Friction, Rolling, and Slipping in 2D

Dynamics: Friction

© 2021 Mayuresh Patil. Licensed under a Creative Commons Attribution 4.0 license https://creativecommons.org/licenses/by-nc-sa/4.0/ mpatil@gatech.edu

Euler's Second Law for <u>2D</u> Rigid Bodies (about CM)

For 2D rigid bodies

$$\sum \vec{M}^C = \frac{d(I_{zz}^C \,\omega_z \,\hat{k})}{dt}$$

• The equation for the z-component of the moment gives us a scalar equation:

$$\sum M_z^C = \frac{d(I_{zz}^C \omega_z)}{dt} = I_{zz}^C \frac{d\omega_z}{dt}$$
$$\sum M_z^C = I_{zz}^C \dot{\omega}_z = I_{zz}^C \ddot{\theta} = I_{zz}^C \alpha$$

• For 2D rigid bodies, we do not have the nonlinear cross-product term because the moment of inertia I_{ZZ}^{C} does not change with rotation about z-axis and the products of inertia are assumed zero.

Equations of Motion of 2D Rigid Body

• The equations relative to the center of mass:

$$\sum F_x = m\ddot{x}_{C}$$

$$\sum F_y = m\ddot{y}_{C}$$

$$\sum M_z^C = I_{zz}^C \ddot{\theta}$$

Note: that the position is of the center of mass, the moment and moment of inertia are about the center of mass, and the derivatives are all in the inertial frame.

Forces on a Rolling or Slipping Cylinder

Gravity

- Acts at the center of mass
- For rigid/flexible body assuming we are interested only in the overall motion of the body

Forces on a Rolling or Slipping Cylinder

Forces on a Rolling or Slipping Cylinder

- Friction
 - Acts at the point of contact
 - Acts along the plane of contact opposes slip
 - ... opposite in direction to the relative velocity if there were no friction
 - Is related to the normal reaction

Friction on Rolling vs Slipping body

 Max friction force depends on normal reaction and the coefficient of friction between two objects

• During rolling:
$$|f| \leq \mu N$$
 The Knewatre constraint

• During slipping:
$$|f| = \mu N$$

We either know (i) the friction force (if slipping)
 or have (ii) a kinematic constraint (if rolling)

... in 3D we know the friction force magnitude and direction for slipping and the two components of velocity for rolling.

Kinematics of Rolling

Assume the wheel has:

- Angular Velocity: $\vec{\omega} = \dot{\theta}\hat{k}$ Angular Acceleration: $\vec{\alpha} = \ddot{\theta}\hat{k}$
- Assume the center of the wheel has
 - Velocity: $\vec{v}_C = \dot{x}_C \hat{\imath}$
 - Acceleration: $\vec{a}_C = \ddot{x}_C \hat{\imath}$

- Rolling constraint: $\vec{v}_P = 0$
- Constraint relates the velocity (of center of mass) and angular velocity (of wheel)

Rolling (onst
$$\dot{x}_C = -r\dot{ heta}$$
 \Rightarrow $\vec{v}_C = -r\dot{ heta}\hat{i}$ $\vec{a}_C = -r\ddot{ heta}\hat{i}$

$$ec{v}_C = -r\dot{ heta}$$

$$\vec{a}_C = -r\ddot{\theta}\hat{a}$$

Integrating the constraint

$$x_C = -r\theta + \text{constant}$$

Problem: Cylinder on an Incline

- Starting from rest
- Four possible Cases:
 - Frictionless surfaces slip
 - Sufficient friction roll
 - Insufficient friction slip
 - Unknown roll/slip

Cylinder on an Incline: Rolling

$$ZF_x = m\ddot{x}_c = D \quad mg \, Sin \phi - f = m\ddot{x}_c \, D$$

$$V - mg \, (as \phi = m\ddot{y}_c \, 2s)$$

$$-fR = Izz \, \theta \, (3s)$$

$$Y_c = R \Rightarrow Y_c = 0$$
 (4)

Rolling $\dot{x}_c = -R\dot{\theta} \Rightarrow \ddot{x}_c = -R\dot{\theta} \cdot \vec{5}$

Unknowns: $\dot{x}_c, \dot{y}_c, \dot{\theta}, N, f$

I assumed rolling, can I shock my assumption I

Check: Is there sufficient friction?

Cylinder on an Incline: Slipping

$$ZF_x = m\ddot{x}_c = D \quad mg Sin Ø - f = m\ddot{x}_c D$$

 $V - mg(os Ø = m\ddot{y}_c D)$

$$\gamma_c = R \Rightarrow \gamma_c = 0$$

Rolling Usen-Rio to the AROS FILL

Unknowns: xc, yc, B, N, f

Talsumed Jolly Can Scheck my assamphon If SMA checked

Check: Is it slipping in the right direction?

Cylinder on an Incline: Unknown rolling/slipping

