Декомпозиция линейных автоматов над кольцом вычетов в сдвиговые регистры *

Арнольд Шойинг (Arnold Scheuing)

Институт информатики и прикладной математики, Бернский университет, СН-3012 Берн, Швейцария

Аннотация

Линейный автомат \mathfrak{A} над факторкольцом \mathbb{Z}_n , $n \in \mathbb{N}$, в общем случае неразложим на параллельно соединённые сдвиговые регистры. Мы смогли сформулировать необходимые и достаточные условия для такого разложения, используя торию об артиновых локальных кольцах R и R[x]-модульной структуре \mathfrak{A} .

1 Введение

Структура конечного, детерминированного линейного автомата (далее KA) интересна не только с точки зрения информатики, но и с точки зрения теории систем. Сфера применений KA, называемых также линейными последовательными схемами (LCS) включает в себя обнаружение и исправление ошибок, генераторы случайных чисел, криптологию (мотивация автора), а также конечномерные линейные системы с постоянными коэффициентами и дискретным или непрерывным временем. До тех пор пока коэффициенты такого автомата или системы являются элементами поля F, структура хорошо известна и тщательно изучалась последние двадцать лет [4] с помощью линейной алгебры: пространство состояний E автомата $\mathfrak A$ — это конечномерное векторное пространство E над F, а функция перехода может быть рассмотрена как эндоморфизм в E или как матрица A над F, если базис в E зафиксирован.

Для нахождения более "простого"эквивалентного \mathfrak{A} KA можно использовать взаимооднозначное соответствие между KA, эквивалентными \mathfrak{A} , и матрицами, подобными A. Есть существенные причины для выбора рациональной канонической формы A как наиболее "простой потому что она соответствует разложению A на параллельные сдвиговые регистры.

На рисунке 1 мы показываем три представления КА относительно данного базиса B в E. Рисунок 1(a) соответствует сдвиговому регистру (его технической реализации) с 3-мерным пространством состояний, каждое из которых обладает компонентами (s_1, s_2, s_3) . В теории систем s_i и a_i называются, соответственно, элементами задержки и умножения. Каждый такт элемент из s_3 переходит в s_2 , из s_2 — в s_1 и сумма $a_0s_1+a_1s_2+a_2s_3$ (в поле F) попадает в s_3 . На рисунке 1(б) изображено представление линейной функции f в форме матрицы 3×3 . Эта специальная форма называется сопровождающей матрицей. Если полином $x^3-a_2x^2-a_1x-a_0$ является несократимым в F[x], тогда КА нельзя разложить. Рисунок 1(в) указывает F[x]-модуль ранга 3, например, базис B имеет три элемента: e, f(e), $f^2(e)$, и

$$f^{3}(e) = a_{0}e + a_{1}f(e) + a_{2}f^{2}(e).$$

^{*}Результаты приведённые в данной работе являются частью докторской диссертации автора, которой руководил профессор Урс Вюрглер (Urs Würgler) из Бернского университета.

Рис. 1: Соответствующие представления $(a_0, a_1, a_2 \in F)$. (a) Сдвиговый регистр. (б) Сопровождающая матрица. (в) Циклический F[x]-модуль ранга 3.

Взаимооднозначное соответствие между этими структурами используется на всём протяжении данной работы: диаграммы КА и сдвиговые регистры для визуализации технической реализации, матрицы для расчётов в примерах, а модули для развития теории.

Известно, что КА с коэффициентами над полем может быть всегда реализован с помощью параллельного соединения сдвиговых регистров [9]. Но в применениях, указанных выше, нас также интересуют системы над кольцами $\mathbb Z \mod 2^r (r \in \mathbb N)$. Например, в криптологии процесс автоматизированного шифрования и расшифрования связан с диапазоном значений 2^r регистра с r бинарными разрядами.

Хорошее исследование расширения теории линейных систем от полей до колец за последние десять лет можно найти в работе [12]. Принцип двойственности для линейных систем над факторкольцами рассматривалась в работах [2, 8]. Представление матричных дробей для линейных систем над коммутативными кольцами также было изучено в работе [5].

