2010 级本科班概率统计期末试卷

一、解答下列各题(共20分)

- 1. (10 分)人们为了解一支股票未来一定时期内价格的变化,往往会去分析影响股票价格的基本因素,比如利率的变化.现假设人们经分析估计利率下调的概率为 60%,利率不变的概率为 40%.根据经验,人们估计,在利率下调的情况下,该支股票价格上涨的概率为 80%,而在利率不变的情况下,其价格上涨的概率为 40%,求该支股票将上涨的概率.若已知该支股票上涨,求利率下调的概率.
 - 2. (10 分) 设X与Y的联合概率分布律为:

У	-1	0	2	
0	0.1	0.2	0	
1	0.3	0.05	0.1	
2	0. 15	0	0. 1	

- (1) 求 X 与 Y 的边缘分布律,并判断 X 与 Y 是否相互独立;
- (2) 求 XY 的分布律:
- (3) 求E(X+2Y).

二、解答下列各题(共30分)

- 1. (10 分)假设随机变量 X 在区间 (0,1)上服从均匀分布,(1) 求 X 的分布函数; (2) 求随机变量 $Y = e^X$ 的概率密度函数.
- 2. (12 分)设(X,Y)服从区域 $D = \{(x,y) | 0 \le y \le 1 x^2\}$ 上的均匀分布,(1)写出 (X,Y)的联合概率密度函数;(2)求X和Y的边缘概率密度函数并判断它们是否相互独立;(3)求 $p\{Y \ge X^2\}$.
 - 3.(8分) 已知X,Y以及XY的分布律如下表

X	0	1	2
Р	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$

Y	0	1	2	
Р	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	

XY	0	1	2	4
Р	$\frac{7}{12}$	$\frac{1}{3}$	0	$\frac{1}{12}$

第1页共3页

求(X,Y)的联合分布律.

- 三、解答下列各题(共20分)
 - 1. (10 分)设总体 X服从指数分布, 其概率密度函数

$$f(x,\lambda) = \begin{cases} \lambda e^{-\lambda x}, & x > 0\\ 0, & x \le 0 \end{cases}$$

其中 $\lambda>0$,是未知参数. x_1,x_2,\cdots,x_n 是来自总体 X 的样本观察值,求参数 λ 的最大似然估计值.

2. (10 分) 水泥厂用自动包装机包装水泥, 每袋额定重量是 50kg, 某日开工后随机抽查了 9 袋, 称得重量如下:

49.6 49.3 50.1 50.0 49.2 49.9 49.8 51.0 50.2 设每袋重量服从正态分布,问包装机工作是否正常($\alpha = 0.05$)?

附:
$$t_{0.025}(8) = 2.306$$
, $t_{0.025}(9) = 2.2622$, $t_{0.05}(8) = 1.8595$

四、选择填空题(每空3分,共30分)

- 1. 对于事件 A.B,下列结论不正确的有()
- (A) 若A,B对立,则 $p(\overline{A \cup B}) = 0$;
- (B) 若A.B对立,则 $\overline{A.B}$ 也对立;
- (C) 若 A, B 独立,则 $p(\overline{A}\overline{B}) = 1 p(A) p(B) + p(A)p(B)$;
- (D) 若 A, B 互斥,则 $p(A \cup B) = p(A) + p(B) p(A)p(B)$.
- 2. 设连续型随机变量 X 的分布函数为 $F(x) = \begin{cases} 0, x < 0 \\ x^2, 0 \le x \le 1, \quad \text{则 } E(X) = () \\ 1, \quad x > 1 \end{cases}$
 - (A) $\int_0^{+\infty} x^3 dx$; (B) $\int_0^1 2x^2 dx$; (C) $\int_0^1 x^2 dx + \int_1^{+\infty} dx$; (D) $\int_0^{+\infty} 2x^2 dx$.
- 3. 设随机变量 X,Y 的方差存在且为正,则 D(X+Y)=D(X)+D(Y) 是 X 和 Y ()
- (A) 不相关的充分条件, 但不是必要条件:
- (B) 独立的必要条件, 但不是充分条件;
- (C) 不相关的充要条件;
- (D) 独立的充要条件.
- 4. 设总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知而 μ 未知, $X_1, X_2, ..., X_n$ 为容量为 n 的样本, 记

 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, 又 $\Phi(x)$ 表示标准正态分布的分布函数, 已知 $\Phi(1.96) = 0.975$,

 $\Phi(1.64) = 0.95$, 则 μ 的置信度为 0.95 的置信区间为 ()

(A)
$$(\overline{X} - 0.975 \frac{\sigma}{\sqrt{n}}, \overline{X} + 0.975 \frac{\sigma}{\sqrt{n}})$$
; (B) $(\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}}, \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}})$;

(C)
$$(\overline{X} - 1.64 \frac{\sigma}{\sqrt{n}}, \overline{X} + 1.64 \frac{\sigma}{\sqrt{n}});$$
 (D) $(\overline{X} - 0.95 \frac{\sigma}{\sqrt{n}}, \overline{X} + 0.95 \frac{\sigma}{\sqrt{n}}).$

5. 设X是一个离散型的随机变量,则()可成为X的分布律.

$$(A)$$
 X 0 1 p 为任意实数; P $1-p$ p

(C)
$$p\{X=n\} = \frac{e^{-3}3^n}{n!}, n=1,2,...;$$
 (D) $p\{X=n\} = \frac{e^{-3}3^n}{n!}, n=0,1,2,....$

6. 设 X_1, X_2, \dots, X_n 为来自泊松分布 $P(\lambda)$ 的一个样本, \overline{X}, S^2 分别为样本均值和样本方差,则 $E(\overline{X}), D(\overline{X}), E(S^2)$ 分别为(

(A)
$$\lambda, \lambda, \lambda$$
; (B) $\frac{1}{\lambda}, \frac{1}{n\lambda^2}, \frac{1}{\lambda}$; (C) $\frac{1}{\lambda}, \frac{1}{\lambda^2}, \frac{1}{\lambda}$; (D) $\lambda, \frac{\lambda}{n}, \lambda$.

7. 己知 P(A) = 0.3, P(B) = 0.4, P(A|B) = 0.5, 则 $P(\overline{A} \cup \overline{B} | A \cup B) = 0.5$

8. 设随机变量 X_1, X_2, X_3 相互独立,且 X_1 服从 (0,6) 上的均匀分布, $X_2 \sim N(1,3)$, X_3 服从参数为 3 的指数分布,则 $Y = X_1 - 2X_2 + 3X_3 - 1$ 的数学期望为 ______, 方差为 ______.

9. 设 $Y_n \sim B(n,p)$, $\Phi(x)$ 表 示 标 准 正 态 分 布 的 分 布 函 数 , 则 $\lim_{n\to\infty} p\{\frac{Y_n-np}{\sqrt{np(1-p)}}\leq 2\} = \underline{\hspace{1cm}}$