Thema und Aufgabenstellung Vorschlag B1

Massenspektrometer

Aufgaben

- Ein Massenspektrometer verwendet elektrische und magnetische Felder, um die Massen von Atom- und Molekül-Ionen zu messen (Material 1). Es soll angenommen werden, dass die Ionen- quelle ausschließlich einfach positiv geladene Ionen (q = +e) mit unterschiedlichen Massen und verschiedenen Anfangsgeschwindigkeiten verlassen. Die Ionen werden als Ionenstrahl gebündelt. Anschließend treten die Ionen in einen Geschwindigkeitsfilter ein. Dieser besteht aus einem homogenen elektrischen Feld und einem homogenen magnetischen Feld, die senkrecht zueinander angeordnet sind. Nur Ionen mit einer bestimmten Geschwindigkeit v_0 können diesen Bereich geradlinig durchlaufen und in den Analysator eintreten. Im Geschwindigkeitsfilter und im Analysator sind die magnetischen Felder homogen mit gleich großer, zeitlich konstanter magnetischer Flussdichte B^1 .
- 1.1 Erläutern Sie, warum im Massenspektrometer ein Vakuum herrschen muss.

(2 BE)

1.2 Erläutern Sie die Funktionsweise des Geschwindigkeitsfilters unter Beachtung der maßgeblichen Kräfte, welche auf die Ionen wirken.

Skizzieren Sie jeweils eine mögliche Flugbahn von Ionen mit Geschwindigkeiten $v > v_0$ und $v < v_0$ in das Material 1.

Berechnen Sie die Geschwindigkeit v_0 für $E = 18000 \frac{\text{V}}{\text{m}}$ und B = 0.06 T.

[zur Kontrolle:
$$v_0 = 3 \cdot 10^5 \frac{\text{m}}{\text{s}}$$
]

(7 BE)

1.3 Erklären Sie den Verlauf der Flugbahnen der Ionen, die, wie in Material 1 abgebildet, in das Magnetfeld des Analysators eintreten.

Skizzieren Sie zwei mögliche Flugbahnen für Ionen mit gleicher Geschwindigkeit, aber unterschiedlicher Masse in das Material 1.

(4 BE)

1.4 Zeigen Sie, dass für den Bahnradius der Ionen im Analysator die Formel $r = \frac{m \cdot v}{B \cdot e}$ gilt.

Begründen Sie, dass durch die Verwendung des Geschwindigkeitsfilters die Proportionalität $r \sim m$ gilt.

(6 BE)

1.5 Berechnen Sie die Masse eines Ions, welches den Detektor auf einer Kreisbahn mit dem Radius r = 56,0 cm erreicht. Die Geschwindigkeit des Ions entspricht der Geschwindigkeit v_0 aus Aufgabe 1.2 und die magnetische Flussdichte beträgt weiterhin B = 0,06 T.

(3 BE)

Name, Vorname: Vorschlag B1, Seite 1 von 6

¹ Die magnetische Flussdichte wird in manchen Lehrbüchern auch als magnetische Feldstärke bezeichnet.

Thema und Aufgabenstellung Vorschlag B1

1.6 Ein anderes Massenspektrometer besitzt keinen Geschwindigkeitsfilter. Die Ionen durchlaufen hierbei eine Beschleunigungsstrecke mit der Beschleunigungsspannung $U_{\rm B}$ (Material 2).

Leiten Sie die Formel $v = \sqrt{\frac{2 \cdot e \cdot U_{\rm B}}{m}}$ für die Geschwindigkeit der Ionen nach Durchlaufen der

Beschleunigungsspannung her. Die Anfangsgeschwindigkeit der Ionen kann dabei vernachlässigt werden. Zeigen Sie unter Verwendung der Formel aus Aufgabe 1.4, dass für den Bahnradius der Ionen im Analysator nun die Proportionalität $r \sim \sqrt{m}$ gilt.

(6 BE)

1.7 Mit dem Massenspektrometer aus Aufgabe 1.6 wurde für verschiedene Ionen mit bekannter Masse *m* der Bahnradius *r* im Analysator gemessen (Material 3).

