       |                            | CYN -,00070 -,07051 -,09046 -,00013 -,00014 -,00014 -,00033 -,00033                                                            |
| ELVN-R =<br>RLCCER =<br>ELEVON =<br>BETA =                      |                            | CBL0001300013000020000200003000090000900009000090000000000                                                                     |
| -40,000<br>.000<br>.000<br>.000                                 |                            | 1.00<br>-2.04150<br>-2.5598<br>.22226<br>72574<br>1.69905<br>1.63915<br>1.73483<br>1.63819<br>1.63819                          |
|                                                                 |                            |                                                                                                                                |

で、日本は 海豚の気を

| _         |
|-----------|
| _         |
| t.        |
| 텇         |
| ļ         |
| ~         |
| =         |
| (RB\$020) |
| ê         |
|           |

### AMES 3.5-157-CALLA BLUCS D7 F4 NG NG MOTELS VSRS

|                 | 000                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------|----------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATA            | ELVN-R = .0 RUCCER = .0 ELEVON = .0                            |                                 | CBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PARAMETRIC DATA | .000<br>24.920<br>.000                                         |                                 | CYN050470504605046050460504405044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| _               | ELVM-L = ST-OBRK = ATLRON = BOFLAP =                           | 00' 8'00                        | CY<br>-,00026<br>-,50131<br>-,02036<br>,00107<br>,00107<br>,00120<br>-,00120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 |                                                                | .VAL = -5.                      | XCP.L49072<br>-11.77160<br>.12530<br>.69429<br>.70538<br>.69817<br>.68967<br>.68967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 |                                                                | GRADIENT INTERVAL = -5,00/ 5,00 | QLM03332028470201401393039620412504425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 |                                                                | 2.52 CRJ                        | 04<br>- 00008<br>- 01347<br>- 14527<br>- 28575<br>- 38638<br>- 50178<br>- 62193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| E DATA          | .0000 IN.<br>.0000 IN.                                         | # J/8                           | CA<br>.03657<br>.06190<br>.0463<br>.0463<br>.0760<br>.0760<br>.07911<br>.08266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | FT. 2058 = 1076<br>YMP =<br>2058 = 400                         | RUN NO. 20/ 0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 |                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| REFERENCE       | 2090.0000 94.FT<br>474.8000 IN.<br>936.6900 IN.<br>.0150 SCALE |                                 | ALPNA<br>-2.312<br>1.761<br>7.193<br>10.539<br>13.539<br>13.572<br>19.609<br>82.606<br>64ADIENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | SAROF = P.                                                     |                                 | MQH<br>5.273<br>5.725<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5.727<br>5. |

# AMES 3.5-157-CA11A BIDCS D7 F4 NR NG WBTE18 VSR5

(17 JUL 73 )

PARAMETRIC DATA

| 600°<br>600°<br>600°                             |                                                   |
|--------------------------------------------------|---------------------------------------------------|
| ELW-R = ELEVON = SETA =                          |                                                   |
| .000 ELM+<br>24.920 RUDGI<br>.000 ELEW           |                                                   |
| ELW-L = SFDBRK = AILRON = EDFLAP                 | -5 997 5.00                                       |
|                                                  | 21/ D RVL = 2.48 GRADIENT INTERVAL = -5 '90/ 5.00 |
|                                                  | 2.48                                              |
| 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8            | RACL =                                            |
| = 1075.4600 IN.<br>= .0000 IN.<br>= 400.0000 IN. | 21/ 5                                             |
| \$ \$ \$                                         | RGN NO.                                           |
| ######################################           |                                                   |

| 000°                                                     |                             | 1,7607<br>-,16866<br>-,41357<br>1,87557<br>1,81557<br>1,817205<br>1,71205           |
|----------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------|
| RUDGER =<br>ELEVON =<br>BETA =                           |                             | CBL09016090150901509015090160901609016090165090195090195                            |
| .090<br>.000                                             |                             | 00033<br>00017<br>00002<br>.00005<br>.000015<br>.00010                              |
| SPCBRK = AILRON = BCFLAP =                               | 0/ 5.00                     | CY00312003140017300173000160000100001                                               |
|                                                          | VAL = -5 D                  | XCP/L<br>.49822<br>-3.59246<br>.01893<br>.69308<br>.69815<br>.69912<br>.6939        |
|                                                          | GRADIENT INTERVAL = -5 '20/ | 03394<br>02689<br>01393<br>01303<br>04143<br>04243<br>04431                         |
|                                                          | 2.48 GRA                    |                                                                                     |
| : : :<br>8 8 8                                           | RVL =                       | CA<br>.08848<br>.06258<br>.04193<br>.04167<br>.07764<br>.07764<br>.07764            |
| # 1976.4800 IN. # 2000.000 IN. #                         | 21/ 0                       | CD<br>.09164<br>.06246<br>.06942<br>.13506<br>.18329<br>.24363<br>.31744            |
| T. XARP<br>YARP<br>ZARP                                  | RUN NO.                     |                                                                                     |
| # 474,8000 1N. # 936,6000 1N. # 936,600 IN. # 0150 SCALE |                             | ALPHA<br>-2.477<br>1.717<br>7.126<br>10.430<br>13.197<br>16.272<br>19.559<br>22.740 |
| SCALE : 93                                               |                             | 404<br>512.2<br>512.2<br>512.2<br>512.2<br>513.2<br>513.2<br>513.2<br>513.2         |

)

|             |                 |              |                |                                        |                                                  |                     |                |                                        |                                           | PACE           | 11                |
|-------------|-----------------|--------------|----------------|----------------------------------------|--------------------------------------------------|---------------------|----------------|----------------------------------------|-------------------------------------------|----------------|-------------------|
| 27 ES 62 TA | 2               | TABILLY      | TED SOURCE     | TABLILATED SOURCE DATA - ARC 3.5 157   | 3.5 157                                          |                     |                |                                        |                                           | 22 111 22      | ~                 |
|             |                 |              | AMES 3         | .5-157-0411                            | AMES 3.5-157-CA11A BIDCS D7 F4 NB ND WBTE18 VSRS | 78 KB KB 487        | FIS VSR5       |                                        | (KCSUEZZ)                                 |                |                   |
|             |                 |              |                | ;<br>;                                 |                                                  |                     |                | ã                                      | PARAMETRIC DATA                           | DATA           |                   |
|             | REPEREDACE DATA | DATA         |                |                                        |                                                  |                     |                |                                        | Ž                                         | E. VN-R H      | 600.              |
|             |                 |              | WI COOK SECOND | Z.                                     |                                                  |                     |                |                                        | 000                                       | # 85000 #      | 500.              |
|             | 2000,0000 98.FT |              |                | NI COOL                                |                                                  |                     |                | 2 POSC -                               | 000                                       | E.EVON =       | 000.              |
| *<br>5      | 474.6000 IN.    |              | - ADO. DOO IN. | N IN.                                  |                                                  |                     |                | AILECT F                               |                                           | DETA =         | ccc.              |
|             | 936.6800 in.    |              |                |                                        |                                                  |                     |                |                                        |                                           |                |                   |
|             |                 |              | 8              | BRVL = 2                               | 2.50 GRADI                                       | GRADIENT INTERVAL = | L = -5.00/     | 0/ 5.00                                |                                           |                |                   |
|             |                 | S S          |                |                                        |                                                  | ;                   | 5              | č                                      | Ş                                         | 턴              | Ş                 |
|             |                 |              | 8              | 5                                      | 3                                                | 3                   | 74707<br>74702 | 00050                                  | .00019                                    | 90000.         | 1.48483           |
| Ş           | <b>5</b>        |              | 60000          | 90290                                  | .12877                                           | 03019               | 30.47          | 410CO.                                 | 15000.                                    | \$00,00        | 2.15462           |
| 5.ETE       | 20.7            | 21446        | 5660.          | .05254                                 | .23052                                           | -,02689             | 80103          | 00139                                  | 07000.                                    | .00076         | 2,21886           |
| S.ET.       | 12,000          | 1907         | 10644          | .04417                                 | .26025                                           | -,01695             | 93000          | SCACO                                  | .00043                                    | 000sp          | 2.05868           |
| 5.272       | 14.620          | 2000         | 12986          | .04304                                 | .29407                                           | 01661               | 91000          | 35120                                  | 58000                                     | -, 50049       | 1.04104           |
| 5.272       | 17.581          | 5000         | 2006           | .05545                                 | <b>73867</b>                                     | -,02699             | con.o.         |                                        | 99000                                     | -,99957        | 1,776.9           |
| r,          | 006°02          |              | 24.45          | .06372                                 | .6375A                                           | 03746               | .66100         | 2000                                   | 59000                                     | -, Grass       | 1.58695           |
| 5.272       | 22.672          | . 53853      | 20 ve ve v     | 07483                                  | 78757                                            | 05111               | .63319         | Cabba.                                 | 0000                                      | 90000-         | 1,43496           |
| 5.272       | 56.789          | .66931       | .461/0         | 07746                                  | 80826                                            | 05783               | .63227         | ecco.                                  | 20000                                     | 900000         | 1.32783           |
| 5.272       | 30.191          | 764D?        | .5324          | 07.40                                  | 1.06461                                          | 06312               | .66119         | Z0100                                  | Court.                                    | יטישטני        | -,02303           |
| 5.57        | 33.245          | .84794       | 64836          | 41100                                  | .03885                                           | 00168               | -,00169        | -,00000                                | J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |                |                   |
|             | GRADIENT        | <b>3000</b>  | .02351         | -1100-                                 |                                                  |                     |                |                                        |                                           |                |                   |
|             |                 |              |                |                                        | SHELLE STORE DT FA NS NS WENTER VSRS             | 7 S. S. S. S.       | B7E18 V5R!     | <b>.</b>                               | (RES023)                                  | 23) (17 JUL 73 | ر <del>در</del> . |
|             |                 |              | AMES           | 3.5-15/                                | TIP COLUMN                                       |                     |                |                                        | 4740 7400                                 | 4540           |                   |
|             |                 |              |                |                                        |                                                  |                     |                |                                        | PAKAMEIN                                  |                |                   |
|             | REFERENCE       | E DATA       |                |                                        |                                                  |                     |                | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 000                                       |                | 000               |
|             |                 | 2000         | H              | 1076.4800 IN.                          |                                                  |                     |                |                                        | 24.920                                    | RUCCER =       | 656.              |
|             | ATT SOUTH SELF  | :            | H              | .NI OCCU.                              |                                                  |                     |                |                                        | 000                                       | Z              |                   |
|             | 936.6600 IN.    |              | r              | *NI CCCO*GC*                           |                                                  |                     |                | BOYLAP =                               | oc.                                       | BETA =         | 200               |
| S ALC .     | SOLE SCALE      | 1            |                |                                        |                                                  |                     |                |                                        |                                           |                |                   |
|             |                 | Ž.           | 0 /82          | ************************************** | 2.33 GRA                                         | GRADIENT INTERVAL = |                | -5.00/ 5.00                            |                                           |                |                   |
|             |                 |              |                |                                        |                                                  | ;                   | <b>V</b>       | Շ                                      | Š                                         | ត              | 5                 |
| į           | AHG 10          | д            | 8              | ঠ                                      | 5                                                | 5                   | 69418          | .00113                                 | .00024                                    |                | 1,65945           |
| 5 .         | _               | .36575       | 21745          | .07748                                 | 43100                                            | 10720               | .6781          | -,00004                                |                                           | •              | 1.69714           |
|             |                 | 11691.       | 79097          | 06889                                  |                                                  | -,03043             | 67779.         | ,50329                                 | •                                         | •              | 1 50EU2           |
| 27.0        |                 | .52855       | .31325         | 26234                                  | 2110.                                            | -,03665             | .67825         | •                                      |                                           | 90000 T        | .65853            |
|             |                 | .6047        | .39118         | 0.050                                  | #U.C.                                            | -,000,72            | .90489         |                                        | arcoa.                                    |                | 18:44             |
|             |                 | <b>99000</b> | 76000.         | 16000.                                 | Canca                                            | 0491                | .67857         |                                        |                                           | D/12/0" 6      | 27669             |
| 474         |                 | .75355       | . 54312        | 92676.                                 | 0.5540                                           | 95543               | , 57941        |                                        |                                           |                | 1.4612            |
|             |                 | .84950       | .66550         | <b>9</b> 8080.                         | 10100                                            | 07358               | 50103.         |                                        |                                           |                | 4,890 .           |
| 2.5.6       |                 | .94527       | .82261         | .09148                                 | 10000                                            | 27870               | 68083          | 220003                                 |                                           | •              | 2.545.4           |
| 21210       |                 | 96408        | 95616.         | 62160                                  | 1,3636.                                          | 00000               | .69226         | 5 .00143                               |                                           |                | Anger.            |
| 7.2.7       |                 | .98311       | 1.03931        | .08148                                 |                                                  | CY1241              | 07.030         | 100001- 0                              | 10000                                     | 1000000        | rance.            |
|             | 3               | .02707       | .03592         | 09000                                  |                                                  |                     |                |                                        |                                           |                |                   |
|             | 1               |              |                |                                        |                                                  |                     |                |                                        |                                           |                |                   |

