EJEMPLO 5.7.4 Cálculo de imA y $\rho(A)$ para una matriz de 3×3

Encuentre una base para im A y determine el rango de $A = \begin{pmatrix} 2 & -1 & 3 \\ 4 & -2 & 6 \\ -6 & 3 & -9 \end{pmatrix}$.

SOLUCIÓN ightharpoonup Como $_1 = 2
_1$ y $_3 = -3
_1$, se ve que $ho(A) = \dim R_A = 1$. Así, toda columna en

 C_A es una base para $C_A = \text{im}A$. Por ejemplo, $\begin{pmatrix} 2 \\ 4 \\ -6 \end{pmatrix}$ es una base para imA.

El siguiente teorema simplificará los cálculos de la imagen, el rango y la nulidad.

Teorema 5.7.5

Si A es equivalente por renglones a B, entonces $R_A = R_B$, $\rho(A) = \rho(B)$ y $\nu(A) = \nu(B)$.

Demostración

Recuerde que según la definición 2.4.3, A es equivalente por renglones a B si A se puede "reducir" a B mediante operaciones elementales con renglones. Suponga que C es la matriz obtenida al realizar operaciones elementales en A. Primero se muestra que $R_A = R_C$. Como B se obtiene realizando varias operaciones elementales con los renglones de A, el primer resultado, aplicado varias veces, implicará que $R_A = R_B$.

Caso 1: Intercambio de dos renglones de A. Entonces $R_A = R_C$ porque los renglones de A y C son los mismos (escritos en diferente orden).

Caso 2: Multiplicación del renglón i de A por $c \neq 0$. Si los renglones de A son $\{\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_i, \ldots, \mathbf{r}_m\}$, entonces los renglones de C son $\{\mathbf{r}_1, \mathbf{r}_2, \ldots, c\mathbf{r}_i, \ldots, \mathbf{r}_m\}$. Es obvio que $c\mathbf{r}_i = c(\mathbf{r}_i)$ y $\mathbf{r}_i = (1/c)$ $(c\mathbf{r}_i)$. De esta forma, cada renglón de C es un múltiplo de un renglón de A y viceversa, lo que significa que cada renglón de C está en el espacio generado por los renglones de A y viceversa. Así se tiene

$$R_A \subseteq R_C$$
y $R_C \subseteq R_A$ por lo tanto, $R_C = R_A$

Caso 3: Multiplicación del renglón i de A por $c \neq 0$ y suma del mismo al renglón j. Ahora los renglones de C son $\{\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_i, \ldots, \mathbf{r}_j + c\mathbf{r}_i, \ldots, \mathbf{r}_m\}$. En este caso,

$$\mathbf{r}_{j} = (\mathbf{r}_{j} + c\mathbf{r}_{i}) - c\mathbf{r}_{i}$$
renglón j de C renglón i de C

de manera que todos los renglones de A se pueden expresar como una combinación lineal de los renglones de C y viceversa. Entonces, como antes,

$$R_A \subseteq R_C y R_C \subseteq R_A$$
 por lo tanto, $R_C = R_A$

Se ha demostrado que $R_A=R_B$. Por lo tanto, $\rho(R_A)=\rho(R_B)$. Por último, el conjunto de soluciones de $A{\bf x}={\bf 0}$ no cambia bajo las operaciones elementales. Así, $N_A=N_B$ y entonces $\nu(A)=\nu(B)$.

El teorema 5.7.5 es de suma importancia. Indica, por ejemplo, que el rango y el espacio de los renglones de una matriz son lo mismo que el rango y el espacio de los renglones de la forma escalonada de dicha matriz. No es difícil probar el siguiente teorema (vea el problema 51 de esta sección).