Juny Isaleash

IS42

M S RAMAIAH INSTITUTE OF TECHNOLOGY

USN

(AUTONOMOUS INSTITUTE, AFFILIATED TO VTU)
BANGALORE - 560 054

SEMESTER END EXAMINATIONS - JUNE 2009

Course : B.E. (INFORMATION SCIENCE & ENGINEERING)

Semester: IV

(04)

Subject Code: IS42 Maximum Marks: 100 Subject: Finite Automata & Formal Languages

MSO

Duration: 3 Hours

Instructions to the Candidates:

- 1. Answer one full question from each unit.
- 2. Any missing data may be suitably assumed.

Unit - I

- a) Define a DFA. Obtain a DFA that recognizes the language, L={W € (0,1)}*: (10) number of is 1's is even and the number 0's is a multiple of 3.
 - b) Write regular expressions for the following languages over $=\{0,1\}$ *. (06)
 - , j). Set of all strings that contain 010.
 - , ii) Set of all strings containing exactly three 1's.
 - iii) Set of odd length strings ending in 0.
 - c) Explain the applications of regular expressions.
- Convert the regular expression, 01*+1 to NFA with epsilon transions. Using (12) subset construction method, convert the ε-NFA to a DFA
 - b) Prove that if L= L(A) for some DFA A then there is a regular expression R such that L=L(R).

Unit - II

3. a) State and prove pumping lemma for regular languages (10)
b) Minimize the following DFA using table filling algorithm. (10)

- 4. a) Show that if $L_1 \& L_2$ are regular, then so are $L_1 U L_2$, \overline{L}_1 and $L_1 \cap L_2$ (08)
 - b) Show that L={a^{n!} | n≥1|} is not regular
 c) Explain homomorphism and inverse homomorphism with examples.
- 5. a) Define context free grammar (CFG).
 Design CFG's for the following languages.
 - i) $\{a^i b^j c^k | i=j+k\}$
 - ii) {W ε (a, b)*: W is odd length string with first and last symbol.begin same}

	b)	Consider the grammar S → (L) a	(06)
		$L \rightarrow (L, S) \mid S$	
		Construct a left most derivation, right most derivation and parse tree for the sentence (a, (a,a))	ne
	-c)		(04)
	()	Define fere most and right most derivations.	(04)
6.	a)	Define ambiguity in grammars. Show that the following grammar ambiguous	is (06)
		$S \rightarrow aS bS bS aS \epsilon$	
	b)		(06)
	c)	Consider the ambiguous grammar for the language of valid expressions. $E \rightarrow E+E \mid E-E \mid E*E \mid E/E \mid (E) \mid id$	(08)
		Design an unambiguous grammar and derive the sentence	
		(a + b) * C - (d+e),	
-		Unit – IV	
7.	a)		(14)
		Trace the PDA for the word abba	
	b)		(06)
		S → aAA	
		$S \rightarrow aS \mid bS \mid a$	
		to a PDA that accepts the same language by empty stack.	
8.	a)	What are useless symbol. Find a grammar equivalent to	(06)
		S → AB AC	
		A → aA bAa. a	
		B → bbA aB AB	
		C → aCa aD	
		D → aD bC	
	b)	With no useless symbols. Convert the following grammar into Chomsky Normal Form (CNF)	(08)
	D)	S→AAA/B	(00)
		A→aA/B	
	-1	B→€	(06)
	c)	Show that context free languages are not closed under inter section	(00)
		Unit - V	
0	a)	Define a turing machine. Design a Turing machine to accept	(12)
9.	4)	L = { WE (a,b)*; W is odd length palindrome}	(1-)
	*	Trace the ;machine for the sentence abbba	
	b)	Write a note on	(08)
	0)	i) Multi tape turing machines	
		ii) Multi stack turing machines	
10.	a)	Define a non deterministic turing machine prove that if MN is an NTM, then	1 (10)
7		there is a deterministic turing machine (DTM) M_D such that $L(M_N) = L(M_D)$	10
	b)	Design a turing machine to accept $L = \{ a^n b^n c^n : n \ge 2 \}$. Show the ID's o	f (1.0)
	a	the turing machine for the sentence aabbcc.	
