Organische Chemie

J. Flügel¹ S. Schultze¹ E. Selimi¹ L. Culmey¹ A. Prebreza¹

Integrierte Gesamtschule Paffrath ¹

Chemie Grundkurs, März 2024

Table of Contents

- Intermolekulare Kräfte
 - Van-Der-Waals-Kräfte
 - London-Kräfte
 - Debye-Wechselwirkung
 - Keesom-Kraft
 - Wasserstoffbrückenbindungen
- Reaktionsmechanismen
 - Grundlagen
 - induktive Effekte
 - Reaktionsenthalpie
 - radikalische Substitution
 - elektrophile Addition
 - Eliminierung
 - nukleophile Substitution
- Stoffklassen

• Schwache Wechselwirkungen zwischen verschiedenen Atomen oder Molekülen

- Schwache Wechselwirkungen zwischen verschiedenen Atomen oder Molekülen
- Entstehung durch kurzzeitige Dipolmomente aufgrund ungleichmäßiger Elektronenverteilung um den Atomkern

- Schwache Wechselwirkungen zwischen verschiedenen Atomen oder Molekülen
- Entstehung durch kurzzeitige Dipolmomente aufgrund ungleichmäßiger Elektronenverteilung um den Atomkern
- Unterteilt in drei Unterarten

- Schwache Wechselwirkungen zwischen verschiedenen Atomen oder Molekülen
- Entstehung durch kurzzeitige Dipolmomente aufgrund ungleichmäßiger Elektronenverteilung um den Atomkern
- Unterteilt in drei Unterarten

Stärke

Van-der-Waals-Kräfte sind generell sehr schwache Kräfte

• Spontane Polarisation von Teilchen (e^- "schwirren" gerade auf einer Seite)

- Spontane Polarisation von Teilchen (e⁻ "schwirren" gerade auf einer Seite)
- Induzierte Dipole in benachbarteten Teilchen

- Spontane Polarisation von Teilchen (e^- "schwirren" gerade auf einer Seite)
- Induzierte Dipole in benachbarteten Teilchen
- Zwischen nicht-dipolen

- Spontane Polarisation von Teilchen (e^- "schwirren" gerade auf einer Seite)
- Induzierte Dipole in benachbarteten Teilchen
- Zwischen nicht-dipolen
- Teilchen ziehen sich an / stoßen sich ab

- Spontane Polarisation von Teilchen (e^- "schwirren" gerade auf einer Seite)
- Induzierte Dipole in benachbarteten Teilchen
- Zwischen nicht-dipolen
- Teilchen ziehen sich an / stoßen sich ab

Stärke

Sehr schwach

• Bereits existierende Dipole in der Lösung

- Bereits existierende Dipole in der Lösung
- Induzierte Dipole in benachbarteten Teilchen

- Bereits existierende Dipole in der Lösung
- Induzierte Dipole in benachbarteten Teilchen
- Zwischen Dipol und nicht-dipol

- Bereits existierende Dipole in der Lösung
- Induzierte Dipole in benachbarteten Teilchen
- Zwischen Dipol und nicht-dipol
- ullet \Longrightarrow Teilchen ziehen sich an / stoßen sich ab

- Bereits existierende Dipole in der Lösung
- Induzierte Dipole in benachbarteten Teilchen
- Zwischen Dipol und nicht-dipol
- ullet \Longrightarrow Teilchen ziehen sich an / stoßen sich ab

Stärke

Sehr schwach, aber generell stärker als London-Kräfte

• Bereits existierende Dipole in der Lösung

- Bereits existierende Dipole in der Lösung
- Besagte Dipole ziehen sich an / stoßen sich ab.