DATE 20 SEP 73

(RBS024) (17 JUL 73 )

### AMES 3.5-137-CA11A BIDGS D7 F4 NO MS WRYE18 VSR\$

|                 | .000<br>.000<br>10.000                                          |                     | 1,82527<br>1,75749<br>1,6229<br>1,6229<br>1,6229<br>1,574<br>40,5790<br>1,34789<br>1,24028<br>1,12620<br>1,01678<br>1,01678 |
|-----------------|-----------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                 | ថ្នា ថ្នៃ<br>                                                   |                     |                                                                                                                             |
| DATA            | ELVN-R = RUDDER = ELEVON = BETA =                               |                     | CBL .000400031700317003550004100051000510005100050000500005000050                                                           |
| PARAMETRIC DATA | 10,000<br>24,920<br>.000                                        |                     | CTN<br>.00049<br>.00068<br>.00113<br>.00095<br>.00046<br>.00072<br>.00049<br>.00004                                         |
|                 | ELVN-L =<br>SPEDRK =<br>ATLRCN =<br>BOFLAP =                    | 0/ 5.00             |                                                                                                                             |
|                 |                                                                 | /VF = -2.99/        | XCP/L<br>.71430<br>.70518<br>.69833<br>.67680<br>.69563<br>.69563<br>.69519<br>.69626                                       |
|                 |                                                                 | GRADIENT INTERVAL = | 07133<br>07133<br>06412<br>07048<br>07048<br>07076<br>11100<br>12513<br>14113<br>15403                                      |
|                 |                                                                 | 2.36 GR             | . 46937<br>. 57036<br>. 64035<br>. 64035<br>. 75104<br>. 99395<br>1.12672<br>1.27644<br>1.39380<br>1.51815                  |
|                 | 00 00 00 00 00 00 00 00 00 00 00 00 00                          | \$<br>*             | CA<br>.00719<br>.07314<br>.07285<br>.00769<br>.09332<br>.09342<br>.10396<br>.10396                                          |
|                 | 1076.4800 IN.<br>10000 IN.<br>400.0000 IN.                      | 24/0                | CO                                                                                                                          |
| DATA            | 7967<br>7967<br>7967                                            | S                   | 4.1886<br>4.49979<br>5.55047<br>6.62538<br>00176<br>.88034<br>9.95614<br>1.73212 1                                          |
| REFERENCE DA    | 2690.0000 34.FT.<br>474.6000 IN.<br>936.6800 IN.<br>.0150 3CALE |                     | 10.196<br>22.332<br>24.847<br>27.825<br>30.717<br>31.208<br>33.839<br>40.155<br>43.228                                      |
|                 | IND                                                             |                     | 6.272<br>5.272<br>5.272<br>5.272<br>5.273<br>5.273<br>5.273<br>5.273<br>5.273<br>5.273                                      |

## AMES 3.5-157-CA11A BIDG5 DT F4 NS N3 WRTE18 VSR5

REFERENCE DATA

#### PARAMETRIC DATA

(RBSD25) (17 JUL 73 )

| 10,000<br>10,000<br>10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | 1,75<br>66282<br>.11814<br>.78459<br>.05272<br>6.01284<br>1.86735<br>1.77771<br>1.64843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ELWAR ELEVON = BETA =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | CBL0991709934090354090354090350903609031090310903109032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10,000<br>24,920<br>.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | CYN000160001000015 .00007 .00036 .00039 .00039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SPECRY = AILRON = BOFLAP =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00.5 /0             | CY<br>00052<br>00041<br>00040<br>.00041<br>.00097<br>.00108<br>.00030<br>00036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AL = -5.00/         | XCP/L<br>.43885<br>1.94644<br>.88015<br>2.12726<br>.67666<br>.73138<br>.71872<br>.71872<br>.71872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GRADIENT INTERVAL = | 04101<br>03415<br>03415<br>03286<br>07059<br>06341<br>0578<br>07591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.40 GRAD           | 0.06631<br>.01044<br>.05545<br>.01270<br>.31758<br>.42478<br>.54051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2 2 2<br>2 2 2 2 2 2 2<br>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REVL =              | CA<br>.08967<br>.06756<br>.06707<br>.04356<br>00728<br>.08318<br>.08662<br>.09052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1076,4800 IN.<br>.0000 IN.<br>420,0000 IN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25/0                | CD0921005789054245070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709507095070950709 |
| H desta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RUN NO.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2690,0000 36.FT.<br>474,8000 IN.<br>936,6600 IN.<br>.0159 SCALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | ALPHA — 2.156 — 2.050 4.594 7.446 13.492 116.699 119.696 23.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| STEP IN THE STEP I |                     | MACH<br>9.272<br>9.273<br>9.273<br>9.272<br>9.272<br>9.272<br>9.272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

TO THE REPORT OF THE PARTY OF T

|  | • |
|--|---|
|  |   |
|  | 1 |
|  | I |
|  | ì |

#### TABULATED SOURCE DATA - ARC 3.5 157

## AMES 3.5-157-CALLA BLOCS DT F4 NB H. WOTELS VSR5

#### PARAMETRIC DATA

(RBSD26) (17 JUL 73 )

|            |                                                  |                            | 71 72 74 75 75 75 75 75 75 75 75 75 75 75 75 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------|--------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3,000      | 000.                                             |                            | 2.78147<br>78147<br>59311<br>36697<br>2.36587<br>1.85181<br>1.86219<br>1.85881<br>1.86447<br>2.20132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | RUDGER = ELEVON = BETA =                         |                            | .00139<br>.00139<br>.00139<br>.00146<br>.00007<br>.00342<br>.00469<br>.00516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | 5.500<br>5.000<br>.000                           |                            | CYN -,00039 -,00038 -,00036 -,00028 -,00028 -,00032 -,00032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | ELWHL = SPOBRK = AILRON = BOFLAP =               | 00' 2'00                   | 70.00.00.00.00.00.00.00.00.00.00.00.00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                  | GRADIENT INTERVAL = -5.00/ | XCP.1. 49755 -12.86950 .8721611779 .66822 .71045 .69134 .69619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |                                                  |                            | 0395<br>0395<br>02909<br>02012<br>04012<br>04235<br>04235<br>04574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            |                                                  | 2.40 GRM                   | CA 07472 07472 07472 075867 07519 07519 05149 05146 05146 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 051475 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | .0000 IN.                                        | RNY.                       | CA<br>.08656<br>.05502<br>.05502<br>.0417<br>.07639<br>.07639<br>.07631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | . 1076.4600 IN.<br>.0000 IN.<br>. 400.0000 IN.   | 284.0                      | 00<br>0.19130<br>0.08276<br>0.05794<br>0.00595<br>0.00595<br>1.1812<br>1.1861.7<br>7.24477<br>7.1861.8<br>1.1861.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DATA       | \$ 55 E                                          | R. N.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EFERENCE I | 2590,0000 58.FT.<br>474,8000 1N.<br>936,6800 11. |                            | ALPHA<br>-2.149<br>2.080<br>4.567<br>7.444<br>10.699<br>13.474<br>16.399<br>19.809<br>22.972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | # P P P P P P P P P P P P P P P P P P P          |                            | MON<br>5.272<br>5.272<br>5.272<br>5.272<br>5.191<br>5.272<br>5.272<br>5.273<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.191<br>6.19 |

