Information Integrity Over the Long Term

Micah Altman
MIT Libraries

Richard Landau

Program on Information Science

Related Work

Draft - for internal comment:

https://github.com/MIT-Informatics/PreservationSimulation

Shifting Economics of Digital Information

Going digital changes economics of long term access

- Computation is cheap
 - Replication is cheap
 - Conservation

 (of media, hardware)
 is expensive

The Tools of Preservation

- Replication
- Auditing
- Repair
- Compression

Characterizing Preservation as Optimization

Given

- A collection (C), of documents ={D1..DN};
- A budget (**B**)

Choose

```
A preservation strategy (S) = {Copies, AuditMethod, RepairFrequency, FileTransformation}
```

Optimize

Choose the optimal strategy, **S***, to minimize collection loss, within the budget

$$\min_{S^* \ni S} E(Loss(C,S^*)) \mid Cost(C,S^*) \le \mathbf{B}$$

Cost Modeling

f(storage(C,S), communications(C,S), Replicas(S))

Simplifications:

- Each separate replication imposes a fixed cost
- Storage cost is linear in (compressed) collection size
- Communication is linear in collection size; audit frequency
- Other computation costs are negligible

Loss Modeling

Sector	Corrupts portion of document	 Detected on audit (silent) Exponentially distributed Related to storage quality
Glitches	Environmental Conditions	 Periodic changes Increases sector error rate Never directly observable (latent)
Server	Replica failure	 Entire replica of collection is lost Exponentially distributed
Shock	Major correlated failure	 Induces immediate server failure May raise rate of server failure

The Big Things

One Copy is Not Enough -- Even if Sector Error is Low

One copy of a collection has unacceptable losses over time, even with very high quality storage

Some Copies + Auditing is better than Many Copies

With regular auditing, only a few copies are required to minimize losses over a wide range. Failure to audit the collection is worse than keeping only a small number of audited copies

Five Copies (+ auditing) protects against low-level errors...

Forever

With moderate auditing, in a peaceful world, five copies are nearly immortal

(With enough copies...)

Sector error doesn't matter, server lifetime does

Shocks are Everywhere...

Single server failure?

Repression, Encryption Key Loss, Financial

Companion abstract figure showing sudden corellateoss?

Recession

Shocks matter -- even for long-lived servers

Seven (?) diversified copies will survive a major disaster or minor war

Suggest: fixed number of year 20?; Expected server lifetime of 5 years; Lines for 5,6,7 servers. X axis is increasing shock frequency for a major shock

Complications (Do's and Don'ts)

Occasional temporary glitches increase the server error rate for some period, but otherwise are not substantially different from normal operation

DON'T Worry about auditing frequency

-- Annually is Enough

Audit frequency comparisons, copies=5
Increasing auditing frequency beyond annually yields small benefits
but at greatly increased cost in bandwidth

DO compress documents to buy more replications

Compression Shrinks Target & Reduces costs

Compression vs. Repairability: The SWEET Spot

X axis - compressibility; Y is repairability; shade by whether reliability is increased; line plots a fixed proportion reduction of repairability; overlay line graph of additional number of copies

DON'T use Randomized Auditing -- Keep it Systematic

DON'T Worry (too much) about document size \rightarrow DO be robust to sector erros

Annotate to show how shifting from 5MB->5000MB Doc is equivalent to shifting along sector error

Opining

Recommendations

for Memory Institutions

- Use the cloud
- Replicate and verify
- Diversify for server failures
- Compensate for shocks

for Vendors

- Support auditing primitives
- Collect and share loss rates
- Forget 11 nines ...
 reveal replication strategy

References