# 近世代数 (H) 笔记

林晓烁 2024 春

https://xiaoshuo-lin.github.io

# 目 录

| 导 | 言 . |          |      |    | •        | <br>• | • | <br>• | • | • |   | <br>• | • | • |  | • | • | • | • | • | <br>٠ | • | • | <br>• | • | • | • |   | <br>• | 1  |
|---|-----|----------|------|----|----------|-------|---|-------|---|---|---|-------|---|---|--|---|---|---|---|---|-------|---|---|-------|---|---|---|---|-------|----|
| 第 |     | 分        | 课堂   | 堂笔 | 记        | •     |   |       |   |   | • |       |   |   |  |   |   | • |   |   |       | • |   |       | • |   |   | • | <br>• | 2  |
| 第 | 一章  | <u> </u> | 页备:  | 知识 | Ŗ.       |       |   | <br>  |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       | 4  |
|   | 1.1 | 集合       | 与映   | 射. |          |       |   |       |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       | 4  |
| 第 | 二章  | <u> </u> | 不论   |    |          |       |   | <br>  |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       | 7  |
|   | 2.1 | 环的       | 定义   |    |          |       |   |       |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       | 7  |
|   | 2.2 |          | 与商   |    |          |       |   |       |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       |    |
|   | 2.3 | 分式       |      |    |          |       |   |       |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       |    |
|   | 2.4 | 一元       | 多项   | 式到 | <u>.</u> |       |   |       |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       | 18 |
|   | 2.5 | Eucl     |      |    |          |       |   |       |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       |    |
|   | 2.6 |          | ss 素 |    |          |       |   |       |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       |    |
|   | 2.7 | 唯一       | 分解   | 整五 | <u>۲</u> |       |   |       |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       | 35 |
|   | 2.8 | 中国       | 剩余   | 定理 | ᡛ.       |       |   | <br>  |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       | 43 |
| 第 | 三章  | į ti     | 或论   |    |          |       |   | <br>  |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       | 47 |
|   | 3.1 | 域扩       | 张与   | 单扣 | 一张       |       |   |       |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       | 47 |
|   | 3.2 |          | 代数   |    |          |       |   |       |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       |    |
|   | 3.3 | 分裂       |      |    |          |       |   |       |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       |    |
|   | 3.4 | 有限       | 域.   |    |          |       |   |       |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       | 61 |
|   | 3.5 | 分圆       |      |    |          |       |   |       |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       |    |
| 第 | 四章  | Ī Ā      | 詳论   |    |          |       |   |       |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       | 69 |
|   | 4.1 | 群的       | 定义   |    |          |       |   | <br>  |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       | 69 |
|   | 4.2 |          | 群.   |    |          |       |   |       |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       |    |
|   | 4.3 |          |      |    |          |       |   |       |   |   |   |       |   |   |  |   |   |   |   |   |       |   |   |       |   |   |   |   |       | 74 |

目录 iii

| 4.4                                           | 对称群                                                                                  |                   | <br>  |   | <br>  |   | <br> | <br> |      |      |      |   |   |   |   |      |   | 7                    | 7                                |
|-----------------------------------------------|--------------------------------------------------------------------------------------|-------------------|-------|---|-------|---|------|------|------|------|------|---|---|---|---|------|---|----------------------|----------------------------------|
| 4.5                                           | 群作用                                                                                  |                   | <br>  |   | <br>  |   | <br> | <br> |      |      |      |   |   |   |   |      |   | 8                    | 33                               |
| 4.6                                           | Sylow 定理                                                                             |                   | <br>  |   | <br>  |   | <br> | <br> |      |      |      |   |   |   |   |      |   | 9                    | 90                               |
| 4.7                                           | 自由群与群的展                                                                              | 示 .               | <br>  |   | <br>  |   | <br> | <br> |      |      |      |   |   |   |   |      |   | 9                    | )2                               |
| 4.8                                           | 有限生成 Abel 郡                                                                          | <b>¥.</b> .       | <br>  |   | <br>  |   | <br> | <br> |      |      |      |   |   |   |   |      |   | 9                    | )5                               |
| 4.9                                           | 群的合成列                                                                                |                   | <br>  |   | <br>  |   | <br> | <br> |      |      |      |   |   |   |   |      |   | 9                    | 9                                |
| 4.10                                          | 半直积                                                                                  |                   | <br>  |   | <br>  |   | <br> | <br> |      |      |      |   |   | • |   |      | • | 10                   | )2                               |
| 第五章                                           | Galois <b>理论</b>                                                                     |                   | <br>  |   | <br>  |   | <br> | <br> |      |      |      | • |   |   |   |      |   | 10                   | )3                               |
| 5.1                                           | Galois 扩张                                                                            |                   | <br>  |   | <br>  |   | <br> | <br> |      |      |      |   |   |   |   |      |   | 10                   | )3                               |
| 5.2                                           | Galois 对应                                                                            |                   | <br>  |   | <br>  |   | <br> | <br> |      |      |      |   |   |   |   |      |   | 10                   | )6                               |
| 5.3                                           | 根式扩张                                                                                 |                   | <br>  |   | <br>  |   | <br> | <br> |      |      |      |   |   |   |   |      |   | 11                   | 0                                |
| 5.4                                           | 判别式                                                                                  |                   | <br>  |   | <br>  |   | <br> | <br> |      |      |      |   |   |   |   |      |   | 11                   | .5                               |
| £-£                                           | 7八 公欠支援                                                                              |                   |       |   |       |   |      | <br> |      |      |      |   |   |   |   |      |   | 11                   | 7                                |
| 第二部                                           | 7分 往年真题                                                                              |                   | <br>• | • | <br>• | • |      |      |      |      |      | • | • | • | • |      |   |                      |                                  |
|                                               | が                                                                                    |                   |       |   |       |   |      |      |      |      |      |   |   |   |   |      |   |                      | .9                               |
|                                               |                                                                                      | 目.                | <br>  |   | <br>  |   | <br> | <br> |      |      |      |   |   | • |   |      |   | 11                   |                                  |
| 第六章                                           | 期中考试题                                                                                | <b>目</b> .        | <br>  |   | <br>  |   | <br> | <br> |      |      |      |   |   |   |   |      |   | 11<br>11             | 9                                |
| <b>第六章</b><br>6.1                             | <b>期中考试题</b><br>2020 春期中考试                                                           | <b>目</b> 。<br>: . | <br>  |   | <br>  |   | <br> | <br> |      |      | <br> |   |   |   |   |      |   | 11<br>11<br>12       | 19<br>20                         |
| 第 <b>六章</b><br>6.1<br>6.2<br>6.3              | 知中考试题<br>2020 春期中考试<br>2022 春期中考试                                                    | <b>目</b> .        | <br>  |   | <br>  |   | <br> | <br> | <br> | <br> | <br> |   |   |   |   |      |   | 11<br>11<br>12<br>12 | 20<br>21                         |
| 第 <b>六章</b><br>6.1<br>6.2<br>6.3              | 期中考试题<br>2020 春期中考试<br>2022 春期中考试<br>2023 春期中考试<br>2024 春期中考试                        | 目.                | <br>  |   | <br>  |   | <br> | <br> | <br> | <br> | <br> |   |   |   |   | <br> |   | 11<br>11<br>12<br>12 | 19<br>20<br>21<br>25             |
| 第六章<br>6.1<br>6.2<br>6.3<br>6.4               | 期中考试题<br>2020 春期中考试<br>2022 春期中考试<br>2023 春期中考试<br>2024 春期中考试                        |                   | <br>  |   | <br>  |   | <br> | <br> | <br> | <br> | <br> |   |   |   |   |      |   | 11<br>12<br>12<br>12 | 19<br>20<br>21<br>25             |
| 第六章<br>6.1<br>6.2<br>6.3<br>6.4<br>第七章        | 期中考试题<br>2020 春期中考试<br>2022 春期中考试<br>2023 春期中考试<br>2024 春期中考试<br>期末考试题               | 目                 |       |   | <br>  |   | <br> |      | <br> | <br> | <br> |   |   |   |   |      |   | 111212121212         | 19<br>20<br>21<br>25<br>27       |
| 第六章<br>6.1<br>6.2<br>6.3<br>6.4<br>第七章<br>7.1 | 知中考试题<br>2020 春期中考试<br>2022 春期中考试<br>2023 春期中考试<br>2024 春期中考试<br>期末考试题<br>2020 春期末考试 | 目.                |       |   | <br>  |   | <br> | <br> | <br> | <br> | <br> |   |   |   |   |      |   | 11121212121212       | 19<br>20<br>21<br>25<br>27<br>28 |

## 导言

### 简要说明

**旨趣** 这是 2024 年春季学期近世代数 (H) 课堂笔记, 课程由中国科学技术大学数学科学学院陈小伍教授讲授.

#### 附记

- (1) 相关资料:
  - ♦ Évariste Galois 档案: http://www.galois-group.net
  - ♦ https://grothendieck.umontpellier.fr/archives-grothendieck/
- (2) 访问我的个人主页查看本文档最新版本: https://xiaoshuo-lin.github.io

致谢

这份笔记所用 LATEX 模板来自北京国际数学研究中心李文威教授,在此表示谢意.

第一部分

课堂笔记

### 第一章 预备知识

### 1.1

例 1.1.1 (映射的例子) (1) 恒等映射  $Id_X: X \to X, x \mapsto x$ .

(2) 设 $S \subset X$ . 包含映射 inc :  $S \to X$ ,  $s \mapsto s$ .

**注记 1.1.2** 根据映射相等的要求, 当  $S \subsetneq X$  时, 上述 inc  $\neq \text{Id}_X$ .

**约定 1.1.3** 用  $X \stackrel{f}{\hookrightarrow} Y$  表示单射, 用  $X \stackrel{f}{\longrightarrow} Y$  表示满射, 用  $X \stackrel{\circ}{\longrightarrow} Y$  表示双射.

**例 1.1.4** 有如下交换图表:



即  $f = \operatorname{inc} \circ \overline{f}$ , 其中  $\overline{f} : X \to \operatorname{Im}(f), x \mapsto f(x)$ .

练习 1.1.5 (范畴意义下单满射的内蕴刻画) 设  $f: X \to Y$ . 证明:

- (1) f 是单射  $\iff$  f 满足左消去律:  $\forall g, g': W \to X, f \circ g = f \circ g' \implies g = g'$ .
- (2) f 是满射  $\iff$  f 满足右消去律:  $\forall h, h': Y \to Z, h \circ f = h' \circ f \implies h = h'$
- (3) f 是双射  $\iff$   $\exists ! g: Y \to X, \text{ s. t. } g \circ f = \text{Id}_X, f \circ g = \text{Id}_Y$

例 1.1.6

$$\operatorname{Map}(X, \{0, 1\}) \xrightarrow{\sim} \mathcal{P}(X)$$
$$f \longmapsto S_f := \{x \in X : f(x) = 1\}.$$

其逆映射为

$$\mathcal{P}(X) \to \operatorname{Map}(X, \{0, 1\})$$

$$S \mapsto \chi_S$$
,

其中  $\chi_S$  为 S 的特征函数.

定义 1.1.7 (无交并的集合论定义) 设  $(A_i:i\in I)$  是以 I 为指标集的一族集合,其无交并定义为

$$\bigsqcup_{i \in I} A_i = \bigcup_{i \in I} \{(x, i) : x \in A_i\}.$$

例 1.1.8 典范双射

$$\operatorname{Map}(X \sqcup Y, Z) \xrightarrow{\sim} \operatorname{Map}(X, Z) \times \operatorname{Map}(Y, Z)$$
$$f \longmapsto (f|_X, f|_Y).$$

例 1.1.9 典范双射

$$\begin{split} \operatorname{Map}(X,Y\times Z) &\stackrel{\sim}{\longrightarrow} \operatorname{Map}(X,Y) \times \operatorname{Map}(Y,Z) \\ g &\longmapsto (g_1,g_2), \end{split}$$

其中

$$g: X \to Y \times Z$$
  
 $x \mapsto (g_1(x), g_2(x)).$ 

**例 1.1.10 (伴随双射)** 存在典范双射

$$\operatorname{Map}(X\times Y,Z) \xrightarrow{\sim} \operatorname{Map}(X,\operatorname{Map}(Y,Z))$$
$$f \longmapsto (x \mapsto \phi_{f.x}),$$

其中

$$\phi_{f,x}: Y \to Z$$

$$y \mapsto f(x,y).$$

**注记 1.1.11** 集合 X 上最小的等价关系即 "等号":

$$E = \{(x, x) : x \in X\}.$$

**定义 1.1.12** 给定 X 上的等价关系  $\stackrel{R}{\sim}$ .

- (1)  $\forall a \in X$ , a 的等价类  $[a] \coloneqq \left\{ x \in X : x \stackrel{R}{\sim} a \right\}$ .
- (2) 关于  $\stackrel{R}{\sim}$  的商集  $X/\stackrel{R}{\sim}:=\{$ 所有的等价类 $\}\subset \mathcal{P}(X)$ .
- (3) 商映射  $\pi_R: X \to X/\stackrel{R}{\sim}, a \mapsto [a].$
- (4) 关于  $\stackrel{R}{\sim}$  的完全代表元系为  $S \subset X$ , s. t.  $\forall x \in X, \exists! s \in S, s \in [x]$ .

**练习 1.1.13 (完全代表元系的等价刻画)** 设  $\stackrel{R}{\sim}$  是 X 上的等价关系,  $S \subset X$ . 证明: S 是完全代表元系当且仅当复合映射

$$S \stackrel{\mathsf{inc}}{\longleftrightarrow} X \stackrel{\pi_R}{\longrightarrow} X / \stackrel{R}{\sim}$$

是双射.

**定义 1.1.14** 集合 X 的分拆为  $\mathcal{R} = \{X_i : i \in I\} \subset \mathcal{P}(X)$ ,满足

- (1)  $X_i \neq \emptyset, \forall i \in I$ .
- (2)  $X_i \cap X_j \neq \emptyset, \forall i \neq j$ .
- $(3) X = \bigcup_{i \in I} X_i.$

**性质 1.1.15** 集合 X 上的等价关系与分拆有如下关系:

- (1) 若  $R \neq X$  上的等价关系,则  $X/\stackrel{R}{\sim} \neq X$  的一个分拆.
- (2) 若  $\mathcal{R} = \{X_i : i \in I\}$  是 X 的分拆, 定义关系  $\stackrel{T}{\sim}: x \stackrel{T}{\sim} y \iff \exists i \in I, \text{ s. t. } x, y \in X_i, \text{ 则 } \stackrel{T}{\sim} \text{ 是 } X \text{ 上的等 }$ 价关系, 且  $X/\stackrel{T}{\sim}=\mathcal{R}$ .

**定义 1.1.16** 映射  $f: X \to Y$  给出 X 上的等价关系  $\stackrel{f}{\sim}: x \stackrel{f}{\sim} x' \iff f(x) = f(x')$ . 对任意  $y \in Y$ , 记  $f^{-1}(y) := \{x \in X : f(x) = y\}$ , 称为 f 在 y 上的原像集 (或纤维).

**注记 1.1.17**  $f^{-1}(y) \neq \emptyset \iff y \in \text{Im}(f)$ .

**练习 1.1.18** 关于  $\stackrel{f}{\sim}$  的等价类  $[x] = f^{-1}(f(x))$ .

**定理 1.1.19 (映射基本定理)** 设  $f: X \to Y$ , 则 f 诱导双射

$$\widetilde{f}: X/\stackrel{f}{\sim} \stackrel{\sim}{\longrightarrow} \operatorname{Im}(f)$$
 
$$[x] \longmapsto f(x).$$

也即有如下交换图表:

$$\begin{array}{ccc} X & \stackrel{f}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!\!-} Y \\ & \underset{\text{finc}}{\uparrow_{f}} & & \underset{\text{inc}}{\uparrow_{\text{inc}}} \\ X/\stackrel{f}{\sim} & \stackrel{\widetilde{f}}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-} & \operatorname{Im}(f) \end{array}$$

**练习 1.1.20** 设集合 X 上的二元运算·满足结合律:  $(x \cdot y) \cdot z = x \cdot (y \cdot z), \forall x, y, z \in X$ . 证明:

$$((x \cdot y) \cdot z) \cdot w = x \cdot (y \cdot (z \cdot w)), \quad \forall x, y, z, w \in X.$$

### 2.1 环的定义

**定义 2.1.1** (含幺) 环是三元组  $(R,+,\cdot)$ , 其中  $R \neq \emptyset$ , 加法  $+: R \times R \to R, (a,b) \mapsto a+b$  与乘法  $\cdot: R \times R \to R, (a,b) \mapsto a \cdot b$  满足以下八条公理:

- (A1) 加法结合律:  $(a+b)+c=a+(b+c), \forall a,b,c \in R$ .
- (A2) 加法交换律:  $a + b = b + a, \forall a, b \in R$ .
- (A3) 加法有零元:  $\exists 0_R \in R$ , s. t.  $a + 0_R = a, \forall a \in R$ .
- (A4) 加法有负元:  $\forall a \in R, \exists b \in R, \text{ s. t. } a+b=0_R.$
- (M1) 乘法结合律:  $(a \cdot b) \cdot c = a \cdot (b \cdot c), \forall a, b, c \in R$ .
- (M2) 乘法有幺元:  $\exists 1_R \in R$ , s. t.  $a \cdot 1_R = a = 1_R \cdot a$ ,  $\forall a \in R$ .
- (D1) 关于第一个分量的分配律:  $(a+b) \cdot c = a \cdot c + b \cdot c, \forall a, b, c \in R$ .
- (D2) 关于第二个分量的分配律:  $a \cdot (b+c) = a \cdot b + a \cdot c, \forall a, b, c \in R$ .
- **注记 2.1.2** (1) 由 (A2) 易得加法零元唯一.
  - (2) 由 (A1) 与 (A2) 易得加法负元唯一. 把 a 的加法负元记作 -a.
  - (3) 定义 R 上减法:  $a-b := a + (-b), \forall a, b \in R$ .
  - (4) 由定义易得乘法幺元唯一性.
- **例 2.1.3 (环的例子)** (1) 整数环  $\mathbb{Z} = (\mathbb{Z}, +, \cdot)$ .
  - (2) Gauss 整数环  $\mathbb{Z}[\sqrt{-1}] := \{m + n\sqrt{-1} : m, n \in \mathbb{Z}\}.$
  - (3) 一元有理系数多项式环  $\mathbb{Q}[x]$ .
  - (4) 模  $n(n \ge 2)$  同余类环  $\overline{0}, \overline{1}, \dots, \overline{n-1}$ .
  - (5) n 阶复方阵  $M_n(\mathbb{C})$  是非交换环的基本例子.

**定义 2.1.4**  $\forall a \in R, n \in \mathbb{Z}$ , 定义 a 的 n 倍 na 如下:  $0a := 0_R, 1a := a$ , 对 n > 0,

$$na := \underbrace{a + \dots + a}_{n \uparrow}, \quad (-n)a := \underbrace{(-a) + \dots + (-a)}_{n \uparrow}.$$

**练习 2.1.5**  $\forall a \in R, \forall m, n \in \mathbb{Z}$ , 总有 (m+n)a = ma + na. **提示** \ 留心对 m, n 异号情形的讨论.

**练习 2.1.6**  $\forall a \in R, n \in \mathbb{Z}$ , 总有  $na = (n1_R) \cdot a$ . 特别地, 当 n = 0 时, 可得  $0_R = 0_R \cdot a$ ,  $\forall a \in R$ .

练习 2.1.7 (广义分配律) 
$$\left(\sum_{i=1}^m a_i\right) \left(\sum_{j=1}^n b_j\right) = \sum_{i=1}^m \sum_{j=1}^n a_i b_j$$
. [提示] 运用双重归纳.

练习 2.1.8  $\forall n \in \mathbb{Z}, a, b \in R, (na) \cdot b = n(a \cdot b) = a \cdot (nb).$ 

**例 2.1.9 (零环)** 以下等价:

(1)  $0_R = 1_R$ .

8

- (2)  $R = \{0_R\}.$
- (3) R 仅含一个元素.

 $\overline{\mathbb{H}_{\pi}}$   $(2) \Longrightarrow (3) \Longrightarrow (1)$  是平凡的.

#### 阅读提示

以下如不另作说明,环皆指非零的含幺环.

**例 2.1.10 (二元环)** 由例 2.1.9 可知二元环中  $0_R \neq 1_R$ , 进而可定出加法表与乘法表. 易见二元环本质上即  $\mathbb{Z}_2$ .

#### 阅读提示

以下总假定环 R 为含幺交换环.

#### 定义 2.1.11 (a 的 n 次幂)

当 
$$n \geqslant 1$$
 时,  $a^n := \underbrace{a \cdots a}_{n \uparrow}$ ;  $a^0 := 1_R$ .

性质 2.1.12  $a^n \cdot a^m = a^{n+m}$ .

**定理 2.1.13 (二项式定理)** 设  $a,b \in R, n \geqslant 1$ , 则

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i \cdot b^{n-i}.$$

**定义 2.1.14**  $a \in R$  称为乘法可逆元 (或单位), 若存在  $b \in R$ , 使得  $a \cdot b = 1_R$ .

**注记 2.1.15** 若 a 可逆, 对应的 b 是唯一的, 记  $b = a^{-1}$ , 称为 a 的逆. 易知  $\left(a^{-1}\right)^{-1} = a$ .

定义 2.1.16 (除法) 若 a 可逆,  $c \div a := c \cdot a^{-1}$ .

**注记 2.1.17** (1) 由于  $0_R \neq 1_R$ ,  $0_R$  一定不可逆.

- (2) 若 a 可逆, 可对全体  $n \in \mathbb{Z}$  定义  $a^n$ .
- (3) 对可逆元有乘法消去律.

**定义 2.1.18** 环 R 的可逆元子集  $U(R) := \{a \in R : a \ \text{可逆}\}\$ 对 R 的乘法构成一个 Abel 群, 称为 R 的单位群.

例 2.1.19 (1)  $U(\mathbb{Z}) = \{1, -1\}.$ 

- (2)  $U(\mathbb{Q}) = \mathbb{Q}^{\times} := \mathbb{Q} \setminus \{0\}.$
- (3)  $U(\mathbb{Z}_n) = \{ [m] : (m, n) = 1 \}.$
- (4)  $U(\mathbb{Z}[\sqrt{-1}]) = \{\pm 1, \pm \sqrt{-1}\}.$

**定义 2.1.20** 非零环 R 称为整环, 若  $ab = 0_R$  蕴含  $a = 0_R$  或  $b = 0_R$ .

**定义 2.1.21** 非零环 R 称为域, 若非零元均可逆.

**注记 2.1.22** (1) 整环中满足乘法消去律:  $ab=ac \implies a(b-c)=0_R \xrightarrow{\stackrel{\scriptstyle \Xi}{a} \neq 0_R} b=c.$ 

(2) 域是整环.

**例 2.1.23**  $\mathbb{Z}[\sqrt{-1}]$  是整环, 但不是域.

**命题 2.1.24** 设  $n \ge 2$ , 则以下等价:

- (1)  $\mathbb{Z}_n$  是整环.
- (2) n 是素数.
- (3)  $\mathbb{Z}_n$  是域.

 $\overline{(2)}$  (3)  $\Longrightarrow$  (1)  $\Longrightarrow$  (2)  $\Longrightarrow$  (3).

**注记 2.1.25** 若  $\mathbb{Z}_p$  是域, 记之为  $\mathbb{F}_p$ .

**练习 2.1.26** 设 R 为有限环,则 R 是整环  $\iff$  R 是域.

**定义 2.1.27** 设 R 为环. 子集  $S \subset R$  称为子环, 若满足  $1_R \in S$ , S 对加法、减法、乘法封闭.

#### 阅读提示

我们强烈要求  $1_R \in S$ .

**定义 2.1.28** 设 K 为域. 子环  $S \subset K$  称为子域, 若满足  $0_R \neq a \in S$ , 则  $a^{-1} \in S$ , 即对除法也封闭.

注记 2.1.29 子环自然成为环; 子域自身作为环是域.

**练习 2.1.30**  $\mathbb{Z}$  与  $\mathbb{Z}_n$  均没有真子环.

**练习 2.1.31**  $\mathbb{Q}$  与  $\mathbb{F}_p$  均没有真子域.

**练习 2.1.32**  $\mathbb{Q}(\sqrt{-1}) := \{a + b\sqrt{-1} : a, b \in \mathbb{Q}\} \subset \mathbb{C}$  是子域.

练习 2.1.33 若  $S \subset \mathbb{Q}(\sqrt{-1})$  是子域, 则  $S = \mathbb{Q}$  或  $S = \mathbb{Q}(\sqrt{-1})$ .

练习 2.1.34 设 p 是素数, 则  $R(p) := \left\{ \frac{m}{p^a} : a \geqslant 0, m \in \mathbb{Z} \right\} \subset \mathbb{Q}$  是子环.

2.2 理想与商环

设  $R = (R, +, \cdot), S = (S, +, \cdot)$  为两环.

**定义 2.2.1** 映射  $\theta: R \to S$  称为环同态, 若

- (1)  $\theta(a+b) = \theta(a) + \theta(b), \theta(a \cdot b) = \theta(a) \cdot \theta(b), \forall a, b \in R.$
- (2)  $\theta(1_R) = 1_S$ .

双射的环同态称为环同构, 记为  $\theta: R \xrightarrow{\sim} S$ .

性质 2.2.2 (1)  $\theta(0_R) = 0_S, \theta(a-b) = \theta(a) - \theta(b), \forall a, b \in R.$ 

- (2)  $\theta(a^m) = \theta(a)^m$ .
- (3) 环同态的复合仍是环同态.
- **例 2.2.3** 不存在  $\mathbb{Q} \to \mathbb{Z}_n$  的环同态. **提示** 考虑  $\frac{1}{n} \in \mathbb{Q}$ .

**引理 2.2.4** 设  $\theta: R \to S$  为环同态,则  $a \in U(R) \implies \theta(a) \in U(S)$ ,即  $\theta$  诱导  $U(R) \to U(S)$  群同态.

证明 若 
$$a \in U(R)$$
, 则  $\theta(a^{-1}) = \theta(a)^{-1}$ .

定义 2.2.5  $\operatorname{Aut}(R) \coloneqq \left\{ \theta : R \xrightarrow{\sim} R \text{ 环自同构} \right\}$  称为环 R 的自同构群.

例 2.2.6  $\operatorname{Aut}(\mathbb{Z}) = \{\operatorname{Id}_{\mathbb{Z}}\}.$ 

例 2.2.7 
$$\operatorname{Aut}(\mathbb{Z}[\sqrt{-1}]) = \left\{ \operatorname{Id}_{\mathbb{Z}[\sqrt{-1}]}, \sigma \right\}$$
, 其中  $\sigma : \mathbb{Z}[\sqrt{-1}] \to \mathbb{Z}[\sqrt{-1}], z \mapsto \overline{z}$ .

 $\overline{\mathbf{k}_{\pi}}$  考虑  $\sqrt{-1}$  在环同态下的像, 结合环同态保乘法的性质.

练习 2.2.8  $Aut(\mathbb{Q}) = \{Id_{\mathbb{Q}}\}.$ 

练习 2.2.9 
$$\operatorname{Aut}(\mathbb{Q}(\sqrt{-1})) = \left\{\operatorname{Id}_{\mathbb{Q}(\sqrt{-1})}, \sigma\right\}$$
, 其中  $\sigma: \mathbb{Q}(\sqrt{-1}) \to \mathbb{Q}(\sqrt{-1}), z \mapsto \overline{z}$ .

注记 2.2.10 同构的环 "本质一样", 即具有相同的性质:

- (1)  $\forall a \in R, a$  可逆  $\iff \theta(a) \in S$  可逆.
- (2) 有群同构  $U(R) \stackrel{\sim}{\longrightarrow} U(S)$ .
- (3) 有群同构  $\operatorname{Aut}(R) \xrightarrow{\sim} \operatorname{Aut}(S), \phi \mapsto \theta \circ \phi \circ \theta^{-1}.$
- (4) R 是整环  $\iff$  S 是整环.
- (5) R 是域  $\iff$  S 是域.
- **例 2.2.11 (特征同态)** 对于任何环 R, 存在唯一的环同态  $\mathbb{Z} \to R$ ,  $n \mapsto n1_R$ , 称为特征同态.

回顾定理 1.1.19, 考虑环同态  $\theta: R \to S$ , 注意到:

♦  $\mbox{$\mathbb{R}$} \mbox{$\mathbb{R}$} \mbox{$\mathbb{R}$} \mbox{$\mathbb{R}$} \subset S$  为子环.

- $\diamond a \stackrel{\theta}{\sim} b \iff \theta(a) = \theta(b) \iff a b \in \theta^{-1}(0_S) =: \operatorname{Ker} \theta \ (\theta \ \text{的核}).$
- ♦ 相应的等价类  $[a] = \theta^{-1}(\theta(a)) = a + \operatorname{Ker} \theta := \{a + r : r \in \operatorname{Ker} \theta\}$  (核的 "平移").
- ♦ 商集  $R/\stackrel{\theta}{\sim}$  等于 {Ker  $\theta$  的平移}.

观察到核  $Ker \theta$  有以下特性:

- ♦ 核 Ker  $\theta$  完全确定了等价关系  $\stackrel{\theta}{\sim}$ .
- ⋄ Ker  $\theta \subset R$  对加法、减法、乘法封闭, 但不是子环 (R 非零环  $\Longrightarrow 1_R \notin \text{Ker }\theta$ ).
- ◇ 对任意  $x \in \text{Ker } \theta, a \in R$ , 均有  $ax \in \text{Ker } \theta$ , 即核  $\text{Ker } \theta$  对于 R 中求 "倍元" 封闭 (这远强于乘法封闭性).

**定义 2.2.12** 非空子集  $I \subset R$  称为理想, 若 I 对加、减法以及倍元封闭, 即

- (1)  $a + b \in I, \forall a, b \in I$ .
- (2)  $a \cdot r \in I, \forall a \in I, r \in R$ .

记为  $I \triangleleft R$ .

**注记 2.2.13** (1) 虽然  $R \triangleleft R$ , 但我们通常仅考虑真理想. 理想 I 是真理想当且仅当  $1_R \notin I$ .

- (2)  $\{0_R\}$  与 R 是 R 的平凡理想.
- (3) 任意元素  $a \in R$  给出 a 生成的主理想  $(a) = aR := \{a \cdot r : r \in R\}$ . 特别地,  $(0_R) = \{0_R\}, (1_R) = R$ .
- (4) 环同态的核是真理想.
- **引理 2.2.14** 环 R 为域当且仅当 R 仅有平凡理想.
- **例 2.2.15**  $\mathbb{Z}$  的所有理想为  $\{n\mathbb{Z} : n \in \mathbb{N}_{\geq 0}\}$ .

**证明** 设  $\{0\} \neq I \triangleleft \mathbb{Z}$ , 则存在  $0 \neq n \in I$ , 使得 |n| 最小. 我们断言  $I = n\mathbb{Z}$ . 注意到:

- $\diamond n\mathbb{Z} \subset I.$
- ◇ 对任意  $r \in I$ , 作带余除法 r = qn + r', 其中  $q \in \mathbb{Z}, 0 \leqslant r' < |n|$ . 由  $r' = r qn \in I$  及 r' < |n| 即知 r' = 0. 故  $n \mid r, \forall r \in I$ .
- 约定 2.2.16 将  $a \stackrel{\theta}{\sim} b$  记为  $a \equiv b \pmod{\operatorname{Ker} \theta}$ .

**定义 2.2.17** 给定  $I \triangleleft R$ , 定义商环 R/I 如下:

- (1) 同余等价关系  $a \equiv b \pmod{I} \iff a b \in I$ . 等价类  $\overline{a} = a + I$ .
- (2) 商集  $R/\equiv$  记为 R/I, 其上有自然运算  $\overline{a}+\overline{b}:=\overline{a+b},\overline{a}\cdot\overline{b}:=\overline{a\cdot b}$ . 故 R/I 自然成为环.
- **例 2.2.18**  $n\mathbb{Z} \triangleleft \mathbb{Z} \perp \mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ .

考虑理想  $I \triangleleft R$ , 典范同态 can :  $R \rightarrow R/I$ ,  $a \mapsto \overline{a}$ , 则有 Ker(can) = I.

**命题 2.2.19 (典范同态的泛性质)** 设  $\theta: R \to S$  为环同态,  $I \lhd R$ . 则  $I \subset \text{Ker } \theta$  当且仅当  $\theta = \theta' \circ \text{can}$ , 其中  $\theta': R/I \to S$  为某个环同态. 此时, 由典范同态 can 为满射可知同态  $\theta'$  是唯一的, 称其由  $\theta$  诱导.

$$R \xrightarrow{\theta} S$$
can  $\exists ! \, \theta'$  环同态

证明 ( $\Leftarrow$ ) Ker  $\theta = \text{Ker}(\theta' \circ \text{can}) \supset \text{Ker}(\text{can}) = I$ .

(⇒) 定义映射  $\theta': R/I \to S$ ,  $[a] \mapsto \theta(a)$ . 检验其良定性: 对任意  $a, b \in R$ , 若 [a] = [b], 则  $a - b \in I \subset \operatorname{Ker} \theta$ , 从而  $\theta(a) = \theta(b)$  即  $\theta'([a]) = \theta'([b])$ . 易见  $\theta'$  为环同态.

**定理 2.2.20 (环同态基本定理)** 设  $\theta: R \to S$  为环同态,则唯一存在环同构

$$\overline{\theta}: R/\operatorname{Ker} \theta \xrightarrow{\sim} \operatorname{Im} \theta$$

使得下图交换:

$$\begin{array}{c|c} R & \xrightarrow{\quad \theta \quad } S \\ \underset{\text{can} \downarrow}{\text{can}} & & \int_{\text{inc}} \\ R/\operatorname{Ker} \theta & -\overset{\overline{\theta}}{-} \to \operatorname{Im} \theta \end{array}$$

 $\overline{\mathbf{k}_{\overline{a}}}$ 由定理 1.1.19, 只需验证  $\overline{\theta}$  为环同态.

**注记 2.2.21** (1) 设  $\theta: R \to S$  是单的, 则 Ker  $\theta = \{0_R\}$ , 有环同构  $R \simeq \text{Im } \theta$ , 可将 R "等同于" S 的子 环. 单的环同态又称为环嵌入.

(2) 设  $\theta:R\to S$  是满的,则有环同构  $R/\operatorname{Ker}\theta\simeq S$ ,可将 S "等同于" R 的商环.

**定义 2.2.22** 由例 2.2.15 知特征同态  $\mathbb{Z} \to R$  的核为  $n\mathbb{Z}$ , 其中 n=0 或  $n \geq 2$ . 记  $n=\operatorname{char}(R)$ , 称为环 R 的特征.

**注记 2.2.23** 由定理 2.2.20,

- ♦ 若 char(R) = 0, 则有环嵌入  $\mathbb{Z} \hookrightarrow R$ .
- $\diamond$  若 char $(R) = n \geq 2$ , 则有环嵌入  $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z} \hookrightarrow R$ .

**推论 2.2.24** 整环的特征为 0 或素数 p.

**证明** 设整环 R 的特征为 n, 则  $\mathbb{Z}/n\mathbb{Z}$  同构于 R 的子环, 从而也是整环, 再利用命题 2.1.24 即可.

**注记 2.2.25** 特别地, 当 K 为域时, 若  $\mathrm{char}(K)=0$ , 则  $\mathbb{Z}\hookrightarrow K$ ; 若  $\mathrm{char}(K)=$ 素数 p, 则  $\mathbb{F}_p\hookrightarrow K$  为子域. 对于特征 0 域 K 及其特征同态  $\phi$ , 我们进一步断言, 可将  $\phi$  延拓为单同态

$$\widetilde{\phi}: \mathbb{Q} \hookrightarrow K$$
$$\frac{n}{m} \mapsto \phi(n) \cdot \phi(m)^{-1},$$

其中  $n \in \mathbb{Z}, m \in \mathbb{Z} \setminus \{0\}$ . 由  $\phi$  是环同态可验证  $\widetilde{\phi}$  是良定的.

**练习 2.2.26** 验证注记 2.2.25 中的映射  $\phi$  是单的环同态.

#### **例 2.2.27** 考虑环 R 的两个理想 $I \subset J$ , 有典范同态

$$R/I woheadrightarrow R/J, \quad a+I \mapsto a+J.$$

其良定性可由  $I \subset J$  得到, 亦可借助命题 2.2.19, 由  $I \subset J = \operatorname{Ker}(\operatorname{can}_J)$  得到如下交换图表:

$$R \xrightarrow{\operatorname{can}_J} R/J$$
 $\operatorname{can}_I = \operatorname{R}/I$ 

- ♦ 此典范同态的核为  $\{a + I : a + J = 0_{R/J}\} = \{a + I : a \in J\}$   $\triangleleft R/I$ , 记为 J/I.
- ◇ 由定理 2.2.20, 此典范同态诱导环同构

$$(R/I)/(J/I) \xrightarrow{\sim} R/J, \quad (a+I)+J/I \mapsto a+J.$$

 $\diamond$  (对应定理) 固定  $I \triangleleft R$ , 则存在双射

$$\{J \lhd R: J \supset I\} \xleftarrow{1:1} \{R/I \text{ 的理想}\}$$
 
$$J \longmapsto J/I$$
 
$$\{a \in R: a+I \in \bar{J}\} \xleftarrow{\psi} \bar{J}.$$

#### **练习 2.2.28** 对例 2.2.27 中的映射 $\psi$ , 验证以下断言:

- (1)  $\psi(\bar{J}) \in \{J \triangleleft R : J \supset I\}, \forall \bar{J} \triangleleft R/I.$
- (2)  $\psi(\bar{J})/I = \bar{J}, \forall \bar{J} \triangleleft R/I.$
- (3)  $\psi(J/I) = J$ .

**例 2.2.29 (** $\mathbb{Z}_n$  **的理想)** 由例 2.2.27 对应定理, { $\mathbb{Z}/n\mathbb{Z}$  的理想}  $\stackrel{1:1}{\longleftrightarrow}$  { $J \lhd \mathbb{Z} : J \supset n\mathbb{Z}$ }. 再结合例 2.2.15, 有 { $\mathbb{Z}/n\mathbb{Z}$  的理想}  $\stackrel{1:1}{\longleftrightarrow}$  { $d\mathbb{Z} : d \geqslant 1, d \mid n$ }. 换言之, 存在双射

$$\{d: d \ge 1, d \mid n\} \xrightarrow{\sim} \{\mathbb{Z}/n\mathbb{Z} \text{ in } \mathbb{Z}\}, \quad d \mapsto d\mathbb{Z}/n\mathbb{Z}.$$

特别地, 当 p 为素数时, 域  $\mathbb{F}_p$  仅有平凡理想, 这回应了引理 2.2.14.

#### **练习 2.2.30 (例 2.2.27 对应定理的子环版本)** 固定 $I \triangleleft R$ ,则存在双射

$$\{S \subset R \not \exists \mathfrak{F}: S \supset I\} \xrightarrow{\sim} \{R/I \text{ bh} \not \exists \mathfrak{F}\}, \quad S \mapsto S/I.$$

#### **练习 2.2.31** 设 R 为环, $S \subset R$ 为子环, $I \triangleleft R$ 为理想. 则

- (1)  $S + I = \{a + x : a \in S, x \in I\}$  为子环.
- (2)  $S \cap I 为 S$  的理想.
- (3) 存在环同构

$$S/(S\cap I) \stackrel{\sim}{\longrightarrow} (S+I)/I, \quad a+(S\cap I) \mapsto a+I.$$

林晓烁 2024 年春季

提示  $\rangle$  考虑满射  $S \rightarrow (S+I)/I$ .

练习 2.2.32 证明:有限环的特征必然为正数.

**练习 2.2.33** 设 D 为整环, m 和 n 为互素的正整数,  $a,b \in D$ . 如果  $a^m = b^m, a^n = b^n$ , 求证 a = b.

**练习 2.2.34** 对任意  $n \ge 0$ , 记  $R_n = \{a + b\sqrt{-1} : a \in \mathbb{Z}, b \in n\mathbb{Z}\}.$ 

(1)  $R_n$  为  $\mathbb{Z}[\sqrt{-1}]$  的子环.

14

- (2) 对任意  $\mathbb{Z}[\sqrt{-1}]$  的子环 S, 存在唯一  $n \ge 0$  使得  $S = R_n$ .
- (3) 若  $n \neq m$ , 则  $R_n \not\simeq R_m$ .

这样就分类了  $\mathbb{Z}[\sqrt{-1}]$  的子环.

**证明** (3) 若存在环同态 
$$\theta: R_n \to R_m$$
, 则  $\theta|_{\mathbb{Z}} = \operatorname{Id}_{\mathbb{Z}}$ . 由  $\theta(n\sqrt{-1})^2 = \theta(-n^2) = -n^2$  得  $\theta(n\sqrt{-1}) \in \operatorname{Root}_{\mathbb{C}}(x^2 + n^2) = \{\pm n\sqrt{-1}\}$ , 进而  $R_n \subset R_m$ . 故若  $R_n \simeq R_m$ , 则  $R_n = R_m$ .

**练习 2.2.35** 对全体素数的子集 S, 记  $\mathbb{Z}_S = \left\{ \frac{m}{n} : (m,n) = 1, n \text{ 的素因子 } \in S \right\} \cup \{0\}.$ 

- (1)  $\mathbb{Z}_S$  为  $\mathbb{Q}$  的子环.
- (2) 对任意  $\mathbb{Q}$  的子环 R, 存在唯一素数集合 S 使得  $\mathbb{Z}_S = R$ .
- (3) 若  $S \neq S'$  为全体素数的两个子集,则  $\mathbb{Z}_S \not\simeq \mathbb{Z}_{S'}$ .

这样就分类了 ℚ 的子环.

**证明** (3) 设存在环同态  $\theta: \mathbb{Z}_S \to \mathbb{Z}_{S'}$ . 对任意  $p \in S$ , 有  $\frac{1}{p} \in \mathbb{Z}_S$ . 由于  $1 = \theta(1) = \theta(p) \cdot \theta(\frac{1}{p}) = p \cdot \theta(\frac{1}{p})$ , 而  $x = \frac{1}{p}$  是方程 px = 1 在  $\mathbb{Q}$  上的唯一解, 因此  $\theta(\frac{1}{p}) = \frac{1}{p}$ . 这说明  $p \in S'$ , 因此  $S \subset S'$ . 故若  $\mathbb{Z}_S \simeq \mathbb{Z}_{S'}$ , 则 S = S'.

### 2.3 分式域与商域

设 R 为整环, 记  $R^{\times} := R \setminus \{0_R\}$ . 考虑  $R \times R^{\times}$  上的关系

$$(a,x) \simeq (b,y) \iff ay = bx.$$

**练习 2.3.1** 证明如上关系  $\simeq$  是 R 上的等价关系.  $\overline{\mathsf{Her}}$  传递性需要用到整环的性质.

相应的等价类记为

$$\frac{a}{x} := \left\{ (b, y) \in R \times R^{\times} : (b, y) \simeq (a, x) \right\},\,$$

称为分式. 分式的全体记为  $Frac(R) = R \times R^{\times} / \simeq$ . 在 Frac(R) 上自然定义加法和乘法

$$\frac{a}{x} + \frac{b}{y} = \frac{ay + bx}{xy}, \quad \frac{a}{x} \cdot \frac{b}{y} = \frac{ab}{xy}.$$

注意定义的合理性需要整环的性质:  $x,y \neq 0_R \implies xy \neq 0_R$ .

**命题 2.3.2** Frac(R) 是域, 称为 R 的分式域.

考虑典范同态  $can_R: R \hookrightarrow Frac(R), r \mapsto \frac{r}{1_R}$ , 它是单的, 因而可将 R 视作域 Frac(R) 的子环.

**命题 2.3.3**  $can_R$  是同构当且仅当 R 是域.

**定理 2.3.4 (典范同态的泛性质)** 设 R 为整环, K 为域,  $\phi: R \hookrightarrow K$  为环的单同态. 则存在唯一的域嵌入  $\widetilde{\phi}: \operatorname{Frac}(R) \hookrightarrow K$  使得下图交换:

$$\begin{matrix} R & \xrightarrow{\phi} & K \\ \operatorname{can}_R & & \operatorname{\exists !} \widetilde{\phi}$$
域嵌入 
$$\operatorname{Frac}(R) \end{matrix}$$

进一步, $\widetilde{\phi}$ 是同构当且仅当任意  $w \in K$  均可表为  $w = \phi(a)\phi(x)^{-1}$ ,其中  $a \in R, x \in R^{\times}$ .

**证明** (1) 先证明  $\tilde{\phi}$  的至多唯一性. 对任意  $\frac{a}{x} \in \operatorname{Frac}(R)$  (其中  $a \in R, x \in R^{\times}$ ),

$$\widetilde{\phi}\left(\frac{a}{x}\right) = \widetilde{\phi}\left(\frac{a}{1_R} \cdot \left(\frac{x}{1_R}\right)^{-1}\right) = \widetilde{\phi}\left(\frac{a}{1_R}\right)\phi\left(\frac{x}{1_R}\right)^{-1} \xrightarrow{\widetilde{\phi} \circ \operatorname{can}_R = \phi} \phi(a)\phi(x)^{-1}.$$

- (2) 再验证如上  $\widetilde{\phi}(\frac{a}{x}) = \phi(a)\phi(x)^{-1}$  构造的良定性:
  - ♦ 因为  $\phi$  为单同态, 所以  $x \neq 0_R \implies \phi(x) \neq 0_K$ ,  $\phi(x)$  可逆.
  - $\diamond \tilde{\phi}$  不依赖于代表元的选取.
- (3) 易验证  $\tilde{\phi}$  是域同态, 再由练习 2.3.6 知  $\tilde{\phi}$  是域嵌入.
- (4)  $\phi$  是同构  $\iff \phi$  是满射, 再由 (1) 中  $\phi$  的构造即得定理最后的断言.

**注记 2.3.5** (1) 可认为 $\widetilde{\phi}$ 延拓了 $\phi$ .

(2) 分式域 Frac(R) 是包含 R 的最小域.

**练习 2.3.6** 设  $\theta: K \to L$  为域之间的同态,则  $\theta$  是单同态.

**例 2.3.7**  $\mathbb{Z} \subset \mathbb{Q}$  诱导了域同构  $Frac(\mathbb{Z}) \simeq \mathbb{Q}$ .

**练习 2.3.8** 考虑练习 2.2.35 中的  $\mathbb{Z}_S$ , 证明  $\operatorname{Frac}(\mathbb{Z}_S) \simeq \mathbb{Q}$ .

**证明** 由定理 2.3.4, 存在唯一的域嵌入  $\theta$ : Frac( $\mathbb{Z}_S$ )  $\hookrightarrow \mathbb{Q}$  使得下图交换:



由练习 2.1.31,  $\mathbb{Q}$  没有真子域, 因此  $Frac(\mathbb{Z}_S) \simeq \mathbb{Q}$ .

练习 2.3.9  $\mathbb{Z}[\sqrt{-1}] \subset \mathbb{Q}(\sqrt{-1})$  诱导了域同构  $\operatorname{Frac}(\mathbb{Z}[\sqrt{-1}]) \simeq \mathbb{Q}(\sqrt{-1})$ . 「提示〉利用注记 2.3.5 (2).

#### 阅读提示

一般来说, 很难确定等价关系  $\simeq$  的完全代表元系, 因而集合 Frac(R) 难以捉摸. 但当整环 R 具有某些性质 (例如是唯一分解整环) 时, 我们对 Frac(R) 能作进一步了解 (例如可定义既约分式). 例如, 由于有理数具有既约表达式, 我们对集合  $Frac(\mathbb{Z}) = \mathbb{Q}$  的大小是有所了解的.

**例 2.3.10** 设 F 为域. 由注记 2.2.25,

◇ 若 char(F) = 0, 则  $\mathbb{Z} \hookrightarrow F$ . 根据定理 2.3.4, 由  $can_{\mathbb{Z}}$  的泛性质, 存在唯一的域嵌入

$$\theta: \mathbb{Q} \hookrightarrow F$$

$$\frac{n}{m} \mapsto (n1_F)(m1_F)^{-1}.$$

因此 $\mathbb{Q}$ 可视为F的子域,F自然成为 $\mathbb{Q}$ -线性空间,其上的数乘运算. 定义为

$$\lambda. v = \theta(\lambda)v, \quad \forall \lambda \in \mathbb{Q}, v \in F.$$

♦ 若 char(F) = p > 0, 则存在唯一的域嵌入

$$\theta: \mathbb{F}_p \hookrightarrow F$$
$$\overline{n} \mapsto n1_F.$$

因此 F 自然成为  $\mathbb{F}_p$ -线性空间, 其上的数乘运算. 定义为

$$\lambda. v = \theta(\lambda)v, \quad \forall \lambda \in \mathbb{F}_p, v \in F.$$

**定义 2.3.11** 设 R 为环. 真理想  $\mathfrak{p} \subseteq R$  称为素理想, 若  $ab \in \mathfrak{p}$  蕴含着  $a \in \mathfrak{p}$  或  $b \in \mathfrak{p}$ .

**注记 2.3.12** (1)  $\{0_R\}$  为素理想  $\iff R$  为整环.

(2) 设 $\mathfrak{p} \not\subseteq R$ ,则 $\mathfrak{p}$ 为素理想  $\iff R/\mathfrak{p}$  是整环.

**例 2.3.13** 设  $p \ge 1$ , 则  $p\mathbb{Z} \triangleleft \mathbb{Z}$  为素理想  $\iff p$  为素数.

**定义 2.3.14** 记环 R 中素理想构成的集合为 Spec(R), 称为 R 的素谱.

**例 2.3.15** Spec( $\mathbb{Z}$ ) = {(0)}  $\sqcup$  {(p) : p 为素数}.

**注记 2.3.16** 参阅 Zariski topology 与 Spectrum of a ring 词条, 以了解 Spec(R) 如何在 Zariski 拓扑下成为一个拓扑空间. 例子:  $Spec(\mathbb{Z})$ .

**定义 2.3.17** 设 R 为环. 真理想  $\mathfrak{m} \supseteq R$  称为极大理想, 若  $\mathfrak{m} \subset I \supset R$  蕴含  $I = \mathfrak{m}$  或 I = R.

**定义-命题 2.3.18** 真理想  $\mathfrak{m} \subseteq R$  是极大理想当且仅当  $R/\mathfrak{m}$  是域. 此时, 称域  $R/\mathfrak{m}$  为商域. 特别地, 极大理想是素理想.

证明 由例 2.2.27 对应定理, 存在双射

$$\{R/\mathfrak{m} \text{ 的理想}\} \stackrel{1:1}{\longleftrightarrow} \{I \lhd R : I \supset \mathfrak{m}\}.$$

因此  $\mathfrak{m} \not\supseteq R$  为极大理想  $\iff \{I \lhd R : I \supset \mathfrak{m}\} = \{\mathfrak{m}, R\} \iff \{R/\mathfrak{m} \text{ 的理想}\} = \{\{0_\mathfrak{m}\}, R/\mathfrak{m}\} \stackrel{\exists ! \underline{\exists} 2.2.14}{\iff} R/\mathfrak{m}$  是域. 由注记 2.3.12, 极大理想是素理想.

上面的证明堪称简洁, 而下面对  $(\Rightarrow)$  的另证则给出求  $R/\mathfrak{m}$  中非零元的逆的具体方法:

证明 (⇒) 设  $\bar{0} \neq \bar{a} \in R/\mathfrak{m}$ , 其中  $a \in R$ . 则  $a \notin \mathfrak{m}$ , 进而两理想之和  $Ra + \mathfrak{m} \supseteq \mathfrak{m}$ . 由  $\mathfrak{m}$  是极大理想知  $Ra + \mathfrak{m} = R$ . 因此有 "Bézout 等式"

$$1_R = ba + \omega, \quad b \in R, \omega \in \mathfrak{m}.$$

在 R/m 中, 上式变为

$$1_{R/\mathfrak{m}} = \overline{b} \cdot \overline{a}.$$

故  $\overline{a}$  可逆, 其逆为  $\overline{b}$ .

**注记 2.3.19** 考虑零理想  $\{0_R\} \not\subseteq R$ , 则 R 仅有平凡理想  $\iff \{0_R\}$  是 R 的极大理想  $\iff R/\{0_R\}$  是 域  $\iff R$  是域. 这回应了引理 2.2.14.

**定义 2.3.20** 记环 R 中极大理想构成的集合为 MaxSpec(R), 称为 R 的极大理想谱.

**注记 2.3.21**  $\emptyset \neq \text{MaxSpec}(R) \subset \text{Spec}(R)$ .

**例 2.3.22** MaxSpec( $\mathbb{Z}$ ) = {(p) : p 为素数}.

**注记 2.3.23** Hilbert's Nullstellensatz 联系代数与几何:

$$\operatorname{MaxSpec}(\mathbb{C}[x_1,\cdots,x_n]) \stackrel{1:1}{\longleftrightarrow} \mathbb{C}^n.$$

**定义 2.3.24** 设 R 为整环,  $a \neq 0_R$ . a 在 R 中整除 b (记为  $a \mid b$ )  $\iff b \in (a)$ .

**定义 2.3.25** 设 R 为整环. 非零元  $a \in R$  称为素元, 若 (a) 为素理想.

**注记 2.3.26** (1) 设 a 非零非单位,则 a 为素元  $\iff$   $a \mid xy$  蕴含  $a \mid x$  或  $a \mid y$ .

- (2) 若 a 为素元, 则  $(a) \neq R$ , 因此  $a \notin U(R)$ .
- (3) 域上无素元.

**定义 2.3.27** 设 R 为整环. 非零元  $a \in R$  称为不可约元, 若  $a \notin U(R)$ , 且 a = bc 蕴含  $b \in U(R)$  或  $c \in U(R)$ .

**注记 2.3.28** 任意  $u \in U(R)$  给出 a 的平凡分解  $a = u \cdot (u^{-1}a) = (u^{-1}a) \cdot u$ , 因此不可约元可理解为 "只有平凡分解的元素".

**例 2.3.29** 在  $\mathbb{Z}$  中, 素元 = 不可约元 =  $\pm p$ , p 为素数.

**命题 2.3.30** 素元总不可约.

**证明** 设  $a \in R$  是素元, 则  $a \notin U(R)$ . 设 a = bc, 则  $a \mid bc$ , 进而  $a \mid b$  或  $a \mid c$ . 不妨设  $a \mid b$ , 则存在  $c' \in R$  使 得 b = ac'. 于是 a = bc = ac'c, 即  $a(1_R - c'c) = 0_R$ . 因为 R 是整环,  $a \neq 0_R$ , 所以  $c'c = 1_R$ ,  $c \in U(R)$ .

**例 2.3.31** 令  $\mathbb{Z}[\sqrt{-3}] := \{m + n\sqrt{-3} : m, n \in \mathbb{Z}\}$ , 则  $\mathbb{Z}[\sqrt{-3}]$  是  $\mathbb{C}$  的子环, 进而是整环. 断言: 在  $\mathbb{Z}[\sqrt{-3}]$  中, 2 不可约, 但非素.

**证明** (2 **不可约)** 设  $2 = (m + n\sqrt{-3})(m' + n'\sqrt{-3})$ , 其中  $m, n, m', n' \in \mathbb{Z}$ . 两边取模再平方即得

$$4 = (m^2 + 3n^2)((m')^2 + 3(n')^2).$$

由于  $4 \in \mathbb{Z}_{\geqslant 0}$  只有  $4 = 1 \cdot 4 = 2 \cdot 2$  两种分解, 而  $m^2 + 3n^2$  不可能为 2, 所以  $m^2 + 3n^2 = 1$  或 4. 不妨设  $m^2 + 3n^2 = 1$ , 则  $m = \pm 1, n = 0, m + n\sqrt{-3} = \pm 1$  可逆. 故 2 在  $\mathbb{Z}[\sqrt{-3}]$  中不可约.

(2 非素) 注意到  $2 \mid 4 = (1 + \sqrt{-3})(1 - \sqrt{-3})$ , 但  $2 \nmid (1 + \sqrt{-3}), 2 \nmid (1 - \sqrt{-3})$ .

练习 2.3.32  $\diamondsuit \omega := \frac{-1+\sqrt{-3}}{2}$ , 定义 Eisenstein 整数环  $\mathbb{Z}[\omega] := \{m+n\omega : m, n \in \mathbb{Z}\}.$ 

- (1) 验证  $\mathbb{Z}[\omega]$  是  $\mathbb{C}$  的子环, 进而是整环.
- (2) 证明 2 是  $\mathbb{Z}[\omega]$  中的素元.

证明 (2) 定义范数映射

$$N: \mathbb{Z}[\omega] \to \mathbb{Z}_{\geqslant 0}$$
$$a + b\omega \mapsto a^2 - ab + b^2.$$

由于  $a^2 - ab + b^2 = \frac{1}{4} [(2a - b)^2 + 3b^2]$ ,  $N(x) = 0 \iff x = 0$ . 容易验证,  $N(a + b\omega)$  为偶数  $\iff a, b$  均为偶数. 设  $2 \mid xy$ , 其中  $x, y \in \mathbb{Z}[\omega]$ . 则  $4 \mid N(x)N(y)$ , 进而 N(x), N(y) 至少有一个为偶数, 因此  $2 \mid x$  或  $2 \mid y$ . 故  $2 \not\in \mathbb{Z}[\omega]$  中的素元.

**注记 2.3.33** 从例 2.3.31 和练习 2.3.32 看到, 2 在  $\mathbb{Z}[\sqrt{-3}]$  中非素, 但在  $\mathbb{Z}[\omega]$  中是素元.

练习 2.3.34 证明: 含幺交换有限环的素理想必是极大理想. 展示》利用练习 2.1.26.

**练习 2.3.35** 设  $f: R \to S$  是环的满同态, K = Ker f. 求证:

- (1) 若  $P \in R$  的素理想并且  $P \supset K$ , 则 f(P) 也是 S 的素理想.
- (2) 若 Q 是 S 的素理想, 则  $f^{-1}(Q) = \{a \in R : f(a) \in Q\}$  也是 R 的素理想.
- (3) S 中素理想和 R 中包含 K 的素理想是——对应的. 将"素理想"换成"极大理想"则此论断也成立.

### 2.4 一元多项式环

**定义 2.4.1** 设x为字母 (形式符号). 环R上关于x的 (形式) 多项式

$$f(x) = a_n x^n + \dots + a_2 x^2 + a_1 x + a_0$$

系数  $a_i \in R$ , 其中的  $a_i x^i$  为单项式. 约定  $x^0 := 1_R$ , 则可记  $f(x) = \sum_{i=0}^n a_i x^i$ . 若  $a_n \neq 0_R$ , 则称  $a_n x^n$  为首项系数, 定义次数  $\deg(f) = n$ . 称  $a_0$  为常数项.

**注记 2.4.2** 零多项式  $0_R$  不定义其次数. 其他常值多项式 a 的次数为 0.

**约定 2.4.3**  $0_R x^i$  可以略去,  $1_R x^i$  简记为  $x^i$ .

**定义 2.4.4** 多项式 
$$f(x) = \sum_{i=0}^{n} a_i x^i$$
 称为首一的, 若  $a_n = 1_R$ .

定义 2.4.5 称两多项式相等, 若它们对应系数相等.

**命题 2.4.6** 记 R 上多项式全体为 R[x], 则 R[x] 自然成为环, 称为 R 上的一元多项式环.

◇ 加法: 对应系数相加.

◆ 乘法: 若  $f(x) = \sum_{i=0}^{n} a_i x^i, g(x) = \sum_{j=0}^{m} b_j x^j,$  定义  $f(x)g(x) = \sum_{l=0}^{m+n} c_l x^l,$  其中  $c_l = \sum_{i=0}^{l} a_i b_{l-i}$  (若下标超 出范围则取为 0).

**练习 2.4.7** 验证多项式环中的乘法运算满足结合律.

**注记 2.4.8** 有典范环嵌入  $R \hookrightarrow R[x], a \mapsto a$  常值多项式.

**命题 2.4.9** [提示)考虑首项系数. 若 R 为整环, 则 R[x] 亦为整环. 特别地, 若 k 为域,则 k[x] 为整环.

**性质 2.4.10** 设 R 是整环,  $f(x), g(x) \neq 0_R$ , 则  $\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x))$ .

**推论 2.4.11** R[x] 绝不是域, 因为  $U(R[x]) \simeq U(R)$ .

练习 2.4.12 (R[x] 的等价定义) 考虑

$$\overline{R} := \{\underline{a} = (a_0, a_1, \cdots) : a_i \in R, \ \text{ in } \widehat{R}$$
 分大时  $a_i = 0_R\}$ .

定义加法和乘法如下:

$$\underline{a} + \underline{b} = (a_0 + b_0, a_1 + b_1, \cdots),$$
$$\underline{a} \cdot \underline{b} = (c_0, c_1, \cdots),$$

其中 
$$c_0 = \sum_{i=0}^{l} a_i b_{l-i}$$
. 证明:

- (1)  $\overline{R}$  是环.
- (2) 存在环同构

$$R[x] \xrightarrow{\sim} \overline{R}, \quad f(x) = \sum_{i \geqslant 0} a_i x^i \mapsto \underline{a} = (a_0, a_1, \cdots).$$

**命题 2.4.13 (典范环嵌入的泛性质)** 设 R 为环. 对于任给的环同态  $\psi: R \to S$  以及  $s \in S$ , 唯一存在 环同态

$$\widetilde{\psi}:R[x]\to S$$

使得  $\widetilde{\psi}|_R = \psi$  且  $\widetilde{\psi}(x) = s$ .

**证明** (1) 先证明  $\tilde{\psi}$  的至多唯一性:

$$\widetilde{\psi}(a_n x^n + \dots + a_1 x + a_0) = \psi(a_n) s^n + \dots + \psi(a_1) s + \psi(a_0).$$

- (2) 再验证如上 $\tilde{\psi}$ 是环同态(留作练习).
- **例 2.4.14** 考虑  $Id_R$  以及  $a \in R$ ,则 a 处的赋值同态

$$\operatorname{ev}_a:R[x]\to R$$

使得  $f(x) \mapsto f(a)$ , 称为多项式 f(x) 在 a 处的取值.

**练习 2.4.15** 对任意集合 X, Map(X,R) 为环 (加法、乘法由 R 中运算诱导).

**例 2.4.16** 固定  $f(x) \in R[x]$ , 则有多项式函数

$$f: R \to R, \quad a \mapsto f(a),$$

即  $f \in \text{Map}(R,R)$ . 定义函数环 Map(R,R) 以及赋值同态

$$\operatorname{ev}: R[x] \to \operatorname{Map}(R, R), \quad f(x) \mapsto f.$$

林晓烁 2024 年春季

该映射一般不是单射.

**例 2.4.17** 固定  $a \in R$ , 则有投影同态

$$p_a: \operatorname{Map}(R,R) \to R, \quad \theta \mapsto \theta(a).$$

并且  $ev_a = p_a \circ ev$ , 其中  $ev_a$  来自例 2.4.14, ev 来自例 2.4.16.

