Package 'TSrepr'

October 12, 2022

Type Package

Title Time Series Representations

```
Version 1.1.0
Date 2020-07-12
Description Methods for representations (i.e. dimensionality reduction, preprocessing, feature extrac-
      tion) of time series to help more accurate and effective time series data mining.
      Non-data adaptive, data adaptive, model-based and data dictated (clipped) representation meth-
      ods are implemented. Also various normalisation methods (min-max, z-score, Box-Cox, Yeo-
      Johnson),
      and forecasting accuracy measures are implemented.
License GPL-3 | file LICENSE
Encoding UTF-8
LazyData true
Depends R (>= 2.10)
Imports Rcpp (>= 0.12.12), MASS, quantreg, wavelets, mgcv, dtt
LinkingTo Rcpp
RoxygenNote 7.1.0
URL https://petolau.github.io/package/,
      https://github.com/PetoLau/TSrepr/
BugReports https://github.com/PetoLau/TSrepr/issues
Suggests knitr, rmarkdown, ggplot2, data.table, moments, testthat
VignetteBuilder knitr
NeedsCompilation yes
Author Peter Laurinec [aut, cre] (<a href="https://orcid.org/0000-0002-3501-8783">https://orcid.org/0000-0002-3501-8783</a>)
Maintainer Peter Laurinec <tsreprpackage@gmail.com>
Repository CRAN
Date/Publication 2020-07-13 06:50:15 UTC
```

R topics documented:

clipping
coefComp
denorm_atan
denorm_boxcox
denorm_min_max
denorm_yj
denorm_z
elec_load
fast_stat
maape
mae
mape
mase
mdae
mse
norm_atan
norm_boxcox
norm_min_max
norm_min_max_list
norm_min_max_params
norm_yj
norm z
norm z params
repr_dct
repr_dft
repr_dwt
repr_exp
repr_feaclip
repr_feacliptrend
repr_featrend
repr_gam
repr list
repr_lm
repr matrix
repr paa
repr_pip
repr_pla
repr_sax
repr_seas_profile
repr_sma
repr_windowing
rleC
rmse
smape
trending

clipp	oing	Creat	es b	it-l	evel	l (cl	lipp	ed	rep	res	sen	tati	on,	fro	om	a 1	vec	toi	r		
Index																					46
	TSrepr	 																			 . 44
clipping																					3

Description

The clipping computes bit-level (clipped representation) from a vector.

Usage

clipping(x)

Arguments

x the numeric vector (time series)

Details

Clipping transforms time series to bit-level representation.

It is defined as follows:

$$repr_t = 1ifx_t > \mu, 0otherwise,$$

where x_t is a value of a time series and μ is average of a time series.

Value

the integer vector of zeros and ones

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Bagnall A, Ratanamahatana C, Keogh E, Lonardi S, Janacek G (2006) A bit level representation for time series data mining with shape based similarity. Data Mining and Knowledge Discovery 13(1):11-40

Laurinec P, and Lucka M (2018) Interpretable multiple data streams clustering with clipped streams representation for the improvement of electricity consumption forecasting. Data Mining and Knowledge Discovery. Springer. DOI: 10.1007/s10618-018-0598-2

See Also

trending

4 coefComp

Examples

```
clipping(rnorm(50))
```

coefComp

Functions for linear regression model coefficients extraction

Description

The functions computes regression coefficients from a linear model.

Usage

```
lmCoef(X, Y)
rlmCoef(X, Y)
l1Coef(X, Y)
```

Arguments

X the model (design) matrix of independent variablesY the vector of dependent variable (time series)

Value

The numeric vector of regression coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

```
lm, rlm, rq
```

```
design_matrix <- matrix(rnorm(10), ncol = 2)
lmCoef(design_matrix, rnorm(5))
rlmCoef(design_matrix, rnorm(5))
l1Coef(design_matrix, rnorm(5))</pre>
```

denorm_atan 5

denorm_atan

Arctangent denormalisation

Description

The denorm_atan denormalises time series from Arctangent function.

Usage

```
denorm_atan(x)
```

Arguments

Χ

the numeric vector (time series)

Value

the numeric vector of denormalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

```
denorm_z, denorm_min_max
```

Examples

```
denorm_atan(runif(50))
```

denorm_boxcox

Two-parameter Box-Cox denormalisation

Description

The denorm_boxcox denormalises time series by two-parameter Box-Cox method.

Usage

```
denorm_boxcox(x, lambda = 0.1, gamma = 0)
```

6 denorm_min_max

Arguments

x the numeric vector (time series) to be denormalised

lambda the numeric value - power transformation parameter (default is 0.1)

gamma the non-negative numeric value - parameter for holding the time series positive

(offset) (default is 0)

Value

the numeric vector of denormalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

```
denorm_z, denorm_min_max, denorm_atan
```

Examples

```
denorm_boxcox(runif(50))
```

denorm_min_max

Min-Max denormalisation

Description

The denorm_min_max denormalises time series by min-max method.

