Pyrrolo[2,3-d]pyrimidines, process for their preparation and their use as medicaments

Patent Number: DE3145287

Publication

date:

1983-05-19

Inventor(s):

HORSTMANN HARALD DR (DE); JACOBI HAIRREDIN DR (DE); EGER KURT-DR (DE):

FRUCHTMANN ROMANIS (DE); RADDATZ SIEGFRIED DR (DE); ROTH HERMANN

PROF DR (DE)

Applicant(s):

TROPONWERKE GMBH & CO KG (DE)

Requested

Patent:

DE3145287

Application

Number:

DE19813145287 19811114

Priority Number

(s):

DE19813145287 19811114

IPC

Classification:

C07D487/04; A61K31/505

Classification:

C07D487/04

Equivalents:

Abstract

Pyrrolo[2,3-d]pyrimidines of the general formula I in which R represents hydrogen or preferably an optionally substituted alkyl group, R<1> represents hydrogen, mercapto, alkoxy, optionally substituted alkylmercapto, alkylamino, dialkylamino, optionally substituted arylamino, aralkylamino, pyrrolidinyl, piperidinyl, N-methylpiperazinyl, morpholinyl or pyrryl, or, if R is not hydrogen, but an optionally substituted alkyl group, represents hydroxyl, chloro or amino, R<2> and R<3> are identical or different and each represent alkyl or phenyl which is optionally substituted by halogen, trifluoromethyl, alkyl or alkoxy or together represent an alkylene chain having 2 to 5 carbon atoms, which is optionally substituted by alkyl, R<4> represents hydrogen, halogen, a nitro group, a lower alkyl or alkoxy group or a trifluoromethyl group, R<5> represents hydrogen, halogen or a lower alkyl or alkoxy group, their acid addition salts, a process for their preparation and their use as medicaments, in particular as anti-inflammatories and as agents for the treatment of diseases of the central nervous system.

Data supplied from the esp@cenet database - I2

(21) Aktenzeichen:

14.11.81 19. 5.83

Anmeldetag: 43 Offenlegungstag:

DEUTSCHES PATENTAMT

(7) Anmelder:

Troponwerke GmbH & Co KG, 5000 Köln, DE

② Erfinder:

Eger, Kurt, Dr., 5300 Bonn, DE; Fruchtmann, Romanis, 5000 Köln, DE; Horstmann, Harald, Dr., 5600 Wuppertal, DE; Jacobi, Hairredin, Dr., 5672 Leichlingen, DE; Raddatz, Siegfried, Dr., 5000 Köln, DE; Roth, Hermann, Prof. Dr., 5340 Bad Honnef, DE

Pyrrolo [2.3-d] pyrimidine, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel

Pyrrolo[2.3-d]pyrimidine der allgemeinen Formel i

in welcher R für Wasserstoff oder vorzugsweise eine gegebenenfalls substituierte Alkylgruppe, R1 für Wasserstoff, Mercapto, Alkoxy, gegebenenfalls substituientes Alkylmercapto, Alkylamino, Dialkylamino, gegebenenfalls substituiertes Arylamino, Aralkylamino, Pyrrolidinyl, Piperidinyl, N-Methylpiperazinyl, Morpholinyl oder Pyrryl, oder, falls R nicht Wasserstoff, sondern eine gegebenenfalls substituiert. Alkylgrupp ist, für Hydroxy, Chloro oder Amino steht, R² und R³ gleich oder verschieden sind und jeweils für Alkyl oder Phenyl, welches gegebenenfalls durch Halogen, Trifluormethyl, Alkyl oder Alkoxy substituiert ist oder gemeinsam für eine Alkylenkette

mit 2 bis 5 Kohlenstoffatomen stehen, welche gegeb nenfalls durch Alkyl substituiert ist, R4 für Wasserstoff, Halogen, ein Nitrogruppe, eine niedere Alkyl- oder Alkoxygruppe oder für eine Trifluormethylgruppe, R5 für Wasserstoff, Halogen oder eine niedere Alkyl- oder Alkoxygruppe steht, ihre Säureadditionssalze, ein Verfahren zu ihrer Herstellung und ihre V rwendung als Arzneimittel, insbesondere als Antiphlogistika und als Mittel zur Behandlung von Krankheiten des zentralen (3145287)Nervensystems.

