2022 / 2023 学年秋季学期

概率论与数理统计模拟试题

注意事项:

1. 本次考试为闭卷考试,考试时间为 120 分钟,总分 100 分。

注意行为规范 遵守考场纪律

		选择题:每题 3 分 Þ,只有一项是符合	、, 共 30 分。在每小 ↑题目要求的。	、题给出的區	四个选项
1.	假设事件 A,B 满足 P	P(B A)=1,则			()
	A. <i>B</i> 是必然事件 I	B. $P(B) = 1$	C. $A \subset B$	D. $P(A -$	(-B) = 0
2.	设 A, B, C 是随机事件	+, A,C 互不相容,	$P(AB) = \frac{1}{2}, P(C) =$	= 1/3, 则 P($(AB \overline{C}) =$
	A. $\frac{1}{4}$	3. $\frac{3}{4}$	C. $\frac{1}{2}$	D. $\frac{1}{3}$	
3.	设随机变量 X 与 Y 相则 $E(UV) =$	互独立,且期望均有	在,记 $U = max\{X, Y\}$	Y, $V = m$	$in\{X,Y\},$
	A. $E(U)E(V)$	B. $E(X)E(Y)$	C. $E(U)E(Y)$	D. $E(X)$	E(V)
4.	设随机变量 X 服从证 $F(X)$,则 $P(Y \le 0.5)$		其分布函数为 $F(X)$),记随机	变量 Y = ()
	A. 与 μ 和 σ 均无关		B. 与 μ 和 σ 均有 🤊	关	
	C. 与 μ 有关,与 σ	元 关	D. 与 μ 无关, 与 α	7 有关	
5.	下列说法不一定正确的 A. 连续型随机变量的				()
	B. 正态随机变量的线	性函数仍是正态随	机变量		
	C. n 个正态随机变量	的线性组合仍是正常	态随机变量		
	D. 二维正态分布的边	缘分布都是一维正法	态分布		
6.	设随机变量 $X \sim U(0, -1)$,则 $D(2X - Y + -1)$	•	从参数为 2 的泊松分	布,且 Co	v(X,Y) =
	A. 1	3. 5	C. 9	D. 12	

7.	设随机变量 X ,	Y 不相关,	$\perp \!\!\! \perp EX =$	2, EY = 1	1, DX = 3,	则 $E[X(X -$	+Y-2)] =
							()
	A3	В. 3		С.	-5	D. 5		

- 8. 设 $X_1, X_2, ..., X_n (n \ge 2)$ 为来自总体 $N(\mu, 1)$ 的简单随机样本,记 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$,则下列结论不正确的是
 - A. $\sum_{i=1}^n (X_i \mu)^2$ 服从 χ^2 分布 B. $\sqrt{\frac{n}{n-1}} \sum_{i=1}^n (X_i \overline{X})^2$ 服从 χ^2 分布
 - C. $\frac{(X_n-X_1)^2}{2}$ 服从 χ^2 分布 D. $n(\overline{X}-\mu)^2$ 服从 χ^2 分布
- 9. 设随机变量 X_1, X_2, X_3, X_4 独立同分布,且 X_1 的 4 阶矩存在,设 $\mu_k = E(X_1^k), k = 1, 2, 3, 4$,则由切比雪夫不等式,对于任意的 $\varepsilon > 0$,有 $P(|\frac{1}{4}\sum_{i=1}^4 X_i^2 \mu_2| \geqslant \varepsilon) \leqslant$
 - A. $\frac{\mu_4 \mu_2^2}{4\varepsilon^2}$ B. $\frac{\mu_4 \mu_2^2}{2\varepsilon^2}$ C. $\frac{\mu_2 \mu_1^2}{4\varepsilon^2}$ D. $\frac{\mu_2 \mu_1^2}{2\varepsilon^2}$
- $10. \quad \mbox{0.25} \quad \mbox{0$
 - A. $\hat{\theta}$ 是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2}{n}$
 - B. $\hat{\theta}$ 不是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2}{n}$
 - C. $\hat{\theta}$ 是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2 2\rho\sigma_1\sigma_2}{n}$
 - D. $\hat{\theta}$ 不是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2 2\rho\sigma_1\sigma_2}{n}$

得分	_	植穴鴠.	每空 2 分,	进厶	16	厶
阅卷人	_,	块工心:	攻エ ∠ 刀,	かりノノ	10	IJ

- 1. 在 $\triangle ABC$ 中任取一点 P, $\triangle ABP$ 与 $\triangle ABC$ 的面积之比大于 $\frac{n-1}{n}$ 的概率 为 .
- 2. 某盒中有 10 件产品,其中 4 件次品,今从中取 3 次产品,一次取一件,不放回,则第三次取得正品的概率为______,第三次才取得正品的概率为_____.

