SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK

Marco Hrlić

SAŽETO UZORKOVANJE

Diplomski rad

Voditelj rada: Damir Bakić

Zagreb, 2019.

Ovaj diplomski rad obranjen je dana	pred ispitnim povjerenstvom
u sastavu:	
1.	, predsjednik
2.	, član
3.	 , član
Povjerenstvo je rad ocijenilo ocjenom	<u> </u>
	Potpisi članova povjerenstva:
	1.
	2.
	3.

Sadržaj

Sa	adržaj	iv
U	vod	1
1	Rijetka rješenja	3
	1.1 Rijetsko i sažetost vektora	3
Bi	ibliografija	5

Uvod

...

Poglavlje 1

Rijetka rješenja

1.1 Rijetsko i sažetost vektora

Uvedimo potrebnu notaciju. Neka je [N] oznaka za skup $\{1, 2, ..., N\}$ gdje je $N \in \mathbb{N}$. Sa card(S) označujemo kardinalitet skupa S. Nadalje, \bar{S} je komplement od S u [N], tj. $\bar{S} = [N] \setminus S$.

Definicija 1.1.1. Nosač vektora $x \in \mathbb{C}^{\mathbb{N}}$ je skup indeksa njegovih ne-nul elemenata, tj.

$$supp(x) := \{ j \in [N] : x_i \neq 0 \}$$

Za vektor $x \in \mathbb{C}^{\mathbb{N}}$ kažemo da je s-rijedak ako vrijedi

$$||x||_0 := card(supp(x)) \le s$$

Primjetimo,

$$||x||_p^p := \sum_{j=1}^N |x_j|^p \xrightarrow{p \to 0} \sum_{j=1}^N \mathbf{1}_{\{x_j \neq 0\}} = card(\{j \in [N] : x_j \neq 0\}) = ||x||_0$$

Gdje smo koristili da je $\mathbf{1}_{\{x_j \neq 0\}} = 1$ ako je $x_j \neq 0$ te $\mathbf{1}_{\{x_j \neq 0\}} = 0$ ako je $x_j = 0$. Drugim riječima, $||x||_0$ je limes p-te potencije ℓ_p -kvazinorme vektora x kada p teži k nuli. Kvazinorma definira se jednako kao standardna ℓ_p -norma, jedino što nejednakost trokuta oslabimo, tj.

$$||x + y|| \le C(||x|| + ||y||)$$

za neku konstantu $C \ge 1$. Funkciju $\|\cdot\|_0$ često nazivamo ℓ_0 -norma vektora x, iako ona nije niti norma niti kvazinorma. U samoj praksi, teško je tražiti rijetkost vektora, pa je stoga prirodno zahtjevati slabiji uvjet kompresibilnosti.

Definicija 1.1.2. ℓ_p -grešku najbolje s-rijetke aproksimacije vektora $x \in \mathbb{C}^{\mathbb{N}}$ definiramo sa

$$\omega_s(x)_p := \inf\{||x - z||_p, \ z \in \mathbb{C}^{\mathbb{N}} \ \text{je s-rijedak}\}$$

Primjetimo da se infimum postiže za svaki s-rijedak vektor $z \in \mathbb{C}^N$ koji ima ne-nul elemente jednake s najvećim komponenetama vektora x. Iako takav $z \in \mathbb{C}^N$ nije jedinstven, on postiže infimum za svaki p > 0..

Bibliografija

Sažetak

Ukratko ...

Summary

In this ...

Životopis

Dana ...