微积分II(第一层次)期中试卷2017 4 22

- 一、计算下列各题 $(6分 \times 8 = 48分)$
- 1. 求极限: $I = \lim_{\substack{x \to 0 \ y \to 0}} \frac{\sqrt{1 x^2 y^2} 1}{1 \cos\sqrt{x^2 + y^2}}.$
- 2. 设函数 $u = x^2y + y^2z + z^2x$, 求 u 在点 (1,1,1) 处沿方向 $\overrightarrow{l} = (1,2,1)$ 的方向导数.
- 3. 已知函数 z = z(x,y) 由方程 F(x-z,y-z) = 0 确定, 其中 F 连续可微且 $F_1' + F_2' \neq 0$, 求 $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}$.
- 5. 求积分 $I = \iint_D e^{-y^2} dx dy$, 其中 D 是由直线 x = 0, y = 1 和 x = y 所围成的闭区域.
- 6. 求 $I = \int_C (1+ye^x) dx + (x+e^x) dy$, 其中 C 为沿椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a>0) 由点 A(a,0) 按逆时针方向到 B(-a,0) 的弧线.
- 7. 求三重积分 $I = \iiint_{\Omega} (x+y+z)^2 dx dy dz$, 其中 Ω 为区域 $\{(x,y,z)|x^2+y^2 \leq z \leq 2$.
- 8. 求曲线积分 $I = \int_C xy \, ds$, 其中 $C \,$ 为 $y^2 = 2x \, \bot \, (0,0) \,$ 到 (2,2) 的一段弧.
- 二、(8分) 求曲线 $\begin{cases} y^2-2x=1, \\ x^2+2y^2+z^2=6 \end{cases}$ 在点 $P_0(0,1,2)$ 处的切线和法平面方程.
- 三、(10分) 求二元函数 $f(x,y)=3x^2+2\sqrt{2}xy+4y^2$ 在约束条件 $x^2+y^2=1$ 下的最大值和最小值。
- 四、(10分)已知S是圆柱体

$$C_1 = \{(x, y, z) : x^2 + y^2 \le 1, -1 \le z \le 1\}, \quad C_2 = \{(x, y, z) : x^2 + z^2 \le 1, -1 \le y \le 1\},$$

的交集所在区域的表面,求曲面S的面积.

五、(12分) 设
$$D_t = \{(x,y): t \le xy \le 2t, t \le \frac{y}{x} \le 2t, x > 0, y > 0\}$$
 $(t > 0)$.

(1) 对固定的t > 0, 求区域 D_t 的面积;

(2) 求常数
$$\alpha, \beta$$
, 使得 $\beta = \lim_{t \to 0^+} \frac{1}{t^2} \left(\iint_{D_t} e^{\frac{y}{x}} dx dy - \alpha t \right).$

六、(12分) 讨论函数 $u(x,y) = \begin{cases} \frac{\varphi(x)\arcsin(xy^2)}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}$ 在点 (0,0) 处的连续性、可

偏导性、可微性及连续可微性,其中 $\varphi(x)$ 为 \mathbb{R} 上的连续可微函数.

