

Tema 1. Introducción a las redes de datos

Introducción a las redes de ordenadores

Boni García Curso 2017/2018

Índice de contenidos

- 1. Introducción
- 2. ¿Qué es Internet?
- 3. Un poco de historia
- 4. Tipos de redes
- 5. Modelos de referencia
- 6. Análisis de Protocolos

Índice de contenidos

- 1. Introducción
 - Conceptos generales
 - Objetivo de las redes de datos
 - Arquitectura de comunicación en niveles
 - Organismos de estandarización
- 2. ¿Qué es Internet?
- 3. Un poco de historia
- 4. Tipos de redes
- 5. Modelos de referencia
- 6. Análisis de protocolos

Conceptos generales

• Red de ordenadores = red de datos = red telemática: Es un tipo de red de telecomunicación en la que se transmiten datos (información binaria). Se conocen así en contraposición a las redes de voz, que son históricamente las primeras redes de telecomunicación

 Red de telecomunicación: Conjunto de nodos y medios de transmisión necesarios para el intercambio de información en un sistema de telecomunicación

 Sistema de telecomunicación: Sistema que permite la comunicación remota entre un sistema origen y otro destino

Conceptos generales

Conceptos generales

- Canal de comunicaciones: medio de transmisión por el que viajan las señales portadoras de información entre el sistema origen y destino.
 Según la capacidad de transmisión, un canal puede ser:
 - Full duplex: comunicación bidireccional y simultánea

Half duplex: comunicación bidireccional pero no simultánea

Simplex: comunicación unidireccional

Objetivo de las redes de datos

 Las redes de datos sirven para comunicar procesos (programas en ejecución) remotos, dando lugar a los que se conoce como servicio distribuido o servicio telemático

Arquitectura de comunicación en niveles

- Para lograr este objetivo se usa una arquitectura de comunicación estratificado en niveles
- Se basa en el principio "divide y vencerás"
 - Dividimos el problema en diferentes niveles de abstracción de forma que el problema global se pueda resolver por partes
 - Cada nivel se construye sobre el anterior
- Hay dos conceptos fundamentales en una arquitectura de comunicación estratificada en nivel:
 - Servicio: conjunto de operaciones que un nivel ofrece al superior
 - Protocolo: conjunto de reglas que definen la comunicación entre elementos del mismo nivel (entidades)

Arquitectura de comunicación en niveles

Analogía:

Arquitectura de comunicación en niveles

Servicio

- Es el conjunto de operaciones (primitivas) que una entidad de nivel N ofrece a la entidad de nivel N+1
- Una entidad de nivel N utiliza los servicios proporcionados por la entidad N-1
- Los servicios están disponible a través de su interfaz, y tiene una dirección única que lo identifica

Protocolo

- Es el conjunto de reglas (formato mensajes, orden, acciones a realizar) que permiten que dos o más entidades de un sistema se comuniquen
- Una entidad es un elemento que implementa el protocolo. Las entidades del mismo nivel se llaman entidades pares
- Las unidades de datos que se intercambian las entidades pares se conocen como PDU (Protocol Data Unit)

Organismos de estandarización

- Para que un modelo de comunicación en niveles sea efectivo debe ser adoptado por los diferentes participantes en la comunicación
- Para ello, existen diferentes organismos que promueven estándares
- Organismos de estandarización en el ámbito de las redes de datos (networking)
 - International Organization for Standardization (ISO)
 - Institute of Electrical and Electronics Engineers (IEEE)
 - International Telecommunication Union Telecommunication Standardization Sector (ITU-T)
 - American National Standards Institute (ANSI)
 - European Telecommunications Standards Institute (ETSI)

Organismos de estandarización

- El organismos de estandarización en el ámbito de Internet es la ISoc (Internet Society). Está dividido en:
 - Internet Architecture Board (IAB): Supervisión y aprobación de normas
 - Internet Engineering Steering Group (IESG): Coordinación
 - Internet Engineering Task Force (IEFT): Especificación de estándares
 - Internet Assigned Number Authority (IANA): Asignación de recursos
- Los documentos asociados a estos estándares IETF se conocen como documentos RFC (Request For Comments)

Índice de contenidos

- 1. Introducción
- 2. ¿Qué es Internet?
 - Redes troncales
 - Proveedores de servicio
 - Redes de acceso
 - Conexiones entre proveedores
 - Neutralidad de la red
- 3. Un poco de historia
- 4. Tipos de redes
- 5. Modelos de referencia
- 6. Análisis de protocolos

