Measurement Invariance

Adam Garber

Norwegian University of Science and Technology - A Course in MplusAutomation

June 01, 2021

DATA SOURCE: This lab exercise utilizes the NCES public-use dataset: Education Longitudinal Study of 2002 (Lauff & Ingels, 2014) See website: nces.ed.gov

```
# load packages
library(MplusAutomation)
library(tidyverse)
library(here)
library(corrplot)
library(gt)
library(reshape2)
library(semPlot)
```

Lab 9 - Begin

Read in data

lab_data <- read_csv("https://garberadamc.github.io/project-site/data/els_sub5_data.csv")</pre>

Preparations: subset, reorder, rename, and recode data

Take a quick look at variable distributions

```
melt(invar_data[,4:13]) %>%
  ggplot(., aes(x=value, label=variable)) +
  geom_histogram(bins = 15) +
  facet_wrap(~variable, scales = "free")
```


Reverse code factor for ease of interpretation

```
cols = c("unsafe", "disrupt", "gangs", "rac_fght")
invar_data[ ,cols] <- 5 - invar_data[ ,cols]</pre>
```

Factor names and interpretation:

- VICTIM: student reports being a victim of injury to self or property
 - scale range: Never, Once or twice, More than twice
 - higher values indicate greater frequency of victimization events
- NEG_CLIM: Student reports on negative school climate attributes
 - scale range: Strongly Disagree Strongly Agree

- higher values indicate a more negative climate

Check correct coding, explore correlations

Estimate the Unconditional Confirmatory Factor Analysis (CFA) model

- \bullet 10 item loadings
- 10 intercepts
- 10 residual variances
- 01 factor co-variances

```
cfa_m0 <- mplusObject(</pre>
  TITLE = "model0 - unconditional CFA model",
  VARIABLE =
   "usevar = stolen-rac_fght;",
  ANALYSIS =
   "estimator = mlr;",
 MODEL =
    "VICTIM by stolen* t_hurt p_fight hit damaged bullied;
    VICTIM@1; ! UVI identification
    NEG_CLIM by unsafe* disrupt gangs rac_fght;
    NEG_CLIM@1; ",
 PLOT = "type = plot3;",
  OUTPUT = "sampstat standardized residual modindices (3.84);",
 usevariables = colnames(invar_data),
 rdata = invar_data)
cfa_m0_fit <- mplusModeler(cfa_m0,</pre>
              dataout=here("09-invariance", "invar_mplus", "invar_data.dat"),
              modelout=here("09-invariance", "invar_mplus", "m0_cfa_fullsample.inp"),
              check=TRUE, run = TRUE, hashfilename = FALSE)
```

Run separate CFA models for each sub-sample

Group freelnch = 0 (low) CFA

```
cfa_m1 <- mplusObject(
    TITLE = "CFA model1 - group is 0 for freeInch",
    VARIABLE =
        "usevar = stolen-rac_fght;

    !freeInch (0 = school proportion is less than 11 percent)
        USEOBS = freeInch == 0; ",

ANALYSIS =
        "estimator = mlr;",

MODEL =
        "VICTIM by stolen* t_hurt p_fight hit damaged bullied;
        VICTIM@1; ! UVI identification

NEG_CLIM by unsafe* disrupt gangs rac_fght;</pre>
```

Group freelnch = 1 (moderate to high) CFA

```
cfa_m2 <- mplusObject(</pre>
 TITLE = "CFA model2 - group is 1 for freelnch",
 VARIABLE =
   "usevar = stolen-rac_fght;
     !freelnch (1 = school proportion is greater than or equal to 11 percent)
    USEOBS = freelnch == 1; ",
  ANALYSIS =
    "estimator = mlr;",
    "VICTIM by stolen* t_hurt p_fight hit damaged bullied;
    VICTIM@1; ! UVI identification
    NEG_CLIM by unsafe* disrupt gangs rac_fght;
    NEG_CLIM@1; ",
 PLOT = "type = plot3;",
  OUTPUT = "sampstat standardized residual modindices (3.84);",
 usevariables = colnames(invar_data),
 rdata = invar_data)
cfa_m2_fit <- mplusModeler(cfa_m2,</pre>
              dataout=here("09-invariance", "invar_mplus", "invar_data.dat"),
              modelout=here("09-invariance", "invar_mplus", "m2_cfa_freelnch_1.inp"),
              check=TRUE, run = TRUE, hashfilename = FALSE)
```

