Chapter 1

1995 年国际大学生数学竞赛

Plovdiv, Bulgaria

1.1 第一天

1. 设 X 是一个非奇异矩阵, 其各列为 X_1, X_2, \dots, X_n . 设 Y 表示由 $X_2, X_3, \dots, X_n, 0$ 为 列组成的矩阵. 证明矩阵 $A = YX^{-1}$ 和 $B = X^{-1}Y$ 的秩均为 1, 且只有零特征值.

证明 设 $J = (a_{ij})$ 是 $n \times n$ 矩阵, 当 i = j + 1 时 $a_{ij} = 1$, 否则 $a_{ij} = 0$. 则 $\operatorname{rank} J = n - 1$, 且 J 只有零特征值. 而且 Y = XJ, $A = YX^{-1} = XJX^{-1}$, $B = X^{-1}Y = J$, 原命题得证.

2. 设 $f \in [0,1]$ 上的连续函数使得对每个 $x \in [0,1]$ 都有 $\int_{x}^{1} f(t) dt \ge \frac{1-x^2}{2}$, 证明 $\int_{0}^{1} f^2(t) dt \ge \frac{1}{3}$.

证明 由题目中的不等式得

$$0 \le \int_0^1 (f(x) - x)^2 dx = \int_0^1 f^2(x) dx - 2 \int_0^1 x f(x) dx + \int_0^1 x^2 dx.$$

因此

$$\int_{0}^{1} f^{2}(x) dx \ge 2 \int_{0}^{1} x f(x) dx - \int_{0}^{1} x^{2} dx = 2 \int_{0}^{1} x f(x) dx - \frac{1}{3}.$$

由假设我们有

$$\int_0^1 \int_x^1 f(t) \, dt dx \geqslant \int_0^1 \frac{1 - x^2}{2} dx.$$

即 $\int_0^1 t f(t) dt \ge \frac{1}{3}$, 故原不等式成立.

3. 设 $f \in (0, +\infty)$ 内的二阶连续可微函数, 满足 $\lim_{x\to 0^+} f'(x) = -\infty$, $\lim_{x\to 0^+} f''(x) = +\infty$. 证明

$$\lim_{x \to 0^+} \frac{f(x)}{f'(x)} = 0.$$

证明 由于当 $x \to 0^+$ 时, $f'(x) \to -\infty$. $f''(x) \to +\infty$, 因此存在区间 (0, r) 使得 f'(x) < 0 和 f''(x) > 0 对所有 $x \in (0, r)$ 都成立. 因此 f 在 (0, r) 内单调递减而 f' 在

(0,r) 内单调递增. 由 Lagrange 中值定理可知对每个 $0 < x < x_0 < r$ 有

$$f(x) - f(x_0) = f'(\xi)(x - x_0),$$

其中 $\xi \in (x, x_0)$. 考虑到 f' 的递增性, $f'(x) < f'(\xi) < 0$, 我们得到

$$x - x_0 = \frac{f'(\xi)}{f'(x)}(x - x_0) = \frac{f(x) - f(x_0)}{f'(x)} \le 0.$$

$$-x_0 \leqslant \liminf_{x \to 0^+} \frac{f(x)}{f'(x)} \leqslant \limsup_{x \to 0^+} \frac{f(x)}{f'(x)} \leqslant 0$$

对任意 $x_0 \in (0, r)$ 都成立, 因此利用夹逼准则得

$$\lim_{x \to 0^+} \frac{f(x)}{f'(x)} = 0.$$

4. 设函数 $F:(1,+\infty)\to\mathbb{R}$ 定义为

$$F(x) := \int_{x}^{x^2} \frac{\mathrm{d}t}{\log t}.$$

证明 F 是一对一的, 并求出 F 值域.

证明 由定义有

$$F'(x) = \frac{x-1}{\log x}, \quad x > 1$$

因此 F'(x) > 0 在 $(1, +\infty)$ 内都成立, 故 F 是严格单调增加的, 自然是一对一的.

