18 mars 2023 MP2I

Devoir Surveillé 7

Je vous rappelle les consignes :

- Écrire lisiblement sur des feuilles grandes et doubles, au stylo ou à l'encre bleu foncé ou noir et souligner ou encadrer ses résultats. On accordera de l'importance à la présentation.
- La calculatrice est interdite.
- Vous avez le droit de sauter des questions et d'admettre les résultats correspondants pour traiter les questions suivantes.
- Les deux problèmes sont indépendants et vous pouvez les traiter dans l'ordre que vous désirez. Il est conseillé de parcourir le sujet dans sa globalité avant de commencer.
- La durée de ce devoir est de 3 heures 30.

PROBLÈME APPROXIMATION DU LOGARITHME (ENVIRON 40MIN)

Le but de ce problème est de voir comment calculer une valeur approchée de $\ln(x)$ pour $x \in \mathbb{R}_+^*$.

On fixe
$$n \in \mathbb{N}^*$$
. Pour $x \in [0,1]$, on pose $f_n(x) = \frac{x^n}{1+x}$.

1) Justifier que
$$\forall t \in [0,1], \ \frac{1}{1+t} = \sum_{k=0}^{n-1} (-1)^k t^k + (-1)^n f_n(t).$$

2) En déduire que
$$\forall x \in [0,1]$$
, $\ln(1+x) = \sum_{k=0}^{n-1} \frac{(-1)^k x^{k+1}}{k+1} + (-1)^n \int_0^x f_n(t) dt$.

3) Vérifier que pour $t \in [0,1], |f_n(t)| \le t^n$ et en déduire que :

$$\forall x \in [0,1], \ \left| \ln(1+x) - \sum_{k=1}^{n} \frac{(-1)^{k-1} x^k}{k} \right| \le \frac{x^{n+1}}{n+1}.$$

4) En déduire que
$$\forall x \in [0,1]$$
, $\ln(1+x) = \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{(-1)^{k-1} x^k}{k} = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1} x^k}{k}$.

On peut donc approcher les valeurs de $\ln(1+x)$ pour $x \in [0,1]$ en calculant $S_n(x) = \sum_{k=1}^n \frac{(-1)^{k-1}x^k}{k}$.

- 5) Justifier que cette approximation est beaucoup plus précise pour $\ln\left(\frac{3}{2}\right)$ que pour $\ln(2)$. Pour environ quelle valeur de $n \in \mathbb{N}^*$ a-t-on $S_n\left(\frac{1}{2}\right)$ proche de $\ln\left(\frac{3}{2}\right)$ à 10^{-2} près? Même question pour l'approximation de $\ln(2)$ par $S_n(1)$. On justifiera!
- 6) Soit $X \geq 2$. Justifier qu'il existe $N \in \mathbb{N}^*$ tel que $1 \leq X^{\frac{1}{N}} < 2$ et déterminer la plus petite valeur de N vérifiant ceci. On exprimera N à l'aide d'une partie entière dépendant de $\ln(X)$ et $\ln(2)$.
- 7) Comment approcheriez-vous ln(X) si $2 \le X$? Comment approcheriez-vous ln(X) si $X \in [0,1[$?

PROBLÈME

AUTOUR DES MATRICES NILPOTENTES (ENVIRON 2H40)

Définition et notations :

- On note 0_n la matrice nulle de $\mathcal{M}_n(\mathbb{C})$ et I_n la matrice identité de $\mathcal{M}_n(\mathbb{C})$.
- Soit $M \in \mathcal{M}_n(\mathbb{C})$. On dit que M est nilpotente si il existe $N \in \mathbb{N}^*$ tel que $M^N = 0_n$.
- Si $M \in \mathcal{M}_n(\mathbb{C})$ on pose $\operatorname{Tr}(M) = \sum_{i=1}^n m_{i,i}$ la trace de M. La trace de M est la somme des coefficients diagonaux de M.

La partie I se concentre sur l'étude d'exemples et énonce en fin de partie deux résultats utilisés par la suite. Les parties II et III sont indépendantes entre elles.

Partie I. Propriétés et exemples.

