

一: 概述

TM1727是 4*40 LCD显示驱动控制专用电路,最多可以显示 160段。内部集成有 MCU 两线数字接口、数据锁存器、LCD驱动等电路。支持 1/3BIAS,1/2BIAS,LINE翻转,FRAVE翻转,支持 3V/5V的 LCD屏。所有设置均通过 2线串行接口传输数据。主要应用于段码 LCD显示屏产品驱动。

二: 特性说明

采用低功耗 OMOSI艺

40X4点 LOD驱动

1/2或 1/3LOD驱动偏压可选

支持 FRAM和 LINE两种驱动波形 选用 FRAME功耗更低

显示亮度自由设定

串行接口(SDA,SCL)

振荡方式:内置 RC振荡,典型振荡频率为 95K-IZ

封装形式: SSOP48, LQFP48,

三:原理框图

图 1:原理框图

3.1 引脚排列

Γ		
VDD	1	48 COM3
SDA 🗆	2	47 COM2
SCL 🗆	3	46 COM1
GND [4	45 COM0
SEG0 □	5	44 SEG39
SEG1 □	6	43 SEG38
SEG2 □	⁷ TM1727	42 SEG37
SEG3 □	8	41 SEG36
SEG4 □	9	40 SEG35
SEG5 □	10	39 SEG34
SEG6 □	11	38 SEG33
SEG7 □	12	37 SEG32
SEG8	13	36 SEG31
SEG9 □	14	35 SEG30
SEG10	15	34 SEG29
SEG11	16	33 SEG28
SEG12 □	17	32 SEG27
SEG13	18	31 SEG26
SEG14 □	19	30 SEG25
SEG15	20	29 SEG24
SEG16 □2	21	28 SEG23
SEG17	22	27 SEG22
SEG18 □2	23	26 SEG21
SEG19 □	24	25 SEG20
W.		

图 2: TM1727-SSOP48引脚排列

图 3: TM1727-LQFP48引脚排列

3.2: 引脚说明

- · - · J	110-1-40-12							
引脚序号	引脚名称	功能描述						
2	SDA	2线串行通讯数据输入						
3	SCL	2线串行通讯时钟输入						
45-48	COMO-COMB	位驱动						
5-44	SEGO-SEG35	段驱动						
4	G/D	地						
1	VDD	电源						

五:显示 RAM分布

该寄存器存储通过串行接口从外部器件送到 TM1727的数据,地址从 00-13H共 20 个字节单元,分别与芯片 SEG和 COM管脚所接的 LCD/灯对应,地址分配如下表:

	B0	B1	B2	B 3	3 B4 B5 B6 B7				
RAM地址	COMD	COMI	COM2	СОМВ	COMO	COMI	COM2	СОМВ	
00H		S	EGO			SI	- G1		
01H		S	EG2			St	- C3		
02H		S	EG4			St	- C65		
03H		S	EG6			St	- G7		
04H		S	EG8			St	ΞG 9		
05H		S	Ξ G10			SE	G11		
06H		S	EG12			SE	G13		
07H		S	EG14		SEG15				
H80		S	EG16		SEG17				
09H		S	EG18		SEG19				
0AH		S	EG20		SEG21				
0BH		S	- G22	4	SEG23				
00H		S	EG24		SEG25				
ODH		S	EG26	A	SEG27				
0 □ H		SI	EG28		SEG29				
0FH		S	EG30		SEG31				
10H	SEG32				SEG33				
11H	SEG34				SEG35				
12H		S	EG36		SEG37				
13H		S	EG38			SE	C3 9		

表 1: RAM地址分配

六 通讯协议

TM1727采用 2线串行传输协议通讯。

1:开始信号(START)/结束信号(STOP)

开始信号:保持 SCL为"1"电平, SDA从"1"跳"0",认为是开始信号,如 (图 3)A段;

结束信号:保持 SCL为"1"电平, SDA从"0"跳"1",认为是结束信号,如 (图 3)E段;

2: ACK信号

如果本次通讯正常,芯片在串行通讯的第 8个时钟下降沿后,TM1727主动把 SDA 拉低。直到检测到 SOL来了上升沿,SDA释放为输入状态(对芯片而言),如 图 3)D 段。

3: 写"1"和写"0"。

写"1":保持 SDA为"1"电平, SCL从"0"跳到"1",再从"1"跳到"0",则认为是写入"1"如图 3)B段。

写"0":保持 SDA为"0"电平, SCL从"0"跳到"1",再从"1"跳到"0",则认为是写入"0"如图3)C段。

4: 一个字节数据传输格式

一个字节数据的传输格式如图 4.数据发送时 LSB在前, MSB在后。

SCL	1	2	3	4	5	6	7	8
SDA	$ B0\rangle$	$\langle B1 \rangle$	B2 X	В3	№ В4	$\langle B5 \rangle$	B6 X	B7 X

