Infrastruktura

Ciljevi napada na DNS

- Denial of Service slanje negativnih odgovora, preusmjeravanje na poslužitelj koji ne sadrži traženu uslugu
- Masquerading preusmjeravanje komunikacije i predstavljanje kao pravi poslužitelj
- Domain Hijacking kompromitiranjem nesigurnih mehanizama osvježavanja preuzima se domena

Napadi na DNS – točke ranjivosti

- 1. Pokvareni podaci
- 2. Neautorizirana osvježenja
- 3. Promijenjeni podaci o zoni (glumljenje mastera)
- 4. Zagađenje cachea
- 5. Glumljenje cachea

• Tipovi napada na DNS

- Cache poisoning
- Kompromitiranje poslužitelja
- Spoofing

• Early attack (cache poisoning)

- Korisnik želi učitati stranicu napadača, šalje upit do DNS servera, napadačev name server vrati odgovor, ali i lažnu IP adresu za neku drugu stranicu (paypal.com)
- Ciljani name server spremi lažnu IP adresu u cache i ljudi koji mu pristupaju dobiju krivu adresu za paypal.com

• Kaminsky DNS attack (lažiranje DNS zapisa)

Napadač šalje upit za nepostojeći aaa.paypal.com i istovremeno šalje odgovore s lažnim IPom, ponavlja to dok ciljani server ne prihvati odgovor i spremi ga u cache, ljudi koji pristupaju
tom serveru dobiju krivu IP adresu za paypal.com

Tuneliranje kroz DNS

• DNS se koristi kao skriveni komunikacijski kanal kako bi se zaobišao vatrozid

Napad NXDOMAIN

 Napadač preplavljuje poslužitelj upitima za nepostojeće domene, rekurzivni poslužitelj pokušava dohvatiti podatke te mu se cache popunjava rezultatima NXDOMAIN, usporava se vrijeme odziva

Zaštita

- TSIG (transaction signature) provjerava identitet pomoću ključa
- DNSSEC DNS Security Extensions
 - Provjerava identitet
 - Osigurava kriptografski dokaz ispravnosti primljenih podataka
 - Temelji se na korištenju asimetrične kriptografije, javnih i privatnih ključeva
 - DNS podaci se potpisuju privatnim ključem, javni ključ se objavljuje i koristi se za provjeru potpisa
 - Osigurava autentičnost i integritet
 - Problemi
 - Ne osigurava povjerljivost
 - Ne štiti od DDoS napada
 - Vrijeme života digitalnog potpisa

• Napadi na usmjeravanje

- Utjecaj
 - Podoptimalno usmjeravanje

- Zagušenje
- Particioniranje mreže odvajanje mreža, nemogućnost komuniciranja s računalima u drugim particijama
- Preplavljivanje poslužitelja oružje za DoS napade
- Kreiranje petlji
- Pristup podacima presretanje prometa
- Tipovi napada
 - Napadi na link
 - Presretanje
 - Ometanje, modificiranje poruka
 - Ponavljanje starih poruka
 - Napadi na usmjeritelj
 - Usmjeritelj šalje lažne poruke ili ih ne šalje
 - Napadi na BGP
 - Modifikacija, umetanje, brisanje ponavljanje, krivotvorenje

VPN

 Intranet – korisnici unutar kompanije, extranet – korisnici izvan kompanije (dobavljači, proizvođači, partneri)

Zahtjevi za udaljen pristup intranetu

- Privatnost integritet podataka
- Umrežavanje mogućnost rada iza vatrozida
- Upravljivost korištenje različitih načina autentifikacije i direktorija za pohranjivanje informacija o korisnicima
- Kontrola pristupa mogućnost administriranja nivoa pristupa, korisnik ne smije imati pristup svim resursima mreže

• Sigurni udaljeni pristup intranetu

VPN

- Radi na mrežnom sloju, nezavisan o aplikaciji
- Enkapsulira originalne IP pakete unutar svog vlastitog paketa
- Komunikacijske veze ostvarene preko jeftinije dijeljene infrastrukture (Interneta)
- Ista sigurnosna politika i performanse kao i privatne mreže realizirane preko infrastrukture WAN
- Secure VPN autentifikacija korisnika, tajnost i integritet podataka

