FCC RADIO TEST REPORT

according to

47 CFR FCC Part 15 Subpart C § 15.247

Equipment : SpectraGuard Sensor

Model No. : SS-300-AT Brand Name : Airtight

Filing Type : New Application

Applicant : AirTight Networks, Inc.

339 N. Bernardo Avenue, Suite #200 Mountain View, CA

94043

FCC ID : TOR-SS300AT

Manufacturer : DONG GUAN G-COM COMPUTER CO., LTD

1st Row Yin Shan Rd., Yin Hwu Industrial Area, Qingxi

Town, DongGuan City, Guang Dong, China

Received Date: May 01, 2008 Final Test Date: Sep. 19, 2008

Statement

Test result included is only for the 802.11b/g and 802.11a (5725 ~ 5850MHz) and Omni-Direction Antenna (3CWE591) of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.4-2003 and 47 CFR FCC Part 15 Subpart C.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

SPORTON International Inc.

6F, No. 106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

Table of Contents

1	SUMI	MARY OF THE TEST RESULT	2
2	GENE	ERAL INFORMATION	3
	2.1	Product Details	
	2.2	Accessories	
	2.3	Table for Filed Antenna	
	2.4	Table for Carrier Frequencies	
	2.5	Table for Test Modes	6
	2.6	Table for Testing Locations	
	2.7	Table for Supporting Units	7
	2.8	Table for Parameters of Test Software Setting	7
	2.9	EUT Operation during Test	7
	2.10	Test Configuration	8
3	TEST	「RESULT	10
	3.1	AC Power Line Conducted Emissions Measurement	10
	3.2	Maximum Conducted Output Power Measurement	18
	3.3	Power Spectral Density Measurement	20
	3.4	6dB Spectrum Bandwidth Measurement	28
	3.5	Radiated Emissions Measurement	36
	3.6	Band Edge and Fundamental Emissions Measurement	60
	3.7	Antenna Requirements	66
4	LIST	OF MEASURING EQUIPMENTS	67
5	TEST	「LOCATION	69
6	TAF (CERTIFICATE OF ACCREDITATION	70
Α	PPEN	DIX A. MAXIMUM PERMISSIBLE EXPOSURE	A1 ~ A3
		DIX B. TEST PHOTOS	
		DIV C PHOTOGRAPHS OF ELIT	C1 C47

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Issued Date : Oct. 13, 2008 FCC ID : TOR-SS300AT

History of This Test Report

Original Issue Date: Oct. 13, 2008
Report No.: FR843032-05AB

No additional attachment.

□ Additional attachment were issued as following record:

Attachment No.	Issue Date	Description

SPORTON International Inc.Page No.: ii of iiTEL: 886-2-2696-2468Issued Date: Oct. 13

FAX: 886-2-2696-2255

Issued Date : Oct. 13, 2008 FCC ID : TOR-SS300AT

CERTIFICATE OF COMPLIANCE

according to

47 CFR FCC Part 15 Subpart C § 15.247

Equipment : SpectraGuard Sensor

Model No. : SS-300-AT

Brand Name: Airtight

Applicant : AirTight Networks, Inc.

339 N. Bernardo Avenue, Suite #200

Mountain View, CA 94043

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on May 01, 2008 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Wayne Hsu

ne 2 tra 1410,08

SPORTON International Inc.

6F, No.106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

 SPORTON International Inc.
 Page No. : 1 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

1 SUMMARY OF THE TEST RESULT

Applied Standard: 47 CFR FCC Part 15 Subpart C						
Part	Part Rule Section Description of Test			Under Limit		
3.1	15.207	AC Power Line Conducted Emissions	Complies	8.22 dB		
3.2	15.247(b)(3)	Maximum Conducted Output Power	Complies	9.35 dB		
3.3	15.247(e)	Power Spectral Density	Complies	7.55 dB		
3.4	15.247(a)(2)	6dB Spectrum Bandwidth	Complies	-		
3.5	15.247(d)	Radiated Emissions	Complies	3.01 dB		
3.6	15.247(d)	Band Edge Emissions	Complies	1.12 dB		
3.7	15.203	Antenna Requirements	Complies	-		

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.3dB	Confidence levels of 95%
Maximum Peak Conducted Output Power	±0.8dB	Confidence levels of 95%
Power Spectral Density	±0.5dB	Confidence levels of 95%
6dB Spectrum Bandwidth	±8.5×10 ⁻⁸	Confidence levels of 95%
Radiated Emissions (9kHz~30MHz)	±0.8dB	Confidence levels of 95%
Radiated Emissions (30MHz~1000MHz)	±1.9dB	Confidence levels of 95%
Radiated / Band Edge Emissions (1GHz~18GHz)	±1.9dB	Confidence levels of 95%
Radiated Emissions (18GHz~40GHz)	±1.9dB	Confidence levels of 95%
Temperature	±0.7°C	Confidence levels of 95%
Humidity	±3.2%	Confidence levels of 95%
DC / AC Power Source	±1.4%	Confidence levels of 95%

 SPORTON International Inc.
 Page No.
 : 2 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

2 GENERAL INFORMATION

2.1 Product Details

Only the radio detail of IEEE 802.11a/b/g of Omni-Direction Antenna (3CWE591) is shown in the table below. For more detailed features description, please refer to the manufacturer's specifications or user's manual.

Report No.: FR843032-05AB

Items	Description	
Modulation	DSSS for IEEE 802.11b; OFDM for IEEE 802.11a/g	
Data Modulation	DSSS (BPSK / QPSK / CCK); OFDM (BPSK / QPSK / 16QAM / 64QAM)	
Data Rate (Mbps)	DSSS (1/ 2/ 5.5/11) ; OFDM (6/9/12/18/24/36/48/54/108)	
Frequency Range	2400 ~ 2483.5MHz / 5725 ~ 5850MHz	
Channel Number	11a: 5 ; 11b/g: 11	
Channel Band Width (99%)	11a: 16.44 MHz ; 11b: 15.12 MHz ; 11g: 16.48 MHz	
Conducted Output Power	11a: 10.75 dBm; 11b: 20.65 dBm; 11g: 14.84 dBm	

2.2 Accessories

Power	Brand	Model	Rating
Switching Adapter	DVE	DSA-15P-12 US 120150	INPUT: 100-240V~ 50/60Hz 0.7A
			OUTPUT: 12V 1.25A
Switching Adapter	DVE	DSA-20D-12 2 120150	INPUT: 100-240V~ 50/60Hz 0.7A
			OUTPUT: 12V 1.25A

2.3 Table for Filed Antenna

Antenna & Bandwidth

Antenna Mode	Single	Chain
Bandwidth Mode	20 MHz	40 MHz
802.11b	V	X
802.11g	V	X
802.11n(2.4GHz)	V	V
802.11a (5150~5250MHz)	V	X
802.11a (5725~5850MHz)	V	X
802.11n (5150~5250MHz)	V	V
802.11n (5725~5850MHz)	V	V

 SPORTON International Inc.
 Page No. : 3 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

Ant.	Antenna	Model Name	Product description	2.4/5 GHz	Tx/Rx mode	REMARK		
	Туре			Gain (dBi)				
1	Omni Ant.	3CWE591	3Com® 6/8dBi	6/8	1T1R/	Main Ant. for test		
ı	Offilii Afit.	3CVVE391	Dual-Band Omni Antenna	0/0	1T1R concurrent	Main Ant. for test		
			CUSHCRAFT 2.4~2.5&		1T1R/			
2	Omni Ant.	S24513BPX	4.9~5.9 GHz DUAL	6/6.5	1T1R concurrent	-		
			BAND OMNI ANTENNA		TTTK CONCUMENT			
			Airtight 2.4~2.5& 4.9~5.9					
3	Omni Ant.	SS-200-AT-AN-30	GHz Dual-band	6/6.5	1T1R/			
	Omm Ant.	33-200-AT-AN-30	Omnidirectional	0/0.5	1T1R concurrent	_		
			Indoor/outdoor antenna					
4	Omni Ant.	TGX-102XNXXX	Joymax Base Station	6/6	1T1R/	_		
-	Omm Ant.	TGX-102XNXXX	Antenna	0/0	1T1R concurrent	-		
	Panel Ant.		3Com® 18/20dBi		2T2R/			
5			Dual-Band Panel	18/20	2T2R concurrent	Main Ant. for test		
			Antenna		212K Concurrent			
	Panel Ant.	Panel Ant. 3CWE598	3Com® 8/10dBi	8/10	OTOD/			
6			Dual-Band Panel		2T2R/	t -		
			Antenna		2T2R concurrent			
					CUSHCRAFT Tri-mode,			
				dual band 802.11b/a/g		/		
7	Panel Ant.	SL24513P12SMF	ceiling mounted	3/3	2T2R/	-		
			Omnidirectional panel		2T2R concurrent			
			antenna					
			Airtight dual band					
	Daniel Aust	00 000 AT AN 40	802.11b/a/g	0/0	2T2R/			
8	Panel Ant.	SS-200-AT-AN-10	Omnidirectional	3/3	2T2R concurrent	-		
			Indoor panel antenna					
9	Monopole Ant.	3CWE590	3Com 2dBi Dual-Band	2/2	OTOD	Main Ant fortest		
9			Omni Antenna Kit		2T3R	Main Ant. for test		
10	PCB Ant.	TFF-A015MPAX-361	Integrated PCB Antenna	3/3	2T3R	Main Ant. for test		

^{*} There are four types of antenna in this project. Antenna 1, 5, 9,10 are the main antenna for test, according to the standard, the same type antenna with the highest gain could choose to test.

