Homework 2

Early problem due on Gradescope at 8 pm on Tuesday, January 31st. Due on Gradescope at 8 pm on Friday, February 3rd.

- (1) (Early problem) Define two points (x_0, y_0) and (x_1, y_1) of the plane to be equivalent if $y_0^2 + x_0^2 = y_1^2 + x_1^2$. Check that this is an equivalence relation and describe the equivalence classes.
- (2) Here is a "proof" that every relation C that is both symmetric and transitive is also reflexive: "Since C is symmetric, aCb implies bCa. Since C is transitive, aCb and bCa together imply aCa, as desired." Find the flaw in this argument.
- (3) Let $f: X \to Y$ be a surjective function. Let us define a relation on X by setting $x_1 \sim x_2$ if

$$f(x_1) = f(x_2).$$

- (a) Show that this is an equivalence relation.
- (b) Let X/\sim be the set of equivalence classes. Show that there is a bijective correspondence of X/\sim with Y.
- (4) Let < be the relation on \mathbb{R} given by x < y if $x^2 < y^2$, or if $x^2 = y^2$ and x < y. (We gave this as an example in class. It's Example 7 in the text.) Prove that < is an order relation.
- (5) Prove the following theorem:

Theorem 1. *If an ordered set A has the least upper bound property, then it has the greatest lower bound property.*

- (6) Let $A = A_1 \times A_2 \times \cdots$ and $B = B_1 \times B_2 \times \cdots$.
 - (a) Show that if $B_i \subseteq A_i$ for all i, then $B \subseteq A$. (Strictly speaking, if we are given a function mapping the index set $\mathbb{Z}_{>0}$ into the union of the sets B_i , we must change its range before it can be considered as a function mapping $\mathbb{Z}_{>0}$ into the union of the sets A_i . We shall ignore this technicality when dealing with cartesian products.)
 - (b) Show that the converse of (a) holds if each B_i is non-empty.
 - (c) Show that if A is nonempty, each A_i is non-empty. Does the converse hold?
 - (d) What is the relation between the set $A \cup B$ and the cartesian product of the sets $A_i \cup B_i$? (i.e., is there a containment in one direction or an equality? Do you need to assume any sets are non-empty to get that equality or containment?) What is the relation between the set $A \cap B$ and the cartesian product of the sets $A_i \cap B_i$?