9	Assignment 5: Arun Agarwal 915774866 Homework 5 2/16/2022 - 2/19/2022				
! :	Problem 1: Download Census Income data set from UCI repository - link is https://archive.ics.uci.edu/ml/datasets/census+income (Links to an external site.) Use training data to develop a model aimed to determine whether a person makes over 50K a year. Solve this problem using the k-nearest neighbors' method with k=3 and k=9 and report F1 score on test data.				
n [1]:	<pre>#Imports: import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score, accuracy_score, roc_curve, auc from sklearn.tree import DecisionTreeClassifier from sklearn.neural_network import MLPClassifier import matplotlib.pyplot as plt import numpy as np from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import fl_score</pre>				
n [2]:	<pre># I will start by doing data preprocessing/cleaning. I noticed that the site said there was missing values i census = pd.read_csv('adult.data', names = ['age', 'workclass', 'fnlwgt', 'education', 'education-num', 'mar print("Length of Census Dataset: ", len(census)) #Replacing missing values with nan: census = census.replace(' ?', np.nan) #Finding out which features contain missing values: print("Features with missing values: \n", census.isnull().sum())</pre>				
	Length of Census Dataset: 32561 Features with missing values: age 0 workclass 1836 fnlwgt 0 education 0 education-num 0 marital status 0 occupation 1843 relationship 0 race 0				
i t	capital-gain 0 capital-loss 0 hours-per-week 0 native-country 583 target 0 dtype: int64 Therefore, we see the features with missing values are merely workclass, occupation, and native-country. Since these features are mportant, we cannot just remove them totally. At the same time, we have a lot of data available to us (32561 instances), so it seems okay o simply remove the rows/instances with null values. We could try to fill these values using average values/mode, but in this case, that				
n [3]:	seems like falsification of data. Furthermore, the instructions did not specify that we should deal with missing values a certain way, so I will do this by simply removing the instances with null values #Dropping nan values: census = census.dropna() #Viewing the Dataset as of now: census				
ut[3]:	age workclass fnlwgt education num status occupation relationship race sex capital- dos perweek country 0 39 State-gov 77516 Bachelors 13 Nevermarried clerical family White Male 2174 0 40 United State 1 50 Self-empnot-inc 83311 Bachelors 13 Married- civ-spouse managerial Husband White Male 0 0 40 United State 2 38 Private 215646 HS-grad 9 Divorced Handlers- Not-in- White Male 0 0 40 United State				
	3 53 Private 234721 11th 7 Married-spouse Handlers-cleaners family Write Male 0 0 40 United State 4 28 Private 338409 Bachelors 13 Civ-spouse Prof-specialty Spouse Married-specialty Spouse Married-specialty Spouse Married-specialty Spouse Married-specialty Spouse Married-Marri				
	32556 27 Private 257302 Assoc-acdm 12 Civ-support Wife White Female 0 0 38 United States 32557 40 Private 154374 HS-grad 9 Married-op-inspct Husband White Male 0 0 40 United States 32558 58 Private 151910 HS-grad 9 Widowed Adm-clerical Unmarried White Female 0 0 40 United States				
F	32559 22 Private 201490 HS-grad 9 Never Adm Own-child White Male 0 0 20 State 32560 52 Self-empine 287927 HS-grad 9 Married- Exectorial Exectorial Wife White Female 15024 0 40 United State 30162 rows × 15 columns For my own reference, this is a list of the possible values for each feature of the dataset, provided by another interpretation in the possible values for each feature of the dataset, provided by another interpretation in the possible values for each feature of the dataset, provided by another interpretation in the possible values for each feature of the dataset, provided by another interpretation in the possible values for each feature of the dataset, provided by another interpretation in the possible values for each feature of the dataset, provided by another interpretation in the possible values for each feature of the dataset, provided by another interpretation in the possible values for each feature of the dataset, provided by another interpretation in the possible values for each feature of the dataset, provided by another interpretation in the possible values for each feature of the dataset, provided by another interpretation in the possible values for each feature of the dataset, provided by another interpretation in the possible values for each feature of the dataset, provided by another interpretation in the possible values for each feature of the dataset, provided by another interpretation in the possible values for each feature of the dataset, provided by another interpretation in the possible values for each feature of the dataset, provided by another interpretation in the possible value in the pos				
	 age: continuous. workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked. fnlwgt: continuous. education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool. education-num: continuous. marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse. 				
