CHAPITRE ECT2 Bilan d'énergie lors d'une transformation d'un système thermodynamique

> Problématique

FIGURE 1: Deux exemples de transformations thermodynamiques

Questions: Comment décrire la transformation subie par le système thermodynamique? Que se passe-t-il en termes d'échanges d'énergies?

Lycée M. Montaigne – MP2I

- 1 Transformations d'un système thermodynamique
- 1.1 Qu'est-ce qu'une transformation?
- > Définition
 - État <u>d'équilibre</u> initial (EI) \rightarrow état <u>d'équilibre</u> final (EF)
- > Variables à l'équilibre
 - Variables externes :

température T_{ext} , pression P_{ext}

Variables internes :

P, V, T, n*

1.2 Déplacement de l'équilibre

> Action mécanique

Modification V, P du système : paroi mobile

Échange d'énergie mécanique : travail

- $P \nearrow 1$, $V \searrow 1$: compression ($\delta W > 0$)
- P \searrow , V \nearrow : détente (δW < 0)

- > Action thermique
- Modification de T du système : échange de chaleur, paroi diatherme
 - Syst. reçoit chaleur (δQ > 0): chauffage
 - Syst. fournit chaleur ($\delta Q < 0$): refroidissement

- 1 Transformations d'un système thermodynamique
- 1.2 Déplacement de l'équilibre
- > Action sur la quantité de matière

Modification n: échange de matière, paroi fictive

Syst. reçoit matière (δn > 0) : admission

■ Syst. fournit matière (δn < 0): éjection

Nécessité systèmes ouverts

Cadre du programme :

essentiellement systèmes fermés

1.3 Différentes transformations

> Caractéristiques des transformations Syst. fermé

Transformation	Variables internes	Variables externes
	(système)	(milieu extérieur)
Isochore	V=cste	
Isobare	P = cste	
Isotherme	T=cste	
Monobare		$P_{\scriptscriptstyle ext} = cste$
Monotherme		$\overline{T_{ext} = cste}$

FIGURE 2: Nature des transformations thermodynamiques

- > Caractérisation d'une transformation : nom+adjectif
- > Retour à la problématique
- > Représentation des transf. ds le diag de Clapeyron

1.4 Évolution temporelle

> Temps de relaxation

Propriété:

Équilibre mécanique + rapide qu'équilibre thermique et équilibre de diffusion

> Transformation quasi-stationnaire ou quasistatique (TQS)

Définition: TQ5

succession continue d'états d'équilibre infiniment voisins : transformation infiniment lente

1.5 Détermination de l'état d'équilibre final

- > Méthode
 - * Syst. thermodynamique (fermé), E.I. + E.F.
 - * Équilibre mécanique
 - * Équilibre thermique
 - * Équilibre de diffusion (système diphasé)
 - * Caractérisa° de la transformation
 - Équations d'état

1 Transformations d'un système thermodynamique

1.5 Détermination de l'état d'équilibre final

Exercice d'application 1

On considère une enceinte indéformable composée de deux compartiments séparés par une cloison étanche et mobile, contenant du gaz. Une cale bloque la cloison mobile. Toutes les parois sont diathermes. À partir de l'état d'équilibre initial, représenté à gauche sur la figure, on enlève la cale et on place l'enceinte dans un environnement à la température T_0 .

Déterminer l'état d'équilibre final (à droite sur la figure).

2 Premier principe thermodynamique

- 2.1 Variation de l'énergie totale
- Énergie totale

$$E = E_m + U$$

> Variation d'énergie du système

$$\Delta E_{AB} = E_B - E_A = E_{\acute{e}ch,A \to B}$$

Variation d'énergie

Quantité d'énergie échangée

> Système isolé

Propriété:

$$\Delta E_{AB} = E_B - E_A = 0$$

l'énergie totale est conservative

2 Premier principe thermodynamique

2.2 Expression du 1er principe

> Énergie échangée

Pour un système fermé, échanges d'énergie $E_{\acute{e}ch}$:

