ON SEMIPARAMETRIC SDF ESTIMATORS

For private equity fund data

Christian Tausch October 12, 2020

AGENDA

Agenda

- 1. Introduction
- 2. Semiparametric estimation summary (1. paper, [Tausch, 2020])
- 3. Model combination methodology (2. paper, [Tausch Pietz, 2020])
- 4. Empirical results (2. paper, [Tausch Pietz, 2020])
- 5. Conclusion

1

1 INTRODUCTION

1.1 OVERVIEW OF PHD THESIS CONTENTS

Stochastic Discount Factor Methods for Non-Traded Cash Flows -The Case of Private Equity

Part I Introduction

- 1. Non-traded cash flows
- 2. Stochastic discount factors (SDFs)

Part II Numeraire portfolio methods

- 3. Public numeraire equivalent benchmarking
- 4. Quadratic hedging strategies for private equity fund payment streams

Part III Semiparametric SDF methods

- 5. A spatial SDF estimator for private equity funds [Tausch, 2020]
- 6. The public factor exposure of private equity [Tausch Pietz, 2020]

Part IV Parametric SDF methods

- 7. Risk modeling by parametric SDFs
- 8. Modeling the exit cash flows of private equity fund investments

1.2 PRIVATE EQUITY FUND CASH FLOWS AND VALUE

Private Equity Fund Dynamics

1.3 NOTATION & VARIABLE DEFINITIONS

Private equity fund i = 1, 2, ..., n is characterized by:

Net Asset Value NAV_{i,t} (fund value proxy)

Net Cash Flow CF_{i,t} (fund distributions minus contributions)

Vintage Year V_i (fund inception year)

Public market is given by:

SDF $\Psi_{\tau,t} > 0$ (stochastic discount factor from t to τ)

Risk-free Rate r_t (from period t - 1 to t)

Factor Return $F_{j,t} \ge 0$ (zero-net-investment return from t-1 to t)

Time is discrete t = 1, 2, ..., T.

1.4 STOCHASTIC DISCOUNT FACTORS

Stochastic discount factors (SDFs)

- · General pricing framework in empirical finance.
- · SDFs allow to move cash flows in time.

We can calculate the time-au price of a time-t cash flow by

$$P_{\tau,t,i} = \mathbb{E}\left[\Psi_{\tau,t} \cdot CF_{t,i}\right] \qquad \forall \quad \tau,t,i \tag{1}$$

where the SDF $\Psi_{ au,t} = \Psi_{ au,t}(heta)$ depends on the parameter vector heta.

If au and t are both in the past, the realized price is given by

$$P_{\tau,t,i} = \Psi_{\tau,t} \cdot CF_{t,i} \qquad \forall \quad \tau,t,i$$
 (2)

with $\tau \leq t$ or $\tau \geq t$.

2 SEMIPARAMETRIC ESTIMATION SUMMARY

2.1 SEMIPARAMETRIC ESTIMATORS

- · Empirical asset pricing usually uses **semiparametric** approaches to determine the 'optimal' parameter vector θ of the SDF $\Psi_{\tau,t}(\theta)$.
- · Semiparametric means we impose no distributional assumptions on the random variable Ψ .
- The parameter vector θ contains no distributional parameters (like μ, σ for a normal distribution).
- · We want to parsimoniously explain asset returns (cash flows).
- · When testing SDFs, we want to test if a given SDF satisfactorily prices the assets and not if the asset returns are (e.g.) normally distributed.
- Parametric estimation (like maximum likelihood) is usually more efficient (unbiased with smaller variance) when we know the underlying distribution.

2.2 OVERVIEW OF EXISTING ESTIMATORS

	[Driessen et al., 2012]	[Korteweg and Nagel, 2016]	[Tausch, 2020]
M-estimator	Least-Mean-	Generalized Method	Least-Mean-
	Distance	of Moments	Distance
Pricing error averaging	No	No	Yes
Cash flows priced	PE cash flows	public cash flows	PE cash flows
Asymptotics	cross-sectional	time-series	spatial
	$\# funds o \infty$	#vintages $ ightarrow \infty$	# of both $\rightarrow \infty$
Inference	bootstrap	spatial HAC	cross-validation
			& spatial HAC
Cross-sectional unit	vintage year portfolio	single fund	testing both
SDF	simple linear	exponentially affine	testing both

Table: Comparison of similar SDF estimation frameworks.

