```
In [ ]: Gerardo Carcoba - A01178753 - Carrera:LAF
```

Comprensión de los Datos

```
In [11]: #importa librerías
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Descripción de Variables

Pregnancies: Cuántas veces ha estado embarazada la persona Glucose: Nivel de azúcar en la sangre después de una prueba

BloodPressure: Presión arterial medida en reposo

SkinThickness: Grosor de la piel del brazo (mide grasa corporal)

Insulin: Cantidad de insulina en la sangre

BMI: Índice de masa corporal (relación entre peso y altura)

DiabetesPedigreeFunction: Qué tan probable es tener diabetes según los antecedentes

familiares

4

0

137

Age: Edad de la persona

Outcome: Resultado del examen (0 = No tiene diabetes, 1 = Sí tiene diabetes)

Ejemplo: Crear un objeto DataFrame con base en un archivo .csv

```
In [12]: #lee archivo csv
          df = pd.read_csv("diabetes.csv")
In [13]: #Usa función shape para revisar el total de renglones y columnas
         df.shape
Out[13]: (768, 9)
In [14]: #Revisa los primeros 5 renglones del dataset usando la función head()
         df.head ()
Out[14]:
             Pregnancies Glucose BloodPressure SkinThickness Insulin
                                                                      BMI DiabetesPedigro
          0
                                            72
                      6
                             148
                                                           35
                                                                   0 33.6
          1
                              85
                                            66
                                                           29
                                                                   0 26.6
          2
                                            64
                                                                   0 23.3
                      8
                             183
                                                           0
          3
                      1
                              89
                                            66
                                                           23
                                                                  94 28.1
```

localhost:8888/lab

40

35

168 43.1

In [56]: #Revisa los últimos 5 renglones del dataset usando la función tail()
df.tail()

Out[56]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedi
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

In [57]: #Revisa la información mas completa del conjunto de datos usando la función
#Muestra el total de datos, las columnas y su tipo correspondiente, dice si
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

In [54]: #revisa cuántos valores únicos tiene cada atributo del archivo usando la fur
df.nunique()

Out[54]:	Pregnancies	17
	Glucose	136
	BloodPressure	47
	SkinThickness	51
	Insulin	186
	BMI	248
	DiabetesPedigreeFunction	517
	Age	52
	Outcome	2
	dtype: int64	

Exploración de Datos

In [26]: #utiliza la función describe() para obtener estadística básica. se puede inc
df.describe()

localhost:8888/lab 2/24

Out[26]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	В			
	count	768.000000	768.000000	768.000000	768.000000	768.000000	768.0000			
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.9925			
	std	3.369578	31.972618	19.355807	15.952218	115.244002	7.8841			
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.0000			
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.3000			
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.0000			
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.6000			
	max	17.000000	199.000000	122.000000	99.000000	846.000000	67.1000			
In []:	Los datos muestran una glucosa promedio de 120.9 entre los participantes y u									
In [65]:	df["BM	<pre>df["BMI"].describe()</pre>								
Out[65]:	count 768.000000 mean 31.992578 std 7.884160 min 0.000000 25% 27.300000 50% 32.000000 75% 36.600000 max 67.100000 Name: BMI, dtype: float64									
In []:	La may	oría de los	participant	es tienen sob	repeso o obesi	dad, lo que	aumenta			
In [66]:	df["0u	ıtcome"].desc	cribe()							
Out[66]:	count mean std min 25% 50% 75% max Name:	768.0000 0.3489 0.4769 0.0000 0.0000 1.0000 1.0000 Outcome, dt	58 51 20 20 20 20	1						
In []:	Esta g	ırafica muest	ra que hay	un total de 70	58 registros d	e participar	ntes y el			
In [30]:		sa Valores nu null().sum()	ılos con fun	cion isnull().	.sum()					

localhost:8888/lab 3/24

```
Out[30]: Pregnancies
                                     0
         Glucose
                                     0
         BloodPressure
                                     0
         SkinThickness
                                     0
         Insulin
                                     0
         BMI
                                     0
         DiabetesPedigreeFunction
                                     0
                                     0
         Age
         Outcome
                                     0
         dtype: int64
 In []: Esta grafica demuestra que no hay en ninguna variable valores nulo, signific
In [62]: #Revisar valores únicos por columna usando función unique(): nombre-columna.
         df["Glucose"].unique()
Out[62]: array([148, 85, 183, 89, 137, 116, 78, 115, 197, 125, 110, 168, 139,
                189, 166, 100, 118, 107, 103, 126, 99, 196, 119, 143, 147, 97,
                145, 117, 109, 158, 88, 92, 122, 138, 102, 90, 111, 180, 133,
                                    71, 105, 101, 176, 150, 73, 187, 84, 44,
                106, 171, 159, 146,
                                           0, 62, 131, 112, 113, 74,
                141, 114, 95, 129, 79,
                                                                       83, 136,
                 80, 123, 81, 134, 142, 144, 93, 163, 151, 96, 155,
                                                                       76, 160,
                124, 162, 132, 120, 173, 170, 128, 108, 154, 57, 156, 153, 188,
                152, 104, 87, 75, 179, 130, 194, 181, 135, 184, 140, 177, 164,
                 91, 165, 86, 193, 191, 161, 167, 77, 182, 157, 178, 61, 98,
                127, 82, 72, 172, 94, 175, 195, 68, 186, 198, 121,
                                                                       67, 174,
                199, 56, 169, 149, 65, 190])
 In []: La variable glucosa tiene gran variedad de valores, indicando que hay difere
In [67]: #Revisar valores únicos por columna usando función unique(): nombre-columna.
         df["BMI"].unique()
```

localhost:8888/lab 4/24

```
Out[67]: array([33.6, 26.6, 23.3, 28.1, 43.1, 25.6, 31., 35.3, 30.5, 0., 37.6,
                38. , 27.1, 30.1, 25.8, 30. , 45.8, 29.6, 43.3, 34.6, 39.3, 35.4,
                39.8, 29., 36.6, 31.1, 39.4, 23.2, 22.2, 34.1, 36., 31.6, 24.8,
                19.9, 27.6, 24., 33.2, 32.9, 38.2, 37.1, 34., 40.2, 22.7, 45.4,
                27.4, 42. , 29.7, 28. , 39.1, 19.4, 24.2, 24.4, 33.7, 34.7, 23. ,
                37.7, 46.8, 40.5, 41.5, 25. , 25.4, 32.8, 32.5, 42.7, 19.6, 28.9,
                28.6, 43.4, 35.1, 32., 24.7, 32.6, 43.2, 22.4, 29.3, 24.6, 48.8,
                32.4, 38.5, 26.5, 19.1, 46.7, 23.8, 33.9, 20.4, 28.7, 49.7, 39.
                26.1, 22.5, 39.6, 29.5, 34.3, 37.4, 33.3, 31.2, 28.2, 53.2, 34.2,
                26.8, 55., 42.9, 34.5, 27.9, 38.3, 21.1, 33.8, 30.8, 36.9, 39.5,
                27.3, 21.9, 40.6, 47.9, 50. , 25.2, 40.9, 37.2, 44.2, 29.9, 31.9,
                28.4, 43.5, 32.7, 67.1, 45. , 34.9, 27.7, 35.9, 22.6, 33.1, 30.4,
                52.3, 24.3, 22.9, 34.8, 30.9, 40.1, 23.9, 37.5, 35.5, 42.8, 42.6,
                41.8, 35.8, 37.8, 28.8, 23.6, 35.7, 36.7, 45.2, 44. , 46.2, 35. ,
                43.6, 44.1, 18.4, 29.2, 25.9, 32.1, 36.3, 40., 25.1, 27.5, 45.6,
                27.8, 24.9, 25.3, 37.9, 27., 26., 38.7, 20.8, 36.1, 30.7, 32.3,
                52.9, 21. , 39.7, 25.5, 26.2, 19.3, 38.1, 23.5, 45.5, 23.1, 39.9,
                36.8, 21.8, 41., 42.2, 34.4, 27.2, 36.5, 29.8, 39.2, 38.4, 36.2,
                48.3, 20. , 22.3, 45.7, 23.7, 22.1, 42.1, 42.4, 18.2, 26.4, 45.3,
                37. , 24.5, 32.2, 59.4, 21.2, 26.7, 30.2, 46.1, 41.3, 38.8, 35.2,
                42.3, 40.7, 46.5, 33.5, 37.3, 30.3, 26.3, 21.7, 36.4, 28.5, 26.9,
                38.6, 31.3, 19.5, 20.1, 40.8, 23.4, 28.3, 38.9, 57.3, 35.6, 49.6,
                44.6, 24.1, 44.5, 41.2, 49.3, 46.3])
 In [ ]: Hay una gran variedad entre los valores del BMI, indicando que hay participa
In [131... #Revisar valores únicos por columna usando función unique(): nombre-columna.
         df["Outcome"].unique()
```

localhost:8888/lab 5/24