#### AMES 3.5-157-CA11A BIOCS OT F4 NS M3 WATELB VSRS

REFERENCE DATA

|                 | .000<br>.000<br>-10.000           |         |
|-----------------|-----------------------------------|---------|
| DATA            | ELVN-R = RUDDER = ELVON = ELVON = |         |
| PARAMETRIC DATA | -5.999<br>24.920<br>5.990         | 5       |
| _               | LW-L = SPESRK = NILRON =          | 11 07 1 |

(RBSU27) (17 JUL 73 )

| •                                                                                          |                                                           |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| RUDDER =<br>BLEVON =<br>ESTA =                                                             | 턴                                                         |
| 5.000<br>24.920<br>5.000                                                                   | 8                                                         |
| ELWAL = SPOBRK = AILRON = BCFLAP =                                                         | RUN NO. 27/ 0 RV/L = 2.59 GRADIENT INTERVAL = -5.00/ 5.00 |
|                                                                                            | 85.58                                                     |
| XMRP = 1076,4800 IN.<br>YMRP = ,0000 IN.<br>ZMRP = 400,0000 IN.                            | 27/ 0 RNL =                                               |
| 11 days                                                                                    | RUN NO.                                                   |
| 9657 = 2690,0000 94.PT.<br>LAGY = 474,6000 IN.<br>9605 = 996,6000 IN.<br>9CME = ,0190 9CME |                                                           |

| . 00167<br>. 00123<br>. 00332<br>. 00328<br>. 00271<br>. 01212<br>. 00245<br>. 00245           |
|------------------------------------------------------------------------------------------------|
| CTN -, 02013 -, 02015 -, 02015 -, 02015 -, 02021 -, 02023 -, 02024 -, 02024                    |
| CY<br>.00195<br>.00165<br>.0071<br>.00096<br>.00369<br>.00569<br>.00509                        |
| XCP.A.<br>. 54316<br>. 56438<br>. 89896<br>. 14290<br>. 68050<br>. 69751<br>. 68645<br>. 67770 |
| 02715<br>02388<br>02035<br>02069<br>02075<br>02842<br>02842<br>02495<br>02369                  |
| CN<br>08909<br>070897<br>01430<br>13067<br>27082<br>36809<br>47564<br>38784                    |
| CA08871061370492204925044350746707581075810758107593                                           |
| .09171<br>.09171<br>.05151<br>.03876<br>.06872<br>.13626<br>.17849<br>.23468                   |
|                                                                                                |
| ALPHA<br>-2.109<br>2.115<br>4.626<br>7.511<br>10.766<br>13.601<br>16.717<br>19.941<br>83.160   |
| 3.5.72.8<br>5.272.8<br>5.272.8<br>5.272.8<br>5.273.8<br>5.273.8<br>5.273.8                     |

1 3

#### (RBSD26) (17 JUL 73 )

## AMES 3.5-157-CALLA BLDCS OT F4 NB MB WBTELB VSRS

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |               |                     |                                                                                         |                                                                                    |                                                                     |                                 |                                                                                                 |                                                                            | PARAMETRIC                             | DATA                                                                                   |                                                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------|---------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| SPEE 1 CARD 1 CA | REFERBACE<br>2000.0070 SQ.FT<br>474.0702 IN.<br>936.6000 IN.<br>.0150 SCALE | T. XHEP TANKE | pt ti <del>11</del> | 1076.4800 IN.<br>.0000 IN.<br>400.0000 IN.                                              | .4800 IN.<br>.0000 IN.                                                             |                                                                     |                                 |                                                                                                 | ELWHL =<br>SPDBRK =<br>AILRON =<br>ESHLAP =                                | -15.000<br>24.920<br>5.000             | ELVN-R = RUCDER = ELEVON = BETA =                                                      | .25.000<br>.000<br>.000.09-                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | RUN NO.       | ġ                   | 0 /92                                                                                   | RN/L "                                                                             | 2.65 GRA                                                            | GRADIENT INTERVAL = -5.00/ 5.00 | AL = -5.0                                                                                       | 00'\$ /00                                                                  |                                        |                                                                                        |                                                                           |  |
| 3.67.2<br>5.27.2<br>5.27.2<br>5.27.2<br>6.27.2<br>6.27.2<br>5.2.2<br>5.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ALPHA -2.095 2.066 4.628 7.517 10.658 13.613 16.740 19.988 23.161           |               | 8០១០០០០៩៩៩៩៩៩       | 0.09346<br>.09346<br>.06250<br>.05186<br>.03831<br>.06590<br>.13359<br>.17551<br>.29691 | CA<br>.09014<br>.06307<br>.04924<br>.04928<br>.04434<br>.07426<br>.07593<br>.07683 | CN 09244 01466 03446 03468 03468 0358 6. 0358 6. 05868 05868 5.0588 |                                 | XCP/L<br>.57640<br>.18151<br>.87071<br>.07157<br>.68344<br>.68239<br>.68168<br>.67396<br>.67396 | CY<br>00577<br>00536<br>00527<br>00144<br>00202<br>00105<br>00136<br>00136 | CYN00029000320014100103001030003300013 | CBL .00119 .00119 .00057 .00005 .00003 .000012 .000012 .000012 .000017 .000017 .000017 | 1.76769<br>1.67693<br>1.67693<br>1.67693<br>1.76769<br>1.76266<br>1.77063 |  |

### AMES 3.5-157-CA11A BIDCS D7 F4 N8 M3 W8TE18 VSR5

(RBSU29) (17 JUL 73 )

| 2/0/10 Callett 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 8 200 | CY CYN -, c0175 , c0202 -, c0103 , c0111 -, c0104 -, c0204 -, c0249 -, c0204 -, c0124 -, c0204 -, c0114 -, c0209 |  | 1,85542<br>1,85542<br>1,70868<br>1,50968<br>1,60979<br>1,29651<br>1,77016 |
|------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------|--|---------------------------------------------------------------------------|
|------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------|--|---------------------------------------------------------------------------|

|                     | CBL<br>.00059<br>.000074<br>.00018<br>.00058<br>.00055<br>.000055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | CYN .09002 .0901100014000040000400004000040004100041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Dec. 6              | CY0017500103001040010400114001140011400114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| /ca:c- " "          | XCP/L<br>.57704<br>.66125<br>.66318<br>.6604<br>.66084<br>.6658<br>.6658<br>.66465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SRADIENT INTERVAL = | 01893<br>00172<br>00524<br>00276<br>0027<br>01727<br>01727<br>01654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.60 GRAD           | CN<br>.25693<br>.48879<br>.58783<br>.66576<br>.01726<br>1.17538<br>1.27037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RN7.                | CA<br>.07618<br>.06303<br>.05323<br>.05424<br>.07100<br>.07821<br>.06405<br>.07610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0 /62 .             | 00<br>2.19176<br>2.29863<br>2.29863<br>3.36079<br>4.9549<br>6.2251<br>7.6556<br>8.8621<br>9.7378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RGN NO.             | 0.<br>.35579<br>.43137<br>.41026<br>.56319<br>.70575<br>.60634<br>.89582<br>.93051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | ALPHA<br>17.456<br>21.576<br>24.199<br>27.133<br>39.204<br>36.204<br>36.204<br>36.803<br>42.833<br>68ADIENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     | MACH<br>5.272<br>5.272<br>5.273<br>5.273<br>5.273<br>5.273<br>5.273<br>5.273<br>5.273<br>5.273<br>5.273<br>5.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.273<br>6.2 |

