Gardons les idées claires :

Les puissances

Utilité ? Les puissances sont par exemple utilisées dans les écritures scientifiques ou dans la notation binaire qui caractérise les ordinateurs.

1. DÉFINITION

Pour n > 0, on définit $a^n = a \times a \times ... \times a$ où le facteur a est écrit n fois.

Attention, il ne faut surtout pas confondre a^n et $n \times a = a + a + ... + a$ où le terme a apparaît n fois. On voit bien que dans le 1er cas il s'agit d'un produit alors que dans le 2ème cas il s'agit d'une somme.

Cherchons maintenant la valeur de a^1 . D'après la définition, on en déduit que dans a^1 le terme a n'apparaît qu'une seule fois. D'où la formule à retenir

$$a^1 = a$$

2. FORMULES DE PUISSANCES D'UN MÊME ÉLÉMENT

$$\frac{\mathbf{a}^m \times \mathbf{a}^p}{\mathbf{a}^m \times \mathbf{a}^p} = \frac{\mathbf{a}^{m+p}}{\mathbf{a}^m}$$

$$\frac{a^m}{a^m} = a^{m-p}$$

Explications par un exemple : faisons le calcul suivant $2^3 \times 2^4 = 2 \times 2$. On remarque ici que le chiffre 2 apparaît 3+4 fois, c'est à dire 7 fois. Ainsi $2^3 \times 2^4 = 2^{3+4} = 2^7$

Explications par un exemple : faisons le calcul suivant $\frac{2^4}{2^3} = \frac{2 \times 2 \times 2 \times 2}{2 \times 2 \times 2}$. On remarque ici qu'on peut simplifier en haut et en bas par $2 \times 2 \times 2$ pour obtenir $\frac{2^4}{2^3} = 2$, c'est à dire que $\frac{2^4}{2^3} = 2^{4-3}$.

3. Exposant nul et exposant négatif

$$a^0 = 1$$

Explications par un exemple : considérons le produit $2^3 \times 2^0$. On connaît maintenant la formule $2^3 \times 2^0 = 2^{3+0} = 2^3$. On se rend ainsi compte que 2^0 ne peut prendre que la valeur 1 pour vérifier ce calcul.

$$a^{-n} = \frac{1}{a^n} \text{ pour } n > 0.$$

Explications par un exemple : considérons le produit $2^3 \times 2^{-3}$. On sait que $2^3 \times 2^{-3} = 2^{3-3} = 2^0 = 1$. Ainsi l'unique valeur possible de 2^{-3} pour obtenir 1 est $2^{-3} = \frac{1}{2^3}$.

4. FORMULES AVEC LES MÊMES EXPOSANTS

$$a^{\mathbf{n}} \times b^{\mathbf{n}} = (a \times b)^{\mathbf{n}}$$

Explications par un exemple : considérons le produit $5^2 \times 3^2 = 5 \times 5 \times 3 \times 3 = 5 \times 3 \times 5 \times 3 = (5 \times 3) \times (5 \times 3) = (5 \times 3)^2$.

$$\frac{a^n}{b^n} = (\frac{a}{b})^n$$

Explications par un exemple : considérons le quotient $(\frac{4}{2})^3 = \frac{4}{2} \times \frac{4}{2} \times \frac{4}{2} = \frac{4 \times 4 \times 4}{2 \times 2 \times 2} = \frac{4^3}{2^3}$.

5. Pour aller plus loin

Comment faire lorsque l'exposant est un nombre rationnel?

Réponse dans le cours avancé sur les racines carrées ...