Przedm	HOT WY	RÓWI	NAWCZY
semestr	zimowy	2021	/2022

Imię i nazwisko:

zadanie:	1a	1b	Σ:
punkty:	30	30	30
wynik:			
efekty:			

Poniżej przedstawione zostały dwa zadania. Wybierają Państwo jedno z zadań i przedstawiają je do oceny. Na rozwiązanie powinny składać się:

plik .pdf - przygotowany w LaTeX lub Markdown plik z opisem rozwiązania, zawierający niezbędną teorię/analizę problemu oraz wnioski płynące z zadania;

plik .txt - plik zawierający ewentualny kod programu, jeżeli jest on częścią rozwiązania; kod taki powinien być w dostateczny sposób opisany, aby jasnym było co jest obliczane.

Rozwiązania załączają Państwo w module Zadanie 1. na stronie kursu: plik pdf o nazwie 1_Imie_Nazwisko.pdf oraz kod programu 1_Imie_Nazwisko.txt (proszę podać własne imię i nazwisko).

Każde z zadań jest jednakowo punktowane (max. 30 punktów). Zadania rozwiązujemy samodzielnie. Zachęcam do wymiany wskazówek i podejścia do zagadnień, przeglądu literatury czy notatek z rachunku prawdopodobieństwa, itd. na forum kursu, jednak prace, które będą zbyt podobne do siebie w treści otrzymają po 0 punktów.

Zadanie 1a odwołuje się do podstawowej wiedzy z rachunku prawdopodobieństwa dot. rozkładu dwuwymiarowego, rozkładów brzegowych oraz elementów omówionych na dotychczasowych zajęciach (MPWL, CTG)

Zadanie 2a można potraktować jako bardziej eksperymentalne, tutaj w szczodry sposób punktowane jest przeprowadzenie nawet poprawnego częściowego rozumowania. Jeżeli nie uda się Państwu rozwiązać w całości zadania, ale dokładnie opiszą poprawne rozumowanie prowadzące do rozwiązania otrzymają Państwo dużą część punktów. Poprawne rozwiązanie bez żadnego opisu "teoretycznego" czy wyjaśnienia nie otrzyma punktów.

1. całkowanie numeryczne oraz całkowanie Monte Carlo

Używając aproksymacji Riemanna i metody Monte Carlo wyznacz:

- (a) $P(0 < Z_1 \le 1, 0 < Z_2 \le 1)$, gdzie (Z_1, Z_2) jest wektorem o standardowym rozkładzie dwuwymiarowym normalnym $(Z_1, Z_2$ są niezależne).
- (b) $P(Z_1^2 + Z_2^2 < 1)$.
- (c) $P(Z_1 > 0, Z_2 > 0, Z_1 + Z_2 < 1)$, tj. objętość pod dwuwymiarową normalną gęstością nad trójkątem (0,0), (0,1), (1,0).
- (d) Wyznacz analitycznie dokładne wartości powyższych całek.

Dla m=10000 (liczba podziałów odcinka, liczba losowanych wartości) porównaj wyniki. W rozwiązaniach przedstaw algorytm (pseudokod lub kod R). Zastanów się nad taką ew. modyfikacją algorytmu, by uzyskać najlepszą możliwą dokładność.

2. **generatory liczb pseudolosowych z zadanego rozkładu** Zadanie to wymaga zachowania znacznego rygoru matematycznego (w porównaniu z zadaniem 1a).

Interesuje nas napisanie funkcji, która generuje liczby pseudolosowe o rozkładzie jednostajnym dwuwymiarowym na kole K(0,1).

(a) Opisz charakterystyki rozkładu jednostajnego dwuwymiarowego na kole K(0,1) (funkcję gęstości, nośnik, być może wartość oczekiwaną i inne – to nie jest oczywiste, ale liczy się próba!).

- (b) Przedstaw generator gen1() liczb z rozkładu jednostajnego dwuwymiarowego na kole metodą eliminacji. Wyznacz charakterystyki wygenerowanego wektora liczb, porównaj z "teoretycznymi" wielkościami. Ile "średnio" należy wygenerować punktów, aby w metodzie eliminacji otrzymać n punktów z zadanego rozkładu?
- (c) Rozważ generator gen2(), który będzie generował liczby wyłącznie z koła K(0,1) (tzn. nie będzie, tak jak w metodzie eliminacji, generował "nieodpowiednich" wartości). W tym celu posłuż się współrzędnymi biegunowymi (r,θ) . Zbadaj własności zbioru liczb pseudolosowych otrzymanych poprzez generowanie par punktów we współrzędnych (r,θ) , gdzie r i θ mają rozkład jednostajny i są niezależne. Zapisz wnioski.
 - Generator gen2() oczywiście nie generuje rozkładu jednostajnego na K(0,1). Przeanalizuj otrzymany rozkład, w tym gęstości brzegowe rozkładu. W jaki sposób można zapewnić równomierny rozkład punktów? Zmodyfikuj rozkłady współrzędnych r i θ w taki sposób, aby otrzymać gen3() o wymaganym przez nas rozkładzie równomiernym na K(0,1).
- (d) Zaproponuj opis generatora gen4() rozkładu równomiernego na K(0,1), w istotny sposób różnego od powyższych. Generator może pochodzić z literatury, może mieć zadany rozkład tylko w przybliżeniu, może być oparty o generatory innych rozkładów, w końcu może być zupełnie niepraktyczny w użyciu.
 - Pomysł 1.: przybliżamy koło jako sumę m trójkątów równoramiennych o wspólnym wierzchołku (0,0), losujemy "trójkąt" a następnie punkt wewnątrz trójkąta, dla pewnego dużego m
 - Pomysł 2.: Jeśli się zastanowić jak wygląda granica, gdy $m \to \infty$, to otrzymamy właściwy generator zadanego rozkładu. Pomyślmy o nieskończenie wielu trójkątach równoramiennych o wierzchołku w punkcie (0,0), których krótszy bok jest nieskończenie mały. Losujemy jeden z takich trójkątów losując kąt θ . Rozważmy teraz losowanie punktu z takiego trójkąta: możemy pomyśleć o transformacji kwadratu o boku 1, $[0,1] \times [0,1]$, w romb, którego krótsza przekątna maleje do 0, a dłuższa przekątna rośnie do wartości 2. Zatem losując dwa punkty z rozkładu jednostajnego na bokach takiego rombu $x,y \sim U(0,1)$, otrzymujemy punkt na dłuższej przekątnej x+y. Jeżeli teraz x+y ma wartość większą od 1 (promienia okręgu) możemy przyjąć wartość 2-x-y.