Alkoxy substituiert ist, stehen oder gemeinsam für eine Alkylenkette mit 2 bis 5 Kohlenstoffatomen stehen, welche gegebenenfalls durch Alkyl substituiert ist,

- für Wasserstoff, Halogen, eine Nitrogruppe, eine niedere Alkyl- oder Alkoxygruppe oder für eine Trifluormethylgruppe steht,
 - R^5 für Wasserstoff, Halogen oder eine niedere Alkyl- oder Alkoxygruppe steht,
- 10 sowie deren Säureadditionssalze.
 - Pyrrolo/2.3-d/pyrimidine (I) gemäß Anspruch 1, in denen R für eine gegebenenfalls substituierte Alkylgruppe steht.
- 3. Verfahren zur Herstellung von Pyrrolo/2.3-d/pyrimidinen (I) gemäß Anspruch 1, dadurch gekennzeichnet, daß
 - a) Aminocyanopyrrole (II) mit Acylierungsmitteln und vorzugsweise anschließend mit Phosphorsäure zu den Pyrrolo 2.3-d pyrimidonen-4 (III),
 - b) diese mittels siedendem POCl₃ zu 4-Chlorpyr-rolo/2.3-d/pyrimidinen (IV) und
 - c) diese mittels Nucleophilen H-R¹ unter Druck umgesetzt werden.

TP 38

- 4. Verbindungen der allgemeinen Formel (I) zur Verwendung bei der Bekämpfung von Krankheiten.
- 5. Arzneimittel, enthaltend mindestens eine Verbindung der allgemeinen Formel (I).
- 5 6. Verfahren zur Herstellung von Arzneimitteln, dadurch gekennzeichnet, daß man Verbindungen der allgemeinen Formel (I), gegebenenfalls unter Verwendung üblicher Hilfs- und Trägerstoffe, in eine geeignete Applikationsform überführt.
- 7. Verwendung von Verbindungen der allgemeinen Formel (I) zur Bekämpfung von Krankheiten.
 - 8. Verwendung von Verbindungen der allgemeinen Formel (I) bei der Bekämpfung von Erkrankungen des zentralen Nervensystems.
- Verwendung von Verbindungen der allgemeinen Formel (I) bei der Bekämpfung von entzündlichen Prozessen.
 - 10. Verwendung von Verbindungen der allgemeinen Formel (I) bei der Herstellung von Arzneimitteln.

TROPONWERKE GmbH & Co. KG

5000-K81n-80

Je/bo/c

13. Nov. 1981

Pyrrolo/2,3-d/pyrimidine, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel

Die vorliegende Erfindung betrifft neue Pyrrolo/2.3-d7-pyrimidine, ein Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel, insbesondere als Antiphlogistika und als Mittel zur Behandlung von Krankheiten des zentralen Nervensystems.

Finige Pyrrolo/2,3-d/pyrimidine sind bereits als biologisch wirksame Verbindungen bekannt. So sind Derivate beschrieben, die eine cytotoxische Aktivität entfalten (J.A. Montgomery et al., J. Med. Chem. 10, (1967), 665); von anderen ist eine antibiotische Wirksamkeit beschrieben (J.F. Gerster et al., J. Med. Chem. 10, (1967), 326).

H.J. Roth et al. beschreiben die Herstellung ähnlicher Pyrrolo/2.3-d/pyrimidine (H.J. Roth et al., Arch. Pharmaz., 308, (1975), 252-58). Sie finden bei 4-Amino- und 4-Hydroxypyrrolo/2.3-d/pyrimidinen antiphlogistische und psychotrope Eigenschaften (EP/OS 5205 vom 17.04.1979). Diese Verbindungklasse hat jedoch bisher noch keinen Eingang in die Humanmedizin gefunden.

