Inhalt der Nachrichtentechnik

Teil 3: Analoge Hochfrequenz-Signalverarbeitung

- 8 Modulation hochfrequenter Signale und Multiplexverfahren
- 8.1 Modulation und Demodulation eines hochfrequenten Trägersignals
 - 8.1.1 Aufwärtsmischung (Sender) und Erzeugung eines AM-Signals
 - 8.1.2 Abwärtsmischung (Empfänger) und Demodulation
- 8.2 Intermodulation
 - 8.2.1 Intermodulation in Frequenzmultiplexsystemen
 - 8.2.2 Passive Intermodulation (PIM)
- 8.3 Grundlegende Multiplexverfahren

Codemultiplex und Bandspreiztechnik

Einführung & Motivation: Zweck der Frequenzumsetzung / Modulation

Example: Signal processing in a TV- transmitter Analog signals Kap. 5, 6 Microphone, camera Sampling and quantizing Analog-to-digital conversion **Digital signals** Source coding Source coding by MPEG-Standard ⇒ redundant and irrelevant parts are removed. MPEG-Multiplexing Generates bit-serial data stream transport To identify and correct bit Error-Channel coding protection **Kap. 10 Binary signal Mapping** 1. summarization of *m* Bits 2. map to a complex symbol Kap. 9 *m*-ary Roll-off-Raised Raised Band limitation and factor r cosine cosine pulse shaping Kap. 7 filter filter $\cos(\omega_c \cdot t)$ Quadrature- $\sin(\omega_c \cdot t)$ Modulation (up conversion)

Digitale Basisband Signalver.:

- ➤ A/D-Wandlung: Abtastung, Quantisierung, PCM ✓
- ➤ Quellencodierung MPEG zur Bandbreitenreduktion ✓
- Kanalcodierung zur Fehler-erkennung & –korrektur
- ➤ Mapping (Seriell-to-ParallelConversion) →Symbole
- ➤ Impulsformung mittels Basisbandfilter für ISI-freie Übertragung ✓
- ➤ Signalangepasste Filterung für MAX SNR (Matched Filter) ✓

Analoge HF-Signalverarbeitung:

- Modulation (Aufwärtsmischung in ein höheres Frequenzband)
- \rightarrow Umtastung cos($\omega_c \cdot t$)-Träger

Combiner

Analog

Analog RF signals

Kap. 8

Kap. 9

Antenna

Modulation hochfrequenter Trägersignale Digitales Kommunikationssystem

Kap. 7: Matched F. Impulsformung Kap. 8: Auf- & Abwärtsmischung

- 2) Zweck der Modulation hochfrequenter Signale (Frequenzumsetzung):
- 1. Anpassung an Kanal &
- 2. Mehrfachausnutzung zur Kapazitätserhöhung (viele Teilnehmer)

- 1) Störungen auf dem Übertragungsweg
- Bandbegrenzung
- Dämpfung
- Rauschen, Interferenz
- Mehrwegeausbreitung
- Doppler Shift, ...

- 3) Qualität/Wirkungsgrad einer Signalübertragung hängen ab von
- A) Art/Größe der Störungen auf der Strecke
- B) Frequenzbereich / Bandbreite

Modulation hochfrequenter Trägersignale

Zweck der Frequenzumsetzung

- Zur Anpassung an den jeweiligen Übertragungskanal mit Tiefpass-, Bandpass- oder Hochpass-Verhalten (s. Kap. 2 Übertragungsmedien wie Leitungen, Funk, etc.)
 - ☐ Frequenzbereichsanpassung: Verschiebung eines Signals in einen Frequenzbereich, wo die Realisierung von Kommunikationssystemen einfach/kompakt ist

Beispiel: Drahtlose Übertragung mit **kleinen/kompakten Antennen** oder Antennen mit hohem Gewinn und schmaler Antennenkeule

Kap. 3: 5G Funknetzplanung

$$\lambda = \frac{\mathsf{C}}{\mathsf{f}\sqrt{\varepsilon_{\mathsf{r}}}}$$

- höhere Frequenz \rightarrow höhere Bandbreiten & höhere Datenraten (+)
 - \rightarrow kompaktere Antennen (z.B. für $\lambda/2$ -Dipol/Patch) (+), Antenne mit hohem Gewinn (SatCom) & schmalen Keulen (Raumfilterung, MobCom) (+)
 - → höherer Aufwand / Kosten (–)
 - → höhere Freiraumausbreitungsdämpfung (–)
 - \rightarrow geringerer Beugungsbereich (\pm)
 - \rightarrow geringere Penetration (z.B. durch Mauerwerk) (\pm)

- $\lambda/2$
- 100 MHz 1.5 m
- 1 GHz 15 cm
- 10 GHz 1.5 cm
- 1.5 mm 100 GHz

Modulation hochfrequenter Trägersignale

Zweck der Frequenzumsetzung

- 1. Zur *Anpassung an den jeweiligen Übertragungskanal* mit Tiefpass-, Bandpass- oder Hochpass-Verhalten (s. Kap. 2 Übertragungsmedien wie Leitungen, Funk, etc.)
 - □ Frequenzbereichsanpassung: Verschiebung eines Signals in einen Frequenzbereich, wo die Realisierung von Kommunikationssystemen einfach/kompakt ist Beispiel: Drahtlose Übertragung mit kleinen/kompakten Antennen oder Antennen mit hohem Gewinn und schmaler Antennenkeule
 - □ Störschutzerhöhung: z.B. durch Modulationsverfahren (s. Kap. 9) oder Spreiztechniken mittels CDM (s. Kap. 8.3)
 - ⇒ Austausch von Bandbreite gegen Störabstand
 - ⇒ Erhöhung der Störsicherheit gegenüber Rauschen und Interferenz

Modulation hochfrequenter Trägersignale

Zweck der Frequenzumsetzung

- 1. Zur *Anpassung an den jeweiligen Übertragungskanal* mit Tiefpass-, Bandpass- oder Hochpass-Verhalten (s. Kap. 2 Übertragungsmedien wie Leitungen, Funk, etc.)
 - □ Frequenzbereichsanpassung: Verschiebung eines Signals in einen Frequenzbereich, wo die Realisierung von Kommunikationssystemen einfach/kompakt ist Beispiel: Drahtlose Übertragung mit kleinen/kompakten Antennen oder

<u>Seispiel:</u> Drahtlose Übertragung mit kleinen/kompakten Antennen oder Antennen mit hohem Gewinn und schmaler Antennenkeule

- ☐ Störschutzerhöhung: z.B. durch Modulationsverfahren (s. Kap. 9) oder Spreiztechniken mittels CDM (s. Kap. 8.3)
 - ⇒ Austausch von Bandbreite gegen Störabstand
 - ⇒ Erhöhung der Störsicherheit gegenüber Rauschen und Interferenz
- 2. Zur *Mehrfachausnutzung* des Übertragungskanals (s. Kap. 8)
 - ⇒ *Multiplex-Übertragung*, d.h. **Bündelung** (Zusammenfassung) mehrerer primärer Signale mittels geeigneter Modulationsverfahren zu einem sekundären Signal
 - ⇒ *Erhöhung der Kanalkapazität* des gleichen Übertragungskanals → mehr Teilnehmer

Beispiel: Mehrfachausnutzung des Kanals durch Multiplexverfahren - Zeitmultiplex

Zeitlich verschachtelte digitale PCM-Signale S1 bis S4 im Basisband

→ Kap. 6. PCM-Zeitmultiplex (Time Division Multiple Access, TDMA)

Beispiel: Mehrfachausnutzung des Kanals durch Multiplexverfahren - Frequenzmultiplex