| '              | <b>!</b>                     |          | TABLE ATTS SABOF DATA - ARC 3.5 157 | DATA - ARC     | 3.5 157     |                                                  |              |                      |                      | PAGE              | #<br>21           |
|----------------|------------------------------|----------|-------------------------------------|----------------|-------------|--------------------------------------------------|--------------|----------------------|----------------------|-------------------|-------------------|
| DATE 20 957 75 | 2                            | }        | AVES 3                              | .5-157-041     | 1A B10C5 D7 | AMES 3.5-157-CA11A BIDGS D7 F4 NB NS WRYETS VSRS | TE18 VSRS    |                      | (RB\$035)            | 0) (17 JUL 73     | ر <del>در ع</del> |
|                |                              |          |                                     |                |             |                                                  | ١.           |                      | PARAMETRIC DATA      | DATA              |                   |
|                | METERON.C.                   | <u> </u> |                                     |                |             |                                                  |              | 3                    |                      | # <del># 18</del> | -15.000           |
|                | 2000,0000 94.FT.             |          | = 1076.4600 IN.                     | .4600 IN.      |             |                                                  |              | SPCBRK ::            | 24.920               |                   | 000               |
|                | 474.6000 IN.<br>996.6600 IN. | 200      | = 400.000 IN.                       |                |             |                                                  |              | A!LRON =<br>BCFLAP = | 000.                 | ELEVON =          | 000.              |
|                |                              | R. NO.   | 0, 30/ 0                            | RAY.           | 2.65 GRAD   | GRADIENT INTERVAL = -5.00/ 5.00                  | AL = -5.0    | 00'\$ /0             |                      |                   |                   |
|                |                              |          | ŧ                                   | đ              | 8           | ð                                                | XGPA         | Շ                    | S.                   | <b>3</b>          | 67.               |
| ğ .            | ¥ ;                          | .36571   | .19353                              | .07538         | .49683      | 02603                                            | .68287       | 00323                | 0,00040              | .00178            | 1.83572           |
| 272.6          | 21.696                       | .4471    | .24292                              | .06138         | . 50300     | 00933                                            | .66652       | 80.00                | 2000 -               | .00154            | 1.72728           |
| 5.273          | 24.219                       | ,52716   | .30520                              | 90290          | .60597      | 01615                                            | 768999       | 190000               | -,00096              | 19294             | 1,56916           |
| 5.273          | 27.196                       | .57632   | .36728                              | .06325         | .87777      | 77740                                            | .66723       | .0.085               | 05122                | .00260            | 1,43102           |
| 5.272          | 30.268                       | .72191   | . 25,447                            | .07813         | 1,03728     | 025:1                                            | .66864       | 02000°•              | CD118                | .00347            | 1,23314           |
| 5.272          | 33.279                       | .82435   | 40877                               | 16430          | 1,19875     | 03679                                            | ÷6029°       | -,05100              | 50122                | 524CC             | 1.07334           |
| 5.273          | 60°9                         | 6646     | .87785                              | .07522         | 1.28560     | -,03799                                          | .67056       | .00143               | -,00180              | 72500             | 66076             |
| 5.273          | 33.060                       | 95595    | .99451                              | .07339         | 1,37039     | 04804                                            | .677:52      | anton.               | 1910001 -            | A1000.            | 03928             |
| 3.2.6          | CRADIENT                     | .02618   | .03373                              | .00048         | .04158      | 05121                                            | 07.7015      | etern.               | •                    |                   |                   |
|                |                              |          | AMES                                | 3.5-157-OK     | 11A 819C5 D | AMES 3.5-157-CALIA BLOCS D7 F4 NR HG WRTE18 VSRS | JR7E18 VSR!  |                      | (RBS031)             |                   | ( 17 JUL 73 )     |
|                | ļ                            | 1        |                                     |                |             |                                                  |              |                      | PARAMETRIC DATA      | : DATA            |                   |
|                | KEPEKERE DAIN                | <u> </u> |                                     |                |             |                                                  |              |                      | 1                    |                   | 15.070            |
|                | Total Comme                  | XX       | = 1076,4800 IN.                     | .NI 00         |             |                                                  |              | ELVAL "              | 5,000                | RIESER :          | 000.              |
|                | ATA POTE IN.                 |          | n                                   | .NI 0000.      |             |                                                  |              |                      | 000.5                | E EVON ::         | 666               |
|                | 936.60D IN.                  | 2342     | н                                   | 400.0000 IN.   |             |                                                  |              | EDFLAP =             | 000.                 | BETA ≈            | 000               |
| SCALE #        | os os os                     | <u> </u> | •                                   | 11<br>22<br>5  | 2.54 GRA    | GRADIENT INTERVAL =                              | VAL = -5.00/ | 00' 8'00             |                      |                   |                   |
|                |                              | Ž        |                                     |                |             | :                                                |              | ł                    | 3                    | é                 | 5                 |
| Š              | ALPHA                        | д        | 0                                   | <b>5</b>       | 3           | <b>3</b>                                         | XCP/L        | .05071               | 68000                |                   |                   |
| 5.273          |                              | 36696    | .19990                              | .07714<br>2000 | 43137       | 03002                                            | .68030       | .00263               | 00075                |                   |                   |
| 5.273          |                              | 46939    | 25101                               | 20000          | 59563       | -,03108                                          | .67854       | .01120               | 90111                |                   | -                 |
| 5.273          |                              | .52013   | 29704                               | 02100          | 85027       | 03907                                            | .67938       | 41900.               | -,00171              |                   | 1.59104           |
| 5.273          |                              | 04210.   | 23.552                              | .07819         | 57626.      | D4874                                            | .67873       | .00538               | 90209                | EZODO.            |                   |
| 5.273          | 35.234                       | 88972    | .65411                              | .06329         | 1.07796     | -,05754                                          | .67909       | .00694               | - 173224<br>- 173245 |                   |                   |
|                |                              | 60446    | . 79188                             | .08769         | 1:622.1     | 07101                                            | .68064       | 67500                | 57200 -              |                   |                   |
| 5.273          |                              | 18676.   | 51016.                              | .08392         | 1.33470     | 08029                                            | 16199.       | .00588               | 19200                |                   |                   |
| 5.272          |                              | 86666.   | 1.02367                             | 61780.         | 1,42956     | 97160                                            | 60000        | .00013               | <b>60000</b>         | \$5000.           | 304129            |
|                | GRADIENT                     | .92728   | .03512                              | , pcos4        | .0630.      |                                                  |              |                      |                      |                   |                   |

### AMES 3.5-157-C411A BIDCS D7 F4 NB WB7E18 VSR5

| ARAMETRIC DAT |                |
|---------------|----------------|
| PARAK         |                |
|               |                |
|               |                |
|               |                |
|               |                |
|               |                |
|               |                |
|               | ATA            |
|               | REPERBICE DATA |
|               | 2              |

| .NI 0000, OAA 0000 IN. | CA CN CLM XCP/L  19743 |  | 474.8200 IN.<br>936.8820 IN.<br>.0195 SCALE<br>ALPHA<br>17.586<br>21.592<br>24.135<br>27.145<br>35.433<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445<br>57.445 |  | a 6 <b>ដូ វ</b> េស្ត ស្គ្នា ស្គ្ | 900 IN. 000 IN. 000 IN. RM.L = 0.0743   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639   0.0639 | 2.67.<br>CN<br>.5038<br>.5038<br>.5036<br>.506.<br>.506.<br>.118.<br>.118.<br>.118.<br>.118. | ADIENT INTERW  CLM  -,04052  -,02039  -,02991  -,02991  -,02991  -,02991  -,02991  -,02991  -,02991  -,02991  -,02991  -,02991  -,02991 | AL = -5.0%  XCP/L  .69384  .67283  .67283  .67283  .77338  .77338  .67333 | SPBRK = AILRON = BDFLAP = BDFLAP = DO 5.00 CY | 24,920<br>.000<br>.000<br>.000<br>.0001<br>.00013<br>.00013<br>.00013<br>.00013<br>.00013<br>.00013<br>.00013<br>.00013<br>.00013 | ៨៩៨៥ | 000<br>.000<br>.000<br>.000<br>.000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000 |
|------------------------|------------------------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------|------------------------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# AVES 3.5-157-JM11A BIGGS D7 F4 NS WRTE18 VSR5 (RSSG33) (

(KSS033) (17 JUL 73 )

| ŧ              | ELW-R = .000<br>RUDGR = .000<br>ELEWN = .000<br>EGTA = .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 | CBL L/D .0000974051 .00008 .03161 .000310267600026 1.591700026 1.591700026 1.591700026 1.593180003 1.63318                                     |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                | 24.220 ELV<br>24.220 RUD<br>.010 ELE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | - 000028 - 000023 - 000023 - 000087 - 000080 - 000081 - 000081 - 000081 - 000081 - 000081                                                      |
|                | ELVAHL = SPEBRK = ATLACK = ATLACK = EVALACK = | GRADIENT INTERVAL = ~5.507 5.00 | XCP/L CY ,43662 -, 00239 3,94163 -, 00161 3,40090 -, 00764 ,11418 ,00041 ,70969 ,20152 ,66913 ,00090 ,70994 ,10060 ,69776 ,10163 ,69112 ,00091 |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.61 GRADIENT INTERV            | CN CLM0652104036013420134201399014420139902442113730142213845039593840903959384090446001394004460                                              |
|                | = 1076,4800 IN.<br>= ,0000 IN.<br>= 400,0000 IN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO. 33/ 0 KWL =                 | CA                                                                                                                                             |
| REFERENCE DATA | SECT = 2690,0000 SQ.FT. 2680<br>LREF = 474.6000 IN. 7587<br>EXCT = 936.6500 IN. Z487<br>SCALE = .0150 SCALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SA NO.                          | 4,047 C                                                                                                                                        |
|                | SCOT : CONT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | 61.6<br>61.6<br>61.6<br>61.6<br>61.6<br>61.6<br>61.6<br>61.6                                                                                   |