设 k 为域, 则 k 中非零元均可逆, 进而可对多项式作首一化:  $f(x) = a \cdot \bar{f}(x)$ , 其中 a 为 f 的首项系数,  $\bar{f}(x)$  为首一多项式. 由于  $a_n \in U(k[x])$ , f(x) 与  $\bar{f}(x)$  本质一样.

**定理 2.4.18 (k[x] 中的带余除法)** 给定  $f(x) \in k[x], 0_k \neq h(x) \in k[x]$ , 则存在  $g(x), r(x) \in k[x]$ , 使得

$$f(x) = q(x) \cdot h(x) + r(x),$$

且 r(x) = 0 或 deg(r) < deg(h). 这样的 q(x) 与 r(x) 是唯一的, 分别称为商式与余式.

**定理 2.4.19 (余数定理)** 给定多项式 f(x) 以及  $a \in k$ , 则唯一存在多项式  $g(x) \in k[x]$  使得

$$f(x) = q(x) \cdot (x - a) + f(a).$$

特别地, (x-a) | f(x) 当且仅当  $f(a) = 0_k$ .

**注记 2.4.20** 解集  $Root_k(f) := \{a \in k : f(a) = 0_k\} \stackrel{1:1}{\longleftrightarrow} \{a \in k : (x-a) \mid f(x)\}.$ 

**定义 2.4.21** 整环 R 称为主理想整环 (PID), 若其任何理想均为主理想.

**注记 2.4.22** 按定义, 域为 PID, 但我们仅考虑非域的 PID.

**命题 2.4.23**  $\mathbb{Z}$  与 k[x] (k 是域) 均为 PID. [提示] 利用带余除法, 数的绝对值  $\longleftrightarrow$  多项式的次数.

**定义 2.4.24** 设 R 为整环, 非零元 a, b 的最大公因子  $d = \gcd(a, b)$  满足:

 $\diamond d \mid a \perp d \mid b$ .

♦ 若 d' | a 且 d' | b, 则 d' | d.

**注记 2.4.25** (1) 最大公因子不一定存在.

(2) 若 gcd(a,b) 存在,则它在相伴意义下唯一,即若 d 和 e 都是 a,b 的最大公因子,则存在  $u \in U(R)$ ,使 得 e = ud (这等价于 (e) = (d)).

**练习 2.4.26** 在整环 R 中,  $d = \gcd(a, b) \iff (d) \supset (a) + (b)$  是包含 (a) + (b) 的最小主理想.

**命题 2.4.27** 若 R 是 PID, 则对任意非零元  $a, b \in R$ , gcd(a, b) 存在.

**证明** 由于 R 是 PID, R 中任何理想都有生成元. 特别地, 存在  $d \in R$  使得 (a) + (b) = (d). 由练习 2.4.26 的 ( $\Leftarrow$ ) 即知  $d = \gcd(a, b)$ .

推论 2.4.28 若 R 是 PID,则 R 上存在 Bézout 等式:对任意非零元  $a,b \in R$ ,存在  $u,v \in R$ ,使得

$$gcd(a, b) = u \cdot a + v \cdot b.$$

**例 2.4.29 (最大公因子不一定存在)** 在  $\mathbb{Z}[\sqrt{-3}]$  中, 4 与  $(1-\sqrt{-3})^2$  无最大公因子.

证明 定义范数映射

$$N: \mathbb{Z}\left[\sqrt{-3}\right] \to \mathbb{Z}_{\geqslant 0}$$
  
 $m + n\sqrt{-3} \mapsto m^2 + 3n^2.$ 

假设  $d=\gcd_{\mathbb{Z}[\sqrt{-3}]}\left(4,\left(1-\sqrt{-3}\right)^2\right)$  存在,则存在  $a,b\in\mathbb{Z}$ ,使得

$$d \cdot \left( a + b\sqrt{-3} \right) = 4,$$

从而

$$N(d) \cdot (a^2 + 3b^2) = 16.$$

观察到  $1 \pm \sqrt{-3}$  均是 4 与  $\left(1 - \sqrt{-3}\right)^2$  的公因子,  $N\left(1 + \sqrt{-3}\right) = N\left(1 - \sqrt{-3}\right) = 4$ , 因此  $4 \mid N(d)$ . 又  $U\left(\mathbb{Z}\left[\sqrt{-3}\right]\right) = \{1, -1\}$ ,  $1 \pm \sqrt{-3}$  非相伴元, N(d) > 4. 而显然  $N(d) \neq 8$ , 故 N(d) = 16, 这意味着  $a = \pm 1, b = 0, d = \pm 4$ , 但  $d = \pm 4$  不是  $\left(1 - \sqrt{-3}\right)^2$  的因子.

**命题 2.4.30** 若 R 是 PID, 则 R 中素元 = 不可约元.

**证明** 由命题 2.3.30, 只需证 R 中不可约元是素元. 设  $a \in R$  不可约,  $a \mid bc$ . 假设  $a \nmid b$ , 下证  $a \mid c$ . 由 a 不可约可知 gcd(a,b) 相伴于  $1_R$ , 由 Bézout 等式, 存在  $u,v \in R$  使得

$$1_R = u \cdot a + v \cdot b.$$

两边同乘c得

$$c = (uc) \cdot a + v \cdot (bc) \in (a).$$

**命题 2.4.31** 设 R 是非域的 PID,  $\{0_R\} \neq \mathfrak{p} \in \operatorname{Spec}(R)$ , 则  $\mathfrak{p} \in \operatorname{MaxSpec}(R)$ . 故 R 的任何非零素理想均极 大,  $\operatorname{Spec}(R) = \{0_R\} \sqcup \operatorname{MaxSpec}(R)$ .

**证明** 由于  $R \in PID$ , 存在素元  $a \in R$  使得  $\mathfrak{p} = (a)$ . 假设  $\mathfrak{p}$  不是极大理想, 则存在  $I \subseteq R$ , 使得

$$\mathfrak{p} \subsetneq I \subsetneq R$$
.

设 I = (b), 则由  $(b) \supset (a)$  知  $b \mid a$ . 由 a 是素元,  $b \in U(R)$  或 b 与 a 相伴. 若  $b \in U(R)$ , 则 (b) = R, 矛盾; 若 b 与 a 相伴, 则 (b) = (a), 也矛盾. 故  $\mathfrak{p}$  是极大理想.

**推论 2.4.32** 设 R 是非域的 PID,  $\{0_R\} \neq \mathfrak{p} \in \operatorname{Spec}(R)$ , 则  $R/\mathfrak{p}$  是域.

在 k[x] 中可以约定仅考虑首一多项式. 例如:

- ◇ 多项式  $f(x), g(x) \in k[x]$  的最大公因式是指首一多项式 h(x) 满足:  $h(x) \mid f(x), h(x) \mid g(x)$ , 且若  $a(x) \mid f(x), a(x) \mid g(x)$ , 总有  $a(x) \mid h(x)$ .
- ◇ k[x] 中不可约元称为域 k 上的不可约多项式, 故

$$MaxSpec(k[x]) \stackrel{1:1}{\longleftrightarrow} \{k \perp 首一不可约多项式\}.$$

特别地,  $k \hookrightarrow \text{MaxSpec}(k[x]), \lambda \mapsto x - \lambda$ .

**练习 2.4.33** 设 f(x) 是域 k 上的不可约非零多项式,  $\deg(f(x)) \leq 3$ , 则 f(x) 在 k 上不可约  $\iff$  Root $_k(f) = \emptyset$ .

**命题 2.4.34**  $|\text{Root}_k(f)| \leq \deg(f(x))$ . 提示 利用定理 2.4.19 归纳可证, 若  $\alpha_1, \dots, \alpha_m \in k$  是 f(x) 不同的零点, 则  $(x - \alpha_1) \dots (x - \alpha_m) \mid f(x)$ .

域扩张 设有域的包含关系  $k \subset K$ , 则  $f(x) \in k[x]$  可视为 K[x] 中的元素, 且

- $\diamond \operatorname{Root}_k(f) \subset \operatorname{Root}_K(f)$ .
- ♦  $f(x) \in k[x]$  不可约  $\implies f(x) \in K[x]$  不可约.
- $\diamond$  设  $f(x),g(x)\in k[x].$  总有  $\gcd_{k[x]}(f(x),g(x))=\gcd_{K[x]}(f(x),g(x)).$

上面最后一条断言可由辗转相除法不随域扩张而改变直接得到,也可如下证明:

证明 记  $d_1(x) = \gcd_{k[x]}(f(x), g(x)), d_2(x) = \gcd_{K[x]}(f(x), g(x)), 则 d_1(x) \mid d_2(x).$  由 k[x] 上的 Bézout 等式, 存在  $u(x), v(x) \in k[x]$  使得

$$d_1(x) = u(x)f(x) + v(x)g(x),$$

在 K[x] 中,  $d_2(x)$  | f(x),  $d_2(x)$  | g(x), 由上式即得  $d_2(x)$  |  $d_1(x)$ . 又  $d_1(x)$ ,  $d_2(x)$  均为首一多项式, 故  $d_1(x) = d_2(x)$ .

通常情况并不如上文中域的包含关系这么理想. 考虑域同态  $\theta: k \hookrightarrow K$  (由练习 2.3.6, 域同态一定是单的, 因此  $k \simeq \operatorname{Im} \theta$ ), 则自然地有环嵌入 (仍用  $\theta$  标识)

$$\theta: k[x] \hookrightarrow K[x]$$

$$f(x) = \sum_{i=0}^{n} a_i x^i \mapsto \theta(f(x)) = \sum_{i=0}^{n} \theta(a_i) x^i.$$

并目.

- $\diamond \ \theta(\operatorname{Root}_k(f)) \subset \operatorname{Root}_K(\theta(f)).$
- $\Leftrightarrow f(x) \in k[x]$  不可约  $\Longrightarrow \theta(f(x)) \in K[x]$  不可约.

**练习 2.4.35** 证明以上第 1 条和第 3 条断言.

**Kronecker 添根构造** 设 k 为域,  $f(x) \in k[x]$  为首一不可约多项式. 考虑典范同态

$$\theta: \qquad \qquad k \overset{\operatorname{can}}{\longleftarrow} k[x] \overset{\operatorname{can}}{\longrightarrow} k[x]/(f(x)) = K$$
 
$$\lambda \longmapsto \lambda \longmapsto \overline{\lambda} = \lambda + (f(x)).$$

**练习 2.4.36** 设  $a \in k$ ,则存在域同构

$$k \stackrel{\sim}{\longrightarrow} k[x]/(x-a).$$

提示〉用带余除法.

**注记 2.4.37** 当 f(x) 为一次首一多项式时, 由 k[x]/(f(x)) 得不到新的域. 因此以下设  $\deg(f(x)) = n \ge 2$ . 此时  $\mathrm{Root}_k(f) = \emptyset$ .

记  $u = x + (f(x)) \in K$ . 对任意  $\overline{g(x)} \in K$ , 由 k[x] 上的带余除法, 有

$$g(x) = q(x)f(x) + r(x),$$

其中 r(x) = 0 或 deg(r(x)) < n. 故  $\overline{g(x)} = \overline{r(x)}$ , 进而有双射

$$K \xleftarrow{1:1} \qquad \{r(x) \in k[x] : r(x) = 0 \text{ if } \deg(r(x)) < n\}$$
 
$$\overline{r(x)} \xleftarrow{} r(x)$$
 
$$\theta(c_{n-1})u^{n-1} + \dots + \theta(c_1)u + \theta(c_0) \xleftarrow{} c_{n-1}x^{n-1} + \dots + c_1x + c_0.$$

**例 2.4.38 (四元域)** 记  $\mathbb{F}_2 = \{\overline{0}, \overline{1}\}$ . 考虑不可约多项式  $x^2 + x + \overline{1} \in \mathbb{F}_2[x]$ , 有双射

$$\{a + bx : a, b \in \mathbb{F}_2\} \stackrel{1:1}{\longleftrightarrow} \mathbb{F}_4 := \mathbb{F}_2[x]/(x^2 + x + \overline{1})$$
  
 $a + bx \longmapsto \theta(a) + \theta(b)u.$ 

因此  $\mathbb{F}_4 = \{\theta(\overline{0}), \theta(\overline{1}), u, u + \theta(\overline{1})\}.$ 

在以上尝试中, 我们自然希望将 k 等同于 K 的子域, 以便摆脱繁琐的  $\theta$ .

**练习 2.4.39** 设 k, L 为域. 考虑域同态  $\theta: k \hookrightarrow L$  (由练习 2.3.6, 域同态一定是单的), 则 L 自然成为 k-线性空间. 其上的加法即域 L 上加法, 而数乘运算定义为:

$$\lambda. a := \theta(\lambda) \cdot a, \quad \forall \lambda \in k, a \in L.$$

**注记 2.4.40** L 作为 k-线性空间与域同态  $\theta$  有关.

有了练习 2.4.39, 我们可以将 K 视为 k-线性空间, 于是

$$\theta(c_{n-1})u^{n-1} + \dots + \theta(c_1)u + \theta(c_0) = c_{n-1} \cdot u^{n-1} + \dots + c_1 \cdot u + c_0 \cdot 1_k,$$

上式右边是 k-线性组合,  $\{1_k, u, \dots, u^{n-1}\}$  是 K 的 k-线性基,  $\dim_k K = n = \deg(f)$ .

**约定 2.4.41** 由于  $\theta(\lambda) = \lambda . 1_k$ , 下面仍记  $\theta(\lambda) = \lambda + (f(x))$  为  $\lambda$ . 例如, 在这种约定下, 练习 2.4.39 中  $\mathbb{F}_4 = \{\overline{0}, \overline{1}, u, u + \overline{1}\}.$ 

**练习 2.4.42**  $\mathbb{F}_4$  的加法表与乘法表.

解答 见表 2.1.

表 2.1:  $\mathbb{F}_4 = \mathbb{F}_2[x]/(x^2 + x + \overline{1})$  的加法表与乘法表

| +                  | $\overline{0}$   | $\overline{1}$     | u                  | $u + \overline{1}$ |   | ×                  | $\overline{0}$ | $\overline{1}$     | u                  | $u + \overline{1}$ |
|--------------------|------------------|--------------------|--------------------|--------------------|---|--------------------|----------------|--------------------|--------------------|--------------------|
|                    | $\overline{0}$   |                    |                    |                    | • | $\overline{0}$     | $\overline{0}$ | $\overline{0}$     | $\overline{0}$     | $\overline{0}$     |
| $\overline{1}$     | $\overline{1}$   | $\overline{0}$     | $u + \overline{1}$ | u                  |   | $\overline{1}$     | $\overline{0}$ | $\overline{1}$     | u                  | $u + \overline{1}$ |
| u                  | u                | $u + \overline{1}$ | $\overline{0}$     | $\overline{1}$     |   | u                  | $\overline{0}$ | u                  | $u + \overline{1}$ | $\overline{1}$     |
| $u + \overline{1}$ | $u+\overline{1}$ | u                  | $\overline{1}$     | $\overline{0}$     |   | $u + \overline{1}$ | $\overline{0}$ | $u + \overline{1}$ | $\overline{1}$     | u                  |

**练习 2.4.43** (1) 不存在  $\mathbb{F}_4 \to \mathbb{Z}_4$  的同态.

(2) 存在唯一的  $\mathbb{Z}_4 \to \mathbb{F}_4$  的同态.

在约定 2.4.41 下, 可将 k[x] 中多项式  $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$  等同于 K[x] 中多项式  $x^n + \theta(a_{n-1})x^{n-1} + \cdots + \theta(a_1)x + \theta(a_0)$ . 有如下重要观察:

**命题 2.4.44**  $u \in \text{Root}_K(f)$ , 即  $f(u) = u^n + \theta(a_{n-1})u^{n-1} + \dots + \theta(a_1)u + \theta(a_0) = 0_K$ .

**例 2.4.45** 考虑不可约多项式  $x^2 + 1 \in \mathbb{R}[x]$  以及域嵌入

$$\theta: \mathbb{R} \to \mathbb{R}[x]/(x^2+1) = K$$
  $a \mapsto \theta(a) = a + (x^2+1)$  (仍记为  $a$ ).

记  $u = x + (x^2 + 1) \in K$ , 则 K 作为  $\mathbb{R}$ -线性空间有  $\mathbb{R}$ -基  $\{1, u\}$ , K 中元素为 a + bu, 其中  $a, b \in \mathbb{R}$ . 有同构

$$K \xrightarrow{\sim} \mathbb{C}, \quad a + bu \mapsto a + b\sqrt{-1}.$$

但 K 未必就是  $\mathbb{C}$ , 因为另有同构

$$K \xrightarrow{\sim} \mathbb{C}, \quad a + bu \mapsto a - b\sqrt{-1}.$$

又  $u \in \text{Root}_K(x^2 + 1)$ , 由定理 2.4.19 可得  $x^2 + 1$  在 K[x] 中的分解 (运用 Vieta 定理):

$$x^{2} + 1 = (x - u)(x + u).$$

**例 2.4.46** 由于  $u \in \text{Root}_{\mathbb{F}_4}(x^2+x+\overline{1})$ ,  $\mathbb{F}_2$  上不可约多项式  $x^2+x+\overline{1}$  在  $\mathbb{F}_4$  上有分解 (运用 Vieta 定理及表 2.1)

$$x^2 + x + \overline{1} = (x+u)(x+u+\overline{1}).$$

**定理 2.4.47 (\theta 的泛性质)** 考虑 K = k[x]/(f(x)), u = x + (f(x)), 域同态  $\delta : k \to F$ , 以及  $\alpha \in \text{Root}_F(\delta(f))$ . 则唯一存在域同态  $\delta' : K \to F$  使得  $\delta = \delta' \circ \theta$  且  $\delta'(u) = \alpha$ .



**证明** (1) 先证明  $\delta'$  的至多唯一性:  $\{1_k, u, \cdots, u^{n-1}\}$  是 K 的 k-线性基, 且

$$\delta'(\theta(c_{n-1})u^{n-1} + \dots + \theta(c_1)u + \theta(c_0)) = \delta(c_{n-1})\alpha^{n-1} + \dots + \delta(c_1)\alpha + \delta(c_0).$$

(2) 再给出  $\delta'$  的构造. 由命题 2.4.13, 唯一存在环同态  $\widetilde{\delta}: k[x] \to F$ , 使得  $\widetilde{\delta}\big|_k = \delta$  且  $\widetilde{\delta}(x) = \alpha$ , 进而  $\widetilde{\delta}(f(x)) = \delta(f)(\alpha) = 0_F$ . 于是  $(f(x)) \subset \operatorname{Ker} \widetilde{\delta}$ . 由命题 2.2.19,  $\widetilde{\delta}$  诱导环同态

$$\delta': K = k[x]/(f(x)) \to F$$
 
$$\overline{g(x)} \mapsto \widetilde{\delta}(g(x)).$$

 $\delta'$  使得  $\delta = \delta' \circ \theta$  且  $\delta'(u) = \widetilde{\delta}(x) = \alpha$ .

**注记 2.4.48** 等式  $\delta = \delta' \circ \theta$  意味着  $\delta'$  延拓  $\delta$ .

**练习 2.4.49 (九元域)** 记  $\mathbb{F}_3 = \{\overline{0}, \overline{1}, \overline{2}\}$ . 考虑不可约多项式  $x^2 + \overline{1} \in \mathbb{F}_3[x]$ , 以及域同态

$$\mathbb{F}_3 \hookrightarrow \mathbb{F}_3[x]/(x^2 + \overline{1}) =: \mathbb{F}_9.$$

 $i \exists v = x + (x^2 + \overline{1}) \in \mathbb{F}_9.$ 

- (1) F9 的加法表与乘法表.
- (2) 在  $\mathbb{F}_9[x]$  中分解  $x^2 + \overline{1}$ .

**解答** (2) 
$$x^2 + \overline{1} = (x - u)(x - \overline{2}u)$$
.

**练习 2.4.50** 记  $K = \mathbb{R}[x]/(x^2+2)$ ,  $v = x + (x^2+2) \in K$ . 证明  $K \simeq \mathbb{C}$ .

**练习 2.4.51** 如果 D 为整环但不是域, 求证 D[x] 不是 PID.

**例 2.4.52** 在  $\mathbb{F}_9$  中求  $(\overline{2}u + \overline{1})^{-1}$ .

解答 由于  $gcd_{\mathbb{F}_2[x]}(\overline{2}x+\overline{1},x^2+\overline{1})=\overline{1}$ , 通过带余除法可得 Bézout 等式:

$$x^2 + \overline{1} = (\overline{2}x + \overline{2})(\overline{2}x + \overline{1}) + \overline{2}.$$

因此在 Fo 中

$$\overline{0} = (\overline{2}u + \overline{2})(\overline{2}u + \overline{1}) + \overline{2} \iff \overline{1} = (\overline{2}u + \overline{2})(\overline{2}u + \overline{1}),$$

### 2.5 Euclid 整环

定义 2.5.1 整环 R 称为 Euclid 整环 (ED), 若存在 Euclid 函数

$$\phi: R^{\times} = R \setminus \{0_R\} \to \mathbb{Z}_{\geq 0},$$

使得任给  $a,b \in \mathbb{R}^{\times}$ , 存在  $q,r \in \mathbb{R}$  满足

$$a = qb + r$$
,

其中  $r = 0_R$  或  $\phi(r) < \phi(b)$ .

**例 2.5.2** 整数环  $\mathbb{Z}$  是 ED. 此时 Euclid 函数  $\phi = |\cdot|$ , 而表达式不唯一, 如

$$33 = 3 \cdot 9 + 6 = 4 \cdot 9 - 3.$$

第二个表达式更好, 因为  $\phi(-3) = |-3|$  更小.

**例 2.5.3** 域上的一元多项式环 k[x] 是 ED. 此时 Euclid 函数  $\phi = \deg(\cdot)$ .

**定理 2.5.4** ED 是 PID.

**证明** 设 R 是 ED. 对任意非零理想  $I \triangleleft R$ , 取非零元  $b \in I$  使  $\phi(b)$  最小. 断言: I = (b). 对任意  $a \in I$ , 由 R 是 ED 有

$$a = qb + r$$
,

其中  $r = 0_R$  或  $\phi(r) < \phi(b)$ . 由于  $r = a - qb \in I$ , 由 b 的最小性知  $r = 0_R$ . 故  $b \mid a$ .

**命题 2.5.5**  $\mathbb{Z}[\sqrt{-1}]$  是 ED, 从而是 PID.

证明 范数映射

$$N: \mathbb{Q}(\sqrt{-1})^{\times} \to \mathbb{Q}_{+}$$
$$z \mapsto z \cdot \overline{z}$$

是积性函数 (因复共轭  $\sigma \in Aut(\mathbb{C})$ ):

$$N(z \cdot w) = N(z) \cdot N(w), \quad \forall z, w \in \mathbb{Q}(\sqrt{-1})^{\times}.$$

N 限制在  $\mathbb{Z}\left[\sqrt{-1}\right]^{\times}\subset\mathbb{Q}\left(\sqrt{-1}\right)^{\times}$  为 Euclid 函数. 对任意  $x,y\in\mathbb{Z}\left[\sqrt{-1}\right]^{\times}$ , 记

$$\frac{x}{y} = \frac{x \cdot \overline{y}}{N(y)} = \alpha + \beta \sqrt{-1} \in \mathbb{Q}(\sqrt{-1})^{\times}, \quad \alpha, \beta \in \mathbb{Q}.$$

取  $m, n \in \mathbb{Z}$  使得

$$|\alpha - m| \leqslant \frac{1}{2}, \quad |\beta - m| \leqslant \frac{1}{2}.$$

则由

$$\frac{x}{y} = \left(m + n\sqrt{-1}\right) + \left[\left(\alpha - m\right) + \left(\beta - n\right)\sqrt{-1}\right]$$

可得

$$x = qy + r,$$

其中  $q=m+n\sqrt{-1}, r=\left[(\alpha-m)+(\beta-n)\sqrt{-1}\right]\cdot y\in\mathbb{Z}\left[\sqrt{-1}\right]$ . 若  $r\neq0$ , 则

$$N(r) = \left[ (\alpha - m)^2 + (\beta - n)^2 \right] \cdot N(y) \leqslant \left( \frac{1}{4} + \frac{1}{4} \right) N(y) < N(y).$$

故  $\mathbb{Z}[\sqrt{-1}]$  是 ED.

**练习 2.5.6** 利用范数映射证明例 2.1.19 (4).

**练习 2.5.7** 记  $i = \sqrt{-1}$ . 在  $\mathbb{Z}[\sqrt{-1}]$  上计算 gcd(4 + 7i, 3 + 4i).

解答 由辗转相除法:

$$\Rightarrow \frac{4+7i}{3+4i} = \frac{8}{5} + \frac{1}{5}i = 2 + \left(-\frac{2}{5} + \frac{1}{5}i\right) \implies 4+7i = 2 \cdot (3+4i) - (2+i).$$

$$\Rightarrow \frac{3+4i}{2+i} = 2+i \implies \gcd(4+7i, 3+4i) = \gcd(3+4i, 2+i) = 2+i.$$

**命题 2.5.8**  $\mathbb{Z}[\sqrt{-2}]$  是 ED, 从而是 PID.  $\left[\frac{1}{2}\right]^2 + \left(\frac{1}{2}\right)^2 \cdot 2 < 1$ .

**练习 2.5.9** 利用范数映射证明  $U(\mathbb{Z}[\sqrt{-2}]) = \{\pm 1\}$ .

**命题 2.5.10** 由例 2.3.31 与命题 2.4.30 知,  $\mathbb{Z}[\sqrt{-3}]$  不是 PID, 因此也不是 ED.

**注记 2.5.11** 由于  $\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 \cdot 3 = 1$ , 命题 2.5.5 的证明方法在此处失效.

**命题 2.5.12** Eisenstein 整数环  $\mathbb{Z}[\omega]$  是 ED, 从而是 PID.

**证明**  $\omega$  满足方程  $\omega^2 + \omega + 1 = 0$ . 范数映射

$$N: \mathbb{Q}(\omega)^{\times} \to \mathbb{Q}_{+}$$
$$a + b\omega \mapsto a^{2} - ab + b^{2}$$

限制在  $\mathbb{Z}[\omega]^{\times} \subset \mathbb{Q}(\omega)^{\times}$  为 Euclid 函数. 对任意  $x, y \in \mathbb{Z}[\omega]^{\times}$ , 记

$$\frac{x}{y} = \frac{x \cdot \overline{y}}{N(y)} = \alpha + \beta \omega \in \mathbb{Q}(\omega)^{\times}, \quad \alpha, \beta \in \mathbb{Q}.$$

取  $m, n \in \mathbb{Z}$  使得

$$|\alpha - m| \leqslant \frac{1}{2}, \quad |\beta - m| \leqslant \frac{1}{2}.$$

则由

$$\frac{x}{y} = (m + n\omega) + [(\alpha - m) + (\beta - n)\omega]$$

可得

$$x = qy + r,$$

其中  $q=m+n\omega, r=[(\alpha-m)+(\beta-n)\omega]\cdot y\in\mathbb{Z}[\omega]$ . 若  $r\neq 0$ , 则

$$\begin{split} N(r) &= \left[ (\alpha - m)^2 + (\beta - n)^2 - (\alpha - m)(\beta - n) \right] \cdot N(y) \\ &\leqslant \left( \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \right) N(y) < N(y). \end{split}$$

故  $\mathbb{Z}[\omega]$  是 ED.

**练习 2.5.13** 利用范数映射证明  $U(\mathbb{Z}[\omega]) = \{\pm 1, \pm \omega, \pm \omega^2\}.$ 

代数整数环 考虑  $\mathbb{Z} \subset R \subset F = \operatorname{Frac}(R)$  使得  $\dim_{\mathbb{Q}} F < \infty$ . 这里  $\mathbb{Z} \subset R$  应理解为  $\operatorname{char}(R) = 0$  (参考注记 2.2.23).

**定义 2.5.14**  $\alpha \in F$  称为代数整数, 若  $\alpha$  满足首一的整系数方程:

$$\alpha^m + b_{m-1}\alpha^{m-1} + \dots + b_1\alpha + b_0 = 0_F, \quad b_i \in \mathbb{Z}, m \ge 1.$$

记F 中代数整数全体为 $\mathcal{O}_F$ .

有如下重要事实 (可参阅 James S. Mline 的 A Primer of Commutative Algebra 中定理 6.5):

**性质 2.5.15**  $\mathcal{O}_F$  是 F 的子环, 且  $Frac(\mathcal{O}_F) \simeq F$ .

**命题 2.5.16** 假设  $R \subset \mathcal{O}_F$ . 若 R 是 PID (或更弱点, 为 UFD), 则  $R = \mathcal{O}_F$ .

注记 2.5.17 为对以上 "若" 字之前的诸条件加深理解, 可参考以下实例:

$$\mathbb{Z} \quad \subset \quad R \quad \subset \quad F = \operatorname{Frac}(R)$$

$$\parallel \qquad \qquad \parallel$$

$$\mathbb{Z}[\sqrt{-3}] \qquad \qquad \mathbb{Q}(\sqrt{-3})$$

此时  $\dim_{\mathbb{Q}} F = 2$ . 由  $(x-m)^2 + 3n^2$  零化  $m + n\sqrt{-3} \in \mathbb{Z}[\sqrt{-3}]$  可知  $\mathbb{Z}[\sqrt{-3}] \subset \mathcal{O}_F$ . 由于  $\omega$  满足  $\omega^2 + \omega + 1 = 0$ ,  $\omega \in \mathcal{O}_F \setminus \mathbb{Z}[\sqrt{-3}]$  (也可由命题 2.5.24,  $-3 \equiv 1 \pmod{4}$ , 因此  $\mathcal{O}_{\mathbb{Q}(\sqrt{-3})} = \mathbb{Z}[\omega] \supsetneq \mathbb{Z}[\sqrt{-3}]$ ),

由命题 2.5.16 即知  $\mathbb{Z}[\sqrt{-3}]$  不是 PID. 而 Eisenstein 整数环  $\mathbb{Z}[\omega]$  是 PID, 由命题 2.5.16,  $\mathbb{Z}[\omega] = \mathcal{O}_{\mathbb{Q}(\sqrt{-3})}$ .

#### **练习 2.5.18** 考虑映射

$$\sigma: \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$$
  
 $a + b\sqrt{2} \mapsto a - b\sqrt{2}.$ 

证明:

- (1)  $\sigma \in \operatorname{Aut}(\mathbb{Q}(\sqrt{2}))$ .
- (2)  $\operatorname{Aut}\left(\mathbb{Q}\left(\sqrt{2}\right)\right) = \left\{\operatorname{Id}_{\mathbb{Q}\left(\sqrt{2}\right)}, \sigma\right\}.$
- (3)  $\sigma$  不能延拓为  $\mathbb{R}$  的自同构, 即不存在  $\delta \in \operatorname{Aut}(\mathbb{R})$ , 使得  $\delta|_{\mathbb{Q}(\sqrt{2})} = \sigma$ .

证明 (2) 设  $f \in \operatorname{Aut}\left(\mathbb{Q}\left(\sqrt{2}\right)\right)$ , 则  $f|_{\mathbb{Z}} = \operatorname{Id}_{\mathbb{Z}}$ . 对任意  $q = \frac{n}{m}$ ,  $n, m \in \mathbb{Z}$ , 由 q 是方程  $f(m) \cdot q = f(n)$  的 唯一解可知 f(q) = q, 故  $f|_{\mathbb{Q}} = \operatorname{Id}_{\mathbb{Q}}$ . 只需确定  $f(\sqrt{2})$  即可确定 f. 由  $f(\sqrt{2})^2 = f(\sqrt{2} \cdot \sqrt{2}) = 2$  可知  $f(\sqrt{2}) = \pm \sqrt{2}$ .

◇ 若 
$$f(\sqrt{2}) = \sqrt{2}$$
, 则  $f = \operatorname{Id}_{\mathbb{Q}(\sqrt{2})}$ .  
◇ 若  $f(\sqrt{2}) = -\sqrt{2}$ , 则  $f = \sigma$ .

(3) 若 
$$\delta \in \operatorname{Aut}(\mathbb{R})$$
, 则对任意  $x = y^2 \in \mathbb{R}_+$ ,  $\delta(x) = \delta(y)^2 > 0$ .

**命题 2.5.19**  $\mathbb{Z}[\sqrt{2}]$  是 ED, 从而是 PID.

证明 定义范数映射

$$N: \mathbb{Q}(\sqrt{2})^{\times} \to \mathbb{Q}_+$$
  
 $a + b\sqrt{2} \mapsto |a^2 - 2b^2|.$ 

根据练习 2.5.18, 由  $N(x) = |x \cdot \sigma(x)|$  可知 N 是积性函数:

$$N(x \cdot y) = N(x) \cdot N(y), \quad \forall x, y \in \mathbb{Q}(\sqrt{2})^{\times}.$$

N 限制在  $\mathbb{Z}[\sqrt{2}]^{\times} \subset \mathbb{Q}(\sqrt{2})^{\times}$  为 Euclid 函数. 对任意  $x,y \in \mathbb{Z}[\sqrt{2}]^{\times}$ , 记

$$\frac{x}{y} = \frac{x \cdot \sigma(y)}{y \cdot \sigma(y)} = \alpha + \beta \sqrt{2} \in \mathbb{Q}(\sqrt{2})^{\times}, \quad \alpha, \beta \in \mathbb{Q}.$$

取  $m, n \in \mathbb{Z}$  使得

$$|\alpha - m| \leqslant \frac{1}{2}, \quad |\beta - m| \leqslant \frac{1}{2}.$$

则由

$$\frac{x}{y} = \left(m + n\sqrt{2}\right) + \left[\left(\alpha - m\right) + \left(\beta - n\right)\sqrt{2}\right]$$

可得

$$x = qy + r,$$

其中  $q=m+n\sqrt{2}\in\mathbb{Z}\left[\sqrt{2}\right], r=\left[(\alpha-m)+(\beta-n)\sqrt{2}\right]\cdot y$ . 若  $r\neq 0$ , 则

$$N(r) = \left| (\alpha - m)^2 - 2(\beta - n)^2 \right| \cdot N(y) \leqslant \left[ \left( \frac{1}{2} \right)^2 + \left( \frac{1}{2} \right)^2 \cdot 2 \right] N(y) < N(y).$$

故  $\mathbb{Z}[\sqrt{2}]$  是 ED.

**练习 2.5.20**  $U(\mathbb{Z}[\sqrt{2}])$  为无限群.

证明 注意到 
$$1+\sqrt{2} \in U\left(\mathbb{Z}\left[\sqrt{2}\right]\right)$$
, 因此  $\left(1+\sqrt{2}\right)^n \in U\left(\mathbb{Z}\left[\sqrt{2}\right]\right), \forall n \geqslant 0$ .

**注记 2.5.21** 由 Dirichlet 单位定理可证  $U\left(\mathbb{Z}\left[\sqrt{2}\right]\right) = \left\{\pm\left(1+\sqrt{2}\right)^n : n \geqslant 0\right\}$ .

**命题 2.5.22**  $\mathbb{Z}[\sqrt{3}]$  是 ED, 从而是 PID.

证明 可仿照命题 2.5.19 证明, 区别仅在最后的放缩:

$$\left| (\alpha - m)^2 - 3(\beta - n)^2 \right| \leqslant \frac{3}{4} < 1.$$

**注记 2.5.23** Squarefree values of n for which the quadratic field  $\mathbb{Q}(\sqrt{n})$  is norm-Euclidean: -11, -7, -3, -2, -1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73. 关于 norm-Euclidean fields 可参阅 https://en.wikipedia.org/wiki/Euclidean\_domain#Norm-Euclidean\_fields.

**命题 2.5.24** 设  $d \in \mathbb{Z}$  无平方因子,则

$$\mathcal{O}_{\mathbb{Q}\left(\sqrt{d}\right)} = \begin{cases} \mathbb{Z}\left[\sqrt{d}\right], & \text{ $ \sharp d \equiv 2,3 \pmod 4 , $} \\ \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right], & \text{ $ \sharp d \equiv 1 \pmod 4 . $} \end{cases}$$

**定理 2.5.25** 设  $d \in \mathbb{Z}$  无平方因子,则存在基本单位  $u \in \mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ ,满足 u > 1,且  $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$  中所有单位都可表为  $\pm u^m$ ,其中  $m \in \mathbb{Z}$ .

**命题 2.5.26**  $\mathbb{Z}[\sqrt{5}]$  不是 ED.

**证明** 记  $\delta = \frac{1+\sqrt{5}}{2}$ . 因为  $5 \equiv 1 \pmod{4}$ , 由命题 2.5.24,  $\mathcal{O}_{\mathbb{Q}(\sqrt{5})} = \mathbb{Z}[\delta] \supsetneq \mathbb{Z}[\sqrt{5}]$ . 由命题 2.5.16,  $\mathbb{Z}[\sqrt{5}]$  不是 UFD, 进而不是 ED.

### 2.6 Gauss 素数

**定义 2.6.1** 整环 R 中非零元 a, b 称为相伴的, 若存在  $u \in U(R)$  使得 a = bu. 这等价于 (a) = (b).

**注记 2.6.2** 相伴是等价关系.

**例 2.6.3** 由  $N(m+n\mathbf{i})=m^2+n^2=1\iff m+n\mathbf{i}\in U(\mathbb{Z}[\mathbf{i}])$  可知  $U(\mathbb{Z}[\mathbf{i}])=\{\pm 1,\pm \mathbf{i}\}$ . 因此在相伴关系下,  $m+n\mathbf{i},-m-n\mathbf{i},-n+m\mathbf{i},n-m\mathbf{i}\in\mathbb{Z}[\mathbf{i}]$  应视为一体.

**命题 2.6.4** 设 R 为 PID,则存在双射

回顾命题 2.4.31, 此时  $Spec(R) = \{0\} \sqcup MaxSpec(R)$ .

**定义 2.6.5** Gauss 整数环 Z[i] 中的素元称为 Gauss 素数.

**注记 2.6.6** 因为  $\mathbb{Z}[i]$  是 PID,  $\mathbb{Z}[i]$  中素元 = 不可约元.

**例 2.6.7**  $2 = (1+i)(1-i) = -i(1+i)^2$  不是 Gauss 素数, 且相伴于 "平方数".

**练习 2.6.8** 1+i是 Gauss 素数.

练习 2.6.9  $\mathbb{Z}[i]/(1+i) \simeq \mathbb{F}_2$ .

**证明** 由于 N(1+i) = 2, 任意  $x \in \mathbb{Z}[i]$  作带余除法:

$$x = q(1+i) + r,$$

其中 r = 0 或 N(r) = 1. 因此只需考虑  $r = 0, \pm 1, \pm i$ . 由

$$1 - (-i) = 1 + i$$
,  $i - (-1) = 1 + i$ ,  $1 - (-1) = (1 + i)(1 - i)$ 

知  $\pm 1$ ,  $\pm i$  模 (1+i) 同余,  $\mathbb{Z}[i]/(1+i) = \{\overline{0},\overline{1}\}$  是二元域. 由例 2.1.10 知  $\mathbb{Z}[i]/(1+i) \simeq \mathbb{F}_2$ .

以下是一个更富技巧性的证明 (思路与定理 2.6.15 的证明相仿):

证明 定理 2.6.15 证明中给出了环同构

$$\varphi: \mathbb{Z}[\mathbf{i}] \xrightarrow{\sim} \mathbb{Z}[x]/(x^2+1)$$
  
 $a+b\mathbf{i} \mapsto \overline{a+bx}.$ 

由  $\varphi(1+i) = \overline{x+1}$  可得

$$(1+i) \stackrel{\varphi}{\longrightarrow} (\overline{x+1}).$$

由练习 2.6.16 即得环同构

$$\mathbb{Z}[i]/(1+i) \simeq (\mathbb{Z}[x]/(x^2+1))/(\overline{x+1}).$$

由  $(x+1)(1-x) \equiv 1-x^2 \equiv 2 \pmod{(x^2+1)}$  可知  $(\overline{2}) \subset (\overline{x+1})$ . 记  $R = \mathbb{Z}[x]/(x^2+1)$ , 由例 2.2.27, 存在环间构

$$(R/(\overline{2}))/((\overline{x+1})/(\overline{2})) \simeq R/(\overline{x+1}).$$

注意到

$$(R/(\overline{2}))/((\overline{x+1})/(\overline{2})) = \mathbb{F}_2[x]/(\overline{x+1}) \simeq \mathbb{F}_2$$

于是

$$\mathbb{Z}[\mathbf{i}]/(1+\mathbf{i}) \simeq R/(\overline{x+1}) \simeq \mathbb{F}_2.$$

**注记 2.6.10** (1) 由注记 2.3.12 (2),  $\mathbb{Z}[i]/(1+i)$  是域  $\implies 1+i$  是 Gauss 素数.

(2)  $\{0,1\}$  是模 (1+i) 同余的完全代表元系也可如下证明:

$$\diamond (1+i) \unlhd \mathbb{Z}[i] \implies 1 \notin (1+i) \implies 0 \not\equiv 1 \pmod{(1+i)}.$$

♦ 注意到  $2 = (1+i)(1-i) \in (1+i)$ , 因此对任意  $m + ni \in \mathbb{Z}[i]$ ,

$$m+n\mathbf{i} \equiv m-n \equiv \begin{cases} 0, & \text{若 } m-n \text{ 为偶数,} \\ 1, & \text{若 } m-n \text{ 为奇数} \end{cases} \pmod{(1+\mathbf{i})}.$$

(3) 更一般的结论见练习 2.6.26.

**练习 2.6.11** 记  $R = \mathbb{Z}[\mathbf{i}]/(2)$ .

- (1) 证明: R有4个元素.
- (2) R 是否同构于 ℤ4?
- (3) R 是否同构于  $\mathbb{F}_2[x]/(x^2)$ ?

解答 (1) 易知  $\{0,1,i,1+i\}$  是  $\mathbb{Z}[i]$  模 (2) 的完全代表元系. 也可在定理 2.6.15 证明用到的环同构中令 p=2 得到  $\mathbb{Z}[i]/(2) \simeq \mathbb{F}_2[x]/(x^2+\overline{1})$ .

(2) 不同构, 因为  $char(R) = 2 \neq 4$ .

(3) 
$$\mathbb{Z}[\mathbf{i}]/(2) \simeq \mathbb{F}_2[x]/(x^2 + \overline{1}) = \mathbb{F}_2[x]/((x + \overline{1})^2) \xrightarrow[x \mapsto x - \overline{1}]{\sim} \mathbb{F}_2[x]/(x^2).$$

**引理 2.6.12** 设  $z \in \mathbb{Z}[i]$ . 若 N(z) = p 为素数 (这样的 p 只能是 2 或 4k + 1), 则 z 是 Gauss 素数.

提示〉只需证z是不可约元.

**引理 2.6.13** 设奇素数 p = 4k + 3, 则 p 是 Gauss 素数.

**证明** 假设 p 在  $\mathbb{Z}[i]$  中有非平凡分解 p = xy, 则  $p^2 = N(x)N(y)$ . 由于 N(x), N(y) > 1, N(x) = N(y) = p. 因此 p 是两个整数 (一个奇数与一个偶数) 的平方和, 但一个奇数与一个偶数的平方和为 4k+1 型整数, 矛盾. 故 p 是不可约元, 即 p 是 Gauss 素数.

#### 例 2.6.14 (4k+1 型素数不是 Gauss 素数)

$$5 = (1+2i)(1-2i), \quad 13 = (3+2i)(3-2i), \quad 17 = (4+i)(4-i).$$

**定理 2.6.15 (Fermat 二平方和定理)** 设 p 为奇素数,则 p = 4k + 1 当且仅当  $p = a^2 + b^2$ . 此时,这样的 0 < a < b 唯一.

**证明** ( $\leftarrow$ ) 一个奇数与一个偶数的平方和为 4k+1 型整数.

① 由于  $4 \mid (p-1)$ , 由命题 4.2.8, 循环群  $\mathbb{F}_p^{\times}$  中有四阶元, 因此方程  $x^2 + \overline{1} = \overline{0}$  在  $\mathbb{F}_p^{\times}$  中有解, 即  $x^2 + \overline{1}$  在  $\mathbb{F}_p[x]$  中可约. 注意到存在**环同构** 

$$\mathbb{Z}[\mathbf{i}]/(p) \simeq \mathbb{F}_p[x]/(x^2 + \overline{1}),$$

由注记 2.3.12 (2), p 不是 Gauss 素数. 设 p 在  $\mathbb{Z}[i]$  中有非平凡分解 p = xy, 则  $p^2 = N(x)N(y)$ . 由于 N(x), N(y) > 1, N(x) = N(y) = p. 故存在  $a, b \in \mathbb{N}$  使得  $p = a^2 + b^2$ .

② 设  $p = a^2 + b^2 = c^2 + d^2$ , 其中 0 < a < b, 0 < c < d. 由引理 2.6.12,

$$a + bi$$
,  $a - bi$ ,  $c + di$ ,  $c - di$ 

均为 Gauss 素数. 由 p = (a+bi)(a-bi) = (c+di)(c-di) 知  $(a+bi) \mid (c+di)$  或  $(a+bi) \mid (c-di)$ . 但  $c \pm di$  也是 Gauss 素数, 因此 a+bi 与 c+di 相伴或与 c-di 相伴。设  $a+bi = u(c\pm di)$ , 容易验证,  $u \neq -1$ ,  $\pm i$ . 故 a+bi = c+di. 这证明了  $a,b \in \mathbb{N}$  的唯一性.

#### (环同构补证) 以下分三步给出 (⇒) 中环同构的证明:

① 对环同态  $\mathbb{Z} \hookrightarrow \mathbb{Z}[i]$ , 由命题 2.4.13, 唯一存在环同态

$$\varphi : \mathbb{Z}[x] \to \mathbb{Z}[i]$$

$$f(x) \mapsto f(i).$$

显然  $\varphi$  是满射, 且 Ker  $\varphi = (x^2 + 1)$ . 由定理 2.2.20, 存在环同构

$$\overline{\varphi}: \mathbb{Z}[x]/(x^2+1) \xrightarrow{\sim} \mathbb{Z}[i]$$

② 观察到 ① 中环同构 ਓ 使得

$$(x^2+1,p)/(x^2+1) \xrightarrow{\overline{\varphi}} (p).$$

其中  $(x^2 + 1, p) := (x^2 + 1) + (p)$  表示包含  $x^2 + 1$  和 p 的最小理想. 由例 2.2.27 与练习 2.6.16, 存在如下两个环同构:

$$(\mathbb{Z}[x]/(x^2+1))/((x^2+1,p)/(x^2+1)) \xrightarrow{\sim} \mathbb{Z}[i]/(p)$$
例 2.2.27   
 $\mathbb{Z}[x]/(x^2+1,p)$ 

③ 由模 p 约化

$$\mathbb{Z}[x] \twoheadrightarrow \mathbb{F}_p[x], \quad \sum_{i=0}^n a_i x^i \mapsto \sum_{i=0}^n \overline{a_i} x^i$$

及定理 2.2.20, 存在环同构

$$\psi: \mathbb{Z}[x]/(p) \xrightarrow{\sim} \mathbb{F}_p[x].$$

观察到

$$(x^2+1,p)/(p) \xrightarrow{\psi} (x^2+\overline{1}),$$

再次运用例 2.2.27 与练习 2.6.16 就得到如下两个环同构:

$$(\mathbb{Z}[x]/(p))/((x^2+1,p)/(p)) \xrightarrow{\sim} \mathbb{F}_p[x]/(x^2+\overline{1})$$
例 2.2.27   
 $\mathbb{Z}[x]/(x^2+1,p)$ 

再结合②中环同构就得到欲证的环同构:

$$\mathbb{Z}[i]/(p) \xrightarrow{\sim} \mathbb{F}_p[x]/(x^2 + \overline{1}), \quad \overline{m+ni} \mapsto \overline{m} + \overline{nx}.$$

**练习 2.6.16** 设  $\theta: R \xrightarrow{\sim} S$  为环同构,  $I \triangleleft R$ ,  $\theta(I) \triangleleft S$ , 则  $R/I \simeq S/\theta(I)$ .

定理 2.6.17 (Gauss 素数分类) 在相伴的意义下, Gauss 素数可分为以下三类:

- $\diamond 1 + i$ .
- ♦ 4k+3 型素数.
- ♦  $a \pm bi$ , 其中  $p = a^2 + b^2 + b^$

**证明** 由于这三类数都是 Gauss 素数且互不相伴, 只需验证任一 Gauss 素数 (在相伴的意义下) 均从属于其中一类. 设  $z \in \mathbb{Z}[i]$  是 Gauss 素数, 则

$$z \mid z \cdot \overline{z} = N(z) = p_1^{n_1} \cdots p_k^{n_k},$$

其中  $p_1, \dots, p_k \in \mathbb{N}$  为素数,注意到每个  $p_i$  必为以下三类数之一:

- $\diamond p_i = 2 = -\mathbf{i} \cdot (1+\mathbf{i})^2.$
- ♦  $p_i$  为 4k+3 型素数.
- ♦  $p_i = a^2 + b^2 = (a + bi)(a bi)$  为 4k + 1 型素数.

因此  $N(z) = z_1 \cdots z_s$ , 其中每个  $z_i$  均为定理所述三类数之一. 由  $z \mid z_1 \cdots z_s$  可知存在  $1 \leq j \leq s$  使得  $z \mid z_i$ . 又  $z \mid z_i$  均为 Gauss 素数, 故  $z \mid z_i$  相伴.

**注记 2.6.18** 4k + 3 与 4k + 1 型素数均有无穷个. (直接证明或由 Dirichlet 定理: 设正整数 a, d 互素,则 a + nd 型素数有无穷个.)

命题 2.6.19  $\mathbb{Z}[i]$  中任一元素 z 有素分解

$$z \stackrel{\text{fift}}{\sim} z_1 \cdots z_t,$$

其中 z<sub>1</sub>, · · · , z<sub>t</sub> 均为 Gauss 素数.

**证明** 由于  $\mathbb{Z}[i]$  是 PID, 这等价于证明有不可约分解. 设  $z \in \mathbb{Z}[i]$ , 若 z 是不可约元, 则已满足要求; 若 z = xy 是非平凡分解, 则 N(x), N(y) < N(z), 由递降法即得证.

**定理 2.6.20 (二平方和定理)** 设  $n \ge 2$ ,则 n 可写成二平方和当且仅当有标准分解

$$n = 2^r p_1^{m_1} \cdots p_t^{m_t},$$

其中若  $p_i = 4k + 3$ , 相应的  $m_i$  为偶数.

证明 (⇐) 注意到恒等式

$$(a^2 + b^2)(c^2 + d^2) = (ac \pm bd)^2 + (ad \mp bc)^2$$

蕴含着: 若两个整数均可表示成两个整数的平方和,则它们的积也是两个整数的平方和 (这本质上是  $\mathbb{Z}[i]$  中范数映射的积性). 由已知条件,结合定理 2.6.15,易知 n 可写成若干平方和的乘积,进而可写成二平方和.

(⇒) 设  $n = a^2 + b^2, z = a + bi \in \mathbb{Z}[i]$ . 由命题 2.6.19, z 在  $\mathbb{Z}[i]$  中有标准分解

$$z = u \cdot z_1 \cdot \cdot \cdot z_t,$$

34 第二章 环论

其中  $u \in \{\pm 1, \pm i\}$ ,  $z_1, \dots, z_t$  均为 Gauss 素数. 于是

$$n = N(z) = N(z_1) \cdots N(z_t).$$

由定理 2.6.17 即知 n 有所给的标准分解.

**例 2.6.21** 在  $\mathbb{Z}[i]$  中分解 z = 29 - 2i.

**解答**  $N(z) = 5 \cdot 13^2$ . 由定理 2.6.17 知 z 的不可约因子只能在  $1 \pm 2i$ ,  $2 \pm 3i$  之中. 通过试除即知  $z = -1 \cdot (1 + 2i) \cdot (2 + 3i)^2$ .

**练习 2.6.22** 分别将 60 和 81 + 8i 在  $\mathbb{Z}[i]$  中分解成不可约元之积.

解答 
$$60 = -1 \cdot 3 \cdot (1+2i) \cdot (1-2i) \cdot (1+i)^4$$
,  $81 + 8i = -i \cdot (2-7i) \cdot (1-2i)^3$ .

**命题 2.6.23** 任一环同态  $\theta: R \to S$  诱导映射

$$\operatorname{Spec}(S) \to \operatorname{Spec}(R), \quad \mathfrak{q} \mapsto \theta^{-1}(\mathfrak{q}).$$

特别地, 若R是S的子环, 则有映射

$$\operatorname{Spec}(S) \to \operatorname{Spec}(R), \quad \mathfrak{q} \mapsto \mathfrak{q} \cap R.$$

**注记 2.6.24** 诱导映射的良定性见练习 2.3.35 (2), 它是 Zariski 拓扑下的连续映射. 此时还有整环间的嵌入映射

$$R/(\mathfrak{q} \cap R) \hookrightarrow S/\mathfrak{q}$$
.

练习 2.6.25  $\mathbb{Z}[i]$  的素理想与  $\mathbb{Z}$  的交集有以下三类情形:

- (1)  $(1+i) \cap \mathbb{Z} = 2\mathbb{Z}$ .
- (2) 若 p 为 4k + 3 型素数,则  $(p) \cap \mathbb{Z} = p\mathbb{Z}$ .
- (3) 若  $p = a^2 + b^2$  (0 < a < b) 为 4k + 1 型素数, 则  $(a + bi) \cap \mathbb{Z} = (a bi) \cap \mathbb{Z} = p\mathbb{Z}$ .

提示》RHS  $\subset$  LHS 均显然,再由命题 2.6.23 及  $p\mathbb{Z} \in$  MaxSpec( $\mathbb{Z}$ ) 可得 LHS = RHS. 由命题 2.6.23,考虑  $\mathbb{Z} \subset \mathbb{Z}[i]$ ,利用练习 2.6.25,可得 Spec( $\mathbb{Z}[i]$ )  $\to$  Spec( $\mathbb{Z}$ ) 的图像:



- ⋄  $\mathbb{Z}[i]/(1+i) \simeq \mathbb{F}_2$  (练习 2.6.9).
- ◇ 若 p 为 4k + 3 型素数, 定理 2.6.15 证明中给出环同构

$$\mathbb{Z}[\mathbf{i}]/(p) \simeq \mathbb{F}_p[x]/(x^2 + \overline{1}),$$

注意到  $x^2 + \overline{1} \in \mathbb{F}_p[x]$  是不可约多项式, 上式两边均为  $p^2$  元域.

◇ 若  $p = a^2 + b^2$  (0 < a < b) 为 4k + 1 型素数, 则  $\mathbb{Z}[i]/(a + bi) \simeq \mathbb{F}_p$  (练习 2.6.26).

练习 2.6.26 设  $a,b \in \mathbb{Z}$ . 若  $\gcd(a,b) = 1$ , 则  $\mathbb{Z}[i]/(a+bi) \simeq \mathbb{Z}/(a^2+b^2)$ .

**证明** 因为 gcd(a,b) = 1, 由 Bézout 等式, 存在  $u,v \in \mathbb{Z}$  使得 au + bv = 1, 从而

$$(a+b\mathbf{i})(v+u\mathbf{i}) = (av-bu) + (au+bv)\mathbf{i} = av-bu+\mathbf{i}.$$

因此在  $\mathbb{Z}[i]/(a+bi)$  中  $i \equiv bu-av \pmod{(a+bi)}$ , 进而

$$c + d\mathbf{i} \equiv c + d(bu - av) \pmod{(a + b\mathbf{i})}, \quad \forall c, d \in \mathbb{Z}.$$

而  $c + d(bu - av) \in \mathbb{Z}$ , 这说明环同态

$$\theta: \mathbb{Z} \to \mathbb{Z}[\mathbf{i}]/(a+b\mathbf{i})$$

$$m \mapsto \overline{m}$$

是满的. 再由

$$m \in \operatorname{Ker} \theta \iff (a+b\mathrm{i}) \mid m \iff \frac{m}{a+b\mathrm{i}} = \frac{m(a-b\mathrm{i})}{a^2+b^2} \in \mathbb{Z}[\mathrm{i}]$$

$$\iff (a^2+b^2) \mid ma \coprod (a^2+b^2) \mid mb \iff (a^2+b^2) \mid \gcd(ma,mb)$$

$$\iff (a^2+b^2) \mid m \cdot \gcd(a,b) \iff (a^2+b^2) \mid m$$

得 Ker  $\theta = (a^2 + b^2)$  Z. 故由定理 2.2.20,

$$\mathbb{Z}[i]/(a+bi) = \operatorname{Im} \theta \simeq \mathbb{Z}/\operatorname{Ker} \theta = \mathbb{Z}/(a^2+b^2)\mathbb{Z}.$$

## 2.7 唯一分解整环

#### **定义 2.7.1** 整环 R 称为唯一分解整环 (UFD), 若满足以下两条:

(1) (存在不可约分解) 每个非零非单位元素  $a \in R$  均可写成

$$a = c_1 c_2 \cdots c_r,$$

其中 $c_i$ 均为不可约元.

- (2) **(分解的唯一性)** 若  $a = c_1 c_2 \cdots c_r = c_1' c_2' \cdots c_s'$  是 a 的任意两个上述不可约分解,则 r = s,且存在置换  $\sigma \in S_r$ ,使得  $c_i$  与  $c_{\sigma(i)}'$  ( $1 \le i \le r$ )相伴.
- **注记 2.7.2** 由推论 2.7.23, 条件 (2) 可替换成 "R 中素元 = 不可约元".
- **命题 2.7.3** 若 R 是 UFD,则 R 中素元 = 不可约元.故 UFD 中任一元素有素分解.
- **命题 2.7.4** 若 R 是 UFD,则 R 中任一非零非单位元素 a 有标准分解

$$a = up_1^{n_1} \cdots p_r^{n_r},$$

36 第二章 环论

其中  $u \in U(R)$ ,  $p_1, \dots, p_r$  为素元且互不相伴,  $n_i \ge 1$  ( $1 \le i \le r$ ). 进而 a 的因子总形如

$$vp_1^{m_1}\cdots p_r^{m_r},$$

其中  $v \in U(R)$ ,  $0 \le m_i \le n_i$  ( $1 \le i \le r$ ). 在相伴的意义下, a 恰有  $\prod_{i=1}^r (1+n_i)$  个因子.

**命题 2.7.5** 若 R 是 UFD, 则对任意非零元  $a,b \in R$ ,  $\gcd(a,b)$  和  $\operatorname{lcm}(a,b)$  均存在. 若 a,b 有标准分解

$$a = up_1^{n_1} \cdots p_r^{n_r}, \quad b = vp_1^{m_1} \cdots p_r^{m_r},$$

其中  $u, v \in U(R)$ ,  $n_i, m_i \ge 0$ , 则

$$\gcd(a,b)$$
 相伴于  $\prod_{i=1}^r p_i^{\min\{n_i,m_i\}}$ ,  $\operatorname{lcm}(a,b)$  相伴于  $\prod_{i=1}^r p_i^{\max\{n_i,m_i\}}$ .

**引理 2.7.6** 设 R 为 UFD, a, b 为 R 中非零元.

- (1)  $\gcd\left(\frac{a}{\gcd(a,b)},\frac{b}{\gcd(a,b)}\right)$  相伴于 1.
- (2) 若 gcd(a,b) 相伴于 1 (即 a,b 互素) 且 a | bc,则 a | c.

**命题 2.7.7** 若 R 为 UFD, 则 Frac(R) 中任一元素  $\frac{a}{b}$  有既约表达  $\frac{a}{b} = \frac{a'}{b'}$ , 其中 gcd(a',b') 相伴于 1. 现在可以证明命题 2.5.16.

命题 2.5.16 UFD 是整闭环.

**证明** 设 R 为 UFD. 任取  $\frac{a}{b} \in \operatorname{Frac}(R) \setminus R$ , 由命题 2.7.7, 可设  $\frac{a}{b}$  为既约形式, 则存在 R 中素元 p 使得  $p \mid b$  但  $p \nmid a$ . 若  $\frac{a}{b} \in \mathcal{O}_{\operatorname{Frac}(R)}$ , 设

$$\left(\frac{a}{b}\right)^n + c_{n-1}\left(\frac{a}{b}\right)^{n-1} + \dots + c_0 = 0, \quad c_i \in R.$$

两边同乘  $b^n$  得到

$$a^{n} + c_{n-1}a^{n-1}b + \dots + c_{0}b^{n} = 0.$$

由  $p \mid b$  即知  $p \mid a^n$ , 但这与 R 为 UFD 且  $p \nmid a$  矛盾. 故  $R = \mathcal{O}_{Frac(R)}$ .

**练习 2.7.8** 设 R 为 UFD, 且在 Frac(R) 中有  $\frac{a}{b} = \frac{c}{d}$ , 其中 gcd(a,b) 与 gcd(c,d) 均相伴于 1, 则 a 与 c 相伴, b 与 d 相伴.

**定义 2.7.9** 整环 R 称为 Bézout 整环, 若 R 中任意两个主理想之和仍为主理想.

**注记 2.7.10** (1) Bézout 整环中 Bézout 等式成立.

(2) PID 是 Bézout 整环.

**定理 2.7.11** R 是 PID 当且仅当 R 是 UFD 且是 Bézout 整环.

**例 2.7.12 (一般 UFD 无 Bézout 等式)** 在  $\mathbb{Z}[x]$  中  $\gcd(2,x)=1$ , 但不存在  $f(x),g(x)\in\mathbb{Z}[x]$ , 使得 2f(x)+xg(x)=1.

**定义 2.7.13** 设  $X \subset R$ . 称包含 X 的最小理想为 X 生成的理想, 记为

$$(X) = RX = \left\{ \text{ f } \mathbb{R} \text{ $n$ } \sum_{i} a_i \cdot x_i, \text{ $\sharp$ $\psi$ } a_i \in R, x_i \in X \right\}.$$

**定义 2.7.14**  $I \triangleleft R$  称为有限生成理想, 若存在有限集 X, 使得 I = (X), X 称为生成元集.

**定义 2.7.15** 环 R 称为 Noether 环, 若任何理想均有限生成.

**例 2.7.16** PID 是 Noether 环.

**定理 2.7.17 (Hilbert 基定理)** 设 R 为 Noether 环,则  $R[x_1,\cdots,x_n]$  及其商环均为 Noether 环.

展示〉由于  $R[x_1, \dots, x_{n+1}] \simeq R[x_1, \dots, x_n][x_{n+1}]$ ,断言的第一类化约为证明 "R 为 Noether 环  $\Longrightarrow R[x]$  为 Noether 环";再由例 2.2.27 对应定理,其商环的任何理想均有限生成.

下面的定理说明定义 2.7.1 中条件 (1) 对绝大多数环均成立.

**定理 2.7.18** 设 R 为 Noether 整环,则 R 中每个非零非单位元素均有不可约分解.

**证明** 用反证法, 假设  $a \in R$  无不可约分解. 特别地, a 可约. 设有非平凡分解  $a = a_1 \cdot a_2$ , 则  $a_1$  与  $a_2$  至少有一个无不可约分解. 不妨设  $a_1$  无不可约分解, 特别地,  $a_1$  可约. 设有非平凡分解  $a_1 = a_{11} \cdot a_{12}$ , 并不妨设  $a_{11}$  无不可约分解,  $a_{11} = a_{111} \cdot a_{112}$ ,  $a_{111}$  无不可约分解. 由此递推可得 R 中理想的无限严格升链:

$$(a_1) \subsetneq (a_{11}) \subsetneq (a_{111}) \subsetneq \cdots$$

由练习 2.7.19 得矛盾. 故假设不成立.