Clientless VPN

- Temelji se na korištenju HTTPS, ali može uključivati aplikacije koje koriste SSL/TLS
- Clientless računalo ima Web preglednik koji podržava HTTP i HTTPS

Prijetnje u VPN-ovima

- Neovlašteni pristup prometu
- Izmjena sadržaja prometa
- Napadi uskraćivanjem usluge (DoS)
- Izmjene konfiguracije VPN-a
- Napadi na protokole VPN-a

Obrana u VPN-ovima (na razini korisnika i na razini davatelja usluge)

- Šifriranje paketa i kontrolnog prometa
- Filtri

- Vatrozid
- Kontrola pristupa
- Izolacija

Vrste VPN-a

- Site-to-site između dva mrežna entiteta (usmjeritelja), zaštićene mreže iza oba entiteta
- Remote Access između uređaja i usmjeritelja, uređaj nema zaštićenu mrežu

• Tuneliranje u VPN-ovima

- Privatni IP paketi omataju se u javne IP pakete
- Tehnologije tuneliranja L2TP, PPTP, IPSec

IPSec

- Rješenje na mrežnom sloju, osigurava sigurnosne usluge sloju IP i višim slojevima
- Omogućava šifriranje i autentifikaciju
- Sigurnosni protokoli
 - Authentication Header (AH)
 - Osigurava autentičnost izvora podataka i integritet niza IP datagrama
 - Encapsulating Security Payload (ESP)
 - Osigurava povjerljivost
- Načini rada
 - Transportni način
 - Redoslijed zaglavlja IP-IPSec-TCP-podaci
 - Krajnje točke računala
 - Tunelirani način
 - Redoslijed zaglavlja NovoIP-IPSec-IzvornoIP-TCP-podaci
 - Krajnje točke računalo-usmjeritelj ili usmjeritelj-usmjeritelj
- Sigurnosne usluge IPSec arhitekture
 - Kontrola pristupa
 - Cjelovitost na razini datagrama
 - Vjerodostojnost izvora datagrama
 - Zaštita protiv napada ponovnim slanjem snimljenog prometa
 - Povjerljivost
 - Ograničena povjerljivost prometnog toka ne vide se izvorišni i odredišni portovi

Sigurnosna asocijacija (AS)

- Jednosmjerna veza koja prometu koji se odvija preko nje pruža odabranu sigurnosnu uslugu
- Svaka strana zasebno stvara SA, posebno za AH i ESP (ne oba u istoj SA)
- Osigurava vjerodostojnost end-to-end ili end-to intermediate
- Upravljanje ključevima ručno ili administrirano

IPSec SA

- Vrste
 - Uni-directional (IPSec SA)
 - Bi-directional (Internet Key Exchange (IKE) SA)

• Prednosti IPSec

- Osigurava se sav promet viših slojeva
- Korisnici i aplikacije ne moraju brinuti o sigurnosti
- Stvaraju se tuneli kroz nesigurne mreže
- Osim samog sadržaja, skriva se i vrsta prometa
- IPSec je standardni dio IPv6 specifikacije

Nedostaci IPSec

- Ne autentificira se korisnik, već računalo
- Nema sigurnosti ako sistem nije siguran ili već kompromitiran

SSL-TLS

SSL/TLS – Secure Sockets Layer/Transport Layer Security (SSL v3.0 i TLS 1.2)

- Sigurnosni protokol
- Cilj uspostavljanje sigurnog i šifriranog komunikacijskog kanala
- Alternativa standardnom TCP/IP socket sučelju s ugrađenom podrškom za sigurnost
- Osigurava autentifikaciju poslužitelja (i klijenta), privatnost podataka i cjelovitost podataka (MAC – Message Authentication Code)
- 2 sloia
 - Protokol "record" definira format podataka, šifrira aplikacijske podatke, sadrži MAC
 - Protokol "handshake" početna autentifikacija i prijenos ključeva, uspostavljanje šifrirane SSL konekcije

• SSL/TLS sjednica

- korisnik na klijentskoj strani (u pregledniku) zahtijeva dokument s URL koji sadrži https umjesto http
- preglednik prepoznaje SSL/TLS zahtjev i uspostavlja konekciju s poslužiteljem na TCP portu
 443
- klijent inicira "handshake" korištenjem protokola "record"

