# VII. CÓDIGOS PARA CONTROLO DE ERROS

#### **OBJECTIVO:**

- Construção de códigos para controlo de erros
- Abordar as bases matemáticas que permitem construir códigos (codificação de canal) para controlar os erros de transmissão em sistemas de telecomunicações não fiáveis ou ruidosos



Considera-se somente o caso da transmissão digital binária

Técnicas utilizadas em várias tecnologias de comunicações ... (e não só...)

1



#### Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

### VII. CÓDIGOS PARA CONTROLO DE ERROS

#### TIPOS DE ERROS

- Dois tipos de ruído que afectam as comunicações digitais:
  - <u>ruído branco:</u> erros de transmissão causados por este ruído são tais que o erro num determinado dígito não afecta os dígitos subsequentes (ocorrências de erros estatisticamente independentes, ou seja erros aleatórios)
  - <u>ruído impulsivo:</u> a sua presença caracteriza-se por longo intervalos de tempo em que os dígitos não são corrompidos, intercalados por molhos (*burts*) de dígitos corrompidos (ou seja, erros não são estatisticamente independentes)

# VII. CÓDIGOS PARA CONTROLO DE ERROS

#### **TIPOS DE ERROS**

- Neste capítulo serão abordadas as bases para a construção de códigos de correcção de erros aleatórios ....
- .... embora, em termos de fundamentos, a base matemática é semelhante à usada nos códigos de correcção de erros aos "mólhos"

3



#### Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

### VII. CÓDIGOS PARA CONTROLO DE ERROS

| 7 bits of data |                  | n parity bit     |                                                                         |
|----------------|------------------|------------------|-------------------------------------------------------------------------|
|                | even             | odd              | Exemplo de esquemas simples - e.g. b paridade - muito simples mas muito |
| 0000000        | <b>0</b> 0000000 | 10000000         | limitado                                                                |
| 1010001        | <b>1</b> 1010001 | <b>0</b> 1010001 |                                                                         |
| 1101001        | <b>0</b> 1101001 | <b>1</b> 1101001 |                                                                         |
| 1111111        | <b>1</b> 1111111 | 01111111         |                                                                         |

### **TIPOS DE CÓDIGOS**

- Existem diferentes tipos de códigos para controlo de erros, iremos abordar:
  - CÓDIGOS DE BLOCO: cada conjunto de k dígitos de informação é acompanhado de n-k dígitos redundantes (dígitos de verificação de paridade) calculados a partir dos dígitos de informação, formando assim um bloco de tamanho fixo, de n dígitos, designada por palavra de código

# VII. CÓDIGOS PARA CONTROLO DE ERROS

CÓDIGOS LINEARES DE BLOCO (os mais usuais....)





#### Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

### VII. CÓDIGOS PARA CONTROLO DE ERROS

### CÓDIGOS LINEARES DE BLOCO

- Um bloco de dígitos de informação será um tuplo  $D = (d_0 \ d_1 \ d_2 \ ... \ d_{k-1})$  com  $d_j \in \{0,1\}$ , existem  $2^k$  blocos de dígitos de informação ...
- ... cada um deles transformado numa palavra de código representada pelo tuplo  $C = (c_0 c_1 c_2 ... c_{n-1})$  com  $c_i \in \{0,1\}$
- Haverá apenas 2<sup>k</sup> palavras de código distintas
- As restantes 2<sup>n</sup> -2<sup>k</sup> palavras não fazem parte do dicionário do código; se forem recebidas é sinal da ocorrência de erro

# VII. CÓDIGOS PARA CONTROLO DE ERROS

### **CÓDIGOS LINEARES DE BLOCO**





$$\rho = \frac{k}{n}$$

Conceito Distância de Hamming

**Definição 9.1** <u>Distância de Hamming</u> entre duas palavras de um código de bloco,  $d(C_i, C_j)$ , é o número de posições em que as duas palavras,  $C_i$  e  $C_j$ , diferem.

