MODEL PREDIKSI CAPAIAN AKADEMIK MAHASISWA PROGRAM SARJANA ILMU KOMPUTER IPB DENGAN ALGORITME C5.0

ILHAM TRI MULYAWAN

DEPARTEMEN ILMU KOMPUTER
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR
BOGOR
2017

PERNYATAAN MENGENAI SKRIPSI DAN SUMBER INFORMASI SERTA PELIMPAHAN HAK CIPTA

Dengan ini saya menyatakan bahwa skripsi berjudul Model Prediksi Capaian Akademik Mahasiswa Program Sarjana Ilmu Komputer IPB dengan Algoritme C5.0 adalah benar karya saya dengan arahan dari komisi pembimbing dan belum diajukan dalam bentuk apa pun kepada perguruan tinggi mana pun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir skripsi ini.

Dengan ini saya melimpahkan hak cipta dari karya tulis saya kepada Institut Pertanian Bogor.

Bogor, Mei 2017

Ilham Tri Mulyawan NIM G64144026

ABSTRAK

ILHAM TRI MULYAWAN. Model Prediksi Capaian Akademik Mahasiswa Program Sarjana Ilmu Komputer IPB dengan Algoritme C5.0. Dibimbing oleh AHMAD RIDHA.

Penelitian ini mengembangkan prediksi capaian akademik mahasiswa Program Sarjana Ilmu Komputer IPB di tingkat 2 berdasarkan capaian di tingkat 1 dengan pohon keputusan menggunakan algoritme C5.0. Data yang digunakan ialah nilai mahasiswa yang masuk pada tahun 2012 hingga 2014 pada mata kuliah mayor dan interdepartemen. Penelitian ini menggunakan 2 kelas ($low\ risk$ dan $high\ risk$) dan 3 kelas ($low\ risk$, $medium\ risk$, dan $high\ risk$). Jumlah data tidak imbang sehingga penelitian ini menggunakan metode undersampling dan oversampling. Penelitian ini juga melihat keterhubungan antara mata kuliah dan prasyaratnya dengan menggunakan korelasi Spearman dan pohon keputusan algoritme C5.0. Hasil uji model prediksi menghasilkan akurasi terbaik sebesar 94.92% untuk percobaan 3 kelas ($2.76 \le IPK \le 4.00$ untuk kelas $low\ risk$, $2.00 \le IPK < 2.76$ untuk kelas $medium\ risk$, dan $0 \le IPK < 2.00$ untuk kelas $high\ risk$). Percobaan tersebut menggunakan metode oversampling. Korelasi Spearman menunjukkan adanya keterhubungan antara mata kuliah dan prasyaratnya dengan nilai korelasi 0.308 - 0.839.

Kata kunci: Algoritme C5.0, keberhasilan studi, klasifikasi, korelasi Spearman, pohon keputusan

ABSTRACT

ILHAM TRI MULYAWAN. Academic Achievement Prediction Model for Computer Science Undergraduate Students in IPB using C5.0 Algorithm. Supervised by AHMAD RIDHA.

The aim of this research is to develop academic achievement prediction model for computer science undergraduate students in IPB in the second year based on their achievement in the first year using decision tree with C5.0 algorithm. The dataset used in this research are grades of students admitted in 2012 until 2014 on major and interdepartment courses. This research uses 2 classes (low risk and high risk) and 3 classes (low risk, medium risk, and high risk). The distribution of data is imbalanced so this research uses undersampling and oversampling method. This research also shows the correlation between courses and their prerequisites by using Spearman's correlation and C5.0 algorithm. The result of prediction model obtained the best accuracy of 94.92% for experiment of 3 classes ($2.76 \le IPK \le 4.00$ for low risk, $2.00 \le IPK < 2.76$ for medium risk, and $0 \le IPK < 2.00$ for high risk). The experiment uses oversampling method. Spearman's correlation shows correlation between courses and their prerequisites with correlation values 0.308 - 0.839.

Keywords: Algorithm C5.0, classification, decision tree, Spearman's correlation, study success

MODEL PREDIKSI CAPAIAN AKADEMIK MAHASISWA PROGRAM SARJANA ILMU KOMPUTER IPB DENGAN ALGORITME C5.0

ILHAM TRI MULYAWAN

Skripsi sebagai salah satu syarat untuk memperoleh gelar Sarjana Komputer pada Departemen Ilmu Komputer

DEPARTEMEN ILMU KOMPUTER
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR
BOGOR
2017

Penguji:

- Dr Imas Sukaesih Sitanggang, SSi MKom
 Vektor Dewanto, ST MEng

Judul Skripsi: Model Prediksi Capaian Akademik Mahasiswa Program Sarjana

Ilmu Komputer IPB dengan Algoritme C5.0

Nama : Ilham Tri Mulyawan

NIM : G64144026

Disetujui oleh

Ahmad Ridha, SKom MS
Pembimbing

Diketahui oleh

<u>Dr Ir Agus Buono, MSi MKom</u> Ketua Departemen

Tanggal Lulus:

PRAKATA

Puji dan syukur penulis panjatkan kepada Allah *subhanahu wa ta'ala* atas segala karunia-Nya sehingga penulis dapat menyelesaikan penelitian ini dengan baik.

Penulis menyadari bahwa dalam proses penulisan skripsi ini banyak mengalami kendala dan masalah, namun berkat bantuan, bimbingan, kerja sama dari berbagai pihak dan berkah dari Allah *subhanahu wa ta'ala*, kendala-kendala yang dihadapi tersebut dapat diatasi. Untuk itu penulis menyampaikan ungkapan terima kasih kepada Bapak Herry Poerwanto selaku ayah, Ibu Etty Mulhetty selaku ibu, serta seluruh keluarga atas segala doa dan kasih sayangnya. Serta ucapan terima kasih dan penghargaan kepada Bapak Ahmad Ridha, S.Kom MS selaku pembimbing yang telah dengan sabar, tekun, tulus dan ikhlas meluangkan waktu, tenaga, dan pikiran memberikan bimbingan, motivasi, arahan, dan saran-saran yang sangat berharga kepada penulis selama menyusun skripsi.

Penulis juga menyampaikan terima kasih kepada:

- 1 Ibu Dr Imas Sukaesih Sitanggang, SSi MKom dan Bapak Vektor Dewanto, ST MEng selaku penguji.
- 2 Bapak Dr Ir Agus Buono, MSi MKom selaku Ketua Departemen Ilmu Komputer IPB.
- 3 Seluruh dosen dan tenaga kependidikan Departemen Ilmu Komputer IPB.
- 4 Raden Asri Ramadhina Fitriani yang selalu memberi dukungan dan bantuan selama menyusun skripsi ini.
- 5 Teman-teman yang selalu mendukung yaitu Amanda Rizka, Faiz, Arnold, Bintang, Denny, Ican, Pandu, Fauzan, dan Mutiara.
- 6 Seluruh teman-teman Program S1 Alih Jenis Ilmu Komputer IPB Angkatan 9. Semoga segala bantuan, bimbingan, motivasi, dan dukungan yang telah diberikan kepada penulis senantiasa dibalas oleh Allah *subhanahu wa ta'ala*. Semoga karya ilmiah ini bermanfaat bagi semua pihak yang membutuhkan.

Bogor, Mei 2017

Ilham Tri Mulyawan

DAFTAR ISI

DAFTAR TABEL	ii
DAFTAR GAMBAR	ii
PENDAHULUAN	1
Latar Belakang	1
Perumusan Masalah	2
Tujuan Penelitian	2
Manfaat Penelitian	2
Ruang Lingkup Penelitian	2
METODE	3
Data Penelitian	3
Tahapan Penelitian	3
Praproses Data	3
Data Latih dan Data Uji	6
Pemodelan Klasifikasi Pohon Keputusan dengan Algoritme C5.0	6
Pengujian Model Prediksi	7
Keterhubungan Mata Kuliah dan Prasyaratnya	8
Lingkungan Pengembangan	9
HASIL DAN PEMBAHASAN	10
Praproses Data	10
Data Latih dan Data Uji	10
Pemodelan Klasifikasi Pohon Keputusan dengan Algoritme C5.0	11
Keterhubungan Mata Kuliah dan Prasyaratnya	19
SIMPULAN DAN SARAN	22
Simpulan	22
Saran	22
DAFTAR PUSTAKA	22
LAMPIRAN	24
RIWAYAT HIDI IP	42.

DAFTAR TABEL

1	Jumlah data nilai mahasiswa yang tersedia	3
2	Rentang IPK mata kuliah mayor dan interdepartemen dengan 2 kelas pada tingkat 2	4
3	Rentang IPK mata kuliah mayor dan interdepartemen dengan 3 kelas versi 1 pada tingkat 2	5
4	Rentang IPK mata kuliah mayor dan interdepartemen dengan 3 kelas versi 2 pada tingkat 2	5
5	Confusion matrix	8
6	Pembagian kelas untuk keterhubungan yang memiliki lebih dari 2 mata kuliah prasyarat	9
7	Penyetaraan mata kuliah dari tahun masuk 2012 hingga 2014	10
8	Contoh bentuk data olahan dengan label kelas	10
9	Jumlah mahasiswa pada setiap kelas (LR = Low Risk, MR = Medium Risk, dan HR = High Risk)	11
10	Akurasi untuk percobaan ke-1	12
11	Penggunaan atribut pada model terbaik di percobaan ke-1 dengan metode <i>oversampling</i>	12
12	Nilai precision dan recall untuk percobaan ke-1	13
13	Akurasi untuk percobaan ke-2	13
14	Penggunaan atribut pada model terbaik di percobaan ke-2 dengan metode <i>oversampling</i>	14
15	Nilai precision dan recall untuk percobaan ke-2	15
16	Akurasi untuk percobaan ke-3	15
17	Penggunaan atribut pada model terbaik di percobaan ke-3 dengan metode <i>undersampling</i>	16
18	Nilai precision dan recall untuk percobaan ke-3	16
19	Hasil akurasi terbaik untuk semua percobaan	17
20	Prasyarat mata kuliah tahun masuk 2012	20
21	Akurasi terbaik masing-masing RMK	20

DAFTAR GAMBAR

1	Tahapan penelitian	4
2	Rata-rata akurasi dari setiap kategori kelas	17
3	Potongan pohon keputusan percobaan ke-2 dengan metode <i>oversampling</i>	17
4	Kurva <i>precision recall</i> pada model terbaik percobaan ke-2 dengan metode <i>oversampling</i>	18
5	Rata-rata area precision recall setiap kategori kelas	18
6	Kurva ROC pada model terbaik percobaan ke-2 dengan metode <i>oversampling</i>	19
7	Rata-rata AUC setiap kategori kelas	19
	DAFTAR LAMPIRAN	
1	Atribut <i>dataset</i> mahasiswa tingkat 1	24
2	Mata Kuliah Semester 3 dan selanjutnya di Program Sarjana Ilmu Komputer	24
3	Struktur prasyarat mata kuliah tahun masuk 2012	27
4	Jumlah pembagian data latih dan data uji untuk percobaan ke-1 dengan data tidak imbang	27
5	Jumlah pembagian data latih dan data uji untuk percobaan ke-2 dengan data tidak imbang	28
6	Jumlah pembagian data latih dan data uji untuk percobaan ke-3 dengan data tidak imbang	28
7	Jumlah pembagian data latih dan data uji untuk percobaan ke-1 dengan metode <i>undersampling</i>	29
8	Jumlah pembagian data latih dan data uji untuk percobaan ke-1 dengan metode <i>oversampling</i>	29
9	Jumlah pembagian data latih dan data uji untuk percobaan ke-2 dengan metode <i>oversampling</i>	30
10	Jumlah pembagian data latih dan data uji untuk percobaan ke-3 dengan metode <i>undersampling</i>	30
11	Jumlah pembagian data latih dan data uji untuk percobaan ke-3 dengan metode <i>oversampling</i>	30
12	Model prediksi pohon keputusan terbaik dengan <i>oversampling</i> untuk percobaan ke-1 dengan algoritme C5.0	31

