Definirajte lokalne i globalne ekstreme. Što je kritična, a što stacionarna točka? U kakvom su odnosu lokalni ekstrem i kritična točka.

- i) Funkcija $f:A\to\mathbb{R}$ ima <u>lokalni minimum</u> $f(x_0)$ u točki $x_0\in A$ ako postoji $\varepsilon>0$ tako da vrijedi $f(x)>f(x_0)$ za svaki $x\in(x_0-\varepsilon,\ x_0)\cup(x_0,\ x_0+\varepsilon)$.
- ii) Funkcija $f:A\to\mathbb{R}$ ima <u>lokalni maksimum</u> $f(x_0)$ u točki $x_0\in A$ ako postoji $\varepsilon>0$ tako da vrijedi $f(x)< f(x_0)$ za svaki $x\in (x_0-\varepsilon,\ x_0)\cup (x_0,\ x_0+\varepsilon)$.

```
Funkcija f:A\to\mathbb{R} ima globalni minimum f\left(x_{0}\right) u točki x_{0}\in A ako je f\left(x_{0}\right)\leq f\left(x\right) za svaki x\in A.
```

Funkcija $f:A\to\mathbb{R}$ ima globalni maksimum $f\left(x_0\right)$ u točki $x_0\in A$ ako je $f\left(x_0\right) \geq f\left(x\right)$ za svaki $x\in A$. Neprekidna funkcija f na segmentu [a,b] ima globalni ekstrem ili u točki lokalnog ekstrema ili na rubu intervala.

Neka je funkcija $f: A \rightarrow R$ neprekidna u točki $x_0 \in A$: Za točku x_0 kažemo da <u>je stacionarna tocka</u> ako je $f'(x_0) = 0$. Za točku x_0 kažemo da je <u>kritična točka</u> ako je x_0 stacionarna točka ili ako f nije derivabilna u x_0 .

U kakvom su odnosu kritične točke i ekstremi, odgovoreno je na idućem pitanju.

Kako glase nužni, a kako dovoljni uvjeti ekstrema funckije? Dokažite te uvjete.

Teorem 6 (Nužan uvjet za ekstrem) Neka je funkcija $f:A\to\mathbb{R}$ neprekidna u točki $x_0\in A$. Ako funkcija f u točki $x_0\in A$ ima lokalni ekstrem, onda je x_0 kritična točka od f.

```
f ima ekstrem u x_0 \Rightarrow x_0 je krit. točka \ ( ... ) ili ekvivalentno \ x_0 nije krit. točka \ \Rightarrow \ f nema ekstrem u x_0
```

Za točku x_0 kažemo da je <u>kritična točka</u> ako je x_0 <u>stacionarna točka</u> ili ako f nije derivabilna u x_0 . Za točku x_0 kažemo da <u>je stacionarna tocka</u> ako je $f'(x_0) = 0$.

Teorem 7 (Dovoljan uvjet za ekstrem) Neka je dana funkcija $f:A\to\mathbb{R}$ i neka je $x_0\in A$ kritična točka od f. Ako derivacija f' mijenja predznak u točki x_0 iz - u + onda je x_0 točka lokalnog minimuma, a ako derivacija f' mijenja predznak u točki x_0 iz + u - onda je x_0 točka lokalnog maksimuma.

Dokaz:

Jednostavno nacrtati primjer grafa s ekstremom u funkciji odie se vidi isitnitost ovog teorema.

Teorem 8 (Dovoljan uvjet za ekstrem) Neka je dana funkcija $f:A\to\mathbb{R}$ i neka je $x_0\in A$ stacionarna točka od f, tako da je f dvaput derivabilna u x_0 . Ako je $f''(x_0)\neq 0$, tada funkcija f u točki x_0 ima lokalni ekstrem i to: ako je $f''(x_0)>0$, tada je x_0 točka lokalnog minimuma, a ako je $f''(x_0)<0$, tada je x_0 točka lokalnog maksimuma.

