Name: Chen-yang Yu Student ID: 862052273 1.Register Reuse

Part #1

Since the CPU time =

$$CPI(Cycle\ per\ Instruction) \times (Instruction\ Count) \times (Clock\ time) = \frac{CPI \times (Instruction\ Count)}{frequency}$$

The time for finishing **dgemm0** (when n=1000):

$$\frac{\binom{2}{4}+400)\times n^3}{2Ghz} = \frac{\binom{2}{4}+400)\times 1000^3}{2\times 10^6} = 200.25 \text{ (sec)}$$

Each in-est loop (k-loop) has 2 floating-point operations(addition and multiplication) and 4 extra memory access (load a, load b,load c, and save c).

The time for wasting on non-register:

$$\frac{400 \times n^3}{2Ghz} = \frac{400 \times 1000^3}{2 \times 10^6} = 200 \text{ (sec)}$$

The time for finishing **dgemm1** (when n=1000):

$$\frac{\binom{2}{4}+200)\times n^3+200\times n^2}{2Ghz} = \frac{\binom{2}{4}+200)\times 1000^3+200\times 1000^2}{2\times 10^6} = 100.35 \text{ (sec)}$$

Each in-est loop (k-loop) has 2 floating-point operations(addition and multiplication) and 2 extra memory access (load a, laod b). Each middle loop (j-loop) has 2 extra memory access (load c, save c).

The time for wasting on non-register:

$$\frac{200 \times n^3 + 200 \times n^2}{2Ghz} = \frac{200 \times 1000^3 + 200 \times 1000^2}{2 \times 10^6} = 100.1 \ (sec)$$

When it comes to calculating Gflops, there are 2 floating-point operations(addition and multiplication) in the in-est loop. Multiply 2 with iteration count (n^3):

The performance of *dgemm0*: $[(2 \times n^3)/t]/1,000,000,000$ (Gflops) The performance of *dgemm1*: $[(2 \times n^3)/t]/1,000,000,000$ (Gflops)

The performance evaluation and comparison is in Part#2 (with **dgemm2**)

Part #2

There are 16 floating-point operations (8 multiplication of a and b, 4 addition of a*b, 4 addition to c) in the in-est loop. Multiply 2 with iteration count ($(n/2)^3$):

The performance of *dgemm2*: $[(16 \times (\frac{n}{2})^3)/t]/1,000,000,000$ (Gflops)

With n = 64, 128, 256, 1024, 2048, the time consumption on algorithm *dgemm0*, *dgemm1* and *dgemm2* are listed below. *dgemm2* has the best performance of all case.

(dgemm_2_1_0_Result.o220049)

n	64		128 256 512		1024	2048
dgemm0	emm0 3.322000 29.474001		265.161987	2851.11792	25120.1289	701097.750
dgemm1	dgemm1 2.284000 20.389999		163.266998	2081.76196	17574.5937	451838.625
dgemm2	dgemm2 0.841000 6.7270		53.576000	728.062012	6969.10888	178313.687

(millisecond)

n	64 128		256 512		1024	2048	
dgemm0	0.15782299	0.14232448	0.12654314	0.089478	0.085899	0.024508	
dgemm1	dgemm1 0.229548 0.205704		0.205519	0.128946	0.122193	0.038022	

(Gflops)

Part #3

Choose block size = 3. Use 9 register in the middle loop to hold the value of C from memory load. Use 3 register for first column of matrix A and 3 register for first row of matrix B in the in-est loop (k-loop). Replace them with the next column/ row to calculate the sum.

There are 54 operation in the in-est loop, so the performance Gflops is 54 multiply with iteration count (n/3)^3

The performance of **dgemm2**: $[(54 \times (\frac{n}{3})^3)/t]/1,000,000,000$ (Gflops)

In order to compare the performance of *dgemm0*, *dgemm1*, *dgemm2* and *dgemm3*, we choose n = 64, 128, 256, 1024, 2048 as matrix size. However, there will be some element not able to use the algorithm we set when facing the boundary issue. For example, If the matrix size is not the multiple of 2, the rest one element on the boundary cannot use the *dgemm2* to solve. In order to fully compare all of the algorithm without consider other variables, we make a some adjustments in n.