 SPORTON International Inc.
 Page No. : 4 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

^{*}For 3CWE591, the "1T1R concurrent" mode means it can transmit 2.4 GHz signal through one antenna and 5GHz signal through another antenna at the same time.

^{*}For 3CWE596, the "2T2R concurrent" mode means it can transmit 2.4 GHz signal through 2 antennas and 5GHz signal through other 2 antennas at the same time.

Antenna Cable Model Name	Product description	2.4/5 GHz Cable Loss (dB)
3CWE580	3Com® Ultra Low Loss 6-Foot Antenna Cable	-0.6/-1.2
3CWE581	3Com® Ultra Low Loss 20-Foot Antenna Cable	-2/-4
3CWE582	3Com® Ultra Low Loss 50-Foot Antenna Cable	-5/-10

Report No.: FR843032-05AB

Omni-Direction Antenna (3CWE591)

Ant.	Antenna Type	Connector	Gain (dBi)		Remark
			2.4G	5G	
Α	Omni-Direction Antenna	N Type	6	8	TX / RX

2.4 Table for Carrier Frequencies

Frequency Allocation for 802.11a

Frequency Band	Channel No.	Frequency
	149	5745 MHz
	153	5765 MHz
5725~5850 MHz	157	5785 MHz
	161	5805 MHz
	165	5825 MHz

Frequency Allocation for 802.11b/g

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	1	2412 MHz	7	2442 MHz
	2	2417 MHz	8	2447 MHz
2400 2492 EMU-	3	2422 MHz	9	2452 MHz
2400~2483.5MHz	4	2427 MHz	10	2457 MHz
	5	2432 MHz	11	2462 MHz
	6	2437 MHz		

SPORTON International Inc. Page No. : 5 of 70 Issued Date : Oct. 13, 2008 TEL: 886-2-2696-2468 FCC ID : TOR-SS300AT

FAX: 886-2-2696-2255

FCC TEST REPORT Report No.: FR843032-05AB

2.5 Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible Configuration for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Antenna
AC Power Line Conducted Emissions	See the note	Auto	-	-
Maximum Conducted Output Power	11a/BPSK	6 Mbps	149/157/165	А
Power Spectral Density	11b/CCK	11 Mbps	1/6/11	Α
6dB Spectrum Bandwidth	11g/BPSK	6 Mbps	1/6/11	Α
Radiated Emissions Below 1GHz	See the note	Auto	-	-
Radiated Emissions Above 1GHz	11a/BPSK	6 Mbps	149/157/165	А
Band Edge Emissions	11b/CCK	11 Mbps	1/6/11	А
	11g/BPSK	6 Mbps	1/6/11	Α

Note: For EMI test, the following modes were tested:

Conducted Emissions Below 1GHz

LAN 100Mbps (Adapter: DSA-20D-12 2 120150) LAN 1Gbps (Adapter: DSA-20D-12 2 120150) LAN 1Gbps (Adapter: DSA-15P-12 US 120150)

Radiated Emissions Below 1GHz Power Supply: POE20U-560(G) -R

There are performed the worst test result; it was reported as final data.

2.6 Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH03-HY	SAC	Hwa Ya	101377	IC 4086B-1	-
CO01-LK	Conduction	Lin Kou	93596	IC 4086C-1	-
TH01-HY	OVEN Room	Hwa Ya	-	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Fully Anechoic Chamber (FAC).

 SPORTON International Inc.
 Page No.
 : 6 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

2.7 Table for Supporting Units

Support Unit	Brand	Model	FCC ID	
P.C.	COMPAQ	Evo D380mx	DoC	
(Remote Workstation)	COMPAQ	EVO D360IIIX	DOC	
Notebook	DELL	PP01L	DoC	
(Remote Workstation)	DELL	PPUIL	DOC	
Monitor	COMPAQ	S510	DoC	
(Remote Workstation)	COMPAQ	3310	ВОС	
Keyboard (PS2)	COMPAQ	6511-VA	DoC	
(Remote Workstation)	COMPAQ	0311-VA	DOC	
Mouse (PS2)	COMPAQ	M-S69	JNZ211443	
(Remote Workstation)	COMPAQ	IVI-309	JINZ211443	
Notebook	DELL	D400	DoC	
(Remote Workstation)	DELL	D400	DOC	
Switching Power Supply	PHIHONG	POE20U-560(G) -R	-	

Report No.: FR843032-05AB

2.8 Table for Parameters of Test Software Setting

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power Parameters of IEEE 802.11a

Test Software Version	ART 0.5 BUILD#25				
Frequency	5745 MHz 5785 MHz 5825 MHz				
IEEE 802.11a	15	14.5	15		

Power Parameters of IEEE 802.11b/g

Test Software Version	ART 0.5 BUILD#25					
Frequency	2412 MHz	2437 MHz	2462 MHz			
IEEE 802.11b	19.5	23	19.5			
IEEE 802.11g	14	17	13.5			

2.9 EUT Operation during Test

An executive program, EMCTEST.EXE under WIN XP, which generates a complete line of continuously repeating "H" pattern was used as the test software.

The P.C. & NB sends "H" messages to the panel, and the panel displays "H" patterns on the screen.

Executed "ART 0.5 BUILD#25" to keep transmitting signals at fixed frequency.

Executed "ping.exe" to link with the remote workstation to receive and transmit data by LAN and WLAN.

 SPORTON International Inc.
 Page No. : 7 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

2.10 Test Configuration

2.10.1 Radiation Emissions Test Configuration

For radiated emissions 9kHz~1GHz

SPORTON International Inc. Page No. : 8 of 70 TEL: 886-2-2696-2468 Issued Date : Oct. 13, 2008 FCC ID : TOR-SS300AT

FAX: 886-2-2696-2255

For radiated emissions above 1GHz

 SPORTON International Inc.
 Page No.
 : 9 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

FCC TEST REPORT Report No.: FR843032-05AB

3 TEST RESULT

3.1 AC Power Line Conducted Emissions Measurement

3.1.1 Limit

For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

3.1.2 Measuring Instruments and Setting

Please refer to section 4 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.1.3 Test Procedures

- Configure the EUT according to ANSI C63.4. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 KHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

 SPORTON International Inc.
 Page No.
 : 10 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

Report No.: FR843032-05AB

3.1.4 Test Setup Layout

LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

 SPORTON International Inc.
 Page No. : 11 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

3.1.5 Test Deviation

There is no deviation with the original standard.

