Lecture 3: Data Visualization

BIOF 339 September 26, 2017

Data Visualization in R

One of R's strengths is data visualization.

R can create static as well as interactive graphs with a rich set of usercontributed packages

- Static graph systems
 - Base R graphics
 - lattice (Sarkar, et al)
 - ggplot2 (Wickham)
- Dynamic graphs
 - rCharts
 - leaflet
 - plotly
 - Many others

Data visualization in R

We're making the decision to use ggplot2 for my graphics

- Makes pretty good formatting choices out of the box
- · Is declarative (tell it what you want) without getting caught up in minutae
- Strongly leverages data frames (good practice)
- Fast enough
- There are good templates if you want to change the look

Introduction to ggplot2

Introduction to ggplot2

If you haven't installed it yet:

library(ggplot2)

Introduction to ggplot2

The ggplot2 package is a very flexible and (to me) intuitive way of visualizing data. It is based on the concept of layering elements on a canvas.

You need:

- · A data.frame object
- · (aes) to say what data is used for what purpose in the viz
 - x- and y-direction
 - shapes, colors, lines
- · A (geom) to say what to draw
 - You can "layer" geoms on each other to build plots

Introduction to ggplot2

```
library(ggplot2)
ggplot(mtcars, aes(x = wt, y = mpg)) + geom point()
```

- · A data.frame object: mtcars
- · Aesthetic mapping: x-axis: wt y-axis: mpg
- · Geometry:
 - geom_point: draw points

Introduction to ggplot2

```
library(ggplot2)
ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()+ geom_smooth()
```

- · A data.frame object: mtcars
- · Aesthetic mapping: x-axis: wt y-axis: mpg
- · Geometry:
 - geom_point: draw points
 - geom_smooth: Add a layer which draws a best-fitting line

Introduction to ggplot2

We will use the two data sets:

Plotting one variable

Histograms

```
ggplot(data_brca, aes(x = Age.at.Initial.Pathologic.Diagnosis)) +
  geom_histogram()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Histograms

ggplot(data_brca, aes(x = Age.at.Initial.Pathologic.Diagnosis)) +
 geom_histogram(binwidth=4)

Density plot

ggplot(data_brca, aes(x = Age.at.Initial.Pathologic.Diagnosis)) +
 geom_density()

Bar plot

ggplot(data_brca, aes(x = Tumor))+geom_bar()

Exercise

Exercise

Using the mtcars dataset in R, create:

- 1. A histogram of the fuel efficiences (mpg) in the data set
- 2. A bar plot of frequencies of number of cylinders (cyl) in the car

Solution

 $ggplot(mtcars, aes(x = mpg)) + geom_histogram(binwidth=3)$

 $\# ggplot(mtcars) + geom_histogram(aes(x = mpg), binwidth = 3)$

Solution

 $ggplot(mtcars, aes(x = factor(cyl))) + geom_bar()$

Two continuous variables

Scatter plots

ggplot(data_spine, aes(x = Lumbar.lordosis.angle, y = Sacral.slope)) +
 geom_point()

Scatter plot with a smooth line

```
ggplot(data_spine, aes(x = Lumbar.lordosis.angle, y = Sacral.slope))+
  geom_point() +
  geom_smooth()
```

`geom smooth()` using method = 'loess'

Scatter plot with a smooth straight line

```
ggplot(data_spine, aes(x = Lumbar.lordosis.angle, y = Sacral.slope)) +
  geom_point()+
  geom_smooth(method='lm')
```


Line plot (for time series)

```
library(forecast)
d <- data.frame(x = 1:length(gas), y = gas) # Australian monthly gas production
ggplot(d, aes(x, y)) + geom_line()</pre>
```


Exercise

Exercise

1. Create a scatter plot of sepal length and sepal width from the iris dataset, and add a smooth line through it

Solution

```
ggplot(iris, aes(Sepal.Length, Sepal.Width)) + geom_point() + geom_smooth()
```

`geom_smooth()` using method = 'loess'

Continuous variable with discrete variable

Boxplots

```
ggplot(data_spine, aes(x = Class.attribute, y = Sacral.slope))+
  geom_boxplot()
```


Factor/discrete variable is always x

Violin plots

