Site Survey dos 1°, 2° e 3° andares do bloco B da UTFPR

Gabriel Francisco Martins Loyola, Lucas Eduardo Gonçalves, William de Oliveira Souza

Resumo— Este relatório contém as medições, resultados e conclusões sobre o site survey da rede UTFPRWEB e UTFPRADM dos 1°, 2° e 3° andares do bloco B da Universidade Tecnológica Federal do Paraná.

Palavras-Chave—Site Survey, UTFPR, bloco B.

I. INTRODUÇÃO

A. Sobre o Site Survey

Site Survey de redes wifi é uma técnica utilizada para realizar o levantamento de informações relevantes a respeito de uma rede sem fio. Através dessas informações é possível verificar se o projeto da rede foi bem planejado e implementado através da análise da qualidade do sinal em diversos pontos do local da instalação da rede.

B. Sobre o software de medição

Foi utilizado o software Ekahau Site Survey para realizar as medições da rede UTFPRWEB e UTFPRADM do bloco B da Universidade Tecnológica Federal do Paraná, esse software é desenvolvido pela Ekahau Inc e está disponível para as plataformas Windows e MacOS.

Logo ao inicializar, o software apresenta todas as redes ao alcance e mostra o nome da rede, intensidade do sinal, canal no qual opera, nome do Access Point (AP), frequência em GHz entre outras informações.

C. Fatores de atenuação do sinal

Os fatores que alteram a intensidade de um sinal são muitos, os mais percebidos foram de portas de madeira, paredes, vidros e portas de vidro e o chão que dividia os andares.

II. AS MEDIAÇÕES

Para realizar as medições foi tomado como ponto de partida o local logo abaixo do AP e a partir disso, era tirada uma medida a 15 passos de distância e outra a 30 passos de distância, sempre evidenciando se havia algum obstáculo no caminho ou não.

A. Características do prédio

O bloco B da UTFPR possui tanto porta de madeira quanto porta de vidro, o que acaba por enriquecer a coleta das medições para diferenciar o dano de cada tipo de material na propagação do sinal, além disso se notou estruturas de madeira com vidro nos corredores, onde são guardados alguns equipamentos de informática e armários de ferro no 3º andar.

B. Medições realizadas com o software Ekahau Site Survey

Com as informações adquiridas através do software Ekahau, é possível perceber que a intensidade do sinal é forte em todo o ambiente, variando de -20 dBm à -75dBm, também se notou que os canais em que os APs se encontravam, não estavam em divergência, pois dos 5 APs analisados, foi detectado que alternavam em 3 canais.

A figura abaixo representa a atenuação do sinal dos 3 andares do bloco B.

III. CONCLUSÕES

Primeiramente vale ressaltar que, por motivos de segurança dos equipamentos, os laboratórios são fechados e outros estavam em aula, fazendo com que não fosse possível realizar as medições de dentro dos mesmos e impossibilitando uma medição mais completa de toda a redondeza dos APs.

Apesar desse bloqueio, não houve dificuldades na realização desta atividade.

Nas medições realizadas logo abaixo dos pontos de acesso do 1º e 2º andares, percebeu-se uma atenuação relativamente alta (girando por volta dos 30dbm). Acredita-se que isso ocorra por causa causa da interferência de outros sinais emanados pelos

outros andares e pelos outros sinais próximos, no caso do primeiro andar, a existência do RLE também influenciou pois o RLE possui uma rede própria para os alunos que frequentam as proximidades do local. No terceiro andar, acredita-se que o sinal sofreu menores atenuações (em torno de 20dbm), pois não existia a interferência de sinais de andares superiores e já estava em um ambiente mais aberto.

Ao se afastar um pouco dos APs, na direção oposta ao do corredor central do bloco B, o sinal variou para 55dbm (1° andar) e 45dbm (3° andar). A equipe acredita que isso se deve à motivos semelhantes ao do caso anterior, e se os mesmos não existissem, a atenuação seria menor. Tal medição não foi feita no 2° andar, pois o AP fica muito próximo de um laboratório, e o mesmo estava em aula (B201).

Ao deslocar-se para o corredor central, a atenuação mais que dobrou no 1º andar (70dbm), acredita-se que seja por causa da existência dos equipamentos dos laboratórios, dos equipamentos do RLE, das máquinas que estão disponíveis para uso dos alunos no corredor central, e pela porta de madeira com vidro que fica entre o AP e o meio do corredor, que foi o local da medição.

No segundo andar algo curioso aconteceu, a medição realizada no corredor registrou uma atenuação ligeiramente maior (65dbm) do que a medição extra realizada no lado oposto ao do AP (60dbm), acredita-se que isso se dá pelo fato de que no corredor se detecta sinais de praticamente todos os lados do bloco.

Já no terceiro andar (60dbm), concluiu-se que a causa é a mesma citada anteriormente, equipamentos e sinais alheios. Na medição extra (75dbm), existiam armários de ferro e uma porta de vidro, além dos equipamentos dos laboratórios.

Com todas essas informações pode-se perceber que os sinais sofrem vários tipos de interferência mesmo em linha reta, podendo ser por influência de outros sinais, de equipamentos, portas, janelas vigas de concreto (que é o caso entre andares) e até pessoas.

Na medição do sinal dos andares ficou bem claro a interferência nos mostradores, mesmo que os APs estivessem em canais alternados houve uma certa atenuação entre a potência dos sinais de wireless.