图 5

5: 显示控制命令

Ī	B7	B 6	B 5	B4	B 3	B2	B1	B0
Ī	0	TESE	STANDBY	LF	BIAS	P/W2	P/W/11	PWWD

TEST: =0 正常工作模式;=1测试模式。在测试模式下 芯片工作的时钟切换为 SCL,

当从正常工作模式切换为测试模式,芯片的显示周期复位,重新开始新的扫

描周期。

STANDBY: =0,待机模式; =1,正常工作模式。在待机模式下 SEG和 COM均被拉高,内

部振荡器停止工作。

LF: =0, LINE模式; =1FRAVE模式。

BIAS: =0, 1/3BIAS; =1, 1/2BIAS

PWM: 显示亮度调节只能对 3V电压驱动的屏有效,如果使用 5V液晶屏,不满意显

示亮度,可心调节 IC的供电电压(见表 2)。

PWM<2:0>	驱动电压(V)	说明
111	5.0	驱动 5V的屏
110	3.3	
101	3.2	
100	3.1	
011	3.0	驱动 3V的屏
010	2.9	
001	2.8	
000	2.7	

表 2: PWW设置对应驱动电压

LOD驱动控制专用电路

TM1727

6: 数据命令

B7	B6	B 5	B4	B 3	B2	B1	B0
1	1	0			起始地均	止	

设置的地址为起始地址。地址范围为 00H-13H.

7: 发送显示控制命令格式

开始信号	显示控制命令	ack	结束信号

数据发送时 LSB在前, MSB在后。

8: 发送显示数据格式

数据发送以"START"开始,以"STOP"结束。数据发送时 LSB在前,MSB在后。显示数据的发送仅支持地址自动加一方式,即每接收 1BYTE数据,地址自动加一,不需要重新设置地址。TM1727内部 RAM有 32个字节地址 (00—1PH),实际用到的显示 RAM只有 00H—13H(20BYTE),当地址为 13H时,继续发送数据,地址加一,由于显示 RAM只有 20BYTE,因此不影响芯片显示 RAM。当地址为 1PH时,继续发送数据,地址加一,等于 00H,将改写 00H单元的内容。

图 8: 流程图

八:显示程序例子:

```
下面是用C51单片机把TM1727显存写满0xA5并显示出来为例子的C程序
//MCU:AT89S52
//MOL晶振: 11.0592MHZ
/ /开发环境: Keil uVision3
#include<REG52.H>
#include<intrins.h>
#define uint unsigned int
#define uchar unsigned char
             / 定义 SD数据线
sbit SDA=P1^0:
sbit SCL=P1^1;
               / 定义 SOL时钟线
                                //r毫秒延时子程序
void delay(uint z)
   uint x,y;
   for (x=z;x>0;x--)
      for(y=112;y>0;y--);
}
                              //START信号
void start()
{
                //SCL为高电平的时候
   SCL=1;
                // SDA来一个下降沿
   SDA=1:
   SDA=0:
void stop()
                            //STOP信号
{
   _nop_();_nop_();
    SDA=0;
   SCL=1;
               //SCL为高电平的时候
   _nop_();_nop_();_nop_();
                //SDA来一个下降沿
   SDA=1;
   _nop_();_nop_();
                             / 应答信号
void ack()
   SDA=1;
```

```
_nop_();
  while(SDA); / / 第8个信号后,等待芯片把总线拉低
             //生机给出一个上升沿
  SCL=0;
  SCL=1:
  SCL=0:
  SDA=0;
              //当前状态为芯片释放为输入
void write(uchar date8)
                                  / 写一个字节子程序
  uchar i, j;
  i=date8;
  SCL=0:
              // SCL为低电平
  for(i=0;i<8;i++)
   {
     if(j&0x01) / 检测SDA电平
        SDA=1;
     else
        SDA=0:
     SCL=0;
              //SOL上升沿,数据被写入
     SCL=1:
     SCL=0;
     j >>=1;
  }
void send_and(uchar temp)
                                //发送显示控制命令子程序
{
                / 开始信号
  start();
                / 写入一个8位的命令,低位在前,高位在后
  write(temp);
                / 应答信号
  ack();
  stop();
                / 停止信号
void send_data(uchar omd, uchar d1) // 写显存子程序
{
  uchar num;
                / /开始信号
  start();
  write(ord); / 写入一个8位的命令,低位在前,高位在后
```


LOD驱动控制专用电路

```
/ 应答信号
  for (num=0; num<20; num++) / 写入显存数据
     write(d1); //写入的数据
                    / 应答信号
     ack();
  stop();
                     / /停止信号
void init()
                    //MOL初始化
  P1=0XFF;
                     //生程序
void main(void)
{
   init();
                     /|初始化
   send_data(0xC0, 0xA5); / /设置首地址,并写入数据
   send_omd(0x27); //设置显示控制命令 : 1/3BIAS,LINE模式,驱动5V
LOD屏。
                     //循环等待
   while(1);
               **程序结束 *
```