13	Model prediksi pohon keputusan terbaik dengan <i>oversampling</i> untuk percobaan ke-2 dengan algoritme C5.0	32
14	Model prediksi pohon keputusan terbaik dengan <i>undersampling</i> untuk percobaan 3 kelas versi 2 dengan algoritme C5.0	34
15	Hasil akurasi pada percobaan ke-1	36
16	Hasil akurasi pada percobaan ke-2	36
17	Hasil akurasi pada percobaan ke-3	37
18	Kurva <i>precision recall</i> pada percobaan ke-1 dengan metode <i>oversampling</i>	37
19	Kurva <i>precision recall</i> pada model terbaik percobaan ke-3 dengan metode <i>undersampling</i>	38
20	Kurva ROC pada model terbaik percobaan ke-1 dengan metode <i>oversampling</i>	38
21	Kurva ROC pada model terbaik percobaan ke-3 dengan metode <i>undersampling</i>	39
22	Model prediksi pohon keputusan pada korelasi data 1 (MAT100, MAT221, dan KOM208)	39
23	Model prediksi pohon keputusan pada korelasi data 2 (KOM203, KOM206, KOM311, dan KOM312)	39
24	Model prediksi pohon keputusan pada korelasi data 3 (KOM202, KOM207, KOM321, dan KOM323)	40
25	Model prediksi pohon keputusan pada korelasi data 4 (MAT100, MAT221, KOM321, dan KOM323)	40
26	Model prediksi pohon keputusan pada korelasi data 5 (MAT103, MAT217, dan MAT321)	40
27	Model prediksi pohon keputusan pada korelasi data 6 (KOM202, KOM331, dan KOM334)	40
28	Model prediksi pohon keputusan pada korelasi data 7 (MAT100, MAT215, dan KOM301)	40
29	Model prediksi pohon keputusan pada korelasi data 8 (KOM206, KOM311, dan KOM312)	41

PENDAHULUAN

Latar Belakang

Mata kuliah dalam kurikulum program sarjana Institut Pertanian Bogor (IPB) terdiri atas mata kuliah Program Pendidikan Kompetensi Umum (PPKU), mata kuliah mayor, mata kuliah interdepartemen, mata kuliah minor dan mata kuliah penunjang (supporting courses) (IPB 2014). Mata kuliah PPKU diselenggarakan ketika mahasiswa IPB memasuki tingkat 1 (semester 1 dan 2). Pada semester 3 dan selanjutnya, mahasiswa mengambil mata kuliah mayor, interdepartemen, minor, dan penunjang (supporting courses). Mata kuliah mayor merupakan mata kuliah berdasarkan keilmuan utama pada suatu departemen. Mata kuliah interdepartemen merupakan mata kuliah wajib dari departemen lain di luar departemen utama. Mata kuliah minor atau penunjang (supporting courses) merupakan mata kuliah pilihan yang diselenggarakan oleh departemen lain yang dapat diambil oleh mahasiswa untuk menunjang kompetensi utamanya.

Penelitian ini berfokus pada mahasiswa Program Sarjana Ilmu Komputer (PSIK) Fakultas Matematika dan Ilmu Pengetahuan Alam (FMIPA) IPB. Banyak mahasiswa di PSIK yang mengalami penurunan Indeks Prestasi Kumulatif (IPK) di tingkat 2. Oleh sebab itu, perlu diketahui mata kuliah pada tingkat 1 yang dapat menjadi indikator bagi keberhasilan mahasiswa di tingkat selanjutnya. Prediksi nilai mata kuliah dapat dilakukan dengan menggunakan pendekatan teknik *data mining*. Dengan *data mining*, pengetahuan dan pola yang menarik dapat ditemukan dari data yang berjumlah besar (Han *et al.* 2012).

Penelitian sebelumnya telah dilakukan oleh Swastina (2005) yang memprediksi kesesuaian jurusan mahasiswa STMIK Indonesia Banjarmasin tahun masuk 2008 dan 2009 dengan pohon keputusan menggunakan algoritme C4.5. Data sampel mahasiswa yang digunakan terdiri atas atribut nama, jenis kelamin, umur, asal sekolah, jurusan asal sekolah, nilai Ujian Akhir Nasional (UAN), Indeks Prestasi (IP) semester 1, dan IP semester 2. Penelitian tersebut diketahui bahwa dengan menggunakan algoritme C4.5 menghasilkan akurasi sebesar 93.91%. Selain itu juga, Al-Barrak (2016) melakukan penelitian dengan data mahasiswa Fakultas Ilmu Komputer, Universitas King Saud sebanyak 236 mahasiswa yang mempunyai tujuan untuk memprediksi Indeks Prestasi Kumulatif (IPK) dengan melihat nilai sebelumnya. Penelitian tersebut menggunakan algoritme C4.5 dengan membandingkan mata kuliah dari setiap semester.

Penelitian ini melakukan analisis terhadap nilai mata kuliah seperti yang dilakukan oleh Al-Barrak (2016), tetapi penelitian ini menggunakan algoritme C5.0 yang merupakan pengembangan dari algoritme *Iterative Dichotomiser3* (ID3) dan C4.5 (Larose 2005). Algoritme C5.0 memiliki akurasi prediksi yang sebanding dengan algoritme C4.5, tetapi algoritme C5.0 memiliki set aturan yang lebih kecil. Algoritme C5.0 juga lebih cepat dan menggunakan lebih sedikit memori dibandingkan algoritme C4.5 (Rulequest 2017).

Perbedaan lain penelitian ini dengan Al-Barrak (2016) ialah ruang lingkup data yang digunakan. Atribut dalam penelitian ini ialah mata kuliah tingkat 1, dan capaian pada mata kuliah mayor dan interdepartemen di tingkat 2 sebagai kelas

yang diprediksi. Penelitian ini juga melihat keterhubungan mata kuliah dengan prasyaratnya menggunakan korelasi Spearman dan algoritme C5.0.

Keterhubungan mata kuliah diukur karena nilai pada mata kuliah prasyarat akan menentukan mata kuliah yang dapat diambil oleh mahasiswa. Korelasi Spearman digunakan untuk keterhubungan nilai 2 mata kuliah karena korelasi Spearman tidak mensyaratkan hubungan yang linear (Hauke dan Kossowski 2011). Keterhubungan mata kuliah yang memiliki lebih dari 2 mata kuliah prasyarat menggunakan pohon keputusan dengan algoritme C5.0.

Perumusan Masalah

Berdasarkan latar belakang di atas, perumusan masalah dalam penelitian ini adalah:

- Bagaimana membuat model prediksi tingkat keberhasilan mahasiswa PSIK IPB di tingkat 2 menggunakan algoritme C5.0?
- 2 Bagaimana keterhubungan mata kuliah dan prasyaratnya pada PSIK IPB?

Tujuan Penelitian

Tujuan penelitian ini adalah membuat model prediksi tingkat keberhasilan mahasiswa tingkat 2 pada PSIK IPB menggunakan algoritme C5.0 dan mengukur keterhubungan antara mata kuliah dan prasyaratnya.

Manfaat Penelitian

Model prediksi dari penelitian ini diharapkan dapat membantu PSIK IPB dalam menyiapkan peringatan dini terhadap mahasiswa berpotensi gagal di tingkat 2 berdasarkan capaian akademik di tingkat 1. Selain itu, mahasiswa PSIK IPB dapat mengetahui mata kuliah-mata kuliah di tingkat 1 yang berkontribusi terhadap keberhasilan di tingkat 2. Hasil pengukuran keterhubungan mata kuliah dengan prasyaratnya juga dapat menjadi masukan dalam pengembangan kurikulum PSIK IPB.

Ruang Lingkup Penelitian

Penelitian ini menggunakan nilai mahasiswa PSIK IPB tahun masuk 2012 hingga 2014 pada mata kuliah wajib.

METODE

Data Penelitian

Data yang digunakan pada penelitian ini adalah nilai mata kuliah mahasiswa PSIK tahun masuk 2012 hingga 2014. Ketersediaan data nilai mahasiswa ditunjukkan pada Tabel 1. Mata kuliah dalam kurikulum program sarjana terdiri atas mata kuliah Program Pendidikan Komptensi Umum (PPKU), mata kuliah mayor, mata kuliah interdepartemen, mata kuliah minor, dan mata kuliah penunjang (supporting courses). Mata kuliah PPKU diselenggarakan ketika mahasiswa IPB memasuki tingkat 1 (semester 1 dan 2) yang dapat dilihat pada Lampiran 1. Mahasiswa mengambil mata kuliah mayor, interdepartemen, minor, dan penunjang (supporting courses) pada semester 3 dan selanjutnya yang dapat dilihat pada Lampiran 2.

Jumlah Mahasiswa pada Semester Ke-Tahun Masuk

Tabel 1 Jumlah data nilai mahasiswa yang tersedia

Tahapan Penelitian

Penelitian ini terdiri atas beberapa tahapan berikut: pengumpulan data, praproses data, pembagian data, pemodelan klasifikasi dengan pohon keputusan, model prediksi, pengujian model prediksi, dan evaluasi. Tahapan pada penelitian ini dapat dilihat pada Gambar 1.

Praproses Data

Tahapan praproses data dilakukan untuk mendapatkan data yang siap untuk digunakan dalam tahapan berikutnya. Langkah pertama pada praproses penelitian ini ialah menyeleksi variabel data nilai mahasiswa semester 1 dan 2 sebagai atribut pengklasifikasi dan menyeleksi variabel data nilai mahasiswa semester 3 dan 4 menjadi kelas sebagai pengklasifikasi.

Gambar 1 Tahapan penelitian

Kurikulum pada tahun masuk 2013 dan 2014 mengalami perubahan sehingga terdapat kode mata kuliah yang berubah. Oleh sebab itu, langkah selanjutnya ialah kode mata kuliah yang baru disamakan dengan kode mata kuliah sebelumnya. Penelitian ini tidak mengikutsertakan mata kuliah minor dan penunjang (*supporting courses*) karena bukan merupakan mata kuliah yang wajib oleh seluruh mahasiswa. Nilai mata kuliah mayor dan interdepartemen pada semester 3 dan 4 diakumulasikan menjadi nilai IPK untuk pembentuk kelas. Perhitungan nilai IPK dapat dilihat pada Persamaan 1.

$$IPK = \frac{\sum_{i=1}^{n} N_i \cdot k_i}{\sum_{i=1}^{n} k_i} \tag{1}$$

dengan N_i merupakan nilai mutu kuliah i, n merupakan jumlah mata kuliah, dan k_i merupakan bobot sks mata kuliah i (IPB 2014).

IPK dikategorikan untuk membentuk kelas target. Penelitian ini melakukan 3 percobaan dengan kelas target yang berbeda. Percobaan ke-1 dilakukan dengan 2 kelas berdasarkan batasan nilai IPK yang dapat dilihat pada Tabel 2. Kelas *low risk* berarti mahasiswa dinilai berhasil di tingkat 2.

Tabel 2 Rentang IPK mata kuliah mayor dan interdepartemen dengan 2 kelas pada tingkat 2

Kelas	Rentang IPK	Jumlah Mahasiswa pada Tahun Masuk			-
		2012	2013	2014	Gabungan
Low risk	$2.76 \le IPK \le 4.00$	77	57	62	195
High risk	$0 \le IPK < 2.76$	35	37	26	99
	Total Mahasiswa	112	94	88	293

Batas IPK 2.76 ditentukan berdasarkan IPB (2014) yang memungkinkan mahasiswa mengambil beban studi maksimum lebih besar dibanding mahasiswa dengan IPK < 2.76. Dengan demikian, mahasiswa dengan IPK 2.76 diharapkan dapat menyelesaikan studi tepat waktu.

Percobaan ke-2 dan 3 dilakukan dengan 3 kelas namun memiliki ketentuan yang berbeda. Penelitian ini menyebut pengelompokan kategori kelas pada percobaan ke-2 menjadi 3 kelas versi 1 dan percobaan ke-3 menjadi 3 kelas versi 2. Kategori kelas pada percobaan ke-2 terdiri atas *low risk, medium risk,* dan *high risk* yang dapat dilihat pada Tabel 3. Kelas *medium risk* ditambahkan dengan batas bawah IPK 2.00 yang merupakan IPK kelulusan minimum (IPB 2014).

