Data Mining Project 2

資工碩一P76084300 施逢怡

一、簡介

- 1. 專案目標:分析學生的各種資料來分類學生(好學生、表現沒這麼好的學生)
- 2. 資料: Student Performance Data Set

(https://archive.ics.uci.edu/ml/datasets/student%2Bperformance)

3. 方法: Decision tree、Random Forest

- Design a set of rules to classify data

我認為"好學生"應該要有三種特質,分別是

- 1:每天溫習功課的時間至少要有2小時
- 2.不可以有被當的科目
- 3.成績要中上以上

Dataset 裡面相對應的 Attribute 就是"studytime", "failures", "grade"

- studytime 裡面的數值就是讀書時間(1 <2 hours, 2 2 to 5 hours, 3 5 to 10 hours, or 4 >10 hours)
- failures 則是被當科目的數目, n if 1<=n<3, else 4
- grade 則是分為"good"和"bad",是以他們的成績最分類

所以最後的三個基本 Rules(後面有再增加 Feature 相對應的 Rule):

- 1. studytime >= 2
- 2. failures == 0
- 3. grade == "good"

結果

- 我自己實作了 Decision tree(decisiontree.py),並得到圖一的結果,圖二和圖三則是用 DecisionTreeClassifier(Scikit-learn_decisiontree.ipynb)跑出來的結果。
- 圖一和圖二為3個 features 的結果
- 圖三是 10 個 features 的 Decision Tree 的結果,增加了 freetime(課後自由時間)、goout(出門和朋友玩的頻率)、Medu(母親教育程度)、Fedu(父親教育程度)、Dalc(平日喝酒頻率)、health(健康程度),各個結果如下圖:

圖二 (Accuracy:0.958974358974359)

圖三 (Accuracy: 0.9076923076923077)

Random Forest:

隨機森林裡面的每棵樹的產生的過程中,都已經考慮了避免共線性,避免過擬合,剩下的每棵樹需要做的就是盡可能的在自己所對應的數據(特徵)集情況下盡可能的做到最好的預測結果。

用隨機森林對一個新的對象進行分類判別時,隨機森林中的每一棵樹都會給出自己的分類選擇,並由此進行「投票」,森林整體的輸出結果將會是票數最多的分類選項;而在回歸問題中,隨機森林的輸出將會是所有決策樹輸出的平均值。

結果

Feature: studytime, failures, grade

	precision	recall	f1-score	support
0 1	0.94 1.00	1.00 0.89	0.97 0.94	120 75
accuracy macro avg weighted avg	0.97 0.96	0.95 0.96	0.96 0.96 0.96	195 195 195

Feature: studytime, failures, grade, goout, Medu, Fedu, freetime, Dalc, health

	precision recall		f1-score	support
0	0.94	0.97	0.95	120
1	0.94	0.89	0.92	75
accuracy			0.94	195
macro avg	0.94	0.93	0.93	195
weighted avg	0.94	0.94	0.94	195

專案結論

這次的專案主要是 Decision Tree 的實作,我有自己實作(檔案:decisiontree.py),裡面用 entropy 來做分類依據,在結果可以發現出來的結果並沒有和我一開始的 Rule 相衝突。

但<u>不一樣的點</u>是:我是依照<u>平行的方式來 Label 我的資料</u>,Decision tree 出來的結果是以 Tree 的方式做分類,所以會有階層的先後順序。順序是 Studytime -> Failure -> Grade。

除此之外,可以發現在讀書時間 3 和 4 中,被當科目只有相對應的(0,1,2)、(0,1),代表在 Training data 裡面,讀書時間越久的學生,並不會被當太多的科目。

讀書時間(studytime)	1	Bad student				
	2	被當科目(Failure)	0	成績	好	Good student
		1			壞	Bad student
				Bad student		
			2	Bad student		
			3	Bad student		
	3	被當科目(Failure)	0	成績	好	Good student
					壞	Bad student
		1 Bad stude		dent		
			2	Bad student		
	4	被當科目(Failure)	0	成績	好	Good student
					壞	Bad student
			1	Bad student		

用 DecisionTreeClassifier 得出的結果,因為它將各個 feature 視為數值,所以切得更細,像是 studytime 就被切為 1.5、2.5、3.5 三個區段,和我原先的 Rule 的數值就不太一樣(比較圖如下)。並且也會導致 tree 較為 deep。

	原本 Rule	Classifier
Studytime	>=2	>=1.5
Failure	==0	<=0.5
Grade	==1(good)	>=0.5