Chapitre 22 : Équations différentielles linéaires

1 Généralités

1.1 Définitions

Définition 1.1.

* Soit $n \in \mathbb{N}^*$ Une équation linéaire résolue d'ordre n est une équation de la forme

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = b(x)$$
(É)

où a_0, a_1, \dots, a_{n-1} et $b: I \to \mathbb{C}$ sont des fonctions continues.

* Résoudre cette équation différentielle, c'est trouver toutes les fonctions $f \in D^n(I; \mathbb{C})$ telles que

$$\forall x \in I, f^{(n)}(x) + a_{n-1}(x)f^{(n-1)}(x) + ... + a_1(x)f'(x) + a_0(x)f(x) = b(x)$$

L'équation différentielle (É) est dite homogène si le second membre b est nul.

* L'équation homogène associée à (É) est

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = 0$$
(ÉH)

<u>Remarque</u>: L'équation (É) est dite linéaire car elle ne fait intervenir que des combinaisons linéaires des dérivées de f et résolue car le terme faisant apparaître la plus grande dérivée de g n'est pas multiplié par un coefficient.

Proposition 1.2.

- * Toute solution $f: I \to \mathbb{C}$ de l'équation (É) est automatiquement de classe \mathbb{C}^n
- * Si les coefficients $a_0, a_1, ..., a_{n-1}$ et le second membre b sont des solution lisses, toute solution est automatiquement lisse.

Proposition 1.3 (Principe de superposition).

Soit $f,g \in D^n(I;\mathbb{C})$ deux solutions des équations différentielles

$$y^{(n)}+a_{n-1}(x)y^{(n-1)}+...+a_1(x)y'+a_0(x)y=b(x)$$
 et
$$y^{(n)}+a_{n-1}(x)y^{(n-1)}+...+a_1(x)y'+a_0(x)y=c(x)$$

respectivement.

Soit $\lambda, \mu \in \mathbb{C}$. Alors $\lambda f + \mu g$ est une solution de l'équation différentielle

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = \lambda b(x) + \mu c(x)$$

Corollaire 1.4.

- * L'ensemble S_{hom} des solutions de (ÉH) est un sous-espace vectoriel de $D^n(I;\mathbb{C})$
- * Si $f_0 \in D^n(I; \mathbb{C})$ est une solution de (É), alors l'ensemble des solution de (É) est

$$S = \{ f_0 + h \mid h \in S_{\text{hom}} \}$$

c'est-à-dire un sous-espace affine de $D^n(I;\mathbb{C})$ de direction S_{hom}

"Les solutions s'obtiennent comme somme d'une solution particulière et des solutions de l'équation homogène".

1.2 Complément : théorème de Cauchy linéaire

Théorème 1.5.

* Quels que soient $x_0 \in I$ et les nombres complexe $s_0, ..., s_{n-1} \in \mathbb{C}$, il existe une unique solution $f \in D^n(I;\mathbb{C})$ de (É) telle que

$$f(x_0) = s_0$$
 et $f'(x_0) = s_1$ et $f''(x_0) = s_2$... et $f^{(n-1)}(x_0) = s_{n-1}$

- * Le sous-espace vectoriel S_{hom} des solutions de (ÉH) est de dimension n
- * L'ensemble des solution $\mathcal S$ est donc

$$S = f_0 + S_{\text{hom}} = \{ f_0 + \lambda_1 f_1 + \dots + \lambda_n h_n \mid (\lambda_1, \dots, \lambda_n) \in \mathbb{C}^n \}$$

où f_0 est une solution de (É) et où $(h_1, ..., h_n)$ est une base de solutions de (ÉH).

2 Équation différentielles linéaires d'ordre 1

Dans cette section, on considère une équation

$$y' + a(x)y = b(x) \tag{É}$$

et son équation homogène associé

$$y' + a(x)y = 0 (ÉH)$$

par deux fonctions continues $a, b : I \to \mathbb{C}$

2.1 Équation homogène

Théorème 2.1.

* Soit $a: I \to \mathbb{C}$ une fonction continue.

