Wartość Sprague-Grundy'ego w grach Subtraction i All-But

Hubert Sobociński, Kornel Tłaczała, Michał Szewczak

20 stycznia 2025

Streszczenie

W niniejszym artykule analizujemy wartości Sprague-Grundy'ego w grach kombinatorycznych SUBTRACTION(S) oraz ALLBUT(S). Szczególną uwagę poświęcono określeniu okresowości oraz strategii optymalnej w tych grach, z uwzględnieniem różnych definicji funkcji okresowych. Badania pozwoliły określić właściwości preokresu oraz okresu funkcji \mathcal{G} , co umożliwia lepsze zrozumienie strategicznych zachowań tych gier.

1 Wprowadzenie

Definicje gier

Definicja 1. Gra SUBTRACTION(S) jest rozgrywana przy użyciu jednego stosu żetonów, gdzie $S \subseteq \mathbb{N} \setminus \{0\}$. W każdym ruchu gracz usuwa dowolną liczbę żetonów ze stosu, pod warunkiem, że liczba ta należy do S. Grę wygrywa gracz, który wykona ostatni ruch.

Definicja 2. Gra ALLBUT(S) również jest rozgrywana przy użyciu jednego stosu żetonów, gdzie $S \subseteq \mathbb{N}$. W każdym ruchu gracz usuwa dowolną liczbę żetonów, pod warunkiem, że liczba ta jest dodatnia i **nie należy** do zbioru S. Grę wygrywa gracz, który wykona ostatni ruch.

Pojęcia okresowości

Definicja 3. Funkcję $g: \mathbb{N} \cup \{0\} \to \mathbb{N} \cup \{0\}$ nazywamy **okresową**, jeśli istnieją liczby $l \geq 0$ oraz p > 0, takie że:

$$\forall n \ge l \quad g(n+p) = g(n),$$

gdzie p jest okresem, a l nazywane jest preokresem.

Definicja 4. Funkcję $g: \mathbb{N} \cup \{0\} \to \mathbb{N} \cup \{0\}$ nazywamy **okresowością arytmetyczną**, jeśli istnieją liczby $l, d \geq 0$ oraz p > 0, takie że:

$$\forall n \ge l \quad g(n+p) = g(n) + d,$$

gdzie p jest okresem, l preokresem, a d jest tzw. saltus.

2 Subtraction game

2.1 Funkcja Sprague'a-Grundy'ego

Funkcja Sprague'a-Grundy'ego stanowi kluczowy element teorii gier kombinatorycznych. Umożliwia ona przypisanie każdemu stanowi gry liczby całkowitej nieujemnej, która odzwierciedla pozycję strategiczną tego stanu. Wprowadzenie tej funkcji pozwala na analizę optymalnych strategii w grach pozycyjnych.

Definicja. Dla gry G oraz zbioru stanów X funkcja $\mathcal{G}: X \to \mathbb{N} \cup \{0\}$ jest definiowana rekurencyjnie:

- $\mathcal{G}(x) = 0$, jeśli ze stanu x nie można wykonać ruchu.
- $\mathcal{G}(x) = \max\{\mathcal{G}(y) \mid y \text{ jest osiągalny z } x\}$, gdzie mex oznacza najmniejszą liczbę naturalną, która nie należy do zbioru.

Przykład. Dla $S = \{1, 2, 3\}$:

$$\begin{split} \mathcal{G}(0) &= 0, \\ \mathcal{G}(1) &= \max\{\mathcal{G}(0)\} = \max\{0\} = 1, \\ \mathcal{G}(2) &= \max\{\mathcal{G}(0), \mathcal{G}(1)\} = \max\{0, 1\} = 2, \\ \mathcal{G}(3) &= \max\{\mathcal{G}(0), \mathcal{G}(1), \mathcal{G}(2)\} = \max\{0, 1, 2\} = 3, \\ \mathcal{G}(4) &= \max\{\mathcal{G}(1), \mathcal{G}(2), \mathcal{G}(3)\} = \max\{1, 2, 3\} = 0. \end{split}$$

Interpretacja. Wartość G(x) wskazuje:

- $\mathcal{G}(x) = 0$ stan przegrywający, niezależnie od ruchu gracza.
- $\mathcal{G}(x) > 0$ stan wygrywający, istnieje ruch prowadzący do stanu przegrywającego.

2.2 Badanie okresowości

Jako G_S będziemy oznaczać zbiór wyników funkcji \mathcal{G} Sprague'a-Grundy'ego dla kolejnych wartości żetonów, gdzie na pozycji 1 w tym zbiorze mamy wartość $\mathcal{G}(0)$, na drugiej pozycji wartość $\mathcal{G}(1)$ i tak dalej.

