Lista 10 de CM300

- 1. Converta de graus para radianos:
 - (a) 30°
- (b) 10°
- (c) 45°
- (d) 135°
- (e) 170°

- (f) 270°
- (g) 15°
- (h) 700°
- (i) 1080°
- (j) 36°
- 2. Converta de radianos para graus:

- (a) $\frac{5\pi}{3}$ (b) $\frac{\pi}{2}$ (c) 3π (d) $\frac{\pi}{36}$ (e) 10π (f) $\frac{3\pi}{2}$
- 3. Em cada item, alguns elementos de um triângulo retângulo têm suas medidas especificadas. Encontre a medida do elemento solicitado.
 - (a) Um dos ângulos mede $\theta = \frac{\pi}{6}$ e o menor cateto mede c = 4. Quanto mede a hipotenusa H?
 - (b) Um dos ângulos mede $\theta = \frac{\pi}{3}$ e a hipotenusa mede H = 2. Quanto mede o menor cateto c?
 - (c) Um dos ângulos mede $\theta = \frac{\pi}{4}$ e a hipotenusa mede H = 4. Quanto mede o maior cateto C?
 - (d) Um dos catetos mede $\sqrt{6}$ e a hipotenusa mede $H=2\sqrt{2}$. Quanto mede o ângulo θ oposto a esse cateto?
 - (e) Um dos catetos mede $6\sqrt{6}$ e a hipotenusa mede $H=12\sqrt{3}$. Quanto mede o ângulo θ adjacente a esse
 - (f) Um dos ângulos mede $\theta = \frac{\pi}{6}$ e o menor cateto mede c = 4. Quanto mede o maior cateto C?
- 4. Esboce os gráficos das funções abaixo.
 - (a) $f(x) = \sin x$
 - 5 4 3 2 1 0 X -1 -2 -3 -2π -1π 0π 1π 2π 3π
- (b) $f(x) = \cos x$

(c) $f(x) = \operatorname{sen}\left(x + \frac{\pi}{2}\right)$

(f) $f(x) = 2\cos(x+\pi)$

(d) $f(x) = \cos 2x$

(g) $f(x) = \sin \frac{x}{2} - 1$

(e) $f(x) = -\sin x + 1$

 $(h) f(x) = -3\cos x + 2$

(i) $f(x) = \frac{\sin x}{2}$

 $(j) f(x) = \cos\left(x - \frac{\pi}{2}\right) + 2$

5. Em cada item, calcule sen θ , cos θ e tg θ .

(a)
$$\theta = -\frac{3\pi}{4}$$
 (b) $\theta = \frac{11\pi}{2}$ (c) $\theta = -\frac{2\pi}{3}$ (d) $\theta = \frac{7\pi}{6}$ (e) $\theta = \frac{13\pi}{2}$ (f) $\theta = 3\pi$ (g) $\theta = \frac{7\pi}{4}$ (h) $\theta = \frac{17\pi}{4}$ (i) $\theta = \frac{5\pi}{6}$ (j) $\theta = \frac{7\pi}{3}$ (k) $\theta = -\frac{3\pi}{2}$ (l) $\theta = \frac{19\pi}{4}$

(b)
$$\theta = \frac{11\pi}{2}$$

(c)
$$\theta = -\frac{2\pi}{3}$$

(d)
$$\theta = \frac{7\pi}{6}$$

(e)
$$\theta = \frac{13\pi}{2}$$

(f)
$$\theta = 3\pi$$

(g)
$$\theta = \frac{7\pi}{4}$$

$$(h) \theta = \frac{17\pi}{4}$$

(i)
$$\theta = \frac{5\pi}{6}$$

(j)
$$\theta = \frac{7\pi}{2}$$

(k)
$$\theta = \frac{-3\pi}{2}$$

(l)
$$\theta = \frac{19\pi}{4}$$

(m)
$$\theta = \frac{13\pi}{6}$$

(n)
$$\theta = \frac{8\pi}{3}$$

(o)
$$\theta = \frac{-11\pi}{6}$$
 (p) $\theta = -8\pi$

$$(p) \theta = -8\pi$$

6. Derive as funções abaixo.

(a)
$$f(x) = \sin x - 2\cos x$$

(b)
$$g(x) = 3 \sin x + \cos \frac{x}{2}$$

(c)
$$h(x) = -2 \sin 2x - 3 \cos 3x + \sin x$$

(d)
$$\omega(x) = \frac{1}{3} \sin\left(x + \frac{\pi}{2}\right) + \frac{1}{4} \cos\left(x + \frac{\pi}{2}\right)$$

