Connectionist Computing COMP 30230/41390

Gianluca Pollastri

office: E0.95, Science East.

email: gianluca.pollastri@ucd.ie

Credits

- Geoffrey Hinton, University of Toronto.
 - borrowed some of his slides for "Neural Networks" and "Computation in Neural Networks" courses.

- slides from his CS4018.
- Paolo Frasconi, University of Florence.
 - slides from tutorial on Machine Learning for structured domains.

Lecture notes on Brightspace

- Strictly confidential...
- Slim PDF version will be uploaded later, typically the same day as the lecture.
- If there is demand, I can upload onto Brightspace last year's narrated slides.. (should be very similar to this year's material)

Connectionist Computing COMP 30230

Books

- No book covers large fractions of this course.
- Parts of chapters 4, 6, (7), 13 of Tom Mitchell's "Machine Learning"
- Parts of chapter V of Mackay's "Information Theory, Inference, and Learning Algorithms", available online at:

http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html

 Chapter 20 of Russell and Norvig's "Artificial Intelligence: A Modern Approach", also available at:

http://aima.cs.berkeley.edu/newchap20.pdf

More materials later...

Marking

- 3 landmark papers to read, and submit a 10-line summary on Brightspace about: each worth 6-7%
- a connectionist model to build and play with on some sets, write a report: 30%
- Final Exam in the RDS (50%)

Programming assignment

- Implement a Multi-Layer Perceptron, test it.
- The description on Brightspace.

- Submit through Brightspace code and test results by <u>Dector</u> the 5th at 23:59, any time zone of your choice (Baker Island?).
- 30% of the overall mark
- One third of a grade down every day late, that is: if you deserve an A and you're 1 day late you get an A-, 2 days late a B+, etc.

Recurrent Neural Networks

Bidirectional Recurrent Neural Networks (BRNN)

2D RNNs

$$\begin{cases} O_{ij} = \mathcal{N}_{O}(I_{ij}, H_{i,j}^{NW}, H_{i,j}^{NE}, H_{i,j}^{SW}, H_{i,j}^{SE}) \\ H_{i,j}^{NE} = \mathcal{N}_{NE}(I_{i,j}, H_{i-1,j}^{NE}, H_{i,j-1}^{NE}) \\ H_{i,j}^{NW} = \mathcal{N}_{NW}(I_{i,j}, H_{i+1,j}^{NW}, H_{i,j-1}^{NW}) \\ H_{i,j}^{SW} = \mathcal{N}_{SW}(I_{i,j}, H_{i+1,j}^{SW}, H_{i,j+1}^{SW}) \\ H_{i,j}^{SE} = \mathcal{N}_{SE}(I_{i,j}, H_{i-1,j}^{SE}, H_{i,j+1}^{SE}) \end{cases}$$

SW ij
SE i, 1
SE i, 1
Iij

Pollastri & Baldi 2002, *Bioinformatics* Baldi & Pollastri 2003, *JMLR*

N to 1 Neural Networks

Full, general graphs

 Can we extend this process to any shape and map?

 Yes we can, but let me tell you how through a story.

Small molecules

 Small organic compounds that are bioactive, but are not proteins, DNA, RNA, etc.

QSAR

- Quantitative Structure-Activity Relationship
- Based on the observation that what a molecule does depends on its (chemical? 3D?) structure
- Computationally, predict Activity or Properties of small molecules, e.g. toxicity, carcinogenicity, biodegradability, anti-cancer activity, etc.

Why QSAR?

- Screening computationally is a lot cheaper than screening experimentally.
- You have 10,000 compounds that may (or may not) do a job. If you can prune 9,950 of them by computational means you have saved a lot of time and \$\$\$.
- (Designing 1 drug costs ~2bln and takes 13.5 years on average..)

Traditional QSAR framework

$$Activity = F(structure)$$

$$F() = g(t())$$

- t() encodes a structure (graph, or 3D, or both) into a fixed-width array of descriptors of a molecule.
- g() maps this array into the property of interest.
- Finding t() is the real challenge. Once there is a good t(), the problem is solved.