微积分II(第一层次)期中试卷2018 5 5

- 一、计算下列各题 $(5分 \times 12 = 60分)$
- 1. 求极限: $\lim_{\substack{x\to 0\\y\to 0}} \frac{\sin(x^2y^3)}{\ln(1+x^4+y^4)}$.
- 2. 设 $z = f(x^2 y^2, e^{xy})$, 其中f 具有一阶连续偏导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.
- 3. 设由方程 $F(xy, \frac{z}{y}) = 0$ 确定函数 z = z(x, y), 其中 F(u, v) 一阶连续可微且 $F'_u \neq 0$, 求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$.
- 4. 求曲面 $\sqrt{x} + 2\sqrt{y} + 3\sqrt{z} = 6$ 在 (1,1,1) 处的切平面.
- 5. 求函数 $f(x,y) = x^4 + y^4 (x+y)^2$ 的所有驻点,并判断是否取得极值.
- 6. 函数 $f(x,y,z) = xyz + \ln(xyz)$ 在点 (2,1,1) 处沿什么方向的方向导数取得最大值?
- 7. 交换累次积分 $I_1 = \int_0^1 dx \int_x^{1+\sqrt{1-x^2}} f(x,y) dy$ 的次序.
- 8. 求二重积分 $I_2 = \iint_D (|x| + |y|) dx dy$, 其中 $D = \{(x, y) | x^2 + y^2 \le 1$.
- 9. 设 f(x) 在 [0,1] 上连续,并设 $\int_0^1 f(x) dx = A$,求 $I_3 = \int_0^1 dx \int_x^1 f(x) f(y) dy$.
- 10. 求第一类曲线积分 $I_4 = \int_C (x+y) \, \mathrm{d}s$,其中 C 为双纽线 $(x^2+y^2)^2 = 2(x^2-y^2)$ 的右半分支.
- 11. 求第二类曲线积分 $I_5 = \int_C (y-z) \, \mathrm{d}x + (z-x) \, \mathrm{d}y + (x-y) \, \mathrm{d}z$, 其中 C 为球面 $x^2 + y^2 + z^2 = 1$ 与平面 $y = x \tan \beta \ (0 < \beta < \frac{\pi}{2})$ 的交线,从 x 轴正向看去是逆时针方向.
- 12. 证明: $(2x\cos y + y^2\cos x) dx + (2y\sin x x^2\sin y) dy$ 在整个 xOy 平面上是某个函数的全微分,并求出它的一个原函数.
- 二、(8分) 讨论函数 $f(x,y) = \begin{cases} \frac{(x+y)\ln(1+xy)}{x^2+y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}$ 在点 (0,0) 处的连续性、可

偏导性、以及可微性,

- 三、(8分) 在椭圆抛物面 $z=\frac{x^2}{a^2}+\frac{y^2}{b^2}$ (a>0,b>0) 及平面 z=1 所围成的区域内嵌入一个长方体,且有一面在 z=1 上,求此长方体体积的最大值.
- 四、(8分) 计算积分 $I_6 = \iiint_{\Omega} (y+z)^2 dx dy dz$, 其中 Ω 为球体 $x^2 + y^2 + z^2 \le 2x$.
- 五、(8分) 求曲面 $(2x+3y)^2+(2y+3z)^2+(2z+3x)^2=1$ 所围立体体积.
- 六、(8分) 设 D 为两条直线 y=x,y=4x 和两条双曲线 xy=1,xy=4 所围成的闭区域,F(u) 是连续可微函数,C 是闭区域 D 的边界,取正向。记 f(u)=F'(u),证明: $I_7=\int_C \frac{F(xy)}{y}\mathrm{d}y=\ln 2\int_1^4 f(u)\mathrm{d}u$.

微积分 II (第一层次)期中试卷 2019.4.27

一、计算下列各题(每题6分,共48分)

1. 计算极限
$$I_1 = \lim_{\substack{x \to 0 \ y \to 0}} \frac{e^{x^2 + y^3} - e^{x^2} - e^{y^3} + 1}{\tan(x^4 + y^4)}.$$

- 2. 设函数 $z=f\left(xy,\ yg(x)\right)$, 函数 f 具有二阶连续偏导数, 函数 g(x) 可导且在 x=1 处取得极值 g(1)=1. 求 $\left.\frac{\partial^2 z}{\partial x \partial y}\right|_{(x,y)=(1,1)}$.
 - 3. 求函数 $u = x^2 + e^{yz} + \sin(z x)$ 在点 (1, -2, 1) 处沿 $\vec{l} = (2, 1, 1)$ 的方向导数.
 - 4. 设 f(x,y) 是连续函数,交换 $I_2 = \int_0^1 dy \int_{-\sqrt{1-y^2}}^{1-y} f(x,y) dx$ 的积分顺序.
- 5. 计算曲线积分 $I_3 = \oint_C (e^x \sin y + \arcsin \frac{(x-1)^2}{2}) dx + (x + e^x \cos y + \ln(y^4 + 2)) dy$, 其中 C 为圆周 $x^2 + y^2 = 2x$,逆时针方向.

6. 设区域
$$D = \{(x,y) \mid x^2 + y^2 \le 1, \ x \ge 0\}$$
, 计算二重积分 $I_4 = \iint_D \frac{2 + xy}{1 + x^2 + y^2} dxdy$.