Prethodni dokaz možemo riječima iskazati i na sljedeći način: ako je f''(c) > 0, tada je f'' veća od nule i na nekoj okolini točke c. To znači da je prva derivacija f' strogo rastuća na toj okolini. Kako je f'(c) = 0, zaključujemo da je f' negativna lijevo od točke c i pozitivna desno do točke c. To pak znači da funkcija f strogo pada lijevo od točke c, a strogo raste desno od točke c pa je c točka lokalnog minimuma.

Kako glasi nužan a kako dovoljan (preko promjene predznaka prve derivacije ili preko druge ili viših derivacija) uvjet da funkcija fima lokalni ekstrem u točki c $\in D_f$?

Isto kao drugo pitanje samo što umjesto x_0 treba pisati c \odot .

Dokažite da je derivabilna funkcija strogo rastuća na nekom intervalu ako i samo ako je njena derivacija na tom intervalu veća od nule.

Neka je f strogo rastuća i derivabilna na intervalu (a,b). Trebamo dokazati da je f'(x)>0 za svaki $x\in(a,b)$.

Odaberimo proizvoljni $x \in (a,b)$. Kako je f rastuća, za $\Delta x < 0$ vrijedi $f(x+\Delta x) < f(x)$ pa je

$$\lim_{\Delta x \to 0-0} \frac{f(x + \Delta x) - f(x)}{\Delta x} > 0.$$

S druge strane, za $\Delta x>0$ vrijedi $f(x+\Delta x)>f(x)$ pa je

$$\lim_{\Delta x \to 0+0} \frac{f(x + \Delta x) - f(x)}{\Delta x} > 0.$$

Kako je f derivabilna, to je

$$f'(x) = \lim_{\Delta x \to 0-0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0+0} \frac{f(x + \Delta x) - f(x)}{\Delta x} > 0.$$

Točka x je bila proizvoljno odabrana pa zaključujemo da je f'(x) > 0 za svaki $x \in (a,b)$.

Kako definiramo konveksnost i konkavnost funkcije? Koja su svojstva grafa konveksne i konkavne funkcije? Kako možemo provjeriti konveksnost i konkavnost pomoću druge derivacije? Što su točke infleksije i kako ih pronalazimo? (ovo pitanje se najviše puta ponavlja)

Definicija 4 Za funkciju $f:A\to\mathbb{R}$ kažemo da je <u>konveksna</u> na intervalu $(a,b)\subseteq A$ ako za proizvoljne točke $x_1,x_2\in(a,b)$, $x_1\neq x_2$, vrijedi

$$f\left(\frac{x_1+x_2}{2}\right) \le \frac{f(x_1)+f(x_2)}{2}.$$

Za funkciju $f:A\to\mathbb{R}$ kažemo da je <u>konkavna</u> na intervalu $(a,b)\subseteq A$ ako za proizvoljne točke $x_1,x_2\in(a,b)$, $x_1\neq x_2$, vrijedi

$$f\left(\frac{x_1+x_2}{2}\right) \ge \frac{f\left(x_1\right) + f\left(x_2\right)}{2}.$$

U slucaju strogih nejednakosti, za funkciju f kažemo da je strogo konveksna odnosno strogo konkavna. *stroge nejednakosti \rightarrow umjesto <= ide <, a umjesto >= ide >.

graf strogo konveksne funkcije i tangenta

Ako je $f: A \to \mathbb{R}$ <u>konveksna</u> na intervalu $(a, b) \subseteq A$, onda se njen graf nalazi <u>iznad</u> tangente u svakoj točki $x \in (a, b)$.

graf strogo konkavne funkcije i tangenta

Ako je $f:A\to\mathbb{R}$ <u>konkavna</u> na intervalu $(a,b)\subseteq A$, onda se njen graf nalazi <u>ispod</u> tangente u svakoj točki $x\in(a,b)$.

Kako provjeriti konveksnost i konkavnost pomoću druge derivacije?

