as the translation lookaside buffers (TLBs) in virtual memory systems that cache page table entries (Section 9.6.2).

Practice Problem 6.12 (solution page 663)

The problems that follow will help reinforce your understanding of how caches work. Assume the following:

- The memory is byte addressable.
- Memory accesses are to 1-byte words (not to 4-byte words).
- Addresses are 13 bits wide.
- The cache is two-way set associative (E=2), with a 4-byte block size (B=4) and eight sets (S=8).

The contents of the cache are as follows, with all numbers given in hexadecimal notation.

2-way set associative cache

2-way set associative eache												
	Line 0						Line 1 is pridated soil					
Set index	Tag	Valid	Byte 0	Byte 1	Byte 2	Byte 3	Tag	Valid	Byte 0	Byte 1	Byte 2	Byte 3
0	09	1	86	30	3F	10	00	0	aches	_		
1	45	1	60	4F	E0	23	38	1	00	BC	0B	37
1	EB	0	<u></u>				0B	0	-		1 11 <u>11 11 11 11 11 11 11 11 11 11 11 1</u>	
2				die bis			32	1	12	08	7B	AD
3	06	0	06	- 78	07	C5	05	of 1(S)	40	67	C2	3B
4	C7	1	06			4B	6E	0	n wount	De al go	_	_
5	71	1)	0B	DE	18							
6	91	1	A0	B7	26	2D	F0	0	raepiace	d line a	00	27
7	46	0	02	01	N. prog	di m iner	DE	1 1 100	12	C0	88	37

The following figure shows the format of an address (1 bit per box). Indicate (by labeling the diagram) the fields that would be used to determine the following:

- CO. The cache block offset
- CI. The cache set index
- CT. The cache tag

Practice Problem 6.13 (solution page 664)

Suppose a program running on the machine in Problem 6.12 references the 1-byte word at address 0x0E34. Indicate the cache entry accessed and the cache byte