AM112, Assignment #1

1. Solve $y''(t) + \varepsilon y'(t) + y(t) = 0$ for a general solution for small $\varepsilon > 0$.

Observe that the solution oscillates while the amplitude decays slowly.

2. Show that
$$\int_{0}^{L} \sin(\frac{(n-\frac{1}{2})\pi}{L}x)\sin(\frac{(m-\frac{1}{2})\pi}{L}x)dx = \begin{cases} 0, & n \neq m, n > 0, m > 0 \\ L/2, & n = m > 0 \end{cases}$$

<u>Hint:</u> Use $\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$.

Remark: This result demonstrates that eigenfunctions $\left\{\sin(\frac{(n-\frac{1}{2})\pi}{L}x), n=1,2,...\right\}$ are orthogonal to each other.

3. We expand f(x) in eigenfunctions $\left\{\sin(\frac{(n-\frac{1}{2})\pi}{L}x), n=1,2,\ldots\right\}$.

Suppose the expansion has the form: $f(x) = \sum_{n=1}^{\infty} c_n \sin(\frac{(n-\frac{1}{2})\pi}{L}x)$.

(a) Multiply both sides by $\sin(\frac{(m-\frac{1}{2})\pi}{L}x)$ and integrate over [0, L] to derive

$$c_n = \frac{2}{L} \int_0^L f(x) \sin(\frac{(n - \frac{1}{2})\pi}{L} x) dx$$

- (b) Use this formula to expand $f(x) = x/L, x \in [0, L]$.
- 4. Use separation of variables to solve (IBVP-P4) with $f_2(x) \equiv 1, x \in [0, L]$..

$$\begin{cases} u_t = ku_{xx} , & \text{differential equation (DE)} \\ u(x,0) = f_2(x) , & \text{initial condition (IC)} \\ u(0,t) = 0 , & u_x(L,t) = 0 , & \text{homogeneous BCs (HBCs)} \end{cases}$$
 (IBVP-P4)

5. Solve (IBVP-P5) with $f_3(x) \equiv x/L, x \in [0, L]$.

$$\begin{cases} u_t = ku_{xx} , & \text{differential equation (DE)} \\ u(x,0) = f_3(x) , & \text{initial condition (IC)} \\ u(0,t) = -2 , & u_x(L,t) = 1/L , & \text{boundary conditions (BCs)} \end{cases}$$
 (IBVP-P5)

Hint: Convert it to an IBVP with homogeneous BCs.

6. Solve the ODE eigenvalue problem

$$X''(x) = -\lambda X(x)$$
, $X'(0) = 0$, $X(L) = 0$ (EIG-P6)

- 7. (a) Show the orthogonality of eigenfunctions $\{X_n(x)\}$ obtained in Problem 6.
 - (b) Derive the coefficient formula for the expansion of f(x) in $\{X_n(x)\}$.
 - (c) Use the formula to expand f(x) = x/L, $x \in [0, L]$ in $\{X_n(x)\}$.
- 8. Use separation of variables to solve (IBVP-P8) below with $f_4(x) = x/L$, $x \in [0, L]$.

$$\begin{cases} u_t = ku_{xx} , & \text{differential equation (DE)} \\ u(x,0) = f_4(x) , & \text{initial condition (IC)} \\ u_x(0,t) = 0 , & u(L,t) = 0 , & \text{homogeneous BCs (HBCs)} \end{cases}$$
 (IBVP-P8)