В разделе 5 мы приводим пример КА над \mathbb{Z}_4 , который и не является, и не разложим на сдвиговые регистры. Следовательно, возникает вопрос, при каких условиях КА над \mathbb{Z}_n может быть реализован как параллельное соединение сдвиговых регистров. Похожая проблема изучалась в работах [6, 7], путём использования биекции $\beta:\mathbb{Z}_{p^r}\approx\prod_1^r\mathbb{Z}_p$ для декомпозиции КА $\mathfrak A$ над \mathbb{Z}_{p^r} в каскад из r автоматов $\mathfrak A_i$ над \mathbb{Z}_p . Но поскольку β не является гомоморфизмом колец, $\mathfrak A_i$ соединены с помощью нелинейной логикой без задержек, которая ограничивает дальнейший анализ посредством коммутативной алгебры.

Данная работа состоит из следующих разделов: в разделе 2 мы покажем, что \mathbb{Z}_n -свободные $\mathbb{Z}_n[x]$ -модули являются подходящими математическими объектами для изучения структуры KA над полем \mathbb{Z}_n (рисунок 1). В разделе 3 мы докажем что проблема может быть сведена к KA над \mathbb{Z}_p без потери общности; с другой стороны, рекурсивный критерий в последнем разделе предлагает не ограничивать наше внимание на конечных и локальных кольцах \mathbb{Z}_{p^r} , а рассматривать более общие (коммутативные) артиновы локальные кольца R (с 1). Следовательно, в разделе 3 мы соберём все необходимые утверждения относительно артиновых локальных колец и модулей над ними. В разделе 4 мы покажем, что наш R[x]-модуль всегда имеет примарное (primary) разложение. Основные результаты находятся в разделах 5 и 6, где мы приводим необходимые и

достаточные условия для циклического разложения пространства состояний; другими словами, условия для того, чтобы KA был эквивалентен прямой сумме сдвиговых регистров. Общий случай мы рассматриваем в разделе 5, а специальный с кольцом главных идеалов — в разделе 6.

2 Модульная структура конечного автомата

Начнём с более точного описания конечного автомата (КА).

Определение 2.1 Конечный детерминированный линейный автомат (без входных или выходных функций) над кольцом R — это пара (E,f), где пространство состояний E является свободным R-модулем конечной размерности (скажем n), а функция перехода f — это линейное отображение из E в E. Каждое $e \in E$ является состоянием KA, функция перехода отображает состояние e в новое f(e). Мы можем использовать простую нотацию без начального состояния, потому что нас интересует структура KA в целом.

Множество функций переходов над E — это кольцо эндоморфизмов $End_R(E) = \{f: E \to E | f\}$. $End_R(E)$ также является R-модулем. Этот факт может быть выражен с помощью гомоморфизма колец на следующей коммутативной диаграмме.

Для $r \in R$, $\psi(r)$ — это скалярное произведение для r из E. Так как f линейна над E, мы можем расширить ψ на R[x] как гомоморфизм колец с помощью задания $\hat{\psi}(x) := f$. Теперь E становится R[x]-модулем.

Путём параллельного соединения различных КА над одним и тем же кольцом мы можем построить более крупный автомат. Но ещё больший интерес представляет возможность разложения данного (сложного) автомата на мельчайшие, несократимые части — сдвиговые регистры.

Определение 2.2 КА (E,f) над кольцом R называется cdeuroeым регистром, если E цикличное, как R[x]-модуль. Другими словами, если существует такое начальное состояние $e \in E$, что его орбита:

$$e, f(e), f^{2}(e), ..., f^{n-1}(e)$$

охватывает E.

Под «параллельным соединением КА (E_i,f_i) » мы подразумеваем техническую реализацию (см. рисунок 2(б)), но оно попросту означает прямую сумму КА $(\bigoplus E_i,\bigoplus f_i)$. Высказывание «КА реализован как параллельное соединение сдвиговых регистров» является интуитивным способом выразить то, что E — это прямая сумма R[x]-цикличных R-свободных подмодулей.

