1

Definition 1. Sea $(X, \|\cdot\|)$ un espacio vectorial normado y $D \subset X$ un cono convexo, con $X \neq D \neq \{0_X\}$.

(a) Base de un cono. Se dice que un conjunto no vacío y convexo $B \subset D$ es una base de D, si cada elemento $x \in D \setminus \{0_X\}$ admite una única representación de la forma

$$x = \lambda b$$
, con $\lambda > 0$ y $b \in B$.

(b) Cono polar. El cono

$$D^* := \{ \mu \in X^* : \mu(d) \ge 0, \ \forall d \in D \},\$$

recibe el nombre de cono polar o cono dual de D (X^* denota el espacio dual topológico de X).

(c) Cono polar estricto. El conjunto

$$D^{s*} := \{ \mu \in X^* : \mu(d) > 0, \ \forall d \in D \setminus \{0_X\} \},$$

recibe el nombre de cono polar estricto de D.

Para los conceptos introducidos en la definición anterior, se pide probar las propiedades que se indican a continuación. En lo que sigue $(X, \|\cdot\|)$ es un espacio vectorial normado y $D \subset X$ un cono convexo, con $X \neq D \neq \{0_X\}$. Propiedades.

1. Supóngase que int $D \neq \emptyset$. Se tiene que

$$int D \subset \{x \in X : \mu(x) > 0, \forall \mu \in D^* \setminus \{0_{X^*}\}\}.$$

- 2. Si int $D \neq \emptyset$, entonces D^* es puntiagudo (pointed).
- 3. Si D tiene una base, entonces D es puntiagudo (pointed).
- 4. Supóngase que $D^{s*} \neq \emptyset$. Entonces, para cada $\mu \in D^{s*}$ se tiene que el conjunto

$$B := \{ d \in D : \mu(d) = 1 \},\$$

es una base de D.

5. Si $D^{s*} \neq \emptyset$, entonces D es puntiagudo.

1

Para todo $x \in \text{int}D$ es obvio que $x \in X$, ademas para todo $\mu \in D^* \setminus \{0_{X^*}\}$, tenemos que $\mu(x) \geq 0$.

Sea $x \in \text{int}D$ supongamos que existe $\mu \in D^* \setminus \{0_{X^*}\}$ tal que $\mu(x) = 0$. Entonces como $x \in \text{int}D \neq \emptyset$ tenemos que existe r > 0 tal que la bola abierta $B(x,r) \subset \text{int}D$.

Tenemos que existe $w \in \operatorname{int} D \cap B(0,r)$ tal que w > 0, si no existiera tendiéramos que para todo $v \in \operatorname{int} D \cap B(0,r) \subset D$, $\mu(v) = 0$, por tanto $\mu = 0_{X^*}$, contradiciendo la hipótesis. Por la linealidad de μ tenemos que $y = x - w \in B(x,r) \subset \operatorname{int} D \subset D$ y

$$\mu(y) = \mu(x) - \mu(w) = -\mu(w) < 0,$$

contradiciendo que $\mu \in D^*!!$

Por tanto para todo $\mu \in D^* \setminus \{0_{X^*}\}$ se tiene que $\mu(x) > 0$, y esto implica que

$$int D \subset \{x \in X : \mu(x) > 0, \forall \mu \in D^* \setminus \{0_{X^*}\}\}.$$

Notemos que en este caso $D \neq X$ ya que si D = X el único elemento del dual D^* seria 0_{X^*} , dado que para cualquier otro funcional μ si existe $d \in D$ tal que $\mu(d) > 0$, como D = X tenemos que $-d \in D$ y por tanto $\mu(-d) = -\mu(d) < 0$ contradiciendo que es del dual.

$\mathbf{2}$

Por el aparatado anterior, como int $D \neq \emptyset$ para todo $x \in \text{int}D$ y $\mu \in D^* \setminus \{0_{X^*}\}$ tenemos $\mu(x) > 0$.

Si $-\mu \in D^*$ tenemos que para todo $x \in \text{int}D$, $-\mu(x) > 0$, que implica $\mu(x) < 0$, contradiciendo que $\mu(x) > 0$!!

Resultando en que si $\mu \in D^*$ y $-\mu \in D^*$ entonces $\mu = 0_{X^*}$, y por tanto D^* es puntiagudo.

