- 1.数据集分类: 新闻等数据集、医学数据集、毒药数据集
- 2.NER模型分类
- 🚺 基于已有知识系统 毒药等命名规则 很少用了现在
- 2 无监督 浅层句法知识 逆文档概率

以下模型基本都有外部知识比如词典、地名索引(如何实现的?)

3 监督 CRF HMM F1 90.90

常用CRF特征工程整理如下:

Features Categories Feature Morphological n-gram character, n-gram word, suffixes and prefixes Orthographic capitalization, symbols Linguistic lemmatization, stemming, POS, chucking, syntactic parsing Context windows, conjunctions Domain knowledge lexicons, existing NER tools

4 半监督 Agerri和Rigau(2016)通过提供NER分类器开发了一个半监督系统,其中包括正字法,字符n-gram,词典,前缀,后缀,双字母,三元组和布朗语料库中的非预期聚类特征,Clark 使用词嵌入的开放文本的语料库和k均值聚类

F1 91.36

5 "特征推断"神经网络

word2vec预训练非常重要 以下的分类依据:表示可以基于单词,字符,其他子单词单元或这些单元的任意组合

- (1)词 bilstm+crf conll2003 F1 84.26
- (2)字符 bilstm+crf conll2003 F1 84.52

(2016) 在卷积神经网络(CNN)上使用高速公路网络对单词的字符序列,然后使用另一层LSTM + softmax进行最终预测

seq2seq 定长60字符非长句 F1 86.5

(3)词+字符 两大类

第一种 单词嵌入和单词的字符卷积或attention的组合

- ①F1 91.21 (若出现out of vocabulary 效果不好)
- ②加入大写特征 加大词汇表 F1 91.62

第二种 拼接

Figure 3: Word+character level NN architecture for NER

- ①上图F1 90.94
- ②多任务、多语言迁移学习 F1 91.26
- (4)词+字符+前后缀

rigure 4. Word+character+amix level NN architecture for NEI

Word representation处使用CNN提取前后缀 F1 91.21

- (5)字符+词+attention
- ①词向量与字符向量的拼接改进为了权重求和 F1 89.91
- ②加入了音韵特征,并在字符向量上使用 attention 机制来学习关注更有效的字符 没有做Conll2003
- 这两篇都是16年的文章 没有提及最近的attention

Re-implementation of Lample et al. (2016) (100 Epochs)

Yadav et al. (2018)(100 Epochs)

Yadav et al. (2018) (150 Epochs)

总结: 16年后词向量+字符是主流

Feature-engineered machine learning systems	Dict	SP	DU	EN	GE
Carreras et al. (2002) binary AdaBoost classifiers	Yes	81.39	77.05	-	-
Malouf (2002) - Maximum Entropy (ME) + features	Yes	73.66	68.08	-	-
Li et al. (2005) SVM with class weights	Yes	-	-	88.3	-
Passos et al. (2014) CRF	Yes	-	-	90.90	-
Ando and Zhang (2005a) Semi-supervised state of the art	No	-	-	89.31	75.27
Agerri and Rigau (2016)	Yes	84.16	85.04	91.36	76.42
Feature-inferring neural network word models					
Collobert et al. (2011) Vanilla NN +SLL / Conv-CRF	No	-	-	81.47	-
Huang et al. (2015) Bi-LSTM+CRF	No	-	-	84.26	-
Yan et al. (2016) Win-BiLSTM (English), FF (German) (Many fets)	Yes	-	-	88.91	76.12
Collobert et al. (2011) Conv-CRF (SENNA+Gazetteer)	Yes	-	-	89.59	-
Huang et al. (2015) Bi-LSTM+CRF+ (SENNA+Gazetteer)	Yes	-	-	90.10	-
Feature-inferring neural network character models					
Gillick et al. (2015) – BTS	No	82.95	82.84	86.50	76.22
Kuru et al. (2016) CharNER	No	82.18	79.36	84.52	70.12
Feature-inferring neural network word + character models					
Yang et al. (2017)	Yes	85.77	85.19	91.26	-
Luo (2015)	Yes	-	-	91.20	-
Chiu and Nichols (2015)	Yes	-	-	91.62	-
Ma and Hovy (2016)	No	-	-	91.21	-
Santos and Guimaraes (2015)	No	82.21	-	-	-
Lample et al. (2016)	No	85.75	81.74	90.94	78.76
Bharadwaj et al. (2016)	Yes	85.81	-	-	-
Dernoncourt et al. (2017)	No	-	-	90.5	-

85.34

86.92

87.26

No

No

No

85.27

87.50

87.54

90.24

90.69

90.86

78.44

78.56

79.01