```
Out[131... array([181.6, 111.6, 206.3, 117.1, 180.1, 141.6, 109. , 150.3, 227.5,
                 125. , 147.6, 206. , 166.1, 219.1, 191.8, 130. , 163.8, 136.6,
                 146.3, 149.6, 165.3, 134.4, 235.8, 148. , 179.6, 156.1, 186.4,
                 120.2, 167.2, 151.1, 145. , 189.6, 112.8, 111.9, 127. , 171.2,
                 134.9, 128.2, 148.1, 214. , 173.2, 128.7, 216.4, 222. , 175.7,
                 99. , 142.1, 105. , 122.4, 125.2, 112.4, 209.7, 184.7, 96. ,
                 224.7, 146.8, 186.5, 146.5, 84., 165.9, 69., 166.4, 128.,
                 141.5, 151.7, 114.6, 174.9, 132.9, 167.6, 169.4, 164.1, 111.
                 24.7, 94.6, 132.7, 174.2, 137., 135.4,
                                                           74. , 112.3, 125.6,
                 185.8, 142.4, 142.6, 138.5, 173.1, 133.5, 99.1, 155., 127.7,
                 157.8, 166.7, 177.9, 123.6, 91.4, 121.7, 171.7, 202. , 177.1,
                 147.5, 107.6, 124.6, 154.7, 118.4, 173.5, 117.3, 132.4, 204.3,
                 189. , 110. , 190.5, 177.2, 158. , 111.7, 122.2, 215.2, 145.2,
                 140.6, 158.8, 143. , 162.9, 151.3, 151.5, 202.7, 155.3, 204.5,
                 122.3, 130.8, 160.2, 141.9, 149.1, 145.5, 140.5, 140.4, 186.8,
                 102. , 89.8, 136.5, 180.7, 173.4, 135.9, 190.3, 193.6, 235.9,
                 134.2, 117., 203.9, 139.2, 158.2, 129.7, 162.6, 133.9, 180.5,
                 139.4, 132.8, 115.9, 122.5, 104.7, 211.7, 116.2, 196.1, 188. ,
                 169.1, 110.2, 153.9, 27.7, 99.8, 168.6, 229.9, 211.1, 160.
                 136.9, 170.6, 133.6, 189.4, 187.3, 109.4, 197.4, 129.3, 129.9,
                 143.8, 178.9, 144. , 178.1, 135.3, 119.4, 140.7, 233.5, 199.7,
                 129.2, 219.5, 108.7, 189.8, 213.2, 182.6, 146.2, 192.8, 144.8,
                 114. , 149.8, 211.6, 144.2, 170.8, 121.6, 136.7, 199.2, 233.7,
                 162.2, 186., 180.2, 104.4, 157., 103.7, 214.6, 216.9, 223.1,
                 194.8, 124.1, 164.6, 146.1, 184.2, 153.2, 217.3, 159.4, 141.1,
                 137.2, 114.4, 121.8, 119.6, 146.6, 142.7, 218.9, 188.3, 221.9,
                 171. , 127.1, 174.4, 129.6, 174.3, 168. , 133.2, 104.2, 140.2,
                 132.5, 131.8, 138.9, 133.3, 183.9, 164.9, 165.4, 191.4, 135.