 $W_{A \to B,\mathcal{C}}$ travail des forces ext. non conservatives

 $Q_{A o B, \mathcal{C}}$ transfert d'énergie thermique

- > Convention de signe
- Enoncé du 1^{er} principe (cas général)

$$\Delta E_{AB} = E_B - E_A = W_{A \rightarrow B, \mathcal{C}} + Q_{A \rightarrow B, \mathcal{C}}$$

Enoncé du 1er principe (forme usuelle)

$$\Delta U_{AB} + \Delta E_{C,AB}^{macro} = U_B - U_A + E_{C,B}^{macro} - E_{C,A}^{macro} = W_{A \rightarrow B,\mathcal{C}} + Q_{A \rightarrow B,\mathcal{C}}$$

- 2 Premier principe thermodynamique
- 2.2 Expression du 1^{er} principe
- > Système isolé

Propriété

$$\Delta U_{AB} = 0$$

1^{er} principe = principe de conservation

- > Notations
- > Transformation cyclique

<u>Énoncé du 1^{er} ppe pour une transf. cyclique :</u>

$$W_{A \to A,\mathcal{C}} + Q_{A \to A,\mathcal{C}} = 0$$
 avec $W_{A \to A,\mathcal{C}} = -Q_{A \to A,\mathcal{C}} \neq 0$

> Premier principe en présence de travail utile

$$\Delta U_{AB} = W_{P,A \to B} + W_{u,A \to B} + Q_{A \to B}$$

3 Échange d'énergie mécanique avec le milieu extérieur : travail des forces de pression

travail W des forces extérieures non conservatives se limite à celui des forces de pression

3.1 Pression extérieure

 \succ Expression de la pression extérieure P_{ext} Force pressante F tq:

$$F = P_{ext}S$$

> Exemples

3 Échange d'énergie mécanique avec le milieu extérieur : travail des forces de pression

3.2 Expression générale du travail des forces de pression

> Transformation élémentaire

$$\delta W = -P_{ext}dV$$

- > Interprétation
 - δW > 0 : fluide comprimé : fonctionnement récepteur
 - δW < 0 : fluide se détend : fonctionnement moteur
- > Transformation finie

Entre EI A et EF B

$$W_{A
ightarrow B,\mathcal{C}} = - \int_{V_A,\mathcal{C}}^{V_B} P_{ext} dV$$

3 Échange d'énergie mécanique avec le milieu extérieur : travail des forces de pression

3.3 Cas de transformations finies simples

- ightharpoonup Transformation isochore W = 0
- > Transformation monobare

3.4 Cas d'une transformation quasi-statique (TQS)

équilibre mécanique tout au long de l'évolution $P_{ext} = P$

Propriété:

Travail élémentaire : $\delta W = -PdV$

Travail pour une transf. finie :
$$W_{A \to B, \mathcal{C}} = -\int_{V_A, \mathcal{C}}^{V_B} P dV$$

3 Échange d'énergie mécanique avec le milieu extérieur : travail des forces de pression

3.5 Lien avec le diagramme de Clapeyron

- \triangleright Diagramme de Clapeyron P = f(V) ou P = g(v)
- > Représentation graphique du travail

Courbe = chemin suivi par une transformation mécaniquement réversible ou quasi-statique

$$W_{A o B,\mathscr{C}}=-\int_{V_A,\mathscr{C}}^{V_B}PdV=-\mathscr{A}$$

- > Interprétation du signe du travail
 - sens $A \rightarrow B$: **détente** $(\forall \nearrow)$ = **moteur**
 - le sens $B \rightarrow A$: compression $(V \lor) = récepteur$

- 3 Échange d'énergie mécanique avec le milieu extérieur : travail des forces de pression
- 3.5 Lien avec le diagramme de Clapeyron

Exercice d'application 2

Deux moles de dioxygène, supposées parfaites, passent réversiblement d'un état d'équilibre A de paramètres thermodynamiques (P_A, V_A, T_A) à un état d'équilibre B de paramètres $(P_B = 3P_A, V_B, T_B = T_A)$.

- 1. Déterminer le volume final V_B .
- 2. Dans un diagramme de Clapeyron, tracer la trajectoire suivie lors des deux transformations suivantes, puis calculer le travail des forces pressantes en fonction de la température T_A :
 - (1): transformation isotherme de A à B
 - (2): transformation composée d'une isochore ($A \grave{a} C$) puis d'une isobare ($C \grave{a} B$).