**练习 2.7.19** 设 R 为 Noether 环,则 R 中不存在理想的无限严格升链:

$$I_1 \subsetneq I_2 \subsetneq I_3 \subsetneq \cdots, \quad I_i \lhd R.$$

**证明** 用反证法, 假设存在如上严格升链. 令  $I = \bigcup_{n=1}^{\infty} I_n$ , 则  $I \triangleleft R$ . 由 R 是 Noether 环知 I 是有限生成的, 设  $\{a_1, \dots, a_m\}$  为其生成元集. 由 I 的定义, 存在映射

$$\sigma: \{1, \cdots, m\} \to \mathbb{Z}_{\geqslant 1},$$

使得  $a_i \in I_{\sigma(i)}$ . 令  $M = \max\{\sigma(1), \cdots, \sigma(m)\}$ , 则由升链可得  $a_1, \cdots, a_m \in I_M$ ,  $I_M \subset I \subset I_M$ . 故  $I_M = I$ , 矛盾.

**注记 2.7.20** 事实上, 这一性质可用作 Noether 环的等价定义.

**命题 2.7.21** 设 R 为整环. 若  $a \in R$  有素分解,则 a 的不可约分解唯一 (在定义 2.7.1 (2) 意义下).

提示〉利用素元与整环性质逐一消去.

注记 2.7.22 由此可知素分解强于不可约分解.

**推论 2.7.23** 设整环 R 中每个非零非单位元素均有不可约分解 (如 Noether 整环),则 R 是 UFD 当且仅 当 R 中素元 = 不可约元.

**例 2.7.24** PID 是 UFD.

**定理 2.7.25 (Gauss 定理)** 设 R 为 UFD,则 R[x] 亦为 UFD.

38 第二章 环论

**例 2.7.26**  $\mathbb{Z}[x]$  为 UFD, 但不是 PID. 因为  $(x) \subseteq (2,x) \subseteq \mathbb{Z}[x]$ , 说明非零素理想 (x) 不是极大理想.

**例 2.7.27**  $\mathbb{Z}[x_1,\dots,x_n]$  和  $k[x_1,\dots,x_n]$  (k 为域) 均为 UFD.

为了证明定理 2.7.25, 需要一些准备工作.

**定义 2.7.28** 设  $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$  且  $f(x) \neq 0$ . 定义 f(x) 的容度为  $c(f) = \gcd(a_0, a_1, \dots, a_n)$ . 称 f(x) 为本原的, 若 c(f) 相伴于 1.

**定义 2.7.29** 设  $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$  且  $f(x) \neq 0$ ,则可将 f(x) 本原化:  $f(x) = c(f) \cdot f_0(x)$ ,其中  $f_0(x) = \sum_{i=0}^{n} \frac{a_i}{c(f)} \cdot x^i$  是本原多项式.

**引理 2.7.30 (Gauss 引理)** 设  $f(x), g(x) \in R[x]$ , 则  $c(f \cdot g)$  相伴于  $c(f) \cdot c(g)$ . 特别地, 本原多项式的乘积仍是本原的.

证明 通过本原化, 只需证本原多项式的乘积仍是本原的. 设存在两个本原多项式

$$f(x) = a_n x^n + \dots + a_1 x + a_0, \quad g(x) = b_m x^m + \dots + b_1 x + b_0$$

使得 f(x)g(x) 不是本原的,则存在素元 p 使得 f(x)g(x) 中所有系数. 由于 f(x) 本原, p 不能整除所有  $a_i$ , 设 r 是最小下标使  $p \nmid a_r$ . 类似地, 设 s 是最小下标使  $p \nmid b_s$ . 考虑 f(x)g(x) 中  $x^{r+s}$  的系数

$$a_0b_{r+s} + \cdots + a_{r-1}b_{s+1} + a_rb_s + a_{r+1}b_{s-1} + \cdots + a_{r+s}b_0$$

该和式中只有  $a_r b_s$  一项不被 p 整除, 因此  $x^{r+s}$  系数不被 p 整除, 这与假设矛盾.

以下用模 p 约化手法给出另证:

**证明** 用反证法, 同前面证明的假设. 考虑模 p 约化

$$\pi: R[x] \to (R/pR)[x]$$
$$\sum_{i=0}^{n} a_i x^i \mapsto \sum_{i=0}^{n} \overline{a_i} x^i.$$

显然  $\pi$  是环同态且  $\operatorname{Ker} \pi = p(R[x])$ . 由 (R/pR)[x] 是整环且  $\pi(f(x)g(x)) = \overline{0}$ ,  $f(x) \in \operatorname{Ker} \pi$  或  $g(x) \in \operatorname{Ker} \pi$ , 即  $p \mid f(x)$  或  $p \mid g(x)$ , 矛盾.

**注记 2.7.31** Gauss 引理一个常用的特例如下:记  $K = \operatorname{Frac}(R)$ ,设 f(x),  $g(x) \in K[x]$  是首一多项式,则  $f(x)g(x) \in R[x] \implies f(x), g(x) \in R[x]$ .

现在可以给出定理 2.7.25 的证明:

**证明** 记  $K = \operatorname{Frac}(R)$ . 将 R[x] 中非零多项式 f(x) 本原化:

$$f(x) = c(f) \cdot f_0(x) = c_1 c_2 \cdots c_r \cdot f_0(x),$$

其中  $c_i \in R$  为素元. 下面给出  $f(x) \in R[x]$  的不可约分解.

(1) 由练习 2.7.32, 若 c 为 R 中素元, 则 c 作为常值多项式亦为 R[x] 中素元. 此断言亦可如下证明. 设  $c \mid g(x)h(x)$ , 作本原化:  $g(x) = c(g) \cdot g_0(x)$ ,  $h(x) = c(f) \cdot h_0(x)$ . 由引理 2.7.30,  $g_0(x)h_0(x)$  为本原多

项式, 因此  $c \mid c(g)c(h)$ . 而 c 为 R 中素元, 不妨设  $c \mid c(g)$ , 则  $c \mid c(g) \cdot g_0(x) = g(x)$ . 故 c 亦为 R[x] 中素元.

(2) 将  $f_0(x)$  在 K[x] 上作不可约分解:

$$f_0(x) = f_1(x) \cdots f_s(x),$$

其中  $f_i(x) \in K[x]$  不可约. 对每个  $f_i(x)$ ,可先通分为  $f_i(x) = \frac{1}{a} \cdot \tilde{f}_i(x)$ ,其中  $\frac{1}{a} \in K$ , $\tilde{f}_i(x) \in R[x]$ ;再将  $\tilde{f}_i(x)$  本原化:  $\tilde{f}_i(x) = c\left(\tilde{f}_i\right) \cdot \bar{f}_i(x)$ . 于是

$$f_i(x) = \frac{c(f_i)}{a} \cdot \bar{f}_i(x).$$

由于  $\frac{c(f_i)}{a} \in K \setminus \{0_K\}$ ,  $f_i(x)$  与  $\bar{f}_i(x)$  在 K[x] 中相伴,  $\bar{f}_i(x) \in K[x]$  不可约. 故

$$f_0(x) = \frac{b}{a} \cdot \bar{f}_1(x) \cdots \bar{f}_s(x),$$

其中  $\frac{b}{a} \in K$ ,  $\bar{f}_i(x) \in K[x]$  不可约. 此时

$$a \cdot f_0(x) = b \cdot \bar{f}_1(x) \cdots \bar{f}_s(x).$$

由引理 2.7.30,  $\bar{f}_1(x)\cdots\bar{f}_s(x)$  为本原多项式, 上式两边取容度即得 a 与 b 在 R 中相伴. 因此  $u=\frac{b}{a}\in U(R)$ ,

$$f_0(x) = u \cdot \bar{f}_1(x) \cdots \bar{f}_s(x),$$

其中  $\bar{f}_i(x) \in K[x]$  不可约 (在 K[x] 中等价于素), 在 R[x] 中本原.

(3) 由练习 2.7.33 可得  $\bar{f}_i(x)$  是 R[x] 中不可约元. 亦可如下证明  $\bar{f}_i(x)$  是 R[x] 中素元. 设在 R[x] 中有  $\bar{f}_i(x) \mid g(x)h(x)$ , 由  $\bar{f}_i(x)$  是 K[x] 中素元, 可不妨设在 K[x] 中有  $\bar{f}_i(x) \mid g(x)$ ,  $g(x) = \bar{f}_i(x) \cdot d(x)$ . 设

$$d(x) = \frac{b'}{a'} \cdot \overline{d}(x),$$

其中  $a', b' \in R$ ,  $\overline{d}(x) \in R[x]$  本原. 此时

$$a' \cdot q(x) = b' \cdot \overline{f}_i(x) \cdot \overline{d}(x).$$

由引理 2.7.30,  $\bar{f}_i(x) \cdot \bar{d}(x)$  本原, 两边取容度即得  $a' \cdot c(g)$  相伴于 b'. 故 d(x) 在 R[x] 中相伴于  $c(g) \cdot \bar{d}(x)$ , 进而在 R[x] 中  $\bar{f}_i(x)$  | g(x). 这就说明  $\bar{f}_i(x)$  是 R[x] 中素元.

**练习 2.7.32** 设 R 为 UFD,  $c \in R$  为素元,则存在环同构

$$R[x]/(c) \simeq (R/Rc)[x].$$

此时, R/Rc 为整环  $\implies (R/Rc)[x]$  为整环  $\implies R[x]/(c)$  为整环  $\implies c$  为 R[x] 中素元.

**练习 2.7.33** 设 R 为 UFD,  $K = \operatorname{Frac}(R)$ . 若 f(x) 是 R[x] 中的本原多项式, 且在 K[x] 中不可约, 则存在环单同态

$$R[x]/(f(x)R[x]) \hookrightarrow K[x]/(f(x)K[x]).$$

40 第二章 环论

此时, 由 K[x]/(f(x)K[x]) 是域可得 R[x]/(f(x)R[x]) 是整环, 从而  $f(x) \in R[x]$  不可约.

从定理 2.7.25 证明的 (3) 和练习 2.7.33 可提取出以下重要命题:

**命题 2.7.34** 设 R 为 UFD, K = Frac(R). 若  $f(x) \in R[x]$  为本原多项式,则 f(x) 在 R[x] 中不可约当且仅 当 f(x) 是 K 上的不可约多项式.

**例 2.7.35**  $f(x) = x^3 + 3x - 2$  在 Q 上不可约.

**解答** 因 f(x) 是  $\mathbb{Z}[x]$  中的本原多项式, 由命题 2.7.34, 只需证 f(x) 在  $\mathbb{Z}[x]$  中不可约. 若 f(x) 在  $\mathbb{Z}[x]$  中可约, 则它在  $\mathbb{Z}[x]$  中有分解  $f(x) = (x - m)(x^2 + ax + b)$ , 其中  $m, a, b \in \mathbb{Z}$ . 于是 f(m) = 0 且 -mb = 2. 依次代人  $m = \pm 1, \pm 2$  知无解.

**例 2.7.36** 设 k 为域, 则  $y^3 - x^2 \in k[x, y]$  不可约.

**解答** 因为  $k[x,y] \simeq k[x][y]$ , 若  $y^3 - x^2$  在 k[x,y] 中可约, 则它在 k[x][y] 中有分解  $y^3 - x^2 = [y - m(x)] \cdot [y^2 + a(x)y + b(x)]$ , 其中 m(x), a(x),  $b(x) \in k[x]$ . 于是  $m(x)^3 - x^2 = 0$ , 但这无解.

**注记 2.7.37** 因为  $y^3 - x^2 \in k[x][y]$  本原, 由命题 2.7.34,  $y^3 - x^2 \in k(x)[y]$  不可约, 其中 k(x) 表示 k[x] 的 分式域.

**练习 2.7.38** 设  $A = k[x,y]/(y^3 - x^2)$ . 由于 k[x,y] 是 UFD, 由例 2.7.36 知  $y^3 - x^2$  是 k[x,y] 中素元, 因此 A 是整环. 视 k[x,y] 为 k-线性空间,  $(y^3 - x^2)$  为 k[x,y] 的线性子空间, 则 A 为商空间.

- (1) 求 A 的一组 k-基.
- (2) A 是否为 UFD?
- (3) 考虑 k[t] 的子环  $S = \{a_0 + a_2t^2 + a_3t^3 + \dots : a_i \in k\}$ . 证明:  $S \simeq A$ .

**解答** (1) 对任意  $f(x,y) \in k[x,y] = k[x][y]$ , 由于  $y^3 - x^2$  是 k[x][y] 中的首一多项式, 有带余除法

$$f(x,y) = g(x,y)(y^3 - x^2) + h_1(y)x + h_0(y).$$

因此  $B=\{\overline{x^ny^m}:0\leqslant n\leqslant 1, m\geqslant 0\}$  是 A 的生成元. 下证 B 是 A 的一组 k-基. 设  $\sum_{n,m}a_{n,m}\overline{x^ny^m}=\overline{0}$ , 则存在  $F(x,y)\in k[x,y]$ , 使得

$$\sum_{n,m} a_{n,m} x^n y^m = (y^3 - x^2) F(x, y).$$

在 k[y][x] 中考虑上式: 若 LHS  $\neq 0$ , 则 deg(LHS)  $\leq 1$ ; 若 RHS  $\neq 0$ , 则 deg(RHS)  $\geq 2$ . 因此 LHS = RHS = 0, 即所有系数  $a_{n,m}=0$ . 故 B 线性无关.

(2) 假设 A 为 UFD. 注意到  $\frac{\overline{x}}{\overline{y}} \in \operatorname{Frac}(A)$  满足

$$\left(\frac{\overline{x}}{\overline{y}}\right)^2 = \frac{\overline{x}^2}{\overline{y}^2} = \frac{\overline{y}^3}{\overline{y}^2} = \overline{y},$$

即  $\frac{\overline{x}}{\overline{y}} \in \mathcal{O}_{\mathrm{Frac}(A)}$ . 由命题 2.5.16, UFD 是整闭环, 因此  $\frac{\overline{x}}{\overline{y}} \in A$ . 设  $r(x,y) \in k[x,y]$  使得  $\frac{\overline{x}}{\overline{y}} = \overline{r(x,y)}$ , 则  $\overline{x} = \overline{y \cdot r(x,y)}$ . 故存在  $q(x,y) \in k[x,y]$  使得

$$x = y \cdot r(x, y) + (y^2 - x^3)q(x, y).$$

考虑 k[x][y] 在 0 处的赋值同态  $ev_0$ , 它作用于上式便得到 k[x] 中等式

$$x = -x^3 \cdot q(x, 0).$$

但这不可能成立. 故 A 不是 UFD.

#### (3) 考虑环同态

$$\theta: k[x,y] \to S$$

使得

$$\theta(x) = t^3, \quad \theta(y) = t^2.$$

下证  $\operatorname{Ker} \theta = (y^3 - x^2)$ . 显然  $(y^3 - x^2) \subset \operatorname{Ker} \theta$ , 故只需证  $\operatorname{Ker} \theta \subset (y^3 - x^2)$ . 设  $f(x, y) \in \operatorname{Ker} \theta$ , 同 (1) 作带余除法

$$f(x,y) = g(x,y)(y^3 - x^2) + h_1(y)x + h_0(y).$$

将 θ 作用于上式两端即得

$$0 = h_1(t^2) \cdot t^3 + h_0(t^2).$$

注意到: 若  $h_1(t^2) \cdot t^3 \neq 0$ , 则其次数为奇数; 若  $h_0(t^2) \neq 0$ , 则其次数为偶数. 因此  $h_1(t^2) = h_0(t^2) = 0$  即  $h_1(y) = h_0(y) = 0$ . 故  $f(x,y) \in (y^3 - x^2)$ . 于是

$$Ker \theta = (y^3 - x^2).$$

又 $\theta$  显然是满射,由定理 2.2.20,存在环同构

$$k[x,y]/(y^3-x^2) \simeq S.$$

**注记 2.7.39** 在  $S = k[t^2, t^3]$  中,  $t^6$  有两种分解:

$$t^6 = t^2 \cdot t^2 \cdot t^2 = t^3 \cdot t^3$$

由于  $t^2$  和  $t^3$  不相伴且均为 S 中不可约元, 这两种分解本质不同. 故 S 不是 UFD.

**命题 2.7.40 (Eisenstein 判别法)** 设 R 为 UFD,  $K = \operatorname{Frac}(R)$ ,  $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$  本原,  $p \in R$  为素元. 若  $p \mid a_{n-1}, \cdots, p \mid a_1, p \mid a_0, p^2 \nmid a_0$  (从而  $p \nmid a_n$ ), 则  $f(x) \in R[x]$  不可约 (由命题 2.7.34,  $f(x) \in K[x]$  也不可约).

**证明** 设 f(x) 在 R[x] 中有非平凡分解 f(x) = g(x)h(x), 其中

$$g(x) = b_r x^r + \dots + b_1 x + b_0, \quad h(x) = c_{n-r} x^{n-r} + \dots + c_1 x + c_0,$$

则 r, n-r>0. 由于  $p\mid b_0c_0$  而  $p^2\nmid b_0c_0$ ,  $b_0$  与  $c_0$  中恰有一个被 p 整除. 不妨设  $p\mid b_0$  且  $p\nmid c_0$ . 取最小下标  $i_0$  使得  $p\nmid b_{i_0}$ , 则  $0< i_0 \leqslant r < n$ . 注意到

$$a_{i_0} = b_{i_0}c_0 + b_{i_0-1}c_1 + \dots + b_0c_{i_0},$$

上式右端只有第一项  $b_{i0}c_0$  不被 p 整除, 因此  $p \nmid a_{i0}$ , 但  $0 < i_0 < n$ , 矛盾.

以下用模 p 约化手法给出另证:

42 第二章 环论

**证明** 设 f(x) 在 R[x] 中有非平凡分解 f(x) = g(x)h(x)., 其中

$$g(x) = b_r x^r + \dots + b_1 x + b_0, \quad h(x) = c_{n-r} x^{n-r} + \dots + c_1 x + c_0.$$

考虑模 p 约化

$$\pi: R[x] \to (R/pR)[x]$$
$$\sum_{i=0}^{n} a_i x^i \mapsto \sum_{i=0}^{n} \overline{a_i} x^i.$$

显然  $\pi$  是环同态, 于是在 (R/pR)[x] 中有

$$\overline{a_n}x^n = \pi(f(x)) = \pi(g(x)) \cdot \pi(h(x)).$$

由于 p 为素元, R/pR 为整环, 可取  $K' = \operatorname{Frac}(R/pR)$ . 由于

$$R[x] \xrightarrow{\pi} (R/pR)[x] \stackrel{\operatorname{inc}}{\longleftrightarrow} K'[x],$$

而 K'[x] 为 UFD, 利用唯一分解性可知  $\pi(g(x))$  与  $\pi(h(x))$  均为单项式. 故  $\overline{b_0}=\overline{c_0}=\overline{0}$ , 即  $p\mid b_0$  且  $p\mid c_0$ , 从而  $p^2\mid a_0$ , 矛盾.

**例 2.7.41**  $x^n - 2 \in \mathbb{Q}[x]$   $(n \ge 1)$  均不可约. 故  $\mathbb{Q}[x]$  中存在任意次数的不可约多项式.

**例 2.7.42** 设  $f(x) \in \mathbb{Q}[x]$  使得  $f(\sqrt[n]{2}) = 0$ , 则  $(x^n - 2) \mid f(x)$ . 特别地,  $\deg(f(x)) \ge n$ .

**证明** 用反证法, 假设  $(x^n-2) \nmid f(x)$ . 由  $x^n-2 \in \mathbb{Q}[x]$  不可约,  $\gcd_{\mathbb{Q}[x]}(x^n-2,f(x))=1$ . 由 Bézout 等式, 存在  $a(x),b(x) \in \mathbb{Q}[x]$  使得

$$a(x)(x^{n}-2) + b(x)f(x) = 1.$$

将 √2 处的赋值同态作用于上式两端即得矛盾.

**例 2.7.43** 视  $\mathbb{C}$  为  $\mathbb{Q}$ -线性空间, 则  $\left\{1, \sqrt[n]{2}, \sqrt[n]{2^2}, \cdots, \sqrt[n]{2^{n-1}}\right\}$  是  $\mathbb{Q}$ -线性无关的.

**练习 2.7.44** (1) 2x + 2 在  $\mathbb{Z}[x]$  和  $\mathbb{Q}[x]$  中是否为不可约元?

(2)  $x^2 + 1$  在  $\mathbb{R}[x]$  和  $\mathbb{C}[x]$  中是否为不可约元?

**练习 2.7.45** 设  $f(x) \in \mathbb{Z}[x]$  为首一多项式, p 为素数. 考虑模 p 约化

$$\pi: \mathbb{Z}[x] \to \mathbb{F}_p[x]$$
$$\sum_{i=0}^n a_i x^i \mapsto \sum_{i=0}^n \overline{a_i} x^i.$$

- (1) 证明: 如果对某个素数 p,  $\pi(f(x))$  在  $\mathbb{F}_p[x]$  中不可约, 则 f(x) 在  $\mathbb{Z}[x]$  中不可约.
- (2) 如果  $f(x) \in \mathbb{Z}[x]$  不是首一多项式, (1) 中的结论是否成立?

**练习 2.7.46** 设 R 为整环,  $f(x) \in R[x]$ ,  $c \in R$ ,  $g(x) = f(x+c) \in R[x]$ . 求证:

- (1) f(x) 在 R[x] 中本原  $\iff$  g(x) 在 R[x] 中本原.
- (2) f(x) 在 R[x] 中不可约  $\iff$  g(x) 在 R[x] 中不可约.

**证明** 由命题 2.4.13, 环嵌入  $R \stackrel{\text{inc}}{\longrightarrow} R[x]$  诱导环同态

$$\theta: R[x] \to R[x]$$

使得  $\theta|_R = \operatorname{Id}_R \perp \theta(x) = x + c$ . 显然  $\theta$  可逆, 其逆映射为

$$\theta^{-1}: R[x] \to R[x]$$
 
$$f(x) \mapsto f(x-c).$$

故 $\theta$ 是环同构. 显然 $\theta$ 保持多项式的本原性与不可约性.

**例 2.7.47** 
$$u(x) = x^{p-1} + \dots + x + 1 = \frac{x^p - 1}{x - 1} \in \mathbb{Z}[x]$$
 不可约.

**证明** 由练习 2.7.46 (2), 等价于证明  $u(x+1) \in \mathbb{Z}[x]$  不可约. 而

$$u(x+1) = \frac{(x+1)^p - 1}{x} = \sum_{i=0}^{p-1} \binom{p}{i+1} x^i,$$

由 Eisenstein 判别法,  $u(x+1) \in \mathbb{Z}[x]$  不可约.

## 2.8 中国剩余定理

**定义 2.8.1** 设  $\{R_i: i \in I\}$  为一族环. 其直积  $\prod_{i \in I} R_i$  中的加法和乘法运算定义为

$$(r_i)_{i \in I} + (s_i)_{i \in I} = (r_i + s_i)_{i \in I}, \quad (r_i)_{i \in I} \cdot (s_i)_{i \in I} = (r_i \cdot s_i)_{i \in I}.$$

**注记 2.8.2** 任两个环的直积  $R \times S$  不是整环.

**练习 2.8.3** 投影同态

$$p: R \times S \twoheadrightarrow S$$
$$(r,s) \mapsto s$$

诱导环同构

$$(R \times S)/(R \times \{0_S\}) \xrightarrow{\sim} S.$$

**定理 2.8.4 (中国剩余定理)** 设 R 为环,  $I_1, \dots, I_n$  为 R 的理想, 且对每个  $i \neq j$  皆有  $I_i + I_j = R$ , 则 环同态

$$\theta: R \to \prod_{i=1}^n R/I_i$$

$$r \mapsto (r+I_1, \cdots, r+I_n)$$

诱导环同构

$$R/(I_1 \cap \cdots \cap I_n) \xrightarrow{\sim} \prod_{i=1}^n R/I_i.$$

 $\coprod I_1 \cap \cdots \cap I_n = I_1 \cdots I_n$ .

44 第二章 环论

证明 (1) Ker  $\theta = \{r \in R : r \in I_1, \dots, r \in I_n\} = I_1 \cap \dots \cap I_n$ .

(2) 下证  $\theta$  是满的, 即对任意  $a_1, \dots, a_n \in R$ , 同余方程组

$$\begin{cases} b \equiv a_1 \pmod{I_1} \\ b \equiv a_2 \pmod{I_2} \end{cases}$$

$$\vdots$$

$$b \equiv a_n \pmod{I_n}$$

有解. 我们断言  $I_1 + I_2 \cdots I_n = R$ . 由

$$R = RR = (I_1 + I_2)(I_1 + I_3) = I_1(I_1 + I_2 + I_3) + I_2I_3$$
  

$$\subset I_1 + I_2I_3 \subset R$$

知  $I_1 + I_2 I_3 = R$ . 由  $I_1 + I_2 \cdots I_{n-1} = R$  可得

$$R = RR = (I_1 + I_2 \cdots I_{n-1})(I_1 + I_n) = I_1(I_1 + I_n + I_2 \cdots I_{n-1}) + I_2 \cdots I_n$$
  

$$\subset I_1 + I_2 \cdots I_n \subset R,$$

故  $R=I_1+I_2\cdots I_n$ . 由归纳法断言得证. 于是存在  $u_1\in I_1$  与  $b_1\in I_2\cdots I_n$  使得

$$u_1 + b_1 = 1$$
.

由  $I_2\cdots I_n\subset I_2\cap\cdots\cap I_n$  即知  $b_1$  是同余方程组

$$\begin{cases} b \equiv 1 \pmod{I_1} \\ b \equiv 0 \pmod{I_2} \\ \vdots \\ b \equiv 0 \pmod{I_n} \end{cases}$$

的解. 同理可求得另 n-1 个同余方程组

$$\begin{cases} b \equiv 0 \pmod{I_1} \\ b \equiv 1 \pmod{I_2} \\ \vdots \\ b \equiv 0 \pmod{I_n} \end{cases} \dots \begin{cases} b \equiv 0 \pmod{I_1} \\ b \equiv 0 \pmod{I_2} \\ \vdots \\ b \equiv 1 \pmod{I_n} \end{cases}$$

的解  $b_2, \dots, b_n$ . 令  $b = a_1b_1 + \dots + a_nb_n$ , 则 b 即最初的同余方程组的解.

(3) 由定理 2.2.20,  $\theta$  诱导环同构

$$R/(I_1 \cap \cdots \cap I_n) \xrightarrow{\sim} \prod_{i=1}^n R/I_i.$$

由练习 2.8.6, 结合 (2) 中断言, 归纳即得  $I_1 \cap \cdots \cap I_n = I_1 \cdots I_n$ .

**注记 2.8.5**  $I_i+I_j=R$  这一条件通常称为 " $I_i$  与  $I_j$  互素". 例如对  $a,b\in\mathbb{Z}$ ,  $\gcd(a,b)=1\iff (a)+(b)=1$ 

 $\mathbb{Z}.$ 

**练习 2.8.6** 设 I, J 为环 R 的理想, I + J = R, 则  $I \cap J = IJ$ .

**证明** 由于 I+J=R, 存在  $i\in I$  与  $j\in J$ , 使得 i+j=1. 任取  $a\in I\cap J$ , 则有 a=ai+aj. 由  $a\in J$  且  $i\in I$  可知  $ai\in IJ$ , 由  $a\in I$  且  $j\in J$  可知  $aj\in IJ$ , 因此  $a\in IJ$ ,  $I\cap J\subset IJ$ . 又  $IJ\subset I\cap J$  是显然的,故  $I\cap J=IJ$ .

**例 2.8.7** 设 gcd(m, n) = 1,则存在环同构

$$\mathbb{Z}/mn\mathbb{Z} \xrightarrow{\sim} \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}, \quad a + mn\mathbb{Z} \mapsto (a + m\mathbb{Z}, a + n\mathbb{Z}).$$

**练习 2.8.8** 设 R, S 为环,则有群同构  $U(R \times S) \simeq U(R) \times U(S)$ .

**例 2.8.9** 由例 2.8.7 与练习 2.8.8,  $\mathbb{Z}_{15} \simeq \mathbb{Z}_3 \times \mathbb{Z}_5 \implies U(\mathbb{Z}_{15}) \simeq U(\mathbb{Z}_3) \times U(\mathbb{Z}_5)$ .

**练习 2.8.10** 设 R, S 为环, 是否一定有  $Aut(R \times S) \simeq Aut(R) \times Aut(S)$ ?

解答 否. 取  $R = S = \mathbb{F}_2$ . 考虑

$$\theta: R \times S \xrightarrow{\sim} R \times S$$
$$(a,b) \longmapsto (b,a)$$

则  $\theta \in \operatorname{Aut}(R \times S)$  且  $\theta \neq \operatorname{Id}_{R \times S}$ . 但  $|\operatorname{Aut}(R)| = |\operatorname{Aut}(S)| = 1$ , 从而

$$|\operatorname{Aut}(R \times S)| \geqslant 2 > 1 = |\operatorname{Aut}(R) \times \operatorname{Aut}(S)|.$$

练习 2.8.11 设 R, S 为环, 则  $Spec(R \times S) = (Spec(R) \times \{S\}) \sqcup (\{R\} \times Spec(S)).$ 

**解答** 任取  $\mathfrak{p} \in \operatorname{Spec}(R \times S)$ , 令  $\mathfrak{p}_R = \pi_R(\mathfrak{p})$ ,  $\mathfrak{p}_S = \pi_S(\mathfrak{p})$ , 其中  $\pi_R, \pi_S$  分别为关于 R, S 的投影同态. 对  $r, r' \in R$ , 注意到

因此

$$\mathfrak{p}_R \in \operatorname{Spec}(R) \iff \mathfrak{p}_R \neq R,$$
$$\mathfrak{p}_S \in \operatorname{Spec}(S) \iff \mathfrak{p}_S \neq S.$$

进而

$$\mathfrak{p}_R \times S \in \operatorname{Spec}(R \times S) \iff \mathfrak{p}_R \neq R,$$
 $R \times \mathfrak{p}_S \in \operatorname{Spec}(R \times S) \iff \mathfrak{p}_S \neq S.$ 

对于欲证等式, RHS  $\subset$  LHS 是显然的, 只需证 LHS  $\subset$  RHS. 结合前述讨论, 只需证  $\mathfrak{p}_R \neq R$  与  $\mathfrak{p}_S \neq S$  有且仅有一者成立.

46 第二章 环论

(至多一者成立) 假设  $\mathfrak{p}_R \neq R$ , 则  $1_R \notin \mathfrak{p}_R$ . 任取  $s \in \mathfrak{p}_S$ , 存在  $r \in R$  使得  $(r,s) \in \mathfrak{p}$ . 因

$$(r, 1_S)(1_R, s) = (r, s) \in \mathfrak{p}, \quad (1_R, s) \notin \mathfrak{p},$$

必有  $(r, 1_S) \in \mathfrak{p}$ , 从而  $1_S \in \mathfrak{p}_S$ , 即  $\mathfrak{p}_S = S$ . 同理, 当  $\mathfrak{p}_S \neq S$  时, 必有  $\mathfrak{p}_R = R$ . 故  $\mathfrak{p}_R \neq R$  与  $\mathfrak{p}_S \neq S$  至 多有一者成立.

**(至少一者成立)** 假设二者皆不成立, 即  $\mathfrak{p}_R=R$  且  $\mathfrak{p}_S=S$ , 则存在  $r\in R$  与  $s\in S$  使得  $(1_R,s),(r,1_S)\in \mathfrak{p}$ , 从而

$$(1_R, 1_S) = (1_R, 0_S)(1_R, s) + (0_R, 1_S)(r, 1_S) \in \mathfrak{p},$$

即  $\mathfrak{p} = R \times S$ , 与  $\mathfrak{p} \in \operatorname{Spec}(R \times S)$  矛盾. 故  $\mathfrak{p}_R \neq R$  与  $\mathfrak{p}_S \neq S$  总有一者成立.

注记 2.8.12 若采用代数几何术语,有拓扑空间范畴中的同构 (即同胚)

$$\operatorname{Spec}(R\times S)\simeq\operatorname{Spec}(R)\sqcup\operatorname{Spec}(S),$$

这里的无交并采用定义 1.1.7 的集合论定义. 参考 https://stacks.math.columbia.edu/tag/00ED.

#### 3.1 域扩张与单扩张

**定义 3.1.1** 域扩张是指域同态  $\theta: k \hookrightarrow K$ , 简记为 K/k.

**注记 3.1.2** 之所以选用 K/k 这一记号, 是因为  $k \simeq \theta(k) \subset K$ , 我们将 k 等同于  $\theta(k)$ , 而后者是 K 的子域. 于是域扩张  $\theta: k \hookrightarrow K$  等同于包含映射 inc :  $\theta(k) \hookrightarrow K$ . 此记号恰略去最关键的信息  $\theta$ , 见练习 3.1.4.

**例 3.1.3 (域扩张的例子)** (1)  $\mathbb{R}/\mathbb{Q}$  和  $\mathbb{C}/\mathbb{R}$  均是域扩张.

- (2) Kronecker 添根构造:  $k \hookrightarrow k[x]/(f(x))$ .
- (3) 考虑 k[x] 的分式域 k(x), 称为有理函数域. 典范嵌入  $k[x] \hookrightarrow k(x)$  诱导域扩张

$$k \hookrightarrow k(x), \quad \lambda \mapsto \frac{\lambda}{1}.$$

**练习 3.1.4** 设 k 为域, 记 F = k(t), K = k(x). 考虑域扩张

$$\begin{aligned} \theta: F &\hookrightarrow K \\ \frac{f(t)}{g(t)} &\mapsto \frac{f(x^2)}{g(x^2)}. \end{aligned}$$

通过  $\theta$  将 K 视为 F-线性空间, 求  $\dim_F K$ . 「提示〉注意到  $K = \theta(F)(x)$ , 再用定理 3.1.23.

**定义 3.1.5** 设  $\theta: k \to K$  与  $\theta': k \to K'$  是两个域扩张. 称  $\theta$  与  $\theta'$  作为域扩张同构, 若存在域同构  $\phi: K \xrightarrow{\sim} K'$ , 使得下图交换:



若  $\theta = \theta'$ , 则  $\theta$  的自同构  $\phi: K \xrightarrow{\sim} K$  又称为域扩张 K/k 的自同构.

**注记 3.1.6** (1) 后文中练习 3.1.22 有助于体会  $\phi \circ \theta = \theta'$  这一条件.

(2)  $\theta$  的自同构  $\phi$  满足  $\phi \circ \theta = \theta$ , 即  $\phi|_{\theta(k)} = \mathrm{Id}_{\theta(k)}$ .

**练习 3.1.7** 在定义 3.1.5 中,  $\phi: K \to K'$  是 k-线性空间同构, 从而  $\dim_k K = \dim_k K'$ .

**注记 3.1.8**  $Aut(K/k) := \{\theta \text{ 的自同构}\} \leq Aut(K)$  为子群. 由练习 3.1.7 可见, "可视为线性同构" 是域扩张的自同构与一般的域自同构的一大区别.

**定义 3.1.9** 设  $\theta: R \hookrightarrow S$  为环的单同态,  $\alpha, \alpha_1, \alpha_2 \in S$ .

(1) 定义 R 与  $\alpha$  生成的子环为 S 中包含  $\theta(R)$  及  $\alpha$  的最小子环, 记为

$$R[\alpha] = \left\{ f \mathbb{R} \mathbb{A} \sum \theta(r_i) \alpha^i : r_i \in R \right\}.$$

(2) 记S 中包含 $\theta(R)$  及 $\alpha_1, \alpha_2$  的最小子环为

$$R[\alpha_1,\alpha_2] = \Big\{ \text{$\vec{q}$ $\mathbb{R}$} \text{$\vec{q}$ $\mathbb{R}$} \sum \theta(r_{ij}) \alpha_1^i \alpha_2^j : r_{ij} \in R \Big\}.$$

**注记 3.1.10** (1) 由命题 2.4.13, 环嵌入  $R \stackrel{\text{inc}}{\longleftrightarrow} S$  诱导环同态

$$\widetilde{\psi}: R[x] \to S$$

使得  $\widetilde{\psi}|_R = \operatorname{Id}_R \, \underline{1} \, \theta(x) = \alpha$ . 此时  $\operatorname{Im} \widetilde{\psi} = R[\alpha]$ .

(2)  $R[\alpha_1, \alpha_2] = R[\alpha_1][\alpha_2] = R[\alpha_2][\alpha_1].$ 

例 3.1.11  $\mathbb{Z}[i] \subset \mathbb{C}$ .

**定义 3.1.12** 设  $\theta: k \hookrightarrow K$  为域同态,  $\alpha, \alpha_1, \alpha_2 \in K$ .

(1) 记 K 中包含  $\theta(k)$  及  $\alpha$  的最小子域为

$$k(\alpha) = \left\{ \frac{\sum \theta(r_i)\alpha^i}{\sum \theta(r'_j)\alpha^j} : r_i, r'_j \in k, \sum \theta(r'_j)\alpha^j \neq 0_K \right\}.$$

(2) 记 K 中包含  $\theta(k)$  及  $\alpha_1, \alpha_2$  的最小子域为

$$k(\alpha_1, \alpha_2) = \left\{ \frac{\sum \theta(r_{ij}) \alpha_1^i \alpha_2^j}{\sum \theta(r'_{ij}) \alpha_1^i \alpha_2^j} : r_{ij}, r'_{ij} \in k, \sum \theta(r'_{ij}) \alpha_1^i \alpha_2^j \neq 0_K \right\}$$

**注记 3.1.13** (1) 一般而言,  $k(\alpha)$  与 k[x] 无关.

- (2)  $k[\alpha] \subset k(\alpha)$ .
- (3) 有如下交换图表:



(4)  $k(\alpha_1, \alpha_2) = k(\alpha_1)(\alpha_2) = k(\alpha_2)(\alpha_1)$ .

 $\Box$ 

**例 3.1.14**  $\mathbb{Q}(i) \subset \mathbb{C}$ .

**定义 3.1.15** 称域扩张 K/k 为单扩张, 若存在  $\alpha \in K$  使得  $K = k(\alpha)$ .

**例 3.1.16** (1) Kronecker 添根构造:  $k \hookrightarrow k[x]/(f(x))$ , K = k(u) = k[u].

- (2) 有理函数域  $k \subset k(x)$ :  $k[x] \subsetneq k(x)$ .
- (3)  $\mathbb{Q} \subset \mathbb{Q}(i) = \mathbb{Q}[i]$ .
- (4)  $\mathbb{R} \subset \mathbb{C}$ :  $\mathbb{C} = \mathbb{R}(i) = \mathbb{R}[i]$ .

**定义 3.1.17** 考虑域扩张 K/k 及  $\alpha \in K$ . 称  $\alpha$  为 k 上代数元, 若存在非零多项式  $f(x) \in k[x]$  使得  $f(\alpha) = 0_K$ . 否则, 称  $\alpha$  为 k 上超越元.

**例 3.1.18** 考虑域扩张  $\mathbb{C}/\mathbb{Q}$ , 则  $\sqrt{2}$ ,  $e^{\frac{2\pi i}{3}}$  均为 ( $\mathbb{Q}$  上) 代数元;  $\pi$ , e 均为 ( $\mathbb{Q}$  上) 超越元.

**定理 3.1.19** 考虑域扩张 K/k 以及  $\alpha \in K$  在 k 上代数,则唯一存在首一不可约多项式  $f(x) \in k[x]$  满足:

- (1)  $f(\alpha) = 0$ .
- (2) 若  $g(x) \in k[x]$  满足  $g(\alpha) = 0$ , 则 f(x) | g(x).

这样的多项式 f(x) 称为  $\alpha$  关于 k 的最小多项式.

证明 考虑在  $\alpha$  处的赋值同态

$$\operatorname{ev}_{\alpha}: k[x] \to K$$
  $g(x) \mapsto g(\alpha),$ 

由 k[x] 是 PID, 设其核 Ker( $ev_{\alpha}$ ) = (f(x)), 其中  $f(x) \in k[x]$ . 由定理 2.2.20, 存在环同构

$$k[x]/(f(x)) \stackrel{\sim}{\longrightarrow} k[\alpha].$$

由于  $k[\alpha] \subset K$  为整环,  $f(x) \in k[x]$  为素元, 即  $f(x) \in k[x]$  为不可约多项式.

**注记 3.1.20** 由命题 2.4.31, k[x]/(f(x)) 为域, 因此  $k[\alpha] \subset K$  为子域, 即  $k[\alpha] = k(\alpha)$ . 这可用来解释例 3.1.16 中 (1)(3)(4) 与 (2) 的不同, 即在于  $\alpha$  是否为 k 上代数元.

**例 3.1.21** 关于域扩张  $\mathbb{C}/\mathbb{Q}$ ,  $\sqrt[3]{2}$  的最小多项式为  $x^3 - 2$ ,  $e^{\frac{2\pi i}{3}}$  的最小多项式为  $x^2 + x + 1$ .

**练习 3.1.22** 考虑域扩张  $\theta: k \to K$  与  $\theta': k \to K'$ ,  $\alpha \in K$ . 若存在域扩张的同构  $\phi: K \to K'$ , 则

- (1)  $\alpha$  在 k 上代数  $\iff \phi(\alpha)$  在 k 上代数.
- (2) 若  $\alpha$  在 k 上代数, 则  $\alpha$  和  $\phi(\alpha)$  的最小多项式相同.

**定理 3.1.23 (单扩张的结构定理)** 设有单扩张 K/k 与  $\alpha \in K$  使得  $K = k(\alpha)$ .

- (1) 若  $\alpha$  在 k 上代数, 最小多项式为 f(x),  $\deg(f(x)) = d$ , 则
  - $\diamond \, \dim_k K = d < \infty.$
  - $\diamond$   $\{1,\alpha,\cdots,\alpha^{d-1}\}$  是 K 的一组 k-基, 且  $K=k[\alpha]$ .
  - ♦ 有域扩张同构  $K \simeq k[x]/(f(x))$ .

- (2) 若 $\alpha$ 在k上超越,则
  - $\diamond \dim_k K = \infty.$
  - $\diamond \ k[\alpha] \subsetneq K.$
  - ♦ 有域扩张同构  $K \simeq k(x)$ .

/ 考虑赋值同态  $ev_{\alpha}$ : 若  $\alpha$  代数, 用定理 2.2.20; 若  $\alpha$  超越, 用定理 2.3.4.

注记 3.1.24 本质上仅有两种单扩张, 我们主要研究有限维域扩张.

**例 3.1.25** (1) 考虑  $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ . 则  $\mathbb{Q}(\sqrt[3]{2})$  有  $\mathbb{Q}$ -基  $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ , 且存在域同构

$$\mathbb{Q}[x]/(x^3-2) \xrightarrow{\sim} \mathbb{Q}(\sqrt[3]{2})$$

使得  $u = x + (x^3 - 2) \mapsto \sqrt[3]{2}$  且它在  $\mathbb{Q}$  上为恒等映射.

(2) 考虑  $\mathbb{Q}(\sqrt[3]{2}\omega)/\mathbb{Q}$ . 则  $\mathbb{Q}(\sqrt[3]{2}\omega)$  有  $\mathbb{Q}$ -基  $\left\{1,\sqrt[3]{2}\omega,\sqrt[3]{4}\omega^2\right\}$ , 且存在域同构

$$\mathbb{Q}[x]/(x^3-2) \xrightarrow{\sim} \mathbb{Q}(\sqrt[3]{2}\omega)$$

使得  $u = x + (x^3 - 2) \mapsto \sqrt[3]{2}\omega$  且它在  $\mathbb{Q}$  上为恒等映射.

**注记 3.1.26** 作为  $\mathbb C$  的子域,  $\mathbb Q(\sqrt[3]{2}) \neq \mathbb Q(\sqrt[3]{2}\omega)$ . 但由例 3.1.25 可得交换图表

$$\mathbb{Q}(\sqrt[3]{2}) \qquad \sqrt[3]{2} \qquad \lambda$$

$$\downarrow \text{inc} \qquad \uparrow \wr \qquad \qquad \uparrow$$

$$\mathbb{Q} \xrightarrow{\text{inc}} \mathbb{Q}[x]/(x^3 - 2) \qquad u \qquad \lambda \in \mathbb{Q}$$

$$\downarrow \wr \qquad \qquad \downarrow$$

$$\mathbb{Q}(\sqrt[3]{2}\omega) \qquad \sqrt[3]{2}\omega \qquad \lambda$$

于是域扩张  $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$  同构于  $\mathbb{Q}(\sqrt[3]{2}\omega)/\mathbb{Q}$ :

$$\mathbb{Q}(\sqrt[3]{2}) \xrightarrow{\sim} \mathbb{Q}(\sqrt[3]{2}\omega), \quad a + b\sqrt[3]{2} + c\sqrt[3]{4} \mapsto a + b\sqrt[3]{2}\omega + c\sqrt[3]{4}\omega^{2}.$$

**应用于**  $\sqrt[3]{3} \notin \mathbb{Q}(\sqrt[3]{2})$  的证明 用反证法, 设

$$\sqrt[3]{3} = a + b\sqrt[3]{2} + c\sqrt[3]{4}, \quad a, b, c \in \mathbb{Q},$$

即

$$3 = \left(a + b\sqrt[3]{2} + c\sqrt[3]{4}\right)^3, \quad a, b, c \in \mathbb{Q}.$$

由注记 3.1.26, 域扩张  $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$  同构于  $\mathbb{Q}(\sqrt[3]{2}\omega)/\mathbb{Q}$ , 因此

$$(a+b\sqrt[3]{2}+c\sqrt[3]{4})^3 = 3 = (a+b\sqrt[3]{2}\omega + c\sqrt[3]{4}\omega^2)^3,$$

从而

$$a + b\sqrt[3]{2}\omega + c\sqrt[3]{4}\omega^2 = (a + b\sqrt[3]{2} + c\sqrt[3]{4})\omega^k,$$

其中 k=0 或 1 或 2. 利用  $\omega^2=-\omega-1$  化简可得:

- ♦ 若 k=0, 则  $\left(b\sqrt[3]{2}-c\sqrt[3]{4}\right)\omega=b\sqrt[3]{2}+2c\sqrt[3]{4}$ , 易知与  $\omega\notin\mathbb{R}$  矛盾.
- ♦ 若 k = 1, 则  $c\sqrt[3]{4\omega} = a$ , 易知与  $\omega \notin \mathbb{R}$  矛盾.
- ♦ 若 k=2, 则  $\left(a+2b\sqrt[3]{2}\right)\omega+2a+b\sqrt[3]{2}=0$ , 易知与  $\omega\notin\mathbb{R}$  矛盾.

故假设不成立,  $\sqrt[3]{3} \notin \mathbb{Q}(\sqrt[3]{2})$ .

**定义 3.1.27** 定义域扩张 K/k 的次数为  $[K:k] := \dim_k K$ .

**练习 3.1.28** 设 F/K 为域扩张,  $u \in F$  是 K 上奇次代数元. 求证  $K(u) = K(u^2)$ .

**练习 3.1.29** 给出域扩张 F/K 的例子, 使得 F = K(u,v), u 和 v 均是 K 上超越元, 但  $F \not\simeq K(x_1,x_2)$ .

解答  $K=\mathbb{Q}, u=\pi, v=\sqrt{\pi}, u$  和 v 在 K 上超越, 但  $F=K(\pi,\sqrt{\pi})=\mathbb{Q}(\sqrt{\pi})\simeq\mathbb{Q}(t)\not\simeq\mathbb{Q}(x_1,x_2).$ 

**练习 3.1.30** 设 p 为素数, 分别求扩张  $\mathbb{Q}(e^{\frac{2\pi i}{p}})/\mathbb{Q}$  和  $\mathbb{Q}(e^{\frac{2\pi i}{8}})/\mathbb{Q}$  的次数.  $\boxed{\mathsf{提示}} p-1$  和 4.

练习 3.1.31 求元素 a 在域 K 上的最小多项式, 其中

- (1)  $a = \sqrt{2} + \sqrt{3}$ ,  $K = \mathbb{Q}$ .  $\boxed{\cancel{4}} x^4 10x^2 + 1$ .
- (2)  $a = \sqrt{2} + \sqrt{3}$ ,  $K = \mathbb{Q}(\sqrt{2})$ .  $\boxed{\cancel{4}\cancel{4}\cancel{5}} x^2 2\sqrt{2}x 1$ .
- (3)  $a = \sqrt{2} + \sqrt{3}$ ,  $K = \mathbb{Q}(\sqrt{6})$ .  $\mathbb{Z}_{\overline{a}} \times x^2 (5 + 2\sqrt{6})$ .

**解答** (1)  $f(x) = x^4 - 10x^2 + 1 \in \mathbb{O}[x]$  零化 a. 下证  $f(x) \in \mathbb{O}[x]$  不可约. 今

$$r_1 = \sqrt{2} + \sqrt{3}$$
,  $r_2 = \sqrt{2} - \sqrt{3}$ ,  $r_3 = \sqrt{3} - \sqrt{2}$ ,  $r_4 = -\sqrt{2} - \sqrt{3}$ .

由  $f(x) = (x - r_1)(x - r_2)(x - r_3)(x - r_4)$ ,  $r_i \notin \mathbb{Q}$ , 且对任意  $i \neq j$ , 均有  $(x - r_i)(x - r_j) \notin \mathbb{Q}[x]$  可 知  $f(x) \in \mathbb{Q}[x]$  不可约.

- (2)  $f(x) = (x \sqrt{2})^2 3 = x^2 2\sqrt{2}x 1 \in \mathbb{Q}(\sqrt{2})[x]$  零化 a. 下证  $f(x) \in \mathbb{Q}(\sqrt{2})[x]$  不可约. 否则,  $a \in \mathbb{Q}(\sqrt{2})$ , 考虑域扩张塔  $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2} + \sqrt{3}) \subset \mathbb{Q}(\sqrt{2})$ . 由 (1) 知  $\left[\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}\right] = 4$ , 这与 $\left[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}\right] = 2$  矛盾.
- (3)  $f(x) = x^2 (\sqrt{2} + \sqrt{3})^2 = x^2 (5 + 2\sqrt{6}) \in \mathbb{Q}(\sqrt{6})[x]$  零化 a. 下证  $f(x) \in \mathbb{Q}(\sqrt{6})[x]$  不可约. 否则,  $a \in \mathbb{Q}(\sqrt{6})$ , 考虑域扩张塔  $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2} + \sqrt{3}) \subset \mathbb{Q}(\sqrt{6})$ . 由 Eisenstein 判别法知  $x^2 6 \in \mathbb{Q}[x]$  不可约, 因此  $\left[\mathbb{Q}(\sqrt{6}):\mathbb{Q}\right] = 2$ . 由 (1) 知  $\left[\mathbb{Q}(\sqrt{2} + \sqrt{3}):\mathbb{Q}\right] = 4 > 2$ , 矛盾.

### 3.2 域的代数扩张

**定义 3.2.1** 域扩张 K/k 称为代数扩张, 若任何  $\alpha \in K$  均在 k 上代数.

**例 3.2.2**  $\mathbb{R}/\mathbb{Q}$  不是代数扩张, 例如  $\pi$  与 e 均为 ( $\mathbb{Q}$  上) 超越元.

**引理 3.2.3** 有限维域扩张总是代数扩张, 即若  $\dim_k K < \infty$ , 则 K/k 代数.

**证明** 对任意  $\alpha \in K$ ,  $k(\alpha)$  是 K 的 k-线性子空间, 因此  $\dim_k k(\alpha) < \infty$ . 由定理 3.1.23,  $\alpha$  是 k 上代数元. □ 由线性代数可得另证:

**证明** 对任意  $\alpha \in K$ ,  $\{1, \alpha, \alpha^2, \dots\}$  是 k-线性相关的, 即存在 k 上多项式零化  $\alpha$ .

**定理 3.2.4 (维数公式)** 考虑域扩张塔  $k \subset E \subset K$ . 若 E/k 与 K/E 均为有限维域扩张,则 K/k 亦为有限 维域扩张,且其次数具有塔性质:

$$[K:k] = [E:k][K:E].$$

提示 若  $(x_i)_{i \in I}$  和  $(y_j)_{j \in J}$  分别是 K 在 E 上和 E 在 k 上的一组基, 则  $(x_i y_j)_{(i,j) \in I \times J}$  是 K 在 k 上的一组基.

**例 3.2.5** 设  $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ . 考虑域扩张  $K/\mathbb{Q}$ , 求  $[K : \mathbb{Q}]$ .

**解答** 考虑域扩张塔  $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset K$ , 由定理 3.2.4,

$$[K:\mathbb{Q}] = \left[\mathbb{Q}(\sqrt{2}):\mathbb{Q}\right]\left[K:\mathbb{Q}(\sqrt{2})\right].$$

由例 2.7.41,  $\left[\mathbb{Q}(\sqrt{2}):\mathbb{Q}\right]=2$ . 由  $\sqrt{3}\notin\mathbb{Q}(\sqrt{2})$  知  $x^2-3\in\mathbb{Q}(\sqrt{2})[x]$  不可约, 因此  $\left[K:\mathbb{Q}(\sqrt{2})\right]=2$ . 故  $\left[K:\mathbb{Q}\right]=4$ .

 $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$  **的证明** 设  $\sqrt{3} = a + b\sqrt{2}$ , 其中  $a, b \in \mathbb{Q}$ , 两边平方得

$$3 = a^2 + 2b^2 + 2ab\sqrt{2}$$

因此 ab = 0. 但不论 a = 0 或 b = 0 均矛盾.

**注记 3.2.6** 从  $\mathbb{Q}(\sqrt{2})$  的  $\mathbb{Q}$ -基  $\{1,\sqrt{2}\}$  和 K 的  $\mathbb{Q}(\sqrt{2})$ -基  $\{1,\sqrt{3}\}$  可得 K 的  $\mathbb{Q}$ -基  $\{1,\sqrt{2},\sqrt{3},\sqrt{6}\}$ .

**例 3.2.7** 设  $K = \mathbb{Q}(\sqrt[3]{2}, \omega)$ . 考虑域扩张  $K/\mathbb{Q}$ , 求  $[K : \mathbb{Q}]$ .

**解答** 考虑域扩张塔  $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2}) \subset K$ , 由定理 3.2.4,

$$[K:\mathbb{Q}] = \Big[\mathbb{Q}\big(\sqrt[3]{2}\big):\mathbb{Q}\Big]\Big[K:\mathbb{Q}\big(\sqrt[3]{2}\big)\Big].$$

由例 2.7.41,  $\left[\mathbb{Q}\left(\sqrt[3]{2}\right):\mathbb{Q}\right]=3$ . 由于  $x^2+x+1=(x-\omega)(x-\omega^2)$  零化  $\omega$ , 且其在  $\mathbb{C}$  上的根  $\omega,\omega^2\notin\mathbb{Q}\left(\sqrt[3]{2}\right)$ ,  $x^2+x+1$  在  $\mathbb{Q}\left(\sqrt[3]{2}\right)$  上不可约, 因此  $\left[K:\mathbb{Q}\left(\sqrt[3]{2}\right)\right]=2$ . 故  $\left[K:\mathbb{Q}\right]=6$ . 从  $\mathbb{Q}\left(\sqrt[3]{2}\right)$  的  $\mathbb{Q}$ -基  $\left\{1,\sqrt[3]{2},\sqrt[3]{4}\right\}$  和 K 的  $\mathbb{Q}\left(\sqrt[3]{2}\right)$ -基  $\left\{1,\omega\right\}$  可得 K 的  $\mathbb{Q}$ -基  $\left\{1,\sqrt[3]{2},\sqrt[3]{4},\omega,\sqrt[3]{2}\omega,\sqrt[3]{4}\omega\right\}$ .

**练习 3.2.8** 求  $\sqrt[3]{2}$  在  $\mathbb{Q}(\omega)$  上的最小多项式.

解答 假设  $\sqrt[3]{2} \in \mathbb{Q}(\omega)$ , 则有域扩张塔  $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2}) \subset \mathbb{Q}(\omega)$ . 由定理 3.2.4,

$$2 = \left[\mathbb{Q}(\omega):\mathbb{Q}\right] = \left[\mathbb{Q}(\omega):\mathbb{Q}\left(\sqrt[3]{2}\right)\right] \left[\mathbb{Q}\left(\sqrt[3]{2}\right):\mathbb{Q}\right] \geqslant 3,$$

矛盾. 故  $\sqrt[3]{2}$ ,  $\sqrt[3]{2}\omega$ ,  $\sqrt[3]{2}\omega^2 \notin \mathbb{Q}(\omega)$  即  $x^3-2 \in \mathbb{Q}(\omega)[x]$  不可约. 因此  $x^3-2$  为  $\sqrt[3]{2}$  在  $\mathbb{Q}(\omega)$  上的最小多项式.

**练习 3.2.9** 设 K/k 为有限维域扩张,  $\alpha \in K$  的最小多项式  $f(x) \in k[x]$ , 则  $\deg(f(x)) \mid [K:k]$ .

**定义 3.2.10** 考虑域扩张 K/k. 若一族 K 中的元素  $\{\alpha_i\}_{i\in I}$  满足  $k(\alpha_i:i\in I)=K$ , 则称  $\{\alpha_i\}_{i\in I}$  是 K/k 的生成元集. 具有有限生成集  $\{\alpha_1,\dots,\alpha_n\}$  的扩张称为有限生成扩张,此时有域扩张塔

$$k \subset k(\alpha_1) \subset k(\alpha_1, \alpha_2) \subset \cdots \subset K$$
.

**定理 3.2.11** 域扩张 K/k 是有限维的  $\iff$  K/k 是有限生成的代数扩张.

**命题 3.2.12** 考虑域扩张塔  $k \subset E \subset K$ ,则 K/k 代数  $\iff K/E$  和 E/k 均代数.

证明 ( $\Rightarrow$ ) 由 K/k 代数,

- ♦ 对任意  $\alpha \in K$ , 存在  $f(x) \subset k[x] \subset E[x]$  使得  $f(\alpha) = 0_K$ , 因此 K/E 代数.
- ♦ 对任意  $\beta \in E \subset K$ , 存在  $g(x) \subset k[x]$  使得  $g(\beta) = 0_E$ , 因此 E/k 代数.
- ( $\leftarrow$ ) 对任意  $\alpha \in K$ , 由 K/E 代数, 存在  $u_0, u_1, \dots, u_{n-1} \in E$ , 使得

$$\alpha^{n} + u_{n-1}\alpha^{n-1} + \dots + u_{1}\alpha + u_{0} = 0_{K}.$$

因此  $\alpha$  在  $k(u_0, u_1, \dots, u_{n-1})$  上代数. 由定理 3.1.23,

$$[k(u_0, u_1, \cdots, u_{n-1}, \alpha) : k(u_0, u_1, \cdots, u_{n-1})] < \infty.$$

又  $k(u_0, u_1, \dots, u_{n-1}) \subset E$ , E/k 代数,  $k(u_0, u_1, \dots, u_{n-1})/k$  是有限生成的代数扩张. 由定理 3.2.11,

$$[k(u_0, u_1, \cdots, u_{n-1}) : k] < \infty.$$

由定理 3.2.4 即得

$$[k(u_0, u_1, \cdots, u_{n-1}, \alpha) : k] < \infty.$$

而  $k \subset k(\alpha) \subset k(u_0, u_1, \dots, u_{n-1}, \alpha)$ , 故  $[k(\alpha): k] < \infty$ . 再由定理 3.1.23,  $\alpha$  在 k 上代数. 故 K/k 代数.

**定义–定理 3.2.13** 考虑域扩张 K/k. 定义  $E = \{\alpha \in K : \alpha \in k \perp \ell \}$ , 则  $E \subset K$  为子域, 它称为  $k \in K$  中的代数闭包.

**证明** 对任意  $\alpha, \beta \in K$ , 考虑域扩张塔  $k \subset k(\alpha) \subset k(\alpha, \beta)$ . 由  $\alpha, \beta$  在 k 上代数,

$$[k(\alpha):k]<\infty, \quad [k(\alpha,\beta):k(\alpha)]<\infty.$$

由定理 3.2.4,  $[k(\alpha, \beta): k] < \infty$ . 再由定理 3.2.11,  $k(\alpha, \beta)/k$  是有限生成的代数扩张. 特别地,  $\alpha \pm \beta, \alpha \cdot \beta \in k(\alpha, \beta)$  均在 k 上代数; 若  $\beta \neq 0_K$ ,  $\beta^{-1} \in k(\alpha, \beta)$  亦在 k 上代数.

**练习 3.2.14** 考虑域扩张 K/k. 若  $\beta \in K$  关于 k 的最小多项式为 f(x),  $\deg(f(x)) = d$ , 则  $\beta^{-1}$  的最小多项式为  $x^d \cdot f(\frac{1}{x})$ .

**练习 3.2.15** 在定义-定理 3.2.13 中, 若  $E \subseteq K$ , 任取  $u \in K \setminus E$ , 则 u 在 E 上超越.

**定义 3.2.16** 域 K 称为代数闭域, 若它没有非平凡的代数扩张, 亦即: E/K 为代数扩张  $\iff$  [E:K]=1 (E=K).

**命题 3.2.17** 域 K 是代数闭域当且仅当 K[x] 中任意不可约多项式均为一次的.

**命题 3.2.18** 域 K 是代数闭域当且仅当 K[x] 中每个非常值多项式完全分裂,亦即有一次因子.

**练习 3.2.19** 若域 K 是代数闭域,则 K 必为无限域.

**证明** 假设  $|K| < \infty$ . 考虑  $f(x) = \prod_{\lambda \in K} (x - \lambda) + 1_K \in K[x]$ , 则 f(x) 在 K 上无根. 由命题 3.2.18 即得矛盾. 故 K 为无限域.

**定理 3.2.20 (代数基本定理)** ℂ 是代数闭域.

练习 3.2.21 记 $\overline{\mathbb{Q}}$ 为 $\mathbb{Q}$ 在 $\mathbb{C}$ 中的代数闭包,则 $\overline{\mathbb{Q}}$ 是代数闭域.

**证明** 任取  $f(x) \in \overline{\mathbb{Q}}[x]$ , 由定理 3.2.20 与命题 3.2.18, 设  $f(x) = \prod_{i=1}^{n} (x - \lambda_i)$ , 其中  $\lambda_i \in \mathbb{C}$ . 记 K 为  $\overline{\mathbb{Q}}$  在  $\mathbb{C}$  中的代数闭包, 则由  $f(x) \in \overline{\mathbb{Q}}[x]$  知  $\lambda_i \in K$ . 由于  $K/\overline{\mathbb{Q}}$  与  $\overline{\mathbb{Q}}/\mathbb{Q}$  均为代数扩张, 根据命题 3.2.12,  $K/\mathbb{Q}$  为代数扩张, 即  $K \subset \overline{\mathbb{Q}}$ . 故  $\lambda_i \in \overline{\mathbb{Q}}$ , 再由命题 3.2.18 即知  $\overline{\mathbb{Q}}$  是代数闭域.