2.3 CHALLENGES FOR SEMIPARAMETRIC SDF ESTIMATORS

Results of [Tausch, 2020]:

- · Simulation results indicate high small-sample variance even for simple data generating processes.
- Empirical estimation for simple two-factor models reveals (using public q⁵-investment factors of [Hou et al., 2020]):
 - very high asymptotic standard error estimates (for vintage year portfolios),
 - · hv-block cross-validation standard errors are smaller,
 - model selection remains challenging when confronted with a large set of competing models.
- · 💡 Model combination instead of model selection?

3 MODEL COMBINATION

3.1 MODEL COMBINATION IDEA

Transform weak model ensemble to strong multi-factor model.

3.2 WHY SO MANY/WEAK/DIFFICULT?

- · Why so many models?
 - · Many public market factor candidates.
 - · Many potential estimators, loss functions, hyperparameters.
 - · Many different proprietary private data sets.
- · Why so weak models?
 - · Sparse private equity fund data (\leq 40 vintages).
 - · Near-epoch dependency by overlapping fund cash flows.
 - · Multi-factor models almost surely overfit.
- · Why model selection is difficult?
 - · Model uncertainty especially high for weak models.
 - · Limited data may encourage data snooping.
 - · Correct post model selection inference is generally hard.

3.3 MODEL AVERAGING

The weighted pricing error obtained by SDF model averaging is defined as

$$\epsilon_{\tau,i}^{(M^*)} = \sum_{m=1}^{M^*} w_m \sum_{t=1}^{T} \Psi_{\tau,t}^{(m)} CF_{t,i}$$
 (3)

with model weight $w_m \geq 0$ and all weights sum to one $\sum_m^{M^*} w_m = 1$. The ensemble size is M^* .

- · Forecast combination puzzle: Often $w_m = \frac{1}{M^*}$ outperforms more 'advanced' weighting schemes.
- · Model combination can be perceived as **diversification strategy** to minimize the risk of selecting an invalid model (i.e., investing everything in the wrong replication strategy).

4 EMPIRICAL RESULTS

4.1 SIMPLE LINEAR SDF MODEL

We use a simple linear SDF model as in [Driessen et al., 2012]

$$\Psi_{\tau,t}^{SL}(\theta) = \prod_{h=1}^{t} \left(1 + \alpha + r_h + \sum_{j} \beta_{j} F_{j,h} \right)^{-1} \prod_{h=1}^{\tau} \left(1 + \alpha + r_h + \sum_{j} \beta_{j} F_{j,h} \right)$$
(4)

with (arithmetic) risk-free return r, (arithmetic) zero-net-investment portfolio returns F_i , and parameter vector $\theta = (\alpha, \beta)$.

4.2 COEFFICIENT AVERAGING

Estimate four two-factor models (using linear SDF from equation 4): MKT-RF × {SMB or HML or HDY-MKT or QLT-MKT} with

MKT-RF: MSCI Market Return Minus Risk-free Rate

SMB: MSCI Small Cap Minus MSCI Large Cap Return

HML: MSCI Value Minus MSCI Growth Return

HDY-MKT: MSCI High Dividend Yield Minus MSCI Market Return

QLT-MKT: MSCI Quality Minus MSCI Market Return

For each of these four models, we generate $2 \times 2 \times 5$ estimates by varying (i) a quadratic and last absolute deviance loss function, (ii) equal- and fund-size-weighted cash flows, and (iii) maximum months in {120, 150, 180, 210, 240} for \mathcal{T} .

Finally, simply average the $4 \times 2 \times 2 \times 5$ model coefficients.

4.3 AVERAGED MULTI-FACTOR MODELS

The public factor exposure of private equity

Туре	MKT-RF	HML	SMB	HDY-MKT	QLT-MKT
ВО	1.33 (0.15)	-0.15 (0.12)	0.2 (0.03)	0.3 (0.1)	0.21 (0.05)
DD	0.96 (0.09)	-0.11 (0.04)	0.21 (0.01)	0.14 (0.1)	0.16 (0.05)
INF	0.71 (0.22)	-0.37 (0.06)	-0.33 (0.13)	-0.47 (0.35)	0.36 (0.11)
MEZZ	1.08 (0.13)	0.06 (0.1)	0.14 (0.04)	0.16 (0.1)	0.06 (0.11)
NATRES	0.36 (0.27)	-0.04 (0.22)	-0.02 (0.22)	0.16 (0.36)	0.11 (0.17)
PD	0.96 (0.08)	-0.07 (0.04)	0.16 (0.03)	0.06 (0.09)	0.15 (0.04)
RE	1.14 (0.44)	-0.3 (0.16)	-0.42 (0.13)	-0.91 (0.15)	-0.4 (0.1)
VC	1.02 (0.67)	-0.61 (0.11)	-0.42 (0.03)	-0.75 (0.14)	0.84 (0.61)
MKT	1	0	0	0	0

Table: Multivariate five-factor models obtained by simple coefficient averaging (with standard deviations in parenthesis).

