Steven Rosendahl Homework 2

1. If F is a finite field, prove that the only absolute value on F is the trivial absolute value.

Proof: By definition, if we take any $x \in F$ such that $x \neq 0$, then there is some integer $m \in \mathbb{Z}$ such that $x^m = 1$, meaning that |x| = 1. If x = 0, then |x| = 0, so the absolute value is trivial.

2. Suppose p is prime. Prove that $|p^n|_p$ tends to 0 as $n \to \infty$.

Proof: We know that $v_p(x) > 0$ for all $x \in \mathbb{Z}$, and that $v_p(x)$ counts the number of factors of p in x. If we consider p^n , there are n factors of p, meaning that $v_p(p^n) = n$. Then $|p^n|_p = p^{-v_p(p^n)} = p^{-n}$, so

$$\lim_{n \to \infty} p^{-n} = 0.$$

3. Suppose that F is a field and $| \ |$ is a non-Archemedian absolute value on F. If $c \in F$ and r is a positive real number, we define the *open ball (or disk) centered at c of radius r* by

$$B(c,r) = \{ x \in F : |x - c| < r \}.$$

If $d \in B(c, r)$, prove that B(c, r) = B(d, r).

Proof: Suppose $x \in B(d, r)$. Then

$$\begin{aligned} |x-d| &= |x-d-c+c| \\ &= |x-c+c-d| \\ &\leq \max\{|x-c|,|c-d|\} \\ &= \max\{|x-c|,|d-c|\} \\ &\leq \max\{|x-c|,r\}. \end{aligned}$$

Suppose $|x-d| \leq |x-c|$. Then the value |x-d| is always within the disk B(c,r).

Suppose $x \in B(c,r)$. Then

$$\begin{aligned} |x-c| &= |x-c-d+d| \\ &= |x-d+d-c| \\ &\leq \max\{|x-d|, |d-c|\} \\ &< \max\{|x-d|, r\}. \end{aligned}$$

Suppose $\max\{|x-d|,r\} = |x-d|$. Then |x-c| is always within the disk B(d,r).