Koosolekud

Sirges reas on N mäge, mis on nummerdatud vasakult paremale 0...N-1. Mäe number i ($0 \le i \le N-1$) kõrgus on H_i . Igal mäel elab üks inimene.

Sul on plaanis korraldada Q koosolekut, mis on nummerdatud $0\ldots Q-1$. Koosolekule j $(0\leq j\leq Q-1)$ tulevad mägede $L_j\ldots R_j$ $(0\leq L_j\leq R_j\leq N-1)$ elanikud. Selle koosoleku kohaks pead Sa valima mäe x $(L_j\leq x\leq R_j)$. Koosoleku korraldamise hind leitakse vastavalt selle toimumise kohale järgmiselt:

- Mäelt y ($L_j \leq y \leq R_j$) mäele x koosolekule mineku kulu on kõrgeima teele jääva mäe kõrgus (mäed x ja y ise kaasa arvatud). Muu hulgas on mäe x elaniku enda kulu H_x .
- Koosoleku hind on kõigi sellel osalejate kulude summa.

Leia iga koosoleku korraldamise minimaalne hind.

Iga koosoleku järel lähevad kõik oma kodudesse tagasi, seega koosoleku hind ei sõltu eelmistest koosolekutest.

Realisatsioon

Lahendusena tuleb realiseerida funktsioon

int64[] minimum_costs(int[] H, int[] L, int[] R)

- \bullet H: massiiv pikkusega N, mis näitab mägede kõrgusi.
- ullet L ja R: massiivid pikkusega Q, mis näitavad koosolekute osalejate hulki.
- Funktsioon peab tagastama massiivi C pikkusega Q, kus C_j ($0 \le j \le Q 1$) peab olema koosoleku j minimaalne hind.
- ullet Pane tähele, et N ja Q on massiivide pikkused ja need saab kätte lehel "Realisatsioon" kirjeldatud viisidel.

Näide

Olgu
$$N=4$$
, $H=[2,4,3,5]$, $Q=2$, $L=[0,1]$, $R=[2,3]$.

Keskkond kutsub välja minimum_costs([2, 4, 3, 5], [0, 1], [2, 3]).

Koosoleku j=0 jaoks $L_j=0$ ja $R_j=2$, seega osalevad mägede 0, 1 ja 2 elanikud. Kui pidada koosolek mäel 0, on selle hind järgmine:

- Mäe 0 elaniku jaoks on osalemise kulu $\max\{H_0\}=2$.
- Mäe 1 elaniku jaoks on osalemise kulu $\max\{H_0,H_1\}=4.$
- Mäe 2 elaniku jaoks on osalemise kulu $\max\{H_0, H_1, H_2\} = 4$.
- Seega on koosoleku 0 hind sel juhul kokku 2+4+4=10.

Seda koosolekut odavamalt pidada ei saa, seega ongi koosoleku 0 minimaalne hind 10.

Koosoleku j=1 jaoks $L_j=1$ ja $R_j=3$, seega osalevad mägede 1, 2 ja 3 elanikud. Kui pidada koosolek mäel 2, on selle hind järgmine:

- Mäe 1 elaniku jaoks on osalemise kulu $\max\{H_1,H_2\}=4.$
- Mäe 2 elaniku jaoks on osalemise kulu $\max\{H_2\}=3.$
- ullet Mäe 3 elaniku jaoks on osalemise kulu $\max\{H_2,H_3\}=5.$
- ullet Seega on koosoleku 1 hind sel juhul kokku 4+3+5=12.

Seda koosolekut odavamalt pidada ei saa, seega ongi koosoleku 1 minimaalne hind 12.

Abimaterjalide ZIP-arhiivis olevad failid sample-01-in.txt ja sample-01-out.txt vastavad sellele näitele. Arhiivis on ka teisi sisendi ja väljundi näiteid.

Piirangud

- $1 \le N \le 750000$
- $1 \le Q \le 750000$
- $1 \le H_i \le 1\,000\,000\,000\,(0 \le i \le N-1)$
- $0 \le L_j \le R_j \le N 1 \ (0 \le j \le Q 1)$
- $(L_j,R_j)
 eq (L_k,R_k)$ $(0 \le j < k \le Q-1)$

Alamülesanded

- 1. (4 punkti) $N \leq 3\,000$, $Q \leq 10$
- 2. (15 punkti) $N \leq 5\,000$, $Q \leq 5\,000$
- 3. (17 punkti) $N \leq 100\,000$, $Q \leq 100\,000$, $H_i \leq 2$ ($0 \leq i \leq N-1$)
- 4. (24 punkti) $N \leq 100\,000$, $Q \leq 100\,000$, $H_i \leq 20$ ($0 \leq i \leq N-1$)
- 5. (40 punkti) Lisapiirangud puuduvad

Hindamisprogramm

Arhiivis olev hindamisprogramm loeb sisendit järgmises vormingus:

- rida 1: NQ
- rida 2: H_0 H_1 \cdots H_{N-1}
- rida 3+j ($0 \leq j \leq Q-1$): L_j R_j

Hindamisprogramm väljastab funktsiooni minimum_costs tagastatud väärtuse järgmises vormingus:

• rida 1 + j ($0 \le j \le Q - 1$): C_j