(e)
$$v(x) = 3\sin(2x+5) - 4\cos(-x+2) + 2\cos(-3x)$$

(f)
$$\alpha(x) = -\frac{2}{5} \sin 3x + \frac{4}{3} \cos 5x - \cos x + 1$$

(g)
$$\beta(z) = 4\cos\left(\pi z + \frac{\pi}{3}\right)$$

(h)
$$\lambda(x) = 3 \operatorname{sen}\left(-\frac{\pi x}{2}\right) + 2 \operatorname{cos}\left(-\frac{\pi x}{3}\right) + x$$

(i)
$$\mu(t) = \cos t + 2\cos 2t + 3\cos 3t$$

(j)
$$q(t) = \operatorname{sen}(t+1) - 2\operatorname{sen}(t+4) + 3\operatorname{sen}(t+8)$$

7. Encontre a equação da reta tangente ao gráfico da função f no ponto de abscissa x_0 . Dê sua resposta de forma exata e também aproximada com 2 casas decimais (utilize uma calculadora).

- (a) $f(x) = \sin x; \quad x_0 = \pi$
- (c) $f(x) = \sin \frac{x}{2}$; $x_0 = -\pi$
- (e) $f(x) = 2 \operatorname{sen} x$; $x_0 = \frac{\pi}{3}$
- (g) $f(x) = \sin 2x + \cos 2x$; $x_0 = \frac{\pi}{2}$ (h) $f(x) = \cos x \cos 2x$; $x_0 = \frac{\pi}{2}$
- (i) $f(x) = \sin \pi x \sin 2\pi x$; $x_0 = \frac{3}{2}$
- (b) $f(x) = \cos x$; $x_0 = \frac{\pi}{3}$
- (d) $f(x) = -\cos\left(x + \frac{\pi}{2}\right)$; $x_0 = \frac{\pi}{4}$ (f) $f(x) = \cos\frac{\pi x}{3} + 3$; $x_0 = 6$

 - (j) $f(x) = 4\cos x$; $x_0 = -\frac{3\pi}{4}$

Respostas:

- 1. (a) $\frac{\pi}{6}$
- (c) $\frac{\pi}{4}$
- (g) $\frac{\pi}{12}$
- (i) 6π

- (b) $\frac{\pi}{18}$
- (d) $\frac{3\pi}{4}$
- (h) $\frac{70\pi}{18}$
- (j) $\frac{\pi}{5}$

- **2.** (a) 3900°
- (b) 90°
- (c) 540°
- (d) 5°
- (e) 1800°
- (f) 270°

3. (a) H = 8.

(c) $C = 2\sqrt{2}$.

(e) $\theta = \frac{\pi}{4}$

(b) c = 1.

(d) $\theta = \frac{\pi}{3}$.

(f) $C = 4\sqrt{3}$.

(a)

(b)

(j)

5. (a)
$$\sin \theta = -\frac{\sqrt{2}}{2}, \cos \theta = -\frac{\sqrt{2}}{2}, \operatorname{tg} \theta = 1$$

(b)
$$\sin \theta = -1, \cos \theta = 0, \operatorname{tg} \theta = \notin \mathbb{R}$$

(c)
$$\sin \theta = -\frac{\sqrt{3}}{2}$$
, $\cos \theta = -\frac{1}{2}$, $\operatorname{tg} \theta = \sqrt{3}$

(d)
$$\sin \theta = -\frac{1}{2}, \cos \theta = -\frac{\sqrt{3}}{2}, \operatorname{tg} \theta = \frac{\sqrt{3}}{3}$$