Для формулировки первой теоремы необходима следующая нотация:

- $M_n(R)$ множество всех $n \times n$ -матриц над R,
- $GL_n(R)$ подмножество всех регулярных матриц из $M_n(R)$,

- $M_n(R)/GL_n(R)$ множество всех классов подобия матриц $(A \in M_n(R))$ подобна $T^{-1}AT$ для всех $T \in GL_n(R)$,
- $Mod_n(Rp[x])$ класс всех R-свободных R[x]-модулей E ранга n (т.е. $dim_R(E)=n$),
- $Iso(Mod_n(R[x]))$ множество классов изоморфизма таких модулей.

Теорема 2.3 Существует биекция:

$$\chi: M_n(R)/GL_n(R) \to Iso(Mod_n(R[x]))$$

Доказательство. Определение χ : Пусть $[A] \in M_n(R)/GL_n(R)$ $A \in M_n(R)$ — представители (Definition of χ : Let ... be a representant.). Далее, пусть E — свободный R-модуль ранга n. Выберем базис в E и определим $x \cdot e := A \cdot e$ ($\forall e \in E$). Таким образом E становится R[x]-модулем E_A . Определим $\chi[A] := [E_A]$ — класс изоморфизма E_A . χ определено корректно, потому что для подобных матриц $A \sim A'$, модули изоморфны: $E_A \cong E_{A'}$, следовательно, $[E_A] = [E_{A'}]$.

Определение χ' : Пусть $[F] \in Iso(Mod_n(R[x]))$ $F \in Mod_n(R[x])$ — представители (Definition of χ : Let ... be a representant.). Выберем R-базис в F, тогда (линейное) преобразование x может быть выражено с помощью матрицы A. Если мы зададим $\chi'[F] := [A]$, то оно также корректно определено и очевидно является обратной функцией к χ . \square

3 Артиновы локальные кольца и конечнопорождённые модули

В первой части этого раздела мы применим китайскую теорему об остатках для упрощения задачи с КА над \mathbb{Z}_n до КА над \mathbb{Z}_{p^r} (p — простое, $r \in \mathbb{N}$). Мы помним, что кольцо \mathbb{Z}_n изоморфно произведению колец $\prod_{i=1}^m \mathbb{Z}_{p_i^{r_i}}$, так как n единственным образом разлагается на простые множители $n=p_1^{t_1}p_2^{t_2}\cdots p_m^{t_m}$. Из этого изоморфизма вытекает следующая теорема.

Теорема 3.1 Пусть $R_1, R_2, ..., R_m$ — (коммутативные) кольца (с единицей), $R := \prod_{i=1}^m R_i$, E - R-модуль и определим $E_i := E \otimes R_i$. Тогда кольцо $End_R(E)$ изоморфно $\bigoplus_{i=1}^m End_{R_i}(E_i)$.

Доказательство. Пусть $f_i := f \otimes 1_{E_i} \in End_{R_i}(E_i)$. Мы можем определить гомоморфизм колец $\phi : End_R(E) \to \bigoplus_{i=1}^m End_{R_i}(E_i)$ как $\phi(f) := (f_1, f_2, ..., f_m)$.

Если ϕ — мономорфизм: для $f \in ker(\phi) \Rightarrow f_i = f \otimes 1_{E_i} = 0 (\forall i) \Rightarrow f(E) \cong \prod_i (f(E) \otimes R_i) = 0 \Rightarrow f = (ОПЕЧАТКА: в оригинальной статье формула обрывается).$

Если ϕ — эпиморфизм: мы выбираем произвольное $f_i \in End_{R_i}(E_i)$. Принимая во внимание диаграмму:

$$E \xrightarrow{\prod_{i} f_{i}(1_{E} \otimes \pi_{i})} \prod_{i} E_{i} = \prod_{i} (E \otimes R_{i}) \cong E \otimes \prod_{i} R_{i} \cong E,$$

$$\downarrow^{\pi_{i}} \qquad \qquad \downarrow^{\pi_{i}}$$

$$E_{i} \xrightarrow{f_{i}} E_{i}$$

получаем, что $\phi(\prod_i f_i(1_E \otimes \pi_i)) = (f_1, f_2, ..., f_m)$. \square

Следствие 3.2 KA над \mathbb{Z}_n может быть всегда реализован с помощью параллельного соединения KA над \mathbb{Z}_{p^r} .

