(1) Veröffentlichungsnummer:

0 227 938 A2

- (1) Anmeldenummer: 86116140.4
- 2 Anmeldetag: 21.11.86

(5) Int. Cl.4: **C 12 P 21/02**, C 12 N 15/00, C 12 N 1/20

(30) Priorität: 27.11.85 DE 3541856

- (7) Anmelder: HOECHST AKTIENGESELLSCHAFT, Postfach 80 03 20, D-6230 Frankfurt am Main 80 (DE)
- Weröffentlichungstag der Anmeldung: 08.07.87 Patentblatt 87/28
- Benannte Vertragsstaaten: AT BE CH DE ES FR GB GR IT LI LU NL SE
- Erfinder: Habermann, Paul, Dr., Helmchenweg 80, D-6230 Frankfurt am Main 80 (DE) Erfinder: Wengenmayer, Friedrich, Dr., Am Seyenbach 38, D-6238 Hofhelm am Taunus (DE)
- (54) Eukaryotische Fusionsproteine, ihre Herstellung und Verwendung sowie Mittel zur Durchführung des Verlahrens.
- (IL-2) codiert, eignet sich zur Herstellung von Fusionsproteinen. Hierfür genügt eine Teilsequenz der DNA, die etwa den ersten 100 Aminosäuren des IL-2 entspricht. Das Gen für das gewünschte Protein kann vor oder nach den offenen Leseraster gesetzt werden. Man erhält schwerbis unlösliche Fusionsproteine, die leicht von den löslichen wirtseigenen Proteinen abgetrennt werden können.

EP 0 227 938 A2

Dr.KL/ml

Eukaryotische Fusionsproteine, ihre Herstellung und Verwendung sowie Mittel zur Durchführung des Verfahrens

Die Erfindung bezieht sich auf einen "offenen Leseraster"
5 aus einer DNA, die für Interleukin-2 codiert, und die
Verwendung dieser DNA als Expressionshilfe zur Expression
von Peptiden bzw. Proteinen.

Bei der gentechnischen Herstellung eukaryotischer Proteine
10 wird in Bakterien häufig nur eine geringe Ausbeute erhalten, insbesondere bei kleinen Proteinen mit einem Molgewicht bis zu etwa 15 000 Dalton, deren Strukturen Disulfidbrücken enthalten. Man nimmt an, daß die gebildeten
Proteine durch wirtseigene Proteasen rasch abgebaut werden.
15 Man konstruiert deshalb zweckmäßig Genstrukturen, die für
Fusionsproteine codieren, wobei der unerwünschte Anteil
des Fusionsproteins ein wirtseigenes Protein ist, das nach
der Isolation der Primärproduktes nach an sich bekannten
Methoden abgespalten wird.

20

Es wurde nun überraschenderweise gefunden, daß ein Nterminaler Anteil von Interleukin-2, der im wesentlichen
den ersten 100 Aminosäuren entspricht, besonders gut zur
Herstellung von Fusionsproteinen geeignet ist. Man erhält
25 also als Primärprodukt ein Fusionsprotein, das völlig oder
zum ganz überwiegenden Teil aus eukaryotischen Proteinsequenzen besteht. Überraschenderweise wird dieses Protein
offenbar in dem betreffenden Wirtsorganismus nicht als
Fremdprotein erkannt und nicht sofort wieder abgebaut. Ein
30 weiterer Vorteil ist, daß die erfindungsgemäßen Fusionsproteine schwer löslich bis unlöslich sind und sich somit
einfach, zweckmäßig durch Zentrifugation, von den löslichen Proteinen abtrennen lassen.

35 Da es erfindungsgemäß hinsichtlich der Funktion als "Ballast-Anteil" des Fusionsproteins nicht darauf ankommt, daß der Interleukin-2-Anteil ein biologisch aktives Molekül darstellt, kommt es insofern auch nicht auf die exakte Struktur des Interleukin-2-Anteils an. Es genügt hierfür, daß im wesentlichen die ersten 100 N-terminalen Aminosäu5 ren vorliegen. Es ist also beispielsweise möglich, am NTerminus Variationen vorzunehmen, die eine Spaltung des Fusionsproteins erlauben, falls das erwünschte Protein Nterminal dazu angeordnet ist. Umgekehrt kann man C-terminal Variationen vornehmen, um die Abspaltung des gewünschten Proteins zu ermöglichen oder zu erleichtern, falls dieses im Fusionsprotein – wie üblich – C-terminal gebunden ist.

Die für Human-Interleukin-2, im folgenden "IL-2", codierende natürliche DNA-Sequenz ist aus der europäischen 15 Patentanmeldung mit der Veröffentlichungsnummer EP-A1-0 091 539 bekannt. Die dort aufgeführte Literatur bezieht sich auch auf Mäuse- und Ratten-IL-2. Diese Säuger-DNA kann zur Synthese der erfindungsgemäßen Proteine 20 herangezogen werden. Zweckmäßiger geht man jedoch von einer synthetischen DNA aus, besonders vorteilhaft von der DNA für Human-IL-2, die in der (nicht vorveröffentlichten) deutschen Offenlegungsschrift 34 19 995 (entsprechend der unter der Nummer 0 163 249 veröffentlichten europäischen Patentanmeldung) vorgeschlagen wurde. Diese synthe-25 tische DNA-Sequenz ist im Anhang wiedergegeben (DNA-Sequenz I). Diese synthetische DNA hat nicht nur den Vorzug, daß sie in der Codon-Wahl auf die Gegebenheiten des am häufigsten verwendeten Wirts, E. coli, abgestimmt ist, sondern sie enthält auch eine Reihe von Schnittstellen für 30 Restriktionsendonucleasen, von denen erfindungsgemäß Gebrauch gemacht werden kann. In der folgenden Tabelle 1 ist eine Auswahl der geeigneten Schnittstellen am Anfang bzw. in der Region des 100. Tripletts wiedergegeben. Hierdurch ist jedoch nicht ausgeschlossen, daß in dem dazwi-35 schenliegenden Bereich Variationen in der DNA vorgenommen werden, wobei von den in der vorstehend genannten Patentanmeldung aufgeführten weiteren Schnittstellen Gebrauch gemacht werden kann.

