B. 4021.

Kriván Bálint

Budapest, Berzsenyi D. Gimn., 11. o. t.

redhat24@freemail.hu

Feladat:

Igazoljuk, hogy ha n pozitív egész és az a_1, a_2, \ldots, a_n számok mindegyike legalább 1, akkor

$$(a_1+1)(a_2+1)\cdot\ldots\cdot(a_n+1)\geq 2^{n-1}(a_1+a_2+\ldots+a_n-n+2).$$

Megoldás:

Legyen $x_i = a_i - 1$, ahol $i \in \mathbb{Z}^+$ és $1 \leq i \leq n$. Ha jól megnézzük a jobb oldalt, akkor:

$$(a_1 + a_2 + \ldots + a_n - n + 2) = ((x_1 + 1) + (x_2 + 1) + \ldots + (x_n + 1) - n + 2)$$

A jobb oldalt n darab 1-es, van, de a végén levonunk n-et, tehát tulajdonképpen:

$$(a_1 + a_2 + \ldots + a_n - n + 2) = ((x_1 + 1) + (x_2 + 1) + \ldots + (x_n + 1) - n + 2) =$$
$$= (x_1 + x_2 + \ldots + x_n + 2)$$

Így végül az alábbi egyenlőtlenséget kaptunk, ami teljesen ekvivalens a feladatban megfogalmazott egyenlőtlenséggel:

$$(x_1+2)(x_2+2)\cdot\ldots\cdot(x_n+2)\geq 2^{n-1}(x_1+x_2+\ldots+x_n+2)$$

Bontsuk ki a jobb oldalt:

$$2^{n-1}(x_1 + x_2 + \dots + x_n + 2) = 2^n + 2^{n-1} \cdot x_1 + 2^{n-1} \cdot x_2 + \dots + 2^{n-1} \cdot x_n$$

Tehát kapunk egy 2^n -t, illetve az x_i -ket, 2^{n-1} -es együtthatóval. Gondolatban fejtsük ki a bal oldalt is:

Nyílvánvaló, hogy, ha a zárójelekből mindenhonnan a 2-t választjuk, akkor lesz egy 2^n -es tag. Ha minden zárójelből kiválasztjuk az x_i -t, a többiből pedig a 2-t, akkor lesznek $2^{n-1} \cdot x_i$ -s tagok. Emelett pedig lesz $x_1 x_2 \cdot \ldots \cdot x_n$ -es tag, illetve még jó pár tag, attól függően, hogy hogyan választjuk meg az egyes tagokat a zárójelekből. Tehát ha jól megnézzük, akkor kibontás után, az egyenlőtlenség ilyen alakú lesz:

$$\underbrace{x_1 x_2 \cdot \ldots \cdot x_n + \ldots}_{\geqslant 0} + 2^{n-1} (x_1 + x_2 + \ldots + x_n) + 2^n \ge 2^n + 2^{n-1} (x_1 + x_2 + \ldots + x_n)$$

Mindkét oldalból levonjuk a $2^{n-1}(x_1 + x_2 + \ldots + x_n) + 2^n$ -t, akkor a jobb oldalt 0-át kapunk a bal oldalt, pedig olyan szorzatok összegét, amik biztosan nagyobb egyenlő mint 0, hiszen a szorzatok tényezői között 2-k, illetve x_i -k szerepelnek, de x_i -ről tudjuk, hogy $x_i \ge 0$, mivel $a_i \ge 1$ és $x_i = a_i - 1$. Tehát igaz a fenti egyenlőtlenség, és mivel ekvivalens átalakításokat végeztünk, ezért a kezdő egyenlőtlenségünk is igaz, tehát ha n pozitív egész és az a_1, a_2, \ldots, a_n számok mindegyike legalább 1, akkor:

$$(a_1+1)(a_2+1)\cdot\ldots\cdot(a_n+1)\geq 2^{n-1}(a_1+a_2+\ldots+a_n-n+2).$$