**定理 3.2.23** 对任意域 k, 均存在 (同构意义下) 唯一的代数扩张  $k \hookrightarrow \overline{k}$  使得  $\overline{k}$  为代数闭域. 这样的  $\overline{k}$  称为 k 的代数闭包.

**例 3.2.24**  $\mathbb{C}$  为  $\mathbb{R}$  的代数闭包, 练习 3.2.21 中  $\overline{\mathbb{Q}}$  为  $\mathbb{Q}$  的代数闭包.

**练习 3.2.25** 设 u 是域 K 的某扩域中的元素, 且  $x^n - a$  是 u 在 K 上的最小多项式. 对于  $m \mid n$ , 求  $u^m$  在域 K 上的最小多项式.

**练习 3.2.26** 设 u 是多项式  $x^3 - 6x^2 + 9x + 3$  的一个实根.

- (1) 求证  $[\mathbb{Q}(u):\mathbb{Q}]=3$ .
- (2) 试将  $u^4$ ,  $(u+1)^{-1}$ ,  $(u^2-6u+8)^{-1}$  表示成  $1, u, u^2$  的  $\mathbb{Q}$ -线性组合.

练习 3.2.27 设  $u = \frac{x^3}{x+1}$ , 求  $[\mathbb{Q}(x):\mathbb{Q}(u)]$ . 提示  $[\mathbb{Q}(x):\mathbb{Q}(u)] = 3$ .

**练习 3.2.28** 设 M/K 为域扩张, M 中元素 u, v 分别是 K 上的 m 次和 n 次代数元, F = K(u), E = K(v).

- (1) 求证  $[FE:K] \leq mn$ .
- (2) 若 gcd(m, n) = 1, 则 [FE : K] = mn.

我们可以将上面的练习 3.1.4 与练习 3.2.27 推广为如下命题.

**命题 3.2.29** 设 k 为域,  $u \in k(x) \setminus k$ , 则 u 在 k 上超越, x 在 k(u) 上代数, 且  $[k(x):k(u)] = \deg(u)$ , 这里  $\deg(u)$  定义为 u 的既约表达中分子、分母次数的较高者.

§3.3 分裂域 55

**证明** 由命题 2.7.7, 可设  $u(x) = \frac{a(x)}{b(x)}$ , 其中  $a(x), b(x) \in k[x]$  互素. 则  $a(t) - b(t)u \in k(u)[t]$  有根 x, 从而 x 在 k(u) 上代数. 进而 u 在 k 上超越, 否则  $k \hookrightarrow k(u) \hookrightarrow k(x)$  是代数扩张的复合, 由命题 3.2.12, k(x)/k 亦 为代数扩张, 矛盾. 由于 u 在 k 上超越, 由命题 2.4.13 易知

$$k[y,t] \simeq k[u,t], \quad y \leftrightarrow u, \quad t \leftrightarrow t.$$

由于  $a(t) - b(t)y \in k[y,t]$  显然不可约, 因此  $a(t) - b(t)u \in k[u,t]$  亦不可约, 再由命题 2.7.34 知  $a(t) - b(t)u \in k(u)[t]$  不可约, 而 x 是它的根, 因此 (在至多相差常数倍的意义下) 它是 x 在 k(u) 上的最小多项式, 其次数为 deg(u).

### 3.3 分裂域

#### 引理 3.3.1 (关键引理) 考虑下图

$$lpha \in E$$
  $E'$  域扩张  $k \xrightarrow{\sigma$ 域同构  $k'$ 

设  $\alpha$  关于 k 的最小多项式为  $f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0 \in k[x]$ . 令  $\sigma(f) = x^n + \sigma(a_{n-1})x^{n-1} + \dots + \sigma(a_0) \in k'[x]$ . 则

(1) 若  $\beta \in \text{Root}_{E'}(\sigma(f))$ , 则唯一存在  $\sigma$  的延拓

$$\widetilde{\sigma}: k(\alpha) \xrightarrow{\sim} k'(\beta)$$

满足  $\tilde{\sigma}(\alpha) = \beta$ .

- (2) 恰有  $|\text{Root}_{E'}(\sigma(f))|$  个这样的延拓  $\tilde{\sigma}: k(\alpha) \hookrightarrow E'$ .
- 证明 (1) 设存在  $\beta \in Root_{E'}(\sigma(f))$ .
  - ① 先证明  $\widetilde{\sigma}$  的至多唯一性. 设  $\deg(f(x)) = d$ . 由定理 3.1.23,  $\{1, \alpha, \dots, \alpha^{d-1}\}$  是  $k(\alpha)$  的一组 k-基, 而  $\widetilde{\sigma}(\alpha) = \beta$ , 且对任意  $\lambda \in k$ ,  $\widetilde{\sigma}(\lambda) = \sigma(\lambda)$ .
  - ② 再验证如上  $\tilde{\sigma}: k(\alpha) \to k'(\beta)$  满足要求. 由  $\sigma$  是域同构知  $\sigma(f) \in k'[x]$  是首一不可约多项式,又  $\beta \in \operatorname{Root}_{E'}(\sigma(f))$ ,因此  $\sigma(f)$  是  $\beta$  关于 k' 的最小多项式.又域同构  $\sigma: k \xrightarrow{\sim} k'$  自然诱导环同构  $k[x] \xrightarrow{\sim} k'[x]$  (仍用  $\sigma$  标识),它使得  $(f(x)) \xrightarrow{\sigma} (\sigma(f(x)))$ . 由练习 2.6.16, 有环同构  $k[x]/(f(x)) \xrightarrow{\sim} k'[x]/(\sigma(f(x)))$ . 再结合定理 3.1.23 即可得到如下图表:

由此图表显见欲求 $\tilde{\sigma}$ (即虚线箭头)的存在性.

(2) 设  $\delta: k(\alpha) \hookrightarrow E'$  为 (1) 中所述的延拓:

$$k(\alpha) \stackrel{\delta}{\longrightarrow} E'$$

$$\uparrow \qquad \qquad \uparrow$$

$$k \stackrel{\sigma}{\longrightarrow} k'$$

将δ作用在等式

$$\alpha^n + a_{n-1}\alpha^{n-1} + \dots + a_0 = 0_{k(\alpha)}$$

两端即得

$$\delta(\alpha)^n + \sigma(a_{n-1})\delta(\alpha)^{n-1} + \dots + \sigma(a_0) = 0_{E'},$$

即  $\delta(\alpha) \in \text{Root}_{E'}(\sigma(f))$ . 再由 (1) 即得证.

**注记 3.3.2** 由定理 3.1.23, 当  $\beta \in \text{Root}_{E'}(\sigma(f))$  时, 有如下图表:

$$\alpha \in E \qquad \qquad E' \ni \beta$$

$$\uparrow \qquad \qquad \uparrow$$

$$k[x]/(f(x)) \longleftarrow^{\sim} k(\alpha) \xrightarrow{-\exists! \tilde{\sigma}$$
域同构 
$$\uparrow \qquad \qquad \uparrow$$

$$k \xrightarrow{\sigma} k'$$

**定义 3.3.3** 设 k 为域, 非常值多项式  $f(x) \in k[x]$  的分裂域是指域扩张 E/k 满足:

- (1) f(x) 在 E 上分裂:  $f(x) = (x \alpha_1) \cdots (x \alpha_n)$ ,  $\alpha_i \in E$ .
- (2)  $E = k(\alpha_1, \dots, \alpha_n)$ .

**注记 3.3.4** 由每个  $\alpha_i$  均被  $f(x) \in k[x]$  零化知它们在 k 上代数, 再由定理 3.1.23 知域扩张塔  $k \subset k(\alpha_1) \subset k(\alpha_1, \alpha_2) \subset \cdots \subset E$  中相邻扩张均是有限维的. 由定理 3.2.4 得  $[E:k] < \infty$ .

**定理 3.3.5** 设 k 为域,则非常值多项式  $f(x) \in k[x]$  在 k 上的分裂域总是存在的.

**证明** (1) 先证明存在域扩张 K/k 使得 f(x) 在 K 上完全分裂. [ 提示) 添根构造.

(2) 由 (1), 设 
$$f(x) = (x - \beta_1) \cdots (x - \beta_n)$$
,  $\beta_i \in K$ . 取  $E = k(\beta_1, \dots, \beta_n) \subset K$ , 则  $E/k$  为分裂域.

**例 3.3.6** 设  $f(x) \in \mathbb{Q}[x]$ , 由定理 3.2.20,

$$f(x) = (x - z_1) \cdots (x - z_n), \quad z_i \in \mathbb{C}.$$

则  $E = \mathbb{Q}(z_1, \dots, z_n)$  为 f(x) 的分裂域.

**例 3.3.7**  $x^3 - 2 \in \mathbb{Q}[x]$  的分裂域为  $E = \mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{2}\omega, \sqrt[3]{2}\omega^2) = \mathbb{Q}(\sqrt[3]{2}, \omega)$ .

**例 3.3.8**  $(x^2-2)(x^2-3) \in \mathbb{Q}[x]$  的分裂域为  $E = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ .

**例 3.3.9**  $x^2 + x + \overline{1} \in \mathbb{F}_2[x]$  的分裂域为  $\mathbb{F}_2(u, u + \overline{1}) = \mathbb{F}_4$ .

定义 3.3.10 设 E/k 为  $f(x) \in k[x]$  的分裂域, 称  $Gal(E/k) := Aut(E/k) = \{\delta \in Aut(E) : \delta|_k = Id_k\}$  为 E/k 的 Galois 群 (或方程 f(x) = 0 的 Galois 群  $Gal_k(f)$ ).

§3.3 分裂域 57

**注记 3.3.11** 由下面的定理 3.3.13, Galois 群的定义不依赖于域扩张 E/k 的选取.

**命题 3.3.12** 任取  $\alpha \in \text{Root}_E(f(x))$  与  $\sigma \in \text{Gal}_k(f)$ ,则  $\sigma(\alpha) \in \text{Root}_E(f(x))$ .

**定理 3.3.13** 给定域同构  $\sigma: k \xrightarrow{\sim} k'$ ,  $f(x) \in k[x]$  及相应的  $\sigma(f(x)) \in k'[x]$ . 取 E/k 为 f(x) 的一个分裂域, E'/k' 为  $\sigma(f(x))$  的一个分裂域. 则  $\sigma$  可延拓为域同构

$$\delta: E \xrightarrow{\sim} E'$$
.

这样的域同构  $\delta$  至多有 [E:k] = [E':k'] 个.

**证明** 对 [E:k] 归纳. 若 [E:k] = 1, 则 E = k. 因此 f(x) 在 k 上完全分裂,  $\sigma(f(x))$  在 k' 上完全分裂, E' = k'. 此时  $\sigma$  自身即为所求  $\delta$  (自然个数为 1). 现设 [E:k] < N 时结论成立, 考虑  $[E:k] = N \geqslant 2$  的情形. 设 f(x) 在 E 上完全分裂为

$$f(x) = (x - \alpha_1) \cdots (x - \alpha_n), \quad \alpha_i \in E.$$

由于 [E:k] > 1, 不妨设  $\alpha_1 \notin k$ . 设  $\alpha_1$  关于 k 的最小多项式为 g(x), 则  $\deg(g(x)) \ge 2$  且  $g(x) \mid f(x)$ , 进而  $\sigma(g(x)) \mid \sigma(f(x))$ . 由  $\sigma(f(x))$  在 E' 上完全分裂即知  $\sigma(g(x))$  亦在 E' 上完全分裂. 于是可取  $\beta_1 \in \text{Root}_{E'}(\sigma(g(x)))$ . 由引理 3.3.1, 唯一存在  $\sigma$  的延拓  $\widetilde{\sigma}: k(\alpha_1) \xrightarrow{\sim} k'(\beta_1)$  满足  $\widetilde{\sigma}(\alpha_1) = \beta_1$ . 由分裂域的定义可知  $E/k(\alpha_1)$  是  $f(x) \in k(\alpha_1)[x]$  的分裂域,  $E/k'(\beta_1)$  是  $\sigma(f(x)) \in k'(\beta_1)[x]$  的分裂域. 由定理 3.2.4,

$$[E:k(\alpha_1)] = \frac{[E:k]}{[k(\alpha_1):k]} < [E:k].$$

由归纳假设, 存在域同构  $\delta: E \xrightarrow{\sim} E'$  延拓  $\widetilde{\sigma}$ , 且这样的域同构至多有  $[E:k(\alpha_1)]$  个. 而由引理 3.3.1, 恰有  $|\operatorname{Root}_{E'}(\sigma(g(x)))|$  个  $\widetilde{\sigma}: k(\alpha_1) \xrightarrow{\sim} k'(\beta_1)$ . 于是这样的  $\delta$  的个数为

$$[E:k(\alpha_1)] \cdot \underbrace{|\text{Root}_{E'}(\sigma(g(x)))|}_{\leqslant \deg(g(x)) = [k(\alpha_1):k]} \leqslant [E:k(\alpha_1)][k(\alpha_1):k] \xrightarrow{\text{$\not$$$$$$$\mathbb{Z}$}} [E:k].$$

**推论 3.3.14** 在定理 3.3.13 中取  $\delta = \mathrm{Id}_k$  (从而 k' = k,  $\sigma(f(x)) = f(x)$ ), 可得

$$E \xrightarrow{\exists \delta u | \forall h} E'$$

$$\downarrow \qquad \qquad \downarrow k$$

$$k \xrightarrow{\text{Id}_k} k$$

- (1) (分裂域的唯一性) 分裂域在域扩张同构的意义下唯一.
- (2)  $|\operatorname{Gal}_k(f)| := |\operatorname{Aut}(E/k)| \leq [E:k].$

**例 3.3.15** 考虑  $f(x) = x^3 - 2 \in \mathbb{Q}[x]$ , 由例 3.3.7, 其分裂域  $E = \mathbb{Q}(\sqrt[3]{2}, \omega)$ , 因此  $Gal_{\mathbb{Q}}(f) = Aut(E/\mathbb{Q})$ . 同练习 2.5.18 (2) 证明手法可知, E 上任一自同构限制在  $\mathbb{Q}$  上均为恒等映射. 于是域 E 的自同构均为域扩张  $E/\mathbb{Q}$  的自同构,  $Aut(E/\mathbb{Q}) = Aut(E)$ . 记

$$Root_{E}(x^{3}-2) = \left\{\beta_{0} = \sqrt[3]{2}, \beta_{1} = \sqrt[3]{2}\omega, \beta_{2} = \sqrt[3]{2}\omega^{2}\right\},\$$
$$Root_{E}(x^{2}+x+1) = \left\{\alpha_{1} = \omega, \alpha_{2} = \omega^{2}\right\}.$$

由引理 3.3.1, 存在 Id<sub>ℚ</sub> 的延拓

$$\sigma_i: \mathbb{Q}(\sqrt[3]{2}) \xrightarrow{\sim} \mathbb{Q}(\beta_i)$$

满足  $\sigma_i(\sqrt[3]{2}) = \beta_i$ . 再次运用引理 3.3.1, 存在  $\sigma_i$  的延拓

$$\delta_{i,j}: \mathbb{Q}(\sqrt[3]{2})(\omega) \xrightarrow{\sim} \mathbb{Q}(\beta_i)(\alpha_j)$$

满足  $\delta_{i,j}(\omega) = \alpha_j$ . 故

$$Aut(E) = \{\delta_{i,j} : i = 0, 1, 2; j = 1, 2\}.$$

此时  $|\operatorname{Aut}(E/\mathbb{Q})| = 6 = [E : \mathbb{Q}].$ 

**练习 3.3.16** 例 3.3.15 中 Aut(E) 的乘法表.

**解答** 见表 3.1. 注意 Aut(E) 是非 Abel 群.

表 3.1: 例 3.3.15 中 Aut(E) 的乘法表

| $\downarrow \circ \rightarrow$ | $\delta_{0,1}$ | $\delta_{0,2}$ | $\delta_{1,1}$ | $\delta_{1,2}$ | $\delta_{2,1}$ | $\delta_{2,2}$ |
|--------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| $\delta_{0,1}$                 | $\delta_{0,1}$ | $\delta_{0,2}$ | $\delta_{1,1}$ | $\delta_{1,2}$ | $\delta_{2,1}$ | $\delta_{2,2}$ |
| $\delta_{0,2}$                 | $\delta_{0,2}$ | $\delta_{0,1}$ | $\delta_{2,2}$ | $\delta_{2,1}$ | $\delta_{1,2}$ | $\delta_{1,1}$ |
| $\delta_{1,1}$                 | $\delta_{1,1}$ | $\delta_{1,2}$ | $\delta_{2,1}$ | $\delta_{2,2}$ | $\delta_{0,1}$ | $\delta_{0,2}$ |
| $\delta_{1,2}$                 | $\delta_{1,2}$ | $\delta_{1,1}$ | $\delta_{0,2}$ | $\delta_{0,1}$ | $\delta_{2,2}$ | $\delta_{2,1}$ |
| $\delta_{2,1}$                 | $\delta_{2,1}$ | $\delta_{2,2}$ | $\delta_{0,1}$ | $\delta_{0,2}$ | $\delta_{1,1}$ | $\delta_{1,2}$ |
| $\delta_{2,2}$                 | $\delta_{2,2}$ | $\delta_{2,1}$ | $\delta_{1,2}$ | $\delta_{1,1}$ | $\delta_{0,2}$ | $\delta_{0,1}$ |

**例 3.3.17** 考虑  $f(x)=x^2+x+\overline{1}\in\mathbb{F}_2[x]$ , 由例 3.3.9, 其分裂域  $\mathbb{F}_2(u,u+\overline{1})=\mathbb{F}_4$ . 因此  $\mathrm{Gal}_{\mathbb{F}_2}(f)=\mathrm{Aut}(\mathbb{F}_4/\mathbb{F}_2)$ . 由于  $\mathbb{F}_4$  上任一自同构限制在  $\mathbb{F}_2$  上均为恒等映射,  $\mathrm{Aut}(\mathbb{F}_4/\mathbb{F}_2)=\mathrm{Aut}(\mathbb{F}_4)$ . 记

$$Root_{\mathbb{F}_4}(x^2 + x + \overline{1}) = \{\alpha_0 = u, \alpha_1 = u + \overline{1}\}.$$

由引理 3.3.1, 存在  $Id_{\mathbb{F}_2}$  的延拓

$$\delta_i: \mathbb{F}_4 \stackrel{\sim}{\longrightarrow} \mathbb{F}_2(\alpha_i)$$

满足  $\delta_i(u) = \alpha_i$ . 故

$$\operatorname{Aut}(\mathbb{F}_4) = \{\delta_0, \delta_1\}.$$

林晓烁 2024 年春季

§3.3 分裂域 59

此时  $|\operatorname{Aut}(\mathbb{F}_4/\mathbb{F}_2)| = 2 = [\mathbb{F}_4 : \mathbb{F}_2].$ 

**练习 3.3.18** 例 3.3.17 中,  $\delta_0 = \mathrm{Id}_{\mathbb{F}_4}$ , 而对每个  $a \in \mathbb{F}_4$  均有  $\delta_1(a) = a^2$ .

**定义 3.3.19** 称非零多项式  $f(x) \in k[x]$  (在某个扩域里) 有重根, 若存在域扩张 E/k 使得对某个  $a \in E$  有  $(x-a)^2 \mid f(x)$ .

**定义 3.3.20** 设  $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in k[x]$ . 定义 f(x) 的形式微分为

$$f'(x) = na_n x^{n-1} + \dots + 2a_2 x + a_1.$$

**注记 3.3.21** 若  $n1_k \neq 0_k$ , 则对任意 n 次多项式 f(x),  $\deg(f'(x)) = \deg(f(x)) - 1$ .

**性质 3.3.22 (Leibniz 法则)** 设  $f(x), g(x) \in k[x]$ , 则

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x).$$

**引理 3.3.23** 非零多项式  $f(x) \in k[x]$  无重根当且仅当  $\gcd_{k[x]}(f(x), f'(x)) = 1$ .

**定义 3.3.24** 非零多项式  $f(x) \in k[x]$  称为 k 上可分的, 若 f(x) 在 k[x] 中的不可约因子均无重根.

**引理 3.3.25** 若 char(k) = 0, 则 k 上的任意多项式均可分.

**证明** 设 g(x) 是  $f(x) \in k[x]$  的不可约因子. 由注记 3.3.21,  $\deg(g'(x)) = \deg(g(x)) - 1$ . 因此

$$\gcd_{k[x]}(g(x),g'(x))=1.$$

由引理 3.3.23, g(x) 无重根. 故 f(x) 在 k 上可分.

**例 3.3.26 (不可分多项式)** 考虑有理函数域  $k = \mathbb{F}_p(t)$ , 其中 p 为素数, t 为未定元. 由  $t \in \mathbb{F}_p[t]$  为素元, 根据 Eisenstein 判别法,  $x^p - t \in \mathbb{F}_p[t][x]$  不可约. 而  $\mathbb{F}_p[t]$  为 UFD, 由命题 2.7.34,  $x^p - t \in k[x]$  不可约. 设  $\alpha$  是  $x^p - t$  在 k 的某个扩域上的根,则由

$$x^p - t = x^p - \alpha^p = (x - \alpha)^p$$

可知  $\alpha$  是重根. 故  $x^p - t \in k[x]$  是不可分多项式.

**练习 3.3.27** 考虑域扩张 K/k 与  $f(x) \in k[x]$ . 若 f(x) 在 k 上可分, 则 f(x) 在 K 上亦可分.

**定理 3.3.13 续** 给定域同构  $\sigma: k \xrightarrow{\sim} k'$ ,  $f(x) \in k[x]$  及相应的  $\sigma(f(x)) \in k'[x]$ . 取 E/k 为 f(x) 的一个分 裂域, E'/k' 为  $\sigma(f(x))$  的一个分裂域. 则  $f(x) \in k[x]$  可分当且仅当  $\sigma$  仅有 [E:k] 个延拓  $\delta: E \xrightarrow{\sim} E'$ . 此时  $|\operatorname{Aut}(E/k)| = [E:k]$ .

**有限维域扩张** 设 E/k 为有限维域扩张, 由定理 3.2.11, E/k 是有限生成的代数扩张. 因此任意  $u \in E$  均有关于 k 的最小多项式 g(x). 对任意  $\sigma \in \operatorname{Aut}(E/k)$ , 由  $\sigma|_k = \operatorname{Id}_k$  知, 对  $g(x) \in k[x]$ , 有  $g(u) = 0 \Longrightarrow g(\sigma(u)) = 0$ , 即  $\sigma(u) \in \operatorname{Root}_E(g(x))$ , 它仅有有限种可能取值. 设  $E = k(u_1, \dots, u_n)$ , 我们有以下事实:

练习 3.3.28 设  $\sigma, \tau \in Aut(E/k)$ . 若  $\sigma(u_i) = \tau(u_i), \forall i, \, \text{则 } \sigma = \tau$ .

也即域扩张 E/k 的自同构完全由其在生成元集上的作用确定. 故 Aut(E/k) 是有限群.

**例 3.3.29** Aut $\left(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}\right) = \operatorname{Aut}\left(\mathbb{Q}(\sqrt[3]{2})\right) = \left\{\operatorname{Id}_{\mathbb{Q}(\sqrt[3]{2})}\right\}$ . 它是平凡群的原因在于  $x^3 - 2$  在  $\mathbb{Q}(\sqrt[3]{2})$  中的根仅有  $\sqrt[3]{2}$ .

**定理 3.3.30** 设 E/k 是有限维域扩张,则  $|\text{Aut}(E/k)| \leq [E:k]$ ,等号成立当且仅当 E/k 是 k 上某个可分 多项式的分裂域. 此时,对任意  $a \in E$ ,有  $a \in k$  当且仅当对任意  $\sigma \in \text{Aut}(E/k)$  均有  $\sigma(a) = a$ .

**证明** (1) 由定理 3.2.11, E/k 是有限生成的代数扩张, 设  $E = k(u_1, \dots, u_n)$ . 不妨只考虑 n = 2 的情形. 取  $u_1$  关于 k 的最小多项式  $g_1(x) \in k[x]$ , 任取  $\beta_1 \in \text{Root}_E(g_1(x))$ . 由引理 3.3.1, 对于每个取定的  $\beta_1$ , 唯一存在  $\text{Id}_k$  的延拓  $\sigma_1: k(u_1) \xrightarrow{\sim} k(\beta_1)$  满足  $\sigma_1(u_1) = \beta_1$ . 这样的延拓  $\sigma_1$  恰有  $|\text{Root}_E(g_1(x))|$  个,而  $|\text{Root}_E(g_1(x))| \leq \deg(g_1(x)) = [k(\beta_1):k]$ . 再取  $u_2$  关于  $k(u_1)$  的最小多项式  $g_2(x) \in k(u_1)[x]$ , 任取  $\beta_2 \in \text{Root}_E(\sigma_1(g_2(x)))$ . 再由引理 3.3.1, 对于给定的  $\sigma_1$  与取定的  $\beta_2$ , 唯一存在  $\sigma_1$  的延拓  $\sigma_2: E \xrightarrow{\sim} E$  满足  $\sigma_2(u_2) = \beta_2$ . 这样的延拓恰有  $|\text{Root}_E(\sigma_1(g_2(x)))|$  个,而  $|\text{Root}_E(\sigma_1(g_2(x)))| \leq \deg(g_2(x)) = [E:k(\beta_1)]$ . 故

$$|\operatorname{Aut}(E/k)| = |\operatorname{Root}_E(g_1(x))| \cdot |\operatorname{Root}_E(\sigma_1(g_2(x)))|$$
  
 $\leq [k(\beta_1):k][E:k(\beta_1)] \xrightarrow{\text{$\mathbb{Z}$} \ \text{$\mathbb{Z}$} \ \text{$\mathbb{Z}$}.2.4} [E:k].$ 

- (2) 设  $|\operatorname{Aut}(E/k)| = [E:k]$ . 由 (1) 中第一处 " $\leq$ " 为 "=" 知,  $u_1$  关于 k 的最小多项式  $h_1(x) \in k[x]$  在 E 上分裂且无重根. 由于从 k 到 E 的扩张不依赖于  $u_1, \dots, u_n$  的顺序, 对域扩张  $k(u_i)/k$  如上分析即 知,  $u_i$  关于 k 的最小多项式  $h_i \in k[x]$  在 E 上分裂且在 k 上可分. 记  $f(x) = \prod_{i=1}^n h_i(x) \in k[x]$ ,则 f(x) 在 E 上分裂且在 k 上可分, E/k 即 f(x) 的分裂域.
- (3) 设 E/k 为 k 上可分多项式 f(x) 的分裂域,  $f(x) = (x u_1) \cdots (x u_n)$ . 由于  $u_1$  关于 k、 $u_2$  关于  $k(u_1)$  直至  $u_n$  关于  $k(u_1, \cdots, u_{n-1})$  的最小多项式均为 f(x) 的因子, 因此它们在 E 上分裂且无重根. 由此可知 (1) 中每处 " $\leq$ " 均为 "=", 故 |Aut(E/k)| = [E:k].
- (4) 设 E/k 是 k 上可分多项式 f(x) 的分裂域,  $a \in E$ , 且对任意  $\sigma \in \operatorname{Aut}(E/k)$  均有  $\sigma(a) = a$ . 下证  $a \in k$ . 用反证法, 假设  $a \notin k$ , 则 a 关于 k 的最小多项式 g(x) 满足  $\deg(g(x)) \geqslant 2$ . 同 (2) 知 g(x) 在 E 上分裂且无重根, 因此  $|\operatorname{Root}_E(g(x))| = \deg(g(x)) \geqslant 2$ , 存在  $b \neq a$  使得 g(b) = 0. 由引理 3.3.1, 存在  $\operatorname{Id}_k$  的延拓  $\sigma : k(a) \xrightarrow{\sim} k(b)$  满足  $\sigma(a) = b$ . 由于  $\sigma(f(x)) = f(x)$ , E/k(a) 为  $f(x) \in k(a)[x]$  的分裂域, E/k(b) 为  $f(x) \in k(b)[x]$  的分裂域, 由定理 3.3.13, 存在  $\sigma$  的延拓  $\delta \in \operatorname{Aut}(E)$ . 因此  $\delta \in \operatorname{Aut}(E/k)$ , 但  $\delta(a) = \sigma(a) = b \neq a$ , 矛盾.



林晓烁 2024 年春季

§3.4 有限域 61

**不动子域** 设 E/k 为有限维域扩张,  $H \leq \operatorname{Aut}(E/k)$  为子群. 定义 H-不动子域为

$$E^{H} := \{ z \in E : \sigma(z) = z, \forall \sigma \in H \}.$$

此时有域扩张塔  $k \subset E^H \subset E$ .

**中间域** 考虑域扩张塔  $k \subset K \subset E$ . 此时对中间域 K 有

$$\operatorname{Aut}(E/K) = \{\sigma \in \operatorname{Aut}(E) : \sigma|_K = \operatorname{Id}_K\} \leqslant \operatorname{Aut}(E/k)$$

为子群.

### 3.4 有限域

**有限域的概念** 设 E 为有限域. 由推论 2.2.24,  $\operatorname{char}(R) = p$  (p 为素数). 再由注记 2.2.25, 存在域嵌入  $\mathbb{F}_p \hookrightarrow E$ . 由练习 2.4.39, 可视 E 为  $\mathbb{F}_p$ -线性空间. 设  $n = \dim_{\mathbb{F}_p} E$ , 则有线性同构  $E \simeq \mathbb{F}_p \times \cdots \times \mathbb{F}_p$ . 于是  $|E| = p^n$ .

**定义 3.4.1** 设有限域 E 特征为 p. 定义 E 上的 Frobenius 自同构为

$$\sigma: E \xrightarrow{\sim} E$$
$$a \longmapsto a^p.$$

**注记 3.4.2** 考虑域扩张  $E/\mathbb{F}_p$ , 由于  $\sigma \in \operatorname{Aut}(E)$ ,  $\sigma|_{\mathbb{F}_p} = \operatorname{Id}_{\mathbb{F}_p}$ . 因此对任意  $\overline{m} \in \mathbb{F}_p$ ,  $\sigma(\overline{m}) = \overline{m}^p = \overline{m}$ . 这 便是 Fermat 小定理.

**例 3.4.3** 考虑域扩张  $\mathbb{F}_4/\mathbb{F}_2$ , 则  $\sigma|_{\mathbb{F}_2} = \mathrm{Id}_{\mathbb{F}_2}$ ,  $\sigma(u) = u^2 = u + \overline{1}$ ,  $\sigma(u + \overline{1}) = u^2 + \overline{1} = u$ . 因此  $\sigma^2 = \mathrm{Id}_{\mathbb{F}_4}$ . 而  $|\mathrm{Aut}(\mathbb{F}_4/\mathbb{F}_2)| \leqslant [\mathbb{F}_4:\mathbb{F}_2] = 2$ , 因此  $\mathrm{Aut}(\mathbb{F}_4/\mathbb{F}_2) = \{\mathrm{Id}_{\mathbb{F}_4},\sigma\}$ .

**例 3.4.4** 有理函数域  $\mathbb{F}_p(t)$  的 Frobenius 自同态  $\sigma(x)=x^p$  不是满射. 例如, 假设  $t\in \mathrm{Im}\,\sigma$ , 则存在  $f(t),g(t)\in\mathbb{F}_p[t]$ , 使得  $\left(\frac{f(t)}{g(t)}\right)^p=t$ . 两边取次数即  $p\cdot[\deg(f)-\deg(g)]=1$ , 但这不可能. 故  $t\notin \mathrm{Im}\,\sigma$ .

设  $|E| = p^n$ , 则  $E^{\times} = E \setminus \{0_E\}$  满足  $|E^{\times}| = p^n - 1$ . 我们有定理 4.1.18 的特殊情形:

**引理 3.4.5** 对任意  $a \in E^{\times}$  均有  $a^{p^n-1} = 1_E$ . 故任意  $a \in E$  均为  $x^{p^n} - x$  的根.

**证明** 固定  $a \in E^{\times}$ , 考虑无穷序列

$$1_E, a, a^2, \dots \in E$$
.

由 E 是有限域, 必存在 i < j 使得  $a^i = a^j$ . 于是  $a^{j-i} = 1_E$ . 取最小的  $d \ge 1$  使得  $a^d = 1_E$ . 由于  $H = \{1_E, a, \dots, a^{d-1}\} \le E^{\times}$  是子群, 由定理 4.1.18,  $|H| \mid (p^n - 1)$  即  $d \mid (p^n - 1)$ . 故  $a^{p^n - 1} = 1_E$ .

**定理 3.4.6** 对任意正整数 n 与素数 p, 唯一存在  $p^n$  阶有限域, 通常记为  $\mathbb{F}_{p^n}$ .

**证明 (至多唯一性)** 设存在有限域 E 满足  $|E|=p^n$ . 由引理 3.4.5,  $E/\mathbb{F}_p$  是  $x^{p^n}-x\in\mathbb{F}_p[x]$  的分裂域, 它 在域扩张同构的意义下唯一.

**(存在性)** 设  $K/\mathbb{F}_p$  为  $x^{p^n-1}-x\in\mathbb{F}_p[x]$  的分裂域. 由  $K/\mathbb{F}_p$  是有限生成的代数扩张知  $[K:\mathbb{F}_p]<\infty$ , 因此 K 为有限域. 取  $E=\mathrm{Root}_K\left(x^{p^n}-x\right)$ . 考虑 K 上的 Frobenius 自同构  $\sigma$ , 对任意  $a,b\in E$ , 有

$$(a \pm b)^{p^n} = \sigma^n(a \pm b) = \sigma^n(a) \pm \sigma^n(b) = a \pm b, \quad (ab)^{p^n} = a^{p^n}b^{p^n} = ab,$$

因此 E 为 K 的子域. 由 K 的定义即得 E=K. 只需说明  $|E|=p^n$  即  $x^{p^n}-x\in\mathbb{F}_p[x]$  无重根. 这来自

$$\gcd_{\mathbb{F}_p[x]}\bigg(x^{p^n}-x, \Big(x^{p^n}-x\Big)'\bigg) = \gcd_{\mathbb{F}_p[x]}\Big(x^{p^n}-x, -\overline{1}\Big) = \overline{1}.$$

**注记 3.4.7** 特别地, 我们有  $\mathbb{F}_{p^n}[x]$  中的等式

$$x^{p^n} - x = \prod_{a \in \mathbb{F}_{p^n}} (x - a).$$

当 n=1 时, 就得到  $\mathbb{F}_p[x]$  中的等式

$$x^p - x = x(x - \overline{1}) \cdot \cdot \cdot (x - \overline{p-1}),$$

两边约去 x 即

$$x^{p-1} - \overline{1} = (x - \overline{1}) \cdots (x - \overline{p-1}).$$

$$(p-1)! \equiv -1 \pmod{p}.$$

**命题 3.4.8** 对素数 p 与正整数 n, 在  $\mathbb{F}_p[x]$  中有分解

$$x^{p^n} - x = \prod_{\substack{d \mid n \\ \text{ $\emptyset$ 项式} f(x) \in \mathbb{F}_p[x]}} f(x).$$

**证明** 取定 E 满足  $|E| = p^n$ . 任取  $x^{p^n} - x$  的不可约因子  $f(x) \in \mathbb{F}_p[x]$ , 则 f(x) 在 E 上完全分裂, 因此可取  $a \in E$  使得  $f(a) = \overline{0}$ . 考虑域扩张塔

$$\mathbb{F}_n \subset \mathbb{F}_n(a) \subset E$$
.

由于  $[\mathbb{F}_p(a):\mathbb{F}_p]=\deg(f(x))$ ,  $[E:\mathbb{F}_p]=n$ , 由定理 3.2.4,  $\deg(f(x))\mid n$ . 又  $x^{p^n}-x$  无重根 (见定理 3.4.6 证明), 故 f(x) 在分解式中仅出现一次. 反过来, 设  $g(x)\in\mathbb{F}_p[x]$  为 d 次首一不可约多项式,  $d\mid n$ . 考虑 Kronecker 添根构造  $K=\mathbb{F}_p[x]/(g(x))$ , 记  $u=\overline{x}$ . 则  $K=\mathbb{F}_p(u)$ ,  $[K:\mathbb{F}_p]=d$ , 因此  $|K|=p^d$ . 由引理 3.4.5,  $u^{p^d}-u=\overline{0}$ . 又 g(x) 是 u 的最小多项式, 因此  $g(x)\left|\left(x^{p^d}-x\right)\right|$ . 而  $\left(x^{p^d}-x\right)\left|\left(x^{p^n}-x\right)\right|$ ,故  $g(x)\left|\left(x^{p^n}-x\right)\right|$ .

$$\left(x^{p^d}-x\right)\left|\left(x^{p^n}-x\right)\right.$$
 的证明  $\gcd(a^m-1,a^n-1)=a^{\gcd(m,n)}-1, \forall a,m,n\in\mathbb{Z}_+.$ 

**例 3.4.9** 在命题 3.4.8 中, 取 p = 2 可得  $\mathbb{F}_2[x]$  中分解

$$x^{4} - x = x(x + \overline{1})(x^{2} + x + \overline{1}),$$

$$x^{8} - x = x(x + \overline{1})(x^{3} + x^{2} + \overline{1})(x^{3} + x + \overline{1}),$$

$$x^{16} - x = x(x + \overline{1})(x^{2} + x + \overline{1})(x^{4} + x^{3} + x^{2} + x + \overline{1})(x^{4} + x^{3} + \overline{1})(x^{4} + x + \overline{1}).$$

取 p=3 可得  $\mathbb{F}_3[x]$  中分解

$$x^{9} - x = x(x + \overline{1})(x - \overline{1})(x^{2} + \overline{1})(x^{2} + x - \overline{1})(x^{2} - x - \overline{1}).$$

§3.4 有限域 63

### **命题 3.4.10** 取定 $p^n$ 元域 E.

- (1) 设  $K \to E$  的子域,则  $|K| = p^d$ ,其中  $d \mid n$ .
- (2) 设  $d \mid n$ , 则存在唯一的子域  $K \subset E$  满足  $|K| = p^d$ .

**证明** (1) 考虑域扩张塔  $\mathbb{F}_p \subset K \subset E$ , 由定理 3.2.4 得  $[K : \mathbb{F}_p] \mid [E : \mathbb{F}_p]$ .

(2) **(至多唯一性)** 假设  $K \subset E$  满足  $|K| = p^d$ , 由引理 3.4.5,  $K \subset \text{Root}_E\left(x^{p^d} - x\right)$ . 但  $x^{p^d} - x$  无重根 (见定理 3.4.6 证明),  $\left|\text{Root}_E\left(x^{p^d} - x\right)\right| = p^d = |K|$ , 因此  $K = \text{Root}_E\left(x^{p^d} - x\right)$ .

(存在性) 只需验证 
$$\operatorname{Root}_E\left(x^{p^d}-x\right)\subset E$$
 是  $p^d$  阶子域.

**例 3.4.11 (** $\mathbb{F}_{2^6}$  **的子域格)** 取定域 E 使得  $|E|=2^6$ . 由命题 3.4.10, 存在唯一子域  $K_1 \subset E$  与  $K_2 \subset E$  满足  $|K_1|=2^2, |K_2|=2^3$ .

$$\mathbb{F}_2 \subset K_1 \subset E \subset K_2$$

此时,  $K_1 = \{a \in E : a^4 = a\}$ ,  $K_2 = \{b \in E : b^8 = b\}$ .

**练习 3.4.12** 设 *E*, *K*<sub>1</sub>, *K*<sub>2</sub> 如例 3.4.11 所述.

- (1) 证明:  $K_1 \cap K_2 = \mathbb{F}_2$ .
- (2)  $\vec{x} | \{ u \in E : \mathbb{F}_2(u) = E \} |$ .

**解答** (1)  $K_1 \cap K_2 = \{a \in E : a^2 = a\} = \text{Root}_E(x^2 - x) = \mathbb{F}_2.$ 

(2) 结合 (1) 可知 
$$|\{u \in E : \mathbb{F}_2(u) = E\}| = |E \setminus (K_1 \cup K_2)| = 64 - (4 + 8 - 2) = 54.$$

从例 3.4.11 可提取出如下结论: 设 n 有素因数分解  $n=q_1^{r_1}\cdots q_t^{r_t}$   $(r_i\geqslant 1)$ ,则 E 的极大真子域  $K_i$  阶为  $p^{\frac{n}{q_i}}$ . 此时, 从练习 3.4.12 (2) 出发, 我们还有

**命题 3.4.13** E 的全体极大真子域的并集  $\bigcup_{i=1}^t K_i \neq E$ . 故存在  $u \in E$  使得  $E = \mathbb{F}_p(u)$ .

证明 只需作简单的估计:

$$\left|\bigcup_{i=1}^t K_i\right| \leqslant \sum_{i=1}^t p^{\frac{n}{q_i}} \leqslant t \cdot p^{\frac{n}{2}} < \frac{n}{2} \cdot p^{\frac{n}{2}} \leqslant p^n.$$

从命题 3.4.13 可知  $E/\mathbb{F}_p$  为单扩张. 于是  $E\setminus (K_1\cup\cdots\cup K_t)$  中任一元素关于  $\mathbb{F}_p$  的最小多项式次数 为  $[E:\mathbb{F}_p]=n$ . 故我们得到

**推论 3.4.14** 对任意正整数 n,  $\mathbb{F}_p[x]$  中总有 n 次不可约多项式.

**命题 3.4.15** 取定 n 次首一不可约多项式  $f(x) \in \mathbb{F}_p[x]$ . 设  $u \in \text{Root}_E(f(x))$ , 则

$$f(x) = \prod_{i=0}^{n-1} (x - \sigma^i(u)).$$

证明 由  $u \in \text{Root}_E(f(x))$  可知  $[\mathbb{F}_p(u) : \mathbb{F}_p] = \deg(f(x)) = n$ , 因此  $\mathbb{F}_p(u) = E$ .

(1) 先证明  $\sigma^i(u) \neq u, \forall 1 \leq i \leq n-1$ . 假设存在  $i \leq n-1$  使得  $\sigma^i(u) = u$ . 记

$$d=\gcd(i,n)=mi+rn,\quad m,r\in\mathbb{Z}.$$

由  $u \in E$  即知  $\sigma^n(u) = u$ . 于是

$$\sigma^d(u) = (\sigma^i)^m \circ (\sigma^n)^r(u) = (\sigma^i)^m(u) = u.$$

若 d < n, 则  $u \in \mathbb{F}_{p^d} \subseteq E$ ,  $\mathbb{F}_p(u) \subseteq E$ , 矛盾. 故 d = n, 但这与  $i \le n - 1$  矛盾.

- (2) 由 (1) 可知  $\sigma^{i}(u) \neq \sigma^{j}(u), 0 \leq i < j \leq n-1$ . 否则两边作用  $\sigma^{-i}$  即得矛盾.
- (3) 由于  $\sigma \in Aut(E)$ ,  $u, \sigma(u), \dots, \sigma^{n-1}(u) \in Root_E(f(x))$  且两两不同.

**注记 3.4.16**  $E/\mathbb{F}_p$  是  $\mathbb{F}_p$  上可分多项式 f(x) 的分裂域.

**例 3.4.17** 对任意  $w \in \mathbb{F}_9 \setminus \mathbb{F}_3$ ,  $w = \sigma(w) = w^3$  有相同的最小多项式, 为

$$(x-w)(x-\sigma(w)) \in \mathbb{F}_3[x].$$

证明 由 Fermat 小定理,  $\sigma|_{\mathbb{F}_3} = \mathrm{Id}_{\mathbb{F}_3}$ . 视  $\mathbb{F}_9$  为  $\mathbb{F}_3$ -线性空间, 则

$$g(w) = \overline{0} \iff \sigma(g(w)) = \overline{0} \iff g(\sigma(w)) = \overline{0}.$$

又  $[\mathbb{F}_9:\mathbb{F}_3]=2$ , w 的最小多项式次数为 2,  $\sigma(w)\neq w$ , 因此 w (与  $\sigma(w)$ ) 关于  $\mathbb{F}_3$  的最小多项式为  $(x-w)(x-\sigma(w))\in\mathbb{F}_3[x]$ .

**注记 3.4.18** 由此可知  $\mathbb{F}_3[x]$  中共有  $3 \land 2$  次首一不可约多项式.

**定理 3.4.19** 设域 E 满足  $|E|=p^n$ , 则  $\mathrm{Aut}(E)=\{\mathrm{Id}_E,\sigma,\cdots,\sigma^{n-1}\}.$ 

**证明** 取定 u 使  $\mathbb{F}_p(u) = E$ , 设 u 关于  $\mathbb{F}_p$  的最小多项式为 f(x). 由命题 3.4.15 证明知  $\mathrm{Id}_E, \sigma, \cdots, \sigma^{n-1} \in \mathrm{Aut}(E)$  两两不同, 且  $u, \sigma(u), \cdots, \sigma^{n-1}(u) \in \mathrm{Root}_E(f(x))$ . 任取  $\delta \in \mathrm{Aut}(E)$ , 则  $\delta(u) \in \mathrm{Root}_E(f(x))$ . 因此 存在  $0 \le i \le n-1$ , 使得  $\delta(u) = \sigma^i(u)$ . 又 E 的任一自同构限制在  $\mathbb{F}_p$  上均为恒等映射, 由 E 为  $\mathbb{F}_p$ -线性空间即知  $\delta = \sigma^i$ .

**注记 3.4.20** Aut(E) 为循环群. 对任意 d | n,

$$H_d = \{ \mathrm{Id}_E, \sigma^d, \sigma^{2d}, \cdots, \sigma^{n-d} \} \leqslant \mathrm{Aut}(E)$$

为子群, 且 Aut(E) 的任意子群均形如此.

由命题 3.4.10 与注记 3.4.20, E 的子域与 Aut(E) 的子群均——对应于 n 的 (正) 因子. 故我们得到

**定理 3.4.21 (有限域的 Galois 对应)** 设 E 为有限域,  $|E| = p^n$ . 存在格的反同构

$$\{H \leqslant \operatorname{Aut}(E) \not\ni F\} \longleftarrow \xrightarrow{1:1} \{K \subset E \not\ni I\}$$

$$H_d \longmapsto \begin{array}{c} K_d = \{a \in E : \sigma^d(a) = a\} \\ = \{a \in E : \delta(a) = a, \forall \delta \in H_d\} \\ = \operatorname{Root}_E\left(x^{p^d} - x\right) \end{array}$$

$$\operatorname{Aut}(E/K_d) = \{\delta \in E : \delta|_{K_d} = \operatorname{Id}_{K_d}\} \longleftarrow K_d.$$
林晓烁 2024 年春季

§3.5 分圆域 65

**注记 3.4.22** (1)  $K_d$  是由  $\sigma^d$  生成的子群  $H_d$  的不动子域.

- (2) 由注记 3.4.16,  $E/K_d$  也是  $K_d$  上可分多项式  $f(x) = x^{p^n} x$  的分裂域. 由定理 3.3.13 续,  $|\text{Aut}(E/K_d)| = [E:K_d]$ . 这与  $|\text{Aut}(E/K_d)| = |H_d| = \frac{n}{d}$  而  $[E:K_d] = \frac{n}{d}$  相符.
- (3) Galois 对应反保持偏序关系 (格结构).

## 3.5 分圆域

**定义 3.5.1** 称元素  $w \in k$  为 n 次单位根, 若满足  $w^n = 1_k$ . 定义单位根 w 的阶 ord(w) 为最小的正整数 d 使得  $w^d = 1_k$ . 此时, 称 w 为 d 次本原单位根.

**引理 3.5.2** 设单位根  $w \in k$  满足  $\operatorname{ord}(k) = d$ , 则  $w^n = 1_k \iff d \mid n$ .

**引理 3.5.3** 设  $\operatorname{char}(k) = p > 0$ , 单位根  $w \in k$  满足  $\operatorname{ord}(w) = d$ , 则  $p \nmid d$ .

**证明** 用反证法, 假设  $d = pd_1$ , 则

$$0_k = w^d - 1_k = (w^{d_1})^p - 1_k^p = (w^{d_1} - 1_k)^p \implies w^{d_1} = 1_k.$$

这与 d 的最小性矛盾.  $\Box$ 

**例 3.5.4** 设有限域 E 满足  $|E| = p^n$ . 任意  $w \in E^{\times}$  均满足  $w^{p^n-1} = 1_{E_{\ell}}$  故  $\operatorname{ord}(w) \mid (p^n - 1)$ .

若  $w \in k$  为 d 次本原单位根,则  $\{1, w, \dots, w^{d-1}\} = \operatorname{Root}_k(x^d - 1)$  为  $k^{\times}$  的 d 阶子群. 事实上, 这是 唯一可能的 d 阶子群:

**定理 3.5.5** 设 k 为域, 且  $H \leq k^{\times}$  为 d 阶子群, 则存在 d 阶本原单位根 w, 且  $H = \{1, w, \cdots, w^{d-1}\}$ . 特别地, 这样的 H 唯一.

**例 3.5.6** 设有限域 E 满足  $|E|=p^n$ ,则  $E^{\times}$  为  $p^n-1$  阶群. 由定理 3.5.5, 存在  $p^n-1$  次本原单位根  $u\in E$ , 使得  $E^{\times}=\left\{1,u,\cdots,u^{p^n-2}\right\}$ . 于是  $E=\mathbb{F}_p(u)$ .

**例 3.5.7** 考虑九元域  $E = \mathbb{F}_3[x]/(x^2 + \overline{1})$ , 记  $u = \overline{x}$ . 在  $E^{\times}$  中, 由于  $\operatorname{ord}(u + \overline{1}) \mid 8$ , 而  $(u + \overline{1})^2 = \overline{2}u$ ,  $(u + \overline{1})^4 = \overline{2}$ , 因此  $\operatorname{ord}(u + \overline{1}) = 8$ ,  $u + \overline{1}$  是  $E^{\times}$  的生成元.

**复单位根** 设  $n \ge 2$ , 考虑  $\zeta = \zeta_n = e^{\frac{2\pi i}{n}}$ , 则  $\operatorname{Root}_{\mathbb{C}}(x^n - 1) = \{1, \zeta, \dots, \zeta^{n-1}\}$ ,

$$x^{n} - 1 = (x - 1)(x - \zeta) \cdots (x - \zeta^{n-1}).$$

由定理 3.5.5,  $\{1, \zeta, \dots, \zeta^{n-1}\}$  是  $\mathbb{C}^{\times}$  的 (唯一) n 阶子群.

练习 3.5.8 设  $\zeta \in n$  次本原单位根, m 为正整数, 则  $\operatorname{ord}(\zeta^m) = \frac{n}{\gcd(m,n)}$ .

**引理 3.5.9** 复 n 次本原单位根的全体恰为  $\{\zeta^d : 1 \le d < n, \gcd(d, n) = 1\}$ , 共有  $\varphi(n)$  个, 这里  $\varphi(n)$  为 Euler 函数.

**定义 3.5.10**  $\mathbb{Q}(\zeta_n)/\mathbb{Q}$  恰为  $x^n - 1 \in \mathbb{Q}[x]$  的分裂域, 称为分圆域.

例 3.5.11  $\mathbb{Q}(\zeta_2) = \mathbb{Q}$ ,  $\mathbb{Q}(\zeta_3) = \mathbb{Q}(\omega) = \mathbb{Q}(\sqrt{-3})$ ,  $\mathbb{Q}(\zeta_4) = \mathbb{Q}(i)$ ,  $\mathbb{Q}(\sqrt{5}) \subset \mathbb{Q}(\zeta_5)$ .

**计算**  $\zeta_5$  将  $\zeta = \zeta_5$  满足的方程  $\zeta^4 + \zeta^3 + \zeta^2 + \zeta + 1 = 0$  写成

$$(\zeta + \zeta^{-1})^2 + (\zeta + \zeta^{-1}) - 1 = 0.$$

由此可得  $2\cos\frac{2\pi}{5} = \zeta_5 + \zeta_5^{-1} = \frac{\sqrt{5}-1}{2}$ , 进而  $\zeta_5 = \frac{\sqrt{5}-1}{4} + \sqrt{\frac{5+\sqrt{5}}{8}}i$ . 由于  $\zeta_5, \zeta_5^{-1} \in \mathbb{Q}(\zeta_5)$ , 而  $\zeta_5 + \zeta_5^{-1} = \frac{\sqrt{5}-1}{2}$ , 因此  $\mathbb{Q}(\sqrt{5}) \subset \mathbb{Q}(\zeta_5)$ .

**定义 3.5.12** 对  $n \ge 2$ , n 级分圆多项式

$$\Phi_n(x) = \prod_{\substack{\text{ord}(w) = n \\ \gcd(m, n) = 1}} (x - w) = \prod_{\substack{1 \leqslant m < n \\ \gcd(m, n) = 1}} (x - \zeta^m).$$

**注记 3.5.13** 补充定义  $\Phi_1(x) = x - 1$ . 我们有  $\deg \Phi_n(x) = \varphi(n)$ .

引理 3.5.14 
$$x^n - 1 = \prod_{d|n} \Phi_d(x)$$
.

**证明** 由练习 3.5.8, 对于  $1 \le m \le n$  与  $d \mid n$ ,

$$\operatorname{ord}(\zeta^m) = d \iff \gcd(m,n) = \frac{n}{d} \iff m = \frac{n}{d} \cdot k \ \text{$\underline{\square}$ } \gcd(k,d) = 1.$$

因此 n 次单位根中阶为 d 的元素为

$$S_d = \left\{ \zeta^{\frac{n}{d}k} : 1 \leqslant k \leqslant d, \gcd(k, d) = 1 \right\}.$$

利用 n 次单位根之集的划分

$$\left\{1,\zeta,\cdots,\zeta^{n-1}\right\} = \bigsqcup_{d|n} S_d$$

即得

$$x^{n} - 1 = (x - 1)(x - \zeta) \cdots (x - \zeta^{n-1}) = \prod_{d|n} \prod_{w \in S_d} (x - w) = \prod_{d|n} \Phi_d(x).$$

**注记 3.5.15** 由 
$$\left\{1,\zeta,\cdots,\zeta^{n-1}\right\} = \bigsqcup_{d|n} S_d$$
 可得  $n = \sum_{d|n} \varphi(d)$ .

**例 3.5.16** 设 
$$p$$
 为素数, 则  $\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + \dots + x + 1$ .

**定理 3.5.17** 对任意正整数  $n, \Phi_n(x) \in \mathbb{Z}[x]$ .

**证明** 用归纳法, 当 n=1 时,  $\Phi_1(x)=x-1\in\mathbb{Z}[x]$ . 假设对所有正整数 d< n, 均有  $\Phi_d(x)\in\mathbb{Z}[x]$ . 令

$$g(x) = \prod_{\substack{d \mid n \\ 1 \le d \le n}} \Phi_d(x),$$

则  $g(x) \in \mathbb{Z}[x]$ . 由引理 3.5.14,

$$x^n - 1 = q(x)\Phi_n(x).$$

由于 g(x) 首一, 由带余除法, 存在  $q(x), r(x) \in \mathbb{Z}[x]$  使得

$$x^n - 1 = q(x)q(x) + r(x),$$

林晓烁 2024 年春季

§3.5 分圆域 67

其中 r(x)=0 或  $\deg(r(x))<\deg(g(x))$ . 将以上两式看作  $\mathbb{C}[x]$  中带余除法, 由定理 2.4.18 即知 r(x)=0 且  $q(x)=\Phi_n(x)$ . 故  $\Phi_n(x)\in\mathbb{Z}[x]$ .

**练习 3.5.18** 设域 F 为  $p^n$  元域, p 为素数,  $f(x) \in F[x]$  为首一不可约多项式. 求证:

- (1) f(x) 有重根  $\iff$  存在  $g(x) \in F[x]$ , 使得  $f(x) = g(x^p)$ .
- (2) 如果  $f(x) = g(x^{p^n})$ , 其中  $g(x) \in F[x]$ , 但不存在  $\bar{g}(x) \in F[x]$  使得  $f(x) = \bar{g}(x^{p^{n+1}})$ , 则  $p^n \mid m = \deg(f(x))$ , 并且 f(x) 共有  $\frac{m}{p^n}$  个不同的根, 每个根的重数均为  $p^n$ .
- **证明** (1) 设  $f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$ , 则

$$f(x)$$
 有重根  $\stackrel{\text{引理 3.3.23}}{\Longleftrightarrow} \gcd(f(x), f'(x)) \neq 1 \stackrel{f(x) \circ -\overline{\Lambda} = 0}{\Longleftrightarrow} f'(x) = 0$   $\iff ma_m = 0, \ 0 \leqslant m \leqslant n \iff$  若  $p \nmid m \ \square \ a_m = 0.$ 

(2) 由 f(x) 首一不可约且  $f(x) = g(x^{p^{n+1}})$  知 g(x) 亦为首一不可约多项式. 由条件, 不存在  $h(x) \in F[x]$  使得  $g(x) = h(x^p)$ . 由 (1), 这等价于 g(x) 无重根. 设

$$g(x) = \prod_{i=1}^{\frac{m}{p^n}} (x - u_i),$$

其中 $u_i$  互异. 取 $v_i$  使得 $v_i^{p^n} = u_i$ ,则 $v_i$  互异,且

$$f(x) = g(x^{p^{n+1}}) = \prod_{i=1}^{\frac{m}{p^n}} (x^{p^n} - v_i^{p^n}) = \prod_{i=1}^{\frac{m}{p^n}} [\sigma^n(x) - \sigma^n(v_i)] = \prod_{i=1}^{\frac{m}{p^n}} (x - v_i)^{p^n}.$$

由例 3.5.16 与例 2.7.47, 对于素数  $p, \Phi_p(x) \in \mathbb{Z}[x]$  不可约. 更一般地, 我们有

**定理 3.5.19**  $\Phi_n(x) \in \mathbb{Z}[x]$  不可约 (由命题 2.7.34,  $\Phi_n(x) \in \mathbb{Q}[x]$  也不可约), 它是任意 n 次本原单位根的最小多项式.

**证明** 取定 n 次本原单位根  $\zeta_n$  及其 (首一) 最小多项式  $P \in \mathbb{Q}[x]$ , 则  $P \mid \Phi_n$ . 如能证明每个 n 次单位根  $\zeta$  都是 P 的根, 则  $\deg P = \varphi(n) = \deg \Phi_n$ , 从而  $\Phi_n = P$  不可约. 为此只需证对  $\zeta$  如上及满足  $p \nmid n$  的素数 p, 皆有  $P(\zeta) = 0 \implies P(\zeta^p) = 0$ ; 因为对任意满足  $\gcd(k,n) = 1$  及 1 < k < n 的正整数 k, 可由素因数分解  $k = p_1 \cdots p_s$   $(p_i \nmid n)$  得到  $P(\zeta) = 0 \implies P(\zeta^{p_1}) = 0 \implies P(\zeta^{p_1p_2}) = 0 \implies \cdots \implies P(\zeta^{p_1\cdots p_s}) = 0$ .

注意到  $\Phi_n(\zeta^p)=0$ ,并且在  $\mathbb{Q}[x]$  中有分解  $\Phi_n=PQ$ ,其中 Q 首一,而由注记 2.7.31 即得  $P,Q\in\mathbb{Z}[x]$ . 假设  $P(\zeta)=0$  而  $P(\zeta^p)\neq 0$ ,则  $Q(\zeta^p)=0$  此时 P(x) 与  $Q(x^p)$  有公共根  $\zeta$ ,因此 P(x) 与  $Q(x^p)$  在  $\mathbb{C}[x]$  中不互素,由于  $\mathbb{Q}[x]$  中最大公因子不随域  $\mathbb{Q}$  的扩张而改变,它们在  $\mathbb{Q}[x]$  中也不互素.又 P(x) 在  $\mathbb{Q}$  上不可约,因此在  $\mathbb{Q}[x]$  中  $P(x)\mid Q(x^p)$ ,即存在  $R(x)\in\mathbb{Q}[x]$  使得  $Q(x^p)=P(x)R(x)$ .再次 运用注记 2.7.31 即知  $R(x)\in\mathbb{Z}[x]$ .考虑多项式的模 p 约化  $\pi:\mathbb{Z}[x]$   $\twoheadrightarrow$   $\mathbb{F}_p[x]$ .由 Fermat 小定理,设  $Q(x)=b_mx^m+b_{m-1}x^{m-1}+\cdots+b_1x+b_0$ ,则

$$\pi(Q(x^p)) = \overline{b_m} x^{pm} + \overline{b_{m-1}} x^{p(m-1)} + \dots + \overline{b_1} x^p + \overline{b_0}$$

$$= (\overline{b_m} x^m)^p + (\overline{b_{m-1}} x^{m-1})^p + \dots + (\overline{b_1} x)^p + (\overline{b_0})^p$$

$$= (\overline{b_m} x^m + \overline{b_{m-1}} x^{m-1} + \dots + \overline{b_1} x + \overline{b_0})^p = \pi(Q(x))^p.$$

于是由  $Q(x^p) = P(x)R(x)$  可得

$$\pi(Q)^p = \pi(P)\pi(R).$$

由于  $\mathbb{F}_p[x]$  是 UFD,  $\pi(P)$  在  $\mathbb{F}_p[x]$  中任一不可约因子必整除  $\pi(Q)$ , 从而  $\pi(P)$  与  $\pi(Q)$  不互素. 而  $\pi(\Phi_n) = \pi(P)\pi(Q)$ ,  $\Phi_n(x) \mid (x^n-1)$ , 故  $\pi(x^n-1) = x^n-\overline{1} \in \mathbb{F}_p[x]$  有重根. 但由  $p \nmid n$  知  $(x^n-\overline{1})' = \overline{n}x^{n-1} \in \mathbb{F}_p[x]$  非零,  $\gcd(x^n-\overline{1},\overline{n}x^{n-1}) = \overline{1}$ , 由引理 3.3.23 知  $x^n-\overline{1} \in \mathbb{F}_p[x]$  无重根, 矛盾.

**推论 3.5.20** 分圆域  $\mathbb{Q}(\zeta_n)/\mathbb{Q}$  的维数  $[\mathbb{Q}(\zeta_n):\mathbb{Q}] = \varphi(n)$ .

由于  $\mathbb{Q}(\zeta_n)/\mathbb{Q}$  是可分多项式  $x^n - 1 \in \mathbb{Q}[x]$  的分裂域, 由定理 3.3.13 续,

$$|\operatorname{Aut}(\mathbb{Q}(\zeta_n))| = |\operatorname{Aut}(\mathbb{Q}(\zeta_n)/\mathbb{Q})| = [\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \varphi(n).$$

注意到域的自同构保持代数元的最小多项式, 因此对任意  $\sigma \in \operatorname{Aut}(\mathbb{Q}(\zeta_n))$ ,  $\sigma(\zeta_n)$  仍为 n 次本原单位根, 记  $\sigma(\zeta_n) = \zeta^k$ , 其中  $1 \le k \le n$  且  $\gcd(k,n) = 1$ .