Tabelle 1

35

5	Restriktionsenzym	Erkennungs- sequenz	Position des ersten Nucleotids der Er- kennungssequenz (codierender Strang)			
	Aha II, Ban I,	5' 3'				
10	Hae II, Nar I,	GGCGCC	8			
	Ban II, Sac I, Sst Hha I	I GAGCTC GCGC	291 9			
	Hinf I	GACTC	35			
	Pvu I	CGATCG	346			
15	Taq I	TCGA	387			

Wird von den Nucleasen Ban II, Sac I oder Sst I Gebrauch gemacht, so erhält man eine IL-2-Teilsequenz, die für etwa 20 95 Aminosäuren codiert. Diese Länge ist im allgemeinen ausreichend, um ein unlösliches Fusionsprotein zu erhalten. Wenn die Schwerlöslichkeit, beispielsweise bei einem gewünschten hydrophilen eukaryotischen Protein, noch nicht ausreicht, man aber - um so wenig "Ballast" wie möglich zu 25 produzieren - nicht von den näher am C-Terminus liegenden Schnittstellen Gebrauch machen will, so kann man durch entsprechende Adapter bzw. Linker die DNA-Sequenz am Nund/oder C-terminalen Ende verlängern und so den "Ballast"-Anteil "maßschneidern". Man kann natürlich auch die DNA-30 Sequenz - mehr oder weniger - bis zum Ende nutzen und so gegebenenfalls modifiziertes - biologisch aktives IL-2 als "Nebenprodukt" erzeugen bzw. ein bifunktionelles Protein erzeugen, das IL-2 Wirkung zusätzlich zur Wirkung des codierten Proteins zeigt.

Die Erfindung betrifft somit Fusionsproteine der allgemeinen Formel

- in der X im wesentlichen die Aminosäurefolge der etwa 100 ersten Aminosäuren von vorzugsweise menschlichem IL-2 bedeutet, Y eine direkte Bindung bedeutet, falls die zum gewünschten Protein benachbarte Aminosäure oder Aminosäurenfolge eine Abspaltung des gewünschten Proteins ermöglicht, oder andernfalls ein Brückenglied aus einer oder mehreren genetisch codierbaren Aminosäuren, das die Abspaltung ermöglicht, und Z eine Sequenz aus genetisch codierbaren Aminosäuren ist, die für das gewünschte Protein codiert.
- Wie sich aus den Formeln Ia und Ib ergibt und wie es 15 auch schon vorstehend erwähnt wurde - ist es möglich, das gewünschte Protein vor oder nach dem IL-2-Anteil zur Expression zu bringen. Zur Vereinfachung wird im folgenden im wesentlichen die erste Möglichkeit erläutert, die der 20 herkömmlichen Methode zur Herstellung von Fusionsproteinen entspricht. Wenn also im folgenden diese "klassische" Variante beschrieben wird, soll die andere Alternative hierdurch nicht ausgeschlossen werden.
- Die Spaltung des Fusionsproteins kann in an sich bekannter 25 Weise chemisch oder enzymatisch erfolgen. Die Wahl der geeigneten Methode richtet sich vor allem nach der Aminosäuresequenz des gewünschten Proteins. Wenn dieses beispielsweise kein Methionin enthält, kann Y Met bedeuten, worauf eine chemische Spaltung mit Chlor- oder Bromcyan erfolgt. Steht im Bindeglied Y am Carboxyterminus Cystein oder steht Y für Cys, so kann eine enzymatische Cysteinspezifische Spaltung oder eine chemische Spaltung, beispielsweise nach spezifischer S-Cyanylierung, folgen. Steht im Brückenglied Y am Carboxyterminus Tryptophan oder 35
- Y für Trp, so kann eine chemische Spaltung mit N-Bromsuccinimid erfolgen.

Proteine, die in ihrer Aminosäuresequenz nicht

Asp - Pro

- 5 enthalten und hinreichend säurestabil sein, können in an sich bekannter Weise proteolytisch gespalten werden. Hierdurch erhält man Proteine, die N-terminal Prolin bzw. C-terminal Asparaginsäure enthalten. Auf diese Weise können also auch modifizierte Proteine synthetisiert werden.
- Die Asp-Pro-Bindung kann noch säurelabiler gestaltet werden, wenn dieses Brückenglied (Asp)_n-Pro bzw.
 Glu-(Asp)_n-Pro ist, wobei n 1 bis 3 bedeutet.
- Beispiele für enzymatische Spaltungen sind ebenfalls bekannt, wobei auch modifizierte Enzyme mit verbesserter
 Spezifität eingesetzt werden können (vgl. C.S. Craik et
 al., Science 228 (1985) 291-297). Ist das gewünschte eukaryotische Peptid Proinsulin, so wählt man zweckmäßig als

 Sequenz Y eine Peptidsequenz, bei der eine durch Trypsin
 abspaltbare Aminosäure (Arg, Lys) an die N-terminale Aminosäure (Phe) des Proinsulins gebunden ist, beispielsweise
 Ala-Ser-Met-Thr-Arg, da dann die Arginin-spezifische Spaltung mit der Protease Trypsin erfolgen kann.

25 Enthält das gewünschte Protein nicht die Aminosäurefolge

Ile-Glu-Gly-Arg,

- 30 so kann das Fusionsprotein mit Faktor Xa gespalten werden (europäische Patentanmeldungen mit den Veröffentlichungsnummern 0 025 190 und 0 161 973).
- Das Fusionsprotein wird durch Expression in einem geeigne-35 ten Expressionssystem in an sich bekannter Weise gewonnen. Hierfür eignen sich alle bekannten Wirts-Vektor-Systeme,

also beispielsweise Säugerzellen und Mikroorganismen, beispielsweise Hefen und vorzugsweise Bakterien, insbesondere E. coli.

- Die DNA-Sequenz, die für das gewünschte Protein codiert, wird in bekannter Weise in einen Vektor eingebaut, der in dem gewählten Expressionssystem eine gute Expression gewährleistet.
- 10 In bakteriellen Wirten wählt man zweckmäßig den Promotor und Operator aus der Gruppe lac, tac, trp, P_L oder P_R des Phagen λ, hsp, omp oder einen synthetischen Promotor, wie sie beispielsweise in der deutschen Offenlegungsschrift 34 30 683 (Europäische Patentanmeldung mit der Veröffent-
- lichungsnummer 0 173 149) vorgeschlagen sind. Vorteilhaft ist die tac Promotor-Operator-Sequenz, die inzwischen handelsüblich ist (z.B. Expressionsvektor pKK223-3, Pharmacia, "Molecular Biologicals, Chemicals and Equipment for Molecular Biology", 1984, S. 63).

