VRDI TDA Breakout Session: Applications of Topological Data Analysis

Moon Duchin, Tom Needham, Thomas Weighill

Voting Rights Data Institute June 26, 2019

Quick Review of TDA

Topology studies geometrical objects (called spaces) up to a loose notion of equivalence.

Algebraic topology distinguishes spaces by computing invariants; e.g., Betti numbers $\beta_k(X)$ count k-dimensional holes in a space X.

Topological Data Analysis explores the shape of a dataset (e.g. a point cloud in \mathbb{R}^d) by computing invariants across a family of spaces generated from the dataset.

Terminology

We can record the "birth time" and "death time" of each topological feature to get a barcode or a persistence diagram.

Distance Between Diagrams

Important piece of the story: comparing persistence diagrams.

Each diagram D is a set¹ of points

$$D = \{(b_i, d_i)\}_{i=1}^N$$

with each $b_i < d_i$. Each point in D represents a topological feature of a dataset.

Let \mathcal{D} denote the set of all diagrams.

¹Actually it's a multiset, but let's ignore that...

Metric on Diagrams

We wish to define a metric on \mathcal{D} .

This is a function $d: \mathcal{D} \times \mathcal{D} \to \mathbb{R}_{\geq 0}$ satisfying:

- ▶ (Positivity) $d(D, D') = 0 \Leftrightarrow D = D'$
- ► (Symmetry) d(D, D') = d(D', D)
- ▶ (Triangle Inequality) $d(D, D'') \le d(D, D') + d(D', D'')$.

Idea: Match Features

Given diagrams D, D', we want to match points as best as possible.

Problem: diagrams might have a different number of points! So we can't expect a perfect matching.

Let $\phi: A \to A'$ be a bijection, where $A \subset D$ and $A' \subset D'$.

This is called a partial matching.

Idea: Match Features

Pick a matching cost c_m (TBD).

For each $p = (b, d) \in A$, we evaluate $c_m(p, \phi(p))$.

Pick a cost for unmatched points c_u (TBD).

For each $p \in D \setminus A$ and each $p' \in D' \setminus A'$, we evaluate $c_u(p)$ and $c_u(p')$.

Idea: Match Features

For a partial matching ϕ , we evaluate the total cost:

$$\mathrm{TC}(\phi) = \max \left\{ \max_{p \in A} c_m(p, \phi(p)), \max_{p \notin A} c_u(p), \max_{p' \notin A'} c_u(p') \right\}.$$

Define a metric as min over all partial matchings

$$d(D, D') = \min_{\phi} TC(\phi).$$

For theoretical reasons, choose costs for p = (b, d) and p' = (b', d') as

$$c_m(p,p') = \max\{|b'-b|,|d'-d|\}, \quad c_u(p) = \frac{d-b}{2}.$$

Bottleneck Distance

The bottleneck distance between persistence diagrams D and D' is

$$d_b(D, D') = \min_{\phi} \max \left\{ \max_{p \in A} c_m(p, \phi(p)), \max_{p \notin A} c_u(p), \max_{p' \notin A'} c_u(p') \right\}$$

with min over partial matchings and

$$c_m(p,p') = \max\{|b'-b|,|d'-d|\}, \quad c_u(p) = \frac{d-b}{2}.$$

Applications

Question

So what is this actually good for?

Let's look at some interesting examples of TDA "in action".

Disclaimer

This is very far from an exhaustive list!

The applications are skewed toward my own interests and things which I think might be relevant to the districting problem.

Biomedicine

Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival

Nicolau, Levine, Carlsson, 2011.

Biomedicine

Functional Data Analysis using a Topological Summary Statistic: the Smooth Euler Characteristic Transform

Crawford, Monod, Chen, Mukherjee, Rabadán, 2019

Cognition

A Topological Paradigm for Hippocampal Spatial Map Formation Using Persistent Homology

Dabaghian, Mémoli, Frank, Carlsson, 2012

Machine Learning Extracting Feature Vectors with TDA

- ► Persistence Landscapes, Bubenik, 2015
- Persistence Images, Adams et. al. 2016

TDA Layers in Neural Networks

- ▶ Brüel-Gabrielsson et. al. 2019
- ▶ Carrieère et. al. 2019

Studying the Structure of Neural Networks

- ▶ Guss, Salakhutdinov, 2018
- ▶ Rieck et. al. 2019

Shape Analysis

Persistent Homology Transform for Modeling Shapes and Surfaces Turner, Mukherjee, Boyer, 2013

Figure 1: Images of the meshes of five teeth. A common problem in morphology is to measure distances between these five teeth.

Continued in: Curry, Mukherjee, Turner, 2018 Ghrist, Levanger, Mai, 2018

Shape Analysis

Local Persistent Homology Based Distance Between Maps Ahmed, Fasy, Wenk, 2014

Shape Analysis

Gromov-Hausdorff Stable Signatures for Shapes using Persistence Chazal, Cohen-Steiner, Guibas, Mémoli and Oudot, 2009

Theorem

Let (X, d_X) and (Y, d_Y) be finite metric spaces. Let $D_k(X)$ and $D_k(Y)$ be the persistence diagrams for the k-dimensional persistent homology of their Vietoris-Rips complexes. Then

$$d_b(D_k(X), D_k(Y)) \leq d_{GH}(X, Y),$$

where d_{GH} denotes Gromov-Hausdorff distance.

Other Cool Examples

▶ Materials Science: Hiraoka, et. al. 2015

- ► Human Activity Recognition: Venkataraman et. al. 2016
- ▶ Biobiotic Insect Networks: Dirafzoon, et. al. 2017