### **定理 3.5.21** 存在群同构

$$\operatorname{Aut}(\mathbb{Q}(\zeta_n)) \xrightarrow{\sim} U(\mathbb{Z}_n), \quad \sigma \mapsto \overline{k},$$

其中  $\sigma$  满足  $\sigma(\zeta_n) = \zeta_n^k$ .

**注记 3.5.22** 在此群同构下, 复共轭  $\sigma(z) = \overline{z}$  的像为  $-\overline{1}$ .

练习 3.5.23  $\mathbb{Q}(\zeta_n) \cap \mathbb{R} = \mathbb{Q}(\cos \frac{2\pi}{n})$ . 这便是  $\mathbb{Q}(\zeta_n)$  的不动子域  $\mathbb{Q}(\zeta_n)^{\{\mathrm{Id},\sigma\}}$ , 其中  $\sigma$  为复共轭.

 $\overline{\mathbb{Q}}$  利用第一类 Chebyshev 多项式证明 LHS  $\subset$  RHS, 注意  $\mathbb{Q}(\zeta_n) = \mathbb{Q}[\zeta_n]$ .

**例 3.5.24** 由定理 3.5.21,  $\operatorname{Aut}(\mathbb{Q}(\zeta_8)) \simeq U(\mathbb{Z}_8) = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ , 元素间的对应关系为

$$\overline{1} \leftrightarrow (\zeta_8 \mapsto \zeta_8), \quad \overline{3} \leftrightarrow (\zeta_8 \mapsto \zeta_8^3), \quad \overline{5} \leftrightarrow (\zeta_8 \mapsto \zeta_8^5), \quad \overline{7} \leftrightarrow (\zeta_8 \mapsto \zeta_8^7).$$

易知  $\mathbb{Q}(\zeta_8) = \mathbb{Q}(\sqrt{2},i)$ . 利用  $\zeta_8 + \zeta_8^7 = \sqrt{2}$  与  $\zeta_8^2 = i$ , 经计算可将上述  $\mathrm{Aut}(\mathbb{Q}(\zeta_8))$  元素重新表述为

$$\boxed{ \text{Id}: \sqrt{2} \mapsto \sqrt{2}, \mathbf{i} \mapsto \mathbf{i} \quad \boxed{\sigma: \sqrt{2} \mapsto -\sqrt{2}, \mathbf{i} \mapsto -\mathbf{i}} \quad \boxed{\delta: \sqrt{2} \mapsto -\sqrt{2}, \mathbf{i} \mapsto \mathbf{i}} \quad \boxed{\tau: \sqrt{2} \mapsto \sqrt{2}, \mathbf{i} \mapsto -\mathbf{i}} }$$

由定理 4.1.18, 四阶群  $\operatorname{Aut}(\mathbb{Q}(\zeta_8)) = \{\operatorname{Id}, \sigma, \delta, \tau\}$  的非平凡子群只能为二阶群, 而由上述可见  $\sigma, \delta, \tau$  均为二阶元, 故所有二阶子群为  $\{\operatorname{Id}, \sigma\}, \{\operatorname{Id}, \tau\}$ . 再考虑余下两个平凡子群, 由 Galois 对应及下面的练习 3.5.25 结果可得  $\mathbb{Q}(\zeta_8)$  的所有子域为  $\mathbb{Q}(\zeta_8), \mathbb{Q}(\sqrt{2}\mathrm{i}), \mathbb{Q}(\mathrm{i}), \mathbb{Q}(\sqrt{2}), \mathbb{Q}$ .



**练习 3.5.25** 例 3.5.24 中  $\{Id, \sigma\}$ ,  $\{Id, \tau\}$  对应的  $\mathbb{Q}(\zeta_8)$  的不动子域分别为  $\mathbb{Q}(\sqrt{2}i)$ ,  $\mathbb{Q}(i)$ ,  $\mathbb{Q}(\sqrt{2})$ . 提示  $\mathbb{Q}(\zeta_8)$  的一组  $\mathbb{Q}$ -基为  $\{1, \sqrt{2}, i, \sqrt{2}i\}$ .

# 第四章 群论

## 4.1

**定义 4.1.1** 二元组  $(G,\cdot)$  称为群,其中 G 为非空集合,乘法·为二元运算

$$G \times G \to G$$
,  $(a,b) \mapsto a \cdot b$ 

满足如下三条公理:

(G1) 结合律:  $(a \cdot b) \cdot c = a \cdot (b \cdot c), \forall a, b, c \in G$ .

(G2) 有幺元:存在  $1_G \in G$ ,使得  $1_G \cdot a = a = a \cdot 1_G, \forall a \in G$ .

(G3) 有逆元: 对任意  $a \in G$ , 存在  $b \in G$ , 使得  $a \cdot b = 1_G = b \cdot a$ , 记  $b = a^{-1}$ .

有时简记  $(G,\cdot)$  为 G, 乘法运算  $a \cdot b = ab$ .

**注记 4.1.2** 满足 (G1) 和 (G2) 的称为含幺半群.

**练习 4.1.3** 群中幺元和逆元均是唯一的.

定义 4.1.4 若群 G 中运算还满足交换律,则称 G 为交换群或 Abel 群.

**引理 4.1.5** 设 G 为群,则有

(1) 乘法消去律:  $ab = ac \implies b = c$ .

(2)  $ab = 1_G \implies b = a^{-1}$ .

(3)  $(a^{-1})^{-1} = a$ .

(4)  $(ab)^{-1} = b^{-1}a^{-1}$ .

(5)  $a^{n+m} = a^n \cdot a^m, \forall n, m \in \mathbb{Z}.$ 

**定义 4.1.6** 非空子集  $H \subset G$  称为 G 的子群, 若对任意  $a,b \in G$ , 均有  $a \cdot b \in G$ ,  $a^{-1} \in G$ , 记作  $H \leq G$ . 此 时, H 也是群.

**注记 4.1.7** 每个群 G 均有平凡子群  $\{1_G\}$  和 G.

**例 4.1.8 (一般线性群)**  $GL(n,\mathbb{C}) = \{A \in M_n(\mathbb{C}) : \det(A) \neq 0\}.$ 

**例 4.1.9 (特殊线性群)**  $SL(n, \mathbb{C}) = \{A \in GL(n, \mathbb{C}) : det(A) = 1\}.$ 

例 4.1.10 (正交群)  $O(n) = \{A \in GL(n, \mathbb{R}) : AA^{\mathsf{T}} = I_n\}.$ 

例 4.1.11 (特殊正交群)  $SO(n) = \{A \in O(n) : det(A) = 1\}.$ 

**约定 4.1.12** 加法群意指 Abel 群 A, 其二元运算记为 +, 幺元记为 0, 元素  $a \in A$  的加法逆元 (负元) 记为 -a.

**例 4.1.13** 给定环 R, 自然有三个群: 加法群 (R, +), 单位群  $(U(R), \cdot)$ , 自同构群  $(Aut(R), \circ)$ . 实例如下:

| R                                         | $\mathbb{Z}$                   | $\mathbb{Z}_n$                                           | $\mathbb{Z}[\mathrm{i}]$                                                         |  |
|-------------------------------------------|--------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------|--|
| (R,+)                                     | $(\mathbb{Z},+)$               | $(\mathbb{Z}_n,+)$                                       | $(\mathbb{Z}[i], +) \simeq (\mathbb{Z}, +) \times (\mathbb{Z}, +)$               |  |
| $(U(R),\cdot)$                            | {±1}                           | $\{\overline{m}: 1\leqslant m\leqslant n, \gcd(m,n)=1\}$ | $\{\pm 1, \pm i\}$                                                               |  |
| $(\operatorname{Aut}(\mathbb{Q}), \circ)$ | $\{\mathrm{Id}_{\mathbb{Z}}\}$ | $\{\operatorname{Id}_{\mathbb{Z}_n}\}$                   | $\left\{\operatorname{Id}_{\mathbb{Z}[\mathrm{i}]},\sigma\left(复共轭 ight) ight\}$ |  |

**例 4.1.14** 考虑域扩张 K/k, 则  $Aut(K/k) = \{\sigma \in Aut(K) : \sigma|_k = Id_k\} \leq Aut(K)$ .

**例 4.1.15** 图形  $P \subset \mathbb{R}^n$  的对称群  $\Sigma(P) = \{g \in O(n) : g(P) = P\} \leq O(n)$ . 称  $g \in \Sigma(P)$  为 P 的对称. 如  $\mathbb{R}^2$  中单位圆周  $\mathbb{S}^1$  的对称群即 O(2).

**练习 4.1.16** 写出  $\mathbb{R}^2$  中以原点为中心的正方形的对称群 (矩阵形式).

| 提示 $\rangle$  四个旋转和四个镜面对称,  $|\Sigma(\Box)| = 8$ .



**例 4.1.17** 抽象集 X (无附加结构) 上的置换指双射  $\sigma: X \xrightarrow{\sim} X, X$  的对称群  $S(X) = \{X \text{ 上的所有置换}\}$ . 如  $Aut(R) \leq S(R)$ ,  $GL(n,\mathbb{C})$  同构于  $S(\mathbb{C}^n)$  的子群.

**定理 4.1.18 (Lagrange 定理)** 设 G 为有限群,  $H \leq G$ , 则  $|H| \mid |G|$ .

证明 定义 G 上关系  $\approx$  为 a  $\approx$  b  $\iff$   $ab^{-1} \in H$ , 容易验证  $\approx$  是等价关系, 且任意  $a \in H$  关于  $\approx$  的等价 类为  $Ha = \{ha: h \in H\}$ , 称其为 H 的右陪集. 设  $G = \bigsqcup_{i \in I} Ha_i$  为 G 关于 H 的右陪集分解, 称  $\{a_i\}_{i \in I}$  为 G 关于 H 的右陪集完全代表元系. 观察到对任意  $a \in G$ , |Ha| = |H|, 因此  $|G| = |H| \cdot |I|$ .

**注记 4.1.19** [G:H] := |I| 称为 H 在 G 中的指数. 故 Lagrange 定理可表述为  $|G| = |H| \cdot [G:H]$ .

**练习 4.1.20** 设  $H \leq G$ . H 的左陪集  $aH = \{ah : h \in H\}$  是 a 关于等价关系  $a \sim b \iff b^{-1}a \in H$  的等价类.

练习 4.1.21 设 
$$H\leqslant G$$
. 若  $G=\bigsqcup_{i\in I}Ha_i$ , 则  $G=\bigsqcup_{i\in I}a_i^{-1}H$ .

**例 4.1.22** 设 
$$G = \operatorname{GL}(2, \mathbb{F}_2)$$
. 考虑  $G$  的子群  $H = \left\{ \begin{pmatrix} \overline{1} & \overline{0} \\ \overline{0} & \overline{1} \end{pmatrix}, \begin{pmatrix} \overline{1} & \overline{1} \\ \overline{0} & \overline{1} \end{pmatrix} \right\}$  与元素  $a = \begin{pmatrix} \overline{0} & \overline{1} \\ \overline{1} & \overline{0} \end{pmatrix}$ ,则  $Ha = \left\{ \begin{pmatrix} \overline{0} & \overline{1} \\ \overline{1} & \overline{0} \end{pmatrix}, \begin{pmatrix} \overline{1} & \overline{1} \\ \overline{1} & \overline{0} \end{pmatrix} \right\} \neq \left\{ \begin{pmatrix} \overline{0} & \overline{1} \\ \overline{1} & \overline{0} \end{pmatrix}, \begin{pmatrix} \overline{0} & \overline{1} \\ \overline{1} & \overline{1} \end{pmatrix} \right\} = aH.$ 

§4.1 群的定义 71

**定义 4.1.23** 元素  $a \in G$  的阶是指最小的正整数 d 使得  $a^d = 1_G$ , 记为 ord(a). 若不存在这样的 d, 则记  $ord(a) = \infty$ .

**注记 4.1.24** 若 G 是有限群,则 G 中任意元素 a 具有有限的阶,且  $ord(a) \mid |G|$ .

**例 4.1.25** 设 p 为素数. 由注记 4.1.24, 对任意  $\overline{m} \in \mathbb{F}_p^{\times}$ , 有  $\overline{m}^{p-1} = \overline{1}$ . 这即是 Fermat 小定理.

**命题 4.1.26** 设 G 为群,  $a \in G$ . 若  $ord(a) = d < \infty$ , 则  $a^n = 1_G$  当且仅当  $d \mid n$ .

**定义 4.1.27** 设 G, G' 为群. 称映射  $f: G \to G'$  为群同态, 若  $f(a \cdot b) = f(a) \cdot f(b), \forall a, b \in G$ . 双射的群同态称为群同构.

**注记 4.1.28** f 是群同态蕴含了  $f(1_G) = 1_{G'}$  及  $f(a)^{-1} = f(a^{-1})$ .

**练习 4.1.29** 设  $f: G \to G'$  为群同态,  $a \in G$ , 则  $\operatorname{ord}(f(a)) \mid \operatorname{ord}(a)$ . 若 f 是群同构, 则  $\operatorname{ord}(f(a)) = \operatorname{ord}(a)$ .

**注记 4.1.30** 同构的群的阶表必定相同.

**例 4.1.31** 子群  $H \leq G$  诱导包含同态 inc :  $H \rightarrow G$ .

**例 4.1.32** 行列式映射 det :  $GL(n, \mathbb{C}) \to \mathbb{C}^{\times}$  是群的满同态.

**例 4.1.33** 记 n 阶单位根群  $\mu_n = \{z \in \mathbb{C} : z^n = 1\} \leq \mathbb{C}^{\times}$ , 存在群同构

$$\mu_n \xrightarrow{\sim} (\mathbb{Z}_n, +), \quad e^{\frac{2k\pi}{n}} \mapsto \overline{k}.$$

**定义 4.1.34** 设 G, H 是两个群, 在  $G \times H = \{(g, h) : g \in G, h \in H\}$  中定义乘法为

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2).$$

则  $G \times H$  是一个群, 称为 G = H 的直积, 其中  $1_{G \times H} = (1_G, 1_H), (g, h)^{-1} = (g^{-1}, h^{-1}).$ 

◇ 有自然同态

$$G \hookrightarrow G \times H, \quad g \mapsto (g, 1_H).$$

◇ 有投影同态

$$G \times H \twoheadrightarrow G, \quad (g,h) \mapsto g.$$

 $\diamond (g,h) = (g,1_H) \cdot (1_G,h) = (1_G,h) \cdot (g,1_H).$ 

练习 4.1.35 考虑  $(g,h) \in G \times H$ , 若  $\operatorname{ord}(g)$ ,  $\operatorname{ord}(h) < +\infty$ , 则  $\operatorname{ord}(g,h) = \operatorname{lcm}(\operatorname{ord}(g), \operatorname{ord}(h))$ .

**例 4.1.36** Klein 四元群  $V_4 := \mu_2 \times \mu_2 = \{(\pm 1, \pm 1)\}$ , 其阶表如下:

特别地,  $V_4$  无四阶元, 因此  $V_4 \not\simeq \mathbb{Z}_4$ . 由命题 4.2.7,  $V_4$  不是循环群. 由推论 4.2.12,  $V_4$  是最小的非 Abel 群.

**练习 4.1.37** 存在群同构  $V_4 \simeq U(\mathbb{Z}_8)$ .

**定义 4.1.38** 设 G 为群,  $X \subset G$  是任意子集, 则包含 X 的最小子群称为由 X 生成的子群, 记为 (X). 若 (X) = G, 则称 X 为 G 的生成元集. 当 X 是独点集  $\{x\}$  时, 简记  $(\{x\})$  为  $(x) := \{x^n : n \in \mathbb{Z}\}$ .

**注记 4.1.39** (X) 中的元素是由 X 的元素出发, 经乘法及求逆运算所能得到的所有元素:

**练习 4.1.40** 证明:  $(\mathbb{Q}, +) \not\simeq (\mathbb{Q}^{\times}, \cdot)$ .

**证明** 假设存在群同构  $f:(\mathbb{Q},+) \xrightarrow{\sim} (\mathbb{Q}^{\times},\cdot)$ , 取  $a \in \mathbb{Q}$  使得 f(a)=2, 则  $2=f(a)=f\left(\frac{a}{2}+\frac{a}{2}\right)=f\left(\frac{a}{2}\right)^2$ , 与  $\sqrt{2} \notin \mathbb{Q}$  矛盾.

**练习 4.1.41** 设 A, B 是群 G 的两个子群. 试证:  $AB \leq G$  当且仅当 AB = BA.

**练习 4.1.42** 设 a, b 是群 G 的任意两个元素. 试证: a 和  $a^{-1}$ , ab 和 ba 有相同的阶.

## 4.2 循环群

- **定义 4.2.1** 群 G 称为循环群, 若存在  $a \in G$  使 (a) = G, 即  $G = \{a^n : n \in \mathbb{Z}\}$ . 此时称  $a \to G$  的生成元.
- **注记 4.2.2** 循环群是 Abel 群.
- **练习 4.2.3** 设  $G \simeq H$ ,则 G 为循环群当且仅当 H 为循环群.
- **例 4.2.4**  $(\mathbb{Z}, +)$  为循环群, 生成元为 1 或 -1.
- **例 4.2.5**  $(\mathbb{Z}_n, +)$  为循环群,  $\overline{1}$  或  $-\overline{1}$  是生成元.
- **例 4.2.6** n 阶单位根群  $\mu_n$  为循环群,  $e^{\frac{2\pi i}{n}}$  是生成元.
- **命题 4.2.7** 设 G 为循环群,则 G 同构于  $(\mathbb{Z},+)$  或  $(\mathbb{Z}_n,+)$ .

利用命题 4.2.7 的同构可以得到

**命题 4.2.8** 设 G 为循环群, 生成元为 a.

- (1) 若  $|G| = \infty$ , 则 G 恰有两个生成元 a 和  $a^{-1}$ , G 的子群有  $\{1_G\}$  和  $(a^d)$ , 其中  $d \ge 1$ . 每个  $(a^d)$  均同构于  $\mathbb{Z}$ , 也同构于 G.
- (2) 若  $|G| = n < \infty$ , 则 G 恰有  $\varphi(n)$  个生成元  $a^k$ , 其中  $1 \le k \le n$ ,  $\gcd(k, n) = 1$ . 对于每个  $d \mid n$ , 存在 唯一的子群  $H_d = (a^{\frac{n}{d}})$ , 满足  $|H_d| = d$ .

展示 对 (2), 利用例 2.2.29 对环  $\mathbb{Z}_n$  理想的分类结果以及练习 4.2.10. 注意

$$|$$
 群  $(\mathbb{Z}_n, +)$  的子群 = 环  $(\mathbb{Z}_n, +, \cdot)$  的理想

- **注记 4.2.9** 由于  $\varphi(d)$  恰为 G 中 d 阶元的个数, 我们再次得到  $n = \sum_{d|n} \varphi(d)$ .
- **练习 4.2.10** 设 G 为群,  $a \in G$ . 若  $\operatorname{ord}(a) = n < \infty$ , 则  $\operatorname{ord}(a^m) = \frac{n}{\gcd(m,n)}$ .
- **命题 4.2.11** n 阶群 G 为循环群当且仅当 G 中存在 n 阶元.
- **推论 4.2.12** 对于素数 p, p 阶群一定为循环群, 进而  $G \simeq (\mathbb{Z}_p, +)$ .

§4.2 循环群 73

**证明** 设 G 为 p 阶群. 任取  $1_G \neq a \in G$ , 则 ord(a) > 1, 但  $ord(a) \mid |G| = p$ , 因此 ord(a) = p. 由命题 4.2.11, G 为循环群.

**定理 4.2.13** 设 G 为群,  $|G| = n < \infty$ , 则 G 为循环群当且仅当对任意  $d \mid n$ , 至多存在一个 d 阶子群.

证明 (⇒) 这即是命题 4.2.8 (2).

( $\Leftarrow$ ) 对任意  $d \mid n$ , 记  $S_d = \{g \in G : \text{ord}(g) = d\}$ , 由定理 4.1.18,

$$G = \bigsqcup_{d \mid n} S_d.$$

对任意  $g \in S_d$ ,  $(g) \leq G$  为 d 阶循环群, 由条件, (g) 不依赖于  $g \in S_d$  的选取, 记之为  $H_d$ , 则  $S_d \subset H_d$ . 因此

这说明  $|S_d| = \varphi(d), \forall d \mid n$ . 特别地,  $S_n \neq \emptyset$ , 由命题 4.2.11, G 为循环群.

**定理 4.2.14** 设 k 为域,  $G \leq k^{\times}$  为有限子群, 则 G 为循环群.

**证明** 设 |G| = n, 对任意  $d \mid n$ , 假设存在 G 的 d 阶子群 H, 下证 H 唯一. 注意到  $H \subset \text{Root}_k(x^d - 1_k)$ , 而  $|\text{Root}_k(x^d - 1_k)| \le d$ , 故  $H = \text{Root}_k(x^d - 1)$ . 由定理 4.2.13, G 为循环群.

运用定理 4.2.14, 我们再次得到命题 3.4.13 的结论:

**例 4.2.15** 考虑有限域  $E/\mathbb{F}_p$ ,则  $E^{\times}$  为循环群,即存在  $v \in E$  使得  $E^{\times} = (v)$ . 故  $E = \{\overline{0}\} \cup \{\overline{1}, v, \cdots, v^{|E|-2}\}$ ,  $E = \mathbb{F}_p(v)$  为单扩张.

利用定理 4.2.14 还可以确定乘法群  $\mathbb{C}^{\times}$  的所有有限子群:

**例 4.2.16** 设  $G \leq \mathbb{C}^{\times}$  为有限子群, |G| = n, 则  $G = \mu_n$  (n 阶单位根群).

**练习 4.2.17** 乘法群 ℂ<sup>×</sup> 不是循环群.

**证明** 假设  $\mathbb{C}^{\times}$  是循环群, 由命题 4.2.7,  $\mathbb{C}^{\times} \simeq \mathbb{Z}$ , 从而  $\mathbb{C}^{\times}$  中除去 1 外任意元素的阶为  $\infty$ . 这与  $\mathbb{C}^{\times}$  存在有限子群  $\mu_n$  矛盾.

**例 4.2.18** 由定理 4.2.14,  $\mathbb{F}_9^{\times} = \mathbb{F}_3[x]/(x^2+\overline{1})$  是循环群. 由于  $u=\overline{x}$  满足  $u^2=\overline{2}$ ,  $u^3=\overline{2}u$ ,  $u^4=\overline{1}$ , 因此  $\{\overline{1},\overline{2},u,\overline{2}u\}$  是  $\mathbb{F}_9^{\times}$  的 4 阶子群. 又  $\mathbb{F}_9^{\times}$  共有  $\varphi(8)=4$  个生成元, 故余下的  $u+\overline{1},u+\overline{2},\overline{2}u+\overline{1},\overline{2}u+\overline{2}$  均为  $\mathbb{F}_9^{\times}$  的生成元.

**练习 4.2.19**  $(\mathbb{Q}, +)$  不是循环群, 但它的任意有限生成的子群都是循环群.

**证明** 设  $\frac{m}{n} \in \mathbb{Q}$ . 取素数 p 满足  $p \nmid n$ , 则  $\frac{1}{p} \notin \left(\frac{m}{n}\right)$ . 这表明  $(\mathbb{Q}, +)$  不是循环群. 欲证  $(\mathbb{Q}, +)$  的有限生成子群是循环群, 由归纳法只需证由两个元素生成的子群是循环群. 设  $H = \left(\frac{m}{n}, \frac{t}{s}\right)$ , 令  $d = \gcd(ms, nt)$ . 则由 Bézout 等式, 存在  $\lambda, \mu \in \mathbb{Z}$  使得  $d = \lambda ms + \mu nt$ , 从而  $\frac{d}{ns} = \lambda \cdot \frac{m}{n} + \mu \cdot \frac{t}{s} \in H$ . 又

$$\frac{m}{n} = \frac{ms}{ns} \in \left(\frac{d}{ns}\right), \quad \frac{t}{s} = \frac{nt}{ns} \in \left(\frac{d}{ns}\right),$$

故 
$$H = \left(\frac{d}{ns}\right)$$
 为循环群.

**练习 4.2.20** 设 p 为素数,  $G = \left\{ x \in \mathbb{C} :$  存在正整数 n 使得  $x^{p^n} = 1 \right\}$ , 则 G 对于复数的乘法构成群. 试证 G 的任意真子群都是有限阶的循环群.

**证明** 设  $H \not = G$  的真子群, 取  $g \in G \setminus H$ . 设  $\operatorname{ord}(g) = p^n$ , 则 H 中任一元素的阶为  $p^m$ , m < n. 否则,  $\mu_{p^m} \leq H$ , 而  $g \in \mu_{p^m}$ , 与  $g \notin H$  矛盾. 故可设  $h \not = H$  中阶最大的元素, 进而 H = (h).

## 4.3 正规子群与商群

考虑群同态  $f: G \to H$ , 则 f 的像  $Im(f) \leq H$  是子群. 回顾定义 1.1.16, f 诱导 G 上的等价关系:

$$a \stackrel{f}{\sim} b \iff f(ab^{-1}) = 1_H \iff f(b^{-1}a) = 1_H.$$

应该注意, 一般而言  $ab^{-1} \neq b^{-1}a$ , 但有相似 (共轭) 关系:  $ab^{-1} = a(b^{-1}a)a^{-1}$ .

**定义 4.3.1** 定义群同态  $f: G \to H$  的核为  $Ker(f) = \{g \in G: f(g) = 1_H\}$ .

**注记 4.3.2** Ker $(f) \leq G$  为子群.

 $\diamondsuit N = \operatorname{Ker}(f)$ , 则  $a \in Nb \iff ab^{-1} \in N \iff b^{-1}a \in N \iff a \in bN$ , 即 Nb = bN,  $\forall b \in G$ .

**定义 4.3.3** 子群  $N \leq G$  称为正规子群, 若  $aN = Na, \forall a \in G$ , 记为  $N \triangleleft G$ .

**注记 4.3.4** (1) 设  $f: G \to H$  为群同态,则  $Ker(f) \triangleleft G$ .

(2) 若群 G 为 Abel 群,则 G 的任意子群均正规.

**定义 4.3.5** 群 *G* 的中心定义为  $Z(G) = \{g \in G : gh = hg, \forall h \in G\}.$ 

**练习 4.3.6** 设 G 为群,则  $Z(G) \triangleleft G$ .

**定义 4.3.7** 设 G 为群,  $H \leq G$ ,  $a \in G$ . 定义 H 的共轭  $aHa^{-1} = \{aha^{-1} : h \in H\}$ .

**练习 4.3.8** 在定义 4.3.7 中,  $aHa^{-1} \leq G$ , 且有内自同构  $H \stackrel{\sim}{\longrightarrow} aHa^{-1}$ .

**命题 4.3.9** 设  $H \leq G$  为子群,则  $H \triangleleft G$  当且仅当  $H = aHa^{-1}, \forall a \in G$ .

**例 4.3.10** 设  $G = GL(n, \mathbb{C})$   $(n \ge 2)$ , H 为 G 中全体上三角方阵构成的集合, 则  $H \le G$  但 H 不是正规子群, 因为总可用 G 中方阵将 H 中方阵相似下三角化.

**例 4.3.11** 由  $SL(n,\mathbb{C})$  是 det :  $GL(n,\mathbb{C}) \to \mathbb{C}^{\times}$  的核知,  $SL(n,\mathbb{C}) \lhd GL(n,\mathbb{C})$ .

**例 4.3.12** 设  $H \leq G$  为子群. 若 [G:H] = 2, 则  $H \triangleleft G$ .  $[提示) G = G \sqcup (G \setminus H)$ .

**例 4.3.13** 考虑  $G = GL(2, \mathbb{F}_2)$ . 设  $H = \left\{ \begin{pmatrix} \overline{1} & \overline{0} \\ \overline{0} & \overline{1} \end{pmatrix}, \begin{pmatrix} \overline{0} & \overline{1} \\ \overline{1} & \overline{0} \end{pmatrix} \right\}$ ,  $N = \begin{pmatrix} \begin{pmatrix} \overline{0} & \overline{1} \\ \overline{1} & \overline{1} \end{pmatrix} \end{pmatrix}$ . 则  $H \leqslant G \mathrel{!}$  相 不是正规子群, 因为

$$\begin{pmatrix} \overline{1} & \overline{1} \\ \overline{0} & \overline{1} \end{pmatrix} \begin{pmatrix} \overline{0} & \overline{1} \\ \overline{1} & \overline{0} \end{pmatrix} \begin{pmatrix} \overline{1} & \overline{1} \\ \overline{0} & \overline{1} \end{pmatrix}^{-1} = \begin{pmatrix} \overline{1} & \overline{0} \\ \overline{0} & \overline{1} \end{pmatrix} \notin H.$$

而 |N| = 3, |G| = 6, [G:N] = 2, 由例 4.3.12,  $N \triangleleft G$ .

**定义 4.3.14** 设 G 为群,  $N \triangleleft G$ . 在陪集空间  $G/N = \{\overline{a} = aN : a \in G\}$  上定义乘法运算

$$aN \cdot bN = abN$$
,  $a, b \in G$ .

这使得 G/N 构成一个群, 称为 G 模 N 的商群.

- **注记 4.3.15** (1) 在商群 G/N 中,  $\overline{a} = \overline{b} \iff a^{-1}b \in N \iff ba^{-1} \in N$ . 由此可验证 G/N 中乘法的良定性与结合律.
  - (2) G/N 中幺元为  $1_{G/N} = \overline{1}$ , 而逆由  $\overline{a}^{-1} = \overline{a^{-1}}$  给出.
  - (3) 有典范群同态

$$\operatorname{can}: G \twoheadrightarrow G/N$$
 
$$a \mapsto \overline{a}.$$

其核 Ker(can) = N.

**定理 4.3.16 (群同态基本定理)** 设  $f: G \to H$  为群同态,则唯一存在群同构

$$\bar{f}: R/\operatorname{Ker}(f) \stackrel{\sim}{\longrightarrow} \operatorname{Im}(f)$$

使得下图交换:

$$\begin{array}{ccc} G & \xrightarrow{\quad f \quad} H \\ \underset{\operatorname{can} \downarrow}{\operatorname{can}} & & \int_{\operatorname{inc}} \\ G / \operatorname{Ker}(f) & \xrightarrow{\quad \bar{f} \quad} \operatorname{Im}(f) \end{array}$$

 $\langle \mathbf{E}_{\overline{\mathbf{z}}} \rangle$ 由定理 1.1.19, 只需验证  $\bar{f}$  为群同态.

**注记 4.3.17** (1) 若 f 是单的, 即  $Ker(f) = \{1_G\}$ , 则  $G \simeq Im(f) \leqslant H$ .

- (2) 若 f 是满的, 即 Im(f) = H, 则  $H \simeq G/Ker(f)$ .
- **例 4.3.18** 在练习 4.1.16 中, 记  $V = \{A, B, C, D\}$ , 则任意  $g \in \Sigma(\square)$  均满足  $g|_V$  为 V 的置换. 因此有群同态

$$\phi: \Sigma(\square) \to S(V)$$
$$g \mapsto g|_V.$$

由于  $\operatorname{Ker} \phi = \{I_2\}$  即  $\phi$  是单射, 由定理 4.3.16,  $\Sigma(\Box)$  同构于 S(V) 的一个 8 阶子群.

**例 4.3.19** 考虑  $x^3-2\in\mathbb{Q}[x]$  的分裂域  $E=\mathbb{Q}\left(\sqrt[3]{2},\omega\right)$  及其根集  $X=\operatorname{Root}_E\left(x^3-2\right)=\left\{\sqrt[3]{2},\sqrt[3]{2}\omega,\sqrt[3]{2}\omega^2\right\}$ . 对任意  $\sigma\in\operatorname{Aut}(E/\mathbb{Q})=\operatorname{Aut}(E),\sigma|_X\in S(X)$ , 因此有自然群同态

$$\phi: \operatorname{Aut}(E) \to S(X)$$
 
$$\sigma \mapsto \sigma|_{X}.$$

利用 E 是  $\mathbb{Q}$ -线性空间 ( $\mathbb{Q}$ -基见例 3.2.7) 可知  $\phi$  是单射. 又  $|\operatorname{Aut}(E)| = 6 = |S(X)|$ , 由定理 4.3.16,  $\phi$  是群同构,  $\operatorname{Aut}(E) \simeq S(X)$ . 特别地,  $\operatorname{Aut}(E/\mathbb{Q})$  是非 Abel 群.

**练习 4.3.20** 在例 4.3.19 中, 存在群同构  $S(X) \simeq GL(2, \mathbb{F}_2)$ .

证明 记  $u = (\overline{1}, \overline{0})^{\mathsf{T}}, v = (\overline{0}, \overline{1})^{\mathsf{T}}, w = (\overline{1}, \overline{1})^{\mathsf{T}}$ . 观察到  $\mathrm{GL}(2, \mathbb{F}_2)$  中任一方阵诱导集合  $\{u, v, w\}$  上的一个置换, 因此存在群同态  $f: \mathrm{GL}(2, \mathbb{F}_2) \to S(X)$ . 可验证 f 是单的, 又  $|\mathrm{GL}(2, \mathbb{F}_2)| = 6 = |S(X)|$ , 由定理

**4.3.16**, f 是群同构. 具体而言, 群同构  $f: GL(2, \mathbb{F}_2) \xrightarrow{\sim} S(X)$  如下:

$$\begin{pmatrix}
\overline{1} & \overline{1} \\
\overline{1} & \overline{0}
\end{pmatrix} \mapsto (123), \quad
\begin{pmatrix}
\overline{0} & \overline{1} \\
\overline{1} & \overline{0}
\end{pmatrix} \mapsto (12), \quad
\begin{pmatrix}
\overline{0} & \overline{1} \\
\overline{1} & \overline{1}
\end{pmatrix} \mapsto (132),$$

$$\begin{pmatrix}
\overline{1} & \overline{1} \\
\overline{0} & \overline{1}
\end{pmatrix} \mapsto (13), \quad
\begin{pmatrix}
\overline{1} & \overline{0} \\
\overline{1} & \overline{1}
\end{pmatrix} \mapsto (23), \quad I \mapsto \text{Id}.$$

**定理 4.3.21 (对应定理)** 设 G 为群,  $N \triangleleft G$ , 则存在双射

$$\{K: N \leqslant K \leqslant G\} \xleftarrow{1:1} \{G/N \text{ 的子群}\}$$
 
$$K \longmapsto K/N$$
 
$$\{a \in G: aN \in \overline{K}\} \longleftarrow \overline{K}.$$

**定理 4.3.22** 设 G 为群,  $N \leq K \leq G$ ,  $N \triangleleft G$ . 则  $K \triangleleft G$  当且仅当  $K/N \triangleleft G/N$ . 此时, 有自然同构

$$(G/N)/(K/N) \xrightarrow{\sim} G/K, \quad (aN)K/N \mapsto aK.$$

**证明** (1) 若  $K \triangleleft G$ ,则有群的满同态

$$G/N \twoheadrightarrow G/K$$
,  $aN \mapsto aK$ .

其良定性检验:  $aN = a'N \iff a^{-1}a' \in N \implies a^{-1}a' \in K \iff aK = a'K$ . 此同态的核为  $\{aN: aK = 1_{G/K}\} = \{aN: a \in K\} = K/N$ . 因此  $K/N \triangleleft G/N$ .

- (2) 若  $K/N \triangleleft G/N$ , 由命题 4.3.9, 对任意  $gN \in G/N$ ,  $(gN)(K/N) = (gN)^{-1}$ , 于是  $(gKg^{-1})/N = K/N, \forall g \in G$ . 又  $N \leqslant K$ ,  $N \leqslant gKg^{-1}$ , 由定理 4.3.21 中的双射即得  $gKg^{-1} = K, \forall g \in G$ . 再由命题 4.3.9,  $K \triangleleft G$ .
- (3) 若  $K \triangleleft G$ , 对 (1) 中满同态运用定理 4.3.16 即得  $(G/N)/(K/N) \stackrel{\sim}{\longrightarrow} G/K$ .

**定理 4.3.23** 设 G 为群,  $N \triangleleft G$ ,  $H \leqslant G$ , 则

- (1)  $NH = HN \leqslant G$ .
- (2)  $(H \cap N) \triangleleft H$ .
- (3)  $H/(H \cap N) \simeq NH/N$ .

**证明** 由  $N \triangleleft G$  知  $Nh = hN, \forall h \in H$ , 令 h 遍历 H 即得 NH = HN. 由此易得  $NH \leqslant G$ . 于是有群的 满同态

$$H \twoheadrightarrow NH/N, \quad h \mapsto hN.$$

其核为  $\{h \in H : hN = 1_{NH/N}\} = \{h \in H : h \in N\} = N \cap H$ . 故  $(N \cap H) \triangleleft H$ , 且由定理 4.3.16, 存在 群同构

$$H/(H \cap N) \xrightarrow{\sim} NH/N.$$

**例 4.3.24** 设 G, H 为群. 考虑投影同态

$$G \times H \twoheadrightarrow H$$
,  $(q,h) \mapsto h$ .

§4.4 对称群 77

其核为  $(G \times \{1_H\}) \triangleleft (G \times H)$ . 由定理 4.3.16, 存在群同构

$$(G \times H)/(G \times \{1_H\}) \xrightarrow{\sim} H.$$

练习 4.3.25 设有群同构  $\theta: G \xrightarrow{\sim} G', N \triangleleft G, N' = \theta(N) \triangleleft G', 则 G/N \simeq G'/N'.$ 

**练习 4.3.26** 令 G 是实数对  $(a,b), a \neq 0$  带有乘法 (a,b)(c,d) = (ac,ad+b) 的群. 试证:  $K = \{(1,b): b \in \mathbb{R}\} \triangleleft G$  且  $G/K \simeq (\mathbb{R}^{\times},\cdot)$ . 「提示〉第一分量投影同态.

**练习 4.3.27** 设  $f: G \to H$  是群同态,  $M \leq G$ . 试证  $f^{-1}(f(M)) = KM$ , 这里 K = Ker(f).

**练习 4.3.28** 设 M 和 N 均为群 G 的正规子群. 若  $M \cap N = \{1_G\}$ , 则对任意  $a \in M$ ,  $b \in N$  有 ab = ba.  $[提示] b^{-1}aba^{-1} \in M \cap N$ .

**练习 4.3.29** 若 G/Z(G) 是循环群,则 G 是 Abel 群.

证明 设 G/Z(G)=(gZ(G)), 其中  $g\in G$ . 对任意  $a,b\in G$ , 存在  $c,d\in Z(G)$  使得  $a=g^mc,b=g^nd$ . 由此可见 ab=ba, 即 G 是 Abel 群.

### 4.4 对称群

**定义 4.4.1** 记 n 元集合  $\underline{n} = \{1, \dots, n\}$  的对称群为  $S_n$ , 称为 n 次的对称群或置换群.

**注记 4.4.2**  $|S_n| = n!$ .

**命题 4.4.3** 设有集合间双射  $\delta: X \to Y$ , 则有群同构

$$S(X) \xrightarrow{\sim} S(Y), \quad \sigma \mapsto \delta \circ \sigma \circ \delta^{-1}.$$

**推论 4.4.4** 若集合 X 满足 |X| = n, 则  $S(X) \simeq S_n$ .

约定 4.4.5 当  $j_1, j_2, \dots, j_n$  是  $1, 2, \dots, n$  的一个排列时, 可将一个置换  $\sigma \in S_n$  记为

$$\sigma = \begin{pmatrix} j_1 & j_2 & \cdots & j_n \\ \sigma(j_1) & \sigma(j_2) & \cdots & \sigma(j_n) \end{pmatrix}.$$

**例 4.4.6** 在  $S_3$  中, 考虑  $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$  及  $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ , 则  $\sigma \circ \tau \neq \tau \circ \sigma$ .

**例** 4.4.7 对任意正整数 n, 有群嵌入

$$S_n \hookrightarrow S_{n+1}, \quad \sigma \mapsto \overline{\sigma} = \begin{pmatrix} 1 & \cdots & n & n+1 \\ \sigma(1) & \cdots & \sigma(n) & n+1 \end{pmatrix}.$$

于是结合例 4.4.6 即知, 当  $n \ge 3$  时,  $S_n$  是非 Abel 群.

**定义 4.4.8** 设  $\{i_1, i_2, \cdots, i_t\} \subset \{1, 2, \cdots, n\}$ . 若  $c \in S_n$  满足

$$\begin{array}{cccc} i_1 & \stackrel{c}{\longmapsto} i_2 \\ & & & \searrow^c \\ i_t & & i_3 & \mathbb{E} & c(j) = j, \forall j \in \underline{n} \setminus \{i_1, i_2, \cdots, i_t\}, \\ & & & & \swarrow^c \end{array}$$

则称 c 为  $S_n$  中的一个 t-轮换 (又称循环), 记为  $c = (i_1 i_2 \cdots i_t)$ . 称  $i_1, i_2, \cdots, i_t$  为轮换 c 中的文字, t 称为轮换 c 的长. 特别地, t-轮换称为对换, t-轮换实际上就是恒等置换.

**注记 4.4.9** (1)  $c^{-1} = (i_t \cdots i_2 i_1)$ .

- (2) ord(c) = t.
- (3) 任一个 t-轮换都有 t 种表示法.
- (4)  $S_n$  中 t-轮换共有  $\frac{n!}{t}$  个.

**例 4.4.10 (辫结构)** 在  $S_3$  中, (12)(23)(12) = (23)(12)(23). 展示 用引理 4.4.12 简算.

**定义 4.4.11** 在  $S_n$  中, 如果若干个轮换间没有共同文字, 则称它们是不相交的轮换.

**引理 4.4.12 (t-轮换的共轭)** 对任意  $\sigma \in S_n$  与 t-轮换  $(i_1 i_2 \cdots i_t) \in S_n$ , 有

$$\sigma(i_1 i_2 \cdots i_t) \sigma^{-1} = (\sigma(i_1) \sigma(i_2) \cdots \sigma(i_t)).$$

提示  $\rangle$  观察 LHS 在  $\sigma(i_r)$  上的作用.

**引理 4.4.13**  $S_n$  中两个不相交的轮换是可交换的.

证明 设  $\sigma, \tau \in S_n$  为两个不相交的轮换,  $\tau = (i_1 i_2 \cdots i_t)$ , 由引理 4.4.12,

$$\sigma\tau\sigma^{-1} = (\sigma(i_1)\sigma(i_2)\cdots\sigma(i_t)) \xrightarrow{\text{$\pi$dix}} (i_1i_2\cdots i_t) = \tau \implies \sigma\tau = \tau\sigma.$$

**命题 4.4.14 (轮换分解)** 任何  $\sigma \in S_n$  均可表为  $\sigma = c_1 \cdots c_l$ , 其中  $c_i$  为互不相交的轮换 (不含 1-轮换). 如果不计次序,则表法是唯一的.  $\overline{\mathsf{lk}_{\pi}}$  考虑 n 上的  $\sigma$ -轨道.

**定义 4.4.15** 称群 G 中元素 a 与 b 共轭, 若存在  $g \in G$  使得  $a = gbg^{-1}$ . 这是 G 上的等价关系, 其等价类 称为共轭类. 通常记元素 a 所在的共轭类为  $C_a$ .

**注记 4.4.16**  $C_a = \{a\} \iff a \in Z(G).$ 

**定义 4.4.17** 设  $\sigma \in S_n$  可表为  $c_1 \cdots c_t$ , 其中  $c_i$  为互不相交的轮换 (包括 1-轮换), 并用  $\lambda_i$  表示其中长为 i 的轮换个数. 定义  $\sigma$  的循环型为  $1^{\lambda_1}2^{\lambda_2}\cdots n^{\lambda_n}$ , 它满足  $\sum_{i=1}^n i\lambda_i = n$ .

**注记 4.4.18** ord( $\sigma$ ) = lcm( $i : \lambda_i \neq 0$ ).

**定理 4.4.19**  $S_n$  中两元素共轭当且仅当它们具有相同的循环型.

**证明** (⇒) 任取  $\sigma \in S_n$ , 设  $\sigma = c_1 \cdots c_t$ , 其中  $c_i$  为互不相交的轮换, 则对任意  $h \in S_n$ ,  $h\sigma h^{-1} = (hc_1h^{-1})\cdots(hc_th^{-1})$ . 由引理 4.4.12 立见  $\sigma$  与  $h\sigma h^{-1}$  同型.

§4.4 对称群 79

(⇐) 设  $\sigma, \tau \in S_n$  具有相同的循环型:

$$\sigma = (a_1) \cdots (a_s)(i_1 i_2) \cdots (i_{2r-1} i_{2r}) \cdots,$$
  

$$\tau = (b_1) \cdots (b_s)(j_1 j_2) \cdots (j_{2r-1} j_{2r}) \cdots.$$

取  $h \in S_n$  满足  $h(a_1) = b_1, \dots, h(a_s) = b_s, h(i_1) = j_1, h(i_2) = j_2, \dots, h(i_{2r-1}) = j_{2r-1}, h(i_{2r}) = j_{2r}, \dots$  易见  $h \sigma h^{-1} = \tau$  即  $\sigma$  与  $\tau$  共轭.

**例 4.4.20** 由定理 4.4.19 可得 S<sub>3</sub> 的共轭类 (表 4.1).

表 4.1:  $S_3$  的共轭类 6 = 1 + 3 + 2

| 循环型 | $1^3$ | $1^{1}2^{1}$     | $3^1$        |
|-----|-------|------------------|--------------|
| 元素  | Id    | (12), (13), (23) | (123), (132) |

由此可知在  $S_3$  中 (12) 与 (13) 共轭, 为求  $h \in S_3$  使得  $h(12)h^{-1} = (13)$ , 利用引理 4.4.12, 只需求解 (h(1)h(2)) = (13). 故分别解

$$\begin{cases} h(1) = 1, & \Rightarrow \\ h(2) = 3 \end{cases} \begin{cases} h(1) = 3, \\ h(2) = 1 \end{cases}$$

得 h = (23) 或 h = (132).

**例 4.4.21** 由定理 4.4.19 可得 S<sub>4</sub> 的共轭类 (表 4.2).

表 4.2:  $S_4$  的共轭类 24 = 1 + 6 + 3 + 8 + 6

| 循环型 | $1^4$ | $1^22^1$                                 | $2^{2}$                            | $1^{1}3^{1}$                                              | $4^1$                                                |
|-----|-------|------------------------------------------|------------------------------------|-----------------------------------------------------------|------------------------------------------------------|
| 元素  | Id    | (12), (13),<br>(14), (23),<br>(24), (34) | (12)(34),<br>(13)(24),<br>(14)(23) | (123), (132), (124), (142),<br>(134), (143), (234), (243) | (1234), (1243),<br>(1324), (1342),<br>(1423), (1432) |

观察到群嵌入  $S_3 \hookrightarrow S_4$  (例 4.4.7) 对共轭不封闭, 由命题 4.3.9,  $S_3$  不是  $S_4$  的正规子群.

**注记 4.4.22** 由注记 4.4.16, 从例 4.4.20 与例 4.4.21 可见,  $Z(S_3)$  与  $Z(S_4)$  均平凡.

**例 4.4.23** 在练习 4.1.16 中, 代 A, B, C, D 以 1, 2, 3, 4. 映射  $\Sigma(\Box) \hookrightarrow S_4$  的像 H 为

- (1) **四个旋转**: Id, (1234), (13)(24), (1432).
- (2) 四个镜面对称: (14)(23),(12)(34),(24),(13).

由表 4.2 可见,  $H \leq S_4$  对共轭不封闭, 因此 H 不是  $S_4$  的正规子群.

**练习 4.4.24** 在例 4.4.23 中,

- (1) H = ((1234), (13)).
- (2) 另代练习 4.1.16 中的 A, B, C, D 以 1, 3, 2, 4, 求映射  $\Sigma(\Box) \hookrightarrow S_4$  的像 H'.
- (3) 另代练习 4.1.16 中的 A, B, C, D 以 1, 2, 4, 3, 求映射  $\Sigma(\Box) \hookrightarrow S_4$  的像 H''.

解答 (1) 在  $S_4$  中, ord(1234) = 4 且 (13)  $\notin$  ((1234)), 因此  $|((1234), (13))| \ge 5$ . 又 ((1234), (13))  $\leqslant H$ , |H| = 8, 由定理 4.1.18, |((1234), (13))| = 8, 故 H = ((1234), (13)).

- (2)  $H' = \{ Id, (1324), (12)(34), (1423), (14)(23), (13)(24), (12), (34) \}.$
- $(3) \ H'' = \{ \mathrm{Id}, (1243), (14)(23), (1342), (13)(24), (12)(34), (14), (23) \}.$

(4) 
$$H \cap H' \cap H'' = \{ \mathrm{Id}, (12)(34), (13)(24), (14)(23) \} \triangleleft S_4$$
, 其正规性见表 4.2.

**注记 4.4.25** (4) 中得到的子群记作  $K_4$ , 因其同构于 Klein 四元群 (例 4.1.36).

**引理 4.4.26** 任意  $\sigma \in S_n$  均能写成对换之积.

**证明** 任一 
$$t$$
-轮换都可写成  $t-1$  个对换之积:  $(i_1i_2\cdots i_t)=(i_{t-1}i_t)\cdots(i_2i_t)(i_1i_t)$ .

**引理 4.4.27**  $S_n$  可由  $(12), (23), \cdots, (n-1, n)$  生成.

**证明** 只需证任意  $(ij) \in ((12), (23), \dots, (n-1,n))$ . 对 |j-i| 归纳, 当 |j-i| = 1 时结论已成立. 当 |j-i| > 1 时, (ij) = (i+1,j)(i,i+1)(i+1,j), 对 (i+1,j) 归纳即证.

**注记 4.4.28** 对  $1 \le i \le n-1$ , 通常记  $s_i = (i, i+1) \in S_n$ . 因此  $S_n$  由  $s_1, s_2 \cdots, s_{n-1}$  生成. 有如下辫子 关系:

$$s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}, \quad \forall 1 \leqslant i \leqslant n-2,$$
  
$$s_i s_j = s_j s_i, \quad \forall |i-j| \geqslant 2,$$
  
$$s_i^2 = \mathrm{Id}, \quad \forall 1 \leqslant i \leqslant n-1.$$

#### 例 4.4.29 存在群同态

$$S_n \hookrightarrow GL(n,\mathbb{R}), \quad \sigma \mapsto P_{\sigma}$$
 置换方阵.

将其与行列式同态复合便得群同态

$$\operatorname{sgn}: S_n \to \{1, -1\}$$
  
$$\sigma \mapsto \det(P_{\sigma}).$$

若  $\operatorname{sgn}(\sigma) = 1$ , 称  $\sigma$  为偶置换; 若  $\operatorname{sgn}(\sigma) = -1$ , 称  $\sigma$  为奇置换. 定义  $A_n = \operatorname{Ker}(\operatorname{sgn})$ , 称为 n 元集合上的交错群, 则  $A_n$  的元素为全体偶置换,  $A_n \triangleleft S_n$ . 由定理 4.3.16,  $S_n/A_n \simeq \{\pm 1\}$ ,  $|A_n| = \frac{n!}{2}$ . 由引理 4.4.26,  $\operatorname{sgn}(i_1i_2\cdots i_t) = (-1)^{t-1}$ .

**例 4.4.30** 由表 4.1,  $A_3 = \{ \text{Id}, (123), (132) \} \triangleleft S_3.$ 

**例 4.4.31 (S\_3 的子群格)** 对  $S_3$  的子群作分类 (用线表示包含关系, 称为 Hasse 图):



林晓烁 2024 年春季

§4.4 对称群 81

- **例 4.4.32** 在表 4.2 中,  $A_4$  为循环型  $1^4$ ,  $2^2$ ,  $1^13^1$  对应共轭类之并, 因此  $A_4 \triangleleft S_4$ .
- **例 4.4.33** 对  $S_4$  的正规子群分类:  $\{ \text{Id} \} \leqslant K_4 \leqslant A_4 \leqslant S_4$  (利用子群正规当且仅当是共轭类之并).
- **定义 4.4.34** 若群 G 不具有除  $\{1_G\}, G$  之外的正规子群,则称 G 为单群.
- **练习 4.4.35** 设  $G \neq \{1_G\}$  为 Abel 群,则 G 为单群当且仅当 G 为 p 阶循环群,其中 p 为素数.
- **证明** 由于 G 为 Abel 群, G 的任意子群均是正规子群.
- (⇒) 任取  $a \in G \setminus \{1_G\}$ , 则  $(a) \triangleleft G$ , 因此 G = (a) 为循环群. 由任意非  $1_G$  元素均为生成元即知 G 为素数 阶循环群.
- ( $\leftarrow$ ) 若 G 为 p 阶循环群, 由定理 4.1.18, G 无非平凡子群, 进而为单群.

#### **定理 4.4.36** 当 $n \ge 5$ 时, 交错群 $A_n$ 是单群.

- **证明** (1) 先证明当  $n \ge 3$  时,  $A_n$  由所有 3-轮换生成. 对于互不相同的 i, j, k, l, 有 (ij)(ik) = (jik), (ij)(kl) = (ij)(jk)(jk)(jk)(kl) = (ijk)(jkl), 因此两个不同的对换之积一定是 3-轮换之积, 而  $A_n$  中任何元素都可以写成偶数个对换之积, 因此  $A_n$  由 3-轮换生成.
  - (2) 再证明当  $n \ge 5$  时,  $A_n$  中所有 3-轮换是一个共轭类. 对任意 3-轮换 (ijk), 存在  $\sigma \in S_n$  使得  $\sigma(i) = 1, \sigma(j) = 2, \sigma(k) = 3$ . 若  $\sigma \in A_n$ , 则  $\sigma(ijk)\sigma^{-1} = (123)$ ; 若  $\sigma \notin A_n$ , 则  $\sigma(ijk)\sigma^{-1} = (123)$  共轭.
  - (3) 下证  $A_n$  无非平凡正规子群. 由 (1)(2), 只需证若  $\{ \mathrm{Id} \} \neq N \lhd A_n$ , 则 N 含有一个 3-轮换. 以下记任意 置换  $\sigma$  的不动点集为  $\mathrm{Fix}(\sigma) \coloneqq \{ i : \sigma(i) = i \}$ . 取  $\sigma \in N \setminus \{ \mathrm{Id} \}$  使得  $| \mathrm{Fix}(\sigma) |$  最大, 下证  $\sigma$  即欲求的 3-轮换.
    - ① 如果  $\sigma$  的轮换分解中只有对换, 那么分解中至少含两项如 (ij)(kl), 其中  $\{i,j\} \cap \{k,l\} = \varnothing$ . 由于  $n \ge 5$ , 可取  $r \notin \{i,j,k,l\}$  并定义

$$\tau := (klr), \quad \sigma' := \tau \sigma \tau^{-1} \sigma^{-1} \in N \quad (\because N \triangleleft A_n).$$

可直接验证  $i, j \in \text{Fix}(\sigma') \setminus \text{Fix}(\sigma), \sigma'(k) = r \neq k$ , 以及

$$\operatorname{Fix}(\sigma) \setminus \{r\} = \operatorname{Fix}(\sigma) \setminus \{k, l, r\} = (\operatorname{Fix}(\sigma) \cap \operatorname{Fix}(\tau)) \subset \operatorname{Fix}(\sigma').$$

故  $|\operatorname{Fix}(\sigma')| > |\operatorname{Fix}(\sigma)|$ , 矛盾.

② 设  $\sigma$  的轮换分解中包含长 > 2 的项  $(ijk\cdots)$ . 若  $\sigma=(ijk)$  则  $\sigma$  即所求的 3-轮换; 否则因为  $\sigma$  不可能是 4-轮换,  $\sigma$  除了 i,j,k 之外还挪动至少两个相异元 r,l. 依然如 ① 定义  $\sigma'\in N$ . 可以验证  $j\in \mathrm{Fix}(\sigma')$ ,  $\sigma'(k)=l\neq k$  和

$$\operatorname{Fix}(\sigma) = \operatorname{Fix}(\sigma) \setminus \{k, l, r\} = (\operatorname{Fix}(\sigma) \cap \operatorname{Fix}(\tau)) \subset \operatorname{Fix}(\sigma').$$

仍得到矛盾  $|Fix(\sigma')| > |Fix(\sigma)|$ . 故  $\sigma$  只能为 3-轮换.

**推论 4.4.37** 当  $n \ge 5$  时,  $A_n \in S_n$  唯一的非平凡正规子群.

**证明** 设  $\{ Id \} \neq N \triangleleft S_n$ , 结合  $A_n \triangleleft S_n$  即得  $(N \cap A_n) \triangleleft A_n$ .

 $\Leftrightarrow$  若  $N \cap A_n = A_n$ , 则  $A_n \subset N$ , 而  $[S_n : A_n] = 2$ , 故  $N = A_n$ .

◇ 若  $N \cap A_n = \{ Id \}$ , 考虑群同态

$$A_n \stackrel{\text{inc}}{\longleftrightarrow} S_n \twoheadrightarrow S_n/N,$$

因其核即  $N \cap A_n = \{ \mathrm{Id} \}$ , 这是群嵌入. 因此 |N| = 2. 取  $\sigma \in N \setminus \{ \mathrm{Id} \}$ , 则  $\mathrm{ord}(\sigma) = 2$ . 由命题 4.4.14 与注记 4.4.18,  $\sigma$  是不交对换之积. 由定理 4.4.19 易见 N 对共轭不封闭, 与  $N \triangleleft S_n$  矛盾.

**例 4.4.38** 由例 4.3.12 与定理 4.4.36 即知, A<sub>5</sub> 无 30 阶子群.

**练习 4.4.39** 在  $A_4$  中求解方程  $\sigma(12)(34)\sigma^{-1} = (13)(24)$ .

解答 由引理 4.4.12,  $\sigma(12)(34)\sigma^{-1} = (\sigma(12)\sigma^{-1})(\sigma(34)\sigma^{-1}) = (\sigma(1)\sigma(2))(\sigma(3)\sigma(4))$ .

$$\phi \begin{cases}
(\sigma(1)\sigma(2)) = (13), \\
(\sigma(3)\sigma(4)) = (24)
\end{cases} \implies \sigma = \underbrace{(23)}_{\notin A_4}, (132), (234), \underbrace{(1342)}_{\notin A_4}.$$

$$\diamond \begin{cases} (\sigma(1)\sigma(2)) = (24), \\ (\sigma(3), \sigma(4)) = (13) \end{cases} \implies \sigma = \underbrace{(1243)}_{\notin A_4}, (143), (143), (124), \underbrace{(14)}_{\notin A_4}.$$

故 
$$\sigma = (132), (234), (143), (124).$$

照此计算可知  $A_4$  中 (12)(34) 与 (14)(23) 共轭, 但 (123) 与 (132) 不共轭 (尽管它们在  $S_4$  中共轭).

**练习 4.4.40** 分别求 A<sub>4</sub> 中 (123) 和 (132) 的共轭类.

**解答**  $A_4$  中 (123) 和 (132) 的共轭类均为  $3^1$  型, 因此  $|C_{(123)}| + |C_{(132)}| \le 8$ , 若能分别找到  $C_{(123)}$  与  $C_{(132)}$  中的 4 个元素, 则它们恰为欲求共轭类. 直接计算得:

$$(12)(34)(123)(34)^{-1}(12)^{-1} = (142),$$

$$(13)(24)(123)(24)^{-1}(13)^{-1} = (134),$$

$$(14)(23)(123)(23)^{-1}(14)^{-1} = (243),$$

$$(12)(34)(132)(34)^{-1}(12)^{-1} = (124),$$

$$(13)(24)(132)(24)^{-1}(13)^{-1} = (143),$$

$$(14)(23)(132)(23)^{-1}(14)^{-1} = (234).$$

故 
$$C_{(123)} = \{(123), (134), (142), (243)\}, C_{(132)} = \{(124), (132), (143), (234)\}.$$

**练习 4.4.41** *A*<sub>4</sub> 没有 6 阶子群.

**证明** 假设 G 是  $A_4$  的 6 阶子群,则  $[A_4:G]=2$ ,由例 4.3.12,  $G \triangleleft A_4$ ,因此 G 为  $A_4$  中若干共轭类之并. 由前述讨论可得  $A_4$  的共轭类 (表 4.3),可见与 [G]=6 矛盾.

表 4.3:  $A_4$  的共轭类  $\boxed{12 = 1 + 3 + 4 + 4}$ 

| 循环型   | $1^4$ | $2^2$                        | $1^{1}3^{1}$  | $1^{1}3^{1}$  |
|-------|-------|------------------------------|---------------|---------------|
| 元素 Id | ы     | (12)(34), (13)(24), (14)(23) | (123), (134), | (124), (132), |
|       | Iu    |                              | (142), (243)  |               |

练习 4.4.42 讨论置换 
$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ n & n-1 & \cdots & 1 \end{pmatrix}$$
 的奇偶性.

§4.5 群作用

## 4.5 群作用

83

#### 定义 4.5.1 设 G 为群, X 为非空集合. 若映射

$$\psi: G \times X \to X$$

$$(g, x) \mapsto \psi(g, x)$$

满足对任意  $x \in X$  与  $g_1, g_2 \in G$  都有

$$\psi(1_G, x) = x,$$
  
 $\psi(g_1 g_2, x) = \psi(g_1, \psi(g_2, x)),$ 

则称 G 左作用于 X, 记为  $G^{\frown}X$ . 此时称 X 或  $(X,\psi)$  为左 G-集. 常记  $\psi(g,x)$  为 g.x.

**例 4.5.2** 对任意非空集合 X, 其对称群 S(X) 在 X 上有自然的左作用:  $(\sigma, x) \mapsto \sigma(x)$ .

**例 4.5.3**  $GL(n,\mathbb{R})$  在  $\mathbb{R}^n$  上有自然的左 (线性) 作用:  $(A,x) \mapsto Ax$ .

**例 4.5.4** 设 K/k 为  $f(x) \in k[x]$  的分裂域,则  $\operatorname{Aut}(K/k)^{\curvearrowright}\operatorname{Root}_K(f):(\sigma,a)\mapsto \sigma(a)$ .

**例 4.5.5** 在练习 4.3.20 的证明中, 我们看到  $GL(2, \mathbb{F}_2)^{\sim} \mathbb{F}_2^{\oplus 2}$ .

**例 4.5.6** 若  $G^{\frown}X$ , 则 G 自然作用于 P 的幂集  $\mathfrak{P}(X)$ .

 $\{G$  在 X 上的左作用 $\} \stackrel{1:1}{\longleftrightarrow} \operatorname{Hom}(G, S(X))$  任意左 G-集  $(X, \psi)$  诱导群同态 (群的置换表示)

$$\rho: G \to S(X)$$
$$g \mapsto \rho(g),$$

其中  $\rho(g)(x) := g.x.$  反过来, 给定群同态  $\rho: G \to S(X)$ , 可定义 G 在 X 上的左作用:

$$\psi: G \times X \to X$$
  
 $(g, x) \mapsto \rho(g)(x).$ 

#### 阅读提示

请验证如上群同态的良定性, 如  $\rho(g) \in S(X)$  等.

定义 4.5.7 定义群作用  $G^{\frown}X$  的核 N 为如上群同态  $G \to S(X)$  的核, 即  $N = \bigcap_{x \in X} G_x$ .