- 7. 计算圆柱面 $x^2 + y^2 = 2x$ 被圆锥面 $x^2 + y^2 = z^2$ 所截下的部分曲面的面积 S.
- 8. 求 $f(x,y) = 4x^2 + 6xy + y^3$ 在开区域 $D = \{(x,y) | 4x^2 + 9y^2 < 36\}$ 内的极值.

二、(12分) 讨论函数
$$f(x,y) = \begin{cases} \frac{xy\tan(x+y)}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 在点 $(0,0)$ 处的连续性、可偏

导性及可微性.

三、(10分) 求上半椭球 $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\leq 1$ $(z\geq 0)$ 内接标准长方体的最大体积, 其中 a,b,c>0. (注:这里的标准长方体是指各面平行于某坐标平面的长方体)

四、(10分) 设
$$\Omega = \{(x, y, z) \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1\}$$
, 计算三重积分 $I_5 = \iiint_{\Omega} x^2 dx dy dz$.

五、(10分) 已知空间曲线
$$C$$
 为
$$\begin{cases} x^2+y^2=z^2\\ (x^2+y^2)^2=x^2-y^2 \end{cases} (z\geq 0), 求曲线积分 I_6=\int_C z^3\,\mathrm{d} s.$$

六、(10分) 1. 证明:
$$I_7 = \int_0^1 dy \int_0^1 \frac{x-y}{(x+y)^3} dx = -\frac{1}{2}$$
.

2. 证明:
$$I_8 = \int_0^1 dx \int_0^1 \frac{x-y}{(x+y)^3} dy = \frac{1}{2}$$
.

3. 对于上面两个积分值不相等,给出你自己的看法.

微积分II (第一层次) 期中试卷参考答案2017.4.22

$$-1. -1; \quad 2. \ 2\sqrt{6}; \quad 3. \ 1; \quad 4. \ \frac{\partial z}{\partial x} = e^{-u}(v\cos v - u\sin v), \ \frac{\partial^2 z}{\partial x \partial y} = e^{-2u}(\cos(2v) - v\sin(2v) - v\sin(2v))$$

$$u\cos(2v)$$
; 5. $\frac{1}{2}(1-e^{-1})$; 6. $\frac{\pi ab}{2} - 2a$; 7. $\frac{16\pi}{3}$; 8. $\frac{5\sqrt{5}}{3} + \frac{1}{15}$.

二、切线方程为x = y - 1 = -(z - 2), 法平面方程为x + y - z + 1 = 0.

$$\Xi \cdot f_{max} = f\left(\pm\frac{\sqrt{3}}{3},\pm\frac{\sqrt{6}}{3}\right) = 5; f_{min} = f\left(\pm\frac{\sqrt{6}}{3},\mp\frac{\sqrt{3}}{3}\right) = 2.$$

六、当 $\varphi(0) = 0$ 时,u(x,y) 在点 (0,0) 处连续、可偏导、可微、连续可微; 当 $\varphi(0) \neq 0$ 时,u(x,y) 在点 (0,0) 处连续、可偏导、不可微、不连续可微;

微积分II(第一层次)期中试卷参考答案2018.5.5

$$-1. 0; \quad 2. \frac{\partial z}{\partial x} = 2xf_1' + ye^{xy}f_2', \frac{\partial z}{\partial y} = -2yf_1' + xe^{xy}f_2'; \quad 3. \frac{\partial z}{\partial x} = -y^2\frac{F_1'}{F_2'}, \frac{\partial z}{\partial y} = \frac{z}{y} - xy\frac{F_1'}{F_2'};$$

4. x + 2y + 3z - 6 = 0; 5. 驻点 (1,1) 和 (-1,-1) 处取最小值, 驻点 (0,0) 处不取得极值;

6.
$$\Re\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$$
 $\hat{\mathcal{T}}$ $\hat{\mathcal{D}}$; 7. $I_1 = \int_0^1 \mathrm{d}y \int_0^y f(x, y) \mathrm{d}x + \int_1^2 \mathrm{d}y \int_0^{\sqrt{2y-y^2}} f(x, y) \mathrm{d}x;$ 8. $\frac{8}{3}$;

9.
$$\frac{A^2}{2}$$
; 10. $2\sqrt{2}$; 11. $2\pi(\cos\beta - \sin\beta)$; 12. $y^2\sin x + x^2\cos y$.

