Løsningsforslag + Teori Øving 10

Simen Hustad

November 19, 2021

Dette er ikke ment som et fullstendig utfyllende løsningsforslag til øving 10, men kun for oppgave 7 (og oppgave 1, men den husket jeg ikke at jeg hadde gjort).

Oppgave 1

Når det kommer til skalarfelt og vektorfelt, har vi egenskaper til forskjellige spesifikke situasjoner. La oss definere noen uttrykk:

 $\vec{F}(\vec{x}) = \nabla \phi(\vec{x})$ Konservativt vektorfelt $\vec{F} \in \mathbb{R}^n$ $\phi(\vec{x}) \in \mathbb{R}$ Skalarfelt som gir ut en verdi, ikke vektor $n = [x_1, x_2, \dots, x_n]$ Antall variabler i \vec{x} (ofte 2 eller 3) $\vec{H}(\vec{x})$ Vilkårlig vektorfelt \vec{H} $\nabla \cdot \vec{H} = div(\vec{H})$ Divergens/Flukstetthet til \vec{H} $\nabla \times \vec{H} = curl(\vec{H})$ Rotasjon/Sirkulasjonstetthet til \vec{H}

Merk: \cdot = skalarprodukt, \times = kryssprodukt.

Egenskap	Beskrivelse
$\nabla \times (\nabla \phi) = \vec{0}$	Rotasjonen til et konservativt vektorfelt er alltid null
$\nabla \cdot (\nabla \times \vec{H}) = 0$	Rotasjonen til et vektorfelt er divergensfritt
$\nabla \times (\nabla \times \vec{H}) = \nabla(\nabla \cdot \vec{H}) - \nabla \vec{H}$	Rotasjonen til rotasjonen er ikke nødvendigvis null

Table 1: Liste over egenskaper

Eksempel 1

Vi har et skalarfelt ϕ og et vektorfelt \vec{H} . Hvis $\vec{F} = \nabla \phi$ og $\vec{G} = \nabla \times \vec{H}$ vet vi:

$\vec{F} = \nabla \phi$	$ec{F}$ er konservativt
$\vec{G} = \nabla \times \vec{H}$	$ec{G}$ er rotasjonen til $ec{H}$
$\nabla \times \vec{F} = \vec{0} \checkmark$	Konservative vektorfelt er rotasjonsfrie
$ abla imes ec{H} = ec{0} \ lacksquare$	\vec{H} er ikke rotasjonsfritt (\vec{G} er rotasjonen til \vec{H})
$ abla imes \vec{G} = \vec{0} imes$	Rotasjonen til rotasjonen er ikke nødvendigvis 0
$\nabla \cdot \vec{F} = 0$	Konservative vektorfelt er ikke nødvendigvis divergensfrie
$\nabla \cdot \vec{H} = 0$ 🗙	Vilkårlige vektorfelt er ikke nødvendigvis divergensfrie
$\nabla \cdot \vec{G} = 0 \blacktriangleleft$	Rotasjonen til et vektorfelt er divergensfritt

Oppgave 7

Divergensteoremet i planet:

$$\int \int_{R} div(\vec{F}) dA = \int_{C} \vec{F} \cdot \hat{N} ds$$

Summen av alle flukskildene over et lukket område R tilsvarer summen av fluksen ut av randen C.

Et sentralsymmetrisk vektorfelt som peker utover må til-fredsstille følgende:

$$\vec{F}(\vec{r}) = f(|\vec{r}|)\vec{r} = f(r)\vec{r}$$

$$\vec{r} = [x, y]^T$$

$$|\vec{r}| = r = \sqrt{x^2 + y^2}$$
 Distansen r fra origo

Merk: Tror ikke vi har gjennomgått dette i forelesninger, men dette et generelt uttrykk for et sentralsymmetrisk vektorfelt.

Vi får oppgitt vektorfeltet $\vec{F}(\vec{r}) = A\hat{r}$ og sammenhengen $L = \int \int_R \frac{div(\vec{F})}{2\pi} dA$.

$$\vec{F}(\vec{r}) = A\hat{r}$$

$$2\pi L = \int \int_{R} div(\vec{F})dA = \int_{C} \vec{F} \cdot \hat{N}ds$$

For en hver sirkel som spenner seg om origo har vi normalvektoren $\hat{N} = \hat{r}$. Hvis vi parametriserer med sylinderkoordinater, slik at $\hat{r} = (\cos(\theta), \sin(\theta))$ får vi følgende integrand:

$$\vec{F} \cdot \hat{N} = A\hat{r} \cdot \hat{r} = A(\cos^2(\theta) + \sin^2(\theta)) = A$$

Vi kan da finne et uttrykk for arealet basert på likningen med linjeintegralet. Vi integrerer over hele sirkelen rundt origo slik at $0 \le \theta \le 2\pi$.

Merk: Siden vi nå jobber i sylinderkoordinater blir $ds = r * d\theta$.

$$2\pi L = \int_{C} \vec{F} \cdot \hat{N} ds$$

$$2\pi L = \int_{0}^{2\pi} A * r \ d\theta$$

$$2\pi L = A * r * 2\pi$$

$$L = Ar$$

$$A = \frac{L}{r}$$

Merk: Denne sammenhengen vil gjelde for en vilkårlig lukket sirkel med radius r rundt origo.