Usage

```
denorm_min_max(x, min, max)
```

Arguments

x the numeric vector (time series)

min the minimum value max the maximal value

Value

the numeric vector of denormalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

denorm_yj 7

References

Laurinec P, Lucká M (2018) Clustering-based forecasting method for individual consumers electricity load using time series representations. Open Comput Sci, 8(1):38–50, DOI: 10.1515/comp-2018-0006

See Also

```
norm_min_max, norm_min_max_list
```

Examples

```
# Normalise values and save normalisation parameters:
norm_res <- norm_min_max_list(rnorm(50, 5, 2))
# Denormalise new data with previous computed parameters:
denorm_min_max(rnorm(50, 4, 2), min = norm_res$min, max = norm_res$max)</pre>
```

denorm_yj

Yeo-Johnson denormalisation

Description

The denorm_yj denormalises time series by Yeo-Johnson method

Usage

```
denorm_yj(x, lambda = 0.1)
```

Arguments

x the numeric vector (time series) to be denormalised
lambda the numeric value - power transformation parameter (default is 0.1)

Value

the numeric vector of denormalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

```
denorm_z, denorm_min_max, denorm_boxcox
```

```
denorm_yj(runif(50))
```

8 denorm_z

denorm_z

Z-score denormalisation

Description

The denorm_z denormalises time series by z-score method.

Usage

```
denorm_z(x, mean, sd)
```

Arguments

x the numeric vector (time series)

mean the mean value

sd the standard deviation value

Value

the numeric vector of denormalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Laurinec P, Lucká M (2018) Clustering-based forecasting method for individual consumers electricity load using time series representations. Open Comput Sci, 8(1):38–50, DOI: 10.1515/comp-2018-0006

See Also

```
norm_z, norm_z_list
```

```
# Normalise values and save normalisation parameters: norm_res <- norm_z_list(rnorm(50, 5, 2))  
# Denormalise new data with previous computed parameters: denorm_z(rnorm(50, 4, 2), mean = norm_res$mean, sd = norm_res$sd)
```

elec_load 9

elec_load

2 weeks of electricity load data from 50 consumers.

Description

A dataset containing the electricity consumption time series from 50 consumers of the length of 2 weeks. Every day is 48 measurements (half-hourly data). Each row represents one consumers time series.

Usage

elec_load

Format

A data frame with 50 rows and 672 variables.

Source

Anonymized.

fast_stat

Fast statistic functions (helpers)

Description

Fast statistic functions (helpers) for representations computation.

Usage

```
minC(x)
meanC(x)
sumC(x)
```

maxC(x)

medianC(x)

Arguments ×

the numeric vector

Value

the numeric value

10 maape

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

```
maxC(rnorm(50))
minC(rnorm(50))
meanC(rnorm(50))
sumC(rnorm(50))
medianC(rnorm(50))
```

maape

MAAPE

Description

the maape computes MAAPE (Mean Arctangent Absolute Percentage Error) of a forecast.

Usage

```
maape(x, y)
```

Arguments

x the numeric vector of real values

y the numeric vector of forecasted values

Value

the numeric value in %

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Sungil Kim, Heeyoung Kim (2016) A new metric of absolute percentage error for intermittent demand forecasts, International Journal of Forecasting 32(3):669-679

```
maape(runif(50), runif(50))
```

mae 11

mae MAE

Description

The mae computes MAE (Mean Absolute Error) of a forecast.

Usage

```
mae(x, y)
```

Arguments

x the numeric vector of real values

y the numeric vector of forecasted values

Value

the numeric value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

```
mae(runif(50), runif(50))
```

mape MAPE

Description

the mape computes MAPE (Mean Absolute Percentage Error) of a forecast.

Usage

```
mape(x, y)
```

Arguments

x the numeric vector of real values

y the numeric vector of forecasted values

mase mase

Value

the numeric value in %

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

```
mape(runif(50), runif(50))
```

mase

MASE

Description

The mase computes MASE (Mean Absolute Scaled Error) of a forecast.

Usage

```
mase(real, forecast, naive)
```

Arguments

real the numeric vector of real values

forecast the numeric vector of forecasted values naive the numeric vector of naive forecast

Value

the numeric value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

```
mase(rnorm(50), rnorm(50), rnorm(50))
```

mdae 13

mdae MdAE

Description

The mdae computes MdAE (Median Absolute Error) of a forecast.

Usage

```
mdae(x, y)
```

Arguments

x the numeric vector of real values

y the numeric vector of forecasted values

Value

the numeric value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

```
mdae(runif(50), runif(50))
```

mse MSE

Description

The mse computes MSE (Mean Squared Error) of a forecast.

Usage

```
mse(x, y)
```

Arguments

x the numeric vector of real values

y the numeric vector of forecasted values

14 norm_atan

Value

the numeric value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

```
mse(runif(50), runif(50))
```

norm_atan

Arctangent normalisation

Description

The norm_atan normalises time series by Arctangent to max (-1,1) range.

