1. Modely předcházející IDM

Jednoduše řečeno "Car Following" modely vycházejí z předpokladu, že pokud n-té vozidlo následuje n-1 vozidlo na homogenní dálnici, trajektorie n-tého vozidla bude stejná jako vozidla před ním (n-1) až na posuny v čase a místě. (Vozidlo bude ve stejném místě jako předcházející v jiný čas a ve stejný čas bude na jiném místě.) Všechny další dispozice jednotlivých modelů v sobě tento předpoklad obsahují.

1.1 Newellův model

V teorii dopravního proudu je Newellův model jeden z modelů, který popisuje chování řidiče dle vozidla před ním. Řidič se snaží držet za vozidlem jedoucím před ním v konstantní vzdálenosti. Tento model vznikl v roce 1961 a postupně se vyvíjel. Vychází z něho později Intelligent Driver Model (IDM) a z tohoto důvodu je zde zmíněn.

Jestliže n-té vozidlo jede za n-1 vozidlem (které jede za n-2 vozidlem atd.), cíl každého Car following modelu je zjistit závislost trajektorie n-tého vozidla $x_n(t)$, jeho pozici v čase t na n-1 vozidle, viz. obrázek 1.1. (To také znamená, že není žádná náhodná spojitost mezi těmito vozidly.) Jestliže se n-1 vozidlo pohybuje konstantní rychlostí v,

$$x_{n-1} = x_n + vt,$$

n-té vozidlo také pojede průměrnou rychlostí v. Pokud by n-té vozidlo zrychlovalo, tak by došlo ke kolizi sn-1 vozidlem a naopak pokud by zpomalovalo, tak by se n-té vozidlo neustále vzdalovalo. Totéž platí pro všechna vozidla jedoucí za n-tým. Tento model se nezabývá zjištěním hodnoty rychlosti v, předpokládá se, že je určena buďto na základě omezení rychlosti či možnostech vozidla.

Obrázek 1.1: Trajektorie vozidel s konstantní rychlostí

Vzdálenost $s_n = x_n - 1(t) - x_n(t)$ mezi vozidly n a n-1 se může měnit v čase. Pokud je dálnice homogenní, tato vzdálenost zůstane konstantní okolo hodnoty s_n . Tato hodnota se mění na základě typu vozidla a také závisí na rychlosti v.

Předpokládejme, že existuje nějaký empirický vztah mezi rychlostí v a vzdáleností mezi vozidly s_n . Pokud rychlost v roste, je logické, že řidiči chtějí dosáhnout většího rozestupu mezi vozidly. Tato závislost mezi v a s_n je znázorněna na obrázku 1.2. Každý řidič má svoji preferovanou rychlost V_n . Jestliže tato rychlost je u n-1 vozidla vyšší než u n-tého $v > V_n$, znamená to, že n-té vozidlo pojede svoji preferovanou rychlostí (na obrázku 1.2 znázorněna čárkovanou čárou) a n-1 vozidlo mu ujede. Hodnota rychlostí v nemůže být záporná a vzdálenost mezi vozidly při nulové rychlosti by měla být níže než polopřímka lineární závislosti, viz černá tečka na obrázku 1.2 při rychlosti v=0.

Obrázek 1.2: Vztah mezi rychlostí v a vzdáleností mezi vozidly s_n

Nyní předpokládejme, že n-1 se vozidlo nějakou dobu t pohybuje konstantní rychlostí v^1 a potom náhle změní rychlost na hodnotu v'. Trajektorie vozidel n a n-1 mohou poté vypadat jako na obrázku 1.3. Z obrázku lze také vypozorovat jak časovou τ_n , tak prostorovou d_n mezeru mezi vozidly n a n-1. Z čárkovaného obdelníku poté dostáváme vztah vzdálenost mezi vozidly před změnou rychlosti s_n a po změně rychlosti s_n' ,

$$s_n = d_n + v\tau_n, \qquad s'_n = d_n + v'\tau_n.$$

Z toho vyplývá, že pokud leží v a v' na polopřímce z obrázku 1.2, sklon této přímky je právě τ_n a hodnota s_n při rychlosti v = 0 je d_n .