3

Sea $x \in D \setminus \{0_X\}$ y B una base de D. Entonces existe un único $b \in B$ y $\lambda > 0$ tal que $x = \lambda b$. Si $-x \in D \setminus \{0_X\}$, entonces, como B es convexo, para todo $\alpha \in [0, 1]$ tenemos que

$$b_{\alpha} = \alpha b - (1 - \alpha)b = (2\alpha - 1)b \in B.$$

Y $x = \lambda b = 2\lambda b_{0.75}$, contradiciendo que la representación de $x = \lambda b$ con $\lambda > 0$ y $b \in B$ es única. Por tanto $x = 0_X$ y consecuentemente D es puntiagudo.

4

Dado $\mu \in D^{s*}$, veamos que para cada $x \in D \setminus \{0_X\}$ existe un único $b \in B$ y $\lambda > 0$.

Supongamos que existen $b_1, b_2 \in B$ y $\lambda_1, \lambda_2 > 0$, tales que $x = \lambda_1 b_1 = \lambda_2 b_2$. Tenemos que

$$\mu(x) = \lambda_1 = \lambda_1 \mu(b_1) = \lambda_2 \mu(b_2) = \lambda_2,$$

por tanto $\lambda_1 = \lambda_2$, y como consecuencia

$$x = \lambda_1 b_1 = \lambda_1 b_2,$$

Resultando en $b_1 = b_2$.

Veamos ahora que dado $\mu \in D^{s*}$, B genera, i.e. para todo $x \in D \setminus \{0_X\}$ existe $b \in B$ y $\lambda > 0$ tal que $x = \lambda b$.

Supongamos que existe $x \in D \setminus \{0_X\}$ tal que para todo $b \in B$ y para todo $\lambda > 0$, $x \neq \lambda b$. Como D es un cono se tiene que para todo $\alpha > 0$, $\alpha x \in D$. Entonces

$$\mu(\alpha x) = \alpha \mu(x),$$

usando $\alpha = \frac{1}{\mu(x)}$, tenemos que $\mu(\alpha x) = 1$ y por tanto $\alpha x \in B$, contradiciendo la hipótesis inicial.

5

Usando el resultado anterior, como $D^{s*} \neq \emptyset$, tenemos que D tiene una base, por tanto usando la propiedad 3 tenemos que D es puntiagudo.

 $\mathbf{2}$

Obtenga el cono contingente al conjunto

$$S := \{(x, y) \in \mathbb{R}^2 : y \ge (x - 3)^2 + 3 \text{ and } y \le -x + 8\},$$

en el punto (4,4), y determine una base para este cono.

Sean $f(x) := (x-3)^2 + 3$ y g(x) := -x + 8, derivando tenemos que

$$f'(x) = 2(x-3),$$
 $g'(x) = -1,$

en particular f'(4) = 2 y g'(4) = -1. por tanto el cono contingente a S en el punto (4,4) viene dado por

$$T(S, (4,4)) = {\lambda(-1,a) : \lambda \ge 0 \text{ and } a \in [-2,1]}.$$

Figure 1: Conjunto S y los vectores tangentes en (4,4).

Una base de T(S, (4, 4)) se puede obtener interescando la recta (-1, y) para todo y con el conjunto T(S, (4, 4)), de modo que

$$B = \{(-1, y) : y \in [-2, 1]\},\$$

es una base de T(S, (4, 4)).

Figure 2: Cono contingente y su base.

3

Definition 2. Sea S un conjunto convexo no vacío de un espacio vectorial real $y : S \to \mathbb{R}$.

(a) Pseudoconvexidad estricta. Supóngase que f tiene derivada direccional en un punto $\bar{x} \in S$ en cada dirección $x - \bar{x}$, con $x \in S$. Se dice que f es estrictamente pseudoconvexo en \bar{x} si

$$f'(\bar{x})(x-\bar{x}) \ge 0$$
, para $x \in S$, $x \ne \bar{x} \Rightarrow f(x) > f(\bar{x})$.

(b) Cuasi convexidad fuerte. Se dice que f es cuasi convexo fuerte en S si para cada $x_1, x_2 \in S$, con $x_1 \neq x_2$, se tiene que

$$f(\lambda x_1 + (1 - \lambda)x_2) < \max\{f(x_1), f(x_2)\}, \text{ para cada } \lambda \in (0, 1).$$

Se pide probar el siguiente resultado:

Theorem 3. Sea S un conjunto convexo no vacío de un espacio vectorial normado.

(a) Considérese el problema

$$\min_{x \in S} f(x),$$

con $f: S \to \mathbb{R}$. Supóngase que f es cuasi convexo fuerte en S. Si \hat{x} es un mínimo local del problema, entonces \hat{x} es la única solución global del problema.