Wracając do powyższego przykładu dla $S = \{1, 2, 3\}$ mamy:

$$G_S = \{0, 1, 2, 3, 0, 1, 2, 3, 0, \ldots\}$$

Widzimy, że ta funkcja jest okresowa, bo mamy $\mathcal{G}(n+4) = \mathcal{G}(n)$ dla dowolnego $n \in N_0$. Pytanie zatem dla jakich S ta gra będzie miała okresową funkcję \mathcal{G} ?

Sprawdźmy to dla kilku przykładowych S

S	G_S (pogrubione liczby są do pokazania okresu)
Ø	$0, 0, 0, 0, \dots$
1	$0, 1, 0, 1, 0, 1, \dots$
1,2	$0, 1, 2, 0, 1, 2, 0, 1, 2, \dots$
2	$0, 0, 1, 1, 0, 0, 1, 1, \dots$
1,4	$0, 1, 0, 1, 2, 0, 1, 0, 1, 2, \dots$
2,3	$0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, \dots$
1, 2, 3	$0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, \dots$
1, 2, 6	$0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 0, 1, 2, 3, \dots$
N	$0, 1, 2, 3, 4, 5, 6, 7, \dots$

Tabela 1: Wartości G_S dla różnych zbiorów S

Rozważmy najpierw przypadek, gdy $S=\emptyset$. W tej sytuacji okres funkcji Sprague-Grundy'ego może być dowolną liczbą naturalną, podczas gdy dla $S=\mathbb{N}$ regularny okres nie istnieje. W dalszych rozważaniach skupimy się jednak na przypadkach, gdy $S\subset\mathbb{N}$ oraz S jest zbiorem skończonym. W analizowanych przykładach zauważyliśmy, że dla każdego skończonego zbioru S funkcja Sprague-Grundy'ego wykazuje regularną okresowość. Wnioski te przedstawiono w podsumowaniu w tabeli.

W tym kontekście nasuwają się dwa istotne pytania:

- 1. Czy okres funkcji g zawsze istnieje dla każdego skończonego zbioru S?
- 2. Czy okres ten rozpoczyna się w każdym możliwym punkcie n?

Na drugie z powyższych pytań możemy odpowiedzieć w sposób negatywny, co pokazuje poniższy kontrprzykład. Rozważmy zbiór $S = \{1, 2, 6, 11\}$, dla którego wartości funkcji Sprague-Grundy'ego G_S mają postać:

$$G_S = \{0, 1, 2, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, 0, 1, 2, 3, 0, 1, 2, 0, 1, 2, 3, 4, \dots\}.$$

Jak widać, zanim pojawi się okres, funkcja przyjmuje początkowe wartości, które nazywamy *preokresem*. W tym przypadku preokres składa się z trzech wartości: 0, 1 i 2.

Arytmetyczna okresowość. Warto zauważyć, że w analizowanych grach dla skończonych zbiorów *S* **nie zachodzi** arytmetyczna okresowość, tj. zależność:

$$\forall n \ge l \quad g(n+p) = g(n) + d,$$

gdzie d > 0.

Dowód. Załóżmy, że funkcja \mathcal{G} wykazuje arytmetyczną okresowość. Wówczas, zgodnie z definicją, mielibyśmy:

$$\mathcal{G}(n+p) = \mathcal{G}(n) + d,$$

$$\mathcal{G}(n+2p) = \mathcal{G}(n+p) + d = \mathcal{G}(n) + 2d,$$

$$\mathcal{G}(n+ap) = \mathcal{G}(n) + ad,$$

dla dowolnego $a \in \mathbb{N}$. Wynika z tego, że wartości funkcji $\mathcal{G}(n)$ rosłyby w nieskończoność. Jednak dla skończonych zbiorów S wartość funkcji Sprague-Grundy'ego jest ograniczona, ponieważ:

$$G(n) = \max\{G(y) \mid y \text{ osiagalny z } n\}.$$

Ponieważ zbiór S jest skończony, liczba możliwych wartości $\mathcal{G}(y)$ również jest skończona. Zatem wartość funkcji \mathcal{G} jest ograniczona przez liczbę elementów zbioru S, a maksymalna wartość funkcji wynosi |S|. Otrzymujemy więc sprzeczność, co dowodzi, że dla skończonych S arytmetyczna okresowość nie zachodzi.

Dowód ten przyda się w późniejszym badaniu długości okresu.

