Machine Learning HW5

學號:R04922169 系級:資工所碩二 姓名:楊智偉

1. (1%)請問 softmax 適不適合作為本次作業的 output layer? 寫出你最後選擇的 output layer 並說明理由。

答:

我的 model 設計如下圖表示。

Layer (type)	Output Shape	Param #		
embedding_10 (Embedding)	(None, 306, 100)	5186700		
gru_10 (GRU)	(None, 256)	274176		
dense_41 (Dense)	(None, 512)	131584		
dropout_31 (Dropout)	(None, 512)	0		
dense_42 (Dense)	(None, 256)	131328		
dropout_32 (Dropout)	(None, 256)	0		
dense_43 (Dense)	(None, 128)	32896		
dropout_33 (Dropout)	(None, 128)	0		
dense_44 (Dense)	(None, 38)	4902		
Total params: 5,761,586 Trainable params: 574,886 Non-trainable params: 5,186,700				

我認為 softmax 不適合作為本次作業的 output layer。softmax 的計算方式是將一個 K 維的任意實數向量 mapping 成另一個 K 維的實數向量,其中向量中的每個元素取值都介於 (0,1) 之間,且總和等於 1。而這次的問題是 multi-label,如果使用 softmax 的話會將 value 壓縮到總和為 1,這樣就不利於 multi-label 的分類了。

我最後選擇 sigmoid 作為 model 的 output layer, 因為 sigmoid 函數的所有 output 都會是介於 (0,1) 之間,這樣就能得到每一維都是 (0,1) 之間的 38 維 output,對於此題的 multi-label 會比較好處理。

2. (1%)請設計實驗驗證上述推論。

答:

	Validation F1 Score	Public F1 Score	Private F1 Score
Softmax 1	0.24220	0.25028	0.22373
Softmax 2	0.22672	0.25595	0.23501
Sigmoid 1	0.48160	0.48814	0.45486
Sigmoid 2	0.48503	0.50425	0.48209

我將上述的差別分做「softmax」,「sigmoid」兩組,每組做兩次實驗並紀錄分數。其實在使用 Softmax 來 training 的時候,都會發現 training 的 score 接近 0.48,但是 validation 的 score 則是都在 0.2~0.3 的地方徘徊。

由以上的結果可以得到一個結論,我們在使用 sigmoid function 作為 output layer 會比使用 softmax 的效果還要好得多。

3. (1%)請試著分析 tags 的分布情況(數量)。 答:

我將所有 data 中的 tags 統計如下表,出現頻率比較高的是 Fiction 和 Speculative-Fiction,接著還有 Novel, Science-Fiction, Children's-Literature, Fantasy, Mystery,剩下的 tags 都是出現次數比較少的部分。

由此統計表可以發現,其實 data 中的大部分 tags 都是集中在某幾個大分類之中而已,所以我認為可以將 training, testing 的步驟中特別處理這些分類(例如使用不一樣的 weights),也許能夠有比較好的分類結果。

4. (1%)本次作業中使用何種方式得到 word embedding?請簡單描述做法。答:

這次的作業我使用 GloVe 作為 word embedding 的方法,它是屬於 Count based 的做法。GloVe 是使用一個 global log-bilinear 的 regression model,主要是由兩種 model 的優勢結合而成,分別是「global matrix factorization」以及「local context window methods」。它們的 model 是利用了 statistical

information 的資料,model 只使用 word-word co-occurrence matrix 中的 non-zero element 有效率的來 training。而作業中我用到的 GloVe 是 100 維度的 data 來建立 embedding dictionary, embedding matrix。

5. (1%)試比較 bag of word 和 RNN 何者在本次作業中效果較好。答:

在我的測試當中,我覺得 RNN 的效果都比 bag of word 來得好。bag of word 的方法很容易 over fitting,在 validation set 只有 0.3~0.4 準確率的時候 training set 能夠跑到 0.6~0.7 甚至還有看過 0.9 的情況。而且我的 bag of word 還沒有辦 法輕鬆過 simple baseline,而 RNN 的方法只要稍微 tune 一下參數,讓程式多跑幾 次就能拿到較高的分數。

以下是我 RNN、bag of word 的架構圖。

以下定找 KI	NIN > bag of woi	"U II)未作	男 回 ° 			
			Layer (type)	Output	Shape	Param #
			dense_1 (Dense)	(None,	1024)	5311283
			dropout_1 (Dropout)	(None,	1024)	0
			dense_2 (Dense)	(None,	1024)	1049600
Layer (type)	Output Shape	Param #	dropout_2 (Dropout)	(None,	1024)	0
embedding_1 (Embedding)	(None, 306, 100)	5186700	dense_3 (Dense)	(None,	1024)	1049600
gru_1 (GRU)	(None, 256)	274176	dropout_3 (Dropout)	(None,	1024)	0
dense_1 (Dense)	(None, 512)	131584	dense_4 (Dense)	(None,	1024)	1049600
dropout_1 (Dropout)	(None, 512)	0	dropout_4 (Dropout)	(None,	1024)	0
dense_2 (Dense)	(None, 256)	131328	dense_5 (Dense)	(None,	1024)	1049600
dropout_2 (Dropout)	(None, 256)	0	dropout_5 (Dropout)	(None,	1024)	0
dense_3 (Dense)	(None, 128)	32896	dense_6 (Dense)	(None,	1024)	1049600
dropout_3 (Dropout)	(None, 128)	0	dropout_6 (Dropout)	(None,	1024)	0
dense_4 (Dense)	(None, 38)	4902 	dense_7 (Dense)	(None,	1024)	1049600
Total params: 5,761,586 Trainable params: 574,886			dropout_7 (Dropout)	(None,	1024)	0
Non-trainable params: 5,18	36,700		dense_8 (Dense)	(None,	1024)	1049600
			dropout_8 (Dropout)	(None,	1024)	0
			dense_9 (Dense)	(None,	38)	38950
			Total params: 60,498,982 Trainable params: 60,498,98 Non-trainable params: 0	====== 2	=======	

RNN model

bag or word (bow)

接下來是實際執行的實驗記錄。我針對 RNN 以及 bag of word 兩種方式做實驗,兩組我都各用了 5 次來評估。其實使用 bag of word 的效果還蠻好的,而且他的實行速度飛快,都已經接近了 simple baseline,但是 bag of word 的方法忽略了words 之間的前後關係,只剩下「有沒有這個 word」的資訊。至於使用 RNN 的方法,就不會忽略這些資訊,只需要多 tune 一下參數,多跑幾次的 training, testing 結果就能夠有好的分數通過 simple baseline 了!實驗的分數記錄如下表:

	Public F1 Score	Private F1 Score
RNN 1	0.47770	0.47429
RNN 2	0.49544	0.46433
RNN 3	0.48478	0.48352
RNN 4	0.48426	0.47297
RNN 5	0.50628	0.48615
bow 1	0.45601	0.44715
bow 2	0.46277	0.45400
bow 3	0.47009	0.46556
bow 4	0.47557	0.47485
bow 5	0.47126	0.45421