                 162. , 193.7, 116.8, 144.1, 114.9, 143.6, 171.3, 168.5, 182.9,
                 174. , 156.7, 135.6, 199.3, 175.6, 167.9, 159.7, 161.8, 158.5,
                 156.9, 106.2, 145.4, 142.5, 144.9, 118.3, 212.5, 153.1, 217.5,
                 156.5, 151.4, 178.8, 147.7, 157.1, 214.1, 135.8, 119.7, 223.3,
                 118.9, 212.9, 150.8, 186.2, 217.9, 155.9, 120.9, 32., 164.5,
                 167.7, 139.5, 120.8, 41., 168.2, 95.4, 117.2, 195.4, 158.3,
                 168.9, 123.3, 232.5, 220.2, 187.8, 142.2, 184.5, 181.9, 133. ,
                 151.6, 122. , 108.5, 165.8, 211.4, 118. , 119.8, 139.9, 179.2,
                 123.2, 124.2, 136.4, 137.8, 115.1, 149.3, 141.3, 148.3, 176. ,
                 131.6, 132. , 138.1, 190.9, 120.7, 103.1, 227.9, 161.2, 103.6,
                 200.9, 165.1, 143.9, 122.9, 222.9, 214.4, 137.7, 146.4, 185.4,
                 169.2, 172.6, 208.7, 182.5, 101.2, 155.4, 164.3, 120. , 145.8,
                 193.9, 221. , 94. , 215.1, 121.2, 114.5, 183.4, 177.4, 176.9,
                 115.2, 150.2, 146.7, 239.4, 125.3, 131.5, 137.6, 150.5, 103.2,
                 130.9, 138.6, 208.6, 161.7, 185.6, 159.9, 140.8, 92.8, 109.3,
                 115.6, 139. , 101.8, 133.8, 150. , 200.1, 185.3, 170.2, 142.9,
                 138.7, 151.9, 193.5, 189.2, 177.3, 179.7, 220.1, 80., 192.6,
                 136. , 111.1, 183.3, 39. , 127.3, 108.3, 216.5, 158.6, 113.7,
                 161.1, 194.6, 175.3, 108.8, 148.6, 93., 157.2, 164.2, 156.6,
                 142.3, 147.8, 151.8, 152.3, 110.3, 134.6, 78.7, 163.3, 160.4,
                 124.9, 123.5, 220.5, 230.6, 196.8, 143.4, 141.8, 117.9, 149.5,
                 135.1, 149.2, 239.3, 125.9, 123.4, 121.1, 124. , 110.5, 152.6,
                 154.5, 160.9, 231.7, 193.1, 134., 152.7, 115.5, 209.3, 94.1,
                 220. , 209.8, 132.1, 185.2, 159.8, 111.5, 206.9, 206.2, 137.5,
                 174.1, 145.7, 88.1, 150.4, 223.8, 138.8, 149.7, 164.4, 118.7,
                 141.4, 155.5, 135.2, 137.9, 119.5, 131.3, 162.3, 176.5, 130.6,
                 196.4, 190.4, 216.8, 133.4, 122.8, 158.9, 166. , 114.2, 189.7,
                 241.9, 204.6, 148.7, 177.5, 184.9, 198.6, 124.4, 103.5, 180.3,
```

localhost:8888/lab

126.6, 225.9, 180.8, 128.3, 80.2, 139.6, 157.3, 190.1, 200.3,

