Understanding Cryptography Öğrenci ve Uygulamacılar İçin Ders kitabı

Ünite içeriği

- Akan (stream) şifrelemeye giriş
- Rastgele sayı üreteci (Random number generators (RNGs))
- Tek kullanımlık blok notlar(One-Time Pad (OTP))
- Lineer geri beslemeli kaymalı kaydediciler (Linear feedback shift registers (LFSRs))
- Trivium: a modern stream şifre

Ünite içeriği

- Stream şifrelemeye giriş
- Rastgele sayı üreteci (Random number generators (RNGs))
- Tek kullanımlık blok notlar(One-Time Pad (OTP))
- Linear feedback shift registers (LFSRs)
- Trivium: a modern stream şifre

Şifrelemede Stream Şifrelemenin Yeri

Stream Ciphers 1917 de Gilbert Vernam tarafından bulundu

Stream şifreleme ve Blok şifreleme

Stream Şifreler

- Bitler tek tek şifrelenir
- Gömülü sistemlerde yaygındır genellikle küçük ve hızlıdır (e.g., A5/1 for GSM phones)

• Block Şifreler:

- Her zaman blokun hepsini şifreler (birkaç bit)
- İnternet uygulamaları için yaygındır.

Senkron ve Asenkron Stream Şifreleme

- s_i Anahtar üretiminin güvenliği tamamıyla anahtar değerine bağlıdır:
 - Rastgele olmalı, i.e., $Pr(s_i = 0) = Pr(s_i = 1) = 0.5$
 - Gönderici ve alıcı tarafından yeniden üretilebilmeli

Senkron Stream Şifreler

Anahtar üretimi sadece anahtara bağlıdır(ve IV başlangıç değeri olabilir)

Asenkron Stream şifreler

Anahtar üretimi şifreli metne de bağlıdır.

Stream şifreleme ile şifreleme ve şifre çözme

Düz metin x_i , şifreli metin y_i ve stream anahtarı s_i tek tek bitlerden oluşur

- Şifreleme ve şifre çözme mod 2 de toplama işlemi gibidir (aka XOR)
- Şifreleme ve şifre çözme aynı fonksiyondur.
- **şifreleme:** $y_i = e_{si}(x_i) = x_i + s_i \mod 2$ $x_i, y_i, s_i \in \{0,1\}$
- **Şifre çözme:** $x_i = e_{si}(y_i) = y_i + s_i \mod 2$

Neden Mod 2 de Toplamak İyi Bir Şifreleme Fonksiyonudur?

- Mod 2 toplama işlemi XOR işlemine eşittir.
- Mükemmel bir stream s_i , anahtarı için her şifreli metin çıkış bitinin 0 veya 1 olma ihtimali 50% olmalıdır.
- Ters çevrilmiş XOR basittir, çünkü XOR işleminin aynısıdır.

X _i S _i	y i
0 0	0
1 0	1
1 1	0

Stream Şifre: Çıktı

Simetrik şifrelerin performans karşılaştırması (Pentium4):

Cipher	Key length	Mbit/s
DES	56	36.95
3DES	112	13.32
AES	128	51.19
RC4 (stream cipher)	(choosable)	211.34

Source: Zhao et al., Anatomy and Performance of SSL Processing, ISPASS 2005

Ünite içeriği

- stream şifrelemeye giriş
- Rastgele sayı üreteci (Random number generators (RNGs))
- Tek kullanımlık blok notlar(One-Time Pad (OTP))
- Linear feedback shift registers (LFSRs)
- Trivium: a modern stream şifre

Rastgele Sayı Üreteci (RNGs)

Gerçek Rastgele Sayı Üreteci(TRNGs)

- Fiziksel rastgele işlemlere dayanır: yarı iletken gürültüsü, radyoaktif kalıntılar, fare hareketleri
- Çıkış stream s_i değeri iyi istatiksel özeliklere sahip olmalı: $Pr(s_i = 0) = Pr(s_i = 1) = 50\%$ (sıklıkla sonraki işlemlerle yapılır)
- Çıkış değeri hem tahmin edilememeli hem de yeniden üretilememeli

Anahtarların üretimi için tipik kullanım, (sadece tek kullanımlık değerler kullanılır) ve başka bir çok amaç için

Sözde Rastgele Sayı (PRNG)

- Başlangıç çekirdek değerinden bir zincir üretir.
- Tipik olarak, çıkış stream iyi istatiksel özelliklere sahiptir.
- •Özyinelemeli yollarla çıkış değeri yeniden üretilebilir ve tahmin edilebilir :

$$s_0 = seed$$

 $s_{i+1} = f(s_i, s_{i-1}, ..., s_{i-t})$

Örnek: rand() function in ANSI C:

$$s_0 = 12345$$

 $s_{i+1} = 1103515245s_i + 12345 \mod 2^{31}$

birçok PRNG nin kötü şifreleme özellikleri vardır!

Basit bir PRNG nin kripto analizi

Örnek PRNG: Linear Congruential Generator

$$S_0 = seed$$

$$S_0 = seed$$

$$S_{i+1} = AS_i + B \mod m$$

Farz edelim

- A, B ve S_0 anahtar gibi bilinmiyor
- A, B ve S, boyutu 100 bit
- Çıkışın 300 biti biliniyor, i.e. S_1 , S_2 and S_3

çözüm

$$S_2 = AS_1 + B \mod m S_3$$
$$= AS_2 + B \mod m$$

... A ve B yi direk gösterir. bütün S; kolaylıkla hesaplanabilir!

Birçok PRNG liner yapıda olduğundan şifreleme özellikleri kötüdür.

- Kriptografik Olarak Güvenli Sözde Rastgele Sayı Üreticileri (CSPRNG)
 - Ek özellikleriyle özel PRNG:
 - Çıkış kesinlikle tahmin edilememeli

Daha Doğrusu : s_i , çıkışından verilen sıralı n bit bir sonraki çıkış s_{n+1} de tahmin edilemez (polinom zamanda).

Buna şifrelemede özellikle stream şifre yapısında ihtiyaç duyulur