Mathematical Analysis Documentation for Cryptocurrency Metrics

Abstract

This document consolidates the mathematical equations and variables used for fundamental, technical, quantitative, and peer analysis of cryptocurrency metrics within the /src folder.

Contents

1	Fundamental Analysis	3
	1.1 NVT Ratio	3
	1.2 Price/Volume Ratio	3
	1.3 Market Cap Growth Rate	3
	1.4 Volume CAGR	3
	1.5 Liquidity Ratio	4
	1.6 Mayer Multiple	4
	1.7 Price Momentum	4
	1.8 Volume Momentum	4
	1.9 Volatility-Adjusted Market Cap	4
	1.10 Turnover Ratio	5
	1.11 Price Stability Ratio	5
	1.12 Volume-to-Price Ratio	5
	1.13 Discounted Expected Utility Value (DEUV)	5
	1.14 Price to Volatility Cost	5
	1.15 Regulatory Discount	6
_		_
2	Technical Analysis	6
	2.1 SMA 50-day	6
	2.2 EMA 20-day	6
	2.3 RSI	6
	2.4 MACD Histogram	6
	2.5 Bollinger Bands Width	7
	2.6 ATR	7
	2.7 OBV	7
	2.8 VWAP	7
	2.9 Price ROC	7
	2.10 Stochastic %K	8
	2.11 Williams %R	8
	2.12 Momentum	8

	2.13	Volume Oscillator	8
	2.14	Chande Momentum Oscillator (CMO)	8
	2.15	Price Channel Breakout	9
3	Qua	intitative Analysis	9
	3.1	NVT Ratio	9
	3.2	Price/Volume Ratio	9
	3.3	Sharpe Ratio	9
	3.4	Current Utility Value (CUV)	0
	3.5		0
	3.6	Volume CAGR	0
	3.7		0
	3.8	Volume Composition (Sell)	1
	3.9		1
	3.10	Price Momentum	1
	3.11	Risk-Adjusted Volume Discount	1
	3.12	Trading Volume 1	1
	3.13	Volume Volatility	2
	3.14	Volume-to-Price Ratio	2
	3.15	Price Correlation	2
	3.16	Mayer Multiple	2
	3.17	Price DCF Intrinsic Value	2
	3.18	Price DCF Valuation Ratio	3
			3
	3.20	Regulatory Discount	3
	3.21	Price/Volume Ratio (Alt)	3
4	Pee	r Analysis 1	3
	4.1	NVT Ratio	3
	4.2	Sharpe Ratio	4
	4.3	•	4
	4.4		4
	4.5		4
	4.6		4
	4.7	MACD Histogram	5

1 Fundamental Analysis

1.1 NVT Ratio

• Equation: $\frac{P \times S}{V \times P}$ (mean over period)

• Variables:

- P: Close Price

- S: Circulating Supply

- V: Volume

1.2 Price/Volume Ratio

• Equation: $\frac{P_{\text{current}}}{(V \times P)_{\text{mean}}}$

• Variables:

- P_{current}: Current Close Price

– $(V \times P)_{\text{mean}}$: Average Quote Volume

1.3 Market Cap Growth Rate

• Equation: $\left(\frac{P_{\text{end}} \times S}{P_{\text{start}} \times S}\right)^{1/t} - 1$

• Variables:

– P_{end} : End Price

- P_{start} : Start Price

- S: Circulating Supply

- t: Time in Years (1)

1.4 Volume CAGR

• Equation: $\left(\frac{V_{\rm end} \times P_{\rm end}}{V_{\rm start} \times P_{\rm start}}\right)^{1/t} - 1$

· Variables:

– V_{end} : End Volume

– V_{start} : Start Volume

- P_{end}: End Price

- P_{start}: Start Price

- *t*: Time in Years (1)

1.5 Liquidity Ratio

- Equation: $\frac{(V \times P)_{\text{mean}}}{P_{\text{current}} \times S}$
- Variables:
 - $(V \times P)_{\text{mean}}$: Average Quote Volume
 - P_{current}: Current Price
 - S: Circulating Supply

1.6 Mayer Multiple

- Equation: $\frac{P_{\text{current}}}{\text{SMA}_{200}}$
- Variables:
 - P_{current}: Current Price
 - SMA₂₀₀: 200-day Simple Moving Average

1.7 Price Momentum

- Equation: $\frac{P_{\mathrm{end}} P_{\mathrm{start}}}{P_{\mathrm{start}}}$
- Variables:
 - P_{end}: End Price
 - P_{start} : Start Price

1.8 Volume Momentum

- Equation: $\frac{(V \times P)_{\text{late}} (V \times P)_{\text{early}}}{(V \times P)_{\text{early}}}$
- Variables:
 - $(V \times P)_{\text{late}}$: Mean Quote Volume (second half)
 - $(V \times P)_{\text{early}}$: Mean Quote Volume (first half)

