Group Homomorphism

Let $(G_1,*)$ and (G_1,Δ) be any two groups. A mapping $f:G_1 \to G_1$ is called homomorphism of G_1 to G_1 if $f(a*b) = f(a) \Delta f(b) \forall a,b \in G_1$.

eg: Let $G_1 = R$, the set of real number and $G_1 = R - \{U\}$ $(G_1,+)$ and (G_1,\cdot) are groups. Define a mapping $f:G_1 \to G_1$ by $f(a) = 2^q \forall a \in G_1$.

Clearly $f(a+b) = 2^{a+b} = 2^a \cdot 2^b = f(a) \cdot f(b)$

: f is a homomorphism of G into Ty.

 $\frac{\mathsf{Ex}}{\mathsf{x}}$: If for a group G_1 , $f:G_1 \to G_1$ is given by $f(x) = \chi^2$, $x \in G_1$ is homomorphism, prove that G is abelian. a, beG =) abeG f: Gr -> Gr is a homomorphism $f(a) = a^2$, $f(b) = b^2$ and $f(ab) = (ab)^2$ Now $f(ab) = (ab)^2$ f(a) = f(b) = (ab) (ab) a^2 , $b^2 = (ab)(ab)$ (aa) (bb) = (ab) (ab) a.(ab).b = a(ba)b

(ab).b = (ba) b [Cancellation Law] ab = ba [Cancellation law]

. . G is abelian because it holds Commutative property.

An algebraic system (R,+,.) is called a ring if binary operations "+' and '.' I satisfy the following properties:

1. (R,+) is an abelian group

2 (R.) is a semi-group

3. The operation '.' is distributive over + i.e. for any a,b,cer a.(b+c) = a.b+a.c and (b+c), a = b.a+c.a

eg: The set of integers Z, with respect to operation + fx is a ring.

Scanned with CamScanner

Special Type of Rings

- (1) Commutative king or Abelian King

 A ring R is said to be commutative ring or an Abelian
 ring if it satisfies the commutative Law, $\forall a,b \in R$ $a \cdot b = b \cdot a$
- Ling with Unity

 A ring R which contains multiplicative identity (called unity)
 is called a ring with unity

 Thus if IER such that a. I = a = I.a VaER, then

 ring with unity.
 - (3) Ling without unity

 A ring k, which does not contain multiplicative identity

 is called ring without unity.
 - Finite and infinite king

 If the number of elements in the ring R. Is finite
 then <R,+, > is called finite ring otherwise it is
 called infinite ring.
 - Deder of a king

 The number of elements in a finite ring R is called order of ring R. This is denoted by IRI.

Properties of Ring

(i) a. 0 = 0 = 0. a Va CR

ne know that $a+o=a \forall a \in R$ $a \cdot (a+o)=a \cdot a$ $a \cdot a + a \cdot o = a \cdot a$

a · 0 = 0 (By left cancellation under

Scanned with CamScanner

Similarly; prove
$$\boxed{0.0=0}$$
.

(iii) $a(-b) = (-a)b = -(ab)$ $\forall a,b \in R$
 $b \in R \Rightarrow -b \in R$ such that $b+(-b)=0$
 $a \cdot (b+(-b)) = a \cdot 0$
 $a \cdot b + a \cdot (-b) = 0$
 $a \cdot (-b) = \frac{b}{a} = -(a \cdot b)$

Similarly, prove that

 $(-a) \cdot b = -(a \cdot b)$

(iii) $(-a) \cdot (-b) = ab$ $\forall ab \in R$
 $a \cdot (-b) + (-a) \cdot (-b)$
 $a \cdot (-b) + (-a) \cdot (-b)$
 $a \cdot (-b) + (-a) \cdot (-b) = a \cdot (-b) + a \cdot b$

By left cancellation law,

 $(-a) \cdot (-b) = a \cdot b$

(b-c) = $a \cdot b - a \cdot c$
 $(b-c) = a \cdot b - a \cdot c$
 $a \cdot (b-c) = a \cdot b + a \cdot (-c)$
 $a \cdot (b-c) = a \cdot b + a \cdot (-c)$
 $a \cdot (b-c) = a \cdot b - a \cdot c$

Similarly prove (b-c). a = b.a-c.a

Sub-lings Let $(R,+,\cdot)$ be a ring and S be a non-empty subset of $R\cdot Jf \in (S,+,\cdot)$ is a ring then $(S,+,\cdot)$ is called a Sub-ring of R.

Ex: let E denote the set of even integers. (E,+,.) is a Sub-ring of (Z,+,.) where Z denotes the set of integers.

Fields

A finite integral domain is called fields.

fx: If k is a non-zero ring so that $a^2 = a \ \forall a \in \mathbb{R}$. Prove that the characteristic of k is 2.

St? Since $a^2 = a \forall a \in R$ we have $(a+a)^2 = (a+a)$

(a+a)(a+a) = (a+a) a(a+a) + a(a+a) = a+a aa + aa + aa + aa = a+a $(a^2 + a^2) + (a^2 + a^2) = a+a$ (a+a) + (a+a) = (a+a) + 0

Apply left cancellation law $\Rightarrow \alpha + \alpha = 0$ $2\alpha = 0$

2 is the least positive integer so that 2a=0 $\forall a \in R$

Hence, the characteristic of Ris 2.