

计算机网络

第四章 网络层

谢瑞桃

xie@szu.edu.cn rtxie.github.io

计算机与软件学院 深圳大学

第四章讲解内容

- 1. 网络层概述与数据平面
- 2. 控制平面

数据平面讲解内容

- 网络层概述与功能
- 路由器体系结构
- IP数据报格式与分片
- IP地址
- 转发
- 划分地址块与地址聚合
- DHCP协议
- 网络地址转换NAT
- IPv6

网络层

- 从发送主机向接收主机 运送传输层的报文段
- 发送方将其封装**数据报**, 接收方解封装

网络层

- 从发送主机向接收主机 运送传输层的报文段
- 发送方将其封装数据报, 接收方解封装
- 网络层协议运行在所有 主机和路由器上
- 路由器查看IP数据报首 部,从而决定如何转发

网络层的功能

- ■转发
 - 路由器将分组由一条输入链路移动到适当的输出链路
 - 时间要求是纳秒级别
 - 由硬件实现
- 路由选择
 - 决定将分组由源主机移动到目的主机所要经过的路由或 路径
 - 时间要求是秒级别
 - 由软件实现

网络层的功能

■每个路由器的路由选择组件相互通信,合作生成 转发表

第四章知识点汇总

- 理解网络层在协议栈中的作用
- 了解网络层的功能: 转发和路由选择

数据平面讲解内容

- 网络层概述与功能
- 路由器体系结构
- IP数据报格式与分片
- IP地址
- ■转发
- 划分地址块与地址聚合
- DHCP协议
- 网络地址转换NAT
- IPv6

路由器体系结构

路由器体系结构

输入端口

- 网络层:
 - 查找转发表
 - 转发
 - 如果交换结构不能很快(相对输入链路速度而言)地将 到达分组转移到输出接口,则会出现排队

输出端口

■ 网络层:

- 如果数据报到达输出端口的速度快于离开端口的速度 (链路发送速度),则需要队列
- 数据报会因为队列溢出而被丢弃
- 丢包和排队时延因此而产生

第四章知识点汇总

- 了解路由器的体系结构
- 了解路由器的输入/输出端口的作用
- 理解丢包与排队时延产生的原因

数据平面讲解内容

- 网络层概述与功能
- ■路由器体系结构
- IP数据报格式与分片
- IP地址
- ■转发
- 划分地址块与地址聚合
- DHCP协议
- 网络地址转换NAT
- IPv6

IP数据报格式

201144

← 32比特 — →					
服务类型	数据报长度(字节)				
标识符	3个标 志位	13位片偏移			
上层协议	首部校验和				
源IP地址					
目的IP地址					
选项(如果有的话,一般不用)					
数据					
	服务类型 标识符 上层协议 源IP 目的II	服务类型 数结标识符 3个标志位 上层协议 源IP地址 目的IP地址			

■ 首部长度(4位)

- 单位是4字节
- 最小值为0101,十进制为5,表示5*4=20字节,即固定首部的长度
- 最大值为1111,十进制为15,表示15*4=60字节,即最大的首部长度

IP数据报格式

■ 服务类型:

区分不同应用的数据报, 以提供不同类型的服务

IP数据报分片/组装

Time-To-Live:

分组寿命,路由器处理完 IP数据报后减一,并丢弃 TTL为0的数据报

■ 上层协议:

6表示TCP, 17表示UDP, 指导数据应该交给哪个协 议

IP数据报分片

- 网络链路有MTU,限制 了IP数据报的长度
 - 不同的链路类型具有不同的MTU
- IP数据报长度 > 链路 MTU,被分片
 - 在目的端IP层组装之后才 向上交付
 - IP首部的一些比特位用于 标识分片

IP数据报分片

数据报长度	16位标识	0 位	DF 位	MF 位	13位片偏移
首部+数据	由源主机添 加,标识相 同的分片		y Frag n't Fraç		
		1=Mo	st Frag re nents.	数据部分的 偏移,8字节 为单位	

IP数据报分片

■ 举例:数据报4000字节,MTU=1500字节

20字节首部 + 3980字节数据	数据报长度 = 4000	16位标识 = x	0	DF = 0	MF = 0	13位片偏移 = 0
20字节首部 + 1480字节数据	数据报长度 = 1500	16位标识 = x	0	DF = 0	MF = 1	13位片偏移 = 0
20字节首部 +	数据报长度	16位标识	0	DF	MF	13位片偏移 =
1480字节数据	= 1500	= x		=0	= 1	1480/8 = 185
20字节首部 +	数据报长度	16位标识	0	DF	MF	13位片偏移 =
1020字节数据	= 1040	= x		= 0	= 0	370