Usage

```
norm_atan(x)
```

Arguments

Х

the numeric vector (time series)

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

```
norm_z, norm_min_max
```

```
norm_atan(rnorm(50))
```

norm_boxcox 15

norm	boxcox
1101 111	DUXCUX

Two-parameter Box-Cox normalisation

Description

The norm_boxcox normalises time series by two-parameter Box-Cox normalisation.

Usage

```
norm_boxcox(x, lambda = 0.1, gamma = 0)
```

Arguments

x the numeric vector (time series)

lambda the numeric value - power transformation parameter (default is 0.1)

gamma the non-negative numeric value - parameter for holding the time series positive

(offset) (default is 0)

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

```
norm_z, norm_min_max, norm_atan
```

Examples

```
norm_boxcox(runif(50))
```

norm_min_max

Min-Max normalisation

Description

The norm_min_max normalises time series by min-max method.

Usage

```
norm_min_max(x)
```

norm_min_max_list

Arguments

x the numeric vector (time series)

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

```
norm_z
```

Examples

```
norm_min_max(rnorm(50))
```

norm_min_max_list

Min-Max normalization list

Description

The norm_min_max_list normalises time series by min-max method and returns normalization parameters (min and max).

Usage

```
norm_min_max_list(x)
```

Arguments

the numeric vector (time series)

Value

the list composed of:

norm_values the numeric vector of normalised values of time series

min the min value

max the max value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

norm_min_max_params

17

See Also

```
norm\_z\_list
```

Examples

```
norm_min_max_list(rnorm(50))
```

norm_min_max_params

Min-Max normalisation with parameters

Description

The norm_min_max_params normalises time series by min-max method with defined parameters.

Usage

```
norm_min_max_params(x, min, max)
```

Arguments

x the numeric vector (time series)

min the numeric value max the numeric value

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

```
norm_z_params
```

```
norm_min_max_params(rnorm(50), 0, 1)
```

18 norm_z

norm_yj

Yeo-Johnson normalisation

Description

The norm_yj normalises time series by Yeo-Johnson normalisation.

Usage

```
norm_yj(x, lambda = 0.1)
```

Arguments

x the numeric vector (time series)

lambda the numeric value - power transformation parameter (default is 0.1)

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

```
norm_z, norm_min_max, norm_boxcox
```

Examples

```
norm_yj(runif(50))
```

norm_z

Z-score normalisation

Description

The norm_z normalises time series by z-score.

Usage

```
norm_z(x)
```

Arguments

Х

the numeric vector (time series)

norm_z_list

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

```
norm_min_max
```

Examples

```
norm_z(runif(50))
```

norm_z_list

Z-score normalization list

Description

The norm_z_list normalizes time series by z-score and returns normalization parameters (mean and standard deviation).

Usage

```
norm_z_list(x)
```

Arguments

Х

the numeric vector (time series)

Value

the list composed of:

norm_values the numeric vector of normalised values of time series
mean the mean value

sd the standard deviation

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

```
norm_min_max_list
```

20 norm_z_params

Examples

```
norm_z_list(runif(50))
```

norm_z_params

Z-score normalisation with parameters

Description

The norm_z_params normalises time series by z-score with defined mean and standard deviation.

Usage

```
norm_z_params(x, mean, sd)
```

Arguments

x the numeric vector (time series)

mean the numeric value

sd the numeric value - standard deviation

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

```
norm_min_max_params
```

```
norm_z_params(runif(50), 0.5, 1)
```

repr_dct 21

repr_dct

DCT representation

Description

The repr_dct computes DCT (Discrete Cosine Transform) representation from a time series.

Usage

```
repr_dct(x, coef = 10)
```

Arguments

x the numeric vector (time series)

coef the number of coefficients to extract from DCT

Details

The length of the final time series representation is equal to set coef parameter.

Value

the numeric vector of DCT coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

```
repr_dft, repr_dwt, dtt
```

```
repr_dct(rnorm(50), coef = 4)
```

repr_dft

repr_dft

DFT representation by FFT

Description

The repr_dft computes DFT (Discrete Fourier Transform) representation from a time series by FFT (Fast Fourier Transform).

Usage

```
repr_dft(x, coef = 10)
```

Arguments

x the numeric vector (time series)

coef the number of coefficients to extract from FFT

Details

The length of the final time series representation is equal to set coef parameter.

Value

the numeric vector of DFT coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

```
repr_dwt, repr_dct, fft
```

```
repr_dft(rnorm(50), coef = 4)
```

repr_dwt 23

repr_dw

DWT representation

Description

The repr_dwt computes DWT (Discrete Wavelet Transform) representation (coefficients) from a time series.

Usage

```
repr_dwt(x, level = 4, filter = "d4")
```

Arguments

x the numeric vector (time series)

level the level of DWT transformation (default is 4)

filter the filter name (default is "d6"). Can be: "haar", "d4", "d6", ..., "d20", "la8",

"la10", ..., "la20", "b114", "b118", "b120", "c6", "c12", ..., "c30". See more info

at wt.filter.

