Allgemeines

Trigonometrische Funktionen

rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
\deg	0°	30°	45°	60°	90°
\sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\pm \infty$

Skalarprodukt und Vektorprodukt Skalarprodukt

$$\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = |\underline{\mathbf{a}}| |\underline{\mathbf{b}}| \cos \varphi$$
$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Vektorprodukt, Kreuzprodukt

$$\begin{split} \underline{\mathbf{c}} &= \underline{\mathbf{a}} \times \underline{\mathbf{b}} \\ |\underline{\mathbf{c}}| &= |\underline{\mathbf{a}}||\underline{\mathbf{b}}| \sin \varphi \\ \underline{\mathbf{a}} &\times \underline{\mathbf{b}} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix} \end{split}$$

Koordinatentransformation

	Kartesisch	Zylindrisch	Sphärisch
x	x	$\rho\cos\varphi$	$r\sin\theta\cos\psi$
$\mid y \mid$	y	$\rho \sin \varphi$	$ r\sin\theta\sin\psi $
z	z	z	$r\cos\theta$
ρ	$\sqrt{x^2+y^2}$	ρ	$r\sin\theta$
$\mid \varphi \mid$	$\arctan \frac{y}{x}$	φ	ψ
z	z	z	$r\cos\theta$
r	$\sqrt{x^2 + y^2 + z^2}$	$\sqrt{\rho^2+z^2}$	r
$\mid \theta \mid$	$\arccos \frac{z}{r}$	$\arctan \frac{\rho}{z}$	θ
$\mid \psi \mid$	$\arctan \frac{y}{x}$	φ \tilde{z}	ψ

Bewegung und Geschwindigkeit eines materiellen Punktes

Schnelligkeit

$$\dot{s} = |\underline{\mathbf{v}}| = v$$

Ortsvektor und Geschwindigkeit

Kartesisch

$$\underline{\mathbf{r}} = x\underline{\mathbf{e}}_x + y\underline{\mathbf{e}}_y + z\underline{\mathbf{e}}_z$$

$$\underline{\mathbf{v}} = \dot{\underline{\mathbf{r}}} = \dot{x}\underline{\mathbf{e}}_x + \dot{y}\underline{\mathbf{e}}_y + \dot{z}\underline{\mathbf{e}}_z$$

Zylindrisch

$$\underline{\mathbf{r}} = \rho \underline{\mathbf{e}}_{\rho} + z \underline{\mathbf{e}}_{z}$$

$$\underline{\mathbf{v}} = \dot{\underline{\mathbf{r}}} = \dot{\rho} \underline{\mathbf{e}}_{\alpha} + \rho \dot{\varphi} \underline{\mathbf{e}}_{\alpha} + \dot{z} \underline{\mathbf{e}}_{z}$$

Sphärisch

$$\underline{\mathbf{r}} = r\underline{\mathbf{e}}_r$$

$$\underline{\mathbf{v}} = \dot{\underline{\mathbf{r}}} = \dot{r}\underline{\mathbf{e}}_r + r\dot{\theta}\underline{\mathbf{e}}_{\theta} + r\sin\theta\dot{\psi}\underline{\mathbf{e}}_{\psi}$$

Kinematik starrer Körper

Satz der projizierten Geschwindigkeiten

$$\underline{\mathbf{v}}_M \cdot \underline{\mathbf{M}} = \underline{\mathbf{v}}_N \cdot \underline{\mathbf{M}}$$

Allgemeine Bewegung starrer Körper

Kinemate im Punkt B: $\{\mathbf{v}_B, \underline{\omega}\}$

- 1. Invariante:
 - ω : Rotationsgeschwindigkeit
- 2. Invariante:

$$\underline{\mathbf{v}}_{\omega} = (\underline{\mathbf{v}}_B)_{\omega}
\text{mit } \underline{\mathbf{v}}_{\omega} = (\underline{\mathbf{e}}_{\omega} \cdot \underline{\mathbf{v}}_B) \cdot \underline{\mathbf{e}}_{\omega}, \ \underline{\mathbf{e}}_{\omega} = \frac{\underline{\omega}}{|\underline{\omega}|}$$

Allgemeine Starrkörperbewegung

$$\underline{\mathbf{v}}_M = \underline{\mathbf{v}}_B + \underline{\omega} \times \underline{\mathbf{B}}\underline{\mathbf{M}}$$