TP 38

5

10

Die Erfindung betrifft neue Pyrrolo $\sqrt{2}$, 3-d7pyrimidine der allgemeinen Formel (I)

in welcher

10

- 5 R für Wasserstoff oder vorzugsweise eine gegebenenfalls substituierte Alkylgruppe,
 - für Wasserstoff, Mercapto, Alkoxy, gegebenenfalls substituiertes Alkylmercapto, Alkylamino, Dialkylamino, gegebenenfalls substituiertes Arylamino, Aralkylamino, Pyrrolidinyl, Piperidinyl, N-Methylpiperazinyl, Morpholinyl oder für Pyrryl,

oder, falls R nicht Wasserstoff, sondern eine gegebenenfalls substituierte Alkylgruppe ist, für Hydroxy, Chloro oder Amino steht,

15 R² und R³ gleich oder verschieden sind und jeweils für Alkyl oder Phenyl, welches gegebenenfalls durch Halogen, Trifluormethyl, Alkyl oder Alkoxy sub-

stituiert ist oder gemeinsam für eine Alkylenkette mit 2 bis 5 Kohlenstoffatomen stehen, welche gegebenenfalls durch Alkyl substituiert ist,

- für Wasserstoff, Halogen, eine Nitrogruppe, eine niedere Alkyl- oder Alkoxygruppe oder für eine Trifluormethylgruppe,
 - R⁵ für Wasserstoff, Halogen oder eine niedere Alkyloder Alkoxygruppe steht.

Die neuen Pyrrolo/2.3-d/pyrimidine lassen sich nach folgendem Reaktionsschema (1) herstellen:

Reaktionsschema 1

5

Hierin haben R, R^1 , R^2 , R^3 , R^4 und R^5 die obengenannte Bedeutung.

In den allgemeinen Formeln (I) bis (IV) bedeuten:

ein Halogenatom, vorzugsweise ein Brom-, Chloroder Fluoratom,
eine niedere Alkylgruppe, vorzugsweise eine
Methylgruppe; darüber hinaus jedoch insbesondere die Ethyl-, Propyl-, Isopropyl-, Butyl-,
Isobutyl- und die tert.-Butylgruppe,
eine niedere Alkoxygruppe, vorzugsweise die
Methoxy-, Ethoxy-, Propoxy- oder Isopropoxygruppe, besonders bevorzugt die Methoxygruppe.

Die als Ausgangsverbindungen eingesetzten Pyrrolderivate der allgemeinen Formel (II) lassen sich aus Acetoin, Benzoin oder Adipoin, dem entsprechenden aromatischen Amin und Malonsäuredinitril gemäß Reaktionsschema (2) herstellen:

Reaktionsschema 2

$$\begin{array}{c}
 & H_{3}C-C=0 \\
 & H_{3}C-C=0 \\
 & H_{3}C-CH-NH \\
 & H_{3}C-CH-NH \\
 & H_{3}C-CH-NH
\end{array}$$

$$\begin{array}{c}
 & H_{3}C-C=0 \\
 & H_{3}C-CH-NH \\
 & R_{3}C-CH-NH
\end{array}$$

$$\begin{array}{c}
 & H_{3}C-CH-NH \\
 & H_{3}C-CH-NH
\end{array}$$

20

Bei dieser Darstellung erfolgt zunächst die Kondensation des Acyloins mit dem entsprechenden aromatischen Amin in Gegenwart von katalytischen Mengen einer starken Säure, wie z.B. Salzsäure oder p-Toluolsulfonsäure, in der Siedehitze in einem geeigneten Lösungsmittel, wie z.B. Essigester, unter Wasserabspaltung zu den -Aminoketonen; diese werden jedoch nicht isoliert, sondern sofort mit Malonsäuredinitril erneut in der Hitze zu den Aminocyanopyrrolen (II) kondensiert.

Die Aufarbeitung erfolgt dann allgemein durch Abdampfen des Lösungsmittels und Rekristallisation des Rückstandes aus einem geeigneten Lösungsmittel.

