

Instituto Superior Técnico LEEC Sinais e Sistemas

Relatório Laboratório Sinais e Sistemas

Aluno: Henrique Machado 103202 Aluno: Miguel Neves 103462

> Janeiro 2023

Conteúdo

1	Sinais Sinusoidais	1
2	Notas Musicais	1
3	Impulso e Degrau Unitários	1
4	Sistemas	3
5	Série de Fourier	4
6	Resposta em Frequência	5
7	Filtragem	6
8	Amostragem	7

1 Sinais Sinusoidais

- Q1: As sinusoidais com frequência mais altas correspondem aos sons mais graves, inversamente, as sinusoidais com frequência mais baixa correspondem aos sons mais graves.
- Q2: A frequência minima que nós conseguimos ouvir foi 55hz e a frequência máxima que conseguimos ouvir foi 18000hz.

2 Notas Musicais

• Q3:

 Mi_4 : 329.63hz

Fá₄[#]: 370.00hz

 Sol_4 : 392.00hz

 Si_4 : 493.89hz

Dó₅: 554.37hz

3 Impulso e Degrau Unitários

• Q4: Com base na definição de degrau unitário, u(at+b) pode ser escrito como $u(\pm t-t_0)$ uma vez que: $t_0=\frac{b}{|a|}$, onde temos que

$$\begin{cases} a > 0, & t > 0 \\ a < 0, & t < 0 \end{cases}$$

Caso a < 0, verifica-se uma inversão no tempo do gráfico de u(t).

• Q5:
$$\delta(at) = \frac{1}{\Delta}[u(at) - u(at - \Delta)] \in \delta(at) = \lim_{\Delta \to 0} \delta_{\Delta}(at)$$
, com $a > 0$

Para $\delta(t)$

 $Para\delta(at)$

Área =
$$\frac{1}{\Delta} \times \Delta = 1$$

$$\text{Área} = \frac{1}{\Delta} \times \frac{\Delta}{a} = \frac{1}{a}$$

Logo, $\delta(at) = \frac{1}{a}\delta(t)$, com a > 0.

• Q6: Não se verifica nenhuma mudança no gráfico de $\delta(at)$ em relação ao gráfico de $\delta(t)$. No entanto, pelo que foi concluído previamente, o que deveria acontecer seria uma redução da área do impulso devido ao produto pelo termo $\frac{1}{a}$ (sendo a>1) transformação esta que não é visível no visor.

4 Sistemas

• Q7: O sistema apresentado é linear:

$$\begin{split} x_1(t) \to y_1(t) &= x_1(t) + 0.5x_1(t-0.25) \\ x_2(t) \to y_2(t) &= x_2(t) + 0.5x_2(t-0.25) \\ x_3(t) \to \text{Combinação linear de } x_1(t) \text{ e } x_2(t) : x_3(t) = ax_1(t) + bx_2(t) \\ y_3(t) &= x_3(t) + 0.5x_3(t+0.25) \\ &= ax_1(t) + bx_2(t) + 0.5(ax_1(t-0.25) + bx_2(t-0.25)) \\ &= ax_1(t) + bx_2(t) + 0.5ax_1(t-0.25) + 0.5bx_2(t-0.25) \\ &= a(x_1(t) + 0.5x_1(t-0.25)) + b(x_2(t) + 0.5x_2(t-0.25)) \\ &= ay_1(t) + by_2(t) \to \text{\'e linear}. \end{split}$$

E é invariante no tempo:

$$\begin{split} y_1(t) &= x_1(t) + 0.5x_1(t-0.25) \\ x_2(t) &= x_1(t-t_0) \to y_2(t) = x_2(t) + 0.5x_2(t-0.25) \\ &= x_1(t-t_0) + 0.5x_1(t-t_0-0.25) \\ y_1(t-t_0) &= x_1(t-t_0) + 0.5x_1(t-t_0-0.25) \\ \log o \ y_2(t) &= y_1(t-t_0) \to \text{\'e} \ \text{invariante no tempo.} \end{split}$$

5 Série de Fourier

6 Resposta em Frequência

7 Filtragem

8 Amostragem