

CMG imPACt 2019

Introduction to Machine Learning

Alex Gilgur, Odysseas Pentakalos CMG imPACt 2019 International Conference Seattle, WA February, 2019

Some Books

https://amzn.to/2PB81hB

https://bit.ly/2A3t9IM

https://bit.ly/2QP4oBd

https://amzn.to/2Sjlqlt

Some General Information and Ideas

- Machine Learning vs. Statistical Learning vs. Scientific Programming
- Ideal setup:
 - o I7 CPU (or GPU) 16+ GB RAM
 - \circ R v3.4.x + RStudio
 - o Anaconda python 3.6+
 - Tensorflow
 - o Keras or Cafe or Torch
- Non-programmer tools:
 - o KNIME
 - o Rattle
 - Wordij
 - o Gephi
 - <u>Tableau</u> if you still want to be in the driver's seat of your algorithms.
- Hypothesis Testing
- No Free Lunch Theorem
- Bias/Variance tradeoff
- Ensemble Modeling
- Bayesian Approach
- <u>Patrick Winston</u>'s theory of Incremental Learning (vs. Locke's Tabula Rasa theory)
- "Anybody can learn to code. And everyone should give it a try" (Bill Gates on Twitter). So we will.

Flow

- 1. Device Failure Prediction:
 - a. Regression and Logistic Regression
 - b. Line fit and significance of parameters
- 2. Queue Assignment based on Response Times:
 - a. Distributions
 - b. Clustering
 - c. Classification
 - d. Accuracy
- 3. ML Workflow:
 - a. Data Engineering
 - b. Split
 - c. Train
 - d. Test
- 4. Model Quality

Is there a correlation between temperature and failure probability? If there is, can we use it to predict **Pr{fail}**?

Is there a correlation between temperature and failure probability? If there is, can we use it to predict **Pr{fail}**?

Is there a correlation between temperature and failure probability? If there is, can we use it to predict **Pr{fail}**?

Dep. Variab	ole:	failure_p	ctg	R-sq	uared:	0.4	14
Mod	lel:	C	DLS	Adj. R-sq	uared:	0.4	13
Metho	od: L	east Squa	ares	F-st	atistic:	101	5.
Da	te: Fri	07 Dec 20	018 P	rob (F-sta	itistic):	6.25e-16	69
Tin	ne:	10:23	3:28	Log-Likel	ihood:	4607	.1
No. Observation	ns:	1	440		AIC:	-921	0.
Df Residua	als:	14	438		BIC:	-920	0.
Df Moo	lel:		1				
Covariance Ty	pe:	nonrob	oust				
	coef	std err		t P> t	[0.025	0.975]	
Intercept -	0.3024	0.010	-29.482		-0.323	-0.282	
temperature	0.0039	0.000	31.853	3 0.000	0.004	0.004	

Is there a correlation between temperature and failure probability? If there is, can we use it to predict **Pr{fail}**?

Dep. Varia	ble:	failure_p	ctg	R-sc	juared:	0.4	14
Мо	del:	(DLS A	ldj. R-sc	uared:	0.4	13
Meth	nod: l	east Squa	ares	F-st	atistic:	101	5.
D	ate: Fri	07 Dec 2	018 Pr	ob (F-sta	atistic):	6.25e-1	69
Ti	me:	10:23	3:28 L	.og-Like	lihood:	4607	.1
No. Observation	ons:	1	440		AIC:	-921	0.
Df Residu	als:	1	438		BIC:	-920	0.
Df Mo	del:		1				
Covariance Ty	ype:	nonrok	oust				
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	-0.3024	0.010	-29.482	0.000	-0.323	-0.282	
temperature	0.0039	0.000	31.853	0.000	0.004	0.004	

$$R^2 = 41.4\%$$

$$\beta_1 = \rho_{Y_X} * \frac{\sigma_Y}{\sigma_X}$$

$$T = rac{oldsymbol{eta}_1 - 0}{rac{\sigma_{resid}}{\sqrt{N_{df}}}}$$

regression.pvalues
Intercept 8.019322e-150
temperature 6.246228e-169

Example 2: Logistic Regression

Example 2: Logistic Regression

Given utilization measured between 90 and 93 degrees, how far will utilization grow due to throttling if the temperature rises to 97 degrees?

Example 2: Logistic Regression

Given utilization measured between 90 and 93 degrees, how far will utilization grow due to throttling if the temperature rises to 97 degrees?

$$Y' = \ln \left[\frac{\rho}{1 - \rho} \right] = \beta_0 + \beta_1 * T$$

$$\rho = \frac{e^{\beta_0} * e^{\beta_1 * T}}{1 + e^{\beta_0} * e^{\beta_1 * T}}$$

Grouping services by Response Times: services svc1-svc4 are funneling into one interface, and we want to make sure that faster services are not waiting for the slower ones.

Due to resource constraints, we cannot allocate more than 2 instances of the interface. So we need to cluster the services into two groups.

Grouping services by Response Times: services svc1-svc4 are funneling into one interface, and we want to make sure that faster services are not waiting for the slower ones.