| \$ 1       | \$<br>2            | TABULA   | TABULATED SOURCE DA'A - ARC 3.5 157 | DA'A - ARC    | 3.5 157                                          |                           |            |             |                 | PAGE           | 17             |
|------------|--------------------|----------|-------------------------------------|---------------|--------------------------------------------------|---------------------------|------------|-------------|-----------------|----------------|----------------|
| DATE EU W  | 2                  |          | ANES 3                              | 1.5-157-OA11  | AMES 3.5-157-CALLA BLOCS DT F4 NB MS WETELS VSRS | F4 NO NO WB               | SPEIB VSR5 |             | (RB5034)        | ) ( 17 JUL     | . t            |
|            |                    |          |                                     |               |                                                  |                           |            | 7           | "ARAMETRIC DATA | DATA           |                |
|            | NEW ENERGY.        | <u> </u> |                                     |               |                                                  |                           |            |             | Ē               | = X-NA         | 000.           |
|            | 7.05 OTTO CO.      | T. XARD  | = 1076,4800 IN.                     | 30 IN.        |                                                  |                           |            | ELVAT.      | 24.920          |                | 000.           |
| <b>y</b> 1 | ATA BOTO IN.       | :        | #<br>100                            | .NI 0000.     |                                                  |                           |            |             | 000             | ELEVON =       | 000.           |
|            | 956.6800 IN.       | 1.       | * 400,0000 IN.                      | .N. 00        |                                                  |                           |            |             | 000             | BETA =         | gge.           |
| SCALE *    | to he had          | 2<br>8   | 0 / %                               | 188.7-<br>11. | 1.54 GRADI                                       | GRADIENT INTERVAL =       |            | -5.99/ 5.90 |                 |                |                |
|            |                    | <u> </u> |                                     |               | ;                                                | ;                         | 700        | 5           | £               | 룡              | Ş              |
| PACAN.     | AFFIX              | ሪ        | 8                                   | ঠ             | 3                                                |                           | 55636      | -,00226     | .00108          | 00022          | 1,34680        |
| 5.191      | \$60.              | 30248    | 00164                               | 00163         | 0000                                             | 02871                     | 3,16489    | 00.481      | 00027           | 00001          | .03742         |
| 5.273      | 1.089              | .00272   | .07264                              | 00000         | orace.                                           | 00000                     | 66659.     | 63076*      | -, ១០១೭១        | -, 55059       | 66066          |
| 5.191      | 2.606              | 06666    | 00000                               |               | 00000                                            | מטכונים.                  | .65999     | 66363*      | 00000           | 00000          | enno.          |
| 5.191      | 3.869              | 00000    | 0000                                | COOK.         | 00000                                            | 00000                     | .65999     | 000000      | 00000           | COOOC          | COUR           |
| 5.191      | 4.943              | 50000    | 00000                               | COLLAN        | COCCO                                            | .00000                    | 626699     | .00000      | 0000            | coose.         | 00000          |
| 5.191      | 5.970              | 00000    | 00000                               | 70000         | 00000                                            | CCCCO.                    | .65999     | 00000       | נוסטיטני.       | GGGGG          | accua.         |
| 191.6      | 7.012              |          | 00000                               | 30000         | 00000                                            | 00000                     | .65999     | 00000       | 00000           | 00000          | 60006          |
| 5.191      | 8.145              | OCCO.    | 00000                               | 00000         | accon.                                           | .00000                    | .65999     | oppor.      | CCCCC.          | 00000          | .0000          |
| 5.191      | 60.6               | 0000     | 00000                               | COCCO.        | 00000                                            | 00000                     | 62939      | OCCUP.      | Sepon.          | 00000          | 00000          |
| 5.191      | 10.131             |          | CCCCC                               | ccara.        | 00000                                            | 00000                     | , 65999    | בי היני     | 1000            | £2004          | 2129           |
| 5.191      | 11.040<br>GRADIENT | 41000    | -,000619                            | 00618         | 50000                                            | .00267                    | 60K0%*-    | 9,072       | •               |                |                |
|            |                    |          | WES                                 | 3,5-157-OA    | AVES 3.5-157-0411A BIDC5 D7 F4 N9 NG WBTE18 YSR! | F4 N9 M3 V                | BREIR YSR! |             | (RBS035)        |                | ( 17 JUL 75 )  |
|            |                    |          |                                     |               |                                                  |                           |            |             | PARANETRIC DATA | DATA           |                |
|            | REFERENCE DATA     | E DATA   |                                     |               |                                                  |                           |            |             |                 |                | Ş              |
|            | 69 0000            |          | 11                                  | 1076,4800 IN. |                                                  |                           |            | E.W.L.      | 200.            | FULCER =       | -10,000        |
|            | .NI CCOS. 474      |          | n                                   | .NI COCC.     |                                                  |                           |            |             | 000             |                | 000.           |
| 1 100      | 936.6833 IN.       | 27/20    | u                                   | 400.0000 IN.  |                                                  |                           |            | BIXLAP =    | 000.            | BETA =         | 0CG            |
| SCALE :    | .0150 SCA          | <u>.</u> |                                     |               |                                                  | III IANGASIAL MICEOLOGICA | /00.5-     | 5.00        |                 |                |                |
|            |                    | RUN NO.  | NO. 35/ 9                           | RN7.          | 2.62 SKA                                         |                           |            |             |                 |                |                |
|            | ;                  | ,        | ε                                   | 3             | 8                                                | ð                         | xC2人       | Շ           | CYN             | OBL<br>- 70523 | L/D<br>-,74353 |
| KAOK       |                    | , E      | 61260                               | \$6890.       | 07268                                            | 03350                     | 02567      | 60000       | 98100           |                | 05868          |
| 5.273      | -2.613             | 00371    | .06314                              | .06322        | -,09208                                          | 02826                     | 36661.1    | -,00000     | 79100           |                | 0609*          |
| 5.513      |                    | 03380    | .05377                              | .05602        | .03986                                           | 0231                      | 04264      | 89000       | 90000           |                | 41096          |
| S. S. S.   |                    | 01655    | .04039                              | .04208        | 01160                                            | 0000                      | 69076      | -,00306     | 00044           |                | 1.81410        |
| 5.873      |                    | .11011   | 11590,                              | .04387        | 5721.                                            | 00622                     | .67623     | 00286       | -,00055         |                | 1.87328        |
| 5.274      |                    | .12710   | .06785                              | 03586         | 26194                                            | 03653                     | 10607.     | -,00266     | .00142          | -              | 1,88556        |
| 5.273      |                    | .25717   | 13639                               | 92770         | 17975.                                           | 04011                     | .69776     | -, DU214    | 92100           | -,09129        | 1.85.30        |
| 5.273      |                    | . 54385  | 21516                               | 97952         | 49105                                            | 04188                     | .69048     |             | 50100           |                | 1.71992        |
| 5.272      |                    | 1000x    | 30756                               | ,08304        | .63522                                           | 04437                     | .68616     | 1           | 20100           |                | .19963         |
| 5.271      | GRASIENT           | .01566   | -,90521                             | -,90506       | .01690                                           | .00156                    | 05448      | 82000°      | •               |                |                |
|            |                    |          |                                     |               |                                                  |                           |            |             |                 |                |                |

PARAMETRIC DATA

| PAKAMETRIC UNTA | 24,920 RUDDER : .0001 ELVAL-R : .0001 ELEVCAN : .0000 BETA :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G                               | CYN CBL<br>000 .00107 .00053<br>72 .00069 .00014<br>15 .00093 .00030<br>89 .00122 .00024<br>60 .01134 .00050<br>19 .00124 .00050<br>510001400015 |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | E. WN-L SPOBRK SPOBRK ALALKON SPOBRK BOTLACH SPOBLAP S | GRADIENT INTERVAL = -5.05/ 5.00 | XCP/L CY .60718U0100 1,33420 .00572 .81499 .00515 .75758 .00583 .70972 .00560 .60441 .00608                                                      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.45 GRADIENT INTER             | CN CLM .0147900112 .0117802679 .0623602703 .1264102743 .28406027350011301033                                                                     |
|                 | 1976,4800 IN.<br>.0000 IN.<br>400,0000 IN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36/ 0 RN/L =                    | CD CA<br>.U0507 .00498<br>.U7221 .07269<br>.U7630 .07008<br>.11028 .06910<br>.14285 .06944<br>.U2544 .U2528                                      |
| REFERENCE DATA  | 1 32.FT. XMRP = 1 1N. YMRP = 1 1N. ZMRP = 1 5 XMRP = 1  | RUN NO.                         | 0.01476<br>.01476<br>.05458<br>.11352<br>.18076<br>.25516                                                                                        |
| REFE            | SREF = 2690,0000 94.FT.<br>LREF = 474,8000 IN.<br>BREF = 936,6800 IN.<br>\$CALE = .0150 SCALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | HACH ALPHA 7,320 3,000 7,320 6,082 7,320 6,082 7,320 12,439 7,320 12,439 7,320 15,506                                                            |

## AMES 3.5-157-CALLA BIDCS DT F4 NB M3 WBTELB VSR5

(RDSD40) (17 JUL 73 )

| PARANETRIC DATA | ELVN-L = 10.090 ELVN-R = 10.000 SPOBRK = 54.920 RUCGEK = .000 AILRON = .000 ELEVON = 10.000 BOFLAP = .000 BETA = .000                              |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| REFERENCE DATA  | ##EF = 2000,DDDD 30.FT, XMRP = 1076,4809 IN.  LREF = 474,8509 IN. YMRP = .0900 IN.  BREF = 936,6809 IN. ZMRP = 409,0000 IN.  \$CALE = .0150 \$CALE |

|                                                                               |                                                                          | SE NO | 40/0                                                                              | ₹<br>1                                                                        | 2,29 GRAD | GRADIENT INTERVAL =                                                         | AL = -5.90/                                                                           | 2.00                                                                       |                                                       |                                                                        |                                                                                           |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 7.320<br>7.320<br>7.320<br>7.320<br>7.320<br>7.320<br>7.320<br>7.320<br>7.320 | ALPHA -2.751 .051 2.010 4.963 7.992 11.148 14.067 17.212 20.244 GRADIEST |       | 00.09321<br>.009321<br>.00003<br>.000223<br>.009372<br>.11648<br>.14697<br>.19556 | . 09036<br>.09036<br>.09085<br>.07604<br>.07607<br>.07603<br>.07639<br>.07639 |           | QLM<br>03529<br>03328<br>03102<br>03168<br>03574<br>04178<br>04995<br>05995 | XCP/L<br>.45430<br>03466<br>1,39086<br>.82660<br>.75624<br>.73027<br>.71551<br>.70515 | CY<br>00082<br>00147<br>00103<br>00103<br>00086<br>00086<br>00086<br>00086 | CYN -,00029 ,00022 ,00022 ,00012 ,00037 ,00054 ,00074 | CBL 00007 00026 00026 00038 00030 00030 00030 00030 00030 00000 000002 | 61069<br>21282<br>.15449<br>.74300<br>1.23009<br>1.66302<br>1.81218<br>1.80743<br>1.72635 |

一、 東京の東京の東京

| TABULATED SOURCE DATA - ARC 3.5 157 |
|-------------------------------------|
| DATE ES SEP 73                      |

#### AMES 3.5-157-CA11A BIDGS DT FA NS NO WOTE18 V9R5

#### PARAMETRIC DATA

(RBSD41) (17 SEP 73 )

|                                                                                                                                                          |                                                |              | n n n n n n n n n n n n n n n n n n n                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------|
| ELWHL = -40.000 ELW-R = -40.000 ELW-R = -40.000 AILRON = 54.920 RUDNER = .000 AILRON = .000 ELEVON = -40.000 BETA = .000 GRADIENT INTERVAL = -5.00/ 5.00 |                                                |              | 1.79995<br>33273<br>33273<br>9561<br>1.26435<br>1.42991<br>1.45301                                     |
|                                                                                                                                                          |                                                |              | Cel00125000260007300027000280002800007                                                                 |
|                                                                                                                                                          |                                                |              | -, 00301<br>-, 00268<br>-, 10248<br>-, 00236<br>-, 00222<br>-, 002214<br>-, 00204                      |
|                                                                                                                                                          |                                                |              | 7.00395<br>.001395<br>.00369<br>.00362<br>.00077<br>.0077700.                                          |
|                                                                                                                                                          |                                                |              | XCP.A62999 .56125 .62456 .69347 .66839 .65898 .65413 .02187                                            |
|                                                                                                                                                          |                                                |              | ALM<br>- 00948<br>- 00948<br>- 00962<br>- 00969<br>- 00960<br>- 00960<br>- 00960<br>- 00960<br>- 00960 |
|                                                                                                                                                          |                                                | RADIENT INTE |                                                                                                        |
|                                                                                                                                                          | 8 8 8<br>7 7 7                                 | 2.15<br>G    | CA 13324 13354 1335 1335 1335 13230 10230 10230 10239 10239 10455 00023                                |
|                                                                                                                                                          | ж 1076.4800<br>ж ,0000<br>ж 400,0000           | 19VL =       | .13884<br>.11437<br>.10996<br>.11474<br>.12985<br>.15437<br>.19207                                     |
| DATA                                                                                                                                                     |                                                |              | 0.<br>11107<br>03606<br>.00841<br>.12930<br>.13939<br>.13939<br>.27465                                 |
| REPENDICE DA                                                                                                                                             | 8.7.<br>In.<br>In.<br>Scie                     |              | - 1 1                                                                                                  |
|                                                                                                                                                          | 200.3000 98.FT<br>474.8000 1N.<br>996.8800 1N. |              | 4.200<br>1.800<br>1.804<br>1.804<br>1.809<br>10.902<br>17.071<br>ED.093                                |
|                                                                                                                                                          |                                                |              | 0                                                                                                      |