3 Échange d'énergie mécanique avec le milieu extérieur : travail des forces de pression

3.6 Cas des transformations cycliques

$$W_{A o A, \mathcal{C}} = - \oint_{\mathcal{C}} P dV$$

Exercice d'application 3

Reprendre l'exercice d'application 2 et calculer le travail total sur le cycle ACBA puis sur le cycle ABCA.

> Nature du cycle

- Cycle dans le sens horaire : W < 0 : cycle /syst.
 moteur
- Cycle dans le sens trigonométrique : W > 0 : cycle /syst. récepteur

3 Échange d'énergie mécanique avec le milieu extérieur : travail des forces de pression

3.7 Travail utile

- \triangleright <u>Définition</u>: travail utile W_u
- > Travail utile d'origine électrique

$$W_{u}=\int_{t_{I}}^{t_{F}}\mathscr{S}_{\!\! ilde{e}lec}dt=\int_{t_{I}}^{t_{F}}uig(tig)iig(tig)dt$$

Exercice d'application 4

Soit une mole de gaz parfait de température initiale T_0 et de capacités thermiques à volume constant C_V et à pression constante C_P . On chauffe le gaz grâce à une résistance R, parcourue par un courant I, pendant τ secondes.

- 1. Dans une première expérience, le gaz, de pression P_0 , est placé dans une enceinte adiabatique et rigide de volume V_0 . Déterminer la température finale T_f du gaz.
- 2. Dans une deuxième expérience, le gaz est placé dans une enceinte adiabatique horizontale de volume V_0 , fermée par un piston pouvant coulisser sans frottement. La pression de l'atmosphère est P_0 . Déterminer la température finale T_f du gaz.

- 4 Échange d'énergie thermique avec le milieu extérieur : transfert thermique
- 4.1 Transfert thermique
- > Échanges énergétiques
 - Travail des forces de pression : échange d'énergie au niveau macroscopique
 - Travail au niveau microscopique: transferts thermiques
- > <u>Définition</u>: transfert thermique Q

Lycée M. Montaigne – MP2I 20

- 4 Échange d'énergie thermique avec le milieu extérieur : transfert thermique
- 4.2 Modes de transfert thermique
- > Perception du transfert thermique
 - 2 systèmes en contact avec T différentes
 - À l'échelle macro: transformation du système:
 - variation de température
 - changement d'état...
- > 3 modes de transfert thermique
 - Conduction (diffusion thermique)
 - Convection
 - Rayonnement
- > Conséquences

CHAPITRE ECT2				
Bilan d'énergie lors d'une				
transformation				

4 Échange d'énergie thermique avec le milieu extérieur : transfert thermique

4.3 Modélisation des transferts thermiques

- 4.3.1 Transfert par conduction
- > Retour à la problématique
- > Flux ou puissance thermique

Définition : flux thermique ϕ

$$\delta Q = \phi dt$$

> Résistance thermique

Définition :

Loi d'Ohm:

$$T_1-T_2=R_{th}\phi_{1 o 2}$$

 $R_{th} > 0$ résistance, thermique en K.W⁻¹

$$G_{th} = \frac{1}{R_{th}}$$
 conductance thermique en W.K⁻¹

- 4 Échange d'énergie thermique avec le milieu extérieur : transfert thermique
- 4.3 Modélisation des transferts thermiques

4.3.2 Transfert conducto-convectif: loi de Newton

> Exemple

Transferts thermiques à l'interface entre 2 fluides : conductifs et convectifs : indissociables

> Loi de Newton

$$\phi_{1
ightarrow2}=hSig(T_1-T_2ig)$$

h > 0 : coeff. de transfert thermique en W.K⁻¹.m⁻²

> Résistance thermique de Newton

$$R_N = \frac{T_1 - T_2}{\phi_{1 \to 2}} = \frac{1}{hS} > 0$$

- 4 Échange d'énergie thermique avec le milieu extérieur : transfert thermique
- 4.3 Modélisation des transferts thermiques
- 4.3.2 Transfert conducto-convectif: loi de Newton