Tabel 3 Rentang IPK mata kuliah mayor dan interdepartemen dengan 3 kelas versi 1 pada tingkat 2

Kelas	Rentang IPK	Jumlah Mahasiswa pada Tahun Masuk				
	C	2012	2013	2014	Gabungan	
Low risk	$2.76 \le IPK \le 4.00$	71	57	62	190	
Medium risk	$2.00 \le IPK < 2.76$	37	29	22	78	
High risk	$0 \le IPK < 2$	4	8	4	16	
	Total Mahasiswa	112	94	88	294	

Dari data yang tersedia, percobaan 3 kelas versi 1 menghasilkan ukuran kelas yang sangat tidak imbang. Hal ini dapat menyebabkan model yang dihasilkan tidak akurat. Oleh sebab itu, percobaan ke-3 menggunakan rentang IPK berdasarkan sebaran data yang dapat dilihat pada Tabel 4.

Tabel 4 Rentang IPK mata kuliah mayor dan interdepartemen dengan 3 kelas versi 2 pada tingkat 2

Kelas	Rentang IPK	Jumlah mahasiswa pada Tahun Masuk			
		201	2013	2014	Gabungan
Low risk	IPK ≥ 3.23	29	35	27	91
Medium risk	$2.78 \le IPK < 3.23$	49	23	37	109
High risk	$0 \le IPK \le 2.78$	34	36	24	94
	Total Mahasiswa	112	94	88	294

Permasalahan klasifikasi dalam penelitian ini dapat dinyatakan dalam bentuk Persamaan 2.

$$D = \{(X, Y)\}_{i=1}^{n}$$
 (2)

dengan *D* merupakan data yang terdiri atas *X* dan *Y*. *X* merupakan vektor atribut klasifikasi yang berisikan data nilai mahasiswa PSIK tingkat 1, *Y* merupakan kelas target berdasarkan data nilai tingkat 2, dan *n* merupakan jumlah data mahasiswa

yang tersedia. Pengklasifikasi C memetakan vektor atribut *X* ke kelas *Y* seperti pada Persamaan 3.

$$C = X \to Y \tag{3}$$

Percobaan ke-1 dinyatakan dalam bentuk Persamaan 4 dan 5, sedangkan percobaan ke-2 dan ke-3 masing-masing menggunakan Persamaan 6 dan 7 dengan kelas pada Persamaan 8.

$$C_{2-Class} = X_i \to Y_{2-Class} \tag{4}$$

$$Y_{2-Class} \begin{cases} Low \ risk \\ High \ risk \end{cases}$$
 (5)

$$C_{3a-Class} = X_i \to Y_{3-Class} \tag{6}$$

$$C_{3b-Class} = X_i \to Y_{3-Class} \tag{7}$$

$$Y_{3-Class} \begin{cases} Low \ risk \\ Medium \ risk \\ High \ risk \end{cases}$$
 (8)

Data Latih dan Data Uji

Dataset dibagi menjadi data latih dan data uji untuk melakukan klasifikasi. Data latih digunakan untuk membangun pohon keputusan, sedangkan data uji digunakan untuk menghitung akurasi pohon keputusan. Pembagian dataset menggunakan teknik k-fold cross validation. Metode k-fold cross validation adalah metode yang membagi himpunan contoh secara acak menjadi k himpunan bagian (subset) (Refaeilzadeh et al. 2009). Penelitian ini menggunakan k sebesar 10 karena menghasilkan akurasi terbesar jika dibanding dengan nilai k yang lain (Kohavi 1995).

Sebelum pembagian *dataset*, metode *oversampling* dan *undersampling* digunakan untuk mengatasi masalah jumlah data yang tidak imbang (Longadge *et al.* 2013). Data yang tidak imbang merupakan *dataset* yang memiliki jumlah *instance* jauh lebih kecil bila dibandingkan dengan *subset* lainnya. Metode *oversampling* dilakukan dengan cara menambahkan data di kelas yang berukuran kecil, sedangkan metode *undersampling* dilakukan dengan mengurangi data kelas mayoritas (Liu 2014).

Pemodelan Klasifikasi Pohon Keputusan dengan Algoritme C5.0

Tahapan ini membangun model prediksi dengan menggunakan algoritme C5.0. Model prediksi yang digunakan ialah pohon keputusan. Pohon keputusan merupakan salah satu metode klasifikasi yang menggunakan representasi struktur pohon. Setiap *node* pada pohon keputusan merepresentasikan atribut, cabangnya

merepresentasikan nilai dari atribut, dan daun merepresentasikan kelas. *Node* paling atas dari pohon keputusan disebut sebagai *node* akar atau *root* yang diperoleh dari *information gain* terbesar. Ukuran pemilihan atribut dengan *information gain* didefinisikan pada Persamaan 9 (Han *et.al* 2012).

$$Info(S_1, ..., S_m) = \sum_{i=1}^{n} -pi(log_2 pi)$$
(9)

dengan $info(S_1,...,S_m)$ merupakan informasi yang dibutuhkan untuk mengklasifikasi dari semua label kelas, m merupakan jumlah kelas target, dan pi adalah jumlah sample untuk kelas i. $Info(S_1,...S_m)$ juga dikenal sebagai entropi.

Atribut A dapat digunakan pada partisi S ke dalam v subset, $\{S_1, S_2, ..., S_v\}$, dengan S_j berisi data pada S yang bernilai a_j pada A. Jika A dipilih sebagai atribut terbaik maka subset tersebut akan berhubungan pada cabang dari node himpunan S. S_{ij} adalah jumlah data pada kelas dalam sebuah subset S_j . Nilai entropi yang dihasilkan untuk mengklasifikasi subset atribut A dapat dilihat pada Persamaan 10 (Han et al. 2012):

$$E(A) = -\sum_{j=1}^{v} \frac{S_{1j} + \dots + S_{mj}}{S} Info(S1_j, \dots, S_{mj})$$
 (10)

dengan $\frac{S1_j + ... + S_{mj}}{S}$ adalah jumlah *subset j* yang dibagi dengan jumlah sampel pada S dan m merupakan jumlah atribut pada S, maka untuk mendapatkan nilai gain dapat dilihat pada Persamaan 11 sebagai berikut:

$$Gain(A) = Info(S_1, ..., S_m) - E(A)$$
(11)

Pengujian Model Prediksi

Tahap pengujian model prediksi dilakukan dengan menghitung akurasi, precision, dan recall. Akurasi dihitung dari model prediksi yang menunjukkan tingkat kesesuaian hasil klasifikasi data terhadap kelas yang sebenarnya. Tingkat akurasi yang baik adalah tingkat akurasi yang mendekati 100%. Semakin tinggi tingkat akurasi maka semakin rendah kesalahan klasifikasi. Akurasi diperoleh dari data uji dengan menggunakan Persamaan 12. Penelitian ini membandingkan ratarata akurasi yang dihasilkan dari setiap percobaan untuk mengetahui keseluruhan akurasi yang bagus.

$$Akurasi = \frac{\sum data \, uji \, yang \, benar \, diklasifikasikan}{\sum data \, uji} \times 100\% \tag{12}$$

Selain akurasi, nilai *precision* dan *recall* juga diukur. Dalam temu kembali informasi, *precision* adalah rasio jumlah dokumen yang relevan dari jumlah dokumen yang ditemukan oleh sistem, sedangkan *recall* adalah rasio jumlah dokumen relevan yang ditemukan dengan jumlah dokumen relevan dalam koleksi

dokumen (Weng *et al.* 2008). Tabel 5 menunjukkan bentuk *confusion matrix* untuk memudahkan dalam melakukan perhitungan *precision* dan *recall* dengan Persamaan 13 dan 14.

Tabel 5 Confusion matrix

Aktual Prediksi	Positif	Negatif
Positif	TP	FP
Negatif	FN	TN

$$Precision = \frac{TP}{TP + FP}$$
 (13)

$$Recall = \frac{TP}{TP + FN} \tag{14}$$

Perhitungan precision dan recall dapat dijadikan berbentuk kurva yang disebut Precision Recall Curve dan Receiver Operating Characteristic (ROC). Precision Recall Curve dibuat berdasarkan nilai yang telah didapatkan pada perhitungan dengan confusion matrix. Kurva ROC adalah grafik antara sensitifitas (true positive) pada sumbu Y dengan 1 - spesifisitas pada sumbu X (false positive) untuk menentukan karakteristik dari classifier (Gorunescu 2011). Area Under Curve (AUC) pada ROC merupakan area untuk mengukur keakuratan model yang dihasilkan pada kurva (Han et al. 2012). Jika nilai AUC mendekati 1, keakuratan model yang dihasilkan dinilai baik.

Keterhubungan Mata Kuliah dan Prasyaratnya

Mata kuliah memiliki prasyarat yang mempengaruhi pengambilan mata kuliah di semester selanjutnya. Struktur prasyarat mata kuliah tahun masuk 2012 dapat dilihat pada Lampiran 3. Sebagai contoh, mahasiswa yang akan mengambil mata kuliah KOM206 (Organisasi Komputer) di semester 4 harus telah lulus dari mata kuliah KOM203 (Rangkaian Digital) pada semester 3 karena mata kuliah KOM203 merupakan mata kuliah prasyarat untuk mata kuliah KOM206.

Pengukuran keterhubungan dalam penelitian ini berfokus kepada mata kuliah dan prasyaratnya dalam kurikulum mahasiswa tahun masuk 2012 karena data nilai tersedia hingga semester 8. Korelasi Spearman digunakan jika suatu mata kuliah hanya memiliki 1 mata kuliah prasyarat. Jika suatu mata kuliah, Q, memiliki lebih dari 2 mata kuliah prasyarat (P_1 , P_2 , ...), algoritme C5.0 digunakan dengan nilai Q menjadi dasar kelas target dan nilai mata kuliah prasyarat menjadi atribut.

Korelasi Spearman merupakan korelasi yang menunjukkan hubungan di antara peubah dan mengolah data ordinal (Hauke dan Kossowski 2011). Patokan hasil perhitungan korelasi ialah sebagai berikut:

- < 0.20 : hubungan dapat dianggap tidak ada
- 0.20 0.40: hubungan ada tapi rendah
- > 0.40 0.70: hubungan cukup
- > 0.70 0.90: hubungan tinggi
- > 0.90 1.00: hubungan sangat tinggi

Korelasi dapat bernilai positif yang artinya searah: jika variabel pertama besar, variabel kedua semakin besar juga atau bernilai negatif yang artinya berlawanan arah: jika variabel pertama besar, variabel kedua semakin mengecil.

Kelas yang terbentuk pada pengolahan lebih dari 2 mata kuliah prasyarat berdasarkan nilai mutu mata kuliah yang dapat dilihat pada Tabel 6. Nilai mutu A dan AB masuk ke dalam kategori kelas BAIK. Nilai mutu B, BC, C, D dan E masuk ke dalam kategori kelas CUKUP. Nilai E dimasukkan ke dalam kelas CUKUP karena nilai mahasiswa PSIK tahun masuk 2012 yang mendapat nilai E pada mata kuliah sebagai pembentuk kategori kelas sangat jarang. Nilai E hanya ditemukan pada 1 mahasiswa di mata kuliah KOM312 (Komunikasi Data dan Jaringan Komputer).

Tabel 6 Pembagian kelas untuk keterhubungan yang memiliki lebih dari 2 mata kuliah prasyarat

Kelas	Nilai Mutu Mata Kuliah
BAIK	A dan AB
CUKUP	B, BC, C, D dan E

Lingkungan Pengembangan

Spesifikasi perangkat keras dan perangkat lunak yang digunakan untuk penelitian ini adalah sebagai berikut:

- 1 Perangkat keras yang digunakan berupa komputer personal dengan spesifikasi:
 - Intel® CoreTM i5 CPU @2.50 GHz
 - RAM 8 GB
 - Harddisk Internal 500 GB
- 2 Perangkat lunak yang digunakan:
 - Sistem operasi Windows 8.1 64-bit
 - RStudio versi 1.0.136 sebagai korelasi data dan pembentuk model prediksi dengan *library package* C50
 - Microsoft Excel 2016 untuk pengolahan data mahasiswa
 - Python 2.7 dengan *library* matplotlib untuk menghasilkan kurva ROC dan *Precision Recall*.

