BRAM Parameterized

Verilog code:

```
module bram #(
parameter data_width =32,
parameter addr_width=10,
parameter output_reg=0
)(
input clk,
input we,
input [addr_width-1:0] addr,
input [data_width-1:0] din,
output [data_width-1:0] dout
);
reg [data_width-1:0] mem [0:(2**addr_width-1)];
always @(posedge clk) begin
if (we) begin
mem[addr]<=din;
end
end
assign dout = mem[addr];
endmodule
```

Schematics:

Figure 1: RTL Schematic

Figure 2: Synthesized schematic

Slice logic table:

+-		+		+-		+		-+		+-		-+	
1	Site Type	I	Used	1	Fixed	I	Prohibited	I	Available	I	Util%	I	
+													
1	Slice LUTs*	1	548	1	0	I	0	1	53200	1	1.03	1	
1	LUT as Logic	I	36	1	0	I	0	1	53200	I	0.07	1	
1	LUT as Memory	I	512	1	0	I	0	1	17400	I	2.94	1	
1	LUT as Distributed RAM	I	512	1	0	I		1		1		1	
1	LUT as Shift Register	1	0	1	0	I		I		1		1	
1	Slice Registers	1	0	I	0	1	0	1	106400	1	0.00	1	
1	Register as Flip Flop	1	0	1	0	1	0	1	106400	1	0.00	1	
1	Register as Latch	1	0	1	0	1	0	1	106400	1	0.00	1	
1	F7 Muxes	I	256	1	0	I	0	I	26600	1	0.96	1	
1	F8 Muxes	1	128	1	0	I	0	I	13300	1	0.96	1	
+-		+		+-		+		-+		+-		-+	

Figure 3: Slice logic table

Question: Change the design to 50Kb (any depth and width) and check what resources it's consuming?

Ans: To change the design to 50Kb, also we have 32 bit i/o lines. Therefore 50000/32 = 1562.5 bit of data ~ 1600 .

Address line width $log_2(1600) = 10.643 \sim 11$.

Verilog code updated:

```
module bram #(
parameter data_width =32,
parameter addr_width=11,
parameter output_reg=0
)(
input clk,
input we,
input [addr_width-1:0] addr,
input [data_width-1:0] din,
output [data_width-1:0] dout
);
reg [data_width-1:0] mem [0:(2**addr_width-1)];
always @(posedge clk) begin
if (we) begin
mem[addr]<=din;
end
end
assign dout = mem[addr];
endmodule
```

Schematics:

Figure 4: updated for 50Kb

Figure 5: updated for 50Kb

In FPGA for large data it uses BRAM instead LUT's, even considering the fact it LUT is faster than BRAM.

This design uses RAMB36E1. **RAMB36E1** is a 36 Kb block RAM primitive that can be cascaded for larger memories. It supports various configurations, from 1-bit × 32K to 36-bit × 1K true dual-port RAM, and up to 72-bit × 512 simple dual-port RAM. Read and write ports are fully synchronous but can operate independently. Features include byte-enable writes, optional output registers for faster timing, and built-in error detection and correction.

Figure 6: Block diagram for RAMB36E1

Logic tables:

1. Slice Logic

+		-+		+-		+		+		+-		-+
1	Site Type	I	Used	I	Fixed	I	Prohibited	I	Available	I	Util%	I
+		-+		+-		+		+		+-		-+
Slice 1	LUTs*	1	0	I	0	١	0	I	53200	١	0.00	I
LUT a	as Logic	I	0	I	0	I	0	١	53200	I	0.00	I
LUT a	as Memory	I	0	I	0	I	0	I	17400	I	0.00	I
Slice H	Registers	1	0	I	0	I	0	I	106400	I	0.00	I
Regis	ster as Flip Flop	1	0	1	0	١	0	1	106400	I	0.00	I
Regis	ster as Latch	1	0	I	0	1	0	I	106400	I	0.00	1
F7 Muxe	es	I	0	1	0	1	0	I	26600	1	0.00	1
F8 Muxe	es	I	0	I	0	I	0	I	13300	I	0.00	I
+		-+-		+-		+		+		+		-+

Figure 7: Slice logic table

2. Memory

I	Site Type	•	Used	•			Prohibited	•				
-	Block RAM Tile	-+·	2	•	0	+	0	-+- 	140	-+-	1.43	
	RAMB36/FIFO*	ï	2	i	0	i	0	i	140	i	1.43	
	RAMB36E1 only	I	2	I		1		I		1		
	RAMB18	I	0	I	0	I	0	I	280	I	0.00	

Figure 8: BRAM usage table