20

Bei der Expression des erfindungsgemäßen Fusionsproteins kann es sich als zweckmäßig erweisen, einzelne Tripletts der ersten Aminosäuren nach dem ATG-Start-Codon zu verändern, um eine eventuelle Basenpaarung auf der Ebene der mRNA zu verhindern. Solche Veränderungen, ebenso wie Veränderungen, Deletionen oder Additionen einzelner Aminosäu-

ebenfalls Gegenstand der Erfindung.

ren im IL-2-Proteinanteil, sind dem Fachmann geläufig und

30 In den folgenden Beispielen und in den Figuren wird die Erfindung näher erläutert. Hierbei beziehen sich

Figur 1 und deren Fortsetzung, Figur 1a, auf die Synthese. des Plasmids pK360, das für ein Fusionsprotein codiert, welches die Hirudinsequenz aufweist;

Figur 2 und ihre Fortsetzung, Figur 2a, betreffen die Synthese des Plasmids pK410, welches ebenfalls für ein Fusionsprotein mit der Aminosäuresequenz des Hirudin codiert,

Figur 3 und ihre Fortsetzungen, Figuren 3a bis 3c, auf die Konstruktion der Plasmide pPH15, 16, 20 und 30, die für Fusionsproteine codieren, die die Aminosäuresequenz von Affen-Proinsulin enthalten,

5

Figur 4 auf die Synthese des Plasmids pPH100, welches für ein Fusionsprotein mit der Aminosäuresequenz des Hirudin codiert,

10 Figur 5 und ihre Fortsetzung, Figur 5a, auf die Konstruktion des Plasmids pK370, welches für ein Fusionsprotein mit der Aminosäuresequenz des Hirudin codiert sowie

Figur 6 und ihre Fortsetzung, Figur 6a, auf die Synthese 15 des Plasmids pKH101, das für ein Fusionsprotein mit der Aminosäurefolge von Affenproinsulin codiert.

Die Figuren sind i.a. nicht maßstabgerecht gezeichnet, vor allem bei der Wiedergabe der Polylinker wurde der Maßstab 20 "gedehnt".

Beispiel 1

Durch Insertion des lac-Repressors (P.J. Farabaugh, Nature 274 (1978) 765-769) in das Plasmid pKK 177-3 (Amann et al., Gene 25 (1983) 167) erhält man das Plasmid pJF118 (1) (Fig. 1; vgl. deutsche Patentanmeldung P 35 26 995.2, Beispiel 6, Fig. 6). Dieses wird an der singulären Restriktionsstelle für Ava I geöffnet und in an sich bekannter Weise durch Exonuclease-Behandlung um etwa 1000 bp verkleinert. Nach Ligierung wird das Plasmid pEW 1000 (2), (Figur 1) erhalten, in dem das lac-Repressorgen vollständig erhalten ist, das aber auf Grund der Verkleinerung in deutlich höherer Kopienzahl als das Ausgangsplasmid vorliegt.

Anstelle des Plasmids pKK177-3 kann man auch von dem vor-

stehend erwähnten handelsüblichen Plasmid pKK223-3 ausgehen, den lac-Repressor einbauen und das erhaltene Produkt analog verkürzen.

Das Plasmid pEW 1000 (2) wird mit den Restriktionsenzymen EcoR I und Sal I geöffnet (3).

Das für Hirudin codierende Plasmid (4), hergestellt gemäß deutscher Offenlegungsschrift 34 29 430 (europäische Pa10 tentanmeldung mit der Veröffentlichungsnummer O 171 024),
Beispiel 4 (Figur 3), wird mit den Restriktionsenzymen
Acc I und Sal I geöffnet und das kleine Fragment (5), das
zum größten Teil die Hirudin-Sequenz enthält, isoliert.

- Das Plasmid p159/6 (6), hergestellt gemäß deutscher Offenlegungsschrift 34 19 995 (europäische Patentanmeldung mit
 der Veröffentlichungsnummer O 163 249), Beispiel 4
 (Figur 5), wird mit den Restriktionsenzymen Eco RI und
 Pvu I geöffnet und das kleine Fragment (7) isoliert, das
 den größten Teil der IL-2-Sequenz enthält. Diese Teilsequenz und im folgenden auch andere verkürzte IL-2 Sequenzen sind in den Figuren mit "ΔIL2" bezeichnet.
- Anschließend werden die Sequenzen (3), (5), (7) sowie die synthetische DNA-Sequenz (8; Figur 1a) mit T4-Ligase behandelt. Man erhält das Plasmid pK360 (9).

Kompetente E. coli-Zellen werden mit dem Ligationsprodukt transformiert und auf NA-Platten, die 25 $\mu g/ml$ Ampicillin enhalten, ausplattiert. Die Plasmid-DNA der Klone wird mittels Restriktions- und Sequenzanalyse charakterisiert.

Eine Übernachtkultur aus E. coli-Zellen, die das Plasmid (9) enthalten, wird mit LB-Medium (J. H. Miller, Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, 1972), das 50 μg/ml Ampicillin enthält, im Verhältnis von etwa 1:100 verdünnt und das Wachstum über OD-Messung

verfolgt. Bei OD = 0,5 wird die Schüttelkultur auf 1 mM Isopropyl- &-galactopyranosid (IPTG) eingestellt und die Bakterien nach 150 bis 180 Minuten abzentrifugiert. Die Bakterien werden 5 Minuten in einer Puffermischung (7M 5 Harnstoff, 0,1% SDS, 0,1 M Natriumphosphat, pH 7,0) gekocht und Proben auf eine SDS-Gelelektrophoreseplatte aufgetragen. Nach Elektrophorese wird aus Bakterien, die das Plasmid (9) enthalten, eine Proteinbande erhalten, die der Größe des erwarteten Fusionsproteins entspricht. Nach 10 Aufschluß der Bakterien (French Press; (R) Dyno-Mühle) und Zentrifugation befindet sich das Fusionsprotein im Niederschlag, so daß mit dem Überstand bereits erhebliche Mengen der übrigen Proteine abgetrennt werden können. Nach Isolierung des Fusionsproteins wird durch Bromcyan-Spaltung das erwartete Hirudin-Peptid freigesetzt. Dieses wird nach 15 Isolierung durch Protein-Sequenzanalyse charakterisiert.

