1 Variables

2 root

	var	symbol	documentation	type	units	tokens	eqs
1	$F_{N,A}$	F	incidence matrix of directed graph	network			
2	t	t	time	frame	s		
3	#	value	numerical value	constant			
4	1	one	numerical value 1	constant			1
5	0	zero	numerical value 0	constant			2
6	1/2	onehalf	numerical value $1/2$	constant			3

3 physical

	var	symbol	documentation	type	units	tokens	eqs
10	$F_{NS,AS}$	F_NS_AS	blick incidence matrix of directed species graph	network			6
9	$P_{NS,AS}$	P_NS_AS	node species to arc species projection	projection			
11	$P_{K,NK}$	P_K_NK	projection of conversion to node x conversion	projection			
12	$P_{NS,KS}$	P_NS_KS	projection node x species to conversion x species	projection			
13	$P_{N,NK}$	P_N_NK	projection node to node x conversion	projection			
14	$P_{NK,KS}$	P_NK_KS	projection node x conversion to conversion x species	projection			
15	r_{xN}	r_x	x-coordinate	frame	m		
16	r_{y_N}	r_y	y-coordinate	frame	m		
17	r_{zN}	r_z	z-coordinate	frame	m	[]	

Continued on next page

	var	symbol	documentation	type	units	tokens	eqs
18	n_{NS}	n	foundation state – species mass	state	mol	['mass']	
19	U_N	U	foundation state – internal energy	state	$kg m^2 s^{-2}$	['energy']	
20	S_N	S	foundation state – entropy	state	$kg m^2 K^{-1} s^{-2}$		
21	V_N	V	foundation state – volume	state	m^3		
29	H_N	Н	enthalpy	state	$kg m^2 s^{-2}$	['energy']	13
30	A_N	A	Helmholtz energy	state	$kg m^2 s^{-2}$	['energy']	14
31	G_N	G	Gibbs energy	state	$kg m^2 s^{-2}$	['energy']	15
26	N^o	No	Avogadro number	constant			10
27	B_N	В	Boltzmann constant	constant	$kg m^2 K^{-1} s^{-2}$		11
28	R_N	R	gas constant	constant	$kg m^2 K^{-1} s^{-2}$		12
22	p_N	р	thermodynamic pressure	effort	$kg m^{-1} s^{-2}$	['energy']	7
23	T_N	Т	temperature	effort	K	['energy']	8
24	μ_{NS}	chem_potential	chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$	['energy', 'mass']	9
36	v_{xN}	v_x	velocity in x-direction	seconaryState	ms^{-1}		20
37	v_{y_N}	v_y	velocity in y-direction	seconaryState	ms^{-1}		21
38	v_{zN}	v_z	velocity in z-direction	seconaryState	ms^{-1}	[]	22
39	v_N	v	velocity vector	seconaryState	ms^{-1}	[]	23

4 control

	var	symbol	documentation	type	units	tokens	eqs
--	-----	--------	---------------	------	-------	--------	-----

5 reactions

var symbol documentation type ur	units tokens	eqs
----------------------------------	--------------	-----