> Ordres de grandeur

h dépend de:

- nature des corps
- état de l'interface
- vitesse des fluides

	Solide / gaz	Solide / eau liquide
$h\left(\mathrm{W.K^{-1}.m^{-2}}\right)$ sans convection forcée	5 à 30	$4.10^2 \ { m a} \ 10^3$
$h\left(\mathrm{W.K^{-1}.m^{-2}}\right)$ avec convection forcée	10 à 3.10 ²	$3.10^2 \ {\rm a} \ 12.10^3$

FIGURE 3 : Ordres de grandeur du coefficient de transfert thermique h

4 Échange d'énergie thermique avec le milieu extérieur : transfert thermique

4.4 Transformation adiabatique

> <u>Définition</u>: transf. adiabatique

$$Q = 0$$

- > Système isolé
- > Nature des parois

Toutes les parois sont athermanes ou adiabatiques ou calorifugées : idéalisation de la réalité

4 Échange d'énergie thermique avec le milieu extérieur : transfert thermique

4.5 Thermostat

- > <u>Définition</u>:
 - thermostat (source d'énergie thermique)
- > Conséquence
- > Réalisation pratique
- > Interface avec un thermostat
 - Parois diathermes ou diathermanes
- > Transformation monotherme
 - **Définition**:
- > Transformation isotherme

- 4 Échange d'énergie thermique avec le milieu extérieur : transfert thermique
- 4.6 Modélisation d'une transformation : adiabatique ou isotherme?
- > Transformations idéales

- Isotherme :T = cste, éch. d'énergie therm (Q≠0)
- Adiabatique : Q = 0 et T ≠ cste
- > Modélisation

Critères de choix du modèle:

- Si transf rapide ou si parois très épaisses : adiabatique
- Si transf lente et que système en contact avec un thermostat: isotherme

4 Échange d'énergie thermique avec le milieu extérieur : transfert thermique

4.7 Détermination du transfert thermique au cours d'une transformation

- > Méthode

 - **riangle Variation d'énergie cinétique macro.** ΔE_{CAB}^{macro}
 - **Travail des forces de pression** $W_{A \to B,\mathcal{C}}$
 - lacktriangle Variation d'énergie interne ΔU_{AR}

- 4 Échange d'énergie thermique avec le milieu extérieur : transfert thermique
- 4.7 Détermination du transfert thermique au cours d'une transformation
- > Transformation adiabatique

$$Q_{A \to B, \mathcal{C}} = 0$$

> Transformation isochore

$$Q_{A \to B, \mathcal{C}} = \Delta U = U_B - U_A = Q_{A \to B}$$

<u>Propriété</u>

- 4 Échange d'énergie thermique avec le milieu extérieur : transfert thermique
- 4.7 Détermination du transfert thermique au cours d'une transformation

Exercice d'application 5 : retour à la problématique

Une brique, initialement chauffée à la température T_0 , est placée dans une atmosphère plus fraîche, à la température constante T_{air} . On suppose qu'elle est posée sur le sol adiabatique et on note S la surface totale de la brique en contact avec l'air. On note R_{th} sa résistance thermique et C sa capacité thermique. Déterminer la loi d'évolution de la température T(t), supposée uniforme dans toute la brique.

> Analogie thermoélectrique

	Électricité	Thermique
Loi d'ohm	$u_0 - u(t) = Ri(t)$	$T_{air}-Tig(tig)=R_{th}\phiig(tig)$
Dérivation	i(t) = C du(t)	d(t) = C dT(t)
temporelle	$t(t) - C \frac{dt}{dt}$	$\varphi(\iota) - C \frac{dt}{dt}$

FIGURE 4 : Analogie thermoélectrique

5 Enthalpie d'un système

- 5.1 Transfert thermique pour une transformation monobare
- > Transformation monobare

$$P_A = P_{ext}$$
 $P_B = P_{ext}$

- > Utilisation du 1er principe
- > Expression du transfert thermique

Lycée M. Montaigne – MP2I 31

5.2 Enthalpie et capacité thermique à pression constante

- 5.2.1 Enthalpie
- > Définition :

$$H = U + PV$$
 (J)