U koliko je neka funkcija dvaput derivabilna na nekom intervalu (a, b), onda vrijedi:

- i) funkcija je konveksna na intervalu (a, b) ako i samo ako je $f''(x) \geq 0$ za svaki $x \in (a, b)$,
- ii) funkcija je konkavna na intervalu (a, b) ako i samo ako je $f''(x) \le 0$ za svaki $x \in (a, b)$,
- iii) ako je f''(x) > 0 za svaki $x \in (a, b)$, tada je funkcija f strogo konveksna na intervalu (a, b),
- iv) ako je f''(x) < 0 za svaki $x \in (a, b)$, tada je funkcija f strogo konkavna na intervalu (a, b).

<u>Točka infleskije</u> je točka u kojoj funkcija prelazi iz konkavnosti u konveksnost ili obratno:

Definicija 4 Za neprekidno derivabilnu funkciju $f:A\to\mathbb{R}$ kažemo da ima infleksiju u točki $x_0\in A$ ako postoji $\varepsilon > 0$ takav da je funkcija f na intrervalu $(x_0 - \varepsilon, x_0)$ strogo konveksna, a na intervalu $(x_0, x_0 + \varepsilon)$ strogo konkavna ili obrnuto.

Točku $(x_0, f(x_0))$ nazivamo točkom infleksije grafa funkcije f.

Teorem 12 Neka je funkcija $f:A \to \mathbb{R}$ ima na nekoj okolini $(x_0-arepsilon,\ x_0+arepsilon)$ točke $x_0\in A$ neprekidne derivacije do uključivo reda n, za $n \ge 3$. Neka je

$$f''(x_0) = f'''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$
 i $f^{(n)}(x_0) \neq 0$.

Ako je n neparan, tada funkcija f ima infleksiju u točki x_0 .

Ako je još $f'(x_0) = 0$ i ako je n paran, tada funkcija f ima ekstrem u točki x_0 i to lokalni minimum za $f^{(n)}\left(x_{0}\right)>0$ i lokalni maksimum za $f^{(n)}\left(x_{0}\right)<0$.

Definirajte pojmove konkavnosti i konveksnosti, te točke infleksije. Kako glasi dovoljan uvjet za točku infleksije?

Prvo podpitanje je odgovoreno!

Teorem 11 (Dovoljan uvjet za postojanje infleksije)

Neka je funkcija $f:A\to\mathbb{R}$ dvaput derivabilna na nekoj okolini $(x_0 - \varepsilon, x_0 + \varepsilon)$ točke $x_0 \in A$ osim možda u točki x_0 . Ako f'' mijenja predznak u točki x_0 onda f u točki x_0 ima infleksiju.

Preporucujem i ovo znat:

Teorem 10 (Nužan uvjet za postojanje infleksije) Ako funkcija $f:A\to\mathbb{R}$ ima infleksiju u točki $x_0\in A$ i ako $f''(x_0)$ postoji, onda je $f''(x_0) = 0$.

Definirajte pojam niza i limesa niza. Definirajte podniz i gomilište. Dokažite da je limes niza jedinstven.

Definicija 1 Svaku funkciju $a : \mathbb{N} \longrightarrow \mathbb{R}$ nazivamo niz realnih brojeva (kraće niz).

Broj $a(n) \equiv a_n$ nazivamo opći član niza (ili n-ti član niza).

Niz obično označavamo sa (a_n) ili $\{a_n\}$ ili ponekad sa

 $a_1, a_2, a_3, ..., a_n, ...$.

Definicija 4 Kažemo da je realan broj a granična vrijednost ili limes niza $\{a_n\}$ ako vrijedi

$$\begin{split} \left(\forall \varepsilon>0\right)\left(\exists n_{\mathbf{0}}\in\mathbb{N}\right) \;\; \mathbf{takav}\; \mathbf{da}\; \left(\forall n\in\mathbb{N}\right) \;\; n\geq n_{\mathbf{0}}\\ \Longrightarrow |a_{n}-a|<\varepsilon. \end{split} \tag{1}$$

Pišemo

$$\lim_{n\to\infty} a_n = a.$$

Ako limes postoji kažemo da je niz $\{a_n\}$ konvergentan odnosno da konvergira (prema a). U protivnom kažemo da je divergentan odnosno da divergira.