With n = 64, 128, 256, 1024, 2048, the time consumption on algorithm *dgemm0*, *dgemm1*, *dgemm2* and *dgemm3* are listed below. *dgemm3* has the best performance of all case.

(dgemm_3_2_1_0_Result.o220048)

	``								
n	64 126		252 510		1020	2046			
dgemm0	gemm0 2.529000 23.398001		217.600006	1685.82299	17836.8105	241644.546			
dgemm1	dgemm1 1.545000 16.090000		136.285995	1126.31396	11036.7265	208374.578			
dgemm2	0.606000 6.305000		53.805000	449.518005	5108.87890	96560.0156			
dgemm3	0.460000	4.514000	41.065979	327.458008	3157.10888	21873.6054			

(millisec)

n	n 64 126		252	510	1020	2046
dgemm0	m0 0.20731039 0.170986		0.14708647	0.132651	0.117912	0.071077
dgemm1	dgemm1 0.279612 0		0.234845	0.235549	0.192305	0.082206
dgemm2	dgemm2 0.712871 0.634		0.594852	0.590192	0.415437	0.177398
dgemm3*	0.939130	0.886299	0.779380	0.810186	0.672266	0.783117

(Gflops)

2.Cache Reuse Part #1 10000x10000

Since the cache has only 60 lines, it is impossible to hit cache if we read the element column by column from memory(the space is not enough to hold 10000 cache line). When we access the first element of the next column, the data ought to be in cache has already be replaced. We may hit the rest 9 element after first cache miss is we read the element row by row. However, it is still impossible to hit a cache when we access this element again.

Algorithm ijk(jik):

The first iteration show that matrix_A miss 1 time out of 10. Matrix_B and matrix_C are all miss. Although the row 0 of matrix_A was in cache, row 0 has already replaced at the time we read it again (when the second iteration). As the result, the whole matrix_A miss 1 time out of 10. Cache hits when column%10 is not 0. Matrix_B and matrix_C would all miss since at least 10000 times cache miss has been made while there is only 60 lines of cache.

As the result:

Read cache miss rate of Matrix_A = (1000x10000x10000)/(10000x10000x10000) = 1/10Read cache miss rate of Matrix_B = (10000x10000x10000)/(10000x10000x10000) = 1Read cache miss rate of Matrix_C = (10000x10000x10000)/(10000x10000x10000) = 1**Algorithm kij(ikj)**:

Matrix_A amd matrix_B cache miss 1 time out of 10 in the first iteration while matrix_C is cache miss. Matrix_A and matrix_B still cache miss even when access the same row (being replaced)in the rest of iteration. Cache hits when column%10 is not 0. Cache all miss for matrix_C(no matter kij or ikj).

As the result:

Read cache miss rate of Matrix_A = (10000x10000x10000)/(10000x10000x10000) = 1Read cache miss rate of Matrix_B = (1000x10000x10000)/(10000x10000x10000) = 1/10Read cache miss rate of Matrix_C = (1000x10000x10000)/(10000x10000x10000) = 1/10

Algorithm jki(jki):

Matrix_A, matrix_B and matrix_C are all miss since cache space is not enough to hold the data till next time access.

As the result:

Read cache miss rate of Matrix_A = (10000x10000x10000)/(10000x10000x10000) = 1

Read cache miss rate of Matrix B = (10000x10000x10000)/(10000x10000x10000) = 1

Read cache miss rate of Matrix_C = (10000x10000x10000)/(10000x10000x10000) = 1

10*10

There are only totally 3x10 line in the sum of Matrix_A, Matrix_B, and Matrix_C. We can obtain all of the element value in the cache after the cache miss of first time access the row.