Die angegebenen Induktionsbedingungen gelten für Schüttelkulturen; bei größeren Fermentationen sind entsprechend 20 veränderte OD-Werte und gegebenenfalls leicht variierte IPTG-Konzentrationen zweckmäßig.

Beispiel 2

30

Das Plasmid (4) (Figur 1) wird mit Acc I geöffnet und die überstehenden Enden mit Klenow-Polymerase aufgefüllt. Anschließend wird mit Sac I geschnitten und das Fragment (10) isoliert, das den größten Teil der Hirudin-Sequenzentält.

Der handelsübliche Vektor pUC 13 wird mit den Restriktionsenzymen Sac I und Sma I geöffnet und das große Fragment (11) isoliert.

Mittels T4-Ligase werden nun die Fragmente (10) und (11) zum Plasmid pK 400 (12) (Fig. 2) ligiert. Das Plasmid (12) ist in der Figur 2 zweimal dargestellt, wobei in der unte-

ren Darstellung die Aminosäuresequenz des so erhältlichen Hirudin-Derivats hervorgehoben wird.

Das Plasmid (4) (Figur 1) wird mit den Restriktionsenzymen 5 Kpn I und Sal I geöffnet und das kleine Fragment (13) isoliert, das die Hirudin-Teilsequenz enthält.

Das Plasmid (12) wird mit den Restriktionsenzymen Hinc II und Kpn I umgesetzt und das kleine Fragment (14) isoliert, 10 das die Hirudin-Teilsequenz enthält.

Das Plasmid (9) (Figur 1a) wird mit EcoR I partiell gespalten, die freien Enden mit Klenow-Polymerase in einer fill-in-Reaktion aufgefüllt und mit Sal I geschnitten. Man erhält das Derivat des Plasmids pK360 (15).

Durch Ligieren der Fragmente (3), (13), (14) und (15) erhält man das Plasmid pK410 (16), das in der Figur 2a zweifach dargestellt ist, wobei die untere Wiedergabe die Aminosäurefolge des Fusionsproteins und damit des nach Säurespaltung erhaltenen Hirudin-Derivats erkennen läßt.

Nach Expression und Aufarbeitung gemäß Beispiel 1 erhält man ein neues Hirudin-Derivat, das in den Positionen 1 und 25 2 die Aminosäuren Prolin und Histidin aufweist. Dieses Hirudin-Derivat zeigt die gleiche Aktivität wie das Naturprodukt gemäß deutscher Offenlegungsschrift 34 29 430, das in diesen Positionen die Aminosäuren Threonin und Tyrosin aufweist, ist jedoch stabiler gegen den Angriff von Aminopeptidasen, woraus sich Vorteile bei der in-vivo-Anwendung ergeben können.

Beispiel 3

15

Der handelsübliche Vektor pBR 322 wird mit Bam H I geöffnet, wobei man das linearisierte Plasmid (17) erhält. Die freien Enden werden partiell unter Einsatz von dATP, dGTP und dTTP aufgefüllt und das überstehende Nucleotid G mit S1-Nuclease abgebaut, wobei das pBR 322-Derivat (18) erhalten wird.

5 Das Hae III-Fragment (19) aus Affen-Proinsulin (Wetekam et al., Gene 19 (1982) 181) wird mit dem modifizierten Plasmid (18) ligiert, wobei das Plasmid pPH 1 (20) erhalten wird. Da die Insulin-Teilsequenz in das Tetracyclin-Gen eingesetzt wurde, sind die Klone, die dieses Plasmid 10 enthalten, nicht gegen Tetracyclin resistent und können so identifiziert werden.

Das Plasmid (20) wird mit Bam HI und Dde I geöffnet und das kleine Fragment (21) isoliert.

15

25

Zusätzlich wird aus der Affen-Proinsulinsequenz die Dde I-Pvu II-Teilsequenz (22) isoliert.

Der Vektor pBR 322 wird mit Bam HI und Pvu II geöffnet und 20 das linearisierte Plasmid (23) isoliert.

Durch Ligierung der Insulin-Teilsequenzen (21) und (22) mit dem geöffneten Plasmid (23) erhält man das Plasmid pPH5 (24). Dieses wird mit Bam HI und Pvu II geöffnet und das kleine Fragment (25) isoliert.

Zur Ergänzung der Insulinstruktur wird die DNA-Sequenz (26) synthetisiert.

Der handelsübliche Vektor pUC 8 wird mit den Enzymen Bam HI und Sal I geöffnet und das Restplasmid (27) isoliert. Dieses wird mit den DNA-Sequenzen (25) und (26) zum Plasmid pPH 15 (28) ligiert. Dieses wird mit Sal I geöffnet und die überstehenden Enden aufgefüllt. Aus dem resultierenden Plasmidderivat (29) wird mit Bam HI die DNA-Sequenz (30) abgespalten.

Der handelsübliche Vektor pUC 9 wird mit den Enzymen Bam HI und Sma I geöffnet und das große Fragment (31) isoliert. Dieses wird mit der DNA-Sequenz (30) ligiert, wobei das Plasmid pPH16 (32) erhalten wird.

Das Plasmid (32) wird mit Sal I geöffnet und das linearisierte Plasmid (33) partiell mit dCTP, dGTP und dTTP aufgefüllt und das verbleibende Nucleotid T mit S1-Nuclease abgespalten. Das so erhaltene Plasmidderivat (34) wird mit Bam HI behandelt und aus dem Produkt (35) mit S1-Nuclease der überstehende Einzelstrang entfernt, wobei das Plasmidderivat (36) erhalten wird.

Die stumpfen Enden des Plasmidderivats (35) werden zum 15 Plasmid pPH 20 (37) cyclisiert.

Kompetente E. coli Hb 101-Zellen werden mit dem Ligationsgemisch transformiert und auf selektivem Medium ausplattiert. Klone, die das gewünschte Plasmid enthalten, exprimieren Proinsulin, wobei von 70 getesteten Klonen 28 radioimmunologisch nachweisbares Proinsulin enthielten. Die
Plasmide werden ferner mittels DNA-Sequenzanalyse charakterisiert. Sie enthalten DNA, die vor dem Codon für die
erste Aminosäure der B-Kette (Phe) für Arginin codiert.