• Ranjivosti i napadi na SSL/TLS

- Heartbleed
 - Neispravno rukovanje porukom "keep-alive"
 - Slanjem par HTTP zahtjeva napadač može jednostavno dohvatiti osjetljive podatke iz memorije poslužitelja
- BEAST
 - Temelji se na predvidljivosti inicijalizacijskog vektora u CBC načinu rada TLS 1.0
 - Uspješno izvođenje otkriva žrtvine HTTP kolačiće i otima sesiju
- POODLE TLS
 - Iskorištava lošu implementaciju CBC šifriranja u protokolu TLS te napadač može otkriti dijelove podataka (na primjer kolačiće)

Sigurnost Web aplikacija

- Dvije strane
 - preglednik (na klijentu)
 - napadi koji iskorištavaju ranjivosti preglednika
 - posljedice
 - instalacija malwarea (keyloggeri, botneti)
 - krađa dokumenata u korporativnim mrežama
 - gubitak privatnih podataka
 - aplikacija (na poslužitelju)
 - pokrenuta na sjedištu: banke, e-trgovina, blogovi
 - jezici: PHP, ASP, JSP, Ruby, Perl...
 - potencijalne rupe: XSS, XSRF, SQL injection
 - posljedice

- ukradeni brojevi kreditnih kartica
- defacement web sjedišta
- krađa podataka

Ranjivosti Web aplikacija

Umetanje (injection)

- Aplikacije uzimaju ulazne podatke i interpretiraju ih kao naredbe ili upite
- Često je ubacivanje SQL naredbi
- Moguća kompromitacija ili promjena baze podataka
- Izbjegavanje izbjeći interpretiranje naredaba, provjeriti što korisnik upiše prije nego se izvede, minimizirati ovlasti nad bazom podataka

• Autentifikacija i upravljanje sjednicama

- HTTP je stateless, stanje sjednice se prati putem varijable SESSION ID koja se vidi na mreži, u pregledniku, logovima
- Putem SESSION ID-a se rade kritične stvari upravljanje lozinkama, login, pošta...
- Moguća kompromitacija korisničkog računa ili otmica sjednice
- Izbjegavanje SSL treba štititi podatke za prijavu i SessionID tijekom cijele sjednice, novi SessionID kod svakog zahtjeva, tokeni

• Cross-Site Scripting (XSS)

- Podaci od napadača šalju se korisniku u preglednik
- Podaci mogu biti pohranjeni u bazi, rezultat unosa u obrazac ili poslani izravno JavaScript klijentu
- Posljedice –krađa korisničkih sjednica, osjetljivih podataka, pisanje po stranici, preusmjeravanje korisnika na phishing ili malware sjedište
- Izbjegavanje unos treba "dezinficirati", izbjeći posebne znakove, napraviti whitelisting onoga što korisnik može unijeti
- Same origin policy
 - Skripte koje se izvode na jednoj stranici smiju međusobno dijeliti pristup podacima, ali ne smiju sa skriptama koje su na drugim stranicama
 - Najčešći primjer kolačići (cookies)
 - Preglednik ne šalje pohranjene kolačiće onoj stranici koja na njih nema pravo jer oni sadrže identifikatore sjednica

• Nesigurne reference na objekte

- Npr. Get parametri u URL-u kojima se određuje broj korisnika ?acct=6054
- Posljedice korisnici imaju pristup podacima za koje nisu autorizirani
- Izbjegavanje eliminacija referenci, provjera prava pristupa

• Loše sigurnosne postavke

- Web aplikacije očekuju da je sustav na kojem se nalaze siguran
- Posljedice instalacija backdoor aplikacija, neautorizirani pristup
- Izbjegavanje provjeriti platformu, patchirati komponente, verificirati konfiguraciju

• Nesigurna pohrana šifriranih podataka

- Problem ako se ne identificiraju svi osjetljivi podaci i mjesta na kojima se nalaze
- Posljedice napadači mijenjaju osjetljive podatke, pronalaze tajne i koriste ih u napadima, sramoćenje tvrtke, nezadovoljstvo korisnika, sudske tužbe
- Izbjegavanje verificirati osjetljive podatke i identificirati mjesta na kojima se oni pohranjuju, zaštita podataka šifriranjem, stvaranje, distribucija i zaštita ključeva

