Atividade AA-10

Nesta tarefa deve-se demonstrar formalmente (com o auxílio do *Pumping Lemma* para linguagens regulares) que a linguagem selecionada não é regular. (Cada aluno(a) deve consultar na descrição da atividade AA–10, na disciplina INF0333A da plataforma Turing, qual é a linguagem associada ao seu número de matrícula. A descrição da linguagem está disponível no arquivo "Lista de linguagens livres de contexto" da Seção "Coletânea de exercícios".)

Rafael Nunes Moreira Costa (202107855)

• $\mathcal{L}_{30} = \{ w \in \{0,1\}^* \mid w = 0^m 1^n 0 1^{m+1}, \ m, n \in \mathbb{N} \}.$

Suponha que \mathcal{L}_{30} seja regular. Neste caso, \mathcal{L}_{30} é reconhecida por um autômato finito determinístico com k estados. O *Pumping Lemma* para linguagens regulares garante que qualquer cadeia $w \in \mathcal{L}_{30}$, tal que $|w| \ge k$, pode ser subdividida em subcadeias x, y e z satisfazendo w = xyz, $|xy| \le k$, |y| > 0 ($y \ne \varepsilon$) e $xy^iz \in \mathcal{L}_{30}$, para $i \ge 0$.

Assim, considere a cadeia $w = xyz = 0^k 1^k 01^{k+1} \in \mathcal{L}_{30}$. Segundo o *Pumping Lemma* para linguagens regulares $|xy| \leq k$, $z = 0^{k-|xy|} 1^k 01^{k+1}$ e $w' = xy^2z \in \mathcal{L}_{30}$. Dessa forma:

$$w' = xy^{2}z = (xy)(y)(z)$$

$$= (0^{|xy|})(0^{|y|})(0^{k-|xy|}1^{k}01^{k+1})$$

$$= 0^{k+|y|}1^{k}01^{k+1}.$$

Contudo, a cadeia w' não segue o padrão especificado pela restrição associada à linguagem \mathcal{L}_{30} , pois como |y| > 0, então $k + |y| = m \ge m + 1$. Ou seja, $w' \notin \mathcal{L}_{30}$. Portanto, dada a contradição ao $Pumping\ Lemma$, é falsa a suposição de que \mathcal{L}_{30} é regular.