```
160.1, 167.5, 113.5, 172.4, 198.9, 161.5, 162.5, 157.9, 203.
                138.4, 115. , 161.4, 131. , 155.6, 220.9, 206.8, 143.5, 132.6,
                152.1, 178.3, 197.9, 122.1, 158.4, 148.4, 218.5, 130.4, 153.4,
                 97. , 172.7, 196.3, 223.4, 186.3, 224.3, 169. , 159.3, 225.5,
                116.4, 147.2])
 In [ ]: La variable Outcome muestra tiene gran variedad en sus valores, indicando di
In [68]: df["Outcome"].unique()
Out[68]: array([1, 0])
```

Variables Cuantitativas

Medidas de tendencia central

```
In [43]: #Glucose
         #Se puede obtener la media, mediana y moda para
         mean Glucose = df['Glucose'].mean()
         median_Glucose =df['Glucose'].median()
         mode_Glucose = df['Glucose'].mode()
          print("Mean_Glucose:", mean_Glucose)
          print("Median_Glucose:", median_Glucose)
          print("Mode_Glucose:", mode_Glucose)
        Mean Glucose: 120.89453125
        Median Glucose: 117.0
        Mode Glucose: 0
        1
              100
        Name: Glucose, dtype: int64
         Conclusiones:
         La Glucose promedio fue 121
         La Glucose al centro es 117 La Glucose más repetida fue de 99
```

In [133... | #BMI #Se puede obtener la media, mediana y moda para mean_BMI = df['BMI'].mean() median BMI =df['BMI'].median() mode BMI = df['BMI'].mode() print("Mean_BMI:", mean_BMI) print("Median_BMI:", median_BMI) print("Mode_BMI:", mode_BMI)

```
Mean BMI: 31.992578124999998
```

Mode BMI: 0 32.0 Name: BMI, dtype: float64

Conclusiones:

Median BMI: 32.0

La BMI promedio fue 32

localhost:8888/lab 7/24 La BMI al centro es 32 La BMI más repetida fue de 32

```
In [132... #Outcome
         #Se puede obtener la media, mediana y moda para
         mean Outcome = df['Outcome'].mean()
         median_Outcome =df['Outcome'].median()
         mode Outcome = df['Outcome'].mode()
         print("Mean_Outcome:", mean_Outcome)
         print("Median_Outcome:", median_Outcome)
         print("Mode_Outcome:", mode_Outcome)
        Mean_Outcome: 152.887109375
        Median Outcome: 148.3
        Mode Outcome: 0
                             115.2
              116.2
        1
        2
              124.6
        3
              127.3
        4
              131.8
        5
              137.8
        6
              146.8
        7
              151.4
        8
              156.1
        9
               158.8
               160.0
        Name: Outcome, dtype: float64
```

Conclusiones:

El Outcome promedio fue 153 El Outcome al centro es 148 El Outcome más repetida fue de 115

Variables Categóricas

```
In [72]: #Para conteo de cada valor en una columna, en orden descendente usar funció
         # nombreDataframe.columna.value_counts()
         # nombreDataframe['columna'].value_counts()
         df.Glucose.value counts()
Out[72]: Glucose
          99
                 17
          100
                 17
          111
                 14
          125
                 14
          129
                 14
          56
                  1
          169
                  1
          149
                  1
          65
                  1
          190
          Name: count, Length: 136, dtype: int64
```

localhost:8888/lab

```
In [ ]: La tabla muestra que los valores de glucosa más comunes estan entre 99 y 100
In [108... #Para conteo de cada valor en una columna, en orden descendente usar funció
         # nombreDataframe.columna.value counts()
         # nombreDataframe['columna'].value counts()
         df.BMI.value counts()
Out[108... BMI
          32.0
                  13
          31.6
                  12
          31.2
                  12
          0.0
                  11
          32.4
                  10
          49.6
                   1
          24.1
                  1
          41.2
                   1
          49.3
                   1
          46.3
                   1
         Name: count, Length: 248, dtype: int64
 In []: Los valor mmas comunes son 31 y 32 indicando que la mayoria de los pacientes
In [109... #Para conteo de cada valor en una columna, en orden descendente usar funció
         # nombreDataframe.columna.value_counts()
         # nombreDataframe['columna'].value counts()
         df.Outcome.value_counts()
Out[109... Outcome
          156.1
                   4
          131.8
                   4
          124.6
                  4
          151.4
                   4
          137.8
                  . .
          223.4
                  1
          196.3
                  1
          172.7
                   1
          97.0
                   1
          153.4
          Name: count, Length: 551, dtype: int64
 In [ ]: Los valores más frecuentes del Outcome se concentran entre 124 y 156, demost
In [34]: #Revisa conteo de varias columnas
         columnas = ['Glucose', 'BMI', 'Outcome']
         for col in columnas:
             print(f"\nConteo de valores únicos en la columna: {col}")
             print(df[col].value counts())
```

localhost:8888/lab 9/24

