1 Kinematika

Enakomerno pospešeno gibanje $(a := \frac{dv}{dt} = \text{const}).$

•
$$dv = a dt \implies \int_{v_0}^v dv = a \int_0^t dt \implies v - v_0 = at \implies v = v_0 + at$$

•
$$v := \frac{ds}{dt} \implies ds = (v_0 + at) dt \implies \int_0^s ds = \int_0^t (v_0 + at) dt \implies s = v_0 t + \frac{1}{2} a t^2$$

•
$$v = \frac{ds}{dt}$$
, $a = \frac{dv}{dt} \implies v \, dt = ds$, $a \, dt = dv \implies \frac{v}{a} = \frac{ds}{dv} \implies v \, dv = a \, ds \implies \int_{v_0}^{v} v \, dv = \int_{0}^{s} a \, ds$

 $\Rightarrow \frac{v^2}{2} - \frac{v_0^2}{2} = as \Rightarrow \boxed{v^2 - v_0^2 = 2as}$ (če imamo delo z pojemkom, spremenimo predznak) **Enakomerno gibanje:** Vzemimo a = 0

Prosti pad $(v_0 = 0, g = 9.8 \text{ m/s}^2).$

•
$$v = gt, t = \sqrt{\frac{2h}{g}}, h = \frac{1}{2}gt^2$$

Relativna hitrost: $\vec{v}_r = \vec{v}_1 - \vec{v}_2, \ v_r = |\vec{v}_1 - \vec{v}_2|$

Vodoravni met

- $x(t) = v_0 t$, $y(t) = \frac{1}{2}gt^2$ $v_x = v_0 = \text{const}$, $v_y(t) = gt$

Poševni met

- $x(t) = v_0 t \cos \phi$, $y(t) = v_0 t \sin \phi \frac{1}{2}gt^2$ $v_x = v_0 \cos \phi$, $v_y(t) = v_0 \sin \phi gt$
- $t_{\text{max}} = \frac{v_0 \sin \phi}{g}, \ D = \frac{v_0^2 \sin 2\phi}{g}, \ H = \frac{v_0^2 \sin^2 \phi}{2g}$
- Gibanje lahko razdelimo na dva dela: do $H_{\rm max}$ (poševni met) in po H_{max} (vodoravni met)
- Vodoravni met je posebni primer poševnega meta pri $\phi = 0$

Kroženje

- $\vec{r}(t) = r(\cos\phi, \sin\phi)$, $\vec{v}(t) = r\omega(-\sin\phi, \cos\phi)$, kjer $\omega = \dot{\phi}$ kotna hitrost $-s = r\phi$, če merimo ϕ v radianih
- $a(t) = r\alpha(-\sin\phi, \cos\phi) + r\omega^2(-\cos\phi, -\sin\phi)$, kjer $\alpha = \ddot{\phi}$ kotni pospešek $-\vec{a}_t = r\alpha(-\sin\phi,\cos\phi)$ je tangentni pospešek (spreminjanje velikosti \vec{v}) $-\vec{a}_r = r\omega^2(-\cos\phi, -\sin\phi)$ je radialni pospešek (spreminjanje smeri $\vec{v})$
- $v = r\omega, \ a_t = r\alpha, \ a_r = r\omega^2 = \frac{v^2}{r}, \ a = \sqrt{a_r^2 + a_t^2}$
- $\omega = 2\pi\nu$, $\nu = \frac{1}{t_0}$, kjer t_0 je čas enega obrata, ν je **frekvenca**
- Enakomerno pospešeno kroženje ima iste enačbe kot enakomerno pospešeno gibanje

Vektorski opis kroženja

• Definiramo $\vec{\phi} = (0, 0, \phi)$ (smer $\vec{\phi}$ lahko dobimo po pravilu desnega vijaka), potem

$$-\vec{v} = \vec{\omega} \times \vec{r}$$

$$- \vec{a} = \vec{\alpha} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r})$$

Splošno gibanje

• $R = \frac{v^2}{a_r}$, $\omega = \frac{a_r}{v}$, $\alpha = \frac{a_t a_r}{v^2}$ (vsako gibanje je trenutno kroženje), a_t, a_r sta komponenti g

Splošni nasveti

• Lahko obrnemo čas (začetek = konec)!

