Einsendeaufgabe 2

Operations Research - Ba Wirtschaftsinformatik Sommersemester 2023

Prof. Dr. Tim Downie

Einsendeaufgabe: Simplex Algorithmus mit Lösungen

Der Abgabetermin ist 1. Juni 2023.

Aufgabe 1

Gegeben ist eine primale LP

$$\max Z(x_1, x_2, x_3) = \begin{array}{ccc} x_1 & +4x_2 & -2x_3 \\ 3x_1 & +x_2 & +3x_3 & = 10 \\ x_1 & +5x_2 & -x_3 & \leqslant 7 \\ 2x_1 & -x_2 & +7x_3 & \leqslant 2 \\ x_1, x_3 \geqslant 0 & x_2 \in \mathbb{R} \end{array}$$

Bestimmen Sie die duale LP.

$$\min Z_D(y_1, y_2, y_3) = 10y_1 +7y_2 +2y_3$$

$$3y_1 +y_2 +2y_3 \geqslant 1$$

$$y_1 +5y_2 -y_3 = 4$$

$$3y_1 -y_2 +7y_3 \geqslant -2$$

$$y_2, y_3 \geqslant 0 \qquad y_1 \in \mathbb{R}$$

Aufgabe 2

Benutzen Sie den Simplex Algorithmus tabellarisches Verfahren, um die optimale Lösung der folgenden LP zu bestimmen. Erläutern Sie kurz Ihre Vorgehensweise, und geben Sie die optimale Lösung deutlich an. Die Nebenrechnungen der Tabelleneinträge müssen Sie nicht abgeben.

Maximiere
$$Z(x_1,x_2,x_3)=x_1-x_2+2x_3$$
 Unter den Nebenbedingungen
$$3x_1+x_2+2x_3\leqslant 10$$

$$x_1+x_2-2x_3\geqslant 2$$

$$x_1,x_2,x_3\geqslant 0.$$

Hinweis der Ausgangslösung ist unzulässig!

Forme die 2. Restriktion um:

$$-x_1 - x_2 + 2x_3 \leqslant -2$$

Erstelle das Anfangstableau

<i>Tab.</i> 0		x_1	$\overline{x_2}$	x_3
\overline{z}	0	-1	1	-2
y_1	10	3	1	2
y_2	-2	-1	-1	2

Es gibt ein – *Vorzeichen in der* y_2 *Zeile* \Rightarrow *dualer Schritt.*

Austrittsvariable ist y_2

 x_3 Spalte besitzt einen positiven Eintrag in der y_2 Zeile, also darf nicht die Pivotspalte sein.

Die Theta-Werte für x_1 bzw. x_2 sind 1 bzw. -1.

Wähle den größeren Theta-Wert $\Rightarrow x_1$ ist der Eintrittsvariable.

Bestimme Tableau 1.

<i>Tab. 1</i>		y_2	x_2	x_3
z	2	-1	2	-4
y_1	4	3	-2	8
x_1	2	-1	1	-2

Primale Iteration, weil alle Einträge in der Lösungsspalte positiv sind.

Eintrittsvariable ist x_3 , wegen des größten negativen Werts in der Z-Zeile.

 $Nur y_1$ darf die Austrittsvariable sein, weil der Eintrag in der letzten Zeile negativ ist.

Bestimme Tableau 2.

Bestimine Telefetti 2.						
<i>Tab.</i> 2		y_2	x_2	y_1		
z	4	0.5	1	0.5		
x_3	0.5	0.375	-0.25	0.125		
x_1	3	-0.25	0.5	0.25		

Alle Koeffizienten in der z-Zeile sind positiv \Rightarrow Ende des Algorithmus.

Optimale Lösung ist $x_1^* = 3$, $x_2^* = 0$, $x_3^* = 0.5$, $z^* = 4$

Anmerkung: Wenn der negative Wert für y_2 in Tab. 0 übersehen würde, kommt mann zu einer Lösung mit größerer z-Wert, der ist aber nicht zulässig, also ist nicht der optimale Lösung unter den Nebenbedingungen.

2