Chapter 4 Cloud Computing Architecture

Mastering Cloud Computing Paul Talaga

Layered View

Categories

- . laaS Infrastructure as a Service (AWS)
 - laaS(M) Only management layer
- PaaS Platform as a Service (AppEngine)
 Use APIs provided to build
 - Pure PaaS Only middleware, bring hardware
- SaaS Software as a Service (Gmail) -Adaptively scaling to demand

laaS (HaaS)

IaaS

- Customers are provided with virtualized hardware and storage on top of which they can build their infrastructure
- Ex: Amazon EC2 & S3
 - GoGrid
 - Nirvanix
 - Joyent, etc.... (many)
- laaS(M) Ex: Enomaly
 - Eucalyptus
 - OpenNebula
 - OpenStack
 - CloudStack

Cincinnati

- Application Management!
 - No ability to manage infrastructure
- Support Java, .NET, Python, Ruby, etc...
 - Some restrictions for scalability (no write fs)
- Some provide a local dev environment
- Subcategories:
 - PaaS-I: Rapid prototyping Web 2.0 dev -Ex: Force.com, Longjump
 - PaaS-II: Runtime environment for web upload code, use their APIs - Ex: Google AppEngine, AppScale, Heroku, Engine Yard

- Subcategories (cont)
 - PaaS III General purpose apps Ex: MS Windows Azure (hw as well), Aneka, Apprenda SaaSGrid, Cloud IQ
- Characteristics of PaaS:
 - Runtime Framework software stack
 - Abstraction manage software, not HW
 - Automation Auto scale resources
 - Cloud Services API Ex: Storage, identity management, computation

- lssues....
 - Vendor lock-in
 - Runtime environment: Force.com
 - AppEngine: standard, Python, PHP, Java...
 - APIs may be proprietary
- Cost benefit
 - Reduces management costs for consumer
 - Vendor does hardware/software updates -> saves them money
- Fueling startup culture!
 - Don't need to be an infrastructure expert

SaaS - Software as a Service

- Access to software from web browser
 - No software to install, no upfront costs
- Good for 'one size fits all' systems little customization needed
- Good fits:
 - Customer relationship management (CRM)
 - Enterprise resource planning (ERP)
- Pay-as-you-go (PAYG) pricing

SaaS

- Multitenancy multiple customers same system
 - Optimized resources
 - Continuous upgrades
 - Distribute costs
 - Developers know how to run the best
 - Significant cost savings no distribution, little support needed
 - Rapid implementation

SaaS

- Very successful delivery model!
- SaaS 2.0 Integrate reliable services
 - Use SLAs
 - Adds another dimension & options
 - Could promote open market
- Plugins becoming popular extend
 - Facebook, LinkedIn
- Office automation
 - Google Documents, Zoho Office, etc

Types of Clouds (review)

- Public
 - . EC2
 - Private
 - Customer information protection
 - Infrastructure ensuring SLA
 - Compliance w/ procedures and operations
- Hybrid or heterogeneous
 - Cloudbursting using public cloud for spikes
- Community
 - Media Industry, Healthcare, Energy, Scientific

Cloud Economics

- Why Cloud Computing?
 - Reduce capital IT costs
 - Eliminate depreciation
 - Replace software license with subscription
 - Reduce maintenance & admin costs of IT

Open Challenges

- Defining Cloud Computing!!!!
- Cloud Interoperability
- Standards
- Scalability & Fault Tolerance
- Security, trust, privacy
- Changing role of IT in a business
 - What does a 'new' IT dept do?
 - Compliance?
 - Loss of control of data?

Summary

- Service models: SaaS, PaaS, IaaS
- Deployment models: Public, Private, Hybrid, Community
- Driving force behind cloud --> \$\$\$\$
- Issues & Challenges