- Bereits existierende Dipole in der Lösung
- Besagte Dipole ziehen sich an / stoßen sich ab.
- Zwischen zwei Dipolen

- Bereits existierende Dipole in der Lösung
- Besagte Dipole ziehen sich an / stoßen sich ab.
- Zwischen zwei Dipolen

Stärke

Sehr schwach, aber generell die stärkste der drei Van-der-Waals-Kräfte

$$R^1$$
 — X^{δ^-} H^{δ^+} Y^{δ^-} R^2

• Zwischen Wasserstoffatom und stark elektronegativem Atom (O, N, F, ...)

$$R^1$$
 X^{δ^-} Y^{δ^+} Y^{δ^-} R^2

- Zwischen Wasserstoffatom und stark elektronegativem Atom (O, N, F, ...)
- Insbesondere an freiem Valenzelektronenpaar

$$R^1$$
 X^{δ^-} Y^{δ^+} Y^{δ^-} R^2

- Zwischen Wasserstoffatom und stark elektronegativem Atom (O, N, F, ...)
- Insbesondere an freiem Valenzelektronenpaar

Stärke

Schwächer als Ionenbindung, Kovalente Bindung, etc. aber deutlich stärker als Van-der-Waals-Kräfte

$$R^1$$
 X^{δ^-} Y^{δ^+} Y^{δ^-} R^2

- Zwischen Wasserstoffatom und stark elektronegativem Atom (O, N, F, ...)
- Insbesondere an freiem Valenzelektronenpaar

Stärke

Schwächer als Ionenbindung, Kovalente Bindung, etc. aber deutlich stärker als Van-der-Waals-Kräfte

Examples

$$HO \longrightarrow H \longrightarrow \overline{O}H_2$$

• Elektronenverschiebungen entlang konvalenter Bindungen

- Elektronenverschiebungen entlang konvalenter Bindungen
- Bindungen mit Elektronegativtätsdifferenzen (aber keine Ionenbindung) (z.B. C-F)

- Elektronenverschiebungen entlang konvalenter Bindungen
- Bindungen mit Elektronegativtätsdifferenzen (aber keine Ionenbindung) (z.B. C-F)
- Beeinflusst Abspaltbarkeit von Teilmolekülen in z.B. nukleophiler Substitution (S_N1), elektrophiler Addition, ... (schwächt Bindung)

- Elektronenverschiebungen entlang konvalenter Bindungen
- Bindungen mit Elektronegativtätsdifferenzen (aber keine Ionenbindung) (z.B. C-F)
- Beeinflusst Abspaltbarkeit von Teilmolekülen in z.B. nukleophiler Substitution (S_N1), elektrophiler Addition, ... (schwächt Bindung)

- Elektronenverschiebungen entlang konvalenter Bindungen
- Bindungen mit Elektronegativtätsdifferenzen (aber keine Ionenbindung) (z.B. C-F)
- Beeinflusst Abspaltbarkeit von Teilmolekülen in z.B. nukleophiler Substitution (S_N1), elektrophiler Addition, ... (schwächt Bindung)

Zum Beispiel durch folgende Gruppen

- Elektronenverschiebungen entlang konvalenter Bindungen
- Bindungen mit Elektronegativtätsdifferenzen (aber keine Ionenbindung) (z.B. C-F)
- Beeinflusst Abspaltbarkeit von Teilmolekülen in z.B. nukleophiler Substitution $(S_N 1)$, elektrophiler Addition, ... (schwächt Bindung)

Zum Beispiel durch folgende Gruppen

```
+I-Effekt (Schiebend)
```

- Elektronenverschiebungen entlang konvalenter Bindungen
- Bindungen mit Elektronegativtätsdifferenzen (aber keine Ionenbindung) (z.B. C-F)
- Beeinflusst Abspaltbarkeit von Teilmolekülen in z.B. nukleophiler Substitution $(S_N 1)$, elektrophiler Addition, ... (schwächt Bindung)

Zum Beispiel durch folgende Gruppen

+I-Effekt (Schiebend)