Die erfindungsgemäßen Pyrrolo/2.3-d/pyrimidine werden hergestellt, indem in einem ersten Schritt Aminocyanopyrrole (II) mit Acylierungsmitteln, z.B. mit Acylhalogenid oder Säureanhydrid und Pyridin zu acylierten Aminocyanopyrrolen und diese mittels Phosphorsäure durch Ringschluß zu den erfindungsgemäß bevorzugten 2-Alkylpyrrolo/2.3-d/pyrimidonen-4 (III) umsetzt. Für den Fall, daß R Wasserstoff ist, wird als Acylierungsmittel Ameisensäure, vorzugsweise 85 - 92 %ige Ameisensäure, gegebenenfalls in Gegenwart von inerten organischen Lösungsmitteln bei erhöhter Temperatur eingesetzt. In diesem Fall erübrigt sich der Ringschluß mit Phosphorsäure, der bei R = Alkylgruppe, gegebenenfalls substituiert, vorgenommen werden muß; diese Reaktion mit vorzugsweise ca. 92 gew.-%iger H3PO4 führt jedoch zu den erfindungsgemäß bevorzugten Verbindungen, in denen R nicht für

15

20

Wasserstoff steht. In einem zweiten Schritt werden die vorzugsweise 2-alkylsubstituierten Pyrrolo/2.3-d/pyrimidone-4 (III) in die vorzugsweise 2-alkylsubstituierten 4-Chlorpyrrolo/2.3-d/pyrimidone (IV) überführt. Dies geschieht durch Reaktion mit siedendem POCl₃ nach

ten 4-Chlorpyrrolo/2.3-d/pyrimidone (IV) uberfuntt.

Dies geschieht durch Reaktion mit siedendem POCl₃ nach an sich bekannten Methoden. Hierzu wird die eingesetzte Verbindung in POCl₃ (pro 1 Mol ca. 1000 ml POCl₃) ca.

45 min zum Sieden erhitzt, anschließend im Vakuum zur Trockne eingedampft, mit Dichlormethan (2000 ml) aufgenommen und über Al₂O₃ 90 gefiltert. Die geeigneten Fraktionen werden im Vakuum zur Trockne eingedampft und anschließend aus Diisopropylether rekristallisiert. Der dritte Schritt des erfindungsgemäßen Verfahrens, die Umsetzung der vorzugsweise 2-alkylsubstituierten 4-Chlorpyrrolo/2.3-d/pyrimidine (IV) erfolgt mit Nucleophilen H-R¹ unter Druck zu den erfindungsgemäßen Pyrrolo/2.3-d/pyrimidinen (I). R¹ besitzt hier auch die bereits angegebene Bedeutung, steht jedoch nicht für Wasserstoff.

An neuen Pyrrolo/2.3-d/pyrimidinen (I) seien beispielhaft genannt:

- 7-Phenyl-2.5.6-trimethylpyrrolo/2.3-d/pyrimidin4-on
- 2. 7-(4-Brompheny1)-4-chlor-2.5.6-trimethylpyrrolo-/2.3-d/pyrimidin
- 25 3. 5.6-Dimethyl-7-phenylpyrrolo/2.3-d7pyrimidin
 - 4. 4-Amino-5.6-dimethyl-2-ethyl-7-phenylpyrrolo-/2.3-d7pyrimidin
 - 5. 4-Amino-7-phenyl-2.5.6-trimethylpyrrolo/2.3-d7-pyrimidin
- 30 6. 7-(4-Bromphenyl-5.6-dimethyl-4-methylaminopyrrolo-/2.3-d7pyrimidin

5

10

15

- 7. 5.6-Dimethyl-4-ethoxy-7-phenylpyrrolo/2.3-d/-pyrimidin
- 8. 7-(4-Bromphenyl)-5.6-dimethyl-4-S-ethylpyrrolo-/2.3-d/pyrimidin
- 5 9. 7-(4-Bromphenyl)-4-(2-hydroxyethylamino)-2.5.6trimethylpyrrolo/2.3-d/pyrimidin
 - 10. 4-Dimethylamino-5.6-dimethyl-2-ethyl-7-phenylpyr-rolo/2.3-d/pyrimidin
- Die erfindungsgemäßen Pyrrolo/2.3-d/pyrimidine (I) wei-10 sen überraschenderweise eine Reihe vorteilhafter pharmakologischer Eigenschaften auf:

So zeigt ein Teil der Verbindungen nach oraler Applikation im hot-plate-Test einen deutlichen analgetischen Effekt, der stärker ist als der von Codein oder Dextropropoxyphen.

Wie am Modell der Balancestange ermittelt werden konnte, besitzt ein Teil der Verbindungen eine sedative Wirkungskomponente.