$\mathbf{2}$ Dinamika

Sile 2.1

Newtonovi zakoni

- 1. $\sum \vec{F} = 0 \implies \vec{v} = \text{const}$ 2. $\sum \vec{F} = m\vec{a}$ 3. $\vec{F}_{12} = -\vec{F}_{21}$

Sila trenja

• $F_{\rm tr} \leq k_{\rm tr} \cdot F_N$, kjer je F_N normalna sila

Sila vzmeti

• $F_{vz} = kx$, kjer je k koeficient vzmeti in je x raztezek

Težišče

- Težišče je $\vec{r}_T = \frac{1}{M} \sum m_j \vec{r}_j$, kjer je $M = \sum m_j$ skupna masa
- II. Newtonov zakon za težišče: $\sum \vec{F}_{zun} = M\vec{a}_T$

Splošni nasveti

- Zapišemo vse sile, ki delujejo v našem sistemu. Sistem lahko izberimo poljubno
- Ponavadi $\vec{F_g}$ razbijemo na statično in dinamično komponento
- Sile vrvi na škripec delujejo vzdolž vrvi:

Neinercialni sistemi

Naj bo K_1 ne pospešen (inercialni) sistem. Zapišemo II. Newtonov zakon v različnih neinercialnih (pospešenih) sistemih.

- Linearno pospešen sistem K_2 z pospeškom $\vec{a_0}$
 - II. Newtonov zakon: $|\vec{F}_1 + \vec{F}_{\text{sist}} = m\vec{a}_2|$, kjer $\vec{F}_{\text{sist}} = -m\vec{a}_0$
 - * \vec{F}_1 je rezultanta vseh sil na telo v sistemu K_1
 - * $\vec{a}_2 = \vec{a}_1 \vec{a_0}$ je pospešek telesa v sistemu K_2
- Sistem K_2 se vrsti okoli fiksne osi s kotno hitrostjo $\omega = \omega(t)$
 - II. Newtonov zakon: $\left| \vec{F}_1 m\vec{\alpha} \times \vec{r} 2m\vec{\omega} \times \vec{v}_2 m\vec{\omega} \times (\vec{\omega} \times \vec{r}) = m\vec{a}_2 \right|$
 - * $-m\vec{\alpha} \times \vec{r}$ je tangentna sila (pospešuje vrtenje)
 - * $-2m\vec{\omega} \times \vec{v}_2$ je Coriolisova sila
 - * $-m\vec{\omega} \times (\vec{\omega} \times \vec{r})$ je **centrifugalna sila** (lahko jo ne upoštevamo pri delu z gravitacijo)
 - * $\vec{v_2}$ je hitrost telesa v sistemu K_2 , $\vec{a_2}$ je pospešek telesa v sistemu K_2

2.2Energija

Ko čas gre iz igre (nas ne zanima kdaj se nekaj zgodilo) se lahko ukvarjamo z energijo.

Konetična energija točkastega delca

$$\vec{F} = m\vec{a} = m\frac{d\vec{v}}{dt} / \cdot d\vec{s} \implies \int_{1}^{2} \vec{F} \cdot d\vec{s} = \Delta(W_{k}), \ (*)$$

kjer $W_k = \frac{mv^2}{2}$ kinetična energija točkastega delca, $[W_k] = J = Nm$.

- \$\int_{1}^{2} \vec{F} \cdot d\vec{s} = A\$ je **delo** sile \$\vec{F}\$, kjer \$d\vec{s}\$ je premik **prijemališča** sile
 (*) je izrek o mehanske (kinetične energije)

Sistem točkastih teles: $\int_1^2 \vec{F}_{\text{zun}} \cdot d\vec{s}_T = \Delta(W_{\text{k, T}}), \text{ kjer } W_{\text{k, T}} = \frac{1}{2} m v_T^2 \text{ kinetična energija težišča}$

•
$$\widetilde{A}_{\mathrm{zun}} = \int_{1}^{2} \vec{F}_{\mathrm{zun}} \cdot d\vec{s}_{T}$$
 je **psevdodelo** rezultante zunanjih sil

Potencialna in prožnostna energija

Eksplicitno izračunamo delo silo teže in delo sile vzmeti, dobimo:

$$A_{\mathrm{F}_g} = -mgh$$
 in $A_{\mathrm{vz}} = \frac{1}{2}ks^2$

Potem lahko zapišemo izrek o mehanske energije v oblike

$$\widetilde{A}_{\mathrm{zun}} = \Delta(W) = W_{\mathrm{konec}} - W_{\mathrm{za\check{c}etek}}, \ W = W_{\mathrm{k}} + W_{\mathrm{p}} + W_{\mathrm{pr}}$$

kjer je $W_{\rm p}=mgh$ potencialna energija in $W_{\rm pr}=\frac{1}{2}ks^2$ prožnostna energija ter $\widetilde{A}_{\rm zun}$ psevdodelo vseh zunanjih sil razen sile teže in sil vzmeti. V posebnem primeru, ko ni zunanjih sil: $\widetilde{A}_{\mathrm{zun}}=0$, tj. energija se ohranja.

