```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import statsmodels.api as sm
    import seaborn as sns
    sns.set() #reset the current graph style, we need to re-run everythign again
```

In [2]: data = pd.read_csv('1.01. Simple linear regression.csv')

In [3]: data

Out[3]:

	SAT	GPA	
0	1714	2.40	
1	1664	2.52	
2	1760	60 2.54	
3	1685 2.74		
4	1693	2.83	
79	1936	1936 3.71	
80	1810	3.71	
81	1987	3.73	
82	1962	3.76	
83	2050	3.81	

84 rows × 2 columns

In [4]: #provides statics data from each column
data.describe()

Out[4]:

	SAT	GPA
count	84.000000	84.000000
mean	1845.273810	3.330238
std	104.530661	0.271617
min	1634.000000	2.400000
25%	1772.000000	3.190000
50%	1846.000000	3.380000
75%	1934.000000	3.502500
max	2050.000000	3.810000

```
In [5]: #We are going to create a linear regression which predits GPA based on the SAT so
y = data['GPA']
x1 = data['SAT']
```

```
In [6]: plt.scatter(x1,y)
    plt.xlabel('SAT',fontsize=20)
    plt.ylabel('GPA',fontsize=20)
    plt.show()
```



```
In [7]: x = sm.add_constant(x1)
    results = sm.OLS(y,x).fit() #fit will apply a specific estimation technique (OLS
    results.summary()
```

Out[7]:

OLS Regression Results

Dep. Variable:	GPA	R-squared:	0.406
Model:	OLS	Adj. R-squared:	0.399
Method:	Least Squares	F-statistic:	56.05
Date:	Tue, 24 Aug 2021	Prob (F-statistic):	7.20e-11
Time:	21:29:57	Log-Likelihood:	12.672
No. Observations:	84	AIC:	-21.34
Df Residuals:	82	BIC:	-16.48
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	0.2750	0.409	0.673	0.503	-0.538	1.088
SAT	0.0017	0.000	7.487	0.000	0.001	0.002

Omnibus: 12.839 Durbin-Watson: 0.950

Prob(Omnibus): 0.002 Jarque-Bera (JB): 16.155

 Skew:
 -0.722
 Prob(JB):
 0.000310

 Kurtosis:
 4.590
 Cond. No.
 3.29e+04

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.29e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [8]: plt.scatter(x1,y)
    yhat = 0.0017*x1 + 0.275
    fig = plt.plot(x1, yhat, lw=4, c='orange', label='regression line')
    plt.xlabel('SAT', fontsize=20)
    plt.ylabel('GPA', fontsize=20)
    plt.show()
```



```
In [9]: plt.scatter(x1,y)
    yhat = 0.0017*x1
    fig = plt.plot(x1, yhat, lw=4, c='green', label='regression line')
    plt.xlabel('SAT', fontsize=20)
    plt.ylabel('GPA', fontsize=20)
    plt.xlim(0)
    plt.ylim(0)
    plt.show()
```



```
In [10]: plt.scatter(x1,y)
    yhat = 0*x1 + 0.275
    fig = plt.plot(x1, yhat, lw=4, c='red', label='regression line')
    plt.xlabel('SAT', fontsize=20)
    plt.ylabel('GPA', fontsize=20)
    plt.show()
```



```
In [ ]: #are thosse variables useful?
    # Does it help us explain the variability we have in this case?
    # p-value "P>\t\ = p-value < 0.05" means tha variable is significant
    #SAT p-value is = 0.000
#we could observed that the p-value didn't match what we are looking and SAT is a</pre>
```