Private equity: Preqin cash flow data. Public: MSCI style indices.

4.4 CUMULATIVE MULTI-FACTOR MODEL RETURNS

Did private equity outperform the public market portfolio?

4.5 HISTORICAL FACTOR MODEL RETURNS

Туре		Annua	Sharpe Ratio		
	mean.R	stdv.R	mean.R-RF	stdv.R-RF	mean/stdv.R-RF
ВО	0.152	0.195	0.125	0.196	0.641
DD	0.116	0.144	0.091	0.144	0.630
INF	0.085	0.119	0.060	0.119	0.506
MEZZ	0.120	0.162	0.094	0.162	0.581
NATRES	0.057	0.049	0.033	0.049	0.671
PD	0.113	0.143	0.087	0.143	0.610
RE	0.092	0.203	0.067	0.203	0.329
VC	0.124	0.176	0.099	0.176	0.561
MKT	0.107	0.152	0.082	0.152	0.536

Table: Annualized average returns, standard deviations (annualized by the square root of time formula), and Sharpe ratios (i.e., the ratio of mean.R-RF to stdv.R-RF) implied by the five-factor models (1996-01-31 to 2020-05-31).

4.6 APPLICATION: FACTOR EXPOSURE OF SAMPLE PORTFOLIO

Bottom-up (fund-by-fund) aggregation of averaged coefficients for a sample portfolio of 100 private capital funds.

- · Balanced Ensemble: all valid SDF models for a given fund.
- · Best Ensemble: subset of all valid SDF models with smallest pricing error for a given fund.

4.7 APPLICATION: MSCI FACTOR EXPOSURE VISUALIZATION

FACTORS - KEY EXPOSURES THAT DRIVE RISK AND RETURN MSCI FACTOR BOX

MSCI FaCS

0

Relatively Inexpensive Sto

LOW SIZE Smaller Companies

MOMENTUM Rising Stocks

Sound Balance Sheet Stocks

YIELD Cash Flow Paid Out

LOW VOLATILITY

MSCI FaCS provides absolute factor exposures relative to a broad global index - MSCI ACWI IMI.

Neutral factor exposure (FaCS = 0) represents MSCI ACWI IMI.

Source (2020-10-12): https://www.msci.com/documents/10199/69aaf9fd-d91d-4505-a877-4b1ad70ee855

5 CONCLUSION

5.1 SUMMARY, OUTLOOK, THOUGHTS, IDEAS

- Significant semiparametric SDF estimates for private equity funds are hard to obtain. Asymptotic inference not very useful when forming vintage year portfolios.
- · Model combination is a straightforward means to form a strong(er) SDF model from a collection of weak competitors.
- · Conjecture: Averaging pricing errors over cash flow duration (fund lifetime) may be general feature of an 'optimal' SDF estimator for non-traded cash flows.
- Future research: Effect of taking historical (fixed) public market returns vs simulated scenarios in simulation study: What are the issues? What is optimal?
- Future research: Analyze improved version of the [Korteweg and Nagel, 2016] estimator (simulation-based portfolios avoid under-identification, but compatible with averaging pricing errors?).

5.2 PUBLICATION, PHD THESIS

- Publish two papers (1. technical and 2. practitioner)? Or merge both to one combined paper?
- · 2. paper is joint paper with my boss from AssetMetrix, plan to also use it for marketing a business application.
 - · Option a): Submit now to practitioner journal.
 - · Option b): Publish now as white paper at company homepage.
- · Replace 'spatial' by more catchy name for 'averaged over multiple NPV dates' (in first paper title).
- · Personal aim of this project -> understand GMM estimators.

References

Driessen, J., Lin, T.-C., and Phalippou, L. (2012).

A new method to estimate risk and return of nontraded assets from cash flows: the case of private equity.

Journal of Financial and Quantitative Analysis, 47(3):511–535.

Hou, K., Xue, C., and Zhang, L. (2020). An augmented q⁵ model with expected growth. Review of Finance

Korteweg, A. and Nagel, S. (2016). Risk-adjusting the returns to venture capital. Journal of Finance, 71(3):1437–1470.

WORKING PAPER AND R CODE WILL BE AVAILABLE ON MY BLOG QUANT-UNIT.COM

DO YOU HAVE COMMENTS?