二、连续、可偏导、不可微. 三、边长为
$$a,b,\frac{1}{2}$$
,体积为 $\frac{1}{2}ab$. 四、 $\frac{8\pi}{15}$; 五、 $\frac{4}{105}\pi$.

六、令
$$u = xy, v = \frac{y}{x}$$
, 则 $D' = \{(u, v) | 1 \le u \le 4, 1 \le v \le 4, J(u, v) = \frac{1}{2v}$, 于是由格林公式

$$\oint_C \frac{F(xy)}{y} dy = \iint_D F'(xy) dx dy = \iint_{D'} F'(u) \cdot \frac{1}{2v} du dv = \int_1^4 f(u) du \int_1^4 \frac{1}{2v} dv = \ln 2 \int_1^4 f(u) du.$$

微积分 II (第一层次)期中试卷参考答案 2019.4.27

一、 1. 解:
$$I_1 = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{(\mathrm{e}^{x^2} - 1)(\mathrm{e}^{y^3} - 1)}{\tan(x^4 + y^4)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 y^3}{x^4 + y^4} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 y^2}{x^4 + y^4} \cdot y = 0.$$
 (无穷小与有界函数的积是无穷小)

2. 解:
$$g(x)$$
 在 $x = 1$ 处可导且取得极值,从而 $g'(1) = 0$. $\frac{\partial z}{\partial x} = yf'_1 + yf'_2g'(x)$,

$$\frac{\partial^2 z}{\partial x \partial y} = f_1' + y(f_{11}''x + f_{12}''g(x)) + f_2'g'(x) + y(f_{21}''x + f_{22}''g(x))g'(x),$$

于是
$$\frac{\partial^2 z}{\partial x \partial y}\Big|_{(1,1)} = f_1'(1,1) + f_{11}''(1,1) + f_{12}''(1,1).$$

3. 解:
$$u'_x = 2x - \cos(z - x), u'_y = ze^{yz}, u'_z = ye^{yz} + \cos(z - x), \vec{l}$$
 的方向余弦为 $\left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right),$
$$\frac{\partial u}{\partial \vec{l}}\Big|_{(1,-2,1)} = \frac{\partial u}{\partial x}\Big|_{(1,-2,1)} \cdot \frac{2}{\sqrt{6}} + \frac{\partial u}{\partial y}\Big|_{(1,-2,1)} \cdot \frac{1}{\sqrt{6}} + \frac{\partial u}{\partial z}\Big|_{(1,-2,1)} \cdot \frac{1}{\sqrt{6}} = \frac{1}{\sqrt{6}}(3 - e^{-2})$$

4.
$$\Re : I_2 = \int_{-1}^0 dx \int_0^{\sqrt{1-x^2}} f(x,y) dy + \int_0^1 dx \int_0^{1-x} f(x,y) dy.$$

5. 解: 设
$$P(x,y) = e^x \sin y + \arcsin \frac{(x-1)^2}{2}$$
, $Q(x,y) = x + e^x \cos y + \ln(y^4 + 2)$, 由格林公式
$$I_3 = \iint\limits_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathrm{d}x \mathrm{d}y = \iint\limits_D \mathrm{d}x \mathrm{d}y = \sigma(D) = \pi.$$

6. 解:注意到
$$D$$
关于 $y=0$ 对称, $\frac{xy}{1+x^2+y^2}$ 关于 y 是奇函数,则 $\iint_D \frac{xy}{1+x^2+y^2} dx dy=0$.
$$I_4=\iint_{-\frac{\pi}{2}} \frac{2}{1+x^2+y^2} dx dy=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_0^1 \frac{2\rho}{1+\rho^2} d\rho=\pi \ln 2.$$

$$\iint_{D} 1 + x^{2} + y^{2} \frac{dx}{dy} = \int_{-\frac{\pi}{2}} dx \int_{0} 1 + \rho^{2} \frac{d\rho}{dx} = x \text{ in 2.}$$

解:设 S_1 是所求曲面在第一卦限部分的面积.由对称性, $S=4S_1$.

