

ZigFi:

Harnessing Channel State Information for Cross-Technology Communication

Xiuzhen Guo¹, Yuan He¹, Xiaolong Zheng¹, Liangcheng Yu², Omprakash Gnawali³

¹Tsinghua University ²KTH Royal Institute of Technology ³University of Houston

Wireless is everywhere

Smart Home

Smart Hospital

Smart Factory

CTC among different technologies

The state of the art

Packet Energy: WiZig [Infocom'17]

Packet Size: Esense [MobiCom '09], HoWiEs [Infocom '13]

The state of the art

Packet Transmission Timing: FreeBee [MobiCom '15],
 Gap Sense [Infocom '13]

Physical Signal Emulation: WEBee [MobiCom '17],

Challenges

Bandwidth: 2M **Rate:** 250Kbps

Modulation: OQPSK, DSSS

Tx: 0dBm

Directly decoding is difficult

Using RSSI is inefficient

(a) WiFi RSSI

(b) ZigBee RSSI

Bandwidth: 20M

Rate: 54Mbps

Modulation: QAM, OFDM

Tx: 20dBm

Physical emulation is infeasible

Feasibility of using CSI

The transmission of ZigBee packets affects the CSI significantly

Challenges of using CSI

Frequency domain:
Select a proper subchannel

Time domain: ZigBee length satisfies a threshold

CSI sequence:Choose an appropriateZigBee power

ZigFi: Harnessing CSI for CTC

- ZigBee packets piggy-backed to the existing WiFi link
- WiFi receiver collects two sets of information
- SVM classification

Encoding and decoding

- Encoding: Presence or absence of ZigBee packets
- Decoding: SVM identifies the interfered CSI sequence

SINR in ZigFi

$$SINR = 10lg \frac{S_Z}{I_W + N}$$

SINR in range [-0.25,1.25], decoding accuracy > 0.9

The Receiver-initiated mechanism

- Establish a WiFi link
- Obtain an appropriate SINR

Evaluation

- WiFi: Commercial WiFi device + CSITool, channel 11
- ZigBee: TelosB mote, channel 23
- Noise: USRP generator
- Metrics: Throughput and SER

ZigFi vs. FreeBee

ZigFi shows significant enhancement over FreeBee in terms of throughput and SER.

Distance

The ZigBee Tx and the WiFi Rx

(b) ZigFi SER

Adaptive is better than default. ZigFi performs well under the adaptive mode.

Distance

WiFi Tx and the WiFi Rx

(a) ZigFi Throughput

(b) ZigFi SER

Adaptive is better than default. ZigFi in the adaptive mode performs well.

Noise

(a) ZigFi Throughput

(b) ZigFi SER

Throughput of ZigFi degrades with noise intensity increases. ZigFi in the adaptive mode is more resilient to noise.

NLoS Scenario

(a) ZigFi Throughput

(b) ZigFi SER

ZigFi in the adaptive mode is robust under NLoS scenario

The impact on the WiFi communication

ZigFi has limited impact on the WiFi communication

Summary

- We harness CSI as a side channel to achieve CTC from ZigBee to WiFi and translate the decoding problem into a CSI classification problem.
- We design a receiver-initiated protocol for practical application of ZigFi.
 - Proper subchannel
 - Appropriate packet length
 - Suitable transmission power
- Experimental results show that ZigFi achieves
 efficient and robust CTC.

Q&A

Thanks

guoxz16@mails.Tsinghua.edu.cn