Moč

Včasih je pomembno, kako hitro opravimo neko delo.

• Moč
$$P$$
 je $P = \frac{dA}{dt}$, $[P] = \frac{J}{s} = Watt$

2.3 Gibalna količina

Točkasto telo

$$\vec{F} = m\vec{a} = m\frac{d\vec{v}}{dt} / d\vec{t} \implies \int \vec{F} \cdot d\vec{t} = m(v_{\text{konec}} - v_{\text{začetek}}) \implies \int_{1}^{2} \vec{F} dt = \Delta \vec{G},$$
 (*)

- (*) je izrek o gibalne količine
- $\vec{G} = m\vec{v}$ je **gibalna količina** za točkasto telo
- $\int_{1}^{2} \vec{F} dt$ je sunek sile

Sistem točkastih teles: $\int_1^2 \vec{F}_z dt = \Delta \vec{G}_T$

• Če
$$\int_1^2 \vec{F} dt = 0$$
 ali $\int_1^2 \vec{F}_z dt = 0$, potem gibalna količina se ohranja

Trki

- 1. Neelastični (neprožni) trk: telesa se zlepijo in po trku gibljejo skupaj
 - Gibalna količina se ohranja
 - W_k se NE ohranja \leadsto stvari se segrejejo
- Elastični trk: telesa se odbijejo
 - Gibalna količina se ohranja

•
$$v_1 = -\frac{1-\mu}{1+\mu}v$$
, $v_2 = \frac{2\mu}{1+\mu}v$, kjer $\mu = \frac{m}{M}$

Sila curka

- $\vec{F}_{c} = \phi_{m} \Delta v$, kjer je $\phi_{m} = \frac{\Delta m}{\Delta t}$ masni tok $\phi_{m} = \frac{dm}{dt} = \phi_{V} \rho$, kjer je $\phi_{V} = \frac{dV}{dt} = \frac{Svdt}{dt} = Sv$ prostorninski tok
 - Zapišemo izrek o gibalne količine (sunek sile je enak spremembe gibalne količine)

Raketa

- Za sistem si izberimo raketo + majhni drobec goriva. Gibalna količina se ohranja. Dobimo enačbo:
 - $-udm_q = mdv$, kjer u hitrost izpušnih plinov glede na raketo in m trenutna masa rakete in goriva
 - * Definiramo: $dm = m (m + dm_q) \implies dm = -dm_q$, dobimo: $dm = -dm_q$

Splošni nasveti

- Izberimo si sistem, za kateri znamo zapisati želene količine
- Poglejmo tik do in po trku
- Lahko zapišemo gibalno količino za celoten sistem ali za vsako telo posebej

2.4 Statika

- Uporaba III. Newtonovega zakona
- Navor je $\vec{M} = \vec{r} \times \vec{F}$, kjer je \vec{r} vektor od osi vrtenja do telesa.

Vztrajnostni moment

- Vztrajnostni moment okoli fiksne osi je $J=\int_{
 m po\ telesu}r^2\,dm$ (oz. diskretna vsota) Newtonov zakon za vrtenje okoli fiksne osi:

$$F = ma \implies F \cdot r = ma \cdot r \implies M = m\alpha r \cdot r \implies M = mR^2\alpha \implies M = J\alpha$$

• Šteinerjev izrek: Vztrajnostni moment telesa pri vrtenju okoli fiksne osi ξ je

$$J_{\xi} = J_T + ma^2,$$

kjer je J_T vztrajnostni moment telesa pri vrtenju okoli težišča in a pravokotna razdalja do osi vrtenja.

Osnovne vztrajnostni momenti

Telo	Vztrajnostni moment J
Točkasta masa m	$J = mr^2$
Obroč s polmerom r	$J = mr^2$
Palica dolžine l okrog težišča	$J = \frac{1}{12}ml^2$
Palica dolžine <i>l</i> okrog krajišča	$J = \frac{1}{3}ml^2$
Okrogla plošča s polmerom r	$J = \frac{1}{2}mr^2$
Valj s polmerom r	$J = \frac{1}{2}mr^2$
Stožec z višino h in polmerom r	$J = \frac{3}{10}mr^2$
Stožec z višino h in polmerom r	$J = \frac{3}{10}mr^2$
Krogla s polmerom r okrog simetrijske osi	$J = \frac{2}{5}mr^2$

Drsenje/Kotaljenje

- Pogoj, da ni drsanja: $v_t = \omega r$, tj. spodnja točka miruje.
 - Če telo drsi: $F_{\rm tr} = k_{\rm tr} N$ in $a \neq \alpha r$
 - Če telo kotali: $F_{\rm tr} < k_{\rm tr} N$ in $a = \alpha r$

Splošni nasveti

Lahko prištejemo in odštejemo isto silo, in pogledamo kaj vpliva na težišče in kaj vpliva na vrtenje.

4

Kinetična energija vrtenja

Kinetična energija vrtenja:

$$W_{\rm k} = \int \frac{v^2 dm}{2} = \int \frac{r^2 \omega^2 dm}{2} = \frac{\omega^2}{2} \int r^2 dm = \frac{1}{2} J \omega^2$$

• Kinetična energija kotaljenja: $W_k = \frac{1}{2}mv_T^2 + \frac{1}{2}J_T\omega^2$

Vrtilna količina

• Izrek o vrtilni količine (pri vrtenju okoli fiksne osi):

$$\int M dt = \Delta \Gamma = J w_{\rm k} - J w_{\rm z}$$

Splošni nasveti

• Izrek velja za vrtenje okoli fiksne osi, če jih imamo več, zapišemo izrek za vsako telo posebej.

2.8 Gravitacija

Par točkastih teles

$$F_g = G \frac{m_1 m_2}{r^2},$$

kjer $G = 6,67 \cdot 10^{-11} \frac{\text{Nm}^2}{\text{kg}^2}$

• Gravitacijski pospešek na Zemlje: $g(h) = G\frac{M}{(R+h)^2}$

Potencialna energija Par točkastih mas:

$$A = \int_{r}^{\infty} F_g \, dr = \int_{r}^{\infty} G \frac{m_1 m_2}{r^2} \, dr = G \frac{m_1 m_2}{r} = W_p(\infty) - W_p(r).$$

Definiramo $W_p(\infty) = 0$ sledi, da $W_p(r) = -G\frac{m_1m_2}{r}$

Sateliti

• Pogoj, da satelit ne pade na Zemlju: $F_g = F_{cf}$

• Ubežna hitrost:

Začetek: Kinetična energija + Gravitacijska potencialna energija

- Konec (smo v ∞): $W_p(\infty) = 0$, $W_k(\infty) = 0$

Približevanje

• Energija je konstantna.

• Vrtilna količina v najbližjih točkah je enaka (se ohranja): $\vec{\Gamma} = m\vec{r} \times \vec{v}$, če $M \gg m$, sicer reducirana masa $\frac{1}{\mu} = \frac{1}{m} + \frac{1}{M}$

3 Termodinamika

3.1 Osnovne količine in formule

• m – masa snovi, V – volumen snovi, $\rho = \frac{m}{V}$ – gostota snovi, tj. $m = \rho V$

• N – število atomov ali molekul (delcev) v snovi, m_0 – masa delca, tj. $m = m_0 N$

• $n = \frac{N}{V}$ – številska gostota snovi, tj. N = nV

Velja: $m_0 n = m_0 \frac{N}{V} = \frac{m}{V} = \rho$, tj. $\rho = m_0 n$ • V enem molu snovi so $6,02 \cdot 10^{23}$ delcev. $N_A = 6,02 \cdot 10^{23}$ mol⁻¹ – Avogadrovo število

• ν – število snovi (število molov), tj. $N=\nu N_A$ • μ – molska masa, $[\mu]=\frac{\mathrm{kg}}{\mathrm{ml}}$, tj. $m=\mu\nu$ in $\mu=m_0N_A$

3.2 Tlak. Idealni plin

Tlak $p:=\frac{F}{S},\ [p]=\frac{\mathrm{N}}{\mathrm{m}^2}=\mathrm{Pa}.$ 1 bar = 10^5 Pa

Povprečna kinetična energija delcev

- Idealni plin, N delcev
- v_1, v_2, \dots, v_N hitrosti delcev
- $W_1=\frac{1}{2}m_0v_1^2,W_2=\frac{1}{2}m_0v_2^2,\ldots,W_N=\frac{1}{2}m_0v_N^2$ kinetična energija delcev

Dobimo

$$\overline{W} = \frac{1}{2}m_0v^2,$$

kjer $v^2 = \frac{v_1^2 + v_2^2 + \ldots + v_N^2}{N}$ - povprečni kvadrat hitrosti.

