What is claimed is:

10

15

20

1. An optical filter, comprising:

first, second, and third Mach-Zehnder interferometers;

first and second optical path change units changing an optical path of said first and second Mach-Zehnder interferometers; and

a control unit controlling a filter extinction ratio of the optical filter using a first optical path change unit and a second optical path change unit, wherein

said control unit sets an amount of a change in an optical path of said first optical path change unit and an amount of a change in an optical path of said second optical path change unit such that a filter average insertion loss of the optical filter, a filter extinction ratio, and amounts of changes in an optical path of said first and second optical path change units can satisfy a predetermined relationship.

- 2. The optical filter according to claim 1, wherein:
- a first equation indicating the predetermined relationship is obtained by simultaneously solving:
- 25 a third equation indicating the relationship

between a filter average insertion loss obtained by a second equation indicating output intensity of signal light at a waveguide terminal and an amount of a change in an optical path by said first and second optical path change units and

a fourth equation indicating the relationship between a filter extinction ratio obtained by the second equation and the amount of a change in optical path by said first and second optical path change units.

10

15

5

- The optical filter according to claim 1, wherein 3. said control device sets the amount of a change in an optical path by said first and second optical filter average that the change units such path with the filter loss be changed insertion can extinction ratio of the optical filter maintained at a predetermined value based on the relationship.
- 4. The optical filter according to claim 1, wherein

 said control device sets the amount of a change
 in an optical path by said first and second optical
 path change units such that the filter extinction ratio
 can be changed with the filter average insertion loss
 of the optical filter maintained at a predetermined
 value based on the relationship.

- 5. The optical filter according to claim 1, wherein said control device independently controls the filter extinction ratio of the optical filter and the filter average insertion loss by setting the amount of a change in an optical path by said first and second optical path change units based on the relationship.
- 6. The optical filter according to claim 1, wherein
 said first and second optical path change units
 can change the optical path using a thermo-optical
 effect.
- 7. The optical filter according to claim 1, wherein
 said first and second optical path change units
 change the optical path using an electro-optical effect.
- 8. The optical filter according to claim 1, wherein said optical filter is used in an optical gain 20 equalizer.
 - 9. A control device which controls an optical filter, wherein:

the optical filter comprises

first, second, and third Mach-Zehnder

25

interferometers; and

said control device independently and individually sets amounts of changes in an optical path by first and second optical path change units.

5

10. An optical gain equalizer configured by coupling a plurality of optical filters, wherein

each optical filter comprises:

first, second, and third Mach-Zehnder interferometers; and

first and second optical path change units individually changing an optical path of said first and second Mach-Zehnder interferometers to control a filter extinction ratio of the optical filter.

15

20

10

11. The optical gain equalizer according to claim 10, wherein

said optical gain equalizer is provided at a stage subsequent to an optical amplifier provided in a middle of relay spans of an optical transmission system.

- 12. An optical amplifier, comprising:
 - a first optical amplification unit;
- a second optical amplification unit provided at a stage subsequent to said first optical amplification

unit;

5

15

20

an optical signal monitor unit monitoring an output power level of signal light output from said second optical amplification unit; and

an optical gain equalizer which is configured by coupling a plurality of Mach-Zehnder interferometer type optical filters, and to which a monitor result of the output power level is fed back, wherein:

each Mach-Zehnder interferometer type optical filter comprises:

first, second, and third Mach-Zehnder interferometers; and

first and second optical path change units individually changing an optical path of said first and second Mach-Zehnder interferometers to control a filter extinction ratio of the optical filter; and

average insertion loss of said optical gain equalizer is controlled using first and second optical path change units of each Mach-Zehnder interferometer type optical filter so that the output power level of the signal light can be evened.

13. The optical amplifier according to claim 12, wherein

25 said optical gain equalizer is provided between

said first and optical amplification units.

- 14. The optical amplifier according to claim 12, wherein
- said optical gain equalizer is provided in a stage preceding said first optical amplification unit.
 - 15. The optical amplifier according to claim 12, wherein
- said optical gain equalizer is provided between said second optical amplification unit and said optical signal monitor unit.
- 16. The optical amplifier according to claim 12,
 15 further comprising:

an optical branch unit for performing automatic gain control on each optical amplification unit and a photodiode at stages respectively preceding and subsequent to each optical amplification unit.

20

25

17. The optical amplifier according to claim 12, further comprising:

an optical branch unit for performing automatic output control on each optical amplification unit and a photodiode at stages subsequent to each optical

amplification unit.

15

20

- 18. The optical amplifier according to claim 12, wherein
- said optical amplifier is provided in a middle of relay spans of an optical transmission system.
 - 19. An optical filter control method wherein: the optical filter comprises:
- serially connected first, second, and third

 Mach-Zehnder interferometers; and

first and second optical path change units changing an optical path of said first and second Mach-Zehnder interferometers to control a filter extinction ratio of the optical filter; and

an amount of a change in optical path of said first optical path change unit and an amount of a change in an optical path of said second optical path change unit are set such that а filter average of the optical filter, а filter insertion loss extinction ratio, and amounts of changes in an optical path of said first and second optical path change units can satisfy a predetermined relationship.