3.1.6 EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

3.1.7 Results of AC Power Line Conducted Emissions Measurement

Test date	May 19, 2008	Test Site No.	CO01-LK			
Temperature	25℃	Humidity	49%			
Test Engineer	Peter	Peter Phase Line				
Configuration	LAN 100Mbps (Adapter: DSA-20D-12 2 120150)					

Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
MHz	dBuV	dB	dBuV	dBuV	dB	dB	
0.278	39.14	-11.75	50.89	38.99	0.10	0.05	Average
0.278	48.37	-12.52	60.89	48.22	0.10	0.05	QP
0.330	50.86	-8.59	59.45	50.72	0.10	0.04	QP
0.330	40.24	-9.21	49.45	40.10	0.10	0.04	Average
0.389	36.17	-11.92	48.09	36.03	0.10	0.04	Average
0.389	47.32	-10.77	58.09	47.18	0.10	0.04	QP
0.466	30.37	-16.22	46.59	30.22	0.10	0.05	Average
0.466	48.16	-8.43	56.59	48.01	0.10	0.05	QP
0.647	26.36	-19.64	46.00	26.18	0.10	0.08	Average
0.647	40.05	-15.95	56.00	39.87	0.10	0.08	QP
12.320	43.31	-16.69	60.00	42.40	0.55	0.36	QP
12.320	34.02	-15.98	50.00	33.11	0.55	0.36	Average
	MHz 0.278 0.278 0.330 0.330 0.389 0.389 0.466 0.466 0.647 0.647	MHz dBuV 0.278 39.14 0.278 48.37 0.330 50.86 0.330 40.24 0.389 36.17 0.389 47.32 0.466 30.37 0.466 48.16 0.647 26.36 0.647 40.05 12.320 43.31	Hreq Level Limit MHz dBuV dB 0.278 39.14 -11.75 0.278 48.37 -12.52 0.330 50.86 -8.59 0.330 40.24 -9.21 0.389 36.17 -11.92 0.389 47.32 -10.77 0.466 30.37 -16.22 0.466 48.16 -8.43 0.647 26.36 -19.64 0.647 40.05 -15.95 12.320 43.31 -16.69	Breq Level Limit Line MHz dBuV dB dBuV 0.278 39.14 -11.75 50.89 0.278 48.37 -12.52 60.89 0.330 50.86 -8.59 59.45 0.330 40.24 -9.21 49.45 0.389 36.17 -11.92 48.09 0.389 47.32 -10.77 58.09 0.466 30.37 -16.22 46.59 0.466 48.16 -8.43 56.59 0.647 26.36 -19.64 46.00 0.647 40.05 -15.95 56.00 12.320 43.31 -16.69 60.00	Breq Level Limit Line Level MHz dBuV dB uV dBuV dBuV 0.278 39.14 -11.75 50.89 38.99 0.278 48.37 -12.52 60.89 48.22 0.330 50.86 -8.59 59.45 50.72 0.330 40.24 -9.21 49.45 40.10 0.389 36.17 -11.92 48.09 36.03 0.389 47.32 -10.77 58.09 47.18 0.466 30.37 -16.22 46.59 30.22 0.466 48.16 -8.43 56.59 48.01 0.647 26.36 -19.64 46.00 26.18 0.647 40.05 -15.95 56.00 39.87 12.320 43.31 -16.69 60.00 42.40	Freq Level Limit Line Level Factor MHz dBuV dB uV dBuV dB uV dQ uV dQ uV dQ uV dQ uV dQ uV <td>Freq Level Limit Line Level Factor Loss MHz dBuV dB dBuV dBuV dB dB 0.278 39.14 -11.75 50.89 38.99 0.10 0.05 0.278 48.37 -12.52 60.89 48.22 0.10 0.05 0.330 50.86 -8.59 59.45 50.72 0.10 0.04 0.389 36.17 -11.92 48.09 36.03 0.10 0.04 0.389 47.32 -10.77 58.09 47.18 0.10 0.04 0.466 30.37 -16.22 46.59 30.22 0.10 0.05 0.466 48.16 -8.43 56.59 48.01 0.10 0.05 0.647 26.36 -19.64 46.00 26.18 0.10 0.08 0.647 40.05 -15.95 56.00 39.87 0.10 0.08 12.320 43.31 -16.69 <td< td=""></td<></td>	Freq Level Limit Line Level Factor Loss MHz dBuV dB dBuV dBuV dB dB 0.278 39.14 -11.75 50.89 38.99 0.10 0.05 0.278 48.37 -12.52 60.89 48.22 0.10 0.05 0.330 50.86 -8.59 59.45 50.72 0.10 0.04 0.389 36.17 -11.92 48.09 36.03 0.10 0.04 0.389 47.32 -10.77 58.09 47.18 0.10 0.04 0.466 30.37 -16.22 46.59 30.22 0.10 0.05 0.466 48.16 -8.43 56.59 48.01 0.10 0.05 0.647 26.36 -19.64 46.00 26.18 0.10 0.08 0.647 40.05 -15.95 56.00 39.87 0.10 0.08 12.320 43.31 -16.69 <td< td=""></td<>

 SPORTON International Inc.
 Page No. : 12 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

Test date	May 19, 2008	Test Site No.	CO01-LK		
Temperature	21°C	Humidity	62%		
Test Engineer	Steven Phase Neutral				
Configuration	LAN 100Mbps (Adapter: DSA-20D-12 2 120150)				

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
1.0	MHz	dBuV	dB	dBuV	dBuV	dB	dB	id (i)
1	0.166	31.73	-23.43	55.16	31.59	0.10	0.04	Average
2	0.166	40.22	-24.94	65.16	40.08	0.10	0.04	QP
3	0.281	31.65	-19.15	50.80	31.50	0.10	0.05	Average
4	0.281	43.08	-17.72	60.80	42.93	0.10	0.05	QP
5	0.336	42.93	-16.38	59.31	42.79	0.10	0.04	QP
6	0.336	31.60	-17.71	49.31	31.46	0.10	0.04	Average
7	0.447	34.25	-12.68	46.93	34.10	0.10	0.05	Average
8	0.447	43.42	-13.51	56.93	43.27	0.10	0.05	QP
9	0.521	32.54	-23.46	56.00	32.38	0.10	0.06	QP
10	0.521	19.91	-26.09	46.00	19.75	0.10	0.06	Average
11	12.250	32.02	-17.98	50.00	31.17	0.50	0.35	Average
12	12.250	40.49	-19.51	60.00	39.64	0.50	0.35	QP

Note:

Level = Read Level + LISN Factor + Cable Loss.

 SPORTON International Inc.
 Page No.
 : 13 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

Test date	May 19, 2008	Test Site No.	CO01-LK		
Temperature	25°C	Humidity	49%		
Test Engineer	Peter	Line			
Configuration	LAN 1Gbps (Adapter: DSA-20D-12 2 120150)				

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
_	MHz	dBuV	dB	dBuV	dBuV		dB	-
1	0.292	49.69	-10.78	60.47	49.55	0.10	0.04	QP
2	0.292	33.92	-16.55	50.47	33.78	0.10	0.04	Average
3	0.333	51.04	-8.35	59.39	50.90	0.10	0.04	QP
4	0.333	40.54	-8.85	49.39	40.40	0.10	0.04	Average
5	0.406	47.49	-10.24	57.73	47.35	0.10	0.04	QP
6	0.406	31.60	-16.13	47.73	31.46	0.10	0.04	Average
7	0.464	48.40	-8.22	56.62	48.25	0.10	0.05	QP
8	0.464	31.92	-14.70	46.62	31.77	0.10	0.05	Average
9	0.592	27.26	-18.74	46.00	27.09	0.10	0.07	Average
10	0.592	41.01	-14.99	56.00	40.84	0.10	0.07	QP
11	0.686	42.10	-13.90	56.00	41.92	0.10	0.08	QP
12	0.686	30.32	-15.68	46.00	30.14	0.10	0.08	Average
13	12.120	41.88	-18.12	60.00	40.98	0.55	0.35	QP
14	12.120	32.93	-17.07	50.00	32.03	0.55	0.35	Average

 SPORTON International Inc.
 Page No. : 14 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

Test date	May 19, 2008	Test Site No.	CO01-LK			
Temperature	21℃	Humidity	62%			
Test Engineer	Steven	Phase	Neutral			
Configuration	LAN 1Gbps (Adapter: DSA-20D-12 2 120150)					

	Freq	Level	Limit	Limit	Level	Factor	Labie	Remark
-	MHz	dBuV	dB	dBuV	dBuV	- dB	dB	e e e e e e e e e e e e e e e e e e e
1	0.279	42.61	-18.24	60.85	42.46	0.10	0.05	QP
2	0.279	31.28	-19.57	50.85	31.13	0.10	0.05	Average
3	0.330	43.90	-15.55	59.45	43.76	0.10	0.04	QP
4	0.330	32.40	-17.05	49.45	32.26	0.10	0.04	Average
5	0.386	39.37	-18.78	58.15	39.23	0.10	0.04	QP
6	0.386	28.33	-19.82	48.15	28.19	0.10	0.04	Average
7	0.862	18.91	-27.09	46.00	18.71	0.10	0.10	Average
8	0.862	30.63	-25.37	56.00	30.43	0.10	0.10	QP
9	1.940	25.86	-30.14	56.00	25.63	0.10	0.13	QP
10	1.940	14.62	-31.38	46.00	14.39	0.10	0.13	Average
11	12.320	40.46	-19.54	60.00	39.60	0.50	0.36	QP
12	12.320	31.97	-18.03	50.00	31.11	0.50	0.36	Average

Note:

Level = Read Level + LISN Factor + Cable Loss.