将
$$S_1$$
 投影到 zOx 坐标面,投影区域为 $D_1 = \{(z,x)|0 \le z \le \sqrt{2x}, 0 \le x \le 2\},$
$$S = 4 \iint \sqrt{1 + (y_x')^2 + (y_z')^2} dz dx = 4 \iint \sqrt{1 + \frac{(1-x)^2}{2x - x^2}} dz dx = 4 \int_0^2 dx \int_0^{\sqrt{2x}} \frac{1}{\sqrt{2x - x^2}} dz = 16.$$

8. 解:由
$$\begin{cases} f'_x = 8x + 6y = 0, \\ f'_y = 6x + 3y^2 = 0 \end{cases}$$
解得两个驻点 $(0,0)$ 和 $\left(-\frac{9}{8}, \frac{3}{2}\right)$,这两个驻点都在开区域 D 内.

$$f_{xx}'' = 8, \ f_{xy}'' = 6, \ f_{yy}'' = 6y,$$

对于 (0,0), 有 A=8, B=6, C=0, $B^2-AC>0$, 所以 (0,0) 不是极值点.

对于
$$\left(-\frac{9}{8}, \frac{3}{2}\right)$$
, 有 $A = 8$, $B = 6$, $C = 9$, $B^2 - AC < 0$, $A > 0$, 故 $f\left(-\frac{9}{8}, \frac{3}{2}\right) = -\frac{27}{16}$ 是极小值.

二、解:
$$\lim_{\substack{x \to 0 \\ y \to 0}} f(x,y) = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy \tan(x+y)}{x^2 + y^2} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(x+y)}{x^2 + y^2} \quad (x = \rho \cos \theta, y = \rho \sin \theta)$$

$$= \lim_{\rho \to 0^+} \rho \cos \theta \sin \theta (\cos \theta + \sin \theta) = 0 = f(0,0), \quad \text{MU} f(x,y) \stackrel{\cdot}{\text{LU}} (0,0) \stackrel{\cdot}{\text{LU}} (0,0)$$

$$f'_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{0 - 0}{x} = 0$$
, 同理 $f'_y(0,0) = 0$. 故 $f(x,y)$ 在 $(0,0)$ 处可偏导;

$$\omega = f(x,y) - f'_x(0,0)x - f'_y(0,0)y = f(x,y), \quad \rho = \sqrt{x^2 + y^2}, \quad \text{II}$$

$$\lim_{\rho \to 0^+} \frac{\omega}{\rho} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(x+y)}{(x^2+y^2)^{3/2}} = \lim_{\rho \to 0^+} \frac{\rho^3 \cos \theta \sin \theta (\cos \theta + \sin \theta)}{\rho^3}, 此式极限不存在, 故 f(x,y) 在 (0,0) 处 不可微$$

三、解: 设内接标准长方体在第一卦限的顶点坐标为 (x,y,z), 则长方体的体积 V=4xyz, 其中 x,y,z>0 且满足 $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$.

构造拉格朗日函数
$$F(x, y, z, \lambda) = 4xyz + \lambda \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1\right)$$
,

$$\begin{cases} \frac{\partial F}{\partial x} \equiv 4yz + \frac{2x}{a^2}\lambda = 0, \\ \frac{\partial F}{\partial y} \equiv 4zx + \frac{2y}{b^2}\lambda = 0, \\ \frac{\partial F}{\partial z} \equiv 4xy + \frac{2z}{c^2}\lambda = 0, \\ \frac{\partial F}{\partial z} \equiv 4xy + \frac{2z}{c^2}\lambda = 0, \\ \frac{\partial F}{\partial \lambda} \equiv \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0, \end{cases}$$
解得唯一的驻点 $(\frac{\sqrt{3}}{3}a, \frac{\sqrt{3}}{3}b, \frac{\sqrt{3}}{3}c)$. 由问题的几何意义知体积的最大值一定存在,从而最大体积在此驻点取得, $V_{max} = \frac{4\sqrt{3}}{9}abc$.

