Problem 1

Determine $i_3(t)$ in the circuit below if $i_1(t) = 141.4\cos(\omega t + 2.356)$ mA $i_2(t) = 50\sin(\omega t - 0.927)$ mA $\omega = 377$ rad/s

Problem 2

Determine the current supplied by the source in the circuit below if $v_s(t) = 10\cos(\omega t + 0)$ V

ω= 6 Mrad/s, R_s = 50 Ω, R_c = 40 Ω, L = 20 μH, and C = 1.25 nF.

Problem 3

Solve for I_1 in the circuit below.

Problem 4

Solve for V_2 in the circuit below. Assume $\omega = 2$ rad/s.

Problem 5

In the circuit below, find the impedance Z, given $\omega = 4 \text{ rad/s}$.

Problem 6

Solve for $i_L(t)$ in the circuit below using phasor techniques, if $v_s(t) = 2\cos 2t$ V, and $R_I = 4\Omega$, $R_2 = 4\Omega$, L = 2 H, and C = 0.25 F.

