Цель урока

Понять, как применять базовые элементы статистики к данным.

Задачи урока

- Вспомнить, что такое распределения и их виды
- Рассмотреть виды визуализации распределений
- Узнать про базовые статистики и их различия

Распределения

Дискретное

(конечное количество возможных значений)

Распределение — закон, определяющий вероятность для каждого возможного значения.

Непрерывное

(бесконечное количество возможных значений)

Распределение — функция, характеризующая вероятность реализации тех или иных значений случайной переменной.

Визуализация распределений

Существует два популярных и простых способа:

- Гистограмма

Визуализация распределений

Существует два популярных и простых способа:

Сопоставление графика плотности распределения и ящика с усами

Гистограмма

Теперь рассмотрим пару важных статистик

Медиана — это точка, слева и справа от которой лежит равное количество точек. Ключевая её особенность в том, что она слабо смещается из-за выбросов, в отличие от среднего.

Кейс: среднее или медиана?

Общий уровень зарплат в стране

Ожидаемая температура в июне

Кейс: среднее или медиана?

Общий уровень зарплат в стране

Ответ: медиана

Ожидаемая температура в июне

Ответ: и то, и то

Важное понятие для понимания боксплота— квантиль

Квантиль — значение, которое заданная случайная величина не превышает с фиксированной вероятностью.

Пример: 80 %-ный квантиль выхода из строя станков на заводе = 3 года.

Это значит, что 80 % станков выходят из строя в течение первых трёх лет, остальные 20 % станков работают больше 3 лет.

Важное понятие для понимания боксплота— квантиль

Боксплот («Ящик с усами»)

Зачем?

- Легко читаются основные статистики
- Чётко видно, где выбросы
- Хорошо оценивается степень асимметрии и разброса данных
- Бесценен, когда мало данных

Есть много видов боксплотов, поэтому необходимо уточнять, что чему соответствует.

Один из видов: когда «усы» — это минимум и максимум.

Зачем?

Оба способа визуализации хорошо помогают составить понимание о том, как выглядят ваши данные.

Самое популярное распределение — нормальное распределение

Основные свойства:

- медиана совпадает со средним
- с помощью окрестностей, кратных среднеквадратичному отклонению, можно выделить большое число наблюдений

Самое популярное распределение — нормальное распределение

Пример: время, проведённое пользователями в приложении.

Гистограмма этого распределения выглядит примерно вот так:

Виды распределений

На практике важно одно

У вас распределение нормальное или нет? Какое именно распределение, уже не так важно.

Теперь поговорим про полезные теоремы статистики

Центральная предельная теорема (ЦПТ)

Проиллюстрируем примером:

- Есть распределение, которое распределено ненормально
- Берём выборки и считаем среднее в каждой
- 3 Строим распределение средних
- 4 Оно оказывается нормальным

Центральная предельная теорема (ЦПТ)

Самое важное свойство — ЦПТ позволяет получить нормальное распределение из ненормального:

Причины невыполнения ЦПТ

Распределение имеет бесконечную дисперсию

> Можем наблюдать её при «тяжёлых хвостах»

Так как часто мы не знаем формулу распределения, то любой из «хвостов» может уйти в бесконечность

Имеются выбросы в распределении

Аномальные значения метрики

Итоги урока

V

Распределение бывает дискретным и непрерывным

Самое удобное распределение данных — нормальное

Данные визуализируем гистограммой и боксплотом

Самые популярные статистики — медиана, среднее и дисперсия