Is Z enough? Impact of Meta-Analysis using only Z/T images in lieu of estimates and standard errors

Camille Maumet¹, TODO pain, and Thomas E. Nichols^{1,2}

Warwick Manufacturing Group, The University of Warwick, Coventry, UK.
Statistics Department, The University of Warwick, Coventry, UK.

Abstract. The abstract should summarize the contents of the paper using at least 70 and at most 150 words. It will be set in 9-point font size and be inset 1.0 cm from the right and left margins. There will be two blank lines before and after the Abstract. . . .

Keywords: computational geometry, graph theory, Hamilton cycles

1 Introduction

While most neuroimaging meta-analyses are based on peak coordinate data, the best practice method is an Intensity-Based Meta-Analysis (IBMA) that combines the effect estimates and their standard errors (E+SE's, aka COPE & sqrt-VARCOPE) from each study [5]. Various efforts are underway to facilitate sharing of neuroimaging data to make such IBMA's possible (see, e.g. [2]), but the emphasis is usually on T-statistics and E+SE's are difficult to use in practice; for example, an analysis of E+SE's requires knowledge of the data, design and contrast scaling. However a meta-analysis based on T-statistic images is sub-optimal and discouraged in (non-imaging) meta-analysis [1], as the units of the meta-analysis are, say, "BOLD significance" instead of "% BOLD change".

Given a set of k studies, we can face different configuration of data sharing, and hence for each study i having available for meta-analysis:

- 1. the contrast estimates Y_i and contrast variance estimates V_{Y_i} .
- 2. the contrast estimates Y_i .
- 3. the standardized statistical maps Z_i .

Depending on how much is shared different strategies can be used to combine the available results into a meta-analysis.

Here we compare the use of IMBA using only T-statistics to use of E+SE's. Using 21 studies of pain in control subjects, we compare the best-practice analysis to two approaches using only T-statistics, Stouffer's [7] and weighted Z-score [4], the latter accounting for differing study sample size.

2 Methods

2.1 Theory

Given a set of k studies, we denote for each study i: its contrast estimate by Y_i , its contrast variance estimate by V_{Y_i} , its standardized statistical map by Z_i and its sample size by n_i .

Combining contrast estimates and their standard error The gold standard approach to combine contrast estimates and their standard errors is to input them into a GLM, creating effectively the third-level of a hierarchical model (level 1, subject; level 2, study; level 3: meta-analysis). The general formulation is provided in the following equation:

$$Y = X\beta + \epsilon \tag{1}$$

where β is the meta-analytic parameter to be estimated, $Y = [Y_1 \dots Y_k]^t$ is the vector of contrast estimates and $\epsilon \sim \mathcal{N}(0, W)$ is the residual term. Eq. (1) can be solved by weighted least square giving:

$$\hat{\beta} = (X^t W X)^{-1} X^t W Y \tag{2}$$

$$Var(\hat{\beta}) = (X^t W X)^{-1} \tag{3}$$

In a fixed-effects model (i.e. assuming no between-study variances), we have $W = diag(\sigma_1^2 \dots \sigma_k^2)$ where σ_i^2 denotes the contrast variance for study i. In a random-effects model, we have $W = diag(\sigma_1^2 + \tau^2 \dots \sigma_k^2 + \tau^2)$ where τ^2 denotes the between-studies variance. Approximating σ_i^2 by V_{Y_i} and given $\hat{\tau}^2$ an estimate of τ^2 we obtain the statistics detailed in table 1 for one sample tests.

Combining contrast estimates In the absence of standard error, the contrast estimates Y_i can be combined by assuming that the within-study variance σ_i^2 is roughly constant $(\sigma_i^2 \simeq \sigma^2 \ \forall \ 1 \leq i \leq k)$ or a negligible by comparison to the between-study variance $(\sigma_i^2 \ll \tau^2 \ \forall \ 1 \leq i \leq k)$. Then $W = diag(\sigma_C^2 \dots \sigma_C^2)$ where σ_C^2 is the combined within and between-stubject variance such as $\sigma_C^2 \simeq \tau^2$ or $\sigma_C^2 \simeq \tau^2 + \sigma^2$. Eq. (1) can be solved by ordinary least square giving:

$$\hat{\beta} = (X^t X)^{-1} X^t Y \tag{4}$$

$$Var(\hat{\beta}) = (X^t W X)^{-1} \tag{5}$$

Given $\hat{\sigma_C^2}$ an estimate of σ_C^2 we obtain the statistics detailed in table 1 for one sample tests.