 SPORTON International Inc.
 Page No.
 : 15 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

Test date	May 30, 2008	Test Site No.	CO01-LK		
Temperature	25℃	Humidity	49%		
Test Engineer	Peter	Phase	Line		
Configuration	LAN 1Gbps (Adapter: DSA-15P-12 US 120150)				

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
-	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.160	40.52	-24.95	65.47	40.38	0.10	0.04	QP
2	0.160	29.94	-25.53	55.47	29.80	0.10	0.04	Average
3	0.201	38.37	-25.21	63.58	38.22	0.10	0.05	QP
4	0.201	28.26	-25.32	53.58	28.11	0.10	0.05	Average
5	0.239	21.97	-30.16	52.13	21.82	0.10	0.05	Average
6	0.239	33.31	-28.82	62.13	33.16	0.10	0.05	QP
7	0.279	29.02	-21.83	50.85	28.87	0.10	0.05	Average
8	0.279	34.22	-26.63	60.85	34.07	0.10	0.05	QP
9	9.404	29.22	-30.78	60.00	28.43	0.48	0.31	QP
10	9.404	22.43	-27.57	50.00	21.64	0.48	0.31	Average
11	17.139	27.41	-32.59	60.00	26.35	0.69	0.37	QP
12	17.139	18.41	-31.59	50.00	17.35	0.69	0.37	Average

 SPORTON International Inc.
 Page No. : 16 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

Test date	May 30, 2008	Test Site No.	CO01-LK		
Temperature	21°C	Humidity	62%		
Test Engineer	Steven	Phase	Neutral		
Configuration	LAN 1Gbps (Adapter: DSA-15P-12 US 120150)				

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.161	40.28	-25.11	65.39	40.14	0.10	0.04	QP
2	0.161	28.05	-27.34	55.39	27.91	0.10	0.04	Average
3	0.197	38.21	-25.54	63.75	38.06	0.10	0.05	QP
4	0.197	27.36	-26.39	53.75	27.21	0.10	0.05	Average
5	0.237	34.35	-27.85	62.20	34.20	0.10	0.05	QP
6	0.237	21.01	-31.19	52.20	20.86	0.10	0.05	Average
7	0.277	35.93	-24.98	60.91	35.78	0.10	0.05	QP
8	0.277	29.38	-21.53	50.91	29.23	0.10	0.05	Average
9	0.319	25.28	-24.45	49.73	25.14	0.10	0.04	Average
10	0.319	34.12	-25.61	59.73	33.98	0.10	0.04	QP
11	14.505	28.03	-31.97	60.00	27.07	0.58	0.38	QP
12	14.505	21.52	-28.48	50.00	20.56	0.58	0.38	Average

Note:

Level = Read Level + LISN Factor + Cable Loss.

 SPORTON International Inc.
 Page No.
 : 17 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceed 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

Report No.: FR843032-05AB

3.2.2 Measuring Instruments and Setting

Please refer to section 4 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Analyzer	Setting
Attenuation	Auto
Span Frequency	0.135 s ~ 26 s
RB	1000 kHz
VB	3000 kHz
Detector	rms
Trace	Max Hold
Sweep Time	Auto

3.2.3 Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- Test was performed in accordance with Measurement of Digital Transmission Systems Operating under Section 15.247 March 23, 2005.

3.2.4 Test Setup Layout

3.2.5 Test Deviation

There is no deviation with the original standard.

3.2.6 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 SPORTON International Inc.
 Page No.
 : 18 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

3.2.7 Test Result of Maximum Conducted Output Power

Test date	May 09, 2008	Test Site No.	TH01-HY
Temperature	27°C	Humidity	55%
Test Engineer	Sam	Configuration	802.11a/b/g

Configuration IEEE 802.11a

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
149	5745 MHz	10.75	30.00	Complies
157	5785 MHz	8.53	30.00	Complies
165	5825 MHz	9.08	30.00	Complies

Configuration IEEE 802.11b

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
1	2412 MHz	17.48	30.00	Complies
6	2437 MHz	20.65	30.00	Complies
11	2462 MHz	17.56	30.00	Complies

Configuration IEEE 802.11g

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
1	2412 MHz	11.68	30.00	Complies
6	2437 MHz	14.84	30.00	Complies
11	2462 MHz	11.36	30.00	Complies

 SPORTON International Inc.
 Page No.
 : 19 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

3.3 Power Spectral Density Measurement

3.3.1 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Report No.: FR843032-05AB

3.3.2 Measuring Instruments and Setting

Please refer to section 4 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	1.5MHz
RB	3 kHz
VB	30 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	500s

3.3.3 Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyser.
- 2. Set RBW of spectrum analyzer to 3kHz and VBW to 30kHz. Set Detector to Peak, Trace to Max Hold.
- 3. Mark the frequency with maximum peak power as the center of the display of the spectrum.
- 4. Set the span to 1.5MHz and the sweep time to 500s and record the maximum peak value.

3.3.4 Test Setup Layout

3.3.5 Test Deviation

There is no deviation with the original standard.

 SPORTON International Inc.
 Page No. : 20 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

FCC TEST REPORT Report No.: FR843032-05AB

3.3.6 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

3.3.7 Test Result of Power Spectral Density

Test date	May 23, 2008	Test Site No.	TH01-HY
Temperature	27°C	Humidity	55%
Test Engineer	Sam	Configuration	802.11a/b/g

Configuration IEEE 802.11a

Channel	Frequency	Power Density (dBm)	Max. Limit (dBm)	Result
149	5745 MHz	-13.82	8	Complies
157	5785 MHz	-16.54	8	Complies
165	5825 MHz	-14.80	8	Complies

Configuration IEEE 802.11b

Channel	Frequency	Power Density (dBm)	Max. Limit (dBm)	Result
1	2412 MHz	-2.33	8	Complies
6	2437 MHz	0.45	8	Complies
11	2462 MHz	-3.91	8	Complies

Configuration IEEE 802.11g

Channel	Frequency	Power Density (dBm)	Max. Limit (dBm)	Result
1	2412 MHz	-8.45	8	Complies
6	2437 MHz	-5.61	8	Complies
11	2462 MHz	-9.35	8	Complies

 SPORTON International Inc.
 Page No.
 : 21 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

Power Density Plot on Configuration IEEE 802.11a / 5745 MHz

Date: 20.MAY.2008 17:41:22

Power Density Plot on Configuration IEEE 802.11a / 5785 MHz

Date: 20.MAY.2008 18:14:04

 SPORTON International Inc.
 Page No.
 : 22 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

Power Density Plot on Configuration IEEE 802.11a / 5825 MHz

Date: 20.MAY.2008 18:16:10

 SPORTON International Inc.
 Page No.
 : 23 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

Power Density Plot on Configuration IEEE 802.11b / 2412 MHz

Date: 23.MAY.2008 15:31:59

Power Density Plot on Configuration IEEE 802.11b / 2437 MHz

Date: 23.MAY.2008 15:22:05

 SPORTON International Inc.
 Page No.
 : 24 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

Power Density Plot on Configuration IEEE 802.11b / 2462 MHz

Date: 23.MAY.2008 15:19:52

 SPORTON International Inc.
 Page No.
 : 25 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

Power Density Plot on Configuration IEEE 802.11g / 2412 MHz

Date: 23.MAY.2008 15:36:45

Power Density Plot on Configuration IEEE 802.11g / 2437 MHz

Date: 23.MAY.2008 15:40:57

 SPORTON International Inc.
 Page No. : 26 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

Power Density Plot on Configuration IEEE 802.11g / 2462 MHz

Date: 23.MAY.2008 15:41:50

 SPORTON International Inc.
 Page No.
 : 27 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

3.4 6dB Spectrum Bandwidth Measurement

3.4.1 Limit

For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.

3.4.2 Measuring Instruments and Setting

Please refer to section 4 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Report No.: FR843032-05AB

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 6dB Bandwidth
RB	100 kHz
VB	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

3.4.3 Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- 2. The resolution bandwidth of 100 kHz and the video bandwidth of 100 kHz were used.
- 3. Measured the spectrum width with power higher than 6dB below carrier.

3.4.4 Test Setup Layout

 SPORTON International Inc.
 Page No. : 28 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

3.4.5 Test Deviation

There is no deviation with the original standard.

