Ejercicio. 5.1.

Sean α y β raíces de un polinomio irreducible $p(X) \in K[X]$, siendo K un cuerpo perfoecto.

- (1) Prueba que $[K(\alpha):K] = [K(\beta):K]$.
- (2) Prueba que $K(\alpha)/K \cong K(\beta)/K$.
- (3) Sea E un cuerpo de descomposición de p(X) sobre K tal que α,β ∈ E. ¿Existe siempre un automorfismo σ : E/K → E/K tal que f(α) = β?
- (4) ¿Existe siempre $\sigma: E/K \longrightarrow E/K$ tal que $\sigma(\alpha) = \beta$ y $\sigma(\beta) = \alpha$, dejando las demás raíces fijas.
- (5) ¿Existe $\sigma : E/K \longrightarrow E/K$, $\sigma \neq id$, tal que $\sigma(\alpha) = \alpha$?

Ejercicio. 5.2.

Sean α y β raíces de un polinomio irreducible $p(X) \in K[X]$ tal que $\alpha^n \in K$. Prueba que β verifica esta misma relación.

Ejercicio. 5.3.

Sea K un cuerpo de característica p, y $a \in K$. Prueba que si el polinomio $X^p - a$ no tiene raíces en K, entonces $X^p - a$ es irreducible sobre K.

Ejercicio. 5.4.

Se consideran $a, b, d \in \mathbb{Z}$ tales que d y $a^2 - db^2$ son libres de cuadrados. Determina el grupo de Galois de la extensión $\mathbb{Q}(\sqrt{a+b\sqrt{d}})/\mathbb{Q}$.

Ejercicio. 6.1.

Sea K un cuerpo y $p(X) \in K[X]$ un polinomio de grado n que se expresa $p(X) = p_1(X) \cdots p_t(X)$, siendo cada $p_i(X) \in K[X]$ un polinomio irreducible de grado d_i , y $p_i(X) \nmid p_j(X)$, si $i \neq j$. Da una cota, que se alcance, del grado de la extensión K(p(X))/K.

Ejercicio. 6.2.

Sea K un cuerpo $y p(X) \in K[X]$ un polinomio de grado n. Prueba que si el grado del K(p(X)/K es igual a n!, entonces p(X) es irreducible.