Лабораторная работа 2 Яроцкас А.И. 3 курс 2 группа

22.

- а) График функции $f_1(x)$ возрастает при a < b, убывает при a > b, а $f_2(x)$ достигает максимума в точке $0 \le \frac{\alpha}{\alpha + \beta} \le 1$. Тогда при a = b множество Парето имеет вид $\{\frac{\alpha}{\alpha + \beta}\}$, при $a < b \{\frac{\alpha}{\alpha + \beta}, 0\}$, при $a > b \{\frac{\alpha}{\alpha + \beta}, 1\}$.
- b) График $f_1(x)$ возрастает с увеличением x_1 , x_2 , $f_2(x)$ возрастает с ростом x_1 , убывает с ростом x_2 . И так как при фиксированном x_2 обе функции достигают максимума в $x_1=1$ и возрастают с увеличением x_1 , множество Парето имеет вид $\{1\} \times [0,1]$.

c)
$$x_3 = 1 - x_1 - x_2$$
. Множество Парето :
$$\left\{ \left. \left(x_1, x_2, x_3 \right) \, \middle| \, x_1 = x_2 \geq \frac{1}{3} \right. \right\} \cup \left. \left\{ \left. \left(x_1, x_2, x_3 \right) \, \middle| \, x_1 = x_3 \geq \frac{1}{3} \right. \right\} \cup \left. \left\{ \left. \left(x_1, x_2, x_3 \right) \, \middle| \, x_2 = x_3 \geq \frac{1}{3} \right. \right\} \right.$$

1.

- а) $\underline{I} = \underset{i}{\operatorname{maxmin}}(h_{ij}) = \underset{i}{\operatorname{maxmin}}(f(i) g(j)) = \underset{i}{\operatorname{max}}(f(i) \underset{j}{\operatorname{max}}g(j)) = \underset{i}{\operatorname{max}}f(i) \underset{j}{\operatorname{max}}g(j).$ $\overline{I} = \underset{i}{\operatorname{maxmin}}(h_{ij}) = \underset{j}{\operatorname{minmax}}(f(i) g(j)) = \underset{j}{\operatorname{min}}(\underset{i}{\operatorname{max}}f(i) g(j)) = \underset{i}{\operatorname{max}}f(i) \underset{j}{\operatorname{max}}g(j).$ $\operatorname{Tогда}\ \underline{I} = \overline{I}\ \text{и, следовательно, игра разрешима в чистых стратегиях. Решение игры пара стратегий <math>(i_0,\ j_0)$ такая, что $\underset{i}{\operatorname{max}}f(i) = f(i_0), \ \underset{j}{\operatorname{max}}g(j) = g(j_0).$
- b) $\underline{I} = \underset{i}{\operatorname{maxmin}}(h_{ij}) = \underset{i}{\operatorname{maxmin}}(f(i) + g(j)) = \underset{i}{\operatorname{max}}(f(i) + \underset{j}{\operatorname{ming}}(j)) = \underset{i}{\operatorname{max}}f(i) + \underset{j}{\operatorname{ming}}(j)$ $\overline{I} = \underset{i}{\operatorname{maxmin}}(h_{ij}) = \underset{i}{\operatorname{minmax}}(f(i) + g(j)) = \underset{i}{\operatorname{min}}(\underset{i}{\operatorname{max}}f(i) + g(j)) = \underset{i}{\operatorname{max}}f(i) + \underset{i}{\operatorname{ming}}(j).$ Тогда $\underline{I} = \overline{I}$ и, следовательно, игра разрешима в чистых стратегиях. Решение игры пара стратегий (i_0, j_0) такая, что $\underset{i}{\operatorname{max}}f(i) = f(i_0)$, $\underset{i}{\operatorname{ming}}(j) = g(j_0)$.
- с) Положим $a \le c, \ b \le d, \ a \le b$ (если данное условие не выполняется изначально, подобного можно добиться путём перестановок строк и столбцов). Тогда $\underline{I} = \max \Big(\min(a,b), \min(c,d), \min(a,d), \min(c,b) \Big) = \min(c,d).$ $\overline{I} = \min \Big(\max(a,c), \max(b,d) \Big) = \min(c,d).$ Тогда $\underline{I} = \overline{I}$ и, следовательно, игра разрешима в чистых стратегиях. Оптимальная стратегия для первого игрока вторая, для второго первая при $c \le d$, вторая иначе (номера стратегий без учёта перестановок).
- d) Без ограничения общности будем считать, что числа в матрице упорядочены в лексикографическом порядке (в других случаях доказательство аналогично). Тогда $\underline{I}=c$. $\overline{I}=c$. Тогда $\underline{I}=\overline{I}$ и, следовательно, игра разрешима в чистых стратегиях. Оптимальная стратегия для первого игрока третья, для второго первая, четвёртая, пятая, восьмая.
- е) Для каждой строки матрицы a_i, c_i постоянны, следовательно, минимум в строках будет достигаться при минимальном значении $\frac{b_j}{d_i}$. Минимум в каждой строке достигается для