3.4.6 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

3.4.7 Test Result of 6dB Spectrum Bandwidth

Test date	May 23, 2008	Test Site No.	TH01-HY
Temperature	27°C	Humidity	55%
Test Engineer	Sam	Configuration	802.11a/b/g

Report No.: FR843032-05AB

Configuration IEEE 802.11a

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
149	5745 MHz	16.36	16.44	500	Complies
157	5785 MHz	16.40	16.44	500	Complies
165	5825 MHz	16.40	16.44	500	Complies

Configuration IEEE 802.11b

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
1	2412 MHz	11.56	15.12	500	Complies
6	2437 MHz	11.52	15.08	500	Complies
11	2462 MHz	11.24	15.12	500	Complies

Configuration IEEE 802.11g

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
1	2412 MHz	16.36	16.48	500	Complies
6	2437 MHz	16.36	16.48	500	Complies
11	2462 MHz	16.36	16.48	500	Complies

 SPORTON International Inc.
 Page No.
 : 29 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

6 dB Bandwidth Plot on Configuration IEEE 802.11a / 5745 MHz

Date: 20.MAY.2008 17:37:22

6 dB Bandwidth Plot on Configuration IEEE 802.11a / 5785 MHz

Date: 20.MAY.2008 18:11:55

 SPORTON International Inc.
 Page No. : 30 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

6 dB Bandwidth Plot on Configuration IEEE 802.11a / 5825 MHz

Date: 20.MAY.2008 18:10:32

 SPORTON International Inc.
 Page No.
 : 31 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

6 dB Bandwidth Plot on Configuration IEEE 802.11b / 2412 MHz

Date: 23.MAY.2008 15:25:12

6 dB Bandwidth Plot on Configuration IEEE 802.11b / 2437 MHz

Date: 23.MAY.2008 15:23:36

 SPORTON International Inc.
 Page No. : 32 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

6 dB Bandwidth Plot on Configuration IEEE 802.11b / 2462 MHz

Date: 23.MAY.2008 15:27:36

 SPORTON International Inc.
 Page No.
 : 33 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

6 dB Bandwidth Plot on Configuration IEEE 802.11g / 2412 MHz

Date: 23.MAY.2008 15:34:59

6 dB Bandwidth Plot on Configuration IEEE 802.11g / 2437 MHz

Date: 23.MAY.2008 15:39:52

 SPORTON International Inc.
 Page No. : 34 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

6 dB Bandwidth Plot on Configuration IEEE 802.11g / 2462 MHz

Date: 23.MAY.2008 15:42:45

 SPORTON International Inc.
 Page No.
 : 35 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

3.5 Radiated Emissions Measurement

3.5.1 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Report No.: FR843032-05AB

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

3.5.2 Measuring Instruments and Setting

Please refer to section 4 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	100KHz / 100KHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

 SPORTON International Inc.
 Page No. : 36 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

FCC TEST REPORT Report No.: FR843032-05AB

3.5.3 Test Procedures

1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

 SPORTON International Inc.
 Page No. : 37 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

Report No.: FR843032-05AB

3.5.4 Test Setup Layout

For radiated emissions below 30MHz

For radiated emissions above 30MHz

Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [9.54 dB].

3.5.5 Test Deviation

There is no deviation with the original standard.

3.5.6 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 SPORTON International Inc.
 Page No. : 38 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

3.5.7 Results of Radiated Emissions (9kHz~30MHz)

Test date	Sep. 19, 2008	Test Site No.	03CH03-HY
Temperature	26°C	Humidity	54%
Test Engineer	Duncan		

Report No.: FR843032-05AB

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

 SPORTON International Inc.
 Page No.
 : 39 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

3.5.8 Results of Radiated Emissions (30MHz~1GHz)

Test date	Sep. 19, 2008	Test Site No.	03CH03-HY
Temperature	26°C	Humidity	54%
Test Engineer	Duncan	Configuration	(Power Supply: POE20U-560(G) -R)

Horizontal

	Freq	Level	Over Limit			Intenna Factor			Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	1
1	132.820	29.22	-14.28	43.50	42.94	12.10	2.05	27.87	Peak
2 3	164.830	35.28	-8.22	43.50	51.20	9.89	2.17	27.98	Peak
	249.220	32.20	-13.80	46.00	45.18	12.58	2.69	28.25	Peak
4	331.670	39.15	-6.85	46.00	50.09	14.59	3.11	28.64	Peak
5	374.350	38.75	-7.25	46.00	48.47	15.62	3.42	28.76	Peak
6	874.870	36.95	-9.05	46.00	40.03	20.94	5.15	29.17	Peak

 SPORTON International Inc.
 Page No. : 40 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

	Freq	Level		Limit Line				9gHi 2번 500	
	Mz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	1
10	32.910	36.82	-3.18	40.00	46.78	16.71	1.03	27.70	QP
2	102.750	30.36	-13.14	43.50	44.87	11.56	1.74	27.81	Peak
3	285.110	30.48	-15.52	46.00	42.71	13.32	2.83	28.38	Peak
4	331.670	34.78	-11.22	46.00	45.72	14.59	3.11	28.64	Peak
4 5	625.580	36.99	-9.01	46.00	42.73	19.47	4.29	29.50	Peak
6	874.870	37.05	-8.95	46.00	40.13	20.94	5.15	29.17	Peak

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

 SPORTON International Inc.
 Page No. : 41 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

3.5.9 Results for Radiated Emissions (1GHz~10th Harmonic)

Test date	May 01, 2008	Test Site No.	03CH03-HY
Temperature	26°C	Humidity	54%
Test Engineer	Duncan	Configuration	802.11a CH 149

Horizontal

			Over	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	8528.000	53.62			42.69	38.32	5.42	32.81	PEAK
2	11490.200	59.16	-4.38	63.54	45.01	39.68	6.78	32.31	AVERAGE
3	11490.200	75.61	-7.93	83.54	61.47	39.68	6.78	32.31	Peak
4	17231.000	66.04			43.52	43.26	7.80	28.55	PEAK

Note: An item 1 and 4 are on un-restricted band, so the limit is -20dB for the field strength of the fundamental emissions (see section 3.6.7).

 SPORTON International Inc.
 Page No. : 42 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

		0ver	Limit	Readi	Antenna	Cable	Preamp	
Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	į S
7892.000	51.68			42.17	37.68	4.67	32.84	PEAK
11490.100	60.17	-3.37	63.54	46.03	39.68	6.78	32.31	AVERAGE
11490.100	75.45	-8.09	83.54	61.31	39.68	6.78	32.31	Peak
17232.000	68.24			45.72	43.26	7.80	28.55	PEAK
	MHz 7892.000 11490.100 11490.100	MHz dBuV/m 7892.000 51.68 11490.100 60.17 11490.100 75.45	Freq Level Limit MHz dBuV/m dB 7892.000 51.68 11490.100 60.17 -3.37 11490.100 75.45 -8.09 17232.000 68.24	Freq Level Limit Line MHz dBuV/m dB dBuV/m 7892.000 51.68 11490.100 60.17 -3.37 63.54 11490.100 75.45 -8.09 83.54 17232.000 68.24	Freq Level Limit Line Level MHz dBuV/m dB dBuV/m dBuV 7892.000 51.68 42.17 11490.100 60.17 -3.37 63.54 46.03 11490.100 75.45 -8.09 83.54 61.31 17232.000 68.24 45.72	Freq Level Limit Line Level Factor MHz dBuV/m dB dBuV/m dBuV dBuV dB/m 7892.000 51.68 42.17 37.68 11490.100 60.17 -3.37 63.54 46.03 39.68 11490.100 75.45 -8.09 83.54 61.31 39.68	Freq Level Limit Line Level Factor Loss MHz dBuV/m dB dBuV/m dBuV dB/m dB 7892.000 51.68 42.17 37.68 4.67 11490.100 60.17 -3.37 63.54 46.03 39.68 6.78 11490.100 75.45 -8.09 83.54 61.31 39.68 6.78 17232.000 68.24 45.72 43.26 7.80	Freq Level Limit Line Level Factor Loss Factor MHz dBuV/m dB dBuV/m dBuV dB/m dB dB 7892.000 51.68 42.17 37.68 4.67 32.84 11490.100 60.17 -3.37 63.54 46.03 39.68 6.78 32.31 11490.100 75.45 -8.09 83.54 61.31 39.68 6.78 32.31 17232.000 68.24 45.72 43.26 7.80 28.55

Note: An item 1 and 4 are on un-restricted band, so the limit is -20dB for the field strength of the fundamental emissions (see section 3.6.7).