第四章知识点汇总

- 了解IP数据报格式
- 理解IP数据报分片的原因
- ■掌握IP数据报分片的方法

习题

- 假设IPv4数据报长度为1500字节,用TCP发送一个5MB的文件需要())个IP分组。假定所有协议不使用选项,只使用固定长度的头部。(1M=10⁶)
- A. 3334
- B. 3379
- **C**. 3425
- D. 3473

数据平面讲解内容

- 网络层概述与功能
- 路由器体系结构
- IP数据报格式与分片
- IP地址
- ■转发
- 划分地址块与地址聚合
- DHCP协议
- 网络地址转换NAT
- IPv6

- IP地址: 主机/路由器 接口的标识符
- 接口:
 - 路由器通常有多个接口
 - 主机通常有一个或多个接口(有线以太网、无线802.11)
- IP 地址与接口对应

- 接口之间如何连接?
 - 通过以太网交换机
 - 通过WiFi接入点
- 将在链路层章节介绍

- 接口之间如何连接?
 - 通过以太网交换机
 - 通过WiFi接入点
- 物理上不通过三层网络 设备连接的接口形成子 网

- IP地址
 - 32位, 4字节
 - 点分十进制计法

11011111 00000001 00000001 00000001

<u>223</u> . 1 . 1 . 1

- IP地址
 - 32位, 4字节
 - 点分十进制计法

11011111 00000001 00000001 00000001

- 两层结构
 - 子网部分: 高位,标识子网,IP转发(将分组运送到目的子网)时使用
 - 主机部分: 低位, 标识子网内部的主机

两部分如何划分呢?

P地址

- 怎么划分子网部分和主机部分呢?
- 分类编址
- 无类别编址: CIDR

IP地址:分类编址

- 网络部分定长
- 以前的编址方法 [RFC870, 1983], 已不用

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

A类	0		网络部分	主机部分		
B类	1	0	XX	络部分	主机部分	
C类	1	1	0	网络部分		主机部分

IP地址:分类编址

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

A类	0		网络部分	主机部分		
B类	1	0	XX	络部分	主机部分	
C类	1	1	0	网络部分		主机部分

类 别		每个网络的主机个数 (主机部分取值的个数)	网络个数 (网络部分取值的个数)
A类	1字节	2^24 - 2 = 16777216 - 2	2^7 - 2 = 128 - 2
B类	2字节	2^16 - 2 = 65536 - 2	2^14 - 2 = 16384 - 2
C类	3字节	2^8 - 2 = 256 - 2	2^21 - 2 = 2097152 - 2

IP地址:分类编址

- 存在的问题: 地址浪费严重
- 对于一个机构, C类(最多254个主机地址)太小, 而B类(最多65534个主机地址)太大

类 别	网络部 分长度	每个网络的主机个数 (主机部分取值的个数)	网络个数 (网络部分取值的个数)
A类	1字节	2^24 - 2 = 16777216 - 2	2^7 - 2 = 128 - 2
B类	2字节	2^16 - 2 = 65536 - 2	2^14 - 2 = 16384 - 2
C类	3字节	2^8 - 2 = 256 - 2	2^21 - 2 = 2097152 - 2

IP地址: CIDR

- 无类别域间路由选择(Classless Interdomain Routing CIDR) [1990s首次提出, RFC4632 (2006更新)]
 - 地址格式 a.b.c.d/x,其中x是网络部分(前缀)的位数
 - x可以是任意[0,32]之间的值

网络部分(前缀)

主机部分

11001000 00010111 0001000**0 00000000** 200.23.16**.0/23**

■ 主机号全零:网络地址

■ 主机号全幺:广播地址

子网掩码 subnet mask

- 网络部分(前缀)全幺,主机部分全零
- 举例:
- 网络地址: 200.23.16.0/23
- 对应子网掩码: 255.255.254.0
- 以前的B类地址: 172.16.0.0
- 对应子网掩码: 255.255.0.0