Definicija 7 Podniz niza $a: \mathbb{N} \longrightarrow \mathbb{R}$ je svaka kompozicija $a \circ n : \mathbb{N} \longrightarrow \mathbb{R}$, gdje je $n : \mathbb{N} \longrightarrow \mathbb{N}$ strogo rastuća funkcija (niz u N).

Dakle, podniz nekog niza $\{a_n\}$ je ponovno niz. Općenito, k-ti član podniza $a \circ n$ je

$$\left(a\circ n\right)\left(k\right)=a\left(n\left(k\right)\right)=a_{n\left(k\right)}=a_{n_{k}}.$$

Definicija 6 Kažemo da je realan broj r gomilište niza $\{a_n\}$ ako svaka ε - okolina od r sadrži beskonačno članova tog niza, odnosno

$$(orall arepsilon>0)\,(orall n\in \mathbb{N})\,\,\,\,\,(\exists n'\in \mathbb{N})\,\,\,\,\,\, ext{takav da je}$$

$$n'>n\quad \text{i}\quad |a_{n'}-r|<\varepsilon.$$

Niz može imati najviše jedan limes. Dokaz:

Neka su a i \bar{a} dva različita (konačna) limesa niza $\{a_n\}$. Neka je $\varepsilon=|a-\bar{a}|/2$. Tada se unutar intervala $(a-\varepsilon,a+\varepsilon)$ mora nalaziti beskonačno članova niza, dok se izvan toga intervala nalazi samo konačno članova niza. Isto mora vrijediti i za interval $(\bar{a}-\varepsilon,\bar{a}+\varepsilon)$. Kako su intervali disjunktni, to je nemoguće.

Definirajte niz, podniz, limes i gomilište. Koji je odnos limesa i gomilišta.

Prvo podpitanje ike odgovoreno na prethodnom pitanju.

Odnos limesa i gomilišta:

Najveće gomilište se naziva <u>limes superior</u> i označava s

$$\limsup a_n$$
,

a najmanje gomilište se naziva <u>limes inferior</u> i označava

$$\lim \inf a_n$$
.

Napomena: Limes je gomilište, dok gomilište općenito ne mora biti limes.

Ukoliko je niz $\{a_n\}$ konvergentan onda je

$$\lim_{n\to\infty} a_n = \limsup a_n = \liminf a_n.$$

Što je red brojeva? Kako definiramo sumu reda? Što je geometrijski red, kada ima sumu i kako je računamo?

Definicija 8 Red realnih brojeva je uređeni par $((a_n),(s_k))$ realnih nizova (a_n) i (s_k) , pri čemu je

$$s_k = a_1 + a_2 + \dots + a_k = \sum_{n=1}^k a_n.$$

Broj a_n nazivamo $\underline{n-\mathrm{ti}}$ član reda, broj $s_k = \sum\limits_{n=1}^k a_n$ nazivamo $k-\mathrm{ta}$ parcijalna suma, a niz (s_k) niz parcijalnih suma.

 $\mathsf{Red}\left(\left\{a_{n}\right\},\left\{s_{k}\right\}\right)$ kraće zapisujemo kao

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_k + \dots .$$

Definicija 9 Za red $\sum\limits_{n=1}^{\infty}a_n$ kažemo da <u>konvergira</u> ako konvergira niz pripadnih parcijalnih suma (s_k) . U tom slučaju graničnu vrijednost

$$\lim_{k \to \infty} s_k = s$$

nazivamo sumom reda i pišemo

$$\sum_{n=1}^{\infty} a_n = s.$$

Još se koriste izrazi: red je konvergentan ili niz $\{a_n\}$ je zbrojiv ili sumabilan.

Ako red $\sum_{n=0}^{\infty} a_n$ ne konvergira kažemo da divergira.