Das Plasmid (37) wird mit Hind III gespalten, die überstehenden Enden aufgefüllt und mit Dde I nachgespalten. Das kleine Fragment (38) wird isoliert.

30 Das Plasmid (28) (Figur 3a) wird mit Sal I und Dde I gespalten und das kleine Fragment (39) abgetrennt.

Das Plasmid (9) (Figur 1a) wird zunächst mit Acc I gespalten, die freien Enden aufgefüllt und mit Eco RI partiell nachgespalten. Das Fragment (40), das die verkürzte IL-2-Sequenz enthält, wird isoliert.

Das linearisierte Plasmid (3) (Figur 1) und die DNA-Segmente (38), (39) und (40) werden nunmehr zu dem Plasmid
pPH 30 (41) ligiert. Dieses Plasmid codiert für ein Fusionsprotein, das im Anschluß an die Aminosäuren 1 bis 114
5 des IL-2 die folgende Aminosäuresequenz aufweist:

Asp-Phe-Met-Ile-Thr-Thr-Tyr-Ser-Leu-Ala-Ala-Gly-Arg.

Das Arginin als letzte Aminosäure dieses Brückengliedes Y 10 ermöglicht die Abspaltung der Insulinketten mit Trypsin.

Ausgehend vom Plasmid (9) (Figur 1a) kann man auch auf folgendem Weg zum Plasmid (41) kommen:

15 Man öffnet (9) mit Acc I, füllt die überstehenden Enden auf, schneidet mit Sal I nach und ligiert das erhaltene Plasmidderivat (42) mit den Segmenten (3), (38) und (39).

Beispiel 4

20

Das Plasmid (6) (Figur 1) wird mit den Restriktionsenzymen Taq I und Eco RI geöffnet und das kleine Fragment (43) isoliert. Dieses Fragment wird mit der synthetisierten DNA-Sequenz (44) und den Segmenten (3) und (5) zum Plasmid pPH 100 (45) ligiert. Dieses Plasmid codiert für ein Fusionsprotein, bei dem auf die ersten 132 Aminosäuren des IL-2 das Brückenglied Asp-Pro und hierauf die Aminosäurefolge von Hirudin folgt. Die proteolytische Spaltung liefert somit ein modifiziertes, biologisch aktives IL-2', in dem in Position 133 an Stelle von Thr Asp enthalten ist, und ein Hirudin-Derivat, das N-terminal Pro vor der Aminosäuresequenz des Naturprodukts enthält. Auch dieses Produkt ist biologisch aktiv und im Vergleich zu dem Naturprodukt stabiler gegen den Angriff von Proteasen.

35

Das IL-2'-Hirudin-Fusionsprotein zeigt ebenfalls biologische Aktivität: Im Zellproliferationstest mit einer IL-2-abhängigen Zelllinie (CTLL2) wurde biologische Aktivität gefunden.

Nach Denaturierung in 6 M Guanidiniumhydrochlorid-Lösung
und anschließende Renaturierung in Pufferlösung (10 mM
Tris-HCl, pH 8,5, 1 mM EDTA) wurde weiterhin hohe IL-2Aktivität gefunden. Außerdem wurde die Gerinnungszeit von
säurebehandeltem, mit Thrombin versetzem Blut nach Zugabe
des Fusionsproteins verlängert.

Man erhält somit ein bifunktionelles Fusionsprotein.

Beispiel 5

10

- Der handelsübliche Vektor pUC 12 wird mit den Restriktionsenzymen Eco RI und Sac I geöffnet. In dieses linearisierte Plasmid (46) wird eine IL-2-Teilsequenz eingesetzt, die aus dem Plasmid (6) (Figur 1) mit den Restriktionsenzymen Eco RI und Sac I herausgespalten wird. Diese Sequenz (47) umfaßt die kompletten Tripletts für die ersten 94 Aminosäuren des IL-2. Durch Ligieren von (46) und (47) erhält man das Plasmid pK 300 (48).
- Das Plasmid (9) (Figur 1a) wird mit Eco RI geöffnet, die überstehenden Enden aufgefüllt und mit Hind III nachgespalten. Man isoliert das kleine Fragment (49), das im Anschluß an die für Hirudin codierende DNA-Sequenz einen Teil des Polylinkers aus pUC 12 enthält.
- Das Plasmid (48) wird mit den Restriktionsenzymen Sma I und Hind III geöffnet und das große Fragment (50) isoliert. Durch Ligierung von (50) mit (49) erhält man das Plasmid pK 301 (51).
- 35. Mit dem Ligationsgemisch werden kompetente E. coli 294-Zellen transformiert. Klone, die das Plasmid (51) enthalten, werden durch Restriktionsanalyse charakterisiert. Sie

enthalten DNA, die im Anschluß an die Codons für die ersten 96 Aminosäuren des IL-2 Codons für ein Brückenglied von 6 Aminosäuren und darauf folgend die Codons für Hirudin enthalten.

5

- Das Plasmid (51) wird mit Eco RI und Hind III umgesetzt und das Fragment (52) isoliert, das die DNA-Sequenz für das genannte eukaryotische Fusionsprotein enthält.
- 10 Das Plasmid (2) (Figur 1) wird mit Eco RI und Hind III geöffnet. Das erhaltene linearisierte Plasmid (53) wird mit der DNA-Sequenz (52) ligiert, wobei das Plasmid pK 370 (54) erhalten wird.
- 15 Wird das Plasmid (54) entsprechend Beispiel 1 in E. coli zur Expression gebracht, so erhält man ein Fusionsprotein, bei dem auf die ersten 96 Aminosäuren des IL-2 das Brückenglied

Ala-Gln-Phe-Met-Ile-Thr

20

und im Anschluß daran die Aminosäurefolge des Hirudin folgt.

Beispiel 6

- Aus dem Plasmid (41) (Beispiel 3; Figur 3c) wird mit den Restriktionsenzymen Eco RI und Hind III das DNA-Segment herausgespalten, das für Affenproinsulin codiert, und die überstehenden Enden aufgefüllt. Man erhält das DNA-Segment (55).
- 30

35

Das Plasmid (48) (Beispiel 5, Figur 5) wird mit Sma I geöffnet und mit Alkalischer Rinderphosphatase behandelt.