**练习 4.5.8** 设 K/k 为  $f(x) \in k[x]$  的分裂域, 由例 4.5.4 可得群同态

$$\rho: \operatorname{Aut}(K/k) \to S(\operatorname{Root}_K(f)).$$

证明  $\rho$  是单同态. 由此再次得到 Aut(K/k) 是有限群.

**定义 4.5.9** 给定群  $(G,\cdot)$ , 在集合 G 上定义新的二元运算 \* 使得  $x*y=y\cdot x$ , 得到的新群 (G,\*) 记作  $G^{op}$ , 称为 G 的反群.

**注记 4.5.10** 存在群同构  $G \xrightarrow{\sim} G^{op}, q \mapsto q^{-1}$ .

**定义 4.5.11** 设G为群,Y为非空集合. 若映射

$$\phi: Y \times G \to Y$$
$$(y,g) \mapsto \phi(y,g)$$

满足对任意  $y \in Y$  与  $g_1, g_2 \in G$  都有

$$\phi(y, 1_G) = y,$$

$$\phi(y, g_1 g_2) = \phi(\phi(y, g_1), g_2),$$

则称 G 右作用于 y, 记为  $Y \cap G$ . 此时称 Y 或  $(Y, \phi)$  为右 G-集. 常记  $\phi(y, g)$  为 y.g.

 $\{G \times Y \perp h f \in H \} \stackrel{1:1}{\longleftrightarrow} \operatorname{Hom}(G, S(Y)^{\operatorname{op}})$  任意右 G-集  $(Y, \phi)$  诱导群同态 (群的置换表示)

$$\rho: G \to S(Y)^{\operatorname{op}}$$

$$g \mapsto \rho(g),$$

其中  $\rho(g)(y) := y.g.$  反过来, 给定群同态  $\rho: G \to S(Y)^{op}$ , 可定义 G 在 Y 上的右作用:

$$\phi: Y \times G \to Y$$
$$(y,g) \mapsto \rho(g)(y).$$

左/右 
$$G$$
-集本质相同:  $G^{\frown}X:(g,x)\mapsto g.x$   $\rightleftarrows$   $X^{\frown}G:(x,g)\mapsto x.g\coloneqq g^{-1}.x$ 

**例 4.5.12** 设 G 为群,  $H \leq G$ .

- (1) 考虑左陪集空间  $G/H = \{aH : a \in G\}$  (未必为商群), 则有左诱导作用  $G^{\frown}(G/H) : (g, aH) \mapsto gaH$ .
- (2) 对偶地, 考虑右陪集空间  $H \setminus G = \{Ha : a \in G\}$ , 则有右诱导作用  $(H \setminus G) \cap G : (Ha, g) \mapsto Hag$ , 与右 正则作用对应的左作用为  $(g, Ha) \mapsto Hag^{-1}$ .
- (3) 特别地, 当  $H = \{1_G\}$  时, 得到左正则作用  $G^{\frown}G: (g,a) \mapsto ga$  与右正则作用  $G^{\frown}G: (a,g) \mapsto ag$ .

前文已谈及 G 在 X 上的左作用与  $\operatorname{Hom}(G,S(X))$  间存在——对应关系, 将其用于例 4.5.12 (3) 的左正则作用, 便得到群嵌入

$$G \hookrightarrow S(G), \quad g \mapsto \ell_q,$$

其中  $\ell_g(x) \coloneqq gx$  (易验证此同态的核为  $\{1_G\}$ ). 故我们得到

**定理 4.5.13 (Cayley 定理)** 任何群 G 与对称群 S(G) 的一个子群同构.

**定义 4.5.14** 设 G 为群, X 为左 G-集, 称 G<sup> $\cap$ </sup>X 是忠实的, 若相应的群同态

$$\rho: G \to S(X)$$
$$g \mapsto \rho(g)$$

是单射, 其中  $\rho(g)(x) = g.x, \forall x \in X$ . 这等价于说群作用  $G^{\sim}X$  的核  $N = \{1_G\}$ .

§4.5 群作用 85

**例 4.5.15** 例 4.5.12 中的左/右正则作用均是忠实的.

**例 4.5.16** 由练习 4.5.8,  $Aut(K/k)^{\frown}S(Root_K(f))$  是忠实的.

**例 4.5.17 (非忠实群作用)**  $(\mathbb{R}^2,+)^{\sim}\mathbb{S}^1:((x,y),e^{i\theta})\mapsto e^{i(\theta+x+y)}$  非忠实.

**定义 4.5.18** 设  $G^{\frown}X, x \in X$ . 称  $\mathcal{O}_x = \{g, x : g \in G\} \subset X \to x$  的轨道.

**注记 4.5.19** 定义 X 上的等价关系为  $x \approx y \iff \exists g \in G$ , s. t. y = g.x. 则 x 所在的等价类即  $\mathcal{O}_x$ , X 有 G-轨道分解  $X = \bigsqcup_{x \in I} \mathcal{O}_x$ , 其中 I 为 G-轨道的完全代表元系. 轨道的集合记为 X/G 或  $G \setminus X$ .

**定义 4.5.20** 设  $G^{\frown}X$ . 若对任意  $x, y \in X$ , 均存在  $g \in G$  使得 y = g, x, 则称群作用  $G^{\frown}X$  是可迁的.

**注记 4.5.21** (1)  $G^{\sim}X$  可迁当且仅当 X 仅有一个 G-轨道.

(2) 对任意  $x \in X$ , 限制作用  $G^{\sim} \mathcal{O}_x$  总是可迁的.

**引理 4.5.22** 考虑无重根非零多项式  $f(x) \in k[x]$  及其分裂域 K/k,则 f(x) 不可约当且仅当群作用  $\operatorname{Aut}(K/k)^{\curvearrowright}\operatorname{Root}_K(f)$  是可迁的.

**证明** (⇒) 对不可约的 f(x) 的任意一对根  $\alpha \neq \beta \in K$ , 由引理 3.3.1, 唯一存在  $\mathrm{Id}_k$  的延拓  $\sigma: k(\alpha) \xrightarrow{\sim} k(\beta)$  满足  $\sigma(\alpha) = \beta$ . 此时  $K/k(\alpha)$  与  $K/k(\beta)$  分别为  $f(x) \in k(\alpha)[x]$  与  $\sigma(f(x)) \in k(\beta)[x]$  的分裂域, 由定理 3.3.13, 存在  $\sigma$  的延拓  $\delta \in \mathrm{Aut}(K)$ . 故  $\delta \in \mathrm{Aut}(K/k)$  满足  $\delta(\alpha) = \beta$ , 即  $\mathrm{Aut}(K/k) \cap \mathrm{Root}_K(f)$  可迁.

$$K \xrightarrow{-\cdots} K$$

$$\uparrow \qquad \uparrow$$

$$k(\alpha) \xrightarrow{\sigma:\alpha \mapsto \beta} k(\beta)$$

$$\uparrow \qquad \uparrow$$

$$k \xrightarrow{\operatorname{Id}_k} k$$

(秦) 若 f = gh 可约,  $\deg(g)$ ,  $\deg(h) \ge 1$ , 则由 f(x) 无重根知  $\operatorname{Root}_K(g) \cap \operatorname{Root}_K(h) = \varnothing$ , 因此  $\operatorname{Aut}(K/k) \cap \operatorname{Root}_K(f)$  不混合 g 和 h 的根集, 故不可迁, 矛盾.

**定义 4.5.23** 设  $G^{\sim}X, x \in X$ . 定义 x 的稳定化子  $G_x = \{g \in G : g. x = x\}$ .

**注记 4.5.24**  $G_x \leq G$  为子群.

**引理 4.5.25** 设  $G^{\frown}X, x, y \in X$ . 若存在  $h \in G$  使得 x = h.y, 则  $G_x = hG_yh^{-1}$ . 故同一轨道中的稳定化子是互相共轭的.

**注记 4.5.26** 再由练习 4.3.8 可知, 有群同构  $G_x \simeq G_y$ .

**例 4.5.27** 将地球表面看作  $\mathbb{S}^2$ . 地球绕南北极的自转可看作 SO(2) 在  $\mathbb{S}^2$  上的作用, 其轨道就是纬线. 在非南北极点的稳定化子是  $\{\text{Id}\}$ ; 在南北极点的稳定化子是 SO(2).

**例 4.5.28** GL $(n,\mathbb{R})$  在  $\mathbb{R}^n$  上的自然作用的轨道有  $\{\mathbf{0}\}$  和  $\mathbb{R}^n\setminus\{\mathbf{0}\}$  两个. 在  $\mathbf{0}$  点的稳定化子是 GL $(n,\mathbb{R})$ , 在  $\mathbf{e}_1$  点的稳定化子是

$$\Bigg\{ \begin{pmatrix} 1 & \alpha \\ \mathbf{0} & A \end{pmatrix} \in \mathrm{GL}(n,\mathbb{R}) : A \in \mathrm{GL}(n-1,\mathbb{R}), \alpha \in \mathbb{R}^{n-1} \Bigg\}.$$

**例 4.5.29** SO(n) 在  $\mathbb{R}^n$  上的作用的轨道是  $\{x \in \mathbb{R}^n : |x| = r\}, r \ge 0$ . 当 r > 0 时, 在  $r\mathbf{e}_1$  点的稳定化子是  $\{\operatorname{diag}(1, A) : A \in \operatorname{SO}(n-1)\}.$ 

**例 4.5.30** 根据例 4.4.7,  $S_{n-1}$  可看作  $S_n$  的子群.  $S_n \cap \underline{n}$  在 n 的稳定化子为  $S_{n-1}$ .

**例 4.5.31**  $GL(n,\mathbb{C})$  在  $M_n(\mathbb{C})$  上相似作用的轨道是  $\mathcal{O}_J = \{TJT^{-1} : T \in GL(n,\mathbb{C})\}$ , 其中 J 是某个 Jordan 标准形, 而 J 的稳定化子为  $\{A \in GL(n,\mathbb{C}) : AJ = JA\}$ .

**定理 4.5.32 (轨道-稳定化子定理)** 设  $G^{\frown}X, x \in X$ , 则存在双射

$$f: G/G_x \xrightarrow{\sim} \mathcal{O}_x$$
$$gG_x \longmapsto g. \ x.$$

特别地,我们有轨道-稳定化子公式

$$|\mathcal{O}_x| = |G/G_x| = [G:G_x] \quad \mathbb{P} \quad |G| = |\mathcal{O}_x||G_x|.$$

**注记 4.5.33** 对集合间双射  $f: Y \to Z$  与群作用  $G^{\sim}Y, G^{\sim}Z$ , 称 f 与 G-作用相容, 若

$$f(g, y) = g, f(y), \quad \forall g \in G, y \in Y.$$

在定理 4.5.32 中, 从  $G^{\sim}X$  可得左诱导作用  $G^{\sim}(G/G_x)$  (参见例 4.5.12 (1)) 与限制作用  $G^{\sim}O_x$ . 由于

$$f(h, gG_x) = h, f(gG_x), \forall g, h \in G,$$

双射 f 与 G-作用相容.

**例 4.5.34** 在例 4.4.23 中, 有  $\Sigma(\square)^4$  由于  $\mathcal{O}_1 = 4$  而  $\Sigma(\square)_1 = \{\text{Id}, (24)\}$ , 根据定理 4.5.32,  $|\Sigma(\square)| = 4 \cdot 2 = 8$ .

**定理 4.5.35 (Burnside 引理)** 设 G 是有限群, X 是有限 G-集. 对于  $g \in G$ , 考虑  $X^g = \{x \in X : g. x = x\}$ , 则有

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

**证明** 通过将 X 拆分为轨道的并, 可不妨设  $G^{\frown}X$  是可迁的, 从而只需证  $|G|=\sum_{g\in G}|X^g|$ . 定义函数  $f:G\times X\to\mathbb{R}$  如下:

$$f(g,x) = \begin{cases} 1, & \text{if } g. x = x, \\ 0, & \text{if } g. x \neq x. \end{cases}$$

下面用两种方式来计算  $S = \sum_{(g,x) \in G \times X} f(g,x)$ :

- $\diamond$  对任意  $g \in G$  ,  $\sum_{x \in X} f(g,x) = |X^g|$  , 因此  $S = \sum_{g \in G} |X^g|$  .

比较这两个等式即得  $|G| = \sum_{g \in G} |X^g|$ .

注记 4.5.36 换言之, 轨道的个数是群中各个元素不动点个数的平均值.

§4.5 群作用 87

**定义 4.5.37** 设 G 为群, X 为 G-集. 称作用  $G^{\frown}X$  为自由的, 若对任意  $x \in X$  都有  $G_x = \{1_G\}$ .

**注记 4.5.38** 由定理 4.5.32,  $G^{\frown}X$  是自由的  $\iff |\mathcal{O}_x| = |G|, \forall x \in X$ . 此时  $|G| \mid |X|$ .

**例 4.5.39** 例 **4.5.12** (3) 的左正则作用  $G^{\frown}G:(g,a)\mapsto ga$  是自由的.

**例 4.5.40** 设  $H \leq G$ , 则限制左正则作用  $H^{\frown}G: (h, x) \mapsto hx$  是自由的. 由注记 4.5.38,  $|H| \mid |G|$ , 这便是 定理 4.1.18.

**定义 4.5.41** 设 G 为群, X 为 G-集. 称作用  $G^{\frown}X$  为平凡的, 若对任意  $g \in G$  与  $x \in X$  均有 g.x = x.

**注记 4.5.42**  $G^{\frown}X$  是平凡的  $\iff G_x = G, \forall x \in X \iff \mathcal{O}_x = \{x\}, \forall x \in X.$ 

**例 4.5.43** 设  $G^{\frown}X$ , 记 X 的不动点集为  $X^G = \{x \in X : g. x = x, \forall g \in G\}$ . 若  $X^G \neq \emptyset$ , 则  $G^{\frown}X^G$  是平凡的.

**定义 4.5.44** 设 G 为群, 称作用  $G^{\frown}X = G : (g, x) \mapsto gxg^{-1}$  为共轭作用.

**注记 4.5.45** (1) G 是 Abel 群  $\iff G^{\sim}X$  是平凡的. 故仅考虑非 Abel 群共轭作用.

(2) 共轭作用下的 x 的轨道即 G 中 x 所在的共轭类  $C_x$  (定义 4.4.15).

**定义 4.5.46** 定义  $x \in G$  的中心化子 Z(x) 为 x 在共轭作用下的稳定化子,即

$$Z(x) = \{g \in G : gx = xg\} \leqslant G.$$

**注记 4.5.47** (1)  $Z(G) \subset Z(x), (x) \subset Z(x), \forall x$ .

(2) 定理 4.5.32 在共轭作用下可表述为  $|G| = |C_x||Z(x)|$ . 特别地,  $|C_x|||G|$ .

(3) 
$$C_x = \{x\} \iff x \in Z(G) \iff Z(x) = G.$$

**例 4.5.48** 在练习 4.4.40 中, 我们看到  $A_4$  中  $\left|C_{(123)}\right|=4$ . 这也可由注记 4.5.47 (2) 公式  $\left|G\right|=\left|C_x\right|\left|Z(x)\right|$ , 化为求  $Z((123))=\left\{\sigma\in A_4:\sigma(123)\sigma^{-1}=(123)\right\}$ . 由引理 4.4.12,

$$\sigma(123)\sigma^{-1} = (\sigma(1)\sigma(2)\sigma(3)) = (123) \implies \sigma = \text{Id}, (123), (132).$$

故 
$$|C_{(123)}| = \frac{|A_4|}{|Z((123))|} = \frac{12}{3} = 4.$$

由注记 4.5.47 (3) 可得

命题 4.5.49 (类等式) 
$$|G| = |Z(G)| + \sum_{C_x:|C_x|>1} |C_x|.$$

**注记 4.5.50** 表 4.1, 4.2, 4.3 分别给出了  $S_3$ ,  $S_4$ ,  $A_4$  的类等式.

**定义 4.5.51** 设 p 为素数. 有限群 G 称为 p-群, 若  $|G| = p^n, n \in \mathbb{Z}_{\geq 0}$ .

**注记 4.5.52** *p*-群未必是 Abel 群, 如练习 4.1.16 的 8 阶群  $\Sigma(\Box)$  是非 Abel 群.

**命题 4.5.53** 设 G 为非平凡的 p-群,则  $Z(G) \neq \{1_G\}$ .

**证明** 由命题 4.5.49 及注记 4.5.47 (2), *p* | |*Z*(*G*)|.

**注记 4.5.54** 若 G 为非平凡 p-群, 由练习 4.3.6, 商群 G/Z(G) 是阶数更小的 p-群, 可以此递归研究 p-群的结构. 下面的定理 4.5.55 与后面的例 5.3.6 (5) 即为二例.

**定理 4.5.55** 对任意非平凡 p-群 G, 存在  $H \triangleleft G$  使得 [G:H] = p.

**证明** 设  $|G| = p^n$ , 对 n 归纳. 由推论 4.2.12, n = 1 时结论显然成立. 下设结论对 k < n ( $n \ge 2$ ) 成立. 由命题 4.5.53,  $Z(G) \ne \{1_G\}$ , 即 Z(G) 亦为非平凡 p-群. 由定理 4.6.11, 存在 p 阶元  $a \in Z(G)$ . 令  $H = (a) \le Z(G)$ , 则  $H \triangleleft G$ . 由于  $|G/H| = p^{n-1}$ , 由归纳假设, G/H 有指数为 p 的正规子群, 由定理 4.3.21 与定理 4.3.22, 它对应于 G 中包含 H 的正规子群, 且由定理 4.3.22 给出的群同构可知此正规子群指数为 p.

**命题 4.5.56** 设 p 为素数, G 为  $p^2$  阶群, 则 G 为 Abel 群, 且  $G \simeq \mu_{p^2}$  或  $G \simeq \mu_p \times \mu_p$ .

**证明** 由命题 4.5.53, 可取  $g \in Z(G) \setminus \{1_G\}$ . 由 ord $(g) \mid |G|$  知 ord(g) = p 或  $p^2$ .

- ♦ 若 ord(g) =  $p^2$ , 由命题 4.2.11 及命题 4.2.7, G 为循环群且  $G \simeq \mu_{p^2}$ .
- ◇ 若 ord(g) = p, H = (g)  $\subset$  Z(G). 可取 g'  $\in$   $G \setminus H$ , 并不妨设 ord(g') = p (否则, ord(p') =  $p^2$ ,  $G \simeq \mu_{p^2}$ ). 记 K = (g'), 则由  $g \in Z(G)$  可得  $KH = HK \leqslant G$ . 由定理 4.1.18,  $|HK| \mid |G|$ , 但由  $H \subsetneq HK$  知  $|HK| \geqslant p+1$ , 因此  $|HK| = p^2$ , G = HK 为 Abel 群. 考虑群同态

$$H \times K \to G$$
,  $(h, k) \mapsto hk$ .

由 HK=G 知这是满同态, 而  $|H\times K|=p^2=|G|$ , 因此这是群同构,  $G\simeq H\times K$ . 而  $H\times K\simeq \mu_p\times \mu_p$ , 故  $G\simeq \mu_p\times \mu_p$ .

**练习 4.5.57** 设 G 为群,  $p \in |G|$  的最小素因子. 若 p 阶子群  $A \triangleleft G$ , 则  $A \leqslant Z(G)$ .

**证明** 因为 $A \triangleleft G$ , 所以G 在A 上有共轭作用. 由此可得群同态

$$\rho: G \to S(A) = S_p$$
.

注意到  $\operatorname{Im} \rho \leq \operatorname{Aut}(A) \simeq \operatorname{Aut}(\mathbb{Z}_p) \simeq \mathbb{Z}_{p-1}$ . 由定理 4.1.18,  $|\operatorname{Im} \rho| \mid (p-1)$ . 另一方面, 由定理 4.3.16,  $G/\operatorname{Ker} \rho \simeq \operatorname{Im} \rho$ , 因此  $|\operatorname{Im} \rho| \mid |G|$ , 但 |G| 的最小素因子是 p, 故  $|\operatorname{Im} \rho| = 1$ , 进而  $G = \operatorname{Ker} \rho$ . 这表明  $A \subset Z(G)$ .

 $\operatorname{Aut}(\mathbb{Z}_p) \simeq \mathbb{Z}_{p-1}$  补证 注意到有群同构

$$\operatorname{Aut}(\mathbb{Z}_p) \xrightarrow{\sim} \mathbb{Z}_p^{\times}, \quad f \mapsto f(\overline{1}).$$

由定理 4.2.14 知  $\mathbb{Z}_p^{\times}$  为循环群, 再由命题 4.2.7,  $\mathbb{Z}_p^{\times} \simeq \mathbb{Z}_{p-1}$ . 故  $\operatorname{Aut}(\mathbb{Z}_p) \simeq \mathbb{Z}_{p-1}$ .

**例 4.5.58** 设  $H \leq G$ , 记  $X_H = \{H' \leq G : H'$  共轭于  $H\} \ni H$ , 则有共轭作用

$$G^{\curvearrowright}X_H:(g,H')\mapsto gH'g^{-1}.$$

定义 H 的正规化子  $N_G(H)$  为 H 在  $G^{\sim}X_H$  下的稳定化子,即

$$N_G(H) = \{g \in G : gHg^{-1} = H\} = \{g \in G : gH = Hg\}.$$

- $\diamond H \lhd N_G(H) \leqslant G.$
- ♦ 定理 4.5.32 在共轭作用  $G^{\frown}X_H$  下可表述为  $|G| = |N_G(H)||X_H|$ .

§4.5 群作用 89

$$\diamond N_G(H) = G \iff H \lhd G \iff X_H = \{H\}.$$

**例 4.5.59** 共轭作用  $G^{\sim}X = G$  在 G 中元素 x 的轨道 (即共轭类) 上有限制作用  $G^{\sim}C_x$ . 例如  $S_4$  共轭作用于共轭类 (见表 4.2)

$$X = \{A = (12)(34), B = (13)(24), C = (14)(23)\}.$$

由此可得群同态

$$\rho: S_4 \to S(X) \simeq S_3$$
.

由引理 4.4.12, 对  $\sigma \in S_4$ ,

$$\sigma A \sigma^{-1} = (\sigma(1)\sigma(2))(\sigma(3)\sigma(4)),$$
  

$$\sigma B \sigma^{-1} = (\sigma(1)\sigma(3))(\sigma(2)\sigma(4)),$$
  

$$\sigma C \sigma^{-1} = (\sigma(1)\sigma(4))(\sigma(2)\sigma(3)).$$

由此可计算得群同态  $\rho$  的如下信息:

| 像     | 纤维                               |
|-------|----------------------------------|
| Id    | Id, (12)(34), (13)(24), (14)(23) |
| (12)  | (14), (23), (1243), (1342)       |
| (13)  | (13), (24), (1234), (1432)       |
| (23)  | (12), (34), (1324), (1423)       |
| (123) | (124), (132), (143), (234)       |
| (132) | (123), (134), (142), (243)       |

特别地,  $\rho$  为满射, 且 Ker  $\rho = \{ \mathrm{Id}, A, B, C \} = K_4$  (见注记 4.4.25). 由定理 4.3.16, 有群同构

$$S_4/K_4 \simeq S_3$$
.

**练习 4.5.60** 设  $G^{\frown}X$  可迁,  $N \triangleleft G$ , 则 X 在 N 作用下的每个轨道有同样多的元素.

**证明** 由于  $G^{\frown}X$  可迁, 存在  $a \in X$  使 X = Ga. 对任意  $x \in X$ , 设  $x = ga, g \in G$ , 则

$$N_x = \{n \in N : nx = x\} = \{n \in N : nga = ga\}$$
$$= \{n \in N : g^{-1}ng \in G_a\} = N \cap gG_ag^{-1}.$$

由于  $N \triangleleft G, N_x = N \cap gG_ag^{-1} = g(N \cap G_a)g^{-1} = gN_ag^{-1}$ . 由定理 4.5.32,

$$|Nx| = \frac{|N|}{|N_x|} = \frac{|N|}{|gN_ag^{-1}|} = \frac{|N|}{|N_a|} = |Na|.$$

即 X 在 N 作用下的每个轨道有同样多的元素.

#### 4.6 Sylow 定理

**定义 4.6.1** 设 G 为 n 阶有限群, p 为素数. 设  $p^r || n$ , 满足  $|H| = p^r$  的子群 H 称为 G 的 Sylow p-子群.

**定理 4.6.2 (Sylow 定理)** 设 G 为有限群, p 为任意素数.

- (1) G 含有 Sylow p-子群.
- (2) G 的任两个 Sylow p-子群 P, P' 皆共轭 (从而同构).
- (3) 设  $|G| = p^r m, p \nmid m$ , 则 G 中 Sylow p-子群的个数是 m 的因子, 且形如 kp + 1.
- (4) 任意 p-子群  $H \leq G$  皆包含于某个 Sylow p-子群.

**注记 4.6.3** 由 (2) 可知, G 中存在正规的 Sylow p-子群当且仅当 G 有唯一的 Sylow p-子群.

我们仅对(1)作出证明.

证明 (1) 设  $|G| = p^r m, p \nmid m,$  考虑

$$X = \{U \subset G : |U| = p^r\} \subset \mathcal{P}(G).$$

由例 4.5.12 (3) 的左正则作用与例 4.5.6, 有群作用  $G^{\frown} \mathcal{P}(G) : (g, U) \mapsto gU$ , 而 |gU| = |U|, 故此作用 可限制在 X 上, 得到  $G^{\curvearrowright}X:(g,U)\mapsto gU$ . 由于

$$|X| = {p^r m \choose p^r} = {p^r m (p^r m - 1) \cdots (p^r m - p^r + 1) \over p^r (p^r - 1) \cdots 1},$$

注意到 i 与  $p^rm-p^r+i$  所含 p 的幂次相同 ( $1 \le i \le p^r$ ), 因此  $p \nmid |X|$ . 设 X 有 G-轨道分解  $X = \bigsqcup \mathcal{O}_U$ , 则存在  $U \in X$  使得  $p \nmid |\mathcal{O}_U|$ . 由定理 4.5.32,  $|G_U||\mathcal{O}_U| = |G| = p^r m$ , 因此  $|G_U| = p^r m'$ , 其中  $m' \mid m$ . 另一方面, 按定义  $G_U = \{g \in G : gU = U\}$ , 因此另有群作用  $G_U \cap U : (g,u) \mapsto gu$ . 由 于此作用是自由的, 由注记 4.5.38,  $|G_U| \mid |U| = p^r$ . 故 m' = 1,  $|G_U| = p^r$  即为所求. 

以下再给出定理 4.6.2(1)的另一个证明,此证明依赖于下述引理:

**引理 4.6.4** 设 G 为有限群,  $H \leq G$ . 若 G 有 Sylow p-子群 S, 则 H 亦有 Sylow p-子群. 更具体地, 存在  $g \in G$  使  $gSg^{-1} \cap H$  为 H 的 Sylow p-子群.

**证明** 考虑左诱导作用  $H^{\frown}(G/S):(h,gS)\mapsto hgS.$  由于 S 为 Sylow p-子群, 因此  $p\nmid |G/S|$ , 此作用有某 个轨道  $\mathcal{O}_{gS}$ , 满足  $p \nmid |\mathcal{O}_{gS}|$ . 由定理 4.5.32,  $|H| = |\mathcal{O}_{gS}| |H_{gS}|$ , 因此  $|H| = |H_{gS}|$  所含 p 的幂次相同. 而

$$H_{gS} = \{h \in H : hgS = gS\} = \{h \in H : g^{-1}hg \in S\} = \{h \in H : h \in gSg^{-1}\} = gSg^{-1} \cap H,$$

由  $H_{qS} \leq gSg^{-1}$  知  $H_{qS}$  为 p-群, 又 |H| 与  $|H_{qS}|$  所含 p 的幂次相同, 故  $H_{qS}$  为 H 的 Sylow p-子群. 以下便是定理 4.6.2 (1) 的另证.

**证明** 设  $n = |G| = p^r m$ . 由例 4.5.12 (3) 的左正则作用可得群嵌入  $G \hookrightarrow S(G) \simeq S_n$ . 而  $S_n$  亦可嵌入  $GL(n, \mathbb{F}_p)$  中: $\sigma \in S_n$ ,  $(\mathbf{e}_i)_{1 \leqslant i \leqslant n}$  是  $\mathbb{F}_p^n$  的基, 我们将  $\sigma$  映为线性变换  $\mathbf{e}_i \mapsto \mathbf{e}_{\sigma(i)}$  对应的方阵. 注意到

$$|GL(n,\mathbb{F}_p)| = (p^n - 1)(p^n - p)\cdots(p^n - p^{n-1})$$
 (逐行考虑),

其中 p 的幂次为  $1+2+\cdots+(n-1)=\frac{n(n-1)}{2}$ . 考虑对角线上元素均为 1 的上三角方阵的集合 H,则  $H \leqslant \operatorname{GL}(n,\mathbb{F}_p)$  且  $|H|=p^{\frac{n(n-1)}{2}}$ ,因此 H 为  $\operatorname{GL}(n,\mathbb{F}_p)$  的 Sylow p-子群. 由于  $G \hookrightarrow S_n \hookrightarrow \operatorname{GL}(n,\mathbb{F}_p)$ ,由引 理 4.6.4 即知 G 有 Sylow p-子群.

**例 4.6.5** 考虑  $S_4$ ,  $|S_4| = 3^1 \cdot 2^3$ .

(Sylow 3-子群) 由推论 4.2.12 与表 4.2 易见即为如下 4 个 3 阶子群.

$$\{Id, (123), (132)\}, \{Id, (124), (142)\}, \{Id, (134), (143)\}, \{Id, (234), (243)\}.$$

(Sylow 2-**子群**) 由例 4.4.33 可知  $S_4$  无 8 阶正规子群, 再由注记 4.6.3 即得  $S_4$  的 Sylow 2-子群个数 > 1, 根据定理 4.6.2 (3) 即知  $S_4$  恰有 3 个 Sylow 2-子群. 由定理 4.6.2 (4), Klein 四元群  $K_4$  包含于某个 Sylow 2-子群, 而由练习 4.4.24 的解答 (4) 知  $K_4 \triangleleft S_4$ , 它对共轭封闭, 因此由定理 4.6.2 (2) 即知  $K_4$  包含于  $S_4$  的所有 Sylow 2-子群. 由定理 4.6.2 (2) 及定理 4.4.19, 这 3 个子群分别包含  $S_4$  公  $S_4$  型置换与 2 个  $S_4$  型置换. 注意到两个相交对换之积是 3-轮换, 但 8 阶群不含 3-轮换, 因此每个子群中恰含有 2 个不相交对换. 最后由  $S_4$  型置换与对换之积生成 4-轮换. 结果如下:

$$\begin{aligned} &\{\mathrm{Id}, (12)(34), (13)(24), (14)(23), (12), (34), (1324), (1423)\} = (K_4, (12)), \\ &\{\mathrm{Id}, (12)(34), (13)(24), (14)(23), (13), (24), (1234), (1432)\} = (K_4, (13)), \\ &\{\mathrm{Id}, (12)(34), (13)(24), (14)(23), (14), (23), (1243), (1342)\} = (K_4, (14)). \end{aligned}$$

这与练习 4.4.24 一致.

**例 4.6.6** 考虑  $A_4$ ,  $|A_4| = 3^1 \cdot 2^2$ .

(Sylow 3-子群) 由推论 4.2.12 与表 4.3 易见即为如下 4 个 3 阶子群.

$$\{Id, (123), (132)\}, \{Id, (124), (142)\}, \{Id, (134), (143)\}, \{Id, (234), (243)\}.$$

(Sylow 2-子群) 由表 4.3 可知  $K_4$  是  $A_4$  的 2 个共轭类之并, 因此  $K_4 \triangleleft A_4$ . 由注记 4.6.3,  $K_4$  是  $A_4$  唯一的 Sylow 2-子群.

**命题 4.6.7** 35 阶群必同构于 Z<sub>35</sub>.

**证明** 设 G 为 35 阶群, 由定理 4.6.2 (2) 即知 G 有唯一的 5 阶子群 P 和 7 阶子群 Q, 再由注记 4.6.3,  $P \triangleleft G$ ,  $Q \triangleleft G$ . 由推论 4.2.12,  $P \simeq \mathbb{Z}_5$ ,  $Q \simeq \mathbb{Z}_7$ , 进而  $P \cap Q = \{1_G\}$ . 由练习 4.3.28, pq = qp,  $\forall p \in P, q \in Q$ . 由此可验证映射

$$P \times Q \to G$$
,  $(p,q) \mapsto pq$ 

是群同态 (由可换性), 且是单的, 进而为群同构,  $G \simeq P \times Q \simeq \mathbb{Z}_5 \times \mathbb{Z}_7$ . 由练习 4.1.35, 对  $(\overline{1}, \overline{1}) \in \mathbb{Z}_5 \times \mathbb{Z}_7$ , ord  $(\overline{1}, \overline{1}) = \text{lcm}(5, 7) = 35$ . 再由命题 4.2.11 知 G 为循环群, 由命题 4.2.7 即得  $G \simeq \mathbb{Z}_{35}$ .

命题 4.6.8 108 阶群总不是单群.

**证明** 设群 G 满足  $|G| = 108 = 2^2 \cdot 3^3$ . 由定理 4.6.2 (1) 即知 G 有 27 阶子群 H. 由例 4.5.12 (1), 有左诱导作用  $G^{\frown}(G/H): (g, aH) \mapsto gaH$ , 因此存在群同态  $\rho: G \to S(G/H)$ . 由定理 4.3.16,  $G/\ker \rho \simeq \operatorname{Im} \rho$ , 而  $\operatorname{Im} \rho \neq \{\operatorname{Id}\}$ , 因此  $\operatorname{Ker} \rho \not \supseteq G$ . 又  $|\operatorname{Im} \rho| \leqslant |S(G/H)| = |S_4| = 24$ , 因此  $|\operatorname{Ker} \rho| \neq 1$ ,  $\operatorname{Ker} \rho \neq \{1_G\}$ . 故  $\operatorname{Ker} \rho$  是 G 的非平凡正规子群,即 G 非单群.

**命题 4.6.9** 设 G 为有限 Abel 群,  $|G| = p_1^{s_1} \cdots p_r^{s_r}$ , 其中  $p_1, \cdots, p_r$  为互异的素数. 则 G 的 Sylow  $p_i$ -子群  $P_i$  唯一  $(1 \le i \le r)$ , 且  $G \simeq P_1 \times \cdots \times P_r$ .

**证明** 由于 G 的 Sylow  $p_i$ -子群是 Abel 群, 在共轭作用下不变, 由定理 4.6.2 (2) 即知唯一性. 由  $P_i$  (1  $\leq i \leq r$ ) 均为 Abel 群可知映射

$$P_1 \times \cdots \times P_r \to G$$
,  $(g_1, \cdots, g_r) \mapsto g_1 \cdots g_r$ 

是群同态. 记  $H = P_1 \cdots P_r \leqslant G$ , 则  $P_i \leqslant H$  ( $1 \leqslant i \leqslant r$ ), 由定理 4.1.18,  $p_i^{s_i} \mid |H|$  ( $1 \leqslant i \leqslant r$ ), 而  $|H| \mid |G| = p_1^{s_1} \cdots p_r^{s_r}$ , 因此 H = G. 故上述群同态是满的, 进而为群同构,  $G \simeq P_1 \times \cdots \times P_r$ .

**注记 4.6.10** 有限 Abel 群的结构问题归结于 Abel p-群的结构问题.

**定理 4.6.11 (Cauchy 定理)** 设 G 为有限群,素数  $p \mid |G|$ ,则 G 中存在 p 阶元,即 G 含有 p 阶子群.

**证明** 由定理 4.6.2 (1), G 含有 Sylow p-子群 P, 设  $|P|=p^r$ . 任取  $g \in G \setminus \{1_G\}$ , 则  $\operatorname{ord}(g)=p^s$ , 其中  $1 \leq s \leq r$ . 此时  $\operatorname{ord}\left(g^{p^{s-1}}\right)=p$ .

**练习 4.6.12** 设 G 是一个 n 阶群, 素数  $p \mid n$ . 证明: 方程  $x^p = 1$  在群 G 中解的个数是 p 的倍数.

**练习 4.6.13** 设 N 是有限群 G 的一个正规子群. 若 p 和 |G/N| 互素, 则 N 包含 G 的所有 Sylow p-子群.

**练习 4.6.14** 设 G 为有限群,  $N \triangleleft G$ ,  $P \not\in G$  的一个 Sylow p-子群. 证明:

- (1)  $N \cap P \neq N$  的 Sylow p-子群.
- (2) PN/N 是 G/N 的 Sylow p-子群.
- (3)  $(N_G(P)N)/N \simeq N_{G/N}(PN/N)$ .

**练习 4.6.15** 设  $P \in G$  的 Sylow p-子群,  $N_G(P) \triangleleft G$ . 证明:  $P \triangleleft G$ .

## 4.7 自由群与群的展示

**定义 4.7.1** 考虑非空集合 X, 添加其形式逆  $X^{-1} = \{x^{-1} : x \in X\}$ , 称  $X \cup X^{-1}$  为字母集.

- (1) 定义字  $w = x_1 x_2 \cdots x_n$ , 其中  $x_i \in X \cup X^{-1}$ . 称两个字相等, 若相应位置完全相等. 若 n = 0 则称为 空字, 记为 1.
- (2) 称字是既约的, 若  $x_i \neq x_{i+1}^{-1}, \forall i$ .

注记 4.7.2 每个字均能约化为唯一的既约字.

**定义 4.7.3** 定义集合 X 上的自由群  $\mathbf{F}(X) = \{ \bigcup X \cup X^{-1} \ \,$  为字母表得到的字 $\}$ , 其上的乘法定义为字的连接并约化, 幺元为空字 1, 求逆操作为  $(x_1x_2\cdots x_n)^{-1} = x_n^{-1}\cdots x_2^{-1}x_1^{-1}$ . 若  $|X| < +\infty$ , 则称  $\mathbf{F}(X)$  为有限生成自由群.

**例 4.7.4** 若  $X = \{a\}$ , 则  $\mathbf{F}(X) = \{1, a^k, a^{-k}, k \ge 1\} \simeq \mathbb{Z}$ .

**例 4.7.5** 若  $X = \{a, b\}$ , 则  $\mathbf{F}(X)$  中长度为 0 的字有 1 个, 长度为 1 的字有 4 个, 长度为 2 的字有  $4 \cdot 3$  个, 长度为 3 的字有  $4 \cdot 3^2$  个……

**约定 4.7.6** 有时将  $\mathbf{F}(\{x_1,\dots,x_n\})$  简记为  $\mathbf{F}(x_1,\dots,x_n)$ .

**命题 4.7.7 (自由群的泛性质)** 设 G 为群, X 为集合, 则任意映射  $f: X \to G$  可唯一延拓为群同态  $\tilde{f}: F(X) \to G$ , 使得下图交换:



命题 4.7.8 任何群 G 均为自由群的商群.

证明 在命题 4.7.7 中取 X=G 即得群的满同态  $\rho: \mathbf{F}(G) \twoheadrightarrow G$ . 由定理 4.3.16 即知  $\mathbf{F}(G)/\ker\rho\simeq G$ .  $\square$ 

$$G = \langle x_1, \cdots, x_n | r_1, \cdots, r_m \rangle, \quad r_i \in \mathbf{F}(x_1, \cdots, x_n).$$

这里等号右边意指

$$\mathbf{F}(x_1,\cdots,x_n)/N(r_1,\cdots,r_m),$$

其中  $N(r_1, \dots, r_m)$  为包含  $r_1, \dots, r_m$  的  $\mathbf{F}(x_1, \dots, x_n)$  的最小正规子群. 称  $x_i$  为生成元,  $r_i$  为生成关系.

**注记 4.7.10** 由于在商映射下  $r_1, \dots, r_m$  的像均为  $1_{G_\ell}$  有时也记

$$G = \langle x_1, \cdots, x_n | r_1 = 1, \cdots, r_m = 1 \rangle.$$

**命题 4.7.11** 在定义 4.7.9 中,  $N(r_1, \cdots, r_m)$  是由  $\{\omega r_i \omega^{-1} : \omega \in \mathbf{F}(x_1, \cdots, x_n), 1 \leqslant i \leqslant m\}$  生成的子群.

**例 4.7.12**  $\langle x | x^n \rangle \simeq \mu_n = \{1, \omega, \cdots, \omega^{n-1}\}$ , 其中  $\omega = e^{\frac{2\pi i}{n}}$ . 这有两种看法:

**(看法一)** 由例 4.7.4 知  $\mathbf{F}(x) \simeq \mathbb{Z}$  为循环群, 因此  $\mathbf{F}(x)$  的子群均正规,  $N(x^n) \simeq n\mathbb{Z}$ . 故  $\langle x | x^n \rangle = \mathbf{F}(x)/N(x^n) \simeq \mathbb{Z}/n\mathbb{Z} \simeq \mu_n$ .

(看法二) 设  $f:\{x\} \to \mu_n, x \mapsto \omega$ . 由命题 4.7.7, f 可唯一延拓为群同态

$$\widetilde{f}: \mathbf{F}(x) \to \mu_n$$

$$r^m \mapsto \omega^m$$

由  $\widetilde{f}(x^n) = \omega^n = 1$  可知  $N(x^n) \subset \operatorname{Ker} \widetilde{f}$ . 由定理 4.3.16,  $\mathbf{F}(x)/N(x^n) \twoheadrightarrow \mathbf{F}(X)/\operatorname{Ker} \widetilde{f} \simeq \mu_n$ . 又  $|\mathbf{F}(x)/N(x^n)| = n = |\mu_n|$ , 因此  $\langle x | x^n \rangle = \mathbf{F}(X)/N(x^n) \simeq \mu_n$ .

**命题 4.7.13 (泛性质)** 设  $G = \langle x_1, \dots, x_n | r_1, \dots, r_m \rangle$ , H 为群, 则映射  $f : X = \{x_1, \dots, x_n\} \to H$  可 (唯一) 延拓至群同态  $G \to H$  当且仅当元素  $f(x_i) \in H$  满足关系  $r_i$  (1  $\leq i \leq m$ ).

**证明** ( $\Rightarrow$ ) 是显然的, 下证 ( $\Leftarrow$ ). 由命题 4.7.7, f 可唯一延拓为群同态

$$\phi : \mathbf{F}(X) \to H$$
  
 $x_i \mapsto f(x_i).$ 

由于  $f(x_i) \in H$  满足关系  $r_i$ , 因此  $\phi(r_i) = 1_H$   $(1 \leq i \leq m)$ ,  $N(r_1, \dots, r_m) \leq \text{Ker } \phi$ . 由定理 4.3.16,

$$G = \mathbf{F}(X)/N(r_1, \cdots, r_m) \twoheadrightarrow \mathbf{F}(X)/\operatorname{Ker} \phi \simeq \operatorname{Im} \phi \stackrel{\operatorname{inc}}{\longleftrightarrow} H.$$

**例 4.7.14** 考虑  $S_3 = \{ \mathrm{Id}, (12), (13), (23), (123), (132) \}$  与  $G = \langle a, b | a^2, b^2, (ab)^3 \rangle$ . 注意到 (12)(13) = (123), 因此由 (12), (13) 生成的群阶为 6 的倍数, 进而  $S_3 = ((12), (13))$ . 考虑映射

$$f: \{a, b\} \rightarrow S_3, \quad a \mapsto (12), \quad b \mapsto (13),$$

由命题 4.7.13, f 可延拓为群的满同态  $\widetilde{f}:G \to S_3$ , 故  $|G|\geqslant |S_3|=6$ . 观察到 G 中有如下辫子关系 (参考注记 4.4.28):

这里的 a, b 实为商群中的  $\overline{a}, \overline{b}$ . 因此 G 中的元素共有以下三类 (注意  $a^{-1} = a, b^{-1} = b$ ):

- ♦ 1.
- $\Leftrightarrow$  第一位为 a: a, ab, aba (往后 abab = babb = ba, ……).
- $\Leftrightarrow$  第一位为 b: b, ba, bab (往后 baba = abaa = ab, ……).

于是  $|G| \leq 6$ , 从而 |G| = 6,  $G \simeq S_3$ .

**练习 4.7.15** 在例 **4.7.14** 中, G 另有展示  $G = \langle a, b | a^2, b^2, abab^{-1}a^{-1}b^{-1} \rangle$ .

**例 4.7.16** 正 n 边形的对称群  $D_n$  (称为二面体群) 阶为 2n (n 个旋转与 n 个镜面对称), 有展示

$$D_n \simeq \langle x, y | x^n, y^2, (xy)^2 \rangle.$$

**练习 4.7.17** 另有展示  $D_n \simeq \langle s, t | s^2, t^2, (st)^n \rangle$ . 因此当 n=3 时, 我们得到  $D_3 \simeq S_3$  (参考例 4.7.14).

群的展示可用来构造群的同态,以下是构造群同态  $D_4 \hookrightarrow S_4$  的例子 (参考例 4.4.23).

**例 4.7.18** 由例 4.7.16,  $D_4 = \langle x, y | x^4, y^2, (xy)^2 \rangle$ . 定义映射  $\phi$  满足  $\phi(x) = (1234), \phi(y) = (13)$ , 则

$$\phi(x)^4 = \text{Id}, \quad \phi(y)^2 = \text{Id}, \quad [\phi(x)\phi(y)]^2 = [(14)(23)]^2 = \text{Id}.$$

由命题 4.7.13,  $\phi$  可延拓为群同态  $\widetilde{\phi}: D_4 \to S_4$ . 由  $(1234) \in \operatorname{Im} \widetilde{\phi}$  可知  $\left| \operatorname{Im} \widetilde{\phi} \right| \geqslant 4$ , 又  $(13) \in \operatorname{Im} \widetilde{\phi} \setminus ((1234))$ , 因此  $\left| \operatorname{Im} \widetilde{\phi} \right| > 4$ . 而  $\left| \operatorname{Im} \widetilde{\phi} \right| = \left| D_4 / \operatorname{Ker} \widetilde{\phi} \right|$  是  $\left| D_4 \right| = 8$  的因子,因此  $\left| \operatorname{Im} \widetilde{\phi} \right| = 8$ ,  $\left| \operatorname{Ker} \widetilde{\phi} \right| = 1$ . 从而  $D_4 \simeq \operatorname{Im} \widetilde{\phi} \hookrightarrow S_4$ .

**例 4.7.19 (四元数代数)** 考虑以 1,i,j,k 为基的实向量空间  $\mathbb{H} := \mathbb{R}1 \oplus \mathbb{R}i \oplus \mathbb{R}j \oplus \mathbb{R}k$ . 其上具有良定的乘 法使得  $\mathbb{H}$  成环并满足:

- ♦ 乘法  $(x,y) \mapsto xy$  是  $\mathbb{H}$  上的双线性映射.
- ◇ 1 是乘法单位元.
- $\diamond i^2 = i^2 = -1.$
- $\diamond ij = k = -ji.$

由此可以推导出  $k^2 = -1$ , jk = i = -kj, ki = j = -ik.  $\coprod$  是非交换可除环 (体). 考虑四元数群

$$Q_8 = \{\pm 1, \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{k}\} \leqslant \mathbb{H}^{\times},$$

可知  $|Q_8| = |D_4|$ , 但  $Q_8 \not\simeq D_4$ , 因为  $Q_8$  中每个元素均为 4 阶元.

**练习 4.7.21** 设  $D_{\infty} = \langle s, t | s^2, t^2 \rangle$ . 问是否有  $|D_{\infty}| = +\infty$ ?

## 4.8 有限生成 Abel 群

**约定 4.8.1** 两加法群 A, B 的直积通常记为直和  $A \oplus B = A \times B$ .

**例 4.8.2** 秩 n 的自由 Abel 群  $\mathbb{Z}^n = \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$  有标准基  $(\mathbf{e}_i)_{1 \leq i \leq n}$ .

**定义 4.8.3** 设 A 是加法群,有限集合  $S \subset A$  称为 A 的有限基,若

- (1) S生成 A.
- (2)  $S 是 \mathbb{Z}$ -线性无关的.

**注记 4.8.4** 不是所有的加法群都有基, 如  $\mathbb{Z}_n$  就没有基, 因为对任意  $v \in \mathbb{Z}_n$ ,  $nv = \overline{0}$ .

**命题 4.8.5 (** $\mathbb{Z}^n$  **的泛性质)** 对任意加法群  $A = v_1, \dots, v_n \in A$ , 存在唯一的群同态  $f: \mathbb{Z}^n \to A$  使得  $f(\mathbf{e}_i) = v_i$  ( $1 \le i \le n$ ).

**命题 4.8.6**  $\mathbb{Z}^n \simeq \langle x_1, \cdots, x_n | x_i x_j x_i^{-1} x_i^{-1}, \forall i \neq j \rangle = \langle x_1, \cdots, x_n | x_i x_j = x_j x_i, \forall i \neq j \rangle.$ 

**证明** 构造映射  $f: \{x_1, \dots, x_n\} \to \mathbb{Z}^n, x_i \mapsto \mathbf{e}_i$ , 则  $f(x_i) + f(x_j) = f(x_j) + f(x_i), \forall i \neq j$ . 由命题 4.7.13, f 可唯一延拓为群同态  $\widetilde{f}: G \to \mathbb{Z}^n$ .

- $\diamond$  由于  $\widetilde{f}(x_1^{a_1}\cdots x_n^{a_n})=a_1\mathbf{e}_1+\cdots+a_n\mathbf{e}_n=(a_1,\cdots,a_n)$ ,  $\widetilde{f}$  是满射.
- $\diamond$  若  $\widetilde{f}(x_1^{a_1}\cdots x_n^{a_n})=\mathbf{0}$ , 则  $a_1=\cdots=a_n=0$ , 因此  $\widetilde{f}$  为单射.

故 $\widetilde{f}$ 为群同构,  $\mathbb{Z}^n \simeq \langle x_1, \cdots, x_n | x_i x_j = x_j x_i, \forall i \neq j \rangle$ .

**注记 4.8.7** 自由 Abel 群  $\mathbb{Z}^n$  是自由群当且仅当 n=1.

**命题 4.8.8** 有限生成 Abel 群 A 是自由 Abel 群当且仅当 A 有一组基.

**命题 4.8.9** 设 A 为有限生成 Abel 群,则存在正整数 n 与  $K \leq \mathbb{Z}^n$ ,使得  $A \simeq \mathbb{Z}^n/K$ .

**证明** 取 A 的一个生成元集  $S = \{v_1, \dots, v_n\}$ , 定义映射  $f : \{x_1, \dots, x_n\} \to S, x_i \mapsto v_i$ , 则  $f(x_i) + f(x_j) = f(x_j) + f(x_i)$ ,  $\forall i \neq j$ . 由命题 4.7.13 与命题 4.8.6, f 可唯一延拓为群同态  $\tilde{f} : \mathbb{Z}^n \twoheadrightarrow A$ . 由定理 4.3.16,  $\mathbb{Z}^n / \operatorname{Ker} \tilde{f} \simeq A$ .

**例 4.8.10**  $\mathbb{Z}_n$  可由  $\{\overline{1}\}$  生成,  $\mathbb{Z}_n \simeq \mathbb{Z}/n\mathbb{Z}$ .

**命题 4.8.11** 设  $K \leq \mathbb{Z}^n$ ,则 K 是有限生成的.

**证明** 对 n 归纳.

- ◇ 当 n = 1 时, 由命题 4.2.8 (1),  $\mathbb{Z}$  的子群形如  $d\mathbb{Z}$ , 其中  $d \ge 0$ , 它是循环群, 因此是有限生成的.
- ♦ 当 n = 2 时, 由  $K ≤ \mathbb{Z}^2$  知  $(K \cap \mathbb{Z}\mathbf{e}_1) ≤ \mathbb{Z}\mathbf{e}_1 \simeq \mathbb{Z}$ , 由命题 4.2.8 (1),  $K \cap \mathbb{Z}\mathbf{e}_1$  为循环群. 由定理 4.3.23 (3) 得

$$K/(K \cap \mathbb{Z}\mathbf{e}_1) \simeq (\mathbb{Z}\mathbf{e}_1 + K)/\mathbb{Z}\mathbf{e}_1 \leqslant \mathbb{Z}^2/\mathbb{Z}\mathbf{e}_1 \simeq \mathbb{Z}\mathbf{e}_2,$$

因此  $K/(K \cap \mathbb{Z}\mathbf{e}_1)$  是循环群, 再由下面的练习 4.8.12 知 K 是有限生成的.

◇ 余下情形类似.

**练习 4.8.12** 设 G 为群, N  $\triangleleft$  G 是有限生成的, 且 G/N 也是有限生成的. 证明: G 是有限生成的.

**证明** 设  $\{\bar{g}_1, \dots, \bar{g}_n\}$  是 G/N 的生成元集, 其中  $g_1, \dots, g_n \in G$ , 又设  $\{h_1, \dots, h_m\}$  是 N 的生成元集. 由  $G = (g_1, \dots, g_n)N = (g_1, \dots, g_n)(h_1, \dots, h_m)$  知  $(g_ih_j: 1 \le i \le n, 1 \le j \le m)$  是 G 的生成元集.

**命题 4.8.13** 存在双射

$$M_{n\times m}(\mathbb{Z}) \stackrel{1:1}{\longleftrightarrow} \operatorname{Hom}(\mathbb{Z}^m, \mathbb{Z}^n), \quad A \mapsto \phi_A,$$

其中

$$\phi_A: \mathbb{Z}_{\operatorname{col}}^m \to \mathbb{Z}_{\operatorname{col}}^n$$
$$\mathbf{v} \mapsto A\mathbf{v}.$$

**命题 4.8.14** 若  $\mathbb{Z}^n \simeq \mathbb{Z}^m$ , 则 n = m.

证明 沿用命题 4.8.13 中的记号, 存在  $A \in M_{m \times n}(\mathbb{Z})$  与  $B \in M_{n \times m}(\mathbb{Z})$  使得  $\phi_A \in \text{Hom}(\mathbb{Z}^n, \mathbb{Z}^m)$ ,  $\phi_B \in \text{Hom}(\mathbb{Z}^m, \mathbb{Z}^n)$ , 且  $\phi_B \circ \phi_A = \text{Id}_{\mathbb{Z}^n}$ ,  $\phi_A \circ \phi_B = \text{Id}_{\mathbb{Z}^m}$ , 也即  $AB = I_m$ ,  $BA = I_n$ . 于是 n = tr(BA) = tr(AB) = m.

**定义 4.8.15** 设  $f: A \to B$  是 Abel 群之间的同态,则称商群  $B/\operatorname{Im} f \to f$  的余核,记作 Coker f.

**注记 4.8.16** 与核是用来刻画同态的单性 (Ker  $f=1 \iff f$  是单射) 相对应, 余核是用来刻画同态的满性 (Coker  $f=1 \iff f$  是满射).

**命题 4.8.17** 设 G 为有限生成 Abel 群,则存在整数矩阵 A, 使得  $G \simeq \operatorname{Coker}(\phi_A)$ .

**证明** 由命题 4.8.9, 存在  $K \leq \mathbb{Z}^n$  使得  $G \simeq \mathbb{Z}^n/K$ , 再由命题 4.8.11, K 是有限生成的, 故存在  $\mathbf{v}_1, \dots, \mathbf{v}_m \in K$  使得  $K = \mathbb{Z}\mathbf{v}_1 + \dots + \mathbb{Z}\mathbf{v}_m$ . 取  $A = (\mathbf{v}_1, \dots, \mathbf{v}_m) \in M_{n \times m}(\mathbb{Z})$ , 则  $\mathrm{Im}(\phi_A) = K$ , 得证.

下面考虑可逆整方阵  $GL(n, \mathbb{Z}) = \{A \in M_n(\mathbb{Z}) : \det(A) = \pm 1\}.$ 

**练习 4.8.18** 设  $A \in M_n(\mathbb{Z})$ , 则  $A \in GL(n,\mathbb{Z}) \iff \phi_A \in Aut(\mathbb{Z}^n)$ .

**定义 4.8.19** 称  $A, B \in M_{n \times m}(\mathbb{Z})$  为  $\mathbb{Z}$ -相抵的, 若存在  $P \in GL(n, \mathbb{Z})$  与  $Q \in GL(m, \mathbb{Z})$  使得 B = PAQ.

**注记 4.8.20**  $\mathbb{Z}$ -相抵是  $M_{n\times m}$  上的等价关系.

**命题 4.8.21** 设  $A, B \in M_{n \times m}(\mathbb{Z})$  是  $\mathbb{Z}$ -相抵的,则  $Coker(\phi_A) \simeq Coker(\phi_B)$ .

**证明** 设  $B = P^{-1}AQ$ , 其中  $P \in GL(n, \mathbb{Z}), Q \in GL(m, \mathbb{Z})$ , 则有如下左半交换图  $(\phi_A \circ \phi_Q = \phi_P \circ \phi_B)$ :

$$\mathbb{Z}^{m} \xrightarrow{\phi_{A}} \mathbb{Z}^{n} \xrightarrow{\operatorname{can}} \operatorname{Coker}(\phi_{A})$$

$$\downarrow^{\phi_{Q}} \downarrow^{\zeta} \qquad \qquad \downarrow^{\phi_{P}} \downarrow^{\zeta} \qquad \qquad \downarrow^{\zeta} \downarrow^{\zeta}$$

$$\mathbb{Z}^{m} \xrightarrow{\phi_{B}} \mathbb{Z}^{n} \xrightarrow{\operatorname{can}} \operatorname{Coker}(\phi_{B})$$

由此可见  $\phi_P(\operatorname{Im}(\phi_B)) = \operatorname{Im}(\phi_A)$ , 由练习 4.3.25 即得  $\mathbb{Z}^n/\operatorname{Im}(\phi_B) \simeq \mathbb{Z}^n/\operatorname{Im}(\phi_A)$ .

**定理 4.8.22 (Smith 标准形)** 设  $A \in M_{n \times m}(\mathbb{Z})$ ,则存在  $P \in GL(n,\mathbb{Z})$  与  $Q \in GL(m,\mathbb{Z})$  使得

$$P^{-1}AQ = \operatorname{diag}(d_1, d_2, \cdots, d_r, O),$$

其中  $r = \operatorname{rank}(A)$ , 正整数  $d_1 \mid d_2 \mid \cdots \mid d_r$ .

例 4.8.23 
$$A \coloneqq \begin{pmatrix} 2 & 4 \\ 6 & 5 \end{pmatrix} \sim \begin{pmatrix} 2 & 4 \\ 0 & 7 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 \\ 0 & 7 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 \\ 7 & 7 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 \\ 1 & 7 \end{pmatrix} \sim \begin{pmatrix} 1 & 7 \\ 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 \\ 0 & 14 \end{pmatrix} \eqqcolon B.$$
 由命题 4.8.21,  $\operatorname{Coker}(\phi_A) \simeq \operatorname{Coker}(\phi_B)$ , 即

$$\mathbb{Z}^2 / \left\{ \begin{pmatrix} 2a + 4b \\ 6a + 5b \end{pmatrix} : a, b \in \mathbb{Z} \right\} \simeq \mathbb{Z}^2 / (\mathbb{Z} \times 14\mathbb{Z}) \simeq (\mathbb{Z}/\mathbb{Z}) \times (\mathbb{Z}/14\mathbb{Z}) \simeq \{0\} \times \mathbb{Z}_{14} \simeq \mathbb{Z}_{14}.$$

其中第二处同构用到了练习 4.8.24.

练习 4.8.24 设  $G_1, G_2$  为群,  $N_1 \triangleleft G_1, N_2 \triangleleft G_2$ , 则  $(N_1 \times N_2) \triangleleft (G_1 \times G_2)$ , 且  $(G_1 \times G_2)/(N_1 \times N_2) \simeq (G_1/N_1) \times (G_2/N_2)$ .

**定理 4.8.25 (有限生成 Abel 群结构定理)** 设 G 为有限生成 Abel 群,则存在群同构

$$G \simeq (\mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_r}) \oplus \mathbb{Z}^s,$$

其中  $s \ge 0$ , 正整数  $d_1 \mid \cdots \mid d_r$  称为 G 的不变因子. 特别地, 当 G 为有限群时, s = 0, 从而

$$G \simeq \mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_r}$$
.

证明 由命题 4.8.17, 存在  $A \in M_{n \times m}(\mathbb{Z})$  使得  $G \simeq \operatorname{Coker}(\phi_A)$ . 设 A 相抵于  $B = \operatorname{diag}(d_1, \dots, d_r, O)$ , 由 命题 4.8.21 与练习 4.8.24,

 $\operatorname{Coker}(\phi_A) \simeq \operatorname{Coker}(\phi_B) = \mathbb{Z}^n / (d_1 \mathbb{Z} \times \cdots \times d_r \mathbb{Z} \times 0 \mathbb{Z} \cdots \times 0 \mathbb{Z}) \simeq (\mathbb{Z} / d_1 \mathbb{Z}) \times \cdots \times (\mathbb{Z} / d_r \mathbb{Z}) \times \mathbb{Z}^{n-r},$ 

记 s=n-r, 则

$$G \simeq (\mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_r}) \oplus \mathbb{Z}^s.$$

**推论 4.8.26** 设  $A \in M_n(\mathbb{Z})$ ,则  $Coker(\phi_A)$  有限当且仅当  $det(A) \neq 0$ .此时,  $|Coker(\phi_A)| = |det(A)|$ .

**推论 4.8.27** 设  $K \leq \mathbb{Z}^n$ ,则

- (1) 存在  $\mathbb{Z}^n$  的一组基  $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ , 以及正整数  $d_1 \mid d_2 \mid \dots \mid d_r$ , 使得  $\{d_1\mathbf{e}_1, \dots, d_r\mathbf{e}_r\}$  恰为 K 的基. 特别地, K 是自由 Abel 群,  $\operatorname{rank}(A) = r \leq n$ .
- (2)  $\mathbb{Z}^n/K \simeq \mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_r} \oplus \mathbb{Z}^{n-r}$ .

**证明** 取 K 的一个生成元集  $\{\mathbf{v}_1, \dots, \mathbf{v}_m\} \subset \mathbb{Z}^n$ , 令  $A = (\mathbf{v}_1, \dots, \mathbf{v}_m)$ , 其 Smith 标准形为  $B = P^{-1}AQ = \operatorname{diag}(d_1, \dots, d_r, O)$ , 其中  $P \in \operatorname{GL}(n, \mathbb{Z})$ ,  $Q \in \operatorname{GL}(m, \mathbb{Z})$ . 在命题 4.8.21 证明的交换图中, 取  $\mathbb{Z}^n$  的标准正交基  $\{\mathbf{f}_1, \dots, \mathbf{f}_n\}$ , 则  $\{d_1\mathbf{f}_1, \dots, d_r\mathbf{f}_r\}$  为的  $\operatorname{Im}(\phi_B)$  的基. 而  $\phi_P(\operatorname{Im}(\phi_B)) = \operatorname{Im}(\phi_A) = K$ , 令  $\mathbf{e}_i = \phi_P(\mathbf{f}_i)$ , 则  $\{d_1\mathbf{e}_1, \dots, d_r\mathbf{e}_r\}$  为 K 的基.