7



#### Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

# VII. CÓDIGOS PARA CONTROLO DE ERROS

### CÓDIGOS LINEARES DE BLOCO

- Conceito Distância de Hamming
  - Duas palavras de código idênticas estarão à distância zero...
  - Duas palavras de código distintas estarão a uma distância igual ou superior a uma unidade
  - ... O conceito de distância de hamming é passível de uma interpretação geométrica semelhante à distância euclideana entre dois pontos

# VII. CÓDIGOS PARA CONTROLO DE ERROS

### CÓDIGOS LINEARES DE BLOCO

• ... interpretação geométrica do conceito de distância de *Hamming* ... (correspondência entre 2<sup>n</sup> palavras distintas de *n* dígitos vs 2<sup>n</sup> vértices de um hipercubo num espaço de *n* dimensões)



☆ 〇

#### Comunicação de Dados

9

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

# VII. CÓDIGOS PARA CONTROLO DE ERROS

### CÓDIGOS LINEARES DE BLOCO

Conceito de distância mínima de um código

**Definição 9.2** <u>Distância mínima de um código</u> de bloco,  $d_{\min}$ , é a menor das distâncias de Hamming entre quaisquer duas palavras desse código.

- A distância mínima de um código condiciona a sua capacidade de control de erros (tanto de detecção como de correcção)
- Quantos erros poderão ser detectados/corrigidos por um código com uma determinada distância mínima?

# VII. CÓDIGOS PARA CONTROLO DE ERROS

### CÓDIGOS LINEARES DE BLOCO

- Exemplo: código com distância mínima 2?
   pode detectar-se um único erro ... mas não se pode corrigir o erro
- E para um Código com distância mínima igual a 3?

Seja  $d_{\min}$ a distância mínima de um código,

Para detectar até  $e_d$  erros:  $d_{min} = e_d + 1$ Para corrigir até  $e_c$  erros:  $d_{min} = 2e_c + 1$ 

- ... um código que corrige  $e_c$  erros pode ser alternativamente usado como um código detector de  $e_d$  = 2  $e_c$  erros



#### Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

# VII. CÓDIGOS PARA CONTROLO DE ERROS

### CÓDIGOS LINEARES DE BLOCO

 Algumas propriedades / teoremas associados a códigos lineares de blocos

**Definição 9.3** Peso de uma palavra  $C_i$  de um código de bloco,  $p(C_i)$ , é o número de dígitos 1 que a palavra  $C_i$  contém.

**Definição 9.4** Peso mínimo de um código de bloco,  $[p(C_i)]_{min}$  é o peso da palavra de menor peso desse código, exceptuando a palavra de peso zero.

#### Teorema 9.1 — Distância mínima

A distância mínima de um código de bloco é igual ao seu peso mínimo.

# VII. CÓDIGOS PARA CONTROLO DE ERROS

### **CÓDIGOS LINEARES DE BLOCO**

Existem vários tipos de códigos.... exemplo:

### Codigos de hamming

C(n,k) - verificam a relação

$$n = 2^{n-k} - 1$$

 códigos correctores de erros simples / detectores de erros duplos

13



#### Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

### VII. CÓDIGOS PARA CONTROLO DE ERROS

### CÓDIGOS CÍCLICOS BINÁRIOS

- São uma sub-classe dos códigos lineares de bloco sendo fáceis de realizar (estrutura matemática simples)
- Nestes códigos utiliza-se uma representação polinomial
- operações são realizadas em aritmética módulo 2
- A partir de uma palavra de código é possível obter outras

**Definição 9.5** Um <u>código</u> linear de bloco C(n,k) é <u>cíclico</u> se possuir a seguinte propriedade:

Se o tuplo  $C = (c_0, c_1, c_2, \ldots, c_{n-1})$  fôr uma palavra de código então o tuplo  $C^{(1)} = (c_{n-1}, c_0, c_1, \ldots, c_{n-2})$  obtido por deslocação cíclica direita de uma posição de C também é uma palavra de código.