GEOMETRIJSKI RED:

Primjer Red oblika

$$\sum_{n=1}^{\infty} q^{n-1}, \quad q \in \mathbb{R}.$$

nazivamo geometrijski red. Uočimo da je

$$\sum_{n=1}^{\infty} q^{n-1} = 1 + q + q^2 + \dots = \sum_{n=0}^{\infty} q^n.$$

 $\bullet \ q = 1 \Longrightarrow s_k = 1 + 1 + 1 + \dots + 1 = \mid k$ $\Longrightarrow \lim_{k \to \infty} s_k = \lim_{k \to \infty} k = +\infty, \text{ red divergira};$

• $q = -1 \implies s_k = 1 - 1 + 1 - 1 + \dots + (-1)^{k-1} \implies$

$$s_k = \left\{ \begin{array}{ll} (1-1) + (1-1) + \dots + (1-1) = 0, & k \text{ paran} \\ (1-1) + (1-1) + \dots + (1-1) + 1 = 1, \ k \text{ neparan} \end{array} \right.$$

Dakle za q=+-1 red divergira.

$$ullet \ q
eq \pm 1 \implies ext{(suma kon. geom. reda)} \implies$$

$$s_k = 1 + q + q^2 + \dots + q^{k-1} = \frac{1 - q^k}{1 - q} \implies$$

$$\begin{split} \lim_{k\to\infty} s_k &= \lim_{k\to\infty} \frac{1-q^k}{1-q} = \frac{1}{1-q} \lim_{k\to\infty} \left(1-q^k\right) = \\ &\left\{ \begin{array}{l} \frac{1}{1-q} \cdot \left(1-0\right) = \frac{1}{1-q}, \ |q| < 1, \\ \text{divergira} \qquad |q| > 1. \end{array} \right. \end{split}$$

Dakle red $\sum\limits_{n=1}^{\infty}q^{n-1}$ konvergira za |q|<1, a inače (za $|q|\geq1)$ divergira.

Kako glasi nužan uvjet konvergencije reda brojeva? Dokažite taj uvjet.

Teorem 10 (nužan uvjet konvergencije) Ako red $\sum_{n=1}^{\infty} a_n$ konvergira onda je $\lim_{n\to\infty} a_n = 0$.

Ako je $\lim_{n\to\infty}a_n\neq 0$ onda je red $\sum_{n=1}^\infty a_n$ divergentan.

Dakle, postoje redovi $\sum\limits_{n=1}^{\infty}a_n$ za koje vrijedi da je $\lim\limits_{n\to\infty}a_n=0$ a divergentni su, ali su redovi $\sum\limits_{n=1}^{\infty}a_n$ za koje vrijedi da je $\lim\limits_{n\to\infty}a_n=0$ jedini "kandidati" za konvergenciju.

DOKAZ:

Neka je

$$s = \sum a_n = \lim s_n,$$

pri čemu je $\{s_n\}$ limes niza parcijalnih suma. Kako limes niza ne ovisi o pomicanju indeksa za konačan broj mjesta, vrijedi $\lim s_{n-1}=s$. Sada imamo

$$\lim a_n = \lim (s_n - s_{n-1}) \stackrel{\text{Tm. 6.6 (ii)}}{=} \lim s_n - \lim s_{n-1} = 0$$

i teorem je dokazan.

Kako definiramo red brojeva i kako definiramo konvergenciju reda? Dokažite nužan uvjet konvergencije.

Ovo je vec odgovoreno kroz kombinaciju gornja dva pitanja.

Navedite nužan uvjet i opišite kriterije konvergencije redova s pozitivnim članovima – poredbene, D'Alembertov; Cauchijev; Raabov.

Teorem 10 (nužan uvjet konvergencije) Ako red $\sum_{n=1}^{\infty} a_n$ konvergira onda je $\lim_{n\to\infty} a_n = 0$.

Ako je $\lim_{n\to\infty}a_n\neq 0$ onda je red $\sum_{n=1}^\infty a_n$ divergentan.

Dakle, postoje redovi $\sum\limits_{n=1}^{\infty}a_n$ za koje vrijedi da je $\lim\limits_{n\to\infty}a_n=0$ a divergentni su, ali su redovi $\sum\limits_{n=1}^{\infty}a_n$ za koje vrijedi da je $\lim\limits_{n\to\infty}a_n=0$ jedini "kandidati" za konvergenciju.

KRITERIJI KONVERGENCIJE:

Prije svega zamislimo da imamo dva reda: $\sum\limits_{n=1}^{\infty}a_{n}\sum\limits_{i=1}^{\infty}b_{n}$ s

 i) Poredbeni kriterij I Red je konvergentan ako ima konvergentnu majorantu, a divergentan ako ima divergentnu minorantu.

*Objašnjenje majorante i minorante:

Definicija 11 Neka su $\sum\limits_{n=1}^{\infty}a_n$ i $\sum\limits_{n=1}^{\infty}b_n$ dva reda s pozitivnim članovima. Kažemo da je red $\sum\limits_{n=1}^{\infty}b_n$ <u>majoranta</u> reda $\sum\limits_{n=1}^{\infty}a_n$, a red $\sum\limits_{n=1}^{\infty}a_n$ <u>minoranta</u> reda $\sum\limits_{n=1}^{\infty}b_n$, ako postoji $n_0\in\mathbb{N}$ takav da $n\geq n_0$ povlači $a_n\leq b_n$.

ii) Poredbeni kriterij II Neka je

pozitivnim članovima.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = r.$$

- a) ako je $0 < r < +\infty$, tada oba reda ili konvergiraju ili divergiraju;
- b) ako je r=0 i red $\sum\limits_{n=1}^{\infty}a_n$ divergira, tada i red $\sum\limits_{n=1}^{\infty}b_n$ divergira;
- c) ako je r=0 i red $\sum\limits_{n=1}^{\infty}b_n$ konvergira, tada i red $\sum\limits_{n=1}^{\infty}a_n$ konvergira;
- e) ako je $r=+\infty$ i red $\sum\limits_{n=1}^{\infty}b_n$ divergira, tada i red $\sum\limits_{n=1}^{\infty}a_n$ divergira.
- d) ako je $r=+\infty$ i red $\sum\limits_{n=1}^{\infty}a_n$ konvergira, tada i red $\sum\limits_{n=1}^{\infty}b_n$ konvergira;

iii) D'Alambertov kriterij Neka je

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = q.$$

Ako je q<1, tada red $\sum\limits_{n=1}^{\infty}a_n$ konvergira, a ako je q>1, tada red $\sum\limits_{n=1}^{\infty}a_n$ divergira.

iv) Cauchyjev kriterij Neka je

$$\lim_{n\to\infty} \sqrt[n]{a_n} = q.$$

Ako je q<1, tada red $\sum\limits_{n=1}^{\infty}a_n$ konvergira, a ako je q>1, tada red $\sum\limits_{n=1}^{\infty}a_n$ divergira.

v) Raabeov kriterij Neka je

 $\lim_{n\to\infty} n\left(1-\frac{a_{n+1}}{a_n}\right)=q.$ Ako je q>1, tada red $\sum_{n=1}^\infty a_n$ konvergira, a ako je q<1, tada red $\sum_{n=1}^\infty a_n$ divergira.

Što je niz funkcija? Definirajte konvergenciju po točkama i uniformnu konvergenciju niza funkcija, te navedite u kakvom su odnosu?

Neka je $D\subseteq\mathbb{R}$. Označimo s \mathbb{R}^D skup svih funkcija iz D u \mathbb{R} , tj.

$$\mathbb{R}^D = \{ f \mid f : D \to \mathbb{R} \}$$

Definicija 13 Neka je $D\subseteq\mathbb{R}$. <u>Niz funkcija</u> je svaka funkcija $f:\mathbb{N}\longrightarrow\mathbb{R}^D$, pri čemu je

$$f(n) = f_n : D \longrightarrow \mathbb{R}.$$

Funkciju f_n nazivamo n-ti član niza.

Niz funkcija označavamo s $\{f_n\}$ ili ponekad sa

$$f_1, f_2, f_3, ..., f_n, ...$$

Definicija 14 Niz funkcija $\{f_n\}$ konvergira u točki x prema funkciji f_0 ako niz realnih brojeva $\{f_n(x)\}$ konvergira prema $f_0(x)$.

