

DM 1 Récurrence et arithmétique

Exercice 1

Soit (u_n) la suite définie par: $u_0=1$ et $u_{n+1}=rac{1}{2}u_n+2$ pour tout $n\geq 0$.

Démontrer par récurrence que pour tout entier $n \geq 0$ on a :

$$u_n = -3 \bigg(\frac{1}{2}\bigg)^n + 4$$

Exercice 2

Pour tout $n \geq 1$, soit $S_n = \sum_{k=1}^n (2k-1)^2$

Démontrer par récurrence que pour tout $n \geq 1$, on a :

$$S_n=\frac{n(2n-1)(2n+1)}{3}$$

Exercice 3

Démontrer par récurrence que pour tout entier naturel $n: \quad 6 \mid 3n^2 + 3n + 6$

Reprendre cette démonstration avec les congruences.

Exercice 4

Résoudre dans \mathbb{Z} : 1665x+1035y=45

Après avoir cherché PGCD(1665,1035) et simplifié l'équation, on justifiera l'existence de solutions et on sera précis dans la résolution.

Exercice 5

Pour tout entier naturel non nul n, on pose a=5n+1 et b=2n-1. On note $\Delta=PGCD(a;b)$.

1 - Démontrer que les valeurs possibles de Δ sont 1 ou 7.

2 - Déterminer les entiers n tels que $a\equiv 0[7]$ et $b\equiv 0[7].$

3 - En déduire, suivant les valeurs de n, la valeur de Δ .