ACCIDENTAL_TOURIST

J. KIRK, S. MCNAIR, N. FOSTER, K. HOLMBERG, M. ONEAL

SELECTED TOPIC

- -Traffic accidents 2018-2022
- -Impact of Covid: increase in accidents in Covid years vs. Pre-Covid years
- -Impact of weather: temperature, visibility, wind speed, precipitation, weather condition, sunrise vs sunset, year, and date

REASON TOPIC SELECTED

This topic was chosen to see if a correlation exists between the severity of car accidents during the Covid years when compared to the severity of car accidents in pre-Covid years. In this context, "severity" refers to the delay a car accident causes in the traffic pattern. A longer delay is would mean a more substantial car accident.

DESCRIPTION OF DATA SOURCE

- -The data was pulled from <u>US-Accidents: A Countrywide Traffic Accident Dataset Sobhan Moosavi (smoosavi.org)</u>
- -Dataset has 47 columns of information; we included the following columns for the purpose of the project: severity, start time, state, temperature, visibility, wind speed, precipitation, weather condition, sunrise vs sunset, year, and date

QUESTIONS EXPECTED TO BE ANSWERED

What impact has Covid had on the severity of car accidents in the US?

Has weather played a role in the information?

Research Question:

What impact has COVID had on the severity of car accidents in the US?

- •Clean the data to remove columns not needed for this project.
- Run count function on columns to review what the data is telling us about accidents in the US from 2016-2020
- •Group the 'year' column into two categries; PreCOVID and PostCOVID.
- Run code to see which accidents occured PreCOVID and which accidents occured PostCOVID
- Label the severity of the accidents in both categories.
- Run a comparison analysis to compare the data in both categories taking into account additional factors (Start_Time, State, Tempature, Visibility, Wind_Speed, Precipitation, Weather Condition, Sunrise Sunset)
- Run data through a machine learning model to see if any predictions can be made for future accident trends in the US

DATA EXPLORATION PHASE INFORMATION

According to the data, as of right now, the number of accidents went up during Covid years when compared to pre-Covid years

```
1 #11a. Get count of unique values in the 'Severity' column from 'accidents upated' dataframe
 2 print(accidents updated['Severity'].value counts())
     2084426
       71340
       66076
       23578
Name: Severity, dtype: int64
  1 #11b. Get count of unique values for Severity column from 'PreCOVID accidents'
 2 print(PreCOVID accidents['Severity'].value counts())
     228702
     27134
      21055
        150
Name: Severity, dtype: int64
  1 #11c. Get count of unique values for Severity Column from 'COVID accidents'
 2 print(COVID accidents['Severity'].value counts())
     1828676
       39448
       36885
       23422
Name: Severity, dtype: int64
```

ANALYSIS PHASE INFORMATION

```
#11. Create a PreCovid Dataframe

#accidents_updated = pd.PreCOVID_accidents(date)

start_date = '2018-06-01'

end_date = '2020-02-29'

# Select DataFrame rows between two dates

mask = (accidents_updated['date'] > start_date) & (accidents_updated['date'] <= end_date)

PreCOVID_accidents = accidents_updated.loc[mask]

PreCOVID_accidents.head()
```

	Severity	State	Temperature(F)	Visibility(mi)	Wind_Speed(mph)	Precipitation(in)	$Weather_Condition$	Sunrise_Sunset	year	date
582028	long_delay	NJ	89.0	10.0	5.0	0.0	clear_weather	Day	2019	2019-10-02
1295810	long_delay	LA	54.0	10.0	5.0	0.0	clear_weather	Day	2019	2019-11-01
1537770	long_delay	AZ	41.0	10.0	10.0	0.0	clear_weather	Night	2020	2020-02-16
1568027	long_delay	TX	79.0	10.0	25.0	0.0	bad_weather	Day	2019	2019-06-04
1756843	long_delay	VA	37.0	10.0	0.0	0.0	clear_weather	Night	2019	2019-10-19

```
#12. Create a COVID Dataframe
#accidents_updated = pd.COVID_accidents(date)
start_date = '2020-03-01'
end_date = '2021-12-31'
# Select DataFrame rows between two dates
mask = (accidents_updated['date'] > start_date) & (accidents_updated['date'] <= end_date)
COVID_accidents = accidents_updated.loc[mask]
COVID_accidents.head()</pre>
```

	Severity	State	Temperature(F)	Visibility(mi)	Wind_Speed(mph)	Precipitation(in)	Weather_Condition	Sunrise_Sunset	year	date
224945	short_delay	MA	42.0	10.0	12.0	0.0	clear_weather	Night	2021	2021-03-10
224946	short_delay	CA	54.0	2.0	6.0	0.0	bad_weather	Night	2021	2021-07-30
224947	short_delay	MD	79.0	10.0	9.0	0.0	clear_weather	Day	2021	2021-10-15
224948	short_delay	WA	38.0	10.0	0.0	0.0	clear_weather	Day	2021	2021-12-21
224949	short_delay	CA	52.0	10.0	9.0	0.0	clear_weather	Day	2021	2021-12-09

ANALYSIS CON'T

As noted in the visual, the pre-Covid dates are 6/1/18-2/29/20. And the data has been analyzed.

The Covid dates are 3/1/20-12/31/21 and those have been analyzed as well.

Both sets of dates have had the data pulled for the information listed on the "Description of Data" slide