одного и того же столбца. Пусть это j_0 . Тогда исходную матрицу $(H)_{n\times m}$ можно свести к матрице $(H_0)_{n\times 1}$. В такой матрице стратегии первого игрока – действительные числа. В силу того, что на множестве действительных чисел задано отношение порядка, в полученной матрице есть строка (строки), доминирующие над остальными. Пусть это i_0 . Тогда полученную матрицу можно свести к $(H_{00})_{1\times 1}$, которая состоит из одного элемента. Тогда игра разрешима в чистых стратегиях, решение игры – пара стратегий (i_0, j_0) .

f) $\underline{I} = \underset{i}{\operatorname{maxmin}} (h_{ij}) = \underset{i}{\operatorname{maxmin}} (-h_{jk} - h_{ki}) = -\underset{j}{\operatorname{max}} h_{jk} - \underset{i}{\operatorname{min}} h_{ki}.$ $\overline{I} = \underset{i}{\operatorname{maxmin}} (h_{ij}) = \underset{j}{\operatorname{minmax}} (-h_{jk} - h_{ki}) = \underset{j}{\operatorname{max}} h_{jk} - \underset{i}{\operatorname{min}} h_{ki}.$ Тогда $\underline{I} = \overline{I}$ и, следовательно, игра разрешима в чистых стратегиях.

5. Множество чистых стратегий для игрока A:

- 1) A_1 все фишки в позиции 1,
- 2) A_2 все фишки в позиции 2,
- 3) A_3 все фишки в позиции 3,
- 4) A_4 по одной фишке в каждой позиции,
- 5) $A_5 2$ фишки в позиции 1, одна в позиции 2,
- 6) $A_6 2$ фишки в позиции 1, одна в позиции 3,
- 7) $A_7 2$ фишки в позиции 2, одна в позиции 1,
- 8) $A_8 2$ фишки в позиции 2, одна в позиции 3,
- 9) $A_9 2$ фишки в позиции 3, одна в позиции 1,
- $10)A_{10}-2$ фишки в позиции 3, одна в позиции 2.

Из таких же стратегий состоит множество $B = \{B_1, ..., B_{10}\}.$

Пусть выигрыш первого игрока (или проигрыш второго) — общее число "прорвавшихся" фишек. Тогда матрица выигрышей имеет следующий вид:

	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9	B_{10}
A_1	0	3	3	2	1	1	2	3	2	3
A_2	3	0	3	2	2	3	1	1	3	2
A_3	3	3	0	2	3	2	3	2	1	1
A_4	2	2	2	0	1	1	1	1	1	1
A_5	1	2	3	1	0	1	1	2	2	2
A_6	1	3	2	1	1	0	2	2	1	2
A_7	2	1	3	1	1	2	0	1	2	2

A_8	3	1	2	1	2	2	1	0	2	1
A_9	2	3	1	1	2	1	2	2	0	1
A_{10}	3	2	1	1	2	2	2	1	1	0

 $\underline{I}=0, \overline{I}=3.$ Таким образом, игра не разрешима в чистых стратегиях. Найдём решение игры в смешанных стратегиях. Построим пару двойственных задач линейного программирования.