Im Elektroschocktest konnte für einen Teil der Verbin
dungen eine deutliche antikonvulsive Wirksamkeit nachgewiesen werden.

Schließlich zeigten einige Verbindungen am Modell des Kaolinödems der Rattenpfote eine überraschend starke antiphlogistische Wirksamkeit; diese wird auch durch Ergebnisse im RPA-Ödem-Test (Reverse-Passive-Arthus-Reaktion) an der Ratte bestätigt.

TP 38

15

Aufgrund dieser unerwarteten und vielseitigen Wirkungen stellen die erfindungsgemäßen Verbindungen gemäß allgemeiner Formel I eine Bereicherung der Pharmazie dar. Zur vorliegenden Erfindung gehören pharmazeutische Zubereitungen, die einen oder mehrere erfindungsgemäße Wirkstoffe, gegebenenfalls neben nichttoxischen, inerten pharmazeutisch geeigneten Trägerstoffen enthalten oder die aus einem oder mehreren erfindungsgemäßen Wirkstoffen bestehen, sowie Verfahren zur Herstellung dieser Zubereitungen, indem Verbindungen der allgemeinen Formel I unter Verwendung von üblichen Hilfs- und Trägerstoffen in eine geeignete Applikationsform übergeführt werden.

Zur vorliegenden Erfindung gehören auch pharmazeutische
Zubereitungen in Dosierungseinheiten. Eine Einzeldosis
enthält vorzugsweise die Menge Wirkstoff, die bei einer
Applikation verabreicht wird und die gewöhnlich einer
ganzen, einer halben oder einem Drittel oder einem Viertel einer Tagesdosis entspricht.

20 Unter nichttoxischen, inerten pharmazeutisch geeigneten Trägerstoffen sind feste, halbfeste oder flüssige Verdünnungsmittel, Füllstoffe und Formulierungshilfsmittel jeder Art zu verstehen.

Als bevorzugte pharmazeutische Zubereitungen seien Tabletten, Dragees, Kapseln, Pillen, Granulate, Suppositorien, Lösungen, Suspensionen und Emulsionen, Pasten,
Salben, Gele, Cremes, Lotions, Puder und Sprays genannt.

5

Tabletten, Dragees, Kapseln, Pillen und Granulate können den oder die Wirkstoffe neben den üblichen Trägerstoffen enthalten, wie Füll- und Streckmittel (z.B. Stärken, Milchzucker), Bindemittel (u.B. Alginate, Gelatine, Polyvinylpyrrolidon), Feuchthaltemittel (z.B. Glycerin), Sprengmittel (z.B. Calciumcarbonat und Natriumbicaronat), Netzmittel (z.B. Cetylalkohol, Glycerinmonostearat), Adsorptionsmittel (z.B. Kaolin und Bentonit) und Gleitmittel (z.B. Talkum, Calcium- und Magnesiumstearat), oder Gemische der aufgeführten Stoffe.

Die Tabletten, Dragees, Kapseln, Pillen und Granulate können mit den üblichen gegebenenfalls Opakisierungsmittel enthaltenden Überzügen und Hüllen versehen sein und auch so zusammengesetzt sein, daß sie den oder die Wirkstoffe nur oder bevorzugt in einem bestimmten Teil des Intestinaltraktes, gegebenenfalls verzögert, abgeben.

Suppositorien können neben dem oder den Wirkstoffen die üblichen wasserlöslichen oder wasserunlöslichen Trägerstoffe enthalten, z.B. Polyethylenglykole, Fette und höhere Ester oder Gemische dieser Stoffe.

Salben, Pasten, Cremes und Gele können neben dem oder den Wirkstoffen die üblichen Trägerstoffe enthalten, z.B. tierische und pflanzliche Fette, Wachse, Paraffine, Stärke, Traganth, Cellulosederivate, Polyethylengly-kole, Silikone, Bentonite, Talkum oder Gemische dieser Stoffe.

TP 38

20

Puder und Sprays können neben dem oder den Wirkstoffen die üblichen Trägerstoffe enthalten, z.B. Milchzucker, Talkum, Kieselsäure, Aluminiumhydroxid, Calciumsilikat und Polyamidpulver oder Gemische dieser Stoffe.