- 1) Définition de l'indice de nilpotence. Soit $A \in \mathcal{M}_n(\mathbb{C})$ nilpotente.
 - a) Justifier que l'ensemble $\{k \in \mathbb{N}^* / A^k = 0_n\}$ admet un minimum.
 - b) Soit $N \in \mathbb{N}^*$. Montrer que :

$$N$$
 est le minimum de $\{k \in \mathbb{N}^* / A^k = 0_n\} \Leftrightarrow (A^N = 0_n \text{ et } A^{N-1} \neq 0_n)$.

Cet entier N est appelé l'indice de nilpotence de A.

- 2) Exemples.
 - a) Montrer que $A_1 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et $B_1 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ sont nilpotentes et déterminer leurs indices de nilpotence.
 - b) Montrer que $A_2 = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix}$ et $B_2 = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ -1 & 1 & -1 \end{pmatrix}$ sont nilpotentes et déterminer leurs indices de nilpotence.
 - c) Montrer que $A_3 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ est nilpotente et déterminer son indice de nilpotence.
- 3) Somme et produit. Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ deux matrices nilpotentes d'indices de nilpotence respectif N_1 et N_2 . On suppose que A et B commutent.
 - a) Montrer que $A \times B$ est nilpotente.
 - b) Montrer que A + B est nilpotente.
 - c) Montrer que ces deux résultats sont faux sans l'hypothèse de commutativité de A et B en explicitant des contre exemples.

On admet alors les deux résultats suivants qui au vu des exemples précédents ne devraient pas vous surprendre et qui seront utiles dans les parties suivantes :

- Si $A \in \mathcal{M}_n(\mathbb{C})$ est nilpotente, alors $A^n = 0_n$ (autrement dit l'indice de nilpotence de A est inférieur ou égal à n la taille de la matrice).
- Si $A \in \mathcal{T}_n^+(\mathbb{C})$ est triangulaire supérieure avec tous ses coefficients diagonaux nuls, alors A est nilpotente.

2

Partie II. Racines carrées de matrices.

Soit $A \in \mathcal{M}_n(\mathbb{C})$. On dit que A admet une racine carrée dans $\mathcal{M}_n(\mathbb{C})$ si il existe $B \in \mathcal{M}_n(\mathbb{C})$ telle que $B^2 = A$.

- 4) Racines carrées de matrices nilpotentes.

 - a) Montrer que $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ n'a pas de racine carrée. b) Montrer que $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ a une racine carrée. On cherchera une solution « évidente ».
 - c) Soit $A \in \mathcal{M}_n(\mathbb{C})$ nilpotente non nulle d'indice $N \in \mathbb{N}^*$. On suppose qu'il existe $B \in \mathcal{M}_n(\mathbb{C})$ telle que $B^2 = A$.
 - i) Justifier que B est nilpotente. Que peut-on dire de l'indice de nilpotence de B?
 - ii) En utilisant la première partie, justifier que $N \leq \frac{n+1}{2}$. En déduire que la matrice

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 n'admet pas de racine carrée.

- 5) Racines carrées de matrices de la forme $I_n + A$ avec A nilpotente. Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice nilpotente d'indice $N \in \mathbb{N}^*$.
 - a) Donner la forme du développement limité à l'ordre N-1 en 0 de $\sqrt{1+x}$.

On a donc $\sqrt{1+x} = P(x) + o(x^{N-1})$ où $P(X) \in \mathbb{R}_{N-1}[X]$. On pose alors $Q(X) = (P(X))^2$.

- b) Justifier que $Q(x) = 1 + x + o(x^{N-1})$. En déduire la valeur des coefficients de Q associés aux X^k pour $k \in [0, N-1]$.
- c) En déduire que B = P(A) est une racine carrée de $I_n + A$.
- d) Déterminer à l'aide de la méthode précédente (et uniquement à l'aide de cette méthode) une

racine carrée de
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
.

Partie III. Une caractérisation des matrices nilpotentes

Soit $A \in \mathcal{M}_n(\mathbb{C})$. Le but de cette partie est de montrer que A est nilpotente si et seulement si $\forall N \in \mathbb{N}^*, \ \operatorname{Tr}(A^N) = 0.$ La trace d'une matrice est définie en tout début d'énoncé.

