Implementation of 4x1 multiplexer using logic gates.

AIM:To analyse the truth table and working of 1x4 De-Multiplexer by using 3-input NAND and 1-input NOT logic gate ICs and 4x1 Multiplexer by using 3-input AND, 3-input OR, and 1-input NOT logic gate ICs.

Introduction:

The function of a multiplexer is to select the input of any 'n' input lines and feed that to one output line. The function of a de-multiplexer is to inverse the function of the multiplexer and the shortcut forms of the multiplexer. The de-multiplexers are mux and demux. Some multiplexers perform both multiplexing and de-multiplexing operations.

Figure-1:Block diagram of Multiplexer and De-multiplexer

1) Multiplexer: Multiplexer is a device that has multiple inputs and a single line output. The select lines determine which input is connected to the output, and also to increase the amount of data that can be sent over a network within certain time. It is also called a data selector.

Multiplexers are classified into four types:

- a)2-1multiplexer(1selectline)
- b)4-1multiplexer(2selectlines)
- c)8-1multiplexer(3selectlines)
- d) 16-1 multiplexer (4 select lines)

1.1) 4x1 Multiplexer

4x1 Multiplexer has four data inputs D0, D1, D2 & D3, two selection lines S0 & S1 and one output Y. The block diagram of 4x1 Multiplexer is shown in the following figure. One of these 4 inputs will be connected to the output based on the combination of inputs present at these two selection lines. Truth table of 4x1 Multiplexer is shown below.

Figure-2:Block diagram of 4x1 Multiplexer

Selection	Output	
S0	S1	Υ
0	0	D ₀
0	1	D ₁
1	0	D ₂
1	1	D3

Figure-3:Truth table of 4x1 Multiplexer

PRETEST:

In a multiplexer, the selection of a particular input line is controlled by O a: Data controller
b: Selected lines
○ c: Logic gates
O d: Both data controller and selected lines
If the number of n selected input lines is equal to 2^m then it requires select lines. \odot a: 2
● b: m
O c: n
O d: 2^n
Which of the following circuit can be used as parallel to serial converter? • a: Multiplexer
O b: Demultiplexer
O c: Decoder
O d: Digital counter
How many select lines would be required for an 8-line-to-1-line multiplexer?
O a: 2
O b: 4
O c: 8
● d: 3
Submit Quiz

PROCEDURE:

your results.

1) 4x1 Multiplexer

Step-1) Connect the supply(+5V) to the circuit.
Step-2) First press "ADD" button to add basic state of your output in the
iven table.
Step-3) Press the switches "S0" and "S1" to select the desired input line.
Step-4) Press "D0"/"D1"/"D2"/"D3" any one button to add your inputs.
Step-5) Press "ADD" button to add your inputs and outputs in the given
able.
Step-6) Repeat step 3, 4 and step 5 for next state of inputs and their
orresponding outputs.
Step-7) Press the "PRINT" button after completing your simulation to get

SIMULATION:

TRUTHT	ABLE		PRINT	Add
Serial No.	S0	Sl	OUTPUT (Y)	OUTPUT VALUE
1	1	1	D3	0
2	1	1	D3	0
3	1	l	D3	0
4	1	l	D3	1

CONCLUSION: