TUTORIAL-2

170070050

V(V.R) = V2 R = MoT

- V. If $\bar{A} = 10\rho^{1.5} \widehat{a_z}$ Wb/m in free space. Find \bar{J}
- 2. We locate a slab of Teflon in the region $0 \le x \le a$ and assume free space where x < 0 and x > a, outside the Teflon there is a uniform field $\overline{E_{out}} = E_0 \widehat{a_x} V/m$. We seek values for \overline{D} , \overline{E} everywhere.
- 3. Let the region z < 0 be composed of a uniform dielectric material for which $\varepsilon_r = 3.2$. while the region z > 0 is characterized by $\varepsilon_r = 2$. Let $\overline{D_1} = -30\widehat{a_x} + 50\widehat{a_y} + 70\widehat{a_z}nC/m^2$ and find a) D_{N1} b) $\overline{D_{t1}}$ c) D_{t1} d) D_1 e) θ_1 f) $\overline{D_{N2}}$ g) $\overline{D_{t2}}$ h) $\overline{D_2}$ i) θ_2
- A. Let the permittivity be $5 \mu H/m$ in region A where x < 0, and $20 \mu H/m$ in region B where x > 0. If there is a surface current density $\overline{K} = 150 \widehat{a_Y} 200 \widehat{a_Z} A/m$ at x=0 and if $\overline{H_A} = 300 \widehat{a_X} 400 \widehat{a_Y} + 500 \widehat{a_Z} A/m$. Find a) $|\overline{H_{TA}}|$ b) $|\overline{H_{NA}}|$ c) $|\overline{H_{TB}}|$ d) $|\overline{H_{NB}}|$
- 5. What values of A and β are required if the two fields $\bar{E} = 120\pi \cos(10^6\pi t \beta x)\hat{y}V/m$, $\bar{H} = A\pi \cos(10^6\pi t \beta x)\hat{z}A/m$
- 6. A time dependent electric field intensity is given as $\bar{E} = 10\pi \cos(10^6 t 50z) \,\hat{x} \, V/m$. The field exists in a material with properties $\varepsilon_r = 4$ and $\mu_r = 1$. Given that J=0 and $\rho = 0$. Calculate the magnetic field intensity and magnetic flux density in the material.
- Let $\mu = \frac{3*10^{-5}H}{m}$, $\varepsilon = \frac{1.2*10^{-10}F}{m}$, $\sigma = 0$ everywhere. If $\overline{H} = 2\cos(10^{10}t \beta x)\hat{z}$ A/m. Use Maxwell's equations to obtain expressions for B, D, E, β
- 8. For a current distribution in free space $\bar{A} = (2x^2y + yz)\widehat{a_x} + (xy^2 xz^3)\widehat{a_Y} (6xyz 2x^2y^2)\widehat{a_Z}Wb/m$. A) calculate \bar{B} B) find the magnetic flux through a loop described by x=1, 0 < y < 2, 0 < z < 2. C) show that $\nabla \cdot \bar{A} = 0$ and $\nabla \cdot \bar{B} = 0$
- Find magnetic field about a long straight wire carrying current I using the vector potential.
- 16. If $V = 10 \sin \omega t$, $\mu_r = 1$, $\epsilon_r = 10$. Find $\nabla \cdot \bar{A}$ a) f=50Hz b) f=100THz

[B. ds = 6

Scanned by CamScanner

Scanned by CamScanner

