An Introduction to Computational Macroeconomics

Dynamic Programming: Chapter 7

John Stachurski

June - July 2022

Topics

- 1. MDPs with state-dependent discounting
- 2. Valuation and optimality theory
- 3. Application: Inventories revisited
- 4. Structural estimation
- 5. Optimal growth revisited
- 6. Refactoring the Bellman equation

MDPs with State-Dependent Discounting

Let A be a finite set, called the **action space**

The state variable is $X_t = (Y_t, Z_t)$, where

- $(Y_t)_{t \ge 0}$ is endogenous
- $(Z_t)_{t\geqslant 0}$ is purely exogenous and Q-Markov on Z
 - drives the discount factor process

The **state space** is $X := Y \times Z$

An MDP with state-dependent discounting consists of elements (Γ, β, r, Q, R) where

- 1. Γ is a nonempty correspondence from $Y \to A$
- 2. β is a function from Z to \mathbb{R}_+
- 3. r is a function from $G := \{(y, a) \in Y \times A : a \in \Gamma(y)\}$ to \mathbb{R}
- 4. Q is a stochastic matrix on Z
- 5. R is a stochastic kernel from G to Y

A summary of dynamics:

- (Z_t) is Q-Markov
- The discount factor process $(\beta_t)_{t\geqslant 0}$ obeys $\beta_t:=\beta(Z_t)$
- Given $Y_t = y$ and current action a, current reward is r(y, a)
- Y_{t+1} is drawn from distribution $R(y, a, \cdot)$
- Y_{t+1} and Z_{t+1} are updated independently given (y, z, a)

The Bellman equation becomes

$$v(y,z) = \max_{a \in \Gamma(y)} \left\{ r(y,a) + \beta(z) \sum_{z',y'} v(y',z') Q(z,z') R(y,a,y') \right\}$$

for all $(y,z) \in X$

Given $\sigma \in \Sigma$, the **policy operator** is

$$(T_{\sigma}v)(y,z) = r(y,\sigma(y,z)) +$$

$$\beta(z) \sum_{z',y'} v(y',z') Q(z,z') R(y,\sigma(y,z),y')$$

Notation

Let

$$\beta(x) = \beta(z, y) := \beta(z)$$

Given $\sigma \in \Sigma$, let

$$r_{\sigma}(x) := r_{\sigma}(y,z) := r(y,\sigma(y,z))$$

and

$$P_{\sigma}(x,x') := P_{\sigma}((y,z),(y',z')) := Q(z,z')R(y,\sigma(y,z),y')$$

• P_{σ} drives the state process $(X_t)_{t \ge 0}$ under σ

Fix $\sigma \in \Sigma$

Let (X_t) be P_{σ} -Markov with initial condition x

Proposition. Let L be defined by

$$L(z,z') := \beta(z)Q(z,z')$$

If r(L) < 1, then T_σ has a unique fixed point \mathbb{R}^{X} , denoted by v_σ Moreover,

$$v_{\sigma}(x) = \mathbb{E}\left\{\sum_{t=0}^{\infty} \left[\prod_{i=0}^{t-1} \beta(X_i)\right] r_{\sigma}(X_t)\right\} \qquad (x \in \mathsf{X})$$

Assuming r(L) < 1, we can introduce the value function v^* via

$$v^*(x) = \max_{\sigma \in \Sigma} v_{\sigma}(x)$$

Given $v \in \mathbb{R}^{\mathsf{X}}$, a policy $\sigma \in \Sigma$ is called v-greedy if

$$\sigma(y,z) \in \operatorname*{argmax}_{a \in \Gamma(y)} \left\{ r(y,a) + \beta(z) \sum_{z',\,y'} v(y',z') Q(z,z') R(y,a,y') \right\}$$

for all $(y,z) \in X$

A policy $\sigma \in \Sigma$ is called **optimal** if $v_\sigma = v^*$

Proposition If r(L) < 1, then

- 1. the Bellman operator T is globally stable on \mathbb{R}^{X} with unique fixed point v^* and
- 2. for each $\sigma \in \Sigma$, T_{σ} is globally stable on \mathbb{R}^{X} with unique fixed point v_{σ}
- 3. A feasible policy is optimal if and only it is v^* -greedy

Thus, the optimality results obtained for ordinary MDPs continue to hold whenever $r(L) < 1\,$

How tight is the condition r(L) < 1?

Ex. Show that r(L) < 1 when

$$\exists\; b<1\; \mathrm{such} \; \mathrm{that} \; \beta(z)\leqslant b \; \mathrm{for} \; \mathrm{all} \; z\in \mathsf{Z}$$

But this condition is too strict

Remember
$$\beta < 1$$
 and $\beta = 1/(1+r)$ implies $r > 0$

How tight is the condition r(L) < 1?

Ex. Show that r(L) < 1 when

$$\exists \ b < 1 \ \mathrm{such \ that} \ \beta(z) \leqslant b \ \mathrm{for \ all} \ z \in \mathsf{Z}$$

But this condition is too strict

Remember
$$\beta < 1$$
 and $\beta = 1/(1+r)$ implies $r > 0$

Figure: Real US interest rates are sometimes negative

Also, household preferences are sometimes assumed to have occasionally negative discount rates

• implies β_t sometimes > 1

Figure: $(\beta)_{t\geqslant 0}$ process in Hills, Nakata and Schmidt (2019)

The process in Hills, Nakata and Schmidt (2019) is AR(1)

Following them, we discretize via Tauchen approximation

$$mc = tauchen(n, \rho, \sigma, 1 - \rho, m)$$

Parameters are as in Hills et al. (2019)

We find r(L) = 0.9996, so optimality results apply

In summary,

- r(L) < 1 allows the discount factor to exceed one at times
- Reasonable for economic applications
- Yet strong enough for optimality

Application: Inventory Management

Recall the inventory management model with Bellman equation

$$v(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \sum_{d \geqslant 0} v(m(x - d) + a) \varphi(d) \right\}$$

- $x \in X := \{0, ..., K\}$ is the current inventory level
- *a* is the current inventory order
- r(x, a) is current profits
- $m(y) = y \vee 0$
- ullet d is an IID demand shock with distribution arphi

We now replace β with $\beta_t = \beta(Z_t)$

• $(Z_t)_{t\geqslant 0}$ is Q-Markov on Z

This is an MDP with state-dependent discounting

The Bellman equation becomes

$$v(x,z) = \max_{a \in \Gamma(x)} \left\{ r(x,a) + \beta(z) \sum_{d,z'} v(m(x-d) + a,z') \varphi(d) Q(z,z') \right\}$$

All optimality results hold when

- $L(z,z') := \beta(z)Q(z,z')$ and
- r(L) < 1

using LinearAlgebra, Distributions, OffsetArrays, QuantEcon

Here

- $\beta_t := Z_t$
- the interest rate r_t is inferred from $\beta_t = 1/(1+r_t)$

Figure: Inventory dynamics with time-varying interest rates