**定义 4.8.28** 定义 Abel 群 G 的扭子群  $t(G) = \{g \in G : g \in$ 

**注记 4.8.29**  $t(G) \leqslant G$ .

用扭子群的概念可以将定理 4.8.25 内蕴表述为以下定理.

**定理 4.8.30** 设 G 为有限生成 Abel 群,则存在内直和分解  $G = t(G) \oplus F$ ,使得 F 为有限生成自由 Abel 群 (称其为 t(G) 的补),  $|t(G)| < +\infty$ , 且  $t(G) \simeq \mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_n}$ .

证明 由定理 4.8.25, 设存在群同构  $\theta: (\mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_r}) \oplus \mathbb{Z}^s \xrightarrow{\sim} G$ . 记  $U = \mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_r}, V = \mathbb{Z}^s$ , 则  $U \simeq \theta(U) \leqslant G$ . 由  $|\theta(U)| < +\infty$  即知  $\theta(U) \subset t(G)$ , 而  $V \simeq \theta(V)$  中的元素显然为无限阶的, 因此  $\theta(U) = t(G)$ . 取  $F = \theta(V)$  即得证.

**注记 4.8.31** (1) 此分解中 F 不唯一, 但在同构意义下唯一,  $F \simeq G/t(G)$ .

(2) 若  $F \simeq \mathbb{Z}^s$ ,则称 s 为 G的秩,记为 rank(G).

**不变因子与初等因子** 在定理 4.8.25 中, 当 G 为有限群时,  $G \simeq \mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_r}$ , 其中  $d_1 \mid \cdots \mid d_r$  为 G 的不变因子. 对这些不变因子进行标准素分解:

$$d_i = p_1^{s_{1i}} \cdots p_t^{s_{ti}}, \quad s_{1i}, \cdots, s_{ti} \geqslant 0.$$

对互异的素数  $p_1, \cdots, p_t$ , 由定理 2.8.4 可得环同构  $\mathbb{Z}_{p_1^{s_{1i}} \cdots p_t^{s_{ti}}} \simeq \mathbb{Z}_{p_1^{s_{1i}}} \times \cdots \times \mathbb{Z}_{p_t^{s_{ti}}}$ , 仅保留加法结构便得到群同构  $\mathbb{Z}_{p_1^{s_{1i}} \cdots p_t^{s_{ti}}} \simeq \mathbb{Z}_{p_1^{s_{1i}}} \oplus \cdots \oplus \mathbb{Z}_{p_t^{s_{ti}}}$ . 因此

$$\begin{split} G &\simeq \left(\mathbb{Z}_{p_1^{s_{11}}} \oplus \cdots \oplus \mathbb{Z}_{p_t^{s_{t1}}}\right) \oplus \cdots \oplus \left(\mathbb{Z}_{p_1^{s_{1r}}} \oplus \cdots \oplus \mathbb{Z}_{p_t^{s_{tr}}}\right) \\ &\simeq \underbrace{\left(\mathbb{Z}_{p_1^{s_{11}}} \oplus \cdots \oplus \mathbb{Z}_{p_1^{s_{1r}}}\right)}_{\text{Sylow } p_1 \text{-} \text{-} \text{##}} \oplus \cdots \oplus \underbrace{\left(\mathbb{Z}_{p_t^{s_{t1}}} \oplus \cdots \oplus \mathbb{Z}_{p_t^{s_{tr}}}\right)}_{\text{Sylow } p_t \text{-} \text{-} \text{##}}, \end{split}$$

其中  $s_{11} \leq \cdots \leq s_{1r}, \cdots, s_{t1} \leq \cdots \leq s_{tr}$ . 我们将第一个分解中的  $p_1^{s_{11}} \cdots p_t^{s_{t1}}, \cdots, p_1^{s_{1r}} \cdots p_t^{s_{tr}}$  称为 G 的 初等因子. 回顾线性代数知识, 这里第一种分解可类比于 Jordan 块, 第二种分解可类比于根子空间分解.

**例 4.8.32** 分类 1500 阶 Abel 群.

**解答** 设群 G 满足  $|G| = 1500 = 2^2 \cdot 3^1 \cdot 5^3$ , 则

- $\diamond$  *G* 的 Sylow 2-子群在同构意义下有  $\mathbb{Z}_4$ ,  $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \not \perp 2$  种.
- ♦ G 的 Sylow 3-子群在同构意义下有  $\mathbb{Z}_3$  共 1 种.
- $\diamond$  *G* 的 Sylow 5-子群在同构意义下有  $\mathbb{Z}_{125}$ ,  $\mathbb{Z}_5 \oplus \mathbb{Z}_{25}$ ,  $\mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5$  # 3 种.

故 G 共有  $2 \cdot 1 \cdot 3 = 6$  种可能.

**例 4.8.33** 在例 4.8.32 中, 若  $G \simeq \mathbb{Z}_4 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_{25}$ , 则 G 的初等因子 (按降序) 为  $2^2 \cdot 3^1 \cdot 5^2, 2^0 \cdot 3^0 \cdot 5^1$ ; 若  $G \simeq \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_{25}$ , 则 G 的初等因子 (按降序) 为  $2^1 \cdot 3^1 \cdot 5^2, 2^1 \cdot 3^0 \cdot 5^1$ .

**练习 4.8.34** 设 Abel 群  $A \simeq B$ , 整数  $m \mid n$ , 则  $mA/nA \simeq mB/nB$ . 特别地,  $A/nA \simeq B/nB$ .

下面的命题表明不变因子与初等因子均由群 G 唯一确定.

**命题 4.8.35** 设 p 为素数,  $\mathbb{Z}_{p^{s_1}} \oplus \cdots \oplus \mathbb{Z}_{p^{s_n}} \simeq \mathbb{Z}_{p^{t_1}} \oplus \cdots \oplus \mathbb{Z}_{p^{t_m}}$ , 其中  $1 \leqslant s_1 \leqslant \cdots \leqslant s_n, 1 \leqslant t_1 \leqslant \cdots \leqslant t_m$ , 则  $n = m, s_i = t_i$   $(1 \leqslant i \leqslant n)$ .

证明 记 A = LHS, B = RHS. 由练习 4.8.24,

$$A/pA \simeq (\mathbb{Z}_{p^{s_1}}/p\mathbb{Z}_{p^{s_1}}) \oplus \cdots \oplus (\mathbb{Z}_{p^{s_n}}/p\mathbb{Z}_{p^{s_n}}).$$

注意到对  $1 \leq i \leq n$ ,  $\mathbb{Z}_{p^{s_i}}/p\mathbb{Z}_{p^{s_i}}$  是循环群的商群, 因此均为循环群, 且  $\operatorname{ord}(\overline{1}) = p$ , 因此  $\mathbb{Z}_{p^{s_i}}/p\mathbb{Z}_{p^{s_i}} \simeq \mathbb{Z}_p$ , 从而  $A/pA \simeq (\mathbb{Z}_p)^n$ . 同理可得  $B/pB \simeq (\mathbb{Z}_p)^m$ , 由练习 4.8.34 即知  $(\mathbb{Z}_p)^n \simeq (\mathbb{Z}_p)^m$ , 从而 n = m. 再次运用

练习 4.8.24 可得

$$pA/p^2A \simeq \left(p\mathbb{Z}_{p^{s_1}}/p^2\mathbb{Z}_{p^{s_1}}\right) \oplus \cdots \oplus \left(p\mathbb{Z}_{p^{s_n}}/p^2\mathbb{Z}_{p^{s_n}}\right) \simeq \left(\mathbb{Z}_p\right)^{\sharp\{1\leqslant i\leqslant n: s_i\geqslant 2\}}.$$

同理  $pB/p^2B \simeq (\mathbb{Z}_p)^{\sharp \{1 \leqslant j \leqslant m: t_j \geqslant 2\}}$ , 由练习 4.8.34 即知  $\sharp \{1 \leqslant i \leqslant n: s_i \geqslant 2\} = \sharp \{1 \leqslant j \leqslant m: t_j \geqslant 2\}$ , 结 合 n = m 及  $1 \leqslant s_1 \leqslant \cdots \leqslant s_n, 1 \leqslant t_1 \leqslant \cdots \leqslant t_m$  即得  $s_1 = t_1$ . 余下类似可证.

**练习 4.8.36** 证明:有限生成 Abel 群 G 是自由 Abel 群当且仅当 G 的每个非零元都是无限阶元素.

**练习 4.8.37** 设 A 为有限 Abel 群,证明:对于 |A| 的每个正因子 d, A 均有 d 阶子群和 d 阶商群.

**练习 4.8.38** 设 H 是有限 Abel 群 A 的子群, 证明: A 有同构于 A/H 的子群.

**练习 4.8.39** 若有限 Abel 群 A 不是循环群,则存在素数 p 使得 A 有同构于  $\mathbb{Z}_p^2 = \mathbb{Z}_p \oplus \mathbb{Z}_p$  的子群.

**练习 4.8.40** 证明: 当 (m,n) = 1 时,  $\mathbb{Z}_m \oplus \mathbb{Z}_n$  的不变因子为  $\{mn\}$ ; 而当 (m,n) > 1 时,  $\mathbb{Z}_m \oplus \mathbb{Z}_n$  的不变因子为  $\{(m,n),[m,n]\}$ .

**练习 4.8.41** 求  $\mathbb{Z}_2 \oplus \mathbb{Z}_9 \oplus \mathbb{Z}_{35}$  的初等因子和不变因子.

## 4.9 群的合成列

**定义 4.9.1** 群 G 的递降子群链

$$G = G_0 \supset G_1 \supset \cdots \supset G_n = \{1_G\}$$

如满足  $G_{i+1} \triangleleft G_i, \forall 0 \leq i < n$ , 则称之为正规列, 而群族

$$G_i/G_{i+1}, \quad i = 0, \cdots, n-1$$

称为该列的子商.

**定义 4.9.2** 若群 G 的正规列  $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{1_G\}$  满足子商皆为单群,则称之为合成列. 我们称整数 n 为该合成列的长度.

**注记 4.9.3** 在合成列中, 群 *G* 由子商 "拼成".

**例 4.9.4** 群 G 为单群当且仅当  $G \supset \{1_G\}$  为合成列.

**引理 4.9.5** 有限群 G 必有合成列.

**证明** 若 |G| = 1, 取平凡合成列. 若 G 为非平凡单群, 取合成列  $G \supseteq \{1_G\}$ . 对余下情形, 对 |G| 归纳: 取 G 的阶最大的正规的真子群 N, 则 G/N 为单群. 由于 |N| < |G|, 归纳假设给出了 N 的合成列  $(N_i)$ , 取  $(G, N_0, N_1, \cdots)$  作为 G 的合成列即可.

注记 4.9.6 无限群未必有合成列,例如 ℤ.

**例 4.9.7 (合成列未必唯一)** 由例 4.4.33 与例 4.3.12 可得合成列  $S_4 \supseteq A_4 \supseteq K_4 \supseteq \{1, \sigma_i\} \supseteq \{\text{Id}\}$ , 其中

$$\sigma_1 = (12)(34), \quad \sigma_2 = (13)(24), \quad \sigma_3 = (14)(23).$$

由于 i 可任选为 1,2 或 3, 因此上述合成列的选取并不唯一.

**定义 4.9.8** 设  $G = G_0 \supset \cdots$  为正规列, 我们视其子商  $(G_i/G_{i+1})_{i \geq 0}$  为不计顺序, 但计入重数的集合. 如果两个正规列长度相同, 而且其子商在上述意义下相等, 则称两正规列等价.

定义 4.9.9 考虑一列群同态

$$\cdots \xrightarrow{f_0} G_1 \xrightarrow{f_1} G_2 \xrightarrow{f_2} \cdots \xrightarrow{f_i} G_{i+1} \xrightarrow{} \cdots,$$

长度或有限或无限. 若对所有 i 都有

$$Im(f_i) = Ker(f_{i+1}),$$

则称此列正合. 我们经常把 {1} 简写为 1, 或用加性符号记为 0.

- **例 4.9.10** (1) 对于任意同态  $\varphi: G \to G'$ , 列  $G \to G' \to 1$  正合当且仅当  $\varphi$  是满的, 列  $1 \to G \to G'$  正合当且仅当  $\varphi$  是单的.
  - (2) 我们恒有正合列

$$1 \to \operatorname{Ker}(\varphi) \to G \xrightarrow{\varphi} \operatorname{Im}(\varphi) \to 1$$

其中  $Ker(\varphi) \rightarrow G$  是自然的包含映射.

**定理 4.9.11 (Jordan-Hölder 定理)** 群 G 的任两个合成列皆等价.

**证明** 设  $(G_i)_{0 \le i \le n}$  为群 G 的合成列, 对每个单群 S, 记  $n(G,(G_i),S)$  为在同构意义下 S 在 G 的全体子商中出现的次数, 只需证  $n(G,(G_i),S)$  与合成列  $(G_i)$  的选取无关. 注意到若  $H \le G$ , 则通过定义  $H_i = G_i \cap H$ , 正规列  $(G_i)$  诱导出 H 的正规列  $(H_i)$ . 类似地, 若  $N \triangleleft G$ , 则  $(G/N)_i = G_i/(G_i \cap N)$  定义出 G/N 的正规列  $((G/N)_i)$ . 正合列  $1 \rightarrow N \rightarrow G \rightarrow G/N \rightarrow 1$  诱导出正合列

$$1 \to N_i/N_{i+1} \to G_i/G_{i+1} \to (G/N)_i/(G/N)_{i+1} \to 1.$$

由于  $(G_i)$  为合成列, 从而  $G_i/G_{i+1}$  均为单群, 因此  $N_i/N_{i+1}$  必为 1 或  $G_i/G_{i+1}$ . 据此, 我们将指标集  $I=\{0,\cdots,n-1\}$  分为两部分

$$I_1 = \{i : N_i/N_{i+1} = G_i/G_{i+1}\}, \quad I_2 = \{i : N_i/N_{i+1} = 1\}.$$

分别利用  $I_1$  和  $I_2$  作为指标集, 我们得到 N 和 G/N 上的合成列, 且  $|I_1| + |I_2| = n$ . 为证明定理, 我们对合成列的长度 n 进行归纳. 当  $n \leq 1$  时, 不证自明. 现假定  $n \geq 2$ , 则 G 不是平凡群也不是单群, 因此可取 G 的一个非平凡正规真子群 N. 根据上述讨论,  $|I_1|$  和  $|I_2|$  都小于 n, 从而可以对 N 以及 G/N 用归纳假设, 这表明  $n(N,(N_i)_{i\in I_1},S)$  和  $n(G/N,((G/N)_i)_{i\in I_2},S)$  与合成列的选取无关. 又因为

$$n(G, (G_i), S) = n(N, (N_i)_{i \in I_1}, S) + n(G/N, ((G/N)_i)_{i \in I_2}, S),$$

所以  $n(G,(G_i),S)$  与合成列的选取无关.

因此,一旦群G有合成列,则其子商在定义4.9.8的意义下无关合成列的选取.

**定义 4.9.12** 假设群 G 有合成列,定义其合成因子或 Jordan-Hölder 因子集 JH(G) 为其任意合成列的全体子商 (不计顺序,计入重数),并将合成列的长度称为群 G 的长度,记作  $\ell(G)$ . 如果一个群没有合成列,我们约定其长度为  $\infty$ .

**命题 4.9.13** 设 G 为有限群,则 G 为可解群当且仅当 IH(G) 中任一合成因子均为素数阶循环群.

证明 (⇒) 由练习 4.4.35 立得.

(⇐) 循环群是 Abel 群.

**练习 4.9.14** 证明: 若群 G 有合成列,  $N \triangleleft G$ , 则 N 亦有合成列. 若 N ≤ G, 结论是否成立?

**定义 4.9.15** 设 G 为群, 对于  $x, y \in G$ , 定义换位子  $[x, y] = xyx^{-1}y^{-1}$ .

**注记 4.9.16** xy = yx 当且仅当  $[x, y] = 1_G$ .

**定义 4.9.17** 设 G 为群,对任意子集  $A,B \subset G$ ,定义  $[A,B] \triangleleft G$  为由  $\{[a,b]: a \in A, b \in B\}$  生成的最小正规子群. 我们称  $G_{der} := [G,G]$  为 G 的导出子群或换位子群,而  $G_{ab} := G/G_{der}$  称为 G 的 Abel 化.

**注记 4.9.18** (1)  $G_{der}$  亦可直接定义为由群 G 中换位子生成的子群, 可证它是正规子群.

- (2) 若 G 是 Abel 群, 则  $G_{der} = \{1_G\}$ .
- (3) Gab 是 Abel 群.

按照定义,我们有

**命题 4.9.19** 设 G 为群,  $H \leq G$ , 则以下等价:

- (1)  $H \supset G_{der}$ .
- (2)  $H \triangleleft G \perp G/H$ 为 Abel 群.

**例 4.9.20** 考虑例 4.7.19 中的  $Q_8$ , 由练习 4.7.20,  $[b,a] = bab^{-1}a^{-1} = (bab^{-1}a)a^{-2} = a^{-2}a^4 = a^2 \in (Q_8)_{\text{der}}$ . 而  $\{1,a^2\} \triangleleft Q_8$ , 由命题 4.9.19,  $(Q_8)_{\text{der}} = \{1,a^2\}$ .

**例 4.9.21** 设 G 为非 Abel 单群,则  $G_{der} = G$ .

**练习 4.9.22** 对  $n \ge 3$ , 有  $(S_n)_{der} = A_n$ .

**证明** 由命题 4.9.19,  $(S_n)_{\text{der}} \subset A_n$ . 而由例 4.4.7, 当  $n \ge 3$  时,  $S_n$  是非 Abel 群, 因此  $(S_n)_{\text{der}} \ne \{\text{Id}\}$ .

- ◇ 若 n = 3, 由例 4.4.31 中  $S_3$  的子群格,  $A_3$  仅有平凡子群, 因此  $(S_3)_{der} = A_3$ .
- ◇ 若 n = 4, 由表 4.3 可见  $A_4$  的正规子群为  $\{Id\}$ ,  $K_4$ ,  $A_4$ . 由于  $(12)(13)(12)^{-1}(13)^{-1} = (123) \notin K_4$ , 因此  $(S_4)_{der} = A_4$ .
- ◇ 若  $n \ge 5$ , 由定理 4.4.36,  $A_n$  为单群, 因此  $(S_n)_{\text{der}} = A_n$ .

**定义 4.9.23** 设 G 为群, 递归地定义 G 的导出列:

$$G^{(0)} = G, \quad G^{(i+1)} = \left[ G^{(i)}, G^{(i)} \right], i \geqslant 0.$$

**定理 4.9.24** 群 G 为可解群当且仅当存在正整数 n, 使得  $G^{(n)} = \{1_G\}$ .

**证明** (⇐) 由于  $G^{(i)}/G^{(i+1)}$  是  $G^{(i)}$  的 Abel 化, 因此正规列  $G = G^{(0)} \supset G^{(1)} \supset \cdots \supset G^{(n)} = \{1_G\}$  的每个子商均为 Abel 群, 从而 G 为可解群.

(⇒) 设正规列  $G \supset G_1 \supset G_2 \supset \cdots \supset G_n = \{1_G\}$  中每个子商均为 Abel 群. 由命题 4.9.19,  $G_1 \supset G^{(1)}, G_2 \supset G_1^{(1)} \supset \left(G^{(1)}\right)^{(1)} = G^{(2)}, \cdots, G_n \supset G^{(n)},$  从而  $G^{(n)} = 1_G$ .

**定理 4.9.25 (Burnside)**  $p^a q^b$  阶群是可解群, 其中 p, q 为素数, a, b 为非负整数.

**定理 4.9.26 (Feit-Thompson)** 奇数阶群是可解群.

## 4.10 半直积

**定义 4.10.1** 设 H, N 为群, 并给定同态  $\rho: H \to \operatorname{Aut}(N)$ . 相应的半直积  $N \rtimes_{\rho} H$  为如下定义的群 (下标  $\rho$  经常略去):

- ◇ 作为集合,  $N \times H$  无非是积集  $N \times H$ ;
- ♦ 二元运算是  $(n,h)(n',h') = (n\rho(h)(n'),hh')$ , 其中  $n,n' \in N$ ,  $h,h' \in H$ .

**注记 4.10.2** (1) 若  $\rho(h) = \operatorname{Id}_N, \forall h \in H, 则 N \rtimes_{\rho} H = N \times H.$ 

- (2) 幺元是  $(1_N, 1_H)$ .
- (3)  $(n,h)^{-1} = (\rho(h^{-1})(n^{-1}), h^{-1}).$
- (4) 透过单同态  $h \mapsto (1,h)$  和  $n \mapsto (n,1)$  可将 H 和 N 都视为  $N \times H$  的子群. 从二元运算的定义立得  $N \triangleleft (N \rtimes H)$ .

**定理 4.10.3** 设 G 为群,  $N \triangleleft G$ ,  $H \leqslant G$ ,  $N \cap H = \{1_G\}$ , NH = G. 定义

$$\rho: H \to \operatorname{Aut}(N), \quad h \mapsto (n \mapsto hnh^{-1}),$$

则有群同构

$$N \rtimes_{\rho} H \xrightarrow{\sim} G, \quad (n,h) \mapsto nh.$$

**例 4.10.4** 考虑  $A_3 \triangleleft S_3$ ,  $H = ((12)) \leqslant S_3$ , 以及群同态  $\rho : H \to \operatorname{Aut}(A_3)$ ,  $h \mapsto (n \mapsto hnh^{-1})$  (易验证这是群同态), 由于  $A_3 \cap H = \{\operatorname{Id}\}$ ,  $A_3 \times H = S_3$ , 由定理 4.10.3,  $S_3 \simeq A_3 \rtimes_{\rho} H \simeq C_3 \rtimes_{\rho} C_2$ .

**练习 4.10.5** 考虑练习 4.7.20 中的  $Q_8$ , 证明不存在  $Q_8$  的真子群 H 与  $N \triangleleft Q_8$ , 使得  $N \cap H = \{1\}$  且  $Q_8 = N \rtimes H$ .

**证明** 用反证法, 假设存在, 则 |N| = 2 或 4.

- 考 |N| = 4, 则 |H| = 2, 而  $Q_8$  中只有一个 2 阶元  $a^2$ , 因此  $H = \{1, a^2\}$ . 而此时  $Q_8/N$  为 2 阶群, 即  $Q_8/N \simeq C_2$ , 因此  $(aN)^2 = a^2N = N$ , 即  $a^2 \in N$ , 这与  $N \cap H = \{1\}$  矛盾.
- ◇ 若 |N|=2, 则 |H|=4,  $[Q_8:H]=2$ , 由例 4.3.12 知  $H \triangleleft Q_8$ . 又  $N \cap H=\{1\}$ , 由练习 4.3.28 即知  $Q_8=NH \simeq N \times H$  为 Abel 群, 矛盾.

# 第五章 Galois 理论

## **5.1** Galois 扩张

设 K 为域,  $G \leq \operatorname{Aut}(K)$ , 则有  $G^{\frown}K: (\sigma, v) \mapsto \sigma(v)$ , 其不动点集  $K^G = \{v \in K: \sigma(v) = v, \forall \sigma \in G\}$ 称为 G-不动子域. 我们有如下事实:

- $⋄ K^G 是 K$  的子域.
- ◇ 若  $H \leq G$ , 则有  $K^G \hookrightarrow K^H \hookrightarrow K = K^{\{Id_K\}}$ . (群越小, 不动子域越大.)
- $\diamondsuit$  考虑域扩张 K/k, 且  $H \leqslant \operatorname{Gal}(K/k)$ , 则有  $k \hookrightarrow K^H \hookrightarrow K$ . 特别地,  $k \hookrightarrow K^{\operatorname{Gal}(K/k)} \hookrightarrow K$ .
- $\diamond G \leqslant \operatorname{Gal}(K/K^G).$

**定理 5.1.1** 若  $G \leq \operatorname{Aut}(K)$  是有限子群,则  $[K:K^G] = |G| < +\infty$  且  $G = \operatorname{Gal}(K/K^G)$ .

**证明**  $\Rightarrow n = |G|, k = K^G$ , 断言  $[K:k] \leqslant n$ . 若断言已证, 则由

$$n = |G| \leq |\operatorname{Gal}(K/k)| \leq [K:k] \leq n$$

即得欲证. 下面采用反证法证明断言, 假设  $[K:k] \ge n+1$ , 则存在  $\{e_1, \cdots, e_{n+1}\} \subset K$  是 k-线性无关的. 设  $G = \{\sigma_0 = \mathrm{Id}, \sigma_1, \cdots, \sigma_{n-1}\}, \diamondsuit$ 

$$A = \begin{pmatrix} e_1 & \cdots & e_{n+1} \\ \sigma_1(e_1) & \cdots & \sigma_1(e_{n+1}) \\ \vdots & \ddots & \vdots \\ \sigma_{n-1}(e_1) & \cdots & \sigma_{n-1}(e_{n+1}) \end{pmatrix} \in M_{n \times (n+1)}(K),$$

并记  $V = \{ \mathbf{v} \in K^{n+1} : A\mathbf{v} = \mathbf{0} \}$  为  $K^{n+1}$  的线性子空间, 由  $\mathrm{rank}(A) \leqslant n < n+1$  知  $V \neq \{\mathbf{0}\}$ . 考虑群作用  $G^{\frown}K^{n+1} : \left(\sigma, (\lambda_1, \cdots, \lambda_{n+1})^{\mathsf{T}}\right) \mapsto \left(\sigma(\lambda_1), \cdots, \sigma(\lambda_{n+1})\right)^{\mathsf{T}}$ . 对任意  $\mathbf{v} = (\lambda_1, \cdots, \lambda_{n+1})^{\mathsf{T}} \in V$ , 由  $A\mathbf{v} = \mathbf{0}$ 可得

$$\sum_{k=1}^{n+1} \lambda_k \sigma_i(e_k) = 0, 0 \leqslant i \leqslant n-1 \implies \sum_{k=1}^{n+1} \sigma_j(\lambda_k) \sigma_j \circ \sigma_i(e_k) = 0, 0 \leqslant i, j \leqslant n-1$$

$$\implies \sum_{k=1}^{n+1} \sigma_j(\lambda_k) \sigma_i(e_k) = 0, 0 \leqslant i, j \leqslant n-1 \xrightarrow{\tau = \sigma_j} \tau. \mathbf{v} \in V, \forall \tau \in G.$$

取  $\mathbf{v} = (\lambda_1, \dots, \lambda_{n+1})^\mathsf{T} \in V \setminus \{\mathbf{0}\}$  使其非 0 分量最少. 观察到  $\mathbf{v}$  至少有 2 个非 0 分量 (否则, 不妨设仅有  $\lambda_1 \neq 0$ , 则由  $A\mathbf{v} = \mathbf{0}$  得  $\lambda_1 e_1 = 0$ , 但  $\lambda_1, e_1 \neq 0$ , 矛盾). 因此不妨设  $\lambda_1 \lambda_2 \neq 0$ , 进而可不妨设  $\lambda_1 = 1$ , 即  $\mathbf{v} = (1, \lambda_2, \dots, \lambda_{n+1})^\mathsf{T}$ , 其中  $\lambda_2 \neq 0$ . 注意到  $\mathbf{v}$  的分量不全在 k 中, 否则由  $A\mathbf{v} = \mathbf{0}$  知  $\lambda_1 e_1 + \dots + \lambda_{n+1} e_{n+1} = 0$ , 与  $e_1, \dots, e_{n+1}$  是 k-线性无关的矛盾. 不妨设  $\lambda_2 \notin k = K^G$ , 则存在  $\tau \in G$  使  $\tau(\lambda_2) \neq \lambda_2$ . 由  $\tau.\mathbf{v} \in V$  知  $\mathbf{v} - \tau.\mathbf{v} \in V$ , 但由  $\tau(0) = 0, \tau(1) = 1$  可见  $\mathbf{v} - \tau.\mathbf{v} \in V$  的非 0 分量比  $\mathbf{v} = \mathcal{V}$ , 矛盾.

**定义–定理 5.1.2** 设 K/k 为有限维域扩张, G = Gal(K/k), 则以下等价:

- (1)  $k = K^G$ .
- (2) |G| = [K:k].
- (3) 对任意  $\alpha \in K$ ,  $\alpha$  在 k 上的最小多项式无重根, 且在 K 上分裂.
- (4) 存在可分多项式  $f(x) \in k[x]$  使得 K = (k, f(x)).

此时称 K/k 为有限 Galois 扩张.

证明 (1) ⇔ (2) 由定理 3.2.4 与定理 5.1.1 得

$$[K:k] = [K^G:k][K:K^G] = [K^G:k] \cdot |G|,$$

因此  $|G| = [K:k] \iff [K^G:k] = 1 \iff k = K^G$ .

(2)  $\Rightarrow$  (3) 任取  $\alpha \in K$ , 设  $\alpha$  在 k 上的最小多项式为 g(x). 由引理 3.3.1,

$$|G| = |\operatorname{Gal}(K/k)| \leq |\operatorname{Root}_K(g(x))| \cdot [K : k(\alpha)] \leq \deg(g(x)) \cdot [K : k(\alpha)] = [K : k],$$

而由 (2), |G| = [K:k], 因此上式中均取等号, 因此  $|\text{Root}_K(g(x))| = \deg(g(x))$ .

(3)  $\Rightarrow$  (4) 由定理 3.2.11, 可设  $K = k(\alpha_1, \dots, \alpha_n)$ , 其中  $\alpha_i \in K$  在 k 上的最小多项式为  $g_i(x)$ . 由 (3),  $g_i(x)$  无重根, 且在 K 上分裂. 令  $f(x) = g_1(x) \cdots g_n(x) \in k[x]$ , 则 f(x) 可分且 K = (k, f(x)).

**注记 5.1.3** (1)(2)(4) 是整体性质, (3) 是局部性质.

**例 5.1.4** 考虑  $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2}, \omega) = E$ .

- $\diamond$   $E/\mathbb{Q}$  是 Galois 扩张,  $E=(\mathbb{Q},x^3-2)$  (例 3.3.7).
- ♦  $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$  不是 Galois 扩张 (例 3.3.29).
- ♦  $E/\mathbb{Q}(\sqrt[3]{2})$  是 Galois 扩张 (例 3.2.7).

#### **定理 5.1.5 (绝对版本的有限 Galois 对应)** 对任意域 K, 存在双射

 $\{$ 有限子群 $G \le \operatorname{Aut}(K) \} \stackrel{1:1}{\longleftrightarrow} \{$ 子域 $k \subset K : K/k$ 为有限 Galois 扩张 $\}$ 

$$G \longmapsto K^{G}$$
 $\operatorname{Gal}(K/k) \longleftarrow k$ 

**证明** 映射的良定性由定义-定理 5.1.2 (1)(2) 可见, 互逆性由定理 5.1.1 与定义-定理 5.1.2 (1) 可见. □

#### **定理 5.1.6 (相对版本的有限 Galois 对应)** 设 K/k 为有限 Galois 扩张,则存在双射

$$\{$$
子群  $H \leqslant \operatorname{Gal}(K/k)\} \stackrel{1:1}{\longleftrightarrow} \{K/k \text{ 的中间域}\}$  
$$H \longmapsto K^H$$
 
$$\operatorname{Gal}(K/E) \longleftarrow E$$

#### 证明 互逆性在于:

- ♦ 由定理 5.1.1,  $H = Gal(K/K^H)$ .
- ◇ 若 E 是 K/k 的中间域,则由定义-定理 5.1.2 (4), K/E 亦为有限 Galois 扩张,再由定义-定理 5.1.2 (1) 知  $E = K^{\text{Gal}(K/E)}$ .

从例 5.1.4 可见, Galois 扩张的中间域关于底层的域不一定是 Galois 扩张:



关于这一现象, 我们有如下命题.

**命题 5.1.7** 设 K/k 是有限 Galois 扩张,  $E \not\in K/k$  的中间域, 则 E/k 是 Galois 扩张当且仅当  $\sigma(E) = E, \forall \sigma \in \operatorname{Gal}(K/k)$ .

- 证明 (⇒) 由定义-定理 5.1.2 (4), 可设  $E = k(\beta_1, \dots, \beta_n)$ ,  $g(x) = (x \beta_1) \dots (x \beta_n) \in k[x]$ . 对任 意  $\sigma \in Gal(K/k)$ , 有  $\sigma(E) = k(\sigma(\beta_1), \dots, \sigma(\beta_n))$ , 而由  $g(x) \in k[x]$  知  $\sigma(\beta_i)_E \in \{\beta_1, \dots, \beta_n\}$  (1  $\leq i \leq n$ ), 因此  $\sigma(E) \subset E$ . 同理可得  $\sigma^{-1}(E) \subset E$ , 即  $E \subset \sigma(E)$ . 故  $\sigma(E) = E$ .
- (秦) 任取  $b \in E$ , 设 b 在 k 上的最小多项式为  $g(x) \in k[x]$ . 由于 K/k 是有限 Galois 扩张, 由定义-定理 5.1.2 (3), 可设  $g(x) = (x \beta_1) \cdots (x \beta_n)$ , 其中  $\beta_1 = b, \beta_2, \cdots, \beta_n \in K$  两两不同. 由引理 3.3.1, 对  $1 \le i \le n$ , 存在域同构  $\sigma_i : k(b) \xrightarrow{\sim} k(\beta_i)$  使得  $\sigma_i(b) = \beta_i$ . 再由定理 3.3.13,  $\sigma_i$  可进一步延拓为  $\delta : K \xrightarrow{\sim} K$ , 即  $\delta \in \text{Gal}(K/k)$ . 由条件,  $\beta_i = \delta(b) \in \delta(E) = E$ , 从而 g(x) 无重根且在 E 上分裂, 由定义-定理 5.1.2 (3), E/k 是 Galois 扩张.

**例 5.1.8** 考虑  $\mathbb{Q} \subset K = \mathbb{Q}(\sqrt[3]{2},\omega) = (\mathbb{Q},x^3-2)$ , 记  $G = \operatorname{Gal}(K/\mathbb{Q})$ , 例 3.2.7 已得  $[K:\mathbb{Q}] = 6$ , 因此 |G| = 6. 考虑  $G \cap \operatorname{Root}_K(x^3-2)$ , 由练习 4.5.8, 存在群的单同态  $G \hookrightarrow S(\operatorname{Root}_K(x^3-2)) \simeq S_3$ , 而  $|S_3| = 6 = |G|$ , 因此这是群同构. 记  $a = \sqrt[3]{2}$ ,  $b = \sqrt[3]{2}\omega$ ,  $c = \sqrt[3]{2}\omega^2$ , 利用  $S_3$  可得 G 中元素:

| $S_3$ | G                                                                                                                                         |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Id    | $\mathrm{Id}_K$                                                                                                                           |
| (ab)  | $\sigma_1: \sqrt[3]{2} \mapsto \sqrt[3]{2}\omega, \sqrt[3]{2}\omega \mapsto \sqrt[3]{2}, \sqrt[3]{2}\omega^2 \mapsto \sqrt[3]{2}\omega^2$ |
| (bc)  | $\sigma_2: \sqrt[3]{2} \mapsto \sqrt[3]{2}, \sqrt[3]{2}\omega \mapsto \sqrt[3]{2}\omega^2, \sqrt[3]{2}\omega^2 \mapsto \sqrt[3]{2}\omega$ |
| (ca)  | $\sigma_3: \sqrt[3]{2} \mapsto \sqrt[3]{2}\omega^2, \sqrt[3]{2}\omega \mapsto \sqrt[3]{2}\omega, \sqrt[3]{2}\omega^2 \mapsto \sqrt[3]{2}$ |
| (abc) | $\sigma_4: \sqrt[3]{2} \mapsto \sqrt[3]{2}\omega, \sqrt[3]{2}\omega \mapsto \sqrt[3]{2}\omega^2, \sqrt[3]{2}\omega^2 \mapsto \sqrt[3]{2}$ |
| (acb) | $\sigma_5: \sqrt[3]{2} \mapsto \sqrt[3]{2}\omega^2, \sqrt[3]{2}\omega \mapsto \sqrt[3]{2}, \sqrt[3]{2}\omega^2 \mapsto \sqrt[3]{2}\omega$ |

结合例 4.4.31, 可得 G 的子群格, 并由定理 5.1.6 得到 K 的子域格:



现重述定理 3.4.21 如下.

**例 5.1.9 (有限域的 Galois 对应)** 设 E 为有限域,  $|E| = p^n$ . 由注记 3.4.16 知  $E/\mathbb{F}_p$  是 Galois 扩张. 再由注记 3.4.20 可知  $Gal(E/\mathbb{F}_p)$  子群的形式. 故存在双射

$$\{$$
子群  $H \leqslant \operatorname{Gal}(E/\mathbb{F}_p)\} \stackrel{1:1}{\longleftarrow} \{E/\mathbb{F}_p \text{ 的中间域}\}$ 

$$\left(\sigma^d\right) \stackrel{}{\longleftarrow} \operatorname{Root}_E\left(x^{p^d} - x\right)$$

由于  $Gal(E/\mathbb{F}_p) = Aut(E)$ , 对于有限域, 定理 5.1.5 与定理 5.1.6 两个版本的 Galois 对应是统一的.

**练习 5.1.10** 画出  $\mathbb{F}_{p^{12}}/\mathbb{F}_p$  的 Hasse 图, 这里 p 为素数.

解答 由定理 3.4.19,  $\operatorname{Gal}(\mathbb{F}_{p^{12}}/\mathbb{F}_p) = \left\{\operatorname{Id}, \sigma, \sigma^2 \cdots, \sigma^{11}\right\} \simeq \mathbb{Z}_{12}.$ 



**例 5.1.11 (任何有限群均可视为 Galois 扩张的 Galois 群)** 对任意有限群 G, 由定理 4.5.13, 存在正整数 n 使得 G 同构于  $S_n$  的子群, 考虑  $S_n \cap K = k(t_1, \dots, t_n), (\sigma, t_i) \mapsto t_{\sigma(i)}$ , 则 G 可视为 Aut(K) 的子群. 由定理 5.1.1,  $G \simeq Gal(K/K^G)$ . 故任何有限群 (在同构意义下) 都是某一 Galois 扩张的 Galois 群.

### 5.2 Galois 对应

**定义 5.2.1** 偏序集意指资料  $(L, \leq)$ , 其中 L 是集合而  $\leq$  是 L 上的二元关系 (偏序), 满足

- $\triangleright$  反身性  $x \leqslant x, \forall x \in L;$
- ightharpoonup 传递性  $(x \leqslant y) \land (y \leqslant z) \implies x \leqslant z;$
- $\triangleright$  反称性  $(x \leqslant y) \land (y \leqslant x) \implies x = y.$

**例 5.2.2** 记  $\mathbb{N}_+ = \{1, 2, 3, \cdots\}$ , 有如下两个偏序集:

- (1)  $(\mathbb{N}_+, \leq)$ , 其中  $\leq$  为自然数间的正常大小关系.
- (2)  $(\mathbb{N}_+, \preccurlyeq)$ , 其中  $a \preccurlyeq b \iff a \mid b$ .

林晓烁 2024 年春季

- **例 5.2.3** 设 G 为群, 则  $Sub(G) := \{H : H \leq G\}$  在集合的包含关系下构成偏序集.
- **例 5.2.4** 对于域扩张 K/k, Lat $(K/k) := \{K/k \text{ 的中间域}\}$  在集合的包含关系下构成偏序集.
- **例 5.2.5 (反偏序集)** 设  $(L, \leq)$  为偏序集,则称  $L^{op} = (L, \leq^{op})$  为 L 的反偏序集,其中  $a \leq^{op} b \iff b \leq a$ .

**定义 5.2.6** 设  $(L, \leq)$  为偏序集.

- (1) 对任意  $a,b \in L$ , 称  $a \lor b \in L$  为 a,b 的最小上界, 若
  - $\diamond a \leq (a \vee b) \perp b \leq (a \vee b).$
  - ♦ 若  $c \in L$  使得  $a \le c$  且  $b \le c$ , 则  $(a \lor b) \le c$ .
- (2) 对任意  $a,b \in L$ , 称  $a \land b \in L$  为 a,b 的最大下界, 若
  - $\diamond (a \land b) \leqslant a \perp (a \land b) \leqslant b.$
  - ♦ 若 c ∈ L 使得 c ≤ a 且 c ≤ b, 则 c ≤ (a ∧ b).
- 注记 5.2.7 最小上界与最大下界若存在,则唯一.
- **定义 5.2.8** 偏序集  $(L, \leq)$  称为格, 若对任意  $a,b \in L$ ,  $a \lor b$  与  $a \land b$  均存在.
- **例 5.2.9** 集合  $\{1, 2, 3, 4, 5\}$  在整除关系下构成偏序集, 但不构成格, 例如  $2 \lor 3$  不存在.
- **例 5.2.10** 设 *G* 为群,则 Sub(*G*) 是格.

  - ♦  $\stackrel{*}{H}$   $\stackrel{*}{\leqslant}$  G,  $N \triangleleft G$ ,  $\bowtie H \lor N = HN = NH$ .
- **例 5.2.11** 考虑域扩张 K/k, 则 Lat(K/k) 是格. 若 E, F 均为 K/k 的中间域,则  $E \wedge F = E \cap F, E \vee F$  即由  $E \cup F$  生成的域.
- **例 5.2.12** 设 L 是格,则其反格  $L^{op}$  也是格,因为  $a \vee^{op} b = a \wedge b$ ,  $a \wedge^{op} b = a \vee b$ .
- **定义 5.2.13** 设 L, L' 为偏序集, 称  $f: L \to L'$  为 (偏序集) 同态, 若  $f(a) \leq f(b), \forall a \leq b$ . 若  $f: L \to L'$  为 同态, 且为双射,  $f^{-1}$  亦为同态, 则称 f 为 (偏序集) 同构.
- 注记 5.2.14 偏序集同态即 "保序映射".
- **例 5.2.15** 记  $[5] = \{1, 2, 3, 4, 5\}$ ,  $Id: ([5], \leq) \to ([5], \leq)$  是同态, 且是双射, 但不是同构. 这里  $\leq$  表示整除 关系,  $\leq$  表示正常大小关系.
- **引理 5.2.16** 设 L, L' 是格,  $f: L \to L'$  为同构, 则

$$f(a \lor b) = f(a) \lor f(b), \quad f(a \land b) = f(a) \land f(b), \quad \forall a, b \in L.$$

**例 5.2.17** 对正整数 n,  $L_n = \{n \text{ 的正因子}\}$  在整除关系下构成格. 对  $d_1, d_2 \in L_n$ ,  $d_1 \vee d_2 = \text{lcm}(d_1, d_2)$ ,  $d_1 \wedge d_2 = \text{gcd}(d_1, d_2)$ . 考虑 n 阶循环群  $C_n = \langle g | g^n = 1 \rangle = \{1, g, \dots, g^{n-1}\}$ , 有格同构

$$L_n \xrightarrow{\sim} \operatorname{Sub}(C_n), \quad d \mapsto (g^{\frac{n}{d}}).$$

**定理 5.2.18 (Galois 理论基本定理)** 设 K/k 为有限 Galois 扩张, G = Gal(K/k), 则存在格同构

$$Sub(G) \xrightarrow{\sim} Lat(K/k)^{op}$$

$$H \longmapsto K^{H}$$

$$Gal(K/E) \longleftarrow E$$

证明 在定理 5.1.6 的基础上, 再注意到

$$H\leqslant H' \implies K^{H'}\subset K^H, \quad E\subset F \implies \operatorname{Gal}(K/F)\subset\operatorname{Gal}(K/E). \qquad \qquad \square$$

**注记 5.2.19** 对任意  $H \leq G$ , 由定理 4.1.18, |G| = |H|[G:H]; 由定理 3.2.4,  $[K:k] = [K:K^H][K^H:k]$ ; 由定义-定理 5.1.2 (2), |G| = [K:k]; 由定理 5.1.1,  $|H| = [K:K^H]$ , 因此  $[G:H] = [K^H:k]$ .

**推论 5.2.20** 设 K/k 为有限 Galois 扩张, G = Gal(K/k), 则

- (2) 若  $E_1$ ,  $E_2$  均为 K/k 的中间域,则  $Gal(K/E_1 \vee E_2) = Gal(K/E_1) \cap Gal(K/E_2)$ ,  $Gal(K/E_1 \cap E_2) = Gal(K/E_1) \vee Gal(K/E_2)$ .
- (3) 有限 Galois 扩张 K/k 仅有有限个中间域.

格结构上的群作用 在定理 5.2.18 中同构的两个格上, 各存在如下群作用:

- $\diamond G^{\frown} \operatorname{Sub}(G), (\sigma, H) \mapsto \sigma H \sigma^{-1}.$
- $\diamond G^{\curvearrowright} \operatorname{Lat}(K/k), (\sigma, E) \mapsto \sigma(E).$

事实上,这两个作用是相容的,我们有如下命题.

**命题 5.2.21** 定理 5.2.18 的 Galois 对应保持上述 G-作用, 即对任意  $\sigma \in G$ ,  $H \leq G$ , 以及 K/k 的中间域 E, 有

$$K^{\sigma H \sigma^{-1}} = \sigma(K^H), \quad \sigma \operatorname{Gal}(K/E)\sigma^{-1} = \operatorname{Gal}(K/\sigma(E)).$$

证明 我们有

$$K^{\sigma H \sigma^{-1}} = \left\{ \lambda \in K : \sigma h \sigma^{-1}(\lambda) = \lambda, \forall h \in H \right\} = \left\{ \lambda \in K : h \sigma^{-1}(\lambda) = \sigma^{-1}(\lambda), \forall h \in H \right\}$$
$$= \left\{ \lambda \in K : \sigma^{-1}(\lambda) \in K^H \right\} = \sigma(K^H),$$

及

$$\begin{aligned} \operatorname{Gal}(K/\sigma(E)) &= \{\delta \in \operatorname{Aut}(K) : \delta \circ \sigma(e) = \sigma(e), \forall e \in E\} = \left\{\delta \in \operatorname{Aut}(K) : \sigma^{-1} \circ \delta \circ \delta|_E = \operatorname{Id}_E\right\} \\ &= \sigma \operatorname{Gal}(K/E)\sigma^{-1}. \end{aligned} \qquad \Box$$

**注记 5.2.22** Sub(G) 与 Lat(K/k) 在 G-作用下的不动点集是相对应的,它们分别为

$$\mathrm{Sub}(G)^G = \left\{ H \leqslant G : \sigma H \sigma^{-1} = H \right\} = \{ H \lhd G \},$$

与

我们将注记 5.2.22 表述为如下命题.

**命题 5.2.23** 设 K/k 为有限 Galois 扩张, E 为 K/k 的中间域, 则 E/k 为有限 Galois 扩张当且仅当  $Gal(K/E) \triangleleft G$ . 此时, 存在群同构  $G/Gal(K/E) \simeq Gal(E/k)$ .

**证明** 仅需证明最后的断言. 由命题 5.1.7,  $\sigma(E) = E, \forall \sigma \in \operatorname{Gal}(K/k)$ , 因此有群同态

$$G \to \operatorname{Gal}(E/k), \quad \sigma \mapsto \sigma|_E,$$

满性在于  $Gal(E/k) \leq Gal(K/k)$  (利用引理 3.3.1 进行延拓), 而其核为 Gal(K/E), 由定理 4.1.18 即得  $G/Gal(K/E) \simeq Gal(E/k)$ .

**例 5.2.24** 在例 4.4.31 的 Hasse 图中, {{Id, (12)}, {Id, (13)}, {Id, (23)}} 是  $S_3$ -作用下的一个轨道,  $A_3$  是  $S_3$  作用下的不动点. 在例 5.1.8 中的 Hasse 图中,  $\left\{\mathbb{Q}(\sqrt[3]{2}\omega^2), \mathbb{Q}(\sqrt[3]{2}\omega), \mathbb{Q}(\sqrt[3]{2})\right\}$  是  $\operatorname{Gal}\left(\mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q}\right)$ -作用下的一个轨道,  $\mathbb{Q}(\omega)/\mathbb{Q}$  为有限 Galois 扩张.

**定理 5.2.25 (Steinitz)** 设 K/k 为有限维域扩张,则 K/k 为单扩张当且仅当 K/k 仅有有限个中间域.

- **证明** (⇒) 设  $K = k(\alpha)$ ,  $\alpha$  在 k 上的最小多项式为  $f(x) \in k[x]$ . 对任意 K/k 的中间域 E, 设  $\alpha$  在 E 上的最小多项式为  $g(x) = x^m + c_1 x^{m-1} + \cdots + c_m \in E[x]$ . 记  $B = k(c_1, \cdots, c_m) \subset E$ , 则 g(x) 在 E 上亦不可约, 因此 g(x) 是  $\alpha$  在 B 上的最小多项式. 由定理 3.2.4,  $[K:E] = \deg(g(x)) = [K:B]$ , 因此 B = E. 故 K/k 的中间域 E 被 g(x) 完全确定, 但 f(x) 仅有有限个因式, 因此 K/k 仅有有限个中间域.
- (秦) 若 k 为有限域, 由命题 3.4.13 即得 K/k 为单扩张. 下设  $|k| = +\infty$ ,  $K = k(\alpha_1, \dots, \alpha_n)$ . 由归纳法, 只需证  $K = k(\alpha, \beta)$  是单扩张. 对任意  $\lambda \in k$ , 考虑  $E_{\lambda} = k(\alpha + \lambda \beta)$ , 由于 K/k 仅有有限个中间域, 必存在互异的  $\lambda_1, \lambda_2 \in k$  使得  $E_{\lambda_1} = E_{\lambda_2}$ , 于是  $(\alpha + \lambda_1 \beta) (\alpha + \lambda_2 \beta) = (\lambda_1 \lambda_2)\beta \in E_{\lambda_1}$ , 由  $\lambda_1 \lambda_2 \in k^{\times}$  即得  $\beta \in E_{\lambda_1}$ , 进而  $\alpha = (\alpha + \lambda_1 \beta) \beta \in E_{\lambda_1}$ ,  $k(\alpha, \beta) \subset E_{\lambda_1}$ . 故  $K = k(\alpha, \beta) = k(\alpha + \lambda_1 \beta)$  为单扩张.

**推论 5.2.26** (1) 若 K/k 为有限维单扩张,  $E \neq K/k$  的中间域, 则 E/k 为单扩张.

(2) 有限 Galois 扩张是单扩张.

练习 5.2.27  $\mathbb{Q}(\sqrt[3]{2},\omega) = \mathbb{Q}(\sqrt[3]{2}+\omega)$ . 提示 由例 5.1.8 的 Hasse 图可见, 包含  $\sqrt[3]{2}+\omega$  的最小子域只能 为  $\mathbb{Q}(\sqrt[3]{2},\omega)$ .

**定义 5.2.28** 称代数扩张 K/k 为可分扩张, 若 K 中每个元素在 k 上的最小多项式均可分.

**定义 5.2.29** 设 K/k 为有限维域扩张, 若  $u \in K$  满足 K = k(u), 则称  $u \to K/k$  的本原元.

**定理 5.2.30 (本原元定理)** 设 K/k 为有限维可分扩张,则 K/k 为单扩张.

**证明** 设  $K = k(\alpha_1, \dots, \alpha_n)$ ,  $\alpha_i$  在 k 上的最小多项式为  $g_i(x)$ , 则  $g_1(x)$ , … ,  $g_n(x)$  均可分. 设  $g(x) = g_1(x) \dots g_n(x) \in k[x]$ , 则 g(x) 亦可分. 考虑  $k \subset K \subset (K, g(x)) = E$ , 由定义-定理 5.1.2 (3), E/k 为有限 Galois 扩张, 再由推论 5.2.26 (2) 与 (1) 知 K/k 为单扩张.

作为 Galois 理论的应用, 我们证明代数基本定理.

**定理 3.2.20** C 是代数闭域.

证明 在假定分析中的中值定理成立的前提下,我们有如下事实:

- (1) 每个正实数 r 有实平方根. (设  $f(x) = x^2 r$ , 则 f(1+r) > 0 且 f(0) < 0.)
- (2) 任意 2 次多项式  $g(x) \in \mathbb{C}[x]$  有复根. (我们有求根公式.)
- (3)  $\mathbb{C}$  无二次扩张, 即若有域扩张  $\mathbb{C} \subset K$ , 则  $[K:\mathbb{C}] \neq 2$ . (否则 K 中有元素在  $\mathbb{C}$  上的最小多项式为 2 次, 与 (2) 矛盾.)
- (4) 奇数次多项式  $f(x) \in \mathbb{R}[x]$  必有实根.  $(f(-\infty) = -\infty, f(+\infty) = +\infty.)$
- (5) 若有域扩张  $\mathbb{R} \subseteq K$ , 则  $[K:\mathbb{R}]$  非奇数. (由 (4), 对任意  $\alpha \in K \setminus \mathbb{R}$ ,  $[\mathbb{R}(\alpha):\mathbb{R}]$  为偶数.)

下面证明任意非常值多项式  $f(x) \in \mathbb{C}[x]$  有复根. 对  $f(x) = \sum a_i x^i \in \mathbb{C}[x]$ , 定义  $\bar{f}(x) = \sum \overline{a_i} x^i$ . 设  $f(x)\bar{f}(x) = \sum c_k x^k$ , 则  $c_k = \sum_{i+j=k} a_i \overline{a_j}$ , 由此可见  $\overline{c_k} = c_k$  即  $c_k \in \mathbb{R}$ , 因此  $f(x)\bar{f}(x) \in \mathbb{R}[x]$ . 由于 f(x) 有复根当且仅当  $f(x)\bar{f}(x)$  有复根, 只需证每个实多项式有复根.

设  $p(x) \in \mathbb{R}[x]$  不可约, 并设  $E/\mathbb{R}$  为  $(x^2+1)p(x)$  的分裂域, 则  $E \supset \mathbb{C}$ . 由  $\operatorname{char}(R) = 0$  知  $E/\mathbb{R}$  为有限 Galois 扩张, 记  $G = \operatorname{Gal}(E/\mathbb{R})$ . 若  $|G| = 2^m k$ , 其中 k 为奇数, 则由定理 4.6.2 (1), G 有  $2^m$  阶子群 H, 令  $B = E^H$ . 由注记 5.2.19,  $[B : \mathbb{R}] = [G : H] = k$ , 这与前述事实 (3) 矛盾. 故 k = 1 即 G 为 2-群. 假设  $E \supseteq \mathbb{C}$ , 则  $\operatorname{Gal}(E/\mathbb{C}) \leqslant G$  为非平凡 2-群, 由定理 4.5.55, 存在  $F \leqslant \operatorname{Gal}(E/\mathbb{C})$  使得  $[\operatorname{Gal}(E/\mathbb{C}) : F] = 2$ . 由注记 5.2.19,  $[E^F : \mathbb{C}] = 2$ , 这与前述事实 (3) 矛盾. 故  $E = \mathbb{C}$ , 即 p(x) 在  $\mathbb{C}$  中有根.

## 5.3 根式扩张

**定义 5.3.1** 称域扩张 E/k 为 m 型根式扩张, 若  $E=k(\alpha)$ , 其中  $\alpha^m \in k$ , 这里 m 为正整数.

**定义 5.3.2** 称域扩张塔  $k = E_0 \subset E_1 \subset \cdots \subset E_n$  为根式扩张塔, 若每个  $E_{i+1}/E_i$  均为根式扩张.

**定义 5.3.3** 称  $f(x) \in k[x]$  为根式可解的, 若存在根式扩张塔  $k = E_0 \subset E_1 \subset \cdots \subset E_n$ , 使得 f(x) 在  $E_n$ 中分裂, 即  $E_n \supset (k, f(x))$ .

**例 5.3.4** 设  $f(x) = x^2 + bx + c \in \mathbb{C}[x]$ ,  $k = \mathbb{Q}(b,c)$ ,  $E = k(\sqrt{b^2 - 4c})$ , 则 E/k 为 2-型根式扩张, 且 E = (k, f(x)), 因此 f(x) 为根式可解的.

**讨论**一 当根式扩张不是 Galois 扩张时略显棘手, 我们先讨论如下情形. 设  $E = k(\alpha)$ ,  $\alpha^m = a \in k$ .

◇ 若 k 中有 m 次本原单位根  $\omega$ , 则由  $x^m - a = (x - \alpha)(x - \omega\alpha) \cdots (x - \omega^{m-1}\alpha)$  知  $E = (k, x^m - a)$  是 k 上可分多项式的分裂域, 因此 E/k 为 Galois 扩张, 且有群嵌入

$$Gal(E/k) \hookrightarrow (\mathbb{Z}_m, +), \quad \sigma_i \mapsto \overline{i},$$

其中  $\sigma_i(\alpha) = \alpha \omega^i$  (0  $\leq i \leq m-1$ ), 因此 Gal(E/k) 为 Abel 群.

◇ 若 char(k) = 0, 取 E' = (E,  $x^m$  – 1). 由定理 4.2.14, Root $_{E'}(x^n$  – 1)  $\leq$  (E') $^{\times}$  为循环群, 且由 char(k) = 0 知其阶恰为 m (参考引理 3.3.25 的证明), 故 E' 中存在 m 次本原单位根  $\omega$ .



由上一种情形知  $\operatorname{Gal}(E'/k') \hookrightarrow (\mathbb{Z}_m, +)$  为 Abel 群. 而由  $k' = (k, x^m - 1)$  知  $\operatorname{Gal}(k'/k) \hookrightarrow U(\mathbb{Z}_m)$  亦为 Abel 群. 注意到  $E' = (k, x^m - a)$ , 因此 E'/k 为 Galois 扩张, 又 k'/k 亦为 Galois 扩张, 由命题 5.2.23 知  $\operatorname{Gal}(E'/k') \lhd \operatorname{Gal}(E'/k)$ , 且  $\operatorname{Gal}(E'/k)/\operatorname{Gal}(E'/k') \simeq \operatorname{Gal}(k'/k)$ .



#### 讨论二 我们再进行如下观察.

 $\diamond$  若 char(k) = 0, 则从 k 出发的任何根式扩张塔  $k = E_0 \subset E_1 \subset \cdots \subset E_n$  均可扩充为新的根式扩张 塔  $k = E_0 \subset E_1 \subset \cdots \subset E_n \subset \cdots \subset E_m$ , 使得  $E_m/E_0$  为 Galois 扩张.

**证明** 设  $E_n = k(\alpha_1, \dots, \alpha_l)$ , 其中  $\alpha_i$  在 k 上的最小多项式为  $f_i(x)$ . 令  $f(x) = f_1(x) \dots f_l(x) \in k[x] \subset E_n[x]$ , 取  $K = (E_n, f(x))$ . 由根式扩张定义可知 f(x) 为  $E_n$  上的可分多项式, 因此  $K/E_n$  为 Galois 扩张, 设  $Gal(K/E_n) = \{\sigma_0 = Id_K, \sigma_1, \dots, \sigma_p\}$ , 则有根式扩张塔

$$k \subset \boxed{E_n \subset E_n \vee \sigma_1(E_n)} \subset E_n \vee \sigma_1(E_n) \vee \sigma_2(E_n) \subset \cdots$$
$$\subset E_n \vee \sigma_1(E_n) \vee \cdots \vee \sigma_p(E_n) = K =: E_m.$$

以框中部分为例说明这是根式扩张:

$$\boxed{E_n} \overset{\circ}{\subset} E_n \vee \sigma_1(E_1) \overset{\circ}{\subset} E_n \vee \sigma_1(E_2) \subset \cdots \subset E_n \vee \sigma_1(E_n),$$

由  $k \subset E_1$  为根式扩张知 ① 为根式扩张, 由  $E_1 \subset E_2$  为根式扩张知 ② 为根式扩张, 以此类推.

◇ 现假设 k 有充分多的单位根. 根据上一点, 可设根式扩张塔  $k = E_0 \subset \cdots \subset E_{n-1} \subset E_n$  满足  $E_n/k$  为 Galois 扩张, 且由于 k 有充分多的单位根, 根据讨论一的第一点, 每个  $E_i/E_{i-1}$  均为 Galois 扩张, 每个  $Gal(E_i/E_{i-1})$  均为 Abel 群. 结合定理 5.1.6 与命题 5.2.23 即得

$$\operatorname{Gal}(E_n/E_0)$$
  $\lhd$   $\operatorname{Gal}(E_n/E_1)$   $\lhd$   $\operatorname{Gal}(E_n/E_2)$   $\lhd$  · · · ·  $\lhd$   $\operatorname{Gal}(E_n/E_{n-1})$  为 Abel 群  $\operatorname{Gal}(E_1/E_0)$  为 Abel 群  $\operatorname{Gal}(E_1/E_0)$  为 Abel 群

若 f(x) 根式可解,  $(k, f(x)) \subset E_n$ , 则有满射  $Gal(E_n/k) \rightarrow Gal((k, f(x))/k) = Gal_k(f)$ .

◇ 下面解释上一点 "k 有充分多的单位根" 这一技术性条件并不难达成. 设 char(k) = 0, 且有根式扩张 塔  $k = E_0 \subset \cdots \subset E_{n-1} \subset E_n$ , 其中  $E_n/k$  为 Galois 扩张. 设  $E_i/E_{i-1}$  为  $m_i$  型根式扩张 ( $1 \leq i \leq n$ ), 令  $M = \text{lcm}(m_1, \cdots, m_n)$ , 取  $E' = (E, x^M - 1)$ . 同讨论一的第二点可知 E' 中存在 M 次本原单位根  $\omega$ , 进而 E' 中有  $m_1, \cdots, m_n$  次本原单位根, 这就实现了"有充分多的单位根".



\* 处满射得自  $E_n/k$  为 Galois 扩张, 由命题 5.1.7,  $\sigma(E_n) = E_n, \forall \sigma \in \text{Gal}(E'_n/k)$ .

**定义 5.3.5** 设 G 为群, 若存在正规列  $G = G_0 \supset G_1 \supset \cdots \supset G_n = \{1_G\}$  使得每个子商均为 Abel 群, 则称 G 为可解群.

- **例 5.3.6** (1) 若  $G_1 \triangleleft G$ ,  $G_1 \ni G/G_1$  均为 Abel 群, 则 G 为可解群, 因为  $G \supset G_1 \supset \{1_G\}$ .
  - (2) Abel 群 G 是可解群, 因为  $G \supset \{1_G\}$ .
  - (3) 若 G 是可解群,则  $H \leq G$  也是可解群.

**证明** 由 G 是可解群, 存在正规列  $G = G_0 \supset G_1 \supset \cdots \supset G_n = \{1_G\}$ , 使得每个子商均为 Abel 群, 由定理 4.3.23 (2) 知  $H \supset H \cap G_1 \supset H \cap G_2 \supset \cdots \supset H \cap G_n$  是正规列, 且每个子商均为 Abel 群.  $\square$ 

- (4) 设  $N \triangleleft G$ , 则 G 是可解群当且仅当 N 与 G/N 均为可解群. 故可解群的子群和商群均为可解群.
  - **证明** (⇒) 由 (3), 仅需证 G/N 为可解群. 由 G 是可解群, 存在正规列  $G = G_0 \supset G_1 \supset \cdots \supset G_n = \{1_G\}$ , 使得每个子商均为 Abel 群. 由  $N \triangleleft G$  可得正规列  $G/N \supset G_1N/N \supset G_2N/N \supset \cdots \supset G_nN/N$ , 且由定理 4.3.22,  $(G_iN/N)/(G_{i+1}N/N) \simeq G_iN/G_{i+1}N$  为 Abel 群.
  - ( $\Leftarrow$ ) 设正规列  $G/N = G^* = G_0^* \supset G_1^* \supset \cdots \supset G_n^* = \{1_{G^*}\}$  满足每个子商均为 Abel 群, 由定理 4.3.21, 存在正规列  $G = G_0 \supset G_1 \supset \cdots \supset G_m = N$  满足每个子商均为 Abel 群. 由于 N 是可解 群, 存在正规列  $H = H_0 \supset H_1 \supset \cdots \supset H_m = \{1_H\}$  满足每个子商均为 Abel 群. 将这两个正规 列相接即得 G 为可解群.
- (5) p-群 G 是可解群.