6 material

	var	symbol	documentation	type	units	tokens	eqs
40	λ_S	Mm	species molecular masses	constant	$kg mol^{-1}$		
41	C_{p_N}	Ср	total heat capacity at constant pressure	constant	$kgm^2K^{-1}s^{-2}$	['energy']	24
42	C_{vN}	Cv	total heat capacity at constant volume	constant	$kg m^2 K^{-1} s^{-2}$	['energy']	25
43	c_{p_S}	ср	specific heat capacity at constant pressure	constant	$m^2 mol^2 K^{-1} s^{-2}$	['energy', 'mass']	26
44	c_{vS}	cv	specific heat capacity at constant volume	constant	$m^2 mol^2 K^{-1} s^{-2}$	['energy', 'mass']	27
45	k_{xN}^q	kq_x	thermal conductivity in x-direction	seconaryState	$kg K^{-1} s^{-3}$	['energy']	28
46	$k_{y_N}^q$	kq_y	thermal conductivity in y-direction	seconaryState	$kg K^{-1} s^{-3}$	['energy']	29
47	k_{zN}^q	kq_z	thermal conductivity in z-direction	seconaryState	$kg K^{-1} s^{-3}$	['energy']	30
48	$k^q{}_N$	kq	Carthesian thermal conductivity vector	seconaryState	$kg K^{-1} s^{-3}$	['energy']	31
49	k_{xN}^c	kc_x	convective mass convectivity in x-direction	seconaryState	$m^{-1} s$	['energy', 'mass']	32
50	k_{yN}^c	kc_y	convective mass convectivity in y-direction	seconaryState	$m^{-1} s$	['energy', 'mass']	33
51	k_{zN}^c	kc_z	convective mass convectivity in z-direction	seconaryState	$m^{-1} s$	['energy', 'mass']	34
52	$k^c{}_N$	kc	Cartesian convective mass convectivity vector	seconaryState	$m^{-1} s$	['energy', 'mass']	35
53	k_{xNS}^d	kd_x	diffusional mass conductivity in x-direction	seconaryState	$kg^{-1} m^{-4} mol^2 s$	['energy', 'mass']	36
54	k_{yNS}^d	kd_y	diffusional mass conductivity in y-direction	seconaryState	$kg^{-1}m^{-4}mol^2s$	['energy', 'mass']	37

Continued on next page

	var	symbol	documentation	type	units	tokens	eqs
55	k_{zNS}^d	kd_z	diffusional mass conductivity in z-direction	seconaryState	$kg^{-1} m^{-4} mol^2 s$	['energy', 'mass']	38
56	k^d_{NS}	kd	Cartesian diffusional mass conductivity vector	seconaryState	$kg^{-1} m^{-4} mol^2 s$	['energy', 'mass']	39

7 macroscopic

	var	symbol	documentation	type	units	tokens	eqs
--	-----	--------	---------------	------	-------	--------	-----

8 solid

	*****	armhal	dogumentation	trmo	unita	tolrong	000
	var	symbol	documentation	type	units	tokens	eqs

9 fluid

10 liquid

	var	symbol	documentation	type	units	tokens	eqs
--	-----	--------	---------------	------	-------	--------	-----

11 gas

	var	symbol	documentation	type	units	tokens	eqs			
12 control-reactions										
	var	symbol	documentation	type	units	tokens	eqs			
13 reactions-control										
	var	symbol	documentation	type	units	tokens	eqs			
14 control-material										
	var	symbol	documentation	type	units	tokens	eqs			
15	material-contr	rol								
	var	symbol	documentation	type	units	tokens	eqs			
16 control-macroscopic										
	var	symbol	documentation	type	units	tokens	eqs			
						·				

		T		T			
	var	symbol	documentation	type	units	tokens	eqs
18	8 reactions-material						
	var	symbol	documentation	type	units	tokens	eqs
19	19 material-reactions						
	var	symbol	documentation	type	units	tokens	eqs
20	$0 { m reactions-macroscopic}$						
	var	symbol	documentation	type	units	tokens	eqs
21	21 macroscopic–reactions						
	var	symbol	documentation	type	units	tokens	eqs
22	2 material-macroscopic						
	var	symbol	documentation	type	units	tokens	eqs

	var	symbol	documentation	type	units	tokens	eqs
24 gas-liquid							
	var	symbol	documentation	type	units	tokens	eqs
25	$\operatorname{gas-solid}$						
	var	symbol	documentation	type	units	tokens	eqs
26	liquid–solid						
	var	symbol	documentation	type	units	tokens	eqs