### APES 3.5-157-CA11A BIDCS DT F4 NB NS WBTE18 VSR5

(RBSD42) (17 SD 73 )

PARAMETRIC DATA

#### RETERENCE DATA

| ELWHR = RUDGER = D.EVON = BETA =                                                       |
|----------------------------------------------------------------------------------------|
| 000°.                                                                                  |
| ELVN-L = SPOBRK = AILRON = BOFLAP =                                                    |
|                                                                                        |
|                                                                                        |
| 1076,4800 IN.<br>YARP = .0000 IN.<br>ZARP = 400,0000 IN.                               |
|                                                                                        |
| SHET = 2000,0000 90.FT.  LUES = 474.8000 IN.  SHOT = 896.8000 IN.  SCALE = .0150 SCALE |
|                                                                                        |

000.03-000.03-

### RWAL = 2.43 GRADIENT INTERVAL = -5.05/ 5.05

| CBL<br>.00047<br>.00087<br>.00046<br>.00046<br>.00046<br>.00081<br>.00081                   |
|---------------------------------------------------------------------------------------------|
| CYN -, 00002 -, 00004 -, 00010 -, 00010 -, 00010 -, 00027 -, 00027 -, 00010                 |
| CY<br>.00053<br>.00130<br>.00072<br>.00016<br>.00016<br>00039<br>00039                      |
| .55506<br>66324<br>.77773<br>.70553<br>.68360<br>.67084<br>.66148<br>.65680                 |
| 02352<br>01619<br>01519<br>01150<br>00166<br>00108                                          |
|                                                                                             |
| CA<br>.07926<br>.07926<br>.07479<br>.07273<br>.07287<br>.07287                              |
| .09640<br>.07647<br>.07647<br>.06647<br>.10393<br>.13124<br>.17055                          |
|                                                                                             |
| 7.360<br>ALPHA<br>-E.814<br>1.919<br>4.918<br>7.968<br>11.043<br>14.050<br>17.276<br>19.877 |
| •                                                                                           |
| Ŏ.                                                                                          |

### AMES 3.5-157-CA11A BIDCS D7 F4 NG MS WBTE18 V5R5

#### (RBSD45) ( 17 JUL 73. )

#### PARAMETRIC DATA

| 000.                                                                                |                                                           |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------|
| ELVN-R =<br>RUCCER =<br>ELEVON =<br>BETA =                                          |                                                           |
| .000<br>54.920<br>.000                                                              |                                                           |
| ELWHL #<br>\$PDBRK #<br>AILRON #<br>BCFLAP #                                        | RIM NO. 43/ 0 RN/L = 2.82 GRADIENT INTERVAL = -5.05/ 5.00 |
|                                                                                     | INTERVAL =                                                |
|                                                                                     | GRADIEN                                                   |
|                                                                                     | 2.62                                                      |
| 1076.4800 IN.<br>.0050 IN.<br>400.0000 IN.                                          | RAY. #                                                    |
| = 1076.4805 IN.<br>= .0000 IN.<br>= 400.0000 IN.                                    | 45/0                                                      |
| 7A<br>20 20 40 40 40 40 40 40 40 40 40 40 40 40 40                                  | RIN 10                                                    |
| ### 2000,000 94.FT.  LIED = 474.000 IN.  BACKE = 996.6600 IN.  \$CALE = .0150 SCALE |                                                           |
| BRED :: SCALE ::                                                                    |                                                           |

|        | GBL<br>. 970026<br>. 970030<br>. 970030<br>. 970030<br>. 970030<br>. 970030<br>. 970030                |
|--------|--------------------------------------------------------------------------------------------------------|
|        | CYN<br>.00000<br>.00008<br>00002<br>.00011<br>.00028<br>.00028<br>.00041<br>.00036                     |
|        | C C C C C C C C C C C C C C C C C C C                                                                  |
|        | XCP.A. 49256<br>.30202<br>2.55162<br>.79965<br>.72432<br>.69862<br>.69862<br>.67312<br>.67312          |
|        | CLM<br>-,03204<br>-,02709<br>-,02440<br>-,02131<br>-,02018<br>-,01856<br>-,01856<br>-,01856<br>-,01324 |
|        | 0.06843<br>06843<br>02461<br>.03466<br>.11417<br>.18579<br>.26518<br>.35520<br>.44913                  |
| 2      | CA .08995 .07774 .07764 .07764 .07764 .07130 .07130 .07135 .07135 .07137 .07137                        |
| 9      | 00<br>.09319<br>.07774<br>.07697<br>.08692<br>.13562<br>.13562<br>.13562<br>.13562<br>.13563           |
| KIN KO |                                                                                                        |
|        | ALPHA<br>-2.808<br>004<br>1.939<br>4.943<br>7.993<br>11.023<br>14.012<br>17.181<br>20.176              |
|        | 7.350<br>7.350<br>7.350<br>7.350<br>7.350<br>7.350<br>7.350<br>7.350                                   |

...68611 ...34800 .02549 .61506 1.159920 1.79584 1.79584

# AMES 3.5-157-CALLA BLDCS DT F4 NB MS WBTE18 VSR5

#### (RBSD44) ( 17 SEP 73 ) PARAMETRIC DATA

-40.000 .000 -40.000

#### REFERENCE DATA

| ELWHR = RUCCER = ELEVON = BETA = E                                                   |
|--------------------------------------------------------------------------------------|
| 9 5 9 8                                                                              |
| -40.000<br>54.920<br>.000                                                            |
|                                                                                      |
| ELWHL = SPOBRK = AILRON = BOFLAP =                                                   |
| SPOR<br>SPOR<br>SPOR<br>PICA<br>PICA                                                 |
|                                                                                      |
|                                                                                      |
|                                                                                      |
|                                                                                      |
|                                                                                      |
|                                                                                      |
|                                                                                      |
| <u> </u>                                                                             |
| 9 6 8                                                                                |
| 2948° = 1076,4000 IN.<br>1948° = ,0000 IN.<br>2948° = 400,0000 IN.                   |
| H H H                                                                                |
| 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                |
|                                                                                      |
| 8 5 5 8                                                                              |
| 0008                                                                                 |
| MET = 2000,0000 90.FT.  URB = 474,0000 IN.  PROF = 996,0000 IN.  SCALE = .0150 SCALE |
| 0 B 4 B                                                                              |
|                                                                                      |

### MNL = 2.55 GRADIENT INTERVAL = -5.50/ 5.50

| 91317<br>91317<br>90231<br>.24164<br>.65/03<br>1.35670<br>1.71678<br>1.67793                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
| CBL<br>-, 00064<br>-, 00040<br>-, 00019<br>-, 00010<br>-, 00010<br>-, 000110<br>-, 000110<br>-, 000110<br>-, 000110<br>-, 000110<br>-, 000110 |
| CTN -, DDDT0 -, DDDT0 -, DDDT0 -, DDDT0 -, DDDT0 -, DDDD0 -, DDDD0 -, DDDD0 -, DDDD1 -, DDDD1 -, DDDD1 -, DDDD1                               |
| CY                                                                                                                                            |
| XCP/L<br>63:84<br>.554:86<br>.73241<br>.646657<br>.65657<br>.65896<br>.63124<br>.64718                                                        |
| 0.1M<br>00733<br>00694<br>00556<br>00415<br>00295<br>.00269<br>.00795                                                                         |
| CN<br>10856<br>02356<br>.02746<br>.08791<br>.16709<br>.23819<br>.32592<br>.40723                                                              |
| .10785<br>.06861<br>.06861<br>.07782<br>.07782<br>.07588                                                                                      |
| 0.11300<br>.06777<br>.06417<br>.06417<br>.10328<br>.13020<br>.16793<br>.21210                                                                 |
|                                                                                                                                               |
| 7.320<br>ALPHA<br>-2.786<br>1.931<br>4.903<br>11.070<br>14.005<br>17.178<br>20.199<br>GRADIENT                                                |
|                                                                                                                                               |
| ğ                                                                                                                                             |

•

| c |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
| b |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
| 2 |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
| Ĕ |  |
|   |  |
| _ |  |
| - |  |
| × |  |
| - |  |
|   |  |
|   |  |
|   |  |
|   |  |

#### TABILATED SOURCE DATA - ARC 3.5 157

#### AMES 3.5-157-CA11A BIDCS D7 F4 No NG WBTE16 V3R5

#### PARAMETRIC DATA

( 11 JUL 77 )

1

|                                                              | 46<br>46<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 000.03-<br>000.03-<br>000.                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ELWAR # RUCCER # ELEVON # BETA #                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -£0.000<br>54.920<br>.000<br>-14.750                         | CTN - 00000 - 00000 - 00000 - 00000 - 00000 - 00000 - 00000 - 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ELVN-L = SPOBRK = AILRON = BOFLAP =                          | CY<br>.00310<br>.00034<br>.00034<br>.00034<br>.00026<br>.00031<br>.00031<br>.00031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                              | ML = -5.00 XC*A36342 .36763 .36763 .69916 .677635 .65707 .651067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| , e                                                          | GRADIENT INTERVAL = -5.00/  GLM XCP/L  1902226 .96342  1901940 .46995  1101955 .76996  100156 .69916  100159 .69916  1000462 .66657  1100462 .65906  12 .00107 .69987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                              | ON 00629<br>00629<br>00583<br>00441<br>17412<br>25103<br>33719<br>32713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8 8 8<br>3 3 3 3 3 3 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1076,4800 IN.<br>.0001 IN.                                   | 00<br>.09674<br>.09674<br>.00057<br>.07810<br>.07810<br>.10422<br>.13095<br>.15095<br>.15095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DATA<br>XBBP<br>XBBP<br>XBBP                                 | CA NO 07773 07773 07773 07042 00042 13718 13718 20078 20488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 880.000 34.F1.<br>474.8000 14.<br>994.800 14.<br>994.800 18. | ALTHA<br>-C. 875<br>- J. 886<br>- A. 888<br>- A. 88 |
|                                                              | 08.7<br>08.7<br>08.7<br>08.7<br>09.7<br>09.7<br>09.7<br>09.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