```
Conteo de valores únicos en la columna: Glucose
        Glucose
        99
               17
        100
               17
        111
               14
        125
               14
        129
               14
               . .
        56
                1
        169
                1
        149
                1
        65
                1
        190
                1
        Name: count, Length: 136, dtype: int64
        Conteo de valores únicos en la columna: BMI
        BMT
        32.0
                13
        31.6
                12
        31.2
                12
        0.0
                11
        32.4
                10
                . .
        49.6
        24.1
                 1
        41.2
                 1
        49.3
                 1
        46.3
                 1
        Name: count, Length: 248, dtype: int64
        Conteo de valores únicos en la columna: Outcome
        Outcome
        0
             500
             268
        1
        Name: count, dtype: int64
 In []: # Crear variable totalScore que incluya la suma de las columnas Outcome, Glu
         # Mostrar los registros donde el total sea mayor o igual a 18
         df["Outcome"] + df["Glucose"] + df["BMI"] >= 18
In [97]: df
```

localhost:8888/lab 10/24

Out[97]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedi
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	•••		•••	•••				
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

768 rows × 9 columns

In []: En la grafica podemos ver qué pacientes tienen un nivel combinado alto entre

Consulta

```
In [112... # df.iloc[i]: Accede a la fila en la posición i.
         # Acceder a la primera fila
         df.iloc[0]
                                         6.000
Out[112... Pregnancies
          Glucose
                                       148.000
          BloodPressure
                                        72,000
          SkinThickness
                                        35.000
          Insulin
                                         0.000
          BMI
                                        33,600
          DiabetesPedigreeFunction
                                         0.627
          Age
                                        50.000
                                       181,600
          Outcome
          Name: 0, dtype: float64
 In []: El primer registro de los personas muestra valores elevados de glucosa ubica
In [99]: # Acceder a las dos primeras filas
         df.iloc[:2]
Out[99]:
            Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigre
          0
                             148
                                            72
                                                          35
                                                                  0 33.6
```

localhost:8888/lab

66

29

0 26.6

85

In [100... #Seleccionar columnas, indicando entre corchetes [nombreColumna, nombreColum
df[["Glucose", "BMI", "Outcome"]]

Out[100		Glucose	ВМІ	Outcome
	0	148	33.6	181.6
	1	85	26.6	111.6
	2	183	23.3	206.3
	3	89	28.1	117.1
	4	137	43.1	180.1
	•••	•••		•••
	763	101	32.9	133.9
	764	122	36.8	158.8
	765	121	26.2	147.2
	766	126	30.1	156.1

768 rows × 3 columns

93 30.4

123.4

767

In []: Las columnas seleccionadas muestran que los valores de Glucose, BMI y Outcom

In [114... #Selección de filas [indicar dataframe[columna] operador valor]
df[df["Glucose"] >= 150]

Out[114		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedi
	2	8	183	64	0	0	23.3	
	8	2	197	70	45	543	30.5	
	11	10	168	74	0	0	38.0	
	13	1	189	60	23	846	30.1	
	14	5	166	72	19	175	25.8	
	•••	•••		•••	•••			