Ze vztahu mezi v a s_n , jak je zobrazeno na obrázku 1.2, plyne nezávislost mezer d_n a τ_n na rychlostech v, resp. v'. Pokud se tedy změní rychlost z hodnoty v' na v'', d_n a τ_n zůstanou při této změně rychlosti stejné. Lineární trajektorie vozidla $x_n(t)$ potom bude jednoduše posun v čase τ_n a místě d_n ,

$$x_n(t + \tau_n) = x_n - 1(t) - d_n. (1.1)$$

U Newellova modelu platí, že n-té vozidlo bude (přibližně) kopírovat trajektorii n-1 vozidla dle vztahu (1.1) při vhodných hodnotách d_n a τ_n . Tím, jak se přesně dokáže n-té vozidlo dodržovat vztah (1.1), se Newellův model nezabývá, pouze předpokládá, že řidič je schopen se tímto vztahem řídit. To není tak těžké, protože pokud se změní rychlost vozidla n-1, n-tý řidič nemusí

 $^{^{1}}$ hodnota rychlosti osciluje okolo hodnoty \boldsymbol{v}

zareagovat okamžitě, ale může počkat dokud se mezera s_n nezvýší (neklesne) na hodnotu, která odpovídá nové rychlosti vozidla n-1 (viz obrázek 1.2).

Obrázek 1.3: Lineární aproximace při změně rychlosti vozidel

Při pozorování se došlo k závěru, že každý řidič nezkoumá každého jiného řidiče na komunikaci, ale pouze jen vhodnou "makroskopickou" část. Hodnoty τ_n a d_n jsou přirozené, to vychází ze vztahu (1.1), kde postupným iterováním dostaneme

$$x_n(t + \tau_n + \tau_n - 1 + \dots + \tau_1) = x_0(t) - d_n - d_n - 1 - \dots - d_1.$$
(1.2)

Hodnoty τ_n a d_n se značně liší mezi jednotlivými vozidly v závislosti na typu řidiče. První skupina řidičů raději jede blíže vozidlu před sebou (n-1) až na minimální bezpečnou vzdálenost, zatímco druhá skupina naopak preferuje delší vzdálenost pro klidnou reakci na nenadálou událost. Je rozumné, aby se hodnoty τ_n a d_n lišily, a to tak, že každému jednotlivému vozidlu budou hodnoty vygenerovány z nějakého pravděpodobnostního rozdělení, jehož variační koeficient se bude blížit jedné. Při generování rychlostí vozidel by naopak měl být variační koeficient zanedbatelný. Položíme-li

$$\bar{\tau} = \frac{1}{n} \sum_{k=1}^{n} \tau_k, \qquad \bar{d} = \frac{1}{n} \sum_{k=1}^{n} d_k,$$
(1.3)

kde $\overline{\tau}$ a \overline{d} jsou průměrné posuny v čase resp. místě, potom průměrnou vlnovou rychlost spočteme jako podíl $\overline{d}/\overline{\tau}$.

Tento model se dá ovšem popsat nejen mikroskopicky (rychlost, mezera mezi vozidly), ale i makroskopicky (hustota k, intenzita q). Stacionární stav nastane ve chvíli, kdy se všechna vozidla budou pohybovat konstantní rychlostí s rozdílnými posuny (časovými i prostorovými).

Jestliže

$$s_n = d_n + v\tau_n,$$

a rychlost vozidel je konstantní, tak platí

$$\overline{s} = \overline{d} + v\overline{\tau}.$$

Hustotu k lze potom vypočítat jako převrácenou hodnotu průměrné mezery mezi vozidly $k = 1/\overline{s}$ a rychlost jako podíl intenzity a hustoty v = q/k. Tudíž platí

$$q = \frac{1}{\overline{\tau}} - \frac{\overline{d}}{\overline{\tau}}k,\tag{1.4}$$

za předpokladu, že rychlost v je menší než preferovaná rychlost jakéhokoliv vozidla V_k .

Rovnice (1.4) propojuje Newellův model s klasickými makroskopickými modely. Problém nastává ve chvíli, kdy průměrná rychlost v je vysšší, než některá s preferovaných rychlostí jednotlivých vozidel. Vozidla se v tomto modelu nemohou předjíždět a proto vznikne kongesce za vozidlem s malou preferovanou rychlostí. V následujících řádcích předpokládáme, že aktuální rychlost vozidla bude menší než preferovaná rychlost V_n .

Uvažujme, že se vozidlo n pohybuje přesně podle rovnice (1.1) a vozidlo za ním (n-1) jede plynule za ním.

