3.4 Images and inverse images

Exercise 3.4.1

Let $f: X \to Y$ be a bijective function, and let $f^{-1}: Y \to X$ be its inverse. Let V be any subset of Y. Prove that the forward image of V under f^{-1} is the same set as the inverse image of V under f; thus the fact that both sets are denoted by $f^{-1}(V)$ will not lead to any inconsistency.

Proof. Suppose $f: X \to Y$ is a bijective function, and $f^{-1}: Y \to X$ is its inverse, where V is any subset of Y. Let $f^{-1}(V)$ denote the inverse image of V, and let $(f^{-1})(V)$ denote the forward image of V under f^{-1} . We define

$$f^{-1}(V) = \{ x \in X \mid f(x) \in V \}$$
$$(f^{-1})(V) = \{ f^{-1}(y) \mid y \in V \}$$

First we show $f^{-1}(V) \subseteq (f^{-1})(V)$.

Let $z \in f^{-1}(V)$.

Then $z \in X$ and $f(z) \in V$.

Since f is bijective, for all y in $V \subseteq Y$, $y = f(x) = f(f^{-1}(y))$.

Thus $f(z) \in V \implies y \in V$.

Since f is bijective, for all x in X, $x = f^{-1}(y) = f^{-1}(f(x))$.

Thus $z \in X \implies z = f^{-1}(y)$.

Exercise 3.4.2

Let $f: X \to Y$ be a function from one set X to another set Y, let S be a subset of X, and let U be a subset of Y.

i. What, in general, can one say about $f^{-1}(f(S))$ and S?

Answer: S is a subset of $f^{-1}(f(S))$, but S may not be equal to $f^{-1}(f(S))$.

Proof. (informal) Let x be an element of X. We have $f(S) = \{f(x) \mid x \in S\}$, and therefore $f^{-1}(f(S)) = \{x \in X \mid f(x) \in f(S)\}$.

Suppose $x \in S$, then $x \in X$ and $f(x) \in f(s)$, thus $x \in f^{-1}(f(S))$ for all $x \in S$, so S is a subset of $f^{-1}(f(S))$. Now instead suppose $x \notin S$. Since we have not stated that f is injective, it is still possible that $f(x) \in f(S)$. Once again $x \in X$ and $f(x) \in f(s)$, thus for some x not in S, x may still be in $x \in f^{-1}(f(S))$. Thus $f^{-1}(f(S))$ may contain more members of X than S does, so they may not be equal. \square

ii. What about $f(f^{-1}(U))$ and U?

Answer: $f(f^{-1}(U))$ is a subset of U, but the two sets may not be equal.

Proof. (informal) Let x be an element of X. We have $f^{-1}(U) = \{x \in X \mid f(x) \in U\}$. Then $f(f^{-1}(U)) = \{f(x) \mid x \in f^{-1}(U)\}$. Since f is not stated to be surjective, there may be some y in U for which $y \neq f(x)$ for all x. So when we take the forward image of $f^{-1}(U)$, every element of $f^{-1}(U)$ is in U, but there may be some y in U that are not in $f^{-1}(U)$.

iii. What about $f^{-1}(f(f^{-1}(U)))$ and $f^{-1}(U)$?

Answer:

Proof. (informal) As before we have $f^{-1}(U) = \{x \in X \mid f(x) \in U\}$, and $f(f^{-1}(U)) = \{f(x) \mid x \in f^{-1}(U)\}$. This means

$$\begin{split} f^{-1}(f(f^{-1}(U))) &= \{ \, x \in X \mid f(f^{-1}(U)) \in U \, \} \\ &= \{ \, x \in X \mid \{ \, f(x) \mid x \in f^{-1}(U) \, \} \in U \, \} \\ &= \{ \, x \in X \mid \{ \, f(x) \mid x \in \{ \, x \in X \mid f(x) \in U \, \} \, \} \in U \, \} \\ &= (x \in X) \text{ and } (f(x) \text{ is true and } (x \in (x \in X \text{ and } f(x) \in U)) \in U). \\ &= x \in X \text{ and } f(x) \in U(incomplete) \end{split}$$

(good lord...)

Exercise 3.4.3

Let A, B be two subsets of a set X, and let $f: X \to Y$ be a function. Show that

i. $f(A \cap B) \subseteq f(A) \cap f(B)$,

Proof. We prove this statement by showing every element of $f(A \cap B)$ is an element of $f(A) \cap f(B)$.

- (1) Let y be an arbitrary element of $f(A \cap B)$.
- (2) $A \subseteq X$ and $B \subseteq X \implies A \cap B \subseteq X$.
- (3) By definition the image of $A \cap B$ under f is $\{f(x) \mid x \in A \cap B\}$.
- (4) By the axiom of replacement (3.7) y = f(x) for some $x \in A \cap B$.
- $(5) \ x \in A \cap B \implies x \in A$

	(6) $y = f(x)$ for some $x \in A$	
	(7) $x \in A \cap B \implies x \in B$ (8) $y = f(x)$ for some $x \in B$	
	(9) $y = f(x)$ for some $x \in B$ (9) $y = f(x)$ for some $x \in A$ and $y = f(x)$ for some $x \in B$	
	(10) $y \in \{ f(x) \mid x \in A \}$ and $y \in \{ f(x) \mid x \in B \}$	
	(11) $y \in f(A) \cap f(B)$, as desired.	
ii	i. $f(A) \setminus f(B) \subseteq f(A \setminus B)$,	
	Proof.	
iii	i. $f(A \cup B) = f(A) \cup f(B)$.	
	<i>Proof.</i> We prove this statement by showing every element of $f(A \cup B)$ is an element of $f(A) \cup$ and vice versa.	f(B)
	Let $y \in (A \cup B)$ be arbitrary.	
	Since $A \cup B \subseteq X$,	
For	the first two statements, is it true that the \subseteq relation can be improved to $=$?	
Ans	swer:	
Pro	pof.	
Ex	tercise 3.4.5	
Let	$f: X \to Y$ be a function from one set X to another set Y .	
i	i. Show that $f(f^{-1}(S)) = S$ for every $S \subseteq Y$ if and only if f is surjective.	
	Proof.	
ii	i. Show that $f^{-1}(f(S)) = S$ for every $S \subseteq X$ if and only if f is injective.	
	Proof.	

Exercise 3.4.9

Show that if β and β' are two elements of a set I, and to each $\alpha \in I$ we assign a set A_{α} , then

$$\{x\in A_\beta: x\in A_\alpha \text{ for all }\alpha\in I\}=\{x\in A_{\beta'}: x\in A_\alpha \text{ for all }\alpha\in I\},$$

and so the definition of $\bigcap_{\alpha \in I} A_{\alpha}$ defined in (3.3) does not depend on β .

Also explain why (3.4) is true.

Exercise 3.4.10

Suppose that I and J are two sets, and for all $\alpha \in I \cup J$ let A_{α} be a set. Show that

$$\bigcup_{\alpha \in I} A_\alpha \cup \bigcup_{\alpha \in J} A_\alpha = \bigcup_{\alpha \in I \cup J} A_\alpha.$$

If I and J are non-empty, show that

$$\bigcap_{\alpha \in I} A_{\alpha} \cap \bigcap_{\alpha \in J} A_{\alpha} = \bigcap_{\alpha \in I \cup J} A_{\alpha}.$$