HASIL DAN PEMBAHASAN

Praproses Data

Data yang digunakan merupakan data gabungan nilai mahasiswa PSIK tahun masuk 2012 hingga 2014. Kode mata kuliah yang mengalami perubahan disajikan pada Tabel 7. Data nilai mata kuliah KOM101 (Algoritme) dihapus karena mata kuliah tersebut baru ada dalam kurikulum untuk mahasiswa tahun masuk 2014. Setelah dihitung, nilai IPK dari setiap tahun masuk dikelompokkan berdasarkan kategori kelas seperti pada Tabel 8.

Tabel 7 Penyetaraan mata kuliah dari tahun masuk 2012 hingga 2014

	Kode			Tahun Masuk		
No.	Mata Kuliah	Mata Kuliah	Semester	2012	2013	2014
1	MAT215					√
	MAT219	Aljabar Linear	3	✓	\checkmark	
2	IPB112	Olahua aa dan Cani	1		\checkmark	\checkmark
	IPB109	Olahraga dan Seni	1	\checkmark		
3	KOM421	Pengolahan Citra Digital	6	\checkmark	\checkmark	
	KOM324	i engolalian Citia Digital	U			\checkmark
4	KOM200	Dasar Pemrograman	3			\checkmark
	KOM202	Algoritme dan Pemrograman	3	✓	✓	

Tabel 8 Contoh bentuk data olahan dengan label kelas

ID	IPK	Percobaan ke-				
Mahasiswa	II K	1	2	3		
2003	2.70	High risk	Medium risk	High risk		
2010	3.40	Low risk	Low risk	Low risk		
2019	2.41	High risk	Medium risk	High risk		

Mahasiswa dengan ID 2003 memiliki IPK dari nilai mata kuliah mayor dan interdepartemen di semester 3 dan 4 sebesar 2.70. IPK mahasiswa tersebut memasuki kelas *high risk* pada percobaan ke-1 dan ke-3 yang berarti bahwa mahasiswa tersebut dianggap berisiko tidak berhasil pada tingkat selanjutnya, sedangkan pada percobaan ke-2 mahasiswa tersebut diberi label kelas *medium risk*.

Data Latih dan Data Uji

Pembagian data latih dan data uji untuk masing-masing percobaan disajikan pada Tabel 9. Percobaan 3 kelas versi 1 menghasilkan jumlah mahasiswa yang sedikit pada kelas *high risk* sehingga tidak bisa menghasilkan pohon keputusan

yang akurat. Metode *balancing* menghasilkan jumlah mahasiswa setiap kelas menjadi imbang pada setiap kategori kelas. Metode *undersampling* tidak dilakukan pada data nilai mahasiswa dengan kategori 3 kelas versi 1 karena memiliki jumlah data yang sedikit pada kelas *high risk*.

Tabel 9 Jumlah mahasiswa pada setiap kelas (LR = Low Risk, MR	= Medium
Risk, dan $HR = High Risk$)	

-			Jı	ımlah l	Mahasi	swa		
Jenis Data	2 K	2 Kelas 3 Kelas Versi 1			3 Kelas Versi 2			
	LR	HR	LR	MR	HR	LR	MR	HR
Tidak Imbang	195	98	195	81	17	195	109	100
Undersampling	98	98	-	-	-	100	100	100
Oversampling	195	195	195	195	195	195	195	195

Pembagian data latih dan data uji percobaan ke-1, ke-2, dan ke-3 untuk data tidak imbang dengan 10-fold cross validation masing-masing disajikan pada Lampiran 4, 5, dan 6. Pembagian serupa dilakukan terhadap hasil undersampling dan oversampling. Peimbangan data dengan metode undersampling pada pembagian data latih dan data uji percobaan ke-1 dan ke-3 masing-masing disajikan pada Lampiran 7 dan 10. Pembagian data latih dan data uji percobaan ke-1, ke-2, dan ke-3 dengan metode oversampling masing-masing disajikan pada Lampiran 8, 9, dan 11.

Pemodelan Klasifikasi Pohon Keputusan dengan Algoritme C5.0

Model prediksi dibangun dalam bentuk pohon keputusan menggunakan algoritme C5.0. Algoritme ini menggunakan ukuran *information gain* dalam membuat pohon keputusan. Pohon keputusan yang ditampilkan merupakan pohon keputusan dengan akurasi terbaik dari model yang terbentuk. Model prediksi dengan algoritme C5.0 dibangun dengan perintah R di *console* berikut:

```
Membaca dataset yang akan digunakan
   > filedata <- "ds2kall"</pre>
   > data <- read.csv(file = paste(filedata, ".csv", sep =</pre>
   ""), head = TRUE, sep = ", ", fill = TRUE)
2 Data dibentuk dengan mengacak dari data yang tersedia
   > data <- data[sample(nrow(data)),]</pre>
   > set.seed(123)
3 Pembagian data menggunakan cross fold validation
   > folds <- cut(seq(1,nrow(dataset)), breaks = 10, labels</pre>
   = FALSE)
   > for(i in 1:10){
         testIndexes <- which(folds == i, arr.ind = TRUE)</pre>
         testData <- data[testIndexes, ]</pre>
         trainData <- data[-testIndexes,]</pre>
  Pembuatan model pohon keputusan menggunakan perintah berikut:
       oneTree <- C5.0 (CLASS~., data=trainData)</pre>
```

summary(oneTree) }

- 5 Nilai akurasi dari model pohon keputusan dihitung menggunakan fungsi predict. Data yang digunakan adalah data uji dengan perintah berikut:
 - > oneTreePred <- predict(oneTree, testData)</pre>
 - > conf test <- table(oneTreePred, testData\$CLASS)</pre>
 - > akurasi <- sum(diag(conf test))/sum(conf test)</pre>

Pohon keputusan yang ditampilkan merupakan pohon keputusan dengan akurasi terbesar dari model yang terbentuk. Pohon keputusan model terbaik pada percobaan ke-1 (2 kelas) dihasilkan dengan metode *oversampling*. Pohon keputusan lengkap disajikan pada Lampiran 12. Model ini menghasilkan akurasi yang tertinggi yaitu sebesar 94.87%. Hasil akurasi semua model pada percobaan ke-1 dapat dilihat pada Tabel 10.

Model	Data Tidak	Data Imbang			
ke-	Imbang (%)	Undersampling	Oversampling		
	inioung (70)	(%)	(%)		
1	76.67	85.00	89.74		
2	79.31	95.00	92.31		
3	89.66	89.47	89.74		
4	86.21	80.00	94.87		
5	80.00	73.68	79.49		
6	89.66	85.00	84.62		
7	86.21	94.74	84.62		
8	75.86	90.00	94.87		
9	89.66	78.95	89.74		
10	86.67	90.00	74.36		
Rata-rata	83.99	86.18	87.44		

Tabel 10 Akurasi untuk percobaan ke-1

Pohon keputusan model terbaik memiliki 13 *node* dan menampilkan mata kuliah MAT103 (Kalkulus) sebagai atribut yang memperoleh nilai *gain* tertinggi atau *root*. Berikut beberapa aturan yang dihasilkan oleh pohon keputusan tersebut:

- 1 IF MAT103 in {A, AB, B} AND BIO100 in {A, AB, B, BC} AND EKO100 in {A, AB, B, BC, D, E} THEN CLASS = High Risk (134/4)
- 2 IF MAT103 in {BC, C, D, E} AND FIS100 in {A, C, D, E} CLASS = High Risk (115/7)

Persentase penggunaan atribut pada model ini dapat dilihat pada Tabel 11.

Tabel 11 Penggunaan atribut pada model terbaik di percobaan ke-1 dengan metode *oversampling*

		Persentase			Persentase
No.	Nama Atribut	Penggunaan	No.	Nama Atribut	Penggunaan
		Atribut (%)			Atribut (%)
1	MAT103	100.00	6	IPB100	11.68
2	BIO100	50.43	7	KIM101	5.41
3	FIS100	49.57	8	KPM130	5.13
4	EKO100	38.75	9	KOM201	3.13
5	IPB108	12.25			

Tabel 11 menunjukkan bahwa mata kuliah MAT103 (Kalkulus) memiliki persentase sebesar 100% yang berarti bahwa atribut MAT103 selalu muncul pada setiap *rule* yang dihasilkan. Penggunaan atribut MAT103 (Kalkulus), BIO100 (Biologi Dasar), FIS100 (Fisika), dan EKO100 (Ekonomi Umum) menunjukkan peran dalam keberhasilan mahasiswa PSIK tahun masuk 2012 hingga 2014 di tingkat 2. Atribut dengan persentase penggunaan yang rendah dinilai tidak terlalu berperan.

Model terbaik pada percobaan ke-1 memiliki *confusion matrix* dan perhitungan *precision* dan *recall* yang dapat dilihat pada Tabel 12. *Precision* pada kelas *high risk* sebesar 96.00% dan *low risk* sebesar 92.86% dengan 1 data yang prediksinya tidak sesuai dengan kelas aktual. *Recall* pada kelas *high risk* sebesar 96.00% dan *low risk* sebesar 92.86% dengan 1 data yang prediksinya tidak sesuai dengan kelas aktual.

Tabel 12 Nilai precision dan recall untuk percobaan ke-1

Aktual Prediksi	High risk	Low risk	Class Precision (%)
High risk	24	1	96.00
Low risk	1	13	92.86
Class Recall (%)	96.00	92.86	

Dalam percobaan ke-2 (3 kelas versi 1), pohon keputusan model terbaik juga dihasilkan oleh metode *oversampling* dengan akurasi sebesar 94.92%. Pohon keputusan lengkap disajikan pada Lampiran 13. Percobaan ini tidak menggunakan metode *undersampling* karena kelas *low risk* berukuran terlalu kecil ada beberapa model yang menghasilkan kelas targetnya kosong. Hasil akurasi semua model pada percobaan ke-2 dapat dilihat pada Tabel 13.

Tabel 13 Akurasi untuk percobaan ke-2

Model ke-	Data Tidak Imbang (%)	Data Imbang Oversampling (%)
1	70.00	94.92
2	72.41	86.21
3	82.76	79.66
4	82.76	94.83
5	73.33	89.83
6	72.41	89.66
7	79.31	91.38
8	65.52	93.22
9	86.21	86.21
10	76.67	89.83
Rata-rata	76.14	89.58

Pohon keputusan model terbaik pada percobaan ke-2 memiliki 43 *node* dan menampilkan mata kuliah EKO100 (Ekonomi Umum) sebagai *root*. Berikut beberapa aturan yang dihasilkan oleh model tersebut:

- 1 IF EKO100 in {A, AB} AND FIS100 = C THEN CLASS = Medium Risk (13/1)
- 2 IF EKO100 in {A, AB} AND FIS100 in {A, AB, B, BC} AND KOM201 in {A, AB, B} AND MAT103 {A, AB, B} AND IPB112 {A, AB, BC, C, D, E} THEN CLASS = Low Risk (94)

Tabel 14 menyajikan persentase penggunaan atribut pada model terbaik di percobaan ke-2.

Tabel 14 Penggunaan atribut pada model terbaik di percobaan ke-2 deng	gan
metode oversampling	

No.	Nama Atribut	Persentase Penggunaan	No.	Nama Atribut	Persentase Penggunaan
		Atribut (%)			Atribut (%)
1	EKO100	100.00	9	MAT100	32.51
2	MAT103	96.20	10	KIM101	27.38
3	KOM201	75.48	11	IPB112	23.57
4	BIO100	70.15	12	IPB107	20.15
5	IPB108	47.15	13	IPB106	15.97
6	IPB100	45.82	14	IPB111	7.60
7	KPM130	40.30	15	AGB100	5.89
8	FIS100	34.41			

Tabel 14 menunjukkan bahwa mata kuliah EKO100 (Ekonomi Umum) memiliki persentase sebesar 100% yang berarti bahwa atribut EKO100 selalu muncul pada setiap *rule* yang dihasilkan. Persentase penggunaan atribut EKO100 (Ekonomi Umum), MAT103 (Kalkulus), KOM201 (Penerapan Komputer), dan BIO100 (Biologi Umum) pada percobaan ke-2 terbilang besar yang menunjukkan peran besar terhadap keberhasilan mahasiswa.