Details

This function extracts DWT coefficients. You can use various wavelet filters, see all of them here wt.filter. The number of extracted coefficients depends on the level selected. The final representation has length equal to floor(n / 2^level), where n is a length of original time series.

Value

the numeric vector of DWT coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Laurinec P, Lucka M (2016) Comparison of representations of time series for clustering smart meter data. In: Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering and Computer Science 2016, pp 458-463

See Also

```
repr_dft, repr_dct, dwt
```

24 repr_exp

Examples

```
# Interpretation: DWT with Daubechies filter of length 4 and
# 3rd level of DWT coefficients extracted.
repr_dwt(rnorm(50), filter = "d4", level = 3)
```

repr_exp

Exponential smoothing seasonal coefficients as representation

Description

The repr_exp computes exponential smoothing seasonal coefficients.

Usage

```
repr_exp(x, freq, alpha = TRUE, gamma = TRUE)
```

Arguments

x the numeric vector (time series) freq the frequency of the time series

alpha the smoothing factor (default is TRUE - automatic determination of smoothing

factor), or number between 0 to 1

gamma the seasonal smoothing factor (default is TRUE - automatic determination of

seasonal smoothing factor), or number between 0 to 1

Details

This function extracts exponential smoothing seasonal coefficients and uses them as time series representation. You can set smoothing factors (alpha, gamma) manually, but recommended is automatic method (set to TRUE). The trend component is not included in computations.

Value

the numeric vector of seasonal coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Laurinec P, Lucka M (2016) Comparison of representations of time series for clustering smart meter data. In: Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering and Computer Science 2016, pp 458-463

Laurinec P, Loderer M, Vrablecova P, Lucka M, Rozinajova V, Ezzeddine AB (2016) Adaptive time series forecasting of energy consumption using optimized cluster analysis. In: Data Mining Workshops (ICDMW), 2016 IEEE 16th International Conference on, IEEE, pp 398-405

repr_feaclip 25

See Also

```
repr_lm, repr_gam, repr_seas_profile,HoltWinters
```

Examples

```
repr_exp(rnorm(96), freq = 24)
```

repr_feaclip

FeaClip representation of time series

Description

The repr_feaclip computes representation of time series based on feature extraction from bit-level (clipped) representation.

Usage

```
repr_feaclip(x)
```

Arguments

Х

the numeric vector (time series)

Details

FeaClip is method of time series representation based on feature extraction from run lengths (RLE) of bit-level (clipped) representation. It extracts 8 key features from clipped representation.

There are as follows:

```
repr = \{max_1 - max.from runlengths of ones, \ sum_1 - sum of runlengths of ones, \ max_0 - max.from runlengths of zeros, \ crossings - length of RLE encoding - 1, \ f_0 - number of first zeros, \ l_0 - number of last zeros, \ f_1 - number of first ones, \ l_1 - number of last ones \}.
```

Value

the numeric vector of length 8

26 repr_feacliptrend

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Laurinec P, and Lucka M (2018) Interpretable multiple data streams clustering with clipped streams representation for the improvement of electricity consumption forecasting. Data Mining and Knowledge Discovery. Springer. DOI: 10.1007/s10618-018-0598-2

See Also

```
repr_featrend, repr_feacliptrend
```

Examples

```
repr_feaclip(rnorm(50))
```

repr_feacliptrend

FeaClipTrend representation of time series

Description

The repr_feacliptrend computes representation of time series based on feature extraction from bit-level representations (clipping and trending).

Usage

```
repr_feacliptrend(x, func, pieces = 2L, order = 4L)
```

Arguments

x the numeric vector (time series)

func the aggregation function for FeaTrend procedure (sumC or maxC)

pieces the number of parts of time series to split order the order of simple moving average

Details

FeaClipTrend combines FeaClip and FeaTrend representation methods. See documentation of these two methods (check See Also section).

Value

the numeric vector of frequencies of features

repr_featrend 27

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Laurinec P, and Lucka M (2018) Interpretable multiple data streams clustering with clipped streams representation for the improvement of electricity consumption forecasting. Data Mining and Knowledge Discovery. Springer. DOI: 10.1007/s10618-018-0598-2

See Also

```
repr_featrend, repr_feaclip
```

Examples

```
repr_feacliptrend(rnorm(50), maxC, 2, 4)
```

renr	featrend
I CPI _	_ I Cati Ciia

FeaTrend representation of time series

Description

The repr_featrend computes representation of time series based on feature extraction from bit-level (trending) representation.

Usage

```
repr_featrend(x, func, pieces = 2L, order = 4L)
```

Arguments

x the numeric vector (time series)

func the function of aggregation, can be sumC or maxC or similar aggregation func-

tion

pieces the number of parts of time series to split (default to 2) order the order of simple moving average (default to 4)

Details

FeaTrend is method of time series representation based on feature extraction from run lengths (RLE) of bit-level (trending) representation. It extracts number of features from trending representation based on number of pieces defined. From every piece, 2 features are extracted. You can define what feature will be extracted, recommended functions are max and sum. For example if max is selected, then maximum value of run lengths of ones and zeros are extracted.