(e)
$$\sin \theta = 1, \cos \theta = 0, \operatorname{tg} \theta \notin IR$$

(f)
$$\sin \theta = 0, \cos \theta = -1, \operatorname{tg} \theta = 0$$

(g)
$$\sin \theta = -\frac{\sqrt{2}}{2}$$
, $\cos \theta = \frac{\sqrt{2}}{2}$, $\operatorname{tg} \theta = -1$

(h)
$$\sin \theta = \frac{\sqrt{2}}{2}, \cos \theta = \frac{\sqrt{2}}{2}, \operatorname{tg} \theta = 1$$

6. (a)
$$f'(x) = \cos x + 2 \sin x$$

(b)
$$g'(x) = 3\cos x - \frac{1}{2}\sin\frac{x}{2}$$

(c)
$$h'(x) = -4\cos 2x + 9\sin 3x + \cos x$$

(d)
$$\omega'(x) = \frac{1}{3}\cos\left(x + \frac{\pi}{2}\right) - \frac{1}{4}\sin\left(x + \frac{\pi}{2}\right)$$

(e)
$$v'(x) = 6\cos(2x+5) - 4\sin(-x+2) + 6\sin(-3x)$$

(i)
$$\operatorname{sen} \theta = \frac{1}{2}, \cos \theta = -\frac{\sqrt{3}}{2}, \operatorname{tg} \theta = -\frac{\sqrt{3}}{3}$$

(j)
$$\sin \theta = \frac{\sqrt{3}}{2}, \cos \theta = \frac{1}{2}, \operatorname{tg} \theta = \sqrt{3}$$

(k)
$$\sin \theta = 1, \cos \theta = 0, \operatorname{tg} \theta \notin \mathbb{R}$$

(l)
$$\sin \theta = \frac{\sqrt{2}}{2}, \cos \theta = -\frac{\sqrt{2}}{2}, \operatorname{tg} \theta = -1$$

(m)
$$\sin \theta = \frac{1}{2}, \cos \theta = \frac{\sqrt{3}}{2}, \operatorname{tg} \theta = \frac{\sqrt{3}}{3}$$

(n)
$$\sin \theta = \frac{\sqrt{3}}{2}$$
, $\cos \theta = -\frac{1}{2}$, $\operatorname{tg} \theta = -\sqrt{3}$

(o)
$$\sin \theta = \frac{1}{2}, \cos \theta = \frac{\sqrt{3}}{2}, \operatorname{tg} \theta = \frac{\sqrt{3}}{3}$$

(p)
$$\sin \theta = 0, \cos \theta = 1, \operatorname{tg} \theta = 0$$

(f)
$$\alpha'(x) = -\frac{6}{5}\cos 3x - \frac{20}{3}\sin 5x + \sin x$$

(g)
$$\beta'(z) = -4\pi \operatorname{sen}\left(\pi z + \frac{\pi}{3}\right)$$

(h)
$$\lambda'(x) = -\frac{3\pi}{2}\cos\left(-\frac{\pi x}{2}\right) + \frac{2\pi}{3}\sin\left(-\frac{\pi x}{3}\right) + 1$$

(i)
$$\mu'(t) = -\sin t - 4\sin 2t - 9\sin 3t$$

(j)
$$q'(t) = \cos(t+1) - 2\cos(t+4) + 3\cos(t+8)$$

7. (a) $y = -x + \pi \approx -x + 3,14$

(b) $y = -\frac{\sqrt{3}x}{2} + \frac{\sqrt{3}\pi}{6} + \frac{1}{2} \approx -0.67x + 1.41$

(c) y = -1

(d) $y = \frac{\sqrt{2}x}{2} - \frac{\sqrt{2}\pi}{8} + \frac{\sqrt{2}}{2} \approx 0,71x + 0,15$

(e) $y = x - \frac{\pi}{3} + \sqrt{3} \approx x + 0{,}68$

(f) y = 4

(g) $y = -2x + \pi - 1 \approx -2x + 2,14$

(h) $y = -x + \frac{\pi}{2} + 1 \approx -x + 2,57$

(i) $y = 2\pi x - 3\pi - 1 \approx 6,28x - 10,42$

(j) $y = 2\sqrt{2} + \frac{3\sqrt{2}}{2} - 2\sqrt{2} \approx 2,83x + 3,84$