Confusion matrix dan perhitungan precision dan recall untuk model terbaik pada percobaan ke-2 dapat dilihat pada Tabel 15. Kesalahan prediksi hanya terjadi pada 10% kelas medium risk dan 5.56% kelas low risk. Nilai precision pada medium risk sebesar 90.00% dengan 2 data yang kelas aktualnya low risk, dan nilai recall sebesar 94.73% dengan 1 data yang salah prediksi sebagai kelas low risk. Pada kelas low risk, precision sebesar 94.44% dengan 1 data yang seharusnya kelas medium risk, dan nilai recall sebesar 89.47% dengan 2 data yang diprediksi ke dalam kelas medium risk.

Percobaan terakhir dilakukan dengan 3 kelas versi 2. Berbeda dengan percobaan ke-1 dan ke-2, pohon keputusan model terbaik pada percobaan ke-3 dihasilkan dengan metode *undersampling*. Pohon keputusan lengkap disajikan pada Lampiran 14. Model ini menghasilkan akurasi yang tertinggi sebesar 80.77%. Akurasi semua model pada percobaan ini dapat dilihat pada Tabel 16.

Tabel 15	Nilai <i>precision</i>	dan <i>recall</i> un	ntuk percol	oaan ke-2

Aktual Prediksi	High risk	Medium risk	Low risk	Class Precision (%)
High risk	21	0	0	100.00
Medium risk	0	18	2	90.00
Low risk	0	1	17	94.44
Class Recall (%)	100.00	94.73	89.47	

Tabel 16 Akurasi untuk percobaan ke-3

	Data Tidak	Data In	nbang
Model ke-	Imbang (%)	<i>Undersampling</i>	Oversampling
		(%)	(%)
1	50.00	80.77	51.52
2	55.17	68.00	72.73
3	68.97	56.00	62.50
4	58.62	76.00	60.61
5	66.67	68.00	45.45
6	65.52	40.00	65.62
7	68.97	72.00	63.64
8	48.28	64.00	56.25
9	58.62	76.00	72.73
10	70.00	65.38	63.64
Rata-rata	61.08	66.62	61.47

Pohon keputusan model terbaik tersebut memiliki 36 *node* dengan mata kuliah MAT103 (Kalkulus) sebagai *root*. Berikut beberapa aturan yang dihasilkan oleh pohon keputusan untuk percobaan ke-3:

- 1 IF MAT103 in {BC, C, D, E} AND FIS100 in {A, C, D} THEN CLASS = High risk (58/7)
- 2 IF MAT103 in {A, AB, B} AND EKO100 in {A, AB, B, BC} AND IPB106 in {A, AB, BC} AND FIS100 = AB AND MAT103 in {A, AB} AND IPB112 in {A, B, C, D, E} THEN CLASS = Low risk (36/8)

Persentase penggunaan atribut pada model terbaik pada percobaan ke-3 dapat dilihat pada Tabel 17.

Berbeda dengan percobaan pada 3 kelas versi 1, persentase penggunaan atribut mata kuliah MAT103 (Kalkulus) sebesar 100% yang berarti bahwa atribut MAT103 selalu muncul pada setiap *rule* yang dihasilkan. Penggunaan atribut MAT103 (Kalkulus), FIS100 (Fisika), EKO100 (Ekonomi Umum), IPB106 (Bahasa Indonesia), dan MAT100 (Pengantar Matematika) berperan dalam pengaruh dengan keberhasilan mahasiswa PSIK tahun masuk 2012 hingga 2014.

Model terbaik yang dihasilkan memiliki *confusion matrix* dengan *precision* dan *recall* yang dapat dilihat pada Tabel 18. Kelas prediksi pada kelas *high risk* memiliki nilai *precision* sebesar 75.00% dengan memiliki 2 data yang salah

prediksi karena 1 data seharusnya masuk ke dalam kelas *low risk* dan 1 data seharusnya masuk ke dalam kelas *medium risk*. Nilai *recall* pada *high risk* sebesar 100% yang berarti bahwa kelas prediksi sesuai dengan kelas aktual. Kelas *medium risk* menghasilkan *precision* dan *recall* sebesar 80.00% dengan 2 data yang seharusnya kelas *low risk* dan masing-masing 1 data *medium risk* yang salah prediksi ke kelas *low risk* dan *high risk*. Kelas *low risk* menghasilkan *precision* sebesar 87.50% dengan memiliki 1 data yang seharusnya kelas *low risk*. *Recall* pada kelas *low risk* sebesar 70.00% dengan memiliki 3 data yang salah prediksi karena 1 data masuk ke dalam kelas *medium risk* dan 2 data masuk ke dalam kelas *high risk*.

Tabel 17 Penggunaan atribut pada model terbaik di percobaan ke-3 dengan metode *undersampling*

No.	Nama Atribut	Persentase Penggunaan Atribut (%)	•	No.	Nama Atribut	Persentase Penggunaan Atribut (%)
1	MAT103	100.00	'-	7	BIO100	12.83
2	FIS100	92.04		8	IPB111	10.18
3	EKO100	58.41		9	KOM201	8.85
4	IPB106	58.41		10	IPB107	3.10
5	MAT100	21.24		11	IPB100	2.65
6	IPB112	19.03	_	12	KPM130	1.77

Tabel 18 Nilai precision dan recall untuk percobaan ke-3

Aktual Prediksi	High risk	Medium risk	Low risk	Class Precision (%)	
High risk	6	1	1	75.00	
Medium risk	0	8	2	80.00	
Low risk	0	1	7	87.50	
Class Recall (%)	100.00	80.00	70.00		

Rata-rata akurasi dan simpangan baku dari semua percobaan dapat dilihat pada Gambar 2. Rata-rata akurasi tertinggi dicapai oleh percobaan ke-2 (3 kelas versi 1) dengan metode *oversampling*. Percobaan tersebut juga memiliki simpangan baku terkecil yang menunjukkan akurasi model-model dalam percobaan tersebut cukup konsisten.

Hasil akurasi terbaik dari semua percobaan dapat dilihat pada Tabel 19. Dari 3 percobaan (masing-masing dengan 10 model) yang dilakukan, salah satu model pada percobaan ke-2 (3 kelas versi 1) dengan metode *oversampling* memiliki akurasi yang terbesar yaitu 94.92%. Potongan pohon keputusan pada percobaan ke-2 dengan *oversampling* dapat dilihat pada Gambar 3.

Gambar 2 Rata-rata akurasi dari setiap kategori kelas

Tabel 19 Hasil akurasi terbaik untuk semua percobaan

Percobaan	Data Tidak	Data In	nbang
ke-	Imbang (%)	Undersampling	Oversampling
		(%)	(%)
1	89.66	94.77	94.87
2	86.21	-	94.92
3	70.00	80.77	65.62

```
EKO100 in {A, AB}:
:
    FIS100 = C: MediumRisk (13/1)
    FIS100 in {A, AB, B, BC}:
        KOM201 in {BC,D}:
        :...AGB100 in {A,B}: MediumRisk (6)
            AGB100 = AB: LowRisk (1)
        KOM201 in {A,AB,B}:
            MAT103 in {A,AB,B}:
               :...IPB112 in {A,AB,BC,C,D,E}: LowRisk
                                                 (94)
EKO100 in \{B,BC,C,D,E\}:
:...BIO100 in {A,AB,B,BC,E}:
        MAT103 = D:
        :...IPB111 in {A,AB,C}: HighRisk (11)
           IPB111 in {B,BC}: MediumRisk (10)
```

Gambar 3 Potongan pohon keputusan percobaan ke-2 dengan metode *oversampling*

Kurva *precision* dan *recall* dengan model terbaik tersebut dapat dilihat pada Gambar 4. Ketiga kelas memiliki nilai area *precision recall* yang mendekati 1.00 yang berarti model tersebut memiliki kinerja yang baik. Kurva *precision* dan *recall*

untuk model terbaik pada percobaan ke-1 dan ke-3 dapat dilihat pada Lampiran 18 dan 19. Rata-rata area *precision recall* semua percobaan mencapai nilai di atas 90% (*lihat* Gambar 5).

Gambar 4 Kurva *precision recall* pada model terbaik percobaan ke-2 dengan metode *oversampling*

Gambar 5 Rata-rata area precision recall setiap kategori kelas

Kurva ROC untuk model terbaik di percobaan ke-2 disajikan pada Gambar 6. Nilai AUC yang dihasilkan pada setiap kelas memiliki nilai yang mendekati 1.00 menunjukkan kinerja yang baik. Kurva ROC pada percobaan ke-1 dan ke-3 dapat dilihat pada Lampiran 20 dan 21.

Gambar 6 Kurva ROC pada model terbaik percobaan ke-2 dengan metode *oversampling*

Kurva ROC dari semua percobaan memiliki rata-rata nilai AUC yang bagus dengan dapat dilihat pada Gambar 7. Percobaan ke-1 dan ke-2 memiliki kinerja yang konsisten, terlihat dari simpangan baku yang kecil.

Gambar 7 Rata-rata AUC setiap kategori kelas

Keterhubungan Mata Kuliah dan Prasyaratnya

Keterhubungan mata kuliah dan prasyaratnya pada kurikulum PSIK untuk mahasiswa tahun masuk 2012 dapat dilihat pada Tabel 20. Beberapa mata kuliah dapat membentuk suatu rangkaian prasyarat. Sebagai contoh, MAT100 menjadi prasyarat MAT221 yang kemudian menjadi prasyarat KOM208. Suatu mata kuliah juga dapat memiliki lebih dari 1 prasyarat, misalnya KOM205 dan STK211 menjadi

prasyarat untuk KOM332. Penelitian ini melihat keterhubungan mata kuliah dalam suatu rangkaian sehingga KOM332 dianggap sebagai 2 rangkaian yaitu KOM205 ke KOM332 dan STK211 ke KOM332.

Rangkaian Mata Kuliah (RMK) ke-1 hingga ke-8 adalah rangkaian yang terdiri atas lebih dari 2 mata kuliah, sedangkan RMK ke-9 hingga ke-16 adalah rangkaian dengan 2 mata kuliah.

Tabel 20 Prasyarat mata kuliah tahun masuk 2012

RMK ke-		Faktor		Kelas
1	MAT100	MAT221		KOM208
2	KOM203	KOM206	KOM311	KOM312
3	KOM202	KOM207	KOM321	KOM323
4	MAT100	MAT221	KOM321	KOM323
5	MAT103	MAT217		MAT321
6	KOM202	KOM331		KOM334
7	MAT100	MAT215		KOM301
8	KOM206	KOM311		KOM312
9	MAT103	MAT217		
10	MAT100	MAT103		
11	KOM202	KOM204		
12	KOM202	MAT321		
13	KOM205	KOM335		
14	KOM205	KOM332		
15	STK202	KOM322		
16	STK211	KOM332		

RMK ke-1 hingga ke-8 diolah menggunakan algoritme C5.0 dengan data asli serta dengan metode *undersampling* dan *oversampling*. Akurasi terbaik untuk masing-masing RMK disajikan pada Tabel 21. RMK ke-9 hingga ke-16 diolah menggunakan korelasi Spearman dengan hasil yang disajikan pada Tabel 22.

Tabel 21 Akurasi terbaik masing-masing RMK

RMK	Kelas	Metode	Root	Akurasi (%)	Pohon
ke-		Balancing	icing		Keputusan
1	KOM208	Undersampling	MAT221	92.31	Lampiran 22
2	KOM312	Oversampling	KOM206	88.24	Lampiran 23
3	KOM323	Oversampling	KOM207	80.00	Lampiran 24
4	KOM323	Oversampling	MAT100	81.82	Lampiran 25
5	MAT321	Oversampling	MAT103	100.00	Lampiran 26
6	KOM334	Undersampling	KOM331	81.82	Lampiran 27
7	KOM301	Oversampling	MAT215	86.67	Lampiran 28
8	KOM312	Oversampling	KOM206	78.95	Lampiran 29

Keseluruhan RMK menghasilkan akurasi lebih dari 80%, kecuali RMK ke-8 yang memiliki akurasi 78.95%. Hasil terbaik ditunjukkan oleh RMK ke-5 yang menggunakan metode *oversampling* dengan akurasi 100%. Hal ini menunjukkan keterhubungan yang sangat erat antara MAT321 (Analisis Numerik) dengan prasyaratnya, terutama MAT103 (Kalkulus). Kedua mata kuliah tersebut diampu oleh Departemen Matematika, FMIPA IPB.

