METODY NUMERYCZNE - LABORATORIUM

Zadanie 4 Implementacja metod całkowania numerycznego

Opis rozwiązania

Celem tego zadania było zaimplementowanie metody złożonej kwadratury Newtona-Cotes'a opartej na trzech węzłach (wzór Simpsona) oraz kwadratury Gaussa-Hermite'a na przedziale ($-\infty$, $+\infty$) w celu obliczenia przybliżonej wartości całki oznaczonej.

Przybliżoną wartość całki obliczamy przy pomocy wzoru Simpsona:

$$\int_{x_0}^{x_2} f(x) dx \approx \frac{h}{3} (y_0 + 4y_1 + y_2)$$

Kwadratura Gaussa-Hermite'a stosowana jest do obliczania całek na przedziale ($-\infty$, $+\infty$). Kwadratura ta ma postać:

$$\int_{-\infty}^{\infty} e^{-x^2} f(x) dx = \sum_{i=0}^{2} H_i f(x_i)$$

Wyniki

1. Wyniki dla metody Newtona-Cotes'a.

X3+3x2+2x+1			
Krok	ok Dokładność Wynik		
0.1	0.1	0.177478	
0.1	0.01	4.235402	
0.1	0.001	4.401853	

cos(2x)			
Krok Dokładność Wyni		Wynik	
0.1	0.1	0.176011	
0.1	0.01	0.846734	
0.1	0.001	0.653776	

2sin(x)		
Krok Dokładność Wy		Wynik
0.1	0.1	-0.001468
0.1	0.01	-0.001468
0.1	0.001	-0.000414

x			
Krok Dokładność Wyn		Wynik	
0.1	0.1	0.008845	
0.1	0.01	0.008845	
0.1	0.001	0.973685	

4x2+3x+2			
Krok Dokładność V		Wynik	
0.1	0.1	5.432126	
0.1	0.01	6.826449	
0.1	0.001	7.052562	

2. Wyniki dla metody Gaussa-Hermite'a.

	Liczba węzłów			
Wzory	2	3	4	5
x^3+3x^2+2x+1	4.431137	4.431157	4.431139	4.431127
cos(2x)	0.276402	0.726758	0.641432	0.653224
2sin(x)	0.0	0.0	0.0	0.0
x	1.253315	0.723604	1.113037	0.835242
4x ² +3x+2	7.089818	7.089846	7.089821	7.089805

Wnioski

- Kwadratury Newtona-Cotes'a (metoda Simpsona) oparte są na przybliżeniu funkcji podcałkowej wielomianami stopnia drugiego.
- Obie metody w zależności od rodzaju funkcji z inną skutecznością całkują daną funkcję.
- W zależności od przybliżenia w metodzie Newtona-Cotes'a otrzymywaliśmy wyniki mniej lub bardziej odbiegające od spodziewanego wyniku.

1. Dla Funkcji: x^3+3x^2+2x+1

Korzystając z metody Newtona-Cotes'a przy dokładności równej **0.001** otrzymujemy wynik bliski wynikowi dla metody Gaussa-Hermite'a dla **2** węzłów. Można zauważyć że wynik dla **2** węzłów jest już bardzo dokładny dla tego typu funkcji.

2. Dla Funkcji: cos(2x)

Metoda Newtona-Cotes'a przy dokładności równej **0.001** osiąga wartość bliską wartości uzyskanej metodą Gaussa-Hermite'a dla **5** węzłów. Dalsze zwiększanie dokładności przy użyciu metody Newtona-Cotes'a przybliża poprawny wynik.

3. Dla Funkcji: 2sin(x)

Metoda Gaussa-Hermite'a już przy **2** węzłach pokazuje poprawny wynik, gdzie metoda Newtona-Cotes'a potrzebuje dużej dokładności, a i przy tej otrzyma wartość bardzo bliską **0**, ale nie **0**.

4. Dla Funkcji: |x|

- Metoda Newtona-Cotes'a wraz z zwiększoną dokładnością przybliża się od **0** do wynikowej **1'ki**. Za to metoda Gaussa-Hermite'a wraz z zwiększoną dokładnością przybliża się wynikowi odpowiednio z lewej i prawej strony ku wynikowej **1'ce**.
- Metoda Newtona-Cotes'a jest bardziej dokładna przy dokładności **0.001**, niż metoda Gaussa-Hermite'a dla **5** wezłów.
- Metoda Gaussa-Hermite'a jest dokładniejsza dla **2** węzłów niż metoda Newtona-Cotes'a przy dokładności wynoszącej **0.1**.

5. Dla Funkcji: 4x²+3x+2

Możemy zauważyć, że korzystając z metody Gaussa-Hermite'a już przy **2** węzłach osiągamy dużo dokładniejszą liczbę, gdzie korzystając z metody Newtona-Cotes'a wyniki są dość odległe i dużo wolniej z zwiększaną dokładnością przybliżają się poprawnej wartości.