Osnovna enačba MKT

$$p = \frac{2}{3}n\overline{W} = \frac{1}{3}nm_0v^2 = \frac{1}{3}\rho v^2$$

Povezava med T in \overline{W}

V toplotnem ravnovesju velja:

$$\overline{W} = \frac{3}{2}k_BT,$$

kjer $k_B=1,38\cdot 10^{-23}~{\rm \frac{J}{K}}$ – Boltzmannova konstanta. Iz te enačbe sledi, da

$$v = \sqrt{\frac{3RT}{\mu}},$$

kjer $R=kN_A=8300~\frac{\rm J}{\rm kmol\cdot K}$ univerzalna plinska konstanta

Enačba idealnega plina

$$pV = \nu RT = \frac{m}{\mu}RT, \qquad p = \frac{\rho}{\mu}RT$$

3.3 Raztezanje snovi

• Če palico segrejemo, se dolžina palice l poveča:

$$\Delta l = \alpha l \Delta T$$
.

kjer je α koeficient dolžinskega raztezka:

- $-\alpha_{\rm jeklo} = 1, 1 \cdot 10^{-5} \, \rm K^{-1}$
- $-\alpha_{\text{steklo}} = 0,9 \cdot 10^{-5} \text{ K}^{-1}$
- $-\alpha_{\text{medenina}} = 1,9 \cdot 10^{-5} \text{ K}^{-1}$
- \bullet Če kocko segrejemo, se volumen kocke V poveča:

$$\Delta V = \beta V \Delta T$$
,

kjer je β koeficient prostorninskega raztezka:

– Za trdne snovi: $\beta = 3\alpha$

3.4 Energijski zakon. Toplota in delo

Notranja energija W_n

• Je enolična funkcija stanja

Energijski zakon

$$\Delta W = \Delta A + \Delta Q,$$

kjer je Q toplota.

Če je $\Delta W_k = \Delta W_p = 0$, potem $dW_n = dA + dQ$, kjer

- $A = \int dA = -\int p \, dV$
- $dQ = mc_v dT$, če je $V = \text{const oz. } dQ = mc_p dT$, če je p = const (prosto gibljiv bat)

Energijske razmerje pri idealnem plinu

• Če V = const, potem

$$W_n(T) = mc_v T$$

To vedno velja za idealni plin.

• Če p = const, potem $dQ = dW_n + pdV$, tj. $mc_p dT = mc_v dT + pdV$, dobimo

$$c_p = c_v + \frac{R}{\mu}$$

Specifične toplote Definiramo $\kappa = \frac{c_p}{c_v}$, potem $c_v = \frac{R}{\mu(\kappa - 1)}$

- 1-atomni plin: $c_v = \frac{3}{2} \frac{R}{\mu}$, $\kappa = \frac{5}{3}$
- 2-atomni plin (brez nihanja): $c_v = \frac{5}{2} \frac{R}{\mu}, \ \kappa = \frac{7}{5}$: - zrak
- 2-atomni plin (z nihanjem): $c_v = \frac{7}{2} \frac{R}{\mu}, \ \kappa = \frac{7}{5}$
- Večatomni plit: $c_v = 3\frac{R}{\mu}$, $\kappa = \frac{4}{3}$

Termodinamske spremebe (idealni plin) 3.5

Običajno rišemo pV, VT in pT diagrami, kjer je prva črka y-os.

Izohorni proces (V = const, zaprta posoda)

- $\bar{A} = -p\Delta V = 0 \implies \Delta W_n = \Delta Q = mc_n\Delta T$

Izobarni proces (p = const, prosto gibljiv bat, oz. odprta posoda)

- $p = p_{\text{atm}} + \frac{Mg}{S} = \text{const}$, kjer je M masa bata, $\frac{V}{T} = \text{const}$ $A = -p\Delta V$, $Q = mc_p\Delta T$ in $\Delta W_n = mc_v\Delta T$

Izotermni proces (T = const)

- pV = const
- $A = -p_1V_1 \ln \frac{V_2}{V_1}$ in $\Delta W_n = 0 \implies Q = p_1V_1 \ln \frac{V_2}{V_1}$

Adiabatski proces (S [entropija] = const)

- Hitro razpenjanje: Q=0
- $dW_n = dA \implies mc_v dT = -pdV$
- $(pV)^{\kappa} = \text{const}, TV^{\kappa-1} = \text{const} \text{ in } T^{\kappa}p^{1-\kappa} = \text{const}$

Fazne spremembe

- Trdno v tekoče: $Q_{\rm talilna}=q_{\rm t}m,$ kjer je $q_{\rm t}$ specifična talilna toplota in m masa snovi: - voda: $q_t = 336 \frac{\text{KJ}}{\text{kg}}$
- Kapljevina v plin: $Q_{izparilna}^{Kg}=q_i m$, kjer je q_i specifična izparilna toplota in m masa snovi:
 voda: $q_i=2260~{
 m \frac{KJ}{kg}}$

3.7 Entropija

- Obstaja količina S(T, V), ki je funkcija stanja, in velja $\Delta S \geq 0$ za zaprt sistem
- Za reverzibilne spremembe velja: $dS = \frac{dQ}{T}$
 - Idealni plin: $S(T,V) = \int_1^2 \frac{dQ}{T} = mc_v \ln \frac{T_2}{T_1} + \frac{mR}{\mu} \ln \frac{V_2}{V_1}$
 - * Razpenjanje v vakuumu: $\Delta S = \frac{mR}{\mu} \ln \frac{V_2}{V_1} > 0$, tj. ireverzibilno
 - * Izotermni stisk (plin + rezervoar): $\Delta S = -\frac{Q}{T_0} + \frac{Q}{T_0} = 0$, tj. reverzibilno
- II. zakon termodinamike: $\Delta S \geq \int_{A \to B} \frac{dQ}{T}$. Če je T = const, potem $\Delta S \geq \frac{Q}{T}$
 - Enačaj velja za reverzibilne spremembe:
 - * Lahko neskončno počasi spreminjamo temperaturo

3.8 Toplotni stroji

 $\begin{array}{l} \bullet \ \, \text{Izkoristek} \,\, \eta = \frac{|A|}{Q_{\text{dovedena}}} \\ \bullet \ \, A = Q_{\text{dov}} - Q_{\text{odv}} \implies \eta = 1 - \frac{Q_{\text{odv}}}{Q_{\text{dov}}} \\ \bullet \ \, \text{Adiabatna sprememba:} \,\, Q_{\text{dov}} = 0 \end{array}$

Splošno

• Vektorski produkt. $\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}, |\vec{a} \times \vec{b}| = ab\sin\alpha, \ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$ • Radiani - Stopinji. 1 rd = 1 deg · $\frac{\pi}{180^\circ}$ • Celzij - Kelvin. x °C = x + 273 K • Litri - dm - 1 L = $\frac{1}{3}$ + $\frac{3}{3}$ + 1000 F.

• Litri - dm. $1 L = 1 dm^3$, $1000 L = 1 m^3$

Osnovne konstante

Velikost	Oznaka	Vrednost
Hitrost svetlobe v vakuumu	c	$3 \times 10^8 \text{ m/s}$
Hitrost zvoka v zraku (pri 20°C)	$v_{ m zvok}$	340 m/s
Gravitacijski pospešek	g	9.8 m/s^2
Gravitacijska konstanta	G	$6.67 \cdot 10^{-11} \text{ Nm}^2/\text{kg}^2$
Radij Zemlje	R	6400 km
Masa Zemlje	M	$6 \cdot 10^{24} \text{ kg}$
Gostota vode (pri 4°C)	$ ho_{ m voda}$	1000 kg/m^3
Gostota zraka (pri 20°C in 1 atm)	$ ho_{ m zrak}$	$1,204 \text{ kg/m}^3$
Avogadrovo število	N_A	$6.02 \cdot 10^{26} \ 1 \ \mathrm{kmol}^{-1}$
Boltzmannova konstanta	k_B	$1,38 \cdot 10^{-23} \text{ J/K}$
Univerzalna plinska konstanta	R	$8300 \text{ J/(kmol \cdot K)}$
Kilomolska masa zraka	$\mu_{ m zrak}$	29 kg/kmol

Tabela 1: Osnovne fizikalne konstante v mehaniki in sorodnih področjih

Splošni nasveti

• Če se da, izognemo se kvadratnih enačb