```
ggplot(data_spine, aes(x = Class.attribute, y = Sacral.slope)) +
  geom_violin()
```


Exercise

Exercise

1. Plot a boxplot of petal length by species using the iris dataset

Solution

ggplot(iris, aes(x = Species, y = Petal.Length))+geom_boxplot()

Flipping axes

Vertical bars

ggplot(data_brca, aes(x = Tumor))+geom_bar()

Horizontal bars

ggplot(data_brca, aes(x = Tumor))+geom_bar()+
 coord_flip()

Resources

Online resources

- · The ggplot website has many resources to help create visualizations
- There are a lot of blogs showing many capabilities of ggplot2
- StackOverflow is the place for Q & A.

Group-wise descriptives and visualizations

Grouping

- · It is common to look at statistics within subgroups of the data
- The idea is to see if secondary variables affect your primary outcome or relationship

Introducing the dplyr package

dplyr is the most lucid package for manipulating and analyzing data organized in a data frame.

· It has a group by function which creates a

```
library(dplyr)
grouped_data_spine = group_by( data_spine, Class.attribute)
```

Note that you have to group using a discrete valued variable (factor, character, integer)

Grouped summaries

Class.attribute	mean(Pelvic.incidence)	sd(Pelvic.incidence)	min(Pelvic.incidence)	max(Pelvic.incidence)
Abnormal	64.69256	17.66213	26.14792	129.83404
Normal	51.68524	12.36816	30.74194	89.83468

Grouped summaries

Class.attribute	Mean	SD	Min	Max
Abnormal	64.69256	17.66213	26.14792	129.83404
Normal	51.68524	12.36816	30.74194	89.83468

Grouped summaries

summarize_all(grouped_data_spine, mean)

```
# A tibble: 2 x 13
#
      Class.attribute Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle
              <fctr>
                                 <dbl>
                                             <dbl>
                                                                   <dbl>
             Abnormal
                              64.69256
                                         19.79111
                                                                55.92537
                              51,68524
              Normal
                                         12.82141
                                                                43.54260
    # ... with 9 more variables: Sacral.slope <dbl>, Pelvic.radius <dbl>,
#
        Degree.spondylolisthesis <dbl>, Pelvic.slope <dbl>, Direct.tilt <dbl>,
#
        Thoracic.slope <dbl>, Cervical.tilt <dbl>, Sacrum.angle <dbl>,
        Scoliosis.slope <dbl>
```

A note on tibbles

- · Tibbles are a new-generation object meant to enhance the data.frame.
- Central to the so-called tidyverse packages
- If you want to just get back to a more familiar data.frame object, use as.data.frame
- A tibble is built on a data.frame, so all operations on data.frame's will work.
- To see all columns, set options(dplyr.width=Inf).

Differences between a tibble and a data.frame:

- 1. Printing a tibble is restricted to the first 10 lines, and includes column types
- 2. Stricter subsetting rules that make the types of objects created consistent

Grouped visualization

Density plot

ggplot(data_spine, aes(x = Sacral.slope, group = Class.attribute, color=Class.attribute))+
 geom_density()

Scatter plot

Scatter plot (Black and White)

Scatter plot with size representing third variable

ggplot(data_spine, aes(x = Lumbar.lordosis.angle, y = Sacral.slope))+
 geom_point(aes(size = Pelvic.slope))

Scatter plot combinations

Scatter plot with lines

Scatter plot with lines

```
ggplot(data_spine, aes(x = Lumbar.lordosis.angle, y = Sacral.slope))+
  geom_point()+
  geom_smooth(aes(color = Class.attribute), method='lm')
```


Facetting

Facetting

Facetted graphs are a panel of graphs, each of which corresponds to a particular subgroup of the data.

Facetted scatter plot

```
ggplot(data_spine, aes(x = Lumbar.lordosis.angle, y = Sacral.slope))+
  geom_point()+
  facet_wrap( ~ Class.attribute, nrow=1)
```


Facetted scatter plot with lines

```
ggplot(data_spine, aes(x = Lumbar.lordosis.angle, y = Sacral.slope))+
  geom_point()+ geom_smooth(method='lm')+
  facet_wrap( ~ Class.attribute, nrow=1)
```



```
ggplot(gwasResults, aes(x = x_position, y = -log(P, base=10)))+
geom_point(size=0.2)
```


Manhattan plot, exploded

```
ggplot(gwasResults, aes(x = BP, y = -log(P, base=10)))+
  geom_point(size=0.2)+
  facet_wrap(~ CHR, nrow=4)+
  geom_hline(yintercept = 8, color='red', linetype=2)
```


Manhattan plot, exploded

