1es típus (tranzakciós tulajdonságok)

Párosítsa össz	ze az egyes tranzakció tulajdonságokat és leírásukat!	
Durability	A tranzació sikeres lefutása után a változás tartósan megmarad	\$ ~
Isolation	A párhuzamosan futó tranzakciók nem zavarhatják egymást	\$ ~
Consistency	A tranzació végrehajtása után az állapot konzisztens marad	\$ ~
Atomicity	A tranzakció nem valósulhat meg részlegesen	\$ ~

Atomicity A tranzakció nem valósulhat meg részlegesen

Consistency A tranz. végrehajtása után az állapot konzisztens marad (pl. kényszerek teljesülnek) Isolation A párhuzamosan futó tranzakciók nem zavarhatják egymást Durability Tranz. sikeres lefutása után a változás tartósan megmarad

2es típus (tranzakciós módok)

Válassza ki a hiányzó szavakat!			
Az explicit tranzakciókat mi magunk definiáljuk a(z)	@@TRANCOUNT	≑ par	ancs segítségével. Az
explicit tranzakciók egymásba is ágyazhatók. Ilyenko	r a)z) COMMIT		változó mondja
meg, hogy hányadik szinten vagyunk. Minden BEGIN	TRANSACTION 1-gyel	növeli, mir	nden
@TRANCOUNT \$ 1-gyel csökkenti a vált	ozó értékét		

Explicit tranz-kat mi magunk definiáljuk a **BEGIN TRANSACTION** parancesal

Az explicit tranzakciók egymásba is ágyazhatók. Ilyenkor a @@TRANCOUNT változó mondja meg, hogy hányadik szinten vagyunk

((Kezdetben, illetve ROLLBACK után a @@TRANCOUNT értéke 0))

Minden BEGIN TRANSACTION 1-gyel <u>növeli</u>, minden COMMIT 1-gyel <u>csökkenti</u> a <u>@@TRANCOUNT</u> értékét

3as típus (Tárolt eljárások)

Húzza be a megfelelő válaszokat a szövegbe!					
Tárolt eljárások használata esetén a kliens-szerver üzenetek száma. A tárolt					
eljárásokat egyszerre		használhatja. A tárolt	eljárások az adatbázisban		
	találhatók.				
csökken	több alkalmazás is	központi helyen	növekszik		
csak egy alkalmazás	több helyen elosztva	1			

CSÖKKEN a kliens-szerver üzenetek száma

egyszerre TÖBB ALKALMAZÁS IS használhatja

az adatbázisban KÖZPONTI HELYEN

4es típus

5ös típus

60s típus

Melyik relációs algebrai művelethez tartozik a következő leírás? A művelet során a reláció oszlopaiból csak bizonyosakat tartunk meg adott sorrendben.
Válasszon ki egyet:
⊚ a. Projekció ❤️
b. Természetes összekapcsolás
o c. Metszet
o d. Szelekció

A projekció művelete során a reláció oszlopaiból csak bizonyosakat tartunk meg adott sorrendben.

A szelekció művelete során a reláció soraiból csak az adott feltételnek megfelelőket tartjuk meg.

Az egyesítés (unió) művelet során két azonos szerkezetű reláció sorainak unióját kapjuk meg.

A metszet művelet során két azonos szerkezetű reláció közös sorait kapjuk meg.

Két azonos szerkezetű reláció <mark>különbségének</mark> eredménye azokat a sorokat tartalmazza, amelyek az első relációban benne vannak, de a másodikban nincsenek.

A Descartes-szorzat művelet két relációs sorait teszi egymás mellé minden lehetséges kombinációban.

A természetes összekapcsolás művelete két relációt kapcsol össze egy-egy attribútumérték összehasonlításával.

12es (tranzakció fogalma)

Válassza ki a	hiányzó sza	vakat!						
A tranzakció	DML	\$	utasítások oly	an sorozat	a, amelyet	egyetlen log	ikai e	egységként
kezelhetünk.	A tranza <mark>k</mark> ci	ó végén v	vagy minden vá	ltozást érvé	nyes <mark>ítün</mark> k	COMMIT	\$	✓, vagy
minden egye	s lépést viss	szavonun	k ROLLBACK	÷ √ .				

