Computer Arkitektur Floating Point (kort version)

Forelæsning 2 Brian Nielsen

Credits to
Randy Bryant & Dave O'Hallaron (CMU)

Vigtige læringsmål for dagens kursusgang

- Forstå mål og begrænsninger ved floating point repræsentationen.
- Præcision og afrunding
- Matematiske egenskaber (og mangel herpå: distributivitet og associativitet)

- Mindre intensivt
 - Detaljer om repræsentation
 - Normalform
 - · Multiplikation og addition

Hvis / når I skal lave "seriøse" FP applikationer, skal I sætte jer grundigt ind i hvordan det gøres rigtigt!

Design kriterier for floating-point tal

- Typiske applikationer
 - Videnskabelige beregninger og simuleringer
 - Fysik modeller, numeriske beregning, differential ligninger
 - IKKE: finansielle applikationer, som kræver præcise kr./øre beløb!!

0.1+0.2 = 0.300000012 !?!

- Ønsker til repræsentation of reelle tal:
 - Regne så præcist som muligt
 - Håndtere meget meget store tal
 - Håndtere meget meget små tal
 - Matematisk velfunderet, så sædvanlige aritmetiske regneregler gælder
 - HW skal regne hurtigt
 - Bruge endeligt (og begrænset) antal bits (32-64 bits)
 - Skal kunne realiseres som digitale kredsløb: (FPU: floating point unit)

Ariane 5

- SW genbrugt fra Ariane 4, men Ariane 5 havde stejlere stigning
- Konvertering af 64-bit floating point til 16-bit signed integer
- Overløb!
- 500M€ nytårsraket

Patriot Missile

- Første Golf Krig
- Tid målt som 1/10 sekund, som integer
- Omregnes til sekunder ved at gange med 1/10
- 1/10 sekund =0.000110011001100110011001100....(lille afrundingsfejl)
- Efter 100 timers drift: total afrundingsfejl på 0.34sek
 =>ramte forbi Scud missil med mere end 0.5 km
 =>28 døde

Binære brøker

Binære kommatal

- 1234.56₁₀ "Heltal.brøkdel"
- EX 1011.101₂?

Bemærk! Komma på DK "," vs "." på UK 1.234,56 Kr=? 1,234.56 Kr=? Slides/bog bruger UK, "." er seperator

Binære brøker

- Repræsentation
 - Bits til højre for "komma" repræsenterer brøker som er potenser af 2
 - Repræsenterer rationelle tal: $\sum_{k=-i}^{i} b_k \times 2^k$

Binære brøker: Eksempler

■ Værdi

Repræsentation

 $1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 1 \cdot 2^{-1} + 1 \cdot 2^{-2} = 4 + 1 + 1/2 + 1/4$

5 3/4
2 7/8
101.11₂
10.111₂
1.0111₂

Observationer

- Division med 2 fås ved højre-skifte (unsigned)
- Multiplikation med 2 fås med venstre-skifte
- Tal på formen 0.1111111...2 er lige under 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$
 - Hyppigt anvendt notation: 1.0 ε

Fixed point tal er bruges i mange DSP'ere.

PP2.45

Hvilke tal kan repræsenteres?

- Begrænsning #1
 - Vi kan kun repræsentere tal på formen x/2^k eksakt.
 - Andre rationelle tal kræver et repeterende bit mønster

```
Værdi Repræsentation
1/3 0.0101010101[01]...2
1/5 0.001100110011[0011]...2
1/10 0.0001100110011[0011]...2
```

- Begrænsning #2
 - Kun én placering af kommaet indenfor de w bits
 - Begrænsede tal-intervaller hvad gør vi ved meget små tal? Meget store?

IEEE Floating Point

IEEE Floating Point

- IEEE Standard 754
 - Fremsat i 1985 som en uniform standard for floating point aritmetik
 - Tidligere var der mange forskellige formater med hver deres spidsfindigheder
 - Understøttes nu af alle større CPU'er.
- Design drevet af de numeriske egenskaber
 - God håndtering af afrunding, overløb
 - Sværere at lave hurtige operationer i hardware
 - Eksperter i numerisk analyse dominerede komiteen over hardware designere.