Internet es un conjunto descentralizado de redes de datos interconectadas que utilizan la familia de protocolos TCP/IP que interconecta cientos de millones de dispositivos (hosts o sistemas terminales) a lo largo de todo el mundo

http://www.opte.org/

Internet = red de redes

- Los elementos básicos de Internet son:
 - Equipos terminales (hosts): Tradicionalmente son ordenadores PC, estaciones de trabajo, servidores de red, televisores, consolas, teléfonos móviles, webcams, etc.
 - Enlaces: Conectan a los hosts usando diferentes medios físicos: cable coaxial, par de cobre, fibra óptica y el espectro de radio
 - Conmutadores. Sistemas que reenvía los paquetes de información que llegan a su entrada a uno de sus enlaces de comunicaciones de salida. Los tipos más utilizados son los routers
- Los mensajes que intercambian los hosts en Internet se dividen en paquetes binarios que viajan a través de enlaces y routers

Estructura de Internet

1. Red troncal

2. Proveedores de servicio

3. Usuarios

Redes troncales

- La redes troncales (backbone) de Internet están compuestas de un gran número de routers interconectados mediante cables de fibra óptica
- Los routers de la redes troncal se conocen como core routers
 - Proporcionan cobertura internacional
 - Pueden conectar con cualquier máquina en Internet sin necesitar de ningún acuerdo con terceros
 - Están conectados a un gran número de routers de nivel 2
- Las empresas que gestionan los routers de nivel 1 son
 - Sprint, Verizon, MCI (anteriormente UUNet/WorldCom), AT&T, NTT, Level3, Qwest y Cable & Wireless
 - Oficialmente, no existe ningún grupo que conceda este estatus

Redes troncales

Backbones de Internet (Level3)

Redes troncales

Backbones de Internet (Verizon)

Redes troncales

Backbones de Internet (NTT)

Proveedores de servicio

- Los sistemas terminales acceden a Internet a través de ISP (Internet Service Provider)
- Los ISP son empresas que proporcionan acceso a Internet a sus clientes
- Por regla general, un ISP de nivel 2 tiene cobertura regional o nacional
- Ejemplos de ISPs en España: Movistar, Vodafone, Orange, Yoigo, Ono, Jazztel, Telecable, Euskaltel, etc...

Redes de acceso

- Los usuarios se sitúan en lo que se conoce como frontera de Internet
- Las tecnologías principales de acceso a Internet son:
 - Acceso telefónico
 - DSL (Digital Subscriber Line)
 - Cable
 - Fibra óptica (FTTH, Fiber To The Home)
 - Satélite
 - Redes móviles (3G/4G)

Conexiones entre proveedores

- Hay dos tipos de conexiones entre operadores (del mismo o diferente nivel):
- Conexiones de tránsito. Conexión entre operadores de diferente jerarquía. El operador de mayor jerarquía (proveedor) vende una conexión de tránsito al operador de menor jerarquía (cliente)
- 2. Conexión de peering. Conexión utilizada para el intercambio de tráfico sin coste entre dos operadores del mismo nivel. Puede ser de dos tipos:
 - Públicos: utilizando un punto neutro
 - Privados: conexión directa entre los dos proveedores

Conexiones entre proveedores

- Un punto neutro (IXP, Internet Exchange Point, también llamados NAP, Network Access Point) es una infraestructura física que permite a diferentes ISP intercambiar tráfico
- Lista completa de IXPs: https://www.euro-ix.net/ixps/list-ixps/
- Actualmente en España existen los siguientes puntos neutros:
 - ESPANIX (Madrid)
 - EuskoNIX (San Sebastián)
 - CATNIX (Barcelona)
 - GalNIX (Santiago de Compostela)
 - NAP de las Américas Madrid (Madrid)
 - MadIX (Madrid)

Conexiones entre proveedores

Peering en ESPANIX:

01	Acens AS	16371

- 02 Adamo AS 35699
- 03 Akamai AS 20940
- 04 Arsys AS 20718
- 05 AT&T GNS AS 2686
- 06 BT Global Services AS 8903 AS 5400
- D7 BT IGS AS 12541
- 08 Cable & Wireless AS 1273
- 09 COLT Telecom AS 8220
- 10 Cogent Communications AS 174
- 21 Ibercom AS 15915
- 22 Init7 AS 13030
- 23 Interoute AS 8928
- 24 Jazztel AS 12715
- 25 Leaseweb AS 16265
- 26 Level 3 AS 3356
- 27 NTT Communications AS 2914
- 28 Ono AS 12457
- 29 Ono (Auna) AS 16338
- 30 Orange AS 12479
- 41 T-Systems España AS 3257
- 42 Veloxia A5 28842
- 43 Verizon AS 702
- 44 Vodafone AS 12430
- 45 Ya.com Internet Factory AS 20838