图 9: 驱动波形图

十:电气参数:

1: 极限参数(Ta = 25, Vss = 0 V)

1/3Bias Line

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ~ +6.0	V
逻辑输入电压	VI1	$-0.5 \sim VDD + 0.5$	V
工作温度	Top t	-40 ~ +105	
储存温度	Tstg	-65 ~ +150	

2: 正常工作范围电气特性(Ta = -20 ~ +70 , VDD = 5V, Vss = 0 V

	* * * * * * *			· · · · · · · · · · · · · · · · · · ·		
参数	符号	最小	典型	最大	单位	测试条件
逻辑电源电压	VDD	ı	5		V	-
正常工作电流	DD	-	10	-	uA	
待机电流	IDD0	ı	ı	1	uA	
高电平输入电压	VIH	0.65 VDD	ı	VD VD	>	
低电平输入电压	VIL	0	ı	0.4 VDD	V	-
LOD COM輸出电流	IOH1	-120	-150	_	uА	COMD~COMB
	IG II	- 120	- 130	-	uг	Vo=4.5V
LOD COM輸入电流	IQL1	80	100	_	uА	COMD~COMB
	IGLI	00	100	_	ur.	Vo=0.5V
LOD SEC输出电流	10H2	-80	-150	_ (uA	SEF0-SEG35
	IGE	-00	- 130	_	ur	Vo=4.5V
LOD SEC输入电流	IOL2	80	100		uA	SEF0-SEG35
100 513制八电流	1012	80	100		UA	Vo=0.5V

3: 开关特性 (Ta = -20 ~ +70 , VDD = 5 V)

参数	符号	最小	典型	最大	单位	测试条件
振荡频率	fosc	-	95	-	KHz	
最大时钟频率	fmax	12		-	KHz	占空比 50%

4: 时序特性 (Ta = -20 ~ +70 , VDD = 5 V)

参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PWCLK	400	1.	-	ns	-
数据建立时间	tSETUP	100	79	-	ns	
数据保持时间	tHOLD	100	-	-	ns	•

5: 时序波形图:

图 10: 时序波形图

Unit:um

D. J.M.	V	V	D. J.M.		W V
Pad No.	Х	Υ	Pad No.	X	Υ
1 1	149	811	25	1541	820
2	113	696	26	1541	930
3	113	586	27	1541	1040
4	113	476	28	1541	1150
5	113	366	29	1541	1260
6	113	256	30	1541	1370
7	113	146	31	1541	1480
8	291	110	32	1383	1500
9	401	110	33	1273	1500
10	511	110	34	1163	1500
11	621	110	35	1053	1500
12	731	110	36	943	1500
13	841	110	37	833	1500
14	951	110	38	723	1500
15	1061	110	39	613	1500
16	1171	110	40	503	1500
17	1281	110	41	393	1500
18	1391	110	42	283	1500
19	1500	110	43	113	1473
20	1541	270	44	113	1363
21	1541	380	45	113	1253
22	1541	490	46	113	1143
23	1541	600	47	113	1033
24	1541	710	48	113	923

十一:封装

SSOP48封装图:

尺寸标注	最 小 (mm)	最 大(mm)	尺寸标注	最 小(mm)	最 大(mm)
A	15. 77	15. 97	C3	0.2	0.4
A1	0.20	0.35	C4	0.12	0. 25
A2	0. 635TYP		D	1. 41TYP	
A3	0. 5TYP		D1	0.61	0. 91
A4	10. 2TYP		h	0.381	0. 635
В	10. 01	10.61	ф1	2. 2TYP	
B1	7. 39	7. 59	θ 1	15°	TYP
B2	8. 6TYP		θ 2	15° TYP	
С	2. 41	2.78	θ3	4° TYP	
C1	2. 18	2.38	θ 4	8° TYP	
C2	1. 067TYP				

Symbol	Dimensions In	Millimeters	Dimensions In Inches	
Symbol	Min	Max	Min	Max
A		1.600		0.063
A1	0.050	0.150	0.002	0.006
A2	1.350	1. 450	0.053	0.057
b	0.190	0.260	0.007	0.010
С	0.090	0.200	0.004	0.008
D	6.900	7. 100	0.272	0.280
D1	8.850	9.150	0.348	0.360
E	6.900	7. 100	0.272	0.280
E 1	8.850	9.150	0.348	0.360
e	0.500(BSC)		0.020(BSC)	
L	0.450	0.750	0.018	0.030
θ	1 °	7°	1 °	7°

(以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。)