Alex Asch

Assignment 4 Design

Description of Program

This program will begin by making a graph to track paths.

Notes

- Step 1: How we interact with the Graph struct
 - The graph struct is a struct with an integer number of vertices, a boolean for directed or undirected, a boolean array for if vertices are visited, and a matrix (2d array) which stores the vertices
 - The graph itself is an i by j array, and if there is a nonzero value at (i,j) this means that there is a path of length m(i,j) from i to j.
 - If the graph is undirected, that means for every path from i to j there is a path of the same length from j to i.
 - We will write creation and deletion functions for the graph struct.
 - The creation struct, called a constructor, takes two arguments, the number of vertices and the boolean if the graph is directed or undirected.
 - This allocates the appropriate amount of memory for a graph struct using calloc to make sure the memory is zeroed, it then initializes the number of vertices and the directedness create the graph
 - It returns a pointer value to the graph struct.
 - The deletion function.
 - The deletion function takes a pointer to a pointer of G, and frees the memory at point g, it also sets the pointer to null to prevent use after free errors.
 - The graph_vertices function.
 - This function will simply return the number of vertices a graph has. This is because we are creating opaque data types, which cannot be accessed outside of their implementation.
 - This function ensures there is a way for the user to access the values and data, but only when we want them to be able to.
 - The graph add edge function.
 - This adds an edge at (i,j) of weight k, taking all above values as integer values
 - This will mirror this point across the value for undirected graphs.
 - For built-in error checking, this function checks if the vertices are in bounds and the edges are non negative, and returns a boolean value, which is based on successful creation of edges.
 - The graph has edge function.
 - This returns true if theres is an edge between the values i and j that are in the bounds of the matrix.
 - The graph_edge_weight function
 - This returns the weight of the graph at the vertices, if it is out of bounds or doesn't exist return zero.
 - The graph_visited function.

- Return true if the vertex v has been visited false otherwise.
- The graph_mark_visited function
 - If vertex v is within bounds, mark v as visited.
- The graph_mark_unvisited function
 - Unvisit the vertex v.
- o graph_print
 - This is a debug function for making sure our implementation of the graph ADT is sound.