Tabel 22 Korelasi RMK dengan 2 mata kuliah pada kurikulum mahasiswa tahun masuk 2012

RMK ke-	Kode	Nama Mata Kuliah	Spearman Correlation	Tingkat Keterhubungan
9	MAT100	Pengantar Matematika	0.839	Sangat tinggi
	MAT103	Kalkulus		
10	MAT103	Kalkulus	0.761	Tinggi
	MAT217	Kalkulus Lanjut		
11	KOM202	Algoritme dan	0.455	Cukup
		Pemrograman		
	KOM204	Bahasa Pemrograman		
12	KOM202	Algoritme dan	0.308	Rendah
		Pemrograman		
	MAT321	Analisis Numerik		
13	KOM205	Basis Data	0.447	Cukup
	KOM335	Sistem Informasi		
14	KOM205	Basis Data	0.492	Cukup
	KOM332	Data Mining		
15	STK202	Pengantar Hitung	0.399	Rendah
		Peluang		
	KOM322	Metode Kuantitatif		
16	STK211	Metode Statistika	0.486	Cukup
	KOM332	Data Mining		

Untuk RMK dengan mata kuliah kelas yang diampu oleh PSIK, RMK ke-1 dengan metode *undersampling* menghasilkan akurasi tertinggi sebesar 92.31%. Mata kuliah MAT221 (Matematika Diskret) menjadi *root* untuk KOM208 (Teori Bahasa dan Otomata). Keterhubungan ini menunjukkan eratnya teori komputasi dengan matematika. Hal ini juga ditunjukkan oleh RMK ke-4 dan ke-7.

Semua RMK dengan 2 mata kuliah menunjukkan adanya hubungan walaupun tidak semuanya tinggi. Hubungan tertinggi ditunjukkan oleh MAT100 (Pengantar Matematika) dan MAT103 (Kalkulus).

MAT100 dan MAT103 menjadi *root* pada RMK ke-4 dan ke-5. Selain itu, MAT103 memiliki persentase penggunaan atribut yang tinggi (> 96%) di semua model prediksi dengan akurasi tertinggi. Ini menunjukkan pentingnya MAT103 dalam capaian akademik mahasiswa PSIK. Berdasarkan tingginya hubungan MAT100 dan MAT103, MAT100 dapat menjadi penanda awal keberhasilan mahasiswa PSIK karena mata kuliah tersebut diambil di semester 1.

SIMPULAN DAN SARAN

Simpulan

Penelitian ini menghasilkan model prediksi capaian akademik mahasiswa PSIK IPB berupa pohon keputusan dengan algoritme C5.0. Model percobaan ke-2 (3 kelas versi 1) dengan menggunakan metode *oversampling* menghasilkan akurasi tertinggi sebesar 94.92%.

EKO100 (Ekonomi Umum), MAT103 (Kalkulus), dan KOM201 (Penerapan Komputer) memiliki persentasi penggunaan atribut tertinggi dalam model tersebut sebesar masing-masing 100%, 96.20%, dan 75.48%. Hal tersebut menunjukkan peran ketiga mata kuliah terhadap capaian akademik mahasiswa PSIK tahun masuk 2012 hingga 2014 di tingkat 2.

Walaupun MAT100 (Pengantar Matematika) memiliki persentase penggunaan atribut relatif kecil (< 33%), mata kuliah tersebut memiliki keterhubungan yang kuat dengan MAT103 dan menjadi *root* untuk mata kuliah KOM323 (Sistem Pakar). Dengan posisinya yang diambil di semester 1, capaian di MAT100 dapat menjadi penanda awal capaian akademik mahasiswa PSIK IPB.

Saran

Pengolahan data penelitian ini mengandalkan Microsoft Excel sehingga data belum dapat ditambahkan dengan efisien. Oleh sebab itu, penelitian selanjutnya diharapkan dapat membuat sistem untuk pengolahan data agar lebih banyak data yang dapat diolah dengan fokus pada kurikulum untuk mahasiswa tahun masuk 2014 dan setelahnya.

DAFTAR PUSTAKA

- Al-Barrak M A, Al-Razgan M. 2016. Predicting Students Final GPA Using Decision Trees: A Case Study. *International Journal of Information and Education Technology*. 6 (7):528-533.doi:10.7763/IJIET.2016.V6.745.
- Galathiya AS, Ganatra AP, Bhensdadia CK. 2012. Improved Decision Tree Induction Algorithm with Feature Selection, Cross Validation, Model Complexity and Reduced Error Pruning. *International Journal of Computer Science and Information Technologies (IJCSIT)*. 3(2):3427-3431.
- Gorunescu F. 2011. *Data Mining Concept, Models and Techniques*. Verlag (DE): Springer.
- Han J, Kamber M, Pei J. 2012. *Data Mining: Concepts and Techniques*. Ed ke-3. Waltham (US): Morgan Kaufman Publisher.
- Hauke J, Kossowski T. 2011. Comparison of Values of Pearson's and Spearman'S Correlation Coefficients on The Same Sets of Data. *Quaestiones Geographicae* .30 (2):87-93.doi:10.2478/v10117-011-0021-1.

- [IPB] Institut Pertanian Bogor. 2014. *Panduan Program Pendidikan Sarjana Edisi Tahun 2014*. Bogor (ID): IPB Pr.
- Kohavi R. 1995. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. *14th International Joint Conference on Artificial Intelligence* [internet]; 1995 Agu 20-25; Montreal, Canada. San Fransisco (US): Morgan Kaufmann Publishers, Inc. hlm 1137-1143; [diunduh 2017 April 5]. Tersedia pada: http://ai.stanford.edu/~ronnyk/accEst.pdf.
- Larose TD. 2005. *Discovering Knowledge in Data: An Introduction to Data Mining*. Hoboken (US): John Wiley & Sons, Inc.
- Liu AY. 2014. The Effect of Oversampling and Undersampling on Classifying Imbalanced Text Datasets [tesis]. Austin (US): University of Texas.
- Longadge R, Dongre S S, Malik L. 2013. Class Imbalance Problem in Data Mining: Review. *International Journal of Computer Science and Network (IJSN)*. 2(1):83-87.
- Refaeilzadeh P, Tang L, Liu H. 2009. Cross-Validation. Di dalam: *Encyclopedia of Database Systems*; Boston (US): Springer. hlm 532-538..
- Rulequest Research. 2017. *Data mining tools see5 and C5.0*. [Internet]. [Diunduh 2017 Mar 18]. Tersedia pada: http://rulequest.com/see5-comparison.html.
- Swastina L. 2013. Penerapan Algoritma C4.5 Untuk Penentuan Jurusan Mahasiswa. *J GEMA AKTUALITA*. 2(1):93-98.
- Weng CG, Poon J. 2008. A New Evaluation Measure for Imbalanced Datasets. Di dalam: Roddick J F, Li J, Christen P, Kennedy P, editor. 7th Australasian Data Mining Conference (AusDM 2008) [internet]; 2008 Nov 27-28; Glenelg, Australia. Glenelg (AU): Australian Computer Society, Inc. hlm 27-32; [diunduh 2017 Mar 8]. Tersedia pada: http://crpit.com/confpapers/CRPITV87Weng.pdf.

LAMPIRAN

Lampiran 1 Atribut dataset mahasiswa tingkat 1

Kode	Nama	Sem	Semester		Tahun Masuk		
Mata Kuliah	Nama Mata Kuliah	Ganjil	Genap	Mata Kuliah	2012	2013	2014
AGB100	Pengantar	1		PPKU	✓	✓	✓
	Kewirausahaan						
FIS100	Fisika	1		PPKU	\checkmark	\checkmark	\checkmark
IPB107	Pengantar Ilmu	1		PPKU	\checkmark	\checkmark	\checkmark
	Pertanian						
IPB108	Bahasa Inggris	1		PPKU	\checkmark	\checkmark	\checkmark
IPB111	Pendidikan	1		PPKU	\checkmark	\checkmark	\checkmark
	Pancasila						
IPB112	Olahraga dan	1		PPKU	\checkmark	\checkmark	\checkmark
	Seni						
KPM130	Sosiologi Umum	1		PPKU	\checkmark	\checkmark	\checkmark
MAT100	Pengantar	1		PPKU	\checkmark	\checkmark	\checkmark
	Matematika						
BIO100	Biologi Dasar		2	PPKU	\checkmark	\checkmark	\checkmark
KIM101	Kimia Dasar		2	PPKU	\checkmark	\checkmark	\checkmark
KOM201	Penerapan		2	PPKU	\checkmark	\checkmark	\checkmark
	Komputer						
EKO100	Ekonomoi Umum		2	PPKU	\checkmark	\checkmark	\checkmark
IPB106	Bahasa Indonesia		2	PPKU	\checkmark	\checkmark	\checkmark
MAT103	Kalkulus		2	PPKU	\checkmark	\checkmark	\checkmark
IPB100	Agama		2	PPKU	\checkmark	\checkmark	\checkmark
KOM101	Algoritme		2	PPKU			\checkmark

Lampiran 2 Mata Kuliah Semester 3 dan selanjutnya di Program Sarjana Ilmu Komputer

Kode		Semester		Jenis	Tahun Masuk		
Mata Kuliah	Nama Mata Kuliah	Ganjil	Genap	Mata Kuliah	2012	2013	2014
AGB111	Dasar-dasar Bisnis		4	SC	✓	✓	✓
AGB221	Kewirausahaan	3	4	SC	\checkmark	\checkmark	
AGB336	Koperasi dan Kelembagaan Agribisnis		4	SC	✓	✓	✓
FIS254	Elektronika Digital		4	SC	✓	✓	✓

Lampiran 2 Lanjutan

Kode		Sem	ester	- Jenis	Tal	nun Ma	suk
Mata Kuliah	Nama Mata Kuliah	Ganjil	Genap	Mata Kuliah	2012	2013	2014
FIS253	Elektronika			SC		✓	✓
IKK232	Analog Pengantar Ekonomi		4	SC	✓	✓	✓
IKK233	Keluarga Perilaku	3		SC	✓	✓	√
IKK335	Konsumen Manajemen Keuangan Konsumen		4	SC	✓	✓	✓
KPM210	Dasar-dasar Komunikasi		2	SC	✓	✓	✓
MAN111	Pengantar Manajemen		4	SC	✓	✓	✓
MAT232	Pemrograman Linear		4	SC	✓	✓	✓
KOM200	Dasar Pemrograman	3		Mayor			✓
KOM201	Penerapan Komputer	2		Mayor	✓	✓	
KOM202	Algoritme dan Pemrograman	3	4	Mayor	✓	✓	✓
KOM203	Rangkaian Digital	3		Mayor	✓		✓
KOM204	Bahasa Pemrograman		4	Mayor	✓	✓	✓
KOM205	Basis Data		4	Mayor	✓	\checkmark	\checkmark
KOM206	Organisasi dan Arsitektur Komputer		4	Mayor	✓	✓	✓
KOM207	Struktur Data		4	Mayor	\checkmark	\checkmark	\checkmark
KOM208	Teori Bahasa dan Otomata		4	Mayor	\checkmark	✓	
KOM209	Struktur Diskret	3		Mayor			\checkmark
KOM220	Pengantar Matematika Komputasi	3	4	Mayor			✓
KOM301	Komputer Grafik	5		Mayor	✓	✓	
KOM302	Etika Komputasi	7		Mayor			✓
KOM311	Sistem Operasi	5		Mayor	✓	✓	✓