Zwykła okresowość. Teraz pokażemy, że dla skończonych zbiorów S funkcja Sprague-Grundy'ego zawsze wykazuje zwykłq okresowość. Zgodnie z definicją, funkcja g jest okresowa, jeśli istnieją liczby $l \geq 0$ oraz p > 0, takie że:

$$g(n+p) = g(n) \quad \forall n \ge l.$$

Dowód tej własności opiera się na skończoności zbioru S. Ponieważ liczba możliwych konfiguracji wartości $\{g(n-s)\mid s\in S\}$ jest ograniczona, po osiągnięciu pewnego stanu $n\geq l$ wartości g(n) zaczynają się powtarzać w sposób cykliczny. Zatem funkcja g dla skończonego S zawsze wykazuje okresowość.

2.3 Dowód: Gra Subtraction z skończonym zbiorem S jest okresowa

Dowód. Rozważmy grę Subtraction, w której zbiór możliwych ruchów S jest skończony. Celem jest wykazanie, że wartości funkcji Grundy'ego $\mathcal{G}(n)$ są okresowe od pewnego momentu.

2.3.1 Skończona liczba konfiguracji

Niech $s_{\text{max}} = \max(S)$, czyli największy możliwy ruch w zbiorze S. Zgodnie z definicją funkcji Grundy'ego:

$$\mathcal{G}(n) = \max \{ \mathcal{G}(n-s) : s \in S \text{ oraz } n-s \ge 0 \}.$$

Dla wszystkich $n \geq s_{\text{max}}$ wartość $\mathcal{G}(n)$ jest deterministycznie wyznaczana przez wartości $\mathcal{G}(n-s)$ dla $s \in S$.

Ponieważ zbiór S jest skończony, załóżmy, że |S| = k, gdzie k jest liczbą elementów w S. Z kolei maksymalna wartość funkcji Grundy'ego, oznaczona jako m, spełnia:

$$m = \max\{\mathcal{G}(n) : n \ge 0\}.$$

W takim przypadku każda wartość $\mathcal{G}(n-s)$, dla $s \in S$, może przyjmować co najwyżej m+1 różnych wartości, tj. $0,1,2,\ldots,m$. Zatem liczba możliwych konfiguracji zbioru $\{\mathcal{G}(n-s): s \in S\}$ wynosi:

Liczba konfiguracji =
$$(m+1)^k$$
,

gdzie (m+1) to liczba możliwych wartości Grundy'ego, a k to liczba elementów w zbiorze S.

2.3.2 Zastosowanie zasady szufladkowej Dirichleta

Zasada szufladkowa Dirichleta. Jeżeli zbiór $X = X_1 \cup X_2 \cup \cdots \cup X_k$ liczy n elementów, gdzie n > k, to któryś ze zbiorów X_i $(i \in \{1, \ldots, k\})$ musi zawierać co najmniej dwa elementy.

Zauważmy, że wartości funkcji Grundy'ego $\mathcal{G}(n)$ dla $n \geq s_{\text{max}}$ są deterministycznie wyznaczane przez konfigurację zbioru $\{\mathcal{G}(n-s): s \in S\}$. Oznacza to, że każda konfiguracja jednoznacznie określa wartość $\mathcal{G}(n)$.

Ponieważ liczba możliwych konfiguracji jest skończona, a liczba pozycji n jest nieskończona, na mocy zasady szufladkowej Dirichleta musi istnieć moment, w którym dwie różne liczby n_1 i n_2 ($n_1 \neq n_2$) mają tę samą konfigurację:

$$\{\mathcal{G}(n_1-s): s \in S\} = \{\mathcal{G}(n_2-s): s \in S\}.$$

Jeżeli konfiguracje są takie same, to wartości Grundy'ego są również identyczne:

$$\mathcal{G}(n_1) = \mathcal{G}(n_2).$$

2.3.3 Powtarzanie wartości Grundy'ego

Gdy znajdziemy dwie liczby n_1 i n_2 , dla których konfiguracje zbioru $\{\mathcal{G}(n-s): s \in S\}$ są identyczne, wartości $\mathcal{G}(n)$ stają się okresowe. Oznacza to, że:

$$\mathcal{G}(n_1) = \mathcal{G}(n_2), \quad \mathcal{G}(n_1 + 1) = \mathcal{G}(n_2 + 1), \quad \mathcal{G}(n_1 + 2) = \mathcal{G}(n_2 + 2), \quad \text{itd}$$

Okres $T=n_2-n_1$ jest różnicą między tymi dwiema pozycjami, gdzie konfiguracje się powtarzają. W konsekwencji dla wszystkich $n\geq n_1$ mamy:

$$\mathcal{G}(n) = \mathcal{G}(n+T).$$

Dowód kończy się wykazaniem, że dla skończonego zbioru S wartości funkcji Grundy'ego są okresowe.