由于

$$F(x) \ge (x^2 - x) \min \left\{ \frac{1}{\log t} : x \le t \le x^2 \right\} = \frac{x^2 - x}{\log (x^2)},$$

可知当 $x \to +\infty$ 时, $F(x) \to +\infty$, 因此 F 的值域为 $(F(1+), +\infty)$. 为了计算 F(1+), 在 F 的定义中令 $t = e^v$, 则 $F(x) = \int_{\log x}^{2\log x} \frac{e^v}{v} dv$. 因此

$$F(x) < e^{2\log x} \int_{\log x}^{2\log x} \frac{1}{v} dx = x^2 \log 2, \quad F(x) > e^{\log x} \int_{\log x}^{2\log x} \frac{1}{v} dx = x \log 2.$$

这就说明 $F(1+) = \log 2$.

5. 设 A 和 B 均为 $n \times n$ 实矩阵. 假定存在 n + 1 个不同实数 $t_1, t_2, \cdots, t_{n+1}$ 使得矩阵

$$C_i = A + t_i B, \quad i = 1, 2, \dots, n+1$$

都是幂零矩阵 (即 $C_i^n = O$). 证明 A 和 B 都是幂零的.

证明 首先有

$$(A + tB)^{n} = A^{n} + tP_{1} + t^{2}P_{2} + \dots + t^{n-1}P_{n-1} + t^{n}B^{n}.$$

这里 $P_1, P_2, \cdots, P_{n-1}$ 是不依赖于 t 的矩阵.

1.1. 第一天

假定 $a, p_1, p_2, \dots, p_{n-1}, b$ 分别表示 $A^n, P_1, P_2, \dots, P_{n-1}, B^n$ 对应的 (i, j) 元. 则 多项式

$$bt^{n} + p_{n-1}t^{n-1} + \dots + p_{1}t + a$$

至少有 n+1 个根 t_1, t_2, \dots, t_{n+1} , 故此多项式的系数均为零, 于是 $A^n = O, B^n = O, P_1 = O$, 即 A 与 B 都是幂零的.

6. 设 p > 1. 证明存在常数 $K_p > 0$ 使得对每个 $x, y \in \mathbb{R}$ 满足 $|x|^p + |y|^p = 2$ 时, 我们有

$$(x-y)^2 \le K_p \left(4 - (x+y)^2\right).$$

证明 设 $0 < \delta < 1$. 首先我们证明存在 $K_{p,\delta} > 0$ 使得

$$f(x,y) = \frac{(x-y)^2}{4-(x+y)^2} \le K_{p,\delta}$$

对每个 $(x, y) \in D_{\delta} = \{(x, y) : |x - y| \ge \delta, |x|^p + |y|^p = 2\}.$

由于 D_{δ} 是紧的, 我们只需要证明 f 在 D_{δ} 内连续即可, 这只要证明 f 的分母非零即可. 反证法, 则 |x+y|=2, 且 $\left|\frac{x+y}{2}\right|^p=1$. 由于 p>1, 函数 $g(t)=|t|^p$ 是严格凸函数, 即 $x\neq y$ 时 $\left|\frac{x+y}{2}\right|^p<\frac{|x|^p+|y|^p}{2}$. 因此存在某个 $(x,y)\in D_{\delta}$ 使得

$$\left| \frac{x+y}{2} \right|^p < \frac{|x|^p + |y|^p}{2} = 1 = \left| \frac{x+y}{2} \right|^p$$

矛盾.

