Data Visualization III Download the Iris flower dataset or any other dataset into a DataFrame. (e.g., https://archive.ics.uci.edu/ml/datasets/Iris). Scan the dataset and give the inference as:

- 1. List down the features and their types (e.g., numeric, nominal) available in the dataset.
- 2. Create a histogram for each feature in the dataset to illustrate the feature distributions.
- 3. Create a box plot for each feature in the dataset.
- 4. Compare distributions and identify outliers.

Import libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
from sklearn.datasets import load_iris
import warnings
warnings.filterwarnings("ignore")
```

Load and preprocess data

```
In [10]: data = load_iris()
In [11]:
          print("Features and their types:")
          print(data.keys())
          Features and their types:
          dict_keys(['data', 'farget', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename', 'data_module'])
          data.feature names
In [12]:
          ['sepal length (cm)',
            'sepal width (cm)'
            'petal length (cm)',
            'petal width (cm)']
          df = pd.DataFrame()
In [13]:
          df[data['feature_names']] = data['data']
          df['label'] = data['target']
          df
Out[13]:
               sepal length (cm) sepal width (cm)
                                              petal length (cm) petal width (cm) label
            0
                                           3.5
                                                                         0.2
                                                                                 0
                           5.1
                                                          1.4
                           4.9
                                           3.0
                                                           1.4
                                                                         0.2
                                                                                 0
            2
                           4.7
                                           3.2
                                                          1.3
                                                                         0.2
                                                                                 0
            3
                                                          1.5
                                                                         0.2
                                                                                0
                           4.6
                                           3.1
            4
                           5.0
                                           3.6
                                                          1.4
                                                                         0.2
                                                                                 0
                                                                                 2
          145
                           6.7
                                           3.0
                                                          5.2
                                                                         2.3
          146
                           6.3
                                           2.5
                                                          5.0
                                                                          1.9
                                                                                 2
                                                                         2.0
                                                                                 2
          147
                                           3.0
                                                                                 2
          148
                           6.2
                                           3.4
                                                          5.4
                                                                         2.3
          149
                           5.9
                                           3.0
                                                          5.1
                                                                          1.8
                                                                                 2
          150 rows × 5 columns
```

```
In [14]: df.head()
               sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) label
Out[14]:
            0
                             5 1
                                               3.5
                                                                 14
                                                                                  0.2
                                                                                           0
            1
                             4.9
                                               3.0
                                                                 1.4
                                                                                  0.2
                                                                                           0
            2
                                               3.2
                             4.7
                                                                 1.3
                                                                                  0.2
                                                                                           0
            3
                             46
                                               3 1
                                                                 1.5
                                                                                  02
                                                                                           0
                             5.0
                                               3.6
                                                                 1.4
                                                                                  0.2
                                                                                           0
```

In [15]: df.shape

In [16]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 150 entries, 0 to 149 Data columns (total 5 columns):

Non-Null Count Dtype Column 0 sepal length (cm) 150 non-null float64 1 sepal width (cm) 150 non-null float64 petal length (cm) 150 non-null float64 float64 petal width (cm) 150 non-null label 150 non-null int32

dtypes: float64(4), int32(1)

memory usage: 5.4 KB

In [17]: df.describe()

Out[17]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	label
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333	1.000000
std	0.828066	0.435866	1.765298	0.762238	0.819232
min	4.300000	2.000000	1.000000	0.100000	0.000000
25%	5.100000	2.800000	1.600000	0.300000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000
75%	6.400000	3.300000	5.100000	1.800000	2.000000
max	7.900000	4.400000	6.900000	2.500000	2.000000

Visualization

sns.heatmap(df.corr(), annot=True) In [18]: plt.show()

sns.histplot(df["sepal length (cm)"], kde=True) In [19]: plt.show()

In [20]: sns.histplot(df["sepal width (cm)"], kde=True)
plt.show()

In [21]: sns.histplot(df["petal length (cm)"], kde=True)
plt.show()

In [22]: sns.histplot(df["petal width (cm)"], kde=True)
plt.show()


```
In [23]: sns.boxplot(x=df['label'], y=df["sepal length (cm)"])
plt.show()
```


In [24]: sns.boxplot(x=df['label'] ,y=df["sepal width (cm)"])
plt.show()


```
In [25]: sns.boxplot(x=df["label"] ,y=df["petal length (cm)"])
plt.show()
```


In [26]: sns.boxplot(x=df['label'] ,y=df["petal width (cm)"])
plt.show()

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js