# VII. CÓDIGOS PARA CONTROLO DE ERROS

### GERAÇÃO DE CÓDIGOS CÍCLICOS C(n,k)

- Utilização de um polinómio gerador, g(x)
- g(x) é usado para gerar o código (n,k) (g(x) é de grau n-k e divide o polinomio x<sup>n</sup> +1)
- Códigos podem ser gerados de duas formas:
  - originando palavras de código em que os dígitos de informação e de verificação estão misturados (códigos criptográficos)
  - ou, de **forma sistemática**, em que os dígitos de verificação e de informação aparecem separados

Vamos analisar em detalhe os segundos - códigos cíclicos sistemáticos -

15



#### Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

## VII. CÓDIGOS PARA CONTROLO DE ERROS

### CÓDIGOS CÍCLICOS SISTEMÁTICOS C(n,k)

 Vai-se adoptar as seguinte sintaxe para as palavras de código (ver sebenta):





# VII. CÓDIGOS PARA CONTROLO DE ERROS

# CÓDIGOS CÍCLICOS SISTEMÁTICOS C(n,k)



r(x) é o resto da divisão de  $x^{n-k}D(x)$  por g(x)

em aritmética módulo 2

17



#### Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

### VII. CÓDIGOS PARA CONTROLO DE ERROS

# CÓDIGOS CÍCLICOS SISTEMÁTICOS C(n,k) Exemplo:

Seja  $g(x) = 1 + x + x^3$  o polinómio gerador de um cíclico

(7,4). Determinar a palavra de código (sistemática) correspondente

à mensagem (dados) D = (1110).

$$\boldsymbol{r}(\boldsymbol{x})$$
é o resto da divisão de  $\boldsymbol{x}^{n-k}D(\boldsymbol{x})\,$  por  $g(\boldsymbol{x})$ 

$$> D(x) = 1 + x + x^2$$

$$> x^{n-k} D(x) = x^3 D(x) = x^3 + x^4 + x^5$$

$$>$$
 calcular  $r(x) = ?$ 

> Palavra de código?

$$C = (\underbrace{010}_{r(x)} \underbrace{1110}_{D(x)})$$

$$\begin{array}{c|cccc}
x^5 + x^4 + x^3 & & x^3 + x + 1 \\
x^5 + & x^3 + x^2 & & x^2 + x \\
\hline
0 + x^4 + & 0 + x^2 & \\
& x^4 + & x^2 + x \\
\hline
0 + & 0 + x & = r(x)
\end{array}$$