Frequenzumsetzung der Basisbänder *a, b, c* (Sprache, Video, Daten) aus der natürlichen Frequenzlage in die HF-Frequenzlage *A, B, C* (frequenzversetzt) → Frequenzmultiplex (Frequency Division Multiplex Access, FDMA)

<u>Beispiel:</u> Mehrfachausnutzung des Kanals durch Multiplexverfahren - <u>Frequenzmultiplex</u>

Bündelung (Zusammenfassung) mehrerer modulierter Signale mit unterschiedlicher Trägerfrequenz

Guard band of 10 kHz 5 channels of 100 kHz bandwidth, guard bands of 10 kHz to prevent interference \rightarrow Required bandwidth: $5 \times 100 + 4 \times 10 = 540$ kHz

Anwendungen

- Analoge und digitale Telefonie
- Analoger (KW, UKW) und digitaler (DAB) Rundfunk
- Digitales Fernsehen (DVB-T, DVB-S, DVB-C)
- Mobilfunk (Terrestrisch 3G, 4G, 5G)
- Satellitenkommunikation, Satellitenmobilfunk
- Optische Übertragung über Glasfaser (Wellenlängenmultiplex)

Problem bei Frequenz-Multiplexsystemen

→ Intermodulation

Inhalt der Nachrichtentechnik

Teil 3: Analoge Hochfrequenz-Signalverarbeitung

- 8 Modulation hochfrequenter Signale und Multiplexverfahren
- 8.1 Modulation und Demodulation eines hochfrequenten Trägersignals
 - 8.1.1 Aufwärtsmischung (Sender) und Erzeugung eines AM-Signals
 - 8.1.2 Abwärtsmischung (Empfänger) und Demodulation

8.2 Intermodulation

- 8.2.1 Intermodulation in Frequenzmultiplexsystemen
- 8.2.2 Passive Intermodulation (PIM)
- 8.3 Grundlegende Multiplexverfahren

Codemultiplex und Bandspreiztechnik

Frequenzumsetzung: Auf- & Abwärtsmischung

Example: Local Point-to-Multipoint Millimeter Wave System at 42 GHz

Inhalt der Nachrichtentechnik

TECHNISCHE UNIVERSITÄT DARMSTADT

Teil 3: Analoge Hochfrequenz-Signalverarbeitung

- 8 Modulation hochfrequenter Signale und Multiplexverfahren
- 8.1 Modulation und Demodulation eines hochfrequenten Trägersignals
 - 8.1.1 Aufwärtsmischung (Sender) und Erzeugung eines AM-Signals
 - 8.1.2 Abwärtsmischung (Empfänger) und Demodulation

8.2 Intermodulation

- 8.2.1 Intermodulation in Frequenzmultiplexsystemen
- 8.2.2 Passive Intermodulation (PIM)
- 8.3 Grundlegende Multiplexverfahren

Codemultiplex und Bandspreiztechnik

Additive Aufwärtsmischung im Sender und Analoge Amplitudenmodulation

TECHNISCHE UNIVERSITÄT DARMSTADT

Schaltungstechnische Realisierung mit MESFET

Hochfrequenzträger (RF)

signal

signal

Zunächst Erläuterung des *Prinzips der Aufwärts- und Abwärtsmischung* anhand eines analogen (cos-förmigen) Basisbandsignals (ABB)

→ Einfache mathematische Behandlung

 I_{DSS} = Drain-Sättigungsstrom bei U_{GS} = 0 V

 U_{po} = Abschnürspannung (pinch-off voltage)

 U_{bs} = Spannung im Arbeitspunkt (bias voltage)

 a_2 = Steigung der Kennlinie in A/V²

$$\underbrace{i_{D}(t) = I_{DSS}}_{DSS} \left[1 - \frac{u_{GS}(t)}{U_{po}} \right]^{2} = \underbrace{\frac{I_{DSS}}{U_{po}^{2}}}_{a_{2}} \cdot \left[u_{GS}(t) - U_{po} \right]^{2}$$

 I_{DSS} = Drain-Sättigungsstrom bei U_{GS} = 0 V

 U_{po} = Abschnürspannung (pinch-off voltage)

 U_{bs} = Spannung im Arbeitspunkt (bias voltage)

 a_2 = Steigung der Kennlinie in A/V²

$$u_{GS}(t) = U_{bs} + \hat{u}_s \cdot \cos(\omega_s \cdot t) + \hat{u}_c \cdot \cos(\omega_c \cdot t)$$

$$BB \quad \text{Baseband} \quad \text{signal } u_s(\omega_s t)$$

$$Carrier \quad \text{signal } u_c(\omega_s t)$$

$$U_{bs} \quad \text{Ersatz-}$$

$$U_{bs} \quad \text{Schaltbild}$$

$$T^2 \quad \text{RF-BPF at } f_c$$

$$i_D(t) = a_2 \cdot \left[\underbrace{U_{bs} - U_{po}}_{U_d} + \hat{u}_c \cdot \cos(\omega_c \cdot t) + \hat{u}_s \cdot \cos(\omega_s \cdot t) \right]$$

Decoupled BandPass Filter (BPF), (parallel resonant circuit
$$f_r = f_c$$
)

Antenna resistance

$$= a_2 \cdot \left[U_d^2 + \left\{ \hat{u}_c \cdot \cos(\omega_c \cdot t) + \hat{u}_s \cdot \cos(\omega_s \cdot t) \right\}^2 + 2U_d \cdot \left\{ \hat{u}_c \cdot \cos(\omega_c \cdot t) + \hat{u}_s \cdot \cos(\omega_s \cdot t) \right\} \right]$$

$$= \hat{u}_c^2 \cdot \underbrace{\cos^2(\omega_c \cdot t)}_{\frac{1}{2}[1 + \cos(2\omega_c t)]} + \hat{u}_s^2 \cdot \underbrace{\cos^2(\omega_s \cdot t)}_{\frac{1}{2}[1 + \cos(2\omega_s t)]} + 2 \cdot \hat{u}_s \cdot \hat{u}_c \cdot \underbrace{\cos(\omega_c \cdot t) \cdot \cos(\omega_s \cdot t)}_{\frac{1}{2}[\cos(\omega_c - \omega_s)t + \cos(\omega_c + \omega_s)t]}$$

$$\underline{i_D(t) = I_{DSS}} \left[1 - \frac{u_{GS}(t)}{U_{po}} \right]^2 = \underbrace{\frac{I_{DSS}}{U_{po}^2}}_{a_2} \cdot [u_{GS}(t) - U_{po}]^2$$

 I_{DSS} = Drain-Sättigungsstrom bei U_{GS} = 0 V

 U_{po} = Abschnürspannung (pinch-off voltage)

 U_{hs} = Spannung im Arbeitspunkt (bias voltage)

 a_2 = Steigung der Kennlinie in A/V²

Ergebnis für Drainstrom:

$$i_D(t) = a_2 \cdot \left[U_d^2 + \frac{\hat{u}_s^2}{2} + \frac{\hat{u}_c^2}{2} \right]$$
 Gleichanteil

+
$$2a_2 \cdot U_d \cdot \hat{u}_c \cdot \cos(\omega_c \cdot t) + 2a_2 \cdot U_d \cdot \hat{u}_s \cdot \cos(\omega_s \cdot t)$$

+
$$a_2 \cdot \frac{\hat{u}_c^2}{2} \cdot \cos(2\omega_c \cdot t) + a_2 \cdot \frac{\hat{u}_s^2}{2} \cdot \cos(2\omega_s \cdot t)$$

+
$$a_2 \cdot \hat{u}_c \cdot \hat{u}_s \cdot \cos(\omega_c - \omega_s) \cdot t + a_2 \cdot \hat{u}_c \cdot \hat{u}_s \cdot \cos(\omega_c + \omega_s) \cdot t$$

Decoupled BandPass Filter (BPF), (parallel resonant circuit $f_r = f_c$)