Multi-Group Invariance Models

Figure: Picture depicting mean structure from slide by Dr. Karen Nylund-Gibson

Configural invariance

- free item loadings, intercepts, and residuals
- factor means fixed to zero
- factor variances fixed to 1

- 20 item loadings (10items*2groups)
- 20 intercepts
- 20 residual variances

```
cfa_m3 <- mplusObject(
    TITLE = "CFA model3 - configural invariance",
    VARIABLE =</pre>
```

```
"usevar = stolen-rac_fght;
    grouping = freelnch (0=freelnch 0 1=freelnch 1); ",
  ANALYSIS =
    "estimator = mlr;",
  MODEL =
    "VICTIM by stolen* t_hurt p_fight hit damaged bullied;
    VICTIM@1; ! UVI identification
    NEG_CLIM by unsafe* disrupt gangs rac_fght;
    NEG_CLIM@1;
     [VICTIM-NEG_CLIM@0]; !factor means set to zero
    MODEL freelnch_1:
    VICTIM by stolen* t_hurt p_fight hit damaged bullied;
     VICTIM@1;
     [stolen t_hurt p_fight hit damaged bullied]; !free intercepts
    NEG_CLIM by unsafe* disrupt gangs rac_fght;
    NEG_CLIM@1;
     [unsafe disrupt gangs rac_fght]; !free intercepts
     [VICTIM-NEG_CLIM@O]; ",
  PLOT = "type = plot3;",
  OUTPUT = "sampstat standardized residual modindices (3.84);",
 usevariables = colnames(invar_data),
 rdata = invar data)
cfa_m3_fit <- mplusModeler(cfa_m3,</pre>
              dataout=here("09-invariance", "invar_mplus", "invar_data.dat"),
              modelout=here("09-invariance", "invar_mplus", "m3_configural.inp"),
              check=TRUE, run = TRUE, hashfilename = FALSE)
```

Metric invariance

- item loadings (set to equal)
- free intercepts and residuals
- factor means fixed to zero
- free factor variances in group 2

- 10 item loadings (set to equal)
- 20 intercepts
- 20 residual variances
- 02 factor variances
- 02 factor co-variances

```
cfa_m4 <- mplusObject(</pre>
 TITLE = "CFA model4 - metric invariance",
  VARIABLE =
    "usevar = stolen-rac_fght;
    grouping = freelnch (0=freelnch_0 1=freelnch_1); ",
  ANALYSIS =
   "estimator = mlr;",
 MODEL =
    "VICTIM by stolen* t_hurt p_fight hit damaged bullied;
    VICTIM@1; ! UVI identification
    NEG_CLIM by unsafe* disrupt gangs rac_fght;
    NEG_CLIM@1;
     [VICTIM-NEG_CLIM@O];
    MODEL freelnch_1:
    VICTIM; ! free factor variances for group 2
     [stolen t_hurt p_fight hit damaged bullied];
     NEG_CLIM;
     [unsafe disrupt gangs rac_fght];
     [VICTIM-NEG_CLIM@O]; ",
  PLOT = "type = plot3;",
  OUTPUT = "sampstat standardized residual modindices (3.84);",
 usevariables = colnames(invar_data),
 rdata = invar_data)
cfa_m4_fit <- mplusModeler(cfa_m4,</pre>
              dataout=here("09-invariance", "invar_mplus", "invar_data.dat"),
              modelout=here("09-invariance", "invar_mplus", "m4_metric.inp"),
              check=TRUE, run = TRUE, hashfilename = FALSE)
```

Scalar invariance

- item loadings (set to equal)
- intercepts (set to equal)
- free residuals
- free factor variances and means in group 2