	749	6	162	62	0	0	24.3	
	753	0	181	88	44	510	43.3	
	754	8	154	78	32	0	32.4	
	759	6	190	92	0	0	35.5	
	761	9	170	74	31	0	44.0	

143 rows × 9 columns

localhost:8888/lab 12/24

In []: Los datos seleccionados muestran que 143 registros presentan niveles de gluc

122

126

Out [115		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedi
	0	6	148	72	35	0	33.6	
	2	8	183	64	0	0	23.3	
	4	0	137	40	35	168	43.1	
	7	10	115	0	0	0	35.3	
	8	2	197	70	45	543	30.5	
	•••		•••			•••		
	757	0	123	72	0	0	36.3	
	759	6	190	92	0	0	35.5	
	761	9	170	74	31	0	44.0	

371 rows × 9 columns

764

766

In []: Se identificaron 371 registros con valores de Outcome mayores o iguales a 15

70

60

27

0 36.8

0 30.1

In [121... #Selección de filas [indicar dataframe[columna] operador valor]
 df[df["BMI"] > 50]

Out[121		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedi
	120	0	162	76	56	100	53.2	
	125	1	88	30	42	99	55.0	
	177	0	129	110	46	130	67.1	
	193	11	135	0	0	0	52.3	
	247	0	165	90	33	680	52.3	
	303	5	115	98	0	0	52.9	
	445	0	180	78	63	14	59.4	
	673	3	123	100	35	240	57.3	

In $[\]$: Los registros con BMI mayor a 50 esta muy relacionado a las personas que ti ϵ

In [104... #ordenar usando funcion sort_values(by=atributo, ascending=True/false)

localhost:8888/lab 13/24

df.sort_values(by="BMI", ascending=True)

Ο.		Га	0	Л
()[JT.		И	4

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedi
4	9 7	105	0	0	0	0.0	
6	0 2	84	0	0	0	0.0	
70	6 10	115	0	0	0	0.0	
8	1 2	74	0	0	0	0.0	
68	4 5	136	82	0	0	0.0	
	••	•••		•••			
12	0 0	162	76	56	100	53.2	
12	5 1	88	30	42	99	55.0	
67	3 3	123	100	35	240	57.3	
44	5 0	180	78	63	14	59.4	
17	7 0	129	110	46	130	67.1	

768 rows × 9 columns

In [122... #ordenar usando funcion sort_values(by=atributo, ascending=True/false) df.sort_values(by="Glucose", ascending=True)

Out [122...

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedi
75	1	0	48	20	0	24.7	
349	5	0	80	32	0	41.0	
342	1	0	68	35	0	32.0	
502	6	0	68	41	0	39.0	
182	1	0	74	20	23	27.7	
•••		•••	•••				
408	8	197	74	0	0	25.9	
579	2	197	70	99	0	34.7	
228	4	197	70	39	744	36.7	
561	0	198	66	32	274	41.3	
661	1	199	76	43	0	42.9	

768 rows × 9 columns

In [123... #ordenar usando funcion sort_values(by=atributo, ascending=True/false) df.sort_values(by="Outcome", ascending=True)

localhost:8888/lab 14/24

0ut	1	2	3	

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedi
75	1	0	48	20	0	24.7	
182	1	0	74	20	23	27.7	
342	1	0	68	35	0	32.0	
502	6	0	68	41	0	39.0	
349	5	0	80	32	0	41.0	
•••	•••	•••		•••			
22	7	196	90	0	0	39.8	
154	8	188	78	0	0	47.9	
561	0	198	66	32	274	41.3	
445	0	180	78	63	14	59.4	
661	1	199	76	43	0	42.9	

768 rows × 9 columns

Glucose BMI

In [105... #Agrupar por un atributo y calcular función de agregación utilizando groupby df.groupby("Outcome")[["Glucose", "BMI"]].mean()

Out[105...

Outcome		
24.7	0.0	24.7
27.7	0.0	27.7
32.0	0.0	32.0
39.0	0.0	39.0
41.0	0.0	41.0
•••		•••
235.8	196.0	39.8
235.9	188.0	47.9
239.3	198.0	41.3
239.4	180.0	59.4
241.9	199.0	42.9

 $551 \text{ rows} \times 2 \text{ columns}$

Crea un subconjunto de diabetes para paciente con glucos mayor a 100

localhost:8888/lab 15/24 In [35]: # Usa el criterio para extraer solo los pacientes con glucosa alta (Glucose
glucosa_alta = df[df["Glucose"] > 100]

In [36]: df

Out[36]: Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedi 0 33.6 0 26.6 0 23.3 28.1 168 43.1

764	2	122	70	27	0 36.8	
765	5	121	72	23	112 26.2	
766	1	126	60	0	0 30.1	
767	1	93	70	31	0 30.4	

180 32.9

768 rows × 9 columns

In []: En la tabla hay un filtro que filtra a los participantes con niveles altos c

Crea un subconjunto de diabetes para paciente con BMI Menor a 30