On note
$$A:I\to\mathbb{C}$$
 une primitive de a et $h_0:\begin{cases}I\to\mathbb{C}\\x\mapsto e^{-A(x)}\end{cases}$

Alors les solutions de (ÉH) forment l'ensemble

$$S_{\text{hom}} = \text{Vect}(h_0) = \{\lambda h_0 \mid \lambda \in \mathbb{C}\}\$$

* L'unique solution $f:I\to\mathbb{C}$ de (ÉH) valant s_0 en $x_0\in I$ est la fonction

$$\begin{cases} I \to \mathbb{R} \\ x \mapsto s_0 \exp\left(-\int_{x_0}^x a(t) dt\right) \end{cases}$$

2.2 Solution particulière : quelques heuristiques

Une fois l'équation homogène (ÉH) résolue, il s'agit de trouver une solution particulière à (É). On verra dans la section ultérieure une méthode générale, mais une première idée est de chercher des solutions "du même type" que le second membre b de (É).

Exemple important:

$$y' + ay = Ae^{rx}$$

avec $a, r \in \mathbb{R}$, dont les solutions homogènes sont les $x \mapsto e^{-ax}$

On peut avoir l'idée de chercher les solutions particulières sous la forme Be^{rx} . Cela marche presque tout le temps, mais on voit déjà que dans le cas a = r = 0, la solution particulière est linéaire.

En faite, deux cas se présentent, suivant que $x \mapsto e^{rx}$ est ou non solution de l'équation homogène.

- * Si $x \mapsto e^{rx}$ n'est pas solution de l'équation homogène, c'est-à-dire si $a+r \neq 0$, on peut trouver une solution de la forme $f: x \mapsto Be^{rx}$
- * En revanche, si a+r=0 (et que $A\neq 0$), on voit que la méthode ci-dessus échoue. On peut en revanche trouver une solution sous la forme $g:x\mapsto Cxe^{rx}$

Cette disjonction de cas correspond au phénomène de la résonance.

2.3 Solution particulière : variation de la constante

Théorème 2.2. Soit A une primitive de a, de sorte que $S_{\text{hom}} = \text{Vect}\left(x \mapsto e^{-A(x)}\right) = \left\{x \mapsto \lambda e^{-A(x)} \mid \lambda \in \mathbb{C}\right\}$ Alors l'équation y' + a(x)y = b(x) a une solution particulière de la forme $x \mapsto \lambda(x)e^{-A(x)}$, pour une certaine fonction $x \mapsto \lambda(x)$ dérivable.

Corollaire 2.3. Grâce à l'expression intégrale de la primitive, on trouve qu'une solution particulière de (É) est

$$x \mapsto \left(\int_{x_0}^x b(t)e^{A(t)} dt\right)e^{-A(x)}$$

où $x_0 \in I$ est un point quelconque.

2.4 Résultat général

Théorème 2.4. Les solutions de (É) sont les fonctions de la forme

$$x \mapsto \left(\int_{x_0}^x b(t) e^{A(t)} \, dt \right) e^{-A(x)} + \lambda e^{-A(x)} = \left(\lambda + \int_{x_0}^x b(t) e^{A(t)} \, dt \right) e^{-A(x)}$$

où λ décrit l'ensemble des nombres complexes.

Corollaire 2.5. Soit $s_0 \in \mathbb{C}$. L'équation (É) a une unique solution valant s_0 et x_0

3 Équations différentielles linéaires à coefficients constants d'ordre 2

Dans cette section, on considère une équation

$$y'' + \alpha y' + \beta y = b(x) \tag{É}$$

où α , β et $b \in C^0(\mathbb{R}; \mathbb{C})$. Il s'agit donc d'une équation différentielle linéaire à coefficients constants.

3.1 Équation homogène

Intéressons-nous d'abord à l'équation homogène associée.

$$y'' + \alpha y' + \beta y = 0 \tag{Éh}$$

Le théorème de Cauchy linéaire entraı̂ne que l'ensemble \mathcal{S}_{hom} de ses solutions est un sous-espace vectoriel possédant une base à deux éléments de $D^2(\mathbb{R};\mathbb{C})$ - et même de $C^\infty(\mathbb{R};\mathbb{C})$, comme les coefficients sont (constants donc) lisses.