2.4 Długość okresu

Po udowodnieniu, że dla każdego skończonego zbioru S gra SUBTRACTION(S) jest okresowa, naturalnym pytaniem jest: jaka jest długość tego okresu? W celu odpowiedzi na to pytanie, rozważmy kilka przypadków, zaczynając od prostszego przypadku jednoelementowych zbiorów S.

2.4.1 Zbiory jednoelementowe (|S| = 1)

W przypadku, gdy zbiór S zawiera dokładnie jeden element, obliczenie długości okresu jest proste. Przeanalizujmy kilka przykładów, przedstawionych w Tabeli.

S	G_S
{1}	$0, 1, 0, 1, 0, 1, \dots$
{2}	$0, 0, 1, 1, 0, 0, 1, 1, \dots$
{3}	$0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, \dots$
{4}	$0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, \dots$

Tabela 2: Wartości G_S dla jednoelementowych zbiorów S

Z powyższych przykładów widzimy, że wartości funkcji Grundy'ego spełniają:

$$\forall_{n \in \mathbb{N}} \quad G(n+T) = G(n),$$

gdzie okres T wynosi $2s_{\max}$, a s_{\max} to wartość jedynego elementu zbioru S.

Definicja: x-parzystość. Niech $x, m, n \in \mathbb{N}$ oraz $x \geq 2$. Mówimy, że m jest x-parzyste, jeśli $m \equiv k \pmod{2x}$ dla pewnego $k \in \{0, 1, \dots, x-1\}$. W przeciwnym przypadku, mówimy, że m jest x-nieparzyste. Dodatkowo, m i n mają tę samą x-parzystość, jeśli oba są x-parzyste lub oba są x-nieparzyste.

Twierdzenie 1. Jeśli zbiór $S = \{s\}$, to:

$$G(n) = \begin{cases} 0 & \text{jeśli } n \text{ jest } s\text{-parzyste,} \\ 1 & \text{jeśli } n \text{ jest } s\text{-nieparzyste.} \end{cases}$$

Zatem ciąg wartości funkcji Grundy'ego ma postać (0^s1^s) , gdzie zapis 0^s1^s oznacza, że liczba 0 pojawia się s razy, a następnie liczba 1 również pojawia się s razy. Długość okresu wynosi T=2s.

Dowód. Udowodnijmy twierdzenie za pomocą indukcji względem n.

Krok bazowy. Dla n < s zbiór dostępnych ruchów jest pusty, więc:

$$G(n) = \max(\emptyset) = 0.$$

Krok indukcyjny. Załóżmy, że twierdzenie jest prawdziwe dla wszystkich m < n. Pokażemy, że jest prawdziwe również dla n. Z definicji:

$$G(n) = \max\{G(n-s) : n-s \ge 0\}.$$

Jeśli n jest s-parzyste, to n-s jest s-nieparzyste. Na mocy założenia indukcyjnego, G(n-s)=1. Zatem:

$$G(n) = \max(\{1\}) = 0.$$

Analogicznie, jeśli n jest s-nieparzyste, to n-s jest s-parzyste, a więc G(n-s)=0. Zatem:

$$G(n) = \max(\{0\}) = 1.$$

Wniosek. Indukcyjnie wykazaliśmy, że ciąg wartości funkcji Grundy'ego dla $S = \{s\}$ przyjmuje postać (0^s1^s) , a jego okres wynosi T = 2s.

2.4.2 Zbiory dwuelementowe (|S| = 2)

W przypadku dwuelementowych zbiorów $S = \{x, y\}$ analiza okresu funkcji \mathcal{G} staje się bardziej złożona. Chcemy wykazać, że długość okresu dla takich zbiorów wynosi x + y lub 2x, przy założeniu x < y.

Twierdzenie 2. Niech $S = \{x, y\}$, gdzie x < y. Wtedy funkcja \mathcal{G} jest okresowa z okresem co najwyżej x + y.

Dowód. Wystarczy wykazać, że $\mathcal{G}(n-x-y)=\mathcal{G}(n)$ dla wszystkich $n\geq x+y$.

Rozważmy dowolne $n \ge x + y$. Z wcześniejszych wyników wiemy, że $\mathcal{G}(n) \in \{0, 1, 2\}$, co wynika z własności mex przy obliczaniu funkcji Grundy'ego. Rozważmy poszczególne przypadki:

- 1. Jeśli $\mathcal{G}(n) = 0$, to na mocy poniższego lematu $\mathcal{G}(n-y) = 1$.
- 2. Jeśli $\mathcal{G}(n)=1$, to $\mathcal{G}(n-x)=0$ oraz $\mathcal{G}(n-x-y)=1$ (ponownie na podstawie Lematu 1).
- 3. Jeśli $\mathcal{G}(n) = 2$, to $\mathcal{G}(n-x) = 1$ i $\mathcal{G}(n-y) = 0$, co wynika z Lematu 2.