Lösungen und Emulsionen können neben dem oder den Wirkstoffen die üblichen Trägerstoffe wie Lösungsmittel,
Lösungsvermittler und Emulgatoren, z.B. Wasser, Alkohole, Ethylcarbonat, Propylenglykol, 1,3-Butylenglykol,
Öle, Glycerin, Polyethylenglykole und Fettsäureester
oder Gemische dieser Stoffe enthalten.

Suspensionen können neben dem oder den Wirkstoffen die üblichen Trägerstoffe wie flüssige Verdünnungsmittel, z.B. Wasser, Ethylalkohol, Propylenglykol, Suspendiermittel, z.B. ethoxylierte Isostearylalkohole, Polyoxyethylensorbit- und Sorbitanester, mikrokristalline Cellulose, Aluminiummetahydroxid, Bentonit, Agar-Agar und Tragantz oder Gemische dieser Stoffe enthalten.

Die therapeutisch wirksamen Verbindungen sollen in den oben aufgeführten pharmazeutischen Zubereitungen vorzugsweise in einer Konzentration von etwa 0,1 bis 99,5, besonders bevorzugt von etwa 0,5 bis 95 Gew.-% der Gesamtmischung vorhanden sein.

Die oben aufgeführten pharmazeutischen Zubereitungen können außer den erfindungsgemäßen Wirkstoffen auch weitere pharmazeutische Wirkstoffe enthalten.

15

20

7-Phenyl-2.5.6-trimethylpyrrolo $(\frac{7}{2}.3-\frac{1}{2})$ pyrimidin-4-on

Man rührt 0,1 Mol 2-Acetylamino-3-cyano-7-phenylpyrrolo-√2.3-d√pyrimidin-4-on und 50 ml 93 %ige Phosphorsäure 30 min bei Raumtemperatur, erhitzt anschließend kurz (maximal 15 min) auf 130°C und gibt zu der noch heißen Lösung 350 ml Wasser. Den Brei rührt man innig ca. 30 min, wobei die Temperatur sich auf Raumtemperatur abkühlt. Man saugt den Niderschlag ab und wäscht mit dest. Wasser neutral. Nach Trocknen erhält man farblose Kristalle. 300°C

Ausbeute: ca. 75 % d.Th.

 $C_{15}^{H}_{15}^{N}_{3}^{O}$ (253.309)

N ber. = 16.59 %, gef. = 16.44 %

Beispiel 2 15

Fp:

10

20

7-(4-Bromphenyl)-4-chlor-2.5.6-trimethylpyrrolo $\sqrt{2}$.3- $d\sqrt{2}$ pyrimidin

0,05 Mol 7-(4-Bromphenyl)-2.5.6-trimethylpyrrolo $\sqrt{2}$.3-d7pyrimidin-4-on werden 45 min mit 50 ml Phosphoroxychlorid gekocht. Anschließend dampft man das Reaktionsgemisch i.V. ein (zäher, öliger Rückstand) und nimmt in 150 ml Dichlormethan auf. Man wäscht die organische Lösung dreimal mit 50 ml Eiswasser und säulenchromatographiert anschließend mit Dichlormethan/Al₂O₃ 90. Die geeigneten

Die Herstellung der oben aufgeführten pharmazeutischen Zubereitungen erfolgt in üblicher Weise nach bekannten Methoden, z.B. durch Mischen des oder der Wirkstoffe mit dem oder den Trägerstoffen.

- Zur vorliegenden Erfindung gehört auch die Verwendung der erfindungsgemäßen Wirkstoffe sowie von pharmazeutischen Zubereitungen, die einen oder mehrere erfindungsgemäße Wirkstoffe enthalten, in der Human- und Veterinärmedizin zur Bekämpfung von Krankheiten.
- Die Wirkstoffe oder die pharmazeutischen Zubereitungen können lokal, oral, parenteral, intraperitoneal, intramuskulär und/oder rektal, vorzugsweise oral, intramuskulär und rektal appliziert werden.
- Von besonderem Interesse sind Pyrrolo/2.3-d/pyrimidine der allgemeinen Formel (I), in welcher
 - R für Wasserstoff, Methyl oder Ethyl,
 - R¹ für Methoxy, Methylamino, Dimethylamino, tert.Butylamino oder (2-Hydroxyethyl)-amino,
 oder aber für den Fall, daß R = Methyl oder Ethyl
 ist, R¹ für Hydroxy, Chloro oder Amino steht,
 R² und R³ für Methyl, Phenyl oder Tetramethylen stehen,
 - R4 für Wasserstoff, Chlor oder Brom,
 - R⁵ für Wasserstoff, Chlor oder Brom steht,
- sowie physiologisch verträgliche Säureadditionssalze dieser Verbindungen.