Grundwelle

1. Oberwelle

Differenz + Summenanteile

Antenna resistance

Frequenzspektrum

Ergebnis für Drainstrom:

$$i_D(t) = a_2 \cdot \left[U_d^2 + \frac{\hat{u}_s^2}{2} + \frac{\hat{u}_c^2}{2} \right]$$
 Gleichanteil

+
$$2a_2 \cdot U_d \cdot \hat{u}_c \cdot \cos(\omega_c \cdot t) + 2a_2 \cdot U_d \cdot \hat{u}_s \cdot \cos(\omega_s \cdot t)$$

+
$$a_2 \cdot \frac{\hat{u}_c^2}{2} \cdot \cos(2\omega_c \cdot t) + a_2 \cdot \frac{\hat{u}_s^2}{2} \cdot \cos(2\omega_s \cdot t)$$

+
$$a_2 \cdot \hat{u}_c \cdot \hat{u}_s \cdot \cos(\omega_c - \omega_s) \cdot t + a_2 \cdot \hat{u}_c \cdot \hat{u}_s \cdot \cos(\omega_c + \omega_s) \cdot t$$

Grundwelle

1. Oberwelle

Differenz + Summenanteile

$$\underline{I_{D}(t) = I_{DSS}} \cdot \left[1 - \frac{u_{GS}(t)}{U_{po}} \right]^{2} = \underbrace{\frac{I_{DSS}}{U_{po}^{2}}}_{a_{2}} \cdot \left[u_{GS}(t) - U_{po} \right]^{2}$$

 I_{DSS} = Drain-Sättigungsstrom bei U_{GS} = 0 V

 U_{po} = Abschnürspannung (pinch-off voltage)

 U_{hs} = Spannung im Arbeitspunkt (bias voltage)

 a_2 = Steigung der Kennlinie in A/V²

Ergebnis für Drainstrom:

$$i_D(t) = \underline{a_2 \cdot \left[U_d^2 + \frac{\hat{u}_c^2}{2} + \frac{\hat{u}_c^2}{2}\right]}$$
 Gleichanteil

+
$$2a_2 \cdot U_d \cdot \hat{u}_c \cdot \cos(\omega_c \cdot t) + 2a_2 \cdot U_d \cdot \hat{u}_s \cdot \cos(\omega_s \cdot t)$$

+
$$\underline{a_2 \cdot \frac{\hat{u}_c^2}{2} \cdot \cos(2\omega_c \cdot t) + a_2 \cdot \frac{\hat{u}_s^2}{2} \cdot \cos(2\omega_s \cdot t)}$$
 BPF

+
$$a_2 \cdot \hat{u}_c \cdot \hat{u}_s \cdot \cos(\omega_c - \omega_s) \cdot t + a_2 \cdot \hat{u}_c \cdot \hat{u}_s \cdot \cos(\omega_c + \omega_s) \cdot t$$

Decoupled BandPass Filter (BPF), (parallel resonant circuit $f_r = f_c$)

Antenna resistance

Grundwelle

1. Oberwelle

Differenz + Summenanteile

$$\underline{I}_{D}(t) = I_{DSS} \cdot \left[1 - \frac{u_{GS}(t)}{U_{po}} \right]^{2} = \underbrace{\frac{I_{DSS}}{U_{po}^{2}}}_{a_{2}} \cdot [u_{GS}(t) - U_{po}]^{2}$$

 I_{DSS} = Drain-Sättigungsstrom bei U_{GS} = 0 V

 U_{po} = Abschnürspannung (pinch-off voltage)

 U_{hs} = Spannung im Arbeitspunkt (bias voltage)

 a_2 = Steigung der Kennlinie in A/V²

Carrier signal $u_c(\omega_c t)$

Spannung nach BPF:

$$u_{RF}(t) = R \cdot i(t)$$

$$u_{RF}(t) \mid \cdot \mid_{F}$$

Ergebnis für Drainstrom:

$$i_D(t) = \underline{a_2 \cdot \left[U_d^2 + \frac{\hat{u}_c^2}{2} + \frac{\hat{u}_c^2}{2}\right]}$$
 Gleichanteil

+
$$2a_2 \cdot U_d \cdot \hat{u}_c \cdot \cos(\omega_c \cdot t) + \underline{2a_2 \cdot U_d \cdot \hat{u}_s \cdot \cos(\omega_s \cdot t)}$$

+
$$\underline{a_2 \cdot \frac{\hat{u}_c^2}{2} \cdot \cos(2\omega_c \cdot t) + a_2 \cdot \frac{\hat{u}_s^2}{2} \cdot \cos(2\omega_s \cdot t)}$$
 BPF

+
$$a_2 \cdot \hat{u}_c \cdot \hat{u}_s \cdot \cos(\omega_c - \omega_s) \cdot t + a_2 \cdot \hat{u}_c \cdot \hat{u}_s \cdot \cos(\omega_c + \omega_s) \cdot t$$

-Ausgangssignal nach

Aufwärtsmischung und BPF

Grundwelle

1. Oberwelle

Differenz + Summenanteile

Doppelseitige Amplitudenmodulation (DSB-AM)

Der BPF lässt somit nur die Signale der Frequenzen f_c und $f_c \pm f_s$ zum Verbraucher R (Antenne) durch:

$$u_{RF}(t) = R \cdot i(t) = 2a_2R \cdot U_d\hat{u}_c \cos(\omega_c t)$$

$$k_1 = 2a_2RU_d = 1 \rightarrow a_2 = 1/(2RU_d)$$

$$u_{RF}(t) = k_1 \cdot \hat{u}_c \cdot \cos(\omega_c t) + k_1 \cdot \hat{u}_c \cdot \frac{1}{2} m \cdot \{\cos(\omega_c - \omega_s)t + \cos(\omega_c + \omega_s)t\}$$

$$u_{RF}(t) = k_1 \cdot \hat{u}_c \cdot \langle 1 + m \cdot \cos(\omega_s t) \rangle \cdot \cos(\omega_c t)$$

$$2 \cdot \cos(\omega_c t) \cos(\omega_s t)$$

 \widehat{u}_{RF} Einhüllende Amplitude schwankt mit dem Basisbandsignal

Amplitudenmodulation (AM)

Erzeugung eines AM-Signals

Ideal modulator

Channel distortions

with modulation factor $m = \hat{s}_m / \hat{s}_c$

Einhüllende Amplitude schwankt mit dem Basisbandsignal

Modulation trapeze (X,Y-operation)

Modulationsfaktor/Modulationsindex am Oszilloskop ablesbar

$$s_{AM}(t) = \hat{s}_c \left[\cos \omega_c t + \frac{m}{2} \cos(\omega_c - \omega_s) t + \frac{m}{2} \cos(\omega_c + \omega_s) t \right]$$
$$= \operatorname{Re} \left\{ \hat{s}_c e^{j\omega_c t} \left\langle 1 + \frac{m}{2} e^{-j\omega_s t} + \frac{m}{2} e^{j\omega_s t} \right\rangle \right\}$$

Aufwärtsmischung eines Signalfrequenzbandes

Inhalt der Nachrichtentechnik

Teil 3: Analoge Hochfrequenz-Signalverarbeitung

- 8 Modulation hochfrequenter Signale und Multiplexverfahren
- 8.1 Modulation und Demodulation eines hochfrequenten Trägersignals
 - 8.1.1 Aufwärtsmischung (Sender) und Erzeugung eines AM-Signals
 - 8.1.2 Abwärtsmischung (Empfänger) und Demodulation

8.2 Intermodulation

- 8.2.1 Intermodulation in Frequenzmultiplexsystemen
- 8.2.2 Passive Intermodulation (PIM)

