TEMA 8.

INHIBICIÓN ENZIMÁTICA: INHIBIDORES DE LA BIOSÍNTESIS DE LA PARED CELULAR

QFUNO

TEMA 8. INHIBICIÓN ENZIMÁTICA: INHIBIDORES DE LA BIOSÍNTESIS DE LA PARED CELULAR

Parte 1: El Mundo de los Inhibidores Enzimáticos y el Descubrimiento de las Penicilinas

Parte 2: Optimizando el Arsenal - De la Naturaleza al Laboratorio: Penicilinas Semi-sintéticas y Cefalosporinas

Parte 3: La Vanguardia Antibiótica y Otros Guerreros contra la Pared Celular + Control de Calidad

TEMA 8. INHIBICIÓN ENZIMÁTICA: INHIBIDORES DE LA BIOSÍNTESIS DE LA PARED CELULAR

Parte 1: El Mundo de los Inhibidores Enzimáticos y el Descubrimiento de las Penicilinas

- 1. Introducción
- 2. La Diana Perfecta: La Pared Celular Bacteriana
- 3. Introducción a los Antibióticos β-Lactámicos
- 4. Una Historia de Serendipia: El Descubrimiento de la Penicilina
- 5. Estructura y Reactividad de las Penicilinas
- 6. Nomenclatura Esencial
- 7. Mecanismo de Acción de las Penicilinas

Introducción: La Magia de Inhibir Enzimas

Imaginad que nuestro cuerpo, o una bacteria, es una compleja fábrica con miles de máquinas (enzimas) trabajando.

¿Qué pasaría si una máquina esencial se avería o funciona demasiado rápido?

Los químicos farmacéuticos somos los 'ingenieros moleculares' que diseñamos 'llaves especiales' (inhibidores) para controlar esas máquinas.

¿Por Qué las Enzimas son Dianas Estrella?

Gran variedad de moléculas (naturales/sintéticas) pueden inhibir enzimas.

Permiten diseño de fármacos con MÁXIMA ESPECIFICIDAD in vivo.

Más "sencillas" de estudiar y purificar que receptores.

Avances en Biología Molecular: Conocemos su estructura y cómo producirlas (Modelado de sitio activo).

Categoría	Ejemplos	Agentes Aprobados	Dianas Clave
Inhibidores Enzimáticos	Inhibidores de proteína quinasa (imatinib)	~70+	Sitios de unión de ATP, espinas catalíticas
Inhibidores de Receptores	Inhibidores de EGFR (gefitinib)	Limitado	Dominios de receptor tirosina quinasa

Dos Estrategias Principales: Farmacodinámicos vs. Quimioterápicos

Inhibidores Farmacodinámicos:

Corrigen alteraciones en enzimas del PROPIO ORGANISMO.

Ej: Ácido acetilsalicílico (Aspirina) inhibe la ciclooxigenasa -> reduce inflamación.

Inhibidores Quimioterápicos (definición clásica):

Atacan enzimas de AGENTES EXTERNOS (bacterias, virus, etc.).

Selectividad: buscan enzimas ÚNICAS del patógeno o MUY DIFERENTES a las humanas.

El término se adaptó para englobar también a los antineoplásicos, ya que el principio terapéutico es similar: el uso de compuestos químicos para eliminar células anormales o dañinas en el organismo

Ej: Los antibióticos que vamos a estudiar

La Pared Bacteriana: Su Punto Débil

- Éxito de antibacterianos: ATACAN
 SELECTIVAMENTE la pared celular.
- Diferencias cruciales: Células bacterianas vs. células animales (nosotros no tenemos pared).
- Función vital: Protege de estrés osmótico, da forma.
- Componente clave: PEPTIDOGLICANO.
- Diferencias Gram (+) vs. Gram (-):
 <u>Barrera adicional de lipopolisacáridos</u>
 <u>en Gram (-).</u>

https://bateriascea.com.ar/diferencias-entre-baterias-gram-y-gram/

La Pared Bacteriana: Su Punto Débil

- Éxito de antibacterianos: ATACAN
 SELECTIVAMENTE la pared celular.
- Diferencias cruciales: Células bacterianas vs. células animales (nosotros no tenemos pared).
- Función vital: Protege de estrés osmótico, da forma.
- Componente clave: PEPTIDOGLICANO.
- Diferencias Gram (+) vs. Gram (-):
 <u>Barrera adicional de lipopolisacáridos</u>
 <u>en Gram (-).</u>

https://bateriascea.com.ar/diferencias-entre-baterias-gram-y-gram/

Tinción Gram VIOLETA ROSA / ROJO

Antibióticos β-Lactámicos: Los primeros

Grupo MÁS REPRESENTATIVO de inhibidores de la biosíntesis de la pared.