W każdym z przypadków zachodzi $\mathcal{G}(n-x-y) = \mathcal{G}(n)$. Oznacza to, że funkcja \mathcal{G} jest okresowa z okresem co najwyżej x+y.

Lemat 1. Niech $S = \{x, y\}$, gdzie x < y. Jeśli $n \ge y$, to $\mathcal{G}(n) = 0$ wtedy i tylko wtedy, gdy $\mathcal{G}(n - y) = 1$.

 $Dow \acute{o}d.$ Dow ćd wynika z definicji mex. Pomijamy szczeg
ćły, ponieważ jest on analogiczny do wcześniejszych dowodów.
 $\hfill\Box$

Lemat 2. Niech $S = \{x, y\}$, gdzie x < y. Wtedy $\mathcal{G}(n) = 2$ wtedy i tylko wtedy, gdy:

- 1. $\mathcal{G}(n-x) = 1$ oraz
- 2. G(n-y) = 0.

Dowód. Zakładamy, że $\mathcal{G}(n-x)=1$ i $\mathcal{G}(n-y)=0$. Wówczas:

$$G(n) = \max\{G(n-x), G(n-y)\} = \max\{1, 0\} = 2.$$

Jeśli $\mathcal{G}(n) = 2$, to z definicji mex mamy:

$$\{\mathcal{G}(n-x), \mathcal{G}(n-y)\} = \{0, 1\}.$$

Przypuszczając przez sprzeczność, że $\mathcal{G}(n-x)=0$, otrzymujemy $\mathcal{G}(n)=1$, co jest sprzeczne z założeniem $\mathcal{G}(n)=2$. Zatem $\mathcal{G}(n-x)=1$ oraz $\mathcal{G}(n-y)=0$.

Twierdzenie 3. Jeśli $S = \{x, (2m+1)x\}$ dla pewnego $m \ge 1$, to:

$$\mathcal{G}(n) = \begin{cases} 0 & \text{jeśli } n \text{ jest } x\text{-parzyste,} \\ 1 & \text{jeśli } n \text{ jest } x\text{-nieparzyste.} \end{cases}$$

Okres ciągu wynosi 2x, a jego postać to (0^x1^x) .

Dowód. Dowód przeprowadzamy indukcją względem n. Dla n < (2m+1)x zachowanie ciągu jest identyczne jak w przypadku jednoelementowego zbioru $\{x\}$, co wykazano w Twierdzeniu 1. Dla $n \ge (2m+1)x$, korzystając z definicji $\mathcal G$ i x-parzystości, wnioskujemy, że:

$$\mathcal{G}(n) = \begin{cases} 0 & \text{jeśli } n \text{ jest } x\text{-parzyste,} \\ 1 & \text{jeśli } n \text{ jest } x\text{-nieparzyste.} \end{cases}$$

Zatem okres wynosi 2x.

Twierdzenie 4. Niech $S = \{x, y\}$, gdzie x < y oraz y nie jest nieparzystą wielokrotnością x. Wtedy okres gry wynosi x + y.

Dowód. Z Twierdzenia 2 wiemy, że okres wynosi co najwyżej x + y. Aby wykazać, że okres nie jest krótszy, analizujemy pierwsze x + y wartości ciągu \mathcal{G} . Przy zapisie y = (2x)m + r, gdzie -x < r < x, ciąg ma postać:

$$(0^x 1^x)^m 0^r 2^{x-r} 1^r$$
 dla $r \ge 0$,

lub

$$(0^x 1^x)^m 2^{x+r} \quad \text{dla } r < 0.$$

W obu przypadkach długość okresu wynosi dokładnie x + y.

2.4.3 Zbiory $S = \{1, 2, 3, \dots, m\}$

Przypadek, w którym zbiór S zawiera kolejne liczby naturalne od 1 do m, jest szczególnie prosty do analizy. Dla takich zbiorów funkcja Grundy'ego $\mathcal{G}(n)$ przyjmuje wartości w sposób regularny, a okres ciągu wynosi T=m+1, gdzie $m=\max S$. Poniższa tabela przedstawia przykłady wartości funkcji $\mathcal{G}(n)$ dla różnych zbiorów S:

S	G_S (wartości $\mathcal{G}(n)$)
{1}	$0, 1, 0, 1, 0, 1, \dots$
$\{1,2\}$	$0, 1, 2, 0, 1, 2, 0, 1, 2, \dots$
$\{1, 2, 3\}$	$0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, \dots$
$\{1, 2, 3, 4\}$	$0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, \dots$