- > Extensivité
- > 2nde loi de Joule

<u>Propriété</u>

Système obéit à la 2^{nde} loi de Joule si H ne dépend que de la température T

- 5 Enthalpie d'un système
- 5.2 Enthalpie et capacité thermique à pression constante

5.2.2 Capacité thermique à pression constante

> <u>Définition</u>:

$$C_P = \frac{dH}{dT} \quad (J.K^{-1})$$

- > Grandeurs intensives associées
 - Capacité thermique molaire

$$C_{P,m} = \frac{dH_m}{dT} = \frac{C_P}{n} \left(J.K^{-1}.mol^{-1} \right)$$

Capacité thermique massique

$$c_{p} = \frac{dh}{dT} = \frac{C_{p}}{m} \left(J.K^{-1}.kg^{-1} \right)$$

Variation d'enthalpie

$$\Delta H_{AB} = \int_{T_A}^{T_B} C_P(T) dT$$

Si
$$\mathcal{C}_P$$
 indpdte de T : $\Delta H_{AB} = C_P \Delta T = C_P ig(T_B - T_Aig)$

5 Enthalpie d'un système

5.3 Expression du premier principe pour une transformation monobare

> Propriété:

$$Q_{A \to B, \mathcal{C}} = H_B - H_A = \Delta H_{AB} = Q_{A \to B}$$

> Premier principe en présence de travail utile

$$\Delta H = W_u + Q$$

- > Suite exercice d'application 4
- 2. Dans une deuxième expérience, le gaz est placé dans une enceinte adiabatique horizontale de volume V_0 , fermée par un piston pouvant coulisser sans frottement. La pression de l'atmosphère est P_0 . Déterminer la température finale T_f du gaz.

5.4 Cas du gaz parfait

> Enthalpie molaire

Propriété:

GP obéit à la 2^{nde} loi de Joule

> Capacité thermique à pression constante

Relation de Mayer: Pour GP: $C_p - C_v = nR$

$$C_p - C_V = nR$$

Conséquence
$$C_P - C_V > 0$$
 et $C_P > C_V$

> Coefficient y du gaz parfait

Définition

$$\gamma = \frac{C_{P}\left(T\right)}{C_{V}\left(T\right)} = \frac{C_{Pm}\left(T\right)}{C_{Vm}\left(T\right)} = \frac{c_{P}\left(T\right)}{c_{V}\left(T\right)} > 1$$

5 Enthalpie d'un système

5.4 Cas du gaz parfait

Expressions et valeurs des capacités thermiques

<u>pour un GP</u>

$$C_V = \frac{nR}{\gamma - 1}$$
 et $C_P = \frac{\gamma nR}{\gamma - 1}$

Gaz parfait	C_{Vm}	C_{Pm}	γ	Conditions
GPM	$\frac{3}{2}R$	$\frac{5}{2}R$	$\frac{5}{3} = 1,67$	$\forall T$
GPP	$\frac{5}{2}R$	$\frac{7}{2}R$	$\frac{7}{5} = 1,40$	T usuelle

FIGURE 5 : Capacités thermiques et coefficient γ d'un gaz parfait

5.5 Cas d'une phase condensée indilatable et incompressible

> Enthalpie molaire

Propriété:

$$H_{\scriptscriptstyle m}\big(T\big) \simeq U_{\scriptscriptstyle m}\big(T\big)$$

> Capacité thermique à pression constante

Propriété

$$C_{Pm} = C_{Vm} = C_m$$

> Cas de l'eau liquide

Définition

capacité thermique massique de l'eau liquide:

$$c_{\rm eau\,liq} = 4.18.10^3~{
m J.K^{-1}.kg^{-1}}$$

5.6 Calorimétrie

> <u>Définition</u>:

Calorimétrie: art de mesurer les transferts thermiques reçus ou cédés par un système

> Application

mesurer les capacités thermiques

5 Enthalpie d'un système

5.6 Calorimétrie

> Calorimètre

Définition:

ightharpoonup Capacité thermique du calorimètre C_{cal}

<u>Définition</u>: masse équivalente en eau $m_{\acute{e}q}$

$$C_{cal} = m_{\acute{e}q} c_{eau}$$