CLIQUE PERCOLATION METHOD (CPM)

Slides mostly by

Eugene Lim

CONTENTS

- What is CPM?
- Algorithm
- Analysis
- Conclusion

Community Detection

How to find communities?

We will work with undirected (unweighted) networks

WHAT IS CPM?

- Method to find overlapping communities
- Based on concept:
 - internal edges of community likely to form cliques
 - Intercommunity edges unlikely to form cliques

Clique: Complete graph

k-clique: Complete graph with k vertices

Clique: Complete graph

k-clique: Complete graph with k vertices

Clique: Complete graph

k-clique: Complete graph with k vertices

4-clique

Clique: Complete graph

k-clique: Complete graph with k vertices

5-clique

Adjacent k-cliques

Adjacent k-cliques

Adjacent k-cliques

Adjacent k-cliques

Adjacent k-cliques

Adjacent k-cliques

Adjacent k-cliques

k-clique community

k-clique community

k-clique community

k-clique community

k-clique community

ALGORITHM

- Locate maximal cliques
- Convert from cliques to k-clique communities

LOCATE MAXIMAL CLIQUES

Largest possible clique size can be determined from degrees of vertices

Starting from this size, find all cliques, then reduce size by 1 and repeat

LOCATE MAXIMAL CLIQUES

- Finding all cliques: brute-force
 - 1. Set A initially contains vertex v, Set B contains neighbours of v
 - 2. Transfer one vertex w from B to A
 - 3. Remove vertices that are not neighbours of w from B
 - 4. Repeat until A reaches desired size
 - 5. If fail, step back and try other possibilities

ALGORITHM

- Locate maximal cliques
- Convert from cliques to k-clique communities

Clique 2: 4-clique

Clique 3: 4-clique

Clique 5: 3-clique

Clique 6: 3-clique

	1	2	3	4	5	6
1	5					
2		4				
3			4			
4				4		
5					3	
6						3

	1	2	3	4	5	6
1	5	3	1	3	1	2
2	3	4	1	1	1	2
3	1	1	4	2	1	2
4	3	1	2	4	0	1
5	1	1	1	0	3	2
6	2	2	2	1	2	3

Clique 2: 4-clique

	1	2	3	4	5	6
1	5	3	1	3	1	2
2	3	4	1	1	1	2
3	1	1	4	2	1	2
4	3	1	2	4	0	1
5	1	1	1	0	3	2
6	2	2	2	1	2	3

	1	2	3	4	5	6
1	5	3	1	3	1	2
2	3	4	1	1	1	2
3	1	1	4	2	1	2
4	3	1	2	4	0	1
5	1	1	1	0	3	2
6	2	2	2	1	2	3

	1	2	3	4	5	6
1	5	3	1	3	1	2
2	3	4	1	1	1	2
3	1	1	4	2	1	2
4	3	1	2	4	0	1
5	1	1	1	0	3	2
6	2	2	2	1	2	3

k=4

	1	2	3	4	5	6
1	5	3	1	3	1	2
2	3	4	1	1	1	2
3	1	1	4	2	1	2
4	3	1	2	4	0	1
5	1	1	1	0	0	2
6	2	2	2	1	2	0

Delete if less than k

	1	2	3	4	5	6
1	5	3	1	3	1	2
2	3	4	1	1	1	2
3	1	1	4	2	1	2
4	3	1	2	4	0	1
5	1	1	1	0	0	2
6	2	2	2	1	2	0

	1	2	3	4	5	6
1	5	3	1	3	1	2
2	3	4	1	1	1	2
3	1	1	4	2	1	2
4	3	1	2	4	0	1
5	1	1	1	0	0	2
6	2	2	2	1	2	0

k=4

	1	2	3	4	5	6
1	5	3	0	3	0	0
2	3	4	0	0	0	0
3	0	0	4	0	0	0
4	3	0	0	4	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

Delete if less than k-1

	1	2	3	4	5	6
1	5	3	0	3	0	0
2	3	4	0	0	0	0
3	0	0	4	0	0	0
4	3	0	0	4	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

k=4

	1	2	3	4	5	6
1	1	1	0	1	0	0
2	1	1	0	0	0	0
3	0	0	1	0	0	0
4	1	0	0	1	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

Change all non-zeros to 1

k=4

	1	2	3	4	5	6
1	1	1	0	1	0	0
2	1	1	0	0	0	0
3	0	0	1	0	0	0
4	1	0	0	1	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

Clique-clique overlap matrix

k=4

Community 2

ANALYSIS

- Believed to be non-polynomial
- No closed formula can be given
- However, claimed to be efficient on real systems

CONCLUSION

- Widely used algorithm for detecting overlapping communities
- However:
 - Fail to give meaningful covers for graph with few cliques
 - With too many cliques, might give a trivial community structure
 - Left out vertices?
 - Subgraphs containing many cliques == community?
 - What value of k to choose to give a meaningful structure?

REFERENCES

Palla et al. – Uncovering the overlapping community structure of complex networks in nature and society

Santo Fortunato - Community detection in graphs

Wanna use Clique Percolation Method?

Just google: "cfinder"