如果 x 与 y 异号, 则 $(x,y) \in D_\delta$ 对所有 $0 < \delta < 1$ 都成立, 因为 $|x-y| \ge \max\{|x|,|y| \ge 1 > \delta\}$. 因此不妨设 x > 0, y > 0 且 $x^p + y^p = 2$. 令 x = 1 + t, 则

$$y = (2 - x^{p})^{\frac{1}{p}} = (2 - (1 + t)^{p})^{\frac{1}{p}}$$

$$= \left(2 - \left(1 + pt + \frac{p(p-1)}{2}t^{2} + o(t^{2})\right)\right)^{\frac{1}{p}} = \left(1 - pt - \frac{p(p-1)}{2}t^{2} + o(t^{2})\right)^{\frac{1}{p}}$$

$$= 1 - t - \frac{p-1}{2}t^{2} + o(t^{2}) - \frac{p-1}{2}t^{2} + o(t^{2})$$

$$= 1 - t - (p-1)t^{2} + o(t^{2}).$$

于是有

$$(x - y)^2 = (2t + o(t))^2 = 4t^2 + o(t^2)$$

以及

$$4 - (x + y)^{2} = 4 - (2 - (p - 1)t^{2} + o(t^{2}))^{2} = 4 - 4 + 4(p - 1)t^{2} + o(t^{2})$$
$$= 4(p - 1)t^{2} + o(t^{2}).$$

所有存在 $\delta_p > 0$ 使得当 $|t| < \delta_p$ 时有 $(x - y)^2 < 5t^2, 4 - (+y)^2 > 3(p - 1)t^2$, 则

$$(x-y)^2 < 5t^2 = \frac{5}{3(p-1)} \cdot 3(p-1)t^2 < \frac{5}{3(p-1)} \left(4 - (x+y)^2\right) \tag{*}$$

如果 $|x-1| < \delta_p$, 由对称性知 (*) 式对 $|y-1|\delta_p$ 仍然成立.

要证明结论只需要说明当 $|x-1| \ge \delta_p$, $|y-1| \ge \delta_p$ 以及 $x^p + y^p = 2$ 时 $|x-y| \ge 2\delta_p$ 成立即可. 显然由 $x^p + y^p = 2$ 可知 $\max\{x,y\} \ge$, 于是可令 $x-1 \ge \delta_p$. 由于 $\left(\frac{x+y}{2}\right)^p \le \frac{x^p + y^p}{2} = 1$, 故 $x+y \le 2$, 则 $x-y \ge 2(x-1) \ge 2\delta_p$.

1.2 第二天

- **1.** 设 $A \neq 3 \times 3$ 实矩阵, 满足对任意列向量 $u \in \mathbb{R}^3$, 向量 Au 和 u 正交. 证明:
 - (a) $A^{T} = -A$, 这里 A^{T} 表示 A 的转置.
 - (b) 存在一个先看过了 $v \in \mathbb{R}^3$ 使得 $Au = v \times u$ 对任意 $u \in \mathbb{R}^3$ 都成立. 这里 $v \times u$ 表示 u = v 的向量积.

证明

(a) 设 $A + (a_{ij}), u = (u_1, u_2, u_3)^T$. 根据正交性条件 (Au, u) = 0, 对 k = 1, 2, 3, 分别 取 $u_i = \delta_{ik}$ 可得到 $a_{kk} = 0$. 如果对 k, m = 1, 2, 3, 分别取 $u_i = \delta_{ik} + \delta_{im}$ 可得

$$a_{kk} + a_{km} + a_{mk} + a_{mm} = 0.$$

因此 $a_{km} = -a_{mk}$, 即证得 $A^{T} = -A$.

(b) $\diamondsuit v_1 = -a_{23}, v_2 = a_{13}, v_3 = -a_{12}$. \bigvee

$$Au = (v_2u_3 - v_3u_2, v_3u_1 - v_1u_3, v_1u_2 - v_2u_1)^T = v \times v.$$

2. 设 $\{b_n\}_{n=0}^{\infty}$ 是正实数列, 满足 $b_0=1, b_n=2+\sqrt{b_{n-1}}-2\sqrt{1+\sqrt{b_{n-1}}}.$ 计算

