Math 154: Probability Theory, HW 4

DUE FEB 20, 2024 BY 9AM

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class, and see if anything looks familiar.

1. TIME TO GET TO COMPUTATIONS

- 1.1. Laplace transform of an exponential random variable. Let $X \sim \operatorname{Exp}(\lambda)$ (for $\lambda > 0$).
- (1) Show that $\mathbb{E}e^{\xi X} = \frac{\lambda}{\lambda \xi}$ for all $0 \leqslant \xi < \lambda$, so that $\mathbb{E}e^{\xi X}$ if and only if $\xi < \lambda$ (you don't need to prove this last claim).
- (2) Compute $\mathbb{E}X^k$ for k = 0, 1, 2, 3, 4.
- (3) Show that for any $\xi \in \mathbb{R}$, we have $\mathbb{E}e^{i\xi X} = \frac{\lambda}{\lambda i\xi}$ for all $\xi \in \mathbb{R}$.
- 1.2. Laplace transform of a Poisson random variable. Let $X \sim \text{Pois}(\lambda)$.
- (1) Show that $\mathbb{E}e^{\xi X} = e^{\lambda(e^{\xi}-1)}$.
- (2) Compute $\mathbb{E}X^k$ for k = 1, 2, 3.
- (3) Use part (1) to show that if $X \sim \operatorname{Pois}(\lambda)$ and $Y \sim \operatorname{Pois}(\mu)$ are independent, then $X + Y \sim \operatorname{Pois}(\lambda + \mu)$.
- 1.3. Cauchy distribution. We say that $X \sim \text{Cauchy if it is a continuous random variable on } \mathbb{R}$ with pdf $p(x) = \frac{1}{\pi(1+x^2)}$.
- (1) Show that $\int_{\mathbb{R}} p(x) dx = 1$ using calculus, so that p(x) is actually a pdf. (You can look up the antiderivative of $\frac{1}{1+x^2}$ and its properties; this is more just a check for you to do.)
- (2) Show that $\mathbb{E}|X| = \infty$.
- (3) Show that for any $\xi \in \mathbb{R}$, we have

$$\frac{1}{2\pi} \int_{\mathbb{R}} e^{-|\xi|} e^{-ix\xi} d\xi = \frac{1}{\pi(1+x^2)}.$$

Conclude that if $X \sim \text{Cauchy}$, then $\mathbb{E}e^{i\xi X} = e^{-|\xi|}$. Can you briefly explain briefly why this formula alone suggests that $\mathbb{E}X$ is not well-defined?

- 1.4. A concentration inequality. Suppose X_1,\ldots,X_N are i.i.d. random variables (i.e. they are independent and have the same distribution), and suppose $\mathbb{E}X_i=0$ and $\mathbb{E}e^{\lambda X_i}<\infty$ for all $\lambda\in\mathbb{R}$. Let $Y=\frac{X_1+\ldots+X_N}{N}$.
- (1) Compute $\mathbb{E}e^{\lambda Y}$ in terms of the moment generating functions of X_1, \ldots, X_N .

(2) Show that for any constants $\lambda, c > 0$,

$$\mathbb{P}[|Y| \geqslant c] \leqslant e^{-c\lambda} \mathbb{E} e^{\lambda Y} + e^{-c\lambda} \mathbb{E} e^{-\lambda Y} = e^{-c\lambda} \left(\prod_{i=1}^{N} \mathbb{E} e^{\frac{\lambda X_i}{N}} + \prod_{i=1}^{N} \mathbb{E} e^{\frac{-\lambda X_i}{N}} \right).$$

(*Hint*: the LHS is $\leq \mathbb{P}[Y \geq c] + \mathbb{P}[-Y \geq c]$.)

- (3) Using the inequality $e^x \leqslant 1 + x + x^2 e^x$, show that $\mathbb{E}e^{\frac{\lambda X_i}{N}} \leqslant 1 + \frac{\lambda^2}{N^2} \mathbb{E}[X_i^2 e^{\frac{\lambda X_i}{N}}]$. (4) We will now choose $\lambda = N^{1/2}$. Using the inequality $x^2 e^{\kappa x} \leqslant e^{2x} + e^{-2x}$ for any $x \in \mathbb{R}$ and any $|\kappa| \leqslant 1$, show that $\mathbb{E}X_i^2 e^{\frac{\lambda X_i}{N}} \leqslant \mathbb{E}e^{2X_i} + \mathbb{E}e^{-2X_i}$, and thus $\mathbb{E}e^{\frac{\lambda X_i}{N}} \leqslant 1 + \frac{C}{N}$ for some constant C.
- (5) You can take for granted that the same argument shows $\mathbb{E}e^{-\frac{\lambda X_i}{N}} \leqslant 1 + \frac{C}{N}$. Using the inequality $(1+\frac{C}{N})^N \leqslant e^C$, show that $\mathbb{P}[|Y| \geqslant c] \leqslant 2e^{-c\sqrt{N}}e^C$.
- 1.5. An application of the law of large numbers. Suppose I give you a coin and tell you that the probability of heads is 0.48. Suppose you want to test if I am right. How many times N do you have to flip this coin to be at least 95% confident that it is biased towards heads? To be precise:
- (1) Let $X_1, \ldots, X_N \sim \text{Bern}(p)$ with p = 0.48 be independent. Set $Y = \frac{1}{N} \sum_{i=1}^N X_i$. Recall $\mathbb{E}Y = p$. Using the bound

$$\mathbb{P}[|Y - p| \geqslant 0.02] \leqslant \frac{\text{Var}(X_1)}{N(0.02)^2}$$

from class, how large do you have to take N for this probability to be $\leq 5\%$?

(2) What if we instead use the following bound (which is what you get when optimizing in Problem 1.4):

$$\mathbb{P}[|Y - p| \ge 0.02] \le 2e^{-0.02\sqrt{N}} \mathbb{E}e^{X_1}.$$

Which bound produces the smaller N?