**证明** 对 |G| 归纳. 若  $|G| \neq 1$ , 由命题 4.5.53,  $Z(G) \neq \{1_G\}$ . 若 Z(G) = G, 则 G 是 Abel 群, 由 (2) 知 G 是可解群. 若  $Z(G) \neq G$ , 则 G/Z(G) 是阶 < |G| 的 p 群, 由归纳假设知其为可解群. 由于  $Z(G) \triangleleft G$ , Z(G) 与 G/Z(G) 均为可解群, 由 (4) 即得 G 为可解群.

- (6)  $S_3$  是可解群, 因为  $S_3 \supset A_3 \supset \{\text{Id}\}.$
- (7)  $S_4$  是可解群, 因为  $S_4 \supset A_4 \supset K_4 \supset \{\text{Id}\}$  (例 4.4.33).
- (8)  $S_n$  ( $n \ge 5$ ) 不是可解群, 否则由 (3),  $A_n \triangleleft S_n$  亦为可解群, 但由定理 4.4.36,  $A_n$  ( $n \ge 5$ ) 是单群, 而  $A_n$  非 Abel 群, 矛盾.

§5.3 根式扩张

113

**引理 5.3.7** 设  $A ext{ } ext{ } A$  Abel 群, 素数  $p \mid |A|$ , 则存在  $A' \leq A$  使得  $A/A' \simeq C_p$ .

**证明** 由练习 4.8.37, 存在  $A' \leq A$  使得 |A/A'| = p, 再由推论 4.2.12 即得证.

**引理 5.3.8** 设 K/k 为有限 Galois 扩张,  $Gal(K/k) \simeq C_p = (\sigma)$ , 其中 p 为素数. 若 k 中有 p 次本原单位根,则 K/k 为 p 型根式扩张.

**证明** 如练习 3.1.7,  $\sigma: K \to K$  可视为 k-线性自同构. 由  $(\sigma) = C_p$  可知  $x^p - 1$  是  $\sigma$  的最小多项式, 而  $[K:k] = |\operatorname{Gal}(K/k)| = p$ , 因此  $x^p - 1$  是  $\sigma$  的特征多项式. 由于 p 次本原单位根  $\omega \in k$  满足  $\omega^p - 1 = 0$ , 因此  $\omega$  是  $\sigma$  的特征值,设  $\beta$  是  $\omega$  对应的特征向量,则  $\sigma(\beta) = \omega\beta$ ,因此  $\beta \notin k$  且  $\sigma(\beta^p) = [\sigma(\beta)]^p = (\omega\beta)^p = \beta^p$ ,由命题 5.1.7 即知  $\beta^p \in k$ . 考虑域扩张塔  $k \subseteq k(\beta) \subset K$ ,由定理 3.2.4, $[k(\beta):k] \mid [K:k]$ ,而  $[k(\beta):k] > 1$ ,[K:k] = p,因此  $K = k(\beta)$ . 故 K/k 为 p 型根式扩张.

**定理 5.3.9 (Galois 大定理)** 设 k 为域, char(k) = 0,  $f(x) \in k[x]$ , 则 f(x) 根式可解当且仅当  $Gal_k(f)$  为可解群.

- **证明** (⇒) 在前面讨论二的第二点中已经看到, 若 f(x) 根式可解, 则  $Gal(E'_n/k)$  的正规子群  $Gal(E'_n/k')$  与相应的商群 Gal(k'/k) 均为 Abel 群, 从而为可解群, 由例 5.3.6 (4) 知  $Gal(E'_n/k)$  为可解群. 而  $Gal_k(f)$  同构于可解群  $Gal(E'_n/k)$  的商群, 由例 5.3.6 (4) 即知  $Gal_k(f)$  为可解群.
- (秦) 若  $G = \operatorname{Gal}_k(f)$  为可解群, 取  $G_1 \triangleleft G$  使得  $G/G_1$  为 Abel 群. 设素数  $p \mid |G|$ , 则由引理 5.3.7, 存在  $G/G_1$  的子群  $H/G_1$ , 使得  $(G/G_1)/(H/G_1) \simeq C_p$ , 进而由定理 4.3.22 知  $H \triangleleft G$  且  $G/H \simeq C_p$ . 令 K = (k, f(x)), 由于  $\operatorname{Gal}(K/K^H) = H \triangleleft G$ , 由命题 5.2.23,  $K^H/k$  为  $\operatorname{Galois}$  扩张, 且  $\operatorname{Gal}(K^H/k) \simeq G/H \simeq C_p$ . 而由例 5.3.6 (4),  $\operatorname{Gal}(K/K^H) = H \triangleleft G$  为可解群, 如上操作可得  $H' \triangleleft H$ , 使得  $H/H' \simeq C_{p'}$ , 其中  $p' \mid |H|$  为素数.

- > 若 k 有 |G| 次本原单位根 (存在性由 char(k) = 0 确保),则对任意素数  $p \mid |G|$ , k 亦有 p 次本原单位根. 由引理 5.3.8,上图中每个  $E_{i+1}/E_i$  均为根式扩张,最终便得到根式扩张塔  $k = E_0 \subset E_1 \subset E_2 \subset \cdots \subset K = (k, f(x))$ ,即 f(x) 根式可解.
- ◇ 对于一般情形, 记  $\omega$  为 |G| 次本原单位根, 令  $k^* = k(\omega)$ ,  $K^* = K(\omega)$ , 其中  $\omega$  为 |G| 次本原单位根. 由 K = (k, f(x)) 知  $K^* = \left(k, \left(x^{|G|} 1\right)f(x)\right)$ , 因此  $K^*/k$  为 Galois 扩张, 进而  $K^*/k^*$  亦 为 Galois 扩张. 令  $G^* = \operatorname{Gal}(K^*/k^*)$ , 考虑群同态的复合

$$\rho: G^* = \operatorname{Gal}(K^*/k^*) \hookrightarrow \operatorname{Gal}(K^*/k) \twoheadrightarrow G = \operatorname{Gal}(K/k),$$

其中第二个箭头的良定性来自命题 5.1.7: 由于  $K^*/k$  为 Galois 扩张, K/k 亦为 Galois 扩张, 因此  $\sigma(K) = K, \forall \sigma \in \operatorname{Gal}(K^*/k)$ . 由于

$$\begin{split} \operatorname{Ker} \rho &= \{ \sigma \in \operatorname{Aut}(K^*) : \sigma|_K = \operatorname{Id}_K, \sigma|_{k^*} = \operatorname{Id}_{k^*} \} \\ &= \{ \sigma \in \operatorname{Aut}(K^*) : \sigma|_K = \operatorname{Id}_K, \sigma|_{k^*} = \operatorname{Id}_{k^*}, \sigma(\omega) = \omega \} \\ &= \left\{ \sigma \in \operatorname{Aut}(K^*) : \sigma|_{K(\omega)} = \operatorname{Id}_{K(\omega)} \right\} = \{ \operatorname{Id}_{K^*} \}, \end{split}$$

由定理 4.3.16,  $G^*$  同构于可解群 G 的子群, 由例 5.3.6 (3),  $G^*$  为可解群. 由于  $|G^*| \mid |G|$ ,  $k^*$  中有

 $|G^*|$  次本原单位根, 根据上一类情形, 结合  $k^*/k$  为根式扩张, 可得根式扩张塔

$$k \subset k^* = E_0^* \subset E_1^* \subset E_2^* \subset \cdots \subset K^*.$$

由于 
$$K^* \supset K = (k, f(x)), f(x)$$
 根式可解.

**例 5.3.10** 考虑  $f(x) = x^5 - 4x + 2 \in \mathbb{Q}[x]$ , 易知 f(x) 有 3 个实根, 2 个虚根.



记 Root<sub>C</sub>(f) = { $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ }, 其中  $\alpha_1, \alpha_2 \notin \mathbb{R}$ . 由练习 4.5.8 可得群的单同态  $\theta$  :  $Gal_{\mathbb{Q}}(f) \hookrightarrow S_5$ . 由于 f 恰有 2 个虚根, 复共轭  $\sigma \in Gal_{\mathbb{Q}}(f)$ , 因此 (12)  $\in$  Im  $\theta$ . 由 Eisenstein 判别法知  $f(x) \in \mathbb{Q}[x]$  不可约, 因此 [ $\mathbb{Q}(\alpha_1) : \mathbb{Q}$ ] = deg(f) = 5, 从而由定理 3.2.4 与定义-定理 5.1.2 (2) 知  $5 \mid [(\mathbb{Q}, f) : \mathbb{Q}] = |Gal_{\mathbb{Q}}(f)|$ . 由 定理 4.6.11 即知  $Gal_{\mathbb{Q}}(f)$  中有 5 阶元, 即  $Im \theta$  中有 5-轮换. 故由练习 5.3.11 知  $Im \theta = S_5$ , 即  $Gal_{\mathbb{Q}}(f) \simeq S_5$  非可解群.

**练习 5.3.11** 设 p 为素数,则  $S_p$  可由 (12) 与任一 p-轮换生成.

**证明** 这等价于证明  $S_p$  可由  $\tau = (1a)$  与  $c = (12 \cdots p)$  生成, 其中  $a \in \{2, \cdots, p\}$ . 首先, 由引理 4.4.12,

$$c\tau c^{-1} = (c(1)c(a)) = (2, a+1)$$
 (这里  $a+1$  在模  $p$  意义下考虑),

重复此操作可得所有形如 (k, k+a) 的对换, 因此可以生成  $(p, a), (a, 2a), (2a, 3a), \cdots, ((a^{-1}-1)a, 1)$ , 这里  $a^{-1}$  在模 p 意义下考虑. 再次利用引理 4.4.12 可得

$$(a, 2a)(p, a)(a, 2a) = (p, 2a),$$

$$(2a, 3a)(p, 2a)(2a, 3a) = (p, 3a),$$

$$\vdots$$

$$((a^{-1} - 1)a, 1)(p, (a^{-1} - 1)a)((a^{-1} - 1)a, 1) = (p, 1),$$

$$c(p, 1)c^{-1} = (c(p)c(1)) = (12),$$

$$c(12)c^{-1} = (c(1)c(2)) = (23),$$

$$\vdots$$

$$c(p - 2, p - 1)c^{-1} = (c(p - 2)c(p - 1)) = (p - 1, p).$$

由引理 4.4.27, (12), (23),  $\cdots$ , (p-1,p) 可生成  $S_p$ .

**定理 5.3.12 (Abel-Ruffini)** 考虑域 k 上的 n 元有理函数域  $F = k(t_1, \dots, t_n)$ , 则多项式

$$f(x) = x^n - t_1 x^{n-1} + t_2 x^{n-2} + \dots + (-1)^n t_n \in F[x]$$

林晓烁 2024 年春季

§5.4 判别式 115

不可约,且  $Gal_F(f) \simeq S_n$ .特别地,当  $n \ge 5$  时 f 无法用根式求解.

**注记 5.3.13** 这里取系数  $t_1, \dots, t_n$  为独立变元, 意蕴在于考虑  $F \perp$  "一般的" n 次首一多项式. 在这个意义下, "一般的" 五次以上多项式方程无根式解.

**证明** 考虑 n 元多项式环  $k[x_1, \dots, x_n]$ , 其上有左  $S_n$ -作用:  $(\sigma, f) \mapsto f(x_{\sigma(1)}, \dots, x_{\sigma(n)})$ . 由 Vieta 定理, n 元初等对称多项式

$$e_k := \sum_{1 \leqslant i_1 < \dots < i_k \leqslant n} x_{i_1} \cdots x_{i_k}, \quad 1 \leqslant k \leqslant n$$

由

$$\prod_{i=1}^{n} (X - x_i) = X^n - e_1 X^{n-1} + \dots + (-1)^n e_n$$

刻画,这里 X 为变元. 对称多项式基本定理给出同构

$$F = k(t_1, \dots, t_n) \xrightarrow{\sim} k(x_1, \dots, x_n)^{S_n} = k(e_1, \dots, e_n), \quad t_i \mapsto e_i.$$

借此视  $k(x_1, \dots, x_n)$  为  $k(t_1, \dots, t_n)$  的扩张. 由  $k(x_1, \dots, x_n)^{S_n} = F$  及定义-定理 5.1.2 (1) 知  $k(x_1, \dots, x_n)/F$  为 Galois 扩张, Galois 群实现为  $S_n$  在  $\{x_1, \dots, x_n\}$  上的自然作用. 而  $\{x_1, \dots, x_n\}$  恰为 f 的根集, 因此  $k(x_1, \dots, x_n)$  是 f 的分裂域,  $Gal_F(f) \simeq S_n$ , 再结合引理 4.5.22 即知 f 不可约. 当  $n \ge 5$  时, 由例 5.3.6 (8) 知 f 无法用根式求解.

## 5.4 判别式

**定义 5.4.1** 设 char(k) = 0,  $f(x) \in k[x]$ , deg(f) = n. 若 f(x) 在 K = (k, f(x)) 上分裂为

$$f(x) = c(x - \alpha_1) \cdots (x - \alpha_n),$$

定义其判别式

$$D(f) = \Delta^2 := \left( \prod_{i < j} (\alpha_i - \alpha_j) \right)^2 \in k.$$

**注记 5.4.2** (1) 
$$D(f) = \frac{(-1)^{\frac{n(n-1)}{2}}}{c} \operatorname{Res}(f, f').$$

(2)  $D(f) \neq 0 \iff f$  无重根.

例 5.4.3 若 
$$f(x) = ax^2 + bx + c$$
  $(a \neq 0)$ , 则  $D(f) = -\frac{1}{a} \begin{vmatrix} a & b & c \\ 2a & b \\ & 2a & b \end{vmatrix} = b^2 - 4ac$ .

**例 5.4.4** 若  $f(x) = x^3 + qx + r$ , 则

$$D(f) = -\begin{vmatrix} 1 & 0 & q & r \\ & 1 & 0 & q & r \\ 3 & 0 & q & & \\ & 3 & 0 & q & \\ & & 3 & 0 & q \end{vmatrix} = -4q^3 - 27r^2.$$

**引理 5.4.5** 设  $f(x) \in \mathbb{Q}[x]$  无重根,  $\deg(f) = n$ ,  $E = (\mathbb{Q}, f(x))$ ,  $G = \operatorname{Gal}(E/\mathbb{Q})$ , 由练习 4.5.8,  $G \hookrightarrow S_n$ . 令  $H = G \cap A_n$ , 由定理 4.3.23 (2),  $H \triangleleft G \coprod G/H \hookrightarrow S_n/A_n \simeq C_2$ . 我们有以下结论:

- (1)  $E^H = \mathbb{Q}(\Delta)$ ,  $\dot{\mathbf{Z}} = \Delta = \sqrt{D}$ .
- (2)  $\Delta = \sqrt{D} \in \mathbb{Q}$  当且仅当 H = G (即  $G \hookrightarrow A_n, G$  中元素均为偶置换).

证明 对任意  $\sigma \in S_n$ ,  $\sigma(\Delta) = \operatorname{sgn}(\sigma)\Delta$ , 而  $H \leq A_n$ , 因此  $\Delta \in E^H$ , 进而  $\mathbb{Q}(\Delta) \subset E^H$ ,  $\left[E^H : \mathbb{Q}\right] = \left[G : H\right] \leq 2$ .

- $\diamond$  若 [G:H]=1, 则 G=H,  $\mathbb{Q}(\Delta)\subset E^H=E^G=\mathbb{Q}$ , 因此  $\Delta\in\mathbb{Q}$ ,  $E^H=\mathbb{Q}(\Delta)$ .
- ◇ 若 [G:H]=2, 则存在  $\sigma \in G \setminus A_n$ , 使得  $\sigma(\Delta)=-\Delta$ . 由  $\sigma|_{\mathbb{Q}}=\mathrm{Id}_{\mathbb{Q}}$  即知  $\Delta \notin \mathbb{Q}$ , 考虑  $\mathbb{Q} \subsetneq \mathbb{Q}(\Delta) \subset E^H$ , 由  $[E^H:\mathbb{Q}] \leqslant 2$  与  $[\mathbb{Q}(\Delta):\mathbb{Q}] \geqslant 2$  即知  $E^H=\mathbb{Q}(\Delta)$ .

**定理 5.4.6** 设  $f(x) \in \mathbb{Q}[x]$  不可约,  $\deg(f) = 3$ ,  $G = \operatorname{Gal}_{\mathbb{Q}}(f)$ ,  $D = D(f) \neq 0$ , 则

- (1) f(x) 恰有 1 个实根当且仅当 D(f) < 0, 此时  $G \simeq S_3$ .
- (2) f(x) 恰有 3 个实根当且仅当 D(f) > 0, 此时若  $\sqrt{D} \in \mathbb{Q}$ , 则  $G \simeq A_3 \simeq \mathbb{Z}_3$ , 若  $\sqrt{D} \notin \mathbb{Q}$ , 则  $G \simeq S_3$ .

证明 令  $E = (\mathbb{Q}, f(x))$ . 由  $f(x) \in \mathbb{Q}[x]$  不可约即知  $D \neq 0$ . 由练习 4.5.8,  $G \hookrightarrow S_3$ , 再设  $f(x) = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)$ , 则由  $\mathbb{Q} \subset \mathbb{Q}(\alpha_1) \subset E$  可知  $3 = \deg(f) = [\mathbb{Q}(\alpha_1) : \mathbb{Q}] \mid [E : \mathbb{Q}] = |G|$ , 因此  $G \simeq A_3$  或  $S_3$ .

(1) 若 f(x) 恰有 1 个实根  $\alpha$  与两个虚根  $\beta = u + iv, \bar{\beta} = u - iv, 则$ 

$$\Delta = (\alpha - \beta)(\alpha - \bar{\beta})(\beta - \bar{\beta}) = (\alpha - \beta)(\overline{\alpha - \beta})(\beta - \bar{\beta}) = 2iv|\alpha - \beta|^2,$$

从而  $D = \Delta^2 = -4v^2 |\alpha - \beta|^4 < 0$ . 此时  $E \neq \mathbb{Q}(\alpha)$ , 因此 |G| > 3, 即  $G \simeq S_3$ .

- (2) 若 f(x) 有 3 个实根, 则  $\Delta \in \mathbb{R}$ , 从而  $D = \Delta^2 > 0$ ,  $\sqrt{D} \in \mathbb{R}$ . 由引理 5.4.5, 若  $\sqrt{D} \in \mathbb{Q}$ , 则  $G \hookrightarrow A_3$ , 即  $G \simeq A_3 \simeq \mathbb{Z}_3$ ; 若  $\sqrt{D} \notin \mathbb{Q}$ , 则  $G \simeq S_3$ .
- 例 5.4.7 (1)  $Gal_{\mathbb{Q}}(x^3-2) \simeq S_3$ .
  - (2)  $Gal_{\mathbb{Q}}(x^3 4x + 2) \simeq S_3$ .
  - (3)  $\operatorname{Gal}_{\mathbb{Q}}(x^3 x + \frac{1}{3}) \simeq A_3 \simeq \mathbb{Z}_3$ .

第二部分

往年真题

# 第六章 期中考试题目

#### 6.1 2020 春期中考试

- 1. 考虑 Gauss 整数环  $R = \mathbb{Z}[i]$ .
  - (1) 设p为奇素数. 试证明:  $x^n p \in R[x]$  总是不可约的.
  - (2) 在 R 中将 81 + 8i 分解为不可约元的乘积.
  - (3) 求不定方程  $x^2 + y^2 = 585$  的所有整数解.
  - (4) 考虑商环  $R_1 = R/(3)$  以及  $R_2 = R/(5)$ . 计算  $Aut(R_1)$  与  $Aut(R_1)$  的阶.
- **2.** 考虑多项式环  $\mathbb{Q}[x]$ , 设 S 为其包含  $\mathbb{Q}$  以及  $x^2, x^3$  的最小子环.
  - (1) 证明:  $S \simeq \mathbb{Q}[y, z]/(y^2 z^3)$ .
  - (2) 证明:  $S \not\simeq \mathbb{Q}[x]$ .
  - (3) 证明:  $Frac(S) \simeq \mathbb{Q}(x)$ .
- 3. 设 E 为  $f(x) = x^4 2 \in \mathbb{Q}[x]$  在  $\mathbb{Q}$  上的分裂域.
  - (1) 计算 [*E* : ℚ].
  - (2) 列出 Aut(E) 中的元素.
  - (3) 设  $K = \mathbb{Q}(\sqrt[4]{2})$ . 试给出 Aut(K) 中的元素, 并给出 K 的所有非平凡子域.
  - (4) 设  $u = \sqrt[4]{2} + i$ . 试求 u 在  $\mathbb{Q}$  上的最小多项式.
- **4.** 设  $(R, \phi)$  的 Euclid 整环,  $a \in R$  是 R 中所有非零非单位元素中  $\phi(a)$  取值最小的.
  - (1) 试证明:  $R/(a) = \{\bar{r} : r = 0 \text{ 或 } r \in U(R)\}$ , 这里  $\bar{r} = r + (a)$  表示其模 (a) 同余类.
  - (2) 试证明:  $R = \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$  不是 Euclid 整环.

### 6.2 2022 春期中考试

- **1.** 设  $R = \mathbb{Z}[i], K = \mathbb{Q}(i)$ , 域扩张 E/K 使得 E 为  $x^4 + x^3 + x^2 + x + 1 \in K[x]$  的分裂域.
  - (1) 证明:  $K \simeq \operatorname{Frac}(R)$ .
  - (2) 列出 R 的所有子环, 并指出哪些是 UFD.
  - (3) 在 R 中计算 gcd(4 + 7i, 4 3i).
  - (4) 计算商环 R/(4+7i,4-3i) 的阶.
  - (5) 分类商环 R/(4-3i) 的所有理想,并指出哪些是素理想.
  - (6) 判断并论证  $x^4 + x^3 + x^2 + x + 1 \in K[x]$  的可约性.
  - (7) 计算 [E:ℚ].
  - (8) 判断并论证 Aut(E) 是否为 Abel 群.

**解答** (1) 由  $R \subset \mathbb{Q}(i) \subset \operatorname{Frac}(R)$  再取分式域即得  $K \simeq \operatorname{Frac}(R)$ .

- (2) 由练习 2.2.34, R 的子环恰为  $\mathbb{Z}$  和  $\mathbb{Z}[ni]$ , 其中 n 为正整数. 由于  $\mathbb{Z}$  与  $\mathbb{Z}[i]$  均为 ED, 它们都是 UFD. 对  $n \geq 2$ , 注意到  $\operatorname{Frac}(\mathbb{Z}[ni]) = \mathbb{Q}(i)$ ,  $i \in \mathbb{Q}(i)$  是首一整系数方程  $x^2 + 1 = 0$  的解, 但  $i \notin \mathbb{Z}[ni]$ , 由命题 2.5.16, UFD 是整闭环, 因此  $\mathbb{Z}[ni]$  ( $n \geq 2$ ) 不是 UFD.
- (3) 有素分解  $4+7i=-(1-2i)(2-3i), 4-3i=i(1-2i)^2$ , 因此 gcd(4+7i, 4-3i) 相伴于 1-2i.
- (4) 由 (3), R/(4+7i, 4-3i) = R/(1-2i). 由练习 2.6.26,  $R/(1-2i) \simeq \mathbb{F}_5$ , 故其阶为 5.
- (5) 由例 2.2.27 对应定理,  $\{R/(4-3i)$  的理想 $\} \stackrel{1:1}{\longleftrightarrow} R$  中包含 (4-3i) 的理想, 而 R 为 PID, 若 (4-3i)  $\subset (a)$ , 则  $a \mid (4-3i)$ . 由素分解  $4-3i = i(1-2i)^2$  即知 R 中包含 (4-3i) 的理想恰为 (i) = R, (1-2i), (4-3i). 故 R/(4-3i) 的理想恰为  $R/(4-3i), (1-2i)/(4-3i), \{0\}$ . 由练习 2.3.35 (3), 其中素理想为 (1-2i)/(4-3i).
- (6) 由练习 2.7.46 (2) 与命题 2.7.34, 等价于判定

$$(x+1)^4 + (x+1)^3 + (x+1)^2 + (x+1) + 1 = x^4 + 5x^3 + 10x^2 + 5x \in R[x]$$

的可约性. 利用 Gauss 素数 1-2i 的 Eisenstein 判别法即知其不可约.

- (7) 由于  $E = K(\zeta_5, \zeta_5^2, \zeta_5^3, \zeta_5^4) = K(\zeta_5)$ , 由定理 3.1.23 (1), [E:K] = 4. 由定理 3.2.4,  $[E:\mathbb{Q}] = [E:K][K:\mathbb{Q}] = 4 \cdot 2 = 8$ .
- (8)  $E = \mathbb{Q}(\mathbf{i}, \zeta_5) = \mathbb{Q}(\zeta_{lcm(4,5)}) = \mathbb{Q}(\zeta_{20})$ . 由定理 3.5.21,  $Aut(E) = Aut(\mathbb{Q}(\zeta_{20})) \simeq U(\mathbb{Z}_{20})$  是 Abel 群.
- 2. 考虑八元域  $\mathbb{F}_8 = \mathbb{F}_2[x]/(x^3 + x + \overline{1})$ , 记  $u = \overline{x}$ . 于是  $\mathbb{F}_8$  中元素均形如  $a + bu + cu^2$ , 其中  $a, b, c \in \mathbb{F}_2$ . 自然视  $\mathbb{F}_2$  为  $\mathbb{F}_8$  的子域.
  - (1) 分类  $\mathbb{F}_8$  的所有子环.
  - (2)  $\mathbb{F}_8$  中共有多少个首一 2 次不可约多项式?
  - (3) 将多项式  $x^3 + x + \overline{1}$  在  $\mathbb{F}_8[x]$  中进行不可约分解.
  - (4) 将多项式  $x^{16} + x$  在  $\mathbb{F}_8[x]$  中进行不可约分解.
  - (5) 计算  $(u^2 + \overline{1})^{-1}$ .

(6) 考虑商环  $R = \mathbb{F}_2[y]/(y^3 + y^2 + \overline{1})$ , 论证并具体构造环同构  $R \simeq \mathbb{F}_8$ .

**解答** (1) 由练习 2.1.26,  $\mathbb{F}_8$  的子环即  $\mathbb{F}_8$  的子域. 由命题 3.4.10,  $\mathbb{F}_8$  的子域即  $\mathbb{F}_2$  与  $\mathbb{F}_8$ .

- (2)  $\mathbb{F}_8[x]$  中首一 2 次多项式共有  $8 \cdot 8 = 64$  个, 其中可约多项式形如  $(x \alpha)(x \beta)$ , 共有  $\binom{8}{2} + 8 = 36$  个. 因此  $\mathbb{F}_8$  中首一不可约 2 次多项式共有 64 36 = 28 个.
- (3) 由于 u 是根, 由命题 3.4.15,  $x^3 + x + \overline{1} = (x u)(x u^2)(x u^4) = (x + u)(x + u^2)(x + u^2 + u)$ .

(4)

- (5) 待定系数得  $u(u^2 + \overline{1}) = \overline{1} \Longrightarrow (u^2 + \overline{1})^{-1} = u$ .
- (6) 由于  $y^3 + y^2 + \overline{1} \in \mathbb{F}_2[y]$  不可约, 因此 E 是八元域. 记  $v = \overline{y}$ , 则  $R = \mathbb{F}_2(v)$ . 设  $\theta : R \to \mathbb{F}_8$  为环同态, 则  $\theta$  由  $\theta(v)$  唯一决定. 由于  $v \in R$  是  $x^3 + x^2 + \overline{1} \in R[x]$  的根, 因此  $\theta(v) \in \mathbb{F}_8$  是  $x^3 + x^2 + \overline{1}$  的根, 从而  $\theta(v) = u + \overline{1}$  或  $u^2 + \overline{1}$  或  $u^2 + u + \overline{1}$ . 考虑赋值同态

$$\operatorname{ev}_{u+\overline{1}}: \mathbb{F}_2[y] \to \mathbb{F}_8, \quad f(y) \mapsto f(u+\overline{1}).$$

由于  $(y^3 + y^2 + \overline{1}) \subset \text{Ker}(\text{ev}_{u+\overline{1}})$ . 因此  $\text{ev}_{u+\overline{1}}$  诱导环嵌入  $\theta : R \hookrightarrow \mathbb{F}_8$  使得  $v \mapsto u + \overline{1}$ . 又因为  $|R| = |\mathbb{F}_8|, \theta$  为环同构.

- 3. 设  $K = \mathbb{Q}(t), E = \mathbb{Q}(t^4)$  为 K 中包含  $t^4$  的最小子域.
  - (1) 证明  $E \simeq K$ .
  - (2) 计算 [K:E].
  - (3) 计算 Aut(K/E) 的阶.
  - (4) 判断并论证  $\mathbb{Q}(t^2)$  上的任何自同构是否均可延拓为 K 上的自同构.
- **4.** 设 R 为整环, 记  $R^{\times} = R \setminus \{0_R\}$ . 试证明以下等价:
  - (1) 环 R 为 PID.
  - (2) 存在映射  $\phi: R^{\times} \to \mathbb{N}$  满足如下条件: 对任意  $a, b \in R^{\times}$ , 要么  $b \mid a$ , 要么存在适当的  $\delta, \gamma \in R$  使得  $\phi(a\delta b\gamma) < \phi(b)$ . (注: 两种情况可能同时发生.)

### 6.3 2023 春期中考试

- 1. 设  $R = \mathbb{Z}[i], S = \mathbb{Z}[2i], K = \mathbb{Q}(i)$ .
  - (1) 求不定方程  $x^2 + y^2 = 325$  的所有整数解.
  - (2) 在R中计算gcd(9+2i,15-20i).
  - (3) 判定并论证  $x^4 2 \in K[x]$  的可约性.
  - (4) 分类商环 R/5R 的所有子环与所有理想. 这里 5R 表示元素 5 在 R 中生成的主理想.
  - (5) 计算 Aut(R/5R) 的阶.
  - (6) 计算商环 S/(3+2i) 的阶, 判定其是否为域.
  - (7) 判断商环 S/2S,  $\mathbb{Z}_4$  与  $\mathbb{F}_2[y]/(y^2+1)$  三者之间是否有环同构.
  - (8) 判断整环 S 是否为 UFD.
  - **解答** (1)  $(\pm 1, \pm 18), (\pm 6, \pm 17), (\pm 10, \pm 15).$

- (2) 有素分解 9 + 2i = (1 2i)(1 + 4i),  $15 20i = -5(1 + 2i)^2$ , 因此 gcd(9 + 2i, 15 20i) 相伴于 1.
- (3) 由于  $K = \operatorname{Frac}(R)$ ,  $x^4 2 \in K[x]$  本原, 由命题 2.7.34, 这等价于判断  $x^4 2 \in R[x]$  的可约性.
  - (法一) 由于  $x^4 2$  在 R 中无根, 若它可约, 只能分解为两个 2 次多项式乘积, 设为  $x^4 2 = (x^2 + ax + b)(x^2 + cx + d)$ , 其中  $a, b, c, d \in \mathbb{Z}[i]$ . 整理得

$$\begin{cases} a+c=0, \\ b+ac+d=0, \\ ad+bc=0, \\ bd=2. \end{cases} \implies \begin{cases} c=-a, \\ a^2=b+d, \\ a(d-b)=0, \\ bd=2. \end{cases}$$

若 a=0, 则  $d=-b, b^2=-2$ , 无解; 若  $a\neq 0$ , 则  $b=d, b^2=2$ , 无解. 故  $x^4-2\in R[x]$  不可约, 从而在 K[x] 中也不可约.

(法二) 由练习 2.6.26,  $R/(1+2i) \simeq \mathbb{F}_5$ . 由模 p 约化, 为证  $x^4-2 \in R[x]$  不可约, 只需证  $x^4-\overline{2} \in \mathbb{F}_5[x]$  不可约. 再由命题 3.4.8, 只需证  $\gcd_{\mathbb{F}_5[x]}\left(x^{5^2}-x,x^4-\overline{2}\right)=\overline{1}$ , 这来自

$$(x^{4} - \overline{2}, x^{25} - x) = (x^{4} - \overline{2}, \overline{2}x^{21} - x) = (x^{4} - \overline{2}, \overline{4}x^{17} - x) = (x^{4} - \overline{2}, \overline{3}x^{13} - x)$$
$$= (x^{4} - \overline{2}, x^{9} - x) = (x^{4} - \overline{2}, \overline{2}x^{5} - \overline{2}) = (x^{4} - \overline{2}, \overline{4}x - \overline{2})$$
$$= (x^{4} - \overline{2}, x + \overline{2}) = \overline{1}.$$

- (4) ① 由练习 2.2.30,  $\{R/5R$  的子环}  $\stackrel{1:1}{\longleftrightarrow} \{R$  中包含 5R 的子环}, 而由练习 2.2.34 (2), R 中包含 5R 的子环即 R 与  $\mathbb{Z}[5i]$ , 故 R/5R 的所有子环恰为 R/5R 与  $\mathbb{Z}[5i]/5R$ . ② 由例 2.2.27 对应定理,  $\{R/5R$  的理想}  $\stackrel{1:1}{\longleftrightarrow} \{R$  中包含 5R 的理想}, 而 R 为 PID, 若  $5R \subset (a)$ , 则  $a \mid 5$ . 由素分解 5 = (1+2i)(1-2i) 即知 R 中包含 5R 的理想恰为 (1) = R, (1+2i), (1-2i), (5) = 5R. 故 R/5R 的理想恰为  $R/5R, (1+2i)/5R, (1-2i)/5R, \{0\}$ .
- (5) 有环同构 (参考练习 2.6.9)

$$\mathbb{Z}[i]/(5) \simeq (\mathbb{Z}[x]/(x^2+1))/(\overline{5}) \simeq \mathbb{Z}[x]/(5,x^2+1) \simeq (\mathbb{Z}[x]/(5))/(\overline{x^2+1})$$

$$\simeq (\mathbb{Z}/(5))[x]/(x^2+\overline{1}) \simeq \mathbb{F}_5[x]/(x^2+\overline{1}) \simeq \mathbb{F}_5[x]/((x-2)(x-3))$$

$$\stackrel{\star}{\simeq} (\mathbb{F}_5[x]/(x-2)) \times (\mathbb{F}_5[x]/(x-3)) \simeq \mathbb{F}_5 \times \mathbb{F}_5,$$

其中 \* 处的同构来自定理 2.8.4. 由注记 2.2.10 (3),  $\operatorname{Aut}(R/5R) \simeq \operatorname{Aut}(\mathbb{F}_5 \times \mathbb{F}_5)$ . 设  $\theta \in \operatorname{Aut}(\mathbb{F}_5 \times \mathbb{F}_5)$ ,  $\theta((1,0)) = (a,b)$ , 则

$$(a^2, b^2) = \theta((1,0))^2 = \theta((1,0)) = (a,b) \implies a = 0 \text{ if } 1, b = 0 \text{ if } 1.$$

若 (a,b) = (0,0) 或 (1,1),  $\theta$  均非单射, 排除. 而  $\phi : \mathbb{F}_5 \times \mathbb{F}_5 \to \mathbb{F}_5 \times \mathbb{F}_5$ ,  $(x,y) \mapsto (y,x)$  与  $\mathrm{Id}_{\mathbb{F}_5 \times \mathbb{F}_5}$  均 为同构, 因此  $|\mathrm{Aut}(\mathbb{F}_5 \times \mathbb{F}_5)| = 2$ , 即  $|\mathrm{Aut}(R/5R)| = 2$ .

(6) 有环同构

$$\mathbb{Z}[2i]/(3+2i) \simeq (\mathbb{Z}[x]/(x^2+4))/(\overline{3+x}) \simeq \mathbb{Z}[x]/(3+x,x^2+4)$$
  
 $\stackrel{\star}{\simeq} (\mathbb{Z}[x]/(13))/((3+x,x^2+4)/(13)) \simeq \mathbb{F}_{13}[x]/(x+\overline{3},x^2+\overline{4}),$ 

其中 \* 处的同构来自例 2.2.27, 这里用到了  $(13) \subset (3+x,x^2+4)$ , 这是因为

$$x(x+3) - (x^2+4) = 3x - 4$$
,  $3(x+3) - (3x - 4) = 13$ .

而  $x^2 + \overline{4} = (x + \overline{3})(x + \overline{10})$ , 由练习 2.4.26,  $(x + \overline{3}, x^2 + \overline{4}) = (x + \overline{3})$ , 进而

$$S/(3+2i) \simeq \mathbb{F}_{13}[x]/(x+\overline{3},x^2+\overline{4}) \simeq \mathbb{F}_{13}[x]/(x+\overline{3}) \simeq \mathbb{F}_{13}.$$

故 S/(3+2i) 为域, 其阶为 13.

(7) 有环同构

$$S/2S \simeq (\mathbb{Z}[x]/(x^2+4))/\overline{2}(\mathbb{Z}[x]/(x^2+4)) \simeq \mathbb{Z}[x]/(2,x^2+4) \simeq \mathbb{Z}[x]/(2,x^2)$$
$$\simeq \mathbb{F}_2[x]/(x^2) \xrightarrow{\sim} \mathbb{F}_2[y]/(y^2+\overline{1}).$$

由此可知  $\operatorname{char}(S/2S) = 2 \neq 4$ , 故  $S/2S \not\simeq \mathbb{Z}_4$ .

- (8) 假设 S 是 UFD, 由命题 2.5.16, S 是整闭环. 注意到  $Frac(S) = \mathbb{Q}(i)$ ,  $i \in \mathbb{Q}(i)$  是首一整系数方程  $x^2 + 1 = 0$  的解, 由整闭性,  $i \in S$ , 矛盾. 故 S 不是 UFD.
- **2.** 考虑商域  $K = \mathbb{F}_2[y]/(y^3 + y + \overline{1})$ , 记  $u = \overline{y}$ , 则 K 中元素均形如  $a + bu + cu^2$ , 其中  $a, b, c \in \mathbb{F}_2$ . 自然视  $\mathbb{F}_2$  为 K 的子域.
  - (1) 将多项式  $x^3 + x^2 + \overline{1}$  在 K[x] 中进行不可约分解.
  - (2) 在 K 中, 计算  $(u^4 + \overline{1})^{-1}$ .
  - (3) 分类 K 的所有子环.
  - (4) 判断  $K[x]/(x^2 + (u+\overline{1})x + u^2)$  是否为域.
  - (5) 考虑域  $E = \mathbb{F}_2[z]/(z^3 + z^2 + \overline{1})$ . 试具体建立从 E 到 K 的环同构.
  - (6) 分别求从  $\mathbb{Z}_8$  到 K, 以及从 K 到  $\mathbb{Z}_8$  的 (保单位的) 环同态的个数.

**解答** (1) 
$$x^3 + x^2 + \overline{1} = (x + u^2 + \overline{1})(x + u + \overline{1})(x + u^2 + u + \overline{1}).$$

- (2) 待定系数得  $u^2(u^4+\bar{1})=(u^3)^2+u^2=(u+\bar{1})^2+u^2=\bar{1} \implies (u^4+\bar{1})^{-1}=u^2$ .
- (3) 由于 K 的子环必包含  $\mathbb{F}_2$ , 而域上的有限维整环是域, K 的子环即 K 的子域. 由命题 3.4.10, K 的子域即  $\mathbb{F}_2$  与 K.
- (4) 是. 只需证  $x^2 + (u + \overline{1})x + u^2 \in K[x]$  不可约, 这由 Vieta 定理及表 6.1 易得.
- (5) 由 (1) 知  $z^3 + z^2 + \overline{1} \in \mathbb{F}_2[z]$  不可约, 因此 E 是八元域. 记  $v = \overline{z}$ , 则  $E = \mathbb{F}_2(v)$ . 设  $\theta : E \to K$  为环 同态, 则  $\theta$  由  $\theta(v)$  唯一决定. 由于  $v \in E$  是  $x^3 + x^2 + \overline{1} \in E[x]$  的根, 因此  $\theta(v) \in K$  是  $x^3 + x^2 + \overline{1}$  的根, 由 (1),  $\theta(v) = u + \overline{1}$  或  $u^2 + \overline{1}$  或  $u^2 + u + \overline{1}$ . 考虑赋值同态

$$\operatorname{ev}_{u+\overline{1}}: \mathbb{F}_2[z] \to K, \quad f(z) \mapsto f(u+\overline{1}).$$

由 (1) 知  $(z^3 + z^2 + \overline{1}) \subset \text{Ker}(\text{ev}_{u+\overline{1}})$ . 因此  $\text{ev}_{u+\overline{1}}$  诱导环嵌入  $\theta : E \hookrightarrow K$  使得  $v \mapsto u + \overline{1}$ . 又因为 |E| = |K|,  $\theta$  为环同构.

(6) ① 从  $\mathbb{Z}_8$  到 K 的环同态 (若存在), 只能为

$$\mathbb{Z}_8 \to K$$
,  $\overline{0}, \overline{2}, \overline{4}, \overline{6} \mapsto \overline{0}$ ,  $\overline{1}, \overline{3}, \overline{5}, \overline{7} \mapsto \overline{1}$ .

可验证这的确是环同态. ② 为求从 K 到  $\mathbb{Z}_8$  的环同态  $\phi$ , 只需确定  $u \in K$  的像. 由于  $\phi(u)$  是方程  $x^3 + x + \overline{1}$  的解, 但计算可知此方程在  $\mathbb{Z}_8$  中无解, 故不存在从 K 到  $\mathbb{Z}_8$  的环同态.

| ×                        | $\overline{0}$ | $\overline{1}$           | u                        | $u + \overline{1}$       | $u^2$                | $u^2 + \overline{1}$     | $u^2 + u$                | $u^2 + u + \overline{1}$ |
|--------------------------|----------------|--------------------------|--------------------------|--------------------------|----------------------|--------------------------|--------------------------|--------------------------|
| $\overline{0}$           | $\overline{0}$ | $\overline{0}$           | $\overline{0}$           | $\overline{0}$           | $\overline{0}$       | $\overline{0}$           | $\overline{0}$           | $\overline{0}$           |
| $\overline{1}$           | $\overline{0}$ | $\overline{1}$           | u                        | $u + \overline{1}$       | $u^2$                | $u^2 + \overline{1}$     | $u^2 + u$                | $u^2 + u + \overline{1}$ |
| u                        | $\overline{0}$ | u                        | $u^2$                    | $u^2 + u$                | $u + \overline{1}$   | $\overline{1}$           | $u^2 + u + \overline{1}$ | $u^2 + \overline{1}$     |
| $u + \overline{1}$       | $\overline{0}$ | $u + \overline{1}$       | $u^2 + u$                | $u^2 + \overline{1}$     |                      | $u^2$                    |                          |                          |
| $u^2$                    | $\overline{0}$ | $u^2$                    | $u + \overline{1}$       | $u^2 + u + \overline{1}$ | $u^2 + u$            | u                        | $u^2 + \overline{1}$     | $\overline{1}$           |
| $u^2 + \overline{1}$     | $\overline{0}$ | $u^2 + \overline{1}$     | $\overline{1}$           | $u^2$                    | u                    | $u^2 + u + \overline{1}$ | $u + \overline{1}$       | $u^2 + u$                |
| $u^2 + u$                | $\overline{0}$ | $u^2 + u$                | $u^2 + u + \overline{1}$ | $\overline{1}$           | $u^2 + \overline{1}$ | $u + \overline{1}$       | u                        | $u^2$                    |
| $u^2 + u + \overline{1}$ | $\overline{0}$ | $u^2 + u + \overline{1}$ | $u^2 + \overline{1}$     | u                        | $\overline{1}$       | $u^2 + u$                | $u^2$                    | $u + \overline{1}$       |

表 6.1:  $\mathbb{F}_8 = \mathbb{F}_2[y]/(y^3 + y + \overline{1})$  的乘法表

- 3. 考虑商域  $F = \mathbb{Q}[y]/(y^3 + y + 1)$ , 记  $u = \overline{y}$ . 自然视  $\mathbb{Q}$  为 F 的子域.
  - (1) 将  $x^3 + x + 1$  在 F[x] 上进行不可约分解.
  - (2) 计算 Aut(F) 的阶.
  - (3) 将  $x^3 + x^2 + 1$  在 F[x] 上进行不可约分解.
  - (4) 设 R 为 F 的子环, 且  $\mathbb{Q} \subset R$ . 证明:  $R = \mathbb{Q}$  或 R = F.
  - (5) 是否存在正整数 n, 使得  $u^n = 1_F$ ?
  - (6) 考虑  $E = F[x]/(x^2 + 5)$ . 判断 E 是否为域. 求 Aut(E) 的阶.
  - 解答 (1)  $x^3 + x + 1 = (x u)(x^2 + ux + u^2 + 1)$ . 下证  $x^2 + ux + u^2 + 1 \in F[x]$  不可约.
    - ◇ 由于  $(y^3 + y + 1)' = 3y^2 + 1 > 0$ ,  $\forall y \in \mathbb{R}$ ,  $y^3 + y + 1$  在  $\mathbb{R}$  上有且仅有一个根  $y_0$ . 由命题 2.4.13, 存在环同态  $\theta : \mathbb{Q}[y] \to \mathbb{Q}[y_0]$  使  $\theta(y) = y_0$  而  $\theta|_{\mathbb{Q}} = \mathrm{Id}_{\mathbb{Q}}$ . 由于  $y_0$  在  $\mathbb{Q}$  上代数,  $\mathbb{Q}[y_0] = \mathbb{Q}(y_0)$ . 又  $y^3 + y + 1$  在  $\mathbb{Z}$  上无根, 即在  $\mathbb{Q}$  上不可约,  $(y^3 + y + 1) \subset \mathrm{Ker}\,\theta$ , 而由命题 2.4.23,  $\mathbb{Q}[y]$  是 PID, 因此  $\mathrm{Ker}\,\theta = (y^3 + y + 1)$ . 由定理 2.2.20,  $F = \mathbb{Q}[y]/(y^3 + y + 1) \simeq \mathbb{Q}(y_0)$ .
    - ◇ 假设  $x^2 + ux + u^2 + 1 \in F[x]$  可约,则其根可表为 u 的多项式,即存在  $P,Q \in \mathbb{Q}[x]$ ,使得  $x^2 + ux + u^2 + 1 = [x P(u)][x Q(u)]$ . 在上述环同构下,此等式化为

$$x^{2} + y_{0}x + y_{0}^{2} + 1 = [x - P(y_{0})][x - Q(y_{0})],$$

从而在 ℝ[x] 中成立等式

$$x^{3} + x + 1 = (x - y_{0})[x - P(y_{0})][x - Q(y_{0})],$$

但这与 $x^3 + x + 1$ 在 $\mathbb{R}$ 上有且仅有一个根矛盾. 故 $x^2 + ux + u^2 + 1 \in F[x]$ 不可约.

- (2) 由注记 2.2.10 (3),  $\operatorname{Aut}(F) \simeq \operatorname{Aut}(\mathbb{Q}(y_0))$ . 由引理 3.3.1,  $|\operatorname{Aut}(F)| = |\operatorname{Root}_F(y^3 + y + 1)| \stackrel{(1)}{==} 1$ .
- (3) 作替换  $t = \frac{1}{x}$ , 则  $t^3(x^3 + x^2 + 1) = t^3 + t + 1 = (t u)(t^2 + ut + u^2 + 1)$ , 因此

$$x^{3} + x^{2} + 1 = x^{3}(t - u)(t^{2} + ut + u^{2} + 1) = (1 - ux)[1 + ux + (u^{2} + 1)x^{2}]$$
$$= (u^{-1} - x)[u + u^{2}x + (u^{3} + u)x^{2}] = (x + u^{2} + 1)(x^{2} - u^{2}x - u).$$

(4) 由  $R \subset F$  知 R 为整环, 而域上的有限维整环是域, 即 R 为域. 由定理 3.2.4,

$$[F:R][R:\mathbb{Q}] = [F:\mathbb{Q}] = 3.$$

因此  $[F:R]=3,[R:\mathbb{Q}]=1$  或  $[F:R]=1,[R:\mathbb{Q}]=3$ , 即  $R=\mathbb{Q}$  或 R=F.

- (5) 不存在. 用反证法, 假设存在正整数 n 使得  $u^n = 1_F$ , 由引理 3.5.14,  $x^n 1 = \prod_{d \mid n} \Phi_d(x)$ , 因此存在  $d \mid n$ , 使得  $\Phi_d(u) = 0$ . 由于  $\Phi_d(x) \in \mathbb{Q}[x]$  首一不可约,  $y^3 + y + 1 \in \mathbb{Q}[x]$  亦首一不可约且零化 u, 因此  $\Phi_d(x) = x^3 + x + 1$ . 但  $\phi(d) = \begin{cases} 1, & d = 2, \\ \text{偶数}, & d \geqslant 3, \end{cases}$  因此  $\deg(\Phi_d(x)) \neq 3$ , 矛盾.
- (6) ① 为证 E 为域, 只需证  $x^2 + 5 \in F[x]$  不可约. 用反证法, 假设  $x^2 + 5 \in F[x]$  可约, 则有域扩张塔

$$\mathbb{Q} \subset \mathbb{Q}[x]/(x^2+5) \subset F$$
,

由定理 3.2.4,  $3 = [F:\mathbb{Q}] = [F:\mathbb{Q}[x]/(x^2+5)][\mathbb{Q}[x]/(x^2+5):\mathbb{Q}] = 2$ , 矛盾. ② 先证明对任意  $\sigma \in \operatorname{Aut}(E)$ , 均有  $\sigma|_F = \operatorname{Id}_F$ . 由于  $\sigma_F$  被  $\sigma(u)$  唯一确定, 只需证  $\sigma(u) = u$ , 进而只需证  $y^3 + y + 1$  在 E 上仅有 u 一个根. 假设  $y^3 + y + 1$  在 E 上的根多于 1 个, 则它在 E 上恰有 3 个根, 设为  $\alpha, \beta, \gamma$ . 由于

$$\Delta^2 = (\alpha - \beta)^2 (\beta - \gamma)^2 (\gamma - \alpha)^2 = -4 \cdot 1^3 - 27 \cdot 1^2 = -31,$$

必有  $\sqrt{-31} \in E$ , 进而有域扩张塔

$$\mathbb{Q} \subset \mathbb{Q}(\sqrt{-5}, \sqrt{-31}) \subset E$$
.

由定理 3.2.4,  $[E:\mathbb{Q}]=[E:\mathbb{Q}(\sqrt{-5},\sqrt{-31})][\mathbb{Q}(\sqrt{-5},\sqrt{-31}):\mathbb{Q}]$ . 但  $[E:\mathbb{Q}]=2\cdot 3=6$ ,  $[\mathbb{Q}(\sqrt{-5},\sqrt{-31}):\mathbb{Q}]=4$ , 4  $\nmid$  6, 矛盾. 故  $\sigma|_F=\mathrm{Id}_F$  得证, 从而

$$|Aut(E)| = |Aut(E/F)| = |Root_E(x^2 + 5)| = 2.$$

# 6.4 2024 春期中考试

- 1. 考虑  $\mathbb C$  的子域  $E=\mathbb Q(\mathbf i,\xi)$ , 其中  $\mathbf i=\sqrt{-1}$  且  $\xi=\mathbf e^{\frac{2\pi \mathbf i}{5}}$ . 回顾  $\cos\frac{2\pi}{5}=\frac{\sqrt{5}-1}{4}$ .
  - (1) 证明  $E/\mathbb{Q}$  是多项式  $x^9 x^5 x^4 + 1 \in \mathbb{Q}[x]$  的分裂域.
  - (2) 计算  $\xi$  在  $\mathbb{Q}(\sqrt{5})$  上的最小多项式, 计算  $\xi$  在  $\mathbb{Q}(i)$  上的最小多项式.
  - (3) 将多项式  $x^4 + 6x^2 + 5 \in \mathbb{Q}(\xi)[x]$  分解成不可约多项式之积, 给出充分论证.
  - (4) 计算维数  $\dim_{\mathbb{Q}} E$ , 计算维数  $\dim_{\mathbb{Q}}(E \cap \mathbb{R})$ , 给出充分论证.
  - (5) 简要论证并具体构造 Aut(E) 中的全部元素, 判断其是否为 Abel 群.
- **2.** 考虑域  $K = \mathbb{F}_3[y]/(y^2 + \overline{1})$ . 记  $u = \overline{y}$ . 于是, K 中元素均形如 a + bu, 其中  $a, b \in \mathbb{F}_3$ . 自然视  $\mathbb{F}_3$  为 K 的 子域. 同理, 考虑域  $L = \mathbb{F}_3[z]/(z^2 + z \overline{1})$ , 记  $v = \overline{z}$ . 请论证并给出全部的环同态  $K \to L$ .
- 3. 考虑主理想整环 R 以及 (非零) 极大理想  $\mathfrak{m}$ . 假设有环同构  $R/\mathfrak{m} \simeq \mathbb{F}_p$ . 试计算商环  $R/\mathfrak{m}^2$  的阶数 (大小), 计算环自同构群  $\operatorname{Aut}(R/\mathfrak{m}^2)$  的阶数 (大小).
- **4.** 考虑 Gauss 整数环  $R = \mathbb{Z}[\mathbf{i}]$ . 对于任何正素数 p, 我们定义 R 的子环  $S_p = \{m + (pn)\mathbf{i} : m, n \in \mathbb{Z}\}$ .

- (1) 在 R 中将 17 7i 进行不可约分解.
- (2) 考虑商环  $\overline{R}=R/(17-7i)$ . 计算该环的阶数, 计算环自同构群  $\operatorname{Aut}(\overline{R})$  的阶数, 充分论证.
- (3) 判断并论证: 商环  $S_5/(5)$  和  $S_5/(5i)$  是否同构? 对于不同的正素数 p,q, 环  $S_p$  与  $S_q$  是否同构?

# 第七章 期末考试题目

#### 7.1 2020 春期末考试

- **1.** 考虑  $S_4$  中的共轭类  $C = \{(12)(34), (13)(24), (14)(23)\}$  以及  $S_4$  在 C 上的共轭作用.
  - (1) 计算 C 中三个元素的稳定化子及其交集.
  - (2) 记  $SHom(S_4, S_3)$  为所有  $S_4 \rightarrow S_3$  的满同态, 计算  $SHom(S_4, S_3)$  和  $Hom(S_4, S_3)$  的阶数.
  - (3) 是否存在单同态  $S_3 \hookrightarrow SL(2,\mathbb{C}), S_3 \hookrightarrow GL(2,\mathbb{C})$ ?
- 2. 考虑  $R = \mathbb{Z}[i], K = \mathbb{Q}(i)$ .
  - (1) 计算 gcd(4+7i,3+4i).
  - (2) 把81 + 8i分解成R中不可约元的乘积.
  - (3) 求  $u^2 + v^2 = 585$  的所有整数解.
  - (4) 计算 Aut(R/(13)).
  - (5)  $x^5 5$  和  $x^4 + x^3 + x^2 + x + 1$  是否为 K 中的不可约多项式?
  - (6) 分类 R 的子环, 并指出哪些是 UFD.
  - (7) 设 K' 是  $x^5 5$  在  $\mathbb{Q}(i)$  上的分裂域. 计算 [K':K], 并判断 Gal(K'/K) 是否为 Abel 群.
- 3. 设  $f(x) = x^4 + x + \overline{2} \in \mathbb{F}_3[x]$ , 考虑  $\mathbb{F}_{81} = \mathbb{F}_3[x]/(f(x))$ , 记 u = x + (f(x)).
  - (1) 证明 f(x) 在  $\mathbb{F}_3$  上不可约.
  - (2) 在  $\mathbb{F}_{81}$  中分解 f(x).
  - (3) 求 F<sub>81</sub> 的九元子域.
  - (4) 计算  $(u^2 + u + \overline{1})^{-1}$ .
  - (5) 求  $u^2 + u + \overline{1}$  在  $\mathbb{F}_3$  上的最小多项式.
  - (6) 计算  $u^2 + u + \overline{1}$  在  $\mathbb{F}_{81}^{\times}$  中的阶数.

### 7.2 2021 春期末考试

- **1.** 考虑  $A_4$  在 (123) 上的共轭作用, 记 C 为其轨道.
  - (1) 求 (123) 的稳定化子及 |C|.
  - (2) 求 C. 判断此作用在 C 上是否忠实.
  - (3) 计算  $|\text{Hom}(A_4, S_3)|$ .
  - (4) 是否存在群的单同态  $A_4 \hookrightarrow SL(2,\mathbb{C}), A_4 \hookrightarrow GL(2,\mathbb{C})$ ?
- 2. 考虑  $E = \mathbb{Q}(\sqrt[4]{2}, \mathbf{i}), K = E \cap \mathbb{R}$ .
  - (1) 判断  $x^4 2 \in \mathbb{Q}[x]$  是否可约,  $x^4 2 \in \mathbb{Q}(i)[x]$  是否可约.
  - (2) 计算  $[E:\mathbb{Q}]$  和 [E:K].
  - (3) Gal(E/ℚ) 在集合

$$\mathfrak{X} = \left\{ a = \sqrt[4]{2}, b = i\sqrt[4]{2}, c = -\sqrt[4]{2}, d = -i\sqrt[4]{2} \right\}$$

上有一自然作用, 它诱导群同态  $\rho$ :  $Gal(E/\mathbb{Q}) \to S(\mathfrak{X})$ , 求  $Ker \rho 与 Im \rho$ .

- (4) 求  $Gal(E/\mathbb{Q}(i))$  和 Gal(E/K) 在  $\rho$  下的像.
- 3. 考虑  $E=(\sqrt{2},\sqrt{5})$ , 求所有的  $u\in E$ , 使得  $E=\mathbb{Q}(u)$ .  $\boxed{$ 提示 $}$  求 E 的线性基和所有域扩张的中间域.
- **4.** 考虑  $A = \mathbb{Q}^{\times} \setminus \{1\}$  和 A 上的双射  $\sigma(a) = \frac{1}{a}$ ,  $\tau(a) = \frac{1}{1-a}$ . 设 G 为由  $\sigma$  和  $\tau$  生成的群, 乘法为映射的复合. 判断 G 是否为有限群. 若有限, 求 |G|.

## 7.3 2023 春期末考试

- **1.** 考虑  $K = \mathbb{Q}(\sqrt[4]{3}, i)$  以及  $E = K \cap \mathbb{R}$ . 以下, 维数均指  $\mathbb{Q}$  上的维数.
  - (1) 计算域 E 的维数与 |Aut(E)|.
  - (2) 求  $\sqrt[4]{3}$  + i 在  $\mathbb{Q}$  上的最小多项式.
  - (3) 考虑  $F = \mathbb{Q}(\sqrt{2}, i)$ . 证明:  $x^4 3 \in F[x]$  不可约.
  - (4) 考虑  $x^4 3$  的根集  $\mathfrak{X} = \left\{ a = \sqrt[4]{3}, b = \sqrt[4]{3}i, c = -\sqrt[4]{3}i \right\}$  以及群作用  $\operatorname{Aut}(K)^{\frown}K$  诱导的 群同态  $\rho : \operatorname{Aut}(K) \to S(\mathfrak{X})$ , 计算并描述  $\rho$  的像.
  - (5) 分类 K 的全体维数为 4 的子域.
- **2.** 考虑 n 元集合  $\{1, \dots, n\}$  的对称群  $S_n$ .
  - (1) 证明:  $S_n$  可由 (12) 和 (12…n) 生成.
  - (2) 对 2,3,4 的任一排列 a,b,c, 定义  $H_{(a,b,c)}=((12),(1abc))\leqslant S_4$ , 试分类所有的排列 a,b,c 使得  $H_{(a,b,c)}=S_4$ .
  - (3) 设  $H \leq S_5$  满足 (12)  $\in H$  且  $5 \mid |H|$ . 证明:  $H = S_5$ .
  - (4) 考虑  $f(x) = x^5 4x + 2 \in \mathbb{Q}[x]$ , 证明:  $Gal_{\mathbb{Q}}(f) \simeq S_5$ .
- 3. 将  $\mathbb{Z}^3$  中的元素写成行向量, 考虑由 (4, -6, 0) 和 (0, 6, -4) 生成的子群 H.
  - (1) 在同构意义下, 计算商群  $\mathbb{Z}^3/H$  的扭子群.
  - (2) 证明:不存在群同态  $f: \mathbb{Z}^3 \to \mathbb{Z}$  使得  $\operatorname{Ker} f = H$ .

# 7.4 2024 春期末考试

- **1.** 考虑  $E = \mathbb{Q}(\sqrt[4]{18}, i)$ , 以及  $K = E \cap \mathbb{Q}(\sqrt{3} + \sqrt{2})$ . 以下, 维数均指  $\mathbb{Q}$  上维数.
  - (1) 计算域 E 的维数,给出充分论证.
  - (2) 判断并论证: 多项式  $x^4 18 \in \mathbb{Q}(i)[x]$  是否可约?
  - (3) 计算域 K 的维数,给出充分论证.
  - (4) 考虑  $x^4-18$  的根集  $\mathscr{X}=\left\{a=\sqrt[4]{18},b=\sqrt[4]{18}\mathrm{i},c=-\sqrt[4]{18}\mathrm{i}\right\}$ , 以及群作用  $\mathrm{Aut}(E)^{\curvearrowright}\mathscr{X}$  诱导的群同态  $\rho:\mathrm{Aut}(E)\to S(\mathscr{X})$ . 试给出  $\rho$  像中的全部元素.
  - (5) 试分类 E 的全部子域, 给出充分论证.
- **2.** 考虑一元有理函数域  $E=\mathbb{C}(x)$ . 对于任意正整数 n, 考虑其子域  $L_n=\mathbb{C}\left(x^n+x^{-n}\right)$ .
  - (1) 计算域扩张  $E/L_n$  的维数, 给出充分论证.
  - (2) 判断并论证: 断言 " $L_n \subset L_m$  当且仅当 m|n", 是否成立?
  - (3) 试给出域扩张  $E/L_4$  的所有中间域, 给出充分论证.
- 3. 设 G 为有限群,  $H \leqslant G$  为真子群. 试证明:  $G \neq \bigcup_{g \in G} gHg^{-1}$ . 试问: 该结论对于无限群 G 是否也成立?
- **4.** 设 A 为有限生成 Abel 群, 秩为 2. 设有群的满同态  $\theta: A \to \mathbb{Z} \oplus \mathbb{Z}$ . 证明: Ker  $\theta$  恰等于 A 的扭 (torsion) 子群.