27 Equations

27.1 Model equations

no	equation	documentation	layer
1	1 := Set(#, #)	numerical value 1	root
2	0 := Set(#, #)	numerical value 1	root
3	1/2 := Set(#,#)	numerical value $1/2$	root
6	$F_{NS,AS} := F_{N,A} \odot P_{NS,AS}$	blick incidence matrix of directed species graph	physical
7	$p_N := \frac{\partial U_N}{\partial V_N}$	thermodynamic pressure	physical
8	$T_N := \frac{\partial U_N}{\partial S_N}$	temperature	physical
9	$\mu_{NS} := \frac{\partial U_N}{\partial n_{NS}}$	chemical potential	physical
10	$N^o := Set(\#,\#)$	Avogadro number	physical
11	$B_N := Set(S_N, \#)$	Boltzmann constant	physical
12	$R_N := B_N \cdot N^o$	gas constant	physical
13	$H_N := U_N + p_N \cdot V_N$	enthalpy	physical
14	$A_N := U_N - T_N \cdot S_N$	Helmholtz energy	physical
15	$G_N := U_N + p_N \cdot V_N - T_N \cdot S_N$	Gibbs energy	physical
20	$v_{xN} := \frac{\partial r_{xN}}{\partial t}$	velocity in x-direction	physical
21	$v_{y_N} := \frac{\partial r_{y_N}}{\partial t}$	velocity in y-direction	physical

Continued on next page

no	equation	documentation	layer
22	$v_{zN} := \frac{\partial r_{zN}}{\partial t}$	velocity in z-direction	physical
23	$v_N := Stack\left(v_{xN}, v_{y_N}, v_{zN}\right)$	velocity vector	physical
24	$C_{p_N} := \frac{\partial H_N}{\partial T_N}$	total heat capacity at constant pressure	material
	$C_{vN} := rac{\partial U_N}{\partial T_N}$	total heat capacity at constant volume	material
26	$c_{p_S} := C_{p_N} \cdot (\lambda_S)^{-1} \overset{N \in NS}{\star} n_{NS}$	specific heat capacity at constant pressure	material
27	$c_{vS} := C_{vN} \cdot (\lambda_S)^{-1} \overset{N \in NS}{\star} n_{NS}$	specific heat capacity at constant volume	material
28	$k_{xN}^q := (V_N)^{-1} \cdot \frac{\partial U_N}{\partial T_N} \cdot v_{xN}$	thermal conductivity in x-direction	material
29	$k_{y_N}^q := (V_N)^{-1} \cdot \frac{\partial U_N}{\partial T_N} \cdot v_{y_N}$	thermal conductivity in y-direction	material
30	$k_{zN}^q := (V_N)^{-1} \cdot \frac{\partial U_N}{\partial T_N} \cdot v_{zN}$	thermal conductivity in z-direction	material
31	$k^{q}{}_{N} := Stack\left(k^{q}_{xN}, k^{q}_{yN}, k^{q}_{zN}\right)$	Carthesian thermal conductivity vector	material
32	$k_{xN}^c := \left(\lambda_S \overset{S \in NS}{\star} (\mu_{NS})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{xN}$	convective mass convectivity in x-direction	material
33	$k_{y_N}^c := \left(\lambda_S \overset{S \in NS}{\star} (\mu_{NS})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{y_N}$	convective mass convectivity in y-direction	material
34	$k_{zN}^c := \left(\lambda_S \overset{S \in NS}{\star} (\mu_{NS})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{zN}$	convective mass convectivity in z-direction	material
35	$k^{c}{}_{N} := Stack\left(k^{c}_{xN}, k^{c}_{yN}, k^{c}_{zN}\right)$	Cartesian convective mass convectivity vector	material
36	$k_{xNS}^d := (\mu_{NS})^{-1} \cdot \left(v_{xN} \odot \left((V_N)^{-1} \odot \frac{\partial U_N}{\partial \mu_{NS}} \right) \right)$	diffusional mass conductivity in x-direction	material

no	equation	documentation	layer
37	$k_{y_{NS}}^d := (\mu_{NS})^{-1} \cdot \left(v_{y_N} \odot \left((V_N)^{-1} \odot \frac{\partial U_N}{\partial \mu_{NS}} \right) \right)$	diffusional mass conductivity in y-direction	material
38	$k_{z_{NS}}^{d} := (\mu_{NS})^{-1} \cdot \left(v_{z_{N}} \odot \left((V_{N})^{-1} \odot \frac{\partial U_{N}}{\partial \mu_{NS}} \right) \right)$	diffusional mass conductivity in z-direction	material
39	$k^{d}_{NS} := Stack\left(k^{d}_{xNS}, k^{d}_{yNS}, k^{d}_{zNS}\right)$	Cartesian diffusional mass conductivity vector	material