BRAC UNIVERSITY

Department of Computer Science & Engineering Practice Problem sheet (Week8) CSE 350: Digital Electronics and Pulse Technique

Question 1

For the circuit below (enhancement Load Inverter), assume these parameters, MOSFET process parameter for M_L is $K'_L = 5 \mu A/V^2$, $(W/L)_L = 2$ and threshold voltage, $V_{TNL} = 0.7V$. MOSFET process parameter for M_X is $K'_D = 25 \mu A/V^2$, $(W/L)_D = 4$ and threshold voltage, $V_{TND} = 0.7V$.

(a

Assume $V_I = 5 \text{ V}$. Find value of V_0 in volt. Find I_D and Power Dissipation. Verify the operating mode of M_L and M_X .

(b)

What should be the value of $V_{I}\,$ if we want M_{L} to operate in the triode region?

$$\begin{array}{l} \text{(a)} \ V_{I} = 5 \\ V_{TNL} = 0.7 \\ V_{TND} = 0.7 \\ k_{L} = k'_{L} * (\frac{\omega}{L})_{L} = 10 \text{ mA/V}^{2} \\ k_{D} = k'_{D} * (\frac{\omega}{L})_{D} = 100 \text{ mA/V}^{2} \end{array}$$

For
$$M_L \rightarrow V_{NDL} = \frac{1.8-7}{5-5} = 0 \angle V_{TNL}$$

 $\therefore M_L$ in Saturation (0.7)

For
$$M_X \rightarrow V_{hDX} = V_I - V_0 = 5 - (small value)$$

:- V_{hDX} should be greater than $V_{TND}_{(0.7)}$

: Assume Mx in Triade.

$$k_{L} \left[(V_{NSL} - V_{TNL})^{2} \right] = k_{D} \left[2 \left(V_{ASX} - V_{TND} \right) V_{DSX} - V_{DSX}^{2} \right]$$

$$() 10 \left[5 - V_{0} - 0.7 \right]^{2} = 100 \left[2 \left(5 - 0.7 \right) V_{0} - V_{0}^{2} \right]$$

$$() V_{0} = \begin{cases} 8.399 \longrightarrow V_{0} \neq V_{DD} \\ 0.2001 \longrightarrow Ans \end{cases}$$

:. Power =
$$I_D (V_{DD} - 0) = (0.168 m_A) (5V)$$

= 0.840 mW

Verify ML ->

Vape = 5-

VadL = 5-5=0 < VTND

in Me in Saturation

Verily Mx ->

Valx = 5 - Vo = 5-0.2007 = 4.8 v) VTND

:. Mx in Triode.

b Fon ML ->

VadL = VDD - VDD = O < VTND

The trate is connected to Drain.

:. ML cannot be en Triode mode.

Question 2

For the circuit below (Depletion Load NOR), assume these parameters, MOSFET process parameter for M_L is $K'_L = 50 \ \mu A/V^2$, $(W/L)_L = 2$ and threshold voltage, $V_{TNL} = -0.6V$. MOSFET process parameter for both M_X and M_Y is $K'_D = 33.25 \ \mu A/V^2$, $(W/L)_D = 4$ and threshold voltage, $V_{TND} = 0.4V$.

(a)	Assume $V_X = V_Y = 1.8 \text{ V}$. Find value of V_0 in volt. Find I_{DX} , I_{DY} , I_{DL} and Power Dissipation. Verify the operating mode of M_L .
(b)	Now, assume $V_X = V_Y = 0.1 \text{ V}$. Find value of V_0 , I_{DX} , I_{DY} , I_{DL} .
(c)	What should be the operating mode of Mx and My if $V_X = 1.8V$ and $V_Y = 0$ V? (Use logical reasoning, no need for calculation)

$$V_{TNL} = -0.6V$$

$$V_{TND} = 0.4V$$

$$k_D = k_0' * (W)_D$$

$$= 133 \mu A/V^2$$

$$k_L = k_L' * (W)_L$$

$$= 100 \mu A/V^2$$

$$\rightarrow 100 [0+0.6]^2 = 2 \times 133 [2(1.8-0.4) V_0 - V_0^2]$$

$$G V_0 = \begin{cases} 0.0492 \rightarrow Ans. \\ 2.7508 \rightarrow V_0 \neq V_{DD}. \end{cases}$$