Nezaštićeni pristup URL-ovima

- Napadač krivotvori pristup stranicama kojima nema pristup (/user/getAccounts promijeni u /admin/getAccounts)
- Posljedice napadač pristupa podacima i korisničkim računima drugih korisnika, pokreće funkcionalnosti na koje nema pravo
- Izbjegavanje za svaki URL treba provjeriti pravo pristupa, verificirati arhitekturu i implementaciju

• Lažiranje zahtjeva na drugom sjedištu (Cross Site Request Forgery (CSRF))

- Preglednik žrtve se namami da pošalje naredbu ranjivoj web-aplikaciji
- Ranjivost je uzrokovana činjenicom da preglednici automatski uključuju autentifikacijske podatke (sjednica, IP adresa) u svaki zahtjev (cookie)
- Iskorištava se činjenice da sjedište vjeruje pregledniku korisnika
- Posljedice iniciranje transakcija, pristup osjetljivim podacima, promjena podataka o korisničkom računu
- Izbjegavanje dodati neku tajnu (token), ne prihvaćati sve osjetljive podatke automatski, koristiti POST umjesto GET-a, sanitizirati unos korisnika pri spremanju u bazu

• Ranjive komponente

- Veliki sustavi koriste komponentni razvoj, problem ako su komponente ranjive
- Izbjegavanje provjeriti korištene komponente, pratiti sigurnosne zakrpe i otkrivene ranjivosti

• Preusmjeravanje i prosljeđivanje

- Redirekcije su česte, ako valjanost nije provjerena, napadač može poslati žrtvu na sjedište po izboru
- Posljedice preusmjeravanje na phishing ili malware site, napadačev zahtjev zaobilazi provjeru autentičnosti i izravno pristupa neautoriziranim podacima
- Izbjegavanje izbjegavanje prosljeđivanja i preusmjeravanja, ciljani URL ne smije se temeljiti na parametrima koje unese korisnik, a ako se mora, onda provjeriti parametre, i provjeriti prava pristupa

• Nedovoljna zaštita na transportnom sloju

- Nesiguran prijenos osjetljivih podataka, nisu identificirana mjesta na koja se osjetljivi podaci šalju
- Posljedice napadač pristupa i mijenja povjerljive i privatne podatke, neugodnost za napadnutu tvrtku, nezadovoljstvo korisnika, gubitak povjerenja
- Izbjegavanje zaštita adekvatnim mehanizmima (TLS na konekcijama), šifriranje poruka, digitalni potpis

<u>IDS</u>

Uljez

- osoba koja pokušava upasti u ili iskoristiti sustav ili njegove resurse
- 2 kategorije vanjski (iz vanjske mreže) i unutarnji (iz lokalne mreže)

Vrste upada

- Fizički ako ima fizički pristup sustavu
- Sistemski želi doći do administratorskih prava
- Udaljeni upad s udaljenog računala, najopasniji, teško otkriti identitet uljeza

Razlozi upada

 Greške u softveru – buffer overflow, neočekivane kombinacije, pogrešno postupanje s unesenim podacima, problem višedretvenosti

- Sistemska konfiguracija početna konfiguracija lako hakirana, lijeni administratori s praznim lozinkama, stvaranje rupa, iskorištavanje povjerenja prema nekim sustavima
- Probijanje lozinke slabe lozinke, napad rječnikom, brute force
- Njuškanje nezaštićenog prometa korištenje zajedničkog medija, njuškanje poslužitelja, udaljeno njuškanje
- Pogreške u dizajnu sustava rupe u TCP/IP protokolu (smurf attacke, IP spoofing, SYN floods, mijenjanje IP datagrama), rupe u OS-u

Tipičan scenarij upada

- 1. korak: promatranje izvana prikupljanje informacija o mreži
- 2. korak: promatranje iznutra pinganje računala, UDP/TCP scan
- 3. korak: iskorištavanje uljez koristi rupe u sigurnosti
- 4. korak: upad korisnik je uspješno upao u mrežu, skrivanje dokaza o upadu
- 5. korak: unovčavanje trgovanje podacim, DoS napad

• IDS (Intrusion Detection System)

- Sustavi koji provode postupak otkrivanja uljeza
- Komplementaran tehnikama prevencije (firewallu)
- Nadzire aktivnosti korisnika i sustava, identificira neuobičajene aktivnosti i instalira zamke s ciljem otkrivanja napadača