$$C = (r_0, r_1, r_2, \dots, r_{n-k-1}, d_0, d_1, d_2, \dots, d_{k-1})$$
18

# VII. CÓDIGOS PARA CONTROLO DE ERROS

#### EXEMPLO ...

Tabela 9.1: Código cíclico (7,4) gerado por  $g(x) = 1 + x + x^3$ 

| Ir | ıforı | naçã | ão |   | Cód                      | igo | crip | togr | áfico | ) |   |                             | Peso |   |   |   |   |   |  |
|----|-------|------|----|---|--------------------------|-----|------|------|-------|---|---|-----------------------------|------|---|---|---|---|---|--|
|    | D     | (x)  |    |   | $C(x) = D(x) \cdot g(x)$ |     |      |      |       |   |   | $C(x) = r(x) + x^{n-k}D(x)$ |      |   |   |   |   |   |  |
| 0  | 0     | 0    | 0  | 0 | 0                        | 0   | 0    | 0    | 0     | 0 | 0 | 0                           | 0    | 0 | 0 | 0 | 0 | 0 |  |
| 0  | 0     | 0    | 1  | 0 | 0                        | 0   | 1    | 1    | 0     | 1 | 1 | 0                           | 1    | 0 | 0 | 0 | 1 | 3 |  |
| 0  | 0     | 1    | 0  | 0 | 0                        | 1   | 1    | 0    | 1     | 0 | 1 | 1                           | 1    | 0 | 0 | 1 | 0 | 4 |  |
| 0  | 0     | 1    | 1  | 0 | 0                        | 1   | 0    | 1    | 1     | 1 | 0 | 1                           | 0    | 0 | 0 | 1 | 1 | 3 |  |
| 0  | 1     | 0    | 0  | 0 | 1                        | 1   | 0    | 1    | 0     | 0 | 0 | 1                           | 1    | 0 | 1 | 0 | 0 | 3 |  |
| 0  | 1     | 0    | 1  | 0 | 1                        | 1   | 1    | 0    | 0     | 1 | 1 | 1                           | 0    | 0 | 1 | 0 | 1 | 4 |  |
| 0  | 1     | 1    | 0  | 0 | 1                        | 0   | 1    | 1    | 1     | 0 | 1 | 0                           | 0    | 0 | 1 | 1 | 0 | 3 |  |
| 0  | 1     | 1    | 1  | 0 | 1                        | 0   | 0    | 0    | 1     | 1 | 0 | 0                           | 1    | 0 | 1 | 1 | 1 | 4 |  |
| 1  | 0     | 0    | 0  | 1 | 1                        | 0   | 1    | 0    | 0     | 0 | 1 | 1                           | 0    | 1 | 0 | 0 | 0 | 3 |  |
| 1  | 0     | 0    | 1  | 1 | 1                        | 0   | 0    | 1    | 0     | 1 | 0 | 1                           | 1    | 1 | 0 | 0 | 1 | 4 |  |
| 1  | 0     | 1    | 0  | 1 | 1                        | 1   | 0    | 0    | 1     | 0 | 0 | 0                           | 1    | 1 | 0 | 1 | 0 | 3 |  |
| 1  | 0     | 1    | 1  | 1 | 1                        | 1   | 1    | 1    | 1     | 1 | 1 | 0                           | 0    | 1 | 0 | 1 | 1 | 4 |  |
| 1  | 1     | 0    | 0  | 1 | 0                        | 1   | 1    | 1    | 0     | 0 | 1 | 0                           | 1    | 1 | 1 | 0 | 0 | 4 |  |
| 1  | 1     | 0    | 1  | 1 | 0                        | 1   | 0    | 0    | 0     | 1 | 0 | 0                           | 0    | 1 | 1 | 0 | 1 | 3 |  |
| 1  | 1     | 1    | 0  | 1 | 0                        | 0   | 0    | 1    | 1     | 0 | 0 | 1                           | 0    | 1 | 1 | 1 | 0 | 4 |  |
| 1  | 1     | 1    | 1  | 1 | 0                        | 0   | 1    | 0    | 1     | 1 | 1 | 1                           | 1    | 1 | 1 | 1 | 1 | 7 |  |



#### Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

# VII. CÓDIGOS PARA CONTROLO DE ERROS

### CÓDIGOS CÍCLICOS C(n,k)

Tabela 9.1: Código cíclico (7,4) gerado por  $g(x) = 1 + x + x^3$ 

|    |       |      |    |   |                      |      |      |               |     |   |                             |   |                    |   |   |   |   | Peso     |  |
|----|-------|------|----|---|----------------------|------|------|---------------|-----|---|-----------------------------|---|--------------------|---|---|---|---|----------|--|
| Ir | ıforı | naçâ | ão |   | Código criptográfico |      |      |               |     |   |                             |   | Código sistemático |   |   |   |   |          |  |
|    | D     | (x)  |    |   | C(                   | x) = | D(s) | $(x) \cdot g$ | (x) |   | $C(x) = r(x) + x^{n-k}D(x)$ |   |                    |   |   |   |   | $p(C_i)$ |  |
| 0  | 0     | 0    | 0  | 0 | 0                    | 0    | 0    | 0             | 0   | 0 | 0                           | 0 | 0                  | 0 | 0 | 0 | 0 | 0        |  |
| 0  | 0     | 0    | 1  | 0 | 0                    | 0    | 1    | 1             | 0   | 1 | 1                           | 0 | 1                  | 0 | 0 | 0 | 1 | 3        |  |
| 0  | 0     | 1    | 0  | 0 | 0                    | 1    | 1    | 0             | 1   | 0 | 1                           | 1 | 1                  | 0 | 0 | 1 | 0 | 4        |  |
| 0  | 0     | 1    | 1  | 0 | 0                    | 1    | 0    | 1             | 1   | 1 | 0                           | 1 | 0                  | 0 | 0 | 1 | 1 | 3        |  |
| 0  | 1     | 0    | 0  | 0 | 1                    | 1    | 0    | 1             | 0   | 0 | 0                           | 1 | 1                  | 0 | 1 | 0 | 0 | 3        |  |
| 0  | 1     | 0    | 1  | 0 | 1                    | 1    | 1    | 0             | 0   | 1 | 1                           | 1 | 0                  | 0 | 1 | 0 | 1 | 4        |  |
| 0  | 1     | 1    | 0  | 0 | 1                    | 0    | 1    | 1             | 1   | 0 | 1                           | 0 | 0                  | 0 | 1 | 1 | 0 | 3        |  |
| 0  | 1     | 1    | 1  | 0 | 1                    | 0    | 0    | 0             | 1   | 1 | 0                           | 0 | 1                  | 0 | 1 | 1 | 1 | 4        |  |
| 1  | 0     | 0    | 0  | 1 | 1                    | 0    | 1    | 0             | 0   | 0 | 1                           | 1 | 0                  | 1 | 0 | 0 | 0 | 3        |  |
| 1  | 0     | 0    | 1  | 1 | 1                    | 0    | 0    | 1             | 0   | 1 | 0                           | 1 | 1                  | 1 | 0 | 0 | 1 | 4        |  |
| 1  | 0     | 1    | 0  | 1 | 1                    | 1    | 0    | 0             | 1   | 0 | 0                           | 0 | 1                  | 1 | 0 | 1 | 0 | 3        |  |
| 1  | 0     | 1    | 1  | 1 | 1                    | 1    | 1    | 1             | 1   | 1 | 1                           | 0 | 0                  | 1 | 0 | 1 | 1 | 4        |  |
| 1  | 1     | 0    | 0  | 1 | 0                    | 1    | 1    | 1             | 0   | 0 | 1                           | 0 | 1                  | 1 | 1 | 0 | 0 | 4        |  |
| 1  | 1     | 0    | 1  | 1 | 0                    | 1    | 0    | 0             | 0   | 1 | 0                           | 0 | 0                  | 1 | 1 | 0 | 1 | 3        |  |
| 1  | 1     | 1    | 0  | 1 | 0                    | 0    | 0    | 1             | 1   | 0 | 0                           | 1 | 0                  | 1 | 1 | 1 | 0 | 4        |  |
| 1  | 1     | 1    | 1  | 1 | 0                    | 0    | 1    | 0             | 1   | 1 | 1                           | 1 | 1                  | 1 | 1 | 1 | 1 | 7        |  |

- mesmo conjunto de palavras em ambas as codificações
- possível obter palavras de código por deslocação cíclica
- nos códigos sistemáticos há uma separação visível entre os dígitos de informação e verificação
- distância mínima?
- capacidade de correcção / detecção ?

#### Gralha - pág. 241

$$= (1+x) \cdot (1+x+x^{-1}) = 1+x+x^{-1}+x^{-1}+x^{-1}+x^{-1}$$
$$= 1+x+x^{2}+x^{5}$$

dado que  $x^3+x^3=(1+1)\cdot x^3=0\cdot x^3=0$ . Portanto a palavra de código é  $C=(1\,1\,1\,0\,0\,1\,0)$ . Podem obter-se outras palavras do código por deslocação cíclica desta. A segunda coluna da tabela 9.1 lista o código completo assim calculado.