	Statistic	Disbribution under H_0
GLM FFX	$\frac{1}{\sqrt{\sum_{i=1}^{k} 1/V_{Y_i}}} \sum_{i=1}^{k} \frac{Y_i}{V_{Y_i}}$	$\mathcal{T}_{(\sum_{i=1}^k n_i-1)-1}$
GLM MFX	$\frac{1}{\sqrt{\sum_{i=1}^{k} 1/(V_{Y_i} + \hat{\tau^2})}} \sum_{i=1}^{k} \frac{1}{V_{Y_i} + \hat{\tau^2}}$	\mathcal{T}_{k-1}
GLM RFX	$\frac{1}{\widehat{\sigma}_C^2/\sqrt{k}} \sum_{i=1}^k \frac{Y_i}{k}$	\mathcal{T}_{k-1}
Fisher's	$-2\sum_{i=1}^k \ln(\varPhi(-Z_i)))$	$\chi^2_{(2k)}$
Stouffer's	$\frac{\sum_{i=1}^{k} Z_i}{\sqrt{k}}$	$\mathcal{N}(0,1)$
Stouffer's MFX	$rac{\sum_{i=1}^k Z_i}{\sqrt{k}\hat{\sigma}}$	\mathcal{T}_{k-1}
Optimally weighted-Z	$\frac{\sum_{i=1}^{k} \sqrt{n_i} Z_i}{\sqrt{\sum_{i=1}^{k} n_i}}$	$\mathcal{N}(0,1)$

Table 1. Statistics for one-sample meta-analysis tests and distributions under the null hypothesis.

Combining standardised statistics In the presence of standardiseds statistical estimates, Fisher proposed to combine the associated p-values [3]. Stouffer's proposed to combine directly the standardised statistic [4]. In [5] following [2], the author proposed a weighted method that weights each study's Z_i by the square root of its sample size [3,7]. All these statistics, assuming fixed-effects and suited only for one-sample tests only are presented in table 1.

As suggested in [1], to get a kind of MFX with Stouffer's approach, the standardised statistical estimates Z_i can be combined in an OLS analysis. The corresponding estimate, referred as Stouffer's MFX is also provided in 1

2.2 Experiments

Simulations To verify the validity of each estimator under the null hypothesis we estimated the false positive rate at p < 0.05 uncorrected. For each meta-analysis, we simulated a contrast estimate a variance estimates such as:

$$Y_i \sim \mathcal{N}(0, \frac{\sigma_i^2}{n_i} + \tau^2) \tag{6}$$

$$V_{Y_i} \sim \frac{\sigma_i^2}{n_i - 1} \chi_{(n_i - 1)}^2$$
 (7)

where $\sigma_i^2 \in [1/2, 1, 2, 4]$ is the within-study variance, $\tau^2 \in [0, 1]$ is the between-study variance (fixed-effects if τ^2 is 0, random-effects otherwise). We simulated

different number of studies: $k \in [5, 10, 25, 50]$ and for a given meta-analysis, the number of subjects per studies n was selected such as we would have varying number of subjects in a common range for neuroimaging studies. In each simulated meta-analysis we simulated one study with exactly 20, 25, 10 and 50 subjects. For the remaining studies the number of subjects were drawn from uniform distributions a quarter from $\mathcal{U}(11, 20)$, a quarter from $\mathcal{U}(26, 50)$ and the remaining from $\mathcal{U}(21, 25)$. A total of 32 parameter sets $(4 \sigma_i^2 \times 2 \tau^2 \times 4 \ k)$ was therefore tested, 71 repeats with 5041 samples per repeats were simulated.

Real data We first compared the Z-scores obtained by the three approaches using a Bland-Altman plot. Then, as results are usually presented as a thresholded map, we computed the dice similarity score between thresholded maps obtained with Stouffer's and weighted-Z FFX with FLAME FFX for three (uncorrected) thresholds: p; 0.001, 0.01 and 0.05. Finally, as results are best reported using a multiple comparison correction, we defined ground truth activations as the FLAME FFX analysis FDR-corrected at a threshold of p;0.05 and plotted Receiver-Operating-Characteristics (ROC) curves of Stouffer's and weighted-Z FFX.