 SPORTON International Inc.
 Page No.
 : 43 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

Test date	May 01, 2008	Test Site No.	03CH03-HY
Temperature	26°C	Humidity	54%
Test Engineer	Duncan	Configuration	802.11a CH 157

			Over	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	7). (1)
1	8004.000	51.89			42.16	37.80	4.71	32.79	PEAK
2	11568.000	59.22	-4.32	63.54	45.41	39.63	6.68	32.49	AVERAGE
3	11568.000	75.15	-8.39	83.54	61.34	39.63	6.68	32.49	Peak
3 4	17351.000	66.51			43.00	44.24	7.82	28.56	PEAK

Note: An item 1 and 4 are on un-restricted band, so the limit is -20dB for the field strength of the fundamental emissions (see section 3.6.7).

 SPORTON International Inc.
 Page No. : 44 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

			0ver	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MKz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	ē5 — — — — — — — — — — — — — — — — — — —
1	7848.000	52.05			42.60	37.65	4.65	32.85	PEAK
2	11568.700	75.52	-8.02	83.54	61.71	39.63	6.68	32.49	Peak
3	11568.700	59.48	-4.06	63.54	45.66	39.63	6.68	32.49	AVERAGE
4	17359.000	66.68			43.17	44.24	7.83	28.56	PERK

Note: An item 1 and 4 are on un-restricted band, so the limit is -20dB for the field strength of the fundamental emissions (see section 3.6.7).

 SPORTON International Inc.
 Page No. : 45 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

Test date	May 01, 2008	Test Site No.	03CH03-HY
Temperature	26°C	Humidity	54%
Test Engineer	Duncan	Configuration	802.11a CH 165

			Over	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB)
1	8544.000	53.63			42.69	38.33	5.42	32.81	PEAK
2	11650.900	58.83	-4.71	63.54	45.31	39.54	6.57	32.59	AVERAGE
3	11650.900	78.45	-5.09	83.54	64.93	39.54	6.57	32.59	Peak
4	17475.000	68.20			43.71	45.22	7.84	28.57	PEAK

Note: An item 1 and 4 are on un-restricted band, so the limit is -20dB for the field strength of the fundamental emissions (see section 3.6.7).

 SPORTON International Inc.
 Page No. : 46 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

		Over	Limit	Readi	Antenna	Cable	Preamp	
Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	ÁĞ.
8016.000	52.31			42.57	37.82	4.71	32.79	PEAK
11650.100	54.20	-9.34	63.54	40.66	39.56	6.57	32.59	AVERAGE
11650.100	73.18	-10.36	83.54	59.64	39.56	6.57	32.59	Peak
17475.000	68.04			43.55	45.22	7.84	28.57	PEAK
	MHz 8016.000 11650.100 11650.100	MHz dBuV/m 8016.000 52.31 11650.100 54.20 11650.100 73.18	### Record Here Her	### Freq Level Limit Line MHz dBuV/m dB dBuV/m 8016.000 52.31 11650.100 54.20 -9.34 63.54 11650.100 73.18 -10.36 83.54	### Red Level Limit Line Level MHz dBuV/m dB dBuV/m dBuV dB	### Freq Level Limit Line Level Factor MHz dBuV/m dB dBuV/m dBuV dB/m 8016.000 52.31 42.57 37.82 11650.100 54.20 -9.34 63.54 40.66 39.56 11650.100 73.18 -10.36 83.54 59.64 39.56	Freq Level Limit Line Level Factor Loss MHz dBuV/m dB dBuV/m dBuV dB/m dB/m dB 8016.000 52.31 42.57 37.82 4.71 11650.100 54.20 -9.34 63.54 40.66 39.56 6.57 11650.100 73.18 -10.36 83.54 59.64 39.56 6.57	Freq Level Limit Line Level Factor Loss Factor MHz dBuV/m dB dBuV/m dBuV/m dB/m dB dB 8016.000 52.31 42.57 37.82 4.71 32.79 11650.100 54.20 -9.34 63.54 40.66 39.56 6.57 32.59 11650.100 73.18 -10.36 83.54 59.64 39.56 6.57 32.59

Note: An item 1 and 4 are on un-restricted band, so the limit is -20dB for the field strength of the fundamental emissions (see section 3.6.7).

 SPORTON International Inc.
 Page No.
 : 47 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

Test date	May 01, 2008	Test Site No.	03CH03-HY
Temperature	26°C	Humidity	54%
Test Engineer	Duncan	Configuration	802.11b CH 1

	Freg	Taual	Over			Antenna			Damank
	rreq	rever	шис	rine	rever	Factor	Loss	Factor	Kenark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	Š.
1	4828.000	48.07	-5.93	54.00	43.46	33.06	4.03	32.47	PK
2	7236.000	53.44			46.81	35.78	3.67	32.82	PEAK
3	9648.000	54.53			43.86	38.41	5.21	32.95	PEAK

Note: An item 2 and 3 are on un-restricted band, so the limit is -20dB for the field strength of the fundamental emissions (see section 3.6.7).

 SPORTON International Inc.
 Page No. : 48 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

			Over	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	4824.000	59.06	-14.94	74.00	54.45	33.06	4.03	32.47	PEAK
2 @	4824.000	49.72	-4.28	54.00	45.11	33.06	4.03	32.47	Average
3	7236.000	50.46			43.83	35.78	3.67	32.82	Peak
4	9648.000	55.44			44.77	38.41	5.21	32.95	PEAK

Note: An item 3 and 4 are on un-restricted band, so the limit is -20dB for the field strength of the fundamental emissions (see section 3.6.7).

 SPORTON International Inc.
 Page No.
 : 49 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

Test date	May 01, 2008	Test Site No.	03CH03-HY
Temperature	26°C	Humidity	54%
Test Engineer	Duncan	Configuration	802.11b CH 6

			0ver	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	4876.000	47.53	-6.47	54.00	42.82	33.16	4.02	32.47	PK
2	7308.000	55.13	-18.87	74.00	48.12	35.94	3.91	32.85	PEAK
3	7308.000	46.33	-7.67	54.00	39.32	35.94	3.91	32.85	Average
4	9748.000	53.00			42.00	38.62	5.31	32.92	PEAK

Note: An item 4 is on un-restricted band, so the limit is -20dB for the field strength of the fundamental emissions (see section 3.6.7).

 SPORTON International Inc.
 Page No. : 50 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

	Freq	Freq Level MHz dBuV/m	evel Limit Line	ReadAntenna Level Factor				Remark	
	Mtz			dBuV/m	dBuV	dB/m	dB	dB	
1 @	4876,000	50.99	-3.01	54.00	46.27	33.16	4.02	32.47	PK
2	7312.000	58.82	-15.18	74.00	51.83	35.94	3.91	32.87	PEAK
3	7312.000	48.18	-5.82	54.00	41.19	35.94	3.91	32.87	Average
4	9748.000	53.59			42.58	38.62	5.31	32.92	PEAK

Note: An item 4 is on un-restricted band, so the limit is -20dB for the field strength of the fundamental emissions (see section 3.6.7).

 SPORTON International Inc.
 Page No. : 51 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

Test date	May 01, 2008	Test Site No.	03CH03-HY
Temperature	26°C	Humidity	54%
Test Engineer	Duncan	Configuration	802.11b CH 11

			Over	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	5
1	4924.000	47.46	-6.54	54.00	42.65	33.26	4.02	32.46	PK
2 @	7388.000	50.06	-3.94	54.00	42.67	36.15	4.16	32.92	PK
3	9848.000	53.86			42.50	38.79	5.47	32.89	PERK

Note: An item 3 is on un-restricted band, so the limit is -20dB for the field strength of the fundamental emissions (see section 3.6.7).

 SPORTON International Inc.
 Page No. : 52 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

			Over	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	A B
1	4928.000	59.07	-14.93	74.00	54.26	33.26	4.02	32.46	PEAK
2 @	4928.000	50.36	-3.64	54.00	45.55	33.26	4.02	32.46	Average
3	7384.000	51.67	-22.33	74.00	44.26	36.15	4.16	32.90	PEAK
4 5	7384.000	42.49	-11.51	54.00	35.08	36.15	4.16	32.90	Average
5	9852.000	53.78			42.38	38.82	5.47	32.89	PEAK

Note: An item 5 is on un-restricted band, so the limit is -20dB for the field strength of the fundamental emissions (see section 3.6.7).

 SPORTON International Inc.
 Page No. : 53 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

Test date	May 01, 2008	Test Site No.	03CH03-HY
Temperature	26°C	Humidity	54%
Test Engineer	Duncan	Configuration	802.11g CH 1

			Over	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MKz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dВ	dB	
1	3216.000	47.79			47.70	30.51	2.47	32.91	PEAK
2 @	4824.000	50.93	-3.07	54.00	46.32	33.06	4.03	32.47	PK
3	7240.000	57.29			50.66	35.78	3.67	32.82	PERK
4	9652.000	52.26			41.59	38.41	5.21	32.95	PEAK

Note: An item 1, 3 and 4 are on un-restricted band, so the limit is -20dB for the field strength of the fundamental emissions (see section 3.6.7).

 SPORTON International Inc.
 Page No. : 54 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

	Freq	Level	Over Limit			Antenna Factor			Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	3216.000	45.29			45.21	30.51	2.47	32.91	PEAK
2	4828.000	48.58	-5.42	54.00	43.97	33.06	4.03	32.47	Average
3	4828.000	58.25	-15.75	74.00	53.64	33.06	4.03	32.47	Peak
4	7236.000	56.86			50.23	35.78	3.67	32.82	PERK
5	9652.000	52.81			42.14	38.41	5.21	32.95	PEAK

Note: An item 1, 4 and 5 are on un-restricted band, so the limit is -20dB for the field strength of the fundamental emissions (see section 3.6.7).

 SPORTON International Inc.
 Page No. : 55 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

Test date	May 01, 2008	Test Site No.	03CH03-HY
Temperature	26°C	Humidity	54%
Test Engineer	Duncan	Configuration	802.11g CH 6

			Over	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	₫В	dB	i t
1	3248.000	44.71			44.55	30.58	2.48	32.91	PEAK
2	4874.000	45.34	-8.66	54.00	40.62	33.16	4.02	32.47	PK
3	7312.000	57.31	-16.69	74.00	50.32	35.94	3.91	32.87	PEAK
3 4 5	7312.000	46.76	-7.24	54.00	39.77	35.94	3.91	32.87	Average
5	9748.000	53.25			42.24	38.62	5.31	32.92	PEAK

Note: An item 1 and 5 are on un-restricted band, so the limit is -20dB for the field strength of the fundamental emissions (see section 3.6.7).

 SPORTON International Inc.
 Page No.
 : 56 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

			Over	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	αВ	dB	100
1	3248.000	43.37			43.22	30.58	2.48	32.91	PEAK
2 @	4872.000	49.25	-4.75	54.00	44.53	33.16	4.02	32.47	PK
3	7312.000	56.54	-17.46	74.00	49.55	35.94	3.91	32.87	PEAK
3 4 5	7312.000	46.69	-7.31	54.00	39.70	35.94	3.91	32.87	Average
5	9744.000	54.29			43.32	38.58	5.31	32.92	PEAK

Note: An item 1 and 5 are on un-restricted band, so the limit is -20dB for the field strength of the fundamental emissions (see section 3.6.7).

 SPORTON International Inc.
 Page No. : 57 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

Test date	May 01, 2008	Test Site No.	03CH03-HY
Temperature	26°C	Humidity	54%
Test Engineer	Duncan	Configuration	802.11g CH 11

			Over	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	10
1	4924.000	44.98	-9.02	54.00	40.17	33.26	4.02	32.46	PK
2 @	7382.000	49.14	-4.86	54.00	41.77	36.11	4.16	32.90	PK
3	9848.000	53.20			41.84	38.79	5.47	32.89	PERK

Note: An item 3 is on un-restricted band, so the limit is -20dB for the field strength of the fundamental emissions (see section 3.6.7).

 SPORTON International Inc.
 Page No. : 58 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

			Over	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	4928.000	47.40	-6.60	54.00	42.58	33.26	4.02	32.46	PK
2	7390.000	47.08	-6.92	54.00	39.68	36.15	4.16	32.92	Average
3	7390.000	56.93	-17.07	74.00	49.54	36.15	4.16	32.92	Peak
4	9852.000	53.82			42.43	38.82	5.47	32.89	PK

Note: An item 4 is on un-restricted band, so the limit is -20dB for the field strength of the fundamental emissions (see section 3.6.7).

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

 SPORTON International Inc.
 Page No. : 59 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

3.6 Band Edge and Fundamental Emissions Measurement

3.6.1 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Report No.: FR843032-05AB

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

3.6.2 Measuring Instruments and Setting

Please refer to section 4 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	100 KHz /100 KHz for Peak

3.6.3 Test Procedures

- 1. The test procedure is the same as section 3.5.3; only the frequency range investigated is limited to 100MHz around bandedges.
- 2. In case the emission is fail due to the used RB/VB is too wide, marker-delta method of FCC Public Notice DA00-705 will be followed.

3.6.4 Test Setup Layout

This test setup layout is the same as that shown in section 3.5.4.

3.6.5 Test Deviation

There is no deviation with the original standard.

3.6.6 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 SPORTON International Inc.
 Page No.
 : 60 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

3.6.7 Test Result of Band Edge and Fundamental Emissions

Test date	May 22, 2008	Test Site No.	03CH03-HY
Temperature	26	Humidity	54%
Test Engineer	Duncan	Configuration	802.11b CH 1, 6, 11

Report No.: FR843032-05AB

Channel 1

			Over	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MKz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	i e
1	2385.050	63.23	-10.77	74.00	32.78	28.26	2.19	0.00	Peak
2 @	2410.890	116.07			85.56	28.33	2.19	0.00	Peak
1 0	2385.620	52.67	-1.33	54.00	22.19	28.29	2.19	0.00	Average
2 @	2410.890	109.07			78.56	28.33	2.19	0.00	Average

An item 2 is Fundamental Emissions.

Channel 6

			Over	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	2383.340	62.98	-11.02	74.00	32.57	28.26	2.16	0.00	Peak
2 @	2436.730	121.15			90.54	28.40	2.22	0.00	Peak
3 1 @	2490.690 2382.770	63.25 51.39	-10.75 -2.61		32.50 20.98		2.25		Peak Average
2 @	2439.010	114.14			83.53	28.40	2.22	0.00	Average
3 @	2495.060	50.71	-3.29	54.00	19.96	28.50	2.25	0.00	Average

An item 2 is Fundamental Emissions.

Channel 11

			Over	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MKz	dBuV/m	/m dB	dBuV/m	dBuV	dB/m	dВ	dB	
1 0	2461.810	117.80			87.15	28.43	2.22	0.00	Peak
2	2483.500	62.15	-11.85	74.00	31.44	28.47	2.25	0.00	Peak
1 @	2461.810	110.25			79.60	28.43	2.22	0.00	Average
2 @	2483.500	51.46	-2.54	54.00	20.75	28.47	2.25	0.00	Average

An item 1 is Fundamental Emissions.

SPORTON International Inc. Page No. : 61 of 70 TEL: 886-2-2696-2468 Issued Date : Oct. 13, 2008 FCC ID : TOR-SS300AT

FAX: 886-2-2696-2255

Test date	May 22, 2008	Test Site No.	03CH03-HY
Temperature	26	Humidity	54%
Test Engineer	Duncan	Configuration	802.11g CH 1, 6, 11

Channel 1

			Over	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level		Line	dBuV	Factor	Loss	Factor	Remark
	MKz	dBuV/m		dBuV/m		dB/m	dB		
10	2390.000	52.88	-1.12	54.00	22.40	28.29	2.19	0.00	Average
2 @	2410.130	101.37			70.86	28.33	2.19	0.00	Average
1	2390.000	67.12	-6.88	74.00	36.64	28.29	2.19	0.00	Peak
2 @	2409.940	110.03			79.52	28.33	2.19	0.00	Peak

An item 2 is Fundamental Emissions.

Channel 6

	Freq	Level	Uver Limit	Limit		Antenna Factor		Preamp Factor	Remark
	MKz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-
1	2380.300	63.96	-10.04	74.00	33.55	28.26	2.16	0.00	Peak
2 @	2438.250	115.08			84.47	28.40	2.22	0.00	Peak
3 1 @	2491.450 2383.340	64.36 51.85	-9.64 -2.15	74.00 54.00	33.61		2.25		Peak Average
2 @	2438.060	106.05			75.44	28.40	2.22	0.00	Average
3 @	2492.020	52.08	-1.92	54.00	21.33	28.50	2.25	0.00	Average

An item 2 is Fundamental Emissions.