Algorithm ijk(jik):

When it comes to the first middle-loop (calculate the first row of matrix_C), matrix_A miss the first element and 9 hit of the rest. Matrix_B miss all 10 element. Matrix_C miss. The next k-loop, matrix_A, matrix_B, and matrix_C all hits. Matris_A and matrix_C is the same in the second middle-loop while matrix_B all hits.

The first element of matrix_A, matrix_B, and matrix_C miss whenever first time access. Hit when the other time access.

As the result:

Read cache miss rate of Matrix A = 10/1000 = 1/100

Read cache miss rate of Matrix_B = 10/1000 = 1/100

Read cache miss rate of Matrix_C = 10/100 = 1/10

Algorithm kij(ikj):

The first time to access the head (first element of each row) of matrix_B and matrix_C is a miss, the second time and afterward would be a hit. The matrix_A only access 10x10 time and only miss at the first element.

As the result:

Read cache miss rate of Matrix A = 10/100 = 1/10

Read cache miss rate of Matrix B = 10/1000 = 1/100

Read cache miss rate of Matrix C = 10/1000 = 1/100

Algorithm jki(jki):

Since we start from the first column of matrix_A and matrix_C, the first iteration will be all miss. The 10 miss at the beginning will be the total miss out of 1000 access. Matrix_C miss at the first element of each row and hit at the rest access.

As the result:

Read cache miss rate of Matrix_A = 10/1000 = 1/100

Read cache miss rate of Matrix_B = 10/100 = 1/10
Read cache miss rate of Matrix_C = 10/1000 = 1/100

Part #2

Every iteration takes (n/B) times B*B mini matrix multiplication. The miss count and miss rate of B*B mini matrix multiplication is as Part #1. Since the size of cache line (10 double nodes) couldn't cover the next mini-block, every B*B mini multiplication can be regarded as independent task. The read cache miss rate = (cache miss rate in B*B mini multiplication)x[(n/B)^3]/[(n/B)^3] ((n/B)^2 iteration totally)

Algorithm ijk(jik):

The inner loop is the same as 10x10 ijk(jik). Matrix_A and matrix_C miss at the first element and hit at rest reading. Matrix_B load the whole block in the first iteration. However, the cache is not enough to obtain more than two sets of block multiplication. The miss rate keep the same in every block multiplication.

As the result:

Read cache miss rate of Matrix A = 1/100

Read cache miss rate of Matrix B = 1/100

Read cache miss rate of Matrix_C = 1/10

Algorithm kij(ikj):

Below each block multiplication, the first element of each row is miss while the rest reading is a hit for matrix_B and matrix_C. For matrix_A, the first reading of the first element in the row_0 is always a miss while the rest reading is hit.

As the result:

Read cache miss rate of Matrix_A = 1/10

Read cache miss rate of Matrix_B = 1/100

Read cache miss rate of Matrix_C = 1/100

Algorithm jki(jki):

Below each block multiplication, matrix_A and matrix_C miss in every first reading of first row and hit on the rest reading. Matrix B read the first element of the row with a cache miss and hit at the rest elements.

Read cache miss rate of Matrix A = 1/100

Read cache miss rate of Matrix_B = 1/10

Read cache miss rate of Matrix C = 1/100

Part #3

Compare with the non-blocking version and change block size. (n = 2048, B = 10 and 2^n) Here is the result of different blocking policy on 6 algorithm (ijk, kji, kij, ikj, jki, kji). Turn out we found out that the best performance comes out when block size is 64 (sometime in 32).