Floating Point Repræsentation

Numerisk Format:

$$(-1)^s \cdot M \cdot 2^E$$

```
-1^{0*}1.4375*2^{7}=184.0 // 1*(23/16)*128 -1^{1*}1.4375*2^{3}=-11.5 // -1*(23/16)*8
```

- Fortegnsbit (Sign bit) s bestemmer om tallet er negativt eller positivt
- Signifikant M: normalt et brøktal i intervallet [1.0,2.0).
- Exponent E giver tallet en vægt med potens-af-2
- Indkodning som bitvektor
 - MSB s indeholder sign bit s
 - exp felt indkoder *E* (men er ikke identisk til E)
 - frac felt indkoder M (men er ikke identisk til M)

S	ехр	frac
---	-----	------

Valg af præcision: muligheder

• "Single" præcision: 32 bits

• Double præcision: 64 bits

• Udvidet præcision: 80 bits (Kun Intel)

Overblik over repræsentation af floating point tal

NaN = Not a Number

2 indkodninger for M og E

"Denormaliseret repræsentation" giver extra god opløsning for tal tæt på 0

Normaliseret:

$$E = exp - Bias$$

De-normaliseret

E = 1 - Bias

M=frac

En værdi er "denormaliseret" når exp = 000...0

Særlige værdier

- Værdien er særlig når : exp = 111...1
- Når exp = 111...1 og frac = 000...0
 - Repræsenterer værdien ∞ (uendelig, infinity)
 - Gives når operationer resulterer i overløb (både positivt og negativt)
 - Fx.: $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Når: **exp** = **111**...**1** og **frac** ≠ **000**...**0**
 - Not-a-Number (NaN)
 - Anvendes når den numeriske værdi ikke kan beregnes
 - F.x., sqrt(-1), $\infty \infty$, $\infty \times 0$

Eksempel: "Lillebitte" Floating Point

"Lillebitte Float" Eksempel

- 8-bit Floating Point repræsentation
 - Den mest betydende bit angiver fortegn
 - Næste 4 bits angiver **exp**, med bias 7
 - Sidste 3 bits er **frac**
- Samme generelle format som IEEE
 - normaliseret, denormaliseret
 - repræsentation af 0, NaN, infinity

Talområde (Positive)

 $v = (-1)^s M \cdot 2^E$ norm: E = Exp - Biasdenorm: E = 1 - Bias

	s exp	frac	E	Value	denorm: E =
	0 0000	000	-6	0	
	0 0000	001	-6	1/8*1/64 = 1/512	Tættest på 0
Denormaliserede	0 0000	010	-6	2/8*1/64 = 2/512	
tal	0 0000	110	-6	6/8*1/64 = 6/512	
	0 0000	111	-6	7/8*1/64 = 7/512	største denorm
	0 0001	000	-6	8/8*1/64 = 8/512	mindste norm NB!
	0 0001	001	-6	9/8*1/64 = 9/512	V
	0 0110	110	-1	14/8*1/2 = 14/16	
	0 0110	111	-1	15/8*1/2 = 15/16	tættest på to 1 nedenfra
Normaliserede	0 0111	000	0	8/8*1 = 1	
tal	0 0111	001	0	9/8*1 = 9/8	Tættest på 1 oppe fra
	0 0111	010	0	10/8*1 = 10/8	
	0 1110	110	7	14/8*128 = 224	
	0 1110	111	7	15/8*128 = 240	største norm
	0 1111	000	n/a	inf	

Fordeling af Værdier

- 6-bit IEEE-lignende format
 - e = 3 eksponent bits
 - f = 2 brøk bits
 - Bias er $2^{3-1}-1=3$

• Bemærk at fordelingen bliver tættere tæt på 0.

Fordeling af Værdier (zoom ind på -1...1)

- 6-bit IEEE-lignende format
 - e = 3 eksponent bits
 - f = 2 brøk bits
 - Bias = 3

Egenskaber ved IEEE formatet

- Floatpoint repræsentation af +0 same som Integer 0
 - Alle bits = 0
- Vi kan (næsten) anvende Integer sammenligning
 - Skal først sammenligne fortegnsbit
 - Skal håndtere "-0" = 0
 - NaNs er problematiske
 - Bliver større end alle andre værdier
 - Hvad skal resultatet af sammenligningen være?
 - Ellers OK
 - · Denorm vs. normalized
 - Normalized vs. infinity

Afrunding

Grundlæggende Floating Point Operationer

- $x +_f y = Round(x + y)$
- $x \times_f y = Round(x \times y)$
- Grundlæggende idé
 - Beregn exakte resultat
 - Indpas det i den valgte præcision
 - Muligvis overflow, hvis eksponenten er for stor
 - Muligvis afrunding, så det passer med frac