Tabela 3: Wartości $\mathcal{G}(n)$ dla zbiorów S zawierających kolejne liczby naturalne od 1 do m

Dla takiego zbioru S, funkcja Grundy'ego $\mathcal{G}(n)$ ma następującą własność:

$$\forall_{n \in \mathbb{N}} \quad \mathcal{G}(n+T) = \mathcal{G}(n),$$

gdzie okres T=m+1, a m to największy element zbioru S. Regularność tej funkcji wynika bezpośrednio z definicji funkcji $\mathcal{G}(n)$ i sposobu działania operatora mex, który wybiera najmniejszą liczbę nieobecną w wynikach z poprzednich kroków.

Przykład dla $S = \{1, 2, 3\}$

Dla $S = \{1, 2, 3\}$, mamy m = 3, więc T = m + 1 = 4. Obliczenia wartości funkcji Grundy'ego $\mathcal{G}(n)$ wygladają następująco:

$$\begin{split} \mathcal{G}(0) &= \max\{\} = 0, \\ \mathcal{G}(1) &= \max\{\mathcal{G}(0)\} = \max\{0\} = 1, \\ \mathcal{G}(2) &= \max\{\mathcal{G}(1), \mathcal{G}(0)\} = \max\{1, 0\} = 2, \\ \mathcal{G}(3) &= \max\{\mathcal{G}(2), \mathcal{G}(1), \mathcal{G}(0)\} = \max\{2, 1, 0\} = 3, \\ \mathcal{G}(4) &= \max\{\mathcal{G}(3), \mathcal{G}(2), \mathcal{G}(1)\} = \max\{3, 2, 1\} = 0. \end{split}$$

Powtarzalność ciągu 0, 1, 2, 3 od n = 0 potwierdza okres T = 4.

2.4.4 Pozostałe zbiory S

Co w przypadku zbiorów S, które zawierają 3 lub więcej elementów, ale nie są kolejnymi liczbami naturalnymi? Problem ten jest znacznie bardziej skomplikowany i w ogólnym przypadku pozostaje nierozwiązany. Istnieją wzory dla niektórych szczególnych przypadków, gdy |S| = 3, ale żadne z nich nie są uniwersalne ani w pełni satysfakcjonujące.

Przykład dla $S = \{1, 3, 4\}$

Rozważmy zbiór $S = \{1, 3, 4\}$. W takim przypadku obliczenie okresu wymaga bardziej szczegółowej analizy wartości $\mathcal{G}(n)$, które wynikają z:

$$\mathcal{G}(n) = \max\{\mathcal{G}(n-1), \mathcal{G}(n-3), \mathcal{G}(n-4)\}.$$

Nie istnieje prosty wzór na okres funkcji \mathcal{G} w tym przypadku, a analiza odbywa się numerycznie lub przy użyciu szczegółowych obserwacji wzorców w ciągu.

Wnioski

Dla zbiorów S zawierających kolejne liczby naturalne okres funkcji $\mathcal{G}(n)$ jest dobrze określony jako $T=\max S+1$. Natomiast dla bardziej złożonych zbiorów S analiza okresowości pozostaje otwartym zagadnieniem w teorii gier. Zależność długości okresu od maksymalnego możliwego ruchu wydaje się być liniowa na podstawie przeprowadzonych symulacji. Dla ustalonego maksymalnego możliwego ruchu s_{max} widać, że dla

Rysunek 1: Zależność długości okresu od maksymalnego możliwego ruchu dla zbiorów trzyelementowych.

pewnej wielkości zbioru możliwych ruchów (gdy $|S| = \frac{s_{max}}{2}$) widać, że wzrost długości okresu następuje tylko gdy liczność zbiorów nie przekracza

Rysunek 2: Zależność długości okresu od maksymalnego możliwego ruchu dla zbiorów pięcioelementowych.

3 ALLBUT GAME

Niech [n] oznacza zbiór $\{x \in N | x \le n\}$

3.1 ALLBUT GAME(\emptyset)

Gdy $S = \emptyset$, dozwolone jest wykonanie dowolnego ruchu, a więc w oczywisty sposób każda pozycja z dodatnią liczbą żetonów jest wygrywająca w jednym ruchu. Jednocześnie z racji na fakt, że każda pozycja z mniejszą liczbą żetonów jest osiągalna, funkcja Sprague-Grundy'ego w tym przypadku $\forall_{n \in N}$ ma postać g(n)=g(n-1)+1, g(0)=0. Zatem w tym przypadku gra ta jest **arytmetycznie okresowa**, jej okres wynosi 1 i saltus wynosi 1.