- 11 Comvive AS 39020
- 12 Datagrama AS 9019
- B Dinahosting AS 42612
- 14 Easynet AS 4589
- 15 Euskaltel AS 12338
- 16 Flag Telecom AS 15412
- 17 Fujitsu AS 3324
- 18 Gas Natural AS 42325
- 19 Genetsis AS 16168
- 20 GRN Serveis Telematics AS 20815
- 31 OVH AS 16276
 - 2 Panther Express AS 36408
- 33 Produban AS 2134
- DD FIOGGDGII 7D 213
- 34 RedIRIS AS 766
- 35 Relco AS 12359
- 36 SAREnet AS 3262
- 37 Servicom2000 AS 9165
- 38 Telefónica AS 3352
- 39 Teleglobe AS 6453
- 40 Teremark AS 23148

Neutralidad de la red

- La neutralidad de la red (net neutrality) es un principio por el cual todo el tráfico de datos en Internet se debe tratar por igual, independientemente de su contenido u origen
- Este principio está ligado a Internet desde sus comienzos
- Lo aplican las entidades reguladoras (gobiernos) y lo deben cumplir principalmente los proveedores de servicio (ISP)
- Ejemplo de no respetar el principio de neutralidad de la red: en 2008 el ISP norteamericano Comcast redujo la velocidad de subida de aplicaciones que usaban P2P para compartir ficheros

Índice de contenidos

- 1. Introducción
- 2. ¿Qué es Internet?
- 3. Un poco de historia
- 4. Tipos de redes
- 5. Modelos de referencia
- 6. Análisis de protocolos

- 1958 DARPA (Defense Advanced Research Projects Agency)
 - Agencia del Departamento de Defensa de EEUU responsable del desarrollo de nuevas tecnologías para uso militar.
 - Fue creada como consecuencia tecnológica de la Guerra Fría
 - En este departamento que surgieron los fundamentos de ARPANET, red que dio origen a Internet.

- Años 60 Arpanet (Advanced Research Projects Agency)
 - El mito es que fue un sistema de comunicaciones que pudiese sobrevivir a un ataque nuclear → conmutación de paquetes
 - Algunos opinan que simplemente fue diseñada para tolerar fallos
 - Red de comunicaciones no centralizada (si algunos nodos fueran destruidos/fallasen los paquetes podrían seguir otro camino)
 - Comienza a funcionar con enlace entre 4 cuatro centros de investigación independientes (DARPA, la corporación RAND, el MIT y NPL en el Reino Unido)

- Años 70
 - 1971: Ray Tomlison creó el correo electrónico
 - Modelo de documentos de conclusiones y trabajos (RFCs)

- Años 80
 - Boom de los ordenadores personales y redes de área local
 - 1982: Formalización del la pila de protocolos TCP/IP
 - 1983: Nace oficialmente Internet al separarse MILNET (parte militar) de ARPANET
 - 1984: DNS (Domain Name Service)
 - 1987: La red alcanza los 20.000 ordenadores
 - 1988: Primer virus en la red

- **1989**
 - Tim Berners-Lee del CERN (Conseil Européen pour la Recherche Nucléaire), propone un primer esbozo para la WWW (World Wide Web)
 - Berners-Lee y su equipo escriben el primer servidor (httpd) y el primer navegador (llamado WorldWideWeb)
 - Berners-Lee y su equipo crearon el HTML, el HTTP y las URL
- **1994**
 - Nace el W3C (World Wide Web Consortium)

■ 1995: Internet Explorer

■1997: Blog

■1998: Google

2001: Wikipedia

2005: YouTube

2006: Facebook

■ 2006: Twitter

2008: Amazon Web Services

facebook.

Índice de contenidos

- 1. Introducción
- 2. ¿Qué es Internet?
- 3. Un poco de historia
- 4. Tipos de redes
 - Técnicas de conmutación
 - Extensión
 - Topología
- 5. Modelos de referencia
- 6. Análisis de protocolos

4. Tipos de redes

Técnicas de conmutación

- Las técnicas de conmutación (switching) definen la manera en que los datos atraviesan el camino entre el nodo origen y el destino
- En función de la **técnica de conmutación** empleada, podemos clasificar las redes de telecomunicación en dos grandes grupos:
 - Red de conmutación de circuitos
 - Red de conmutación de paquetes