Channel 11

			Over	Limit	ReadAntenna		Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MX	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1 @	2464.850	111.89			81.21	28.43	2.25	0.00	Peak
2 @	2483.500	69.81	-4.19	74.00	39.10	28.47	2.25	0.00	Peak
1 0	2461.810	103.26			72.61	28.43	2.22	0.00	Average
2 @	2483.500	51.24	-2.76	54.00	20.53	28.47	2.25	0.00	Average

An item 1 is Fundamental Emissions.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

 SPORTON International Inc.
 Page No. : 62 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

For Emission not in Restricted Band

Date:

Low Band Edge Plot on Configuration IEEE 802.11a / 5745 MHz

High Band Edge Plot on Configuration IEEE 802.11a / 5825 MHz

20.MAY.2008 17:39:34

Date: 20.MAY.2008 18:09:27

 SPORTON International Inc.
 Page No.
 : 63 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

Low Band Edge Plot on Configuration IEEE 802.11b / 2412 MHz

Date: 23.MAY.2008 15:26:20

High Band Edge Plot on Configuration IEEE 802.11b / 2462 MHz

Date: 23.MAY.2008 15:17:20

 SPORTON International Inc.
 Page No. : 64 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

Low Band Edge Plot on Configuration IEEE 802.11g / 2412 MHz

Date: 23.MAY.2008 15:35:54

High Band Edge Plot on Configuration IEEE 802.11g / 2462 MHz

Date: 23.MAY.2008 15:43:41

 SPORTON International Inc.
 Page No. : 65 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

FCC TEST REPORT Report No.: FR843032-05AB

3.7 Antenna Requirements

3.7.1 Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

3.7.2 Antenna Connector Construction

Please refer to section 2.3 in this test report; antenna connector complied with the requirements.

 SPORTON International Inc.
 Page No. : 66 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

4 LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Receiver	R&S	ESCS 30	836858/024	9 kHz - 2.75 GHz	Sep. 11, 2007	Conduction (CO01-LK)
LISN	SCHAFFNER	NNB-41	98087	9 kHz - 30 MHz	Sep. 21, 2007	Conduction (CO01-LK)
RF Cable-CON	Suhner Switzerland	RG223/U	CB017	9 kHz - 30 MHz	Nov. 30, 2007	Conduction (CO01-LK)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP30	100023	9kHz ~ 30GHz	Jan. 10, 2008	Conducted
Opodiram / mary 201	1100	1 01 00	100020	01412 00 01 12		(TH01-HY)
Power Meter	R&S	NRVS	100444	DC ~ 40GHz	Jun. 27, 2007	Conducted
1 Ower Meter	Nao	MICVO	100444	DC ~ 400112	Juli. 27 , 2007	(TH01-HY)
Power Sensor	R&S	NRV-Z51	100458	DC ~ 30GHz	Jun. 27, 2007	Conducted
1 Ower Sensor	Nao	141(4-251	100430	DC ~ 300112	Juli. 27 , 2007	(TH01-HY)
Power Sensor	R&S	NRV-Z32	100057	30MHz ~ 6GHz	Jun. 27, 2007	Conducted
Fower Sensor	Rασ	NIX V-2.32	100037	301VII 12 ~ 0GI 12	Juli. 27, 2007	(TH01-HY)
DC Power Source	G.W.	GPC-6030D	C671845 DC 1\(\frac{1}{2}\) = 60\(\frac{1}{2}\)	C671845 DC 1V ~ 60V Mar. 13. 2008	Mar. 13, 2008	Conducted
DO I OWEI Source	O.VV.	OI C-0030D	007 1043	DC 1V ~ 00V	Wai. 13, 2000	(TH01-HY)
Temp. and Humidity	KSON	THS-C3L	612	N/A	Oct. 01, 2007	Conducted
Chamber	Koon	1110-03L	012	IV/A	Oct. 01, 2007	(TH01-HY)
RF CABLE-1m	Jye Bao	RG142	CB034-1m	20MHz ~ 7GHz	Dec. 01, 2007	Conducted
IN OADLL-IIII	Jye Bao	1/0142	CD034-1111	201VII 12 ~ 7 OI 12	Dec. 01, 2007	(TH01-HY)
RF CABLE-2m	Jye Bao	RG142	CB035-2m	20MHz ~ 1GHz	Dec. 01, 2007	Conducted
KF CABLE-2III	Јуе Бао	KG142	CB033-2111	201VII 12 ~ 1G1 12	Dec. 01, 2007	(TH01-HY)
Vector Signal	R&S	SMU200A	102098	100kHz ~ 6GHz	Nov. 14, 2007	Conducted
Generator	1100	GIVIOZOUA	102090	100K112 ~ 00112	14, 2007	(TH01-HY)
Signal Congretor	D o C	SMR40	100116	10MHz ~ 40GHz	Mor 10 2009	Conducted
Signal Generator	R&S	SIVIR4U	100116	TOWINZ ~ 40GNZ	Mar. 10, 2008	(TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

 SPORTON International Inc.
 Page No.
 : 67 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

Instrument	Manufacturer	Manufacturer Model No. Serial No. Characteristics				Remark
3m Semi Anechoic Chamber	SIDT FRANKONIA	ONIA SAC-3M 03CH03-HY 30 MHz - 1 GHz Jun.		Jun. 14, 2007	Radiation (03CH03-HY)	
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30 MHz - 1 GHz 3m	Jun. 13, 2008	Radiation (03CH03-HY)
Amplifier	SCHAFFNER	COA9231A	18667 9 kHz - 2 GHz Jan. 14, 20		Jan. 14, 2008	Radiation (03CH03-HY)
Amplifier	Agilent 8449B 3008A02120 1 GHz - 26.5		1 GHz - 26.5 GHz	Jun. 07, 2007	Radiation (03CH03-HY)	
Amplifier	Agilent	8449B	3008A02120	1 GHz - 26.5 GHz	Jul. 21, 2008	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	R&S FSP30 100023 9 kHz - 30 GHz		9 kHz - 30 GHz	Jan. 10, 2008	Radiation (03CH03-HY)
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30 MHz – 1 GHz	Jul. 21, 2007	Radiation (03CH03-HY)
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30 MHz – 1 GHz	Jul. 12, 2008	Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6741 1GHz ~ 18GHz		Mar. 04, 2008	Radiation (03CH03-HY)
Horn Antenna	SCHWARZBECK BBHA9170 BBHA9170154 15 GHz - 40 GHz		15 GHz - 40 GHz	Jan.18, 2008	Radiation (03CH03-HY)	
RF Cable-R03m	Jye Bao RG142 CB021 30 MHz - 1 GHz		30 MHz - 1 GHz	Dec. 03, 2007	Radiation (03CH03-HY)	
RF Cable-HIGH	SUHNER SUCOFLEX 106 03CH03-HY 1 GHz - 40 GHz		1 GHz - 40 GHz	Dec. 03, 2007	Radiation (03CH03-HY)	
Turn Table	HD	DS 420	420/650/00	0 – 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
AC Power Source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	May 04, 2007*	Conducted (TH01-HY)
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5 GHz - 40 GHz	Jan. 22, 2007*	Radiation (03CH03-HY)
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	May 22, 2008*	Radiation (03CH03-HY)

Note: Calibration Interval of instruments listed above is two year.

 SPORTON International Inc.
 Page No. : 68 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT

5 TEST LOCATION

SHIJR	ADD	:	6FI., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4FI., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085

Report No.: FR843032-05AB

 SPORTON International Inc.
 Page No.
 : 69 of 70

 TEL: 886-2-2696-2468
 Issued Date
 : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID
 : TOR-SS300AT

FCC TEST REPORT Report No.: FR843032-05AB

6 TAF CERTIFICATE OF ACCREDITATION

Certificate No. : L1190-070110

財團法人全國認證基金會 Taiwan Accreditation Foundation

Certificate of Accreditation

This is to certify that

Sporton International Inc.

EMC & Wireless Communications Laboratory

No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

is accredited in respect of laboratory

Accreditation Criteria

: ISO/IEC 17025:2005

Accreditation Number

1190

Originally Accredited

December 15, 2003

Effective Period

January 10, 2007 to January 09, 2010

Accredited Scope

: Testing Field, see described in the Appendix

...

Accreditation Program for Designated Testing Laboratory

Specific Accreditation

Program

for Commodities Inspection

Accreditation Program for Telecommunication Equipment

Testing Laboratory

Jay-San Chen

President, Taiwan Accreditation Foundation

Date : January 10, 2007

P1, total 9 pages

The Appendix forms an integral part of this Certificate, which shall be invalid when used without the Appendix.

 SPORTON International Inc.
 Page No. : 70 of 70

 TEL: 886-2-2696-2468
 Issued Date : Oct. 13, 2008

 FAX: 886-2-2696-2255
 FCC ID : TOR-SS300AT