• t-Butylgruppe $(-C(CH_3)_3)$

- Elektronenverschiebungen entlang konvalenter Bindungen
- Bindungen mit Elektronegativtätsdifferenzen (aber keine Ionenbindung) (z.B. C-F)
- Beeinflusst Abspaltbarkeit von Teilmolekülen in z.B. nukleophiler Substitution $(S_N 1)$, elektrophiler Addition, ... (schwächt Bindung)

Zum Beispiel durch folgende Gruppen

+I-Effekt (Schiebend)

- t-Butylgruppe ($-C(CH_3)_3$)
- i-Propylgruppe (-CH(CH₃)₂)

- Elektronenverschiebungen entlang konvalenter Bindungen
- Bindungen mit Elektronegativtätsdifferenzen (aber keine Ionenbindung) (z.B. C-F)
- Beeinflusst Abspaltbarkeit von Teilmolekülen in z.B. nukleophiler Substitution $(S_N 1)$, elektrophiler Addition, ... (schwächt Bindung)

Zum Beispiel durch folgende Gruppen

+I-Effekt (Schiebend)

- t-Butylgruppe ($-C(CH_3)_3$)
- i-Propylgruppe (-CH(CH₃)₂)
- Alkylrest (−R)

- Elektronenverschiebungen entlang konvalenter Bindungen
- Bindungen mit Elektronegativtätsdifferenzen (aber keine Ionenbindung) (z.B. C-F)
- Beeinflusst Abspaltbarkeit von Teilmolekülen in z.B. nukleophiler Substitution $(S_N 1)$, elektrophiler Addition, ... (schwächt Bindung)

Zum Beispiel durch folgende Gruppen

—I-Effekt (Ziehend)

+I-Effekt (Schiebend)

- t-Butylgruppe $(-C(CH_3)_3)$
- i-Propylgruppe (-CH(CH₃)₂)
- Alkylrest (−R)

- Elektronenverschiebungen entlang konvalenter Bindungen
- Bindungen mit Elektronegativtätsdifferenzen (aber keine Ionenbindung) (z.B. C-F)
- Beeinflusst Abspaltbarkeit von Teilmolekülen in z.B. nukleophiler Substitution $(S_N 1)$, elektrophiler Addition, ... (schwächt Bindung)

Zum Beispiel durch folgende Gruppen

+I-Effekt (Schiebend)

- t-Butylgruppe $(-C(CH_3)_3)$
- i-Propylgruppe (-CH(CH₃)₂)
- Alkylrest (−R)

-I-Effekt (Ziehend)

 Hydroxygruppe (-OH) / Carbonylgruppenteil (-C=O)

- Elektronenverschiebungen entlang konvalenter Bindungen
- ullet Bindungen mit Elektronegativtätsdifferenzen (aber keine Ionenbindung) (z.B. C-F)
- Beeinflusst Abspaltbarkeit von Teilmolekülen in z.B. nukleophiler Substitution $(S_N 1)$, elektrophiler Addition, ... (schwächt Bindung)

Zum Beispiel durch folgende Gruppen

+I-Effekt (Schiebend)

- t-Butylgruppe $(-C(CH_3)_3)$
- i-Propylgruppe (-CH(CH₃)₂)
- Alkylrest (−R)

-I-Effekt (Ziehend)

- Hydroxygruppe (-OH) / Carbonylgruppenteil (-C=O)
- lodatom (-I) / Bromatom (-Br) / Chloratom (-CI) / Fluoratom (-F)

induktive Effekte

- Elektronenverschiebungen entlang konvalenter Bindungen
- Bindungen mit Elektronegativtätsdifferenzen (aber keine Ionenbindung) (z.B. C-F)
- Beeinflusst Abspaltbarkeit von Teilmolekülen in z.B. nukleophiler Substitution $(S_N 1)$, elektrophiler Addition, ... (schwächt Bindung)

Zum Beispiel durch folgende Gruppen

+I-Effekt (Schiebend)

- t-Butylgruppe $(-C(CH_3)_3)$
- i-Propylgruppe (-CH(CH₃)₂)
- Alkylrest (−R)