```
In [127... # Usa el criterio para extraer solo los pacientes con BMI baja (BMI > 30)
glucosa_alta = df[df["BMI"] > 30]
```

In [129... df

localhost:8888/lab 16/24

Out[129		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedi
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	•••	•••	•••		•••			
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

768 rows × 9 columns

In []: En la tabla se filtro para solo mostrar las personas que tiene sobre peso ya

Crea un subconjunto de diabetes para el resultado con Outcome mayor a O

In [40]: # Usa el criterio para extraer solo los resultado con 140 o mayor (Outcome >
 glucosa_alta = df[df["Outcome"] > 0]

In [39]: **df**

localhost:8888/lab 17/24

Out[39]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedi
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	•••	•••	•••					
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

768 rows × 9 columns

In []: La grafica filtra a toda las personas que tiene un resultado en el outcome o

Consulta

```
In [17]: # Distribución de Outcome
  outcome = df['Outcome'].value_counts()
  outcome.plot(kind='bar', color=['lightblue', 'salmon'])
  plt.title('Distribución de pacientes según diagnóstico de diabetes')
  plt.xlabel('Outcome (0 = No, 1 = Sí)')
  plt.ylabel('Frecuencia')
  plt.show()
```

localhost:8888/lab

In []: La gráfica muestra que la mayoría de los participantes no tienen diabetes, n
In [18]: # Histograma de Glucose
 plt.hist(df['Glucose'], bins=10, color='skyblue', edgecolor='black')
 plt.title('Distribución de Niveles de Glucosa')
 plt.xlabel('Glucose')
 plt.ylabel('Frecuencia')
 plt.show()

localhost:8888/lab 19/24

Distribución de Niveles de Glucosa

In []: La gráfica muestra que la mayoría de los pacientes tienen el nivel de la glu

```
In [19]: # Boxplot del IMC
plt.boxplot(df['BMI'].dropna())
plt.title('Boxplot del Índice de Masa Corporal (BMI)')
plt.ylabel('BMI')
plt.show()
```

localhost:8888/lab 20/24

In []: El diagrama muestra que la mayoría de los valores del BMI estan ubicados ent

```
In [25]: # Promedio de Glucose según diagnóstico de diabetes
  plt.figure(figsize=(6,5))
  sns.boxplot(x='Outcome', y='Glucose', data=df, hue='Outcome', dodge=False, promotion for simple for si
```

localhost:8888/lab 21/24

Niveles de Glucosa de acuerdo al diagnóstico de diabetes

In []: La grafica mmuestra que las personas que fueron diagnosticados con diabetes

```
In [21]: # Promedio de BMI según diagnóstico de diabetes
prom_bmi = df.groupby('Outcome')['BMI'].mean()
prom_bmi.plot(kind='bar', color=['lightcoral', 'gold'])
plt.title('Promedio de BMI por Categoría de Outcome')
plt.xlabel('Outcome (0 = No, 1 = Sí)')
plt.ylabel('Promedio de BMI')
plt.show()
```

localhost:8888/lab 22/24

Promedio de BMI por Categoría de Outcome

In []: La gráfica muestra que las personas con diabetes tienen un promedio de BMI m

In [30]: variables_numericas = df[['Glucose', 'BMI', 'Outcome']]
 matriz_correlacion = variables_numericas.corr().round(2)

In [31]: matriz_correlacion

Out[31]:

	Glucose	ВМІ	Outcome
Glucose	1.00	0.22	0.47
ВМІ	0.22	1.00	0.29
Outcome	0.47	0.29	1.00

In []: La tabla muestra que el nivel de glucosa está más relacionado con tener diak

```
In [22]: # Mapa de calor de correlación entre las variables principales
    correlacion = df[['Glucose', 'BMI', 'Outcome']].corr()
    sns.heatmap(correlacion, annot=True, cmap='coolwarm')
    plt.title('Mapa de Calor de Correlación (Glucose, BMI, Outcome)')
    plt.show()
```

localhost:8888/lab 23/24

In []: El mapa de calor demuestra que hay una conexión normal entre la glucosa y el

localhost:8888/lab 24/24