28 repr_gam

Value

the numeric vector of the length pieces

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

```
repr_feaclip, repr_feacliptrend
```

Examples

```
# default settings
repr_featrend(rnorm(50), maxC)

# compute FeaTrend for 4 pieces and make more smoothed ts by order = 8
repr_featrend(rnorm(50), sumC, 4, 8)
```

repr_gam

GAM regression coefficients as representation

Description

The repr_gam computes seasonal GAM regression coefficients. Additional exogenous variables can be also added.

Usage

```
repr_gam(x, freq = NULL, xreg = NULL)
```

Arguments

x the numeric vector (time series)

freq the frequency of the time series. Can be vector of two frequencies (seasonalities)

or just an integer of one frequency.

xreg the numeric vector or the data.frame with additional exogenous regressors

Details

This model-based representation method extracts regression coefficients from a GAM (Generalized Additive Model). The extraction of seasonal regression coefficients is automatic. The maximum number of seasonalities is 2 so it is possible to compute representation for double-seasonal time series. The first set seasonality (frequency) is main, so for example if we have hourly time series (freq = c(24, 24*7)), the number of extracted daily seasonal coefficients is 24 and the number of weekly seasonal coefficients is 7, because the length of second seasonality representation is always freq_1 / freq_2. The smooth function for seasonal variables is set to cubic regression spline. There is also possibility to add another independent variables (xreg).

repr_list 29

Value

the numeric vector of GAM regression coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Laurinec P, Lucka M (2016) Comparison of representations of time series for clustering smart meter data. In: Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering and Computer Science 2016, pp 458-463

Laurinec P, Loderer M, Vrablecova P, Lucka M, Rozinajova V, Ezzeddine AB (2016) Adaptive time series forecasting of energy consumption using optimized cluster analysis. In: Data Mining Workshops (ICDMW), 2016 IEEE 16th International Conference on, IEEE, pp 398-405

Laurinec P, Lucká M (2018) Clustering-based forecasting method for individual consumers electricity load using time series representations. Open Comput Sci, 8(1):38–50, DOI: 10.1515/comp-2018-0006

See Also

```
repr_lm, repr_exp, gam
```

Examples

```
repr_gam(rnorm(96), freq = 24)
```

repr_list

Computation of list of representations list of time series with different lengths

Description

The repr_list computes list of representations from list of time series

Usage

```
repr_list(
    x,
    func = NULL,
    args = NULL,
    normalise = FALSE,
    func_norm = norm_z,
    windowing = FALSE,
    win_size = NULL
)
```

repr_list

Arguments

Х	the list of time series, where time series can have different lengths
func	the function that computes representation
args	the list of additional (or required) parameters of func (function that computes representation)
normalise	normalise (scale) time series before representations computation? (default is $\ensuremath{FALSE})$
func_norm	the normalisation function (default is norm_z)
windowing	perform windowing? (default is FALSE)
win_size	the size of the window

Details

This function computes representation to an every member of a list of time series (that can have different lengths) and returns list of time series representations. It can be combined with windowing (see repr_windowing) and normalisation of time series.

Value

the numeric list of representations of time series

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

```
repr_windowing, repr_matrix
```

```
# Create random list of time series with different lengths
list_ts <- list(rnorm(sample(8:12, 1)), rnorm(sample(8:12, 1)), rnorm(sample(8:12, 1)))
repr_list(list_ts, func = repr_sma,
    args = list(order = 3))
# return normalised representations, and normalise time series by min-max normalisation
repr_list(list_ts, func = repr_sma,
    args = list(order = 3), normalise = TRUE, func_norm = norm_min_max)</pre>
```

repr_lm 31

repr_lm	Regression coefficients from linear model as representation	

Description

The repr_lm computes seasonal regression coefficients from a linear model. Additional exogenous variables can be also added.

Usage

```
repr_lm(x, freq = NULL, method = "lm", xreg = NULL)
```

Arguments

X	the numeric vector (time series)
freq	the frequency of the time series. Can be vector of two frequencies (seasonalities) or just an integer of one frequency.
method	the linear regression method to use. It can be "lm", "rlm" or "11".
xreg	the data.frame with additional exogenous regressors or the single numeric vector

Details

This model-based representation method extracts regression coefficients from a linear model. The extraction of seasonal regression coefficients is automatic. The maximum number of seasonalities is 2 so it is possible to compute representation for double-seasonal time series. The first set seasonality (frequency) is main, so for example if we have hourly time series (freq = c(24, 24*7)), the number of extracted daily seasonal coefficients is 24 and the number of weekly seasonal coefficients is 7, because the length of second seasonality representation is always freq_1 / freq_2. There is also possibility to add another independent variables (xreg).