- 10 item loadings (set to equal)
- 10 intercepts (set to equal)
- 20 residual variances
- 02 factor variances
- 02 factor co-variances
- 02 factor means

```
cfa_m5 <- mplusObject(</pre>
 TITLE = "model5 - scalar invariance",
  VARIABLE =
   "usevar = stolen-rac_fght;
    grouping = freelnch (0=freelnch_0 1=freelnch_1); ",
  ANALYSIS =
    "estimator = mlr;",
 MODEL =
    "VICTIM by stolen* t_hurt p_fight hit damaged bullied;
    VICTIM@1;
    NEG_CLIM by unsafe* disrupt gangs rac_fght;
    NEG_CLIM@1;
     [VICTIM-NEG_CLIM@O];
    MODEL freelnch_1:
    VICTIM; ! free factor variances for group 2
     NEG_CLIM;
     [VICTIM-NEG_CLIM]; ! free factor means",
  PLOT = "type = plot3;",
  OUTPUT = "sampstat standardized residual modindices (3.84);",
 usevariables = colnames(invar_data),
  rdata = invar_data)
```

Strict invariance

- item loadings (set to equal)
- intercepts (set to equal)
- residuals (set to equal)
- free factor variances and means in group 2

- 10 item loadings (set to equal)
- 10 intercepts (set to equal)
- 10 residual variances
- 02 factor variances
- 02 factor co-variances
- 02 factor means

```
cfa_m6 <- mplusObject(</pre>
  TITLE = "model6 - strict invariance",
  VARIABLE =
    "usevar = stolen-rac_fght;
    grouping = freelnch (0=freelnch_0 1=freelnch_1); ",
  ANALYSIS =
    "estimator = mlr;",
 MODEL =
    "VICTIM by stolen* t_hurt p_fight hit damaged bullied;
    VICTIM@1;
     NEG_CLIM by unsafe* disrupt gangs rac_fght;
     NEG_CLIM@1;
     [VICTIM-NEG_CLIM@O];
     stolen-rac_fght(1-10); ! set residuals to be equal across groups
    MODEL freelnch_1:
     VICTIM; ! free factor variances for group 2
```

Structural invariance A (fixed factor variances)

Demonstration of structural invariance using the **Scalar model**

- item loadings (set to equal)
- intercepts (set to equal)
- free residuals (Scalar)
- factor means free in group 2
- factor variances (set to 1)
- free factor covariances

- 10 item loadings (set to equal)
- 10 intercepts (set to equal)
- 20 residual variances
- 00 factor variances
- 02 factor co-variances
- 02 factor means

```
# fixed factor variances

cfa_m7 <- mplusObject(

TITLE = "model7 - structural invariance A" ,

VARIABLE =</pre>
```

```
"usevar = stolen-rac_fght;
    grouping = freelnch (0=freelnch 0 1=freelnch 1); ",
  ANALYSIS =
    "estimator = mlr;",
  MODEL =
    "VICTIM by stolen* t_hurt p_fight hit damaged bullied;
    VICTIM@1;
    NEG_CLIM by unsafe* disrupt gangs rac_fght;
    NEG_CLIM@1;
     [VICTIM-NEG_CLIM@O];
    MODEL freelnch_1:
     [VICTIM-NEG_CLIM]; ! free factor means
    VICTIM@1; NEG CLIM@1; ! fix factor variance to 1",
  PLOT = "type = plot3;",
  OUTPUT = "sampstat standardized residual modindices (3.84);",
 usevariables = colnames(invar_data),
 rdata = invar_data)
cfa_m7_fit <- mplusModeler(cfa_m7,</pre>
              dataout=here("09-invariance", "invar_mplus", "invar_data.dat"),
              modelout=here("09-invariance", "invar_mplus", "m7_structuralA.inp"),
              check=TRUE, run = TRUE, hashfilename = FALSE)
```

Structural invariance B (fixed factor variances and equal covariances)

Demonstration of structural invariance using the Scalar model

- item loadings (set to equal)
- intercepts (set to equal)
- $\bullet \;$ free residuals (Scalar)
- factor means free in group 2
- factor variances (set to equal)
- factor covariances (set to equal)

Number of parameters = 43

• 10 item loadings (set to equal)