Das so erhaltene linearisierte Plasmid (56) wird mit dem

DNA-Segment (55) ligiert, wobei das Plasmid pK 302 (57) erhalten wird. E. coli 294-Zellen werden mit dem Ligationsgemisch transformiert, wobei Klone, die das gewünschte Plasmid enthalten, zunächst durch Restriktions- und dann durch

Sequenzanalyse der Plasmid-DNA charakterisiert werden.

Aus dem Plasmid (57) wird mit Eco RI und Hind III das Segment (58) herausgespalten, das für IL-2 und Affenproinsulin codiert.

- 5 Das Plasmid (2) (Beispiel 1, Figur 1) wird ebenfalls mit Eco RI und Hind III gespalten und in das linearisierte Plasmid (3) das Segment (58) hineinligiert. Man erhält das Plasmid pKH 101 (59).
- 10 Die Expression gemäß Beispiel 1 führt zu einem Fusionsprotein, bei dem auf die ersten 96 Aminosäuren des IL-2 ein Brückenglied mit 14 Aminosäuren folgt (entsprechend Y im DNA-Segment (58)), woran sich die Aminosäurefolge des Affenproinsulins anschließt.

- 17 -

Anhang I: DNA-Sequenz des Interleukin-2

Triple	tt Nr.						0	1	2	
Aminos	äure						Met	Ala	Pro	
Nucleo	tid Nr.	•			1			10		
Cod. S	trang			5 '	AA	TTC	ATG	GCG	CCG	
nicht	cod. St	rang		3'		G	TAC	CGC	GGC	
										
3	4	5	6	7	8	9	10	11	12	
Thr	Ser	Ser	Ser	Thr	Lys	Lys	Thr	Gln	Leu	
	20				30			40		
ACC	TCT	TCT	TCT	ACC	AAA	AAG	ACT	CAA	CTG	
TGG	AGA	AGA	AGA	TGG	TTT	TTC	TGA	GTT	GAC	
13	14	15	16	17	18	19	20	21	22	
Gln	Leu	Glu	His	Leu	Leu	Leu	Asp	Leu	Gln	
•	50				60			70		
CAA	CTG	GAA	CAC	CTG	CTG	CTG	GAC	CTG	CAG	
GTT	GAC	CTT	GTG	GAC	GAC	GAC	CTG	GAC	GTC	
23	24	25	26	27	28	29	30	31	32	
Met	Ile	Leu	Asn	${ t Gly}$	Ile	Asn	Asn	${ t Tyr}$	Lys	
	80				90		100			
ATG	ATC	CTG	AAC	GGT	ATC	AAC	AAC	TAC	AAA	
TAC	TAG	GAC	TTG	CCA	TAG	TTG	TTG	ATG	TTT	
33	34	35	36	37	38	3 9	40	41	42	
Asn	Pro	Lys	Leu	Thr	Arg	Met	Leu	Thr	Phe	
	110			1	20	130				
AAC	CCG	AAA	CTG	ACG	CGT	ATG	CTG	ACC	TTC	
TTG	GGC	ΤΤΤ	GAC	TGC	GCA	TAC	GAC	TGG	AAG	

43	44	45	46	47	48	49	50	51	52
Lys	Phe	Tyr	Met	Pro	Lys	Lys	Ala	Thr	Glu
	140			1	50	•		160	
AAA	TTC	TAC	ATG	CCG	AAA	$AA\bar{A}$	GCT	ACC	GAA
TTT	AAG	ATG	TAC	GGC	TTT	TTT	CGA	TGG	CTT
53	54	55	56	57	58	59	60	61	62
Leu	Lys	His	Leu	Gln	Cys	Leu	Glu	Glu	Glu
	170			1	80			190	
CTG	AAA	CAC	CTC	CAG	$\mathbf{T}\mathbf{G}\mathbf{T}$	CTA	GAA	GAA	GAG
GAC	TTT	GTG	GAG	GTC	ACA	GAT	CTT	CTT	CTC
63	64	65	66	67	68	69	70	71	72
Leu	Lys	Pro	Leu	Glu	Glu	Val	Leu	Asn	Leu
	200			2	210			220	
CTG	AAA	CCG	CTG	GAG	GAA	GTT	CTG	AAC	CTG
GAC	TTT	GGC	GAC	CTC	CTT	CAA	GAC	TTG	GAC
73	74	75	76	77	78	79	80	81	82
Ala	Gln	Ser	Lys	Asn	Phe	His	Leu	Arg	Pro
	230			2	240	•		250	
GCT	CAG	TCT	AAA	TAA	TTC	CAC	CTG	CGT	CCG
CGA	GTC	AGA	TTT	TTA	AAG	GTG	GAC	GCA	GGC
83	84	85	86	87	88	89	90	91	92
Arg	Asp	Leu	Ile	Ser	Asn	Ile	Asn	Val	Ile
	260			2	270			280	
CGT	GAC	CTG	ATC	TCT	AAC	ATC	AAC	GTT	ATC
GCA	CTG	GAC	TAG	AGA	TTG	TAG	TTG	CAA	TAG
93	94	95	96	97	98	99	100	101	102
Val	Leu	Glu	Leu	Lys	Gly	Ser	Glu	Thr	Thr
	290	•		3	300			310	
GTT	CTG	GAG	CTC	AAA	GGT	TCT	GAA	ACC	ACG
CAA	GAC	CTC	GAG	TTT	CCA	AGA	CTT	TGG	TGC

_ 4 .	-
---------	---

103	104	105	106	107	108	109	110	111	112	
Phe	Met	Cys	Glu	Tyr	Ala	Asp	Glu	Thr	Ala	
	320				330			340		
TTC	ATG	TGC	GAA	TAC	GCG	GAC	GAA	ACT	GCG	
AAG	TAC	ACG	CTT	ATG	CGC	CTG	CTT	TGA	CGC	
113	114	115	116	117	118	119	120	121	122	
Thr	Ile	Val	Glu	Phe	Leu	Asn	Arg	Trp	Ile	
	350				360		3 70			
ACG	ATC	GTT	GAA	TTT	CTG	AAC	CGT	TGG	ATC	
TGC	TAG	CAA	CTT	AAA	GAC	TTG	GCA	ACC	TAG	
123	124	125	126	127	128	129	130	131	132	
Thr	Phe	Cys	Gln	Ser	Ile	Ile	Ser	Thr	Leu	
	380			390			400			
ACC	TTC	TGC	CAG	TCG	ATC	ATC	TCT	ACC	CTG	
TGG	AAG	A CG	GTC	AGC	TAG	TAG	AGA	TGG	GAC	
133	134	135								
Thr										
	410									
ACC	TGA	TAG			3 '					
TGG	ACT	ATC	AGC	T	5 '					