1.9 Volatility-Adjusted Market Cap

- Equation: $\frac{P_{\text{current}} \times S}{1+\sigma}$
- Variables:
 - P_{current}: Current Price
 - − S: Circulating Supply
 - σ : Annualized Volatility (std(P_{pct_change}) × $\sqrt{365}$)

1.10 Turnover Ratio

- Equation: $\frac{\sum (V \times P)}{S}$
- Variables:
 - $-\sum (V \times P)$: Total Quote Volume
 - S: Circulating Supply

1.11 Price Stability Ratio

- Equation: $\frac{P_{\text{mean}}}{\sigma}$
- Variables:
 - P_{mean}: Mean Price
 - σ : Annualized Volatility

1.12 Volume-to-Price Ratio

- Equation: $\frac{(V \times P)_{\text{mean}}}{P_{\text{current}}}$
- Variables:
 - $(V \times P)_{\text{mean}}$: Average Quote Volume
 - P_{current}: Current Price

1.13 Discounted Expected Utility Value (DEUV)

- Equation: $\frac{P_{\text{current}} \times S}{\sum_{t=1}^{5} \left[(V \times P)_{\text{current}} \times \frac{(1+g)^t}{(1+r)^t} \right]}$
- Variables:
 - P_{current}: Current Price
 - S: Circulating Supply
 - $(V \times P)_{\text{current}}$: Current Average Quote Volume
 - *g*: Growth Rate (0.08)
 - *r*: Discount Rate (0.12)

1.14 Price to Volatility Cost

- Equation: $\frac{P_{\mathrm{current}}}{P_{\mathrm{current}} \times \sigma}$
- Variables:
 - P_{current} : Current Price
 - σ : Annualized Volatility

1.15 Regulatory Discount

- **Equation**: $P_{\text{current}} \times (1 h)$
- Variables:
 - P_{current}: Current Price
 - h: Haircut (0.20)

2 Technical Analysis

2.1 SMA 50-day

- Equation: $\frac{\sum_{i=1}^{50} P_i}{50}$ (last 50 days)
- Variables:
 - P_i : Close Price at day i

2.2 EMA 20-day

- Equation: $P_{\mathrm{current}} \times k + \mathrm{EMA}_{\mathrm{prev}} \times (1-k)$, $k = \frac{2}{20+1}$
- Variables:
 - P_{current}: Current Price
 - EMA_{prev}: Previous EMA
 - − *k*: Smoothing Factor

2.3 RSI

- **Equation**: $100 \frac{100}{1 + \frac{\text{Avg Gain}}{\text{Avg Loss}}}$ (14-day period)
- Variables:
 - Avg Gain: Mean of positive price changes
 - Avg Loss: Mean of negative price changes

2.4 MACD Histogram

- • Equation: $(EMA_{12}-EMA_{26})-Signal$, $Signal=EMA_{9}$ of $(EMA_{12}-EMA_{26})$
- Variables:
 - EMA₁₂: 12-day EMA
 - EMA₂₆: 26-day EMA
 - Signal: 9-day EMA

2.5 Bollinger Bands Width

- Equation: $\frac{\text{Upper-Lower}}{\text{SMA}_{20}}$, $\text{Upper} = \text{SMA}_{20} + 2 \times \sigma_{20}$, $\text{Lower} = \text{SMA}_{20} 2 \times \sigma_{20}$
- Variables:
 - SMA₂₀: 20-day SMA
 - σ_{20} : 20-day Standard Deviation

2.6 ATR

- Equation: $\frac{\sum_{i=1}^{14} \text{TR}_i}{14}$ (last 14 days), $\text{TR}_i = \max(H-L, |H-C_{\text{prev}}|, |L-C_{\text{prev}}|)$
- Variables:
 - H: High
 - − *L*: Low
 - C_{prev} : Previous Close

2.7 **OBV**

- Equation: $\sum V \times \text{sign}(C C_{\text{prev}})$
- Variables:
 - V: Volume
 - $sign(C C_{prev})$: 1 if $C > C_{prev}$, -1 if $C < C_{prev}$, 0 if equal

2.8 **VWAP**

- Equation: $\frac{\sum \left(\frac{H+L+C}{3} \times V\right)}{\sum V}$
- Variables:
 - *H*: High
 - *L*: Low
 - C: Close
 - V: Volume

2.9 Price ROC

- Equation: $\frac{P_{\text{current}}-P_{14}}{P_{14}} \times 100$
- Variables:
 - P_{current}: Current Price
 - $-P_{14}$: Price 14 days ago

2.10 Stochastic %K

• **Equation:** $100 \times \frac{C - L_{14}}{H_{14} - L_{14}}$

- Variables:
 - C: Current Close
 - L_{14} : Lowest Low (14 days)
 - H_{14} : Highest High (14 days)

