Package 'OPTS'

October 12, 2022

Type Package

Title Optimization via Subsampling (OPTS)

Version 0.1
Date 2022-05-20
Maintainer Mihai Giurcanu <giurcanu@uchicago.edu></giurcanu@uchicago.edu>
Author Mihai Giurcanu [aut, cre], Marinela Capanu [aut, ctb], Colin Begg [aut], Mithat Gonen [aut]
Imports MASS, cvTools, changepoint
Description Subsampling based variable selection for low dimensional generalized linear models. The methods repeatedly subsample the data minimizing an information criterion (AIC/BIC) over a sequence of nested models for each subsample. Marinela Capanu, Mihai Giurcanu, Colin B Begg, Mithat Gonen, Subsampling based variable selection for generalized linear models.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2022-05-25 07:50:08 UTC
R topics documented:
opts
Index 5

2 opts

opts

Optimization via Subsampling (OPTS)

Description

opts computes the OPTS MLE in low dimensional case.

Usage

```
opts(X, Y, m, crit = "aic", prop_split = 0.5, cutoff = 0.75, ...)
```

Arguments

X n x p covariate matrix (without intercept)

Y n x 1 binary response vector

m number of subsamples

crit information criterion to select the variables: (a) aic = minimum AIC and (b) bic

= minimum BIC

prop_split proportion of subsample size and sample size, default value = 0.5

cutoff cutoff used to select the variables using the stability selection criterion, default

value = 0.75

... other arguments passed to the glm function, e.g., family = "binomial"

Value

opts returns a list:

betahat OPTS MLE of regression parameter vector

Jhat estimated set of active predictors (TRUE/FALSE) corresponding to the OPTS

MLE

SE standard error of OPTS MLE

freqs relative frequency of selection for all variables

Examples

```
require(MASS)
P = 15
N = 100
M = 20
BETA_vector = c(0.5, rep(0.5, 2), rep(0.5, 2), rep(0, P - 5))
MU_vector = numeric(P)
SIGMA_mat = diag(P)

X <- mvrnorm(N, MU_vector, Sigma = SIGMA_mat)
linearPred <- cbind(rep(1, N), X)
Y <- rbinom(N, 1, plogis(linearPred))</pre>
```

opts_th 3

```
# OPTS-AIC MLE
opts(X, Y, 10, family = "binomial")
```

opts_th

Threshold OPTimization via Subsampling (OPTS_TH)

Description

opts_th computes the threshold OPTS MLE in low dimensional case.

Usage

```
opts_th(X, Y, m, crit = "aic", type = "binseg", prop_split = 0.5,
    prop_trim = 0.2, q_tail = 0.5, ...)
```

Arguments

Χ n x p covariate matrix (without intercept) Υ n x 1 binary response vector number of subsamples m information criterion to select the variables: (a) aic = minimum AIC and (b) bic crit = minimum BIC method used to minimize the trimmed and averaged information criterion: (a) type min = observed minimum subsampling trimmed average information, (b) sd = observed minimum using the 0.25sd rule (corresponding to OPTS-min in the paper), (c) pelt = PELT changepoint algorithm (corresponding to OPTS-PELT in the paper), (d) binseg = binary segmentation changepoint algorithm (corresponding to OPTS-BinSeg in the paper), (e) amoc = AMOC method. prop_split proportion of subsample size of the sample size; default value is 0.5 prop_trim proportion that defines the trimmed mean; default value = 0.2q_tail quantiles for the minimum and maximum p-values across the subsample cutpoints used to define the range of cutpoints other arguments passed to the glm function, e.g., family = "binomial"

Value

opts_th returns a list:

betahat STOPES MLE of regression parameters

SE SE of STOPES MLE

Jhat set of active predictors (TRUE/FALSE) corresponding to STOPES MLE

cuthat estimated cutpoint for variable selection

opts_th

pval marginal p-values from univariate fit
cutpoits subsample cutpoints
aic_mean mean subsample AIC
bic_mean mean subsample BIC

Examples

```
require(MASS)
P = 15
N = 100
M = 20
BETA_vector = c(0.5, rep(0.5, 2), rep(0.5, 2), rep(0, P - 5))
MU_vector = numeric(P)
SIGMA_mat = diag(P)

X <- mvrnorm(N, MU_vector, Sigma = SIGMA_mat)
linearPred <- cbind(rep(1, N), X)
Y <- rbinom(N, 1, plogis(linearPred))
# Threshold OPTS-BinSeg MLE
opts_th(X, Y, M, family = "binomial")</pre>
```

Index

opts, 2
opts_th, 3