Первая задача:

$$\sum_{i=1}^{10} x_i \to min$$

$$\begin{cases} 0 \cdot x_1 + 3x_2 + 3x_3 + 2x_4 + x_5 + x_6 + 2x_7 + 3x_8 + 2x_9 + 3x_{10} \ge 1 \\ 3x_1 + 0 \cdot x_2 + 3x_3 + 2x_4 + 2x_5 + 3x_6 + x_7 + x_8 + 3x_9 + 2x_{10} \ge 1 \\ 3x_1 + 3x_2 + 0 \cdot x_3 + 2x_4 + 3x_5 + 2x_6 + 3x_7 + 2x_8 + x_9 + x_{10} \ge 1 \\ 2x_1 + 2x_2 + 2x_3 + 0 \cdot x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} \ge 1 \\ x_1 + 2x_2 + 3x_3 + x_4 + 0 \cdot x_5 + x_6 + x_7 + 2x_8 + 2x_9 + 2x_{10} \ge 1 \\ x_1 + 3x_2 + 2x_3 + x_4 + x_5 + 0 \cdot x_6 + 2x_7 + 2x_8 + x_9 + 2x_{10} \ge 1 \\ 2x_1 + x_2 + 3x_3 + x_4 + x_5 + 2x_6 + 0 \cdot x_7 + x_8 + 2x_9 + 2x_{10} \ge 1 \\ 3x_1 + x_2 + 2x_3 + x_4 + 2x_5 + 2x_6 + x_7 + 0 \cdot x_8 + 2x_9 + x_{10} \ge 1 \\ 2x_1 + 3x_2 + x_3 + x_4 + 2x_5 + x_6 + 2x_7 + 2x_8 + 0 \cdot x_9 + x_{10} \ge 1 \\ 3x_1 + 2x_2 + x_3 + x_4 + 2x_5 + x_6 + 2x_7 + 2x_8 + 0 \cdot x_9 + x_{10} \ge 1 \\ 3x_1 + 2x_2 + x_3 + x_4 + 2x_5 + 2x_6 + 2x_7 + x_8 + x_9 + 0 \cdot x_{10} \ge 1 \end{cases}$$

$$x_i \ge 0, i = 1, 10$$

Вторая задача:

$$\sum_{j=1}^{10} y_j \to m \, a \, x$$

$$\begin{cases} 0 \cdot y_1 + 3y_2 + 3y_3 + 2y_4 + y_5 + y_6 + 2y_7 + 3y_8 + 2y_9 + 3y_{10} \leq 1 \\ 3y_1 + 0 \cdot y_2 + 3y_3 + 2y_4 + 2y_5 + 3y_6 + y_7 + y_8 + 3y_9 + 2y_{10} \leq 1 \\ 3y_1 + 3y_2 + 0 \cdot y_3 + 2y_4 + 3y_5 + 2y_6 + 3y_7 + 2y_8 + y_9 + y_{10} \leq 1 \\ 2y_1 + 2y_2 + 2y_3 + 0 \cdot y_4 + y_5 + y_6 + y_7 + y_8 + y_9 + y_{10} \leq 1 \\ y_1 + 2y_2 + 3y_3 + y_4 + 0 \cdot y_5 + y_6 + y_7 + 2y_8 + 2y_9 + 2y_{10} \leq 1 \\ y_1 + 3y_2 + 2y_3 + y_4 + y_5 + 0 \cdot y_6 + 2y_7 + 2y_8 + y_9 + 2y_{10} \leq 1 \\ 2y_1 + y_2 + 3y_3 + y_4 + y_5 + 2y_6 + 0 \cdot y_7 + y_8 + 2y_9 + 2y_{10} \leq 1 \\ 3y_1 + y_2 + 2y_3 + y_4 + 2y_5 + 2y_6 + y_7 + 0 \cdot y_8 + 2y_9 + y_{10} \leq 1 \\ 2y_1 + 3y_2 + y_3 + y_4 + 2y_5 + y_6 + 2y_7 + 2y_8 + 0 \cdot y_9 + y_{10} \leq 1 \\ 3y_1 + 2y_2 + y_3 + y_4 + 2y_5 + 2y_6 + 2y_7 + 2y_8 + 0 \cdot y_9 + y_{10} \leq 1 \\ 3y_1 + 2y_2 + y_3 + y_4 + 2y_5 + 2y_6 + 2y_7 + y_8 + y_9 + 0 \cdot y_{10} \leq 1 \end{cases}$$

$$y_j \ge 0, j = 1, 10.$$

Решения задач:
$$x = \left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, 0, 0, 0, 0, 0, 0, 0\right), y = \left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, 0, 0, 0, 0, 0, 0, 0\right).$$

Решение матричной задачи: $I_1 = I_2 = I = 2$,

$$p = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0, 0, 0, 0, 0, 0\right), \ q = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0, 0, 0, 0, 0, 0\right)$$

6.