b) Na forma sistemática os três primeiros dígitos são os de verificação e os últimos quatro são os da mensagem. Os dígitos de verificação são os coeficientes do polinómio r(x) que é o resto da divisão de  $x^{n-k}D(x)$  por g(x), isto é,

$$\frac{x^{n-k}D(x)}{g(x)}=q(x)+\frac{r(x)}{g(x)}$$

Considere-se uma sequência qualquer de mensagem, por exêmplo  $D=(1\,1\,1\,0)$ , a que corresponde  $D(x)=1\pm x^2\pm x^3$ . Como n-k=7-4=3, tem-se  $x^3D(x)=x^3+x^4+x^5$  e executando a divisão polinomial:

deve ler-se  $D(x) = 1 + x + x^2$ 

21



#### Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

### VII. CÓDIGOS PARA CONTROLO DE ERROS

### GERAÇÃO DE CÓDIGOS CÍCLICOS SISTEMÁTICOS

Circuito codificador para um código sistemático (n,k)



#### O circuito contém:

- registos para n-k bits (dígitos de verificação)
- conjunto de ou-exclusivos
- conjunto de ligações abertas ou fechadas conforme os coeficientes do polinómio g(x)

22



# VII. CÓDIGOS PARA CONTROLO DE ERROS

### **EXEMPLO**

Esquematize um circuito codificador para um código sistemático (7,4) com  $g(x) = 1 + x + x^3$ 





23



#### Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

# VII. CÓDIGOS PARA CONTROLO DE ERROS

### **EXEMPLO**

Verificar a operação do circuito utilizando a palavra de dados

D = (0101)



| bit de  | ent     | rada    | nos     |               | saída dos |         |         |  |  |
|---------|---------|---------|---------|---------------|-----------|---------|---------|--|--|
| entrada | re      | egisto  | os      |               | registos  |         |         |  |  |
| D(x)    | $r_0^e$ | $r_1^e$ | $r_2^e$ |               | $r_0^s$   | $r_1^s$ | $r_2^s$ |  |  |
| _       | 0       | 0       | 0       |               | 0         | 0       | 0       |  |  |
| 1       | 1       | 1       | 0       | $\rightarrow$ | 1         | 1       | 0       |  |  |
| 0       | 0       | 1       | 1       | $\rightarrow$ | 0         | 1       | 1       |  |  |
| 1       | 0       | 0       | 1       | $\rightarrow$ | 0         | 0       | 1       |  |  |
| 0       | 1       | 1       | 0       | $\rightarrow$ | 1         | 1       | 0       |  |  |

# VII. CÓDIGOS PARA CONTROLO DE ERROS

### **SÍNDROMA**

- As palavras de código, C(x), são transmitidas através do canal
- No caso de ocorrência de erro(s) a palavra que chega ao receptor, R(x), poderá permitir determinar qual a palavra transmitida
- O receptor divide R(x) por g(x) obtendo um resto S(x)
  - S(x) é designado por síndroma de R(x)
  - Se S(x)=0 o receptor toma a palavra como válida ( será? )
  - Se S(x) ≠ 0 o receptor decide que houve erro e pode (ou não se for só detector) tentar corrigir a palavra recorrendo a circuitos específicos e à informação de S(x)

25



#### Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

## VII. CÓDIGOS PARA CONTROLO DE ERROS

Exemplo de Circuitos para Detecção / Correcção (breve referência)



Figura 9.6: Divisão de R(x) por g(x) no descodificador



Figura 9.7: Circuito corrector de erros simples

# VII. CÓDIGOS PARA CONTROLO DE ERROS

### **EXEMPLOS DE ALGUNS CÓDIGOS ....**

- Nem todos os polinómios geradores são capazes de gerar um bom código
- Procura de códigos "bons" para um dado valor de n e rendimento k/n encontrar aqueles códigos que possuem maior distância mínima, ou seja códigos com maior capacidade de detecção / correcção de erros
- Exemplos de alguns códigos conhecidos.... Diferenças?

