STAT 3690 Lecture 24

zhiyanggeezhou.github.io

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca)

Mar 28, 2022

Factor analysis

- A special kind of latent variable model
 - Latent variable model: latent/unobserved variables give rise to observed data through a specified model, i.e., a regression model with unobserved covariates
- Model (population version)

$$Y - \mu = LF + E$$

- $-\mathbf{Y} = [Y_1, \dots, Y_p]^{\top}$: random & observable, $\mathbf{Y} \sim (\boldsymbol{\mu}, \boldsymbol{\Sigma})$ $-\mathbf{L} = [\ell_{ij}]_{p \times q}$: fixed & unknown, a matrix of factor loadings
- F: random & unobservable, latent vector/common factors
- E: random & unobservable, error vector/specific factors
- Restrictions for identifiability
 - * Common factors are of zero mean, mutually uncorrelated and standardized: $\mathbf{F} \sim (\mathbf{0}, \mathbf{I})$
 - * Specific factors are centered and mutually uncorrelated and each of them affects only one entry of Y: $\mathbf{E} \sim (\mathbf{0}, \boldsymbol{\Psi})$ with $\boldsymbol{\Psi} = \operatorname{diag}(\psi_1, \dots, \psi_p)$
 - * Common and specific factors are uncorrelated: $cov(\mathbf{F}, \mathbf{E}) = \mathbf{0}$
- To estimate **L** and Ψ
- Covariance structure
 - $\operatorname{var}(\mathbf{Y}) = \mathbf{\Sigma} = \mathbf{L}\mathbf{L}^{\top} + \mathbf{\Psi}$ $* \operatorname{var}(Y_i) = \sum_{j=1}^{q} \ell_{ij}^2 + \psi_i$ $\operatorname{cov}(\mathbf{Y}, \mathbf{F}) = \mathbf{L}$

Estimating L and Ψ

- PC method

 - 1. Perform eigendecomposition on $\mathbf{S} = \mathbf{W}\Lambda\mathbf{W}^{\top} = \sum_{j=1}^{p} \lambda_{j}w_{j}w_{j}^{\top}$ 2. Select q 1) according to PCA stopping rule, 2) as the number of positive eigenvalues of \mathbf{S} , OR 3) as the number of eigenvalues greater than one for the correlation matrix
 - 3. $\widehat{\mathbf{L}} = [\sqrt{\lambda_1} w_1, \dots, \sqrt{\lambda_q} w_q]_{p \times q}$ and $\widehat{\mathbf{\Psi}} = \operatorname{diag}(\mathbf{S} \widehat{\mathbf{L}}\widehat{\mathbf{L}}^{\top})$
- ML method
 - Further assumptions

 - * $\mathbf{F} \sim MVN_q(\mathbf{0}, \mathbf{I})$ * $\mathbf{E} \sim MVN_p(\mathbf{0}, \mathbf{\Psi})$
 - * $\mathbf{L}\mathbf{\Psi}^{-1}\mathbf{L}^{\top}$ is diagonal
 - factanal & psych::fa

• Comments on estimation

- Other methods
- Different statistical softwares may apply different methods
 - * Have to look into help manuals to figure out what is going on for different
- Compare the outputs of multiple estimation methods
 - * For a good fit, similar answers would be reached regardless of the method