Матрица выигрышей:

	_ 1			
2	-3	4	-5	6
-3	4	-5	6	-7
4	-5	6	-7	8
-5	6	- 7	8	-9
6	-7	8	-9	10

I = -5, $\bar{I} = 6$. Таким образом, игра не разрешима в чистых стратегиях.

Найдём решение игры в смешанных стратегиях. Для избавления от отрицательных элементов прибавим к элементам матрицы 10. Построим пару двойственных задач линейного программирования.

$$\begin{cases} \sum_{i=1}^{5} x_i \to \min \\ 12x_1 + 7x_2 + 14x_3 + 5x_4 + 16x_5 \ge 1 \\ 7x_1 + 14x_2 + 5x_3 + 16x_4 + 3x_5 \ge 1 \\ 14x_1 + 5x_2 + 16x_3 + 3x_4 + 18x_5 \ge 1 \\ 5x_1 + 16x_2 + 3x_3 + 18x_4 + x_5 \ge 1 \\ 16x_1 + 3x_2 + 18x_3 + x_4 + 20x_5 \ge 1 \\ x_i \ge 0 \ i = \overline{1,5} \end{cases}$$

$$\begin{cases} \sum_{i=1}^{5} y_i \to \max \\ 12y_1 + 7y_2 + 14y_3 + 5y_4 + 16y_5 \le 1 \\ 7y_1 + 14y_2 + 5y_3 + 16y_4 + 3y_5 \le 1 \\ 14y_1 + 5y_2 + 16y_3 + 3y_4 + 18y_5 \le 1 \\ 5y_1 + 16y_2 + 3y_3 + 18y_4 + y_5 \le 1 \\ 16y_1 + 3y_2 + 18y_3 + y_4 + 20y_5 \le 1 \\ y_i \ge 0 \ i = \overline{1,5} \end{cases}$$

Решения задач: $x = \left(\frac{1}{80}, 0, 0, \frac{1}{20}, \frac{3}{80}\right), y = \left(\frac{1}{80}, \frac{0,0,1}{20}, \frac{3}{80}\right).$

Решение матричной игры: $I = \frac{1}{\sum_{i=1}^{10} x_i} - 10 = 10 - 10 = 0$,

$$p = \left(\frac{1}{8}, 0, 0, \frac{1}{2}, \frac{3}{8}\right), \ q = \left(\frac{1}{8}, \frac{0, 0, 1}{2}, \frac{3}{8}\right).$$

7.

Первый и второй игрок могут выложить в сумме от 1 до 6. Построим матрицу выигрышей. Если сумма цифр всех фишек делится на 3, то первый игрок получает 1 очко, если делится на 4 — игрок B получает 1 очко (в матрице записываем -1). Если сумма цифр не делится ни на 3, ни на 4 либо делится на оба числа, игроки получают 0 очков.

0	1	-1	0	1	0
1	-1	0	-1	0	-1
-1	0	1	0	-1	1
0	-1	0	-1	1	0
1	0	2	1	0	0
0	-1	1	0	0	-1

 $\underline{I} = -1, \overline{I} = 1$. Таким образом, игра не разрешима в чистых стратегиях.

Найдём решение игры в смешанных стратегиях. Для избавления от отрицательных элементов прибавим к элементам матрицы 1. Тогда получим

1	2	0	1	2	1
2	0	1	0	1	0
0	1	2	1	0	2
1	0	1	0	2	1
2	1	0	2	1	1
1	0	2	1	1	0

Построим пару двойственных задач линейного программирования.

