

Emerging Trends

- Changing Deep Learning Workloads
- Newer Collective Frameworks like MCR-DL, MoE, ZERO and more, are emerging with emphasis on parallelism
- Instead of just AllReduce/Broadcast, more collectives are used
- Newer Demands on Network like data reduction, AR, low latency, resiliency

Optimal Path Selection

- Typical path selection is local to the fabric element's link state for e.g. ECMP, WECMP AR etc
- This doesn't take account for link quality downstream the packet path
- BGP does provide ability to learn and provide optimal and sub optimal path but is too slow
- Is there a better way to do path selection ???

Today we will talk about methods to pick an optimal local link in the AI/ML fabric that accounts for remote link quality as well.

We will qualify this with the measurements in actual deployment showing increase in app performance, resiliency and availability of the fabric.

Deployment Usecase And Topology

Large Scale Al Fabric

- Support max 128K GPUs
- Three tiers for large scale cluster
- RDMA over Converged Ethernet
- Loss-less transmission
- Better load balancing
- Rail-optimized network

Switch for High Performance Network

- •Hardware platform
 - •51.2T switch asic
 - •64x800G OSFP
 - •All ports support LPO (IL < 7db)
 - •1 MAC PCB, PHY-Less design

- •Optimized adaptive routing with ARS
- •Inband telemetry under end-network fusion
- •High-precision traffic and congestion monitor
- •Warm upgrade tool covered all online bugs

Adaptive Routing and Switching (ARS) Deployment

- •Higher throughput
 - •3%~12% higher avg BW utilization
 - •Lower queue congestion
- •Faster link failover
 - •Packet loss time < 0.5ms

- Multi-compatibility
 - •Flowlet mode with non-AR NIC
 - •Packet spray mode with AR NIC

Challenges

•Remote downlink congestion

- Cannot select the optimal path under three tiers network
- Greater impact under ARS flowlet mode

•Remote downlink failure

 Long packet loss time caused by multihop routing convergence

Challenges

- •Load balancing under asymmetric topology
 - •In a small radix pod with a multi-link topology, link failures may result in different numbers of uplink and downlink.
 - •Such asymmetric topology may cause congestion due to backpressure and HOLB.

Load Balancing Based on Global Topology

- •Link state protocol based on global topology
 - Associate global link topology with BGP routing to form point-to-point ECMP Group.
- •Full path status update
 - The remote link status is updated through the micorsecond level notification message.
 - The optimal path selection of AR ECMP is based on the quality of the local path and the remote path.

SAI Enhancements: ARS Path Profile Object

Path Characterization – 3 Tier Network

Node 1.0.0: Remote Quality of 1.x and 3.x nodes (One step lookahead)

```
L1 ECMP groups are create with remote nexthop type for 1.x.x

L1G1 till L1G31 ->[1.0.1] till [1.0.31] ----- Total 31 groups

L2 ARS ECMP groups

L1G0 -> L2G0.0 -> [2.0.0, ..., 2.0.31]

L1G2 -> L2G0.1 -> [2.0.0, ..., 2.0.31]

...

L1G31-> L2G0.31 -> [2.0.0, ..., 2.0.31]
```

Monitoring Ports:

No Monitoring ports

Publishing Ports:

No Publishing ports

Path Characterization – 3 Tier Network ..contd

Node 2.0.0: Remote Quality of 2.x.x nodes

L1 ECMP groups are create with remote nexthop type

L1G0 -> [2.0.1]

L1G1 -> [2.1.0]

L1G2 -> [2.1.1] . . .

L1G62 -> [2.31.1] -> Total 63 groups

L2 ECMP group is created with ARS enabled.

