Algorytmy probabilistyczne

Lista zadań nr 6

- 1. Rozważmy następującą zrandomizowaną modyfikację algorytmu korekcji bitów w hiperkostce o $N=2^n$ wierzchołkach: zamiast korygować kolejne bity od lewej do prawej, losujemy niezależnie dla każdego pakietu permutację liczb $\{0,\ldots,n-1\}$ i przeprowadzamy korekcję bitów w kolejności zadanej przez tę permutację. Wykazać, że istnieje permutacja adresów docelowych pakietów, dla której podany algorytm wykona $2^{\Omega(n)}$ kroków z dużym prawdopodobieństwem.
- 2. Wrzucamy m kul jednostajnie i niezależnie do n kubełków. Wyznaczyć stałą c_1 taka, że dla $m=c_1\sqrt{n}$ prawdopodobieństwo wrzucenia kul do różnych kubełków (czyli, że w żadnym nie będzie więcej niż jedna kula) jest $\leq 1/e$. Następnie wyznaczyć stałą c_2 taką, że $m=c_2\sqrt{n}$ prawdopodobieństwo wrzucenia kul do różnych kubełków jest $\geq 1/2$.
- 3. Niech S będzie zbiorem kluczy w tablicy haszowania kukułczego, a G_S będzie grafem o krawędziach $\{\{h_1(y),h_2(y)\}:y\in S\}$. Rozważamy operację insert(x,S) i graf G_S z dodaną krawędzią $\{h_1(x),h_2(x)\}$. Wykazać, że jeśli w składowej spójnej zawierającej tę krawędź występują co najmniej dwa cykle, to operacja insert(x,S) wykona rehash().
- 4. Podać przykład zbioru S kluczy w tablicy haszowania kukułczego, oraz x takiego, że graf $G_{S \cup \{x\}}$ zawiera tylko jeden cykl, ale operacja insert(x,S) wykona rehash(). Co można by zmienić w treści procedury insert(x,S) aby tego uniknąć.
- 5. Wykazać, że jeśli x jest wstawiany do składowej spójnej o k wierzchołkach i składowa ta zawiera co najwyżej jeden cykl, to procedura wstawiania wykona co najwyżej 2k zamian kluczy.

11 kwietnia 2019 Marek Piotrów