8.3 Grundlegende Multiplexverfahren

Codemultiplex und Bandspreiztechnik

- Additive Abwärtsmischung im Empfänger
- > Empfangskonzepte: Geradeaus/Überlagerungsempfänger
- Spiegelfrequenzproblematik
- Demodulation eines amplitudenmodulierten RF-Signals

Additive Abwärtsmischung (Empfänger)

Gleiche Schaltung wie bei Aufwärtsmischung

Abwärtsmischung (Demodulation)

$$\begin{split} \frac{a^2}{i_D(t) = b_2 \cdot \left\{ \left\langle U_{d2} + \hat{u}_1 \cdot \cos(\omega_c t) \right\rangle^2 + \left\langle \hat{u}_2 \cdot \cos(\omega_{RF} t) + \hat{u}_0 \cdot \cos(\omega_0 t) \right\rangle^2} \\ + 2 \cdot \left\langle U_{d2} + \hat{u}_1 \cdot \cos(\omega_c t) \right\rangle \cdot \left\langle \hat{u}_2 \cdot \cos(\omega_{RF} t) + \hat{u}_0 \cdot \cos(\omega_0 t) \right\rangle \right\} \\ i_D(t) = b_2 \cdot \begin{bmatrix} + 2 \cdot \left\langle U_{d2} + \hat{u}_1^2 \cos^2(\omega_c t) + \hat{u}_2^2 \cos^2(\omega_c t) + \hat{u}_2^2 \cos^2(\omega_{RF1,2} t) + \hat{u}_0^2 \cos^2(\omega_0 t) + \hat{u}_0 \cdot \cos(\omega_0 t) \right\rangle \\ + 2 \cdot a \cdot b \end{bmatrix} \\ + 2U_{d2} \hat{u}_1 \cos(\omega_c t) + 2 \cdot \hat{u}_2 \hat{u}_2 \cos(\omega_{RF1,2} t) + \hat{u}_2^2 \cos(\omega_{RF1,2} t) + \hat{u}_2^2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_1 \cos(\omega_c t) + 2 \cdot \hat{u}_2 \hat{u}_2 \cos(\omega_{RF1,2} t) \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_{RF1,2} t) + 2U_{d2} \hat{u}_2 \cos(\omega_{RF1,2} t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_{RF1,2} t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_{RF1,2} t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_{RF1,2} t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_{RF1,2} t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_{RF1,2} t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_{RF1,2} t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_{RF1,2} t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_{RF1,2} t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) \\ + 2U_{d2} \hat{u}_2 \cos(\omega_0 t) + 2U_{d2} \hat{u}_2 \cos(\omega_0 t$$

 $\begin{array}{ccc}
\hat{u}_1\hat{u}_2\left[\cos(\omega_{RF1,2}-\omega_c)t+\cos(\omega_{RF1,2}+\omega_c)t\right] & \hat{u}_1\hat{u}_0\left[\cos(\omega_c-\omega_0)t+\cos(\omega_c+\omega_0)t\right] \\
\pm\omega_S & 2\omega_C\pm\omega_S & 0 & 2\omega_C
\end{array}$

 $\omega_c + \omega_0 = 2\omega_c$

$$i_{D}(t) = \underbrace{b_{2} \left[U_{d2}^{2} + \frac{\hat{u}_{0}^{2}}{2} + \frac{\hat{u}_{1}^{2}}{2} + \frac{\hat{u}_{2}^{2}}{2} + \hat{u}_{0} \cdot \hat{u}_{1} \right]}_{2} \quad \text{Gleichanteil}$$

$$+ 2 \cdot b_{2} \cdot U_{d2} \cdot (\hat{u}_{0} + \hat{u}_{1}) \cdot \cos(\omega_{0}t) + 2 \cdot b_{2} \cdot U_{d2} \cdot \hat{u}_{2} \cdot \cos(\omega_{RF1,2}t) \quad \text{Grundwellen}$$

$$+ \underbrace{0.5 \cdot b_{2} \cdot (\hat{u}_{0}^{2} + \hat{u}_{1}^{2} + 2 \cdot \hat{u}_{0} \cdot \hat{u}_{1})}_{(\hat{u}_{0} + \hat{u}_{1})} \cdot \cos((2\omega_{0}t) + 0.5 \cdot b_{2} \cdot \hat{u}_{2}^{2} \cdot \cos((2\omega_{RF1,2}t)) \quad \text{1. Oberwellen}$$

$$+ \underbrace{b_{2} \cdot (\hat{u}_{0} + \hat{u}_{1})}_{(\hat{u}_{0} + \hat{u}_{1})} \cdot \hat{u}_{2} \cdot \cos(\omega_{RF1,2} + \omega_{0}) \cdot \hat{t} + \underbrace{b_{2} \cdot (\hat{u}_{0} + \hat{u}_{1})}_{2} \cdot \hat{u}_{2} \cdot \cos(\omega_{RF1,2} + \omega_{0}) \cdot \hat{t} + \underbrace{b_{2} \cdot (\hat{u}_{0} + \hat{u}_{1})}_{2} \cdot \hat{u}_{2} \cdot \cos(\omega_{RF1,2} + \omega_{0}) \cdot \hat{t} + \underbrace{b_{2} \cdot (\hat{u}_{0} + \hat{u}_{1})}_{2} \cdot \hat{u}_{2} \cdot \cos(\omega_{RF1,2} + \omega_{0}) \cdot \hat{t} + \underbrace{b_{2} \cdot (\hat{u}_{0} + \hat{u}_{1})}_{2} \cdot \hat{u}_{2} \cdot \cos(\omega_{RF1,2} + \omega_{0}) \cdot \hat{t} + \underbrace{b_{2} \cdot (\hat{u}_{0} + \hat{u}_{1})}_{2} \cdot \hat{u}_{2} \cdot \cos(\omega_{RF1,2} + \omega_{0}) \cdot \hat{t} + \underbrace{b_{2} \cdot (\hat{u}_{0} + \hat{u}_{1})}_{2} \cdot \hat{u}_{2} \cdot \cos(\omega_{RF1,2} + \omega_{0}) \cdot \hat{t} + \underbrace{b_{2} \cdot (\hat{u}_{0} + \hat{u}_{1})}_{2} \cdot \hat{u}_{2} \cdot \cos(\omega_{RF1,2} + \omega_{0}) \cdot \hat{t} + \underbrace{b_{2} \cdot (\hat{u}_{0} + \hat{u}_{1})}_{2} \cdot \hat{u}_{2} \cdot \cos(\omega_{RF1,2} + \omega_{0}) \cdot \hat{t} + \underbrace{b_{2} \cdot (\hat{u}_{0} + \hat{u}_{1})}_{2} \cdot \hat{u}_{2} \cdot \cos(\omega_{RF1,2} + \omega_{0}) \cdot \hat{t} + \underbrace{b_{2} \cdot (\hat{u}_{0} + \hat{u}_{1})}_{2} \cdot \hat{u}_{2} \cdot \cos(\omega_{RF1,2} + \omega_{0}) \cdot \hat{t} + \underbrace{b_{2} \cdot (\hat{u}_{0} + \hat{u}_{1})}_{2} \cdot \hat{u}_{2} \cdot \hat{$$

MIMP

Abwärtsmischung eines Signalfrequenzbandes

Empfänger:

Abwärtsmischung des RF-Bandes (obere oder unter Seitenband) $f_{RF}=f_c\pm f_s$ direkt ins Basisband f_s

⇒ Beide werden in das gleiche Signalband gemischt (Spiegelfrequenz)

Nicht-invertiertes Seitenband

Invertiertes Seitenband BB-BPF at f

Inhalt der Nachrichtentechnik

- 8 Modulation hochfrequenter Signale und Multiplexverfahren
- 8.1 Modulation und Demodulation eines hochfrequenten Trägersignals
 - 8.1.1 Aufwärtsmischung (Sender) und Erzeugung eines AM-Signals
 - 8.1.2 Abwärtsmischung (Empfänger) und Demodulation

8.2 Intermodulation

- 8.2.1 Intermodulation in Frequenzmultiplexsystemen
- 8.2.2 Passive Intermodulation (PIM)
- 8.3 Grundlegende Multiplexverfahren

Codemultiplex und Bandspreiztechnik

- > Empfangskonzepte: Geradeaus/Überlagerungsempfänger
- Spiegelfrequenzproblematik

TECHNISCHE UNIVERSITÄT DARMSTADT

Geradeausempfänger (KW) - THz, Optik

Steuerbarer Kondensator ermöglicht Abstimmung der Resonanzfrequenz des BPF über einen relativ geringen Frequenzbereich zur Auswahl der Sender

MIMP.