Пример 3.3 KA над \mathbb{Z}_6 , изображенный на рисунке 2(a), изоморфен автомату на рисунке 2(b). Соответствующий модуль выглядит следующим образом:

$$E \cong \mathbb{Z}_6[x]/(x^3 - 2x^2 - 3x - 4) \cong \mathbb{Z}_2[x]/(x^3 + x) \oplus \mathbb{Z}_3[x]/(x^3 + x^2 - 1).$$

Во второй части данного раздела мы хотим собрать воедино необходимые факты об артиновых локальных кольцах и о модулях над ними.

Рис. 2: Эквивалентные KA над \mathbb{Z}_6 (со входом и выходом)

Определение 3.4 Кольцо R является артиновым, если оно нётерово и имеет размерность 0 (любой простой идеал максимален, см. [1]).

Кольцо R является локальным, если оно нётерово и имеет ровно один максимальный идеал M. Нотация: (R, M).

Пример 3.5 $(\mathbb{Z}_{p^r},(p))$ и $(\mathbb{Z}_{p^r}[x]/(x^S),(p,x))$ — это артиновы локальные кольца.

Лемма 3.6 Артиновы локальные кольца (R, M), обладают следующими свойствами:

- (а) М является единственным простым идеалом;
- (б) нильрадикал Rad(R) совпадает с M и сам является нильпотентным; наименьшее $z \in \mathbb{N}$, при котором $M^z = (0)$, называется нильпотентностью M;
- (в) каждый элемент R либо обратим, либо нильпотентен.

Снэппер (Snapper) [11] называет такие кольца «совершенно простыми кольцами». Учитывая важность канонического отображения $\pi: R \to R/Rad(R)$, мы будем использовать следующую нотацию на всём протяжении работы: $\overline{R} = R/Rad(R)$, поле остатков (residue field), $\overline{r} = \pi(r) (\forall r \in R)$, $\overline{M[x]} = \pi(M[x]) = 0$. **Примечание 3.7** В данной работе мы будем рассматривать только конечнопорождённые модули, не повторяя этот факт каждый раз.

Причина, по которой мы не можем следовать такому же разложению, как для автомата над полем F (т.е. как модули над областью главных идеалов F[x]), состоит в том, что подмодуль свободного модуля не обязательно является свободным. Но у нас есть следующая фундаментальная теорема.

Теорема 3.8 (a) В локальном кольце (S, M) все конечнопорождённые модули свободны.

- (б) Пусть (S, M) артиново локальное кольцо, $F \subset E$ оба конечнопорождённые свободные S-модули. Тогда $E \cong F \oplus E/F$.
- (в) Пусть (S,M) артиново локальное кольцо, $F,G\subset E$ три конечнопорождённых свободных S-модуля. Тогда $F\cap G$ и F+G являются свободными.

Доказательство. (a) См. [10].

- (б) Пусть $\{e_1,...,e_n\}$ и $\{f_1,...,f_m\}$ базисы в E и F, соответственно. Поскольку $F\cap E\Rightarrow f_1=\sum \phi_i e_i$ и поскольку $\{f_1,...,f_m\}$ линейно независимы, как минимум один из ϕ_i должен быть обратим (см. лемму 3.6). Без потери общности, обратимый ϕ_i подразумевает $e_1=(\phi_1^{-1})(f_1-\sum_{i<1}\phi_i e_i)$. Поэтому $\{f_1,e_2,...,e_n\}$ это базис в E. По индукции получаем, что $\{f_1,f_2,...,f_m,e_{m+1},...,e_n\}$ является базисом в E, следовательно, $E\cong F\oplus L_R(e_{m+1},...,e_n)$.
- (в) $G \to F \oplus E/F$ и оба слагаемых свободные (см. часть (б)). Пусть $\{g_1,...,g_p\}$ базис в G, а $\{f_1,f_2,...,f_m,e_{m+1},...,e_n\}$ базис в $E = F \oplus E/F$. Поскольку $g_i \in E$, мы можем заключить аналогично части (б), что $\{g_1,...,g_q,f_{q+1},...,f_m,g_{q+1},...,g_p,e_{n-m-p+q},...,e_n\}$ является базисом в E. Следовательно, $F \cap G = L_S(g_1,...,g_q)$ и $F + G = L_S(g_1,...,g_p,f_{q+1},...,f_m)$ свободны. \square