-I-Effekt (Ziehend)

- Hydroxygruppe (-OH) / Carbonylgruppenteil (-C=O)
- lodatom (-I) / Bromatom (-Br) / Chloratom (-CI) / Fluoratom (-F)
- Nitrogruppe (-NO₂) / Aminogruppe (-NH₂) / Carboxygruppe (-NH₂) / Cyanogruppe (-CN) / Sulfonylgruppe (-SO₃H)

Reaktionsmechanismen - induktive Effekte

+I-Effekt (Schiebend)

- t-Butylgruppe $(-C(CH_3)_3)$
- i-Propylgruppe (-CH(CH₃)₂)
- Alkylrest (−R)

Examples

$$_{\mathrm{H_3\,C}}^{\delta^-}-_{\mathrm{Li}}^{\delta^+}$$

-I-Effekt (Ziehend)

- Hydroxygruppe (-OH) / Carbonylgruppenteil (-C=O)
- lodatom (-I) / Bromatom (-Br) / Chloratom (-CI) / Fluoratom (-F)
- Nitrogruppe $(-NO_2)$ / Aminogruppe $(-NH_2)$ / Carboxygruppe $(-NH_2)$ / Cyanogruppe (-CN) / Sulfonylgruppe $(-SO_3H)$

Reaktionsmechanismen - induktive Effekte

+I-Effekt (Schiebend)

- t-Butylgruppe $(-C(CH_3)_3)$
- i-Propylgruppe (-CH(CH₃)₂)
- Alkylrest (−R)

Examples

$$_{
m H_3}^{\delta^-} - _{
m Li}^{\delta^+}$$

-I-Effekt (Ziehend)

- Hydroxygruppe (-OH) / Carbonylgruppenteil (-C=O)
- lodatom (-I) / Bromatom (-Br) / Chloratom (-CI) / Fluoratom (-F)
- Nitrogruppe (-NO₂) / Aminogruppe (-NH₂) / Carboxygruppe (-NH₂) / Cyanogruppe (-CN) / Sulfonylgruppe (-SO₃H)

Examples

$$_{\mathrm{H_3}}^{\delta^+}\mathrm{C}^{-\delta^-}$$

Was ist das?

• ΔH_R gibt die Änderung der Enthalpie (\approx Energie) im Verlauf einer Reaktion an, bei konstantem Druck

Was ist das?

- ΔH_R gibt die Änderung der Enthalpie (\approx Energie) im Verlauf einer Reaktion an, bei konstantem Druck
- Sie entspricht der Differenz zwischen Produkt und Edukt: $\Delta H_R = H_{\mathsf{Produkt}} H_{\mathsf{Edukt}}$

Was ist das?

- ΔH_R gibt die Änderung der Enthalpie (\approx Energie) im Verlauf einer Reaktion an, bei konstantem Druck
- ullet Sie entspricht der Differenz zwischen Produkt und Edukt: $\Delta H_R = H_{\mathsf{Produkt}} H_{\mathsf{Edukt}}$
- Da sie nur vergleichbar ist, wenn die Bedingungen gleich sind, verwendet man Standardbedingungen (273, 15K, 1Bar)

Was ist das?

- ΔH_R gibt die Änderung der Enthalpie (\approx Energie) im Verlauf einer Reaktion an, bei konstantem Druck
- ullet Sie entspricht der Differenz zwischen Produkt und Edukt: $\Delta H_R = H_{\mathsf{Produkt}} H_{\mathsf{Edukt}}$
- Da sie nur vergleichbar ist, wenn die Bedingungen gleich sind, verwendet man Standardbedingungen (273, 15K, 1Bar)
- Die Reaktionsenthalpie unter Standardbedingungen wird als ΔH_R^0 bezeichnet.