$$\sum_{n=1}^{\infty} b_n 2^n.$$

解 $\Leftrightarrow a_n = 1 + \sqrt{b_n}, n \ge 0, 则 a_0 = 2, a_n > 1, 且$

$$a_n = 1 + \sqrt{1 + a_{n-1} - 2\sqrt{a_{n-1}}} = \sqrt{a_{n-1}}.$$

所以 $a_n = 2^{2^{-n}}$. 于是

$$\sum_{n=1}^{N} b_n 2^n = \sum_{n=1}^{N} (a_n - 1)^2 2^n = \sum_{n=1}^{N} (a_n^2 2^n - a_n 2^{n+1} + 2^n)$$

$$= \sum_{n=1}^{N} [(a_{n-1} - 1) 2^n - (a_n - 1) 2^{n+1}]$$

$$= 2(a_0 - 1) - (a_N - 1) 2^{N+1} = 2 - 2 \frac{2^{2^{-N}} - 1}{2^{-N}}.$$

1.2. 第二天 5

$$\sum_{n=1}^{\infty} b_n 2^n = \lim_{N \to \infty} \left(2 - 2 \frac{2^{2^{-N}} - 1}{2^{-N}} \right) = 2 - 2 \lim_{x \to 0} \frac{2^x - 1}{x} = 2 - \log 2.$$

3. 设n次复系数多项式P(z)的所有根都在复平面的单位圆上. 证明多项式

$$2zP'(z) - nP(z)$$

的所有根也在同样的圆上.

证明 不妨假定 P(z) 的最高次项系数为 1, 故可设

$$P(z) = (z - \alpha_1)(z - \alpha_2) \cdots (z - \alpha_n),$$

这里 $|\alpha_i| = 1, i = 1, 2, \dots, n,$ 且 $\alpha_1, \alpha_2, \dots, \alpha_n$ 可以相同.

我们有

$$Q(z) = 2zP(z) - nP(z)$$

$$= (z + \alpha_1)(z - \alpha_2) \cdots (z - \alpha_n) + (z - \alpha_1)(z + \alpha_2) \cdots (z - \alpha_n)$$

$$+ \cdots + (z - \alpha_1)(z - \alpha_2) \cdots (z + \alpha_n).$$

因此, $\frac{Q(z)}{P(z)} = \sum_{k=1}^{n} \frac{z+\alpha_k}{z-\alpha_k}$. 由于 $\operatorname{Re}\left(\frac{z+a}{z-a}\right) = \frac{|z|^2-|\alpha|^2}{|z-\alpha|^2}$ 对所有的复数 $z,\alpha,z\neq\alpha$ 都成立, 那么在这里有

$$\operatorname{Re} \frac{Q(z)}{P(z)} = \sum_{k=1}^{n} \frac{|z|^2 - 1}{|z - \alpha_k|^2}.$$

于是当 $|z| \neq 1$ 时, $\operatorname{Re} \frac{Q(z)}{P(z)} \neq 0$. 因此当 Q(z) = 0 时, 必有 |z| = 1.

4. (a) 证明对任意 $\varepsilon > 0$ 都存在正整数 n 和实数 $\lambda_1, \dots, \lambda_n$ 使得

$$\max_{x \in [-1,1]} \left| x - \sum_{k=1}^{n} \lambda_k x^{2k+1} \right| < \varepsilon.$$

(b) 证明对每个 [-1,1] 上的奇函数和任意 $\varepsilon > 0$ 都存在正整数 n 和实数 μ_1, \cdots, μ_n 使

$$\max_{x \in [-1,1]} \left| f(x) - \sum_{k=1}^{n} \mu_k x^{2k+1} \right| < \varepsilon.$$