4. Tipos de redes

Técnicas de conmutación

- Red de conmutación de circuitos
 - Existe un camino dedicado (circuito) entre los equipos terminales
 - Toda la información sigue el mismo camino
 - El circuito se establece mediante señalización
 - Ejemplo: Red Telefónica Conmutada

4. Tipos de redes

Técnicas de conmutación

- Red de conmutación de paquetes
 - La información se transmite en forma de paquetes
 - Los nodos intermedios almacenan y reenvían (store and forward) los paquetes, encaminando los mismos hasta el destino
 - Una vez los paquetes llegan a destino, el mensaje es reensamblado

Técnicas de conmutación

Comparación entre conmutación circuitos y paquetes

Conmutación circuitos	Conmutación paquetes
Idóneos para servicios de comunicación en tiempo real (por ejemplo llamadas de voz)	Compartición de recursos más eficiente
Ineficiencia en la gestión de recursos (circuitos dedicados se usen realmente o no)	Puede ser inadecuada para los servicios en tiempo real porque los retardos son variables e impredecibles (retardos de cola)

Técnicas de conmutación

- Hay dos tipos de técnica de conmutación de paquetes:
- 1. Conmutación de paquetes orientado a la conexión:
 - También llamada circuito virtual
 - Por ejemplo, redes X.25, ATM, Frame Relay
- 2. Conmutación de paquetes no orientado a la conexión:
 - También llamada técnica de datagramas
 - Por ejemplo: redes IP, como Internet

Técnicas de conmutación

- Red de conmutación de paquetes orientadas a conexión
 - Hay tres fases: establecimiento, transferencia y liberación
 - Solo los paquetes de llamada llevan dirección origen y destino
 - La ruta se determina en la fase de establecimiento con el paquete de llamada
 - Todos los paquetes siguen el mismo camino

Técnicas de conmutación

- Red de conmutación de paquetes no orientadas a conexión
 - No hay fases de establecimiento ni liberación
 - Todos los paquetes llevan dirección origen y destino
 - Cada paquete puede seguir una ruta diferente
 - Los paquetes pueden llegar desordenados o incluso perderse

Técnicas de conmutación

 Comparación redes conmutadas orientadas a y no orientadas a conexión:

Orientadas a la conexión	No orientadas a la conexión
La red proporciona control de errores. Al existir un circuito virtual, los paquetes se envían más rápido (la conmutación se puede hacer incluso por hardware, por ejemplo en ATM)	Muy flexible (si un nodo falla, se pueden encontrar rutas alternativas)
Menos flexible (si un nodo falla, todos los circuitos virtuales de ese nodo fallan)	Puede ser inadecuada para los servicios en tiempo real porque los retardos son variables e impredecibles

Extensión

- LAN (Local Area Network), red de área local
 - Redes privadas
 - Pocos kilómetros de extensión (oficina, universidad, etc.)
 - Conectan ordenadores y equipos de una organización
 - Objetivo: compartir recursos e intercambiar información entre ellos.
 - Bajo retardo y pocos errores
 - Limitadas en tamaño y en tiempo de transmisión
 - Intranet = LAN + servicios

Extensión

- MAN (Metropolitan Area Network), red de área metropolitana
 - Área geográfica extensa
 - Interconexión de varias LAN
 - Compuesta por líneas de comunicación y nodos (equipos que interconectan redes entre sí)
- WAN (Wide Area Network), red de área extensa
 - Mayor a las MAN
 - interconecta redes y dispositivos en áreas extensas (país, continente)

- Redes para dispositivos que se encuentran muy próximas a la persona (por ejemplo Bluetooth): manos libres, cascos inalámbricos, ...
 - PAN (Personal Area Network), red de área personal
 - BAN (Body Area Network), red de área corporal

Extensión

Distancia	Ubicación destino	Tipo de Red
1 m	Uno mismo	Body Area Network (BAN)
10 m	Habitación	Personal Area Network (PAN)
100 m	Hogar	Local Area Network (LAN)
1 km	Campus	Local Area Network (LAN)
10 km	Ciudad	Metropolitan Area Network (MAN)
100 km	País	Wide Area Network (WAN)
1000 km	Continente	Wide Area Network (WAN)
10000 km	Planeta	Internet

Topología

- La topología de red describe la forma en que se disponen los enlaces para comunicar a los host de una red. Hay que distinguir dos formas de topología:
 - Topología física: Distribución de los enlaces físicos y equipos. A veces se llama topografía
 - Topología lógica: Describe la forma en las tramas recorren los enlaces de una red