• Dva temeljna pristupa za otkrivanje uljeza

- Tehnike na prepoznavanju uzoraka nepoželjnog ponašanja
- Tehnike temeljene na proučavanju nepravilnosti i odstupanja od uobičajenog rada sustava i ponašanja korisnika
- Položaj u mreži nadziru mrežu ili računalo
- Primjer: otkrivanje rootkita rootkit stvara datoteke (sniffer logs), ručna potvrda instalirati
 ps i promatrati procese ili pogledati mrežne konekcije (netstat), automatsko otkrivanje IDS
 alati mogu otkriti datoteke koje pripadaju rootkitu

• Otkrivanje nepoželjnog ponašanja

- Promatrano ponašanje uspoređuje se s opisima poznatih nepoželjnih ponašanja
- Dobre strane precizni izvještaji
- Loše strane nužno osvježavanje potpisa, velika potrošnja računalnih resursa, ne može otkriti nove, neotkrivene smetnje

• Proučavanje nepravilnosti

- Ponašanje se uspoređuje s opisom predviđenog, legitimnog ponašanja
- Alat prvo nauči što je normalna aktivnost u mreži
- Dobre strane moguće je otkriti nove, nepoznate napade
- Loše strane složena konfiguracija i učenje, velik broj lažnih alarma

• Metode detekcije upada

- Pregledavanje zapisa o kritičnim sigurnosnim događajima
 - Sve aktivnosti se bilježe i pohranjuju u zapis o nadgledanju
- Obrada informacija "u letu"
 - Brzo izvlačenje i obrada informacija s ciljanog sustava ("žrtve")
 - Paketi preusmjereni prema IDS-u (sniffer)
- Profili normalnog ponašanja
 - Kreiranje profila očekivanog ponašanja promatranjem korisnika
- Potpis devijantnog ponašanja

- Uključuje dinamični profil sastavljen od prepoznatljivih uzoraka vezanih uz radnje koje bi mogle predstavljati sigurnosni problem
- Podudaranje parametara uzorka
 - Nadgledanje sistemskih operacija od strane administratora ili operatora
- IDS se smješta iza vatrozida i ispred alarmne mreže
- Vrste sustava za detekciju upada
 - Network Intrusion Detection System (NIDS)
 - Nadgleda pakete na mreži i pokušava otkriti ima li uljez namjeru upasti u sustav ili uzrokovati DoS
 - Mrežna kartica u promiskuitetnom načinu rada čita sve pakete
 - Dobre strane pasivno analizira podatke, nevidljiv napadaču
 - Loše strane propušta pakete kod velikog zagušenja, ne radi ako je promet šifriran

Host-based IDS

- Analizira napade na računalu na kojem je pokrenut
- Dobre strane pouzdan svjedok napada
- Loše strane ne znaju što se događa na nižim slojevima

• System Integrity Verifier

• Nadgleda sistemske datoteke kako bi otkrio pokušaj uljeza da ih promijeni

Deception Systems

 Sadrži pseudo servise čiji je cilj oponašati dobro poznate rupe u zaštiti kako bi uhvatili uljeza

Honeypot

- Uređaj koji predstavlja žrtvu napada
- Svaka interakcija s njima je sumnjiva
- Usporavaju ili zaustavljaju napad i zbunjuju napadača
- Lako se ustanovi što je bio cilj napada
- Loše strane prate napad usmjeren samo na njih, napadači ih mogu preuzeti

Ograničenja IDS-a

- Prospojna mreža ne postoji jednostavno mjesto gdje bi se priključio sniffer
- Resursna ograničenja mora nadgledati, analizirati i pohranjivati informacije generirane od velikog broja računala
- Problem trenutačnog nadgledanja zaprimljeni bitovi ne pružaju dovoljno informacija
- Napadi prikrivanjem stringova uljez može umetnuti podatak kako bi prikrio string
- DoS uljez može zatrpati sustav zahtjevima i onemogućiti reakciju
- Metode zaobilaženja IDS-a postoje metode kojima se može prevariti IDS

Mail

4 vrste sigurnosnih incidenata

- Neprikladno ponašanje koje nije specifično samo za elektroničku poštu (prijetnje, prevare)
- Zlonamjerne poruke s neželjenim posljedicama po računalo korisnika (virusi, crvi)
- Zloupotreba usluge (spam, hoax)
- Gubitak privatnosti i anonimnosti