Niz funkcija $\{f_n\}$ konvergira po točkama ili obično prema funkciji f_0 na skupu $A\subseteq D$ ako niz realnih brojeva $\{f_n\left(x\right)\}$ konvergira prema $f_0\left(x\right)$ za svaki $x\in A$. Simbolički zapisujemo

$$(\forall x \in A) (\forall \varepsilon > 0) (\exists n_0 \in \mathbb{N}) (\forall n \in \mathbb{N})$$
$$n \ge n_0 \Longrightarrow |f_n(x) - f_0(x)| < \varepsilon.$$

Napomena: n_0 iz definicije ovisi općenito o x i ε .

Definicija 15 Niz funkcija $\{f_n\}$ konvergira jednoliko (ili uniformno) prema funkciji f_0 na skupu $A\subseteq D$ ako vrijedi

$$(\forall \varepsilon > 0) (\exists n_0 \in \mathbb{N}) (\forall x \in A) (\forall n \in \mathbb{N})$$
$$n \ge n_0 \Longrightarrow |f_n(x) - f_0(x)| < \varepsilon.$$

Napomena: n_0 iz ove definicije ovisi općenito samo o ε .

Niz funkcija koji konvergira uniformno konvergira i po točkama na nekom skupu.

Ako niz neprekidnih funkcija $\{f_n\}$ konvergira uniformno prema funkciji f_0 , tada je i f_0 neprekidna funkcija.

Ako konvergencija nije uniformna, tada funkcija f ne mora biti neprekidna funkcija.

Što je Taylorov razvoj funkcije fu točki x₀? Navedite primjer razvoja neke funkcije u MacLaurinov red?

Teorem 17 Neka funkcija f ima na intervalu (a,b) derivaciju do n+1 reda. Tada za proizvoljnu točku $x_0 \in (a,b)$ i za svaki $x \in (a,b)$ vrijedi

$$f\left(x\right)=f\left(x_{0}\right)+\frac{f'\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f'\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+$$

$$\frac{f'''(x_0)}{3!}(x-x_0)^3 + \ldots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + R_n(x),$$

... gdje je R_n ostatak.

Teorem 18 Neka funkcija f ima na intervalu (a,b) derivacije proizvoljnog reda. Tada za proizvoljnu točku $x_0 \in (a,b)$ i za svaki $x \in (a,b)$ vrijedi

$$f(x) = f(x_0) + \sum_{n=1}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
 (5)

ako i samo ako niz ostataka $\{R_n(x)\}$ teži prema 0 za svaki $x \in (a,b)$.

Red potencija (5) se naziva <u>Taylorov red</u> ili <u>Taylorov</u> razvoj funkcije f u točki x_0 .

Taylorov razvoj funkcije f u točki $x_0=0$ naziva se MacLaurinov razvoj,

$$f(x) = f(0) + \sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

Primjer funkcije $f(x) = \cos x$:

$$f'(x) = -\sin x \implies f'(0) = 0$$

$$f''(x) = -\cos x \implies f''(0) = -1$$

$$f'''(x) = \sin x \implies f'''(0) = 0$$

$$f^{iv}(x) = \cos x \implies f^{iv}(0) = 1$$

$$f^{v}(x) = -\sin x \implies f^{v}(0) = 0$$

zaključujemo

$$f^{(n)}\left(0\right) = \left\{ \begin{array}{ll} 0 & n = 2k - 1, \quad k \in \mathbb{Z} \\ \left(-1\right)^k & n = 2k, \quad k \in \mathbb{Z} \end{array} \right.$$

pa je

$$\cos x = \cos 0 + \frac{0}{1!}x + \frac{-1}{2!}x^2 + \frac{0}{3!}x^3 + \frac{1}{4!}x^4 + \frac{0}{5!}x^5 + \frac{-1}{6!}x^6 + \cdots$$
$$= 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k}{(2k)!}x^{2k}$$