:.
$$I_{DL} = k_L \left[V_{0.5L} - V_{TNL} \right]^2$$

= $(100 \, \mu A) \left[0.6 \right]^2 = \left[3.6 \times 10^{-5} A \right]$

:.
$$I_{DX} = I_{DY} = \frac{I_{DL}}{2} = \frac{1.8 \times 10^{-5} A}{1.00}$$

Verify
$$M_L \rightarrow V_{UL} = V_{SL} = V_{O} = 0.0492V$$

 $V_{GDL} = 0.0492 - 1.8 < V_{TNL}$
 $(-0.6V)$

:.
$$V_{GSX} = 0.1 - 0 = 0.1V \angle V_{TND} (0.4V)$$

 $V_{GSY} = 0.1 - 0 = 0.1V \angle V_{TND}$

:.
$$V_0 = V_{00} = \boxed{1.8v.}$$

 \bigcirc $V_{x} = 1.8$ and $V_{y} = 0V$

:. Vasy = 0 - 0 = OV < VTND (0.44)
:. My off.

For $M_X \rightarrow V_{45X} = 1.8 \rightarrow V_{TND}$ $M_X \rightarrow M_X \rightarrow M_X$

For NOR gate, if one input is high, output should be low.

:. Vab x = 1.8 - (small value)

:. VKD X should be greater than VTND.

:, Mx should be in Triode region-

Ouestion 3

The enhancement-load NMOS NOR gate in the figure is biased at V_{DD} = 5.5 V. The transistor parameters are K_n = 0.2mA/V², V_{TN1} = 0.4 V, V_{TN2} = 1 V, V_{TNL} = 0.9 V.

(a)	Find the operating mode of the load NMOS transistor.
(b)	Find the value of v_0 in V and I_{DL} , I_{D2} in mA for $v_1 = 5.5$ V, $v_2 = 5.5$ V
(c)	Find the operating mode of the transistor \mathbf{M}_{DL}

$$V_{DS} > V_{US} - V_{TH} \rightarrow V_{US} = V_{DS}$$
[saturation]

As, $V_{DS} > V_{DS} - V_{TNL}$; ML always in saturation.

b) $V_1 = V_2 = 5.5V$

$$I_{DL} = I_{D_1} + I_{D2}$$

$$\Rightarrow K_n (V_{US} - V_{TNL})^2 = K_n \left[2. (V_{QS} - V_{TNQ}) V_{DS} - V_{DS} D_1 \right] + K_n \left[2. (V_{QS} - V_{TNQ}) V_{DS} - V_{DS} D_2 \right]$$

$$\Rightarrow (V_{DD} - V_0 - V_{TNL})^2 = \left[2. (5.5 - 0.4) \cdot V_0 - V_0^2 \right] + \left[2. (5.5 - 1) \cdot V_0 - V_0^2 \right]$$

$$\Rightarrow (5.5 - V_0 - 0.9)^2 = IIV_0 - 0.8 V_0 - V_0^2 + IIV_0 - 2V_0 - V_0^2$$

$$\Rightarrow (A.6 - V_0)^2 = 19.2 \cdot V_0 - 2V_0^2$$

$$\Rightarrow 21.16 - 9.2 \cdot V_0 + 19.2 \cdot V_0 + 2 \cdot V_0^2 = 0$$

$$\Rightarrow 3 \cdot V_0^2 - 28.4 \cdot V_0 + 21.16 = 0$$

$$\Rightarrow V_0 = 8.65 \times V_0$$

$$I_{D1} = 2.86 \cdot M_0$$

$$V_0 = 0.8153V$$
[IDD2 = 1.3345 mA]
$$I_{DD2} = 1.3345 \cdot M_0$$

Question 4

(a) Design a static CMOS logic circuit that implements the logic function Y = (AB+C)D
 (b) Design a static CMOS logic circuit that implements the logic function Y = (A+B)CD
 (c) Design a static CMOS logic circuit that implements the logic function Y = F(AB+C(D+E))

c)
$$Y = F(AB + c(D+E))$$

Question 5

Design a CMOS logic circuit to implement the given compound gate in Figure below. First derive the logical expression of output Y and then design the CMOS network.