Напомним, что для несократимого полинома $\alpha \in R[x]$, отображение (projection) $\bar{\alpha} \in \bar{R}[x]$ не обязательно будет несократимым. Если оно является таковым, то мы называем α фундаментально несократимым.

Лемма 3.9 Вот некоторые важные типы идеалов в R[x] для артинова локального (R, M):

- (a) $M[x] := \{ \sum_i r_i x^i \in R[x] | r_i \in M \} \subset R[x]$ является единственным <mark>нулевым (nil)</mark> простым идеалом в R[x];
- (б) Все ненулевые простые идеалы имеют вид $M[x] + (\alpha)$, где $\alpha \in R[x]$ приведённый и фундаментально несократимый. Поскольку \bar{R} поле, эти идеалы также являются максимальными;
- (в) Ненулевой идеал в R[x] представим в виде $N+(\beta)$, где β приведённый многочлен и $N\subset M[x]$. Порождающие N могут быть всегда выбраны так, что их степень будет меньше, чем β .

Доказательство очевидно; подробности можно найти в работе [11].

4 Примарное (primary) разложение

Для начала подготовим факты и определения, связанные с идеалами. Пусть J — идеал в кольце S. Радикал в J — это $Rad(J) = \{s \in S | \exists n \in \mathbb{N} : s^n \in J\}$. Напомним,

что Rad(R):=Rad(0). J называется <mark>примарным (primary)</mark>, если для $st\in J, t\notin J\Rightarrow s\in Rad(J).$

Пусть E — это S-модуль, тогда аннигиляторный идеал в E определяется как $Ann_S(E) := \{ s \in S | se = 0 (\forall e \in E) \}.$

Определение 4.1 S-модуль называется примарным (primary), если (0) — это примарный (primary) подмодуль E. То есть se=0 (при $s\in S,\ 0\neq e\in E$) означает, что $s\in Rad(Ann_S(E))$. (Если элемент s уничтожает один элемент из E, то потентность (potency) s уничтожает всё в E.) Идеалы J и I в S называются взаимно простыми (coprime), если I+J=S.

Лемма 4.2 Пусть (R, M) — артиново локальное кольцо и I, J — примарные (primary) идеалы в R[x]. Тогда:

- (a) J, I взаимно простые $\Leftrightarrow Rad(J), Rad(I)$ взаимно простые;
- (б) Пусть J и I ненулевые (nonnil): $Rad(J) = Rad(I) \Rightarrow J$ и I взаимно простые.

Доказательство (a) (\Leftarrow): Очевидно, так как $Rad(J) \subset J$ и $Rad(I) \subset I$.

 (\Rightarrow) : Выберем $p \in Rad(J), q \in Rad(I)$ такими, что p+q=1. Теперь существуют такие $n,m \in \mathbb{N}$, для которых выполняется $p^m \in J$ и $q^n \in I$, что:

$$1 = 1^{m+n-1} = (p+q)^{m+n-1} = \sum_{k=1}^{m+n-1} \binom{m+n-1}{k} p^k \cdot q^{m+n-k-1} = p^m(...) + q^n(...) \in J+I,$$

что подразумевает $1 \in I + J$.