The best performance is approximately 0.15 Gflops.

ljk jik (block 1 2 A Result.o220381)

	1-3··· (a.co2·2-2·2-2·2-4)								
Block Size	non-blocking	10	2	16	32	64	256	512	
Time ijk/	325627.687	125981.5 62	241584.1 25	123307.9 06	113556.7 5	111124.7 34	173322.8 59375	209591.0 15625	
jik	311259.531 2	311459.4 06	267758.8 43	126704.7 03	118811.3 67	173322.8 59	175537.7 03125	191358.2 03125	
Gflops	0.052699	0.136368	0.071113	0.139325	0.15128*	0.150961	0.099121	0.081969	

ijk/ 0.055195 0.05	0.064162 0.135590	0.14459* 0.099121	0.097870	0.089779
--------------------	-------------------	-------------------	----------	----------

(millisec) (Gflops)

Kij_ikj (block_1_2_B_Result.o220382)

Block Size	non-blocking	10	2	16	32	64	256	512
Time kij/ ikj	117167.765625	121948.4 21875	167272.9 21875	124422.0 23438	112103.1 71875	114843.6 17188	124016.5 54688	150114.1 09375
	123509.179688	124537.1 56250	209187.4 37500	130613.8 51562	111607.2 18750	110066.7 34375	129878.2 34375	152788.5
Gflops kij/ ikj	0.146626	0.140878	0.102706	0.138077	0.15325*	0.149594	0.138529	0.114445
	0.139098	0.137950	0.082127	0.13153	0.153932	0.15608*	0.132277	0.112442

(millisec) (Gflops)

Jki_kji (block_1_2_C_Result.o220383)

Block Size	non-blocking	10	2	16	32	64	256	512
Time jki/ kji	470238.968750	553099.0 00000	320325.8 43750	169816.4 37500	156432.4 68750	144987.0 46875	258064.4 68750	279454.3 12500
	559186.312500	568340.1 25000	351080.6 87500	178537.5 31250	167320.4 84375	158918.4 21875	240901.5 93750	249569.7 65625
Gflops	0.036534	0.031061	0.053632	0.101167	0.109823	0.11849*	0.066572	0.061476
jki/ kji	0.030723	0.030228	0.048934	0.096226	0.102676	0.10810*	0.071315	0.068838

(millisec) (Gflops)

Part #4

We get a better performance by using both blocking cache reuse and register reuse n = 2048. Since the result from Part#3 shows that the best performance comes out when block size = 32 and 64, we choose cache block = 32 and register block = 2 to handle matrix n = 2048. Compare the different performance when using different optimization flags, from -O0 to -O3 (-O0 should be the same as original gcc)

The best performance is 1.8877 Gflops when cache blocking size = 32.

Block size = 32 (block_both_Result.o220658/ block_both_O0_Result.o220659/ block_both_O1_Result.o220660/ block_both_O2_Result.o220661/ block_both_O3_Result.o220662/)

	non-blo	blockin	N-blocki	Blockin	N-blocki	Blockin	N-blocki	Blockin	N-blocki	Blockin
	cking	g	ng -O0	g -O0	ng -O1	g -O1	ng -O2	g -O2	ng -O3	g -O3
Time	300989.	35631.3	315209.	38304.3	255195.	11350.1	322321.	10120.1	374927.	9100.90
	718750	71094	343750	08594	515625	70898	500000	50391	125000	527*
Gflops	0.05707	0.48215	0.05450	0.44851	0.06732	1.51362	0.05330	1.69759	0.04582	1.8877*

(millisec) (Gflops)

Block size = 64

	non-blo	blockin	N-blocki	Blockin	N-blocki	Blockin	N-blocki	Blockin	N-blocki	Blockin
	cking	g	ng -O0	g -O0	ng -O1	g -O1	ng -O2	g -O2	ng -O3	g -O3
Time	350159.	42349.8	319723.	41824.0	427432.	10911.8	351372.	10843.8	544019.	9287.66
	718750	51562	000000	89844	218750	72070	843750	34961	250000	2109
Gflops	0.04906	0.40566	0.05373	0.41076	0.04019	1.57442	0.04889	1.58429	0.03158	1.84975

(millisec) (Gflops)