Ley de Ampère en problemas con simetría cilíndrica

La ley de Ampère dice que la circulación del campo magnético \overrightarrow{B} alrededor de una curva cerrada C es proporcional a la coriente encerrada $I_{\rm enc}$ que atraviesa la superfície S limitada por C. A tal curva C se la denomina curva de Ampère, o curva amperiana.

Por definición, la circulación del campo magnético \overrightarrow{B} alrededor de la curva de Ampère C es

$$C_B \equiv \oint_C \vec{B} \cdot \vec{d} \vec{l}. \tag{1}$$

También por definición, la corriente encerrada $I_{\rm enc}$ es el flujo de la corriente eléctrica con densidad \vec{J} que atraviesa la superficie S encerrada por la curva de Ampére

$$I_{\text{enc}} \equiv \iint_{S} \vec{J} \cdot \vec{d} \vec{S}.$$
 (2)

Por lo tanto la ley de Ampère se puede escribir matemáticamente como

$$C_B = \mu_0 I_{\text{enc}}, \tag{3}$$

donde μ_0 es la constante magnética (permeabilidad del vacio).

La ley de Ampère simplifica la solución de problemas con simetría cilíndrica. Un problema tiene simetría cilindrica si existe un sistema de coordenadas cilíndricas r, φ, z con vectores de base $\overrightarrow{e_r}, \overrightarrow{e_{\varphi}}, \overrightarrow{e_z}$ de tal manera que la densidad de la corriente $\overrightarrow{J}(x, y, z)$ se puede presentar como

$$\vec{J}(x, y, z) = J(r) \, \vec{e_z}. \tag{4}$$

La curva de Ampère C en los problemas con simetría cilindrica es un círculo con radio r que es coaxial con el eje Z. La superfície S encerrada por C es un disco con radio r y normala $\overrightarrow{e_z}$. La fórmula (2) se simplifica porqué la densidad \overrightarrow{J} es colinear a la normal del disco:

$$I_{\text{enc}}(r) = \iint_{S} \overrightarrow{J} \cdot \overrightarrow{dS} = \iint_{S} J \, dS \tag{5}$$

La solución de un problema con simetría cilíndrica significa encontrar el campo magnético \overline{B} sabiendo la densidad escalar J(r). Usando la regla de la mano derecha el campo \vec{B} se puede presentar como

$$\vec{B}(r) = B(r) \, \vec{e_{\varphi}} \tag{6}$$

y por lo tanto la solución se reduce a encontrar la función escalar B(r). Abajo presentamos un algoritmo de cuatro pasos para encontrar B(r). Los pasos 2 y 3 son idénticos para todos los problemas con simetría cilíndrica.

Algoritmo de 4 pasos

Paso 1. Dibujar la curva de Ampère

La siguiente figura presenta la curva amperiana correspondiente al problema 3.6.

Problema 3.6 Simetría cilíndrica

Paso 2. Calcular la circulación C_B

$$\operatorname{Out}[\bullet] = C_B \stackrel{\heartsuit}{=} \oint_C \overrightarrow{B} \cdot \overrightarrow{dl} \stackrel{\heartsuit}{=} \oint_C B \ dl \stackrel{\heartsuit}{=} B \oint_C dl \stackrel{\heartsuit}{=} B \ 2 \ \pi \ r$$

Sustituyendo C_B en la ley de Ampère (3) podemos expresar B en función de $I_{\rm enc}$:

$$B = \frac{\mu_0}{2\pi r} I_{\text{enc}} \tag{7}$$

Out[•]=

Paso 3. Calcular la corriente I_{enc} en función del radio r de la curva de Ampère

$$\begin{aligned} \text{Out} [\bullet] &= I_{\text{enc}}(r) \overset{\heartsuit}{=} \iint_{S} \overrightarrow{J} \cdot \overrightarrow{dS} \overset{\heartsuit}{=} \iint_{S} J \, dS \overset{\heartsuit}{=} \\ &\iint_{S} J(r) \, r \, dr \, d\varphi \overset{\heartsuit}{=} \iint_{0} J(r) \, r \, dr \int_{0}^{2\pi} d\varphi \overset{\heartsuit}{=} 2 \, \pi \int_{0}^{r} J(r) \, r \, dr \end{aligned}$$

Sustituyendo I_{enc} en (7) podemos expresar B en función de J(r):

$$B(r) = \frac{\mu_0}{r} \int_0^r J(r') \, r' \, dr' \tag{8}$$

Paso 4. Encontrar el campo magnético $\vec{B}(r)$

Integrar (8) y escribir la solución $\vec{B}(r) = B(r) \vec{e_{\varphi}}$.