Web bug

- Pošiljatelj može uključiti link na sliku koja kontaktira njegov web poslužitelj pa vidi tko je pročitao mail
- Kompromitiranje poruka u mreži

- Poruke prolaze kroz niz poslužitelja, vide ih svi na putu
- Rješenja šifriranje s kraja na kraj (S/MIME, PGP)

• Simple Mail Transfer Protocol (SMTP)

- Specificira način prijenosa poruka između dva računala
- Strogo definira sintaksu i redoslijed odvijanja transakcije polazno računalo šalje naredbe na koje ciljno računalo mora odgovoriti statusnim kodovima
- Naredbe
 - Obavezne: HELLO, MAIL, RCPT, DANA, RSET, VRFY, NOOP, QUIT
 - Neobavezne: SEND, SOML, SAML, EXPN, HELP, TURN
- Čvorovi
 - MUA (Mail User Agent)
 - MTA (Mail Transfer Agent)
- Sigurnosni problemi SMTP-a
 - Uopće nema sigurnosnih mehanizama
 - Otvoren i u tekstualnom obliku
 - Nema autentifikacije

• Rješenja za osiguranje povjerljivosti

• S/MIME

- Sigurnosno proširenje standarda MIME (Multipurpose Internet Mail Extensions)
- Nije ograničeno samo na elektroničku poštu, koristi se i za druge protokole (HTTP)
- Usluge kriptozaštite koje nudi S/MIME
 - Digitalni potpis
 - Autentifikacija
 - Cjelovitost poruke
 - Neporecivost
 - Šifriranje
 - Privatnost
 - Sigurnost podataka
- Standard MIME omogućuje korištenje svih znakova, definiranje strukture i vrste poruke, dodavanje binarnih ili višemedijskih datoteka u poruku
- Nova zaglavlja
 - MIME-Version verzija MIME standarda
 - Content-Type vrsta podataka u pojedinom MIME entitetu (text, image, audio, multipart (više MIME entiteta u tijelu jedne poruke)...)
 - Content-Transfer-Encoding definira način kodiranja podataka u MIME poruci (7-bit, 8-bit, binary, quoted-printable, base64)
 - Content-ID jednoznačno definira MIME entitet, slično kao Message-ID poruku
 - Content-Description opis sadržaja

S/MIME se temelji na Cryptographic Message Syntax

- Digitalni potpis, sažetak, autentifikacija, šifriranje bilo kojeg oblika podataka
- Arhitektura temeljena na upravljanju ključevima i certifikatima
- Funkcije (pišu se u Content-Type)

enveloped-data

- osigurava privatnost i sigurnost podataka
- stvara se jednokratni ključ za šifriranje te se šifrira za svakog primatelja njegovim javnim ključem

- sve informacije se pohrane u vrijednost RecipientInfo koja se šifrira jednokratnim ključem za šifriranje
- sve vrijednosti RecipientInfo se postave u vrijednost EnvelopedData

signed-data

- osigurava autentičnost, cielovitost i neporecivost
- digitalni potpis formira se potpisivanjem sažetka poruke i šifriranjem tog sažetka privatnim ključem pošiljatelja
- sadržaj i sažetak kodiraju se prema base64 u vrijednost SignedData
- korisnik mora podržavati S/MIME za čitanje i verificiranje potpisa

clear-signed-data

- digitalni potpis formira se potpisivanjem sažetka poruke i šifriranjem tog sažetka privatnim ključem pošiljatelja
- samo se sažetak kodira prema base64
- korisnik koji ne podržava S/MIME može čitati, ali ne može verificirati potpis

Certifikati

- Korisnici moraju nabaviti certifikate prije upotrebe
- S/MIME u praksi
 - Svi klijenti ne upravljaju dobro poštom
 - Problemi s čitanjem pošte preko weba (webmail)
 - Šifrira s kraja na kraj ako je u pošti malware, on će proći neprimijećen
 - Traži certificiranje
 - Mogući napadi
 - Prijava pod tuđim imenom
 - Korištenje jednog certifikata, potpisivanje drugog korisnika
 - Krivotvorenje zaglavlja poruke