Due to resource constraints, we cannot allocate more than 2 instances of the interface. So we need to cluster the services into two groups.

Grouping services by Response Times: services svc1-svc4 are funneling into one interface, and we want to make sure that faster services are not waiting for the slower ones.

Due to resource constraints, we cannot allocate more than 2 instances of the interface. So we need to cluster the services into two groups.

svc3 and svc4 seem to belong in a different group than svc1 and svc2. We can use a clustering technique (e.g., k-means, with k = 2), to assign services to clusters.

Find Clusters

Assign Services to Clusters

The Jupyter Notebook is here

Grouping services by Response Times: services svc1-svc4 are funneling into one interface, and we want to make sure that faster services are not waiting for the slower ones.

Due to resource constraints, we cannot allocate more than 2 instances of the interface. So we need to cluster the services into two groups.

svc3 and svc4 seem to belong in a different group than svc1 and svc2. We can use a clustering technique (e.g., k-means, with k = 2), to assign services to clusters.

Find Clusters Assign Services to Clusters

The Jupyter Notebook is **here**

Network Analysis Introduction

Node Attributes

Degree Distribution

Shortest Path

Node Centrality

A slide from a CMG'14 paper: https://bit.ly/2BO2BGc (a shameless act of self-advertisement)

Regression: How to find the Best-Fitting Model

- 1. The 7 linearizable models
- 2. Multivariate Analysis
- 3. Fine points of model selection

Details are <u>here</u>.

More details are <u>here</u>.

Regression: One Thing to Beware

Anscombe's Quartet

Property	Value	Accuracy
Mean of x	9	exact
Sample variance of x	11	exact
Mean of y	7.50	to 2 decimal places
Sample variance of y	4.125	±0.003
Correlation between x and y	0.816	to 3 decimal places
Linear regression line	y = 3.00 + 0.500x	to 2 and 3 decimal places, respectively
Coefficient of determination of the linear regression	0.67	to 2 decimal places

Classification Model Quality: Accuracy

True Value	Нарру	Unhappy	Total Classified
Нарру	6	3	9
Unhappy	4	15	19
Total True	10	18	28

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} = 76\%$$

Classification Model Quality:

Precision

True Value	Нарру	Unhappy	Total Classified
Нарру	6	3	9
Unhappy	4	15	19
Total True	10	18	28

$$Precision = \frac{TP}{TP + FP}$$

= 67% for Happy

= 79% for Unhappy

Classification Model Quality:

Specificity

True Value	Нарру	Unhappy	Total Classified
Нарру	6	3	9
Unhappy	4	15	19
Total True	10	18	28

$$Specificity = \frac{TN}{TN + FP}$$

= 33% for Happy

= 21% for Unhappy

Classification Model Quality:

Recall (Sensitivity)

True Value	Нарру	Unhappy	Total Classified
Нарру	6	3	9
Unhappy	4	15	19
Total True	10	18	28

$$Recall = Sensitivity = \frac{TP}{TP + FN} = 83\% \text{ (Unhappy)}$$

= 60% (Happy)

Classification Model Quality: AUC (Area Under Curve)

The higher the AUC the more likely we are to recognize the right label and the less likely we are to have a false positive conclusion.

Very useful for multi-label classification.

A great Wikipedia article here: https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Classification Model Quality: AUC (Area Under Curve)

The higher the AUC the more likely we are to recognize the right label and the less likely we are to have a false positive conclusion.

Very useful for multi-label classification.

A great Wikipedia article here: https://en.wikipedia.org/wiki/Receiver_operating_characteristic

In Lieu of Epilogue:

- 1. Bayesian Principle
- 2. Neural Networks:
 - A very short overview of what neural networks are is <u>here</u>.
 - b. Naftali Tishby: the only existing <u>mathematical explanation for why Deep Neural Networks work</u>.
- 3. Dimensionality Reduction: Principal Component Analysis (PCA) (a more serious video)

Appendix

A lot of useful PDFs: https://github.com/chemodan/ml training for cmg impact/tree/master/PDF

An excellent blog: https://sebastianraschka.com/blog/index.html

Q&A sources: Quora; StackOverflow; StackExchange

A good explanation of confidence intervals of variances: (milefoot)

What We Have Discussed

- 1. Literature
- 2. Examples:
 - a. Linear Regression
 - b. Logistic Regression
 - c. Classification
 - d. Clustering
- 3. Workflow
- 4. Model Quality:
 - a. Regression
 - b. Classification

Where We Skimmed the Surface & What We Left Out

- 1. Dimensionality Reduction Techniques
- 2. Neural Networks
- 3. Bayesian Approach
- 4. Time Series Analysis
 - a. Stationary
 - b. Nonstationary
- 5. Statistical Process Control

Some Additional Useful Links

GitHub repository for this presentation: https://github.com/chemodan/ml training for cmg impact

Tools (No Programming Needed):

- https://www.knime.com/ a generic ML platform (GUI-based ML workflow creation tool)
- https://www.youtube.com/watch?v=7lpvQW360js Word analysis: Wordij (a 25-min demo)
- https://gephi.org/ a network visualization tool

Thank you!