证明

(a) 取 n 使得 $\left(1-\varepsilon^2\right)^n \leq \varepsilon$, 则 $\left|x\left(1-x^2\right)^n\right| < \varepsilon$ 对任意 $x \in [-1,1]$ 都成立. 取 $\lambda_k = (-1)^{k+1} \binom{n}{k}$ 即可满足条件, 因为

$$x - \sum_{k=1}^{n} \lambda_k x^{2k+1} = \sum_{k=0}^{n} (-1)^k \binom{n}{k} x^{2k+1} = x \left(1 - x^2\right)^n.$$

(b) 利用 Weirstrass 逼近定理可知存在多项式 p(x) 使得

$$\max_{x \in [-1,1]} |f(x) - p(x)| < \frac{\varepsilon}{2}.$$

取 $q(x) = \frac{1}{2} [p(x) - p(-x)], 则$

$$f(x) - q(x) = \frac{1}{2} [f(x) - p(x)] - \frac{1}{2} [f(-x) - p(-x)].$$

并且

$$\max_{|x| \le 1} |f(x) - g(x)| \le \frac{1}{2} \max_{|x| \le 1} |f(x) - p(x)| + \frac{1}{2} \max_{|x| \le 1} |f(-x) - p(-x)| < \frac{\varepsilon}{2}.$$
 (1)

但是 q 为奇多项式, 因此它可以写成

$$q(x) = \sum_{k=0}^{m} b_k x^{2k+1} = b_0 x + \sum_{k=1}^{m} b_k x^{2k+1}.$$

如果 $b_0 = 0$, 则 (1) 式即证明了结论. 如果 $b_0 \neq 0$, 则在第一问中用 $\frac{\varepsilon}{2|b_0|}$ 代替 ε 可得到

$$\max_{|x| \le 1} \left| b_0 x - \sum_{k=1}^n b_0 \lambda_k x^{2k+1} \right| < \frac{\varepsilon}{2} \tag{2}$$

对某个合适的正整数 n 以及实数 $\lambda_1, \lambda_2, \cdots, \lambda_n$,则由 (1) 式与 (2) 式可知原命题对 $\max n, m$ 成立,而不是 n.

5. (a) 对任意具有形式

$$f(x) = \frac{a_0}{2} + \cos x + \sum_{n=2}^{N} a_n \cos(nx)$$

的函数 f, 且 $|a_0| < 1$, 必在一个周期 $[0, 2\pi)$ 内既取正值也有负值.

(b) 证明函数

$$F(x) = \sum_{n=1}^{100} \cos\left(n^{\frac{3}{2}}x\right)$$

在 (0,1000) 内至少有 40 个零点.

证明

(a) 考虑积分

$$\int_0^{2\pi} f(x) (1 \pm \cos x) dx = \pi (a_0 \pm 1).$$

如果 $f(x) \ge 0$ 恒成立, 则 $a_0 \ge 1$. 如果 $f(x) \le 0$ 恒成立, 则 $a_0 \le -1$. 这都与题目假设矛盾, 因此 f(x) 必在 $[0, 2\pi)$ 内既取正值, 又取负值.

1.2. 第二天

(b) 我们将证明对每个正整数 N 和每个实数 $h \ge 24$, 每个实数 y, 函数

$$F_N(x) = \sum_{n=1}^N \cos\left(n^{\frac{3}{2}}x\right)$$

都在区间 (y, y + h) 内改变符号.

考虑积分

$$I_1 = \int_{y}^{y+h} F_N(x) dx, \quad I_2 = \int_{y}^{y+h} F_N \cos x dx.$$

如果 $F_N(x)$ 在 (y, y + h) 内不改变符号,则

$$|I_2| \le \int_y^{y+h} |F_N(x)| dx = \left| \int_y^{y+h} F_N(x) dx \right| = |I_1|.$$

因此, 只需要证明 $|I_2| > |I_1|$ 即可.