TECHNISCHE UNIVERSITÄT DARMSTADT

Geradeausempfänger (KW) - THz, Optik

Steuerbarer Kondensator ermöglicht Abstimmung der Resonanzfrequenz des BPF über einen relativ geringen Frequenzbereich zur Auswahl der Sender

$$\Delta f = \frac{f_r}{Q} = \frac{20 \text{MHz}}{100} = 200 \text{kHz}$$
 Trennschärfe

Überlagerungsempfänger

mittels VCO über Software gesteuert (Senderauswahl)

Tunable Für hohe Trennschärfe, oscillator sollte f_{IF} klein sein!

Feste IF-Filter lassen sich mit höherer Güte Q (& preiswerter) als im RF-Bereich realisieren!

Überlagerungsempfänger

Feste IF-Filter lassen sich mit höherer Güte Q (& preiswerter) als im RF-Bereich realisieren!

Mit LO-Frequenz f_{01} wird gewünschter Sender f_{RF1} , aber auch unerwünschter Sender f_{RF4} (Spiegelfrequenzband) in das IF-Bandpassfilter heruntergemischt

Überlagerungsempfänger

Feste IF-Filter lassen sich mit höherer Güte Q (& preiswerter) als im RF-Bereich realisieren!

Mit LO-Frequenz f_{02} wird gewünschter Sender f_{RF2} , aber auch unerwünschter Sender f_{RF5} (Spiegelfrequenzband) in das IF-Bandpassfilter heruntergemischt

Überlagerungsempfänger

Feste IF-Filter lassen sich mit höherer Güte Q (& preiswerter) als im RF-Bereich realisieren!

Mit LO-Frequenz f_{03} wird gewünschter Sender f_{RF3} in das IF-Bandpassfilter heruntergemischt. Kein unerwünschter Sender f_{RF6} (Spiegelfrequenzband).

Spiegelfrequenzunterdrückung

Wie kann man hohe Trennschärfe und großes Frequenzband ohne Spiegelfrequenzen erreichen?

Mit LO-Frequenz f_{01} wird gewünschter Sender f_{RF1} , aber auch unerwünschter Sender f_{RF4} (Spiegelfrequenzband) in das IF-Bandpassfilter heruntergemischt

Um möglichst viele Sender mit Spiegelfrequenzunterdrückung zu empfangen, muss f_{IF} groß sein! \longleftrightarrow Für hohe Trennschärfe, sollte f_{IF} klein sein!

Empfängerprinzip

Zweimalige Frequenzumsetzung

Große IF-Frequenz f_{IF1} für Spiegelfrequenzunterdrückung mit HF-Bandpass

Kleine $f_{(F)}$ für hohe Trennschärfe

Empfängerprinzip

Gleich- und Kehrlagenabwärtsmischung

⇒ Beide werden in das gleiche Signalband gemischt

Hohe LO-Frequenz bevorzugt, weil dann bei einer bestimmten vorgegebenen rela-tiven Verstimmung des lokalen Oszillators $\Delta f_0/f_0$ der Empfangsfrequenzbereich Δf_0 größer ist als bei einer niedrigeren LO-Frequenz

Kehrlagenabwärtsmischung

Nicht-invertiertes Seitenband

Inhalt der Nachrichtentechnik

Teil 3: Analoge Hochfrequenz-Signalverarbeitung

- 8 Modulation hochfrequenter Signale und Multiplexverfahren
- 8.1 Modulation und Demodulation eines hochfrequenten Trägersignals
 - 8.1.1 Aufwärtsmischung (Sender) und Erzeugung eines AM-Signals
 - 8.1.2 Abwärtsmischung (Empfänger) und Demodulation

8.2 Intermodulation

- 8.2.1 Intermodulation in Frequenzmultiplexsystemen
- 8.2.2 Passive Intermodulation (PIM)

8.3 Grundlegende Multiplexverfahren

Codemultiplex und Bandspreiztechnik

- Demodulation eines amplitudenmodulierten RF-Signals
 - Inkohärente Demod. mit Hüllkurvendetektor oder Spitzenwertgleichrichter
 - Kohärente Demodulation mit Produkt- bzw. Synchrondemodulator

Inkohärente Demod. mit Hüllkurvendetektor

Beispiel Amplitudenmodulation (AM)

Einsatz des Hüllkurvendetektor nur noch für extrem einfache & preiswerte Empfänger oder bei hohen Frequenzen, wo andere Bauteile nur sehr aufwendig oder gar nicht realisierbar sind.

Inkohärente Demod. mit Hüllkurvendetektor

TECHNISCHE UNIVERSITÄT DARMSTADT

Beispiel Amplitudenmodulation (AM)

Inkohärente Demod. mit Hüllkurvendetektor

TECHNISCHE UNIVERSITÄT DARMSTADT

Beispiel Amplitudenmodulation (AM)

Beispiel Amplitudenmodulation (AM)

Empfangssignal: Träger mit Phase

linkes Seitenband

rechtes Seitenband

In kommerziellen Systemen werden meist Produkt- bzw. Synchrondemodulatoren zur kohärenten Demodulation eingesetzt.

Demodulation von AM (sämtliche Arten):

- a) DSB-AM mit vollem Träger: a = 1 und b = c = 1
- b) DSB-AM ohne Träger: a = 0 und b = c = 1
- c) SSB-AM ohne Träger: a = 0 und b = 1; c = 0; b = 0; c = 1
- d) SSB-AM mit Restträger: a = 0...1 und b = 1; c = 0, b = 0; c = 1

Beispiel Amplitudenmodulation (AM)

$$u_{M} = u_{AM}(t) \cdot u_{0}(t) = \hat{u}_{0} \left[a \cdot u_{c} \cos \left[\omega_{c} t + \varphi(t) \right] \cdot \cos \left[\omega_{0} t + \varphi_{0} \right] \right]$$

$$= \frac{1}{2} \cos \left[2\omega_{c} t + \varphi(t) + \varphi_{0} \right] + \frac{1}{2} \cos \left[\varphi(t) - \varphi_{0} \right]$$

$$+ b \cdot \frac{1}{2} \hat{u}_{s} \underbrace{\cos \left[(\omega_{c} - \omega_{s})t + \varphi(t) \right] \cdot \cos \left[\omega_{0} t + \varphi_{0} \right] + c \cdot \frac{1}{2} \hat{u}_{s} \underbrace{\cos \left[(\omega_{c} + \omega_{s})t + \varphi(t) \right] \cdot \cos \left[\omega_{0} t + \varphi_{0} \right]}_{\frac{1}{2} \left[\cos \left[-\omega_{s} t + \varphi(t) - \varphi_{0} \right] + \cos \left[(2\omega_{c} - \omega_{s})t + \varphi(t) + \varphi_{0} \right] \right]}$$

$$= \frac{1}{2} \cos \left[(\omega_{c} + \omega_{s})t + \varphi(t) - \varphi_{0} \right] + \cos \left[(2\omega_{c} - \omega_{s})t + \varphi(t) + \varphi_{0} \right]}_{22.06.2023} + \text{etit} + \text{Institut für Mikrowellentechnik und Photopikal Nachrichtentechnik | Rolf Jakoby}$$

Beispiel Amplitudenmodulation (AM)

Trägerrückgewinnung & Phasenregelung

Amplituden und Frequenzänderungen aufgrund von Störungen auf dem Übertragungskanal

 $u_{LPF}(t) = \frac{1}{2} \hat{u}_c^* \hat{u}_0 \sin[\varphi(t)]$

DARMSTADT

Trägerrückgewinnung & Phasenregelung

 $u_{M2}(t) = u_c^*(t) \cdot u_0(t) = \hat{u}_c^* \hat{u}_0 \cos \left[\omega_c t + \varphi(t) - \pi/2\right] \cdot \cos \omega_0 t$ quenz & Phase mit $u_{AM}^*(t)$ übereinstimmt.