(b) Sea f un funcional definido en un conjunto abierto que contiene a S. Si f es diferenciable Fréchet en cada punto $\hat{x} \in S$ y estrictamente pseudoconvexo en cada punto $\hat{x} \in S$, entonces f es cuasi convexo fuerte en S.

(a)

Este aparatado es muy similar al problema 2 de la entrega del bloque 1.

Sea $x_0 \in S$ un mínimo local de un funcional cuasi convexo fuerte f. Entonces $\exists \varepsilon > 0$ tal que $f(x_0) \leq f(x)$ para todo $x \in S \cap B(x_0, \varepsilon)$.

Consideremos un punto $x \in S \setminus B(x_0, \varepsilon)$, tal que $f(x) \neq f(x_0)$. Definimos $\lambda := \frac{\varepsilon}{\|x_0 - x\|} \in (0, 1)$, obteniendo $x_{\lambda} := \lambda x + (1 - \lambda)x_0 \in S$,

$$||x_{\lambda} - x_0|| = ||\lambda x + (1 - \lambda)x_0 - x_0|| = \lambda ||x - x_0|| = \varepsilon,$$

es decir $x_{\lambda} \in B(x_0, \varepsilon)$.

Por tanto, como $x_0 \neq x_\lambda$, utilizando la cuasi convexidad fuerte de f,

$$f(x_0) \le f(x_\lambda) = f(\lambda x + (1 - \lambda)x_0 - x_0) < \max\{f(x), f(x_0)\},\$$

lo que implica $f(x_0) < f(x)$, por tanto para todo $x \in S$ tenemos que $f(x_0) = f(x)$ o bien $f(x_0) < f(x)$, así que x_0 es un mínimo global.

(b)

Para demostrar la segunda parte del teorema seguiremos la idea de la demostración del teorema 4.18 del texto base.

Dados $x, y \in S$ tales que $x \neq y$, supongamos que existe $\hat{\lambda} \in (0, 1)$ tal que

$$f(\hat{\lambda}x + (1 - \hat{\lambda})y) \ge \max\{f(x), f(y)\}.$$

Como f es diferenciable Fréchet, por el teorema 3.15 del texto base f es continua, por tanto existe $\bar{\lambda} \in (0,1)$ tal que

$$f(\bar{\lambda}x + (1 - \bar{\lambda})y) \ge f(\lambda x + (1 - \lambda)y)$$
, para todo $\lambda \in (0, 1)$.

Usando el teorema 3.13 y el teorema 3.8 (a) del texto base tenemos que para $\bar{x} := \bar{\lambda}x + (1-\bar{\lambda})y$

$$f'(\bar{x})(x - \bar{x}) \le 0,$$

у

$$f'(\bar{x})(y - \bar{x}) \le 0.$$

Con

$$x - \bar{x} = x - \bar{\lambda}x - (1 - \bar{\lambda})y = (1 - \bar{\lambda})(x - y),$$

$$y - \bar{x} = y - \bar{\lambda}x - (1 - \bar{\lambda})y = -\bar{\lambda}(x - y),$$
(1)

usando la linearidad de $f'(\bar{x})$ obtenemos

$$0 \ge f'(\bar{x})(x - \bar{x}) = (1 - \bar{\lambda})f'(\bar{x})(x - y),$$

у

$$0 \ge f'(\bar{x})(y - \bar{x}) = -\bar{\lambda}f'(\bar{x})(x - y).$$

Por tanto tenemos que $f'(\bar{x})(x-y) = 0$, y usando la igualdad (1) también tenemos $f'(\bar{x})(y-\bar{x}) = 0$.

Como hemos asumido que f es estrictamente pseudoconvexo en cada punto $x \in S$, f es estrictamente pseudoconvexo en \bar{x} y por tanto

$$f(y) - f(\bar{x}) > 0.$$

Pero esta desigualad contradice la siguiente desigualad

$$f(y) - f(\bar{x}) = f(y) - f(\bar{\lambda}x + (1 - \bar{\lambda})y)$$

$$\leq f(y) - f(\hat{\lambda}x + (1 - \hat{\lambda})y)$$

$$\leq f(y) - \max\{f(x), f(y)\}$$

$$\leq 0.$$

Por tanto para todo $\lambda \in (0,1)$

$$f(\lambda x + (1 - \lambda)y) < \max\{f(x), f(y)\},\$$

y consecuentemente f es cuasi convexo fuerte.