Demonstracion del algoritmo con varios problemas

Problema 3.6

Un cilindre infinit, conductor i rectilini de radi R transporta un corrent I distribuït uniformement en toda la seva secció transversal. Determineu la inducció magnètica, \vec{B} , dins i fora del cilindre.

Solución

Paso 1. Dibujamos el cilindro, la curva de Ampère y presentamos J(r) como una función discontinua.

Por la distribución unifórmemente de la corriente podemos concluir que la densidad J_0 es constante. Además la corriente total I es igual a densidad J_0 multiplicada por la superficie transversal del cilindro π R^2 , por lo tanto

$$J_0 = \frac{I}{\pi R^2}.$$

Out[•]=

Paso 2. Calculamos la circulación C_B . (repetir las ecuaciones del paso 2 del algoritmo)

$$C_B = \oint_C \overrightarrow{B} \cdot \overrightarrow{dl} = \oint_C B \, dl = B \oint_C dl = B \, 2 \, \pi \, r$$

y expresamos B en función de $I_{\rm enc}$, es decir deducimos fórmula (7):

$$B = \frac{\mu_0}{2 \pi r} I_{\text{enc}}.$$

Paso 3. Calcular la corriente I_{enc} en función del radio r de la curva de Ampère

Repetimos los ecuaciones del paso 3

$$I_{\rm enc} =$$

$$\iint_{S} \overrightarrow{J} \cdot \overrightarrow{dS} = \iint_{S} J \, dS = \iint_{S} J(r) \, r \, dr \, d\varphi = \int_{0}^{r} J(r) \, r \, dr \int_{0}^{2\pi} d\varphi = 2 \, \pi \int_{0}^{r} J(r) \, r \, dr$$

y sustituyendo $I_{\rm enc}$ en (7) deducimos fórmula (8):

$$B = \frac{\mu_0}{r} \int_0^r J(r) \, r \, dr.$$

Paso 4.

Teniendo en cuenta que

$$J(r) = \begin{cases} J_0 & r < R \\ 0 & r > R \end{cases}$$

calculamos la integral

$$\int_{0}^{r} J(r) r \, dr = \frac{J_0}{2} \left\{ \begin{array}{cc} r^2 & r < R \\ R^2 & r > R \end{array} \right.$$

y encontramos la función B(r) según la fórmula (8):

$$B(r) = \frac{\mu_0 J_0}{2 r} \begin{cases} r^2 & r < R \\ R^2 & r > R \end{cases}.$$

Por lo tanto la solución es según fórmula (6),

$$\overrightarrow{B}(r) = B(r) \ \overrightarrow{e_{\varphi}} = \frac{\mu_0 \ J_0}{2 \ r} \ \overrightarrow{e_{\varphi}} \ \left\{ \begin{array}{ll} r^2 & r < R \\ R^2 & r > R \end{array} \right. .$$

Problema 3.7

Un cilindre infinit, conductor i rectilini da radi R transporta un corrent distribuït en la seva secció transversal segons: $\vec{J}(r) = J_0 \frac{R-r}{R} \vec{e_z}$. Determineu la inducció magnètica \vec{B} dins i fora del cilindre.

Paso 1. Es este paso la única diferencia es la expresión explícita de J(r).

Pasos 2 y 3 son idénticos para todos los problemas

Paso 4. Encontrar el campo magnético $\vec{B}(r)$

Teniendo en cuenta que

Out[•]=

$$J(r) = \frac{J_0}{R} \left\{ \begin{array}{ll} R - r & r < R \\ 0 & r > R \end{array} \right.$$

calculamos la integral

$$\int_{0}^{r} J(r) r dr = \frac{J_{0}}{R} \begin{cases} \int_{0}^{r} (R r - r^{2}) dr & r < R \\ \int_{0}^{R} (R r - r^{2}) dr & r > R \end{cases} =$$

$$\frac{J_0}{R} \begin{cases} \frac{Rr^2}{2} - \frac{r^3}{3} & r < R \\ \frac{RR^2}{2} - \frac{R^3}{3} & r > R \end{cases} = \frac{J_0}{6R} \begin{cases} 3Rr^2 - 2r^3 & r < R \\ R^3 & r > R \end{cases}$$

y en continuación

$$B(r) = \frac{\mu_0 \, J_0}{6 \, r \, R} \, \left\{ \begin{array}{ll} 3 \, R \, r^2 - 2 \, r^3 & r < R \\ R^3 & r > R \end{array} \right. .$$

Al final
$$\overrightarrow{B}(r) = B(r) \overrightarrow{e_{\varphi}}$$
.