| Tipo       | n  | k  | ρ    | $d_{\min}$ | g(x)                                              |
|------------|----|----|------|------------|---------------------------------------------------|
| códigos de | 7  | 4  | 0.57 | 3          | $x^3 + x + 1$                                     |
| Hamming    | 15 | 11 | 0.73 | 3          | $x^4 + x + 1$                                     |
|            | 31 | 26 | 0.84 | 3          | $x^5 + x^2 + 1$                                   |
| códigos    | 15 | 7  | 0.46 | 5          | $x^8 + x^7 + x^6 + x^4 + 1$                       |
| BCH        | 31 | 21 | 0.68 | 5          | $x^{10} + x^9 + x^8 + x^6 + x^5 + x^3 + 1$        |
|            | 63 | 45 | 0.71 | 7          | $x^{18} + x^{17} + x^{16} + x^{15} + x^9 + x^7 +$ |
|            |    |    |      |            | $+x^6 + x^3 + x^2 + x + 1$                        |
| código     | 23 | 12 | 0.52 | 7          | $x^{11} + x^9 + x^7 + x^6 + x^5 + x + 1$          |
| Golay      |    |    |      |            |                                                   |

27



#### Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

# VII. CÓDIGOS PARA CONTROLO DE ERROS

### **EXEMPLOS DE ALGUNS CÓDIGOS ....**

#### **Curiosidade:**

NASA - Voyager 1 e 2 1979/1980 Na transmissão de imagens a cores de Jupiter, Saturno foi usado um código "parecido" com este

| Tipo       | n  | k  | ρ    | $d_{\min}$ | g(x)                                              |
|------------|----|----|------|------------|---------------------------------------------------|
| códigos de | 7  | 4  | 0.57 | 3          | $x^3 + x + 1$                                     |
| Hamming    | 15 | 11 | 0.73 | 3          | $x^4 + x + 1$                                     |
|            | 31 | 26 | 0.84 | 3          | $x^5 + x^2 + 1$                                   |
| códigos    | 15 | 7  | 0.46 | 5          | $x^8 + x^7 + x^6 + x^4 + 1$                       |
| BCH        | 31 | 21 | 0.68 | 5          | $x^{10} + x^9 + x^8 + x^6 + x^5 + x^3 + 1$        |
|            | 63 | 45 | 0.71 | 7          | $x^{18} + x^{17} + x^{16} + x^{15} + x^9 + x^7 +$ |
|            |    |    |      |            | $+x^6 + x^3 + x^2 + x + 1$                        |
| código     | 23 | 12 | 0.52 | 7          | $x^{11} + x^9 + x^7 + x^6 + x^5 + x + 1$          |
| Golay      |    |    |      |            |                                                   |







# VII. CÓDIGOS PARA CONTROLO DE ERROS





#### Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

### VII. CÓDIGOS PARA CONTROLO DE ERROS

# TÉCNICAS DE CORRECÇÃO DE ERROS Forward Error Correction (FEC)

- Correcção de erros progressiva, quando os códigos para controlo de erros são utilizados como correctores
  - pouco usadas em sistemas de transmissão de dados.... a não ser em condições especiais
- Usado em canais simplex onde não é possível a retransmissão (ou é impraticável)
- Cenários em que o tempo de propagação é muito elevado (e.g. comunicação de sondas espaciais, ...)
- Técnicas também usadas em gravações digitais (CD, DVD, ...), memórias flash, hard drives ....



# VII. CÓDIGOS PARA CONTROLO DE ERROS

### TÉCNICAS DE CORRECÇÃO DE ERROS

- Automatic Repeat Request (ARQ)
  - Código usado só como detector
  - Correcção processa-se por repetição (pedido de retransmissão das palavras)
  - Necessário um canal de comunicação duplex
  - Técnicas utilizadas nos sistemas/tecnologias de transmissões de dados mais comuns
  - Técnicas ARQ Tópico expandido e coberto em detalhe noutra disciplina (*Redes de Computadores*)