- 10 intercepts (set to equal)
- 20 residual variances
- 00 factor variances
- 01 factor co-variances
- 02 factor means

```
# equal factor variances and covariances
cfa_m8 <- mplusObject(</pre>
 TITLE = "model8 - structural invariance B" ,
  VARIABLE =
   "usevar = stolen-rac_fght;
     grouping = freelnch (0=freelnch_0 1=freelnch_1); ",
  ANALYSIS =
    "estimator = mlr;",
  MODEL =
    "VICTIM by stolen* t_hurt p_fight hit damaged bullied;
    VICTIM@1;
    NEG_CLIM by unsafe* disrupt gangs rac_fght;
    NEG_CLIM@1;
     [VICTIM-NEG_CLIM@O];
     VICTIM with NEG_CLIM (11) ! set covariances to equal;
    MODEL freelnch 1:
     [VICTIM-NEG_CLIM]; ! free factor means
     VICTIM01; NEG_CLIM01; ! fix factor variance to 1
     VICTIM with NEG_CLIM (11); ! set covariances to equal",
  PLOT = "type = plot3;",
  OUTPUT = "sampstat standardized residual modindices (3.84);",
  usevariables = colnames(invar_data),
 rdata = invar_data)
cfa_m8_fit <- mplusModeler(cfa_m8,</pre>
              dataout=here("09-invariance", "invar_mplus", "invar_data.dat"),
              modelout=here("09-invariance", "invar_mplus", "m8_structuralB.inp"),
              check=TRUE, run = TRUE, hashfilename = FALSE)
```

Latent Factor Means differences:

```
(model: Step_07_STRUCTURAL)
```

Mean differences: Students in sub-sample freelnch_1 have...

```
VICTIM -0.026 0.091 -0.291 0.771 (not significant)
NEG_CLIM 0.632 0.104 6.104 0.000 (higher scores for "NEG_CLIM")
```

Comparing Fit Across Models

Guidlines: for loadings & fit indices

- Simple structure: "0.4 0.3 0.2" rule Howard (2016) (primary loadings > 0.4 / cross-loadings < 0.3 / minimum difference = 0.2)
- RMSEA: < .05 indicates "good" fit Brown (2015)
- **CFI:** > .95 indicates "good" fit Brown (2015)
- SRMR: < .08 indicates "good" fit Hu and Bentler (1999)
- Invariance: Changes in ${\bf CFI}$ less than or equal to -0.01 are acceptable

Read into R summary of all models

```
all_models <- readModels(here("09-invariance", "invar_mplus"), quiet = TRUE)</pre>
```

Create table, extract fit statistics, sort by Filename

Model	Par	ChiSq	CFI	TLI	SRMR	RMSEA	Lower CI	Upper CI
m0_cfa_fullsample	31	121.460	0.898	0.865	0.043	0.060	0.048	0.071
$m1_cfa_freelnch_0$	31	67.305	0.907	0.877	0.053	0.057	0.036	0.076
$m2_cfa_freelnch_1$	31	82.253	0.893	0.858	0.049	0.063	0.046	0.081
$m3$ _configural	62	149.315	0.899	0.867	0.051	0.060	0.047	0.073
$m4$ _metric	54	163.312	0.892	0.872	0.061	0.059	0.047	0.072
$m5$ _scalar	46	179.176	0.882	0.874	0.062	0.059	0.047	0.071
$m6_strict$	36	180.933	0.892	0.897	0.067	0.053	0.041	0.065
$m7$ _structuralA	44	177.512	0.887	0.881	0.063	0.057	0.045	0.069
m8_structuralB	43	177.144	0.888	0.885	0.063	0.056	0.044	0.068

Calculate Satora-Bentler scaled Chi-square difference test (use with MLR estimator)

