HW 11 Part B Minh Nguyen

K-means Clustering

```
In [156...
         import numpy as np
         import pandas as pd
         import cv2
         import collections
         import seaborn as sns
         import matplotlib.pyplot as plt
         # from skimage import filters
         # from skimage import util
         from sklearn.preprocessing import MinMaxScaler
         from sklearn.cluster import KMeans
         from mpl_toolkits.mplot3d import Axes3D
         from sklearn.cluster import MeanShift, estimate_bandwidth
In [157... imageName = 'beach.jpg'
         image = plt.imread(imageName)
         plt.figure(dpi=150)
         plt.title('Original Beach Image')
         plt.imshow(image)
```

Out[157... <matplotlib.image.AxesImage at 0x31e8817c0>


```
In [158... # RGB pixels as Feature Vectors
         index = pd.MultiIndex.from_product(
             (*map(range, image.shape[:2]), ('r', 'g', 'b')),
             names=('row', 'col', None))
         df_1 = pd.Series(image.flatten(), index=index)
         df_1 = df_1.unstack()
         df_1 = df_1.reset_index().reindex(columns=['col','row', 'r','g','b'])
         df_1.head(10)
Out [158...
            col row
                     r
                              b
                         g
             0
         0
                  0
                     98
                          81 25
         1
             1
                  0
                     76
                          78
                             0
         2
             2
                  0
                     80
                          65
                              8
             3
                             7
                  0 67
                          89
         4
             4
                 0 75
                          71
                              8
             5
                  0 102 137
                               7
         5
         6
             6
                  0
                     92 101
                             18
             7
                  0 50 69
                               5
             8
                  0 100 113 23
         8
             9
                  0 121 108 66
In [159... # Vector which have only image RGB pixels
         df_2 = df_1[['r', 'g', 'b']]
         df_2.head(10)
Out[159...
                      b
              r
                  g
         0
            98
                 81 25
                 78
         1
             76
                      0
         2
            80
                 65
                     8
         3
             67
                 89
             75
                71
                     8
         5 102 137
                      7
            92 101 18
             50
                 69
         8 100 113 23
         9 121 108 66
In [160... # Normalize data points
         nd_1 = MinMaxScaler(feature_range=(0, 1)).fit_transform(df_1)
```

```
nd_2 = MinMaxScaler(feature_range=(0, 1)).fit_transform(df_2)
```

```
In [161... total_inertias_1 = [KMeans(n_clusters=i).fit(nd_1).inertia_ for i in range(1
total_inertias_2 = [KMeans(n_clusters=i).fit(nd_2).inertia_ for i in range(1
fig, (ax1, ax2) = plt.subplots(1, 2, sharex='col', sharey='row', figsize=(3@ax1.plot(range(1, 20), total_inertias_1, c='black')
ax1.set(xlabel='Total Inertias', ylabel='Number of Clusters', title='RGB Pix ax2.plot(range(1, 20), total_inertias_2, c='black')
ax2.set(xlabel='Total Inertias', title='RGB Pixels without locations');
# plt.savefig('elbow_result.jpg')
plt.show()
```


• The optimal value of k (number of clusters) is 5.

```
In [174... # Using k-means clustering to segment the image into k=5 clusters
         k = 5
         # Reshaping the image into a 2D array of pixels and 3 color values (RGB)
         pixel vals = image.reshape((-1,3))
         # Convert to float type
         pixel vals = np.float32(pixel vals)
         retval, labels, centers = cv2.kmeans(pixel_vals, k, None, (cv2.TERM_CRITERIA
         # Convert the centers to 8-bit values
         centers = np.uint8(centers)
         segmented_data = centers[labels.flatten()]
         # Reshape the segmented data into the original image dimensions
         segmented_image = segmented_data.reshape((image.shape))
         # Display the original image and the segmented image
         plt.figure(1)
         plt.clf()
         plt.axis('off')
         plt.title('Original image', loc='center')
         plt.imshow(image)
         plt.figure(2)
```

```
plt.clf()
plt.axis('off')
plt.title(f'Segmented Image with k = {k}')
plt.imshow(segmented_image)
```

Out[174... <matplotlib.image.AxesImage at 0x31e8bd700>

Segmented Image with k = 5

• Clustering works well with k = 5. It's able to separate the pixels into 5 distinct clusters. If we increase k, the clusters will be more granular and the image will be

more detailed, but I noticed only after k = 15, the image starts to look like the original image.

Mean-Shift Clustering

```
In [183... # Flatten the image
         flat image = image.reshape((-1, 3))
In [184... # Create the feature space [L, a, b, x, y]
         height, width, _ = image.shape
         x, y = np.meshgrid(np.arange(width), np.arange(height))
         flat_image_with_coordinates = np.column_stack([flat_image, x.flatten(), y.fl
In [185... # Calculate the best bandwidth by feature vector
         # calculate gaussian kernel depending on data
         bandwidth = estimate bandwidth(flat image with coordinates, quantile=.04, n
In [186... # Perform Mean Shift clustering
         mean_shift = MeanShift(bandwidth=bandwidth, bin_seeding=True, cluster_all=Tr
         mean shift.fit(flat image with coordinates)
         labels = mean_shift.labels_
In [187... # Reshape the labels to the original image shape
         segmented image = labels.reshape((height, width))
In [188... # Cluster centers
         cluster_centers = mean_shift.cluster_centers_[:, :3] # Use only the first 3
         # Generate a colored segmented image
         colored_segmented_image = np.zeros((height, width, 3), dtype=np.uint8)
         for i in range(height):
             for j in range(width):
                 colored_segmented_image[i, j] = cluster_centers[segmented_image[i, j
In [189... # Showing the images
         plt.figure(1)
         plt.clf()
         plt.axis('off')
         plt.title('Original image', loc='center')
         plt.imshow(image)
         plt.figure(2)
         plt.clf()
         plt.axis('off')
         plt.title('Pixels with their location ({} colors, Mean-Shift)'.format(len(me
         plt.imshow(colored segmented image);
```

Original image

Pixels with their location (9 colors, Mean-Shift)

- Results: Mean-shift clustering is able to distinguish the pixels in clusters of 9 different colors. We can clearly see the segmentation of the image into 9 distinct colors. It's easy to see the image pattern and the color distribution.
- Both K-means and Mean-shift clustering are able to segment the image into different clusters pretty well. However, Mean-shift clustering is able to segment the image into a little more clusters than K-means clustering.
- 4. Is image thresholding a form of unsupervised image segmentation?

Yes, image thresholding is a form of unsupervised image segmentation. It involves
creating a binary image by applying a threshold value to the pixel intensities. The
threshold value is chosen based on the distribution of pixel intensities. It does not
require any labeled data or training.

5. What are some differences between K-means and Mean-Shift?

- K-means clustering requires the number of clusters to be specified in advance, while
 Mean-shift clustering does not require the number of clusters to be specified.
- K-means clustering is sensitive to the initial choice of cluster centers, while Meanshift clustering is not sensitive to the initial choice of cluster centers.
- K-means clustering is computationally faster than Mean-shift clustering.

6. What are some of their limitations?

- K-means clustering is sensitive to the initial choice of cluster centers, which can lead to suboptimal solutions.
- Mean-shift clustering can be computationally expensive for large datasets, as it involves calculating the pairwise distances between all data points.
- Mean-shift clustering may not be able to handle outliers or data with a high variance in intensity.