Comme dans le cas des suites récurrentes, le comportement dépend des solutions du <u>polynôme caractéristique</u> $P = X^2 + \alpha X + \beta$

Théorème 3.1.

* Si le polynôme caractéristique P possède deux racines simples ρ et $\sigma \in \mathbb{C}$, alors

$$S_{\text{hom}} = \{ x \mapsto \lambda e^{\rho x} + \mu e^{\sigma x} \mid (\lambda, \mu) \in \mathbb{C}^2 \} = \text{Vect}(x \mapsto e^{\rho x}, x \mapsto e^{\sigma x})$$

* Si le polynôme caractéristique P possède une racine double $\rho \in \mathbb{C}$, alors

$$S_{\text{hom}} = \{x \mapsto (\lambda + \mu x)e^{\rho x} \mid (\lambda, \mu) \in \mathbb{C}^2\} = \text{Vect}(x \mapsto e^{\rho x}, x \mapsto xe^{\rho x})$$

Lemme 3.2. Soit α , β , $\tau \in \mathbb{C}$ et $f \in D^2(\mathbb{R}; \mathbb{C})$

Alors f est solution de (ÉH) si et seulement si $g: x \mapsto e^{\tau x} f(x)$ est solution de

$$y'' + (\alpha - 2\tau)y' + (\beta - \alpha\tau + \tau^2)y = 0$$
 (ÉH_{\tau})

Corollaire 3.3. Soit $s_0, s_1 \in \mathbb{C}$ et $x_0 \in \mathbb{R}$

Il existe une unique solution f de (ÉH) telle que $f(x_0) = s_0$ et $f'(x_0) = s_1$

Théorème 3.4. On suppose ici les coefficients α , β réels. Les solutions de l'équation différentielle sont

* Si *P* a deux racines réelles $\rho \neq \sigma$:

$$S_{\text{hom}} = \{x \mapsto \lambda e^{\rho x} + \mu e^{\sigma x} \mid (\lambda, \mu) \in \mathbb{C}^2\} = \text{Vect}(x \mapsto e^{\rho x}, x \mapsto e^{\sigma x})$$

* Si P a une racine double (nécessairement réelle) ρ :

$$S_{\text{hom}} = \{x \mapsto (\lambda x + \mu)e^{\rho x} \mid (\lambda, \mu) \in \mathbb{C}^2\} = \text{Vect}(x \mapsto e^{\rho x}, x \mapsto xe^{\rho x})$$

* Si P a deux racines imaginaires conjuguées $r \pm is$, avec $r \in \mathbb{R}$ et $s \in \mathbb{R}_+^*$:

$$S_{\text{hom}} = \{ x \mapsto e^{rx} (\lambda \cos(sx) + \mu \sin(sx)) \mid (\lambda, \mu) \in \mathbb{C}^2 \}$$

= Vect(x \lor e^{rx} \cos(sx), x \lor e^{rx} \sin(sx))

Théorème 3.5. Les solutions <u>à valeurs réelles</u> de (ÉH) sont les fonctions décrites par le théorème précédente, où le couple (λ, μ) appartient à \mathbb{R}^2

3.2 Solution particulière : quelques heuristiques

Le principe de superposition entraîne que les solutions de (É) forment l'ensemble

$$\mathcal{S} = \{ f_0 + h \mid h \in \mathcal{S}_{hom} \}$$

Pour résoudre complètement (É), il suffit donc maintenant d'en trouver une solution particulière. Deux cas sont au programme : celui d'un second membre exponentiel et celui d'un second membre sinuso $\ddot{}$ dal, qui s'y ramène.

Proposition 3.6. Considérons l'équation

$$y'' + \alpha y' + \beta y = Ae^{rx} \tag{\'E}$$

où $A, r \in \mathbb{C}$, de polynôme caractéristique $P = X^2 + \alpha X + \beta$. Alors

* Si r n'est pas racine de P, (É) a une solution particulière de la forme

$$x \mapsto Ce^{rx}$$

* Si r est une racine simple de P, (É) a une solution simple de la forme

$$x \mapsto Cxe^{rx}$$

* Si r est une racine double de P_r (É) a une solution simple de la forme

$$x \mapsto Cx^2e^{rx}$$