On admet dans cette partie (ce que vous démontrerez l'an prochain) qu'il existe $P \in GL_n(\mathbb{C})$ une matrice inversible et $T \in \mathcal{T}_n^+(\mathbb{C})$ une matrice triangulaire telles que $P^{-1}AP = T$. Pour fixer les notations, on notera T sous la forme :

$$T = \begin{pmatrix} \lambda_1 & * & \dots & * \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \dots & 0 & \lambda_n \end{pmatrix} \text{ où } \lambda_1, \dots, \lambda_n \in \mathbb{C} \text{ sont les coefficients diagonaux de } T.$$

- 6) Des résultats utiles.
 - a) Montrer par récurrence que $\forall N \in \mathbb{N}^*, \ T^N = P^{-1}A^NP$.
 - b) En déduire que A est nilpotente si et seulement si T est nilpotente.
 - c) Montrer que T est nilpotente si et seulement si $\forall k \in [1, n], \ \lambda_k = 0.$ On pourra étudier les coefficients diagonaux de T^N .

3

- d) Montrer que si $B, C \in \mathcal{M}_n(\mathbb{C})$, alors $\text{Tr}(B \times C) = \text{Tr}(C \times B)$.
- e) En déduire que $\forall N \in \mathbb{N}^*, \ \operatorname{Tr}(T^N) = \operatorname{Tr}(A^N).$
- f) Montrer que $\forall N \in \mathbb{N}^*$, $\operatorname{Tr}(T^N) = \sum_{k=1}^n \lambda_k^N$.
- 7) En déduire que démontrer le résultat énoncé en début de partie revient à montrer que

$$\forall k \in [1, n], \ \lambda_k = 0 \Leftrightarrow \forall N \in \mathbb{N}^*, \ \sum_{k=1}^n \lambda_k^N = 0$$

et démontrer le sens direct.

- 8) Sens indirect. Réciproquement, on suppose que $\forall N \in \mathbb{N}^*$, $\sum_{k=1}^n \lambda_k^N = 0$ et on raisonne par l'absurde en supposant qu'il existe $k_1 \in [\![1,n]\!]$ tel que $\lambda_{k_1} \neq 0$.
 - a) Justifier qu'il existe $k_2 \in [1, n]$ tel que $\lambda_{k_2} \neq 0$ et $\lambda_{k_2} \neq \lambda_{k_1}$.

On s'intéresse alors aux coefficients $\lambda_1, \ldots, \lambda_n$ qui sont non nuls (il y en a au moins deux distincts d'après la question précédente). Quitte à les renommer et les renuméroter, on considère que les valeurs distinctes non nulles qui apparaissent sont $\lambda_1, \ldots, \lambda_p$ avec $p \in [2, n]$ où λ_1 apparait $a_1 \in \mathbb{N}^*$ fois, λ_2 apparait $a_2 \in \mathbb{N}^*$ fois, etc.

- b) On pose $V_p \in \mathcal{M}_p(\mathbb{C})$ la matrice définie par $\forall i, j \in [\![1, p]\!], \ (V_p)_{i,j} = \lambda^i_j \text{ et } X \in \mathcal{M}_{p,1}(\mathbb{C})$ la matrice définie par $X = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{pmatrix}$. Calculer les coefficients de $V_p \times X$ et vérifier que $V_p X = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$.
- c) Inversibilité de V_p . On va montrer par récurrence sur p que la matrice V_p est inversible.
 - i) Montrer que la matrice $V_2 = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_1^2 & \lambda_2^2 \end{pmatrix}$ où λ_1, λ_2 sont non nuls et distincts est inversible.
 - ii) On suppose que si $\lambda_1,\ldots,\lambda_p$ sont deux à deux distincts et non nuls, alors V_p est inversible. On fixe alors $\lambda_1,\ldots,\lambda_{p+1}$ deux à deux distincts et non nuls et on considère V_{p+1} . Écrire graphiquement la matrice obtenue en partant de V_{p+1} et en effectuant les opérations élémentaires sur les lignes et les colonnes suivantes :
 - $\bullet L_{p+1} \leftarrow L_{p+1} \lambda_1 L_p$ $\bullet L_p \leftarrow L_p \lambda_1 L_{p-1}$ $\bullet \dots$ $\bullet L_2 \leftarrow L_2 \lambda_1 L_1$ $\bullet \forall j \in [2, p+1], C_j \leftarrow \frac{1}{\lambda_j \lambda_1} C_j.$
 - iii) En déduire que V_{p+1} est inversible.
- d) Montrer que $X = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ et conclure sur la preuve du sens indirect.