Exotherm

•
$$\Delta E_i = \Delta H_R < 0 \implies$$
 Exotherm

Eigenschaften

•
$$E_i = H_R$$

Exotherm

- $\Delta E_i = \Delta H_R < 0 \implies$ Exotherm
- Energie wird freigesetzt

Eigenschaften

•
$$E_i = H_R$$

Exotherm

- $\Delta E_i = \Delta H_R < 0 \implies$ Exotherm
- Energie wird freigesetzt

Endotherm

Eigenschaften

• $E_i = H_R$

Exotherm

- $\Delta E_i = \Delta H_R < 0 \implies$ Exotherm
- Energie wird freigesetzt

Endotherm

• $\Delta E_i = \Delta H_R > 0 \implies$ Endotherm

Eigenschaften

• $E_i = H_R$

Exotherm

- $\Delta E_i = \Delta H_R < 0 \implies$ Exotherm
- Energie wird freigesetzt

Endotherm

- $\Delta E_i = \Delta H_R > 0 \implies$ Endotherm
- Energie wird aufgenommen

Eigenschaften

• $E_i = H_R$

Exotherm

- $\Delta E_i = \Delta H_R < 0 \implies$ Exotherm
- Energie wird freigesetzt

Endotherm

- $\Delta E_i = \Delta H_R > 0 \implies$ Endotherm
- Energie wird aufgenommen

Eigenschaften

- $E_i = H_R$
- \bullet E_A bezeichnet die Aktivierungsenergie, die benötigt wird, um die Reaktion zu starten

• Wasserstoffatome werden von Alkanen abgespalten

- Wasserstoffatome werden von Alkanen abgespalten
- werden ersetzt/substituiert durch Halogenatome (Fluor (F), Chlor (CI), Brom (Br), Iod (I))

- Wasserstoffatome werden von Alkanen abgespalten
- werden ersetzt/substituiert durch Halogenatome (Fluor (F), Chlor (CI), Brom (Br), Iod (I))
- Benötigt zum Kettenstart externe Energie, um Radikale zu erzeugen (Sonnenlicht, Hitze, etc.)

Kettenstart / Initation

• Hydrolytische Aufbrechung vom Brom

Examples $|\underline{\overline{Br}} \longrightarrow \underline{\overline{Br}}|$ $\downarrow E_{Light}$ $2|\overline{\overline{Br}} \cdot$

Kettenstart / Initation

- Hydrolytische Aufbrechung vom Brom
- Zuführung von Energie (Licht, Wärme)

Kettenstart / Initation

- Hydrolytische Aufbrechung vom Brom
- Zuführung von Energie (Licht, Wärme)
- Bindungspartner behalten Elektronen

Kettenstart / Initation

- Hydrolytische Aufbrechung vom Brom
- Zuführung von Energie (Licht, Wärme)
- Bindungspartner behalten Elektronen

Kettenfortschritt / Folgereaktion / Prolongation

Reaktion mit Kohlenwasserstoff

Kettenstart / Initation

- Hydrolytische Aufbrechung vom Brom
- Zuführung von Energie (Licht, Wärme)
- Bindungspartner behalten Elektronen

Kettenfortschritt / Folgereaktion / Prolongation

- Reaktion mit Kohlenwasserstoff
- Bildung weiterer Radikale, es entsteht $H \overline{\underline{Br}}$ und ein Alkylradikal

Examples

Camples
$$|\underline{\overline{Br}} \cdot H \\ \downarrow + C_6 H_{13} - C - H \\ H \\ C_6 H_{13} - C + H - \underline{\overline{Br}} | \\ \downarrow + |\underline{\overline{Br}} - \underline{\overline{Br}}|$$

$$\downarrow + |\underline{\overline{Br}} - \underline{\overline{Br}}|$$

Kettenstart / Initation

- Hydrolytische Aufbrechung vom Brom
- Zuführung von Energie (Licht, Wärme)
- Bindungspartner behalten Elektronen

