3. METER BRIDGE- Series Combination

Aim: To verify the law of combination of resistance in series using a meter bridge.

Apparatus: Meterbridge, Battery, 2 resistance coils, Resistance Box, Galvanometer, Pencil Jockey, Connecting wires.

Theory: Meter Bridge works on Wheatstone's network principle. When the bridge is in the balanced state(I_g =0), then

$$\frac{P}{Q} = \frac{R}{S}$$

Where P,Q,R,S are the four resistance in the various arms of the meter bridge.

Hence unknown resistance of the coil, $X = \frac{R(100-l)}{l}$

Where R is the known resistance from the standard resistance box

l is the balancing length when I_g =0

When two resistance are connected in series, then the effective resistance of the combination is

$$r_{s} = r_{1} + r_{2}$$

Procedure:

- 1. Mark two resistors as r_1 and r_2
- 2. Set up the circuit as per the circuit diagram.
- 3. Take suitable resistance from the resistance box(R) and find the balanced length l for each resistance coil when connected separately. Fin the value of r_1 and r_2

- 4. Now connect the two resistance coils r_1 and r_2 in series. Find the balancing length and find the effective resistance r_s
- 5. Repeat the experiment for different values of resistance ®from the resistance box.
- 6. Record the observation
- 7. Experimental value of r_s should be close agreement with the calculated value of r_s

Result:

In Series, Effective resistance

- (a) From experiment=..... Ω
- (b)From calculation=..... Ω

Precaution:

- 1. Connections should be neat, tight and clean
- 2. Plugs in the resistance box should be fixed tightly.
- 3. The Jockey should not be pressed too hard on the bridge wire and do not rub over it.
- 4. Null points should be in the central region of the wire (30 cm to 70 cm).

Sources of error:

- 1. The instrument screws may be loose.
- 2. The plug may not be clean
- 3. Error in the measurement of balancing Length.
- 4. If large current is passed for a sufficiently long time, the wire AC may get heated and its resistance may change considerably during the time of experiment.

Circuit Diagram:

AC=1 m long wire of bridge.

G=Galvanometer

J=Jockey

Observation & Calculation

(a)To verify the law of resistance in series

Resistance coil	No	Resistance, R (Ω)	Balancing Length(l) cm	(100-l) cm	$X = \frac{R(100-l)}{l}$ (\Omega)	Mean
	1					
r_1	2					$r_1 =$
	3					
	1					
r_2	2					$r_2^{=}$
	3					
	1					
r_{s}	2					r_{s}
	3					

$$X = \frac{R(100-l)}{l}$$

(Showing calculator steps with values)