### AVES 3.5-157-CA11A BIOCS OT F4 NB NG WATELS VSRS

#### PARAMETRIC DATA

( 17 JUL 73 )

|                |                                                  | )                          | 9.273<br>9.273<br>9.273<br>9.273<br>9.273<br>273.6<br>273.6<br>273.6<br>273.6                            |
|----------------|--------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------|
| HEPENENCE DATA | 2980.0000 80.FT.<br>474.8000 IN.<br>536.8800 IN. |                            | 27.029<br>29.089<br>32.807<br>35.800<br>35.800<br>35.800<br>44.490<br>44.490<br>44.230<br>47.290         |
|                | ¥ ± 50                                           | S S                        | CT.<br>.00397<br>.00397<br>.00369<br>.00369<br>.00369<br>.00369<br>.1.13401<br>.1.15611.1                |
|                | ии и<br>62 <b>4</b>                              |                            | 0.47912<br>.58563<br>.70669<br>.70669<br>.97646<br>1.12639<br>1.27168<br>1.41466                         |
|                | 1076,4600 IN.<br>.0000 IN.<br>400,0000 IN.       | 53/ 0                      | 51 85 88 88 85 85 85 85 85 85 85 85 85 85                                                                |
|                |                                                  | 73<br>1, 1,                | .1054D<br>.10711<br>.11052<br>.11265<br>.11449<br>.11167<br>.1127                                        |
|                |                                                  | 2.63                       | 04.7772<br>.84872<br>.96889<br>1.13285<br>1.26581<br>1.42167<br>1.56719<br>1.76197<br>1.78197<br>1.78197 |
|                |                                                  | GRADIENT INTERVAL = -5.00/ | CLM<br>08645<br>09526<br>11474<br>11277<br>137824<br>157824<br>715739<br>715799<br>916262                |
|                |                                                  | N. = -5.0                  | XCP/L<br>.69645<br>.69444<br>.69330<br>.69240<br>.69264<br>.69164<br>.69168<br>.69169                    |
| 1              |                                                  | 20/ 5.00                   | CY<br>00506<br>00646<br>00683<br>00599<br>00776<br>00758<br>00683<br>00683                               |
| 1              | 10,000<br>54,920<br>.022<br>-14,750              |                            | CYN<br>.00079<br>.00044<br>.00047<br>.00077<br>.00076<br>.00066<br>.00041                                |
|                | RUDDER = ELEVON = BETA =                         |                            | .0002<br>0002<br>0002<br>.0002<br>.0003<br>.0003<br>.00117<br>.0117                                      |
| 000            | 200.<br>200.<br>200.                             |                            | 1,47610<br>1,37279<br>1,6261<br>1,1694<br>1,06461<br>,97275<br>,84311<br>,64311                          |
|                |                                                  |                            |                                                                                                          |

(MBSD54) (17 JUL 78 )

PARAMETRIC DATA

## AMES 3.3-137-CALLA BLOCS DT F4 NB NS WATELB VSRS

| 000°02-                                                         |                            | 1.50166<br>1.40919<br>1.29693<br>1.20640<br>1.10434<br>1.01153<br>.92663<br>.67666<br>.63116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ELW-R : . RUDGR : . BETA : .                                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -80.000<br>54.920<br>.000                                       |                            | CYN -, 00031 -, 00039 -, 00041 -, 00041 -, 00014 -, 00014 -, 00014 -, 00014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BOFLAP ::                                                       | 2, 5.00                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ·                                                               | M. = -5.00                 | .65961<br>.65961<br>.65970<br>.65974<br>.66001<br>.66141<br>.66141<br>.66141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                 | GRADIENT INTERVAL = -5.00/ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | 2.65 CRA                   | 0.<br>.73901<br>.67201<br>1.00221<br>1.12147<br>1.26234<br>1.39653<br>1.52140<br>1.60006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| .0000 IN.<br>.0000 IN.                                          | 25<br>14                   | CA<br>.08577<br>.08603<br>.08603<br>.08505<br>.07227<br>.07530<br>.07530<br>.075370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1976,4600<br>.0000                                              | . 55/ 0                    | .41236<br>.350705<br>.61362<br>.71775<br>.64911<br>.36245<br>1.11621<br>1.20443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | <b>3 3 3</b>               | C61963<br>.71453<br>.79705<br>.96569<br>.99479<br>1.09590<br>1.09590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2980.0000 88.FT.<br>474.8000 IN.<br>878.8800 IN.<br>.0150 8CALE |                            | 27.040<br>29.780<br>32.865<br>39.319<br>30.433<br>41.441<br>44.286<br>46.127<br>1 47.081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                 |                            | A CENTRAL CONTRACTOR C |

)

86. 86. 86. 86. 86. 86.

# AMES 3.5-157-CA:1A BIDGS D7 F4 NB MS MBTE18 VSRS

| PARMETRIC DATA | ELWI-L = .000 ELWI-R = |                       | 8           | -14.750    |
|----------------|------------------------|-----------------------|-------------|------------|
|                |                        | 2000 m 1076, 4800 IN. | יינו מינויי | D.DOLO IN. |
|                | į                      | 107                   |             | <u>.</u>   |
|                |                        | ļ                     | •           |            |
| ATAC PLANT     |                        | x                     |             |            |
|                |                        | Þ                     | b           |            |

ON SCALE

## 36/ 0 RW. = 2.66 GRANIENT INTERVAL = -5.00/ 5.00 10 NO.

| 1.52161<br>1.42223<br>1.30636<br>1.20366<br>1.10527<br>1.00720<br>1.00720<br>1.00720<br>1.00720 |
|-------------------------------------------------------------------------------------------------|
|                                                                                                 |
| CYN .00027 .00035 .00049 .00078 .00106 .00115 .00120                                            |
| CY<br>00726<br>00781<br>00756<br>00796<br>00796<br>00796<br>00760<br>00760                      |
| .67801<br>.67805<br>.67779<br>.67779<br>.67790<br>.67817<br>.67915<br>.67915<br>.67915          |
| 04246<br>04249<br>05019<br>06051<br>06053<br>06706<br>09706<br>09012                            |
| ON                                                                                              |
| C4<br>.Dee66<br>.De911<br>.De928<br>.De934<br>.De345<br>.De714<br>.De465<br>.De465<br>.De161    |
|                                                                                                 |
| .070506<br>.705296<br>.05166<br>.952002<br>1.00534<br>1.106216<br>1.11915<br>1.11915<br>1.11915 |
| ALTHA<br>E7.16E<br>E9.6814<br>36.614<br>36.311<br>36.38E<br>41.457<br>46.E19<br>47.100          |
| # 5. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.                                                     |

### AMES 3.5-157-CA11A BIDCS D7 F4 18 MS WBTE18 VSRS

( 87 928 71 ) ( 88 909 )

|                   | 8 8 8 8                                                        |
|-------------------|----------------------------------------------------------------|
| <u> </u>          | ELWI-R =<br>RUDDER =<br>ELEVON =<br>BETA =                     |
| PAISATE IRIL UNIN | .000<br>.000<br>-14.750                                        |
|                   | SOBRY = ANACA = BOPLAP =                                       |
|                   |                                                                |
|                   |                                                                |
|                   |                                                                |
|                   | = 1076.4800 IN.<br>= ,0000 IN.<br>= 400.0000 IN.               |
|                   | H D H                                                          |
| ATA               |                                                                |
| REPERBICE DATA    | LNET = E400,0000 S4.FT.  LNET = 474,6000 IN.  SAME = 0350 SCME |
|                   | SCALE SCALE                                                    |

### RWL = 2.61 CRADIENT INTERVAL = -5.00/ 3.00

| 1.46637<br>1.39339<br>1.29017<br>1.18692<br>1.09411<br>.99637<br>.91657                 |
|-----------------------------------------------------------------------------------------|
| CBC000962000963000963000963000979000979000979000979000979                               |
| CYN<br>.00036<br>.00037<br>.00036<br>.00036<br>.00036<br>.00036                         |
| CY<br>00529<br>00550<br>00566<br>00551<br>00551<br>00556<br>00556                       |
| XG7.A66629 .66587 .66622 .66702 .66939 .66978 .677125                                   |
| CLM013020140901721022120385704828                                                       |
| ON<br>.73946<br>.85658<br>.98711<br>1.12446<br>1.26257<br>1.40806<br>1.53319<br>1.60940 |
| CA<br>.08551<br>.08564<br>.091071<br>.09187<br>.09183<br>.09082<br>.08626               |
| 0.415114151150202607277272636431.13613.                                                 |
| .6179E<br>.69966<br>.78348<br>.96036<br>.99701<br>1.03769<br>1.03539                    |
| 7.320<br>ALPIA<br>27.297<br>29.329<br>39.393<br>39.393<br>41.391<br>44.393              |
| •<br>8                                                                                  |

## AMES 3.5-157-CA11A BIOCS D7 F4 NB NS WBTEIR YSRS

| <u> </u>       | ELVN-L = -40,000 ELVN-R = -40,000 SPERK = 54,920 RUDER = .000 AILRON = .000 ELEVON = -40,000 BCFLAP = -14,750 BETA = .000                        |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| REFERENCE DATA | SMEDT = 2690,0000 96.FT. XMMP = 1076,4800 IN. LMEDT = 474,8000 IN. YMMP = 10000 IN. BMEDT = 956,6600 IN. ZMMP = 400,0000 IN. SCALE = .0150 SCALE |

### RN.L = 2.67 GRADIENT INTERVAL = -5.00/ 5.00

| 1,37176<br>1,27036<br>1,18060<br>1,08049<br>99133<br>91043<br>,91043                 |
|--------------------------------------------------------------------------------------|
| CBL<br>00006<br>.00034<br>.00034<br>.00036<br>.00017                                 |
| CYN00010000270003900056000580003900038                                               |
| CY<br>00221<br>00339<br>00347<br>00436<br>00558<br>00558                             |
| XCP/L<br>.64489<br>.64367<br>.64533<br>.64645<br>.64645<br>.64645                    |
| 008<br>.03241<br>.04087<br>.0485<br>.04894<br>.04894<br>.04894<br>.04854             |
| 76718<br>.89534<br>1.01772<br>1.16114<br>1.29531<br>1.50339                          |
| C4<br>.06699<br>.09030<br>.09181<br>.05146<br>.09017<br>.06015                       |
| .45482<br>.5547<br>.66046<br>.79117<br>.92213<br>1.05303<br>1.14192                  |
| . 62392<br>. 70720<br>. 77974<br>. 85473<br>. 91413<br>. 91617                       |
| 7.320<br>ALPHA<br>29.622<br>35.439<br>35.111<br>36.283<br>41.267<br>44.130<br>45.021 |
|                                                                                      |
| ğ                                                                                    |

