Project VLSI for Digital signal processing

Topic: 9 tap FIR filter implementation

Presented by:

Jyotika Kumari (20224077)

Sakshi Singh (20224128)

Shivani (20224144)

Shrestha Katiyar (20224149)

Tushita Katiyar (20224166)

What is a Filter???

A filter is a device or process that removes unwanted components or features from a signal.

Application:

- 1. Audio processing (removing noise)
- 2.Image processing (smoothing or sharpening)
- 3. Communication systems (selecting signal bands)

what is FIR filters???

A Finite Impulse Response (FIR) filter has a finite duration response to an impulse input.

An FIR filter of order is defined by the difference equation:

$$y[n] = b0x[n] + b1x[n-1] + b2x[n-2] + + bnx[n-N]$$

Impulse Response:

The impulse response of an FIR filter is just its coefficients:

 $h[n] = \{b0, b1, ..., bN\}$

9 tap FIR filter

We have made a 9 tap FIR filter with the following specifications and using 6 stage pipelined structure:

Input frequency (fc):10 MHz

Sampling frequency (fs): 100 MHz

f1=2MHz, f2=30MHz

Coeff 0 = 57. coeff 4 = 8879 coeff 8 = 166

Coeff1 = 166. coeff 5 = 7187

Coeff2 = 962. coeff 6=3629

Coeff3 = 3629. coeff 7=962

Non pipelined design

•

Pipelined design

magnitute and phase response

Name	Slack	~1	Levels	High Fanout	From	To	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock
Path 1		00	8	1	filtered_signal1/CLK	filtered_signal0_6/PCIN[0]	13.728	13.728	0.000	00	
Path 2		0.0	8	1	filtered_signal1/CLK	filtered_signal0_6/PCIN[10]	13.728	13.728	0.000	60	
Path 3		00	8	1	filtered_signal1/CLK	filtered_signal0_6/PCIN[11]	13.728	13.728	0.000	00	
Path 4		00	8	1	filtered_signal1/CLK	filtered_signal0_6/PCIN[12]	13.728	13,728	0.000	66	
Path 5		00	8	1	filtered_signal1/CLK	filtered_signal0_6/PCIN[13]	13.728	13.728	0.000	00	
Path 6		60	8	1	filtered_signal1/CLK	filtered_signal0_6/PCIN[14]	13.728	13.728	0.000	GO	
Path 7		00	8	1	filtered_signal1/CLK	filtered_signal06/PCIN[15]	13.728	13.728	0.000	00	

timing analysis of non pipelined

timing analysis of pipelined

power analysis of pipelined (2)and non pieplined (1)

output when input is f1 = 2MHz

output when f1 =2 MHz and f2 = 30 MHz are given

output when f2 = 30MHz is given