Característica estructural clave: ANILLO β-LACTÁMICO

Miembros de la familia:

- 1. Penicilinas
- 2. Cefalosporinas
- 3. Ácido Clavulánico
- 4. Tienamicina
- 5. Monobactamas

Una Historia de Serendipia: Alexander Fleming

1928: Alexander Fleming y su famoso "descuido".

Observación clave: Hongo Penicillium inhibiendo crecimiento bacteriano. ¡Eureka!

Conclusión: El hongo produce una "sustancia mágica".

"Lo que para otros sería un cultivo contaminado, para Fleming fue la puerta a una revolución."

De la investigación básica a la aplicación clínica El legado de la penicilina

Fleming: Sustancias muy inestables, difícil aislamiento.

1938: Florey y Chain: ¡Retoman el desafío!

Métodos de purificación mejorados (liofilización).

Demostración de actividad in vivo.

1945: Producción masiva por fermentación para la Segunda Guerra

Mundial. Salvando vidas

El misterio de la estructura: Resuelto por difracción de Rayos X

(Dorothy Hodgkin, Premio Nobel en 1964).

Arquitectura Molecular de la Penicilina

Núcleo: Anillo β-lactama fusionado a un anillo de tiazolidina.

Biosíntesis: A partir de:

- Ácido carboxílico (cadena lateral R)
- L-Cisteína
- L-Valina (Se incorpora como **D-Valina** tras epimerización en la ruta)

La cadena lateral (R) define las diferentes penicilinas (Ej: Penicilina G y V).

Arquitectura Molecular de la Penicilina

Estructura tridimensional: "Libro semiabierto".

Problema: No hay coplanariedad entre el carbonilo C=O (posición 7) y el N cabeza de puente.

Consecuencia: ¡Resonancia de la amida IMPEDIDA!

Resultado: El enlace amida del anillo β -lactámico es MUY REACTIVO (más que

una lactama normal).

Esta reactividad es ESENCIAL para su mecanismo de acción

Nomenclatura de Penicilinas

Núcleo fundamental: 7-oxo-4-tia-1-azabiciclo[3.2.0]heptano.

Simplificación: Penamo (numeración no sistemática pero útil)

Ácido base: Ácido penicilánico (ácido 3,3-dimetil-7-oxo-4-tia-1-azabiciclo[3.2.0]heptano-2-carboxílico).

Penicilina G

- Ejemplo: Penicilina G (Bencilpenicilina)
- Sistemática: Ácido 6-(2-fenilacetamido)-3,3-dimetil-7-oxo-4-tia-1-azabiciclo

[3,2,0] heptano-2-carboxílico.

- Simplificada: Ácido 6-(2-fenilacetamido) penicilánico.
- Común: Penicilina G.

Nomenclatura de Cefalosporinas

Similar a penicilinas, pero con un anillo de 6 miembros fusionado (dihidrotiazina).

Núcleo: 8-oxo-5-tia-1-azabiciclo[4.2.0]octano.

Simplificación: Cefamo (o Cefemo si hay doble enlace C3-C4).

Ácido base: Ácido cefalosporánico (si tiene el acetoximetilo en C3).

Mecanismo de Acción

Diana: Formación del Peptidoglicano (la "armadura" bacteriana).

Proceso clave inhibido: Transpeptidación (entrecruzamiento de cadenas peptídicas).

Unidades: N-acetilglucosamina NAG y ácido Nacetilmurámico NAM con cadenas peptídicas.

Enlace crucial: Glicina (o L-Lys en algunos casos) con D-Alanina terminal.

Enzima responsable: Transpeptidasa (también conocida como PBP - Penicillin-Binding Protein).

Consecuencia de la inhibición: Pared celular débil, inconsistente -> ¡Lisis bacteriana!

Mecanismo de Acción

La penicilina se parece estructuralmente al dipéptido D-Ala-D-Ala (sustrato natural de la transpeptidasa)

La transpeptidasa "confunde" a la penicilina con su sustrato.

Reacción: El sitio activo de la enzima (con un residuo de Serina nucleofílico) ataca el carbonilo del anillo β -lactámico.

Formación de un complejo acil-enzima COVALENTE y ESTABLE (peniciloil-enzima).

La enzima queda INACTIVADA irreversiblemente

Orientación clave: Carboxilato y carboxamida de la penicilina ayudan a su correcta

colocación en el sitio activo.

Mecanismo de Acción

La penicilina se parece estructuralmente al dipéptido D-Ala-D-Ala (sustrato natural de la transpeptidasa)

La transpeptidasa "confunde" a la penicilina con su sustrato.

Reacción: El sitio activo de la enzima (con un residuo de Serina nucleofílico) ataca el carbonilo del anillo β -lactámico.

Formación de un complejo acil-enzima COVALENTE y ESTABLE (peniciloil-enzima).

La enzima queda INACTIVADA irreversiblemente

Orientación clave: Carboxilato y carboxamida de la penicilina ayudan a su correcta

colocación en el sitio activo.