TP 38

16 - 1∕5 -

Fraktionen werden vereinigt, eingedampft und der Rückstand gegebenenfalls aus Ethanol rekristallisiert.

farblose Kristalle

Fp.: 186 - 87°C

5 Ausbeute: ca. 80 % d.Th.

C₁₅H₁₃BrClN₃ (350.666)

N ber. = 11.98 %, gef. = 12.08 %

Beispiel 3

5.6-Dimethyl-7-phenylpyrrolo $\sqrt{2}$.3- \overline{d} 7pyrimidin

- Man gibt 0,005 Mol 4-Chlor-5.6-dimethyl-7-phenylpyrrolo/2.3-d/pyrimidin zu einer Lösung von 0,0055 Mol NaOH in
 250 ml Ethanol, versetzt mit 1 g Palladium auf Aktivkohle und hydriert. Nach Aufnahme der berechneten Menge
 Wasserstoffs dampft man i.V. zur Trockne ein und verrührt den Rückstand mit Dichlormethan und etwas Wasser.
 Die abgetrennte Dichlormethanphase trocknet man mit Natriumsulfat, engt auf einen noch feuchten Rückstand ein
 und verreibt mit Petrolether. Man erhält ein farbloses,
 kristallines Produkt.
- 20 Fp: 99°C

 Ausbeute: ca. 90 % d.Th.

 C₁₄H₁₃N₃ (223.282)

 N ber. = 18.82 %, gef. = 18.83 %
- Befindet sich ein weiteres Halogenatom als Substituent 25 eines Aromaten (5.6.7-Stellung) im Molekül, so wird unter den beschriebenen Bedingungen zuerst dieses abstrahiert.

4-Amino-5.6-dimethyl-2-ethyl-7-phenylpyrrolo $\sqrt{2}$.3-d7-pyrimidin

0,03 Mol 4-Chlor-5.6-dimethyl-2-ethyl-7-phenylpyrrolo-√2.3-d7pyrimidin werden in ein 1 l-Druckgefäß gegeben zusammen mit 100 ml bei 15°C mit NH3 gesättigtem Ethanol und 0,1 ml konz. Salzsäure. Nach Verschließen des Reaktionsgefäßes erhitzt man 16 Stunden auf 150°C. Nach dem Abkühlen auf Raumtemperatur dampft man i.V. zur Trockne ein und rührt den Rückstand mit 100 bis 150 ml 10 Dichlormethan aus. Man filtriert vom Ammoniumchlorid ab, engt auf ein kleineres Volumen ein und säulenchromatographiert mit Dichlormethan (gegebenenfalls etwas Methanol zusetzen) und Kieselgel oder Al203. Die geeigneten Fraktionen werden zur Trockne eingedampft, 15 der Rückstand mit wenig Dichlromethan aufgenommen und mit Diisopropylether versetzt. Daraus kristallisieren über Nacht bei -20°C farblose Kristalle aus. Fp: 194°C

20 Ausbeute: ca. 60 % d.Th.

C16^H18^N4 (266.352)
N ber. = 21.04 %, gef. = 21.00 %

Beispiel 5

4-Amino-7-phenyl-2.5.6-trimethylpyrrolo $\sqrt{2}.3-\overline{d}$ pyrimidin

25 analog Beispiel 4

aus 4-Chlor-7-phenyl-2.5.6-trimethylpyrrolo $\sqrt{2}$.3- $\sqrt{2}$ pyri-midin,

farblose Kristalle,

Fp: 247 - 49°C

Ausbeute: ca. 35 % d.Th.