Lampiran 2 Lanjutan

Kode		Sem	ester	- Jenis	Tal	hun Ma	suk
Mata Kuliah	Nama Mata Kuliah	Ganjil	Genap	Mata Kuliah	2012	2013	2014
KOM312	Komunikasi Data		6	Mayor	√	√	✓
	dan Jaringan			J			
	Komputer						
KOM321	Kecerdasan	dasan 5		Mayor	\checkmark	\checkmark	\checkmark
	Buatan	5 N				,	
KOM322	Metode	5 N		Mayor	✓	✓	✓
*********	Kuantitatif		_	3.6	,		,
KOM323	Sistem Pakar		6	Mayor	✓	✓	V
KOM324	C		6	Mayor			✓
VOM225	Digital	_	4	Marian			./
KOM325	Komputasi Numerik	5	4	Mayor			V
KOM330	Manajemen	7		Mayor			1
KOMISSO	Proyek Perangkat	,		Mayor			·
	Lunak						
KOM331	Rekasa Perangkat	5	6	Mayor	\checkmark	✓	\checkmark
	Lunak	_					
KOM332	Data Mining		6	Mayor	\checkmark	✓	\checkmark
KOM333	Interaksi Manusia	5	6	Mayor	\checkmark	\checkmark	\checkmark
	dan Komputer			•			
KOM334	Pengembangan		6	Mayor	\checkmark	\checkmark	\checkmark
	Sistem						
	Berorientasi						
*****	Objek		_				
KOM335	Sistem Informasi	_	6	Mayor	√	√	√
KOM398	Metode Penelitian	7		Mayor	✓	✓	✓
	dan Telaah						
VOM200	Pustaka	7		Marian			./
KOM399	Praktik Kerja	7		Mayor			•
KOM401	Lapang Analisis	7		Mayor	✓	√	✓
KOM401	Algoritme	,		Mayor	·	•	·
KOM421	Pengantar	7		Mayor	✓	\checkmark	
1101/1121	Pengolahan Citra	•		1,14,01			
	Digital						
KOM497	Kolokium	7		Mayor			\checkmark
KOM498	Seminar		8	Mayor			\checkmark
KOM499	Tugas Akhir		8	Mayor			\checkmark
MAT217	Kalkulus Lanjut	3		Interdep	\checkmark	\checkmark	
MAT215	Č			1	\checkmark	\checkmark	
	Aljabar Linear	3		Interdep			✓
MAT219							V

Lampiran 2 Lanjutan

Kode		Sem	Semester		Tal	nun Ma	suk
Mata Kuliah	Nama Mata Kuliah	Ganjil	Genap	Jenis Mata Kuliah	2012	2013	2014
MAT221	Matematika	3		Interdep	✓	✓	
	Diskret						
MAT321	Analisis Numerik	5		Interdep	\checkmark	\checkmark	
FMP400	Pengantar	7		Interdep			\checkmark
	Bioinformatika						
FMP400	Pengantar	7		Interdep			1
	Bioinformatika						•
STK202	Pengantar Hitung	3		Interdep	✓	✓	
	Peluang				·	•	·
STK211	Metode Statistika	3		Interdep	✓	✓	✓

Lampiran 3 Struktur prasyarat mata kuliah tahun masuk 2012

No.	Mata Kuliah Prasyarat	Mata Kuliah yang Berhubungan
1	KOM203	KOM206
2	KOM202	MAT321, KOM204, KOM207, dan KOM331
3	KOM205	KOM332 dan KOM335
4	KOM206	KOM311
5	KOM207	KOM321
6	KOM311	KOM312 dan KOM411
7	KOM321	KOM323
8	KOM331	KOM334
9	MAT100	MAT215 dan MAT221
10	MAT103	MAT217
11	MAT215	KOM301 dan KOM421
12	MAT217	MAT321 dan KOM401
13	MAT221	KOM208
14	STK202	KOM321, KOM412, dan KOM332
15	STK211	KOM332 dan KOM431

Lampiran 4 Jumlah pembagian data latih dan data uji untuk percobaan ke-1 dengan data tidak imbang

Fold	Data	a Latih		Data Uji			
Tota	Low Risk	High Risk	Jumlah	Low Risk	High Risk	Jumlah	
1	176	87	263	19	11	30	
2	179	85	264	16	13	29	

Lampiran 4 Lanjutan

Fold	Data	a Latih		Data Uji			
<i>Tota</i>	Low Risk	High Risk	Jumlah	Low Risk	High Risk	Jumlah	
3	178	86	264	17	12	29	
4	173	91	264	22	7	29	
5	178	85	263	17	13	30	
6	172	92	264	23	6	29	
7	177	87	264	18	11	29	
8	177	87	264	18	11	29	
9	172	92	264	23	6	29	
10	173	90	263	22	8	30	

Lampiran 5 Jumlah pembagian data latih dan data uji untuk percobaan ke-2 dengan data tidak imbang

		Data I	Latih			Data Uji				
Fold	Low Risk	Medium Risk	High Risk	Jumlah	Low Risk	Medium Risk	High Risk	Jumlah		
1	176	71	16	263	19	10	1	30		
2	179	71	14	264	16	10	3	29		
3	178	71	15	264	17	10	2	29		
4	173	75	16	264	22	6	1	29		
5	178	71	14	263	17	10	3	30		
6	172	75	17	264	23	6	0	29		
7	177	72	15	264	18	9	2	29		
8	177	71	16	264	18	10	1	29		
9	172	75	17	264	23	6	0	29		
10	173	77	13	263	22	4	4	30		

Lampiran 6 Jumlah pembagian data latih dan data uji untuk percobaan ke-3 dengan data tidak imbang

		Data l	Latih			Data	Uji	
Fold	Low	Medium	High	Jumlah	Low	Medium	High	Jumlah
	Risk	Risk	Risk		Risk	Risk	Risk	
1	76	98	89	263	8	11	11	30
2	75	102	87	264	9	7	13	29
3	79	97	88	264	5	12	12	29
4	77	94	93	264	7	15	7	29
5	76	100	87	263	8	9	13	30
6	73	97	94	264	11	12	6	29
7	78	97	89	264	6	12	11	29
8	77	99	88	264	7	10	12	29

Lampiran 6 Lanjutan

		Data l			Data Uji			
Fold	Low	Medium Risk	High	Iumlah	Low	Medium Risk	High	Iumlah
	Risk	Risk	Risk	Julillali	Risk	Risk	Risk	Julillali
9	71	100	93	264	13	9	7	29
10	74	97	92	263	10	12	8	30

Lampiran 7 Jumlah pembagian data latih dan data uji untuk percobaan ke-1 dengan metode *undersampling*

Fold	Dat	a Latih		Data Uji			
T Oid	Low Risk	High Risk	Jumlah	Low Risk	High Risk	Jumlah	
1	87	89	176	11	9	20	
2	86	90	176	12	8	20	
3	89	88	177	9	10	19	
4	91	85	176	7	13	20	
5	90	87	177	8	11	19	
6	89	87	176	9	11	20	
7	88	89	177	10	9	19	
8	86	90	176	12	8	20	
9	86	91	177	12	7	19	
10	90	86	176	8	12	20	

Lampiran 8 Jumlah pembagian data latih dan data uji untuk percobaan ke-1 dengan metode *oversampling*

Fold	Data	a Latih		Data Uji					
T Old	Low Risk	High Risk	Jumlah	Low Risk	High Risk	Jumlah			
1	171	180	351	24	15	39			
2	181	170	351	14	25	39			
3	175	176	351	20	19	39			
4	181	170	351	14	25	39			
5	173	178	351	22	17	39			
6	170	181	351	25	14	39			
7	177	174	351	18	21	39			
8	176	175	351	19	20	39			
9	173	178	351	22	17	39			
10	178	173	351	17	22	39			

Lampiran 9 Jumlah pembagian data latih dan data uji untuk percobaan ke-2 dengan metode *oversampling*

		Data Lati	h			Data	Uji	
Fold	Low	Medium	High	Jumlah	Low	Medium	High	Jumlah
	Risk	Risk	Risk	Juiiiaii	Risk	Risk	Risk	Juiiiaii
1	176	176	174	526	19	19	21	59
2	174	175	178	527	21	20	17	58
3	175	178	173	526	20	17	22	59
4	175	174	178	527	20	21	17	58
5	176	174	176	526	19	21	19	59
6	176	177	174	527	19	18	21	58
7	175	176	176	527	20	19	19	58
8	177	177	172	526	18	18	23	59
9	176	177	174	527	19	18	21	58
10	175	171	180	526	20	24	15	59

Lampiran 10 Jumlah pembagian data latih dan data uji untuk percobaan ke-3 dengan metode *undersampling*

		Data Latih			Data Uji			
Fold	Low Risk	Medium Risk	High Risk	Jumlah	Low Risk	Medium Risk	High Risk	Jumlah
1	74	74	78	226	10	10	6	26
2	76	79	72	227	8	5	12	25
3	74	76	77	227	10	8	7	25
4	78	77	72	227	6	7	12	25
5	73	77	77	227	11	7	7	25
6	80	69	78	227	4	15	6	25
7	78	72	77	227	6	12	7	25
8	74	77	76	227	10	7	8	25
9	72	79	76	227	12	5	8	25
10	77	76	73	226	7	8	11	26

Lampiran 11 Jumlah pembagian data latih dan data uji untuk percobaan ke-3 dengan metode *oversampling*

		Data Latil	h		Data Uji				
Fold	Low	Medium	High	Iumlah	Low	Medium	High	Jumlah	
	Risk	Risk	Risk	Jumlah	Risk	Risk	Risk	Juillian	
1	96	97	101	294	13	12	8	33	
2	101	100	93	294	8	9	16	33	
3	99	100	96	295	10	9	13	32	
4	97	97	100	294	12	12	9	33	
5	100	95	99	294	9	14	10	33	

Lampiran 11 Lanjutan

	Data Latih				Data Uji				
Fold	Low Risk	Medium Risk	High Risk	Jumlah	Low Risk	Medium Risk	High Risk	Jumlah	
6	96	99	100	295	13	10	9	32	
7	100	97	97	294	9	12	12	33	
8	98	99	98	295	11	10	11	32	
9	97	100	97	294	12	9	12	33	
10	97	97	100	294	12	12	9	33	

Lampiran 12 Model prediksi pohon keputusan terbaik dengan *oversampling* untuk percobaan ke-1 dengan algoritme C5.0

```
MAT103 in {A, AB, B}:
\dotsBIO100 = E: LowRisk (0)
    BIO100 in {A, AB, B, BC}:
    :...EKO100 in {A,AB,B,BC,D,E}: LowRisk (134/4)
        EKO100 = C: HighRisk (2)
    BIO100 in {C,D}:
    :...IPB100 = A: HighRisk (0)
        IPB100 in {AB,B,BC}: LowRisk (22/5)
        IPB100 in {C,D}:
        :...KIM101 in \{A,B,BC,C,D,E\}: HighRisk (16)
            KIM101 = AB: LowRisk (3)
MAT103 in {BC,C,D,E}:
:...FIS100 in {A,C,D,E}: HighRisk (115/7)
    FIS100 in {AB,B,BC}:
    :...MAT103 in {D,E}: HighRisk (16/1)
        MAT103 in {BC,C}:
        :...IPB108 in \{A, BC, C, D\}: LowRisk (15/2)
            IPB108 in {AB,B}:
             :...FIS100 = AB: HighRisk (10)
                 FIS100 in {B,BC}:
                 :...KPM130 in \{A,C,D\}: LowRisk (4)
                     KPM130 in {B,BC}: HighRisk (3)
                     KPM130 = AB:
                     :...KOM201
                                  in
                                       {A,B}:
                                                HighRisk
                                                  (6/1)
                         KOM201 in {AB,BC,C,D}: LowRisk
                                                  (5)
```

Lampiran 13 Model prediksi pohon keputusan terbaik dengan *oversampling* untuk percobaan ke-2 dengan algoritme C5.0

```
EKO100 in \{A,AB\}:
:...FIS100 in {D,E}: LowRisk (0)
    FIS100 = C: MediumRisk (13/1)
    FIS100 in {A, AB, B, BC}:
    :...KOM201 = C: LowRisk (0)
        KOM201 in {BC,D}:
        :...AGB100 in {A,B}: MediumRisk (6)
            AGB100 = AB: LowRisk (1)
        KOM201 in {A, AB, B}:
        :...MAT103 = E: LowRisk (0)
:
            MAT103 in \{A,AB,B\}:
               :...IPB112 in \{A,AB,BC,C,D,E\}: LowRisk
                                                 (94)
                 IPB112 = B:
                 :...IPB107 in {A,AB,BC,C,D}: LowRisk
             :
                     IPB107 = B: MediumRisk (2)
            MAT103 in {BC,C,D}:
:
            :...KOM201 = AB: LowRisk (9)
                 KOM201 in {A,B}:
:
                 :...FIS100 = A: MediumRisk (0)
:
                     FIS100 = BC: LowRisk (4)
                     FIS100 in {AB,B}:
:
                    :...IPB108 in {BC,C,D}: MediumRisk
                                                 (0)
                         IPB108 = A: LowRisk (3)
                         IPB108 in {AB,B}:
:
                             :...IPB106 in \{A, B, BC, C\}:
:
                                      MediumRisk (12)
                              IPB106 = AB: LowRisk (1)
EKO100 in {B,BC,C,D,E}:
:...BIO100 in {A,AB,B,BC,E}:
    :...MAT103 = E: MediumRisk (0)
        MAT103 = D:
        :...IPB111 in {A,AB,C}: HighRisk (11)
            IPB111 in {B,BC}: MediumRisk (10)
        MAT103 in {A, AB, B, BC, C}:
        :...KIM101 = E: MediumRisk (0)
            KIM101 in {A, AB}:
            :...IPB107 in {A,AB,BC,C,D}: LowRisk (20)
                 IPB107 = B:
            :
                :...IPB111 in {A,B,BC,C}: MediumRisk
                                                 (5)
                     IPB111 = AB: LowRisk (4)
```