子网掩码 subnet mask

- 用途: IP地址与子网掩码做"按位与"操作,提出网络部分,进而判断该IP地址是否属于某个网络
- 网络地址: 200.23.16.0/23
- 对应子网掩码: 255.255.254.0
- 实例1: 200.23.17.66属于上述网络
- **1**1001000 00010111 00010001 **01000010**
- 11111111 11111111 11111110 00000000
- 11001000 00010111 00010000 00000000

子网掩码 subnet mask

- 用途: IP地址与子网掩码做"按位与"操作,提出网络部分,进而判断该IP地址是否属于某个网络
- 网络地址: 200.23.16.0/23
- 对应子网掩码: 255.255.254.0
- 实例2: 200.23.19.66不属于上述网络
- **1**1001000 00010111 00010011 **01000010**
- 11111111 11111111 1111111 0 00000000
- 11001000 00010111 00010010 00000000

IP地址与子网

- 该网络中含有多少个子 网?
- 物理上不通过三层设备 连接的接口形成子网
- 每个子网合理的网络地址分别是什么?

子网

- 该网络中含有多少个子 网?
- 物理上不通过三层设备 连接的接口形成子网

第四章知识点汇总

- 了解IP地址和网络地址
- 了解子网
- 了解CIDR
- 了解以前的A/B/C分类编址方法,以及其缺点

 【2019年考研47题】某网络拓扑如图所示,其中 R为路由器,主机H1-H4的IP地址配置以及R的各 接口IP地址配置如图所示。现在若干台以太网交 换机(无VLAN功能)和路由器两类网络互连设备 可供选择。请回答以下问题:

■ (1)设备1、设备2和设备3分别应选择什么类型 网络设备?

■ (2)设备1、设备2和设备3中,哪几个设备的接口需要配置IP地址?并为对应的接口配置正确的IP地址。

■ (4) 若主机H3发送一个目的地址为 192.168.1.127的IP数据报,网络中哪几个主机会 接收该数据报?

数据平面讲解内容

- 网络层概述与功能
- ■路由器体系结构
- IP数据报格式与分片
- IP地址
- ■转发
- 划分地址块与地址聚合
- DHCP协议
- 网络地址转换NAT
- IPv6

- 查询转发表,用目的IP地址匹配条目
 - 11001000 00010111 00010110 10100001 转发接口?
 - 11001000 00010111 00011000 10101010 转发接口?

目的地址范围	链路接口
11001000 00010111 00010000 00000000 到 11001000 00010111 00010111 11111111	0
11001000 00010111 00011000 00000000 到 11001000 00010111 00011000 11111111	1
11001000 00010111 00011001 00000000 到 11001000 00010111 00011111 11111111	2
其他	3

- 查询转发表,用目的IP地址匹配条目
 - 11001000 00010111 00010110 10100001 转发接口: 0
 - 11001000 00010111 00011000 10101010 转发接口: 1

目的地址范围	链路接口
11001000 00010111 00010000 000000000 到 11001000 00010111 00010111 11111111	0
11001000 00010111 00011000 00000000 到 11001000 00010111 00011000 11111111	1
11001000 00010111 00011001 00000000 到 11001000 00010111 00011111 11111111	2
其他	3

- 查询转发表,用目的IP地址匹配条目
 - 11001000 00010111 00010110 10100001 转发接口?
 - 11001000 00010111 00011000 10101010 转发接口?

网络地址	链路接口
11001000 00010111 00010000 00000000/21	0
11001000 00010111 00011000 00000000/24	1
11001000 00010111 00011000 00000000/21	2
其他	3

- 查询转发表,用目的IP地址匹配条目
 - 11001000 00010111 00010110 10100001 转发接口: 0
 - 11001000 00010111 00011000 10101010 转发接口: 1
- ■最长前缀匹配
 - 转发的时候,利用最长前缀匹配目的地址

网络地址	链路接口
11001000 00010111 00010000 00000000/21	0
11001000 00010111 00011000 00000000/24	1
11001000 00010111 00011000 00000000/21	2
其他	3

■以上两个转发表等效

目的地址范围	链路接口
11001000 00010111 00010000 000000000 到 11001000 00010111 00010111 11111111	0
11001000 00010111 00011000 00000000 到 11001000 00010111 00011000 11111111	1
11001000 00010111 00011001 00000000 到 11001000 00010111 00011111 11111111	2
其他	3

网络地址	链路接口
11001000 00010111 00010000 00000000/21	0
11001000 00010111 00011000 00000000/24	1
11001000 00010111 00011000 00000000/21	2
其他	3

- 查询转发表,用目的IP地址匹配条目
 - 200.23.22.161 转发接口?
 - 200.23.24.170 转发接口?

