Projet P3 LFSAB1503: Rapport de la première tâche

Groupe 1246

8 octobre 2014

Equation de la réaction et bilan de matière

Il nous est demandé de rechercher la quantité des différents composés nécessaire à la synthèse de l'ammoniac. Il nous était dit que l'ammoniac pouvait être obtenu à partir de dihydrogène (H_2) et de diazote (N_2) . Nous sommes donc arrivés à l'équation de synthèse de l'ammoniac suivante :

$$\mathrm{N_{2(g)}} + 3\,\mathrm{H_{2(g)}} \longrightarrow 2\,\mathrm{NH_{3(g)}}$$

La masse molaire de l'ammoniac étant de 17 g/mol, nous en avons déduit que une masse de 1000 t correspondait à $\frac{10^9}{17}$ mol. Nous avons ensuite fait un tableau d'avancement de la récetie un tableau d'avancement de la réaction, où les données sont exprimées en moles.

	$N_{2(g)}$	$3H_{2(g)}$	$2NH_{3(g)}$
Initial	$\frac{10^9}{17} \cdot \frac{1}{2}$	$\frac{10^9}{17} \cdot \frac{3}{2}$	0
Réaction	$-\frac{10^9}{17} \cdot \frac{1}{2}$	$-\frac{10^9}{17} \cdot \frac{3}{2}$	$+rac{10^9}{17}$
Final	0	0	$\frac{10^9}{17}$

Figure 1 – Tableau d'avancement de la réaction

La réaction se produisant en continu, on peut calculer des flux de quantité par seconde. On obtient selon nos calculs:

- une consommation de N_2 égale à : $\frac{10^9}{17} \cdot \frac{1}{2} \cdot \frac{1}{3600 \cdot 24} = 340.41 \text{ mol/s}.$ une consommation de H_2 égale à : $\frac{10^9}{17} \cdot \frac{3}{2} \cdot \frac{1}{3600 \cdot 24} = 1021.241 \text{ mol/s}.$ une production de NH_3 égale à : $\frac{10^9}{17} \cdot \frac{1}{3600 \cdot 24} = 680.827 \text{ mol/s}.$

Aspect thermique

Selon nos recherches, nous avons trouvé que la réaction était exothermique ($\Delta H_{react}(25 \, ^{\circ}\text{C}) = -92.2 \, \text{kJ/mol}$ pour la réaction en haut de page). Il nous était indiqué que la température du réacteur devait être maintenue à 500 °C et que celui-ci, vu le caractère exothermique de la réaction, pouvait être refroidi par un débit continu d'eau, dont la température variait entre 25 °C et 90 °C.

Calcul de volume d'eau nécessaire (pour une mole produite)

Il nous faut déterminer l'enthalpie de la réaction à 500 °C, c'est-à-dire 773.15 K. Nous l'obtenons comme suit :

$$\Delta H(773.15~{\rm K}) = \Delta H_{NH_3}(298.15~{\rm K}) + \int_{298.15}^{773.15} C_{p,NH_3} dT - \frac{1}{2} [\Delta H_{N_2}(298.15~{\rm K})$$

+
$$\int_{298.15}^{773.15} C_{p,N_2} dT$$
] - $\frac{3}{2}$ [$\Delta H_{H_2}(298.15 \text{ K})$ + $\int_{298.15}^{773.15} C_{p,H_2} dT$]

Il est important de préciser que les C_p sont les constantes calorifiques massiques des différents composants. Nous trouvons leur valeur ainsi que celles des enthalpies dans le livre de référence ¹. Nous obtenons finalement une différence d'enthalpie d'approximativement -57 kJ/mol de NH₃.

Nous savons que:

$$q = C_p \cdot \Delta T$$

Au vu des indications données, en supposant que nous travaillons à pression constante, en supposant que la température initiale de réacteur est de 500 °C, il vient : $-57000 \cdot 680.827 = 4.180 \cdot 65 \cdot d_{H_2O} \Rightarrow d_{H_2O} = 142830 \text{ g/s} = 142.830 \text{ kg/s}$ Etant donné qu'un kilogramme d'eau représente 1 L, cela équivaut à 142.830 L/s.

Source des réactifs

Le diazote

Dans des conditions normales, le diazote est le composant majoritaire de l'air, étant donné qu'il y est présent à 72 %. Un moyen pour obtenir du diazote est de compresser et refroidir l'air pour arriver à le liquéfier. Les différents compostants sont ensuite distillés afin de le séparer. Ce procédé est connu sous le nom de "cryogénique". ² D'autres méthodes sont celle de la perméation gazeuse, ou celle de RAMSAY; mais ces méthodes sont nettement moins utilisées et le diazote résultant est de qualité moindre par rapport au procédé cryogénique.

Le dihydrogène

Actuellement, la plus grande source de dihydrogène est le reformage de gaz naturel. Le méthane accompagné d'un catalyseur vont mener à l'obtention de différents gaz, dont le dihydrogène. C'est malheureusement une technique qui rejette une quantité de CO_2 non-négligeable.

^{1.} Principes de chimie - P. ATKINS et L.JONES, 2e édition, 2013

^{2.} Source : « Société Chimique de France - Le réseau des chimistes ». Consulté le 23 septembre 2014. http://www.societechimiquedefrance.fr/.

L'électrolyse de l'eau est également une alternative pour la production de dihydrogène. ³ C'est un moyen respectueux de l'environnement utilisant de l'eau déminéralisée qui sera dissociée au moyen d'un courant électrique. Les bulles de gaz formées seront séparées et filtrées, pour arriver à un gaz de bonne qualité. Mais cette technique ne permet qu'une production en petites quantités, et n'est donc pas tellement utilisée.

Bilan de matière

Figure 2 – Flowsheet production ammoniac

^{3.} « Hydrogène > Air Liquide in BELGIUM and LUXEMBOURG ». Consulté le 23 septembre 2014. http://www.airliquide.be/fr/applications-des-gaz/hydrogene-1.html.