- 3. 将长度为 1m 的木棒随机截成两段,设两段长度的相关系数为 ρ ,则 $|\rho|=$ _____.
- 5. 设一设备在长为 t 的时间内发生故障的次数 N(t) 服从参数为 λt 的泊松分布,则相继两次故障之间时间间隔 T 的分布函数为_______.
- 6. 设连续型随机变量 X_1, X_2 相互独立,且方差均存在, X_1, X_2 的概率密度分别为 $f_1(x), f_2(x)$,随机变量 Y_1 的概率密度为 $f(y) = \frac{1}{2}[f_1(y) + f_2(y)]$,随机变量 $Y_2 = \frac{1}{2}(X_1 + X_2)$,则 EY_1 _____ EY_2 , DY_1 _____ DY_2 (均填 >,< 或 =)

甲、乙两个盒子中均有 2 个红球和 2 个白球,选取甲盒中任意一球,观察颜色后放入乙盒,再从乙盒中任取一球,令 X,Y 分别表示从甲盒和乙盒中取到的红球个数。

- (1) 求 X,Y 的联合概率分布与边缘概率分布.
- (2) 求 *X*, *Y* 相关系数.

得分	四、	(10 分)
阅卷人	E3 /	(10 77)

设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = \begin{cases} xe^{-y}, & 0 < x < y \\ 0, & 其他 \end{cases}$$

- (1) 求 Z = X + Y 的概率密度;
- (2) 求 $Z = \max\{X, Y\}$ 的概率密度;
- (3) 求在 X = x 的条件下, Y 的条件概率密度。

得分	_	(0.4)
阅卷人	五、	(9分)

在区间 (0,2) 上随机取一点,将该区间分成 2 段,较短一段的长度记为 X,较长一段的长度记为 Y,令 $Z=\frac{Y}{X}$.

- (1) 求X的概率密度;
- (2) 求 Z 的概率密度;
- $(3) \quad \not \! \! \bar{\mathcal{R}} \; E\left(\frac{X}{Y}\right).$

得分	六、	(9分)
阅卷人	/\\ 	(977)

已知分子运动的速度 X 具有概率密度

$$f(x;\alpha) = \begin{cases} \frac{4x^2}{\alpha^3 \sqrt{\pi}} e^{-(\frac{x}{\alpha})^2}, & x > 0, \quad \alpha > 0 \\ 0, & x \leqslant 0 \end{cases}$$

 $X_1, X_2, ..., X_n$ 为 X 的简单随机样本.

- (1) 求 α 的矩估计量和最大似然估计量;
- (2) 验证所得矩估计是否为 α 的无偏估计。

得分	_ بد	(9分)
阅卷人	٦٠٠	(9)))

设二维随机变量 (X,Y) 服从区域

$$D=\{(x,y)|-1\leqslant x\leqslant 1, 0\leqslant y\leqslant 1\}$$

上的均匀分布.

- (1) 写出 (X,Y) 的概率密度;
- (2) 设 $Z = \frac{Y}{3X}$, 求 Z 的概率密度。

	1	
得分	人、 人、	(9 分)
阅卷人	/(\	(977)

设随机变量 X_1 与 X_2 相互独立,且均服从 N(0,1), X_3 的分布律为 $P(X_3=-1)=\frac{1}{4}$, $P(X_3=1)=\frac{3}{4}$,且 X_1 与 X_3 相互独立.

- (1) 求 $Z = X_1 X_3$ 的概率密度;
- (2) 求 X_1 与 Z 的相关系数;
- (3) $(X_1 + X_2)^2$ 与 $(X_1 X_2)^2$ 是否相互独立? 说明理由。