	 occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces. relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried. race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black. sex: Female, Male. capital-gain: continuous. capital-loss: continuous. hours-per-week: continuous. 				
n [4]:	 nours-per-week. Continuous. native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands. Farget Column: >50k, <=50k 				
	<pre>census.info() <class 'pandas.core.frame.dataframe'=""> Int64Index: 30162 entries, 0 to 32560 Data columns (total 15 columns): # Column</class></pre>				
	5 marital status 30162 non-null object 6 occupation 30162 non-null object 7 relationship 30162 non-null object 8 race 30162 non-null object 9 sex 30162 non-null object 10 capital-gain 30162 non-null int64 11 capital-loss 30162 non-null int64 12 hours-per-week 30162 non-null int64 13 native-country 30162 non-null object 14 target 30162 non-null object dtypes: int64(6), object(9) memory usage: 3.7+ MB				
	We now see that there are numerous integer-value features, but also many categorical features, which would probably be good to change using a labelencoder/dummy encoder. #Making dummy variables to run KNN algorithm census_dummy = pd.get_dummies(census) #Getting the number of features to use for separating X (features) and y (target) last_index = len(census_dummy.columns) X = census_dummy(census_dummy.columns)				
	<pre>X = census_dummy[census_dummy.columns[1:(last_index-2)]] y = census_dummy[census_dummy.columns[last_index - 1]] print("X: \n", X) print("y: \n", y) X:</pre>				
	4 338409 13 0 0 40				
	2 0 0 1 3 0 0 1 4 0 0 0 1				
	1				
	1				
	native-country_Scotland native-country_South \ 0				
	32560 0 0 native-country_ Taiwan native-country_ Thailand \ 0 0 0 0 1 0 0 2 0 0 3 0 0 4 0 0 0 32556 0 0 0 32557 0 0 0				
	32558 0 0 0 0 32559 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
	32557 0 1 32558 0 1 32559 0 1 32560 0 1 native-country_ Vietnam				
	2				
ut[6]: \	<pre>census['target'].value_counts() <=50K</pre>				
	<pre># 80 - 20 split x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.2) print("X train: {}, X test: {}".format(x_train.shape, x_test.shape)) print("Y train: {}, Y test: {}".format(y_train.shape, y_test.shape)) X train: (24129, 103), X test: (6033, 103) Y train: (24129,), Y test: (6033,)</pre> #Finally, we can use the knn algorithm from sklearn:				
	<pre>#As stated in the question, we should do this with 3 and 9 nearest neighbors. #I will start by doing this with 3 nearest neighbors knn3 = KNeighborsClassifier(n_neighbors = 3) knn3.fit(x_train, y_train) #Calculating the accuracy of the model: print("Accuracy-Train: ", knn3.score(x_train, y_train)) print("Accuracy-Test: ", knn3.score(x_test, y_test)) y_pred = knn3.predict(x_test) print("F1 Score: ", f1_score(y_test, y_pred))</pre>				
	Accuracy-Train: 0.8563554229350574 Accuracy-Test: 0.7599867395988729 F1 Score: 0.42033626901521215 #As stated in the question, we should do this with 3 and 9 nearest neighbors. #I will now by doing this with 9 nearest neighbors knn9 = KNeighborsClassifier(n_neighbors = 9) knn9.fit(x train, y train)				
F	0.95 0.80 0.75 0.80 0.75 0.80 0.75 0.80 0.75 0.80 0.75 0.80 0.75 0.80 0.75 0.80 0.75 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8				
t v r t	The graph appears almost symmetrical when comparing the accuracy of the training and testing data. We notice that the testing and training dataset accuracy never fall below .70, which, in my opinion, suggests that knn is doing well on the census data no matter which k value we choose (if between 1 and 12). If we want to maximize the accuracy of the testing dataset, we should probably choose 10 nearest neighbors, based on the graph above. If we want to strike a fair balance between accuracy on the training and testing data, we may want to choose a k value between 3 and 6. Problem 2: Solve this problem using a using feed-forward neural network and report ROC on test data.				