Kettenfortschritt / Folgereaktion / Prolongation

- Reaktion mit Kohlenwasserstoff
- Bildung weiterer Radikale, es entsteht $H \longrightarrow \overline{Br}$ und ein Alkylradikal
- Reaktion mit unreagierten Halogenmolekül, es entsteht ein Halogenalkan

Kettenstart / Initation

- Hydrolytische Aufbrechung vom Brom
- Zuführung von Energie (Licht, Wärme)
- Bindungspartner behalten Elektronen

Kettenfortschritt / Folgereaktion / Prolongation

- Reaktion mit Kohlenwasserstoff
- Bildung weiterer Radikale, es entsteht $H \overline{\underline{Br}}$ und ein Alkylradikal
- Reaktion mit unreagierten Halogenmolekül, es entsteht ein Halogenalkan
- Wiederholen dieses Schrittes bis kein Edukt mehr vorliegt

Kettenabbruch

 Rekombination der Radikale (Bildung von Konvalenten Bindungen):

Examples

Kettenabbruch

- Rekombination der Radikale (Bildung von Konvalenten Bindungen):
- Zwei Halogenradikale treffen aufeinander

Examples

$$2 \cdot |\overline{\underline{Br}} \cdot \stackrel{\bullet}{\smile} \rightarrow |\overline{\underline{Br}} - \overline{\underline{Br}}|$$

Examples $2 \cdot |\underline{\overline{Br}} \stackrel{\bullet}{\longrightarrow} |\underline{\overline{Br}} \stackrel{\bullet}{\longrightarrow} \underline{\overline{Br}}|$ $C_{6}H_{13} \stackrel{\bullet}{\longrightarrow} C_{6}H_{13} \stackrel{\bullet}{\longrightarrow} C_{6}H_{13} \stackrel{\bullet}{\longrightarrow} C_{6}H_{13}$

Kettenabbruch

- Rekombination der Radikale (Bildung von Konvalenten Bindungen):
- Zwei Halogenradikale treffen aufeinander
- Ein Halogenradikal und ein Alkylradikal treffen aufeinander

Kettenabbruch

- Rekombination der Radikale (Bildung von Konvalenten Bindungen):
- Zwei Halogenradikale treffen aufeinander
- Ein Halogenradikal und ein Alkylradikal treffen aufeinander
- Zwei Alkylradikale treffen aufeinander

Kettenabbruch

- Rekombination der Radikale (Bildung von Konvalenten Bindungen):
- Zwei Halogenradikale treffen aufeinander
- Ein Halogenradikal und ein Alkylradikal treffen aufeinander
- Zwei Alkylradikale treffen aufeinander
- Notiz: Da die Rekombination energetisch ungünstig ist, spielt der Kettenabbruch bis die Edukte verbraucht sind meist eine untergeordnete Rolle.

Mechanismus

• Ungesättigte Kohlenwasserstoffe wie Alkene oder Alkine reagieren mit Halogenen

Mechanismus

- Ungesättigte Kohlenwasserstoffe wie Alkene oder Alkine reagieren mit Halogenen
- Halogene greifen Doppelbindung im Substrat an

Mechanismus

- Ungesättigte Kohlenwasserstoffe wie Alkene oder Alkine reagieren mit Halogenen
- Halogene greifen Doppelbindung im Substrat an
- Unterteilung in mehrere Schritte (siehe folgendes Beispiel)

Mechanismus

- Ungesättigte Kohlenwasserstoffe wie Alkene oder Alkine reagieren mit Halogenen
- Halogene greifen Doppelbindung im Substrat an
- Unterteilung in mehrere Schritte (siehe folgendes Beispiel)

Halogene

Die elektrophile Addition funktioniert ausschließlich mit Chlor (CI), Brom (Br) und Iod (I), da Fluor (F) so elektronegativ ist, dass es die C——C-Bindung und die C——H-Bindung im Alken/Alkin angreift.

