

Soutenance Mi-Parcours

Elèves: Abdelmalek BELGHOMARI - Mohamed Abderrahmane BEDDA -

Haykel SRIHA - Cedric WILLAUME - Winnie KAMTCHUENG

Encadrants: Christophe ROSENBERGER - Tanguy GERNOT

L'École des Ingénieurs Scientifiques

SOMMAIRE

- l. <u>Introduction</u>
- 2. <u>Méthodologie de développement</u>
 - Etat de l'art
 - Choix de conception
 - Agilité du projet
 - Outils utilisés
- 3. <u>Conception</u>
 - <u>Base de données</u>
 - Echantillonnage des audios
 - <u>Réseau de neurones</u>
 - Démo web

- 4. <u>Bilan</u>
 - Travail réalisé
 - <u>Difficultés rencontrées</u>
 - Travail futur
- 5. Conclusion

L'École des Ingénieurs Scientifiques

Introduction

Contexte:

- Projet proposé par le département SAFE, du laboratoire GREYC
- Touche aux domaines de la FORENSIC et de l'Intelligence Artificielle
- Réponds à des nécessités liées à la cybernétique

Objectifs:

- Reconnaissance du contenu tapé au clavier
- Identification de l'utilisateur grâce à l'analyse des émissions sonores du clavier

Introduction

Intérêts:

- Aide des services de sécurité
- Surveillance de l'activité d'utilisateur
- Fournit une authentification biométrique
- Prévention contre de futures attaques biométriques

L'École des Ingénieurs Scientifiques

1. Etat de l'art

Paper	Year	Principle	Accuracy(percentage)
A Practical Deep Learning-Based Acoustic Side	2023	CoAtNet	93%
Channel attack on keyboards			
Analyse de la dynamique de frappe au clavier sonore	2022	SVM/MFCC	96%
pour l'identification, le profilage et l'extraction du			
texte saisi			
Don't skype & type	2017	MFCC	91%
Don't skype & type	2017	LF	100%
Reconnaissance de saisie sur clavier par analyse	2011	Intercorrelation/DFT	99%
acoustique			
Keyboard Acoustic Emanations Revisited	2009	MFCC/HMM	87% without any noise
Keyboard Acoustic Emanations: An Evaluation of	Unknown	Tim-Frq	82.69%
strong passwords and typing styles			

Figure 1 : Tableau de comparaison de différents modèles de reconnaissance sonore

Ce qu'on a retenu :

- Possibilité de prise de son avec un téléphone portable
- Caractérisation du son par MFCC, DFT...
- Différentes approches : analyse par lettre ou par mot
- Modèle ayant les meilleurs résultats : réseaux de neurones

2. Choix de conception

- Constitution d'une base de données
- Segmentation des phrases en lettres individuelles.
- Reconnaissance lettre par lettre
- Reconnaissance mot par mot
- Démo Web

3. Agilité du Projet

Figure 2: Organisation Agile du projet

4. Outils utilisés

• Partage de code :

• Canal de discussion du groupe :

• Edition & Partage de documents :

• Contact avec les tuteurs/clients:

1. Base de données

Matériels utilisés :

- Iphone 11 Pro
- Clavier de l'ENSICAEN en salle A312

Protocole suivi:

- Clavier placé à 10cm du microphone
- Touche tapée une par une, sans dactylographier
- Sans aucun bruit ambiant

Contenu de la base de données :

- 2 datasets de 50 fichiers audios chacun
- 21 minutes et 40 secondes d'audios
- 1733 touches tapées

Figure 3 : Disposition du matériel d'enregistrement

ENSI CAEN CAEN

2. Echantillonnage des audios

Objectif:

Extraction sonore touche par touche

Outils utilisés:

- Matlab
- Fichiers audios de la base de données

Méthode suivie:

 Extraction des touches à partir d'un seuil de détection

3. Réseau de neurones

Les outils utilisés :

- Bibliothèques utilisées :
 - TensorFlow : création du réseau de neurones
 - Librosa: Traitement audio
- · Code utilisé:
 - audioSplit.py (lien du GitHub dans la bibliographie)

Figure 4 : Fonctionnement du réseau de neurones

MODELE ESPACE (2 CLASSES)

- Sert à s'assurer que les sons correspondent bien au fichier texte
- Sert de checkpoint pour concevoir d'autres modèles plus compliqués
 - A de très bonnes performances après l'entraînement (0 erreurs)

MODELE LETTRE (27 CLASSES)

- Version plus complexe du modèle espace
- "Possède une performance de faible rendement
- Possède un potentiel d'amélioration

4. Démo Web

Objectif:

- Tester le modèle d'apprentissage en direct
- Partage simple du modèle

Outils utilisés:

Php / Css / JavaScript

Fonctionnalité:

- Enregistrement lors de la saisie
- Traitement back-end de l'enregistrement
- Affichage des prédictions

Bilan

1. Travail réalisé

Recherches et gestion de projet :

- Recherche Bibliographique
- Réalisation du kick-off
- Etat de l'art Scientifique

Processus de développement :

- Collecte d'une base de données
- Développement du réseau neuronal
- Entrainement du modèle et premiers résultats
- Développement de la démo web

Figure 6 : Diagramme de GANTT

Bilan

2. Difficultés rencontrées

- Manque d'une base de données suffisamment variée et riche
- Impossibilité de vérifier si les audios ont été bien échantillonnés
- Difficultés d'identifier les raisons exactes derrière la mauvaise performance du modèle lettre
- Manque de coordination entre les équipes

Bilan

3. Travail futur

1- Avoir une approche plus subtile pour le modèle lettre (moins de classes)

3- Extraire d'autres informations comme la durée entre 2 touches pour reconnaître la manière d'écriture.

5- Améliorer le modèle pour qu'il puisse aussi détecter la personne qui tape 2- Utiliser la distance de Levenshtein avec un dictionnaire de mots sur la sortie du modèle.

4- Augmenter les données pour un modèle plus flexible.

6- Lier la démo avec la partie back-end

CONCLUSION

Conclusion

- Manque organisationnel dû à un premier semestre chargé
- Bonne réactivité et travail efficace fournit en peu de temps
- Meilleure compréhension des attentes spécifiques sur le développement d'une IA de détection
- Avenir du projet prometteur sur les prochaines semaines

MERCI!

Bibliographie

Code source du script de séparation des audios :

https://github.com/CGrassin/keyboard audio hack/blob/master/split audio.py

Animation de la démo web :

• https://github.com/kaizhelam/Hacking-Matrix-Rain-Effect

Documents de l'état de l'art :

- Don't skype & type: Acoustic Eavesdropping in Voice-Over-IP
- Keyboard Acoustic Emanations Revisited
- A Practical Deep Learning-Based Acoustic Side Channel attack on keyboards
- Analyse de la dynamique de frappe au clavier sonore pour l'identification, le profilage et l'extraction du texte saisi
- Reconnaissance de saisie sur clavier par analyse acoustique
- Keyboard Acoustic Emanations: An Evaluation of strong passwords and typing styles