2.11 Williams %R

- **Equation:** $-100 \times \frac{H_{14}-C}{H_{14}-L_{14}}$
- Variables:
 - H_{14} : Highest High (14 days)
 - L_{14} : Lowest Low (14 days)
 - C: Current Close

2.12 Momentum

• Equation: $P_{\text{current}} - P_{10}$

- Variables:
 - P_{current}: Current Price
 - P_{10} : Price 10 days ago

2.13 Volume Oscillator

- Equation: $\frac{V_{\mathrm{MA}_5}-V_{\mathrm{MA}_{20}}}{V_{\mathrm{MA}_{20}}} imes 100$
- Variables:
 - V_{MA_5} : 5-day Volume MA
 - $V_{\mathrm{MA}_{20}}$: 20-day Volume MA

2.14 Chande Momentum Oscillator (CMO)

- **Equation**: $100 \times \frac{\sum \text{Up} \sum \text{Down}}{\sum \text{Up} + \sum \text{Down}}$ (14-day period)
- Variables:
 - \sum Up: Sum of positive price changes
 - $-\sum$ Down: Sum of negative price changes

2.15 Price Channel Breakout

- **Equation**: 1 if $P_{\text{current}} > H_{20}$, -1 if $P_{\text{current}} < L_{20}$, else 0
- Variables:
 - P_{current}: Current Price
 - H_{20} : 20-day High
 - L_{20} : 20-day Low

3 Quantitative Analysis

3.1 NVT Ratio

- Equation: $\frac{P \times S}{V \times P}$ (mean)
- Variables:
 - P: Close Price
 - S: Circulating Supply
 - V: Volume

3.2 Price/Volume Ratio

- Equation: $\frac{P_{\text{current}}}{(V \times P)_{\text{mean}}}$
- Variables:
 - P_{current}: Current Price
 - $(V \times P)_{\text{mean}}$: Average Quote Volume

3.3 Sharpe Ratio

- Equation: $\frac{R_{\text{mean}} + \text{APY}_d \text{Rf}_d}{\sigma \times \sqrt{365}}$
- Variables:
 - R_{mean} : Mean Daily Return
 - APY $_{\!d}$: Staking Yield / 365 (0.06 / 365)
 - Rf $_{\!d}$: Risk-Free Rate / 365 (0.025 / 365)
 - σ : Daily Return Std

3.4 Current Utility Value (CUV)

• **Equation**: $\frac{P_{\text{current}} \times S}{(V \times P)_{\text{mean}}}$

• Variables:

- P_{current}: Current Price

- S: Circulating Supply

 $-(V \times P)_{\text{mean}}$: Average Quote Volume

3.5 Discounted Expected Utility Value (DEUV)

• Equation:
$$\frac{P_{\text{current}} \times S}{\sum_{t=1}^{5} \left[(V \times P)_{\text{current}} \times \frac{(1+g)^t}{(1+r)^t} \right]}$$

• Variables:

- P_{current}: Current Price

- S: Circulating Supply

– $(V \times P)_{\text{current}}$: Current Average Quote Volume

- *q*: Growth Rate (0.08)

- *r*: Discount Rate (0.12)

3.6 Volume CAGR

• Equation: $\left(\frac{V_{\rm end} \times P_{\rm end}}{V_{\rm start} \times P_{\rm start}}\right)^{1/t} - 1$

• Variables:

– V_{end} : End Volume

 $-V_{\text{start}}$: Start Volume

– P_{end} : End Price

– P_{start} : Start Price

- *t*: Time in Years (1)

3.7 Volume Composition (Buy)

• Equation: $\frac{V_{\mathrm{buy}}}{(V \times P)_{\mathrm{total}}}$

• Variables:

– $V_{\rm buy}$: Taker Buy Quote Volume

– $(V \times P)_{total}$: Total Quote Volume

3.8 Volume Composition (Sell)

- Equation: $\frac{V_{\text{sell}}}{(V \times P)_{\text{total}}}$
- Variables:
 - V_{sell} : Total Quote Volume V_{buy}
 - $(V \times P)_{total}$: Total Quote Volume

3.9 Volatility Reduction

- Equation: $\frac{\sigma_{\rm early} \sigma_{\rm late}}{\sigma_{\rm early}}$ (if > 0, else 0)
- Variables:
 - $\sigma_{\rm early}$: Std of Returns (first half) $\times \sqrt{365}$
 - σ_{late} : Std of Returns (second half) $\times \sqrt{365}$

3.10 Price Momentum

- Equation: $\frac{P_{\rm end}-P_{\rm start}}{P_{\rm start}}$
- Variables:
 - P_{end}: End Price
 - P_{start}: Start Price

