МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н. Э. БАУМАНА

Факультет информатики и систем управления Кафедра теоретической информатики и компьютерных технологий

Лабораторная работа №5 по курсу «Моделирование»

«Работа с системой моделирования GPSS»

Выполнил: студент ИУ9-111

Выборнов А. И.

Руководитель:

Домрачева А. Б.

1. Постановка задачи

Кластерная система, состоящая из m узлов, осуществляет выполнения задач. Задачи поступают по нормальному закону распределения с матожиданием 5 секунд и дисперсией 2. Время обработки каждой задачи 2-3 минуты. Кластер имеет буфер для хранения 10 задач, если все узлы заняты, то задача помещается в буфер, если буфер заполнен, то задача считается утерянной и в буфер не помещается. Провести моделирование обработки 100 задач, определить загрузку кластера и количество утерянных задач.

2. Реализация

2.1. Код программы на языке GPSS

Ниже представлен код программы, для количества узлов m=25:

```
STORAGE
                                                                   ; cluster of 25 nodes
cluster
                           (Normal(1,5,SQR(2)))
             GENERATE
                                                                  ; generate tasks Mx=5, Dx=2
             QUEUE
                           buffer queue
                                                                  ; task entered to buffer
                            \begin{array}{c} \text{Q\$buffer\_queue} \ , \text{Unprocessed} \\ \text{Q\$buffer\_queue} \ , \text{10 , unprocessed} \\ \end{array} \quad ; \quad \text{if} \ > \ 10 \quad \text{task in buffer goto unprocessed} 
             TEST L
             ENTER
                           cluster
                                                                  ; task sended to cluster
             DEPART
                           buffer_queue
                                                                  ; task leaved buffer
             ADVANCE
                           150,30
                                                                  ; processed task 2-3m
             LEAVE
                           cluster
                                                                   ; task left cluster
             TERMINATE 1
                                                                   ; task successed
                           buffer_queue
unprocessed DEPART
                                                                  ; task left buffer
                                                                  ; task not precessed
             START
                           100
                                                                   ; loop for 100 task
```

2.2. Отчёт GPSS

Ниже представлен отчёт GPSS, полученный после выполнения программы, представленной в главе 2.1.

```
GPSS World Simulation Report - Untitled Model 1.1.1

???????, ???????? 29, 2015 11:30:27

START TIME END TIME BLOCKS FACILITIES STORAGES 0.000 654.748 10 0 1

NAME VALUE
BUFFER_QUEUE 10001.000
CLUSTER 10000.000
UNPROCESSED 9.000

LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY 1 GENERATE 133 0 0
```

	2	2 QUEUE				133			0	0	
	3 TEST				133			8	0		
	4	4 ENTER				109			1	0	
	5	DEP.	ART			108			0	0	
	6 ADVANCE				108			2	4	0	
	7	LEAVE			84				0	0	
	8	TERMINATE		E	84				0	0	
UNPROCESSED	9	DEPART			16				0	0	
	10	TERMINATE		E	16				0	0	
QUEUE	MAX	CONT.	ENTR	Y ENTI	RY(0)	AVE	CONT.	AVE. TIN	ΛΕ Α	VE.(-0)	RETRY
BUFFER_QUEUE	10	9	13	3	43	4	.969	24.4	32	36.149	0
STORAGE								AVE.C.			
CLUSTER	25	0	0	25		109	1	22.412	0.896	0	8

3. Тестирование

Рисунок 1-3ависимость загрузки кластера от числа узлов

Рисунок 2-3ависимость количества утерянных задач от числа узлов

4. Выводы

Как видно из представленного в главе 2.2 отчёта при m=25 кластер был загружен на 89.6%, при этом было утеряно 16 задач.

Из тестирования, описанного в главе 3, видно что чем больше узлов в кластере, то тем меньше его загрузка и меньше количество утерянных задач.