网络地址	链路接口
200.23.16.0/21	0
200.23.24.0/24	1
200.23.24.0/21	2
其他	3

转发

- 路由器的链路速率100 Gbps
- 一个分组512位
- ■大约每隔5ns,就有一个分组需要处理
- 查找1,000,000路由条目,在5ns内实现32位值的 匹配,如何实现?
- 即使用一个最佳平衡二分搜索结构,也需要20次 查找,每次查找要在0.25ns时间内完成。

IPv4路由表

路由表条目的规模接近10^6.

https://www.potaroo.net/ispcol/2020-01/bgp2019.pdf

第四章知识点汇总

- 理解转发的原理
- 理解最长前缀匹配的原理

数据平面讲解内容

- 网络层概述与功能
- ■路由器体系结构
- IP数据报格式与分片
- IP地址
- ■转发
- 划分地址块与地址聚合
- DHCP协议
- 网络地址转换NAT
- IPv6

如何获取IP地址?

- IP地址分配由全球机构IANA (<u>Internet Assigned Numbers Authority</u>) 管理
- 下辖五个Regional Internet Registry

如何获取IP地址?

- ISP向RIR(Regional Internet Registry)申请获得 IP地址块
- 公司/学校/机构向ISP申请地址块
- 网络管理员负责为路由器接口分配IP地址

划分地址块

- - ISP有一个地址块
 - **•** 11001000 00010111 00010000 00000000 200.23.16.0/20
 - 有8个机构申请地址块,每个机构需要512个地址
 - ISP该如何分配地址块呢?

划分地址块

- ISP有一个地址块
- **11001000 00010111 0001**0000 00000000 200.23.16.0/20
- 机构地址块:
- <u>11001000 00010111 0001000</u>0 00000000 200.23.16.0/23 <u>11001000 00010111 0001000</u>1 11111111
- <u>11001000 00010111 0001001</u>0 00000000 200.23.18.0/23 <u>11001000 00010111</u> 00010011 11111111
- **11001000 00010111 0001010**0 00000000 200.23.20.0/23
-
- **11001000 00010111 0001111**0 00000000 200.23.30.0/23

划分地址块

- ISP有一个地址块
- **11001000 00010111 0001**0000 00000000 200.23.16.0/20
- 机构地址块:
- **11001000 00010111 0001000**0 00000000 200.23.16.0/23
- **11001000 00010111 0001<u>001</u>0 00000000 200.23.18.0/23**
- **11001000 00010111 0001010**0 00000000 200.23.20.0/23
- •
- **11001000 00010111 0001111**0 00000000 200.23.30.0/23

计算机网络

路由广播

200.23.16.0/23的分组 向我发送地址是 200.23.18.0/23的分组 机构0 向我发送地址是 200.23.16.0/23 200.23.20.0/23的分组 机构1 200.23.18.0/23 向我发送地址是 机构2 200.23.30.0/23的分组 200.23.20.0/23 我的ISP Internet 机构7 200.23.30.0/23 别人的ISP

向我发送地址是

路由广播

机构0 200.23.16.0/23 机构1 200.23.18.0/23 机构2 200.23.20.0/23 机构7

网络地址	接口
200.23.16.0/23	0
200.23.18.0/23	0
200.23.20.0/23	0
200.23.22.0/23	0
200.23.24.0/23	0
200.23.26.0/23	0
200.23.28.0/23	0
200.23.30.0/23	0
其他	3

别人的ISP

我的ISP

- 聚合路由信息
 - 缩小路由表
 - 减少路由信息的广播代价

网络地址	接口
200.23.16.0/20	0
其他	3

机构0	
200.23.16.0/23	
机构1	
200.23.18.0/23	
机构2	向我发送地址是
200.23.20.0/23 • 我的問	SP 200.23.16.0/20的分组
	Internet
机构7	
200.23.30.0/23	
别人的	ISP
737(H)	

■ 聚合路由信息

网络地址	接口		
200.23.16.0/20	0		
199.31.0.0/16	2		
其他	3		

机构0							
200.23	3.16.0/23						
机构1							
200.23	3.18.0/23			-1			
机构2					发送地址是	4.5	
200.23	3.20.0/23	•	我的ISP	200	.23.16.0/20的分	组	
机构7	•						_ Internet
	•						
200.23	3.30.0/23						
				向我	战发送地址是		
			别人的ISP	199	.31.0.0/16的分组	1	

- 聚合路由信息
- ■需要更改转发表吗?