$$\sum_{i=1}^{6} x_i \to min$$

$$x_1 + 2x_2 + x_4 + 2x_5 + x_6 \ge 1,$$

$$2x_1 + x_3 + x_5 \ge 1,$$

$$x_2 + 2x_3 + x_4 + 2x_6 \ge 1, x_1 + x_3 + 2x_5 + x_6 \ge 1$$

$$2x_1 + x_2 + 2x_4 + x_5 + x_6 \ge 1, x_1 + 2x_3 + x_4 + x_5 \ge 1$$

$$x_i \ge 0$$

$$\begin{split} \sum_{i=1}^{6} y_i &\to max \\ y_1 + 2y_2 + y_4 + 2y_5 + y_6 &\leq 1, \\ 2y_1 + y_3 + y_5 &\leq 1, \\ y_2 + 2y_3 + y_4 + 2y_6 &\leq 1, y_1 + y_3 + 2y_5 + y_6 &\leq 1 \\ , \\ 2y_1 + y_2 + 2y_4 + y_5 + y_6 &\leq 1, y_1 + 2y_3 + y_4 + y_5 &\leq 1 \\ , \end{split}$$

$$y_i \ge 0$$

Решения задач:
$$x = \left(\frac{2}{7}, \frac{1}{7}, \frac{2}{7}, 0, \frac{1}{7}, \frac{1}{7}\right), \ y = \left(\frac{1}{4}, 0, \frac{1}{4}, 0, \frac{1}{4}, \frac{1}{4}\right).$$

Решение матричной задачи: $I = \frac{1}{\sum_{i=1}^6 x_i} = \frac{1}{\sum_{j=1}^6 y_j} = \frac{1}{1} = 1,$

$$p = \left(\frac{1}{4}, 0, \frac{1}{4}, 0, \frac{1}{4}, \frac{1}{4}\right), q = \left(\frac{2}{7}, \frac{1}{7}, \frac{2}{7}, 0, \frac{1}{7}, \frac{1}{7}\right).$$

8.

$$\underline{I} = \max\{0; 0,4; 0\} = 0,4.$$

$$\overline{I} = \min\{0.8; 0.6; 0.6; 0.8\} = 0.6.$$

 $\overline{I} \neq \underline{I}$, следовательно, игра не разрешима в чистых стратегиях.

Для определения оптимальных смешанных стратегий игроков и значения игры построим пару двойственных задач линейного программирования:

$$\sum_{i=1}^{3} x_i \to min,$$

$$\sum_{j=1}^{4} y_i \to min,$$

$$0.8x_1 + 0.4x_2 \ge 1$$

$$0.6x_2 \ge 1$$

$$0.6x_2 \ge 1$$

$$0.8y_4 \le 1$$

$$0.4x_2 + 0.8x_3 \ge 1$$

$$0.3y_4 \le 1$$

$$0.4x_2 + 0.8x_3 \ge 1$$

$$0.4x_3 \ge 0, i = 1.3$$

Заданной смешанной стратегии $p=\left(\frac{1}{3},\,\frac{1}{3},\,\frac{1}{3}\right)$ и значению игры I=0,4 соответствует

вектор $x = \left(\frac{5}{6}, \frac{5}{6}, \frac{5}{6}\right)$. Данный вектор не удовлетворяет ограничению $0.6x_2 \ge 1$.

Следовательно, этот вектор не может быть решением данной матричной игры.

Решения задач:
$$x = \left(\frac{5}{12}, \frac{5}{3}, \frac{5}{12}\right), y = \left(\frac{5}{4}, 0, 0, \frac{5}{4}\right).$$

Решение матричной задачи:

$$I = 0.4, p = \left(\frac{1}{6}, \frac{2}{3}, \frac{1}{6}\right), q = \left(\frac{1}{2}, 0, 0, \frac{1}{2}\right).$$

9.

$$\underline{I} = \max\{-4; 4; 2\} = 4.$$

$$\overline{I} = \min\{14; 8; 8\} = 8.$$

 $\overline{I} \neq \underline{I}$, следовательно, игра не разрешима в чистых стратегиях.

Для определения оптимальных смешанных стратегий игроков и значения игры построим пару двойственных задач линейного программирования:

$$\sum_{i=1}^{4} x_{i} \to min$$

$$\sum_{i=1}^{3} y_{i} \to max$$

$$14x_{1} - 4x_{2} + 4x_{3} + 2x_{4} \ge 1$$

$$-4x_{1} + 8x_{2} + 4x_{3} + 8x_{4} \ge 1$$

$$2x_{1} + 8x_{2} + 4x_{3} + 2x_{4} \ge 1$$

$$x_{i} \ge 0, i = \overline{1,4}.$$

$$14y_{1} - 4y_{2} + 2y_{3} \le 1 - 4y_{1} + 8y_{2} + 8y_{3} \le 1$$

$$4y_{1} + 4y_{2} + 4y_{3} \le 12y_{1} + 8y_{2} + 2y_{3} \le 1$$

$$y \ge 0, y = \overline{1,3}.$$

Заданные смешанные стратегии и значение игры не являются решением матричной игры, так как полученные решения не удовлетворяют ограничению $2x_1 + 8x_2 + 4x_3 + 2x_4 \ge 1$.