Patentansprüche:

- Fusionsprotein, gekennzeichnet durch einen C- oder Nterminalen Anteil, der im wesentlichen den ersten 100
 Aminosäuren von Interleukin-2 entspricht.
 - 2. Fusionsprotein der allgemeinen Formel

Met -
$$X - Y - Z$$
 oder Met - $Z - Y - X$

(Ia) (Ib)

in der X im wesentlichen die Aminosäurefolge der etwa 100 ersten Aminosäuren des menschlichen Interleukin-2 bedeutet, Y eine direkte Bindung oder ein Brückenglied aus genetisch codierbaren Aminosäuren bedeutet, das die Abspaltung der Aminosäuresequenz Z ermöglicht, vorzugsweise, benachbart zu Z, Met, Cys, Trp, Arg oder Lys enthält oder aus diesen Aminosäuren besteht, insbesondere benachbart zu Z die Aminosäuresequenz

* **2**0

15

25

30

And the second section of the second section s

enthält oder aus dieser Sequenz besteht und Z eine Sequenz aus genetisch codierbaren Aminosäuren ist, vorzugsweise von einem Proinsulin oder einem Hirudin.

- 3. Verfahren zur Herstellung eines Fusionsproteins nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man eine für dieses Protein codierende Genstruktur in einer Wirtszelle exprimiert und das Fusionsprotein, vorzugsweise durch Zentrifugation von den löslichen Proteinen, abtrennt.
- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß
 35 die Wirtszelle ein Bakterium, vorzugsweise E. coli,
 ist.
 - 5. Verwendung des Fusionsproteins nach Anspruch 1 oder 2

bzw. der nach Anspruch 3 oder 4 erhaltenen Fusionsproteine zur Herstellung des Proteins, das im wesentlichen der Aminosäuresequenz Z entspricht, durch chemische oder enzymatische Spaltung.

5

- 6. Genstruktur, codierend für ein Fusionsprotein gemäß Anspruch 1 oder 2.
- 7. Vektor, enthaltend eine Genstruktur nach Anspruch 6.

10

- 8. Plasmide pEW 1000, pK360, pK410, pPH30, pPH100, pK370 und pKH101.
- 9. Wirtszelle, enthaltend einen Vektor nach Anspruch 7.

15

- 10. Hirudinderivate, gekennzeichnet durch eine Aminosäurefolge, die N-terminal mit Pro, vorzugsweise mit Pro-His oder Pro-Thr beginnt.
- 20 11. Human-IL-2-Derivat, das C-terminal Asp enthält.
 - 12. Fusionsprotein aus Human-IL-2 und Hirudin, das sowohl IL-2-Aktivität als auch Hirudin-Aktivität zeigt.

Patentansprüche Griechenland:

5

15

20

25

30

- 1. Fusionsprotein, gekennzeichnet durch einen C- oder Nterminalen Anteil, der im wesentlichen den ersten 100
 Aminosäuren von Interleukin-2 entspricht.
- 2. Fusionsprotein der allgemeinen Formel

in der X im wesentlichen die Aminosäurefolge der etwa 100 ersten Aminosäuren des menschlichen Interleukin-2 bedeutet, Y eine direkte Bindung oder ein Brückenglied aus genetisch codierbaren Aminosäuren bedeutet, das die Abspaltung der Aminosäuresequenz Z ermöglicht, vorzugsweise, benachbart zu Z, Met, Cys, Trp, Arg oder Lys enthält oder aus diesen Aminosäuren besteht, insbesondere benachbart zu Z die Aminosäuresequenz

Asp - Pro,

enthält oder aus dieser Sequenz besteht und Z eine Sequenz aus genetisch codierbaren Aminosäuren ist, vorzugsweise von einem Proinsulin oder einem Hirudin.

- 7. Verfahren zur Herstellung eines Fusionsproteins nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man eine für dieses Protein codierende Genstruktur in einer Wirtszelle exprimiert und das Fusionsprotein, vorzugsweise durch Zentrifugation von den löslichen Proteinen, abtrennt.
- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß
 35 die Wirtszelle ein Bakterium, vorzugsweise E. coli,
 ist.
 - 5. Verwendung des Fusionsproteins nach Anspruch 1 oder 2

bzw. der nach Anspruch 3 oder 4 erhaltenen Fusionsproteine zur Herstellung des Proteins, das im wesentlichen der Aminosäuresequenz Z entspricht, durch chemische oder enzymatische Spaltung.

5

- 6. Genstruktur, codierend für ein Fusionsprotein gemäß Anspruch 1 oder 2.
- 7. Vektor, enthaltend eine Genstruktur nach Anspruch 6.

10

- 8. Plasmide pEW 1000, pK360, pK410, pPH30, pPH100, pK370 und pKH101.
- 9. Wirtszelle, enthaltend einen Vektor nach Anspruch 7.

Patentansprüche Spanien und Österreich:

5

- 1. Verfahren zur Herstellung eines Fusionsproteins, dadurch gekennzeichnet, daß man in einer Wirtszelle ein Gen exprimiert, das für einen C- oder N-terminalen Anteil codiert, der im wesentlichen den ersten 100 Aminosäuren von Interleukin-2 (IL-2) entspricht.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß
 das Gen für ein Fusionsprotein der allgemeinen Formel

- kodiert, in der X im wesentlichen die Aminosäurefolge der etwa 100 ersten Aminosäuren des menschlichen Interleukin-2 bedeutet, Y eine direkte Bindung oder ein Brückenglied aus genetisch codierbaren Aminosäuren bedeutet, das die Abspaltung der Aminosäuresequenz Z ermöglicht, und Z eine Sequenz aus genetisch codierbaren Aminosäuren ist.
- Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß
 Y, benachbart zu Z, Met, Cys, Trp, Arg oder Lys ent hält oder aus diesen Aminosäuren besteht.
 - 4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß Y, benachbart zu Z, die Aminosäuresequenz
- 30 Asp Pro,

enthält oder aus dieser Sequenz besteht.

5. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Z die
Aminosäuresequenz von einem Proinsulin oder einem Hirudin bedeutet.

6. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Fusionsprotein durch Zentrifugation von den löslichen Proteinen abgetrennt wird.

- 2 -

- 7. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Wirtszelle ein Bakterium ist.
- 10 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Wirtszelle E. coli ist.
- Verwendung der nach Anspruch 1 bis 8 erhaltenen
 Fusionsproteine zur Herstellung des Proteins, das im
 wesentlichen der Aminosäuresequenz Z entspricht, durch chemische oder enzymatische Spaltung.

1/12

(4)
$$\frac{1.\text{Kpn I}}{2.\text{Sal I}}$$
 $\stackrel{\text{(Thr)}}{\underset{\text{CA TGG}}{\text{C}}}$ $\stackrel{\text{C}}{\underset{\text{(Hir 45-64)}}{\text{(Hir 45-64)}}}$ $\stackrel{\text{Stp}}{\underset{\text{ATT ATC TCG AGC AGC T}}{\text{AGC AGC TGG AGC AGC T}}}$

(12) 1. Hinc II 2. Kpn I

FIG. 2a

1. Eco R1, part. (9) 2."Fill in" 3. Sal I

4/12

5/12

(24)
$$\frac{\text{BamHI}}{\text{Pvu II}}$$
 $\frac{\text{GATCC}}{\text{G}}$ (B1-A14) $\frac{\text{A 15}}{\text{GTC}}$ (25) (BamHI) (Pvu II)

FIG. 4

(6)
$$\frac{1) \text{ Tag I}}{2) \text{ EcoRI}}$$
 AA TIC ATG (IL1-126) $\frac{\text{(Ser)}}{\text{AGC}}$ (43) (EcoRI) (TagI)

FIG.5

AA TIC ATG ATC ACA (Hir 1-64) TAA TAG (Sal I) - (Pst I) - A TI AAG TAC TAG TAG TAG (Sal I) - (Pst I) - A (EcoRI-) (49) (Hind III)

Ala Gln Phe Met Ile Thr
GAA TTC ATG (IL1-96) GCC CCA TTC ATG ATC ACA (Hir 1-64)—
Eco RI

PK 301

(51)

FIG.5a

FIG.6

(41) Eco RI/Hind III

"Fill in"

AA TTC ATG ATC ACA ACG TAT AGC TTG GCT GCA GGT CGC
TT AAG TAC TAG TGT TGC ATA TCG AAC CGA CGT CCA GCG
(Eco RI-)

(D1 A 21) TAA TAG TCG ACC TGC AGC CAG CT

FIG. 6a

(57)
$$\frac{\text{Eco RI}}{\text{Hind III}}$$
 Eco RI (IL1-96) — Y—(B1-A21) — Hind III (58)

Y=
Ala Gln Phe Met Ile Thr Thr Tyr Ser Leu Ala Ala Gly Arg
GCC CAA TIC ATG ATC ACA ACG TAT AGC TIG GCT GCA GGT CGC
CGG GTT AAG TAC TAG TGT TGC ATA TCG AAC CGA GGT CCA GCG

Hoechst AG - Postiach 80 03 20 - D-6230 Frankfurt am Main 80

Europäisches Patentamt Generaldirektion 1 - Den Haag P.B. 5818 Patentlaan 2

NL-2280-HV Rijswijk (ZH)

Hoechst Aktiengesellschaft Zentrale Patentabteilung

Postlach 800320 - 6230 Frankfurt am Main 80 Telefon. (069) 305-0 - Telex. 41234700 ho d Telegramm: hoechstag frankfurtmain Fax: infotec (069) 357175

Dresdner Bank AG. Frankfurt am Main 80 (BLZ 50080000) Kto. Nr. 7 35555500 Commerzbank AG. Frankfurt am Main 80 (BLZ 50040000) Kto. Nr. 2570729 Deutsche Bank AG. Frankfurt am Main 1 (BLZ 50070010) Kto. Nr. 926006 Hessische Landesbank — Girozentrale — Frankfurt am Main 1 (BLZ 50050000) Kto. Nr. 24100000 Landeszentralbank in Hessen. Frankfurt am Main 1 (BLZ 50000000) Kto. Nr. 50008190 Postgiroamt Frankfurt am Main 1 (BLZ 50010060) Kto. Nr. 1442-605

Ihre Zeichen

Inre Nachricht vom

Unsere Zeichen
Dr.KL/ml

Telefon Durchwahl

Frankfurt am Main

(069) 305- 6031

4.3.1987

Europäische Patentanmeldung Nr.86116140.4 - HOE 85/F 263 Berichtigung von Mängeln nach Regel 88

Wir überreichen als Anlage in dreifacher Ausfertigung die Zeichnungsblätter 1 und 2, auf denen die folgenden offensichtlichen Fehler berichtigt wurden:

Blatt 1 - Figur 1: Die Bezugsziffern (6) bis (11) wurden berichtigt zu (1) bis (6). Diese logische Reihenfolge ergibt sich an sich von selbst, insbesondere aus der richtigen Zuordnung der Bezugsziffer (7) bei der letzten Formel in der Figur 1. Sie ergibt sich aber auch einwandfrei aus Beispiel 1, nämlich Seite 7, Zeile 24 bis Seite 8, Zeile 22, wo im textlichen Zusammenhang die Zuordnung von Bezugsziffer zu Plasmid bzw. DNA-Fragment einwandfrei gegeben ist.

Blatt 2: Hier wurde in der Figur 2 für das Plasmid pK400 die fehlende Bezugsziffer (12) ergänzt. Auch hier ergibt sich der Fehler aus der logischen Reihenfolge der Bezugsziffern schon von selbst, geht aber auch einwandfrei aus Beispiel 2, insbesondere Seite 9, Zeile 35 bis Seite 10, Zeile 2, hervor.

Wir bitten deshalb, die berichtigten Figuren dem Druck der veröffentlichten Anmeldung und dem späteren Prüfungsverfahren zugrundezulegen.

HOECHST AKTIENGESELLSCHAFT

Anlagen

Mr. Meyer-Dulheuer

Dr. Klein