(б) Из леммы 3.9 мы знаем что $Rad(J) = M[x] + (\alpha), Rad(I) = M[x] + (\beta),$ где подходящие $\alpha, \beta \in R[x]$ нормированы, а $\bar{\alpha}, \bar{\beta} \in \bar{R}[x]$ взаимно просты. Следовательно, $1 \in (\bar{\alpha}) + (\bar{\beta}),$ и $1 + \nu \in (\alpha) + (\beta)$ для некоторого $\nu \in M[x]$. Таким образом, Rad(J) и Rad(I) взаимно простые и, учитывая часть (а), J и I взаимно простые. \square

Лемма 4.3 Пусть R — нётерово кольцо, и E — R-свободный R[x]-модуль. E является примарным (primary) тогда и только тогда, когда $Ann_{R[x]}(E)$ является примарным (primary).

Доказательство Пусть $A := Ann_{R[x]}(E)$.

(⇒): Допустим $\alpha\beta \in A, \beta \notin A$, подразумевая, что существует $0 \neq e \in E$, для которого $\beta e \neq 0$. Но $(\alpha\beta)e = 0 = \alpha(\beta e)$ и E примарный(primary), следовательно, $\alpha \in Rad(A)$.

 (\Leftarrow) Пусть $0 \neq e \in E, \alpha e = 0$. Мы знаем, что

$$((\alpha) + A) \cdot ((\alpha) \cap A) \subset (\alpha) \cdot A \subset (\alpha) \cap A.$$

Случай 1: $(\alpha) \cdot A = (\alpha) \cap A$. Для нётеровых колец это означает, что $(\alpha) + A = R[x]$. Следовательно, существуют такие $\beta \in R[x]$ и $\gamma \in A$, что $\beta \alpha + \gamma = 1$. Возникает противоречие: $1 \cdot e = \beta(\alpha e) + \gamma e = \beta 0 + 0$.

Cлучай 2: $(\alpha) \cdot A \neq (\alpha) \cap A$. Существует $\beta \in (\alpha) \cap A, \beta \notin (\alpha) \cdot A$ такое, что $\beta = \alpha \gamma \in A, \gamma \notin A$, следовательно, $\alpha \in Rad(A)$. Box

Нас интересуют артиновы локальные кольца, а они по определению являются нётеровыми, поэтому мы можем применить следующую важную теорему.

Теорема 4.4 В нётеровом кольце R каждый идеал имеет примарное (primary) разложение на примарные (primary, лексический повтор в оригинале) идеалы

Список литературы

- [1] M.F. Atiyah and I.G. MacDonald, Introduction to Commutative Algebra (Addison-Wesley, Reading, MA, 1969).
- [2] W.S. Ching and B.F. Wyman, Duality and the regulation problem for linear systems over commutative rings, J. Comput. System Sci. 14 (1977) 360-368.
- [3] T. Hungefford, Algebra (Holt, Rinehart & Winston, New York, 1974).
- [4] R.E. Kalman, P.L. Falb and M.A. Arbib, Topics in Mathematical System Theory (McGraw-Hill, New York, 1969).
- [5] P. Khargonekar, On Matrix Fraction Representation for Linear Systems over Commutative Rings (Center of Math. System Theory, Univ. of Florida, 1980).
- [6] M. Magidin and A. Gill, Decomposition of linear sequential circuits over residue rings,J. Franklin Inst. 294 (1972) 167-180.
- [7] M. Magidin and A. Gill, Singular shift registers over residue class rings, Math. Systems Theory 9(4) (1976) 345-358.
- [8] G. Nandi and C. Nolte, Duality for systems over rings, Inform. Control 50. (1981) 128-132.
- [9] B. Reusch, Lineare Automaten (Bibliographisches Institut, Mannheim, 1969).
- [10] J.R. Silvester, Introduction to Algebraic K-theory (Chapman & Hall, London, 1981).
- [11] E. Snapper, Completely primary rings, Ann. of Math. 52 (1950) 666-693.
- [12] E.D. Sontag, Linear systems over commutative rings, Ricerche Automat. 7(1) (1976) 1-34.
- [13] B.L. van der Waerden, Algebra 2 (Springer, Berlin, 1967).