13as (trigger, view)

Húzza be a válaszokat a megfelelő helyekre!	
A(z) triggerek 💙 olyan speciális eljárások, amelyek DML utasítás előtt, után vagy hel	yett
futnak le. A(z) nézet 💙 egy elmentett, névvel ellátott lekérdezés. A lekérdezések	
sebességét gyorsítani lehet, ha az adatokat 🏿 sorba rendezzük 🗸 . A(z) 💮 index	a
táblához vagy nézethez rendelt olyan speciális adatstruktúra, amely felgyorsítja a lekérdezésel sebességét.	(

14es (B-fák tulajdonságai)

B-fák esetén a gyökértől a levelekig vezető utak hossza egyforma.
Válasszon ki egyet: ⊚ Igaz ❤️
O Hamis

A gyökértől a levelekig vezető utak hossza egyforma

Az indexek a B-fa csomópontjaiban helyezkednek el

Az adatok helyét jelző mutató csak a levelekben található

A struktúra lehetővé teszi a soros és a random elérést is

15ös (indexek) *25ös clustered

HASH – adatok csoportokba vannak rendezve, 1 fgv adja meg hogy melyik csop-ban van az adat BITMAP – olyan oszlopokra alkalmazzuk ahol kevés az egyedi érték

EGYSZINTES – 2 mezőből álló indextábla amely az indexelt mező alapján sorba van rendezve TÖBBSZINTES – az indexekhez is indexet készítünk

CLUSTERED - Az adatokat az index kulcsnak megfelelő sorrendbe rendezi és tárolja.

NON-CLUSTERED - A non-clustered index kulcs-mutató érték párokat tárol.

COLUMNSTORE - A columnstore index jellemzője az oszlop-alapú tárolás és lekérdezés végrehajtás SŰRŰ – Az indexmutató egy rekordra mutat.

RITKA - Az indexmutató egy blokkra mutat. A blokkon belül a keresés szekvenciális

16os (elkülönítési -izolációs- szintek)

Melyik a tranzakció izolációs szintre jellemző, hogy a nem véglegesített adatok is olvashatók?
Válasszon ki egyet:
a. Repetable read
b. Read committed
○ c. Seriazable
ø. Read uncommitted ✓

Read uncommitted: minden adat olvasható (a nem véglegesítettek is)

Read committed: csak a véglegesített (COMMITTED) adatok olvashatók (alapértelmezett szint)

Repetable read: az olvasott adatot nem módosíthatja más tranzakció

Seriazable: az olvasott adathalmazra nem engedélyezett az új adat beszúrása sem

17es (felh.-i fgv-ek VS tárolt eljárások) *24es folytatás tárolt eljárások

Függvények	Tárolt eljárások
Csak input paraméterek	Input és output paraméterek
Tranzakciók nem használhatók	Tranzakciók is használhatók
A SELECT utasításban használhatók	A SELECT utasításban nem használhatók
Kivételkezelés nem használható	Kivételkezelés használható
Nem hívhat meg tárolt eljárást	Függvényhívás lehetséges
Mindig egy értéket ad vissza	Visszaadhat nulla, egy vagy több értéket

18as (jogosultságok)

SECURITY PRINCIPAL -- identitások, akik számára jogosultságok megadhatók

LOGIN -- felh. fiókok amely hozzáfér az SQL-het

CREDENTAL -- rekordok amelyek az sql-szerveren kívüli erőforrásohoz való kapcsolódáshoz az infót tartalmazzák

SECURABLE -- objektumok, amelyhez jogosultság rendelhető

19es (adatbázis -OLTP- vs adattárház)

19es (adattavak vs adattárházak)

Data lake: Nagyvállalati szintű adatmenedzsment-platform, amelyen a különböző forrásokból származó adatok natív formátumukban érhetők el elemzésre.