Bestätigen Sie die Proportionalität $r \sim \sqrt{m}$ durch eine geeignete grafische Auswertung.

(5 BE)

1.8 Das Auflösungsvermögen R eines Massenspektrometers ist über die Formel $R = \frac{m}{\Delta m}$ gegeben.

Beim Auflösungsvermögen R kann die Masse m gerade von der Masse $m + \Delta m$ getrennt werden. Für das Massenspektrometer mit Beschleunigungsstrecke beträgt das Auflösungsvermögen nur $R \approx 60$. Wird stattdessen ein Geschwindigkeitsfilter verwendet, ist das Auflösungsvermögen deutlich höher. In Material 4 sind zwei Massenspektren dargestellt.

Begründen Sie, welches Massenspektrum mit dem Massenspektrometer mit Geschwindigkeitsfilter und welches mit dem Spektrometer mit der Beschleunigungsstrecke aufgenommen wurde. Ermitteln Sie das minimale Auflösungsvermögen, welches das Massenspektrometer mit dem Geschwindigkeitsfilter aufweisen muss.

(5 BE)

1.9 Die Massenbestimmung der Bestandteile einer Probe mit einem Massenspektrometer ist im Hinblick auf die Probe keine zerstörungsfreie Messmethode. Beurteilen Sie diese Aussage.

(2 BE)

2 Eine weitere Art eines Massenspektrometers ist das Flugzeitmassenspektrometer. Der grundlegende Aufbau ist in Material 5 dargestellt. Die Ionen mit Ladung *q* und Masse *m* werden zuerst aus der Ruhe durch die konstante Spannung *U*_B beschleunigt und durchlaufen anschließend mit konstanter Geschwindigkeit eine feldfreie Driftstrecke *d*. Am Ende der Driftstrecke können die Ionen detektiert und durch eine Messelektronik die Flugzeit *t*_d in der Driftstrecke bestimmt werden.

2.1 Zeigen Sie, dass für die Flugzeit
$$t_d$$
 die Formel $t_d = \sqrt{\frac{d^2 \cdot m}{2 \cdot U_B \cdot q}}$ gilt.

(5 BE)

2.2 Ionen einer Probe tragen jeweils die Ladung q = +2e und benötigen nach Durchlaufen der Beschleunigungsspannung $U_{\rm B} = 1500\,{\rm V}$ für die Driftstrecke $d = 50\,{\rm cm}$ eine gemessene Flugzeit von $t_{\rm d} = 1,74\,{\rm \mu s}$. Berechnen Sie die Masse der einzelnen Ionen als Vielfaches der atomaren Masseneinheit $u = 1,66\cdot10^{-27}\,{\rm kg}$ und bestimmen Sie mithilfe des Periodensystems in Material 6, um welches stabile Element es sich handelt.

(5 BE)

Thema und Aufgabenstellung Vorschlag B1

Material 1

Massenspektrometer mit Geschwindigkeitsfilter

Das magnetische Feld zeigt in die Zeichenebene.

Thema und Aufgabenstellung Vorschlag B1

Material 2

Massenspektrometer mit Beschleunigungsstrecke

Material 3

Bahnradien für Ionen unterschiedlicher Masse

Masse m in 10^{-27} kg	1,67	6,65	14,97	23,26
Bahnradius <i>r</i> in cm	10,8	21,5	32,4	40,2

Thema und Aufgabenstellung Vorschlag B1

Material 4

Zwei Massenspektren von drei verschiedenen, jeweils einfach ionisierten Molekülen

Die Massen sind als Vielfaches der atomaren Masseneinheit $1 \text{ u} = 1,66 \cdot 10^{-27} \text{ kg}$ angegeben.

