$$T'(H^2) = PSL_2(\mathbb{R})$$
 $H^2 = SO(2) \setminus PSL_2(\mathbb{R})$

Pf action transitive $(\lim_{N \to \infty} W)^{\frac{1}{2}} = \lim_{N \to \infty} W$

Lemme
$$\lim_{c \ge +d} \frac{az+b}{cz+d} = \det(\frac{|mz|}{|cz+d|^2}$$

$$\frac{d}{dz}$$
 = $\frac{dct()}{(cz+d)^2}$

Lemme PGL2(IR) action simply transitive on distinct triples (2H)3

pf
$$a \rightarrow 0$$

 $b \rightarrow \infty$ $z \mapsto \frac{z-a}{z-b}$ $\frac{c-b}{c-a}$ must be > 0
to get in $SL_2(\mathbb{R})$

geodesics ideal triangles horocycles

Lemme cosh c = cosh a cosh b - sinha sinh b cos C

$$c^2 = a^7 + b^3 - 2ab \cos C$$

```
SL,(Z) ~ PSL, (Z) x
       SL2(TR) is generated by {(1 s), se TR] & (0-1)
                                    translation
                                                   INVENSION
                                     ₹ 1> 5+2 5 1> -1/5
                                                        =-=/1217
     SL<sub>2</sub>(72) generated by (11) & (0-1)
fundamental domain for (P)SL,(Z) 1, H2 < {|Rez| < \{}
                                           n } /= | > 15
  ie f dom for ( 1 1) 5 < 2 +> 2+3>
            for (0-1) (2+>-1/2)
proof ∃w ∈ Tz st - 1 ≤ Re w ≤ 2 (easy)
            IW ≥ 1 then done
            | w | < 1 then | - | w | = | w | > 1
        Discussion ideal trangles
 Def Favey graph/complex
            0-cells = (m) & 722 primitive
            1-cells = pairs of o cells det = ±1
                       = bases of 72 as a 72 module
            2- cells = triples / superbases
Def \pm e_1, e_2, e_3 pumitive e_1 + e_2 + e_3 = 0
     \binom{1}{0}\binom{0}{1}\cdot\binom{1}{1} or \binom{-1}{1}
ex
      geometric realisation in H2u OH12
                                       P(R²)
```

Marked parallelograms & Tori

20.1 Parallelograms

Say that a marked parallelogram is a parallelogram P with a distinguished vertex v, a distinguished first side e_1 , and a distinguished second side e_2 . The sides e_1 and e_2 should meet at v, as in Figure 20.1. We say that two marked parallelograms P_1 and P_2 are equivalent if there is an orientation-preserving similarity, i.e., a translation followed by a dilation followed by a rotation, that maps P_1 to P_2 and preserves all the markings.

Figure 20.1. A marked parallelogram

We think of P as a subset of C. If we have a marked parallelogram, we can translate it so that v = 0 and e_1 points from 0 to 1. Then e_2 points from 0 to some $z \in C - R$. We only consider "half" of the possibilities, the case when $z \in H^2$, considered as the upper half plane of C.

Exercise 1. Prove that $z(P_1) = z(P_2)$ if and only if P_1 and P_2 are equivalent.

Definition 20.2. A marked flat torus is a triple (Σ, T, ϕ) , where T is a flat torus and $\phi: \Sigma \to T$ is an orientation-preserving homeomorphism. We say that two triples (Σ, T_1, ϕ_1) and (Σ, T_2, ϕ_1) are equivalent if there is an orientation-preserving similarity $f: T_1 \to T_2$ such that $f \circ \phi_1$ and ϕ_2 are homotopic maps.

Mapping class action

Given a triple (Σ, T, ϕ) , we define the new triple $(\Sigma, T, \phi \circ g^{-1})$. That is, we keep the same surface T, but we change $\phi : \Sigma \to T$ to the map given by the composition $\Sigma \to \Sigma \to T$, with the first arrow given by g^{-1} . We use g^{-1} in place of the more obvious choice of g for technical reasons that we will explain momentarily.

Exercise 4. Prove that (Σ, T_1, ϕ_1) and (Σ, T_2, ϕ_2) are equivalent if and only if $(\Sigma, T_1, \phi_1 \circ g)$ and $(\Sigma, T_2, \phi_2 \circ g)$ are equivalent.

The group \mathcal{G} acts on the space \mathcal{T} in the sense that

$$g_1(g_2(x)) = (g_1 \circ g_2)(x),$$
 (82)

for all $g_1, g_2 \in \mathcal{G}$ and all $x \in \mathcal{T}$. Here $g_1 \circ g_2$ means "first do g_2 and then do g_1 ". To see this, let x be a point represented by the triple (Σ, T, ϕ) . We compute

$$g_1(g_2(x)) = g_1(\Sigma, T, \phi \circ g_2^{-1})(\Sigma, T, \phi \circ g_2^{-1} \circ g_1^{-1})$$

= $(\Sigma, T, \phi \circ (g_1 \circ g_2)^{-1}) = (g_1 \circ g_2)(x).$

of the parallelogram (0, 1, z, 1 + z), and so that ϕ is induced by the linear transformation carrying (1,0) to (1,0) and (0,1) to (x,y). Here z = x + iy. When we lift ϕ to the universal covers of Σ and T, respectively, we get the same linear transformation. In other words, the linear transformation

$$\widehat{\phi} = \begin{bmatrix} 1 & x \\ 0 & y \end{bmatrix} \tag{84}$$

induces the homeomorphism ϕ . The linear transformation

$$\widehat{\phi} \circ g^{-1} = \begin{bmatrix} d - cx & -b + ax \\ -cy & ay \end{bmatrix}$$
 (85)

induces the homeomorphism $\phi \circ g^{-1}$.