

Gresë Berisha Moritz Baur Kevin Dietrich

2025-03-17

PROBLEM AND MOTIVATION

PROBLEM AND MOTIVATION

→ PROBLEM

- Flight delays are disruptive and costly.
- Passengers lose time @ and confidence.
- Airlines and airports face financial losses and reduced operational efficiency.

PROBLEM AND MOTIVATION

→ Problem

- Flight delays are disruptive and costly.
- Passengers lose time @ and confidence.
- Airlines and airports face financial losses and reduced operational efficiency.

MOTIVATION

• Tunisair aims to implement a predictive solution to anticipate delays and mitigate their impact.

PROJECT OBJECTIVE

PROJECT OBJECTIVE

GOAL

Use machine learning to predict the length of flight delays (in minutes).

PROJECT OBJECTIVE

Use machine learning to predict the length of flight delays (in minutes).

IMPACT

- W Better scheduling
- • Reduced operational inefficiencies
- Improved passenger satisfaction

DATA SOURCE

Flight data provided by Zindi, consisting of a train/test format for model development

DATA SOURCE

Flight data provided by Zindi, consisting of a train/test format for model development

PREDICTION TARGET:

Delay duration in minutes

DATA SOURCE

Flight data provided by Zindi, consisting of a train/test format for model development

PREDICTION TARGET:

Delay duration in minutes

Performance Metric:

Noot Mean Square Error (RMSE)

EXPLORATORY DATA ANALYSIS (EDA)

Exploratory Data Analysis (EDA)

We analysed how delays are distributed based on:

- Departure airports
- Arrival airports
- Temporal trends across the years 2016–2018

COLUMN DESCRIPTION

Column	Description
ID	Unique flight identifier
DATOP	Date of flight
FLTID	Flight number
DEPSTN	Departure point
ARRSTN	Arrival point
STD	Scheduled time of departure
STA	Scheduled time of arrival
STATUS	Flight status
AC	Aircraft code
target	Flight delay (min)

MEAN DELAY PER AIRPORT BY DEPARTURE AND ARRIVAL

Deriving flight time from STD and STA

DERIVING FLIGHT TIME FROM STD AND STA

Deriving flight time from STD and STA

Deriving flight time from STD and STA

DERIVING FLIGHT TIME FROM STD AND STA

DISSECTING DATOP INTO YEAR, MONTH AND DAY OF THE WEEK

BASELINE MODEL

BASELINE MODEL

APPROACH

A simple linear regression model using only the day of the week (or aircraft code) as the predictor.

BASELINE MODEL

APPROACH

A simple linear regression model using only the day of the week (or aircraft code) as the predictor.

PERFORMANCE

RMSE ≈ 114.69 $\approx R \ 2 \approx 3.01 \%$

ML Model

Many categorical variables ...

Many categorical variables ...

... but there is:

Many categorical variables ...

... but there is:

CAT**B**OOST

ML Model

APPROACH

A regression model using CatBoost with the following predictors: *Flight Status;* Aircraft Code; Departure and Arrival Point; Year, Month and Weekday of Departure Time

APPROACH

A regression model using CatBoost with the following predictors: *Flight Status;* Aircraft Code; Departure and Arrival Point; Year, Month and Weekday of Departure Time

PERFORMANCE

RMSE
$$\approx 96.14 (< 100)$$
 $\approx R_2 \approx 30.48 \%$

QUESTIONS AND FEEDBACK

We're happy to answer your questions and look forward to your feedback.