Afrunding

• Afrundings former (illustreret som € afrunding)

•	€1.40	€1.60	€1.50	€2.50	–€1.50
 Mod nul (Towards zero) 	€1	€1	€1	€2	-€ 1
 Rund ned (Round down) (-∞)) 	€1	€1	€1	€2	–€ 2
 Rund up (round up (+∞)) 	€2	€2	€2	€3	-€ 1
 Nærmeste lige (Nearest Even) 	€1	€2	€2	€2	– €2

"Nærmeste lige" regel

- <"halv vejs" : rund ned
- >"halv vejs": rund op
- == "halv vejs": afrund til nærmeste lige tal.

Nærmeste-lige er standart-indstillingen

Analyse af nærmeste-lige afrunding

- Standart-indstillingen
 - Svært at få anden form uden brug af assembler, se dog fesetround () i C99.
 - De andre former giver statistisk bias
 - Fx., sum af en serie positive tal giver konsistent/systematisk over- eller underestimering
 - Kan bruges til at finde øvre/nedre grænser for x: $x \le x \le x^+$
- Anvendelse på andre decimaler / Bit positioner
 - Når præcist "halvvejs" mellem to mulig værdier,
 - Afrund så mindst betydende ciffer er lige
 - Fx., afrund til nærmeste hundrede-dele

```
7.8949999 7.89 (Mindre end "halv vejs" )
7.8950001 7.90 (Mere end "halv vejs" )
7.8950000 7.90 ("halv vejs" —rund op)
7.8850000 7.88 ("halv vejs" —rund ned)
```

Matematiske egenskaber

Mathematiske egenskaber ved FP add

• Sammenlign med egenskaberne i en Abel'sk gruppe

Lukket under addition?

Men kan give "infinity" eller "NaN"

• Kommutativ?

Associativ?Nej

Overløb og upræcished forårsaget af afrunding

• (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

• 0 er additiv identitet?

Hvert element har en additiv invers?

Næsten

Undtaget "infinit" og "NaN"s

Monotonicitet

Næsten

• $a \ge b \Rightarrow a+c \ge b+c$?

• Undtaget "infinit" og "NaN"s

Implikationer for compilere:

Mathematiske egenskaber ved FP Mult

- Sammenlign med "kommutativ ring"
 - Lukket under multiplikation?
 - Men kan give "infinity" eller "NaN"
 - Multiplikation er kommutativ?
 - Multiplikation is associativ?
 - Mulighed for overløb, upræcist forårsaget af afrunding
 - Fx: (1e20*1e20) *1e-20=inf, 1e20* (1e20*1e-20) = 1e20
 - 1 er multiplikativ identit?
 - Multiplikation distribuerer over addition?
 - Mulighed for overløb, upræcished forårsaget af afrunding
 - 1e20*(1e20-1e20)=0.0, 1e20*1e20 1e20*1e20 = NaN
- Monotonisitet
 - $a \ge b \& c \ge 0 \Rightarrow a * c \ge b *c$?
 - Undtaget "infinity" og "NaN"s

Næsten

Ja

Ja

Ja

Nei

Nej

Implikationer for compilers

Floating Point in C

- C garanterer to præcisioner
 - float single præcision
 - double double præcision
- Type-konvertering (Casting)
 - Casting mellem int, float, og double ændrer bit repræsentation
 - double/float → int
 - Trunkerer brøken
 - Som ved afrunding mod nul
 - Ej defineret for infinity, NaN: sættes generelt til TMin
 - int \rightarrow double
 - præcis konvertering, sålænge int har ordstørrelse på ≤ 53 bits
 - •int → float
 - Afrunder i overensstemmelse med anvendte afrundingsform (default: "Round to nearest even").

Resumé

- IEEE Floating Point har veldefinerede matematiske egenskaber
- Repræsenter tal på formen M x 2^E
- Kan ræsonnere om resultatet uafhængigt af FP implementation
 - Som "eksakt resultat, dernæst afrundet"
- Ikke det samme som aritmetik på reelle tal
 - Bryder associativitet/distributivitet
 - Gør det svært for compilers, numeriske applikationer, og programmører

Hvis / når I skal lave "seriøse" FP applikationer, skal I sætte jer grundigt ind i hvordan det gøres rigtigt!