INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

ÁREA DEPARTAMENTAL DE ENGENHARIA DE ELECTRÓNICA E TELECOMUNICAÇÕES E DE COMPUTADORES Lógica e Sistemas Digitais

1º teste - Verão 2010/11 (6Jul'11)

[1]

- a) Dada a função $F = \overline{B} \ \overline{C} \cdot \overline{A} \oplus C + \overline{A} \ \overline{B} \cdot \overline{A} D + D$, obtenha a forma AND-OR, simplificando algebricamente.
- b) Obtenha a forma OR-AND simplificada de $G = AD + B \oplus B \overline{C} + \overline{A}B\overline{D}$, utilizando mapas de *Karnaugh*.
- [2] Não dispondo das variáveis na forma complementar, realize com o mínimo de componentes as seguintes funções:
 - a) $H = AB + ABC\overline{D} + BC\overline{D}$, apenas com portas NAND e NOR de duas entradas.
 - b) $I = C \overline{D} + A \overline{B} D + B \overline{D} + B C$, apenas com multiplexers 4x1.
- [3] Dado o circuito ao lado, obtenha a expressão simplificada para a saída J. Justifique.

[4]

- a) Represente o número -(2011)₄ em código dos complementos na base 2, com o menor número de *bits*.
- b) Na subtracção indicada abaixo, obtenha as expressões booleanas dos bits do resultado R e do indicador de arrasto (Bw), entendendo A e B como variáveis binárias.
- c) Complete os campos da tabela, assumindo que numa ALU de 4 *bits* está seleccionada a operação SBB (R = A B C_i). Justifique sucintamente os cálculos efectuados e explique o significado dos vários indicadores, concretizando para os valores em presença.

	Α	\overline{B}	Ā		
-	В	\overline{A}	1 2		
Bw	R ₂	R_1	R_0		

		R	A	В	Ci	Cy/	Ov	AE	Ţ
Base 2				115		Bw	OV	AL	1
Base 10	natural				1	0	-		
	relativo			-2		_		-	

- [5] Desenhe o ASM-chart correspondente à máquina de estados aqui descrita em CUPL.
- [6] Dada a máquina de estados descrita pelo ASM-chart da figura ao lado:
 - a) Calcule as expressões necessárias e desenhe o diagrama lógico correspondente, tendo por base *flip-flops* JK.
 - b) Descreva-a em CUPL, recorrendo à estrutura SEQUENCE, e explicite os pinos necessários, admitindo que utiliza uma PAL 22v10.
- [7] Desenhe o ASM-chart correspondente ao circuito da figura abaixo, com início no estado 01, sabendo que CLR é prioritário relativamente a PL (ambos síncronos).

S

Os docentes,

Who JF

Questão	1a	1b	2a	2b	3	4a	4b	4c	5	6a	6b	7
Classificação	1,5	1	1,5	1,5	3	• 1	1,5	2	2	2	1	2