_--

Random Forest-based Land-Use Classification in ArcGIS using Python

Author: Jonas Starke, Kieran Galbraith

Gliederung

- Motivation
- Komponenten
- Benutzeroberfläche
- Aufwandseinschätzung
- Fazit

Motivation

- Land Use / Land Cover Klassifikationen sind im Bereich der Geowissenschaften in den letzten Jahren immer wichtiger geworden
- Maschinelle Lernalgorithmen können nicht lineare Beziehungen verstehen und Vorhersagen machen
- Häufig genutzt, um Veränderungen darzustellen und zu überwachen, wie zum Beispiel der Klimawandel
- Aber noch keine simple Methode für Laien mit einer Schritt-für-Schritt Anleitung

Abbildung 1: Landnutzungsklassifikation der Stadt Isny im Allgäu nach Modelltransfer mit Daten aus Versmold, NRW. Erstellt im Kurs "Fernerkundung und maschinelle Lernverfahren" bei Hanna Meyer von Kieran Galbraith

Komponenten

- Python basiertes Tool, das in ArcGIS Pro ausgeführt wird
- Intuitive Benutzeroberfläche, um den Nutzer Schritt für Schritt zum Ergebnis zu leiten
- Möglichkeit eigene Daten hochzuladen:
 - GeoJSON Datei mit mindestens 3 Trainingsdaten in jeweils 3 Klassen
 - Schritt-für-Schritt Anleitung, um eigene Trainingsdaten zu erstellen
- Backend bezieht hochauflösende, multispektrale Sentinel-2 Daten

Abbildung 2: Darstellung von Trainingsdaten der Fidschi-Inseln über ein Luftbild aus der Google Earth Engine, erstellt mit Hilfe der Google Earth Engine API in Python

Benutzeroberfläche (Mockup)

Abbildung 3: Mockup der ersten Seite der Benutzeroberfläche

Abbildung 4: Mockup der zweiten Seite der Benutzeroberfläche

Benutzeroberfläche (Mockup)

- Erste Seite Beinhaltet:
 - Möglichkeit Tutorial zu starten
 - Trainingsdaten einzuladen, die vom System geprüft werden (inklusive Fehlermeldung bei Fehlerhaften Daten)
 - Auf einer Karte eine Area of Training festzulegen (wo sind die Trainingsdaten?)
 - Das Modelltraining zu starten und das Modell zu speichern

- Zweite Seite Beinhaltet:
 - Möglichkeit Tutorial zu starten
 - Modell aus vorherigen Anwendungen einzuladen
 - Auf einer Karte eine Area of Interest festzulegen (Wo will ich eine Vorhersage?)
 - Möglichkeit die Vorhersagekarte als PDF oder GeoTIFF zu speichern

Aufwandseinschätzung

Aktivität	Aufwand	Aufwand in Stunden (geschätzt)
Einarbeitung ins Thema (Machine Learning in Python)	Niedrig	5 Stunden pro Kopf
Erstellen eines funktionellen Backends	Hoch	15 Stunden pro Kopf
Erstellen einer intuitiven Benutzeroberfläche (Nutzung vergangener Abgaben)	Mittel	10 Stunden pro Kopf
Tests und Fehlerbehebung	Mittel	10 Stunden pro Kopf
Erstellung eines Tutorials	Keine Ahnung	???

Fazit

- Warum? Wir sind schon geschult im Umgang mit maschinellen Lernalgorithmen, aber bisher hauptsächlich in R, nicht in Python – das wird vermutlich eine Herausforderung
 - Die größte Hürde wird aber vermutlich die Benutzeroberfläche so zu gestalten, dass auch Laien sich damit zurecht finden
- Anwendungsbereich könnte für alle Interessierte sein, aber auch Studierende oder vielleicht sogar Schüler*innen im Informatik- oder Erdkundeunterricht