$3.2\,$ Powiązanie z grą SUBTRACTION dla skończonego niepustego zbioru S

Jeżeli zbiór S jest skończony i niepusty, to istnieje element $S^* \in S$ taki, że $S^* = \max S$. Skoro S jest zbiorem ruchów niedozwolonych, to $\forall S > S^*$ pozycja z S żetonami jest wygrywająca, gdyż można zabrać w jednym ruchu wszystkie żetony. Rozważmy teraz sytuację, gdy żetonów jest $s < S^*$. Wówczas zbiór dozwolonych (w zakresie do S^*) ruchów $D=[S^*] \setminus S$ jest skończony, gdyż $|D| < S^*$. Zatem grę ALLBUT(S) można rozpatrywać jako grę SUBTRACTION(D), gdy liczba żetonów jest nie większa niż max S, natomiast gdy żetonów jest więcej gra staje się trywialna - rozpoczynający gracz wygrywa w jednym ruchu.

3.3 Okresowość gry ALLBUT GAME

W tej sekcji rozważamy grę ALLBUT GAME(S) dla niepustych skończonych zbiorów S.

Rozważmy na poczatek kilka przykładów.

S	D	G_S		G_S	
1, 2, 3	Ø	$0,0,0,0,1,1,1,1,2,2,2,2,\ldots$			
2,4	1,3	$0, 1, 0, 1, 0, 1, 2, 3, 4, 5, 6 \dots$			
1,3	2	$0,0,1,1,2,2,3,3,\dots$			
1, 2, 3, 5, 8	4, 6, 7	0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4			

Tabela 4: Wartości G_S dla różnych zbiorów S

Widzimy, że dla żadnego z powyższych okresowość nie zachodzi, lecz da się (po przekroczeniu S^* zaobserwować przyrosty wartości funkcji Sprague-Grundy'ego. Ponadto widać na nich powtarzalność tych przyrostów, co sugeruje, że może zachodzić arytmetyczna okresowość.

Łatwo pokazać, że okresowość nie może zachodzić. Ponieważ funkcja Sprague-Grundy'ego ma postać

$$g(x) = \max\{g(y) \mid y \text{ jest osiągalny z } x\},$$

i $\forall x>2S^*$ każdy stan od 0 do $x-S^*$ jest osiągalny, to w konsekwencji dla takiego x $\forall y\in [x-S^*]$ zachodzi g(x)>g(y).

3.4 Dowód arytmetycznej okresowości funkcji Sprague-Grundy'ego dla gry ALLBUT(S)

Można pokazać, że po k iteracjach algorytmu wyznaczania wartości funkcji Sprague-Grundy'ego da się poprawnie wyznaczyć wszystkie miejsca, gdzie przyjmuje ona wartości ze zbioru 0,1,2,...,k-1. Dla pokazania arytmetycznej okresowości tych wartości pomocne jest zdefiniowanie funkcji $H_k(n): N->\{*,@\}$ takiej, że $H_k(n)=*$ gdy G(n)<k i $H_k(n)=@$ wpp.

3.4.1 Lemat

Dla ustalonego k niech n=mini: $H_k(i) = @$. Wówczas dla m>n+max(S) $H_k(m) = @$.

Dowód lematu: Niech $m \ge n + max(S)$, l<k będzie wartością funkcji Sprague-Grundy'ego, a p będzie najniższym numerem pozycji (tj. najmniejszą liczbą określającą liczbę żetonów na stosie) takiej, że g(p)=l. Ponieważ $m \ge n + max(S) > p + max(S)$, zatem jest możliwe przejście z m do p.Zatem $G(l) \ne l$. Stąd $G(m) \ge k$, czyli $H_k(n) = @$.

3.4.2 'Boundary pattern'

Definicja: Jako 'Boundary pattern' H_k określamy ciąg $H_k(n)$, $H_k(n+1)$, $H_k(n+2)$, ..., $H_k(n+max(X)-1)$ gdzie n=mini: $H_k(i)=@$.

Tak zdefiniowane 'Boundary pattern' charakteryzuje H_k , gdyż znajomość 'Boundary pattern' dla H_{k-1} pozwala na znalezienie 'Boundary pattern' dla H_k . Ponadto 'Boundary pattern' jest okresowe **wtedy i tylko wtedy** gdy funkcja Sprague-Grundy'ego jest arytmetycznie okresowa.