You have three possibilities for selection of a linear model method.

- "lm" is classical OLS regression.
- "rlm" is robust linear model using psi huber function and is implemented in MASS package.
- "11" is L1 quantile regression model (also robust linear regression method) implemented in package quantreg.

Value

the numeric vector of regression coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

32 repr_matrix

References

Laurinec P, Lucka M (2016) Comparison of representations of time series for clustering smart meter data. In: Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering and Computer Science 2016, pp 458-463

Laurinec P, Loderer M, Vrablecova P, Lucka M, Rozinajova V, Ezzeddine AB (2016) Adaptive time series forecasting of energy consumption using optimized cluster analysis. In: Data Mining Workshops (ICDMW), 2016 IEEE 16th International Conference on, IEEE, pp 398-405

Laurinec P, Lucká M (2018) Clustering-based forecasting method for individual consumers electricity load using time series representations. Open Comput Sci, 8(1):38–50, DOI: 10.1515/comp-2018-0006

See Also

```
repr_gam, repr_exp
```

Examples

```
# Extracts 24 seasonal regression coefficients from the time series by linear model
repr_lm(rnorm(96), freq = 24, method = "lm")

# Try also robust linear models ("rlm" and "l1")
repr_lm(rnorm(96), freq = 24, method = "rlm")
repr_lm(rnorm(96), freq = 24, method = "l1")
```

repr_matrix

Computation of matrix of representations from matrix of time series

Description

The repr_matrix computes matrix of representations from matrix of time series

Usage

```
repr_matrix(
    x,
    func = NULL,
    args = NULL,
    normalise = FALSE,
    func_norm = norm_z,
    windowing = FALSE,
    win_size = NULL
)
```

repr_matrix 33

Arguments

X	the matrix, data.frame or data.table of time series, where time series are in rows of the table
func	the function that computes representation
args	the list of additional (or required) parameters of func (function that computes representation)
normalise	normalise (scale) time series before representations computation? (default is $FALSE$)
func_norm	the normalisation function (default is norm_z)
windowing	perform windowing? (default is FALSE)
win_size	the size of the window

Details

This function computes representation to an every row of a matrix of time series and returns matrix of time series representations. It can be combined with windowing (see repr_windowing) and normalisation of time series.

Value

the numeric matrix of representations of time series

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

```
repr_windowing, repr_list
```

```
# Create random matrix of time series
mat_ts <- matrix(rnorm(100), ncol = 10)
repr_matrix(mat_ts, func = repr_paa,
    args = list(q = 5, func = meanC))
# return normalised representations, and normalise time series by min-max normalisation
repr_matrix(mat_ts, func = repr_paa,
    args = list(q = 2, func = meanC), normalise = TRUE, func_norm = norm_min_max)
# with windowing
repr_matrix(mat_ts, func = repr_feaclip, windowing = TRUE, win_size = 5)</pre>
```

repr_paa

repr_paa

PAA - Piecewise Aggregate Approximation

Description

The repr_paa computes PAA representation from a vector.

Usage

```
repr_paa(x, q, func)
```

Arguments

x the numeric vector (time series)

q the integer of the length of the "piece"

func the aggregation function. Can be meanC, medianC, sumC, minC or maxC or

similar aggregation function

Details

PAA with possibility to use arbitrary aggregation function. The original method uses average as aggregation function.

Value

the numeric vector

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Keogh E, Chakrabarti K, Pazzani M, Mehrotra Sh (2001) Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases. Knowledge and Information Systems 3(3):263-286

See Also

```
repr_dwt, repr_dft, repr_dct, repr_sma
```

```
repr_paa(rnorm(11), 2, meanC)
```

repr_pip 35

Description

The repr_pip computes PIP (Perceptually Important Points) representation from a time series.

Usage

```
repr_pip(x, times = 10, return = "points")
```

Arguments

x the numeric vector (time series)

times the number of important points to extract (default 10)

return what to return? Can be important points ("points"), places of important points

in a vector ("places") or "both" (data.frame).

Value

the values based on the argument return (see above)

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Fu TC, Chung FL, Luk R, and Ng CM (2008) Representing financial time series based on data point importance. Engineering Applications of Artificial Intelligence, 21(2):277-300

```
repr_pip(rnorm(100), times = 12, return = "both")
```

36 repr_pla

	-
repr_p	οLa

PLA representation

Description

The repr_pla computes PLA (Piecewise Linear Approximation) representation from a time series.

Usage

```
repr_pla(x, times = 10, return = "points")
```

Arguments

x the numeric vector (time series)

times the number of important points to extract (default 10)

return what to return? Can be "points" (segments), places of points (segments) in a

vector ("places") or "both" (data.frame).

Value

the values based on the argument return (see above)

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Zhu Y, Wu D, Li Sh (2007) A Piecewise Linear Representation Method of Time Series Based on Feature Points. Knowledge-Based Intelligent Information and Engineering Systems 4693:1066-1072

```
repr_pla(rnorm(100), times = 12, return = "both")
```

37 repr_sax

repr_sax

SAX - Symbolic Aggregate Approximation

Description

The repr_sax creates SAX symbols for a univariate time series.

Usage

```
repr_sax(x, q = 2, a = 6, eps = 0.01)
```

Arguments

X	the numeric vector (time series)
q	the integer of the length of the "piece" in PAA
a	the integer of the alphabet size
eps	is the minimum threshold for variance in x and should be a numeric value.

is the minimum threshold for variance in x and should be a numeric value. If x has a smaller variance than eps, it will represented as a word using the middle

alphabet.

Value

the character vector of SAX representation

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with implications for streaming algorithms. Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery - DMKD'03

See Also

```
repr_paa, repr_pla
```

```
x <- rnorm(48)
repr_sax(x, q = 4, a = 5)
```

38 repr_seas_profile

Description

The repr_seas_profile computes mean seasonal profile representation from a time series.

Usage

```
repr_seas_profile(x, freq, func)
```

Arguments

x the numeric vector (time series)freq the integer of the length of the season

func the aggregation function. Can be meanC or medianC or similar aggregation

function.

Details

This function computes mean seasonal profile representation for a seasonal time series. The length of representation is length of set seasonality (frequency) of a time series. Aggregation function is arbitrary (best choice is for you maybe mean or median).

Value

the numeric vector

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Laurinec P, Lucka M (2016) Comparison of representations of time series for clustering smart meter data. In: Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering and Computer Science 2016, pp 458-463

Laurinec P, Loderer M, Vrablecova P, Lucka M, Rozinajova V, Ezzeddine AB (2016) Adaptive time series forecasting of energy consumption using optimized cluster analysis. In: Data Mining Workshops (ICDMW), 2016 IEEE 16th International Conference on, IEEE, pp 398-405

Laurinec P, Lucká M (2018) Clustering-based forecasting method for individual consumers electricity load using time series representations. Open Comput Sci, 8(1):38–50, DOI: 10.1515/comp-2018-0006

See Also

```
repr_lm, repr_gam, repr_exp
```

repr_sma 39

Examples

```
repr_seas_profile(rnorm(48*10), 48, meanC)
```

repr_sma

Simple Moving Average representation

Description

The repr_sma computes Simple Moving Average (SMA) from a time series.

Usage

```
repr_sma(x, order)
```

Arguments

x the numeric vector (time series)order the order of simple moving average

Value

the numeric vector of smoothed values of the length = length(x) - order + 1

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

```
repr_sma(rnorm(50), 4)
```

repr_windowing

Windowing of time series

Description

The repr_windowing computes representations from windows of a vector.

Usage

```
repr_windowing(x, win_size, func = NULL, args = NULL)
```

40 repr_windowing

Arguments

X	the numeric vector (time series)
win_size	the length of the window
func	the function for representation computation. For example $\ensuremath{\texttt{repr_feaclip}}$ or $\ensuremath{\texttt{repr_trend}}$.
args	the list of additional arguments to the func (representation computation function). The args list must be named.

Details

This function applies specified representation method (function) to every non-overlapping window (subsequence, piece) of a time series.

Value

the numeric vector

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Laurinec P, and Lucka M (2018) Interpretable multiple data streams clustering with clipped streams representation for the improvement of electricity consumption forecasting. Data Mining and Knowledge Discovery. Springer. DOI: 10.1007/s10618-018-0598-2

See Also

```
repr_paa, repr_matrix
```

```
# func without arguments
repr_windowing(rnorm(48), win_size = 24, func = repr_feaclip)
# func with arguments
repr_windowing(rnorm(48), win_size = 24, func = repr_featrend,
args = list(func = maxC, order = 2, pieces = 2))
```

rleC 41

rleC

RLE (Run Length Encoding) written in C++

Description

The rleC computes RLE from bit-level (clipping or trending representation) vector.

Usage

```
rleC(x)
```

Arguments

Х

the integer vector (from clipping or trending)

Value

the list of values and counts of zeros and ones

Examples

```
# clipping
clipped <- clipping(rnorm(50))
rleC(clipped)
# trending
trended <- trending(rnorm(50))
rleC(trended)</pre>
```

rmse

RMSE

Description

The rmse computes RMSE (Root Mean Squared Error) of a forecast.

Usage

```
rmse(x, y)
```

Arguments

x the numeric vector of real values

y the numeric vector of forecasted values

smape smape

Value

the numeric value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

```
rmse(runif(50), runif(50))
```

smape

sMAPE

Description

The smape computes sMAPE (Symmetric Mean Absolute Percentage Error) of a forecast.

Usage

```
smape(x, y)
```

Arguments

x the numeric vector of real values

y the numeric vector of forecasted values

Value

the numeric value in %

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

```
smape(runif(50), runif(50))
```

trending 43

trending

Creates bit-level (trending) representation from a vector

Description

The trending Computes bit-level (trending) representation from a vector.