Lampiran 13 Lanjutan

```
KIM101 in {B,BC,C,D}:
        :...MAT100 = A: LowRisk (2)
            MAT100 in \{C, D, E\}: MediumRisk (9)
            MAT100 = AB:
           :...FIS100 in {A,AB,B,BC,D,E}: LowRisk
                                             (2)
                 FIS100 = C: MediumRisk (2)
            MAT100 = B:
              :...KIM101 in {B,BC,D}: MediumRisk
                                             (14/2)
                KIM101 = C: LowRisk (3)
            MAT100 = BC:
            :...AGB100 in {A,AB}: MediumRisk (23)
                AGB100 = B: LowRisk (1)
BIO100 in {C,D}:
:...MAT103 = AB:
    :...IPB111 = A: MediumRisk (3)
        IPB111 in {AB,B,BC,C}: LowRisk (7)
    MAT103 in \{A, B, BC, C, D, E\}:
    :...KOM201 = D: HighRisk (0)
        KOM201 = A:
        :...IPB100 in {A,AB,BC,C,D}: MediumRisk
                                             (18)
            IPB100 = B: LowRisk (3/1)
        KOM201 in {AB,B,BC,C}:
        :...IPB108 in {AB,C,D}: MediumRisk (12/1)
            IPB108 in {A,B,BC}:
            :...IPB100 = BC:
                :...FIS100 in {B,C}: LowRisk (2)
                        FIS100 in {A, AB, BC, D, E}:
                                    MediumRisk (6)
                IPB100 in \{A,AB,B,C,D\}:
                 :...KPM130 = AB:
                     :...IPB112 in
               \{A,AB,BC,C,D,E\}: MediumRisk (12/3)
                         IPB112 = B: HighRisk (4)
                     KPM130 in \{A,B,D\}:
                     :...MAT100
                                  in
                                     {A,B,C,D,E}:
                                   HighRisk (92/2)
                         MAT100 in {AB, BC}:
                            :...EKO100 in {B,C}:
                                   MediumRisk (10)
                            : EKO100 in {BC, D, E}:
                                     HighRisk (13)
                               KPM130 in {BC,C}:
```

Lampiran 13 Lanjutan

```
:... EKO100 in {B,E}: HighRisk
  EKO100 = BC: MediumRisk (10)
 EKO100 in \{C,D\}:
  :...IPB106 in {BC,C}:
  :...FIS100 in {A, AB, B, BC, C, E}
               : MediumRisk(7)
      FIS100 = D: LowRisk (1)
     IPB106 in {A,AB,B}:
 :...IPB107 = A: HighRisk (0)
      IPB107 in {AB, D}:
 :...FIS100 = BC: LowRisk (1)
     FIS100 in {A, AB, B, C, D, E}:
                 MediumRisk (3)
      IPB107 in {B,BC,C}:
:...KIM101 in {AB,BC}:
                 MediumRisk (2)
   KIM101 in \{A, B, C, D, E\}:
                HighRisk (57/1)
```

Lampiran 14 Model prediksi pohon keputusan terbaik dengan *undersampling* untuk percobaan 3 kelas versi 2 dengan algoritme C5.0

```
MAT103 in \{BC,C,D,E\}:
:...FIS100 in {A,C,D}: HighRisk (58/7)
    FIS100 in {AB, B, BC}:
    \dotsMAT100 = A: LowRisk (1)
        MAT100 in \{AB,C,D,E\}: HighRisk (8/1)
        MAT100 = BC:
        :...MAT103 in {BC,C}: MediumRisk (5)
            MAT103 in {D,E}: HighRisk (5)
        MAT100 = B:
        :...IPB111 in {BC,C}: HighRisk (1)
            IPB111 = A:
            :...IPB112 in {A,AB,C,D,E}: MediumRisk
                                                 (4/1)
                IPB112 = B: LowRisk (1)
            IPB111 = AB:
            :...IPB106 in \{A,B,BC,C\}: HighRisk (4)
                IPB106 = AB: MediumRisk (1)
            IPB111 = B:
            :...IPB100 in \{A,C\}: HighRisk (3/1)
                 IPB100 in {AB,B,BC,D}: MediumRisk (3)
MAT103 in {A,AB,B}:
:...EKO100 in {D,E}: LowRisk (0)
    EKO100 = C:
     :...MAT103 = AB: MediumRisk (1)
```

Lampiran 14 Lanjutan

```
MAT103 in {A,B}: HighRisk (4)
EKO100 in {A,AB,B,BC}:
:...IPB106 = C: LowRisk (0)
   IPB106 = B: MediumRisk (13/1)
    IPB106 in {A,AB,BC}:
    :...FIS100 = C: MediumRisk (2)
        FIS100 = D: HighRisk (1)
        FIS100 = A:
         :...KOM201 in {A,B,BC,C,D}: LowRisk (16)
            KOM201 = AB:
            :...EKO100 in {A, AB, BC}: LowRisk (2)
                EKO100 = B: MediumRisk (2)
        FIS100 = AB:
        :...MAT103 in {A,AB}:
            :...IPB112 in \{A,B,C,D,E\}: LowRisk
                                           (36/8)
                IPB112 = AB: MediumRisk (2)
            MAT103 = B:
            :...IPB106 in {A,BC}: MediumRisk (5)
                IPB106 = AB: LowRisk (3/1)
         FIS100 = BC:
        :...IPB106 in {AB,BC}: MediumRisk (4)
            IPB106 = A:
            :...MAT100 in {A, AB, BC, D, E}: LowRisk
                MAT100 in {B,C}: MediumRisk (5)
        FIS100 = B:
        :...BIO100 in \{AB, BC, E\}: LowRisk (9/1)
            BIO100 = D: MediumRisk (1)
            BIO100 = B:
            :...MAT103 in {A,B}: MediumRisk (5/1)
                MAT103 = AB: LowRisk (3)
            BIO100 = C:
            :...KPM130 = A: MediumRisk (2)
                KPM130 in {AB,B,BC,C,D}:HighRisk
            BIO100 = A:
            :...IPB107 in {AB,BC,C,D}:MediumRisk
                                            (0)
               IPB107 = B: HighRisk (1)
               IPB107 = A:
                :...IPB111 in {A,AB,BC,C}:
               MediumRisk (4)
                     IPB111 = B: LowRisk (2)
```

Lampiran 15 Hasil akurasi pada percobaan ke-1

Lampiran 16 Hasil akurasi pada percobaan ke-2

Lampiran 18 Kurva *precision recall* pada percobaan ke-1 dengan metode *oversampling*

Lampiran 19 Kurva *precision recall* pada model terbaik percobaan ke-3 dengan metode *undersampling*

Lampiran 20 Kurva ROC pada model terbaik percobaan ke-1 dengan metode oversampling

Lampiran 22 Model prediksi pohon keputusan pada korelasi data 1 (MAT100, MAT221, dan KOM208)

```
MAT221 in {A,AB,B,BC}: BAIK (78/24)
MAT221 in {C,D}: CUKUP (21/6)
```

Lampiran 23 Model prediksi pohon keputusan pada korelasi data 2 (KOM203, KOM206, KOM311, dan KOM312)

```
KOM206 in {A,AB}: BAIK (75/20)
KOM206 in {C,D,E}: CUKUP (15/2)
KOM206 = BC:
:...KOM311 in {A,BC}: BAIK (9/2)
: KOM311 in {AB,B,C,D}: CUKUP (16/1)
KOM206 = B:
:...KOM311 in {A,D}: BAIK (12/5)
KOM311 in {AB,BC,C}: CUKUP (6)
KOM311 = B:
:...KOM203 in {A,B}: CUKUP (8/3)
KOM203 in {AB,BC,C}: BAIK (6)
```

Lampiran 24 Model prediksi pohon keputusan pada korelasi data 3 (KOM202, KOM207, KOM321, dan KOM323)

```
KOM207 in {BC,C}: CUKUP (14)
KOM207 in {A,AB,B}:
:...KOM321 in {A,AB,B,D}: BAIK (41/11)
    KOM321 = C: CUKUP (13/4)
    KOM321 = BC:
:...KOM202 in {A,AB,C,D}: CUKUP (15/4)
    KOM202 in {B,BC}: BAIK (9/2)
```

Lampiran 25 Model prediksi pohon keputusan pada korelasi data 4 (MAT100, MAT221, KOM321, dan KOM323)

```
MAT100 = A: BAIK (43/14)
MAT100 in {AB,B,BC,C,D}: CUKUP (83/31)
```

Lampiran 26 Model prediksi pohon keputusan pada korelasi data 5 (MAT103, MAT217, dan MAT321)

```
MAT103 in {BC,D}: CUKUP (23)

MAT103 in {A,AB,B,C}:

:...MAT217 = AB: BAIK (27/9)

MAT217 in {BC,D}: CUKUP (14)

MAT217 = A:

:...MAT103 in {A,AB,C}: BAIK (37/5)

: MAT103 = B: CUKUP (2)

MAT217 = B:

:...MAT103 in {A,AB,C}: BAIK (40/15)

: MAT103 = B: CUKUP (5)

MAT217 = C:

:...MAT103 in {A,AB,C}: CUKUP (9)

MAT103 = B: BAIK (11/3)
```

Lampiran 27 Model prediksi pohon keputusan pada korelasi data 6 (KOM202, KOM331, dan KOM334)

```
KOM331 in {A,AB,B}: BAIK (36/7)
KOM331 in {BC,C,D}: CUKUP (57/16)
```

Lampiran 28 Model prediksi pohon keputusan pada korelasi data 7 (MAT100, MAT215, dan KOM301)

```
MAT215 in {C,D}: CUKUP (26/1)

MAT215 in {A,AB,B,BC}:

:...MAT100 in {A,D,E}: BAIK (58/12)

MAT100 in {B,BC,C}: CUKUP (25/8)

MAT100 = AB:

:...MAT215 in {A,AB}: BAIK (4)

MAT215 in {B,BC}: CUKUP (18/7)
```

Lampiran 29 Model prediksi pohon keputusan pada korelasi data 8 (KOM206, KOM311, dan KOM312)

```
KOM206 in {C,D}: CUKUP (22)
KOM206 in {A,AB,B,BC}:
:...KOM311 in {B,C}: BAIK (101/35)
   KOM311 in {BC,D}: CUKUP (14/3)
   KOM311 = A:
   :...KOM206 in {A,B}: CUKUP (8)
   : KOM206 in {AB,BC}: BAIK (15/4)
   KOM311 = AB:
   :...KOM206 = A: BAIK (6)
   KOM206 in {AB,BC}: CUKUP (7)
```

RIWAYAT HIDUP

Penulis dilahirkan di Jakarta pada tanggal 2 Juni 1993. Penulis adalah anak ke-3 dari 3 bersaudara, anak dari pasangan Herry Poerwanto dan Etty Mulhetty.

Penulis menempuh pendidikan sekolah menengah atas di SMA Negeri 17 Bekasi pada tahun 2008 hingga 2011. Penulis melanjutkan pendidikan perguruan tinggi diploma di Program Diploma Institut Pertanian Bogor dengan mengambil Program Keahlian Manajemen Informatika pada tahun 2011 hingga 2014. Penulis melanjutkan pendidikan sarjana di Departemen Ilmu Komputer Institut Pertanian Bogor.