ASSIGNMENT 1

Valli Devi Bolla

Download all python codes from

https://github.com/Vallidevibolla/vallidevi/blob/main/Collinear.py

and latex-tikz codes from

https://github.com/Vallidevibolla/vallidevi/blob/main/no.tex

1 Question No.14

Find the value of k, if the points $\binom{k}{3}$, $\binom{6}{-2}$ and $\binom{-3}{4}$ are collinear.

2 Solution

Let

$$\mathbf{A} = \begin{pmatrix} k \\ 3 \end{pmatrix} \tag{2.0.1}$$

$$\mathbf{B} = \begin{pmatrix} 6 \\ -2 \end{pmatrix} \tag{2.0.2}$$

$$\mathbf{C} = \begin{pmatrix} -3\\4 \end{pmatrix} \tag{2.0.3}$$

As, given that the points are collinear,

$$\begin{pmatrix}
6 & -2 \\
-3 & 4 \\
k & 3
\end{pmatrix}$$
(2.0.4)

$$\begin{pmatrix} k-6 & 3-(-2) \\ 6-(-3) & -2-4 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} k-6 & 5 \\ 9 & -6 \end{pmatrix} \xrightarrow{\begin{pmatrix} R_2 \to R_1 \end{pmatrix}} \begin{pmatrix} 9 & -6 \\ k-6 & 5 \end{pmatrix}$$

$$\xrightarrow{\begin{pmatrix} R_1/3 \end{pmatrix}} \begin{pmatrix} 3 & -2 \\ k-6 & 5 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 3 & -2 \\ 0 & 3 \times 5 - (-2 \times (k-6)) \end{pmatrix}$$

⇒
$$15 + 2K - 12 = 0$$

⇒ $k = -3/2$
∴ Finally the value of k is $\frac{-3}{2}$

Fig. 0: collinear