Вынужденные колебания в электрическом контуре.

Дмитрий Павлов, 790 25 октября 2018 г.

Содержание

1	Вст	упление.									
	1.1	Цель работы									
	1.2	Оборудование.									
	1.3	Экспериментальная установка									
2	Teo	ретическая часть.									
3	иєИ	перения.									
	3.1	Резонансная частота контура									
	3.2										
	3.3 Процессы установления и затухания колебаний										
	3.4	Обработка результатов									
		3.4.1 Резонансные кривые									
		3.4.2 Резонансная частота									
	3.5	Добротность									
		3.5.1 Первый экспериментальный способ (оценка)									
		3.5.2 Второй экспериментальный способ									
		3.5.3 Теоретический способ									

1 Вступление.

1.1 Цель работы.

В работе исследуются вынужденные колебания, возникающие в электрическом колебательном контуре под воздействием внешней ЭДС, гармонически изменяющейся во времени.

1.2 Оборудование.

- генератор звуковой частоты (ЗГ);
- Осциллограф (ЭО);
- Вольтметр
- Частотомер
- Ёмкость;
- Индуктивность;
- Магазин сопротивлений;
- Универсальный мост.

1.3 Экспериментальная установка.

Схема установки для исследования вынужденных колебаний приведена на рисунке 1. Колебательный контур состоит из ёмкости C=0.1 мк Φ , индуктивности L=100 м Γ н и переменного сопротивления R.

Синусоидальное напряжение от ЗГ проходит через частотомер, позволяющий измерять рабочую частоту с высокой точностью. В корпус частотомера вмонтирован генератор цугов - электронное реле, разрезающее синусоиду на периодически повторяющиеся цуги - отрезки синусоиды, содержащие 32 или 40 периодов колебаний.

Рисунок 1 – Схема установки для исследования вынужденных колебаний.

После частотомера через небольшую ёмкость $C_1 \approx 600$ пк Φ сигнал поступает на клеммы, смонтированные на отдельной панельке.

2 Теоретическая часть.

Добротность можно найти по формуле:

$$Q = \frac{\pi}{\Theta}$$
, где (1)

$$\Theta = \gamma T = \frac{1}{n} \ln \frac{U_0 - U_k}{U_0 - U_{k+n}}.$$
 (2)

О — логарифмический декремент затухания.

3 Измерения.

3.1 Резонансная частота контура.

Резонансную частоту контура можно найти по формуле:

$$\nu_0 = 1/(2\pi\sqrt{LC}).$$

Теоретически рассчитанная резонансная частота:

$$u_0 = 1/(2\pi\sqrt{LC}) = 1/(2\pi\sqrt{100} \text{ м}\Gamma\text{H } 0.1 \text{ мк}\Phi) = 1591.55 \ \Gamma\text{ц}.$$

3.2 Исследование резонансных кривых.

Вблизи резонанса амплитуда колебаний максимальна.

Меняя частоту генератора в обе стороны от резонансной, снимем зависимость показаний вольтметра U от показаний частотомера ν для случая когда сопротивление магазина $R=0\Omega$ и $R=100\Omega$. Для расчёта добротности контура необходимо проводить измерения до того момента пока амплитуда сигнала не упадет до (0.3-0.4) от резонансной.

Таблица 1 — Зависимость показаний вольтметра U от показаний частотомера ν для случая когда сопротивление магазина $R=0\Omega$.

ν/ν_0	1	0.94	0.86	0.78	0.7	0.62	0.54	0.48	0.4	0.32
B, мТл	1566	1578	1584	1589	1595	1601	1610	1616	1629	1643
ν/ν_0	0.92	0.84	0.8	0.7	0.64	0.58	0.48	0.4	0.32	
В, мТл	1556	1551	1549	1542	1537	1532	1524	1513	1503	

Таблица 2 — Зависимость показаний вольтметра U от показаний частотомера ν для случая когда сопротивление магазина $R=100\Omega$.

ν/ν_0	1	0.94	0.86	0.78	0.7	0.62	0.54	0.48	0.4	0.32
В, мТл	1568	1537	1518	1505	1481	1455	1446	1417	1385	1355
ν/ν_0	0.92	0.84	0.8	0.7	0.64	0.58	0.48	0.4	0.32	
В, мТл	1600	1615	1635	1654	1681	1713	1738	1764	1819	

3.3 Процессы установления и затухания колебаний.

Для расчёта добротности по скорости нарастания амплитуды измерим амплитуды двух колебаний U_k и U_{k+n} , разделенных целым числом периодов n, и амплитуду установившихся колебаний U_0 .

Проведем две серии измерений для $R = 0\Omega$ и $R = 100\Omega$.

Таблица 3 – Амплитуды двух колебаний U_k и U_{k+n} , разделенных целым числом периодов n, для случая когда сопротивление магазина $R = 0\Omega$.

