Image Classification from Coded Aperture

Jocelyn Ornelas Muñoz, Erica M. Rutter, Roummel F. Marcia

Department of Applied Mathematics, UC Merced Imaging and Sensing Seminar

Monday, April 3, 2023

Motivation

In medical imaging, radiography typically uses apertures to modulate the radiation emitted by an x-ray source and produce high-resolution images.

Motivation

In medical imaging, radiography typically uses apertures to modulate the radiation emitted by an x-ray source and produce high-resolution images.

Problem: Complicated apertures require a decoding procedure to reconstruct the image.

Motivation

In medical imaging, radiography typically uses apertures to modulate the radiation emitted by an x-ray source and produce high-resolution images.

Problem: Complicated apertures require a decoding procedure to reconstruct the image.

Goal: Classify images from coded observations without reconstructing the image.

Aperture Imaging

Small pinholes allow little light \implies faint observators

Aperture Imaging

 $\textbf{Larger} \ \text{pinholes allow more light, but decrease resolution} \implies \textbf{blurry} \ \text{observations}$

Aperture Imaging

Multiple small pinholes ⇒ overlapping observations

A MURA pattern A consists of specified openings that has a corresponding decoding pattern G^1 .

¹Gottesman and Fenimore (1989)

A MURA pattern A consists of specified openings that has a corresponding decoding pattern G^1 .

Let p be a prime number and $A = \{A_{ij}\}_{i,j=0}^{p-1}$ be the binary aperture array. Set

$$A_{ij} = \begin{cases} 0 & \text{if } i = 0 \\ 1 & \text{if } j = 0, i \neq 0 \\ 1 & \text{if } C_i C_j = +1 \\ 0 & \text{otherwise} \end{cases}$$

where

$$C_i = egin{cases} +1 & ext{if } i ext{ is a quadratic residue modulo } p \ -1 & ext{otherwise} \end{cases}$$

¹Gottesman and Fenimore (1989)

A MURA pattern A consists of specified openings that has a corresponding decoding pattern G^1 .

The decoding function G is constructed as follows:

$$G_{ij} = \begin{cases} +1 & \text{if } i+j=0\\ +1 & \text{if } A_{ij}=1, i+j \neq 0\\ -1 & \text{if } A_{ij}=1, i+j \neq 0 \end{cases}$$

¹Gottesman and Fenimore (1989)

A MURA pattern A consists of specified openings that has a corresponding decoding pattern G^1 .

¹Gottesman and Fenimore (1989)

Coded observation

Coded observations appear irrecognizable, but MURAs are 50% open patterns¹ ⇒ decoded observations are much brighter than those from small pinhole cameras.

¹Gottesman and Fenimore (1989)

MURA aperture imaging

The observation D is given by

$$D = S * A + B$$

where B is background noise. The MURA reconstruction is given by

$$\hat{S} = D * G$$

where G is the decoding pattern.

6/15

J. Ornelas Muñoz Coded Aperture Monday, April 3, 2023

Proposed Method

Goal: Classify handwritten digits from coded observations using a convolutional neural network (CNN) without reconstructing the image.

Monday, April 3, 2023

Experiment Set Up

Dataset: MNIST Handwritten Digits

- 28×28 pixels (grayscale)
- 70,000 total images
- 80% training, 10% validation, 10% testing images

Monday, April 3, 2023

Experiment Set Up

Dataset: MNIST Handwritten Digits

- 28×28 pixels (grayscale)
- 70,000 total images
- 80% training, 10% validation, 10% testing images

Experiments

Experiment 1: Classify original MNIST images

Experiments

Experiment 1: Classify original MNIST images **Experiment 2:** Classify encoded MNIST images

Monday, April 3, 2023

Experiments

Experiment 1: Classify original MNIST images

Experiment 2: Classify encoded MNIST images

Experiment 3: Reconstruct encoded MNIST images, then classify from

reconstructions

Preliminary Results: Classification of original images

Classification accuracy of original images: 98.99%

10 / 15

Preliminary Results: Classification of original images

Classification accuracy of **original images**: 98.99%

The most common misclassified digits: 9, 4, 6, 7, 3

10 / 15

Preliminary Results: Misclassification of original images

Figure 1: Examples of misclassified original MNIST images

Preliminary Results: Classification of encoded images

Classification accuracy of encoded images: 95.35%

Preliminary Results: Classification of encoded images

Classification accuracy of **encoded images**: 95.35%

The most common misclassified digits: 5, 7, 3, 8, 9

Preliminary Results: Misclassification of encoded MNIST images

Figure 2: Examples of misclassified encoded images

Preliminary Results: Classification from reconstructed images

COMING SOON

Gracias!

15 / 15