显然, 对每个 $\alpha \neq 0$, 我们有

$$\left| \int_{y}^{y+h} \cos(\alpha x) \, \mathrm{d}x \right| \leq \frac{2}{|\alpha|}.$$

因此

$$|I_1| = \left| \sum_{n=1}^N \int_y^{y+h} \cos\left(n^{\frac{3}{2}}x\right) dx \right| \le \sum_{n=1}^N \frac{1}{n^{\frac{3}{2}}} < 2\left(1 + \int_1^{+\infty} \frac{dt}{t^{\frac{3}{2}}}\right) = 6.$$
 (1)

而另一方面又有

$$I_{2} = \sum_{n=1}^{N} \int_{y}^{y+h} \cos x \cos \left(n^{\frac{3}{2}}x\right) dx$$

$$= \frac{1}{2} \int_{y}^{y+h} (1 + \cos 2x) dx + \frac{1}{2} \sum_{n=2}^{N} \int_{y}^{y+h} \left(\cos \left(n^{\frac{3}{2}} - 1\right)x + \cos \left(n^{\frac{3}{2}} + 1\right)x\right) dx$$

$$= \frac{1}{2} + \Delta,$$

其中

$$|\Delta| \leq \frac{1}{2} \left(1 + 2 \sum_{n=2}^{N} \left(\frac{1}{n^{\frac{3}{2}} - 1} + \frac{1}{n^{\frac{3}{2}} + 1} \right) \right) \leq \frac{1}{2} + 2 \sum_{n=2}^{N} \frac{1}{n^{\frac{3}{2}} - 1}.$$

当 $n \ge 3$ 时, $n^{\frac{3}{2}} - 1 \ge \frac{2}{3}n^{\frac{3}{2}}$, 于是

$$|\Delta| \le \frac{1}{2} + \frac{2}{2^{\frac{3}{2}} + 1} + 3\sum_{n=3}^{N} \frac{1}{n^{\frac{3}{2}}} < \frac{1}{2} + \frac{2}{2\sqrt{2} - 1} + 3\int_{2}^{+\infty} \frac{\mathrm{d}t}{t^{\frac{3}{2}}} < 6.$$

因此

$$|I_2| > \frac{1}{2}h - 6. (2)$$

由 (1) 和 (2) 式, 以及 $h \ge 24$, 我们得到 $|I_2| > |I_1|$, 这就完成了证明.

6. 假定 $\{f_n\}_{n=1}^{\infty}$ 是区间 [0,1] 上的连续函数列,满足

$$\int_{0}^{1} f_{m}(x) f_{n}(x) dx = \begin{cases} 1, & n = m \\ 0, & n \neq m \end{cases}$$

且

$$\sup\{|f_n(x)|: x \in [0,1], n = 1,2,\cdots\} < +\infty.$$

证明不存在 $\{f_n\}$ 的子列 $\{f_{n_k}\}$ 使得极限 $\lim_{k\to\infty} f_{n_k}(x)$ 对任意 $x\in[0,1]$ 都存在.

证明 显然我们可以加一些满足题目假设的函数 $\{g_m\}$, 使得 $\{f_n\} \cap \{g_m\}$ 的有限线性 组合为 $L^2[0,1]$, 因此不妨假设 $\{f_n\}$ 生成了 $L^2[0,1]$.

假定有子列 $\{n_k\}$ 和函数 f 使得对任意 $x \in [0,1]$ 都有

$$\lim_{k \to \infty} f_{n_k}(x) = f(x).$$

固定 $m \in \mathbb{N}$, 由 Lebesgue 定理可知

$$0 = \int_0^1 f_m(x) f_{n_k}(x) dx \xrightarrow{k \to \infty} \int_0^1 f_m(x) f(x) dx.$$

因此 $\int_0^1 f_m(x) f(x) dx = 0$ 对每个 $m \in \mathbb{N}$ 都成立, 这意味着 f(x) = 0 几乎处处成立, 再次利用 Lebeshue 定理我们得到

$$1 = \int_0^1 f_k^2(x) \, dx \xrightarrow{k \to \infty} \int_0^1 f^2(x) \, dx = 0.$$

矛盾,这就证明原命题.