Project 2, Dataset 2

Alice Ding

2023-02-27

Overview

For this dataset, I'll be using the first one posted by Waheeb and it represents sales data for different product lines based on a specific date. This data has one row per date and includes the following columns:

- Date
- Product Line 1
- Product Line 2
- Product Line 3

The last three columns are dollar values.

```
product_data <- read.csv("https://raw.githubusercontent.com/addsding/data607/main/project2/product-line
head(product_data)</pre>
```

```
##
        Date Product.Line.1 Product.Line.2 Product.Line.3
## 1 1/17/23
                        2500
                                       1250
                                                       5000
## 2 2/4/23
                        1000
                                       1000
                                                       4500
## 3 4/8/23
                         980
                                       2000
                                                        850
## 4 5/7/23
                         990
                                       3000
                                                        976
## 5 6/17/23
                        3000
                                       5000
                                                       1500
```

Our goal is to flatten this table to be one row per date and product line number combination before beginning analysis.

Tidying the Data

To clean this data frame, we'll be pivoting it.

```
product_data_pivot <- pivot_longer(product_data, cols=2:4, names_to="product_line", values_to="sales")
head(product_data_pivot)</pre>
```

The pivot has worked, but I'll want to reformat the product_line column to just be an int to represent each product line. The Date column also should be changed into an actual date.

Looks good, time to analyze!

Analysis

To begin, we can find the stats for sales for each product line.

```
## # A tibble: 3 x 5
     product_line
##
                     mean_sales median_sales min_sales max_sales
     <chr>
##
                          <dbl>
                                        <int>
                                                   <int>
                                                             <int>
## 1 Product Line 1
                          1694
                                         1000
                                                     980
                                                               3000
## 2 Product Line 2
                                                    1000
                                                              5000
                          2450
                                         2000
## 3 Product Line 3
                          2565.
                                         1500
                                                     850
                                                              5000
```

On average, product line 3 seems to be doing the best as on average, it has sales of \$2,500+. Product line 2 isn't that far behind at \$2,450, while product line 1 seems to trail behind at only \$1,700. We can see though that product line 3 has a pretty large range of sales from \$850 to \$5,000 – could this be due to seasonality?

```
product_time_series <- ggplot(product_data_pivot, aes(x=Date, y=sales, color=product_line)) +
    geom_line() +
    xlab("")
product_time_series</pre>
```


When looking at this data over time, it tells a very different story. Product line 2 seems to be growing a lot while product line 3 has not been doing so well, really tanking in sales for the first quarter of the year. Product line 1 was relatively consistent after a pretty huge drop from January to February, however seems to be bouncing back as of June.

Conclusion

Overall, this data was relatively simple to clean and the findings were pretty straight-forward. One piece of information that I think is super important here though is supply as well as overall price of each product line — we can't really compare the performance of each product line without knowing how much each unit costs as well as how much was actually produced. If for example, product line 1 just is priced at a lower tier and had less units made, its performance would actually be more impressive if product line 3 was over-produced and was at a much higher price point. To continue with this analysis, we'd definitely need more data points to fully gage how well each product line is performing.