Reaktionsmechanismen - Eliminierung

- "elektrophile Addition rückwärts"
- Spaltet X-H ab

Reaktionsmechanismen - Eliminierung

- "elektrophile Addition rückwärts"
- Spaltet X-H ab
- 3 verschiedene Mechanismen: E_1 , E_1cB , E_2

Reaktionsmechanismen - Eliminierung - E_1

Vorgang

• Das Halogen-Atom wird im ersten Schritt abgespalten

Reaktionsmechanismen - Eliminierung - E_1

Vorgang

- Das Halogen-Atom wird im ersten Schritt abgespalten
- Das Wasserstoff-Atom wird im zweiten Schritt abgespalten

Reaktionsmechanismen - Eliminierung - E_1cB

Vorgang

• Das Wasserstoff-Atom wird im ersten Schritt abgespalten

Reaktionsmechanismen - Eliminierung - E_1cB

Vorgang

- Das Wasserstoff-Atom wird im ersten Schritt abgespalten
- Das Halogen-Atom wird im zweiten Schritt abgespalten

Reaktionsmechanismen - Eliminierung - E_2

Examples

Vorgang

• Das Wasserstoff-Atom und das Halogen-Atom wird in einem Schritt abgespalten

Reaktionsmechanismen - Eliminierung - Reaktionsgeschwindigkeit

$E_1 / E_1 cB$

Da die E_1 / E_1cB -Reaktion in zwei Schritten verläuft, beeinflusst nur eine Konzentration die Reaktionsgeschwindigkeit (der 1. Schritt muss vollendet sein, damit der 2. Schritt passieren kann)

$$v = k_1 \cdot c[\mathsf{Substrat}]$$

$E_1 / E_1 cB$

Da die E_2 -Reaktion in einem Schritt verläuft, beeinflussen **beide** Konzentrationen die Reaktionsgeschwindigkeit (Beide Edukte sind am 1. Schritt beteiligt)

$$v = k_2 \cdot c[\mathsf{Substrat}] \cdot c[\mathsf{Elektrophil}]$$

Reaktionsmechanismen - nukleophile Substitution - $S_N 1$

Reaktionsmechanismen - nukleophile Substitution - S_N1

Schritte

Die S_N 1-Reaktion verläuft 2-Schrittig

Reaktionsgeschwindigkeit

Bei einer S_N 1-Reaktion beeinflusst **nur eine** Konzentration die Reaktionsgeschwindigkeit (weil sie in 2 Schritten verläuft)

$$v = k_1 \cdot c$$
 [Substrat]

Reaktionsmechanismen - nukleophile Substitution - $S_N 2$

Schritte

Die S_N 2-Reaktion verläuft 1-Schrittig

Reaktionsgeschwindigkeit

Bei einer S_N 2-Reaktion beeinflussen **beide** Konzentrationen die Reaktionsgeschwindigkeit (weil sie in einem Schritt verläuft)

$$v = k_2 \cdot c [Substrat] \cdot c [Nukleophil]$$

• Einteilung von Stoffen

- Einteilung von Stoffen
- funktionelle Gruppe ist charakteristisch für Stoffklasse

- Einteilung von Stoffen
- funktionelle Gruppe ist charakteristisch für Stoffklasse
- Atome in Molekülen bestimmen über chemische und physikalische Eigenschaften

Funktionelle Gruppe	Stoffklasse
Halogen $R-X$	Halogenalkane
Amino-Gruppe $R-N$	Amine
Hydroxy-Gruppe $R - \overline{Q} - H$	Alkohle
Ether-Gruppe $R^1-\overline{Q}-R^2$	Ether
Aldehyd-Gruppe $R - C$	Aldehyde
Keto-Gruppe R^1 $C=0$	Ketone
Carboxy-Gruppe $\begin{array}{c} O \\ \parallel \\ C \\ R \end{array}$ $\begin{array}{c} O \\ \end{array}$	Carbonsäure

Mehrere Stoffklassen

Einige Moleküle können auch mehrere Stoffklassen haben, zum Beispiel:

Aminsäure