3.4.3 Wykorzystanie własności 'Boundary pattern' do pokazania arytmetycznej okresowości gry ALLBUT

Rozważmy graf, którego zbiorem wierzchołków jest zbiór wszystkich możliwych 'Boundary pattern' i z każdego wierzchołka wychodzi dokładnie jedna krawędź do następnego 'Boundary pattern' w ciągu. Ponieważ graf ten jest skończony (ma on maksymalnie $2^{\max(S)-1}$ wierzchołków podążanie każdą ścieżką doprowadzi do cyklu, więc 'Boundary pattern' jest okresowe, co w świetle podanej wyżej własności oznacza, że funkcja Sprague-Grundy'ego jest arytmetycznie okresowa dla gry ALLBUT(S). Pokazano, że dla zbiorów S jedno-, dwu- i trzyelementowych zachodzi czysta okresowość

arytmetyczna (tj. preokres równy 0), zaś dla zbiorów o większej liczności istnieją zarówno zbiory dla których zachodzi czysta okresowość arytmetyczna, jak i takie, dla których preokres jest większy od 0.

3.5 Długość okresu

W ogólności problem długości okresu, a także wielkości saltusu dla wartości funkcji Sprague-Grundy'ego jest problemem otwartym. Poniżej omawiamy kilka szczególnych przypadków.

3.5.1 Zbiory zawierające wszystkie kolejne liczby naturalne od 1 do |S|

Dla takiego zbioru okres wynosi |S|+1, natomiast saltus jest równy 1. Dzieje się tak, gdyż dla $\forall s \in SG(s) = 0$, a dla n>|S| $G(n)=\max(G(0),G(1),...,G(n-|S|)+1$.

3.5.2 Zbiory jednoelementowe (|S|=1)

Na początek podam kilka przykładów:

S	G_S
{1}	$0,0,1,1,2,2,\dots$
{2}	$0, 1, 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, \dots$
{3}	$0, 1, 2, 0, 1, 2, 3, 4, 5, 3, 4, 5, 6, 7, 8, 6, 7, 8 \dots$
{4}	$0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, 4, 5, 6, 7, \dots$

Tabela 5: Wartości G_S dla jednoelementowych zbiorów S

Z powyższych przykładów widzimy, że wartości funkcji Grundy'ego spełniaja:

$$\forall_{n \in \mathbb{N}} \quad G(n+T) = G(n) + d,$$

gdzie okres T wynosi $2s_{\text{max}}$, saltus d wynosi s_{max} , a s_{max} to wartość jedynego elementu zbioru S.

3.5.3 Zbiory S zawierające 1

Dla skończonych zbiorów S takich, że $1 \in S$, saltus wynosi, niezależnie od liczności tego zbioru, 1. Z kolei obserwowane dla zbiorów liczących od 2 do 5 elementów okresy w rozważanej klasie zbiorów wynosiły prawie zawsze albo 2, albo były znacząco większe od maksymalnego wyrazu (ze względu na czasochłonność obliczeń maksymalne wyrazy nie przekraczały 120). Poniższa tabela pokazuje długości okresu i saltusy dla losowo wygenerowanych pięcioelementowych zbiorów S zawierających 1. Puste pola okres i saltus oznaczają, że nie udało się znaleźć okresu, licząc wartości funkcji Sprague-Grundy'ego dla stosów o wielkościach do 1000 żetonów.

okres	saltus	S
2	1	[1,105, 3, 36, 62]
2	1	[1,102, 108, 30, 72]
2	1	[1,114, 103, 35, 92]
2	1	[1,108, 113, 43, 68]
2	1	[1,107, 120, 39, 71]
		[1,108, 109, 35, 90]
2	1	[1,101, 116, 32, 59]
2	1	[1,119, 101, 45, 63]
2	1	[1,106, 115, 33, 52]
2	1	[1,110, 113, 50, 73]
2	1	[1,104, 111, 30, 85]
2	1	[1,108, 120, 39, 86]
2	1	[1,118, 100, 44, 56]
2	1	[1,110, 6, 46, 73]
2	1	[1,106, 116, 49, 75]
2	1	[1,107, 6, 40, 83]
2	1	[1,105, 117, 40, 57]
2	1	[1,118, 7, 43, 72]
2	1	[1,116, 112, 47, 50]
2	1	[1,117, 103, 50, 69]
2	1	[1,103, 114, 32, 88]
2	1	[1,117, 114, 31, 87]
2	1	[1,115, 109, 33, 55]
2	1	[1,107, 110, 41, 57]
2	1	[1,114, 107, 30, 83]
2	1	[1,119, 109, 41, 76]
2	1	[1,110, 114, 31, 61]
		[1,100, 104, 36, 99]
2	1	[1,100, 112, 35, 52]
2	1	[1,104, 120, 47, 51]

Tabela 6: Długości okresu i saltusy dla zbiorów pięcioelementowych zawierających $1\,$