# Bernstein Filter: a new solver for mean curvature regularized models

Yuanhao Gong National University of Singapore

#### Introduction:



# Mean Curvature Regularization:



## Contribution:

### We prove that:

mean curvature is a CONVEX term

#### We show that:

Bernstein Filter is fast and effective

# Convexity:

According to Bernstein Theorem, minimizing mean curvature is assuming that the signal is piece-wise linear. Based on this linearity, we can prove that mean curvature regularization term is convex.

## Bernstein Filter:



Impulsing the linearity on the four half-windows (above) by Least Square Regression, we get the Bernstein Filter:

#### Algorithm 1 Bernstein Filter

Require: IterationNum, 
$$I(x_i, y_j)$$
 $U^0(x_i, y_j) = I(x_i, y_j), t = 0$ 
while  $t <$  IterationNum do

for i=2:M-1,j=2:N-1 do

 $d_1 = \frac{1}{2} \left[ U^t(x_{i-1}, y_j) + U^t(x_{i+1}, y_j) \right] - U^t(x_i, y_j)$ 
 $d_2 = \frac{1}{2} \left[ U^t(x_i, y_{j-1}) + U^t(x_i, y_{j+1}) \right] - U^t(x_i, y_j)$ 
find  $d_m$  such that  $|d_m| = \min_{k=1,2} \{|d_k|\}$ 
 $U^{t+1}(x_i, y_j) = U^t(x_i, y_j) + d_m$ 
end for
 $t = t + 1$ 
end while
Ensure:  $U(x_i, y_j)$ 

## Experiments:

Results from Multi Grid Solver(first row) and Bernstein Filter(second row) are similar because both solve the same variational model. However, our filter is much faster.



#### Two or three orders of magnitude FASTER!

| solver      | Multigrid | Our filter | Our filter |
|-------------|-----------|------------|------------|
| (language)  | (Matlab)  | (Matlab)   | (C++)      |
| Lena        | 183       | 1.1        | 0.025      |
| Cameraman   | 648       | 1.1        | 0.025      |
| Fingerprint | 587       | 1.1        | 0.025      |
|             |           |            |            |

Table 1: time in seconds on  $512 \times 512$  images. Our filter runs 30 iterations.

## Contact and



software:

gongyuanhao@gmail.com

https://github.com/YuanhaoGong/ CurvatureFilter



Yuanhao Gong, Spectrally Regularized Surfaces, PhD Thesis, ETH Zurich, NO. 22616

Yuanhao Gong et al. A natural scene gradient distribution prior and its application in light microscopy image processing, IEEE J-STSP, 2016.

Yuanhao Gong et al., Local Weighted Gaussian Curvature for Image Processing, ICIP2013, oral.

Yuanhao Gong et al., Coupled signed distance functions for implicit surface reconstruction, ISBI2012, Best Paper Award.