Índice de contenidos

- 1. Introducción
- 2. ¿Qué es Internet?
- 3. Un poco de historia
- 4. Tipos de redes
- 5. Modelos de referencia
 - El modelo OSI
 - El modelo TCP/IP
- 6. Análisis de protocolos

El modelo OSI

- Modelo OSI (Open System Interconnection)
- Modelo de referencia para la interconexión de sistemas abiertos.
- Creado por la Organización Internacional para la Estandarización (ISO) en el año 1980

El modelo OSI

#	Nivel	Funciones	PDU	Ámbito
1	Físico	Codificación, señalización, transmisión, recepción	Bit	Señales eléctricas/ópticas
2	Enlace	5 ,		Comunicación entre extremos de un enlace
3	Red	Direccionamiento de hosts, encaminamiento, encapsulamiento, fragmentación y reensamblado, diagnóstico y manejo de errores	Paquete	Comunicación entre nodos de una red
4	Transporte	Direccionamiento de procesos	TPDU	Comunicación entre procesos
5	Sesión	Gestión de sesiones	SPDU	Sesiones entre procesos
6	Presentación	Traducción, compresión, codificación	PPDU	Datos de aplicación
7	Aplicación	Servicios	APDU	Datos de aplicación

El modelo OSI

- Los equipos terminales (hosts) implementan los 7 niveles del modelo OSI
- Los nodos intermedios sólo implementan hasta el nivel 3 (red)

El modelo TCP/IP

• El modelo TCP/IP tiene 5 niveles:

Aplicación Presentación Sesión	Aplicación	
Transporte	Transporte	
Red	Red	
Enlace	Enlace	Algunos autores agrupan estos dos niveles en uno,
Físico	Físico	llamado "acceso al medio"
Modelo OSI	Modelo TCP/IP	

El modelo TCP/IP

El modelo TCP/IP

El modelo TCP/IP

- Dirección nivel transporte: puertos TCP/UDP (16 bits): RFC 6335
 - 0-1023: Puerto de sistema (well-known ports). Reservados para servicios distribuidos en Internet (correo electrónico, web, etc). Son usados por procesos de sistema (necesitan permisos de administrador)
 - 1024-49151: Puertos de usuario, de libre utilización
 - 49152-65535: Puertos efímeros, de uso dinámico. Se utilizan sobre todo por los clientes al conectar con servidores
- Direcciones nivel red: direcciones IP (32 bits):

El modelo TCP/IP

Dirección nivel enlace: direcciones MAC (48 bits = 8 bytes):

- Se conoce también como dirección física, y es única para cada dispositivo
- Las direcciones MAC están administradas por el IEEE

El modelo TCP/IP

Encapsulación de PDUs:

Índice de contenidos

- 1. Introducción
- 2. ¿Qué es Internet?
- 3. Un poco de historia
- 4. Tipos de redes
- 5. Modelos de referencia
- 6. Análisis de protocolos

- Un analizador de protocolos (packet sniffer) es una herramienta que captura los paquetes enviados/recibidos en un sistema terminal
- Se dice que son sistemas pasivos ya que no permiten modificar el tráfico analizado
- Wireshark es el analizador de protocolos que vamos a usar para realizar ejercicios prácticos en la asignatura

https://www.wireshark.org/

- Un sniffer tiene dos componentes:
 - Librería de captura de paquetes (pcap): Recibe una copia de cada trama (PDU de nivel 2) enviado o recibido por el host (equipo terminal)
 - Analizador de paquetes: Muestra por pantalla todos los datos enviados/recibidos.

Menú

Filtro

6. Análisis de Protocolos

Filtrado en Wireshark

English	C-like	Description and example
eq	==	Equal. ip.src==10.0.0.5
ne	!=	Not equal. ip.src!=10.0.0.5
gt	>	Greater than. frame.len > 10
1t	<	Less than. frame.len < 128
ge	>=	Greater than or equal to. frame.len ge 0x100
le	<=	Less than or equal to. frame.len <= 0x20

 La conexión de un host a una red se realizad mediante un dispositivo (físico o virtual) llama interfaz de red (Network Interface Card, NIC)

- En sistemas UNIX/Linux, además de los interfaces de red (virtuales o físicos) de un host, existe un interfaz virtual llamado interfaz de loopback
- Es un interfaz que simula la conexión de un host consigo mismo (localhost)
- En sistemas Windows no existe este concepto, con lo que para capturar el tráfico de la interfaz local se necesitará una herramienta externa como RawCap
- Para capturar todo el tráfico de una red Wifi es necesario que la tarjeta de red soporte captura en modo promiscuo (capturar tramas emitidas o dirigidas a otros dispositivos)