Usage

```
trending(x)
```

Arguments

Х

the numeric vector (time series)

Details

Trending transforms time series to bit-level representation.

It is defined as follows:

$$repr_t = 1ifx_t - x_{t+1} < 0,0 otherwise,$$

where x_t is a value of a time series.

Value

the integer vector of zeros and ones

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

clipping

```
trending(rnorm(50))
```

44 TSrepr

TSrepr package

Description

Package contains methods for time series representations computation. Representation methods of time series are for dimensionality and noise reduction, emphasizing of main characteristics of time series data and speed up of consequent usage of machine learning methods.

Details

Package: TSrepr Type: Package

Date: 2018-01-26 - Inf

License: GPL-3

The following functions for time series representations are included in the package:

- repr_paa Piecewise Aggregate Approximation (PAA)
- repr_dwt Discrete Wavelet Transform (DWT)
- repr dft Discrete Fourier Transform (DFT)
- repr_dct Discrete Cosine Transform (DCT)
- repr_sma Simple Moving Average (SMA)
- repr_pip Perceptually Important Points (PIP)
- repr_sax Symbolic Aggregate Approximation (SAX)
- repr_pla Piecewise Linear Approximation (PLA)
- repr_seas_profile Mean seasonal profile
- repr_lm Model-based seasonal representations based on linear model (lm, rlm, 11)
- repr_gam Model-based seasonal representations based on generalized additive model (GAM)
- repr_exp Exponential smoothing seasonal coefficients
- repr_feaclip Feature extraction from clipping representation (FeaClip)
- repr_featrend Feature extraction from trending representation (FeaTrend)
- repr_feacliptrend Feature extraction from clipping and trending representation (FeaClipTrend)

There are also implemented additional useful functions as:

- repr_windowing applies above mentioned representations to every window of a time series
- repr_matrix applies above mentioned representations to every row of a matrix of time series
- repr_list applies above mentioned representations to every member of a list of time series

TSrepr 45

- norm_z, norm_min_max, norm_boxcox, norm_yj, norm_atan normalisation functions
- norm_z_params, norm_min_max_params normalisation functions with defined parameters
- norm_z_list, norm_min_max_list normalisation functions with output also of scaling parameters
- denorm_z, denorm_min_max, denorm_boxcox, denorm_yj, denorm_atan denormalisation functions

Author(s)

Peter Laurinec

Maintainer: Peter Laurinec <tsreprpackage@gmail.com>

Index

* datasets	norm_min_max_list, 7, 16, 19, 45	
elec_load, 9	norm_min_max_params, 17, 20, 45	
c1cc_1oud, /	norm_yj, 18, 45	
clipping, 3, 43	norm_z, 8, 14–16, 18, 18, 45	
coefComp, 4	norm_z_list, 8, 17, 19, 45	
	norm_z_params, 17, 20, 45	
denorm_atan, 5 , 6 , 45	1101 III_2_par aiii3, 17, 20, 43	
denorm_boxcox, 5, 7, 45	repr_dct, 21, 22, 23, 34, 44	
denorm_min_max, 5, 6, 6, 7, 45	repr_dft, 21, 22, 23, 34, 44	
denorm_yj, 7, 45	repr_dwt, 21, 22, 23, 34, 44	
denorm_z, 5-7, 8, 45	repr_exp, 24, 29, 32, 38, 44	
dtt, 21	repr_feaclip, 25, 27, 28, 44	
dwt, 23	repr_feacliptrend, 26, 26, 28, 44	
	repr_featrend, 26, 27, 27, 44	
elec_load, 9	repr_gam, 25, 28, 32, 38, 44	
	repr_list, 29, 33, 44	
fast_stat, 9	repr_1m, 25, 29, 31, 38, 44	
fft, 22	repr_matrix, 30, 32, 40, 44	
20	repr_paa, 34, 37, 40, 44	
gam, 29	repr_pip, 35, 44	
HoltWinters, 25	repr_pla, 36, 37, 44	
nortwinters, 23	repr_sax, 37, 44	
11Coef(coefComp), 4	repr_seas_profile, 25, 38, 44	
lm, 4	repr_sma, 34, 39, 44	
<pre>lmCoef(coefComp), 4</pre>	repr_windowing, 30, 33, 39, 44	
	rleC,41	
maape, 10	rlm, <i>4</i>	
mae, 11	<pre>rlmCoef(coefComp), 4</pre>	
mape, 11	rmse, 41	
mase, 12	rq, <i>4</i>	
maxC (fast_stat), 9		
mdae, 13	smape, 42	
meanC (fast_stat), 9	<pre>sumC (fast_stat), 9</pre>	
medianC(fast_stat), 9		
minC (fast_stat), 9	trending, 3, 43	
mse, 13	TSrepr, 44	
	wt.filter, 23	
norm_atan, 14, <i>15</i> , <i>45</i>	wc. 111cc1, 23	
norm_boxcox, 15, 18, 45		
norm_min_max, 7, 14, 15, 15, 18, 19, 45		