Лабораторная работа №8

Дисциплина: Имитационное моделирование

Пронякова Ольга Максимовна

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Выводы	17
Сг	Список литературы	

Список иллюстраций

2.1	Задаю начальные значения	6
2.2	Параметр выражения	7
2.3	Cxeмa в xcos	8
2.4	Динамика изменения размера TCP окна W (t) и размера очереди Q(t)	9
2.5	Фазовый портрет (W, Q)	10
2.6	Изменяю параметр С	11
2.7	Динамика изменения размера TCP окна W (t) и размера очереди Q(t)	12
2.8	Фазовый портрет (W, Q)	13
2.9	Реализация модели с использованием языка Modelica	14
2.10	Динамика изменения размера TCP окна W (t) и размера очереди Q(t)	14
2.11	Фазовый портрет (W, Q)	15
2.12	Изменяю параметр С	15
2.13	Динамика изменения размера TCP окна W (t) и размера очереди Q(t)	16
2.14	Фазовый портрет (W, Q)	16

Список таблиц

1 Цель работы

Рассмотреть упрощённую модель поведения TCP-подобного трафика с регулируемой некоторым AQM алгоритмом динамической интенсивностью потока.

2 Выполнение лабораторной работы

Неализуем схему хсоs, моделирующую систему, с начальными значениями параметров N=1, R=1, K=5, S=1, S=1

Рис. 2.1: Задаю начальные значения

Изменяю параметр выраажения(рис.2.2).

Рис. 2.2: Параметр выражения

Построение схемы по картинке(рис.2.3).

Рис. 2.3: Схема в хсоѕ

Результат выполнения(рис.2.4), (рис.2.5).

Рис. 2.4: Динамика изменения размера TCP окна W (t) и размера очереди Q(t)

Рис. 2.5: Фазовый портрет (W, Q)

Изменяю параметр С на 0.9(рис.2.6).

Рис. 2.6: Изменяю параметр С

Результат выполнения(рис.2.7), (рис.2.8).

Рис. 2.7: Динамика изменения размера TCP окна W (t) и размера очереди Q(t)

Рис. 2.8: Фазовый портрет (W, Q)

Реализую модель с использованием языка Modelica в среде OpenModelica. Для реализации задержки использую оператор delay()(рис.2.9).

```
model lab08
 1
 2
    parameter Real N=1;
 3
    parameter Real R=1;
 4
    parameter Real K=5.3;
 5
    parameter Real C=1;
 6
 7
    Real W(start=0.1);
    Real Q(start=1);
8
9
10
    equation
11
    der(W) = 1/R - W*delay(W, R)/(2*R)*K*delay(Q, R);
12
    der(Q) = if (Q==0) then max(N*W/R-C,0) else (N*W/R-C);
13
14
15
    end lab08;
```

Рис. 2.9: Реализация модели с использованием языка Modelica

Результат выполнения(рис.2.10), (рис.2.11).

Рис. 2.10: Динамика изменения размера TCP окна W (t) и размера очереди Q(t)

Рис. 2.11: Фазовый портрет (W, Q)

Изменяю параметр С на 0.9(рис.2.12).

```
🗗 🚜 📴 😈 | доступный на запись | модег | вид текст | labus | /nome/openmodelica/Desktop/is
     model lab08
 2
     parameter Real N=1;
     parameter Real R=1;
 4
     parameter Real K=5.3;
 5
     parameter Real C=0.9;
 6
 7
     Real W(start=0.1);
 8
     Real Q(start=1);
 9
10
     equation
11
     der(W) = 1/R - W*delay(W, R)/(2*R)*K*delay(Q, R);
12
13
     der(Q) = if (Q==0) then max(N*W/R-C,0) else (N*W/R-C);
14
15
     end lab08;
```

Рис. 2.12: Изменяю параметр С

Результат выполнения(рис.2.13), (рис.2.14).

Рис. 2.13: Динамика изменения размера TCP окна W (t) и размера очереди Q(t)

Рис. 2.14: Фазовый портрет (W, Q)

3 Выводы

Рассмотрела упрощённую модель поведения TCP-подобного трафика с регулируемой некоторым AQM алгоритмом динамической интенсивностью потока.

Список литературы