Решения задач:
$$x=\left(\frac{1}{16},\ 0,\frac{1}{16},\frac{1}{8}\right),\ y=\left(\frac{1}{12},\frac{1}{12},\frac{1}{12}\right).$$
 Решение матричной задачи: $I=4,p=\left(\frac{1}{4},\ 0,\frac{1}{4},\frac{1}{2}\right),\ q=\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right).$

10.

а) $\underline{I}=-1, \overline{I}=2$. Таким образом, игра не разрешима в чистых стратегиях. Для первого игрока первая стратегия доминирует над второй: $(-1,1,3)\geq (-1,0,2)$. Тогда $p_2=0$. Для второго игрока первая стратегия доминирует над второй: $(-1,2)\leq (1,2)$. Тогда $q_2=0$. Получим следующую матрицу выигрышей:

$$\begin{bmatrix}
-1 & 3 \\
2 & -1
\end{bmatrix}$$

$$\begin{cases}
-q_1 + 3q_2 = I \\
2q_1 - q_2 = I
\end{cases} . I = \frac{5}{7}, q = \left(\frac{4}{7}, \frac{3}{7}\right).$$

$$\begin{cases}
I = -1 + (2 - (-1))p_2 \\
I = 3 + (-1 - 3)p_2
\end{cases} . p = \left(\frac{3}{7}, \frac{5}{7}\right).$$

b) $\underline{I}=-1, \overline{I}=2$. Таким образом, игра не разрешима в чистых стратегиях. Для первого игрока вторая стратегия доминирует над первой. Тогда $p_1=1$. Для второго игрока первая стратегия доминирует над пятой, третья стратегия доминирует над второй и четвёртой. Тогда $p_2=p_4=0$. Получим следующую матрицу выигрышей:

1	2
-1	3
2	-2

$$\begin{cases} p_1 + 2p_3 = I \\ 2p_1 - 2p_3 = I. I = \frac{6}{5}, \ p = \left(\frac{4}{5}, \frac{1}{5}\right). \\ p_1 + p_3 = 1 \end{cases}$$

$$\begin{cases} I = -1 + (2 - 1)q_2 \\ I = 2 + (-2 - 2)q_2 \end{cases}. \ p = \left(\frac{4}{5}, \frac{1}{5}, \frac{6}{5}\right).$$

c) $\underline{I} = 2$, $\overline{I} = 5$. Таким образом, игра не разрешима в чистых стратегиях.

$$p_2 = p_4 = q_3 = q_4 = 0.$$

Получим следующую матрицу выигрышей:

$$\begin{cases} 2q_1 + 5q_2 = I \\ 7q_1 - 3q_2 = I. I = \frac{41}{13}, \ q = \left(\frac{8}{13}, \frac{5}{13}\right). \\ q_1 + q_2 = 1 \end{cases}$$

$$\begin{cases} I = 2 + (7 - 2)p_2 \\ I = 5 + \left(-3 - 5\right)p_2 \end{cases} p = \left(\frac{10}{13}, \frac{3}{13}\right).$$

d) $\underline{I} = 0, \overline{I} = 1.$ Таким образом, игра не разрешима в чистых стратегиях.

$$p_3 = q_3 = q_4 = q_5 = q_6 = 0.$$

Получим следующую матрицу выигрышей:

$$\begin{cases} 2q_1 - q_2 = I \\ q_2 = I \\ q_1 + q_2 = 1 \end{cases} I = \frac{1}{2}, \ q = \left(\frac{1}{2}, \frac{1}{2}\right).$$

$$\begin{cases} I = 2 + (0 - 2)p_2 \\ I = -1 + \left(1 - (-1)\right)p_2 \end{cases} p = \left(\frac{1}{4}, \frac{3}{4}\right).$$