Material 5

Flugzeitmassenspektrometer

Thema und Aufgabenstellung Vorschlag B1

Material 6
Periodensystem der Elemente

Г		7	\mathcal{C}	4	2	9	7
VIII	Helium 2 - 2	O 20,18 Non Near Near Near Near Near Near Near Near	39,95 Ar Argon 18 -	83,80 Krypton 36 -	Xeron Xeron 54 -	(222) Radon 86 -	oc oc
VII		o = =	35,45 C1 Chlor 17 3.0	79,90 Brom 35 2,8	126,90 Iod S3 2.5	\mathop{At}_{Astat} 85 2,2	Kohlenstoffgruppe Stickstoffgruppe Chalkogene Halogene Edelgase
IA		16,00 O Sauerstoff 8 3,5	32,07 S Schwefel 16 25	Selen 34 2,4	127,60 Tellur 52 2.1	Polonium 84 2,0	IV Koh V Sticl VI Cha VII Hale
Λ		14,01 16,00 19	30,97 Phosphor 15 2,1	Arsen 33 2.0	Sb Antimon 51 1.9	Bismut 83 1,9	1 I
IV			Silicium 14 1.8	72,63 Germanium 32 1,8	Sn zmn 50 1.8		Namen der Hauptgruppen i Akalimetalle II Erdalkalimetalle III Erdmetalle
Ш		10,81 12,01 By Cohlemetoff 5 2,0 6 2,5	26,98 All Aluminium 13 1.5	55,38 69,72 72,63 72,63	114,82 Indium 19 1,7	204,38 Tladlium 81 1,8	Namen o I Alk II Erdi III Erdi
		ementes ments vität ino	9	55,38 Zn Znk 30 1,6	Cd Cadmium 48 1.7	Hg Quecksilber 80 1,9	(285) Cn Copernicium 112
		- Atommasse - Symbol des Elementes toff - Name des Elements 2,1 - Elektronegativität (Panline)	ļ	${\displaystyle \mathop{Cu}_{^{\mathrm{Kupfer}}}}$	${\overset{107,87}{Ag}}_{\overset{\text{Silber}}{7}}$	196,97 Au Gold 79 2,4	Roentgemum C
	1008	2,1	Ordnungszahl e	$\sum_{\substack{\text{Nickel}\\28-1,8}}^{58,69}$	Palladium 46 2.2	Platin 78 2,2	(281) DS Damstadtium 110
		1 W	o, mente	58,93 C0 cobalt 27 1,8	Rh Rhodium 45 2,2	192,22 Ir Indium 77 2,2	(277) Mt Meithenium 109
	ter	ıte	Nebengruppenelemente	55,85 Fe Eisen 26 1,8	Ru Ruthenium 44 2,2	190,23 OSminm 76 2,2	Hassium 108
	Sys	ner	ngrup	54,94 Mngan 25 1,5	Mo Tc Ru	Re 375 1.9	$\overset{(272)}{\mathrm{Bh}}$
	densystem	Elemente	Nebe	Cr Chrom 24 1,6	95,95 MO Molybdän 42 1.8	183,84 W Wolfram 74 1,6	${\overset{ ext{(270)}}{ ext{Saborgrium}}}$
	po			50,94 Vanadium 23 1,6	92,91 Nob Nob 41 1.6	2,95	$\mathop{Db}_{\text{Dubnium}}^{(269)}$
	Perio	der		$\prod_{\text{Titan}}^{47,87}$	91,22 92,	Hafinium 72 1,3	(267) Actinoide Rutherfordium 89-103 104
	—			Calcium Scandium 20 1.0 21 1.3	$\frac{88,91}{\text{Y}}$	Lantha 57-	
П		$\mathop{\mathrm{Beyllium}}_{4 - 1,5}$	22,99 24,31 Na Mg Natrium Magnesium 11 0,9 12 1,2	X	85,47 87,62 Rb Sr soutium Strontium Strontium 37 0,8 38 1,0	6 Cs Ba Caestim Barium 55 0,7 56 0,9	(226,03) Radium 88 0,9
I	1,008 H Wasserstoff 1 2,1	6,941 9,01 Liftium Beryllium 3 1,0 4 1,5	3 Na Mg Natium Magnerium 11 0.9 12 1.2	39,10 Kalium 19 0,8	5 Rb ST.62 Subidium Snontium 37 0.8 10	132,91 CS	(223) Francium 87 0,7
L		2	3	4	5	9	7