网络地址	接口	
200.23.16.0/20	0	
199.31.0.0/16	2	
其他	3	

机构0			
200.23.16.0/23			
机构2		向我发送地址是	
200.23.20.0/23	• 我的ISP	200.23.16.0/20的分组	
机构7			Internet
200.23.30.0/23			
机构1	别人的ISP	向我发送地址是 199.31.0.0/16的分组	
200.23.18.0/23		11 7 10 11010, 10 11 77 71	

- 聚合路由信息
- 如何更改转发表?

网络地址	接口
200.23.16.0/20	0
200.23.18.0/23	2
199.31.0.0/16	2
其他	3

机构0			
200.23.16.0/23			
			向我发
机构2			
200.23.20.0/23	·	我的ISP	200.23
•	•	•	
机构7			
200.23.30.0/23			
			向我发
机构1		别人的ISP	199.3
200.23.18.0/23			向我发

向我发送地址是 200.23.16.0/20的分组

Internet

向我发送地址是 199.31.0.0/16的分组 向我发送地址是 200.23.18.0/23的分组

路由聚合

■ 真的减少了路由表规模吗?

https://www.potaroo.net/ispcol/2020-01/bgp2019.pdf

第四章知识点汇总

- 掌握划分地址块的方法
- 理解地址聚合

- 【2018年考研38题】某路由表中有转发接口相同的4条路由表项,其目的网络地址分别为35.230.32.0/21、35.230.40.0/21、35.230.48.0/21和35.230.56.0/21,将该4条路由聚合后的目的网络地址为
- **A.** 35.230.0.0/19
- B. 35.230.0.0/20
- **C.** 35.230.32.0/19
- **D.** 35.230.32.0/20

数据平面讲解内容

- 网络层概述与功能
- ■路由器体系结构
- IP数据报格式与分片
- IP地址
- ■转发
- 划分地址块与地址聚合
- DHCP协议
- 网络地址转换NAT
- IPv6

如何获取IP地址?

- 主机接口的IP地址可以手工配置
- 也可由DHCP(Dynamic Host Configuration Protocol)协议自动获取

DHCP协议

- 四个步骤:
 - 主机广播 "DHCP Discover"报文
 - DHCP服务器以广播方式响应"DHCP Offer"报文
 - 主机广播 "DHCP Request"报文
 - DHCP服务器以单播方式响应"DHCP ACK"报文

DHCP协议

DHCP协议

DHCP协议

- 除了获得IP地址,主机还通过DHCP服务器获得:
 - 网络掩码
 - 网络广播地址
 - DNS服务器
 - 默认网关

```
V Option: (1) Subnet Mask (255.255.255.0)
    Length: 4
    Subnet Mask: 255.255.255.0
V Option: (28) Broadcast Address (192.168.2.255)
    Length: 4
    Broadcast Address: 192.168.2.255
V Option: (6) Domain Name Server
    Length: 4
    Domain Name Server: 192.168.2.1
Doption: (81) Client Fully Qualified Domain Name
Option: (252) Private/Proxy autodiscovery
V Option: (3) Router
    Length: 4
    Router: 192.168.2.1
```

第四章知识点汇总

- 理解获取IP地址的方法
- 理解DHCP协议的原理

数据平面讲解内容

- 网络层概述与功能
- ■路由器体系结构
- IP数据报格式与分片
- IP地址
- ■转发
- 划分地址块与地址聚合
- DHCP协议
- 网络地址转换NAT
- IPv6

私有网络

- 为私有Internet预留的三块地址空间[RFC1918, 1996]:
- 10.0.0.0 10.255.255.255 (10.0.0.0/8)
- 172.16.0.0 172.31.255.255 (172.16.0.0/12)
- 192.168.0.0 192.168.255.255 (192.168.0.0/16)

79

Network Address Translation NAT路由器实现

NAT转换表	
WAN端地址	LAN端地址
138.76.29.7, 5001	10.0.0.1, 3345

- 1. 替换源地址:用端口号区分私有网络内部的设备 (LAN IP地址,端口号) → (WAN IP地址,新端口号)
- 2. 在NAT转换表中添加条目
- 3. 替换目的地址 (LAN IP地址,端口号) ← (WAN IP地址,新端口号)