 $C_{15}^{H}_{16}^{N}_{4}$ (252.325)

N ber. = 22.21 %, N gef. = 22.33 %

Beispiel 6

7-(4-Bromphenyl)-5.6-dimethyl-4-methylaminopyrrolo- $\sqrt{2}$.3- $\sqrt{2}$ - $\sqrt{2$

0,015 Mol 7-(4-Bromphenyl)-4-chlor-5.6-dimethylpyrrolo-10 /2.3-d√pyrimidin und 40 ml einer 33 %igen wäßrigen Lösung von Methylamin werden mit 60 ml Ethanol in ein 1 l-Druckgefäß gegeben und mit 0,1 ml konz. Salzsäure versetzt. Nach Verschließen des Druckgefäßes läßt man unter Rühren 7 Stunden bei 130°C reagieren. Nach Reak-15 tionsende wird das Gemisch i.V. zur Trockne eingedampft, in Dichlormethan aufgenommen und mit etwas Wasser ausgerührt. Die abgetrennte Dichlormethanphase wird mit Dichlormethan/Al₂O₃ 90 säulenchromatographiert, die geeigneten Fraktionen werden i.V. auf ein kleines Volu-20 men eingeengt und mit Diisopropylether/Petrolether verrieben. Man erhält farblose Kristalle.

Fp: 196 - 97°C

Ausbeute: 91 % d.Th.

25 $C_{15}^{H}_{15}^{BrN}_{4}$ (331.233) N ber. = 16.92 %, gef. = 17.01 %

5.6-Dimethyl-4-ethoxy-7-phenylpyrrolo/2.3-d7pyrimidin

analog Beispiel 6
 durch 20 min Kochen von 4-Chlor-5.6-dimethyl-7-phenyl5 pyrrolo/2.3-d/pyrimidin mit der zehnfachen Menge Natrium ethylat in Ethanol,
 farblose Kristalle,
 Fp: 123 - 24°C
 Ausbeute: 64 % d.Th.

10 C₁₆H₁₇N₃O (267.336)
 N ber. = 15.72 %, gef. = 15.91 %

Beispiel 8

7-(4-Bromphenyl)-5.6-dimethyl-4-S-ethylpyrrolo $(\overline{2}.3-\overline{d})$ -pyrimidin

- analog Beispiel 6
 durch 30 min Kochen von 7-(4-Bromphenyl)-4-chlor-5.6dimethylpyrrolo/2.3-d/pyrimidin mit der 1.1-fachen
 Menge Natriumhydrid und der 1.1-fachen Menge Ethylmercaptan in 100 ml abs. Ethanol,
- 20 farblose Kristalle,

 Fp: 132 34°C

 Ausbeute: 76 % d.Th.

 C16^H16^{BrN}3^S (362.310)

 N ber. = 11.60 %, gef. = 11.64 %

7-(4-Bromphenyl)-4-(2-hydroxyethylamino)-2.5.6-trime-thylpyrrolo $\sqrt{2}$.3- $\sqrt{2}$ pyrimidin

analog Beispiel 6

aus 7-(4-Bromphenyl)-4-chlor-2.5.6-trimethylpyrrolo-/2.3-d/pyrimidin und der doppelten Menge Ethanolamin, Reaktionszeit ca. 5 Stunden,

farblose Kristalle,

Fp: 218 - 19°C

10 Ausbeute: 93 % d.Th.

C₁₇H₁₉BrN₄O (375.287)

N ber. = 14.93 %, gef. = 14.97 %

Beispiel 10

4-Dimethylamino-5.6-dimethyl-2-ethyl-7-phenylpyrrolo-15 \(\bar{2} \cdot 3 - \overline{d} \bar{p} \text{pyrimidin} \)

analog Beispiel 6
aus 4-Chlor-5.6-dimethyl-2-ethyl-7-phenylpyrrolo/2.3-d/pyrimidin und der ca. zehnfachen Menge einer 40 %igen
wäßrigen Dimethylaminlösung,

20 farblose Kristalle,

Fp: 80°C

Ausbeute: 88 % d.Th.

C₁₈H₂₂N₄ (294.406)

N ber. = 19.03, gef. = 18.94 %.