四、解: 令 $u = \frac{x}{a}$, $v = \frac{y}{b}$, $w = \frac{z}{c}$, 则 dxdydz = abc dudvdw, 新的积分区域为

$$\Omega' = \{(u, v, w) \mid u^2 + v^2 + w^2 \le 1\}.$$
 $\exists E \quad I_5 = a^3bc \iiint_{\Omega'} u^2 \, du \, dv \, dw,$

注意到
$$\iiint_{\Omega'} u^2 du dv dw = \iiint_{\Omega'} v^2 du dv dw = \iiint_{\Omega'} w^2 du dv dw$$
, 则有

$$I_5 = \frac{a^3bc}{3} \iiint_{\Omega'} (u^2 + v^2 + w^2) \, du dv dw = \frac{a^3bc}{3} \int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^1 r^4 \sin\varphi \, dr = \frac{4\pi}{15} a^3 bc.$$

方法2: 设 Ω_1 是 Ω 中 $x \ge 0$ 的部分,D(x): $\frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 - \frac{x^2}{a^2}$, 由对称性,

$$I_5 = 2 \iiint_{\Omega_1} x^2 dx dy dz = 2 \int_0^a x^2 dx \iint_{D(x)} dy dz = 2 \int_0^a \pi b c x^2 \left(1 - \frac{x^2}{a^2}\right) dx = \frac{4\pi}{15} a^3 bc.$$

五、解: 设 C_1 是 C 在第一卦限的部分,由对称性,有 $I_6 = 4 \int_{C_1} z^3 ds$. 设 $x = z \cos \theta$, $y = z \sin \theta$, 得到曲线 C_1 的参数方程 $x = \sqrt{\cos(2\theta)} \cos \theta$, $y = \sqrt{\cos(2\theta)} \sin \theta$, $z = \sqrt{\cos(2\theta)}$, $(0 \le \theta \le \frac{\pi}{4})$, 计算得 $(x'(\theta))^2 + (y'(\theta))^2 + (z'(\theta))^2 = \frac{1 + \sin^2(2\theta)}{\cos(2\theta)}$. 于是

$$I_{6} = 4 \int_{0}^{\frac{\pi}{4}} \sqrt{\cos^{3}(2\theta)} \cdot \sqrt{\frac{1 + \sin^{2}(2\theta)}{\cos(2\theta)}} d\theta = 2 \int_{0}^{\frac{\pi}{2}} \cos \beta \sqrt{1 + \sin^{2}\beta} d\beta \quad (\sharp \psi \beta = 2\theta, \sin \beta = u)$$
$$= 2 \int_{0}^{1} \sqrt{1 + u^{2}} du = \left(u\sqrt{1 + u^{2}} + \ln(u + \sqrt{u^{2} + 1})\right) \Big|_{0}^{1} = \sqrt{2} + \ln(1 + \sqrt{2}).$$

六、解: 1. 注意到
$$\frac{x-y}{(x+y)^3} = \frac{(x+y)-2y}{(x+y)^3} = \frac{1}{(x+y)^2} - \frac{2y}{(x+y)^3}$$
,

$$\operatorname{Id} \int \frac{x-y}{(x+y)^3} \mathrm{d}x = \int_0^1 \left(\frac{1}{(x+y)^2} - \frac{2y}{(x+y)^3} \right) \mathrm{d}x = -\frac{1}{x+y} + \frac{y}{(x+y)^2} = \frac{-x}{(x+y)^2},$$

$$I_7 = \lim_{\varepsilon \to 0^+} \int_{\varepsilon}^1 \frac{-x}{(x+y)^2} \Big|_{x=0}^{x=1} dy = -\int_0^1 \frac{1}{(1+y)^2} dy = -\frac{1}{2},$$

上面的式子出现极限,是因为 $\frac{-x}{(x+y)^2}\Big|_{x=0}$ 在 y=0 无定义(无界).

2. 注意到
$$\frac{x-y}{(x+y)^3} = \frac{(-x-y)+2x}{(x+y)^3} = -\frac{1}{(x+y)^2} + \frac{2x}{(x+y)^3},$$

則 $\int \frac{x-y}{(x+y)^3} \, \mathrm{d}y = \int \left(-\frac{1}{(x+y)^2} + \frac{2x}{(x+y)^3}\right) \, \mathrm{d}y = \frac{1}{x+y} - \frac{x}{(x+y)^2} = \frac{y}{(x+y)^2},$

$$I_8 = \lim_{\varepsilon \to 0^+} \int_{\varepsilon}^1 \frac{y}{(x+y)^2} \Big|_{x=0}^{y=1} \, \mathrm{d}x = \int_{0}^1 \frac{1}{(1+x)^2} \, \mathrm{d}x = \frac{1}{2},$$

上面的式子出现极限,是因为 $\left.\frac{y}{(x+y)^2}\right|_{y=0}$ 在 x=0 无定义(无界).