Absorption Spectroscopy

Type of Radiation	Energy (kcal/mol)	Frequency Wavelength	Molecular Interaction
	_		Translation
Microwave	0.001 - 1	1 - 400 cm-1	Molecular Rotations Rotation of the molecular as a whole about its center of mass
Infrared	1.1 - 11	400 - 4,000 cm ⁻¹	Molecular Vibrations Stretching and binding of bonds
Visible	50 - 75	400 - 600 nm	Electronic Excitation
Ultraviolet	75 - 150	200 - 400 nm	Promotion of electrons to higher energy levels

Infrared Absorption Spectroscopy

4000 cm ⁻¹	2000 cm	-1 150	0 cm ⁻¹ 400 cm ⁻¹
X - H Region	SP Region	X = Y Region	Fingerprint Region
2500 - 4000 cm ⁻¹	2000 - 2500 cm ⁻¹	1500 2000 cm-1	400 - 1500 cm ⁻¹
C-H N-H O-H Stretching	C=C C=N Stretching	C=C C=O C=N Stretchin	Single Rond Stretching Bond Bending Polyatomic Vibrations

Infrared Spectra: Tables of Reference

X-H Region

Phenols and Alcohols	ROH	3700-3500 sharp or 3200-3600 broad(H-bonded)
Acids	RCO ₂ H	2800-3600 very broad
Amides and Amines	RCONHR R ₂ NH	3300-3500
C-H bonds	C≡C-H C=C-H C-C-H RCHO	3100-3300 3000-3200 2850-3000 2700-2800

sp Region

Acetylenes	C≡C	2100	
Nitriles	C≡N	2200	
Ketenes	C=C=O	2150	
Allenes	C=C=C	1950	

Double Bond Region

Alkenes	C=C	1600-1670 weak unless conjugated
Imines	C= N	1600-1700
Nitro	$-NO_2$	1350-1550(two bands)

Carbonyl Groups

Note: subtract ca. 30 cm ⁻¹ with a double bond or aro	3 0 (0	Ketones R ₂ C=O	1710 (subtract ca. 3 conjugation)	0 cm ⁻¹ for
Anhydrides RC(O)OCOR	1740-1780, 1800-1840	06	-membero	ed and larger cy	yclic ketones
Acid Chlorides RCOCI	(two bands) 1790-1815	CO	1740		1680
Esters RCO ₂ R	1725-1755		-, .,		1715
Acids RCO ₂ H	1700-1725		1780	Co	1740
$ \begin{array}{c} \text{Amides} \\ \text{RCONR}_2 \\ \text{Urethanes} \end{array} $	1630-1700		1770	0	1690-1740
R_2NCO_2R Aldehydes	1700	0	1730	NR	
RCHO	1720-1740	<u></u>	1/50	NR	1650

Figure by MIT OCW.

Characteristic Functional Group Chemical Shifts in ¹³C NMR (ppm)

Alkanes		Organohalogen	
Methyl (RCH ₃)	0-30	C–F	70-80
Methylene (RCH₂R')	15-55	C–CI	25-50
Methine (RCH(R')(R"))	25-55	C–Br	10-40
Quaternary (RC(R')(R")(R""))	30-40	C–I	-20-10
Alkenes	100-150	Ketones, Aldehydes	185-220
Aromatic	120-160	Carboxyl Derivatives	
Alkynes	70-90	Acids	150-185
Nitriles	110-125	Esters	155-180
Alcohols, Ethers	50-90	Amides	150-180
Amines	40-60	Carbamates	150-160

¹H NMR Spectra: Tables of Reference

Average Chemical Shifts (δ) of α–Hydrogens in Substituted Alkanes*

X	CH ₃ X	RCH ₂ X	R ₂ CHX
Н	0.233	0.9	1.25
CH ₃ or CH ₂	0.9	1.25	1.5
F	4.26	4.4	_
Cl	3.05	3.4	4.0
Br	2.68	3.3	4.1
I	2.16	3.2	4.2
ОН	3.47	3.6	3.6
OR	3.3	3.4	<u> </u>
OAr	3.7	3.9	
OCOR	3.6	4.1	5.0
OCORAr	3.8	4.2	5.1
SH	2.44	2.7	_
SR	2.1	2.5	
SOR	2.5		2.8
SO_2R	2.8	2.9	3.1
NR_2	2.2	2.6	2.9
NR-Ar	2.9		
NCOR	2.8	_	3.2
NO_2	4.28	4.4	4.7
СНО	2.20	2.3	2.4
COR	2.1	2.4	2.5
COAr	2.6	3.0	3.4
СООН	2.07	2.3	2.6
COOR	2.1	2.3	2.6
CONH ₂	2.02	2.2	
CR=CRCR ¹	2.0-1.6	2.3	2.6
Phenyl	2.3	2.7	2.9
Aryl §	3.0-2.5		
C≡CR	2.0		_
C≡CN	2.0	2.3	2.7

^{*} The tabulated values are average values for compounds that do not contain another functional group within two carbon atoms from the indicated hydrogens.

Chemical Shifts of Hydrogens Bonded to Unsaturated Centers

Type R ₂ C=CH ₂		Unconjugated	Conjugated*
		4.6-5.0	5.4-7.0
	R ₂ C=CHR	5.0-5.7	5.7-7.3
	Aromatic	6.5-8.3	
	Nonbenzenoid aromatic	6.2-9.0	
	Acetylenic	2.3-2.7	2.7-3.2
	Aldehydic	9.8-9.8	9.5-10.1
	R ₂ NCHO	7.9-8.1	
	ROCHO	8.0-8.2	

^{*} The position depends on the type of functional group in conjugation with the unsaturated group.

Chemical Shifts of Hydrogen Bonded to Oxygen, Nitrogen, and Sulfer

Functional Group		Chemical Shift, δ	
ОН	I Alcohols		(Monomeric) (Associated)
	Phenols	4.5 4.5-8	(Monomeric) (Associated)
	Enols	15.5	,
	RCO₂H	9-12	(Dimeric)
	H-bonded to C=O	13-16	
NH ₂	Alkylamine	0.6-1.6	
	Arylamine	2.7-4.0	
	Amide	7.8	
NH	Alkylamine,	0.3-0.5	
	Arylamine	2.7-2.8	
R ₃ NH ⁺	Ammonium salts	7.1-7.7	(in CF ₃ COOH)
SH	Aliphatic	1.3-1.7	
	Aromatic	2.5-4	

[§] Includes polycyclic and many heterocyclic aromatics.

¹H NMR Coupling Constants (Expanded)

In rigid systems, vicinal coupling can range from 0 to 15 Hz. For example:

$$H$$
 ax-ax 6-14 Hz H ax-eq 0-5 Hz H eq-eq 0-5 Hz

Spin-spin coupling in *alkenes*:

Spin-spin coupling in arenes:

$$H_a$$
 H_b
 J_{ab} (ortho) 6-10 Hz
 J_{ac} (meta) 1-3 Hz
 H_c
 J_{ad} (para) 0-1 Hz

Note: Structures shown above represent generic coupling situations and not the specific molecules depicted (in which the labeled protons would be chemically equivalent and would not couple).