 $=\frac{1}{2}\hat{u}_{c}^{*}\hat{u}_{0}\left\{\cos\left[\underbrace{(\omega_{c}-\omega_{0})}_{=0\text{ für }\omega_{0}=\omega_{c}}t+\varphi(t)-\pi/2\right]+\cos\left[\underbrace{(\omega_{c}+\omega_{0})}_{2\omega_{c}\text{ für }\omega_{0}=\omega_{c}}t+\varphi(t)-\pi/2\right]\right\}=\frac{1}{2}\hat{u}_{c}^{*}\hat{u}_{0}\left\{\underbrace{\cos\left[\varphi(t)-\pi/2\right]}_{\sin\left[\varphi(t)\right]}+\cos\left[\frac{2\omega_{c}\rightarrow\mathsf{LPF}}{2\omega_{c}t+\varphi(t)-\pi/2}\right]\right\}$

vergleich durchgeführt. Phase Locked Loop (PLL) sorgt dafür, dass der aufbereitete Träger (VCO-Signal $u_0(t)$) in Fre-

$$\frac{2\omega_{c}}{\cos\left[\varphi(t)-\pi/2\right]} + \cos\left[2\omega_{c}t + \varphi(t) - \pi/2\right]$$

Inhalt der Nachrichtentechnik

- 8 Modulation hochfrequenter Signale und Multiplexverfahren
- 8.1 Modulation und Demodulation eines hochfrequenten Trägersignals
 - 8.1.1 Aufwärtsmischung (Sender) und Erzeugung eines AM-Signals
 - 8.1.2 Abwärtsmischung (Empfänger) und Demodulation
- 8.2 Intermodulation
 - 8.2.1 Intermodulation in Frequenzmultiplexsystemen
 - 8.2.2 Passive Intermodulation (PIM)
- 8.3 Grundlegende Multiplexverfahren

Codemultiplex und Bandspreiztechnik

<u>Beispiel:</u> Mehrfachausnutzung des Kanals durch Multiplexverfahren - <u>Frequenzmultiplex</u>

Bündelung (Zusammenfassung) mehrerer modulierter Signale mit unterschiedlicher Trägerfrequenz

Guard band of 10 kHz \rightarrow Example: 5 channels of 100 kHz bandwidth, guard bands of 10 kHz to prevent interference \rightarrow Required bandwidth: $5 \times 100 + 4 \times 10 = 540$ kHz

Anwendungen

- Analoge und digitale Telefonie
- Analoger (KW, UKW) und digitaler (DAB) Rundfunk
- Digitales Fernsehen (DVB-T, DVB-S, DVB-C)
- Mobilfunk (Terrestrisch 3G, 4G, 5G)
- Satellitenkommunikation, Satellitenmobilfunk
- Optische Übertragung über Glasfaser (Wellenlängenmultiplex)

Problem bei Frequenz-Multiplexsystemen

→ Intermodulation

Problem bei Frequenzmultiplexsystemen

$$u_{in}(t) = \hat{u}_1 \cdot \cos \omega_1 t + \hat{u}_2 \cdot \cos \omega_2 t + \hat{u}_3 \cdot \cos \omega_3 t + \hat{u}_4 \cdot \cos \omega_4 t$$

Multiplexsignal aus 4 Sinusträgern mit einem **Frequenzabstand** von

$$\Delta f = f_2 - f_1 = f_3 - f_2 = f_4 - f_3$$

am Eingang des nichtlinearen Übertragungssystems

Gleicher Frequenzabstand

$$\Delta f = f_2 - f_1 = f_3 - f_2 = f_4 - f_3$$

$$f_1 \qquad f_2 \qquad f_3 \qquad f_4$$

Um Aufwand zu begrenzen: Betrachtung nur der mittleren Träger bei f_2 und f_3

Problem bei Frequenzmultiplexsystemen

$$\hat{u}_1 = \hat{u}_2 = \hat{u}_3 = \hat{u}_4$$

Ergebnis nach umfangreicher Rechnung (Binom + trigonometrische Beziehungen)

Einsetzen von

$$u_{in}(t) = \hat{u}_2 \cos(\omega_2 t) + \hat{u}_3 \cos(\omega_3 t)$$

Multiplexsignal aus 4 Sinusträgern mit einem Frequenzabstand von

$$\Delta f = f_2 - f_1 = f_3 - f_2 = f_4 - f_3$$

am Eingang des nichtlinearen Übertragungssystems

 $+a_3 u_{in}^3(t) + a_4 u_{in}^4(t) + ...$ in Reihenentwicklung

Approximation der nichtlinearen Kennlinie

mit Reihenentwicklung bis 4. Ordnung

Bestimmung der Koeffizienten a_0 , a_1 , a_2 , a_3 und a_4 in der Praxis aus dem minimalen quadratischen Fehler

Um Aufwand zu begrenzen: Betrachtung nur der mittleren Träger bei f_2 und f_3

$$u_{out}(t) = R_A \cdot \left\langle \frac{a_2}{2} \left\langle \hat{u}_2^2 + \hat{u}_3^2 \right\rangle + \frac{3a_4}{8} \left\{ \hat{u}_2^4 + \hat{u}_3^4 \right\} + \frac{3}{2} \hat{u}_2^2 \hat{u}_3^2 \cdot a_4 \right. \qquad \text{Gleichanteil}$$

$$+ a_1 \left\{ \hat{u}_2 \cos \omega_2 t + \hat{u}_3 \cos \omega_3 t \right\} + \frac{3a_3}{2} \left\langle \frac{\hat{u}_2^3}{2} + \hat{u}_2 \hat{u}_3^2 \right\rangle \cos \omega_2 t$$

$$+ \frac{3a_3}{2} \left\langle \frac{\hat{u}_3^3}{2} + \hat{u}_2^2 \hat{u}_3 \right\rangle \cos \omega_3 t \right. \qquad \text{Grundweller}$$

$$\left. + \frac{3a_3}{2} \left\langle \frac{\hat{u}_3^3}{2} + \hat{u}_2^2 \hat{u}_3 \right\rangle \cos \omega_3 t \right\} \qquad \text{Kreuzmodulation}$$

Gleichanteil

Grundwellen

$$+ \frac{a_2}{2} \left\{ \hat{u}_2^2 \cos 2\omega_2 t + \hat{u}_3^2 \cos 2\omega_3 t \right\} + \frac{a_4}{2} \left\{ \hat{u}_2^4 \cos 2\omega_2 t + \hat{u}_3^4 \cos 2\omega_3 t \right\}$$

$$+ \frac{3a_4}{2} \hat{u}_2^2 \hat{u}_3^2 \left\{ \cos 2\omega_2 t + \cos 2\omega_3 t \right\}$$
1. Oberwellen

$$+\frac{a_3}{4}\left\{\hat{u}_2^3\cos 3\omega_2 t + \hat{u}_3^3\cos 3\omega_3 t\right\} + \frac{a_4}{8}\left\{\hat{u}_2^4\cos 4\omega_2 t + \hat{u}_3^4\cos 4\omega_3 t\right\}$$