Finding t()

 For many domains you can <u>ask</u> <u>experts</u> to tell you what makes a good carcinogen/ toxic molecule/ biodegradable molecule etc.

Finding t(): asking experts

- But that's work...
- And then you have to endure meeting them over a Scotch at 11am.
- Besides, the expert will be inherently fallible, and dated.

Finding t() (2)

- You can toss every t() you have in your arsenal at it and pick the best (trial and error).
- But that's cheating, really, unless you have 1G molecules to prevent you from fooling yourself into thinking your tail is your average.
- And we ain't got 1G molecules (though I've been told we apparently do).

Methods for QSAR (on ~1 slide)

- Linear regression (on what features?)
- ANN (same?)
- Recursive NN (but need a DAG!)

(a) Basic triazine template NH_2 R_4 NH_2 (b) Triazine template with one phenyl ring NH_2 $ring(R_3,R_4)$ NH_2 (c) Example drug 159: 3 - Cl, 4 - H NH_2 ring(cl,h) NH_2 (d) Triazine template with two phenyl rings and bridge BRIDGESchmitt & Goller 1998 NH_2 $ring(R_3, bridge(BRIDGE, ring(R_{3'}, R_{4'})))$

A lazy computer scientist's viewpoint

- Molecules are Undirected Graphs
- In principle, the property of interest may be determined by any part of the graph
- Context matters, a lot
- No direction is, in principle, more important
- We are too lazy to learn about molecules

Besides, variable

- Molecular graphs are of variable size.
- We have to come up with models that deal with that, or still endure those 11am Scotches.

A lazy computer scientist's viewpoint (2)

- Molecules are Undirected Graphs
- In principle, the property of interest may be determined by any part of the graph
- Context matters, a lot
- No direction is, in principle, more important
- We are too lazy to learn about molecules
- Factorise a UG into as many DAGs as it takes so that each node becomes a root
- If N nodes, this obviously makes N DAGs (but small molecules are small!)

Example

What we have done (3)

 The state of each vertex in the k-th DAG is a function of the atom (and potentially anything else we know) at that vertex, and the states of the children:

$$\mathbf{G}_{v,k} = \mathcal{M}^{(G)}\left(i_v, \mathbf{G}_{ch_{[v,k]}^1}, \dots, \mathbf{G}_{ch_{[v,k]}^n}\right)$$

When there are no children, the recursion ends.

What we have done (4)

Problem: there are N graphs, hence N roots, hence N vectors G (contexts around each atom). How to map them to 1 property? Add them up! If v_k is the root vertex in the k-th graph:

$$\mathbf{G}_{structure} = \sum_{k=1}^{N} \mathbf{G}_{v_k,k}$$

 All graphs compete to be in this global state: it is an adaptive form of compression, property driven!

What we have done (5)

 We map the global state into the property of interest (o) as:

$$o = \mathcal{M}^{(O)}(G_{structure})$$

- The molecule-to-features and features-tooutput functions are modelled by Multi-Layer Perceptrons.
- We train the whole thing (all DAG's and all) by gradient descent.

In plain language...

- We look at the graph from the point of view of each node.
- We add up all these points of view.
- What we get is a fixed-width vector of real numbers that describes the graph.
- Based on this vector we predict the property.
- Note: what vector we get depends on the property we're trying to predict.

Overall example

UG of acetic acid

Factorising..

One graph

A.Lusci, G.Pollastri, P.Baldi,

"Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules", *Journal of Chemical Information and Modeling*, 2013

Training

- Model is a feed-forward neural net: backpropagation.
- But it's deep (paths of variable depth) and the gradient vanishes, even when the graphs are small.
- Clip the gradient on both sides.. If it's smaller than X, make it X. If it's bigger than Y, make it Y.
- Massive speedup in training times.

UG-RNN

- Do they work?
- Yes they do, better than anything else.
- And they automatically find the features.
- They are DEEP, of course, so they are clever.

But they are hard to train.

Summary: NN for structured data

- No need to design features. This is good:
 - no extra work, experts, morning imbibing, etc.
 - and, more importantly, less risk of overfitting the test set by trying 1000 different combinations of hyperparameters
- Some of these models are a bit temperamental and need special (deep) learning techniques to work