### AMES 3.5-157-CALLA BLOCS DT F4 NB MS WBTE18 VSR5

(RBSD59) (17 JUL 73 )

|                 | 10,000<br>,000<br>10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u> </u>        | ELWA-R = RUDGER = ELEVON = BETA =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PARAMETRIC DATA | 10,000<br>54,920<br>.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | BOTAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | 1076.48<br>.00<br>.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ;               | XMRP = 1076,4800 IN.<br>YMRP = .0000 IN.<br>ZMRP = 400,0000 IN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| REFERENCE DATA  | 965" = E890,0000 SA.FT. LIEST = 474,6000 IN. BREZT = 936,68000 IN. SCALE = ,0150 SCALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | SECTION SECTIO |

|                            | 1.4948<br>1.35330<br>1.25588<br>1.15859<br>1.06607<br>.96878<br>.89082                  |
|----------------------------|-----------------------------------------------------------------------------------------|
|                            | CBL00084000800008000039000070000700007000070000700007                                   |
|                            | CTN<br>.00098<br>.00098<br>.00100<br>.00116<br>.00125<br>.00144                         |
| 00.8 /0                    | CY<br>00474<br>00543<br>00543<br>00572<br>00643<br>00643<br>00643                       |
| GRADIENT INTERVAL # -5.00/ | .68415<br>.68415<br>.68319<br>.68328<br>.68341<br>.68407<br>.68451<br>.68574            |
| IENT INTERV                | QLM<br>05775<br>06221<br>05829<br>07767<br>097830<br>11018<br>12132                     |
| 2.88 GRAD                  | ON                                                                                      |
| BNC =                      | CA<br>.10000<br>.10761<br>.11239<br>.11596<br>.11824<br>.11826<br>.11734                |
| D. 39/ D                   | 00<br>.45792<br>.55060<br>.65924<br>.78270<br>.91324<br>1.06956<br>1.20033<br>1.2163163 |
| RUN NO.                    |                                                                                         |
|                            | ALPHA<br>E7.263<br>E9.78E<br>35.242<br>36.067<br>41.316<br>44.067<br>43.972<br>GRADIENT |
|                            | 9                                                                                       |

| • | q |
|---|---|
| - |   |
|   |   |
|   | í |
|   |   |
|   | ĺ |
|   | į |
|   |   |

#### BULATED SOURCE DATA - ARC 3.5 157

AMES 3.5-157-CALLA BLOCS OT F4 NO NO NOTELS VSR5

#### (RESO60) (17 SEP 75 )

PARAMETRIC DATA

000.03-

ELEVOR =
BETA =

-20.050 54.920 .005 -14.750

#### REPERBICE DATA

| •                  |                     |        | •    |
|--------------------|---------------------|--------|------|
| EWH =              | - NO                |        |      |
| - ;                |                     | •      |      |
|                    |                     |        |      |
|                    |                     |        |      |
|                    |                     |        |      |
|                    | •                   |        |      |
| ż                  | ż                   | ż      |      |
| XX = 1076.4800 IN. | E 0000              | 1 0000 |      |
| 1076               | •                   | ĝ      |      |
|                    | M                   |        |      |
| Ř                  | Y                   | 2      |      |
| Ė                  | Ŧ.                  | ž.     | SA P |
| 8                  | 8                   | 8      | 9    |
| 20003              | LUED = 474,8000 IN. | 936.0  | Ċ    |
| W                  |                     |        |      |
|                    | 5                   |        |      |

#### MAL = 2.02 GRADIENT INTERVAL = -5.00/ 5.00

| 1.46992<br>1.37779<br>1.29022<br>1.18927<br>1.09224<br>1.00269<br>.92292<br>.86947            |
|-----------------------------------------------------------------------------------------------|
| .00049<br>.00047<br>.00057<br>.00057<br>.00055<br>.00046<br>.00046                            |
| CYN<br>.00037<br>.00032<br>.00032<br>.00032<br>.00033<br>.00033                               |
| CY<br>00133<br>00074<br>00152<br>00156<br>00218<br>00293<br>00293                             |
| .64856<br>.64804<br>.64800<br>.64810<br>.65048<br>.65227<br>.65384                            |
| CLM<br>.02231<br>.02230<br>.03249<br>.03193<br>.03193<br>.02497<br>.02190                     |
| O70533<br>.81698<br>.93461<br>1.06690<br>1.19973<br>1.33236<br>1.45191                        |
| CA<br>.00466<br>.08716<br>.08900<br>.08680<br>.09418<br>.06029<br>.07825                      |
| 99999<br>.48261<br>.57513<br>.68695<br>.91227<br>.94286<br>1.06696<br>1.12363                 |
|                                                                                               |
| 7.350<br>A/PM<br>27.363<br>26.345<br>36.345<br>36.345<br>36.346<br>41.306<br>45.486<br>45.486 |
|                                                                                               |
| 5                                                                                             |

# AMES 3.5-157-CALLA BLOCS OF F4 1/8 NG WOTELS VSR5

REPUBBICE DATA

#### PARAMETRIC DATA

(17 JUL 73 )

| .000<br>.000<br>.000<br>.000                                 |
|--------------------------------------------------------------|
| ELYN-R :: RUDDER :: ELEYON :: ALPHA ::                       |
| .000<br>54.920<br>.000                                       |
| ELWHL = SPBBR = A11.RON = BDF.AP =                           |
|                                                              |
|                                                              |
|                                                              |
| 200 21 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25    |
| 246 = 1076,4800 IN.<br>768 = .0000 IN.<br>246 = 400,0000 IN. |
|                                                              |
| SE.T.                                                        |
| 2 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                      |
|                                                              |

# RUN NO. 61/ D RN/L = 2.81 GRADIENT INTERVAL = -5.03/ 5.13

| į      |       | 8       | đ      | 3       | ð        | አ<br>የ   | Շ        | ફ       | ŧ        | ያ      |
|--------|-------|---------|--------|---------|----------|----------|----------|---------|----------|--------|
| X-TA   |       |         | 5      | 1.55004 | -,03677  | .66847   | .07727   | .02498  | .01896   | .86885 |
| 10.227 |       | COLLIN  | 08504  | 1.55647 | -,03855  | ,66885   | 78690.   | .02302  | .01715   | .85941 |
| 712.6  |       | 7.001   | 08438  | 1.57241 | 04398    | 86699.   | .05371   | .01884  | .01322   | .87105 |
|        |       | 10011   | CRANG  | 1,58534 | -,04596  | .67035   | .03995   | .01505  | .00974   | .87169 |
| -5.195 |       | 1000    | 79790  | 26195   | 0.04930  | .67197   | .02533   | .01056  | .00638   | .87168 |
| -8.10E |       | 1.50169 | 0      | 1.56247 | 05175    | .67183   | .00521   | .00333  | .00053   | .87162 |
| -133   |       | 1.1.356 | 085580 | 1.59476 | 05014    | .67123   | -,00080  | .00143  | -, 90074 | .87093 |
| .74    |       | . 20477 | SES.   | 1,59137 | 04961    | .67114   | 01298    | 00312   | 09425    | .87093 |
| E10.X  |       | 1 10500 | 19831  | 1.58496 | -, 04909 | .67196   | 02632    | -,09759 | 00769    | :87083 |
| 100    |       | 0224.   | 96790  | 1.55910 | -,04363  | 666999   | 06335    | 01643   | 01672    | .87031 |
| 9.240  | 20000 | .00025  | 21000. | . 99023 | 60000    | -, 50002 | -, 00685 | 00241   | 50186    | 00013  |
|        |       |         |        |         |          |          |          |         |          |        |

(17 JUL 73 )

#### TABULATED SOURCE DATA - ARC 3.5 157

### AMES 3.5-157-CALLA BIDGS DT P'4 NB NS WRTELS VSRS

PARAMETRIC DATA

REPERENCE DATA

| 000.                                                       | •                          | 1.76<br>46355<br>46355<br>42962<br>3966<br>37121<br>39006<br>39953<br>45219                                       |
|------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------|
| ELVN-R = RUCCER = ELEVON = ALPHA =                         |                            | CBL, .00464                                                                                                       |
| .000<br>34.920<br>.000<br>-14.750                          |                            | CYN<br>.00004<br>.00065<br>.00145<br>.00155<br>.00131<br>.00034<br>.00065<br>00182<br>00182                       |
| ELWH-L = SPOBRK = AILRON = BUFLAP =                        | 00.5.00                    | .14975<br>.13283<br>.13283<br>.09937<br>.01264<br>.00352<br>01784<br>03922<br>10822                               |
|                                                            | GRADIENT INTERVAL = -5.00/ | XCP.L46057 .4317 .40132 .3758 .38513 .3758 .33228 .33383 .40159 .40159                                            |
|                                                            | JENT INTER                 | 02574<br>02587<br>02687<br>02689<br>02714<br>02859<br>02859<br>02859                                              |
|                                                            | 2.82 GRAD                  | 0.000000000000000000000000000000000000                                                                            |
| 1076,4800 IN.<br>,0900 IN.<br>490,0000 IN.<br>62/ 0 RV/L = |                            | CA .09427 .09427 .09427 .09426 .08566 .08566 .09414 .07972 .08174 .08240 .08240 .08240 .08245 .00000              |
|                                                            |                            | 00<br>09428<br>.09198<br>.08607<br>.08657<br>.08415<br>.07973<br>.08240<br>.08360<br>.08360                       |
| 2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                    | RUN NO.                    | 0.<br>04613<br>04264<br>03784<br>03784<br>0356<br>03123<br>03214<br>03214<br>03955<br>03955                       |
| 2690,0007 30.FT<br>474,8000 IN.<br>936,8800 IN.            |                            | PETA<br>-10.160<br>-9.219<br>-7.061<br>-5.164<br>-7.052<br>-1.156<br>-7.50<br>2.617<br>4.481<br>9.433<br>GRADIENT |
| SAET =<br>LEGT =<br>BRET =<br>SCALE =                      |                            | 1.360<br>1.360<br>1.360<br>1.360<br>1.360<br>1.360<br>1.360<br>1.360                                              |