Tarea 6

Simulación estocástica

Marco Antonio Andrade Barrera

8 de marzo de 2018

En la tarea 5 se generaron aleatorios $N(x|0,\sigma)$ usando $Ca(x|0,\sigma)$. ¿Se puede hacer el proceso inverso, es decir, generar aleatorios $Ca(x|0,\sigma)$ a partir de $N(x|0,\sigma)$?

La respuesta es no, pues

$$f(x) = \frac{1}{\sigma(1+x^2/\sigma^2)}$$

$$g(x) = (2\pi\sigma^2)^{-1/2}e^{-\frac{x^2}{2\sigma^2}}$$

Entonces

$$\frac{f(x)}{g(x)} = \frac{\sqrt{2\pi}}{e^{-0.5x^2/\sigma^2}(1+x^2/\sigma^2)}$$

$$\frac{f(x)}{g(x)} = \frac{\sqrt{2\pi}}{e^{-0.5x^2/\sigma^2} + \frac{1}{\sigma^2} \frac{x^2}{c^{0.5x^2/\sigma^2}}}$$

De lo anterior, note que el término $e^{-0.5x^2/\sigma^2} \to 0$ si $x \to \infty$. Lo mismo ocurre con el otro término en el denominador, es decir, $\frac{x^2}{e^{0.5x^2/\sigma^2}} \to 0$ cuando $x \to \infty$.

Por lo tanto $\frac{f(x)}{g(x)} \to \infty$ cuando $x \to \infty$, es decir, el cociente no está acotado y no podemos aplicar el algoritmo.