3.11 Risk-Adjusted Volume Discount

- Equation: $\frac{(V \times P)_{\text{mean}}}{1 + (\text{Rf} + \beta \times \text{MRP}) \times \sigma} / (V \times P)_{\text{mean}}$
- Variables:
 - $(V \times P)_{\text{mean}}$: Average Quote Volume
 - Rf: Risk-Free Rate (0.025)
 - β : Beta (1.4)
 - MRP: Market Risk Premium (0.06)
 - σ : Annualized Volatility

3.12 Trading Volume

- Equation: $(V \times P)_{\text{mean}}$
- Variables:
 - $(V \times P)_{\text{mean}}$: Average Quote Volume

3.13 Volume Volatility

- Equation: $\frac{\sigma_v}{(V \times P)_{\text{mean}}}$
- Variables:
 - σ_v : Std of Quote Volume
 - $(V \times P)_{\text{mean}}$: Average Quote Volume

3.14 Volume-to-Price Ratio

- Equation: $\frac{(V \times P)_{\text{mean}}}{P_{\text{current}}}$
- Variables:
 - $(V \times P)_{\text{mean}}$: Average Quote Volume
 - P_{current}: Current Price

3.15 Price Correlation

- Equation: $corr(P_{pct_change}, P_{pct_change})$ (self-correlation = 1)
- Variables:
 - P_{pct_change}: Daily Price Returns

3.16 Mayer Multiple

- Equation: $\frac{P_{\text{current}}}{\text{SMA}_{200}}$
- Variables:
 - P_{current}: Current Price
 - SMA₂₀₀: 200-day SMA

3.17 Price DCF Intrinsic Value

- Equation: $\sum_{t=1}^{5} \left[P_{\text{current}} \times \frac{(1+g)^t}{(1+r)^t} \right]$
- Variables:
 - P_{current} : Current Price
 - *g*: Growth Rate (0.10)
 - *r*: Discount Rate (0.15)

3.18 Price DCF Valuation Ratio

- Equation: $\frac{\text{DCF}_{\text{Intrinsic}}}{P_{\text{current}}}$
- Variables:
 - $\mathrm{DCF}_{\mathrm{Intrinsic}}$: Price DCF Intrinsic Value
 - P_{current}: Current Price

3.19 Price to Volatility Cost

- Equation: $\frac{P_{\text{current}}}{P_{\text{current}} \times \sigma}$
- Variables:
 - P_{current}: Current Price
 - σ : Annualized Volatility

3.20 Regulatory Discount

- **Equation**: $P_{\text{current}} \times (1 h)$
- Variables:
 - P_{current}: Current Price
 - *h*: Haircut (0.20)

3.21 Price/Volume Ratio (Alt)

- Equation: $\frac{P_{\text{current}}}{(V \times P)_{30 \text{day.mean}}}$
- Variables:
 - P_{current}: Current Price
 - $(V \times P)_{30 \text{day_mean}}$: 30-day Average Quote Volume

4 Peer Analysis

4.1 NVT Ratio

- Equation: $\frac{P \times S}{V \times P}$ (mean)
- Variables:
 - P: Close Price
 - S: Circulating Supply
 - V: Volume

4.2 Sharpe Ratio

- Equation: $\frac{R_{\text{mean}} + \text{APY}_d \text{Rf}_d}{\sigma \times \sqrt{365}}$
- Variables:
 - R_{mean}: Mean Daily Return
 - APY_d: Staking Yield / 365 (0.05 / 365)
 - Rf_d: Risk-Free Rate / 365 (0.025 / 365)
 - σ : Daily Return Std

4.3 Price/Volume Ratio

- Equation: $\frac{P_{\text{current}}}{(V \times P)_{\text{mean}}}$
- Variables:
 - P_{current}: Current Price
 - $(V \times P)_{\text{mean}}$: Average Quote Volume

4.4 Mayer Multiple

- Equation: $\frac{P_{\text{current}}}{\text{SMA}_{200}}$
- Variables:
 - P_{current}: Current Price
 - SMA₂₀₀: 200-day SMA

4.5 Speculative Signal

- Equation: 1 if NVT > 50 or Mayer > 2.4, else 0
- Variables:
 - NVT: NVT Ratio
 - Mayer: Mayer Multiple

4.6 RSI

- **Equation**: $100 \frac{100}{1 + \frac{\text{Avg Gain}}{\text{Avg Loss}}}$ (14-day period)
- Variables:
 - Avg Gain: Mean of positive price changes
 - Avg Loss: Mean of negative price changes

4.7 MACD Histogram

 • Equation: $(EMA_{12}-EMA_{26})-Signal$, $Signal=EMA_{9}$ of $(EMA_{12}-EMA_{26})$

• Variables:

- EMA₁₂: 12-day EMA

- EMA₂₆: 26-day EMA

– Signal: 9-day EMA