[11]:	<pre>#We will now try to predict whether a person earns over 50k or not using a feed-forward #neural network and reporting ROC on test data: n_net = MLPClassifier() census_net = n_net.fit(x_train, y_train) net_pred = census_net.predict(x_test) net_pred_prob = census_net.predict_proba(x_test) #Printing Accuracy and ROC Scores: print('Accuracy:', accuracy score(y test, net pred))</pre>				
	<pre>print('ROC:', roc_auc_score(y_test, net_pred)) fpr = dict() tpr = dict() roc_auc = dict() for i in range(last_index - 2): fpr[i], tpr[i], _ = roc_curve(y_test, net_pred) roc_auc[i] = auc(fpr[i], tpr[i]) Accuracy: 0.7758992209514338 ROC: 0.5329742628036958</pre>				
٦	Thus, we see that we have obtained an Accuracy score of approximately .797 and a ROC score of approximately .644, which are both relatively okay. We would like these values to be above .9, but we unfortunately do not have too much control over that. #Feed-forward Neural Network ROC Curve: plt.plot(fpr[1], tpr[1]) plt.title('ROC Curve: Neural Network') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate')				
	ROC Curve: Neural Network 1.0 - 0.8 -				
	This ROC Curve shows us the tradeoff between sensitivity (or TPR) and specificity (1 - FPR). Classifiers that give curves closer to the top left				
1 (t	corner indicate a better performance. The closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate the test. Thus, we see that our test was unfortunately pretty inaccurate. Problem 3: Consider a data set containing four points located at the corners of the square. The two points on one diagonal belong to one class, and the two points on the other diagonal belong to the other class. Is this data set linearly separable? Provide a proof. This datasrt contains four poitns located at the corners of a square. Therefore, we are dealing with 2-dimensional data. The two points on				
[14]: t[14]:	from IPython import display display.Image("./squareQ3.PNG")				
t	We show that this dataset is not linearly separable. First, we will call one of the two sets containing two points that make up the diagonal of the square X0 and the other set X1. In a n-dimensional Euclidean space, the two sets are linearly separable if there exists n+1 real numbers				
\	with with with that:				
c V F	Specifically, since this dataset is two-dimensional, the only way for the data to be linearly separable is if there exists a line (rather than a plane or hyperplane) that separates them. However, one can notice that, no matter what line is drawn, the data cannot split the two classes with a straight line. Due to the nature of a square, it will always be the case that if one tries to put two points on the diagonal of a square on the same side of the line, then they have split the square into uneven partitions, in which one will contain three points and the other only one. We see this below: from IPython import display				
t[16]:	display.Image("./foursquareQ3.PNG")				
	3				
	3				
,	1				
t r c	f we were to have split the square such that there are two points on one side and two on the other, all of these splits would require the wo points to share a side of the square. However, if the two points are on the same side, then they must not be of the same class, as the points of each class do not share a side (being on the diagonal). Therefore, it can never be the case that only the two points of the certain class appear on one side of the line and the other two on the second side. Thus, this dataset is not linearly separable. would like to mention that this question could also have been answered using a SVM. Support Vector Machines with linear kernel find the				
[17]:	ongest margin that separates the training data. For a loss function of a SVM with a linear kernel, if we set the C hyperparameter to a large number, we force the optimizer to make 0 error in classification in order to minimize the loss function. Thus, we overfit the data. If we are capable of overfitting the data with a linear model, that means the data is linearly separable. We note that the below function is the SVM coss Function: from IPython import display display.Image ("./svm loss function.PNG")				
1 r v	$L(\theta) = C \sum_{j=1}^m y^{(j)} max(0, 1 - \theta^T x^{(j)}) + (1 - y^{(j)}) max(0, 1 + \theta^T x^{(j)})$ Thus, we would instantiate a SVM with a big C hyperparameter, train the model with this small dataset, classify the training set with the newly trained SVM, and take not of our classification accuracy. While the code has not been written here, it would be the case that we would not obtain 100% accuracy on classification, further proving that the data is not linearly separable. Problem 4: a) Suppose the fraction of undergraduate students who smoke is 15% and the fraction of graduate students who smoke is 23%. If one-lifth of the college students are graduate students and the rest are undergraduates what is the probability that a student who smoke is 23%.				
f g ((ifth of the college students are graduate students and the rest are undergraduates, what is the probability that a student who smokes is a graduate student? b) Given the information in part (a), is a randomly chosen college student more likely to be a graduate or undergraduate student? c) Repeat part (b) assuming that the student is a smoker. d) Suppose 30% of the graduate students live in a dorm but only 10% of the undergraduate students live in a dorm. If a student smokes and lives in the dorm, is he or she more likely to be a graduate or undergraduate student? You can assume independence between				
S	and lives in the dorm, is he or she more likely to be a graduate or undergraduate student? You can assume independence between students who live in a dorm and those who smoke. • Fraction of Undegraduate Students (UG) who Smoke (S): $\frac{15}{100} = \frac{3}{20} = .15$ • Fraction of Graduate Students (G) who Smoke (S): $\frac{23}{100} = .23$ • Fraction of College Students who are Graduate Students (G): $\frac{1}{5} = .2$ • Fraction of College Students who are Undergraduate Students (UG): $\frac{4}{5} = .8$ a) We find the probability that a student who smokes is a graduate student using Bayes Theorem:				
1	We find the probability that a student who smokes is a graduate student using Bayes Theorem: $P(A B) = \frac{P(B A) \times P(A)}{P(B)}$ Thus, we have: Given: $P(S UG) = .15, P(S G) = .23, P(G) = .2, P(UG) = .8.$ According to Bayesian Theorem,				
T k u	According to Bayesian Theorem, $P(G S) = \frac{P(S G) \times P(G)}{P(S G) \times P(G) + P(S UG) \times P(UG)} = \frac{.23 \times .2}{.23 \times .2 + .15 \times .8} = 0.277$ Thus, the probability that a student who smokes is a graduate student is approximately .277. So Given the information in part (a), we will show whether a randomly chosen college student is more likely to be a graduate or undergraduate student: It is evident that a randomly chosen student is more likely to be an undergraduate as 4/5, or 80%, of college students are undergraduates, while only 1/5, or 20%, are graduates. The larger proportion of undergraduate students makes it more likely for one to randomly choose one than a graduate student.				
f c	For one to randomly choose one than a graduate student. So Given the information in part (a), we will show whether a randomly chosen college student is more likely to be a graduate or undergraduate student given that the student is a smoker: $P(UG S) = \frac{P(S UG) \times P(UG)}{P(S G) \times P(G) + P(S UG) \times P(UG)} = \frac{.15 \times .8}{.23 \times .2 + .15 \times .8} = 0.723$				
1	We find that the probability that a student who smokes is an undergraduate student is approximately .723. Now, since $.723 > .277$, it is evident that $P(UG S) > P(G S)$, so a randomly chosen college student is more likely to be an undergraduate student, given that they are a smoker. It is in the graduate students live in a dorm but only 10% of the undergraduate students live in a dorm. If a student smokes and lives in the dorm, we determine if he or she more likely to be a graduate or undergraduate student. We can assume independence between students who live in a dorm and those who smoke:				
١	• Fraction of Undegraduate Students (UG) who Live in a Dorm (D): $\frac{10}{100} = \frac{1}{10} = .1$				
	• Fraction of Undegraduate Students (UG) who Live in a Dorm (D): $\frac{10}{100} = \frac{1}{10} = .1$ • Fraction of Graduate Students (G) who Live in a Dorm (D): $\frac{30}{100} = \frac{3}{10} = .3$ We must find: $P(G S \cap D)$ and $P(UG S \cap D)$: $P(G S \cap D) = \frac{P(S \cap D G) \times P(G)}{P(S \cap D G) \times P(G) + P(S \cap D UG) \times P(UG)}$ $= \frac{P(S G) \times P(D G) \times P(G)}{[P(S G) \times P(D G) \times P(G)] + [P(S UG) \times P(UG)]}$				
	• Fraction of Graduate Students (G) who Live in a Dorm (D): $\frac{30}{100}=\frac{3}{10}=.3$ We must find: $P(G S\cap D)$ and $P(UG S\cap D)$: $P(G S\cap D)=\frac{P(S\cap D G)\times P(G)}{P(S\cap D G)\times P(G)+P(S\cap D UG)\times P(UG)}$				
\	• Fraction of Graduate Students (G) who Live in a Dorm (D): $\frac{30}{100} = \frac{3}{10} = .3$ We must find: $P(G S \cap D)$ and $P(UG S \cap D)$: $P(G S \cap D) = \frac{P(S \cap D G) \times P(G)}{P(S \cap D G) \times P(G) + P(S \cap D UG) \times P(UG)}$ $= \frac{P(S G) \times P(D G) \times P(G)}{[P(S G) \times P(D G) \times P(G)] + [P(S UG) \times P(D UG) \times P(UG)]}$ and $P(UG S \cap D) = \frac{P(S \cap D UG) \times P(UG)}{P(S \cap D G) \times P(G) + P(S \cap D UG) \times P(UG)}$ $= \frac{P(S UG) \times P(D UG) \times P(UG)}{[P(S G) \times P(D G) \times P(D UG) \times P(UG)]}$				