Pretty Good Privacy – PGP

- pet osnovnih usluga
 - autentifikacija
 - povjerljivost
 - sažimanje događa se nakon digitalnog potpisa i prije šifriranja, podržan ZIP
 - kompatibilnost s infrastrukturom elektroničke pošte
 - segmentacija i ponovno slaganje poruke
- upravljanje ključevima
 - PGP podržava više parova ključeva po svakom pošiljatelju i primatelju
 - Ključevi se pohranjuju lokalno na privjesku PGP Key Ring
 - Nema središnjeg autoriteta, pojedinci jedni drugima potpisuju ključeve
 - PGP izračunava razinu povjerenja za svaki ključ na privjesku, korisnici sami interpretiraju razine povjerenja

Sigurnost u mobilnoj telefoniji

- Elementi sigurnosti
 - Fizička razina gubitak uređaja
 - Razina radio signala ometanje signala, prisluškivanje
 - Signalizacija identifikacija korisnika i uređaja
 - Web aplikacija sigurnost transporta paketa, zlonamjerne stranice
 - Aplikacije sigurnost aplikacija

Prijetnje na pokretnim uređajima

• Bluetooth

 Ranjivosti – loše implementiran BT složaj, pogrešne IRMC (Integrated Remote Management Controller) dozvole na datoteke, loše implementirane usluge temeljene na BT, otvoreni kanali

Blue jacking

- Slanje poruka na uređaj putem BT
- Bezopasno, ali oblik spama

Blue snarfing

- Neovlašteni pristup uređaju s BT putem otvorenih kanala
- Omogućuje pregledavanje i preuzimanje kontakata, slika, kalendara i poruka

Blue bugging

 Slično blue snarfingu, ali omogućuje slanje naredbi uređaju (pozivanje brojeva, slanje SMS-a)

Blue sniping

Proširenje bluetooth napada većim dometom antene

Malware

- Virusi, trojanci, crvi
- Mogu pristupiti lokaciji ili pokretnoj mreži (naplata)
- Prenose se elektroničkom poštom, linkovi na zlonamjerne stranice, instalacijom naizgled korisnih aplikacija, bluetoothom
- Posljedice krađa lozinki i povjerljivih podataka, brisanje podataka s uređaja, slanje SMS poruka na premium brojeme, uništavanje uređaja, šifriranje uređaja
- Može se spriječiti šifriranjem i testiranjem aplikacija
- Najugroženiji Android zbog velikog broja korisnika

Wardriving

- Geokodiranje pristupnih točaka bežične mreže
- Napadač se kreće područjem i zapisuje razine signala okolnih bežičnih mreža s GPS koordinatama
- Može i ne mora biti zlonamjerno
- Najčešća svrha je utvrđivanje otvorenih ili ranjivih pristupnih točaka

RFID sniffing

- RFID (Radio Frequency Identification)
 - Jedinstveno identificira korisnika
 - Antena pobuđuje oznaku koja koristi EM polje antene kako bi odaslala vlastiti identifikator
- Ako napadač ukrade ID korisnika može se lažno predstavljati
- Zaštita šifriranje podataka na oznaci, ograničeni doseg antene

Uskraćivanje usluge (DoS)

- Ometanje signala, SMS bombardiranje
- Automatsko odbijanje dolaznih poziva, periodičko odspajanje s mreže
- Napadi ove vrste rijetki u mobilnoj telefoniji

Web aplikacije

- Slične prijetnje kao i na računalima
- Phishing, automatsko preuzimanje aplikacija s weba, rizici kod prijenosa podataka, rupe u mobilnim preglednicima

• Sigurnosni element (SE)

- Sigurnosni hardver u koji se smještaju sigurnosno zahtjevne aplikacije
- Sandboxing aplikacija
- Provisioning smještanje aplikacija ili podataka na sigurnosni element
 - OTA (over-the-air)
 - Putem Interneta
 - Putem NFC-a
 - Fiziči putem kartice

• Obrana od napada

- Ažuriranje sustava na najnoviju verziju
- Ne koristiti aplikacije ili dućane aplikacija treće strane
- BYOD (Bring your own device) politika
 - Rješenje kontejnerizacija virtualna particija na pokretnom uređaju na kojoj se nalaze osjetljive aplikacije i podaci
 - Uređaj ima profile obični i sigurni
 - iOS standardno podržava, potrebno instalirati dodatne platforme na Android