See website: stats.idre.ucla.edu

- SB0 = null model Chi-square value
- SB1 = alternate model Chi-square value
- c0 = null model scaling correction factor
- \bullet c1 = alternate model scaling correction factor
- d0 = null model degrees of freedom
- d1 = alternate model degrees of freedom
- df = Chi-square test degrees of freedom

compare configural to metric

integer(0)

```
SBO <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_Value"]]

SB1 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_ScalingCorrection"]]

c0 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_ScalingCorrection"]]

c1 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_DF_]]

d0 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_DF_]]

d1 <- all_models[["M3_configural.out"]][["summaries"]][["ChiSqM_DF_]]

d2 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_DF_]]

d3 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_DF_]]

d4 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_DF_]]

d5 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_DF_]]

d6 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_DF_]]

d7 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_DF_]]

d8 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_DF_]]

d9 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_DF_]]

d1 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_DF_]]

d1 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_DF_]]

d2 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_DF_]]

d5 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_DF_]]

d6 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_DF_]]

d7 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_DF_]]

d8 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_DF_]]

d9 <- all_models[["M4_metric.out"]][["summaries"]][["chiSqM_DF_]]

d1 <- all_models[["M4_metric.out"]][["summaries"]][["chiSqM_DF_]]

d2 <- all_models[["M4_metric.out"]][["summaries"]][["chiSqM_DF_]]

d3 <- all_models[["M4_metric.out"]][["summaries"]][["chiSqM_DF_]]

d4 <- all_models[["M4_metric.out"]][["summaries"]][["chiSqM_DF_]]

d6 <- all_models[["M4_metric.out"]][["summaries"]][["chiSqM_DF_]]

d7 <- all_models[["M4_metric.out"]][["summaries"]][["summaries"]][["summaries"]][["summaries"]][["summaries"]][["summaries"]][["summaries"]][["summaries"]][["summaries"]][["summaries"]][["summaries"
```

```
# Significance test
pchisq(t, df, lower.tail=FALSE)
## numeric(0)
compare metric to scalar
SBO <- all_models[["M5_scalar.out"]][["summaries"]][["ChiSqM_Value"]]
SB1 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_Value"]]
c0 <- all_models[["M5_scalar.out"]][["summaries"]][["ChiSqM_ScalingCorrection"]]</pre>
c1 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_ScalingCorrection"]]</pre>
d0 <- all_models[["M5_scalar.out"]][["summaries"]][["ChiSqM_DF"]]</pre>
d1 <- all_models[["M4_metric.out"]][["summaries"]][["ChiSqM_DF"]]</pre>
df \leftarrow abs(d0-d1)
\# Satora-Bentler scaled Difference test equations
cd \leftarrow (((d0*c0)-(d1*c1))/(d0-d1))
t \leftarrow (((SB0*c0)-(SB1*c1))/(cd))
# Chi-square and degrees of freedom
t
## numeric(0)
## integer(0)
# Significance test
pchisq(t, df, lower.tail=FALSE)
## numeric(0)
```

Invariance short-cut

```
mx <- mplusObject(
  TITLE = "INVARIANCE SHORT_CUT - DEMO",
  VARIABLE =
    "usevar = stolen-rac_fght;
    grouping = freelnch (0=freelnch_0 1=freelnch_1); ",

ANALYSIS =
  "Estimator = MLR;</pre>
```

Invariance Testing (Chi-square values - Chi-Square difference p-values are biased)

	Number of	Degrees of					
Model	Parameters	Chi-Square	Freedom	P-Value			
Q f 1	60	140 215	60	0.0000			
Configural	62	149.315	68	0.0000			
Metric	54	163.312	76	0.0000			
Scalar	46	179.176	84	0.0000			
		Degrees of					
Models Compared		Chi-Square	Freedom	P-Value			
Metric agai	nst Configural	14.759	8	0.0640			
Scalar agai	nst Configural	30.022	16	0.0179			
Scalar agai	nst Metric	15.444	8	0.0511			

 \mathbf{End}

References

Hallquist, M. N., & Wiley, J. F. (2018). MplusAutomation: An R Package for Facilitating Large-Scale Latent Variable Analyses in Mplus. Structural equation modeling: a multidisciplinary journal, 25(4), 621-638.

Horst, A. (2020). Course & Workshop Materials. GitHub Repositories, https://https://allisonhorst.github.io/

Lauff, E., & Ingels, S. J. (2014). Education Longitudinal Study of 2002 (ELS: 2002): A First Look at 2002 High School Sophomores 10 Years Later. First Look. NCES 2014-363. National Center for Education Statistics.

Muthén, L.K. and Muthén, B.O. (1998-2017). Mplus User's Guide. Eighth Edition. Los Angeles, CA: Muthén & Muthén

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686