2. und 3. Oberwellen

$$+ \left[a_{2}\hat{u}_{2}\hat{u}_{3} + \frac{3a_{4}\hat{u}_{2}^{3}\hat{u}_{3}}{2} + \frac{3a_{4}\hat{u}_{3}^{3}\hat{u}_{2}}{2} \right] \cdot \cos(\omega_{2} - \omega_{3}) \cdot t$$

$$+ \left[a_{2}\hat{u}_{2}\hat{u}_{3} + \frac{3a_{4}\hat{u}_{2}^{3}\hat{u}_{3}}{2} + \frac{3a_{4}\hat{u}_{3}^{3}\hat{u}_{2}}{2} \right] \cdot \cos(\omega_{2} + \omega_{3}) \cdot t$$

MD2:
$$\hat{u}_1 = \hat{u}_2 = \hat{u}_3 = \hat{u}_4$$

Differenzprodukt f_2 - f_3 Summenprodukt f_3 + f_2

$$+\frac{3a_{3}\hat{u}_{2}^{2}\hat{u}_{3}}{4} \cdot \left[\cos(2\omega_{2}-\omega_{3})\cdot t + \cos(2\omega_{2}+\omega_{3})\cdot t\right] + \frac{3a_{3}\hat{u}_{2}\hat{u}_{3}^{2}}{4} \cdot \left[\cos(2\omega_{3}-\omega_{2})\cdot t + \cos(2\omega_{3}+\omega_{2})\cdot t\right]$$

IMD3: stark störende Intermodulationsprodukte mit $2f_2$ - f_3 und $2f_3$ - f_2

$$2f_2 - f_3 = 2f_2 - (\Delta f + f_2) = f_2 - \Delta f = f_1$$

$$2f_3 - f_2 = 2f_3 - (f_3 - \Delta f) = f_3 + \Delta f = f_4$$

Differenzprodukte: Direkte Störung der Nachbarkanäle

$$+ \left[a_{2}\hat{u}_{2}\hat{u}_{3} + \frac{3a_{4}\hat{u}_{2}^{3}\hat{u}_{3}}{2} + \frac{3a_{4}\hat{u}_{3}^{3}\hat{u}_{2}}{2} \right] \cdot \cos(\omega_{2} - \omega_{3}) \cdot t$$

$$+ \left[a_{2}\hat{u}_{2}\hat{u}_{3} + \frac{3a_{4}\hat{u}_{2}^{3}\hat{u}_{3}}{2} + \frac{3a_{4}\hat{u}_{3}^{3}\hat{u}_{2}}{2} \right] \cdot \cos(\omega_{2} + \omega_{3}) \cdot t$$

$$+\frac{3a_{3}\hat{u}_{2}^{2}\hat{u}_{3}}{4} \cdot \left[\cos(2\omega_{2}-\omega_{3})\cdot t + \cos(2\omega_{2}+\omega_{3})\cdot t\right] + \frac{3a_{3}\hat{u}_{2}\hat{u}_{3}^{2}}{4} \cdot \left[\cos(2\omega_{3}-\omega_{2})\cdot t + \cos(2\omega_{3}+\omega_{2})\cdot t\right]$$

$$+\frac{a_{4}\hat{u}_{2}^{3}\hat{u}_{3}}{2} \cdot \left[\cos(3\omega_{2}-\omega_{3})\cdot t + \cos(3\omega_{2}+\omega_{3})\cdot t\right] +\frac{a_{4}\hat{u}_{2}\hat{u}_{3}^{3}}{2} \cdot \left[\cos(3\omega_{3}-\omega_{2})\cdot t + \cos(3\omega_{3}+\omega_{2})\cdot t\right] +\frac{3a_{4}\hat{u}_{2}^{2}\hat{u}_{3}^{2}}{4} \cdot \left[\cos[2(\omega_{2}-\omega_{3})\cdot t] + \cos[2(\omega_{2}+\omega_{3})\cdot t]\right]$$

IMD2:

$$\hat{u}_1 = \hat{u}_2 = \hat{u}_3 = \hat{u}_4$$

Differenzprodukt f_2 - f_3 Summenprodukt f_3 + f_2

IMD3: stark störende Intermodulationsprodukte mit $2f_2$ - f_3 und $2f_3$ - f_2

IMD4 (IMD5, IMD6, IMD7, ...):

Weitere Intermodulationsprodukte, die auch stören können

 \uparrow 2 f_2+f_3

 $3f_3-f_2$

 $2(f_3+f_2)$

 $3f_2 + f_3$

 $2f_3-f_2$ $2f_2$

 f_3+f_2

 $3f_2 - f_3$

 $2(f_3-f_2)$

 $f_3 - f_2$

$$u_{out}(t) = R_A \left\{ \frac{a_2}{2} \left\langle \hat{u}_2^2 + \hat{u}_3^2 \right\rangle + \frac{3a_4}{8} \left\{ \hat{u}_2^4 + \hat{u}_3^4 \right\} + \frac{3}{2} \hat{u}_2^2 \hat{u}_3^2 \cdot a_4 \right\}$$

$$+a_1\{\hat{u}_2\cos\omega_2t+\hat{u}_3\cos\omega_3t\}$$

1. Nutzsignal bei der Frequenz f_1

$$u_{out}(t) = R_A a_1 \hat{u}_1 \cdot \cos(\omega_1 t) \sim \hat{u}_1$$

$$+ a_1 \left\{ \hat{u}_2 \cos \omega_2 t + \hat{u}_3 \cos \omega_3 t \right\} + \frac{3a_3}{2} \left\langle \frac{\hat{u}_2^3}{2} + \hat{u}_2 \hat{u}_3^2 \right\rangle \cos \omega_2 t$$

$$1. \text{ Nutzsignal bei der Frequenz } f_1$$

$$u_{out}(t) = R_A a_1 \hat{u}_1 \cdot \cos(\omega_1 t) \sim \hat{u}_1$$

$$+ \frac{3a_3}{2} \left\langle \frac{\hat{u}_3^3}{2} + \hat{u}_2^2 \hat{u}_3 \right\rangle \cos \omega_3 t$$

Grundwellen

$$\hat{u}_1 = \hat{u}_2 = \hat{u}_3 = \hat{u}_4$$

$$+\frac{a_{2}}{2}\left\{\hat{u}_{2}^{2}\cos 2\omega_{2}t+\hat{u}_{3}^{2}\cos 2\omega_{3}t\right\}+\frac{a_{4}}{2}\left\{\hat{u}_{2}^{4}\cos 2\omega_{2}t+\hat{u}_{3}^{4}\cos 2\omega_{3}t\right\}\\+\frac{3a_{4}}{2}\hat{u}_{2}^{2}\hat{u}_{3}^{2}\left\{\cos 2\omega_{2}t+\cos 2\omega_{3}t\right\}$$

$$+\frac{a_3}{4}\left\{\hat{u}_2^3\cos 3\omega_2 t + \hat{u}_3^3\cos 3\omega_3 t\right\} + \frac{a_4}{8}\left\{\hat{u}_2^4\cos 4\omega_2 t + \hat{u}_3^4\cos 4\omega_3 t\right\}$$