U_x , B	0.5	1.1	1.5	2	2.1	1.6	1	0.5
U_{x+k} , B	1.6	1.6	2	2.4	1	0.5	0.5	0.2
k	7	4	6	12	7	11	7	13

Таблица 4 — Амплитуды двух колебаний U_k и U_{k+n} , разделенных целым числом периодов n, для случая когда сопротивление магазина $R = 100\Omega$.

U_x , мВ	20	34	46	54	66	52	22	10
U_{x+k} , мВ	12	13.2	12.8	13.2	2.4	0.8	2	0.8
k	5	6	4	4	5	7	3	6

Измерим активное сопротивление R_L и индуктивность L магазина индуктивностей с помощью измерителя LCR на частотах 50 Γ ц, 500 Γ ц и 1500 Γ ц.

3.4 Обработка результатов.

3.4.1 Резонансные кривые.

Построим на одном графике резонансные кривые в координатах $U/U_0 = f(\nu/\nu_0)$, где U_0 - напряжение при резонансной частоте ν_0 .

Рисунок 2 – Резонансные кривые для $R = 0\Omega$ (треугольники) и $R = 100\Omega$ (квадраты).

3.4.2 Резонансная частота.

Сравним теоретическое и экспериментальное значения резонансной частоты. Теоретическое значение частоты:

$$\nu = 1591.55 \, \Gamma$$
ц.

Экспериментальное значение частоты для R = 0 Ом:

$$\nu = 1566 \, \Gamma$$
ц.

Экспериментальное значение частоты для R = 100 Om:

$$\nu = 1568 \; \Gamma$$
ц.

Разница возникла при упрощении электрической схемы установки колебательным контуром.

3.5 Добротность.

3.5.1 Первый экспериментальный способ (оценка).

Определим добротность по формуле $Q = \omega_0/(2\Delta\Omega)$. Для контура с R = 0 Ом.

$$\omega_0 = 2\pi \cdot 1566 \ \Gamma$$
ц.
$$\Omega = 2\pi \cdot (0.017\nu_0).$$

$$Q = \frac{\omega_0}{2\Delta\Omega} = \frac{1}{2 \cdot 0.017} = 29.$$

Для контура с R = 100 Ом.

$$\omega_0 = 2\pi \cdot 1566$$
 Гц.
$$\Omega = 2\pi \cdot (0.062\nu_0).$$

$$Q = \frac{\omega_0}{2\Delta\Omega} = \frac{1}{2\cdot 0.062} = 8.06.$$

3.5.2 Второй экспериментальный способ.

Рассчитаем добротность контура по скорости нарастания и затухания колебаний.

По формулам (1) и (2) из теоретической части работы, основываясь на данных из таблиц 3 и 4, находим Q_i для восьми измерений.

Таблица 5 – Добротность для каждого измерения, R = 0 Ом.

Q	1							
σ_Q	5	5	6	6	6	6	6	6

Среднее значение добротности:

$$\langle Q \rangle = \sum_{i=1}^{7} Q_i = \frac{1}{8} \cdot (28 + 31 + 35 + 39 + 40 + 39 + 37 + 35) = 35.5.$$

$$\sigma_Q = 5.75.$$

$$\varepsilon_Q = 0.14 = 14\%.$$

Таблица 6 – Добротность для каждого измерения, R = 100 Ом.

Q	7	7	7	8	8	8	8	8
σ_Q	2	2	1	3	1	2	3	2

Среднее значение добротности:

$$< Q > = \sum_{i=1}^{7} Q_i = \frac{1}{8} \cdot (7 + 7 + 7 + 8 + 8 + 8 + 8 + 8) = 7.63.$$

$$\sigma_Q = 1.25.$$

$$\varepsilon_Q = 0.16 = 16\%.$$

3.5.3 Теоретический способ.

Рассчитаем теоретическое значение добротности через параметры конура $L,\ C$ и $R.\ R=0$ Ом.

$$Q = \frac{1}{R_L} \sqrt{\frac{L}{C}} = \frac{1}{30 \text{ Om}} \sqrt{\frac{99.97 \text{ M}\Gamma\text{H}}{0.1 \text{ MK}\Phi}} = 32.6.$$

R = 100 Om.

$$Q = \frac{1}{R + R_L} \sqrt{\frac{L}{C}} = \frac{1}{100 \text{ Om} + 30 \text{ Om}} \sqrt{\frac{99.97 \text{ M}\Gamma\text{H}}{0.1 \text{ MK}\Phi}} = 7.7.$$

4 Результаты.

Таблица 7 – Итоги.

R, Om	$R+R_L$	1 способ	2 способ	3 способ
R = 0 Om	30 Ом	29	$35.5 \pm 5.8, \varepsilon_Q = 14\%.$	32.6
R = 100 Om	130 Ом	8	$7.6 \pm 1.3, \varepsilon_Q = 16\%.$	7.7