L2G0 -> [NH3.0.0, NH3.0.1, . . . NH3.15.0, NH3.15.1]

Standalone [NH1.0.0, NH1.0.1, . . . NH 1.0.31] nexthops for downstream traffic

Monitoring and Publishing Ports:

[1.0.0, 1.0.1, ... 1.0.31] monitored ports are published to members of L2G0 as well as to [1.0.0, 1.0.1, 1.0.31] L2G0 member ports are monitored and published to [1.0.0, 1.0.1 ... [1.0.31]

path profile obj1 =

SAL_ARS_PATH_PROFILE_ATTR_MON_PORT_LIST =
[1.0.0, 1.0.1,, 1.0.30, 1.0.31]

SAI_ARS_PATH_PROFILE_ATTR_PUB_PORT_LIST =
[1.0.0, 1.0.1,, 1.0.30, 1.0.31] +
[3.0.0, 3.0.1, 3.1.0, 3.1.1,, 3.15.0, 3.15.1]

SAI_ARS_PATH_PROFILE_ATTR_REMOTE_PATH_ID_LIST =
[1.0.0.x, 1.0.1.x,, 1.0.30.x, 1.0.31.x]

SAI_ARS_PATH_PROFILE_ATTR_TYPE =
SAI_ARS_PATH_PROFILE_TYPE_BOTH

path_profile_obj2 =

SAI_ARS_PATH_PROFILE_ATTR_MON_PORT_LIST =
[3.0.0, 3.0.1, 3.1.0, 3.1.1,,3.15.0, 3.15.1]

SAI_ARS_PATH_PROFILE_ATTR_PUB_PORT_LIST =
[1.0.0, 1.0.1,, 1.0.30, 1.0.31]

SAI_ARS_PATH_PROFILE_ATTR_REMOTE_PATH_ID_LIST =
[1.0.0.x, 1.0.1.x,, 1.0.30, x, 1.0.31.x]

SAI_ARS_PATH_PROFILE_ATTR_TYPE =
SAI_ARS_PATH_PROFILE_TYPE_BOTH

[L1G0, L1G2 ...L1G1023]

SAI_NEXTHOP_GROUP_ATTR_ARS_PATH_PROFILE_LIST = [path_profile_obj1, path_profile_obj2]

Path Characterization – 3 Tier Network ..contd

Node 3.0.0: Remote Quality of 1.x nodes

```
L1 ECMP groups are create with remote nexthop type for 1.x.x
            POD 1:
            L1G0 -> [1.0.0] . . .
            L1G31 -> [1.0.31]
                  L2 ARS ECMP group
                  L2G0 -> [2.0.0, 2.0.1]
            POD 2:
            L1G32 -> [1.1.0] . . .
            L1G63 -> [1.1.31]
                  L2 ARS ECMP group
                  L2G1 -> [2.1.0, 2.1.1]
            POD 31:
            L1G991 -> [1.31.0] . . .
           L1G1023 -> [1.31.31]
                  L2 ARS ECMP group
```

Node:3.0.0, Monitoring and Publishing Ports:

All L2Gx member ports are monitored and published to all L2Gx member ports path profile obj =

SAI_ARS_PATH_PROFILE_ATTR_MON_PORT_LIST = [2.0.0, 2.0.1, 2.1.0, 2.1.1 2.31.0, 2.31.1] SAI ARS PATH PROFILE ATTR PUB PORT LIST= [2.0.0, 2.0.1, 2.1.0, 2.1.1 2.31.0, 2.31.1] SAI ARS PATH PROFILE ATTR REMOTE PATH ID LIST= [2.0.0.x, 2.0.1.x, 2.1.0.x, 2.1.1.x 2.31.0.x, 2.31.1.x] SAI ARS PATH PROFILE ATTR TYPE = SAI ARS PATH PROFILE TYPE BOTH

[L1G0, L1G2 ...L1G1023] -> path profile obj

L2G31 -> [2.31.0, 2.31.1]

Call to Action

- SONIC HLD
 - Come join us to add more usecases and refine the HLD

- SAI Spec Enhancement
 - Come join us to define a SAI spec, write test cases and more

Thank you!