Kräfte und Momente

Kräfte

Resultierende einer Kräftegruppe $\{A_i, \underline{\mathbf{F}}_i\}$

$$\mathbf{\underline{R}} = \sum_{i} \mathbf{\underline{F}}_{i}$$

Momente

Moment einer Kraft F mit Angriffspunkt A bezüglich Punkt O

$$\underline{\mathbf{M}}_O = \underline{\mathbf{F}} \times \underline{\mathbf{AO}} = \underline{\mathbf{OA}} \times \underline{\mathbf{F}}$$

Moment einer Kräftegruppe bezüglich Punkt O

$$\underline{\mathbf{M}}_O = \sum_i \underline{\mathbf{F}}_i \times \underline{\mathbf{A}}_i \underline{\mathbf{O}} = \sum_i \underline{\mathbf{O}} \underline{\mathbf{A}}_i \times \underline{\mathbf{F}}_i$$

Mit beliebigem Bezugspunkt P $\mathbf{M}_P = \mathbf{M}_O + \mathbf{R} \times \mathbf{OP}$

Leistung

Leistung einer Einzelkraft in Punkt B

$$P = \underline{\mathbf{F}} \cdot \underline{\mathbf{v}}_B$$

Leistung eines Momentes

$$P = \underline{\mathbf{M}}_B \cdot \underline{\omega}$$

Leistung einer Kräftegruppe am starren Körper aus Kinemate und Dyname am Punkt P

$$P = \underline{\mathbf{R}} \cdot \underline{\mathbf{v}}_B + \underline{\mathbf{M}}_B \cdot \underline{\omega}$$

Reduktion von Kräftegruppen

Dyname in Punkt B: $\{\underline{\mathbf{R}}, \underline{\mathbf{M}}_B\}$

- 1. Invariante:
 - ${f R}$
- 2. Invariante:

$$\underline{\mathbf{M}}^{(R)} = (\underline{\mathbf{M}}_{\mathbf{B}})^{(R)}$$
mit $\underline{\mathbf{M}}^{(R)} = (\underline{\mathbf{e}}_{\zeta} \cdot \underline{\mathbf{M}}_{B}) \cdot \underline{\mathbf{e}}_{\zeta}, \ \underline{\mathbf{e}}_{\zeta} = \frac{\underline{\mathbf{R}}}{|\underline{\mathbf{R}}|}$

Reduktion einer linienverteilten Kraft

$$R = \int_0^L q(x)dx$$
$$x_s = \frac{\int_0^L x \cdot q(x)dx}{\int_0^L q(x)dx} = \frac{\int_0^L x \cdot q(x)dx}{R}$$

Ruhe und Gleichgewicht

Hauptsatz der Statik

$$\underline{\mathbf{R}}^{(a)} = \underline{\mathbf{0}}, \ \underline{\mathbf{M}}_O^{(a)} = \underline{\mathbf{0}}$$

Reibung

Haftreibungsbedingung

$$|\underline{\mathbf{F}}_H| < \mu_0 |\underline{\mathbf{N}}|$$

Gleitreibungsgesetz

$$|\underline{\mathbf{F}}_R| = \mu_1 |\underline{\mathbf{N}}|$$

Seilreibungsbedingung (Haften)

$$S_2 < S_1 e^{\mu_o \alpha}$$

Weitere Reibungsarten

Rollreibung

• Ungleichung der Rollreibung

$$|\underline{\mathbf{M}}_R| < \mu_2 |\underline{\mathbf{N}}|$$

• Gleichung der Rollreibung

$$|\underline{\mathbf{M}}_R| = \mu_2 |\underline{\mathbf{N}}|$$

Beanspruchung

Allgemeiner Fall von Schnittgrössen

$$\mathbf{\underline{R}} = N\mathbf{\underline{e}}_1 + Q_2\mathbf{\underline{e}}_2 + Q_3\mathbf{\underline{e}}_3$$
$$\mathbf{\underline{M}}_C = T\mathbf{\underline{e}}_1 + M_2\mathbf{\underline{e}}_2 + M_3\mathbf{\underline{e}}_3$$

Differentialbeziehungen

Im geraden Balken

 $Q_z' = -q_z$ $M_y' = Q_z$

Lagerkräfte

Eine mögliche Darstellung des Lagers ist jeweils auf der linken Seite und rechts finden sich die entsprechenden Lagerkräfte und Momente.

Auflager

Gilt in 2D und 3D.

Gelenke

Kurzes Querlager

Langes Querlager

Einspannung

