			R	eg. No.													
			В.7	Гесh. DE	GRI					, M	AY 2	2019					
						Four	th Seme	stei									
		<u> </u>	IT100	9 – DAT	ΓΑ S'	TRUC	TURES	SA	ND .	ALG	ORI	тнл	1S				
		(For the	candidate									-		4 – 2	015)		
Not						- k =											
	i)	Part - A sl over to hal Part - B ar	ll invigilat	or at the e	nd of	45 th m	inute.				tes ai	nd Ol	MR s	sheet	shou	ld be	handed
(ii)	rarı - Dai	nd Part -	C should	be ans	swered	i iii aiiswe	er D	ookie	i.							
Tin	ne: T	hree Hours												M	ſax. I	Marl	ks: 100
				PA	RT.	- A (2	20 × 1 =	20	Mar	ks)							
						,	ALL Qu			,							
	1 '	Time compl	lexity ref	ers to													
		(A) Compl	-		in ca	lculat	ion (B)	A	mou	nt of	tim	e the	pro	gran	n nee	ed to	run to
		` ′ -	cution tir				(-)		ompl				Γ	8			
	((C) Compl	lexities ir	nvolved i	n the	input	t of (D)	C	omp	lexit	ies i	nvol	ved	with	n the	out	tput of
		the pro	ogram					th	ne pro	ograi	n						
	2 1	Linked list i	is not suit	table for													
		(A) Binary		labic 101			(B)	P	olyno	omia	1 ma	ninıı	latio	n			
		(C) Bubble					, ,		xcha			pu	14410				
	3 -	The postfix	expression	on $AB + i$	CD*	can h	ne evalu:	ateo	l nsir	าσ							
		A) Stack	сирговых	3H 7H2 1	OD .	Cuir	(B)										
		C) Queue							inke	l list							
	4 9	Suppose you	ıı want	to delete	the	name	that oc	CH	s he	fore	"Sai	" in	an	alnh	aheti	cal i	listina
		which of the												arpii	abeti	car i	nsung,
		A) Circula						_	oubl								
	(C) Linked	l list				(D)	Q	ueue								
		M 3.44		.: -1. :		4.4%			-								
		The data str		nich is oi	ne en	aea 18		C	to als								
		A) Queue C) Tree	•				(D)		tack raph								
	,	(3) 1100					(D)	J	тарп								
		Binary searc	_	_	oys t	he str											
		A) Divide		quer					ynan	_	_	amm	ing				
	(C) Greery					(D)	В	ack t	rack	ing						
	7.	To represent	t hierarch	nical rela	tionsl	hip, w	hich DS	is	suita	ble?							
	(A) List					(B)	St	ack								
	(C) Queue					(D)	T	ree								
	8. 7	You have 'n	' number	r of elem	ents	arrang	ged in a	tree	stru	cture	e, an	d no	w vc	ou ar	e ask	red to	o print
		he elements				_	-				, -				- 001		- Print
		A) Recurs		_			(B)										
	(C) DFS					(D)	Li	inear	trav	ersal	usir	ng th	read	ed bi	nary	tree
Page 1	of 3	*													251	MF4IT	71009

the contract of the contract that the contract is the contract of the contract

9.	The	operation of each element in the list is l	cnow	n as							
		Sorting	(B)	Merging							
	(C)	Inserting	(D)	Traversal							
10	Whi	ch of the following sorting procedures i	s the	slowest?							
10.		Quick sort		Heap sort							
	(C)		` ′	Bubble sort							
	(0)	Shell Soft	(D)	Dubble Soft							
11.	A lis	t of 'N' strings, each of length N, is so	rted i	into lexicographic order using the merge sort							
		rithm. The worst case running time of the									
	(A)	$O(n\log n)$	(B)	$O(n2\log n)$							
	(C)	$O(n2 + \log n)$	(D)	O(n2)							
10	33.71- :			1-24-410							
12.		ch of the following case does not exist i									
	` '	Best case	` '	Worst case							
	(C)	Average case	(D)	Null case							
13.	Whi	ch of the following sorting methods w	ould	be most suitable for sorting a list which is							
		dy sorted?									
	(A)	Bubble sort	(B)	Selection sort							
	(C)	Insertion sort	(D)	Quick sort							
			` '								
14.	Quic	k sort efficiency can be improved by ac	dopte	ed .							
		Non recursive method		Insertion method							
	(C)	Tree search method	(D)	Selection method							
15	Wha	t is the type of algorithm used in solvin	a the	2 gueens problem?							
13.		Greedy	-	Dynamic							
	(C)	Branch and bound	` /	Back tracking							
	(C)	Drailer and bound	(D)	Dack tracking							
16.	Sorti	ing is not possible by using which of the	e foll	owing methods?							
	(A)	Insertion	(B)	Selection							
		Exchange		Deletion							
	` ,		` '	*							
17.	Whi	ch of the following is true?									
		P is a subset of NP	(B)	NP is a subset of P							
		P and NP are equal	, ,	NP is a subset of NP hard							
	` ,		` '								
18.	Min	imum number of edges in a connected of	cyclic	graph on 'n' vertices is							
	(A)	n-1	(B)	n							
	(C)	n+1	(D)	n+2							
19.	The	re are several factors that affect the	effici	ency of lookup operations in a hash table,							
17.		ch of the following is not one of those f									
				Size of the elements stored in the hash table							
	(2.1)	hash table	(D)	Size of the elements stored in the mash tuble							
	(C)	Number of buckets in the hash tables	(D)	Quality of hash function							
•											
20.		When there is no possibility to store data in primary storage, secondary storage is the									
		tion. Which data structure is ideal for the		-							
		B-tree	. ,	AVL tree							
	(C)	BST	(D)	Binary Tree							

PART - B (5 × 4 = 20 Marks) Answer ANY FIVE Questions

- 21. Write a routine to destroy the memory space allocated to linked list.
- 22. Write the condition to cheque queue full and queue empty for circular queue.
- 23. What is an expression tree? Draw the expression tree for a*b*c+e/d.
- 24. Write the properties of red black tree.
- 25. Explain the terms full binary tree and complete binary tree.
- 26. Define open hashing and closed hashing.
- 27. Write an algorithm to perform depth first search in an undirected graph.

$PART - C (5 \times 12 = 60 Marks)$ Answer ALL Questions

28. a. Explain the procedure for infix to postfix with the following arithmetic expression. $(a+b) \wedge c - (d*e) / f$

(OR)

- b. Compare and contrast array and linked list DS for the following operations.
 - (i) Node creation
 - (ii) Insertion
 - (iii) Deletion
 - (iv) Search
- 29. a. Construct the binary search tree with the given data 28, 32, 12, 30, 11, 15, 9, 20. Delete 12, 11 and 28 in sequence.

(OR)

- b. Write an algorithm for inorder, preorder and post order traversals with suitable example.
- 30. a. Construct a AVL tree and explain all the rotations with the given data 48, 12, 9, 52, 68, 72, 54, 16, 22, 43, 38

(OR)

- b. Construct a Splay tree for 9, 8, 7, 6, 5, 4, 3, 2, 1. Do splaying for 3, 5, 7 in sequence.
- 31. a. Write a routine to implement quick sort and explain with suitable example.

(OR)

- b. Analyze the pros and cons of linear, quadratic and double hashing methods with respect to insert, delete and search operations.
- 32. a. Write an algorithm for Dijkstra's algorithm and explain with an example.

(OR)

b. Explain the Kruskal's algorithm for finding the minimum spanning tree in an undirected graph and analyze its running time.

* * * * *