

Golden Insights: Unlocking the Secrets of Gold Price Prediction

Done by: Javier Tay

Javier Tay Yu Xiang U2330451H Jared Ong Kai Ze U2330650L Ernest Then Shi Sheng U2331141L

Table of contents

01 Motivation

02 Exploratory
Data Analysis

O3 Core Analysis

04 Conclusion

- Gold prices have fluctuated dramatically over the past century, with several large swings in both directions.
- Inflation, geopolitical tensions, supply and demand, and mining and refining costs influence the price of gold.

In this uncertain economy, it is difficult to make the right decisions when investing. Hence, we seek to uncover valuable insights into market trends, empowering investors with more informed decision-making capabilities in the dynamic world of finance

Problem Definition

- Find out which stock is the best predictor of gold price
- Classify whether to buy gold or not

Our Dataset

- We used this dataset on the various US stock prices and volumes.
 https://www.kaggle.com/datasets/saketk511/2019-2024-us-stock-market-data
- This dataset offers an intricate exploration of market dynamics spanning five years (2019-2024)
- It represents a valuable dataset for dissecting trends and patterns within the global markets.

	<pre># Importing the dataset stocks = pd.read_csv('Stock Market Dataset.csv') stocks.head()</pre>												
0	Unnam	ed: Ø D	ate	Natural_Gas_Price	Natural_Gas_Vol.	Crude_oil_Price	Crude_oil_Vol.	Copper_Price	Copper_Vol.	Bitcoin_Price	Bitcoin_Vol.	Berkshire_Price	Berks
			02- 02- 024	2.079	NaN	72.28	NaN	3.8215	NaN	43,194.70	42650.0	5,89,498	
			01- 02- 024	2.050	161340.0	73.82	577940.0	3.8535	NaN	43,081.40	47690.0	5,81,600	
			31- 01- 024	2.100	142860.0	75.85	344490.0	3.9060	NaN	42,580.50	56480.0	5,78,020	
			30- 01- 024	2.077	139750.0	77.82	347240.0	3.9110	NaN	42,946.20	55130.0	5,84,680	
			29- 01- 024	2.490	3590.0	76.78	331930.0	3.8790	NaN	43,299.80	45230.0	5,78,800	
	5 rows × 39	colum	ns										

Exploratory Data Analysis

Steps Taken for EDA

Cleaning

Find and drop null values

Correlation

Find out which stocks to use

Visualise

Plot graphs to visualise the data

Statistics

Find out the stats for each stock

Data Cleaning

Preliminary exploration

Statistics

[] predictorprices_final.describe()

	Nasdaq_100_Price	Apple_Price	Silver_Price	Gold_Price
count	1243.000000	1243.000000	1243.000000	1243.000000
mean	12037.318101	125.566533	21.588977	1759.246742
std	2887.069742	46.114122	3.859288	203.258901
min	6904.980000	42.360000	11.772000	1272.000000
25%	9298.730000	79.505000	17.998500	1669.600000
50%	12381.170000	136.760000	22.758000	1804.200000
75%	14563.250000	162.915000	24.512000	1912.800000
max	17642.730000	198.110000	29.418000	2089.700000

Graphs of Gold Price

Graphs of Nasdaq 100 Price

Graph of Silver Price

Graph of Apple Price

Core Analysis

Machine Learning Techniques

Description

Linear Regression

Find relationship between the stocks by fitting a straight line to the observed data, aiming to minimize the difference between predicted and actual values.

SARIMA

Time series forecasting model that combines autoregression, differencing, moving average, and seasonal components to make predictions.

Random Forest

Build multiple decision trees and combine predictions to make more accurate and robust predictions.

Linear Regression using Apple Prices

```
# test_size 0.2 such that its a 80:20 ratio
X train, X test, y train, y test = train test split(nasdaq100, goldprice, test size = 0.20)
# Create the Linear Regression model
linreg = LinearRegression()
linreg.fit(X train,y train)
# Coefficients of the Linear Regression line
print('Intercept of Regression \t: b = ', linreg.intercept )
print('Coefficients of Regression \t: a = ', linreg.coef )
print()
y train pred = linreg.predict(X train)
y test pred = linreg.predict(X test)
```


Linear Regression using Nasdaq 100

```
# test_size 0.2 such that its a 80:20 ratio
X_train, X_test, y_train, y_test = train_test_split(nasdaq100, goldprice, test_size = 0.20)
linreg = LinearRegression()
linreq.fit(X_train,y_train)
print('Intercept of Regression \t: b = ', linreg.intercept_)
print('Coefficients of Regression \t: a = ', linreg.coef_)
y_train_pred = linreq.predict(X_train)
y_test_pred = linreq.predict(X_test)
```


Linear Regression using Silver

```
# test size 0.2 such that its a 80:20 ratio
X_train, X_test, y_train, y_test = train_test_split(silver, goldprice, test_size = 0.20)
linreg = LinearRegression()
linreq.fit(X_train,y_train)
# Coefficients of the Linear Regression line
print('Intercept of Regression \t: b = ', linreg.intercept_)
print('Coefficients of Regression \t: a = ', linreg.coef_)
print()
y_train_pred = linreg.predict(X_train)
y_test_pred = linreg.predict(X_test)
```


Apple is the Winner!

Indicates that a

large percentage of

the variability in the

gold price is

accounted for by

Apple prices

Combining these results, Apple is the best predictor

SARIMA Model

What is SARIMA?

Seasonal Autoregressive Integrated Moving Average

Relationship between an observation and the residual error from lagged observations.

Autoregressive Component

Relationship between an observation and lagged observations from previous time steps.

Seasonal Component

Include seasonal autoregressive, integrated, and moving average terms, addressing recurring patterns over fixed intervals.

Removes trends and seasonality by differencing the time series.

Forecasting

Forecasts future values based on historical data and estimated parameters, extrapolating captured patterns into the future.

Prediction Using SARIMA

Random Forest Tree

Confusion Matrix

_	140
_	120
-	100
_	80
_	60
_	40
	20

Accuracy: 0.6746987951807228 Classification Report:								
	precision	recall	f1-score	support				
0	0.82	0.77	0.79	202				
1	0.22	0.28	0.24	47				
accuracy			0.67	249				
macro avg	0.52	0.52	0.52	249				
weighted avg	0.71	0.67	0.69	249				
Confusion Mat [[155 47] [34 13]]	trix:							

04 Conclusion

Outcome of Analysis

Comparison between stock prices of Apple, Silver and Nasdaq 100

Apple Stock Prices

Correlation = 0.8488

MSE = 11703

 $R^2 = 0.7495$

Silver Prices

Correlation = 0.8171

MSE = 13162

 $R^2 = 0.6550$

Nasdaq 100 Prices

Correlation = 0.8062

MSE = 15801

 $R^2 = 0.6250$

Data Driven Insights

Predictable

- Using our prediction models like the random forest, we have a relatively high accuracy.
- There are multiple stocks that we can use to predict gold prices.
- Thus, it is entirely possible to predict future gold prices.

Not Perfect

- The prediction models are not 100% accurate. This means that we should not entirely depend on it.
- There are very high risks of investing in gold as the fluctuations are hard to predict.
- We should all be wary when investing.
 There is no "fast way" to become rich.

Thank You!

CREDITS: This presentation template was created by Slidesgo, and includes icons by Flaticon, infographics & images by Freepik and illustrations by **Storyset**