- 好处:
- 本地网络只需向ISP申请一个IP地址
- 可以随意改变本地网络设备的地址
- 可以更换ISP,而无需改变本地网络设备的地址
- 本地网络内部的设备对外不可见,安全

- 争议:
- 路由器(网络层)修改端口号(传输层),违反 了协议分层原则
- 地址短缺应该用IPv6来解决

第四章知识点汇总

- 理解NAT的原理
- 了解NAT的好处和存在的争议

习题

 【2019年考研47题】某网络拓扑如图所示,其中 R为路由器,主机H1-H4的IP地址配置以及R的各 接口IP地址配置如图所示。现在若干台以太网交 换机(无VLAN功能)和路由器两类网络互连设备 可供选择。请回答以下问题:

习题

■ (3) 为确保主机H1-H4能够访问Internet, R需要 提供什么服务?

数据平面讲解内容

- 网络层概述与功能
- ■路由器体系结构
- IP数据报格式与分片
- IP地址
- ■转发
- 划分地址块与地址聚合
- DHCP协议
- 网络地址转换NAT
- IPv6

IPv6地址[RFC4291, 2006]

- 为了解决IPv4地址短缺的问题
- IPv6将地址长度由32位增加到了128位

IP地址耗尽

https://www.iana.org/numbers

https://www.arin.net/resources/guide/ipv4/

https://www.ripe.net/publications/news/about-ripe-ncc-and-ripe/the-ripe-ncc-has-run-out-of-ipv4-address

https://www.apnic.net/manage-ip/ipv4-exhaustion/

https://afrinic.net/exhaustion

https://www.lacnic.net/1039/2/lacnic/phases-of-ipv4-exhaustion

- 纵轴单位%
- 截止2019年尾,只有25%的用户群支持IPv6.

https://www.potaroo.net/ispcol/2020-01/bgp2019.pdf

IPv6地址[RFC4291, 2006]

- IPv6地址表示方法
- 16位一段,分成8段,冒号分隔
- 每段分别用16进制表示
- 2001:db8:0:0:1:0:0:1
- 对于连续的几段零,可以用双冒号代替,且双冒号只能用一次
- 2001:db8::1:0:0:1

IPv6地址[RFC4291, 2006]

- 可以有很多种别的写法:
- 2001:db8:0:0:1:0:0:1
- 2001:db8::1:0:0:1
- 2001:db8::0:1:0:0:1
- 2001:0db8::1:0:0:1
- 2001:db8:0:0:1::1
- 2001:db8:0000:0:1::1
- 2001:DB8:0:0:1::1

IPv6地址压缩规则[RFC5952, 2010]

- 一个16位段的起始零必须压缩
 - 错误示范: 2001:0db8::1:0:0:1
- "::"的使用
 - 必须用于最大程度的压缩
 - 错误示范: 2001:db8::0:1:0:0:1
 - 不能用于一个16位的全零段
 - 如果有多个可以替换的位置,选择可替换段数最多的;如果都一样,就选择第一个
 - 错误示范: 2001:db8:0:0:1::1
- 必须使用小写字符
 - 错误示范: 2001:<u>DB8</u>::1:0:0:1

IPv6数据报格式

- 40字节首部
- 流量类型: 与IPv4服务类型 相似
- 下一个首部: 类似于IPv4的 上层协议
- 跳限制: 类似于IPv4的TTL

- 取消了IP分片
- 取消了首部校验和

IPv6 over IPv4

■ IPv6逐步过渡中,两个IPv6网络之间只有IPv4网络, 两个IPv6网络能否利用已有的IPv4网络实现互联呢?

IPv6 over IPv4

- 隧道技术
- 将IPv6数据报封装成IPv4数据报传输

IPv6 over IPv4

- 隧道技术
- 将IPv6数据报封装成IPv4数据报传输

上层协议: 41 (IPv6)

第四章知识点汇总

- 了解IPv6地址的表示方法
- 了解IPv6数据报格式
- 理解IPv6 over IPv4隧道技术的原理

Asks the Possible to the Impossible, "Where is your dwelling-place?" "In the dreams of the impotent," comes the answer.

可能问不可能道: "你住在什么地方呢?" 它回答道:"在那无能为力者的梦境里。"

----Tagore