3 Results

3.1 Simulations

Fig. 1 displays the false positive rate obtained for the eight estimators over all set of parameters in the absence and presence of random-effects. From this graph, it is clear that the fixed-effects meta-analytic summary statistics, i.e. Fisher's, Stouffer's and weighted-z estimates are overly liberal in the presence of random-effects. As expected the original Fisher's approach is the most invalid. Surprisingly, FFX GLM is also invalid under fixed-effects, maybe suggesting inaccurate degrees of freedoms (here set to $(\sum_{i=1}^k n_i - 1) - 1$)). Stouffer's MFX, GLM RFX and permutations on effects or z-statistics provide valid estimates. The permutation estimates present the largest sampling variance.

The impact of the number of studies involved in the meta-analysis and of the size of the within-study variance are investigated in fig. 2. The permutation estimates appears conservative (FPR $\simeq 0.03$) when 5 studies are involved. All approaches perform equally as soon as 10 or more studies are included in the meta-analysis.

3.2 Real data

Fig. 1 shows the Bland-Altman plots comparing Z-scores from the Stouffer's and weighted-Z methods each compared with the ground truth Z-scores. Overall, both approaches present the same pattern of overestimation of the Z-scores. The weighted-Z approach provides a somewhat more condensed pattern suggesting a closer match to the ground truth. The dice similarity score for uncorrected

Fig. 1. False positive rates of the meta-analytic estimators under the null hypothesis for p < 0.05.

p-values of 0.001, 0.01 and 0.05 were 0.84, 0.87 and 0.89 respectively for Stouffer's method and 0.86, 0.88 and 0.90 for the weighted Z-score, showing again slightly better results for the weighted-Z approach. These scores are notably higher (dice similarity scores range from 0 to 1) than the scores obtained with coordinate-based meta-analyses (around 0.5, [5]). Finally the ROC curves displayed in figure 2 for a ground truth obtained with an FDR corrected threshold pi0.05 demonstrate again a slight advantage of weighted-Z FFX over Stouffer's FFX.

Dice among valids

StouffersMFX: 0.9454
PermutZ: 0.9450
GLMRFX: 0.8994

4. PermutCon: 0.8991

WeightedZ: 0.9244
Stouffers: 0.9184
GLMFFX: 0.8972
fishers: 0.8382

AUC between 0 and 0.1 among valids

StouffersMFX: 0.8924
PermutZ: 0.8919
GLMRFX: 0.7809
PermutCon: 0.7815

Fig. 2. False positive rates of the valid random-effects meta-analytic estimators under the null hypothesis for p < 0.05 as a function of the number of studies and the within-study variance.

WeightedZ: 0.8293
Stouffers: 0.8619
fishers: 0.6329
GLMFFX: 0.6111

4 Conclusion

We have found appreciable differences between the Z-score only approaches as compared to a gold-standard approach. Overall the weighted-Z method provided results that were closer to the ground truth than Stouffer's approach. We hypothesize that Stouffer's methods may be attributing greater weights to less-representative subsets of the data. All three procedures are valid, but the gold-standard should be giving the most faithful representation of the population effect. This advocates over the development of tools supporting the sharing E+SE's.

5 Acknowledgements

We gratefully acknowledge the use of this data from the Tracey pain group, FMRIB, Oxford.

References

- 1. Meta-analysis of neuro imaging data: a comparison of image-based and coordinate-based pooling of studies. $NeuroImage,\ 45(3):810-23,\ 2009.$
- 2. Peter Cummings. On the combination of independent tests. Magyar Tud. Akad. Mat. Kutato Int. Kozl., 3:171–197, 1958.
- 3. R.A. Fisher. Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh, 1932.
- 4. S. Stouffer, L. DeVinney, and E. Suchmen. *The American Soldier: Adjustment During Army Life*, volume 1. Princeton University Press, Princeton, NJ, 1949.
- 5. D V Zaykin. Optimally weighted Z-test is a powerful method for combining probabilities in meta-analysis. *Journal of evolutionary biology*, 24(8):1836–41, 2011.