2. und 3. Oberwellen

Ausgangsleistung des Nutzsignals bei f_1

$$\hat{u}_1 = \hat{u}_2 = \hat{u}_3 = \hat{u}_4$$

2

2. Störsignal der Frequenz 2f2 - f3

$$+\frac{3a_{3}\hat{u}_{2}^{2}\hat{u}_{3}}{4} \cdot \left[\cos(2\omega_{2}-\omega_{3})\cdot t + \cos(2\omega_{2}+\omega_{3})\cdot t\right] + \frac{3a_{3}\hat{u}_{2}\hat{u}_{3}^{2}}{4} \cdot \left[\cos(2\omega_{3}-\omega_{2})\cdot t + \cos(2\omega_{3}+\omega_{2})\cdot t\right]$$

IMD3: stark störende Intermodulationsprodukte mit $2f_2$ - f_3 und $2f_3$ - f_2

$$2f_2 - f_3 = 2f_2 - (\Delta f + f_2) = f_2 - \Delta f = f_1$$

Differenzprodukte: Direkte Störung der Nachbarkanäle

Ausgangsleist

Erhöhung der Eingangsleistung P_{in} um 1 dB

 \rightarrow Anstieg von P_0 um 1 dB, aber von P_{IM3} um 3 dB

Intermodulation Level IML₃

Messung des IML3 und IP3 Large-Signal Operation Measurement Setup

Intermodulation Level IML₃

 $20
ightharpoonup P_{out}$ in dBm

-90

Noise

Floor

-70

 $\hat{u}_1 = \hat{u}_2 = \hat{u}_3 = \hat{u}_4$

IML_3 nimmt mit der Eingangsspannung \hat{u}_2^2 ab:

$$IML_3 = +20 \lg \left[\frac{4}{3} \frac{a_1}{a_3} \frac{1}{\hat{u}_2^2} \right]$$

Maximale Eingangsspannung/-leistung bei der ein bestimmter, minimaler *IML*₃ nicht unterschritten wird, z.B.

Mobilfunksystem $IML_{3,min}$ = 44 dB

$$10^{\frac{IML_3}{20}} = \left[\frac{4}{3}\frac{a_1}{a_3}\frac{1}{\hat{u}_2^2}\right] \Longrightarrow \hat{u}_2^2 = \left[\frac{4}{3}\frac{a_1}{a_3}\frac{1}{10^{\frac{IML_3}{20}}}\right]$$

$$P_{in,IM3} = 10 \lg \left[\frac{\hat{u}_2^2}{2R} \right] = 10 \lg \left[\frac{1}{2R} \frac{4}{3} \frac{a_1}{a_3} \right] - 10 \lg \left[10^{\frac{IML_3}{20}} \right]$$

Eingangsleistung:

 P_{in} in dBm

$$P_{in,IM3} = 10 \lg \left[\frac{1}{2R} \frac{4}{3} \frac{a_1}{a_3} \right] - \frac{IML_3}{2}$$

-50

 1 -30 P_{in}

 $P_{in,IM3}, \hat{u}_2$

Intermodulation Level IML₃ Interception Point IP₃ für IML₃=0dB

Intermodulation Level IML_3 Interception Point IP_3 für IML_3 =0dB

Messung des IML3 und IP3 Large-Signal Operation Measurement Setup

Eingangsleistung P_{in} wird schrittweise erhöht \rightarrow Messung von P_0 , P_{IM3} , IML_3 = fct(P_{in})

Viele Kommunikationssysteme mit Frequenzmultiplex tolerieren nur einen bestimmten, minimalen IML_3 , der meist in Standards vorgegeben ist, z.B. $IML_{3,min} \ge 44$ dB im Mobilfunk

Eingangsleistung P_{in} wird schrittweise erhöht Nobis Messung von $IML_3 = P_0 - P_{IM3} = 44$ dBm ergibt FI

Dynamikbereich von nichtlinearen Kommunikationssystemen

Inhalt der Nachrichtentechnik

Teil 3: Analoge Hochfrequenz-Signalverarbeitung

- 8 Modulation hochfrequenter Signale und Multiplexverfahren
- 8.1 Modulation und Demodulation eines hochfrequenten Trägersignals
 - 8.1.1 Aufwärtsmischung (Sender) und Erzeugung eines AM-Signals
 - 8.1.2 Abwärtsmischung (Empfänger) und Demodulation
- 8.2 Intermodulation
 - 8.2.1 Intermodulation in Frequenzmultiplexsystemen
 - 8.2.2 Passive Intermodulation (PIM)
- 8.3 Grundlegende Multiplexverfahren

Codemultiplex und Bandspreiztechnik

Passive Intermodulation (PIM) Ursachen und Auswirkungen

Benchmark für Mobilfunk insbes. 4G & 5G-Funkzellen

PIM ist das Resultat parasitärer Nichtlinearitäten – typischerweise

- in Kabeln, Steckverbindungen, Schaltern, Isolatoren, Speisenetzwerken (Feeder), Antennen, Antennenanlagen,
- umgebende Objekte wie Antennenmasten oder Metallzäune und -aufhängungen.

Eine fehlerhafte Verbindung, schlecht gewartetes Zubehör, geringfügige Schäden an einer Antenne oder sogar eine rostige Schraube können Frequenzstörungen hervorrufen.

PIM entsteht selbst wenn **keine aktive Komponenten** im betrachteten System sind.

Passive Intermodulation (PIM) Ursachen und Auswirkungen (Beispiel: GSM)

Selbst wenn die PIM-Signale mehrere 10 dB oder gar 100 dB unterhalb der sie erzeugenden Nutzsignalpegeln liegen, können diese bei Duplexbetrieb des Senders und Empfängers, d.h. bei Nutzung der gleichen Speisnetzwerke und Antennen, etc., wie in vielen Kommunikationssystemen üblich, zu erheblichen Störungen führen.

Passive Intermodulation (PIM3/IM5-Signal besitzt 3/5-fache Ursachen und Auswirkunge Bandbreite der Sendersignale!

IM3: BW=30 MHz

2•925-955=895 MHz

2•935-945=925 MHz

Sender: BW=10 MHz

 f_1 =(925-935) MHz

 f_2 =(945-955) MHz

IM5: BW=50 MHz

3•925-2•955=865 MHz

3•935-2•945=915 MHz

Bandbreite IM3/IM5 i.e. +43 dBm

Rx: 890-915 MHz

 $S_{R_{V}}=10...-102 \text{ dBm}$

Tx: 930 & 950 MHz

960MHz

 P_{Tv} =43 dBm

930M

915M

Rx Band

890M

Tx Band

Sender: 20 W (+43 dBm)

Tx f_1 =930 MHz & f_2 =950 MHz

Empfänger: 10 ... -102 dBm)

Rx *f*=890 MHz ... 915 MHz

PIM (Annahme): -80 bis -100 dB

→ Resultierende Störpegel:

43 dBm - 80/100 dB = -37/-57 dBm

 $2f_1 - f_2 = 910 \text{ MHz}$ IM3:

 $2f_2 - f_1 = 970 \text{ MHz}$

 $3f_1 - 2f_2 = 890 \text{ MHz}$ **IM5:**

 $3f_2$ -2 f_1 =990 MHz

Passive Intermodulation (PIM) Ursachen und Auswirkungen (Beispiel: GSM)

PIM ist für Komponentenentwickler & Netzwerkbetreiber eine echte Herausforderung

PIM wirkt sich auf alle HF-basierten KOMsysteme aus, insbesondere

mit hohen Datenraten > 100 Mbit/s

PIM mittlerweile als Branchen-Benchmark zur Bestimmung der Funktionsfähigkeit einer Funkzelle.

Tx Band

Rx Band

Danke für die Aufmerksamkeit

Technische Universität Darmstadt (TUD)

Mikrowellentechnik (MWT) • Microwave Engineering Lab

Institut für Mikrowellentechnik und Photonik (IMP)

Merckstrasse 25, 64283 Darmstadt, Tel.: +49 6151-16-28460, E-Mail: rolf.jakoby@tu-darmstadt.de