Data lake	Data warehouse
Az adatok tárolásának célja előre nem definiált	Előre definiált tárolási cél
Az adatok nyers formában tárolódnak	Az adatok lekérdezésre alkalmas formában tárolódnak
Adattudósok, adatelemzők használják	Üzleti felhasználók használják
Feltörekvő technológia	Kidolgozott technológia
NoSQL lekérdezések	SQL lekérdezések
Gyors válaszidő	Lassú válaszidő
Alacsony költségű tárolás	Magas költségű tárolás

20as(adattárház modellek)

Húzza be a hiányzó szavakat a megfelelő helyekre!			
Inmon adattárház modelljében a fókusz a(z) [adattárházon] 🗴 van. Az adattárház [elemi]			
🗶 adatokat tartalmaz normalizált formában Az adatpiacok összegzett adatokat tárolnak			
[téma specifikus], ★, dimenzionális modellben			
adattárházon	összegzett		
téma független			
A fókusz az adattárházon (DW) van			

Az adattárház elemi adatokat tartalmaz normalizált formában Az adatpiacok összegzett adatokat tárolnak téma specifikus, dimenzionális modellben

Az architektúra fontosabb rétegei a staging area, a DW, és az adatpiacok

A felhasználó lekérdezhetnek akár az adatpiacokból, akár az adattárházból is

IMMON ADATTÁRZÁS MODELL

- · A fókusz az adatpiacokon van
- Az adatpiacok tartalmaznak elemi és összegzett adatokat is
- · Az adatpiacok csillag szerkezetűek
- Az architektúra legfontosabb részei a stage terület és az adatpiacok

KIMBALL MODELL

Kimball modellje a megfelelő, ha

- · a felhasználók IT területről kerülnek ki
- inkább taktikai döntések szükségesek
- a forrásrendszerek viszonylag stabilak
- minél előbbi eredményt szeretnénk elérni, kis kezdeti befektetéssel és csapattal
- az adatok különálló üzleti területekről iönnek
- · a változások köre limitált

Inmon modellje a megfelelő, ha

- a felhasználók nem IT szakemberek
- stratégiai döntések vannak túlsúlyban
- a forrásrendszerek gyakran változnak
- több idő, pénz és nagyobb létszámú csapat áll rendelkezésre
- vállalati szintű adatintegráció szükséges
- · a változások köre bővülhet.

21es (adattárház projektek → azok jellemzői)

Adattárház projekteknél a SCRUM-módszertan általában jól használható. Válasszon ki egyet: © Igaz O Hamis	Az alábbiak közül melyek igazak az adattárház projektekre? Válasszon ki egyet vagy többet: J. A szokásos tesztelési módszerek nem mindig sikeresek b. A használati esetek száma többnyíre magas c. A Scrum módszertan jól használható d. A megfelelő adatminöség biztosítása általában nem okoz gondot
--	---

Adatok integrálása több forrásrendszerből

Sok (akár több száz) használati eset

A komplex működés miatt egyetlen felhasználó sem látja át teljesen a rendszert

Nehéz pontosan specifikálni a feladatot

A követelmények pontatlansága miatt sok hiba csak teszteléskor derül ki A rendszertervhez képesti verifikálás nem elég

A felhasználó általi validáláson van a hangsúly

A szokásos tesztelési módszertanok nem mindig sikeresek

Az adattárház funkciók fejlesztési ciklusai hosszúak, számuk és időtartamuk nehezen tervezhető Az egyes funkciókat nehéz szétválasztani, azok egymással rendszerint korrelálnak

A manapság divatos Scrum módszertan általában nem jól használható

Az IT és az üzlet másképpen gondolkodik Szükség van motivációra a kulcsfelhasználók részéről is A felsővezetés támogatása elengedhetetlen

A siker a Business Analyst és a megrendelő (kulcsfelhasználók) közötti kommunikáción múlik

Inkonzisztens adatok a forrásrendszerekben Duplikációk Hiányzó adatok Logikai ellentmondások

Az egyik legnehezebb feladat az adatminőség biztosítása

24es(tárolt eljárások azok előnyei)

25ös(clustered index)

Az adatokat az index kulcsnak megfelelő sorrendbe rendezi és tárolja.

- A clustered index B-fa struktúrát használ
- Egy tábla esetén csak egy clustered index hozható létre
- Alapértelmezés szerint az elsődleges kulcs definiálásakor automatikusan létrejön

27es(nézetek -view-)