Rovnici (1.1) můžeme přepsat do tvaru

$$x_n(t + \tau_n) = x_n(t) + \tau_n v_n(t + T_n).$$
 (1.5)

Rovnice (1.5) lze pro rovnoměrný pohyb zjednodušit na tvar

$$x_n(t + \tau_n) = x_n(t) + \tau_n v_n(t).$$

Tvar rovnice (1.5) plyne z matematické analýzy², přičemž hodnota T_n se nachází někde mezi nulou a τ_n . Pokud je funkce hladká bude přibližně

$$T_n = \frac{\tau_n}{2}. ag{1.6}$$

Rovnici (1.5) lze přepsat na přibližný tvar

$$x_n(t + \tau_n) = x_n(t) + \tau_n v_n(t) + \tau_n T_n a_n(t), \tag{1.7}$$

který uvažuje zrychlení vozidla a_n ³. Kombinací rovnic (1.7) a (1.1) dostáváme vztah pro rychlost

$$v_n(t+\tau_n) = \frac{1}{\tau_n} \left[x_n - 1(t) - x_n(t) \right] - \frac{d_n}{\tau_n}.$$
 (1.8)

Po zderivování rovnice (1.8) dostáváme vztah pro zrychlení vozidla

$$a_n(t+\tau_n) = \frac{1}{\tau_n} \left[v_n - 1(t) - v_n(t) \right]. \tag{1.9}$$

Z rovnic (1.8) a (1.9) je vidět zřejmá závislost na vozidle vozidle předcházejícím aktuální členem $v_n - 1(t)$, resp. $x_n - 1(t)$. Řidič volí svoji rychlost na základě odstupu od předchozího vozidla, resp. zrychlení na základě rychlostí. **Konečný vztah pro Newellův model je tedy**

$$a_n(t) = \frac{\frac{1}{\tau_n} \left[v_n - 1(t) - v_n(t) \right] - \frac{d_n}{\tau_n} - v_n(t)}{T_n}.$$
(1.10)

$$x_n(5) = x_n(0) + 5v_n(0+2,5).$$

Pro výpočet dráhy bereme hodnotu rychlosti v čase 2,5s. Nemůžeme vzít hodnotu v nule, vozidlo by v tomto případě stálo na místě. Přibližná hodnota bude tedy opravdu v polovině hodnoty τ_n .

²věta o střední hodnotě

 $^{^3}$ Předpokládejme vozidlo v klidu, které se rozjíždí. Na začátku zvolíme $\tau_n=5s, t=0s, T_n=\tau_n/2=2, 5s,$ potom platí

Literatura

- [1] Barceló J, Fundamentals of traffic simulation, proceedings, International Series in Operations Research and management science, Springer, 2010
- [2] Barrow J, Nové teorie všeho, Dokořán, Praha, 2008
- [3] Brdička M, Samek L, Sopko B, Mechanika kontinua, Academia, Praha, 2011
- [4] Haberman R, Mathematical models: Mechanical vibrations, population dynamics and traffic flow, Society for Industrial and Applied Mathematics, Philadelphia, 1988
- [5] Helbing D, Herrmann H J, Schreckenberg M, Wolf D E, Microscopic Simulation of Congested Traffic v knížce Traffic and Granular Flow, Springer, Berlin, 2000
- [6] Horák J, Krlín L, Raidl A, Deterministický chaos a jeho fyzikální aplikace, Academia 2003
- [7] Xiaoliang Ma, A Neural-Fuzzy Framework for Modeling Car-following Behavior [online], dostupné z http://www.ctr.kth.se/publications/ctr2006_08.pdf
- [8] May A D, Traffic flow fundamentals, Prentice Hall, 1989
- [9] Přikryl P, Numerické metody matematické analýzy, SNTL, Praha, 1988
- [10] Scholtz M, Classical mechanics and deterministic chaos [online], dostupné z http://www.fd.cvut.cz/personal/scholma1/
- [11] Scholtz M, Vaniš M, Veselý P, Matějka P, Applied mathematics on Faculty of Transportation Sciences, vyjde ve sborníku k výročí Fakulty dopravní ČVUT
- [12] Treiber M, Hennecke A, Helbing D, Congested traffic states in empirical observations and microscopic simulations, Physical Review E, 62 (2), pp. 1805–1824, 2000
- [13] Treiber M, Microsimulation of road traffic flow [online], dostupné z http://www.traffic-simulation.de/
- [14] Vitásek E, Numerické metody, SNTL, Praha, 1987

Seznam obrázků

1.1	Trajektorie vozidel s konstantní rychlostí	1
1.2	Vztah mezi rychlostí v a vzdáleností mezi vozidly s_n	4
1.3	Lineární aproximace při změně rychlosti vozidel	

Seznam tabulek